UNIFORM BASES AT NON-ISOLATED POINTS AND MAPS

FUCAI LIN AND SHOU LIN

ABSTRACT. In this paper, the authors mainly discuss the images of spaces with an uniform base at non-isolated points, and obtain the following main results: (1) Perfect maps preserve spaces with an uniform base at non-isolated points; (2) Open and closed maps preserve regular spaces with an uniform base at non-isolated points; (3) Spaces with an uniform base at non-isolated points don't satisfy the decomposition theorem.

1. Introduction

Recently, spaces with an uniform base or spaces with a sharp base bring some topologist attention and interesting results about certain bases are obtained [2, 3, 14]. In [9], the authors define the notion of uniform bases at non-isolated points and obtain some related matters. For example, it is proved that a space X has an uniform base at non-isolated points if and only if X is the open boundary-compact image of a metric space. It is well known that the class of spaces under the open and compact images of metric spaces are preserved by perfect maps or closed and open maps(see [14]). Hence a question arises: "What kind of maps preserve spaces with a uniform base at non-isolated points?" In this paper we shall consider the invariance of spaces with an uniform base at non-isolated points under perfect maps or closed and open maps.

By \mathbb{R}, \mathbb{N} , denote the set of all real numbers and positive integers, respectively. For a topological space X, let $\tau(X)$ denote the topology for X, and let

$$I(X) = \{x : x \text{ is an isolated point of } X\},$$

$$X^{d} = X - I(X),$$

$$\mathcal{I}(X) = \{\{x\} : x \in I(X)\},$$

$$\mathcal{I}_{\Delta}(X) = \{(\{x\}, \{x\}) : x \in I(X)\}.$$

In this paper all spaces are Hausdorff, all maps are continuous and onto. Recall some basic definitions.

Definition 1.1. Let \mathcal{P} be a base of a space X. \mathcal{P} is an uniform base [1] (resp. uniform base at non-isolated points [9]) for X if for each (resp. non-isolated) point $x \in X$ and \mathcal{P}' is a countably infinite subset of $\{P \in \mathcal{P} : x \in P\}$, \mathcal{P}' is a neighborhood base at x in X.

In the definition, "at non-isolated points" means "at each non-isolated point of X".

²⁰⁰⁰ Mathematics Subject Classification. 54C10; 54D70; 54E30; 54E40.

Key words and phrases. Perfect mappings; uniform bases at non-isolated points; open mappings; developable at non-isolated points.

Supported in part by the NSFC(No. 10571151).

Definition 1.2. [8] Let $f: X \to Y$ be a map.

- (1) f is a boundary-compact map, if each $\partial f^{-1}(y)$ is compact in X;
- (2) f is a compact map if each $f^{-1}(y)$ is compact in X;
- (3) f is a perfect map if f is a closed and compact map.

Definition 1.3. Let X be a space and $\{\mathcal{P}_n\}_n$ a sequence of collections of open subsets of X.

- (1) $\{\mathcal{P}_n\}_n$ is called a *quasi-development* [4] for X if for every $x \in U$ with U open in X, there exists $n \in \mathbb{N}$ such that $x \in \operatorname{st}(x, \mathcal{P}_n) \subset U$.
- (2) $\{\mathcal{P}_n\}_n$ is called a development [13] (resp. development at non-isolated points[9]) for X if $\{\operatorname{st}(x,\mathcal{P}_n)\}_n$ is a neighborhood base at x in X for each (resp. non-isolated) point $x \in X$.
- (3) X is called quasi-developable (resp. developable, developable at non-isolated points) if X has a quasi-development (resp. development, development at non-isolated points).

Obviously, in the definition about developments at non-isolated points we can assume that each \mathcal{P}_n is a cover for X. Also, it is easy to see that a space which is developable at non-isolated points is quasi-developable, but a space with a development at non-isolated points may not have a development, see Example in [9].

Definition 1.4. Let \mathcal{P} be a family of subsets of a space X. \mathcal{P} is called *point-finite* at non-isolated points [9] if for each non-isolated point $x \in X$, x belongs to at most finite elements of \mathcal{P} . Let $\{\mathcal{P}_n\}_n$ be a development (resp. a development at non-isolated points) for X. $\{\mathcal{P}_n\}_n$ is said to be a point-finite development (resp. a point-finite development at non-isolated points) for X if each \mathcal{P}_n is point-finite at each (resp. non-isolated) point of X.

Readers may refer to [8, 10] for unstated definitions and terminology.

2. Developments at non-isolated points

In this section some characterizations of spaces with a development at non-isolated points are established.

