Вынужденные колебания в электрическом контуре*

Иван Едигарьев, Московский Физико-Технический Институт Факультет Общей и Прикладной Физики, 526т

Цель работы: исследование вынужденных колебаний и процессов их установления.

В работе используются: генератор звуковой частоты, осциллограф, вольтметр, частотомер, ёмкость, индуктивность, магазин сопротивлений, универсальный мост.

В работе исследуются колебания, возникающие в электрическом колебательном контуре под воздействием внешней ЭДС, гармонически изменяющейся во времени.

При подключении к контуру внешнего источника (рис. 1) в нём возникают колебания, которые можно представить как суперпозицию двух синусоид (см. В.52): первая — с частотой собственных колебаний контура ω и амплитудой, экспоненциально убывающей со временем; вторая — с частотой внешнего источника Ω и постоянной амплитудой. Со временем собственные колебания затухают, и в контуре устанавливаются вынужденные колебания. Амплитуда этих колебаний максимальна при совпадении частоты Ω внешнего сигнала с собственной частотой контура ω_0 . Это явление называют резонансом.

Зависимость амплитуды установившихся колебаний от частоты внешнего напряжения носит название резонансной кривой (рис. В.8).

Рис. 1. Последовательный колебательный контур

I. РЕЗОНАНСНАЯ КРИВАЯ КОЛЕБАТЕЛЬНОГО КОНТУРА

Для экспериментального исследования резонансной кривой тока в последовательном колебательном контуре (рис. 1) можно снять зависимость амплитуды напряжения на резисторе R от частоты генератора (при постоянной амплитуде выходного напряжения генератора). Но импеданс этого контура включает в себя выходной импеданс генератора. Мы должны быть уверены, что выходной импеданс генератора много меньше импеданса самого контура и не влияет на процессы, происходящие в контуре.

Для устранения этого влияния можно использовать схему, представленную на рис. 2: синусоидальный сигнал с генератора подаётся на параллельный колебательный контур через небольшую разделительную ёмкость С1. Напряжение с ёмкости контура С поступает на вход осциллографа.

Зависимость амплитуды этого напряжения от частоты генератора будет практически совпадать с резонансной кривой для последовательного контура, если импедансы возбуждающей и измеряющей цепей намного превосходят импеданс самого контура вблизи резонанса $Z_{\rm pes} \approx L/(RC) = Q/(\Omega C)$. Ёмкость конденсатора C_1 выбирается настолько малой, что его импеданс $(Z_{C_1} = 1/(\Omega C_1))$ в рабочем диапазоне частот много больше импеданса контура, поэтому в цепи генератора течёт ток практически с постоянной амплитудой, а колебательный контур выполняет роль нагрузочного сопротивления, которое в свою очередь зависит от частоты.

А так как сопротивление $Z_{\rm pes}$ параллельного контура в резонансе максимально, то и напряжение на ёмкости C (неизменный ток, умноженный на максимальное сопротивление) тоже максимально при резонансе. Входное сопротивление осциллографа достаточно велико: $R_{\rm so} \approx 1~{\rm MOm}$.

Таким образом, при выполнении условий:

$$Z_{C_1} = \frac{1}{\Omega C_1} \gg |Z_{\text{pes}}| = \frac{Q}{\Omega C}, \quad R_{\text{so}} \gg \frac{Q}{\Omega C}$$
 (1)

Рис. 2. Схема установки для исследования вынужденных колебаний

и при условии, что действительная часть импеданса катушки много меньше её мнимой части, резонансная кривая в нашем контуре будет выглядеть так же, как в последовательном: максимум амплитуды при резонансе. Ширина резонансной кривой определяет важную характеристику контура — ∂ обротность [см. (В.57)].

II. ПРОЦЕССЫ УСТАНОВЛЕНИЯ И ЗАТУХАНИЯ КОЛЕБАНИЙ В КОНТУРЕ

Добротность контура может быть определена и другими способами, например, по скорости нарастания амплитуды вынужденных колебаний при резонансе или по скорости затухания свободных колебаний.

Рис. 3. Нарастание и затухание вынужденных колебаний

Нарастание и затухание колебаний (рис. 3) можно наблюдать на экране осциллографа, если на контур подаются цуги — отрезки синусоиды, разделённые интервалами, в течение которых сигнал отсутствует. Чем выше добротность, тем медленнее нарастают и медленнее затухают колебания в контуре. Количественные оценки можно сделать, если определить логарифмический декремент затухания по скорости нарастания или затухания колебаний [см. (В.30) и (В.73)]. В условиях резонанса огибающая затухающих колебаний — это перевёрнутая огибающая нарастающего участка. При расчёте логарифмического декремента по затуханию нет необходимости использовать амплитуду установившихся колебаний U_0 , которая в контуре с высокой добротностью иногда не успевает установиться за время продолжительности цуга.

