1	L5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Χ	Χ	X	X	OF	DF	IF	TF	SF	ZF	X	AF	Χ	PF	Х	CF

Parity Flag (PF) požymis (poz. - 2)

Lyginumo požymis

PF požymis pasako ar rezultato lauko jauniausiam baite yra lyginis kiekis '1' bitų.

Pavyzdžiai:

0011 0100

1111 0000

0000 0000

PF = 0

PF = 1

PF = 1

Zero Flag (ZF) požymis (poz. - 6)

Nulio požymis

ZF požymis pasako, ar rezultatų laukas sudarytas vien iš nuliukų. (1, jei taip) **PASTABA:** nepasimaukite, jei rezultato laukas nulis, tai ZF **NĖRA nulis**, o vienas.

Pavyzdžiai:

1111 0000

0000 0000

ZF = 0

ZF = 1

Overflow tikrinimas, pasiverčiam dvejetainį į jo atitikmenį su ženklu ir žiūrim ar gaunam tokį patį atsakymą kaip ir dešimtainėj sistemoj. Pvz.: 193+191

 $1100\ 000 + 1011\ 1111 = 1000\ 0000;\ 1100\ 0000 = -65;\ 1011\ 1111 = -63;\ -65 + (-63) = -128;$

Atsakymas 1000 0000 = -128 = -128, todėl overflow nebus

Galima pasiversti į neigiamą arba tiesiog sk be ženklo pasiverčiant į bitus, invertuojant ir tuomet pridedant 1, arba pirmą bitą inti -128 ir tiesiog pridedinėt klo gausim atsakymą. Pvz.: -80

80 = 0101 0000 (invertuojam) = 1010 1111 +1 = 1011 0000

-128+64=-64 > -80, netinka; -128+32=-96, gerai; -96+16 = -80 atsakymas

-128	64	32	16	8	4	2	1
1	0	1	1	0	0	0	0

Mikroprograminio lygio architektūra

Dave division as	Šešioliktainė	Desciotaini neikšusi	Dešimtainė reikšmė		
Pavadinimas	reikšmė	Dvejetainė reikšmė	Be ženklo	Su ženklu	
1	0001	0000 0000 0000 0001	+1	+1	
0	0000	0000 0000 0000 0000	0	0	
-1	FFFF	1111 1111 1111 1111	+65535	-1	
SIGN	8000	1000 0000 0000 0000	+32768	-32768	
15	000F	0000 0000 0000 1111	+15	+15	

Voikomas	Šešioliktainė	Dugiatainė vaikėmė	Dešimtainė reikšmė		
Veiksmas	reikšmė	Dvejetainė reikšmė	Be ženklo	Su ženklu	
COM(0)	FFFF	1111 1111 1111 1111	+65535	-1	
COM(1)	FFFE	1111 1111 1111 1110	+65534	-2	
COM(-1)	0000	0000 0000 0000 0000	0	0	
COM(SIGN)	7FFF	0111 1111 1111 1111	+32767	+32767	
MBR+COM(MBR)	FFFF	1111 1111 1111 1111	+65535	-1	

JMP/CALL

Besąlyginis valdymo perdavimas

Vidinis artimas	 Iš mašininio kodo po OPK imamas 1 baito poslinkis. Baitas išplečiamas pagal plėtimo pagal ženklą taisyklę. IP:= gautas_rezultatas + IP_reikšmė_komandos_vykdymo_metu (IP+op kodo bita Pvz.: EB 8A 		
Vidinis tiesioginis	 Iš mašininio kodo po OPK imamas 2 baitų poslinkis. Baitai sukeičiami vietomis. IP:= gautas_rezultatas + IP_reikšmė_komandos_vykdymo_metu (IP+op kodo bitai) Pvz. E9 8A 5A 		
Išorinis tiesioginis	 Iš mašininio kodo po OPK imami 4 baitai. Jie priskiriami CS ir IP registrams tokiu eiliškumu: IP j.b., IP v.b, CS j.b., CS v.b. Pvz.: EA 11 22 33 44. IP=2211, CS=4433. 		
Vidinis netiesioginis	Analizuojamas adresavimo bai	itas (reg dalis yra OPK plėtinys)	
	Mod=11 → IP registrui priskiriama žodinio registro reikšmė, kurią nurodo r/m.	Mod!=11 → einama į atminties vietą, kurią rodo operandas (mod ir r/m) ir paimami 2 baitai (IP j.b., IP v.b.), kurie tampa nauja IP reikšme.	
Išorinis netiesioginis	Analizuojamas adresavimo baitas (reg dalis yra OPK plėtinys)		
	Mod negali būti 11!	Einama į atminties vietą, kurią rodo operandas atmintyje (mod ir r/m) ir paimami 4 baitai eiliškumu IP j.b., IP v.b., CS j.b., CS v.b.	

