Machine Learning Self-Study Worksheet

Worksheet: 2025003

Level: Easy

Topics Covered: Supervised Learning

Part 1: Conceptual Questions

Q. No.	Question			Points
1.	 Match learning tasks with appropriate algorithms: Match each task with the most suitable supervised learning algorithm from the list below. Justify. Algorithms: Logistic Regression, Linear Regression, Decision Tree, KNN Predicting a student's test score based on hours studied. → Classifying tumor as benign or malignant based on cell features. → 			
2.	Complete the following table comparing the two main types of supervised learning: Aspect Regression Classification			
	Output Type	Regression	Classification	
	1 71			
	Performance Metrics			
	Common Algorithms			

Part 2: Numerical Questions

Q. No.	Question			Points
3.	You are given the following actual and predicted values from a regression model:			5
	Data Point	Actual (Y)	Predicted (Ŷ)	
	1	3	2.5	
	2	5	5.5	
	3	2	3.0	
	4	7	6.5	
	Calculate the I	Mean Squared Error (MSE).		

Disclaimer: This worksheet is for **self-study** & **educational purposes only**.

4.		5
	Given the data points:	
	• Class A: (1, 1), (1, 2), (2, 2)	
	• Class B: (6, 6), (7, 5), (7, 6)	
	Use Euclidean distance and determine the class of the point (3, 3) using 1-nearest neighbor	
	and 3-nearest neighbors.	
	→ Report both class predictions.	

Part 3: Coding Exercise

Q. No.	Complete & Run the Code (Use your own Python IDE or Google Colab.) Complete the KNN classification code for $k = 3$ and predict the class of a new point:	Points	
5.	from sklearn.tree import from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report # Sample data X = [[1], [2], [3], [4], [5], [6]] y = [0, 0, 0, 1, 1, 1] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33) # Create the model model = DecisionTreeClassifier() model(X_train, y_train) # Predict	5	
	<pre>y_pred = model.predict(X_test) print(classification_report(y_test, y_pred)) print("Accuracy:", accuracy_score(y_test, y_pred))</pre>		

Notes & Disclaimer

• For quick notes or queries, visit: https://www.youtube.com/channel/UCGuhk1P1OAOX_7Ar2-xadEw .

• Related Resources:

- o Google Colab to run Python code online without installing anything
- o StatQuest: https://www.youtube.com/@statquest/playlists
- o 3Blue1Brown: https://www.youtube.com/@3blue1brown/playlists
- o Numerical: https://www.youtube.com/@MaheshHuddar/playlists

Want more worksheets like this?

Try using **AI prompt** like:

"Create a beginner-level machine learning worksheet with 2 conceptual questions(with subquestions), 2 numerical, and 1 code-completion exercise on [topic(s)]"

• How to Use This Worksheet:

- O These worksheets are designed for **self-study and concept reinforcement**.
- o Try to solve without looking up the answers first.
- o Use a notebook or Python IDE to experiment code is the best teacher!
- o Feel free to modify or extend questions as your understanding grows.

• Disclaimer:

This worksheet is for self study & **educational purposes only**. Accuracy of content may vary depending on updates to libraries or definitions. Always refer to official documentation or textbooks for exam-level prep.