10 - Funzioni Convesse, Minimizzazione e Ortogonalità in Spazi di Hilbert

Funzioni convesse e quasi-convesse

☆ Definizione: Funzione convessa, Funzione quasi-convessa

Sia E uno spazio vettoriale.

Sia $A \subseteq E$ convesso.

Sia $f:A \to \mathbb{R}$.

f si dice **convessa** quando $f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$ per ogni $\mathbf{x}, \mathbf{y} \in A$ e per ogni $\lambda \in [0; 1]$. (Si noti che f è definita su $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$ per convessità di A)

f si dice **quasi-convessa** quando, per ogni $k \in \mathbb{R}$, l'insieme $f^{-1}\big(\,]-\infty;k]\big) = \{\mathbf{x} \in A: f(\mathbf{x}) \leq k\}$ è convesso.

Osservazione: Convessità di una funzione e convessità del dominio

Sia E uno spazio vettoriale.

Sia $A \subseteq E$.

Affinché la definizione di convessità di una funzione $f: A \to E$ sia ben posta, è necessario richiedere A convesso, dimodoché risulti ben definito $f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y})$ per ogni $\mathbf{x}, \mathbf{y} \in A$ e per ogni $\lambda \in [0; 1]$.

Invece, la quasi-convessità di $f:A\to\mathbb{R}$ non richiede la convessità di A; ciò nonostante, la prima implica automaticamente l'ultima.

```
Infatti, siano \mathbf{x}, \mathbf{y} \in A; sia M = \max\{f(\mathbf{x}), f(\mathbf{y})\}. Si ha \mathbf{x}, \mathbf{y} \in f^{-1}(]-\infty; M]), convesso per ipotesi di quasi-convessità di f. Allora, \lambda \mathbf{x} + (1-\lambda)\mathbf{y} \in f^{-1}(]-\infty; M]) per ogni \lambda \in [0;1], da cui segue \lambda \mathbf{x} + (1-\lambda)\mathbf{y} \in A per ogni \lambda \in [0;1].
```

Osservazione: Convessità di una funzione ne implica la quasi-convessità

Sia E uno spazio vettoriale.

Sia $A \subseteq E$ convesso.

Sia $f:A \to \mathbb{R}$ convessa.

Allora, f è quasi-convessa.

Dimostrazione

Sia $k\in\mathbb{R}$, e si consideri $f^{-1}\big(]-\infty;k]\big)$. Siano $\mathbf{x},\mathbf{y}\in f^{-1}\big(]-\infty;k]\big)$, e sia $\lambda\in[0;1]$; per acquisire la tesi, si provi che $\lambda\mathbf{x}+(1-\lambda)\mathbf{y}\in f^{-1}\big(]-\infty;k]\big)$.

Si ha

$$egin{aligned} f(\lambda\mathbf{x}+(1-\lambda)\mathbf{y}) &\leq \lambda f(\mathbf{x})+(1-\lambda)f(\mathbf{y}) \end{aligned} & ext{ Per convessità di } f \ &\leq \lambda k+(1-\lambda)k=k \end{aligned} & ext{ In quanto } \mathbf{x},\mathbf{y}\in f^{-1}ig(\left]-\infty;k
brace, \end{aligned}$$

Dunque, $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in f^{-1}(]-\infty;k]$), per cui f è quasi-convessa.

Q Osservazione: Monotonia di una funzione ne implica la quasi-convessità

Sia $A \subseteq \mathbb{R}$ convesso.

Sia $f:A o\mathbb{R}$ monotona.

Allora, f è quasi-convessa.

Dimostrazione

Si supponga f non decrescente.

Sia $k \in \mathbb{R}$.

Siano $x,y \in f^{-1}(]-\infty;k]$, e sia $\lambda \in [0;1]$;

per acquisire la tesi, si provi che $\lambda x + (1-\lambda)y \in f^{-1}(\,]-\infty;k]).$

Si supponga x < y, senza perdere di generalità.

Allora, $x \leq \lambda x + (1-\lambda)y \leq y$; per non crescenza di f ed essendo $y \in f^{-1}\big(\,]-\infty;k]\big)$, segue che

 $f(x) \le f(\lambda x + (1-\lambda)y) \le f(y) \le k.$

Dunque, $f(\lambda x + (1 - \lambda)y) \le k$, ossia $\lambda x + (1 - \lambda)y \in f^{-1}(]-\infty;k])$.

Pertanto, f è quasi-convessa.

Minimizzazione di funzioni in uno spazio di Hilbert

Proposizione 10.1: Punti di minimo locale per una funzione convessa sono di minimo assoluto

Sia $(E, \|\cdot\|)$ uno spazio normato.

Sia $A \subseteq E$ convesso.

Sia $f:A o\mathbb{R}$ una funzione convessa.

Sia $\mathbf{x}_0 \in E$ di minimo locale per f.

Allora, \mathbf{x}_0 è di minimo assoluto per f.

Dimostrazione

Sia $\mathbf{x} \in E \setminus \{\mathbf{x}_0\}$; si provi che $f(\mathbf{x}) \geq f(\mathbf{x}_0)$.

Esiste $\lambda \in]0;1]$ tale che $\mathbf{x}_0 + \lambda(\mathbf{x} - \mathbf{x}_0) \in B(\mathbf{x}_0, \delta)$; infatti, per definizione di $B(\mathbf{x}_0, \delta)$ si ha $\mathbf{x}_0 + \lambda(\mathbf{x} - \mathbf{x}_0) \in B(\mathbf{x}_0, \delta)$ se e solo se $\|\lambda(\mathbf{x} - \mathbf{x}_0)\| < \delta$, ossia $|\lambda| < \frac{\delta}{\|\mathbf{x} - \mathbf{x}_0\|}$ per assoluta omogeneità della norma, ed essendo $\mathbf{x} \neq \mathbf{x}_0$.

Basta dunque considerare $\lambda>0$ tale che $\lambda<\frac{\delta}{\|\mathbf{x}-\mathbf{x}_0\|}$.

