IN THE CLAIMS:

Please amend the claims as set forth below.

1. (Previously Amended) A device controller for establishing a communication channel between a slave device and a host device, the slave device including the device controller and a function engine, the slave device and host device being connected to a packet-switched serial bus, the device controller comprising:

a serial interface engine having a serial port that connects to the serial bus and a data port, the serial interface engine for generating and interpreting packets on the serial bus and transferring data between the serial bus and the data port; and

an interfacing device connected between the data port of the serial interface engine and the function engine to transfer data between the serial interface engine and the function engine, the interfacing device including a configuration module for configuring, without the need of a CPU, the communication channel between the slave device and the host device.

2. (Currently Amended) A device controller for establishing a communication channel between a slave device and a host device, the slave device including the device controller and a function engine, the slave device and host device being connected to a packet-switched serial bus, the device controller comprising:

a serial interface engine having a serial port that connects to the serial bus and a data port, the serial interface engine for generating and interpreting packets on the serial bus and transferring data between the serial bus and the data port; and

an interfacing device connected between the data port of the serial interface engine and the function engine to transfer data between the serial interface engine and the function engine, the interfacing device including a configuration module for configuring the communication channel between the slave device and the host device;

at least one register that stores configuration information relating to the communication channel between the slave device and the host device; and

at least one memory that holds operating data relating to the communication channel; and

wherein the configuration module is connected to the at least one memory and includes a plurality of finite state machines that are operative to receive and respond to a request, including a GET_DESCRIPTOR and GET_CONFIGURATION request, from the host device.

3. (Previously Amended) A device controller for establishing a communication channel between a slave device and a host device, the slave device including the device controller and a function engine, the slave device and host device being connected to a packet-switched serial bus, the device controller comprising:

a serial interface engine having a serial port that connects to the serial bus and a data port, the serial interface engine for generating and interpreting packets on the serial bus and transferring data between the serial bus and the data port; and

an interfacing device connected between the data port of the serial interface engine and the function engine to transfer data between the serial interface engine and the function engine, the interfacing device including a configuration module for configuring the communication channel between the slave device and the host device, the configuration module including:

a first state machine for receiving and storing a request packet from the host, the first state machine having an output line carrying a signal indicating that a request packet has been stored and is available to be interpreted;

a second state machine for accessing and interpreting the request packet in response to the output signal of the first finite state machine, the second state machine having at least one output line for carrying a data transfer signal, and activating the data transfer signal based on the interpretation of the request packet; and

at least one data transfer state machine for transferring requested data in response to an active data transfer signal.

4. (Original) A device controller as recited in claim 3,

wherein the request is a GET DESCRIPTOR request; and

wherein the data transfer state machine delivers at least a seventeen-byte descriptor to the serial interface engine to be sent to the host device.

5. (Previously Amended) A device controller for establishing a communication channel between a slave device and a host device, the slave device including the device controller and a function engine, the slave device and host device being connected to a packet-switched serial bus, the device controller comprising:

a serial interface engine having a serial port that connects to the serial bus and a data port, the serial interface engine for generating and interpreting packets on the serial bus and transferring data between the serial bus and the data port; and

an interfacing device connected between the data port of the serial interface engine and the function engine to transfer data between the serial interface engine and the function engine, the interfacing device including a configuration module for configuring the communication channel between the slave device and the host device, the configuration module including:

a first state machine for receiving and storing a request packet from the host, the first state machine having an output line carrying a signal indicating that a request packet has been stored and is available to be interpreted;

a second state machine for accessing and interpreting the request packet in response to the output signal of the first finite state machine, the second state machine having at least one output line for carrying a data transfer signal, and activating the data transfer signal based on the interpretation of the request packet; and

a plurality of data transfer state machines, each for transferring requested data in response to an active data transfer signal, wherein only one of the plurality of data transfer state machines receives an active data transfer signal.

