On Seymour's Second Neighborhood Conjecture of m-free Digraphs *

Hao Liang[†]

Department of Mathematics Southwestern University of Finance and Economics Chengdu 611130, China

Jun-Ming Xu

School of Mathematical Sciences
University of Science and Technology of China
Wentsun Wu Key Laboratory of CAS
Hefei 230026, China

Abstract

This paper gives an approximate result related to Seymour's Second Neighborhood conjecture, that is, for any m-free digraph G, there exists a vertex $v \in V(G)$ and a real number λ_m such that $d^{++}(v) \geq \lambda_m d^+(v)$, and $\lambda_m \to 1$ while $m \to +\infty$. This result generalizes and improves some known results in a sense.

Keywords: Digraph, Directed cycle, Seymour's Second Neighborhood Conjecture **AMS Subject Classification**: 05C20, 05C38

1 Introduction

Throughout this article, all digraphs are finite, simple and digonless. As usual, for a vertex v of the digraph G, we denote by $N_G^+(v)$ the set of out-neighbors of v, $N_G^{++}(v)$ the set of vertices at distance 2 from v. Let $d_G^+(v) = |N_G^+(v)|$ (the out-degree of v) and $d_G^{++}(v) = |N_G^{++}(v)|$. We will omit the subscript if the digraph is clear from the context

In 1990, Seymour [3] proposed the following conjecture.

Conjecture 1.1 (Seymour's Second Neighborhood Conjecture) For any digraph G, there exists a vertex v in G such that $d^{++}(v) > d^+(v)$.

^{*}Supported by NNSF of China (No. 11571044).

[†]Corresponding author: lianghao@mail.ustc.edu.cn

We call the vertex v in Conjecture 1.1 a Seymour vertex. In 2001, Kaneko and Locke [8] showed that any digraph with the minimum outdegree less than 7 has a Seymour vertex. In 2007, Fisher [5] showed that any tournament has a Seymour vertex; Fidler and Yuster [4] proved that any tournament minus a star or a subtournament, and any digraph G with minimum degree |V(G)| - 2 have Seymour vertices. In 2008, Hamidoune [7] proved that any vertex-transitive digraph has a Seymour vertex. In 2013, Lladó [10] proved that any digraph with large connectivity has a Seymour vertex. In 2016, Cohn et al. [2] gave a probabilistic statement about Seymour's conjecture and proved that almost surely there are a large number of Seymour vertices in random tournaments and even more in general random digraphs. For a general digraph, Conjecture 1.1 is still open.

Another approach to Conjecture 1.1 is to determinate the maximum value of λ such that there is a vertex v in G satisfying $d^{++}(v) \geq \lambda d^+(v)$ for any digraph G. In 2003, Chen, Shen and Yuster [1] gave $\lambda = 0.657298 \cdots$, which is the unique real root of the polynomial $2x^3 + x^2 - 1$. Furthermore, they improved this bound to $0.67815 \cdots$ mentioned in the end of the article [1].

A digraph G is called to be m-free if G contains no directed cycles of G with length at most m. In 2010, Zhang and Zhou [11] showed that for any 3-free digraph G, there exists a vertex v in G such that $d^{++}(v) \geq \lambda d^+(v)$, where $\lambda = 0.6751 \cdots$ is the only real root in the interval (0,1) of the polynomial $x^3 + 3x^2 - x - 1$. In this paper, we consider general m-free digraphs and obtain the following result.

Theorem 1.2 Let m be an arbitrarily fixed integer with $m \geq 3$ and G be an m-free digraph, then there exists a vertex v in G such that $d^{++}(v) \geq \lambda_m d^+(v)$, where λ_m is the only real root in the interval (0,1) of the polynomial

$$g_m(x) = 2x^3 - (m-3)x^2 + (2m-4)x - (m-1).$$
(1.1)

Furthermore, λ_m is increasing with m, and $\lambda_m \to 1$ while $m \to +\infty$.

Since G is simple and digonless, G is 2-free. When m=2, the polynomial defined in (1.1) is exactly $2x^3+x^2-1$, and our result can be considered to be a generalization of Chen $et\ al.$'s result. When $m=3,\,\lambda_3=0.6823\cdots$, which improves Zhang $et\ al.$'s value on λ_3 . When $m=4,\,\lambda_4=0.7007\cdots$. From Theorem 1.2, we immediately get the following corollary.

