Cálculo I

Problemas e Exercícios

2006/2007

Departamento de Matemática Universidade de Aveiro

Conteúdo

1	Estu	ıdo de funções reais de variável real	1
	1.1	Enunciados	1
	1.2	Soluções	13
2	Fórmula de Taylor		
	2.1	Enunciados	19
	2.2	Soluções	21
3	Técnicas de Primitivação		
	3.1	Enunciados	23
	3.2	Soluções	27
4	Integral de Riemann. Teorema fundamental do cálculo integral.		
	4.1	Enunciados	29
	4.2	Soluções	32
5	Cálo	culo de integrais definidos e de áreas	33
	5.1	Enunciados	33
	5.2	Soluções	35
6	Inte	grais impróprios	37
	6.1	Enunciados	37
	6.2	Soluções	40

Capítulo 1

Estudo de funções reais de variável real

1.1 Enunciados

1. Mostre que, para todos os $x, y \in \mathbb{R}$,

(a)
$$|x+y| \le |x| + |y|$$

(b)
$$|x - y| \le |x| + |y|$$

(c)
$$|x - y| \ge |x| - |y|$$

(d)
$$|x+y| \ge ||x| - |y||$$

(e)
$$|x.y| = |x|.|y|$$

(f)
$$|x/y| = |x|/|y|, y \neq 0$$

2. Em cada uma das alíneas que se seguem determine f(x) sabendo que $f: \mathbb{R} \to \mathbb{R}$ e:

(a)
$$f(x+1) = x^2 + 3x + 5$$
, para todo o $x \in \mathbb{R}$

(b)
$$f(3x) = \frac{x}{x^2 + 1}$$
, para todo o $x \in \mathbb{R}$

3. Determine o domínio das seguintes funções:

(a)
$$f(x) = \sqrt{\frac{x-2}{4+\sqrt{3x}}}$$

(b)
$$f(x) = \frac{3+2x^2}{\lg x - 1}$$

(c)
$$f(x) = \frac{1 - \ln x}{2 + \ln(3x - 1)}$$

(d)
$$f(x) = \sqrt{e^{2x} - e^{-x}}$$

(e)
$$f(x) = \sqrt{(\sin x - 1)\log_{1/2}(4 - x)}$$

(f)
$$f(x) = \sqrt{\sqrt{2} - 2|\sin x|}$$

(g)
$$f(x) = \ln(|2x - 1| - |x|)$$

(h)
$$f(x) = \ln(\ln x)$$

$$(i) f(x) = \ln \frac{2+x}{2-x}$$

4. Determine os valores de $m \in \mathbb{R}$ para os quais o domínio da seguinte função é \mathbb{R} :

$$f(x) = \sqrt{mx^2 + (2m+1)x + m + 2}.$$

5. Determine o domínio e os zeros das seguintes funções:

(a)
$$f(x) = \frac{|2x| - |-x+1|}{x^2 + 1}$$

(b)
$$g(x) = \frac{|x^3 - 2x + 1|}{|x - 1| + |x^2 - 4x + 3|}$$

6. Resolva as seguintes equações e inequações:

(a)
$$4\ln(x/2) + 3\ln(x/3) = 5\ln(x) - \ln(27)$$

(b)
$$x \ln x = ax, a \in \mathbb{R}$$

(c)
$$16 \times 2^{|x+1|} = 4^{x+2}$$

(d)
$$\frac{1}{3^{x-1}}(x^2-3) < 0$$

(e)
$$x \log_{1/2}(1+x) < x$$

(f)
$$x10^x + 2.10^x = 0$$

- 7. Sejam f e g duas funções reais de variável real de domínio $\mathbb R$ tais que f(x)=0 se e só se x=1 ou x=2 e $g(x)=\cos(2x-1)$. Determine $x\in\mathbb R$ tal que $(f\circ g)(x)=0$.
- 8. Sejam f e g duas funções reais de variável real definidas por $f(x) = \sqrt{x+1}$ e $g(x) = \frac{1}{1+x^2}$. Prove que $(g \circ f)(x) = \frac{1}{x+2}$ e que o domínio de $g \circ f$ é $[-1, +\infty[$.
- 9. Sejam f e g duas funções reais de variável real tais que, para todo o $x \in \mathbb{R}$, $f(x) = x(x^2 3x + 3)$ e $f(g(x)) = 1 x^6$. Caracterize a função g.

Sugestão: Observe que $(x-1)^3 = x^3 - 3x^2 + 3x - 1$.

10. Considere o seguinte

Teorema: Seja $f: D \longrightarrow \mathbb{R}$ uma função real de variável real. Se D é simétrico em relação à origem, então existem duas funções f_P e f_I tais que

i)
$$f_P: D \longrightarrow \mathbb{R}$$
 é par;

ii)
$$f_I: D \longrightarrow \mathbb{R}$$
 é ímpar;

iii)
$$f = f_P + f_I$$
.

Mostre que:

(a) as funções dadas por $f_P(x) = \frac{f(x) + f(-x)}{2}$ e por $f_I(x) = \frac{f(x) - f(-x)}{2}$ satisfazem a tese do teorema;

- (b) as funções f_P e f_I definidas pelo teorema são únicas (e por isso são designadas, respectivamente, parte par e parte ímpar de f.)
- 11. Considere o polinómio $p(x) = x^3 3x^2 + 1$.
 - (a) Prove que p(x) tem um zero no intervalo]0,1[.
 - (b) Localize, em intervalos cujos extremos são inteiros consecutivos, os outros zeros de p(x).
- 12. Seja h uma função real de variável real definida da seguinte forma:

$$h(x) = \begin{cases} -x+3 \text{ se } x < 1\\ 1-x \text{ se } x \ge 1 \end{cases}$$

- (a) Calcule h(-1) e h(2).
- (b) Prove que para todo o $x \in [-1,2]$ se tem $h(x) \neq 1$. Será que esta conclusão contradiz o Teorema de Bolzano? Justifique.
- 13. Sejam $f: D \longrightarrow \mathbb{R}$ uma função real de variável real estritamente crescente e $x_1, x_2 \in D$. Demonstre a seguinte implicação

$$f(x_1) < f(x_2) \Longrightarrow x_1 < x_2$$
.

14. Seja f uma função real definida e contínua no intervalo [0,1]. Supondo que, para todo o $x \in [0,1]$, $0 \le f(x) \le 1$, mostre que f tem um ponto fixo no intervalo [0,1], isto é, mostre que existe pelo menos um ponto $c \in [0,1]$ para o qual f(c) = c.

Sugestão: Aplicar o Teorema de Bolzano à função g definida por g(x) = f(x) - x.

15. Prove que se g for uma função definida numa vizinhança da origem (excluindo eventualmente a origem) tal que $\lim_{x\to 0} g(x) = 0$ então

$$\lim_{x\to 0} g(x) \operatorname{sen}(1/x) = 0.$$

16. Sejam

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 e$$

$$q(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$$

dois polinómios de coeficientes reais de graus n e m, respectivamente. Mostre que

$$\lim_{x \to +\infty} \frac{p(x)}{q(x)} = \lim_{x \to +\infty} \frac{a_n x^n}{b_m x^m} .$$

- 17. Justifique que não existem os seguintes limites:
 - (a) $\lim_{x \to \pi/2} \operatorname{tg} x$

(b)
$$\lim_{x \to 0} f(x)$$
, onde $f(x) = \begin{cases} x^2 \sin(1/x) & \text{se } x < 0 \\ (1+x)^x & \text{se } x > 0 \end{cases}$

(c)
$$\lim_{x \to +\infty} \operatorname{sen} x$$

18. Sendo

$$f(x) = \begin{cases} 1 - 2x & \text{se } x \le 2\\ 1 - x^2 & \text{se } x > 2 \end{cases}$$
 e
$$g(x) = \begin{cases} 10 & \text{se } x \le 2\\ x^2 + 3x & \text{se } x > 2 \end{cases}$$

calcule

(a)
$$\lim_{x \to 2} (f+g)(x)$$

(b) $\lim_{x \to 2} (f-g)(x)$

(b)
$$\lim_{x \to 2} (f - g)(x)$$

(c)
$$\lim_{x\to 2} (f \times g)(x)$$

(d)
$$\lim_{x\to 2} (f/g)(x)$$

(e)
$$\lim_{x \to -1^+} \frac{f(x)}{-x-1}$$

(f)
$$\lim_{x \to -1^{-}} \frac{f(x)}{-x-1}$$

19. Identifique o erro cometido na igualdade que apresentamos a seguir

$$\lim_{x \to -\infty} \frac{x-1}{\sqrt{x^2 - 4}} = \lim_{x \to -\infty} \frac{x(1 - 1/x)}{x\sqrt{1 - 4/x^2}}$$

20. Calcule, caso exista, o limite considerado em cada uma das alíneas seguintes:

(a)
$$\lim_{x \to a} \frac{x^5 - a^5}{x - a}$$

(b)
$$\lim_{x \to 1} \frac{x\sqrt{x} - x + \sqrt{x} - 1}{x - 1}$$

(c)
$$\lim_{t \to -2} \frac{t^3 + 2t^2 + 4t + 8}{t^3 - 4t}$$

(d)
$$\lim_{x \to +\infty} \frac{x^2 + 2x - 1}{\sqrt{x} + 1}$$

(e)
$$\lim_{x \to +\infty} \frac{2 + \sqrt{x}}{\sqrt[3]{x} + 3}$$

(f)
$$\lim_{x \to +\infty} \left(\sqrt{x^2 - x + 8} - \sqrt{x^2 - x - 1} \right)$$

(g)
$$\lim_{x \to +\infty} \left(\sqrt{x^2 + x} - \sqrt{x^3 + 3} \right)$$

(h)
$$\lim_{x \to +\infty} \frac{\sqrt{x+5} - \sqrt{x}}{x - \sqrt{x+5}}$$

(i)
$$\lim_{x \to -\infty} \frac{x^4 + 2x - 1}{x + 3}$$

(j)
$$\lim_{x \to +\infty} x(\sqrt{x^2+1}-x)$$

(k)
$$\lim_{x \to 1} \left(\frac{1}{1-x} - \frac{1}{1-x^3} \right)$$

(1)
$$\lim_{x \to +\infty} \frac{\sqrt{2x+51}-3}{\sqrt{x-2}-\sqrt{2}}$$

21. Estude quanto à continuidade as funções seguintes:

(a)
$$f(x) = \begin{cases} \frac{\ln(x-1)}{x^2 - x - 2} & \text{se } x > 2\\ 1/3 & \text{se } x = 2\\ \frac{e^{x-2} - 1}{3x - 6} & \text{se } x < 2 \end{cases}$$

(b)
$$f(x) = \frac{\sqrt{x^2 + 1}(x^2 - \sqrt[3]{x})}{x^2 + 5}$$

(c)
$$f(t) = \begin{cases} \operatorname{sen}\left(t - \frac{\pi}{6}\right) \operatorname{se} t \ge 0\\ \frac{2t}{1 - e^{4t}} \operatorname{se} t < 0 \end{cases}$$

(d)
$$f(x) = \frac{|2x^2 - 2x - 4|}{x^2(1+x)(x-3)}$$

(e)
$$f(x) = \begin{cases} x^2 \cos(1/x) & \text{se } x > 0 \\ 0 & \text{se } x = 0 \\ \frac{\sin^2 x - x^2 \cos(1/x)}{x^2} & \text{se } x \in]-\pi, 0[\end{cases}$$

- 22. Defina, no intervalo [-1,1], a função g sabendo que g tem contradomínio $[0,\pi]$, $f(x) = 2\cos x 1$ e $(f \circ g)(x) = x^2$.
- 23. Em cada uma das alíneas seguintes defina a função inversa de f. Nos casos que envolvem funções trigonométricas, considere as correspondentes restrições principais.

