Linear Algebra: Sheet 8

Present all your answers in complete sentences. There is also a Numbas quiz.

Hand-in question

Submit your solution on Blackboard by 1pm on Wednesday (Week 10) for feedback from your tutor.

- 1. Recall, from Sheet 7, the basis $\mathcal{A} = \{v_1, v_2\}$ of \mathbb{R}^2 with $v_1 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ and $v_2 = (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$.
 - a) What property does the basis A have? Describe, in words, the conditions to check for this property.
 - b) Using the property identified in (a), find $M_{\mathcal{A}\mathcal{A}}(f)$ where $f:(x,y)\mapsto(x,-y)$.
 - c) Now let $g:(x,y)\mapsto (3x,2y)$ and find $M_{\mathcal{A}\mathcal{A}}(g)$.
 - d) Confirm your answers to (b) and (c) by somehow using the image of the basis vectors under f and g.

Solution:

We work with $A = \{v_1, v_2\}$ of \mathbb{R}^2 where $v_1 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ and $v_2 = (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$.

- a) The set \mathcal{A} is an orthonormal basis. In words, this says that the inner product of any given vector in the set with itself is 1 and the inner product of distinct elements in the set is zero.
- b) We use the example from lectures to find $M_{\mathcal{A}\mathcal{A}}(f)$ where $f:(x,y)\mapsto(x,-y)$. Recall that this matrix has entries given by $v_i\cdot f(v_j)$, since \mathcal{A} is an ONB. Thus

$$M_{\mathcal{A}\mathcal{A}}(f) = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}.$$

c) For $g:(x,y)\mapsto (3x,2y)$, the same idea above gives us that

$$M_{\mathcal{A}\mathcal{A}}(g) = \begin{pmatrix} 5/2 & -1/2 \\ -1/2 & 5/2 \end{pmatrix}.$$

d) We know that the *i*th column of $M_{\mathcal{A}\mathcal{A}}(f)$ tells us the linear combination, in \mathcal{A} , obtained from computing $f(v_i)$. This is indeed the case: $f(v_1) = -v_2$ and $f(v_2) = -v_1$. Similarly we have that $g(v_1) = \frac{5}{2}v_1 - \frac{1}{2}v_2$ and $g(v_2) = -\frac{1}{2}v_1 + \frac{5}{2}v_2$.

Additional questions

Try these questions and look at the solutions for feedback. They might also be discussed in your tutorial.

2. Let $A \in M_n(\mathbb{R})$ be a matrix which is symmetric $(A^t = A)$ and positive definite $(\mathbf{x} \cdot A\mathbf{x} > 0)$ for all $\mathbf{x} \in \mathbb{R}^n \setminus \{0\}$). Our aim in this question is to show that we obtain an inner product on $V = \mathbb{R}^n$ by defining

$$\langle \mathbf{x}, \mathbf{y} \rangle_A := \mathbf{x} \cdot A\mathbf{y} = \sum_{i=1}^n x_i \sum_{j=1}^n a_{ij} y_j.$$

In each part, a specific property of A may be helpful. There are hints 1 below.

- a) Show that $\langle v, v \rangle_A \geq 0$ and $\langle v, v \rangle_A = 0$ if and only if v = 0.
- b) Write out $\sum_{i=1}^{n} x_i \sum_{j=1}^{n} a_{ij} y_j$, and so justify this equals $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i y_j$.
- c) Show that $\langle v, w \rangle_A = \langle w, v \rangle_A$ for any $v, w \in \mathbb{R}^n$.
- d) Show that $\langle v, u + w \rangle_A = \langle v, u \rangle_A + \langle v, w \rangle_A$ and $\langle v, \lambda w \rangle_A = \lambda \langle v, w \rangle_A$.
- e) Pick a matrix A that is not symmetric. Which property of $\langle \cdot, \cdot \rangle_A$ do we expect to fail? Find a specific matrix $A \in M_2(\mathbb{R})$ where this property does fail.
- f) What about if A is not positive definite? Again, find a specific $A \in M_2(\mathbb{R})$.

