

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal, Hyderabad - 500 043

Regulation: UG20

COMPUTER SCIENCE AND ENGINEERING (AI & ML)

NATURAL LANGUAGE PROCESSING

AAT-II

Assignment

Name: **GOLI SRIRAM**Course: **CSE (AI&ML) - B**Roll No: **22951A66E5**

1. What is natural language understanding, and why is it important in natural language processing

A. Natural Language Understanding (NLU) is a subfield of Natural Language Processing (NLP) that focuses on enabling machines to **comprehend**, **interpret**, **and derive meaning** from human (natural) language in a way that is both meaningful and useful.

Definition:

Natural Language Understanding involves analyzing and converting human language into a machine-readable format. It deals with **semantics (meaning)** and **context**, allowing computers to:

- Understand the intent behind the text or speech
- Recognize entities (people, places, things)
- Interpret sentiments, emotions, and implied meanings
- Handle ambiguity and variations in language

Importance in NLP:

1. Enables Human-Machine Interaction:

o NLU allows applications like virtual assistants (e.g., Siri, Alexa), chatbots, and customer service tools to understand user inputs and respond appropriately.

2. Improves Accuracy in Responses:

o Systems with NLU can interpret questions more precisely, resulting in better answers and interactions in tasks like question-answering or recommendation systems.

3. Essential for Language-Based Automation:

o It enables automation in document summarization, legal analysis, translation, and voice-operated systems.

4. Supports Sentiment and Intent Analysis:

o Businesses use NLU to gauge customer opinions from reviews, feedback, or social media by understanding the sentiment and intent behind the text.

Example:

User input: "I need help booking a flight to Delhi next Monday." An NLU system would:

- Detect **intent**: Booking a flight
- Extract **entities**: Destination Delhi; Date next Monday
- Enable an appropriate automated response or action

In summary, **NLU is critical in NLP** because it brings meaning, context, and structure to human language, making communication between humans and machines effective and intelligent.

2. What are some ethical considerations associated with the use of natural language processing models and algorithms, such as bias and fairness

A. The use of **Natural Language Processing (NLP)** models and algorithms raises several important **ethical considerations**, particularly regarding **bias**, **fairness**, **privacy**, and **transparency**. These issues must be carefully addressed to ensure NLP systems are responsible and trustworthy.

1. Bias in NLP Models

- **Definition:** Bias occurs when an NLP model produces results that unfairly favor or disadvantage certain groups based on gender, race, religion, or other attributes.
- Sources of Bias:
 - o **Training data:** If the data used to train the model reflects societal stereotypes or historical inequalities, the model may learn and replicate them.
 - o **Annotation bias:** Human labeling can introduce subjectivity and cultural bias.

• Examples:

- o A language model translating doctor = "he" and nurse = "she" regardless of context.
- o Sentiment analysis misinterpreting African American Vernacular English (AAVE) as more negative.

2. Fairness

- **Goal:** NLP systems should treat all individuals and groups equitably.
- Challenges:
 - o Ensuring access to NLP tools across different languages and dialects.
 - o Avoiding discrimination in automated decisions (e.g., in hiring or loan processing).

3. Privacy and Data Protection

- **Concern:** NLP models trained on large datasets may inadvertently memorize and reveal sensitive information (e.g., personal messages, credit card numbers).
- Best Practices:
 - o Use anonymized and consented datasets.
 - $\circ\quad$ Apply techniques like differential privacy to protect user data.

4. Misinformation and Malicious Use

- NLP models can be used to:
 - o Generate fake news or spam.
 - o **Impersonate individuals** via realistic text or voice outputs.
- This raises concerns about **security**, **authenticity**, **and misinformation**.

5. Transparency and Explainability

- Black-box nature: Deep learning-based NLP models are often difficult to interpret.
- **Importance:** Users should understand how and why a model makes decisions, especially in high-stakes applications like law or healthcare.

6. Accountability and Governance

- **Who is responsible** when an NLP model causes harm?
- Organizations must establish clear guidelines for auditing, monitoring, and correcting model behavior.

Conclusion:

While NLP technologies offer powerful tools for communication and automation, their ethical deployment requires attention to:

- Reducing bias
- Ensuring fairness
- Protecting privacy
- Preventing harm
- Promoting transparency

A responsible approach to NLP development and use is essential to building systems that serve all individuals equitably and safely.