(a)
$$f(x) = \frac{1}{2} \operatorname{sen}\left(x + \frac{\pi}{2}\right)$$

 $\pi = 2 \operatorname{arcsen}(1)$

(b)
$$f(x) = \frac{\pi}{2} - \frac{2 \arcsin(1-x)}{3}$$

(c)
$$f(x) = \operatorname{tg}\left(\frac{\pi}{2-x}\right)$$

(d)
$$f(x) = \frac{5\ln(x-3) - 1}{4}$$

(e) $f(x) = e^{1-2x}$

(e)
$$f(x) = e^{1-2x}$$

$$(f) \ f(x) = \left(\frac{1}{3}\right)^{x+2}$$

24. Considere a função real de variável real definida por

$$f(x) = \begin{cases} e^{-1/x^2} + 2k - 1/2 & \text{se } x > 0\\ k & \text{se } x = 0\\ (2k^2 + k)\frac{1 - \cos x}{x^2} & \text{se } x < 0 \end{cases}$$

- (a) Determine $k \in \mathbb{R}$ por forma que f seja contínua em x = 0.
- (b) Mostre que para todo o x < 0, $e^{-1/x^2} \in]0,1[$.
- (c) Supondo k = 1/2, defina a inversa da restrição de f a \mathbb{R}^+ .
- 25. Considere a função $f: \mathbb{R} \setminus [-1,1] \longrightarrow \mathbb{R}$ definida por $f(x) = x + \alpha \frac{|x|}{x}$, com $\alpha \in \mathbb{R}$.
 - (a) Determine os valores de α para os quais f é invertível.
 - (b) Caracterize, quando exista, a função inversa de f.
- 26. Sendo f definida e contínua em [0,1[, diga, justificando, se são verdadeiras ou falsas as seguintes proposições:
 - (a) Se f(1/4) = 5 e f(3/4) = -2, então existe $x \in [0, 1[$ tal que f(x) = 0.
 - (b) Se f(1/4) = 5 e f(3/4) = 3, então existe $x \in [0, 1]$ tal que f(x) = 4.
- 27. (a) Sejam f e g duas funções reais de variável real tais que, para todo o $x \in \mathbb{R}$, f(x) = xg(x). Prove que se g é contínua em x = 0, então f é diferenciável em x = 0 e f'(0) = g(0).
 - (b) Recorrendo à alínea anterior determine h'(0), sendo:

$$h: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto x|x|$$

28. Seja $I \subset \mathbb{R}$ um intervalo tal que $0 \in \text{int}(I)$.

Sejam $f, g: I \longrightarrow \mathbb{R}$ duas funções tais que, para todo o $x \in I$,

$$-x^2 \le f(x) \le x^2 \qquad \qquad e \qquad \qquad x \le g(x) \le x + x^2 \ .$$

Prove que f'(0) = 0 e g'(0) = 1.

29. Sejam $f, g, h: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ três funções tais que, para todo o $x \in D$,

$$f(x) < g(x) < h(x)$$
.

Seja $a \in D$ um ponto do interior de D tal que f(a) = h(a).

Prove que se existem f'(a) e h'(a) e f'(a) = h'(a), então existe g'(a) e g'(a) = f'(a) = h'(a).

- 30. Utilizando a definição de derivada de uma função num ponto prove que:
 - (a) $(x^n)' = nx^{n-1}$, para todos os $n \in \mathbb{N}$, $x \in \mathbb{R}$
 - (b) sendo $a \in \mathbb{R}^+ \setminus \{1\}$, $(a^x)' = a^x \ln a$, para todo o $x \in \mathbb{R}$
 - (c) $(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$ para todo o $x \in \mathbb{R} \setminus \{\pi/2 + k\pi, k \in \mathbb{Z}\}.$
- 31. Seja f uma função real de variável real definida por

$$f(x) = \begin{cases} x^2 & \text{se } x > 0 \\ 2 & \text{se } x = 0 \\ x^2 - x & \text{se } x < 0 \end{cases}$$

Indique, justificando, o valor lógico da proposição seguinte:

a função derivada de f é

$$f'(x) = \begin{cases} 2x & \text{se } x > 0 \\ 0 & \text{se } x = 0 \\ 2x - 1 & \text{se } x < 0 \end{cases}$$

- 32. Mostre que a derivada de uma função par [resp. ímpar] é uma função ímpar [resp. par].
- 33. Determine a derivada de cada uma das funções seguintes:

(a)
$$f(x) = (1 + \sqrt[3]{x})^3$$

(b)
$$f(x) = \sqrt{1 + \sqrt{x}}$$

(c)
$$f(x) = \operatorname{sen}(\cos x)$$

(d)
$$f(x) = e^{\sqrt{x}}$$

(e)
$$f(x) = \frac{x - \lg x}{x + \operatorname{cotg} x}$$

(f)
$$f(x) = (5x)^x$$
, com $x > 0$

(g)
$$f(x) = \ln(\sin x)$$

(h)
$$f(x) = \operatorname{arccotg}(\operatorname{sen}(4x^3))$$

(i)
$$f(x) = \frac{e^x - 1}{e^x + 1}$$

(j)
$$f(x) = \arcsin \frac{1}{x^2}$$

34. Sejam f e g duas funções reais de variável real definidas por $f(x) = x^3$ e $g(x) = \sin x$. Determine, utilizando o teorema da derivada da função composta ou o teorema da derivada da função inversa, as derivadas seguintes:

(a)
$$(f \circ g)'(\pi/4)$$

(b)
$$(g \circ f)'(x)$$
, para $x \in \mathbb{R}$

(c)
$$(f^{-1})'(x)$$
, para $x \in \mathbb{R}$

(d)
$$(g^{-1})'(0)$$
.

35. Para cada uma das funções seguintes calcule $(f^{-1})'(x)$ utilizando o teorema da derivada da função inversa.

(a)
$$f(x) = x^3 + 1$$

(b)
$$f(x) = \ln(\arcsin x)$$
, $\cos x \in]0,1[$

(c)
$$f(x) = \frac{x^2}{1 - x^2}$$
, com $x \in]-1,0[$

(d)
$$f(x) = \begin{cases} -x^2 & \text{se } x \ge 0\\ 1 - x^3 & \text{se } x < 0 \end{cases}$$

36. Considere as funções f e g reais de variável real definidas da seguinte forma: $f(x) = \ln x \, \mathrm{e} \, g(x) = \frac{\cos x}{1 - \sin x}.$ Calcule $(f \circ g)'(x)$ de duas formas diferentes.

$$f(x) = \ln x e g(x) = \frac{\cos x}{1 - \sin x}$$

- 37. Determine $(f^{-1})'(1)$, sendo f a função definida por $f(x) = (x^3 + 2)^4$, para todo o $x \ge \sqrt[3]{-2}$.
- 38. Determine as equações cartesianas das rectas tangente e normal ao gráfico da função definida por $f(x) = \sqrt{x^2 + 1}$ no ponto de abcissa x = 2.
- 39. Mostre que a normal à circunferência de equação $x^2 + y^2 = r^2$ em qualquer ponto passa pelo seu centro.
- 40. Mostre que cada uma das funções seguintes é contínua no domínio considerado, mas não é aí diferenciável.

(a)
$$f(x) = 1 + |\sin x|$$
, $\cos x \in [0, 2\pi]$

(b)
$$f(x) = \begin{cases} e + \ln(1-x) & \text{se } x < 0 \\ e^{1-x} & \text{se } x \ge 0 \end{cases}$$

41. Considere a função f definida por

$$f(x) = \begin{cases} \frac{1}{1 + e^{1/x}} & \text{se } x \neq 0\\ 0 & \text{se } x = 0 \end{cases}$$

Estude f quanto à diferenciabilidade em x = 0.

42. Para cada $p \in \mathbb{Z}$ seja f_p a função definida por

$$f_p(x) = \begin{cases} x^p \sec \frac{1}{x} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

Indique para que valores de p a função f_p é:

- (a) uma função contínua;
- (b) uma função derivável;
- (c) uma função diferenciável;
- (d) uma função continuamente diferenciável, isto é, uma função com derivada contínua.
- 43. Sendo $f(x) = x^3 6x^2 + 9x 1$, $x \in \mathbb{R}$, mostre que f possui exactamente uma raiz no intervalo [1,3].
- 44. Mostre que se a > 0 a equação $x^3 + ax + b = 0$ não pode ter mais que uma raiz real, qualquer que
- 45. Prove que a equação $4x^3 6x^2 + 1 = 0$ tem 3 zeros distintos e localize-os em intervalos de \mathbb{R} cujos extremos sejam números inteiros consecutivos.

- 46. Verifique que x = 0 é raiz da equação $e^x = 1 + x$. Mostre que esta equação não pode ter outra raíz real.
- 47. Prove que:
 - (a) para todo o $x \in]0,1[$ se tem $\arcsin x > x;$
 - (b) para todo o $x \ge 0$ se tem sen $x \le x$;
 - (c) para todo o x > 0 se tem $\ln x < x$.
- 48. Seja f uma função real de variável real definida por:

$$f(x) = \begin{cases} x \ln x & \text{se } x > 0\\ \text{sen}(5x) - x \text{ se } x \le 0 \end{cases}$$

- (a) Estude f quanto à continuidade.
- (b) Averigue se a função f é diferenciável para x = 0.
- (c) Enuncie o Teorema de Rolle. Mostre que é aplicável à função f no intervalo [0,1] e determine o ponto b desse intervalo tal que f'(b) = 0.
- 49. Seja $f: \mathbb{R}_0^+ \longrightarrow \mathbb{R}$ uma função que verifica as condições seguintes:
 - f é contínua no seu domínio;
 - f é diferenciável em \mathbb{R}^+ ;
 - f(0) = 0;
 - f' é monótona crescente.

Prove que a função g definida por $g(x) = \frac{f(x)}{x}$, para todo o $x \in \mathbb{R}^+$, é monótona crescente.

- 50. Sejam f e g funções diferenciáveis em $\mathbb R$ tais que f'(x) > g'(x), para todo o $x \in \mathbb R$ e f(a) = g(a). Prove que:
 - (a) f(x) > g(x), para todo o x > a
 - (b) f(x) < g(x), para todo o x < a.
- 51. Seja f uma função real de variável real. Mostre que se f admite terceira derivada no intervalo [a,b] e f(a)=f(b)=f'(a)=f'(b)=0, então existe $c\in]a,b[$ tal que f'''(c)=0.
- 52. Mostre que existe

$$\lim_{x \to +\infty} \frac{x - \sin x}{x + \sin x} \, ,$$

mas não pode aplicar-se para o seu cálculo a regra de Cauchy.

