MDI220, Statistique Cours 1

Equipe pédagogique: Thomas Bonald , Anas Barakat, Anne Sabourin, Umut Simsekli, Guillaume Staerman.

Septembre 2019

Chapitre 1 Introduction : analyse statistique de données

1. Exemples

Proportion de défaults Test A/B

2. Formalisation

Cadre probabiliste Modèle statistique, paramétrisation

3. Théorie de la décision : concepts de base

Actions, fonction de coût Risque Exemples de coûts et risques associés.

Faire des statistiques?

- Utiliser les données pour apprendre / extraire de l'information sur leur distribution probabiliste
- Beaucoup de données → beaucoup d'applications
 ... Big data Data Science Machine Learning ...
 Intelligence artificielle ...
- ce cours : vous donner outils théoriques + mise en oeuvre pratique pour attaquer problèmes de
 - procédures d'estimation
 - tests, intervalles de confiance
 - . . .
 - \rightarrow procédures d'« inférence » ou « apprentissage » sur lesquels reposent beaucoup d'algorithmes.

Fonctionnement du cours

- Mardi matin
- TH1 : cours en amphi; TH2 : TD (présence obligatoire? cf votre prof de TD)

(Aujourd'hui : $2eme\ TH = TP$, prise en main du logiciel R)

- poly : en ligne, version papier : imminente.
- TDs : en ligne au fil du cours +corrigés.
- Evaluation :
 - Contrôle continu + mini projet : 40%
 - Contrôle final : 60% \rightarrow droit à 1 feuille manuscrite de notes, pas de poly ni TD
- Mini-projet :
 - individuel
 - ≈ un gros DM avec théorie + code (R, Rstudio, cf. TP aujourd'hui)
 - rendu : un notebook + scripts

1. Exemples

Proportion de défaults

Test A/B

2. Formalisation

3. Théorie de la décision : concepts de base

Proportion de défauts dans un population

- N individus/clients/pièces produites par une machine
- proportion θ de défecteux, $\theta \in \{1/N, \dots, (N-1)/N, 1\}$.
- **expérience** : tirage aléatoire, uniforme, sans remise, de *n* individus parmi *N*
- on observe : X : nombre de défaults parmi les n tirés.

Comment utiliser X pour apprendre que de θ ?

Objectifs possibles

- Tester si $\theta < 5\%$
- Estimer θ (construire un estimateur $\widehat{\theta}$)
- \bullet Donner un intervalle de confiance contenant θ avec grande probabilité.

Modélisation

à θ fixé, comment se comporte X?

Idée de la suite : résoudre ensuite un « problème inverse » pour retrouver θ à partir de X

- \mathbb{P}_{θ} : proba sous jacente lorsque le paramètre vaut θ .
- Calcul de $\mathbb{P}_{\theta}(X=k)$:

au tableau

• $\mathbb{P}_{\theta}(X = k)$ = une fonction de k, θ, n, N

On a défini un « modèle statistique », *i.e.* une famille de lois de probas possibles pour X (une pour chaque valeur de θ .

• On supposera que $X \sim \mathbb{P}_{\theta}$, avec θ inconnu.

Estimation de θ

- Ayant observé « X=x », peut-on donner une estimation $\widehat{\theta}$ de θ ?
- idée 1 : calculer l'espérance théorique de X à θ fixé, $\mathbb{E}_{\theta}(X)$, et ajuster $\widehat{\theta}$ pour avoir $X = \mathbb{E}_{\widehat{\theta}}(X)$.
- ... gros calcul ...

$$\mathbb{E}_{\theta}(X) = n\theta, \quad \forall \theta \in \{0, 1/N, 2/N, \dots, 1\}.$$

ightarrow estimateur « naturel » de heta :

$$\widehat{\theta} = \frac{X}{n}$$

N.B. : $\widehat{\theta}$ est une fonction de X

Estimation de θ (ii)

• idée 2 : puisque $X \leq N\theta$, prendre

$$\widehat{\theta}_2 = \frac{X}{N}$$

(ainsi : on est sûrs de ne pas sur-estimer θ

• idée 3 : : puisque $n - X \le N - N\theta$, prendre

$$\widehat{\theta}_3 = \frac{N - (n - X)}{N}$$

(ainsi : on est sûrs de ne pas sous-estimer θ)

- idée 4 : $\hat{\theta}_3 = \frac{1}{2} \left[\frac{X}{N} + \frac{N (n X)}{N} \right]$
- tous ces estimateurs sont des fonctions de X
- choix : en fonction du "risque" attaché à chaque estimateur (dépend de la préférence de l'utilisateur).

