- This is a list of every shooting incident that occurred in NYC going back to 2006 through the
  end of 2020. This data is manually extracted every quarter and reviewed by the Office of
  Management Analysis and Planning before being posted on the NYPD website. Each record
  represents a shooting incident in NYC and includes information about the event, the location
  and time of occurrence. In addition, information related to suspect and victim demographics is
  also included.
- Data was downloaded from https://catalog.data.gov/dataset/nypd-shooting-incident-datahistoric

## Step 1: Start an Rmd Document

```
In [47]: # install libraries
library(tidyverse)
library(plubridate)
library(ggplot2)

In [2]: #install.packages("plotrix")
library(plotrix)

In [3]: # read data
data <- read.csv("https://data.cityofnewyork.us/api/views/833y-fsy8/rows.csv?accessType

In [4]: # view some first rows of data
head(data)

INCIDENT_KEY OCCUR_DATE OCCUR_TIME BORO PRECINCT JURISDICTION_CODE LOCATION_DESCRIPTION</pre>
```

| Y OCCUR_DATE | OCCUR_TIME                                                                   | BORO                                                                                             | PRECINCT                                                                                                                                         | JURISDICTION_CODE                                                                                                                                                 | LOCATION_DES                                                                                                                                                                |
|--------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 08/27/2006 | 05:35:00                                                                     | BRONX                                                                                            | 52                                                                                                                                               | 0                                                                                                                                                                 |                                                                                                                                                                             |
| 9 03/11/2011 | 12:03:00                                                                     | QUEENS                                                                                           | 106                                                                                                                                              | 0                                                                                                                                                                 |                                                                                                                                                                             |
| 7 10/06/2019 | 01:09:00                                                                     | BROOKLYN                                                                                         | 77                                                                                                                                               | 0                                                                                                                                                                 |                                                                                                                                                                             |
| 7 09/04/2011 | 03:35:00                                                                     | BRONX                                                                                            | 40                                                                                                                                               | 0                                                                                                                                                                 |                                                                                                                                                                             |
| 6 05/27/2013 | 21:16:00                                                                     | QUEENS                                                                                           | 100                                                                                                                                              | 0                                                                                                                                                                 |                                                                                                                                                                             |
| 7 09/01/2013 | 04:17:00                                                                     | BROOKLYN                                                                                         | 67                                                                                                                                               | 0                                                                                                                                                                 |                                                                                                                                                                             |
|              | 2 08/27/2006<br>9 03/11/2011<br>7 10/06/2019<br>7 09/04/2011<br>6 05/27/2013 | 9 03/11/2011 12:03:00<br>7 10/06/2019 01:09:00<br>7 09/04/2011 03:35:00<br>6 05/27/2013 21:16:00 | 2 08/27/2006 05:35:00 BRONX 9 03/11/2011 12:03:00 QUEENS 7 10/06/2019 01:09:00 BROOKLYN 7 09/04/2011 03:35:00 BRONX 6 05/27/2013 21:16:00 QUEENS | 2 08/27/2006 05:35:00 BRONX 52 9 03/11/2011 12:03:00 QUEENS 106 7 10/06/2019 01:09:00 BROOKLYN 77 7 09/04/2011 03:35:00 BRONX 40 6 05/27/2013 21:16:00 QUEENS 100 | 2 08/27/2006 05:35:00 BRONX 52 0 9 03/11/2011 12:03:00 QUEENS 106 0 7 10/06/2019 01:09:00 BROOKLYN 77 0 7 09/04/2011 03:35:00 BRONX 40 0 6 05/27/2013 21:16:00 QUEENS 100 0 |

# **Step 2: Tidy and Transform Data**

In [5]:

In [6]

45-64 : 1541

65+ : 154

# remove some unused columns of data and view some first rows of data
nypd <- subset (data, select = -c(X\_COORD\_CD, Y\_COORD\_CD, Latitude, Longitude, Lon\_Lat)
head(nypd)</pre>

