Supplementary material

- 2 All code used in statistical analysis can be found at https://github.com/PhilAMartin/SecFor
- 3 Appendix S1 Details of methods used to search for literature and calculate soil carbon stocks
- The online databases Web of Knowledge, Wiley Blackwell and Science Direct were
- 5 searched, along with the Society for Ecological Restoration International website, and the
- 6 internet search engine Google. Search terms were combinations of the keywords: tropical AND
- 7 (*forest* OR wood* OR jungle*) AND (restor* OR reforest* OR recov* OR rehabilitat* OR
- 8 secondary OR swidden OR slash* OR degrad*) AND (plant* OR carbon OR biomass OR litter
- 9 OR rich* OR biodiversity OR function* OR service*). Records of all studies were downloaded
- to an Endnote database and the last date of access was 17th October 2012.
- 11 Irrelevant articles were excluded, first if titles were deemed irrelevant, and then by
- examining abstracts. The remaining articles were read and retained only if they met the
- inclusion criteria. Where there was evidence that relevant data had been collected but were not
- presented in the publications, data were requested from the authors. Data on aboveground
- biomass, belowground biomass, soil carbon, plant species richness and plant community
- composition were extracted from the retained studies and stored in a database.
- 17 Where data were presented in tables they were simply transferred to the database, but when
- data were graphical the program datathief (vIII) [1] was used to extract them.
- Where a range was given for the age of a forest the median value was recorded. Where soil
- carbon was given as % organic matter or % soil carbon this was converted to Mg ha⁻¹ using
- standard equations [2, 3]. Where soil bulk density (required to calculate carbon stocks) was not
- reported we used equations from [3] and multiplied organic matter content by 0.5 to estimate
- carbon concentrations [2].

- 1 Appendix S2 Peer-reviewed studies from which data were collated for the meta-analysis of
- 2 recovery of carbon pools and plant biodiversity in tropical secondary forests
- 3 1. Álvarez-Yépiz J.C., Martínez-Yrízar A., Búrquez A., Lindquist C. 2008 Variation in
- 4 vegetation structure and soil properties related to land use history of old-growth and
- secondary tropical dry forests in northwestern Mexico. Forest Ecology and
- 6 Management 256(3), 355-366. (doi:http://dx.doi.org/10.1016/j.foreco.2008.04.049).
- Alves D., Soares J.V., Amaral S., Mello E., Almeida S., Da Silva O.F., Silveira A.
- 8 1997 Biomass of primary and secondary vegetation in Rondônia, Western Brazilian
- 9 Amazon. Global Change Biology 3(5), 451-461. (doi:10.1046/j.1365-
- 10 2486.1997.00081.x).
- Aweto A.O. 1981 Secondary succession and soil fertility restoration in south-
- western Nigeria: I. Succession. The Journal of Ecology, 601-607.
- 4. Bautista-Cruz A., del Castillo R.F. 2005 Soil changes during secondary succession
- in a tropical montane cloud forest area. Soil Science Society of America Journal
- 15 69(3), 906-914.
- 5. Becknell J.M. 2012 Carbon cycling in secondary tropical dry forest from species to
- global scales, PhD Thesis University of Minnesota.
- Benavides A.-M., Wolf J.H., Duivenvoorden J.F. 2006 Recovery and succession of
- epiphytes in upper Amazonian fallows. Journal of Tropical Ecology 22(6), 705-717.
- 20 7. Bobo K.S., Waltert M., Fermon H., Njokagbor J., Mühlenberg M. 2006 From Forest
- 21 to Farmland: Butterfly Diversity and Habitat Associations Along a Gradient of
- 22 Forest Conversion in Southwestern Cameroon. Journal of Insect Conservation
- 23 10(1), 29-42.

