POLITECHNIKA WARSZAWSKA

Podstawy Konstrukcji Zespołów Urządzeń Precyzyjnych

Projekt 2 Temat ZNL-23

Zespół napędu liniowego Założenia konstrukcyjne

wykonała: Zuzanna Pamuła, MT134 prowadzący: dr inż. Wiesław Mościcki

Warszawa 2020/2021

1 Przedmiot założeń

Przedmiotem niniejszych założeń jest mechanizm napędu liniowego, który służy do kątowego lub liniowego pozycjonowania obiektów.

2 Symbol i nazwa konstrukcji

Symbol konstrukcji: ZNL-23 Nazwa konstrukcji: Napęd liniowy

3 Zastosowanie

Zespół napędu liniowego umożliwia dokładne pozycjonowanie elementów lub poruszanie nimi w danym zakresie ruchu. Urządzenie działa z dużą precyzją, dzięki czemu znajdzie zastosowanie w wielu dziedzinach.

4 Schemat kinematyczny

Rysunek 1: Schemat kinematyczny

Ruch liniowy popychacza wywołany jest poprzez nakrętkę wprawioną w ruch przez sprzęgło i przekładnie, które połączone są z silnikiem DC z reduktorem. Zadaniem sprzęgła jest niedopuszczenie do przeciążenia i uszkodzenia elementów urządzenia. Ruch obrotowy popychacza zablokowany jest przez zabezpieczenia mechaniczne. Aby nie doszło do przekroczenia krańcowych położeń popychacza zastosowane są zabezpieczenia mechaniczne i elektryczne.

5 Wymagania konstrukcyjne

5.1 Ogólne wymagania

- a) Trzykrotne przeciążenie popychacza nie może spowodować uszkodzenia zespołu napędu.
- Zastosować zabezpieczenie elektryczne oraz mechaniczne uniemożliwiające przekroczenie położeń krańcowych popychacza.
- c) Zastosować silnik (DC) zasilany bezpiecznym napięciem do 24 V.
- d) Złącze wielostykowe mocowane do szkieletu.

- e) Zastosować sprzegło przeciążeniowe cierne.
- f) Odporność na niewłaściwe użytkowanie.
- g) Mały koszt.
- h) Niewielkie wymiary i ciężar.
- i) Wygoda i bezpieczeństwo obsługi oraz napraw.
- j) Mechanizm ma pracować w pomieszczeniu zamkniętym w zakresie temperatur: $+5^{\circ}$ C do $+40^{\circ}$ C, przy średnim zapyleniu.

5.2 Dane indywidualne

- a) Maksymalne liniowe przemieszczenie popychacza $L_{max} = 80 \, mm$.
- b) Maksymalne robocze obciążenie osiowe popychacza $Q_{max}=80$ N.
- c) Maksymalna prędkość przesuwu popychacza v=4 $\frac{mm}{\varsigma}$.
- d) Zapewnić sygnalizowanie położenia popychacza na drodze elektrycznej z rozdzielczością nie gorszą niż $\Delta s=1$ μm
- e) Sposób mocowania zespołu: U-uniwersalny.
- f) Wielkość produkcji urządzenia: J jednostkowa.

6 Obliczenia konstrukcyjne

6.1 Dobór średnicy popychacza

6.1.1 Przewidywana całkowita długość popychacza L_c

 L_d – długość popychacza, od jego wyjścia z nakrętki do czoła, w skrajnym położeniu, gdy jest najmniej wysunięty:

$$L_d = 30 \quad mm$$

 L_{max} – zakres ruchu:

$$L_{max} = 80 \quad mm$$

$$L_c = L_d + L_z + L_{max} \tag{1}$$

gdzie:

 L_z – długość ześrubowania, $L_z > \min.(4 \div 6)$ d, nie mniej niż 20 ÷ 25 mm – mm, d - średnica popychacza – mm.

Rysunek 2: Schemat popychacza wraz z nakrętką

Najbardziej narażona na wyboczenie jest część popychacza wysunięta z nakrętki. Długość tej części wynosi:

$$L_c = L_d + L_{max}$$

$$L_c = 30 + 80$$

$$L_c = 110 \quad mm$$
(2)

6.1.2 Minimalna średnica śruby ze względu na wyboczenie

Rysunek 3: Pręt obciążony maksymalną siłą osiową

Dla pręta obciążonego siłą osiową istnieje siła krytyczna F_{kr} , której przekroczenie powoduje wyboczenie.

$$F_{kr} = \left(\frac{\pi}{\beta}\right)^2 \cdot \frac{E \cdot J}{L^2} \tag{3}$$

gdzie:

E - moduł sprężystości materiału śruby, dla stali, $E=2,1\cdot10^5$ MPa,

J - moment bezwładności przekroju poprzecznego śruby,

 $\beta = 2$ - współczynnik zależny od sposobu zamocowania pręta,

L – długość popychacza pracująca na wyboczenie mm.

