

Computer Architecture and Operating Systems Lecture 12: Basics of Networking

Andrei Tatarnikov

atatarnikov@hse.ru
@andrewt0301

Client-Server Architecture

- Most network applications are based on the client-server model:
 - A *server* process and one or more *client* processes
 - Server manages some resource
 - Server provides service by manipulating resource for clients
 - Server activated by request from client (vending machine analogy)

Note: clients and servers are processes running on hosts (can be the same or different hosts)

Hardware Organization of a Network Host

Computer Networks

- A network is a hierarchical system of boxes and wires organized by geographical proximity
 - SAN (System Area Network) spans cluster or machine room
 - Switched Ethernet, Quadrics QSW, ...
 - LAN (Local Area Network) spans a building or campus
 - Ethernet is most prominent example
 - WAN (Wide Area Network) spans country or world
 - Typically high-speed point-to-point phone lines
- An internetwork (internet) is an interconnected set of networks
 - The Global IP Internet (uppercase "I") is the most famous example of an internet (lowercase "i")
- Let us see how an internet is built from the ground up

Lowest Level: Ethernet Segment

- Ethernet segment consists of a collection of hosts connected by wires (twisted pairs) to a hub
- Spans room or floor in a building
- Operation
 - Each Ethernet adapter has a unique 48-bit address (MAC address)
 - E.g., 00:16:ea:e3:54:e6
 - Hosts send bits to any other host in chunks called frames
 - Hub slavishly copies each bit from each port to every other port
 - Every host sees every bit
 - Note: Hubs are on their way out. Bridges (switches, routers) became cheap enough to replace them

Next Level: Bridged Ethernet Segment

- Spans building or campus
- Bridges cleverly learn which hosts are reachable from which ports and then selectively copy frames from port to port

Conceptual View of LANs

For simplicity, hubs, bridges, and wires are often shown as a collection of hosts attached to a single wire:

Next Level: Internets

- Multiple incompatible LANs can be physically connected by specialized computers called *routers*
- The connected networks are called an *internet* (lower case)

LAN 1 and LAN 2 might be completely different, totally incompatible (e.g., Ethernet, Fibre Channel, 802.11*, T1-links, DSL, ...)

Logical Structure of Internet

- Ad hoc interconnection of networks
 - No particular topology
 - Vastly different router & link capacities
- Send packets from source to destination by hopping through networks
 - Router forms bridge from one network to another
 - Different packets may take different routes

The Notion of an Internet Protocol

• How is it possible to send bits across incompatible LANs and WANs?

- Solution: protocol software running on each host and router
 - Protocol is a set of rules that governs how hosts and routers should cooperate when they transfer data from network to network.
 - Smooths out the differences between the different networks

What Does an internet Protocol Do?

- Provides a naming scheme
 - An internet protocol defines a uniform format for host addresses
 - Each host (and router) is assigned at least one of these internet addresses that uniquely identifies it
- Provides a delivery mechanism
 - An internet protocol defines a standard transfer unit (packet)
 - Packet consists of *header* and *payload*
 - Header: contains info such as packet size, source and destination addresses
 - Payload: contains data bits sent from source host

Transferring Internet Data Via Encapsulation

Other Issues

- We are glossing over a number of important questions:
 - What if different networks have different maximum frame sizes? (segmentation)
 - How do routers know where to forward frames?
 - How are routers informed when the network topology changes?
 - What if packets get lost?

These (and other) questions are addressed by the area of systems known as computer networking

Global IP Internet

- Most famous example of an Internet
- Based on the TCP/IP protocol family
 - IP (Internet Protocol) :
 - Provides basic naming scheme and unreliable delivery capability of packets (datagrams) from host-to-host
 - UDP (Unreliable Datagram Protocol)
 - Uses IP to provide unreliable datagram delivery from process-to-process
 - TCP (Transmission Control Protocol)
 - Uses IP to provide *reliable* byte streams from *process-to-process* over *connections*
- Accessed via a mix of Unix file I/O and functions from the sockets interface

Organization of an Internet Application

A Programmer's View of the Internet

- 1. Hosts are mapped to a set of 32-bit *IP addresses*
 - **1**28.2.203.179

- 2. The set of IP addresses is mapped to a set of identifiers called Internet *domain names*
 - 128.2.203.179 is mapped to www.cs.cmu.edu
- 3. A process on one Internet host can communicate with a process on another Internet host over a connection

Aside: IPv4 and IPv6

- The original Internet Protocol, with its 32-bit addresses, is known as *Internet Protocol Version 4* (IPv4)
- 1996: Internet Engineering Task Force (IETF) introduced Internet Protocol Version 6 (IPv6) with 128-bit addresses
 - Intended as the successor to IPv4
- As of 2015, vast majority of Internet traffic still carried by IPv4
 - Only 4% of users access Google services using IPv6.
- We will focus on IPv4, but will show you how to write networking code that is protocol-independent.

