Narzędzia informatyki

Bartosz Grabski

8 grudnia 2023

0.1 Wstęp

Nie godzi się aby zdolni ludzie tracili godziny, jak niewolnicy, wykonując obliczenia, gdy taką pracę można przekazać bezpiecznie komukolwiek korzystającemu z maszyn

Gottfried Wilhelm von Leibniz

0.2 Historia

- Prehistoria
 - * 1820 Charles Xavier Thomas de Colmar arytmometr pierwszy masowo produkowany mechaniczny kalkulator
 - * 1801 Joseph-Marie Jacquard maszyny dziewiarskie programowane za pomocą kart dziurkowanych
 - * 1837 Charles Babbage w 1837 r. opisał projekt maszyny analitycznej Maszyna programowana za pomocą kart dziurkowanych i napędzana parą Problemy z precyzją wykonania spowodowały porzucenie projektu zbudowania maszyny
 - * 1843 Ada Lovelace przetłumaczyła artykuł Luigi Menabrea o maszynie analitycznej i dodała swój komentarz, m.in. program obliczania sekwencji liczb Bernouliego
 - $^{\ast}~2002$ zbudowano maszynę różnicową w Londynie: 4000 elementów, 3 tony, $3\mathrm{x}1.8~\mathrm{m}$
 - * Pod koniec lat 80-tych XIX w. Herman Hollerith opracował system zapisu i przetwarzania danych oparty na kartach dziurkowanych
 - * Opracował tabulator i maszynę dziurkującą
 - * 1890 spis powszechny w USA wykorzystał w/w technologie
 - * 1896 założył Tabulating Machine Company
 - * 1911 połączył się z 3 innymi firmami tworząc Computing Tabulating Recording Company
 - * 1924 firma zmieniłą nazwę na International Business Machines
- Kalkulatory
 - * Kalkulatory mechaniczne
 - * W 1948 Curt Herzstark opracował ręczny kalkulator Curta Pierwszy model kosztował 125(dzisiaj1596) Zastąpiły go dopiero kalkulatory elektroniczne
- Rozwój elektroniki
 - * 1904 John Anbrose Fleming Dioda próżniowa
 - * 1906 Lee De Forest Trioda próżniowa

- * 1947 Tranzystor John Bardeen, Walter H. Brattain, W. Shockley (Bell) (Nagroda Nobla 1956 r.)
- * 1958 Układy scalone Jack Kilby TI (Nagroda Nobla 2000 r.)

- Rozwój układów scalonych

- * 1971 Intel 4004 2.250 tranzystorów, 10000nm
- * 1978 Intel 8086 2.9000 tranzystorów, 3000nm
- * 1993 Intel Pentium 3.100.100 tranzystorów. 800nm
- * 2022 Apple A
16 16.000.000.000 tranzystorów, 4nm

- Urządzenia

- * 1962 Pierwszy kalkulator elektroniczny ANITA Mk. VII 1962 Zbudowany na lampach (177) Wyświetlacz z lamp Nixie Cena ok. 350 GBP Produkowane w różnych odmianach do połowy lat 70-tych
- * 1963 Pierwszy kalkulator tranzystorowy Friden EC-130 13 cyfrowa dokładność wyświetlacz kineskopowy obliczenia w logice RPN cena \$2200 (dzisiaj \$22128)

- Komputery analogowe

* Konstrukcja komputera związana z rozwiązywanym problemem Najróżniejsze modele: oparte na prądzie, na przepływie cieczy, pneumatyczne Np. komputer sterowania ogniem wykorzystywany przez US Navy

- Alan Turing

- * 1936 opublikował pracę "ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM" Opisał w nim problem stopu A co ważniejsze model maszyny obliczeniowej nazywanej teraz maszyną Turinga
- * 1945 W oparciu o maszynę Turinga w 1945 r. John von Neumann zaproponował uniwersalną architekturę komputera Dane i program traktowane są w ten sam sposób Prawie każdy współczesny komputer realizuje architekturę von Neumanna

