Machine Learning Project Introduction to Machine Learning ARM 210

Submitted by:
Name- Satyam Kumar Jha
Branch- AIML B2
Enrolment no- 20219051622

Submitted To:
Dr. Amit Choudhary
Assistant Professor
USAR, GGSIPU

University School of Automation and Robotics East Campus, GGSIP University Surajmal Vihar, New Delhi - 110092

PROJECT INFORMATION

Title of Project: From Ribbit to Recognition

Student Name: **Satyam Kumar Jha**Enrollment Number: **20219051622**Email ID: satyam.k.jha19@gmail.com

Contact Number: +91-8595822518

From Ribbit to Recognition

From Ribbit to Recognition is any of the vertebrates of the order Anura, characterised by the absence of a tail and very long hind legs specialised for hopping: class Amphibia (amphibians), which is commonly known as the frogs and toads. Recently, recognition of anuran species through their calls has received a lot of attention because of its potential applicability in ecological studies.

However, most of the recorded anuran species are considered to be monotypic based on various research presented. Hence, the classification of numerous anuran species would be a challenge for researchers.

Aim: To develop an interpretable and trustworthy predictive model that can classify various anuran species accurately and effectively.

In this project, we are using the given dataset about the Anuran species, to create two predictive models, to test and predict based on the dataset.

Data Description

The Anuran Species dataset is the dataset assigned to me. Based on the two tables below, we can notice that the dataset contains 22 columns of features and a single column of the target. There is not a very unique name for all the features, they only differ in terms of the numbering, which represents different animals without clarifying what the actual animal is. The target is the 'Species', in which we are expected to get the outcome of different types of Anuran species (10 different species).

	MFCCs_1	MFCCs_2	MFCCs_3	MFCCs_4	MFCCs_5	MFCCs_6	MFCCs_7	MFCCs_8	MFCCs_9	MFCCs_10	MFCCs_11
0	1.0	0.152936	-0.105586	0.200722	0.317201	0.260764	0.100945	-0.150063	-0.171128	0.124676	0.188654
1	1.0	0.171534	-0.098975	0.268425	0.338672	0.268353	0.060835	-0.222475	-0.207693	0.170883	0.270958
2	1.0	0.152317	-0.082973	0.287128	0.276014	0.189867	0.008714	-0.242234	-0.219153	0.232538	0.266064
3	1.0	0.224392	0.118985	0.329432	0.372088	0.361005	0.015501	-0.194347	-0.098181	0.270375	0.267279
4	1.0	0.087817	-0.068345	0.306967	0.330923	0.249144	0.006884	-0.265423	-0.172700	0.266434	0.332695
5	1.0	0.099704	-0.033408	0.349895	0.344535	0.247569	0.022407	-0.213767	-0.127916	0.277353	0.309861
6	1.0	0.021676	-0.062075	0.318229	0.380439	0.179043	-0.041667	-0.252300	-0.167117	0.220027	0.260326
7	1.0	0.145130	-0.033660	0.284166	0.279537	0.175211	0.005791	-0.183329	-0.158483	0.192567	0.264184
8	1.0	0.271326	0.027777	0.375738	0.385432	0.272457	0.098192	-0.173730	-0.157857	0.207181	0.269932
9	1.0	0.120565	-0.107235	0.316555	0.364437	0.307757	0.025992	-0.294179	-0.223236	0.268435	0.367813

Table 1: Dataset sample 1

	MFCCs_12	MFCCs_13	MFCCs_14	MFCCs_15	MFCCs_16	MFCCs_17	MFCCs_18	MFCCs_19	MFCCs_20	MFCCs_21	MFCCs_22	Species
0	-0.075622	-0.156436	0.082245	0.135752	-0.024017	-0.108351	-0.077623	-0.009568	0.057684	0.118680	0.014038	AdenomeraAndre
1	-0.095004	-0.254341	0.022786	0.163320	0.012022	-0.090974	-0.056510	-0.035303	0.020140	0.082263	0.029056	AdenomeraAndre
2	-0.072827	-0.237384	0.050791	0.207338	0.083536	-0.050691	-0.023590	-0.066722	-0.025083	0.099108	0.077162	AdenomeraAndre
3	-0.162258	-0.317084	-0.011567	0.100413	-0.050224	-0.136009	-0.177037	-0.130498	-0.054766	-0.018691	0.023954	AdenomeraAndre
4	-0.100749	-0.298524	0.037439	0.219153	0.062837	-0.048885	-0.053074	-0.088550	-0.031346	0.108610	0.079244	AdenomeraAndre
5	-0.134528	-0.295123	0.012486	0.180641	0.055242	-0.080487	-0.130089	-0.171478	-0.071569	0.077643	0.064903	AdenomeraAndre
6	-0.100379	-0.236428	0.027070	0.216923	0.064853	-0.046620	-0.055146	-0.085972	-0.009127	0.065630	0.044040	AdenomeraAndre
7	-0.063748	-0.250981	-0.009015	0.184266	0.075654	-0.055978	-0.048219	-0.056637	-0.022419	0.070085	0.021419	AdenomeraAndre
8	-0.122893	-0.282427	-0.044984	0.064425	-0.032167	-0.120723	-0.112607	-0.156933	-0.118527	-0.002471	0.002304	AdenomeraAndre
9	-0.091062	-0.328433	0.042678	0.236484	0.053436	-0.051073	-0.052568	-0.111338	-0.040014	0.090204	0.088025	AdenomeraAndre

