1. Solution

Let x represent a datum of interest. Let i represent that datum's index. Let ℓ represent that datum's percentile. Let n represent the sample size (number of measurements). In general,

$$\ell = \frac{i}{n}$$

(a) We are given x = 126.148. This means i = 3. We know n = 9. Determine the percentile ℓ .

$$\ell = \frac{3}{9}$$

$$\ell = 0.333$$

So, the percentile rank is 0.333, or 33.3th percentile.

(b) We are given $\ell = 0.778$. We can use algebra to solve for *i*.

$$\ell = \frac{i}{n}$$

Multiply both sides by n.

$$n\cdot (\ell)=n\cdot \left(\frac{i}{n}\right)$$

Simplify both sides.

$$n\ell = i$$

To make me happy, switch the sides.

$$i = n\ell$$

Now, we can evaluate i.

$$i = (9)(0.778)$$

$$i = 7$$

Determine the x associated with i = 7.

- (c) The mean: $\bar{x} = \frac{1151.473}{9} = 127.94$
- (d) If n is odd, then median is $x_{i=\frac{n+1}{2}}$, the value of x when $i=\frac{n+1}{2}$. Otherwise, if n is even, the median is mean of $x_{i=\frac{n}{2}}$ and $x_{i=\frac{n}{2}+1}$. In this case, n=9 and so n is odd.

median =
$$x_{(9+1)/2}$$
, = x_5

So, median = 128.552

2. Solution

Let x represent a datum of interest. Let i represent that datum's index. Let ℓ represent that datum's percentile. Let n represent the sample size (number of measurements). In general,

$$\ell = \frac{i}{n}$$

(a) We are given x = 10.854. This means i = 6. We know n = 30. Determine the percentile ℓ .

$$\ell = \frac{6}{30}$$

$$\ell = 0.2$$

So, the percentile rank is $\boxed{0.2}$, or 20th percentile.

(b) We are given $\ell = 0.267$. We can use algebra to solve for *i*.

$$\ell = \frac{i}{n}$$

Multiply both sides by n.

$$n\cdot (\ell)=n\cdot \left(\frac{i}{n}\right)$$

Simplify both sides.

$$n\ell = i$$

To make me happy, switch the sides.

$$i = n\ell$$

Now, we can evaluate i.

$$i = (30)(0.267)$$

$$i = 8$$

Determine the x associated with i = 8.

$$x = 10.881$$

- (c) The mean: $\bar{x} = \frac{377.971}{30} = 12.599$
- (d) If n is odd, then median is $x_{i=\frac{n+1}{2}}$, the value of x when $i=\frac{n+1}{2}$. Otherwise, if n is even, the median is mean of $x_{i=\frac{n}{2}}$ and $x_{i=\frac{n}{2}+1}$. In this case, n=30 and so n is even.

$$\text{median} = \frac{x_{15} + x_{16}}{2} = \frac{12.697 + 12.764}{2}$$

So, median = 12.7305