PARE HIES

National Park Service
U.S. Department of the Interior

Water Resources Division
Natural Resource Program Center

Groundwater Characterization and Assessment of Contaminants in Marine Areas of Biscayne National Park

Christopher Reich, Robert B. Halley, Todd Hickey, and Peter Swarzenski

NATIONAL PARK SERVICE WATER RESOURCES DIVISION FORT COLLINS, COLORADO RESOURCE ROOM PROPERTY The National Park Service Water Resource Division is responsible for providing water resources management policy and guidelines, planning, technical assistance, training, and operational support to units of the national park system. Program areas include water rights, water resources planning, regulatory guidance and review, hydrology, water quality, watershed management, watershed studies and aquatic ecology.

Technical Reports

The National Park service disseminates the results of biological, physical and social research through the Natural Resource Technical Report Series. Natural resources inventories and monitoring activities, scientific literature reviews, bibliographies, and proceedings of technical workshops and conferences are also disseminated through this series.

Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Park Service

Copies of this report are available from the following:

National Park Service Water Resource Division (970) 225-3500 1201 Oak Ridge Drive, Suite 250 Fort Collins, CO 80525

National Park Service
Technical Information Center (303) 969-2130
Denver Service Center
P.O. Box 25287
Denver, CO 80225-0287

Cover Photo: Grey Angelfish on Biscayne National Park coral patch reef; photographer unknown

GROUNDWATER CHARACTERIZATION AND ASSESSMENT OF CONTAMINANTS IN MARINE AREAS OF BISCAYNE NATIONAL PARK

Christopher Reich, Robert B. Halley, Todd Hickey, and Peter Swarzenski

U.S. Geological Survey Center for Coastal and Watershed Studies 600 4th St. S. St. Petersburg, FL 33701

Please do not remove this item from Resource Room

September, 2006

NATIONAL PARK SERVICE WATER RESOURCES DIVISION FORT COLLINS, COLORADO RESOURCE ROOM PROPERTY

Technical Report/NPS/NRWRD/NRTR-2006/356

This report constitutes the completion report for PMIS project #289 funded by the NPS Natural Resources Preservation Program component of the Natural Resource Challenge and fulfills the reporting requirement of Task Order 03-21, of Interagency Agreement #IA238099002 between the National Park Service and the U.S. Geological Survey

National Park Service - Department of the Interior Fort Collins - Denver - Washington

United States Department of the Interior • National Park Service

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
ACKNOWLEDGMENTS	1
INTRODUCTION	2
GEOLOGIC SETTING	4
METHODS	5
Well Locations	5
Well Installation	5
Water Sampling	7
Preparation	7
Sample Analyses	.9
Potentiometric Measurements	10
RESULTS	10
Water Analyses	10
Basic Characterization DO, DOC, and Nutrients Metals Wastewater Compounds Radium and Radon Isotopes Strontium Isotopes	11 12 12 12
DISCUSSION	14
CONCLUSIONS	17
REFERENCES CITED	18
APPENDICES	24
Appendix A1-A6: Hydrochemistry Tables	24
Appendix B1-B3: Hydrochemistry Graphs	64
Appendix C: Lithologic Well Logs	138

List of Tables:

	1.	Location and drilling details for wells sampled	6
	2.	Detection limits of water samples run by Actlabs-Skyline	9
	3.	Hydrochemistry results for groundwater samples	25
	4.	Hydrochemistry results for surface water samples	39
	5.	Groundwater results for wastewater compounds	46
	6.	Wastewater compounds for surface water sites	58
	7.	Radium and radon isotope data for August 2002 & June 2003	62
	8.	Strontium-isotope and salinity data for August 2002 & June 2003	63
Lis	st o	f Figures:	
	1.	Study area and well cluster sites	3
	2.	Drilling on Alina's Reef	5
	3.	Equipment and collection-chamber layout	8
	4.	Statistical Box Plots for salinity and temperature samples	11
	5.	Plot of Strontium 87/86 vs. salinity from well samples	13
	6.	Geologic cross-section of southeast Florida shelf	15
	7.	Hydrochemistry Graphs	. 64
	8.	Lithologic well logs	138

EXECUTIVE SUMMARY

Biscayne National Park (BNP) is adjacent to the Miami-Dade County South Dade Landfill Facility and the Miami-Dade Water and Sewer South District Plant. The base of the landfill is lined with a geotextile membrane to separate it from the underlying Miami Limestone, the host rock for the Biscayne Aquifer. The sewer plant injects treated sewage into the lower Floridan Aquifer that is overlain by an aquitard termed the Middle Confining Unit. The Biscayne Aquifer borders the western margin of BNP and the Floridan Aquifer underlies the entire park. There is concern about leakage of contaminated aquifer water into BNP and its potential effects on water quality.

Water samples from shallow nearshore and offshore wells in BNP have been analyzed to characterize the groundwater beneath the park and to assess the potential for contaminants entering the park from subsurface flow. Samples from seven well sites were collected approximately quarterly from August 2002 until March 2004. The well sites form a transect from the western shore of Biscayne Bay at Black Point southeastward across the shelf to Pacific Reef. Samples were analyzed for conductivity (salinity), dissolved oxygen, temperature, redox potential, nutrients, metals, strontium isotopes, radon, sulfate, and wastewater compounds.

Low-salinity water was present in nearshore wells and indicates either some leakage from the Biscayne Aquifer or surface-water intrusion. Elevated nutrients indicate surface-water exchange is more likely than groundwater flow. Lack of seasonal variation in groundwater salinity indicates minimal exchange either with the surface water or with fresh groundwater flow, both of which exhibit seasonal variation. The groundwater beneath the Florida shelf can be characterized as reduced (anoxic) seawater, modified by microbial respiration to remove oxygen and interaction with sediments and minerals in the host limestone. Analyses of 109 water samples collected from wells across the Florida shelf beneath BNP between August 2002 and March 2004 show no consistent evidence of wastewater contaminants occurring in groundwater beneath BNP. In addition, no significant upward leakage from the Floridan Aquifer was detected in the shallow groundwater beneath BNP. The western edge of Biscayne Bay is influenced by surface water and perhaps Biscayne Aquifer water, whereas the rest of the Florida shelf is underlain by uncontaminated marine groundwater.

ACKNOWLEDGMENTS

The authors thank the USGS Coastal and Marine Geology Program and the National Park Service (NPS) for funding this study. Richard Curry (NPS) assisted with permitting, field logistics, and conceptual design. Kate Ciembronowicz, Brian Blake- Collins, Russ Peterson, B.J. Reynolds, and Nate Smiley assisted with fieldwork. We also thank Charles Holmes, Mario Fernandez, and Barbara Lidz for their diligent reviews, which have greatly improved this report.

INTRODUCTION

Coral reefs worldwide are suffering a decline. This decline is a result of damage from ship groundings, point-source pollution, dynamite fishing, and ubiquitous but poorly understood effects of disease, coastal nutrification, and global warming. The Florida reef tract exemplifies reef decline in the Atlantic-Caribbean region with many reefs now exhibiting less than 10% live coral cover (Florida Fish and Wildlife Conservation Commission, 2004). As part of the Florida reef tract, the coral reefs of Biscayne National Park (BNP) have not been immune to the general decline, and great concern has been expressed by Department of Interior (DOI) managers and in the public media about the issue of continued degradation of reef ecosystems.

Coastal pollution has been of particular concern in south Florida because of the great increase in population and urban development. Reef decline during the past three decades has paralleled the growth of the Miami metropolitan and Florida Keys areas. This growth, and associated pollution and fishing pressure, have placed BNP among the top 10 endangered National Parks (National Parks Conservation Association, 2004). Pollutants can enter BNP through many pathways. BNP is connected to the surrounding urban area by roads, canals, waterways, water pipes, and electrical grids. Less apparent are the connections through wet and dry atmospheric deposition, surface seawater circulation, and groundwater flow. This study addresses the threat of pollutants entering BNP along the groundwater-flow path.

Groundwater in two south Florida aquifers, the shallow Biscayne and the deeper Floridan, is known to flow east and southeast from the mainland toward BNP (Fish and Stewart, 1991; McNeill, 2000). In addition, the Biscayne Aquifer is immediately overlain by both decommissioned (OSDL) and active landfills that lie on the western edge of BNP (Figure 1). Near the active landfill, a deep portion of the Floridan Aquifer is used for wastewater injection. Historically (prior to 1900), fresh groundwater from the Biscayne Aquifer discharged along the western shore of Biscayne Bay at greater volumes than those observed today. To simulate modern-day groundwater flow from the Biscayne Aquifer to the bay, a hydrogeologic model (SEAWAT) has been developed (Langevin, 2001). Connectivity between the Floridan Aquifer and surface water of BNP is unknown, although wells drilled to the Floridan are artesian and historically have had wellhead pressures of 10-20 psi at sea level (Bush and Johnson, 1988). The pressures have been decreasing over time with changing climatic conditions and aquifer withdraws.

Small brackish-water lenses occur beneath the larger islands of the Florida Keys such as Elliott Key, Key Largo, and Big Pine Key (Halley and others, 1997). Perhaps more importantly, the islands (keys) act as a barrier to tidal flow due to a large separation between tidal inlets (up to several kilometers). The presence of the keys causes a difference in tidal cycles and hence water levels, creating a hydraulic head gradient. The gradient constantly changes as the tide changes, setting up a phenomenon known as tidal pumping. Tidal pumping is the primary control or forcing factor for groundwater flow near the islands (e.g., Halley and others, 1997; Reich and others, 2002).

The objective of this study is to determine whether the shallow groundwater beneath Biscayne Bay and the outer-shelf reefs is being affected by activities on the mainland.

Figure 1. Study area and well-cluster sites indicated by yellow circles. Goulds Canal exits into the bay near Black Point. Landfills are marked with orange dots; active landfill is the South Dade Landfill Facility and the Miami-Dade Water and Sewer South District Plant. The Old South Dade Landfill (OSDL) is an inactive landfill.

The scope of this study included installation, sampling, and analyses of water from sub-sea monitoring wells aligned along a transect from the western shore of Biscayne Bay southeastward to the reef tract. Surface water at each well site was also collected. The water samples were then analyzed for potential and known contaminants in the Biscayne and Floridan Aquifers.

GEOLOGIC SETTING

The Miami Limestone composes the Biscayne Aquifer in large part, making it one of the most permeable aguifers in the U.S. (Fish and Stewart, 1991). In contrast, the modern sediments are generally less permeable (Enos and Sawatsky, 1981). The relative difference in permeability between sediment and rock, and the juxtaposition of sediment above the limestone, have led to the hypothesis that modern sediments may act as a partial aquiclude or seal over more permeable limestone on the seaward shelf. The surficial Pleistocene limestone of the mainland and the Florida Keys has been shown to be approximately 125,000 years old (Multer and others, 2002). Younger Pleistocene reef deposits, approximately 80,000 years old, have been identified along the shelf edge farther south in the Keys (Lidz and others, 1991; Toscano and Lundberg, 1998). Similar relations may exist in the Pacific Reef area, and the limestone below modern reef sediments may be as young as 80,000 years but has not been dated by appropriate techniques to verify that age. The Pleistocene limestone in the region has been exposed to weathering and karstification during periods of lowered sea level (Multer and others, 2002), evidenced particularly well in the Cutler Ridge area where karst surfaces and small sinks and caves occur south of the Deering Estate Preserve. Within Biscayne Bay, many of the seagrass patches grow in sediment-filled solution holes, similar to those documented by Ziemann (1972) in Florida Bay. Although the influence of karst on water flow has been recognized for many years (Parker and others, 1955; Shinn and Corcoran, 1987), only recently are attempts being made to integrate detailed knowledge of limestone dissolution with hydrogeology (Cunningham and others, 2003). About 15 miles south of BNP, a large, sediment-filled sinkhole occurs on the shelf behind a reef known as The Elbow (Shinn and others, 1996). No evidence of groundwater flow was observed from the sinkhole during study of this particular karst feature.

The Upper and Lower Floridan (Boulder Zone) Aquifers, respectively, are roughly 1000 to 1800 ft and 2500 to 3000 ft below the surface of BNP. Historically, the aquifers are believed to be flowing slowly toward the shelf edge where they empty into the Florida Straits. Locally, these aquifers deepen eastward, and there is concern about leakage from the deep aquifer that is used for sewage disposal (McNeill, 2000). Regional changes in hydraulic head play the major role in flow of the Upper Floridan that has its recharge area in northwestern Florida. Lower Floridan flow is driven by an additional component of geothermal warming that causes warmer, lessdense water to rise beneath the Florida Platform and flow outward both on the Atlantic and Gulf of Mexico sides of the peninsula (Kohout, 1965). In Dade and Monroe Counties, artesian flow from wells drilled into these aquifers was encountered during exploratory well drilling. Natural springs and seeps from these aquifers are known to occur in north and central Florida as far south as 27° N, but not south of that latitude. Mud Hole Submarine Spring, believed to emanate from the Lower Floridan Aquifer, occurs in the Gulf of Mexico off Ft. Myers at 26° 15' 50" N (Fanning and others, 1981). No natural springs flowing from the Floridan Aquifer are known in Dade or Monroe Counties (Rosenau and others, 1998).

METHODS

Four tasks were undertaken to create the datasets for this study. (1) Sub-sea monitoring wells were installed along a transect from near shore to offshore. (2) Samples from wells and surface waters were collected approximately quarterly as weather allowed. Surface-water samples were collected immediately above the well-cluster sites. (3) Samples were analyzed using standard operating procedures wherever possible. (4) Water-level (well-pressure) data were collected at selected sites using submersible pressure sensors.

Well Locations

Six well-cluster sites have been established in a 25-km-long transect leading from onshore to offshore (Figure 1 and Table 1). The near shore site 1 (Black Point Inshore) is a single well located south of Black Point. The well head is approximately 2 ft below sea level, and the well penetrates to a depth of 17 ft below seafloor (fbsf), terminating in a quartz-sand zone of the Miami Limestone (Fish and Stewart, 1991). Site 2 (Mid-Bay) is located in the middle of Biscayne Bay approximately 9 ft below sea level and consists of three monitoring wells to depths of 15, 33, and 42 fbsf. Sites 3 and 4 are located on opposite sides of Elliott Key. Site 3 (Billy's Point), the bayside site, consists of two wells at 6 and 22 fbsf. Site 4 (Petrel Point), the seaward site, consists of two wells at 20 and 45 fbsf. Site 5 (Alina's Reef) is located on a patch reef where diverse reef research and monitoring is continuing and is a site where BNP staff have recorded low conductivity (salinity) on a moored instrument (Porter and Porter, 2002, p. 12-13). Three wells installed at Alina's Reef provide sampling access to 12, 32, and 60 fbsf. Site 6, located south of the Pacific Reef light structure, consists of two monitoring wells to depths of 10 and 41 fbsf. Procedures used to complete all monitoring wells are described below. For comparison, a pre-existing shallow (80 ft, below land surface) onshore well in the Biscayne Aquifer was sampled, as well as an additional well (BkP, 20 fbsf) located just offshore of the Black Point site.

Well Installation

Well installation was accomplished by SCUBA divers with surface support. A USGS work boat, hydraulic-powered drill, and standard 5-ft NQ-2 wire-line core barrels and drill rods were used for core drilling. SCUBA divers drilled most of the offshore wells. Wells can range

Figure 2. Drilling on Alina's Reef using SCUBA.

in depth from 10 to 60 ft (3-20 m) and can be installed both on land and offshore in water depths up to 20 ft (6 m) (Figure 2). Rock cores obtained during drilling are 2 in. (50 mm) in diameter. Each hole drilled was completed as a water-quality monitoring well (see Shinn and others, 1994, for diagrams of well completion). A flush-threaded 5-ft-long, 2-in.-ID PVC well screen with 0.01-in. slots was attached to enough PVC casing (flush threads) such that between 1 and 2 ft of casing protruded from the open hole. Two well sites, at Alina's Reef and Pacific Reef, were completed using 1-in.-ID PVC screen and casing due to caving of the borehole. Coarse quartz sand (20-40 silica sand was poured into the annulus of the borehole to fill the

space between the screen and formation. Too coarse to clog well-screen slots, the sand allows unrestricted passage of fluid from the porous limestone to the screen.

Location ID	Station Name	Longitude (W)	Latitude (N)	Date	Method Lat/Long	Datum Lat/Long	Water Depth (ft)	Drilled Depth below Seafloor
BPI-1A	Black Point	(**)	(14)	Date	Lat/Long	Lat/Long	(11)	Scanooi
	Inshore	-80.330	25.526	06/02/02	PLGR P-code	WGS 84	1	17
BkP-1A	Black Point-1A	-80.324	25.526	05/11/96	PLGR P-code	WGS 84	2	20
MB-1A	Mid Bay -1A	-80.267	25.484	06/10/01	PLGR P-code	WGS 84	9	45
MB-1B	Mid Bay -1B	-80.267	25.484	06/13/01	PLGR P-code	WGS 84	9	55
MB-1C	Mid Bay -1C	-80.267	25.484	06/13/01	PLGR P-code_	WGS 84	9	15
ByP-1A	Billy's Point -1A	-80.212	25.428	06/07/01	PLGR P-code	WGS 84	3_	22
ByP-1B	Billy's Point-1B	-80.212	25.428	06/09/01	PLGR P-code	WGS 84	3	16
PP-1A	Petrel Point-1A	-80.204	25.415	06/05/01	PLGR P-code	WGS 84	.5	45
PP-1B	Petrel Point-1B	-80.204	25.415	06/06/01	PLGR P-code	WGS 84	1.5	20
AR-1A	Alina's Reef-1A	-80.163	25.386	06/16/01	PLGR P-code	WGS 84	9	60
AR-1B	Alina's Reef-1B	-80.163	25.386	06/16/01	PLGR P-code	WGS 84	9	32
AR-1C	Alina's Reef-1C	-80.163	25.386	06/16/01	PLGR P-code	WGS 84	9	12
PR-1A	Pacific Reef-1A	-80.142	25.371	06/01/02	PLGR P-code	WGS 84	12	42
PR-1B	Pacific Reef-1B	-80.142	25.371	06/01/02	PLGR P-code	WGS 84	12	10

Location	Top of	Bottom of	Sed.	Casting	Casting	Cores	Core Location
ID.	Screen	Screen	Thickness	Туре	Diameter		
BPI-1A	12.0 ft	17.0 ft	1 ft	PVC	2.0 in	yes	St. Petersburg, FL
BkP-1A	15.0	20.0	1	PVC	1.5	yes	St. Petersburg, FL
MB-1A	28.0	33.0	0	PVC	2.0	yes	St. Petersburg, FL
MB-1B	36.5	41.5	0	PVC	2.0	yes	St. Petersburg, FL
MB-1C	10.0	15.0	0	PVC	2.0	yes	St. Petersburg, FL
ByP-1A	17.0	22.0	0	PVC	2.0	yes	St. Petersburg, FL
ByP-1B	1.0	6.0	0	PVC	2.0	yes	St. Petersburg, FL
PP-1A	40.0	45.0	0	PVC	2.0	yes	St. Petersburg, FL
PP-1B	15.0	20.0	0	PVC	2.0	yes	St. Petersburg, FL
AR-1A	55.0	60.0	0	PVC	1.0	yes	St. Petersburg, FL
AR-1B	27.0	32.0	0	PVC	1.0	yes	St. Petersburg, FL
AR-1C	7.0	12.0	0	PVC	1.0	yes	St. Petersburg, FL
PR-1A	36.0	41.0	0	PVC	1.0	yes	St. Petersburg, FL
PR-1B	5.0	10.0	0	PVC	1.0	yes	St. Petersburg, FL

Table 1. Location and drilling details for wells used in the study.

A slurry of Portland cement was then poured into the annulus to fill voids and irregularities in the rock. The cement prevents water in the annulus, higher in the well, from entering the screened zone. Quick-setting hydraulic cement, composed of 1 part molding plaster (plaster of Paris) and 7 parts type II Portland cement, was mixed with water to form a stiff ball. The ball of cement was quickly taken to the bottom and hand-molded into the annulus around the PVC pipe. The plug of cement in the top of the hole creates a barrier between the borehole and surface water. Hydraulic cement sets in approximately 5 min and is very hard in a few hours. Next, the excess PVC pipe was sawed off with a hacksaw, leaving 15 to 30 cm protruding above the surface. A tight-fitting PVC end cap sealed the wells. Once the cement had hardened, the wells were developed by pumping until the water ran clear. Purging was accomplished by fitting a PVC end cap (equipped with 3/4-in. by 50- ft-long, 15-m, Tygon hose) over the 2-in.-diameter PVC wellhead. The other end of the hose was attached to a small 12-VDC-rubber impeller pump aboard the boat. The water pump, with a discharge rate of approximately 5 gal/min, was run for 5 to 10 min or until the water ran clear. The completed wells were allowed to equilibrate for 90 days before sampling commenced.

Water Sampling

Ground- and surface-water samples were collected using USGS water-quality sampling protocols that follow clean procedures for all constituents, whether constituents are nutrients, trace elements, wastewater compounds, or pesticides (Wilde and others, 1998). The following sections describe preparation, collection, preservation, and cleanup procedures.

Preparation

The bottles for each constituent went through a four-step cleaning process. The bottles (except baked-glass bottles) were first washed in Liquinox, then rinsed in tap water, followed by soaking in a 10% HCl solution for 30 min, and finally rinsed in de-ionized (DI) water. The same procedure was followed for all tubing, fittings, and equipment (the acid rinse was not used on metallic equipment). Bottles were capped, and labels placed on the bottles. Prior to field collection, bottles were pre-rinsed twice with de-ionized (DI) water to save time in the field. Bottles were sorted for each well site and placed in double zipper bags. The same double-bagging method was used for tubing and other equipment and supplies that would come in contact with water samples. Three or four days prior to field sampling, Gelman capsule filters (0.45-µm) were pre-conditioned with DI water. As long as pre-conditioned filters are kept on ice or refrigerated, the shelf life is up to 2 weeks.

Collection

Once on site, a diver was sent to connect a fitting to the wellhead. The fitting provided a tight seal so that surface water could not enter when pumping commenced. The fitting was attached to Polytetrafluoroethylene (PTFE) tubing that reached from the wellhead to the boat. The PTFE tubing was connected to peristaltic tubing (C-flex), which passed through a peristaltic pump and was then split, with one tube leading to a multi-probe (temperature, pH, oxygen-reduction potential (ORP), salinity, and dissolved oxygen) and the other to the sampling chamber. Several well volumes of water were pumped from the well. After readings on the probe stabilized, values

were recorded in a notebook. The tubing to the probe was clamped and flow to the chamber commenced. Throughout water collection, 'clean hands/dirty hands' procedures were followed.

Figure 3. Equipment and collection-chamber layout on the R/V *Halimeda* in Biscayne National Park. Collection chamber, peristaltic pump, and flow-through multi-parameter probe can be seen on the table.

A collection chamber was assembled, which was constructed of a PVC frame with a clear Polyethylene bag clipped to the frame (Figure 3). The chamber created an enclosure where samples were collected in bottles and helped assure that atmospheric deposition or other possible sources of contamination did not enter the sample. The person designated 'dirty hands' opened the outer zipper bag and the person designated 'clean hands' pulled the inner zipper bag out and placed it in the chamber. Only the 'clean-hands' person touched the bottles and tubing inside the chamber. Bottles were rinsed once and then filled to the appropriate level. This procedure was conducted for all bottles for each well. Finally, the bottles were removed from the chamber for preservation (acidification).

Preservation and Cleanup

Some studies require a second chamber called a preservation chamber for acidification of samples. After each well site was sampled and before anchor is pulled to move to next well site, the tubing was rinsed with a 0.1% Liquinox solution and followed by a DI rinse until Liquinox soap residual was unnoticeable.

Sample Analyses

Salinity (specific conductance), temperature, dissolved oxygen (DO), oxidation- reduction potential (ORP or Redox), and pH were measured in the field using a multi- parameter probe (YSI model 556MP). Hydrochemistry for 64 trace elements (Table 2) were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) at Actlabs- Skyline in Tucson, Arizona.

	Detecti	ion Limit
Element	IPC/MS	1CP/OES
Li	0.1	0.05 mg/l
В	1**	1
Be	0.05	2
Ma	5	0.1 mg/1
Mg	1	0.1 mg/l
Al	2	0.1 mg/1
Si	50	0.1 mg/l
K	10	0.1 mg/l
Ca	50	0.1 mg/l
Se	1	
Ti	0.1	10
V	0.05	10
Cr	0.5	20
Mn	0.05	0.1 mg/l
Fe	5	0.1 mg/l
Со	0.005	2
Cu	0.1	2
Ga	0.01	
Ge	0.01	
Se	0.2	20
Rb	0.01	
Sr	0.04	10
Y	0.003	10
Zr	0.01	
Nb	0.005	
Mo	0.01	5
Ru	0.01	
Pt	0.01	
Pd	0.01	
Ag	0.05	5
Cd	0.01	2
ln	0.001	

	Detectio	n Limit
Element	IPC/MS	1CP/OES
Sn	0.05	10
Sb	0.01	10
Te	0.01	10
1	1	
Cs	0.002	
Ba	0.1	20
La	0.001	
Ce	0.002	30
Pr	0.001	
Nd	0.004	
Sm	0.002	
Eu	0.001	
Gd	0.002	
Tb	0.001	
Dy	0.001	
Но	0.001	
Er	0.001	
Tm	0.001	
Yb	0.001	
Lu	0.001	
Hf	0.002	
W	0.02	10
Re	0.001	
Os	0.002	
Au	0.002	
Zn	0.5	5
Hg	0.2 (0.006+)	
Ti	0.005	10
Pb	0.1	10
Bi	0.01	20
Th	0.001	
U	0.001	0.05 mg/

Table 2. Hydrochemistry of water samples run by Actlabs-Skyline. Samples within normal ranges were run on ICP/MS while others at high concentrations were run on ICP/OES (Optical Emission Spectrometry). Detection limits are in micrograms per liter (ppb) unless noted otherwise.

Three elements (arsenic, nickel and bromine), typically determined in fresh water by this method, had serious interferences from the high concentrations of calcium and magnesium in seawater and had to be excluded from the results. Groundwater and surface-water nutrients (ammonium, nitrates, nitrites, total soluble nitrogen, total soluble phosphorus, and soluble reactive phosphorus) were analyzed on a nutrient auto-analyzer at the University of Florida. Dissolved organic carbon (DOC) was analyzed at the USGS Water Quality Laboratory in Ocala, FL, on a Shimadzu TOC-5050A analyzer with an ASI-5000A auto sampler. Determination of 66 wastewater compounds in ground- and surface-water samples were conducted at the U.S Geological Survey National Water Quality Lab in Denver, CO. USGS analytical procedures for

wastewater compounds (USGS schedule 1433) were by solid-phase extraction (SPE) and subsequent gas-chromatograph mass spectrometry (GC-MS) analyses (Zaugg and others, 2002). Radium and radon samples were analyzed at the USGS Center for Coastal and Watershed Studies (CCWS) office in St. Petersburg. The St. Petersburg lab used an alpha-scintillation counter for measuring the four isotopes of radium (223, 224, 226, and 228). Strontium-isotope ratios (⁸⁷Sr to ⁸⁶Sr) were determined for selected samples by the University of Florida in Gainesville (August 2002) and Geochron Laboratories in Cambridge, MA (March 2004) using thermal ionization mass spectrometry (TIMS).

All samples were shipped immediately (via FedEx) upon return to the CCWS office in St. Petersburg. Holding times for nutrients were <28 days per USGS protocols when kept frozen; ²²³Ra and ²²⁴ Ra were run in house as soon as possible due to their short half-life (11.4 days and 3.7 days, respectively); trace elements were shipped to Actlabs and run within 4 to 6 weeks; and wastewater compounds were run in the order in which they were received at the USGS National Water Quality Laboratory (Denver, CO). Turn-around time ranged from 6 to 8 weeks.

Potentiometric Measurements

Our fourth task was to investigate the hydrology of the region by installing pressure transducers in many, if not all, of the wells. The transducers were started, placed in the wells, and left to collect data on pressure variations within the wells. A transducer was also mounted to the outside of the well to collect data on surface water-level changes (tides). Well- and surface-pressure data were compared to determine if potentiometric gradients occurred between subsurface and surface that would indicate either positive vertical flow (discharge) or negative vertical flow (recharge). This part of the study is ongoing, funded by the USGS Eastern Region, and is not reported here. The information will be useful for calculating nutrient or other chemical-enrichment loading of surface water by groundwater.

RESULTS

Water Analyses

Results of analyses of surface- and groundwater samples are tabulated in Appendix A and shown graphically in Appendix B. Here we show the results for salinity, dissolved oxygen, pH, nutrients, metals, and wastewater indicators.

Basic Characterization

Salinity is arguably the most obvious indicator of Biscayne (salinity near 0 parts per thousand, ppt) or Floridan Aquifer (salinity about 2 ppt) water entering seawater (salinity about 35 ppt). Salinity of coastal surface water can also be affected by precipitation, evaporation, and surface-water runoff. The range of surface-water salinity encountered during the study period (Figure 4A and Appendices A2 and B1) was consistent with the known variability of salinity in the bay and offshore as shown by surface-water quality monitoring sites

(http://serc.fiu.edu/wqmnetwork/). The lowest salinity and greatest variability were observed at the near shore sites, which are most affected by rainfall and runoff. Variability diminishes greatly offshore to normal seawater salinity of the reef tract that is maintained primarily by the salinity of the Gulf Stream. Groundwater salinity ranges are shown in Figure 4B. Samples from an onshore well (G-3613) in the shallow Biscayne Aquifer are shown for comparison. Only the Black Point Inshore (BPI) well consistently exhibited a pronounced and consistent low salinity of about 21 ppt, indicating possible dilution by Biscayne Aquifer water. The offshore Black Point (BkP) and Petrel Point wells showed slight decreases in salinity (32- 33 ppt), perhaps reflecting some brackish-water mixing from the Biscayne Aquifer and the lens beneath Elliott Key, respectively.

The range of surface-water temperatures (Figure 4C) reflected seasonal temperature change, also moderated by the temperature of the Gulf Stream to the east. Maximum ranges were recorded in the western bay, and minimum variation occurred on the reef tract. Groundwater wells all showed an expected decrease in seasonal temperature variation, but their variation was greater than that of the onshore well (G- 3613, Figure 4D).

Figure 4. Statistical box plot of (A) surface-water salinity, (B) groundwater salinity, (C) surface-water temperature, and (D) groundwater temperature for the five sampling rounds.

DO, DOC, and Nutrients

Dissolved oxygen (DO) was depleted in groundwater relative to that of overlying seawater. Surface waters were generally near saturation with respect to oxygen, but groundwater generally exhibited only a fraction of a percent saturation, nearing 2-3% in a few samples.

Dissolved organic carbon (DOC) in surface water was concentrated near the western shore of the bay (Appendices A1 and B2). In groundwater samples, DOC was also greatest along the western shore of the bay, with a secondary enrichment at Petrel Point. At the other well sites, surfacewater and groundwater values were similar.

With the exception of near shore sites, surface water contained very little soluble silicate (SiO₂). Groundwater typically contains an order of magnitude more silica, perhaps as a result of groundwater interactions with quartz sand, than that observed in surface waters. Similarly, the onshore well exhibited high concentrations of nitrate, nitrite, dissolved inorganic nitrogen, and total soluble phosphorous. In contrast, relatively little ammonium exists in Biscayne Aquifer water compared to some surface-water samples from the Black Point Inshore site. Farther offshore in the bay and on the reefs, surface-water nutrient concentrations were low (compared to near shore values), but groundwater was consistently elevated relative to overlying seawater.

Metals

Of the 64 elements analyzed, 19 were found to be above detection limits. The distributions of these elements in groundwater are listed in Appendices A1 and A2 and shown graphically in Appendix B3. Also shown is an average value from ocean water from Millero (1996). Some obvious differences occurred in the nearshore wells as a result of mixing seawater with the Biscayne Aquifer. These included low values of boron, calcium, lithium, magnesium, sodium, potassium, strontium, and vanadium in the Black Point wells. Farther offshore, these metals have similar values in seawater and groundwater, with a slight tendency toward higher values in surface water, perhaps as the result of surface evaporation.

Wastewater Compounds

Results of analyses for wastewater compounds are listed in Appendices A3 and A4. Of the suite of compounds analyzed, none were found to occur consistently at any sample site. Only three compounds (DEET, acetophenone, and total para-nonylphenol) were encountered above the method-reporting limits (MRL) during this study. All of these compounds were also encountered in field blank samples (de-ionized water samples that have undergone similar collection procedures as ground and surface water samples).

Radium and Radon Isotopes

During two field efforts in August 2002 and June 2003, we analyzed several groundwater and surface-water samples from select sites within BNP for radium-223 (²²³Ra) and excess radium-224 (xs²²⁴Ra) as well as water-column radon-222 (²²²Rn) activities (Appendix A5). During August 2002, average groundwater activities of ²²³Ra and xs²²⁴Ra were 113.6 and 633.3 disintegrations per minute (dpm) 100L⁻¹, respectively, while the average groundwater xs²²⁴Ra/²²³Ra-activity ratio was 10.2. In contrast, surface waters had expectedly much lower xs²²⁴Ra and ²²³Ra activities (10.9 and 24.1 dpm 100L⁻¹ respectively) and an activity ratio (xs²²⁴Ra/²²³Ra) of 2.8. The xs²²⁴Ra/²²³Ra ratio value is in close agreement with an average

Biscayne Bay surface water xs²²⁴Ra/²²³Ra activity ratio of 2.0 in water collected during a subsequent submarine groundwater investigation of Biscayne Bay (Swarzenski and others, 2004).

