

Do increasing concentrations of lime sulphur solution act as stronger honey bee repellents?

Ethan Scott, Daniel Girvitz

Background

- 1. 8 groups of 100 bees were released into 8 different chambers for two hours.
- 2. Each chamber, except one control, contained cells of dry comb with lime sulphur emulsion in sucrose solution.
- 3. Seven different concentrations of lime sulphur, labelled A G, ranged from a concentration of 1/100 to 1/1,562,500, in successive factors of 1/5.
- 4. The one control, labelled H, contained no lime sulphur emulsion in the sucrose solution.
- The decrease in volume of the solutions in the various cells was measured, in order to determine the potency of the lime sulphur emulsion as a honey bee repellent.

Dataset

- An 8x8 Latin square design with coded treatments.
- Since we haven't yet learned about Latin square design, we disregarded that information.
- We kept only two variables: "treatment", which is a factor, and "decrease", which is discrete numerical.
- It appears that decreases in solutions were calculated for 8 random cells of dry comb from each of the 8 groups
 - n=8 (instances in each treatment)
 - a=8 (treatments)
 - N=n*a=8*8=64 (total instances)

Hypothesis

H0: Equality of treatment means for the decrease in volume of the solutions in the various cells.

Ha: Inequality between at least two treatment means for the decrease in volume of the solutions in the various cells.

Boxplots

Decrease of sucrose solution among treatments

ANOVA Assumptions

- 1. Data are i.i.d normally distributed
- Homogenity of variance among treatments (in our case, decreases in solutions), which is called homoscedasticity, which is not to be pronounced...
- 3. Balanced design

Plots of residuals

Diagnostic plots

Shapiro-Wilk test

```
{r}
shapiro.test((eData$decrease))
         Shapiro-Wilk normality test
      (eData$decrease)
W = 0.91892, p-value = 0.0004483
                                    Yikes...
```

Modified Levene's Test

```
```{r}
library(car)
Levene's test with one independent variable
leveneTest(decrease ~ factor(treatment), data = eData)
Levene's Test for Homogeneity of Variance (center = median)
 Df F value Pr(>F)
group 7 1.5132 0.1817
 FTR equality of variance
 56
```

Ethan begins here.

# Single-factor ANOVA

```
one.way=aov(decrease~factor(treatment),data=eData)
summary(one.way)
 Df Sum Sq Mean Sq F value <u>Pr(>F)</u>
 8023 19.06 9.5e-13 ***
factor(treatment) 7 56160
Residuals
 56 23570
 421
 FTR equality of treatment means
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

#### Square root transformation applied to ANOVA

```
one.way.sqroot=aov(sqrt(decrease)~factor(treatment),data=eData)
summary(one.way.sqroot)

Df Sum Sq Mean Sq F value Pr(>F)
factor(treatment) 7 417.7 59.68 30.95 <2e-16 ***
Residuals 56 108.0 1.93

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```



```
Shapiro-Wilk's test for normality
 shapiro.test(sqrt(eData$decrease))
 Shapiro-Wilk normality test
 data: sgrt(eData$decrease)
 Reject
 W = 0.94271, p-value = 0.005088
Tests for homogenity of variance (homoscedastiticity)
bartlet test(sqrt(decrease) ~ factor(treatment), data = eData)
 Bartlett test of homogeneity of variances
data: sqrt(decrease) by factor(treatment)
Bartlett's K-squared = 15.529, df = 7, p-value = 0.0
leveneTest(sgrt(decrease) ~ factor(treatment), data = eData)
Levene's Test for Homogeneity of Variance (center = median)
 Df F value Pr(>F)
 group
 56
```

# Fisher LSD Test for difference of means

means[6]-means[7],
means[6]-means[8],
means[7]-means[8])|
abs(comparisons)-Fisher.LSD

```
n=8
a=8
MSE=8023
Fisher.LSD=gt(0.05, N-a, lower.tail=F)*sgrt(MSE*2/n)
Fisher.LSD
comparisons=c(
 Values from the difference of means for treatment groups A to
 means[1]-means[2],
 means \lceil 1 \rceil -means \lceil 3 \rceil.
 means \lceil 1 \rceil -means \lceil 4 \rceil.
 H and B to H have positive values with the Fisher LSD test
 means [1]-means [5].
 means \lceil 1 \rceil-means \lceil 6 \rceil.
 means[1]-means[7],
 means[1]-means[8].#Positive
 -71.904915 -54.279915 -44.529915 -16.404915 -10.529915 -11.029915
 10.720085
 means[2]-means[3],
 means \lceil 2 \rceil -means \lceil 4 \rceil.
 means[2]-means[5],
 -13.529915
 -14.029915
 7.720085
 -65.154915
 means \lceil 2 \rceil -means \lceil 6 \rceil.
 means \lceil 2 \rceil-means \lceil 7 \rceil.
 means[2]-means[8], #positive
 -46.779915 -40.904915
 -41.404915 -19.654915 -69.029915
 means [3] -means [4],
 means[3]-means[5],
 means \lceil 3 \rceil -means \lceil 6 \rceil.
 -47.779915 -74.404915 -53.654915 -53.154915
 means \lceil 3 \rceil -means \lceil 7 \rceil.
 means \lceil 3 \rceil -means \lceil 8 \rceil.
 means \lceil 4 \rceil -means \lceil 5 \rceil.
 means \lceil 4 \rceil -means \lceil 6 \rceil.
 means \lceil 4 \rceil -means \lceil 7 \rceil.
 means[4]-means[8].
 means \lceil 5 \rceil -means \lceil 6 \rceil.
 means[5]-means[7],
 means[5]-means[8],
```

#### Tukey's Test for difference of means

Tukey's Test gives the same results as the Fisher LSD test

