Control del Péndulo Invertido mediante Lógica Difusa

Guido Valenzano

Facultad de Ingeniería Universidad Nacional de Asunción

23 de febrero de 2017

El Péndulo Invertido

Representación esquemática

Diseño del Controlador

Diagrama de bloques del sistema en lazo cerrado

Diagrama de bloques del FLC

- Selección de las variables de entrada y control. Definir que estados serán observados y que acciones de control serán consideradas.
- Elección de la forma en que las observaciones del proceso serán expresadas como conjuntos difusos.
- Diseño de las reglas. Determinar que reglas serán utilizadas y bajo que condiciones.
- Diseño de la unidad computacional, es decir, proveer los algoritmos para realizar los cálculos difusos.
- Definición de los mecanismos mediante los cuales las decisiones de control difuso pueden transformarse en acciones de control "clásico".

- Selección de las variables de entrada y control. Definir que estados serán observados y que acciones de control serán consideradas.
- Elección de la forma en que las observaciones del proceso serán expresadas como conjuntos difusos.
- Diseño de las reglas. Determinar que reglas serán utilizadas y bajo que condiciones.
- Diseño de la unidad computacional, es decir, proveer los algoritmos para realizar los cálculos difusos.
- Definición de los mecanismos mediante los cuales las decisiones de control difuso pueden transformarse en acciones de control "clásico".

- Selección de las variables de entrada y control. Definir que estados serán observados y que acciones de control serán consideradas.
- Elección de la forma en que las observaciones del proceso serán expresadas como conjuntos difusos.
- Diseño de las reglas. Determinar que reglas serán utilizadas y bajo que condiciones.
- Diseño de la unidad computacional, es decir, proveer los algoritmos para realizar los cálculos difusos.
- Definición de los mecanismos mediante los cuales las decisiones de control difuso pueden transformarse en acciones de control "clásico".

- Selección de las variables de entrada y control. Definir que estados serán observados y que acciones de control serán consideradas.
- Elección de la forma en que las observaciones del proceso serán expresadas como conjuntos difusos.
- Diseño de las reglas. Determinar que reglas serán utilizadas y bajo que condiciones.
- Diseño de la unidad computacional, es decir, proveer los algoritmos para realizar los cálculos difusos.
- Definición de los mecanismos mediante los cuales las decisiones de control difuso pueden transformarse en acciones de control "clásico".

- Selección de las variables de entrada y control. Definir que estados serán observados y que acciones de control serán consideradas.
- Elección de la forma en que las observaciones del proceso serán expresadas como conjuntos difusos.
- Diseño de las reglas. Determinar que reglas serán utilizadas y bajo que condiciones.
- Diseño de la unidad computacional, es decir, proveer los algoritmos para realizar los cálculos difusos.
- Definición de los mecanismos mediante los cuales las decisiones de control difuso pueden transformarse en acciones de control "clásico".

Selección de las variables de entrada y control. Definir que estados serán observados y que acciones de control serán consideradas.

Entradas

- Posición angular θ
- lacktriangle Velocidad angular ω

$\omega \longrightarrow FLC \longrightarrow F$

Salida de control

Fuerza F

Elección de la forma en que las observaciones del proceso serán expresadas como conjuntos difusos.

Entradas

Posición angular θ

$$< X_{\theta}, T_{\theta}(X_{\theta}), U_{\theta}, G_{\theta}, M_{\theta} >$$

lacktriangle Velocidad angular ω

$$< X_{\omega}, T_{\omega}(X_{\omega}), U_{\omega}, G_{\omega}, M_{\omega} >$$

Salida de control

Fuerza F

$$< X_F, T_F(X_F), U_F, G_F, M_F >$$

Entradas: Posición angular

 χ_{θ} Posición angular θ

 $T_{\theta}(X_{\theta})$ Muy negativo, Negativo, Cero, Positivo, Muy positivo

$$U_{\theta}$$
 [-15°, 15°]

 G_{θ}, M_{θ}

Entradas: Velocidad angular

 χ_{ω} Velocidad angular ω

 $T_{\omega}(X_{\omega})$ Muy negativo, Negativo, Cero, Positivo, Muy positivo U_{ω} [-10°, 10°]

 G_{ω}, M_{ω}

Salida: Fuerza

 χ_F Fuerza F

 $T_3(\mathcal{X}_F)$ Muy negativo, Negativo, Cero, Positivo, Muy positivo U_F [-20, 20] N

 G_F, M_F

Diseño de las reglas. Determinar que reglas serán utilizadas y bajo que condiciones.

				θ		
ĺ		MN	N	Z	Р	MP
	MN	MN	MN	N	Z	Р
	N	MN	MN	Z	Р	Р
ω	Z	MN	Ν	Z	Р	MP
	P	N	Ν	Z	MP	MP
	MP	N	Z	Р	MP	MP

Diseño de la unidad computacional, es decir, proveer los algoritmos para realizar los cálculos difusos.

