Bottle Rocket Simulation

Samuel Razumovskiy, Joseph Derks 11/20/18

ASEN 2012 Professor Torin Clark

Background

- 10 step model
 - Purpose
 - o Info
 - Required to find
 - Assumptions
 - incompressible ambient flow, steady flow, stable rocket, stable thrust, no air/water thrust mixture, no effects of wind, standard atmosphere.
- How a bottle rocket works
- Bottle rocket parameters
 - Pressure
 - Drag coefficient

Free body diagram rocket

Phase trajectory visualization

Equations Phase 1

$$\frac{p}{p_{air}^i} = \left(\frac{v_{air}^i}{v}\right)^{\gamma}$$

$$\dot{m} = c_d \rho_w A_t V_e$$

$$\frac{dv}{dt} = c_d A_t V_e = c_d A_t \sqrt{\frac{2(p - p_a)}{\rho_w}} = c_d A_t \sqrt{\frac{2}{\rho_w}} \left[p_0 \left(\frac{v_0}{v}\right)^v - p_a \right]$$

$$(p - p_a) = \frac{\rho_w}{2} V_e^2$$

$$F = \dot{m}V_e + (p_e - p_a)A_t$$

$$\dot{m}_R = -\dot{m} = -\rho_w c_d A_t V_e = -c_d A_t \sqrt{2\rho_w (p - p_a)}$$

$$V_{e} = \sqrt{\frac{2(p - p_{a})}{\rho_{w}}}$$

$$F = \dot{m}V_e = 2c_dA_t(p-p_a)$$

$$m_R^i = m_B + \rho_w \left(v_B - v_{air}^i \right) + \left(\frac{p_{air}^i}{RT_{air}^i} \right) v_{air}^i$$

Equations Phase 2

$$p_{end} = p_{air}^{i} \left(\frac{v_{air}^{i}}{v_{B}}\right)^{\gamma}; T_{end} = T_{air}^{i} \left(\frac{v_{air}^{i}}{v_{B}}\right)^{\gamma-1}$$

$$\frac{p}{p_{end}} = \left(\frac{m_{air}}{m_{air}^{i}}\right)^{\gamma} \qquad \rho = \frac{m_{air}}{v_{B}}; \ T = \frac{p}{\rho R}$$

$$\begin{split} V_{\varepsilon} &= M_{\varepsilon} \sqrt{\gamma R T_{\varepsilon}} \\ \dot{m}_{air} &= c_{d} \rho_{\varepsilon} A_{t} V_{\varepsilon} \\ F &= \dot{m}_{air} V_{\varepsilon} + \left(p_{\varepsilon} - p_{a} \right) A_{t} \end{split}$$

$$p_* = p \left(\frac{2}{\gamma + 1}\right)^{\gamma/(\gamma - 1)}$$

Choked flow $p_* > p_a$: $T_{\varepsilon} = \left(\frac{2}{\gamma + 1}\right)T$ $\rho_{\varepsilon} = \frac{p_{\varepsilon}}{RT_{\varepsilon}}$

Non Choked flow
$$p_* \le p_a$$
: $\frac{p}{p_a} = \left(1 + \frac{\gamma - 1}{2} M_e^2\right)^{\gamma/(\gamma - 1)}$

$$\frac{T}{T_e} = \left(1 + \frac{\gamma - 1}{2} M_e^2\right) \quad , \, \rho_e = \frac{p_a}{RT_e}$$

Methodology

Problem formulation

- Main Function:
 - Initial conditions and constants
 - o Call to ODE45
 - Plotting
- ODE45 Function:
 - Calculations of all equations and derivatives
 - Outputs volume, mass, velocity, and position

10 step method

- Fundamental principles
- Alternate approaches
 - C++, Python, Mathematica
 - o Runge-Kutta
- Step by step process
 - o Phase 1
 - o Phase 2
 - Phase 3

Results

- 10 step method
 - Code verification (test case)
 - Does answer make sense?

Launch angle: 45 deg. Initial Air pressure: 50 psi

Max distance: 60.47 m

Vol. Air: 0.0015 m^3 Drag coefficient: 0.5 Max height: 17.62 m

Final Varied Parameters

Launch angle: 40 deg Initial Air pressure: 48 psi Vol. Air: 0.0015 m³ Drag coefficient: 0.4

Max distance: 74.64 m

Results (cont.)

Drag Coefficient variation

Results (cont.)

Launch Angle variation

Discussion

- Shape of the trajectory
- Thrust profile
- Velocity profile
- Effects of different parameters
 - Initial Pressure
 - Initial volume ratio
 - Coefficient of drag
 - o Angle of launch
- Trade offs
 - Less water means less thrust
 - Goldilocks principle with respect to air-water ratio
 - Higher pressure means higher initial thrust (thrust duration)

Conclusion

- Found the correct trajectory of the bottle rocket
- Used ODE45 and simplified the code as much as possible
- Found the effects each parameter has on the trajectory

References

Torin Clark, "Project 2 Bottle Rocket Modeling" Project document, (2018).

"Water-Bottle Rockets. - Ppt Download." SlidePlayer, SlidePlayer, slideplayer.com/slide/4878182/.

"WATER ROCKET SAFETY." NASA, NASA, www.grc.nasa.gov/www/k-12/rocket/BottleRocket/safety.htm.

W., Mike, "How much to fill a bottle rocket?" Ask the Van, Department of Illinois Physics [online], https://van.physics.illinois.edu/qa/listing.php?id=17080 [retrieved 20 November 2018].