Алгоритмы в математике (теория чисел)

Михайлов Максим

20 сентября 2021 г.

Оглавление

Лекция	1 4 сентября	2
1 B	водная лекция	2
Лекция	2 11 сентября	3
2 A	лгебраические структуры	4
2.	.1 Структуры с одним законом композиции	4
2.	2 Структуры с двумя законами композиции	5
2.	3 Основные алгебраические структуры	5
Лекция	3 18 сентября	6
3 B:	нешний закон композиции	6
3.	.1 Фактор-структуры	7

Лекция 1

4 сентября

1 Вводная лекция

Хотя этот курс формально называется "теория чисел", мы не будем рассматривать только теорию чисел. Теория чисел, разумеется, про числа, делители, простоту, алгоритм Евклида и т.д.. Однако, её можно обобщить на произвольные полугруппы, группы, кольца и поля. Поэтому мы будем рассматривать теорию чисел через призму общей алгебры.

Например, в кольце целых чисел есть понятие "простое число". А в каких ещё кольцах есть "простые" элементы и каким условиям эти кольца удовлетворяют? Оказывается, кольцо многочленов содержит простые элементы и поэтому там применим алгоритм Евклида.

Мы также затронем теорию категорий (*терминальные объекты*), алгебраическую геометрию (*криптографию на эллиптических кривых*).

Лекция 2

11 сентября

План курса:

- Полугруппа
- Группа
 - Гомоморфизм
 - Фактор-группа
 - Теорема о ядре
 - Произведение групп
- Кольцо
 - $-\mathbb{Z}$
 - Остатки
 - Китайская теорема об остатках
 - Алгоритм Евклида
 - Кольцо многочленов
 - Алгебра многочленов
- Поле
 - Поля Галуа
 - Расширения Галуа
 - Алгебраические кривые
 - Диофантовы уравнения

Начиная с групп мы будем использовать формализм теории категорий.

2 Алгебраические структуры

2.1 Структуры с одним законом композиции

Пусть M — множество с законом композиции $T: \forall x, y \in M \; \exists x T y \in M$.

Примечание. Такой закон называется внутренним, т.к. оба его аргумента $\in M$.

Обозначение. $x \cdot y, x \circ y, x + y, x^y, x * y$

Закон задает структуру на множестве.

Определение. $e_L \in M: \forall x \in M \ e_L \cdot x = x$ — левый нейтральный элемент

 $e_R \in M: \forall x \in M \;\; x \cdot e_R = x$ — правый нейтральный элемент

Лемма 1. $\exists e_L, e_R \in M \Rightarrow e_L = e_R \stackrel{\text{def}}{=} e$

Доказательство. $e_L = e_L \cdot e_R = e_R$

Лемма 2. e, e' — нейтральные элементы $\Rightarrow e = e'$.

Доказательство. $e = e \cdot e' = e'$

Определение. $p \in M : p \cdot p = p$ — идемпотент

Определение. $z \in M : z \cdot x = z \cdot y \Rightarrow x = y -$ регулярный элемент ($\pi e \beta \omega u$)

Определение. $x \in M, \exists e \in M.$ Элемент $z \in M: z \cdot x = e$ — левый обратный элемент к x.

 $y \in M : x \cdot y = e$ — правый обратный элемент к x.

Лемма 3. Если $\exists y,z$, то $y=z\stackrel{\mathrm{def}}{=} x^{-1}$ — обратный элемент.

Доказательство. $z=z\cdot e=z\cdot (x\cdot y)=(z\cdot x)\cdot y=e\cdot y=y$. Здесь мы воспользовались ассоциативностью закона композиции.