- Komputery

- * 1936 Konrad Zuse rozpoczął w Niemczech prace nad programowanym kalkulatorem model Z1
- * 1941 powstał komputer Z3 Wykorzystywał logikę binarną, liczby zmiennoprzecinkowe Dane zapisywane na dziurkowanym filmie 35 mm Po wojnie Zuse opracował język wysokiego poziomu Plankalkül zaimplementowany w 2000 r. IBM przejął jego patenty w zamian za finansowanie działalności
- * 1941-1944 Colossus komputer zbudowany do łamania kodów niemieckich przez anglików Skonstruowany w latach 1941-44 W sumie 10 sztuk Mało uniwersalny, programowany za pomocą przełączników, dane z taśmy perforowanej Po wojnie zniszczony i utajniony do 1970 r.
- * 1937 Claude Shannon (MIT) udowodnił w doktoracie, że istnieje bezpośrednie przełożenie logiki boolowskiej na bramki logiczne

- * 1938 George Stiblitz (Bell) zbudował komputer na bramkach "Model-K"
- * 1940 zbudowali Complex Number Calculator wykonujący obliczenia na liczbach zespolonych Pierwszy komputer umożliwiający pracę zdalną przez linie telefoniczną
- * 1939 rozpoczęły się prace nad Harvard Mark I sponsorowane przez IBM Bardzo skomplikowana konstrukcja, napędzana silnikiem spalinowym 800 km przewodów, 3 miliony połączeń Pamięć na 72 23-cyfrowe liczby 3 dodawania/odejmowania na sekundę mnożenie 6 sekund, dzielenie 15 sekund Brak instrukcji rozgałeziających i petli
- * 1943-46 Electronic Numerical Integrator and Computer Zbudowany do obliczenia tablic artyleryjskich Pierwszy w pełni cyfrowy komputer uniwersalny Zbudowany w latach 1943-46 Po przeprowadzce działał bez przerwy od 1947 do 1955 r. 17468 lamp, 7200 diod, 1500 obwodów, 70000 oporników, 10000 kondensatorów, 5 mln punktów lutowania 167 m2, 2.4 x 0.9 x 30 m, 27 ton 357 operacji dodawania na sekundę, 35 dzielenia
- * 1948 Manchester Small-Scale Experimental Machine Eksperymentalny komputer wyposażony w pamięć Uruchomiony w 1948 r. Stał się podstawą pierwszego komercyjnego komputera Ferranti Mark 1
- * EDVAC (Electronic Discrete Variable Automatic Computer) następca ENIAC
- * EDSAC (Electronic Delay Storage Automatic Calculator) komputer angielski 1949 r.
- * MECM pierwszy komputer radziecki 1950 r. (6 tys lamp, 24 kW mocy)
- * CSIRAC (Council for Scientific and Industrial Research Automatic Computer) Australia 1949 r.
- Komputery
 - * lampy Williamsa rodzaj miniaturowego kineskopu
- Komputery komercyjne
 - * Ferranti Mark 1 1951 r.
 - * LEO 1 1951 r.
 - * UNIVAC1 (Universal Automatic Computer) 1951 r. pamięć na taśmie magnetycznej
 - * IBM 701 1954 r.
 - * FORTRAN dla IBM 704 1956 r.
 - * IBM 350 RAMAC (Random Access Method of Accounting and Control) pierwszy dysk twardy 1956 r., 5 MB 50000(dzisiaj565788)
- Komputery polskie
 - * Komputery polskie
 - * Odra 1001 prototyp lampowy z 1961 r.
 - * Odra 1002 prototyp lampowo-tranzystorowy z 1962 r.
 - * Odra 1003 komputer tranzystorowy z lat 1963-65 42szt.

