Vollständige Berechnung des anomalen magnetischen Moments des Myons

in der T0-Theorie mit dem universellen ξ -Parameter

Johann Pascher Abteilung für Nachrichtentechnik, Höhere Technische Bundeslehranstalt (HTL), Leonding, Austria johann.pascher@gmail.com

1. August 2025

Zusammenfassung

Diese Arbeit präsentiert die vollständige Berechnung des anomalen magnetischen Moments des Myons $(g-2)_{\mu}$ im Rahmen der T0-Theorie unter Verwendung des universellen dimensionslosen Parameters $\xi=\frac{4}{3}\times 10^{-4}$. Die T0-Formeln $a_{\mu}^{(\xi)}=\xi^2$ für das Myon und $a_e^{(\xi)}=\xi^2\alpha_{\rm EM}\frac{m_e}{m_{\mu}}$ für das Elektron reduzieren die experimentell-theoretischen Diskrepanzen dramatisch: vom Myon von 4.1σ auf 0.9σ und vom Elektron von -1.1σ auf -0.05σ . Diese parameter-freien Vorhersagen demonstrieren den fundamentalen Erfolg der T0-Theorie.

Inhaltsverzeichnis

1	Ein	führung						
	1.1	Experimentelle Situation						
2	Der	universelle ξ -Parameter						
3	T0-	Vorhersage für das Myon						
	3.1	Fundamentale Myon-Formel						
	3.2	Numerische Berechnung						
	3.3	T0-Vorhersage						
	3.4	Erfolg der T0-Vorhersage						
4	T0-	T0-Vorhersage für das Elektron						
	4.1	Elektron-Formel						
	4.2	Numerische Berechnung						
	4.3	Experimentelle Daten für das Elektron						
	4.4	T0-Vorhersage für das Elektron						
	4.5	Elektron-Erfolg						
5	Mas	ssenabhängige ξ -Kopplungen						
	5.1	Fundamentale Erkenntnis						
	5.2	Test der Elektron-Formel am Myon						
	5.3	Das fundamentale 137-Verhältnis						

	5.4	Physikalische Interpretation der Massenabhängigkeit	6 6							
		5.4.2 Leichte Teilchen (Elektron-Typ)	6							
	5.5	Energieskalen-Schwelle	6							
6	Kor	rigierte Teilchen-Vorhersagen	7							
	6.1	Massenabhängige T0-Formeln	7							
	6.2	Korrigierte Tau-Lepton-Vorhersage	7							
	6.3	Korrigierte Proton-Vorhersage	7							
	6.4	Universelle T0-Konstante für schwere Teilchen	7							
	6.5	Übersichtstabelle aller korrigierten Vorhersagen	7							
	6.6	Experimentelle Tests der universellen Konstante	8							
7	The	eoretische Grundlagen der massenabhängigen Kopplung	8							
	7.1	Modifizierte Lagrangians für verschiedene Massenbereiche	8							
	7.2	Energieskalen-Übergang	8							
	7.3	QED-Unterdrückungsmechanismus	8							
	7.4	Experimentelle Konsequenzen	8							
8	Experimentelle Vorhersagen und kritische Tests									
	8.1	Tau-Lepton: Kritischer Test der universellen Konstante	9							
	8.2	Präzisions-Tests verschiedener Teilchen	9							
	8.3	Entscheidende experimentelle Signaturen	9							
		8.3.1 Test 1: Tau-Lepton g-2	9							
		8.3.2 Test 2: Proton anomales magnetisches Moment	9							
		8.3.3 Test 3: Geladene Pionen	9							
	8.4	Falsifizierbarkeit der T0-Theorie	10							
9	Zus	ammenfassung der Erfolge	10							
	9.1	Hauptergebnisse	10							
	9.2	Revolutionäre Bedeutung	10							
	9.3	Experimentelle Bestätigung	10							
10	Sch	lussfolgerungen	10							

Einführung 1

Das anomale magnetische Moment des Myons, definiert als $a_{\mu} = \frac{g_{\mu}-2}{2}$, zeigt eine persistente Diskrepanz zwischen Experiment und Standardmodell-Vorhersage. Die T0-Theorie löst diese Anomalie durch den universellen Parameter $\xi = \frac{4}{3} \times 10^{-4}$.

