CO 456 Fall 2024 Lecture 1 (Wednesday September 4)

Part I: Strategic games

1 Introduction to strategic games

1.1 Prisoner's dilemma

Game show setting. 2 players, \$10, Each decide "share" or "steal"

- Both share ⇒ both get \$5.
- One share, one steal > steal player gets \$10, shore player gets \$0.
- · Both steal = both get \$0.1.

Scrategic game: a player's benefit depends on their decisions and other players' decisions.

Best way to play prisoner's dilemma?

thay steal: Regardless of the other player's move, it is more beneficial to play steal than to play share.

Opponent plays steal: we get 0.1 for steal, 0 for share.
Opponent plays share: We get (0 for steal, 5 for share.

This is a "strictly dominant" strategy. (Rare.)

[Asile: This does not maximize "social welfare", cotal benefit of all players.]

1.2 Strategic game settings

Definition: strategic game. A strategic game is defined by specifying a set $N = \{1,...,n\}$ of players. For each player i.e., there is a set of strategies S: to play, and a utility function $U::S_1 \times S_2 \times ... \times S_n \to |R|$. (Benefit of player i given the strategies played by all players.)

Example with prisoner's dilemma.

2 players
$$N = \{1,2\}$$
. Strategles $S_1 = S_2 = \{\text{share, steal}\}$
 U_1, U_2 utility functions, e.g. $U_1(\text{steal, share}) = 10$
Summarize Using a table:

Plays P2 plays P1 gets

Assumptions about strategic games.

- 1 All players are rational and selfish (maximize own utility)
- 2) All players have knowledge of all game parameters.
- 3) All players make one move Simultaneously.

Definition: strategy profile. If player i plays strategy $S_i \in S_i$, then the strategy profile is the vector $S = (S_1, ..., S_n) \in S_1 \times ... \times S_n$. Player i gcts $U_i(S)$ in utility.

1.3 Bach or Stravinsky?

Two players want to go to a concert. Player 1 likes Bach, player 2 likes Stravinsky, but they both prefer to be with each other.

		P2	
		Bach	Stravinsky
P1	Bach	2,1	0,0
	Stravinsky	0,0	1,2

No dominant strategy.
Look for strategy profiles that
are move likely to happen.

In both cases, neither player gets higher utility by Switching Strategy. These are stable states called Narh equilibria.

2 Nash equilibrium

Basic concept. Looking for strategy profiles where no player is incentivized to switch their strategy. (Their utility cannot improve by switching.)

(Slightly wonky) Notations. Let $S = S_1 \times \cdots \times S_n$. Set of all strategy profiles. Let S_{-i} be the set of all strategy profiles excluding S_i . (Drop S_i from $S_1 \times \cdots \times S_n$.)

If $s \in S$, then $s_{-i} \in S_{-i}$ is the profile obtained by dropping s_{i-1} . If player i switches their strategy from S_i to S_i , then the new strategy profile is denoted $(s_i', s_{-i}) \in S$.

Definition: Nash equilibrium.

A strategy profile $S^* \in S$ is a <u>Nash equilibrium</u> if $u_i(S^*) \ge u_i(S_i^*, S_{-i}^*)$ for all $S_i^! \in S_i$, for all players $i \in N$.

[For all players, their utility does not increase when only they switch strategies.]