MATEMÁTICA DISCRETA - AULA: 19/05/2021

TEORIA DOS CONJUNTOS

> Produto cartesiano de vários conjuntos

A noção de produto cartesiano, definida para dois conjuntos pode ser estendida de maneira natural a qualquer número finito n>2 de conjuntos. Sendo assim, o produto cartesiano ou apenas produto dos n conjuntos A1, A2, ..., An, pela ordem em que estão escritos, ao conjunto de todas as n-uplas (x1,x2,...,xn) tais que x1 \in A1, x2 \in A2,..., xn \in An. Esse produto é representado por uma das notações:

A1 x A2 x...x An ou
$$\prod_{i=1}^{n} A_i$$

O símbolo Π (letra pi do alfabeto grego) é chamado produtório.

EXEMPLO:

Sejam os conjuntos $A=\{2,3\}$, $B=\{1,3,5\}$ e $C=\{3,4\}$, então:

• A x B x C =
$$\{2,3\}$$
 x B= $\{1,3,5\}$ x C= $\{3,4\}$
A x B x C = $\{(2,1,3), (2,1,4), (2,3,3), (2,3,4), (2,5,3), (2,5,4), (3,1,3), (3,1,4), (3,3,3), (3,3,4), (3,5,3), (3,5,4)\}$

•
$$A \times A \times A = A^3 = \{2,3\} \times \{2,3\} \times \{2,3\},$$

 $A \times A \times A = \{(2,2,2), (2,2,3), (2,3,2), (2,3,3), (3,2,2), (3,2,3), (3,3,2), (3,3,3)\}$

> Representação gráfica do produto cartesiano

O produto cartesiano A x B de dois conjuntos pode ser representado graficamente por uma tabela de dupla entrada, por diagrama de árvore, por um diagrama sagital ou por um diagrama cartesiano, além do diagrama de Venn.

1) Diagrama de Venn (dado na aula do dia 14-05-2021)

Sejam A e B dois conjuntos quaisquer não vazio.

2) Tabela de Dupla Entrada

Numa tabela de dupla entrada escrevem-se os elementos do conjunto A na 1ª coluna da esquerda e os elementos do conjunto B na 1 linha. Na interseção da "linha x" com a "coluna y" se encontra o par ordenado $(x,y) \in AxB$.

EXEMPLO:

Sejam os conjuntos $A=\{1, 2, 3, 4, 5\}$ e $B=\{a, b, c, d\}$. A tabela de dupla entrada de $A \times B$ é dada por:

AB	а	b	С	d
1	(1, a)	(1, b)	(1, c)	(1, d)
2	(2, a)	(2, b)	(2, c)	(2, d)
3	(3, a)	(3, b)	(3, c)	(3, d)
4	(4, a)	(4, b)	(4, c)	(4, d)
5	(5, a)	(5, b)	(5, c)	(5, d)

3) Diagrama de Árvore

O produto cartesiano A x B pode ser obtido de maneira sistemática pelo chamado diagrama de árvore. Esse tipo de diagrama é mais adequado para determinar o produto cartesiano com mais de dois conjuntos.

EXEMPLO

Considere os três conjuntos dado como exemplo no produto de vários conjuntos para verificar a facilidade de obter os ternos ordenados. Sejam os conjuntos $A=\{2,3\}$, $B=\{1,3,5\}$ e $C=\{3,4\}$, então:

3

Os ternos ordenados são obtidos no final da árvore. De maneira semelhante, os ternos ordenados de $A \times A \times A = A^3$ podem ser obtidos pelo diagrama de árvore.

Observação: Essa representação em forma de diagrama de árvore é importante dentro da teoria de computação. Ela deu origem à estrutura de dados chamada árvore (e uma das estruturas mais conhecidas é a chamada árvore binária).

4) Diagrama Sagital

O diagrama sagital é outra forma diferente de representar o diagrama de Venn, onde cada par ordenado (x,y) é representado graficamente por uma flecha com origem no primeiro elemento x e por extremidade o segundo elemento y.

EXEMPLO:

Sejam $A = \{1,2\}$ e $B = \{2,3,4\}$, então:

• $A \times B = \{(1,2), (1,3), (1,4), (2,2), (2,3), (2,4)\}$

5) Diagrama Cartesiano

O diagrama cartesiano é formado por dois eixos Ox e Oy ortogonais (formam angulo de 90°), e representa-se o conjunto A sobre o eixo horizontal Ox e o conjunto B sobre o eixo vertical Oy. Ao traçar retas paralelas a esses dois eixos pelos pontos que representam os elementos de A e de B. os pontos de interseção dessas paralelas representam os pares ordenados (x,y) de A x B.

EXEMPLO:

1) Sejam os conjuntos dados por:

Diagrama cartesiano de A x B

$$AxB = \{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\} \rightarrow conjunto finito$$

1.2)
$$A = \{x \in \mathbb{R} / 2 < x \le 5\} \ e \ B = \{y \in \mathbb{R} / 1 \le y < 3\}$$

Diagrama Cartesiano de AxB

AxB → conjunto infinito

Observação: Neste exemplo, o resultado do produto $A \times B$ é um conjunto infinito de pares ordenados (nesse caso existem infinitos pares ordenados), por isso a região $A \times B$ foi "pintada" para representar esses infinitos pares ordenados.

"Descobrir consiste em olhar para o que todo mundo está vendo e pensar uma coisa diferente." (Roger Von Oech)

LISTA DE EXERCÍCIOS

(Essa atividade não é para nota)

Prazo de entrega até às 23h55 do dia 26-05-2021

Procure fazer a lista de exercício para se preparar para as provas e em caso de dificuldade poder tirar dúvidas ok? O aluno que quiser a correção da lista de exercício, basta enviar resolvida em arquivo pdf no MOODLE na tarefa do dia da aula.

1) Determinar x e y tal que os pares ordenados sejam iguais.

1.1)
$$\left(\frac{-7}{2}x - 5y, -3x + \frac{3}{5}y + 4\right) = (-3y + 8, \frac{1}{3}x - 5)$$

1.2)
$$\left(2 \times -\frac{7}{2} y + 10, 7x - 9x - y\right) = \left(\frac{-1}{2} x + 13, \frac{3}{7} y + 13\right)$$

2) Dados os conjuntos $A = \{1,2,3,4\}$, $B = \{2,3\}$ e $C = \{1,4,5,6,7\}$, determinar:

- **2.1)** diagrama de árvore de $A \times C \times B = B^3$
- 2.2) diagrama sagital de B x C
- 2.3) diagrama de Venn de C x A
- 2.4) tabela de dupla entrada de A x C