Realisation einer FPGA-basierten psychometrischen Authentifizierung mittels Touchscreen

Erik Raik Engelhardt

Hochschule für angewandte Wissenschaften – Hamburg erik.engelhardt@haw-hamburg.de

17. Mai 2019

Einleitung

Grundlagen Zedboard

K lassifizie rung

Implementierung

Touchscreen-Anschlussboard Programable Logic Processing System Klassifizierung

eldtest

Durchführung Ergebnisse

azit

Bewertung des Verfahrens Ausblick

Einleitung

Grundla Zedboard

K lassifizie rung

Implementierung

Touchscreen-Anschlussboard Programable Logic Processing System Klassifizierung

Feldtest

Durchführung Ergebnisse

Fazit

Bewertung des Verfahrens Ausblick

literatur

Einleitung

Ziel dieser Arbeit

Erik Raik Engelhardt

Einleitung

Grun dla

K lassifizie rung

Implementierung

Touchs creen-Ans chluss board Programable Logic Processing System Klassifizierung

eldtest

Durchführung Ergebnisse

azit

Bewertung des Verfahrens Ausblick

iteratur

Kann man einen Nutzer anhand des Eingabeverhaltens an einem Touchscreen erkennen?

Motivation

Erik Raik Engelhardt

Einleitung

Grundlage Zedboard

K lassifizie rung

Implementierung

Touchscreen-Anschlussboard Programable Logic Processing System Klassifizierung

eldtest

Durchführung Ergebnisse

Fazit

Bewertung des Verfahrens Ausblick

Literatur

► Eine Pin oder ein Passwort kann leicht ausspioniert und kopiert werden

► Ein biometrisches Merkmal kann kaum bis gar nicht ersetzt werden

Ziel dieser Arbeit

Erik Raik Engelhardt

Einleitung

Grundlag

K lassifizie rung

Implementierung

Touchscreen-Anschlussboard Programable Logic Processing System Klassifizierung

dtest

Durchführun Ergebnisse

azit

Bewertung des Verfahrens Ausblick

literatur

Kann man einen Nutzer anhand des Eingabeverhaltens an einem Touchscreen erkennen?

- Eingabeverhalten bei der Eingabe eines Pin-Codes auf einem Touchscreen
 - Einbeziehung der Position, des Druck und des Zeitverhalten
- Evaluierung verschiedener Klassifizierungsalgorithmen
- ► Implementierung auf einem FPGA
- ► Testen der Implementierung in einem Feldtest

Einleitung

Grundlagen

Zedboard Klassifizierung

Implementierung

Touchscreen-Anschlussboard Programable Logic Processing System Klassifizierung

Feldtest

Durchführung Ergebnisse

Fazit

Bewertung des Verfahrens Ausblick

Erik Raik Engelhardt

Einleitung

Grundlagen Zedboard Klassifizierung

|mp|ementierung

Touchscreen-Anschlussboard Programable Logic Processing System Klassifizierung

dtest

Durchführung Ergebnisse

azit

Bewertung des Verfahrens Ausblick

Einteitung

Grundlagen

Zed board Klassifizie rung

Implementierung

TouchscreenAnschlussboard
Programable Logic
Processing System
Klassifizierung

Enlate at

Durchführung Ergebnisse

Fazit

Bewertung des Verfahrens Ausblick

Literatur

Grundlagen

Grundsätzlicher Aufbau

Abbildung: Zedboard Komponentenübersicht [AVNET]

Erik Raik Engelhardt

Einleitung

Grundlagen

Zedboard

K lassifizie rung

|mp|ementierung

Touchscreen-Anschlussboard Programable Logic Processing System Klassifizierung

eldtest

Erge bni sse

azit

Bewertung des Verfahrens Ausblick

Support Vector Machine

- ► Trennen der Datensätzen durch Hyperebene
- Maximieren des Abstands der Datenpunkte zur Hyperebene

Abbildung: Beispiele für Hyperebenen einer SVMs [Yim]

