Aspekty

Aspekty

NULL-e — krotki powinny pasować do schematu tabeli,

Aspekty

NULL-e — krotki powinny pasować do schematu tabeli,

Redundancja — informacja nie powinna być zapisywana wielokrotnie,

Aspekty

NULL-e — krotki powinny pasować do schematu tabeli,

Redundancja — informacja nie powinna być zapisywana wielokrotnie,

Kontrola więzów — sprawdzanie własności klucza, unikalności i innych więzów powinno być łatwe,

Aspekty

NULL-e — krotki powinny pasować do schematu tabeli,

Redundancja — informacja nie powinna być zapisywana wielokrotnie,

 Kontrola więzów — sprawdzanie własności klucza, unikalności i innych więzów powinno być łatwe,

Obliczanie złączeń — jest trudne, więc nie należy rozdrabniać zbytnio bazy.

Aspekty

NULL-e — krotki powinny pasować do schematu tabeli,

Redundancja — informacja nie powinna być zapisywana wielokrotnie,

 Kontrola więzów — sprawdzanie własności klucza, unikalności i innych więzów powinno być łatwe,

Obliczanie złączeń — jest trudne, więc nie należy rozdrabniać zbytnio bazy.

Aspekty

NULL-e — krotki powinny pasować do schematu tabeli,

Redundancja — informacja nie powinna być zapisywana wielokrotnie,

 Kontrola więzów — sprawdzanie własności klucza, unikalności i innych więzów powinno być łatwe,

Obliczanie złączeń — jest trudne, więc nie należy rozdrabniać zbytnio bazy.

OSOBA(ido,tytul,indeks,nazwisko,adres),

Aspekty

NULL-e — krotki powinny pasować do schematu tabeli,

Redundancja — informacja nie powinna być zapisywana wielokrotnie,

 Kontrola więzów — sprawdzanie własności klucza, unikalności i innych więzów powinno być łatwe,

Obliczanie złączeń — jest trudne, więc nie należy rozdrabniać zbytnio bazy.

OSOBA(ido,tytul,indeks,nazwisko,adres),

• Student ma indeks i nie ma tytułu; pracownik — odwrotnie:

Aspekty

NULL-e — krotki powinny pasować do schematu tabeli,

Redundancja — informacja nie powinna być zapisywana wielokrotnie,

 Kontrola więzów — sprawdzanie własności klucza, unikalności i innych więzów powinno być łatwe,

Obliczanie złączeń — jest trudne, więc nie należy rozdrabniać zbytnio bazy.

OSOBA(ido,tytul,indeks,nazwisko,adres),

 Student ma indeks i nie ma tytułu; pracownik — odwrotnie: PR(ido,tytuł,nazwisko,adres), ST(ido,indeks,nazwisko,adres)

Aspekty

NULL-e — krotki powinny pasować do schematu tabeli,

Redundancja — informacja nie powinna być zapisywana wielokrotnie,

 Kontrola więzów — sprawdzanie własności klucza, unikalności i innych więzów powinno być łatwe,

Obliczanie złączeń — jest trudne, więc nie należy rozdrabniać zbytnio bazy.

- Student ma indeks i nie ma tytułu; pracownik odwrotnie: PR(ido,tytuł,nazwisko,adres), ST(ido,indeks,nazwisko,adres)
- Grupa ma kilka terminów zajęć kilkakrotne wpisanie grupy do tabeli oznacza redundancję (limit, idk,idp):

Aspekty

NULL-e — krotki powinny pasować do schematu tabeli,

Redundancja — informacja nie powinna być zapisywana wielokrotnie,

 Kontrola więzów — sprawdzanie własności klucza, unikalności i innych więzów powinno być łatwe,

Obliczanie złączeń — jest trudne, więc nie należy rozdrabniać zbytnio bazy.

OSOBA(ido,tytul,indeks,nazwisko,adres), GRUPA(idg,idk,idp,termin,limit,sala)

- Student ma indeks i nie ma tytułu; pracownik odwrotnie: PR(ido,tytuł,nazwisko,adres), ST(ido,indeks,nazwisko,adres)
- Grupa ma kilka terminów zajęć kilkakrotne wpisanie grupy do tabeli oznacza redundancję (limit, idk,idp): GR(idg,idk,idp,limit), TS(idg,termin,sala)

Aspekty

NULL-e — krotki powinny pasować do schematu tabeli,

Redundancja — informacja nie powinna być zapisywana wielokrotnie,

 Kontrola więzów — sprawdzanie własności klucza, unikalności i innych więzów powinno być łatwe,

Obliczanie złączeń — jest trudne, więc nie należy rozdrabniać zbytnio bazy.

- Student ma indeks i nie ma tytułu; pracownik odwrotnie: PR(ido,tytuł,nazwisko,adres), ST(ido,indeks,nazwisko,adres)
- Grupa ma kilka terminów zajęć kilkakrotne wpisanie grupy do tabeli oznacza redundancję (limit, idk,idp): GR(idg,idk,idp,limit), TS(idg,termin,sala)
- Łatwo sprawdzić:
 - grupa ma jednego prowadzącego
 - studenci mają unikalne indeksy

Aspekty

NULL-e — krotki powinny pasować do schematu tabeli,

Redundancja — informacja nie powinna być zapisywana wielokrotnie,

 Kontrola więzów — sprawdzanie własności klucza, unikalności i innych więzów powinno być łatwe,

Obliczanie złączeń — jest trudne, więc nie należy rozdrabniać zbytnio bazy.

- Student ma indeks i nie ma tytułu; pracownik odwrotnie: PR(ido,tytuł,nazwisko,adres), ST(ido,indeks,nazwisko,adres)
- Grupa ma kilka terminów zajęć kilkakrotne wpisanie grupy do tabeli oznacza redundancję (limit, idk,idp): GR(idg,idk,idp,limit), TS(idg,termin,sala)
- Łatwo sprawdzić:
 - grupa ma jednego prowadzącego
 - studenci mają unikalne indeksy
- Trudno sprawdzić, że identyfikatory osób są unikalne.

Aspekty

NULL-e — krotki powinny pasować do schematu tabeli,

Redundancja — informacja nie powinna być zapisywana wielokrotnie,

 Kontrola więzów — sprawdzanie własności klucza, unikalności i innych więzów powinno być łatwe,

Obliczanie złączeń — jest trudne, więc nie należy rozdrabniać zbytnio bazy.

- Student ma indeks i nie ma tytułu; pracownik odwrotnie: PR(ido,tytuł,nazwisko,adres), ST(ido,indeks,nazwisko,adres)
- Grupa ma kilka terminów zajęć kilkakrotne wpisanie grupy do tabeli oznacza redundancję (limit, idk,idp): GR(idg,idk,idp,limit), TS(idg,termin,sala)
- Łatwo sprawdzić:
 - grupa ma jednego prowadzącego
 - studenci mają unikalne indeksy
- Trudno sprawdzić, że identyfikatory osób są unikalne.
- Wyznaczenie terminu i sali zajęć grupy wymaga złączenia.

