Extended Application of Burnside's Lemma to Higher Dimension using Matrix and Linear Transformation

楊記綱

2022年9月11日

概 要

module Burnside where

針對清大課程 Burnside's Lemma 去從線性轉換與矩陣、向量的角度去做延伸。令嘗試將此想法推廣到更高維度、非正多面體與較複雜之正多面體。

目錄

П	ow to Read	2
1	Brief Introduction to Matrix and Linear Transformation	3
2	Describing Object's State	3
3	Describing Operations	4
4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
5	Extend Research Topics (未寫) 5.1 2x2 魔術方塊 5.1.1 Proof of Completeness	
A	Matrix	6
В	Sage Graphics B.1 2x2 Rubik's Cube	6
LI	CENSE	8

How to Read

1 Brief Introduction to Matrix and Linear Transformation

So what does matrix in linear transformation means? Well, for any $n \times n$ matrix, you could think of each column as representing each axis' unit vector's position after the transformation. So for example:

Let
$$T = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
 (1)

means, shifting
$$\hat{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \hat{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \hat{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 to (2)

$$\hat{i}' = \begin{bmatrix} a \\ d \\ g \end{bmatrix}, \hat{j}' = \begin{bmatrix} b \\ e \\ h \end{bmatrix}, \hat{k}' = \begin{bmatrix} c \\ f \\ i \end{bmatrix}$$
(3)

Hence by these definitions we could conclude that:

{data}

定理 1 (最少資料量)

For any object within n-Dimensional space, by specifying n-Surfaces' location could unique identify an object's orientation.

2 Describing Object's State

To descibe an object's current orientation, we'll use a set of vectors (which is collected into a matrix). For example, a 2×2 square could be denoted by two 2-D vectors (aka a 2×2 matrix) like following:

$$\vec{v_2} = (x_2, y_2)$$

$$S_2 \qquad S_1$$

$$S_2 \qquad S_1$$

$$\vec{v_1} = (x_1, y_1)$$

$$S_3 \qquad S_4$$

in which we could clearly see by giving two 2-D vectors, we could rigidly define our 4 different squadron (in counterclockwise fashion).

Now we can apply transformations onto these vectors. But what could be counted as a valid transformation? Well, those whom preformed a closed transformation.

4

3 Describing Operations

4 Properties

當我們在談到旋轉一物體的時候我們可以將其總結成:

$$\mathbb{T} = \{ T \mid T \cdot x \in \mathbb{X}, x \in \mathbb{X} \} \tag{5}$$

其中 \mathbb{T} 代表所有合法的 $n \times n$ 矩陣使得作用於 \mathbb{X} 中任意元件會得結果 $T \cdot x = x' \ni x, x' \in \mathbb{X}$ 。那也就是換成講義裡的記號 $|G| = \#\mathbb{T}$ 。

4.1 Calculate $\#\mathbb{T}$

還記得在定理 1 中所說的最少資料量嗎?現在對我們的 n 維物體來標示各種 orientation 的話,舉 \mathbb{R}^3 物體為例,可靠標記其中三個面的方位即可。所以(為了後續計算方便)我們就永遠選相鄰的三個邊,以數對 (A,B,C) 表示 1 。那現在令所有可能的數對之集合:

$$\mathbb{P} = \{ (D, E, F) \mid \angle DOE = \angle AOB, \angle DOF = \angle AOC, \angle EOF = \angle BOC \}$$
 (6)

其中我們叫這保角性質我們所選之數對 (A, B, C) 的 Structure,而單純允許旋轉而不允許映射的情況下,這是一個該被確保的 Structure。另外須注意這 Structure 是有方向之分的,通常 A, B, C 採逆時鐘排列(從原點向外指,右手方向)。

那現在定義完 \mathbb{P} ,要計算旋轉方式就簡單多了。首先我們知道 $\forall P \in \mathbb{P}, \exists T \in \mathbb{T} \ni T \cdot (A, B, C) = P$ (其中 $T \cdot (A, B, C) = (TA, TB, TC)$ 所以 $\#\mathbb{P} = \#\mathbb{T} = |G|$ 。而至於 \mathbb{P} 則可用排列組合推出,對立方體舉例:

再選一面相鄰 A 的面 B

最後再選唯一一個在這兩面逆時鐘方向的面 С

得#
$$\mathbb{P} = C_1^6 \times C_1^4 \times C_1^1 = 24$$

對正四面體亦同:

先任意選一面 A

再選一面相鄰 A 的面 B

最後再選唯一一個在這兩面逆時鐘方向的面 С

得 #
$$\mathbb{P} = C_1^4 \times C_1^3 \times C_1^1 = 12$$

或者嘗試將它 Generalized 對任意正多面體:

$$|G| = (\text{ing}) \times (-\text{ing})$$
 (7)