- * Odra 1013 tranzystorowy, pamięć ferrytowa, 1966-67, 84 szt.
- * Odra 1103 tranzystorowy, 1967-1969, 64 szt.
- * Odra 1204 komputer mikroprogramowalny, 1967-1972, 179 szt.
- Komputery polskie Komputery na licencji International Computers Limited:
 - * Odra 1304 1970-73, 90 szt.
 - * Odra 1305 od 1973 r., 346 szt., ostatnia wyłączona w 2010 r.
 - * Odra 1325 od 1973 r., układy scalone, 151 szt.
 - * języki Fortran, Cobol, Algol, ...
- Komputery tranzystorowe
 - * Tranzystor 1947 r. University of Manchester 1953 r.
 - * 1955 r. 200 tranzystorów, 1300 diod, 150 W
 - * Hardwell Cadet 1955 r. MTBF 90 minut
 - * IBM 1401 1959 r. 10 tys. sztuk
 - * PDP-1 Digital Equipment Corporation 1959 r
- Układy scalone
 - * Powstanie mikroprocesora i układów pamięci
 - * Minikomputery
 - * Olivetti P6060
 - * MOS Technology KIM1
 - * Altair 8800
- Altair 8800
 - * Zestaw do samodzielnego montażu (\$440) lub
 - * zmontowany (\$620)
 - * Intel 8080
 - * Możliwość pracy z 8" stacją dyskietek
 - $^{\ast}\,$ Firma planowała sprzedaż na kilkaset sztuk łącznie, w ciągu miesiąca sprzedali ponad 1 tys. Altair Basic

- Apple

- * Apple I 1976 r. pierwszy hobbystyczny komputer sprzedawany jako płyta główna, Trzeba było dokupić zasilacz i klawiaturę oraz mieć monitor Cena \$666,66 (po uwzględnieniu inflacji na 2023 rok \$3,602)
- * Wyprodukowano 200 szt., szacuje się, że dzisiaj istnieje ξ =62 szt.
- * Apple II 1977 r. W pełni złożony komputer z kolorową grafiką Cena \$1298 (na dzisiaj \$6,592) Sprzedano 4.8 mln szt.
- * 1984 Macintosh pierwszy komputer komercyjne dostępny z okienkowym systemem operacyjnym \$2495 (na dzisiaj \$7,391)

- IBM PC

- * IBM 5150 12.08.1981 r. \$1565 bez napędów (na dzisiaj \$5,299) Projekt ogólnodostępny z wyjatkiem BIOS Intel 8088 prostsza wersja 8086
- Mikrokomputery 8-bitowe
 - * Commodore PET 1977 r., MOS 6502
 - * Atari 400 i 800 1979 r., MOS 6502
 - * ZX Spectrum, 1982 r., Zilog Z80
 - * Commodore 64, MOS 6502
- Mikrokomputer polski
 - * Elwro 800 Junior 1986 r.
 - * Opracowany przez PP i Elwro
 - * Obudowa po organkach Elwirka
 - * Kompatybilny z ZX Spectrum
 - * Sieciowy system CP/J odmiana CP/M
 - * Kompilator Borland Turbo Pascal 3.0

- Palmtopy

- * Palm Pilot 1000 1996 r., Palm OS 1.0
- * HP Jornada 420 1999 r., Windows CE 2.11
- * Handspring Treo 180 2002 r., Palm OS 3.5,
- * telefon GSM
- * HP Jornada 928 2002 r, Pocket PC 2002,
- * telefon GSM, GPRS

- Smartfony

- * Nokia 9210 Communicator, 2000 r., Symbian Series 80
- * Nokia 7650 2002 r., Symbian Series 60
- * Sony Ericsson P800 2002 r., Symbian UIQ
- * BlackBerry 6230 2003 r.,
- * iPhone 2007 r., iPhone OS 1.0
- * HTC T1 2007 r., Android

- Tablety

- * Apple iPad 2010 r., iOS 3
- * Tablety z Androidem
- * Czytniki eBook i inne
- * dedykowane urządzenia

- Przyszłość

- * Komputery kwantowe
- * "Rozszerzone" okulary
- * Dalszy rozwój "wearables"
- * Interfejsy neuronalne

0.3 Latex

1. Dlaczego nie WORD

- (a) Różne wersje programu (także językowe i systemowe)
- (b) Jest edytor równań, ale może się różnić między wersjami
- (c) Dokument wyjściowy może zależeć od skonfigurowanej w systemie drukarki
- (d) Kwestia różnych "czcionek"
- (e) Niska "stabilność" dokumentu

