Name:	Index No
1 (4111	111001111111111111111111111111111111111

P525/1

CHEMISTRY

Paper 1

June/July 2022

2¾ hours

MWALIMU EXAMINATIONS BUREAU

UACE RESOURCE MOCK EXAMINATIONS – 2022

CHEMISTRY

PAPER 1

TIME: 2Hours 45 minutes

INSTRUCTIONS TO CANDIDATES;

- Answer **all** questions in section **A** and **six** from section **B**.
- All questions must be answered in the spaces provided.
- The Periodic Table, with relative atomic masses, is attached at the end of the paper.
- Where necessary, use the following;

Molar gas constant R=8.314JK⁻¹mol⁻¹

Molar volume of a gas at s.t.p is 22.4 litres.

Standard temperature = 273 K

Standard pressure = 101325 Nm^2

For Examiner's use only										Total							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	

SECTION A (46 MARKS) Answer all questions from this section

1.	(a) The	following equations shows part of the α	e radioactive decay thorium.
	(i)	$^{234}_{90}Th \longrightarrow ^{234}_{91}Th \xrightarrow{\alpha} X$ Name the particle emitted in the first	st stage of the decay process.
	(1)	Truste the parties confide in the in-	$(0\frac{1}{2} \text{ mk})$
	(ii)	Identify X.	(0½ mk)
	(b) Th	the activity of $^{234}_{90}Th$ reduced to 25% in	50 days. Determine the half-
	life	e of $^{234}_{90}Th$.	(2 mks)
	• •		
2.	take pla	hat is observed and write equation(s) ace when eous ammonia was added drop wise up	
	- · · · -	ate solution.	(03mks)

	(b) dilute sulphuric acid was added to copper(I) oxide.	$(2^1/_2 \text{mks})$						
_								
3.	Polystyrene is an addition polymer with the following structure:							
	(a) What is meant by the term addition polymer .	(01 mk)						
	(b) Write the IUPAC name and structural formula of the monomer in polystyrene. (01 mk)							
	$2.356 \times 10^{-2} \ mmHg \ at 25^{\circ}C.$							
		$(2^1/_2\text{mks})$						
	(ii) number of monomer units in polystyrene.	(1½ mks)						

	(d) State one use of polystyrene.	$(0\frac{1}{2} \text{ mk})$
4.	Name one reagent that can be used to distinguish following pairs of compounds. In each case state each member of the pair is separately treated with named.	what would be observed if
	(a) HCOOH and CH ₃ COOH.	(03mks)
	Reagent:	
	Observation	
	Observation	
	(b) CH ₃ OH and CH ₃ CH ₂ OH. Reagent:	(03mks)
	Observation	
	2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2	
		•••••

Process	for some processes are given below $\Delta H^{\theta}(kJ \ mol^{-1})$
$Ca(s) \rightarrow Ca(g)$	+193
$\frac{1}{2}F_2(g) \rightarrow F(g)$	+79
$F(g)+e^- \to F^-(g)$	-348
$Ca(g)+F_2(g) \rightarrow CaF_2(s)$	-1214
$Ca(g) \rightarrow Ca^+(g) + e^-$	+590
$Ca^+(g) \rightarrow Ca^{2+}(g) + e^-$	+1150
	determine the lattice energy of calc
(ii) Use the cycle in (b)(i) to fluoride.	determine the lattice energy of calci

5.	Complete the following equation the reactions.	ations and	d in each	case, wri		nism for 3mks@)
	(a) $CH_3 - C - Br \qquad \frac{C_6H_5OH}{NaOH_{(aq)}}$	<u>I</u>				
	(1.)			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
	(b) ,NO ₂					
	CH ₃ COBr AICI ₃	→				
		• • • • • • • • • • •			•••••	
,		· · · · · · · · · · · · · · · · · · ·	C .1	1	· D · 1	
١.	The melting points of chlori Periodic Table are given in			elements	in Period	3 in the
	Formula of chloride	NaCl	AlCl ₃	PCl ₅	S_2Cl_2	
•	Melting point (°C)	801	180	162	-76	
L	(a) State the trend in melting	g points of	f the chlo	rides.	l l	(01 mk)
	(b) Explain your answer in ((a).				(03mks)
					• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • •
					•••••	

		•••••
		•••••
		•••••
8.	(a)Using equations only, show how ammonia can be converted i acid. Name the catalyst used in the process.	nto nitric (3½ mks)
	(b) State one large scale use of nitric acid.	$(0\frac{1}{2} \text{ mk})$
9.	(a) What is meant by steam distillation .	(01 mk)
		•••••
		•••••
	(b) State three properties of a substance which enable it to be segmentation impurities by steam distillation.	parated from

(c) A mixture of naphthalene ($C_{10}H_8$) and water distils at 98.3°C and 753
mmHg. Calculate the percentage by mass of naphthalene in the distillate
(The vapour pressure of water at 98.3°C is 715 mmHg) (03 mk
(d) State one advantage of isolating substances by steam distillation.(0½ ml
SECTION B (54 MARKS) Answer six questions from this section.
- -
10. Write equation(s) to show how the following conversions can be effected. (a) Bromoethane to ethane-1,2-diol. (2½ mks)
(b) Nitrobenzene to iodobenzene (03 mk

