Sistemes Intel·ligents – Examen Final (Bloc 1) ETSINF, Universitat Politècnica de València 20 gener 2016 (2 punts)

Cogn	oms:									
Nom	:									
Grup	:	Α	В	С	D	E	F	Flip	RE1	RE2
i el se	(defro => egüent . 0 . 1 . 5	ule r1 (Ilista (test fet: (Ilis	ı \$? ?x \$ (< ?x ?y	;? ?y)	rra d'un		ncies d'	aquesta reg	gla s'inclou	ran en l'agenda?:
A	amb ur	_	ística ad		-					e, M2 és algorisme de tipus de les següents afirmacions

- A. M1 i M2 trobaran la solució de cost òptim
- B. Es garanteix que M3 trobarà la solució més ràpidament que M1 i M2
- C. No es pot garantir que M3 trobarà la solució òptima
- D. M1 expandirà més nodes que M2
- 3) Siguen dues funcions d'avaluació f1(n)=g(n)+h1(n) i f2(n)=g(n)+h2(n), tals que h1(n) és admissible i h2(n) no ho és. Indica la resposta correcta:
 - A. L'ús d'ambdues funcions en un algorisme de tipus A garanteix trobar la solució òptima
 - B. Es garanteix que f2(n) generarà un menor espai de cerca que f1(n)
 - C. Només si h1(n) és una heurística consistent, f1(n) generarà un menor espai de cerca que f2(n)
 - D. Existeix algun node n per al qual h2(n)>h*(n)

4) Per a l'espai d'estats de la figura i donada una cerca en amplària (expandint per l'esquerra), quina de les següents afirmacions és correcta:

- A. Retorna el node I
- B. Genera 8 nodes
- C. Expandeix 4 nodes
- D. Cap de les tres anteriors
- 5) Per a l'arbre d'estats de la pregunta anterior, i suponiendo una cerca de tipus A (f(n)=g(n)+h(n)), quina de les següents afirmacions és FALSA:
 - A. És admissible
 - B. Retorna el node L
 - C. Expandeix 3 nodes
 - D. Genera 7 nodes
- 6) Quina serà la millor jugada per al node arrel si apliquem l'algorisme α - β per a l'arbre de la figura?

- A. Qualsevol de les branques A1 i A4
- B. La branca A4
- C. La branca A5
- D. Qualsevol de les branques A1 i A2

Sistemas Intel·ligents – Problema Bloc 1 ETSINF, Universitat Politècnica de València, 20 de gener 2016 (3 punts)

En una població hi ha tres magatzems (A, B i C) cadascun dels quals té guardats paquets amb destinació final igual a algun dels altres dos magatzems. D'aquesta manera, el magatzem A pot tenir paquets que són per a B i/o C, el magatzem B tenir paquets que són per als magatzems A i/o C, i el magatzem C tenir paquets que són per als magatzems A i/o B. L'objectiu del problema és deixar tots els paquets al seu magatzem de destinació.

Per a transportar els paquets, es disposa d'un únic camió que pot emmagatzemar un màxim de 10 paquets. El camió pot desplaçar-se entre qualsevol parell de magatzems. Quan el camió està a un magatzem X, pot carregar paquets que es troben al magatzem X i que han de ser transportats a un altre magatzem de destinació. Així mateix, quan el camió es troba a un magatzem X, pot descarregar únicament paquets del camió amb destinació final al magatzem X.

Exemple de situació inicial:

- Al magatzem A hi ha 7 paquets: 4 paquets per a B i 3 per a C.
- Al magatzem B hi ha 10 paquets: 7 paquets per a A i 3 per a C
- Al magatzem C hi ha 6 paquets, 3 paquets per a A i 3 paquets per a B.
- El camió està inicialment al magatzem A i està buit.

Donat el següent patró per a representar la informació dinàmica del problema

(transport [magatzem ?ciu [dest ?dest ?num]^m]^m cam ?loc [?dest_paq ?num_paq]^m total ?tot)

on

```
?ciu, ?loc ∈ {A,B,C}
?dest ∈ {A,B,C} tal que ?dest ≠ ?ciu
?num ∈ INTEGER
```

;; destinació

;; nombre de paquets a destinació, fins i tot

quan el nombre de paquets és 0

?tot ∈ INTEGER

;; nombre total de paquets que porta el camió

```
?dest_paq ∈ {A,B,C} ;; destinació, només si existeixen paquets per a aquesta destinació
?num_paq ∈ INTEGER tal que ?num_paq ≠ 0 ;; nombre de paquets a destinació sempre que el
nombre de paquets siga diferent de 0
```

NOTA 1: Si el camió no porta paquets per a una destinació X, llavors l'etiqueta [X 0] no s'emmagatzema al fet

NOTA 2: De cada magatzem solament es representa el nombre de paquets que han de ser transportats a un altre magatzem (s'ignora els paquets del propi magatzem).

