Ideation Phase Literature Survey

Team ID	PNT2022TMID42321
Project Name	Emerging Methods for Early Detection of Forest
	Fires

S.NO	Title	Author	Abstract
1	FOREST FIRE	PRAGAT	Detection of forest fire should be fast and
	DETECTION USING		accurate as they may cause damage and
	MACHINE LEARNING	SEJAL	destruction at a large scale. Recently,
		SHAMBHUWANI	Amazon forest confronted a devastating
			forest fire which remained obscured for
		PIYUSHA	over 15 days. Hence resulting in huge loss
		UMBRAJKAR	of ecosystem and adversely affecting the
			global conditions. As the technology is
			developing, Wireless Sensor Networks
			(WSN) is gaining importance in recent
			research areas as it has shown its
			usefulness in warning disasters and save
			lives[1]. As soon as an unusual event is
			noticed in the networks, an event is
			detected through the sensor devices placed
			at distributed locations. This event
			detection information is passed to the base
			station and decision is taken. Due to the
			static configuration of such sensor data in
			WSN generally lead to false alarm
			generation [2]. In such a scenario we can
			use machine learning algorithms to prevent false alarm since they get configured
			efficiently in dynamic nature, that too
			automatically .Therefore for eliminating the
			static essence of WSN, we present a
			machine learning algorithm imbibed with
			WSN. In this paper, we propose a decision
			tree machine learning approach for
			detecting events.
2	A framework for use	YUNUS EMREASLAN	Forest fires are one of the main causes of
_	of wireless sensor		environmental degradation nowadays.
	networks in forest	IBRAHIMKORPEO	Current surveillance systems for forest fires
	fire detection and	GLU	lack in supporting real-time monitoring of
	monitoring		every point of a region at all times and early
		OZGURULUSOY	detection of fire threats. Solutions using
			wireless sensor networks, on the other
			hand, can gather sensory data values, such
			as temperature and humidity, from all
			points of a field continuously, day and
			night, and, provide fresh and accurate data
			to the fire-fighting center quickly. However,
			sensor networks face serious obstacles like

	ı	T	I
			limited energy resources and high
			vulnerability to harsh environmental
			conditions, that have to be considered
			carefully. In this paper, we propose a
			comprehensive framework for the use of
			wireless sensor networks for forest fire
			detection and monitoring. Our framework
			includes proposals for the wireless sensor
			network architecture, sensor deployment
			scheme, and clustering and communication
			protocols. The aim of the framework is to
			detect a fire threat as early as possible and
			yet consider the energy consumption of the
			sensor nodes and the environmental
			conditions that may affect the required
			activity level of the network. We
			implemented a simulator to validate and
			evaluate our proposed framework.
3	A Review on Early	PANAGIOTIS	The environmental challenges the world
	Forest Fire Detection	BARMPOUTIS	faces nowadays have never been greater or
	Systems Using		more complex. Global areas covered by
	Optical Remote	PERIKLIS	forests and urban woodlands are
	Sensing	PAPAIOANNOU	threatened by natural disasters that have
			increased dramatically during the last
		KOSMAS	decades, in terms of both frequency and
		DIMITROPOUOS	magnitude. Large-scale forest fires are one
			of the most harmful natural hazards
		NIKOS	affecting climate change and life around the
		GRAMMALIDIS	world. Thus, to minimize their impacts on
			people and nature, the adoption of well-
			planned and closely coordinated effective
			prevention, early warning, and response
			approaches are necessary. This paper
			presents an overview of the optical remote
			sensing technologies used in early fire
			warning systems and provides an extensive
			survey on both flame and smoke detection
			algorithms employed by each technology.
			Three types of systems are identified,
			namely terrestrial, airborne, and space
			borne-based systems, while various models
			aiming to detect fire occurrences with high
			accuracy in challenging environments are
			studied. Finally, the strengths and
			weaknesses of fire detection systems based
			on optical remote sensing are discussed
			aiming to contribute to future research
			projects for the development of early
<u> </u>	Encode di d	CEODOL UDIOTOL	warning fire systems.
4	Emerging methods	GEORGI HRISTOV	Forest fires are occurring throughout the
	for early detection of	LODD AND DANGE COM	year with an increasing intensity in the
	forest fires using	JORDAN RAYCHEV	summer and autumn periods. These events
	_		· ·
	unmanned aerial vehicles and	DIYANA KINANEVA	are mainly caused by the actions of humans, but different nature and

	IORAWAN sansor		environmental phenomena, like lightning
	LORAWAN sensor networks	PLAMEN ZAHARIEV	environmental phenomena, like lightning strikes or spontaneous combustion of dried leafs or sawdust, can also be credited for their occurrence. Regardless of the reasons for the ignition of the forest fires, they usually cause devastating damage to both nature and humans. Forest fires are also considered as a main contributor to the air pollution, due to the fact that during every fire huge amounts of gases and particle mater are released in the atmosphere. In this paper we will discuss and present two different emerging solutions for early detection of forest fires 2. A Review on Early Forest Fire Detection Systems Using Optical Remote Sensing PANAGIOTIS BARMPOUTISX1 PERIKLIS PAPAIOANNOUx2 KOSMAS DIMITROPOUOSX3 NIKOS GRAMMALIDIS x4 The first of these solutions involves the use of unmanned aerial vehicles (UAVs) with specialized cameras. Several different scenarios for the possible use of the drones for forest fire detection will be presented and analysed, including a solution with the use of a combination between a fixed-wind and a rotary-wing UAVs.
5	Forest Fire Detection System	SANGJOON CHA CHRIS CANTU PEDRO CANTU JOSE FLORES DR. NANTAKAN WONGKASEM DR. HEINRICH FOLTZ	The world is burning. As global warming continues to display a statistical rise in global average temperatures and various environmental factors continue to contribute to the rise in forest fires, the need for a wireless detection system to recognize these fire hazards and that can successfully alert the necessary first responders is becoming more and more apparent. Such a detection and alert system would be able to potentially save billions of dollars in property, infrastructure, and environmental costs and damages, preserve wildlife habitats and ecosystems that are directly affected by forest fires, and prevent the displacement of countless families from their homes that neighbor forested areas and regions. Therefore, we have come together as an engineering team to propose and develop a prototype solution to these issues using our acquired technical knowledge as senior electrical engineering students for our senior design project this semester. Our project idea entitled,

6	Forest Fire Modelling and Early Detection using Wireless Sensor Networks	MOHAMED HEFEEDA MAJID BAGHERI	"Forrest Fire Detection System," will be comprised of multiple systems working in tandem: a LoRa antennae system that will wirelessly transmit sensor data to an accessible website, a solar PV power supply, and a data retrieval gateway and alert system. In summary, we aim to reduce the social, economical, and environmental impacts brought on by forest fires. Early detection of forest fires is the primary way of minimizing their damages. We present the design of a wireless sensor network for early detection of forest fires. We first present the key aspects in modelling forest fires according to the Fire Weather Index (FWI) System which is one of the most comprehensive forest fire danger rating systems in North America. Then, we
			rating systems in North America. Then, we model the forest fire detection problem as a node k-coverage problem (k ≥ 1) in wireless sensor networks. We propose approximation algorithms for the node k-coverage problem which is shown to be NP-hard. We present a constant-factor centralized algorithm, and a fully distributed version which does not require sensors know their locations. Our simulation study demonstrates that our algorithms: activate nearoptimal number of sensors, converge much faster than other algorithms, significantly prolong (almost double) the network lifetime, and can achieve unequal monitoring of different zones in the forest.