- 8. Brearley F.Q., Prajadinata S., Kidd P.S., Proctor J. 2004 Structure and floristics of an old secondary rain forest in Central Kalimantan, Indonesia, and a comparison
- with adjacent primary forest. Forest Ecology and Management 195(3), 385-397.
- 9. Buschbacher R., Uhl C., Serrao E. 1988 Abandoned pastures in eastern Amazonia.
- II. Nutrient stocks in the soil and vegetation. The Journal of Ecology, 682-699.
- 6 10. Cascante-Marín A., Wolf J.H., Oostermeijer J.G.B., Den Nijs J., Sanahuja O.,
- 7 Durán-Apuy A. 2006 Epiphytic bromeliad communities in secondary and mature
- 8 forest in a tropical premontane area. Basic and Applied Ecology 7(6), 520-532.
- 9 11. Castillo-Campos G., Halffter G., Moreno C.E. 2008 Primary and secondary
- vegetation patches as contributors to floristic diversity in a tropical deciduous forest
- landscape. Biodiversity and Conservation 17(7), 1701-1714.
- 12. Chazdon R.L., Peres C.A., Dent D., Sheil D., Lugo A.E., Lamb D., Stork N.E.,
- Miller S.E. 2009 The potential for species conservation in tropical secondary
- forests. Conservation Biology 23(6), 1406-1417.
- 13. Cifuentes-Jara M. 2008 Aboveground biomass and ecosystem carbon pools in
- tropical secondary forests growing in six life zones of Costa Rica, PhD thesis -
- 17 Oregon State University.
- 14. Cristina Peñuela M., Drew A.P. 2004 A model to assess restoration of abandoned
- pasture in Costa Rica based on soil hydrologic features and forest structure.
- 20 Restoration Ecology 12(4), 516-524.
- 21 15. De Camargo P.B., Trumbore S.E., Martinelli L., Davidson E., Nepstad D.C.,
- Victoria R.L. 1999 Soil carbon dynamics in regrowing forest of eastern Amazonia.
- 23 Global Change Biology 5(6), 693-702.

- 1 DeWalt S.J., Maliakal S.K., Denslow J.S. 2003 Changes in vegetation structure and
- 2 composition along a tropical forest chronosequence: implications for wildlife.
- Forest Ecology and Management 182(1), 139-151.
- 4 17. Dewalt S.J., Schnitzer S.A., Denslow J.S. 2000 Density and diversity of lianas
- along a chronosequence in a central Panamanian lowland forest. Journal of Tropical
- 6 Ecology 16(1), 1-19.
- 7 18. Diekmann L.O., Lawrence D., Okin G.S. 2007 Changes in the spatial variation of
- 8 soil properties following shifting cultivation in a Mexican tropical dry forest.
- 9 Biogeochemistry 84(1), 99-113.
- 19. Ding Y., Zang R., Liu S., He F., Letcher S.G. 2012 Recovery of woody plant
- diversity in tropical rain forests in southern China after logging and shifting
- cultivation. Biological Conservation 145(1), 225-233.
- 20. Eaton J.M., Lawrence D. 2006 Woody debris stocks and fluxes during succession in
- a dry tropical forest. Forest Ecology and Management 232(1), 46-55.
- Eaton J.M., Lawrence D. 2009 Loss of carbon sequestration potential after several
- decades of shifting cultivation in the Southern Yucatán. Forest Ecology and
- Management 258(6), 949-958.
- Fernandes D.N., Sanford R.L. 1995 Effects of recent land-use practices on soil
- nutrients and succession under tropical wet forest in Costa Rica. Conservation
- Biology 9(4), 915-922.
- 23. Ferreira L.V., Prance G.T. 1999 Ecosystem recovery in terra firme forests after
- cutting and burning: a comparison on species richness, floristic composition and
- forest structure in the Jaú National Park, Amazonia. Botanical Journal of the
- Linnean Society 130(2), 97-110.