JMP tipas	Operacijos kodas	CALL tipas	Operacijos kodas
Vidinis artimas	EB	Vidinis tiesioginis	E8
Vidinis tiesioginis	E9	Išorinis tiesioginis	9A
Išorinis tiesioginis	EA	Vidinis netiesioginis	FF **010***
Vidinis netiesioginis	FF **100***	Išorinis netiesioginis	FF **011***
Išorinis netiesioginis	FF **101***		

RET	Vidinis	Išorinis
Be steko išlyginimo	С3	СВ
Su steko išlyginimu	C2 j.b. v.b.	CA j.b. v.b.

- Kviečiant CALL komandą, <u>prieš atliekant veiksmus</u> į steką padedamos keičiamų registrų reikšmės:
 - Išorinio atveju PUSH CS, PUSH IP
 - Vidinio atveju PUSH IP
- Kviečiant RET komandą (grįžimą iš procedūros), grįžimo adresas imamas iš steko:
 - Išorinio atveju POP IP, POP CS
 - Vidinio atveju POP IP

Trys taisyklės, kurias reik žinoti:

- 1. Ar buvo panaudotas prefiksas? Jei taip, imam prefiksa atitinkanti segmenta.
- 2. Ar formuojant EA buvo panaudotas BP? Jei taip, imam SS.
- 3. Jei formuojant EA nepanaudotas BP → imam DS.

Segmentas	Maš. Kodas	Fokusas
ES	26	Europos Sąjunga
CS	2E	Žaidė CS'ą
SS	36	Sovietų Sąjunga
DS	3E	Dėstė Saikingai (<mark>D</mark> ėjo <mark>S</mark> k**są)

Adresacijos baitas susideda iš:

mod	reg	r/m
2bit	3bit	3bit

<u>reg laukas</u> gali būti naudojamas ir kaip OPK plėtinys (tuo atveju, kai yra tik vienas operandas r/m) *Ką pasako atskiros adresacijos baito dalys:*

mod - modifikatorius

mod	Prasmė			
00	Po addr. baito eina 0 baitų poslinkis (jokio poslinkio neimama) , išskyrus r/m=110			
01	Po addr. baito eina 1 baito poslinkis (jis plečiamas pagal ženklo plėtimo taisyklę iki 2 baitų)			
10	Po addr. baito eina 2 baitų poslinkis (pirmiau jaunesnysis baitas, po to vyresnysis baitas)			
11	r/m laukas suprantamas, kaip registras, nėra operando atminty			

r/m – register or memory, registras arba atmintis.

Reg	mod=00	mod=01, 10	mod=11	
arba r/m	IIIOU-00	11100-01, 10	w=0	w=1
000	В	K+SI+poslinkis	AL	AX
001	ВХ	CL	CX	
010	Bl	DL	DX	
011	BI	BL	BX	
100		AH	SP	
101		DI+poslinkis	CH	BP
110	tiesioginis adresas*	BP+poslinkis	DH	SI
111	1	BX+poslinkis	BH	DI

$$\frac{\text{sreg} - \text{segmento registras;}}{\text{sreg}} = \begin{cases} 00 - \text{ES;} \\ 01 - \text{CS;} \\ 10 - \text{SS;} \\ 11 - \text{DS;} \end{cases}$$

Taip pat esant operandams: registras, registras/atmintis svarbus d bitas (destination): Jei d=0, tai operandai yra: r/m, reg

Jei d=1, tai operandai yra: **reg**, r/m

Pirmas operandas vadinamas rezultato, antrasis šaltinio, nes jei turint du operandus kažkuriame saugomas veiksmo rezultatas, tai saugomas pirmąjame (rezultato) operande.

^{*}Tiesioginis adresas - Dviejų baitų poslinkis, be jokių pridėtų registrų.

