COURSE 6

Relational Algebra

Relational Query Languages

- Query languages: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for much optimization.
- Query Languages != programming languages!
 - QLs not expected to be "Turing complete".
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

- Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
 - *Relational Algebra*: More operational, very useful for representing execution plans.
 - <u>Relational Calculus</u>: Lets users describe what they want, rather than how to compute it. (Non-operational, <u>declarative</u>)

Preliminaries

- A query is applied to *relation instances*, and the result of a query is also a relation instance.
 - Schemas of input relations for a query are fixed (but query will run regardless of instance!)
 - The schema for the *result* of a given query is also fixed! Determined by definition of query language constructs.
- Positional vs. named-field notation:
 - Positional notation easier for formal definitions, named-field notation more readable.
 - Both used in SQL

Relational Algebra

- Basic operations:
 - <u>Projection</u> (π) Deletes unwanted columns from relation.
 - *Selection* (σ) Selects a subset of rows from relation.
 - <u>Cross-product</u> (X) Allows us to combine two relations.
 - *Set-difference* (-) Tuples in reln. 1, but not in reln. 2.
 - *Union* (\cup) Tuples in reln. 1 and in reln. 2.
- Additional operations:
 - Intersection, *join*, division, renaming: Not essential, but (very!) useful.
- Since each operation returns a relation, operations can be *composed*! (Algebra is "closed".)

Projection

- L = $(a_1, ..., a_n)$ is a list of attributes (i.e. *a list of columns*) of the relation R
- Keeping vertical slices of a relation according to L

$$\pi_{L}(R) = \{ t \mid t_{1} \in R \land \\ t.a_{1} = t_{1}.a_{1} \land \\ ... \land \\ t.a_{n} = t_{1}.a_{n} \}$$

Projection (cont.)

$\pi_{cid, grade}(Enrolled)$

 $\pi_{\rm cid}$, grade (

sid	cid	grade
1234	Alg1	9
1235	Alg1	10
1234	DB1	10
1234	DB2	9
1236	DB1	7
1237	DB2	9`
1237	DB1	5
1237	Alg1	10

	Ciu	gruue
	Alg1	9
	Alg1	10
) =	DB1	10
,	DB2	9
	DB1	7
	DB1	5

Projection (cont.)

Is $\pi_{cid, grade}$ (Enrolled) equivalent to

SELECT cid, grade FROM Enrolled ?

NO! Relational algebra works with sets => no duplicates.

SELECT DISTINCT cid, grade

FROM Enrolled

Selection

■ Selecting the t-uples of a relation R verifying a condition *c* (*selection predicate*).

$$\sigma_{c}(R) = \{ t \mid t \in R \land c \}$$

$$\sigma_{\text{grade} > 8}$$
 (Enrolled) = {t | t \in \text{Enrolled} \times \text{grade} > 8 }

	sid	cid	grade
	1234	Alg1	9
1	1235	Alg1	10
	1234	DB2	9

Selection (cont.)

$$\sigma_{\text{grade} > 8}$$
 (Enrolled)

SELECT DISTINCT *
FROM Enrolled
WHERE grade > 8

Confusing terms

Selection Condition

- **Term Op Term** is a condition
 - where **Term** is an attribute name
 - or Term is a constant
 - Op is one of <, >, =, \neq etc.

■ (C1 \wedge C2), (C1 \vee C2), (\neg C1) are conditions where C1 and C2 are conditions

Composability

The result of an expression is a relation $\pi_{cid, grade}(\sigma_{grade})$ (Enrolled))

$$\pi_{\text{cid, grade}}(\sigma_{\text{grade}}) > 8$$

sid	cid	grade
1234	Alg1	9
1235	Alg1	10
1234	DB1	10
1234	DB2	9
1236	DB1	7
1237	DB2	9`
1237	DB1	5
1237	Alg1	10

	cid	grade
	Alg1	9
) =	Alg1	10
	DB1	10
	DB2	9

Composability (cont.)

$$\pi_{\text{cid, grade}}(\sigma_{\text{grade}})$$

SELECT DISTINCT cid, grade FROM Enrolled WHERE grade > 8

$$\sigma_{\text{grade} > 8}(\pi_{\text{cid, grade}}(\text{Enrolled}))$$

What is the equivalent SQL query?

Can we always exchange the order of σ and π ?

