### **AD 571:** Business Analytics Foundations

### LCR Session (Entire Class) Week 3 (05/23/2023)

#### **AGENDA**

1

Summary Weeks 1 & 2: Q & A

2

**Preparation for Week 3:** 

- A Introduction to Lecture 05 and Lecture 06
- B Individual Exercise: (1) Tutorial for AD571: Preparation for Assignment 3 Descriptive Analytics (2) M3 Module Exercise (Due: 5/29/2023)
- C Group Discussion Forum W3, M3 & Quiz 3: Q & A
- 3 Assignment 3 (due 05/29/2023, 11:59 PM ET): Q & A

#### Summary Weeks 1 & 2: Q & A

Required Tutorials **Syllabus: Questions?** Build Content V Assessments V Tools V **Modules 1-2: Questions?** Tutorial for AD571: Business Running Case: New York City Real Estate **Tutorials:** Tutorial for AD571: Assignment 1 **V-Labs: Technical Solutions** Group Discussion Forum W1 & W2 Tutorial for AD571: Assignment 2 D1: 2.94/4 (73.60%) D2: Graded by Friday (5/26) Tutorial for AD571: Assignment 3 Quizzes: Q1: 3.63/4 (90.87%)

Q2: 3.39/4 (84.76%)

**Assignment 1 & 2: Grades Pending** 

Tutorial for AD571: Assignment 4

Partner Content v

#### **Preparation for Week 3:**

#### Module 3

May 23 - May 29

Topics: Lecture 5: Descriptive Business Analytics: Basic Concepts and

Applications

Lecture 6: Modeling and Applications of Probability Distributions

Readings: Lecture 5:

Lecture Notes

• Evans, Chapter 4

Lecture 6:

• Lecture Notes

• Evans, Chapter 5

Tutorials: Assignment 3 Tutorial: Descriptive Analytics

K-Means Clustering

T-Test Analysis in R

Discussions: Discussion 3

• Initial post due Thursday, May 25 at 11:59 PM ET.

. Respond to at least two of your classmates' posts by Monday,

May 29 at 11:59 PM ET.

Assignments: Assignment 3: Descriptive Analytics, due Monday, May 29 at 11:59

PM ET

Evans Textbook: Module 3 Exercises, due Monday, May 29 at 11:59

PM ET

Assessments: Quiz 3, available from Saturday, May 27 at 9:00 AM ET to Monday,

May 29 at 11:59 PM ET

Live Module 3 Live Classroom Session — Tuesday, May 23, at 8:00 PM ET

Classroom:

Technical Session — Thursday, May 25, at 8:00 PM ET





### **Preparation for Week 3**

Figure 5.1: Connecting Managerial Decision-Making Process with Business Analytics Process and the Implementation of Selected Business Analytics Methods & Models: Descriptive Analytics



**Descriptive Statistics** 

Clustering

Segmentation

**Profiling** 

t-Test Analysis

**Evaluation of the Results:** Working with KPI's

#### Recommendations:

- → Business Analytics Process (overall & next steps)
- → Managerial Decision-Making Process (overall & next steps)





### **Preparation for Week 3: Descriptive Analytics**

Simplest form of descriptive analytics would be a **historical perspective** on company performance such as sales, turnover, churn, finances, etc.



#### **Goals:**

Analysis of historical data
Identification of patterns
Identification of trends
Identification of structure in the data
KPI analysis
Frequency analysis
Root cause of failure

#### **Answers to Questions:**

How much was sold in a market or region?
What was the revenue last Quarter/Year?
Where is the lowest productivity?
What are our customer segments?
Why things are happening?
Who are my best customers?
What is the difference between customers?



### **Preparation for Week 3: Descriptive Analytics**

#### **Standard Tools**

Reports

**Dashboards** 

Drill-Down

Visualization

Business Intelligence Platform

Spreadsheets

Statistical Software

#### **Statistical Methods**

Variation

**Central Tendency** 

**Distributions** 

Correlations

**Exploratory Factor Analysis** 

**Principal Component Analysis** 

**Trend Analysis** 

**Cluster Analysis** 

**Descriptive Statistics** 

**Normality Analysis** 

Homogeneity Analysis

Statistical Inference

Hierarchical Cluster Analysis

**Sentiment Analysis** 

**Segmentation Analysis** 

### **Preparation for Week 3: Descriptive Analytics**

#### 4 C's of Descriptive Analytics:

- 1. Category (Categorize)
- 2. Characteristic (Characterize)
- 3. Consolidation (Consolidate)
- 4. Classification (Classify)







### **Preparation for Week 3: Descriptive Analytics: Standard Deviation**







### **Preparation for Week 3: Descriptive Analytics: Correlation**





#### **Preparation for Week 3: Descriptive Statistics Use Case**

Although descriptive analytics is important to development of answers to some questions, the value derived is in the way descriptive analytics serves as a precursor to predictive analytics.

The goal is to leverage past information to forecast possible future outcomes.

