

Auswirkungen von Sprachcodecs auf Formantmessungen für Sprechervergleiche

Ewald Enzinger

Österreichische Akademie der Wissenschaften Institut für Schallforschung

DAGA 2011

Einführung Formantmessungen

- Akustisch-phonetische Sprechererkennung, z.B.
 - Grundfrequenz f0
 - Formantmittenfrequenzen
- Formanten
 - Spektrale Prominenzen/Peaks (Fant 1960)

Resonanzfrequenzen des Vokaltrakts (Stevens 1999)

The **poles** [of the denominator polynomial of the vocal tract transfer function] represent the **complex natural frequencies of the vocal tract**. The imaginary parts indicate the frequencies at which oscillations would occur in the absence of excitation, and are called the **formant frequencies**.

Adaptive Multi-Rate Codec

- Verwendet in GSM und UMTS
- Spezifiziert durch 3GPP/GSM als Mandatory Codec
- Algebraic Code Excited Linear Prediction (ACELP)
- 8 ähnliche Codecstufen mit unterschiedlichen Bitraten
 ⇒ 4.75, 5.15, 5.90, 6.70, 7.40, 7.95, 10.20, 12.20 kbit/s
- DTX Discontinuous transmission
- CNG Comfort noise generation

Adaptive Multi-Rate Codec

- Verwendet in GSM und UMTS
- Spezifiziert durch 3GPP/GSM als Mandatory Codec
- Algebraic Code Excited Linear Prediction (ACELP)
- 8 ähnliche Codecstufen mit unterschiedlichen Bitraten
 ⇒ 4.75, 5.15, 5.90, 6.70, 7.40, 7.95, 10.20, 12.20 kbit/s
- DTX Discontinuous transmission
- CNG Comfort noise generation

Adaptive Multi-Rate Codec

- Verwendet in GSM und UMTS
- Spezifiziert durch 3GPP/GSM als Mandatory Codec
- Algebraic Code Excited Linear Prediction (ACELP)
- 8 ähnliche Codecstufen mit unterschiedlichen Bitraten
 → 4.75, 5.15, 5.90, 6.70, 7.40, 7.95, 10.20, 12.20 kbit/s
- DTX Discontinuous transmission
- CNG Comfort noise generation

Adaptive Multi-Rate Codec Algebraic Code Excited Linear Prediction (ACELP)

Abbildung: Vereinfachtes Blockdiagramm des CELP Synthesemodells

Preprocessing

- 20ms Frames
- LP Koeffizienten
- Algebraisches/ fixiertes Codebook
- Post processing

- Preprocessing
- 20ms Frames
- LP Koeffizienten
- Algebraisches/ fixiertes Codebook
- Post processing

• 12.2 kbps: 2 überlappende Fenster

- Preprocessing
- 20ms Frames
- UP Koeffizienten
- Algebraisches/ fixiertes Codebook
- Post processing

andere: 1 Fenster, 5ms Lookahead

Preprocessing

- 20ms Frames
- UP Koeffizienten
- Algebraisches/ fixiertes Codebook
- 6 Post processing

10th order Linear Prediction

$$H(z) = \frac{1}{\hat{A}(z)} = \frac{1}{1 + \sum_{i=1}^{m} \hat{a}_i z^{-i}}$$

- 12.2 kbps: 2x pro Frame
- andere Modi: 1x pro Frame
- Berechnung über Autokorrelation und Levinson-Durbin-Algorithmus
- Umwandlung in Line Spectral Pairs (LSP)

- Preprocessing
- 20ms Frames
- UP Koeffizienten
- Algebraisches/ fixiertes Codebook

10th order Linear Prediction

$$H(z) = \frac{1}{\hat{A}(z)} = \frac{1}{1 + \sum_{i=1}^{m} \hat{a}_i z^{-i}}$$

- 12.2 kbps: 2x pro Frame
- andere Modi: 1x pro Frame
- Berechnung über Autokorrelation und Levinson-Durbin-Algorithmus
- Umwandlung in Line Spectral Pairs (LSP)

Preprocessing

- 20ms Frames
- LP Koeffizienten
- 4 Algebraisches/ fixiertes Codebook
- Post processing

Long-term (Pitch) Synthesefilter

$$\frac{1}{B(z)} = \frac{1}{1 - g_p z^{-T}}$$

- Pitch delay T und Gain factor g_p bestimmt durch Open-/Closed loop pitch search
- Fixed Codebook-Suche durch
 Minimierung des Fehlers zw. perzeptiv
 gewichteten Inputsignals und
 rekonstruiertem Signal (Analysis by
 Synthesis)

- Preprocessing
- 20ms Frames
- LP Koeffizienten
- Algebraisches/ fixiertes Codebook
- Post processing