1. Exemples

Proportion de défaults Test A/B

- 2. Formalisation
- 3. Théorie de la décision : concepts de base

Efficacité d'un traitement/ une stratégie marketting/ . . .

- Le traitement/la stratégie est-il efficace?
- 2 échantillons $(X_1, \ldots, X_n) \stackrel{i.i.d.}{\sim} F, (Y_1, \ldots, Y_n) \stackrel{i.i.d.}{\sim} G$
- Question : F = G?
- besoin de faire des hypothèses, ex :
 - $Y_i \stackrel{\text{loi}}{=} X_i + \Delta$, i.e. $G(\cdot) = F(\cdot \Delta)$
 - $Y_i \sim \mathcal{N}(\mu + \Delta, \sigma^2), X_i \sim \mathcal{N}(\mu, \sigma^2), \mu \text{ inconnu, } \sigma^2 \text{ connu}$
 - . . .
- choix de modèle : problème récurrent!

1. Exemples

2. Formalisation

Cadre probabiliste

Modèle statistique, paramétrisation

3. Théorie de la décision : concepts de base

Notations (I)

- Univers Ω , réalisation $\omega \in \Omega$.
- tribu $\mathcal F$ sur Ω : ensemble des événements (un événement = un élément de $\mathcal F$ = un sous ensemble de Ω)
- Espace des observations : $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$ tribu $\mathcal{B}(\mathcal{X})$: $\mathcal{P}(\mathcal{X})$ si \mathcal{X} discret, boréliens si $\mathcal{X} = \mathbb{R}^d$.
- Observation : variable aléatoire (i.e. une fonction mesurable)
 X : Ω → X.

Notations(II)

• loi de X : P. C'est une probabilité sur $\mathcal X$:

$$\forall A \in \mathcal{B}(\mathcal{X}), \qquad \mathrm{P}(A) = \mathbb{P}(X \in A)$$

$$= \mathbb{P}\{\omega : X(\omega) \in A\}$$

$$= \mathbb{P} \circ X^{-1}(A)$$

$$= \text{w mesure image de P par X w}$$

- on écrit $X \sim P$.
- ullet En statistique, la proba sous-jacente ${\mathbb P}$ est inconnue, donc P aussi.

• But : obtenir de l'info sur P en observant X.

1. Exemples

2. Formalisation

Cadre probabiliste Modèle statistique, paramétrisation

3. Théorie de la décision : concepts de base

modèle statistique

modèle = connaissance « a priori » du statisticien (avant l'expérience) \rightarrow famille de lois « possibles » pour X:

definition: modèle statistique

Un modèle statistique est une famille de lois de probabilités, notée ${\mathcal P}$:

 $\mathcal{P} \subset \{ \text{ toutes les lois de proba sur } \mathcal{X} \}$

Lors de l'expérience statistique, on suppose que $X \sim P$ avec $P \in \mathcal{P}$.

paramétrisation, espace des paramètres

définition : espace des paramètres, paramétrisation

paramétrisation : application

$$\Theta \to \mathcal{P}$$

$$\theta \mapsto P_{\theta}$$

où Θ est un ensemble appelé "espace des paramètres".

(paramétrisation = étiquetage des lois $P \in \mathcal{P}$: par un paramètre $\theta \in \Theta$, supposé facile à manipuler (ex : $\theta \in \mathbb{R}^d$))

ex : espace des paramètres pour le modèle contenant toutes les lois normales ?

paramétrique/ non paramétrique

- modèle paramétrique : \exists une paramétrisation telle que $\Theta \subset \mathbb{R}^d$
- exemple?

