

NEUMANN JÁNOS FACULTY OF INFORMATICS

THESIS WORK

OE-NIK Student's name:

2023

Student's registration number:

Péter Makó

T010187/FI12904/N

Óbuda University Neumann János Faculty of I Institute of	Informatics				
	THESIS WORK DESCRIPTION				
Student's name: Registration number:	Péter Makó T010187/FI12904/N				
Title of thesis work:					
	nent of mobile shopping assistant application				
Bevásái	rlást támogató mobilalkalmazás fejlesztése				
Internal supervisor:	Dániel Kiss				
External superviosr:					
Submission deadline:					
Subjects of the final examination:					

.....

The task:

Shopping assistant smartphone applications are very popular nowadays, as they can simplify the often exhausting and stressful procedure of purchasing goods, as well as they can help the user to save money by providently planning the shopping and offering personalized discounts.

The goal of this thesis is to design, implement, and test a smartphone application that is able to identify products by their barcodes or QR codes, then, provides the user with a personalized list of the availability and the prices of the products from online sources. By building a profile based on shopping preferences or frequently searched items, the application may suggest stores for the user that minimize costs or shopping times.

The study is required to include the following:

- 1. The brief outline of the motivation and the business background of the problem,
- 2. A comprehensive summary of software applications with similar or related purposes, as well as the theoretical background of their design,
- 3. The precise specification and the system design of the smartphone application to be developed,
- 4. The documentation of the implementation procedure,
- 5. The thorough summary of the testing scenario, and the test result of the application,
- 6. Discussion of the work and further development possibilities.

L.S	5.
	Head of Institute
The specification is valid until:	
(According to OE TVSz 55 §).	
I consider the thesis suitable for submission:	
External supervisor	Internal supervisor

Dated: Budapest, 05. 21. 2023

Neumann János Faculty of Informatics

STUDENT'S DECLARATION

I the undersigned student hereby declare that this thesis is the result of my own work; I have disclosed the references and tools used in an identifiable manner. The results indicated in my thesis completed may be used by the university and the institution announcing the task for their own purposes free of charge.

Student's signature

Neumann János Faculty of Informatics

CONSULTATION LOG

Studer	nt's name:		Neptun code:	Specialty:
Phone	number:		Mailing address (e.g. domicile)):
Thesis	/ Thesis wor	k ¹ title in Hungari	an:	
Thesis	/ Thesis wor	k ² title in English:		
Interna	al supervisor	:	External super	visor:
Please	write the da	ata in printed capit	al letters!	
Occ.	Date	Content		Signature
1.				
2.				
3.				
4.				
The Co		og is required to b	e countersigned by either superv	visor on a total of 4 occasions of
	/Thesis wo	•	equirements of the subject titled ⁷ III / Thesis work IV ³ (MSc) and is	
Dated:	Budapest,			
			lı	nternal supervisor

¹ Underline as appropriate!

² Underline as appropriate!

³ Underline as appropriate!

⁴ Underline as appropriate!

CONTENTS

1	IN	TRODUCTION	l
2	BA	CKGROUND	3
	2.1	History of Barcode Technology	3
	2.2	Evolution of Mobile Devices and Barcode Scanning Applications	3
	2.3	Relevance of Price Comparison in The Retail Industry	3
3	AN	NALYSIS OF PURPOSE-RELATED SOFTWARE	4
	3.1	PriceGrabber.com	4
	3.2	Google Shopping	5
	3.3	RedLaser	5
	3.4	PriceRunner	6
	3.5	ShopSavvy	7
	3.6	Arukereso.hu	8
	3.7	Cashmap.hu	8
	3.8	Conclusion	9
4	VI	SION	0
	4.1	Introduction	0
	4.	1.1 Purpose	0
	4.	1.2 Scope	0
	4.2	Positioning	0
	4.	2.1 Business Opportunity	0
	4.	2.2 Problem Statement	0
	4.	2.3 Product Position Statement	1
	4.3	Market Analysis	2
	4.	3.1 Market Demographics	2
	4.	3.2 Porter's Five Forces Analysis	3

	4.3.3	PEST Analysis .				•	•						•			14
	4.3.4	Ansoff Matrix An	alysis		•											14
	4.4 Stal	ceholder and User I	Descri	ptio	ns											15
	4.4.1	Stakeholder Summ	nary										•			15
	4.4.2	User Summary .			•											16
	4.4.3	User Environment	· .		•											16
	4.5 Prod	luct Overview			•											17
	4.5.1	Product Perspectiv	/e .		•											17
	4.5.2	Summary of Capa	bilitie	s.	•											17
	4.5.3	Assumptions and	Deper	nder	ncie	S										18
	4.5.4	SWOT Analysis .			•											18
	4.6 Pro	luct Features														19
	4.7 Con	straints														20
	4.8 Qua	lity Ranges														20
	4.9 Doc	umentation Require	ement	s.												21
5	SOFTV	ARE PLAN										•	•			22
	5.1 App	roach											•			22
	5.2 Risl	Management											•			23
	5.3 Soft	ware Structure											•			23
	5.4 Use	r Interface														25
	5.5 Tech	nnological Stack .											•			25
6	IMPLE	MENTATION						 •								27
	6.1 Intr	oduction			•											27
	6.2 Dat	abase							•			•	•		•	28
	6.2.1	Introduction						 •	•		•		•			28
	6.2.2	Database Structure	e													29

6.3 Ap	plication Programming Interface
6.3.1	Introduction
6.3.2	Entry Point
6.3.3	Controller
6.3.4	JWT Authentication
6.3.5	Data Models
6.3.6	Web Scraping
6.3.7	OpenAI Processing
6.4 We	eb Application
6.4.1	Introduction
6.4.2	Architecture
6.5 Mc	obile Application
7 BIBLI	OGRAPHY
8 LIST C	OF FIGURES
9 LIST (OF TABLES

1 INTRODUCTION

The purpose of this thesis work is to explore the topic of creating a mobile application that would make people's lives easier when it comes to shopping. With the enormous growth of the competitiveness of the retail market, as well as e-commerce, customers are often left confused whether they would be better off just shopping in the nearest supermarket or rather travel to another one that is further away, but may offer better prices. Implementing a solution for this problem has the potential to become valuable in the eyes of confused customers, who would like to make informed decisions regarding their shopping habits.

Elaborating on the previously mentioned issue, the consumers often face multiple challenges when it comes to a seemingly easy task like shopping. Without information on prices, decision-making is only affected by factors like travel time and personal preference. For this reason, shopping can lead to overpaying for items or not finding the preferred brand or good in the selected store. The process can also become more time-consuming than expected, since there is no guarantee that the customer will only have to visit one shop. Big differences between retail prices can also raise trust issues and misconceptions among customers. Additionally, from the retailers perspective, coming up with the right pricing strategy can be hard, when the factors affecting the customers' decisions are unclear.

The development of such application can potentially result in numerous benefits for both the customer and retail side, such as clear comparisons between different retailers, a more transparent way of pricing the goods, efficient adaptation to the newest valuation trends, customer oriented marketing and the possibility to reduce the time spent with shopping. All of these would result in customers who are aware about the stocks and prices of these retail shops, leading to them making well-informed decisions when choosing shopping habits, as well as getting better prices than ever, because of the fiercer contest on providing the best prices.

The idea of making the life of consumers easier has been around for a while now, but many times they are web-based, meaning that the user experience is not going to be as optimized and straightforward as a dedicated application's case. Furthermore, these applications are usually targeted for international customers, or for those of other nationalities, not to mention that websites usually lack the possibility of searching for bar codes, let alone scanning them for an easy and fast experience.

Implementing the idea for this application requires coming up with all the possible use cases, a well planned software architecture, a seamless development process, and the thorough testing of the end product.

Within the scope of this thesis work project, an application will be designed which will

provide the user with functions such as using the camera for scanning the bar code of an item, searching for these items with this code or product name, getting prices from various retailers. Moreover, the application will try to give personalized recommendations for the user on where to shop, depending on the goods availability, prices and distance of the shops.

While the primary aim of this project is to target Android devices, for future possibilities it might be more desirable to develop the application using a platform independent approach, like Xamarin. For achieving the desired functionality, there is a need for numerous APIs to provide relevant data on product information, prices as well as the distance between the user and surrounding shops. The testing of the product will be done through multiple approaches to ensure a seamless user experience.

In conclusion, this easy and accessible way of price comparison between shops, brands and goods can lead to an improved consumer culture, where both retailers and customers can make informed decisions. In the following chapters, a detailed examination will be provided on the topic of the importance of transparent price comparison, relevant fields and existing solutions, as well as outlining the concept of the project application, planning and executing the implementation, and finally testing the end product.

2 BACKGROUND

The development of barcode technology, as well as the upbringing of handheld software solutions already have noticeable effects on how we shop in our favorite stores. Many retail shops have already implemented self checkout services and handheld or stationary devices, which provide information on the scanned item. Taking this technology one step further will lead us to mobile applications. Out of many already existing programs, finding a Hungary-specific mobile application with such functionality is rather challenging.

2.1 History of Barcode Technology

The invention of barcode dates back to the 1940s, when Bernard Silver and Norman Woodland came up with the patent for a system that automatically read product information, using ultraviolet light and ink patterns [1]. However, only after the introduction of Universal Product Code (UPC) in 1974 did it become widespread in retail industry [2]. Since then, multiple new types of barcodes emerged, such as the Quick Response (QR) code, which is able to store substantially more information and is faster to read than the original version [3].

