Catania 08 Febbraio 2012

Per la prova in itinere svolgere i problemi 1, 2, 3 (tempo 2h) Per la prova completa svolgere i problemi 2, 3, 4, 5 (tempo 3h)

Problema n.1 Un bombardiere in picchiata con un angolo di 56° rispetto alla verticale, lascia cadere una bomba dall'altezza di 730 m per colpire un bersaglio che si trova ad una distanza orizzontale di 500 m dal punto di sgancio. La bomba colpisce il suolo 5.10 s più tardi mancando il bersaglio. Determinare:

- 1. Il modulo della velocità del bombardiere.
- 2. La distanza orizzontale a cui la bomba tocca terra rispetto al bersaglio.
- 3. L'angolo della velocità al suolo rispetto all'orizzontale.

Problema n.2 Due corpi sono collegati da un filo come in figura; le masse valgono m_1 =14kg, m_2 =2kg, l'angolo di inclinazione del piano è 9=30°. Il corpo m_2 è anche legato al suolo da una molla di costante elastica k=100N/m e lunghezza a riposo nulla. Nella situazione della figura l'allungamento della molla è l=0.2 m e il sistema è in quiete perché m_1 è bloccato da un appoggio.

- 1. Calcolare la tensione del filo e la componente parallela al piano inclinato della reazione dell'appoggio.
- 2. Se ad un certo istante viene levato l'appoggio, calcolare l'accelerazione iniziale del sistema e quale sarà la massima estensione della molla. Si supponga trascurabile ogni attrito.

Problema n.3 Un'asta di massa m=3kg e lunghezza l=30cm è inizialmente ferma su un piano orizzontale liscio. Due punti materiali di masse m_1 =2kg e m_2 =1kg si muovono con la stessa velocità v_0 =4m/s secondo la direzione e versi indicati in figura. Ad un certo istante entrambi urtano l'asta rispettivamente a distanza d_1 =10cm e d_2 =5cm dal centro dell'asta e vi rimangono attaccati. L'asta è libera di muoversi sul piano. Determinare:

- 1. La velocità di traslazione del sistema dopo l'urto;
- 2. La velocità angolare del sistema dopo l'urto.

Problema n.4 Un serbatoio è riempito d'acqua fino all'altezza H. Un foro è praticato su una delle pareti laterali ad un profondità h dalla superficie dell'acqua. Determinare:

- 1. La distanza dal piede della parete alla quale il getto d'acqua uscente dal foro urta il pavimento.
- 2. A che profondità bisognerebbe fare un foro affinché il getto uscente cada al suolo il più lontano possibile dal fondo del serbatoio.

Problema n.5 Due moli di un gas ideale biatomico passano dallo stato termodinamico A, T_A =400 K, allo stato B, T_B =300K, tramite una espansione adiabatica reversibile e successivamente allo stato C, T_C =100 K, tramite una trasformazione isocora reversibile. Si determini per il processo ABC:

- 1. Il diagramma delle trasformazioni nel piano pV;
- 2. Il lavoro compiuto dal gas;
- 3. La quantità di calore scambiata, in modulo e segno;
- 4. La variazione di entropia del sistema;
- 5. La variazione di energia interna del sistema.

Catania 29 Febbraio 2012

Per la prova completa svolgere i problemi 1, 2, 3, 4 (tempo 3h)

Problema n.1 Due ragazzini giocano a colpire una scatoletta con una biglia sparata da un fucile a molla fissato su un tavolo. La scatoletta si trova a una distanza orizzontale di 2.20 m dalla bocca del fucile (vedi figura). Barbara comprime la molla di 1.10 cm, ma il tiro risulta corto di 27.0 cm. Di quanto dovrà comprimerla Roberto per fare centro?

Problema n.2 Una fune leggera è avvolta attorno a un cilindro pieno di massa m_1 =25 kg e raggio 8 cm. La fune passa su una puleggia di massa trascurabile e priva di attrito e sostiene un corpo di massa m_2 = 5 kg (vedi figura). Il piano su cui si muove il cilindro è inclinato di 30° rispetto all'orizzontale. Supponendo che il cilindro rotoli senza strisciare, si determini:

- 1. L'accelerazione del centro di massa del cilindro;
- 2. La tensione della fune.

