Chương III: VECTƠ NGẦU NHIÊN

(ĐẠI LƯỢNG NGẪU NHIÊN NHIỀU CHIỀU)

III.1. Khái niệm.

Nếu các biến ngẫu nhiên $X_1, X_2, ..., X_n$ cùng xác định trên các kết quả của một phép thử thì ta nói $Z = (X_1, X_2, ..., X_n)$ là một vectơ ngẫu nhiên n chiều.

III.2. Vecto ngẫu nhiên rời rạc 2 chiều (X,Y).

- III.2.1 Bảng phân phối XS đồng thời. ÂP
- III.2.2 Phân phối XS theo các BNN thành phần X, Y (PP lề).
- III.2.3 PP XS có điều kiện.
- III.2.4 Điều kiện độc lập của X và Y.
- III.2.5 Hàm phân phối XS của (X,Y).

III.3. Vector ngẫu nhiên liên tục 2 chiều (X,Y). THAM KHẢO

- III.3.1 Hàm mật độ đồng thời.
- III.3.2 Hàm mật độ của các BNN thành phần X, Y (Hàm mật độ lề).
- III.3.3 Điều kiện độc lập của X và Y.
- III.3.4 Hàm phân phối XS của (X,Y).
- III.3.5 Hàm mật độ có điều kiện.

III.4 Một số tham số đặc trưng của vectơ ngẫu nhiên.

- * Kỳ vọng toán TÀI LIỆU Kỳ vọng của hàm $\phi(X,Y)$.
- * Kỳ vọng có điều kiện * Covarian (Hiệp phương sai)
- * Ma trận tương quan * Hệ số tương quan & ý nghĩa.
- * Sử dụng máy tính bỏ túi để tính một số tham số đặc trưng.

III.5. Hàm của vectơ ngẫu nhiên (X,Y).

III.2 PHÂN PHỐI XÁC SUẤT của VTNN RỜI RẠC 2 CHIỀU

III.2.1 Bảng phân phối XS đồng thời:

Cho
$$X = \{x_1, x_2, ..., x_m\}; Y = \{y_1, y_2, ..., y_n\}.$$

Đặt $\mathbf{p_{ij}} = \mathbf{P(X} = \mathbf{x_i}, \ \mathbf{Y} = \mathbf{y_j}); \ i = \overline{1,m}, \ j = \overline{1,n},.$ Dưới đây là **bảng phân phối xác suất đồng thời** của (X, Y):

X	CH V1	y ₂	03	Yn
X ₁ TÀI	PÊU	SP12	TÂP	p _{1n}
X ₂	в р нсм	PCNCP		P _{2n}
•••				
X _m	p _{m1}	p _{m2}		p _{mn}

Khi đó
$$0 \le p_{ij} \le 1$$
 và $\sum_{i} \sum_{j} p_{ij} = 1$.

III.2.2 Phân phối XS theo các BNN thành phần X, Y (PP lề).

Đặt:
$$p_i = \sum_{j=1}^{n} p_{ij} = P(X = x_i), i = \overline{1, m}$$

Ta được bảng phân phối xác suất của X:

X	X1 CHK	X ₂	. X _m
P ^X	p	p ₂	.3 p _m

Đặt:
$$q_j = \sum_{i=1}^m p_{ij} = P(Y_i = y_j), j = \overline{1}, n$$

Ta được bảng phân phối xác suất của Y:

X	У 1	y 2	 y n
P ^Y	q ₁	q_2	 q_{n}

III.2.3 Phân phối xác suất có điều kiện:

Bảng PPXS của X với điều kiện $Y = y_j (j = \overline{1, n})$ là:

Bảng PPXS của Y đối với điều kiện $X=x_i(i=\overline{1,\,m})$ là:

Υ	У1	y ₂	•••	У п
P ^{Y/x} i	p _{i1}	p _{i2}		$\frac{p_{i}_{n}}{p_{i}}$

III.2.4 Điều kiện độc lập của X và Y.