- a) Given $v \neq 0$, we note that $\langle v, v \rangle_A > 0$ from our assumption that A is positive definite. If v = 0, then $\langle v, v \rangle_A = v \cdot Av = 0 \cdot 0 = 0.$
- b) Directly computing, we see that

$$\sum_{i=1}^{n} x_i \sum_{j=1}^{n} a_{ij} y_j = x_1 \sum_{j=1}^{n} a_{1j} y_j + \dots + x_n \sum_{j=1}^{n} a_{nj} y_j$$
$$= \sum_{j=1}^{n} a_{1j} x_1 y_j + \dots + \sum_{j=1}^{n} a_{nj} x_n y_j = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i y_j$$

c) We first apply our observation from (b),

$$\langle v, w \rangle_A = v \cdot Aw = \sum_{i=1}^n v_i \sum_{j=1}^n a_{ij} w_j = \sum_{i=1}^n \sum_{j=1}^n a_{ij} v_i w_j.$$

Similarly we can apply this to see that

$$\langle w, v \rangle_A = w \cdot Av = \sum_{k=1}^n w_k \sum_{l=1}^n a_{kl} v_l = \sum_{k=1}^n \sum_{l=1}^n a_{kl} w_k v_l.$$

Using that a double summation commutes, we see that

$$\sum_{k=1}^{n} \sum_{l=1}^{n} a_{kl} w_k v_l = \sum_{l=1}^{n} \sum_{k=1}^{n} a_{kl} w_k v_l = \sum_{l=1}^{n} \sum_{k=1}^{n} a_{kl} v_l w_k.$$

Replacing the indices l and k with i and j respectively means the previous expression is $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ji} v_i w_j$. At this point we recall our assumption that $A = A^t$, and so $\langle w, v \rangle_A = \langle v, w \rangle_A$.

d) There are two possible approaches. For one, we could apply properties of matrix multiplication. Then $\langle v, u + w \rangle_A$ becomes

$$v \cdot (A(u+w)) = v \cdot (Au + Aw) = v \cdot Au + v \cdot Aw = \langle v, u \rangle_A + \langle v, w \rangle_A$$

For (a), replacing v with \mathbf{x} may help. For (c), use (b) together with $\sum_i \sum_j a_i b_j = \sum_j \sum_i a_i b_j$...now, what property does A have? For (d), write out the LHS and RHS in each case; try and show that they are equal.

Alternatively, for a more algebraic approach, we could observe that

$$\langle v, u + w \rangle_A = v \cdot A(u + w) = \sum_{i=1}^n v_i \sum_{j=1}^n a_{ij} (u + w)_j = \sum_{i=1}^n v_i \sum_{j=1}^n a_{ij} (u_j + w_j).$$

We are merely working with real numbers, and so this can be manipulated to get

$$\sum_{i=1}^{n} v_{i} \sum_{j=1}^{n} a_{ij} (u_{j} + w_{j}) = \sum_{i=1}^{n} v_{i} \sum_{j=1}^{n} (a_{ij} u_{j} + a_{ij} w_{j})$$

$$= \sum_{i=1}^{n} v_{i} \sum_{j=1}^{n} a_{ij} u_{j} + \sum_{i=1}^{n} v_{i} \sum_{j=1}^{n} a_{ij} w_{j} = \langle v, u \rangle_{A} + \langle v, w \rangle_{A}.$$

With a similar approach, we see that

$$\langle v, \lambda w \rangle_A = v \cdot A(\lambda w) = v \cdot (\lambda A w) = \lambda v \cdot A w = \lambda \langle v, w \rangle_A.$$

e) It was only in part (c) that we used the assumption that A should be symmetric. It may appear clear that such an assumption is necessary for that argument to work, but a concrete example provides us with a proper justification. (In fact, any non-symmetric real matrix will provide a counter-example, but then finding suitable v and w may be more difficult.) We use

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

for which one can check that $\langle e_1, e_1 + e_2 \rangle_A \neq \langle e_1 + e_2, e_1 \rangle_A$.

f) We only used the positive definite assumption in part (a). The matrix we happened to choose in (e) fails to be positive definite in a strong way: $\langle v, v \rangle_A = 0$ for every $v \in \mathbb{R}^2$. This therefore does not give rise to an inner product, since it fails the first condition given in our definition in the lecture notes.