- Fujisaka S., Escobar G., Veneklaas E. 1997 Plant community diversity relative to human land uses in an Amazon forest colony. Biodiversity and Conservation 7(1), 41-57.
- Gehring C., Denich M., Vlek P.L. 2005 Resilience of secondary forest regrowth after slash-and-burn agriculture in central Amazonia. Journal of Tropical Ecology 21(05), 519-527.
- Grau H., Arturi M., Brown A., AceƱolaza P. 1997 Floristic and structural patterns along a chronosequence of secondary forest succession in Argentinean subtropical montane forests. Forest Ecology and Management 95(2), 161-171.
- Guariguata M.R., Chazdon R.L., Denslow J.S., Dupuy J.M., Anderson L. 1997
 Structure and floristics of secondary and old-growth forest stands in lowland Costa
 Rica. Plant ecology 132(1), 107-120.
- 13 28. Guggenberger G., Zech W. 1999 Soil organic matter composition under primary 14 forest, pasture, and secondary forest succession, Region Huetar Norte, Costa Rica. 15 Forest Ecology and Management 124(1), 93-104.
- 16 29. Günter S., Weber M., Erreis R., Aguirre N. 2007 Influence of distance to forest
 17 edges on natural regeneration of abandoned pastures: a case study in the tropical
 18 mountain rain forest of Southern Ecuador. European Journal of Forest Research
 19 126(1), 67-75.
- 30. Howorth R.T., Pendry C.A. 2006 Post-cultivation secondary succession in a
 Venezuelan lower montane rain forest. Biodiversity and Conservation 15(2), 693 715.
- Hughes R.F., Kauffman J.B., Jaramillo V.J. 1999 Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of Mexico. Ecology 80(6), 1892-1907.

- 1 32. Jaramillo V.J., Ahedo-Hernández R., Kauffman J.B. 2003 Root biomass and carbon
- in a tropical evergreen forest of Mexico: changes with secondary succession and
- forest conversion to pasture. Journal of Tropical Ecology 19(04), 457-464.
- 4 33. Johnson C.M., Vieira I.C., Zarin D.J., Frizano J., Johnson A.H. 2001 Carbon and
- 5 nutrient storage in primary and secondary forests in eastern Amazonia. Forest
- 6 Ecology and Management 147(2), 245-252.
- 7 34. Kammesheidt L. 1998 The role of tree sprouts in the restoration of stand structure
- and species diversity in tropical moist forest after slash-and-burn agriculture in
- 9 Eastern Paraguay. Plant ecology 139(2), 155-165.
- 10 35. Kappelle M. 1993 Recovery following clearing of an upper montane Quercus forest
- in Costa Rica. Revista de biología tropical 41, 47-47.
- 36. Kappelle M., Kennis P.A., de Vries R.A. 1995 Changes in diversity along a
- successional gradient in a Costa Rican upper montane Quercus forest. Biodiversity
- and Conservation 4(1), 10-34.
- 15 37. Kauffman J.B., Sanford Jr R.L., Cummings D.L., Salcedo I., Sampaio E. 1993
- Biomass and nutrient dynamics associated with slash fires in neotropical dry forests.
- 17 Ecology, 140-151.
- 18 38. Kennard D.K. 2002 Secondary forest succession in a tropical dry forest: patterns of
- development across a 50-year chronosequence in lowland Bolivia. Journal of
- 20 Tropical Ecology 18(1), 53-66.
- 39. Klanderud K., Mbolatiana H.Z.H., Vololomboahangy M.N., Radimbison M.A.,
- Roger E., Totland Ø., Rajeriarison C. 2010 Recovery of plant species richness and
- composition after slash-and-burn agriculture in a tropical rainforest in Madagascar.
- Biodiversity and Conservation 19(1), 187-204.

- Knight D.H. 1975 A phytosociological analysis of species-rich tropical forest on
 Barro Colorado Island, Panama. Ecological Monographs, 259-284.
- 41. KÖSTER N., Friedrich K., NIEDER J., Barthlott W. 2009 Conservation of epiphyte diversity in an Andean landscape transformed by human land use. Conservation Biology 23(4), 911-919.
- Kotto-Same J., Woomer P.L., Appolinaire M., Louis Z. 1997 Carbon dynamics in slash-and-burn agriculture and land use alternatives of the humid forest zone in Cameroon. Agriculture, Ecosystems & Environment 65(3), 245-256.
- 43. Laska M.S. 1997 Structure of Understory Shrub Assemblages in Adjacent
 Secondary and Old Growth Tropical Wet Forests, Costa Rica1. Biotropica 29(1),
 29-37.
- Lebrija-Trejos E., Bongers F., Pérez-García E.A., Meave J.A. 2008 Successional change and resilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica 40(4), 422-431.
- Letcher S.G., Chazdon R.L. 2009 Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in northeastern Costa Rica.