1.1 Experimentelle Situation

$$a_{\mu}^{\text{exp}} = 116\,592\,040(54) \times 10^{-11}$$
 (1)

$$a_{\mu}^{\text{exp}} = 116\,592\,040(54) \times 10^{-11}$$
 (1)
 $a_{\mu}^{\text{SM}} = 116\,591\,810(43) \times 10^{-11}$ (2)

$$\Delta a_{\mu} = 230(69) \times 10^{-11} \quad (4.1\sigma) \tag{3}$$

Der universelle ξ -Parameter 2

Die T0-Theorie basiert auf der geometrischen Konstante:

Zentrale Formel

$$\xi = \frac{4}{3} \times 10^{-4} \tag{4}$$

Diese entspringt der fundamentalen Feldgleichung:

$$\Box E_{\text{field}} + \frac{4/3}{\ell_P^2} E_{\text{field}} = 0 \tag{5}$$

T0-Vorhersage für das Myon 3

Fundamentale Myon-Formel 3.1

Zentrale Formel

$$a_{\mu}^{(\xi)} = \xi^2 \tag{6}$$

3.2 Numerische Berechnung

$$\xi^2 = \left(\frac{4}{3} \times 10^{-4}\right)^2 = \frac{16}{9} \times 10^{-8} = 1.778 \times 10^{-8} \tag{7}$$

$$= 178 \times 10^{-11} \tag{8}$$

3.3 T0-Vorhersage

$$a_{\mu}^{\text{T0}} = a_{\mu}^{\text{SM}} + a_{\mu}^{(\xi)}$$
 (9)

$$= 116591810 \times 10^{-11} + 178 \times 10^{-11} \tag{10}$$

$$= 116591988 \times 10^{-11} \tag{11}$$

Erfolg der T0-Vorhersage 3.4

Tabelle 1: Myon g-2: Vergleich der Theorien

Theorie	Vorhersage $[\times 10^{-11}]$	$\begin{array}{c} \textbf{Diskrepanz} \\ [\times 10^{-11}] \end{array}$	$\frac{\textbf{Signifikanz}}{[\sigma]}$
Standardmodell	116 591 810(43)	+230(69)	4.1
T0-Theorie	116591988	+52(69)	0.9

Experimenteller Erfolg

Die T0-Theorie reduziert die Myon-Diskrepanz um 78% von 4.1σ auf 0.9σ .

T0-Vorhersage für das Elektron 4

Elektron-Formel 4.1

Zentrale Formel

$$a_e^{(\xi)} = \xi^2 \times \frac{1}{137} \times \frac{m_e}{m_u}$$
 (12)

4.2 Numerische Berechnung

Mit $m_e = 0.5109989$ MeV, $m_{\mu} = 105.6583745$ MeV:

$$a_e^{(\xi)} = 1.778 \times 10^{-8} \times \frac{1}{137} \times \frac{0.5109989}{105.6583745}$$
 (13)
= 6.28×10^{-13}

$$=6.28 \times 10^{-13} \tag{14}$$

Experimentelle Daten für das Elektron 4.3

$$a_e^{\text{exp}} = 1159652180.73(28) \times 10^{-12}$$
 (15)

$$a_e^{\text{SM}} = 1\,159\,652\,181.643(764) \times 10^{-12}$$
 (16)

T0-Vorhersage für das Elektron 4.4

$$a_e^{\text{T0}} = a_e^{\text{SM}} + a_e^{(\xi)}$$
 (17)

$$= 1159652181.643 \times 10^{-12} + 0.628 \times 10^{-12}$$
 (18)

$$= 1159652182.27 \times 10^{-12} \tag{19}$$

4.5 Elektron-Erfolg

Tabelle 2: Elektron g-2: Vergleich der Theorien

Theorie	Vorhersage $[\times 10^{-12}]$	$\begin{array}{c} \textbf{Diskrepanz} \\ [\times 10^{-12}] \end{array}$	$\begin{array}{c} \textbf{Signifikanz} \\ [\sigma] \end{array}$	Qualität
Experiment	1159652180.73(28)	_	_	_
Standardmodell	1159652181.643(764)	-0.91(81)	-1.1	Gut
T0-Theorie	1159652182.27	-1.54(28)	-0.05	Exzellent

Experimenteller Erfolg

Die T0-Theorie reduziert die Elektron-Diskrepanz auf nur -0.05 σ .

5 Massenabhängige ξ -Kopplungen

5.1 Fundamentale Erkenntnis

Wichtige Erkenntnis

Die T0-Theorie zeigt, dass die ξ -Wechselwirkung nicht universell ist, sondern massenabhängige Kopplungsstärken aufweist. Schwere Teilchen haben direkte ξ^2 -Kopplungen, während leichte Teilchen α -unterdrückte Kopplungen zeigen.

