Please remove this sheet before starting your exam.

Things you must have memorized

The Momentum Principle	The Energy Principle	The Angular Momentum Principle				
Definition of Momentum	Definition of Velocity	Definition of Angular Momentum				
Definitions of angular velocity, particle energy, kinetic energy, and work						

Other potentially useful relationships and quantities

$$\begin{split} \gamma & \equiv \frac{1}{\sqrt{1 - \left(\frac{|\vec{v}|}{c}\right)^2}} & E^2 - (pc)^2 = \left(mc^2\right)^2 \\ \frac{d\vec{p}}{dt} & = \frac{d|\vec{p}|}{dt} \, \hat{p} + |\vec{p}| \frac{d\hat{p}}{dt} & \vec{F}_{\parallel} = \frac{d|\vec{p}|}{dt} \, \hat{p} \text{ and } \vec{F}_{\perp} = |\vec{p}| \frac{d\hat{p}}{dt} = |\vec{p}| \frac{|\vec{v}|}{R} \hat{n} \\ \vec{F}_{grav} & = -G \frac{m_1 m_2}{|\vec{r}|^2} \hat{r} & U_{grav} = -G \frac{m_1 m_2}{|\vec{r}|} \\ \left| \vec{F}_{grav} \right| & \approx mg \text{ near Earth's surface } & \Delta U_{grav} \approx mg \Delta y \text{ near Earth's surface } \\ \vec{F}_{elec} & = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{|\vec{r}|^2} \hat{r} & U_{elec} & = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{|\vec{r}|} \\ \left| \vec{F}_{spring} \right| & = k_s s & U_{spring} & = \frac{1}{2} k_s s^2 \\ U_i & \approx \frac{1}{2} k_{si} s^2 - E_M & \Delta E_{thermal} & = mC \Delta T \\ \vec{r}_{cm} & = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2 + \dots}{m_1 + m_2 + \dots} & I & = m_1 r_{1\perp}^2 + m_2 r_{2\perp}^2 + \dots \\ K_{tot} & = K_{trans} + K_{rel} & K_{rel} & K_{rel} & K_{rot} & = \frac{1}{2} I \omega^2 \\ \vec{L}_A & = \vec{L}_{trans,A} + \vec{L}_{rot} & \vec{L}_{rot} & \vec{L}_{rot} & I \vec{\omega} \\ \omega & = \sqrt{\frac{k_s}{m}} & v & = d \sqrt{\frac{k_{si}}{m_a}} \\ Y & = \frac{F/A}{\Delta L/L} \text{ (macro)} & Y & = \frac{k_{si}}{d} \text{ (micro)} \\ \Omega & = \frac{(q+N-1)!}{q! (N-1)!} & S \equiv k \ln \Omega \\ \text{prob}(E) & \propto \Omega(E) e^{-\frac{E}{kT}} & E_N & = -\frac{13.6 \text{eV}}{N^2} \text{ where } N = 1, 2, 3 \dots \end{split}$$

$$E_N = N\hbar\omega_0 + E_0$$
 where $N = 0, 1, 2...$ and $\omega_0 = \sqrt{\frac{k_{si}}{m_a}}$ (Quantized oscillator energy levels)

Moment of inertia for rotation about indicated axis

Constant	Symbol	Approximate Value
Speed of light	c	$3 \times 10^8 \text{ m/s}$
Gravitational constant	G	$6.7 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Approx. grav field near Earth's surface	g	$9.8 \mathrm{\ N/kg}$
Electron mass	m_e	$9 \times 10^{-31} \text{ kg}$
Proton mass	m_p	$1.7 \times 10^{-27} \text{ kg}$
Neutron mass	m_n	$1.7 \times 10^{-27} \text{ kg}$
Electric constant	$\frac{1}{4\pi\epsilon_0}$	$9\times 10^9~{\rm N}\cdot {\rm m}^2/{\rm C}^2$
Proton charge	e	$1.6 \times 10^{-19} \text{ C}$
Electron volt	1 eV	$1.6 \times 10^{-19} \text{ J}$
Avogadro's number	N_A	$6.02 \times 10^{23} \text{ atoms/mol}$
Plank's constant	h	6.6×10^{-34} joule · second
$hbar = \frac{h}{2\pi}$	\hbar	1.05×10^{-34} joule \cdot second
specific heat capacity of water	C	$4.2~\mathrm{J/g/K}$
Boltzmann constant	k	$1.38 \times 10^{-23} \text{ J/K}$
milli m 1×10^{-3} micro μ 1×10^{-6} nano n 1×10^{-9} pico p 1×10^{-12}	$_{ m gi}$	lo k 1×10^3 lega M 1×10^6 ga G 1×10^9 lera T 1×10^{12}

PHYS 2211 Test 3 - Spring 2019

Please circle your lab section and then clearly print your name & GTID

Sections (M) 10AM, (K) 11AM			K) 11AM		
	Day	12-3pm	3-6pm	Name:	
	Monday	M01 K01	M02 K02		
	Tuesday	M03 K03	M04 K04		
	Wednesday	M05 K05	M06 K06	GTID:	
	Thursday	M07 K07	M08 K08		

Instructions

- Please write with a pen or dark pencil to aid in electronic scanning.
- Read all problems carefully before attempting to solve them.
- Your work must be legible, and the organization must be clear.
- Your solution should be worked out algebraically. Numerical solutions should only be evaluated at the last step. Incorrect solutions that are not solved algebraically will receive an 80 percent deduction.
- You must show all work, including correct vector notation.
- Correct answers without adequate explanation will be counted wrong.
- Incorrect work or explanations mixed in with correct work will be counted wrong. Cross out anything you do not want us to grade
- Make explanations correct but brief. You do not need to write a lot of prose.
- Include diagrams!
- Show what goes into a calculation, not just the final number, e.g.: $\frac{a \cdot b}{c \cdot d} = \frac{(8 \times 10^{-3})(5 \times 10^6)}{(2 \times 10^{-5})(4 \times 10^4)} = 5 \times 10^4$
- Give standard SI units with your numeric results. Your symbolic answers should not have units.

