HOW TO DEVELOP MODIFIED EMBEDDED ATOM METHOD POTENTIALS

M. I. Baskes Mississippi State University

OUTLINE

- Modified EAM (MEAM)
- Single Element
- Alloys

THE EMBEDDED ATOM METHOD IS SEMI-EMPIRICAL

 ρ is obtained from a linear superposition of atomic densities F and φ are obtained by fitting to the following properties: Universal Binding Energy Relationship (UBER)

(lattice constant, bulk modulus, cohesive energy)

Shear moduli

Vacancy formation energy

Los Alamos Structural energy differences (hcp/fcc, bcc/fcc) Jacobs

COMPLEX MATERIALS REQUIRE THE ADDITION OF ANGULAR FORCES

- EAM uses a linear superposition of spherically averaged electron densities
- MEAM allows the background electron density to depend on the local symmetry

$$\rho_k^{(l)^2} = \sum_i \rho_l(R_{ik}) \sum_j \rho_l(R_{kj}) P_l^0 \left(\cos(\theta_{ikj}) \right)$$

MODIFIED EMBEDDED ATOM METHOD (MEAM)

Universal Binding Energy Relationship UBER

$$E^{u}(R) = -\frac{E_{c}}{1 + a^{*}} + \delta a^{*3} \frac{r_{e}}{R} e^{-a^{*}}$$

$$a^{*} = \alpha \left(\frac{R}{r_{e}} - 1\right) \qquad \alpha^{2} = \frac{9\Omega B}{E_{c}}$$

Embedding Function

$$F(\rho) = AE_c \rho \ln \rho$$

Background Electron Density

$$\rho = \rho^{(0)} \sqrt{1 + \Gamma}$$

$$\Gamma = \sum_{l=1}^{3} t^{(l)} \left(\rho^{(l)} / \rho^{(0)} \right)^{2}$$

$$\rho_{k}^{(l)^{2}} = \sum_{l} \rho_{l}(R_{ik}) \sum_{j} \rho_{l}(R_{kj}) P_{l}^{0} \left(\cos(\theta_{ikj}) \right)$$

$$\rho_{l} = e^{-b^{*}} S$$

$$b^{*=} \beta^{(l)} \left[\frac{K}{r_{e}} - 1 \right]$$

Pair Potential

$$\phi(R) = \frac{2}{Z} \left\{ E^{u}(R) - F(\overline{\rho}^{0}(R)) \right\} S$$

12 parameters + angular screening for the pair potential and electron densities

CONCEPT OF THE SCREENING ELLIPSE LEADS TO A SIMPLE SCREENING MODEL

screening ellipse defined by C

$$x^{2} + \frac{1}{C} y^{2} = \left(\frac{1}{2} r_{ik}\right)^{2}$$

$$X_{ij} = \left(\frac{r_{ij}}{r_{ik}}\right)^{2} \qquad C = \frac{2(X_{ij} + X_{jk}) - (X_{ij} - X_{jk})^{2} - 1}{1 - (X_{ij} - X_{jk})^{2}}$$

C_{min} and C_{max} set limits of screening

$$S_{ijk} = \begin{cases} 0 & C \le C_{\min} \\ f(\frac{C - C_{\min}}{C_{\max} - C_{\min}}) & C_{\min} < C < C_{\max} \\ 1 & C \ge C_{\max} \end{cases}$$

$$S_{ik} = \prod_{j \neq i,k} S_{ijk}$$

 $S_{ik} = \prod S_{ijk}$ f(x) goes from 0 to 1 smoothly

RECIPE FOR SINGLE ELEMENT

- Choose Reference Structure
- Assemble Data Base
- Associate/Fit Parameters with Data Base
- Validate
- Iterate

CHOOSE REFERENCE STRUCTURE

- Simple Crystal Structure
 - fcc
 - bcc
 - hcp
 - diamond cubic
- Usually Equilibrium Ground State
- Must Have Data
- Relevant to Simulations

ASSEMBLE DATA BASE

- Experiment (reference structure)
 - Cohesive energy
 - Lattice constant
 - Elastic constants
 - Vacancy formation energy
 - Stacking fault energy
 - Thermal expansion
 - Other phases
- First Principles (reference structure)
 - Energy vs. volume
 - Other phase relative energies
 - Transformation path

calibration

validation

ASSOCIATE/FIT PARAMETERS WITH DATA BASE (I)

UEOS

- Cohesive energy (E_c)
- Lattice constant (r_e)
- Bulk modulus (α)
- Thermal expansion (δ)
- Partial Electron Density Weights
 - Vacancy formation energy (t₁)
 - Shear elastic constants (t₂)
 - Stacking fault energy (t₃)

