ST227 Table

Denys Melnyk

2024-03-07

Disclaimer: The descriptions provided below are NOT rigorous definitions and should NOT be used for revising theory. They serve a purpose of a small cheat sheet with intuitive explanations behind the notions in the module, that could be used during assignments, lectures, tutorials or practicing applied questions for exam.

Notation

Symbol	Name	Description
\overline{S}	State Space	Possible values taken by the Markov chain
P	Transition matrix	A matrix containing the probabilities of going between state spaces, rows being "old" and columns being "new" spaces, all 1-step
P_{ij}	Transition probability	A probability of Markov Chain going from state i to state j in 1-step
P_{ij}^n	Transition probability	A probability of Markov Chain going from state i to state j in n-steps
λ	Initial distribution	A vector containing distribution of the first state of the chain
λ_i	Initial probability of state i	A probability of state i being the first state of the Markov's chain, i 'th entry of λ
d_i	State Period	Greatest Common divisor of all loops leading from state i to i
H_j	State first hitting time	Number of steps until state j is hit. Is 0 if the start point is state j
H_A	Set first hitting time	Number of steps until set A is hit. Is 0 if the start point is a state in set A
h_{ij}	State hitting probability	Probability of reaching state j from state i .
h_{iA}	Set hitting probability	Probability of entering a set A from state i .
η_{ij}	State expected hitting time	Expected number of steps until state j is reached from state i
η_{iA}	Set expected hitting time	Expected number of steps until set A is reached from state i
T_i	First Return time	Number of steps until state i loops on itself
f_i	Return probability	probability of chain returning back to state i from i , basically h_{ii}
m_i	Expected return time	Expected number of steps until state i loops on itself, basically η_{ii}
V_{j}	Number of visits	Number of visits to state j
V_A	Number of visits	Number of visits to set of states A
\mathcal{T}	Set of Transient States	Subset of S , containing all transient states
μ	Invariant Measure	A vector of positive entries, describing the measure, or "weight" of each state at every step of the chain. Has a property of $\mu = \mu P^n$

Symbol	Name	Description
π	Invariant Distribution	A special case of invariant measure, distribution describing the distribution of the chain at every step of the chain, has a property of $\pi = \pi P^n$ and $\sum_{i \in S} \pi_i = 1$. Not every chain has π . Time-reversed chains have the same stationary distributions.
γ_i^k	Expected number of visits	Expected number of visits to state i before chain returns to state k
П	Long Term Transition Matrix	$\Pi = \lim_{n \to \infty} P^n$, with all rows equal to π . Describes the behaviour of the chain after arbitrarily many steps. Not applicable to every Markov Chain.
G = (V, E)	Graph	Graph G , where V is a set of vertices and $E \subset S \times S$, set of all edges. All graphs in this module are connected and weighted
V	Set of all vertices	Set of all vertices in a graph. In this module, $V = S$
E	Set of all edges	Set containing all connections in a graph, is a subset of $S \times S$. As all the graphs are connected, for any 2 points $x, y \in V$ there exists a subset of E connecting them
w(x, y)	Weight between vertices x and y	A non-negative real number, describing the weight of an edge. $w(x,y) = 0$ if $x,y \notin E$, and $w(x,y) > 0$ otherwise.
W(x)	Sum of weights of edges connected to vertex x	Positive(due to connected graph assumption) number, describing the sum of all edges connecting x with the rest of the graph: $W(x) = \sum_{y \in V} w(x, y) < \infty \ \forall x \in V$
Y	Offspring Distribution	Distribution describing the number of children in the branching process. X_n , number of offspring at time n , is described as $X_n = \sum_{k=1}^{X_{n-1}} Y_k$, where $Y_i, \forall i \in \mathbb{N}$ are independent copies of Y.
G(s)	Probability generating function (of Y)	Notion similar to moment generating function. Calculated by $G(s) = \mathbb{E}[s^Y], s < 1.$
$F_n(s)$	Probability generating function (of X_n)	Notion similar to moment generating function. Calculated by $F_n(s) = \mathbb{E}[s^{X_n} X_0=1], s <1, n\in\mathbb{N}\cup\{0\}.$
α	Extinction Probability	Probability that the branching process ends up with no offspring. Defined as $\alpha = \mathbb{P}(H_0 < \infty X_0 = 1)$. Can be interpreted as $h_{1,0}$. Smallest solution for equation $G(s) = s$ on the interval $[0, 1]$.
α_n	Extinction Probability at time n	Probability that the branching process is extinct at time n . Follows a property $\alpha_n \geq \alpha_{n+1}$. The sequence $(\alpha_n)_{n\geq 0}$ converges to α .

Probability generation function properties

Assuming the notation from the table above:

- 1. $G(s) = \sum_{k=0}^{\infty} s^k \mathbb{P}(Y = k)$ from definition of expectation.
- 2. $G(0) = \mathbb{P}(Y = k)$ from 1 by s = 0.
- 3. $G(1) = \mathbb{P}(Y < \infty) = 1$ from convergence of expectation.
- 4. $G^{(1)}(1) = \mathbb{E}[Y]$ from differentiation of the Power Series.
- 5. $F_n(s) = \sum_{k=0}^{\infty} s^k \mathbb{P}(X_n = k | X_0 = 1)$ from definition of expectation.
- 6. $F_0(s) = s$, $s \in [0, 1]$ following from 5 by subbing in n = 0.
- 7. $F_1(s) = \mathbb{E}[s^{X_1}|X_0 = 1] = \mathbb{E}[s^Y|X_0 = 1] = G(s), \quad s \in [0, 1]$ from definiton of Y.
- 8. $F_n(0) = \mathbb{P}(X_n = 0 | X_0 = 1), \quad n \in \mathbb{N} \cup \{0\} \text{ from 5 by subbing in } s = 0.$

- 9. $F_n^{(1)}(1) = \mathbb{E}[X_n|X_0 = 1], \quad n \in \mathbb{N} \cup \{0\}$ from differentiation of the Power Series.
- 10. Proposition 6.1.1, will be added later.
- 11.
- 12.