2.2 Evolution of Mobile Devices and Barcode Scanning Applications

Since the mobile devices come with high-end cameras and very high computational capabilities, they led to the possibility of developing applications, that are capable of scanning the barcodes on products and then providing them with useful information about them, like details, ratings and prices [4]. The first famous pioneers were RedLaser and Shop-Savvy, whose popularity has been mainly connected to the users ability to save time and money using them for comparing product details and prices [5].

2.3 Relevance of Price Comparison in The Retail Industry

A highly competitive market results in price comparison becoming an essential aspect of modern shopping experience, since an increasing majority of consumers strive to become more informed about the products and their details before making a decision on where and what to shop for [6]. This trend is fueled by e-commerce, widespread mobile internet access and an increasingly high competitiveness in retail market [7]. Using these applications led to retailers being forced to use different pricing strategies, as well as investing in digital technology to provide the customers with the required transparency and comfort [8].

3 ANALYSIS OF PURPOSE-RELATED SOFTWARE

The technology of scanning barcodes has evolved since inventing it. Nowadays, these codes have multiple types, such as the one-dimensional, linear barcodes, the two dimensional barcodes, like QR code and Data Matrix **<empty citation>** These codes are scannable with either a special scanning device, a mobile phone or some other imaging devices, which have a software capable of deciphering these codes installed.

While websites with capabilities to track product details do it so using a code from user input, the advent of smart phones with built-in cameras has led to designing applications which are capable of fast scanning of barcodes and then fetching details about the given item **<empty citation>** Throughout the years many libraries and APIs have been developed to make integrating such functions into mobile applications easier.

No matter whether the web or the mobile approach is used, these applications could provide crucial functionalities when it comes to the rising trend of barcode scanning and real time price comparison. Soon after realizing this, many companies decided to provide users with solutions with such functionalities. However, to come up with something innovative, we have to understand the background and functionality of already existing software. This chapter will give a comprehensive analysis on multiple similar or functionally related solutions, such as PriceGrabber.com, Google Shopping, RedLaser, PriceRunner, ShopSavvy, and Hungarian ones like Arukereso.hu and Cashmap.hu. Considering these implementations, my goal is to develop an application that will stand out in the competitive market.

3.1 PriceGrabber.com

Established in 1999, PriceGrabber is one of the oldest price comparison services out there. Naturally, back then it started off as a website, but later a mobile application was developed as well. The service lets customers get free price information on millions of products, while getting its profit from countless merchants paying for each lead. In 2005 it was acquired for 485 million USD by Experian and was expected to grow substantially in the next five years [9], then later another acquisition was made by Connexity in 2015 and it has been owned by them ever since [10].

The success of PriceGrabber originates from its ability to adapt through the evolution of the technology industry. Eventually a smart phone application was released, first for iPhones, later for android devices, which enabled the user to access the same functions as from the website. It was designed to host an increasing number of users and allowed them to read product reviews, create a favorite list and compare prices. Laura Conrad, the president of PriceGrabber, stated that this application was developed to remove the

boundaries between online and offline shopping, targeting the growing number of people of mobile shoppers [11].

3.2 Google Shopping

Possibly the best known e-commerce platform, Google Shopping took off in 2002. It has been a major part of the search engine and google ads ever since. Whenever a user searches for something retail related, google gives them the best matches and options alongside with sponsored ads.

On the business side, the target audience is made up mainly from advertisers and sellers, providing them with different methods to promote their goods and services. The service is based on a Cost-Per-Click model, which means that Google gets paid for every click that users make on a company's ad. Ranking is affected by multiple factors, such as relevance to search keywords, how well does it fit into the user search history and last, but not least on how much does a company pay for their product to be ranked higher, in which case google differentiates it with a "Sponsored" flag from the other ads.

From the consumer's point of view, the service provides personalized ads based on factors like demography, search history and interactions with Google services. This kind of personalization ensures relevance and user engagement leading to a competitive, yet rewarding environment.

On the technical note, the service is backed up by Google's robust systems. It is strict with forcing the retailers adhere to Google's policies before letting them post their ads. It uses machine learning models to maximize the relevance for users. Google Shopping also gives a lot of personalization possibilities for the consumers, such as filtering the products, depending on the category, brand and more importantly price. The service also incorporates reviews from multiple sources to assist a better understanding on the benefits and drawbacks of choosing certain products. The process ends with clicking an ad, where Google's business model steps into action and the seller pays them for the successful redirection to their product's page. [12]

3.3 RedLaser

Although it has been discontinued since and taken down from both App Store and Google Play Store, RedLaser, acquired by eBay in 2010 was one of the most popular barcode scanner and price comparison application using various services of its acquirer.

In 2011 RedLaser 3.0 rolled out, with integration of various eBay mobile services, creating a great user experience for shopping based on price comparison. The application

utilized Milo's local inventory data to enable price comparison among online and offline stores and PayPal's mobile express checkout for a secure payments.

Although the earlier versions were well known too, the application's popularity rapidly grew thanks to the new, unique features introduced by this update. These included the ones mentioned in the previous paragraph, along with a refined user interface, which made scanning and creating lists and QR codes much easier. It also enabled users to share categorized shopping carts through Facebook, SMS and e-mail.

In RedLaser's prime it was downloaded tens of millions of times, however, after many years, it could not keep up with the competition and was discontinued.

3.4 PriceRunner

PriceRunner, founded in 1999, is an independent price comparison service offering a platform to help consumers make informed decisions about their purchases in the United Kingdom. Using the service is free of charge and it provides daily updates on millions of products regarding their price and details. Even though the in 2022 PriceRunner was merged into Klarna, PriceRunner managed to keep its core values, which are independence, credibility and unbiasedness, therefore highly contributing to smarter e-commerce decisions. [13]

Much like Google Shopping, PriceRunner uses the model of affiliate marketing [14]. This is commonly known as the Cost-Per-Click model mentioned earlier in Google's case. The service gets paid by affiliated customers after each successful referral. It boasts a unique feature, buyer protection, beneficial for the users in case where the retailer does not meet their statutory obligations. Buyer protection is a free service for all users, providing financial coverage up to five thousand pounds, in case of a purchase from any of PriceRunner's associated retailers. [15]

PriceRunner offers their services both on their website and on their mobile application. Being UK's largest product and price comparison service, it lines up more than 2.6 million products. The app provides the users with smart features enhancing their shopping experience. These functions include but are not limited to using its built-in barcode scanner to find certain items, compare their prices and upcoming deals on the product. It also equips the customer with price alert settings, so that they will be notified about the drops in price. The great user experience is maintained by continuously updating pricing data from thousands of retailers ensuring that the price comparisons are up-to-date. Additionally, users can create lists of certain products they like and monitor their prices and deals on them. [16]

3.5 ShopSavvy

Possibly the best application out there in this topic would be ShopSavvy, developed by Monolith Technologies Inc., which has been around since 2008. It was one of the first applications developed for both iOS and Android. It is available for all popular browsers, such as Microsoft Edge, Google Chrome and Safari as an extension plus as a mobile application for iPhones, iPads and all sorts of Android devices. The service's goal is to provide the user with the best possible prices on all kinds of items, with promoting fairness, being customer oriented and independent. [17]

ShopSavvy evolved from a barcode scanner app to a service that rounds up tens of thousands of retailer partners and covers all aspects of price comparison such as sales, markdowns and coupons to provide the best possible price for the user. It monetizes the platform in two major ways. Firstly, they target users with personalized offers through the service and if this offer catches the eye of the consumer enough for them to make a purchase, the company will earn commission from that sale. Secondly, it generates revenue from advertisers using the platform to reach even more costumers, therefore serving as a mediator platform between retailers and customers. ShopSavvy considers itself as a product search company, with an aim to match the consumers with their desired products for the best possible price. CEO John Boyd explains that the best strategy for competing with giants like Google, Facebook and Amazon is to constantly innovate and come up with unique value propositions. [18]

The company rounds up multiple software solutions for using their service. Meanwhile the browser add-ons are for online shopping, usually for non-essential items, the application shines when it comes to grocery shopping with barcode scanning possibilities. The service itself gathers information from over 30 thousand retailers, both online and physical stores through two methods. Firstly, it partners up with retailers, so they would provide information about prices and sales, secondly it uses web crawling and scraping to find information on products from non-partner stores. The data about items and prices are collected real time, meaning that the user is provided with the most upto-date information. The search and scraping work using both barcodes and keywords to find accurate results. The hardships of the recent lockdowns forced ShopSavvy to adapt and come up with an in-stock inventory tracking, which lets customers locate hard-to-find items in stock. It offers an easy to navigate platform for users to discover, shop and save. It aggregates product information from a wide-variety of network sources to provide the customer with unbiased data on deals, ratings and reviews. The platform also provides a place for the users to form a mobile shopping community that extends beyond the general concept of such applications. [19]

3.6 Arukereso.hu

Arukereso.hu is a market-leading price comparison website in Hungary with operating in two additional countries, namely Romania and Bulgaria. It started off as a small service maintained by two individuals in 2004, listing and comparing a few items from a few webshops around the dawn of internet shopping. In 2009 it was acquired by Allegro Group, but the current state was established in 2016 when another acquisition was made by Rockaway group. [20]

Arukereso.hu is similar to previous price comparison websites. It uses the same Cost-Per-Click affiliate business model to get revenue from partner retailers or sometimes extra for actual purchases through them. What makes them unique on the market is the fact that it is the best-known website with such functionality in Hungary, where many other companies do not operate yet, coupled with providing an all-around unbiased review system, where users can rate both the product and the seller. This system solves the asymmetry when it comes to cheap prices and questionable sellers and also ensures a more trustworthy line-up of stores. [21]

The previously mentioned review system comes into play after a user makes a purchase. They get asked to provide feedback on the product they purchased along with the seller they bought it from. The ratings are designed to allow replies, that way the stores or other users can clarify reviews in certain cases. The site also provides an option to ask questions about certain products, which paired with the review system provides a platform for a community of mindful customers. An additional layer of trust is provided by a "Trustworthy Shop" badge, which is only achievable with a high number of positive reviews left by actual users [22].

