

One-Hot Representation

■ Represent a word as a one-hot vector

■ Example: He studies machine learning

	Dictionary														
	He	studies	machine	learning	is	interesting	supports	big	data						
v_{He}	1	0	0	0	0	0	0	0	0						
v_{is}	0	0	0	0	1	0	0	0	0						
v_{big}	0	0	0	0	0	0	0	1	0						
v_{data}	0	0	0	0	0	0	0	0	1						

■ How large is this dictionary (universe set)?

■ Penn Treebank dataset: ~50K

☐ Google 1T dataset: 13M

Issues of One-Hot Vector

- High-dimensional
- Sparse
- Fixed dimensionality (cannot represent new words)
- Orthogonal semantic similarity between pair of words

			Dict	ionary										
	king	queen	professor	interesting	supports	oorts big da								
v_{king}	1	0	0	0	0	0	0							
v_{queen}	0	1	0	0	0	0	0							
$v_{professor}$	0	0	1	0	0	0	0							

$$\left\langle v_{king}, v_{queen} \right\rangle = \left\langle v_{king}, v_{professor} \right\rangle = 0$$

Distributional Representation

- "You shall know a word by the company it keeps" (John R. Firth, 1957)
- A word is characterized by its context

	Dictionary												
	royal	palace	duke	speech	university	research							
v_{king}	1	1	1	1	0	0							
v_{queen}	1	1	1	1	0	0							
$v_{professor}$	0	0	0	1	1	1							

 $\langle v_{king}, v_{queen} \rangle > \langle v_{king}, v_{professor} \rangle = \langle v_{queen}, v_{professor} \rangle$

■ Still not good enough …

Vector Representation

- The vector space is spanned by semantic "concepts"
- Each word is represented by a distribution of weights over these concepts
 - ☐ The representation of a word is spread across all of the concepts in the vector
 - Each concept in the vector contributes to the definition of many words

	Concepts											
	Royalty	Masculinity	Femininity	Celebrity								
v_{king}	0.9	0.9	0.1	0.9								
v_{queen}	0.8	0.2	0.9	0.8								
v_{actor}	0.1	0.8	0.2	0.7								

Vector Representation

■ An illustration of 2-D vector representation

How to Learn Word Vectors?

- How to find semantic concepts bases
- How to assign weights vectors
- How to define similarity/distance metric

A Simple Vector Representation

- A word is represented by the documents (bases of the vector space) in which it appears
- A document is represented by the words it contain (i.e., bag-of-words representation for the document)

Documents

We will see how small of the state of the st

Vector-space representation

	D1	D2	D3	D4	D5
complexity	2		3	2	3
algorithm	3			4	4
entropy	1			2	
traffic		2	3		
network		1	4		

Term-document matrix

Issues of Doc-Word Co-occurrence

- Number of concepts (bases) is too large
- Concepts (bases) are not orthogonal
- High-dimensional
- Sparse
- etc.

Latent Semantic Analysis

■ Represent a corpus as a document-word co-occurrence matrix (frequency, tf-idf, etc.)

■ Factorize the document-word co-occurrence matrix to find latent components (semantic concepts)

Latent Semantic Analysis

- Latent semantic analysis (LSA) is a technique of analyzing relationships between a set of documents and the terms they contain by producing a set of concepts related to the documents and terms.
- LSA assumes that words that are close in meaning will occur in similar documents (the distributional hypothesis).
- LSA applies singular value decomposition (SVD) to find latent concepts $A = USV^T$
- Words are then compared by taking the cosine of the angle between the two vectors.

Latent Semantic Analysis

- LSA applies singular value decomposition (SVD) to find latent concepts $A = USV^{T}$
 - \blacksquare *A*: $m \times n$ word-document co-occurrence matrix
 - \square *U*: $m \times k$ orthogonal matrices for representing words
 - \square *V*: $n \times k$ orthogonal matrices for representing documents
 - \square *S*: $k \times k$ diagonal singular value matrix
 - \blacksquare Select $k' \ll n, k' \ll m$ for a low-rank approximation of A