2. CZYM JEST TEX?

- (a) System składu tekstu niskiego poziomu
- (b) Opracowany pierwotnie w latach 1977/78 przez Donalda Knuth'a ze Stanford
- (c) Był niezadowolony ze składu drugiej edycji swojej książki The Art of Computer Programming
- (d) Postanowił to zmienić i zaczął tworzyć własne narzędzie na platformie PDP-10
- (e) System dostępny na zasadzie Open Source
- (f) Wszystkie błędy zostaną uznane za cechy
- (g) System ma być stabilny, aby dokumenty stworzone kiedyś w przyszłości wyglądały tak samo

3. CZYM JEST LATEX?

- (a) Zestaw makr rozbudowujących funkcjonalność TEX'a
- (b) Opracowany przez Lesliego Lamporta ze Stanford na początku lat 80-tych
- (c) Wydana w 1986 książka LaTeX User Manual
- (d) Aktualnie wersja LaTeX 2E (prace nad wersją 3 zostały wstrzymane)
- (e) Również dostępny jako Open Source
- (f) (La)TeX to w praktyce język programowania, którego wynikiem jest dokument
- (g) Nie jest narzędziem WYSIWYG (What You See Is What You Get) jak np. Microsoft Word
- (h) Jest dostępny na wielu systemach operacyjnych
- (i) Wiele różnych dystrybucji

4. PRZYKŁADOWE DYSTRYBUCJE

- (a) MiKTeX www.miktex.org Windows, macOS, Linux, Dołączony menedżer pakietów
- (b) TeXLive www.tug.org/texlive Windows, Linux
- (c) MacTeX www.tug.org/mactex, Wersja TeXLive dla macOS

(d) WERSJA ONLINE Środowisko Overleaf - overleaf.com Praca online Repozytorium dokumentów Wersja darmowa z ograniczeniami Wersje płatne

5. PLIK LATEX

- (a) Zwykły plik tekstowy ASCII (najlepiej UTF-8) zawierający:
- (b) Polecenia (instrukcje) LaTeX'a,
- (c) Treść dokumentu,
- (d) Inne symbole sterujące.
- (e) Można edytować w dowolnym edytorze, np. Notatniku

6. ODSTĘPY

- (a) Liczba spacji między wyrazami nie ma znaczenia.
- (b) Pusty wiersz rozpoczyna nowy akapit

7. ZNAKI SPECJALNE

- (a) Ich użycie jest zarezerwowane
- (b) Mają specjalne znaczenie
- (c) Jak chcemy ich użyć w tekście poprzedzamy je
- (d) Nie są dostępne we wszystkich krojach pisma

8. POLECENIA (INSTRUKCJE)

- (a) Instrukcje zaczynają się od bezpośrednio po którym jest nazwa
- (b) Instrukcję kończy spacja (odstęp) lub znak niebędący literą
- (c) Składnia instrukcja jest wrażliwa na wielkość liter
- (d) Niektóre instrukcję składają się z i jednego znaku niebędącego literą
- (e) Niektóre instrukcje mają argumenty:
- (f) Podawane w nawiasach klamrowych { }
- (g) Każdy w osobnej parze nawiasów
- (h) Liczba oraz kolejność argumentów jest istotna
- (i) Instrukcje mogą mieć argumenty opcjonalne w nawiasach kwadratowych $[\]$
- (j) Argumenty opcjonalne rozdziela się przecinkami,
- (k) Kolejność nie odgrywa roli
- (l) Komentarz po znaku

9. STRUKTURA DOKUMENTU

- (a) Preambuła Tu definiujemy typ dokumentu i wykorzystywane pakiety
- (b) Część główna Tu znajduje się treść dokumentu

10. PREAMBUŁA

- (a) Obowiązkowo \documentclass{article}
- (b) Przykładowe typy: article, report, book, slides, letter
- (c) Opcjonalnie w kolejnych liniach, np. \usepackage{graphicx}
- (d) Przykład:

```
\documentclass[a4paper,twoside,onecolumn]{report}
\usepackagegraphicx
\author{Bartosz Grabski}
\title{Narzędzia informatyki}
\date{\today}
```

