Top line = human pleiotrophin (SEQ ID NO:1) Bottom line = mouse pleiotrophin (SEQ ID NO:2)

MQAQQYQQQRRKFAAAFLAFIFILAAVDTAEAGKKEKPEKKVKKSDCGEWQWSVCVPTSG MSSQQYQQQRRKFAAAFLALIFILAAVDTAEAGKKEKPEKKVKKSDCGEWQWSVCVPTSG ${\tt DCGLGTREGTRTGAECKQTMKTQRCKIPCNWKKQFGAECKYQFQAWGECDLNTALKTRTG}$ DCGLGTREGTRTGAECKQTMKTQRCKIPCNWKKQFGAECKYQFQAWGECDLNTALKTRTG SLKRALHNAECQKTVTISKPCGKLTKPKPQAESKKKKKEGKKQEKMLD SLKRALHNADCQKTVTISKPCGKLTKPKPQAESKKKKKEGKKQEKMLD

Amino acid sequence (SEQ ID NO:3) and the nucleotide sequence (SEQ ID NO:4) of the heavy chain variable region (VH) of 3B10.

CAG	GTT	'CAG	CTG	CAG	CAG	TCT	'GGA	CCT	'GAG	CTG	GTG	BAAG	CCT	'GGG	GCC	TCA	GTG	AAG	ATT
<u>Q</u>	V	Q	L	Q	Q	S	G	P	E	L	V	K	P	G	A	S	V	K	I
TCC	TGC	CAA	.GCT	TCT	GGC	TAC	GCA	TTC	'AGT	AGC	CAC	'TGG	ATG	AAC	TGG	GTG	AAG	CAG	AGG
S	С	Q	Α	S	G	Y	Α	F	S	<u>s</u>	H	W	M	<u>N</u>	W	V	K	Q	R
ССТ	'GGA	מממ	сст	ירייויי	'G A G	тсс	ATT	'GGA	CGG	יריים ב	יי ב ידיי	ירריז	'GGA	СДТ	'GGA	СДТ	ייירידי	יכידיכי	ים מידי
P	G	K	G	L	E	W	I	G	<u>K</u>	I	Y	P	G	D	G	D_	S	_ <u>L</u>	<u>Y</u>
AAT <u>N</u>	'GGG G	AAG K	TTC F		GGC G	AAG K	GCC A		CTG L	ACT T	'GCA A		AAA K		TCC S	ACC T	'ACA T	.GTC	TAC Y
ATG	CAG	CTC	AGC	'AGC	CTG	ACA	TCT	'GAG	GAC	TCT	'GCG	GTC	TAC	TTC	TGT	GCA	AGA	ACG	AGG
M	Q	L	s	S	L	Т	S	Ε	D	S	A	V	Y	F	С	A	R	<u>T</u>	<u>R</u>
GCT	'TAT	GGT	'CCC	:GCC	TGG	TTT	GCT	'TAC	'TGG	GGC	CAA	.GGG	ACT	'CTG	GTC	ACT	'GTC	TCT	ı
A	Y	G	Р	Α	W	F	Α	<u>Y</u>	W	G	Q	G	Т	${f L}$	V	T	V	S	

GCA

Α

the light chain variable region (VL) of 3B10. GACATTGTGATGACACAGTCTCCATCCTCCCTGGCTATGTCAGTAGGACAGAAG D I V M T Q S P S S L A Μ S V GTCACTTTGAGCTGCAGGTCCAGTCAGAGTCTTTTAGATAGTAACAATCAAAAGAAC С R S S Q S L L D S Ν TATTTGGCCTGGTACCAGCAGAAACCGGGACAGTCTCCTAAACTTCTGGTATACYTT YLAWYQQKPGQS Ρ K L L GCATCTATTAGGGAATCTGGGGTCCCTGATCGCTTCATAGGCAGTGGATCTGGGACA S G D R F Ι S G GATTTCACTCTTACCATCACCAGTGTGCAGGCTGAAGACCTGGCAGATTATTTCTGT T S V Q A E D L Α D CAGCAACATTATAGCACTCCCCTCACGTTCGGTGCTGGGACCAAGCTGGAGCTGAAA STPLT F G A G Т K L Ε L K

Amino acid sequence (SEQ ID NO:8) and the nucleotide sequence (SEQ ID NO:9) of

Amino acid sequence of the murine PTN-Fc fusion protein (SEQ ID NO:13)

