

Convolutional Neural Network

Deep Learning

Nicoletta Noceti

A refresh

Deep Neural Network Recap

The role of a neuron

$$y = f(\mathbf{x}) = \sigma(\sum_{i} w_i x_i + b)$$

The role of a neuron

- Each neuron is connected to all the others
- Correlations between input are not taken into account
- As the size of the input and the depth of the architecture increase, the number of parameters increases dramatically

$$y = f(\mathbf{x}) = \sigma(\sum_{i} w_i x_i + b)$$

Convolutional Neural Networks

 A specialized kind of neural network for processing data with a known grid-like topology

- Examples:

- Time-series

1D grid

- Images

2D grid

NNs don't scale to images!

- Let us consider a fully connected network with a single unit
 - Tiny color images of size 32 x 32 x 3
 - Size of the input layer: 32 x 32 x 3 = 3072
 - Size of the weights: 3072
 - Small color images of size 200 x 200 x 3
 - Size of input layer and weights: 200 x 200 x 3 = 120000

From shallow to deep models

Shallow models

Deep models

A typical CNN

A typical CNN

$$softmax(y_i) = \frac{e^{y_i}}{\sum_j e^{y_i}}$$

Interlude: convolution

The convolution/cross-correlation operation

For 2D input arrays:

$$s(i,j) = (K * I)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n) =$$
$$= \sum_{m} \sum_{n} I(i-m,j-n)K(m,n)$$

$$s(i,j) = (K*I)(i,j) = \sum \sum I(i+m,j+n)K(m,n)$$

Cross-correlation (with an example)

$$s(i,j) = (K * I)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n)$$

Y₁₁ Y₁₂ Y₁₃

Y₃₁ Y₃₂ Y₃₃

X ₁₁	X ₁₂	X ₁₃	X ₁₄			
X ₂₁	X ₂₂	X ₂₃	X ₂₄	4	W_{11}	W
X ₃₁	X ₃₂	X ₃₃	X ₃₄	^	W ₂₁	W ₂
X ₄₁	X ₄₂	X ₄₃	X ₄₄			

 $Y_{11} = X_{11}W_{11} + X_{12}W_{12} + X_{21}W_{21} + X_{22}W_{22}$ $Y_{12} = X_{12}W_{11} + X_{13}W_{12} + X_{22}W_{21} + X_{23}W_{22}$ $Y_{13} = X_{13}W_{11} + X_{14}W_{12} + X_{23}W_{21} + X_{24}W_{22}$ $\dots \dots$

2D convolution

Input tensor Kernel of of size 10x10 size 3x3

A "feature detector" (kernel) slides over the inputs to generate a feature map

$$s(i,j) = (K * I)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n)$$

Output tensor of size 8x8

Convolutional layer

A sketch of a dense layer

A sketch of a convolutional layer

An example from https://cs231n.github.io/convolutional-networks/

Another animation to clearly understand

A sketch of a convolutional layer

Also called the detector stage, it provides a set of linear activations

As the kernel slides on the image, it is able to capture the same property in different image regions → THERE IS PARAMETER SHARING

Multiple feature detectors can be used to capture different image properties → Their number is called channels

From dense to sparse interaction

From dense to sparse interaction

From dense to sparse interaction

Output feature size of conv layers

UniGe

- Three parameters control the size of the output of a layer
 - Channles, the number of filters (kernels) of the layer
 - Stride, the step used to slide the filter on the input
 - When stride > 1 we are down-sampling the input data
 - Tiling refers to the special case where stride = kernel span
 - Padding to enlarge the input and allow for kernels application in each one of the (original)

Output features size of conv layers

Output features size of conv layers Examples

$$O = \frac{{}^{4}W - {}^{3}K + 2P}{S_{1}} + 1$$

Output features size of conv layers Examples

$$O = \frac{{}^{5}W - {}^{3}K + 2P}{S_{2}} + 1$$

Output features size of conv layers Examples

Padding 2, stride 1

$$O = \frac{{}^{5}W - K + 2P}{{}^{2}} + 1$$

To sum up: output features size of conv layers

- Input size: W₁ x H₁ x D₁
- Parameters:
 - Number of kernels N
 - Kernel size K
 - Stride S
 - Padding P

- Output size: W₂ x H₂ x D₂
 where
- $W_2 = (W_1 K + 2P)/S + 1$
- $H_2 = (H_1 K + 2P)/S + 1$
- $D_2 = N$
- Number of weights per filter: K x K x
 D₁
- Number of parameters in total:
 - $K \times K \times D_1 \times N$ weights
 - N biases

A sketch of a convolutional layer

f(x) = max(0, x)

A sketch of a convolutional layer

A way to further reduce the dimensionality of the representation while providing invariance to small shifts of the inputs

Common choices: average or max pooling

Pooling with an example

2	1	7	1	2	5
5	0	3	4	1	2
1	7	8	3	3	0
0	3	2	0	1	1
3	6	5	3	0	3
3	6	0	2	1	0

Max pooling

8	5
6	3

Average pooling

3.8	2.3
3	1.2

Pooling can help with local invariance although some information is lost

No parameter to be estimated here!