X và Y độc lập

$$\Leftrightarrow$$
 P(X=x_i,Y=y_j) = P(X=x_i).P(Y=y_j) $\forall i,j$ hay p_{ij} = p_iq_j $\forall i,j$.

$$\Leftrightarrow$$
 F(x,y) = F_X(x).F_Y(y);

(F_X , F_Y là các hàm PPXS của X,Y, hay gọi la các hàm phân phối lề..)

III.2.5 Hàm phân phối đồng thời của (X,Y).

$$F(x,y) = P(X < x, Y < y) \text{All} \text{ } p_{ij} \text{P}$$

$$L \text{ } \text{L} \text{U} \text{U} \text{ } \text{Y}:$$

• F(x,y) chính là xác suất để điểm ngẫu nhiên M(X,Y) rơi vào hình chữ nhật vô hạn có đỉnh phía trên, bên phải là (x,y).

III.3 PHÂN PHỐI XÁC SUẤT của VTNN LIÊN TỤC (X,Y) (Tham khảo)

III.3.1 Hàm mật độ XS đồng thời: của VTNN (X,Y) là hàm xác

định trên toàn mặt phẳng, thỏa: $[\bullet f(x, y) \ge 0; \forall (x, y) \in \mathbb{R}^2]$ • Tính chất: $P((X,Y) \in D) = \iint f(x,y) dxdy$

III.3.2 Hàm mật độ lề:

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x,y) dy, \quad x \in \mathbb{R} \text{ là hàm mật độ theo } X;$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x,y) dx, \quad y \in \mathbb{R} \text{ là hàm mật độ theo } Y.$$

III.3.3 Điều kiện độc lập của X, Y:

$$X$$
 và Y độc lập $\Leftrightarrow F(x,y) = F_X(x).F_Y(y) \Leftrightarrow f(x,y) = f_X(x).f_Y(y)$

III.3.4 Hàm phân phối XS của (X,Y):

$$F(x, y) = P(X < x, Y < y) = \int_{-\infty}^{x} du \int_{-\infty}^{y} f(u, v) dv$$

• Từ đó suy ra:

$$\Rightarrow f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$$

Trong trường hợp riêng, khi miền D là hình chữ nhật:

$$P(a \le X < b; c \le X < d] = F(b, d) + F(a, d) - F(b, c) + F(a, c).$$

III.3.5 Hàm mật độ có điều kiện VTNN liên tục (X,Y).

Hàm mật độ của X với điều kiện Y = y là: $f_{X/y} = \frac{f(x,y)}{f_Y(y)}$

Hàm mật độ của Y với điều kiện
$$X = x$$
 là:
$$f_{Y/x}(y) = \frac{f(x,y)}{f_X(x)}$$

III.4 MÔT SỐ ĐẶC TRƯNG của BNN hai chiều:

- * Kỳ vọng toán: E(X,Y) = (E(X),E(Y))
- * Hiệp phương sai (Covarian, mômen tương quan):

$$cov(X,Y) = E[(X-E(X)).(Y-E(Y))] = E(XY) - E(X).E(Y)$$

cov(X,Y)= E[(X-E(X)).(Y-E(Y))] = E(XY) - E(X).E(Y)
 * Ma trận tương quan (ma trận hiệp phương sai) của (X,Y):

$$D(X,Y) = \begin{bmatrix} cov(X,X) & cov(X,Y) \\ cov(Y,X) & cov(Y,Y) \end{bmatrix} = \begin{bmatrix} D(X) & cov(X,Y) \\ TAP \\ cov(Y,X) & D(Y) \end{bmatrix}$$

* Hệ số tương quan của X và Y:

$$R_{XY} = \frac{\text{cov}(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = \frac{\text{E}(XY)-\text{E}(X).\text{E}(Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$

Hệ số tương quan và covarian dùng để đặc trưng cho mức độ chặt chẽ của mối liên hệ phụ thuộc giữa các BNN X và Y.

