EEL 6764 Principles of Computer Architecture Final Review

Dr Hao Zheng
Dept. of Comp Sci & Eng
U of South Florida

Computer Architecture – Big Picture

ISA Design

- → Different architectures
 - Classified by organizations of operands -- stack, accumulator, GP registers
 - Classified by granularity CISC vs RISC
- Objectives: performance, implementability, compatibility
- Considerations
 - Number of registers
 - Number of operands
 - Memory addressing mode
 - Types of instructions
 - → Instruction encoding fixed vs flexible
 - impact of code size

- → ILP overlapped executions of different instructions
- Pipelining architecture to exploit ILP
- → Architecture of 5-stage MIPS pipeline
 - → IF, ID, EX, MEM, WB
- Ideal pipeline performance
 - Speedup is close to number of pipeline stages
 - → Pipeline hazards, mem & FU latency, pipeline register delays
- Pipeline hazards
 - → Structural a hardware issue
 - Data dependencies in programs
 - Control related to branches

- Hazard handling stall (simple, but undesirable)
 - → Structural replicate HW, or pipelining slow components
 - Data RAW, WAR, WAW
 - → forwarding for RAW, register renaming for WAR & WAW
 - → Branch
 - → Branch prediction -- static & dynamic, 1-bit & 2-bit predictors
 - → HW speculation

- Scheduling what is it?
 - Static vs dynamic issues of static scheduling
 - → register renaming WAW & WAR hazards

Tomasulo's algorithm

- reg renaming + dynamic scheduling
- reservation stations, CDB, tags for registers
- → operations see Figure 3.13.
- → **HW speculation** what is it, and how does it work?
 - What problem does it solve?
 - → What additional HW is used and operated? (see Fig. 3.18)
 - Efficiency depends on branch prediction accuracy

→ Multi-Issue

- → Goal: reduce CPI to <1</p>
- → Challenge complexity of issue logic (see Fig 3.22)
- → Multithreading target thread-level parallelism
 - → Fine-grained
 - Coarse-grained
 - Simultaneous multithreading additional PCs and registers

Memory Hierarchy Design

- Mem latency limiting factor of performance
- Cache Reduce average memory access latency
 - spatial & temporal locality
 - Organization
 - Set Associativity
 - Cache misses, and their causes
 - → Performance measurement
 - Write policy write-back vs write-through
 - Optimization techniques
- Virtual memory memory as cache for hard disk
 - Roles: memory management and protection
 - Organization: page, page table, page faults; addr translation
 - → TLB cache for page table

TLP and Multiprocessors

- Parallel execution of instructions from different threads
- → Multiprocessor = a set of processors connected together
 - Support MIMD execution model
- Multiprocessing vs multithreading
- Architectures
 - Symmetric MP, aka, centralized shared memory MP
 - Distributed shared memory MP
- Coordination shared memory
- Caching reduce remote memory access latency
- Introduce coherence problem
- Cache Coherence protocols snooping vs directory
 - Write-invalidate vs write-update

Vector Processors

- DLP parallel operations on different data
- Vector architecture
 - → Exploit DLP
 - Support SIMD execution model
- Target applications with many vector operations/loops
- Main architecture features
 - Vector registers,
 - Vector load/store unit, addressing with stride, gather-scatter
 - → Pipelined functional units, multiple lanes, chaining
 - Vector length register, strip mining
 - Vector predicate register for conditional execution over vectors
- Differences against superscalar processors