- 3. Let V be a complex inner product space with orthonormal basis $\mathcal{A} = \{u_1, u_2, u_3\}$.
 - a) Define the function $P(v) := \langle u_1, v \rangle u_1$.
 - (i) Show that *P* is a linear map.
 - (ii) Show that $P^2 = P$.
 - (iii) Show that $P = P^*$, where P^* denotes the adjoint of P.
 - (iv) Calculate $P(u_1), P(u_2), P(u_3)$ and hence find the matrix $M_{\mathcal{A}\mathcal{A}}(P)$.
 - (v) Consider what P does to a general vector $v = \lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3$.
 - (vi) From the above, find $\operatorname{Im} P$ and express your answer as a span.
 - b) Let $Q(v) := \langle u_1, v \rangle u_1 + \langle u_2, v \rangle u_2$. Answer (a)(i)-(vi) for Q. It is easier to first show (i) and then (iv) for Q, in order to deduce answers for Q.
 - c) Finally, let $R(v) = \langle u_1, v \rangle u_1 + \langle u_2, v \rangle u_2 + \langle u_3, v \rangle u_3$. What is the function R? (It may be helpful to do (i) and (iv) for R.)

Solution:

Recall that V is a complex inner product space and $A = \{u_1, u_2, u_3\}$ an orthonormal basis. We have first defined the function $P(v) := \langle u_1, v \rangle u_1$.

a) (i) To show that P is a linear map, we check each condition in turn.

$$P(v+w) = (\langle u_1, v+w \rangle)u_1 = (\langle u_1, v \rangle + \langle u_1, w \rangle)u_1$$

= $\langle u_1, v \rangle u_1 + \langle u_1, w \rangle u_1 = P(v) + P(w)$
$$P(\lambda v) = (\langle u_1, \lambda v \rangle)u_1 = (\lambda \langle u_1, v \rangle)u_1 = \lambda \langle u_1, v \rangle u_1 = \lambda P(v)$$

(ii) Again, we compute directly. Let $v \in V$. Then

$$P^{2}(v) = P(\langle u_{1}, v \rangle u_{1}) = \langle u_{1}, \langle u_{1}, v \rangle u_{1} \rangle u_{1} = \langle u_{1}, v \rangle (\langle u_{1}, u_{1} \rangle u_{1}) = \langle u_{1}, v \rangle$$

because $\langle u_1, u_1 \rangle = 1$ from our assumption that \mathcal{A} is an ONB.

(iii) Recall that the adjoint of P is the function such that

$$\langle P^*(v), w \rangle = \langle v, P(w) \rangle$$
 for every $v, w \in V$.

We will show that $\langle P(v), w \rangle = \langle v, P(w) \rangle$ so to show that $P = P^*$, using properties of an inner product covered in lectures. Note that

$$\langle v, P(w) \rangle = \langle v, \langle u_1, w \rangle u_1 \rangle = \langle u_1, w \rangle \langle v, u_1 \rangle$$
 and similarly $\langle P(v), w \rangle = \langle \langle u_1, v \rangle u_1, w \rangle = \overline{\langle u_1, v \rangle} \langle u_1, w \rangle = \langle v, u_1 \rangle \langle u_1, w \rangle.$

(iv) To calculate $P(u_1), P(u_2), P(u_3)$, we rely heavily on \mathcal{A} being an ONB, and find that

$$P(u_1) = \langle u_1, u_1 \rangle u_1 = u_1;$$

 $P(u_2) = \langle u_1, u_2 \rangle u_1 = 0;$ and
 $P(u_3) = \langle u_1, u_3 \rangle u_1 = 0.$

These are already naturally linear combinations in A. Hence

$$M_{\mathcal{A}\mathcal{A}}(P) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

(v) Take $v = \lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3 \in V$. Using linearity,

$$P(v) = P(\lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3) = \sum_{i=1}^{3} \lambda_i P(u_i) = \lambda_1 u_1.$$

(vi) From our linearity calculation above, we need only find the image of u_1 , u_2 , and u_3 in order to find Im P. We did this above. Hence Im P contains $\lambda_1 u_1$ for every $\lambda_1 \in \mathbb{C}$. Furthermore, given $v \in V$ we have that $v = \lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3$ and so $P(v) = \lambda u_1$ for some $\lambda \in \mathbb{C}$. Hence Im $P = \text{span}\{u_1\}$. Another approach is to use that the image of P is related to the span of the columns of $M_{\mathcal{A}\mathcal{A}}(P)$ with respect to \mathcal{A} .