NOTA 3: Poden afegir-se fets estàtics a la representació del problema si són necessaris per a alguna de les regles que se sol·liciten.

a) (0.5 punts) Descriu la BF inicial per a reflectir la situació inicial descrita a dalt.

(transport magatzem A dest B 4 dest C 3 magatzem B dest A 7 dest C 3 magatzem C dest A 3 dest B 3 cam A total O)

b) (1 punt) Escriu una única regla que servisca per a carregar en el camió tots els paquets que hi ha a un magatzem per a una destinació determinada i assumint que el camió no porta prèviament paquets per a aquesta destinació. Deu complir-se la restricció sobre el total de paquets que pot portar el camió.

```
(defrule carregar
  (transport $?x1 magatzem ?mag $?y1 dest ?dest ?num $?y2 cam ?mag $?z total ?total)
  (test (> ?num 0))
  (test (not (member magatzem $?y1)))
  (test (<= (+ ?total ?num) 10))
=>
  (assert (transport $?x1 magatzem ?mag $?y1 dest ?dest 0 $?y2 cam ?mag ?dest ?num $?z total
(+ ?total ?num))))
```

c) (0.8 punts) Escriu una única regla que mostre un missatge per pantalla per cada destinació per a la qual el camió NO porta paquets. S'ha de mostrar un missatge del tipus "El camió NO porta paquets per a la destinació XXXX ", per a cadascun de les destinacions que complisquen aquesta condició.

Generem un fet (destinacions A B C)

```
(defrule mostrar
  (transport $?x cam ?loc $?z total ?tot)
  (destinacions $? ?d $?)
  (test (not (member ?d $?z)))
=>
    (printout t "El camió no porta paquets per a la destinació "?d crlf))
```

d) (0.7 punts) Escriu una única regla per a descarregar tots els paquets que porta el camió per a una destinació determinada. La regla ha de servir per a qualsevol destinació i en el fet resultant no ha d'aparèixer l'etiqueta de la destinació ni nombre de paquets.

```
(defrule descarregar
  (transport $?x cam ?loc $?y ?loc ?elem2 $?z total ?tot)
=>
  (assert (transport $?x cam ?loc $?y $?z total (- ?tot ?elem2))))
```

Examen Final de Sistemes Intel·ligents: Bloc 2 ETSINF, Universitat Politècnica de València, 20 de gener de 2016

											_
Cognor	ns:							Nom:			
Grup:	$\Box 3\overline{A}$	A \Box	3B	□ 3C	□ 3D	□ 3 E	□ 3F	□ 3FLIP	□ RE1	\Box RE2	
~ · ·	,	_						`			

Qüestions (2 punts; temps estimat: 30 minuts) Marca cada requadre amb una única opció d'entre les donades.

1 D Quina de les següents expressions és correcta?

A)
$$P(x,y) = \sum P(x) P(y) P(z)$$
.

B)
$$P(x,y) = \sum_{z}^{z} P(x) P(y \mid z).$$

C)
$$P(x,y) = \sum_{z}^{z} P(x \mid z) P(y \mid z) P(z)$$
.

D)
$$P(x,y) = \sum_{z}^{z} P(x,y \mid z) P(z).$$

D)
$$P(x,y) = \sum_{z}^{z} P(x,y \mid z) P(z)$$
. $P(x,y) = \sum_{z} P(x,y,z) = \sum_{z} P(x,y \mid z) P(z)$

2 A Un entomòleg descobreix el que podria ser una subespècie rara d'escarabat, a causa del patró de la seua esquena. En la subespècie rara, el 98% dels exemplars té aquest patró. En la subespècie comuna, el 5% el té. La subespècie rara representa el 0.1% de la població. La probabilitat P de que un escarabat amb el patró siga de la subespècie rara és:

A)
$$0.00 \le P < 0.05$$
. $P = P(r \mid p) = \frac{P(r) P(p \mid r)}{P(p)} = \frac{P(r) P(p \mid r)}{P(r) P(p \mid r) + P(c) P(p \mid c)} = \frac{1/1000 \cdot 98/100}{1/1000 \cdot 98/100 + 999/1000 \cdot 5/100} = \frac{98}{5093} = 0.0192$

- B) 0.05 < P < 0.10.
- C) $0.10 \le P < 0.20$.
- D) $0.20 \le P$.
- Siga x un objecte (vector de característiques o cadena de símbols) a classificar en una classe de C possibles. Indica quin dels següents classificadors no és d'error mínim:
 - A) $c(x) = \arg \max \log_2 p(c \mid x)$
 - B) $c(x) = \underset{c=1,...,C}{\overset{c=1,...,C}{\operatorname{arg max}}} \log_{10} p(c \mid x)$
 - C) $c(x) = \underset{c=1,...,C}{\operatorname{arg max}} a p(c \mid x) + b$ sent a i b dues constants reals qualssevol
 - D) $c(x) = \arg\max p(c \mid x)^3$
- 4 C Per a un problema de classificació de dues classes en \Re^2 s'han construït tres classificadors diferents. Un està format per les dues funcions discriminants lineals següents: $g_1(\mathbf{y}) = 2y_1 + y_2 + 3$ i $g_2(\mathbf{y}) = y_1 + 2$. El segon classificador per $g_1'(\mathbf{y}) = -2y_1 + y_2 - 1$ i $g_2'(\mathbf{y}) = -y_1 + 2y_2$. El tercer per $g_1''(\mathbf{y}) = -2y_1 - y_2 - 3$ i $g_2''(\mathbf{y}) = -y_1 - 2$. Quina de les següents afirmacions és certa?
 - A) (g_1, g_2) i (g'_1, g'_2) són equivalents, però (g_1, g_2) i (g''_1, g''_2) no ho són.
 - B) (g_1, g_2) i (g'_1, g'_2) no són equivalents, però (g_1, g_2) i (g''_1, g''_2) ho són.
 - C) (g_1, g_2) i (g_1', g_2') no són equivalents, però (g_1', g_2') i (g_1'', g_2'') ho són. Front. comú $y_2 = -y_1 1$ però $R \neq R' = R''$
 - D) Els tres no són equivalents entre si.
- 5 | C | En la figura de la dreta es representen dues mostres d'aprenentatge bidimensionals de 2 classes: (\mathbf{x}_1, \circ) i (\mathbf{x}_2, \bullet) . Donats el conjunt de pesos $\mathbf{a}_0 = (0, 1, -2)^t$ i $\mathbf{a}_{\bullet} = (0, 0, 1)^t$, si apliquem l'algorisme Perceptró processant únicament la mostra \mathbf{x}_1 , obtenim un nou conjunt de pesos $\mathbf{a}_0 = (1,1,-2)^t$ i $\mathbf{a}_{\bullet} = (-1,0,1)^t$. Quin valor tenen el factor d'aprenentatge α i el marge b?

- A) $\alpha = 1.0 \text{ i } b = 0.0.$
- B) $\alpha = -1.0$ i b = 0.5.
- C) $\alpha = 1.0 \text{ i } b = 0.5.$
- D) No és possible determinar els valors d' α i b.
- 6 A Considereu la partició $\Pi = \{X_1 = \{(0,0)^t, (0,2)^t\}, X_2 = \{(2,0)^t, (2,4)^t\}\}$ dels punts de la figura a la dreta. Les mitjanes d'aquesta partició són $\mathbf{m}_1 = (0,1)^t$ i $\mathbf{m}_2 = (2,2)^t$. La seua suma d'errors quadràtics, SEQ, és 10. Si 4 el punt $(0,2)^t$ es canvia de grup, aleshores:

- B) La nova SEQ serà major que 8 i no major que 10.
- C) La nova SEQ serà major que 6 i no major que 8.
- D) La nova SEQ no serà major que 6.