11. CZĘŚĆ GŁÓWNA

(a) Wszystko pomiędzy: $\left\{ document \right\} \dots \left\{ document \right\}$

12. STRUKTURA DOKUMENTU

(a) Dokument może być podzielony na sekcje, czyli rozdziały, podrozdziały, itd. {document}
 \begin{document} Początkowe zdanie
 \section{Wstęp}
 Treść wstępu
 \section{Sekcja głowna}
 Treść sekcji głownej
 \subsection{Podpunkt pierwszy}
 Treść podpunktu pierwszego
 \subsubsection{Podpodpunkt pierwszy}
 Treść podpodpunktu pierwszego
 \end{document}

13. TYTUŁ DOKUMENTU

- * W niektórych typach dokumentów (np. article, book) można automatycznie wygenerować tytuł
- * Definiowany jest w preambule \author{Bartosz Grabski} \title{Narzędzia informatyki} \date{\today} \begin{document} \maketitle \end{document}
- * Polecenia date może zawierać:
- * Datę dzisiejszą \today
- * Dowolny tekst
- * Być puste wtedy daty nie będzie w dokumencie

14. STEROWANIE CZCIONKAMI

- * Wyróznienie $\ensuremath{\mathsf{emph}} \{ s \}$ $s \}$
- * Krój maszynowy \texttt {słowo} słowo
- * Krój bezszeryfowy \textsf {słowo} słowo
- * Krój szeryfowy $\sl {slowo}$ słowo
- * małe \small {słowo} słowo
- * duże \large {słowo} Słowo
- * kursywa \textit {słowo} słowo
- * pogrubiony \textbf {słowo} słowo

15. ŁAMANIE LINII

- * \noindent likwiduje wcięcie na na początku akapitu
- * Niełamliwa spacja tylda
- * \newpage nowa strona
- * \pagebreak[liczba]
- * \textbackslash nowy akapit
- * \textbackslash nowa linia ale nie akapit
- * \nolinebreak
- * \nopagebreak

16. ODSTĘPY

- * \hspace{3cm} odstęp poziomy
- * \vspace{3cm} odstęp pionowy
- * \vspace{3cm} odstęp pionowy
- * $\operatorname{stretch}{3cm}$ wypełnienie w hspace
- * \hfill wypełnienie

17. ZNAKI SPECJALNE

- CUDZYSŁOWY startowy: 2 przecinki, końcowy: 2 apostrofy
- MYŚLNIKI
 - łącznik 22-go
 - pauza 2x minus
 - myślnik zwykły 3x minus

18. ŚRODOWISKA

- Sekcja zawarta pomiędzy begin a end
- Mogą się nawzajem zawierać ale nie przeplatać
- Używane do tworzenia list, tabel i innych złożonych konstrukcji

19. LISTY

- przykład \begin{enumerate}
 \item Pierwszy punkt listy z numerami
 \begin{itemize}
 \item Lista bez numerków
 \end{itemize}
 \begin{description}
 \item [Tytuł] jakiś tam opis
 \end{description}
 \begin{enumerate}
- pakiet enumerate umożiwia nadawania wartości początkowej liście wyliczeniowej

20. WYRÓWNANIE TEKSTU

• Środowiska flushleft, flushright i center

21. TABELE

- Środowisko tabular
- Po otwarciu podajemy sposób wyrównywania każdej kolumny (rac, l) oddzielony ewentualnie pionową kreską
- Komórki oddzielamy & a wiersze \\
- \hline rysuje pozioma linie
- Łączenie komórek i inne linie \multicolumn
- Przykład

