2° Esame PARZIALE (2° prova in itinere)

Avremmo pensato di fissare il 2° Esame PARZIALE mercoledì 8 febbraio h. 14.00.

Se mi confermate che per quel giorno non ci sono sovrapposizioni con altri esami, posso procedere ad inserirlo sul sito e a prenotare l'aula.

A lezione mi avete accennato alla possibilità che per quel giorno ci sia già l'esame di Geografia e che vi sareste informati a riguardo.

Aspetto quindi, a breve, un vostro aggiornamento via mail, grazie (cristina.dellapina@unimi.it)

NOMENCLATURA CHIMICA

I NOMI e le FORMULE dei composti formano il vocabolario essenziale della Chimica

Il sistema usato per dare il nome alle sostanze è chiamato Nomenclatura Chimica

Considerando che attualmente ci sono ca. 50 milioni di sostanze chimiche conosciute, la loro classificazione sarebbe un lavoro infinito e complicato se ogni sostanza avesse un nome specifico indipendentemente da tutti gli altri nomi...

Molte sostanze importanti conosciute da perecchio tempo, come <u>l'acqua</u> (H₂O) e <u>l'ammoniaca</u> (NH₃) hanno **nomi tradizionali/comuni**ma per la maggior parte delle sostanze ci basiamo su un set di *Regole* sistematiche (introdotte dalla *IUPAC*)
che portano ad un nome univoco riferito alla composizione della sostanza

Le **Regole della Nomenclatura Chimica** sono basate sulla suddivisione delle sostanze in categorie

La suddivisione principale è tra composti Inorganici ed Organici

Vedremo insieme le Regole di base per la Nomenclatura di 3 categorie di COMPOSTI INORGANICI (i Composti Organici li vedrete nel corso di Chim. Organica)

Qui ci limiteremo a vedere la nomenclatura delle principali categorie di composti

Composti BINARI

Un composto BINARIO è un composto formato da 2 soli elementi :

Le Regole utilizzate per assegnare il NOME sono:

- 1) Il <u>nome</u> del primo elemento è scritto per <u>ultimo</u> e <u>preceduto dalla preposizione</u> "di"
 - 2) Il <u>nome</u> del secondo elemento deve avere la <u>desinenza</u> -uro

oppure

- 1) Il nome del primo elemento è scritto per primo e senza preposizione "di"
- 2) Il nome del secondo elemento è scritto per ultimo e deve avere la desinenza -uro
 - 3) I **prefissi** indicati nella tabella (prossima slide) sono usati per indicare <u>il n° degli atomi di ogni elemento</u>. Il prefisso *"mono"* non è quasi mai usato

Tabella: Prefissi

	1	mono-
	2	di-
	3	tri-
	4	tetra-
	5	penta-
	6	esa-
	7,0	epta-
	8	otta-
	, 0 9	nona-
V	10	deca-
	11	undeca-
	12	dodeca-

Esempi

CaCl₂ diclor*uro* di calcio opp. calcio diclor*uro* (n.o. Ca = +2, n.o. Cl = -1)

KBr brom*uro* di potassio opp. potassio brom*uro* (n.o. K = +1, n.o. Br = -1)

GaAs arseniuro di gallio opp. gallio arseniuro (n.o. Ga = +3, n.o. As = -3)

 Pbl_2 diiod*uro* di piombo opp. piombo diiod*uro* (n.o. Pb = +2, n.o. I = -1)

 OF_2 difluor*uro* di ossigeno opp. ossigeno difluor*uro* (n.o. O = +2, n.o. F = -1)

Composti BINARI dell' OSSIGENO: gli OSSIDI

Sia i Metalli che i NON metalli possono formare composti binari con O detti OSSIDI

➤Gli Ossidi formati da un Metallo e O sono gli
OSSIDI BASICI

(sono ossidi che reagiscono con acqua dando vita alle basi o alcali)

➤Gli Ossidi formati da un NON metallo ed O sono gli

OSSIDI ACIDI o ANIDRIDI

(sono ossidi che reagiscono con acqua dando vita agli acidi)

ON.B. Sulle definizioni di acidi e basi torneremo più avanti...

