- 1.- Sea $f(x) = (ax + b)^{1/3}$. Calcular los valores de a y b en \mathbb{R} para que la recta tangente al gráfico de f en el punto (-1, f(-1)) sea y = 1 + 2(x + 1). Calcular $P_2(x)$, el polinomio de Taylor de orden 2 en $x_0 = -1$, y estimar el error que se comete al utilizarlo para aproximar el valor de f(-0,9).
- **2.-** Sea $f: \mathbb{R} \to \mathbb{R}$ derivable, no idénticamente nula, que satisface $f^2(x) = \int_0^x f(t) \frac{\sin(t)}{3 + \cos(t)} dt$. Calcular f(0) y f(x).
- 3.- Sea $f(x)=(3x-1)e^{2x}$. Calcular el área de la región comprendida entre el gráfico de f y el eje x para $0 \le x \le 1$.
- **4.-** Hallar todos los $x \in \mathbb{R}$ para los cuales la serie $\sum_{n=1}^{\infty} \frac{1}{(6n+1)3^n(x-5)^n}$ converge.
- \mathcal{X} Sean f(x) una función con tres derivadas continuas, tal que $|f^{(3)}(x)| \leq \frac{1}{3}$ para todo $x \in \mathbb{R}$, y $P(x) = 4(x-1) + 5(x-1)^2$ su polinomio de Taylor de orden 2 en $x_0 = 1$. Hallar Q(x), el polinomio de Taylor de orden 2 de $g(x) = 2x + 3x^2 + f(5-2x)$ en $x_1 = 2$ y estudiar el error que se comete al calcular Q(2,1) en lugar de g(2,1).
- **2.** Sea f tal que $f'(x) = (21x^2 + a) \ln(x)$ y $f(1) = -\frac{7}{3}$ y f(e) = 0. Hallar el valor de a.
- **%.** Calcular el área encerrada entre los gráficos de $f(x) = 2(\sqrt{x} 4) + 2$ y de $g(x) = (\sqrt{x} 4)^2 + 2$.
- **A.** Hallar todos los $x \in \mathbb{R}$ para los cuales la serie $\sum_{n=1}^{\infty} \frac{2n^2+1}{n+2^n} \left(\sqrt[3]{x-4}\right)^n$ converge.
- Sea f(x) = 4 + 3x² 2x + √1 7x. Calcular P(x), el polinomio de Taylor de orden 2 de f(x) en x₀ = 0. Acotar el error que se comete al aproximar f(-1/7) por P(-1/7)
- 2.- Sea $f: [1, +\infty) \to (0, +\infty)$ derivable tal que $f'(x) = \frac{4x \ln(x)}{f^2(x)}$ y además f(1) = 3. Obtener la expresión de f(x).
- 3.- Calcular el área de la región comprendida entre la recta y = x y el gráfico de $f(x) = \frac{21x}{5x^2 + 1}$
- 4.- Hallar todos los $x \in \mathbb{R}$ tales que $\sum_{n=1}^{\infty} \frac{\sqrt{n+10}+\sqrt{n}}{4^n} (3x-1)^n$ converge.
- 1.- Sean f(x) una función con tres derivadas continuas, tal que $|f^{(3)}(x)| \le \frac{1}{4}$ para todo $x \in \mathbb{R}$, $y = P(x) = 5(x-1) + 2(x-1)^2$ su polinomio de Taylor de orden 2 en $x_0 = 1$. Hallar Q(x), el polinomio de Taylor de orden 2 de $g(x) = x + 5x^2 + f(7-2x)$ en $x_1 = 3$ y estudiar el error que se comete al calcular Q(3,1) en lugar de g(3,1).
- 2.- Sea f tal que $f'(x) = (12x^2 + a) \ln(x)$ y $f(1) = -\frac{4}{3}$ y f(e) = 0. Hallar el valor de a.
- 3.- Calcular el área encerrada entre los gráficos de $f(x) = 4(\sqrt{x} 3) + 1$ y de $g(x) = (\sqrt{x} 3)^2 + 1$.
- 4.- Hallar todos los $x \in \mathbb{R}$ para los cuales la serie $\sum_{n=1}^{\infty} \frac{2n^2+2}{n+3^n} \left(\sqrt[3]{x-6}\right)^n$ converge.