		A			=			U			x S						X		Vt			
Г	d1	d2	d3	d4		Г	f1	f2	f3	f4]		f1	f2	f3	f4			d1	d2	d3	d4
а	6	7	1	0		а	0.24	-0.51	0.08	0.06]	f1	23.1	0	0	0		f1	0.37	0.38	0.65	0.53
b	8	6	0	1		ь	0.25	-0.54	-0.64	-0.23		f2	0	14.3	0	0		f2	-0.55	-0.63	0.37	0.38
С	6	9	8	5		С	0.58	-0.28	0.57	0.13		f3	0	0	3.5	0		f3	-0.69	0.59	0.27	-0.21
d	0	1	8	8		d	0.42	0.37	0.16	-0.68	1	f4	0	0	0	1.5		f4	0.26	-0.29	0.59	-0.69
е	2	0	9	7		е	0.44	0.34	-0.24	0.66												
f	2	0	7	7		f	0.39	0.29	-0.40	-0.09												

Latent Semantic Analysis

- After applying SVD to the word-document co-occurrence matrix and obtain the factorization $A = USV^{T}$
 - $lue{U}$: similar words have large inner products
 - \square *V*: similar documents have large inner products
 - Related word and document have large inner products

Probabilistic LSA

- Probabilistic LSA (PLSA) is a statistical technique for the analysis of co-occurrence matrix.
- Compared to standard LSA stemming from a low-rank decomposition (SVD), PLSA is based on a mixture decomposition derived from a latent class model

PLSA Model

- Observations in the form of co-occurrences (w, d) of words and documents
- PLSA models the probability of (w,d) as a mixture of conditionally independent multinomial distributions

$$p(w,d) = \sum_{z} p(z)p(d|z)p(w|z) = p(d) \sum_{z} \frac{p(z|d)p(w|z)}{p(w|z)}$$

- An advantage of PLSA is that the latent variable *z* can be interpreted as a topic
 - \square z: topic (latent class)
 - \square p(z|d): each document has a distribution over K latent topics
 - \square p(w|z): each topic has a distribution over the vocabulary

[1] Hofmann (1999). "Probabilistic Latent Semantic Indexing".

PLSA Model

■ PLSA is a generative model of the documents in the collection it is estimated on

$$p(w,d) = p(d) \sum_{z} p(z|d) p(w|z)$$

- lacksquare For each document d, a topic z is generated conditionally to d according to p(z|d)
- \square A word is then generated from topic z according to P(w|z)

EM Algorithm for Latent Variable Models

- Given a joint distribution $p(X, Z|\theta)$ over observed variables X and latent variables Z, governed by parameters θ , the goal is to maximize the likelihood function $p(X|\theta)$ w.r.t. θ .
- The general EM algorithm:
 - \square Initialize the parameters Θ^{old} ;
 - E-Step: Evaluate $p(Z|X, \Theta^{\text{old}})$;
 - \square M-Step: Evaluate θ^{new} given by

$$\theta^{\text{new}} = \underset{\Theta}{\operatorname{argmax}} \sum_{Z} p\big(Z|X, \theta^{\text{old}}\big) p(X, Z|\Theta)$$

 \Box Check the convergence of the parameter values; if not convergence condition not satisfied set $\theta^{\mathrm{old}} = \theta^{\mathrm{new}}$ and go to E-step.

Learning for PLSA

- The parameters p(z|d) and p(w|z) of PLSA can be learned by using the EM algorithm
- EM algorithm for PLSA:
 - E-Step: Evaluate $p(z_k | d_i, w_j; \theta^{\text{old}})$;

$$p(z_k|d_i, w_j; \Theta^{\text{old}}) = \frac{p(w_j|z_k)p(z_k|d_i)}{\sum_{l=1}^K p(w_j|z_l)p(z_l|d_i)}$$

 \square M-Step: Evaluate Θ^{new} given by

$$p(w_j|z_k) = \frac{\sum_{i=1}^{M} \#(d_i, w_j) p(z_k|d_i, w_j)}{\sum_{n=1}^{N} \sum_{m=1}^{M} \#(d_m, w_n) p(z_k|d_m, w_n)}$$

$$p(z_k|d_i) = \frac{\sum_{j=1}^{N} \#(d_i, w_j) p(z_k|d_i, w_j)}{\#(d_i)}$$

word2vec

- Latent semantic analysis (LSA)
 - Low-rank factorization of the co-occurrence matrix
 - Latent space can be interpreted as latent concepts
 - $\hfill \square$ Words are distributional representations in the latent space
- word2vec
 - Word vectors are positioned in the vector space such that words that share common contexts in the corpus are located in close proximity to one another in the space
 - ☐ Predict surrounding words (skip-gram)
 - ☐ Also can be used represent similarity

[1] Mikolov (2013). "Efficient Estimation of Word Representations in Vector Space".