- ullet modèle $\mathsf{param\'etrique}:
 ot \exists \mathsf{de} \mathsf{param\'etrisation} \mathsf{telle} \mathsf{que} \Theta \subset \mathbb{R}^d$
- exemple : ensemble de toutes les lois de probas à densité, dont la densité est « symétrique » (une fonction paire).

Notations : variable aléatoire dans un modèle

on note

$$X \sim P_{\theta}, \theta \in \Theta$$
.

(X suit la loi P_{θ}), où (généralement) θ est fixé mais n'est pas observé et X est observé.

• N.B. même en non paramétrique, on peut toujours choisir $\Theta = \mathcal{P}$ et écrire

$$\mathcal{P} = \{ P_{\theta}, \theta \in \Theta \}.$$

ightarrow pas de problèmes de notations

Travail du statisticien

• La seule connaissance mise à la disposition du statisticien est un modèle $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$ et une réalisation de l'observation $X \sim P_{\theta}$, où $\theta \in \Theta$ est inconnu.

 L'objectif est d'approcher une certaine quantité d'intérêt g(θ) (dépendant uniquement de θ) en utilisant une procédure fondée uniquement sur l'observation X (une fonction ne dépendant que de X).

Quantités d'intérêt $g(\theta)$ usuelles

- intervalle contenant θ
- $\mathbb{P}_{\theta}(X > u)$ (u : seuil à risque)
- $\mathbb{E}_{\theta}(X)$
- $\mathbb{1}_{\Theta_0}(\theta)$ où $\Theta_0 \subset \Theta$.

souvent : $g(\theta)$ est aussi appelée 'paramètre' (d'intérêt) même si $g(\theta)$ ne détermine pas entièrement P_{θ} .

Notion de 'statistique'

Toute l'inférence doit se faire à partir des données seulement :

définition : statistique

Une *statistique* est une variable aléatoire s'écrivant comme une fonction mesurable des observations, de type $\varphi(X)$ où $\varphi: (\mathcal{X}, \mathcal{B}(\mathcal{X})) \to (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ est une fonction mesurable.

en particulier

definition: estimateur

Un estimateur d'une quantité $g(\theta) \in \mathcal{G} \subset \mathbb{R}^d$ est une statistique $\widehat{g}: x \in \mathcal{X} \mapsto \widehat{g}(x) \in \mathcal{G}$.

Exemples

- nombre de défauts :
 - modèle? Θ?
 - modèle paramétrique ou non?
- modèle 'semi-paramétrique' :

$$\mathcal{P}=\{ ext{lois de densité } f(\cdot -\mu), ext{ où } f: ext{ densité paire sur } \mathbb{R} \ \mu \in \mathbb{R}\}$$

$$\Theta = \{(f, \mu) : f \text{ densit\'e paire }, \mu \in \mathbb{R}\}$$

Identifiabilité

Quand a-t-on une chance de "retrouver" θ à partir des observations?

définition : identifiabilité.

- La paramétrisation $\theta \mapsto P_{\theta}$ est dite identifiable si elle est injective. (i.e. $\theta_1 \neq \theta_2 \Rightarrow P_{\theta_1} \neq P_{\theta_2}$).
- une grandeur d'intérêt $g(\theta)$ est dite identifiable si

$$g(\theta_1) \neq (\theta_2)$$
 \Rightarrow $P_{\theta_1} \neq P_{\theta_2}$.

Modèle dominé

définition : modèle dominé

le modèle $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$ est appelé **dominé**, si toutes les lois $P_{\theta}, \theta \in \Theta$ admettent une densité par rapport à une **même** mesure de référence σ -finie* μ ,

* σ -finie : l'espace ${\mathcal X}$ est une union dénombrable d'ensembles de mesure finie.