Moment bezwładności przekroju poprzecznego rdzenia śruby:

$$J = \frac{\pi \cdot d_r^4}{64} \tag{4}$$

gdzie

 d_r - średnica rdzenia śruby (d_3) .

Maksymalna siła osiowa F_{max} przyłożona do popychacza nie może spowodować jego wyboczenia, więc podczas pracy napędu liniowego musi być spełniony warunek:

$$F_{max} \leqslant F_{kr}$$
 (5)

Oznacza on, że maksymalna siła osiowa obciążająca popychacz nie może być większa od siły krytycznej dla tego popychacza.

Siła osiowa obciążająca popychacz będzie miała swoją maksymalną wartość F_{max} wtedy, gdy wystąpi przeciążenie. Będzie ona wtedy równa:

$$F_{max} = k \cdot Q_{max} \tag{6}$$

gdzie:

 $Q_{max} = 80$ N - siła robocza obciążająca popychacz,

k=3 - współczynnik przeciążenia przyjmowany zależnie od przewidywanych warunków pracy.

$$F_{max} = 3 \cdot 80$$

$$F_{max} = 240 \quad N$$

Po przekształceniu powyższych wzorów wyznaczono minimalną średnicę rdzenia popychacza ze względu na wyboczenie:

$$d_{rmin} \geqslant \sqrt[4]{\frac{64 \cdot k \cdot Q_{max} \cdot L^{2} \cdot \beta^{2}}{\pi^{3} \cdot E}}$$

$$d_{rmin} \geqslant \sqrt[4]{\frac{64 \cdot 2 \cdot 80 \cdot 110^{2} \cdot 2^{2}}{\pi^{3} \cdot 2, 1 \cdot 10^{5}}}$$

$$d_{rmin} \geqslant 3,268827 \quad mm$$
(7)

Oznaczenie	P [mm]	$D_2 = d_2$	$d_r = d_3$	$D_1 = d_1$
M3	0,5	2,675	2,387	2,459
M3×0,35	0,35	2,773	2,571	2,621
M4	0,7	3,545	3,141	3,242
M4×0,5	0,5	3,675	3,387	3,459
M5	0,8	4,480	4,019	4,134
M5×0,5	0,5	4,675	4,387	4,459
M6	1,0	5,351	4,773	4,917
M6×0,75	0,75	5,513	5,080	5,188
M6×0,5	0,5	5,675	5,387	5,459
M8	1,25	7,188	6,466	6,647
M8×1	1,0	7,350	6,773	6,917
M8×0,75	0,75	7,513	7,080	7,188
M8×0,5	0,5	7,675	7,387	7,459

Tabela 1: Wybrane wartości średnic gwintów metrycznych (wg PN-83/M-02013)

Dobrana średnica d_r powinna być większa od wyliczonej średnicy d_{rmin} .

Na podstawie obliczeń wybrano z tabeli 1 wstępnie dobraną średnicę gwintu popychacza ze względu na wyboczenia: M5 $(d_r = 4,019 \quad mm)$.

6.1.3 Obliczenie śruby na rozciąganie (ściskanie)

Osiowa siła Q_{max} wywołuje również ściskanie lub rozciąganie popychacza, a naprężenia $\sigma_{c,r}$ wywołane maksymalną siłą osiową F_{max} nie mogą przekroczyć wartości dopuszczalnej $k_{c,r}$.

$$\sigma_{c,r} = \frac{F_{max}}{S} = \frac{4 \cdot k \cdot Q_{max}}{\pi \cdot d_r^2} \leqslant k_{c,r}$$
(8)

gdzie:

 $F_{max} = 240 \quad N$ - maksymalna siła osiowa,

S - powierzchnia przekroju rdzenia śruby mm^2

 $\sigma_{c,r}$ - naprężenia ściskające (rozciągające) MPa

 $Q_{max} = 80$ N - zadana robocza siła działająca w osi popychacza,

 d_r - średnica rdzenia śruby, gwintu M5 dobranego w pkt. 6.1.2. mm,

k=3 - współczynnik przeciążenia przyjmowany zależnie od przewidywanych warunków pracy,

 R_e - granica plastyczności MPa,

 $k_{c,r} = 0, 5 \cdot R_e$ - dopuszczalne naprężenia ściskające (rozciągające) MPa.

$$\sigma_{c,r} = \frac{4 \cdot 3 \cdot 80}{\pi \cdot 4.019^2} \leqslant k_{c,r}$$

$$\sigma_{c,r} = 18,92 \quad MPa \leqslant k_{c,r}$$

Zatem:

$$R_e \geqslant 2 \cdot \sigma_{c,r}$$

$$R_e \geqslant 2 \cdot 18,92$$

$$R_e \geqslant 37,84 \quad MPa$$

$$(9)$$

Na popychacz dobrano stal automatową, po walcowaniu 10S20(A11), której granica plastyczności R_e wynosi: $R_e = 345 \ MPa$.

