Group Assignment 2

Group 11

October 2025

Table of contents

Part I		3
Q1		3
Q2		3
Q3		3
Q4		4
Q5		4
Q6		5
Q7		6
Q8		6
Q9		7
Part II		7
		7
•		8
•		9
•		10
•		10
Part II	I.	11
		11
		12
Analysi	is and the second s	13
List o	of Figures	
$\frac{1}{2}$	Top 3 exchanges by largest total trading volume	
List o	of Tables	
1	Top 5 comapanies by largest mean trading volume	4
2	Top 3 exchanges by largest total trading volume	4

```
library(dplyr)
library(lubridate)
library(ggplot2)
library(scales)
```

```
sp_data <- read.csv("sp500_2023_2024.csv")

# Remove the rows whose prcod values are NA
sp_data <- filter(sp_data, !is.na(prcod))

# Change datadate format type
sp_data$datadate <- as.Date(sp_data$datadate, format = "%d/%m/%Y")</pre>
```

Part I

Q1

```
# Calculate the unique number of tickers
n_distinct(sp_data$tic)
```

502

Q2

```
# Calculate the unique number of companies
n_distinct(sp_data$conm)
```

499

```
# Display the top 5 companies by largest mean trading volume
sp_data %>%
  group_by(conm) %>%
  summarise(mean_trading_volume = mean(cshtrd)) %>%
```

```
arrange(desc(mean_trading_volume)) %>%
head(n = 5)
```

A tibble: 5×2

Table 1: Top 5 comapanies by largest mean trading volume

conm <chr></chr>	mean_trading_volume <dbl></dbl>
TESLA INC	115314383
NVIDIA CORP	113131835
PALANTIR TECHNOLOG INC	60056251
APPLE INC	57736403
ADVANCED MICRO DEVICES	57143415

Q4

```
# Display the total trading volume of the top 3 exchanges
# by largest total trading volume
top_exchanges <- sp_data %>%
    group_by(exchg) %>%
    summarise(total_trading_volume = sum(cshtrd)) %>%
    arrange(desc(total_trading_volume)) %>%
    head(n = 3)
top_exchanges
```

A tibble: 3×2

Table 2: Top 3 exchanges by largest total trading volume

exchg <int></int>	$total_trading_volume < dbl >$
11	681415756062
14	570830885382
21	385399362

```
# Visualise the total trading volume of the top 3 exchanges
# by largest total trading volume
ggplot(top_exchanges, aes(factor(exchg), total_trading_volume)) +
    geom_col(fill = "dark blue") +
    scale_y_continuous(labels = label_number(scale = 1e-9, suffix = "B")) +
    labs(x = "Stock Exchange Code", y = "Total Trading Volume")
```


Figure 1: Top 3 exchanges by largest total trading volume

```
# Calculate the number of companies with more than 1 ticker
multiple_ticker_num <- sp_data[, c("tic", "conm")] %>%
  group_by(conm) %>%
  summarise(tic_num = n_distinct(tic)) %>%
```

```
filter(tic_num > 1)
nrow(multiple_ticker_num)
```

3

Q7

```
# Find ticker that has the largest positive mean return (simple daily return)
sp_data %>%
  group_by(tic) %>%
  mutate(daily_return = (prccd - lag(prccd)) / lag(prccd)) %>%
  summarise(mean_daily_return = mean(daily_return, na.rm = TRUE)) %>%
  arrange(desc(mean_daily_return)) %>%
  head(n = 1)
```

A tibble: 1 x 2

$\mathrm{tic} <\!\!\mathrm{chr}\!\!>$	$mean_daily_return < dbl >$
PLTR	0.005785119

Q8

```
# Find company that has the largest positive mean return (simple daily return)
sp_data %>%
  group_by(conm) %>%
  mutate(daily_return = (prccd - lag(prccd)) / lag(prccd)) %>%
  summarise(mean_daily_return = mean(daily_return, na.rm = TRUE)) %>%
  arrange(desc(mean_daily_return)) %>%
  head(n = 1)
```

