2020~2021 年高中信息学多校联合训练

不知道什么比赛

模拟赛

时间: 2020年1月30日 8:00~13:00

题目名称	去南极	登山	露营
题目类型	传统型	传统型	提交答案型
目录	space	climb	camp
可执行文件名	space	climb	N/A
输入文件名	space.in	climb.in	camp1~10.in
输出文件名	space.out	climb.out	camp1~10.out
每个测试点时限	2.0秒	2.0 秒	N/A
内存限制	256 MB	1024 MB	N/A
子任务数目	6	7	10
测试点是否等分	否	否	否

提交文件名

对于 C++ 语言	space.cpp	climb.cpp	camp1~10.out
-----------	-----------	-----------	--------------

编译选项

对于 C++ 语言	-lm -O2 -std=c++11	N/A
-----------	--------------------	-----

注意事项:

- 1. 测评时栈空间与内存限制相同。
- 2. 时间限制保证在标程的两倍以上,具体时限可随实际测评环境调整。
- 3. 若无特殊说明,输入文件的同一行内的多个整数、浮点数、字符串等均使用一个空格进行分隔。
- 4. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。
- 5. 测评时在每个题目对应目录下收取答案,请对每个题目建立子文件夹。
- 6. 难度与题目顺序无关,请自行选择写题顺序。
- 7. 题目比较简单,请独立完成。请不要借助网络等工具。

模拟赛 去南极(space)

去南极(space)

【题目背景】

小 H 有一个计划,那就是去南极旅游。她找到了几个志同道合的朋友,准备利用寒假的时间去南极。

结果她们还真的成功了……

当然,这项活动和日常活动不一样,在这之前需要经过一系列培训。因此, 她们来到了山里进行实践培训。

【题目描述】

培训的一个项目是立旗杆来确定方向。假设她们需要确定一条长度为n的路线,这条路线可以被表示成0,1,...,n,n+1这n+2个格子。首先,她们需要在0,n+1分别立两根旗子,然后在中间的n格中立若干根旗子。最后她们需要保证任意两根相邻的旗子之间的距离(不算旗子所占用的格子)不超过m。

注意: 旗子是立在某个格子的正中央,并非两格之间。

显然最优解是在m+1,2m+2,...这些位置设立旗子,但是这样太死板了,小 H 想要把旗子设立得更有趣。小 H 会采取以下算法来设立旗子:

- ① 找到一段区间 [l,r] 满足 [l,r] 中都没有旗子,l-1,r+1 都有旗子并且 r-l+1>m。小 H 认为这样的区间是"极大"的。
- ② 小 H 在区间中找到一个位置 x , 显然 $l \le x \le r$, 然后在 x 上插上旗子。
- ③ 重复步骤一,直到找不到合法的极大区间

在设计完这个算法后,小 H 发现了个严重的问题。如果每一次 x 都是随机找的,那么这个算法有可能会让这个活动花费远多出最优解的体力!!!

因此,小 H 决定优化找 x 这个过程。具体的,小 H 会在区间 [l,r] 中等概率 **随机地**找出三个**不同的**整数 a,b,c,然后排序使得 a < b < c,最后她令 x = b 。 这样一来,x 会更接近区间中点,这个算法就能更快结束。

不过,这个过程还是要花费体力的。对于一段长度为 len 的区间(即 r-l+1=len),步骤二需要花费 s_{len} 的体力。

小 H 想知道她们在确定旗子设立点时需要花费的体力的期望值。由于现在还没开始培训,这个算法还在计划阶段,所以小 H 不知道具体的 n, m, s_i 是多少,因此她会进行一些修改和多次询问。

【输入格式】

从文件 space.in 中读入数据。

第一行读入两个整数 L,Q,其中 L 表示所有询问操作中 n 可能出现的最大值,Q 表示修改操作和询问操作的次数总和。

第二行有L个整数,第i个整数表示 s_i ,这L个数表示初始时的序列s。接下来O行,每行 $3\sim4$ 个整数,其中第一个数为op。

模拟赛 去南极(space)

