'Demon Cruetz'a - badanie zmian poziomu magnetyzmu w automacie komórkowym w zależnosiści od energii poczatkowej'

'Patryk Michalak'

25 listopada 2024

1 Wstep

1.1 Model Ising'a

W tym cwiczeniu bedziemy badac zmiane stopien magnetyzacji ukladu w zalezności od temperatury. Omawiany uklad jest nazywany Model Isign'a - jest to automat komorkowy, czyli jest to przestrzen podzielona na komorki w ktorych zmiany odbywaja co jakis odcinek czasu (krokiem). Najprostrze uklady przyjmuja ze wartości pojedynczej komorki miesci sie w zbiorze -1, 1. Energie calkowita takiego ukladu mozna policzyc poprzez sumowanie iloczynu wartości komorki z wartościa unikalnego sasiada komorki (1).

$$E = -J\sum_{i,j}^{n} s_i s_j \tag{1}$$

1.2 Demon Cruetz'a / Wiaderko

W badaniu bedziemy stosowac tzw. Demon Cruetz'a, ktore przechowuje pewna ilosc energii. Zmiany w poczatkowej wartości wiaderka powinna dawac zmiany w stopniu magnetyzacji calego ukladu. Stan magnetyzacji ukladu mozna wyliczyc następujacym wzorem (2)

$$M = \frac{1}{n} \sum_{i=0}^{n} s_i \tag{2}$$

2 Doswiadczenie

2.1 Przebieg doswiadczenia

Przy kazdej symulacji modelu zakladamy ze caly uklad ma uwartosciowanie 1 na wszytkich komorkach. Kazda symulacje zaczynamy z pewna poczatkowa wartoscia Demona i przyjmuje ze symulacja trwa 10000 krokow. Przy kazdym kroku:

- Wybieramy losowa komorke w ukladzie
- Wyliczamy energie ukladu przed zmiana spinu
- Zmieniamy wartosciowanie komorki na przeciwny
- Wyliczamy energie jeszcze raz i sprawdzamy roznice energie układu po zmianie kierunku od energii układu przed zmiana. Przy zwiekszonej energi układu po zmianie, trzeba zabrac uzyskana czesc energi z wiaderka i vice versa jesli energia układu ulegla zmniejszeniu.
- Zapisujemy stan wiaderka i stan magnetyzacji ukladu dla danego kroku.

Wykonujemy dziesiec symulacji, za kazdym razem podniosac stopniowo wartosc poczatkowa demona.

Rysunek 1: Ilosc wystapien poszegolnych wartości wiaderka dla pierwszej symulacji

Rysunek 2: Stopien Magnetyzacji dla pierwszej symulacji

3 Analiza danych

3.1 Stan Demona

Dla kazdej symulacji modelu, tworzymy histogram jak wiele razy powtarza sie dana wartosc wiaderka

Przy kazdym histogramie tworzymy linie trendu ktorej wzor 3 jest funkcja wykladnicza.

$$y = \alpha * \exp \beta \tag{3}$$

Temperature mozna stad wyliczyc $T=-\frac{1}{\beta}$ i temperatura mowi nam jak czesto pojawia sie wartosc ktora nie dominuje w histogramie.

3.2 Magnetyzm

Dla kazdej symulacji modelu, w poczatkowych krokach wartosc magnetyzacji nie ustanie spada co moze zaburzac nasze wyniki. Dla tego ignorujemy pierwsze 2000 krokow ktore powinny nam dac ustabilizowane wartosci. 2

Przy wiekszych energiach poczatkowych demona, sredni stopien magnetyzacji ukladu maleje

3.3 Wykres m(T)

Po zebraniu wszytkich danych mozna przeanalizowac jak przebiega wykres.

Wartosc poczatkowa demona	Sredni stopien magnetyzacji
150	0.967
200	0.952
330	0.921
440	0.888
600	0.825
825	0.726
1150	0.586
1640	0.282
2375	0.0.025

Tabela 1: Tabelka wartosci

Rysunek 3: Wykres zaleznosci magnetyzmu od temperatury

Dla mniejszych wartosci temperatury, wartosc
 magnetyzacji rosnie Wraz z wieksza wartoscia temperatury, wartosc
 magnetyzacji powoli spada. Przy szostej symulacji, wartosc magnetyzacji zaczyna dyrastycznie spadac.

4 Wnioski

- Dla niskich temperatur, stany magnetyzacji oscyluje w miare stalych wartosciach
- Dla wyzszych temperatur, stan magnetyzacji ulega naglym spadkom.