A tibble: 1 x 2

conm <chr></chr>	$mean_daily_return < dbl >$
PALANTIR TECHNOLOG INC	0.005785119

Q9

```
# Find industry that includes the largest number of companies
sp_data %>%
  group_by(sic) %>%
  summarise(company_num = n_distinct(conm)) %>%
  arrange(desc(company_num)) %>%
  head(n = 1)
```

A tibble: 1×2

sic <int></int>	company_num <int></int>
6798	28

Part II

Q1

```
# Calculate simple weekly returns for each ticker in the full dataset
# using the following formula
weekly_sp_data <- sp_data %>%
   mutate(week = floor_date(datadate, "week")) %>%
   group_by(tic, week) %>%
   arrange(datadate) %>%
   summarise(week_end_close_price = last(prccd)) %>%
   ungroup()
head(weekly_sp_data)
```

`summarise()` has grouped output by 'tic'. You can override using the `.groups` argument.

A tibble: 6×3

tic <chr></chr>	week <date></date>	week_end_close_price <dbl></dbl>
A	2023-01-01	147.67
A	2023-01-08	156.92
A	2023-01-15	155.92
A	2023-01-22	155.69
A	2023-01-29	154.55
A	2023-02-05	152.55

A tibble: 6×4

tic <chr></chr>	week <date></date>	week_end_close <dbl></dbl>	e_price weekly_return <dbl></dbl>
A	2023-01-08	156.92	0.062639670
A	2023-01-15	155.92	-0.006372674
A	2023-01-22	155.69	-0.001475115
A	2023-01-29	154.55	-0.007322243
A	2023-02-05	152.55	-0.012940796
A	2023-02-12	148.26	-0.028121927

```
type = 5, na.rm = TRUE), include.lowest = TRUE,
labels = paste0(0:9 * 10, "%")))
head(weekly_sp_data)
```

A tibble: 6 x 5

		week_end_close_pweekly_return			
tic < chr >	week $<$ date $>$	<dbl $>$	<dbl></dbl>	$\mathrm{deciles} < \!\! \mathrm{fct} \!\! >$	
A	2023-01-08	156.92	0.062639670	90%	
A	2023-01-15	155.92	-0.006372674	30%	
A	2023-01-22	155.69	-0.001475115	40%	
A	2023-01-29	154.55	-0.007322243	30%	
A	2023-02-05	152.55	-0.012940796	30%	
A	2023-02-12	148.26	-0.028121927	10%	

```
# Display a table showing the top ticker (ticker with the highest weekly return)
# in each decile group
top_tickers <- weekly_sp_data %>%
    group_by(deciles) %>%
    slice(which.max(weekly_return)) %>%
    select(deciles, tic, weekly_return) %>%
    arrange(deciles)
print(top_tickers)
```

```
# A tibble: 10 x 3
# Groups: deciles [10]
  deciles tic
                weekly_return
  <fct>
          <chr>
                        <dbl>
1 0%
          DVN
                     -0.0415
2 10%
          FDS
                     -0.0248
3 20%
          TRMB
                     -0.0141
4 30%
         NWS
                     -0.00544
5 40%
          CDNS
                      0.00228
6 50%
          AIG
                      0.0101
7 60%
          HLT
                      0.0185
```

```
8 70% RL 0.0292
9 80% SJM 0.0470
10 90% SMCI 0.784
```

Q4

```
# Plot the autocorrelation function for this ticker's
# entire set of weekly returns
hlt_data <- filter(weekly_sp_data, tic == "HLT")
acf(hlt_data$weekly_return, main = "Autocorrelation Function for HLT")</pre>
```

