UNIT3ACH	E
-----------------	---

NAME:				

ATOMIC STRUCTURE & BONDING: Answer all questions

PART A: MULTIPLE CHOICE QUESTIONS (10 marks)

Q1. Three consecutive elements in the periodic table have the following values for the first, second and third ionisation energies:

	1 st Ionisation Energy (kJ mol ^{—1})	2 nd Ionisation Energy (kJ mol ^{—1})	3 rd Ionisation Energy (kJ mol ^{—1})
Element X	2087	3969	6130
Element Y	502	4568	6919
Element Z	744	1456	7737

From this information it can be concluded that element Z:

- A. has the largest atomic radius of the three
- B. belongs to Group 2 in the periodic table
- C. is an inert gas
- D. is the least reactive of the three.
- Q2. Which one of the following chlorides is least hydrolysed by water at room temperatures?
 - A. OCl_2
 - B. $MgCl_2$
 - C. CCl₄
 - D. AlCl₃
- Q3. Which statement **cannot** be true of two atoms with the same mass number?
 - A. They are isotopes of the same element
 - B. They have different numbers of protons
 - C. They have different numbers of neutrons
 - D. They are atoms of two different elements
- Q4. Carbon dioxide is a gas at room temperature while silicon dioxide is a solid because
 - A. Van der Waals forces are much weaker than covalent bonds.
 - B. carbon dioxide contains double covalent bonds while silicon dioxide contains single covalent bonds.

- C. carbon-oxygen bonds are less polar than silicon-oxygen bonds.
- D. the relative formula mass of carbon dioxide is less than that of silicon dioxide.

Q5. The following table gives the electronegativities of some elements:

Element	Electronegativity	Element	Electronegativity
bromine	2.8	nitrogen	3.0
hydrogen	2.1	chlorine	3.0
carbon	2.5	oxygen	3.5

Which one of the following bonds would be expected to be **most** polar?

- A. C H
- B. N O
- C. N-C1
- D. H-Br

Q6. Gallium has an atomic mass of 69.8. If the only two isotopes of gallium found are 69 Ga and 71 Ga. What is the percentage of gallium - 69 that occurs naturally?

- A. 20 %
- B. 40 %
- C. 60 %
- D. 80 %

Q7. An element **X** forms a compound of formula **X3N**. The electronic configuration of neutral atoms of element **X** could be

A. 2, 4

B. 2, 8, 2

C. 2, 7

D. 2, 5

Q8. Molecular solids, which are held together primarily by Van der Waals forces, usually

- A. have very low melting points
- B. have very high melting points
- C. form hydrogen bonds
- D. crystallise easily

Q9. Select the group in which all of the substances have covalent bonds.

- A. diamond, iodine, carbon dioxide, sodium chloride.
- B. hydrogen chloride, water, calcium oxide, paraffin wax.
- C. graphite, steam, potassium chloride, ethanol.
- D. ammonia, nitrogen, water, butane.

Q10. The diagram below represents the structure of a solid chemical substance.

The solid represented is most likely to be

- A. silver.
- B. iodine.
- C. graphite.
- D. sodium fluoride.

END OF PART A

PART B: SHORT ANSWER QUESTIONS (15 marks)

Q11. The table below shows some physical properties of the chlorides of some Period 3 elements.

	NaCl	MgCl ₂	PCl ₃	SCl2
Melting point / OC	801	714	—92	— 78
Boiling point / OC	1465	1418	76	59
Electrical conductivity of the solid	poor	poor	poor	poor
Electrical conductivity of the liquid	good	good	poor	poor
_p H of a water solution	7	7	< 7	< 7

Explain the large difference in the melting points of MgCl ₂ and SCl ₂ .	A.
(2 marks	
Explain the difference in the electrical conductivity of solid and liquid MgC	B.
(2 marks	
Would you expect a water solution of $NaCl$ to be an electrical conductor? Explain.	C.
(0 1	
Would you expect a water solution of PC l_3 to be an electrical conductor? Explain.	D.
1	

E. Phosphorus forms more than one chloride. Give the name and formula of another chloride of phosphorus.

Q12.	An a	atom of a certain eleme	ent Q has the electron confi	(2 marks guration 2, 8, 6
	A.	In which Group of th	ne Periodic table would you	place Q ? Explain.
				(1 month)
	В.		ent this molecule. What sh	(1 mark) n electron dot diagram (Lewis ape is this molecule and giv
	I	ewis Structure	Shape	HQH bond angle
		(1 mark)	(½ mark)	(½ mark)
	C.	Would you expect ar Explain.	ny dipole - dipole interaction	ns between H2Q molecules?
	D.	Would you expect ar Explain.	ny hydrogen bonding betwe	(1 mark) en H ₂ Q molecules?
				(1 mark)

PART C: EXTENDED ANSWER SECTION (15 marks)

