Analisi Complessa

Serie di Potenze

Forma

Classica
$$\sum_{n=0}^{\infty} a_n z^n$$
 Laurent $\sum_{n=-\infty}^{\infty} a_n z^n$

Raggio di Convergenza

$$\begin{split} &\frac{1}{R} = \limsup_{x \to \infty} \sqrt[n]{|a_n|} \\ &\frac{1}{R} = \lim_{x \to \infty} \frac{|a_{n+1}|}{|a_n|} \text{ se vale } \frac{\infty}{0} \implies R = \frac{0}{\infty} \end{split}$$

Funzioni a Valori Complessi

Olomorfia

Una funzione $f = u + iv : A \subset \mathbb{C} \to \mathbb{C}$ si dice Olormorfa in un aperto A se è derivabile in senso complesso in tutto A.

Inoltre la sua parte reale e immaginaria sono entrambe armoniche $(\Delta f=0)$ e rispetta le Condizioni di Cauchy Riemann

$$u, v \in C^1$$
 $u_x = v_y$ $u_y = -v_x$

Analiticità

Una funzione si dice **Analitica** se è localmente scrivibile come serie di Potenze. Inoltre se $R=\infty$ si dice Intera

Singolarità

Tipi di Singolarità al finito z_0 :

- Eliminabile: se $\exists \lim_{x \to z_0} f(z) \in \mathbb{C}$ e $a_n = 0 \quad \forall n < 0$.
- **Polo:** se $\exists \lim_{x \to z_0} f(z) = \infty$, $a_n = 0 \quad \forall n < m \text{ e } m \text{ è il grado.}$
- Essenziale: se $\nexists \lim_{x \to z_0} f(z)$ o $m = \infty$
- Non Isolata: se trovo una Successione di Singolarità $z_k \xrightarrow{k \to \infty} z_0$

All'infinito $z = \infty$

- Eliminabile: se $\exists \lim_{x \to \infty} f(z) \in \mathbb{C}$ e $a_n = 0 \quad \forall n < 0$.
- Polo: se $\exists \lim_{x \to \infty} f(z) = \infty$, $a_n = 0 \quad \forall n < m \text{ e } m \text{ è il grado.}$

- Essenziale: se $\nexists \lim_{x \to \infty} f(z)$ o $m = \infty$
- Non Isolata: se trovo una Successione di Singolarità $z_k \xrightarrow{k \to \infty} \infty$

Studio dei Poli

Le seguenti sono equivalenti:

- f ha un polo in z_0 di ordine m
- $g(z) = (z z_0)^m f(x)$ ha una singolarità eliminabile in z_0 e $\lim_{x \to z_0} g(z) \neq 0$
- $f(z) \approx |z z_0|^m \text{ per } z \to z_0$
- $\frac{1}{f(z)}$ ha uno zero di ordine m in z_0

Residui

Il residuo in z_0 è:

$$Res(f, z_0) = a_{-1} = a_n z^{-1} = \frac{1}{2\pi i} \int_{\gamma} f(z) dz$$

NB. $Res(f, \infty) = -a_{-1}$ Inoltre:

- $z_0 \neq \infty$:
 - Eliminabile $\implies Res(f, z_0) = 0$
 - Poli:
 - p = 1

$$Res(f, z_0) = \lim_{z \to z_0} f(z)(z - z_0)$$

 $p \ge 2$

$$Res(f, z_0) = \frac{\lim_{x \to z_0} \left[f(z)(z - z_0)^p \right]^{(p-1)}}{(p-1)!}$$

- Essenziale: Svolgo Laurent
- $z = \infty$

$$Res(f,\infty) = Res\left(-\frac{1}{z^2}f\left(\frac{1}{z}\right),0\right)$$

Infine Ricordo:

$$\sum_{k=1}^{n} Res(f, z_k) + Res(f, \infty) = 0$$

$$F = \frac{f}{g}, g(z_0) = 0 \text{ primo } \circ e \ g'(z_0) \neq 0 :$$

$$Res\left(\frac{f}{g}, z_0\right) = \frac{f(z_0)}{g'(z_0)}$$

Integrali Complessi

Teorema sull'integrale nullo di Cauchy

Sia $f \in H(A)$ $(u, v \in C^1)$, A semplicemente connesso, $\gamma : [a, b] \to A$ chiusa, semplice e regolare $(\gamma(a) = \gamma(b))$, allora:

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t)dt = 0$$

Inoltre:

Siano $f \in H(A) \cap C^1(\bar{A})$, $\gamma_1 = \partial A$ e $\gamma_2 \subset A$ chiusa, allora:

$$\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z)dz$$

Teorema dei Residui

Sia $f \in H(\mathbb{C} \setminus \{z_1, \dots, z_n\})$ se $R > \max |z_k|$ allora:

$$\int_{\partial B(0,R)} f(z)dz = 2\pi i \left[\sum_{k=1}^{n} Res(f, z_n) \right]$$

Lemmi di Jordan

Primo:

Sia f(z) funzione Olomorfa:

• Se $|f(z)| \le \frac{k}{|z^{\alpha}|} \text{ con } \alpha > 1 \quad \forall z, |z| > k,$ allora:

$$\int_{C_R(\theta_1,\theta_2)} \xrightarrow{R \to \infty} 0$$

• Similmente se vale lo stesso con $\alpha < 1, \forall z, |z| < k$:

$$\int_{C_R(\theta_1,\theta_2)} \xrightarrow{R \to 0} 0$$

Secondo:

Sia $g(z)e^{i\alpha z}$, allora:

- $\alpha > 0$: Va a zero sulla circonferenza Sopra
- $\alpha < 0$: Va a zero sulla circonferenza di Sotto

Per Dribling:

Sia z_0 polo semplice per f(z), allora:

$$\lim_{\epsilon \to 0^+} \int_{C_{\epsilon}(\alpha,\beta)} f(z)dz = (\beta - \alpha)i \cdot Res(f,z_0)$$

Tipi di Integrali

• $\int_0^{2\pi} R(\cos t, \sin t) dt$, uso:

 $z=e^{it}, dz=ie^{it}dt$, e uso la formula di Eulero: $\rightarrow \int_{|z|=1} R\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2i}\right) \frac{dz}{iz}$

• $\int_{\mathbb{R}} R(x) dx$ o $\int_{\mathbb{R}} R(x) \left\{ \begin{array}{c} e^{ix} \\ \cos x \\ \sin x \end{array} \right\} dx$

Integro su un semicerchio, eventualmente evitando singolarità sulla l'asse reale con piccoli semicerchi.

• $\int_{\mathbb{R}} R(e^x) \left\{ \begin{array}{c} 1 \\ e^{ix} \end{array} \right\} dx$ Integro su un rettangolo con eventuali dribling di Singolarità

- $\int_0^\infty x^\alpha R(x^m) \cos \alpha \in \mathbb{R}, m > 2 \in \mathbb{N},$ Riscrivo $x^\alpha = e^{\alpha \ln(z)}$
 - Se $\alpha \in \mathbb{N}$: spicchio di circonferenza di angolo $\frac{2\pi}{m}$ e raggio R
 - Se $\alpha \notin \mathbb{N}$: spicchio di corona fra ϵ e R con angolo $\frac{2\pi}{m}$
- $\int_0^\infty x^\alpha R(x) dx$, $\int_0^\infty R(x) dx$, $\int_0^\infty \ln(x) R(x) dx$: Circonferenza Interna di raggio ϵ e esterna di raggio R, con due segmenti lungo l'asse x positivo e cambio in:

$$e^{\alpha \ln_{2\pi} z} R(z) = \ln_{2\pi} z R(z) = (\ln_{2\pi} z)^2 R(z)$$

Spazi L^p

Appartenenza

Diciamo che $f(z) \in L^p(\Omega)$ se:

$$\int_{\Omega} |f(z)|^p dz < \infty$$

Teoremi su Integrali

Teorema di Convergenza Monotona

Sia $f_n: A \to [0,+\infty), \lim_{n\to\infty} f_n(x) = f(x)$ $\tilde{\forall} x \in A \text{ e } f_n(x) \leq f_{n+1}(x) \quad \forall n, x,$ allora:

$$\lim_{n \to \infty} \int_A f_n(x) dx = \int_A f(x) dx$$

Teorema di Convergenza Dominata

Sia
$$f_n: A \to \mathbb{C}$$
 e $\lim_{n \to \infty} f_n(x) = f(x)$ $\tilde{\forall} x \in A$, allora:

Se
$$\exists g \in L^1(A)$$
 tale che $|f_n(x)| \leq g(x)$ $\tilde{\forall} x \in A$
 $\implies \lim_{n \to \infty} \int_A f_n(x) dx = \int_A f(x) dx$ e $f \in L^1$

Serie di Fourier

Coefficienti

Sia $f \in L^2(A)$ con periodo T, allora:

$$F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{2\pi n}{T} x + b_n \sin \frac{2\pi n}{T} x$$

con:

$$a_0 = \frac{2}{T} \int_A f(x) dx$$

$$a_n = \frac{2}{T} \int_A f(x) \cos \frac{2\pi n}{T} x dx$$

$$b_n = \frac{2}{T} \int_A f(x) \sin \frac{2\pi n}{T} x dx$$

Inoltre:

In tutti i punti in cui f è continua avremo: F(x) = f(x)

Nei punti di salto $F(x) = \frac{f(x^+) + f(x^-)}{2}$

Convergenza

Puntuale

Continua a tratti \implies Convergenza Puntuale

Uniforme

Se f non è continua non si può avere convergenza Uniforme. Se no classico metodo.

Totale

Dico che la serie converge **Totalmente** se

$$\sum_{k=1}^{\infty} |a_k| + |b-k| < \infty \implies \text{Uniforme e Puntuale}$$

Quadratica

$$\sum_{k=1}^{\infty} |a_k|^2 + |b_k|^2 < \infty$$

Parceval

$$\frac{1}{\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \frac{a_0^2}{2} + \sum_{h=1}^{\infty} |a_h|^2 + |b_h|^2$$

Trasformata di Fourier

Una funzione f(x) si dice Fourier-Trasformabile se:

$$f \in L^1(\mathbb{R}) \in \hat{f}(\xi) : \mathbb{R} \to \mathbb{C} = \int_{\mathbb{R}} e^{-i\xi x} f(x) dx < \infty$$

Proprietà

- Scaling: $u(ax) = \frac{1}{|a|} \hat{u}(\frac{\xi}{a})$
- Shifting: $u(x-a) = e^{-ia\xi}\hat{u}(\xi)$
- Modulazione: $u(x)e^{iax} = \hat{u}(\xi a)$
- Linearità: $F(au(x) + bv(x)) = a\hat{u}(\xi) + b\hat{v}(\xi)$
- Derivazione: $\hat{u}'(\xi) = i\xi \hat{u}(\xi)$ e $F(u') = i\xi \hat{u}$
- Integrazione: $u(x) = \hat{u}(\xi)$
- Convoluzione: $F(f * g) = \hat{f}\hat{g}$
- Prodotto con Polinomio $F(xf(x)) = i\hat{f}'(\xi)$

Inversa

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\xi z} \hat{f} dz$$

Plancherel

Sia $u \in L^2 \cap L^1$ allora $\|\hat{u}\|_2 = \sqrt{2\pi} \|u\|_2$

Fourier su S'

Sia $u \in S'$, $\hat{u} \in S'$, $\phi \in S$, $\phi' \in S'$, allora:

$$(\hat{u}, \phi) = (u, \hat{\phi})$$

Trasformate Notevoli

Trasformata di Laplace

Sia $u \in L^1_{loc}: \mathbb{R} \to \mathbb{R}, S(u) \subset [0, \infty), \exists \lambda \in \mathbb{R}$ to $e^{-\lambda x} \in L^1(\mathbb{R})$, allora:

$$L(u) = \int_{\mathbb{R}}^{+} e^{-sx} u(x) dx$$

Proprietà

• Scaling: $u(ax) = \frac{1}{a}\hat{u}(\frac{s}{a})$

• Shifting: $u(x-a) = e^{-as}\hat{u}(s)$

• Modulazione: $u(x)e^{ax} = \hat{u}(s-a)$

• Linearità: $F(au(x) + bv(x)) = a\hat{u}(s) + b\hat{v}(s)$

• Integrazione: $L(\int_0^t f(\tau)d\tau) = \frac{1}{s}\hat{f}$

• Convoluzione: $L(f * g) = \hat{f}\hat{g}$

Inversa

$$u(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{u}(s)e^s x ds$$

Trasformate Notevoli

$$\sin \omega t \to \frac{\omega}{s^2 + \omega^2}$$

$$\cos \omega t \to \frac{s}{s^2 + \omega^2}$$

$$t^n \to \frac{n!}{s^{n+1}}$$

$$\chi[a, b](t) \to \frac{e^{-as} - e^{-bs}}{s}$$

$$\delta_0 \to 1$$

Funzioni a Supporto Compatto

 $\phi \in D(A)$ se $\phi : A \to \mathbb{R} \in C^{\infty}(A)$ con supporto compatto (cioè si deve annullare). Queste vengono anche dette funzioni test.

Convergenza

Sia $f_n \subset D(A)$, allora $f_n \xrightarrow{D(A)} f$ se :

• $\exists K \subset A \text{ tale che } S(f_n) \subset K$

• $\forall k \in \mathbb{N}, \quad f_n^{(n)} \to f^{(n)}$ uniformemente

Funzioni di Schwartz

 $\phi \in S(A)$ se $\phi \in C^{\infty}(A)$ e $x^k f^{(n)}$ è limitata $\forall k \in \mathbb{N}$

Convergenza

Sia $f_n \subset S(\mathbb{R})$, allora $f_n \xrightarrow{D(A)} f$ se:

• $f \in C^{\infty}(\mathbb{R})$

• $x^k f^{(k)}$ è limitata $\forall k \in \mathbb{N}$

Distribuzioni

Sia $A \subset \mathbb{R}$ un aperto, una distribuzione su A è un funzionale $f:D(A)\to D'(A)$

Prodotto Scalare

$$(f,\phi) = \int_A f(x)\phi(x)dx$$

Convergenza

$$(\Lambda_k, \phi(x)) \to (\lambda, \phi) \text{ con } \Lambda_n \subset D'(A)$$

Derivata

Sia $\Lambda \in D'(A)$, allora:

$$\forall \phi \in D(A) \quad (\Lambda', \phi) = -(\Lambda, \phi')$$

Temperate

Distribuzione da $S(\mathbb{R}) \to \mathbb{R}$. Notiamo che $\psi \in D(\mathbb{R}) \implies \psi \in S(\mathbb{R})$. Dunque $S'(\mathbb{R}) \subset D'(\mathbb{R})$

Da $L_{loc}^1 aS'$

Sia $u \in L^1_{loc}$, è temperata se:

$$\exists n \text{ tale che } (1+|x|)^{-n}u \in L^1(\mathbb{R})$$

Da $L^p a S'$

Sia $u \in L^p$, allora $u \in S'(\mathbb{R})$

Formule Utili e Risultati Notevoli

Funzioni Trigonometriche, Iperboliche ed Esponenziali

$$e^{iz} = \cos z + i \sin z$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

$$\sinh z = \frac{e^z - e^{-z}}{2} = \frac{e^{2z} - 1}{2e^z} = \frac{1 - e^{-2z}}{2e^{-z}}$$

$$\cosh z = \frac{e^z + e^{-z}}{2} = \frac{e^{2z} + 1}{2e^z} = \frac{1 + e^{-2z}}{2e^{-z}}$$

Serie di Laurent

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$$

$$\cosh z = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}$$

$$\sinh z = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$$

$$\cos z = \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2n}}{(2n)!}$$

$$\sin z = \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2n+1}}{(2n+1)!}$$

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^{n}$$

Convoluzione

Date $u, v \in L^1(\mathbb{R})$ allora:

$$(u*v)(x) = \int_{\mathbb{R}} u(x-t)v(t)dt = \int_{\mathbb{R}} u(t)v(x-t)dt$$