What is object detection?

이름: 김지원

전공: 항공우주공학/컴퓨터공학

연구분야: Object Detection

연구실: <u>지능기전공학부 RCV연구실</u>

메일 : jwkim@rcv.sejong.ac.kr

Github: https://github.com/socome

Blog: https://socome.github.io/about/

(a) Image classification

(b) Object localization

(c) Semantic segmentation

(d) Instance segmentation

```
R-CNN \rightarrow OverFeat \rightarrow MultiBox \rightarrow SPP-Net \rightarrow MR-CNN \rightarrow DeepBox \rightarrow AttentionNet \rightarrow
                                                                                    ICCV' 15
                                                                                                                                 ICCV' 15
                                                              ECCV' 14
                                                                                                        ICCV' 15
                                        CVPR' 14
   2013.11
                    ICLR' 14
 Fast R-CNN → DeepProposal → Faster R-CNN → OHEM → YOLO v1 → G-CNN → AZNet →
                                                                                                                   CVPR' 16
                                                                                                                                   CVPR' 16
                                                                                                 CVPR' 16
                                                           NIPS' 15
                                                                                CVPR' 16
     ICCV' 15
                                ICCV' 15
 Inside-OutsideNet(ION) \rightarrow HyperNet \rightarrow CRAFT \rightarrow MultiPathNet(MPN) \rightarrow SSD \rightarrow GBDNet \rightarrow
                                                                                                                  ECCV' 16
                                                                                                                                    ECCV' 16
                                                                                        BMVC' 16
                                             CVPR' 16
                                                                 CVPR' 16
               CVPR' 16
 \mathsf{CPF} \to \mathsf{MS}\text{-}\mathsf{CNN} \to \mathsf{R}\text{-}\mathsf{FCN} \to \mathsf{PVANET} \to \mathsf{DeepID}\text{-}\mathsf{Net} \to \mathsf{NoC} \to \mathsf{DSSD} \to \mathsf{TDM} \to \mathsf{YOLO} \ \mathsf{v2} \to \mathsf{PVANET} \to \mathsf{DeepID}
                                                                                                     arXiv' 17
                                                                                                                 CVPR' 17
                                                                                                                                    CVPR' 17
                                                                                       TPAMI' 16
                                                                     PAMI' 16
                                                NIPSW' 16
              ECCV' 16
                                NIPS' 16
ECCV' 16
Feature Pyramid Net(FPN) \rightarrow RON \rightarrow DCN \rightarrow DeNet \rightarrow CoupleNet \rightarrow RetinaNet \rightarrow DSOD \rightarrow
                                                                                                                                       ICCV' 17
                                                                                                                     ICCV' 17
                                                                                                ICCV' 17
                                                             ICCV' 17
                                                                             ICCV' 17
                                              CVPR' 17
                CVPR' 17
Mask R-CNN \rightarrow SMN \rightarrow YOLO v3 \rightarrow SIN \rightarrow STDN \rightarrow RefineDet \rightarrow MLKP \rightarrow Relation-Net \rightarrow
                                                                                                                                 CVPR' 18
                                            arXiv' 18
                                                           CVPR' 18
                                                                           CVPR' 18
                                                                                            CVPR' 18
                                                                                                              CVPR' 18
     ICCV' 17
                          ICCV' 17
Cascade R-CNN → RFBNet → CornetNet → Pelee → MethAnchor → SNIPER → M2Det ···
                                                                                                                                  AAAI' 19
                                                                                                                 NIPS' 18
                                                                         NIPS' 18
                                                                                           NIPS' 18
                                                   ECCV' 18
                                ECCV' 18
        CVPR' 18
```


About CNN

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Object Detection

IOU

Box Regression

R-CNN: Pipeline

R-CNN in detail

- Bounding box regression*
 - Proposal $P = (P_x, P_y, P_w, P_h)$ / Ground-truth $G = (G_x, G_y, G_w, G_h)$
 - For box-scale invariance, regression target t for the training pair (P, G)


```
(\mathfrak{D}) G = (57.4, 141.0, 97.2, 237.0)
    P = (61.6, 120.0, 107.3, 261.7)
    t_x = (57.4 - 61.6)/107.3 = -0.039
    t_v = (141.0 - 120.0)/261.7 = 0.080
    t_w = \log(97.2/107.3)
                                 = -0.043
    t_h = \log(237.0/261.7)
                                = -0.043
\mathcal{Q} G = (408.0, 167.0, 29.9, 73.0)
    P = (405.8, 170.8, 31.5, 76.9)
    t_r = (408.0 - 405.8)/31.5
                                = 0.070
    t_v = (167.0 - 170.8)/76.9 = -0.049
```