ІІІ. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Схема установки для исследования вынужденных колебаний приведена на рис. 4. Колебательный контур состоит из ёмкости C=0,1 мк Φ , индуктивности L=100 м Γ н и переменного сопротивления R.

Синусоидальное напряжение от звукового генератора про ходит через частотомер, позволяющий измерять рабочую частоту с высокой точностью. В корпус частотомера вмонтирован генератор цугов — электронное реле, разрезающее синусоиду на периодически повторяющиеся цуги — отрезки синусоиды, содержащие 32 или 40 периодов колебаний.

Рис. 4. Схема экспериментальной установки для исследования вынужденных колебаний

После частотомера через небольшую ёмкость $C_1 \approx 600$ пк Φ сигнал поступает на клеммы, смонтированные на отдельной панельке. При подключении контура к клеммам «(земля)» и «Непр» на контур подаётся непрерывный сигнал — синусоида; если контур подключён к клеммам «(земля)» и «Цуги» — на контур поступают отрезки синусоиды.

Для наблюдения за процессом колебаний напряжение с ёмкости подаётся на вход осциллографа. Чтобы картина на экране была устойчивой, частота развёртки осциллографа принудительно синхронизуется с частотой повторения цугов. Для этого на генератор развёртки ЭО подаются следующие с частотой повторения цугов управляющие импульсы, которые вырабатываются в блоке электронного реле (клемма «Синхр», смон- тированная на панельке). Для измерений напряжения на ёмкости используется электронный вольтметр.

IV. ЗАДАНИЕ

В работе предлагается при двух значениях сопротивления магазина (R=0 и $100~{\rm Om}$) исследовать резонансные кривые и определить по ним добротность контура; затем рассчитать добротность, определив логарифмический декремент затухания при нарастании и при затухании колебаний.

Подробно правила выполнения работы изложены в ДОПОЛНИТЕЛЬНОМ ОПИСАНИИ, расположенном на установке.

- 1. Соберите схему по рис
. 4 и подготовьте приборы к работе.
- 2. Установите на магазине индуктивностей L=100 мГн и рассчитайте резонансную частоту контура по формуле $\nu_0=1/(2\pi\sqrt{LC})$.
- 3. Исследуйте резонансные кривые контура $[U_C = f(\nu)]$ для сопротивлений R=0 и R=100 Ом.
- 4. Определите добротность контура по нарастанию и затуханию колебаний для R=0 и R=100 Ом, для этого переключите контур на вход «Цуги» и установите резонансную частоту.
- 5. Сместите частоту генератора с резонансного значения и получите на экране картину биений. Зарисуйте и объясните её.
- 6. Измерьте активное сопротивление R_L магазина индуктивностей с помощью моста E7-8.

Обработка результатов.

1. Постройте на одном графике резонансные кривые в координатах $U/U_0=f(\nu/\nu_0),$ где U_0 — напряжение при резонансной частоте $\nu_0.$

Определите добротность по формуле (В.57). Сравните теоретическое и экспериментальное значения резонансной частоты.

- 2. Рассчитайте добротность контура по скорости нарастания и затухания колебаний (см. (B.30), (B.31) и (B.73)).
- 3. Рассчитайте теоретическое значение добротности через параметры контура L, C и R (см. (B.28)).
- 4. Сведите результаты определения Q в таблицу. 5. Оцените погрешности измерений и сравните результаты расчётов Q.

V. ОБРАБОТКА ИЗМЕРЕНИЙ

1. Посмотрим на графики резонансных кривых в координатах $U/U_0=f(\nu/\nu_0)$. Измерения проводились так, что значению ν_0 соответствует измерение $U_0=10$ дел.

Теперь определим добротность для двух значений R. Построим графики для этих значений и обозначим линию уровня соответствующую значению $U=U_0/\sqrt{2}$.

Далее, вероятно, более правильным методом является построение нелинейной модели и минимизация функционала ошибки, с помощью этого метода можно получить оценку на значение добротности исключительно из параметров модели. Однако в работе предлагается другой подход, а именно: линейно интерполируем резонансную кривую на всём промежутке измерений, найдём пересечение с заранее обозначенной линией уровня и найдём значение ширины резонанса на уровне $U_0/\sqrt{2}$. Оценим ошибку измеренной величины таким способом. Результат занесём в итоговую таблицу.

Далее проведём анализ скорости нарастания и затухания колебаний. По предложенным в описании формулам вычислим по три значения для 4 серий измерений, усредним и оценим ошибку.

$$\Theta^{\rm up} = (0.11 \pm 0.01)$$

$$\Theta^{\text{down}} = (0.09 \pm 0.01)$$

$$\Theta_{\rm R}^{\rm up} = (0.32 \pm 0.02)$$

$$\Theta_{R}^{\rm down} = (0.34 \pm 0.01)$$

Параллельно рассчитаем теоретическое значение добротности через параметры контура $L,\ C$ и R. Итого:

// Данная лаба была доделана в оффлайн режиме. Сорян за мою ленность и тупость.

