Average and Effective (rms) Values

- Average Value
 - □ Intro and example
 - Periodic waveforms
 - □ ICP
 - Half sine and sinusoidal waveforms
 - □ ICP
 - □ Using the oscilloscope
- Effective or RMS Values
 - □ Intro
 - □ Equating DC and AC average power
 - Examples
 - □ ICP (sinusoidal)
 - □ ICP (non-sinusoidal)

Average Speed = Area under the curve/Length under the curve

FIG. 13.43 Plotting speed versus time for an automobile excursion.

A1 = 60 mi/hr * 2 hrs = 120 miles

A2 = 50 mi/hr * 2.5 hrs = 125 miles

In 5 hours: Ave Speed = 245 mi/5hrs = 49 mph (text error of 45mph)

For Periodic Waveforms - Calculate the Average over 1 Period

FIG. 13.44 Example 13.14.

Ave(v1) =
$$\frac{(10V)(1ms)+(-10V)(1ms)}{2ms}$$
 Ave(v2) = $\frac{(14V)(1ms)}{2}$

$$Ave(v1) = 0V Ave(v2) = 4V$$

М

ICP - Calculate the Average Value of i(t)

FIG. 13.47 Example 13.15(b).

ķ

How about the Average Value of a Half-Sinusoid?

FIG. 13.51 A better approximation for the shape of the positive pulse of a sinusoidal waveform.

Recall: Ave Value = Area / Length

$$A_{i} = \int_{Am}^{\pi} S_{iN}(\lambda) d\lambda$$

$$= Am \int_{-Cos(\lambda)}^{\pi} \left[-\cos(\lambda) \right]_{0}^{\pi}$$

$$= -Am \left[\cos(\pi) - \cos(0) \right]$$

$$-Am \left[-1 - 1 \right]$$

$$= \left[2Am \right]$$

Average Value = 2*Am/pi ~ 0.637*Am

How about the Average Value of a Sinusoid?

FIG. 13.53 Example 13.16.

ICP – Calculate the Average Value of v(t)

FIG. 13.54 Example 13.17.

Oscilloscope for DC Waveforms

FIG. 13.57 Using the oscilloscope to measure dc voltages; (a) setting the GND condition; (b) the vertical shift resulting from a dc voltage when shifted to the DC option.

DC Coupling Mode

VDC = Vave =2.5 div * 50mV/div = 125mV

Ŋ

Oscilloscope for Mixed Waveforms

FIG. 13.58 Determining the average value of a nonsinusoidal waveform using the oscilloscope: (a) vertical channel on the ac mode; (b) vertical channel on the dc mode.

AC Coupling Mode

DC (Direct Coupling) Mode

Effective or (RMS) Values

FIG. 13.59 An experimental setup to establish a relationship between dc and ac quantities (Average Power).

$$Pac = (iac)^{2}R = [Im Sin(wx)]^{2}R = Im^{2}Sin(wx)R$$

$$but Sin^{2}(x) = \frac{1}{2}[I - Cos(2x)]$$

$$or Pac = Im^{2}R[I - Cos(2ux)] = Im^{2}R Cos(2wx)$$

$$Fine x$$

Effective or (RMS) Values

WE HAVE " Pac =
$$Im^2R$$
 - Im^2R Cos(2WI)

o" o THE AVERAGE VALUE OF Pac 15"

Pac(AVE) = Im^2R , Since the AVE VALUE OF

THE SECOND TERM 15 ZERO

EQUATE THIS TO POC (To Find THE "Equivalent"

AC CURRENT REQUIRED TO CAUSE

 Im^2R = Im^2R =

Effective or (RMS) Values

IN GENERAL, FOR ANY WAVEFORM, I(I), THE EFFECTIVE VALUE (OR RMS VALUE) 15: FOR A SINUSOID - RECALL

Find the RMS Value of:

FIG. 13.60 Example 13.20.

ICP - Find Em and Im (The peak values of e and i)

FIG. 13.61 *Example 13.21.*

ICP - Find Vrms

FIG. 13.62 Example 13.22.

Recall:
$$V_{ems} = \sqrt{\frac{AREA[Van]^2}{T}}$$