4

- b) We have that $Q(v) := \langle u_1, v \rangle u_1 + \langle u_2, v \rangle u_2$. As suggested by the question, we first show (i) and then (iv) for Q.
 - (i) We show that Q is a linear map in the same way that we did for P.

$$\begin{split} Q(v+w) &= (\langle u_1, v+w \rangle) u_1 + (\langle u_2, v+w \rangle) u_2 \\ &= (\langle u_1, v \rangle + \langle u_1, w \rangle) u_1 + (\langle u_2, v \rangle + \langle u_2, w \rangle) u_2 \\ &= \langle u_1, v \rangle u_1 + \langle u_1, w \rangle u_1 + \langle u_2, v \rangle u_2 + \langle u_2, w \rangle u_2 = Q(v) + Q(w) \\ Q(\lambda v) &= (\langle u_1, \lambda v \rangle) u_1 + (\langle u_2, \lambda v \rangle) u_2 \\ &= (\lambda \langle u_1, v \rangle) u_1 + (\lambda \langle u_2, v \rangle) u_2 \\ &= \lambda (\langle u_1, v \rangle) u_1 + \langle u_2, v \rangle u_2) = \lambda Q(v) \end{split}$$

(iv) We now wish to find $M_{\mathcal{A}\mathcal{A}}(Q)$. We note, from \mathcal{A} an ONB, that

$$P(u_1) = \langle u_1, u_1 \rangle u_1 + \langle u_2, u_1 \rangle u_2 = u_1;$$

$$P(u_2) = \langle u_1, u_2 \rangle u_1 + \langle u_2, u_2 \rangle u_2 = u_2; \text{ and}$$

$$P(u_3) = \langle u_1, u_3 \rangle u_1 + \langle u_2, u_3 \rangle u_2 = 0.$$

Again, these are already naturally linear combinations in A. Hence

$$M_{\mathcal{A}\mathcal{A}}(Q) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

- (ii) We confirm that $Q^2 = Q$ by composing our matrix with itself.
- (iii) Similarly $Q = Q^*$ from our matrix form.
- (v) Again the linearity of Q can allow us to find $\operatorname{Im} Q$, or alternatively we can find the image of a vector under $M_{\mathcal{A}\mathcal{A}}(Q)$ to see that $(\lambda_1, \lambda_2, \lambda_3)_{\mathcal{A}}$ is sent to $(\lambda_1, \lambda_2, 0)_{\mathcal{A}}$.
- (vi) From (v), we see that $\operatorname{Im} Q = \operatorname{span}\{u_1, u_2\}$.
- c) In the case of $R(v) = \langle u_1, v \rangle u_1 + \langle u_2, v \rangle u_2 + \langle u_3, v \rangle u_3$, we see that $M_{\mathcal{A}\mathcal{A}}(R)$ is the identity matrix, and so R sends $(\lambda_1, \lambda_2, \lambda_3)_{\mathcal{A}}$ to $(\lambda_1, \lambda_2, \lambda_3)_{\mathcal{A}}$. Hence R is the identity function.

- 4. A function satisfying 3(a)(i)-(iii) is called an orthogonal projection. Let V be a vector space, $P: V \to V$ an orthogonal projection, and I be the identity map.
 - a) Show that I P is also an orthogonal projection.
 - b) Show that $Im(I P) = \ker P^{2}$

Solution:

We have that P is an orthogonal projection, and I is the identity function.

- a) We check each of the three conditions in turn.
 - (i) The sum of two linear maps is a linear map.
 - (ii) By considering the sum and composition of functions, we have

$$(I - P)^2 = (I - P)(I - P)$$

$$= I \circ I - P \circ I - I \circ P + P \circ P$$

$$= I - P - P + P^2$$

$$= I - P - P + P = I - P$$

- (iii) Finally we note that $(I P)^* = I^* P^* = I P^* = I P$.
- b) As mentioned in the hint, there are two natural approaches. First, we show each is included in the other.