Corollary 1.3 For every $\varepsilon > 0$, there is a positive integer m such that every m-free digraph contains a vertex v with $d^{++}(v) \geq (1 - \varepsilon) d^+(v)$.

The first conclusion in Theorem 1.2 is our main result. The proof proceeds by induction on the number of vertices. In the induction step, we assume to the contrary that $d^{++}(v) < \lambda_m d^+(v)$ for any vertex v in G, where λ_m is the unique real root of $g_m(x)$ in the interval (0,1). Then we show that the assumption leads to a contradiction. To this end, we need the following lemmas.

Lemma 1.4 For $m \geq 3$, the polynomial $g_m(x)$ defined in (1.1) is strictly increasing and has a unique real root in the interval (0,1).

Proof: Since
$$g_m(x) = 2x^3 - (m-3)x^2 + (2m-4)x - (m-1)$$
, we have $q'_m(x) = 6x^2 - 2(m-3)x + (2m-4) = 6x^2 + 2x + (2m-4)(1-x)$.

Clearly, $g'_m(x) > 0$ when $m \ge 3$ and $x \in (0,1)$, which implies $g_m(x)$ is strictly increasing in [0,1]. Since $g_m(0) = -m + 1 < 0$ and $g_m(1) = 2 > 0$, it follows that there is a unique real root in the interval (0,1) of the polynomial.

Lemma 1.5 (Hamburger et al. [6]) If one can delete t edges from a digraph G to make it acyclic, then there exists a vertex v in G such that $d^+(v) \leq \sqrt{2t}$.

Lemma 1.6 (Liang and Xu [9]) If an m-free digraph G is obtained from a tournament by deleting t edges, then one can delete from G an additional t/(m-2) edges so that the resulting digraph is acyclic.

Combining Lemma 1.5 with Lemma 1.6, we can easily get the following lemma.

Lemma 1.7 If an m-free digraph G is obtained from a tournament by deleting t edges, then there exists a vertex v in G such that $d^+(v) \leq \sqrt{2t/(m-2)}$.

Proof: From Lemma 1.6, an m-free G is obtained from a tournament by deleting t edges, then we can delete t/(m-2) edges from G to make it acyclic. From Lemma 1.5, there exists a vertex v in G such that $d^+(v) \leq \sqrt{2t/(m-2)}$.

2 Proof of Theorem 1.2

We first prove the first conclusion by induction on the number of vertices. Theorem 1.2 is trivial for any digraph with 1 or 2 vertices. Assume that Theorem 1.2 holds for all digraphs with less than n vertices. Let G be an m-free digraph with n vertices, $n \geq 3$ and $m \geq 3$. Assume to the contrary that $d^{++}(v) < \lambda_m d^+(v)$ for any vertex v in G, where λ_m is the unique real root of $g_m(x)$ in the interval (0,1). Our purpose is to show that the assumption leads to a contradiction.

Let u be a vertex in G with minimum out-degree. Let $A = N^+(u)$, $B = N^{++}(u)$, a = |A| and b = |B|. By our assumption, we have

$$b = d^{++}(u) < \lambda_m d^+(u) = \lambda_m a.$$
 (2.1)

For any two disjoint subsets $X, Y \subseteq V(G)$, let E(X, Y) denote the edges from X to Y and e(X, Y) = |E(X, Y)|. Since G is simple and digorless, we have that

$$e(X,Y) + e(Y,X) \le |X| \cdot |Y|.$$

For simplicity, for any subset $S \subseteq V(G)$, use S to denote the subgraph of G induced by S. By the definitions of A and B, we have

$$\sum_{v \in A} d_G^+(v) = |E(A)| + e(A, B). \tag{2.2}$$

By the choice of $u, d^+(v) \ge d^+(u) = a$ for any $v \in V(G)$, and so

$$\sum_{v \in A} d_G^+(v) \ge |A| \cdot d^+(u) = a^2. \tag{2.3}$$

Since $|E(A)| \le a(a-1)/2$, we have

$$e(A, B) = \sum_{v \in A} d_G^+(v) - |E(A)| \ge a^2 - a(a-1)/2 = a(a+1)/2.$$

It follows that there exists $v \in A$ such that $e(v, B) \ge e(A, B)/a \ge (a+1)/2$. Since $b = |B| \ge e(v, B)$ for any $v \in A$, it follows that $\lambda_m a > b \ge e(v, B) \ge (a+1)/2 > a/2$, which implies

$$\lambda_m > 1/2. \tag{2.4}$$

The subgraph A can be obtained from a tournament of order a by deleting t edges. Let $\theta = t/a^2$. Since $0 \le t \le a(a-1)/2$, we have $0 \le \theta \le (a-1)/2a < 1/2$ and

$$|E(A)| = a(a-1)/2 - t = (1/2 - \theta)a^2 - a/2 < (1/2 - \theta)a^2.$$
(2.5)

