ABOUT BERNOULLI'S NUMBERS

Prof. Mihàly Bencze Department of Mathematics Áprily Lajos College Brașov, Romania

Florentin Smarandache, Ph D
Full Professor
Chair of Department of Math & Sciences
University of New Mexico
200 College Road
Gallup, NM 87301, USA
E-mail: smarand@unm.edu

Abstract.

Many methods to compute the sum of the first n natural numbers of the same powers (see [4]) are well known.

In this article we present a simple proof of the method from [3].

2000 MSC: 11B68

Introduction.

The Bernoulli's numbers are defined by

(1)
$$B_n = \frac{-1}{n+1} \left(C_{n+1}^0 B_0 + C_{n+1}^1 B_1 + \dots + C_{n+1}^{n-1} B_{n-1} \right)$$

where $B_0 = 1$. It is known that $B_{n+1} = 0$ if $n \ge 1$. By calculation we find that:

(2)
$$B_1 = -\frac{1}{2}$$
, $B_2 = \frac{1}{6}$, $B_4 = -\frac{1}{30}$, $B_6 = \frac{1}{42}$, $B_8 = -\frac{1}{30}$, $B_{10} = \frac{5}{66}$,
 $B_{12} = -\frac{691}{2730}$, $B_{14} = \frac{7}{6}$, $B_{16} = -\frac{3617}{510}$, $B_{18} = \frac{43867}{798}$, $B_{20} = -\frac{174611}{330}$,
 $B_{22} = \frac{854513}{138}$, $B_{24} = -\frac{236364091}{2730}$, etc.

Let $S_n^k = 1^k + 2^k + ... + n^k$ the sum of the first *n* natural numbers which have the same power.

Theorem.

(3)
$$S_n^k = \frac{1}{k+1} \left(n^{k+1} + \frac{1}{2} C_{k+1}^1 n^k + C_{k+1}^2 B_2 n^{k-1} + \dots + C_{k+1}^k B_n n \right)$$

Proof: (1) can be written as:

(4)
$$\sum_{i=0}^{n} C_{n+1}^{i} B_{i} = 0, \quad n \ge 1.$$
If $P(x) = \sum_{i=0}^{k} C_{k+1}^{i} B_{i} x^{k+1-i}$,

then

$$P(n+1) - P(n) = \sum_{i=0}^{k} C_{k+1}^{i} B_{i} \left(\left(n+1 \right)^{k+1-i} - n^{k+1-i} \right) = \sum_{i=0}^{k} C_{k+1}^{i} B_{i} \left(\sum_{i=1}^{k+1-i} C_{k+1-i}^{j} n^{k+1-i-j} \right).$$

Let A_t be the coefficients of n^{k-1} , where $t \in \{0,1,...,k\}$.

$$A_{t} = \sum_{i=0}^{t} C_{k+1}^{i} C_{k+1-i}^{i+t+1} B_{i} = C_{k+1}^{i+1} \left(\sum_{i=0}^{t} C_{i+1}^{i} B_{i} \right).$$

If $n \ge 1$, then $A_t = 0$, only $A_0 = C_{k+1}^1$.

Because of these $P(n+1) - P(n) = C_{k+1}^{1} n^{k}$. Using this

$$\sum_{i=0}^{n-1} i^k = \frac{1}{k+1} \sum_{i=0}^{n-1} (P(i+1) - P(i)) = \frac{1}{k+1} P(n),$$

because P(0) = 0. Then $S_n^k = \frac{1}{k+1}P(n) + n^k$. From here one obtains (3).

Note. From the previous result we can also find the formula

$$S_n^k = \frac{1}{k+1} P(n+1).$$

Using this, we find the following equalities:

$$S_{n}^{0} = n, S_{n}^{1} = \frac{1}{2}n(n+1), S_{n}^{2} = \frac{1}{6}n(n+1)(2n+1), S_{n}^{3} = \frac{1}{4}n^{2}(n+1)^{2},$$

$$S_{n}^{4} = \frac{1}{30}n(n+1)(2n+1)(3n^{2}+3n-1), S_{n}^{5} = \frac{1}{12}n^{2}(n+1)^{2}(2n^{2}+2n-1),$$

$$S_{n}^{6} = \frac{1}{42}n(n+1)(2n+1)(3n^{4}+6n^{3}-3n+1),$$

$$S_{n}^{7} = \frac{1}{24}n^{2}(n+1)^{2}(3n^{4}+6n^{3}-n^{2}-4n+2),$$

$$S_{n}^{8} = \frac{1}{90}n(n+1)(2n+1)(5n^{6}+15n^{5}+5n^{4}-15n^{3}-n^{2}+9n-3),$$

$$S_{n}^{9} = \frac{1}{20}(2n^{10}+10n^{9}+15n^{8}-14n^{6}+10n^{4}-3n^{2}),$$

$$S_{n}^{10} = \frac{1}{66}(6n^{11}+33n^{10}+55n^{9}-66n^{7}+66n^{5}-33n^{3}+5n),$$

$$S_{n}^{11} = \frac{1}{24}(2n^{12}+12n^{11}+22n^{10}-33n^{8}+44n^{6}-33n^{4}+10n^{2}),$$

$$S_{n}^{12} = \frac{1}{2730}(210n^{13}+1365n^{12}+3630n^{11}-4935n^{9}+115n^{8}+49640n^{7}+1960n^{6}-5899n^{5}+35n^{4}+4550n^{3}+1382n^{2}-691n), \text{ etc.}$$

Problems:

- 1) Using the mathematical induction on the base of (1), we prove that $B_{2n+1} = 0$, if $n \ge 1$.
- 2) Prove that S_n^k is divisible by n(n+1).
- 3) Prove that S_n^{2k+1} is divisible by $n^2(n+1)^2$.
- 4) Determine those natural numbers n, k for which S_n^{2k} is divisible n(n+1)(2n+1).
- 5) Detach in parts the sums S_n^9 , S_n^{10} S_n^{11} , S_n^{12} .
- 6) Using (2), (3), compute the sums $S_n^{13},...,S_n^{21}$.

REFERENCES

- [1] M. Kraitchik Recherches sur la théorie des nombres Paris, 1924.
- [2] Mihály Bencze Osszegekrol A Matematika Tanitasa, 1/1983.
- [3] Z. I. Borevici, I. R. Safarevici Teoria numerelor Ed. Științifică și Enciclopedică, Bucharest, România, 1985.
- [4] Sándor József Veges osszegekrol Matematikai Lapok, Cluj-Napoca, 9/1987, România.
- [5] Mihály Bencze A Bernoulli szamok egyik alkalmazasa Matematikai Lapok, Kolozsvar 7/1989, pp. 237-238, România.

[Published in "Octogon Mathematical Journal", Braşov, Vol. 7, No. 1, 151-3, 1999.]