Nếu $R_{XY} = 0$ thì ta nói X, Y không tương quan, ngược lại khi $R_{XY} \neq 0$ ta nói X, Y có tương quan.

Nếu X, Y độc lập thì $cov(X,Y) = R_{XY} = 0$.

Điều ngược lại không đúng, tức là nếu cov(X,Y)= 0 thì hoặc X, Y độc lập, hoặc X, Y phụ thuộc ở một dạng thức nào đó. Khi (X,Y) có phân phối chuẩn thì X,Y độc lập \Leftrightarrow R_{xy} = 0.

Hệ số tương quan không có đơn vị đo và $|R_{XY}| \le 1$.

Nếu $R_{xy} = \pm 1$ thì X, Y có tương quan tuyến tính (thuận /nghịch).

Khi $R_{XY} \approx \pm 1$ thì X, Y có tương quan "gần" tuyến tính.

Ví dụ 1

Một hộp đựng 5 sản phẩm, trong đó có 3 phế phẩm mà không kiểm tra thì không biết. Các sản phẩm được lấy ra kiểm tra cho đến khi phát hiện thấy 2 phế phẩm thì dừng lại.

Kí hiệu X là BNN chỉ số lần kiểm tra cho tới khi phế phẩm đầu tiên được phát hiện. Y là BNN chỉ số lần kiểm tra thêm cho tới khi phế phẩm thứ hai được phát hiện.

Hãy:

- a) Lập bảng phân phối xác suất đồng thời của (X, Y).
- b) Tính cov(X,Y) và hệ số tương quan của X, Y.
- c) X,Y có độc lập hay không?
- d) Tìm phân phối XS và kỳ vọng có điều kiện của X khi Y=2.

X	1	2	3
1	3/10	2/10	1/10
2	2/10	1/10	0
3	1/10	0	0

$$p_{11} = P(X=1;Y=1) = P(\overline{A_1}.\overline{A_2}) = \frac{3}{5}.\frac{2}{4} = \frac{3}{10}$$

$$p_{12} = P(X=1;Y=2) = P(\overline{A_1}.A_2.\overline{A_3}) = \frac{3}{5}.\frac{2}{4}.\frac{1}{3} = \frac{1}{5}$$

$$p_{13} = P(X=1;Y=3) = P(\overline{A_1}.A_2.A_3.\overline{A_4}) = \frac{3}{5}.\frac{2}{4}.\frac{1}{3}.1 = \frac{1}{10}P$$

$$p_{21} = P(X=2;Y=1) = P(A_1.\overline{A_2}.\overline{A_3}) = \frac{2}{5}.\frac{3}{4}.\frac{2}{3} = \frac{1}{5}$$

$$p_{22} = P(X=2;Y=2) = P(\overline{A_1}.\overline{A_2}.A_3.\overline{A_4}) = \frac{2}{5}.\frac{3}{4}.\frac{1}{3}.1 = \frac{1}{10}$$

$$p_{31} = P(X=3;Y=1) = P(\overline{A_1}.A_2.\overline{A_3}.\overline{A_4}) = \frac{2}{5}.\frac{1}{4}.1.1 = \frac{1}{10}$$

$$p_{23} = P(X=2;Y=3) = 0$$

 $p_{32} = P(X=3;Y=2) = 0$
 $p_{33} = P(X=3;Y=3) = 0$

b) Tính Cov(X,Y) và R_{xy}:

X	1	2	3	Pχ
1	3/10	2/10	1/10	6/10
2	2/10	1/10	0	3/10
3	1/10	0	0	1/10
PY	H6/10 NC		1/10	

Viết lại các bảng PPXS thành phần của X và Y (phân phối lề):

X	1	2	3
PX	6/10	3/10	1/10

$$E(X) = E(Y) = 1.5$$

$$D(X) = D(Y) = 0.45$$

$$E(XY) = \sum_{i,j} x_i y_j p_{ij} = 1.1. \frac{3}{10} + 1.2. \frac{2}{10} + 1.3. \frac{1}{10} + 2.1. \frac{2}{10} + 2.2. \frac{1}{10} + 3.1. \frac{1}{10} = 2,1$$

$$cov(X,Y) = E(XY) - E(X).E(Y) = -0.15.$$
 $R_{XY} = \frac{E(XY)-E(X).E(Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = \frac{-1}{3}$