- 53. Calcule, caso exista, o limite considerado em cad uma das alíneas que se seguem:
 - (a) $\lim_{x \to 0} \frac{\sin^2 \frac{x}{3}}{x^2}$

(b)
$$\lim_{x \to 0} \frac{\sqrt{x+1} - x}{x}$$

(c)
$$\lim_{x \to 0} \frac{2 \arcsin x}{3x}$$

(d)
$$\lim_{x \to 0} \frac{\cos x - 1}{x \sec x}$$

(e)
$$\lim_{x \to -\pi/4} \frac{\cos(2x)}{1 + \cot gx}$$

(f)
$$\lim_{x \to +\infty} \frac{\ln x}{x^p} \operatorname{com} p \in \mathbb{R}^+$$

(g)
$$\lim_{x \to 1} \frac{1-x}{\ln(2-x)}$$

(h)
$$\lim_{x \to +\infty} \left[\ln \left((x+1)^p \right) - \ln \left(x^p \right) \right] \text{ com } p \in \mathbb{R}$$

(i)
$$\lim_{x\to 0^+} (\operatorname{tg} x)^{\operatorname{tg}} (2x)$$

$$(j) \lim_{x \to +\infty} \left(\frac{x+3}{x-1}\right)^{x+3}$$

54. Determine, caso existam, os extremos locais das funções:

(a)
$$f(x) = (x-2)^{2/3}(2x+1)$$

(b)
$$f(x) = 1 - (x-2)^{4/5}$$

(c)
$$f(x) = xe^x$$

(d)
$$f(x) = |\sin x|$$

(e)
$$f(x) = \begin{cases} e^{-1/x^2} + 1 \text{ se } x \neq 0 \\ 1 \text{ se } x = 0 \end{cases}$$

(f)
$$f(x) = \begin{cases} \frac{1}{|x|} \operatorname{se} x \neq 0 \\ 4 \operatorname{se} x = 0 \end{cases}$$

(g)
$$f(x) = \begin{cases} 1 \text{ se } x = 1/n \\ 0 \text{ se } x \neq 1/n \end{cases}$$
, com $n \in \mathbb{N}$

(h)
$$f(x) = \frac{\ln x}{x^2}$$

(i)
$$f(x) = 2 \sin x + \cos(2x), \ x \in \left[0, \frac{3\pi}{2}\right]$$

(j)
$$f(x) = \begin{cases} 2x + \frac{1}{\pi} \cos\left(\frac{\pi x}{2}\right) & \text{se } x < 1\\ x^2 - 6x + 7 & \text{se } x \ge 1 \end{cases}$$

- 55. Exprima a área, A, de um rectângulo, como função de um dos seus lados, supondo o perímetro igual a 20. Faça um esboço do gráfico da função que define a área no intervalo [0, 10]. Determine, analiticamente e graficamente, o valor do comprimento dos lados que torna a área máxima.
- 56. Sabendo que x + y = a, com a constante, calcule x e y por forma a que o seu produto seja máximo.

- 57. Sabendo que o produto de dois números positivos x e y é igual a uma constante k, determine para que valores de x e y é mínima a sua soma.
- 58. Um rectângulo está inscrito num semi-círculo de raio fixo r. Exprima a área, A, do rectângulo em função da sua base, x, e determine o valor de x para o qual a área é máxima.
- 59. Uma caixa rectangular sem tampa, de capacidade *v* fixa, tem base quadrada de lado *x*. Exprima a área total da caixa em função de *x* e determine o valor de *x* para o qual a área é mínima.
- 60. Seja f a função real de variável real definida por $f(x) = \sin x + \cos x$.
 - (a) Calcule, aplicando a definição, a derivada da função no ponto de abcissa π .
 - (b) Defina analiticamente a tangente à curva nesse ponto.
 - (c) Represente, sob a forma de intervalos de números reais, o conjunto solução da condição f'(x) > 0.
- 61. Considere a função f definida por

$$f(x) = \frac{x^3 + kx^2 + 1}{x^2 - 2x} \;,$$

onde k é um parâmetro real.

- (a) Determine k por forma que o gráfico da função tenha por assímptota da sua parte direita a recta de equação y = x + 1.
- (b) Indique a posição do gráfico relativamente aquela assímptota.
- 62. (a) Sejam n um número natural par e f a função definida por $f(x) = x^n$. Mostre que o gráfico de f não admite pontos de inflexão.
 - (b) Seja m > 2 um número natural ímpar. Para cada m seja g a função definida por $g(x) = x^m$. Prove que g admite um único ponto crítico mas que, no entanto, g não admite extremos locais.
- 63. Determine as constantes reais a e b por forma que o gráfico da função

$$f(x) = ax^2 + \frac{b}{x}$$

tenha um ponto de inflexão para x=1 e que a tangente ao gráfico neste ponto de inflexão seja paralela à recta de equação y=3x+1 .

64. Sendo k um número real diferente de zero, considere a função f definida em $\mathbb{R} \setminus \{0\}$ do modo seguinte

$$f(x) = \begin{cases} \frac{\operatorname{sen}(\pi x)}{kx} & \operatorname{se} x < 0\\ \operatorname{arctg} \frac{1}{x} & \operatorname{se} x > 0 \end{cases}$$

Calcule os limites laterais de f no ponto zero e indique o valor de k para o qual é possível obter um prolongamento por continuidade de f a \mathbb{R} .

65. Faça o estudo e um esboço do gráfico das funções seguintes:

(a)
$$f(x) = \sqrt{4x^2 + x + 2}$$

(b)
$$f(x) = \sin x + \cos x \cos x \in [0, 2\pi]$$

(c)
$$f(x) = \frac{\ln x}{x}$$

(d)
$$f(x) = e^{|\ln |x||}$$

(e)
$$f(x) = x^2 e^{-x}$$

(f)
$$f(x) = x^2 \ln |x|$$

- 66. Utilizando um contra-exemplo mostre que são falsas as seguintes proposições.
 - (a) Se uma função não é diferenciável num ponto, então não é contínua nesse ponto.
 - (b) Toda a função contínua num ponto é diferenciável nesse ponto.
 - (c) Se f' = g' então f = g.
 - (d) Se f possui um máximo local em x_0 , então $f'(x_0)$ existe e é nula.

1.2 Soluções

- **1.** (a) Atenda a que, para todo o $a \in \mathbb{R}$, se tem $-|a| \le a \le |a|$; (b) Usar a alínea anterior;
 - (c) Fazer x = y + (x y) e usar a alínea a);
 - (d) Fazer x = x + y y e y = x + y x e usar a alínea a);
 - (e) Analisar os seguintes casos: $x \ge 0 \land y \ge 0$, $x \le 0 \land y \ge 0$, $x \ge 0 \land y \le 0$, $x \le 0 \land y \le 0$;
 - (f) Fazer $\frac{x}{y} = x \cdot \frac{1}{y}$ e usar a alínea e).
- **2.** (a) $f(x) = x^2 + x + 3$, para todo o $x \in \mathbb{R}$ (b) $f(x) = \frac{3x}{x^2 + 9}$, para todo o $x \in \mathbb{R}$
- **3.** (a) $[2, +\infty[; (b) \{x \in \mathbb{R} : x \neq \frac{\pi}{4} + k\pi \land x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\};$
 - (c) $\left[\frac{1}{3}, \frac{1+e^2}{3e^2} \right[\cup \left[\frac{1+e^2}{3e^2}, +\infty \right];$ (d) $[0, +\infty[; (e)] \infty, 3];$
 - (f) $\bigcup_{k\in\mathbb{Z}}\left[-\frac{\pi}{4}+k\pi,\frac{\pi}{4}+k\pi\right]$
 - (g) $\left] -\infty, \frac{1}{3} \right[\cup]1, +\infty[; (h)]1, +\infty[; (i)] -2, 2[.$
- **4.** m > 1/4
- **5.** $D_f = \mathbb{R}$ e f tem zeros x = 1 ou x = 1/3; $D_g = \mathbb{R} \setminus \{1\}$ e g tem zeros $x = \frac{-1 \sqrt{5}}{2}$ ou $\frac{-1 + \sqrt{5}}{2}$.
- **6.** (a) x = 4; (b) $x = e^a$; (c) x = 1; (d) $x \in]-\sqrt{3}, \sqrt{3}[$;
 - (e) $x \in]-1,-1/2[\cup]0,+\infty[;$ (f) x = -2.
- 7. $x = \frac{1}{2} + k\pi \cos k \in \mathbb{Z}$.

8. —
$$g: \mathbb{R} \longrightarrow \mathbb{R}$$

9. $g: \mathbb{R} \longrightarrow \mathbb{R}$
 $x \longmapsto g(x) = 1 - x^2$

- **11.** (a) —; (b) Um zero pertence a]-1,0[e o outro a]2,3[.
- **12.** (a) h(-1) = 4, h(2) = -1; (b) Não, já que a função não é contínua para x = 1.
- 13. —
- 14. —
- 15. —
- **16.** —
- 17. —
- **18.** (a) 7; (b) -13; (c) -30; (d) $\frac{-3}{10}$; (e) $-\infty$; (f) $+\infty$.
- **19.** $\lim_{x \to -\infty} \frac{x-1}{\sqrt{x^2 4}} = \lim_{x \to -\infty} \frac{x(1 \frac{1}{x})}{-x\sqrt{1 \frac{4}{x^2}}}$
- **20.** (a) $5a^4$; (b) 1; (c) 1; (d) $+\infty$; (e) $+\infty$; (f) 0; (g) $-\infty$; (h) 0;
 - (i) $-\infty$ (j) 1/2 (k) não existe (l) $\sqrt{2}$
- **21.** (a) $D_f = \mathbb{R}$ e f é contínua em \mathbb{R} . (b) Tem domínio \mathbb{R} e é aí contínua.
 - (c) Tem domínio \mathbb{R} e é aí contínua. (d) Tem domínio $\mathbb{R} \setminus \{0, -1, 3\}$ e é aí contínua.
 - (e) Tem domínio $]-\pi, +\infty[$ e é contínua em $]-\pi, 0[\cup]0, +\infty[$.

22.
$$g: [-1,1] \longrightarrow \mathbb{R}$$

$$x \longmapsto \arccos \frac{x^2+1}{2}$$

23.

(a)
$$f^{-1}: [-1/2,1/2] \longrightarrow \mathbb{R}$$
 $x \longmapsto \arcsin(2x) - \pi/2$ de contradomínio $[-\pi,0];$

(b)
$$f^{-1}: [\pi/6, 5\pi/6] \longrightarrow \mathbb{R}$$

 $x \longmapsto 1 - \operatorname{sen}(3\pi/4 - 3x/2)$

de contradomínio [0,2];

(c)
$$f^{-1}: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$$

 $x \longmapsto 2 - \frac{\pi}{\operatorname{arctg} x}$

de contradomínio $]-\infty,0[\cup]4,+\infty$

(d)
$$f^{-1}: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto 3 + e^{\frac{4x+1}{5}}$

de contradomínio $]3, +\infty[;$

(e)
$$f^{-1}: \mathbb{R}^+ \longrightarrow \mathbb{R}$$

 $x \longmapsto \frac{1}{2} - \ln \sqrt{x}$

de contradomínio \mathbb{R} :

(f)
$$f^{-1}: \mathbb{R}^+ \longrightarrow \mathbb{R}$$

 $x \longmapsto -2 + \log_{1/3} x$

de contradomínio \mathbb{R} .

24. (a)
$$k = \frac{1}{2}$$
 (b) —

(c) $\left[\frac{1}{2}, \frac{3}{2} \right] \longrightarrow \mathbb{R}$
 $x \longmapsto \frac{1}{\sqrt{-\ln(x - \frac{1}{2})}}$
de contradomínio \mathbb{R}^+ .

$$f^{-1}:]-\infty, -1-\alpha[\cup]1+\alpha, +\infty[\longrightarrow \mathbb{R}$$

de contradomínio
$$\mathbb{R}^+$$
.

$$f^{-1}:]-\infty, -1-\alpha[\cup]1+\alpha, +\infty[\longrightarrow \mathbb{R}$$
25. (a) $\alpha \in [-1, +\infty[$; (b)
$$x \longmapsto f^{-1}(x) = \begin{cases} x-\alpha & \text{se } x > 1+\alpha \\ x+\alpha & \text{se } x < -1-\alpha \end{cases}$$

26. (a) Verdadeira; (b) Verdadeira.

