Shortcut slab+interval geometries

The stat_sample_slabinterval() and stat_dist_slabinterval() stats are flexible meta-geometries for visualizing sample data or analytical distributions. With that flexibility comes a cost in remembering particular combinations of parameters that yield specific visualization types. Thus, ggdist also provides several shortcut stats with sensible default parameters:

This geometry	uses these defaults:					
	mapping =	slab_type =	side =	justification =	normalize =	
	aesthetic mapping	function assigned to the computed aesthetic f	side to draw the slab on	position of interval relative to slab	What groups to normalize max height of slab thickness within	
stat_sample_slabinterval() stat_dist_slabinterval()	aes(thickness = f)	"pdf"	"topright"	0	"all"	
stat_halfeye() stat_dist_halfeye()	aes(thickness = f)	"pdf"	"topright"	0	"all"	
stat_ eye() stat_dist_ eye()	aes(thickness = f)	"pdf"	"both"	0	"all"	
stat_gradientinterval() stat_dist_gradientinterval()	aes(slab_alpha = f)	"pdf"	"topright"	0.5	"all"	
stat_histinterval()	aes(thickness = f)	"histogram" .	"topright"	0	"all"	
stat_cdfinterval() stat_dist_cdfinterval()	aes(thickness = f)	"cdf"	"topleft"	0.5	"none"	
stat_ccdfinterval() stat_dist_ccdfinterval()	aes(thickness = f)	"ccdf"	"topleft"	0.5	"none"	

Example from stat_sample_slabinterval() sub-family

Using sample data

Example from stat_dist_slabinterval() sub-family

Using analytical distributions

```
df = data.frame(
  group = c("a", "b", "c"),
  mean = c(1, 2, 3),
  sd = c(1, 1.5, 1)
)

ggplot(df) +
  aes(
    y = group,
    dist = dist_normal(mean, sd)
  ) +
  stat_dist_halfeye()
```