3.7 Cashmap.hu

With unfortunately less public information available comes another Hungary specific shopping assistant, Cashmap.hu. It is a newly launched startup designed to transform the way Hungarians shop. It encourages their users two make well informed and rational decisions about where they shop and what they buy. It provides information on prices and discounts for up-to 9 popular supermarket chains. The service is completely independent, it is not by any means in business relationship with the stores they provide information about. [23]

Their service is a web-based application with features like searching for the desired product and compare prices among multiple stores. The user can also put a personalized shopping cart together and calculate which store offers the best final sum. If the shopping cart contains items the user does not need right away, there is a possibility to move

them into a "Later Cart" to wait for future discounts. The service uses web crawling and scraping, using multiple sources, including in-store surveys, online sale fliers, online store interfaces and internet searches to ensure that the information provided is accurate and up-to-date. [23]

3.8 Conclusion

After a thorough examination of already existing software solutions for this specific problem, it is clear, that the market is somewhat saturated and that there are multiple notably great features implemented in the analyzed applications. However, it is important to mention, that while some have great functions, there are those that do not exist anymore and others, which do not necessarily target the same demographics.

Since the idea for creating this application came from the current situation in Hungary, specifically with grocery shopping in mind, while the international and other region specific implementations are important from a technical point of view, they do not affect the market and target audience in question yet. On the other hand, both of the Hungarian websites mentioned provide features that are on par with some of the ones I am planning to implement. This also encourages a solution for this problem that places the application in a unique spot on the market. A key difference will be accessibility, since the software will be a dedicated smart phone application instead of a generic website solution.

Finally, the following conclusion can be drawn from this analysis. For the upcoming application to be successful among the target audience and in the target market segment, it needs to combine the best of all worlds, meaning that it should line-up a number of features not yet available in our region, build on the existing and well-established model, pay close attention to the reactions and requests of the user-base and adapt if needed. In the upcoming chapter I will carefully develop the vision for this application and its aspects.

4 VISION

4.1 Introduction

4.1.1 Purpose

This chapter serves as an outline for the vision for "BargainScan", an innovative mobile application to help customers save on everyday shopping tasks and to spend on what really matters. This vision will guide the reader through all key aspects of the development of the upcoming application such as opportunities, challenges, target audience, benefits and features of the software. It will act as a reference for all stakeholders involved in the project.

4.1.2 Scope

"BargainScan" is an upcoming mobile application aimed to make grocery shopping a conscious and informed act for Hungarians by providing a platform for scanning and searching for products, comparing the prices across supermarket chains and retail shops, providing calculations on shopping lists in different stores, listing shops sorted by travel distance and affordability and building an aware shopping community in Hungary.

4.2 Positioning

4.2.1 Business Opportunity

The global and local e-commerce and retail market has shown significant growth in the past decade. With the increasing adoption of smart phones into people's everyday life, especially concerning their shopping habits, it is clear that there is an opportunity for developing applications to assist them with these daily tasks. "BargainScan" is aimed to fulfill this mission by offering a comprehensive and versatile solution, equipped with a user-friendly and straightforward interface.

4.2.2 Problem Statement

As stated in the previous chapter (3), while the global market has many solutions for shopping assistants, many lack important features or are implemented as websites which are less accessible than a mobile application. Additionally, even if there are adequate solutions on the global market, they simply are not meant to be used in Hungary, since

they only list products and retailers that are commonly not available in Hungary with many times not even supporting this region.

Currently there are no mobile applications with such purpose on the Hungarian market. On the other hand, there is a series of established that more or less offer useful features for the users, which share the problem of not being accessible enough, especially for older folks, who need a very straightforward way of accessing the software. Moreover, neither of the existing applications seem to offer a solution that covers the whole process of finding the best products and prices and planning the next shopping spree carefully including various factors, for example travel distance or how crowded the place is.

Customer Perspective: They need a comprehensive and intuitive application that helps them find not only the best prices, but also the best way of shopping by filtering out stores that do not fit into their desired characteristics. Additionally, they need a platform where they can build a community to rate and share insights on certain products and sellers.

Seller Perspective: Businesses need a platform to provide their up-to-date information on, therefore reaching potential customers, increasing the likeliness of being chosen by the users and making their prices competitive against other companies.

4.2.3 Product Position Statement

"BargainScan" will be an application designed for money-conscious individuals who seek a comprehensive, clean and user-friendly solution for the stated problem. Unlike existing applications, its primary aim is to cover not only a few, but most aspects of the shopping process, from searching for products through their name or barcode, finding the best prices, filtering shops and products on certain terms, getting personalized recommendations and reading unbiased ratings and opinions on products and businesses.

While realizing all of the features which will make this software a unique solution, it is important to provide an application with a straightforward and easy-to-use interface for the target audience, because accessibility plays a key aspect in the adaption process, hence in the general success.

4.3 Market Analysis

4.3.1 Market Demographics

The growth in the competitiveness of retail and e-commerce led to a situation where customers are overwhelmed by choices, but they are unable to make informed ones due to lack of information about stores and products. The application is aimed to target the individuals with the desire to make conscious decision about their shopping habits. In the table (4.1) below, I will list the key aspects of the target market demographic.

Aspect	Description
Age Group	The target age group is between 12 and 99, comprising Genera-
	tion Z, millennials, Generation X and even baby boomers, mean-
	ing that the application is for everyone that seeks help with making
	informed decisions. Additionally, the intuitive design of the appli-
	cation makes it suitable and accessible for all age groups.
Income Level	The application can prove to be useful for customers across various
	income levels, offering features for comparing prices and finding
	the best deals, which is particularly appealing to middle-income
	earners.
Geographic Lo-	The shopping assistant app is primarily targeted towards all areas
cation	of Hungary with internet connection and grocery stores available.
Shopping Habits	The primary user base is expected to be mostly made up from mil-
	lenials and Gen X members, since they are shopping for groceries
	on a daily basis, are the most comfortable using technological so-
	lutions in their everyday routines and value convenience and time
	saved.
Technological	The application will be developed for smartphone users with dif-
Proficiency	ferent levels of technological proficiency. The user-friendly inter-
	face is set out to ensure that every individual will be able to wrap
	their head around the concepts of the application.

Table 4.1: Market Demographics

4.3.2 Porter's Five Forces Analysis

To better understand the competitive dynamics and attractiveness of the proposed "BargainScan" application on the market, Porter's Five Forces analysis will be utilized in the table(4.2) below, encompassing the threat of new entrants, bargaining power of suppliers, bargaining power of buyers, threat of substitute products or services and rivalry among existing competitors.

Force	Impact					
Threat of New Entrants	The threat of new entrants is high due to low entry barriers in					
	the app development industry. In case of a successful coun-					
	terpart for the application could mean serious competition.					
Bargaining Power of	In the context of a barcode scanner, price comparison and					
Suppliers	shopping assistant application, suppliers could be businesses					
	whose products are listed. They have low bargaining power					
	as there are numerous online and offline retailers and not be-					
	ing present could lead to missing out on potential customers.					
Bargaining Power of	Buyers have moderate bargaining power. As of now, there					
Buyers	are only websites available in Hungary for this specific pur-					
	pose, with more or less relevant features.					
Threat of Substitute	The threat is moderate as there are other ways consumers					
Products or Services	can seek shopping assistance, such as through the mentioned					
	websites, direct e-commerce platforms, but currently there					
	are no Hungary specific applications on the market.					
Rivalry Among Exist-	The competition is fierce in the digital marketplace industry,					
ing Competitors	the application needs to provide unique value proposal to be					
	potentially considered instead of other existing solutions.					

Table 4.2: Porter's Five Forces Analysis

4.3.3 PEST Analysis

The external macro-environment in which "BargainScan" is set out to operate in can be explored by using the PEST analysis, cosidering political, economic, sociocultural and technological factors. The evaluation of these factors are visible in the table (4.3) below.

Factor	Impact					
Political	In Hungary various legal regulations affect data privacy, e-commerce,					
	and internet advertising. Any changes in these policies may impact the					
	operation and strategies of the application.					
Economic	Economic factors such as income, unemployment rates, consumer con-					
	fidence influence the way and frequency people utilize this application,					
	the willingness of businesses to advertise their products through this					
	platform will determine the success of the application.					
Sociocultural	The growth of digitalization in every field of everyday life definitely					
	helps the success of the application, since there is a wider spectrum					
	of people who are ready to use their smart devices to make their lives					
	easier. Additionally more and more people aspire to be more conscious					
	about their shopping habits.					
Technological	Rapid advancements in technology, such as artificial intelligence, ma-					
	chine learning, and the increasing size of mobile network coverage,					
	can lead to more innovative and valuable features in the application.					
	Cybersecurity on the other hand poses a significant challenge for de-					
	signing such applications.					

Table 4.3: PEST Analysis

4.3.4 Ansoff Matrix Analysis

A great tool for further clarification of the potential success of the application is the Ansoff matrix. The table (4.4) on the next page will study the strategies such as market penetration, market development, product development and diversification.