Pertraukimai

Pertraukimo paprogramės pradžios radimas

(pertraukimo vektoriaus adresas)

Kviečiant pertraukimą PUSH SF, PUSH CS, PUSH IP (SP=SP-6)

Iš pertraukimo grįžtama IRET: POP IP, POP CS, POP SF (SP=SP+6)

n reikšmė	Pavadinimas	Kada įvyksta*
0	Dalyba iš nulio	Dalybos perpildymas kilęs vykdant DIV arba IDIV komandą
1	Žingsninis rėžimas	Po kiekvienos komandos, jei flagas TF=1
2	Nemaskuojamas išorinis	Esant nemaskuojamam išoriniam pertraukimui
3	Kontrolinis taškas "breakpoint"	Sutikus komandą maš. kodu CC. Naudojama debugeriuose. Asemblerinė mnemonika <i>INT 3</i>
4	Perpildymo apdorojimas naudojant komandą INTO	Kai programoje vykdoma komanda INTO <i>ir</i> flagas OF=1
5-31	OS reikmėms	Priklauso nuo operacinės sistemos, įvyksta iškvietus atitinkamą procedūrą
32-255	Naudotojo reikmėms	Suprogramuojama kompiuterio vartotojo naudojamos programinės įrangos, įvyksta iškvietus atitinkamą procedūrą

Slankus kablelis

Trumpas realus (keturiuose baituose)

S (1b)	charakteristika (8b)	mantisė (23b)
--------	----------------------	---------------

- 1 ženklo bitas (0 reiškia pliusą, 1 reiškia minusą)
- 8 bitai charakteristika (eilė + 127₁₀) 127₁₀=7Fh

Eilė – dvejeto laipsnis, kai skaičius užrašomas normalizuota forma (dešimtainėje populiariau vadinama standartine skaičiaus išraiška). T.y. sveikas skaičius, rodantis kokiu laipsniu reikia pakelti dvejetą, kad padauginus 1,mantisė iš 2eilė gautume tą patį skaičių.

- 23 bitų mantisė
- Skaičių būtina privesti prie normalizuotos formos, kuri atrodo taip:

Ilgas realus (aštuoniuose baituose)

S(1b)	charakteristika (11b)	mantisė (52b)
-------	-----------------------	---------------

- 1 ženklo bitas (0 reiškia pliusą, 1 reiškia minusą)
- 11 bitų chrakteristika (eilė + 1023₁₀) 1023₁₀ = 3FFh
- 52 bitų mantisė
- · Skaičių būtina privesti prie normalizuotos formos, kuri atrodo taip:

Vidinis realus (dešimtyje baitu)

S (1b)	charakteristika (15b)	i hitas (1h)	mantisė (63b)
0 (10)	charakteristika (150)	i bitus (10)	mantise (650)

- 1 ženklo bitas (0 reiškia pliusą, 1 reiškia minusą)
- 15 bitų charakteristika (eilė+16383₁₀) 16383₁₀ = 3FFFh
- 1 i bitas, jis parodo koks skaičiukas yra prieš kablelį po kurio eina mantisė (šiame formate nebūtina sudaryti normalizuotos formos, bet patartina tai padaryti ir i bitą visuomet žymėti vienetu)
- 63 bitų mantisė
- Normalizuota forma atrodytų taip: (-1)^s * 2^{eilė} * 1, mantisė (i bitas=1)
- Nenormalizuota forma: (-1)^s * 2^{eilė} * i,mantisė

Ženklo bitas 1 – neigiamas, 0 – teigiamas. Charakteristika = eilė + sk(nuo dydžio 7Fh, 3FFh arba 3FFFh)

Jei daugiau už 1, pasiverčiam į bitus skaičių prieš kablelį ir left shift kol gausim tik 1 sk. prieš kablelį, kiek patraukėm tokia eilė. Visus skaičius likusius po kablelio parašom į mantisės dalį ir toliau dirbam su trupmena kuri buvo pradiniam skaičiuj prieš kablelį.(Beno konspektas 27 psl.)