Definition (Zależność funkcyjna)

Dla relacji $R=A_1A_2\dots A_k$ oraz zbiorów jej atrybutów $\alpha,\beta\subseteq\{A_1A_2\dots A_k\}$ zachodzi zależność funkcyjna $\alpha\to\beta$, jeżeli dla każdego stanu r relacji R zachodzi:

$$(\forall t_1, t_2 \in r)((t_1.\alpha = t_2.\alpha) \Rightarrow (t_1.\beta = t_2.\beta))$$

Definition (Zależność funkcyjna)

Dla relacji $R=A_1A_2\dots A_k$ oraz zbiorów jej atrybutów $\alpha,\beta\subseteq\{A_1A_2\dots A_k\}$ zachodzi zależność funkcyjna $\alpha\to\beta$, jeżeli dla każdego stanu r relacji R zachodzi:

$$(\forall t_1, t_2 \in r)((t_1.\alpha = t_2.\alpha) \Rightarrow (t_1.\beta = t_2.\beta))$$

W relacjach PR(ido,tytuł,nazwisko,adres), ST(ido,indeks,nazwisko,adres) i GR(idg,idk,idp,limit), TS(idg,termin,sala) zachodzą zależności

Definition (Zależność funkcyjna)

Dla relacji $R=A_1A_2\dots A_k$ oraz zbiorów jej atrybutów $\alpha,\beta\subseteq\{A_1A_2\dots A_k\}$ zachodzi zależność funkcyjna $\alpha\to\beta$, jeżeli dla każdego stanu r relacji R zachodzi:

$$(\forall t_1, t_2 \in r)((t_1.\alpha = t_2.\alpha) \Rightarrow (t_1.\beta = t_2.\beta))$$

W relacjach PR(ido,tytuł,nazwisko,adres), ST(ido,indeks,nazwisko,adres) i GR(idg,idk,idp,limit), TS(idg,termin,sala) zachodzą zależności

w PR: ido → nazwisko, adres, tytu,

Definition (Zależność funkcyjna)

Dla relacji $R=A_1A_2\dots A_k$ oraz zbiorów jej atrybutów $\alpha,\beta\subseteq\{A_1A_2\dots A_k\}$ zachodzi zależność funkcyjna $\alpha\to\beta$, jeżeli dla każdego stanu r relacji R zachodzi:

$$(\forall t_1, t_2 \in r)((t_1.\alpha = t_2.\alpha) \Rightarrow (t_1.\beta = t_2.\beta))$$

W relacjach PR(ido,tytuł,nazwisko,adres), ST(ido,indeks,nazwisko,adres) i GR(idg,idk,idp,limit), TS(idg,termin,sala) zachodzą zależności

- w PR: ido → nazwisko, adres, tytu,
- w ST: ido → nazwisko, adres, indeks oraz indeks → ido, nazwisko, adres;

Definition (Zależność funkcyjna)

Dla relacji $R=A_1A_2\dots A_k$ oraz zbiorów jej atrybutów $\alpha,\beta\subseteq\{A_1A_2\dots A_k\}$ zachodzi zależność funkcyjna $\alpha\to\beta$, jeżeli dla każdego stanu r relacji R zachodzi:

$$(\forall t_1, t_2 \in r)((t_1.\alpha = t_2.\alpha) \Rightarrow (t_1.\beta = t_2.\beta))$$

W relacjach PR(ido,tytuł,nazwisko,adres), ST(ido,indeks,nazwisko,adres) i GR(idg,idk,idp,limit), TS(idg,termin,sala) zachodzą zależności

- w PR: ido → nazwisko, adres, tytu,
- w ST: ido → nazwisko, adres, indeks oraz indeks → ido, nazwisko, adres;
- w GR: idg → idk, idp, limit

Definition (Zależność funkcyjna)

Dla relacji $R=A_1A_2\dots A_k$ oraz zbiorów jej atrybutów $\alpha,\beta\subseteq\{A_1A_2\dots A_k\}$ zachodzi zależność funkcyjna $\alpha\to\beta$, jeżeli dla każdego stanu r relacji R zachodzi:

$$(\forall t_1, t_2 \in r)((t_1.\alpha = t_2.\alpha) \Rightarrow (t_1.\beta = t_2.\beta))$$

W relacjach PR(ido,tytuł,nazwisko,adres), ST(ido,indeks,nazwisko,adres) i GR(idg,idk,idp,limit), TS(idg,termin,sala) zachodzą zależności

- w PR: ido → nazwisko, adres, tytu,
- w ST: ido → nazwisko, adres, indeks oraz indeks → ido, nazwisko, adres;
- w GR: $idg \rightarrow idk$, idp, limit
- w TS: termin, sala → idg

Definition (Zależność funkcyjna)

Dla relacji $R=A_1A_2\dots A_k$ oraz zbiorów jej atrybutów $\alpha,\beta\subseteq\{A_1A_2\dots A_k\}$ zachodzi zależność funkcyjna $\alpha\to\beta$, jeżeli dla każdego stanu r relacji R zachodzi:

$$(\forall t_1, t_2 \in r)((t_1.\alpha = t_2.\alpha) \Rightarrow (t_1.\beta = t_2.\beta))$$

W relacjach PR(ido,tytuł,nazwisko,adres), ST(ido,indeks,nazwisko,adres) i GR(idg,idk,idp,limit), TS(idg,termin,sala) zachodzą zależności

- w PR: ido → nazwisko, adres, tytu,
- w ST: ido → nazwisko, adres, indeks oraz indeks → ido, nazwisko, adres;
- w GR: $idg \rightarrow idk$, idp, limit
- w TS: termin, sala → idg

Spostrzeżenie: Jeśli K jest kluczem R, to $K \rightarrow R$.

Definition (Klucz relacji)

Kluczem relacji R nazywamy taki podzbiór K jej atrybutów, który:

- ullet wyznacza funkcyjnie wszystkie atrybuty R, czyli K o R oraz
- jest minimalnym zbiorem o tej własności, czyli $(\forall L \subsetneq K) \neg (L \to R)$

Definition (Klucz relacji)

Kluczem relacji R nazywamy taki podzbiór K jej atrybutów, który:

- ullet wyznacza funkcyjnie wszystkie atrybuty R, czyli K o R oraz
- ullet jest minimalnym zbiorem o tej własności, czyli $(\forall L \subsetneq K) \neg (L \to R)$

Definition

```
Nadklucz reacji — dowolny zbiór atrybutów zawierający klucz relacji,
```

Klucz główny — jeden z kluczy relacji,

Klucz alternatywny — klucz relacji inny niż klucz główny,

Atrybut główny — atrybut (dowolnego) klucza relacji.

Definition (Klucz relacji)

Kluczem relacji *R* nazywamy taki podzbiór *K* jej atrybutów, który:

- ullet wyznacza funkcyjnie wszystkie atrybuty R, czyli K o R oraz
- jest minimalnym zbiorem o tej własności, czyli $(\forall L \subsetneq K) \neg (L \to R)$

Definition

```
Nadklucz reacji — dowolny zbiór atrybutów zawierający klucz relacji,
```

Klucz główny — jeden z kluczy relacji,

Klucz alternatywny — klucz relacji inny niż klucz główny,

Atrybut główny — atrybut (dowolnego) klucza relacji.

W relacji ST(ido,indeks,nazwisko,adres)

- Kluczem jest indeks i kluczem jest ido,
- Nadkluczami są: {indeks, nazwisko} lub {ido, indeks, adres},
- Jako klucz główny możemy wybrać indeks,
- Atrybuty główne to {ido, indeks}

Definition (Klucz relacji)

Kluczem relacji R nazywamy taki podzbiór K jej atrybutów, który:

- ullet wyznacza funkcyjnie wszystkie atrybuty R, czyli K o R oraz
- jest minimalnym zbiorem o tej własności, czyli $(\forall L \subsetneq K) \neg (L \to R)$

Definition

```
Nadklucz reacji — dowolny zbiór atrybutów zawierający klucz relacji, 
Klucz główny — jeden z kluczy relacji,
```

Klucz alternatywny — klucz relacji inny niż klucz główny,

Atrybut główny — atrybut (dowolnego) klucza relacji.

W relacji ST(ido,indeks,nazwisko,adres) w relacji TS(idg,termin,sala)

- Kluczem jest indeks i kluczem jest ido,
- Nadkluczami są: {indeks, nazwisko} lub {ido, indeks, adres},
- Jako klucz główny możemy wybrać indeks,
- Atrybuty główne to {ido, indeks}
- W relacji TS kluczem jest { termin, sala}

Definition (Aksjomaty Armstronga i in.)

Dla relacji R i zbiorów jej atrybutów $\alpha, \beta, \gamma \subseteq R$ zachodzi:

Definition (Aksjomaty Armstronga i in.)

