研究背景和主要内容 研究方法 实验结果和待完成内容 致谢

带间断系数的弹性问题

答辩人: 唐小康, 指导老师: 王华

2023 年 4 月 10 日

- ① 研究背景和主要内容
- ② 研究方法
- ③ 实验结果和待完成内容
 - 实验结果
 - 待完成内容
- 4 致谢

平面弹性力学方程组是弹性力学中最基础、最常见的模型。当研究的弹性体形状和受力具有一定特点时,通过适当的简化处理,就可以归结为平面弹性问题,其控制方程可以表示为以下形式

$$-div\sigma(u) = f \in \Omega$$

$$\sigma(u) = 2\mu\epsilon(u) + \lambda tr(\epsilon(u))\delta$$

$$u|_{\Gamma} = 0$$

其中 $u = (u_1, u_2)^t$ 为求解向量, $\Omega = [0, 1] \times [0, 1]$, Γ 为 Ω 的边界。

研究背景和主要内容 研究方法 实验结果和待完成内容 ^致被

使用协调有限元求解弹性问题时,有限元方法的性能会随着系数 λ 趋向于 ∞ 而变差,称其为闭锁现象,而使用非协调元 (如 CR 元) 时则可以解除闭锁现象,本文的主要内容是当系数 λ , μ 在区域 Ω 上间断时,使用 CR 元是否任然可以解除闭锁现象。

研究背景和主要内容 研究方法 实验结果和待完成内容 致谢

本文的研究方法是,先通过查阅文献等方法了解有限元的基础理论,如 Sobolev 空间、线性元、CR 元的定义以及误差估计,然后通过三组数值实验得到结论,通过线性元和 CR 元求解弹性问题的对比可以观察到闭锁现象,通过 CR 元求解弹性问题和带间断系数的弹性问题的对比可以初步判断 CR 元是否可以解除闭锁现象。

表: 线性元误差

	h λ	1.0	0.5	0.25	0.125	0.0625
	1	0.0	5.3881e-5	1.1197e-4	3.9125e-5	1.0772e-5
	10	0.0	1.1963e-2	2.6789e-3	6.4168e-4	1.6060e-4
	100	0.0	1.8830e-2	4.7420e-3	1.2635e-3	3.5042e-4
	1e3	0.0	1.9855e-2	5.2306e-3	1.6399e-3	6.7184e-4
	1e4	0.0	1.9963e-2	5.2878e-3	1.7076e-3	6.6349e-4
	1e5	0.0	1.9974e-2	5.2936e-3	1.7150e-3	8.2476e-4

表: CR 元误差

λ	1.0	0.5	0.25	0.125	0.0625
1	2.9011	7.9878e-2	2.0326e-2	5.8054e-3	1.5808e-3
10	1.8652	4.9859e-2	1.2611e-2	3.4043e-3	9.0626e-4
100	1.7617	4.6901e-2	1.1864e-2	3.1691e-3	8.3997e-4
1e3	1.7513	4.6605e-2	1.1790e-2	3.1457e-3	8.3336e-4
1e4	1.7503	4.6577e-2	1.1783e-2	3.1434e-3	8.3270e-4
1e5	1.7502	4.6574e-2	1.1782e-2	3.1431e-3	8.3263e-4

可以看到,随着 λ 的增大,使用线性元得到的近似解的收敛效果逐渐下降,而使用 CR 元的收敛速度保持不变。 ABB

接下来将完成求解带间断系数的弹性问题的程序的编写,得到实验结果并且与以上结果对比,最后得到结论。

研究背景和主要内容 研究方法 实验结果和待完成内容 致谢

谢谢!