In August 2002, excess ²²²Rn activities were determined in select groundwater samples from wells within BNP. From five offshore wells, the average excess ²²²Rn activity was 256.8 dpm L⁻¹, whereas an onshore well had an activity of 939.2 dpm L⁻¹. From a recent 2004 surface-water radon survey, Biscayne Bay had an average background surface-water ²²²Rn activity of 2-3 dpm L⁻¹ (Appendix A5; Swarzenski and others, 2004).

Strontium Isotopes

Strontium-87/86 for 19 water samples was determined (Appendix A6). One sample was collected from an approximately 1500-ft-deep well on Elliott Key that supplies a BNP reverse-osmosis plant with water from the Upper Floridan Aquifer. The other 18 samples are from the onshore-to-offshore transect of shallow wells. Plotting the ^{87/86}Sr of these samples against salinity (Figure 5) shows how low-salinity samples fall along a mixing line between Biscayne Aquifer water and seawater. No samples were encountered that have low salinity as a result of mixing with Floridan Aquifer water.

Figure 5. Most well samples had ^{87/86}Sr typical of seawater (red circle). Water samples from nearshore wells fell along a mixing line between seawater and Biscayne Aquifer water (green line). Samples indicating mixing between Floridan Aquifer water and seawater (blue line) were not found.

DISCUSSION

Langevin (2001) estimated that groundwater discharge from the Biscayne Aquifer to the bay is approximately 6% of the surface-water flow into the bay. Nearly 100% of the groundwater contribution enters the bay north of the Cutler Drain Canal, about 5 miles north of the Black Point wells, where there is significant topography onshore that helps maintain hydraulic head and groundwater flow. Brackish water was consistently encountered only in the Black Point Inshore (BPI) well. There is little seasonal variability in groundwater salinity, in contrast to surface waters that vary strongly between seasons, implying that the inshore wells are not subject to exchange with surface water on a seasonal basis. This effect is particularly apparent in wells BPI and BkP (Figure 4B). A relatively small temperature variation at the BPI site may be the result of moderation by groundwater discharge prominently from the Biscayne Aquifer.

The Black Point well (BkP) farther offshore consistently maintained greater salinity than surface water during the study. The higher salinity may indicate that the depth and distance of this well is beyond the influence of the Biscayne Aquifer. The BkP well and the other wells contained only marine groundwater during the course of the study. Although consistently marine, the Petrel Point well was 1 to 2 ppt less saline than other bay or offshore wells. The lowered salinity may be the result of mixing seawater with the brackish lens beneath Elliott Key and subsequent eastward flow due to tidal pumping, similar to that described at Key Largo (Reich and others, 2002).

One of the factors controlling groundwater flow to the bay is the geologic framework of the region. Knowledge about variability through the Biscayne Aquifer was accomplished by drilling that produced rock cores and allowed observations to be made on the geologic materials that compose the shallow subsurface of BNP. Lithologic core logs are shown in Appendix C. The cores, together with the well-known geology of the mainland (Fish and Stewart, 1991) and previous studies of the shelf geology (Perkins, 1977; Shinn and others, 1989; Lidz and others, 1997), provide the basis for a schematic cross section illustrating the various rock types and sediments beneath the seafloor (Figure 6). The cores show that along the transect from NW to SE, Biscayne Bay is underlain by the uppermost marine stratigraphic units (Q3 – Q5; Quaternary units described by Perkins, 1977) of the Miami Limestone. These units are separated by exposure horizons, surfaces that were weathered during low stands of sea level during the midto-late Pleistocene. In this part of the bay, the limestone is typically overlain by less than 6 in. of modern carbonate sediment (Wanless, 1967). A facies change occurs at Elliott Key to more reefal limestone as the Miami Limestone grades laterally into the Key Largo Limestone. The Billy's Point core did not encounter reefal limestone, which indicates the transition is laterally abrupt here, perhaps only a few tens of meters from this well to the Key Largo Limestone exposed on Elliott Key. The Key Largo Limestone is veneered with modern sediments east of Elliott Key and is increasingly buried by modern sediment east of Hawk Channel. Assuming this area of the reef tract is similar to the shelf margin off central Key Largo (Lidz and others, 1997) modern sediment in the vicinity of Alina's Reef may be 12-18 ft thick and 20-30 ft thick at Pacific Reef.

Taken together with the strontium-isotope analyses (Figure 5), the salinity of groundwater wells in BNP indicates that there may be very limited flow from the Biscayne Aquifer along the extreme western shore of Biscayne Bay near Black Point. There is no evidence from the ^{87/86}Sr

Figure 6. Geologic cross-section showing core sites and interpretations across the southeast Florida shelf. (vertical exaggeration is 1:650; for key to lithologic patterns see Appendix C)

measurements that the Floridan Aquifer is significantly contributing water to BNP. The ratio of Sr isotopes with atomic weight 87 to 86 (87/86Sr) has been steadily increasing in seawater for the past 40 million years (Howarth and McArthur, 1997), during the time when the carbonate rocks of the Floridan and Biscayne Aquifers were being deposited. Carbonate aquifers, in turn, often transfer their strontium isotopic values to pore water, because there is much more strontium in the rock matrix than in the pore fluid. Strontium isotope values from the Floridan Aquifer are distinctly less (older) than those of modern seawater (Schmerge, 2001). The Biscayne Aquifer rocks are so recent in origin (geologically speaking) that they may appear only slightly older than modern seawater. Mixing of a few percent Floridan Aquifer with surface water would be evident because isotopic compositions are markedly different. Porter and Porter (2002) suggested that a conductivity record from Alina's Reef was evidence of polluted groundwater beneath the reefs. We did not observe low- salinity water at the reef or abnormally elevated chemical constituents that might indicate a source of land-based pollution. It is possible that some other processes were affecting the conductivity reported by Porter and Porter (C.D. Langevin and J. Wang, personal communication, 2004).

The concentrations of nutrients found in marine groundwater are not excessive. Similar concentrations are found to the south off the Florida Keys (Shinn and others, 1994) and beneath Florida Bay (Reich and Shinn, 2003). High concentrations of nutrients in brackish water near shore appear to be more closely related to surface water than to groundwater flow. Although the Biscayne Aquifer samples from the onshore well are elevated in nutrients, there are insufficient concentrations in groundwater beneath the bay to implicate a significant contribution from onshore groundwater. For nitrate and nitrite, the surface water at BPI and BkP is consistently enriched relative to groundwater. This observation, together with surface-water analyses conducted by Meeder and Boyer (2001) and Brand (2002), indicates that nitrate and nitrite levels in the near shore wells are more the result of local denitrification than direct flow from Biscayne

Aquifer water. Nutrients determined in these wells appear to be within the range of groundwater values reported by D'Elia and others (1981) for groundwater influx to the reefs in Discovery Bay, Jamaica.

The greater concentrations of silica in near shore surface water may be an indication of interaction of groundwater with quartz sand encountered at BPI or co- mixing of groundwater and surface water. The relatively high concentrations of these nutrients found at near shore sites may, in part, reflect the groundwater contribution to the bay along its western margin. The concentrations indicate that near shore ammonium (NH₄⁺) may be primarily associated with runoff to the bay or with decaying organic matter.

Biscayne Bay sediments are known to contain elevated levels of some heavy metals, primarily north of BNP (Hoare, 2002). In particular, lead, silver, copper, zinc, and mercury have been identified as contaminants in some sediment samples (Corcoran 1984; Corcoran and others, 1984; Hoare, 2002). Shinn and Corcoran (1987), however, did not find significant concentrations of heavy metals in groundwater from onshore wells near Goulds Canal. Results from this study did not find excessive concentrations of these metals in bay surface water. The common heavy elements are enriched in groundwater because they have a source in the surrounding rocks and sediments and they become more soluble in lower pH (reduced) groundwater. These elements include aluminum, barium, copper, iron, lead, and zinc. There are no standards for most metals determined during this study, particularly for seawater. Although heavy metals are often enriched and more soluble in reduced groundwater, their surface-water concentrations do not appear to be excessive when compared to oceanic waters (Millero, 1996). In coastal waters, metal concentrations can be considerably greater than in the open ocean but are much less than those acceptable for drinking water. For example, copper, lead, and zinc guidelines for drinking water are 1000, 15, and 5000 ppb. In Biscayne Bay surface water, these metals are about 150, 2, and 10 ppb, respectively.

Shinn and Corcoran (1987) found traces of pesticides, plasticizers, and aliphatic hydrocarbons in samples from shallow wells (15 and 30 ft) in the Biscayne Aquifer south of the Goulds Canal. Concentrations at 30 ft were about half that of the 15-ft sample. The contaminants were not found in a well on the north side of Goulds Canal, nearer the landfill. This distribution indicates that contamination may be local, on the south side of the canal, and may be the result of surface water entering the Upper Biscayne Aquifer. During this study, wastewater compounds in groundwater (G-3613, BPI-1A, MB-1B, and AR-1B) were encountered in 3.5% of the samples and in 5.2% of the surface-water samples (BPI and Gulf Stream). Twenty-two different compounds were recognized in samples and field blanks. Nineteen of the 22 compounds were detected below the method-detection limit (MDL), indicating that while present, they are not of sufficient concentration to be measured accurately by the methods used in this study. Eight of the compounds occurred in blanks, six of those occurred below MDL. Twelve of the compounds were single occurrences. The most commonly recognized compound was DEET, occurring in nine surface-water samples, 16 groundwater samples, and four blanks. Only DEET, acetophenone, and total para-nonylphenol were encountered above the MDL. DEET and acetophenone are components of personal-care products, and total para-nonylphenol is used in detergents. Although QA/QC procedures were carefully followed, the unusual field conditions during sample and blank collections may have resulted in contamination. It is also possible that

because of the extremely low detection limits for these compounds, generally in the range of 0.5-1 ppb, some contamination could occur during transport and analyses. No contaminants were detected consistently at any sample locations. Nor were any contaminants found to be above the MDL that did not also occur in blanks (sampling/transport/analysis contamination). A recent study statistically comparing results from 13 study units across the United States has shown that similar compounds and concentrations as found in this study (e.g., acetophenone, phenol and DEET) have also been found in field and source-solution blanks (de-ionized water samples that have not come into contact with sampling equipment) (J. Kingsbury, pers. comm., 2004).

The limestone beneath BNP is very porous and permeable and is expected to exchange water with the surface. Whereas this exchange may occur quickly in high-energy offshore settings (Tribble and others, 1992), the exchange may take as long as a few decades in similar inshore sites (Böhlke and others, 1997). In particular, the modern sediments of the middle shelf form a comparatively low-permeability layer, restricting limestone beneath from surface exchange and creating a leaky trap for groundwater rising from below. Wells at Alina's Reef should have encountered low-salinity groundwater if it were present. Our measurements do not exclude the possibility of springs acting as point sources of contaminants in BNP. But until such springs are located, sampled, and analyzed, they remain hypothetical. Based on this study, no regional groundwater contamination is evident in the BNP area sampled.

CONCLUSIONS

No significant evidence of contamination from groundwater into Biscayne Bay was found during this study. Low-salinity water was identified from nearshore wells and may indicate some leakage from the Biscayne Aquifer and/or surface-water intrusion into the rocks along western Biscayne Bay. Elevated nutrients in wells along the western shore indicate surface-water exchange is more likely than groundwater flow. Both ammonium and total soluble nitrogen were greater in nearshore wells than in the Biscayne Aquifer. Nitrite and nitrate were greater in Biscayne Aquifer water than in nearshore Biscayne Bay wells, indicating the possibility of nitrogen reduction along the shore. Lack of seasonal variation in groundwater salinity points to sluggish exchange with surface water. The groundwater beneath the shelf can be characterized as reduced seawater, modified by microbial respiration to remove oxygen and interaction with sediments and minerals in the host limestone. Analyses of 109 water samples collected from wells across the Florida shelf beneath BNP between August 2002 and March 2004 show no consistent evidence of wastewater contaminants occurring in groundwater beneath BNP. In addition, no significant leakage from the Floridan Aquifer was detected in the groundwater beneath BNP. At Black Point, the western edge of Biscayne Bay is influenced by surface water and perhaps by Biscayne Aquifer water, but the bulk of BNP is underlain by uncontaminated marine groundwater.

REFERENCES CITED

- Böhlke, J.K., Plummer, L.N., Busenbuerg, E., Coplen, T.B., Shinn, E.A., and Schlosser, P.L., 1997, Origins, residence times, and nitrogen chemistry of marine groundwaters beneath the Florida Keys and nearby offshore areas: U.S. Geological Survey Open-File Report 97-385, p. 6-7.
- Bush, P.W. and Johnson, R.H., 1988, Groundwater hydraulics, regional flow, and groundwater development of the Floridan Aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama: U.S. Geological Survey Professional Paper 1403-C, 80 p.
- Brand, L.E., 2002, The transport of terrestrial nutrients to South Florida coastal waters: In J. Porter and K. Porter (eds.), The Everglades, Florida Bay and the Coral Reefs of the Florida Keys: An Ecological Sourcebook. CRC Press, Boca Raton, Florida, p. 361-413.
- Corcoran, E.F., 1984, Report on the analyses of five (5) Biscayne Bay sediments, 5 p. available at http://www.aoml.noaa.gov/general/lib/cedardoc.html, restored and transferred to electronic form by A.Y. Cantillo (NOAA) in 1999. Original stored at the library, Rosenstiel School of Marine and Atmospheric Science, University of Miami. Minor editorial changes were made.
- Corcoran, E.G., Brown, M.S, and Freay, A.D., 1984, The study of trace metals, chlorinated pesticides, polychlorinated biphenyls and pthalic acid esters in sediments of Biscayne Bay, a report prepared for Metropolitan Dade County, available at http://www.aoml.noaa.gov/general/lib/cedardoc.html, restored and transferred to electronic form by A. Y. Cantillo (NOAA) in 1999. Original stored at the Library, Rosenstiel School of Marine and Atmospheric Science, University of Miami. Minor editorial changes were made, 34 p.
- Cunningham, K.J., Carlson, J.L., Wingard, G.L, Robinson, E., and Wacker, M.A., 2003, Characterization of aquifer heterogeneity using cyclostratigraphy and geophysical methods in the upper part of the karstic Biscayne Aquifer, southeastern Florida, U.S. Geological Survey Water-Resources Investigations Report 03-4208, 66 p.
- D'Elia, C.F., Webb, K.L., and Porter, J.W., 1981, Nitrate-rich groundwater inputs to Discovery Bay, Jamaica: A significant source of N to local coral reefs? Bulletin of Marine Science, v. 31, p. 903-910.
- Dunham, R.J., 1962, Classification of carbonate rocks according to depositional texture: In W.E. Ham (ed.), Classification of Carbonate Rocks: American Association of Petroleum Geologists Memoir, p. 108-121.
- Enos, P. and Perkins, R.D., 1977, Quaternary Sedimentation in South Florida: Geological Society of America Memoir 147, 198 p.

- Enos, P. and Sawatsky, L.H., 1981, Pore networks in Holocene carbonate sediments: Journal of Sedimentary Petrology, v. 51, p. 961-985.
- Fanning, K.A., Byrne, R.H., Breland, J.A., Betzer, P.R., Moore, W.S., Elsinger, R.J., and Pyle, T.E., 1981, Geothermal springs of the west Florida continental shelf; evidence for dolomitization and radionuclide enrichment: Earth and Planetary Science Letters, v. 52, p. 345-354.
- Fish, J.E. and Stewart, M.T., 1991, Hydrogeology of the surficial aquifer system, Dade County, Florida: U.S. Geological Survey Water-Resources Investigations Report 90-4108, 50 p.
- Florida Fish and Wildlife Conservation Commission, 2004, EPA/ NOAA Coral Reef Evaluation and Monitoring Project, Beaver, C., Jaap, W., Porter, J., Wheaton, J., Callahan, M., Kidney, J., Kupfner, S., Sutherland, K., Torres, C., Lipp, E., and Wade, S., A Report of the Florida Fish and Wildlife Conservation Commission and the University of Georgia pursuant to U.S. EPA grant award 9746002-0 and NOAA Grant award NA 160P2554.
- Halley, R.B., Vacher, H.L., and Shinn, E.A., 1997, Geology and hydrogeology of the Florida Keys: In H.L. Vacher, and T.M. Quinn (eds.), Geology and Hydrogeology of Carbonate Islands: Elsevier, New York, p. 217-248.36
- Hoare, A.M., 2002, Analysis of Biscayne Bay sediments: Do benthic foraminifera reflect trace metal contamination? unpublished M.Sc. Thesis, University of South Florida, 104 p.
- Howarth, R.J., and McArthur, J.M., 1997, Statistics for strontium isotope stratigraphy: Journal of Geology, v. 105, p. 441-156.
- Kohout, F.A., 1965, A hypothesis concerning cyclic flow of salt water related to geothermal heating in the Florida Aquifer: Transactions of the New York Academy of Sciences, Series II, v. 28, p. 249-271.
- Langevin, C.D., 2001, Simulation of groundwater discharge to Biscayne Bay, Southeastern Florida, U.S. Geological Survey Water-Resources Investigations Report 00-4251, 127 p.
- Lidz, B.H., Hine, A.C., Shinn, E.A., and Kindinger, J., 1991, Multiple outer-reef tracts along the south Florida bank margin: Outlier reefs, a new windward-margin model: Geology, v. 19, p. 155-118.
- Lidz, B.H., Shinn, E.A., Hansen, M.E., Halley, R.B., Harris, M.W., Locker, S.D., and Hine, A.C., 1997, Maps Showing Sedimentary and Biological Environments, Depth to Pleistocene Bedrock, and Holocene Sediment and Reef Thickness from Molasses Reef to Elbow Reef, Key Largo, South Florida: U.S. Geological Survey Miscellaneous

- Investigative Series, Map #I-2505 (double-sided descriptive and interpretive maps with aerial photo mosaic, scale 1:24,000, 3 sheets).
- McNeill, D.F., 2000, A review of upward migration of effluent related to subsurface injection at Miami-Dade Water and Sewer South District Plant: Report prepared for the Sierra Club-Miami group, 30 p.
- Meeder, J., and Boyer, J.N., 2001, Total ammonia concentrations in soil, sediments, surface water, and groundwater along the western shoreline of Biscayne Bay with the focus on Black Point and reference mangrove site: Final Report to the National Park Service in response to Project Statement BISC-N-011000, 45 p.
- Millero, F.J., 1996, Chemical Oceanography: CRC Press, Washington D.C., 469 p.
- Multer, H.G., Gischler, E., Lundberg, J., Simmons, K.R., and Shinn, E.A., 2002, Key Largo Limestone revisited: Pleistocene shelf-edge facies, Florida Keys, USA: Facies, v. 46, p. 229-272.
- National Parks Conservation Association, 2004, http://www.npca.org/across_the_nation/ten_most_endangered/
- Parker, G.G., Ferguson, G.E., Love, S.K. and others, 1955, Water Resources of Southeastern Florida, with Special Reference to the Geology and Groundwater of the Miami Area. U.S. Geological Survey Water Supply Paper 1255, 965 p.
- Perkins, R.D., 1977, Depositional framework of Pleistocene rocks in south Florida: In P. Enos, and R.D. Perkins (eds.), Quaternary Sedimentation in South Florida, part II: Geological Society of America Memoir 147, p. 131-198.
- Porter, J., and Porter, K., 2002, The Everglades, Florida Bay and the Coral Reefs of the Florida Keys: An Ecological Sourcebook: CRC Press, Boca Raton, Florida, 1000 p.
- Rosenau, J.C., Faulkner, G.L., Hendry, Jr., C.W., and Hull, R.W., 1977, Springs of Florida: Florida Geological Survey Bulletin no. 31, revised, 1998.
- Reich, C.D. and Shinn E.A., 2003, Temporal and spatial distribution of nutrients and salinity in Florida Bay groundwater from 1994-2000: Joint Conference on the Science and Restoration of the Greater Everglades and Florida Bay Ecosystem: From Kissimmee to the Keys, p. 85-87.
- Reich, C.D., Shinn, E.A., Hickey, T.D., and Tihansky, A.B., 2002, Tidal and meteorological influences on shallow marine groundwater flow in the upper Florida Keys: In J. Porter and K. Porter (eds.), The Everglades Florida Bay and the Coral Reefs of the Florida Keys: An Ecological Sourcebook. CRC Press, Boca Raton, Florida, p. 659-676.

- SERC. Southeast Environmental Research Center. Florida International University, data available at http://serc.fiu.edu/wqmnetwork/
- Shinn, E.A., and Corcoran, E., 1987, Contamination by landfill leachate, south Biscayne Bay, Florida, 6 p. available at http://www.aoml.noaa.gov/general/lib/cedardoc.html, restored and transferred to electronic form by A.Y. Cantillo (NOAA) in 1999. Original stored at the library, Rosenstiel School of Marine and Atmospheric Science, University of Miami. Minor editorial changes were made.
- Shinn, E.A., Lidz, B.H., Halley, R.B., Hudson, J.H., and Kindinger, J.L., 1989, Reefs of Florida and the Dry Tortugas: International Geological Congress, Field Trip Guidebook T176, American Geophysical Union, Washington, D.C., 53 p.
- Shinn, E.A., Reese, R.S., and Reich, C.D., 1994, Fate and pathways of injection-well effluent in the Florida Keys, U.S. Geological Survey Open-File Report 94-276, 116 p.
- Shinn, E.A., Reich, C.D., Locker, S.D., and Hine, A.C., 1996, A giant sediment trap in the Florida Keys: Journal of Coastal Research, v. 12, no. 4, p. 953-959.
- Schmerge, D.L., 2001, Distribution and origin of salinity in the surficial and intermediate aquifer systems, southwest Florida: U.S. Geological Survey Water-Resources Investigations Report 01-4159, 41 p.
- Swarzenski, P., Burnett, B., Reich, C., Dulaiova, H., Peterson, R., and Meunier, J., 2004, Novel geophysical and geochemical techniques to study submarine groundwater discharge in Biscayne Bay, Florida: U.S. Geological Survey Fact Sheet 2004- 3117, 4 p.
- Toscano, M.A., and Lundberg, J., 1998, Early Holocene sea-level record from submerged fossil reefs on the southeast Florida margin: Geology, v. 26, p. 255-258.
- Tribble, G.W., Sansone, F.J., Buddemeier, R.W., and Li, Y.H., 1992, Hydraulic exchange between a coral reef and surface seawater: Geological Society of America Bulletin, v. 104, p. 1280-1291.
- Wanless, H.R., 1967, The sediments of Biscayne Bay distribution and depositional history: unpublished M.S. Thesis, University of Miami, Coral Gables, Florida.
- Wilde, F.D., Radtke, D.B., Gibs, J., and Iwatsubo, R.T., 1998, U.S. Geological Survey National Field Manual for the Collection of Water-Quality Data, Techniques of Water-Resources Investigations, Book 9, Handbooks for Water-Resources Investigations.
- Zaugg, S.D., Smith, S.D., Barber, L.D., Burkhardt, M.R., and Shroeder, M.P., 2002, Methods of analysis by the USGS NWQL—determination of wastewater compounds

by polystyrene-divinylbenzene solid-phase extraction and capillary column GCMS: U.S. Geological Survey Water-Resources Investigation Report 01-4186, 37 p.

Zieman, J.C., 1972, Origin of circular beds of *Thalassia* (Spermatophyta: Hydrocharitaceae) in South Biscayne Bay, Florida, and their relationship to mangrove hammocks: Bulletin of Marine Science, v. 22, no. 3, p. 559-574.

Appendix A1 – A6

Hydrochemistry Tables

Appendix A-1. Hydrochemistry results for groundwater samples

Sp. Conductance (µS/cm)	8920	8450	8480	480	7296	33800	32900	33000	32600	32091	pu	49700	48300	49680	49198	54400	53700	49900	49890	53930	54400	53700	54400	53890	54418	54400	23600	20300	51320	53993	51900	53300	52800	53620	53773	53300	52700	53800	52940	53990
Time of Collection	15:00	18:05	14:25	10:45	11:30	10:00	17:50	16:50	14:35	00:6	pu	16:00	15:35	13:20	12:40	15:45	12:45	13:00	16:00	14:40	16:30	13:20	13:45	17:00	16:00	17:00	14:10	14:00	17:20	17:30	13:00	10:20	9:45	13:00	11:20	14:00	11:00	10:15	13:36	11:50
Date of Collection	8/22/02	6/23/03	9/22/03	12/17/03	3/31/04	8/22/02	6/24/03	9/24/03	12/17/03	3/31/04	8/22/02	6/25/03	9/24/03	12/17/03	3/29/04	8/22/02	6/24/03	9/24/03	12/15/03	3/29/04	8/22/02	6/24/03	9/24/03	12/15/03	3/29/04	8/22/02	6/24/03	9/24/03	12/15/03	3/29/04	8/21/02	6/24/03	9/24/03	12/16/03	3/29/04	8/21/02	6/24/03	9/24/03	12/16/03	3/29/04
Sampling Round	1	2	ო	4	2	-	2	m	4	2	-	7	က	4	2	-	2	m	4	2	-	2	n	4	2	-	7	က	4	2	-	7	m	4	5	<u>_</u>	2	ო	4	5
Longitude (W)	-80.386	-80.365	-80.365	-80.380	-80.365	-80.330	-80.330	-80.330	-80.330	-80.330	-80.324	-80.324	-80.324	-80.324	-80.324	-80.267	-80.267	-80.267	-80.267	-80.267	-80.267	-80.267	-80.267	-80.267	-80.267	-80.267	-80.267	-80.267	-80.267	-80.267	-80.212	-80.212	-80.212	-80.212	-80.212	-80.212	-80.212	-80.212	-80.212	-80.212
Latitude (N)	25.500	25.537	25.537	25.537	25.537	25.526	25.526	25.526	25.526	25.526	25.526	25.526	25.526	25.526	25.526	25.484	25.484	25.484	25.484	25.484	25.484	25.484	25.484	25.484	25.484	25.484	25.484	25.484	25.484	25.484	25.428	25.428	25.428	25.428	25.428	25.428	25.428	25.428	25.428	25.428
Well Depth (ft)	70	70	20	20	20	18.5	18.5	18.5	18.5	18.5	22.5	22.5	22.5	22.5	22.5	43	43	43	43	43	25	52	25	52	52	25	25	25	25	25	23.5	23.5	23.5	23.5	23.5	7.5	7.5	7.5	7.5	7.5
Water Type	M9	Β	ΔW	ΜĐ	ВW	ΜĐ	ΘW	ΜS	ΜĐ	ΟW	ΜS	ΜĐ	ΜS	ΘW	ΜĐ	ΟW	ΟW	ΜĐ	ΘW	Αg	ΜĐ	ΒM	ΜS	ΜS	ΜĐ	ΜĐ	ВW	Αß	ΘW	Αğ	Αğ	ΘW	ΜĐ	ΟW	ΔW	ВW	ΜS	ΜĐ	ΜĎ	GW
Location Name	Waldin West	Coconut Palm	Coconut Palm	Coconut Palm-West	Coconut Palm	Black Point Inshore -1A	Black Point	Mid Bay -1A	Mid Bay -1A	Mid Bay -1A				Mid Bay -1B						Mid Bay -1C	Mid Bay -1C	Mid Bay -1C	Billy's Point -1A	Billy's Point -1B																
Location ID	G-3615	G-3613	G-3613	G-3701	G-3613	GW-BPI-1A	GW-BPI-1A	GW-BPI-1A	GW-BPI-1A	GW-BPI-1A	GW-BKP-1A			GW-BKP-1A	GW-BKP-1A				GW-MB-1A	GW-MB-1A	GW-MB-1B	GW-MB-1B	GW-MB-1B	GW-MB-1B	GW-MB-1B	GW-MB-1C	GW-MB-1C	GW-MB-1C	GW-MB-1C	GW-MB-1C	GW-BYP-1A	GW-BYP-1A	GW-BYP-1A	GW-BYP-1A	GW-BYP-1A	GW-BYP-1B	GW-BYP-1B	GW-BYP-1B	GW-BYP-1B	GW-BYP-1B

Appendix A-1. Hydrochemistry results for groundwater samples, cont.

Location ID	Sampling	Salinity	Diss. Oxygen	Diss Oxy	표	Temp	Redox	ے اِ	Be	8	Na	Mg	₹	Si	*
	Kouna	(bbt)	(mg/L)	(%)		(nc)	(MV)	(add)	(add)	(add)	(add)	(add)	(add)	(add)	(qdd)
G-3613	_	2.00	0.41	P	6.82	25.30	Б	pmq	pmq	pmq	432000	39900	pmq	pmq	13100
G-3613	2	4.70	1.74	3.3	6.94	24.00	120.0	7.00	pmq	385	1400000	120000	pmq	2180	27000
G-3613	က	4.70	0.22	2.7	6.46	24.70	P	pmq	pmq	459	1520000	140000	pmq	pmq	31700
G-3613	4	0.23	0.23	2.8	7.37	24.72	-24.6	1.25	pmq	110	22300	5090	12.70	7910	761
G-3613	5	4.01	0.61	7.7	7.03	24.49	-157.7	pmq	pmq	328	1140000	112000	pmq	2870	25900
GW-BPI-1A	-	21.20	0.29	pu	6.83	27.20	pu	pmq	pmq	2360	4860000	624000	pmq	pmq	199000
GW-BPI-1A	2	20.70	0.79	10.0	68.9	27.30	-279.0	108.00	pmq	1770	6400000	740000	3.39	5110	212000
GW-BPI-1A	က	20.50	рL	ы	7.88	pu	р	100.00	pmq	2760	7000000	805000	pmq	7270	264000
GW-BPI-1A	4	20.36	0.24	3.3	6.88	24.98	-267.5	106.00	pmq	2720	6470000	748000	27.80	4360	222000
GW-BPI-1A	2	20.00	0.28	3.9	6.84	24.94	-241.6	107.00	pmq	2820	5290000	649000	pmq	6330	237000
GW-BKP-1A	_	pu	pu	p	p	pu	рu	pu	<u>p</u>	pu	Ъ	pu	ы	pu	p
GW-BKP-1A	2	32.70	0.26	3.4	7.32	28.60	-322.0	173.00	0.12	2690	10900000	1280000	2.75	1980	370000
GW-BKP-1A	က	31.40	pi	pu	7.75	pu	pu	156.00	pmq	4990	11700000	1350000	pmq	pmq	450000
GW-BKP-1A	4	32.50	0.20	2.9	7.33	25.48	-290.0	185.00	pmq	4540	0000666	1310000	31.10	1990	378000
GW-BKP-1A	2	32.14	2.10	0.1	7.29	25.54	-296.0	186.00	pmq	4580	10400000	1260000	24.30	1920	416000
GW-MB-1A	-	36.00	1.71	pu	7.29	28.30	Б	147.00	pmq	4160	0000006	1110000	pmq	pmq	346000
GW-MB-1A	2	35.60	0.13	1.6	7.32	27.00	-262.0	188.00	pmq	2500	11500000	1320000	4.65	1900	398000
GW-MB-1A	က	32.60	PL	pu	7.87	Б	р	170.00	pmq	4540	11800000	1360000	pmq	bmd	446000
GW-MB-1A	4	32.70	0.41	pu	7.85	23.85	-137.1	182.00	pmq	4210	10400000	1300000	33.90	746	382000
GW-MB-1A	5	35.66	0.18	2.7	7.44	24.69	-213.5	196.00	pmq	4510	11500000	1400000	pmq	pmq	445000
GW-MB-1B	-	36.00	1.54	pu	7.20	27.90	pu	166.00	pmq	4320	9410000	1160000	pmq	6580	369000
GW-MB-1B	2	35.60	0.10	1.2	7.35	27.20	-237.0	194.00	pmq	2740	11300000	1290000	7.53	1690	370000
GW-MB-1B	က	35.50	pu	pu	7.70	Ъ	р	172.00	pmq	4790	12800000	1510000	pmq	pmq	499000
GW-MB-1B	4	35.27	0.78	11.4	7.40	23.70	-125.4	190.00	pmq	4650	11100000	1390000	34.20	2020	433000
GW-MB-1B	5	36.01	1.71	25.2	7.64	24.42	-0.4	197.00	pmq	4590	11500000	1350000	pmq	975	451000
GW-MB-1C	-	36.00	0.89	pu	7.31	28.10	pu	157.00	pmq	4140	8730000	1090000	pmq	pmq	344000
GW-MB-1C	2	35.60	0.47	5.2	7.49	27.00	-261.0	189.00	0.12	2600	11500000	1330000	5.95	492	392000
GW-MB-1C	က	32.90	pu	pu	7.86	p	pu	176.00	pmq	4250	11900000	1340000	pmq	pmq	436000
GW-MB-1C	4	33.86	0.22	3.2	7.50	23.04	-194.9	196.00	pmq	4530	11100000	1400000	30.90	1630	417000
GW-MB-1C	2	35.72	1.84	26.5	7.64	23.73	-112.9	174.00	pmq	4520	11800000	1420000	pmq	2050	452000
GW-BYP-1A	-	34.30	3.65	pu	7.89	29.20	p	162.00	pmq	4100	high	1050000	pmq	pmq	335000
GW-BYP-1A	2	35.30	0.30	3.8	7.39	27.60	-339.0	208.00	0.12	2700	11500000	1310000	2.58	723	380000
GW-BYP-1A	က	34.70	pu	pu	7.44	p	р	178.00	pmq	4650	12200000	1420000	pmq	pmq	470000
GW-BYP-1A	4	35.42	0.22	3.2	7.38	24.45	-247.9	196.00	pmq	4590	11000000	1430000	29.30	1470	421000
GW-BYP-1A	2	35.49	0.24	3.6	7.36	25.18	-251.8	187.00	pmq	4380	11500000	1350000	pmd	1420	456000
GW-BYP-1B		35.10	4.11	p	7.63	30.80	p	160.00	pmq	4150	high	1080000	pmd	pmq	349000
GW-BYP-1B	2	34.90	0.10	1.3	7.12	27.60	-341.0	206.00	pmq	2620	11600000	1310000	6.18	269	372000
GW-BYP-1B	က	35.40	pu	pu	7.51	5	pu	194.00	pmq	5390	12700000	1530000	pmq	pmq	202000
GW-BYP-1B	4	34.93	0.21	3.1	7.24	23.73	-289.6	191.00	pmq	4360	10900000	1420000	34.30	712	426000
GW-BYP-1B	5	35.70	0.21	3.0	7.19	24.21	-301.3	199.00	pmq	4520	11400000	1350000	pmd	bmd	453000
[bmdl, below method detection lir	d detection lin	mit; high, to	imit; high, too high for ICP/MS; nd, no data]	; nd, no data	<u></u>										

Appendix A-1. Hydrochemistry results for groundwater samples, cont.

