Correlação Tetracórica

Antonio Eduardo Gomes aegomes@unb.br

A correlação tetracórica é uma medida de correlação entre duas variáveis dicotômicas. Ela assume que as variáveis são contínuas, mas que foram medidas de maneira binária.

Dados dois itens (1 e 2), suponha que os eventos $\{U_1=0\}$ e $\{U_2=0\}$ sejam equivalentes, respectivamente, aos eventos $\{X\leq x_0\}$ e $\{Y\leq y_0\}$, sendo X e Y variáveis aleatórias contínuas tais que $(X,Y)\sim N_2(\mu_X,\mu_Y,\sigma_X^2,\sigma_X^2,\rho)$.

Suponha que observamos as frequências conjuntas de U_1 e U_2 dadas na tabela de contingência abaixo.

Table:

$U_1\backslash\ U_2$	0	1	Total
0	n ₀₀	n ₀₁	$n_{00} + n_{01}$
1	n ₁₀	n ₁₁	$n_{10} + n_{11}$
Total	$n_{00} + n_{10}$	$n_{01} + n_{11}$	n

Definindo $\gamma=(x_0-\mu)/\sigma_{_X}$ e $\tau=(y_0-\mu)/\sigma_{_Y}$, estimamos γ e τ , respectivamente, por

$$\widehat{\gamma} = \Phi^{-1}\left(\frac{n_{00} + n_{01}}{n}\right) \quad \text{e} \quad \widehat{\tau} = \Phi^{-1}\left(\frac{n_{00} + n_{10}}{n}\right) \,.$$

Como $((X - \mu)/\sigma_X, (Y - \mu)/\sigma_Y) \sim N_2(0, 0, 1, 1, \rho)$, estimamos ρ através de $\hat{\rho}$ que satisfaz a relação

$$\frac{n_{11}}{n} = \int_{\widehat{\gamma}}^{\infty} \int_{\widehat{\tau}}^{\infty} \frac{1}{2\pi\sqrt{(1-\widehat{\rho}^2)}} \exp\left[\frac{-(x^2-2\widehat{\rho}xy+y^2)}{2(1-\widehat{\rho}^2)}\right] dy dx.$$

O valor de $\widehat{\rho}$ pode ser aproximado pelo coeficiente de associação de Yule:

$$Q_1 = \frac{n_{00} n_{11} - n_{01} n_{10}}{n_{00} n_{11} + n_{01} n_{10}}.$$

Exemplo: Considere os dados da tabela abaixo:

Table:

$U_1 \backslash \ U_2$	0	1	Total
0	11	29	40
1	9	1	10
Total	20	30	50

As estimativas via máxima verossimilhança foram $\widehat{\rho}=-0,8075$, $\widehat{\gamma}=0,8416$ e $\widehat{\tau}=-0,2533$.

Para os dados acima, temos $Q_1 = -0,9191$.