IP Addresses

- 32-bit IP addresses are stored in an IP address struct
 - IP addresses are always stored in memory in *network byte order* (big-endian byte order)
 - True in general for any integer transferred in a packet header from one machine to another.
 - E.g., the port number used to identify an Internet connection.

```
/* Internet address structure */
struct in_addr {
   uint32_t s_addr; /* network byte order (big-endian) */
};
```

Dotted Decimal Notation

- By convention, each byte in a 32-bit IP address is represented by its decimal value and separated by a period
 - IP address: 0x8002C2F2 = 128.2.194.242

•Use getaddrinfo and getnameinfo functions (described later) to convert between IP addresses and dotted decimal format.

Internet Domain Names

Domain Naming System (DNS)

The Internet maintains a mapping between IP addresses and domain names in a huge worldwide distributed database called DNS

- Conceptually, programmers can view the DNS database as a collection of millions of host entries.
 - Each host entry defines the mapping between a set of domain names and IP addresses.
 - In a mathematical sense, a host entry is an equivalence class of domain names and IP addresses.

Properties of DNS Mappings

- Can explore properties of DNS mappings using nslookup
 - Output edited for brevity

```
linux> nslookup localhost
Address: 127.0.0.1
```

■ Each host has a locally defined domain name localhost which always maps to the loopback address 127.0.0.1

```
linux> hostname
whaleshark.ics.cs.cmu.edu
```

Use hostname to determine real domain name of local host:

Properties of DNS Mappings

Simple case: one-to-one mapping between domain name and IP address:

```
linux> nslookup whaleshark.ics.cs.cmu.edu
Address: 128.2.210.175
```

• Multiple domain names mapped to the same IP address:

```
linux> nslookup cs.mit.edu
Address: 18.62.1.6
linux> nslookup eecs.mit.edu
Address: 18.62.1.6
```

Properties of DNS Mappings

• Multiple domain names mapped to multiple IP addresses:

```
linux> nslookup www.twitter.com
Address: 199.16.156.6
Address: 199.16.156.70
Address: 199.16.156.102
Address: 199.16.156.230

linux> nslookup twitter.com
Address: 199.16.156.102
Address: 199.16.156.230
Address: 199.16.156.6
Address: 199.16.156.70
```

Some valid domain names don't map to any IP address:

```
linux> nslookup ics.cs.cmu.edu
*** Can't find ics.cs.cmu.edu: No answer
```

Internet Connections

- Clients and servers communicate by sending streams of bytes over connections. Each connection is:
 - Point-to-point: connects a pair of processes.
 - Full-duplex: data can flow in both directions at the same time,
 - Reliable: stream of bytes sent by the source is eventually received by the destination in the same order it was sent.
- A socket is an endpoint of a connection
 - Socket address is an IPaddress:port pair
- A port is a 16-bit integer that identifies a process:
 - *Ephemeral port*: Assigned automatically by client kernel when client makes a connection request.
 - Well-known port: Associated with some service provided by a server (e.g., port 80 is associated with Web servers)

Well-known Ports and Service Names

Popular services have permanently assigned well-known ports and corresponding well-known service names:

echo server: 7/echo

ssh servers: 22/ssh

email server: 25/smtp

Web servers: 80/http

• Mappings between well-known ports and service names is contained in the file /etc/services on each Linux machine.

Anatomy of a Connection

- A connection is uniquely identified by the socket addresses of its endpoints (socket pair)
 - cliaddr:cliport, servaddr:servport)

Using Ports to Identify Services

Basic Internet Components

- Internet backbone:
 - collection of routers (nationwide or worldwide) connected by highspeed point-to-point networks
- Internet Exchange Points (IXP):
 - router that connects multiple backbones (often referred to as peers)
 - Also called Network Access Points (NAP)
- Regional networks:
 - smaller backbones that cover smaller geographical areas (e.g., cities or states)
- Point of presence (POP):
 - machine that is connected to the Internet
- Internet Service Providers (ISPs):
 - provide dial-up or direct access to POPs

Internet Connection Hierarchy

IP Address Structure

■ IP (V4) Address space divided into classes:

	0	1	2 3	3	8	3 16	!	24		31
Class A	0	Net ID				Host ID				
Class B	1	0			Ne	t ID	H	Host ID		
Class C	1	1	0			Net ID			Host ID)
Class D	1	1	1	0	Multicast address					
Class E	1	1	1	1	Reserved for experiments					

- Network ID Written in form w.x.y.z/n
 - n = number of bits in host address
 - E.g., CMU written as 128.2.0.0/16
 - Class B address
- Unrouted (private) IP addresses:
 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

Any Questions?

```
__start: addi t1, zero, 0x18
addi t2, zero, 0x21

cycle: beg t1, t2, done
slt t0, t1, t2

kne t0, zero, if_less

nop
sub t1, t1, t2

j cycle
nop

if_less: sub t2, t2, t1

j cycle
done: add t3, t1, zero
```