6.1.4 Dobór średnicy śruby popychacza ze względów technologicznych

Długość ześrubowania L_z musi spełniać warunek:

$$L_z \geqslant 6 \cdot d \tag{10}$$

gdzie:

d = 4,019 mm - średnica rdzenia śruby.

$$L_z \ge 6 \cdot 4,019$$

$$L_z \ge 24,114 \ mm$$

Przyjęto długość ześrubowania L_z :

$$L_z = 35 \quad mm$$

Wyznaczono przewidywaną całkowitą długość popychacza L_c :

$$L_c = L_d + L_z + L_{max} \tag{11}$$

gdzie:

 $L_d = 30 - mm$ – długość popychacza, od jego wyjścia z nakrętki do czoła, w skrajnym położeniu, gdy jest najmniej wysunięty,

 $L_z = 35 \quad mm$ – długość ześrubowania,

 $L_{max} = 80 \quad mm - \text{zakres ruchu}.$

$$L_c = 30 + 35 + 80$$

$$L_c = 145 \quad mm$$

$$L_c = 145 \quad mm \approx 150 \quad mm$$

W związku z powyższym, ze względów technologicznych, przyjęto średnicę gwintu M6.

Oznaczenie	P [mm]	$D_2 = d_2$	$d_r = d_3$	$D_1 = d_1$
M3	0,5	2,675	2,387	2,459
M3×0,35	0,35	2,773	2,571	2,621
M4	0,7	3,545	3,141	3,242
M4×0,5	0,5	3,675	3,387	3,459
M5	0,8	4,480	4,019	4,134
M5×0,5	0,5	4,675	4,387	4,459
M6	1,0	5,351	4,773	4,917
M6×0,75	0,75	5,513	5,080	5,188
M6×0,5	0,5	5,675	5,387	5,459
M8	1,25	7,188	6,466	6,647
M8×1	1,0	7,350	6,773	6,917
M8×0,75	0,75	7,513	7,080	7,188
M8×0,5	0,5	7,675	7,387	7,459

Tabela 2: Wybrane wartości średnic gwintów metrycznych (wg PN-83/M-02013)

Ostateczny dobór średnicy śruby popychacza

Doboru średnicy gwintu popychacza dokonano biorąc pod uwage wszystkie trzy wyżej omówione kryteria:

- 6.1.1. wyboczenie popychacza,
- 6.1.2. wytrzymałość na ściskanie (rozciaganie),
- 6.1.3. względy technologiczne.

Ostateczna średnica śruby popychacza: M6 . Dla dobranej średnicy popychacza:

 $P = 1,0 \quad mm - \text{skok gwintu śruby}$

$$D_2 = d_2 = 5,351 \quad mm$$

$$d_r = d_3 = 4,773 \quad mm$$

$$D_1 = d_1 = 4,917 \quad mm$$

Wstępne obliczenie przełożenia - i_c 6.2

Obliczenie prędkości obrotowej nakrętki - n_{nut}

Wyznaczono prędkość obrotową nakrętki n_{nut} :

$$n_{nut} = \frac{60 \cdot v_{max}}{P} \tag{12}$$

 $v_{max}=4-\frac{mm}{s}$ - maksymalna prędkość liniowa śruby (popychacza), P=1-mm- skok gwintu śruby.

$$n_{nut} = \frac{60 \cdot 4}{1}$$

$$n_{nut} = 240 \quad \frac{obr}{min}$$

Wstępne obliczenie przełożenia całkowitego przekładni - i_c

Wymagana prędkość obrotowa nakrętki n_{nut} jest znacznie mniejsza niż robocza prędkość obrotowa wałka silnika. Dlatego między tymi elementami musi być zastosowana przekładnia o przełożeniu redukcyjnym - i'_p .

$$i_p' = \frac{n_{siln}}{n_{nut}} \tag{13}$$

gdzie:

 $n_{siln}=5026$ $\frac{obr}{min}$ - wstępnie przyjęta prędkość robocza silnika, $n_{nut}=240$ $\frac{obr}{min}$ - prędkość obrotowa nakrętki.

$$i_p' = \frac{5026}{240}$$

$$i_p' = 20,94$$

Sposób realizacji przełożenia - i_p

Ze względu na duże przełożenie $(i_p > 8)$ zastosowano motoreduktor handlowy.

Do połączenia równoległych osi motoreduktora i nakrętki konieczne jest zastosowanie jednostopniowej przekładni sprzęgającej.

$$i_p = i_{rh} \cdot i_s \tag{14}$$

gdzie:

 i_{rh} - przełożenie reduktora handlowego,

 i_s - przełożenie stopnia sprzęgającego.