If $v \in \ker P$, then (I - P)v = Iv - Pv = v. Thus $v \in \operatorname{Im}(I - P)$ and $\ker P \subset \operatorname{Im}(I - P)$. On the other hand, $v \in \operatorname{Im}(I - P)$ means there exists a $w \in V$ with v = (I - P)w. Then $Pv = P(I - P)w = (P - P^2)w = 0$, and so $\operatorname{Im}(I - P) \subset \ker P$.

Alternatively, we could use the example from the lecture notes. This states that $V = \text{Im}(P) \oplus \ker(P)$. Thus, given $v \in V$, we have that $x = x_1 + x_2$ where $x_1 \in \text{Im}(P)$ and $x_2 \in \ker(P)$. Now,

- $P(x_1) = x_1$ and so $x_1 P(x_1) = x_1 x_1$, i.e. $x_1 \in \ker(I P)$.
- $P(x_2) = x_2 P(x_2) = x_2$, i.e. $x_2 \in \text{Im}(I P)$.

Thus $x \in \text{Im}(I - P)$ if and only if $x \in \text{ker}(P)$.

5. Determine which of the following matrices are hermitian.

(a)
$$A = \begin{pmatrix} 1 & 2 \\ 2 & -3 \end{pmatrix}$$
 (b) $B = \begin{pmatrix} \mathbf{i} & 1 \\ 1 & 0 \end{pmatrix}$ (c) $C = \begin{pmatrix} 1 & -\mathbf{i} \\ \mathbf{i} & 1 \end{pmatrix}$

Solution:

We compute the adjoint matrix, and compare this with the given matrix.

(a)
$$A^* = A$$
 (b) $B^* \neq B$ (c) $C^* = C$

Therefore A and C are hermitian, whereas B is not.

²There are two approaches. Either show each are subsets of one another, or look at the example on orthogonal projections in the lecture notes.

- 6. a) Find the complex conjugate of each of the following expressions
 - (i) $(a+bi)^{-1}$, where $a,b \in \mathbb{R}$. Compare this to $(a-bi)^{-1}$.
 - (ii) e^{ai} , where $a \in \mathbb{R}$. Can you express this as e^{bi} for some $b \in \mathbb{R}$?
 - b) Based on your answers above, decide whether D is hermitian, where

$$D = \begin{pmatrix} 1 & 2+i & e^{i} \\ 2-i & 1 & \frac{1}{1-i} \\ e^{-i} & \frac{1}{1+i} & 0 \end{pmatrix}.$$

Solution:

- a) We compute in each case.
 - (i) Rationalising the denominator, we see that

$$\frac{1}{a+bi} = \frac{a-bi}{a^2+b^2} \Rightarrow \overline{\left(\frac{1}{a+bi}\right)} = \frac{a+bi}{a^2+b^2}.$$

Similarly, $(a - bi)^{-1} = (a + bi)^{-1}$

- (ii) We use Euler's formula, which says that $e^{ai} = \cos a + i \sin a$. Hence $\overline{e^{ai}} = \cos a i \sin a = \cos(-a) + i \sin(-a) = e^{-ai}$.
- b) From our computations in (a), the matrix D is hermitian.
- 7. Which of the following matrices are unitary?

(a)
$$A = \begin{pmatrix} 0 & \mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix}$$
 (b) $B = \begin{pmatrix} \mathbf{i} & 1 \\ 1 & 0 \end{pmatrix}$ (c) $C = \begin{pmatrix} 1 & -\mathbf{i} \\ \mathbf{i} & 1 \end{pmatrix}$

Solution:

Computing we see that $AA^* = I_2$ but BB^*, CC^* are not I_2 . Therefore only A is unitary.