Inferencia Mamdani

Implicación Mínimo

Composición Máximo

Definición de los mecanismos mediante los cuales las decisiones de control difuso pueden transformarse en acciones de control "clásico".

Método de defuzzificación

Método de la Altura (HM) o Promedio Ponderado

$$F = \frac{\sum_{i=1}^{n} c_i(\tilde{F}) \, \mu_i(\tilde{F})}{\sum_{i=1}^{n} \mu_i(\tilde{F})}$$

Ejemplo

Ejemplo

Si las entradas del sistema son:

$$\theta = 3.2^{\circ}$$

$$\omega = -4^{\circ}/s$$

Encontrar:

- Las entradas difusas $\tilde{ heta}$ y $\tilde{\omega}$
- Las reglas que fueron activadas
- ightharpoonup La salida difusa \tilde{F}
- La salida de control clásico F

$$\theta = 3.2^{\circ} \tag{1}$$

$$\tilde{\theta}_{3.2} = \frac{0.36}{Z} + \frac{0.64}{P} \tag{2}$$

$$\omega = -4^{\circ}/s \tag{3}$$

$$\tilde{\omega}_{-4} = \frac{0.2}{MN} + \frac{0.8}{N} \tag{4}$$

$$\tilde{\theta}_{3.2} = \frac{0.36}{Z} + \frac{0.64}{P}$$
$$\tilde{\omega}_{-4} = \frac{0.2}{MN} + \frac{0.8}{N}$$

				θ		
İ		MN	N	Z	Р	MP
	MN	MN	MN	Ν	Z	Р
	N	MN	MN	Ζ	Р	Р
ω	Z	MN	Ν	Z	Р	MP
	P	N	Ν	Z	MP	MP
	MP	N	Z	Р	MP	MP

$$\tilde{\theta}_{3.2} = \frac{0.36}{Z} + \frac{0.64}{P}$$
$$\tilde{\omega}_{-4} = \frac{0.2}{MN} + \frac{0.8}{N}$$

				θ		
		MN	N	Z	Р	MP
	MN	MN	MN	Ν	Z	Р
	N	MN	MN	Ζ	Р	Р
ω	Z	MN	Ν	Z	Р	MP
	P	N	Ν	Z	MP	MP
	MP	N	Z	Р	MP	MP

$$\tilde{F} = \frac{}{N} + \frac{}{Z} + \frac{}{P}$$

Valor Negativo

if
$$\tilde{\theta} = \frac{0.36}{Z}$$
 and $\tilde{\omega} = \frac{0.2}{MN}$ then $\tilde{F} = \frac{\min(0.36, 0.2)}{N} = \frac{0.2}{N}$

Valor Negativo

if
$$\tilde{\theta} = \frac{0.36}{Z}$$
 and $\tilde{\omega} = \frac{0.2}{MN}$ then $\tilde{F} = \frac{\min(0.36, 0.2)}{N} = \frac{0.2}{N}$

Valor Positivo

if
$$\tilde{\theta} = \frac{0.64}{P}$$
 and $\tilde{\omega} = \frac{0.8}{N}$ then $\tilde{F} = \frac{\min(0.64, 0.8)}{P} = \frac{0.64}{P}$

Valor Negativo

if
$$\tilde{\theta} = \frac{0.36}{Z}$$
 and $\tilde{\omega} = \frac{0.2}{MN}$ then $\tilde{F} = \frac{\min(0.36, 0.2)}{N} = \frac{0.2}{N}$

Valor Positivo

$$\text{if}\quad \tilde{\theta}=\frac{0.64}{P}\quad \text{and}\quad \tilde{\omega}=\frac{0.8}{N}\quad \text{then}\quad \tilde{F}=\frac{\min(0.64,0.8)}{P}=\frac{0.64}{P}$$

Valor Cero

$$\begin{array}{lll} \text{if} & \tilde{\theta} = \frac{0.36}{Z} & \text{and} & \tilde{\omega} = \frac{0.8}{N} & \text{then} & \tilde{F} = \frac{\min(0.36,0.8)}{Z} = \frac{0.36}{Z} \\ \\ \text{if} & \tilde{\theta} = \frac{0.64}{P} & \text{and} & \tilde{\omega} = \frac{0.2}{MN} & \text{then} & \tilde{F} = \frac{\min(0.64,0.2)}{Z} = \frac{0.2}{Z} \end{array} \right\}$$

Valor Cero

$$\begin{array}{lll} \text{if} & \tilde{\theta} = \frac{0.36}{Z} & \text{and} & \tilde{\omega} = \frac{0.8}{N} & \text{then} & \tilde{F} = \frac{\min(0.36,0.8)}{Z} = \frac{0.36}{Z} \\ \text{if} & \tilde{\theta} = \frac{0.64}{P} & \text{and} & \tilde{\omega} = \frac{0.2}{MN} & \text{then} & \tilde{F} = \frac{\min(0.64,0.2)}{Z} = \frac{0.2}{Z} \\ \end{array} \right\}$$