									10										20
<u>M</u>	G	W	S	W	_I_	F	L	F	L	L	S	G	T	_A	S	<u>v</u>	H	_ <u>S</u>	G
7.5	7.5	_	7.7	_	-	7.5	.,	••	30	7.5	_	_	~	~	_	7.7	_	T.7	40
K	K	Ε	K	Р	E	K	K	V	К 50	K	S	D	С	G	E	W	Q	W	S 60
V	С	V	P	\mathbf{T}	s	G	D	С	G	L	G	Т	R	E	G	\mathbf{T}	R	Т	G
٧	C	V	_	_	5	G	ט	C	70		0	-	1/	ند	G	_	10	_	80
Α	Е	С	K	Q	Т	M	K	Т	Q	R	С	K	I	Р	С	N	W	K	K
				~					90				٠						.00
Q	F	G	Α	E	С	K	Y	Q			Α	W	G	E	С	D	L	N	${f T}$
								1	.10									120	
Α	L	K	T	R	T	G	S		L K		Α	L	H	N	Α	D	C	Q	K
								130										140	
Т	V	Т	I	S	K	Р	С	G		L	T	K	P	K	P	Q	Α		S
					_				.50	_			_	_		_	_		.60
K	K	K	K	K	Ε	G	K	K Q		Ε	K	M	L	D	Ţ	<u>G</u>	G.	G E	
ъ	17	~	~	3.7	173	~	D		.70	Б	7.	ъ	_	70	70	7	-		.80
<u>R</u>	<u>K</u>	C		<u>V.</u>	<u>E</u>	<u>C</u>	<u> P</u>	P 1	<u> </u>	P	A	P	P	A	A	A	P		<u>V</u>
F	Τ,	F	P	P	K	P	K	D	T T	L	М	т	S	R	Т	Р	Ε		<u>T</u>
-								210											220
C	V	V	V	D	V	S	<u>H</u>	E	_ D	P	E	V	Q	F	N	W	Y	V	D
						-	-	230										2	40
<u>G</u>	V	E	V	H	N	Α	K	Т	K	P	R	E	E	Q	F	N	S	T	F
								2	50									2	260
<u>R</u>	<u></u>	<u>V_</u> _	S	<u>V</u>	L	T	V		H	Q	D	W	<u>L</u>	N	G	K	E		<u>K</u>
						_	_		70	_						_			280
<u>C</u>	K	_V	S	N	K	G	L	P	<u>A</u>	P	I	<u>E</u>	K	T	<u> I</u>	S	<u>K</u>	T	<u>K</u>
~	^	П	ъ	177	ъ	^	7.7			т	П	D	C	ъ	т.	177	Nσ		00
<u>G</u>	<u> </u>	<u> P</u>	R	E	P	<u> </u>			T 10	<u>L</u>	P	<u> P</u>	S	<u>R_</u>	E	E	<u>M</u>		<u>K</u>
N	0	V	S	L	Т	С	L	V	K	G	F	Y	P	S	D	I	Α		E
=-	×								30				=_						40
W	E	s	N	G	Q	Р	E		_ N_	Y	K	Т	Т	P	P	M	L		
				-				3	50								<u>L</u>	3	60
<u>D</u> _	G	S	F	F	L	_Y	S	K	L	Т	V	D	K	S					
								3	<u>L</u> 70									3	80
<u>N_</u>	V	F	S	C	_S_	V	M	H	E	A	L	Н	N	<u>H</u>	Y	T	Q	K	<u>S</u>
<u>L_</u>	<u>S</u>	L_	S	P	G	<u>K</u>													

Amino acid sequence of PTN-OVA fusion protein (SEQ ID NO:14). OVA insertion sequence (SEQ ID NO:15) is underlined.

M	Q	A	Q	Q	Y	Q	Q	Q	10 R	R	K	F	Α	A	A	F	L	A	20 F
I	F	I	L	А	A	v	D		30 A	E	А	G	K	K	E	K	P		40 K
K	v	K	K	s	D	С	G	E	50 W	Q	W	s	v	C	v	P	Т		60 G
D	С	G	L	G	Т	R	E	G	70 T	R	Т	G	A	E	С	·ĸ	Q	т	80 M
K	Т	Q	R	С	K	I	P	С	90 N	W	K	K	Q	F	G	Α	E	100 C K	
Y	Q	F	Q	А	W	G	E		10 D	L	N	Т	Α	L	K	Т	R		20 G
C	Ψ.	7.5	Б	0	73	7.7	7.7		30		7	_	_	NT.	_	a	_		40
S	L	ĸ	ĸ	<u>Q</u>	_A		н	A	A	H	A	E	I	<u>N</u>	Ε	С	Q	ĸ	T
V.	Т	I	S	K	P	С	G	1 K	50 L	Т	K	P	K	P	Q	Α	E		60 K
K	K	K	K	E	G	K	K	1 Q	70 E	K	M	L	D						

FIG. 6

SW13/PTN C.M

<u>SW13/PTN C.M + #27 (5 μ g/ml).</u>

FIG. 11