- Probability Review
- Discrete time Markov chains
 Exam probs: 10.1,2; 12.2; 13.1,2,7; 14.1,2,3,4; 15.1,3; 16.1,6; 18.1,6
 - 1. Definition and Markov property
 - 2. Transition matrix and *n*-step transition
 - 3. State space classification: Reducibility, periodicity, null and positive recurrence
 - Long run behaviour: Ergodicity/Stationarity, description in all cases above
 - 5. First step analysis: "hitting times"

► Poisson process

Exam probs: 10.3; 12.4; 13.4; 14.7; 15.4; 16.2,7; 18.4

- 1. Definition
- 2. Descriptions (N_t, T_k, τ_i) and their relationships
- 3. Superposition/Thinning
- 4. Compound Poisson process
- 5. PASTA

- Continuous time Markov chains
 Exam probs: 10.4; 12.5; 13.4,5; 14.5; 15.2,6; 16.3,5; 18.2,5
 - 1. Definition and Markov property
 - Descriptions (Exponential waiting times + jumps, transition matrix, generator) and their relationships
 - 3. Forward and backward equations
 - 4. State space classification: Reducibility, positive and null recurrence
 - 5. Long run behaviour: ergodicity/stationarity
 - 6. Birth-death chains

- Queuing TheoryExam probs: 10.4; 12.6; 13.5; 14.5; 15.6; 16.3; 18.5
 - 1. Basic framework
 - 2. M/M/a relationship to birth death chains
 - 3. Stationarity
 - 4. Quantities of interest: L, L_q, D, W, etc
 - 5. PASTA
 - 6. Little's law
- Renewal Theory

Exam probs: 10.6; 12.7; 13.6; 14.8; 15.5; 16.4,7; 18.3

- 1. Basic framework (N_t, T_k, τ_i) and relationships
- 2. Renewal limit theorems (LLN and CLT)
- 3. Overshoot Y_t and time to previous arrival A_t

- Brownian motionExam probs: 14.6; 15.7
 - 1. Definition
 - 2. Relationship to multivariate normal/computing probabilities
 - 3. Hitting times and maximum
 - 4. Properties read as limits from random walk