 Biotropica 41(5), 608-617.
- Liebsch D., Marques M., Goldenberg R. 2008 How long does the Atlantic Rain

 Forest take to recover after a disturbance? Changes in species composition and

 ecological features during secondary succession. Biological Conservation 141(6),

 1717-1725.
- Long W., Yang X., Li D. 2012 Patterns of species diversity and soil nutrients along a chronosequence of vegetation recovery in Hainan Island, South China. Ecological research 27(3), 561-568.

- 1 48. Lorenz K., Lal R., Jiménez J.J. 2009 Soil organic carbon stabilization in dry tropical forests of Costa Rica. Geoderma 152(1), 95-103.
- 3 49. Madeira B.G., Espírito-Santo M.M., Neto S.D.Â., Nunes Y.R., Azofeifa G.A.S.,
- Fernandes G.W., Quesada M. 2009 Changes in tree and liana communities along a
- 5 successional gradient in a tropical dry forest in south-eastern Brazil. In Forest
- 6 Ecology (pp. 291-304, Springer.
- 7 50. Marin-Spiotta E., Silver W., Ostertag R. 2007 Long-term patterns in tropical
- 8 reforestation: plant community composition and aboveground biomass
- 9 accumulation. Ecological Applications 17(3), 828-839.
- Martin P.H., Sherman R.E., Fahey T.J. 2004 Forty Years of Tropical Forest
- 11 Recovery from Agriculture: Structure and Floristics of Secondary and Old-growth
- Riparian Forests in the Dominican Republic. Biotropica 36(3), 297-317.
- 52. McDonald M., Healey J. 2000 Nutrient cycling in secondary forests in the Blue
- Mountains of Jamaica. Forest Ecology and Management 139(1), 257-278.
- 53. Muñiz-Castro M.A., Williams-Linera G., Martínez-Ramos M. 2012 Dispersal
- mode, shade tolerance, and phytogeographical affinity of tree species during
- secondary succession in tropical montane cloud forest. Plant ecology 213(2), 339-
- 18 353.
- 19 54. Nadkarni N.M., Schaefer D., Matelson T.J., Solano R. 2004 Biomass and nutrient
- pools of canopy and terrestrial components in a primary and a secondary montane
- cloud forest, Costa Rica. Forest Ecology and Management 198(1), 223-236.
- 55. Neumann-Cosel L., Zimmermann B., Hall J.S., van Breugel M., Elsenbeer H. 2011
- Soil carbon dynamics under young tropical secondary forests on former pastures—a
- case study from Panama. Forest Ecology and Management 261(10), 1625-1633.

- 56. Peña-Claros M. 2003 Changes in Forest Structure and Species Composition during 1 Secondary Forest Succession in the Bolivian Amazon. Biotropica 35(4), 450-461. 2
- 57. Piotto D., Montagnini F., Thomas W., Ashton M., Oliver C. 2009 Forest recovery
- after swidden cultivation across a 40-year chronosequence in the Atlantic forest of 4
- southern Bahia, Brazil. Plant ecology 205(2), 261-272. 5
- 58. Raich J.W. 1983 Effects of forest conversion on the carbon budget of a tropical soil. 6
- 7 Biotropica, 177-184.

- 59. Read L., Lawrence D. 2003 Recovery of biomass following shifting cultivation in 8
- 9 dry tropical forests of the Yucatan. Ecological Applications 13(1), 85-97.
- 60. Reiners W., Bouwman A., Parsons W., Keller M. 1994 Tropical rain forest 10
- conversion to pasture: changes in vegetation and soil properties. Ecological 11
- Applications 4(2), 363-377. 12
- 61. Rhoades C.C., Eckert G.E., Coleman D.C. 2000 Soil carbon differences among 13
- forest, agriculture, and secondary vegetation in lower montane Ecuador. Ecological 14
- Applications 10(2), 497-505. 15
- 62. Rico-Gray V., García-Franco J.G. 1992 Vegetation and soil seed bank of 16
- successional stages in tropical lowland deciduous forest. Journal of Vegetation 17
- Science 3(5), 617-624. 18
- 63. Saldarriaga J.G., West D.C., Tharp M., Uhl C. 1988 Long-term chronosequence of 19
- forest succession in the upper Rio Negro of Colombia and Venezuela. The Journal 20
- of Ecology, 938-958. 21
- 64. Salimon C., Davidson E., Victoria R., Melo A. 2004 CO2 flux from soil in pastures 22
- and forests in southwestern Amazonia. Global Change Biology 10(5), 833-843. 23

