Corso di Architettura degli Elaboratori e Laboratorio (M-Z)

Rappresentazione binaria di dati complessi

Nino Cauli

Dipartimento di Matematica e Informatica

Numeri frazionari

Come rappresentare i numeri reali in binario?

Idea semplice:

- Un bit di segno
- Una porzione di bit fissa per la parte intera
- Una porzione di bit fissa per la parte decimale

Chiamiamo questa rappresentazione A VIRGOLA FISSA (FIXED POINT)

Numeri a virgola fissa (fixed point)

Solo bit di segno e parte intera:

Valori rappresentabili: da -2ⁿ⁻¹ a 2ⁿ⁻¹ – 1

Risoluzione: 1

Solo bit di segno e parte decimale:

Valori rappresentabili: da -1 a 1 - 2⁻⁽ⁿ⁻¹⁾

Risoluzione: 2-(n-1)

Intervallo non sufficiente per calcoli scientifici.

Numeri virgola mobile (floating point)

Per aumentare intervallo e risoluzione di valori rappresentabili si potrebbe spostare la posizione della virgola dinamicamente (VIRGOLA MOBILE)

Notazione scientifica decimale, **FORMA NORMALE**:

$$6,0247 \times 10^2 = 602,47$$

$$3,7291 \times 10^{-2} = 0,037291$$

In generale vale per ogni base:

$$1,0011 \times 2^2 = 100,11$$

$$4,2131 \times 5^{-2} = 0,042131$$

Numeri frazionari

Un numero binario in virgola mobile può quindi essere rappresentato:

- Un **SEGNO** s per il numero
- La MANTISSA m (bit significativi escluso il bit più significativo)
- Un **ESPONENTE** *e* con segno in base 2

Valore rappresentato = ± 1 , $m \times 2^e$

Formato precisione singola (32 bit)

Standard IEEE 754 numeri 32 bit

Valori speciali: e' = 0, e' = 255

Intervallo esponente: $-126 \le e \le 127$

Fattore di scala nell'intervallo: [2⁻¹²⁶, 2¹²⁷]

Formato precisione doppia (64 bit)

Standard IEEE 754 numeri 64 bit

Valori speciali: e' = 0, e' = 2047

Intervallo esponente: $-1022 \le e \le 1023$

Fattore di scala nell'intervallo: [2⁻¹⁰²², 2¹⁰²³]

Valori speciali

Alcuni valori dell'esponente sono speciali:

- e' = 0, m = 0 rappresenta lo 0 esatto
- e' = 255(2047), m = 0 rappresenta l'infinito ∞
- e' = 0, $m \neq 0$ rappresenta la forma non normale: ± 0 , $m \times 2^{-126(-1022)}$
- e' = 255(2047), $m \neq 0$ rappresenta Not a Number NaN

Rappresentazione dei caratteri

Come rappresentare caratteri tramite una sequenza di *n* bit?

Associamo un carattere ad ogni possibile valore binario rappresentabile

Quanti caratteri siamo in grado di rappresentare con *n* bit?

- Una sequenza di n bit può rappresentare 2ⁿ permutazioni di 0 e 1
- Si può rappresentare un alfabeto di **2**ⁿ **simboli**

Vediamo gli standard più usati

Codice ASCII

- Codice ASCII (American Standard Code for Information Interchange)
- Rappresenta lettere, cifre decimali, punteggiatura e caratteri speciali
- Definito su 7 bit → alfabeto di 2⁷ =
 128 elementi
- Lettere e numeri con codici in ordine crescente

	Bit 654							
Bit 3210	000	001	010	011	100	101	110	111
0000	NUL	DLE	SPACE	0	@	P	4	р
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	ſ
0011	ETX	DC3	#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	\mathbf{v}
0111	BEL	ETB	,	7	G	W	g	w
1000	BS	CAN	(8	Н	X	h	X
1001	HT	EM)	9	I	Y	i	У
1010	LF	SUB	*	:	J	Z	j	z
1011	VT	ESC	+	;	K]	k	{
1100	FF	FS	,	<	L	/	1	
1101	CR	GS	_	=	M]	m	}
1110	so	RS		>	N	^	n	-
1111	SI	US	/	?	O	_	o	DEL

Standard per alfabeti con più simboli

Necessità di codici più ricchi per gestire le diverse lingue con caratteri speciali, accenti, etc.

Standard internazionali:

- Famiglia ISO 8859-x: estendono il codice ASCII usando 8 bit (doppio dei simboli)
- ISO/IEC 10646 (UCS): rappresentazione universale di caratteri che estende su più byte la ISO 8859
- Standard di codifica basati su UCS: come ad esempio UNICODE e UTF-8