CSP2019-S 模拟题(第一试)

(请选手务必仔细阅读此页内容)

一. 题目概况

中文题目名称	石子合并	寿司	反击	
英文题目名称	stone	sushi	attack	
可执行文件名	stone	sushi	attack	
输入文件名	stone.in	sushi.in	attack.in	
输出文件名	stone.out	sushi.out	attack.out	
每个测试点时限	1 秒	1 秒	1 秒	
内存上限	256MB	256MB	256MB	
测试点数目	20	20	20	
每个测试点分值	5	5	5	
结果比较方式	全文比较(过滤行末空格及文末回车)			
题目类型	传统	传统	传统	

二. 提交源程序文件名

对于 Pascal 语言	于 Pascal 语言 stone.pas		attack.pas	
对于C语言	stone.c	sushi.c	attack.c	
对于 C++语言	stone.cpp	sushi.cpp	attack.cpp	

三. 编译命令

对于 Pascal 语言	Pascal 语言 fpc stone.pas fpc sushi.		fpc attack.pas	
→ 対 т с 语 言	gcc -o stone	gcc -o sushi	gcc -o attack	
), 1 C II H	stone.c -lm	sushi.c -lm	Attack.c -lm	
对于 C++语言	g++ -o stone		g++ -o attack attack.cpp -lm	

四. 注意事项:

- 1. 文件名(程序名和输入输出文件名)必须使用小写。
- 2. 选手提交以自己编号命名的文件夹,文件夹内包含 3 个源文件(.c,.cpp,.pas,),并在文件夹下建立 3 个相应的子目录,并将 3 个对应的源程序分别放入对应的子文件夹中,所有名字必须使用小写;例如:

- 3. C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须 是 0。
- 4. 题目简单,请认真对待,争取三位数.
- 5. 每道题源代码长度限制均为 50KB。
- 6. 每道题的数据都有一定梯度。请尽量优化算法,争取拿高分。
- 7. 编译时不打开任何优化选项。
- 8. 建议最后 10 分钟不要再编程,检查一下提交的文件夹中的代码是否符合要求, 检查文件名,输入输出文件名,数据类型,数据精度,空间限制,赋初值等是 否按试卷上的要求来做的,一定要杜绝一切的不小心的人为错误,显然这种错 误是致命的。
- 9. 做题时, 审题是关键, 必须深入与全面, 学过的知识与做过的题都是分析问题的有利武器; 编写代码要细致, 多写函数, 便于调试, 只有这样, 才能达到你的期望。

必须杜绝答案错误!

1. 石子合并

(stone.pas/c/cpp)

【问题描述】

现在有n堆石子排成一列,其中第i堆石子有 A_i 个。每次将两堆石子合并成一堆,新堆的石子数是原来两堆石子数之和,合并的代价是原来两堆石子数之积。求合并n-1次将n堆石子合并成一堆的代价和最小值是多少。

【输入】

输入文件 stone. in

第一行输入一个正整数n;

第二行输入n个正整数,第i个正整数表示 A_i ,相邻两个数之间用空格隔开

【输出】

一个正整数,表示答案。

【输入输出样例1】

stone.in	stone.out
2	4
2 2	

【输入输出样例2】

stone.in	stone.out
4	101
2 3 7 5	

【输入输出样例2解释】

 A_1 和 A_2 合并成新的一堆,石子数为 5 ,合并的代价为 6 ,然后这新的一堆与原来的 A_4 合并成新的一堆,石子数是 10,合并的代价为 25,最后这新的一堆与 A_3 合并,合并后的石子数为 17,合并的代价为 70,最后总的合并的最小代价为 6+25+70=101。

【数据说明】

E 25/4 50 74 E			
测试点编号	n	其他约束	
1, 2	≤ 300		
3, 4	3、4 ≤ 2000		
5, 6	≤300		
7、8	≤ 500		
9、10	≤ 1000		
11、12	≤ 2000		
13、14	≤ 30000	后左始 4 /10 ⁶	
15	≤4000000	- 所有的A _i <10 ⁶	
16	≤4000000		
17	≤4000000		
18	≤4000000		
19	≤4000000		
20	≤4000000		

2. 寿司

(sushi.pas/c/cpp)

【题目描述】

小 c 是一名 oier。最近,他发现他的数据结构好像学傻了。因为他在刷题时碰到了一道傻逼数据结构题,强行使用了平衡树来解决,卡着时间 AC。为此,他被狠狠地嘲讽了一番。于是,小 c 找了大量的数据结构题来做。

昨天,小c 正在吃寿司,突然发现许多盘寿司围成了一个圆圈,这些寿司中有红色的也有蓝色的。由于小c 看交错的颜色非常不爽,想通过一些操作,使得所有的红色寿司形成了一块连续的区域,蓝色的寿司也形成了一块连续的区域。如果小c 每次只可以交换相邻的两盘寿司,那么最少需要多少步才可以达到小c 的要求呢?由于他做题做多了,脑袋已经有点不清醒了,于是这个问题就交给你了。

