

Kernel Methods

Dept. Computer Science & Engineering, Shanghai Jiao Tong University

Key Points in the Last Talk

- Good representation of function spaces
 - Easy to implement (efficient in space and time)
 - Good for generalization
 - Easy to select good models
- Good parameter for model selection
 - Effective degrees of freedom
 - CV for Model selection
- Reproducing Kernel Hilbert Space
 - Polynomial Kernel
- Spline & Wavelet

Outline

- One-Dimensional Kernel Smoothers
- Local Regression
- Local Likelihood
- Kernel Density estimation
- Naive Bayes
- Radial Basis Functions
- Mixture Models and EM

Brain-like Computing Machine Intelligence Objectives of OBE

- To understand why increasing the order of polynomials causes the increase of model variance
- How to kernel method to implement local regression
- Probability density estimation by kernel methods
- EM algorithm for estimating GMM

Nearest-Neighbor Kernel

• k-NN:

$$\hat{f}(x) = Ave(y_i \mid x_i \in N_k(x))$$

- 30-NN curve is bumpy, $sinc\hat{\mathbf{e}}(x)$ is discontinuous in x.
- The average changes in a discrete way, leading to a discontinuou $\hat{s}(x)$

Epanechnikov Kernel

 Nadaraya-Watson Kernel weighted average:

$$\hat{f}(x_0) = \frac{\sum_{i=1}^{N} K_{\lambda}(x_0, x_i) y_i}{\sum_{i=1}^{N} K_{\lambda}(x_0, x_i)}$$

 Epanechnikov quadratic kernel:

$$K_{\lambda}(x_0, x) = D\left(\frac{|x - x_0|}{\lambda}\right)$$

More general kernel:

$$K_{\lambda}(x_0, x) = D\left(\frac{|x - x_0|}{h_{\lambda}(x_0)}\right)$$

- $-h_{\lambda}(x_0)$: width function that determines the width of the neighborhood at x_0 .
- For quadratic kernel $h_{\lambda}(x_0) = \lambda$, Bias \approx constant
- For k-NN kernel $\lambda \leftrightarrow k$ $h_k(x_0) = |x_0 x_{[k]}|$, Variance ≈ constant

$$K_{\lambda}(x_0, x) = D\left(\frac{|x - x_0|}{\lambda}\right)$$

- Epanechnikov kernel and tri-cube kernel are compact but tri-cube has two continuous derivatives
- Gaussian kernel is infinite support

Gaussian :
$$D(t) = \phi(t) = e^{-\frac{1}{2}t^2}$$

Epanechnikov :
$$D(t) = \begin{cases} \frac{3}{4}(1-t^2) & if |t| < 1\\ 0 & otherwise \end{cases}$$

Tri-Cube:
$$D(t) = \begin{cases} (1-t^3)^3 & if |t| < 1 \\ 0 & otherwise \end{cases}$$

Local Linear Regression

o.o x_0

- Boundary issue
 - Badly biased on the boundaries because of the asymmetry of the kernel in the region.

Linear fitting remove the bias to first order

N-W Kernel at Boundary

Local Linear Regression at Boundary

0.8

 $0.0 x_0$

ECMBrain-like Computing Local Linear Regression

- Locally weighted linear regression make a first-order correction
- Separate weighted least squares at each target point x₀:

$$\min_{\alpha(x_0),\beta(x_0)} \sum_{i=1}^{N} K_{\lambda}(x_0,x_i) [y_i - \alpha(x_0) - \beta(x_0)x_i]^2$$

- The estimate: $\hat{f}(x_0) = \hat{\alpha}(x_0) + \hat{\beta}(x_0)x_0$
- $b(x)^T = (1,x)$; B: Nx2 regression matrix with *i*-th row $b(x_i)^T$;

$$W_{N\times N}(x_0) = diag(K_{\lambda}(x_0, x_i)), i = 1,..., N$$

$$\hat{f}(x_0) = b(x_0)^T (B^T W(x_0) B)^{-1} B^T W(x_0) y = \sum_{i=1}^N l_i(x_0) y_i$$

Local Linear Regression

• The weights $l_i(x_0)$ combine the weighting kernel $K_{\lambda}(x_0,\cdot)$ and the least squares operations—Equivalent Kernel

BCM Local Linear Regression

• The expansion for $E\hat{f}(x_0)$, using the linearity of local regression and a series expansion of the true function f around x_0

$$E\hat{f}(x_0) = \sum_{i=1}^{N} l_i(x_0) f(x_i) = f(x_0) \sum_{i=1}^{N} l_i(x_0) + f'(x_0) \sum_{i=1}^{N} (x_i - x_0) l_i(x_0)$$

$$+ \frac{f''(x_0)}{2} \sum_{i=1}^{N} (x_i - x_0)^2 l_i(x_0) + R$$

$$\sum_{i=1}^{N} l_i(x_0) = 1, \quad \sum_{i=1}^{N} (x_i - x_0) l_i(x_0) = 0$$

For local regression

• The bias $E\hat{f}(x_0) - f(x_0)$ depends only on quadratic and higher-order terms in the expansion of f.