Per un tale λ , si ha allora

$$egin{aligned} f(\mathbf{x}_0) & \leq f(\mathbf{x}_0 + \lambda(\mathbf{x} - \mathbf{x}_0)) & ext{Essendo } \mathbf{x}_0 + \lambda(\mathbf{x} - \mathbf{x}_0) \in B(\mathbf{x}_0, \delta) \ & = f(\lambda \mathbf{x} + (1 - \lambda) \mathbf{x}_0) \ & \leq \lambda f(\mathbf{x}) + (1 - \lambda) f(\mathbf{x}_0) \end{aligned}$$

Ne segue che $f(\mathbf{x}_0) \leq \lambda f(\mathbf{x}) + (1 - \lambda) f(\mathbf{x}_0)$, ossia $\lambda f(\mathbf{x}) \geq \lambda f(\mathbf{x}_0)$;

essendo $\lambda > 0$, ciò implica $f(\mathbf{x}) \geq f(\mathbf{x}_0)$, come si voleva provare.

Proposizione 10.2: Prima proposizione di minimizzazione

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio di Hilbert.

Sia $C \subseteq E$ limitato, chiuso e convesso.

Sia $f:C \to \mathbb{R}$ semicontinua inferiormente e quasi-convessa.

Allora, f ammette minimo assoluto in C.

Si supponga f semicontinua inferiormente; si provi che f ammette minimo assoluto in C.

Essendo chiuso e convesso, C è debolmente chiuso per la [Proposizione 8.3].

Essendo anche limitato, C è allora debolmente compatto per la [Proposizione 8.5].

Essendo f semicontinua inferiormente, per la [Proposizione 2.1] si ha $f^{-1}(]-\infty;k]$ chiuso per ogni $k\in\mathbb{R}$.

D'altra parte, essendo f quasi-convessa, $f^{-1}(]-\infty;k])$ è anche convesso per ogni $k\in\mathbb{R}$.

Dunque, per la [Proposizione 8.3] si ha $f^{-1}(]-\infty;k]$ debolmente chiuso per ogni $k\in\mathbb{R};$

cioè, f è semicontinua inferiormente rispetto alla topologia debole per la [Proposizione 2.1].

Pertanto, rispetto alla topologia debole su E, C è compatto e f è semicontinua inferiormente. Segue dal [Teorema 2.2] che f ammette minimo assoluto.

☐ Teorema 10.3: Teorema di Eberlein-Smulyan

Sia $(E,\|\cdot\|)$ uno spazio di Banach. Sia $A\subseteq E$.

Le seguenti affermazioni sono equivalenti:

- 1. A è debolmente compatto;
- 2. A è sequenzialmente debolmente compatto.

Q Osservazione

Nel caso in cui la topologia debole sia metrizzabile, il teorema di Eberlein-Smulyan segue direttamente dal fatto che compattezza e sequenziale compattezza sono equivalenti in spazi metrici.

Tuttavia, si dimostra che la topologia debole di uno spazio di Banach è metrizzabile se e solo se lo spazio ha dimensione finita.

Dunque, il teorema di Eberlein-Smulyan enuncia un'equivalenza che vale a prescindere che la topologia debole sia metrizzabile o no.

Lemma

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio di Hilbert.

Sia $X \subseteq E$ limitato e sequenzialmente debolmente chiuso.

Allora, X è sequenzialmente debolmente compatto.

Dimostrazione

Essendo X limitato, si ha $X \subseteq \overline{B}(\mathbf{0}, \delta)$ per qualche $\delta > 0$.

 $\overline{B}(\mathbf{0},\delta)$ è chiuso essendo un intorno sferico chiuso; inoltre, esso è convesso.

$$\text{Infatti, dati } \mathbf{x}, \mathbf{y} \in \overline{B}(\mathbf{0}, \delta) \text{ e dato } \lambda \in [0; 1] \text{, si ha } \|\lambda \mathbf{x} + (1 - \lambda) \mathbf{y}\| \leq \lambda \underbrace{\|\mathbf{x}\|}_{\epsilon} + (1 - \lambda) \underbrace{\|\mathbf{y}\|}_{\epsilon} \leq \delta.$$

Allora, $\overline{B}(\mathbf{0}, \delta)$ è debolmente chiuso per la [Proposizione 8.3], ed è esso stesso limitato.

Ne segue che $\overline{B}(\mathbf{0}, \delta)$ è debolmente compatto per la [Proposizione 9.2], dunque sequenzialmente debolmente compatto, in quanto la sequenzializzazione di una topologia è più fine di essa.

Essendo X sequenzialmente debolmente chiuso, e contenuto in $\overline{B}(\mathbf{0}, \delta)$ sequenzialmente debolmente compatto, seque che X è sequenzialmente debolmente compatto.

Infatti, i sottoinsiemi chiusi di un insieme compatto sono compatti, qualunque sia la topologia considerata (in questo caso la sequenzializzazione della topologia debole).

Proposizione 10.4: Seconda proposizione di minimizzazione

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio di Hilbert.

Sia $X \subseteq E$ sequenzialmente debolmente chiuso, non limitato.

Sia $f:X \to \mathbb{R}$ sequenzialmente debolmente semicontinua inferiormente.

$$\mathsf{Si} \ \mathsf{supponga} \ \inf_{\mathbf{x} \in X} f(\mathbf{x}) < \liminf_{\|\mathbf{x}\| \to +\infty} f(\mathbf{x}) \ \mathsf{(dove} \ \liminf_{\|\mathbf{x}\| \to +\infty} f(\mathbf{x}) = \sup_{\delta > 0} \inf_{\substack{\mathbf{x} \in X \\ \|\mathbf{x}\| > \delta}} f(\mathbf{x}) \mathsf{)}.$$

Allora, *f* è dotata di minimo assoluto.

Dimostrazione

Sia $\gamma \in \mathbb{R}$ tale che $\inf_{\mathbf{x} \in X} f(\mathbf{x}) < \gamma < \liminf_{\|\mathbf{x}\| \to +\infty} f(\mathbf{x})$, che esiste per ipotesi.

