DISCIPLINA: GEOMETRIA ANALÍTICA

LISTA DE EXERCÍCIOS

- 1) Determine os valores de a e b para que a igualdade $\begin{pmatrix} a+4 & b^3 \\ 10 & 7 \end{pmatrix} = \begin{pmatrix} 2a & b \\ 10 & 7 \end{pmatrix}$ seja verdadeira.
- 2) Construir as matrizes quadrada $A = (a_{ij})$ e $B = (b_{ij})$ de ordem 3, tais que

$$a_{ij} = \begin{cases} i - j & \text{se } i < j \\ i + j & \text{se } i > j \end{cases}.$$
$$2i - j^2 & \text{se } i = j \end{cases}$$
$$b_{ij} = \begin{cases} i + 2j, \text{se } i \neq j \\ i - 3j, \text{se } i = j \end{cases}$$

- 3) Dadas as matrizes $A = \begin{pmatrix} 3 & 1 \\ 4 & -2 \end{pmatrix} e$ $B = \begin{pmatrix} x+y & x-y \\ 1 & -2 \end{pmatrix}$, determine x e y para que $A = B^t$.
- 4) Se $\begin{pmatrix} 3 & -1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 4 \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, determine o valor de x e y.
- 5) Determine os valores de $m, n, p \in q$ de modo que: $\binom{m}{p} \binom{2m}{q} + \binom{n}{1} \binom{-n}{1} = \binom{7}{1} \binom{8}{1} \binom{n}{1}$
- 6) Resolva a equação matricial: $\begin{bmatrix} -1 & 4 & 5 \\ 0 & 2 & 7 \\ 1 & -1 & -2 \end{bmatrix} + \begin{bmatrix} 3 & 5 & 2 \\ -1 & 5 & 3 \\ 4 & 2 & 2 \end{bmatrix} = x + \begin{bmatrix} 2 & 7 & 2 \\ 8 & -1 & -3 \\ -1 & 9 & 5 \end{bmatrix}.$
- 7) Considere as matrizes

$$A = \begin{pmatrix} 3 & 1 \\ 4 & 2 \\ 5 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 3 & 1 \\ 5 & 4 & 2 \end{pmatrix}, C = \begin{pmatrix} 1 & 4 \\ 2 & 7 \end{pmatrix}, D = \begin{pmatrix} 1 & 3 & 0 \\ 5 & 2 & 1 \\ -1 & 1 & 4 \end{pmatrix}.$$
 Quando possível,

resolva, no caso em que não for possível resolver, justifique. Multiplique as matrizes

- a) $A \times B$
- b) $A \times C$
- c) $A \times D$
- d) A^2
- e) $A \times C$
- f) $B \times A$
- g) $C \times B$
- h) $A \times D$
- i) $D \times B$

j)
$$D \times A$$

k)
$$B \times D$$

8) Efetue:

a)
$$\begin{pmatrix} 5 & -3 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$
 b) $\begin{pmatrix} 5 & 2 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 2 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & 2 \end{pmatrix}$

9) Considere a matriz quadrada
$$A = \begin{pmatrix} 2 & 5 & 9 \\ 4 & 7 & 1 \\ 3 & 6 & 2 \end{pmatrix}$$
.

Calcular $A + A^t$ e verifique se esse resultado é uma matriz simétrica Determine o valor de x, tal que $AB^t = 0$. $A = [x \ 4 - 2]$, $B = [2 - 3 \ 5]$. Se $A \in B$ são duas matrizes tais que $AB = \overline{0}$, então $A = \overline{0}$ ou $B = \overline{0}$? Se $AB = \overline{0}$, então $BA = \overline{0}$?

Encontre o valor de cada determinante abaixo.

$$A = \begin{pmatrix} 1 & 0 & 2 & 4 \\ 4 & 2 & 8 & -7 \\ -3 & 8 & -6 & 9 \\ 5 & 6 & 10 & 6 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 3 & 4 & -1 \\ 0 & 0 & 2 & 0 \\ 3 & -1 & 1 & 1 \\ -1 & 0 & 2 & 3 \end{pmatrix}$$

$$C = \begin{pmatrix} 2 & 4 & 1 & 0 \\ 6 & -2 & 5 & 7 \\ -1 & 7 & 2 & 4 \\ 0 & 3 & -1 & -10 \end{pmatrix} \qquad F = \begin{pmatrix} 2 & 4 & 3 \\ 5 & 2 & 1 \\ -3 & 7 & -1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16 \end{pmatrix}$$