AMENDMENT UNDER 37 C.F.R. § 1.111

Application No.: 10/564,732

Attorney Docket No.: Q92722

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the

application:

LISTING OF CLAIMS:

Claim 1 (original): A method of determining particle transmittance of a filter in a

particle detection system, the method comprising the steps of:

detecting a level of first particles having a size indicative of smoke particles and which

pass through the detection system;

determining an integrated smoke hours value by integrating the detected level of first

particles over time;

estimating the smoke particle transmittance of the filter by applying a predetermined

weighting operation to the integrated smoke hours value.

Claim 2 (original): The method of claim 1 wherein, the predetermined weighting

operation comprises the step of multiplying the integrated smoke hours value by a predetermined

multiplier value.

Claim 3 (original): A method of determining particle transmittance of a filter in a

particle detection system, the method comprising the steps of:

detecting a level of first particles having a size indicative of smoke particles and which

particles are suspended in air passing through the detection system;

determining the flow rate of air passing through the detection system;

2

determining an integrated smoke hours value by integrating the detected level of first

particles over time;

determining an estimated smoke particle transmittance of the filter in accordance with an

operation comprising multiplying the integrated smoke hours value with the determined flow

rate.

Claim 4 (previously presented): The method of claim 1, wherein, the step of

determining an integrated smoke hours value comprises the following integration formula:

$$x = \int \left(a(bS^c + dS) \right) dt$$

where

x = measure of filter lifetime used (integrated smoke hours);

S = recorded smoke level (percentage (%) obscuration/metre) measured at exit of filter at

any instant in time;

t = time; and,

a, b, c and d are coefficients established from empirical testing of a given filter within a

predetermined configuration of a particle detection system.

Claim 5 (original): The method of claim 3 wherein, the step of determining an

integrated smoke hours value comprises the following integration formula:

$$x = \int (a(bS^c + dS))dt \, x \, eFR$$

where

x = measure of filter lifetime used;

Application No.: 10/564,732

FR = Flow Rate of air in detector system being a constant value;

e is a coefficient established from empirical testing of a given configuration of a particle detection system;

S = recorded smoke level (percentage (%) obscuration/metre) measured at exit of filter at any instant in time; t = time; and,

a, b, c and d are coefficients established from empirical testing of a given filter within a predetermined configuration of a particle detection system.

A method of determining particle transmittance of a filter in a Claim 6 (original): particle detection system, the method comprising the steps of

detecting a level of first particles having a size indicative of smoke particles and which particles are suspended in air passing through the detection system;

determining the flow rate of air passing through the detection system;

determining a smoke hours value corresponding to the detected level of first particles;

determining an estimated smoke particle transmittance of the filter in accordance with an operation comprising multiplying the smoke hours value with the determined flow rate and integrating the operation over time.

Claim 7 (original): The method of claim 6 wherein, the step of determining an estimated smoke particle transmittance comprises the following integration formula:

$$x = \int (a(bS^c + dS)xeFR)dt$$

where

Application No.: 10/564,732

x = measure of filter lifetime used;

FR = Flow Rate of air in detector system being a variable value;

e is a coefficient established from empirical testing of a given configuration of a particle

detection system;

S = recorded smoke level (percentage (%) obscuration/metre) measured at exit of filter at

any instant in time; t = time; and,

a, b, c and d are coefficients established from empirical testing of a given filter within a

predetermined configuration of a particle detection system.

Claim 8 (previously presented):

A method of monitoring a filter in a particle

detection system, the method comprising the steps of:

performing the method of claim 1;

detecting a level of second particles, having a size indicative of dust particles, passing

through the detection system;

providing a cumulative count over time of the number of detected second particles;

determining an estimated combined first and second particle transmittance by combining

the cumulative count of detected second particles and the estimated smoke particle transmittance

comparing the estimated combined particle transmittance to a first threshold value at which, it is

predetermined that the amount of smoke particles arrested by the filter has reached a first

warning level;

indicating a first level filter warning when the estimated combined particle transmittance

is less than or equal to the first threshold value;

5

Application No.: 10/564,732

comparing the estimated combined particle transmittance to a second threshold value at which, it is predetermined that the amount of smoke arrested by the filter has reached a second warning level and;

indicating a second level filter warning when the estimated combined particle transmittance is less than or equal to the second threshold value.

Claim 9 (original): The method of claim 8 wherein the first threshold level corresponds to a reduction in particle transmittance between about 2% and about 40%.

Claim 10 (original): The method of claim 8 wherein the second threshold level corresponds to a reduction in particle transmittance between about 10% and about 70%.

