UADE - Departamento de Ciencias Básicas

Introducción a la Física – 3.1.045

Guía de problemas Nro: 2

Cinemática: movimientos rectilíneos y circular.

Bibliografía sugerida:

Básica

- Resnick, Robert y Halliday, David y Krane, Kenneth S. *Física*; Edición: 5a ed. México: Patria, c2007. 2 v.: il. ISBN: 97897024025729789702403265.
- Serway, Raymond y Vuille, Chris. Fundamentos de Física. Novena edición, Vol 1 y Vol 2. México: Cengage 1230p. ISBN 13-978-607481781-2.

Complementaria

- Tipler, Paul Allen. *Física para la ciencia y la tecnología*; 6ta ed. Barcelona: Reverté, c2010. vol.1. ISBN: 9788429144284.
- Bueche, Frederick J. *Física para estudiantes de ciencias e ingeniería;* 3. ed. en español México, D.F.: McGraw Hill, 1992. ISBN: 9789684221161.
- Sears, Francis W. y Zemansky, Mark W. y Young, Hugh D. *Física universitaria*; 6a ed. en español Delaware: Addison Wesley Iberoamericana, 1988. xxi, 1110 p. ISBN: 9780201640137.

Objetivo de la guía:

Que el alumno pueda:

- describir, tanto en forma analítica como gráfica, el movimiento de una partícula material que se mueve en una dimensión, ya sea con velocidad constante (MRU), o aceleración constante (MRUV).
- aprenda a describir el movimiento de un cuerpo puntual animado de un movimiento circular uniforme en diferentes situaciones de interés.
- resolver problemas de encuentro y persecución combinando las ecuaciones aprendidas.
- resolver problemas de cinemática e interpretar sus gráficos.

Problema 1

Una embarcación recorre en 12 h 12' una distancia de 1025 km. Calcular su velocidad media en km/h y m/s.

Rtas.: 84,02 km/h = 23,34 m/s.

Problema 2

Un móvil recorre una distancia "L" de la siguiente manera: el primer tercio lo hace a 30 km/h, el segundo a 40 km/h y el tercero a 50 km/h. Calcular la velocidad media y la velocidad promedio (km/h). Graficar la velocidad en función del tiempo y el espacio en función del tiempo.

Rtas.: 38,3 km/h y 40 km/h.

Problema 3

Un móvil recorre una recta con velocidad constante. En los instantes $t_1 = 0.5$ s y $t_2 = 3$ s. sus posiciones son $x_1 = 5.5$ cm y $x_2 = 23$ cm. Determinar:

- a) la velocidad del móvil (cm/s).
- b) La posición en t = 0 s y para a t = 1 s.
- c) Las ecuaciones de movimiento.
- d) El instante que pasa por la posición 13,06 cm.
- e) Los gráficos de la posición y velocidad del móvil en función del tiempo.

Rtas.: a) v = 7 cm/s; b) x(0) = 2 cm y x(1) = 9 cm; c) x(t) = 2 cm + 7 cm/s.t y v = 7 cm/s; d) t = 1,58 s.

Problema 4

A la misma hora dos móviles pasan uno de A y otro de B, y recorren el segmento de recta AB de longitud "L" = $450 \, \text{km}$ con velocidad uniforme. La velocidad v_A , de aquél que pasa por A, es de $100 \, \text{km/h}$ y la v_B , velocidad del móvil que pasa por B, es de $50 \, \text{km/h}$.

- a) ¿A qué distancia de la estación A los móviles se encuentran?
- b) ¿Cuánto tiempo después de la partida se encuentran? (Resolver gráfica y analíticamente).

Rtas.: a) 300 km; b) 3 h.

Problema 5

Dos vehículos salen simultáneamente desde un mismo punto animados de velocidades constantes de $v_A = 20 \text{ m/s}$ y $v_B = 144 \text{ km/h}$ y en línea recta. ¿Cuántos segundos ha de transcurrir para que ambos móviles se encuentren separados una distancia de 800 m? Resolver gráfica y analíticamente.

- a) si ambos avanzan en el mismo sentido,
- b) si ambos avanzan en sentido contrario.

Rtas.: a) 40 s; b) 13,33 s.