Dalla definizione di $\liminf_{\|\mathbf{x}\| \to +\infty} f(\mathbf{x})$ segue che esiste $\delta > 0$ tale che $\gamma < \inf_{\mathbf{x} \in X} f(\mathbf{x})$, da cui ne viene che $f(\mathbf{x}) > \gamma$ per $\|\mathbf{x}\| > \delta$

ogni $\mathbf{x} \in X$ con $\|\mathbf{x}\| > \delta$.

Si consideri l'insieme $K = \{ \mathbf{x} \in X : f(\mathbf{x}) \leq \gamma \}.$

K è sequenzialmente debolmente chiuso.

Infatti, f è sequenzialmente debolmente semicontinua inferiormente, ossia sequenzialmente semicontinua inferiormente rispetto alla topologia debole su E; pertanto, K è sequenzialmente debolmente chiuso per la [Proposizione 3.4].

K è anche limitato.

Infatti, $K \subseteq \overline{B}(\mathbf{0}, \delta) \subseteq B(\mathbf{0}, \delta + 1)$ per costruzione di γ e δ .

Allora, $K = \{ \mathbf{x} \in X : f(\mathbf{x}) \leq \gamma \}$ è sequenzialmente debolmente compatto per il [Lemma].

Dalla [Proposizione 2.7] applicata alla topologia debole su E (o la [Proposizione 2.6] applicata alla sequenzializzazione della topologia debole su E) seque pertanto che f è dotata di minimo assoluto.

☆ Definizione: Funzione coerciva

Sia $(E, \|\cdot\|)$ uno spazio normato.

Sia $A \subseteq E$ non limitato.

Sia $f:A\to\mathbb{R}$ una funzione.

f si dice **coerciva** quando $\lim_{\|\mathbf{x}\| o +\infty} f(\mathbf{x}) = +\infty.$

Proposizione 10.5: Terza proposizione di minimizzazione

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio di Hilbert.

Sia $X \subseteq E$ sequenzialmente debolmente chiuso, non limitato.

Sia $f:X \to \mathbb{R}$ sequenzialmente debolmente semicontinua inferiormente e coerciva.

Allora, f è dotata di minimo assoluto.

Dimostrazione

 $\text{Si ha} \lim_{\|\mathbf{x}\| \to +\infty} f(\mathbf{x}) = \lim_{\|\mathbf{x}\| \to +\infty} f(\mathbf{x}) = +\infty \text{ per coercività di } f \text{, e chiaramente } \inf_{\mathbf{x} \in X} f(\mathbf{x}) < +\infty \text{, in quanto } f(X) \neq \varnothing.$

Allora, sono soddisfatte le ipotesi della [Proposizione 10.4], per cui f ammette minimo assoluto.

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio di Hilbert.

Sia $X \subseteq E$ convesso, non limitato e chiuso.

Sia $f: X \to \mathbb{R}$ semicontinua inferiormente, quasi-convessa e coerciva.

Allora, f è dotata di minimo assoluto.

Dimostrazione

Essendo chiuso e convesso, X è debolmente chiuso per la [Proposizione 8.3], dunque sequenzialmente debolmente chiuso (si veda l'osservazione iniziale del capitolo 3).

Essendo f quasi-convessa e semicontinua inferiormente, per definizione di quasi-convessità e per la [Proposizione 2.1] gli insiemi del tipo $f(]-\infty;k]$ risultano convessi e chiusi, dunque sono debolmente chiusi per la [Proposizione 8.3], per ogni $k \in \mathbb{R}$.

Allora, f è debolmente semicontinua inferiormente, dunque sequenzialmente debolmente semicontinua inferiormente, in quanto la semicontinuità implica la sequenziale semicontinuità rispetto a una stessa topologia (in questo caso quella debole su E).

Allora, sono soddisfatte le ipotesi della [Proposizione 10.5], per cui f ammette minimo assoluto.

Proposizione 10.7: Condizioni sufficienti per la semicontinuità debole

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio di Hilbert.

Sia $X \subseteq E$ sequenzialmente debolmente chiuso.

Sia $f:X \to \mathbb{R}$ sequenzialmente debolmente semicontinua inferiormente, e coerciva.

Allora, f è debolmente semicontinua inferiormente.

Dimostrazione

Fissato $k \in \mathbb{R}$, si consideri il sottolivello $f^{-1}\big(\,]-\infty;k]\big)=\{\mathbf{x}\in X: f(\mathbf{x})\leq k\}.$

Si osserva che $f^{-1}(]-\infty;k])$ è limitato per coercività di f.

Inoltre, $f^{-1}(]-\infty;k])$ è sequenzialmente debolmente chiuso.

Infatti, essendo f sequenzialmente debolmente semicontinua inferiormente, ossia sequenzialmente semicontinua inferiormente rispetto alla topologia debole su E, ne viene che $f^{-1}(]-\infty;k])$ è sequenzialmente debolmente chiuso per la [Proposizione 3.4].

Allora, $f^{-1}(]-\infty;k])$ è sequenzialmente debolmente compatto per il [Lemma].

Per il [Teorema 10.3], $f^{-1}(]-\infty;k]$) è allora debolmente compatto.

Essendo la topologia debole di Hausdorff (Osservazione 3 del capitolo 8), gli insiemi debolmente compatti sono debolmente chiusi; dunque, $f^{-1}(]-\infty;k]$) è debolmente chiuso.

Segue la debole semicontinuità inferiore di f per arbitrarietà di $k \in \mathbb{R}$, per la [Proposizione 2.1].

Funzioni strettamente convesse

★ Stretta convessità

Sia E uno spazio vettoriale.

Sia $A \subseteq E$ convesso.

Una funzione $f: A \to \mathbb{R}$ si dice **strettamente convessa** quando, per ogni $\mathbf{x}, \mathbf{y} \in A$ con $\mathbf{x} \neq \mathbf{y}$ e per ogni $\lambda \in]0; 1[$, si ha $f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) < \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}).$

Proposizione 10.8: Unicità del minimo assoluto per funzioni strettamente convesse

Sia E uno spazio vettoriale.

