

ELMo (Embedding from Language Model)

1. Introduction

2. ELMo

3. Evaluation

4. Analysis

5. Conclusion

논문: Deep contextualized word representations

Word2Vec이나 Skip-gram 등 이건 모델

king – man + woman = queen
$$(1,4)$$
 - $(1,0)$ + $(4,1)$ = $(4,5)$

단점

각 단어가 단 한 개의 벡터로만 표현됨
 →문법구조, 다의어에 따른 뜻 변형을 적절히 반영하기에 어려움

ELMo(Embeddings from Language Models)

: 사전 훈련 + 문맥 = 문맥 반영 언어 모델(deep contextualized word representations)

ELMo word representations are functions of the entire input sentence.

LSTM layer의 최종 layer만을 취한 것이 아닌, 모든 layer 결과를 가중합하여 얻음.

LSTM의 낮은 단계의 layer : 품사 등 문법 정보

높은 단계의 layer: 문맥 정보

I read a book

now

read

past

I read a book yesterday.

now

past

- 전체 문장을 input으로 받고, 그에 대한 각 단어들의 representation 생산
- Character convolution로부터 얻은 biLM의 가장 위 2개 layer의 가중합으로 계산
- 큰 사이즈로 biLM pretrain 시켰을 때 semi-supervised learning 가능
- 쉽게 다른 모델에 붙일 수 있음

biLM : 순방향 LM + 역방향 LM N개의 token $(t_1, t_2, ..., t_N)$

ullet Forward Language Model : $(t_1,t_2,...,t_{k-1})$ 이 주어졌을 때 token t_k 가 나올 확률을 계산

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^N p(t_k | t_1, t_2, \dots, t_{k-1})$$

biLM : 순방향 LM + 역방향 LM N개의 token $(t_1, t_2, ..., t_N)$

• Forward Language Model : $(t_1, t_2, ..., t_{k-1})$ 이 주어졌을 때 token t_k 가 나올 확률을 계산

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^N p(t_k | t_1, t_2, \dots, t_{k-1})$$

biLM : 순방향 LM + 역방향 LM N개의 token $(t_1, t_2, ..., t_N)$

• Forward Language Model : $(t_1,t_2,...,t_{k-1})$ 이 주어졌을 때 token t_k 가 나올 확률을 계산

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^N p(t_k | t_1, t_2, \dots, t_{k-1})$$

biLM : 순방향 LM + 역방향 LM N개의 token $(t_1, t_2, ..., t_N)$

• Forward Language Model : $(t_1, t_2, ..., t_{k-1})$ 이 주어졌을 때 token t_k 가 나올 확률을 계산

$$p(t_1,t_2,\ldots,t_N) = \prod_{k=1}^N p(t_k|t_1,t_2,\ldots,t_{k-1})$$

biLM : 순방향 LM + 역방향 LM N개의 token $(t_1, t_2, ..., t_N)$

• Forward Language Model : $(t_1, t_2, ..., t_{k-1})$ 이 주어졌을 때 token t_k 가 나올 확률을 계산

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^N p(t_k | t_1, t_2, \dots, t_{k-1})$$

ullet Backward Language Model: $(t_{k+1},t_{k+2},...,t_N)$ 이 주어졌을 때 token t_k 가 나올 확률을 계산

ullet Backward Language Model: $(t_{k+1},t_{k+2},...,t_N)$ 이 주어졌을 때 token t_k 가 나올 확률을 계산

ullet Backward Language Model: $(t_{k+1},t_{k+2},...,t_N)$ 이 주어졌을 때 token t_k 가 나올 확률을 계산

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^N p(t_k | t_{k+1}, t_{k+2}, \dots, t_N)$$

biLM : 순방향 LM + 역방향 LM

→ 이 둘을 결합시킨 log likelihood를 최대화!

$$\sum_{k=1}^{N} \left(\log \ p(t_k|t_1,\ldots,t_{k-1};\Theta_x,\overrightarrow{\Theta}_{LSTM},\Theta_s) + \log \ p(t_k|t_{k+1},\ldots,t_N;\Theta_x,\overleftarrow{\Theta}_{LSTM},\Theta_s) \right)$$

Ox는 token representation, Os는 Softmax layer

2. ELMo - ELMo representation

ELMo는 biLM의 중간 layer representation을 task-specific하게 결합함. biLM의 L개의 layer는 각 token t_k 당 2L+1개의 representation을 계산

$$egin{align*} R_k &= \{x_k^{LM}, \overrightarrow{h}_{k,j}^{LM}, \overleftarrow{h}_{k,j}^{LM} | j=1,\ldots,L\} = \{h_{k,j}^{LM} | j=0,\ldots,L\} \ h_{k,0}^{LM} : ext{token layer} & h_{k,j}^{LM} = [\overrightarrow{h}_{k,j}^{LM}; \overleftarrow{h}_{k,j}^{LM}] \ \end{cases}$$

ELMo는 R의 모든 layer를 하나의 벡터 $\mathrm{ELMo}_k = E(R_k; \Theta_e)$ 로 압축일반적으로, 모든 biLM layer의 task-specific한 weighting을 계산

$$ext{ELMo}_k^{task} = E(R_k; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_j^{task} h_{k,j}^{LM}$$

 S^{task} : softmax-정규화된 가중치

 γ^{task} : 전체 ELMo 벡터의 크기를 조절하는 역할(scalar parameter)

2. ELMo - ELMo representation

- * read의 임베딩 구하기
- 1) 각층의 출력값을 연결(concatenate)한다.

2) 각층의 출력값 별로 가중치를 준다.

3) 각층의 출력값을 모두 더한다.