				(ndd)	(qdd)	(qdd)	(qdd)	(gdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)
	1	158000	pmq	pmq	pmd	54.70	pmq	3120.00	09.0	bmd	54.7	115.00	bmd	bmd	9.90	37.5	4740	6.9
	2	244000	pmq	0.85	pmq	pmq	8.88	455.00	1.45	293.0	23.2	1.78	0.03	bmd	6.82	24.7	9730	9.5
	3	283000	pmq	pmq	6.19	pmq	11.00	643.00	1.34	684.0	7.97	pmq	pmq	bmd	5.71	bmd	9610	9.6
	4	58400	6.10	3.72	1.14	3.08	2.16	416.00	0.14	pmq	0.4	0.83	0.02	bmd	2.96	1.5	294	1.2
	5	251000	pmdl	2.41	3.35	14.80	17.10	2130.00	1.01	-3.0	3.7	pmq	pmq	pmql	6.61	16.1	8580	12.2
GW-BPI-1A	-	311000	Ipmq	pmq	40.80	117.00	pmql	1720.00	2.20	167.0	127.0	53.80	pmql	pmql	30.50	122.0	42900	73.4
GW-BPI-1A		314000	1.19	6.63	19.10	34.40	19.40	678.00	0.79	622.0	93.0	4.10	0.15	bmd	34.50	109.0	57200	74.4
GW-BPI-1A	က	414000	pmd	pmq	31.60	81.50	21.20	882.00	0.67	1030.0	171.0	pmq	pmq	pmq	27.10	73.8	44300	73.3
GW-BPI-1A	4	333000	pmdl	7.74	40.50	120.00	19.10	2310.00	1.09	34.9	25.8	12.80	0.17	pmq	28.20	92.0	40200	0.99
GW-BPI-1A	5	375000	pmql	5.55	34.30	93.10	20.00	1990.00	0.97	252.0	40.7	pmq	0.14	pmq	24.80	77.1	42300	75.2
GW-BKP-1A	-	ы	P	Б	<u>p</u>	Þ	Б	ъ	рu	힏	Þ	þ	g	Þ	P	ē	ъ	<u>p</u>
GW-BKP-1A		378000	Ipmq	9.77	20.30	61.40	13.60	803.00	1.18	1230.0	165.0	6.29	0.18	pmq	55.50	195.0	94100	122.0
GW-BKP-1A	က	515000	pmdl	pmq	47.00	156.00	16.10	1060.00	0.99	-3.0	93.5	pmq	pmq	pmq	46.00	117.0	71300	114.0
GW-BKP-1A		431000	pmql	9.62	55.70	183.00	14.20	2900.00	1.64	58.1	37.5	10.10	0.14	bmd	51.00	181.0	69500	113.0
GW-BKP-1A	5	498000	pmq	8.07	47.10	175.00	24.00	2870.00	1.38	332.0	66.1	pmq	0.10	pmql	47.40	155.0	86300	133.0
GW-MB-1A		389000	pmd	pmq	43.10	146.00	pmq	1810.00	2.60	248.0	303.0	167.00	pmq	pmq	50.10	179.0	77500	128.0
GW-MB-1A	2	384000	pmq	16.10	20.70	68.00	19.60	1080.00	0.97	1320.0	199.0	99.9	0.14	pmq	66.70	216.0	108000	143.0
GW-MB-1A		470000	pmq	pmq	42.30	145.00	pmq	986.00	0.79	1380.0	264.0	pmq	pmq	pmq	50.30	125.0	72200	114.0
GW-MB-1A	4	392000	pmql	89.6	26.60	190.00	6.10	2840.00	1.87	91.3	39.5	17.60	0.15	pmq	53.00	184.0	00869	111.0
GW-MB-1A		489000	pmq	7.20	50.50	152.00	9.52	2370.00	1.84	401.0	71.5	pmq	pmq	pmd	50.20	159.0	86300	134.0
GW-MB-1B		443000	pmq	pmq	43.90	176.00	pmq	3330.00	2.90	228.0	235.0	370.00	pmq	pmq	52.40	172.0	80700	136.0
GW-MB-1B	2	382000	pmq	10.60	31.60	94.00	19.90	1900.00	1.04	1110.0	170.0	6.17	0.13	bmd	62.90	213.0	112000	138.0
GW-MB-1B		542000	pmq	pmq	44.10	162.00	23.60	1910.00	0.83	1900.0	397.0	pmq	pmq	bmd	51.10	128.0	85100	125.0
GW-MB-1B	4	440000	pmq	11.90	61.40	200.00	19.00	3690.00	1.70	102.0	44.9	9.21	0.14	bmd	57.10	211.0	75500	118.0
GW-MB-1B		206000	pmq	6.44	67.40	198.00	10.50	2560.00	1.98	313.0	62.5	8.90	pmq	bmd	47.90	157.0	88300	133.0
GW-MB-1C		375000	pmq	pmq	45.10	165.00	pmql	1860.00	2.90	206.0	365.0	86.20	pmq	pmq	53.80	189.0	75200	126.0
GW-MB-1C		382000	pmd	9.47	29.60	92.70	11.90	871.00	1.15	1320.0	192.0	7.03	0.12	pmq	62.20	207.0	105000	133.0
GW-MB-1C		468000	pmd	pmq	40.90	138.00	pmq	1100.00	0.98	1250.0	279.0	pmq	pmq	pmq	47.90	120.0	71900	117.0
GW-MB-1C		417000	pmq	11.00	59.10	201.00	13.20	2840.00	1.88	56.1	41.8	8.77	0.15	pmq	55.00	206.0	74500	118.0
GW-MB-1C	5	494000	pmq	7.88	46.20	155.00	15.70	2640.00	1.43	232.0	52.2	pmq	0.14	pmq	42.50	129.0	72500	122.0
GW-BYP-1A		367000	pmq	pmq	47.90	175.00	pmq	2010.00	3.00	213.0	217.0	81.20	pmq	pmq	52.70	177.0	26600	123.0
GW-BYP-1A		374000	pmq	10.60	21.80	68.90	9.94	925.00	1.15	1130.0	132.0	7.10	0.12	pmq	63.70	212.0	110000	136.0
GW-BYP-1A		207000	pmq	53.70	43.70	148.00	pmq	3740.00	1.09	1170.0	276.0	pmq	pmq	pmq	61.40	123.0	74800	122.0
GW-BYP-1A		433000	pmd	13.90	27.90	201.00	9.13	3050.00	2.04	91.8	43.5	12.50	0.11	pmq	58.30	203.0	74800	123.0
GW-BYP-1A	5	498000	pmq	8.36	50.40	173.00	10.70	2430.00	1.48	358.0	67.7	pmq	0.11	pmq	47.90	155.0	89000	134.0
GW-BYP-1B	-	386000	pmq	pmq	46.10	162.00	pmq	1840.00	2.90	237.0	233.0	123.00	pmq	pmq	56.20	155.0	26900	130.0
GW-BYP-1B	2	394000	pmql	10.40	23.40	73.80	2.85	904.00	1.17	1030.0	152.0	6.49	0.09	pmq	63.10	213.0	109000	135.0
GW-BYP-1B		545000	pmq	pmq	20.00	169.00	pmq	1230.00	1.36	238.0	147.0	pmq	pmq	pmq	53.10	135.0	88800	127.0
GW-BYP-1B	4	446000	pmq	11.10	51.60	188.00	3.44	3050.00	1.80	74.9	41.6	8.72	pmq	pmq	54.00	199.0	74600	122.0
GW-BYP-1B		518000	pmq	6.80	47.80	174 00	3 16	2540 00	1 10	7170	717	- Curd	2	7	10 10	0 0 1	00.00	1250

27

Appendix A-1. Hydrochemistry results for groundwater samples, cont.

Location ID	Sampling Round	Sr (ppb)	(dqq)	Zr (ppb)	(qdd)	Mo (ppb)	Ru (ppb)	Pd (ppb)	Ag (ppb)	(pdd)	ln (ddd)	Sn (ppb)	Sb (ddd)	Te (ppb)	(qdd)	Cs (ppb)	Ba (ppb)
G-3613	1	3430		lpmq	pmq	pmd	Ipmq	2.40	pwq	lpmq	pmd	pmd	pmd	1.20	pmd	pmq	55.50
G-3613	2	4450		pmq	0.01	0.77	0.03	0.17	pmq	pmq	pmq	pmq	0.05	0.02	48.20	0.17	82.20
G-3613	က	3610		pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	81.70
G-3613	4	1980		pmq	pmq	1.74	pmq	0.01	pmq	pmq	pmq	0.15	0.14	pmq	44.30	0.01	25.80
G-3613	2	3470		pmq	pmq	1.09	pmq	0.39	pmq	pmq	pmq	pmq	pmq	pmq	582.00	0.31	82.80
GW-BPI-1A	-	2600		pmq	pmq	pmq	pmq	5.50	pmq	pmdl	pmq	pmq	pmq	pmq	pmq	pmq	26.60
GW-BPI-1A	2	7550		0.32	0.02	0.32	0.45	0.27	pmq	pmq	0.00	pmq	0.05	0.24	45.00	0.20	26.30
GW-BPI-1A	က	5930		pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	24.60
GW-BPI-1A	4	5280		0.19	pmq	pmq	0.31	1.07	pmd	pmdl	0.07	pmq	pmq	pmq	54.50	0.15	21.80
GW-BPI-1A	5	4700		0.18	pmql	pmq	0.13	1.05	pmql	pmq	pmq	pmq	pmq	0.11	526.00	0.17	25.60
GW-BKP-1A	-	ы		pu	pu	Б	P	pu	P	Б	Б	P	pu	ъ	P	ē	pu
GW-BKP-1A	2	10700		0.02	0.01	0.34	0.52	pmq	pmq	0.03	0.01	pmq	90.0	0.40	54.30	0.33	33.70
GW-BKP-1A	က	8830		pmq	pmq	pmq	pmq	1.17	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.32	30.80
GW-BKP-1A	4	8460		pmq	pmq	pmq	0.63	2.51	pmq	pmd	0.14	pmq	pmq	0.92	62.90	0.32	31.50
GW-BKP-1A	2	8120		pmq	pmql	1.60	0.59	1.47	pmq	pmq	0.01	pmq	0.41	0.13	574.00	0.35	28.40
GW-MB-1A	_	8560		pmq	pmq	pmq	pmq	3.80	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.30	32.10
GW-MB-1A	2	12900		0.02	0.02	0.84	0.54	0.80	pmq	0.04	0.01	pmq	0.08	0.68	51.40	0.35	33.10
GW-MB-1A	က	8130		pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.27	pmdl
GW-MB-1A	4	7890		pmq	pmq	3.19	0.87	1.34	pmq	pmq	0.14	pmq	0.36	pmq	47.10	0.27	13.00
GW-MB-1A	2	8400		pmq	pmq	8.20	0.56	1.61	pmq	pmq	pmq	pmq	0.25	0.18	550.00	0.35	15.00
GW-MB-1B	-	8850		pmq	pmq	pmq	pmq	3.10	pmq	pmq	pmq	pmq	pmq	1.10	pmq	0.30	45.60
GW-MB-1B	2	12100		0.03	0.02	1.49	1.27	0.07	pmq	0.05	0.01	0.16	0.09	0.12	46.00	0.33	32.50
GW-MB-1B	က	9290		pmq	pmq	pmq	pmq	1.45	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.25	29.00
GW-MB-1B	4	8930		pmq	pmq	5.09	0.87	2.67	pmq	pmq	0.14	pmq	pmq	1.13	62.80	0.29	26.80
GW-MB-1B	2	8190		pmq	pmq	4.82	0.58	1.31	pmq	pmd	0.01	pmq	0.15	0.38	557.00	0.33	22.00
GW-MB-1C	-	8220		pmq	pmq	pmq	pmq	5.40	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.20	32.50
GW-MB-1C	2	11800		0.02	0.01	1.54	1.50	0.93	pmd	0.05	0.01	pmq	0.07	0.49	50.00	0.36	28.30
GW-MB-1C	က	1960		pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.27	pmdl
GW-MB-1C	4	8620		pmq	pmq	pmq	0.70	1.07	pmd	pmd	0.12	pmq	pmq	0.27	61.70	0.28	23.90
GW-MB-1C	2	8230		pmq	pmq	pmq	0.34	1.30	pmq	pmq	0.01	pmq	pmq	0.17	551.00	0.35	35.30
GW-BYP-1A	_	7920		pmq	pmq	pmq	1.10	4.60	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.30	12.30
GW-BYP-1A	2	11900		0.01	0.01	3.16	1.48	0.51	pmq	0.04	0.01	pmq	90.0	0.75	38.70	0.32	10.90
GW-BYP-1A	က	8680		pmq	pmq	pmq	pmq	1.28	pmq	pmq	0.30	pmq	pmq	pmq	pmq	0.30	15.10
GW-BYP-1A	4	8660		pmq	pmq	2.80	1.02	0.83	pmq	pmq	0.16	pmq	pmq	0.24	00.09	0.30	10.60
GW-BYP-1A	2	8190		pmq	pmq	4.31	0.79	1.75	pmq	pmql	pmq	pmq	pmq	0.14	540.00	0.34	10.60
GW-BYP-1B	_	8010		pmq	pmq	pmq	1.40	5.40	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.30	15.70
GW-BYP-1B	2	11800		0.02	0.02	1.35	1.20	0.03	pmq	0.05	0.01	pmq	0.08	0.48	42.00	0.33	98.6
GW-BYP-1B	က	9100		pmq	pmq	pmq	pmq	1.35	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.27	pmdl
GW-BYP-1B	4	8540		pmq	pmq	3.46	0.78	2.68	pmq	pmq	0.15	pmq	pmq	0.24	51.70	0.26	7.49
GW-BYP-1B	5	7560		pmdl	pmd	1.36	0.55	1.30	pmdl	pmq	0.01	pmdl	pmdl	0.28	564.00	0.32	8.75
[bmd], below method detection lim	detection limit;	nd, no dat	a]														

Appendix A-1. Hydrochemistry results for groundwater samples, cont.

Location ID	Sampling Round	La (ppb)	Ce (ppb)	Pr (ppb)	pN (qdd)	Sm (pdd)	(ppb)	PS (add)	(ppb)	(dqq)	Ho (ppb)	Er (ppb)	Tm (ppb)	dY (dqq)	Lu (ppb)	Ht (ppb)
G-3613	1	pmq	pmq	lpmq	pmql	pmq	0.100	pmq	pmq	pmql	pmq	pmq	pmq	pmq	pmq	pmq
G-3613	2	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
G-3613	က	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
G-3613	4	900.0	0.010	0.002	pmq	pmd	0.003	pmq	pmq	pmq	pmq	pmq	pmq	pmq	900.0	pmq
G-3613	2	0.014	0.022	pmq	pmq	pmq	0.018	pmql	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
GW-BPI-1A	-	pmq	pmq	pmq	pmq	pmdl	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmd	pmq
GW-BPI-1A	2	0.004	pmq	0.005	0.007	bmd	0.001	0.002	0.003	pmq	0.016	900.0	bmd	0.002	pmq	pmq
GW-BPI-1A	က	pmq	pmq	pmq	pmq	pmql	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
GW-BPI-1A	4	0.048	0.084	0.021	pmq	pmq	bmd	0.030	0.016	0.012	pmq	pmq	bmd	pmq	0.044	pmq
GW-BPI-1A	2	0.015	0.025	pmq	0.051	Ipmq	pmq	pmql	pmq	pmql	pmq	pmq	pmql	pmq	pmq	pmq
GW-BKP-1A	-	Б	ы	p	p	p	pu	pu	pu	P	pu	P	Б	P	Ъ	p
GW-BKP-1A	2	0.030	pmq	0.003	pmq	pmq	pmq	pmq	0.008	pmq	0.034	0.002	pmq	0.003	pmq	0.003
GW-BKP-1A	က	pmq	pmq	pmq	pmq	pmql	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
GW-BKP-1A	4	0.047	0.101	0.013	0.058	pmq	pmq	0.021	pmq	pmq	pmq	pmq	pmq	pmq	0.059	pmql
GW-BKP-1A	2	0.025	0.022	0.015	pmql	pmq	pmq	pmq	0.012	pmq	0.019	pmq	pmq	pmq	pmq	pmq
GW-MB-1A	-	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
GW-MB-1A	2	0.019	0.008	0.010	0.015	0.003	0.001	0.004	0.005	0.008	0.020	0.002	pmq	0.002	pmq	0.007
GW-MB-1A	က	pmq	pmq	pmq	pmql	pmq	pmql	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmql
GW-MB-1A	4	0.061	0.092	0.015	0.086	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.052	pmq
GW-MB-1A	2	0.019	pmq	0.017	pmql	0.029	pmq	pmq	pmq	pmq	0.012	pmq	pmq	pmq	pmq	pmq
GW-MB-1B	-	pmq	pmq	pmq	pmql	pmql	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
GW-MB-1B	2	0.010	lpmq	0.002	pmq	pmql	pmq	pmq	900.0	pmq	0.044	pmq	pmq	0.001	pmq	pmq
GW-MB-1B	က	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
GW-MB-1B	4	0.052	0.086	0.024	0.047	pmq	pmq	pmq	pmq	pmq	0.011	pmq	pmq	0.012	0.058	0.022
GW-MB-1B	2	0.014	0.030	0.014	pmql	pmq	pmq	pmq	pmq	pmq	0.014	pmq	pmq	0.015	pmq	pmq
GW-MB-1C	-	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmd	pmq	pmq	pmq	pmq	pmq	pmq
GW-MB-1C	2	0.011	pmq	0.024	pmql	900.0	0.003	pmq	0.002	0.004	0.024	pmq	pmq	bmd	pmq	0.008
GW-MB-1C	က	pmq	pmq	pmq	pmd	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
GW-MB-1C	4	0.051	0.099	0.018	pmq	pmq	0.011	pmq	0.011	0.013	pmq	pmq	pmq	pmq	0.066	pmq
GW-MB-1C	2	0.026	0.034	0.024	pmq	0.028	pmq	pmq	pmq	0.012	0.018	pmq	pmq	pmq	pmq	pmq
GW-BYP-1A	_	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmd	pmq	pmq	pmq	pmq	pmq	pmq
GW-BYP-1A	2	0.062	0.002	0.012	0.009	pmq	pmq	0.009	900.0	0.011	0.029	pmq	pmq	pmq	pmq	0.007
GW-BYP-1A	က	pmd	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmd	pmq	pmq	pmq	0.215	pmq	pmq
GW-BYP-1A	4	0.049	0.084	0.018	pmq	pmq	pmq	pmq	0.012	pmq	0.012	pmq	pmq	pmq	0.069	0.022
GW-BYP-1A	2	0.026	0.025	0.010	pmq	pmq	pmq	pmq	pmq	0.012	pmq	pmq	pmq	0.014	pmq	pmq
GW-BYP-1B	_	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmd	pmq	pmq	pmq	pmq	pmq	pmq
GW-BYP-1B	7	0.034	0.011	0.028	pmq	0.010	pmq	pmq	0.001	0.002	0.022	pmq	pmq	0.002	pmq	0.010
GW-BYP-1B	က	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmd	pmq	pmq	pmq	pmq	pmq	pmq
GW-BYP-1B	4	0.043	0.086	0.011	0.058	pmq	pmq	pmq	0.016	pmd	pmq	0.014	pmq	pmq	0.058	pmq
GW-BYP-1B		0.030	0.031	0.017	pmq	pmq	pmd	pmql	0.023	bmd	bmd	pmq	bmd	pmq	pmq	pmq
[bmdl, below method detection	_	limit; nd, no	o data]													

Appendix A-1. Hydrochemistry results for groundwater samples, cont.

Location ID	Sampling	Ta (pob)	W (dad)	Re (nnh)	SO (don)	Pt	Au (pub)	Hg (had)	(qua)	Pb (dad)	(pob)	Th (don)	D (qua)	DOC (1/04/)	TOC (1/pm)	NO2-
G-3613	-	hmd	hmd	hmd	hmd	hmd	hmd	hmd	hmd	14 300	1 300	hmd	1 900	2.70	1 10	0.082
G-3613	- 2	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.182	0.198	pmq	pmq	4.550	1.40	1.30	0.062
G-3613	က	pmq	pmq	pmq	pmql	pmq	pmq	pmq	pmql	pmq	pmq	pmq	4.580	1.40	P	0.119
G-3613	4	pmql	pmql	pmql	pmq	pmql	0.003	pmq	pmql	pmq	pmq	pmq	6.300	0.45	p	0.000
G-3613	S	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmd	pmq	2.650	1.76	믿	0.133
GW-BPI-1A	-	pmq	pmq	pmd	pmq	pmql	pmq	pmq	pmd	15.900	5.500	pmq	pmql	9.20	9.10	0.001
GW-BPI-1A	2	pmq	0.079	pmq	pmq	pmdl	0.004	pmq	pmq	pmq	pmd	0.003	0.087	9.40	9.40	0.002
GW-BPI-1A	က	pmq	pmq	pmd	pmd	pmq	pmq	pmq	pmd	pmq	pmq	pmq	0.323	1.60	p	0.001
GW-BPI-1A	4	pmq	pmq	pmd	pmd	pmq	pmq	pmq	pmq	3.300	0.965	0.068	0.146	10.00	P	0.001
GW-BPI-1A	5	pmql	pmq	pmd	pmql	pmq	pmql	pmq	pmq	pmq	pmd	pmq	0.121	10.03	p	0.001
GW-BKP-1A	-	pu	ри	P	P	pu	p	P	p	P	P	P	Б	p	Б	pu
GW-BKP-1A	2	pmq	0.900	pmq	pmql	pmq	pmq	pmq	pmq	pmq	pmq	0.001	0.154	2.20	2.40	0.003
GW-BKP-1A	က	pmq	pmql	pmq	pmql	pmq	pmql	pmq	pmq	pmq	pmq	pmq	0.426	2.50	p	0.001
GW-BKP-1A	4	pmq	0.328	pmq	pmql	pmq	0.035	pmq	pmq	1.310	0.285	0.068	0.181	2.90	pu	0.001
GW-BKP-1A	2	pmq	2.080	pmq	pmql	pmq	pmql	pmq	pmq	1.140	pmq	pmq	1.040	2.16	p	0.003
GW-MB-1A	-	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmd	15.200	1.700	pmq	0.100	1.10	1.10	0.003
GW-MB-1A	2	0.002	0.069	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.001	0.117	1.10	1.00	0.003
GW-MB-1A	က	pmd	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmql	2.880	2.30	Б	0.003
GW-MB-1A	4	pmd	pmq	pmq	pmq	pmq	pmq	pmq	pmq	2.040	0.132	0.082	1.680	1.80	ы	0.029
GW-MB-1A	2	pmq	1.400	pmq	pmq	pmq	0.027	pmq	pmq	pmq	pmq	pmd	7.990	1.24	pu	0.004
GW-MB-1B	-	pmq	7.100	pmq	pmql	pmq	pmql	pmq	pmq	pmq	1.100	pmq	1.200	1.10	1.10	0.002
GW-MB-1B	2	pmql	4.790	pmq	pmql	pmq	pmq	pmq	pmq	pmq	pmq	0.004	0.929	1.20	1.20	0.004
GW-MB-1B	က	pmq	2.960	pmq	pmql	pmq	pmql	pmq	pmq	pmq	pmq	pmq	1.250	1.30	p	0.001
GW-MB-1B	4	pmq	1.100	pmq	pmql	pmq	pmq	pmq	pmq	1.620	pmq	0.076	0.889	1.40	p	0.002
GW-MB-1B	2	pmq	0.478	pmq	pmql	pmq	0.021	pmq	pmq	1.280	pmq	pmql	3.970	1.26	ъ	0.024
GW-MB-1C	-	pmq	pmql	pmq	pmq	pmq	pmq	pmq	pmq	58.900	1.200	pmq	0.600	1.10	1.00	0.002
GW-MB-1C	2	pmq	0.318	pmq	pmq	pmq	0.007	pmq	pmq	pmq	pmq	0.003	0.601	1.00	1.20	0.004
GW-MB-1C	က	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	3.230	2.20	p	0.003
GW-MB-1C	4	pmq	pmq	pmq	pmq	pmq	0.156	pmq	pmq	pmq	pmq	0.087	0.343	1.30	p	0.002
GW-MB-1C	သ	pmq	0.604	pmq	pmq	pmq	0.037	pmq	pmq	pmq	pmq	0.013	0.225	0.92	pu	0.004
GW-BYP-1A	τ-	pmq	2.300	pmq	pmql	pmq	pmq	pmq	pmq	pmq	1.400	pmql	2.200	2.60	2.70	0.003
GW-BYP-1A	2	pmq	0.190	pmq	pmql	pmq	0.005	pmq	pmq	pmq	pmq	0.004	609.0	1.10	1.40	0.003
GW-BYP-1A	က	pmq	pmd	0.135	pmq	pmq	pmql	pmq	pmq	pmq	pmq	pmq	26.500	2.10	Б	0.001
GW-BYP-1A	4	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.118	0.124	0.584	1.30	ы	0.001
GW-BYP-1A	2	pmq	pmq	pmq	pmq	pmq	0.026	pmq	pmq	1.040	pmq	pmq	0.484	1.17	Б	0.004
GW-BYP-1B	-	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	1.700	pmq	2.100	1.90	1.90	0.002
GW-BYP-1B	2	pmq	0.446	pmq	pmq	pmq	pmql	pmq	pmq	pmq	pmq	0.002	2.160	1.50	1.50	0.003
GW-BYP-1B	က	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	2.710	2.30	þ	0.002
GW-BYP-1B	4	pmq	pmql	0.012	pmq	pmq	0.044	pmq	pmq	1.160	0.192	0.077	1.190	1.60	þ	0.001
GW-BYP-1B	5	pmd	pmdl	pmd	pmdl	pmq	pmd	pmd	pmd	1.120	pmq	pmdl	1.500	1.45	pu	0.003
[bmdl, below method detection limi	detection lin	nit; nd, n	lo data]													

Appendix A-1. Hydrochemistry results for groundwater samples, cont.

Location ID	Sampling Round	NO3- (mg/L)	NH4+ (mg/L)	DIN (mg/L)	TSN (mg/L)	TN (mg/L)	SRP (mg/L)	TSP (mg/L)	TP (mg/L)	Sol. SiO2 (mg/L)	SO4 (mM)
G-3613	1	0.836	0.013	0.931	1.011	1.074	0.070	0.093	0.000	4.530	1.7
G-3613	2	1.287	0.067	1.415	0.536	g	0.009	0.011	pu	4.731	pu
G-3613	က	0.808	0.020	0.946	0.946	g	0.009	0.016	pu	3.775	pu
G-3613	4	0.103	0.032	0.135	0.135	<u>g</u>	0.108	0.108	pu	17.076	þ
G-3613	2	0.634	0.000	0.767	0.767	þ	0.071	0.071	pu	2.636	þ
GW-BPI-1A	-	0.000	0.157	0.158	0.578	0.559	0.033	0.031	0.032	11.200	17.1
GW-BPI-1A	2	0.000	0.250	0.252	1.118	þ	0.029	0.035	рц	10.646	pu
GW-BPI-1A	က	0.003	0.261	0.265	0.557	Б	0.033	0.043	рu	9.575	p
GW-BPI-1A	4	0.003	0.261	0.265	0.640	þ	0.040	0.040	рц	10.211	pu
GW-BPI-1A	2	0.001	0.247	0.249	0.699	p	0.044	0.044	рц	11.191	p
GW-BKP-1A	-	рц	ъ	pu	p <u>u</u>	Б	р	пд	p	p	pq
GW-BKP-1A	7	0.000	1.115	1.118	0.354	5	0.014	0.021	p	4.005	pq
GW-BKP-1A	က	0.044	1.022	1.067	1.827	рц	0.019	0.065	рц	3.294	pu
GW-BKP-1A	4	0.004	1.292	1.297	1.297	ъ	0.026	0.026	рu	4.010	þ
GW-BKP-1A	2	0.001	0.989	0.993	1.174	пд	0.037	0.037	рц	4.585	pu
GW-MB-1A	-	0.000	0.325	0.328	0.358	0.365	0.023	0.022	0.022	4.400	28.7
GW-MB-1A	2	0.000	0.351	0.354	0.347	g	0.020	0.028	рц	4.094	pu
GW-MB-1A	ო	0.038	0.028	0.069	0.127	þ	0.035	0.035	ы	0.000	g
GW-MB-1A	4	0.097	0.146	0.272	0.281	þ	0.031	0.031	рц	1.469	p
GW-MB-1A	2	0.000	0.735	0.739	0.873	þ	0.062	0.062	рц	3.375	g
GW-MB-1B	-	0.000	0.384	0.386	0.426	0.430	0.021	0.023	0.029	4.760	29.7
GW-MB-1B	2	0.000	0.343	0.347	0.397	٦	0.018	0.027	рu	4.434	g
GW-MB-1B	က	0.004	0.410	0.415	0.569	<u>p</u>	0.004	0.020	p	0.000	g
GW-MB-1B	4	0.005	0.381	0.388	0.395	р	0.028	0.028	pu	3.693	p L
GW-MB-1B	ა	0.033	0.105	0.162	0.458	<u>p</u>	0.014	0.015	рu	0.997	g
GW-MB-1C	-	0.000	0.335	0.337	0.369	0.370	0.012	0.012	0.012	3.660	29.5
GW-MB-1C	2	0.000	0.393	0.397	0.246	5	0.016	0.022	p L	3.267	p
GW-MB-1C	က	0.037	0.027	0.067	0.650	5	0.000	0.007	<u>p</u>	0.000	p
GW-MB-1C	4	0.003	0.394	0.399	0.409	5	0.031	0.031	p	3.083	p
GW-MB-1C	S	0.004	0.252	0.260	0.394	<u>p</u>	0.021	0.023	рu	2.552	þ
GW-BYP-1A	_	0.019	0.022	0.044	0.186	0.219	0.005	0.005	0.008	0.240	29.1
GW-BYP-1A	2	0.000	0.243	0.246	0.210	5	0.011	0.018	р	2.408	þ
GW-BYP-1A	ო	0.029	1.023	1.053	1.157	<u>p</u>	0.130	0.141	p	0.000	þ
GW-BYP-1A	4	0.002	0.357	0.360	0.360	g	0.038	0.038	þ	2.620	р
GW-BYP-1A	2	0.000	0.267	0.271	0.305	<u>p</u>	0.028	0.028	рu	3.051	p
GW-BYP-1B	_	0.008	0.056	990.0	0.178	0.189	0.004	0.008	0.008	0.550	28.4
GW-BYP-1B	2	0.000	0.207	0.210	0.207	<u>p</u>	0.003	0.009	pu	1.119	þ
GW-BYP-1B	ო	0.022	0.112	0.136	0.136	þ	0.022	0.022	рu	0.000	pu
GW-BYP-1B	4	0.003	0.365	0.369	0.387	5	0.014	0.014	рu	0.650	pu
GW-BYP-1B	5	0.000	0.176	0.179	0.291	pu	0.031	0.031	pu	1.773	pu
[bmdl, below method detection limit; nd, no data]	detection limit	; nd, no d	lata]								

Appendix A-1. Hydrochemistry results for groundwater samples, cont.