【输入】

输入文件 sushi. in

第一行一个数T,表示数据组数。

接下来 T 行,每行一行由 B 和 R 组成的字符串,B 表示蓝色,R 表示红色。第 i 个字符描述顺时针数第 i 盘寿司的颜色。注意,最后一盘寿司和第 1 盘寿司是相邻的。

【输出】

对于每组数据,输出一行表示最小的交换次数。

【输入输出样例】

sushi.in	sushi.out
1	5
BBRBBRBBBRRR	

【输入输出样例说明】

以下说明交换的步骤:

交换位置 2、位置 3 上的寿司;

交换位置 1、位置 2 上的寿司;

交换位置 6、位置 7上的寿司;

交换位置7、位置8上的寿司;

交换位置 8、位置 9 上的寿司;

【数据说明】

读入数据较大,请优化读入方式。

设 n 为字符串长度,则有:

测试点标号	$T \leq$	$n \le$	测试点标号	$T \leq$	$n \leq$
1	1	10	11	5	50000
2	1	15	12	10	50000
3	1	20	13	10	100000
4	5	20	14	10	200000
5	2	2000	15	10	300000
6	2	4000	16	10	500000
7	2	5000	17	10	800000
8	3	5000	18	10	1000000
9	10	10000	19	10	1000000
10	5	20000	20	10	1000000

注:请注意优化常数

3、反击

(attack.pas/c/cpp)

【题目描述】

由于地球人和三体人的科技相差太过悬殊,尽管地球舰队顽强抗击,在三体人的高科技面前,地球军节节败退,形势危急。关键时刻,地球统帅1j决定发起一场重创三体舰队,挽救地球的自卫反击战。

通过三体人不会伪装的特性,1j得知了三体人能源的来源——三星树。这是一棵能为三体舰队源源不断地提供能源的神树,树上的每个结点都有一个权值,表示这个结点可以为三体舰队能提供的能源值。现在1j召集了一支精锐部队,打算潜入三体舰队内部,并摧毁掉三星树。然而,三体人虽然不懂得伪装,但对于神树的保护却做得极为严密。出于安全考虑,1j把这支部队分为了两支小队,两支小队可以分别选择三星树中的任何一个结点登陆(但不能从同一个位置),潜入到三星树中。并且,他们可以任意地沿着三星树的树边移动,每当他们到达一个三星树的结点,他们就可以不费吹灰之力地摧毁掉三星树这个结点。为了降低被发现的可能,两只小队都不能走回头路,而且他们走过的路径不能有任何公共结点,否则一大波人的行动的能量波动会引发三星树的报警装置,从而使这次任务失败。

他们可以选择在树上的任何位置传送出三星树,登上早已安排好的飞船迅速返回地球。 1j向两支小队的队长下的命令是,在保证不被发现的前提下,不惜一切代价,尽可能多的 摧毁三星树的能源供应。所以两只小队的队长 Z 和 X 想知道,应该如何行动,他们才能够使 摧毁的三星树的能源值总和最大。

【输入数据】

输入数据第一行仅包含一个数 n,表示树的结点个数;接下来一行包含 n 个数,第 i 个数 ai 表示结点 i 的能源值为 ai;第 3 至 n+1 行,每行两个数 x, y (1<=x, y<=n),表示 x 和 y 之间存在一条树边。

【输出数据】

仅包含一个数,表示两支小队能够摧毁的能源值总和的最大值。

【输入输出样例】

attack.in	attack.out
8	115
1 2 99 4 5 3 2 1	
1 2	
1 4	
1 6	
1 3	
4 5	
6 7	
6 8	

【样例解释1】

第一支小队从 3 登陆, 经过 3-1-4-5 后, 从 5 离开,总共摧毁能源值 109;第二支小队从 7 登陆,经过 7-6-8 后,从 8 离开,总共摧毁能源值 6;所以两支小队最多能摧毁的能源值为 115。

【输入输出样例2】

attack. in	attack.out
9	25
1 2 3 4 5 6 7 8 9	
1 2	
1 3	
1 4	
1 5	
1 6	
1 7	
1 8	
1 9	

【样例解释 2】

第一支小队从9登陆,摧毁掉9后,直接从9离开,总共摧毁能源值9; 第二支小队从8登陆后,经过8-1-7这一条路径后,从7离开,总共摧毁能源值16; 所以两支小队最多能摧毁的能源值为25。

【数据约定】

测试点编号	n<=	数据特点	测试点编号	n<=	数据特点
1			11		
2	10		12		
3			13		保证每个点的
4			14		度数不超过6
5	1000		15		
6		保证数据随机	16	100000	
7			17		
8			18		无
9	100000		19		
10			20		

对于 100%的数据, 保证 ai 均为小于等于 10°的正整数。