Let X be a topological space. $g: \mathbb{N} \times X \to \tau(X)$ is called a g-function, if $x \in g(n,x)$ and $g(n+1,x) \subset g(n,x)$ for any $x \in X$ and $n \in \mathbb{N}$. For $A \subset X$, put

$$g(n, A) = \bigcup_{x \in A} g(n, x).$$

Theorem 2.1. Let X be a topological space. Then the following conditions are equivalent:

- (1) X has a development at non-isolated points;
- (2) There exists a g-function for X such that, for every $x \in X^d$ and sequences $\{x_n\}_n, \{y_n\}_n$ of X, if $\{x, x_n\} \subset g(n, y_n)$ for every $n \in \mathbb{N}$, then $x_n \to x$.
- (3) X is a quasi-developable space, and X^d is a perfect subspace of X.

Proof. (1) \Rightarrow (2). Let $\{\mathcal{U}_n\}_n$ be a development at non-isolated points for X. We can assume that $\mathcal{I}(X) \subset \mathcal{U}_n$ for every $n \in \mathbb{N}$.

For every $x \in X$ and $n \in \mathbb{N}$, fix $U_n \in \mathcal{U}_n$ with $x \in U_n$, where $U_n = \{x\}$ when $x \in I(X)$. Let $g(n,x) = \bigcap_{i < n} U_i$. Then $g : \mathbb{N} \times X \to \tau(X)$ is a g-function for X. For every $x \in X^d$, if sequences $\{x_n\}_n$, $\{y_n\}_n$ satisfy $\{x, x_n\} \subset g(n, y_n)$ for every $n \in \mathbb{N}$, then $x_n \to x$ because $\{\mathcal{U}_n\}_n$ is a development at non-isolated points.

 $(2)\Rightarrow (3)$. Let g be a g-function with (2). Put $\mathcal{U}_n=\{g(n,x):x\in X^d\}$ for every $n\in\mathbb{N}$. Then $\{\mathcal{U}_n\}_n\cup\{\mathcal{I}(X)\}$ is a quasi-development for X. Otherwise, there exist $x\in X^d$ and an open neighborhood U of x in X such that $\operatorname{st}(x,\mathcal{U}_n)\not\subset U$ for every $n\in\mathbb{N}$. For every $n\in\mathbb{N}$, choose $x_n\in\operatorname{st}(x,\mathcal{U}_n)-U$, then there exists $y_n\in X$ such that $\{x_n,x\}\subset g(n,y_n)$. Thus $x_n\to x$, a contradiction as X-U is closed. Hence X has a quasi-development.

For any closed subset B of X^d , it is obvious that $B \subset \bigcap_{n \in \mathbb{N}} (g(n, B) \cap X^d)$. If a point $x \in \bigcap_{n \in \mathbb{N}} (g(n, B) \cap X^d) - B$, then $x \in g(n, B) \cap X^d$ for every $n \in \mathbb{N}$. There exists a sequence $\{y_n\}_n$ in B such that $\{x, y_n\} \subset g(n, y_n)$, so $y_n \to x$ by (2). Since X^d is closed in X, B is closed in X, then $x \in B$, a contradiction. Thus $B = \bigcap_{n \in \mathbb{N}} (g(n, B) \cap X^d)$, and X^d is a perfect subspace for X.

 $(3) \Rightarrow (1)$. Let $\{\mathcal{U}_n\}_n$ be a quasi-development for X, and X^d be a perfect subspace of X. For any $n \in \mathbb{N}$, there exists a sequence $\{F_{n,j}\}_j$ of closed subsets of X^d such that $(\cup \mathcal{U}_n) \cap X^d = \bigcup_{j \in \mathbb{N}} F_{n,j}$. For each $n, j \in \mathbb{N}$, put

$$\mathcal{H}_{n,i} = \mathcal{U}_n \cup \{X - F_{n,i}\}.$$

Then $\{\mathcal{H}_{n,j}\}_{n,j}$ is a development at non-isolated points for X. Indeed, for any $x \in X^d$ and $x \in U \in \tau$, since $\{\mathcal{U}_n\}_n$ is a quasi-development for X, there exists $n \in \mathbb{N}$ such that $x \in \operatorname{st}(x,\mathcal{U}_n) \subset U$. Hence there exists $j \in \mathbb{N}$ such that $x \in F_{n,j}$. Thus $x \in \operatorname{st}(x,\mathcal{H}_{n,j}) \subset U$ because $x \notin X - F_{n,j}$.