4.2 Calculate \mathbb{T}

那算完他的數量,我們有沒有從它回推 $\mathbb T$ 裡面的內容呢?有的(至少用電腦算式簡單的),我們甚至能算出他的組數(那個 k^n 的 n)一樣拿立方體舉例:

令所有面之向量之列表
$$L = \begin{bmatrix} 0 & 1 & 0 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \end{bmatrix}$$
 (8a)

¹本文中所有表示面之數, 皆為向量, 且皆由原點指向該面之重心

舉例取轉換
$$T = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (8b)

得
$$TL = \begin{bmatrix} -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \end{bmatrix}$$
 (8c)

其中我們可看到,縱列 $1\sim4$ 向右位移了一格,而 5,6 不變。因此可得對變換 T (z 軸左手旋轉 90 度)可分成三組,也就是對 L,TL 做 disjoint set 後數他的數量。 就此我們就可以算出他的塗色可能性了。

```
disjointSetNum :: Matrix -> Matrix -> Int
disjointSetNum (Matrix a) (Matrix b) = sum $ map fromEnum (map eqPair (zip a b))
```

5 Extend Research Topics (未寫)

5.1 2x2 魔術方塊

The way I model 2x2 Rubik's Cube is by first giving a position vector p_i and then a facing vector f_i which tells you which direction is the first face facing.

$$P = \begin{bmatrix} p_1 & \dots & p_8 \end{bmatrix}$$
, each component of p_i is either 1 or -1 (9a)

$$F = \begin{bmatrix} f_1 & \dots & f_8 \end{bmatrix}, f_i \text{ is one of the 6 different (directional) unit vector}$$
 (9b)

And know with (p_i, f_i) we could denote any block we want, where we can then give a list of 3 colours (order-sensitive) which will be coloured counterclockwise.

5.1.1 Proof of Completeness

A Matrix

```
instance Show Matrix where
         show (Matrix [x:xs])
8
                         | null xs = "[" ++ show x ++ "]"
                         | otherwise = "[" ++ show x ++ "]\n" ++ show (Matrix [xs])
10
         show (Matrix rows)
11
                | length (head rows) > 1 = "[" ++ (intercalate ", " (map (show.head) rows)) ++ "]\n"
12
                                           ++ show (Matrix (map tail rows))
13
                | otherwise = "[" ++ (intercalate ", " (map (show.head) rows)) ++ "]"
14
     a = Matrix [[1,2],[2,0]]
15
     b = Matrix [[2,4],[2,0]]
16
     instance Num Matrix where
18
         (Matrix [xs]) + (Matrix [ys]) = Matrix [zipWith (+) xs ys]
19
         (Matrix (x:xs)) + (Matrix (y:ys)) = concatM (Matrix [zipWith (+) x y]) ((Matrix xs)+(Matrix ys))
20
         (Matrix []) + a@(Matrix _) = a
^{21}
         a@(Matrix _) + (Matrix []) = a
22
         x * (Matrix ys) = Matrix $ map f ys
23
                          where f y = map (sum.(zipWith (*)) y) xs'
24
                                 (Matrix xs') = diagFlip x
25
```

B Sage Graphics

B.1 2x2 Rubik's Cube

```
def colorRect3D(x, c, 1, f): # f: 0 (xy), 1 (xz), 2 (yz)
    x = vector(x)
    if f == 0:
        sv1 = vector((-1, 0, 0))
        sv2 = vector((0, -1, 0))
    elif f == 1:
        sv1 = vector((-1, 0, 0))
        sv2 = vector((0, 0, -1))
    elif f == 2:
        sv1 = vector((0, -1, 0))
        sv2 = vector((0, -1, 0))
```

```
Gph = Graphics()
   Gph += polygon3d([x, x+sv1, x+sv1+sv2, x+sv2])
   return Gph
def colorBlock(p, f, c):
   Gph = Graphics()
   baseVector = p * 0.5
    for cl in c:
        if f[2]!=0:
            Gph += colorRect3D(baseVector, c, 1, 0)
   return Gph
def plotRubiks2x2(P, F, cs):
   Gph = Graphics()
   for p, f, c in zip(P, F, cs):
        Gph += colorBlock(p, f, c)
    # save3D(Gph) # Comment out if you don't want auto-export
   return Gph
def save3D(g, n="plot"):
   filename = "/tmp/"+n+".html"
    g.save(filename)
    os.system("sed -i 's/\/usr\/share/..\/usr\/share/g' "+filename)
   print("Plot3D saved to: "+filename)
```

LICENSE

Codes

Documentation