La *nomenclatura* per gli **Ossidi Binari** del tipo X_mO_n prevede:

Pref-Ossido di Pref-X

Prefiss

Dove per **Pref** (**prefisso**) si intende uno di quelli indicati nella solita Tabella dei prefissi già vista e qui ripetuta

In questo tipo di composti:

O ha sempre n.o. = -2

	1 1011001
1	mono-
2	di-
3	tri-
4	tetra-
5	penta-
6	esa-
7	epta-
8	otta-
9	nona-
10	deca-
11	undeca-
12	dodeca-

I composti in cui è presente lo ione O_2^{2-} (n.o. O = -1) sono detti **PEROSSIDI**

I composti in cui è presente lo ione O_2^- (n.o. $O = -\frac{1}{2}$) sono detti SUPEROSSIDI • SO₂ diossido di zolfo o anidride solforosa (ossido acido o anidride)

O ha n.o. = -2 (il composto è un ossido)
$$\rightarrow$$
 (-2 · 2 = -4)

S conseguentemente ha n.o. = + 4

Nome comune, più vecchio. L'uso della desinenza 'ico' sarà spiegato dopo

• CO₂ diossido di carbonio o anidride carbonica (ossido acido o anidride)

O ha n.o. = -2 (il composto è un ossido)
$$\rightarrow$$
 (-2 · 2 = -4)

C conseguentemente ha n.o. = +4

• Na₂O ossido di (di)sodio (ossido basico)

Na ha sempre n.o. = +1
$$\rightarrow$$
 (+1 · 2 = +2)

• BaO₂ perossido di bario (perossido)

O ha n.o. = -1 (il composto è un perossido)
$$\rightarrow$$
 (-1 · 2 = -2)

Ba ha sempre n.o. = +2

BaO ossido di bario (ossido basico)

O ha n.o. = - 2 (il composto è un ossido)

Ba ha sempre n.o. = +2

• KO₂ superossido di potassio (superossido)

O ha n.o. = $-\frac{1}{2}$ (il composto è un superossido) \rightarrow (- $\frac{1}{2}$ · 2 = -1)

K ha sempre n.o. = +1

• H₂O₂ perossido di idrogeno o acqua ossigenata (perossido)

O ha n.o. = -1 (il composto è un perossido) \rightarrow (-1 · 2 = -2)

H ha n.o. = +1 \rightarrow (+1 · 2 = +2)

Composti BINARI dell' IDROGENO (acidi) (in cui H, nella formula, compare come primo elemento)

I calcogenuri (i calcogeni sono quelli del gruppo 16) o gli alogenuri (gruppo 17) di H

 H_nX

hanno <u>carattere ACIDO*</u> e la nomenclatura comune li chiama acidi X-idrici o IDRACIDI

*La definizione "classica" di ACIDO (ne esistono altre che vedremo più avanti) lo vede come un composto che, sciolto in acqua,

<u>libera ioni H</u>⁺ (o, più esattamente, H₃O⁺) <u>e anioni</u>

Alcuni Esempi:

Nome IUPAC

Nome comune/corrente

	H ₂ S	solfuro di diidrogeno	acido solfidrico (idrogeno solforato)		
	H ₂ Se	selenuro di diidrogeno	acido selenidrico		
	H ₂ Te	tellururo di diidrogeno	acido telluridrico		
	HF	fluoruro di idrogeno	acido fluoridrico		
	HCI	cloruro di idrogeno	acido cloridrico		
	HBr	bromuro di idrogeno	acido bromidrico		
Copyright					

ALTRI Composti BINARI dell' IDROGENO

I composti binari dell' H (in cui H, nella formula, compare come secondo elemento) seguono le solite regole di nomenclatura viste per i composti binari, quindi si chiameranno "IDRURI", e che vi ricordo:

- 1) Il <u>nome</u> del primo elemento è scritto per <u>ultimo</u> e <u>preceduto dalla preposizione</u> "di"
 - 2) Il nome del secondo elemento deve avere la desinenza -uro

oppure

- 1) Il nome del primo elemento è scritto per primo e senza preposizione "di"
- 2) Il nome del secondo elemento è scritto per ultimo e deve avere la desinenza -uro

PIU' gli eventuali Prefissi già visti

MA...

possono avere nomi d'uso particolari ("nome corrente") (tabella seguente),

Composto	Nome IUPAC	Nome corrente
LiH	idruro di litio	idruro di litio
BeH ₂	diidruro di berillio	idruro di berillio
BH ₃	triidruro di boro	borano
B ₂ H ₆	esaidruro di diboro	diborano
CH ₄	metano	metano
SiH ₄	tetraidruro di silicio	silano
PH ₃	triidruro di fosforo	fosfina
AsH ₃	triidruro di arsenico	arsina
SbH ₃	triidruro di antimonio	stibina

NOMENCLATURA più TRADIZIONALE

	Formule	Nome
	NaCl	clor <i>uro</i> di sodio
	KBr	brom <i>uro</i> di potassio
	CaCl ₂	clor <i>uro</i> di calcio
	NaH	idr <i>uro</i> di sodio
oso ⇒	CuCl	clor <i>uro</i> di rame(I)
ico ⇒	CuCl ₂	clor <i>uro</i> di rame(II)
	FeS	solf <i>uro</i> di ferro(II)

Formule	Nome		
PbO	ossido di piombo(II)		
PbO ₂	ossido di piombo(IV)		
FeO	ossido di ferro(II)	<i>⇐ oso</i>	
Fe_2O_3	ossido di ferro(III)	<i>⇐ ico</i>	
ZnO	ossido di zinco		
BaO	ossido di bario		
MgO	ossido di magnesio		

oso = numero di ossidazione inferiore (tra due possibili n.o. che quell'atomo può assumere)

ico = numero di ossidazione superiore (tra due possibili n.o. che quell'atomo può assumere)

Esercizio

1) Nominare i seguenti composti binari

HCl, NaBr, AlF₃, CaH₂, ZnS

- **HCI** cloruro di idrogeno o idrogeno cloruro (IUPAC) oppure acido cloridrico (*nome comune*)
- NaBr bromuro di sodio o sodio bromuro
- AIF₃ trifluoruro di alluminio o alluminio trifluoruro
- CaH₂ diidruro di calcio o calcio diidruro
- ZnS solfuro di zinco o zinco solfuro

IDROSSIDI composti ionici ternari BASICI o ALCALINI: M⁺ OH⁻

La <u>formale idratazione</u> (reazione con H₂O) <u>degli OSSIDI BASICI</u> produce

gli **IDROSSIDI** composti di formula generale $M(OH)_n$, con M = metallo.

Vengono così NOMINATI:

"idrossido" (che è il nome dell'anione) seguito dalla preposizione "di" e dal nome del catione (senza "ione" davanti)

oppure

<u>dal nome del catione</u> (senza "ione" davanti) <u>seguito da</u> <u>"idrossido"</u> (che è il nome dell'*anione*)

PIU' gli eventuali Prefissi appena visti

*La definizione "classica" di BASE (ne esistono altre che vedremo più avanti) la vede come un composto che, sciolto in acqua,

<u>libera ioni OH- e cationi</u>

Esempi

NaOH idrossido di sodio o sodio idrossido

Ca(OH)₂ diidrossido di calcio o calcio diidrossido

Fe(OH)₂ diidrossido di ferro o ferro diidrossido o idrossido ferroso o idrossido di ferro (II)

Fe(OH)₃ triidrossido di ferro o ferro triidrossido o idrossido ferr*ico o* idrossido di ferro (III)

OSSIACIDI o OSSOACIDI o ACIDI OSSIGENATI

(composti ternari: 3 elementi diversi)