Examen Final de Sistemas Intel·ligents: Bloc 2 ETSINF, Universitat Politècnica de València, 20 de gener de 2016

Cognor	ns:							Nom: [
Grup:	$\Box 3$	4	□ 3B	□ 3C	□ 3 D	□ 3 E	□ 3F	\square 3FLIP	\Box RE1	\Box RE2
Proble	mes	(3	punts	; temp	\mathbf{s} estin	nat: 45	minut	(\mathbf{s})		

1. (1 punt)

Per a aprendre un arbre de classificació, es disposa de les mostres d'aprenentatge indicades en la taula, formada per 5 punts en un espai bi-dimensional, amb les seues corresponents etiquetes de classe. El primer split, és (2,3), és a dir, $y_2 \le 3$ i el segon i últim és (1,3), o siga, $y_1 \le 3$.

y_1	2	2	2	4	6
y_2	2	4	6	6	2
c	A	B	B	A	A

(a) Representeu gràficament l'arbre que es construeix mitjançant el procés indicat i classifiqueu el punt $(4,4)^t$

Amb el punt $(4,4)^t$ s'hi arriba al node t_5 , per la qual cosa la hipòtesi de classificació és classe A.

- (b) Estimeu les següents probabilitats per a cada node no-terminal t:
 - Probabilitats de les classes, $P(c \mid t), c \in \{A, B\}$ $P(A \mid t_1) = 3/5, P(B \mid t_1) = 2/5; P(A \mid t_3) = 1/3, P(B \mid t_3) = 2/3$
 - Probabilitats de decisió pels fills esquerre i dret, $P_t(L)$, $P_t(R)$ $P_{t_1}(L) = 2/5$, $P_{t_1}(R) = 3/5$ $P_{t_3}(L) = 2/3$, $P_{t_3}(R) = 1/3$
- (c) Calculeu la impuresa en bits, $\mathcal{I}(t_1)$, del node arrel, t_1

$$\begin{split} \mathcal{I}(t_1) &= -P(A \mid t_1) \, \log_2 P(A \mid t_1) - P(B \mid t_1) \, \log_2 P(B \mid t_1) \\ &\approx -0.6 \cdot (-0.737) - 0.4 \cdot (-1.322) \\ &= 0.971 \text{ bits.} \end{split}$$

- (d) Calculeu els següents paràmetres per a cada node terminal, t:
 - Probabilitat estimada de node terminal, P(t) $P(t_2) = 2/5$, $P(t_4) = 2/5$, $P(t_5) = 1/5$
 - Impuresa en bits, $\mathcal{I}(t)$ $\mathcal{I}(t_2) = \mathcal{I}(t_4) = \mathcal{I}(t_5) = 0$ bits.
- (e) Obteniu una estimació de l'error per resubstitució de l'arbre construït. Com els tres nodes terminals són purs, l'error estimat per resubstitució és 0.

2. (2 punts)

Siga M un model de Markov de conjunt d'estats $Q=\{1,2,F\}$; alfabet $\Sigma=\{a,b,c\}$; probabilitats inicials $\pi_1=\frac{6}{10}$, $\pi_2=\frac{4}{10}$; i probabilitats de transició entre estats i d'emissió de símbols:

A	1	2	F
1	$\frac{2}{10}$	$\frac{3}{10}$	$\frac{5}{10}$
2	$\frac{4}{10}$	0	6

B	a	b	c
1	$\frac{5}{10}$	$\frac{2}{10}$	$\frac{3}{10}$
2	$\frac{7}{10}$	$\frac{2}{10}$	$\frac{1}{10}$

- (a) Realitzeu una traça de l'algorisme de Viterbi per a obtenir la seqüència d'estats més probable amb la qual M genera la cadena "bba".
- (b) Calculeu el model \mathcal{M}' després d'una iteració de re-estimació per Viterbi, utilitzant \mathcal{M} i la cadena d'aprenentatge de l'apartat anterior juntament amb les cadenes "ac", "cacb" i "a". Per al càlcul, teniu en compte que es compleix que, $\tilde{P}(ac \mid M) = P(ac, q_1q_2 = 21 \mid M)$, $\tilde{P}(cacb \mid M) = P(cacb, q_1q_2q_3q_4 = 1212 \mid M)$ i $\tilde{P}(a \mid M) = P(a, q_1 = 2 \mid M)$.

(a)

<i>—</i>		1		3
<i>n</i> ₁	_	$\frac{1}{4}$, π	2 —	4

\tilde{O} –	(9	1	2	F
Q =	(2,	т,	Ζ,	Γ

A	1	2	F
1	0	$\frac{3}{4}$	$\frac{1}{4}$
2	$\frac{1}{2}$	Ō	$\frac{1}{2}$

a	b	c
0	$\frac{1}{4}$	$\frac{3}{4}$
	$\frac{a}{0}$	$0 \frac{1}{4}$