Přednáška 7.

Metoda maximální věrohodnosti (MLE)

Metoda maximální věrohodnosti

Připomenutí:

PDF jako funkci neznámého parametru nazýváme věrohodnostní funkce (likelihood function):

$$p(\boldsymbol{\theta}|\boldsymbol{x}) = \prod_{i=1}^{N} p(\boldsymbol{\theta}|x_i)$$

Princip maximálně věrohodného odhadu (Maximum Likelihood Estimation – MLE):

Maximalizovat věrohodnost = odhadnout neznámý parametr tak, aby "co nejlépe" odpovídal modelu dat

- 1. Často se opět využívá místo věrohodnostní funkce její logaritmus, tzv. log-likelihood function (označme symbolem \mathcal{L}).
- 2. Derivace $\mathcal{L} \rightarrow$ používá se pro nalezení maxima, tedy

$$\frac{\partial \ln p(\boldsymbol{\theta}|x)}{\partial \boldsymbol{\theta}} = 0$$

MLE - vlastnosti

Asymptotické rozdělení MLE odhadu:

$$\widehat{\boldsymbol{\theta}}_{MLE} \sim N\left(\boldsymbol{\theta}, \mathcal{J}^{-1}(\boldsymbol{\theta})\right)$$

Kde $\mathcal{J}^{-1}(\boldsymbol{\theta})$ je inverze Fisherovy informační matice.

Důsledky:

- 1. MLE odhady jsou asymptoticky nestranné.
- 2. MLE odhady jsou asymptoticky eficientní! Dosahují CRLB.
- 3. Přesnost MLE odhadů se dá (někdy) analyticky odvodit.

Příklad 1: Jak vypadá MLE odhad střední hodnoty exponenciálního rozdělení?

Příklad 2: Jak vypadá MLE odhad parametru μ pro rozdělení, které má hustotu pravděpodobnosti

$$f_X(x)=rac{eta}{2lpha\Gammaig(^1/_etaig)}\,e^{-ig(rac{|x-\mu|}{lpha}ig)^eta}$$
 . Pro jednoduchost zkusme uvažovat např. $lpha=1$.

MLE – numerické řešení

Nelze nalézt analyticky taková
$$\theta$$
, že platí $\frac{\partial \ln p(\theta|x)}{\partial \theta} = 0$. Proto označme $g(\theta) = \frac{\partial \ln p(\theta|x)}{\partial \theta}$

$$g(\theta) = \frac{\partial \ln p(\theta|x)}{\partial \theta}$$

A využijme rozvoj funkce $g(\theta)$ v okolí bodu θ_0

$$g(\theta) \approx g(\theta_0) + \frac{\partial g(\theta)}{\partial \theta}|_{\theta=\theta_0} (\theta - \theta_0)$$

A z toho odvodíme vztah

$$\theta_1 = \theta_0 - \frac{g(\theta_0)}{\frac{\partial g(\theta)}{\partial \theta}|_{\theta = \theta_0}}$$

A následně rekurentní vztah

$$\theta_{k+1} = \theta_k - \frac{g(\theta_k)}{\frac{\partial g(\theta)}{\partial \theta}|_{\theta = \theta_k}}$$

Tato iterativní procedura se nazývá Newton-Raphsonův algoritmus.

Poznámky:

- Hrozí problémy s konvergencí (obzvláště pokud druhá derivace log-likelihood je malá)
- Velmi závisí na inicializaci (při špatné inicializaci hrozí konvergence k lokálním maximům, ale dokonce i minimům).

Cvičení 7

- 1. Spočtěte MLE odhad střední hodnoty Normálního rozdělení.
- 2. Odhadněte parametr μ z dat, která mají rozdělení s hustotu pravděpodobnosti

$$f_X(x)=rac{eta}{2lpha\Gammaig(^1/etaig)}\,e^{-ig(rac{|x-\mu|}{lpha}ig)^eta}$$
 , kde $lpha=1$ a $eta=4$.