#### Benefitting from analytics: Increased asset utilization

The Dow Chemical Company sought to increase facility utilization across its office and lab space while improving capital planning, real estate lease management, operations, facility maintenance and energy consumption on a global basis. Using descriptive analytics, Dow was able to produce reliable data for decisions that helped the company identify under-utilized space, achieve a 20 percent increase in facility use and generate a savings of approximately USD4 million annually via space consolidation.

By examining key metrics and key performance indicators of energy use or vehicle maintenance, for example, descriptive analytics can produce indicators such as cost per square foot, kilowatt hours per person or mean time between failures for specific asset issues. By combining information from different, often disconnected sources and then comparing and contrasting data, descriptive analytics can provide a comprehensive view and context for what has happened, as well as current asset status.

Source: IBM Watson IoT (https://www.ibm.com/downloads/cas/3V9AA9Y5)



### **Preparation for Week 3: t-Test**





Based on sampling, is there a statistically significant difference between a group before and after exposure to a manipulation?

Based on sampling, is there a statistically significant difference between 2 groups?

Think of a few examples of interest to you...





#### **Preparation for Week 3: T-Test**



```
# T-Test with NEighborhood X;
# H0 = Both are equal, or there is no difference
# Ha = NEighborhood X less than the mean price of Neighborhood Y,

NeighborhoodX<-filter(.data = NYCHistorical, SalePrice!=0, NbhoodID==999)
NEighborhoodY<-filter(.data = NYCHistorical, SalePrice!=0, NbhoodID==000)
t.test(x=NeighborhoodX$SalePrice, y=NeighborhoodY$SalePrice, alternative = "less", mu=0, conf.level = 0.95)</pre>
```





### **Preparation for Week 3: Clustering**



Source: https://stats.stackexchange.com





### **Preparation for Week 3: Clustering Applications**





### **Google Search Results**

Finds meaningful and relevant groups and collections or results



http://searchenginemarketingland.com







# Market research professionals generating clusters from:

- Survey Data
- Panels
- Polls
- Transaction Data
- Behavior Data
- CRM Data

|    | Α         | В          |  |
|----|-----------|------------|--|
| 1  | Survey ID | Q6-Organic |  |
| 2  | 1         | 3          |  |
| 3  | 2         | 4          |  |
| 4  | 3         | 4          |  |
| 5  | 4         | 5          |  |
| 6  | 5         | 5          |  |
| 7  | 6         | 5          |  |
| 8  | 7         | 4          |  |
| 9  | 8         | 4          |  |
| 10 | 9         | 4          |  |
| 11 | 10        | 5          |  |

http://researchgate.net



### **Preparation for Week 3: Clustering**

#### **Types of Clustering:**

- 1. Hierarchical Clustering Useful for organization data and the tree can be stopped at any level.
- 2. Distribution-Based Clustering Probability of belonging to a cluster decreases with distance from center.
- 3. Density Based Clustering High density of points are placed into clusters. Useful for low dimensional data
- 4. Centroid Based Clustering High efficiency and simpler clustering process but not the best when there are outliers.



Source: https://cran.r-project.org

Source: https://cran.r-project.org





### **Preparation for Week 3: Clustering**

#### DEMO

```
#K-Means Clustering
DataFrame1
DataFrame1
DataFrame1
DataFrame()

DataFrame2<-group_by(DataFrame1,NbhoodID)%>%
    summarise(avgSalePrice=mean(SalePrice),avgGrossSqFt=mean(GrossSqFt),TotalUnits=sum(TotalUnits))

zscores<-scale(DataFrame2[c(-1)])

k<-kmeans(zscores,centers=5)
    cluster<-cbind(k$cluster,DataFrame2)
    view(cluster)

ggplot(cluster)+geom_point(mapping = aes(x=TotalUnits,y=avgSalePrice,size=avgGrossSqFt,color=k$cluster))
```



### **Preparation for Week 3: Segmentation**

Geographic

Segmentation Modeling Customer Type or Size

Industry

Product Category

Purchase Frequency/ Volume



#### **Use Cases of Segmentation:**

- **Email Marketing**
- **Digital Advertising**
- **Prospecting**
- **Customer Analytics**
- **Creative Decisions**
- **Communication Decisions**



### **Preparation for Week 3: Profiling**

Behavior

Detailed Revenue Attribution

Detailed Profit Attribution

Detailed Cost Attribution Specific Products Sold

#### **Preparation for Week 3:** Group Discussion Forum W3

#### Please select just one of the bullet points listed below.

- Discuss the benefits of the different descriptive analytics techniques and how they can be integrated into the decision process
- Discuss the most useful dashboard elements or visualizations in your profession
- Discuss the meaning of Business Intelligence and its relevance to descriptive analytics
- Explain the significance of descriptive analytics to your field of work
- Discuss the possible applications of tools from Lectures 5 and 6
- Discuss topics of your choice from Lecture 5 and Lecture 6

### **Preparation for Week 3:** Quiz 3: Q & A

Quiz 3 consists of 10 multiple choice and true-false questions.

