FÓRMULAS DE TERMODINÁMICA, MOTORES TÉRMICOS Y MÁQUINAS FRIGORÍFICAS

por Aurelio Gallardo

2 - Diciembre - 2023

Fórmulas de Termodinámica, motores térmicos y máquinas frigoríficas. By Aurelio Gallardo Rodríguez, Is Licensed Under A Creative Commons Reconocimiento-NoComercial-Compartirlgual 4.0 Internacional License.

1. Termodinámica

1.1. Generales

Primer principio de Termodinámica: $\Delta U = Q - W$

Calor que absorbe una sustancia líquida o sólida para aumentar su temperatura: $Q = m \cdot c_{esp} \cdot (T_{fin} - T_{ini}) = m \cdot c_{esp} \cdot \Delta T$

Del agua líquida: $c_{esp} = 1 \cdot \frac{cal}{g \cdot C}$; Calor latente (necesario para cambiar de fase): $Q = m \cdot L$

Segundo principio de la Termodinámica

- ✓ Carnot: mientras es posible convertir todo el trabajo en calor $W \to Q$, lo contrario es imposible $Q \to W$. No se puede convertir todo el calor en trabajo.
- ✓ Clausius: espontáneamente (sin aportar trabajo), es imposible que fluya calor de un cuerpo frío a uno caliente.

FIGURA (1). Signos Calor-Trabajo en el sistema

1.2. Gases

Calor Presión constante (se usa **n**, número de moles): $Q_p = n \cdot C_p \cdot \Delta T$; Volumen cons-

tante: $Q_v = n \cdot C_v \cdot \Delta T$, siendo C_p la capacidad calorífica *molar* a presión constante y C_v a volumen constante.

Valor de la constante de los gases ideales: $R = 8,1344 \frac{J}{mol \cdot K} = 0,082 \frac{atm \cdot l}{mol \cdot K} = 1,9872 \frac{cal}{mol \cdot K} \simeq 2 \cdot \frac{cal}{mol \cdot K}$

Relación de Mayer: $C_p - C_v = R$; Coeficiente adiabático: $\gamma = C_p/V_v$

Para gases monoatómicos: $C_v = 3 \frac{cal}{mol \cdot K}$ y $C_p = 5 \frac{cal}{mol \cdot K}$; para gases diatómicos: $C_v = 5 \frac{cal}{mol \cdot K}$ y $C_p = 7 \frac{cal}{mol \cdot K}$

Ecuación del gas ideal: $p \cdot V = n \cdot R \cdot T$

1.2.1. Transformaciones en gases ideales

NOMBRE	CARACTERÍSTICA	SE CUMPLE	$W = \int_{1}^{2} p \cdot dV$	Q	$\Delta U = Q - W$
Isobárica	p = cte	1s ley Gay-Lussac $\frac{V_1}{T_1} = \frac{V_2}{T_2}$	$W = p \cdot (V_2 - V_1)$	$Q = n \cdot C_p \cdot \Delta T$	$\Delta U = n \cdot C_V \cdot \Delta T$
Isocórica	V = cte	2^{g} ley Gay-Lussac $\frac{p_1}{T_1} = \frac{p_2}{T_2}$	W = 0	$Q = n \cdot C_V \cdot \Delta T$	$\Delta U = n \cdot C_V \cdot \Delta T$
Isotérmica	T = cte	ley Boyle-Mariotte $p_1V_1=p_2V_2$	$W = nRT \cdot \ln\left(\frac{V_2}{V_1}\right)$	Q = W	$\Delta U = 0$
Adiabática	Q = 0	ley Poisson $p_1 V_1^{\gamma} = p_2 V_2^{\gamma}$ $rac{T_2}{T_1} = \left(rac{V_1}{V_2} ight)^{\gamma-1}$	$W = \frac{p_2 V_2 - p_1 V_1}{1 - \gamma}$ $W = -\Delta U$	Q = 0	$\Delta U = n \cdot C_V \cdot \Delta T$

FIGURA (2). Transformaciones termodinámicas básicas

1.3. Máquina térmica y máquina frigorífica (bomba de calor)

Son las que conforman un ciclo termodinámico. Como la energía interna es una función de estado $\Delta U=0\cdot J$

Teniendo en cuenta el primer principio y el segundo, entonces $Q_1 + Q_2 = W$

Rendimiento y/o eficiencia: es siempre lo que se obtiene entre lo que se entrega. El rendimiento/eficiencia de una máquina real es siempre un porcentaje de la máquina ideal, que tiene el máximo rendimiento /eficiencia.