Dla relacji R i zbiorów jej atrybutów $\alpha, \beta, \gamma \subseteq R$ zachodzi:

Zwrotność (
$$\beta \subseteq \alpha$$
) \Rightarrow ($\alpha \to \beta$) (zależności trywialne)

Rozszerzanie
$$(\alpha \to \beta) \Rightarrow (\alpha \gamma \to \beta \gamma)$$

Przechodniość
$$(\alpha \to \beta \land \beta \to \gamma) \Rightarrow (\alpha \to \gamma)$$

Definition (Aksjomaty Armstronga i in.)

Dla relacji *R* i zbiorów jej atrybutów $\alpha, \beta, \gamma \subseteq R$ zachodzi:

Zwrotność (
$$\beta \subseteq \alpha$$
) \Rightarrow ($\alpha \to \beta$) (zależności trywialne)

Rozszerzanie
$$(\alpha \to \beta) \Rightarrow (\alpha \gamma \to \beta \gamma)$$

Przechodniość
$$(\alpha \to \beta \land \beta \to \gamma) \Rightarrow (\alpha \to \gamma)$$

Sumowanie
$$(\alpha \to \beta \land \alpha \to \gamma) \Rightarrow (\alpha \to \beta \gamma)$$

Rozkładanie
$$(\alpha \to \beta \gamma) \Rightarrow (\alpha \to \beta \land \alpha \to \gamma)$$

Definition (Aksjomaty Armstronga i in.)

Dla relacji *R* i zbiorów jej atrybutów $\alpha, \beta, \gamma \subseteq R$ zachodzi:

Zwrotność (
$$\beta \subseteq \alpha$$
) \Rightarrow ($\alpha \rightarrow \beta$) (zależności trywialne)

Rozszerzanie
$$(\alpha \to \beta) \Rightarrow (\alpha \gamma \to \beta \gamma)$$

Przechodniość
$$(\alpha \to \beta \land \beta \to \gamma) \Rightarrow (\alpha \to \gamma)$$

Sumowanie
$$(\alpha \to \beta \land \alpha \to \gamma) \Rightarrow (\alpha \to \beta \gamma)$$

Rozkładanie
$$(\alpha \to \beta \gamma) \Rightarrow (\alpha \to \beta \land \alpha \to \gamma)$$

Definition (Domknięcie zbioru zależności i zbioru atrybutów)

Dla relacji R i jej zbioru zależności funkcyjnych F:

- F+ domknięciem zbioru zależności F nazywamy zbiór wszystkich zależności wyprowadzalnych z F.
- $(\alpha)_F^+$ **domknięciem zbioru atrybutów** $\alpha \subseteq R$ **względem** F nazywamy zbiór atrybutów, które można wyprowadzić z α za pomocą F.

Twierdzenie o znaczeniu Aksjomatów Armstronga

Definition (Aksjomaty Armstronga)

Dla relacji R i zbiorów jej atrybutów $\alpha, \beta, \gamma \subseteq R$ zachodzi:

Zwrotność
$$(\beta \subseteq \alpha) \Rightarrow (\alpha \rightarrow \beta)$$
 (zależności trywialne)

Rozszerzanie
$$(\alpha \rightarrow \beta) \Rightarrow (\alpha \gamma \rightarrow \beta \gamma)$$

Przechodniość
$$(\alpha \to \beta \land \beta \to \gamma) \Rightarrow (\alpha \to \gamma)$$

Twierdzenie o znaczeniu Aksjomatów Armstronga

Definition (Aksjomaty Armstronga)

Dla relacji R i zbiorów jej atrybutów $\alpha, \beta, \gamma \subseteq R$ zachodzi:

Zwrotność (
$$\beta \subseteq \alpha$$
) \Rightarrow ($\alpha \to \beta$) (zależności trywialne)

Rozszerzanie
$$(\alpha \to \beta) \Rightarrow (\alpha \gamma \to \beta \gamma)$$

Przechodniość
$$(\alpha \to \beta \land \beta \to \gamma) \Rightarrow (\alpha \to \gamma)$$

Theorem

Aksjomaty Armstronga stanowią zupełny, niesprzeczny i minimalny zbiór reguł pozwalający wyprowadzić ze zbioru zależności F każdą zależność funkcyjną prawdziwą w każdym stanie relacji, w którym spełnione są reguły F.

Twierdzenie o znaczeniu Aksjomatów Armstronga

Definition (Aksjomaty Armstronga)

Dla relacji *R* i zbiorów jej atrybutów $\alpha, \beta, \gamma \subseteq R$ zachodzi:

Zwrotność
$$(\beta \subseteq \alpha) \Rightarrow (\alpha \rightarrow \beta)$$
 (zależności trywialne)

Rozszerzanie
$$(\alpha \to \beta) \Rightarrow (\alpha \gamma \to \beta \gamma)$$

Przechodniość
$$(\alpha \to \beta \land \beta \to \gamma) \Rightarrow (\alpha \to \gamma)$$

Theorem

Aksjomaty Armstronga stanowią zupełny, niesprzeczny i minimalny zbiór reguł pozwalający wyprowadzić ze zbioru zależności F każdą zależność funkcyjną prawdziwą w każdym stanie relacji, w którym spełnione są reguły F.

Wniosek

Tym samym zależności dowodliwe za pomocą aksjomatów Armstronga to zależności prawdziwe.

 Zazwyczaj nie wyznaczamy F⁺ — to zbiór duży i zawierający dużo nieciekawych informacji (np. zależności trywialne).

- Zazwyczaj nie wyznaczamy F^+ to zbiór duży i zawierający dużo nieciekawych informacji (np. zależności trywialne).
- Efektywne wyznaczanie (α)⁺_F jest potrzebne pozwala zadecydować, co jest kluczem, czy w relacji jest redundancja itp.

- Zazwyczaj nie wyznaczamy F⁺ to zbiór duży i zawierający dużo nieciekawych informacji (np. zależności trywialne).
- Efektywne wyznaczanie (α)⁺_F jest potrzebne pozwala zadecydować, co jest kluczem, czy w relacji jest redundancja itp.
- **1** Mamy algorytm, który pozwala wyznaczać $\chi = (\alpha)_F^+$:
 - $\lambda \leftarrow \alpha$ (zwrotność)
 - dopóki χ zmienia sie:
 - znajdź $\beta \in \chi$ taki, że istnieje $\beta \to \gamma \in F$ oraz $\gamma \setminus \chi \neq \emptyset$ • $\chi \leftarrow \chi \cup \gamma$ (zastosuj rozszerzanie i przechodniość)
 - zwróć χ jako wynik

Uwagi ad. domkniecia zbiorów zależności i atrybutów

- Zazwyczaj nie wyznaczamy F⁺ to zbiór duży i zawierający dużo nieciekawych informacji (np. zależności trywialne).
- ② Efektywne wyznaczanie (α)⁺ jest potrzebne pozwala zadecydować, co jest kluczem, czy w relacji jest redundancja itp.
- **1** Mamy algorytm, który pozwala wyznaczać $\chi = (\alpha)_F^+$:
 - χ ← α (zwrotność)
 dopóki χ zmienia się:
 - - znajdź $\beta \in \chi$ taki, że istnieje $\beta \to \gamma \in F$ oraz $\gamma \setminus \chi \neq \emptyset$
 - χ ← χ ∪ γ (zastosuj rozszerzanie i przechodniość)
 - zwróć γ jako wynik
- Mamy sposób, by porównywać zbiory zależności F i G dla tej samej relacji. Sprawdzamy, czy $F^{+} = G^{+}$:
 - dla każdei zależności α → β ∈ F:
 - oblicz $\chi = (\alpha)_{\alpha}^{+}$
 - jeśli $\beta \subset \chi$, to $\alpha \to \beta \in G^+$, w przeciwnym wypadku $F^+ \neq G^+$
 - powtórz to dla każdej zależności $\alpha \to \beta \in G$ i zbioru F

