

IS42

UCAL	4	M	-	0			· ·	l	
0311		1.1	9	U	ĺ				

M S RAMAIAH INSTITUTE OF TECHNOLOGY

(AUTONOMOUS INSTITUTE, AFFILIATED TO VTU) BANGALORE – 560 054

MAKE UP EXAMINATIONS - JULY 2010

Course & Branch : B.E. (Information Science & Engineering) Seme

Semester : IV

Max. Marks : 100

Subject

Subject Code

: Finite Automata and Formal Languages

Duration

3 hrs.

Instructions to the Candidates: Answer one full question from each unit

UNIT-I

- 1. a) Define DA, NFA & ϵ -NFA. Construct a DFA that recognizes the set of all (10) strings on $\Sigma = \{a,b\}$ ending with abb.
 - b) Convert the following NFA to DFA using subset construction method. Write (10) transition table of DFA.

2. a) Obtain a DFA to accept the following language.

(8)

 $L=\{w, \text{ such that } |w| \mod 3 \ge |w| \mod 2$

Where $w \in \{a,b\}^*\}$

b) Obtain regular expressions for the following languages.

(4)

(8)

i) $L = \{a^n b^m | m+n \text{ is even}\}$

IS42

- ii) $L = \{w : n_a(w) \mod 3 = 0 \text{ where } w \in \{a,b\}^*\}$
- c) Prove that, if L=L(A) for some DFA A, then there is a regular expression (8) R such that L=L(R).

UNIT - II

- 3. a) Prove that if L & M are the regular languages, then L∩M is also regular.
 - b) Using table filling method, minimize the following DFA. Write the transition (12) table of resulting DFA.

		0	1
\rightarrow	Α	В	E
	В	С	F
*	С	D	Н
	D	E	H,
	E	F	I
*	F	G	В
	G	Н	В
	Н	I	С
*	I	Α	E

IS42

4.	a) b)	State and prove pumping Lemma for regular languages. S.T. $L=\{a^nb^n n\geq 0\}$ is not regular.	(10) (6)
	c)	Define homomorphism and inverse homomorphism.	(4)
		UNIT -III	
5.	a)	Write the CFG for the following languages. i) $L=\{w n_a(w)=n_b(w)+1\}$ ii) $L=\{a^nb^m\mid n\geq 0, m>n\}$	(8)
	b)	Consider the grammar - $S \rightarrow aB/bA$ $A \rightarrow aS/bAA/a$ $B \rightarrow bS/aBB/b$ Find 2 leftmost derivation in the string aabbab and write parse trees.	(8)
	c)	Define CFG and CNF. Give an example in each.	(4)
6.	a·)	Consider the grammar - $E \rightarrow T \mid E + T$ $T \rightarrow T * F / F$	(12)
		$F \rightarrow (E) I$ $I \rightarrow Ia Ib I\phi I1 a b$ i) Remove unit-productions from the grammar ii) Write the CNF of the resulting grammar	
	b)	Eliminate ϵ -productions from the given grammar $S \to ABC/BaB$ $A \to aA/BaC/aaa$ $B \to bBb a D$ $C \to CA AC$ $D \to \epsilon$	(4)
	c)	S.T. $L = \{a^n b^n c^n n \ge 0\}$ is not content free	(4)
		UNIT - IV	
7.	a)	Derive PDA and construct a PDA that accepts the language $L=\{WCW^R:W\epsilon\{a,b\}^*,W^R\text{ is reverse of }W\}$ by a final state. Write the ID in string aabCbaa.	(12)
	b)	Convert the PDA $P_N=(\{q\},\{i,e\},\{z\},S_N,q,z\}$ to a CFG, if S_N is given by i) $S_N(q,i,z)=(q,zz)$ ii) $S_N(q,e,z)=(q,\epsilon)$	(8)
8.	a) b)	With a neat diagram, explain the working of a pushdown automata. Is the PDA to accept the language $L(M)=\{W W\epsilon\{a+b\}^* \text{ ad } n_a(w)=n_b(w)\}$ deterministic?	(6) (10)
	c) _.	For the following grammar construct a PDA. $S \rightarrow aABB aAA$ $A \rightarrow aBB a$ $B \rightarrow bBB A$	(4)
		$C \rightarrow a$	-

IS42

UNIT - V

9.	a')	What are Turing Machine and Multitape Turing Machine? Explain the general structure multi tape Turing Machine.	(8)
	b)	Design a Turing Machine to accept the language $L=\{0^n1^n, n\geq 1\}$. Also give the graphical representation and ID for the input 0011.	(12)
10	a)	Obtain a TM to compute the – which is called monus or proper subtraction and is defined by m-n=max (m-n,o). Write the transition diagram.	(14)
	b)	Discuss about Halting problem of TM.	(6)

Page **3** of **3**