Unless specifically asked to derive a result, you may start from the formulas given on the formula sheet, including equations corresponding to the fundamental concepts. If a formula you need is not given, you must derive it.

If you cannot do some portion of a problem, invent a symbol for the quantity you can not calculate (explain that you are doing this), and use it to do the rest of the problem.

Problem 1 [25 pts]

Below is an incomplete program that calculates the motion of a ball attached to spring. The ball experience three forces: gravitational, spring, and drag. The spring has been damaged from overuse so that the magnitude of the spring force is proportional to the third power of the stretch $|\vec{F}_s| = k * s^3$. The drag force always points in the direction opposite to the velocity and has magnitude $|\vec{F}_{drag}| = b * |\vec{v}|^2$ where the constant b is a positive number. Fill in the missing lines of code below. Please note that the program is spread over two pages.

```
GlowScript 2.7 VPython
## constants
g = 9.81 ## acceleration from gravity (in N/kg)
mball = .1524
               ## Mass of the ball (in kg)
L0 = 0.3
            ## Relaxed length of the spring (in m)
        ## Spring constant you measured (in N/m^3)
b = 0.25 \# Ns^2/m^2
## objects
ceiling = box(pos=vector(0,0,0), size=vector(0.2, 0.01, 0.2))
ball = sphere(pos=vector(-0.1,-0.2,-0.3),radius=0.025, color=color.orange)
spring = helix(pos=ceiling.pos, color=color.cyan, thickness=.003, coils=40, radius=0.015)
## initial values
Fgrav = vector(0,-g*mball,0)
ball.vel = vector(0.024, 0.084, -0.522)
ball.p = mball*ball.vel
deltat = 0.001 ## timestep (in s)
            ## start counting time at zero
t = 0
while t < 10
   ## A. [14 pts] Add statements to calculate Fnet on the ball
```

Fs =

Fdrag =

Fnet = Fgrav +

B. [6 pts] Add statements to update the momentum, velocity and position of the ball

ball.p =

ball.vel =

ball.pos =

C. [2pts] Add statements to calculate the kinetic energy (K) of the ball

K =

D. [3pts] Add statements to calculate the spring potential energy (U)

U =

t = t+deltat

E. [5 pts] Extra Credit: Suppose your program ran for a very long time. Briefly describe the final velocity of the ball and sketch how the kinetic energy of the ball changed during the computation.

Problem 2 [25 pts]

Trevor, Hunter, and Adele each purchase a cup of coffee that contains 450 grams of coffee at 96° C. The specific heat of coffee is 4.2 J/(g·C). The cups are well insulated so that no energy is transferred between the coffee and the cup.

A. [10 pts] Trevor prefers to drink his coffee at 82° C. Cream has a specific heat of 3.8 J/(g·C) and an initial temperature of 5° C. How many grams of cream should he add to bring his coffee to the desired temperature?

B. [10 pts] Hunter likes to add sugar to his coffee. Sugar has a specific heat of 1.2 J/(g·C) and an initi temperature of 25° C. Hunter adds 30 grams of sugar to his coffee and stirs. By stirring the coffee, Hunter	
doing 500 J of work on his coffee. What is the final temperature of the coffee after the liquid comes to res	

C. [5 pts] After purchasing her coffee, Adele decides to take a nap. While sleeping, Hunter stirs in 60 grams of sugar at a temperature of 25° C. By stirring, Hunter does 600 J of work on Adeles coffee. When Adele wakes up, she finds that her coffee has reached thermal equilibrium with the air and is at a temperature of 25° C. Taking the coffee and sugar as the system, determine the thermal transfer of energy Q between the system and the surroundings from just before Adele's nap until the moment she awoke.

Problem 3 [25 pts]

Consider a system consisting of two particles:

$$m_1 = 5 \text{ kg, vector } \vec{v}_1 = \langle 7, -8, 14 \rangle \text{ m/s}$$

 $m_2 = 10 \text{ kg, vector } \vec{v}_2 = \langle -15, 2, -6 \rangle \text{ m/s}$

A. [5 pts] What is the total momentum \vec{p}_{total} of this system? Show all steps in your work.

B. [5 pts] What is \vec{V}_{CM} , the velocity of the center of mass of this system? Show all steps in your work.

C. [5 pts] What is $K_{translational}$, the translational kinetic energy of this system? Show all steps in your work.

D. [5 pts] What is K_{total} , the total kinetic energy of this system? Show all steps in your work.

E. [5 pts] What is K_{rel} , the kinetic energy of this system relative to the center of mass? **Show all steps in** your work.

A physics student is playing with a yo-yo. The yo-yo is initially held motionless in midair when the student releases the yo-yo and pulls up on the string with a constant force F. Their hand moves up as a length of string L unravels and the yo-yo falls a distance d under the force of gravity. The yo-yo has mass m, and the mass of the string can be ignored.

A. [10 pts] Determine the speed of the center of mass for the yo-yo after it has fallen a distance d?

В.	[15 pts] Calculate the rotational yo-yo as a cylinder of radius R .	speed ω for	the yo-yo at	fter it has f	fallen a distance	d? You can	model the

This page is for extra work, if needed.