| `                               | , ,                                                 |                                                                            |                                                                                                        |                                                              |                                                                |                                          |                                                                              |                                    |              |
|---------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------|------------------------------------|--------------|
| INCIDE                          | NT_KEY                                              | OCCUR_DAT                                                                  | TE OCCUR_                                                                                              | TIME                                                         | BORO                                                           | PRECINCT                                 | JURISDICTI                                                                   | ON_CODE                            | LOCATION_DES |
| 24                              | 050482                                              | 08/27/200                                                                  | 06 05:                                                                                                 | 35:00                                                        | BRONX                                                          | 52                                       |                                                                              | 0                                  |              |
| 77                              | 673979                                              | 03/11/201                                                                  | l1 12:                                                                                                 | 03:00                                                        | QUEENS                                                         | 106                                      |                                                                              | 0                                  |              |
| 203                             | 350417                                              | 10/06/201                                                                  | 19 01:                                                                                                 | 09:00                                                        | BROOKLYN                                                       | 77                                       |                                                                              | 0                                  |              |
| 80                              | 584527                                              | 09/04/201                                                                  | 11 03:                                                                                                 | 35:00                                                        | BRONX                                                          | 40                                       |                                                                              | 0                                  |              |
| 90                              | 843766                                              | 05/27/201                                                                  | 13 21:                                                                                                 | 16:00                                                        | QUEENS                                                         | 100                                      |                                                                              | 0                                  |              |
| 92                              | 393427                                              | 09/01/201                                                                  | 13 04:                                                                                                 | 17:00                                                        | BROOKLYN                                                       | 67                                       |                                                                              | 0                                  |              |
| 1                               |                                                     |                                                                            |                                                                                                        |                                                              |                                                                |                                          |                                                                              |                                    | •            |
|                                 | nary da<br>ry(nypo                                  |                                                                            |                                                                                                        |                                                              |                                                                |                                          |                                                                              |                                    |              |
| Min.<br>1st Qu<br>Media<br>Mean | u.: 553<br>n : 834<br>:1022<br>u.:1509              | 953245 07<br>322804 09<br>435362 07<br>280741 08<br>911774 09<br>511229 08 | OCCUR_<br>7/05/2020:<br>9/04/2011:<br>7/26/2020:<br>8/11/2007:<br>9/04/2006:<br>8/15/2020:<br>0ther) : | 47<br>31<br>29<br>26<br>25<br>24                             | 23:30:0<br>01:30:0<br>00:30:0<br>02:00:0<br>21:00:0<br>22:30:0 | 00: 141<br>00: 136<br>00: 129<br>00: 128 | BRONX<br>BROOKLYN<br>MANHATTAN<br>QUEENS<br>STATEN ISL                       | :3532                              |              |
| Min.<br>1st Qu<br>Media<br>Mean | ECINCT: 1. i.: 44. i.: 69. i.: 66. i.: 81. i.: 123. | JURIS<br>.00 Min.<br>.00 1st (<br>.00 Media<br>.21 Mean<br>.00 3rd (       | SDICTION_C<br>:0.000<br>)u.:0.000<br>an :0.000                                                         | ODE<br>MU<br>MU<br>PV<br>GR<br>BA                            | JLTI DWELL                                                     | LOO<br>PUBLIC<br>APT BU<br>DEGA          | CATION_DESC<br>:13581<br>HOUS: 4240<br>ILD : 2553<br>: 857<br>: 574<br>: 562 | L<br>0<br>3<br>7<br>4<br>2         |              |
| false                           | STICAL_<br>:19085<br>: 4500                         | _MURDER_FLA                                                                | AG PERP_AG<br>18-24<br>25-44<br>UNKNOWN                                                                | E_GROU<br>:8295<br>:5508<br>:4714<br>:3148<br>:1368<br>: 495 |                                                                | BLACK  WHITE I  UNKNOWI                  | PERP_RAC<br>:10<br>: 8<br>HISPANIC: 1<br>N : 1<br>HISPANIC: 1                | CE<br>0025<br>3261<br>1988<br>1836 |              |
| <18<br>18-24                    | GE_GROU<br>: 252<br>: 900<br>:1030                  | 25 F: 226<br>03 M:2137                                                     | X<br>04 AMERI                                                                                          | CAN IN<br>/ PAC                                              | DIAN/ALAS                                                      | VIC<br>KAN NATIV                         | _RACE                                                                        |                                    |              |

BLACK HISPANIC

UNKNOWN

: 2245

65

UNKNOWN: 59 WHITE : 620 WHITE HISPANIC : 3450

```
In [7]:
# Quick glimpse data also tells us the number of rows (observations), columns (variable
glimpse(nypd)
```

```
Observations: 23,585
Variables: 14
$ INCIDENT KEY
                      <int> 24050482, 77673979, 203350417, 80584527, 90...
$ OCCUR DATE
                      <fct> 08/27/2006, 03/11/2011, 10/06/2019, 09/04/2...
$ OCCUR_TIME
                      <fct> 05:35:00, 12:03:00, 01:09:00, 03:35:00, 21:...
$ BORO
                      <fct> BRONX, QUEENS, BROOKLYN, BRONX, QUEENS, BRO...
                      <int> 52, 106, 77, 40, 100, 67, 77, 81, 101, 106,...
$ PRECINCT
$ JURISDICTION_CODE
                      $ LOCATION DESC
                      $ STATISTICAL_MURDER_FLAG <fct> true, false, false, false, false, false, fa...
$ PERP AGE GROUP
                      <fct> , , , , , , , , , , , , , , 18-24, , ...
$ PERP SEX
                      <fct> , , , , , , , , , , , , , , M, , , , ...
$ PERP_RACE
                      <fct> , , , , , , , , , , , , , , BLACK, , ...
$ VIC AGE GROUP
                      <fct> 25-44, 65+, 18-24, <18, 18-24, <18, <18, 25...
$ VIC SEX
                      <fct> F, M, F, M, M, M, M, M, M, F, M, M, M, M...
                      <fct> BLACK HISPANIC, WHITE, BLACK, BLACK, BLACK,...
$ VIC RACE
```