(ii)	the ratio of $[CH_3COO^-]$: $[CH_3COOH]$ when 5.0 cm ³ of shydroxide solution has been added to 25.0 cm ³ of 0.1M eacid. (K_a of ethanoic acid at 25°C is 1.8 \times 10 ⁻⁵ $moldm^-$	thano
• • • • •		
• • • • •		
••••		
••••		
••••		•••••
••••		
••••		•••••
••••		•••••
••••		• • • • • • •
	sium, aluminium and sulphur are some of the elements in pe	
e Peri	iodic Table. State the conditions and write equations for the n(s) if any between each of the elements and	;
e Peri	n(s) if any between each of the elements and	(02 m
e Peri	n(s) if any between each of the elements and	
e Peri	n(s) if any between each of the elements and	
e Peri	n(s) if any between each of the elements and	
eaction (a) wate	n(s) if any between each of the elements and er.	(02 m
eaction (a) wate	n(s) if any between each of the elements and er.	

13.	. (a)State three characteristic of chemical equilibrium.	(1½ mks)
	(b) Hydrogen iodide decomposes on heating according to the follo equation.	owing
	$2HI(g) \rightleftharpoons I_2(g) + H_2(g)$ Write the equation for the equilibrium constant, Kc for the real	ction
	write the equation for the equinorium constant, fix for the rea	$(0\frac{1}{2} \text{ mk})$
	(c) 3.4 g of hydrogen iodide were heated at 450°C in a glass bulb of 800 cm ³ . When equilibrium was attained, the bulb was rapidly room temperature then broken under a solution of potassium iodine formed required 36.0 cm ³ of 0.2M sodium thiosulphate for the complete reaction using starch indicator.	cooled to odide. The
	Calculate the equilibrium constant, Kc for the reaction at 450°	C.(4½ mks)

• •			• • • • • • • • • • • • • • • • • • • •	
• •				
• •				
• •				
• •			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • •
(1) 0				
(d)S	tate what would happ	en to the position of the	he equilibrium if:	
(i) the bulb was coo	oled from 450°C to 250	O°C.	(01 mk)
(i	i) the volume of the	e bulb was doubled.		(01 mk)
(i	ii) pressure was inc	reased.		(0½ mk)
	_			
14 (a) Δ	n organic compound	Y contains 68.8% carb	on 192% hydrod	ren and the
	being oxygen.	1 contains 00.0% care	5011, 4.7270 frydrog	ch and the
(i)	Calculate the empir	ical formula of Y.		(1½ mks)
••••				
••••				
••••		• • • • • • • • • • • • • • • • • • • •		
(ii)	The vapor density of	of Vis 61 Datarmina	the molecular form	of V
(ii)	The vapor density of	of Y is 61. Determine t	me morecurar tom	
				(01 mk)

(b) Y burns with a sooty flame and its ac Y .	queous solution has pH <7. Identify (0½ mks)
(c) Write equation. (i) for the reaction between Y and	d methanol. Indicate the conditions
for the reaction.	(01 mks)
	d from phenylmagnesium bromide. (1½ mks)
(c) Outline the mechanism for the reaction	

what is meant by the term diagonal relationship .	(01 mk)
four properties in which beryllium shows similarity to a	aluminium (04 mks
a reason why the elements exhibit diagonal relationship.	
-	
calcium carbide.	(1½ mks)
	four properties in which beryllium shows similarity to a simil

16. A compound **B** decomposes according to the following equation. $2\mathbf{B} \to \text{products}$

Time (minutes)	2.0	4.0	7.0	10.0	14.0	20.0
Concentration of B	0.820	0.670	0.490	0.372	0.240	0.141
$(mol \ l^{-1}), [B]$						

	w a graph of $log_{10}[B]$ against time. e the graph paper provided)	(04 mks
(i)	ng the graph, determine the: original concentration of B.	(01 mk)
	order of the reaction.	(01 mk)
(c) Calo	culate the rate constant for the reaction.	
(i) 	the rate constant for the reaction.	
	the half-life of the reaction.	(01 mk)
then ro	extraction of zinc from zinc blende, the ore is a sted in air. The roasted material is then heated one to produce impure zinc.	
	te the formula of zinc blende.	$(0\frac{1}{2} \text{ mk})$
(b) Nan	ne	

(i)) two impurities in the ore whose formula you have written		
(ii)	the process by which the ore can be concentrated.	(0½ mk)	
State	e the purpose of adding	(0½ mk)	
		(0½ mk)	
Writ (i)	e equation for the reaction that takes place when the ore is roasted.	(1½ mks)	
Zinc (i)	dust was added to hot concentrated sodium hydroxide State what was observed.	solution. (1½ mks)	
(ii)	Write equation for the reaction that took place.	(1½ mks)	
State	e one large scale use of zinc.	(0½ mk)	
	(ii) State (i) Writ (ii) Ciii) Zinc (ii) (iii)	(ii) the process by which the ore can be concentrated. State the purpose of adding (i) coke. (ii) limestone. Write equation for the reaction (i) that takes place when the ore is roasted. (ii) in which the ore is converted to zinc in the blast furn. Zinc dust was added to hot concentrated sodium hydroxide (i) State what was observed. (ii) Write equation for the reaction that took place.	