LAB-5

AQIL K H

EE20S049

1. Space-variant Blurring Now assume the blur to be space-variant, i.e. the standard deviation varies for each pixel. Consider the distribution of σ to be

 $\sigma(m, n) = A (exp - ((m - N 2)2 + (n - N 2)2) / B)$, $0 \le m, n \le N - 1$ with $\sigma(N 2, N 2) = 2.0$ and $\sigma(0, 0) = 0.01$, where N × N is size of the image and pixel indices are in the range $[0, N - 1] \times [0, N - 1]$. Find A and B, and create the matrix σ . Perform Gaussian blurring on Globe.pgm using the values of $\sigma(m, n)$.

Input:

Output:

2.Blur Nautilus.pgm using (a) space-invariant blur code of part 1 with σ = 1.0, and (b) space-variant blur code of part 2 with σ (m, n) = 1.0 for $0 \le m$, n $\le N - 1$. Verify that the blurred images of the above two steps are the same.

Input:

Space-invariant Blur:

Space-Variant Blur:

Difference image:

Observation: Found the sigma map of both images and obtained the space-variant blur. Observed that the output for space-variant blur with

$$\sigma(m, n) = 1.0 \text{ for } 0 \le m, n \le N - 1$$

And space invariant blur with σ = 1.0 is same.