• As we can see, there are some blank values in the data. Therefore, to deal with this, first, I'll set blank to NA and then I'll check for missing data.

```
In [8]: # set blank to NA
    nypd[nypd == ""] <- NA

In [9]: #Checking for missing data
    sapply(nypd,function(x) sum(is.na(x)))

INCIDENT_KEY 0</pre>
```

OCCUR\_DATE 0 OCCUR\_TIME 0 **BORO** 0 **PRECINCT** 0 JURISDICTION\_CODE LOCATION\_DESC 13581 STATISTICAL\_MURDER\_FLAG PERP\_AGE\_GROUP 8295 PERP\_SEX 8261 8261 PERP\_RACE VIC\_AGE\_GROUP 0 VIC\_SEX 0 VIC\_RACE 0

 As we see above, there are 2 missing values of JURISDICTION\_CODE and a lot of missing values of LOCATION\_DESC, PERP\_AGE\_GROUP, PERP\_SEX and PERP\_RACE. To deal with this, I'll delete 2 missing values of JURISDICTION\_CODE, fill "NONE" for the missing values of LOCATION\_DESC and fill "UNKNOWN" for the missing values of PERP\_AGE\_GROUP, PERP\_SEX and PERP\_RACE.

```
In [10]:
          # delete missing values in JURISDICTION_CODE
          nypd <- nypd %>% drop na(JURISDICTION CODE)
In [11]:
          # replace NA with NONE in column LOCATION DESC
          nypd$LOCATION DESC[is.na(nypd$LOCATION DESC)] <- "NONE"</pre>
In [12]:
          # replace NA with UNKNOWN in column PERP AGE GROUP, PERP SEX and PERP RACE
          nypd$PERP SEX <- sapply(nypd$PERP SEX, as.character) # since our values are `factor`</pre>
          nypd[is.na(nypd)] <- "UNKNOWN"</pre>
In [13]:
          # check missing values again
          sapply(nypd,function(x) sum(is.na(x)))
        INCIDENT_KEY
                         0
        OCCUR_DATE
                         0
        OCCUR_TIME
                         0
        BORO
                         0
        PRECINCT
        JURISDICTION_CODE
        LOCATION_DESC 0
        STATISTICAL_MURDER_FLAG
        PERP_AGE_GROUP 0
        PERP_SEX
                         0
        PERP_RACE
                         0
        VIC_AGE_GROUP
                         0
        VIC SEX
                         0
        VIC_RACE
                         0
In [14]:
          # summary data again
          summary(nypd)
           INCIDENT KEY
                                                   OCCUR TIME
                                                                           BORO
                                  OCCUR DATE
          Min. : 9953245
                             07/05/2020: 47
                                                23:30:00: 159
                                                                BRONX
                                                                             :6701
          1st Qu.: 55322804
                             09/04/2011:
                                           31
                                                01:30:00: 141
                                                                BROOKLYN
                                                                             :9734
          Median : 83435362
                             07/26/2020: 29
                                              00:30:00: 136
                                                                MANHATTAN
                                                                             :2921
          Mean :102279763
                                              02:00:00: 129
                             08/11/2007:
                                           26
                                                                QUEENS
                                                                             :3531
                             09/04/2006:
          3rd Qu.:150895962
                                           25
                                                21:00:00: 128
                                                                STATEN ISLAND: 696
          Max. :230611229
                             08/15/2020: 24
                                                22:30:00: 126
                              (Other) :23401
                                                (Other) :22764
             PRECINCT
                          JURISDICTION CODE
                                                             LOCATION DESC
          Min. : 1.00
                          Min.
                                 :0.000
                                           NONE
                                                                    :13755
          1st Qu.: 44.00
                          1st Qu.:0.000
                                            MULTI DWELL - PUBLIC HOUS: 4240
          Median : 69.00
                          Median :0.000
                                            MULTI DWELL - APT BUILD : 2553
          Mean : 66.22
                          Mean :0.333
                                            PVT HOUSE
                                                                    : 857
          3rd Qu.: 81.00
                          3rd Qu.:0.000
                                            GROCERY/BODEGA
                                                                    : 574
```

```
Max.
       :123.00 Max.
                        :2.000
                                   BAR/NIGHT CLUB
                                                             : 562
                                    (Other)
                                                             : 1042
STATISTICAL_MURDER_FLAG PERP_AGE_GROUP
                                          PERP SEX
false:19083
                        UNKNOWN: 11442
                                        Length: 23583
true: 4500
                        18-24 : 5508
                                        Class :character
                        25-44 : 4714
                                        Mode :character
                        <18
                               : 1367
                        45-64 : 495
                        65+
                               :
                                   54
                        (Other):
                                    3
                   PERP_RACE
                                 VIC_AGE_GROUP
                                                 VIC SEX
UNKNOWN
                        :10097
                                 <18
                                        : 2525
                                                 F: 2204
                                                 M:21368
BLACK
                        :10024
                                 18-24 : 9002
WHITE HISPANIC
                        : 1987
                                 25-44 :10302
                                                 U:
                                                       11
BLACK HISPANIC
                        : 1096
                                 45-64
                                        : 1541
WHITE
                                        : 154
                           255
                                 65+
ASIAN / PACIFIC ISLANDER:
                           122
                                 UNKNOWN:
                                            59
(Other)
                             2
                          VIC RACE
AMERICAN INDIAN/ALASKAN NATIVE:
ASIAN / PACIFIC ISLANDER
                                 327
BLACK
                              :16868
BLACK HISPANIC
                              : 2245
UNKNOWN
                                  65
WHITE
                                 620
                              : 3449
WHITE HISPANIC
```

