tags: 112 學年 上學期 讀書計畫

# 資料庫系統概論作業 HW 3 報告

- 資料庫系統概論作業 HW 3 報告
- 2-1. Query Processing (39%)
  - o 2-1-1. select operation (12%, 4% each)
    - <u>type 1</u>
    - <u>type 2</u>
    - <u>type 3</u>
  - 2-1-2. join operation (27%, 9% each)
    - <u>a.</u>
    - <u>b.</u>
    - <u>C.</u>
- 2-2. 2PL (61%)
  - · 2-2-1 (21%)
  - 2-2-2 (40%, 10% each)
    - <u>a.</u>
    - <u>b.</u>
    - <u>C.</u>
    - <u>d.</u>

# 2-1. Query Processing (39%)

## 2-1-1. select operation (12%, 4% each)

### type 1

```
for each tuple s in Staff
  for each tuple b in Branch
      check if s.position = 'Manager' and
      b.city = 'London' and
      s.branchNo = b.branchNo
```

### type 2

```
op1 <- empty set
for each tuple s in Staff
  for each tuple b in Branch
      if s.branchNo = b.branchNo then
            op1 <- op1 union {s,b} (except b.branchNo attribute)

for each tuple item in op1
    check if item.city = 'London' and item.position = 'Manager'</pre>
```

### type 3

```
tempStaff <- empty set
for each tuple item in Staff
  if item.position = 'Manager' then
        tempStaff <- tempStaff union {item}

tempBranch <- empty set
for each tuple item in Branch
  if item.city = 'London' then
        tempBranch <- tempBranch union {item}

for each tuple s in tempStaff
  for each tuple b in tempBranch
        check if s.branchNo = b.branchNo</pre>
```

## 2-1-2. join operation (27%, 9% each)

#### a.

We will choose  $R:=r_2$  as the outer relation, because this way can minimize the block transfer.

We calculate some information first.

```
egin{aligned} R := r_2, \ S := r_1 \ b_r &= 40000/20 = 2000, \ b_s &= 30000/10 = 3000, \ n_r &= 40000, \ n_s &= 30000. \end{aligned}
```

#### block transfer

We scan R tutples once:  $b_r$ For each tuple in  $R_r$  must scan S:  $n_r imes b_s$ 

Total =

$$b_r + n_r \times b_s = 3000 + 30000 \times 2000 = 6 \times 10^7 + 3 \times 10^3 = 60003000$$

#### seeks

 $n_r+1$  (find S header cost  $n_r$  times and find R header cost 1 times)

Total = 
$$n_r + 1 = 30000 + 1 = 30001$$

#### pseudo code

```
for each tuple r in R # b_r transfer
  for each tuple s in S # n_r * b_s transfer
      check if r.C == s.C
```

### b.

Since the pseudo code is as the a., therefore, the number of block transfer is the same.

We will choose  $R:=r_2$  as the outer relation, because this way can minimize the block transfer.

We calculate some information first.

$$egin{aligned} R := r_2, \ S := r_1 \ b_r &= 40000/20 = 2000, \ b_s &= 30000/10 = 3000, \ n_r &= 40000, \ n_s &= 30000. \end{aligned}$$

#### block transfer

We scan R tutples once:  $b_r$ For each tuple in  $R_r$  must scan S:  $n_r imes b_s$ 

$$b_r + n_r \times b_s = 3000 + 30000 \times 2000 = 6 \times 10^7 + 3 \times 10^3 = 60003000$$

#### seeks

 $n_r imes b_s + b_r$  (find S header cost  $n_r b_s$  times and find R header cost  $b_r$  times)

Total =  $n_r b_s + b_s = 60003000$ 

#### pseudo code

#### C.

We will choose  $r:=r_1$  as the outer relation, because this way can minimize the block transfer.

We calculate some information first.

$$egin{aligned} R := r_1, \ S := r_2 \ b_r &= 40000/20 = 2000, \ b_s &= 30000/10 = 3000 \ n_r &= 40000, \ n_s &= 30000. \end{aligned}$$