Combining (2.2), (2.3) with (2.5), we have that

$$e(A,B) = \sum_{v \in A} d_G^+(v) - |E(A)| > a^2 - (1/2 - \theta)a^2 = (1/2 + \theta)a^2.$$
 (2.6)

Since G is m-free, it follows that the subgraph A is m-free. From Lemma 1.7, there is a vertex $w_0 \in A$ such that

$$d_A^+(w_0) \le \sqrt{2t/(m-2)} = a\sqrt{2\theta/(m-2)}. (2.7)$$

Let $d_B^+(w_0) = |N_B^+(w_0)|$, then $d_B^+(w_0) \le |B| = b$. Since $d_A^+(w_0) + d_B^+(w_0) = d_G^+(w_0)$, it follows from (2.1) that $d_A^+(w_0) = d_G^+(w_0) - d_B^+(w_0) \ge d_G^+(w_0) - b \ge a - \lambda_m a = (1 - \lambda_m) a$, that is,

$$d_A^+(w_0) \ge (1 - \lambda_m) a. \tag{2.8}$$

Combining (2.7) with (2.8), we have $\sqrt{2\theta/(m-2)}a > (1-\lambda_m)a$, that is,

$$\theta > (m-2)(1-\lambda_m)^2/2.$$
 (2.9)

Since A is m-free and |A| = a < n, by induction hypothesis there is a vertex $w_1 \in A$ such that $|N_A^{++}(w_1)| \ge \lambda_m |N_A^+(w_1)|$, where λ_m is the unique real root of $g_m(x)$ in the interval (0,1).

Let $X = N_A^+(w_1)$, $Y = N_B^+(w_1)$ and |Y| = d. It follows from (2.1) that

$$d = |Y| \le |B| = b < \lambda_m a. \tag{2.10}$$

By the induction hypothesis, $|A-X| \ge |N_A^{++}(w_1)| \ge \lambda_m |X|$, that is, $(1+\lambda_m)|X| \le |A| = a$. By (2.4) $\lambda_m > \frac{1}{2}$, we have

$$|X| \le \frac{a}{1 + \lambda_m} < \frac{2a}{3}.$$

By the choice of u, we have $d_G^+(w_1) \ge d_G^+(u) = a$, and so

$$d = |Y| = |N_G^+(w_1)| - |X| > a - \frac{2a}{3} = \frac{a}{3}.$$
 (2.11)

Combining (2.10) with (2.11), we have

$$a/3 < d < \lambda_m a. \tag{2.12}$$

For any $y \in Y$, use $d^+_{V-A-Y}(y)$ to denote the number of out-neighbors of y in G not in $A \cup Y$. Since $d^+_G(w_1) < \lambda_m d^+_G(w_1)$ and $d^+_A(w_1) \ge \lambda_m d^+_A(w_1)$, we have

$$d_{V-A-Y}^+(y) \le d_G^{++}(w_1) - d_A^{++}(w_1) < \lambda_m d_G^+(w_1) - \lambda_m d_A^+(w_1) = \lambda_m d.$$

Noting that $d_G^+(y) \ge d_G^+(u) = a$ and $\sum_{y \in Y} d_Y^+(y) = |E(Y)| \le d(d-1)/2$, we obtain

$$\begin{split} e(Y,A) &= \sum_{y \in Y} |N_A^+(y)| \\ &\geq \sum_{y \in Y} (a - d_{V-A-Y}^+(y) - d_Y^+(y)) \\ &> (a - \lambda_m d) \, d - \sum_{y \in Y} d_Y^+(y) \\ &> (a - \lambda_m d) \, d - d(d-1)/2 \\ &> (a - \lambda_m d - d/2) \, d, \end{split}$$