Local Polynomial Regression

Fit local polynomial fits of any degree d

$$\min_{\alpha(x_0),\beta_j(x_0),j=1,...,d} \sum_{i=1}^{N} K_{\lambda}(x_0,x_i) \left[y_i - \alpha(x_0) - \sum_{j=1}^{d} \beta_j(x_0) x_i^j \right]^2$$

$$\hat{f}(x_0) = \hat{\alpha}(x_0) + \sum_{j=1}^{d} \hat{\beta}_j(x_0) x_0^j$$

Local Polynomial Regression

- Bias only have components of degree d+1 and higher.
- The reduction for bias costs the increased variance.

$$\operatorname{var}(\hat{f}(x_0)) = \sigma^2 \|l(x_0)\|^2, \|l(x_0)\| \text{ increases with } d$$

Kernel Width Selection

- λ is a parameter in kernel K_{λ} , which controls the width of the kernel.
 - $-\lambda$ takes the radius of supporting region for compact supporting kernel;
 - $-\lambda$ takes the variance for Gaussian Kernel;
 - $-\lambda$ takes k/N for KNN method.
- Kernel width is related to model selection
 - Wide width leads to large bias and small var.
 - Narrow width leads to small bias and large var.

Structured Local Regression

Structured kernels

$$K_{\lambda,A}(x_0,x) = D\left(\frac{(x-x_0)^T A(x-x_0)}{\lambda}\right)$$

- Introduce structure by imposing appropriate restrictions on A
- Structured regression function

$$f(X_1, X_2, ..., X_p) = \alpha + \sum_j g_j(X_j) + \sum_{k < l} g_{kl}(X_k, X_l) + \cdots$$

Introduce structure by eliminating some of the higher-order terms

Local Likelihood & Other Models

- Any parametric model can be made local:
 - Parameter associated with y_i : $\theta_i = \theta(x_i) = x_i^T \beta$
 - Log-likelihood: $l(\beta) = \sum_{i=1}^{N} l(y_i, x_i^T \beta)$
 - Model $\theta(X)$ likelihood local to x_0 :

$$l(\beta(x_0)) = \sum_{i=1}^{N} K_{\lambda}(x_0, x_i) l(y_i, x_i^T \beta(x_0))$$

– A varying coefficient model $\theta(z)$

$$l(\theta(z_0)) = \sum_{i=1}^{N} K_{\lambda}(z_0, z_i) l(y_i, \eta(x_0, \theta(z_0)))$$
e.g. $\eta(x, \theta) = x^T \theta$

BCM Example Computing Local Likelihood & Other Models

Logistic Regression

$$\Pr(G = j \mid X = x) = \frac{\exp(\beta_{j0} + \beta_j^T x)}{1 + \sum_{k=1}^{J-1} \exp(\beta_{k0} + \beta_k^T x)}$$

Local log-likelihood for the J class model

$$\sum_{i=1}^{N} K_{\lambda}(x_{0}, x_{i}) \Big\{ \beta_{g_{i}0}(x_{0}) + \beta_{g_{i}}(x_{0})^{T}(x_{i} - x_{0}) \\ -\log \Big[1 + \sum_{k=1}^{J-1} \exp(\beta_{k0}(x_{0}) + \beta_{k}(x_{0})^{T}(x_{i} - x_{0})) \Big] \Big\}$$

Center the local regressions at

$$\hat{\Pr}(G = j \mid X = x) = \frac{\exp(\hat{\beta}_{j0}(x_0))}{1 + \sum_{k=1}^{J-1} \exp(\hat{\beta}_{k0}(x_0))}$$

BCMIBrain-like Computing Kernel Density Estimation

A natural local estimate

$$\hat{f}_X(x_0) = \frac{\# x_i \in N(x_0)}{N\lambda}$$

The smooth Parzen estimate

$$\hat{f}_X(x_0) = \frac{1}{N\lambda} \sum_{i=1}^N K_{\lambda}(x_0, x_i)$$

- For Gaussian kernel $K_{\lambda}(x_0, x_i)/\lambda = \phi(x_i x_0)$
- The estimate become

$$\hat{f}_X(x) = \frac{1}{N} \sum_{i=1}^N \phi_{\lambda}(x_i - x_0)$$

$$= \frac{1}{N(2\lambda^2 \pi)^{p/2}} \sum_{i=1}^N \exp(-\frac{1}{2} (\|x_i - x_0\|/\lambda)^2)$$

Kernel Density Estimation

 A kernel density estimate for systolic blood pressure. The density estimate at each point is the average contribution from each of the kernels at that point.