Table 2: Dataset sample 2

+	++
No	Targets
1	AdenomeraAndre
2	AdenomeraHylaedactylus
3	Ameeregatrivittata
4	HylaMinuta
5	HypsiboasCinerascens
6	HypsiboasCordobae
7	LeptodactylusFuscus
8	OsteocephalusOophagus
9	Rhinellagranulosa
10	ScinaxRuber

Data Analysis

Feature selection is a crucial step in building effective machine learning models, especially when you're dealing with a lot of data. Imagine you're training a model to classify different types of music, like rock, pop, and classical. You could feed it all sorts of information, like tempo, volume, lyrics, and even information about the artist. But that might be overwhelming for the model!

Feature selection helps me choose the most informative data for my model to focus on. It's like picking the key ingredients in a recipe instead of throwing everything in the kitchen sink at it.

In this project, lam dealing with a dataset of frog calls described by MFCC features. These features are basically measurements that capture different aspects of the calls. I want to identify which MFCC features are most helpful in telling different frog calls apart.

Here's where ANOVA comes in. ANOVA is a statistical test that helps me see which features have the biggest influence on the target variable, which in this case is the type of frog call. It basically runs a competition to see which MFCC feature is best at separating the calls into different frog groups. The feature that wins is the most important one for building your model!

Once I've ranked the features using ANOVA, I can use a tool called SelectKBest to pick a specific number (k) of the most important features. This is like choosing the top 3 most influential ingredients for any recipe.

Finally, I can visualise the results using a bar graph. The higher the bar for a feature, the more it contributed to distinguishing between the frog calls in the ANOVA test. This helps you understand how important each feature is for building an accurate model.

Figure 1: ANVOA f-value against MFCCs

A high f-ANOVA value indicates a high variation between sample means relative to the variation within samples to reject the null hypothesis. Therefore, the top 11 features with the highest ANOVA f-value out of the 22 features will be selected. The reason for selecting 11 features out of 22 features is to reduce the computational cost and modelling time as much as possible to create a highly efficient predictive model implementation. Also, the probability of an overflow problem is reduced to avoid misleading data. Thus, it can improve the performance of the predictive model by training the model faster using only 11 significant features.

Feature	Туре	Value/Statistics
		Range: -0.436028 - 1.0
MFCCs_3	Continuous numerical	Mean: 0.311224
		Std: 0.263527
		Range: -0.538982 - 1.0
MFCCs_7	Continuous numerical	Mean: -0.001397
		Std: 0.171404
		Range: -0.587313 - 0.738033
MFCCs_9	Continuous numerical	Mean: 0.128213
		Std: 0.179008
		Range: -0.901989 - 0.523033
MFCCs_11	Continuous numerical	Mean: -0.115682
		Std: 0.186792
		Range: -0.799441 - 0.690889
MFCCs_12	Continuous numerical	Mean: 0.043371
		Std: 0.155983
		Range: -0.644116 - 0.94571
MFCCs_13	Continuous numerical	Mean: 0.150945
		Std: 0.206880
		Range: -0.59038 - 0.575749
MFCCs_14	Continuous numerical	Mean: -0.039244
		Std: 0.152515
		Range: -0.717156 - 0.668924
MFCCs_15	Continuous numerical	Mean: -0.101748
		Std: 0.187618
		Range: -0.42148 - 0.681157
MFCCs_17	Continuous numerical	Mean: 0.088680
		Std: 0.138055
		Range: -0.361649 - 0.467831
MFCCs_20	Continuous numerical	Mean: -0.053244
		Std: 0.094181
		Range: -0.379304 - 0.432207
MFCCs_22	Continuous numerical	Mean: 0.087567
		Std: 0.123442

Table 4: The selected features

Data modelling

I've built two different machines to predict what kind of frog made a sound based on the sound's measurements (MFCCs). Here's how they did it:

1. **Splitting the Data:** Imagine you have a bunch of frog call recordings. I've divided them into two groups: a training set (80%) and a test set (20%). The training set is like a study guide for the machines, and the test set is like a pop quiz to see how well they learned.