Claim 11 (original): The method of claim 8 wherein, the period of time in which the integration is performed ranges from the time at which the detector begins operation with a new filter until either:

- (c) the estimated combined particle transmittance is less than or equal to the first threshold value, at which time the first level filter warning indicates that the filter requires replacing; or,
- (d) the estimated combined particle transmittance is less than or equal to the second threshold value, at which time the second level filter warning indicates a critical fault where filter end-of-life is signalled.

AMENDMENT UNDER 37 C.F.R. § 1.111

Application No.: 10/564,732

Attorney Docket No.: Q92722

Claim 12 (previously presented): The method of claim 1 wherein, the particles are detected prior to entering the filter of the detection system.

Claim 13 (previously presented): The method of claim 1, wherein, the particles are detected after exiting the filter of the detection system.

Claim 14 (previously presented): The method of claim 8, further comprising the step of:

adjusting the sensitivity of a detector of the particle detection system in accordance with at least one of:

- a) the estimated smoke particle transmittance;
- b) the cumulative count of detected second particles;
- c) the estimated combined particle transmittance.

Claim 15 (previously presented): Apparatus adapted to determine particle transmittance for a filter of an aspirated particle detector system, said apparatus comprising: processor means adapted to operate in accordance with a predetermined instruction set, said apparatus, in conjunction with said instruction set, being adapted to perform a method comprising the steps of:

detecting a level of first particles having a size indicative of smoke particles and which pass through the detection system; and

determining an integrated smoke hours value by integrating the detected level of first particles over time;

Application No.: 10/564,732

estimating the smoke particle transmittance of the filter by applying a predetermined weighting operation to the integrated smoke hours value.

Claim 16 (previously presented): Apparatus for monitoring a filter of a particle detection system, the apparatus comprising:

processor means adapted to operate in accordance with a predetermined instruction set, said apparatus, in conjunction with said instruction set, being adapted to perform a method comprising the steps of:

detecting a level of first particles having a size indicative of smoke particles and which pass through the detection system;

determining an integrated smoke hours value by integrating the detected level of first particles over time;

estimating the smoke particle transmittance of the filter by applying a predetermined weighting operation to the integrated smoke hours value;

detecting a level of second particles, having a size indicative of dust particles, passing through the detection system;

providing a cumulative count of detected second particles and the estimated smoke particle transmittance comparing the estimated combined particle transmittance to a first threshold value at which, it is predetermined that the amount of smoke particles arrested by the filter has reached a first warning level;

indicating a first level filter warning when the estimated combined particle transmittance to a second threshold value at which, it is predetermined that the amount of smoke arrested by the filter has reached a second warning level; and

Application No.: 10/564,732

indicating a second level filter warning when the estimated combined particle transmittance is less than or equal to the second threshold value.

Claim 17: (canceled).

Claim 18 (previously presented): A computer program product comprising:

a computer usable medium having computer readable program code and computer
readable system code embodied on said medium for determining particle transmittance of a filter
in a particle detection system within a data processing system,

said computer program product comprising:

computer readable code within said computer usable medium for performing a method comprising the steps of:

detecting a level of first particles having a size indicative of smoke particles and which pass through the detection system;

determining an integrated smoke hours value by integrating the detected level of first particles over time;

estimating the smoke particle transmittance of the filter by applying a predetermining weighting operation to the integrated smoke hours value.

Claim 19 (previously presented): A computer program product comprising:

a computer usable medium having computer readable program code and computer
readable system code embodied on said medium for monitoring a filter in a particle detection
system within a data processing system, said computer program product comprising:

Application No.: 10/564,732

computer readable code within said computer usable medium for performing a method comprising the steps of:

detecting a level of first particles having a size indicative of smoke particles and which pass through the detection system;

determining an integrated smoke hours value by integrating the detected level of first particles over time;

estimating the smoke particle transmittance of the filter by applying a predetermined weighting operation to the integrated smoke hours value;

detecting a level of second particles, having a size indicative of dust particles, passing through the detection system;

providing a cumulative count over time of the number of detected second particles;

determining an estimated combined first and second particle transmittance by combining the cumulative count of detected second particles and the estimated smoke particle transmittance comparing the estimated combined particle transmittance to a first threshold value at which, it is predetermined that the amount of smoke particles arrested by the filter has reached a first warning level;

indicating a first level filter warning when the estimate combined particle transmittance is less than or equal to the first threshold value;

comparing the estimated combined particle transmittance to a second threshold value at which, it is predetermined that the amount of smoke arrested by the filter has reached a second warning level; and

indicating a second level filter warning when the estimated combined particle transmittance is less than or equal to the second threshold value.

AMENDMENT UNDER 37 C.F.R. § 1.111 Application No.: 10/564,732

Attorney Docket No.: Q92722

Claim 20: (canceled).