CARBON DIOXIDE

Q13.			neory (VSEPR Theory) can be es and their bond angles".
A.	Outline this theory.		
			(4 moulto)
B.	Use this theory to explain	the shapes and bond angle	(4 marks) s in the following species
	HYDRONIUM ION (H ₃ O ⁺), BORON TRIFLUORIDE, CARBON DIOXIDE	AMMONIUM ION (NH4 ⁺),
		SHAPE	BOND ANGLES
	HYDRONIUM ION (H ₃ O ⁺)		
_	BORON TRIFLUORIDE		
	AMMONIUM ION (NH ₄ ⁺)		

calle	(4 mar l. The moon lacks water and oxygen. The soil, however, contains a mineral ilmenite, FeTiO3. It has been proposed that explorers on the moon could pr	3 14.					
usin	water from lunar soil by reducing it in a solar furnace at 1300 ^O C, initially usin hydrogen transported from earth. Some of the water could then be electrolysed						
yield oxygen. FeTiO ₃ + H ₂ \longrightarrow TiO ₂ + Fe + H ₂ O							
	$2H_2O \longrightarrow 2H_2 + O_2$						
	A 100 Kg sample of lunar soil, containing 4% ilmenite, is to be processed.						
	A. What would be the expected mass of water?						
-							
_							
_							
_							
_							
_							
_							
_							
_							
-							
	(4 ma						
P.? -	B. If half the water is converted to oxygen, what volume would result at S.T.						
_							
_							
_							
_							
_							

END OF TEST	(5 marks)
	(3 marks)
	-
	

UNIT3ACHE

SOLUTIONS

ATOMIC STRUCTURE & BONDING: Answer all questions

PART A: MULTIPLE CHOICE QUESTIONS (10 marks)

1B 2C 3A 4A 5D 6C 7C 8A 9	D 10B
---------------------------	-------

PART B: SHORT ANSWER QUESTIONS (15 marks) Q11.

- MgC l_2 is an ionic compound while SC l_2 is a molecular covalent compound. MgC l_2 consists of a network of positive and negative ions held together by electrostatic forces, it requires a large amount of energy to break these bonds, hence the high melting point. In contradistinction SC l_2 , in the solid state consists of discrete molecules held together principally by dipole/dipole forces, these forces are much weaker than the ionic bonds in MgC l_2 and these dipole/dipole forces require much less energy to break than the ionic bonds, hence the relatively low melting point in SC l_2 .
- B. In solid $MgCl_2$ the ions are locked (fixed positions) in a lattice and not free to move under an electrical potential difference (i.e. there are no mobile charges). In liquid $MgCl_2$ the ions are no longer locked in a lattice and so can carry a charge (i.e. the charges are mobile)
- C. Yes. In aqueous NaCl the ions are mobile and thus can carry a charge under the influence of an electric field.
- D. Yes. From the data in the table, an aqueous solution of PCl_3 has a pH < 7. It follows that it must react with water forming ions. These ions would move under an electrical potential difference and thus carry a charge.
- E. PCl_5 ; phosphorous pentachloride.

Q12.

- A. Group 16; it has 6 valence electrons.
- B. H: Q: H boomerang or V-shaped; 104.5°
- C. Yes. There is a difference in electronegativity between Q and H which makes the bond polar. The 2 non-bonding pairs of electrons give the molecule a V-shape. When the vectors (polar bonds) are resolved the sum of these vectors makes the molecule polar. Hence there will be dipole/dipole interactions between H_2Q molecules.
- D. No. Element Q is not N, O or F. Hydrogen bonding only exists between molecules where H is directly bonded to one of these 3 (N, O or F) very small electronegative elements.

PART C: EXTENDED ANSWER SECTION (15 marks)

Q13.

A. The theory states that the electron pairs in the valence shell will orientate themselves as far apart (repulsion) from each other in the 3-dimensions of space.

Double and triple bonds are treated the same as single bonds

The degree of repulsion for the electron pairs is greatest for non-bonding pair/non-bonding pair which is greater that the repulsion between non-bonding pair/bonding pair which in turn is greater than the repulsion between bonding pair/bonding pair.

This accounts for the reduction in the H-N-H bond angle in ammonia (NH $_3$) from the tetrahedral bond angle of 109.5 $^\circ$ to 107 $^\circ$ and a further reduction in the H-O-H bond angle in water (H $_2$ O) from the tetrahedral 109.5 $^\circ$ to 104.5 $^\circ$

В.

	SHAPE	BOND ANGLES
HYDRONIUM ION (H ₃ O ⁺)	PYRAMIDAL	1070
BORON TRIFLUORIDE	TRIANGULAR PLANAR	120°
AMMONIUM ION (NH ₄ ⁺)	TETRAHEDRAL	109.5°
CARBON DIOXIDE	LINEAR	180°

Q14.

```
A. m(FeTiO_3) = 100 \times .04 \text{ Kg} = 4 \text{ Kg} = 4 \times 10^3 \text{ g}

quantity of known to moles of known (n =m/M)

n(FeTiO_3) = 4 \times 10^3 \div (55.85 + 47.88 + 3(16)) = 4 \times 10^3 \div 151.73 = 26.36 \text{ mol}

through the equation to moles of unknown

n(H_2O) = n(FeTiO_3) = 26.36 \text{ mol}

moles of unknown to quantity of unknown (m = n x M)

m(H_2O) = 26.36 \times (2(1.008) + 16) = 26.36 \times 18.016 = 474.9 \text{ g or}

m(H_2O) = 475 \text{ g (3 sig. figs.)}
```

```
B. \frac{1}{2} n(H<sub>2</sub>O) = 26.36 ÷ 2 = 13.18 mol moles of unknown to quantity of unknown (V = n x 22.41 @ S.T.P.) V(H<sub>2</sub>O) = 13.18 x 22.41 L = 295.3 L V(H<sub>2</sub>O) = 295 L (3 sig. figs.)
```