Introdução à Física Experimental

2020/21

(Lic. Física, M.I. Eng. Física)

Exercícios sobre medidas e incertezas

- 1. Um indivíduo relatou para a medida da altura de uma porta o valor de 210 cm, afirmando que a altura estava seguramente entre 205 cm e 215 cm. Reescreva este resultado usando a notação recomendada $x\pm\delta x$. (Sol.: 210 \pm 5 cm)
- **2.** Um estudante mediu a posição, a velocidade e a aceleração de um corpo que se desloca numa calha de ar e apresentou os resultados na tabela seguinte. Reescreva os resultados na notação recomendada $x\pm\delta x$.

Variável	Melhor estimativa	Intervalo mais provável
Posição, x	53.3 cm	53.1 a 53.5 cm
Velocidade, v	-13.5 cm/s	-14.0 a 13.0 cm/s
Aceleração, a	93 cm/s^2	$90 \text{ a } 96 \text{ cm/s}^2$

(Sol.: $x = 53.3 \pm 0.2$ cm; $v = -13.5 \pm 0.5$ cm/s; $a = 93 \pm 3$ cm/s²)

- **3.** Reescreva os resultados seguintes de forma mais clara e utilizando o número adequado de algarismos significativos (exprima a incerteza com um só algarismo significativo):
- a) altura = 5.03 ± 0.04329 m
- b) carga elétrica = $-3.21 \times 10^{-19} \pm 2.67 \times 10^{-20}$ C
- c) comprimento de onda = $0.000\ 000\ 563\pm0.000\ 000\ 07\ m$
- d) momento linear = $3.267 \times 10^3 \pm 42$ g cm/s

 $(Sol.: a) \ 5.03 \pm 0.04; \ b) \ (-3.2 \pm 0.3) \times 10^{-19} \ C; \ c) \ (5.6 \pm 0.7) \times 10^{-7} \ m; \ d) \ (3.27 \pm 0.04) \times 10^{3} \ g \ cm/s)$

- **4.** Dois estudantes mediram o comprimento da mesma vareta tendo reportado os valores de 135 ± 3 mm e 137 ± 3 mm. Qual é a discrepância (ou desvio) entre os dois valores? É significativa? (Sol.: 2 mm; não)
- **5.** Numa experiência com o pêndulo simples usa-se uma esfera de aço suspensa por um fio muito leve (ver esquema na figura abaixo).

O comprimento efetivo do pêndulo, l, é a distância entre a parte superior do fio e o centro da esfera. Para medir l um estudante começa por medir a distância, x, desde a parte superior do fio

até à parte inferior da esfera, depois mede o raio, r, da esfera e, finalmente, faz a subtração l = x - r. As medidas de x e r são:

 $x = 95.8 \pm 0.1$ cm, $r = 2.30 \pm 0.02$ cm

Qual deve ser o valor da medida de l apresentado pelo estudante? (Sol.: 93.5 \pm 0.1 cm)

6. Numa experiência para verificar a conservação do momento angular num sistema em rotação, obtiveram-se os resultados para o momento angular inicial (L) e final (L') em várias situações e que são mostrados na tabela abaixo.

$L (\text{kg m}^2/\text{s})$	$L'(\text{kg m}^2/\text{s})$
3.0 ± 0.3	2.7 ± 0.6
7.4 ± 0.5	8 ± 1
14 ± 1	16 ± 1
25 ± 2	24 ± 2
32 ± 2	31 ± 2
37 ± 2	40 ± 2

Adicione uma nova coluna à tabela para apresentar a diferença *L-L'* e a correspondente incerteza. Estes resultados são consistentes com a conservação do momento angular?

(Sol.: coluna de L-L': 0.3 ± 0.7 , -0.6 ± 1.1 , -2.0 ± 1.4 , 1 ± 3 , 1 ± 3 , -3 ± 3 ; L-L' é sempre menor que a incerteza, exceto no caso -2.0 ± 1.4 em que é ligeiramente maior; assim, podemos afirmar que globalmente os valores observados para L-L' são consistentes com o valor esperado de zero)

7. Numa experiência pretende-se verificar se o período (T) do pêndulo simples é independente do amplitude angular (ângulo máximo da oscilação, θ_{max} , medido em relação à vertical). Os resultados obtidos são apresentados na tabela seguinte:

θ _{max} (grau)	T(s)
5 ± 2	1.932 ± 0.005
17 ± 2	1.94 ± 0.01
25 ± 2	1.96 ± 0.01
40 ± 4	2.01 ± 0.01
53 ± 4	2.04 ± 0.01
67 ± 6	2.12 ± 0.02

