Белгородский Государственный Технологический Университет им. В.Г. Шухова Кафедра электротехники и автоматики

Преподаг	ватель		
	« <u></u> »	200_	_года
	Группа Студент		
	Рабочее место №		
	10 перемычек		

Лабораторная работа № 7 (М218)

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ И ИССЛЕДОВАНИЕ РЕЖИМОВ РАБОТЫ ТРЕХФАЗНОЙ ЦЕПИ ПРИ СОЕДИНЕНИИ ПОТРЕБИТЕЛЕЙ В ТРЕУГОЛЬНИК.

Цель работы:

- 1. Исследование трехфазной цепи при соединении потребителей в треугольник.
- 2. Изучение методов расчета трехфазных цепей при соединении потребителей в треугольник.

Рис. 7.1.

Исходные данные											
R_{37} , Om	R_{38} , Om	R_{39} , Om	R_{40} , $\mathbf{O}\mathbf{M}$	C_{11} , мк Φ	X_{C11} , Om	$R_{L2} + R_{18}$, Om	X_{L2} ,Om				

Таблица 7.2.

	Исходные данные												
R_{ab} , \mathbf{O} M	R_{bc} , Om	R_{ca} , Om	Z _{ab} , O _M	Z _{bc} , Om	Z _{ca} , O _M	фаь,град	фьс, град	фса, град					

Расчетные формулы

$$\begin{split} R_{ab} &= R_{38} + R_{39} \, ; \quad R_{bc} = R_{40} \, ; \quad R_{ca} = R_{37} + R_{18} + R_{L2} \, ; \, \varphi = \arctan \frac{X}{R} \, ; \\ \underline{Z}_{ab} &= R_{ab} \quad ; \quad \underline{Z}_{bc} = R_{bc} - j \frac{1}{\omega c_{11}} \quad ; \quad \underline{Z}_{ca} = R_{ca} + j X_{L2} \end{split}$$

Расчёт фазных токов

Таблица 7.3.

		Экспери	Pac	четные	значен	ия				
1 1 2 1 1 3 1 1 1 1 1 1					Выносной амперметр	PA1	I _{ab} , A	I _{bc} , A	I _{ca} , A	Р, Вт
U_{AB} , B	U_{BC} , B	U _{CA} , B	Р, Вт	I _A , A	I _B , A	I _C , A				

Таблица 7.4.

i ab				$\stackrel{ullet}{I}_{ m bc}$				I ca			
1	j	I _{ab} , A	ϕ°_{ab}	1	j	I _{bc} , A	$\hat{\phi}_{bc}$	1	j	I _{ca} , A	φ°ca

Расчетные формулы

$$\begin{split} \dot{I}_{ab} &= \frac{\dot{U}_{ab}}{Z_{ab}} \; ; \dot{I}_{bc} &= \frac{\dot{U}_{bc}}{Z_{bc}} \; ; \\ \dot{I}_{ca} &= U_{ab} \cdot e^{j30^{\circ}} \; ; \dot{U}_{bc} = U_{ac} \cdot e^{-j90^{\circ}} \; ; \; \dot{U}_{ca} = U_{ca} \cdot e^{j150^{\circ}} \; ; \\ \dot{I}_{ca} &= \frac{\dot{U}_{ca}}{Z_{ca}} \; ; \\ \end{split} \qquad \qquad P = I_{ab}^2 * R_{ab} + I_{bc}^2 * R_{40} + I_{ca}^2 * \left(R_{37} + R_{18} + R_{L2} \right) \end{split}$$

Расчет линейных токов

Таблица 7.5.

i A				i B				i _C			
1	j	I_A, A	ϕ°_{A}	1	j	I_B, A	ϕ°_{B}	1	j	I_{C} , A	ϕ°_{C}

Расчетные формулы

$$\stackrel{\bullet}{I}_A = \stackrel{\bullet}{I}_{ab} - \stackrel{\bullet}{I}_{ca}$$
; $\stackrel{\bullet}{I}_B = \stackrel{\bullet}{I}_{bc} - \stackrel{\bullet}{I}_{ab}$; $\stackrel{\bullet}{I}_C = \stackrel{\bullet}{I}_{ca} - \stackrel{\bullet}{I}_{bc}$

Выводы:

Порядок выполнения лабораторной работы №7 (М218)

По данным лабораторной работы № 6 заполнить исходные данные в таблицу 7.1. Если лабораторная работа №6 не выполнялась, исходные данные конкретно для данного рабочего места взять из «Таблицы величин сопротивлений стендов лаборатории М218»

- 1. Убедиться, что все выключатели стенда выключены (находятся в нижнем положении)
- 2. Собрать схему рис. 7.1. Вольтметр PV2 не подключать, подключить только PV3.

ВНИМАНИЕ!

- 1. <u>Категорически запрещается подключать два вольтметра</u> одновременно!
- 2. <u>Кнопки переключения пределов измерений приборов при выполнении этой работы не нажимать!</u>

Вместо перемычки в линейный провод фазы **«А»** включить выносной амперметр электромагнитной системы с пределом измерения **2A** или **3A**. Установить равномерную нагрузку во всех фазах, для чего переключателями набрать значение ёмкости **С11**, рассчитанное в лабораторной работе №6 (С11=16мкФ).

- 3. Изучить схему, порядок её включения. Определить цену деления приборов.
- 4. Доложить преподавателю о готовности к выполнению работы.
- 5. С разрешения преподавателя подать напряжение на стенд (нажать черную кнопку *SB1*).
- 6. Подать напряжение на исследуемую схему (включить **SA14**).
- 7. Быстро снять показания приборов и записать в таблицу 7.3.
- 8. Выключить *SA14*
- 9. Отсоединить выносной амперметр от линейного провода фазы «**A**», на его место поставить перемычку, а амперметр подсоединить вместо перемычки в линейный провод фазы «**B**». Вольтметр **PV3** отсоединить от фазы «**A**» и подключить между линейными проводами фаз «**B**» и «**C**».
- 10. Включить **SA14**, **быстро** снять показания приборов и записать их в таблицу 7.3.
- 11. Выключить **SA14.** От линейного провода фазы «**B**» отсоединить амперметр и на его место поставить перемычку. Отсоединить **PV3.** Подсоединить **PV2** между линейными проводами фаз «**A**» и «**B**», согласно **рис.7.1.**
- 12. Включить **SA14**, **быстро** снять показания приборов и записать их в таблицу 7.3.
- 13. Выключить **SA14.**
- 14. Выключить питание стенда (нажать красную кнопку **SB2**).
- 15. Доложить преподавателю о выполнении работы.
- 16. Разобрать схему, сдать рабочее место преподавателю.
- 17. Рассчитать комплексные значения сопротивлений фаз, фазных и линейных токов, а также активную мощность, потребляемую схемой. Результаты вычислений записать в таблицы 7.2, 7.3, 7.4, и 7.5.
- 18. Построить векторную диаграмму.
- 19. Сделать выводы по работе.