Erik Raik Engelhardt

K lassifizie rung

Programable Logic Processing System K lassifizie rung

Erge bnisse

Bewertung des Δusblick

Einleitung

Grundlage

Zed bo ard Klassifizie rung

Implementierung

Touchs creen-Ans chluss board Programable Logic Processing System Klassifizierung

Feldtest

Durchführung Ergebnisse

Fazit

Bewertung des Verfahrens Ausblick

Literatur

Implementierung

Touchscreen-Anschlussboard

- Erkennen und Melden einer Berührung
- Messen der Berührungsposition
- Weiterleitung der Daten an die PL des Zedboards

Abbildung: Platinenlayout für das Touchscreen-Anschlussboard. Obere Lage in Rot, untere in Blau. Verbindungen der Lagen in Grün.

Erik Raik Engelhardt

Einleitung

Grundlager Zedboard

K lassifizie rung

Implementierung

Touchs creen-Ans chlussboard

Programable Logic
Processing System
Klassifizierung

-el dte st

Durchführung Ergebnisse

azit

Bewertung des Verfahrens Ausblick

Touchscreen-IP-Core

- Auslesen der Positionsdaten
- ► Erfassen von Timingdaten
- ► Bereitstellung dieser Daten an das PS

Abbildung: Grundsätzlicher Aufbau des Touchsystems

Erik Raik Engelhardt

Einleitung

Grun dlage

Zedboard Klassifizierung

Implementierung

uchs creen-

Programable Logic

Processing System Klassifizierung

dtest

Erge bnisse

azit

Bewertung des Verfahrens Ausblick

HDMI-IP-Core

- Generierung der Bild- und Timingdaten für das HDMI-Display
- Weiterleitung dieser Daten an den HDMI-Transceiver
- Darstellung von Inhalten aufgrund von Anweisungen aus dem PS

Abbildung: Grundsätzlicher Aufbau des Display Systems

Erik Raik Engelhardt

Einleitung

Grundlage Zedboard

Klassifizierung

ichscreen-

Programable Logic

Processing System Klassifizierung

eldtest

Erge bnisse

azit

Bewertung des Verfahrens Ausblick

Aufgaben des Processing Systems

Erik Raik Engelhardt

Einleitung

Grundlage Zedboard

K las sifizie rung

Implementierung

Anschlussboard

Programable Logic
Processing System

K lassifizie rung

eldtest

D urchführung Erge bnisse

azit

Bewertung des Verfahrens Ausblick

- Steuerung der Bildinhalte und damit die Kommunikation mit dem HDMI-IP-Core
- ► Auslesen der Messdaten vom Touch-IP-Core
- Filtern und Transformieren der Messdaten
- ► Speichern der Messdaten auf einer SD-Karte
- Ausführen des Authentifikationsalgorithmus
- Menüführung über das OLED-Display und die Taster des Zedboards

Datenerhebung

Erik Raik Engelhardt

Einleitung

Grundlagen Zedboard Klassifizierung

Touchscreen-Anschlussboard Programable Logic Processing System

K lassifizie rung

Feldtest

Erge bnisse

zit

Bewertung des Verfahrens Ausblick

literatur

- Erfassung des Eingabeverhaltens von 16 Personen für 3 verschiedene Pin-Codes
- Insgesamt 948 Eingaben über 11 Tage erfasst
- ► Testpersonen wurden über betrachtete Merkmale in Kenntniss gesetzt

Trainieren der Klassifikatoren in Python

- Training der Klassifikatoren unter Verwendung der Bibliothek SciPy-Bibliothek [Jones et al. [2001–]]
- Export der Modelle unter Verwendung der Sklearn-Porter Bibliothek [Morawiec]

	D	Т	R	F	KI	NN	N	В	S۱	/ M
Α	R	Р	R	Р	R	Р	R	Р	R	Р
0	0.66	0.71	0.58	0.89	0.73	0.86	0.86	0.49	0.87	0.71
1	0.69	0.73	0.57	0.94	0.76	0.86	0.95	0.45	0.91	0.74
2	0.72	0.77	0.57	0.93	0.85	0.88	0.88	0.62	0.89	0.87
	0.69	0.74	0.57	0.92	0.78	0.86	0.9	0.52	0.89	0.77

Tabelle: Durchschnittliche Recall (R) und Precision (P) über alle Nutzer pro Account und Algorithmus. Durchschnittswerte über alle Accounts in der letzten Zeile.