- a) Trace o gráfico de T em função de θ_{max} para verificar se o período do pêndulo depende da amplitude (inclua para cada ponto as barras associadas às incertezas). Para demonstrar a importância da escolha das escalas do gráfico, trace dois gráficos, um que inclua a origem dos eixos ($T = \theta_{\text{max}} = 0$) e outro onde o eixo das abcissas (T) varie entre 1.9 e 2.2 s; verifique que apenas com o segundo gráfico é possível pôr em evidência que o período depende da amplitude angular do pêndulo.
- b) Discuta se as conclusões retiradas da análise anterior seriam afetadas se as medidas de T tivessem uma incerteza associada de ± 0.3 s. (Sol.: neste caso não haveria evidência para a variação de T com a amplitude.)
- 8. Dispõe-se de uma fita métrica com erro de leitura de 0.5 mm e de um paquímetro com erro e leitura de 0.05 mm. Pretende-se medir um comprimento, *l*, da ordem de 2 cm com uma precisão de pelo menos 1%. É indiferente usar qualquer um dos instrumentos? (Sol.: para a fita métrica δ*l/l*=2.5%; para o paquímetro δ*l/l*=0.25%; apenas o paquímetro tem precisão suficiente.)

9. Para determinar a aceleração média de um corpo um estudante mediu as velocidades inicial (v_i) e final (v_f) desse corpo e calculou a diferença v_f – v_i . Os resultados de dois ensaios são apresentados na tabela seguinte. Todas as medidas foram realizadas com um erro relativo de 1%.

ensaio	v_i (cm/s)	v_f (cm/s)
1	14.0	18.0
2	19.0	19.6

- a) Calcule o valor absoluto das incertezas das quatro medidas. Determine v_f – v_i e a respetiva incerteza para cada ensaio. (Sol.: 14.0 ± 0.1 cm/s, 18.0 ± 0.2 cm/s, 19.0 ± 0.2 cm/s, 19.6 ± 0.2 cm/s; v_f – v_i = 4.0 ± 0.2 cm/s (ensaio 1); v_f – v_i = 0.6 ± 0.3 cm/s (ensaio 2).)
- b) Calcule a incerteza relativa de v_f – v_i para cada ensaio. Note que as respostas, especialmente para o caso do segundo ensaio, ilustram os resultados desastrosos que se obtêm quando se tenta determinar um valor pequeno como a diferença de dois valores elevados próximos. (Sol.: 5% e 50% para os ensaios 1 e 2, respetivamente.)
- **10.** a) Como resultado de um cálculo obtém-se na calculadora x = 6.1234, mas sabe-se que x tem uma incerteza relativa de 2%. Reescreva x na forma $x \pm \delta x$ com o número de algarismos significativos adequado (escrevendo a incerteza com apenas um algarismo significativo). Qual é o número de algarismos significativos da resposta? (Sol.: 6.1 ± 0.1 , tem 2 algarismos significativos.)
- b) Repita para y = 1.1234 e z = 9.1234, ambos com erro relativo de 2%. (Sol. $y = 1.12 \pm 0.02$, três algarismos significativos; $z = 9.1 \pm 0.2$ dois algarismos significativos.)
- **11.** Um estudante mede duas grandezas a e b, obtendo os resultados $a=10\pm1$ N e $b=272\pm1$ s. Determine o produto q=ab apresentando o resultado afetado da incerteza absoluta. Diga também qual é o erro relativo de q. (Sol.: $(2.70\pm0.27)\times10^3$ Ns ou $(2.7\pm0.3)\times10^3$ Ns; incerteza relativa de 10%)
- **12.** Considerando que as incertezas são independentes e aleatórias (os erros somam-se em quadratura), calcule o resultado das seguintes adições e as correspondentes incertezas. Admitindo que apenas é necessário escrever as incertezas com um só algarismo significativo, identifique os casos em que se pode ignorar uma das incertezas originais.
- a) $(5.6 \pm 0.7) + (3.70 \pm 0.03)$
- b) $(5.6 \pm 0.7) + (2.3 \pm 0.1)$
- c) $(5.6 \pm 0.7) + (4.1 \pm 0.2)$
- d) $(5.6 \pm 0.7) + (1.9 \pm 0.3)$

(Sol.: a) 9.3 ± 0.7 ; b) 7.9 ± 0.7 ; c) 9.7 ± 0.7 ; d) 7.5 ± 0.8 . Nos casos a), b) e c) a incerteza associada à segunda parcela pode ser ignorada.)

