Math Mini Quiz Graded Student HARRIS DOAN **Total Points** 22 / 25 pts Question 1 Calculus **4** / 4 pts (no title) 1.1 1 / 1 pt 1 / 1 pt 1.2 (no title) 1.3 (no title) 1 / 1 pt 1.4 Integration 1 / 1 pt Question 2 **Probability and Random Variables** 4 / 4 pts 2.1 (no title) **1** / 1 pt → + 1 pt Correct 2.2 (no title) 1 / 1 pt 2.3 (no title) 1 / 1 pt 2.4 (no title) 1 / 1 pt → + 1 pt Correct

Question 3 common distribution **2** / 3 pts (no title) 1 / 1 pt 3.1 **0** / 1 pt 3.2 (no title) 3.3 (no title) 1 / 1 pt Question 4 **Probability Theorem 3** / 3 pts 4.1 (no title) 1 / 1 pt 1 / 1 pt 4.2 (no title) 4.3 (no title) 1 / 1 pt → + 1 pt Correct **Question 5** (no title) 4 / 5 pts 5.1 (no title) 1 / 1 pt → + 1 pt Correct 1 / 1 pt 5.2 (no title) → + 1 pt Correct 1 / 1 pt 5.3 (no title) (no title) 1 / 1 pt 5.4 5.5 (no title) **0** / 1 pt

Question 6 (no title) **3** / 3 pts 6.1 (no title) **1** / 1 pt → + 1 pt Correct (no title) **1** / 1 pt 6.2 (no title) **1** / 1 pt 6.3 Question 7 (no title) 1 / 2 pts 7.1 **0** / 1 pt (no title) (no title) **1** / 1 pt 7.2 **Question 8** (no title) **1** / 1 pt

Q1 Calculus

4 Points

Q1.1 1 Point

Let $f(x)=rac{1}{x+a}, x=e^{5u}+2u.$ What is $rac{\partial f}{\partial u}$?

- $\bigcirc \ \frac{-e^{5u}-2}{e^{5u}+2u+a^2}$
- $\bigcirc \frac{-5e^{5u}}{(e^{5u}+2u+a)^2}$
- $\bigcirc \frac{-5e^{5u}-2}{e^{5u}+2u+a}$

Q1.2 1 Point

For the function $f(x)=x^3+6x^2+5$ defined over $-4\leq x\leq 4$, what is the **global maximum** of f(x)?

- \bigcirc 0
- \bigcirc 5
- 165
- \bigcirc 37

Q1.3 1 Point

What is the gradient abla f(x,y) of the function $f(x,y)=\exp(2x)-xy$? ($\exp(x)$ denotes the function e^x)

$$\bigcirc \left(\exp(x) - y \right)$$

$$\bigcirc \left(2\exp(2x) \atop -x \right)$$

$$\bigcirc \left(2\exp(2x) - y - y - y \right)$$

$$\bigcirc \left(2\exp(2x) - y - y - x \right)$$

Q1.4 Integration

1 Point

Calculate $\int \frac{x}{-x^2+1} dx$.

$$O -2ln|-x^2+1|+C$$

$$|O| \ln |-x^2+1| + C$$

$$\bigcirc -\frac{1}{2}ln|-x^2+1|+C$$

$$\bigcirc ln|x| + C$$

Q2 Probability and Random Variables

4 Points

Q2.1 1 Point

If E[XY] = E[X]E[Y], without any additional assumptions, then random variable X and Y are

- Independent
- O Both independent and uncorrelated
- Uncorrelated
- O Neither independent nor uncorrelated

Q2.2 1 Point

Given random variables X_1 , X_2 , without any additional assumptions, let $Y=X_1+X_2$. Then ${
m Var}[Y]={
m Var}[X_1]+{
m Var}[X_2]$.

- False
- True

Q2.3 1 Point

If a biased coin $P(X=1)=\frac{3}{4}$ is tossed n times independently (head takes value 1 and tail takes value 0). Let $\bar{X}=\frac{1}{n}\sum_{i=1}^{i=n}X_i$ denote the average number of heads over the n trials, then the expectation of \bar{X} equals to $\frac{3}{4}$

- False
- True

Q2.4

1 Point

If a biased coin $P(X=1)=\frac{3}{4}$ is tossed n times independently (head takes value 1 and tail takes value 0). Let $\bar{X}=\frac{1}{n}\sum_{i=1}^{i=n}X_i$ denote the average number of heads over the n trials, then the variance of \bar{X} equals to

- $\bigcirc \ \frac{3}{16}$
- $\bigcirc \ \frac{3}{16n^2}$
- $\bigcirc \ \frac{3}{16\sqrt{n}}$

Q3 common distribution 3 Points

Q3.1 1 Point

Let X be a random variable distributed according to a Gaussian or normal distribution with probability density function: $P(x)=\frac{1}{s\sqrt{6\pi}}\exp{\left(-\frac{x^2}{6s^2}\right)}$. The variance of X is $3s^2$