Location ID	Location Name	уре	well Depth (ft)	Latitude (N)	Longitude (W)	Sampling Round	Date of Collection	Time of Collection	sp. Conductance (μS/cm)
	Petrel Point -1A	MS	43.5	25.415	-80.204	1	8/20/1998	10:50	52100
GW-PP-1A	Petrel Point -1A	ΜĐ	43.5	25.415	-80.204	7	6/24/1999	9:35	51500
	Petrel Point -1A	ΜĐ	43.5	25.415	-80.204	က	9/22/1999	15:25	20500
GW-PP-1A	Petrel Point -1A	ΒM	43.5	25.415	-80.204	4	12/15/1999	10:36	51250
GW-PP-1A	Petrel Point -1A	ΒM	43.5	25.415	-80.204	2	3/28/2000	9:25	51526
GW-PP-1B	Petrel Point -1B	ΜĐ	22.5	25.415	-80.204	-	8/20/1998	11:15	49300
GW-PP-1B	Petrel Point -1B	Β	22.5	25.415	-80.204	2	6/24/1999	10:25	49600
GW-PP-1B	Petrel Point -1B	ΜĐ	22.5	25.415	-80.204	က	9/22/1999	16:15	48700
GW-PP-1B	Petrel Point -1B	ΜĐ	22.5	25.415	-80.204	4	12/15/1999	11:35	48940
GW-PP-1B	Petrel Point -1B	ΜĐ	22.5	25.415	-80.204	2	3/28/2000	9:55	48925
	Alina's Reef -1A	ΜĐ	69	25.386	-80.163	-	8/19/1998	14:10	54377
GW-AR-1A	Alina's Reef -1A	ΜĐ	69	25.386	-80.163	2	6/25/1999	9:55	53800
	Alina's Reef -1A	ΜĐ	69	25.386	-80.163	ო	9/22/1999	12:30	53600
GW-AR-1A	Alina's Reef -1A	ΜĐ	69	25.386	-80.163	4	1/13/2000	14:35	53209
GW-AR-1A /	Alina's Reef -1A	ΜS	69	25.386	-80.163	5	3/29/2000	9:40	53825
	Alina's Reef -1B	ΜĐ	41	25.386	-80.163	-	8/19/1998	15:10	54078
GW-AR-1B /	Alina's Reef -1B	ΜĐ	4	25.386	-80.163	7	6/25/1999	10:50	53700
GW-AR-1B	Alina's Reef -1B	ΜĐ	41	25.386	-80.163	ო	9/22/1999	13:00	53300
	Alina's Reef -1B	ΒM	41	25.386	-80.163	4	1/13/2000	15:10	52951
GW-AR-1B /	Alina's Reef -1B	ΜĐ	41	25.386	-80.163	2	3/29/2000	10:10	53620
	Alina's Reef -1C	ΒM	21	25.386	-80.163	-	8/19/1998	16:10	54746
GW-AR-1C	Alina's Reef -1C	ΜĐ	21	25.386	-80.163	7	6/25/1999	11:35	53700
GW-AR-1C /	Alina's Reef -1C	ΜĐ	21	25.386	-80.163	က	9/22/1999	13:40	23000
GW-AR-1C /	Alina's Reef -1C	ΜĐ	21	25.386	-80.163	4	1/13/2000	15:45	53071
	Alina's Reef -1C	ΒM	21	25.386	-80.163	2	3/29/2000	00:6	53880
GW-PR-1A	Pacific Reef -1A	ΜS	51	25.371	-80.142	-	8/19/1998	11:15	52833
GW-PR-1A	Pacific Reef -1A	ΜĐ	51	25.371	-80.142	7	6/24/1999	12:15	52800
GW-PR-1A	Pacific Reef -1A	ΟW	51	25.371	-80.142	က	9/22/1999	10:45	52700
GW-PR-1A	Pacific Reef -1A	ΜS	51	25.371	-80.142	4	1/13/2000	11:25	52620
GW-PR-1A	Pacific Reef -1A	ΜS	51	25.371	-80.142	5	3/29/2000	12:25	52869
GW-PR-1B	Pacific Reef -1B	ΜS	20	25.371	-80.142	-	8/19/1998	12:20	54414
GW-PR-1B	Pacific Reef -1B	ΜS	20	25.371	-80.142	7	6/24/1999	12:50	23900
3W-PR-1B	Pacific Reef -1B	МS	20	25.371	-80.142	က	9/22/1999	11:15	53400
	7	ΜĐ	50	25.371	-80.142	4	1/13/2000	12:05	53422
AL-89-18	Danifia Danf 10	٧٠'	20	25 371	20 112	Ľ	3/20/2000	10.45	E2704

Appendix A-1. Hydrochemistry results for groundwater samples, cont.

	חווחסצ	(bbbt)	(mg/L)	(%)		(<u>G</u>	(E)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qaa)
GW-PP-1A	-	34.30	1.70	pu	7.21	27.30	pu	156.00	bmd	4190	8240000	1050000	pmq	bmd	329000
GW-PP-1A	2	33.90	0.23	2.9	7.11	26.30	-254.0	196.00	0.17	2710	11100000	1290000	2.48	167	385000
GW-PP-1A	m	33.40	0.71	10.7	7.15	30.00	Ъ	177.00	pmql	4470	12300000	1360000	pmq	pmq	456000
GW-PP-1A	4	33.68	0.58	8.4	7.20	23.66	-143.0	181.00	bmd	4370	10400000	1360000	27.80	1460	410000
GW-PP-1A	S	33.89	0.43	6.2	7.13	24.30	-186.9	182.00	pmq	4440	10600000	1270000	pmq	4770	430000
GW-PP-1B	-	32.20	1.75	pu	6.87	27.30	p	174.00	bmd	3960	high	1000000	pmq	bmd	316000
GW-PP-1B	2	32.50	0.18	2.2	7.05	26.50	-110.0	187.00	bmd	2630	10800000	1220000	2.59	pmq	332000
GW-PP-1B	m	32.00	0.54	7.4	60.7	29.60	ы	174.00	pmq	4190	11600000	1280000	pmq	pmq	431000
GW-PP-1B	4	31.99	0.54	7.7	7.04	23.51	-134.0	179.00	pmq	4140	10400000	1280000	29.20	1100	375000
GW-PP-1B	2	31.96	0.23	3.3	6.95	24.41	-251.3	179.00	bmd	4290	10000000	1210000	pmq	1260	409000
GW-AR-1A	-	36.10	0.17	pu	7.20	27.63	pu	158.00	bmd	4080	high	1040000	221.00	bmd	330000
GW-AR-1A	2	35.70	0.17	2.2	7.19	27.40	-309.0	205.00	0.12	3640	11700000	1340000	6.34	1510	372000
GW-AR-1A	ო	35.60	0.46	6.2	7.31	28.50	P	206.00	pmq	5100	13500000	1540000	pmq	bmd	208000
GW-AR-1A	4	35.11	0.30	4.5	7.20	24.69	-260.9	194.00	pmq	4510	11100000	1370000	pmq	2030	472000
SW-AR-1A	2	35.57	0.24	3.6	7.15	24.93	-279.6	195.00	pmq	4370	11400000	1350000	pmq	2030	439000
GW-AR-1B	-	35.80	0.15	pu	7.61	27.95	pu	162.00	pmq	4350	high	1150000	pmq	pmq	359000
GW-AR-1B	2	35.60	0.08	7	7.62	27.70	-275.0	204.00	0.11	2660	11800000	1360000	16.40	pmq	418000
GW-AR-1B	n	35.40	0.31	4.6	7.68	28.50	pu	191.00	pmq	4750	12900000	1510000	pmq	pmq	492000
GW-AR-1B	4	34.92	0.13	6.1	7.44	24.83	-259.9	182.00	pmq	4360	11000000	1360000	20.50	1460	449000
GW-AR-1B	S	35.41	0.20	2.9	7.39	25.09	-274.5	206.00	pmq	4530	11100000	1360000	20.70	1730	446000
GW-AR-1C	-	36.30	0.34	pu	92.7	29.33	P	161.00	pmq	4550	9300000	1190000	pmq	pmq	361000
GW-AR-1C	7	35.70	0.30	3.9	7.72	28.20	-164.0	211.00	0.11	3050	11700000	1340000	11.40	pmq	340000
GW-AR-1C	ო	35.20	0.41	5.4	7.84	29.30	<u>p</u>	187.00	pmq	4480	12700000	1340000	pmq	pmq	451000
GW-AR-1C	4	35.03	0.32	4.6	7.64	23.55	-113.9	178.00	pmq	4080	11100000	1370000	pmq	pmq	449000
GW-AR-1C	2	35.64	69.0	10.1	7.68	23.90	-12.4	200.00	pmq	4560	11500000	1350000	pmq	pmq	446000
GW-PR-1A	-	34.90	0.13	pu	pu	28.93	Б	170.00	pmq	4380	9300000	1110000	pmq	pmq	354000
GW-PR-1A	2	35.00	0.19	2.5	7.39	27.70	-283.0	205.00	0.13	2630	11400000	1300000	5.31	1660	382000
GW-PR-1A	က	35.00	0.35	5.2	7.53	28.50	ы	187.00	pmq	4690	12900000	1410000	pmq	pmq	478000
GW-PR-1A	4	34.67	0.16	2.4	7.30	25.14	-263.4	186.00	pmq	4350	10000000	1350000	pmq	2150	460000
GW-PR-1A	2	34.84	0.29	4.4	7.34	25.83	-249.0	199.00	pmq	4660	11300000	1360000	pmq	2110	454000
GW-PR-1B	-	36.10	90.0	pu	pu	28.72	pu	161.00	pmq	4060	8290000	1040000	218.00	5330	344000
GW-PR-1B	2	35.80	0.18	2.4	7.57	27.80	-319.0	213.00	pmq	2830	11600000	1330000	16.60	pmq	394000
3W-PR-1B	က	35.50	0.27	3.9	7.64	28.80	D D	198.00	pmq	4960	13300000	1440000	pmq	pmq	499000
GW-PR-1B	4	35.26	0.12	6 .	7.53	25.08	-248.0	183.00	pmq	4250	11100000	1370000	21.00	pmq	445000
GW-PR-1B	'n	35.52	0.26	3.9	7.54	25.58	-283.0	198.00	pmq	4420	11700000	1380000	26.30	bmq	460000

Appendix A-1. Hydrochemistry results for groundwater samples, cont.

204.0 101000 141.0 73500 144.0 82200 148.0 83300 117.0 70300 117.0 70300 1188.0 67000	$\frac{1}{2}$
50.90 141.0 59.70 194.0 54.40 146.0 49.50 148.0 59.60 198.0 45.00 117.0	50.90
pwd bwd	bridical briding bridi
96.70 6.67 bmdl 9.59	96.70 6.67 bmdl 9.59 bmdl 76.40 7.08 bmdl 10.00 5.18 75.50 6.97 bmdl 9.47
185.0 282.0 32.0	190.0 185.0 282.0 32.0 64.9 88.0 397.0 88.9 42.1 272.0 223.0 373.0 373.0
	1.07 1190.0 0.97 1340.0 1.35 376.0 3.10 281.0 0.55 153.0 1.18 1910.0 2.16 73.6 1.52 121.0 3.10 226.0 0.96 1280.0 1.05 1720.0 1.05 1720.0 1.05 1720.0 1.05 1720.0 1.05 1720.0 1.05 1720.0 1.05 1720.0 1.05 1720.0 1.05 1720.0
941.00 1250.00 3150.00	941.00 1250.00 3150.00 2380.00 1950.00 1250.00 2710.00 1860.00 993.00 1200.00 2770.00 2770.00
	133.00 68.60 163.00 44.20 146.00 52.40 77.40 4.84 179.00 bmdl 179.00 bmdl 160.00 5.82 149.00 bmdl 118.00 2.64 160.00 bmdl 178.00 4.04 182.00 4.04
22.40	22.40 24.50 24.50 51.80 65.50 48.10 48.10 48.10 48.10 48.20 53.20 53.20
	bmdl bmdl bmdl bmdl bmdl 10.50 bmdl bmdl bmdl 7.72 bmdl 11.60 bmdl 11.60 bmdl bmdl bmdl bmdl bmdl 22.10 bmdl 8.36 bmdl bmdl bmdl bmdl bmdl bmdl bmdl bmdl
_	381000 bm 414000 bm 5523000 bm 517000 bm 405000 bm 537000 bm 537000 bm 537000 bm 537000 bm
7 6	0 1 8 2 2 2 8 8 6 4 6 4 6
ۍ دی	- 0 6 4 6 - 0 6 4 6 - 0

Appendix A-1. Hydrochemistry results for groundwater samples, cont.

1																																			1	
Ba (ppb)	14.80	11.40	12.40	12.60	33.30	19.10	13.00	14.20	12.40	14.40	17.60	18.30	16.40	15.60	18.00	14.50	10.70	10.60	11.50	14.50	10.80	9.46	pmd	8.27	8.72	23.90	19.70	18.70	18.50	20.20	16.80	9.05	pmq	8.25	10.20	
Cs (bpb)	0.30	0.30	0.29	0.28	0.29	pmq	0.33	0.25	0.25	0.31	0.30	0.35	0.34	0.31	0.35	0.30	0.39	0.30	0.30	0.32	0.20	0.33	0.31	0.31	0.34	0.30	0.34	0.28	0.31	0.34	0.40	0.37	0.34	0.34	0.36	
(qdd)	pmq	61.60	pmq	97.20	649.00	pmq	82.40	pmq	93.10	584.00	pmq	52.90	pmq	640.00	586.00	pmq	68.00	pmq	554.00	604.00	pmq	97.00	150.00	723.00	260.00	pmq	45.90	pmq	842.00	591.00	pmq	42.10	pmq	808.00	576.00	
Te (ppb)	1.00	0.47	pmq	0.24	0.28	pmq	0.24	pmq	pmq	0.28	pmq	0.72	pmq	0.28	pmq	pmq	0.93	pmq	0.77	pmq	pmq	0.56	pmq	0.50	0.21	1.20	0.46	pmq	1.04	0.28	pmq	0.32	pmq	0.47	0.20	
(qdd)	pmq	0.07	pmq	pmq	pmq	pmd	0.11	pmq	pmd	pmd	pmq	0.08	pmq	pmq	pmd	pmq	0.28	pmq	pmq	pmq	pmq	0.17	pmq	0.18	0.22	pmq	0.05	pmq	pmq	pmq	pmq	0.04	pmq	pmq	pmq	
Sn (ddd)	pmd	pmql	pmql	pmq	pmq	pmq	pmql	pmq	pmq	pmql	pmq	pmq	pmq	pmq	pmq	pmq	0.10	pmq	pmq	pmq	pmq	0.11	pmq	pmq	pmq	pmq	pmq	pmql	pmd	pmq	pmq	pmq	pmq	pmq	pmq	
ul (qdd)	pmq	0.00	pmq	0.11	pmq	pmq	0.01	pmq	0.09	pmq	pmq	0.02	pmq	pmq	0.01	pmq	0.01	pmq	0.02	pmq	pmq	0.03	pmq	0.02	pmq	pmq	0.01	pmq	pmq	0.01	pmq	0.01	pmq	0.01	0.01	
PS (qdd)	bmd	pmq	pmq	pmq	pmq	pmq	0.03	pmq	pmq	pmq	pmq	90.0	pmq	pmq	pmq	pmq	0.03	pmq	pmq	pmq	pmq	90.0	pmq	pmq	pmq	pmq	0.05	pmq								
Ag (ppb)	pmq	pmql	pmq																																	
Pd (ppb)	5.80	0.39	pmd	1.87	1.54	4.60	1.05	1.31	1.88	1.06	3.40	0.14	pmq	0.44	1.75	4.50	0.09	1.02	0.42	1.33	4.80	0.72	1.30	0.39	1.46	4.40	0.33	1.10	0.31	1.61	3.40	1.10	pmd	0.43	1.29	
Ru (ppb)	pmq	69.0	pmq	1.02	0.53	pmq	2.05	pmq	0.77	0.42	1.10	0.33	pmq	0.46	0.45	1.80	2.11	pmd	0.45	0.57	pmq	3.71	pmq	0.68	0.45	pmq	2.88	pmq	0.81	0.43	1.30	2.68	pmq	0.82	0.45	
(ddd)	pwq	1.38	pmq	1.71	pmq	pmq	6.72	pmq	4.76	3.89	pmq	1.33	pmq	pmq	pmq	pmq	11.80	pmq	1.19	3.32	10.70	12.00	pmq	8.92	10.60	pmq	1.04	pmq	pmq	4.07	pmq	1.78	pmq	2.37	2.31	
qN (qdd)	pmq	0.02	pmq	pmq	pmql	pmq	0.02	pmq	pmq	pmq	pmq	0.02	pmq	pmq	pmq	pmq	0.02	pmq	pmq	pmql	pmq	0.01	pmq	pmq	pmq	pmq	0.02	pmq	pmq	pmq	pmq	0.01	pmq	pmq	pmq	
Zr (ppb)	pmd	0.05	pmq	pmq	pmq	pmq	0.14	pmq	pmq	pmq	pmq	0.03	pmq	pmq	pmq	pmq	0.05	pmq	pmq	pmq	pmq	0.01	pmq	pmq	pmq	pmq	0.02	pmq	pmq	pmq	pmq	0.04	pmq	pmq	pmq	
(qdd)	lpmq	0.03	pmq	0.07	90.0	pmq	0.03	pmq	0.08	90.0	pmq	0.03	pmq	0.08	0.04	pmq	0.03	pmq	0.05	0.04	pmq	0.03	pmq	0.05	0.05	pmq	0.04	pmq	0.05	0.10	pmq	0.02	pmq	pmq	0.05	
Sr (pdd)	7890	11300	8640	8610	8010	0092	10700	8340	8410	7730	8920	12900	10400	8860	9910	8540	11700	9160	8120	9020	8190	10600	8650	7630	8140	9710	13800	10700	9570	10400	7930	11600	8910	7670	8220	d, no data
Sampling Round	-	2	က	4	2	_	2	က	4	5	_	2	က	4	2	-	2	ო	4	2	-	2	က	4	2	_	2	ო	4	5	_	2	က	4	2	detection limit; n
Location ID Sampling Sr (p)	GW-PP-1A	GW-PP-1A	GW-PP-1A	GW-PP-1A	GW-PP-1A	GW-PP-1B	GW-PP-1B	GW-PP-1B	GW-PP-1B	GW-PP-1B	GW-AR-1A	GW-AR-1A	GW-AR-1A	GW-AR-1A	GW-AR-1A	GW-AR-1B	GW-AR-1B	GW-AR-1B	GW-AR-1B	GW-AR-1B	GW-AR-1C	GW-AR-1C	GW-AR-1C	GW-AR-1C	GW-AR-1C	GW-PR-1A	GW-PR-1A	GW-PR-1A	GW-PR-1A	GW-PR-1A	GW-PR-1B	GW-PR-1B	GW-PR-1B	GW-PR-1B	GW-PR-1B	[bmd], below method

Appendix A-1. Hydrochemistry results for groundwater samples, cont.

										-						
Location ID	Sampling Round	La (ppb) ((qdd)	Pr (ppb)	(qdd) PN	Sm (pdd)	Eu (ppb)	(qdd) PS	Tb (ddd)	Dy (ddd)	(qdd)	Er (ppb)	Tm (ppb)	q, (qdd)	Lu (ddd)	Ht (pdd)
GW-PP-1A	1	pmd	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	bmd	pmd	pmq	pmd	pmd	pmq
GW-PP-1A	2	0.020	0.004	900.0	pmq	pmq	pmq	0.003	0.005	pmq	0.004	bmd	pmq	pmq	pmq	pmq
GW-PP-1A	က	pmq	pmd	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	bmd	pmq
GW-PP-1A	4	0.051	0.081	0.019	pmq	pmq	pmq	pmd	0.015	0.014	pmq	0.013	pmq	pmq	0.067	pmq
GW-PP-1A	2	0.023	pmq	0.017	0.042	pmq	pmq	pmq	pmq	0.016	0.015	pmq	pmq	pmq	pmq	pmq
GW-PP-1B	-	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
GW-PP-1B	2	0.009	pmql	0.026	pmq	pmq	0.001	0.003	0.007	pmq	0.016	0.002	pmq	pmq	0.001	900.0
GW-PP-1B	က	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
GW-PP-1B	4	0.042	0.083	0.017	0.054	pmq	pmq	0.024	0.010	pmql	pmq	0.011	pmq	pmq	0.055	pmq
GW-PP-1B	2	0.016	0.025	0.013	bmd	pmq	pmq	pmq	pmq	pmq	0.017	bmd	pmq	0.014	pmq	pmq
GW-AR-1A	-	bmd	bmd	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmql	pmq	pmq	pmq	pmq
GW-AR-1A	2	0.018	0.007	0.008	900.0	0.004	0.004	pmq	0.007	pmq	0.007	0.004	pmq	pmq	0.002	pmq
GW-AR-1A	က	pmq	pmq	pmq	bmd	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
GW-AR-1A	4	0.013	0.024	pmq	0.412	pmq	pmq	pmd	0.014	0.466	pmq	pmq	pmq	pmq	pmq	pmq
GW-AR-1A	2	0.019	0.029	pmq	0.054	pmq	pmq	pmq	pmq	pmq	0.025	pmq	pmq	pmq	pmq	pmq
GW-AR-1B	-	pmq	pmd	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
GW-AR-1B	2	0.021	0.003	0.020	pmq	pmq	pmq	0.005	0.005	0.002	0.017	pmq	pmq	pmq	0.001	pmq
GW-AR-1B	က	pmq	pmq	pmq	pmq	pmq	pmql	pmq	pmq	pmql	pmq	pmq	pmq	pmq	pmq	pmq
GW-AR-1B	4	0.012	pmq	pmq	0.336	0.025	pmq	0.055	pmq	0.465	pmq	pmq	pmq	pmq	pmq	pmq
GW-AR-1B	2	0.023	pmq	pmq	0.043	pmq	pmq	pmq	pmq	pmq	0.014	0.012	pmq	pmq	pmq	pmql
GW-AR-1C	-	pmq	0.300	pmq	0.500	pmq	pmq	pmd	0.100	pmq	pmq	pmq	pmq	pmq	pmq	pmq
GW-AR-1C		090.0	0.007	0.039	0.022	0.011	pmq	0.006	0.007	900.0	0.034	pmq	0.002	0.004	0.002	0.004
GW-AR-1C	က	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
GW-AR-1C		0.023	0.026	0.010	0.417	0.031	pmq	0.043	0.013	0.550	pmq	pmq	pmq	pmq	pmq	pmq
GW-AR-1C	2	0.016	pmd	pmq	pmq	0.021	pmq	pmq	pmq	0.011	0.015	pmq	pmq	pmq	pmq	pmq
GW-PR-1A		pmql	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.100	pmq	pmq	pmq	pmq	pmq	pmq
GW-PR-1A	2	0.011	0.018	0.014	0.014	0.012	0.005	900.0	0.007	0.001	0.021	pmq	pmq	0.007	pmq	pmq
GW-PR-1A	က	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
GW-PR-1A	4	0.011	0.032	0.012	0.477	pmq	pmq	pmd	pmq	0.183	pmq	pmq	pmq	pmq	pmq	pmq
GW-PR-1A	5	pmq	pmd	0.015	pmq	0.034	pmq	pmd	pmq	pmq	0.014	pmq	pmq	pmq	pmql	pmq
GW-PR-1B	-	pmq	pmd	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
GW-PR-1B		0.020	pmq	0.008	600.0	0.005	0.001	pmq	0.003	pmq	0.035	pmq	pmq	pmq	pmd	pmq
GW-PR-1B	က	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
GW-PR-1B		0.027	pmq	0.010	0.493	pmq	pmq	0.026	pmq	0.499	pmq	pmq	pmq	pmq	pmq	0.024
GW-PR-1B		0.020	0.027	0.014	0.103	0.021	pmql	pmq	bmd	pmq	pmq	pmq	pmd	bmd	pmd	pmq
[bmdl, below method detection lii		nit; nd, n	o data]													

Appendix A-1. Hydrochemistry results for groundwater samples, cont.

OWAPP-1A 1 brind	Location ID	Sampling Round	Ta (ppb)	(qdd)	Re (ppb)	(qdd)	Pt (ppb)	Au (ppb)	Hg (ppb)	TI (ppb)	Pb (ppb)	Bi (ppb)	Th (ppb)	U (ddd)	DOC (mg/L)	TOC (mg/L)	NO2- (mg/L)
2 0.001 1,020 bmdl 0.001 1,020 0.0337 3,00 3.00 <t< td=""><td>3W-PP-1A</td><td>1</td><td>pmq</td><td>009.9</td><td>pmq</td><td>pmd</td><td>pmq</td><td>pmq</td><td>pmq</td><td>pmq</td><td>19.200</td><td>1.500</td><td>pmq</td><td>0.600</td><td>3.00</td><td>2.80</td><td>0.002</td></t<>	3W-PP-1A	1	pmq	009.9	pmq	pmd	pmq	pmq	pmq	pmq	19.200	1.500	pmq	0.600	3.00	2.80	0.002
3 brand	GW-PP-1A	2	0.001	1.020	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.002	0.337	3.00	3.00	0.004
4 bmd 0.338 0.011 bmd bmd bmd bmd bmd bmd 1.520 0.120 0.083 0.088 3.70 nd 1 bmd b	GW-PP-1A	ო	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.428	3.70	pu	0.001
5 bmd 0.997 bmd bmd <td>GW-PP-1A</td> <td>4</td> <td>pmq</td> <td>0.338</td> <td>0.011</td> <td>pmq</td> <td>pmq</td> <td>pmq</td> <td>pmq</td> <td>pmq</td> <td>1.520</td> <td>0.120</td> <td>0.083</td> <td>0.688</td> <td>3.70</td> <td>pu</td> <td>0.003</td>	GW-PP-1A	4	pmq	0.338	0.011	pmq	pmq	pmq	pmq	pmq	1.520	0.120	0.083	0.688	3.70	pu	0.003
1 bind bind bind bind bind bind bind bind	GW-PP-1A	2	pmq	766.0	pmq	pmq	pmq	0.055	pmq	pmq	pmq	pmq	pmq	0.241	4.83	pu	0.004
2 0.002 0.124 brindla brindla<	GW-PP-1B	-	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	2.700	pmq	pmq	3.80	3.80	0.002
3 bmdd bmd bmdd bmd	GW-PP-1B	2	0.002	0.124	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.001	0.953	3.60	3.60	0.003
4 bmdd bmd bmd 1.30 md 1.30 md 2 bmdd bmdd bmdd bmd bmd bmd bmd bmd bmd 1.30 md 1.30 md 2 bmd	GW-PP-1B	ო	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.457	4.20	ы	0.001
5 bmd	GW-PP-1B	4	pmq	pmq	pmq	pmq	pmq	0.046	pmq	pmq	3.110	0.267	0.102	0.917	3.90	ы	0.002
1 bmd	GW-PP-1B	5	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.264	4.19	ъ	0.003
2 bmd	GW-AR-1A	-	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	17.000	1.700	pmq	4.900	1.30	1.30	0.002
3 bmdd bm	GW-AR-1A	2	pmq	0.049	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	1.860	1.60	1.40	0.003
4 bmd	GW-AR-1A	ო	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	1.760	1.40	P	0.002
5 bmdl bm	GW-AR-1A	4	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.388	pmq	9.000	1.50	p	0.002
1 bmdl bm	GW-AR-1A	5	pmq	pmq	pmq	pmq	pmq	0.043	pmq	pmq	1.150	pmq	0.011	1.580	1.03	P	0.003
2 bmdl bm	GW-AR-1B	-	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	1.300	pmq	2.200	1.10	0.80	0.002
3 bmdl bm	GW-AR-1B	2	pmq	090.0	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.002	3.160	0.70	0.80	0.003
4 0.014 bmdl b	GW-AR-1B	ო	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	2.320	06.0	P	0.002
5 bmdl bm	GW-AR-1B	4	0.014	pmq	pmq	pmq	0.112	pmq	pmq	pmq	pmq	0.391	pmq	1.680	1.00	p	0.002
1 bmdl bm	GW-AR-1B	2	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	4.970	pmq	pmq	1.810	1.00	Ð	0.004
2 0.002 0.038 bmdl	GW-AR-1C	-	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	2.200	1.10	0.80	0.003
3 bmdl bm	GW-AR-1C	2	0.002	0.038	pmq	pmq	pmq	0.004	0.276	pmq	pmq	pmq	0.004	2.670	0.80	0.80	0.003
4 bmdl bm	GW-AR-1C	က	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	2.460	06.0	5	0.002
5 bmdl bm	GW-AR-1C	4	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.296	pmq	2.650	1.00	믿	0.004
1 bmdl bmdl bmdl bmdl bmdl bmdl bmdl bmdl	GW-AR-1C	5	pmq	pmq	pmq	pmq	pmq	0.032	pmq	pmq	pmq	pmq	pmq	2.840	0.88	Þ	0.005
2 0.002 0.704 bmdl bmdl bmdl bmdl bmdl bmdl bmdl bmdl	GW-PR-1A	-	pmq	pmq	pmq	pmq	pmq	0.200	pmq	pmq	pmq	1.200	pmq	7.100	1.10	1.00	0.002
3 bmdl bm	GW-PR-1A	2	0.002	0.704	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	900.0	1.910	1.00	1.00	0.004
4 0.018 0.509 bmdl bmdl bmdl bmdl bmdl bmdl bmdl bmdl	GW-PR-1A	က	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	2.200	1.10	Þ	0.001
5 bmdl 0.615 bmdl bmdl bmdl bmdl bmdl bmdl bmdl bmdl	GW-PR-1A	4	0.018	0.509	pmq	pmq	pmq	pmq	pmq	pmq	10.500	0.484	pmq	2.780	1.1	ы	0.002
1 bmdl bmdl bmdl bmdl bmdl bmdl bmdl bmdl	GW-PR-1A	2	pmq	0.615	pmd	pmq	pmq	0.020	pmq	pmq	pmq	pmq	pmq	3.980	0.74	Þ	0.003
2 0.002 0.462 bmdl bmdl bmdl bmdl bmdl bmdl bmdl bmdl	GW-PR-1B	-	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	17.100	pmq	pmq	4.700	0.80	0.80	0.002
3 bmdl bmdl bmdl bmdl bmdl bmdl bmdl bmdl	GW-PR-1B	2	0.002	0.462	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.003	4.180	0.70	0.70	0.004
4 0.013 0.852 bmdl bmdl bmdl bmdl bmdl bmdl bmdl bmdl	GW-PR-1B	က	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	4.240	0.70	þ	0.001
5 bmdi 1.110 bmdi bmdi bmdi 0.030 bmdi bmdi bmdi 0.018 3.060 0.74 nd	GW-PR-1B	4	0.013	0.852	pmq	pmq	pmq	pmq	pmq	pmq	1.050	0.417	pmq	3.350	0.98	P	0.002
	GW-PR-1B	5	pmq	1.110	pmq	pmq	pmq	0.030	pmq	bmd	pmq	pmd	0.018	3.060	0.74	pu	0.003

Appendix A-1. Hydrochemistry results for groundwater samples, cont.

Location ID	Sampling Round	NO3- (mg/L)	NH4+ (mg/L)	DIN (mg/L)	TSN (mg/L)	TN (mg/L)	SRP (mg/L)	TSP (mg/L)	TP (mg/L)	Sol. SiO2 (mg/L)	SO4 (mM)
GW-PP-1A	-	0.000	0.132	0.134	0.236	0.236	0.068	0.064	0.067	2.430	27.8
GW-PP-1A	2	0.000	0.164	0.168	0.148	pu	0.055	0.061	P	2.325	pu
GW-PP-1A	က	0.002	0.139	0.142	0.142	pu	0.051	0.069	Б	1.463	pu
GW-PP-1A	4	0.002	0.240	0.245	0.359	pu	0.079	0.086	Б	2.323	pu
GW-PP-1A	2	0.000	0.993	0.997	1.477	pu	0.282	0.363	ы	6.192	pu
GW-PP-1B	_	0.000	0.089	0.091	0.210	0.204	0.068	0.063	0.063	1.900	26.5
GW-PP-1B	7	0.008	0.079	0.090	0.192	pu	0.058	0.062	Ъ	1.391	pu
GW-PP-1B	ო	0.001	0.331	0.333	0.415	рu	0.118	0.122	Б	1.752	pu
GW-PP-1B	4	0.004	0.232	0.237	0.380	pu	0.077	0.077	р	1.777	pu
GW-PP-1B	5	0.001	0.342	0.346	0.638	pu	0.116	0.116	ы	2.369	pu
GW-AR-1A	-	0.000	0.128	0.130	0.146	0.146	0.039	0.037	0.038	3.460	30.1
GW-AR-1A	7	0.000	0.179	0.182	0.257	pu	0.043	0.047	Б	3.693	pu
GW-AR-1A	က	0.000	0.197	0.199	0.199	pu	0.046	0.062	р	3.298	pu
GW-AR-1A	4	0.004	0.165	0.171	0.171	pu	0.049	0.049	Б	3.338	pu
GW-AR-1A	2	0.001	0.170	0.174	0.174	pu	990.0	0.066	ри	4.323	pu
GW-AR-1B	-	0.000	0.246	0.248	0.279	0.285	0.034	0.033	0.034	2.020	30.1
GW-AR-1B	7	0.000	0.254	0.257	0.130	рu	0.027	0.036	pu	1.495	pu
GW-AR-1B	က	0.001	0.265	0.267	0.267	pu	0.033	0.054	pu	1.290	pu
GW-AR-1B	4	0.000	0.298	0.300	0.300	pu	0.040	0.040	pu	2.546	рц
GW-AR-1B	5	0.000	0.267	0.271	0.271	pu	0.046	0.046	pu	3.068	рц
GW-AR-1C	<u> </u>	0.018	0.083	0.104	0.235	0.237	0.021	0.022	0.022	0.780	29.4
GW-AR-1C	2	0.005	0.122	0.130	0.355	pu	0.017	0.023	pu	0.614	Б
GW-AR-1C	က	900'0	0.145	0.153	0.153	pu	0.020	0.024	pu	0.119	Б
GW-AR-1C	4	0.026	0.077	0.107	0.107	pu	0.025	0.025	ъ	0.655	pu
GW-AR-1C	2	0.025	0.053	0.083	0.100	pu	0.029	0.029	pu	0.620	pu
GW-PR-1A	-	0.000	0.246	0.248	0.314	0.321	0.017	0.018	0.017	3.550	29.1
GW-PR-1A	2	0.000	0.351	0.355	0.200	pu	0.023	0.029	pu	3.516	p
GW-PR-1A	က	0.002	0.385	0.388	0.388	pu	0.031	0.031	pu	2.725	ы
GW-PR-1A	4	0.000	0.355	0.357	0.357	pu	0.029	0.029	pu	3.525	p
GW-PR-1A	2	0.001	0.340	0.344	0.395	pu	0.032	0.032	pu	3.262	p
GW-PR-1B	_	0.000	0.317	0.319	0.360	0.365	0.045	0.044	0.044	1.480	30.0
GW-PR-1B	7	0.000	0.196	0.200	0.926	pu	0.030	0.035	pu	0.662	pu
GW-PR-1B	ო	0.002	0.261	0.264	0.264	рu	0.031	0.049	pu	0.000	p
GW-PR-1B	4	0.000	0.304	0.306	0.411	pu	0.037	0.038	p	1.065	p
GW-PR-1B	5	0.001	0.328	0.332	0.406	nd	0.034	0.036	nd	1.032	pu
[bmdl, below method c	nod detection limit; nd, no data	; nd, no d	lata]								

Appendix A-2. Surface water hydrochemistry results

			(ft)	(N)	(W)	Sampling Kouna	Date of Collection	Time of Collection
	Black Point Inshore	MS	0	25.526	-80.330	1	8/22/02	8:20
	Black Point Inshore	SW	0	25.526	-80.330	2	6/24/03	17:00
	Black Point Inshore	SW	0	25.526	-80.330	က	9/24/03	16:24
	Black Point Inshore	SW	0	25.526	-80.330	4	12/17/03	14:00
	Black Point Inshore	SW	0	25.526	-80.330	2	3/31/04	8:25
	Black Point	SW	0	25.526	-80.324	-	2	pu
	Black Point	SW	0	25.526	-80.324	2	6/25/03	15:15
	Black Point	SW	0	25.526	-80.324	က	9/24/03	15:05
	Black Point	SW	0	25.526	-80.324	4	12/17/03	12:50
	Black Point	SW	0	25.526	-80.324	5	3/29/04	11:40
	Mid Bay	SW	0	25.484	-80.267	-	8/22/02	15:15
	Mid Bay	SW	0	25.484	-80.267	2	6/24/03	12:10
	Mid Bay	SW	0	25.484	-80.267	က	9/24/03	12:30
	Mid Bay	SW	0	25.484	-80.267	4	12/15/03	15:00
	Mid Bay	SW	0	25.484	-80.267	S	3/29/04	13:30
	Billy's Point	SW	0	25.428	-80.212	-	8/21/02	12:20
	Billy's Point	SW	0	25.428	-80.212	2	6/24/03	9:30
	Billy's Point	SW	0	25.428	-80.212	က	9/24/03	9:10
	Billy's Point	SW	0	25.428	-80.212	4	12/16/03	12:30
	Billy's Point	SW	0	25.428	-80.212	5	3/29/04	10:55
	Petrel Point	SW	0	25.415	-80.204	-	8/21/02	9:30
	Petrel Point	SW	0	25.415	-80.204	2	6/25/03	9:00
	Petrel Point	SW	0	25.415	-80.204	က	9/23/03	14:55
	Petrel Point	SW	0	25.415	-80.204	4	12/16/03	10:00
	Petrel Point	SW	0	25.415	-80.204	5	3/29/04	8:50
	Alina's Reef	SW	0	25.386	-80.163	-	8/20/02	13:25
	Alina's Reef	SW	0	25.386	-80.163	2	6/26/03	9:10
	Alina's Reef	SW	0	25.386	-80.163	က	9/23/03	12:10
	Alina's Reef	SW	0	25.386	-80.163	4	1/14/04	13:15
	Alina's Reef	SW	0	25.386	-80.163	2	3/30/04	8:20
	Pacific Reef	SW	0	25.371	-80.142	-	8/20/02	10:45
	Pacific Reef	SW	0	25.371	-80.142	2	6/25/03	11:45
	Pacific Reef	SW	0	25.371	-80.142	က	9/23/03	10:10
	Pacific Reef	SW	0	25.371	-80.142	4	1/14/04	10:15
	Pacific Reef	SW	0	25.371	-80.142	S	3/30/04	11:45
SW-Gulf Stream	Gulf Stream	SW	0	p	þ	-	pu	pu
SW-Gulf Stream	Gulf Stream	SW	0	25.377	-80.132	2	6/25/03	13:45
SW-Gulf Stream	Gulf Stream	SW	0	25.372	-80.128	က	9/23/03	9:10
SW-Gulf Stream	Gulf Stream	SW	0	25.349	-80.122	4	1/14/04	9:50
CM/-Gulf Stroom	Gulf Stream	MS.	c	25 349	-RO 122	LC.	3/30/04	11:10

Appendix A-2. Surface water hydrochemistry results, Cont.