Union, Intersection, Set-difference

- $\blacksquare R_1 \cup R_2 = \{ t \mid t \in R_1 \lor t \in R_2 \}$
- $\blacksquare R_1 \cap R_2 = \{ t \mid t \in R_1 \land t \in R_2 \}$
- $\blacksquare R_1 R_2 = \{ t \mid t \in R_1 \land t \notin R_2 \}$

The relations R_1 and R_2 must be union compatible:

- same number of attributes (same arity)
- corresponding attributes have *compatible* domains and the *same name*

Set operations and equivalent SQL statements

Are all operators essential?

$$R_1 \cap R_2 = (\ (R_1 \cup R_2) - (R_1 - R_2)\) - (R_2 - R_1)$$
 Compute all tuples belonging to R_1 or R_2
$$Remove \ the \ ones \\ that \\ belong \ only \ to \ R_1 \ Remove \ the \ ones \\ that \\ belong \ only \ to \ R_2$$

Cartesian Product

Combining two relations

$$R_1(a_1, ..., a_n)$$
 and $R_2(b_1, ..., b_m)$

$$R_1 \times R_2 = \{ t \mid t_1 \in R_1 \land t_2 \in R_2 \}$$

$$\land t.a_1 = t_1.a_1 \dots \land t.a_n = t_1.a_n$$

$$\land t.b_1 = t_2.b_1 \dots \land t.b_m = t_2.b_m \}$$

SELECT DISTINCT *
FROM R₁, R₂

θ-Join

■ Combining two relations R_1 and R_2 on a condition c

$$R_1 \otimes_c R_2 = \sigma_c (R_1 \times R_2)$$

Students $\otimes_{\text{Students.sid}=\text{Enrolled.sid}}$ Enrolled

```
SELECT DISTINCT *
FROM Students, Enrolled
WHERE Students.sid =
Enrolled.sid
```

SELECT DISTINCT *
FROM Students
INNER JOIN Enrolled ON
Students.sid=Enrolled.sid

The Equi-Join

■ Combines two relations on a condition composed only of equalities of attributes of the first and second relation and projects only one of the redundant attributes (since they are equal)

$$R_1 \otimes_{E(c)} R_2$$

Courses

cid	cname
Alg1	Algorithms1
DB1	Databases1
DB2	Databases2

 $\bigotimes_{E(Courses.cid}$ = Enrolled.cid)

LILI	Lillollea		
sid	cid	grade	
1234	Alg1	9	
1235	Alg1	10	
1234	DB1	10	
1234	DB2	9	
1236	DB1	7	

Furalled

cname	sid	cid	grad
Algorithms1	1234	Alg1	9
Algorithms1	1235	Alg1	10
Databases1	1234	DB1	10
Databases2	1234	DB2	9
Databases1	1236	DB1	7

The Natural Join

■ Combines two relations on the equality of the attributes with the same names and projects only one of the redundant attributes

$$R_1 \otimes R_2$$

Courses

cid	cname
Alg1	Algorithms1
DB1	Databases1
DB2	Databases2

Enrolled

sid	cid	grade
1234	Alg1	9
1235	Alg1	10
1234	DB1	10
1234	DB2	9
1236	DB1	7

cname	sid	cid	grad
Algorithms1	1234	Alg1	9
Algorithms1	1235	Alg1	10
Databases1	1234	DB1	10
Databases2	1234	DB2	9
Databases1	1236	DB1	7

Division

- Not supported as a primitive operator, but useful
- Let R_1 have 2 fields, x and y; R_2 have only field y:

$$R_1/R_2 = \{ \langle x \rangle \mid \exists \langle x,y \rangle \in R_1 \quad \forall \langle y \rangle \in R_2 \}$$

i.e., R_1/R_2 contains all x tuples such that for every y tuple in R_2 , there is an xy tuple in R_1 .

Or: If the set of y values associated with an x value in R_1 contains all y values in R_2 , the x value is in R_1/R_2 .

■ In general, x and y can be any lists of fields; y is the list of fields in R_2 , and $x \cup y$ is the list of fields of R_1 .

Expressing R₁/R₂ Using Basic Operators

- Division is not essential op; just a useful shorthand.
 - (Also true of joins, but joins are so common that systems implement joins specially.)
- *Idea*: For R_1/R_2 , compute all x values that are not `disqualified' by some y value in R_2 .
 - x value is *disqualified* if by attaching y value from R_2 , we obtain an xy tuple that is not in R_1 .

```
Disqualified x values: \pi_x ( (\pi_x(R_1) \times R_2) - R_1) R_1/R_2 = \pi_x(R_1) - all disqualified values
```

Renaming

■ If attributes or relations have the same name (for instance when joining a relation with itself) it may be convenient to rename one

$$\rho(R'(N_1 \to N'_1, N_2 \to N'_2), R)$$
 alternative notation: $\rho_{R'(N'1, N'2)}(R)$,

■ The new relation R' has the same instance has R, its schema has attribute N'_{i} instead of attribute N_{i}

Renaming (cont.)

$$\rho(\text{Courses2} (\text{cid} \rightarrow \text{code}, \\ \text{cname} \rightarrow \text{description}), \\ \text{Courses})$$