Sia $A \subseteq E$ convesso.

Sia $f:A o \mathbb{R}$ strettamente convessa.

Siano $\mathbf{u}, \mathbf{v} \in A$ di minimo assoluto per f.

Allora, $\mathbf{u} = \mathbf{v}$.

Dimostrazione

Si proceda per assurdo, supponendo quindi che $\mathbf{u} \neq \mathbf{v}$.

Si osserva innanzitutto che $f(\mathbf{u}) = f(\mathbf{v})$.

infatti, essendo \mathbf{u} di minimo assoluto per f, si ha $f(\mathbf{u}) \leq f(\mathbf{v})$;

d'altra parte, essendo \mathbf{v} di minimo assoluto per f, si ha $f(\mathbf{v}) \leq f(\mathbf{u})$.

Sia $\lambda = \frac{1}{2}$; per stretta convessità di f, si dovrebbe avere $f\left(\frac{\mathbf{u}}{2} + \frac{\mathbf{v}}{2}\right) < \frac{1}{2}f(\mathbf{u}) + \frac{1}{2}\underbrace{f(\mathbf{v})}_{=f(\mathbf{u})} = f(\mathbf{u})$; tuttavia, questa

disuguaglianza contraddice l'ipotesi che ${\bf u}$ sia di minimo assoluto per f.

Proposizione 10.9: Distanza al quadrato da un punto fissato è strettamente convessa in uno spazio con prodotto scalare

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio con prodotto scalare.

Sia $\|\cdot\|$ la norma indotta da $\langle\cdot,\cdot\rangle$.

Sia $\mathbf{x}_0 \in E$.

Sia $f: E \to \mathbb{R}$ definita ponendo $f(\mathbf{x}) = \|\mathbf{x} - \mathbf{x}_0\|^2$ per ogni $\mathbf{x} \in E$.

f è strettamente convessa.

Dimostrazione

Si supponga dapprima $\mathbf{x}_0 = \mathbf{0}$; si provi quindi la stretta convessità di $f_0 : E \to \mathbb{R}$, definita ponendo $f_0(\mathbf{x}) = \|\mathbf{x}\|^2$ per ogni $\mathbf{x} \in E$.

Siano $\mathbf{x}, \mathbf{y} \in E$ con $\mathbf{x} \neq \mathbf{y}$, e sia $\lambda \in]0;1[$. Si ha

$$f_{0}(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) = \|\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}\|^{2}$$

$$= \langle \lambda \mathbf{x} + (1 - \lambda)\mathbf{y}, \lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \rangle$$

$$= \langle \lambda (\mathbf{x} - \mathbf{y}) + \mathbf{y}, \mathbf{x} - (1 - \lambda)(\mathbf{x} - \mathbf{y}) \rangle$$

$$= \lambda \langle \mathbf{x} - \mathbf{y}, \mathbf{x} \rangle - \lambda (1 - \lambda)\langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle - (1 - \lambda)\langle \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle$$

$$= \lambda (\langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle) - \lambda (1 - \lambda)\langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle - (1 - \lambda)(\langle \mathbf{y}, \mathbf{x} \rangle - \langle \mathbf{y}, \mathbf{y} \rangle)$$

$$= \lambda \|\mathbf{x}\|^{2} + (1 - \lambda)\|\mathbf{y}\|^{2} - \lambda (1 - \lambda)\|\mathbf{x} - \mathbf{y}\|^{2}$$

Poiché $\mathbf{x} \neq \mathbf{y}$, si ha $\|\mathbf{x} - \mathbf{y}\|^2 > 0$ per definita positività della norma. Poiché $0 < \lambda < 1$, si ha $\lambda(1 - \lambda) > 0$.

Allora,

$$egin{aligned} f_0(\lambda\mathbf{x} + (1-\lambda)\mathbf{y}) &= \lambda \|\mathbf{x}\|^2 + (1-\lambda)\|\mathbf{y}\|^2 - \underbrace{\lambda(1-\lambda)\|\mathbf{x} - \mathbf{y}\|^2}_{>0} \ &< \lambda \|\mathbf{x}\|^2 + (1-\lambda)\|\mathbf{y}\|^2 = \lambda f_0(\mathbf{x}) + (1-\lambda)f_0(\mathbf{y}). \end{aligned}$$

Pertanto, f_0 è strettamente convessa.

Definizione di f_0

Definizione della norma || · ||

Manipolando algebricamente i due termini

Dalle proprietà assiomatiche del prodotto scalare

Dalle proprietà del prodotto scalare

Evidenziando i prodotti scalari comuni, utilizzando poi la definizione di $\|\cdot\|$

Si consideri ora $\mathbf{x}_0 \in E$ generico.

Sia $f: E \to \mathbb{R}$ definita ponendo $f(\mathbf{x}) = \|\mathbf{x} - \mathbf{x}_0\|^2$ per ogni $\mathbf{x} \in E$, e se ne provi la stretta convessità.

Si osservi intanto che $f(\mathbf{x}) = f_0(\mathbf{x} - \mathbf{x}_0)$ per ogni $\mathbf{x} \in E$.

Siano $\mathbf{x},\mathbf{y}\in E$ con $\mathbf{x}\neq\mathbf{y}$, e sia $\lambda\in]0;1[$. Si ha

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) = f_0(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} - \mathbf{x}_0)$$
 Per quanto osservato prima su f

$$f_0(\lambda(\mathbf{x}-\mathbf{x}_0)+(1-\lambda)(\mathbf{y}-\mathbf{x}_0))$$
 Manipolando algebricamente l'espressione

$$<\lambda f_0(\mathbf{x}-\mathbf{x}_0)+(1-\lambda)f_0(\mathbf{y}-\mathbf{x}_0)$$
 Per stretta convessità di f_0

$$f(\mathbf{x}) = \lambda f(\mathbf{x}) + (1-\lambda)f(\mathbf{y})$$
 Per quanto osservato prima su $f(\mathbf{x})$

Segue quindi la stretta convessità di f.

