IN THE CLAIMS:

Kindly amend Claims 1, 3, 5, 8, 9 and 14 as follows:

1. (currently amended) A monocyclic compound having the formula (1):

in which:

 X_1 , X_2 , X_3 , X_4 , which may be the same or different from one another, is selected from the group consisting of -CONR-, -NRCO-, -OCO-, -COO-, -CH₂NR- and -NR-CH₂-, where R is H or a C_{1-3} alkyl or benzyl;

f, g, h, m, which may be the same or different from one another, may be 0 or 1;

 R_1 and R_2 which may be the same or different from one another, represent the side chain of a natural amino acid selected from the group consisting of tryptophan, phenylalanine, tyrosine and histidine, or the side chain

of a non-natural amino acid selected from the group consisting of:

tryptophan and phenylalanine, either mono- or disubstituted with residues selected from the group consisting of C_{1-3} alkyl or halo-alkyl, C_{1-3} alkoxyl or amino-alkoxyl, halogen, OH, NH₂ and NR₁₃R₁₄, where R₁₃ and R₁₄, which may be the same or different from one another, represent a hydrogen or C_{1-3} alkyl group;

R3 is selected from the group consisting of:

- linear or branched alkyl having the formula C_nH_{2n+1} with n=1-5 (selected from the group consisting of methyl, ethyl, propyl, isopropyl, n-butyl and t-butyl) cycloalkyl or alkylcycloalkyl of formula C_nH_{2n-1} with n=5-9 (selected from the group consisting of: cyclopentyl, cyclohexyl and methylcyclohexyl)
- $-(CH_2)_r$ -Ar₁, where r=1 or 2 and where Ar₁ is an aromatic group selected from the group consisting of: α -naphthyl, β -naphthyl, phenyl, indole, said Ar₁ group being possibly substituted with a maximum of two residues selected from the group consisting of: C_{1-3} alkyl, CF_3 , C_{1-3} alkoxyl, Cl, F, OH and NH_2 ;

R4 represents an L-Q group where:

- L is a chemical bond of or CH2, and
- Q is selected from the group consisting of:
- OH, NH_2 , NR_9R_{10} , OR_{11} , and where R_9 and R_{10} , which may be the same or different from one another, represent a hydrogen or C_{1-3} alkyl group, C_{1-3} hydroxy alkyl,
- C_{1-3} dihydroxyaklyl, C_{1-3} alkyl-CONHR₁₂ (wherein R_{12} is a monoglycosidic group derived from D or L pentoses or hexoses (selected from the group consisting of ribose, arabinose, glucose, galactose, fructose, glucosamine, galactosamine N-acetylglucosamine and

N-acetylgalactosamine)), C_{1-3} alkyltetrazole, C_{1-3} alkyl-COOH or wherein R_9R_{10} are joined together to form with the N atom a morpholine or a piperidine ring and where R_{11} is a C_{1-3} alkyl chain, or a C_{2-4} amino-alkyl chain; NHCOR₈ wherein R_8 is a cyclohexane containing from 2 to 4 OH groups, C_{1-6} alkyl chain containing a polar group (chosen in the group consisting of NH₂, COOH, CONHR₁₂, (wherein R_{12} is as hereabove defined) or [1,4']bipiperidine)) - COOH, COOR₁₇ or CONHR₁₂, wherein R_{12} is as horeabove defined and R_{17} is as R_{12} or a group 4-nitrobenzyl - R_5 , R_6 , R_7 are $[[H_2]]$ \underline{H} in which the carbon atom that carries the substituents R_3 and R_7 has configuration R_7 ; wherein when $R_1=R_2=$ a side chain of $\frac{trytophan}{tryptophan}$ and $R_4=$ CH_2OH then R_3 is not isopropyl.