6. (Previously Amended) A device controller for establishing a communication channel between a slave device and a host device, the slave device including the device controller and a function engine, the slave device and host device being connected to a packet-switched serial bus, the device controller comprising:

a serial interface engine having a serial port that connects to the serial bus and a data port, the serial interface engine for generating and interpreting packets on the serial bus and transferring data between the serial bus and the data port; and

an interfacing device connected between the data port of the serial interface engine and the function engine to transfer data between the serial interface engine and the function engine, the interfacing device including a configuration module for configuring the communication channel between the slave device and the host device, the configuration module including:

a first state machine for receiving and storing a request packet from the host, the first state machine having an output line carrying a signal indicating that a request packet has been stored and is available to be interpreted;

a second state machine for accessing and interpreting the request packet in response to the output signal of the first finite state machine, the second state machine having at least one output line for carrying a data transfer signal, and activating the data transfer signal based on the interpretation of the request packet; and

at least one data transfer state machine for transferring requested data in response to an active data transfer signal;

wherein the type of request interpreted by the second state machine is not supported; and wherein the second state machine indicates to the serial interface engine to issue a stall packet to the host.

7. (Currently Amended) A device controller as recited in claim 1, further comprising: A device controller for establishing a communication channel between a slave device and a host device, the slave device including the device controller and a function engine, the slave device and host device being connected to a packet-switched serial bus, the device controller comprising:

a serial interface engine having a serial port that connects to the serial bus and a data port, the serial interface engine for generating and interpreting packets on the serial bus and transferring data between the serial bus and the data port;

an interfacing device connected between the data port of the serial interface engine and the function engine to transfer data between the serial interface engine and the function engine, the interfacing device including a configuration module for configuring the communication channel between the slave device and the host device;

at least one endpoint associated with the function engine; and a group of state machines associated with the function-engine endpoint.

8. (Original) A device controller as recited in claim 7,

wherein the endpoint includes an endpoint register having a type field for indicating the type of data transfer the endpoint supports; and

wherein the type field is accessible by at least one of the state machines in the group associated with the endpoint.

9. (Previously Amended) A device controller for establishing a communication channel between a slave device and a host device, the slave device including the device controller and a function engine, the slave device and host device being connected to a packet-switched serial bus, the device controller comprising:

a serial interface engine having a serial port that connects to the serial bus and a data port, the serial interface engine for generating and interpreting packets on the serial bus and transferring data between the serial bus and the data port; and

an interfacing device connected between the data port of the serial interface engine and the function engine to transfer data between the serial interface engine and the function engine, the interfacing device including a configuration module for configuring the communication channel between the slave device and the host device;

at least one endpoint associated with the function engine; and
a group of state machines associated with the function-engine endpoint;
wherein the group of state machines has a clock line for carrying a clock signal;
wherein the serial interface engine detects a start-of-frame condition on the serial bus; and
wherein the clock signal for the group of state machines is derived from the start-of-frame
condition.

10. (Previously Amended) A device controller as recited in claim 7, wherein the function-engine endpoint is an OUT-type endpoint; and

wherein the group of state machines associated with the function engine endpoint includes:

a data storage state machine that stores data sent from the host for the function engine; and

a command state machine that interprets the stored data in the data storage machine to operate the function engine.

- 11. (Original) A device controller as recited in claim 10, wherein the function engine includes a D/A converter.
- 12. (Original) A device controller as recited in claim 7,

wherein the function-engine endpoint is an IN-type endpoint; and

wherein the group of state machines associated with the function engine endpoint includes:

a data collecting state machine that holds data sent from the function engine for the host; and

a command state machine that interprets commands from the host to read the data in the data collecting state machine.

13. (Previously Amended) A device controller for establishing a communication channel between a slave device and a host device, the slave device including the device controller and a function engine, the slave device and host device being connected to a packet-switched serial bus, the device controller comprising:

a serial interface engine having a serial port that connects to the serial bus and a data port, the serial interface engine for generating and interpreting packets on the serial bus and transferring data between the serial bus and the data port; and

an interfacing device connected between the data port of the serial interface engine and the function engine to transfer data between the serial interface engine and the function engine, the interfacing device including a configuration module for configuring the communication channel between the slave device and the host device;

an IN-type endpoint associated with the function engine that includes an A/D converter; and

a group of state machines associated with the function-engine endpoint, the group of state machines including:

a data collecting state machine that holds data sent from the function engine for the host; and a

command state machine that interprets commands from the host to read the data in the data collecting state machine.