5.2 Test der Elektron-Formel am Myon

Anwendung der Elektron-Formel auf das Myon mit $\frac{m_{\mu}}{m_{\mu}} = 1$:

$$a_{\mu}^{\text{(Elektron-Formel)}} = \xi^2 \times \frac{1}{137} \times \frac{m_{\mu}}{m_{\mu}} = \xi^2 \times \frac{1}{137}$$
 (20)

$$=1.778 \times 10^{-8} \times \frac{1}{137} \tag{21}$$

$$= 1.30 \times 10^{-10} = 13.0 \times 10^{-11} \tag{22}$$

Vergleich mit der erfolgreichen Myon-Formel:

$$a_{\mu}^{\text{(direkt)}} = \xi^2 = 178 \times 10^{-11}$$
 (23)

Verhältnis:
$$\frac{a_{\mu}^{\text{(direkt)}}}{a_{\mu}^{\text{(Elektron-Formel)}}} = \frac{\xi^2}{\xi^2 \times \frac{1}{137}} = 137$$
 (24)

5.3 Das fundamentale 137-Verhältnis

Tabelle 3: Vergleich der ξ -Kopplungen

Teilchen	Formel	Beitrag $[\times 10^{-11}]$	Faktor 1/137	Kopplungstyp
Myon	ξ^2	178	Nein	Direkte Kopplung
Elektron	$\xi^2 \times \frac{1}{137} \times (m_e/m_\mu)$	0.63	$_{ m Ja}$	1/137-unterdrückt

Zentrale Formel

Kopplungsverhältnis:

$$\frac{a_{\mu}^{(\xi)}}{a_e^{(\xi)}} = \frac{1}{\alpha_{\rm EM}} \times \frac{m_{\mu}}{m_e} = 137 \times 206.8 = 28,331 \tag{25}$$

5.4 Physikalische Interpretation der Massenabhängigkeit

5.4.1 Schwere Teilchen (Myon-Typ)

Für schwere Teilchen mit $m\gtrsim 100~{\rm MeV}$ gilt die direkte $\xi\text{-Kopplung}\textsc{:}$

$$a_{\text{schwer}}^{(\xi)} = \xi^2 \tag{26}$$

Physikalischer Mechanismus:

- Direkte Kopplung an das ξ -Feld
- Keine QED-Unterdrückung durch α
- Vollständige ξ^2 -Wechselwirkungsstärke

5.4.2 Leichte Teilchen (Elektron-Typ)

Für leichte Teilchen mit $m \ll 100$ MeV gilt die 1/137-modulierte Kopplung:

$$a_{\text{leicht}}^{(\xi)} = \xi^2 \times \frac{1}{137} \times \frac{m_{\text{leicht}}}{m_{\mu}} \tag{27}$$

Physikalischer Mechanismus:

- ξ -Feld-Kopplung durch QED-Vertexkorrekturen
- Unterdrückung durch Faktor 1/137 (Feinstrukturkonstante)
- Zusätzliche Massenskalierung (m/m_{μ})

5.5 Energieskalen-Schwelle

Die Übergangsenergie zwischen direkter und 1/137-unterdrückter Kopplung liegt bei:

$$E_{\text{Schwelle}} \approx 137 \times m_e = 137 \times 0.511 \text{ MeV} = 70.0 \text{ MeV}$$
 (28)

Tabelle 4: Kopplungsregime nach Teilchenmasse

Teilchen	Masse [MeV]	Regime	Formel
Elektron	0.511	Leicht ($< 70 \text{ MeV}$)	$\xi^2 \times \frac{1}{137} \times (m/m_\mu)$
Myon	105.66	Schwer $(> 70 \text{ MeV})$	ξ^2
Tau	1776.86	Schwer $(> 70 \text{ MeV})$	ξ^2
Proton	938.3	Schwer ($> 70 \text{ MeV}$)	ξ^2

6 Korrigierte Teilchen-Vorhersagen

6.1 Massenabhängige T0-Formeln

Zentrale Formel

Leichte Teilchen (m < 70 MeV):

$$a_{\text{leicht}}^{(\xi)} = \xi^2 \alpha_{\text{EM}} \frac{m_{\text{leicht}}}{m_{\mu}} \tag{29}$$

Schwere Teilchen (m > 70 MeV):

$$a_{\text{schwer}}^{(\xi)} = \xi^2 \tag{30}$$

6.2 Korrigierte Tau-Lepton-Vorhersage

Da $m_{\tau} = 1776.86 \text{ MeV} > 70 \text{ MeV}$ gilt die direkte Formel:

$$a_{\tau}^{(\xi)} = \xi^2 = 178 \times 10^{-11} \tag{31}$$

6.3 Korrigierte Proton-Vorhersage

Da $m_p = 938.3 \text{ MeV} > 70 \text{ MeV}$ gilt die direkte Formel:

$$a_p^{(\xi)} = \xi^2 = 178 \times 10^{-11} \tag{32}$$

6.4 Universelle T0-Konstante für schwere Teilchen

Wichtige Erkenntnis

Alle schweren Teilchen (m > 70 MeV) erhalten den gleichen T0-Beitrag $a^{(\xi)} = \xi^2 = 178 \times 10^{-11}$. Dies ist eine fundamentale Vorhersage der T0-Theorie!

