JewelSuite - Programming Assessment Test (PAT)

Description

JewelSuite is a 3D reservoir modeling application for the Oil & Gas industry. The main functionality of this high tech application is building 3D reservoir models to calculate volumes of oil and gas. The screenshot shows a simple example model: 2 horizons (top & base) and a fluid contact (water is below the contact, oil & gas is above the contact).

One of the purposes of the JewelSuite application is to calculate the volumes of the oil and gas in place in a certain reservoir zone. In the above simple example model: the volume **between** the 2 horizons and **above** the fluid contact (also highlighted in the cross section below).

The PAT

Write a **Windows Forms C# application** that calculates the volume of oil & gas between the 2 horizons and above the fluid contact. The user should be able to get the results in one of the following 3 units: cubic meter, cubic feet and barrels.

The dataset

The following data is available:

1. **Top Horizon:** = 2D regular grid format + depth value at every node

Lateral dimension: 16 x 26

Lateral grid cell sizes: 200 x 200 feet!

• The table below lists the 16x26 depth values of the top horizon (specified in feet)

9911	9867	9824	9818	9767	9704	9691	9754	9843	10055	10082	10006	9865	9833	9842	9871
9889	9845	9804	9796	9746	9677	9644	9672	9753	9903	9998	9961	9854	10050	10039	10053
9845	9807	9792	9784	9732	9641	9580	9590	9639	9658	9757	9808	9824	10186	10421	10399
9811	9765	9747	9720	9625	9518	9498	9512	9570	9641	9679	9757	9782	10143	10464	10452
9786	9735	9698	9660	9549	9377	9381	9422	9491	9609	9677	9724	9761	10124	10417	10428
9776	9712	9656	9591	9472	9293	9320	9370	9437	9508	9588	9652	9734	10129	10409	10388
9749	9682	9606	9526	9401	9209	9227	9273	9367	9434	9507	9580	9688	10090	10412	10364
9698	9619	9532	9425	9305	9135	9100	9123	9188	9358	9451	9542	9645	10035	10354	10354
9714	9618	9525	9415	9211	9059	9047	9078	9115	9279	9409	9509	9604	9996	10316	10336
9765	9665	9570	9457	9245	8974	8996	9049	9135	9272	9395	9494	9563	9957	10281	10322
9805	9694	9594	9472	9207	8896	8926	9026	9119	9228	9347	9451	9529	9951	10270	10306
9982	9734	9616	9489	9217	8826	8860	8964	9106	9189	9290	9407	9499	9916	10268	10291
10066	9817	9697	9543	9266	8869	8904	8985	9113	9182	9262	9419	9656	9841	10176	10214
10078	9883	9758	9607	9327	8924	8965	9022	9118	9175	9238	9380	9702	9929	10085	10137
10118	9933	9778	9638	9373	9000	9062	9088	9140	9149	9194	9319	9653	9868	10017	10069
10120	9979	9811	9685	9460	9104	9144	9150	9153	9127	9171	9281	9616	9809	9958	10013
10115	9987	9853	9743	9532	9234	9245	9229	9186	9091	9130	9262	9596	9771	9893	9966
10172	10067	9949	9863	9624	9323	9283	9237	9185	9103	9126	9274	9627	9786	9898	9972
10211	10146	10060	9969	9759	9404	9333	9256	9178	9109	9139	9288	9667	9827	9921	9992
10302	10259	10200	9803	9717	9463	9389	9331	9268	9243	9263	9413	9804	9866	9935	9980
10313	10264	10235	9916	9654	9560	9493	9435	9396	9390	9410	9530	9927	9997	9972	9993
10316	10216	10035	10013	9812	9736	9701	9647	9611	9627	9615	9708	10032	10110	10082	10046
10360	10239	9986	9956	9964	9904	9900	9904	9883	9928	9842	9876	10157	10200	10179	10122
10383	10278	10040	10014	10029	10057	10099	10134	10179	10285	10168	10095	10271	10295	10255	10202
10252	10251	10076	10079	10105	10156	10219	10236	10293	10399	10315	10205	10367	10363	10320	10270
10287	10094	10097	10123	10170	10235	10312	10342	10351	10457	10377	10292	10436	10424	10374	10330

- 2. Base Horizon = Top Horizon + 100 meter
- 3. Fluid contact = 3000 meter

PAT Success criteria

The PAT success criteria are:

- 1. Coding style / Efficiency
- 2. UI / Look & Feel
- 3. Calculation results (e.g. correct volume calculated in all 3 units)

Good luck!