Problema 6

Una partícula que se mueve con movimiento unidimensional sobre el eje 0X parte del origen con una velocidad inicial $v(0) = 15 \text{ ms}^{-1} \text{ y}$ desacelera constantemente a razón de -10 ms^{-2} . Determinar:

- a) la posición máxima que alcanza sobre el eje de movimiento,
- b) la velocidad cuando pasa nuevamente por el origen.

Rtas.: a) 11,25 m; b) - 15 ms⁻¹.

Problema 7 (PROBLEMA RESUELTO AL FINAL DE LA GUÍA)

Una partícula se mueve en la dirección positiva del eje 0X con una rapidez constante de 20 ms⁻¹, durante 20 s. A partir de este último instante acelera constantemente durante 5 s hasta que su rapidez es de 80 ms⁻¹. Determinar:

- a) la aceleración de la partícula en la primera etapa.
- b) la aceleración de la partícula entre los 20 s y 25 s.
- c) el desplazamiento de la partícula entre los 0 s y 15 s.
- d) la velocidad media de la partícula entre 0 s y 25 s.

Rtas.: a) 0 m/s⁻²; b) 12 ms⁻²; c) 300 m; d) 26 ms⁻¹.

Problema 8

Un cuerpo en movimiento rectilíneo uniforme acelerado recorre en los tres primeros segundos una distancia de 73,5 m y durante los dos segundos siguientes una distancia de 64 m. Determinar:

- a) La velocidad inicial.
- b) La aceleración del cuerpo.
- c) La distancia que recorre en los siguientes 6 s. ¿Qué posición tiene en ese instante respecto al punto de partida?

Rtas.: a) 20 ms⁻¹; b) 3 ms⁻²; c) 264 m y 401,5 m.

Problema 9

Analizar el movimiento rectilíneo correspondiente a las siguientes representaciones gráficas. Si la posición en el instante inicial es 15 m, expresar analíticamente las ecuaciones de movimiento a partir de los datos incluidos en los gráficos. ¿Qué representa cada gráfico?

Rtas.: ambos gráficos representan la velocidad en función del tiempo.

- a) $v(t) = 10 \text{ m/s} + 1 \text{m/s}^2 \cdot t$; $x(t) = 15 \text{ m} + 10 \text{ m/s} \cdot t + 0.5 \text{ m/s}^2 \cdot t^2$
- b) $v(t) = 200 \text{ m/s} 12.5 \text{ m/s}^2$. (t-2s); x(t) = 15m + 200 m/s. $(t-2s) 6.25 \text{ m/s}^2$. $(t-2s)^2$.

Problema 10 (PROBLEMA RESUELTO AL FINAL DE LA GUÍA)

Dos partículas puntuales, A y B se mueven con velocidad constante sobre un mismo eje OX en sentido contrario. En el instante t = 0s. la B pasa por Q con rapidez 5 ms⁻¹ y la A pasa por P con rapidez 6 ms⁻¹. La distancia entre los puntos P y Q es de 142 metros. Determinar las aceleraciones constantes que deberían aplicar ambas partículas para que se detengan simultáneamente justo antes de chocar.

Rtas.: $a_B = 0.194 \text{ ms}^{-2}$; $a_A = -0.232 \text{ ms}^{-2}$.

Ejercicio 11

Dos partículas A y B salen al mismo tiempo desde el origen de un sistema de coordenadas moviéndose en sentido positivo del eje OX. La partícula A tiene una velocidad inicial de v_A (0) = 18 ms⁻¹ y una aceleración constante a_A = 4 ms⁻², mientras que la partícula B tiene una velocidad inicial de v_B (0) = 10 ms⁻¹ y una aceleración constante a_B = 8 ms⁻². Determinar el instante en que las partículas se encuentran nuevamente y ¿qué velocidad posee cada uno en ese instante?

Rtas.: t = 4 s; $v_A(4) = 34 \text{ ms}^{-1} \text{ y } v_B(4) = 42 \text{ ms}^{-1}$

Nota: Puede usar g= 10 m.s⁻²

Problema 12

Desde lo alto de un edificio se lanza verticalmente hacia arriba una pelota con una rapidez de 10,5 ms⁻¹. La pelota llega a tierra 3,25 s después. Determine:

- a) la altura del edificio.
- b) El vector velocidad de la pelota al llegar al suelo.