	ı				_					_		0	_	_	_		_	_	_	_			_	_	_		_	_	_	_		_	_	_	_		_	_	_	اہ
(qdd)	pu	180000	236000	687000	1170000	pu	320000	455000	721000	1250000	рu	1150000	1420000	120000	1390000	5	1240000	1510000	1380000	1450000	ы	1330000	1320000	1310000	1440000	ъ	1360000	1370000	1380000	1400000	Б	1340000	1450000	1390000	1350000	'n	1370000	1420000	1390000	1350000
Na (ppb)	pu	1650000	1940000	5750000	9740000	P	2750000	4060000	5790000	10200000	P	10100000	11700000	10200000	11200000	Þ	10700000	12700000	10500000	12400000	рц	11500000	13000000	10500000	11800000	pu	11800000	13800000	11100000	11400000	рu	11700000	12700000	11200000	11200000	P	11900000	13200000	11200000	11400000
(qdd)	DQ	853	1030	2500	3900	pu	1110	1760	2780	4160	pu	2390	4430	4110	4560	<u>p</u>	2480	4870	4450	4940	pu	3390	4500	4480	4760	nd	2780	4740	4440	4550	р	3020	4930	4050	4700	р	2610	4810	4350	4810
(bbb)	nd	pmq	bmd	pmq	pmq	pu	bmd	pmq	bmd	pmq	пф	pmq	pmq	pmq	pmq	2	pmq	pmq	pmq	pmq	nd	pmq	pmq	pmq	pmq	nđ	0.185	pmq	pmq	pmq	пд	pmq	pmq	pmq	pmq	p	pmql	pmq	pmq	pmq
(pdd)	DG .	31.1	pmq	115	170	P	56.9	pmql	123	179	P	181	172	174	202	<u>P</u>	187	182	193	213	p	509	185	187	204	Б	202	190	188	198	Þ	212	192	180	205	р	200	189	178	201
(anv)	pu	-52.0	ď	-9.5	137.6	рц	4.0	ъ	156.0	94.9	<u>p</u>	-51.0	2	202.0	49.0	5	24.0	ē	117.5	22.3	2	39.0	2	165.0	121.8	ы	43.0	ď	24.7	128.4	ď	47.0	ď	122.2	2.99	р	-62.0	Б	180.8	34.5
(ūC)	28.2	28.3	P	23.1	23.3	P	34.4	Б	22.5	23.4	P	28.0	P	20.4	22.7	30.3	31.6	2	50.6	23.4	29.0	27.1	32.9	20.9	22.0	30.3	30.6	29.1	21.8	23.3	29.8	28.4	29.5	23.3	25.1	g	28.6	29.3	24.6	25.1
<u>. </u>	7.91	8.13	8.25	8.11	8.10	рц	7.86	8.16	8.22	8.27	Б	8.16	7.70	8.14	8.13	90.8	8.14	7.78	8.08	8.18	7.79	7.98	8.69	8.01	8.19	pu	8.20	8.33	8.12	8.13	2	8.22	8.36	8.13	8.19	g	8.20	8.33	8.11	8.16
Diss Oxy (%)	pu	74.0	pu	89.3	55.0	pu	91.5	pu	115.8	123.5	Þ	6.73	P	90.2	94.0	2	6.73	5	93.4	82.0	P.	66.5	193.8	88.1	75.2	ъ	99.2	94.5	0.06	91.3	Б	95.2	84.4	86.4	99.1	pu	94.0	72.8	86.7	94.4
UISS. Oxygen (mg/L)	5.22	5.75	nd	6.88	3.85	ŋ	7.07	P	9.05	8.73	P	4.55	5	6.77	6.57	7.73	4.58	Ę	98.9	5.62	7.23	5.26	19.90	6.45	5.33	4.43	7.73	7.12	6.44	6.35	4.22	7.40	6.35	00.9	69.9	pu	7.28	5.56	5.90	6.36
Salinity (ppt)	2.8	5.3	6.3	17.8	31.1	Þ	5.4	11.5	17.9	32.1	36.0	31.7	32.5	31.3	36.3	35.1	33.3	35.7	34.1	37.1	36.2	35.5	34.4	33.8	36.1	36.0	35.8	35.1	35.1	35.7	35.6	35.7	35.1	35.5	35.6	nd	35.6	35.1	35.6	35.6
sp. Conductance (μS/CM)	5210	9330	11000	28900	47735	pu	9500	19260	28910	49019	54400	48300	49900	47940	54/18	53200	20600	54200	51720	55858	54600	53500	51800	51410	54476	54304	53800	52900	53120	54020	53763	53700	52900	53702	53892	.pu	53600	52900	53829	53868
Sampling Kound	-	2	က	4	5	-	2	က	4	2	-	2	က	4	۰ ۍ	_	2	က	4	2	-	2	ო ·	4	വ	-	2	က	4	2	-	2	က	4	2	-	2	က	4	5
Location ID	SW-BPI	SW-BPI	SW-BPI	SW-BPI	SW-BPI	SW-BKP	SW-BKP	SW-BKP	SW-BKP	SW-BKP	SW-MB	SW-MB	SW-MB	SW-MB	SW-MB	SW-BYP	SW-BYP	SW-BYP	SW-BYP	SW-BYP	SW-PP	SW-PP	SW-PP	SW-PP	SW-PP	SW-AR	SW-AR	SW-AR	SW-AR	SW-AR	SW-PR	SW-PR	SW-PR	SW-PR	SW-PR	SW-Gulf Stream				

Appendix A-2. Surface water hydrochemistry results, Cont.

Ind Ind <th>bmdl bmdl 12.20 301.00 7.81 bmdl bmdl bmdl bmdl 28.50 92.10 4.41 1620.00 d. 40.60 141.00 7.72 2410.00 nd bmdl bmdl 8.61 373.00 13.80 bmdl bmdl 516.00 29.80 94.10 5.57 1730.00 47.80 161.00 3.45 2480.00 nd nd nd</th> <th>nd 331.00 157.00 32.10 116.00 nd 406.00 836.00 47.90 306.00 nd 1180.00 549.00 66.77</th> <th>27.50 1.93 0.30.60 bmdl br 17.50 bmdl br 34.70 bmdl br 116.00 bmdl br 22.30 11.30 br 22.30 11.30 br 177.00 6.46 0.177.00 6.46 0.39.60 5.12 br 29.80 0.81 0.39.60 5.12 br 28.50 5.12 br 28.50 5.12 br 27.20 bmdl br 28.50 5.12 br 27.20 bmdl br 28.50 5.12 br 28.50 5.12 br 27.20 br 27.20</th> <th></th> <th>nd 8.17 7.12 25.50 39.30 113.90 14.00 27.10 742.70 nd 54.20 50.30 nd</th>	bmdl bmdl 12.20 301.00 7.81 bmdl bmdl bmdl bmdl 28.50 92.10 4.41 1620.00 d. 40.60 141.00 7.72 2410.00 nd bmdl bmdl 8.61 373.00 13.80 bmdl bmdl 516.00 29.80 94.10 5.57 1730.00 47.80 161.00 3.45 2480.00 nd nd nd	nd 331.00 157.00 32.10 116.00 nd 406.00 836.00 47.90 306.00 nd 1180.00 549.00 66.77	27.50 1.93 0.30.60 bmdl br 17.50 bmdl br 34.70 bmdl br 116.00 bmdl br 22.30 11.30 br 22.30 11.30 br 177.00 6.46 0.177.00 6.46 0.39.60 5.12 br 29.80 0.81 0.39.60 5.12 br 28.50 5.12 br 28.50 5.12 br 27.20 bmdl br 28.50 5.12 br 27.20 bmdl br 28.50 5.12 br 28.50 5.12 br 27.20		nd 8.17 7.12 25.50 39.30 113.90 14.00 27.10 742.70 nd 54.20 50.30 nd
2	bmd bmd 12.20 301.00 7.81 bmd bmd bmd 28.50 92.10 4.41 1620.00 40.60 141.00 7.72 2410.00 md bmd bmd 8.61 373.00 13.80 bmd bmd 516.00 29.80 94.10 5.57 1730.00 47.80 161.00 3.45 2480.00 md nd nd nd	331.00 157.00 32.10 116.00 nd 406.00 836.00 47.90 306.00 nd 1180.00 549.00 66.70	1.93 bmdl bmdl nd 2.07 bmdl 11.30 bmdl 7.81 7.12	bmd bmd bmd bmd bmd bmd bmd	8.17 7.12 39.30 39.30 114.00 27.10 7.10 7.10 7.10 7.10 7.10 7.10 7.10
3	7.81 bmdl bmdl bmdl 28.50 92.10 4.41 1620.00 40.60 141.00 7.72 2410.00 nd nd nd nd 13.80 bmdl bmdl 516.00 29.80 94.10 5.57 1730.00 47.80 161.00 3.45 2480.00 nd nd nd	157.00 32.10 116.00 nd 406.00 836.00 47.90 306.00 nd 1180.00 549.00 66.70	bmdl bmdl nd 2.07 bmdl 111.30 bmdl nd 6.46 bmdl 7.81	bmd bmd bmd bmd bmd bmd bmd bmd	7.12 25.50 39.30 11.00 14.00 27.10 7.10 14.2.70 10.30 55.2.0 10.30
10	28.50 92.10 4.41 1620.00 40.60 141.00 7.72 2410.00 nd nd nd nd nd bmdl bmdl 8.61 373.00 13.80 bmdl bmdl 516.00 29.80 94.10 5.57 1730.00 47.80 161.00 3.45 2480.00 nd nd nd	32.10 116.00 nd 406.00 836.00 47.90 306.00 nd 1180.00 549.00 66.70	bmdl nd 2.07 bmdl 111.30 bmdl nd 6.46 bmdl 7.81	bmd bmd bmd bmd bmd bmd bmd	25.50 39.30 113.90 114.00 42.70 nd 55.20 nd
March Marc	40.60 141.00 7.72 2410.00 nd nd nd nd bmdl bmdl 8.61 373.00 13.80 bmdl bmdl 516.00 29.80 94.10 5.57 1730.00 47.80 161.00 3.45 2480.00 nd nd nd nd	116.00 nd 406.00 836.00 47.90 306.00 nd 1180.00 549.00 66.70	bmdl nd 2.07 bmdl 11.30 bmdl nd 6.46 bmdl 7.81	bnd	39.30 nd 13.90 14.00 27.10 nd 50.20 50.30 nd
1	bmdl bmdl 8.61 373.00 13.80 bmdl bmdl 516.00 29.80 94.10 5.57 1730.00 47.80 161.00 3.45 2480.00 n n n nd	nd 406.00 836.00 47.90 306.00 nd 1180.00 549.00 66.70	2.07 bmdl 11.30 bmdl nd 6.46 bmdl 7.81		13.90 14.00 27.10 42.70 nd 54.20 50.30 50.30 nd
2	bmdl bmdl 8.61 373.00 13.80 bmdl bmdl 516.00 29.80 94.10 5.57 1730.00 47.80 161.00 3.45 2480.00 n n n nd	406.00 836.00 47.90 306.00 1180.00 549.00 66.70	2.07 bmdl 11.30 bmdl nd 6.46 bmdl 7.81	bmd bmd bmd bmd bmd	13.90 14.00 27.10 nd 54.20 50.30 50.50 nd
3 bmd bmd 149000 212000 bmd 138 294 16 557 173000 4 29.9 764 219000 272000 bmd 6.39 94.10 3.57 1730.00 5 bmd bmd 4.00 272000 bmd nd <	13.80 bmdl bmdl 516.00 29.80 94.10 5.57 1730.00 47.80 161.00 3.45 2480.00 nd nd nd	836.00 47.90 306.00 1180.00 549.00 66.70	bmdl 11.30 bmdl nd 6.46 bmdl 7.81	bmd bmd bmd bmd bmd	14.00 27.10 10 10 54.20 50.30 50.30 10
10	29.80 94.10 5.57 1730.00 47.80 161.00 3.45 2480.00 nd nd nd nd nd 21.00 720.00	47.90 306.00 nd 1180.00 549.00 66.70	11.30 bmdl nd 6.46 bmdl 7.81	bmdl bmdl bmdl bmdl bmdl bmdl	27.10 42.70 nd 54.20 50.30 50.50 52.10
5	77.80 161.00 3.45 2480.00 nd nd nd nd nd nd nd	306.00 nd 1180.00 549.00 66.70	bmdl nd 6.46 bmdl 7.12	bmd bmd bmd bmd	42.70 nd 54.20 50.30 50.50 nd
1 nd nd </td <td>nd nd nd nd 21.00 700 00</td> <td>nd 1180.00 549.00 66.70</td> <td>nd 6.46 bmdl 7.81 7.12</td> <td>bmd bmd bmd bmd</td> <td>nd 54.20 50.30 50.50 nd</td>	nd nd nd nd 21.00 700 00	nd 1180.00 549.00 66.70	nd 6.46 bmdl 7.81 7.12	bmd bmd bmd bmd	nd 54.20 50.30 50.50 nd
2 bmdl bmdl bmdl 345000 3322000 bmdl bmdl bmdl bmdl bmdl 45000 45000 bmdl	1 21 00 50 10 100 700 00	1180.00 549.00 66.70 257.00	6.46 bmdl 7.81 7.12	bmd bmd bmd bmd	54.20 50.30 50.50 52.10
3 bmdl bmdl 453000 489000 bmdl 4320 150.00 bmdl 1060.00 4 27.0 bmdl 453000 375000 bmdl 7.73 54.90 193.00 1.39 260.00 5 bmdl bmdl 453000 35000 bmdl 7.73 54.90 180.00 1.39 260.00 2 2.1 bmdl 45000 56000 bmdl 10.50 29.90 89.30 1.96 853.00 3 bmdl 49000 516000 bmdl 45.80 149.00 bmdl 4140.00 1.40 nd	00.007 08.1 01.00 00.12	549.00 66.70 257.00	5.81 7.12	bmd bmd bmd	50.30 50.50 52.10 nd
4 27.0 bmdl 389000 375000 bmdl 7.73 54.90 193.00 1.39 2660.00 5 bmdl bmdl 45300 49300 bmdl 7.09 57.90 182.00 1.80 2730.00 2 2.1 bmdl bmdl 45300 5400 bmdl 1.60 1.90 85.30 1.90 85.30 3 bmdl bmdl 49000 51400 bmdl 45.80 149.00 bmdl 1130.00 5 bmdl bmdl 49000 51400 bmdl 10.20 59.5 197.00 1.90 3140.00 2 bmdl bmdl 48900 51600 bmdl 42.80 1.61 87.00 1.42 2700.00 3 bmdl bmdl 48900 51600 bmdl 42.80 1.61 97.00 1.61 97.00 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	43.20 150.00 bmd 1060.00	66.70	7.81	bmd nd bmd	50.50 52.10 nd
5 bmdl bmdl 453000 493000 bmdl 7.09 57.90 182.00 1.80 273.00 1 nd <	54.90 193.00 1.39 2660.00	257.00	7.12	pud pud	52.10 nd
1	57.90 182.00 1.80 2730.00	00: 03		pu puq	pu
2 2.1 bmdl 362000 55000 bmdl 45.80 19.30 19.6 85.30 3 bmdl bmdl 49000 51400 bmdl 45.80 149.00 bmdl 4 26.4 bmdl 46900 51600 bmdl 10.20 59.50 197.00 bmdl 1130.00 2 bmdl bmdl 46900 51600 bmdl 6.93 56.50 187.00 1.42 270.00 3 bmdl bmdl 46900 47200 bmdl 46.30 1.61 85.0 186.00 1.42 270.00 4 26.8 bmdl 49000 41900 bmdl 42.30 146.00 bmdl 957.00 5 bmdl bmdl 46500 50300 bmdl 64.2 51.90 17.1 17.0 1.34 257.0 5 bmdl bmdl bmdl 46500 bmdl bmdl bmdl bmdl bmdl <td< td=""><td>pu pu pu pu</td><td>pu</td><td>pu</td><td>bmd</td><td></td></td<>	pu pu pu pu	pu	pu	bmd	
3 bmdi bmdi 490000 514000 bmdi 45.80 149.00 bmdi 438000 bmdi 45.80 149.00 bmdi 4130.00 bmdi 4130.00 55.50 197.00 1.60 3140.00 5 bmdi bmdi 469000 516000 bmdi 69.33 56.50 186.00 1.42 2700.00 3 bmdi 490000 516000 bmdi 42.00 1.42 2700.00 4 26.8 bmdi 450000 419000 bmdi 42.30 146.00 bmdi 957.00 5 bmdi bmdi 45000 419000 bmdi 6.42 51.90 171.00 1.61 2700.00 5 bmdi bmdi 465000 475000 bmdi 42.30 146.00 bmdi 4700.00 4 bmdi bmdi 465000 47500 bmdi 47.00 bmdi 47.00 bmdi 47.00 10.00 10.00 10.	29.90 89.30 1.96 853.00	1070.00	6.46		58.10
4 26.4 bmdl 408000 438000 bmdl 6.93 56.50 197.00 1.60 3140.00 5 bmdl bmdl 469000 516000 bmdl nd	45.80 149.00 bmd 1130.00	1550.00	pmq	pmq	53.90
5 bmd 46900 51600 bmd 6.93 56.50 186.00 1.42 2700.00 1 nd	59.50 197.00 1.60 3140.00	98.30	10.60	pmq	56.80
1	56.50 186.00 1.42 2700.00	221.00	6.14		51.00
2 3.3 bmdl 356000 472000 bmdl 42.30 146.00 bmdl 9.81 31.30 88.50 1.61 803.00 bmdl 42.30 146.00 bmdl 957.00 bmdl 42.30 146.00 bmdl 957.00 bmdl 10.60 55.90 171.00 1.34 2570.00 bmdl bmdl 465000 475000 bmdl 43.80 171.00 17.80 0.75 764.00 bmdl bmdl 456000 475000 bmdl 117.0 fo.10 172.00 lmdl 1100.00 bmdl 43.80 140.00 lmdl 1100.00 bmdl 110.00 bmdl 110.00 bmdl 110.00 bmdl 110.00 bmdl 110.00 bmdl 112.00 lmdl 1120.00 lmdl 1120.	pu pu pu pu	ם	P	p	pu
3 bmdl bmdl 450000 472000 bmdl 42.30 146.00 bmdl 957.00 5 bmdl bmdl 465000 53000 bmdl 6.42 51.90 171.00 1.61 2780.00 2 bmdl bmdl bmdl 6.42 51.90 171.00 1.34 2570.00 3 bmdl bmdl bmdl 456000 bmdl 43.80 140.00 bmdl 110.00 4 bmdl bmdl 456000 486000 bmdl 43.80 140.00 bmdl 110.00 5 bmdl bmdl 456000 50000 bmdl 117.00 1.28 276.00 5 bmdl bmdl bmdl 47200 50000 bmdl 110.10 19.80 124.00 bmd 1120.00 5 bmdl bmdl bmdl 47200 50000 bmdl 46.30 140.00 bmdl 1120.00 5 bmdl <td>31.30 88.50 1.61 803.00</td> <td>771.00</td> <td>7.77</td> <td>0.08 bmdl</td> <td>00.79</td>	31.30 88.50 1.61 803.00	771.00	7.77	0.08 bmdl	00.79
4 26.8 bmdl 409000 419000 bmdl 10.60 55.90 183.00 1.61 2780.00 5 bmdl bmdl 465000 503000 bmdl 6.42 51.90 171.00 1.34 2570.00 2 bmdl bmdl 456000 486000 bmdl 8.49 39.30 115.00 0.75 764.00 5 bmdl bmdl 456000 486000 bmdl 117.0 10.75 70.10 225.00 110.00 1 nd	42.30 146.00 bmdl 957.00	pmq	pmq	bmd	52.70
5 bmdi bmdi 465000 503000 bmdi 6.42 51.90 177.00 1.34 2570.00 1 nd	55.90 183.00 1.61 2780.00	106.00	10.60		54.90
1	51.90 171.00 1.34 2570.00	216.00	6.84	pmq	49.40
2 bmdi bmdi 355000 385000 bmdi 8.49 39.30 115.00 0.75 764.00 4 bmdi bmdi 456000 486000 bmdi 117.0 25.50 1.00 bmdi 1100.00 5 33.4 bmdi bmdi 50100 bmdi 17.5 57.90 182.00 1.28 2730.00 2 bmdi bmdi bmdi 47200 50000 bmdi 10.10 19.80 124.00 bmd 1120.00 4 bmdi bmdi 47200 50000 bmdi 10.10 19.80 124.00 bmd 1120.00 5 bmdi bmdi bmdi 44800 45200 bmdi 58.86 195.00 1.17 2490.00 6 Stream 1 nd nd nd nd nd nd nd 1 nd bmdi bmdi 44800 50300 bmdi 58.86 195.00 1.	pu pu pu pu	pu	Pu	Ъ	pu
3 bmdi bmdi 456000 486000 bmdi 43.80 140.00 bmdi 1100.00 5 33.4 bmdi 466000 475000 bmdi 7.55 57.90 182.00 1.04 2760.00 2 bmdi nd	39.30 115.00 0.75 764.00	1280.00	7.39	pmq	63.70
4 bmdi bmdi 466000 475000 bmdi 11.70 70.10 225.00 1.04 2760.00 5 33.4 bmdi 463000 501000 bmdi 7.55 57.90 182.00 1.28 2730.00 2 bmdi bmdi bmdi 47200 50000 bmdi 10.10 19.80 124.00 0.86 857.00 5 bmdi bmdi bmdi 448000 46200 bmdi 51.80 166.00 1.72 2690.00 f Stream 1 nd nd nd nd nd nd nd f Stream 2 bmdi bmdi 42000 38400 bmdi 9.98 30.00 84.20 0.75 806.00 f Stream 3 bmdi bmdi 46500 93800 bmdi 44.60 152.00 md nd nd f Stream 3 bmdi bmdi 46600 1800 bmdi <t< td=""><td>43.80 140.00 bmd 1100.00</td><td>44.20</td><td>pmq</td><td>l bmd</td><td>52.00</td></t<>	43.80 140.00 bmd 1100.00	44.20	pmq	l bmd	52.00
5 33.4 bmdl 463000 501000 bmdl 7.55 57.90 182.00 1.28 2730.00 2 bmdl bmdl 342000 337000 bmdl 10.10 19.80 124.00 0.86 857.00 5 bmdl bmdl 472000 500000 bmdl bmdl 46.30 152.00 bmdl 1120.00 5 bmdl bmdl 478000 462000 bmdl bmdl 51.80 166.00 1.72 2690.00 7 bmdl bmdl 42000 384000 bmdl bmdl 44.60 152.00 bmdl 1200.00 8 bmdl bmdl 465000 493000 bmdl bmdl 44.60 152.00 bmdl 1200.00 9 bmdl bmdl 465000 493000 bmdl 6.94 61.00 205.00 1.42 2750.00	70.10 225.00 1.04 2760.00	20.90	13.10	pmq	63.20
1 nd	57.90 182.00 1.28 2730.00	248.00	pmq	l bmd	49.30
2 bmdl bmdl 342000 370000 bmdl 10.10 19.80 124.00 0.86 857.00 3 bmdl bmdl 472000 500000 bmdl bmdl 46500 17.20 bmdl 1120.00 1 bmdl bmdl 456000 503000 bmdl 51.80 166.00 1.72 2690.00 1 bmdl bmdl 420000 503000 bmdl 5.82 58.60 195.00 1.72 2490.00 1 bmdl 420000 bmdl 9.98 30.00 84.20 0.75 806.00 3 bmdl bmdl 465000 44.000 bmdl 44.60 152.00 bmdl 1200.00 1 bmdl bmdl 461000 44.000 bmdl 6.94 61.00 205.00 1.42 2750.00	pu pu pu	Ъ	P	P	pu
3 bmdl bmdl 472000 500000 bmdl bmdl 46.30 152.00 bmdl 1120.00 5 bmdl bmdl 456000 503000 bmdl 5.82 58.60 195.00 1.17 2490.00 7 bmdl bmdl 420000 384000 bmdl 44.60 152.00 bmdl 46.60 152.00 bmdl 46.60 152.00 bmdl 46.60 152.00 bmdl 46.60 152.00 bmdl 47.60 152.00 bmdl 47.60 152.00 bmdl 47.60 152.00 bmdl 47.60 152.00 bmdl 1200.00 bmdl 47.60 152.00 bmdl 57.60 00 10.00 bmdl 57.60 00 10.00 bmdl 57.60 00 10.00 bmdl 1200.00 bmdl 57.60 00 10.00 bmdl 57.60 00 10.00 bmdl 57.60 00 10.00 bmdl 57.60 00 10.00 00 00 00 00 00 00 00 00 00 00 00 00	19.80 124.00 0.86 857.00	1240.00	8.62	pmq	71.10
bmdl bmdl 448000 462000 bmdl 51.80 166.00 1.72 2690.00 bmdl bmdl 456000 503000 bmdl 5.82 58.60 195.00 1.17 2490.00 2 bmdl bmdl 456000 384000 bmdl 9.98 30.00 84.20 0.75 806.00 bmdl bmdl 465000 446400 bmdl 44.60 152.00 bmdl 1200.00 bmdl bmdl 461000 464000 bmdl 6.94 61.00 205.00 1.42 2750.00	46.30 152.00 bmdl 1120.00	122.00	pmq	pmq	55.30
5 bmdl bmdl 456000 503000 bmdl 5.82 58.60 195.00 1.17 2490.00 1.17 bmdl 420000 384000 bmdl bmdl 461000 44000 bmdl 6.94 61.00 205.00 1.42 2750.00	51.80 166.00 1.72 2690.00	80.40	8.52	pmq	64.90
1 nd	58.60 195.00 1.17 2490.00	330.00	pmq	pmq	50.20
2 bmdl bmdl 420000 384000 bmdl 9.98 30.00 84.20 0.75 806.00 120.00 bmdl bmdl 465000 493000 bmdl bmdl 44.60 152.00 bmdl 1200.00 4 bmdl bmdl 461000 464000 bmdl 6.94 61.00 205.00 1.42 2750.00	pu pu pu	ъ	2	2	Б
3 bmdi bmdi 465000 493000 bmdi bmdi 44.60 152.00 bmdi 1200.00 4 bmdi bmdi 461000 464000 bmdi 6.94 61.00 205.00 1.42 2750.00	30.00 84.20 0.75 806.00	1250.00	2.09	pmq	62.90
4 bmdl bmdl 461000 464000 bmdl 6.94 61.00 205.00 1.42 2750.00	1 44.60 152.00 bmdl 1200.00	1540.00		pmq	53.60
20 0010 10 00 001 10 00 11 11 11 11 11 11	205.00 1.42 2750.00	79.20	17.50		65.20
1 58.80 192.00 1.01	58.80 192.00 1.01 2530.00	\dashv	⊣	pwq	49.50

Appendix A-2. Surface water hydrochemistry results, Cont.