that is

$$e(Y,A) > (a - \lambda_m d - d/2)d. \tag{2.13}$$

Combining (2.1), (2.6), (2.9) with (2.13), we have

$$\lambda_{m}a^{2} \geq ab$$

$$\geq e(A, B) + e(B, A)$$

$$\geq e(A, B) + e(Y, A)$$

$$> (1/2 + \theta) a^{2} + (a - \lambda_{m}d - d/2) d$$

$$> [1/2 + (m - 2)(1 - \lambda_{m})^{2}/2] a^{2} + (a - \lambda_{m}d - d/2) d$$

$$= -(\lambda_{m} + 1/2)d^{2} + ad + [1/2 + (m - 2)(1 - \lambda_{m})^{2}/2] a^{2}$$

that is,

$$\lambda_m a^2 > -(\lambda_m + 1/2) d^2 + ad + [1/2 + (m-2)(1-\lambda_m)^2/2] a^2, \tag{2.14}$$

where $a/3 < d < \lambda_m a$ (see (2.12)). For $a/3 \le z \le \lambda_m a$, let the function

$$f(z) = -(\lambda_m + 1/2)z^2 + az + [1/2 + (m-2)(1-\lambda_m)^2/2]a^2.$$

Since f(z) is a quadratic function with a negative leading coefficient, the following inequality holds.

$$f(z) \ge \min\{f(a/3), f(\lambda_m a)\}$$
 for any $z \in [a/3, \lambda_m a]$. (2.15)

Combining (2.14) with (2.15), we have

$$\lambda_m a^2 > f(d) \ge \min\{f(a/3), f(\lambda_m a)\}. \tag{2.16}$$

We first note that, since

$$f(\lambda_m a) = \frac{a^2[-2\lambda_m^3 + (m-3)\lambda_m^2 - (2m-6)\lambda_m + (m-1)]}{2},$$

if $\lambda_m a^2 > f(\lambda_m a)$, then

$$\lambda_m a^2 > \frac{a^2[-2\lambda_m^3 + (m-3)\lambda_m^2 - (2m-6)\lambda_m + (m-1)]}{2},$$

that is

$$g_m(\lambda_m) = 2\lambda_m^3 - (m-3)\lambda_m^2 + (2m-4)\lambda_m - (m-1) > 0.$$

This fact shows that λ_m is not a root of the polynomial $g_m(x)$, which contradicts our assumption on λ_m .

It follows that $\lambda_m a^2 \leq f(\lambda_m a)$, and so $\lambda_m a^2 > f(a/3)$ by (2.16). Since

$$f(a/3) = \frac{a^2[9(m-2)\lambda_m^2 - (18m-34)\lambda_m + (9m-4)]}{18}.$$

we have

$$\lambda_m a^2 > \frac{a^2 [9(m-2)\lambda_m^2 - (18m-34)\lambda_m + (9m-4)]}{18}.$$

Simplifying this inequality, we obtain

$$9(m-2)\lambda_m^2 - (18m-16)\lambda_m + (9m-4) < 0.$$

This implies

$$\lambda_m > \frac{9m - 8 - \sqrt{54m - 8}}{9(m - 2)}. (2.17)$$

Now we show (2.17) is a contradiction to that λ_m is the only root in the interval (0,1) of the polynomial $g_m(x)$. We rewrite the polynomial $g_m(x)$ as

$$g_m(x) = \frac{1}{9}(p(x) - q(x)),$$
 (2.18)

where

$$p(x) = 18x^3 + 9x^2 - 20x + 5,$$

$$q(x) = 9(m-2)x^2 - (18m-16)x + (9m-4).$$

The polynomial q(x) has a real root

$$\varphi_m = \frac{9m - 8 - \sqrt{54m - 8}}{9(m - 2)},\tag{2.19}$$

that is

$$q(\varphi_m) = 0. (2.20)$$

Comparing (2.17) with (2.19), we have

$$\lambda_m \ge \varphi_m \quad \text{for } m \ge 3.$$
 (2.21)

Since

$$\varphi_m = 1 + \frac{10 - \sqrt{54m - 8}}{9(m - 2)}$$

$$= 1 + \frac{108 - 54m}{9(m - 2)(10 + \sqrt{54m - 8})}$$

$$= 1 - \frac{6}{10 + \sqrt{54m - 8}},$$

it is easy to see that φ_m is strictly increasing with m for $m \geq 3$. Thus we have

$$\varphi_m \ge \varphi_3 = 1 - \frac{6}{10 + \sqrt{154}} > 1 - \frac{3}{10} = \frac{7}{10}.$$
(2.22)