• Rappel Une probabilité P sur \mathcal{X} admet une densité f par rapport à une mesure μ sur \mathcal{X} , si

$$\forall A \in \mathcal{B}(\mathcal{X}), P(A) = \int_A f(x) d\mu(x)$$

Rappels : densité/ mesure

• Caractérisations équivalentes d'une densité :

(i)
$$\forall A \in \mathcal{B}(\mathcal{X}), P(A) = \int_{A} f(x) d\mu(x)$$

(ii) $\forall \phi : \mathcal{X} \to \mathbb{R}^{+}$ (mesurable), $\mathbb{E}(\phi) = \int_{\mathcal{X}} \phi(x) f(x) d\mu(x)$
(iii) (Radon-Nikodym) $\forall A \in \mathcal{B}(\mathcal{X}), \mu(A) = 0 \Rightarrow P(A) = 0.$

exemples

- $\mathcal{P} = {\mathcal{N}(\mu, \sigma^2), (\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}^*_+} : \mu = \text{mesure de Lebesgue sur } \mathbb{R}.$
- $\mathcal{P} = \{\mathcal{P}oisson(\lambda), \lambda > 0\}$: $\mu = \text{mesure de comptage sur } \mathbb{N}$.

contre-exemple

• $\mathcal{P} = \{\delta_x, x \in \mathbb{R}\}$: seule μ possible : comptage sur \mathbb{R} , $\mu(A) = |A|$ (infini dès que A continent un intervalle) : pas σ -fini!

Intégration $\int \dots d\mu(x)$? cours proba 1A, mdi104.

- Ici trois cas possibles (suffisent pour comprendre)
 - 1. μ = Lebesgue, sur $\mathbb R$: alors

$$\int_{\mathbb{R}^d} \Phi(x) \mathrm{d}\mu(x) = \int_{\mathbb{R}^d} \Phi(x) \mathrm{d}x \quad \text{(intégrale de Riemann, si elle existe.)}$$

2. μ : mesure de comptage sur $\mathcal X$ discret, $\mu = \sum_{\mathbf x \in \mathcal X} \delta_{\mathbf x}$ (Diracs)

$$\int_{\mathcal{X}} \Phi(x) d\mu(x) = \sum_{x \in \mathcal{X}} \Phi(x).$$

3. Mélange des deux : $\mathcal{X} \subset \mathbb{R}^d$, $\mu = \mu_1 + \mu_2$ où : μ_1 : comptage sur $\mathcal{X}_0 \subset \mathcal{X}$ discret et μ_2 : Lebesgue sur \mathbb{R}^d .

$$\int_{\mathcal{X}} \Phi(x) d\mu(x) = \sum_{x \in \mathcal{X}_{\mathbf{0}}} \Phi(x) + \int_{\mathbb{R}^d} \Phi(x) dx.$$

Vraisemblance

- Dans un modèle dominé $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}.$
- chaque P_{θ} admet une densité $p_{\theta}: \mathcal{X} \to \mathbb{R}^+$ par rapport à la mesure de référence μ .

définition : vraisemblance

Soit $x \in \mathcal{X}$ une observation. L'application

$$\theta \mapsto p_{\theta}(x)$$

est appelée "fonction de vraisemblance", ou "vraisemblance" associée à x.

- Attention : la vraisemblance est une fonction de θ , à x fixé.
- Intérêt : d'habitude, (en probas) on s'intéresse à $p_{\theta}(\cdot)$, à θ fixé.
- en stats : on ne "voit" que x, on cherche θ .
- à x fixé, θ est d'autant plus "vraisemblable" que $p_{\theta}(x)$ est élevé.
- un moyen d'estimer θ est de maximiser en θ (à x fixé), la vraisemblance. cf. estimateur du maximum de vraisemblance, chap. 2.

Nombre d'observations

- Soit \mathcal{P} un modèle pour X
- $X_{1:n} = (X_1, ..., X_n)$ échantillon i.i.d.(indépendant, identiquement distribué) de même loi que X.
- modèle pour X_{1:n}?
- Loi jointe avec indépendance = loi produit $P_{\theta,1:n} = P_{\theta}^{\otimes n}$
- On écrit encore (pour simplifier) P_{θ} , p_{θ} , pour désigner la loi de $X_{1:n}$.
- densité jointe : produit des densité
- donc vraisemblance d'un échantillon i.i.d. : produit des vraisemblances

$$p_{\theta}(\mathbf{x}_{1:n}) = \prod_{i=1}^{n} p_{\theta}(x_i)$$

1. Exemples

2. Formalisation

3. Théorie de la décision : concepts de base Actions, fonction de coût

Risque

Exemples de coûts et risques associés.