Jei mažesnis už 1, dauginam iš 2 kol gaunam daugiau už 1. Visu dauginimo rezultatus, tarsi skaičiuojant liekaną normaliam pasirašom ir right shift kol vienas skaičius prieš kablelį, toliau mantisei dirbam su likusia liekana nuo 1. (Pvz.: 0,2*2= 0,4 (0 mintj)

$$0.4*2=0.8$$
 (0 mintj)

0,8*2=1,6 (baigiam, 1gavom); mūsų skaičius 001, tai per 3 pastumti, kad butu 1,.... Eilė 3)

DAA / DAS (Decimal Adjust for Addition / Subtraction)

if ((AL and 0Fh) > 9 or AF == 1) then

Patikrinam, ar antrasis AL skaitmuo yra nebe dešimtainis

AL := AL + | - 6AF := 1

Grąžinam AL antrą skaitmenį į dešimtainį pavidalą (jei prie A pridėsim 6 gausim 16 + 0 => 0, jei prie B => 1, etc.)

endif

if (AL > 9Fh or CF == 1) then

AL := AL + | - 60hCF := 1

endif

Patikrinam, ar pirmasis AL skaitmuo yra nebe dešimtainis

Grąžinam pirmąjį AL skaitmenį į dešimtainį pavidalą naudodami tą pačią logiką, kaip ir aukščiau

Pastaba!

Vykdant tarpines sudėties / atimties operacijas NĖRA nustatomos SF reikšmės!

AAA / AAS (Ascii Adjust for Addition / Subtraction)

if $(\underline{(AL \text{ and } 0Fh)} > \underline{9} \text{ or } \underline{AF == 1})$ then

AL := AL + | - 6AH := AH + | - 1

AF := 1 CF := 1

else

AF := 0 CF := 0

endif

AL := AL and OFh

Patikrinam, ar AL yra nebe dešimtainis skaitmuo, jei taip, padidinam/sumažinam AH vienetu, o AL grąžinam į dešimtainę formą

Paliekam tik vieną (dešinjįį) dešimtainį skaitmenį AL

AAM

AAD

(Ascii Adjust for Multiplication)

(Ascii Adjust for Division)

AH := AL $\operatorname{div} 10_{10}$ AL := A AL := AL $\operatorname{mod} 10_{10}$ AH := 0

AL := AH * 10₁₀ + AL

Eilutinės komandos

Kitaip tariant, tai galima aprašyti ir tokia lentele:

Direction Flagas	Paskutinė komandos pavadinimo r a idė	"Delta" (ką reiktų pridėti prie panaudoto indeksinio registro)	
0	В	+1	
0	W	+2	
1	В	-1	
1	W	-2	

Prefikso asemblerinė mnemonika	Prefikso mašininis kodas	z bito reikšmė
REP REPE REPZ	F3	1
REPNE REPNZ	F2	0

Eilutinių komandų sąrašas:

Enaumų komunaų syrasas.		
Komandos pavadinimas	Atliekamas veiksmas	
MOVSB	man aniidil dariail	
MOVSW	<i>mov</i> es:[di], ds:[si]	
CMPSB	45-21542	
CMPSW	<i>cmp</i> ds:[si], es:[di]	
SCASB	cmp AL, es:[di]	
SCASW	cmp AX, es:[di]	
LODSB	mov AL, ds:[si]	
LODSW	mov AX, ds:[si]	
STOSB	mov es:[di], AL	
STOSW	mov es:[di], AX	

Abu atvejai dvejetainėje sistemoje užrašomi tokiu baitu: 1111 001z.

DEBUG

Rašyt komandas: a (rašys į IP pozicija), arba a100 (rašys į atmintį nuo 100 pozicijos).

Parašyti mašininį kodą: a100->db (kodo bitai) (pvz: db 9A 26 15)

Pasižiūrėti parašytas komandas: u100, arba u.

[vykdyti komandas t(įvykdo 1), t? (įvykdo ? komandų, pvz.: t3, įvykdys 3 komandas)

Išsispausdinti registrus r.

Flags:

Flag Name	Set	Clear
Overflow(yes/no)	ov	NV
Direction(increment/decrement)	DN	UP
Interrupt(enable/disable)	ΕI	DI
Sign(negative/positive)	NG	PL
Zero(yes/no)	ZR	NZ
Auxiliary carry(yes/no)	AC	NA
Parity(even/odd)	PΕ	PO
Carry(yes/no)	CY	NC

Paruošė: Dominykas Višnevskis