Solution of Constant Coefficients ODE

Department of Mathematics IIT Guwahati

Thus,

$$\frac{\partial^k}{\partial r^k}(e^{rx})|_{r=r_1} = x^k e^{r_1 x}$$

will be a solution to L(y)=0 for $k=0,1,\ldots,m-1$. So, m distinct solutions are

$$e^{r_1x}$$
, xe^{r_1x} , ..., $x^{m-1}e^{r_1x}$.

Theorem: If P(r)=0 has the real root r_1 occurring m times and the remaining roots $r_{m+1},r_{m+2},\ldots,r_n$ are distinct, then the general solution of L(y)=0 is

$$y(x) = (C_1 + C_2 x + C_3 x^2 + \dots + C_m x^{m-1}) e^{r_1 x} + C_{m+1} e^{r_{m+1} x} + \dots + C_n e^{r_n x},$$

where C_1, C_2, \ldots, C_n are arbitrary constants.

Example: Consider $y^{(4)} - 8y'' + 16y = 0$. In this case, $r_1 = r_2 = 2$ and $r_3 = r_4 = -2$. The general solution is

$$y = (C_1 + C_2 x)e^{2x} + (C_3 + C_4 x)e^{-2x}.$$

Case III (Complex roots): If $\alpha+i\beta$ is a non-repeated complex root of P(r)=0 so is its complex conjugate. Then, both

$$e^{(\alpha+i\beta)x}$$
 and $e^{(\alpha-i\beta)x}$

are solution to L(y)=0. Then, the corresponding part of the general solution is of the form

$$e^{\alpha x}(C_1\cos(\beta x) + C_2\sin(\beta x)).$$

Theorem: If P(r)=0 has non-repeated complex roots $\alpha+i\beta$ and $\alpha-i\beta$, the corresponding part of the general solution is

$$e^{\alpha x} \left(C_1 \cos(\beta x) + C_2 \sin(\beta x) \right).$$

If $\alpha+i\beta$ and $\alpha-i\beta$ are each repeated roots of multiplicity m, then the corresponding part of the general solution is

$$e^{\alpha x} \left[(C_1 + C_2 x + C_3 x^2 + \dots + C_m x^{m-1}) \cos(\beta x) + (C_{m+1} + C_{m+2} x + \dots + C_{2m} x^{m-1}) \sin(\beta x) \right],$$

where C_1, C_2, \ldots, C_{2m} are arbitrary constants.

Example: Consider $y^{(4)} - 2y''' + 2y'' - 2y' + y = 0$. Here, $r_1 = r_2 = 1$, $r_3 = i$ and $r_4 = -i$. The general solution is

$$y = (C_1 + C_2 x)e^x + (C_3 \cos x + C_4 \sin x).$$

Particular solution of constant coefficients ODE

Method of undetermined coefficients: A simple procedure for finding a particular solution (y_p) to a non-homogeneous equation L(y) = g, when L is a linear differential operator with constant coefficients and when g(x) is of special type:

That is, when g(x) is either

- a polynomial in x,
- an exponential function $e^{\alpha x}$,
- trigonometric functions $\sin(\beta x), \cos(\beta x)$

or finite sums and products of these functions.

Case I. For finding y_p to the equation $L(y) = p_n(x)$, where $p_n(x)$ is a polynomial of degree n. Try a solution of the form

$$y_p(x) = A_n x^n + \dots + A_1 x + A_0$$

and match the coefficients of $L(y_p)$ with those of $p_n(x)$:

$$L(y_p) = p_n(x).$$

Remark: This procedure yields n+1 linear equations in n+1 unknowns A_0, \ldots, A_n .

Example: Find y_p to L(y)(x) := y'' + 3y' + 2y = 3x + 1.

Try the form $y_p(x) = Ax + B$ and attempt to match up $L(y_p)$ with 3x + 1. Since

$$L(y_p) = 2Ax + (3A + 2B),$$

equating

$$2Ax + (3A + 2B) = 3x + 1 \Longrightarrow A = 3/2$$
 and $B = -7/4$.

Thus,
$$y_p(x) = \frac{3}{2}x - \frac{7}{4}$$
.