Location ID	Sampling Round	g Round Br Se	Se	Rb	s	>	Zr	QN N	ОΜ	Ru	Pd	Ag	BS	٥	Sn	Sb
		(qdd)	(qdd)	(qdd)	(ddd)	(qdd)	(qdd)	(ddd)	(ppb)	(ddd)	(qdd)	(ppb)	(ppp)	(pdd)	(ppp)	(ddd)
SW-BPI	1	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	рц
SW-BPI	2	11300	25.1	19.9	2220	0.019	0.032	pmq	1.660	0.036	0.522	pmql	pmq	0.002	pmq	0.130
SW-BPI	က	12500	pmq	22.1	1970	pmq	pmq	pmq	pmq	pmq	1.030	pmq	pmq	pmq	pmq	pmq
SW-BPI	4	37000	85.7	9.69	4450	0.046	pmql	pmq	2.280	0.134	0.907	pmql	pmq	0.067	pmq	0.103
SW-BPI	သ	00999	117.0	116.0	6840	0.049	pmq	pmq	8.120	0.251	1.100	pmql	pmq	pmq	pmq	0.135
SW-BKP	-	P	Ъп	Б	Б	Б	P	p	ы	Б	Ъ	pu	рu	nď	рu	ы
SW-BKP	2	26000	46.0	32.3	3380	0.016	0.023	pmq	2.470	0.192	0.101	pmq	pmq	pmq	pmq	0.134
SW-BKP	က	24200	34.2	39.8	3230	pmq	pmql	pmq	pmq	pmql	pmq	pmq	bmd	pmq	pmq	pmq
SW-BKP	4	38600	84.3	62.2	4590	0.087	pmq	pmq	1.920	0.323	0.869	bmd	pmq	0.089	pmq	0.138
SW-BKP	5	73500	137.0	118.0	7370	0.051	pmq	pmq	8.570	0.490	0.904	bmq	pmq	pmq	pmq	0.153
SW-MB	-	nđ	pu	p	ы	Ъ	pu	5	nď	p	Ъ	pu	pu	Ъ	Ъ	Ы
SW-MB	2	00606	182.0	112.0	0066	0.025	0.013	0.014	9.700	0.958	1.830	pmq	0.044	900.0	pmq	0.218
SW-MB	8	73400	125.0	121.0	8630	pmq	pmq	pmq	pmq	pmq	pmq	bmq	bmd	pmq	pmq	pmq
SW-MB	4	65400	180.0	106.0	2099	0.075	pmq	pmq	5.450	0.560	1.870	pmq	bmd	0.148	pmq	0.185
SW-MB	2	88900	156.0	137.0	7970	0.081	pmq	pmq	11.700	0.916	1.260	bmd	bmd	0.011	pmq	0.214
SW-BYP	-	ы	pu	ы	ы	ы	Ъ	Ъ	ри	pu	P	Б	pu	pu	þ	þ
SW-BYP	2	102000	195.0	128.0	10600	0.021	0.013	0.011	10.900	3.160	1.020	bmq	0.047	0.004	0.104	0.229
SW-BYP	က	77500	133.0	123.0	8820	pmq	pmq	pmq	pmq	pmq	pmq	pmq	bmd	pmq	pmq	pmq
SW-BYP	4	72900	192.0	116.0	8070	0.065	pmql	pmq	5.810	0.683	1.650	bmq	bmd	0.141	pmq	0.153
SW-BYP	5	91600	162.0	141.0	8450	0.061	pmq	pmq	11.800	0.608	1.300	bmd	bmd	0.012	pmq	0.154
SW-PP	-	pu	рц	pu	ри	ы	Ъ	Ъ	ри	Ъ	pu	Ъ	Ъп	pu	Ъ	Б
SW-PP	2	95400	225.0	134.0	11000	0.022	pmq	0.025	12.400	0.232	0.491	bmq	0.057	0.031	pmq	0.251
SW-PP	က	26700	147.0	124.0	8390	pmq	pmq	pmq	pmq	pmq	1.970	bmd	bmd	pmq	pmq	pmq
SW-PP	4	71000	203.0	116.0	8160	0.093	pmql	pmq	5.640	1.110	1.980	pmql	bmd	0.158	pmq	0.155
SW-PP	2	89600	162.0	136.0	8640	090.0	pmq	pmql	12.000	0.673	0.842	pmql	0.115	pmq	pmq	0.184
SW-AR	-	Ъ	pu	Ъ	Ъ	P	Pu	pu	pu	P	nď	Ъ	pu	pu	pu	p
SW-AR	2	102000	220.0	126.0	10600	0.044	0.020	0.019	12.800	2.500	0.402	pmq	0.043	0.00	bmd	0.251
SW-AR	က	76400	136.0	124.0	8350	pmq	pmq	pmq	pmq	pmq	2.070	pmq	bmd	pmdl	pmq	pmq
SW-AR	4	73800	215.0	122.0	7560	0.042	pmql	pmq	9.440	0.693	0.382	pmq	bmd	pmdl	pmql	0.132
SW-AR	S	87900	153.0	136.0	8070	0.065	pmq	pmq	11.100	0.603	1.070	pmq	pmq	pmq	pmq	0.165
SW-PR	-	рu	<u>р</u>	ы	ы	p	P	P	pu	p	ы	Б	nđ	пд	Ъ	Б
SW-PR	2	107000	253.0	138.0	11500	0.048	0.027	0.028	13.200	0.902	1.620	pmq	0.069	0.019	0.136	0.226
SW-PR	က	78700	140.0	128.0	8490	pmq	pmql	pmq	pmq	pmq	pmq	pmq	pmql	pmq	pmd	pmq
SW-PR	4	79700	234.0	132.0	7680	0.036	pmq	pmq	9.210	1.030	0.340	pmql	pmdl	pmq	pmq	0.204
SW-PR	2	89700	150.0	140.0	7820	0.068	pmq	pmql	11.100	0.610	1.150	pmql	bmdl	0.018	pmdl	0.141
SW-Gulf Stream	_	рu	ы	Ъ	ы	P	Ъ	5	pu	Ъ	p	Б	рц	pu	Б	Ы
SW-Gulf Stream	2	104000	219.0	134.0	11500	0.038	0.020	0.020	13.000	0.965	0.022	pmq	0.014	900.0	pmq	0.222
SW-Gulf Stream	ဗ	26700	133.0	123.0	8510	pmq	pmq	pmq	pmq	pmq	2.190	pmq	pmdl	pmd	pmq	pmq
SW-Gulf Stream	4	76500	241.0	126.0	7650	0.072	pmq	pmq	9.330	0.645	0.308	pmq	pmql	pmq	pmql	0.155
SW-Gulf Stream	2	89600	160.0	141.0	8220	0.062	pmql	pmql	10.900	0.922	0.474	bmdl	bmdl	0.015	bmdl	0.304
[bmdl, below method detection	od detection limit; nd,	no data]														

Appendix A-2. Surface water hydrochemistry results, Cont.

Location ID	Sampling Round	Te	-	SS	Ba	La	సి	P	PN	Sm	Eu	PS	1 P	à	Н	Ē
		(pdd)	(qdd)	(qdd)	(qdd)	(ddd)	(qdd)	(ppp)	(qdd)	(qdd)						
SW-BPI	1	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu
SW-BPI	2	pmq	17.700	0.061	16.000	0.003	900.0	0.001	pmql	pmq	0.001	pmq	0.003	pmql	pmdl	pmq
SW-BPI	က	pmq	pmq	pmq	16.100	pmq	bmd	pmq	pmq							
SW-BPI	4	0.657	19.600	0.160	13.200	0.047	0.085	0.016	0.107	pmq	pmq	pmq	0.020	pmd	pmq	pmq
SW-BPI	2	pmq	521.000	0.295	14.500	pmq	pmq	0.014	pmql	0.021	0.012	pmq	pmq	0.014	0.016	pmq
SW-BKP	-	P	Б	pu	P	Б	2	5	Pu	pu	pu	2	pu	pu	pu	Б
SW-BKP	2	0.072	20.500	0.095	16.900	0.001	pmq	pmq	pmq	pmq	pmq	pmq	0.001	pmdl	0.002	pmq
SW-BKP	က	pmq	pmq	pmq	14.600	pmq	bmd	bmd	pmq							
SW-BKP	4	0.425	20.800	0.147	12.200	0.049	0.101	0.016	0.081	pmq	0.017	pmq	0.017	0.017	pmd	0.013
SW-BKP	5	0.113	540,000	0.274	11.600	0.031	0.020	0.015	0.058	pmq	pmq	bmd	0.015	bmd	bmd	pmq
SW-MB	-	P	pu	pu	Б	pu	2	2	p	pu	pu	P	pu	pu	pu	pu
SW-MB	2	0.255	39.400	0.300	10.700	0.038	pmq	0.012	0.007	600.0	pmq	0.002	0.004	900.0	0.017	0.002
SW-MB	m	pmd	pmq	0.298	pmq	pmq	pmq	pmq	pmdl	pmq	pmq	pmq	pmq	pmql	pmq	pmq
SW-MB	4	pmq	31,300	0.246	7.670	0.056	0.084	0.015	pmql	0.033	pmd	pmq	0.017	0.013	pmq	pmq
SW-MB	ς.	0.442	571.000	0.313	10.400	0.011	pmq	0.017	pmql	pmq	0.016	pmq	pmq	pmq	bmd	pmq
SW-BYP	-	Б	ы	pu	P	Бп	2	2	P	p	p	2	p	р	pu	Б
SW-BYP	2	0.357	35.800	0.348	8.050	0.025	pmq	pmq	pmql	pmq	pmq	pmq	0.004	bmd	0.036	pmq
SW-BYP	ო	pmq	pmq	0.254	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
SW-BYP	4	pmq	40.500	0.271	6.770	0.056	0.091	pmq	pmq	pmq	pmq	pmq	0.014	pmq	0.011	pmq
SW-BYP	2	0.193	557.000	0.341	8.470	0.012	pmq	0.022	0.099	pmql	pmql	pmq	pmq	0.029	0.020	pmq
SW-PP	-	P	pu	pu	pu	p	P	2	p	pu	Б	5	5	pu	p	p
SW-PP	2	0.369	35.700	0.354	8.600	0.017	0.005	0.014	0.027	pmql	0.004	0.014	0.013	0.008	0.014	0.003
SW-PP	က	pmq	pmq	0.326	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmd	pmq	pmq
SW-PP	4	1.120	43.600	0.269	6.970	0.055	0.091	0.013	pmq	pmq	pmq	pmq	pmq	pmd	0.014	pmq
SW-PP	S.	0.359	258.000	0.345	11.500	0.020	0.022	0.027	pmq	pmq	pmq	0.024	0.010	0.017	0.019	pmq
SW-AR	-	Б	pu	pu	Б	pu	P	P	Б	Б	pu	P	pu	pu	pu	P
SW-AR	2	0.357	73.900	0.315	7.850	0.003	900.0	0.018	0.029	pmq	0.003	pmq	0.009	0.006	0.047	0.003
SW-AR	ო	pmq	113.000	0.309	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmql	pmq	pmq
SW-AR	4	pmq	732.000	0.309	7.350	0.028	pmq	pmq	0.436	pmq	pmq	pmq	pmq	0.426	pmq	pmq
SW-AR	2	0.122	548.000	0.358	7.640	0.022	0.030	0.013	0.055	pmq	pmq	pmq	pmq	0.012	0.020	pmq
SW-PR	•	P	Б	pu	P	P	5	P	2	p	P	5	5	p	рu	Б
SW-PR	2	0.695	61.800	0.406	9.010	0.073	0.011	0.011	0.011	pmq	0.002	900.0	0.009	0.018	0.056	0.010
SW-PR	က	pmq	pmq	0.282	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmd
SW-PR	4	0.503	760.000	0.331	7.100	0.016	pmq	pmq	0.217	0.021	0.011	0.036	pmq	0.290	pmq	pmq
SW-PR	S.	0.226	532.000	0.382	7.740	0.028	pmq	0.016	pmd	pmq	pmq	pmq	pmq	pmq	0.013	pmq
SW-Gulf Stream	-	5	Б	pu	P	P	5	Б	밀	p	pu	ъ	힏	pu	p	ē
SW-Gulf Stream	2	0.653	61.600	0.327	8.200	0.015	0.004	0.012	pmq	pmq	0.002	pmql	0.005	0.004	0.010	0.003
SW-Gulf Stream	ო	pmq	pmq	0.312	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
SW-Gulf Stream	4	0.640	801.000	0.314	7.240	0.022	0.029	pmq	0.300	pmq	0.014	pmq	0.011	0.328	pmq	pmq
SW-Gulf Stream	2	0.221	540.000	0.334	8.760	0.024	pmql	pmql	0.097	0.027	pmq	pmq	0.015	pmq	0.012	pmdl
[bmdl, below method detection limit; nd, no data	ction limit; nd, no data															

Appendix A-2. Surface water hydrochemistry results, Cont.

Location ID	Sampling Round	Tm	γp	3	ŧ	Та	3	Re	so	Pt	Au	Hg	F	Pb	Bi	£
		(ppb)	(pdd)	(qdd)	(qdd)	(qdd)	(qdd)	(qdd)	(ddd)	(qdd)	(qdd)	(qdd)	(pdd)	(ddd)	(ddd)	(qdd)
SW-BPI	1	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu
SW-BPI	2	pmq	pmq	pmq	pmq	pmq	0.036	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
SW-BPI	က	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
SW-BPI	4	pmq	pmq	990.0	pmq	pmq	pmq	0.010	pmq	pmq	0.031	pmq	pmq	2.040	0.176	0.041
SW-BPI	5	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
SW-BKP	-	Б	p	pu	ы	5	p	pu	P	þ	P	þ	D D	Б	pu	p
SW-BKP	2	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.003
SW-BKP	က	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	bmd	pmq	pmq	pmq
SW-BKP	4	pmq	0.011	0.055	pmq	pmq	pmq	0.010	pmq	pmq	pmq	pmq	pmq	1.670	0.180	0.055
SW-BKP	5	pmq	bmd	pmq	bmd	pmq	pmq	pmq	pmq	pmq	0.028	pmq	bmd	3.740	pmq	pmq
SW-MB	-	þ	pu	pu	ы	Б	Б	pu	pu	þ	P	P	þ	P	Ъ	ы
SW-MB	2	pmq	0.004	pmq	0.003	pmq	pmq	pmq	pmq	pmq	pmq	bmd	bmd	pmq	pmq	0.002
SW-MB	က	pmq	pmq	pmq	bmd	pmq	pmq	pmq	pmq	pmq	pmq	bmd	pmq	pmq	bmd	pmq
SW-MB	4	pmq	bmd	0.061	pmq	pmq	pmq	pmq	pmq	pmq	0.049	pmq	pmq	1.830	bmd	0.072
SW-MB	ည	pmq	bmd	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.021	pmq	pmq	pmq	pmq	0.014
SW-BYP	-	þ	pu	pu	Б	٦	Б	pu	P	ē	P	pu	pu	ē	ы	pu
SW-BYP	2	pmq	bmd	pmq	0.004	0.001	pmq	pmq	pmq	0.002						
SW-BYP	က	pmq	bmd	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
SW-BYP	4	pmq	pmq	0.057	pmq	pmq	pmq	pmq	pmq	pmq	0.047	pmq	pmq	pmq	0.138	0.093
SW-BYP	2	pmq	pmq	pmq	pmq	pmq	pmql	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
SW-PP	-	pu	pu	pu	p	P	p	р	p	p	p	Б	pu	pu	pu	pu
SW-PP	2	0.001	0.007	0.001	pmq	pmq	0.020	pmq	pmq	pmq	pmq	pmq	0.005	pmq	pmq	pmq
SW-PP	က	pmq	pmq	pmq	pmq	pmq	pmql	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
SW-PP	4	pmq	pmq	0.053	pmq	pmq	pmq	0.015	pmq	pmq	0.076	pmq	pmq	1.830	0.131	0.077
SW-PP	5	pmq	pmql	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.026	pmq	pmq	1.980	pmq	pmql
SW-AR	-	pu	pu	pu	Ъ	Pu	р	pu	p	P	p	pu	ри	Б	pu	pu
SW-AR	2	pmq	pmq	0.002	pmq	pmq	pmq	pmq	pmq	pmd	pmq	0.219	0.008	pmq	0.011	0.005
SW-AR	က	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
SW-AR	4	pmq	pmq	pmq	pmq	0.022	pmq	1.700	0.499	pmq						
SW-AR	5	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.027	pmq	pmq	1.160	pmq	pmq
SW-PR	_	þ	р	pu	ē	<u> </u>	p	Б	2	ē	p	p	ē	þ	Б	þ
SW-PR	2	0.001	pmq	0.010	pmq	pmq	0.024	0.005	pmq	pmq	pmq	0.277	0.005	pmq	0.020	0.003
SW-PR	က	pmq	pmq	pmq	pmql	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq
SW-PR	4	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	0.129	pmq	pmq	pmq	pmq	0.307	pmq
SW-PR	5	pmq	pmq	pmq	pmq	pmq	pmq	0.019	pmq	pmq	0.021	pmq	pmq	4.360	pmq	0.011
SW-Gulf Stream	-	рu	pu	рu	Б	P	Б	Pu	Б	٦	P	pu	Б	Б	Б	pu
SW-Gulf Stream	2	pmq	0.001	pmq	pmq	0.001	pmq	0.002	pmq	pmq	pmq	0.225	0.008	pmq	pmq	0.002
SW-Gulf Stream	က	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmq	pmql	pmd
SW-Gulf Stream	4	pmq	pmq	pmq	pmq	0.012	pmq	pmq	pmq	0.105	pmq	pmq	pmq	pmq	0.413	0.012
SW-Gulf Stream	5	bmdl	bmdi	pmq	bmd	pmd	pmq	pmq	pmq	pmd	pmq	pmq	pmq	pmq	bmd	pmd
[bmdl, below method detection	ction limit; nd, no data	_														

Appendix A-2. Surface water hydrochemistry results, Cont.

nd nd 0.012 0.075 0.108 0.195 0.845 nd 0.001 0.000 <th>Location ID</th> <th>Sampling Round</th> <th>(qdd)</th> <th>DOC (mg/L)</th> <th>TOC (mg/L)</th> <th>NO2- (mg/L)</th> <th>NO3- (mg/L)</th> <th>NH4+ (mg/L)</th> <th>DIN (mg/L)</th> <th>TSN (mg/L)</th> <th>TN (mg/L)</th> <th>SRP (mg/L)</th> <th>TSP (mg/L)</th> <th>TP (mg/L)</th> <th>Sol. SiO2 (mg/L)</th> <th>SO4 (mM)</th>	Location ID	Sampling Round	(qdd)	DOC (mg/L)	TOC (mg/L)	NO2- (mg/L)	NO3- (mg/L)	NH4+ (mg/L)	DIN (mg/L)	TSN (mg/L)	TN (mg/L)	SRP (mg/L)	TSP (mg/L)	TP (mg/L)	Sol. SiO2 (mg/L)	SO4 (mM)
1,000, 1,000,	SW-BPI		pu			0.012		1		0.842		0.000	0.000		5.590	2.0
1,150 1,15	SW-BPI	2	1.790	9.40	6.6	0.001	0.393	0.156	0.550	0.845	pu	0.001	0.004	Ъ	4.961	pu
1	SW-BPI	က	1.520	10.00	pu	0.023	0.283	0.243	0.549	0.760	рц	0.002	0.004	pu	5.932	pu
Second Color	SW-BPI	4	1.930	5.40	pu	0.033	0.417	2.625	3.075	3.144	ы	0.005	0.005	ы	2.203	pu
1	SW-BPI	2	2.890	6.27	ри	0.001	0.002	0.029	0.032	0.567	ы	0.011	0.014	ы	0.951	pu
2 2.190 6.90 7.4 0.002 0.450 0.101 0.553 0.303 nd 0.007 1 0.002 nd 3.334 nd 0.007 0.001 0.002 nd 3.334 nd 0.002 0.005 0.001 0.002 0.005 0.001 0.002 nd 0.003 0.005 0.005 0.005 0.000 0.002 0.003 0.001 0.002 0.003 0.001 0.002 0.003 0.000 0.002 0.003 0.000 0.002 0.003 0.000 0.002 0.003 0.000 0.002 0.003 0.000 0.002 0.003 0.000 0.002 0.003 0.000 0.002 0.003 0.000 0.002 0.003 0.000 0.002 0.003 0.000 0.002 0.003 0.000 0.002 0.003 0.000 0.002 0.003 0.000 0.002 0.003 0.000 0.002 0.003 0.000 0.002 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.000 0.003 0.000	SW-BKP	-	P	pu	рu	pu	p	Б	Б	ы	pu	pu	р	рu	рu	pu
3 2.150 5.30 nd 0.026 0.687 0.987 nd 0.005 nd 1.155 4 2.150 5.20 nd 0.005 0.071 0.017 0.010 0.012 0.010 5 3.400 3.83 nd 0.003 0.001 0.014 0.351 nd 0.002 0.001 0.014 0.015 0.014 0.015 0.014 0.015 0.014	SW-BKP	2	2.190	06.9	7.4	0.002	0.450	0.101	0.553	0.303	p	0.001	0.002	Б	3.144	pu
Section Sect	SW-BKP	က	2.010	7.30	pu	0.026	0.607	0.179	0.812	0.917	pu	0.007	0.007	pu	3.326	pu
5	SW-BKP	4	2.150	5.20	pu	0.026	0.570	0.089	0.685	0.965	pu	0.003	0.005	ы	1.155	pu
1	SW-BKP	2	3.400	3.83	pu	0.003	0.001	0.010	0.014	0.351	Б	0.010	0.012	pu	0.079	pu
2	SW-MB	_	pu	pu	pu	0.003	0.015	0.010	0.028	0.174	0.186	0.005	0.005	0.005	0.100	27.4
3 3310 2.40 nd 0.003 0.021 0.063 0.063 n.063 n.064 n.001 n.002 n.002 n.002 n.003 n.004 n.003 n.004 n.004 <td>SW-MB</td> <td>2</td> <td>3.110</td> <td>1.40</td> <td>1.3</td> <td>0.002</td> <td>0.118</td> <td>0.034</td> <td>0.154</td> <td>0.115</td> <td>pu</td> <td>0.004</td> <td>900.0</td> <td>Б</td> <td>0.630</td> <td>pu</td>	SW-MB	2	3.110	1.40	1.3	0.002	0.118	0.034	0.154	0.115	pu	0.004	900.0	Б	0.630	pu
Signature	SW-MB	က	3.310	2.40	pu	0.004	0.038	0.021	0.063	0.063	P	0.001	0.018	ы	0.000	þ
5 3.750 1.67 nd 0.004 0.005 0.035 0.332 nd 0.011 0.015 0.035 0.035 0.035 0.035 0.035 0.006 0.008 2 3.340 1.80 nd 0.004 0.035 0.016 0.035 0.055 nd 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.005 0.008 0.008 0.005 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.008 0.009 0.	SW-MB	4	2.590	2.40	рu	0.003	0.039	0.198	0.240	0.267	ы	0.071	0.071	Б	0.000	pu
1	SW-MB	5	3.750	1.67	pu	0.004	900.0	0.015	0.025	0.312	ы	0.011	0.013	p	0.106	ыд
2 3.340 1.80 1.8 0.002 0.018 0.029 0.055 nd 0.005 nd 0.005 3 3.340 1.80 1.8 0.004 0.005 0.005 0.055 nd 0.0045 nd 0.005 nd 0.005 0.005 nd 0.005 nd 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.014 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.000 0.005 0.005 0.000 0.005 0.005 0.000 0.005 0.005 0.000 0.005 0.005 0.000 0.005 0.005 0.000 0.005 0.004 0.005 0.000 0.005 0.004 0.005 0.000 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004	SW-BYP	_	P	pu	ы	0.003	0.017	0.015	0.035	0.156	0.176	0.003	0.005	900.0	0.080	28.9
3 33.20 branch 1.70 branch nd 0.004 branch 0.055 branch 0.055 branch nd 0.005 branch 0.005 branch 0.055 branch nd 0.000 branch nd 0.005 branch 0.005	SW-BYP	2	3.340	1.80	1.8	0.002	0.018	0.009	0.029	0.052	р	0.005	0.007	pu	0.058	pu
2 2.720 1.30 nd 0.002 0.011 0.1014 0.114 nd 0.055 0.053 nd 0.000 5 3.800 0.74 nd 0.004 0.000 0.005 0.007 0	SW-BYP	က	3.320	1.70	pu	0.004	0.035	0.016	0.055	0.055	pu	0.014	0.018	힏	0.000	pu
5 3.800 0.74 nd 0.004 0.001 0.005 0.376 nd 0.013 0.004 0.005 0.005 0.376 nd 0.006 0.001 0.005 0.007 0.005	SW-BYP	4	2.720	1.90	pu	0.002	0.011	0.101	0.114	0.114	pu	0.053	0.053	Б	0.000	pu
1	SW-BYP	5	3.800	0.74	ы	0.004	0.001	0.000	0.005	0.370	ы	0.013	0.016	ы	0.000	pu
2 3.540 1.50 1.7 0.002 0.000 0.004 nd 0.005 0.007 nd 0.005 3 3.160 2.40 nd 0.002 0.001 0.015 nd 0.002 0.007 nd 0.005 nd 0.000 0.001 0.001 0.005 nd 0.000 0.001 0.001 0.002 0.001 0.004 0.005 0.004 0.002 0.004 0.002 0.004 0.005	SW-PP	_	p	pu	pu	0.002	0.000	0.005	0.007	0.083	0.176	900.0	900.0	0.020	0.020	29.6
3 3.160 2.40 nd 0.002 0.015 0.015 nd 0.005 0.003 0.010 0.015 nd 0.002 0.000 0.000 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.004 0.002 0.004 0.002 0.004 0.004 0.005 0.004 0.004 0.005 0.004 0.004 0.005 0.004 0.004 0.004 0.005 0.004 0.004 0.005 0.004	SW-PP	2	3.540	1.50	1.7	0.002	0.000	0.002	0.004	0.004	P	0.005	0.007	P	0.142	pu
4 2.830 1.80 nd 0.002 0.003 0.007 0.012 0.076 nd 0.032 0.032 nd 0.000 5 3.840 1.33 nd 0.004 0.000 0.004 0.016 0.026 0.004 0.006 0.004 0.016 0.026 0.004 0.006 0.005 0.004 0.016 0.005 0.004 0.006 0.006 0.004 0.006 0.006 0.004 0.006 0.006 0.004 0.006 0.006 0.004 0.006 0.006 0.004 0.004 0.006 0.006 0.006 0.004 0.006 0.	SW-PP	ဇ	3.160	2.40	рu	0.002	0.003	0.010	0.015	0.015	ы	0.002	0.017	ы	0.000	pu
5 3.840 1.33 nd 0.004 0.000 0.004 0.198 nd 0.009 0.001 nd 0.004 0.005 0.006 0.005 0.001 0.005 0.004	SW-PP	4	2.830	1.80	ри	0.002	0.003	0.007	0.012	0.076	pu	0.032	0.032	р	0.000	pu
1	SW-PP	2	3.840	1.33	рu	0.004	0.000	0.000	0.004	0.198	Þ	0.009	0.014	пд	0.001	pu
2 4.150 1.00 0.99 0.0020 0.004 0.003 nd 0.005 0.007 nd 0.056 3 3.750 1.10 nd 0.002 0.004 0.008 0.008 nd 0.020 nd 0.006 nd 0.009 nd 0.005 nd 0.006 nd 0.009 nd 0.008 0.008 nd 0.009 nd 0.006 nd 0.009 nd 0.009 nd 0.006 nd 0.009 nd 0.008 nd 0.009 nd 0.009 nd 0.009 nd 0.009 0.009 0.004 0.004 0.004 0.009 0.009 0.004 0.004 0.004 0.004 0.009 0.009 0.004 </td <td>SW-AR</td> <td>-</td> <td>ы</td> <td>pu</td> <td>pu</td> <td>0.002</td> <td>0.000</td> <td>0.002</td> <td>0.004</td> <td>0.016</td> <td>0.026</td> <td>0.004</td> <td>0.005</td> <td>900.0</td> <td>0.030</td> <td>29.5</td>	SW-AR	-	ы	pu	pu	0.002	0.000	0.002	0.004	0.016	0.026	0.004	0.005	900.0	0.030	29.5
3 3.750 1.10 nd 0.002 0.004 0.008 0.008 nd 0.020 nd 0.005 nd 0.009 nd 0.009 nd 0.006 nd 0.009 nd 0.006 nd 0.004 nd 0.009 nd 0.005 nd 0.005 nd 0.005 nd 0.005 nd 0.009 nd 0.004 nd 0.005	SW-AR	2	4.150	1.00	6.0	0.002	0.000	0.002	0.004	0.003	Б	0.005	0.007	ы	0.056	pu
4 3.400 1.13 nd 0.002 0.001 0.005 0.005 nd 0.005 0.005 0.005 nd 0.005	SW-AR	က	3.750	1.10	ы	0.002	0.002	0.004	0.008	0.008	ы	0.020	0.020	ы	0.000	pu
5 3.640 1.36 nd 0.003 0.004 0.004 nd 0.015 nd 0.019 1 nd nd 0.002 0.000 0.004 0.004 0.005 0.005 0.005 0.009 2 4.200 0.90 1 0.002 0.003 0.004 0.016 0.005 0.005 0.005 0.006 3 3.640 1.10 nd 0.002 0.001 0.003 0.004 0.003 0.016 0.005 0.005 0.005 0.006 0.006 0.006 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004<	SW-AR	4	3.400	1.13	ъ	0.002	0.002	0.001	0.005	0.005	рu	0.004	0.004	рu	0.000	pu
1 nd nd nd 0.002 0.000 0.002 0.004 0.010 0.007 0.006 0.005 0.000 0.007 0.008 0.005 0.000 0.000 0.003 0.004 0.007 0.006 0.005 0.000 0.008 0.004 0.007 0.005 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.009 0.007 0.009 0.007 0.009 0.007 0.009 0.007 0.009 0.007 0.009 0.007 0.009 0.007 0.009 0.007 0.009 0.007 0.009 0.007 0.009 0.007 0.009 0.007 0.009 0.007 0.009 0.007 0.009 0.007 0.009 0.007 0.009 0.000 0.009 0.008 0.008 0.008 0.008 0.008 0.009 0.000 0.000 0.001 0.003 0.007 0.009 0.000 0.000 0.001 0.003 0.007 0.009 0.000 0.000 0.001 0.003 0.007 0.009 0.000 0.000 0.001 0.003 0.007 0.009 0.000 0.001 0.003 0.007 0.009 0.000 0.000 0.001 0	SW-AR	ည	3.640	1.36	pu	0.003	0.001	0.000	0.004	0.004	P P	0.015	0.015	Б	0.019	p
2 4.200 0.90 1 0.003 0.000 0.003 0.003 nd 0.005 0.007 nd 0.078 3 3.640 1.10 nd 0.002 0.001 0.001 0.005 0.003 nd 0.005 0.145 nd 0.007 4 3.640 1.04 nd 0.002 0.001 0.001 0.003 0.003 nd 0.002 0.145 nd 0.000 5 3.660 1.03 nd nd nd nd nd nd 0.017 5 4.160 nd nd nd 0.005 0.001 nd nd 0.005 nd 0.007 6 Stream 3.660 1.00 nd 0.001 0.001 0.008 0.008 nd 0.005 0.007 6 Stream 3.360 1.04 nd 0.002 0.001 0.001 0.004 0.004 0.004 0.005 0.001 0.008 n	SW-PR	-	pu	рu	рu	0.002	0.000	0.002	0.004	0.010	0.007	900.0	0.005	0.005	0.000	30.1
3 3.640 1.10 nd 0.002 0.003 0.011 0.016 0.016 nd 0.002 0.145 nd 0.000 0.000	SW-PR	2	4.200	06.0	_	0.003	0.000	0.000	0.003	0.003	р	0.005	0.007	2	0.078	pu
Stream 3.100 1.04 nd 0.002 0.001 0.005 0.003 nd 0.004 nd 0.001 0.005 0.003 nd 0.004 nd 0.000 0.001 0.005 0.087 nd 0.007 nd nd 0.017 fStream 3.860 1.00 nd 0.000<	SW-PR	က	3.640	1.10	pu	0.002	0.003	0.011	0.016	0.016	P	0.002	0.145	힏	0.000	pu
fStream 1 nd nd <th< td=""><td>SW-PR</td><td>4</td><td>3.100</td><td>1.04</td><td>рu</td><td>0.002</td><td>0.001</td><td>0.000</td><td>0.003</td><td>0.003</td><td>ы</td><td>0.003</td><td>0.004</td><td>5</td><td>0.000</td><td>pu</td></th<>	SW-PR	4	3.100	1.04	рu	0.002	0.001	0.000	0.003	0.003	ы	0.003	0.004	5	0.000	pu
1 nd	SW-PR	ည	3.660	1.03	р	0.004	0.000	0.001	0.005	0.087	힏	0.007	0.014	p	0.017	p
2 4.160 nd nd 0.003 0.000 0.000 nd 0.000 0.000 nd 0.000 0.000 nd 0.000 0.000 nd 0.000 0.001 nd 0.000 nd 0.000 nd 0.000 0.001 nd 0.000 n	SW-Gulf Stream	_	pu	p	p	5	p	p	5	P	ы	p D	þ	ē		р
3 3.660 1.00 nd 0.002 0.005 0.001 0.008 nd 0.003 0.008 nd 0.000 nd 0.000	SW-Gulf Stream	2	4.160	ы	р	0.003	0.000	0.000	0.003	Б	ы	0.005	0.007	Б	0.072	pu
4 3.360 1.04 nd 0.003 0.000 0.001 0.004 nd 0.007 0.008 nd 0.000	SW-Gulf Stream	က	3.660	1.00	p	0.002	0.005	0.001	0.008	0.008	Б	0.003	0.008	Б	0.000	pu
5 3.610 1.75 nd 0.003 0.000 0.018 0.021 0.217 nd 0.015 0.015 nd	SW-Gulf Stream	4	3.360	1.04	Ъ	0.003	0.000	0.001	0.004	0.004	P	0.007	0.008	р	0.000	pu
	SW-Gulf Stream		3.610	1.75	pu	0.003	0.000	0.018	0.021	0.217	pu	0.015	0.015	pu	0.052	pu

Appendix A-3. Groundwater results for wastewater compounds. Numbers (bold) below method detection limits (MDL; i.e. <5) were detected on the GC-MS but were reported as an estimated number. Values in ug/L (ppb).

Location ID	Location Name	Sample Round	Date	5-Methyl-1H-benzotriazole	Benzo[a]pyrene	Fluoranthene	Phenanthrene
G-3613	Waldin West	1	8/22/02	<2	<0.5	<0.5	<0.5
G-3613	Coconut Palm	2	6/23/03	<2	<0.5	<0.5	<0.5
G-3613	Coconut Palm	ო	9/22/03	~	<0.5	<0.5	<0.5
G-3613	Coconut Palm-West	4	12/17/03	~	<0.5	<0.5	<0.5
G-3613	Coconut Palm	2	3/31/04	<2	<0.5	<0.5	<0.5
GW-BPI-1A	Black Point Inshore -1A	-	8/22/02	~	<0.5	<0.5	<0.5
GW-BPI-1A	Black Point Inshore -1A	2	6/24/03	<2	<0.5	<0.5	<0.5
	Black Point Inshore -1A	8	9/24/03	<2	<0.5	<0.5	<0.5
	Black Point Inshore -1A	4	12/17/03	< 2	<0.5	<0.5	<0.5
GW-BPI-1A	Black Point Inshore -1A	2	3/31/04	~	<0.5	<0.5	<0.5
	Mid Bay -1B	-	8/22/02	< 2	<0.5	<0.5	<0.5
	Mid Bay -1B	2	6/24/03	<2	<0.5	<0.5	<0.5
GW-MB-1B	Mid Bay -1B	ო	9/24/03	<2	<0.5	<0.5	<0.5
GW-MB-1B	Mid Bay -1B	4	12/15/03	- <2	<0.5	<0.5	<0.5
GW-MB-1B	Mid Bay -1B	2	3/29/04	< 2	<0.5	<0.5	<0.5
GW-AR-1B	Alina's Reef -1B	_	8/20/02	< 2	<0.5	<0.5	<0.5
GW-AR-1B	Alina's Reef -1B	2	6/26/03	~	<0.5	<0.5	<0.5
GW-AR-1B	Alina's Reef -1B	က	9/23/03	<2	<0.5	<0.5	<0.5
GW-AR-1B	Alina's Reef -1B	4	1/14/04	<2	<0.5	<0.5	<0.5
GW-AR-1B	Alina's Reef -1B	ഹ	3/30/04	<2	<0.5	<0.5	<0.5
BLANK	Field Blank	-	8/22/02	<2	<0.5	<0.5	<0.5
BLANK	Field Blank	2	6/24/03	<2	<0.5	<0.5	<0.5
BLANK	Field Blank	က	9/24/03	<2	<0.5	<0.5	<0.5
BLANK	Field Blank	4	12/17/03	<2	<0.5	<0.5	<0.5
BLANK	Field Blank	5	3/31/04	<2	<0.5	<0.5	<0.5

Appendix A-3. Groundwater results for wastewater compounds. Numbers (bold) below method detection limits (MDL; i.e. <5) were detected on the GC-MS but were reported as an estimated number. Values in ug/L (ppb), Cont.