- 若 op = 0 ,则表示该操作为修改操作。接下来会输入三个整数 l,r,x , 表示将 $s_1 \sim s_r$ 全部加上 x 。

- 若 op = 1,则表示该操作为询问操作。接下来会输入两个整数 n, m。该 操作为询问在给定的n, m和当前的s下期望花费的体力值。

【输出格式】

输出到文件 space.out 中。

对于每一个询问操作,输出体力值的期望。为了避免精度误差,你只需要输 出这个期望值对998244353取模的结果。

【样例1输入输出】

space.in	space.out
6 4	798595490
1 2 3 4 5 6	9
1 6 3	6
0 4 6 1	
1 6 3	
1 5 4	

【样例1解释】

三问的答案分别为 $\frac{38}{5}$,9,6。 对于第三问,n = 5,m = 4, $s = \{1,2,3,5,6\}$ 。

此时有且只有一个极大区间[1,5],而此时无论怎么选择,只可能在2,3,4插 旗子,之后就不存在长度大于 m 的极大区间了。

那么只有一次插旗子操作,体力为 $s_5 = 6$ 。

【样例 2 输入输出】

见下发文件 space/space2.in 和 space/space2.ans 。

【数据范围和提示】

本题采用捆绑测试。

对于所有数据,满足:

- $-3 \le m < n \le L \le 2 \times 10^5$
- $-1 \le 0 \le 2 \times 10^5$
- $\forall i \in [1, L]$, 0 ≤ s_i < 998244353
- $1 \le l \le r \le L$, $0 \le x < 998244353$, $op \in \{0,1\}$

模拟赛 去南极(space)

子任务见下表:

子任务编号	L	Q	特殊性质	分值
1	≤ 100	≤ 100	无	5
2	- 5000	≤ 5000)L	10
3	≤ 5000	$\leq 2 \times 10^5$	特殊性质 A	10
4			付外住坝 A	20
5	$\leq 2 \times 10^5$		特殊性质 B	5
6			无	50

特殊性质 A: 所有询问操作的 n 都相同。

特殊性质 B: 所有询问操作的m都相同,并且所有修改操作都满足l=1,r=L。

模拟赛 登山(climb)

登山(climb)

【题目描述】

小 H 是一名登山爱好者,她正在计划一次登山活动,并邀请她的朋友一起登山。

小 H 查找了很多山,有些山的攀登难度高,有的山攀登难度低,有点山适合挑战,有的山适合散步。针对不同的山,小 H 制定了不同的计划。

对于攀登难度高的山:小 H 观察到,这些山的登山口一般不会在海拔为 0 的地方,而是在有一定高度的地方。

对于此类山,小 H 会先计划一个登山时间 n ,接下来的 n 段时间内,每一段时间都会随机向上走一单位或向下走一单位。如果记初始位置为高度 0 ,那么每一段时间内小 H 她们所在高度都会随机 +1 或 -1 。

因为高度 0 不代表海拔为 0, 所以小 H 她们所在高度可以为负数。

在n段时间中,会产生n+1个时间点,小 H 会记入下这n+1个时间点所在的高度,其中最高的高度就是她们本次登山所在的最高高度。

因为攀登此类山峰需要有一定目标,所以小 \mathbb{H} 还会给定一个目标 k ,表示她们这次登山的最高高度至少为 k 。

对于攀登难度低的山:小田观察到,这些山一般和市区距离不会太远,所以登山口一般都在海拔为0的地方。

同样的,对于此类山,小 \mathbf{H} 也会规定一个登山时间 \mathbf{n} ,然后再接下来的 \mathbf{n} 段时间随机的向上或向下走一单位。但是此时高度不允许为负(因为初始海拔为 $\mathbf{0}$)并且终点的高度必须为 $\mathbf{0}$ (散步完直接回家)。

当然,因为是散步,所以小 H 对最高高度没有要求,不过她仍然会记入下最高高度。

作为小 H 的朋友之一,你注意到对于时间 n 可以产生许多合法方案,合法方案需要满足这条路可行(即在攀登难度低的山时高度不为负)以及满足要求(即在攀登难度高的山时最高高度大于等于 k 和在攀登难度低的山时终点高度为 0)。你想知道,对于所有**合法方案**,攀登的最高高度的期望值是多少?如果没有合法方案,则输出 0 。

然而,小H的计划还不完善,所以可能有多个问题。同时,讨厌精度运算的你决定只求出期望值对 998244353 取模的结果。

【输入格式】

从文件 climb.in 中读入数据。

第一行两个整数 T, type, T 为询问数目,type 为询问类型。若 type = 0,表示小 H 决定攀登**难度高**的山;若 type = 1,表示小 H 决定攀登**难度低**的山。

接下来T行,每行一或两个整数。若type = 0,则有两个整数n,k,若type = 1,则有一个整数n。

模拟赛

【输出格式】

输出到文件 climb.out 中。

对于每一个询问,输出一个整数,表示最高高度的期望值对 998244353 取模后的结果。

【样例1输入输出】

climb.in	climb.out
5 0	499122179
3 2	523872044
20 6	39578760
100 0	802116506
101 0	98038061
2021 130	

