- 1 Let $f(x) = x^3 e^x$.
 - a. Show that f(x) = 0 has a solution p on [1.5, 2].
 - b. We wish to solve f(x) = 0 on [1.5,2] by the fixed-point iteration. Justify that fixed-point problems $x = g_i(x)$ with the following g_i , i = 1, 2, 3 are equivalent to the original root-finding problem f(x) = 0.
 - i. $g_1(x) = x + (x^3 e^x)$.
 - ii. $g_2(x) = e^{x/3}$.
 - iii. $g_3(x) = \sqrt{x^{-1}e^x}$.
 - c. For each g_i above, determine whether the fixed-point iteration $p_n = g_i(p_{n-1})$ with $p_0 = 1.75$ converges to p.

Solution a. Notice that $f(1.5) \approx -1 < 0$ and $f(2) \approx 0.6 > 0$, so by the intermediate value theorem, $\exists p \in [1.5, 2]$ such that f(p) = 0.

- b. i. $g_1(x) = x \iff x = x + (x^3 e^x) \iff x^3 e^x = 0$, since subtracting by x is one-to-one.
 - ii. $g_2(x) = x \iff e^{x/3} = x \iff (e^{x/3})^3 = x^3 \iff x^3 e^x = 0$, since cubing and subtracting by x^3 are one-to-one.
 - iii. \sqrt{x} restricted to x > 0 is a bijection, so

$$g_3(x) = x \iff x = \sqrt{x^{-1}e^x} \iff x^2 = x^{-1}e^x \iff x^3 - e^x = 0.$$

We can safely multiply both sides by x, since $x \ge 1.5 > 0$, and because subtraction by a particular number is one-to-one.

c. i. Notice that $g_1'(x) = 1 + 3x^2 - e^x$ and $g_2''(x) = 6x - e^x > 0$ on [1.5, 2]. Hence, $g_1'(x)$ is strictly increasing on the same interval, which means

$$g_1'(x) \ge g_1'(1.5) \ge 3.$$

Thus,

$$|p_n - p_{n-1}| = |g_1(p_{n-1}) - g_1(p_{n-2})| = |g_1'(\xi_n)||p_{n-1} - p_{n-2}| \ge 5|p_{n-1} - p_{n-2}| \ge \cdots \ge 5^{n-1}|p_1 - p_0|.$$

So, the sequence cannot be Cauchy, so it cannot converge.

ii. Note that $g_2'(x) = (1/3)e^{x/3}$. Since $e^{x/3}$ is increasing,

$$|g_2'(x)| \le \frac{e^{2/3}}{3} < \frac{e}{3} < 1.$$

Thus, by the fixed-point theorem, the sequence generated with $p_0 = 1.75$ converges to the fixed point.

iii. Once again,

$$|g_3'(x)| = \left|\frac{x-1}{2x}\sqrt{\frac{e^x}{x}}\right| \le \frac{2-1}{2 \cdot 1.5}\sqrt{\frac{e^2}{1}} = \frac{e}{3} < 1,$$

so again by the fixed-point theorem, the sequence generated converges.

- **2** Let $f(x) = x^2 4x + 3$. It is known that the two solutions of f(x) = 0 are 1 and 3.
 - a. Manually implement the Newton's method to solve f(x) = 0 with $p_0 = 4$. You may stop when $|p_N p_{N-1}| < 10^{-3}$. You may use calculators or computers.
 - b. What is the relative error of your final p_n with respect to the exact solution p=3?
 - c. Prove that in this case, for all $n \geq 1$,

$$0 < p_n - 3 \le \frac{1}{2}(p_{n-1} - 3)^2.$$

Solution a. Newton's method generates a sequence via

$$p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)} = p_n - \frac{(p_n - 1)(p_n - 3)}{2(p_n - 2)}.$$

This gives us the following table:

n	p_n
0	4
1	3.25
2	3.025
3	3.00030487805
4	3.00000004646

b. The relative error is

$$\frac{|p_4 - p|}{|p|} = \frac{3.00000004646 - 3}{3} \approx 1.5 \times 10^{-8}.$$

c. Notice that

$$\frac{p_n - 3}{(p_{n-1} - 3)^2} = \frac{1}{(p_{n-1} - 3)^2} \left(p_{n-1} - 3 - \frac{(p_{n-1} - 1)(p_{n-1} - 3)}{2(p_{n-1} - 2)} \right)$$

$$= \frac{1}{p_{n-1} - 3} - \frac{p_{n-1} - 1}{2(p_{n-1} - 2)(p_{n-1} - 3)}$$

$$= \frac{2p_{n-1} - 4 - p_{n-1} + 1}{2(p_{n-1} - 2)(p_{n-1} - 3)}$$

$$= \frac{p_{n-1} - 3}{2(p_{n-1} - 2)(p_{n-1} - 3)}$$

$$= \frac{1}{2(p_{n-1} - 2)}.$$

It now suffices to show that $p_{n-1} - 2 \ge 1$, which we'll prove by induction.

Base step:

$$n = 0$$
, $p_0 - 2 = 2 \ge 1$, so the base step holds.

Inductive step:

Suppose that $p_{n-1} - 2 \ge 1$. We wish to show that $p_n - 2 \ge 1$.

Notice that we also get

$$p_{n-1} - 1 \ge 2$$
 and $p_{n-1} - 3 \ge 0$.

Hence,

$$p_n - 2 = (p_{n-1} - 2) - \frac{(p_{n-1} - 1)(p_{n-1} - 3)}{2(p_{n-1} - 2)} \ge 1 - 0 = 1,$$

so the inductive step holds.

