INTRODUCCIÓN A LA INVESTIGACIÓN OPERATIVA. **Problema de producción**

PLANTEAMIENTO

Una compañía manufacturera fabrica tres tipos de papel: de 60 g/m², de 80 g/m² y de 120 g/m². Para la fabricación del papel la compañía dispone de dos máquinas distintas, cada una de ellas puede producir los tres tipos de papel de forma independiente. Cada máquina puede producir las siguientes cantidades en toneladas por hora:

	Máquina 1	Máquina 2
Papel de 60 g/m ²	53	52
Papel de 80 g/m ²	51	49
Papel de 120 g/m ²	52	45

	Coste Máquina 1 en euros por tonelada	Coste Máquina 2 en euros por tonelada	Precio de venta en euros por tonelada
Papel de 60 g/m ²	76	75	77
Papel de 80 g/m ²	82	80	81
Papel de 120 g/m ²	96	95	99

La compañía tiene que servir 3 pedidos mensuales: 10000 toneladas de papel de 60 g/m², 5000 toneladas de papel de 80 g/m² y 4000 toneladas papel de 120 g/m². Además, debido al mantenimiento de las máquinas la disponibilidad de horas de trabajo efectivas son de 670 horas mensuales para la máquina 1 y de 600 horas mensuales para la máquina 2.

Suponiendo que se vende todo lo que se produce, siendo X_{ij} el número de horas de producción del papel i en la máquina j, el modelo de programación lineal que se plantea resolver para determinar la producción que maximiza el beneficio es:

Max
$$z=53X_{11}+104X_{12}-51X_{21}+49X_{22}+156X_{31}+180X_{32}$$

Sujeto a:

$$53X_{11} + 52X_{12} \ge 10000$$

$$51X_{21}+49X_{22}\geq 5000$$

$$52X_{31}+45X_{32}\geq4000$$

$$X_{11}+X_{21}+X_{31} \le 670$$

$$X_{12}+X_{22}+X_{32} \le 600$$

$$X_{ii} \ge 0 \ \forall i=1,2,3; j=1,2.$$

CUESTIONES

- a. Interpretar los parámetros del modelo de PL (coeficientes de las variables de decisión en la función objetivo, coeficientes de las variables de decisión en las restricciones y términos independientes). (1,5 puntos)
- b. Resolver el modelo con el Solver de Excel y con SAS/OR. ¿Cuál es la solución óptima?. (1 punto)
- c. ¿Le interesaría a la empresa aumentar el número de horas de producción en las máquinas 1 y 2?. Justificar la respuesta mediante análisis de sensibilidad de los parámetros correspondientes. (2,5 puntos)
- d. Si se pudieran eliminar algunos de los pedidos, ¿cuál o cuáles de ellos eliminaría? Justifique la respuesta mediante el análisis de sensibilidad de los parámetros correspondientes. (2,5 puntos)
- e. Obtener con SAS los intervalos en los que pueden moverse los coeficientes de la función objetivo sin que se modifique el vector básico en el óptimo. Interpretar estos resultados. (2,5 puntos)

SOLUCIONES

- a. Los parámetros del modelo son de tres tipos:
 - i. Coeficientes asociados a las variables de decisión en la función objetivo.
 - ii. Coeficientes asociados a las variables de decisión en las restricciones.
 - iii. Términos independientes de las restricciones.

En nuestro modelo los primeros (i) equivalen a los márgenes brutos asociado a una hora de producción del papel i en la máquina j. Por ejemplo, una hora de producción del papel de 60 g/m² deja un beneficio bruto igual a (77-76)×53=53.

Los segundos (ii) se interpretan en función del tipo de restricción, en las tres primeras coinciden con las cantidades producidas en una hora de papel i en la máquina j. Para las 2 últimas restricciones estos coeficientes son 1, ya que estas restricciones se corresponden con el total de horas de producción en cada máquina.

Los términos independientes (iii) se corresponden, respectivamente, con la cantidad de pedido de cada tipo de papel (tres primeras restricciones) y con la disponibilidad de horas de funcionamiento de las máquinas (dos últimas restricciones).

- b. La solución óptima es consumir 192.30769 (X_{12} =192.30769) horas en la producción de papel de 60 g/m² en la máquina 2, consumir 102.04082 (X_{22} =102.04082) horas en la producción de papel de 80 g/m² en la máquina 2, consumir 670 (X_{31} =670) horas en la producción de papel de 120 g/m² en la máquina 1 y consumir 305.65149 (X_{32} =305.65149) horas en la producción de papel de 120 g/m² en la máquina 2. El beneficio bruto que se obtiene es igual a 184537.26845.
- c. La pregunta está relacionada con el análisis de sensibilidad de los términos independientes de las dos últimas restricciones del modelo de programación lineal. Se trata de dos restricciones de menor e igual que en la solución óptima se cumplen con igualdad, por lo tanto, un incremento unitario en cualquiera de sus dos términos independientes supone una mejora del óptimo, en este caso un incremento del beneficio bruto.