Algorithm	Value/Statistics				
	Criteria: Gini				
Decision Tree	Max Depth: 14				
Decision free	Min Samples in Leaf: 5				
	Min Samples to Split: 12				
	C: 10				
Support Vector Machine	Kernel: Radial Basis Function				
	Gamma: Scale				

Table 5: Parameters of the predictive models

- **2. Training the Machines:** There are three main machines (models) used here: Decision Tree ,Support Vector Machine (SVM) and The K-Nearest Neighbors (KNN)
 - Decision Tree: This machine works by asking a series of yes/no questions about the sound's measurements to figure out the frog species. The researchers tried different tree depths (how many questions) to see which worked best.

- Support Vector Machine: This machine is like a fancy line drawer. It tries to draw a line that best separates the different frog calls in the training set. The researchers tested two different line shapes (kernels) and how strictly the line should be drawn (regularisation). They used a special tool (GridSearchCV) to find the best combination of these settings for the test set.
- K-Nearest Neighbours: Imagine you have a group of friends, each with distinct characteristics. K Nearest Neighbors (KNN) is like finding the closest friends to you based on those characteristics. Instead of drawing a line, KNN looks at the 'neighbourhood' of data points around each sample and classifies it based on the majority class of its nearest neighbours. The 'k' in KNN represents how many neighbours to consider. If k=3, for example, KNN will look at the three closest neighbours to decide the class of the sample. Just like SVM, KNN can use different distance metrics (like Euclidean distance) and can be tuned to perform better using techniques like cross-validation.

- **3. Testing the Machines:** Once trained, they tested both machines on the unseen test set (pop quiz). They looked at how well they did using different scores:
 - Accuracy: How many frog calls did they classify correctly overall?
 - Recall: For each frog type, how many calls did they correctly identify as that type?
 - Precision: Out of the calls they said were a certain frog type,
 how many were actually that type?
 - F1-Score: A mix of recall and precision to give a single score.
 - Confusion Matrix: This shows how often the machines mixed up different frog calls.

By comparing these scores, I could see which machine, whether it was Decision Tree, SVM or K-Nearest Neighbors, performed better at predicting the frog species from the sound recordings.

.

Results of classification:

Acc	Accuracy: 0.940236275191105												
Con	fus	ion	matr	ix:									
]]	[[128 0 4 3 1 1 0 1 0 1]												
[[0 691 0 4 0 1							0	0	0]			
[4	2	86	2	0	1	0	0	0	0]			
[2	5	0	56	0	1	2	0	0	2]			
[1	0	0	1	91	3	0	2	0	0]			
[1	2	1	1	3 2	211	2	1	0	4]			
[2	0	0	0	2	2	46	1	0	0]			
[4	1	0	0	3	2	0	9	0	1]			
[0	1	0	0	0	0	0	0	11	1]			
[1	1	0	0	0	5	0	0	0	24]]			
cl a	oci.	fica	tion	non	ont.								
Cla	Classification report: precision recall f1-score support												
						Pi (20131	OII		ccall	11-30016	support	
		Ad	enom	eraA	ndre		0.	90		0.92	0.91	139	
Ade	nome	eraH	ylae	dact	ylus		0.98			0.99	0.99	696	
	Am	eere	gatr	ivit	tata		0.95			0.91	0.92	95	
			Ну	laMi	nuta		0.84			0.82	0.83	68	
Н	lyps:	iboa	sCin	eras	cens		0.	91		0.93	0.92	98	
			boas				0.	93	0.93		0.93	226	
			ctyl				0.	92		0.87	0.89	53	
Os			alus					64		0.45	0.53	20	
Rhinellagranulosa							1.	00		0.85	0.92	13	
			Sci	naxR	uber		0.	73		0.77	0.75	31	
				accu	_		0	00		0.04	0.94	1439	
				acro	_			88		0.84	0.86	1439	
			weig	ncea	avg		٥.	94		0.94	0.94	1439	