Rtas.: a) 18,69 m; b) V = (0; -22) m/s.

Problema 13

Se deja caer un cuerpo desde una altura inicial de 43 m y simultáneamente se lanza hacia abajo otro cuerpo y desde la misma altura, con una rapidez inicial de 2 ms⁻¹. Encontrar el instante en que la distancia entre ellos es de 12m.

Rta.: 6 s.

Problema 14 (PROBLEMA RESUELTO AL FINAL DE LA GUÍA)

Se deja caer en un pozo una piedra. Al cabo de 8 s de soltarla se oye su choque con el agua. La velocidad de propagación del sonido en el aire es de 340 m/s. Calcular la profundidad del pozo suponiendo que la piedra desciende en caída libre.

Rta.:257,1 m.

Problema 15

Desde un globo a una altura de 180 m sobre el suelo y ascendiendo con una velocidad constante de 12 m/s se suelta un objeto. Calcular:

- a) la máxima altura alcanzada por éste,
- b) la posición y la velocidad del objeto al cabo de 4 s,
- c) el tiempo que tardara en llegar al suelo.

Rtas.: a) 187,2 m; b) 148 m y- 28 m/s; c) 7,32 s.

Problema 16

Se tiran dos cuerpos verticalmente hacia arriba con la misma velocidad de salida de 144 km/h, tiro uno y 3 s después el otro. ¿Qué tiempo transcurrirá desde que se lanzó el primero para que se vuelvan a encontrar? ¿Cuál es la velocidad de cada uno en el encuentro? Describir el encuentro.

Rtas.: 5,5 s; v_1 = -15 m/s y v_2 = 15 m/s. En el encuentro el cuerpo A está descendiendo y el B ascendiendo.

Problema 17

Una piedra está girando en el extremo de una cuerda de 50 cm de largo. Realiza 8 revoluciones completas en 2 segundos. Se desea conocer:

- a) la velocidad angular en rad/s,
- b) la velocidad lineal,
- c) la longitud del arco recorrido al cabo de 4 s.
- d) el ángulo total girado al cabo de 4 s.

Rtas.: a) 25,1 1/s; b) 12,57 m/s; c) 50,27 m; d)100,5 rad.

Problema 18

Un automóvil que viaja a 80 km/h toma una curva de 250 m de radio. Hallar la velocidad angular en rad/s y la aceleración centrípeta. Dibujar un esquema con todos los vectores cinemáticos.

Rtas.: 0,089 1/s y 1,98 m/s².

Problema 19

Calcular la velocidad angular y la frecuencia con la que debe girar una rueda para que los puntos situados a 30 cm del eje estén sometidos a una aceleración que sea 100 veces la de la gravedad.

Rtas.: 57,74 1/s y 9,2 r.p.s.

Problema 20

En el modelo del átomo de hidrógeno de Bohr, un electrón gira alrededor de un protón en una órbita circular de 5,28x10⁻¹¹ m de radio, con una rapidez de 2,18x10⁶ m/s. ¿Cuál es la aceleración del electrón en el átomo de hidrógeno?

Rta.: $9x10^{22}$ m/s²

Problema 21 (PROBLEMA RESUELTO AL FINAL DE LA GUÍA)

La luna gira alrededor de la tierra dando una revolución completa de 27,3 días. Suponiendo que la órbita sea circular y de radio 3,85x10⁵ Km, ¿cuál es la aceleración de la luna hacia la tierra? ¿y cuántas veces la gravedad superficial terrestre?

Rtas.: $2,73 \times 10^{-3} \text{ m/s}^2 \text{ y } 0,2785 \times 10^{-3} \text{ veces.}$

PROBLEMAS RESUELTOS

Una piedra se deja caer a un pozo de profundidad desconocida. El ruido del impacto en el fondo se escucha un tiempo T después de soltada la piedra. La rapidez del sonido es u_S. Determinar en términos de T, u_S y g, la profundidad del pozo.

