Curvi linear Co-ordinate System.

Cartesian co-ordinate system is simple & understand and. convenient in many problems. However due li cestain symmetries, some. Other co-ordinate system may be. convenient la simplify computations. However we must be able lo do calculus in these ex-ordinals system. In the x-y co-ordinate system, the co-ordinate axes are. straight lines. This makes many aspects of calculus. Rather straight forward and simple to understand. For e.g. the unit vectors i and j'are constant and hence immane to differentiation. If the. co-ordinate ares are not straight lines, we call. the Co-ordinate system enovidinear. However me. must have. a one-one correspondence from any. Co-ordinate system to the cartesian system. Let (u, v) be a curvilinear co-ordinate system. bre. must be. able. to write a and y in terms of u and v. i.e. we have functions u(u,v)and y(u, v). Mow if we keep v constant end only change u, we will trace a curre in the n-y plane. These curves are denoted by the constant value of V Like wise if we keep u-umt and change v we trace. on ther set of curver.

(2)

Now if we increase u by an ammount dup, we will generate an infinetismal xector displacement in the. n-y plane. given by (see above figure) $\overrightarrow{dlu} = \frac{\partial n}{\partial u} du \, \hat{u} + \frac{\partial y}{\partial u} du \, \hat{j}$

 $= \left(\frac{\partial x}{\partial u} \hat{i} + \frac{\partial y}{\partial u} \hat{j}\right) du$

Similably if we increase v by an amount du keeping a const, we will generalé an infiniterinal. displacement

 $d\hat{l}_{V} = \left(\frac{\partial x}{\partial V}\hat{i} + \frac{\partial y}{\partial V}\hat{j}\right)dV$

We will concentrate on those co-ordinate system (u,v) which has du and dv orthogonal.

Now $|du| = \sqrt{\left(\frac{\partial u}{\partial u}\right)^2 + \left(\frac{\partial y}{\partial u}\right)^2}$ $du = h_u du$

and $|d|| = \sqrt{\frac{2x}{2y}} + (\frac{2y}{2y})^2 dv = h_y dv$.

So the unit nectors along dhe and dhe are.

 $\hat{u} = \frac{\partial \hat{u}}{\partial \hat{u}} = \frac{1}{h_u} \left(\frac{\partial x}{\partial u} \hat{i} + \frac{\partial y}{\partial u} \hat{j} \right)$

 $\hat{V} = \frac{d\hat{\ell}_{V}}{|d\hat{\ell}_{V}|} = \frac{1}{h_{V}} \left(\frac{\partial \lambda}{\partial V} \hat{i} + \frac{\partial y}{\partial V} \hat{j} \right)$

bre can extend this to three or higher dimension.

All the three types of differentiation, Gradient, divergence and curl can be expressed in terms. of the function of the thurstone.

Eg: Polar Co-ordinates.

Here.
$$n = r \cos \theta$$
. $0 \le \theta \le 2\pi$

$$y = r \sin \theta.$$

$$\vec{d}_{s} = \left(\frac{\partial n}{\partial r}\hat{i} + \frac{\partial y}{\partial s}\hat{j}\right)dr$$

$$\vec{d}_{\theta} = \left(\frac{\partial n}{\partial \theta}\hat{i} + \frac{\partial y}{\partial \theta}\hat{j}\right)d\theta$$

$$\vec{dl}_{q} = \left(\cos \hat{i} + \sin \hat{0} \hat{j} \right) d\vec{r}$$

$$\vec{dl}_{\theta} = \left(-r \sin \hat{0} \hat{i} + r \cos \hat{0} \hat{j} \right) d\theta$$

$$\vec{dl}_{\theta} = \left(-r \sin \hat{0} \hat{i} + r \cos \hat{0} \hat{j} \right) d\theta$$

$$\vec{dl}_{\theta} = dr \Rightarrow h_{\theta} = 1$$

$$\vec{dl}_{\theta} = r d\theta \Rightarrow h_{\theta} = r$$

$$\vec{r} = \frac{1}{h_{\theta}} \left(Gr \hat{0} \hat{i} + Sin \hat{0} \hat{j} \right) = Gr \hat{0} \hat{i} + Sin \hat{0} \hat{j}$$

$$\vec{\theta} = \frac{1}{h_{\theta}} \left(-r \sin \hat{0} \hat{i} + r \cos \hat{0} \hat{j} \right) = -sin \hat{0} \hat{i} + co \hat{0} \hat{j}$$

Sphenical Pólar co-ordinate.:

Venify that

if = sind wood it sind sind it wook

if = cond wood it cond sind it - Sind k

if = - Sind it + cond if

if = - Sind it + cond if

 $0 \le \theta < \pi$ and $0 \le \phi < 2\pi$

Note that in both there co-ordinate systems the unit vectors $\hat{\gamma}$, \hat{o} , $\hat{\phi}$ depends upon the co-ordinales. So que differentiations like $\frac{\partial \hat{x}}{\partial \theta}$, $\frac{\partial \hat{\phi}}{\partial \theta}$ etc are. nm-zero. For $e \cdot g$. $\frac{\partial \hat{y}}{\partial \theta} = \hat{\theta}$, $\frac{\partial \hat{\theta}}{\partial \theta} = -\hat{\gamma}$ Gradient: Let F(r, 0, p) be a scalar function. Then. $dF = \frac{\partial F}{\partial r} dr + \frac{\partial F}{\partial \theta} d\theta + \frac{\partial F}{\partial \phi} d\phi - \Gamma$ increments dr, do, do corresponds to an infinetisimal displace ment rector. de = h, dr 8 + hodo o + h, d + + Let the components of $\overrightarrow{T}F$ along \overrightarrow{r} , $\overrightarrow{0}$ and $\overrightarrow{\phi}$ be $(\overrightarrow{\nabla}F)_{\gamma}$, $(\overrightarrow{\nabla}F)_{0}$ and. (VF) . dF = PF. di = (PF), hydr + (PF), hodo + (PF), hodo

Comparing I and II we get $(\nabla F)_{\gamma} = \frac{1}{h_{\gamma}} \frac{\partial F}{\partial \gamma} , \quad (\nabla F)_{0} = \frac{1}{h_{0}} \frac{\partial F}{\partial 0} , \quad (\nabla F)_{\phi} = \frac{1}{h_{\phi}} \frac{\partial F}{\partial \phi}$ $h_{\gamma} = 1, \quad h_{0} = \gamma^{\delta} , \quad h_{\phi} = \gamma \sin \theta$ $\vdots \quad \overrightarrow{\nabla} F = \widehat{\gamma} \frac{\partial F}{\partial \gamma} + \widehat{0} \frac{1}{\gamma} \frac{\partial F}{\partial \theta} + \widehat{\phi}_{\gamma \sin \theta} \frac{\partial F}{\partial \phi}$

The. three. surface elements

are.

hohododor

= r Sinododor

on the surface r = constant.

hrhodrdo = rdrdo on the surface. \$= constant

hyhodydp = rsinodrdo

on the surface 0 = constant

Using these we. Can evaluate the expression for divergence. and the cust. There are. $\vec{\nabla} \cdot \vec{A} = \frac{1}{\gamma^2} \frac{\partial}{\partial \gamma} \left(\gamma^2 A_{\gamma} \right) + \frac{1}{\gamma \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta A_{\theta} \right) + \frac{1}{\gamma \sin \theta} \frac{\partial}{\partial \phi} \left(A_{\theta} \right)$

 $\vec{\nabla}_{x} \vec{A} = \frac{1}{\gamma sim\theta} \left[\frac{\partial}{\partial \theta} \left(sim\theta A_{\phi} \right) - \frac{\partial A_{\theta}}{\partial \phi} \right] \hat{x} + \frac{1}{\gamma} \left[\frac{1}{sim\theta} \frac{\partial A_{\gamma}}{\partial \phi} - \frac{\partial}{\partial \gamma} (\gamma A_{\phi}) \right] \hat{\theta}$ $+ \frac{1}{\gamma} \left[\frac{\partial}{\partial \gamma} (\gamma A_{\theta}) - \frac{\partial A_{\gamma}}{\partial \theta} \right] \hat{\phi}$

And the Laplacian is

 $\nabla^2 F = \frac{1}{\gamma^2} \frac{\partial}{\partial r} \left(\gamma^2 \frac{\partial F}{\partial r} \right) + \frac{1}{\gamma^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial F}{\partial \theta} \right) + \frac{1}{\gamma^2 \sin^2 \theta} \frac{\partial^2 F}{\partial \phi^2}$

Co-ordinate. System Cy lindrical

This system specifies a point with three parameters (5, 4, 2) s = distance from z-axis d= angle made by projection of ? on the 2-y plane with the Z = the z - co-ordinate.

n= s cos \$, } = s sin \$, The infiniterimal length elements are.

 $|\vec{dl}\phi| = s d\phi \implies h\phi = s$ $|\vec{dl}\phi| = s d\phi \implies h\phi = s$

The unit rectors. are.

