UCB - CS189 Introduction to Machine Learning Fall 2015

Lecture 2: Linear Classifiers

Isabelle Guyon
ChaLearn

Isabelle Guyon

The DREAM

The REALITY

ChaLearn ML challenges

AutoML challenge

Why would the crowd do that?

\$30000

Fame

Learning

Fun http://codalab.org/AutoML

Workshop

Come to my office hours...

Wed 2:30-4:30 Soda 329

\$30000

Fame

Learning

Fun http://codal

Workshop

http://codalab.org/AutoML

Come to my office hours...

Wed 2:30-4:30 Soda 329

Last time

Parametric vs. Non-Parametric

- Linear Classifier (Parametric)
 - small number of parameters, e.g. w and b
 - very fast at test time: w.x + b
 - after training is done, can throw away the data!
- Nearest-Neighbor (Non-Parametric)
 - Number of parameters grows with size of dataset
 - Very slow at test time -- O(N)
 - No training
- Which one works better?

Come to my office hours... Wed 2:30-4:30 Soda 329

Today

Parametric Non-Parametric

DUAL representations
via the
"kernel trick"

Math prerequisites

- Vector
- Dot product (scalar product)
- Euclidean norm
- Normalizing a vector
- Cosine between two vectors
- Standardizing a vector
- Correlation between two vectors
- Linearity
- Hyperplane

MNIST data

Classification Problems (Homework)

Reminder:

Creating Feature Vector

Reminder:

Creating Feature Vector

Reminder:

Creating Feature Vector

Another example, extract features: **x** = [amount_ink, shape_elongation]

Separate "0" and "1" in 2 dimensions

Separate "0" and "1" in 2 dimensions

0

x₂ = shape_elongation

 $x_1 = amount_ink$

The zeros are written with more ink and are less elongated. The ones are written with less ink and are more elongated.

Separate "0" and "1" matrix representation

		<u></u>	1
	ink	elongation	
/ / \	[-0.8147 -0.6058 -0.7270	0.6576 0.5706 0.8572	y = [1
/ 1	-0.8134 -0.4324	0.5854 0.4003	1 1
0	0.4975	-0.1419	-1
0	0.2785 0.5469	-0.4218 -0.7157	-1 -1
0	0.7575 0.8649	-0.7922 -0.8595]	-1 -1]
•	3.3013		- J

Heat map

Learning problem

Data matrix: X

<u>N lines = patterns</u> (data points, examples): samples, patients, documents, images, ...

d columns = features: (attributes,
input variables): genes, proteins,
words, pixels, ...

Unsupervised learning

Is there structure in data?

Supervised learning

Predict an outcome y.

Conventions

Separate "0" and "1" How to build your first linear classifier?

Separate "0" and "1" How to build your first linear classifier?

Separate "0" and "1" 1) Find the class "centroids"

Separate "0" and "1" 1) Find the class "centroids"

Separate "0" and "1" 2) Subtract w^[0] from w^[1]

Separate "0" and "1" 2) Subtract w^[0] from w^[1]

Separate "0" and "1"

3) Get the separaring "hyperplane"

Separate "0" and "1" 4) ALL the "math"

```
Input vector \mathbf{x} = [x_1, x_2]
x_1 = amount_ink
x_2 = shape_elongation
Target value y = \pm 1
+1 = "one"; -1 = "zero"
Training examples:
\{ (\mathbf{x}^1, \mathbf{y}^1), (\mathbf{x}^2, \mathbf{y}^2), \dots, (\mathbf{x}^N, \mathbf{y}^N) \}
Class centroids:
\mathbf{w}^{[0]} \sim \sum_{\{\mathbf{v}^{k}==-1\}} \mathbf{x}^{k}
                                (~ means "proportional", omitting to divide by class cardinality)
\mathbf{w}^{[1]} \sim \sum_{\{v^{k}=+1\}} \mathbf{x}^{k}
Weight vector:
\mathbf{w} = \mathbf{w}^{[1]} - \mathbf{w}^{[0]} \sim \sum_{k} y^{k} \mathbf{x}^{k}
```

(for "balanced" classes)

29

Separate "0" and "1"

4) ALL the "math" (continued)

Decision function:

$$f(x) = w \cdot x$$

f(x) < 0, decide that this is a "zero"

Dot product:

$$\mathbf{W} \cdot \mathbf{X} = \mathbf{W}_1 \, \mathbf{X}_1 + \mathbf{W}_2 \, \mathbf{X}_2$$

This is a weighted sum.

