Comparação de classificadores utilizando um dataset de classificação de cogumelos

Tiago Kenji Umemura

Universidade Tecnológica Federal do Paraná (UTFPR) Campo Mourão – Paraná – Brasil

umemuratiago@gmail.com

Resumo. Este artigo descreve os resultados obtidos com diferentes classificadores utilizando um dataset de classificação de cogumelos. Os classificadores utilizados foram Random Forest, SVM e nearest centroid classifier. O dataset utilizado divide as instâncias em duas classes, venenoso e comestível, e possui 22 características.

1. Introdução

No experimento foi utilizado um dataset de classificação de cogumelos disponibilizado no Kaggle e que originalmente era mantido no UCI Machine Learning Repository, um website que mantêm bases de dados para serem utilizados pela comunidade de machine learning. O dataset de classificação de cogumelos possui 22 características e os cogumelos são classificados como comestível ou venenoso, assim é possível extrair quais características indicam maior probabilidade do cogumelo ser venenoso e também classificar os cogumelos em venenosos ou não com base nas características.

Kaggle também disponibiliza trabalhos que foram feitos utilizando esse dataset. Nesses trabalhos foram usados Random Forest, GBM e RPART para classificar as instâncias e mostrar quais características estão mais relacionadas a classe venenoso, porém nenhum deles utiliza todas as instâncias do dataset.

No experimento desenvolvido foi utilizado três classificadores para classificação das instâncias: Random Forest, Support Vector Machine (SVM) e nearest centroid classifier. Sendo que metade do dataset foi utilizada para treino e outra metade para teste.

2. Objetivo

O objetivo do experimento é comparar as taxas de acerto dos diferentes classificadores e também comparar as taxas com trabalhos já feitos do Kaggle. Além disso também foi analisado a relação de cada característica com a classe venenoso utilizando o algoritmo de Random Forest.

Os classificadores utilizados foram Random Forest, Support Vector Machine (SVM) e nearest centroid classifier, sendo que todos os classificadores do experimento fazem parte da biblioteca Scikit Learn para Python.

3. Fundamentação teórica

Random Forest é um algoritmo de aprendizagem de máquina baseado em árvores de decisão simples e métodos de aprendizagem em conjunto. O algoritmo consiste em um número arbitrário de árvores de decisões simples, que são utilizadas para determinar a saída final, ou decisão do que será avaliado.

Na classificação, o conjunto das árvores, também denominadas como floresta (forest), definem resultados que possibilitam a escolha da classe mais popular entre elas. Maior quantidade de floresta tende a melhorar a precisão da previsão.

Support Vector Machine (SVM) é um algoritmo de aprendizagem supervisionado e tem o objetivo de separar as instâncias de um dataset em duas classes. O algoritmo encontra uma linha de separação (hiperplano) que separa as instâncias em duas classes de acordo com suas características.

Nearest centroid classifier é um modelo de classificador que atribui cada classe a um centróide e a instância em análise pertence a classe do centróide mais próximo.

4. Método

O dataset disponibilizado está no formato CSV e os valores das características estão representados por letras. Primeiro foi necessário ler o arquivo utilizando a biblioteca Numpy após isso foi trocado os valores das características de letras para números, pois os algoritmos da biblioteca Scikit learn não permitem letras como parâmetros de entrada.

Após a leitura do dataset, foi executado os classificadores Random Forest, SVM e Nearest centroid no dataset. O dataset foi dividido duas partes: 4000 instâncias para treino e 4000 instâncias para teste.

O classificador Random Forest foi executado utilizando como paramêtro 10, 100 e 500 como número de árvores. Para cada valor do número de árvores o Random Forest foi executado 10 vezes e foi feito a média dessas 10 execuções, já que a taxa de acerto varia bastante. Na Random Forest também é possível verificar quais características são mais importantes para determinar se um cogumelo é venenoso.

Os classificadores SVM e Nearest centroid foram executados apenas uma vez pois suas taxas não variam como acontece com a Random Forest.

4.1. Experimentos

Random Forest			
Número de Árvores	Mínimo	Máximo	Média
10	0,5316	0,7376	0,5853
100	0,5858	0,8222	0,7746
500	0,6569	0,8182	0,7712

SVM	0,8247	
Nearest Centroid	0.8162	

5. Conclusão

Ao comparar os classificadores que foram executados utilizando 4000 instâncias para treino e teste, o SVM foi o que apresentou melhor desempenho. Nearest Centroid apresentou taxa um pouco abaixo do SVM.

A Random Forest apresentou o pior desempenho, com resultados variando bastante e mesmo com maior número de árvores a média de acertos ficou cerca de 5% abaixo dos outros classificadores, além ter maior tempo de execução conforme é aumentado a quantidade de árvores que devem ser geradas.

A Random Forest também permite analisar quais características estão mais relaciondas com a classe do cogumelo, venenoso ou não. Nesse dataset as características de maior importância foram: odor, gill size e stalk shape.

Referências

Kaggle (2017) "Mushroom Classification Safe to eat or deadly poison?", https://www.kaggle.com/uciml/mushroom-classification, Junho.