



### **Problem Statement**

#### **Problem Description**

In recent months, HDB resale prices has been steadily increasing and has become a common discussion topics especially amongst first time young buyers for affordability

I am curious to find out what features influence HDB resale prices and help potential buyers find out if the current asking prices of HDBs are reasonable by using regression models to predict HDB prices.

#### Why is this a problem?

The increasing cost of living comes to mind for young Singaporeans looking to purchase a home and start a family. This model would serve a guide for them as part of their home purchase decision making process.

#### How will we tackle the problem

#### **Regression models:**

- 1. Linear
- 2. Lasso
- 3. Ridge
- 4. Random Forest
- 5. ExtraTrees
- 6. XGBoost
- Neural Networks

#### How will we evaluate the results

**Success Metrics**: Model performance will be guided by RMSE. We will seek to find the best performing model based on the lowest RMSE score.

# Structured data Over 200,000 rows and 10 features

|   | month               | town          | flat_type | block | street_name          | storey_range | floor_area_sqm | flat_model        | lease_commence_date | remaining_lease       | resale_price |
|---|---------------------|---------------|-----------|-------|----------------------|--------------|----------------|-------------------|---------------------|-----------------------|--------------|
| 0 | 2017-<br>01         | ANG MO<br>KIO | 2 ROOM    | 406   | ANG MO KIO<br>AVE 10 | 10 TO 12     | 44.0           | Improved          | 1979                | 61 years 04<br>months | 232000.0     |
| 1 | 2017-<br>01         | ANG MO<br>KIO | 3 ROOM    | 108   | ANG MO KIO<br>AVE 4  | 01 TO 03     | 67.0           | New<br>Generation | 1978                | 60 years 07 months    | 250000.0     |
| 2 | 2017-<br>01         | ANG MO<br>KIO | 3 ROOM    | 602   | ANG MO KIO<br>AVE 5  | 01 TO 03     | 67.0           | New<br>Generation | 1980                | 62 years 05<br>months | 262000.0     |
| 3 | 2017-<br>01         | ANG MO<br>KIO | 3 ROOM    | 465   | ANG MO KIO<br>AVE 10 | 04 TO 06     | 68.0           | New<br>Generation | 1980                | 62 years 01 month     | 265000.0     |
| 4 | 2017 <b>-</b><br>01 | ANG MO<br>KIO | 3 ROOM    | 601   | ANG MO KIO<br>AVE 5  | 01 TO 03     | 67.0           | New<br>Generation | 1980                | 62 years 05<br>months | 265000.0     |





Calling OneMap API

Scraping longitudes and latitudes of:

- the transacted HDBs
- Nearby amenities such as:
  - MRT stations
  - Primary and secondary schools
  - malls

# Feature Engineering

- Created new distance-based features such as:
  - HDB's proximity to nearest
    - MRT station
    - Primary school
    - Secondary school
    - Mall
    - CBD
- Other created features include:
  - Year transacted
  - Resale price per sqf
  - Average storey (floor)
  - Age of HDB
  - Inflated adjusted resale price





# Exploratory Data Analysis

Visualized with Tableau

#### HDB Resale Price Analysis

Median Inflation Adjusted Resale Price Price vs transaction demand

Price Trend by Estate

price per sqf analysis by estate and flat types

proximity to amenities analysis by flat types

#### Median resale prices by town, central area is the most expensive



Visualization of HDB Resale Price Data

(Time period: Oct 2011 to Oct 2021)

# **Modeling Process**

**Baseline Model** 

Preprocessing

Training Models

Evaluation

- Using mean resale price from train dataset
- Train RMSE: 144,232
- Test RMSE: 142,975

- Standard Scaler
- Dummify categorical features:
  - Town
  - Flat type
  - Flat model
  - Year transacted

- Linear Regression
- Lasso Regression
- Ridge Regression
- Random Forest
- ExtraTrees
- XG Boost
- Feed Forward Neural Network
  - Vanilla model
  - Weight Decay
  - Dropout

RMSE is our guiding metric

#### **Model Evaluation**

#### Feed forward neural networks

Test RMSE: 26,851 to 28,233

- **Pros:** Medium effort, doesn't take as long as the tree-based models
- **Cons:** Black box nature means that model isn't easily intepretable
- **Summary:** best used for extremely complex datasets

4

#### Tree-based models

#### Random Forest & ExtraTrees

Test RMSE: 23,908 and 37,114

- **Pros:** Reasonable RMSE score and provides feature importance for intepretability
- Cons: tends to overfit, high effort to tune and takes long time to train

#### **XG Boost**

RMSE: 23,342

- **Pros:** medium effort, highly optimized algorithm with many hyperparameters available for tuning
- Best RMSE score

# **Training** Models

#### **Linear Regression**

Test RMSE: 48,357

- Pros: Very low effort, extremely fast to train
- Cons: Susceptible to overfitting and only assumes linear relationship
- **Summary:** not practical in most situations

# Regularized Linear Regression Lasso and Ridge

Test RMSE: 49,822 and 48,361

- Pros: Low effort, easy to train
   Alpha hyperparameter helps to reduce likelihood of overfitting
- Cons: may increase the bias

3

# Feature Importance

- Overall, we had more physical housing features such as floor level, age, flat type, floor area which were ranked higher in importance compared to distance-based features
- Avg\_storey: Floor level of the HDB unit had the most influence in price
- Proximity to mall and CBD were most important distanced-based features
- Age: HDBs are leasehold in nature and natural that people would want to buy newer flats
- year\_dummy: Demand for resale HBDs were unusually high in 2020 and 2021 due to the longer delays in BTO projects and cheaper housing loans from low interest rates



## Conclusion and reflections

#### Tying back to the problem statement

- Using the best model, we discussed the important features which influenced a HDB's resale price
- We successfully ran different regression models in HDB price prediction and concluded that XG Boost performed the best

#### Model limitations

 HDB prices are driven by macro economic factors like status of the economy and inflation as well as housing policies

#### Reflections

- Good planning is half the battle
- Understanding the computing resources that you have and plan for contingencies

# Next steps/how we can improve

Retrain

Retrain model with more data!

Try other models like support vector regression

Retune

Further tuning on hyperparameters!

- GridSearchCV
- RandomizedSearchCV (didn't have time to try this out)

Collect

Scrape private residential data (condos)

- Explore the data and test our model's predictive capability

| Input values:                                            |               |  |  |  |  |  |  |  |  |
|----------------------------------------------------------|---------------|--|--|--|--|--|--|--|--|
| Town: Bedok                                              |               |  |  |  |  |  |  |  |  |
| Flat Type: 1 Room                                        |               |  |  |  |  |  |  |  |  |
| Flat Model: Improved                                     |               |  |  |  |  |  |  |  |  |
| Area (in sqf):                                           |               |  |  |  |  |  |  |  |  |
| Age: Between: 0-99                                       |               |  |  |  |  |  |  |  |  |
| Nearest MRT Distance (in km): Between                    | n: 0-99       |  |  |  |  |  |  |  |  |
| Nearest Primary School Distance (in km):                 | Between: 0-99 |  |  |  |  |  |  |  |  |
| Nearest Secondary School Distance (in km): Between: 0-99 |               |  |  |  |  |  |  |  |  |
| Nearest Mall (in km): Between: 0-99                      |               |  |  |  |  |  |  |  |  |
| CBD Distance (in km): Between: 0-99                      |               |  |  |  |  |  |  |  |  |
| Floor Number: Between: 0-99                              |               |  |  |  |  |  |  |  |  |



Using Flask to develop a web application and deploy model online

- Allow users to input some HDB features and see a price estimate