(Suggerimento: si osservi che il rotolamento di un angolo ϕ del cilindro corrisponde ad uno spostamento del contrappeso m_2 di $2R\phi$)

Problema n.3 Si considerino i seguenti dati: massa della Terra M_T =5.97x10²⁴ kg, raggio medio della Terra R_T =6.37x10⁶ m, massa della Luna M_L =7.35x10²² kg, raggio medio della Luna R_L =1.74x10⁶ m, distanza media Terra-Luna R_{TL} =3.84x10⁸ m, costante di gravitazione universale G=6.67x10⁻¹¹ Nm² /kg² . Si determini:

- 1. assumendo la Terra fissa e l'orbita della Luna circolare, la velocità lineare e la velocità angolare della Luna lungo l'orbita e il periodo di rivoluzione della Luna attorno alla Terra.
- 2. il valore dell'accelerazione di gravità sulla superficie della Luna confrontandolo con quello sulla superficie della Terra;
- 3. il valore della velocità di fuga sulla superficie della Luna. È questa velocità sufficiente per allontanarsi indefinitamente anche dalla Terra?

Problema n.4 Un motore termico fa compiere a 1 mole di un gas ideale monoatomico il seguente ciclo: la trasformazione AB è isocora, quella BC adiabatica e quella CA isobara, con T_A =300 K, T_B =600 K, T_C =455 K. Determinare:

- 1. Il diagramma pV del ciclo.
- 2. Il calore, il lavoro e la variazione di energia interna per ciascuno dei tre processi e per l'intero ciclo.
- 3. Sapendo che nello stato A la pressione vale 1 atm, si determini la pressione del gas negli stati B e C.
- 4. La variazione di entropia del gas per ciascuno dei tre processi e per l'intero ciclo.

Catania 27 giugno 2012

per la prova in itinere svolgere i problemi 3, 4, 5; per la prova completa svolgere i problemi 1, 2, 4, 5.

Problema n.1

La figura seguente mostra un progetto per una montagna russa. Ciascun veicolo parte da fermo da un punto A e può scivolare sulle rotaie con attrito trascurabile. Ai fini della sicurezza è necessario che ci sia una minima forza normale esercitata dalle rotaie sul veicolo in tutti i punti per percorso, altrimenti il veicolo potrebbe abbandonare le rotaie. Qual è il valore minimo del raggio di

curvatura di sicurezza nel punto B? Utilizzare i dati indicati in figura. Calcolare inoltre la distanza x di arresto che il veicolo avrebbe se dopo essere giunto a terra proseguisse salendo un piano inclinato di θ =15° rispetto all'orizzontale e con coefficiente di attrito dinamico tra il veicolo e le rotaie pari a μ =0.1.

Problema n.2

Un sistema come quello indicato in figura è rilasciato da fermo con la molla (K=20 N/m) alla sua lunghezza di equilibrio (né stirata, né compressa). La puleggia è un disco di massa M= 11 kg e raggio R=30 cm. Se l'attrito sul piano inclinato di 37° è trascurabile:

- b) Quale sarà la velocità del corpo di massa 2 kg dopo che sarà scivolato di 1m sul piano inclinato?
- c) Qual è la sua velocità massima e quanto spazio avrà percorso nell'istante in cui avrà raggiunto tale valore?

Problema n.3

Un piccolo tubo è piegato a forma di cerchio di raggio r e giace in un piano verticale. Due liquidi con densità ρ e σ (ρ > σ) riempiono mezzo cerchio con volumi uguali (vedi figura). Determinare l'angolo con la verticale che il raggio forma passando per l'interfaccia tra i due liquidi.

Problema n.4

Una mole di gas perfetto biatomico esegue il seguente ciclo reversibile: dallo stato A con p_A =5atm si espande isobaricamente fino allo stato B con V_B =10 I, assorbendo una quantità di calore Q=8754 J; si porta allo stato C con p_C =2.4atm con un processo isocoro; il gas viene compresso fino allo stato D con una trasformazione isoterma; il gas viene infine compresso fino a ritornare nello stato di partenza A con una trasformazione adiabatica. Si richiede di:

- a) Disegnare il ciclo in un diagramma p-V;
- b) Determinare le temperature nei punti A, B, C, D;
- c) Determinare il rendimento η del ciclo.