Location ID	Sample Round	Pyrene	4-Cumylphenol	4-n-Octylphenol	4-tert-Octylphenol	OPEO1 (octylphenol, monoethoxy-)
G-3613	1	<0.5	\	\	 	\ \ \
G-3613	2	<0.5	~	\		₹
G-3613	3	<0.5	₹		>	₹
G-3613	4	<0.5		∨	~	9.0
G-3613	5	<0.5		₹		₹
GW-BPI-1A	_	<0.5	₹	₹	>	₹
GW-BPI-1A	2	<0.5	\		>	▽
GW-BPI-1A	က	<0.5	₹		>	▽
GW-BPI-1A	4	<0.5	₹			0.7
GW-BPI-1A	5	<0.5	\			▽
GW-MB-1B	_	<0.5	₹	₩		₹
GW-MB-1B	2	<0.5	₹			▽
GW-MB-1B	က	<0.5	₹			₹
GW-MB-1B	4	<0.5	~		₹	9.0
GW-MB-1B	5	<0.5	\	~	₹	₹
GW-AR-1B	-	<0.5	₹	₹		₹
GW-AR-1B	2	<0.5	~		₹	₹
GW-AR-1B	3	<0.5	₹	₹	√	₹
GW-AR-1B	4	<0.5	\		√	₹
GW-AR-1B	5	<0.5	~	₹		₹
Field Blank	_	<0.5	^	⊽	⊽	₹
Field Blank	2	<0.5	\	⊽	⊽	₹
Field Blank	က	<0.5	\	⊽	⊽	₹
Field Blank	4	<0.5	\	⊽	₹	0.68
Field Blank	5	<0.5	<1	<1	<1	<1

Appendix A-3. Groundwater results for wastewater compounds. Numbers (bold) below method detection limits (MDL; i.e. <5) were detected on the GC-MS but were reported as an estimated number. Values in ug/L (ppb), Cont.

Location ID	Sample Round	ound OPEO2 (octylphenol, diethoxy-)	total, NP(para-nonylphenol)	total, NPEO2 (nonylphenol, diethoxy-)	Bisphenol A
G-3613	1	<1	8.7	<0.5	\ \
G-3613	2	₹	^	<0.5	√
G-3613	က	₹	<5	<0.5	₹
G-3613	4	₹	<5	<0.5	⊽
G-3613	2	₹	<5	<0.5	₹
GW-BPI-1A	_	₹	7.2	<0.5	₹
GW-BPI-1A	2	0.092	<5	<0.5	₹
GW-BPI-1A	က	₹	<5	<0.5	₹
GW-BPI-1A	4	₹	<5	<0.5	₹
GW-BPI-1A	2	₹	0.64	<0.5	₹
GW-MB-1B	_	₹	<5	<0.5	₹
GW-MB-1B	2	₹	<5	<0.5	0.25
GW-MB-1B	က	₹	<5	<0.5	₹
GW-MB-1B	4	₹	<5	<0.5	~
GW-MB-1B	2	₹	<5	<0.5	⊽
GW-AR-1B	_	₹	5.4	<0.5	₹
GW-AR-1B	2	₹	<5	<0.5	₹
GW-AR-1B	က	₹	<5	<0.5	⊽
GW-AR-1B	4	₹	<5	<0.5	₹
GW-AR-1B	2	₹	<5	<0.5	₹
BLANK	-	₹	<5	<0.5	₹
BLANK	2	₹	5.9	<0.5	₹
BLANK	က	₹	<5	<0.5	₹
BLANK	4	₹	1.4	<0.5	₹
BLANK	2	<1	0.84	<0.5	<1

Appendix A-3. Groundwater results for wastewater compounds. Numbers (bold) below method detection limits (MDL; i.e. <5) were detected on the GC-MS but were reported as an estimated number. Values in ug/L (ppb), Cont.

Location ID	Sample Round	Tri(2-butoxyethyl)-phosphate	Tri(dichloroisoprophyl) phosphate	Tributyl phosphate	1-Methylnaphthalene
G-3613	1	<0.5	<0.5	<0.5	<0.5
G-3613	2	<0.5	<0.5	<0.5	<0.5
G-3613	က	<0.5	<0.5	<0.5	<0.5
G-3613	4	<0.5	<0.5	<0.5	<0.5
G-3613	2	<0.5	<0.5	<0.5	<0.5
GW-BPI-1A	_	<0.5	<0.5	<0.5	<0.5
GW-BPI-1A	2	<0.5	<0.5	<0.5	<0.5
GW-BPI-1A	က	<0.5	<0.5	<0.5	<0.5
GW-BPI-1A	4	<0.5	<0.5	<0.5	<0.5
GW-BPI-1A	2	<0.5	<0.5	<0.5	<0.5
GW-MB-1B	_	<0.5	<0.5	<0.5	<0.5
GW-MB-1B	2	<0.5	<0.5	<0.5	<0.5
GW-MB-1B	က	<0.5	<0.5	<0.5	<0.5
GW-MB-1B	4	<0.5	<0.5	<0.5	<0.5
GW-MB-1B	2	<0.5	<0.5	<0.5	<0.5
GW-AR-1B	_	<0.5	<0.5	<0.5	<0.5
GW-AR-1B	2	<0.5	<0.5	<0.5	<0.5
GW-AR-1B	က	<0.5	<0.5	<0.5	<0.5
GW-AR-1B	4	0.15	<0.5	<0.5	<0.5
GW-AR-1B	2	<0.5	<0.5	<0.5	<0.5
Field Blank	_	<0.5	<0.5	<0.5	<0.5
Field Blank	2	<0.5	<0.5	<0.5	<0.5
Field Blank	က	<0.5	<0.5	<0.5	<0.5
Field Blank	4	<0.5	<0.5	<0.5	<0.5
Field Blank	5	<0.5	<0.5	<0.5	<0.5

Appendix A-3. Groundwater results for wastewater compounds. Numbers (bold) below method detection limits (MDL; i.e. <5) were detected on the GC-MS but were reported as an estimated number. Values in ug/L (ppb), Cont.

Location ID	Sample Round	2,6-Dimethylnaphthalene	2-Methylnaphthalene	Naphthalene	d-Limonene	Bromacil	Metalaxyl	Metolachlor	Prometon
G-3613	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
G-3613	2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
G-3613	က	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
G-3613	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
G-3613	2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.052	0.14
GW-BPI-1A	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-BPI-1A	2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-BPI-1A	က	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-BPI-1A	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-BPI-1A	2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-MB-1B	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-MB-1B	2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-MB-1B	က	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-MB-1B	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-MB-1B	2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-AR-1B	_	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-AR-1B	2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-AR-1B	က	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-AR-1B	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-AR-1B	2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Field Blank	_	0.14	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Field Blank	2	<0.5	<0.5	0.11	<0.5	<0.5	<0.5	<0.5	<0.5
Field Blank	က	<0.5	<0.5	0.079	<0.5	<0.5	<0.5	<0.5	<0.5
Field Blank	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Field Blank	2	<0.5	<0.5	0.036	<0.5	<0.5	<0.5	<0.5	<0.5

Appendix A-3. Groundwater results for wastewater compounds. Numbers (bold) below method detection limits (MDL; i.e. <5) were detected on the GC-MS but were reported as an estimated number. Values in ug/L (ppb), Cont.

Location ID	Sample Round	Carbazole	Carbaryl	Chlorpyrifos	Diazinon	Dichlorvos	Acetophenone	Anthraquinone	Benzophenone
G-3613	1	<0.5	 >	<0.5	<0.5	<1	<0.5	<0.5	<0.5
G-3613	2	<0.5	<u>^</u>	<0.5	<0.5	<u>۲</u>	0.1	<0.5	<0.5
G-3613	က	<0.5	⊽	<0.5	<0.5	₹	<0.5	<0.5	<0.5
G-3613	4	<0.5	~	<0.5	<0.5	۲	<0.5	<0.5	<0.5
G-3613	5	<0.5	₹	<0.5	<0.5	<u>~</u>	<0.5	<0.5	<0.5
GW-BPI-1A	_	<0.5	⊽	<0.5	<0.5	۲	<0.5	<0.5	<0.5
GW-BPI-1A	2	<0.5	√	<0.5	<0.5	₹	0.18	<0.5	<0.5
GW-BPI-1A	က	<0.5	~	<0.5	<0.5	₹	<0.5	<0.5	<0.5
GW-BPI-1A	4	<0.5	₹	<0.5	<0.5	۲	<0.5	<0.5	<0.5
GW-BPI-1A	5	<0.5		<0.5	<0.5	۲	<0.5	<0.5	<0.5
GW-MB-1B	_	<0.5	₹	<0.5	<0.5	₹	<0.5	<0.5	<0.5
GW-MB-1B	2	<0.5	⊽	<0.5	<0.5	₹	0.12	<0.5	<0.5
GW-MB-1B	က	<0.5	<u>~</u>	<0.5	<0.5	<u>^</u>	<0.5	<0.5	<0.5
GW-MB-1B	4	<0.5	<u>^</u>	<0.5	<0.5	₹	<0.5	<0.5	<0.5
GW-MB-1B	5	<0.5	₹	<0.5	<0.5	₹	<0.5	<0.5	<0.5
GW-AR-1B	-	<0.5	∨	<0.5	<0.5	₹	<0.5	<0.5	<0.5
GW-AR-1B	2	<0.5		<0.5	<0.5	₹	<0.5	<0.5	<0.5
GW-AR-1B	က	<0.5	<u>۲</u>	<0.5	<0.5	₹	<0.5	<0.5	<0.5
GW-AR-1B	4	<0.5	√	<0.5	<0.5	₹	<0.5	<0.5	<0.5
GW-AR-1B	2	<0.5	₹	<0.5	<0.5	₹	<0.5	<0.5	<0.5
Field Blank	-	<0.5	₹	<0.5	<0.5	₹	<0.5	<0.5	<0.5
Field Blank	2	<0.5	√	<0.5	<0.5	<u>۲</u>	3.9	<0.5	<0.5
Field Blank	က	<0.5	⊽	<0.5	<0.5	₹	7.1	<0.5	<0.5
Field Blank	4	<0.5	~	<0.5	<0.5	₹	4.2	<0.5	<0.5
Field Blank	5	<0.5	<1	<0.5	<0.5	~ 1	9	<0.5	0.023

Appendix A-3. Groundwater results for wastewater compounds. Numbers (bold) below method detection limits (MDL; i.e. <5) were detected on the GC-MS but were reported as an estimated number. Values in ug/L (ppb), Cont.

1,4-Dichlorobenzene	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.062	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
DEET (N,N-diethyl-meta-toluamide)	0.1	0.12	0.2	<0.5	0.015	0.04	0.18	0.14	<0.5	0.067	<0.5	0.12	0.33	<0.5	0.018	0.02	0.21	0.14	0.056	0.033	0.02	0.23	0.31	0.17	0.22
Cotinine	<1	₩	⊽	₹	₹	<u>~</u>	₹	₹	₹	₹	7	₹	₹	₹	₹	₹	<u>۲</u>	₹	₹	₹	₹	₹	₹	₹	۲
Camphor	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Caffeine	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BHA (3-tert-Butyl-4-hydroxyanisole)	<5>	<5	<5	^	<5	<5	<5	<5	<5	<5	<5	<5	<5	^	^	<5	^ 5	<5	<5	<5	<5	<5	<5	<5	<5
Sample Round	1	2	က	4	5	-	2	က	4	5	-	2	က	4	5	_	2	က	4	5	_	2	က	4	5
Location ID	G-3613	G-3613	G-3613	G-3613	G-3613	GW-BPI-1A	GW-BPI-1A	GW-BPI-1A	GW-BPI-1A	GW-BPI-1A	GW-MB-1B	GW-MB-1B	GW-MB-1B	GW-MB-1B	GW-MB-1B	GW-AR-1B	GW-AR-1B	GW-AR-1B	GW-AR-1B	GW-AR-1B	Field Blank				

Appendix A-3. Groundwater results for wastewater compounds. Numbers (bold) below method detection limits (MDL; i.e. <5) were detected on the GC-MS but were reported as an estimated number. Values in ug/L (ppb), Cont.

Location ID	Sample Round	Sample Round Galoxide, HHCB (hexahydrohexamethyl-	Indole	Isoborneol	Isoquinoline	Menthol	Methyl salicylate	Phenol
G-3613	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
G-3613	2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
G-3613	က	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.33
G-3613	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
G-3613	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.53
GW-BPI-1A	_	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-BPI-1A	2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-BPI-1A	က	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.47
GW-BPI-1A	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-BPI-1A	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.2
GW-MB-1B	_	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-MB-1B	2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-MB-1B	က	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.33
GW-MB-1B	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-MB-1B	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.33
GW-AR-1B	_	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-AR-1B	2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-AR-1B	က	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
GW-AR-1B	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.46
GW-AR-1B	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.23
Field Blank	_	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Field Blank	2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Field Blank	က	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.79
Field Blank	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.83
Field Blank	2	<0.5	<0.5	<0.5	<0.5	<0.5	0.034	0.53

Appendix A-3. Groundwater results for wastewater compounds. Numbers (bold) below method detection limits (MDL; i.e. <5) were detected on the GC-MS but were reported as an estimated number. Values in ug/L (ppb), Cont.

Tri(2-chloroethyl) phosphate	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Triethyl citrate (ethyl citrate)	9'0>	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Triclosan	L>	۲	₹	₹	⊽	₹	₹	7	₹	۲	۲	۲	۲	₹	₹	7	₹	₹	₹	۲	₹	⊽	⊽	₹	₹
Tonalide, AHTN (acetyl-hexamethyl-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Skatol	-<1	7	₹	7	<u>~</u>	₹	₹	₹	₹	₹	₹	7	₹	7	7	7	7	₹	7	₹	7	₹	~	~	₹
Sample Round	-	2	က	4	5	_	2	က	4	5	_	2	က	4	5	_	2	က	4	2	_	2	က	4	2
Location ID	G-3613	G-3613	G-3613	G-3613	G-3613	GW-BPI-1A	GW-BPI-1A	GW-BPI-1A	GW-BPI-1A	GW-BPI-1A	GW-MB-1B	GW-MB-1B	GW-MB-1B	GW-MB-1B	GW-MB-1B	GW-AR-1B	GW-AR-1B	GW-AR-1B	GW-AR-1B	GW-AR-1B	Field Blank				

Appendix A-3. Groundwater results for wastewater compounds. Numbers (bold) below method detection limits (MDL; i.e. <5) were detected on the GC-MS but were reported as an estimated number. Values in ug/L (ppb), Cont.

Equilenin	<5	<5	<5	^ 2	<5	<5	<5	<2 ~	<5	<5	<5	<5	<5	< 2	<5	<5	<5	<5	<5	<5	<5	^ 2	<5	^ 2	\$
Estrone	\$ >	<5	<5	~	\$	\$	\$	<5	0.4	^ 2	^ 2	\$	^	~	^	< 2	\$	~	\$	\$	^	~	~	\$	<5
Tetrachloroethylene	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cumene (isopropylbenzene)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Isophorone	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Triphenyl phosphate	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sample Round	1	2	က	4	5	_	2	က	4	5	,-	2	က	4	5	_	2	က	4	5	_	2	က	4	22
Location ID	G-3613	G-3613	G-3613	G-3613	G-3613	GW-BPI-1A	GW-BPI-1A	GW-BPI-1A	GW-BPI-1A	GW-BPI-1A	GW-MB-1B	GW-MB-1B	GW-MB-1B	GW-MB-1B	GW-MB-1B	GW-AR-1B	GW-AR-1B	GW-AR-1B	GW-AR-1B	GW-AR-1B	Field Blank				

Appendix A-3. Groundwater results for wastewater compounds. Numbers (bold) below method detection limits (MDL; i.e. <5) were detected on the GC-MS but were reported as an estimated number. Values in ug/L (ppb), Cont.

Location ID	Sample Round	17alpha-ethynyl estradiol	17beta-Estradiol	3beta-Coprostanol	beta-Sitosterol	beta-Stigmastanol	Cholesterol	Bromoform
G-3613	1	<5	<5	<2	<2	<2	<2	<0.5
G-3613	2	^	\$	\$	\$	\$	\$	<0.5
G-3613	က	<5	\$	\$	\$	\$	\$	<0.5
G-3613	4	<5	\$	\$	\$	42	\$	<0.5
G-3613	2	<5	\$	\$	7	\$	7	<0.5
GW-BPI-1A	_	<5	\$	~	\$	\$	\$	0.01
GW-BPI-1A	2	<5	\$	<2	\$	<2	\$	<0.5
GW-BPI-1A	က	<5	\$	\$	\$	<2	\$	0.044
GW-BPI-1A	4	<5	\$	\$	< ₂	<2	\$	<0.5
GW-BPI-1A	2	<5	\$	\$	\$	<2	\$	0.017
GW-MB-1B	_	<5	\$	\$	\$	\$	\$	<0.5
GW-MB-1B	2	^	\$	\$	\$	<2	\$	<0.5
GW-MB-1B	က	<5	\$	<2	\$	<2 <2	\$	0.11
GW-MB-1B	4	<5	\$	\$	\$	\$	\$	<0.5
GW-MB-1B	2	^	\$	\$	7	\$	\$	0.017
GW-AR-1B	_	<5	\$	\$	\$	42	\$	<0.5
GW-AR-1B	2	<5	\$	\$	\$	\$	\$	<0.5
GW-AR-1B	က	^ 2	\$	\$	\$	\$	\$	<0.5
GW-AR-1B	4	<5	\$	\$	\$	<2	~	<0.5
GW-AR-1B	2	<5	\$	\$	\$	\$	7	<0.5
Field Blank	-	<5	\$	\$	<2 <	\$	\$	0.03
Field Blank	2	<5	\$	\$	\$	\$	\$	<0.5
Field Blank	ო	<5	\$	\$	<2 <2	< 2	\$	<0.5
Field Blank	4	^	\$	\$	<2	\$	\$	<0.5
Field Blank	2	<5	<5	<2	<2	<2	<2	0.012

Appendix A-3. Groundwater results for wastewater compounds. Numbers (bold) below method detection limits (MDL; i.e. <5) were detected on the GC-MS but were reported as an estimated number. Values in ug/L (ppb), Cont.

ocation ID	Sample Round	Anthracene	para-Cresol	Pentachlorophenol
G-3613	1	<0.5	<1	<2
3-3613	2	<0.5	₹	<2
G-3613	က	<0.5	₹	<2
3-3613	4	<0.5	₹	<2
3-3613	5	<0.5	₹	<2
3W-BPI-1A	_	<0.5	₹	<2
GW-BPI-1A	2	<0.5	₹	<2
3W-BPI-1A	က	<0.5	₹	<2
GW-BPI-1A	4	<0.5	₹	<2
3W-BPI-1A	5	<0.5	₹	<2
GW-MB-1B	_	<0.5	₹	<2
GW-MB-1B	2	<0.5	₹	<2
GW-MB-1B	က	<0.5	₹	<2
3W-MB-1B	4	<0.5	₹	<2
GW-MB-1B	2	<0.5	0.052	<2
GW-AR-1B	~	<0.5	₹	<2
GW-AR-1B	2	<0.5	₹	~
GW-AR-1B	က	<0.5	₹	<2
GW-AR-1B	4	<0.5	₹	<2
GW-AR-1B	5	<0.5	₹	<2
Field Blank	-	<0.5	₹	<2
Blank	2	<0.5	₹	<2
Blank	က	<0.5	₹	<2
Blank	4	<0.5	₹	<2
Blank	5	<0.5	₹	<2

Appendix A-4. Wastewater compounds for surface-water sites. Numbers (bold) below method detection limits (MDL; i.e. <5) were detected on the GC-MS but were reported as an estimated number. Values in ug/L (ppb).

Location ID	Location ID Location Name	Sample Round	Date	Latitude (N)	Longitude (W)	5-Methyl-1H-benzotriazole	Benzo[a]pyrene	Fluoranthene
SW-BPI	Black Point Inshore	ļ	8/22/02	25.526	-80.330	<2	<0.5	<0.5
SW-BPI	Black Point Inshore	2	6/24/03	25.526	-80.330	<2	<0.5	<0.5
SW-BPI	Black Point Inshore	က	9/24/03	25.526	-80.330	<2	<0.5	<0.5
SW-BPI	Black Point Inshore	4	1/14/04	25.526	-80.330	~ 5	<0.5	<0.5
SW-BPI	Black Point Inshore	2	3/30/04	25.526	-80.330	<2	<0.5	<0.5
SW-Gulf Stream Gulf Stream	Gulf Stream	_		no sample	no sample	no sample	no sample	no sample
SW-Gulf Stream Gulf Stream	Gulf Stream	2	6/25/03	25.377	-80.132	. <5	<0.5	<0.5
SW-Gulf Stream Gulf Stream	Gulf Stream	ო	9/23/03	25.377	-80.132	<2	<0.5	<0.5
SW-Gulf Stream Gulf Stream	Gulf Stream	4	1/14/04	25.377	-80.132	<2	<0.5	<0.5
SW-Gulf Stream Gulf Stream	Gulf Stream	5	3/30/04	25.377	-80.132	~	<0.5	<0.5

Location ID Sample	Sample Round	Phenanthrene	Pyrene	4-Cumylphenol	4-n-Octylphenol	4-tert-Octylphenol	OPEO1 (octylphenol, monoethoxy-)
SW-BPI	1	<0.5	<0.5	\ \	<1	\>	V
SW-BPI	2	<0.5	<0.5	⊽	₹	⊽	₹
SW-BPI	က	<0.5	<0.5	₹	₹	⊽	₹
SW-BPI	4	<0.5	<0.5	⊽	₹	⊽	9.0
SW-BPI	2	<0.5	<0.5	₹	₹	⊽	٢
SW-Gulf Stream	-	no sample	no sample	no sample	no sample	no sample	no sample
SW-Gulf Stream	2	<0.5	<0.5		₹	⊽	. ₽
SW-Gulf Stream	က	<0.5	<0.5		₹		₹
SW-Gulf Stream	4	<0.5	<0.5		₹	₽	₹
SW-Gulf Stream	5	<0.5	<0.5	<1	<1	<1	<1

ocation ID	Sample Round	OPEO2 (octylphenol, diethoxy-)	total, NP(para-nonylphenol)	total, NPEO2 (nonylphenol, diethoxy-)	Bisphenol A
	1	1>	12	<0.5	<u>^</u>
	2	0.098	<5	<0.5	₹
	3	₹	<5	<0.5	₹
	4	₹	<5	<0.5	₹
SW-BPI	5	^	0.76	<0.5	₹
.eam	-	no sample	no sample	no sample	no sample
eam	2	. 1	<5	<0.5	· V
ream	က	^	<5	<0.5	₹
SW-Gulf Stream	4	^	<5	<0.5	₹
SW-Gulf Stream	5	^	<5	<0.5	₹

Appendix A-4. Wastewater compounds for surface-water sites. Numbers (bold) below method detection limits (MDL; i.e. <5) were detected on the GC-MS but were reported as an estimated number. Values in ug/L (ppb), Cont.

Location ID Sample Round	Tri(2-butoxyethyl)-phosphate	Tri(dichloroisoprophyl) phosphate	Tributyl phosphate	1-Methylnaphthalene
1	<0.5	<0.5	<0.5	<0.5
2	<0.5	<0.5	<0.5	0.25
က	<0.5	<0.5	<0.5	<0.5
4	<0.5	<0.5	<0.5	<0.5
5	<0.5	<0.5	<0.5	0.03
-	no sample	no sample	no sample	no sample
2	<0.5	<0.5	<0.5	<0.5
က	<0.5	<0.5	<0.5	<0.5
4	<0.5	<0.5	<0.5	<0.5
2	<0.5	<0.5	<0.5	<0.5

Location ID	Sample Round	2,6-Dimethylnaphthalene	2-Methylnaphthalene	Naphthalene	d-Limonene	Bromacil	Metalaxyl	Metolachlor	Prometon
SW-BPI	1	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
SW-BPI	2	0.047	0.5		<0.5	<0.5	<0.5	<0.5	<0.5
SW-BPI	က	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
SW-BPI	4	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
SW-BPI	2	<0.5	0.047		<0.5	<0.5	<0.5	<0.5	<0.5
SW-Gulf Stream	-	no sample	no sample		no sample	o sample	no sample	no sample	no sample
SW-Gulf Stream	2	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
SW-Gulf Stream	က	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SW-Gulf Stream	4	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
SW-Gulf Stream	2	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5

Location ID	Sample Round	Carbazole	Carbaryl	Chlorpyrifos	Diazinon	Dichlorvos	Acetophenone	Anthraquinone	Benzophenone
SW-BPI	1	<0.5	^	<0.5	<0.5	^	<0.5	<0.5	
SW-BPI	2	0.021	<u>۸</u>	<0.5	<0.5	۲	0.34	<0.5	
SW-BPI	က	<0.5	۲	<0.5	<0.5	₹	<0.5	<0.5	
SW-BPI	4	<0.5	<u>۲</u>	<0.5	<0.5	۲	<0.5	<0.5	
SW-BPI	5	<0.5	<u>۲</u>	<0.5		₹	0.11	<0.5	<0.5
SW-Gulf Stream	_	no sample	no sample	no sample	č	no sample	no sample	no sample	
SW-Gulf Stream	2	<0.5	7	<0.5	<0.5	▽	0.1	<0.5	
SW-Gulf Stream	က	<0.5	۲	<0.5		۲	<0.5	<0.5	
SW-Gulf Stream	4	<0.5	<u>۲</u>	<0.5	<0.5	٧	0.13	<0.5	
SW-Gulf Stream	5	<0.5	۲۷	<0.5	<0.5	^	<0.5	<0.5	

Appendix A-4. Wastewater compounds for surface-water sites. Numbers (bold) below method detection limits (MDL; i.e. <5) were detected on the GC-MS but were reported as an estimated number. Values in ug/L (ppb), Cont.

Location ID	Sample Round	BHA (3-tert-Butyl-4-hydroxyanisole)	Caffeine	Camphor	Cotinine	DEET (N,N-diethyl-meta-toluamide)
SW-BPI	1	<5	<0.5	<0.5	1 >	0.07
SW-BPI	2	\$	<0.5	<0.5	₹	0.59
SW-BPI	က	^	<0.5	<0.5	₹	0.15
SW-BPI	4	^	<0.5	<0.5	₹	60:0
SW-BPI	2	<5	0.044	<0.5	₹	0.067
SW-Gulf Stream	-	no sample	no sample	2	no sample	
SW-Gulf Stream	2	- - - - - -	<0.5		√	0.16
SW-Gulf Stream	က	<5	<0.5	<0.5	√	0.22
SW-Gulf Stream	4	^	<0.5		<u>\</u>	990.0
SW-Gulf Stream	2	\$	<0.5		₹	0.027

Location ID Sample	Sample Round	1,4-Dichlorobenzene	Galoxide, HHCB (hexahydrohexamethyl-	Indole	Isoborneol	Isoquinoline	Menthol
SW-BPI	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SW-BPI	2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SW-BPI	က	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SW-BPI	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SW-BPI	2	<0.5	<0.5	<0.5	<0.5	<0.5	
SW-Gulf Stream	-	no sample	no sample	no sample r	io samp	no sample	9
SW-Gulf Stream	2	<0.5	<0.5	<0.5	<0.5	<0.5	
SW-Gulf Stream	က	<0.5	<0.5	<0.5		<0.5	<0.5
SW-Gulf Stream	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SW-Gulf Stream	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

SW-BPI 1	und Methyl salicylate	Phenol	Skatol	Tonalide, AHTN (acetyl-hexamethyl-	Triclosan	Triethyl citrate (ethyl citrate)
SW-BPI	<0.5	<0.5	<1	<0.5	\ \	<0.5
1	<0.5	<0.5	₽	<0.5	∇	<0.5
SW-BPI 3	<0.5	<0.5	₽	<0.5	<u>^</u>	<0.5
SW-BPI 4	<0.5	<0.5	<u>.</u>	<0.5	<u>^</u>	<0.5
SW-BPI 5	<0.5	0.19	<u>^</u>	<0.5	<u>~</u>	<0.5
SW-Gulf Stream 1	no sample	no sample	no sample		no sample	
SW-Gulf Stream 2	<0.5	0.64	₹	<0,5	<u>~</u>	<0.5
SW-Gulf Stream 3	<0.5	<0.5	<u>.</u>	<0.5	<u>~</u>	<0.5
SW-Gulf Stream 4	<0.5	<0.5	۲-	<0.5	₹	<0.5
SW-Gulf Stream 5	<0.5	0.2	^	<0.5	^	<0.5

Appendix A-4. Wastewater compounds for surface-water sites. Numbers (bold) below method detection limits (MDL; i.e. <5) were detected on the GC-MS but were reported as an estimated number. Values in ug/L (ppb), Cont.

1	ı					e.				
Estrone	<5	<5	<5	<5	<5	no sample	<5>	<5	<5	<5
Tetrachloroethylene	<0.5	<0.5	<0.5	<0.5	<0.5	no sample	<0.5	<0.5	<0.5	<0.5
Cumene (isopropylbenzene)	<0.5	0.044	<0.5	<0.5				<0.5	<0.5	<0.5
Isophorone	<0.5	<0.5	<0.5	<0.5	<0.5	no sample	<0.5	<0.5	<0.5	<0.5
Triphenyl phosphate	<0.5	<0.5	<0.5	<0.5	<0.5	no sample	<0.5	<0.5	<0.5	<0.5
Tri(2-chloroethyl) phosphate	<0.5	<0.5	<0.5	<0.5	<0.5	no sample	<0.5	<0.5	<0.5	<0.5
Sample Round	1	2	က	4	5	_	2	က	4	2
Location ID	SW-BPI	SW-BPI	SW-BPI	SW-BPI	SW-BPI	SW-Gulf Stream				

Location ID Sample	Sample Round	Equilenin	17alpha-ethynyl estradiol	17beta-Estradiol	3beta-Coprostanol	beta-Sitosterol	beta-Stigmastanol
SW-BPI	1	\$>	<u> </u>	<5	<2	<2	<2
SW-BPI	2	<5	<5	\$	\$	\$	\$
SW-BPI	က	<5	<5	\$	\$	\$	<2
SW-BPI	4	<5	<5	\$	\$	\$	^
SW-BPI	2	<5	<5	\$	\$	\$	\$
SW-Gulf Stream	_	no sample	no sample	no sample	no sample	no sample	no sample
SW-Gulf Stream	2	<5	<5	\$	\$	\$	· 5
SW-Gulf Stream	က	<5	<5	~	\$	\$	<2
SW-Gulf Stream	4	<5	<5	\$	\$	\$	<2
SW-Gulf Stream	5	<5	<5	\$	\$	\$	<2

Location ID	Sample Round	Cholesterol	Bromoform	Anthracene	para-Cresol	Pentachlorophenol
SW-BPI	1	<2	<0.5	<0.5	1 >	<2
SW-BPI	2	\$	0.1	<0.5	0.14	<2
SW-BPI	က	\$	0.87	<0.5	₹	<2
SW-BPI	4	\$	0.22	<0.5	∀	<2
SW-BPI	2	\$	<0.5	<0.5	0.05	\$
SW-Gulf Stream	-	no sample	no sample	no sample	no sample	no sample
SW-Gulf Stream	2	\$	<0.5		⊽	<2>
SW-Gulf Stream	ო	\$	<0.5	<0.5	₹	~
SW-Gulf Stream	4	\$	<0.5	<0.5		<2
SW-Gulf Stream	5	<2	<0.5	<0.5	<1	<2

Appendix A-5. Radium and radon isotope data for August 2002 and June 2003.