Autocorrelation Function for HLT

Figure 2: Autocorrelation Function for HLT

Part III

```
# Load and clean the weekly Fama-French 3 factor data
ff3 <- read.csv("fama_french_weekly.csv", skip = 4)

# Remove blank data
ff3 <- na.omit(ff3)

# Change coloumns name
colnames(ff3) <- c("datadate", "Mkt_RF", "SMB", "HML", "RF")

# Convert to decimal</pre>
```

```
ff3[-1] <- ff3[-1] / 100

# Change date format
ff3$datadate <- as.Date(ff3$datadate, format = "%Y%m%d")

# Add a column named "week" for further analysis
ff3 <- mutate(ff3, week = floor_date(datadate, "week"))

# Remain weekly data with ideal dates
ff3_cleaned <- ff3 %>%
    select("week", "Mkt_RF", "SMB", "HML", "RF")
head(ff3_cleaned)
```

A data.frame: 6 x 5

	1	Mkt_RF	CLAD III	TT	DD 11.1
	week <date></date>	<dbl></dbl>	SMB <dbl></dbl>	HML <dbl></dbl>	RF <dbl></dbl>
1	1926-06-27	0.0158	-0.0062	-0.0086	6e-04
2	1926 - 07 - 04	0.0037	-0.0090	0.0031	6e-04
3	1926-07-11	0.0098	0.0059	-0.0144	6e-04
4	1926-07-18	-0.0203	0.0002	-0.0017	6e-04
5	1926-07-25	0.0306	-0.0189	-0.0085	6e-04
6	1926-08-01	0.0204	0.0016	0.0055	6e-04

```
# Fit the Fama-French 3 factor model to the weekly returns
# of the stock selected in Part II

ff3_model <- merge(hlt_data, ff3_cleaned, by = "week")

ff3_model <- ff3_model %>%
    mutate(excess_return = weekly_return - RF) %>%
    select("week", "excess_return", "Mkt_RF", "SMB", "HML", "RF")

head(ff3_model)

summary(lm(excess_return ~ Mkt_RF + SMB + HML, data = ff3_model))
```

A data.frame: 6 x 6

	week <date></date>	excess_return <dbl></dbl>	Mkt_RF <dbl></dbl>	SMB <dbl></dbl>	HML <dbl></dbl>	RF <dbl></dbl>
1	2023-01-08	0.050002111	0.0302	0.0337	-0.0324	9e-04
2	2023-01-15	0.012542431	-0.0069	0.0012	-0.0115	9e-04
3	2023-01-22	0.042280507	0.0257	-0.0009	-0.0122	9e-04
4	2023-01-29	0.013680886	0.0181	0.0354	-0.0199	9e-04
5	2023-02-05	0.001483871	-0.0149	-0.0320	0.0266	9e-04
6	2023-02-12	- 0.006539736	0.0010	0.0203	-0.0147	9e-04

Call:

lm(formula = excess_return ~ Mkt_RF + SMB + HML, data = ff3_model)

Residuals:

Min 1Q Median 3Q Max -0.050719 -0.010592 -0.000428 0.011555 0.035722

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.002611 0.001868 1.398 0.16527 Mkt_RF 0.109272 8.840 3.44e-14 *** 0.965943 SMB -0.058955 0.121771 -0.484 0.62934 HML0.327167 0.109504 2.988 0.00354 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.0185 on 100 degrees of freedom Multiple R-squared: 0.4826, Adjusted R-squared: 0.4671 F-statistic: 31.09 on 3 and 100 DF, p-value: 2.766e-14

Analysis

The analysis of S&P 500 data reveals nuanced dynamics in trading behavior and factor exposure. Although Tesla and Nvidia dominate by mean trading volume, Palantir stands out with the highest average daily return—an intriguing deviation from size-based expectations, suggesting investor momentum may outweigh liquidity effects. Only three firms have multiple tickers, highlighting the rarity of dual listings in U.S. markets. Exchange 11's outsized total trading

volume implies strong concentration of liquidity across exchanges. In the decile-based return segmentation, the 90 % group's extreme weekly performance (SMCI = 0.784) indicates sporadic volatility spikes, while the 60 % decile's moderate but consistent returns (HLT = 0.0185) make it suitable for stability analysis. The Fama-French regression for HLT shows a near-unit sensitivity to market risk (beta = 0.965) but minimal exposure to size, revealing that large-cap hospitality stocks move closely with the market yet derive modest alpha, supporting efficient-market implications.