Case II: The method of undetermined coefficients will also work for equations of the form

$$L(y) = ae^{\alpha x},$$

where a and α are given constants. Try y_p of the form

$$y_p(x) = Ae^{\alpha x}$$

and solve $L(y_p)(x) = ae^{\alpha x}$ for the unknown coefficients A.

Example: Find y_p to $L(y)(x) := y'' + 3y' + 2y = e^{3x}$.

Seek $y_p(x) = Ae^{3x}$. Then

$$L(y_p) = 9Ae^{3x} + 3(3Ae^{3x}) + 2(Ae^{3x}) = 20Ae^{3x}.$$

Now,
$$L(y_p)=e^{3x}\Longrightarrow 20Ae^{3x}=e^{3x}\Longrightarrow A=1/20.$$
 Thus, $y_p(x)=(1/20)e^{3x}.$

Case III: For an equation of the form

$$L(y) = a\cos\beta x + b\sin\beta x,$$

try y_p of the form

$$y_p(x) = A\cos\beta x + B\sin\beta x$$

and solve $L(y_p) = a \cos \beta x + b \sin \beta x$ for the unknowns A and B.

Example: Find y_p to $L(y) := y'' - y' - y = \sin x$. Seek $y_p(x)$ of the form $y_p(x) = A\cos x + B\sin x$. Then

$$L(y_p) = \sin x \implies A = 1/5, B = -2/5.$$

Thus, $y_p(x) = \frac{1}{5}\cos x - \frac{2}{5}\sin x$.

Example: Find y_p to $L(y) := y'' - y' - 12y = e^{4x}$.

Note that $y_h(x)=c_1e^{4x}+c_2e^{-3x}$. Try finding y_p with the guess $y_p(x)=Ae^{4x}$ as before. Since e^{4x} is a solution to the corresponding homogeneous equation L(y)=0, we replace this choice of y_p by $y_p(x)=Axe^{4x}$. Since $L(xe^{4x})\neq 0$, there exists a particular solution of the form

$$y_p(x) = Axe^{4x}.$$

Remark: If $L(y_p)=0$ then replace $y_p(x)$ by $xy_p(x)$. If $L(xy_p)=0$ the replace xy_p by x^2y_p and so on. Thus, employing x^sy_p , where s is the smallest nonnegative integer such that $L(x^sy_p)\neq 0$.

Form of y_p :

- $g(x) = p_n(x) = a_n x^n + \dots + a_1 x + a_0,$ $y_p(x) = x^s P_n(x) = x^s \{A_n x^n + \dots + A_1 x + A_0\}$
- $g(x) = ae^{\alpha x}, \ y_p(x) = x^s A e^{\alpha x}$
- $g(x) = a \cos \beta x + b \sin \beta x$, $y_p(x) = \frac{x^s}{A} \cos \beta x + B \sin \beta x$
- $g(x) = p_n(x)e^{\alpha x}$, $y_p(x) = \frac{x^s}{x}P_n(x)e^{\alpha x}$
- $g(x)=p_n(x)\cos\beta x+q_m(x)\sin\beta x,$ where $q_m(x)=b_mx^m+\cdots+b_1x+b_0$ and $p_n(x)$ as above. $y_p(x)=\frac{x^s}{P_N(x)\cos\beta x+Q_N(x)\sin\beta x},$ where $Q_N(x)=B_Nx^N+\cdots+B_1x+B_0,$ $P_N(x)=A_Nx^N+\cdots+A_1x+A_0$ and $N=\max(n,m).$

- $g(x) = ae^{\alpha x} \cos \beta x + be^{\alpha x} \sin \beta x$, $y_p(x) = \frac{x^s}{4} \{ Ae^{\alpha x} \cos \beta x + Be^{\alpha x} \sin \beta x \}$
- $g(x) = p_n(x)e^{\alpha x}\cos + q_m(x)e^{\alpha x}\sin \beta x$, $y_p(x) = x^s e^{\alpha x} \{P_N(x)\cos \beta x + Q_N(x)\sin \beta x\}$, where $N = \max(n, m)$.

Note:

- 1. The nonnegative integer s is chosen to be the smallest integer so that no term in y_p is a solution to L(y) = 0.
- 2. $P_n(x)$ or $P_N(x)$ must include all its terms even if $p_n(x)$ has some terms that are zero. Similarly for $Q_N(x)$.

*** Fnd ***