Next, in the summary we can see there are 3 other values in the PERP\_AGE\_GROUP, I think it might be outliers there, so now I'm looking into it.

```
In [15]: # summary PERP_AGE_GROUP column
summary(nypd$PERP_AGE_GROUP)
```

```
1
                 0
<18
                 1367
1020
                 1
18-24
                 5508
224
                 1
25-44
                 4714
45-64
                 495
65+
                 54
940
                 1
UNKNOWN
                 11442
```

As we see, there are 3 outlier values in PERP\_AGE\_GROUP column: 1020, 224, 940. Now, I'll plot PERP\_AGE\_GROUP for seeing those outliers more clearly.

```
In [16]: # plot PERP_AGE_GROUP column
ggplot(nypd, aes(x=PERP_AGE_GROUP, y="")) +
    geom_boxplot()+
    geom_jitter(position=position_jitter(0.05))
```



To solve this problem, I'll remove rows of outlier value out of our data.

65+

54

```
In [17]:
          # delete rows with PERP_AGE_GROUP as 1020 or 224 or 940
          nypd <- nypd[!(nypd$PERP_AGE_GROUP=="1020" | nypd$PERP_AGE_GROUP=="224" | nypd$PERP_AGE_</pre>
          # summary to check PERP_AGE_GROUP column without outlier anymore
          summary(nypd$PERP_AGE_GROUP)
                          0
         <18
                          1367
         1020
                          0
         18-24
                          5508
         224
                          0
         25-44
                          4714
         45-64
                          495
```

```
In [18]: #converting dates to standard MM-DD-YYYY format
#nypd$OCCUR_DATE <- mdy(nypd$OCCUR_DATE)</pre>
In [19]: #Sorting data by dates and view some Last rows of data
nypd<- nypd[order(nypd$OCCUR_DATE),]
tail(nypd)
```

|       | INCIDENT_KEY | OCCUR_DATE | OCCUR_TIME | BORO      | PRECINCT | JURISDICTION_CODE | LOCA |
|-------|--------------|------------|------------|-----------|----------|-------------------|------|
| 6345  | 206890929    | 12/31/2019 | 23:15:00   | MANHATTAN | 28       | 0                 | НС   |
| 12563 | 206891917    | 12/31/2019 | 20:14:00   | BROOKLYN  | 73       | 0                 |      |
| 6997  | 222446417    | 12/31/2020 | 00:42:00   | BRONX     | 44       | 0                 |      |
| 11512 | 222468112    | 12/31/2020 | 14:59:00   | QUEENS    | 103      | 0                 |      |
| 13916 | 222466833    | 12/31/2020 | 19:27:00   | QUEENS    | 113      | 0                 |      |
| 22541 | 222473262    | 12/31/2020 | 23:45:00   | MANHATTAN | 33       | 0                 |      |
| 4     |              |            |            |           |          |                   | •    |

