## Human T-cell leukemia virus type I (NC\_001436)

#### Genom - die 100 ersten Nukleotide:

GGCTCGCATCTCCTTCACGCGCCGCCGCCTTACCTGAGGCCGCCATCCACGCCGGTTGAGTCGCGTTCTGCC
GCCTCCCGCCTGTGGTGCCTCCTGA

## • Peptidsequenz - die ersten 30 Aminosäuren des 1. 5'3' Frames

**GSHLSFTRPPPYLRPPSTPVESRSAASRLW** 

## Hidden Markov Model Logo

Reverse transcriptase (RNA-dependent DNA polymerase)

(754 - 925)

http://pfam.xfam.org/family/PF00078.26#tabview=tab4



**Einschätzung**: die hochkonservierten Bereiche, an denen bestimmte Aminosäuren mit sehr hoher Wahrscheinlichkeit auftreten, sind in der Sequenz vorhanden und große Bereiche des Profils stimmen weitestgehend mit der Sequenz überein, da an vielen Stellen eine Vielzahl verschiedener Aminosäuren vom Profil zugelassen wird.

# Human immunodeficiency virus 1 (NC\_001802.1)

### Genom - die ersten 100 Nukleotide:

 ${\tt GGTCTCTGGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAAT}$   ${\tt AAAGCTTGCCTTGAGTGCTTCAAGT}$ 

## • Peptidsequenz - die ersten 30 Aminosäuren des 2. 5'3' Frames VSLVRPDLSLGALWLTREPTA-ASIKLALS

## Hidden Markov Model Logo

Reverse transcriptase (RNA-dependent DNA polymerase)

http://pfam.xfam.org/family/PF00078.26#tabview=tab4



#### Retroviral aspartyl protease

## http://pfam.xfam.org/family/PF00077.19#tabview=tab4



**Einschätzung**: Aminosäuresequenz des *immunodefiency virus* stimmt mit der Sequenz des *T-cell leukemia virus type I* nur in wenigen, hochkonservierten Sequenzen überein (darunter VLPQG im *RVT\_1 profile*), die auch im HMM als konserviert zu erkennen sind. Das HMM lässt an vielen Stellen Variabilität in der AsSequenz zu. Deshalb passt es zu beiden Sequenzen sehr gut, auch wenn sie sich stark unterscheiden. (siehe *BLAST Results*, <u>oben *T-cell virus unten immunodefiency virus*). Mit der *Retroviral aspartyl protease* verhält es sich ähnlich.</u>



| 3 a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 b)                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Genomsequenzen sind größere         Datensätze als Aminosäuresequenzen     </li> <li>es würde viele falschpositive Ergebnisse         geben, weil die Suche mit 4 Basen         unspezifischer ist als mit 20         Aminosäuren     </li> <li>außerdem würden viele unzutreffende         Ergebnisse geliefert werden, da der         <i>frame</i> nicht bekannt ist         (kontextabhängig)</li> <li>Genomsequenzen weisen nochmal mehr         Variabilität auf als         Aminosäuresequenzen     </li> </ul> | <ul> <li>jeder Frame ergibt eine völlig andere<br/>Aminosäuresequenz</li> <li>jeder Frame wird andere HMM-Profile<br/>liefern</li> </ul> |