27. (a) Sugestão: Utilize a definição para determinar f'(0). (b) h'(0) = 0.

28. Sugestão: utilize a definição e os enquadramentos indicados no enunciado para calcular as derivadas laterais de f e g na origem.

29. Sugestão: utilize o enquadramento indicado para concluir que f(a) = g(a) = h(a). Do enquadramento apresentado resulta que, para k > 0,

$$\frac{f(a+k)-f(a)}{k} \le \frac{g(a+k)-g(a)}{k} \le \frac{h(a+k)-h(a)}{k}$$

donde se conclui que $h'_+(a) = f'_+(a) = g'_+(a)$.

Utilizando um racíocinio análogo conclua que $h'_{-}(a) = f'_{-}(a) = g'_{-}(a)$ e deduza o resultado pretendido.

- **30.** —
- 31. Falsa.
- 32. Sugestão: utilize as definições de derivada de uma função num ponto e de função par e ímpar.

33. (a)
$$\frac{(1+\sqrt[3]{x})^2}{\sqrt[3]{x^2}} = \frac{(1+\sqrt[3]{x})^2\sqrt[3]{x}}{\sqrt[3]{x}};$$
 (b)
$$\frac{1}{2\sqrt{x}\sqrt{x+\sqrt{x}}} = \frac{1}{2\sqrt{x+\sqrt{x^3}}};$$
 (c)
$$-\operatorname{sen} x \cos(\cos x);$$
 (d)
$$\frac{\sqrt{x}e^{\sqrt{x}}}{2x};$$
 (e)
$$\frac{x(\cot g^2x - tg^2x) - tgx - \cot gx}{(x+\cot g^2x)^2};$$
 (f)
$$(5x)^x(\ln(5x)+1);$$
 (g)
$$\cot gx;$$
 (h)
$$\frac{-12x^2\cos(4x^3)}{1+\sin^2(4x^3)};$$
 (i)
$$\frac{2e^x}{(e^x+1)^2};$$

(c)
$$-\operatorname{sen} x \cos(\cos x)$$
; (d) $\frac{\sqrt{x}e^{\sqrt{x}}}{2x}$; (e) $\frac{x(\cot^2 x - \operatorname{tg}^2 x) - \operatorname{tg} x - \cot g x}{(x + \cot g x)^2}$;

(f)
$$(5x)^x(\ln(5x)+1)$$
; (g) $\cot gx$; (h) $\frac{-12x^2\cos(4x^3)}{1+\sin^2(4x^3)}$; (i) $\frac{2e^x}{(e^x+1)^2}$;

(j)
$$\frac{-2}{x\sqrt{x^4-1}} = \frac{-2\sqrt{(x^4-1)^2}}{x^5-x}$$

34. (a)
$$3\frac{\sqrt{2}}{4}$$
; (b) $3x^2\cos(x^3)$; (c) $\frac{1}{3\sqrt[3]{x^2}}$; (d) 1.

35. (a)
$$\frac{1}{3\sqrt[3]{(x-1)^2}}$$
; (b) $e^x \cos(e^x)$; (c) $\frac{-\sqrt{x+1}}{2\sqrt{x}(1+x)^2}$;

(d)
$$(f^{-1})'(x) = \begin{cases} \frac{-1}{3\sqrt[3]{(1-x)^2}} & \text{se } x > 1\\ \frac{-1}{2\sqrt{-x}} & \text{se } x < 0 \end{cases}$$

- **36.** $(f \circ g)'(x) = \sec x$
- **38.** Recta tangente: $y = \frac{2\sqrt{5}}{5}x + \frac{\sqrt{5}}{5}$; Recta normal: $y = -\frac{\sqrt{5}}{2}x + 2\sqrt{5}$.
- **40.** (a) f não é diferenciável em π porque $f'_+(\pi) = 1$ e $f'_-(\pi) = -1$.
 - (b) f não é diferenciável em 0 porque $f'_{+}(0) = -e$ e $f'_{-}(0) = -1$.
- **41.** Como f não é contínua em x = 0, tem-se que f não é diferenciável neste ponto.
- **42.** (a) p > 0; (b) p > 1; (c) p > 1; (d) p > 2.
- **43.** Sugestão: Utilize o Teorema de Bolzano para garantir que f tem pelo menos uma raíz e o estudo dos zeros da derivada para garantir a unicidade.
- **44.** Sugestão: Faça o estudo da primeira derivada de f.
- **45.** f tem um zero em]0,1[, um em]1,2[e outro em]-1,0[.
- **46.** Sugestão: Atenda a que 0 é raíz da equação e ao comportamento da primeira derivada de f.
- 47. (a) Sugestão: Considere a função $f(x) = \operatorname{arcsen} x x$ e prove que é positiva no intervalo considerado analisando o comportamento da primeira derivada; b) —; c) —.
- **48.** (a) É contínua em \mathbb{R} ; (b) f não é diferenciável em x = 0; (c) b = 1/e.
- **49.** Sugestão: Verifique que, nas condições indicadas, g'(x) > 0, para todo o $x \in \mathbb{R}^+$, aplicando o Teorema de Lagrange à função.
- **50.** —
- **51.** —
- 52. $\lim_{x \to +\infty} \frac{x \sin x}{x + \sin x} = 1.$ 53. (a) 1/9; (b) não existe; (c) 2/3; (d) -1/2; (e) -1; (f) 0; (g) 1; (h) 0;
 - (i) 1; (j) e^4 .
- **54.** (a) 3 é máximo local atingido em x = 1 e 0 é mínimo local atingido em x = 2;

- (b) 1 é máximo local atingido em x = 2; (c) $-e^{-1}$ é um mínimo local atingido em x = -1;
- (d) 1 é máximo local de f atingido nos pontos da forma $\frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$; 0 é mínimo local atingido nos pontos da forma $k\pi$, $k \in \mathbb{Z}$;
 - (e) Mínimo local 1 atingido em x = 0; (f) Mínimo local 4 atingido em x = 0;
- (g) Os pontos do conjunto $]-\infty,0[\cup]1,+\infty[\cup(\cup_{n\in\mathbb{N}}]1/(n+1),1/n[)$ são pontos de máximo e mínimo local, pelo que 0 é máximo e mínimo local, 1 é máximo local de f atingido nos pontos da forma $\frac{1}{n}$, $n \in \mathbb{N}$; 0 é mínimo local de f atingido no ponto x = 0;
 - **(h)** Máximo local $\frac{1}{2e}$ atingido no ponto $x = \sqrt{e}$;
- (i) Máximo local 3/2 atingido nos pontos $x = \pi/6$ e $x = 5\pi/6$, mínimo local 1 atingido nos pontos x = 0 e $x = \pi/2$, mínimo local -3 atingido no ponto $x = 3\pi/2$;
 - (j) Máximo local 2 quando x = 1, mínimo local -2 quando x = 3.
- **55.** $A = 10x x^2$ A área toma o valor máximo A = 25 para x = 5 e y = 5.
- **56.** O produto é máximo quando $x = y = \frac{a}{2}$.
- **57.** A soma toma o valor mínimo $2\sqrt{k}$ para $x = y = \sqrt{k}$.
- **58.** $A = \frac{1}{2}x\sqrt{4r^2 x^2}$. A área é máxima quando $x = \sqrt{2}r$.
- **59.** $A = \frac{\overline{x}^3 + 4v}{x}$. A área é mínima quando $x = \sqrt[3]{2v}$.
- **60.** (a) -1; (b) $y = -x + (\pi 1)$; (c) $x \in \bigcup_{k \in \mathbb{Z}} \left[-\frac{3\pi}{4} + 2k\pi, \frac{\pi}{4} + 2k\pi \right]$.
- **61.** (a) k = -1 (b) O gráfico de f está acima da assímptota.
- **62.** —
- **63.** a = 1 e b = -1 **64.** $\lim_{x \to 0^{-}} \frac{\sin(\pi x)}{kx} = \frac{\pi}{k}$; $\lim_{x \to 0^{+}} \arctan \frac{1}{x} = \frac{\pi}{2}$; k = 2
- (a) Domínio: \mathbb{R} ; Sinal: positiva em \mathbb{R} ; Zeros: não tem; Assímptotas verticais: não tem; Assímptotas não verticais: y = 2x + 1/4 é assímptota vertical à direita e y = -2x - 1/4 é assímptota não vertical à esquerda; **Monotonia:** decrescente no intervalo $]-\infty,-1/8]$ e crescente no intervalo $[1/8, +\infty[$; Extremos locais: mínimo local $\sqrt{31}/4$ em x=-1/8, não tem máximos locais; Concavidades: concavidade voltada para cima em todo o domínio; Pontos de inflexão:
- (b) **Domínio:** $[0,2\pi]$; **Sinal:** positiva em $[0,3\pi/4]\cup [7\pi/4,2\pi]$, negativa em $[3\pi/4,7\pi/4]$ **Zeros:** $3\pi/4$ e $7\pi/4$; Assímptotas verticais: não tem; Assímptotas não verticais: não tem; Monotonia: crescente nos intervalos $[0, \pi/4]$ e $[5\pi/4, 2\pi]$, decrescente no intervalo $[\pi/4, 5\pi/4]$; Extremos locais: mínimo local $-\sqrt{2}$ em $x = 5\pi/4$, máximo local $\sqrt{2}$ em $x = \pi/4$; Concavidades: concavidade voltada para baixo em $[0, 3\pi/4]$ e em $]7\pi/4, 2\pi]$, concavidade voltada para cima em $[3\pi/4, 7\pi/4]$; Pontos de inflexão: $(3\pi/4, 0)$ e $(7\pi/4, 0)$.
- (c) **Domínio:** \mathbb{R}^+ ; Sinal: negativa em [0,1[e positiva em $]1,+\infty[$; Zeros: x=1; Assímptotas verticais: x = 0; Assímptotas não verticais: y = 0; Monotonia: decrescente em $[e, +\infty]$ e crescente em [0,e]; Extremos locais: máximo local $\frac{1}{e}$ em x=e; Concavidades: concavidade voltada para cima em $]e\sqrt{e}, +\infty[$ e voltada para baixo em $]0, e\sqrt{e}[$; **Pontos de inflexão:** $(e\sqrt{e}, \frac{3}{2e\sqrt{e}}).$

- (d) **Domínio:** $\mathbb{R} \setminus \{0\}$; **Sinal:** positiva em todo o domínio; **Zeros:** não tem; **Assímptotas verticais:** x = 0; **Assímptotas não verticais:** y = x é assímptota não vertical à direita e y = -x é assímptota não vertical à esquerda; **Monotonia:** decrescente nos intervalos $]-\infty,-1]$ e]0,1] e crescente nos intervalos [-1,0[e $[1,+\infty[$; **Extremos locais:** mínimo local 1 em x = 1 e x = -1; **Concavidades:** concavidade voltada para cima em todo o domínio; **Pontos de inflexão:** não tem.
- (e) **Domínio:** \mathbb{R} ; **Sinal:** positiva em $\mathbb{R}\setminus\{0\}$; **Zeros:** x=0; **Assímptotas verticais:** não tem; **Assímptotas não verticais:** y=0 é assímptota não vertical à direita; **Monotonia:** decrescente em $]-\infty,0]$ e em $[2,+\infty[$ e crescente em [0,2]; **Extremos locais:** mínimo local 0 em x=0, máximo local $\frac{4}{e^2}$ em x=2; **Concavidades:** concavidade voltada para cima em $]-\infty,2-\sqrt{2}[$ e em $]2+\sqrt{2},+\infty[$, concavidade voltada para baixo em $]2-\sqrt{2},2+\sqrt{2}[$; **Pontos de inflexão:** $(2-\sqrt{2},(2-\sqrt{2})^2\mathrm{e}^{-2+\sqrt{2}})$ e $(2+\sqrt{2},(2+\sqrt{2})^2\mathrm{e}^{-2-\sqrt{2}})$.
- (f) Domínio: $\mathbb{R}\setminus\{0\}$; Sinal: positiva em $]-\infty,-1[\cup]1,+\infty[$ e negativa em $]-1,1[\setminus\{0\}$ Zeros: x=1 ou x=-1; Assímptotas verticais: não tem; Assímptotas não verticais: não tem; Monotonia: decrescente em $]-\infty,-1/\sqrt{e}]$ e em $]0,1/\sqrt{e}]$ e crescente em $]-1/\sqrt{e},0[$ e em $[1/\sqrt{e},+\infty[$; Extremos locais: mínimo local $-\frac{1}{2e}$ em $x=-1/\sqrt{e}$, máximo local $-\frac{1}{2e}$ em $x=1/\sqrt{e}$; Concavidades: concavidade voltada para cima em $]-\infty,-1/\sqrt{e^3}[$ e em $]1/\sqrt{e^3},+\infty[$, concavidade voltada para baixo em $]0,1/\sqrt{e^3}[$ e em $]1/\sqrt{e^3},0[$; Pontos de inflexão: $\left(-\frac{1}{\sqrt{e^3}},-\frac{3}{2e^3}\right)$ e $\left(\frac{1}{\sqrt{e^3}},-\frac{3}{2e^3}\right)$.