#### block transfer

We scan S tutples once:  $b_s/100$ 

Total = 
$$b_r imes (b_s/100) + b_r = 2000 imes 30 + 2000 = 62000$$

#### seeks

 $b_r imes b_s/100 + b_r$  (find S header cost  $b_r imes b_s/100$  times and find R header cost  $b_r$  times)

$$b_r imes (b_s/100) + b_r = 2000 imes 30 + 2000 = 62000$$

#### pseudo code

# 2-2.2PL (61%)

## 2-2-1 (21%)

| T1        | Т2        | Т3        | Т4        |
|-----------|-----------|-----------|-----------|
| lock-S(B) | lock-S(B) |           | lock-S(C) |
| Read(B)   | Read(B)   |           | Read(C)   |
|           | lock-S(A) |           | lock-S(A) |
|           | Read(A)   |           | Read(A)   |
|           | Unlock(A) |           | Unlock(C) |
|           | Unlock(B) |           | Unlock(A) |
| lock-X(C) |           | lock-X(A) |           |
| Write(C)  |           | Write(A)  |           |
| Unlock(C) |           | lock-X(B) |           |
| Unlock(B) |           | Write(B)  |           |
|           |           | Unlock(A) |           |
|           |           | Unlock(B) |           |

# 2-2-2 (40%, 10% each)

a.



There is a cycle.

b.

Let priority  $T_1 > T_2 > T_3$ .

| row<br>number | Т1                       | Т2                     | Т3        | reason                 |
|---------------|--------------------------|------------------------|-----------|------------------------|
| 1             | lock-X(A)                |                        |           |                        |
| 2             | Read(A)                  |                        |           |                        |
| 3             |                          |                        | lock-X(C) |                        |
| 4             |                          |                        | Read(C)   |                        |
| 5             |                          | lock-X(B)              |           |                        |
| 6             |                          | Read(B)                |           |                        |
| 7             | lock-S(C) wait<br>for T3 |                        |           | since T3<br>lock-X(C)  |
| 8             | Read(C)                  |                        |           |                        |
| 9             |                          | lock-S(A)<br>abort all |           | since T1 lock-<br>X(A) |
| 10            |                          | Read(A)                |           |                        |
| 11            |                          |                        | lock-S(B) |                        |
| 12            |                          |                        | Read(B)   |                        |
| 13            | Write(A)                 |                        |           |                        |
| 14            | Unlock(A)                |                        |           |                        |
| 15            | Unlock(C)                |                        |           |                        |
| 16            |                          | Write(B)               |           |                        |
| 17            |                          | Unlock(B)              |           |                        |
| 18            |                          | Unlock(A)              |           |                        |
| 19            |                          |                        | Write(C)  |                        |
| 20            |                          |                        | Unlock(C) |                        |
| 21            |                          |                        | Unlock(B) |                        |

## c.

Let priority  $T_1 > T_2 > T_3$ .

| row    | T1        | Т2                       | Т3        | reason                 |
|--------|-----------|--------------------------|-----------|------------------------|
| number |           |                          |           |                        |
| 1      | lock-X(A) |                          |           |                        |
| 2      | Read(A)   |                          |           |                        |
| 3      |           |                          | lock-X(C) |                        |
| 4      |           |                          | Read(C)   |                        |
| 5      |           | lock-X(B)                |           |                        |
| 6      |           | Read(B)                  |           |                        |
| 7      | lock-S(C) |                          | abort all | since T3 lock-<br>X(C) |
| 8      | Read(C)   |                          |           |                        |
| 9      |           | lock-S(A) wait for<br>T1 |           | since T1 lock-<br>X(A) |
| 10     |           | Read(A)                  |           |                        |
| 11     |           |                          | lock-S(B) |                        |
| 12     |           |                          | Read(B)   |                        |
| 13     | Write(A)  |                          |           |                        |
| 14     | Unlock(A) |                          |           |                        |
| 15     | Unlock(C) |                          |           |                        |
| 16     |           | Write(B)                 |           |                        |
| 17     |           | Unlock(B)                |           |                        |
| 18     |           | Unlock(A)                |           |                        |
| 19     |           |                          | Write(C)  |                        |
| 20     |           |                          | Unlock(C) |                        |
| 21     |           |                          | Unlock(B) |                        |

## d.

Let priority  $T_1 < T_2 < T_3$ .

| 2/21 映上0.13   | 具件學系統例調作表 TW 5 報音 - TackinD |                   |          | HackiviD                    |
|---------------|-----------------------------|-------------------|----------|-----------------------------|
| row<br>number | T1                          | Т2                | Т3       | reason                      |
| 1             | Read(A)                     |                   |          |                             |
| 2             |                             |                   | Read(C)  |                             |
| 3             |                             | Read(B)           |          |                             |
| 4             | Read(C)                     |                   |          |                             |
| 5             |                             | Read(A)           |          |                             |
| 6             |                             |                   | Read(B)  |                             |
| 7             | Write(A)<br>abort           |                   |          | since step 5 have<br>read A |
| 8             |                             | Write(B)<br>abort |          | since step 6 have<br>read B |
| 9             |                             |                   | Write(C) |                             |