Language Model

- A statistical language model is a probability distribution over sequences of words $w_1, ..., w_N$
- Given such a sequence, it assigns a probability $p(w_1, ..., w_N)$ to the whole sequence
 - Rank possible sentences (e.g., spelling correction)

```
p("I \text{ like data analytics"}) > p("I \text{ like Dota analytics"})
p("I \text{ like data analytics"}) > p("Data analytics \text{ like I"})
```

☐ Generate possible sentences (e.g., autocomplete query)

n-gram Language Model

■ The probability of a word only depends on the previous n-1 words, known as an n-gram model

$$p(w_1, \dots, w_N) = \prod\nolimits_{i=1}^N p(w_i|w_1, \dots, w_{i-1}) \approx \prod\nolimits_{n=1}^N p(w_i|w_{i-(n-1)}, \dots, w_{i-1})$$

■ Bigram (n = 2) language model

```
p(\text{"I like data analytics"})
 \approx p(\text{I } | \langle s \rangle) p(\text{like } | \text{I}) p(\text{data } | \text{like}) p(\text{analytics } | \text{data}) p(\langle /s \rangle | \text{analytics})
```

lacktriangle The conditional probability can be calculated from n-gram model frequency counts

$$p(w_i|w_{i-(n-1)},\ldots,w_{i-1}) = \frac{\#(w_{i-(n-1)},\ldots,w_{i-1},w_i)}{\#(w_{i-(n-1)},\ldots,w_{i-1})}$$

CBOW and Skip-Grams

 word2vec can use either continuous bag-of-words (CBOW) or continuous skip-gram to produce a distributed representation of words

Objective of word2vec (Skip-gram)

- Maximize the log likelihood of the context words $w_{t-m}, w_{t-m+1}, ..., w_{t-1}, w_{t+1}, w_{t+2}, ..., w_{t+m}$, given w_t
 - \square *m* is usually 5~10

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log p(w_{t+j}|w_t)$$

■ Use softmax to model $p(w_{t+j}|w_t)$

$$p(w_{t+j}|w_t) = \frac{\exp(v_{w_{t+j}} \cdot v_{w_t})}{\sum_{w' \in Context} \exp(v_{w'} \cdot v_{w_t})}$$

Skip-gram

Optimization of word2vec

- \blacksquare How to minimize the objective of word2vec to obtain v_{w_t} for $w_1, ..., w_T$? - Gradient descent
 - lacktriangle Let the current center word be c and one of its context word be s, then the conditional probability becomes

$$p(s|c) = \frac{\exp(v_s \cdot v_c)}{\sum_{w'} \exp(v_{w'} \cdot v_c)}$$

 \blacksquare The gradient of the log likelihood w.r.t. v_c is

$$\frac{\partial \log p(s|c)}{\partial v_c} = v_s - \sum_{w'} \frac{\exp(v_{w'} \cdot v_c)}{\sum_{w''} \exp(v_{w''} \cdot v_c)} v_{w'} = v_s - E_{w' \sim p(w'|c)} v_{w'}$$

 \blacksquare Alternate minimize $J(\theta)$ w.r.t. v_{w_t} for w_1, \dots, w_T

Optimization of word2vec

- Gradient descent

 - □ Let $J(\theta) = \frac{1}{n} \sum_{i=1}^{n} J_i(\theta)$ □ update rule: $\theta \leftarrow \theta \frac{\eta}{n} \sum_{i=1}^{n} \nabla J_i(\theta)$
- Stochastic gradient descent
 - Replace $\frac{1}{n}\sum_{i=1}^{n} \nabla J_i(\theta)$ by the gradient at a single example $\nabla J_i(\theta)$
 - \blacksquare At each iteration randomly select an example *i* and update: $\theta \leftarrow \theta - \eta \nabla J_i(\theta)$

Summary

- Vector space models (VSMs) represent words in a continuous vector space where semantically similar words are located in close proximity to one another
- All methods depend on the distributional hypothesis, which states that words that appear in the same contexts share semantic meaning
- There are two main categories: count-based methods (e.g. Latent Semantic Analysis), and predictive methods (e.g. word2vec/Skip-gram).