Equivalent "centroid" method:

$$f(x) = w^{[1]} \cdot x - w^{[0]} \cdot x$$

This is because $\mathbf{w} = \mathbf{w}^{[1]} - \mathbf{w}^{[0]}$.

Decide "one" if $\mathbf{w}^{[1]} \cdot \mathbf{x} > \mathbf{w}^{[0]} \cdot \mathbf{x}$ and "zero" otherwise A dot product is a similarity measure.

Equivalent "kernel" method:

This is because $\mathbf{w} = \sum_{k} y^{k} \mathbf{x}^{k}$

$$f(\mathbf{x}) = \sum_{k} \mathbf{y}^{k} \mathbf{x}^{k} \cdot \mathbf{x} = \sum_{k} \alpha^{k} k(\mathbf{x}^{k}, \mathbf{x})$$

(in the case of identical number of

Centroid methods don't always work...

Centroid methods don't always work...

Centroid methods don't always work...

Demo of SVM

(downloadable from bCourses)

Linear Models

"Regular" linear models, <u>linear in their inputs and parameters</u>

$$f(x) = w \cdot x + b = \sum_{i=1:d} w_i x_i + b$$

Models *linear in their parameters*, NOT in their inputs.

$$f(x) = w \cdot \Phi(x) + b = \sum_{i} w_{i} \phi_{i}(x) + b$$
 (Perceptron)

$$f(\mathbf{x}) = \sum_{k=1:N} \alpha_k k(\mathbf{x}^k, \mathbf{x}) + b$$
 (Kernel method)

Linear Models

"Regular" linear models, <u>linear in their inputs and parameters</u>

$$f(x) = w \cdot x + b = \sum_{i=1:d} w_i x_i + b$$

Models *linear in their parameters*, NOT in their inputs.

$$f(\mathbf{x}) = \mathbf{w} \cdot \Phi(\mathbf{x}) + b = \sum_{i} w_{i} \phi_{i}(\mathbf{x}) + b$$
 (Perceptron)

$$f(\mathbf{x}) = \sum_{k=1:N} \alpha_k k(\mathbf{x}^k, \mathbf{x}) + b$$
 (Kernel method)

Artificial Neurons

McCulloch and Pitts, 1943

$$f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + \mathbf{b}$$

Linear decision boundary

hyperplane

Perceptron

Non-linear decision boundary

Linear decision boundary in Φ -space

Summary

- We represent patterns as vectors x in a space of d dimensions.
- A "discriminant function" f(x) is a function such that f(x) > 0 for one class and f(x) < 0 for the other. f(x)=0 is the equation of the decision boundary.
- Given a weight vector **w**, f(**x**)=**w**.**x** is a linear discriminant function. The corresponding decision boundary **w**.**x**=0 is a hyperplane (a subspace of dimension (d-1)).
- Feature transforms $\mathbf{x} \to \Phi(\mathbf{x})$ permit to built non-linear decision boundaries, while using discriminant linear in \mathbf{w} (NOT in \mathbf{x}).

Come to my office hours... Wed 2:30-4:30 Soda 329

Next time

- With linear threshold units ("neurons") we can build:
 - Linear discriminant
- 1 DUAL
- -Kernel methods

NON PARAMETRIC

PARAMETRIC

- Neural networks
- The architectural hyper-parameters may include:

 - The kernel

Control the COMPLEXITY

- The number of hidden units.
- "Complex" models are prone to overfitting.