Proiezione ortogonale

Proposizione 10.10: Distanza di un punto fissato da un insieme assunta in un suo punto

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio di Hilbert.

Sia $A \subseteq E$ non vuoto, chiuso e convesso.

Sia $\mathbf{x}_0 \in E$.

Allora, esiste un unico $\mathbf{y}_0 \in A$ tale che $\|\mathbf{x}_0 - \mathbf{y}_0\| = d(\mathbf{x}_0, A)$, dove $\|\cdot\|$ è la norma indotta da $\langle \cdot, \cdot \rangle$. e d è la metrica indotta da $\|\cdot\|$.

Si osserva intanto che A è debolmente chiuso per la [Proposizione 8.3], essendo chiuso e convesso.

Sia $f:A o\mathbb{R}$ definita ponendo $f(\mathbf{y})=\|\mathbf{y}-\mathbf{x}_0\|^2.$

Essa è continua, e strettamente convessa per la [Proposizione 10.9].

Si considerino due casi.

A è limitato:

In tal caso, A è debolmente compatto per la [Proposizione 9.2].

Essendo f semicontinua inferiormente in quanto continua, e quasi-convessa in quanto strettamente convessa, f ammette un punto $\mathbf{y}_0 \in A$ di minimo assoluto per f, per la [Proposizione 9.1].

Essendo f strettamente convessa, tale punto è unico per la [Proposizione 10.8].

A non è limitato:

In tal caso, f è coerciva; infatti, per ogni $\mathbf{y} \in A$ si ha $f(\mathbf{y}) = \|\mathbf{y} - \mathbf{x}_0\|^2 \ge (\|\mathbf{y}\| - \|\mathbf{x}_0\|)^2$ per la seconda disuguaglianza triangolare. Segue allora per confronto che $\lim_{\|\mathbf{y}\| \to +\infty} f(\mathbf{y}) \ge \lim_{\|\mathbf{y}\| \to +\infty} (\|\mathbf{y}\| - \|\mathbf{x}_0\|)^2 = +\infty$.

Essendo f anche semicontinua inferiormente in quanto continua, e quasi-convessa in quanto strettamente convessa, f ammette un punto $\mathbf{y}_0 \in A$ di minimo assoluto per f, per la [Proposizione 10.6]. Essendo f strettamente convessa, tale punto è unico per la [Proposizione 10.8].

Dunque, in entrambi i casi, f ammette un unico punto $\mathbf{y}_0 \in A$ di minimo assoluto. Essendo $(\mathbb{R}_0^+ \to \mathbb{R}: t \mapsto \sqrt{t})$ strettamente monotona, ne segue che anche la funzione $g: A \to \mathbb{R}$, definita ponendo $g(\mathbf{y}) = \sqrt{f(\mathbf{y})} = \|\mathbf{y} - \mathbf{x}_0\|$ per ogni $\mathbf{y} \in A$, ha \mathbf{y}_0 come unico punto di minimo assoluto.

Ciò significa quindi che \mathbf{y}_0 è l'unico punto in A per cui $\|\mathbf{y}_0 - \mathbf{x}_0\| = \min_{\mathbf{y} \in A} \|\mathbf{y} - \mathbf{x}_0\| = d(\mathbf{x}_0, A)$.

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio di Hilbert.

Sia $A \subseteq E$ non vuoto, chiuso e convesso.

Sia $\mathbf{x}_0 \in E$.

Il punto $\mathbf{y}_0 \in A$ tale che $\|\mathbf{x}_0 - \mathbf{y}_0\| = d(\mathbf{x}_0, A)$, che esiste ed è unico per la [Proposizione 10.10], è detto **proiezione** ortogonale di \mathbf{x}_0 su A.

Spazi con prodotto scalare e ortogonalità

Premesse

以 Somma diretta

Sia E uno spazio vettoriale.

Siano $F, G \subseteq E$ due sottospazi vettoriali di E.

Si dice che E è somma diretta di F e G, e si scrive $E = F \oplus G$, quando E = F + G e $F \cap G = \{0\}$.

E è somma diretta di F e G se e solo se ogni vettore di E si può scrivere in modo unico come $\mathbf{u} + \mathbf{v}$, con $\mathbf{u} \in F$ e $\mathbf{v} \in G$.

以 Vettori ortogonali, Complemento ortogonale

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio con prodotto scalare.

Sia $\mathbf{x}, \mathbf{y} \in E$.

Essi si dicono ortogonali quando $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.

Sia $A \subseteq E$ non vuoto.

Si dice complemento ortogonale di A, e si denota con A^{\perp} , l'insieme $\{\mathbf{y} \in E : \forall \mathbf{x} \in A, \ \langle \mathbf{x}, \mathbf{y} \rangle = 0\}$. Esso è un sottospazio vettoriale di E.

以 Intersezione tra sottospazio vettoriale e complemento ortogonale è il vettore nullo

Sia E uno spazio vettoriale.

Sia $F \subseteq E$ un sottospazio vettoriale di E.

Si ha $F \cap F^{\perp} = \{\mathbf{0}\}.$

Infatti, ovviamente $\mathbf{0} \in F \cap F^{\perp}$, essendo entrambi sottospazi vettoriali di E.

D'altra parte, se $\mathbf{x} \in F \cap F^{\perp}$ si ha $\langle \mathbf{x}, \mathbf{x} \rangle = 0$, da cui segue $\mathbf{x} = \mathbf{0}$ per definita positività del prodotto scalare.

Q Osservazione: Il complemento ortogonale è chiuso

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio con prodotto scalare.

Sia $A \subseteq E$ non vuoto.

 A^{\perp} è chiuso.

 $\mathsf{Infatti,}\ A^{\perp} = \bigcap_{\mathbf{x} \in A} \langle \mathbf{x}, \cdot \rangle^{-1}(0) \mathsf{,}\ \mathsf{dove}\ \mathsf{per}\ \mathsf{ognim}\ \mathbf{x} \in E\ \mathsf{si}\ \mathsf{pone}\ \langle \mathbf{x}, \cdot \rangle : A \to \mathbb{R} : \mathbf{y} \mapsto \langle \mathbf{x}, \mathbf{y} \rangle.$

Essendo $\langle \mathbf{x}, \cdot \rangle$ continua per ogni $\mathbf{x} \in E$ e $\{0\}$ è chiuso in \mathbb{R} , risulta che $\langle \mathbf{x}, \cdot \rangle^{-1}(0)$ è chiuso in E per ogni $\mathbf{x} \in E$.

Ne segue che A^{\perp} è chiuso essendo intersezione di chiusi.

Proposizione 10.11: Teorema di decomposizione degli spazi di Hilbert

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio di Hilbert.

Sia $F \subseteq E$ un sottospazio vettoriale di E, chiuso.

Allora, $E=F\oplus F^{\perp}$.

Dimostrazione

Essendo $F \cap F^{\perp} = \{0\}$ per quanto richiamato prima, basta provare che $E = F + F^{\perp}$ per acquisire la tesi.

Se $F = \{0\}$, si ha $F^{\perp} = E$, dunque evidentemente $E = F + F^{\perp}$.

Se F=E, si ha $F^{\perp}=\{\mathbf{0}\}$, dunque evidentemente $E=F+F^{\perp}$.

Si supponga ora $\{\mathbf{0}\} \subsetneq F \subsetneq E$.

Sia $\mathbf{x} \in E$.

Sia y la proiezione ortogonale di x su F, ben definita perché F è non vuoto e convesso essendo uno spazio vettoriale, e chiuso per ipotesi.

Si provi che $\mathbf{x} - \mathbf{y} \in F^{\perp}$.

Sia dunque $\mathbf{u} \in F$; si provi che $\langle \mathbf{x} - \mathbf{y}, \mathbf{u} \rangle = 0$.

Se $\mathbf{u} = \mathbf{0}$, si ha $\langle \mathbf{x} - \mathbf{y}, \mathbf{u} \rangle = \langle \mathbf{x} - \mathbf{y}, \mathbf{0} \rangle = 0$ per linearità a destra del prodotto scalare.

Si supponga ora $\mathbf{u} \neq \mathbf{0}$.

Si consideri il vettore $\mathbf{y} + \lambda \mathbf{u} \in F$ al variare di $\lambda \in \mathbb{R}$; si ha

 $d(\mathbf{x}, \mathbf{y} + \lambda \mathbf{u}) = \|\mathbf{x} - (\mathbf{y} + \lambda \mathbf{u})\|$ Definizione di metrica indotta dalla norma

 $\mathbf{z} \geq d(\mathbf{x},F)$ Essendo $\mathbf{y} + \lambda \mathbf{u} \in F$

 $\mathbf{y} = \|\mathbf{x} - \mathbf{y}\|$ Essendo \mathbf{y} la proiezione ortogonale di \mathbf{x} su F

Dunque, $\|\mathbf{x} - \mathbf{y} - \lambda \mathbf{u}\| \ge \|\mathbf{x} - \mathbf{y}\|$; manipolando questa espressione, si ottiene

$$\|\mathbf{x} - \mathbf{y} - \lambda \mathbf{u}\|^2 \ge \|\mathbf{x} - \mathbf{y}\|^2$$

Elevando al quadrato entrambi i membri

$$\implies \|\mathbf{x} - \mathbf{y}\|^2 + \lambda^2 \|\mathbf{u}\|^2 - 2\lambda \langle \mathbf{x} - \mathbf{y}, \mathbf{u} \rangle \ge \|\mathbf{x} - \mathbf{y}\|^2$$

Essendo $\|\cdot\|$ la norma indotta da $\langle\cdot,\cdot\rangle$

$$\implies \lambda^2 \|\mathbf{u}\|^2 - 2\lambda \langle \mathbf{x} - \mathbf{y}, \mathbf{u} \rangle \ge 0$$

Semplificando

L'ultima disuguaglianza vale per ogni $\lambda \in \mathbb{R}$.

In particolare, per $\lambda = \frac{\langle \mathbf{x} - \mathbf{y}, \mathbf{u} \rangle}{\|\mathbf{u}\|^2}$, si ha

$$\frac{\langle \mathbf{x}-\mathbf{y},\mathbf{u}\rangle^2}{\|\mathbf{u}\|^2} - 2\frac{\langle \mathbf{x}-\mathbf{y},\mathbf{u}\rangle^2}{\|\mathbf{u}\|^2} \geq 0 \text{, da cui segue } \frac{\langle \mathbf{x}-\mathbf{y},\mathbf{u}\rangle^2}{\|\mathbf{u}\|^2} \leq 0 \text{, dunque } \langle \mathbf{x}-\mathbf{y},\mathbf{u}\rangle^2 \leq 0.$$

Ne viene allora che $\langle \mathbf{x} - \mathbf{y}, \mathbf{u} \rangle = 0$.

Allora, $\mathbf{x} - \mathbf{y} \in F^{\perp}$ per arbitarietà di $\mathbf{u} \in F$.

Dunque, si ha $\mathbf{x} = \underbrace{\mathbf{y}}_{\in F} + \underbrace{(\mathbf{x} - \mathbf{y})}_{\in F^{\perp}} \in F + F^{\perp}$, il che mostra che $E = F + F^{\perp}$ per arbitrarietà di $\mathbf{x} \in E$.

Proposizione 10.12: Norma del funzionale lineare indotto dal prodotto scalare

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio con prodotto scalare.

Sia $\mathbf{x}_0 \in E$.

Sia $\langle \cdot, \mathbf{x}_0 \rangle : E \to \mathbb{R}$ definita ponendo $f(\mathbf{x}) = \langle \mathbf{x}, \mathbf{x}_0 \rangle$ per ogni $\mathbf{x} \in E$.

Si ha $\langle\cdot,\mathbf{x}_0
angle\in E^*$, e $\|\langle\cdot,\mathbf{x}_0
angle\|_{E^*}=\|\mathbf{x}_0\|_E$.

Dimostrazione

La linearità di $\langle \cdot, \mathbf{x}_0 \rangle$ segue dalle proprietà assiomatiche del prodotto scalare.

Se ne provi la continuità.

Si ha $|\langle \mathbf{x}, \mathbf{x}_0 \rangle| \leq ||\mathbf{x}_0|| \, ||\mathbf{x}||$ per la disuguaglianza di Cauchy-Schwartz, da cui segue la continuità di $\langle \cdot, \mathbf{x}_0 \rangle$ per la [Proposizione 6.4], dunque $\langle \cdot, \mathbf{x}_0 \rangle \in E^*$.

Inoltre, da tale disuguaglianza viene anche che $\|\langle \cdot, \mathbf{x}_0 \rangle\|_{E^*} \leq \|\mathbf{x}_0\|_E$, per definizione di $\|\cdot\|_{E^*}$.

Si provi la disuguaglianza opposta.

Se
$$\mathbf{x}_0 = \mathbf{0}_{E}$$
, si ha $\langle \cdot, \mathbf{x}_0 \rangle = \langle \cdot, \mathbf{0}_E \rangle = \mathbf{0}_{E^*}$, pertanto $\|\langle \cdot, \mathbf{x}_0 \rangle\|_{E^*} = 0 = \|\mathbf{0}_E\|_E = \|\mathbf{x}_0\|_E$.

Si supponga quindi $\mathbf{x}_0 \neq \mathbf{0}_E$.

Sia $\mathbf{y}=rac{\mathbf{x}_0}{\|\mathbf{x}_0\|_E}$, che ha norma 1; da una delle definizioni di $\|\langle\cdot,\mathbf{x}_0
angle\|_{E^*}$ segue che

$$|\langle \mathbf{y}, \mathbf{x}_0
angle| \leq \|\langle \cdot, \mathbf{x}_0
angle\|_{E^*}$$
, Ossia $\|\mathbf{x}_0\|_E \leq \|\langle \cdot, \mathbf{x}_0
angle\|_{E^*}$.

La tesi è pertanto acquisita.

Proposizione 10.13: Teorema di Riesz, di rappresentazione dei funzionali lineari continui su uno spazio di Hilbert

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio di Hilbert.

Sia $\varphi \in E^*$.

Esiste un unico $\mathbf{x}_0 \in E$ tale che $\varphi = \langle \cdot, \mathbf{x}_0 \rangle$.

Dimostrazione

Si mostri intanto l'unicità di x_0 .

Siano dunque $\mathbf{x}_1, \mathbf{x}_2 \in E$ tali che $\langle \cdot, \mathbf{x}_1 \rangle = \varphi = \langle \cdot, \mathbf{x}_2 \rangle$.

Allora, per ogni $\mathbf{x} \in E$ si ha $\langle \mathbf{x}, \mathbf{x}_1 \rangle = \langle \mathbf{x}, \mathbf{x}_2 \rangle$, ossia $\langle \mathbf{x}, \mathbf{x}_1 - \mathbf{x}_2 \rangle = 0$ per linearità a destra del prodotto scalare.

In particolare, per $\mathbf{x} = \mathbf{x}_1 - \mathbf{x}_2$, si ha $\langle \mathbf{x}_1 - \mathbf{x}_2, \mathbf{x}_1 - \mathbf{x}_2 \rangle = 0$, da cui segue $\mathbf{x}_1 = \mathbf{x}_2$ per definita positività del prodotto scalare.

Si provi adesso l'esistenza.

Sia
$$F = \ker(\varphi) = \varphi^{-1}\{0\}$$
.

F è un sottospazio vettoriale di E.

Inoltre, F è chiuso; infatti, F è controimmagine di $\{0\}$, chiuso in \mathbb{R} , rispetto ad φ , che è continua per ipotesi.

Se $F = E_t$, si ha $\varphi = \mathbf{0}_{E^*} = \langle \cdot, \mathbf{0}_E \rangle_t$, dunque la tesi è acquisita in questo caso.

Si supponga ora $F \subseteq E$.

Si osserva intanto che $F^{\perp} \supseteq \{0\}$.

Infatti, sia $y \in E \setminus F$; sia $y_0 \in F$ la proiezione ortogonale di y su F; essa è ben definita essendo F non vuoto e convesso in quanto spazio vettoriale, e chiuso per quanto osservato prima.

Allora, $\mathbf{y} - \mathbf{y}_0 \in F^{\perp}$, fatto provato nella dimostrazione del [Proposizione 10.11]; inoltre, $\mathbf{y} - \mathbf{y}_0 \neq \mathbf{0}_E$ in quanto altrimenti si avrebbe $\mathbf{y} = \mathbf{y}_0 \in F$, contro il fatto che $\mathbf{y} \notin F$.

Sia dunque $\mathbf{z} \in F^{\perp} \smallsetminus \{\mathbf{0}_E\}$, e si supponga che $\|\mathbf{z}\|_E = 1$ (a meno di considerare $\frac{\mathbf{z}}{\|\mathbf{z}\|_E}$).

Si provi che $\varphi = \langle \cdot, \varphi(\mathbf{z}) \mathbf{z} \rangle$.

Sia $\mathbf{x} \in E$; si vuole quindi mostrare che $\varphi(\mathbf{x}) = \langle \mathbf{x}, \varphi(\mathbf{z}) | \mathbf{z} \rangle$.

Si osserva intanto che $\varphi(\mathbf{x})\mathbf{z} - \varphi(\mathbf{z})\mathbf{x} \in \ker(\varphi) = F$.

Si ha allora

$$\begin{split} 0 &= \langle \varphi(\mathbf{x}) \mathbf{z} - \varphi(\mathbf{z}) \mathbf{x}, \mathbf{z} \rangle & \text{Essendo } \varphi(\mathbf{x}) \mathbf{z} - \varphi(\mathbf{z}) \mathbf{x} \in F \text{ e } \mathbf{z} \in F^{\perp} \\ &= \varphi(\mathbf{x}) \langle \mathbf{z}, \mathbf{z} \rangle - \varphi(\mathbf{z}) \langle \mathbf{x}, \mathbf{z} \rangle & \text{Dalla linearità a sinistra di } \langle \cdot, \cdot \rangle \\ &= \varphi(\mathbf{x}) - \langle \mathbf{x}, \varphi(\mathbf{z}) \mathbf{z} \rangle & \text{In quanto } \langle \mathbf{z}, \mathbf{z} \rangle = \|\mathbf{z}\|_E^2 = 1 \text{ e per linearità a destra di } \langle \cdot, \cdot \rangle \end{split}$$

Dal primo e dall'ultimo membro di questa catena di uguaglianze segue che $\varphi(\mathbf{x}) = \langle \mathbf{x}, \varphi(\mathbf{z}) \mathbf{z} \rangle$, come volevasi mostrare.

Pertanto, $\varphi = \langle \cdot, \varphi(\mathbf{z}) \, \mathbf{z} \rangle$.

П

Isometrie

∺ Isometria, Spazi linearmente isometrici

Siano $(E,\|\cdot\|_E),(F,\|\cdot\|_F)$ due spazi normati. Sia f:E o F.

f si dice **isometria** quando $||f(\mathbf{x}) - f(\mathbf{y})||_F = ||\mathbf{x} - \mathbf{y}||_E$ per ogni $\mathbf{x}, \mathbf{y} \in E$.

Gli spazi $(E, \|\cdot\|_E)$ e $(F, \|\cdot\|_F)$ si dicono **linearmente isometrici** quando esiste un'isometria $f: E \to F$ lineare e biunivoca.

Q Osservazioni: sulle isometrie

Siano $(E,\|\cdot\|_E),(F,\|\cdot\|_F)$ due spazi normati. Sia f:E o F.

Si hanno le seguenti osservazioni:

1. Se f è un'isometria, f è iniettiva; infatti, fissati $\mathbf{x}, \mathbf{y} \in E$ tali che $f(\mathbf{x}) = f(\mathbf{y})$, si ha $0 = \|f(\mathbf{x}) - f(\mathbf{y})\|_F = \|\mathbf{x} - \mathbf{y}\|_E$, dunque $\mathbf{x} = \mathbf{y}$.

- 2. Se f è un'isometria, f è continua; infatti, fissato $\mathbf{x}_0 \in E$ e data una successione $\{\mathbf{x}_n\}_{n \in \mathbb{N}} \subseteq E$ convergente a \mathbf{x}_0 , si ha $\lim_n \|f(\mathbf{x}_n) f(\mathbf{x}_0)\|_F = \lim_n \|\mathbf{x}_n \mathbf{x}_0\|_E = 0$.
- 3. Se f è lineare, f è un'isometria se e solo se $\|f(\mathbf{x})\|_F = \|\mathbf{x}\|_E$ per ogni $\mathbf{x} \in E$. Infatti, se f è un'isometria, si ha $\|f(\mathbf{x})\|_F = \|f(\mathbf{x}) - f(\mathbf{0}_E)\|_F = \|\mathbf{x} - \mathbf{0}_E\|_E = \|\mathbf{x}\|_E$ per ogni $\mathbf{x} \in E$; viceversa, se f soddisfa la condizione indicata sopra, si ha $\|f(\mathbf{x}) - f(\mathbf{y})\|_F = \|f(\mathbf{x} - \mathbf{y})\|_F = \|\mathbf{x} - \mathbf{y}\|_E$ per ogni $\mathbf{x}, \mathbf{y} \in E$, dunque f è un'isometria.
- 4. Per le osservazioni 1. e 3., f è un'isometria lineare biunivoca tra E e F se e solo se f è lineare e suriettiva, e $||f(\mathbf{x})||_F = ||\mathbf{x}||_E$ per ogni $\mathbf{x} \in E$.

Proposizione 10.14: Lineare isometria tra uno spazio di Hilbert e il suo duale

Sia $(E, \langle \cdot, \cdot \rangle)$ uno spazio di Hilbert.

Rispetto alla norma $\|\cdot\|_E$ indotta da $\langle\cdot,\cdot\rangle$, esso è inearmente isometrico a $(E^*,\|\cdot\|_{E^*})$.

Dimostrazione

Sia $f: E \to E^*$ la funzione definita ponendo $f(\mathbf{x}) = \langle \cdot, \mathbf{x} \rangle$ per ogni $\mathbf{x} \in E$.

f è ben definita e vale $||f(\mathbf{x})||_{E^*} = ||\mathbf{x}||_E$ per ogni $\mathbf{x} \in E$; infatti, fissato $\mathbf{x} \in E^*$, per la [Proposizione 10.12] si ha $f(\mathbf{x}) = \langle \cdot, \mathbf{x} \rangle \in E^*$ e anche $||f(\mathbf{x})||_{E^*} = ||\langle \cdot, \mathbf{x} \rangle||_{E^*} = ||\mathbf{x}||_E$.

f è lineare;

infatti, fissati $\mathbf{x}_1, \mathbf{x}_2 \in E$ e $\lambda, \mu \in \mathbb{R}$, si ha

 $f(\lambda \mathbf{x}_1 + \mu \mathbf{x}_2) = \langle \cdot, \lambda \mathbf{x}_1 + \mu \mathbf{x}_2 \rangle = \lambda \langle \cdot, \mathbf{x}_1 \rangle + \mu \langle \cdot, \mathbf{x}_2 \rangle = \lambda f(\mathbf{x}_1) + \mu f(\mathbf{x}_2)$, per linearità a destra di $\langle \cdot, \cdot \rangle$.

f è suriettiva;

infatti, dato $\varphi \in E^*$, per il [Proposizione 10.13] esiste $\mathbf{x} \in E$ tale che $\varphi = \langle \cdot, \mathbf{x} \rangle = f(\mathbf{x})$.

Dunque f è un'isometria lineare biunivoca tra E e E^{\ast} per l'osservazione precedente.