## Step 3: Add Visualizations and Analysis

• Now, after cleaning up and check there is no missing data, I'll analyze and visualize data. ### Question 1: How many victims are female, male and unisex?

```
In [20]:
          # Number of cases where the victims are female, male and unisex
          number_of_victim_female = nrow(filter(nypd, VIC_SEX == "F"))
          number_of_victim_male = nrow(filter(nypd, VIC_SEX == "M"))
          number of victim unisex = nrow(filter(nypd, VIC SEX == "U"))
In [21]:
          print(paste("The number of female victims is: ",number_of_victim_female,"."))
          print(paste("The number of male victims is: ",number_of_victim_male,"."))
          print(paste("The number of unisex victims is: ",number_of_victim_unisex,"."))
          [1] "The number of female victims is: 2204 ."
          [1] "The number of male victims is: 21365 .
         [1] "The number of unisex victims is: 11 ."
In [22]:
          # Create the data for the chart
          chem <- c("F", "M", "U")</pre>
          vol <- c(number of victim female, number of victim male, number of victim unisex)</pre>
In [23]:
          \# create a dataframe x with the catagories of sex and the number of each kind
```

```
x <- list(col1 = chem, col2 = vol)
as.data.frame(x)
x <- rep( c("Female", "Male", "Unisex"), c(number_of_victim_female, number_of_victim_male,</pre>
```

```
F 2204
M 21365
U 11
```

Since pie charts are especially useful for proportions, let's have a look on the proportions of our victim's sex, than we will report on the graph in this case:

```
# the proportions of our victim's sex
paste(prop.table(table(x))*100, "%", sep = "")
```

- 1. '9.34690415606446%'
- 2. '90.6064461407973%'
- 3. '0.0466497031382528%'

```
In [25]: # visualize Victim's sex pie chart
    pie3D(table(x), labels = paste(round(prop.table(table(x))*100), "%", sep = ""),
    col = heat.colors(3), explode = 0.1, main = "Victim's Sex")
    legend("topright", legend = c("Female", "Male", "Unisex"),
    fill = heat.colors(3), title = "Categories", cex = 0.5)
```

#### Victim's Sex





Base on the Victim's Sex chart, we can see that the most of victims are male (91%), the least victims are unisex (0.047%), and the remaining is female (9%).

## Question 2: How many victim in each range of age?

```
In [26]:
# Number of cases where the victims are female, male and unisex
number_of_victim_U18 = nrow(filter(nypd, VIC_AGE_GROUP == "<18"))
number_of_victim_U24 = nrow(filter(nypd, VIC_AGE_GROUP == "18-24"))
number_of_victim_U44 = nrow(filter(nypd, VIC_AGE_GROUP == "25-44"))
number_of_victim_U64 = nrow(filter(nypd, VIC_AGE_GROUP == "45-64"))
number_of_victim_065 = nrow(filter(nypd, VIC_AGE_GROUP == "65+"))
number_of_victim_UN = nrow(filter(nypd, VIC_AGE_GROUP == "UNKNOWN"))

In [27]:

print(paste("The number of under 18 victims is: ",number_of_victim_U18,"."))
print(paste("The number of 25-44 victims is: ",number_of_victim_U44,"."))
print(paste("The number of 45-64 victims is: ",number_of_victim_U64,"."))</pre>
```

```
print(paste("The number of 65+ victims is: ",number_of_victim_O65,"."))
print(paste("The number of unknown age victims is: ",number_of_victim_UN,"."))

[1] "The number of under 18 victims is: 2525 ."
[1] "The number of 18-24 victims is: 9001 ."
[1] "The number of 25-44 victims is: 10300 ."
[1] "The number of 45-64 victims is: 1541 ."
[1] "The number of 65+ victims is: 154 ."
[1] "The number of unknown age victims is: 59 ."

In [28]: # Create the data for the chart
kind <- c("Under 18","18-24","25-44","45-64","65+","Unknown")
val <- c(number_of_victim_U18,number_of_victim_U24,number_of_victim_U44,number_of_victi

In [29]: # Visualize the number of Victim's Age
b<-barplot(val,names.arg=kind,xlab="Age",ylab="Count",col="blue",main="Victim's Age",bo</pre>
```



The histogram above tells us that the victim's age are most at 25-44 and the least are at 65+ and