Strategy	Description
Market Penetration	The application will focus primarily on the demographic of
	daily grocery shoppers, so it will seek to deepen its influence
	in this existing market. In order to achieve this, the solution
	will offer unique features, ensure the best deals and unbiased
	product reviews.
Market Development	The app will be designed to be appealing to not only daily
	shoppers but also those who seek to spend their money con-
	sciously, by making informed decisions. Moreover, upon a
	successful adaptation in Hungary, an expansion to other geo-
	graphic regions is considered part of the long-term plan.
Product Development	The fast paced advancement of technology draws a path for
	continuous technological developments, such as implement-
	ing artificial intelligence, machine learning, etc.
Diversification	Looking towards the future, the application's idea holds pos-
	sibilities for expanding into other, new markets. Possibly the
	biggest potential of these opportunities is held by evolving into
	an application, that much like Wolt or Foodora, would offer
	delivering the products from an own warehouse or from exist-
	ing stores.

Table 4.4: Ansoff Matrix Analysis

4.4 Stakeholder and User Descriptions

4.4.1 Stakeholder Summary

The table (4.5) below provides a summary for outlining the key stakeholders involved, highlighting their representation and roles in this mobile application project.

Name	Represents	Role					
Users	Individuals seeking a comprehen-	Provide feedback, requirements,					
	sive shopping assistant	test application					
Retailers	Businesses offering product infor-	Provide feedback, requirements,					
	mation for customers	test application, contribute to prod-					
		uct and store data collection					
Developer	Sole technical expert	Design, develop, test, maintain					
		software solution					

Table 4.5: Stakeholder Summary

4.4.2 User Summary

The table (4.6) below provides a summary for defining the potential users involved, detailing the way they might interact with the application and their representative stakeholders.

Name	Description	Stakeholder
General	Use the application to scan bar-	Users
Users	codes, search for products, create	
	shopping lists, provide reviews on	
	items and stores, filter stores based	
	on personal criteria	
Researchers	Use the features of the software for	Users
	market research purposes	
Admins	Manage the application data re-	Users
	garding stores, products and users	
Retailers	Provide data on their business and	Retailers
	goods	

Table 4.6: User Summary

4.4.3 User Environment

Users are primarily individuals seeking an assistant that helps them make informed decisions about the products they buy and about the businesses they shop at. As mentioned in the user summary (4.4.2), the other types of users are researchers doing market research and retailers, who provide information on their business and products. The goal is to provide a user-friendly mobile application, that implements versatile functionality to fulfill all the important use-cases. The general users are expected to use the application both on the go and at home, while other users will probably use it from an office background.

4.5 Product Overview

4.5.1 Product Perspective

"BargainScan" is a comprehensive shopping assistant application, developed to help making informed decisions for customers across various demographics. Its positioned within the e-commerce market, targeting users with smartphone devices aged between 12-99 years. The application represents a solution for the overload of redundant information in the retail market, leading to customers being able to make conscious shopping decisions, based on their personal preferences and other consumers experience.

4.5.2 Summary of Capabilities

The summary of what functionalities the upcoming application will be able to provide is listed in the table (4.7) below.

Capability	Description
Barcode	Through its barcode scanning abilities, it can effectively look up details
Scanning	on the scanned products.
Price Com-	The app ensures users get the most value for their money, comparing
parison	prices from multiple retailers and stores in real-time.
Deal Alerts	Users are notified about price drops for items in their shopping list.
Reviews	The app offers access to reviews and ratings on products and shops from
	purchasers, assisting users in making informed decisions.
Shopping	Users can effortlessly create and manage multiple shopping lists, making
List Man-	planning and buying easier.
agement	
Filter	The app is designed to let users filter the recommended shops by factors
Stores	such as rating, distance, etc.
Upload	The verified retailers are able to upload information about themselves
Store and	and their products.
Product In-	
formation	

Table 4.7: Summary of Capabilities

4.5.3 Assumptions and Dependencies

This subsection will discuss a few assumptions and dependencies, which were in mind when coming up with the outline for this application.

Assumptions:

- There is an increasing number of money conscious consumers.
- Users can understand and utilize user-friendly applications.
- Retailers are interested in using the platform for sharing their prices and deals.

Dependencies:

- The app is dependent on internet access to provide real-time information.
- The functionality could be affected by changes in the operating system of the device.
- The effectiveness of the price comparison heavily relies on having information provided by both partner retailers and web scraping.

4.5.4 SWOT Analysis

To summarize the information disclosed in the product overview (4.5) section, a SWOT analysis will be utilized to evaluate the strengths, weaknesses, opportunities and threats. This evaluation can be seen in the table (4.8) below.

Category	Factors	
Strengths	User-friendly design, covers the whole process of searching, choosing	
	comparing, filtering products and stores, offers unique features like	
	filtering shops, utilizing web scraping and partnerships with retailers	
	for searching purposes.	
Weaknesses	Reliance on web scraping for product and pricing data and competition	
	from either other solutions or integrated shopping assistants in estab-	
	lished e-commerce platforms.	
Opportunities	Expanding smartphone usage, willingness to let smart devices help	
	our daily life and fast-paced technological advancements in AI and	
	Machine Learning for future development possibilities.	
Threats	Fierce competition in the market, rapid technological changes de-	
	manding constant product updates, and potential cybersecurity threats.	

Table 4.8: SWOT Analysis

4.6 Product Features

The application will come with a broad range of features to ensure the best possible experience when it comes to convenience and clarity. The features walk the user through the process of choosing a store that is the most applicable to the users needs, prioritizing price to value. Each feature will be designed with the main goal being ease of use.

As the development progresses and the use case models will be clear, these descriptions will be updated and discussed in further details. The following table (4.9) lists the key features of the upcoming application, detailed on a level that is generally graspable.

Capability	Description
User Manage-	Distincts user types and based on the current level provides certain
ment	functionality.
Barcode Scan-	Turns the image of the barcode into a code sequence.
ner	
Product	Searches for the product either by name or by code.
Search	
Price Compar-	Creates a sortable list of the shops that are selling the product with
ison	price information.
Deal Notifica-	Notifies users if items from their shopping cart are on sale.
tions	
Reviews and	Lets users write and read ratings for different products and stores.
Ratings	
Shopping List	Lets users create and manage multiple shopping lists.
Management	
Store Filtering	Lets users sort stores based on factors like distance from current po-
	sition
Upload Store	Lets the retailers provide documents with their pricing data.
and Product	
Information	

Table 4.9: Product Features

4.7 Constraints

In the context of a shopping assistant mobile application, various constraints could impact the design, development, and implementation.

- Technological Constraints: Mobile applications need to be constantly updated to ensure compatibility with the latest versions of smartphone operating systems.
 Ensuring backwards compatibility might prove to be challenging and resourceintensive.
- Resource Constraints: Since it is a thesis work project, limited human resources
 can slow development down and the number of features that can be implemented
 will be reduced within the given timeframe.
- Security and Privacy Constraints: Since the application will provide possibility
 for creating different user profiles, sensitive data will have to be stored, therefore
 the application will need to comply with strict data privacy laws such as GDPR.
- Regulatory Constraints: Depending on the country, the application might need to adhere to various e-commerce and data collection regulations.
- Time Constraints: Deadlines for project milestones, such as testing phases and project hand in deadlines, might affect the state of the development and the number of features developed, leading to a change of scope.
- Market Constraints: The competitiveness of the market can lead to other applications emerging from nothing, or existing ones expanding with important and attractive features.
- Integration Constraints: Since the app relies on third-party services (APIs and web scraping), any changes or issues with these can result in unreliable or broken service.

4.8 Quality Ranges

This section will describe the target ranges for various quality aspects crucial to the success of "BargainScan". The characteristics include performance, robustness, fault tolerance and usability.

- Performance: The application should open, close and react to user interactions swiftly, handle high traffic, otherwise it will lead to a negative experience.
- Robustness: The software should be capable of operating smoothly regardless of the conditions. These can be network disruptions or lower system resources.
- Fault Tolerance: The app should be able to tolerate exceptions and errors occurring during operation. These problems could arise from external services, the host device or the software itself.

- Usability: The program should be easy-to-use for all individuals, providing a clear and straightforward interface.
- Security: Even though sensitive payment and financial details are not being utilized in the application, a safe way of authentication and data storing is of key importance.
- Compatibility: The application should work on a series of devices from the newest flagships, to at least 5 years old devices, to ensure availability for a wide target audience.

4.9 Documentation Requirements

This section will describe what documents will be developed along the software development to support a successful application deployment.

- Release notes: Release notes will be provided for all versions and updates of the software, describing what is new and what has changed.
- Integrated help: There will be an integrated, up-to-date help page in the application, covering the important use cases of the program.
- Online help: There will be a dedicated description area discussing the main functionality of the application on the product page of the respective smartphone application store.

5 SOFTWARE PLAN

5.1 Approach

Coming up with the idea of the application and its functions has led to the realization that implementing a prototype with all the previously mentioned characteristics would lead to the prototype being dead on arrival, meaning that by the time it would be released it would most likely be already outdated. To counter this issue, startups and entrepreneurs often use an MVP approach for implementing the first prototype.

The concept of MVP (Minimum Viable Product) is becoming increasingly important in the rapidly changing and evolving world of technology. The basis of this approach is that when developing a new product or service, create the simplest, yet most effective version to bring to market.

There are several reasons to choose the MVP approach. Rapid feedback and iteration means that when developers and entrepreneurs build a basic version of a product, they can quickly release it to users. Users can share their thoughts and opinions about the product. This feedback is very important because it helps developers identify what changes and improvements need to be made to the product based on the actual wants and needs of users. Risk mitigation means doing things in a way that reduces the likelihood of problems occurring.

An MVP strategy is to start with a simpler version of something and improve it over time. This is helpful because it's easier and faster to create a simpler version, and then developers can listen to people's opinions and improve it further. The methodology allows developers to focus on the most important parts of the product. This means you don't waste time creating things you don't need right away. If a product is really good and a lot of people like it, it's easier for manufacturers to get more funding to make it even better. That's because when you spend money making something, you find that many people want to use it and think it's a good idea.