Определение. $\Theta_L: \forall x \in M \;\; \Theta_L \cdot x = \Theta_L -$ поглощающий (слева) элемент

 $\Theta_R: \forall x \in M \;\; x \cdot \Theta_R = \Theta_R$ — поглощающий (справа) элемент

Лемма 4. $\exists \Theta_L, \Theta_R \Rightarrow \Theta_L = \Theta_R \stackrel{\mathrm{def}}{=} \Theta$

Доказательство. $\Theta_L = \Theta_L \cdot \Theta_R = \Theta_R$

 $\forall x,y,z\in M, x\cdot y\cdot z=(x\cdot y)\cdot z$ или $x\cdot (y\cdot z)$. Какое выбрать? Без ассоциативности непонятно. Поэтому мы требуем ассоциативность в рамках этого курса.

То же самое можно сказать для семейства элементов.

Теорема 1 (об ассоциативном законе). $1 \le k \le n \Rightarrow T_{i=1}^n x_i = \left(T_{i=1}^k x_i\right) T\left(T_{i=k+1}^n x_i\right)$

Определение. $\forall x, y \in M \ xTy = yTx$. Тогда T называется коммутативным.

Определение. $\exists x,y \in M: xTy = yTx$. Тогда x,y называются перестановочными относительно закона.

Теорема 2 (об ассоциативном, коммутативном законе). Аргументы ассоциативного, коммутативного закона можно переставлять как угодно.

2.2 Структуры с двумя законами композиции

Пусть M — множество с законами композиции $*, \circ$. Нас интересует случай, когда эти два закона взаимосвязаны.

Как воспринимать $x*y\circ z$? Может иметь место дистрибутивность * относительно \circ (слева): $x*(y\circ z)=(x*y)\circ (x*z)$

 $\sphericalangle e$ — нейтральный элемент по \circ . $\sphericalangle x * y = x * (e \circ y) = (x * e) \circ (x * y) \Rightarrow x * e = e$. Поэтому из поля нельзя убрать ноль.

2.3 Основные алгебраические структуры

- Полугруппа множество с ассоциативным законом
- Моноид полугруппа с единицей
- Группа моноид с обратным элементом для любого
- Абелева группа группа с коммутативным законом
- Кольцо два закона, по первому абелева группа, по второму полугруппа
- Поле по двум законам группа

Лекция 3

18 сентября

3 Внешний закон композиции

Пусть Ω — множество.

Определение. Внешний закон композиции — бинарная операция $g:\Omega \times M \to M$:

$$\forall \alpha \in \Omega, x \in M \quad g: (\alpha, x) \mapsto \alpha \perp x \in M$$

Пример. X — линейное пространство над \mathbb{R} . Тогда $g(\alpha,x)=\alpha\cdot x$.

Обозначение. $q(\alpha, x)$ обозначается как:

- $\alpha(x)$
- αx
- x^α

Пример. $M=\mathbb{Z}$ — абелева группа по сложению. $\triangleleft z \in \mathbb{Z}$.

$$\underbrace{z+z+z+\dots+z}_{n} = nz$$

Слева написано применение внутреннего закона $n\!-\!1$ раз, а справа — применение внешнего закона. Не всегда внешний закон можно представить в виде внутреннего, иначе внешний закон был бы не содержательным.

Пусть M имеет внутренний закон композиции \top , множество Ω имеет внешний закон \bot .

Обозначение.

 $^{^{1}}$ Относительно M.

- T = 0
- $\perp(\alpha, x) = \alpha x$

Определение. Внешний закон согласован с внутренним законом, если:

$$\alpha(x \circ y) = \alpha(x) \circ \alpha(y)$$

Пример. $\alpha(x+y) = \alpha x + \alpha y$, где $\alpha \in \mathbb{R}$

 \triangleleft алгебраические структуры $(M, \circ), (\Omega, *)$ и \bot — внешний закон Ω по M.