# Question 3: How many cases are investigated by each jurisdiction code, occurred at each city where the shooting incident happened?

```
In [30]:
          number of BOROX = nrow(filter(nypd, BORO == "BRONX"))
          number of QUEENS = nrow(filter(nypd, BORO == "QUEENS"))
          number_of_BROOKLYN = nrow(filter(nypd, BORO == "BROOKLYN"))
          number of MANHATTAN = nrow(filter(nypd, BORO == "MANHATTAN"))
          number of S ISLAND = nrow(filter(nypd, BORO == "STATEN ISLAND"))
In [31]:
          print(paste("The number of shooting incident occurred in Borox is: ",number_of_BOROX,".
          print(paste("The number of shooting incident occurred in Queens is: ",number_of_QUEENS,
          print(paste("The number of shooting incident occurred in Brooklyn is: ",number_of_BROOK
          print(paste("The number of shooting incident occurred in Manhattan is: ",number_of_MANH
          print(paste("The number of shooting incident occurred in Staten Island is: ",number of
         [1] "The number of shooting incident occurred in Borox is: 6699 ."
         [1] "The number of shooting incident occurred in Oueens is: 3531 ."
         [1] "The number of shooting incident occurred in Brooklyn is: 9733 ."
         [1] "The number of shooting incident occurred in Manhattan is: 2921 ."
         [1] "The number of shooting incident occurred in Staten Island is: 696 ."
In [32]:
          # create a table of counting cases were investigated by each jurisdiction code at each
          tbl1 <- nypd %>% group by(JURISDICTION CODE,BORO) %>% summarise(COUNT = n())
          as.data.frame(tbl1)
```

POPO COUNT

| JURISDICTION_CODE | BORO          | COUNT |
|-------------------|---------------|-------|
| 0                 | BRONX         | 5751  |
| 0                 | BROOKLYN      | 7895  |
| 0                 | MANHATTAN     | 2214  |
| 0                 | QUEENS        | 3145  |
| 0                 | STATEN ISLAND | 622   |
| 1                 | BRONX         | 12    |
| 1                 | BROOKLYN      | 21    |
| 1                 | MANHATTAN     | 14    |
| 1                 | QUEENS        | 7     |
| 2                 | BRONX         | 936   |
| 2                 | BROOKLYN      | 1817  |
| 2                 | MANHATTAN     | 693   |
| 2                 | QUEENS        | 379   |
| 2                 | STATEN ISLAND | 74    |

HIDISDICTION CODE

#### Borough and Jurisdiction Code where the shooting incident occurred



As chart above, we can see that:

- The most shooting incidents were investigated by Patrol (jurisdiction\_code = 0) and occurred in Brooklyn.
- Bronx is the second most place where the shooting incidents occurred.
- The place where the least shooting incident occurred is State Island.
- There are least of shooting incidents that were investigated by Transit (jurisdiction\_code = 1).

### Question 4: How many Perpetrator in each range of Race?

```
number_of_AMERICAN = nrow(filter(nypd, PERP_RACE == "AMERICAN INDIAN/ALASKAN NATIVE"))
number_of_ASIAN = nrow(filter(nypd, PERP_RACE == "ASIAN / PACIFIC ISLANDER"))
number_of_BLACK = nrow(filter(nypd, PERP_RACE == "BLACK"))
number_of_B_HIS = nrow(filter(nypd, PERP_RACE == "BLACK HISPANIC"))
```

```
number of WHITE = nrow(filter(nypd, PERP RACE == "WHITE"))
          number of W HIS = nrow(filter(nypd, PERP RACE == "WHITE HISPANIC"))
          number of UNKN= nrow(filter(nypd, PERP RACE == "UNKNOWN"))
In [35]:
          print(paste("The number of American Indian / Alaskan Native Perpetrators is: ",number o
          print(paste("The number of Asian / Pacific Islander Perpetrators is: ",number of ASIAN,
          print(paste("The number of Black Perpetrators is: ",number_of_BLACK,"."))
          print(paste("The number of Black Hispanic Perpetrators is: ",number_of_B_HIS,"."))
          print(paste("The number of White Perpetrators is: ",number_of_WHITE,"."))
          print(paste("The number of White Hispanic Perpetrators is: ",number of W HIS,"."))
          print(paste("The number of Unknown Perpetrators is: ",number of UNKN,"."))
         [1] "The number of American Indian / Alaskan Native Perpetrators is: 2 ."
         [1] "The number of Asian / Pacific Islander Perpetrators is: 122 ."
         [1] "The number of Black Perpetrators is: 10023 ."
         [1] "The number of Black Hispanic Perpetrators is: 1096 ."
         [1] "The number of White Perpetrators is: 255 ."
         [1] "The number of White Hispanic Perpetrators is: 1985 ."
         [1] "The number of Unknown Perpetrators is: 10097 ."
In [36]:
          # create a dataframe y with the catagories of Perpetrator's Race and the number of each
          y <- nypd %>% group by(PERP RACE) %>% summarise(COUNT = n())
          as.data.frame(v)
                             PERP RACE COUNT
```

```
AMERICAN INDIAN/ALASKAN NATIVE 2

ASIAN / PACIFIC ISLANDER 122

BLACK 10023

BLACK HISPANIC 1096

UNKNOWN 10097

WHITE 255

WHITE HISPANIC 1985
```



As histogram above, we see that:

- There were still have many cases that lacked of information about Perpetrator's Race.
- Besides that, the most Perpetrator's Race is Black.
- The least Perpetrator's Race is American Indian / Alaskan Native.

