I

33

Claims:

1. Pyrimidines of formula I

5

$$R^4$$
 N
 R^2
 R^3

10

in which

R1 represents hydrogen or

15 C_1-C_{10} -alkyl, C_1-C_{10} -haloalkyl, C_2-C_6 -alkenyl, C_2-C_6 -alkynyl, C_4-C_8 -alkadienyl, C_1-C_{10} -alkoxy, C_3-C_8 -cycloalkyl, phenyl, or

5- or 6-membered heteroaryl or 5- or 6-membered heterocyclyl, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom, or

 $tri-C_1-C_6-alkyl-silyl$, formyl or $C_1-C_{10}-alkoxycarbonyl$;

wherein R^1 groups are unsubstituted or substituted by one to three groups R^a

Ra halogen, nitro, cyano, hydroxy or

C₁-C₁₀-alkyl, C₃-C₆-cycloalkyl, C₃-C₆-cycloalkenyl,
C₁-C₁₀-haloalkyl, C₃-C₆-halocycloalkyl, C₁-C₁₀-alkoxy,
C₁-C₁₀-haloalkoxy, C₁-C₁₀-haloalkoxy, C₁-C₆-alkoxycar-bonyl, tri-C₁-C₄-alkylsilyl, phenyl, halo- or dihalophenyl or 5- or 6-membered heteroaryl, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom;

R² represents phenyl, C₃-C₆-cycloalkyl or 5- or 6-membered heteroaryl, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom, which are unsubstituted or substituted by one to three groups R^a;

R3 represents hydrogen, halogen or

45

40

 C_1-C_{10} -alkyl, C_1-C_{10} -alkoxy, C_1-C_{10} -alkylthio, C_1-C_{10} -alkylamino or $di-C_1-C_{10}$ -alkylamino; which are unsubstituted or substituted by one to three groups \mathbb{R}^a ;

5 R4 represents hydrogen or

 $C_1-C_{10}-alkyl$, $C_2-C_6-alkenyl$ or $C_2-C_6-alkynyl$; which are unsubstituted or substituted by one to three groups R^a ; and

10

X represents O, S, NR⁵ or a single bond, wherein R⁵ represents hydrogen or C₁-C₁₀-alkyl; or

R¹ and R⁵ together with the interjacent nitrogen atom form a heterocyclic ring.

2. Pyrimidines of formula I according to claim 1, in which R^2 represents a phenyl group of formula

20

$$L^{1} \longrightarrow L^{2}$$

wherein L¹ through L⁴ each independently represent hydrogen, fluorine, chlorine or methoxy.

3. Pyrimidines of formula IA

30

in which R^1 to R^5 have the meaning given in claim 1, and L^1 through L^4 are as defined in claim 2.

4. Pyrimidines according to claim 1 to 3 in which R³ represents chlorine.

40

5. Pyrimidines according to claims 1 to 4 in which R^4 represents hydrogen, C_1 - C_6 -alkyl or benzyl.

45

35

6. A process for the preparation of pyrimidines of formula I according to claim 1 wherein R⁴ is optionally substituted alkyl, alkenyl or alkynyl by treating compounds of the formula II

5

10

in which \mathbb{R}^1 through \mathbb{R}^3 and X are as defined in formula I; with a base and an alkylation agent of formula III

15

in which R^4 is C_1 - C_6 -alkyl, C_1 - C_6 -alkenyl or C_1 - C_6 -alkynyl; which are unsubstituted or substituted by one to three groups R^a , and Y represents halogen atom.

20

7. A process for the preparation of pyrimidines of formula I according to claim 1 wherein R^4 is is C_1-C_6 -alkyl, C_1-C_6 -alkenyl or C_1-C_6 -alkynyl which are unsubstituted or substituted by one to three groups R^2 by reacting sulfones of formula VI

25

$$\begin{array}{c}
X \\
R^1 \\
R^2 \\
R^3
\end{array}$$
VI

30

in which R^1 through R^3 and X are as defined in formula I and R^6 is C_1 - C_6 -alkyl or C_1 - C_6 -haloalkyl; with alkylated cyanamides of formula VII

35

in which R⁴ is is C₁-C₆-alkyl, C₁-C₆-alkenyl or C₁-C₆-alkynyl which are unsubstituted or substituted by one to three groups R^a; wherein sulfones of formula VI are obtained by reacting 2-thiopyrimidinederivatives of formula VIII

45

$$R^6-S$$
 N
 R^2
 R^3
VIII

GESAMT SEITEN 38 PAGE.38

36

in which the variables are as defined in formula VI; with oxidizing agents.

8. Compounds of formulae VI and VIII as defined in claim 7.

5

- 9. A fungicidal composition which comprises a carrier and an effective amount of at least one compound of formula I as defined in claim 1.
- 10 10. A method of combating fungus at a locus which comprises treating the locus with an effective amount of at least one compound of formula I as defined in claim 1.

15

20

25

30

35

40

45