Uwagi ad. domkniecia zbiorów zależności i atrybutów

- Zazwyczaj nie wyznaczamy F⁺ to zbiór duży i zawierający dużo nieciekawych informacji (np. zależności trywialne).
- ② Efektywne wyznaczanie (α)⁺ jest potrzebne pozwala zadecydować, co jest kluczem, czy w relacji jest redundancja itp.
- **1** Mamy algorytm, który pozwala wyznaczać $\chi = (\alpha)_F^+$:
 - χ ← α (zwrotność)
 dopóki χ zmienia się:
 - - znajdź $\beta \in \chi$ taki, że istnieje $\beta \to \gamma \in F$ oraz $\gamma \setminus \chi \neq \emptyset$
 - χ ← χ ∪ γ (zastosuj rozszerzanie i przechodniość)
 - zwróć γ jako wynik
- Mamy sposób, by porównywać zbiory zależności F i G dla tej samej relacji. Sprawdzamy, czy $F^{+} = G^{+}$:
 - dla każdei zależności α → β ∈ F:
 - oblicz $\chi = (\alpha)_{\alpha}^{+}$
 - jeśli $\beta \subset \chi$, to $\alpha \to \beta \in G^+$, w przeciwnym wypadku $F^+ \neq G^+$
 - powtórz to dla każdej zależności $\alpha \to \beta \in G$ i zbioru F
- Sależności funkcyjne powinny być kontrolowane przez SZBD. Dlatego dobrze, by było ich mało. Zbiór F_{min} nazwiemy minimalnym pokryciem F jeśli jest równoważny F i nie zawiera zależności "nadmiarowych".

Definition (Postać normalna Boyce-Codda, BCNF)

Relacja R ze zbiorem zależności funkcyjnych F jest w postaci normalnej Boyce-Codda, jeśli dla każdej nietrywialnej zależności $\alpha \to \beta$ ($\alpha \cap \beta = \emptyset$) zbiór α jest nadkluczem.

Definition (Postać normalna Boyce-Codda, BCNF)

Relacja R ze zbiorem zależności funkcyjnych F jest w postaci normalnej Boyce-Codda, jeśli dla każdej nietrywialnej zależności $\alpha \to \beta \ (\alpha \cap \beta = \emptyset)$ zbiór α jest nadkluczem.

Uwagi:

Relacja w BCNF ma tylko zależności trywialne i wynikające z nadklucza.

Definition (Postać normalna Boyce-Codda, BCNF)

Relacja R ze zbiorem zależności funkcyjnych F jest w postaci normalnej Boyce-Codda, jeśli dla każdej nietrywialnej zależności $\alpha \to \beta$ ($\alpha \cap \beta = \emptyset$) zbiór α jest nadkluczem.

Uwagi:

- Relacja w BCNF ma tylko zależności trywialne i wynikające z nadklucza.
- Kontrola zależności funkcyjnych w relacji w BCNF sprowadza się do kontroli własności klucza.

Definition (Postać normalna Boyce-Codda, BCNF)

Relacja R ze zbiorem zależności funkcyjnych F jest w postaci normalnej Boyce-Codda, jeśli dla każdej nietrywialnej zależności $\alpha \to \beta$ ($\alpha \cap \beta = \emptyset$) zbiór α jest nadkluczem.

Uwagi:

- Relacja w BCNF ma tylko zależności trywialne i wynikające z nadklucza.
- 2 Kontrola zależności funkcyjnych w relacji w BCNF sprowadza się do kontroli własności klucza.

Przykłady:

- R = ABCDE oraz $F = \{AB \rightarrow C, B \rightarrow D, C \rightarrow E, E \rightarrow C\}$ nie jest w BCNF. Kluczem jest AB. Tylko $AB \rightarrow C$ nie narusza BCNF. Pozostałe:
 - zależność częściowa: B → D wynika z podzbioru klucza,
 - **zależności przechodnie:** $C \to E$ i $E \to C$, których lewa strona nie należy do klucza.

Definition (Postać normalna Boyce-Codda, BCNF)

Relacja R ze zbiorem zależności funkcyjnych F jest w postaci normalnej Boyce-Codda, jeśli dla każdej nietrywialnej zależności $\alpha \to \beta$ ($\alpha \cap \beta = \emptyset$) zbiór α jest nadkluczem.

Uwagi:

- Relacja w BCNF ma tylko zależności trywialne i wynikające z nadklucza.
- « Kontrola zależności funkcyjnych w relacji w BCNF sprowadza się do kontroli własności klucza.

Przykłady:

- R = ABCDE oraz $F = \{AB \rightarrow C, B \rightarrow D, C \rightarrow E, E \rightarrow C\}$ nie jest w BCNF. Kluczem jest AB. Tylko $AB \rightarrow C$ nie narusza BCNF. Pozostałe:
 - zależność częściowa: B → D wynika z podzbioru klucza,
 - **zależności przechodnie:** $C \to E$ i $E \to C$, których lewa strona nie należy do klucza.
- 2 R = ABC oraz $F = \{AB \rightarrow C\}$ jest w BCNF

• Rozkładem relacji R nazywamy zbiór relacji $\{R_1, \ldots, R_k\}$ taki, że $R = R_1 \cup \ldots \cup R_k$.

- Rozkładem relacji R nazywamy zbiór relacji $\{R_1, \dots, R_k\}$ taki, że $R = R_1 \cup \dots \cup R_k$.
- Dla F zbioru zależności R, rzutem F na R_i jest $F_i = \{\alpha \to \beta \in F^+ \mid \alpha, \beta \in R_i\}$.

- Rozkładem relacji R nazywamy zbiór relacji $\{R_1, \ldots, R_k\}$ taki, że $R = R_1 \cup \ldots \cup R_k$.
- Dla F zbioru zależności R, rzutem F na R_i jest $F_i = \{\alpha \to \beta \in F^+ \mid \alpha, \beta \in R_i\}$.
- Dla r stanu relacji R, stanem R_i jest $r_i = \pi_{R_i}(r)$.

- Rozkładem relacji R nazywamy zbiór relacji $\{R_1, \ldots, R_k\}$ taki, że $R = R_1 \cup \ldots \cup R_k$.
- Dla F zbioru zależności R, rzutem F na R_i jest $F_i = \{\alpha \to \beta \in F^+ \mid \alpha, \beta \in R_i\}$.
- Dla r stanu relacji R, stanem R_i jest $r_i = \pi_{R_i}(r)$.
- Złączenie naturalne jest operacją przeciwną do rokładu.

- Rozkładem relacji R nazywamy zbiór relacji $\{R_1, \ldots, R_k\}$ taki, że $R = R_1 \cup \ldots \cup R_k$.
- Dla F zbioru zależności R, rzutem F na R_i jest $F_i = \{\alpha \to \beta \in F^+ \mid \alpha, \beta \in R_i\}$.
- Dla r stanu relacji R, stanem R_i jest $r_i = \pi_{R_i}(r)$.
- Złączenie naturalne jest operacją przeciwną do rokładu.
- Rozkład R na R₁,..., R_k jest odwracalny, jeśli dla każdego poprawnego stanu r (spełniającego zależności F) zachodzi:

$$r = r_1 \bowtie r_2 \bowtie \cdots \bowtie r_k$$

- Rozkładem relacji R nazywamy zbiór relacji $\{R_1, \ldots, R_k\}$ taki, że $R = R_1 \cup \ldots \cup R_k$.
- Dla F zbioru zależności R, rzutem F na R_i jest $F_i = \{\alpha \to \beta \in F^+ \mid \alpha, \beta \in R_i\}$.
- Dla r stanu relacji R, stanem R_i jest $r_i = \pi_{R_i}(r)$.
- Złączenie naturalne jest operacją przeciwną do rokładu.
- Rozkład R na R₁,..., R_k jest odwracalny, jeśli dla każdego poprawnego stanu r (spełniającego zależności F) zachodzi:

$$r = r_1 \bowtie r_2 \bowtie \cdots \bowtie r_k$$

Rozkład R na R₁,..., R_k zachowuje zależności, jeśli:

$$F^+ = (F_1 \cup F_2 \cup \ldots \cup F_k)^+$$

- Rozkładem relacji R nazywamy zbiór relacji $\{R_1, \ldots, R_k\}$ taki, że $R = R_1 \cup \ldots \cup R_k$.
- Dla F zbioru zależności R, rzutem F na R_i jest $F_i = \{\alpha \to \beta \in F^+ \mid \alpha, \beta \in R_i\}$.
- Dla r stanu relacji R, stanem R_i jest $r_i = \pi_{R_i}(r)$.
- Złączenie naturalne jest operacją przeciwną do rokładu.
- Rozkład R na R₁,..., R_k jest odwracalny, jeśli dla każdego poprawnego stanu r (spełniającego zależności F) zachodzi:

$$r = r_1 \bowtie r_2 \bowtie \cdots \bowtie r_k$$

• Rozkład R na R_1, \ldots, R_k zachowuje zależności, jeśli:

$$F^+ = (F_1 \cup F_2 \cup \ldots \cup F_k)^+$$

• Rozkład relacji na składowe MUSI być odwracalny i POWINIEN zachowywać zależności.

Lemma

Niech R będzie relacją i F jej zbiorem zależności funkcyjnych. Jeżeli $\alpha \to \beta \in F^+$ jest nietrywialna ($\alpha \cap \beta = \emptyset$), to rozkład R na $R_1 = \alpha \beta$ i $R_2 = R \setminus \beta$ jest odwracalny.

Lemma

Niech R będzie relacją i F jej zbiorem zależności funkcyjnych. Jeżeli $\alpha \to \beta \in F^+$ jest nietrywialna ($\alpha \cap \beta = \emptyset$), to rozkład R na $R_1 = \alpha \beta$ i $R_2 = R \setminus \beta$ jest odwracalny.

Lemma

Każda relacja ma odwracalny rozkład na składowe w BCNF.

Lemma

Niech R będzie relacją i F jej zbiorem zależności funkcyjnych. Jeżeli $\alpha \to \beta \in F^+$ jest nietrywialna ($\alpha \cap \beta = \emptyset$), to rozkład R na $R_1 = \alpha \beta$ i $R_2 = R \setminus \beta$ jest odwracalny.

Lemma

Każda relacja ma odwracalny rozkład na składowe w BCNF.

Lemma

Istnieją relacje, które nie mają **odwracalnego i zachowującego zależności** rozkładu na składowe w BCNF.

Dane:

- R = KNGSUO
- $\bullet \ \ F = \{K \rightarrow N, KU \rightarrow O, GS \rightarrow K, GU \rightarrow S, NG \rightarrow S\}$
- klucz R to GU

Rozkład:

Dane:

- R = KNGSUO
- $F = \{K \rightarrow N, KU \rightarrow O, GS \rightarrow K, GU \rightarrow S, NG \rightarrow S\}$
- klucz R to GU

Rozkład:

Dane:

- R = KNGSUO
- $F = \{K \rightarrow N, KU \rightarrow O, GS \rightarrow K, GU \rightarrow S, NG \rightarrow S\}$
- klucz R to GU

Rozkład:

$$R_1: R_1 = KUO, F_1 = \{KU \rightarrow O\}$$

$$R_2$$
: $R_2 = KNGSU$, $F_2 = \{K \rightarrow N, NG \rightarrow S, GS \rightarrow K, GU \rightarrow S\}$

Dane:

- R = KNGSUO
- $F = \{K \rightarrow N, KU \rightarrow O, GS \rightarrow K, GU \rightarrow S, NG \rightarrow S\}$
- klucz R to GU

Rozkład:

$$R_1: R_1 = \underline{KUO}, F_1 = \{KU \rightarrow O\} \text{ (BCNF)}$$

$$R_2$$
: $R_2 = KNGSU$, $F_2 = \{K \rightarrow N, NG \rightarrow S, GS \rightarrow K, GU \rightarrow S\}$ (Nie-BCNF)

Dane:

- R = KNGSUO
- $F = \{K \rightarrow N, KU \rightarrow O, GS \rightarrow K, GU \rightarrow S, NG \rightarrow S\}$
- klucz R to GU

Rozkład:

$$R_1: R_1 = \underline{KUO}, F_1 = \{KU \rightarrow O\} \text{ (BCNF)}$$

$$R_2$$
: $R_2 = KN\underline{G}S\underline{U}$, $F_2 = \{\underline{K \to N}, NG \to S, GS \to K, GU \to S\}$ (Nie-BCNF)

$$R_{21}$$
: $R_{21} = K\underline{G}S\underline{U}$, $F_{21} = \{\underline{KG} \rightarrow \underline{S}, GS \rightarrow K, GU \rightarrow S\}$.

$$R_{22}$$
: $R_{22} = \underline{K}N, F_{22} = \{K \to N\}$

Dane:

- R = KNGSUO
- $F = \{K \rightarrow N, KU \rightarrow O, GS \rightarrow K, GU \rightarrow S, NG \rightarrow S\}$
- klucz R to GU

Rozkład:

$$R_1: R_1 = KUO, F_1 = \{KU \to O\} \text{ (BCNF)}$$

$$R_2: R_2 = KNGSU, F_2 = \{\underline{K \rightarrow N}, NG \rightarrow S, GS \rightarrow K, GU \rightarrow S\}$$
 (Nie-BCNF)

$$R_{21}$$
: $R_{21} = K\underline{G}S\underline{U}$, $F_{21} = \{\underline{KG} \rightarrow S, GS \rightarrow K, GU \rightarrow S\}$. (Nie-BCNF)

$$R_{22}$$
: $R_{22} = KN$, $F_{22} = \{K \rightarrow N\}$ (BCNF).

Dane:

- R = KNGSUO
- $F = \{K \rightarrow N, KU \rightarrow O, GS \rightarrow K, GU \rightarrow S, NG \rightarrow S\}$
- klucz R to GU

Rozkład:

$$R_1: R_1 = KUO, F_1 = \{KU \to O\} \text{ (BCNF)}$$

$$R_2$$
: $R_2 = KN\underline{G}S\underline{U}$, $F_2 = \{\underline{K \to N}, NG \to S, GS \to K, GU \to S\}$ (Nie-BCNF)

$$R_{21}$$
: $R_{21} = K\underline{G}S\underline{U}$, $F_{21} = \{\underline{KG \to S}, GS \to K, GU \to S\}$. (Nie-BCNF)

$$R_{211}$$
: $R_{211} = KGS$, $F_{211} = \{KG \rightarrow S, GS \rightarrow K\}$, klucze: $KG i GS$.

$$R_{212}$$
: $R_{212} = K\underline{GU}$, $F_{212} = \{GU \rightarrow K\}$.

$$R_{22}$$
: $R_{22} = \underline{K}N$, $F_{22} = \{K \to N\}$ (BCNF).

Dane:

- R = KNGSUO
- $F = \{K \rightarrow N, KU \rightarrow O, GS \rightarrow K, GU \rightarrow S, NG \rightarrow S\}$
- klucz R to GU

Rozkład:

$$R_1: R_1 = KUO, F_1 = \{KU \to O\} \text{ (BCNF)}$$

$$R_2: R_2 = KNGSU, F_2 = \{\underline{K \rightarrow N}, NG \rightarrow S, GS \rightarrow K, GU \rightarrow S\}$$
 (Nie-BCNF)

$$\textit{\textbf{R}}_{21} \colon \textit{\textbf{R}}_{21} = \textit{\textbf{K}} \underline{\textit{\textbf{G}}} \underline{\textit{\textbf{S}}} \underline{\textit{\textbf{U}}}, \, \textit{\textbf{F}}_{21} = \{\underline{\textit{\textbf{K}} \textit{\textbf{G}}} \rightarrow \textit{\textbf{S}}, \, \textit{\textbf{G}} S \rightarrow \textit{\textbf{K}}, \, \textit{\textbf{G}} U \rightarrow \textit{\textbf{S}}\}. \ \, (\text{Nie-BCNF})$$

$$R_{211}$$
: $R_{211} = KGS$, $F_{211} = \{KG \rightarrow S, GS \rightarrow K\}$, klucze: $KG i GS$. (BCNF)

$$R_{212}$$
: $R_{212} = K\underline{GU}$, $F_{212} = \{GU \rightarrow K\}$. (BCNF)

$$R_{22}$$
: $R_{22} = \underline{K}N$, $F_{22} = \{K \to N\}$ (BCNF).

Dane:

- R = KNGSUO
- $F = \{K \rightarrow N, KU \rightarrow O, GS \rightarrow K, GU \rightarrow S, NG \rightarrow S\}$
- klucz R to GU

Rozkład:

R: R nie jest w BCNF. Rozkładamy wg $KU \rightarrow O$ na $R_1 = KUO$ i $R_2 = KNGSU$;

$$R_1: R_1 = KUO, F_1 = \{KU \to O\} \text{ (BCNF)}$$

$$R_2$$
: $R_2 = KNGSU$, $F_2 = \{K \rightarrow N, NG \rightarrow S, GS \rightarrow K, GU \rightarrow S\}$ (Nie-BCNF)

$$R_{21}$$
: $R_{21} = K\underline{G}S\underline{U}$, $F_{21} = \{\underline{KG} \rightarrow S, GS \rightarrow K, GU \rightarrow S\}$. (Nie-BCNF)

$$R_{211}$$
: $R_{211} = KGS$, $F_{211} = \{KG \rightarrow S, GS \rightarrow K\}$, klucze: $KG i GS$. (BCNF)

$$R_{212}$$
: $R_{212} = KGU$, $F_{212} = \{GU \rightarrow K\}$. (BCNF)

$$R_{22}$$
: $R_{22} = \underline{K}N$, $F_{22} = \{K \to N\}$ (BCNF).

Wynik rozkładu: $R = KUO \cup KGS \cup KGU \cup KN i \{KU \rightarrow O, KG \rightarrow S, GS \rightarrow K, GU \rightarrow K, K \rightarrow N\}$

Trzecia postać normalna

Definition (Trzecia postać normalna, 3NF)

Relacja R z zależnościami funkcyjnymi F jest w trzeciej postaci normalnej, jeśli każda zależność $\alpha \to B \in F$

Trzecia postać normalna

Definition (Trzecia postać normalna, 3NF)

Relacja R z zależnościami funkcyjnymi F jest w trzeciej postaci normalnej, jeśli każda zależność $\alpha \to B \in F$

• jest trywialna ($B \in \alpha$) albo

Trzecia postać normalna

Definition (Trzecia postać normalna, 3NF)

Relacja R z zależnościami funkcyjnymi F jest w trzeciej postaci normalnej, jeśli każda zależność $\alpha \to B \in F$

- jest trywialna ($B \in \alpha$) albo
- wynika z nadklucza $((\alpha)_F^+ = R)$ albo

3NF

Trzecia postać normalna

Definition (Trzecia postać normalna, 3NF)

Relacja R z zależnościami funkcyjnymi F jest w trzeciej postaci normalnej, jeśli każda zależność $\alpha \rightarrow B \in F$

- jest trywialna ($B \in \alpha$) albo
- wynika z nadklucza ($(\alpha)_F^+ = R$) albo
- ma po prawej stronie atrybut główny (B należy do jakiegoś klucza).

3NF

Trzecia postać normalna

Definition (Trzecia postać normalna, 3NF)

Relacja R z zależnościami funkcyjnymi F jest w trzeciej postaci normalnej, jeśli każda zależność $\alpha \rightarrow B \in F$

- jest trywialna ($B \in \alpha$) albo
- wynika z nadklucza ($(\alpha)_F^+ = R$) albo
- ma po prawej stronie atrybut główny (B należy do jakiegoś klucza).

Lemma

Każda relacja ma odwracalny i zachowujący zależności rozkład na składowe w postaci 3NF.

Algorytm rozkładu do 3NF

3NF

Algorytm rozkładu do 3NF

Definition (F_{min})

Minimalnym pokryciem zbioru zależności funkcyjnych F nazwiemy równoważny F zbiór F_{min} , w którym:

Algorytm rozkładu do 3NF

Definition (F_{min})

Minimalnym pokryciem zbioru zależności funkcyjnych F nazwiemy równoważny F zbiór F_{min} , w którym:

ullet nie ma zależności trywialnych, np. AB o AC

Definition (F_{min})

Minimalnym pokryciem zbioru zależności funkcyjnych F nazwiemy równoważny F zbiór F_{min} , w którym:

ullet nie ma zależności trywialnych, np. AB
ightarrow C

3NF

Algorytm rozkładu do 3NF

Definition (F_{min})

Minimalnym pokryciem zbioru zależności funkcyjnych F nazwiemy równoważny F zbiór F_{min} , w którym:

- ullet nie ma zależności trywialnych, np. AB o C
- nie ma zależności nadmiarowych, czyli wynikających z pozostałych zależności F_{min} , np. $A \to B, B \to C, A \to C$

Definition (F_{min})

Minimalnym pokryciem zbioru zależności funkcyjnych F nazwiemy równoważny F zbiór F_{min} , w którym:

- ullet nie ma zależności trywialnych, np. AB
 ightarrow C
- nie ma zależności nadmiarowych, czyli wynikających z pozostałych zależności F_{min} , np. $A \to B, B \to C$.

Definition (F_{min})

Minimalnym pokryciem zbioru zależności funkcyjnych F nazwiemy równoważny F zbiór F_{min} , w którym:

- nie ma zależności trywialnych, np. $AB \rightarrow C$
- nie ma zależności nadmiarowych, czyli wynikających z pozostałych zależności F_{min} , np. $A \to B$, $B \to C$,
- nie ma atrybutów lewostronnie nadmiarowych $AB \rightarrow C, A \rightarrow B$.

Definition (F_{min})

Minimalnym pokryciem zbioru zależności funkcyjnych F nazwiemy równoważny F zbiór F_{min} , w którym:

- nie ma zależności trywialnych, np. $AB \rightarrow C$
- nie ma zależności nadmiarowych, czyli wynikających z pozostałych zależności F_{min} , np. $A \to B, B \to C$.
- nie ma atrybutów lewostronnie nadmiarowych $A \rightarrow C, A \rightarrow B$.

Definition (F_{min})

Minimalnym pokryciem zbioru zależności funkcyjnych F nazwiemy równoważny F zbiór F_{min} , w którym:

- nie ma zależności trywialnych, np. $AB \rightarrow C$
- nie ma zależności nadmiarowych, czyli wynikających z pozostałych zależności F_{min} , np. $A \to B, B \to C$.
- nie ma atrybutów lewostronnie nadmiarowych $A \rightarrow C, A \rightarrow B$.

Algorytm rozkładu do 3NF

3NF

Algorytm rozkładu do 3NF

Definition (F_{min})

Minimalnym pokryciem zbioru zależności funkcyjnych F nazwiemy równoważny F zbiór F_{min} , w którym:

- ullet nie ma zależności trywialnych, np. AB
 ightarrow C
- nie ma zależności nadmiarowych, czyli wynikających z pozostałych zależności F_{min} , np. $A \to B, B \to C$.
- nie ma atrybutów lewostronnie nadmiarowych $A \rightarrow C, A \rightarrow B$.

Algorytm rozkładu do 3NF

• Wyznacz F_{min} .

