Permutations and Combinations: Takeaways

by Dataquest Labs, Inc. - All rights reserved $\ensuremath{\text{@}}$ 2020

١,١	٦r	חר	n.	ts
ட	JI.	ıL	N.	LO

n	cepts
•	If we have an experiment E_1 (like flipping a coin) with a outcomes, followed by an experiment E_2 (like rolling a die) with b outcomes, then the total number of outcomes for the composite experiment E_1E_2 can be found by multiplying a with b (this is known as the rule of product):
•	If we have an experiment E_1 with a outcomes, followed by an experiment E_2 with b outcomes, followed by an experiment E_n with z outcomes, the total number of outcomes for the composite experiment $E_1E_2 \dots E_n$ can be found by multiplying their individual outcomes:
•	There are two kinds of arrangements:
	 Arrangements where the order matters, which we call permutations. Arrangements where the order doesn't matter, which we call combinations.
•	To find the number of permutations when we're sampling without replacement, we can use the formula:
•	To find the number of permutations when we're sampling without replacement and taking only k objects from a group of n objects, we can use the formula:

• To find the number of combinations when we're sampling without replacement and taking only k objects from a group of n objects, we can use the formula:

Resources

• <u>A tutorial on calculating combinations when sampling with replacement</u>, which we haven't covered in this mission

• An easy-to-digest introduction to permutations and combinations

Takeaways by Dataquest Labs, Inc. - All rights reserved $\ensuremath{\text{@}}$ 2020