```
Tukey = q_Alpha*sqrt(MSE/n)
Tukey
abs(comparisons)-Tukey
```

#### Confidence Intervals: Comparing Pairs of Treatment Means

```
(\text{means}[1] - \text{means}[2]) + c(-1,1) * \text{Tukey}[1]
 -69.50322
 63.50322
 (\text{means}[1] - \text{means}[3]) + c(-1,1) * \text{Tukey}[1]
 -87.12822
 45.87822
 (\text{means}[1] - \text{means}[4]) + c(-1,1) * \text{Tukey}[1]
 -96.87822
 36.12822
 (\text{means}[1] - \text{means}[5]) + c(-1,1) * \text{Tukey}[1]
 -125.003224
 8.003224
 (\text{means}[1]-\text{means}[6])+c(-1,1)*\text{Tukey}[1]
 -130.878224
 2.128224
 (\text{means}[1]-\text{means}[7])+c(-1.1)*Tukev [1]
 -130.378224
 2.628224
A-H (means[1]-means[8])+c(-1,1)*Tukey [1]
 -152.12822
 -19.12178
 (\text{means}[2]-\text{means}[3])+c(-1,1)*Tukey [1]
 -84.12822
 48.8/822
 (\text{means}[2] - \text{means}[4]) + c(-1,1) * Tukey [1]
 -93.87822
 39.12822
 (\text{means}[2]-\text{means}[5])+c(-1,1)*\text{Tukey}[1]
 -122.00322
 11.00322
 (\text{means}[2] - \text{means}[6]) + c(-1,1) * \text{Tukey}[1]
 -127.878224
 5.128224
 (\text{means}[2]-\text{means}[7])+c(-1.1)*Tukev [1]
 -127.378224
 5.628224
 (\text{means}[2] - \text{means}[8]) + c(-1,1) * Tukey [1]
 -149.12822
 -16.12178
 -/6.25322
 56.75322
 (\text{means}[3]-\text{means}[4])+c(-1,1)*Tukey
 (\text{means}[3] - \text{means}[5]) + c(-1,1) * \text{Tukey}[1]
 -104.37822
 28.62822
 (\text{means}[3]-\text{means}[6])+c(-1,1)*\text{Tukey}[1]
 -110.25322
 22.75322
 (\text{means}[3]-\text{means}[7])+c(-1,1)*\text{Tukey}[1]
 -109.75322
 23.25322
 (\text{means}[3]-\text{means}[8])+c(-1,1)*\text{Tukey}[1]
 -131.503224
 1.503224
 (\text{means}[4]-\text{means}[5])+c(-1,1)*\text{Tukey}[1]
 -94.62822
 38.37822
 (\text{means}[4]-\text{means}[6])+c(-1,1)*\text{Tukey}[1]
 -100.50322
 32.50322
 (\text{means}[4]-\text{means}[7])+c(-1,1)*\text{Tukey}[1]
 -100.00322
 33.00322
 (\text{means}[4]-\text{means}[8])+c(-1,1)*\text{Tukey}[1]
 -121.75322
 11.25322
 (\text{means}[5]-\text{means}[6])+c(-1,1)*\text{Tukey}[1]
 -72.37822
 60.62822
 (\text{means}[5]-\text{means}[7])+c(-1,1)*\text{Tukey}[1]
 -71.87822
 61.12822
 (\text{means}[5]-\text{means}[8])+c(-1,1)*\text{Tukey}[1]
 -93.62822
 39.37822
 (\text{means} [6] - \text{means} [7]) + c(-1,1) * Tukey [1]
 -66.00322
 67.00322
 (\text{means} \lceil 6 \rceil - \text{means} \lceil 8 \rceil) + c(-1,1) * \text{Tukey} \lceil 1 \rceil
 -87.75322
 45.25322
 (\text{means} \lceil 7 \rceil - \text{means} \lceil 8 \rceil) + c(-1,1) * Tukey \lceil 1 \rceil
 -88.25322
 44.75322
```

#### Conclusion

- 1. Accept Ha in favour of H0 (yay)
- Concentration of lime sulphur used to repel honey bees will be determined by the cost of the solution, required extent of power to repel, possible environmental impacts (contamination, effect on other species, etc.)



#### Thank you!

#### Additional argumentation

Although homogenity of variance (homoscedasticity) appears to be present, we have little evidence to argue for normality.

However odd it may be, non-normality works in our favour: It makes sense that A and B must be outliers, which implies strong concentrations of lime sulphur solution work as honey bee repellents. Treatments C through H should see a variation, because lesser concentrations wouldn't work as effectively. Furthermore, with 8 random cells chosen it is a natural consequence some have a greater decrease in sucrose solution than others - the honey bee's choice of cell is random.

