力学Ⅱ(後半:原田担当分)

第14回

今回の内容(p.127-134)

剛体の平面運動とその例

- ・剛体振り子
- ・荒い水平面上の円筒の運動

剛体の平面運動:_{外力がxy平面上の場合}

$$\boldsymbol{F_i} = (X_i, Y_i, 0)$$

重心の運動方程式

$$M\ddot{r_G} = F_G$$
 のz成分を考えると、

$$\dot{z_G} = 0$$
 であり、

重心はxy面内のみで運動する。

回転運動の軸をz軸とすると、この運動の自由度は、3である。

重心の運動: x_G, y_G 重心の周りの回転: ω

重心の運動方程式は、

$$M\ddot{x_G} = \sum_i X_i \qquad M\ddot{y_G} = \sum_i Y_i$$

つぎに、重心の周りの回転運動を考える。

剛体の全角運動量の時間微分が力のモーメントの和 に等しいので、

$$\frac{dL}{dt} = N \qquad \qquad L = \sum_{i} (r_i \times m_i \dot{r}_i)$$

z成分をとると、

$$\frac{dL_z}{dt} = N_z$$

$$L_z = \sum_i x_i m_i \dot{y}_i - y_i m_i \dot{x}_i$$

$$N_z = \sum_i x_i Y_i - y_i X_i$$

左辺を計算すると、

$$\frac{dL_z}{dt} = \sum_i m_i (x_i \ddot{y}_i - y_i \ddot{x}_i)$$

$$x_i = x_G + x_i'$$
 $y_i = y_G + y_i'$ を代入して、

5

$$\sum_{i} m_{i} r_{i}' = 0$$
, $\sum_{i} m_{i} r_{i}' = 0$, $\sum_{i} m_{i} \dot{r_{i}}' = 0$

などの関係と重心の運動方程式を用いて、整理すると、

$$\frac{dL_z}{dt} = \sum_i \left(x_G Y_i - y_G X_i + m_i \left(x_i' \ddot{y_i'} - y_i' \ddot{x_i'} \right) \right)$$

これが、 N_z に等しいので、整理すると、

$$\sum_{i} m_{i} \left(x_{i}' \ddot{y_{i}}' - y_{i}' \ddot{x_{i}}' \right) = \sum_{i} x_{i}' Y_{i} - y_{i}' X_{i}$$

ここで、

$$\frac{d}{dt}\left(\sum_{i} x_{i}'m_{i}\dot{y_{i}}' - y_{i}'m_{i}\dot{x_{i}}'\right) = \sum_{i} m_{i}\left(x_{i}'\ddot{y_{i}}' - y_{i}'\ddot{x_{i}}'\right)$$

$$\frac{d}{dt}\left(\sum_{i} x_i' m_i \dot{y_i'} - y_i' m_i \dot{x_i'}\right) = \sum_{i} x_i' Y_i - y_i' X_i$$

円筒座標系であらわして、整理すると、

$$\frac{d}{dt} \left(\sum_{i} m_{i} \rho_{i}^{2} \right) \omega = \sum_{i} x_{i}' Y_{i} - y_{i}' X_{i}$$

$$\Leftrightarrow I_0 \frac{d\omega}{dt} = N'$$
 (重心の周りの力のモーメントの和)