ASSOCIATE/FIT PARAMETERS WITH DATA BASE (II)

- Embedding Energy Strength (A)
 - Energy of other phases
- Atomic Electron Density Decay
 - Energy of other phases (β_0)
 - Surface relaxation (β₁)
 - Shear elastic constants (β_2)
 - $c/a (\beta_3)$
- Angular Screening
 - Energy of other phases
 - Shear elastic constants

VALIDATE (I – Reference Phase)

- Thermal properties
 - Expansion
 - Specific heat
- Surfaces
 - Energy
 - Relaxation
 - Reconstruction
- Point defects
 - Vacancy mobility
 - Interstitial
 - Formation energy
 - Geometry
 - Migration energy

VALIDATE (II – Other Phases)

Liquid

- Heat of fusion
- Density
- Melting point
- Solid
 - Relative stability
 - Lattice constants
 - Internal relaxation
 - Elastic constants
 - Transformation paths

EXPERIMENTAL DATA BASE FOR FE

Cohesive Energy (eV)	4.29	
α Lattice Constant (300K) (Å)	2.866	
Bulk Modulus (GPa)	167	
C ₄₄ (GPa) 117		
C' (GPa)	47.5	
$\alpha \rightarrow \gamma$ Transformation Temperature (P=0) (K)	1185	
$\gamma \rightarrow \delta$ TransformationTemperature (P=0) (K)	1657	
α →ε Transformation Pressure (0K) (GPa)	6-15	
Vacancy Formation Energy (eV)	1.7	
Thermal Expansion (500K) µm·m ⁻¹ ·K ⁻¹	14.4 → UCSD School of Engineering	

MEAM PARAMETERS ARE CORRELATED WITH PHYSICAL PROPERTIES

Physical Property	MEAM Parameter
Cohesive Energy	E _c
lpha Lattice Constant	${\sf r_e}$
Bulk Modulus	α
Thermal Expansion (500K)	δ
C ₄₄	t ₂ , β ₂
C'	t ₂ , β ₂
$\alpha \rightarrow \gamma$ Transformation Temperature (P=0)	A, β_0 , C_{min}
$\gamma \rightarrow \delta$ TransformationTemperature (P=0)	A, β_0 , C_{min}
$\alpha \rightarrow \epsilon$ Transformation Pressure (0K)	t ₃ , β ₃
Vacancy Formation Energy	t ₁ , β ₁
SAL LABORATORY EST.1943	₹ UCSD School of Engineering

MEAM PARAMETERS FOR FE

E _c (eV)	4.29	α	5.0729	
r _e (Å)	2.469	δ	0.3	
A	0.6	β_0	4.045	
t ₁	-1.6	β ₁	2	
t ₂	12	β_2	0.8	
t ₃	-0.05	β_3	1	
C _{max}	1.9	C _{min}	0.7	

MEAM REPRODUCES DATA BASE EXTREMELY WELL FOR IRON

Physical Property	Experiment	MEAM
Cohesive Energy (eV)	4.29	4.29
lpha Lattice Constant (300K) (Å)	2.866	2.866
Bulk Modulus (GPa)	167	170
C ₄₄ (GPa)	117	116
C' (GPa)	47.5	49
$\alpha \rightarrow \gamma$ Transformation Temperature (P=0) (K)	1185	1175
$\gamma \rightarrow \delta$ TransformationTemperature (P=0) (K)	1657	1750
$\alpha \rightarrow$ ε Transformation Pressure (0K) (GPa)	6-15	11
Vacancy Formation Energy (eV)	1.7	1.7
Thermal Expansion (500K) µm⋅m ⁻¹ ⋅K ⁻¹	14.4	14.3
S Alamos ONAL LABORATORY EST. 1943		chool of ingineering

RECIPE FOR A BINARY SYSTEM

- Choose Reference Structure
- Assemble Data Base
- Associate/Fit Parameters with Data Base
- Validate
- Iterate

CHOOSE REFERENCE STRUCTURE

- Simple Crystal Structure
 - Preferably with 1NN of opposite type
 - B1 (rock salt –NaCl)
- Equilibrium Ground State if Simple
- Must Have Data
- Relevant to Simulations
 - stoichiometry
 - Structure
- Derive Analytic Expression for Cross Pair Potential

ASSEMBLE DATA BASE

- Experiment or First Principles (reference structure)
 - Cohesive energy
 - Lattice constant
 - Elastic constants
 - Thermal expansion
- Other Phases
 - Cohesive energy

ASSOCIATE/FIT PARAMETERS WITH DATA BASE

- UEOS (reference structure)
 - Cohesive energy (E_c)
 - Lattice constant (r_e)
 - Bulk modulus (α)
 - Thermal expansion (δ)
- Electron Density Scaling
 - Elastic constants (ρ^a₀)
 - Other cohesive energies (ρ^a₀, C_{min}, C_{max})

