Exercise 15: Let notation and assumptions be as in the implicit function theorem above.

(i) Prove that $T_p(c) := \text{the subspace of } \mathbb{R}^n \text{ generated by } \Upsilon(o) \text{ is}$ given by the vanishing of n-1 homogeneous linear polynomials, namely $T_{p}(C) = \left\{ \vec{x} = (x_{1}, ..., x_{n}) \middle| D_{p}(f_{1}) \cdot \vec{x} = 0, D_{p}(f_{2}) \cdot \vec{x} = 0, ..., D_{p}(f_{n-1}) \cdot \vec{x} = 0 \right\}.$ (<u>Hint</u>: Either use $D_p(F) \cdot \mathcal{N}(o) = e_n$ or differentiate $f_i \cdot \mathcal{V} = o$).

(ii) Deduce that the tangent live L to Cat p is given by the vanishing of n-1 equations

Thus, the exercise above says that for a point p=(a,b) on a plane curve C given by f(x,y)=0, the tangent line L at p is given by the equation $f(p) \cdot (x-a) + f(p)(y-b) = 0$ while the tangent space TpC is generated by the vector (f,p),-f,(p)).

It is worth noting that for the curve C in the implicit function theorem, the parametrisation map r(t) is a diffeomorphism (and hence a homeomorphism) as $\gamma = F^{-1} \propto .$

93 Examples:

(i) Let $f(x,y) = x^2 + y^2 - \lambda$ where λ is a constant. Then Df = (2x, 2y). Let C_{λ} denote the locus $\{f_{\lambda} = 0\}$. If $\lambda < 0$, then $C_{\lambda} = \emptyset$. If $\lambda = 0$, then $C_{\lambda} = \{(0,0)\}$ clearly does not have any open subset homeomorphic to an open interval and indeed the implicit function theorem does not apply as $D_{(0,0)}(f) = (0,0)$. For l>0, C_l is non-empty and Dpf, ≠ (0,0) for any p∈ G. Let $\lambda=1$. For p=(1,0), $D_p(f)=(2,0)$, so that f, y form a full system of coordinates at p. The map $F = (f_i, y)$ gives a diffeomorphism near p sending C_{λ} near p to the locus $\tilde{x}=0$. As we may use y itself to parametrise the y-axis, we see that we may use y to parametrise Cx near p=(1,0). For p=(0,1), $\mathbb{P}_{p}(f_{\lambda}) = (0, 2)$ and we use f_{λ} , x (or x, f_{λ}) as a fill system of coordinates. In this case we may use x to parametrise Cx near p = (0,1).

(ii) Let $f = (x^2 + y^2 - 1)^k$ for some integer k > 1.

Then $Df = k(x^2+y^2-1)^{k-1}(2x, 2y)$. Thus, on the locus C given by $\{f=0\}$ we see that $D_f=0$ everywhere. In particular, f cannot be part of a full sequence of coordinate functions at any point of C.

(iii) Let $f = y^2 - x^3$ and let C be the curve $\{f = 0\}$. Since $D_f = [-3x^2, 2y]$, we see that $D_p(f) \neq \vec{0}$ unless p = (0,0). Away from (0,0), the implicit function theorem applies and we may use x or y for parametrising Cauxy from (0,0). In this case the parametrisation of C given by $t \stackrel{7}{\mapsto} (t^2, t^3)$ is a homeomorphism (the inverse being given by $(x,y) \mapsto y^{1/3}$) but C is not diffeomorphic to R near (0,0) (see page 89). Also \mathcal{C} induces a diffeomorphism $\mathbb{R}\setminus\{0\}\to\mathbb{C}\setminus\{(0,0)\}$ (inverse: $(x,y)\mapsto \frac{y}{x}$). (iv) Let $f = y^2 - x^2(x+1)$. Then $Df = (-2x-3x^2, 2y)$ and hence the only point p of f=0 where $D_p(f)=0$ is p=(0,0).

Near p, the curve f=0 is not even homeomorphic to an open interval in R.

Implicit function theorem for curves in Rⁿ (part II):

Let $\Upsilon = (\Upsilon_1, ..., \Upsilon_n) : I \longrightarrow \mathbb{R}^n$ be a curve with trace C and let p = r(a) (a $\in I$) be a regular point on C. Then there exists an open neighbourhood I'S I of a and a partial sequence of coordinate functions fi, ..., for at p such that $C':=\Lambda(I')=\bigcap_{i=1}^{\infty}\{f_i=0\}\cap V$ where V is an open neighbourhood of p in R" over which f are defined and smooth. Proof: Since V(t) is regular at t=a, there is an i for which $v_i(a) \neq 0$. By the inverse function theorem (in one variable), γ_i induces a diffeomorphism $I \longrightarrow J$ where $I'_j J$ are open intervals around a, V.(a) respectively. Let u(t) be the inverse map $J \longrightarrow I$. Using the substitution t = u(t) we reparametrise C near p by $\widetilde{\Upsilon}(\widetilde{t}) = (\tau_i \circ u(\widetilde{t}), \ldots, \tau_n \circ u(\widetilde{t}))$. C learly $\widetilde{\Upsilon}_i(\widetilde{t}) = \widetilde{t}$. Setting $f_i(x_i, \ldots, x_n) := x_i - \widetilde{\Upsilon}_i(x_i)$, we see that on $V = \mathbb{R} \times \cdots \times \mathbb{J} \times \cdots \times \mathbb{R}$, the locus $\bigcap_{j=1}^{n} \{f_j = 0\} \cap V$ is V(I'). (Clearly f; are defined and smooth over V). For $j \neq i$,

Since Df. has only 2 nonzero components, namely, a 1 in the j-th coordinate and something in the i-th coordinate, we see that for $j \neq i$ the $D_p(f_j)$'s form a linearly independent set. As fi=0, we drop it and re-number the indices. Q.E.D.

In particular, the theorem says that if $\Upsilon(t) = (\Upsilon_1(t), \Upsilon_2(t))$ is a plane curve regular at t = a, then near t=a, we may write (on the curve) y as a function of x (if $\chi'(a) \neq 0$) or x as a function of y (if $\chi'(a) \neq 0$). Therefore, in each of these cases we may think of a piece of the curve near V(a) as being the graph of a function in x or y. (So Exercise 8 describes a fairly general situation).

While it may look like the part I version of the theorem is a converse to part I, there is a subtle difference. In part II, $C' = (\bigcap_{j} \{f_{j} = 0\} \cap V)$ may not be an open subset of C and in particular, CNV may have more points than C'and the parametrising map I may not be a homeomorphism.