Introduction to Homotopy Type Theory

Nicolai Kraus

Midlands Graduate School 2021, 12–16 April

Ways to introduce (homotopy) type theory

```
x \cdot -mono : \forall \{x \ y \ z : Brw\} \rightarrow y \le z \rightarrow x \cdot y \le x \cdot z
x:-mono ≤-zero = ≤-zero
x \cdot -mono (\le -trans y \le w \le z) = \le -trans (x \cdot -mono y \le w) (x \cdot -mono w \le z)
x - mono \{x\} (\leq-succ-mono \{y\} \{z\} y \leq z) = +x-mono x (x - mono \{x\} y \leq z)
x -mono \{x\} \{y\} (\leq-cocone f \{k = k\} y \leq z) with decZero x
     | yes x≡zero = subst (λ z → z ≤ zero) (sym (zero·y≡zero y) • cong
... | no x\neqzero = \leq-cocone (\lambda n \rightarrow x \cdot f n) {k = k} (x \cdot-mono y\leqz)
x·-mono {x} (≤-limiting f f≤z) with decZero x
     yes x≡zero = ≤-zero
... | no x\neqzero = \leq-limiting (\lambda n \rightarrow x \cdot f n) \lambda k \rightarrow x\cdot-mono (f\leqz k)
x \cdot -mono (\leq -trunc p q i) = \leq -trunc (x \cdot -mono p) (x \cdot -mono q) i
           \Gamma, x: \mathbf{1} \vdash \underline{C: \mathcal{U}_i} \qquad \Gamma \vdash c: C[\star/x]
                          \Gamma \vdash \mathsf{ind}_1(x.C,c,a) : C[a/x]
```

north language,

Homotopy Type Theory

Univalent Foundations of Mathematics

THE UNIVALENT FOUNDATIONS PROGRAM
INSTITUTE FOR ADVANCED STUDY

Prerequisites

Basic examples of types Nat Bool Unit Emply
Universe(s) Type A.B.: Type

• Function types $A \rightarrow B$

• Dependent function types if C: A -> Type, then

• Binary products (pairs) and coproducts (sums)

(a: A) -> Ca

A XB

A WB

• Dependent pairs E(a:A). Ca

• Inductive types

See above

Program = Proof

Exercise: Formulate a type which says that there are infinitely many primes (or simply: arbitrarily large primes)!

isPrime:
$$Nat \rightarrow Type$$

isPrime(n):= $((m k: N) \rightarrow (m \cdot k = n) \rightarrow (m - 1) (Hm - n)$
 $\times (n > 1)$
bigPrimes: $(n: Nat) \rightarrow E(p: Nat)$. is Prime (p)
bigPrimes:= $(exercise)$

Caveat: judgments (meta-theoretic)

• A type "A is a valid type"
• a:A "a is term of type A
• $a\equiv b$ "a and b are the same" $(\lambda x. fx)y$ • $a:\equiv b$ same, by definition $\equiv fy$

We cannot ask or prove these statements in the language.

Exercise: Which of the following can we ask internally?

(1) Is 8 a natural number? no, the 8: Nort is judgment

(2) Is 8 a prime number? yes, ble is Prime (8)

(3) Is "hello" a prime number? no, is Prime ("hello")

(Identity a.k.a. equality a.k.a. identification a.k.a. path) types

• if a, b: A then a = b type "formation"

• given a:A we have refl:a=a "introduction"

• given $C:(ab:A) \rightarrow (a=b) \rightarrow \text{Type}$ "elimination" and $C \ a \ a \ \text{refl}$ (for all $a \ A$) J also path induction we get $C \ a \ b \ p$ (for all $a, b, p \ a=b$)

• applying this rule and asking for the refl case gives back the assumption

sym: (ab; A) -> a=10 -> b=u

computation: Sym a a refl = refl

Model: types as spaces

The homotopical interpretation of dependent type theory works roughly like this:

judgment	interpretation	\wedge A
\boldsymbol{A} type	" A is a space"	TA OU
a:A	" a is a point in space A "	17/17
$c \equiv d$ pully	$m{A}^{"c}$ and d are the same point" $m{A}^{"p}$ is a path between a and b "	
p: a = b	" p is a path between a and b "	
h: p = q $path in$	if p and q are equalities $a=b$: " h is a homotopy between p and	
UZB		

Types as spaces, examples: symmetry, transitivity

Types as spaces, example: uniqueness of identity proofs Can we prove this for all types A? $\begin{array}{c} \textit{uip:}(a\,b:A) \rightarrow (p\,q:a=b) \rightarrow p=q \\ \textit{uip:}(a\,b:A) \rightarrow (p\,q:a=b) \rightarrow (p\,q:a=b) \rightarrow (p\,q:a=b) \rightarrow (p\,q:a=b) \\ \textit{uip:}(a\,b:A) \rightarrow (p\,q:a=b) \rightarrow (p\,q:a=b) \rightarrow (p\,q:a=b) \\ \textit{uip:}(a\,b:A) \rightarrow (p\,q:a=b) \rightarrow (p\,q:a=b) \\ \textit{uip:}(a\,b:A) \rightarrow (p\,q:a=b) \rightarrow (p\,q:a=b) \\ \textit{uip:}(a\,b:A) \rightarrow (p\,q:a=b)$