The main goal with this approach is for your product to reach the market faster. This is very important if other companies want to sell similar things, and if we are fast we can succeed. The MVP approach helps companies change quickly as needed. It also allows you to use your resources wisely and avoid wasting time and money on things that may not work. This is especially important in the world of technology, where things are always changing and people's needs are always changing. [24]

5.2 Risk Management

Without properly acknowledging the risks related to future of the development and production, it would not be sensible going forward with the software design. The table 5.10 is responsible for showcasing the possible risks that are needed to be taken into account.

Risk Category	Risk Factors
Technical Risks	Dependency on external APIs and web scraping for
	real-time data as well as for bar-code related data, chal-
	lenges in ensuring cross-platform compatibility, poten-
	tial scalability issues in handling large datasets.
Security Risks	Risks of data breaches or leaks, especially sensitive
	user data and scraped pricing information, security vul-
	nerabilities regarding the API which could lead to loss
	of data and even legal issues.
Legal and Compliance Risks	Compliance with data protection laws (for example
	GDPR) when it comes to handling user data, legal is-
	sues related to web scraping and intellectual property
	rights, potential disagreements with supermarkets or
	other data sources.
Market and Business Risks	Dependence on supermarket partnerships, competition
	from already established and recognized price compar-
	ison and bar-code scanning applications, market accep-
	tance and user adoption challenges, reliance on accu-
	rate and up-to-date pricing data.
Operational Risks	Challenges in maintaining and updating the application
	across different platforms, potential downtime or per-
	formance issues, managing a diverse technology stack
	with different characteristics.

Table 5.10: Risk Management Analysis

5.3 Software Structure

The solution is going to integrate a cloud-based database that can be accessed through a dedicated intermediate API. This API will also handle authorization, authentication and web scraping tasks. This architecture is key to managing data flexibly and securely, ensuring high availability and scalability.

The two main use cases of the solution are a mobile application for general users (iOS and Android) and a website that supports administrative tasks. All of these applications are based on the endpoints of the API for working with the data. The planned structure of the application can be visualized with figure 5.2.

Figure 5.1: Visual Architecture Plan

This software architecture aligns well with the MVP approach to development and offers several benefits, such as:

- Security and privacy: Planned cloud-based databases and intermediary APIs prioritize privacy. Advanced security protocols and encryption techniques are used to
 protect data stored in the cloud. Additionally, APIs that act as middle tiers provide
 additional protection when applications access databases through the middle tier.
- Scalability and flexibility: By deploying a cloud-based solution according to the plan, you can easily adapt to the changing needs of your users. Additionally, intermediate APIs allow applications running on different platforms to use the same data, eliminating the need to maintain separate databases for each platform.
- Development efficiency: By implementing standard data connections via the API, developers no longer need to create proprietary solutions for each platform. This significantly reduces development time and improves overall workflow efficiency.
- Convenient maintenance and updates: The Intermediate API allows the developer to centrally manage system maintenance and updates. This makes the application update process faster and more efficient.
- Improved user experience: Accessing cloud databases provides faster data processing and availability, which improves the user experience, especially when working with large amounts of data.

In summary, the proposed architecture aims to achieve a harmonious combination of security, scalability, development efficiency, and user experience while providing additional opportunities for application development. The solution shall provide users and administrators with modern, reliable, and efficient services at the same time.

5.4 User Interface

User-friendly design is the key to a successful mobile app. It helps with attracting and retaining users by providing an intuitive and user-friendly interface that increases user engagement and encourages them to spend more time with the app. Additionally, a well-designed app can improve brand image and encourage user loyalty. It can also contribute to reducing the need for frequent redesigns and upgrades, saving long-term development and maintenance costs, making it cost-effective.

Understanding the needs and preferences of the target audience through user research and usability testing is the key to user-friendly design. The design needs to be clear and easy to navigate. Consistency in design elements improves usability and ensures a professional appearance. The design should also adapt to different devices and screen sizes to provide a consistent user experience. Additionally, accessible design allows for a wider user base and enables social responsibility. [25]

Figure 5.2: Mobile User Interface Mock-up

5.5 Technological Stack

The final product's overall success is largely dependent on the technological choices made during the project. A modern, flexible, and extremely efficient application can be developed by selecting a technology stack that includes MongoDB, ASP.NET, Angular, and.NET MAUI. When these technologies are combined, they form a strong and stable foundation that significantly raises the chances of project success. Each technology has advantages of its own.

MongoDB is a highly flexible and scalable data management system created especially for contemporary web applications is called MongoDB. Because it is a NoSQL database, it excels at managing dynamic data requirements, which makes it a great option for companies that operate in the fast-paced digital world of today. MongoDB manages enormous volumes of data with ease and is able to quickly adjust to changing data schemas thanks to its document-oriented architecture. Because of its remarkable flexibility, businesses can easily adapt their data models to the demands of their industries and quickly change their business requirements. Furthermore, the database can readily expand as the project grows thanks to MongoDB's built-in scalability and cloud-based deployment features, guaranteeing seamless performance and ideal data storage.

ASP.NET API is a powerful, incredibly secure framework with outstanding performance, which makes it a great option for creating enterprise applications. Developers can quickly and simply construct a dependable, orderly backend system that effectively manages a variety of client-side requests by using the ASP.NET API. Modern web applications can be built with the framework because of its built-in security features, which include support for RESTful APIs, optimization capabilities, and authentication and authorization.

Angular is a popular JavaScript framework created especially for making dynamic and interactive web applications. This adaptable framework gives developers a strong tool to quickly and effectively create user-friendly and responsive interfaces. It is made to function flawlessly across many platforms. With Angular's extensive feature set, which includes data binding, modular development, and testing capabilities, you can create beautiful, user-friendly websites that are both aesthetically pleasing and easy to maintain.

With the release of .NET MAUI by Microsoft, a cutting-edge framework created especially for cross-platform mobile application development is introduced. Using a single code base, developers can create top-notch apps for Windows, iOS, and Android platforms with this state-of-the-art framework. Developers can leverage the same code across platforms with.NET MAUI, saving a lot of money and time while still taking advantage of the distinct features and interfaces offered by each native operating system.

6 IMPLEMENTATION

6.1 Introduction

In this crucial section of my thesis, I explore the pragmatic aspects of the implementation process, revealing the manner in which my proposed solution was actualized. The proposed solution incorporates a comprehensive system consisting of four essential components: a MongoDB database, an ASP.NET API, an Angular web application designed for administrative purposes, and a .NET MAUI mobile application that is compatible with both iPhone and Android devices. The purpose of this section is to offer a comprehensive explanation of each module, elucidating their respective contributions to the overall software solution.

The sections on each part of my solution will start with a reason why I chose each technology. Included are discussions on why MongoDB was chosen as the database, the benefits of using ASP.NET to create the API, the choice of Angular for the web app, and the advantages of using.NET MAUI to create cross-platform mobile apps. The evaluation is not only about the choice, but also about how these technologies work together to make a system that works as a whole.

I will also carefully look over all the details of the implementation process. This includes the structure and architecture of each module, the design patterns that were used (if any), and the addition of different frameworks and libraries that made the system work better and be more useful. This section will not only explain these parts, but it will also include code examples to help you understand how they work in a clear and useful way.

Dealing with the different problems and challenges that come up along the way is an important part of this project. This part of my thesis, I want to talk about the problems I faced personally when trying to solve these problems, the plans I made to get past them, and the insights I gained from these experiences. These thoughts are meant to give you a realistic picture of the implementation process, focusing on both its successes and problems.

In summary, this section will focus on the practical aspects of my thesis, specifically the implementation of certain components, their interplay, encountered challenges, acquired experiences, and the strategies employed to address said issues.

6.2 Database

6.2.1 Introduction

With rapid technological advancement and digital transformation, internet data is becoming incomprehensible. It is essential for managing complex, often misformatted, and abundant data. NoSQL database MongoDB is not a relational database. It is ideal for applications that must manage massive amounts of data and are in rapid development, requiring the database to adapt quickly.

In my situation, MongoDB was an ideal choice for the solution because maintaining an extensive amount of shop item data and the necessity for quick queries required the use of a technology like this. In this section, I will highlight the primary benefits of MongoDB to justify its use, and then show how the database and its collections were configured for the solution.

Why MongoDB

Flexibility and Scalability: The schema-less nature provides enormous flexibility, allowing for the easy integration of diverse and growing data formats. This helps with shop item data, which may have multiple properties. MongoDB's horizontal scalability can handle massive datasets, ensuring database performance as shop items increase. If we need to store different types of data in the same database later, it may be useful.

Performance and Efficiency: The document-oriented structure allows for swifter read/write operations. This is critical for e-commerce platforms, as quick data retrieval and updates for store products are critical for user experience and operational efficiency. The adoption of the BSON (Binary JSON) format improves efficiency even more, especially for sophisticated queries across big datasets.

Agile Data Handling: The dynamic query language in MongoDB is a powerful tool for quickly working with data and managing inventory in retail settings. It can handle many different types of data, which makes it perfect for e-commerce. It also lets you do complex queries like text searches, real-time aggregation, and range queries. This feature is very important for sorting, filtering, and analyzing products based on things like price, category, and availability. MongoDB is also very important for managing the connections between different types of data, which makes it easier to get a full picture of inventory. Businesses can respond quickly to changes in the market and in what customers want with this unified approach. It also helps with organization and making smart product management decisions.