Let \mathcal{P} be a pair-family of subsets of X. For any $P \in \mathcal{P}$, we denote P = (P', P''). For any $\mathcal{R} \subset \mathcal{P}$, denote

$$\mathcal{R}' = \{P' : P \in \mathcal{R}\},$$

$$\mathcal{R}'' = \{P'' : P \in \mathcal{R}\},$$

$$\operatorname{st}(x, \mathcal{R}) = \bigcup \{P'' : P \in \mathcal{R}, x \in P'\}, \quad x \in X,$$

$$\operatorname{st}(A, \mathcal{R}) = \bigcup \{P'' : P \in \mathcal{R}, A \cap P' \neq \emptyset\}, \quad A \subset X.$$

For each $i \leq n$ and $\mathcal{R}_i \subset \mathcal{P}$, denote

$$\mathcal{R}_1 \wedge \mathcal{R}_2 \cdots \wedge \mathcal{R}_n = \{ (\bigcap_{i \leq n} P_i', \bigcap_{i \leq n} P_i'') : P_i \in \mathcal{R}_i, i \leq n \}.$$

Definition 2.2. [5] Let X be a topological space and \mathcal{P} a pair-family for X. \mathcal{P} is called a *pair-network* if \mathcal{P} satisfies the following conditions:

- (i) $P' \subset P''$ for any $(P', P'') \in \mathcal{P}$;
- (ii) For any $x \in U \in \tau(X)$, there exists $(P', P'') \in \mathcal{P}$ such that $x \in P' \subset P'' \subset U$.

Theorem 2.3. Let X be a space. Then the following conditions are equivalent:

- (1) X is a developable space at non-isolated points;
- (2) There exists a pair-network $\bigcup_{n\in\mathbb{N}} \mathcal{P}_n$ for X satisfying the following conditions:
 - (i) For every $n \in \mathbb{N}$, $\mathcal{P}'_n|_{X^d}$ is a closed and locally finite family in X^d , and \mathcal{P}''_n is open in X;
 - (ii) For every compact subset K and $K \subset U \in \tau(X)$, there exists $m \in \mathbb{N}$ such that $K \subset st(K, \mathcal{P}_m) \subset U$.
- (3) There exists a pair-network $\bigcup_{n\in\mathbb{N}} \mathcal{P}_n$ for X satisfying the following conditions:
 - (i) For every $n \in \mathbb{N}$, $\mathcal{P}'_n|_{X^d}$ is a closed and locally finite family in X^d ;
 - (ii) For every $x \in U \in \tau(X)$, there exists $m \in \mathbb{N}$ such that $x \in st^{\circ}(x, \mathcal{P}_m) \subset U$

Proof. We only need to prove that $(3) \Rightarrow (1) \Rightarrow (2)$.

(3) \Rightarrow (1). Let X had a pair-network $\bigcup_{n\in\mathbb{N}} \mathcal{R}_n$ with (3). Then $\bigcup_{n\in\mathbb{N}} \mathcal{R}'_n|_{X^d}$ is a closed and σ -locally finite network in X^d , X^d is a perfect subspace of X.

For any $n, k \in \mathbb{N}$, let

$$\phi_{n,k} = \{ \mathcal{F} \subset \mathcal{R}'_n|_{X^d} : |\mathcal{F}| = k \};$$

$$U(\mathcal{F}) = (\bigcup \{R'' : R \in \mathcal{R}_n, R' \cap X^d \in \mathcal{F}\})^{\circ} - \bigcup (\mathcal{R}'_n|_{X^d} - \mathcal{F}), \text{ where } \mathcal{F} \in \phi_{n,k};$$

$$\mathcal{U}_{n,k} = \{U(\mathcal{F}) : \mathcal{F} \in \phi_{n,k}\}.$$

We should prove that $\{\mathcal{U}_{n,k}\}_{n,k} \cup \{\mathcal{I}(X)\}$ is a quasi-development for X. For any $x \in X^d$ and $x \in U \in \tau(X)$, there exists $m \in \mathbb{N}$ such that $x \in \mathrm{st}^{\circ}(x, \mathcal{R}_m) \subset U$. Let

$$\mathcal{F} = \{ R' \cap X^d : R \in \mathcal{R}_m, x \in R' \}, |\mathcal{F}| = k.$$

It is easy to see $\mathcal{F} \in \phi_{m,k}$. Hence $x \in U(\mathcal{F}) \subset \operatorname{st}^{\circ}(x, \mathcal{R}_m) \subset U$. If $\mathcal{G} \in \phi_{m,k} - \{\mathcal{F}\}$, then $x \in \bigcup (\mathcal{R}'_m|_{X^d} - \mathcal{G})$. Thus $x \notin U(\mathcal{G})$. So $x \in U(\mathcal{F}) = \operatorname{st}(x, \mathcal{U}_{m,k}) \subset U$. Hence $\{\mathcal{U}_{n,k}\}_{n,k} \cup \{\mathcal{I}(X)\}$ is a quasi-development for X.

