Musterprotokoll: Stoss

$h{ m in~cm}$	3	4	5	6
v_m in m/s	0.77 ± 0.02	0.89 ± 0.02	0.99 ± 0.01	1.08 ± 0.01
v_{th} in m/s	0.037 ± 0.001	0.043 ± 0.001	0.048 ± 0.0005	0.052 ± 0.0005

Table 1: Geschwindigkeit der kleinen Kugel beim Auftreffen auf die große, sowie die gemeinsame Geschwindigkeit nach dem Stoß. Der Fehler der Knetmasse wird als 0.1 g angenommen.

1 Auswertung

Erdbeschleunigung

Der Mittelwert der gemessenen Zeit für 10 Schwingungnen beträgt mit Standardabweichung $T_{10}=30, 4\pm0, 2$ s. Daraus folgt für die Schwingungsdauer $T=3,04\pm0,02$ s. Mit dieser und der Länge des Pendelfadens L=2,35 m lässt sich die Erdbeschleunigung g bestimmen, da $\omega=\frac{2\pi}{T}=\sqrt{g/L}$. Daraus folgt:

$$g = \frac{4(\pi L)^2}{T^2} = 10,04 \text{ m/s}.$$

Der Fehler von g ergibt sich mit gaußscher Fehlerfortpflanzung zu, wenn die Länge des Fadens als genau angenommen wird:

$$\sigma_g = 8\pi^2 \cdot \frac{L}{T^3} \cdot \sigma_T = 0, 2 \text{ m/s}.$$

Inelastischer Stoß

Die Geschwindigkeit der kleinen Kugel beim Auftreffen auf die große Kugel ergibt sich aus der Energieerhaltung $E_{kin} = \frac{mv_m^2}{2} = mgh = E_{pot}$:

$$v_m = \sqrt{2gh}.$$

Daraus folgen die Werte für die Geschwindigkeit, die in Tabelle 1 aufgelistet sind. Der Fehler der Höhe wurde dabei als 0.5 mm angenommen und der Fehler für v_m mit gaußscher FF berechnet.

Über den Impulssatz erhält man für die gemeinsame Geschwindigkeit aller Massen nach dem Stoß v_{th} (siehe Tabelle 1):

$$v_{th} = \frac{mv_m}{m + M + m_t}.$$

Da die Messungenauigkeit sehr hoch ist, liegen nur zwei Werte für die experimentelle Geschwindigkeit v_{exp} vor. $v_3 = 0.041 \pm 0.005$ m/s für eine Fallhöhe von 3 cm und $v_{4,5,6} = 0.062 \pm 0.005$ m/s für die anderen Fallhöhen. Dabei wurde ein systematischer Fehler von $\sigma_x = 0.2$ cm für den Ausschlag geschätzt.