4) 벡터의 크기를 결정하는 스칼라 매개변수(γ)를 곱한다.

2. ELMo - 활용

task 모델을 향상시키도록 biLM을 쓰는 과정

- 1. biLM을 돌리고 각 단어마다 모든 layer representation을 기록
- 2. 모델이 이 representation들의 선형결합을 배우도록 함
 - 2-1) biLM이 없는 지도 모델을 고려
 - 2-2) $(t_1, t_2, ..., t_N)$ 이 주어지면 pretrain된 단어 <mark>임베딩을 사용하여 각 token마다 x_k 를 만듦</mark>
 - 2-3) 모델이 biRNN 등을 사용해 문맥-의존적 representation h_k 를 생성

ELMo를 지도 모델에 추가하려면

- 1. biLM의 weight 고정
- 2. ELMo 벡터 $ELMo_k^{task}$ 와 x_k 연결
- 3. $[x_k; ELMo_k^{task}]$ 를 task RNN에 전달

〈주요 task에 대한 성능 비교〉

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuA	D Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%
	'	"			

SQuAD:Q&A, $SNLI:Textual\ entailment$, $SRL:Semantic\ role\ labeling$, $Coref:Coreference\ resolution$, $NER:Named\ entity\ extraction$, $SST-5:Sentiment\ analysis$

다양한 downstream task들에서 SOTA보다 좋은 성능을 보임!

4.1. Alternate layer weighting schemes

〈〉 에 대한 성능 비교〉

Task	Baseline	Last Only	All layers	
1 ask			λ =1	λ =0.001
SQuAD	80.8	84.7	85.0	85.2
SNLI	88.1	89.1	89.3	89.5
SRL	81.6	84.1	84.6	84.8

- 마지막 layer만 쓰는 것보다 모든 layer를 쓰는 것이 더 좋음
- λ를 작게 하는 것이 더 좋은 성능을 나타내며 task의 종류에는 크게 영향받지 않는 것을 보임

4.2. Where to include ELMo?

〈ELMo 위치에 대한 성능 비교〉

Task	Input	Input &	Output
Task	Only	y Output	
SQuAD	85.1	85.6	84.8
SNLI	88.9	89.5	88.7
SRL	84.7	84.3	80.9

- SQuAD, SNLI에서는 biRNN의 Output에도 ElMo를 추가하는 것이 더 좋은 성능을 보임
- → Task에 따라 걱절한 architecture가 있다고 생각할 수 있음.

4.3. What information is captured by the biLM's representations?

〈Glove와 ELMo에서의 "play"〉

Source	Nearest Neighbors
play	playing, game, games, played, players, plays, player, Play, football, multiplayer
Chico Ruiz made a spec-	Kieffer, the only junior in the group, was commended
tacular play on Alusik 's	for his ability to hit in the clutch, as well as his all-round
grounder {}	excellent play.
Olivia De Havilland	{} they were actors who had been handed fat roles in
signed to do a Broadway	a successful play, and had talent enough to fill the roles
play for Garson {}	competently, with nice understatement.
	Chico Ruiz made a spectacular play on Alusik 's grounder {} Olivia De Havilland signed to do a Broadway

Table 4: Nearest neighbors to "play" using GloVe and the context embeddings from a biLM.

- Glove에서는 "play"에 관련된 단어들로 스포츠와 유사한 것들이 나옴
- biLM에서는 "play"와 유사한 의미로 사용되는 문장이 유사한 것으로 나옴

4.3. What information is captured by the biLM's representations?

〈Word-Sense Disambiguation - 단어 중의성 해소〉 〈POS tagging-형태소 분석〉

Model	\mathbf{F}_1
WordNet 1st Sense Baseline	65.9
Raganato et al. (2017a)	69.9
Iacobacci et al. (2016)	70.1
CoVe, First Layer	59.4
CoVe, Second Layer	64.7
biLM, First layer	67.4
biLM, Second layer	69.0

Model	Acc.
Collobert et al. (2011)	97.3
Ma and Hovy (2016)	97.6
Ling et al. (2015)	97.8
CoVe, First Layer	93.3
CoVe, Second Layer	92.8
biLM, First Layer	97.3
biLM, Second Layer	96.8

- BiLM이 CoVe보다 성능이 우수함
- BiLM의 first layer를 이용하는 것보다 Second layer를 이용하는 것이 성능이 우수 → 높은 layer일수록 문맥 정보 학습

- BiLM이 CoVe보다 성능이 우수함
- BiLM의 first layer가 second layer보다 성 능이 우수
 - → 낮은 layer일수록 문법 정보 학습

4.4 Sample efficiency

〈training set 크기에 따른 성능 비교〉

- 모델에 ELMo를 추가했을 때가 그렇지 않을 때보다 학습속도가 빠름
- 더 작은 훈련 세트를 더 효율적으로 훈련함

4.5 Visualization of learned weights

〈학습된 weights 시각화〉

- 소프트맥스 정규화된 학습 계층 가중치를 시각화한 것
- Input Layer에서는 첫번째 biLSTM layer를 선호
- Output Layer에서는 weight가 균형있게 분배되었지만, 낮은 layer를 좀 더 선호

5. Conclusion

- biLM으로부터 고품질의 깊은 문맥의존 representation을 학습하는 일반적인 접근법을 도입함.
- 광범위한 NLP작업들에서 ELMo를 적용했을 때 큰 향상이 있는 것을 볼 수 있음.
- biLM 계층이 문맥 내 단어들에 대한 다른 유형의 구문 및 의미 정보를 효율적으로 인코딩하고, 모든 계층 사용 시 전반적인 작업 향상이 있음.