In a word, X has a development at non-isolated points by Theorem 2.1.

- $(1) \Rightarrow (2)$. Let $\{\mathcal{U}_n\}_n$ be a development at non-isolated points for X. We can also assume that $\{\mathcal{U}_n\}_n$ satisfies the following conditions (a)-(c) for every $n \in \mathbb{N}$:
 - (a) \mathcal{U}_{n+1} refines \mathcal{U}_n ;
 - (b) $\mathcal{I}(X) \subset \mathcal{U}_n$;
 - (c) $U_1 \cap X^d \neq U_2 \cap X^d$ for any distinct $U_1, U_2 \in \mathcal{U}_n \mathcal{I}(X)$.

Put $U_n - \mathcal{I}(X) = \{U_\alpha : \alpha \in \Lambda_n\}$. Since X^d is a developable subspace of X, it is a subparacompact subspace, then there exists a collection $\mathcal{F}_n = \bigcup_{k \in \mathbb{N}} \mathcal{F}_{n,k}$ of subsets of X^d such that each $\mathcal{F}_{n,k} = \{F_{k,\alpha} : \alpha \in \Lambda_n\}$ is closed and discrete in X^d and $F_{k,\alpha} \subset U_\alpha \cap X^d$ for every $k \in \mathbb{N}$, $\alpha \in \Lambda$. Let

$$\mathcal{P}_{n,k} = \{ (F_{k,\alpha}, U_{\alpha}) : \alpha \in \Lambda_n \} \cup \mathcal{I}_{\Delta}(X).$$

Then $\bigcup_{n,k\in\mathbb{N}} \mathcal{P}_{n,k}$ is a pair-network for X. Let

$$\mathcal{H}(k_1, k_2, \dots, k_n) = \bigwedge_{i \le n} \mathcal{P}_{i, k_i}, \quad k_i \in \mathbb{N}, i \le k.$$

Then $\mathcal{H}(k_1, k_2, \dots, k_n)$ satisfies the condition (i) in (2). Suppose that $K \subset U$ with K compact and U open in X. If $x \in K \cap X^d$, there exists a sequence $\{k_i\}_i$ in \mathbb{N} such that $x \in \bigcup \mathcal{F}_{i,k_i}$ for any $i \in \mathbb{N}$. For every $n \in \mathbb{N}$, put

$$A_n = \bigcup \{H' : H \in \mathcal{H}(k_1, k_2, \cdots, k_n), H' \cap K \neq \emptyset, H'' \not\subset U\}.$$

Since X^d is closed in X, $\{A_n\}_n$ is a decreasing sequence of closed subsets of X. Then there exists $m \in \mathbb{N}$ such that $A_m = \emptyset$. Otherwise, there exist a non-isolated point $y \in K \cap (\bigcap_{n \in \mathbb{N}} A_n)$ and $j \in \mathbb{N}$ such that $\operatorname{st}(y, \mathcal{U}_j) \subset U$. Thus

$$\operatorname{st}(y, \mathcal{H}(k_1, k_2, \cdots, k_j)) \subset \operatorname{st}(y, \mathcal{U}_j) \subset U.$$

This is a contradiction with the definition of A_j . Hence $A_m = \emptyset$ for some $m \in \mathbb{N}$, and

$$x \in \operatorname{st}(K, \mathcal{H}(k_1, k_2, \cdots, k_m)) \subset U.$$

By the compactness of K, $\cup \{\mathcal{H}(k_1, \dots, k_n) : n, k_i \in \mathbb{N}, i \leq n\}$ satisfies the condition (ii) of (2).

Corollary 2.4. X is a developable space at non-isolated points if and only if X has a pair-network $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$ satisfying the following conditions:

(i) For any
$$n \in \mathbb{N}$$
, $\mathcal{I}_{\Delta}(X) \subset \mathcal{P}_n$, and $P' \subset X^d$ for any $P \in \mathcal{P}_n - \mathcal{I}_{\Delta}(X)$;

- (ii) For every $n \in \mathbb{N}$, $\mathcal{P}'_n|_{X^d}$ is a closed and hereditarily closure-preserving family in X^d :
 - (iii) There exists $m \in \mathbb{N}$ such that $x \in st^{\circ}(x, \mathcal{P}_m) \subset U$ for any $x \in U \in \tau(X)$.

Proof. Necessity. It is easy to see by the proof of $(1) \Rightarrow (2)$ in Theorem 2.3.