6.3 Sprawność przekładni redukcyjnej - η_p

Dla reduktora handlowego i stopnia sprzęgającego sprawność przekładni redukcyjnej η_p jest iloczynem sprawności reduktora handlowego η_{rh} i sprawności stopnia sprzęgającego η_{rs} .

Wyznaczono wstępną sprawność przekładni redukcyjnej η_p :

$$\eta_p = \eta_{rh} \cdot \eta_{rs} \tag{15}$$

gdzie:

 $\eta_{rh}=0,8$ - wstępnie przyjęta sprawność reduktora handlowego,

 $\eta_{rs}=0,9$ - sprawność stopnia sprzęgającego.

$$\eta_p = 0, 8 \cdot 0, 9$$

$$\eta_p = 0,72$$

6.4 Sprawność zespołu śruba - nakrętka - η_{sr-n}

Rysunek 4: Schemat śruby

Wyznaczono kat pochylenia linii śrubowej gwintu γ :

$$\gamma = arctg \frac{P}{\pi \cdot d_2} \tag{16}$$

gdzie:

 $P = 1 \quad mm$ - skok gwintu

 $d_2 = 5,351 \quad mm$ - średnia średnica gwintu

$$\gamma = arctg \frac{1}{\pi \cdot 5,351}$$
$$\gamma = 3,40^{\circ}$$

Następnie obliczono pozorny kąt tarcia ρ' :

$$\rho' = arctg\mu' = arctg\frac{\mu}{\cos\frac{\alpha}{2}} \tag{17}$$

gdzie:

 μ' - pozorny współczynnik tarcia,

 $\mu = 0, 3$ - współczynnik tarcia materiałów śruby i nakrętki (stal - mosiądz)

 $\alpha=60^{\circ}$ - kat zarysu gwintu metrycznego

$$\rho' = arctg \frac{0.3}{\cos\frac{60^{\circ}}{2}}$$

$$\rho' = 19,11^{\circ}$$

Wyznaczono sprawność zespołu śruba - nakrętka - η_{sr-n} :

$$\eta_{sr-n} = \frac{tg\gamma}{tg(\gamma + \rho')} \tag{18}$$

gdzie:

 $\rho'=19,11^\circ$ - pozorny kąt tarcia,

 $\gamma=3,40^{\circ}$ - kąt pochylenia linii śrubowej gwintu.

$$\eta_{sr-n} = \frac{tg3,40^{\circ}}{tg(3,40^{\circ}+19,11^{\circ})}$$

$$\eta_{sr-n} = 0,14$$

6.5 Sprawność zespołu napędu liniowego - η_{nl}

Wyznaczono sprawność zespołu napędu liniowego - η_{nl} :

$$\eta_{znl} = \eta_p \cdot \eta_{sr-n} \tag{19}$$

gdzie:

 $\eta_p=0,72$ - sprawność przekładni redukcyjnej,

 $\eta_{sr-n} = 0,14$ - sprawność zespołu śruba – nakrętka, obliczona dla gwintu M6 i dla współczynnika tarcia materiałów śruby i nakrętki (stal - mosiądz) $\mu = 0,3$.

$$\eta_{znl} = 0,72 \cdot 0,14$$
$$\eta_{znl} = 0,101$$

6.6 Moc na popychaczu – N_{sr}

Rysunek 5: Moc na popychaczu

Moc N_{sr} , która musi być dostarczona przez napęd do popychacza jest równa:

$$N_{sr} = \frac{Q_{max} \cdot v_{max}}{1000} \tag{20}$$

gdzie:

 $Q_{max}=80~N$ - maksymalne robocze obciążenie popychacza (śruby), $v_{max}=4~\frac{mm}{s}$ - maksymalna prędkość ruchu popychacza.

$$N_{sr} = \frac{80 \cdot 4}{1000}$$

$$N_{sr} = 0,32$$
 W

6.7 Moc silnika napędowego: obliczeniowa – N_{obl} i maksymalna – P_{2max}

Wyznaczono obliczeniową moc silnika napędowego N_{obl} , czyli moc na popychaczu N_{sr} zredukowaną do wałka silnika:

$$N_{obl} = \frac{N_{sr}}{\eta_{znl}} \tag{21}$$

gdzie:

 $N_{sr} = 0.32$ W - moc na popychaczu,

 $\eta_{znl}=0,101$ - sprawność zespołu napędu liniowego.

