Lab nr 3

Charakterystyki częstotliwościowe

Program zajęć:

1. Do opisu dynamiki układu można wykorzystać transmitancję widmową.

Def. **Transmitancja widmowa** układu to stosunek wartości zespolonej odpowiedzi Y tego układu wywołanej wymuszeniem sinusoidalnym, do wartości tego wymuszenia sinusoidalnego X, w stanie ustalonym.

$$G(j\omega) = \frac{Y(j\omega)}{X(j\omega)}$$

Korzystając z twierdzenia Eulera dla liczb zespolonych $e^{j\omega t} = cos(\omega t) + jsin(\omega t)$,

sinusoidalny sygnał wejściowy można opisać jako $x(t) = A_X(\omega)e^{j\omega t}$,

odpowiedź na sygnał wejściowy sinusoidalny można opisać jako

$$y(t) = A_Y(\omega)e^{j(\omega t + \varphi)}$$

gdzie $\omega = 2\pi f$ – pulsacja.

Stąd transmitancję można zapisać:

$$G(j\omega) = \frac{A_Y(j\omega)}{A_X(j\omega)} e^{j\varphi(\omega)}$$

Z powyższej zależności wynika, że transmitancja widmowa jest wektorem, którego moduł $M(\omega)$ dla każdej pulsacji ω jest stosunkiem amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego.

$$|G(j\omega)| = M(\omega) = \frac{A_Y(\omega)}{A_X(\omega)}$$

A argumentem $\varphi(\omega)$ jest przesunięcie fazowe sygnału wyjściowego względem sygnału wejściowego.

Przy sygnale wejściowym sinusoidalnie zmiennym, obiekt odpowie sygnałem również sinusoidalnie zmiennym o takiej samej pulsacji ω co sygnał wejściowy, lecz o innej amplitudzie i z przesunięciem fazowym względem sygnału wejściowego.

2. Analityczna metoda wyznaczania transmitancji widmowej z podanej transmitancji operatorowej (s \rightarrow j ω).

Znaleźć transmitancję widmową dla obiektu z Lab nr 1.

$$G(s) = \frac{1}{Ts+1}$$
 \rightarrow $G(j\omega) = \frac{1}{1+j\omega T}$

Przekształcenie transmitancji widmowej do postaci $G(j\omega) = P(\omega) + jQ(\omega)$:

$$G(jw) = \frac{1}{1 + j\omega T} \cdot \frac{1 - j\omega T}{1 - j\omega T} = \frac{1 - j\omega T}{1 + \omega^2 T^2} = \frac{1}{1 + \omega^2 T^2} + j\frac{-\omega T}{1 + \omega^2 T^2}$$
$$P(\omega) = \frac{1}{1 + \omega^2 T^2} \qquad Q(\omega) = \frac{-\omega T}{1 + \omega^2 T^2}$$

3. Wykreślenie charakterystyki częstotliwościowej dla $0 \ge \omega > \infty$ (charakterystyki amplitudowo-fazowej, charakterystyki Nyquista) na płaszczyźnie zespolonej (płaszczyźnie Gaussa, płaszczyźnie Arganda).

Graficznym obrazem transmitancji widmowej jest charakterystyka amplitudowo – fazowa.

$$P(\omega) = \frac{1}{1 + \omega^2 T^2}; Q(\omega) = \frac{-\omega T}{1 + \omega^2 T^2}$$

$$P(\omega = 0) = 1; Q(\omega = 0) = 0 \qquad P(\omega = \infty) = 0; Q(\omega = \infty) = 0$$

Rys. 1. Charakterystyka amplitudowo – fazowa dla czwórnika RC

Rys. 2. Charakterystyka amplitudowo – fazowa dla czwórnika RC ze wskazanym modułem oraz przesunięciem fazowym

Sprawdzenie możliwości odczytu amplitudy i fazy sygnału wyjściowego z charakterystyki amplitudowo-fazowej przy znanej wartości amplitudy i pulsacji sygnału wejściowego:

Odczytanie wartości pulsacji dla punktu o minimalnej wartości min $(Q(\omega))$: 0,1 rad/s (patrz rys. 3). Wyznaczenie wartości modułu: $M(\omega=0,1)=0,707$. Wyznaczenie przesunięcia fazowego: $\varphi(\omega=0,1)=-45^\circ$.

Rys. 3. Charakterystyka amplitudowo – fazowa dla czwórnika RC ze wskazanym modułem oraz przesunięciem fazowym dla ω =0,1

Rys. 4. Schemat blokowy układu do badania odpowiedzi obiektu na sygnał sinusoidalnie zmienny (Xcos)

Rys. 5. Przebieg wymuszenia i odpowiedzi dla obiektu inercyjnego I-rzędu. Sygnał wejściowy: sinusoida o amplitudzie =1 oraz pulsacji = 0,1 rad/s (Matlab Simulink)

Z rysunku 5 można odczytać wartość amplitudy sygnału wyjściowego A_Y=0,707 (przy A_X=1) oraz wartość przesunięcia fazowego $\varphi(\omega)=-45^\circ$ (ok. 8 jednostek na osi czasu).