FIGURA (3). Ciclo Carnot

Tipo de máquina	Esquema	Temperatura / Calor	Rendimiento o eficiencia	Si es máquina ideal de Carnot
Motor Térmico	T; Q>0 T>Tz Q>0 W=Q;-Q;>0	$T_1 > T_2$ $ Q_1 - Q_2 = W$ $Q_1 > 0, Q_2 < 0, W > 0$	$egin{aligned} oldsymbol{\eta} &= rac{W}{ Q_1 } = 1 - rac{ Q_2 }{ Q_1 } \ oldsymbol{\eta} &< 1 \end{aligned}$	Máquina reversible $\Delta S = 0 \implies \frac{ Q_1 }{T_1} = \frac{ Q_2 }{T_2}$ $\eta_{ideal} = 1 - \frac{T_2}{T_1}$
Máquina frigorífica	T, Q,<0 T>T; W≅Q,-Q;	$T_1 > T_2$ $ Q_1 - Q_2 = W $ $Q_1 < 0, Q_2 > 0, W < 0$	$arepsilon_{FR}=rac{ Q_2 }{ W }=rac{ Q_2 }{ Q_1 - Q_2 }$	$oldsymbol{arepsilon}_{FR_{ideal}} = rac{T_2}{T_1 - T_2}$
Bomba de calor	T ₂ Q>0		$egin{aligned} arepsilon_{BC} &= rac{ Q_1 }{ W } = rac{ Q_1 }{ Q_1 - Q_2 } \ arepsilon_{BC} &= 1 + arepsilon_{FR} \end{aligned}$	$\mathcal{E}_{BC_{ideal}} = rac{T_1}{T_1 - T_2}$

2. Motores térmicos

Tipo de máquina	Ciclo	Fórmulas	Conceptos	
Motor de vapor	Rankine	$P = p \cdot L \cdot S \cdot f$ Potencia en el pistón	p, presión; L, carrera del pistón; S, superficie émbolo; f, frecuencia.	
	Otto	$V_c = V_1 - V_2 = V_{PMI} - V_{PMS}$		
Motor gasolina	V _{PMS} V _{PMI} V	$V_c = \pi \cdot \left(\frac{\phi}{2}\right)^2 \cdot L$ $R = V_{PMI}/V_{PMS}$ $\eta = 1 - \frac{1}{R^{\gamma - 1}}$ (rendimiento) Cilindrada motor 4T: $4V_c$	Vc: volumen cilindro. V_{PMS} : volumen punto muerto superior o de la cámara de combustión.	
Motor gasoil	Diesel P 2 3 V _{PMS} V _{PMI} V	Idem fórmulas cilindrada $R_o=V_3/V_2$ $\eta=1-rac{1}{R^{\gamma-1}}\cdot\left(rac{R_o^{\gamma}-1}{\gamma\cdot(R_o-1)} ight)$	 V_{PMI}: volumen punto muerto inferior. R: relación de compresión. L: carrera. φ: calibre. Ro:la relación entre el volumen de la mezcla al cesar la entrada de combustible y el volumen de la recámara 	

2.1. Sistema motor

Considero sólo motor:

Dado el poder calorífico de la gasolina (gasoil) en calorías o julios por unidad de masa o volumen, por ejemplo: $H_c = 7800 \cdot Kcal/l$ o $H_c = 9900 \cdot Kcal/Kg$

Me darán la masa o el volumen que se gasta en el motor. Por ejemplo, $\dot{m} = 3 \cdot Kg/h$ o $\dot{V} = 7 \cdot l/h$. Normalmente la velocidad a la que se consume (punto arriba).

FIGURA (4). esquema sistema motor

Calculo la potencia absorbida como $P_a = \dot{Q}_1 = \dot{m} \cdot Hc$ o bien $P_a = \dot{Q}_1 = \dot{V} \cdot Hc$, o quizás necesite un cálculo de densidad $\dot{m} = \rho \cdot \dot{V}$

El rendimiento del motor se puede calcular con las fórmulas anteriores para el motor Otto o Diesel, pero también con la relación $\eta_T = \frac{P_{titil}}{P_{abs}} = \frac{\dot{W}}{\dot{Q}_1}$

La potencia útil tiene una relación con el par motor: $P_{\acute{u}til} = M \cdot w$, siendo $w = 2 \cdot \pi \cdot f$. Usualmente se usa la fórmula $P_{util} = \frac{M \cdot \pi \cdot n}{30}$. «n» en rpm, P en watios y M en Nm.

2.2. Sistema motor - transmisión

 $\eta_T = \frac{P_i}{P_{abs}} = \frac{\dot{W}}{\dot{Q}_1}$ ahora el rendimiento térmico es la relación entre la potencia intermedia y la absorbida.

El rendimiento total sí es $\eta_{TOT} = \frac{P_{titil}}{P_{abs}}$. El rendimiento del sistema mecánico $\eta_{mec} = \frac{P_{titil}}{P_l}$. Se cumple que $\eta_{TOT} = \eta_T \cdot \eta_{mec}$. La potencia útil es la entregada a las ruedas.

FIGURA (5). esquema sistema motor con transmisión

Se puede considerar que $P_i = P_{roz} + P_{útil}$, la potencia intermedia es la suma de una potencia de rozamiento y la potencia útil.

Si quiero calcular el momento o par motor en el eje debo despejar de la fórmula: $P_i = \frac{M \cdot \pi \cdot n}{30}$; si quiero calcular el momento o par motor en las ruedas $P_{\acute{u}til} = \frac{M \cdot \pi \cdot n}{30}$. También puedo usar la fórmula general $P = F \cdot v$ si es necesario.