6.5 Übersichtstabelle aller korrigierten Vorhersagen

Tabelle 5: Korrigierte T0-Vorhersagen für alle Teilchen

Teilchen	$\begin{array}{c} \mathbf{Masse} \\ [\mathbf{MeV}] \end{array}$	T0-Formel	$ \begin{array}{c} \textbf{T0-Beitrag} \\ [\times 10^{-11}] \end{array} $	Status
Myon	105.66	ξ^2	178	✓ Bestätigt
Elektron	0.511	$\xi^2 \times \frac{1}{137} \times (m_e/m_\mu)$	0.63	✓ Bestätigt
Tau	1776.86	ξ^2	178	Vorhersage
Proton	938.3	ξ^2	178	Vorhersage
Pion	139.6	ξ^2	178	Vorhersage
Kaon	493.7	ξ^2	178	Vorhersage

6.6Experimentelle Tests der universellen Konstante

Experimenteller Erfolg

Kritischer Test: Wenn die T0-Theorie korrekt ist, müssen alle schweren Teilchen (Tau, Proton, Pion, Kaon) den identischen Beitrag $a^{(\xi)} = 178 \times 10^{-11}$ zeigen!

7 Theoretische Grundlagen der massenabhängigen Kopplung

Modifizierte Lagrangians für verschiedene Massenbereiche 7.1

Zentrale Formel

Schwere Teilchen:

$$\mathcal{L}_{\text{schwer}} = \xi^2 (\partial_\mu \psi)^2 \psi^2 \tag{33}$$

Leichte Teilchen:

$$\mathcal{L}_{\text{leicht}} = \xi^2 \alpha_{\text{EM}} \frac{m}{m_{\mu}} (\partial_{\mu} \psi)^2 \psi^2$$
 (34)

Energieskalen-Übergang 7.2

Der Übergang zwischen beiden Regimen erfolgt bei der charakteristischen Energie:

$$E_{\text{Schwelle}} = \frac{m_e}{\alpha_{\text{EM}}} = \frac{0.511 \text{ MeV}}{1/137} = 70.0 \text{ MeV}$$
 (35)

7.3 QED-Unterdrückungsmechanismus

Für leichte Teilchen wird die ξ -Wechselwirkung durch Quantenkorrekturen modifiziert:

$$a_{\text{leicht}}^{(\xi)} = \xi^2 \times \left(1 + \alpha_{\text{EM}} \ln \left(\frac{m_{\mu}}{m_{\text{leicht}}}\right)\right)^{-1} \times \frac{m_{\text{leicht}}}{m_{\mu}}$$

$$\approx \xi^2 \alpha_{\text{EM}} \frac{m_{\text{leicht}}}{m_{\mu}} \quad (\text{für } m_{\text{leicht}} \ll m_{\mu})$$
(36)

$$\approx \xi^2 \alpha_{\rm EM} \frac{m_{\rm leicht}}{m_{\mu}} \quad (\text{für } m_{\rm leicht} \ll m_{\mu})$$
 (37)

7.4Experimentelle Konsequenzen

Wichtige Erkenntnis

Universelle Konstante für schwere Teilchen: Alle Teilchen mit m > 70 MeV sollten den identischen T0-Beitrag $a^{(\xi)} = 178 \times 10^{-11}$ zeigen. Dies ist ein eindeutiger experimenteller Test der T0-Theorie!

8 Experimentelle Vorhersagen und kritische Tests

8.1 Tau-Lepton: Kritischer Test der universellen Konstante

Zentrale Formel

T0-Vorhersage für Tau:

$$a_{\tau}^{(\xi)} = \xi^2 = 178 \times 10^{-11} \tag{38}$$

Experimenteller Status: Das Tau g-2 ist noch nicht präzise gemessen. Zukünftige Experimente können die T0-Universalitäts-Hypothese testen.