A simple calculation gives us that p(x) is a strictly increasing function for $x > \frac{7}{10}$ and $p(\frac{7}{10}) = 1.584 > 0$. Noting that $g_m(x)$ is a strictly increasing function over the interval [0, 1], and by (2.18), (2.20), (2.21), (2.22), we have

$$g_m(\lambda_m) > g_m(\varphi_m) = \frac{1}{9}[p(\varphi_m) - q(\varphi_m)] = \frac{1}{9}p(\varphi_m) > \frac{1}{9}p(\frac{7}{10}) > 0.$$

This fact shows that λ_m is not a root of the polynomial $g_m(x)$, a contradiction to our assumption, and so the first conclusion follows.

We now prove the second conclusion. Since $g_m(x) = 2x^3 - (m-3)x^2 + (2m-4)x - (m-1)$, $g_m(\lambda_m) = 0$ and

$$g_{m+1}(x) = 2x^3 - (m-2)x^2 + (2m-2)x - m$$

= $2x^3 - (m-3)x^2 + (2m-4)x - (m-1) - x^2 + 2x - 1$
= $q_m(x) - (1-x)^2$,

for any $m \geq 3$ we have

$$g_{m+1}(\lambda_m) = g_m(\lambda_m) - (1 - \lambda_m)^2 = -(1 - \lambda_m)^2 < 0 = g_{m+1}(\lambda_{m+1}).$$

Since $g_m(x)$ is strictly increasing in the interval (0,1) for any $m \geq 3$ by Lemma 1.4, it follows that $\lambda_m < \lambda_{m+1}$, which implies that λ_m is increasing with m.

We rewrite $g_m(x)$ as

$$g_m(x) = 2x(x^2 - 1) + 2x^2 - (m - 1)(1 - x)^2$$

It is easy to check that $\mu_m = \frac{\sqrt{m-1}}{\sqrt{m-1}+\sqrt{2}} \in (0,1)$ is a real root of the polynomial $2x^2 - (m-1)(1-x)^2$. It follows that $g_m(\mu_m) = 2\mu_m(\mu_m^2 - 1) < 0 = g_m(\lambda_m)$. Since $g_m(x)$ is strictly increasing in the interval (0,1) by Lemma 1.4, we have

$$0 < \mu_m < \lambda_m < 1$$
.

Since $\lim_{m\to +\infty} \mu_m = \lim_{m\to +\infty} \frac{\sqrt{m-1}}{\sqrt{m-1}+\sqrt{2}} = 1$, it follows that $\lim_{m\to +\infty} \lambda_m = 1$.

The proof of Theorem 1.2 is complete.

References

- [1] G. Chen, J. Shen, R. Yuster, Second neighborhood via first neighborhood in digraphs, Annals of Combinatorics 7 (2003) 15-20.
- [2] Z. Cohn, A. Godbole, E.W. Harkness and Y. Zhang, The number of Seymour vertices in random tournaments and digraphs, Graphs and Combinatorics 32 (5) (2016) 1805-1816.
- [3] N. Dean, B. J. Latka, Squaring the tournament-an open problem, Congressus Numberantium 109 (1995) 73-80.
- [4] D. Fidler, R. Yuster, Remarks on the second neighborhood problem, J. Graph Theory 55 (2007) 208-220.
- [5] D. C. Fisher, Squaring a tournament: a proof of Dean's conjecture, J. Graph Theory 23 (1996) 43-48.
- [6] P. Hamburger, P. Haxell, and A. Kostochka, On the directed triangles in digraphs, Electronic J. Combin. 14 (2007) Note 19.
- [7] Y. O. Hamidoune, On iterated image size for point-symmetric relations, Combin. Probab. Comput. 17 (1) (2008) 61-66.
- [8] Y. Kaneko, S. C. Locke, The minimum degree approach for Paul Seymour's distance 2 conjecture, Congressus Numerantium 148 (2001) 201-206.
- [9] H. Liang, J.-M. Xu, Minimum feedback arc set of *m*-free digraphs, Information Processing Letters 113 (2013) 260-264.
- [10] A. Lladó, On the second neighborhood conjecture of Seymour for regular digraphs with almost optimal connectivity, European J. Combin. 34 (8) (2013) 1406-1410.
- [11] T. Zhang, J. Zhou, The second neighborhood of triangle-free digraphs, Graph Theory Notes of New York 58 (2010) 48-50.