$$N_{obl} = \frac{0,32}{0,101}$$

$$N_{obl} = 3,17 \ W$$

Dla zapewnienia poprawnej pracy dobrano silnik, którego moc maksymalna P_{2max} jest większa od wymaganej mocy N_{obl} i będzie się mieściła w przedziale:

$$(dolna\ granica\ P_{2max}) \leqslant P_{2max} \leqslant (g\'{o}rna\ granica\ P_{2max})$$
 (22)

gdzie:

$$dolna\ granica\ P_{2max} = 1, 3 \cdot N_{obl} \tag{23}$$

dolna granica $P_{2max} = 1, 3 \cdot 3, 17$

 $dolna\ granica\ P_{2max} = 4,121\ W$

górna granica
$$P_{2max} = 1, 5 \cdot N_{obl}$$
 (24)

górna granica $P_{2max} = 1, 5 \cdot 3, 17$

górna granica $P_{2max} = 4,755$ W

$$4,121 \quad \mathbf{W} \leqslant \mathbf{P}_{\mathbf{2max}} \leqslant 4,755 \quad \mathbf{W} \tag{25}$$

6.8 Moment M_{nut} niezbędny do zapewnienia ruchu obrotowego nakrętki

Moment niezbędny do zapewnienia ruchu obrotowego nakrętki - M_{nut} jest równy momentowi tarcia w połączeniu śruba - nakretka.

Określa się go podczas pracy układu, a więc wtedy, gdy śruba jest obciążona roboczą siłą osiową Q_{max} . W obliczeniu pominięto moment oporów ruchu w tocznym ułożyskowaniu nakrętki.

$$M_{nut} = 0.5 \cdot Q_{max} \cdot d_2 \cdot tg(\gamma + \rho') \tag{26}$$

gdzie:

 $Q_{max} = 80$ N - maksymalne robocze obciążenie popychacza (śruby),

 $d_2 = 5,351$ mm - średnia średnica gwintu,

 $\rho' = 19,11^{\circ}$ - pozorny kąt tarcia,

 $\gamma = 3,40^{\circ}$ - kąt pochylenia linii śrubowej gwintu.

$$M_{nut} = 0, 5 \cdot 80 \cdot 5, 351 \cdot tg(3, 40^{\circ} + 19, 11^{\circ})$$

$$M_{nut} = 88,71 \quad mNm$$

6.9 Moment obciążenia zredukowany do wałka silnika – M_{zred}

Bezpośrednim obciążeniem wałka silnika jest moment M_{zred} , którego wartość jest równa:

$$M_{zred} = \frac{M_{nut}}{i_p \cdot \eta_p} \tag{27}$$

gdzie:

 $M_{nut}=88,71~mNm$ - moment niezbędny do zapewnienia ruchu obrotowego nakrętki, $i_p'=20,94$ - przełożenie przekładni redukcyjnej znajdującej się między wałkiem silnika a nakrętką, $\eta_p=0,72$ - sprawność przekładni redukcyjnej znajdującej się między wałkiem silnika a nakrętką.

$$M_{zred} = \frac{88,71}{20,94 \cdot 0,72}$$

$$M_{zred} = 5,88 \quad mNm$$

6.10 Dobór silnika

Do projektu ZNL-23 wybrano silnik **Portescap 17DCT 26P1/P2 107P**. Karta katalogowa firmy Portescap z dobranym silnikiem znajduje się na stronie 16.

Rysunek 6: Charakterystyki obciążeniowe silnika prądu stałego

Prędkość kątowa biegu jałowego wybranego silnika wynosi:

$$\omega_0 = \frac{\pi \cdot n_0}{30} \tag{28}$$

gdzie:

 $n_0=9800$ $\frac{obr}{min}$ - prędkość obrotowa biegu jałowego silnika odczytana z katalogu.

$$\omega_0 = \frac{\pi \cdot 9800}{30}$$

$$\omega_0 = 1026, 25 \quad \frac{rad}{s}$$

Maksymalną moc P_{2max} silnika wyznacza się ze wzoru:

$$P_{2max} = 0,25 \cdot M_h \cdot \omega_0 \tag{29}$$

gdzie:

 $M_h=16,43$ mNm=0,01643 Nm - moment rozruchowy (startowy) wybranego silnika, wartość odczytana z katalogu.

 $\omega_0 = 1026, 25 - \frac{rad}{s}$ - prędkość kątowa biegu jałowego wybranego silnika.

$$P_{2max} = 0,25 \cdot 0,01643 \cdot 1026,25$$

$$\mathbf{P_{2max}} = \mathbf{4}, \mathbf{22} \quad \mathbf{W}$$

Zgodnie z (25) siła P_{2max} musi spełniać zależność:

$$4,121 \quad W \leqslant P_{2max} \leqslant 4,755 \quad W$$

$$4,121 \quad W \leq 4,22 \quad W \leq 4,755 \quad W$$

Zatem siła P_{2max} mieści się w ustalonym przedziale.