Si, por ejemplo, analizamos la tabla "Resumen de restricciones" obtenida con SAS, vemos que por cada hora más de trabajo efectivo de la máquina 1 el beneficio bruto aumenta en 156 euros y por cada hora más de trabajo efectivo de la máquina 2 en beneficio aumenta en 180 euros. Teniendo en cuenta que el incremento de horas de trabajo efectivo requiere una inversión (mayores costes de mantenimiento, salarios,...) puede concluirse que la compañía estaría dispuesta a asumir unos gastos

máximos de 156 euros por una hora más de trabajo en la máquina 1 y de 180 euros por una hora más de trabajo en la máquina 2.

Resumen de restricciones

	Nombre de					
	la		Col			Actividad
Fila	restricción	Tipo	S/S	Rhs	Actividad	dual
1	benefici	OBJECTVE		0	184537.27	
2	papel1	GE	7	10000	10000	-1.461538
3	papel2	GE	8	5000	5000	-2.673469
4	papel3	GE	9	4000	48594.317	0
5	maquina1	LE	10	670	670	156
6	maquita2	LE	11	600	600	180

Si, finalmente, analizamos la tabla de "Análisis de rangos RHS" obtenida con SAS, vemos que el número de horas en ambas máquinas pueden crecer indefinidamente sin que el vector de variables básicas óptimo obtenido deje de ser factible.

Análisis de rango RHS

		-Phi mí	nimo	Phi máximo		
Fila	Rhs	Dejar	Objetivo	Rhs	Dejar	Objetivo
papel1	0	x12	199152.65	25893.878	x32	161307.76
papel2	0	x22	197904.62	19976.923	x32	144496.92
pape13	-INFINIDA			48594.317	papel3	184537.27
maquina1	0	x31	80017.268	INFINIDA		
maquita2	294.34851	x32	129520	INFINIDA		

d. La pregunta está relacionada con el análisis de sensibilidad de los términos independientes de las tres primeras restricciones. Observando de nuevo la tabla "Resumen de restricciones" obtenida con SAS vemos que por cada tonelada menos de pedido de papel de 60 g/m² el beneficio se ve reducido en 1.461538 euros y por cada tonelada menos de pedido de papel de 80 g/m² la reducción del beneficio es de

2.673469 euros

Resumen de restricciones

	Nombre de					
	la		Col			Actividad
Fila	restricción	Tipo	S/S	Rhs	Actividad	dual
1	benefici	OBJECTVE		0	184537.27	
2	papel1	GE	7	10000	10000	-1.461538
3	papel2	GE	8	5000	5000	-2.673469
4	papel3	GE	9	4000	48594.317	0
5	maquina1	LE	10	670	670	156
6	maquita2	LE	11	600	600	180

Además, analizando los intervalos en el que se pueden mover los parámetros sin afectar a la factibilidad de la solución, vemos que los dos primeros términos independientes pueden llegar a tomar valor cero, por tanto, los dos primeros pedidos podrían ser eliminados, si eliminamos el primero el beneficio alcanzaría los 199152.65 y si eliminamos el segundo 197904.62

Análisis de rango RHS

		-Phi mí	nimo		-Phi n	náximo
Fila	Rhs	Dejar	Objetivo	Rhs	Dejar	Objetivo
papel1	0	x12	199152.65	25893.878	x32	161307.76
papel2	0	x22	197904.62	19976.923	x32	144496.92
papel3	-INFINIDA			48594.317	papel	l3 184537.27
maquina1	0	x31	80017.268	INFINIDA		
maquita2	294.34851	x32	129520	INFINIDA		

e. Los intervalos que nos pide el ejercicio son los siguientes:

Análisis del rango del precio

	Nombre						
	de la		Phi mínimo			Phi máximo	
Col	variable	Precio	Introducir	Objetivo	Precio	Introducir	Objetivo
1	x11	-INFINIDA		184537.27	78.538462	x11	184537.27
2	x12	78.943396	x11	179718.69	180	papel1	199152.65
3	x21	-INFINIDA		184537.27	19.653061	x21	184537.27
4	x22	-18.88235	x21	177610.5	180	papel2	197904.62
5	x31	130.46154	x11	167426.5	INFINIDA		INFINIDA
6	x32	104	papel1	161307.76	205.0566	x11	192195.86

Los valores señalados en negrita en la tabla anterior indican cual es el intervalo en los que se

pueden mover los beneficios brutos unitarios asociados al papel *i* producido en la máquina *j*, de modo que la solución obtenida (variables básicas y sus valores) siga siendo óptima. Por ejemplo, si el beneficio bruto ligado al papel 1 producido en la máquina 1 (C_{11} =53) se sitúa por encima de 78.538462 euros la solución deja de ser óptima y la producción de papel 1 en la máquina 1 (X_{11}) pasaría a ser rentable; también podríamos concluir que mientras que el beneficio asociado a la producción de papel 1 en la máquina 2 se sitúe entre 78.943396 euros y 180 euros la solución obtenida es óptima, etcétera.

PROGRAMA SAS

proc lp data=pr.p1_14 rangerhs rangeprice;

run;