66. —

Capítulo 2

Fórmula de Taylor

2.1 Enunciados

- 1. Desenvolva $p(x) = x^4 5x^3 + x^2 3x + 4$ segundo potências de x 4.
- 2. Considere um polinómio do terceiro grau, p(x), que satisfaz as condições:

$$p(3) = 0, p'(3) = -1, p''(3) = 2, p'''(3) = 1.$$

Calcule p(2) e p'(0).

- 3. Considere a função f definida por $f(x) = \sqrt{x}$.
 - (a) Mostre que, numa vizinhança de 1, $f(x) \simeq 1 + \frac{1}{2}(x-1) \frac{1}{8}(x-1)^2$.
 - (b) Determine um valor aproximado de $\sqrt{1,01}$ e mostre que o erro cometido é inferior a 10^{-7} .
- 4. Estabeleça a fórmula de Taylor de ordem n, com resto de Lagrange, no ponto a, para as funções:
 - (a) $f(x) = \cos(x^2)$; a = 0; n = 4.
 - (b) $g(x) = (1+x)^m \ (m \in \mathbb{N}); a = 0; n = 3.$
 - (c) $h(x) = e^{-x^2}$; a = 1; n = 3.
- 5. Seja $g(x) = \ln(1 ax)$ com $a \in \mathbb{R}$.
 - (a) Determine, em função de a, o domínio de g sob a forma de intervalo de números reais.
 - (b) Prove, usando o método de indução, que a derivada de ordem n da função g é dada por $g^{(n)}(x) = -(n-1)!a^n(1-ax)^{-n}$ (para todo o $n \in \mathbb{N}$).
 - (c) Tome na expressão de g(x), a = 1.
 - i. Escreva a fórmula de MacLaurin de ordem *n* para *g*.
 - ii. Mostre que $|R_n(x)| < \frac{1}{n+1}$ para todo o $n \in \mathbb{N}$ e $x \in \left[0, \frac{1}{2}\right]$.
 - iii. Utilize a alínea anterior para obter uma aproximação de ln(3/4) com erro inferior a 0,01.

Fórmula de Taylor 2.1. Enunciados

- 6. Considere a função $f(x) = x(\ln x)^2$
 - (a) Prove que existe $a \in]1,e[$ tal que $f'(a) = \frac{e}{e-1}$. Sugestão: Use o Teorema de Lagrange.
 - (b) Prove que, numa vizinhança de x=1 contida em $\left[\frac{1}{2},\frac{3}{2}\right[$, podemos aproximar f pelo polinómio $p(x)=(x-1)^2$ e mostre que o erro cometido nessa aproximação é inferior a $\frac{4}{3}|x-1|^3$.
- 7. Considere a função definida por $f(x) = \frac{x^2}{x-1}$ Determine o polinómio de Taylor de f de segunda ordem relativamente a $x_0 = 4$ e mostre que o erro cometido, ao aproximarmos f(x) por este polinómio na vizinhança definida por |x-4| < 1, é inferior a $\frac{1}{2^4}$.
- 8. Determine o polinómio de Taylor de $2^{\underline{a}}$ ordem de $f(x) = e^{x^2-1}$ em torno do ponto $x_0 = 1$, e mostre que para 0 < x < 1, o erro cometido na aproximação de f por aquele polinómio é inferior a $\frac{10}{3}$.
- 9. Seja $f(x) = 2 \ln x + x^2$.
 - (a) Calcule o polinómio de Taylor de $3^{\underline{a}}$ ordem, $p_3(x)$, relativamente ao ponto x = 1.
 - (b) Determine os valores de $\varepsilon \in]0,1[$ por forma que na vizinhança definida por $|x-1| < \varepsilon$, o erro cometido ao aproximarmos f(x) por $p_3(x)$ seja inferior a $\frac{1}{2^5}$.

PRINCÍPIO DE INDUÇÃO MATEMÁTICA

É um resultado que permite demonstrar com relativa facilidade várias propriedades referentes ao conjunto dos números naturais. Pode enunciar-se do seguinte modo:

```
Seja \phi(n) uma condição em n (n \in \mathbb{N}).

Se

(i) \phi(1) (\phi transforma-se numa proposição verdadeira se n=1);

(ii) \phi(n) \Rightarrow \phi(n+1) (se \phi(n) é verdadeira então \phi(n+1) é também verdadeira);

então

\phi(n), para todo n \in \mathbb{N} (\phi(n) é verdadeira para todo o número natural).
```

Nota: a (i) é frequente chamar base de indução e a (ii) propriedade hereditária; $\phi(n)$ é a hipótese de indução e $\phi(n+1)$ é a tese de indução.

Fórmula de Taylor 2.2. Soluções

2.2 Soluções

1.
$$p(x) = -56 + 21(x-4) + 37(x-4)^2 + 11(x-4)^3 + (x-4)^4$$

2.
$$p(2) = 11/6$$
; $p'(0) = -5/2$.

3. (a) — (b)
$$\sqrt{1.01} \simeq p_2(1.01) = 1.0049875$$
.

4. (a)
$$\cos(x^2) = 1 - \frac{x^4}{2} + R_4(x)$$
 onde $R_4(x) = \frac{f^{(5)}(\xi)}{5!}x^5$, para algum ξ entre $x \in 0$;

3. (a) — (b)
$$\sqrt{1.01} \simeq p_2(1.01) = 1.0049875$$
.
4. (a) $\cos(x^2) = 1 - \frac{x^4}{2} + R_4(x)$ onde $R_4(x) = \frac{f^{(5)}(\xi)}{5!}x^5$, para algum ξ entre x e 0;
(b) $(1 + x)^m = 1 + mx + \frac{m(m-1)}{2}x^2 + \frac{m(m-1)(m-2)}{6}x^3 + R_3(x)$ onde

$$R_3(x) = \frac{m(m-1)(m-2)(m-3)(1+\theta)^{m-4}}{24}x^4$$
 para algum θ entre $x \in 0$;

$$R_3(x) = \frac{m(m-1)(m-2)(m-3)(1+\theta)^{m-4}}{24} x^4 \text{ para algum } \theta \text{ entre } x \in 0;$$

$$\mathbf{(c)} \ e^{-x^2} = \frac{1}{e} - \frac{2}{e}(x-1) + \frac{1}{e}(x-1)^2 + \frac{2}{3e}(x-1)^3 + \frac{e^{-\xi^2}(12 - 48\xi^2 + 16\xi^4)}{4!}(x-1)^4 \text{ com } \xi \text{ entre } \xi$$

$$5. \quad \textbf{(a)} \ \ D_g = \left\{ \begin{array}{l}]-\infty, 1/a[\ \text{se} \ a > 0 \\]1/a, +\infty[\ \ \text{se} \ a < 0 \\ \mathbb{R} \\ \text{se} \ a = 0 \end{array} \right.$$

$$(\textbf{c.i)} \ \ \ln(1-x) = -\sum_{k=1}^n \frac{x^k}{k} - \frac{1}{n+1} \frac{x^{n+1}}{(1-\theta x)^{n+1}} \ \text{com} \ \theta \in]0,1[. \ \ \textbf{(c.ii)} \ \ --;$$

(c.i)
$$\ln(1-x) = -\sum_{k=1}^{n} \frac{x^k}{k} - \frac{1}{n+1} \frac{x^{n+1}}{(1-\theta x)^{n+1}} \operatorname{com} \theta \in]0,1[. \text{ (c.ii)} --;$$

(c.iii)
$$p_{99}(\frac{1}{4}) = -\sum_{k=0}^{99} \frac{\left(\frac{1}{4}\right)^k}{k}.$$

6. (a) —; (b) —.
7.
$$p_2(x) = \frac{16}{3} + \frac{8}{9}(x-4) + \frac{1}{27}(x-4)^2$$
.
8. $p_2(x) = 1 + 2(x-1) + 3(x-1)^2$.

8.
$$p_2(x) = 1 + 2(x-1) + 3(x-1)^2$$

9. (a)
$$p_3(x) = 1 + 4(x - 1) + \frac{2}{3}(x - 1)^3$$
; (b) $\varepsilon \in \left[0, \frac{1}{3}\right]$.

Capítulo 3

Técnicas de Primitivação

3.1 Enunciados

1. Calcule cada um dos seguintes integrais indefinidos:

(a)
$$\int (4x^3 - 5x + 9) dx$$

(b)
$$\int \frac{\mathrm{d}x}{x^2 + 7}$$

(c)
$$\int \frac{1}{\sqrt{1-x}} dx$$

(d)
$$\int \cos x \sin^3 x \, dx$$

(e)
$$\int \frac{1}{\sqrt{x}} e^{\sqrt{x}} dx$$

(f)
$$\int x^{-1} (\ln x)^3 dx$$

(g)
$$\int (\sqrt{x}+1)(x-\sqrt{x}+1) \, \mathrm{d}x$$

(h)
$$\int \frac{\mathrm{d}x}{\sqrt{8-x^2}}$$

(i)
$$\int tg^2 x dx$$

(j)
$$\int \frac{1}{x \ln x} dx$$

$$(k) \int \frac{1}{x^2 + 2x + 5} \, \mathrm{d}x$$

(1)
$$\int \frac{e^{\arcsin x}}{\sqrt{1-x^2}} dx$$

2. Calcule, usando a técnica de primitivação por partes, os seguintes integrais indefinidos:

(a)
$$\int x^2 e^x dx$$

(b)
$$\int x^3 \sin x \, dx$$

(c)
$$\int x3^x dx$$

(d)
$$\int \frac{x^2}{(1+x^2)^2} dx$$

(e)
$$\int \cos(\ln x) dx$$

(f)
$$\int \arctan x \, dx$$

(g)
$$\int \ln x \, dx$$

(h)
$$\int x \arcsin x^2 dx$$

3. Calcular os seguintes integrais indefinidos de funções racionais:

(a)
$$\int \frac{x^2 + x + 1}{(x-1)(x-2)(x-3)} dx$$

(b)
$$\int \frac{x^2 + x + 1}{(2x+1)(x^2+1)} \, dx$$

(c)
$$\int \frac{x^3 - 3x^2 + 2x - 3}{x^4 + 2x^2 + 1} dx$$

(d)
$$\int \frac{x}{x^2 - 2x + 1} \, \mathrm{d}x$$

(e)
$$\int \frac{x^2 + 3x + 1}{x^2 - 2x - 3} dx$$

4. Calcule, usando a técnica de primitivação por substituição, os integrais indefinidos:

(a)
$$\int \frac{1}{x^2 \sqrt{x^2 - 25}} \, \mathrm{d}x$$

(b)
$$\int x\sqrt{2x+3}\,\mathrm{d}x$$

(c)
$$\int x(2x+5)^{10} dx$$

(d)
$$\int \frac{\mathrm{d}x}{x\sqrt{2x+1}}$$

(e)
$$\int \frac{\mathrm{d}x}{\sqrt{\mathrm{e}^x - 1}}$$

(f)
$$\int \frac{\ln(2x)}{x\ln(4x)} \, \mathrm{d}x$$

(g)
$$\int \frac{\sin^3 x}{\sqrt{\cos x}} dx$$

(h)
$$\int \sqrt{9 - (x - 1)^2} \, dx$$

(i)
$$\int \frac{2x+5}{\sqrt{9x^2+6x+2}} \, dx$$

(j)
$$\int \frac{\cos x}{1 + \cos x} dx$$

(k)
$$\int \frac{\sin x}{1 + \cos^3 x} dx$$
Sugestão: Considere a substituição $\cos x = t$.