Problema n.5

Un recipiente contenente una massa di acqua (M=1 kg) alla temperatura T_0 =20°C viene posto su un fornello elettrico alla temperatura T_1 =400°C. L'acqua viene portata all'ebollizione e comincia ad evaporare, si consideri che il contenitore è chiuso. Calcolare la variazione di entropia del sistema (fornello+acqua+vapore) quando sono evaporati m= 100 g di acqua, trascurando l'eventuale condensazione del vapore sulle pareti del contenitore.

(NOTA: si adoperino per il calore latente di vaporizzazione dell'acqua λ_v = 2.26 × 10⁶ J/kg, per il calore specifico dell'acqua c_a = 4186.6 J/K kg e per il calore specifico del vapore d'acqua c_v =1952 J/K kg.)

Catania, 12 settembre 2012

per la prova in itinere svolgere i problemi 3, 4, 5; per la prova completa svolgere i problemi 1, 2, 3, 4.

Problema n.1

Lungo un piano inclinato di un angolo $\vartheta=15^\circ$ vengono fatti scendere due cubi di uguale massa m=1,70~kg, con diverso coefficiente di attrito (sia statico che dinamico) con il piano: $\mu_1=0,50$ per il cubo 1 a valle, e $\mu_2=0,25$ per il cubo 2 a monte (vedi Figura 1). I cubi, inizialmente fermi e distanti d=105~cm, vengono liberati simultaneamente all'istante t=0. Ad un certo istante t_c collidono, rimanendo attaccati dopo la collisione. Calcolare:

Figura 1

- 1. l'istante di tempo t_C in cui avviene l'urto;
- 2. la velocità del sistema dei due cubi attaccati immediatamente dopo l'urto (si assuma, in prima approssimazione, che tutte le forze esterne siano assai minori della forza impulsiva sviluppata nell'urto).

Problema n.2

Una sbarra uniforme di massa m=1,25~kg e lunghezza l=154~cm e sospesa ad un perno con asse di rotazione orizzontale collocato ad una delle estremità. L'asta è inizialmente a riposo in posizione orizzontale e viene lasciata andare (Fig. 2a). Quando raggiunge la posizione verticale, l'asta si spezza in corrispondenza del suo punto centrale (Fig. 2b). La metà superiore è collegata al perno continua a ruotare, mentre quella inferiore cade sotto l'azione della gravità (Fig. 2c). Si assuma che la rottura avvenga senza generazione di forze impulsive, e si trascurino tutti gli attriti. Calcolare:

- 1. il momento di inerzia dell'asta (prima della rottura) attorno all'asse di rotazione;
- 2. la velocità angolare dell'asta immediatamente prima della rottura;
- 3. l'angolo massimo rispetto alla verticale a cui si porta la metà dell'asta superiore dopo la rottura (vedi Fig. 2c);
- 4. la velocità del centro di massa del frammento inferiore e l'energia cinetica totale per il frammento inferiore immediatamente dopo la rottura.

Problema n.3

Una mole di gas perfetto biatomico descrive il seguente ciclo: una isocora irreversibile AB ottenuta ponendo il gas, inizialmente nello stato A, a contatto termico con una sorgente a $T_B = 731~K$; una isoterma reversibile BC e una isobara reversibile CA in cui $V_O/V_A=2,84$.

- 1. rappresentare il ciclo in un diagramma pV;
- 2. determinare la temperatura T_A nel punto A;
- 3. determinare il rendimento η del ciclo;
- 4. determinare la variazione di entropia dell'universo in un ciclo.

Problema n.4

Un tubo di massa M=11,90~kg, sezione $A=184~cm^2$ e lunghezza l=196~cm è sigillato con un tappo in corrispondenza della sua estremità superiore, mentre l'estremità inferiore è aperta. Il tubo contiene inizialmente aria alla pressione atmosferica $p_0=1~bar$, occupante l'intero volume Al (Fig.4a). Il tubo viene quindi appoggiato su una superficie di acqua con massa volumica $p=1000~kg/m^3$ e quindi, mantenendolo verticale, immerso fino al raggiungimento della posizione di equilibrio. In questo processo l'aria presente all'interno viene compressa (Fig. 4b). Calcolare, in condizioni di equilibrio:

- 1. la pressione *p* dell'aria nel tubo;
- 2. la differenza di livello d tra la superficie dell'acqua all'esterno del tubo e all'interno;
- 3. (QUESITO FACOLTATIVO) la lunghezza b della parte di tubo che rimane emersa fuori dall'acqua.