14. (Previously Amended) A device controller for establishing a communication channel between a slave device and a host device, the slave device including the device controller and a function engine, the slave device and host device being connected to a packet-switched serial bus, the device controller comprising:

a serial interface engine having a serial port that connects to the serial bus and a data port, the serial interface engine for generating and interpreting packets on the serial bus and transferring data between the serial bus and the data port; and

an interfacing device connected between the data port of the serial interface engine and the function engine to transfer data between the serial interface engine and the function engine, the interfacing device including a configuration module for configuring the communication channel between the slave device and the host device;

at least one endpoint associated with the function engine; and

a group of state machines associated with the function-engine endpoint;

wherein the endpoint has a register with a bit indicating whether the endpoint is ready to communicate with the host, a not-ready indication instructing the serial interface engine to send an auto-NAK to the host.

- 15. (Original) A device controller as recited in claim 14, wherein at least one of the state machines in the group determines that the endpoint is ready for communication with the host and sets the bit in the register to indicate that the endpoint is ready.
- 16. (Currently Amended) A device controller as recited in claim 1, further comprising: A device controller for establishing a communication channel between a slave device and a host device,

the slave device including the device controller and a function engine, the slave device and host device being connected to a packet-switched serial bus, the device controller comprising:

a serial interface engine having a serial port that connects to the serial bus and a data port, the serial interface engine for generating and interpreting packets on the serial bus and transferring data between the serial bus and the data port;

an interfacing device connected between the data port of the serial interface engine and the function engine to transfer data between the serial interface engine and the function engine, the interfacing device including a configuration module for configuring the communication channel between the slave device and the host device;

at least two endpoints associated with the function engine; and a group of state machines associated with each function-engine endpoint.

17. (Original) A device controller as recited in claim 16,

wherein the first endpoint associated with the function engine is an OUT-type endpoint; and

wherein the group of state machines associated with the function engine endpoint includes a data transfer state machine which receives commands from the host for controlling the operations of the second endpoint associated with the function engine.

18. (Currently Amended) A device controller as recited in claim 1, further comprising A device controller for establishing a communication channel between a slave device and a host device, the slave device including the device controller and a function engine, the slave device and host device being connected to a packet-switched serial bus, the device controller comprising:

a serial interface engine having a serial port that connects to the serial bus and a data port, the serial interface engine for generating and interpreting packets on the serial bus and transferring data between the serial bus and the data port;

an interfacing device connected between the data port of the serial interface engine and the function engine to transfer data between the serial interface engine and the function engine, the interfacing device including a configuration module for configuring the communication channel between the slave device and the host device;

at least one endpoint associated with the function engine; and

a memory buffer having a plurality of storage locations and associated with the endpoint;

an endpoint register having an index field for addressing the memory buffer.

- 19. (Original) A device controller as recited in claim 18, further comprising a counter that is updated every time one of the plurality of the storage locations in the memory buffer is accessed.
- 20. (Currently Amended) A device controller as recited in claim 1, further comprising: A device controller for establishing a communication channel between a slave device and a host device, the slave device including the device controller and a function engine, the slave device and host device being connected to a packet-switched serial bus, the device controller comprising:

a serial interface engine having a serial port that connects to the serial bus and a data port, the serial interface engine for generating and interpreting packets on the serial bus and transferring data between the serial bus and the data port;

an interfacing device connected between the data port of the serial interface engine and the function engine to transfer data between the serial interface engine and the function engine, the interfacing device including a configuration module for configuring the communication channel between the slave device and the host device;

a memory block for holding control information for the function engine; and a command state machine for interpreting and executing the control information to control a function of the function engine.

21. (Previously Added) A device controller as recited in claim 7,

further comprising a memory block for holding control information for the function engine; and

wherein the group of state machines includes a command state machine for interpreting and executing the control information to control a function of the function engine.

and