13. Para determinar a velocidade (v) de um carro que se desloca numa calha de ar horizontal mediu-se a distância (d) percorrida no intervalo de tempo t:

$$d = 5.10 \pm 0.01 \text{ m},$$
 $t = 6.02 \pm 0.02 \text{ s}$

- a) Determine v = d/t e a correspondente incerteza. (Sol.: 0.847 ± 0.003 m/s)
- b) Sabendo que a medida da massa do carro vale $m = 0.711 \pm 0.002$ kg, determine o momento linear (ou quantidade de movimento) p = mv = md/t. (Sol.: 0.602 ± 0.003 kg m/s)

14. Numa experiência para determinar a razão r = e/m do eletrão, onde e é a carga e m a massa do eletrão, os eletrões são acelerados aplicando uma diferença de potencial V e são depois submetidos à ação de um campo magnético (produzido por duas bobinas de diâmetro D, com N voltas, percorridas por corrente elétrica de intensidade I), descrevendo uma trajetória circular de diâmetro d. Pode-se mostrar que

$$r = \frac{125}{32\mu_0^2 N^2} \frac{D^2 V}{d^2 I^2}$$

onde μ_0 =4 π ×10-7 N/A² (valor exato) é a permeabilidade magnético do vazio. Obtiveram-se os seguintes resultados:

N = 72 (valor exato)

 $D = 661 \pm 2 \text{ mm}$

 $V = 45.0 \pm 0.2 \text{ V}$

 $d = 91.4 \pm 0.5 \text{ mm}$

 $I = 2.48 \pm 0.04 \text{ A}$

- a) Determine r e a respetiva incerteza (admita que as incertezas são independentes e aleatórias). Notas: N é um valor exato e, por isso, pode ser tratado como uma constante; todas as grandezas devem ser expressas em unidades SI, para que r seja expresso em C/kg. (Sol.: $1.83 \pm 0.06 \times 10^{11}$ C/kg)
- b) Verifique se o resultado obtido é consistente com o valor tabelado $r = 1.759 \times 10^{11}$ C/kg.
- **15.** Numa experiência é necessário medir o comprimento de onda da luz emitida por uma lâmpada de hidrogénio para determinar a constante de Planck (h) usando a expressão $h = K\lambda^{1/3}$, onde K é uma constante conhecida com exatidão. Suponha que se mediu λ com um erro relativo de 0.3%.
- a) Qual é o erro relativo na determinação de h? (Sol.: $\delta h/h = 0.1\%$)
- b) Suponha que o resultado da medida é $h = 6.644 \times 10^{-34}$ Js. Este resultado está em conformidade com o valor tabelado $h = 6.626 \times 10^{-34}$ Js ? (Sol.: a discrepância é de 0.018×10^{-34} Js, que é mais do que o dobro da incerteza; assim, o resultado não tem um acordo satisfatório com o valor tabelado.)
- **16.** A medida de um ângulo deu o valor $\theta = 125^{\circ} \pm 2^{\circ}$. Calcule $\sin(\theta)$ e a correspondente incerteza. Nota: não se esqueça de converter grau em radiano. (Sol.: $\sin(\theta) = 0.82 \pm 0.02$)
- 17. Mede-se a quantidade a com uma incerteza δa . Depois calcula-se $f(a) = e^a$.
- a) Qual é a expressão da incerteza de f? (Sol.: $\delta f = f \times \delta a$)
- b) Sabendo que $a = 3.0 \pm 0.1$, determine f(a) e a sua incerteza. (Sol.: $f = 20 \pm 2$)
- **18.** Repita o exercício anterior para a função $f(a) = \ln a$. (Sol.: $\delta f = \delta a/a$; $f = 1.10 \pm 0.03$)
- **19.** Mediu-se o tempo de queda de um corpo largado de uma janela do 2ª piso, em três ensaios, tendo-se obtido os resultados (em décimas de segundo): 11, 13 e 12.
- a) Calcule a média, o desvio padrão da amostra $\left(\sigma_x = \sqrt{\frac{1}{N-1}\sum(x_i \bar{x})^2}\right)$ e o desvio padrão da

população $\left(\sigma_x = \sqrt{\frac{1}{N}\sum(x_i - \bar{x})^2}\right)$. (Nota: se ainda não sabe usar as funções pré-definidas da sua

máquina de calcular para fazer estes cálculos, vale a pena gastar alguns minutos para aprender a fazê-lo; verifique se a sua máquina permite calcular ambos os desvios padrão e, no caso de fornecer apenas um deles, qual permite calcular; lembre-se que a definição de desvio padrão mais apropriada, especialmente no caso de uma amostra pequena, é o desvio padrão da amostra.) (Sol.: 12 (valor médio); 1 (desvio padrão da amostra; 0.8 (desvio padrão da população).

b) Repita os cálculos anteriores criando uma folha de cálculo Excel® para o efeito. Na tabela abaixo apresentam-se os dados e instruções a introduzir nas células (versão inglesa do Excel®). Note que a primeira linha serve apenas para identificar as colunas.

