Moving Avorage Browss

Zt = Ut - Olat-1 - ... - Ogat-q

MA(q)

(i) It is charry stationary.

For invertibility, it can be rewritten as

 $\frac{2}{2} = (1 - \theta_1 B - \dots - \theta_q B^q) \Omega_t$ $= \Theta(B) \Omega_t$ $\Rightarrow \Theta^{-1}(B) \frac{2}{2} = \Omega_t \text{ (formal expression)}$

We need to deak that it is well-defined

Suppose
$$G(B) = T(1 - H_1B)$$
. Then
$$G^{-1}(B) \tilde{Z}_{t} = Q_{t} \Rightarrow \frac{1}{T(1 - H_1B)} \tilde{Z}_{t} = Q_{t}$$
Partial Facilian.

Partial Facilian.

Let (IHS) =
$$\frac{2}{4} + \pi \frac{2}{3} + \pi \frac{2}{3} + \dots$$

We have $\pi_i = \sum_i M_i H_i^{ij}$ and $\sum_i |M_i| H_i^{ij} | < \infty f$
 $|H_i| < 1$.

the denominator can never be zero, which implies that $H_{1} \neq [H, I]$ and honce $H_{1} \mid X \mid I$.

Proposition: MAs are invortible
if all roots of G(B) = 0 line outside
the unit circle. Is characteristic
equation.

(ii) ACF: $\gamma_{k} = E(\tilde{Z}_{t} \tilde{Z}_{t+k})$ = $-\Theta_{k} E \Omega_{t+k}^{2} + \Theta_{t} \Theta_{t+k} E \Omega_{t+k+1}^{2} + \cdots + \Theta_{t+k} \Theta_{t} E \Omega_{t+k+1}^{2} + \cdots + \Theta_{t+k+1}^{2} + \cdots + \Theta_{t+k+1}^{2} + \cdots + \Theta_{t+k+1}^{2} + \cdots + \Theta_{t+k+1}^{2} \Theta_{t}) G_{\alpha}^{\alpha} (k=0)$ = $\int (1 + \Theta_{t}^{2} + \cdots + \Theta_{t+k}^{2} \Theta_{t}) G_{\alpha}^{\alpha} (k=0)$ $\int (-\Theta_{k} + \Theta_{t} \Theta_{k+1} + \cdots + \Theta_{t+k}^{2} \Theta_{t}) G_{\alpha}^{\alpha} (k=0)$

$$\begin{array}{l} \text{Re} \left\{ \begin{array}{l} 1 & (k=0) \\ -\theta_{k} + \theta_{1}\theta_{k+1} + \dots + \theta_{g-k}\theta_{g} \end{array} \right. \\ \left. \begin{array}{l} -\theta_{k} + \theta_{1}\theta_{k+1} + \dots + \theta_{g-k}\theta_{g} \end{array} \right. \\ \left. \begin{array}{l} |+\theta_{1}^{2} + \dots + \theta_{g}^{2}| \\ |+\theta_{1}^{2$$

