Homework 2

2023.07.13 沈韵沨 3200104392

Chap 2

2.40 Write the decimal equivalents for these IEEE floating point numbers.

a.

$$egin{aligned} Sign &= 0 \ Exp &= (1000\ 0000)_B - 127_D = 128 - 127 = 1 \ Frac &= 1.0 \ dots\ N_a &= (-1)^0*1.0*2^1 = 2.0 \end{aligned}$$

b.

$$Sign = 1$$
 $Exp = (1000\ 0011)_B - 127_D = 4$
 $Frac = 1.0001_B = 1\frac{1}{16} = 1.0625$
 $\therefore N_b = (-1)^1 * 1.0625 * 2^4 = -17$

c.

$$egin{align*} Sign &= 0 \ Exp\ containing\ all\ 1's \ Frac\ containing\ all\ 0's \ \therefore N_c &= Positive\ Infinity \end{aligned}$$

d.

$$Sign = 1$$

 $Exp = (1000\ 0000)_B - 127_D = 1$
 $Frac = 1.1001_D = 1\frac{25}{16} = 1.5625$
 $\therefore N_d = (-1)^1 * 1.5625 * 2^1 = -3.125$

- **2.48** Convert the following decimal numbers to hexadecimal representations of 2's complement numbers.
 - a. 256
 - b. 111
 - c. 123,456,789
 - *d*. −44

a.

$$\begin{array}{l} 256 = 0000\ 0001\ 0000\ 0000 (2's\ complement) \\ = 0100 (hexadecimal) \end{array}$$

b.

$$111 = 0110 \ 1111(2's \ complement)$$

= $6F(hexadecimal)$

c.

$$123456789 = 0000\ 01111\ 0101\ 1100\ 1101\ 0001\ 0101(2's\ complement) \\ = 075B\ CD15(hexadecimal)$$

d.

$$\begin{cases} 44 = 0010\ 1100 \\ \overline{44} = 1101\ 0011 \\ \overline{44} + 1 = 1101\ 0100 \end{cases}$$

$$\therefore -44's\ 2's\ complement = 1101\ 0100$$

$$it's\ hexadecimal = D4$$

Chap 3

3.6 For the transistor-level circuit in Figure 3.38, fill in the truth table. What is *Z* in terms of *A* and *B*?

Figure 3.38 Diagram for Exercise 3.6.

• The truth table:

А	В	С	D	Z
0	0	1	1	0
0	1	1	0	0
1	0	0	1	0
1	1	0	0	1

$$Z = \overline{C} \cdot \overline{D} = \overline{\overline{A}} \cdot \overline{\overline{B}} = A \cdot B(A \text{ and } B)$$

3.20 How many output lines will a 16-input multiplexer have? How many select lines will this multiplexer have?

Since the multiplexer has 16 input & $log_2(16) = 4$, it sould have:

- ONLY ONE output line.
- 4 select lines.

Figure 3.42 Diagram for Exercise 3.30.

- **3.30** a. Figure 3.42 shows a logic circuit that appears in many of today's processors. Each of the boxes is a full-adder circuit. What does the value on the wire X do? That is, what is the difference in the output of this circuit if X = 0 vs. if X = 1?
 - b. Construct a logic diagram that implements an adder/subtractor. That is, the logic circuit will compute A + B or A B depending on the value of X. Hint: Use the logic diagram of Figure 3.42 as a building block.

$$\begin{cases} X = 0 \Rightarrow output = A + B \\ X = 1 \Rightarrow output = A + C \end{cases}$$

$$\begin{cases} X = 0 \Rightarrow output = A + B \\ X = 1 \Rightarrow output = A + (\overline{B} + 1) = A + (-B) = A - B \end{cases}$$

3.36 A comparator circuit has two 1-bit inputs A and B and three 1-bit outputs G (greater), E (Equal), and E (less than). Refer to Figures 3.43 and 3.44 for this problem.

G is 1 if A > B E is 1 if A = B L is 1 if A < B 0 otherwise 0 otherwise

Figure 3.43 Diagram for Exercise 3.36.

Figure 3.44 Diagram for Exercise 3.36.

a. Draw the truth table for a one-bit comparator.

\boldsymbol{A}	\boldsymbol{B}	G	\boldsymbol{E}	L
0	0			
0	1			
1	0			
1	1			

- b. Implement G, E, and L using AND, OR, and NOT gates.
- c. Using the one-bit comparator as a basic building block, construct a four-bit equality checker such that output EQUAL is 1 if A30 = B30, 0 otherwise.

a. The truth table:

А	В	G	E	L
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	1

b.

3.40 For the memory shown in Figure 3.45:

- a. What is the address space?
- b. What is the addressability?
- c. What is the data at address 2?

Figure 3.45 Diagram for Exercise 3.40.

- a. According to Figure 3.45 the memory uses 2-bit (A[1] & A[0]) address, thus it's $address_space = 2^2 = 4$
- b. Since each memory location stores 4-bits(D[3:0]), it's addressability=4
- c. Since $address(2) = 10_B$, we could find that $data \ at \ address(2) = 0001$
 - 3.50 Prove that the NAND gate, by itself, is logically complete (see Section 3.3.5) by constructing a logic circuit that performs the AND function, a logic circuit that performs the NOT function, and a logic circuit that performs the OR function. Use only NAND gates in these three logic circuits.

$$\therefore \begin{cases}
NOT = \overline{X} = \overline{X} + \overline{X} = \overline{X \cdot X} & (1) \\
OR = X + Y = \overline{\overline{X} \cdot \overline{Y}} = \overline{\overline{X \cdot X} \cdot \overline{Y \cdot Y}} & (2) \\
AND = X \cdot Y = \overline{\overline{A \cdot B}} = \overline{\overline{A \cdot B} \cdot \overline{A \cdot B}} & (3)
\end{cases}$$

and $Set\{AND, OR, NOT\}$ is logically complete $\therefore NAND$ is also logically complete

The logical circuits are as follows:

