Теория вероятностей и математическая статистика—2 Консультация Борзых Д.А. ФЭН НИУ ВШЭ

Винер Даниил @danya vin

21 февраля 2025г.

23

Определение. Говорят, что случайная величина X имеет нормальное распределение с параметрами $\mu \in \mathbb{R}$ и $\sigma^2 > 0$ пишут $X \sim N(\mu, \sigma^2)$, если

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Множество значений случайной величины $X: (-\infty; +\infty)$

Теорема. Если $X \sim N(\mu, \sigma^2),$ то

$$\mathbb{E}\left[X\right] = \mu, \ \mathbb{D}\left[X\right] = \sigma^2$$

24

Определение. Случайная величина W имеет χ^2 -распределение с m степенями свободы, пишут $W \sim \chi^2(m),$ если W представима в виде

$$W = X_1^2 + \ldots + X_m^2$$

где $X_1, \ldots, X_n \sim iidN(0;1)$

Множество значений случайной величины $W:(0;+\infty)$

Теорема. Если $W \sim \chi^2(m)$, то $\mathbb{E}[W] = m$, $\mathbb{D}[W] = 2m$

25

Определение. Случайная величина W имеет t-распределение (распределение Стьюдента) с m степенями свободы, пишут $W \sim t(m)$, если W представима в виде

$$W = \frac{X}{\sqrt{\frac{Y_1^2 + \dots + Y_m^2}{m}}},$$

где $X, Y_1, \ldots, Y_m \sim iidN(0;1)$

Множество значений случайной величины: $(-\infty; +\infty)$

26

Определение. Случайная величина W имеет F-распределение (распределение Фишера) с m и n степенями свободы, пишут $W \sim F(m,n)$, если W представима в виде

$$W = \frac{(X_1 + \dots + X_m^2)/m}{(Y_1^2 + \dots + Y_n^2)/n},$$

где $X_1, \dots, X_m, Y_1, \dots, Y_n \sim iidN(0;1)$ и независимы Множество значений: $(0;+\infty)$

27

Пусть $X = (X_1, \dots, X_n)$ — случайная выборка

Определение. Выборочное среднее $-\overline{X}:=\frac{X_1+\ldots+X_n}{n}$

Определение. Неисправленная выборочная дисперсия — $s^2 := \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$

28

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка, тогда

Определение. Выборочным начальным моментом порядка k называется число

$$\widehat{\mu}_k := \frac{1}{n} \sum_{i=1}^k (X_i)^k$$

Определение. Выборочным *центральным* моментом порядка k называется число

$$\widehat{\nu}_k := \frac{1}{n} \sum_{i=1}^k (X_i - \overline{X})^k$$

29

Определение. Пусть $X = (X_1, \dots, X_n)$ — случайная выборка, тогда выборочной функцией распределения случайной выборки X называется функция от действительного переменного X, которая определяется как

$$\widehat{F}_n(x,\omega) := \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{X_i(\omega) \leqslant x\},\,$$

где $\mathbb{I}\{X_i(\omega)\leqslant x\}$ равна 1, если $X_i(\omega)\leqslant x$ и равна 0 в противном случае

30

Теорема. Пусть $X=(X_1,\dots,X_n)$ — случайная выборка, причем $\mathbb{D}\left[X_i\right]=\sigma^2$, тогда

$$\widehat{\sigma}^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

является несмещённой оценкой параметра σ^2 , то есть $\mathbb{E}\left[\widehat{\sigma}^2\right]=\sigma^2$

31

Оценка $\hat{\theta}$ неизвестного параметра $\theta \in \Theta$ называется несмещённой, если

$$\mathbb{E}\left[\hat{\theta}\right] = \theta \ \forall \theta \in \Theta,$$

где Θ — множество всех допустимых значений параметра θ

32

Определение. Последовательность оценок $\hat{\theta}_n$ называется состоятельной оценкой неизвестного параметра $\theta \in \Theta$, если

$$\forall \theta \in \Theta \ \hat{\theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta,$$

то есть $\hat{\theta}_n$ сходится по вероятности к θ

$$\forall \varepsilon > 0 : \lim_{n \to \infty} \mathbb{P}(|\hat{\theta}_n - \theta| \ge \varepsilon) = 0$$

Теорема. Пусть

- $forall\theta\Theta \mathbb{E}\left[\widehat{\theta}_n\right] \underset{n\to\infty}{\longrightarrow} \theta$
- $forall \theta \Theta \mathbb{D}\left[\widehat{\theta}_n\right] \underset{n \to \infty}{\longrightarrow} 0$

Тогда, $\widehat{\theta}_n \stackrel{\mathbb{P}}{\longrightarrow} \theta$, то есть $\widehat{\theta}_n$ является состоятельной оценкой неизвестного параметра θ

33

Определение. Пусть \mathcal{K} — некоторый класс оценок параметра θ . Оценка $\widehat{\theta} \in \mathcal{K}$ неизвестного параметра θ называется наиболее эффективной в классе \mathcal{K} , если для любого конкурента $\widetilde{\theta} \in \mathcal{K}$ $\forall \theta \in \Theta$

$$\mathbb{E}\left[(\widehat{\theta}-\theta)^2\right]\leqslant \mathbb{E}\left[(\widetilde{\theta}-\theta)^2\right]$$