(1)
$$\int \frac{1}{1 + \sin x - \cos x} \, \mathrm{d}x$$

(m)
$$\int \frac{1}{2 + \cos x} \, \mathrm{d}x$$

- 5. Calcule:
 - (a) $\int e^{3\cos^2 x} \sin x \cos x dx$
 - (b) $\int e^{3x} \sin x \, dx$
 - (c) $\int x \ arctgx \, dx$
 - (d) $\int e^{ax} \cos(bx) dx \ a, b \in \mathbb{R}^+$
 - (e) $\int \frac{dx}{4x^2 + 4x + 5}$
 - (f) $\int \frac{\mathrm{d}x}{x^3 + 1}$
 - (g) $\int \frac{x^2 \arctan x}{1 + x^2} \, \mathrm{d}x$
 - (h) $\int x \cos x^2 dx$
 - (i) $\int \cos^2 \theta \ d\theta$
 - (j) $\int \operatorname{sen}(5x) \operatorname{sen}(3x) dx$
 - (k) $\int \frac{\mathrm{d}x}{5 3\cos x}$
 - (1) $\int \cos^4 \theta \, \sin(2\theta) \, d\theta$
 - (m) $\int \sin^3 \alpha \cos^4 \alpha \ d\alpha$
 - (n) $\int \frac{\sqrt{1+\cos x}}{\sin x} \, \mathrm{d}x$
 - (o) $\int \frac{x^2}{\sqrt{1-2x-x^2}} dx$
 - $(p) \int \frac{\mathrm{d}x}{x^2 \sqrt{x^2 + 4}}$
 - (q) $\int \csc^4 x \, dx$
 - (r) $\int \operatorname{sen}(3x)\cos(4x)\,\mathrm{d}x$
 - (s) $\int \cos(x)\cos(5x)\,\mathrm{d}x$
- 6. Encontre uma função f tal que $f'(x) + \operatorname{sen} x = 0$ e f(0) = 2.
- 7. Calcule as seguintes primitivas:
 - (a) $\int \frac{1}{\sqrt{x}(1-\sqrt{x})^2} \, \mathrm{d}x$
 - (b) $\int \frac{1}{e^{2x} + e^{-2x}} \, \mathrm{d}x$

- (c) $\int \frac{3}{e^{2x} + 2e^x + 3} dx$
- (d) $\int (x^2 4)^{-\frac{3}{2}} dx$
- (e) $\int x \cos(\ln x) \, \mathrm{d}x$
- (f) $\int \frac{\arctan x}{x^2} dx$
- (g) $\int \frac{x^4 3x^3 + 4x}{(x-1)(x^2 2x + 2)} \, dx$
- (h) $\int \frac{\cos^2 x}{[1 \cos x] \, \sin x} \, \mathrm{d}x$
- (i) $\int \frac{2x \arctan x}{(1+x^2)^2} \, \mathrm{d}x$
- $(j) \int \frac{1}{1+x^4} \, \mathrm{d}x$
- (k) $\int \frac{x}{1+x^4} \, \mathrm{d}x$
- (1) $\int \frac{x^2}{1+x^4} \, \mathrm{d}x$
- $(m) \int \frac{x^3}{1+x^4} \, \mathrm{d}x$

3.2 Soluções

1. (a)
$$x^4 - \frac{5}{2}x^2 + 9x + c$$
, $c \in \mathbb{R}$; (b) $\frac{1}{\sqrt{7}} \operatorname{arctg} \frac{x}{\sqrt{7}} + c$, $c \in \mathbb{R}$; (c) $-2\sqrt{1-x} + c$, $c \in \mathbb{R}$; (d) $\frac{\sin^4 x}{4} + c$

$$c, c \in \mathbb{R}$$
; (e) $2e^{\sqrt{x}} + c, c \in \mathbb{R}$; (f) $\frac{(\ln x)^4}{4} + c, c \in \mathbb{R}$; (g) $\frac{2x^2\sqrt{x}}{5} + x + c, c \in \mathbb{R}$; (h) $\arcsin \frac{x}{2\sqrt{2}} + c, c \in \mathbb{R}$

$$\mathbb{R}$$
; (i) $\operatorname{tg} x - x + c$, $c \in \mathbb{R}$; (j) $\ln |\ln x| + c$, $c \in \mathbb{R}$; (k) $\frac{1}{2} \operatorname{arctg} \frac{x+1}{2} + c$, $c \in \mathbb{R}$; (l) $e^{\operatorname{arcsen} x} + c$, $c \in \mathbb{R}$.

2. (a)
$$x^2 e^x - 2xe^x + 2e^x + c$$
, $c \in \mathbb{R}$

(b)
$$-x^3 \cos x + 3x^2 \sin x + 6x \cos x - 6 \sin x + c, c \in \mathbb{R}$$
 (c) $x \frac{3^x}{\ln 3} - \frac{3^x}{(\ln 3)^2} + c, c \in \mathbb{R}$

(d)
$$-\frac{x}{2+2x^2} + \frac{1}{2} \arctan x + c, c \in \mathbb{R}$$
 (e) $\frac{1}{2} (x \cos(\ln x) + x \sin(\ln x)) + c, c \in \mathbb{R}$

(f)
$$x \arctan x - \frac{1}{2} \ln(1+x^2) + c, c \in \mathbb{R}$$
; (g) $x \ln x - x + c, c \in \mathbb{R}$;

(h)
$$\frac{1}{2}x^2 \arcsin x^2 + \frac{1}{2}\sqrt{(1-x^4)} + c, c \in \mathbb{R}.$$

3. (a)
$$\frac{3}{2}\ln|x-1|-7\ln|x-2|+\frac{13}{2}\ln|x-3|+c, c \in \mathbb{R};$$

(b)
$$\frac{2}{10} \ln|x + \frac{1}{2}| + \frac{1}{10} \ln(x^2 + 1) + \frac{2}{5} \arctan x + c, c \in \mathbb{R};$$

(c)
$$\frac{1}{2}\ln(x^2+1) - 3 \arctan x - \frac{1}{2x^2+2} + c, c \in \mathbb{R}$$
 (d) $\ln|x-1| - \frac{1}{x-1} + c, c \in \mathbb{R}$

(e)
$$x + \frac{19}{4} \ln|x - 3| + \frac{1}{4} \ln|x + 1| + c, c \in \mathbb{R}$$
.

4. (a)
$$\frac{\sqrt{x^2-25}}{25x}+c, c \in \mathbb{R}$$
; (b) $\frac{(2x+3)^2\sqrt{2x+3}}{10}-\frac{(2x+3)\sqrt{2x+3}}{2}+c, c \in \mathbb{R}$; (c) $\frac{1}{4}\left(\frac{(2x+5)^{12}}{12}-\frac{5(2x+5)^{11}}{11}\right)+c$

$$c, c \in \mathbb{R};$$
 (d) $\ln \left| \frac{\sqrt{2x+1}-1}{\sqrt{2x+1}+1} \right| + c, c \in \mathbb{R};$ (e) $2 \arctan \sqrt{e^x-1} + c, c \in \mathbb{R};$ (f) $\ln x - \ln 2 \ln |\ln(4x)| + c, c \in \mathbb{R};$

$$\mathbb{R}$$
 (a 1a. parcela poderia ser $\ln(2x)$ — Porquê?; (g) $\frac{2}{5}(\cos^2 x - 5)\sqrt{\cos x} + c, c \in \mathbb{R}$; (h) $\frac{9}{2} \arcsin \frac{x - 1}{3} + c$

$$\frac{(x-1)\sqrt{9-(x-1)^2}}{2} + c, c \in \mathbb{R}; \quad \text{(i)} \quad \frac{13}{9}\ln\left(\sqrt{9x^2+6x+2}+3x+1\right) + \frac{2}{9}\sqrt{9x^2+6x+2} + c, c \in \mathbb{R};$$

(j)
$$- \lg \frac{x}{2} + x + c, c \in \mathbb{R}$$
; (k) $\frac{1}{6} \ln \frac{\cos^2 x - \cos x + 1}{(\cos x + 1)^2} - \frac{1\sqrt{3}}{3} \operatorname{arctg} \frac{2\cos x - 1}{\sqrt{3}} + c, c \in \mathbb{R}$; (l) $\ln \left| \frac{\lg x/2}{\lg x/2 + 1} \right| + c$

$$c, c \in \mathbb{R};$$
 (m) $\frac{2\sqrt{3}}{3} \operatorname{arctg}\left(\frac{1}{\sqrt{3}} \operatorname{tg} x/2\right) + c, c \in \mathbb{R};$

5. (a)
$$-\frac{1}{6}e^{3\cos^2 x} + c$$
, $c \in \mathbb{R}$; (b) $\frac{1}{10}\left(-e^{3x}\cos x + 3e^{3x}\sin x\right) + c$, $c \in \mathbb{R}$;

(c)
$$\frac{x^2}{2} \operatorname{arctg} x - \frac{1}{2} x + \frac{1}{2} \operatorname{arctg} x + c, c \in \mathbb{R};$$

(d)
$$\frac{a^2}{a^2 + b^2} \left(\frac{1}{a} e^{ax} \cos(bx) + \frac{b}{a^2} e^{ax} \sin(bx) \right) + c, c \in \mathbb{R};$$

(e)
$$\frac{1}{4} \operatorname{arctg}\left(x + \frac{1}{2}\right) + c, c \in \mathbb{R};$$

(f)
$$\frac{1}{3}\ln|x+1| - \frac{1}{6}\ln(x^2 - x + 1) + \frac{\sqrt{3}}{3}\arctan\left(\frac{2}{\sqrt{3}}x - \frac{1}{\sqrt{3}}\right) + c, c \in \mathbb{R};$$

(g)
$$x \arctan (x - \frac{1}{2}(\arctan x)^2 - \frac{1}{2}\ln(1 + x^2) + c, c \in \mathbb{R}$$
; (h) $\frac{1}{2} \operatorname{sen}(x^2) + c, c \in \mathbb{R}$;

(i)
$$\frac{1}{2}\theta + \frac{1}{4}\sin(2\theta) + c, c \in \mathbb{R}$$
; (j) $\frac{1}{4}\sin(2x) - \frac{1}{16}\sin(8x) + c, c \in \mathbb{R}$;

(k)
$$\frac{1}{2} \operatorname{arctg} \left(2 \operatorname{tg} \left(\frac{x}{2} \right) \right) + c, c \in \mathbb{R};$$
 (l) $-\frac{1}{3} \cos^6 \theta + c, c \in \mathbb{R};$

(m)
$$-\frac{\cos^5 x}{5} + \frac{\cos^7 x}{7} + c, c \in \mathbb{R}$$
; (n) $\sqrt{2} \ln \left| \csc \frac{x}{2} - \cot \frac{x}{2} \right| + c, c \in \mathbb{R}$;

(o)
$$2 \arcsin \frac{x+1}{\sqrt{2}} - \frac{x+1}{2} \sqrt{-x^2 - 2x + 1} + 2\sqrt{-x^2 - 2x + 1} + c, c \in \mathbb{R};$$

(p)
$$-\frac{1}{4}\sqrt{\frac{x^2+4}{x^2}} + c, c \in \mathbb{R}$$
; (q) $-\cot gx - \frac{\cot g^3 x}{3} + c, c \in \mathbb{R}$;
(r) $-\frac{1}{14}\cos(7x) + \frac{1}{2}\cos x + c, c \in \mathbb{R}$; (s) $\frac{1}{12}\sin(6x) + \frac{1}{8}\sin(4x) + c, c \in \mathbb{R}$.