Thus, by induction,

$$p_n - 2 \ge 1 \implies \frac{1}{p_n - 2} \le 1,$$
 so
$$0 < \frac{p_n - 3}{(p_{n-1} - 3)^2} = \frac{1}{2(p_{n-1} - 2)} \le \frac{1}{2} \implies 0 < p_n - 3 \le \frac{1}{2}(p_{n-1} - 3)^2.$$

3 Let $f(x) = x^2 - 4x + 3$ as in the previous problem. Numerically implement the Newton's method to solve f(x) = 0 with $p_0 = 1.99$. You may stop the iteration when $|p_N - p_{N-1}| < 10^{-5}$.

Repeat this with new initial data $q_0 = 2.01$, which is close to p_0 . What do you find?

Solution My code was written in Python.

```
def newton(f, df, init, eps, N=100):
2
3
        Implementation of Newton's method
4
        Parameters:
5
                 - function to perform Newton's method on
6
                 - the derivative of f
            7
8
            eps - short for epsilon, which is our tolerance level
                 - how many iterations before we decide the sequence diverges
9
10
11
12
        class ConvergenceError(Exception):
13
14
15
        # Newton's method is a special case of the fixed-point method for the following function
16
        def g(x):
17
            return x - f(x)/df(x)
18
19
        p = [init]
20
        n = 0
        while n < 100:
21
22
            # Calculate p[n+1]
23
            p.append(g(p[n]))
24
25
            # Check for convergence
26
            if abs(p[n] - p[n+1]) < eps:
27
                return p
            n = n + 1
28
30
        # p[100] doesn't exist
31
        if abs(p[n-1] - p[n-2]) >= eps:
32
            raise Convergence Error ("Sequence does not converge")
33
   \# f(x) = x - 4x + 3
34
   def f(x):
35
        return x**2 - 4*x + 3
36
37
   \# f'(x) = 2x - 4
38
   def df(x):
39
        return 2*x - 4
40
41
   # Start Newton's method
42
   p \, = \, newton \, (\, f \, , df \, , 1.99 \, , 10 \! ** \! -5 \, )
43
    for i in range (0, len(p)):
        if p[i] > 0:
45
           print(f"{i} {p[i]}")
46
47
            print(f"{i} {p[i]}")
48
```

The outputs are the following:

n	p_n	\overline{n}	q_n
0	1.99	0	2.01
1	-48.004999999999946	1	52.005000000001075
2	-23.01249900009996	2	27.012499000100526
3	-10.526239505846604	3	14.526239505846885
4	-4.303035962394358	4	8.303035962394498
5	-1.2308448330481183	5	5.230844833048186
6	0.22981930016702723	6	3.770180699833003
7	0.8324526105015218	7	3.1675473894984885
8	0.9879781634646054	8	3.0120218365353955
9	0.9999285961288253	9	3.000071403871174
10	0.9999999974509256	10	3.000000002549074
11	0.9999999999999	11	3.0

We see that $\{p_n\}_{n\geq 1}$ converges to 1, whereas $\{q_n\}_{n\geq 1}$ converges to 3.

4 Let $f(x) = 3x - e^x$. Numerically implement the secant method to solve f(x) = 0 on [1, 2] with $p_0 = 1$ and $p_1 = 2$. (Does this converge? If not, you may choose another pair of initial p_0 and p_1 you like that leads to convergence.) You may stop the iteration when $|p_N - p_{N-1}| < 10^{-5}$.

Solution My code was written in Python.

```
def secant(f, init, eps, N=100):
2
3
         Implementation of the secant method
4
         Parameters:
                    - function to perform the secant method on
5
              f
 6
                    - the derivative of f
7
              init - initialization for the secant method (list with 2 elements)
              \begin{array}{lll} \text{eps} & -\text{ short for epsilon} \,, \,\, \text{which is our tolerance level} \\ N & -\text{ how many iterations before we decide the sequence diverges} \end{array}
8
9
              Ν
10
11
         class ConvergenceError(Exception):
12
13
14
         p = i n i t
15
16
         n = 1
         while n < 100:
17
              # Calculate p[n+1] from p[n] and p[n-1]
18
19
              p.append(
                   p[n] - f(p[n])*(p[n]-p[n-1]) / (f(p[n])-f(p[n-1]))
20
21
22
23
              # Check for convergence
              if abs(p[n] - p[n+1]) < eps:
24
25
                  return p
26
              n = n + 1
27
         # p[100] doesn't exist
28
         if abs(p[n-1] - p[n-2]) >= eps:
29
30
              raise ConvergenceError("Sequence does not converge")
31
    \# f(x) = x - 4x + 3
32
33
    def f(x):
34
         return x**2 - 4*x + 3
35
36
    # Start iteration
    p \, = \, {\rm secant} \, (\, f \, , [\, 1 \, , 2\, ] \, , 1\, 0\, ** \, -5\, )
37
38
    for i in range(0,len(p)):
39
         if p[i] > 0:
40
             print(f"{i} {p[i]}")
         else:
41
42
              print(f"{i} {p[i]}")
```

The output is the following:

n	p_n		
0	1		
1	2		
2	1.1686153399174835		
3	1.3115165547175733		
4	1.7970430096312444		
5	1.4367778925334904		
6	1.4867662868726117		
7	1.5153257605230879		
8	1.512011934333299		
9	1.5121339760022816		
10	1.5121345517620621		