The Internet of Things: Roadmap to a Connected World

Data Processing and Storage

Samuel Madden

Professor, MIT EECS

Computer Science and Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology

MY IOT EXPERIENCE

TinyOS: operating system for embedded sensors

iCarTel crowdsourced traffic aware routing app

Lutron Light Control app for controlling lutron lighting systems from iPhone

TinyDB: The Sensornet is the Database

The Internet of Things: Roadmap to a Connected World

© 2016 Massachusetts Institute of Technology

DriveWell safe driving app and BTLE accident-detection device

IOT AND THE NEED FOR DATA

Many IoT applications are about data:

- Infrastructure monitoring
- Homes
- Pipes
- Power plants
- Medical patients
- Fleet & vehicle tracking
- Security
- Precision agriculture

• ...

TYPICAL IOT DATA PROCESSING SCENARIO

Data path: sensors → phones/basestations → cloud

Sensors use low-power (BTLE, Zigbee) wireless

Phones and basestations use WiFi, cellular, or wired Internet links

Processing happens on sensors, basestations, phones, and cloud

CHALLENGES OF IOT DATA

IoT data is fundamentally different than other types of data, because it is *sampled*, and comes from devices that have failures and experience noise.

IoT applications must deal with three key data challenges:

- 1. Limited resources (power, bandwidth, storage)
- 2. Missing and noisy data
- 3. Outliers and anomalies

CASE STUDY: DRIVEWELL + TAG

Key capabilities: "safety score", end-to-end collision alerting facility

Requirement 1: 3+ years battery life

Acceleration Data Impacts Trip starts (Over BTLE)

Requirement 2:
< 5% battery drain /</pre>

hour when driving

Requirement 3:10 second end-to-end notification of accidents

Requirement 5:
Accurately measure
mileage and detect
various harsh events

Amazon AWS Cloud

Requirement 4:
Real time trip
feedback in a few
minutes

Position The Internet of Things: Roadmap to a Connected World

DRIVEWELL DATA CHALLENGES

Certain classes of devices experience failures

Discover CBCharacteristic for CBService misses a few characteristics

442 Views 15 Replies Latest reply: Sep 29, 2015 2:05 AM by masakazu

REST OF THE MODULE

1. Limited resources (power, bandwidth, storage)

2. Missing and noisy data

3. Outliers and anomalies

HANDLING LIMITED RESOURCES

ARCHITECTS VS DATA SCIENTISTS

Data analysts always want more data IoT system architects limited by *constraints*

E.g.,

- Battery powered devices need to last X years
- Radios can transmit at Y bytes per second
- Device can store Z hours of audio

THE THREE B'S

Battery

Bandwidth

Bytes

BATTERY

Power consumption often limits what you can collect

Some technologies (e.g., 3G radios, GPS) use lots of energy

QUICK PHYSICS RECAP

SI Unit of Energy = Joule (J)

SI Unit of Power = Watt (W) = Joules / second

Wattage of a device is Amperage (A) x Voltage (V)

Wattage determines power consumption of devices (milliwatts, or mW)

Battery capacity is its stored energy; measured in milliamp-hours (mAh)

Example: iPhone 6 has 1800 mAh battery; LTE radio uses about 1700 mW when transmitting @ 1 Mbit/sec

iPhone is 3.8V, so 1800 mAh = 6840 mWh @ 3.8V; 6840/1700 = 4 hours

→ iPhone (doing nothing else) can transmit for about 4 hours on LTE

POWER USED BY SOME COMMON COMPONENTS

Component

LTE Radio (transmit @ 1 Mb/s)

3G Radio (transmit @ 1 Mb/s)

WiFi (transmit @ 1Mb / s)

ARM+RAM uProc (100% cpu)

ARM+RAM uProc (idle)

Smartphone Screen (full brightness)

GPS (once lock is acquired)

Accelerometer (@10 Hz)

Image sensor (@1080p/30Hz)

Approximate Power Consumption

1700 mW

1700 mW

400 mW

2000 mW

70 mW

850 mW

100-150 mW

75 uW

270 mW (Sony IMX206CQC)

Collecting the data is cheap; displays & radios & processing are expensive

SOME CAVEATS

Startup and shutdown times

• E.g., LTE radio 10 second shutdown

CPU power vs processing efficiency

Faster processor → less processing time

Radio power vs bandwidth

- Higher bandwidth → more power
- Higher bandwidth → less time → less power

Uplink vs downlink

POWER CONSIDERATIONS IN IOT APPLICATIONS

More data → more sensing, more processing, more transmission

→ Collect what you need!

On device processing can reduce data transmission, but processing is also expensive

WiFi/BluetoothLE use MUCH less energy than 3G/LTE

ILLUSTRATION: IN-NETWORK DATA PROCESSING IN TINYDB

Multihop data collection

- -Divide sample period into short time intervals
- -Assign each node to an interval according to its depth in the tree

Key idea: combine data as it is transmitted in the network

The Internet of Things: Roadmap to a Connected World

SELECT COUNT(*) FROM sensors

Each node transmits only one COUNT **SELECT COUNT(*) FROM** Interval 4 sensors Sensor # zzz ZZZ ZZZ ZZZ ZZZ ZZZ # Interval ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ ZZZ **PROFESSIONAL** The Internet of Things: Road map to a Connected World © 2016 Massachusetts Institute of Technology

Nodes can sleep most of the time

BANDWIDTH

Intermittent or low-rate (e.g., Bluetooth LE) radios limit what you can collect

(See previous module on radio technologies)