(r)
$$-\frac{1}{14}\cos(7x) + \frac{1}{2}\cos x + c, c \in \mathbb{R}$$
; (s) $\frac{1}{12}\sin(6x) + \frac{1}{8}\sin(4x) + c, c \in \mathbb{R}$.

6.
$$f(x) = \cos x + 1$$
.

7. (a)
$$\frac{2}{1-\sqrt{x}}+c, c \in \mathbb{R}$$
; (b) $\frac{1}{2} \operatorname{arctg} e^{2x}+c, c \in \mathbb{R}$;

(c)
$$x - \frac{1}{2} \ln(e^{2x} + 2e^x + 3) - \frac{\sqrt{2}}{2} \arctan\left(\frac{e^x + 1}{\sqrt{2}}\right) + c, c \in \mathbb{R};$$
 (d) $\frac{-|x|}{4\sqrt{x^2 - 4}} + c, c \in \mathbb{R};$

(e)
$$\frac{1}{5}x^2(2\cos(\ln x) + \sin(\ln x)) + c, c \in \mathbb{R};$$

(f)
$$-\frac{\arctan x}{x} + \ln|x| - \frac{1}{2}\ln|x^2 + 1| + c, c \in \mathbb{R};$$

(g)
$$\frac{x^2}{2} + 2 \arctan(1-x) + 2 \ln|1-x| - 3 \ln(2-2x+x^2) + c, c \in \mathbb{R};$$

(h)
$$-\frac{3}{4}\ln(1-\cos x) - \frac{1}{4}\ln(1+\cos x) - \frac{1}{2(1-\cos x)} + c, c \in \mathbb{R}$$

(i)
$$\frac{1}{2(1+x^2)} (x + (x^2 - 1) \arctan x) + c, c \in \mathbb{R}$$

(j)
$$\frac{\sqrt{2}}{8} \left(\ln(1 + \sqrt{2}x + x^2) - \ln(1 - \sqrt{2}x + x^2) + 2 \arctan(1 + \sqrt{2}x) - 2 \arctan(1 - \sqrt{2}x) \right) + c, c \in \mathbb{R}$$

(**k**)
$$\frac{1}{2} \operatorname{arctg}(x^2) + c, c \in \mathbb{R}$$

(I)
$$\frac{\sqrt{2}}{8} \left(\ln(1 - \sqrt{2}x + x^2) - \ln(1 + \sqrt{2}x + x^2) + 2 \arctan(1 + \sqrt{2}x) - 2 \arctan(1 - \sqrt{2}x) \right) + c, c \in \mathbb{R}$$

(**m**)
$$\frac{1}{4}\ln(1+x^4)+c, c \in \mathbb{R}$$

Capítulo 4

Integral de Riemann. Teorema fundamental do cálculo integral.

4.1 Enunciados

- 1. Calcule as somas de Riemann, $S_f(\mathcal{P}, \mathcal{C})$, para as funções indicadas, considerando \mathcal{P} partições regulares (n intervalos de igual amplitude) e considerando $x_i^* = x_i$, ou seja, cada ponto de \mathcal{C} é o limite superior dos intervalos $[x_{i-1}, x_i]$ definidos pela partição \mathcal{P} .
 - (a) $f(x) = x^2 \text{ em } [0,1] \text{ com } n = 5.$
 - (b) $f(x) = \text{sen}(\pi x) \text{ em } [0, 1] \text{ com } n = 6.$
- 2. Calcule a soma de Riemann, $S_f(\mathcal{P}, \mathcal{C})$, onde $x_i^* = x_{i-1}$ para todo $i \in \{1, 2, \dots, n\}$, considerando a função f(x) = 1/x definida em [1, 6] e a partição $\mathcal{P} = \{1, 2, 3, 3, 1, 4, 3, 5, 6\}$.
- 3. Calcule a soma de Riemann, $S_f(\mathscr{P},\mathscr{C})$, para a função $f(x) = x^2 + 2x$ definida em [1,4] sendo \mathscr{P} a partição regular de [1,4] em 5 intervalos e tomando $x_i^* = \frac{x_{i-1} + x_i}{2}$.
- 4. Calcule a soma de Riemann para a função $f(x) = \frac{1}{x}$ em [1,6] com $\mathscr{P} = \{1,2,2.9,3.1,4,5.3,6\}$ e $x_i^* = \frac{3x_{i-1} + 2x_i}{5}$.
- 5. Sabendo que, em cada uma das alíneas que se seguem, a função dada é integrável no intervalo considerado, calcule os integrais dados através do cálculo de $\lim_{n\to\infty} S_f(\mathscr{P}_n,\mathscr{C}_n)$ para partições regulares do intervalo de integração.
 - (a) $\int_0^2 x^2 dx$.

Sugestão: Utilize a igualdade $1 + 2^2 + 3^2 + \dots + n^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}$ para todo o $n \in \mathbb{N}$.

- (b) $\int_0^3 (2x+1) dx$.
- 6. Sabendo que a função f definida por $f(x)=x^3$ é integrável em [0,b], para todo o b>0, mostre que

$$\int_0^b x^3 \, \mathrm{d}x = \frac{1}{4} b^4$$

Integral de Riemann 4.1. Enunciados

Sugestão: Utilize a igualdade
$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$
 para todo o $n \in \mathbb{N}$.

- 7. Suponha que f é contínua em [a,b] e que $f(x) \ge 0$ para todo o $x \in [a,b]$.
 - (a) Mostre que se existe \bar{x} em [a,b] tal que $f(\bar{x}) > 0$, então $\int_a^b f(x) dx > 0$.
 - (b) Diga, justificando, se a seguinte afirmação é verdadeira ou falsa:

Se
$$\int_a^b f(x) dx = 0$$
, então $f(x) = 0$ para todo o $x \in [a, b]$

- 8. Diga, justificando, se as seguintes funções são integráveis.
 - (a) $f: [0,4] \to \mathbb{R}$ definida por $f(x) = \cos(x^2 2x)$.
 - (b) $f: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} \operatorname{tg} x \operatorname{se} x \in \left[0, \frac{\pi}{2}\right] \\ 2 \operatorname{se} x = \frac{\pi}{2} \end{cases}$$

(c) $f: [-2,1] \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} x+1 \text{ se } x \in [-2,0[\\ 2 & \text{se } x = 0\\ x & \text{se } x \in]0,1] \end{cases}$$

- 9. Exprima, em termos de integrais definidos, a área da região do primeiro quadrante limitada pela parábola de equação $y = x^2 2x + 2$ e pela recta que lhe é tangente no ponto (2,2).
- 10. Considere a função real de variável real definida por $f(x) = \frac{x^3}{2x 2}$.
 - (a) Represente graficamente a função f.
 - (b) Exprima, em termos de integrais definidos, a área da região do plano limitada pelo eixo OX, pelas rectas de equações x = -1 e $x = \frac{1}{2}$ e pelo gráfico de f.
- 11. Seja F a função definida por $F(x) = \int_0^x f(t) dt$, sendo a função f definida por

$$f(t) = \begin{cases} 2t^2 + 1 \text{ se } t \le 0\\ \frac{\text{sen } t}{t} & \text{se } t > 0 \end{cases}$$

Verifique que F'(x) = f(x) para todo o x.

12. Seja F uma função definida por $F(x) = \int_0^{\text{sen } x} (x+1)^2 \operatorname{arcsen} t \, dt$, para todo o $x \in \left[0, \frac{\pi}{2}\right]$. Calcule F'(x).

Integral de Riemann 4.1. Enunciados

13. Determine $k \in \mathbb{R}$ de modo que f'(1) = 0, sendo f a função definida por:

$$f(x) = \int_{x^2}^{k \log x} e^{-t^2} \, \mathrm{d}t.$$

- 14. Mostre que f''(1) = 1 sendo f a função definida por $f(x) = \int_0^{\ln x} x e^{t^2} dt$.
- 15. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua em \mathbb{R} . Seja $\Psi: \mathbb{R} \to \mathbb{R}$ a função definida por

$$\Psi(x) = \int_{-2x}^{x^5} f(t) \, \mathrm{d}t.$$

- (a) Mostre que Ψ é diferenciável e calcule $\Psi'(x)$.
- (b) Supondo que f(x) < 0, para todo $x \in \mathbb{R}$, mostre que Ψ é decrescente em \mathbb{R} .
- 16. Seja F a função definida por:

$$F(x) = \int_0^x \left(\int_0^t e^{-u^2} du \right) dt$$

Calcule F''(x).

- 17. Considere a função Ψ definida por $\Psi(x) = \int_0^x (2 + \cos^2 u) \, du$. Mostre que Ψ é uma função estritamente crescente em \mathbb{R} .
- 18. Seja f a função contínua em $\mathbb R$ definida por $f(x)=\int_0^{x^2}\left(\int_0^tg(v)dv\right)\mathrm dt$, onde g é uma função contínua em $\mathbb R$. Calcule o valor de f''(1) sabendo que g(1)=2 e $\int_0^1g(v)dv=1$.
- 19. Seja f uma função real de variável real contínua e positiva em \mathbb{R} . Mostre que a função F definida por:

$$F(x) = \int_0^{6x - x^2} f(t) dt$$

admite um só extremo no ponto de abcissa x = 3. Classifique esse extremo.

20. Sabendo que f é uma função real de variável real diferenciável e que tem recta tangente y = x na origem, prove que a função F definida por

$$F(x) = \int_{x-1}^{x^2 - 1} (t + x) f(t) dt$$

admite um mínimo local no ponto de abcissa x = 1.

Soluções 4.2

1. (a)
$$\frac{11}{25}$$
; (b) $\frac{\sqrt{3}+2}{6}$.
2. $1.3 + \frac{8}{23} + \frac{12}{31} + \frac{7}{43} + \frac{1}{5}$.
3. 36.51 .

2.
$$1.3 + \frac{8}{23} + \frac{12}{31} + \frac{7}{43} + \frac{1}{5}$$
.