Station Name	Sample	Latitude	Longitude	Date	²²³ Ra	²²⁴ Ra	^{223/224} Ra	²²² Rn
	Location	N	w		(dpm/100L)	(dpm/100L)	(dpm/100L)	(dpm/L)
Waldin West	G-3615 GW	25.500	-80.386	Aug-02	ns	ns	ns	940.00
Coconut Palm	G-3613 GW	25.537	-80.365	Jun-03	183.9539	701.1389	0.2624	ns
Black Point Inshore	BPI-1A GW	25.526	-80.330	Aug-02	87.4246	174.9620	0.4997	100.00
Black Point Inshore	BPI-1A GW	25.526	-80.330	Jun-03	146.2576	282.2963	0.5181	ns
Black Point	BkP-1A GW	25.526	-80.324	Aug-02	ns	ns	ns	ns
Black Point	BkP-1A GW	25.526	-80.324	Jun-03	205.6494	442.1031	0.4652	ns
Mid Bay -1B	MB-1B GW	25.484	-80.267	Aug-02	134.2317	372.9585	0.3599	310.00
Mid Bay -1B	MB-1B GW	25.484	-80.267	Jun-03	59.7298	95.5452	0.6251	ns
Billy's Point -1A	ByP-1A GW	25.428	-80.212	Aug-02	148.7208	396.0486	0.3755	ns
Billy's Point -1A	ByP-1A GW	25.428	-80.212	Jun-03	350.9743	871.6261	0.4027	ns
Petrel Point -1A	PP-1A GW	25.415	-80.204	Aug-02	171.2744	424.6765	0.4033	230.00
Petrel Point -1A	PP-1A GW	25.415	-80.204	Jun-03	243.3771	239.0409	1.0181	ns
Alina's Reef -1A	AR-1A GW	25.386	-80.163	Aug-02	12.1096	204.1080	0.0593	390.00
Alina's Reef -1A	AR-1A GW	25.386	-80.163	Jun-03	223.4845	147.9601	1.5104	ns
Pacific Reef -1A	PR-1A GW	25.371	-80.142	Aug-02	128.0227	155.2491	0.8246	250.00
Pacific Reef -1A	PR-1A GW	25.371	-80.142	Jun-03	114.7479	49.4262	2.3216	ns
Black Point Inshore	BPI-SW	25.526	-80.330	Aug-02	2.5790	3.4504	0.7475	ns
Black Point Inshore	BPI-SW	25.526	-80.330	Jun-03	17.0601	42.3151	0.4032	ns
Black Point	BkP-SW	25.526	-80.324	Aug-02	ns	ns	ns	ns
Black Point	BkP-SW	25.526	-80.324	Jun-03	8.9059	13.4043	0.6644	ns
Mid Bay	MB-SW	25.484	-80.267	Aug-02	6.4150	14.1839	0.4523	ns
Mid Bay	MB-SW	25.484	-80.267	Jun-03	7.9897	6.0647	1.3174	ns
Billy's Point	ByP-SW	25.428	-80.212	Aug-02	0.1990	1.6618	0.1197	ns
Billy's Point	ByP-SW	25.428	-80.212	Jun-03	3.5900	9.5784	0.3748	ns
Petrel Point	PP-SW	25.415	-80.204	Aug-02	0.8638	3.7956	0.2276	ns
Petrel Point	PP-SW	25.415	-80.204	Jun-03	1.1018	4.3289	0.2545	ns
Alina's Reef	AR-SW	25.386	-80.163	Aug-02	ns	ns	ns	ns
Alina's Reef	AR-SW	25.386	-80.163	Jun-03	0.4784	9.0291	0.0530	ns
Pacific Reef	PR-SW	25.371	-80.142	Aug-02	0.0426	1.0562	0.0404	ns
Pacific Reef	PR-SW	25.371	-80.142	Jun-03	0.1066	1.1217	0.0950	ns

note: half lives are: 223 Ra = 11.4 days; 224 Ra = 3.7 days; 222 Rn = 3.8 days; ns = no sample

Appendix A-6. Strontium-isotope and salinity data for August 2002 and March 2003 sampling rounds.

						August 20021	0021		March 2004 ²	0042
Location Name	GW/SW Sample Location ID Latitude Longitude	Location ID	Latitude	Longitude	Salinity	87/86 Sr	% SdErr 87/86	Salinity	87/86 Sr	% SdErr 87/86
Black Point Inshore	MS	BPI-SW	25.526	-80.330	2.8	0.709130	8000.0	31.12	su	SU
Mid Bay	SW	MB-SW	25.484	-80.267	36.0	0.709162	0.0010	36.30	SU	SU
Billy's Point	SW	SW-BYP	25.428	-80.212	35.1	0.709163	0.0007	37.10	SU	SU
Petrel Point	SW	PP-SW	25.415	-80.204	36.2	0.709171	0.0008	36.10	SU	SU
Alina's Reef	SW	AR-SW	25.386	-80.163	36.0	0.709162	6000.0	35.70	SU	NS
Pacific Reef	SW	PR-SW	25.371	-80.142	35.6	0.709147	6000.0	35.60	SU	NS
G-3613	GW	GW-3615	25.537	-80.365	5.0	0.709115	0.0010	4.00	0.709155	0.00000
Black Point Inshore	GW	BPI-1A-GW	25.526	-80.330	21.2	0.709161	6000.0	20.00	0.709166	60000000
Mid Bay	GW	MB-1A-GW	25.484	-80.267	36.0	0.709147	0.0010	35.60	0.709157	0.00000
Billy's Point	GW	BYP-1A-GW	25.428	-80.212	34.3	0.709166	0.000	35.50	Su	SU
Petrel Point	GW	PP-1B-GW	25.415	-80.204	34.3	0.709152	0.0009	33.90	0.709172	0.000007
Alina's Reef	GW	AR-1A-GW	25.386	-80.163	36.1	0.709152	6000.0	35.60	0.709160	0.000007
Pacific Reef	GW	PR-1A-GW	25.371	-80.142	34.9	0.709139	0.0008	34.80	SU	SU
Elliott Key (UFA)	GW	EKH-UFA	25.451	-80.196	us	ns	Su	2.00	0.708236	0.000010

'Analyses by University of Florida, Analyses by Geochron-Krueger Laboratory; ns=no sample for 87786Sr; units of 87786Sr is permil

Appendix B1 – B3 Hydrochemistry Graphs

Appendix B1. Field parameters for ground and surface waters in BNP.

Appendix B1, Field parameters for ground and surface waters in BNP.

Appendix B1. Field parameters for ground and surface waters in BNP.

Appendix B1. Field parameters for ground and surface waters in BNP.

Appendix B1. Field parameters for ground and surface waters in BNP.

Appendix B1. Field parameters for ground and surface waters in BNP.

Appendix B1. Field parameters for ground and surface waters in BNP.

Appendix B1. Field parameters for ground and surface waters in BNP

Appendix B2. Ground- and surface-water nutrient species within BNP

Appendix B2. Ground- and surface-water nutrient species within BNP.

Appendix B2. Ground- and surface-water nutrient species within BNP.

Appendix B2. Ground- and surface-water nutrient species within BNP

Appendix B2. Ground- and surface-water nutrient species within BNP.

Appendix B2. Ground- and surface-water nutrient species within BNP

Appendix B2. Ground- and surface-water nutrient species within BNP

Appendix B2. Ground- and surface-water nutrient species within BNP.

Appendix B2. Ground- and surface-water nutrient species within BNP

Appendix B2. Ground- and surface-water nutrient species within BNP.

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996)

Appendix B3. Trace elements for ground and surface waters in BNP Common seawater values from Millero (1996).

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996).

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996).

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996)

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996).

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996).

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996).

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996).

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996).

Appendix B3 Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996)

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996).

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996).

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996).

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996)

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996).

Appendix B3 Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996).

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996)

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996).

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996).

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996).

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996).

Appendix B3. Trace elements for ground and surface waters in BNP Common seawater values from Millero (1996).

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996).

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996)

Appendix B3. Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996).

Appendix B3 Trace elements for ground and surface waters in BNP. Common seawater values from Millero (1996).

Appendix B3. Trace elements for ground and surface waters in BNP, Common seawater values from Millero (1996)

Appendix C Lithologic Well Logs

Classification of Carbonate Rocks According to Depositional Texture (after Dunham, 1962) OFPOSITIONAL TEXTURE RECOGNIZABLE DEPOSITIONAL TEXTURE NOT RECOGNIZABLE Original components were bound together Original Components not Bound Together Ouring Deposition Contains mud during deposition. Crystalline Carbonate (particles of clay and fine silt size) Lacks mud as shown by intergrown skeletal matter. and is Mud-supported Grain-supported lamination contrary to gravity grain-supported (Subdivide according to classifications designed to bear on physical texture or diagenesis) More than Less than or sediment-floored cavities that 10 percent grains 10 percent grains are roofed over by organic matter and are too large to be interstices. Boundstone Mudstone Wackestone Packstone Grainstone

FORM NO.:	PROJECT NO.	:
PRINCIPLE INVESTIGATOR: R.B. Hal	How	surface pathways for pollutant transpor ayne Bay
COMPANY U.S. GEOLOGICAL SURVEY	LOCATION: PLACE: Black Point Inshore DATE BEGAN - June 2, 2002 DATE HNISHED - June 2, 2002	
TOTAL DEPTH: 17 ft ELEVATION (WATER DEPTH): -1 ft		S: LAT 25 31.551' LONG80 19.825'
DRILLING SYSTEM: NQ2 WIRELIN HYDRAULIC	NE SYSTEM, ROTARY DRILL	REMARKS: Located ~100 yards off mangrove shoreline south of Black Point Landfill.
	ATE: July 12, 2002 DATE: July 15, 2001	OF DIACK POINT LANGHII.

Depth	43	Cores	Description - (e.g., lithology, color, fossils, sed. structures, other remarks)
top	_	(0 () () () () () () () () ()	peat, 2-3 inches thick lammated crust, caliche tail-grey oolthe limestone, shell debris, calcite crystals throughout core grainstone (gs)
1 m 5	<u> </u>		gs, rubble (Recovery 0-5ft: 60%)
<u>3 m</u> 10	<u>u</u> —	, , , , , , , , , , , , , , , , , , , ,	8', dense packstone (ps), gray, brown material lining vings $gs, shells and shell debris in vings $$ (Recovery 5-10fi: 30\%)$ ps$
<u>4 m</u>	<u>—</u>		dense ps. gastropods molds, shell imprints caliebe, brown with ~5% rounded to subrounded quartz grains
<u>5 m</u>		, , , , , , , , , , , , , , , , , , ,	(Recovery 10-15ft: 30%) gs, rubble, cream, ~30% quartz, <i>Halumeda</i> or Millioluds(?) sandstone, cemented quartz (~50%), few shells & <i>Halumeda</i> /Milliolids(?) TD 17ft (Recovery 15-17ft: 80%)
<u>6 m</u> <u>20</u>	<u>u</u> —		
<u>7 m</u>			
8 m			

		VV ISILID	LOG	
FORM NO:		PROJECT N	O.:	
PRINCIPLE INVE	STIGATOR. E.A	China	ells installed to help in calibrating r nt USGS Miami is developing	nodel
COMPANY. U.S. SUF TOTAL DEPTH: ELEVATION (W	20 ft	LOCATION: 1	PLACE - Black Point-1A DATE BEGAN - May 10, 1996 DATE ENISHED - May 10, 1996 GPS : LAT - 25 31.572' LONG80 19.457'	
DRILLING SYST			REMARKS: Located offshore of	Black
DRILLING 5151		ELINE SYSTEM, LIC ROTARY DRIL		
LOGGED BY: C		DATE: March 22, 20 DATE: March 22, 20	· ·	for a
Depth ø	Cores	Description - (e.g., lith	nology, color, fossils, sed_structures, other re	marks)
top		grainetona (ge) tun u hite	c, skeletal debris, solution features infilled with gr	ray coment
		friable gs. becoming very		ay cement
<u></u>		mane gs. occoming very		nery 0-5ft 30%
<u>5 ft</u> 2 m				
3 m 10 ft —		grades into cream-tan det moldic porosity, large vig recrystallized bryozoa an		overy 5-10ft 409
4 m	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0		Reco	overy 10-15ft: 40
5 m	# 5		iscan shells (floatstone?), serpulid worm tubes and	
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	white-cream color gs. she		
6 m 20 h		FID 20ñ	Rece	overy 15-20ft: 83
7 m				
2511				
8 m				

WELL LOG PROJECT NO. 9472-32032 FORM NO.: TITLE: Subsurface pathways for pollutant transport: PRINCIPLE INVESTIGATOR. R.B. Halley Biscayne Bay LOCATION PLACE - Mid-Bay 1A COMPANY: U.S. GEOLOGICAL SURVEY DATE BEGAN - June 9, 2001 DATE FINISHED - June 10, 2001 TOTAL DEPTIL: 45 ft GPS: LAT - 25.4838 ELEVATION (WATER DEPTID: -8 ft LONG. - -80,2668 REMARKS. Monitoring well installed, NQ2 WIRELINE SYSTEM, HYDRAULIC ROTARY DRILL DRILLING SYSTEM used 2-inch pvc with 5-ft well screen. Depth to base of screen is 33' 2" LOGGED BY: Christopher Reich DATE: July 3, 2001 PLOTTED BY: Christopher Reich DATE: July 6, 2001

Depti	h	Ø	Cores	Description - (e.g., lithology, color, fossils, sed. structures, c	ther remarks)
top		_			
				lammated cahche, black organic material grainstone (gs), fan-white, skeletal debris	
			200	chalky gs. recrystallized shell material	
<u>1 m</u>		—			
	<u>5 fi</u>		پَرْتِ	5ft, black brown caliche rubble	Recovery 0-5ft: 30%
2 m				Ŕz	
			200	Packstone (ps) with gs infilled vugs	
			# -	Calcareous worm tubes, bryozon, large molluses (oysler)	
3 m	10 ft	—	~ ~ ~	recrystallized bryozoa	Recovery 5-10ft: 20%
			**	brown, laminated caliche ps (rubble)	
4 m			~ ~ ~		
			20-0	numerous shells in ps riibble	Recovery 10-15ft 30%
-	<u>15 fi</u>		****	black angular sub-angular clast, brown caliche (possible origin is fr	om 11ft)
<u>5 m</u>		_		ps, chalky white	
			- 1	gs, burrow features lined with linie mud	
6 m				rubble, gs	Recovery 15-20ft: 30%
<u>6 m</u> _	<u> 20 11</u> -				Activity 15-24ji. Sirio
			1 . ^	gray Innestone with root traces, dense mudstone (ms) ps	
<u>7 m</u>				gray ms & white, chalky ps	
	25 II		~ ~		Recovery 20-25/t 30%
				254.30	
<u>8 m</u>				no recovery, 2.5 to 3th covern	

Depth ø	Cores	Description - (e.g., lithology, color, fossils, sed. structure	s, other remarks)
<u>8 m</u>		no recovery	
9 m 30 ft		ps. gray-brown, small dissolution features coquina dense brown ms. small phosphate sand grains	Recovery 25-30ft 5%
<u>10 m</u>			
<u>35 fi</u>		brown-white ms	Recovery 30-35ft. 20%
<u>11 m</u>		rubble, ms	
12 m 40 ft		coquina piece	Recovery 35-40ft; < 5%
<u>13 m</u>	~	dense ms, micro tubules (root structure)	
<u>45 tt</u>	0 0	brown ms ps. shell debris TD 45ft	Recovery 40-45ft. 5%
<u>14 m</u>			
_15 m _50 ft			
<u>16 m</u>			
<u>.55.11</u>			
<u>17 m</u>			
<u>19 m</u>			

FORM NO.:	PROJECT NO.:	9472-32032	
PRINCIPEL: INVESTIGATOR: R.B. Hal	THILE Subsurface pathways for pollutant transport Biscayne Bay		
COMPANY: U.S. GEOLOGICAL SURVEY TOTAL DEPTH: 55 ft ELEVATION (WATER DEPTH): -8 ft	LOCATION PLACE - Mid-Bay 1B DATE BEGAN - June 11,2001 DATE FINISHED - June 12,2001 GPS: LAT 25,4838 LONG80,2668		
LOGGED BY: Christopher Reich D	NE SYSTEM, ROTARY DRILL DATH: July 3, 2001 DATH: July 17, 2001	REMARKS: Monitoring well installed, used 2-inch pvc with 5-ft well screen. Depth to base of screen is 41' 8"	

Depth	ø	Cores	Description - (e.g., lithology, color, fossils, sed, structures, o	ther remarks)
top	_	~ · ·	grainstone (gs), black organic material on surface tan-white gs with shells gs ps black lithoelasts, shell debris	
1 m 5 ft 2 m	_	# 0 0	gs. numerous shells (recrystallized) laminated ealiche ps. rubble, bryozoa, molluses	Recovery 0-5ft 95%
3 m 10 ft	_	# 0	gastropod coquina, bryozoans,	Recovery 5-10ft 30%
<u>4 m</u>		#	brown lithoclasts laminated caliche dense ps rubble, black pebbles lithoclasts	
<u>15 ft</u>	_		numerous shells, molluses lammated cathche dense ps, tan-white with brown gs infilling vugs	Recovery 10-15ft 30%
<u>6 m</u> <u>20 ft</u>			chalky white ps. rubble	Recovery 15-20/1. 90%
<u>7 m</u>	_		gray to gray-brown limestone, geopetal structures, calcric formation gastropods	m small vugs.
25 tt		0.00	ps, numerous shells and shell imprints coquina	Recovery 20-25ft 93%

Depth ø	Cores	Description - (e.g., fithology, color, fossils, sed. su	cuctures, other remarks)
9 m 30 ft		dense brown ms. shell debris is recrystallized	Recovery 25-30fr × 5%
_35ft		slightly more chalky, mottled brown-white ps/ms burrow structures, very small	Recovery 30-35ft : 5%
12 m 40 ft		gs, white chalky with brown ps in vugs coquina, cemented shell material, friable, rubbly, bryozoa	Recovery 35-40ft 60%
13 m		gray ps, white gs infilling, root structures	Recovery 40-45ft 30%
14 m		ps, brown to tan, quartz grams ($\langle 40^{\rm o} _{\rm o} \rangle$ calcareons worm tubes	15 516 50/
15 m 50 ft		rubble 80% cemented quartz	Recovery 45-50fi - 5%
		quartz sand, unconsolidated with molluscan fragments TD 55ft	Recovery 50-55ft < 5%
<u>18 m</u> <u>60 ft</u> ——			
<u>19 m</u>			

WELL LOG FORM NO. PROJECT NO. 9472-32032 TITLE: Subsurface pathways for pollutant transport: PRINCIPLE INVESTIGATOR: R.B. Halley Biscayne Bay LOCATION: PLACE - Mid-Bay 1C COMPANY: U.S. GEOLOGICAL SURVEY DATE BEGAN - June 13, 2001 DATE FINISHED - June 13, 2001 TOTAL DEPTH: 15 ft GPS: LAT. - 25,4838 ELEVATION (WATER DEPTH). -8 ft LONG. - -80.2668 REMARKS: Monitoring well installed, DRILLING SYSTEM: NO2 WIRELINE SYSTEM. HYDRAULIC ROTARY DRILL used 2-inch pvc with 5-ft well screen. Depth to base of screen is 15' LOGGED BY: Christopher Reich DATE July 2, 2001 PLOTTED BY: Christopher Reich DATE: July 17, 2001 Depth Cores Description - (e.g., lithology, color, fossils, sed. structures, other remarks) top blackened crust, highly bored white grainstone (gs), shells, angular black lithoclasts tan gs/packstone (ps), shell debris some recrystallized <u>1 m</u> gray ps, recrystallized Recovery 0-5ft 100% 5 ft laminated brown caliche ps with mollinscan shells, rubbly down to 9ft gs ps, white 2 m shells, shell imprints, bryozoa, gastropods, calcareous worm tubes 3 m 10 ft Recovery 5-10ft, 50% coquina, cemented large molluscan shells brown black angular lithoclasts ps. dense, gs (tan) mfilling vugs gs. chalky, fnable, vuggy, gray-brown caliche m vugs $4 \, \mathrm{m}$ dense ps, tan with brown ps gs mfilling tight zone from 13-15ft, shell debns, recrystallized, calcareous worm tubes, black angular 15 ft mercase in shell material at base of core Recovery 10-15ft 95% TD 150 <u>5 m</u> <u>6 m</u> 20 ft <u>7 m</u> 25 It 8 m

WELL LOG PROTECT NO - 9472-32032 FORM NO.: TILLE Subsurface pathways for pollutant transport: PRINCIPLE INVESTIGATOR: R.B. Halley Biscayne Bay LOCATION: PLACE: Billy's Point 1A COMPANY U.S. GEOLOGICAL SURVEY DATE BEGAN - June 6, 2001 DATE FINISHED - June 7, 2001 TOTAL DEPTH: 20 ft GPS: LAT. - 25.4279 ELEVATION (WATER DEPTH): ~2 ft LONG. - -80.2124 REMARKS: Monitoring well installed, DRILLING SYSTEM: NO2 WIRELINE SYSTEM, used 2-inch pvc with 5-ft HYDRAULIC ROTARY DRILL well screen. Most offshore well. Depth to base of screen LOGGED BY: Christopher Reich DATE: July 2, 2001 is 21' 6" PLOTTED BY: Christopher Reich DATE: July 6, 2001 Depth Cores Description - (e.g., lithology, color, fossils, sed. structures, other remarks) top tan-white grainstone(gs), gray interstitial sediments gs/packstone(ps) 1 m friable material in vugs (shell debris) coquina, gs matrix, gastropods Recovery 0-5ft 100% 5 ft bryozoa in gs 2 m laminated caliche crust ps, solution features filled with caliche gs. vuggy, tan, fine sediments in vugs Recovery 5-10ft: 100% 3 m 10 ft brown lithoclasts in ps, quartz (~20%) 4 m grade from ps to quartz calcarerute (>50% quartz grams), cross bedded(?) Recovery 10-15ft: 40% 15 It 5 m TD 20ft Recovery 15-20ft: 20% 6 m 20 ft _ <u>7 m</u> 25 10 $8\,\mathrm{m}$

WELL LOG FORM NO. PROJECT NO. 9472-32032 TITLE: Subsurface pathways for pollutant transport: PRINCIPLE INVESTIGATOR: R.B. Halley Biscavne Bay LOCATION PLACE - Billy's Point 1B COMPANY: U.S. GEOLOGICAL SURVEY DATE BEGAN - June 8, 2001 DATE FINISHED - June 9, 2001 TOTAL DEPTH 22 ft GPS: LAT. - 25.4279 ELEVATION (WATER DEPTH): -2 ft LONG. - -80,2124 NQ2 WIRELINE SYSTEM, HYDRAULIC ROTARY DRILL REMARKS: Monitoring well installed. DRILLING SYSTEM: used 2-inch pvc with 5-ft well screen. Most offshore well. Depth to base of screen LOGGED BY: Christopher Reich DATE: July 2, 2001 is ~6' PLOTTED BY: Christopher Reich DATE: July 18, 2001 Depth Cores Description - (e.g., lithology, color, fossils, sed. structures, other remarks) top ~3 inches of surface sediment/turtle grass ps, brown-gray, shell material gastropods, burrows infilled/lined with mud $\perp m$ <u>5 ft</u> Recovery 0-5ft: 100% coquina, gs matrix 2 m

 $8\,\mathrm{m}$

FORM NO	ı	PROJECT NO.:	9472-32032
PRINCIPLE INVESTIGATOR: R.B. Hal	lley		irface pathways for pollutant transport yne Bay
COMPANY: U.S. GEOLOGICAL SURVEY TOTAL DEPTH: 45 ft ELEVATION (WATER DEPTH): -2 ft	LOG	DAT DAT	ACE - Petrel Point 1A TEBEGAN - June 5, 2001 TEHNISHED - June 6, 2001 S - LAT - 25.415 LONG80.2036
DRILLING SYSTEM: NQ2 WIRELINE SYSTEM, HYDRAULIC ROTARY DRILL			REMARKS: Monitoring well installed, used 2-inch pvc with 5-ft well screen. Depth to base
		June 29, 2001 July 18, 2001	of screen is 42'

Depth	şi	Cores	Description - (e.g., lithology, color, fossils, sed. structures, other remarks)
top			Montastrea annularis, pholad bormgs Colpophyllia sp. skeletal debris brozoga
l m			grainstone(gs), white with brown skeletal infilling M. anumbaris, calcareous worm tubes, pholads
<u>1 m</u> _5ft			vuggy gs-packstone(ps), recrystallized shells Recovery 0-5ft 100% AL anniharis, pholad borings
2 m			gs. yellow material (calcite) in vugs
		6 000000000000000000000000000000000000	eoquina with brown caliche mudstone (ms), AL anumbaris, blackened grains
3 m 10 ft	_		laminated ealiehe crust on top of M. anunlaris which has been recrystallized and somewhat leached ps. M. anunlaris fragments Recovery 5-10ft 60% white-brown ps
			M. annularis, heavily leached along annular bands (recrystallized)
<u>4 m</u>			yellow-brown calcite (?) appears in yugs (similar to that found at 6R)
<u>15 ft</u>			Recovery 10-15ft 60% white chalky gs, rubble At animalous, slightly recrystallized in gs matrix
<u>5 m</u>	—	. •	or transcription (Corystallized in garmanix
<i>(</i>			rubble gs, white, yellow (at times almost black) calcite in vugs (19ft to 23ft) Recovery 15-20ft: 100%
<u>6 m</u> <u>20 ft</u>),),),),),),),),),),),),),)	
<u>7 m</u>	_	, () () () () () () () () () () () () ()	
2511			AL annularis tubble
<u>8 m</u>		,0,0	gs, white-gray, shell debris

Petrel Point 1A

Depth ø	Cores	Description - (e.g., lithology, color, fossils, sed. structu	res, other remarks)
<u>8 m</u>	2000		
		M annularis, recrystallized	
9	- 6		Recovery 25-30ft 30%
9 m 30 ft	0,0	gs AL annularis, slightly recrystallized leached, pholad borings fi	lled with gs
10 m	0 7	molluscan shell (Spondylus) in gs, shells recrystallized	
<u>.35 fi</u>	000	M. cavernosa, leached-recrystallized	Recovery 30-35ft 100%
		coquina	
<u>11 m</u>		Colpophyllia sp AL annularis, pholads infilled with lime mud	
12 m 40 ft		Diplorta sp. rubble ps. white-grav. 40% quartz grains	Recovery 35-40ft: 30%
<u></u>	0	ps. gray, coquina deposit, all shells leached, imprints and seco possible unconformity-brown ealitche with 40% quartz in ps	
<u>13 m</u>	0.0		
<u>45 ft</u>		coquina (80% shells, cemented with quartz some of which as TD 45ft	e black) Recovery 40-45ft 30%
<u>14 m</u>			
15 m 50 ft —			
<u>55 fi</u>			
<u>17 m</u>			
18 m 60 ft ——			

WELL LOG FORM NO PROJECT NO.: 9472-32032 TITLE: Subsurface pathways for pollutant transport: PRINCIPLE INVESTIGATOR R.B. Halley Biscayne Bay LOCATION: PLACE: Petrel Point 1B COMPANY: U.S. GEOLOGICAL SURVEY DATE BEGAN - June 6, 2001 DATE FINISHED - June 6, 2001 TOTAL DEPTH. 20 ft GPS: LAT. - 25,415 ELEVATION (WATER DEPTH): -2 ft LONG - -80.2036 REMARKS: Monitoring well installed, NO2 WIRELINE SYSTEM, DRILLING SYSTEM HYDRAULIC ROTARY DRILL used 2-inch pvc with 5-ft well screen. Depth to base LOGGED BY: Christopher Reich DATE: June 29, 2001 of screen is 20'6" PLOTTED BY: Christopher Reich DATE: July 18, 2001 Depth Description - (e.g., lithology, color, fossils, sed. structures, other remarks) top grainstone (gs), white-tan vuggy <u>1 m</u> <u>5 ft</u> Recovery 0-5ft: 80% yellowish material in vugs of gs (5-9ft) $2 \, \mathrm{m}$ Recovery 5-10ft. 80% packstone (ps), Montastrea sp. shells 3 m 10 ft Montastrea leached & recrystallized in ps matrix, shell material Colpophyllia, leached recrystallized $_{\rm 4m}$ 15 ft Recovery 10-15ft. 80% gs, white, yellowish calcite in vugs <u>5 m</u> Montastrea sp. recrystallized, pholads 300 Recovery 15-20ft 10% <u>6 m</u> 20 ft. TD 20ft 7 m _25 ft

 $8\,\mathrm{m}$

FORM NO	PROJECT NO.:	9472-32032	
PRINCIPLE INVESTIGATOR: R.B. Hal	ley Subsurface pathways for pollutant transport Biscayne Bay		
COMPANY: U.S. GEOLOGICAL SURVEY TOTAL DEPTH: 60 ft ELEVATION (WATER DEPTH): -9 ft	DA' DA'	CE - Alina's Reef 1A FE BEGAN - June 14,2001 FE ENISHED - June 15,2001 FE LAT - 25.3862 LONG80.1629	
DRILLING SYSTEM: NQ2 WIRELING HYDRAULIC	REMARKS: Monitoring wells installed, used 1-inch pvc with 5-ft well screen. Multi-depth		
•	DATE: June 29, 2001 DATE: July 19, 2001	nested well site. Well A is taller (60ft) than Well B (32ft).	

Depth Cores Description - (e.g., lithology, color, fossils, sed. structures, other remarks) top Holocene reef deposit--*Montastrea annularis* corals with pholad borings and pholad shells $\S^{14}\text{C}$ sample ARTA $\langle q \rangle^3$ inches from top=1796 yBP, corrected \S Homatrema (red) rubble M. annularis, skeletal debris, bryozoa <u>1 m</u> large oyster (SpondyIns?). Homatrema, interstial mud and skeletal debris Recovery 0-5ft 70% Diplorar sp. numerous pholad borings shells-fibrous organic material (tan-brown) in pholad borings with lime mud <u>5 lì</u> owings with fine into viegey grainstone (gs), some large with interstial mid, shells, *Halimeda*, bryozoa, calcarous worm tubes <u>2 m</u> M cavernosa 6 Recovery 5-10ft: 60% 3 m 10 ft numerous pholad borings, worm tubes, Homatrema, black organic fibrous material {\frac{11}{3}C sample \text{ARIB} \circ \text{if the from top=2997 yBP, corrected}} $4\,\mathrm{m}$ <u> 15 ft</u> <u>5 m</u> no recovery-unconsolidated lime mud and sand 6 m 20 ft -

<u>7 m</u>

 $8\,\mathrm{m}$

25 11

Depth	Ø	Cores	Description - (e.g., lithology, color, fossils, sed. structure	s, other remarks)
<u>8 m</u>	_		no recovery	
9 m 30 ft				
10 m		. Y.; . &.	tan mindstone (ms), chalky, caliche lithoclasts (some blackened ai brown caliche, root traces, dessication cracks (2)	ngular), quartz sand (<10%)
<u>_35 ft</u>		500	shelt material debns	Recovery 30-35ft 40%
<u>11 m</u> _	_	, , ,	ıns rubble	
12 m 40 ft	_			
<u>13 m</u>	_		grading into chalky packstone (ps) with lime mild in vigs	
<u>45 ft</u>				Recovery 35-45ft < 5%
<u>14 m</u>	_			
15 m 50.6 -				Recovery 45-50ft = 5%
<u> 50 ft</u>			fnable, chalky ms	. ,
16 m				
<u>.55 f</u> t			shell debris material	Recovery 50-55ft < 5%
<u>17 m</u>			ps. cream-tan, rubble	
18 m 60 ft	_		TD 60H	Recovery 55-60ft < 5%
<u>19 m</u>	_			

WELL LOG FORM NO. PROJECT NO. 9472-32032 TITLE Subsurface pathways for pollutant transport: PRINCIPLE INVESTIGATOR: R.B. Halley Biscayne Bay LOCATION PLACE - Alina's Reef 1C COMPANY: U.S. GEOLOGICAL SURVEY DATE BEGAN - June 16, 2001 DATE FINISHED - June 16, 2001 TOTAL DEPTH: 13 ft GPS: LAT - 25,3862 ELEVATION (WATER DEPTID: -9 ft LONG. - -80.1629 NQ2 WIRELINE SYSTEM, HYDRAULIC ROTARY DRILL REMARKS. Monitoring well installed, DRILLING SYSTEM used 1-inch pvc with 5-ft well screen. Well site is ~20ft SE of Alina's Reef 1A LOGGED BY: Christopher Reich DATE: June 28, 2001 well nest. Screen set at ~12ft PLOTTED BY: Christopher Reich DATE: July 18, 2001 below subsurface. Depth Cores Description - (e.g., lithology, color, fossils, sed structures, other remarks) top Grainstone (gs)/packstone (ps), Homatrema, shelf debris, interstitial sediment & mud Montastrea annularis, pholad bornigs Spondylus 1 m Recovery 0-5ft 30% <u>5 ft</u> M. annularis, pholad borings, shell debris Colpophyllia sp M. annularis, vigs contain shell debris, Halimeda 2 m Colpophyllia sp with intersected layers of gray-white lime mud Recovery 5-10ft: 90% 3 m 10 ft organic fibrous material in vugs, skeletal gs with mud infilling vugs large pholad in gs midstone (ms) becoming very middy, gs with mid lining walls of core Recovery 10-13ft 90% TD 130 $4 \, \mathrm{m}$ 1511 <u>5 m</u> 6 m 20 ft

<u>7 m</u>

 $8\,\mathrm{m}$

2511

FORM NO.:	PROJECT NO :	0172 22022	
TOKA NO		PROJECT NO.: 9472-32032	
PRINCIPLE INVESTIGATOR: R.B. Hal	TITLE Subsurface pathways for pollutant transport: Biscayne Bay		
COMPANY: U.S. GEOLOGICAL	LOCATION: PLACE - Pacific Reef		
SURVEY	DATE BEGAN - May 30, 2002 DATE HNISHED - June 1, 2002		
TOTAL DEPTII. 42 ft	GPS: LAT 25° 22.241		
ELEVATION (WATER DEPTH) -12'	LONG80° 08.539		
DRILLING SYSTEM. NQ2 WIRELIN HYDRAULIC	REALARKS: Well site located ~50 yards south of structure at Pacific Reef. Two 1-inch-diameter wells in same borehole.		
LOGGED BY: Christopher Reich D			

Pacific Reef

Depth	Ø	Cores	Description - (e.g., lithology, color, lossils, sed_structures, other remarks)
<u>8 m</u>			chalky and friable gs in coral vugs Diploria sp infilled with gs and lime mod, bryozoa and shell debris in vugs
9 m 30 ft		(C)	.1 cervicorus
<u>10 m</u>		1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	${\cal M}$ annularis, growth interrupted by ps (lime mud) within a 1-ft section caliche crust
<u>35 fi</u>		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	gs. bryozou M. annularıs
11 m		(,, (, (, (, (, (, (, (, (, (, (, (, (,	
<u>12 m</u> <u>40 ft</u> -			rubbly white ps. coral pieces white eneristing coralline algae(*) Al. annularis
<u>13 m</u>	_		TD 42ft
<u>45 ft</u>			
<u>14 m</u>			
<u>15 m</u> 50 ft	_		
<u>16 m</u>			
<u>.55 ft</u>			
<u>17 m</u>			
<u>18 m</u> <u>60 ft</u>			
<u>19 m</u>			

As the nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; preserving the environmental and cultural values of our national parks and historical places; and providing for the enjoyment of life through outdoor recreation. The department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people by encouraging stewardship and citizen participation in their care. The department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

BISC D-289