Sufficiency. Let $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$ be a pair-network for X satisfying the condition (i)-(iii). For any $n \in \mathbb{N}$, put

$$D_n = \{x \in X : |(\mathcal{P}'_n)_x| \ge \aleph_0\},$$

$$\mathcal{R}_n = \{(\overline{P'} - D_n, P'') : P \in \mathcal{P}_n - \mathcal{I}_\Delta(X)\}$$

$$\cup \{(\{x\}, \operatorname{st}(x, \mathcal{P}_n)) : x \in D_n\} \cup \mathcal{I}_\Delta(X).$$

Then $\bigcup_{n\in\mathbb{N}} \mathcal{R}_n$ is a pair-network for X. We shall show that $\bigcup_{n\in\mathbb{N}} \mathcal{R}_n$ satisfies the condition (3) in Theorem 2.3. Since X is a first-countable space by (iii), it is easy to see that $\mathcal{R}'_n|_{X^d}$ is a closed and locally finite family in X^d by [10, Lemma 3.2.16]. Suppose $x\in U\in \tau(X)$. If $x\in I(X)\cup(\bigcup_{n\in\mathbb{N}} D_n)$, it is obvious that there exists $m\in\mathbb{N}$ such that $x\in\mathrm{st}^\circ(x,\mathcal{R}_m)\subset U$. If $x\in X-(I(X)\cup(\bigcup_{n\in\mathbb{N}} D_n))$, then $x\in\mathrm{st}(x,\mathcal{R}_n)=\mathrm{st}(x,\mathcal{P}_n)$. Thus X is a developable space at non-isolated points by Theorem 2.3.

Example 2.5. Let $X = \mathbb{N} \cup \{p\}$, here $p \in \beta \mathbb{N} - \mathbb{N}$, endowed with the subspace topology of Stone-Čech compactification $\beta \mathbb{N}$. Then $X^d = \{p\}$ is a metrizable subspace of X. Since X is not first-countable, then X does not have a development at non-isolated points.

3. The images of spaces with an uniform base at non-isolated points

In this section invariant properties of spaces with a development at non-isolated points and spaces with an uniform base at non-isolated points are discussed under perfect maps or closed and open maps.

A space X is called metacompact if every open cover of X has a point-finite open refinement.

Lemma 3.1. For a space X, X^d is a metacompact subspace of X if and only if every open cover of X has an open refinement which is point-finite at non-isolated points.

Proof. Sufficiency is obvious. We only prove the necessity.

Necessity. Let X^d be a metacompact subspace of X. For every open cover \mathcal{U} for X, it is easy to see that $\mathcal{U}|_{X^d}$ is an open cover for subspace X^d . Since X^d is a metacompact subspace, there exists an open and point-finite refinement $\mathcal{V}(\text{in }X^d)$ for $\mathcal{U}|_{X^d}$. For every $V \in \mathcal{V}$, there exist $U \in \mathcal{U}$ and $W(V) \in \tau(X)$ such that $V = W(V) \cap X^d$ and $W(V) \subset U$. Put

$$\mathcal{W} = \{W(V) : V \in \mathcal{V}\}.$$

Then \mathcal{W} is an open refinement for \mathcal{U} and also point-finite at non-isolated points. \square

Lemma 3.2. Let X be a topological space. Then the following conditions are equivalent:

- (1) X is an open boundary-compact image of a metric space;
- (2) X has an uniform base at non-isolated points;
- (3) X has a point-finite development at non-isolated points;

- (4) X has a development at non-isolated points, and X^d is a metacompact subspace of X.
- *Proof.* (1) \Leftrightarrow (2) \Leftrightarrow (3) was proved in [9]. We only need to prove (1) \Rightarrow (4) \Rightarrow (3).
- $(1) \Rightarrow (4)$. Let $f: M \to X$ be an open boundary-compact mapping, where M is a metric space. Let \mathcal{U} be an open cover for X. Then $f^{-1}(\mathcal{U})$ is an open cover for M. Since M is paracompact, there exists a locally finite open refinement \mathcal{V} of $f^{-1}(\mathcal{U})$. It is easy to see that $f(\mathcal{V})$ is point-finite at non-isolated points, and refines \mathcal{U} . Hence X^d is metacompact by Lemma 3.1.
- $(4) \Rightarrow (3)$. Let $\{\mathcal{U}_n\}_n$ be a development at non-isolated points of X. For every $n \in \mathbb{N}$, since X^d is metacompact, \mathcal{U}_n has an open refinement \mathcal{V}_n which is point-finite at non-isolated points. Hence $\{\mathcal{V}_n\}_n$ is a point-finite development at non-isolated points.