ELASTIC CONSTANT RELATIONSHIPS

From continuum anisotropic elasticity theory we know

$$U == \frac{1}{2} \int C_{ijkl} \varepsilon_{ij} \varepsilon_{kl} dV = \frac{1}{2} C_{ijkl} \varepsilon_{ij} \varepsilon_{kl} V$$

$$u = \frac{U}{N} = \frac{1}{2} C_{ijkl} \varepsilon_{ij} \varepsilon_{kl} \frac{V}{N} = \frac{1}{2} C_{ijkl} \varepsilon_{ij} \varepsilon_{kl} \Omega \Rightarrow C_{ijkl} = \frac{\partial^{2} u}{\partial \varepsilon_{ij} \partial \varepsilon_{kl}} \frac{2}{\Omega}$$

$$\sigma_{ij} = C_{ijkl} \varepsilon_{kl} \Rightarrow C_{ijkl} = \frac{\partial \sigma_{ij}}{\partial \varepsilon_{kl}}$$

HOW TO CALCULATE ELASTIC CONSTANTS

- Consider these states of strain (ε=0.001) applied to the equilibrium structure
 - for B $\varepsilon_x = \varepsilon_y = \varepsilon_z = \varepsilon$, $\varepsilon_{xy} = \varepsilon_{yz} = \varepsilon_{yz} = 0$, e.g., scale=1± ε , 1± ε
 - for C' $\varepsilon_x = -\varepsilon_v = \varepsilon_z = \varepsilon_{xv} = \varepsilon_{xz} = \varepsilon_{vz} = 0$, e.g., scale=1± ε_x 1-(± ε_x),1
 - for $C_{44} \epsilon_{xz} = \epsilon_{z} \epsilon_{x} = \epsilon_{z} = \epsilon_{zz} = \epsilon_{zz} = 0$, e.g., shear=± ϵ_{zz}
- We can calculate the elastic constants in each state

$$B = \frac{1}{3} \left(C_{11} + C_{12} \right) = \frac{1}{9\Omega} \frac{\partial^2 u}{\partial \varepsilon^2} = \frac{\sigma_{xx}}{3\varepsilon}$$

$$C' = \frac{1}{2} \left(C_{11} - C_{12} \right) = \frac{1}{4\Omega} \frac{\partial^2 u}{\partial \varepsilon^2} = \frac{\sigma_{xx}}{2\varepsilon}$$

$$C_{\text{LOS Alamos}} C_{44} = \frac{1}{4\Omega} \frac{\partial^2 u}{\partial \varepsilon^2} = \left| \frac{\sigma_{xz}}{2\varepsilon} \right|$$

HOW TO CALCULATE ELASTIC CONSTANTS

Energy method

Calculate u" numerically using potential energies from eam88

$$\frac{\partial^2 u}{\partial \varepsilon^2} = \frac{u(1+\varepsilon) + u(1-\varepsilon) - 2u(1)}{\varepsilon^2}$$

- Stress method
 - The stress tensor σ may be obtained from d the stress tensor in eam88

$$\sigma = \frac{\dot{\Phi}}{N\Omega}$$
 total volume of computational cell

VALIDATE (I – Reference Phase)

- Thermal properties
 - Expansion
 - Specific heat
- Surfaces
 - Energy
 - Relaxation
 - Reconstruction
 - Segregation

VALIDATE (II –Reference Phase)

- Point defects
 - Vacancy (on A and B sub-lattices) mobility
 - Interstitial
 - Formation energy
 - Geometry
 - Migration energy

VALIDATE (III – Other Phases)

Liquid

- Heat of fusion
- Density
- Melting point

Solid

- Relative stability
- Lattice constants
- Internal relaxation
- Elastic constants
- Transformation paths
- Dilute heats of solution
- Short range order

CURRENTLY DEVELOPED MEAM FUNCTIONS COVER MOST OF THE PERIODIC TABLE

 ${\it LANS \ Company \ Sensitive-unauthorized \ release \ or \ dissemination \ prohibited}$

ISSUES FOR MULTI-COMPONENT SYSTEMS

- There are a limited number of free parameters for multi-components
 - For AB choose ρ^{aB}₀
 - For AC choose ρ^{aC}₀
 - There is no ρ to choose for BC
- There are C_{min}(A,B,C) and C_{max}(A,B,C) to choose
 - All combinations of A, B, C

TAKE AWAY

- MEAM is Parameterized to Facilitate Relatively Easy Function Determination
- MEAM Can Quantitatively Reproduce the Fe Data Base Including Phase Transformations