3. What are some challenges associated with term extraction, such as dealing with multi- word expressions, domain-specific terminology, and polysemy

A. Term extraction is the process of identifying relevant words or phrases (terms) from a body of text that are significant for understanding or processing the content, especially in specific domains. While it's a crucial step in many Natural Language Processing (NLP) tasks (like information retrieval, ontology building, and text mining), it comes with several **challenges**, particularly in dealing with:

1. Multi-word Expressions (MWEs)

Challenge:

Many important terms are **not single words** but **phrases**, such as "machine learning", "climate change", or "financial market".

- MWEs often appear in various forms and may be discontinuous or syntactically varied.
- Traditional term extraction techniques may miss them or treat them as separate words.

Example:

"Support vector machine" might be incorrectly split into individual terms: "support", "vector", and "machine".

Solution Approaches:

- Use of **n-gram models**, **part-of-speech (POS)** patterns, or **chunking** to detect common term structures.
- Statistical measures like **mutual information** or **TF-IDF** to assess term significance.

2. Domain-Specific Terminology

Challenge:

Different domains (e.g., medicine, law, engineering) have **specialized vocabularies** not common in general corpora.

- These terms may not appear frequently in standard datasets or dictionaries.
- General NLP models may fail to recognize them as significant.

Example:

Terms like "angioplasty" (medicine) or "fiduciary duty" (law) might be ignored or misclassified by generic models.

Solution Approaches:

- Use domain-specific corpora and ontologies.
- Combine machine learning with expert-curated lexicons to improve accuracy.

3. Polysemy (Multiple Meanings of a Word)

Challenge:

A single word can have **multiple meanings** depending on context.

• Without disambiguation, term extraction tools may incorrectly select or discard terms.

Example:

- "Bank" in "river bank" vs. "commercial bank"
- "Java" (programming language) vs. "Java" (island or coffee)

Solution Approaches:

- Apply Word Sense Disambiguation (WSD) techniques.
- Use **contextual embeddings** (like BERT) to differentiate meanings based on usage.

4. Synonymy and Term Variation

Challenge:

The same concept may be expressed using different words or forms.

• Extracting only one form may result in incomplete knowledge representation.

Example:

"Heart attack", "myocardial infarction", and "cardiac arrest" are related but may not be treated as such.

Solution Approaches:

- Use semantic similarity or ontology mapping tools.
- Incorporate **thesauri** or **word embeddings** to group similar terms.

5. Ambiguity and Noise

Challenge:

Terms may appear in **non-informative or ambiguous contexts**, especially in large corpora.

• Irrelevant or vague terms might be extracted due to poor frequency thresholds or loose criteria.

Solution Approaches:

- Use **supervised learning** with labeled data.
- Apply **post-processing filters** or manual validation for high-stakes applications.

Conclusion:

Effective term extraction must deal with:

- Multi-word expressions
- Specialized terminology
- Word ambiguity (polysemy and synonymy)
- Domain-specific variation
- Context sensitivity

Solving these challenges requires a mix of **linguistic rules**, **statistical methods**, and **deep learning techniques**, often tailored to the target domain or application.

- 4. What are some common techniques used for text normalization, such as case folding, accent removal, and punctuation removal
- **A**. **Text normalization** is the process of transforming text into a consistent, standard format, which helps improve the performance of downstream Natural Language Processing (NLP) tasks such as tokenization, parsing, and machine learning. Here are some **common techniques** used in text normalization:

1. Case Folding (Lowercasing)

- **Definition**: Converts all characters in the text to lowercase.
- **Purpose**: Reduces redundancy caused by case differences (e.g., "Apple" and "apple" are treated as the same word).
- Example:

Input: "The QUICK Brown Fox" \rightarrow Output: "the quick brown fox"

2. Accent Removal

- **Definition**: Strips diacritical marks (accents) from characters.
- Purpose: Normalizes characters across languages and typing styles.
- Example:

Input: "café, naïve, résumé" → Output: "cafe, naive, resume"

3. Punctuation Removal

- **Definition**: Removes punctuation marks such as periods, commas, question marks, etc.
- **Purpose**: Prevents unnecessary tokens and noise in analysis, especially in bag-of-words models.
- Example:

Input: "Hello, world!" → Output: "Hello world"

4. Tokenization

- **Definition**: Splits text into individual units such as words or sentences.
- **Purpose**: Prepares text for further processing like parsing or vectorization.
- Example:

Input: "Natural language processing is fun." Tokens: ["Natural", "language", "processing", "is", "fun"]

5. Stopword Removal

- **Definition**: Eliminates common words that carry little semantic value.
- **Purpose**: Improves performance by focusing on meaningful words.
- Example:

Input: "This is an example of stopword removal"

Output: "example stopword removal"

6. Stemming

- **Definition**: Reduces words to their base or root form by chopping off suffixes.
- **Purpose**: Groups similar words together (e.g., "running", "runs", "ran" \rightarrow "run").
- Example:

Input: "connections, connected" → Output: "connect, connect"

7. Lemmatization

- **Definition**: Converts words to their dictionary form using context and grammar.
- More accurate than stemming.

• Example:

Input: "was", "better" → Output: "be", "good"

8. Contraction Expansion

- **Definition**: Converts contracted forms to full forms.
- **Purpose**: Enhances consistency for NLP tasks like parsing or sentiment analysis.
- Example:

Input: "don't, I'm, it's" → Output: "do not, I am, it is"

9. Whitespace Normalization

- **Definition**: Removes unnecessary spaces, tabs, and line breaks.
- Example:

Input: "This is spaced \ttext" → Output: "This is spaced text"

10. Spelling Correction (Optional)

- **Definition**: Identifies and corrects spelling mistakes.
- Example:

Input: "recieve, teh" → Output: "receive, the"

Conclusion:

Text normalization techniques like **case folding, accent removal, punctuation removal**, and others help convert noisy and inconsistent text into a clean format. This ensures **more accurate** and **efficient** text analysis, classification, and understanding in NLP systems.

- 5. How can backoff and interpolation be used to address the problem of zero probabilities in language models, and what are some advantages and disadvantages of these techniques?
- **A.** In language modeling, **zero probabilities** arise when a particular word sequence (like a trigram) has **never been observed in the training data**, leading to a probability of zero. This is problematic because it makes certain sequences seem impossible, which is often untrue.

To address this, **Backoff** and **Interpolation** are two common **smoothing techniques** used in **n-gram models**. Here's a detailed explanation of how each works and their pros and cons:

1. Backoff

Concept:

If a higher-order n-gram (like a trigram) has **zero probability**, the model "**backs off**" to a lower-order n-gram (bigram or unigram) that has a non-zero probability.

Formula (Katz Backoff Example):

If $P(w3 \mid w1, w2)$ is zero, then:

 $P(w3 \mid w1, w2) = \alpha(w1, w2) * P(w3 \mid w2)$

Where:

• $\alpha(w1, w2)$ is a **normalization factor** to ensure probabilities sum to 1.

Advantages:

- Efficient: Only backs off when needed.
- Simpler to implement.

• Focuses on the most specific context available.

Disadvantages:

- Can **discard useful information** from higher-order n-grams if not present.
- Relies heavily on lower-order probabilities in sparse data situations.

2. Interpolation

Concept:

Rather than backing off completely, **interpolation combines** the probabilities of all n-gram orders using **weighted averages**.

Formula (Linear Interpolation Example):

 $P(w3 \mid w1, w2) = \lambda 1 * P(w3 \mid w1, w2) + \lambda 2 * P(w3 \mid w2) + \lambda 3 * P(w3)$ Where:

- $\lambda 1 + \lambda 2 + \lambda 3 = 1$ (weights for each n-gram level)
- Weights are determined via **cross-validation** or optimization.

Advantages:

- **Uses all available information** (higher and lower-order n-grams).
- More robust to data sparsity.
- Can improve accuracy in real-world corpora.

Disadvantages:

- More computationally intensive.
- Requires careful tuning of weights (λ values).

Summary Table

Technique	Description	Pros	Cons	
Backoff	Use lower-order n-grams w higher-order fails	vhen Simple, intuitive	efficient, Ignores hig if missing	gher-order context
Interpolation	Combine all levels with weight	Robust, context	uses all Complex computation	tuning, higher on

♦ When to Use:

- **Backoff** is preferred when **memory is constrained** or for faster runtime systems.
- **Interpolation** is more accurate in **sparse data scenarios** and widely used in practical applications like speech recognition and machine translation.