Valor Cero

$$\begin{array}{lll} \text{if} & \tilde{\theta} = \frac{0.36}{Z} & \text{and} & \tilde{\omega} = \frac{0.8}{N} & \text{then} & \tilde{F} = \frac{\min(0.36,0.8)}{Z} = \frac{0.36}{Z} \\ \text{if} & \tilde{\theta} = \frac{0.64}{P} & \text{and} & \tilde{\omega} = \frac{0.2}{MN} & \text{then} & \tilde{F} = \frac{\min(0.64,0.2)}{Z} = \frac{0.2}{Z} \\ \end{array} \right\}$$

$$\tilde{F} = \frac{\text{máx}(0.36, 0.2)}{Z} = \frac{0.36}{Z}$$

Valor Cero

$$\begin{array}{lll} \text{if} & \tilde{\theta} = \frac{0.36}{Z} & \text{and} & \tilde{\omega} = \frac{0.8}{N} & \text{then} & \tilde{F} = \frac{\min(0.36,0.8)}{Z} = \frac{0.36}{Z} \\ \text{if} & \tilde{\theta} = \frac{0.64}{P} & \text{and} & \tilde{\omega} = \frac{0.2}{MN} & \text{then} & \tilde{F} = \frac{\min(0.64,0.2)}{Z} = \frac{0.2}{Z} \\ \end{array} \right\}$$

$$\tilde{F} = \frac{\text{máx}(0.36, 0.2)}{Z} = \frac{0.36}{Z}$$

Valor final

$$\tilde{F} = \frac{0.2}{N} + \frac{0.36}{Z} + \frac{0.64}{P} \tag{5}$$

$$\tilde{F} = \frac{0.2}{N} + \frac{0.36}{Z} + \frac{0.64}{P}$$

$$F = \frac{\sum_{i=1}^{n} c_i(\tilde{F}) \,\mu_i(\tilde{F})}{\sum_{i=1}^{n} \mu_i(\tilde{F})}$$

$$F = \frac{\sum_{i=1}^{n} c_i(\tilde{F}) \ \mu_i(\tilde{F})}{\sum_{i=1}^{n} \mu_i(\tilde{F})}$$
$$F = \frac{-\frac{20}{3} \times 0.2 + 0 \times 0.36 + \frac{20}{3} \times 0.64}{0.2 + 0.36 + 0.64} = \frac{22}{9}$$

$$F = \frac{\sum_{i=1}^{n} c_i(\tilde{F}) \,\mu_i(\tilde{F})}{\sum_{i=1}^{n} \mu_i(\tilde{F})}$$
$$F = \frac{-\frac{20}{3} \times 0.2 + 0 \times 0.36 + \frac{20}{3} \times 0.64}{0.2 + 0.36 + 0.64} = \frac{22}{9}$$
$$F = 2.4444 \,\text{N}$$

Discusión:

Métodos de defuzzificación

Promedio ponderado $F = 2.4444 \, \mathrm{N}$ Centro de sumas $F = 1.8688 \, \mathrm{N}$ Primero del máximo $F = 4.2667 \, \mathrm{N}$ Centro del máximo $F = 6.6667 \, \mathrm{N}$ Último del máximo $F = 9.0667 \, \mathrm{N}$

Promedio ponderado

Centro de sumas

Primero del máximo

Último del máximo

Centro del máximo

Valores máximos y mínimos

Método	Mínimo	Máximo
Promedio ponderado	-13.333	13.333
Centro de sumas	-13.333	13.333
Centro del máximo	-13.333	13.333
Primero del máximo	-13.333	19.999
Último del máximo	-19.999	13.333

Discusión: Reglas

				θ		
		MN	N	Z	Р	MP
	MN	MN	MN	N	Z	Р
	N	MN	MN	Ζ	Р	Р
ω	Z	MN	Ν	Z	Р	MP
	P	N	Ν	Ζ	MP	MP
	MP	N	Z	Р	MP	MP

Discusión:

Conjuntos Difusos

Elección inicial

Menor solapamiento

Mayor solapamiento

Distancias heterogéneas entre centros

Funciones asimétricas

Discusión:

Algoritmos

Algoritmos alternativos

Métodos de inferencia

- Mamdani
- Larsen
- Takagi-Sugeno-Kang
- Tsukamoto

Operadores de implicación

- Mínimo
- Producto

Operadores de composición

- Máximo
- Suma

Algoritmos alternativos

Métodos de inferencia

- Mamdani
- Larsen
- Takagi-Sugeno-Kang
- Tsukamoto

Operadores de implicación

- Mínimo
- Producto

Operadores de composición

- Máximo
- Suma

Lectura adicional Pedro Ponce, p. 133.

Fin