Driver Support: The platform offers official drivers and libraries for widely used programming languages, including Python, Java, C# and Node.js. I connected the ASP.NET API to MongoDB using the official driver to store and retrieve data efficiently. MongoDB also has extensive documentation and a vibrant community to help integrate it into various technological environments.

6.2.2 Database Structure

Although MongoDB was not explicitly designed with focus on handling relational data, it is still capable of managing relationships between data entities. Entity Relationship Diagrams (ERDs) were employed to depict the entities within the collections, aiming to provide a more comprehensive and easily understandable illustration of their relationships. Within the database, there exist several collections, namely "users", "admins", "shop-items", "categories", "sub-categories", and "shops". In the following part, a detailed description will be provided regarding the different characteristics of each entity.

User Data:

Users' basic information and associated session data are both included in the users collection. The entities in the admins collection have foreign keys pointing to particular user entities. Users and the admins collection have a zero-to-one relationship because not every user has administrative privileges. In this case, the role field indicates the user's assigned role; it does not necessarily imply that the user has administrative privileges unless the user is specifically linked to an administrative entity. The configuration described above simulates a real-world scenario where only particular users have administrative privileges. The depicted structure is observable on figure 6.1 provided below.

Figure 6.1: Entity Relationship Diagram of User Data

Shop Item Data:

Collections are responsible for managing the hierarchical structure of shop items, which is organized into categories and sub-categories. Every item in a shop is linked to a particular category and possibly a sub-category, which aids in the systematic retrieval of data and the effective categorization of products.

The collection of shop-items, which serves as the core component of the database, encompasses comprehensive data pertaining to each individual item. This data includes references to the item's category, sub-category, and the specific shop to which it is affiliated. The shop entity contains information pertaining to each individual shop or vendor. The establishment of this relationship is crucial in effectively managing the inventory and gaining valuable insights into the range of products offered by each individual shop. The structure is visualized on figure 6.2 below.

Figure 6.2: Entity Relationship Diagram of Shop Item Data

In conclusion, for large shop item data, MongoDB is flexible, fast, and scalable. The database schema meets the complex relationships between users, admins, categories, subcategories, shop items, and shops. It handles large amounts of data efficiently and adapts to e-commerce platforms. Thus, MongoDB is ideal for modern data management, especially for large, multifaceted datasets like shop items.

6.3 Application Programming Interface

6.3.1 Introduction

When making modern software, the technology you use to build an Application Programming Interface (API) is very important. I chose to use ASP.NET Core along with the programming language C# for the API part of my project. Several important factors, each of which added to the overall efficiency and reliability of the API, led to this decision.

One of the main reasons for choosing ASP.NET Core is that it works well with many NuGet packages. NuGet packages are basically code libraries or tools that are easy to add to a project. They provide a huge collection of resources that can improve functionality and speed up development. This wide range not only speeds up the development process but also gives you access to a lot of pre-built features, so you don't have to start from scratch.

Another big plus is that ASP.NET Core works natively with the Internet Information Services (IIS) server. This integration makes deployment and hosting easier, which guarantees strong performance and dependability. Its compatibility with MongoDB's driver makes it even more appealing, as it makes database interactions faster. Also, the fact that this framework has libraries for web scraping makes it easy to get data from different web sources, which is exactly what the project needs.

The solution is designed so that the API is the central part of the application. It provides several features, like asynchronous web scraping, data manipulation, and providing important endpoints for both the web and mobile parts of the system. Also, it's an important security layer that handles how the applications and the database talk to each other, keeping the data safe and secure.

The authentication and authorization processes that the API handles add to the security by making sure that access to data and features is tightly controlled and in line with best practices. The Model-View-Controller (MVC) design pattern, which divides an app into three parts that are all connected, forms the basis of the API's structure. This not only makes the code cleaner and easier to maintain, but it also helps separate concerns, which makes the system more modular and scalable.

One interesting thing about the API is that it uses OpenAI to process and organize data that it gets from web scraping. As a result of this integration, the API can do more than just handle data. It's an innovative combination of traditional web development methods and artificial intelligence technologies.

To sum up, the decision to use ASP.NET Core with C# for the API is a smart move that takes advantage of a strong, flexible, and effective technology stack. It's made to handle the application's complicated needs, giving a solid base for working with data, keeping it safe, and making it easy to connect to other parts of the system.

Structure of the API

6.3.2 Entry Point

The setup process revolves around WebApplicationBuilder. This builder lets developers configure app services and settings. CORS policies instruct the web app how to handle requests from different domains. This is crucial for modern web apps that use resources or APIs from different domains to ensure safety and functionality. Configuration includes database service setup. User model, shop item, shop item category, and shop scraping services are added as singletons, meaning they are used once throughout the application.

The code also configures JWT authentication. This is crucial to modern web apps because it restricts access to resources and endpoints to verified users. This app uses these tokens to verify users' identities and manage them well, such as by getting them from cookies.

The final step is building the app and setting up its middleware pipeline. This pipeline manages HTTP requests, CORS, authentication, and controller requests. Controllers require a RESTful API design with multiple endpoints for different web requests. After saving the settings, the app can be launched and serve requests as a web server.

6.3.3 Controller

The **DataBaseService** is an important part of the proposed system architecture. It acts as a flexible data service with generic datatype of for the model. This helps with the developer as creating a new controller is relatively easy, promoting high flexibility for future changes. It manages the flow of information between the controllers and the MongoDB driver.

The ASP.NET Core **ControllerBase** class is at the heart of this structure, and an Api-ControllerBase class is carefully built on top of it. Its design is naturally generic, which makes it useful because it can be used as a base for building different kinds of controllers that are each made to work with specific models, therefore promoting scalability.

In addition to managing a lot of asynchronous methods related to data manipulation, this derived class is also in charge of managing JWT tokens within cookies crucial to the security of the endpoints. The 'AllowAnonymous' attribute on the HTTP method in the

derived controller can selectively bypass JWT authentication.

The architecture also includes the **ShopItemController** and **ShopItemCategoryController**, which are both used to change the general properties of their own data types. This controller is used by, the mobile application to retrieve data and the scraping service to expand, update the data warehouse.

The **UserController** is the most complicated of these. Its job is to handle a wide range of user-related tasks. These include creating and deleting user accounts, logging in and out, authenticating users, verification of administrative privileges, assigning admin rights, and renewing refresh tokens that have expired.

Shown below is a detailed class diagram so that you can fully understand how the different parts of this system work together. Figure 6.3 shows very clearly how different classes and interfaces are linked to each other, along with their properties and methods.

Figure 6.3: Class Diagrams Related to the Controller

UserController in Detail

Since UserController is a complex part of the application, mostly because that is how it handles authentication, it is useful to talk about the implementation a little more in detail.

```
var principal = JwtAuthenticationManager.GetPrincipalFromExpiredToken(AccessTokenCookie);
var userName = principal.Identity?.Name;
var user = (await dataBaseService.GetAll()).FirstOrDefault(user => user.UserName == userName);

if (user is null || user.RefreshToken != RefreshTokenCookie || user.RefreshTokenExpiryTime <= DateTime.Now)
{
    return BadRequest();
}

var newAccessToken = jwtAuthenticationManager.GenerateAccessToken(principal.Claims);
var newRefreshToken = jwtAuthenticationManager.GenerateRefreshToken();

user.RefreshToken = newRefreshToken;
await dataBaseService.Update(user);

Response.Cookies.Append(Constants.AccessToken, newAccessToken,
    new CookieOptions { HttpOnly = true, SameSite = SameSiteMode.None, Secure = true });
Response.Cookies.Append(Constants.RefreshToken, newRefreshToken,
    new CookieOptions { HttpOnly = true, SameSite = SameSiteMode.None, Secure = true });
return Ok();</pre>
```

Figure 6.4: Authentication Snippet

In the provided snippet the authentication process is visible, with an additional JWT token refresh process, which is only needed if at the time of the request, the token of the user was expired, in which case, the system checks whether or not the user's other information and additional token is valid, in which case it generates a net token, which the user can use for authentication.

Upon registering, the user's provided password is immediately hashed and only stored afterwards, and in every login process the hashed passwords are being matched to each other. On logging out, the system removes all the cookies from the user, which is achieved by setting the cookies expiration date to a value, which will essentially turn them invalid.

Regarding the addition of a new admin user, the process will only be successful when the user assigning admin role to another user has admin privileges. More on the authentication process, with detailing the JWT authentication process will be discussed in the next section.

6.3.4 JWT Authentication

The authentication for the web uses JSON Web Tokens and takes advantage of AspNet-Core's Authentication library, as well as the IdentityModels's Jwt token library. JSON Web Tokens (JWTs) are compact, URL-safe claims that are used for secure authentication and information exchange in web applications.