La formale idratazione (reazione con H₂O) degli OSSIDI ACIDI (anidridi)

produce gli acidi ossigenati ("OSSIACIDI")

di formula generale $\mathbf{H}_{\mathbf{x}}\mathbf{X}_{\mathbf{y}}\mathbf{O}_{\mathbf{z}}$

dove X è un NON metallo oppure un metallo in alto stato di ossidazione

In questo tipo di composti:

H ha sempre n.o. = +1 e O ha sempre n.o. = -2

II NOME dell'acido si ottiene dalla radice del nome dell'elemento centrale X più la desinenza <u>oso</u> e <u>ico</u> preceduto da "acido"

Se l'elemento forma 2 Ossiacidi essi sono distinti dalle desinenze:

-oso (n.o. minore, con meno atomi di ossigeno) e

-ico (n.o. maggiore, con più atomi di ossigeno)

$$HNO_2$$
 n.o. $N = +3$ Acido nitroso

$$HNO_3$$
 n.o. $N = +5$ Acido nitr*ico*

Se l'atomo centrale X presenta più di 3 n.o. dobbiamo aggiungere i seguenti prefissi (associati alle due desinenze -oso e -ico):

 $HCIO_2$ n.o. CI = +3

Acido ipocloroso

cloroso Acido

Acido clorico

Acido perclorico

ii NOME

degli Ossiacidi e degli OSSIANIONI (anioni corrispondenti) è correlato:

Per ottenere il NOME dell'ossianione da quello dell'ossiacido si

sostituiscono <u>-oso</u> con <u>-ito</u> e <u>-ico</u> con <u>-ato:</u>

HNO₂ Acido nitroso NO₂ lone nitrito

HNO₃ Acido nitr*ico* NO₃ Ione nitr*ato*

H₂SO₃ Acido solforoso SO₃² Ione solfito

H₂SO₄ Acido solforico SO₄² lone solfato

HCIO Acido ipocloroso CIO- lone ipoclorito

HCIO₂ Acido cloroso CIO₂ lone clorito

HCIO₃ Acido clorico CIO₃ lone clorato

HCIO₄ Acido perclorico CIO₄ lone perclorato

Nota: Ossiacidi comuni dello Zolfo (S, n.o. = +6,+4) +6 +6 ac. solforico H_2SO_4 ione solfato SO_4^{2-} ione solfito ac. solforoso H₂SO₃ Nota: OssiAcidi comuni dell' Azoto (N: n.o. +5, +3) ione nitrato NO₃ac. nitrico HNO₃ ac. nitroso HNO, ione nitrito NO₂-Nota: OssiAcido comune del Carbonio (C: n.o. +4) ac. carbonico H_2CO_3 ione carbonato CO_3^{2-}

È molto instabile, infatti si decompone facilmente in CO2 e H2O

Nota: OssiAcidi comuni del Cromo (Cr, n.o. = +6,+3)

```
ac. cromico H_2CrO_4 ione cromato CrO_4^{2-} +6 ac. dicromico H_2Cr_2O_7 ione dicromato Cr_2O_7^{2-} +3 ac. cromoso HCrO_2 ione cromito CrO_2^{2-}
```

Nota: OssiAcidi comuni del Manganese (Mn: n.o. +7, +6, +4) +7 +7 ac. permanganico
$$HMnO_4$$
 ione permanganato MnO_4 +6 +6 ac. manganico H_2MnO_4 ione manganato MnO_4 ²⁻ +4 +4 ac. manganoso H_2MnO_3 ione manganito MnO_3 ²⁻

Alcuni *ACIDI* possono <u>perdere più di 1 H</u> e dare **anioni intermedi di tipo acido**. Ad <u>esempio</u>:

$$\begin{array}{c} H_2SO_4 \\ Acido solforico \end{array} \begin{cases} HSO_4^- & lone \ idrogenosolfato \\ SO_4^{2-} & lone \ solfato \end{cases} \\ H_2SO_3 \\ Acido solforoso \end{cases} \begin{cases} HSO_3^- & lone \ idrogenosolfito \\ SO_3^{2-} & lone \ solfito \end{cases} \\ H_2CO_3 \\ Acido \ carbonico \end{cases} \begin{cases} HCO_3^- & lone \ idrogenocarbonato \ o \ bicarbonato \end{cases} \\ H_2CO_3 \\ Acido \ carbonico \end{cases} \begin{cases} HCO_3^- & lone \ idrogenocarbonato \ o \ bicarbonato \end{cases} \\ H_2PO_4^- & lone \ diidrogenofosfato \\ HPO_4^{2-} & lone \ idrogenofosfato \\ HPO_4^{3-} & lone \ idrogenofosfato \\ lone \ fosfato \end{cases}$$