Let $\bigcup_{n\in\mathbb{N}} \mathcal{P}_n$ be a pair-network for a space X. We say that $\bigcup_{n\in\mathbb{N}} \mathcal{P}_n$ satisfies (\star) if it has the (i) of Corollary 2.4. That is, let (\star) be the condition: (\star) For any $n\in\mathbb{N}$, $\mathcal{I}_{\Delta}(X)\subset\mathcal{P}_n$ and $P'\subset X^d$ for any $P\in\mathcal{P}_n-\mathcal{I}_{\Delta}(X)$.

Theorem 3.3. Spaces with a development at non-isolated points are preserved by perfect maps.

Proof. Let $f: X \to Y$ be a perfect map, where X is developable at non-isolated points. Let $\bigcup_{n\in\mathbb{N}} \mathcal{P}_n$ be a pair-network which satisfies the condition (2) in Theorem 2.3 for X. It is easy to see that we can suppose that $\bigcup_{n\in\mathbb{N}} \mathcal{P}_n$ satisfies the condition (\star) by the proof of $(1) \Rightarrow (2)$ in Theorem 2.3.

For any $n \in \mathbb{N}$, put

$$\mathcal{B}_n = \{ (f(P'), f(P'')) : P \in \mathcal{P}_n \};$$

$$\mathcal{R}_n = \{ (f(P') \cap Y^d, f(P'')) : P \in \mathcal{P}_n - \mathcal{I}_{\Delta}(X) \} \cup \mathcal{I}_{\Delta}(Y).$$

Since f is closed, $Y^d \subset f(X^d)$. It is easy to check that $\bigcup_{n \in \mathbb{N}} \mathcal{R}_n$ is a pair-network for Y. Next, we shall show that it satisfies the condition (3) of Theorem 2.3 for Y.

(i) It is well-known that a locally finite family is preserved by a perfect map. Since $f|_{X^d}: X^d \to f(X^d)$ is a perfect map and $\mathcal{P}'_n|_{X^d}$ is closed and locally finite in X^d , $\{f(P' \cap X^d): P \in \mathcal{P}_n\}$ is closed and locally finite in $f(X^d)$, then

$$\{f(P'\cap X^d)\cap Y^d: P\in \mathcal{P}_n-\mathcal{I}_{\Delta}(X)\}=\mathcal{R}'_n|_{Y^d}$$

is closed and locally finite in Y^d by the condition (\star) .

(ii) Let $y \in U \in \tau(Y)$. We can suppose that $y \in Y^d$. Since $f^{-1}(y)$ is compact for X, there exists $m \in \mathbb{N}$ such that

$$f^{-1}(y) \subset \operatorname{st}(f^{-1}(y), \mathcal{P}_m) \subset f^{-1}(U).$$

Since f is closed and st $(f^{-1}(y), \mathcal{P}_m)$ is open in X, then

$$y \in \operatorname{st}^{\circ}(y, \mathcal{B}_m) \subset \operatorname{st}(y, \mathcal{B}_m) \subset U.$$

If $y \in f(P') \cap Y^d$ with $P \in \mathcal{I}_{\Delta}(X)$, $f(P'') = \{y\} \subset \operatorname{st}(y, \mathcal{R}_m)$. Thus $\operatorname{st}(y, \mathcal{B}_m) =$ $\operatorname{st}(y, \mathcal{R}_m)$, hence $y \in \operatorname{st}^{\circ}(y, \mathcal{R}_m) \subset U$.

Corollary 3.4. Spaces with an uniform base at non-isolated points are preserved by perfect maps.

Proof. Since metacompactness is preserved by closed maps, it is easy to see by Lemma 3.2 and Theorem 3.3.

Let Ξ be a topological property. Ξ is said to satisfy the decomposition theorem if, for any space X with the property Ξ and any closed map $f: X \to Y$, there exists a σ -closed discrete subset $Z \subset Y$ such that $f^{-1}(y)$ is compact in X for any $y \in Y - Z$.

In [6, Theorem 1.1], J. Chaber proved that each regular σ -space satisfies the decomposition theorem.

Theorem 3.5. Let $f: X \to Y$ be a closed map, where X is a regular space having a development at non-isolated points. If Y is a first-countable space, then Y is developable at non-isolated points.

Proof. Since subspace X^d is a Moore space, there exists a subspace $Z = \bigcup_{n \in \mathbb{N}} Z_n \subset Y^d$ such that, for any $y \in Y^d - Z$, $f^{-1}(y) \cap X^d$ is a compact subset of X^d by [6, Theorem 1.1], where each Z_n is closed and discrete in Y^d . Hence $f^{-1}(y) \cap X^d$ is a compact subset of X for any $y \in Y^d - Z$. For any $y \in Z$, let $\{U(y,n) : n \in \mathbb{N}\}$ be a neighborhood base of y in Y. Let $\bigcup_{n \in \mathbb{N}} \mathcal{P}_n$ be a pair-network for X satisfying the condition (2) of Theorem 2.3, and the condition (\star) by the proof of $(1) \Rightarrow (2)$ in Theorem 2.3.

