

SCA610 Series

Accelerometer Chip

FEATURES

- Available ranges ± 0.5 g, ± 1 g, ± 1.5 g, ± 1.7 g
- 8-pin plastic surface mount DIP package mountable with pick and place machines
- Enhanced failure detection
- Digitally activated electrostatic self test (not for inclinometers)
- Calibration memory parity check
- Continuous connection failure detection
- Bi-directional acceleration measurement
- Controlled frequency response in the sensing element
- Re-flow solder, process compatible
- Single +5V supply; ratiometric voltage output in the range 4.75 ... 5.25V

BENEFITS

- Exceptional reliability, unprecedented accuracy and excellent stability over temperature and time
- Outstanding overload and shock durability
- No additional components required

APPLICATIONS

- Acceleration measurement
- Inclination measurement
- Motion measurement
- Vibration measurement

For customised products please contact VTI HAMLIN

DIMENSIONS

The accelerometer weighs under 1g. The size of the part is approximately (w x h x l) 9 x 5 x 11 mm. Pin pitch is standard 100 mils.

CONNECTION

1, 2, 3, 5 Open or capacitively connected to GND for EMC

(2 (C1) may be used for frequency setting in a different mode)

4 Ground (GND)

6 Self test triggering (ST) (not for inclinometers)

7 Analog output voltage (Vout)

8 Supply voltage (Vdd)

Acceleration in the direction of the arrow will increase the output voltage.

PCB PAD LAYOUTS

1.39 2.54±0.05 RO. 1 TYP

PRODUCT CODE KEY

PART NUMBER

Standard versions in bold

ABSOLUTE MAXIMUM RATINGS		
Parameter	Value	Units
Acceleration (powered or non-powered)	20000	g
Supply voltage	-0.3 to +7.0	V
Voltage at input / output pins	-0.3 to Vdd + 0.3	V
Temperature range	-55 to +125	°C

Parameter	Condition	Min.	Тур	Max.	Units	
Supply voltage Vdd		4.75		5.25	V	
Current consumption	Vdd = 5V; No load		2.0	4.0	mA	
Operating temperature		- 40		+ 125	°C	
Resistive output load	Vout to Vdd or Vss	20			kOhm	
Capacitive load	Vout to Vdd or Vss			20	nF	
Output noise (9	DC4kHz		1	5	mVrms	

Parameter	Condition/ Comment	SCA610- CBHH1G ⁽¹¹	SCA610- CB1H1G ⁽¹¹	SCA610- C23H1G	SCA610- C28H1G	Units
Measuring range (1	Nominal	±0.5	±1	±1.5	±1.7	g
Mounting plane (2	Measuring Direction	Horizontal	Horizontal	Horizontal	Horizontal	
Zero point (nom.) ⁽³	Mounting position	Vdd/2	Vdd/2	Vdd/2	Vdd/2	V
Sensitivity	@ room temperature	4 ^{(5b}	2 ^{(5a}	1.333 ^{(5a}	1.2 ^{(5a}	V/g
Zero point error	-40125°C	±60 ⁽⁴	±60 ⁽⁴	±125 ⁽⁴	±125 ⁽⁴	mg
Sensitivity error	-40125°C	±4 ^{(6b}	±4 ^{(6a}	±4 ^{(6a}	±4 ^{(6a}	9/0
Typical non-linearity (6	Over measuring range	±10 ^{(7b, c}	±20 ^{(7a, c}	±30 ^{(7a}	±40 ^{(7a}	mg
Cross-axis sensitivity (8		5	5	5	5	9/0
Frequency response	-3dB point ⁽⁹	6±4	6 <u>±</u> 4	50±30	50±30	Hz
Ratiometric error (10	Vdd = 4.755.25V	2	2	2	2	0/0

- Note 1. The measuring range is limited by sensitivity, offset and supply voltage rails of the device.
- Note 2. Measuring direction parallel to mounting plane.
- Note 3. Vertical versions in +1g position, i.e. arrow up; horizontal versions pins down (+0g).
- Note 4. Zero point error specified as (Vout (+0q) Vdd/2) / Vsens [q] (room temp. error included); Vsens = Nominal sensitivity.
- Note 5a. Sensitivity specified as [Vout (+1g) Vout(-1g)] / 2 [V/g].
- Note 5b. Sensitivity specified as [Vout (+0.5g) Vout(-0.5g)][V/g].
- Note 6a. Sensitivity error specified as {[Vout (+1g) -Vout (-1g)] / 2 -Vsens} / Vsens x 100% [%] (room temp. error included); Vsens = Nominal sensitivity.
- Note 6b. Sensitivity error specified as {[Vout (+0.5g) -Vout (-0.5g)] -Vsens} / Vsens x 100% [%] (room temp. error included); Vsens = Nominal sensitivity.
- Note 7a. Relative to straight line between $\pm 1g$.
- Note 7b. Relative to straight line between ±0.5g.
- Note 7c. In inclinometer applications a correction based on the angular error resulting in cross-axis sensitivity around the inclination angle reduces non-linearity.
- Note 8. The cross-axis sensitivity determines how much acceleration, perpendicular to the measuring axis, couples to the output. The total cross-axis sensitivity is the geometric sum of the sensitivities of the two axes, which are perpendicular to the measuring axis.
- Note 9. The output has true DC (OHz) response.
- Note 10. Supply voltage noise also couples to the output, due to the ratiometric (output proportional to supply voltage) nature of the accelerometer.
- Note 11. Self test not recommended

The ratiometric error is specified as:
$$RE = 100\% \times \left[1 - \frac{Vout(@Vx) \times \frac{5.00V}{Vx}}{Vout(@5V)} \right]$$