Figure 6.5: Class Diagrams Related to JWT Authentication

Figure 6.5 represents the class for holding authentication information as well as the authentication manager class which is responsible for handling all JWT authentication related tasks. The implementation of the class is explained on the next page and represented by the following code snippet:

```
public\ static\ Claims Principal\ Get Principal From Expired Token (string\ token)
          var tokenValidationParameters = new TokenValidationParameters { ... };
var tokenHandler = new JwtSecurityTokenHandler();
          var principal = tokenHandler.ValidateToken(token, tokenValidationParameters, out SecurityToken securityToken);
           if (securityToken is not JwtSecurityToken jwtSecurityToken ||
                      ! jwt Security Token. Header. Alg. Equals (Security Algorithms. Hmac Sha 256, and the security Algorithms) and the security Algorithms are security Algorithms and the security Algorithms and the security Algorithms and the security Algorithms and the security Algorithms are security Algorithms and the security Algorithms and the security Algorithms and the security Algorithms are security Algorithms are security Algorithms and the security Algorithms are security Algorithms and the security Algorithms are security Algorithms and the security Algorithms are security and the s
                                String Comparison. Invariant Culture Ignore Case)) \ throw \ new \ Security Token Exception();
           return principal;
public string GenerateAccessToken(IEnumerable<Claim> claims)
          var tokenhandler = new JwtSecurityTokenHandler();
          var tokenKey = Encoding.ASCII.GetBytes(key);
var tokenDescriptor = new SecurityTokenDescriptor { ... };
           var token = tokenhandler.CreateToken(tokenDescriptor);
          return tokenhandler.WriteToken(token);
public string GenerateRefreshToken()
           var randomNumber = new byte[32];
          using var rng = RandomNumberGenerator.Create();
           rng.GetBytes(randomNumber);
           return Convert.ToBase64String(randomNumber);
public async Task<string> Authenticate(IAuthInformation authInformation)
           if (!await IsRightUsernamePasswordCombination(authInformation)) return string.Empty:
           var claims = new Claim[] { new(ClaimTypes.Name, authInformation.UserName) };
           return GenerateAccessToken(claims);
```

Figure 6.6: Authentication Snippet

GetPrincipalFromExpiredToken(string token): This function throws an exception if the token is invalid or not in the expected format and verifies an expired JWT token in order to extract and return its ClaimsPrincipal.

GenerateAccessToken(IEnumerable<Claim> claims): With the supplied claims, it generates and returns a new JWT access token.

GenerateRefreshToken(): creates a base64 string that can be used as a refresh token by randomly selecting a 32-byte number.

Authenticate(**IAuthInformation authInformation**): This function verifies a user's identity using the credentials they have provided. If successful, it returns a new JWT access token; otherwise, it returns an empty string.

6.3.5 Data Models

While being an essential part of the MVC pattern, the data models in the application are mostly used for data representation, and moving data in a structured way between the API endpoints and the database. Only the UserModel includes specific methods for password hashing and verifying using **BCrypt.Net-Next library's** *EnhancedVerify()* method, that checks a plaintext password against a hashed version to ensure secure authentication as well as *EnhancedHashPassword()* method, that uses bcrypt hashing algorithm and other security enhancements to make storing passwords secure. The structure of the data models used by the controllers as well as showcasing how easily extensible the genereic controller implementation is shown on the figure 6.7.

Figure 6.7: Class Diagrams Related to Data Models

6.3.6 Web Scraping

In the solution the API is responsible for handling the data collection from the web as well. The scraping service is accessible from the website on a specific page available for administrators only, where they can force an immediate process or set a time interval for automatic executions. For crawling the web the solution uses a version of Selenium framework provided for .Net applications.

Selenium is a free and open-source automation tool that is mostly used to automate web browsers. It gives engineers a solid way to check web applications. Many people choose Selenium for cross-browser automation for it has many useful parts, such as Selenium WebDriver for managing how browsers work, which is crucial in this case.

The first approach consisted of downloading the page's HTML code, however it turned out that nowadays most of the websites load content dynamically, so the data downloaded was of no use. To overcome this, the application uses Selenium for simulating a headless browser, which is a web browser that doesn't have a graphical user interface. It lets programs control web pages automatically, which is why it's often used for web scraping, automated testing, and rendering web pages for processing on the server.

Scraping also states an issue with protection of the site's data. The general rule is that you are only supposed to collect data, that you can publicly access and if the site's robots.txt file content does not prohibit you from scraping the data available on the website. Before crawling a new website for data, it is essential to review these points.

Shown below on figure 6.8 are the classes and interfaces that are required for the service to work, the characteristics of its working process are explained on the next page.

Figure 6.8: Class Diagrams Related to Web Scraping

How Does It Scrape

First of all, the ScraperService is exported as a singleton IScraperService during the application setup process. The ScrapeServiceEndpoint listens for post requests, and upon a valid request takes action. It is configured to allow requests for immediate and timed scrapings.

Before scraping, the service configures the parameters for the WebDriver and calls for all of the available IShopScraper implementations. Since many websites differ in their structure, most of them need separate implementations to specify what instructions are required for the data retrieval.

After finishing the setup, the service starts all of the IShopScrapers data collection processes on different threads to speed up the process, then waits for all of them to finish. On finishing it checks the integrity of the data, using fuzzy string matching and uploads the data into the database.

The process of scraping the items from various websites always needs fine tuning, but roughly follows the same idea implementing HTML and CSS tag verification, which will be presented with the following four pseudo-like algorithm descriptions.

ScrapeAllItemsAsync Method is the one being called from the Service and in the end provides structured shop item data with correct categories provided by the application.

GetCategoriesWithSubcategories Method is the one responsible for mapping all categories and subcategories on the site with storing their links to easily load when needed.

ScrapeShopItemsAsync Method visits every subcategory and scrapes all the items that are available on that page, then stores them for later use.

ScrollTillEnd Method is crucial for the scraping process, since it handles the scrolling and waiting process, to make sure that the dynamically loading item data is present and scrapable.

Algorithm 1 ScrapeAllItemsAsync Method

```
attempts \leftarrow 0
maxAttempts \leftarrow 3
while attempts < maxAttempts do
   try to:
        items \leftarrow ScrapeShopItemsAsync().ToList()
        webDriver.Quit()
           OpenAiOptimizer.
            OptimizeCategoriesToMatchSchema(allCategories, defaultCategories)
        return \ items
   if exception occurs then
        attempts \leftarrow attempts + 1
        if attempts > maxAttempts then
           Print exception e
           break
end while
return new list of IShopItem
```

Algorithm 2 GetCategoriesWithSubcategories Method

```
Initialize dictionary categoriesWithSubCategories
Create a new WebDriverWait with 5 seconds timeout
for each category element found by webDriver do
Click on the category element
Create a ShopItemCategory
Initialize list for subCategories
for each subCategory in the category element's parent do
Add new ShopItemCategory to subCategories
end for
if no subCategories then
Add the main category as a subcategory
end if
Add category and its subCategories to the dictionary
end for
return dictionary
```

Algorithm 3 ScrapeShopItemsAsync Method

```
Navigate webDriver to URL
Initialize list of IShopItem items

for each category in GetCategoriesWithSubcategories do

for each subCategory in category's value do

Add subCategory to allCategories

Navigate webDriver to subCategory's link

Call ScrollTillEnd

for each item found by webDriver do

Create and add new ShopItem to items

end for

end for

return items
```

Algorithm 4 ScrollTillEnd Method

```
Initialize endOfPage \leftarrow false
Create a new WebDriverWait with 5 seconds timeout while not endOfPage do

Get count of items found by webDriver
Scroll to the end of the page
try to:

Wait until more items are found
if exception occurs then
Set endOfPage \leftarrow true
end while
```

6.3.7 OpenAI Processing

Unfortunately it can't be guaranteed that each site has the same categories for the products listed, therefore I needed a solution to match these. Fuzzy string matching would not be reliable enough, therefore I turned to OpenAI's chat endpoint and utilized it the following was: Before returning the data to the ScrapingService, the IShopScraper calls of the OpenAiOptimizer's OptimizeCategoriesToMatchSchema method.

A system calls the OptimizeCategoriesToMatchSchema method to divide categories into 10 groups and asynchronously send them to OpenAI's ChatGPT as JSON data. ChatGPT matches these categories to a schema and returns renamed JSON categories. After renaming the categories, the method returns the modified data to the calling system. This way AI-driven classification and automated data processing are also shown in this web application.

Interesting remark about the prompting process, is that it is not included in a ChatGPT subscription, instead it uses a credit / prompt system, which has become much cheaper, since the introduction of the GPT 3.5 turbo model. The code also needs to be prepared for occasional outages, when it needs to retry the prompt. Writing a message with instructions for ChatGPT can be challenging too, I overcame this by writing a sturdy prompt message and asking ChatGPT to reply with a JSON format of the data. This sometimes also produced extra message and characters around the JSON format, which I worked around by trimming all the characters, outside the JSON body format. On figure 6.9 a simplified version of the process is shown via sequence diagram.

Figure 6.9: Open AI Category Aligning Sequence Diagram

6.4 Web Application

Who is it for? It is very important to note, that the web application is solely for administration purposes and will only be accessible by the program's administrators and the associated retailers to provide them a way to upload their product data. In this section by users I essentially mean one of the retailers who are providing data for the application.

6.4.1 Introduction

As the framework of choice for this app, Angular was chosen because it has a large ecosystem and a lot of strong features that make it perfect for a modern, dynamic web app.

As a platform known for its structured framework and wide range of tools, Angular makes it easy to build large-scale apps with its opinionated architecture. This prescriptive nature makes it much easier to keep codebases consistent, which makes it perfect for the application's complicated structure, which needs clear modularity and separation of concerns.

Angular's powerful typing system, which is powered by TypeScript, makes code better and more reliable. This makes debugging and maintenance easier, which is important for the long-term growth and scalability of the app. Using reactive programming patterns with RxJS also makes it easier to work with asynchronous data streams, which are needed for the app's real-time data processing features like uploading product data and scraping the web.

Built-in features of the framework, like dependency injection, routing, and services, make it easier to make applications that are safe and work well. The app uses these features to keep track of user authentication states, protect routes based on user roles, block HTTP requests, and easily talk to back-end services. Moreover the architecture carefully arranges how users interact with it, how it is protected, and how it handles data through a clear set of modules.