- 8. Recall the complex inner product on \mathbb{C}^n defined by $\langle v, w \rangle := \overline{v} \cdot w$. Take $v_1, v_2, v_3 \in \mathbb{C}^3$ to be an ONB with respect to this inner product.
 - a) Let $U = (v_1 \ v_2 \ v_3)$. Explain why $U^*U = I_3$.
 - b) Possibly by using the idea from (a), show that D is unitary, where

$$D = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{\mathbf{i}}{\sqrt{3}} & \frac{-\mathbf{i}}{\sqrt{3}} \\ \frac{\mathbf{i}}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{\mathbf{i}}{\sqrt{6}} & \frac{2\mathbf{i}}{\sqrt{6}} \end{pmatrix}.$$

Solution:

- a) To help with the visualisation, the entries of U and U^* could be written out. Note that U^* has rows given by $\overline{v_1}^t$, $\overline{v_2}^t$, and $\overline{v_3}^t$. Thus the ijth entry of U^*U is given by $\overline{v_i} \cdot v_j$. From our assumption that v_1, v_2, v_3 form an ONB, the resulting matrix has entries $a_{ij} = \delta_{ij}$, which defines the identity matrix.
- b) The columns of D form an ONB, and so D is unitary. Note that some ONBs are easy to spot, and the computations here seem simpler than finding D^*D : we computed $\langle v_i, v_i \rangle$ for i = 1, 2, 3 and $\langle v_1, v_2 \rangle$, $\langle v_1, v_3 \rangle$, and $\langle v_2, v_3 \rangle$.

 $^{^{3}}$ Euler's formula involving e^{ix} is helpful here.

9. Let V be an inner product space and $v_1, v_2, \ldots, v_k \in V \setminus \{0\}$ be mutually orthogonal, i.e, $\langle v_i, v_j \rangle = 0$ if $i \neq j$. Show v_1, v_2, \ldots, v_k are linearly independent.

Solution:

Let $\sum_{j=1}^k \lambda_j v_j = 0$, for some real or complex λ_i (depending on whether V is over \mathbb{R} or \mathbb{C}). Fix an $i \in \{1, \ldots, k\}$ and take the inner product of both sides of $\sum_{j=1}^k \lambda_j v_j = 0$ with v_i . If $i \neq j$, then $\langle v_i, v_j \rangle = 0$, and so what remains is $\lambda_i \langle v_i, v_i \rangle = 0$. Since $\langle v_i, v_i \rangle > 0$, this means $\lambda_i = 0$. Our choice of i was arbitrary, and so the vectors $\{v_1, \ldots, v_k\}$ are linearly independent.

10. Let $A \in M_{n \times n}(\mathbb{C})$ satisfy $A^* = -A$ and let λ be an eigenvalue of A. Show that $\bar{\lambda} = -\lambda$. Deduce that all eigenvalues of any such A are imaginary numbers.⁴

Solution:

By assumption, $T^* = -T$. We let $Tv = \lambda v$ for a nonzero vector v. Thus

$$\langle v, Tv \rangle = \lambda \langle v, v \rangle = \lambda ||v||^2.$$

For every $v \neq 0$, $\langle v, v \rangle$ is a positive real number. Our assumption on T now states that

$$\lambda ||v||^2 = \langle v, Tv \rangle = \langle T^*v, v \rangle = -\langle Tv, v \rangle = -\overline{\langle v, Tv \rangle}.$$

Thus $\mu = \langle v, Tv \rangle$ is a complex number equal to $-\overline{\langle v, Tv \rangle} = -\overline{\mu}$. More precisely, if $\mu = a + bi$, then $-\overline{\mu} = -a + bi$ implying that a = 0. Hence μ (and so also λ) are pure imaginary.

⁴A good starting point is to take $v \in E(\lambda)$ and try to compute $\langle v, Av \rangle$ in two different ways.

11. Let $T_A: \mathbb{C}^3 \to \mathbb{C}^3$, $x \to Ax$ where

$$A := \begin{pmatrix} 1 & 0 & \mathbf{i} \\ 0 & 2 & 0 \\ -\mathbf{i} & 0 & 1 \end{pmatrix}.$$

a) Show that A is hermitian.

b) Compute the eigenvalues and a set of orthonormal eigenvectors of A.

c) Find a unitary matrix U such that U^*AU is diagonal.