Actions

- Faire des stats : entreprendre une action $a \in \mathcal{A}$ après avoir observé $x \in \mathcal{X}$.
- actions : produire
 - une estimation $\widehat{\theta} \in \Theta$,
 - un intervalle/ régtion $R \subset \Theta$,
 - une réponse 0/1 à une question de type $\theta \in \Theta_0$.
 - $\rightarrow \mathcal{A} = \Theta/\mathcal{P}(\Theta)/\{0,1\}.$
- ullet $\mathcal A$: espace des actions.

définition : procédure de décision

Une fonction (mesurable) $\delta: \mathcal{X} \to \mathcal{A}$.

Fonction de coût

- hiérarchie entre les actions? quelle procédure de décision choisir?
- dépend des préférences de l'utilisateur, autrement de sa 'fonction de coût'.

définition : fonction de coût

Une fonction de coût est une application

$$L: \Theta \times \mathcal{A} \rightarrow [0, +\infty]$$

 $(\theta, a) \mapsto L(\theta, a).$

 $(L(\theta_0, a)$ est le "prix à payer" lorsque le vrai θ vaut θ_0 et qu'on entreprend l'action a.

• Idée : classer les procédures δ en fonction du 'comportement' de

$$L(\underbrace{\theta}_{\text{inconnu}}, \delta(\underbrace{X}_{\text{aléatoire}})).$$

1. Exemples

2. Formalisation

3. Théorie de la décision : concepts de base

Actions, fonction de coût

Risque

Exemples de coûts et risques associés.

Risque

- ullet Idée : classer les procédures δ en fonction du 'comportement' de
- Simplification : considérer le "coût moyen" $\stackrel{\mathrm{def}}{=}$ risque.

définition : Risque d'une procédure de décision.

Le risque d'une procédure de décision δ , étant donné θ , est :

$$R(\theta, \delta) = \mathbb{E}_{\theta}(L(\theta, \delta(X))) = \int_{\mathcal{X}} L(\theta, \delta(x)) dP_{\theta}(x).$$

1. Exemples

2. Formalisation

3. Théorie de la décision : concepts de base

Actions, fonction de coût

Risque

Exemples de coûts et risques associés.

Estimation d'un paramètre

$$g(\theta) \in \mathbb{R}$$
.

• Coût quadratique : $L(\theta,a)=(g(\theta)-a)^2$, risque quadratique : $R(\theta,\widehat{g})=\int_{\mathbb{R}}(g(\theta)-\widehat{g}(x))^2 \,\mathrm{d}P_{\theta}(x)$.

• Coût L_1 , $L(\theta, a) = |g(\theta) - a|$,

risque $L_1: R(\theta, \widehat{g}) = \int_{\mathbb{R}} |g(\theta) - \widehat{g}(x)| dP_{\theta}(x).$

Test

```
a\in\{0,1\}. (Question \theta\in\Theta_0?) a=0: "oui, \theta\in\Theta_0"; a=1: "non, \theta\notin\Theta_0". On note \Theta_1=\Theta\setminus\Theta_0.
```

coût 0 − 1 :

$$L(\theta, a) = \begin{cases} 0 & \text{si } \theta \in \Theta_a \\ 1 & \text{si } \theta \notin \Theta_a. \end{cases}$$

risque associé :

$$R(\theta, \delta) = \begin{cases} \mathbb{P}_{\theta}(\delta(X) = 1) = \mathbb{E}_{\theta}(\delta(X)) & (\theta \in \Theta_0) \\ \mathbb{P}_{\theta}(\delta(X) = 0) = 1 - \mathbb{E}_{\theta}(\delta(X)) & (\theta \in \Theta_1) \end{cases}$$

Région de confiance

ex :
$$\Theta = \mathbb{R}$$
, $\mathcal{A} = \{ \text{ intervalles } I \subset \mathbb{R} \}$.

• Coût 0-1 (encore):

$$L(\theta, I) = \begin{cases} 0 & \text{si } \theta \in I \\ 1 & \text{si } \theta \notin I. \end{cases}$$

• risque associé :

$$R(\theta, \delta) = \mathbb{P}_{\theta}(\delta(X) \not\ni \theta)$$

Exemple: Prospection pétrolière

au tableau