Courses

cid	cname	credits
Alg1	Algorithms1	7
DB1	Databases1	6
DB2	Databases2	6

Courses2

code	description	credits
Alg1	Algorithms1	7
DB1	Databases1	6
DB2	Databases2	6

SELECT cid as code,

cname as description,

credits

FROM Courses Courses2

Assignment Operation

- The assignment operation ← provides a convenient way to express complex queries.
 - Assignment must always be made to a temporary relation variable

Temp
$$\leftarrow \pi_{\mathsf{x}}(\mathsf{R}_1 \times \mathsf{R}_2)$$

- The result to the right of the \leftarrow is assigned to the relation variable on the left of the \leftarrow .
- May use variable in subsequent expressions.
 - result \leftarrow Temp R_3

Complex Expression

Find names of students enrolled at 'BD1'

Solution 1:
$$\pi_{\text{name}}$$
 ($(\sigma_{\text{cid}='\text{BD1'}}(\text{Enrolled})) \otimes \text{Students}$)

Solution 2:
$$\rho$$
 (Temp₁, $\sigma_{cid='BD1'}$ (Enrolled))
$$\rho$$
 (Temp₂, Temp₁ \otimes Students)
$$\pi_{name}$$
 (Temp₂)

Solution 3: π_{name} ($\sigma_{\text{cid}='\text{BD1'}}$ (Enrolled \otimes Students))

Find names of students enrolled at a 5 credits course

Information about course credits only available in Courses; so need an extra join:

$$\pi_{\text{name}}$$
 ($(\sigma_{\text{credits=5}}(\text{Courses})) \otimes \text{Enrolled} \otimes \text{Students}$)

A more efficient solution:

$$\pi_{\text{name}}$$
 ($\pi_{\text{sid}}(\pi_{\text{cid}}(\sigma_{\text{credits=5}}(\text{Courses})) \otimes \text{Enrolled}) \otimes \text{Students}$)

A query optimizer can find this, given the first solution!

Find students enrolled at a 4 or 5 credits course

• Can identify all 4 or 5 credits courses, then find students who're enrolled in one of these courses:

```
\rho (TempCourses, (\sigma_{\text{credits}=4 \vee \text{credits}=5}(Courses))) \pi_{\text{name}} (TempCourses \otimes Enrolled \otimes Students)
```

- Can also define TempCourses using union!
- What happens if ∨ is replaced by ∧ in this query?

Find students enrolled at a 5 and 4 credits course

■ Previous approach won't work! Must identify students who're enrolled at 4 credits courses, students who're enrolled at 5 credits courses, then find the intersection (note that *sid* is a key for Students):

```
\rho (Temp4, \pi_{sid}(\sigma_{credits=4}(Courses) \otimes Enrolled)) 
 <math>\rho (Temp5, \pi_{sid}(\sigma_{credits=5}(Courses) \otimes Enrolled)) 
 <math>\pi_{name}((Temp4 \cap Temp5) \otimes Students)
```

Find names of students enrolled at all courses

Uses division; schemas of the input relations must be carefully chosen:

$$ρ$$
 (*TempSIDs*, $π_{sid, cid}$ (Enrolled) / $π_{cid}$ (Courses))

$$\pi_{\text{name}}(TempSIDs \otimes \text{Students})$$

Extended Relational Algebra Operations

Generalized Projection

Aggregate Functions

Outer Join

Database modification

Generalized projection

 Extends the projection operation by allowing arithmetic functions to be used in the projection list.

$$\pi_{F1, F2,..., Fn}(R)$$

- *R* is any relational-algebra expression
- Each of F_1 , F_2 , ..., F_n are are arithmetic expressions involving constants and attributes in the schema of R.

Aggregate Functions and Operations

■ **Aggregation function** takes a collection of values and returns a single value as a result.

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

■ **Aggregate operation** in relational algebra

$$\mathcal{G}_{G_1,G_2,...,G_n} \mathcal{G}_{F_1(A_1),F_2(A_2),...,F_n(A_n)} (R)$$

- *R* is any relational-algebra expression
 - G_1 , G_2 ..., G_n is a list of attributes on which to group (can be empty)
 - **Each** F_i is an aggregate function
 - **Each** A_i is an attribute name

Aggregate Operation - Example

Relation *R*:

- Result of aggregation does not have a name
 - Can use rename operation to give it a name
 - For convenience, we permit renaming as part of aggregate operation

Outer Join

- An extension of the join operation that avoids loss of information.
 - Left Outer Join □
 - Right Outer Join
 - Full Outer Join
- Computes the join and then adds tuples form one relation that does not match tuples in the other relation to the result of the join.
- Uses *null* values:
 - null signifies that the value is unknown or does not exist
 - All comparisons involving *null* are (roughly speaking)
 false by definition.

Modification of the Database

■ The content of the database may be modified using the following operations:

- Deletion $R \leftarrow R E$
- Insertion $R \leftarrow R \cup E$
- Updating $R \leftarrow \pi_{F1, F2,..., Fn}(R)$

■ All these operations are expressed using the assignment operator.