剛体の平面運動は、重心の平面運動(自由度2)と、 重心を固定軸とする回転運動(自由度1)により、 記述される。

剛体振り子

解き方①: 点Oの周りの回転運動を考える。

解き方②: 重心Gの運動とそのまわりの 回転運動を考える。 解き方①:点Oの周りの回転運動

$$I\ddot{\theta} = -Mgd\sin\theta$$

微小振動を仮定すると、 $\sin\theta \cong \theta$ であり、

$$I\ddot{\theta} = -Mgd\theta \qquad (\text{\mathred{\pm}} \text{Lighthat})$$

$$\omega = \sqrt{\frac{Mgd}{I}} \, \xi \, \forall \zeta \, \xi,$$

$$\theta = A \sin(\omega t + \alpha)$$
 が一般解であり、

振動の周期Tは、
$$T=\frac{2\pi}{\omega}$$

解き方②:重心Gの運動とその周りの回転運動

重心の運動方程式

$$M\ddot{x_G} = Mg + R_x \quad M\ddot{y_G} = R_y$$

重心の周りの回転運動を考える。 力のモーメントの和N'は、

$$N' = -d\cos\theta R_y + d\sin\theta R_x$$
 となる。

$$R_x = M(\ddot{x_G} - g)$$
 $R_y = M\ddot{y_G}$ \$9.

$$N' = Md\{(\ddot{x_G} - g)\sin\theta - \ddot{y_G}\cos\theta\}$$

$$x_G = d\cos\theta$$
 から、 $\ddot{x_G}$ 、 $\ddot{y_G}$ を計算して整理すると、 $y_G = d\sin\theta$

$$N' = -Mgd\sin\theta - Md^2\ddot{\theta}$$
したがって、

$$I_0\ddot{ heta}=-Mgd\sin heta-Md^2\ddot{ heta}$$
 $I=I_0+Md^2$ であるので、 $I\ddot{ heta}=-Md^2\ddot{ heta}$ となり、同じ式が得られる。

あらい水平面上の円筒の運動

方針:

重心Gの運動とそのまわりの 回転運動を考える。

$$x_Q = x_G + a\cos\theta$$
$$y_O = a - a\sin\theta$$

$$\dot{x_Q} = \dot{x_G} - a\dot{\theta}\sin{\theta}$$
 $\dot{x_P} = \dot{x_G} - a\dot{\theta}$
 $\dot{y_Q} = -a\dot{\theta}\cos{\theta}$

重心の運動方程式は、

$$M\dot{x}_G = -F$$
 $M\ddot{y}_G = N - Mg = 0$ $\Leftrightarrow N = Mg$

点Pが滑っているとき、 $F=\mu N=\mu Mg$

したがって、
$$\dot{x_G} = -\mu g$$

つまり、重心の運動は等加速度運動。

重心のまわりの回転の運動方程式は、

$$I_0\ddot{\theta} = aF$$

$$\ddot{\theta} = \frac{a\mu Mg}{I_0}$$

つまり、回転運動は等角加速度運動。

初期条件として、t=0の時に、

$$x_G = 0$$
 $\theta = 0$

$$\dot{x_G} = v_0 \quad \dot{\theta} = \omega_0$$

のとき、点Pが停止する時刻tを求めよ。

取り扱ったトピックス

講義	§ タイトル	タイトル	トピックス	チェック
第9回	6質点系の力学	3角運動量とその保存則	角運動量の微分は力のモーメント	
第9回			全角運動量の微分は力のモーメントの和	
第9回			質点系に対するつり合いの条件	
第10回		4二体問題	換算質量・相対位置ベクトルによる運動方程式の記述	
第10回			中心力の性質1 (角運動量保存則)	
第10回			中心力の性質2(運動は一つの平面上に限定される)	
第10回			中心力の性質3(保存力)	
第10回			中心力の性質4(面積速度一定)	
第10回			極座標による表現	
第11回			力学的エネルギー保存則の極座標による記述	
第11回		5 惑星の運動	ケプラーの第一法則(楕円軌道)	
第11回			ケプラーの第二法則(面積速度一定)	
第11回			ケプラーの第三法則(公転周期)	
第12回	7剛体の力学	1 剛体の静力学	剛体の運動の自由度	
第12回		2固定軸を持つ剛体の力学	回転運動の方程式	
第13回		3慣性モーメント	慣性モーメントの性質(平行軸の定理)	
第13回		4剛体の力学的エネルギー	重力ポテンシャル	
第13回			運動エネルギー	
第14回		5	剛体の平面運動	