ANN Part 4 - Output and Loss Function MNIST Case Study

1 Dutput Functions

Regression $(y \in R)$

* In the functions covered so fare, none of them will be able to work for regression.

→ Since we are getting the range for hypression from the kinear Part itself, we remove the activation function in dost neuron

$$\left(\frac{\text{linear}}{\text{linear}}\right) \rightarrow w^{l}a^{(l-1)} + b^{l} = \hat{y}$$
 { The value of \hat{y} can be controlled } using $w \neq b$

.. The output function in case of Ryressian: Linear Activation

In byman terms, it can also be ? called as absence of Activation F

\$ Loss Function

aka Error function

1. Regression:

$$\rightarrow$$
 MSE = $\int_{\Omega} \sum_{i=1}^{\Omega} (y_i - \hat{y}_i)^2$

2.) Classification

 \rightarrow Classification Task (K=3)

$$L(\theta) = -\frac{3}{\sum_{j=1}^{3}} y_j \log(\hat{y}_j) = -\left\{ \left[0 \times \log 0.3 \right] + \left[1 \times \log 0.4 \right] + \left[0 \times \log 0.3 \right] \right\}$$

$$L(\theta) = -\log 0.4$$

This $L(\theta)$ is our final loss and we need to minimize this loss. i.e. minimize $-\log(0.4)$

According to optimization theory \rightarrow max $f(x) \approx min(-f(x))$

> We are basically truying to marrinize the log probability of True class.

Now, from optimization theory, w.k.t $\max f(x) \approx \max g(f(x))$ if $f \cdot g()$ is a monotonic function. \Rightarrow maximize $\log (0.4) \approx \max \min 2.4$ We are trying to maximize probability of Town class.

MNIST Case Study