HD Sử dụng MTBT tìm 1 số đặc trưng của VTNN rời rạc:

Các bước thực hiện	Máy CASIO fx 570 ES (PLUS)	Máy CASIO fx 500 MS
Mở cột tần số (nếu máy chưa mở)	SHIFT MODE (SETUP) ▼ 4 (STAT) 1 (ON)	
Vào chế độ thống kê hai biến.	MODE 3 (STAT) 2 (A+BX)	MODE MODE 2 (REG) 1 (Lin)
Nhập dữ liệu	X Y FREQ 1 x1 y1 p11 2 x1 y2 p12 xn ym pnm AC	Nhập lần lượt theo từng dòng, thứ tự nhập như sau: (X) (Y) (; pij) M+
Đọc kết quả E(X); E(Y)	SHIFT – 1 (STAT)- 4 (VAR) – 2 (\overline{x}) \mp Al LIÊU SUU T Muốn có kq E(Y) thì chọn \overline{y} CNCP	SHIFT – 2 (SVAR) -1 (\overline{x})= SHIFT – 2(SVAR) - \blacktriangleright -1 (\overline{y})=
Đọc kết quả $\sqrt{D(X)} \qquad \sqrt{D(Y)}$	SHIFT – 1 (STAT)- 4 (VAR) – 3 (σ^{X}) = Muốn có kq $\sqrt{D(Y)}$ thì chọn σ^{Y}	SHIFT – 2 (SVAR)- 2 (XOn) = SHIFT – 2(SVAR) - $^{}$ -1 (YOn) =
Đọc kết quả $R_{\chi\gamma}$	SHIFT - 1 (STAT)-6(REG)-3 (r)=	SHIFT - 2 (SVAR) - ▶ - ▶ 3(r)-=
Tham khảo các KQ trung gian	SHIFT - 1 (STAT)- 3 (SUM) Chương III. Vớc to higấu nhiên :	SHIFT – 1 (SSUM) 2 chiều

c) Theo đn, X,Y độc lập \Leftrightarrow P(X=x_i; Y=y_j) = P(X=x_i).P(Y=y_j); \forall i,j. Trong bảng PPXS đồng thời, P(X=1;Y=1) = 3/10; nhưng P(X=1).P(Y=1) = (6/10).(6/10) =1/100 \neq P(X=1;Y=1) nên ta kết luận X,Y không độc lập.

d) Từ bảng PPXS đồng thời, suy ra bảng phân phối xác suất của X với điều kiện Y=2:

X Y=2	TÀI L ¹ ÊU SƯU TẬP ²		
	2/10 HC 2UT-CNCP 1/10 _ 1		
P ^X Y=2	$\frac{3}{10} - \frac{3}{3} = \frac{3}{10} - \frac{3}{3}$		

và
$$E(X|Y=2) = 4/3$$
.

Ví dụ 2

Cho hai đại lượng ngẫu nhiên X, Y độc lập có các bảng phân phối xác suất:

Y	O	HOACNCA	X	-1	1	2
\overline{P}	$\frac{1}{2}$	1 2 2	P	$\frac{1}{4}$	$\frac{2}{4}$	$\frac{1}{4}$

- a) Lập bảng phân phối xác suất của $Z=3X^2+2Y$; Tính E(Z),D(Z).SUU TẬP
- b) Tính E(U),D(U) với U = 5X 3Y + 10.

Hướng dẫn: Do X,Y độc lập nên $P(X=x_i,Y=y_j)=P(X=x_i).P(Y=y_j), \forall i,j.$ Lập bảng PPXS đồng thời của X, Y rồi tính giá trị hàm $Z=3X^2+2Y$.