Kernel Density Classification

$$\hat{\Pr}(G = j | X = x_0) = \frac{\hat{\pi}_j \hat{f}_j(x_0)}{\sum_{k=1}^J \hat{\pi}_k \hat{f}_k(x_0)}$$
$$f_j(x) = \Pr(X = x | G = j)$$

 The estimate for CHD (Coronary heart disease 冠心病) uses a Gaussian kernel density estimate.

Kernel Density Classification

The population class densities and the posterior probabilities

Figure 6.15: The population class densities may have interesting structure (left) that disappears when the posterior probabilities are formed (right).

Brain-like Computing Rain-like Computing Rain-

Naïve Bayes model assume that given a class G=j, the features X_k are independent:

$$f_j(X) = \prod_{k=1}^p f_{jk}(X_k)$$

- $-\hat{f}_{jk}(X_k)$ is kernel density estimate, or Gaussian, for coordinate X_k in class j.
- If X_k is categorical, use Histogram.

$$\log \frac{\Pr(G = \ell \mid X)}{\Pr(G = J \mid X)} = \log \frac{\pi_{\ell} f_{\ell}(X)}{\pi_{J} f_{J}(X)} = \log \frac{\pi_{\ell} \prod_{k=1}^{p} f_{\ell k}(X_{k})}{\pi_{J} \prod_{k=1}^{p} f_{J k}(X_{k})}$$

$$= \log \frac{\pi_{\ell}}{\pi_{J}} + \sum_{k=1}^{p} \log \frac{f_{\ell k}(X_{k})}{f_{J k}(X_{k})} = \alpha_{\ell} + \sum_{k=1}^{p} g_{\ell k}(X_{k})$$

Radial Basis Function & Kernel

Radial basis function combine the local and flexibility of kernel methods.

$$f(x) = \sum_{j=1}^{M} K_{\lambda_j}(\xi_j, x) \beta_j = \sum_{j=1}^{M} D\left(\frac{\left\|x - \xi_j\right\|}{\lambda_j}\right) \beta_j$$

- Each basis element is indexed by a location or prototypé paragneter and a scale paragneter
- $-\ _{D}$, a pop choice is the standard Gaussian density function.

Radial Basis Function & Kernel

- For simplicity, focus on least squares methods for regression, and use the Gaussian kernel.
- RBF network model:

$$\min_{\{\lambda_{j},\xi_{j},\beta_{j}\}_{1}^{M}} \sum_{i=1}^{N} \left(y_{i} - \beta_{0} - \sum_{j=1}^{M} \beta_{j} \exp\left\{ -\frac{(x_{i} - \xi_{j})^{T} (x_{i} - \xi_{j})}{\lambda_{j}^{2}} \right\} \right)^{2}$$

- Estimate the $\{\lambda_i, \xi_i\}$ separately from the β_i .
- A undesirable side effect of creating holes—regions of IR^p where none of the kernels has appreciable support.

Radial Basis Function & Kernel

Renormalized radial basis functions.

ons.
$$h_j(x) = \frac{D(||x - \xi_j||/\lambda)}{\sum_{k=1}^{M} D(||x - \xi_k||/\lambda)}$$

The expansion in renormalized

$$F(x) = \sum_{i=1}^{N} y_i \frac{K(x_0, x_i)}{\sum_{i=1}^{N} K_{\lambda}(x_0, x_i)}$$

$$= \sum_{i=1}^{N} y_i h_i(x_0)$$

Gaussian radial basis function with fixed width can leave holes. Renormalized Gaussian radial basis function produce basis functions similar in some respects to B-splines.