Charakterystyka amplitudowo – fazowa jest miejscem geometrycznym punktów, jakie zakreśla koniec wektora $G(j\omega)$ na płaszczyźnie zmiennej zespolonej przy zmianie pulsacji sygnału wejściowego od 0 do ∞ .

Charakterystyki amplitudowo – fazowe układów rzeczywistych, dla których stopień wielomianu licznika transmitancji jest niższy od stopnia wielomianu mianownika dążą do początku układu współrzędnych.

Transmitancję można zapisać jako:

$$G(j\omega) = M(\omega)e^{j\varphi(\omega)}$$

$$G(j\omega) = P(\omega) + jQ(\omega)$$

$$M(\omega) = |G(j\omega)| = \sqrt{P^2(\omega) + Q^2(\omega)}$$

$$\varphi(\omega) = \arg G(j\omega) = \arctan \frac{Q(\omega)}{P(\omega)}$$

4. Wykreślenie charakterystyk amplitudowo – fazowych dla członu inercja I-rzędu (stała wartość T i zmienne wartości k: k1, k2, k3).

```
1 //Element.inercyjny.I-rzędu
2 s=poly(0,'s');
3 //stała · wartość · T · oraz · zmienne · k
4 T=1;
5 kl=1;
6 k2=2;
7 k3=3;
8 //transmitancje.operatorowe
9 Gl=syslin('c',kl/(T*s+1));
10 G2=syslin('c', k2/(T*s+1));
11 G3=syslin('c',k3/(T*s+1));
12 t=0:0.05:10;
13 //charakterystyki.nyquista.(amplitudovo.-.fazove))
14 subplot (2,2,1);
15 nyquist (G1, 0.01, 1000, 0.01); //kreśli char. nyquista....
16 subplot (2,2,2);
17 nyquist (G2, 0.01, 1000, 0.01); //...transmitancja, fmin, fmax, krok
18 subplot (2,2,3);
19 nyquist (G3, 0.01, 1000, 0.01);
```

LABORATORIUM PODSTAW AUTOMATYKI (Lab-3) Informatyka, 3 semestr, studia stacjonarne

Rys. 6. Charakterystyki amplitudowo – fazowe dla inercji I-rzędu (stała wartość T i zmienne wartości k)

5. Zadania do samodzielnego wykonania.

Analiza charakterystyk Nyquista (charakterystyk amplitudowo-fazowych) podstawowych elementów automatyki (proporcjonalny, inercyjny I-rzędu, różniczkujący idealny, różniczkujący rzeczywisty, całkujący idealny, całkujący rzeczywisty, oscylacyjny, opóźniający).

Równania różniczkowe podstawowych elementów automatyki

1.
$$y(t) = kx(t)$$

$$2. \quad T\frac{dy(t)}{dt} + y(t) = kx(t)$$

3.
$$T_1T_2\frac{d^2y(t)}{dt^2} + (T_1 + T_2)\frac{dy(t)}{dt} + y(t) = kx(t)$$

$$4. \quad y(t) = k \frac{dx(t)}{dt}$$

5.
$$T\frac{dy(t)}{dt} + y(t) = k\frac{dx(t)}{dt}$$

$$6. \quad \frac{dy(t)}{dt} = kx(t)$$

7.
$$T\frac{d^2y(t)}{dt^2} + \frac{dy(t)}{dt} = kx(t)$$

8.
$$T^2 \frac{d^2 y(t)}{dt^2} + 2\xi T \frac{dy(t)}{dt} + y(t) = kx(t)$$

$$9. \quad y(t) = kx(t - T_0)$$

$$G_{1}(s) = k$$

$$G_{2}(s) = \frac{k}{Ts+1}$$

$$G_{3}(s) = \frac{k}{T_{1}T_{2}s^{2} + (T_{1} + T_{2})s + 1}$$

$$G_{4}(s) = ks$$

$$G_{5}(s) = \frac{ks}{Ts+1}$$

$$G_{6}(s) = \frac{k}{s}$$

$$G_{7}(s) = \frac{k}{s(Ts+1)}$$

$$G_{8}(s) = \frac{k}{T^{2}s^{2} + 2\xi Ts + 1}$$

$$G_{9}(s) = ke^{-sT_{0}}$$

- 6. Charakterystyki skokowe oraz charakterystyki amplitudowo fazowe podstawowych członów automatyki. Zwrócić uwagę na wpływ wartości wzmocnienia k oraz stałej czasowej T na kształt charakterystyk.
 - a. Element bezinercyjny

b. Inercja I-rzędu

c. Element całkujący idealny

d. Element całkujący rzeczywisty

e. Element różniczkujący idealny

f. Element różniczkujący rzeczywisty

g. Element oscylacyjny

i. 0<ξ<1 (tłumienie drgań)

ii. -1<ξ<0 (drgania rosnące)

iii. ξ=0 (brak tłumienia drgań)

h. Element opóźniający