2. (canceled)

- 3. (previously amended) A compound according to Claim 1 selected from:
- (a) Cyclo{-Suc-Trp-Phe-[(R)-NH-CH($CH_2C_6H_5$)- CH_2 -NH]}
- (b) Cyclo{-Suc-Trp-Phe-[(S)-NH-CH($CH_2C_6H_5$)-CH₂-NH]}
- (c) Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(CH₂C₆H₁₁)-CH₂-NH]}
- (d) Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(CH₂C₆H₄(4-OCH₃))-CH₂-NH]}
- (e) Cyclo{-Suc-Trp(5F)-Phe-[(R)-NH-CH(CH₂C₆H₅)-CH₂-NH]}
- (f) Cyclo(-Suc-Trp(Me)-Phe-[(R)-NH-CH(CH₂C₆H₅)-CH₂-NH])
- (g) Cyclo{-Suc-Phe(3,4-Cl)-Phe-[(R)-NH-CH($CH_2C_6H_5$)- CH_2 -NH]}
- (h) Cyclo{-Suc-Trp-Phe(3,4-Cl)-[(R)-NH-CH(CH₂C₆H₅)-CH₂-NH]}
- (i) Cyclo{-Suc-Trp-Tyr-[(R)-NH-CH(CH₂C₆H₅)-CH₂-NH]}
- (j) Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(CH₂C₆H₃-3, 4-diCl)-CH₂-NH]}
- (k) Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(CH₂C₆H₄-4-OH)-CH₂-NH]}
- (1) Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(CH₂-CH₂-C $_6$ H₅)-CH₂-NH]}
- (m) Cyclo(-Suc-Trp-Phe-[(R)-NH-CH(CH2-2-napthyl)-CH2-NH])
- (n) Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(CH₂-indo1-3-yl)-CH₂-NH]}

- (o) Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(CH₂-5-F-indol-3-yl)-CH₂-NH]}
- (p) Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₄-3-F)-CH₂-NH]}
- (q) Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₃-3, 4-dif-CH₂-NH]-}
- (r) Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₄-4-CF₃-CH₂-NH]-}
- (s) Cyclo{-Suc-Trp-Phe-[(R)-NH-CH₂-CH(CH₂C₆H₅)-NH]}
- (t) Cyclo{-Suc-Trp-Phe-[(S)-NH- $CH_2-CH(CH_2C_6H_5)-NH$]}
- (u) Cyclo{-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-(CH₂) $_3$ CO-}
- (v) Cyclo{-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-N(CH₃)]- (CH₂)₃CO-}
- (w) Cyclo{-Suc[1(S)-NH₂]-Trp-Phe-[(R)NH-CH(CH₂-C₆H₅)-CH₂NH]-}
- (x) Cyclo(-Suc[1(R)-NH₂]-Trp-Phe-[(R)NH-CH(CH₂-C₆H₅)-CH₂NH]-}
- (y) Cyclo{-Suc[2(S)-NH₂}-Trp-Phe-[(R)NH-CH(CH₂-C₅H₅)-CH₂NH]-}
- (z) Cyclo{-Suc[2(R)-NH₂}-Trp-Phe-[(R)NH-CH(CH₂-C₆H₅)-CH₂NH}-}
- (aa) Cyclo(-Suc[1(S)-NH(CH₃)]-Trp-Phe-[(R)NH-CH(CH₂-C₆H₅)-CH₂NH]-}
- (ab) Cyclo{-Suc[1-COO($CH_2-C_6H_4-4-NO_2$)]-Trp-Phe-[{R}NH-CH($CH_2-C_6H_5$)-CH₂NH]-}
- (ac) Cyclo(-Suc(1-COOH)-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]} $[\text{Cyclo} \{-\text{Suc}(1-\text{COOH})-\text{Trp-Phe-}[(R)-\text{NH-CH}(CH₂-C₆H₅)-\text{CH}_2-\text{NH}} \}]$
- (ad) Cyclo{-Suc(1-OH)-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₈)-CH₂-NH]}
- (ae) Cyclo(-Suc(2-COOH)-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]}
- (af) Cyclo{-Suc(2-OH)-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]}