Conclusion:

Both backoff and interpolation are essential tools in **probabilistic language modeling** for handling unseen events. Choosing between them depends on the **application's constraints** and the **amount and quality of available data**. Often, a hybrid or advanced form like **Kneser-Ney smoothing** (which combines both) is used in practice.

6. What is a Finite State Transducer, and how can it be used for Morphological Parsing?

A. Finite State Transducer (FST):

A **Finite State Transducer (FST)** is an extension of a Finite State Automaton (FSA) that maps **input sequences** to **output sequences**. It is a mathematical model with **states** and **transitions**, where each transition is labeled with both an input symbol and an output symbol.

Key Characteristics of FST:

- It has a finite number of states.
- Transitions are labeled with **input/output pairs** (e.g., walk \rightarrow walk, walks \rightarrow walk + s).
- It can perform tasks like translation, transcription, parsing, and transformation.

Use of FST in Morphological Parsing:

Morphological Parsing involves analyzing a word into its **root (stem)** and **morphemes** (prefixes, suffixes, inflections). FSTs are widely used for this task due to their ability to map surface forms to lexical forms.

Example:

Consider the word "walked". An FST for morphological parsing might map it as:

Input: walked Output: walk + PAST

Steps in Using FST for Morphological Parsing:

1. Lexical Representation:

- o Define the root words and morphemes in a lexicon.
- o E.g., "walk" is a base verb, "ed" is a past tense morpheme.

2. Build Transducer Rules:

- o Create rules to handle common morphological changes (e.g., add "-ed" for past tense).
- o Regular forms can be handled with pattern matching (like suffix stripping or replacement).

3. Compile into FST:

o Convert the lexicon and rules into an FST using tools like **XFST** or **OpenFST**.

4. Run Parsing:

o Apply the FST to input words to produce morpheme-level analysis.

Advantages of Using FST for Morphological Parsing:

- **Efficiency:** FSTs are fast and can process large corpora in linear time.
- Bidirectionality: The same FST can often be used for generation and analysis.
- **Rule-Based and Compact:** Encodes linguistic rules compactly and handles both regular and irregular morphology.

Example Diagram (Textual Format):

States: $q0 \rightarrow q1 \rightarrow q2$ Input: w a l k e d Output: w a l k +PAST

Each transition reads a character and produces either the same character or a morpheme label.

Use Cases:

- Natural Language Processing (NLP) tools (e.g., morphological analyzers)
- Spell checkers and correctors
- · Speech recognition and synthesis systems

Conclusion:

A **Finite State Transducer** is a powerful tool in computational linguistics, especially for **morphological parsing**, where it decomposes words into meaningful linguistic components. Its speed, determinism, and ability to handle both regular and irregular forms make it ideal for language processing tasks.

- 7. Can thesaurus-based disambiguation be used for languages other than English? If so, what are some challenges and limitations?
- **A**. Certainly. Here's the revised explanation without any emojis:

Can Thesaurus-Based Disambiguation Be Used for Languages Other Than English? Yes, thesaurus-based disambiguation can be applied to languages other than English, but it comes with several challenges and limitations.

Overview:

Thesaurus-based word sense disambiguation (WSD) uses a lexical resource such as a thesaurus or WordNet to resolve ambiguities in word meanings. It works by comparing the context of an ambiguous word with the synonyms or semantic relations provided in a lexical database.

Applicability to Other Languages:

Many languages have their own versions of WordNet or are included in multilingual resources. Examples include:

- **EuroWordNet** (for several European languages)
- Hindi WordNet
- **BabelNet** (a multilingual semantic network)
- Open Multilingual WordNet

These resources allow WSD techniques similar to those used in English to be applied to other languages.

Challenges and Limitations:

1. Limited Lexical Resources:

- Many languages, especially low-resource ones, lack comprehensive thesauri or WordNet-like databases.
- o Lexicons may not be updated or maintained regularly.

2. Incomplete Sense Coverage:

- Available resources may not include all word senses or domain-specific vocabulary.
- o Cultural idioms and slang may be missing.

3. Translation Issues:

- Mapping non-English words to an English-based thesaurus can result in loss of meaning.
- o Some senses in one language do not directly correspond to senses in another.

