STAT 709 Second Exam 8:25am-9:15pm, Oct 26, 2010

Please show all your work for full credits.

1. Let $X_1, ..., X_n$ be i.i.d. random variables with Lebesgue p.d.f.

$$\frac{x}{\theta^2}e^{-x/\theta}I_{(0,\infty)}(x),$$

where $\theta = 1$ or 2 is an unknown parameter.

- (a) (3 points) Show that $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i$ is minimal sufficient for $\theta = 1, 2$.
- (b) (3 points) Show that \bar{X} is not complete. Hint: compute $E(\bar{X})$ and $E(\bar{X}^2)$.
- 2. Let $X_1, X_2, ...$ be a sequence of i.i.d. random variables.
 - (a) (2 points) Let $\phi(t)$ be the characteristic function of X_1 . Assume that X_1 and $-X_1$ have the same distribution. Show that $n^{-1} \sum_{i=1}^{n} \phi(X_i)$ converges a.s. to $E[\cos(X_1X_2)]$.
 - (b) (2 points) Let g be a function on \mathcal{R} such that $g \geq 0$ and -g is convex. Assume that $E|X_1| < \infty$. Show that $n^{-1} \sum_{i=1}^n g(X_i)$ converges a.s. to a constant.
- 3. Let $X_1, X_2, ...$ be a sequence of independent random variables with

$$P(X_j = 0) = 1 - 2p_j, P(X_j = j^a) = p_j, P(X_j = -j^a) = p_j, p_j = \begin{cases} \frac{1}{2} & j^{-b} \ge \frac{1}{2} \\ j^{-b} & j^{-b} < \frac{1}{2} \end{cases}$$

where a and b are positive constants. Let $T_n = \sum_{i=1}^n X_i$.

- (a) (2 points) Suppose that b > a. Show that the sequence $\{|X_j|\}$ is uniformly integrable.
- (b) (2 points) Suppose that 2a 1 < b. Show that

$$\frac{T_n}{n} \to_{a.s.} 0.$$

(c) (3 points) Suppose that b < 1 and $b \le 2a$. Show that

$$\frac{T_n}{\sqrt{\operatorname{Var}(T_n)}} \to_d N(0,1)$$

and

$$a_n \log \left(1 + \frac{T_n}{a_n \sqrt{\operatorname{Var}(T_n)}} \right) \to_d N(0, 1)$$

for any sequence $\{a_n\}$ with $\lim_{n\to\infty} a_n = \infty$ and $a_n > 0$. Hint: $\lim_{n\to\infty} n^{-(t+1)} \sum_{j=1}^n j^t = (t+1)^{-1}$ for any $t \ge 0$.

(d) (3 points) Suppose that b < 1 and 2a - 1 > b. Show that

$$\frac{n}{T_n} \to_p 0.$$