# Question 5: How many Perpetrator at each level of Age in different level of Sex?

```
# create a table of counting cases with each level of Perpatrator's age and Sex
tbl2 <- nypd %>% group_by(PERP_SEX,PERP_AGE_GROUP) %>% summarise(COUNT = n())
as.data.frame(tbl2)
```

```
PERP_SEX PERP_AGE_GROUP COUNT

F <18 34
```

| PERP_SEX | PERP_AGE_GROUP | COUNT |
|----------|----------------|-------|
| F        | 18-24          | 126   |
| F        | 25-44          | 139   |
| F        | 45-64          | 17    |
| F        | 65+            | 1     |
| F        | UNKNOWN        | 18    |
| М        | <18            | 1330  |
| М        | 18-24          | 5366  |
| М        | 25-44          | 4568  |
| М        | 45-64          | 478   |
| М        | 65+            | 53    |
| М        | UNKNOWN        | 1690  |
| U        | <18            | 3     |
| U        | 18-24          | 16    |
| U        | 25-44          | 7     |
| U        | UNKNOWN        | 1473  |
| UNKNOWN  | UNKNOWN        | 8261  |



The chart above tells us that:

- There are a lot of cases that were missing information about Perpetrator's sex and age yet.
- Perpetrator concentrated at age of 18-24 and 25-44.
- There are least Perpetrator at age of 65+.
- There are more male perpetrator than female perpetrator.

## Question 6: What time did every shooting incident occur?

```
In [40]:
# create the data by hour
nypd_by_hour <- nypd %>%
    mutate(HOUR = hour(strptime(OCCUR_TIME, '%H')) %>% as.integer() ) %>%
    group_by(HOUR) %>%
    summarise(COUNT = n())%>%
    mutate(FREQ = round(COUNT / sum(COUNT), 4))
nypd_by_hour
```

```
HOUR COUNT
                          FREQ
              0
                    1908 0.0809
              1
                    1864 0.0791
                    1620 0.0687
              2
              3
                    1464 0.0621
              4
                    1291 0.0547
              5
                     636 0.0270
              6
                     301 0.0128
              7
                     198 0.0084
              8
                     190 0.0081
              9
                     177 0.0075
              10
                     248 0.0105
                     315 0.0134
              11
                     415 0.0176
              12
                     442 0.0187
              13
              14
                     685 0.0291
              15
                     770 0.0327
              16
                     874 0.0371
              17
                     909 0.0385
                    1054 0.0447
              18
              19
                    1235 0.0524
              20
                    1417 0.0601
              21
                    1717 0.0728
              22
                    1854 0.0786
             23
                    1996 0.0846
In [41]:
           max(nypd_by_hour$COUNT)
         1996
In [42]:
           min(nypd_by_hour$COUNT)
         177
In [43]:
           # plot the data by hour
           nypd_by_hour %>%
             filter(COUNT > 0) %>%
             ggplot(aes(x = as.integer(HOUR), y = COUNT))+
             geom_point(aes(color="COUNT"))+
```

```
theme(legend.position = "bottom",axis.text.x = element_text(angle = 90))+
labs(title = "NYPD SHOOTING INCIDENT BY HOUR",y=NULL)
```

#### NYPD SHOOTING INCIDENT BY HOUR



The plot tells us that the maximum count of shooting incident (1996) occurred at hour 23 and the minimum count of shooting incident (177) occurred at hour 9.

```
In [44]:
# Use the Lm() function to perform a polinomial regression with count as the response
# and hour as the predictor.
# Use the summary() function to print the results
mod <- lm(COUNT ~ poly(HOUR, 2, raw=TRUE), data = nypd_by_hour)
summary(mod)

Call:
lm(formula = COUNT ~ poly(HOUR, 2, raw = TRUE), data = nypd_by_hour)

Residuals:
    Min    1Q Median    3Q    Max
-375.49 -124.21    47.35    163.44    284.87</pre>
```

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1991.7738 117.1570 17.00 9.40e-14 ***
poly(HOUR, 2, raw = TRUE)1 -300.8056 23.5949 -12.75 2.37e-11 ***
poly(HOUR, 2, raw = TRUE)2 13.5985 0.9908 13.72 5.89e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 207.5 on 21 degrees of freedom
Multiple R-squared: 0.9015, Adjusted R-squared: 0.8921
F-statistic: 96.1 on 2 and 21 DF, p-value: 2.698e-11
```

Looking at the summary of this model, we can see that our p-value is very small, this means that the predictor were statistically significant in determining the Count. And the count of shooting incident is  $1991.7738 - 300.8056 \times hour + 13.5985 \times hour^2$ .