Mixture Models & EM

Bad

Gaussian Mixture Model

$$f(x) = \sum_{m=1}^{M} \alpha_m \phi(x; \mu_m, \Sigma_m)$$

- $-\alpha_m$ are mixture proportions, $\sum_{m=1}^{M} \alpha_m = 1$
- EM algorithm for mixtures
 - Given $x_1, x_2, ..., x_n$, log-likelihood:

$$l(y,\theta) = \sum_{i=1}^{N} \log \left[\alpha \phi_{\theta_1}(x_i) + (1-\alpha)\phi_{\theta_2}(x_i) \right]$$

Suppose we observe Latent Binary

$$L(x,z,\theta) = \sum_{\substack{i=1\\z_i=1}}^N \log \left[\alpha \phi_{\theta_1}(x_i)\right] + \sum_{\substack{i=1\\z_i=0}}^N \log \left[(1-\alpha)\phi_{\theta_2}(x_i)\right]$$
 z such that $z=1 \Rightarrow x \sim \phi_{\theta_1}$, $z=0 \Rightarrow x \sim \phi_{\theta_2}$ Good

BCM Mixture Models & EM

• Given θ^0 , compute

$$\theta^* = \operatorname{var} \max \tilde{\ell}(\theta) = E[\ell(x, z, \theta) | (\theta^0, y)]$$

For each sample

$$E(z_{i} | x_{i}, \theta^{0}) = \frac{\hat{\alpha}\phi_{\hat{\theta}_{1}}(x_{i})}{\hat{\alpha}\phi_{\hat{\theta}_{1}}(x_{i}) + (1 - \hat{\alpha})\phi_{\hat{\theta}_{2}}(x_{i})} = w_{i}$$

$$\ell(\theta) = \sum_{i=1}^{N} w_{i} \log[\hat{\alpha}\phi_{\theta_{1}}(x_{i})] + (1 - w_{i}) \log[(1 - \alpha)\phi_{\theta_{2}}(x_{i})]$$

The EM Algorithm Brain-like Computing Brain-like Bra

- The EM algorithm for two-component Gaussian mixtures
 - Take initial guesses $\hat{\pi}, \hat{\mu}_1, \hat{\theta}_1, \hat{\mu}_2, \hat{\theta}_2$ for the parameters
 - Expectation Step: Compute the responsibilities

$$\hat{\gamma}_{i} = \frac{\hat{\pi}\phi_{\hat{\theta}_{2}}(y_{i})}{(1-\hat{\pi})\phi_{\hat{\theta}_{1}}(y_{i}) + \hat{\pi}\phi_{\hat{\theta}_{2}}(y_{i})}, \quad i = 1, \dots, N$$

$$E(z_{i} | x_{i}, \theta^{0}) = \frac{\hat{\alpha}\varphi_{\hat{\theta}_{1}}(x_{i})}{\hat{\alpha}\varphi_{\hat{\theta}_{1}}(x_{i}) + (1-\hat{\alpha})\varphi_{\hat{\theta}_{2}}(x_{i})} = w_{i}$$

$$\ell(\theta) = \sum_{i=1}^{N} w_{i} \log \left[\hat{\alpha}\varphi_{\theta_{1}}(x_{i})\right] + (1-w_{i}) \log \left[(1-\alpha)\varphi_{\theta_{2}}(x_{i})\right]$$

Brain-like Computing The EM Algorithm

Maximization Step: Compute the weighted means and variances

$$\hat{\mu}_{1} = \frac{\sum_{i=1}^{N} (1 - \hat{\gamma}_{i}) y_{i}}{\sum_{i=1}^{N} (1 - \hat{\gamma}_{i})}, \qquad \hat{\sigma}_{1}^{2} = \frac{\sum_{i=1}^{N} (1 - \hat{\gamma}_{i}) (y_{i} - \hat{\mu}_{1})^{2}}{\sum_{i=1}^{N} (1 - \hat{\gamma}_{i})},$$

$$\hat{\mu}_{2} = \frac{\sum_{i=1}^{N} \hat{\gamma}_{i} y_{i}}{\sum_{i=1}^{N} \hat{\gamma}_{i}}, \qquad \hat{\sigma}_{2}^{2} = \frac{\sum_{i=1}^{N} \hat{\gamma}_{i} (y_{i} - \hat{\mu}_{1})^{2}}{\sum_{i=1}^{N} \hat{\gamma}_{i}},$$

$$\hat{\pi} = \sum_{i=1}^{N} \hat{\gamma}_{i} / N$$

Iterate 2 and 3 until convergence

Mixture Models & EM

 Application of mixtures to the heart disease risk factor study.

Mixture Models & EM

 Mixture model used for classification of the simulated data

Summary

- To understand why increasing the order of polynomials causes the increase of model variance
- How to kernel method to implement local regression
- Probability density estimation by kernel methods
- EM algorithm for estimating GMM

The End of Talk!