- Saynes V., Hidalgo C., Etchevers J.D., Campo J.E. 2005 Soil C and N dynamics in primary and secondary seasonally dry tropical forests in Mexico. Applied Soil
- 3 Ecology 29(3), 282-289.
- 4 66. Sierra C.A., del Valle J.I., Orrego S.A., Moreno F.H., Harmon M.E., Zapata M.,
- 5 Colorado G.J., Herrera M.A., Lara W., Restrepo D.E. 2007 Total carbon stocks in a
- tropical forest landscape of the Porce region, Colombia. Forest Ecology and
- 7 Management 243(2), 299-309.
- 8 67. Sommer R., Denich M., Vlek P.L. 2000 Carbon storage and root penetration in deep
- 9 soils under small-farmer land-use systems in the Eastern Amazon region, Brazil.
- 10 Plant and soil 219(1-2), 231-241.
- 11 68. Templer P.H., Groffman P.M., Flecker A.S., Power A.G. 2005 Land use change and
- soil nutrient transformations in the Los Haitises region of the Dominican Republic.
- Soil Biology and Biochemistry 37(2), 215-225.
- Turner I., Wong Y., Chew P., bin Ibrahim A. 1997 Tree species richness in primary
- and old secondary tropical forest in Singapore. Biodiversity and Conservation 6(4),
- 16 537-543.
- van Andel T. 2001 Floristic composition and diversity of mixed primary and
- secondary forests in northwest Guyana. Biodiversity and Conservation 10(10),
- 19 1645-1682. (doi:10.1023/a:1012069717077).
- Werner P. 1984 Changes in soil properties during tropical wet forest succession in
- 21 Costa Rica. Biotropica, 43-50.
- Werner P. 1984 Changes in soil properties during tropical wet forest succession in
- 23 Costa Rica. Biotropica, 43-50.

- 1 73. Williams-Linera G., Alvarez-Aquino C., Hernández-Ascención E., Toledo M. 2011
- Early successional sites and the recovery of vegetation structure and tree species of
- the tropical dry forest in Veracruz, Mexico. New Forests 42(2), 131-148.
- Woods C.L., DeWalt S.J. 2013 The Conservation Value of Secondary Forests for
- 5 Vascular Epiphytes in Central Panama. Biotropica 45(1), 119-127.

- 2 Figure S1 –Distribution of forest ages by metric for the 678 sites represented in the meta-
- analysis. Vertical dashed lines represent mean ages for each metric type.

5

Figure S2 – Geographic distribution of the 607 sites represented in the meta-analysis. Each panel represents the sites where data on the metric in

4 question was available.

- 2 Figure S3 Relationship between relative above and relative belowground biomass in
- 3 locations where both measures were available.

- 5 Figure S4 Change of aboveground biomass over time since disturbance showing relative
- 6 difference between studies that had information on belowground biomass and those that did not

- ${\tt 1} \quad \text{Table S1-Number of sites for each metric used in this study including the number of sites} \\$
- 2 shared between different metrics

	Aboveground	Belowground	Soil carbon	Species	Shared
	biomass	biomass		richness	species
Aboveground	326				
biomass	320				
Belowground	73	76			
biomass					
Soil carbon	104	54	185		
Species	111	19	0	283	
richness					
Shared	5	0	0	23	50
species					

- Table S2 Variables included in models of above ground biomass recovery with Δ AIC c $\,$ <7,
- 5 models are ranked by AICc with weight representing the likelihood that individual models are
- 6 the most parsimonious

Variables included in model	df	AICc	Δ AICc	Weight	Marginal R ²
Intercept+log(Age)	7	654.32	0	0.57	0.56
Intercept+log(Age)+Disturbance	9	655.34	1.01	0.35	0.56
Intercept+log(Age)*Disturbance	11	659.11	4.78	0.05	0.56
Intercept+log(Age)+Forest type	10	660.29	5.97	0.03	0.56

- Table S3 Variables included in models of belowground biomass recovery with Δ AICc <7,
- 2 models are ranked by AICc with weight representing the likelihood that individual models are
- 3 the most parsimonious