I ILJ III aa							
1		2	3	4	5		
1	L		5				
1		2	3	4	5		

- lina pozioma \hline przez całość
- lina pozioma \cline{2-3} od-do

22. ODSYŁACZE - odsyłanie do elementów struktury dokumentu

- \ldots trzykropki
- \label kotwica odsyłacza
- \ref użycie odsyłacza

23. WSTAWKI

- Zazwyczaj chcemy aby tabele czy rysunki nie były dzielone pomiędzy stronami, były podpisane i można się było do nich odwoływać
- Służą do tego środowiska table i figure
- Oba mają pewne parametry ustalające miejsce, w którym znajdzie się wstawiony element (por. dokumentacja)
- \captionwyświetlana nazwa \labelkotwica

```
• środowisko table
        \begin{table}
        \begin{tabular}
        \end{tabular}
        \caption{wyświetlana nazwa} \label{kotwica}
        \end{table}
        Wstawienie: { \table}
24. OBRAZKI
```

```
\begin{figure}
\centering
\includegraphics[width=8cm]{fig1.png}
\caption{wyświetlana nazwa} \end{figure}
```

25. MATEMATYKA

- Do pisania wzorów wykorzystujemy znak specjalny \$
- Funkcje matematyczne mają odpowiadające im polecenia
- Równanie można umieścić w osobnej linii dzięki \[i \] lub \$\$... \$\$
- Możemy skorzystać ze środowiska equation, które pozwala na etykietowanie wzorów
- Można się potem do nich odwoływać
- W środowisku equation nie używamy \$
- Jeżeli nie chcemy numerować wzoru to po equation dodajemy * begin{equation*}
- Sposoby tworzenia równań można do pewnego stopnia mieszać
- _ index dolny
- - index górny
- $\frac{\operatorname{licznik}}{\min \operatorname{nownik}}$ ułamek
- \sum sigma, znak sumy
- \circ znak stopnia, trzeba umieścić w indexie górnym
- niestandardowe odstępy

Skrót	Polecenie	Przykład			
\setminus ,	\thinspace	a	b	\mathbf{c}	
\:	$\mbox{\ensuremath{medspace}}$	\mathbf{a}	b	\mathbf{c}	
\;	\thickspace	a	b	$^{\mathrm{c}}$	
brak		\mathbf{a}	b	$^{\mathrm{c}}$	
brak	\qquad	\mathbf{a}	b		c
\!	\negthtinspace	á	a b c	:	
brak	\negmedspace		abo	;	
brak	\negthickspace		abc		

• Jeżeli chcemy umieścić w równaniu fragment tekstu to służy do tego polecenie \text{Litery greckie}

 Nasze możliwości tworzenia równań wzrosną, gdy użyjemy pakietów amssymb i amsmath opracowanym przez Amerykańskie Stowarzyszenie Matematyków (AMS)

26. Rozmieszczanie równań

- \begin{split} formatowanie jak w tabeli
- \begin{multiline} wyśrodkowane linijkami
- \begin{gather} wyśrodkowane w kolumnach
- \begin{align} do lewej

27. Warunki

• \begin{cases} - formatowanie jak w tabeli

28. Macierze

- \begin{matrix} formatowanie jak w tabeli, bez nawiasów
- \begin{pmatrix} formatowanie jak w tabeli, nawiasy okrągłe
- \begin{vmatrix} formatowanie jak w tabeli, nawiasy proste
- \bullet \begin{Vmatrix} formatowanie jak w tabeli, nawiasy proste podwójne
- \begin{bmatrix} formatowanie jak w tabeli, nawiasy kwadratowe

29. Macierze - środowisko array

• \begin{array}cc - formatowanie jak w tabeli, nawiasy okrągłe

30. BIBLIOGRAFIA

- LaTeX wspomaga tworzenie bibliografii, zarządzanie nią i tworzenie odnośników
- Przy pierwszej kompilacji dokumentu tworzony jest pliku pomocniczy aux
- Dopiero przy drugiej kompilacji odnośniki będą poprawne
- W najprostszym przypadku umieszczamy w dokumencie środowisko thebibliography
- Poszczególne pozycje są umieszczane w poleceniu \bibitem
- Cytowanie w tekście poprzez \cite
- \bullet Do zarządzania cytowaniami można wykorzystać narzędzie BibTeX lub BibLaTeX
- Spis literatury jest wtedy przechowywany w osobnym pliku
- Do dokumentu trafi lista tylko wykorzystanych pozycji

Rysunek 1: Basic principle of tomography.