Erik Raik Engelhardt

Einleitung

Grundlage Zedboard

K lassifizie rung

lmplementierung

:hscreen-:hlussboard

Programable Logic Processing System

K lassifizie rung

eldtest

Durchführu Ergebnisse

azit

Bewertung des Verfahrens Ausblick

_iteratur

Recall und Precision

Erik Raik Engelhardt

Recall:

In wie viel Prozent der Fälle wurde der Nutzer richtig erkannt?

$$R = \frac{TP}{TP + FN}$$

Precision:

In wie viel Prozent der Fälle in denen der Algorithmus gedacht hat es handle sich um den Nutzer war dies auch wirklich der Fall?

$$P = \frac{TP}{TP + FP}$$

Einleitung

Grundlagen Zedboard

K lassifizie rung

Implementierung

Touchscreen-Anschlussboard Programable Logic Processing System

K lassifizie rung

Durchführung Ergebnisse

Fazit

Bewertung des Verfahrens Ausblick

Trainieren der Klassifikatoren in Python

- Training der Klassifikatoren unter Verwendung der Bibliothek SciPy-Bibliothek [Jones et al. [2001–]]
- Export der Modelle unter Verwendung der Sklearn-Porter Bibliothek [Morawiec]

	D	т	R	F	KI	NN	N	В	S۱	/ M
Α	R	Р	R	Р	R	Р	R	Р	R	Р
0	0.66	0.71	0.58	0.89	0.73	0.86	0.86	0.49	0.87	0.71
1	0.69	0.73	0.57	0.94	0.76	0.86	0.95	0.45	0.91	0.74
2	0.72	0.77	0.57	0.93	0.85	0.88	0.88	0.62	0.89	0.87
	0.69	0.74	0.57	0.92	0.78	0.86	0.9	0.52	0.89	0.77

Tabelle: Durchschnittliche Recall (R) und Precision (P) über alle Nutzer pro Account und Algorithmus. Durchschnittswerte über alle Accounts in der letzten Zeile.

Erik Raik Engelhardt

Einleitung

Grundlage Zedboard

K lassifizie rung

Implementierung

hs creenhlussboard

Programable Logic Processing System

K lassifizie rung

eldtest

D urchführu Ergebnisse

azit

Bewertung des Verfahrens Ausblick

_iteratur

Einleitung

Grundlagei

Zedboard Klassifizierung

Implementierung

Touchscreen-Anschlussboard Programable Logic Processing System Klassifizierung

Feldtest

D urchführung Erge bnisse

Fazit

Bewertung des Verfahrens Ausblick

literatur

Feldtest

Durchführung

Erik Raik Engelhardt

Einleitung

Grundlagen Zedboard

K lassifizie rung

Implementierung

TouchscreenAnschlussboard
Programable Logic
Processing System
Klassifizierung

Feldtest

Durchführung Ergebnisse

Fazit

Fazit

Bewertung des Verfahrens Ausblick

- Implementierung der SVM für Account 0, Nutzer 1 auf dem Zedboard
- ▶ 13 Testpersonen
- ▶ 20 Versuche pro Person
- Aufklärung der Testpersonen über Authentifikationsalgorithmus
- ► Ermöglichen des Beobachtens der Eingabe nach den ersten 10 Versuchen

