

ADS AD VIDEO COSOUN

www.aduni.edu.pe

Inductivo numérico

OBJETIVO

- Identificar en que situaciones se puede aplicar un razonamiento inductivo.
- Desarrollar la habilidad para relacionar valores números, encontrando su criterio de formación.

INDUCTIVO NUMÉRICO

Aplicación en arreglos numéricos

Aplicación en arreglos gráficos

$$E = \frac{(1 \times 3 + 3 \times 5 + 5 \times 7 + ...) + n}{\underbrace{1^2 + 2^2 + 3^2 + ...}_{n \text{ términos}}}$$

Razonamiento inductivo

El razonamiento inductivo se aplica generalmente cuando la solución de un problema resulta tedioso y extenso, por ser operativos y de mucha complejidad pero presenta cierta formación.

Por ejemplo:

Halle el resultado

$$M = (999...9995)^{2}$$
 Muy operativo

100 cifras

Presenta cierta formación

Características principales para aplicar el razonamiento inductivo

En el proceso del razonamiento inductivo es muy importante la selección adecuada de los casos particulares.

Para ello tener en cuenta que:

- Cada caso particular debe guardar similitud con la expresión o gráfico que se brinda en el problema.
- Se sugiere que sea los que guardan menos complejidad
- ➤ Se sugiere analizar por lo menos 3 casos, de esta forma nuestra inducción tendrá mayor posibilidad que sea correcta.

Veamos la resolución del ejemplo planteado:

Aplicando razonamiento inductivo:

Caso 1:
$$(95)^2 = 9025$$

Caso 2:
$$(995)^2 = 990025$$

Caso 3:
$$(9995)^2 = 99900025$$

Terminan en 25 y la cantidad de cifras 9 y 0 es uno menos que la cantidad de cifras del número

En el

problema:
$$(.99 ... 995)^2 = ... 99.00 ... 00.25$$

 $100 \ cifras$ 99 cifras 99cifras

Aplicación en arreglos numéricos

Aplicación 1

Calcule la suma de cifras del resultado al operar la expresión A.

$$A = \left(\underbrace{999 ... 999}_{20 \ cifras}\right)^2$$

- A) 190
- B) 210
- C) 120
- **Ø**) 180

Resolución:

Nos piden la suma de cifras del resultado al operar la expresión *A.* Analizando tres casos particulares:

Suma de cifras

Caso 1:
$$(9 \ 1)^2 = 81$$
 $9 = 9 (1)$

Caso 2:
$$(99/(2cifra)^2 = 9801$$
 \rightarrow $18 = 9 (2)$

Caso 3:
$$(999 \atop 3 cifra)^2 = 998001 \implies 27 = 9 (3)$$

En el problema:
$$(999...999)^2$$
 9 (20) = 180

∴ La suma de cifras del resultado al operar A es 180

ANUAL SAN MARCOS 2021

Aplicación 2

Calcule la suma de cifras del resultado que se obtiene de operar *M*.

$$M = \sqrt[3]{2019 \times 2020 \times 2021 + 2020}$$

consecutivos

- A) 3
- B) 7
- 25 4
- D) 5

Resolución:

Nos piden la suma de cifras del resultado al operar la expresión *A.* Analizando tres casos particulares:

Caso 1:
$$\sqrt[3]{1 \times 2 \times 3} + 2 = \sqrt[3]{8} = 2$$

Caso 2:
$$\sqrt[3]{2 \times 3 \times 4} + \sqrt[3]{9} = \sqrt[3]{27} = \sqrt[3]{9}$$

Caso 3:
$$\sqrt[3]{3 \times 4 \times 5} + \sqrt[4]{9} = \sqrt[3]{64} = 4$$

En el

problema:
$$\sqrt[3]{2019 \times 2020 \times 2021 + 2020} = 2020$$

 \therefore La suma de cifras del resultado es 2+0+2+0=4

OBSERVACIÓN

Luego de seleccionar los casos particulares, una dificultad es relacionar los valores numéricos que resulta de cada caso particular.

Para ello tener en cuenta algunas relaciones frecuentes:

Figura **20**
$$\longrightarrow$$
 20² = 400

Figura **20**
$$\rightarrow$$
 20³ = 8000

Figura 20
$$\longrightarrow$$
 3(20) + 1 = 61

CUADRADOS PERFECTOS

CUBOS PERFECTOS

PROGRESIÓN ARITMÉTICA

Figura **20**
$$\longrightarrow \frac{20 \times (21)}{2} = 210$$

NÚMEROS TRIANGULARES

• 1; 3; 6; 10; 15; 21; 28; 36; 45; 55;...; $\frac{n \times (n+1)}{2}$

Figura **20**
$$\longrightarrow$$
 20 \times 21 = 420

NÚMEROS RECTANGULARES

Aplicación en arreglos gráficos

Aplicación 3

Calcule el número total de triángulos simples que se pueden contar en el siguiente gráfico.

- A) 930
- B) 870
- C) 600
- **D**) 900

Resolución:

Nos piden la cantidad total de triángulos simples. Analizando tres casos particulares:

<u>Cantidad de</u> <u>triángulos simples</u>

Caso 1: _____

Caso 2: $\frac{1}{2}$ $4 = 2^2$

En el problema:

triángulos $= 30^2 = 900$

: La cantidad total de triángulos simples es 900

ANUAL SAN MARCOS 2021

Aplicación 4

Halle la cantidad de puntos de contacto que se cuentan en el gráfico adjunto.

- A) 600
- B) 610
- C) 620
- **b**) 630

Resolución:

Nos piden la cantidad de puntos de contacto. Analizando tres casos particulares:

Cantidad de puntos de contacto

Caso 1:
$$3 = 3(1) = 3\left(\frac{1 \times 2}{2}\right)$$

Caso 2:
$$(2 \times 3)$$
 $(3) = 3(3) = 3(2 \times 3)$

Caso 3:
$$(3 \times 4)$$
 (3×4) (3×4)

En el problema:

∴ La cantidad de puntos de contactos es 630

Aplicación 5

En la siguiente secuencia, determine la cantidad de esferas no sombreadas en el arreglo F50.

- A) 233
- B) 250
- **2**) 204
- D) 205

Resolución:

Nos piden la cantidad de esferas no sombreadas en el arreglo F50. Analizando tres casos particulares:

En el problema: F50

Cant. de esferas

no sombreadas = 4(51) = 204

∴ La cantidad de esferas no sombreadas es 204

www.aduni.edu.pe