4. Morphological Complexity:

 Languages with rich morphology (e.g., Finnish, Turkish, Arabic) require additional preprocessing (like stemming and lemmatization) to match words in the thesaurus.

5. Lack of NLP Tools:

o Tools for part-of-speech tagging, lemmatization, and syntactic parsing may be underdeveloped in many languages, reducing accuracy.

6. Differences in Conceptual Structures:

 Languages may categorize concepts differently, which limits the effectiveness of directly applying thesaurus-based methods developed for English.

Conclusion:

While thesaurus-based disambiguation is theoretically and practically feasible for many languages, its effectiveness depends on the **availability and quality** of lexical resources, as well as the **supporting NLP infrastructure**. Careful adaptation and possibly language-specific adjustments are needed for best results.

8. How does the availability of large-scale bilingual corpora affect the effectiveness of this approach?

A. The availability of large-scale bilingual corpora significantly enhances the effectiveness of thesaurus-based and other word sense disambiguation (WSD) approaches, especially for cross-lingual and multilingual natural language processing tasks.

Impact of Large-Scale Bilingual Corpora on Disambiguation Effectiveness

1. Improved Word Sense Alignment Across Languages

- Bilingual corpora provide **contextual usage examples** of words in both source and target languages.
- This enables better alignment of ambiguous words with their **correct translations**, helping disambiguate word senses more accurately.

2. Data-Driven Disambiguation

- Large corpora allow for **statistical models** to learn co-occurrence patterns, frequencies, and syntactic structures associated with specific senses.
- These data-driven insights can complement thesaurus-based rules and enhance precision.

3. Expansion and Enrichment of Lexical Resources

- Bilingual corpora can be used to **automatically expand** thesauri and WordNets by discovering new synonyms, senses, and usage patterns.
- They help in **creating multilingual semantic networks** like BabelNet or Open Multilingual WordNet.

4. Cross-Lingual WSD

- In translation-based WSD, a word's correct sense in the source language can often be inferred based on its translation in the target language.
- For instance, the English word "bank" (riverbank vs. financial institution) may translate differently in French ("rive" vs. "banque"), revealing the intended sense.

5. Support for Low-Resource Languages

- Parallel corpora involving high-resource and low-resource language pairs allow transfer learning or projection of sense information from one language to another.
- This is especially useful when lexical resources like thesauri are lacking in the target language.

Limitations and Considerations

• **Alignment Quality**: Sentence and word alignment must be accurate; errors in alignment can lead to incorrect sense associations.

- **Domain Coverage**: If the bilingual corpora are domain-specific (e.g., legal or medical), the sense disambiguation may not generalize well to other contexts.
- **Resource Availability**: Not all languages have large-scale bilingual corpora available, limiting applicability in truly low-resource scenarios.

Conclusion

The availability of large-scale bilingual corpora greatly enhances thesaurus-based and statistical WSD by providing rich, contextualized, and aligned data for both **monolingual** and **cross-lingual** disambiguation. It improves the **accuracy**, **scalability**, **and language coverage** of disambiguation systems and supports the development of multilingual NLP applications.

- 9. What is the difference between parametric and non-parametric models in terms of parameter estimation?
- **A.** The **difference between parametric and non-parametric models** in terms of **parameter estimation** lies primarily in their assumptions about the underlying data distribution and the number of parameters they estimate.

1. Parametric Models

Definition:

Parametric models assume a **fixed**, **predetermined form** for the function that describes the data, typically with a **finite number of parameters**.

Parameter Estimation:

- Estimation involves determining the specific values of a fixed set of parameters.
- Methods like Maximum Likelihood Estimation (MLE) or Least Squares are commonly used.
- Examples:
 - o In linear regression: estimate slope and intercept.
 - o In Gaussian distribution: estimate mean (μ) and variance (σ^2).

Advantages:

- Simpler and faster to train.
- Require **less data** for estimation.
- Easier to interpret and computationally efficient.

Disadvantages:

- **Strong assumptions** (e.g., linearity, normality).
- **Poor fit** if the true data distribution differs from the assumed form.

2. Non-Parametric Models

Definition:

Non-parametric models **do not assume a fixed form** for the function or distribution. Instead, they **allow the data to determine the model structure**, often involving **infinitely many parameters** in theory.