	Α	В	С	C D		F	G	
1	i	Xi	<x></x>	x;- <x></x>	(x;- <x>)^2</x>	σ (amostra)	σ (pop.)	
2	1	11	=SUM(B2:B4)/A4	=B2-\$C\$2	=D2^2	=SQRT((SUM(E2:E4)/(A4-1)))	=SQRT((SUM(E2:E4)/(A4)))	
3	2	13		=B3-\$C\$2	=D3^2			
4	3	12		=B4-\$C\$2	=D4^2			

Pode ainda recorrer às funções =STDEV(VALUES) e =STDEVP(VALUES) para calcular de forma mais rápida o desvio padrão da amostra e o desvio padrão da população, respetivamente. No exemplo apresentado na tabela anterior deve-se utilizar =STDEV(B2:B4) e =STDEVP(B2:B4).

- **20.** Um estudante mediu o período (*T*) de um pêndulo três vezes, tendo obtido os resultados, expressos em segundo (s): 1.6, 1.8 e 1.7.
- a) Calcule o valor médio e o desvio padrão (da amostra). (Sol.: $\overline{T} = 1.7 \text{ s}$; $\sigma_T = 0.1 \text{ s}$)
- b) Se o estudante decidir fazer uma quarta medida, qual é a probabilidade de que essa medida esteja fora do intervalo 1.6 1.8 s? (Sol.: 32%)
- **21.** a) Calcule a média e o desvio padrão das seguintes 30 medidas do tempo (t, em segundo):

8.16	8.14	8.12	8.16	8.18	8.10	8.18	8.18	8.18	8.24
8.16	8.14	8.17	8.18	8.21	8.12	8.12	8.17	8.06	8.10
8.12	8.10	8.14	8.09	8.16	8.16	8.21	8.14	8.16	8.13

Sugere-se a utilização das funções pré-definidas da máquina de calcular ou uma folha de cálculo. (Sol.: $\bar{t} = 8.149 \text{ s}$; $\sigma_{i} = 0.039 \text{ s}$)

- b) Espera-se que 68% dos valores estejam no intervalo $\bar{t} \pm \sigma_t$. Das 30 medidas quantas espera que se situem fora do intervalo $\bar{t} \pm \sigma_t$? Em quantas medidas isso acontece? (Sol.: 32% de 30 são 9.6 e observase que 8 medidas se situam fora do referido intervalo.)
- **22.** Um estudante mediu a densidade de um líquido cinco vezes, tendo obtido os seguintes resultados (em g/cm³): 1.80, 1.95, 1.95, 2.00 e 1.75.
- a) Qual \acute{e} o resultado final da medida? (Sol.: $1.89 \pm 0.05 \text{ g/cm}^3$, sendo a incerteza expressa como o desvio padrão da média.)
- b) Sabendo que o valor tabelado para a densidade do líquido é de 1.85 g/cm³, diga qual é a discrepância entre a medida do estudante e o valor de referência. É significativa? (Sol.: 0.04 g/cm³; não)

23. Na tabela seguinte apresentam-se medidas dos comprimentos dos lados p e q de um retângulo.

p (mm)	24.25	24.26	24.22	24.28	24.24	24.25	24.22	24.26	24.23	24.24
q (mm)	50.36	50.35	50.41	50.37	50.36	50.32	50.39	50.38	50.36	50.38

- a) Determine a área do retângulo A=pq, começando por calcular os valores médios \overline{p} e \overline{q} e, depois, $\overline{A}=\overline{p}\overline{q}$. Determine a incerteza associada à área utilizando a propagação de erros. (Sol.: $A=1221.2\pm0.4~\mathrm{mm}^2$)
- b) Faça agora a análise admitindo que as medidas foram realizadas aos pares, isto é, em cada ensaio realizou-se uma medida de p e uma medida de q. Determine o valor da área multiplicando cada par (o primeiro p vezes o primeiro q, e assim por diante), sendo o resultado final obtido através do valor médio dos 10 valores de área. Estime a incerteza calculando o desvio padrão da média das 10 áreas. Compare com o resultado da alínea anterior. (Sol.: $A = 1221.2 \pm 0.3 \text{ mm}^2$; a área dá o mesmo resultado pelos dois métodos, como seria de esperar; a incerteza é semelhante, mas ligeiramente diferente; note-se que se o número de medidas for muito grande os dois métodos darão exatamente o mesmo resultado para a incerteza.)