

Machine Learning Approach for Prediction of Critical Temperature of Superconductor Materials

What is Superconductivity?

- Discovered by Onnes in 1911
- Zero Resistivity, Meissner Effect, Fase Transition
- Low Temperature VS High
 Temperature Superconductors
- BCS Theory
- Applications: Quantum
 Computers, Magnetic
 Levitation, Electromagnets for
 Engineering and many others.

Dataset Introduction

• 21263 Samples

- SuperCon Online Database of NIMS (Japan's National Institute for Materials Science)
- Link: https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data
- We are going to study the preprocessed data stored in

81 Feature Real Variables

- 1. Number of Elements
- 2. Atomic Mass
- 3. Atomic Radius
- 4. First Ionization Energy
- 5. Density
- 6. Electron Affinity
- 7. Fusion Heat
- 8. Thermal Conductivity
- 9. Valence

Feature & description	Formula
Mean Weighted mean	$= \mu = (t_1 + t_2)/2$ =\nu = (p_1t_1) + (p_2t_2)
Geometric mean Weighted geometric	$= (t_1 t_2)^{1/2}$ $= (t_1)^{p_1} (t_2)^{p_2}$
mean Entropy	$=-w_1\ln(w_1)-w_2\ln(w_2)$
Weighted entropy Range	$=-A\ln(A)-B\ln(B)$ = t_1 - t_2 ($t_1 > t_2$)
Weighted range Standard deviation	$= p_1 t_1 - p_2 t_2$ $= [(1/2)((t_1 - \mu)^2 + (t_2 - \mu)^2)]^{1/2}$
Weighted standard deviation	$=[p_1(t_1-\nu)^2+p_2(t_2-\nu)^2)]^{1/2}$

Continous Target Variable: Critical Temperature

Regression problem

Content

• Exploratory Data Analysis

- Missing and Categorical Data
- Scatter Plot Matrix and Correlation Matrix

• Data Preprocessing

- Train, Validation and Test Splitting
- Feature Scaling
- Dimensionality Reduction

• Regression models

- Linear Regression
- Non-linear Regression
- Artificial Neural Networks

• Evaluation and Tuning

- Scoring
- Hyperparameter Tuning

Results

- Model Selection
- Running Time

Exploratory Data Analysis

- No Missing Data
- No Categorical Data

	CRITICAL TEMPERATURE		
MEAN	34,4		
STD	34,2		
MIN	0,0		
MAX	185,0		

Scatter Plot and Correlation Matrices

Fie

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

Scatter Plot and Correlation Matrices

Electron Affinity

Fusion Heat Thermal Conductivity Valence

Atomic Radius Density

Scatter Plot and Correlation Matrices

Feature Scaling

PROBLEMS

- Distorted feature importances on some models:
- Overfitting
- Long Running time

SOLUTION

Feature Standardization

$$x' = \frac{x - \mu}{\sigma}$$

Feature Normalization

$$x' = a + \frac{(x - \min(x))(b - a)}{\max(x) - \min(x)}$$

Feature Selection

PROBLEMS

- Multicolliniarity
- Overfitting
- Long Running time

SOLUTIONS

- Variance Threshold Selection
 - 42 Features
- Sequential Backward Selection
 - 2 Features
- Random Forest: feature importances

Feature Extraction

PROBLEMS

- Multicolliniarity
- Overfitting
- Long Running time

SOLUTIONS

PCA

Model Performance

PARAMETER VS HYPERPARAMETER

Cross Validation

It estimates the generalization performance of machine learning models

CROSS VALIDATION ALGORITHM	DESCRIPTION
HOLDOUT	 It split the initial dataset into separate training and test datasets or better into 3 parts: training, validation and test datasets.
K - FOLD	 The performance estimate is less sensitive to the subpartitioning of the training data. It randomly split the training dataset into k folds without replacement, where k – 1 folds are used for the model training, and one fold is used for performance evaluation.
LEAVE - p - OUT	 It's a k-fold CV generalization, where you choose the number p of folds used for the model training, Then, n-p folds are used for the evaluation.