Variables included in model	df	AICc	Δ AICc	Weight	Marginal R ²
Intercept+log(Age)	6	125.66	0	0.47	0.64
Intercept+log(Age)	7				
+Disturbance	,	125.83	0.17	0.43	0.61
Intercept+log(Age)*Disturbance	8	128.8	3.14	0.1	0.61

4

- Table S4 Variables included in models of soil carbon recovery with Δ AICc <7, models are
- 7 ranked by AICc with weight representing the likelihood that individual models are the most
- 8 parsimonious

Variables included in model	df	AICc	Δ AICc	Weight	Marginal R ²
Intercept only (null model)	6	334.23	0	0.43	0
Intercept+Age+Age ²	8	335.85	1.62	0.19	0.01
Intercept+Age	7	336.18	1.95	0.16	< 0.01
Intercept+ Disturbance	8	337.28	3.05	0.09	0.01
Intercept+Age+Age ²					
+Disturbance	10	337.84	3.62	0.07	0.03
Intercept+Age*Disturbance	9	338.64	4.41	0.05	0.02
Intercept+Age+Disturbance	6	334.23	0	0.43	< 0.01

- Table S5 Variables included in models of tree species richness recovery with Δ AICc <7,
- models are ranked by AICc with weight representing the likelihood that individual models are
- the most parsimonious

Variables included in model	df	AICc	Δ AICc	Weight	Marginal R ²
Intercept+log(Age)	6	499.1	0	0.7	0.25
Intercept +log(Age+Disturbance	8	501.61	2.51	0.2	0.26
Intercept+log(Age)+log(Age)^2	7	503.83	4.73	0.07	0.23
Intercept+log(Age)+log(Age)^2					
+Disturbance	9	505.57	6.47	0.03	0.26

- Table S6 Variables included in models of epiphyte species richness recovery with Δ AICc <7,
- 2 models are ranked by AICc with weight representing the likelihood that individual models are
- 3 the most parsimonious

Variables included in model	df	AICc	Δ AICc	Weight	Marginal R ²
Intercept+log(Age)	6	150.75	0	0.56	0.07
Intercept only (null mode)	5	152.31	1.56	0.26	0
Intercept+log(Age)+log(Age)^2	7	152.96	2.22	0.18	0.09

- Table S7 Variables included in models of primary forest species recovery with Δ AICc <7,
- 6 models are ranked by AICc with weight representing the likelihood that individual models are
- 7 the most parsimonious

Variables included in model	df	AICc	Δ AICc	Weight	Marginal R ²
Intercept only (Null model)	2	13.52	0	0.42	0
Intercept+Age	3	14.6	1.08	0.24	0.13
Intercept+Disturbance	3	15.77	2.25	0.14	0.03
Intercept+Age+Disturbance	4	16.95	3.43	0.08	0.15
Intercept+Type	4	17.07	3.55	0.07	0.02
Intercept+Age+Type	5	18.78	5.26	0.03	0.17
Intercept+Disturbance+Type	5	19.56	6.04	0.02	0.04

- 1 Table S8- Parameter estimates for models of aboveground biomass with delta≤7 calculated by
- 2 multiplying the estimates for individual models which contain parameters by their weights.
- 3 Note that units represent the transformation used for model fitting

Parameter	Estimate	Standard error of estimate	Lower confidence interval	Upper confidence interval
Intercept	-4.08	0.29	-4.65	-3.52
Log(Age)	0.85	0.07	0.7	0.99
Disturbance - Pasture	-0.01	0.24	-0.49	0.46
Disturbance - Shifting				
agriculture	0.19	0.28	-0.36	0.74
Disturbance –				
Pasture*logAge	0.07	0.2	-0.31	0.46
Disturbance - Shifting				
agriculture*logAge	0.16	0.22	-0.28	0.6
Type - Moist	0.06	0.19	-0.31	0.43
Type - Montane	-0.11	0.75	-1.58	1.36
Type - Wet	-0.04	0.16	-0.35	0.26

- 5 Table S9- Parameter estimates for models of belowground biomass with with delta < 7
- 6 calculated by multiplying the estimates for individual models which contain parameters by
- 7 their weights. Note that units represent the transformation used for model fitting

