

UNIVERSITAT DE VIC UNIVERSITAT CENTRAL DE CATALUNYA

A Bioinformatics Pipeline Reveals a Shared $I\kappa B\alpha$ Interface for NF- κB and **Histone Binding**

Martin Floor^{1,3}, Jordi Villà-Freixa^{1,2}, Joan Bertran^{1,2} and Lluís Espinosa⁴

¹Computational Biochemistry and Biophysics Lab, Faculty of Sciences, Engineering and Technology, **Universitat de Vic - Universitat Central de Catalunya**

lris CC ²Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central

³Barcelona Supercomputing Center, Life Sciences Department

⁴Hospital del Mar Research Center

SUMMARY

 $l\kappa B\alpha$, traditionally a negative regulator of NF- κB , has recently been linked to chromatin-dependent transcriptional control(Marruecos et al., 2021). We developed a bioinformatics pipeline to identify conserved, surface-exposed residues mediating protein interactions. Our Fold-Excluded Evolutionary Conservation (FEEC) metric integrates structural packing (WCN) and evolutionary conservation (ConSurf) to prioritize $l\kappa B\alpha$ binding residues. FEEC highlighted an ANK-repeat surface engaging both the p65 NLS and histone H4 tail. Guided by FEEC, we engineered separation-of-function (SOF) mutants disrupting either NF- κ B binding (SOF $^{\Delta NF-\kappa B}$) or histone association $(SOF^{\Delta H2A/H4})$. Structural modeling, mutagenesis, and functional assays confirmed their specificity. Transcriptomic analysis of $SOF^{\Delta NF-\kappa B}$ cells revealed repression of intestinal stem-cell genes independent of NF- κ B, underscoring a chromatin-related role for $l\kappa$ B α . FEEC thus provides a generalizable framework to resolve multifunctional protein interfaces.(Álvarez-Villanueva et al., 2025)

Regulation of NF- κ B and PRC2 target genes by $I\kappa$ B α WT and SOF mutants

METHODOLOGY

The Weighted Contact Number (WCN) quantifies atomic contact density from interatomic deistances as

$$WCN_i = \sum_{j \neq i} \frac{1}{r_{ij}^2}, \quad iWCN_i = \frac{1}{WCN_i}.$$

Sequence conservation scores $(S_{C,i})$ were obtained from the Consurf server and expressed as Z-scores. The Fold-Excluded Evolutionary Conservation (FEEC) score identifies residues with conservation beyond structural constraints:

$$FEEC_i = iWCN_i - S_{C,i}$$
.

Interface energies were computed from Rosetta-generated conformations weighted by Boltzmann probabilities and expected binding energies:

$$P_i = rac{e^{-E_i/kT}}{\sum_{i=1}^N e^{-E_i/kT}},$$
 $\langle E_{ ext{binding}}
angle = \sum_i P_i E_{b,i}, \quad E_{b,i} = E_{ ext{complex},i} - (E_{A,i} + E_{B,i}).$

Mutational effects were estimated after repacking and minimizing residues within 8 Å of each mutation site.

COMMON DOMAIN OF $I_{\kappa}B_{\alpha}$ BINDING TO P65-NF-KB AND H2A/H4

FEEC scores accurately predicted most $I \kappa B \alpha / NF - \kappa B$ interface residues (83% for p65, 73% for p50), validating FEEC as a reliable predictor of binding sites. Mapping positive FEEC residues revealed strong overlap with known interface regions from structural data. Negatively charged FEEC-positive residues in the ANK1-ANK2 domains (e.g., D73, D75, E85, E86) likely form the binding site for the histone H4 N-terminal tail, overlapping with the p65-NF-kB NLS interaction region.

(A) Surface mapping of $I_{\kappa}B_{\alpha}$ residues with positive FEEC scores (capped at 2), solvent-accessible area buried upon NF-kB binding, and per-residue interface scores. (B) Alignment of the p65-NF-kB NLS region with the H4 N-terminal tail; conserved positions (blue), similar/identical residues (red/white), and $I\kappa B\alpha$ -contacting residues (red arrows) are indicated. (C) $I\kappa B\alpha$ (white)-NF-κB (p65, green; p50, yellow) complex showing negatively charged $I\kappa B\alpha$ residues with FEEC>0 (red). (D) Interaction of the p65 NLS motif (KRKR, green) with $I\kappa B\alpha$ ANK1-2 repeats; polar interacting residues in yellow. (PDB: 1NFI, 3UW9; UniProt Q04206/p65 and P25963/I κ B α).

REFERENCES

Alvarez-Villanueva, Daniel et al. (2025). "Separation-of-function mutants reveal the NF- κ B-independent involvement of $l\kappa B\alpha$ in the regulation of intestinal stemness". In: Cell Reports 44.7, p. 115949. DOI: 10.1016/j.celrep.2025.115949.

Marruecos, L. et al. (2021). "Dynamic chromatin association of $l\kappa B\alpha$ is regulated by acetylation and cleavage of histone H4". In: EMBO Reports 22.8, e52649. DOI: 10.15252/embr.202152649.

Read the full article -Cell Reports (2025)