- False
- True

Q3.2 1 Point

If we model the number of meteors seen as a Poisson distribution, the average number of meteors per hour is roughly constant. If we expect to see a meteor every 10 minutes, use the Poisson distribution to find the probability of seeing at least 3 meteors in one hour.

$$\bigcirc 1 - \frac{10^0 e^{-10}}{0!} - \frac{10^1 e^{-10}}{1!} - \frac{10^2 e^{-10}}{2!}$$

- $01 \frac{6^0e^{-6}}{0!} \frac{6^1e^{-6}}{1!} \frac{6^2e^{-6}}{2!}$
- $\bigcirc \frac{6^3 e^{-6}}{3!}$

Q3.3

1 Point

With a success rate of 0.6, what is the probability that we hit the target exactly twice out of three attempts?

- \bigcirc 3 · 0.6 · 0.4²
- \odot $3 \cdot 0.6^2 \cdot 0.4$
- \bigcirc 0.6 $^2 \cdot$ 0.4
- \bigcirc 0.6 \cdot 0.4²

Q4 Probability Theorem

3 Points

Q4.1 1 Point

Let A, B, C denotes 3 events. $P(A, B, C) = P(B|A, C) \times P(C|A) \times P(A)$

- False
- True

Q4.2 1 Point

We have 40 treasure chests of type A and 60 treasure chests of type B. Each treasure chest of type A holds 30 gold coins and 70 silver coins, and each treasure chest of type B holds 20 gold and 80 silver coins. Choose a treasure chest uniformly at random, and pick a coin from that chest uniformly at random. If the coin is gold, then what is the probability that you chose a chest of type A?

- **⑤** 50%
- O 40%
- \bigcirc 70%
- 0 60%

Q4.3 1 Point

X and Y are two independent random variables with expectation 0: E(X)=E(Y)=0. Let random variable $Z=\frac{X}{3}+Y$. If Z=2, then E[X|Z=2]=6 must be true.

- True
- False

Q5

5 Points

Given the matrix

$$A = egin{pmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ 0 & -2 & 3 \end{pmatrix}$$

and vector

$$\mathbf{b} = egin{pmatrix} 0 \ 1 \ 3 \end{pmatrix}$$

Q5.1

1 Point

what is the determinant of \boldsymbol{A}

- \bigcirc 1
- $\bigcirc -1$
- \bigcirc 2
- 0

Q5.2

1 Point

what is the trace of \boldsymbol{A}

- $\bigcirc -2$
- \bigcirc 4
- **3**
- \bigcirc -5

What are all the eigenvalues of \boldsymbol{A}

- $\bigcirc \{-2,0,1\}$
- $\bigcirc \{-1,2\}$
- $\bigcirc \{-1,0,2\}$

Q5.4 1 Point

Which of the following is an eigenvector of \boldsymbol{A} associated with eigenvalue 1:

- $v = \sqrt{\frac{1}{3}}(1,1,0)$
- $v = \sqrt{\frac{2}{3}}(1,2,4)$
- $v = \sqrt{\frac{1}{3}}(1,0,0)$

Q5.5 1 Point

let $f(x) = b^T x + 5$ where x is a vector of length 3. What value does $\frac{\partial f}{\partial x}$ take when

$$\mathbf{x} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$

- $lackbox{0}{0}$ $\begin{pmatrix} 0\\1\\2 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$
- \bigcirc 5
- $\bigcirc \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

Q6

3 Points

Consider the vector $\mathbf{y} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$

Q6.1

1 Point

Compute $\mathbf{y}^T\mathbf{y}$

- O 9
- O 16
- O 25
- 34

Q6.2

1 Point

Compute $||\mathbf{y}||_2$

- \bigcirc 3
- O 6
- \bigcirc 5
- $\odot \sqrt{34}$

Q6.3 1 Point

Compute $\mathbf{y}\mathbf{y}^T$

- $\bigcirc \begin{pmatrix} 15 \\ 25 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 3 & 5 \\ 5 & 3 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 9 \\ 15 \end{pmatrix}$

Let A be a 15×30 matrix.

Q7.1

1 Point

Which of the following is a possible rank for A?

- Both 10 and 20
- O 20
- Neither 10 nor 20
- 0 10

Q7.2

1 Point

Let $M=AA^T$ and $v \neq \vec{0}$ denote a nonzero vector. What is the range of all possible values for v^TMv ?

- $\bigcirc \leq 0$ for all possible vector $v
 eq ec{0}$
- $igotimes \geq 0$ for all possible vector $v
 eq ec{0}$
- \bigcirc $(-\infty, \infty)$

Q8

1 Point

$$f(n) = e^n, g(n) = 2^n$$

$$\bigcirc$$
 Both $f(n)=O(g(n))$ and $g(n)=O(f(n))$

$$\bigcirc$$
 Neither $f(n) = O(g(n))$ nor $g(n) = O(f(n))$

$$\odot$$
 $g(n) = O(f(n))$

$$\bigcirc f(n) = O(g(n))$$