Parameter Estimation:

- Rather than estimating a fixed set of parameters, they adapt complexity based on the dataset.
- The model grows with more data (e.g., storing more data points or increasing tree depth).
- Examples:
 - o **k-Nearest Neighbors (k-NN)**: no fixed parameters; classification based on stored data.

- Kernel Density Estimation (KDE): estimates probability density using the data itself.
- o **Decision Trees**: parameters depend on data splits, not predefined.

Advantages:

- **Flexible** and can model complex relationships.
- No assumption about the underlying distribution.

Disadvantages:

- Require more data to perform well.
- **Computationally intensive** and harder to interpret.
- Risk of **overfitting** if not properly regularized.

Summary Table								
Parametric Models	Non-Parametric Models							
Yes (fixed form)	No (flexible form)							
Fixed	Increases with data							
Linear regression, Logistic regression	c k-NN, Decision Trees, KDE							
Estimate fixed parameters (e.g., β	Store data or infer structure from data							
Less data needed	More data needed							
Limited	High							
Underfitting if assumption is wrong	S Overfitting if not controlled							
	Yes (fixed form) Fixed Linear regression, Logistic regression Estimate fixed parameters (e.g., β Less data needed Limited Underfitting if assumption is							

In essence, **parametric models simplify the estimation process** by restricting the model to a fixed form, while **non-parametric models trade simplicity for flexibility** and can adapt to more complex data patterns.

10. How do you handle missing data when performing parameter estimation?

A. Handling **missing data** is a critical step when performing **parameter estimation**, as missing values can lead to biased results or reduce the accuracy of your model. Here are the **common strategies** and **techniques** used:

1. Deletion Methods

a) Listwise Deletion (Complete Case Analysis)

- What it does: Removes all records with any missing value.
- Use when:
 - o Data is missing completely at random (MCAR).
 - o The proportion of missing data is **small**.
- Drawback: Can lead to significant loss of data and reduced statistical power.

b) Pairwise Deletion

- **What it does**: Uses all available data to compute statistics; only excludes missing values on a **per-analysis** basis.
- **Advantage**: Retains more data than listwise deletion.
- Drawback: May result in inconsistent correlations or covariance matrices.

2. Imputation Methods

a) Mean/Median/Mode Imputation

- **Simple** but assumes that missing values are random and not systematically different.
- Best for **numerical** (mean/median) or **categorical** (mode) data.
- Limitation: Can distort variance and weaken relationships among variables.

b) Regression Imputation

- Uses **regression models** to predict and fill missing values based on other variables.
- More accurate than mean imputation but can still introduce bias.

c) k-Nearest Neighbors (k-NN) Imputation

- Imputes missing values using the average or mode of the nearest neighbors.
- Preserves local data structure but **computationally expensive**.

d) Multiple Imputation

- Creates several **complete datasets** with different imputed values.
- Analyzes each, then combines the results using statistical rules.
- **Advantage**: Accounts for **uncertainty** in the imputations.
- Best used when data is MAR (Missing at Random).

3. Model-Based Methods

a) Maximum Likelihood Estimation (MLE)

- Integrates over the missing data using likelihood functions.
- Often used with the **Expectation-Maximization (EM)** algorithm:
 - o **E-step**: Estimate missing data.
 - o **M-step**: Estimate parameters using completed data.
- Accurate and statistically efficient if model assumptions hold.

b) Bayesian Methods

- Uses prior distributions to estimate missing values and parameters simultaneously.
- Useful in small sample sizes or complex models.

4. Use of Indicator Variables

- Add a binary variable indicating whether the data was missing or not.
- Can help capture any **systematic difference** between observed and missing data points.

Best Practices

- Understand the missingness mechanism:
 - o MCAR: Missing completely at random.
 - o MAR: Missing at random (depends on observed data).
 - o MNAR: Missing not at random (depends on unobserved data).
- Visualize missing data patterns (e.g., with heatmaps or missingness matrices).
- Validate your imputations using cross-validation or sensitivity analysis.

Conclusion

Choosing how to handle missing data depends on:

- The **type** and **amount** of missing data.
- The underlying mechanism of missingness.
- The **goals** of the analysis and the **model complexity**.

Appropriate handling of missing data ensures more **reliable parameter estimation** and better model performance.