6.11 Dobór punktu pracy silnika pradu stałego

Ustalono punkt pracy, czyli określono prędkość roboczą n_s silnika przy obciążeniu momentem M_{zred} , zredukowanym do wałka silnika.

Wykorzystano do tego liniowy przebieg charakterystyki prędkości w funkcji obciążenia, n = f(M).

Rysunek 7: Charakterystyka prędkości w funkcji obciążenia

Punkt pracy dobrano tak, aby moment obciążenia zredukowany do wałka silnika M_{zred} znajdował się w przedziale:

$$\frac{1}{7} \cdot \mathbf{M_h} \leqslant \mathbf{M_{zred}} \leqslant 0, 5 \cdot \mathbf{M_h} \tag{30}$$

gdzie:

 $M_h = 16,43 \quad mNm$ - moment rozruchowy (startowy) wybranego silnika, wartość odczytana z katalogu.

$$\frac{1}{7} \cdot M_h = \frac{1}{7} \cdot 16,43 = 2,35 \quad mNm$$

$$0.5 \cdot M_h = 0.5 \cdot 16.43 = 8.22 \quad mNm$$

Więc:

$2.35 \quad mNm \leq M_{zred} \leq 8.22 \quad mNm$

Następnie utworzono tabelę z obliczeniami punktu pracy silnika. Uzupełniono pierwsze komórki pierwszego wiersza za pomocą wyznaczonych wcześniej wartości. Do uzupełnienia kolejnych wierszy korzystano ze wzorów:

$$i_p = \frac{n_k}{n_{nut}} \tag{31}$$

 $n_{nut} = 240 \quad \frac{obr}{min}$ - prędkość obrotowa nakrętki.

$$n_s = n_0 \cdot \frac{M_h - M_{zred}}{M_h} \tag{32}$$

 n_s - prędkość robocza silnika

 $n_0=9800$ $\frac{obr}{min}$ – prędkość biegu jałowego wybranego silnika, $M_h=16,43$ mNm – moment rozruchowy (startowy) wybranego silnika,

 M_{zred} – moment obciążenia zredukowany do wałka silnika (obliczany ze wzoru (27))

$$n_{k+1} = n_0 \cdot \frac{M_h - M_{zred}}{M_h} \tag{33}$$

gdzie:

 $n_0=9800$ $\frac{obr}{min}$ – prędkość biegu jałowego wybranego silnika , $M_h=16,43$ mNm– moment rozruchowy (startowy) wybranego silnika,

 M_{zred} – moment obciążenia zredukowany do wałka silnika (obliczany ze wzoru (27)) mNm.

$\Delta n = n_{k+1} - n_k$	(34))

	Portescap 17DCT 6P1/P2 107P		16,43 mNm	n _o =9800 c	obr/min
	n _s [obr/min]	i _p	M _{zred} [mNm]	n _{s+1} [obr/min]	Δn [obr/min]
1	5026	20,94	5,88	6291	1265
2	6291	26,21	4,70	6996	706
3	6996	29,15	4,23	7279	283
4	7279	30,33	4,06	7377	98
5	7377	30,74	4,01	7409	32
6	7409	30,87	3,99		

Tabela 3: Wyniki obliczeń punktu pracy silnika

6.12 Dobór reduktora handlowego

Do projektu wybrano reduktor: Portescap B16-0-9.

Karta katalogowa firmy Portescap z dobranym reduktorem znajduje się na stronie 17.

Reduktor dobrano spośród zalecanych przez producenta do danego silnika.

Zalecana przez producenta maksymalna prędkość wejściowa przy pracy ciągłej n_{we} :

$$n_{we} = 8000 \quad \frac{obr}{min}$$

Sprawność dobranego reduktora:

$$\eta_{rh} = 0,81 \neq 0,8$$

6.12.1 Obliczenia korygujące

Sprawność dobranego reduktora różni się od przyjętej sprawności reduktora więc przeprowadzono obliczenia korygujące.

Sprawność stopnia sprzęgającego η_s :

$$\eta_s = 0,9$$

Sprawność przekładni redukcyjnej η_p po skorygowaniu:

$$\eta_p = \eta_{rh} \cdot \eta_s$$

$$\eta_p = 0,81 \cdot 0,9$$

$$\eta_p = 0,729$$

Sprawność zespołu napędu liniowego η_{znl} po skorygowaniu:

$$\eta_{znl} = \eta_p \cdot \eta_{sr-n}$$

$$\eta_{znl} = 0,729 \cdot 0,14$$

$$\eta_{znl} = 0, 10$$

Następnie utworzono tabelę ze skorygowanymi obliczeniami punktu pracy silnika. Uzupełniono pierwsze komórki pierwszego wiersza za pomocą wyznaczonych wartości. Do uzupełnienia kolejnych wierszy korzystano ze wzorów: (31) - (34).

