

Principles of Deep Learning Final presentation 30min video

recommendation system for the fashion company

20181353 Yejin Kim 20191280 Sehwa Jeong

CONTENTS

- 1. Introduction
- 2. Model Design and Architecture
 - 2.1 Feature extraction
 - **2.1.1** image
 - 2.1.2 Language
 - 2.2 Sequence mini-batches
 - 2.3 Recommendation system with deep learning
 - 2.4 Evaluation criteria
 - 2.5 Comparison with prior models
- 3. Data
- 4. Experiments
- 5. Conclusion

Recommendation system

: system that provides personalized recommendations to users.

"Fashion company especially in online market"

Problem

1. It is different from the conventional recommendation system method!

Problem

2. Data are too diverse!!

images

languages

Jersey top with narrow shoulder straps.

Microfibre T-shirt bra with underwired, moulded, lightly padded cups that shape the bust and provide...

Semi shiny nylon stockings with a wide, reinforced trim at the top. Use with a suspender belt. 20 de...

others

brand ("Levi's"),
silhouette ("jeans"),
physical properties like shape ("slim cut"), color ("blue"),
material ("stonewashed cotton denim"),
target groups ("adult," "male"),
price,
customer and expert sentiments

Problem

3. users' preferences, product styles and trends change over time!!!

2021 summer trends

2022 summer trends

Problem

"predict the items that a customer will buy in the next purchasing"

Architecture

FOR-system(Fashion Online Recommendation-system)

- 2.1 Feature extraction
- **2.1.1** image
- 2.1.2 Language

2.1 Feature extraction 2.1.1 image

2.1 Feature extraction 2.1.1 image color

Grid of pixels

#252946 93.1%

#240000 5.7%

#252946 93.2%

#252946 93.1%

#252946 93.1%

#252946 93.1%

#252946 93.1%

#252948 93.3%

#252948 93.3%

#252943 93.2%

#252943 93.2%

#252943 93.2%

#252943 93.2%

#252943 93.2%

#252943 93.2%

#252943 93.2%

#252943 93.2%

#252943 93.2%

#252943 93.2%

#252945 93.2%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945 93.5%

#252945

Convert RGB into HEX code

Extract color

Parameter: Tolerance, limits

2.1 Feature extraction 2.1.1 image shape

2.1 Feature extraction 2.1.2 Language

Jersey top with narrow shoulder straps.

Jersey top with narrow shoulder straps.

Jersey top with narrow shoulder straps.

Microfibre T-shirt bra with underwired, r
Microfibre T-shirt bra with underwired, r
Microfibre T-shirt bra with underwired, r
Semi shiny nylon stockings with a wide,
Semi shiny nylon stockings with a wide,
Tights with built-in support to lift the booksemi shiny tights that shape the tummy,
Opaque matt tights. 200 denier.

Sweatshirt in soft organic cotton with a Sweatshirt in soft organic cotton with a

r i	
Jersey	
Jersey	
Jersey	
moulded	
moulded	
moulded	
Semi	
Semi	
Tights	
Semi	
denier	
press-stud	
press-stud	

2.2 Sequence mini-batches

 $\left| i_{4,2} \right| i_{4,3} \left| i_{4,4} \right|$

2.2 Sequence mini-batches

Customer 1 $i_{2,2}$ $i_{1,1}$ $i_{2,1}$ $i_{2,3}$ $i_{1,2}$ $i_{1,1} \mid i_{1,2} \mid i_{1,3} \mid i_{1,4} \mid i_{1,5} \mid$ $i_{2,3}$ $i_{1,3}$ $i_{2,2}$ $i_{2,4}$ $i_{1,2}$ **Customer 2** Input $i_{2,4}$ $i_{2,3}$ $i_{1,3}$ $\iota_{2,5}$ $\iota_{1,4}$ $i_{2,1} \mid i_{2,2} \mid i_{2,3} \mid i_{2,4} \mid i_{2,5} \mid i_{2,6}$ Window size = 3**Customer 3** $i_{3,1} | i_{3,2} | i_{3,3} | i_{3,4} |$ $i_{2,4}$ $i_{2,5}$ $i_{2,6}$ $i_{1,4}$ $i_{1,5}$ output ••• **Customer 4**

2.3 Recommendation system with deep learning

2.3 Recommendation system with deep learning

2.4 Evaluation criteria

top-k categorical accuracy evaluation

2.5 Comparison with prior models

- Alternating Least Squares
- Bayesian Personalized Ranking
- Logistic Matrix Factorization

3. Data

Dataset "H&M Data set"

Meta data for each clothes

Meta data for each customer

RangeIndex: 1371980 entries, 0 to 1371979 Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	1371980 non-null	int64
1	customer_id	1371980 non-null	object
2	FN	476930 non-null	float64
3	Active	464404 non-null	float64
4	club_member_status	1365918 non-null	object
5	fashion_news_frequency	1355971 non-null	object
6	age	1356119 non-null	float64
7	postal_code	1371980 non-null	object

Purchase history of each customer

RangeIndex: 31788324 entries, 0 to 31788323 Data columns (total 6 columns):

Column Dtype
----0 Unnamed: 0 int64
1 t_dat object
2 customer_id object
3 article_id int64
4 price float64
5 sales_channel_id int64

4. Experiments

	Top 1	Top 5	Top 10	Top 50	Top 100
Alternating Least Squares	0.0005232	0.0009522	0.001152	0.002362	0.005122
Bayesian Personalized Ranking	0.0004253	0.0008637	0.0009621	0.002682	0.004687
Logistic Matrix Factorization	0.0007104	0.001256	0.0009735	0.003632	0.006132
FOR-system + Simple RNN	0.001276	0.003533	0.004364	0.009085	0.01389
FOR-system + LSTM	0.0009501	0.001692	0.002078	0.004245	0.006383
FOR-system + GRU	0.0009204	0.001811	0.002197	0.004453	0.006502
FOR-system + Simple RNN + leveraging features	0.0006235	0.002464	0.003325	0.008016	0.01196
FOR-system + LSTM +leveraging features	0.001633	0.003652	0.004750	0.009501	0.01437
FOR-system + GRU+ leveraging features	0.0008907	0.002256	0.003147	0.007690	0.01143

<information of experiment>

- Tensorflow, keras, YAKE implicit
- Google Colab

parameter of experiment>

- Embedding dimension: 128
- Epochs: 10
- Window size: 10
- Lag size :1

THANK YOU