For any $n, j \in \mathbb{N}$, let

$$\mathcal{W}_{n} = \{ (f(P'), f(P'')) : P \in \mathcal{P}_{n} \},$$

$$\mathcal{R}_{n} = \{ (f(P') \cap Y^{d}, f(P'')) : P \in \mathcal{P}_{n} - \mathcal{I}_{\Delta}(X) \} \cup \mathcal{I}_{\Delta}(Y),$$

$$\mathcal{H}_{n,j} = \{ (\{y\}, U(y, j)) : y \in Z_{n} \} \cup \mathcal{I}_{\Delta}(Y).$$

Then

$$(\bigcup_{n\in\mathbb{N}}\mathcal{R}_n)\cup(\bigcup_{n,j\in\mathbb{N}}\mathcal{H}_{n,j})\cup\mathcal{I}_{\Delta}(Y)$$

is a pair-network for Y and satisfies the conditions (i) and (ii) of Corollary 2.4 because a hereditarily closure-preserving family is preserved by a closed map. We only need to prove that it also satisfies (iii) in Corollary 2.4. For any $y \in U \in \tau(Y)$, we discuss the following three cases respectively.

- (a) If $y \in Z$, then there exist $n \in \mathbb{N}$ and $j \in \mathbb{N}$ such that $y \in Z_n$ and $U(y,j) \subset U$. Hence $y \in \text{st}^{\circ}(y, \mathcal{H}_{n,j}) \subset U(y,j) \subset U$.
- (b) If $y \in Y^d Z$, then $f^{-1}(y) \cap X^d$ is a compact subset for X. There exists $m \in \mathbb{N}$ such that

$$f^{-1}(y) \cap X^d \subset \operatorname{st}(f^{-1}(y) \cap X^d, \mathcal{P}_m) \subset f^{-1}(U),$$

then

$$f^{-1}(y) \subset \operatorname{st}(f^{-1}(y), \mathcal{P}_m)$$
$$= \operatorname{st}(f^{-1}(y) \cap X^d, \mathcal{P}_m) \cup \operatorname{st}(f^{-1}(y) \cap I(X), \mathcal{P}_m) \subset f^{-1}(U),$$

thus $y \in \operatorname{st}^{\circ}(y, \mathcal{W}_m) \subset U$. Since $\operatorname{st}(y, \mathcal{R}_m) = \operatorname{st}(y, \mathcal{W}_m), y \in \operatorname{st}^{\circ}(y, \mathcal{R}_m) \subset U$.

(c) If $y \in I(Y)$, then $y \in \operatorname{st}(y, \mathcal{I}_{\Delta}(Y)) = \{y\} \subset U$.

Hence Y is a developable space at non-isolated points by Corollary 2.4.

Corollary 3.6. Regular spaces with an uniform base at non-isolated points are preserved by open and closed maps.

Proof. Let $f: X \to Y$ be an open and closed map, where X is a regular space having an uniform base at non-isolated points. Since f is open and closed, Y is regular and first-countable space, thus Y has an uniform base at non-isolated points by Theorem 3.5.

A collection \mathcal{C} of subsets of an infinite set D is said to be almost disjoint if $A \cap B$ is finite whenever $A \neq B \in \mathcal{C}$. Let \mathcal{A} be an almost disjoint collection of countably infinite subsets of D and maximal with respect to the properties. Isbell-Mrówka space $\psi(D)$ is the set $\mathcal{A} \cup D$ endowed with a topology as follows [12]: The points of D are isolated. Basic neighborhoods of a point $A \in \mathcal{A}$ are the sets of the form $\{A\} \cup (A-F)$ where F is a finite subset of D.

Example 3.7. There exists a closed map $f: X \to Y$, where X is a regular space with an uniform base at non-isolated points and Y is a first-countable space. However, f is not a boundary-compact map.

Proof. Let \mathcal{A} be an almost disjoint collection of countably infinite subsets of \mathbb{N} and maximal with respect to the properties. Let $\psi(\mathbb{N}) = \mathcal{A} \cup \mathbb{N}$ be the Isbell-Mrówka space. Then $\psi(\mathbb{N})$ is a regular space with an uniform base at non-isolated points.

Define $f: \psi(\mathbb{N}) \to \psi(\mathbb{N})/\mathcal{A}$ by a quotient map, then f is a closed map and the quotient space $\psi(\mathbb{N})/\mathcal{A}$ is a first-countable space. Since $\partial f^{-1}(\{\mathcal{A}\}) = \mathcal{A}$ is discrete in $\psi(\mathbb{N})$, f is not boundary-compact.