By implementing SSL certificates for the web page and API, the application enables HTTPS protocol and ensures secure communication. Sensitive data, including passwords and tokens, is protected by this configuration, which encrypts data transferred between the server and client. By using HTTPS instead of HTTP, users can be assured that their data is encrypted and unintelligible even if it is intercepted, creating a secure and reliable environment. The application's design is based on this commitment to security, and it fits in perfectly with Angular's framework, which facilitates strong security implementations.

6.4.2 Architecture

The following diagram, visible on figure 6.10 makes it easy to see how the application is structured. Every module makes sure that the user has a safe, quick, and smooth experience by explaining its function in the application and how it works with the other modules. This organized method makes things run more smoothly and sets the stage for future improvements.

Figure 6.10: Structure of the Web Application

Base Components:

The Base Components make up the main part of the user interface. The Home Component is a landing page with useful information that all visitors can see. The Header Component goes with it and makes sure that the application's navigation and branding are all the same. The header navigation depends on whether a user is authenticated or not as well as if they have admin privileges or not.

Authentication Components:

It essentially includes two main parts: the Registration Component, which lets new users create accounts, and the Login Component, which helps users prove who they are. Both parts are necessary to start the user's journey within the app by giving them JWT access and refresh tokens when they successfully register or login.

On figure 6.11 the UI of the two authentication components, login and registration functionalities are visible.

Figure 6.11: Authentication on the Website

Specialized Access:

Two essential components—the Web Scraping Component and the Users Component—are only accessible to admin users. With the former, administrators can set up and start web scraping activities on demand or at predetermined intervals, which functions are provided with an easy to use user interface shown on figure 6.12.

Figure 6.12: Requesting Web Scraping

With utilizing the Users Component, the administrators can view a complete list of users available for the web application, change their permissions within the application or completely remove them from the list. The interface for these functions are shown on figure 6.13 below.

Figure 6.13: Web Application's User Management

User-Focused Functionality:

Authorized users are given permission to access the Contacts Component for the purpose of communication and the Upload Product Data Component. The latter component, shown on figure 6.14 is provided for users to upload product data, which is then processed by the Product Data Service, which converts CSV inputs into JSON format and checks that they match the Shop Item Model before submitting them to the API.

Figure 6.14: Upload Product Data

Services:

The logic of the application is contained within the Services, which includes the Product Data Service, Authentication Service, and Scraping Caller Service. To fulfill specific application functionalities, each service interacts with the corresponding components and API Endpoints.

Data Models:

The User Model and the Shop Item Model define the structure for user information and product data. These models are critical for the application's data integrity and consistency.

Interceptors:

All outgoing requests are carefully watched over by the Web Req Interceptor Service. It makes sure that authentication keeps going by refreshing tokens (visible on figure 6.15) through the Authentication Service when needed and stopping requests and logging out the user if serious problems are found.

Figure 6.15: JWT Tokens Stored in Cookies

Router:

The Router and Auth Guard are essential to the application's security architecture. It ensures that non-authenticated users can only access the Home, Registration, and Login Components by clearly defining user interfaces and component accessibility. Admins and verified users, on the other hand, have access to extra, role-specific features.

API Communication:

Backend interaction happens through the API package. The document defines the endpoints that the application uses to talk to the backend, trusting the Services to do all of those tasks efficiently.

Ending Note:

Even though that the web application only serves administrative purposes, it was still important to provide this functionality in a user friendly manner. From development side, since the future is malleable choosing Angular was the right way to ensure modularity and scalability.

6.5 Mobile Application

7 BIBLIOGRAPHY

- [1] "History of barcodes." (2023), [Online]. Available: https://www.barcodeproducts.co.nz/frequently_asked_questions_faq/barcodes_info (visited on 05/24/2023).
- [2] G. Weightman. "The history of the bar code." (2015), [Online]. Available: https://www.smithsonianmag.com/innovation/history-bar-code-180956704/ (visited on 05/24/2023).
- [3] D. W. Incorporated. "History of qr code." (2011), [Online]. Available: https://www.grcode.com/en/history/(visited on 05/24/2023).
- [4] H. Chen, R. H. Chiang, and V. C. Storey, "Business intelligence and analytics: From big data to big impact," *MIS Quarterly*, vol. 36, no. 4, pp. 1165–1188, 2012.
- [5] L. Rao. "Facebook co-founder eduardo saverin leads 7m dollar round in scanning and product search app shopsavvy." (Nov. 2011), [Online]. Available: https://techcrunch.com/2011/11/02/facebook-co-founder-eduardo-saverin-leads-7m-round-in-scanning-and-product-search-app-shopsavvy (visited on 05/24/2023).
- [6] Y. Huang and H. Oppewal, "Why consumers hesitate to shop online: An experimental choice analysis of grocery shopping and the role of delivery fees," *International Journal of Retail and Distribution Management*, vol. 34, no. 4/5, pp. 334–353, 2006.
- [7] I. Pentina and M. Tarafdar, "From "information" to "knowing": Exploring the role of social media in contemporary news consumption," *Computers in Human Behavior*, vol. 35, pp. 211–223, 2014.
- [8] D. Grewal, A. L. Roggeveen, and J. Nordfält, "Retail value-based pricing strategies: New times, new technologies, new consumers," *Journal of Retailing*, vol. 87, no. 1, pp. 1–6, 2011.
- [9] Forbes. "Roundup gus' experian buys pricegrabber.com for 485 mln usd." (Dec. 2005), [Online]. Available: https://web.archive.org/web/20051, 216080349/http://www.forbes.com/home/feeds/afx/2005/12/14/afx2390699.html (visited on 05/24/2023).
- [10] P. Newswire. "Connexity acquires pricegrabber." (Jun. 2015), [Online]. Available: https://www.prnewswire.com/news-releases/connexity-acquires-pricegrabber-300099651.html (visited on 05/24/2023).
- [11] C. Harnick. "Pricegrabber launches mobile shopping app." (n.d.), [Online]. Available: https://www.retaildive.com/ex/mobilecommercedaily/pricegrabber-launches-mobile-shopping-app(visited on 05/24/2023).

- [12] Google. "How google shopping works." (2023), [Online]. Available: https://support.google.com/faqs/answer/2987537?hl=en (visited on 05/24/2023).
- [13] PriceRunner. "About pricerunner." (2023), [Online]. Available: https://www.pricerunner.com/info/about-pricerunner (visited on 05/25/2023).
- [14] PriceRunner. "How does it work." (2023), [Online]. Available: https://www.pricerunner.com/info/setup (visited on 05/25/2023).
- [15] PriceRunner. "Faq for retailers." (2023), [Online]. Available: https://www.pricerunner.com/info/faq-for-retailers (visited on 05/25/2023).
- [16] PriceRunner. "App." (2023), [Online]. Available: https://www.pricerunner.com/info/iphone (visited on 05/25/2023).
- [17] ShopSavvy. "About shopsavvy." (2023), [Online]. Available: https://shopsavvy.com/about (visited on 05/26/2023).
- [18] PYMNTS. "Shopsavvy and discounts 2.0." (May 2015), [Online]. Available: https://www.pymnts.com/exclusive-series/2015/shopsavvy-and-discounts-2-0/(visited on 05/26/2023).
- [19] "Shopsavvy product search technology now available on chrome." (May 2020), [Online]. Available: https://www.prdistribution.com/news/shopsavvy-product-search-technology-now-available-on-chrome/5550432 (visited on 05/26/2023).
- [20] "Linkedin árukereső." (2023), [Online]. Available: https://www.linkedin.com/company/arukereso/about/(visited on 05/26/2023).
- [21] T. Karácsony. "Árukereső, miért keresünk fel téged?" (Oct. 2019), [Online]. Available: https://hold.hu/holdblog/arukereso/(visited on 05/26/2023).
- [22] "Megbízható bolt program." (2023), [Online]. Available: https://www.arukereso.hu/static/megbizhato_bolt_program.html (visited on 05/26/2023).
- [23] maradokapénzemnél. "Így maxolhatod ki a spórolást a cashmap.hu-n." (2021), [Online]. Available: https://cashmap.blog.hu/2021/05/21/igy_maxolhatod_ki_a_sporolast_a_cashmap_hu-n (visited on 05/26/2023).
- [24] "Minimum vieable product (mvp)." (), [Online]. Available: https://www.productplan.com/glossary/minimum-viable-product/(visited on 11/23/2023).
- [25] AiloitteAdmin. "What is mobile user interface (ui) design? a beginner's guide." (May 2023), [Online]. Available: https://www.ailoitte.com/blog/ui-design-mobile-apps/(visited on 11/23/2023).

8 LIST OF FIGURES

5.1	Visual Architecture Plan	24
5.2	Mobile User Interface Mock-up	25
6.1	Entity Relationship Diagram of User Data	29
6.2	Entity Relationship Diagram of Shop Item Data	30
6.3	Class Diagrams Related to the Controller	33
6.4	Authentication Snippet	34
6.5	Class Diagrams Related to JWT Authentication	35
6.6	Authentication Snippet	35
6.7	Class Diagrams Related to Data Models	36
6.8	Class Diagrams Related to Web Scraping	37
6.9	Open AI Category Aligning Sequence Diagram	41
6.10	Structure of the Web Application	43
6.11	Authentication on the Website	44
6.12	Requesting Web Scraping	44
6.13	Web Application's User Management	45
6.14	Upload Product Data	45
6 15	IWT Tokens Stored in Cookies	46

9 LIST OF TABLES

4.1	Market Demographics	12
4.2	Porter's Five Forces Analysis	13
4.3	PEST Analysis	14
4.4	Ansoff Matrix Analysis	15
4.5	Stakeholder Summary	15
4.6	User Summary	16
4.7	Summary of Capabilities	17
4.8	SWOT Analysis	18
4.9	Product Features	19
5.10	Risk Management Analysis	23