Solution:

Recall that we are working with the function $T_A: \mathbb{C}^3 \to \mathbb{C}^3$, $x \to Ax$ where

$$A := \begin{pmatrix} 1 & 0 & \mathbf{i} \\ 0 & 2 & 0 \\ -\mathbf{i} & 0 & 1 \end{pmatrix}.$$

a) Direct computation shows that $A^* = A$.

b) The characteristic polynomial of A is

$$p_A(\lambda) = (2 - \lambda)((1 - \lambda)^2 - 1) = -\lambda(\lambda - 2)^2,$$

and so we have two eigenvalues, $\lambda_1 = 0$ and $\lambda_2 = 2$. Let us next find the eigenvectors.

 $\lambda_1 = 0$. We have to solve $A\mathbf{x} = 0$, which gives

$$x + iz = 0$$
, $2y = 0$, $-ix + z = 0$,

and so any vector of the form $\mathbf{x} = (x, 0, ix)$ with $x \neq 0$ is an eigenvector. In order to be normalised, we choose $x = \frac{1}{\sqrt{2}}$ so that $\mathbf{x}_1 = \frac{1}{\sqrt{2}}(1, 0, i)$.

 $\lambda_2 = 2$. We have to solve $(A - 2I)\mathbf{x} = 0$, which gives

$$-x + iz = 0$$
 and $-ix - z = 0$.

Hence any vector of the form $\mathbf{x} = (iz, y, z)$ with $y, z \neq 0$ is an eigenvector. Since we have two free parameters, the eigenspace is actually two-dimensional and we have to choose two orthogonal and normalised eigenvectors. One possible choice is $\mathbf{x}_2 = (0, 1, 0)$ and $\mathbf{x}_3 = \frac{1}{\sqrt{2}}(i, 0, 1)$.

c) The columns of U are given by any orthonormal basis of eigenvectors of A, and in our case we find that

9

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & \mathrm{i} \\ 0 & \sqrt{2} & 0 \\ \mathrm{i} & 0 & 1 \end{pmatrix}.$$

12. Let $T_B: \mathbb{R}^3 \to \mathbb{R}^3$, $x \to Bx$ where

$$B = \begin{pmatrix} 1 & \sqrt{2} & 0\\ \sqrt{2} & 0 & 0\\ 0 & 0 & -5 \end{pmatrix}.$$

- a) Is B a special kind of matrix? Compute the eigenvalues of B.
- b) Find an orthonormal set of eigenvectors of B.
- c) Hence find an orthogonal matrix O such that O^tBO is diagonal.

Solution:

We have $T_B: \mathbb{R}^3 \to \mathbb{R}^3$, $x \to Bx$ where

$$B = \begin{pmatrix} 1 & \sqrt{2} & 0\\ \sqrt{2} & 0 & 0\\ 0 & 0 & -5 \end{pmatrix}.$$

a) Clearly B is symmetric. The characteristic polynomial is

$$p_B(\lambda) = -(\lambda + 5)(\lambda^2 - \lambda - 2)$$

which has roots $\lambda_1 = -5$, $\lambda_2 = 2$ and $\lambda_3 = -1$.

b) There are three distinct roots, and so the eigenvectors will be orthogonal. We now find the eigenvectors. $\lambda_1 = -5$. We have $(A + 5I)\mathbf{x} = 0$, which gives us

$$6x + \sqrt{2}y = 0$$
 $\sqrt{2}x + 5y = 0$

implying that x = y = 0. Hence $\mathbf{x}_1 = (0, 0, 1)$ is a normalized eigenvector.

 $\lambda_2 = 2$. Here $(A - 2I)\mathbf{x} = 0$ gives

$$-x + \sqrt{2}y = 0$$
, $\sqrt{2}x - 2y = 0$, $-7z = 0$

and so a normalised solution is $\mathbf{x}_2 = \frac{1}{\sqrt{3}}(\sqrt{2}, 1, 0)$.

 $\lambda_3 = -1$ Finally, $(A+I)\mathbf{x} = 0$ gives

$$2x + \sqrt{2}y = 0$$
, $\sqrt{2}x + y = 0$, $-4z = 0$

and so a normalised solution is $\mathbf{x}_3 = \frac{1}{\sqrt{3}}(1, -\sqrt{2}, 0)$.

c) Putting the normalised eigenvectors as the columns of the transition matrix we find

$$O = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & \sqrt{2} & 1\\ 0 & 1 & -\sqrt{2}\\ \sqrt{3} & 0 & 0 \end{pmatrix}.$$

10