Solución. Sea t_1 el tiempo de caída de la piedra y t_2 el tiempo que demora el sonido en llegar. Entonces

$$\frac{1}{2}gt_1^2 = h,
u_S t_2 = h,$$

luego

$$T = t_1 + t_2 = \sqrt{\frac{2h}{g}} + \frac{h}{u_S},$$

y despeje h

$$h = \frac{u_S^2}{2g} \left(\sqrt{1 + \frac{2gT}{u_S}} - 1 \right)^2.$$

Una partícula se mueve en la dirección positiva del eje 0X con una rapidez constante de 20 ms⁻¹, durante 20 s. A partir de este último instante acelera constantemente durante 5 s hasta que su rapidez es de 80 ms⁻¹. Determinar:

- a) la aceleración de la partícula en la primera etapa.
- b) la aceleración de la partícula entre los 20 s y 25 s.
- c) el desplazamiento de la partícula entre los 0 s y 15 s.
- d) la velocidad media de la partícula entre 0 s y 25 s.

Solución:

(2) particula con MRU + MRUV.

Patopa MRU
$$T = 20 \frac{m}{2}$$
 $\Rightarrow a$ No combine la reliseration $a = 0$
 $1 + 20 \frac{m}{4}$ $\Rightarrow a$ No combine la reliseration $a = 0$
 $1 + 20 \frac{m}{3}$ $\Rightarrow a$ No combine la reliseration $a = 0$
 $1 + 20 \frac{m}{3}$ $\Rightarrow a$ No combine la reliseration $a = 0$
 $1 + 20 \frac{m}{4}$ $\Rightarrow a$ $\Rightarrow a$ No combine la reliseration $a = 0$
 $1 + 20 \frac{m}{4}$ $\Rightarrow a$ $\Rightarrow a$ No combine la reliseration $a = 0$
 $1 + 20 \frac{m}{4}$ $\Rightarrow a$ $\Rightarrow a$ No combine la reliseration $a = 0$
 $1 + 20 \frac{m}{4}$ $\Rightarrow a$ $\Rightarrow a$ No combine la reliseration $a = 0$
 $1 + 20 \frac{m}{4}$ $\Rightarrow a$ $\Rightarrow a$ No combine la reliseration $a = 0$
 $1 + 20 \frac{m}{4}$ $\Rightarrow a$ $\Rightarrow a$ No combine la reliseration $a = 0$
 $1 + 20 \frac{m}{4}$ $\Rightarrow a$ $\Rightarrow a$ No combine la reliseration $a = 0$
 $1 + 20 \frac{m}{4}$ $\Rightarrow a$ $\Rightarrow a$ No combine la reliseration $a = 0$
 $1 + 20 \frac{m}{4}$ $\Rightarrow a$ $\Rightarrow a$ No combine la reliseration $a = 0$
 $1 + 20 \frac{m}{4}$ $\Rightarrow a$ $\Rightarrow a$ $\Rightarrow a$ $\Rightarrow a$ No combine la reliseration $a = 0$
 $1 + 20 \frac{m}{4}$ $\Rightarrow a$ $\Rightarrow a$ $\Rightarrow a$ No combine la reliseration $a = 0$
 $1 + 20 \frac{m}{4}$ $\Rightarrow a$ $\Rightarrow a$ $\Rightarrow a$ No combine la reliseration $a = 0$
 $1 + 20 \frac{m}{4}$ $\Rightarrow a$ $\Rightarrow a$

Dos partículas puntuales, A y B se mueven con velocidad constante sobre un mismo eje OX en sentido contrario. En el instante t = 0s. la B pasa por Q con rapidez 5 ms⁻¹ y la A pasa por P con rapidez 6 ms⁻¹. La distancia entre los puntos P y Q es de 142 metros. Determinar las aceleraciones constantes que deberían aplicar ambas partículas para que se detengan simultáneamente justo antes de chocar.

Solución:

La luna gira alrededor de la tierra dando una revolución completa de 27,3 días. Suponiendo que la órbita sea circular y de radio 3,85x10⁵ Km, ¿cuál es la aceleración de la luna hacia la tierra? ¿y cuántas veces la gravedad superficial terrestre?

Solución:

21 sistema Tierra-Luna
(T) R (D)

periode
$$T = 27.3 \text{ discos} = 65572 \text{ h} = 2358720 \text{ s}.$$
 $R = 3.85.10^{5} \text{ km.} = 3.85.10^{8} \text{ m}.$
 $\omega = 2\pi = 2\pi = 2\pi = 2\pi = 2358720 \text{ s}.$
 $\omega = 2.66.10^{-6} = 2.75 = 2.73$