4.
$$\frac{5}{7} + \frac{45}{118} + \frac{10}{149} + \frac{45}{173} + \frac{65}{226} + \frac{35}{279}$$
.
5. (a) $\frac{8}{3}$; (b) 12;

5. (a)
$$\frac{8}{3}$$
; (b) 12;

8. (a)
$$f$$
 é integrável em $[0,4]$; (b) f não é integrável em $\left[0,\frac{\pi}{2}\right]$;

(c)
$$f$$
 é integrável em $[-2, 1]$.

(c)
$$f$$
 é integrável em $[-2, 1]$.
9. $A = \int_0^1 (x^2 - 2x + 2) dx + \int_1^2 (x^2 - 4x + 4) dx$.

10. (a) — (b)
$$A = \int_{-1}^{0} \frac{x^3}{2x-2} dx - \int_{0}^{\frac{1}{2}} \frac{x^3}{2x-2} dx$$
.

12.
$$F'(x) = 2(x+1) \int_0^{\text{sen } x} \operatorname{arcsen} t \, dt + x(x+1)^2 \cos x.$$

13.
$$k = \frac{2}{e}$$
.
14. —

15. (a)
$$\psi'(x) = 5x^4 f(x^5) + 2f(-2x)$$
; (b) —.

16.
$$F''(x) = e^{-x^2}$$
.

18.
$$f''(1) = 10$$
.

19.
$$x = 3$$
 é um ponto de máximo de F .

20. Sugestão: Calcule o sinal da
$$2^a$$
 derivada no ponto de abcissa $x = 1$.

Capítulo 5

Cálculo de integrais definidos e de áreas

5.1 Enunciados

1. Calcule os seguintes integrais definidos:

(a)
$$\int_{1}^{4} (x^2 - 4x - 3) dx$$

(b)
$$\int_0^{\pi/2} \sin^5 x \, \mathrm{d}x$$

(c)
$$\int_0^1 \frac{1}{a^2 + x^2} \, \mathrm{d}x$$

(d)
$$\int_{1}^{e} x \ln x dx$$

(e)
$$\int_{e}^{e^2} \left(\frac{1}{x \ln x} + \frac{1}{1 - x} + \ln^2 x \right) dx$$
.

(f)
$$\int_0^1 e^{ax} \cos^2(bx+c) dx$$
, onde $a, b, e c$ são constantes reais não simultaneamente nulas.

2. Calcular, por substituição, os seguintes integrais definidos:

(a)
$$\int_0^3 \frac{x}{\sqrt{x+1}} \, \mathrm{d}x$$

(b)
$$\int_0^{\pi/2} \frac{\cos x}{\sqrt{1 + \sin^2 x}} \, \mathrm{d}x$$

(c)
$$\int_{-1}^{0} \frac{1}{e^x + 1} dx$$

(d)
$$\int_0^1 \frac{1}{\sqrt{1+x^2}} dx$$

3. Mostre que a área da região limitada de \mathbb{R}^2 delimitada pelos gráficos das funções f e g definidas, respectivamente, por f(x) = 1/x e $g(x) = x^2$ e pelas rectas x = 2 e y = 0 é igual a $1/3 + \ln 2$.

4. Seja
$$A = \{(x,y) \in \mathbb{R}^2 : y \ge (x-3)^2, y \ge x-1, y \le 4\}.$$

- (a) Represente geometricamente a região A.
- (b) Calcule a área da região A.

- 5. Determine a área da região limitada de \mathbb{R}^2 delimitada pelos gráficos das funções f e g definidas, respectivamente, por $f(x) = \sqrt{4 + x^2}$ e g(x) = x, e pelas rectas x = -2 e x = 2.
- 6. Determine a área da região limitada do plano delimitada pelo gráfico da circunferência de equação $x^2 + y^2 = 1$, situada à direita do eixo OY e acima do gráfico da recta $y = -\sqrt{3}x$.
- 7. Determine a área da região limitada pelos gráficos das funções f e g definidas, respectivamente, por:

$$f(x) = \frac{1 + \cos^2 x}{1 + e^{2x}}$$
 e $g(x) = \frac{\cos^2 x}{1 + e^{2x}}$

 $com x \in [ln 2, ln 5].$

8. (a) Determine o domínio de cada uma das seguintes funções:

$$f(x) = e^{x^2} + \sqrt{1 - x^2}$$
 $e^{x^2} - \sqrt{1 - x^2}$

- (b) Qual a área da região do plano situada entre os gráficos de f e g?
- 9. Recorrendo ao Cálculo Integral, determine a área da região sombreada representada nas figuras seguintes:

Soluções **5.2**

- **1.** (a) -18; (b) $\frac{8}{15}$; (c) Se $a = 0, -\frac{1}{3}$; Se $a \neq 0, \frac{1}{a} \arctan \frac{1}{a}$; (d) $\frac{e^2 + 1}{4}$; (e) $\ln \frac{2}{1+e} - e + 2e^2$; (f) $\frac{be^a}{a^2 + b^2} \left(\sec(b+c) + \frac{a}{b} \cos(b+c) \right) - \frac{b}{b^2 + c^2} \left(\sec c + \frac{a}{b} \cos c \right)$. 2. (a) $\frac{8}{3}$; (b) $\ln \left(1 + \sqrt{2} \right)$; (c) $\ln \frac{1}{2(e+1)}$; (d) $\frac{1}{2} \ln 2$.

- **4.** (a) —; (b) $\frac{37}{6}$.
- **5.** $4\sqrt{2} + 2\ln\left(3 + 2\sqrt{2}\right)$.

- 6. $\frac{5\pi}{12}$. 7. $\ln \frac{5\sqrt{130}}{52}$. 8. (a) $D_f = D_g = [-1,1]$; (b) π . 9. (a) $\frac{4\pi}{3}$; (b) $\frac{4}{3} + 2\pi$.

Capítulo 6

Integrais impróprios

6.1 Enunciados

 Determine a natureza dos integrais impróprios seguintes e, em caso de convergência, calcule o seu valor:

(a)
$$\int_4^{+\infty} \frac{1}{\sqrt{e^x}} dx;$$

(b)
$$\int_{\pi}^{+\infty} \cos(3x) \, \mathrm{d}x;$$

(c)
$$\int_0^{+\infty} \frac{1}{a^2 + x^2} dx$$
, com $a \in \mathbb{R}^+$;

(d)
$$\int_0^{+\infty} t e^{-st} dt, \cos s \in \mathbb{R}^+;$$

(e)
$$\int_{-\infty}^{2} \frac{1}{(4-x)^2} dx$$
;

(f)
$$\int_{-\infty}^{+\infty} x \, \mathrm{d}x;$$

(g)
$$\int_{3}^{+\infty} \frac{4}{x^2 - 4} \, \mathrm{d}x;$$

(h)
$$\int_{-\infty}^{0} x e^{-x^2} dx$$
;

$$(i) \int_{-\infty}^{+\infty} e^{-|x|} dx.$$

2. Faça um esboço do gráfico da função real de variável real F dada por

$$F(x) = \int_{-\infty}^{x} f(t) dt, \quad x \in \mathbb{R},$$

onde f é a função real de variável real definida por

$$f(t) = \begin{cases} t & \text{se} & |t| \le 1\\ 0 & \text{se} & |t| > 1 \end{cases}$$

3. Calcule, caso sejam convergentes, os seguintes integrais impróprios:

(a)
$$\int_{-1}^{0} \frac{x}{\sqrt{1-x^2}} dx$$
;

(b)
$$\int_{\frac{\pi}{2}}^{\pi} \cot g x \, \mathrm{d}x;$$

(c)
$$\int_{-1}^{3} \frac{1}{9-x^2} dx$$
;

(d)
$$\int_0^1 \ln x \, \mathrm{d}x;$$

(e)
$$\int_{-2}^{1} \frac{1}{|x|} dx$$
;

$$(f) \int_0^{\frac{\pi}{2}} \frac{\cos x}{1 - \sin x} \, \mathrm{d}x;$$

(g)
$$\int_{-2}^{2} \frac{1}{\sqrt{4-x^2}} dx$$
;

(h)
$$\int_0^2 \frac{1}{\sqrt{1-\frac{x^2}{2}}} dx$$
.

4. Mostre que o integral impróprio

$$\int_0^1 \frac{1}{x \ln^2 x} \, \mathrm{d}x$$

diverge.

5. Calcule, caso sejam convergentes, os seguintes integrais impróprios:

(a)
$$\int_0^{+\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx;$$

(b)
$$\int_{-\infty}^{+\infty} \frac{1}{x^3} dx;$$

(c)
$$\int_{1}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{x^2-1}}.$$

6. Estude a natureza dos seguintes integrais impróprios:

(a)
$$\int_{1}^{+\infty} \frac{\cos(3x)}{x^3} dx;$$

(b)
$$\int_0^1 \frac{1}{\ln(1+\sqrt{x})} \, \mathrm{d}x;$$

(c)
$$\int_0^1 \frac{1}{\sqrt{1-x^4}} \, \mathrm{d}x;$$

(d)
$$\int_0^{+\infty} e^{-x} \cos \sqrt{x} \, dx;$$

(e)
$$\int_0^{+\infty} \frac{1}{\sqrt[3]{x^4 + 3x + 2}} dx;$$

(f)
$$\int_{1}^{+\infty} \frac{\ln x}{x \ln(x+1)} \, \mathrm{d}x;$$

(g)
$$\int_1^{+\infty} \arcsin \frac{1}{x} dx$$
;

(h)
$$\int_{1}^{+\infty} \frac{x^2 + 1}{x^3 + 2x + 1} dx;$$

(i)
$$\int_0^1 \frac{\sin x}{\sqrt{1-x}} \, \mathrm{d}x;$$

$$(j) \int_0^1 \frac{e^{-x}}{x} dx;$$

(k)
$$\int_0^{\frac{\pi}{2}} \frac{\sin x}{x^3} dx;$$

(1)
$$\int_0^1 \frac{1}{\sqrt[5]{x}} \operatorname{sen}\left(\frac{1}{\sqrt{x}}\right) dx.$$

7. Estude, em função de $k \in \mathbb{R}$, a natureza do seguinte integral impróprio

$$\int_{2}^{+\infty} \frac{1}{x^{k} \ln x} \, \mathrm{d}x$$

8. Seja f uma função real contínua em [0,t], para todo o t>0, e suponha que existem constantes M>0 e $\gamma>0$ tais que, para todo $t\geq0$ se tem $|f(t)|\leq M\mathrm{e}^{\gamma t}$. Prove que o integral impróprio

$$\int_0^{+\infty} e^{-st} f(t) \, \mathrm{d}t$$

é convergente para $s > \gamma$.

6.2 Soluções

- **1.** (a) $2e^{-2}$; (b) Divergente; (c) $\frac{\pi}{2a}$; (d) $\frac{1}{s^2}$; (e) $\frac{1}{2}$; (f) Divergente; (g) $\ln 5$;
 - **(h)** $-\frac{1}{2}$; **(i)** 2;
- 2. —
- 3. (a) -1; (b) Divergente; (c) Divergente; (d) -1; (e) Divergente;
 - (f) Divergente; (g) π ; (h) $\sqrt{2} \arcsin \sqrt{2}$.
- 4. —
- **5.** (a) 2; (b) Diverge; (c) $\frac{\pi}{2}$.
- 6. (a) Convergente; (b) Convergente; (c) Convergente; (d) Convergente;
 - (e) Convergente; (f) Divergente; (g) Divergente; (h) Divergente;
 - (i) Convergente; (j) Divergente; (k) Divergente; (l) Convergente.
- 7. Se k > 1 converge, se $k \le 1$ diverge.
- 8. —