To sum up: output features size of pooling layer

- Input size: W₁ x H₁ x D₁
- Parameters:
 - Window size H
 - Stride S

- Output size: W₂ x H₂ x D₂ where
- $W_2 = (W_1 H)/S + 1$
- $H_2 = (H_1 H)/S + 1$
- $D_2 = D_1$
- Number of weights per filter: K x K x
 D₁
- Number of parameters in total:
 - KxKxD₁xN weights
 - N biases

Backpropagation in CNNs

Backgropragation in CNNs (intuition)

Backgropragation in CNNs (intuition)

$$J(\mathbf{w}) = \frac{1}{N} \sum_{k=1}^{N} (\hat{y}_k - y_k)^2$$

$$J_k(\mathbf{w}) = (\hat{y}_k - y_k)^2 \qquad \nabla(J_k(\mathbf{w})) = \begin{bmatrix} \frac{\partial J_k(\mathbf{w})}{\partial w} \\ \frac{\partial J_k(\mathbf{w})}{\partial w_{1,1}} \\ \dots \\ \frac{\partial J_k(\mathbf{w})}{\partial w_{3,3}} \end{bmatrix}$$

Backpropagation
$$J(\mathbf{w}) = \frac{1}{N} \sum_{k=1}^{N} (\hat{y}_k - y_k)^2$$

$$J_k(\mathbf{w}) = (\hat{y}_k - y_k)^2 \qquad \nabla(J_k(\mathbf{w})) = \begin{bmatrix} \frac{\partial J_k(\mathbf{w})}{\partial w} \\ \frac{\partial J_k(\mathbf{w})}{\partial w_{1,1}} \\ \dots \\ \frac{\partial J_k(\mathbf{w})}{\partial w_{3,3}} \end{bmatrix}$$

$$\frac{\partial J_k(\mathbf{w})}{\partial w} = \frac{\partial J_k(\mathbf{w})}{\partial \hat{y}_k} \frac{\partial \hat{y}_k}{\partial v}$$

$$J(\mathbf{w}) = \frac{1}{N} \sum_{k=1}^{N} (\hat{y}_k - y_k)^2$$

$$J_k(\mathbf{w}) = (\hat{y}_k - y_k)^2 \qquad \nabla(J_k(\mathbf{w})) = \begin{bmatrix} \frac{\partial J_k(\mathbf{w})}{\partial w_{1,1}} \\ \dots \\ \frac{\partial J_k(\mathbf{w})}{\partial w_{3,3}} \end{bmatrix}$$

$$\frac{\partial J_k(\mathbf{w})}{\partial w_{r,c}} = \frac{\partial J_k(\mathbf{w})}{\partial \hat{y}_k} \frac{\partial \hat{y}_k}{\partial v} \left[\sum_{s=1}^2 \sum_{t=1}^2 \frac{\partial v}{\partial v_{s,t}} \frac{\partial v_{s,t}}{\partial f_\sigma(z_{s,t})} \frac{\partial f_\sigma(z_{s,t})}{\partial z_{s,t}} \frac{\partial z_{s,t}}{\partial w_{r,c}} \right]$$

$$J(\mathbf{w}) = \frac{1}{N} \sum_{k=1}^{N} (\hat{y}_k - y_k)^2$$

$$J_k(\mathbf{w}) = (\hat{y}_k - y_k)^2 \qquad \nabla(J_k(\mathbf{w})) = \begin{bmatrix} \frac{\partial J_k(\mathbf{w})}{\partial w_{1,1}} \\ \dots \\ \frac{\partial J_k(\mathbf{w})}{\partial w_{3,3}} \end{bmatrix}$$

$$\frac{\partial J_k(\mathbf{w})}{\partial w_{r,c}} = \frac{\partial J_k(\mathbf{w})}{\partial \hat{y}_k} \frac{\partial \hat{y}_k}{\partial v} \left[\sum_{s=1}^2 \sum_{t=1}^2 \frac{\partial v}{\partial v_{s,t}} \frac{\partial v_{s,t}}{\partial f_\sigma(z_{s,t})} \frac{\partial f_\sigma(z_{s,t})}{\partial z_{s,t}} \frac{\partial z_{s,t}}{\partial w_{r,c}} \right]$$

To further discuss...

A nice visualization

https://adamharley.com/nn_vis/cnn/3d.html

Interretable models or interpretable data?

Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept

From https://towardsdatascience.com/understand-your-algorithm-with-grad-cam-d3b62fce353

Neuroscientific basis for convolutional networks

- Some of the design principles of Neural Networks have been drawn from neuroscience
- We now briefly discuss some of the connections between CNNs and a simplified version of the brain functions
- We refer to the primary visual cortex (V1 area), the first one in the brain performing some significantly advanced processing of visual input

V1 area & CNNs

- V1 is arranged in a spatial map
- V1 contains simple cells , that an to some extent be characterized by a linear function (as for the detection step in CNNs)
- V1 also contains complex cells, that show some level of invariance to some changes in the visual input
- It is generally believed that the same basic principles apply to other areas in the visual stream, repeatedly

Again on V1 cells

 Experiments showed that most V1 cells have weights that can be described by Gabor functions

What about CNN weights?

- At the very first layers the weights learnt by a CNN on natural images are very similar to Gabor filters

On the properties of weights learnt by convolutional layers

A hierarchical representation

Feature visualization of convolutional net trained on ImageNet, from [Zeiler & Fergus 2013]

Transfer learning

- It refers to the possibility
 of exploiting knowledge in terms of pre-trained models that can be
 used on different data and tasks (with some constraint)
- Fine-tuning is a well-assessed procedure in which the weights are somehow adapted to the new problem/data starting from the pretrained model
- This may imply a domain shift (also known as covariate shift) problem, due to the fact that the data distribution may change as you change the problem/data

CNN training

- Very data hungry and computationally intensive
- One of the trick for coping with data lack us data augmentation
 - The idea is to generate more data by applying some transformation to the image

Data augmentation

https://m2dsupsdlclass.github.io/lectures-labs/slides/04_conv_nets/index.html#82

CNN training

- Very data hungry and computationally intensive
- One of the trick for coping with data lack us data augmentation
 - The idea is to generate more data by applying some transformation to the image
- An alternative is to use synthetic data, but the model may be affected by domain shift issue (and thus it would need a specific domain adaptation strategy)

UniGe

