Tutorial - 3

Carrier Transport

(1) For the given carrier profile and E-field, determine the direction of fluxes and currents.

- 6.7 A laser beam striking a uniformly doped p-type bar of silicon maintained at room temperature causes a steady state excess of $\Delta n_{\rm p}=1011/{\rm cm}^3$ electrons at x=0. Note that the laser-induced photogeneration only occurs at x=0. As pictured in Fig. P6.7, the bar extends from x=-L to x=+L and $\Delta n_{\rm p}(-L)=\Delta n_{\rm p}(+L)=0$. $N_A=1016/{\rm cm}^3$ and $\mathcal{E}\cong 0$ inside the bar.
 - (a) What are the dominant physical processes that determine the steady-state excess electron concentration $[\Delta n_p(x)]$ in the regions of the bar removed from x = 0? Your choices are drift, diffusion, recombination, and generation.
 - (b) Sketch the expected general form of $\Delta n_p(x)$ inside the bar $(-L \le x \le L)$ under steady state conditions.
 - (c) Does low level injection exist under steady state conditions? Explain.
 - (d) Reduced to the simplest possible form, write down the equation that must be solved to determine $\Delta n_p(x)$ for $0 \le x \le L$.
 - (e) What is the general solution to the part (d) equation?
 - (f) What are the boundary conditions that must be applied in solving the part (d) equation to determine the solution constants?
 - (g) Complete the solution by applying the boundary conditions to obtain $\Delta n_p(x)$ for $0 < x \le L$.
 - (h) What is the limit of the part (g) solution if $L \rightarrow 00$?
 - (i) What is the limit of the part (g) solution if $L \ll L_N$, where $L_N \equiv \sqrt{DnTN}$ is known as the minority carrier diffusion length?

6.8 A short *n*-type GaAs bar of length *L* (see Fig. P6.8) is subject to a perturbation such that, under steady-state conditions,

$$\Delta p_n(x) = \Delta p_{n0}(1 - x/L) \qquad \dots 0 \le x \le L$$

The GaAs bar is uniformly doped with $N_{\rm D}=10^{16}/{\rm cm}^3$ donors and $N_{\rm A}=5\times10^{15}/{\rm cm}^3$ acceptors, $\Delta p_{\rm n0}=10^{10}/{\rm cm}^3$, and $T=300~{\rm K}$.

Figure P6.8

- (a) Characterize the bar under *equilibrium* conditions by providing numerical values for (i) n_{ij} (ii) n_{0j} and (iii) p_{0j} .
- (b) Does the cited perturbed state correspond to a "low level injection" situation? Explain.
- (c) For the given perturbation it is reasonable to assume $\mathscr{E} \simeq 0$ everywhere in the bar. Given $\mathscr{E} \simeq 0$, sketch the energy band diagram for $0 \le x \le L$ specifically including E_c , E_i , E_v , F_N , and F_P on your diagram. Only the rough positionings of F_N and F_P are required.
- (d) (i) There must be a hole diffusion current in the bar. Explain why in words.
 - (ii) The hole drift current should be negligible compared to the hole diffusion current. Explain why.
 - (iii) Establish an expression for the hole current density.
- (e) Show that the $\Delta p_n(x)$ quoted in the statement of the problem can be obtained by assuming R-G center recombination-generation and "other processes" are negligible inside the bar, solving the simplified minority carrier diffusion equation, and applying the boundary conditions $\Delta p_n(0) = \Delta p_{n0}$, $\Delta p_n(L) = 0$.

6.4 The energy band diagram pictured in Fig. P6.4 characterizes a Si sample maintained at room temperature. Note that $E_F - E_i = E_G/4$ at $x = \pm L$ and $E_i - E_F = E_G/4$ at x = 0.

- (a) The semiconductor is in equilibrium. How does one deduce this fact from the given energy band diagram?
- (b) What is the electron current density (J_N) and hole current density (J_P) at $x = \pm L/2$?
- (c) Roughly sketch n and p versus x inside the sample.
- (d) Is there an electron diffusion current at x = ±L/2? If there is a diffusion current at a given point, indicate the direction of current flow.
- (e) Sketch the electric field (\mathscr{E}) inside the semiconductor as a function of x.
- (f) Is there an electron drift current at $x = \pm L/2$? If there is a drift current at a given point, indicate the direction of current flow.

- 6.5 The energy band diagram characterizing a uniformly doped Si sample maintained at room temperature is pictured Fig. P6.5.
 - (a) Sketch the electron and hole concentrations (n and p) inside the sample as a function of position.
 - (b) Sketch the electron and hole diffusion current densities (J_{N|diff} and J_{P|diff}) inside the sample as a function of position.
 - (c) Sketch the electric field (E) inside the semiconductor as a function of position.
 - (d) Sketch the electron and hole drift current densities (J_{N | drift}) and J_{P | drift}) inside the sample as a function of position.

(5) For a semiconductor with the shown E-K, plot qualitatively the drift velocity as a function of electric field

Bonus part: Can you find the field at peak drift velocity. What knowledge is necessary for that?

- 6.10 Consider a nondegenerate, uniformly doped, p-type semiconductor sample maintained at room temperature. At time t = 0 a pulse-like perturbation causes a small enhancement of the MAJORITY-carrier hole concentration at various points inside the sample. We wish to show that the perturbation in the hole concentration [Δp(t)] will decay exponentially with time and that the decay is characterized by a time constant τ = ε/σ = K_Sε₀/qμ_pN_A. τ is referred to as the dielectric relaxation time—the time it takes for majority carriers to rearrange in response to a perturbation.
 - (a) Write down the continuity equation for holes. (Why not write down the minority carrier diffusion equation for holes?)
 - (b) Write down the properly simplified form of the hole continuity equation under the assumption that R-G center recombination-generation and all "other processes" inside the sample have a negligible effect on Δp(t).
 - (c) Next, assuming that diffusion at all points inside the sample is negligible compared to drift, write down the appropriate expression for J_P. After further simplifying J_P by noting p = N_A + Δp ≃ N_A, substitute your J_P result into the part (b) result.
 - (d) Write down Poisson's equation and explicitly express ρ (the charge density) in terms of the charged entities inside the semiconductor. Simplify your result, noting that N_A ≫ N_D and p ≫ n for the given sample and conditions.
 - (e) To complete the analysis:
 - Combine the part (c) and (d) results to obtain a differential equation for p.
 - (ii) Let $p = N_A + \Delta p$.
 - (iii) Solve for Δp(t). As stated earlier, Δp(t) should be an exponential function of time characterized by a time constant τ = ε/σ.
 - (f) Compute τ for N_A = 10¹⁵/cm³ doped silicon maintained at room temperature.