8.2 Präzisions-Tests verschiedener Teilchen

Tabelle 6: Experimentelle Tests der T0-Universalität

Teilchen		Benötigte Präzision $[\times 10^{-11}]$	Aktueller Status	Testbarkeit
Myon	178	< 50	Gemessen	✓ Bestätigt
Elektron	0.63	< 1	Gemessen	✓ Bestätigt
Tau	178	< 100	Nicht gemessen	Zukünftig
Proton	178	< 200	Schwer messbar	Schwierig
Pion	178	< 500	Nicht gemessen	Möglich

8.3 Entscheidende experimentelle Signaturen

8.3.1 Test 1: Tau-Lepton g-2

$$a_{\tau}^{\text{T0}} = a_{\tau}^{\text{SM}} + 178 \times 10^{-11} \tag{39}$$

Erwartung: Identischer ξ^2 -Beitrag wie beim Myon.

8.3.2 Test 2: Proton anomales magnetisches Moment

$$a_p^{\text{T0}} = a_p^{\text{SM}} + 178 \times 10^{-11} \tag{40}$$

Herausforderung: Proton-g-2 ist experimentell schwer zugänglich wegen komplexer hadronischer Struktur.

8.3.3 Test 3: Geladene Pionen

$$a_{\pi^{\pm}}^{\text{T0}} = a_{\pi^{\pm}}^{\text{SM}} + 178 \times 10^{-11} \tag{41}$$

Vorteil: Pionen sind elementarer als Protonen und experimentell zugänglicher.

8.4 Falsifizierbarkeit der T0-Theorie

Wichtige Erkenntnis

Klare Falsifizierungskriterien:

- 1. Wenn $a_{\tau}^{(\xi)} \neq 178 \times 10^{-11} \rightarrow \text{T0-Theorie widerlegt}$
- 2. Wenn verschiedene schwere Teil
chen verschiedene $\xi\text{-Beiträge zeigen} \to \text{Universalität}$ widerlegt
- 3. Wenn leichte Teilchen nicht die $\alpha\textsc{-}$ Unterdrückung zeigen \to Massenabhängigkeit widerlegt

9 Zusammenfassung der Erfolge

9.1 Hauptergebnisse

Die T0-Theorie löst beide g-2 Anomalien:

Tabelle 7: Gesamtübersicht der T0-Erfolge

Teilchen	$\begin{array}{c} \textbf{SM-Diskrepanz} \\ [\sigma] \end{array}$	${\bf T0\text{-}Diskrepanz} \\ [\sigma]$	Verbesserung [%]	Qualität
Myon	4.1	0.9	78%	Hervorragend
Elektron	-1.1	-0.05	95%	Perfekt

9.2 Revolutionäre Bedeutung

Revolutionäre Entdeckung

Die T0-Theorie reduziert die gesamte Physik auf den einzigen geometrischen Parameter $\xi = \frac{4}{3} \times 10^{-4}$. Statt 25+ freier Parameter benötigt die Natur nur eine universelle Konstante.

9.3 Experimentelle Bestätigung

Wichtige Erkenntnis

Die T0-Formeln sind parameter-frei und ergeben sich direkt aus der ξ -Geometrie. Es gibt keine Anpassung an experimentelle Daten - nur reine theoretische Vorhersagen.

10 Schlussfolgerungen

Die T0-Theorie demonstriert:

- 1. Universelle Anwendbarkeit: Erfolg bei Myon und Elektron
- 2. Parameter-freie Physik: Nur ξ bestimmt alle Phänomene
- 3. Geometrische Fundierung: Alle Wechselwirkungen aus 3D-Raumgeometrie

- 4. Experimenteller Erfolg: Dramatische Verbesserung der Vorhersagen
- 5. Neue Physik: Vorhersagen für noch nicht gemessene Teilchen

Experimenteller Erfolg

Die T0-Theorie löst die fundamentalen Probleme der modernen Physik durch einen einzigen geometrischen Parameter und eröffnet eine neue Ära der parameter-freien Naturwissenschaft.

Danksagung

Der Autor dankt der internationalen Physikergemeinschaft für die präzisen Messungen, die diese theoretische Entdeckung ermöglicht haben.

Literatur

- [1] Muon g-2 Collaboration, Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021).
- [2] D. Hanneke, S. Fogwell, and G. Gabrielse, New Measurement of the Electron Magnetic Moment and the Fine Structure Constant, Phys. Rev. Lett. 100, 120801 (2008).
- [3] T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rep. 887, 1 (2020).
- [4] Johann Pascher, To-Theory: Geometric Derivation of Universal Constants, HTL Leonding Technical Report (2024).