SALI I SALI sono COMPOSTI IONICI (+ con -)

e nascono dalla sostituzione di <u>1 o più H⁺ di un *acido*</u> con CATIONI di metallo, in numero tale da neutralizzare la carica reciproca

poiché Ag sceglie preferenzialmente n.ox. = +1, anziché +2 (che è rarissimo, infatti non compare in alcune tavole periodiche):

(di) argento opp. NaNO, dicromato di argento nitrito di sodio Na₂MnO₄ Ca(NO₃)₂ (di)nitrato di calcio manganato di (di)sodio KMnO, permanganato di potassio solfito di (di)litio Li₂SO₃ *(NH₄)₂SO₄ solfato di ammonio **NH**₄⁺ ione amm*onio* **(PH₄)₂S₂O₇ disolfato di fosfonio PbCrO, cromato di piombo PH₄⁺ ione fosf*onio*

Ma anche quelli che derivano dagli **idracidi**, <u>ad es</u>:

KBr bromuro di potassio (deriva da HBr per sostituzione di 1H⁺ con 1K⁺) **NaCl** cloruro di sodio (deriva da HCl per sostituzione di 1H⁺ con 1Na⁺)

Abbiamo visto che alcuni *ACIDI* possono <u>perdere più di 1 H</u> e dare **anioni** intermedi di tipo acido:

$$\begin{array}{c} \text{intermedi di tipo acido:} \\ H_3PO_4 \\ \text{Acido fosforico} \\ \text{(o ortofosforico)} \end{array} \begin{cases} H_2PO_4^- & \text{Ione diidrogenofosfato} \\ HPO_4^{2-} & \text{Ione idrogenofosfato} \\ PO_4^{3-} & \text{Ione fosfato} \\ \end{array} \\ \begin{array}{c} \text{SALI} \\ \text{con residuo} \Rightarrow \\ \text{acido (H)} \end{cases} \begin{cases} \text{MH}_2PO_4 \\ \text{M}_2HPO_4 \\ \text{idrogenofosfato di M} \\ \text{M}_3PO_4 \end{cases} \\ \begin{array}{c} \text{fosfato di M} \\ \end{array}$$

Il NOME del SALE derivato si assegna nel modo seguente:

Pref - idrogeno - nome dell'anione - di - nome del catione

Oppure (Vecchia Nomenclatura/Nome Comune, quando esce il primo H)

Bi - nome dell'anione - di - nome del catione

(quest'ultima nomenclatura è rimasta solo per il bicarbonato)

Esempi:

Nome IUPAC Nome comune

NaHCO₃ idrogenocarbonato di sodio "Bicarbonato di sodio"

da acido carbonico H₂CO₃ per sostituzione di 1 H⁺ con 1 Na⁺

KHSO₃ idrogenosolfito di potassio

da acido solforoso H₂SO₃ per sostituzione di 1 H⁺ con 1 K⁺

NH₄HSO₄ idrogenosolfato di ammonio

da acido solforico H₂SO₄ per sostituzione di 1 H⁺ con 1 NH₄⁺

Al file della lezione di oggi, aggiungerò un altro file con 1 esercizio di riepilogo già risolto costituito da 4 punti (non ve ne aggiungo altri perché avrete già molto da studiare/esercitarvi sulla nomenclatura chimica).

Lo caricherò, come sempre, su Ariel sotto 'materiale didattico' e lo chiamerò:

'Esercizio di riepilogo_DELLA PINA_3nov22'