- (ah) Cyclo{ $-Suc[1(S)-(morpholin-4-yl)]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-} trifluoroacetic acid$
- (ai) Cyclo{-Suc[1(S)-N(CH₃)₂]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-} trifluoroacetic acid
- (aj) Cyclo{-Suc[1(S)-(piperidin-4-yl]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-} trifluoroacetic acid
- (ak) Cyclo{-Suc[1(S)-(N(CH₂CH₂OH)₂)]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]} trifluoroacetic acid
- (a1) Cyclo{-Suc[1(S)-(N(CH₂CH(OH)CH₂OH)]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-} trifluoroacetic acid
- (am) Cyclo{-Suc[1(S)-(3-carboxypropanoyl)amino]-Trp-Phe- $[(R)-NH-CH(CH_2-C_6H_5)-CH_2-NH]-\}$
- (an) Cyclo{-Suc[1(S)-[3-N'- β -D-glucopyranos-1-y1)- carboxamidopropanoyl]amino]-Trp-Phe-[(R)NH-CH(CH₂-C_{β}H₅)-CH₂NH]-}
- (ao) Cyclo{-Suc[1(S)-[(carboxymethyl)amino]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-} trifluoroacetic acid
- (ap) Cyclo{-Suc[1(S)-[N'- β -D-glucopyranos-1-yl)- carboxyamideomethyl]amino]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-} trifluoroacetic acid
- (aq) Cyclo{-Suc[1(S)-(quinyl)amine]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-}
- (ar) Cyclo{-Suc[1(S)-(4-aminobutanoy1)amino]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-} trifluoroacetic acid
- (as) Cyclo{-Suc[1(S)-[1,4')bipiperidin-1-yl]acetamido]-Trp-Phe- $(R)-NH-CH(CH_2-C_6H_5)-CH_2-NH]-$ } trifluoroacetic acid
- (at) Cyclo{-Suc[1-N-(B-D-g]ucopyranos-1-yl)-carboxyamido]- $Trp-Phe-[(R)-NH-CH(CH_2-C_6H_5)-CH_2-NH]- \}$
- (au) Cyclo{-Suc[1(S)-[N'-(2-N-acetyl- β -D-glucopyranos-1-yl)-carboxyamido]-Trp-Phe-[(R)-NH-CH(CH₂-C $_{6}$ H $_{5}$)-CH₂-NH]-}.
- 4. (canceled)

- 5. (previously amended) A composition comprising a compound of formula (I) according to Claim 1 in combination with a suitable carrier or excipient.
- 6. (currently amended) Pharmaccutical [[c]] Compositions according to Claim 5, to be used as tachykinin antagonists.
- 7. (currently amended) Pharmaceutical [[c]] Compositions according to Claim 6, to be used asantagonists of the human NK-2 receptor.
- 8. (canceled)
- 9. (canceled)
- 10. (canceled)
- 11. (previously amended) A method of inhibiting bronchoconstriction comprising administering a compound according to Claim 1 for a time and under conditions effective to antagonize NK-2 (neurokinin-2) receptors.
- 12. (previously amended) A method of inhibiting bronchoconstriction comprising administering a compound according to Claim 1 to a mammal afflicted with asthma for a time and under conditions effective to antagonize NK-2 receptors.
- 13. (previously amended) A method of inhibiting bronchoconstriction comprising administering a compound according to Claim I to a mammal afflicted with an anxiety

disorder for a time and under conditions effective to antagonize NK-2 receptors.

- 14. (currently amended) A method of inhibiting bronchoconstriction comprising administering quantities of between 0.02 and 10 mg/kg of body weight of active principle consisting of a compound of formula(I), according to Claim 1, to a patient afflicted with asthma, coughing, pulmonary irritation, intestinal spasms, spasms of the biliary tract, local spasms of the bladder and of the uterer ureter during cystitis[[, and]] or kidney infections and colics for a time and under conditions effective to antagonize NK-2 receptors.
- 15. (original) A mixture comprising two or more compounds according to claim 1.
- 16. (original) A method of inhibiting bronchoconstriction comprising administering a compound according to claim 1 for a time and under conditions effective to antagonize NK-2 receptors.
- 17. (original) A method of inhibiting bronchoconstriction comprising administering a compound according to claim 1 to a mammal in need thereof for a time and under conditions effective to antagonize NK-2 receptors.
- 18. (original) A method according to claim 17 wherein said mammal is afflicted with a disorder selected from the group consisting of the bronchospastic and inflammatory component of asthma, coughing, pulmonary irritation, intestinal spasms, spasms of the biliary tract, local