Since a regular space with an uniform base is a σ -space, regular spaces with an uniform base satisfy the decomposition theorem. But regular spaces with an uniform base at non-isolated points don't satisfy the decomposition theorem.

Example 3.8. There are a regular space X with an uniform base at non-isolated points and a closed map $f: X \to Y$ such that f does not satisfy the decomposition theorem.

Let Y be the Isbell-Mrówka space $\psi(D)$, where D is an uncountable set. Let $S_1 = \{0\} \cup \{1/n : n \in \mathbb{N}\}$ be the subspace of the real line \mathbb{R} . Put

$$X = Y \times S_1 - (D \times \{0\}),$$

endowed with the subspace topology of product topology. Then X is a regular space. Let $f: X \to Y$ be the projective map. Then f is a closed map.

Let $\psi(D) = \mathcal{A} \cup D$, where $\mathcal{A} = \{A_{\alpha}\}_{{\alpha} \in \Lambda}$ and each $A_{\alpha} = \{x({\alpha}, n) : n \in \mathbb{N}\} \subset D$. Put

```
\begin{split} V_n(\alpha) &= \{x(\alpha,m) : m \geq n\} \cup \{A_\alpha\}, \\ U_n(0) &= \{0\} \cup \{1/m : m \geq n\}, \\ \mathcal{B} &= \{\{(x,y)\} : (x,y) \in D \times (S_1 - \{0\})\} \\ &\quad \cup \{V_n(\alpha) \times U_n(0) : n \in \mathbb{N}, \alpha \in \Lambda\} \cup \{V_m(\alpha) \times \{1/n\} : m, n \in \mathbb{N}\}. \end{split}
```

It is easy to see that \mathcal{B} is an uniform base at non-isolated points for X. However, $f^{-1}(y) = \{y\} \times (S_1 - \{0\})$ is not compact in X for any $y \in D$. Since any closed (in Y) subset contained in D is finite, D is not a σ -discrete subspace for Y. Thus $f: X \to Y$ does not satisfy the decomposition theorem.

The authors would like to thank the referee for his/her valuable suggestions.

References

- [1] P. S. Aleksandrov, On the metrisation of topological spaces (in Russian), Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., 8(1960), 135–140.
- [2] A. V. Arhangel'skiĭ, W. Just, E. A. Renziczenko, P. J. Szeptycki, Sharp bases and weakly unifrom bases versus point-countable bases, *Topology Appl.*, 100(2000), 39–46.
- [3] Z. Balogh, D. K. Burke, Two results on spaces with a sharp base, Topology Appl., 154(2007), 1281–1285.
- [4] H. R. Bennett, On quasi-developable spaces, General Topology Appl, 1(1971), 253–262.

- [5] D. K. Burke, Preservation of certain base axioms under a perfect mapping, Topology Proc., 1(1976), 269–279.
- [6] J. Chaber, Generalizations of Lašnev's theorem, Fund. Math., 31(1983), 31–34.
- [7] J. Chaber, More nondevelopable spaces in MOBI, Proc. Amer. Math. Soc., 103(1988), 307–313.
- [8] R. Engelking, General Topology (revised and completed edition), Heldermann Verlag, Berlin, 1989.
- [9] F. C. Lin, S. Lin, Uniform covers at non-isolated points, Topology Proc., 32(2008), 259–275.
- [10] S. Lin, Generalized Metric Spaces and Mappings (in Chinese), Chinese Science Press, Beijing, 2007.
- [11] T. Mizokami, On the closed images of a developable space, Houston J Math, 19(1993), 455–467.
- [12] S. G. Mrówka, On completely regular spaces, Fund. Math., 72(1965), 998-1001.
- [13] J. M. Worrell, H. H. Wicke, Characterizations of developable topological spaces, Canad. J. Math., 17(1965), 820–830.
- [14] L. Mou, H. Ohta, Sharp bases and mappings, Houston. J. Math, 31(2005), 227-238.

Fucai Lin: Department of Mathematics, Zhangzhou Normal University, Zhangzhou 363000, P. R. China; Department of Mathematics, Sichuan University, Chengdou, 610064, P. R. China

E-mail address: linfucai2008@yahoo.com.cn; lfc19791001@163.com

Shou Lin: Department of Mathematics, Zhangzhou Normal University, Zhangzhou 363000, P. R. China; Institute of Mathematics, Ningde Teachers' College, Ningde, Fujian 352100, P. R. China

 $E ext{-}mail\ address: linshou@public.ndptt.fj.cn}$