Problema n.5

Un gas biatomico è contenuto dentro un cilindro con pistone di area $S=200~cm^2$ e peso trascurabile collegato tramite una molla a un sostegno rigido. Inizialmente il volume del gas è $V_0=5~l$, la pressione è pari a quella esterna $p_0=1~atm$ (la molla è cioè nella sua posizione di riposo) e la temperatura è $T_0=-30$ °C. Lasciando il sistema a contatto con l'ambiente esterno, esso si porta alla temperatura ambiente T=27°C e il pistone si solleva di h=2cm.

- 1. Quanto vale la pressione finale *p*?
- 2. Qual' è il valore della costante elastica K della molla?
- 3. Qual è il lavoro *L* compiuto durante la trasformazione? (si noti che la pressione sul gas dipende dall'elongazione della molla).

Catania 19 Dicembre 2012

per la prova completa svolgere i problemi 1, 2, 3, 4.

Problema n.1

Una mela di stacca dal ramo di un albero da un'altezza h=3 m rispetto al suolo; un bambino, distante d=5 m dalla linea di caduta della mela, lancia una freccetta, da un'altezza l=1m, cercando di colpire la mela.

- a) Determinare quale deve essere la direzione di lancio se questo viene effettuato nello stesso istante del distacco della mela;
- b) Determinare la minima velocità di lancio necessaria per colpire la mela prima che essa tocchi terra;
- c) Con una velocità di lancio di v_0 =9 m/s determinare quale deve essere la direzione e l'istante di lancio, rispetto al momento del distacco della mela, per colpirla ad una quota pari ad l.

Problema n.2

Un sistema come quello indicato in figura è costituito da una puleggia cilindrica uniforme di massa

M=2.0~kg e raggio R=30 cm il cui asse di rotazione è orizzontale. Due masse m_1 =4.0 kg e m_2 =3.0 kg sono appese ai due lati di un cavo inestensibile avvolto attorno alla puleggia. Il sistema è all'equilibrio con m_1 che tocca il pavimento e m_2 sospesa. Un corpo di massa m_3 =0.3 kg in caduta verticale colpisce con velocità v_0 =10.0 m/s il corpo di massa m_2 rimanendovi attaccato. Assumendo che il cavo non scivoli attorno alla puleggia, determinare:

- b) L'altezza massima di elevazione da terra del corpo di massa m₁;
- c) La percentuale di energia dissipata nell'urto.

Problema n.3

Un sistema costituito da una certa quantità di elio, gas monoatomico, ha inizialmente pressione di *16 atm*, volume di *1.0 l* e temperatura di *600 K*. Subisce un'espansione quasi-statica a temperatura costante fino a che il volume raggiunge il valore di *40.0 l*, quindi una compressione quasi-statica a pressione costante fino a che temperatura e volume sono tali che una compressione adiabatica quasi-statica è in grado di riportare il gas allo stato iniziale.

- a) Rappresentare questo ciclo in un diagramma PV.
- b) Determinare volume e temperatura dopo la compressione a pressione costante.
- c) Determinare il lavoro compiuto in ogni ramo del ciclo.
- d) Determinare il rendimento del ciclo.

Problema n.4

Due recipienti rigidi di volume rispettivamente V_A e V_B , termicamente isolati, contengono rispettivamente n_A moli di gas monoatomico a pressione p_A e n_B moli di gas biatomico a pressione p_B . I due recipienti sono inizialmente separati da un rubinetto chiuso, la cui apertura causa il mescolamento dei due gas. Dopo che si è raggiunto l'equilibrio, nell'ipotesi che i due gas si comportino come gas perfetti, calcolare:

- a) la temperatura finale;
- b) la pressione finale;
- c) la variazione di entropia del sistema.