 $t_w = \log(29.9/31.5)$ = -0.023 $t_b = \log(73.0/76.9)$ = -0.023

 $t_h = \log(73.0/76.9)$

 $t_r = (G_r - P_r)/P_w$ $t_{\nu} = (G_{\nu} - P_{\nu})/P_{\nu}$

 $t_w = \log(G_w/P_w)$

 $t_h = \log(G_h/P_h)$

=-0.023

NMS

RCNN, Fast RCNN, Faster RCNN, Mask RCNN

(b) Object localization

RCNN

RCNN, Fast RCNN, Faster RCNN, Mask RCNN

FC FC Output

Figure 1. Fast R-CNN architecture. An input image and multiple regions of interest (RoIs) are input into a fully convolutional network. Each RoI is pooled into a fixed-size feature map and then mapped to a feature vector by fully connected layers (FCs). The network has two output vectors per RoI: softmax probabilities and per-class bounding-box regression offsets. The architecture is trained end-to-end with a multi-task loss.

Fast R-CNN (test time)

Fast R-CNN (test time)

ROI Pooling

input

nipac							
0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

RCNN, Fast RCNN, Faster RCNN, Mask RCNN

Faster R-CNN

Faster R-CNN

Train

Test

RCNN, Fast RCNN, Faster RCNN, Mask RCNN

(d) Instance segmentation

Image 1 Image 2

https://github.com/chenyuntc/simple-faster-rcnn-pytorch
https://github.com/facebookresearch/maskrcnn-benchmark

Single ShotmultiBox Detector

conv,

3x3 conv,

3x3 conv,

conv,

3x3 conv,

3x3 conv,

pooli

3x3 conv,

3x3 conv,

3x3 conv,

pool

3x3 conv,

 $FC \rightarrow Convolutional Layers$

3x3 conv,

3x3 conv,

3x3 conv,

KERNEL 3x3 | PAD 6 | DILATION 6 | CH 512 ightarrow 1024 | ReLU

KERNEL 1x1 | CH 1024 ightarrow 1024 | ReLU

6

fc 4096

4096

fc 4096

Auxiliary Convolutional Layers ReLU ReLU | ReLU ReLU ReLU 256 | ReLU 512 256 128 128 128 256 256 H \mathcal{H} 256 128 512 256 128

When priors at a location overshoot the edges of the feature map, they are clipped

Feature Map From	Feature Map Dimensions	Prior Scale	Aspect Ratios	Number of Priors per Position	Total Number of Priors on this Feature Map	
conv4_3 38, 38		0.1	1:1, 2:1, 1:2 + an extra prior	4	5776	
conv7	19, 19	0.2	1:1, 2:1, 1:2, 3:1, 1:3 + an extra prior	6	2166	
conv8_2	onv8_2 10, 10		1:1, 2:1, 1:2, 3:1, 1:3 + an extra prior	6	600	
conv9_2	5, 5	0.55	1:1, 2:1, 1:2, 3:1, 1:3 + an extra prior	6	150	
conv10_2	3, 3	0.725	1:1, 2:1, 1:2 + an extra prior	4	36	
conv11_2	1, 1	0.9	1:1, 2:1, 1:2 + an extra prior	4	4	
Grand Total		-	57 65		8732 priors	

Reshape predictions from FM 9_2 to represent offsets and class scores for the 150 predicted boxes

loU	GT 1	GT 2	GT 3		Matched GT	Туре	Label	Coordinates
Prior 1	0.75	0.07	0	Prior 1	GT 1	Positive	dog	of GT 1
Prior 2	0	0	0	Prior 2	GT 1	Negative	bgd	-
Prior 3	0.05	0	0	Prior 3	GT 1	Negative	bgd	-
Prior 4	0	0.03	0	Prior 4	GT 2	Negative	bgd	_
Prior 5	0.05	0.88	0.06	Prior 5	GT 2	Positive	dog	of GT 2
Prior 6	0	0.03	0.65	Prior 6	GT 3	Positive	cat	of GT 3
Prior 7	0	0	0.68	Prior 7	GT 3	Positive	cat	of GT 3