Ergebnisse

Nutzer	Erfolgreiche Versu- che (absolut)	Erfolgreiche Versu- che (prozentual)	Erster Erfolgreicher Versuch
1	19	0.95	1
2	2	0.10	16
3	0	0.00	-
10	1	0.05	12
14	1	0.05	14
17	4	0.20	12
18	0	0.00	-
19	0	0.00	-
20	0	0.00	-
21	1	0.05	14
22	5	0.25	5
23	2	0.10	19
24	1	0.05	13

Tabelle: Ergebnisse der Validierung der SVM (trainiert auf Nutzer 1, Account 0) im Feldtest

Erik Raik Engelhardt

Einleitung

run dlagen

Zedboard Klassifizierung

mplementierung

uchs creenschlussboard

Programable Logic

K lassifizie rung

Durchführung

Erge bnisse

.....

Fazit

Bewertung des Verfahrens Ausblick

Ergebnisse

- Erik Raik Engelhardt

- Klassifizie rung
- Processing System
- K lassifizie rung

 - Erge bnisse

 - Bewertung des Δusblick

- ► Recall: 95%
- ► Precision: 53% (Hochrechnung für gleiche Anzahl an Eingaben für Nutzer und Angreifer: 93%)
- ► Flase Rejection Rate (FRR): 5%
- ► False Acceptance Rate (FAR): 7%

Einleitung

Grundlage Zedboard

K lassifizie rung

Implementierung

TouchscreenAnschlussboard
Programable Logic
Processing System
Klassifizierung

Feldtest

D urchführung Ergebnisse

Fazit

Bewertung des Verfahrens Ausblick

iteratur

◆□ ト ◆□ ト ◆ 重 ト ◆ 重 ・ 釣 へ ②

Fazit

Bewertung des Verfahrens

Frik Raik Engelhardt

Klassifizie rung

Processing System

K lassifizie rung

Erge bnisse

Bewertung des Verfahrens

- Im Zusammenspiel mit einer klassischen Pineingabe durchaus als Merkmal für eine Authentifizierung geeignet
- Resistent gegenüber "Shoulder Surfing"
- ▶ Leichter zu ersetzten als ein biometrisches Merkmal
- ► Unterschiedliche Performance für verschiedene Nutzer
 - Touchscreen nicht optimal
 - Unterschiedlich viel Erfahrung im Umgang mit Touchscreens
 - Unterschiedlich viele Testdaten

Ausblick

Erik Raik Engelhardt

Es gibt noch viele Möglichkeiten die Performance des Verfahrens zu verbessern

- Umfangreicherer Feldtest unter diverseren Testbedingungen
- Optimieren der Klassifikatoren
- Verwenden verschiedener Klassifikatoren und Abstimmung über ein Mehrheitsvotum
- ► Verwendung eines zuverlässigeren Eingabegerätes

Einleitung

Grun dlage:

Klassifizierung

Implementierung

Touchscreen-Anschlussboard Programable Logic Processing System

> Klassifizierung Feldtest

Durchführung Ergebnisse

azit

Bewertung des Verfahrens

A us blick

Literatur- und Quellenverzeichnis I

AVNET. Zedboard getting started guide. URL http://zedboard.org/sites/default/files/documentations/GS-AES-Z7EV-7Z020-G-V7-1.pdf. Zugriff: 12.01.2019.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python, 2001—. URL http://www.scipy.org/. Zugriff: 19.04.2019.

Darius Morawiec. sklearn-porter — transpile trained scikit-learn estimators to c, java, javascript and others. URL https://github.com/nok/sklearn-porter. Zugriff: 20.04.2019.

Annie Yim. Essential classification algorithms with explanation. URL

https://www.kaggle.com/anniepyim/essential-classification-algorithms-explained.

イロト イ御ト イヨト イヨト 一臣 一

Zugriff: 17.03.2019.

Erik Raik Engelhardt

Einleitung

Grundlagen Zedboard

Implementierung

Touchscreen-Anschlussboard Programable Logic Processing System Klassifizierung

Feldtest

Durchführung

Ergebnisse

Fazit

Bewertung des Verfahrens Ausblick