Определение.

$$\langle \alpha, \beta \in \Omega, x \in M \mid (\alpha * \beta)x = \alpha(\beta(x))$$

Такой способ согласования мы называем действием Ω на M.

$$\begin{array}{ccc} (\alpha * \beta)(x \circ y) & \stackrel{\text{coff.}}{=} (\alpha * \beta)(x) \circ (\alpha * \beta)(y) \\ & \stackrel{\text{действ.}}{=} \alpha(\beta(x)) \circ \alpha(\beta(y)) = \alpha(\beta(x \circ y)) \end{array}$$

Пример. $(\mathbb{Z},+),(\mathbb{N},\cdot)$

$$\triangleleft n(z_1 + z_2) = nz_1 + nz_2$$

$$(n \cdot m)(z_1 + z_2)$$

Определение. Пусть есть множества $\{M, N \dots \Omega\}$ со своими внутренними законами композиции. Кроме того, некоторые из них могут являться носителями внешнего закона для других множеств. Этот набор множеств, внутренних и внешних законов есть алгебраическая структура.

3.1 Фактор-структуры

 $\triangleleft M$, бинарное отношение 2 R

Свойства бинарного отношения:

- $\forall x \; \exists y : xRy$ полнота
- $\forall x, y \ xRy \& xRz \Rightarrow yRz$ евклидовость

Определение. R — отношение эквивалентности, если оно:

- Рефлексивно
- Симметрично

 $^{^2}$ Над M.

• Транзитивно

Определение. $\sphericalangle(M,R)$ — множество с отношением эквивалентности. Тогда M/R — фактор-множество, состоящее из классов эквивалентности M по R. Каждому $x \in M$ сопоставляется класс эквивалентности $[x] \in M/R$

Пример. $\triangleleft M = \mathbb{N}$ с операцией сложения, $x, y \in M, \triangleleft (x, y) \in M \times M$.

$$(a_1, b_1) \sim (a_2, b_2) \stackrel{\text{def}}{\Leftrightarrow} a_1 + b_2 = a_2 + b_1$$

Несложно заметить, что фактор-множество $(M \times M)/\sim$ соответствует \mathbb{Z} :

Определение. $x \in M, y \in M$

$$[x \circ y] \stackrel{?}{=} [x] * [y]$$

Здесь * − фактор-закон закона \circ .

Пример.

$$(a_1, b_1) \stackrel{\sim}{+} (a_2, b_2) \stackrel{\text{def}}{=} (a_1 + a_2, b_1 + b_2)$$

Чтобы рассмотреть $\stackrel{\wedge}{+}-$ фактор-закон операции $\stackrel{\sim}{+},$ нужно показать, что для $z=[(a_1+a_2,b_1+b_2)]$ верно $z=z_1\stackrel{\wedge}{+}z_2$

Определение. Закон \circ **согласован** с отношением R, если:

$$\begin{cases} \forall x, x_1 \in M \ xRx_1 \\ \forall y, y_1 \in M \ yRy_1 \end{cases} \Rightarrow (x \circ y)R(x_1 \circ y_1)$$

Теорема 3. Если закон композиции согласован с отношением эквивалентности, то он совпадает со своим фактор-законом.

$$[x] * [y] \stackrel{\mathrm{def}}{=} [x \circ y] = [x] \circ [y]$$

Обозначение.

$$M \cdot N := \{ m \cdot n \mid m \in M, n \in N \}$$

Пример.

- $(a_1, b_1), (a_2, b_2) \in M \times M$
- $(c_1, d_1) \sim (a_1, b_1) \Leftrightarrow c_1 + b_1 = d_1 + a_1$
- $(a_1, b_1) \rightarrow [(a_1, b_1)] = z_1 \ni (c_1, d_1)$
- $(a_2, b_2) \rightarrow [(a_2, b_2)] = z_2 \ni (c_2, d_2)$
- $(a_1, b_1) \stackrel{\sim}{+} (a_2, b_2) = (a_1 + a_2, b_1 + b_2) \rightarrow [(a_1 + a_2, b_1 + b_2)] = z$

Выполнено ли $(c_1+c_2,d_1+d_2)\in z$?

$$c_1 + c_2 + (b_1 + b_2) = d_1 + d_2 + (a_1 + a_2)$$
$$a_1 + d_1 = b_1 + c_1$$
$$a_2 + d_2 = b_2 + c_2$$

Таким образом, наша операция согласована.