Parameter	Estimate	Standard error of estimate	Lower confidence interval	Upper confidence interval
(Intercept)	-3.48	0.23	-3.93	-3.02
Disturbance - Shifting				
agriculture	-0.65	0.64	-1.91	0.6
log(Age)	0.68	0.06	0.56	0.8
Disturbance - Shifting				
agriculture*log(Age)	0.11	0.34	-0.55	0.76

- 1 Table S10- Parameter estimates for models of soil carbon with delta≤7 calculated by
- 2 multiplying the estimates for individual models which contain parameters by their weights.
- 3 Note that units represent the transformation used for model fitting

Parameter	Estimate	Standard error of estimate	Lower confidence interval	Upper confidence interval
(Intercept)	-0.2	0.2	-0.6	0.2
Age	0.01	0.01	-0.01	0.02
Age Age^2	0	0	0	0
DisturbancePasture	0.18	0.21	-0.23	0.58
DisturbanceShifting				
agriculture	0.34	0.25	-0.15	0.82

- 5 Table S11- Parameter estimates for models of tree species richness with delta≤7 calculated by
- 6 multiplying the estimates for individual models which contain parameters by their weights.
- 7 Note that units represent the transformation used for model fitting

Parameter	Estimate	Standard error of estimate	Lower confidence interval	Upper confidence interval
(Intercept)	-3.41	0.34	-4.08	-2.73
log(Age) Disturbance -	0.88	0.12	0.65	1.11
Pasture Disturbance - Shifting	0.17	0.21	-0.24	0.59
agriculture log(Age)^2	-0.2	0.23	-0.65	0.26
	-0.06	0.04	-0.15	0.02

- 1 Table S12- Parameter estimates for models of epiphyte species richness with delta≤7 calculated
- by multiplying the estimates for individual models which contain parameters by their weights.
- 3 Note that units represent the transformation used for model fitting

Parameter	Estimate	Standard error of estimate	Lower confidence interval	Upper confidence interval
(Intercept)	-1.91	1.04	-3.94	0.13
log(Age)	0.39	0.31	-0.22	0.99
Log(Age)^2	0.06	0.1	-0.13	0.25

- 5 Table S13- Parameter estimates for models of primary forest species with delta≤7 calculated by
- 6 multiplying the estimates for individual models which contain parameters by their weights.
- 7 Note that units represent the transformation used for model fitting

Parameter	Estimate	Standard error of estimate	Lower confidence interval	Upper confidence interval
(Intercept)	-1.01	0.88	-2.73	0.7
Age	0.01	0.01	-0.01	0.04
Disturbance - Shifting				
agriculture Type - Tropical	-0.02	0.69	-1.37	1.33
moist forest Type - Tropical	-0.1	2.15	-4.32	4.12
rainforest	-0.85	2.07	-4.9	3.2

	Model name					
Explanatory variable	Aboveground biomass	Belowground biomass	Soil Carbon	Tree species richness	Epiphyte species richness	Proportion of undisturbed forest species
Age – linear	0	0	0.47	0	0	0.35
Age – quadratic	0	0	0.26	0	0	0
log(Age)	1	1	0	1	0.74	0
log(Age - quadratic	0	0	0	0.093	0.18	0
Disturbance type	0.40	0.52	0.21	0.22	0	0.23
Forest type	0.02	0	0	0	0	0.12

Table S15 – Minimum diameter at breast height (DBH) of individuals considered for sites where tree species richness was assessed. N/A indicates sites where this information was not available

Minimum DBH of individual considered (cm)	Number of sites		
N/A	28		
1	34		
2	7		
2.5	4		
3	3		
5	50		
10	88		

References

- 1. Tummers B. 2006 DataThief III. http://datathief.org/>.
- 2. Marín-Spiotta E., Sharma S. 2012 Carbon storage in successional and plantation forest soils: a tropical analysis. *Global Ecology and Biogeography*, n/a-n/a. (doi:10.1111/j.1466-8238.2012.00788.x).
- 3. Guo L.B., Gifford R.M. 2002 Soil carbon stocks and land use change: a meta analysis. *Global Change Biology* **8**(4), 345-360. (doi:10.1046/j.1354-1013.2002.00486.x).