HYPERPARAETER TUNING

Grid Search CV

Brute-force exhaustive search paradigm

Random Search CV

Randomized search for sampling different parameter combinations

Evaluating the Performance of Regression Models

$$MSE = \frac{1}{n} \sum_{\{i=1\}}^{n} (y^{(i)} - \hat{y}^{(i)})^{2}$$

Mean Squared Error

$$SSE = \sum_{\{i=1\}}^{n} (y^{(i)} - \hat{y}^{(i)})^2$$
 Sum of Squares Error

$$SST = \sum_{\{i=1\}}^{n} (y^{(i)} - \mu_y)^2$$
 Sum of Squares Total

$$R^2 = 1 - \frac{SSE}{SST}$$

Coefficient of Determination

For training data: $0 \le R^2 \le 1$, but for test data it can became negative

Residual Plot

Multiple Linear Regression

The goal of linear regression is to model relationship between *one or multiple* features and a **continuous** target variable.

$$y = w_0 + w_1 x$$

x = explanatory variable(s) y = response variable $w_0 = intercept$ $w_1 = slope(s)$

PROS	CONS		
Simple and Rapid algorithm	Heavy impact by the presence of outliers		

Regularized Methods for Regression

Lasso

- L1 penalized model
- $J(w)_{LASSO} = \sum_{\{i=1\}}^{n} (y^{(i)} \hat{y}^{(i)})^2 + \lambda |w|_1$

Ridge

- L2 penalized model
- $J(w)_{RIDGE} = \sum_{\{i=1\}}^{n} (y^{(i)} \hat{y}^{(i)})^2 + \lambda |w|^2$

ElasticNet

- Compromise between the two previous models
- $J(w)_{ELNET} = \sum_{\{i=1\}}^{n} (y^{(i)} \hat{y}^{(i)})^2 + \lambda_1 \sum_{j=1}^{m} w_j^2 + \lambda_2 \sum_{j=1}^{n} |w_j|$

RANdom SAmple Consensus

ALGORITHM

- 1) Select a random number of examples to be inliers and fit the model.
- 2) Test all other data points against the fitted model and add those points that fall within a user-given tolerance to the inliers.
- 3) Refit the model using all inliers.
- 4) Estimate the error of the fitted model versus the inliers.
- 5) Terminate the algorithm if the performance meets a certain user-defined threshold or if a fixed number of iterations were reached; go back to step 1 otherwise.

PROS	CONS	
Reduce the potential effect of outliers	There are many hyperparameters to set	

Decision Tree

INFORMATION GAIN

$$IG(D_p) = I(D_p) - \sum_{j=1}^{m} \frac{N_j}{N_p} I(D_j)$$

HYPERPARAMETERS

- max_depth
- criterion
- splitter

IMPURITY METRIC

Mean Squared Error

$$I(t) = \frac{1}{N_t} \sum_{i \in D_t}^{c} (y^{(i)} - \hat{y}_t)^2$$

PROS	CONS	
UnderstandingNo standardization neededLow Computaional cost	OverfittingHigh noise sensibilityA lot of hyperparameters	

Decision Tree

Bagging Boosting

Random Forest

Extreme Gradient Boosting

Random Forest

- Ensamble Method (Bagging)
- Decision Tree in parallel
- Scale Invariant
- One hyperparameter: max_depth

PROS	CONS
Invariant scaleBest generalization performanceSimple tuning	Overfitting

Extreme Gradient Boosting Regressor

- Ensamble Method (Boosting)
- Gradient boosting involves three elements:
 - 1. A loss function (MSE) to be optimized.
 - 2. A weak learner(Tree) to make predictions.
 - 3. An additive model to add weak learners to minimize the loss function.

PROS	CONS		
 Reduce Variance and Bias with respect to DT 	Compuationally hard		

Neural Networks

Results

ALL	LIN REG	RANSAC	TREE	FOREST	
MSE					
RMSE					
R2					