Silnik: Portescap 17DCT 26P1/P2 107P			6,43 mNm	n₀=9800 obr/min			
	n _s [obr/min]	i _p	M _{zred} [mNm]	n _{s+1} [obr/min]	Δn [obr/min]		
1	7409	30,87	3,94	7449	40		
2	7449	31,04	3,97				

Tabela 4: Wyniki obliczeń skorygowanego punktu pracy silnika

Ostatecznie przyjęto:

Prędkość robocza silnika n_s :

$$n_s = 7449 \quad \frac{obr}{mir}$$

Przełożenie przekładni redukcyjnej i_{pk} :

$$i_{\mathbf{pk}} = 31,04$$

Moment obciążenia zredukowany do wałka silnika:

$$\mathbf{M_{zred}} = \mathbf{3}, \mathbf{97} \quad \mathbf{mNm}$$

Moment M_{zred} spełnia zależność:

$$\frac{1}{7} \cdot M_h \leqslant M_{\mathbf{zred}} \leqslant 0, 5 \cdot M_h$$

gdzie:

 $M_h = 16,43$ mNm - moment rozruchowy (startowy) wybranego silnika, wartość odczytana z katalogu.

$$2,35 \quad mNm \leqslant M_{\mathbf{zred}} = 3,97 \quad mNm \leqslant 8,22 \quad mNm$$

6.13 Przełożenie i_s stopnia sprzegającego

Wyznaczono wartość przełożenia i_s stopnia sprzęgającego z zależności:

$$i_s = \frac{i_{pk}}{i_{rk}} \tag{35}$$

gdzie:

 $i_{pk} = 31,04$ – ostateczna wartość przełożenia przekładni redukcyjnej w ZNL,

 $i_{rh} = 9$ – przełożenie dobranego reduktora handlowego (wartość odczytana z katalogu).

$$i_s = \frac{31,04}{9}$$

$$i_s = 3,45$$

6.14 Moment sprzęgła przeciążeniowego M_{sp}

Wyznaczono moment przenoszony przez sprzęgło przeciążeniowe M_{sp} będący o 45% większy od momentu roboczego M_{nut} , czyli:

$$M_{sp} = 1,45 \cdot M_{nut} \tag{36}$$

gdzie:

 $M_{nut}=88,71 \quad mNm$ – moment niezbędny do zapewnienia ruchu obrotowego nakrętki,

$$M_{sp} = 1,45 \cdot 88,71$$

$$M_{sp} = 128,63$$

6.15 Minimalna liczba impulsów n_{imp} tarczy na jeden obrót

Liczba impulsów n_{imp} tarczy enkodera na jeden obrót wynika z zadanej rozdzielczości Δs oraz ze skoku P gwintu popychacza.

$$n_{imp} = \frac{1000 \cdot P}{\Delta s} \tag{37}$$

gdzie:

 $\Delta s = 1 \quad \mu m$ – rozdzielczość, $P = 1 \quad mm$ – skok gwintu.

$$n_{imp} = \frac{1000 \cdot 1}{1}$$

$$n_{imp} = 1000 \quad \frac{imp}{obr}$$

Liczba cykli CPR tarczy na jeden obrót:

$$n_{CRP} = 0,25 \cdot n_{imp} \tag{38}$$

gdzie:

 $n_{imp} = 1000$ $\frac{imp}{obr}$ – minimalna liczba impulsów tarczy enkodera na jeden obrót.

$$n_{CRP} = 0,25 \cdot 1000$$

$$n_{CRP} = 250 \quad \frac{cykli}{obr}$$

17DCT Athlonix™

Ø 17 mm • Precious metal commutation • 6.14 mNm

Dimensions in mm.

17DCT 26P1 **** .1

Floatrical Data	Cumbal		l Imié			
Electrical Data	Symbol	209E	205P	107P	205E	Unit
1 Nominal Voltage	V	18	24	36	48	Volt
2 No-Load Speed	n _o	8030	7769	9800	8145	rpm
3 No-Load Current	I _o	4.2	3.1	2.6	1.6	mA
4 Terminal Resistance	R	30.7	51.4	76.0	208.1	Ω
5 Output Power	P _{2max.}	4.5	4.8	4.7	4.6	W
6 Stall Torque	mNm	12.36 (1.76)	13.6 (1.93)	16.43 (2.33)	12.8 (1.82)	mNm (oz-in)
7 Efficiency	h _{max.}	84	84	86	84	%
8 Max Continuous Speed	n _{e max.}	10000	10000	10000	10000	rpm
9 Max Continuous Torque	M _{e max.}	5.75 (0.82)	6.14 (0.87)	6 (0.85)	5.8 (0.83)	mNm (oz-in)
10 Max Continuous Current	I _{e max.}	0.27	0.21	0.17	0.11	Α
11 Back-EMF Constant	k _E	2.23	3.07	3.65	5.85	mV/rpm
12 Torque Constant	k _M	21.25	29.31	34.89	55.88	mNm/A
13 Motor Regulation	R/k²	68.01	59.79	62.45	66.62	10 ³ /Nms
14 Friction Torque	T _F	0.08 (0.011)	0.08 (0.011)	0.08 (0.011)	0.08 (0.011)	mNm (oz-in)
15 Mechanical Time Constant	τ_m	7.06	6.23	6.22	7.04	ms
16 Rotor Inertia	J	1.04	1.04	1.00	1.06	g-cm ²