Definition (F_{min})

Minimalnym pokryciem zbioru zależności funkcyjnych F nazwiemy równoważny F zbiór F_{min} , w którym:

- nie ma zależności trywialnych, np. $AB \rightarrow C$
- nie ma zależności nadmiarowych, czyli wynikających z pozostałych zależności F_{min} , np. $A \to B, B \to C$.
- nie ma atrybutów lewostronnie nadmiarowych $A \rightarrow C, A \rightarrow B$.

Algorytm rozkładu do 3NF

- Wyznacz F_{min}.
- ② Dla każdej zależności $\alpha \to \beta \in F_{min}$ utwórz składową $R_i = \alpha \beta$. Usuń składowe zawierające się w innych.

Definition (F_{min})

Minimalnym pokryciem zbioru zależności funkcyjnych F nazwiemy równoważny F zbiór F_{min} , w którym:

- nie ma zależności trywialnych, np. $AB \rightarrow C$
- nie ma zależności nadmiarowych, czyli wynikających z pozostałych zależności F_{min} , np. $A \to B, B \to C$.
- nie ma atrybutów lewostronnie nadmiarowych $A \rightarrow C, A \rightarrow B$.

Algorytm rozkładu do 3NF

- Wyznacz F_{min} .
- ② Dla każdej zależności $\alpha \to \beta \in F_{min}$ utwórz składową $R_i = \alpha \beta$. Usuń składowe zawierające się w innych.
- Jeśli żadna z utworzonych składowych nie zawiera klucza R, to dodaj do rozkładu składową K dla pewnego klucza K relacji R.

1NF — relacja jest w pierwszej postaci normalnej, jeśli ma atrybuty bez wewnątrznej struktury i bez powtórzeń.

- 1NF relacja jest w pierwszej postaci normalnej, jeśli ma atrybuty bez wewnątrznej struktury i bez powtórzeń.
- 2NF relacja jest w drugiej postaci normalnej, jeśli jest w 1NF i nie ma zależności częściowych (unikamy redundancji).

- 1NF relacja jest w pierwszej postaci normalnej, jeśli ma atrybuty bez wewnątrznej struktury i bez powtórzeń.
- 2NF relacja jest w drugiej postaci normalnej, jeśli jest w 1NF i nie ma zależności częściowych (unikamy redundancji).
- 3NF relacja jest w trzeciej postaci normalnej, jeśli jest w 2NF i nie ma zależności przechodnich (unikamy redundancji).

- 1NF relacja jest w pierwszej postaci normalnej, jeśli ma atrybuty bez wewnątrznej struktury i bez powtórzeń.
- 2NF relacja jest w drugiej postaci normalnej, jeśli jest w 1NF i nie ma zależności częściowych (unikamy redundancji).
- 3NF relacja jest w trzeciej postaci normalnej, jeśli jest w 2NF i nie ma zależności przechodnich (unikamy redundancji).
- 3.5NF BCNF (unikamy redundancji i upraszaczmy sprawdzanie zależności).

- 1NF relacja jest w pierwszej postaci normalnej, jeśli ma atrybuty bez wewnątrznej struktury i bez powtórzeń.
- 2NF relacja jest w drugiej postaci normalnej, jeśli jest w 1NF i nie ma zależności częściowych (unikamy redundancji).
- 3NF relacja jest w trzeciej postaci normalnej, jeśli jest w 2NF i nie ma zależności przechodnich (unikamy redundancji).
- 3.5NF BCNF (unikamy redundancji i upraszaczmy sprawdzanie zależności).
 - 4NF GR(idg,idk,idp,limit), TS(idg,termin,sala), Z(ids,idg), PLAN(ids,idg,termin,sala) w planie studenta muszą znaleźć się wszystkie terminy grupy, do której
 - student się zapisał; relacja jest w czwartej postaci normalnej, jeśli jest w BCNF i nie ma nietrywialnych **zależności wielowartościowych**.

- 1NF relacja jest w pierwszej postaci normalnej, jeśli ma atrybuty bez wewnątrznej struktury i bez powtórzeń.
- 2NF relacja jest w drugiej postaci normalnej, jeśli jest w 1NF i nie ma zależności częściowych (unikamy redundancji).
- 3NF relacja jest w trzeciej postaci normalnej, jeśli jest w 2NF i nie ma zależności przechodnich (unikamy redundancji).
- 3.5NF BCNF (unikamy redundancji i upraszaczmy sprawdzanie zależności).
 - 4NF GR(idg,idk,idp,limit), TS(idg,termin,sala), Z(ids,idg), PLAN(ids,idg,termin,sala) w planie studenta muszą znaleźć się wszystkie terminy grupy, do której student się zapisał; relacja jest w czwartej postaci normalnej, jeśli jest w BCNF i nie ma nietrywialnych zależności wielowartościowych.
 - 5NF Pr(firma,sok), Pd(sok,bar), D(firma,bar), MożnaZamówić(sok,bar,firma) sok można zamówić, jeśli bar go podaje, firma produkuje i jest dostawcą baru; relacja jest w piątej postaci normalnej, jeśli jest w 4NF i nie ma nietrywialnych zależności złączeniowych.

- 1NF relacja jest w pierwszej postaci normalnej, jeśli ma atrybuty bez wewnątrznej struktury i bez powtórzeń.
- 2NF relacja jest w drugiej postaci normalnej, jeśli jest w 1NF i nie ma zależności częściowych (unikamy redundancji).
- 3NF relacja jest w trzeciej postaci normalnej, jeśli jest w 2NF i nie ma zależności przechodnich (unikamy redundancji).
- 3.5NF BCNF (unikamy redundancji i upraszaczmy sprawdzanie zależności).

nie ma nietrywialnych zależności wielowartościowych.

- 4NF GR(idg,idk,idp,limit), TS(idg,termin,sala), Z(ids,idg), PLAN(ids,idg,termin,sala)
 w planie studenta muszą znaleźć się wszystkie terminy grupy, do której student się zapisał; relacja jest w czwartej postaci normalnej, jeśli jest w BCNF i
- 5NF Pr(firma,sok), Pd(sok,bar), D(firma,bar), MożnaZamówić(sok,bar,firma) sok można zamówić, jeśli bar go podaje, firma produkuje i jest dostawcą baru; relacja jest w piątej postaci normalnej, jeśli jest w 4NF i nie ma nietrywialnych zależności złączeniowych.
- inne unikalność ido w PR i ST, przestrzeganie limitu w grupie, brak kolizji w salach, podawanie świeżych soków tylko w wyznaczonych barach.

Definition (Zależność wielowartościowa)

Mamy:

- relację R ze zbiorem zależności funkcyjnych F
- podzbiory atrybutów $\alpha, \beta \subseteq R$ i $\gamma = R \setminus (\alpha \cup \beta)$,
- r poprawny stan R.

Wtedy zachodzi zależność wielowartościowa $\alpha \rightarrow \beta$, o ile

- jeśli mamy $t_1, t_2 \in r$ oraz $t_1.\alpha = t_2.\alpha = a$, to
- do r należą także s_1, s_2 , takie że $s_1 = (a, t_1, \beta, t_2, \gamma)$ oraz $s_2 = (a, t_2, \beta, t_1, \gamma)$

Zależność $\alpha \to \beta$ jest **trywialna**, jeśli $\beta \subseteq \alpha$ lub $\gamma \subseteq \alpha$.

Definition (Zależność wielowartościowa)

Mamy:

- relację R ze zbiorem zależności funkcyjnych F
- podzbiory atrybutów $\alpha, \beta \subseteq R$ i $\gamma = R \setminus (\alpha \cup \beta)$,
- r poprawny stan R.

