ATOUR OF THE PYTHON DATA SCIENCE ECOSYSTEN

USING:

- **> PYTHON 3.5**
 - > JUPYTER

W/ LIBRARIES:

- > PANDAS
- > NUMPY
- > SCIKIT-LEARN

BONUS:

- > TENSORFLOW
 - > KERAS
 - > XGBOOST

I AM:

BEN KAMPHAUS

MACHINE LEARNING/SOFTWARE ENGINEER AT <u>THINKTOPIC</u> I SPLIT TIME BETWEEN PYTHON AND CLOJURE.

STRUCTURE:

- > SALIENT FEATURES OF PYTHON (10 MINUTES)
 - > PANDAS MODULE (10 MINUTES)
 - > NUMPY MODULE (10 MINUTES)
 - > SKLEARN MODULE (10 MINUTES)
 - > BONUS MATERIAL (10 MINUTES)

BUT FIRST. DEMO!!!!

BIRD'S EYE VIEW OF PYTHON FEATURES

DEPENDENY MANAGEMENT:

pip install sklearn

- ++ QUICK AND EASY AT THE COMMAND LINE
- -- NATIVE DEPENDENCIES, SYSTEM GLOBAL

DOCKER, virtualenv. ETC.

MULTIPARADIGM

OBJECT-ORIENTED

```
class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y
```

FUNCTIONAL (-ISH)

```
map(lambda x: x**2, range(10))
[x**2 for x in range(10)]
```

TYPICALLY IMPERATIVE:

```
1 = []
for i in range(10):
    if i % 2:
        l.append(i)
```

BUT STILL. HIGHER ORDER FUNCTIONS!

```
def add_to(x):
    def add(y):
        return x + y
    return add
```

AND COOL PYTHONIC THINGS LIKE GENERATORS:

```
def geometric_series(a, r):
    power = 0
    yield a
    while True:
        power += 1
        yield a * r**power
```

PANDAS

ELEVATOR PITCH: FAST TABULAR DATA MANIPULATION

WHEN YOU USE IT:

- > 10 OR DATABASE ACCESS LAYER
- > RELATIONAL ALGEBRA OPERATIONS
 - > BASIC STATISTICS
 - > SIMPLE VISUALIZATIONS
- > INPUT TO SOME MACHINE LEARNIG APIS

PANDAS PHILOSOPHY

- > FAVOR VIEWS FOR SELECT, FILTER, SLICE (VIA NUMPY)
- > MUTATION PRODUCES A COPY (EXCEPT WITH inplace=True)
 - > OPTIMIZED IN C OR CYTHON, SO FAST
 - > INDEXES AND COLUMNS ARE LABELED

INTERACTIVE DEMO!!!

NUMPY

ELEVATOR PITCH:

NDARRAYS AND FAST LINEAR ALGEBRA ROUTINES

WHEN YOU USE IT:

- > IMPLEMENTING MACHINE LEARNING OR DATA SCIENCE METHODS FROM PAPERS
 - > FEATURE ENGINEERING AND TRANSFORMATION
 - > DATA NORAMLIZATION
 - > INTERPOLATION AND NUMERICAL COMPUTING

YOU KNOW. MATLAB. IDL. APL. ETC.

TYPICAL NUMPY OPERATIONS:

- > LINEAR ALGEBRA OPERATORS: DOT PRODUCTS, SCALING, ETC.
 - > VECTORIZED ARRAY FUNCTION CALLS
 - > RESHAPING, STACKING, FLATTENING
 - > SLICING, MASKING
- > MORE ADVANCED: DECOMPOSITIONS, FACTORIZATION, MATRIX INVERSION/PSEUDO-INVERSION

INTERACTIVE DEMO!!!

SCIKIT-LEARN (SKLEARN)

ELEVATOR PITCH:

YOUR ONE STOP MACHINE LEARNING SHOP.

WHEN YOU USE IT:

- > TEST/TRAINING SPLITS AND CROSS-VALIDATION
 - > PREPROCESSING
 - > DIMENSIONALITY REDUCTION
 - > CLUSTERING

WHEN YOU USE IT (CONT):

- > FEATURE ENGINEERING
 - > LEARNING/FITTING
- > PERFORMANCE EVALUATION
- > HYPERPARAMETER SEARCH

TYPICAL SKLEARN WORKFLOW:

- > INITIAL PREPROCESSING/IO/MUNGING FROM PANDAS + NUMPY
 - > SCALING AND/OR DIMENSIONALITY REDUCTION
 - > SPLIT BETWEEN TRAINING AND HOLD-OUT TEST DATASETS

TYPICAL SKLEARN WORKFLOW (CONT):

- > INITIAL ASSESSMENT OF METHODS W/TRAINING DATA
- > OUT-OF-FOLD ACCURACY ASSESSED W/CROSS-VALIDATION
- > HYPERPARAMETER SEARCH FOR FINAL MODEL SELECTION

INTERACTIVE DEMO!!!

BONUS MATERIAL!

TENSORFLOW

TENSORFLOW BUILDS A DATA FLOW GRAPH OUT OF A MIX OF NUMPY IDIOMS AND NEURAL NETWORK SPECIFIC CONSTRUCTS.

KERAS

KERAS WRAPS TENSORFLOW (AND THEANO, WHICH IS SIMILAR) WITH AN SKLEARN LIKE INTERFACE.

XGBOOST

XGBOOST CAN BE CALLED IN A MANNER SIMILAR TO SKLEARN LEARNING ALGORITHMS.

OR DIRECTLY VIA A FULLY SKLEARN COMPATIBLE WRAPPER.

LET'S MAKE SENSE OF <u>SOMETHING ON KAGGLE!</u>