para x_1, \ldots, x_n como funciones de y_1, \ldots, y_n ; es decir, estamos intentando invertir las ecuaciones del sistema (4). Esto es análogo a formar las inversas de funciones como sen x=y y $e^x=y$, con las que el lector debería estar familiarizado por sus conocimientos de cálculo elemental. No obstante, ahora vamos a tratar con funciones de varias variables. La cuestión de la resolubilidad puede responderse mediante el teorema general de la función implícita aplicado a las funciones $y_i - f_i(x_1, \ldots, x_n)$ con las incógnitas x_1, \ldots, x_n (anteriormente denominadas z_1, \ldots, z_n). La condición para poder resolver (despejar) en un entorno de un punto \mathbf{x}_0 es $\Delta \neq 0$, donde Δ es el determinante de la matriz $\mathbf{D}f(\mathbf{x}_0)$ y $f = (f_1, \ldots, f_n)$. La cantidad Δ se denota mediante $\partial(f_1, \ldots, f_n)/\partial(x_1, \ldots, x_n)$, o $\partial(y_1, \ldots, y_n)/\partial(x_1, \ldots, x_n)$ o $J(f)(\mathbf{x}_0)$ y se denomina determinante jacobiano de f. Explícitamente,

$$\frac{\partial(f_1, \dots, f_n)}{\partial(x_1, \dots, x_n)} \Big|_{\mathbf{x} = \mathbf{x}_0} = J(f)(\mathbf{x}_0) = \begin{vmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}_0) & \dots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}_0) \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1}(\mathbf{x}_0) & \dots & \frac{\partial f_n}{\partial x_n}(\mathbf{x}_0) \end{vmatrix}.$$
(5)

Obsérvese que en el caso en que f es lineal—por ejemplo, f(x) = Ax, donde A es una matriz $n \times n$ —la condición $\Delta \neq 0$ es equivalente al hecho de que el determinante de A sea distinto de cero, det $A \neq 0$, y de la Sección 1.5 sabemos que A, y por tanto f, tiene una inversa.

El determinante jacobiano desempeñará un papel importante en el tema de integración (véase el Capítulo 5). El siguiente teorema resume esta exposición:

Teorema 13 Teorema de la función inversa Sea $U \subset \mathbb{R}^n$ abierto y sean $f_1: U \to \mathbb{R}, \ldots, f_n: U \to \mathbb{R}$ funciones con derivadas parciales continuas. Consideramos las ecuaciones de (4) cerca de una solución dada $\mathbf{x}_0, \mathbf{y}_0$. Si $J(f)(\mathbf{x}_0)$ [definido por la Ecuación (5)] es distinto de cero, entonces la Ecuación (4) se puede resolver de forma única como $\mathbf{x} = g(\mathbf{y})$ para \mathbf{x} cerca de \mathbf{x}_0 y para \mathbf{y} cerca de \mathbf{y}_0 . Además, la función g tiene derivadas parciales continuas.

Ejemplo 4

Se consideran las ecuaciones

$$\frac{x^4 + y^4}{x} = u, \qquad \sin x + \cos y = v.$$

¿Cerca de qué puntos (x, y) podemos despejar x, y en términos de u, v?

Solución

Aquí las funciones son $u = f_1(x,y) = (x^4 + y^4)/x$ y $v = f_2(x,y) = \sin x + \cos y$. Queremos determinar los puntos cerca de los cuales podemos despejar x, y como funciones de u y v. Según el teorema de la