- Adaptiver Postfilter
 - Formant Postfilter
 - Tilt-Kompensations Filter
- High-pass filter

Auswirkungen auf Formantdaten Frühere Untersuchungen

- Byrne & Foulkes (2004)
 - 12 Sprecher (6 m, 6 w)
 - Aufnahme direkt und über GSM-Netz
 - F1 um 29% höher, F2 & F3 nicht beeinträchtigt
- Guillemin & Watson (2008)
 - 8 Sprecher (5 m, 3 w)
 - Aufnahmen aus Studio-Korpus, AMR En-/Decoding
 - Keine generellen Aussagen, Auswirkungen anhand von Beispielen beschrieben

Auswirkungen auf Formantdaten Frühere Untersuchungen

- Byrne & Foulkes (2004)
 - 12 Sprecher (6 m, 6 w)
 - Aufnahme direkt und über GSM-Netz
 - F1 um 29% höher, F2 & F3 nicht beeinträchtigt
- Guillemin & Watson (2008)
 - 8 Sprecher (5 m, 3 w)
 - Aufnahmen aus Studio-Korpus, AMR En-/Decoding
 - Keine generellen Aussagen, Auswirkungen anhand von Beispielen beschrieben

- Studioaufnahmen von 27 m\u00e4nnlichen Wiener Sprechern
 → /a/ und /i/ Vokale
- AMR En-/Dekodierung durch ANSI-C Fixed Point Referenzimplementierung (3GPP 2009)
- Formant tracking durch STx und SnackTk/Wavesurfer
 - STx: Formanten durch Peaks im LP-Spektrum (→ Spectral Prominences)
 - SnackTk: Formanten von Polstellen des LPC All-Pol Filters
- Simulierter Telefonkanal (Bandpass 300-3400 Hz, POTS)
- Synthetisierte stationäre /a/ und /ı/ Vokale (KlattSyn)
 - → Polstellen des AMR-internen LPC10 All-Pol Filters

- Studioaufnahmen von 27 m\u00e4nnlichen Wiener Sprechern
 → /a/ und /i/ Vokale
- AMR En-/Dekodierung durch ANSI-C Fixed Point Referenzimplementierung (3GPP 2009)
- Formant tracking durch STx und SnackTk/Wavesurfer
 - STx: Formanten durch Peaks im LP-Spektrum (⇒ Spectral Prominences)
 - SnackTk: Formanten von Polstellen des LPC All-Pol Filters
- Simulierter Telefonkanal (Bandpass 300-3400 Hz, POTS)
- Synthetisierte stationäre /a/ und /ı/ Vokale (KlattSyn)
 - → Polstellen des AMR-internen LPC10 All-Pol Filters

- Studioaufnahmen von 27 m\u00e4nnlichen Wiener Sprechern
 - → /a/ und /ı/ Vokale
- AMR En-/Dekodierung durch ANSI-C Fixed Point Referenzimplementierung (3GPP 2009)
- Formant tracking durch STx und SnackTk/Wavesurfer
 - STx: Formanten durch Peaks im LP-Spektrum (→ Spectral Prominences)
 - SnackTk: Formanten von Polstellen des LPC All-Pol Filters
- Simulierter Telefonkanal (Bandpass 300-3400 Hz, POTS)
- Synthetisierte stationäre /a/ und /ı/ Vokale (KlattSyn)
 - → Polstellen des AMR-internen LPC10 All-Pol Filters

- Studioaufnahmen von 27 m\u00e4nnlichen Wiener Sprechern
 - → /a/ und /ı/ Vokale
- AMR En-/Dekodierung durch ANSI-C Fixed Point Referenzimplementierung (3GPP 2009)
- Formant tracking durch STx und SnackTk/Wavesurfer
 - STx: Formanten durch Peaks im LP-Spektrum (→ Spectral Prominences)
 - SnackTk: Formanten von Polstellen des LPC All-Pol Filters
- Simulierter Telefonkanal (Bandpass 300-3400 Hz, POTS)
- Synthetisierte stationäre /a/ und /ı/ Vokale (KlattSyn)
 - → Polstellen des AMR-internen LPC10 All-Pol Filters

- Studioaufnahmen von 27 m\u00e4nnlichen Wiener Sprechern
 - → /a/ und /ı/ Vokale
- AMR En-/Dekodierung durch ANSI-C Fixed Point Referenzimplementierung (3GPP 2009)
- Formant tracking durch STx und SnackTk/Wavesurfer
 - STx: Formanten durch Peaks im LP-Spektrum (→ Spectral Prominences)
 - SnackTk: Formanten von Polstellen des LPC All-Pol Filters
- Simulierter Telefonkanal (Bandpass 300-3400 Hz, POTS)
- Synthetisierte stationäre /a/ und /ı/ Vokale (KlattSyn)
 - → Polstellen des AMR-internen LPC10 All-Pol Filters