```
In [45]:
```

```
# create new data with predict the shooting incident by hour
nypd_by_hour_w_pred <- nypd_by_hour %>% mutate(PRED = round(predict(mod)))
nypd_by_hour_w_pred
```

| HOUR | COUNT | FREQ   | PRED |  |
|------|-------|--------|------|--|
| 0    | 1908  | 0.0809 | 1992 |  |
| 1    | 1864  | 0.0791 | 1705 |  |
| 2    | 1620  | 0.0687 | 1445 |  |
| 3    | 1464  | 0.0621 | 1212 |  |
| 4    | 1291  | 0.0547 | 1006 |  |
| 5    | 636   | 0.0270 | 828  |  |
| 6    | 301   | 0.0128 | 676  |  |
| 7    | 198   | 0.0084 | 552  |  |
| 8    | 190   | 0.0081 | 456  |  |
| 9    | 177   | 0.0075 | 386  |  |
| 10   | 248   | 0.0105 | 344  |  |
| 11   | 315   | 0.0134 | 328  |  |
| 12   | 415   | 0.0176 | 340  |  |
| 13   | 442   | 0.0187 | 379  |  |
| 14   | 685   | 0.0291 | 446  |  |
| 15   | 770   | 0.0327 | 539  |  |
| 16   | 874   | 0.0371 | 660  |  |
| 17   | 909   | 0.0385 | 808  |  |
| 18   | 1054  | 0.0447 | 983  |  |
| 19   | 1235  | 0.0524 | 1186 |  |
| 20   | 1417  | 0.0601 | 1415 |  |

| HOUR | COUNT | FREQ   | PRED |
|------|-------|--------|------|
| 21   | 1717  | 0.0728 | 1672 |
| 22   | 1854  | 0.0786 | 1956 |
| 23   | 1996  | 0.0846 | 2267 |

```
# plot the new data
nypd_by_hour_w_pred %>% ggplot() + geom_point(aes(x = HOUR, y = COUNT), color = "blue")
geom_point(aes(x = HOUR, y = PRED), color = "red")
```



In the plot above, our predictions are in red and our actuals are in blue. So we can see the model does a reasonably good job of predicting at the lower hour (0-5) and at the higher hour (17-23).

## Step 4: Conclusion and add bias identification

In conclusion, base on NYPD Shooting Incident Data:

- First, while cleaning up the data, I recognized that there are three outliers in Perpetrator's age. They are 1020, 224 and 940. A common cause of bias is caused by data outliers that differ greatly from other samples. Outlier biases should be removed from the survey population to achieve a more accurate result. Hence, I deleted those three outliers out of the data.
- Second, there are two missing values of jurisdiction code and I solved this problem by deleting those 2 missing values.
- Third, there are a lot of missing values about age, sex and race of Perpetrators. Since this is a huge number, deleting the instances with missing observations can result in biased parameters and estimates and reduce the statistical power of the analysis. So I thought that I should not remove or delete them out of the data. And, to deal with this, I filled those missing values as "UNKNOWN". There are many missing values about location of the shooting incident as well and I filled them with "NONE".
- Next, base on the Victim's Sex chart and the Victim's Age plot, we can see that the most of victims are male and at age of 25-44, the least victims are unisex and at age of 65+.
- As "Borough and Jurisdiction Code where the shooting incident occurred" histogram, we see that the most shooting incidents were investigated by Patrol and occurred in Brooklyn. Bronx is the second most place where the shooting incidents occurred. The place where the least shooting incident occurred is State Island. And Transit investigated least of shooting incidents.
- Perpetrator' Rage histogram tells us that besides Unknown values, the most Perpetrator's Race is Black and the least Perpetrator's Race is American Indian / Alaskan Native.
- Perpetrator's Sex and Age chart shows that the most Perpetrator were at age of 18-24 and 25-44. The least Perpetrator at age of 65+. And there are more male perpetrator than female perpetrator.
- The maximum count of shooting incident (1996) occurred at 23 o'clock and the minimum count of shooting incident (177) occurred at 9 o'clock.