Y		
X	0	1
-1	1/8	1/8
	Z = 3	Z = 5
1	2/8	2/8
	Z = 3	$\mathbf{Z} = 5$
2	1/8	1/8
	Z = 12	Z=14

Suy ra bảng phân phối xác suất của Z:

Vậy
$$E(Z) = 6.25 \text{ và } D(Z) = 16.1875.$$

b) HD:
$$E(5X - 3Y + 10) = 5E(X) - 3E(Y) + 10.$$

 $D(5X - 3Y + 10) = 25D(X) + 9D(Y).$

Ví dụ 3

Dưới đây là bảng PPXS đồng thời của 2 biến ngẫu nhiên X,Y. Tìm hàm phân phối XS của (X,Y).

Y	1040AC	20
X	CH	03
2	0.1	0.3
5 TA	0.2ÊU S	0.4TÂP

Hướng dẫn:

$$F(x,y) = P(X < x; Y < y) = \sum_{i,j} p_{ij}$$
; $X_i < X & y_j < y$.

TÀI LIÊU SƯU TẬP

Ví dụ:

$$+ F(x,y) = P(X < x; Y < y).$$

+
$$F(3; 20)=P(X<3,Y<20)=0,1.$$

$$+ F(6; 14) = P(X < 6; Y < 14) = 0.3 + F(4;25) = P(X < 4; Y < 25) = 0.4.$$

$$+F(4;25)=P(X<4; Y<25)=0,4.$$

Đáp số:

$$F(x,y) = \begin{cases} 0,1 & (x,y) \in (2,5] \times (10,20] \\ 0,1+0,3 & (x,y) \in (2,5] \times (20,+\infty) \\ 0,1+0,2 & (x,y) \in (5,+\infty) \times (10,20] \\ 1 & (x,y) \in (5,+\infty) \times (20,+\infty) \\ 0 & \text{BOTHEMUT-ENCP} & (x,y) \neq \end{cases}$$

Ví dụ 4

Biến ngẫu nhiên 2 chiều (X,Y) có bảng phân phối xác suất đồng thời như sau:

XY	2	40ACA3CA	4	
0	0,12	0,15	0,03	
1	0,28	0,35	007	
Chứng minh V V là độc lập				2

- a) Chứng minh X ,Y là độc lập. Sưu TẬP
- b) Tìm hệ số tương quan RXY. TING P
- c) Tìm phân phối xác suất của biến ngẫu nhiên Z =XY.
- d) Tính E(Z) bằng 2 cách khác nhau.

Ví du 5:

Giả thiết các biến ngẫu nhiên X₁; X₂; X₃ độc lập với nhau, cùng tuân theo phân phối Poisson với các tham số tương ứng lần lượt là λ_1 =1; λ_2 =2; λ_3 = 3.

Gọi biến ngẫu nhiên $Y = \max\{X_1, X_2; X_3\}$.

- a) Tìm xác suất Y > 1b) Tìm xác suất Y = 2

Ví du 6:

Giả thiết các biến ngẫu nhiên X_1 ; X_2 ; X_3 độc lập với nhau, cùng tuân theo phân phối mũ với các tham số tương ứng lần lượt là $\lambda_1 = 1; \lambda_2 = 2; \lambda_3 = 3.$

Gọi biến ngẫu nhiên $Y = min\{X_1; X_2; X_3\}$

Lập hàm phân phối xác suất của Y.

Ví dụ 7:

Một sinh viên có xác suất nghỉ một buổi học bất kỳ là 5%; xác suất đi học trễ một buổi là 20%. Giả thiết trong 1 tuần, sinh viên đó có 5 buổi học trên trường.

- a) Lập bảng phân phối xác suất đồng thời giữa biến X là số buổi sinh viên đó nghỉ trong 1 tuần và Y là số buổi sinh viên đó đi học trễ trong cùng tuần đó.
- b) Lập bảng phân phối xác suất của Y với điều kiện trong tuần có 1 buổi sinh viễn nghỉ học.