【样例1解释】

该样例为攀登难度高的山峰。

对于第一组询问,总共有 $\{+1,+1,+1\}$ 和 $\{+1,+1,-1\}$ 两种攀登方式。其中第一种攀登方式的最高高度为 3 ,第二种攀登方式的最高高度为 2 ,期望值为 $\frac{3+2}{2}=\frac{5}{2}$,对 998244353 取模后为 499122179 。

【样例 2 输入输出】

climb.in	climb.out
5 1	0
3	499122178
4	0
127	915680881
66	765781763
1234	

【样例2解释】

该样例为攀登难度低的山峰。

对于第一组询问,没有一种攀登方式最后可以回到高度0。

对于第二组询问,合法的攀登方式为 $\{+1,-1+1,-1\}$ 和 $\{+1,+1,-1,-1\}$,第一种攀登方式的最高高度为 1 ,第二种攀登方式的最高高度为 2 ,期望值为 $\frac{1+2}{2}=\frac{3}{2}$,对 998244353 取模后为 499122178 。

模拟赛 登山(climb)

【数据范围和提示】

本题采用捆绑测试。

对于所有数据,满足 $1 \le T \le 10^5$, $type \in \{0,1\}, 0 \le k \le n \le 2 \times 10^7, n \ge 1$ 。子任务见下表:

子任务编号	T	n	k	type	分值
1	/ 2	$\leq 10^{3}$			5
2	≤ 3		$\leq n$	0	10
3	$\leq 10^5$	$\leq 2 \times 10^5$	= 0	= 0	10
4	≥ 10°		$\leq n$		30
5		$\leq 10^2$		= 1	5
6	≤ 2	$\leq 10^{5}$	_		10
7		$\leq 2 \times 10^7$			30

模拟赛 露营(camp)

露营(camp)

【题目描述】

本题是一道提交答案题。

小H计划和朋友进行一次野外露营。

野外露营可以做很多事情,比如搭帐篷、野炊等。然而,最重要是事情是朋友们在一起闲聊。

不过,闲聊实在太浪费时间了,小 H 认为这段时间可以做一些有意义的事。 众所周知,小 H 和她的朋友们都是数学爱好者,所以在这段时间里,她们决定讨 论数学题。因此,小 H 计划每人准备一道有趣数学题,在露营时分享给大家。

终于到了露营的那天了,小H也拿出了她准备的数学题:

给定一张 n 个点的完全图,你现在需要使用 m 种颜色给每条边染色,但是不允许出现同色三元环,求方案。

你决定挑战这道题。

【实现细节】

在选手目录下有 12 个文件,分别为 camp0~10.in 和 camp0.out。

其中 camp0~10.in 为输入文件,并且 camp0.in 和 camp0.out 为样例。在 camp*.in 中,总共有一行,表示两个数 n,m,即为图的点数和你可以使用的颜色数。

你不需要提交源代码,只需要提交文件 camp1~10.out。

对于 camp*.out ,记与其对应的 camp*.in 中的两个数为n,m,则在 camp*.out 中,一共需要输出n行,每行n个整数。第i行第j个整数 $A_{i,j}$ 表示边(i,j)的颜色。

你输出的矩阵 A 需要满足以下性质:

- 对于 $\forall i,j$ 且 $i \neq j$,都有 $1 \leq A_{i,i} \leq m$ 且 $A_{i,i}$ 为整数。
- 对于 $\forall i,j$,都有 $A_{i,j} = A_{j,i}$ 。
- 对于∀i,都有 A_{i,i} = 0。
- 对于 $\forall i,j,k,i < j < k$,都有 $A_{i,j}$, $A_{i,k}$, $A_{i,k}$ 不完全相同。

【检查工具】

在选手目录下,还有一个名为 checker.cpp 的文件,对该文件使用如下编译命令:

g++ -o checker checker.cpp -lm -02 -std=c++11

之后你会得到一个名为 checker 的可执行文件。该可执行文件可以帮助你检验答案的正确性。

请将输入文件保存在 camp.in 中,将输出文件保存在 camp.out 中,运行可执行文件,它将判断你的答案。

模拟赛 露营(camp)

如果可执行文件返回的为 OK! ,那么代表你通过了 camp.in 中要求的构造,否则它会返回错误信息。

【样例输入输出】

camp0.in	camp0.out
3 2	0 1 2
	1 0 1
	2 1 0

【样例解释】

方案如下图:

【数据范围和提示】

如果你构造的方案不合法,那么该测试点得 0 分。 下表可以帮助你快速得到每个测试的信息:

测试点编号	1	2	3	4	5	6	7	8	9	10
n =	5	8	16	25	34	44	50	85	101	155
m =	2	3	3	4	4	4	4	5	5	5
分值	5	5	10	10	10	10	15	10	10	15