Wtedy zachodzi zależność wielowartościowa $\alpha \rightarrow \beta$, o ile

- jeśli mamy $t_1, t_2 \in r$ oraz $t_1.\alpha = t_2.\alpha = a$, to
- do r należą także s_1 , s_2 , takie że $s_1 = (a, t_1.\beta, t_2.\gamma)$ oraz $s_2 = (a, t_2.\beta, t_1.\gamma)$

Zależność $\alpha \to \beta$ jest **trywialna**, jeśli $\beta \subseteq \alpha$ lub $\gamma \subseteq \alpha$.

Definition (Czwarta postać normalna, 4NF)

Relacja R z zależnościami funkcyjnymi F i wielowartościowymi M jest w czwartej postaci normalnej, jeśli każda nietrywialna zależność $\alpha \to \to \beta \in M$ wynika z nadklucza, tzn. $(\alpha)_F^+ = R$.

Definition (Zależność wielowartościowa)

Mamy:

- relację R ze zbiorem zależności funkcyjnych F
- podzbiory atrybutów $\alpha, \beta \subseteq R$ i $\gamma = R \setminus (\alpha \cup \beta)$,
- r poprawny stan R.

Wtedy zachodzi zależność wielowartościowa $\alpha \to \beta$, o ile

- jeśli mamy $t_1, t_2 \in r$ oraz $t_1.\alpha = t_2.\alpha = a$, to
- do r należą także s_1 , s_2 , takie że $s_1 = (a, t_1.\beta, t_2.\gamma)$ oraz $s_2 = (a, t_2.\beta, t_1.\gamma)$

Zależność $\alpha \to \beta$ jest **trywialna**, jeśli $\beta \subseteq \alpha$ lub $\gamma \subseteq \alpha$.

Definition (Czwarta postać normalna, 4NF)

Relacja R z zależnościami funkcyjnymi F i wielowartościowymi M jest w czwartej postaci normalnej, jeśli każda nietrywialna zależność $\alpha \to \to \beta \in M$ wynika z nadklucza, tzn. $(\alpha)_F^+ = R$.

Uwaga: Relację R z nietrywialną zależnością $\alpha \to \to \beta$, gdzie $\alpha \cap \beta = \emptyset$ można bezpiecznie (odwracalnie i z zachowaniem zależności) rozłożyć na składowe $R_1 = \alpha \beta$ oraz $R_2 = \alpha \cup (R \setminus \beta)$.

Zależności generujące krotki (tgds)

Kolejnym rodzajem zależności są zależności generujące krotki (tuple-generating dependencies):

$$\forall \vec{x} \vec{y} \varphi(\vec{x}, \vec{y}) \rightarrow \exists \vec{z} \psi(\vec{x}, \vec{z})$$

Dalsza część wykładu wg.: Arenas et. al. *Relational and XML Data Exchange.* Morgan and Claypool Publishers.

Zależności generujące krotki (tgds)

Kolejnym rodzajem zależności są zależności generujące krotki (tuple-generating dependencies):

$$\forall \vec{x} \vec{y} \varphi(\vec{x}, \vec{y}) \rightarrow \exists \vec{z} \psi(\vec{x}, \vec{z})$$

 Zależności tgds są świetnym narzędziem do modelowania migracji schematów (wymiana danych).

Dalsza część wykładu wg.: Arenas et. al. *Relational and XML Data Exchange.* Morgan and Claypool Publishers.

Wymiana danych (data exchange).

Chcemy stworzyć bazę o schemacie:

```
ROUTES(flight#,source,destination)
INFO_FLIGHT(flight#,departure_time,arrival_time,airline)
SERVES(airline,city,country,phone)
```

Wymiana danych (data exchange).

Chcemy stworzyć bazę o schemacie:

```
ROUTES(flight#,source,destination)
INFO_FLIGHT(flight#,departure_time,arrival_time,airline)
SERVES(airline,city,country,phone)
```

Obecnie dane mamy w bazie o schemacie:

```
FLIGHT(source,destination,airline,departure)
GEO(city,country,population)
```



```
\label{eq:flight} FLIGHT(\texttt{src},\texttt{dest},\texttt{airl},\texttt{dep}) \longrightarrow \\ ROUTES(\_,\texttt{src},\texttt{dest}), INFO\_FLIGHT(\_,\texttt{dep},\_,\texttt{airl})
```

```
\forall \texttt{src} \ \forall \texttt{dest} \ \forall \texttt{airl} \ \forall \texttt{dep} \left( \ \texttt{FLIGHT}(\texttt{src}, \texttt{dest}, \texttt{airl}, \texttt{dep}) \longrightarrow \\ \exists \texttt{f\#} \ \exists \texttt{arr} \left( \ \texttt{ROUTES}(\texttt{f\#}, \texttt{src}, \texttt{dest}) \land \texttt{INFO\_FLIGHT}(\texttt{f\#}, \texttt{dep}, \texttt{arr}, \texttt{airl}) \ \right) \right)
```

- (2) FLIGHT(city,dest,airl,dep) ∧ GEO(city,country,popul) →
 ∃phone SERVES(airl,city,country,phone)
- (3) FLIGHT(src,city,airl,dep) ∧ GEO(city,country,popul) → ∃phone SERVES(airl,city,country,phone)

$$(S,T) \models \varphi$$

 Dla danej źródłowej bazy danych S i każdej zależności φ , docelowa baza danych T musi spełniać

$$(S,T) \models \varphi$$

Jednak takich T może istnieć wiele...

$$(S,T) \models \varphi$$

- Jednak takich T może istnieć wiele...
- Rozwiązanie uniwersalne U istnieje homomorfizm z U w dowolną bazę docelową T (każde T jest uszczegółowieniem U).

$$(S,T) \models \varphi$$

- Jednak takich T może istnieć wiele...
- Rozwiązanie uniwersalne U istnieje homomorfizm z U w dowolną bazę docelową T (każde T jest uszczegółowieniem U).
- Jak znaleźć rozwiązanie uniwersalne?

$$(S,T) \models \varphi$$

- Jednak takich T może istnieć wiele...
- Rozwiązanie uniwersalne U istnieje homomorfizm z U w dowolną bazę docelową T (każde T jest uszczegółowieniem U).
- Jak znaleźć rozwiązanie uniwersalne? Pogoń (chase).

 Dla danej źródłowej bazy danych S i każdej zależności φ , docelowa baza danych T musi spełniać

$$(S,T) \models \varphi$$

- Jednak takich T może istnieć wiele...
- Rozwiązanie uniwersalne U istnieje homomorfizm z U w dowolną bazę docelową T (każde T jest uszczegółowieniem U).
- Jak znaleźć rozwiązanie uniwersalne? Pogoń (chase).
- Jak odpowiadać na zapytania skoro jest wiele rozwiązań?

 Dla danej źródłowej bazy danych S i każdej zależności φ , docelowa baza danych T musi spełniać

$$(S,T) \models \varphi$$

- Jednak takich T może istnieć wiele...
- Rozwiązanie uniwersalne U istnieje homomorfizm z U w dowolną bazę docelową T (każde T jest uszczegółowieniem U).
- Jak znaleźć rozwiązanie uniwersalne? Pogoń (chase).
- Jak odpowiadać na zapytania skoro jest wiele rozwiązań?
 Pewne odpowiedzi (certain answers) to odpowiedzi prawdziwe w dowolnej bazie docelowej.

$$(S,T) \models \varphi$$

- Jednak takich T może istnieć wiele...
- Rozwiązanie uniwersalne U istnieje homomorfizm z U w dowolną bazę docelową T (każde T jest uszczegółowieniem U).
- Jak znaleźć rozwiązanie uniwersalne? Pogoń (chase).
- Jak odpowiadać na zapytania skoro jest wiele rozwiązań?
 Pewne odpowiedzi (certain answers) to odpowiedzi prawdziwe w dowolnej bazie docelowej.
- Skoro nasze zapytania (CQs) są monotoniczne to wystarczy zmaterializować (jakieś) rozwiązanie uniwersalne i na nim wyliczyć odpowiedzi.