Results of classification of anuran species using Decision Tree

Acc	Accuracy: 0.9742876997915219													
Con	Confusion matrix:													
	136		lia ch. 0	1X; 2	0	0	0	0	0	1]				
L L T		693	1	2	0	0	0	0	0	0]				
[0	0	95	0	0	0	0	0	0	0]				
L L	3	3	1	59	0	0	1	0	1	0]				
ŗ	1	0	0	0	97	0	0	0	0	0]				
į	0	2	0	1	0 2		4	4	0	1				
į	0	0	0	0	0	2	51	0	0	øj				
	1	0	0	0	2	0	1	16	0	øj				
[[0	0	0	0	0	0	0	0	13	øj				
Ī	1	0	0	0	1	0	0	1	0	28]]				
Cla	ssi	ficat	tion	repo	ort:									
						pre	ecis	ion	r	ecall	f1-score	support		
		٨٨	enome	ono Ai	ndno		0	.96		0.98	0.97	139		
۸۵۵	nom	eraHy						.99		1.00	0.97	696		
Aue		eereg			•			.98			0.99	95		
	AIII	22 122	_		nuta			.92			0.89	68		
н	vns	iboas	_					.97		0.99	0.98	98		
	-	ypsik						.99		0.95	0.97	226		
		toda						.89		0.96	0.93	53		
		cepha	_					.76		0.80	0.78	20		
Rhinellagranulosa							0	.93		1.00	0.96	13		
			Scir	naxRı	uber		0	.93		0.90	0.92	31		
	accuracy 0.97 1439													
			ma	acro	avg		0	.93		0.94	0.94	1439		
		V	veig	nted	avg		0	.97		0.97	0.97	1439		

Results of classification of anuran species using Support Vector Machine

Acc	cura	асу:	0.98	6101	459	34676	86				
Confusion matrix:											
[[1	L37	0	0	0	0	1	1	0	0	0]	
[0	696	0	0	0	0	0	0	0	0]	
[0	0	95	0	0	0	0	0	0	0]	
[1	0	0	67	0	0	0	0	0	0]	
[0	0	0	0	96	1	0	1	0	0]	
[0	2	0	1	2	217	2	2	0	0]	
]	0	0	0	0	1	0	52	0	0	0]	
[0	0	0	0	3	1	1	15	0	0]	
[0	0	0	0	0	0	0	0	13	0]	
[0	0	0	0	0	0	0	0	0	31]]	
61.											
CTa	Classification report:										

Classif	ication	report:

	precision	recall	f1-score	support
AdenomeraAndre	0.99	0.99	0.99	139
AdenomeraHylaedactylus	1.00	1.00	1.00	696
Ameeregatrivittata	1.00	1.00	1.00	95
HylaMinuta	0.99	0.99	0.99	68
HypsiboasCinerascens	0.94	0.98	0.96	98
HypsiboasCordobae	0.99	0.96	0.97	226
LeptodactylusFuscus	0.93	0.98	0.95	53
OsteocephalusOophagus	0.83	0.75	0.79	20
Rhinellagranulosa	1.00	1.00	1.00	13
ScinaxRuber	1.00	1.00	1.00	31
accuracy			0.99	1439
macro avg	0.97	0.96	0.96	1439
weighted avg	0.99	0.99	0.99	1439

Results of classification of anuran species using K-Nearest Neighbors

After comparing the three models, namely Decision Tree, SVM and K-Nearest Neighbors, for identifying frog species from sound recordings. I looked at how many predictions each machine got right overall (accuracy) and how good they were at specific frog types (precision and recall). Based on those scores, it seems like KNN is the better choice.

Here's why KNN did a better job:

- More Bullseyes: Imagine a table where correct guesses land on the diagonal. KNN had more "bullseyes" (correct guesses) on that table than the SVM of the Decision Tree (higher accuracy, 99% vs 97.43% and 94.02%).
- More Specific: When KNN said a sound belonged to a certain frog, it was usually right (higher precision, like pointing at a sound and saying the exact frog type). The SVM and Decision Tree were less specific (lower precision).
- Finding More Frogs: Imagine there's a pond with a specific type of frog. KNN found more of those specific frogs in the recordings (higher recall). The Decision Tree and SVM missed a few.
- Overall Champion: Combining these (precision and recall), KNN did better overall (higher F1-score).

So, if you want to build a machine to identify frog calls, KNNseems like the winner based on this test! This means that KNN might be better for future datasets of frog sounds as well