General Data			
17 Thermal Resistance (rotor/body)	R _{th1} /R _{th2}	6/25	°C/W
18 Thermal Time Constant (rotor/stator)	t_{w_1}/t_{w_2}	12/250	S
19 Operating Temperature Range:	motor rotor	-30°C to 85°C (-22°F to 185°F) 100°C (212°F)	°C (°F) °C (°F)
20 Shaft Load Max.: (5 mm. from bearing)	-radial -axial	With sleeve bearings 1.5 (5.39) 100 (359.6)	N (oz) N (oz)
21 Shaft Play:	-radial -axial	0.03 (0.0012) 0.15 (0.0059)	mm (inch) mm (inch)
22 Weight	g	27 (0.96)	g (oz)
23 Commutation Segment	-	9	segment

^{*}Also available with ball bearing

Execution Table

Gearbox	Single Shaft	MR2	M Sense B
R16	1	2	10
B16	3	4	11
BA16	3	4	11

P1: standard commutation

P2: special commutation for double shaft version

Motor shaft rotates CW when seen from motor front face when +ve and -ve supply is given to respective terminals.

B16 Ø 16 mm • 0.06 Nm

Dimensions in mm.

Ra	atio		5	9	15	27	45	81	135	141	243	405	729	1215	2187
1	Number of Gear Stages		2	2	3	3	4	4	5	5	5	6	6	7	7
2	Direction of Rotation		=	=	≠	≠	=	=	≠	≠	≠	=	=	≠	≠
3	Efficiency		0.81	0.81	0.73	0.73	0.65	0.65	0.59	0.59	0.59	0.53	0.53	0.48	0.48
4	L (mm)		10.5	10.5	13	13	15.5	15.5	18	18	18	20.5	20.5	23	23
5	Weight	g	7	7	8	8	9	9	10	10	10	11	11	12	12
5	vveigni	(oz)	(0.246)	(0.246)	(0.282)	(0.282)	(0.317)	(0.317)	(0.352)	(0.352)	(0.352)	(0.388)	(0.388)	(0.423)	(0.423)

6 Available with Motor - L2 - Le	Available with Motor – L2 - Length with motor (mm)												
16C18	29.2	29.2	31.7	31.7	34.2	34.2	36.7	36.7	36.7	39.2	39.2	41.7	41.7
16N78	41.5	41.5	44	44	46.5	46.5	49	49	49	51.5	51.5	54	54
16G88	41.5	41.5	44	44	46.5	46.5	49	49	49	51.5	51.5	54	54
17S78	32.2	32.2	34.7	34.7	37.2	37.2	39.7	39.7	39.7	42.2	42.2	44.7	44.7
17N78	39.4	39.4	41.9	41.9	44.4	44.4	47.9	47.9	47.9	49.4	49.4	51.9	51.9
P110	29.5	29.5	32	32	34.5	34.5	37	37	37	39.5	39.5	42	42
16DCP/16DCT/17DCT CB	39.5	39.5	42	42	44.5	44.5	47	47	47	49.5	49.5	52	52
16DCP/16DCT/17DCT PM	39	39	41.5	41.5	44	44	46.5	46.5	46.5	49	49	51.5	51.5

Characteristics		5	B16 • 0 • ····	B16 2R • 0 • ····		
7 Shaft Bearings			Sleeve	Ball Bearing		
8	Maximum Static Torque	Nm (oz-in)	0.3 (42)	0.3 (42)		
9	Maximum Radial Force					
	@ 8mm from mounting face	N (lb)	5 (1.1)	10 (2.2)		
10	Maximum Axial Force	N (lb)	5 (1.1)	10 (2.2)		
11	Maximum Press Fit Force	N (lb)	100 (23)	100 (23)		
12	Average Backlash @ no-load		1.5°	1,5°		
13	Average Backlash @ 0.3 Nm		3°	3°		
	Shaft Play:					
14	-radial	μm	≤ 20	≤ 10		
15	-axial	μm	50-150	≤ 100		
16	Maximum Recommended Input Speed	rpm	8000	8000		
17	17 Operating Temperature Range: °C (°F) -30 to +65 (-22 to +150)					

