The University of Sheffield Department of Electronic and Electrical Engineering

EEE101 Problem Sheet

de Circuit Analysis

- Q1 For the circuit of figure 1 find *I* using any method you like. What is the power dissipation in R_1 ? [-0.25 A, 10.5 W]
- **Q2** Using any method you like, find the values of I and V in figure 2. [-2.89 A, 16.89 V]
- Q3 In figure 3, I is initially 1 A. Use nodal analysis to find V_R and hence find I_S . What value of I is necessary to give $V_R = -4$ V? [3.2 V, 0.6 A, -5 A]

- Q4 For the circuit of figure 4, use nodal analysis and superposition to find I_1 and the potential difference $V_4 V_3$, V_{4-3} . What is the power dissipation in R_4 ? [-0.15 A, 15.38 V, 23.2 W]
- **Q5** Use loop analysis and superposition to find I_2 and I_4 in the circuit of figure 5. State with brief reasoning which component could be replaced by a short circuit without affecting either of these currents. [2.93, -2.18, 12 Ω]
- **Q6** Find $V_2 V_3$, V_{2-3} , in the circuit of figure 6 using any method you like. [1 V]

- **Q7** Use the principle of superposition to work out I_S in figure 7.
- **Q8** Use the principle of superposition to find I in figure 8.
- **Q9** Use nodal analysis to find the voltage at node \mathbf{A} with respect to the reference node in figure 9. Check your answer using the principle of superposition. Using your knowledge of $V_{\mathbf{A}}$, or by other means, calculate the value of I.
- Q10 (a) Use (i) nodal analysis and (ii) loop analysis to work out the value of current *I* in the circuit of figure 10.
 - **(b)** Which of the five resistors dissipates the largest power?
 - (c) Evaluate the power in part (b).

Figure 10

Q11 Use the principle of superposition to find I_S and V_R in the circuit of figure 11. (Hint: draw out the partial circuit for each source you consider and look for ways to simplify these circuits by combining resistors.)

Figure 11