Quiz 3 will cover information from the

- Online lecture notes (Lecture 05 and Lecture 06),
- > Evans Chapter 4 and Chapter 5

The quiz is open-book.

#### **Format**

- You will have 30 minutes to complete the quiz. There is a clock in the upper right corner of the screen keeping time for the exam.
- > You can take the quiz only once.
- > Each question will be delivered one at a time.
- You can revisit the questions and change your answers as many times as you want before submitting the exam.



## Questions are located at the end of Chapter 4 Section: Problems and Exercises

| Group 1 - Roman         |                      | Group 2 - Vivek        |                      |
|-------------------------|----------------------|------------------------|----------------------|
| Due Date                | Monday, May 29, 2023 | Due Date               | Monday, May 29, 2023 |
| Student                 | Chapter/Question     | Student                | Chapter/Question     |
| Yurui Chen              | Chapter 4 - #46      | Audrey Chan            | Chapter 4 - #46      |
| Victor Brice Fedjo Yeme | Chapter 4 - #10      | Flori-Ann DeLa Cruz    | Chapter 4 - #10      |
| Jonathan Garrison       | Chapter 4 - #13      | Marcel Fernandes Silva | Chapter 4 - #13      |
| Payton Hatcher          | Chapter 4 - #40      | Avirul Islam           | Chapter 4 - #40      |
| Faria Hossain           | Chapter 4 - #48      | Jiarui Lin             | Chapter 4 - #48      |
| Jiamin Li               | Chapter 4 - #7       | Joyce Machau           | Chapter 4 - #7       |
| Kaitlynn Nguyen         | Chapter 4 - #44      | Nicole Matarazzo       | Chapter 4 - #44      |
| Miranda Petrillo        | Chapter 4 - #53      | Timothy Olakunle       | Chapter 4 - #53      |
| Haoqiang Qi             | Chapter 4 - #57      | Olu Olayeye            | Chapter 4 - #57      |
| Nesteshia Riddell-Dell  | Chapter 4 - #62      | Sandhya Ramani         | Chapter 4 - #62      |
| Cassandra Simoneau      | Chapter 4 - #51      | Sri Amruta Sripada     | Chapter 4 - #51      |
| Yang Yang               | Chapter 4 - #63      | Samuel Stevens         | Chapter 4 - #63      |
| Samuka Yekeh            | Chapter 4 - #44      | Jack Swartz            | Chapter 4 - #44      |

#### **Business Running Case—Targeted Outcomes:**

#### **Application of Descriptive Analytics**



Term Project A1: Data Import and Visualization W-2 Term Project A2. Data Manipulation In R Term Project A3. Descriptive W-3 Analytics Techniques In R Term Project A4. Predictive Analytics W-4 Techniques In R Term Project A5. Prescriptive W-6 Analytics Techniques in R and Excel

#### V-Lab Instructions

W-7

All course tools and SQL Server can be accessed from the V-Lab, which is included in tuition.

Assignment 3 Requires access to R Studio and SQL Server

**Term Project A6. Term Project Final** 

**Presentation** Model Deployment

#### **Assignment 3: Descriptive Analytics**

**Assignment 3 Objective:** Prepare a managerial report, starting with an executive summary; expected length up to 3-4 pages APA format, excluding cover page, table of content, and appendixes.

- 1. Provide several descriptive statistics for real estate sales in your neighborhood. Include:
  - a. The total number of sales in your neighborhood since 2009
  - b. The mean sale price and gross square footage for residential properties in your neighborhood since 2009
  - c. A five-number summary for both sale price and gross square footage for residential properties in your neighborhood since 2009
  - d. The proportion of sales of residential, commercial, mixed, and other properties in your neighborhood since 2009
  - e. The standard deviation of sale prices for residential properties in your neighborhood since 2009
  - f. The correlation between sale price and gross square feet for residential properties in your neighborhood since 2009
- 2. Perform k-means clustering, comparing your neighborhood to other neighborhoods. Choose at least 3 of the following KPI's
  - a. Median Sale Price for residential properties since 2009
  - b. Number of sales for residential properties since 2009
  - c. Standard deviation of sales of residential properties since 2009
  - d. Proportion of residential sales since 2009
  - e. Price of 1 gross square foot of residential real estate since 2009
- 3. Choose one other neighborhood, and test the hypothesis that, starting in 2009, the average residential property costs more, less, or a different amount in your neighborhood (Note: this requires a t-test.)
- 4. Write 3-4 pages summarizing your findings with a focus on the output, interpretation of the output, and what the insights mean for our decision-making process.

### LOCATION OF THE INFORMATION AND SOFTWARE

#### **Course Website**

Page on Blackboard: "Assignments">>>Assignment 3

**Tutorials Section** 

Link

Tutorial - Assignment 3

Q & A