3.2.5

Вынужденные колебания в электрическом контуре Егор Берсенев

1 Цель работы

Исследование вынужденных колебаний и процессов их установления

2 Оборудование

Генератор звуковой частоты, осциллограф, вольтметр, частотомер, ёмкость, индуктивность, магазин сопротивлений, универсальный мост.

3 Теоретическая часть

При подключении к колебательному контуру внешнего источника, в нем возникают колебания, которые можно представить как суперпозицию двух синусоид: первая, с частотой собственных колебаний и амплитудой, экспоненциально убывающей со временем, вторая с частотой внешнего источника и постоянной амплитудой. Со временем внешние колебаний «забивают» собственные, и в контуре устанавливаются только внешние колебания. Амплитуда таких колебаний максимальна при совпадении их частоты с собственной частотой контура. Зависимость амплитуды установившихся колебаний от частоты носит название резонансной кривой. Для исследования резонансной кривой будем снимать зависимость напряжения на резисторе R от частоты при постоянной амплитуде. По этим данным построим резонансную кривую. Её ширина определяет важную характеристику — добротность. Добротность можно определить и другим способом. Например, по скорости нарастания амплитуды вынужденных колебаний. Нарастание и затухание колебаний можно наблюдать если на контур подаются цуги. Количественные оценки в таком случае можно получить, рассчитав логарифмический декремент затухания.

4 Ход работы

Соберем экспериментальную установку:

Егор Берсенев 1

4.1 Исследование резонасных кривых

$\mathrm{R}=0~\mathrm{Om}$						
f	U	f/f_0	u/u_0			
1463	2,33	0,943	0,222			
1479	2,83	0,953	0,269			
1490	3,33	0,960	0,316			
1496	3,67	0,964	0,348			
1506	4,33	0,970	0,411			
1505	4,33	0,970	0,411			
1515	5,33	0,976	0,506			
1517	5,67	0,977	0,538			
1522	6,33	0,981	0,601			
1533	8,33	0,988	0,791			
1538	9,33	0,991	0,886			
1541	9,67	0,993	0,918			
1552	10,53	1,000	1,000			
1562	9,33	1,006	0,886			
1566	8,67	1,009	0,823			
1573	7,33	1,014	0,696			
1578	6,67	1,017	0,633			
1586	5,67	1,022	0,538			
1593	5,00	1,026	0,475			

R = 100 Om							
f	U	f/f_0	u/u_0				
1597	2,8	1,03	0,93				
1608	2,7	1,04	0,90				
1629	2,5	1,05	0,83				
1680	2,2	1,08	0,73				
1685	2	1,08	0,67				
1712	1,8	1,10	0,60				
1746	1,6	1,12	0,53				
1767	1,5	1,14	0,50				
1821	1,3	1,17	0,43				
1951	1	1,26	0,33				
2136	0,8	1,38	0,27				
3172	0,5	2,04	0,17				
1553	3	1,00	1,00				
1520	2,7	0,98	0,90				
1502	2,6	0,97	0,87				
1485	2,4	0,96	0,80				
1469	2,2	0,95	0,73				
1455	2	0,94	0,67				
1438	1,8	0,93	0,60				
1418	1,6	0,91	0,53				
1408	1,5	0,91	0,50				
1383	1,3	0,89	0,43				
1352	1,1	0,87	0,37				
1332	1	0,86	0,33				
1288	0,8	0,83	0,27				
1225	0,6	0,79	0,20				

$$R=0\ O_{M}$$

Егор Берсенев 2

$$R = 100 \text{ Om}$$

4.2 Процессы установления и затухания колебаний

Сделаем измерения:

R = 0 Om				R = 100 Om	
n	5	6	8	3	2
V_n	0.2	0.08	0.4	0.03	0.08
V_{k+n}	0.3	0.27	0.28	0.1	0.11
V_0	0.31	0.31	0.31	0.12	0.12
V_m	0.15	0.1	0.2	0.06	0.12
V_{k+m}	0.1	0.06	0.1	0.02	0.05

Теоретическая добротность:
$$Q=\frac{1}{R}\sqrt{\frac{L}{C}} \implies Q_0=45.59, \quad Q_{100}=8.22$$
 Добротность по графику: $Q_0=34.58, \quad Q_{100}=7.12$

Добротность по огибающим: $Q_0 = 38.74$, $Q_{100} = 7.82$

5 Вывод

В колебательном контуре, подключенном к источнику синусоидального напряжения, через некоторое время собственные колебания затухают. Наибольшие по амплитуде вынужденные колебания наблюдаются при совпадении собственной и вынуждающей частоты.

3 Егор Берсенев