Auswirkungen auf Formantdaten Spektrogramm von "Katzen"

□ PCM16 44.1kHz

Auswirkungen auf Formantdaten Spektrogramm von "Katzen"

4 AMR 4.75 kbps

Auswirkungen auf Formantdaten Gemitteltes Spektrum von /a/

Long-term average spectrum (a0ktB07.katzen.p192)

Auswirkungen auf Formantdaten

Interaktion Sprecher-Codecstufe

Auswirkungen Formantverschiebungen in /a/-Vokalen

Auswirkungen Effekte durch AMR und AMR+Bandpassfilterung

F1	Mittelw.	% diff	t-test (p)
Original	299.6		
AMR 12.20	300.2	100.2%	0.7147
BP AMR 12.20	368.3	122.9%	<0.001
F2	Mittelw.	% diff	t-test (p)
Original	1946.0		
AMR 12.20	1932.4	99.3%	0.2299
BP AMR 12.20	1802.8	92.6%	<0.001
F3	Mittelw.	% diff	t-test (p)
Original	2782.5		
AMR 12.20	2786.7	100.1%	0.7463
BP AMR 12.20	2563.8	92.1%	< 0.001

Auswirkungen Synthetisierte Vokale

- Nur geringe Abweichungen durch AMR-Codec an sich
 - Effekte durch zusätzlichen Bandpass erklärbar
- Höhere Fehleranfälligkeit der automatischen Tracker
 - falsche Formantzuweisung bzw. keine Werte aufgrund geringer Amplitude
- Geringer Nutzen durch Rückgriff auf AMR-interne LPC10 Koeffizienten

- Nur geringe Abweichungen durch AMR-Codec an sich
 - Effekte durch zusätzlichen Bandpass erklärbar
- Höhere Fehleranfälligkeit der automatischen Tracker
 - falsche Formantzuweisung bzw. keine Werte aufgrund geringer Amplitude
- Geringer Nutzen durch Rückgriff auf AMR-interne LPC10 Koeffizienten

- Nur geringe Abweichungen durch AMR-Codec an sich
 - Effekte durch zusätzlichen Bandpass erklärbar
- Höhere Fehleranfälligkeit der automatischen Tracker
 - falsche Formantzuweisung bzw. keine Werte aufgrund geringer Amplitude
- Geringer Nutzen durch Rückgriff auf AMR-interne LPC10 Koeffizienten

- Berücksichtigung weiblicher Sprecher (Guillemin & Watson (2006))
- VoIP Telefonie (z.B. Skype/SILK Codec)
- 4G Telefonie / Long-term evolution (LTE)
 - AMR-Wideband / G.722.2 (Bandbreitenerweiterung auf 50-7000 Hz)

- Berücksichtigung weiblicher Sprecher (Guillemin & Watson (2006))
- VoIP Telefonie (z.B. Skype/SILK Codec)
- 4G Telefonie / Long-term evolution (LTE)
 - AMR-Wideband / G.722.2 (Bandbreitenerweiterung auf 50-7000 Hz)

Diskussion Ausblick

- Berücksichtigung weiblicher Sprecher (Guillemin & Watson (2006))
- VoIP Telefonie (z.B. Skype/SILK Codec)
- 4G Telefonie / Long-term evolution (LTE)
 - AMR-Wideband / G.722.2 (Bandbreitenerweiterung auf 50-7000 Hz)

Vielen Dank für Ihre Aufmerksamkeit

Literatur

- 3GPP (2009). ETSI TS 126 073 ANSI C code for the Adaptive Multi Rate (AMR) speech codec.
- Byrne, C., & Foulkes, P. (2004). The 'Mobile Phone Effect' on vowel formants. International Journal of Speech Language and the Law, 11(1), 83–102.
- Fant, G. (1960). Acoustic Theory of Speech Production. The Hague: Mouton.
- Guillemin, B. J., & Watson, C. (2006). Impact of the GSM AMR Speech Codec on Formant Information Important to Forensic Speaker Identification. In P. Warren, & C. I. Watson (Eds.) Proceedings of the 11th Australian International Conference on Speech Science & Technology, (pp. 483–488).
- Guillemin, B. J., & Watson, C. (2008). Impact of the GSM Mobile Phone Network on the Speech Signal–Some Preliminary Findings. *International Journal of Speech Language and the Law*, *15*(2), 193–218.
- Stevens, K. N. (1999). Acoustic Phonetics. Cambridge, MA: MIT Press.