 $\hat{S} = \cos \phi \hat{i} + \sin \phi \hat{j},$ $\hat{\phi} = -\sin \phi \hat{i} + \cos \phi \hat{j},$ 至二度

The volume element is dV= Gradient: $\vec{\mathcal{T}} F = \hat{s} \frac{\partial F}{\partial s} + \hat{\phi} \frac{\partial F}{\partial \phi} + \hat{z} \frac{\partial F}{\partial z}$

Divergence: $\vec{\nabla} \cdot \vec{A} = \frac{1}{s} \frac{\partial}{\partial s} (sAs) + \frac{1}{s} \frac{\partial A\phi}{\partial \phi} + \frac{\partial V_2}{\partial z}$

Curl: $\overrightarrow{\nabla} \times \overrightarrow{A} = \left(\frac{1}{S} \frac{\partial A_2}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z}\right) \hat{S} + \left(\frac{\partial A_S}{\partial z} - \frac{\partial A_Z}{\partial S}\right) \hat{\phi} + \frac{1}{S} \left(\frac{\partial}{\partial S}(SA_{\phi}) - \frac{\partial A_S}{\partial \phi}\right) \hat{z}$

Laplacian: $\nabla^2 F = \frac{1}{s} \frac{\partial}{\partial s} \left(s \frac{\partial F}{\partial s} \right) + \frac{1}{s^2} \frac{\partial^2 F}{\partial \phi^2} + \frac{\partial^2 F}{\partial z^2}$

Egst)
$$F = \frac{z^2}{\lambda^2 + \gamma^2 + z^2}$$
 Find $\overrightarrow{\nabla} F$

In spherical polar co-ordinates

 $z^2 + \gamma^2 + z^2 = \gamma^2$ and $z = \gamma$ (so 0

i. $F := \frac{\gamma^2 G_2^2 O}{\gamma^2} := G_2^2 O$

i. $\overrightarrow{\nabla} F = \widehat{O} \left(\frac{1}{\gamma} \frac{\partial F}{\partial \theta} \right) = \widehat{O} \frac{-2 G_3 O S in \theta}{\gamma} := \widehat{O} \frac{S in 2 O}{\gamma}$

Eq. 2) $\overrightarrow{A} := \gamma^m \widehat{\gamma}$
 $\overrightarrow{\nabla} \cdot \overrightarrow{A} := \frac{1}{\gamma^2} \frac{\partial}{\partial \gamma} \left(\gamma^2 \cdot \gamma^n \right) = (n+2) \gamma^{n-1}$

Evaluate $f \overrightarrow{A} \cdot \overrightarrow{Ja} := Over the surface of a .

Sphere of Eads in a .

On the surface of the sphere the masurface elements are along $\widehat{\gamma}$ and \widehat{Ja} is given as

 $\overrightarrow{Ja} := \overrightarrow{Olo} \times \overrightarrow{Jl}_{\Phi} := OdO \widehat{O} \times Occup Ode \widehat{\gamma}$
 $= Olo \times \overrightarrow{Jl}_{\Phi} := Occup Ode \widehat{\gamma}$
 $= Olo \times \overrightarrow{Jl}_{\Phi} := Occup Ode \widehat{\gamma}$
 $= Olo \times \overrightarrow{Jl}_{\Phi} := Occup Ode Ode$
 $= Occup Ode Ode$
 $= Olo \times \overrightarrow{Jl}_{\Phi} := Occup Ode Ode$
 $= Occup Ode$
 $= Occup Ode Ode$
 $= Occup Ode Ode$
 $= Occup Ode$
 $= Occup Ode$
 $= Occup Ode$$

 $\overrightarrow{\nabla} \times \overrightarrow{A} = -\frac{\partial}{\partial z} \overrightarrow{S} + \frac{1}{S} \frac{\partial}{\partial S} \left(S A \phi \right) \widehat{Z} = \frac{1}{S} \frac{\partial}{\partial S} \left(-S^2 \right) \widehat{Z} = -2\widehat{Z}$

Evaluate
$$\int \vec{A} \cdot d\vec{l}$$
 where C is the semicircle possing through $(-\alpha, 0)$, $(0, \alpha)$ and $(\alpha, 0)$

$$\vec{A} = \alpha d\phi \hat{\phi}$$

$$\vec{A} \cdot \vec{A} = \int (-\alpha \hat{\phi}) \cdot (\alpha d\phi \hat{\phi})$$

$$+\pi + \pi$$

$$= \int_{-\alpha^2}^{0} d\phi = -\alpha^2 \left[0 - (+\pi)\right] = \phi \pi \alpha^2$$