Considerations

- 1. Continuous monitoring vs alerting
- 2. Buffering to mitigate rate variations, disconnectivity

HANDLING INTERMITTENCY

Radio connectivity can drop out

→ Local buffering, end-to-end acknowledgement

End-to-end principle: data should only be removed from devices when it has been delivered to permanent storage

EXAMPLE: DRIVEWELL + TAG APPLICATION

Application collects driving metrics (hundreds of KB/hour) and does real time impact alerting

Buffers metrics to files on WiFi, uploads when WiFi is available

Data only removed from tag once processed data reaches phone

Immediately relays impacts to server via 3G

Need to be buffered as well

This design:

- 1. Limits overall power & 3G bandwidth consumption
- 2. Meets application requirements

STORAGE

Flash storage is (usually abundant)

Main reason to limit stored data is to reduce power consumption & bandwidth

Example: In DriveWell, we were able to obtain a 4x reduction in stored data using on-device processing, compression, and judicious dropping of data without affecting quality

RESOURCE LIMITATION SUMMARY

Energy and bandwidth restrict what can be collected

IoT design is about engineering tradeoffs, e.g.,

- battery life vs quantity of data
- latency vs resolution

Must plan for edge cases, e.g., disconnection, battery failure

MANAGING MISSING AND NOISY DATA

IOT DATA IS APPROXIMATE

Data arrives at discrete times

Data is of limited precision

Data can be wrong

EXAMPLE: GPS DATA

What roads did this device travel on?

EXAMPLE: ACCELERATION

Raw Signal

Rotated Accel

EDUCATION

Cleaned Signal

The Internet of Things: Roadmap to a Connected World

BASIC TECHNIQUES FOR DEALING WITH NOISE & MISSING DATA

Interpolation, extrapolation

• E.g., regression

Smoothing

• E.g., curve fitting, low-pass filters

Alignment

• E.g., auto-correlation, dynamic time warping

Many possible methods!

EXAMPLE 1: FUNCTIONDB

Thiagarajan et al, "Querying Continuous Functions in a Database System"

Database that allows users to fit *continuous functions* to raw data, query data represented by these functions using a SQL-like interface

FUNCTIONDB: SYSTEM ARCHITECTURE

QUERY RESULTS

- Grid semantics: all queries yield discrete points sampled at user-specified interval ("grid size")
- SELECT x,y WHERE temp < 20 GRID x 8, y 8

SELECT * WHERE TEMP < 20 GRID X 8, Y 8 EFFICIENT ALGEBRAIC IMPLEMENTATION

EXAMPLE 2: MAPMATCHING

Thiagarajan et al, "VTrack: Accurate, Energy-aware Road Traffic Delay Estimation Using Mobile Phones"

MAPMATCHING INTUITION

The closest road to a position sample is not where it originally came from

- Exploit both previous and future location info
 - Don't overly weight any one location sample

REAL WORLD PROBLEMS

Sporadic Inaccurate, with varying accuracy Clustered occasionally

Real-world: Non-Markovian

Observations in clusters

Sporadic data => loops in output

NEW METHOD: FULL PATHS, THEN RANK

Clustered observations not independent!

Input observations → Cluster → Sequence of feasible segment sets

Insight: use a "holistic" method, don't build path incrementally

Idea 1: Score entire path relative to observations

Idea 2: Given segment sets S_i and S_j , compute paths between each segment in S_i and each segment in S_j , traversing various subsets of the intermediate segment sets (dynamic programming)

Idea 3: Use accel and gyro data for rest & turn hints

- 1. Find paths from S_i to S_j with various intermediate subsets
- 2. Score entire paths relative to observations and accel/gyro data

SOME RESULTS

MISSING & NOISY DATA SUMMARY

IoT data processing often involves removing noise, predicting missing values

Many methods for doing this:

- Interpolation
- Extrapolation
- Smoothing

Two use cases:

- FunctionDB for answering queries over functions
- Vtrack for noisy position data

DETECTING OUTLIERS AND ANOMALIES

IOT IS ABOUT UNUSUAL EVENTS

For example

- Rapid detection of equipment failure or degradation
- Pipes, data centers, medial equipment, etc
- Physical tampering in some space
- E.g., doors, windows, other security apps
- Monitoring of people or behavior
- •I.e., a medical patient stopped breathing

These are outliers, or anomalies

ANOMALY DETECTION DESIDERATA

Automatically flag outliers

•e.g., devices 1,14, and 27 are acting weird

Identify common properties of outliers

•e.g., weird devices are all running Android 4.5

Rank & triage outlier classes

•e.g., by severity & number of affected users

ANOMALY DETECTION & EXPLANATION WORKFLOW

Anomaly
Detector
(e.g., human labelling, robust statistics, etc)

Inlier classifier (e.g., frequent itemsets)

Outlier classifier (e.g., frequent itemsets)

Ranker
(i.e., top k most frequent)

ANOMALY DETECTION

Many different ways to detect anomalies

Rules:

Temperature < 100°C

No employee makes more than his manager

CSAIL

ANOMALY EXPLANATION

Anomaly
Detector
(e.g., human labelling, robust statistics, etc)

Inlier classifier (e.g., frequent itemsets)

Outlier classifier (e.g., frequent itemsets)

Ranker
(i.e., top k most frequent)

ANOMALY EXPLANATION

Goal of explanation is to find a description of anomalous records

In complex data sets, every record has tens or hundreds of attributes

Two methods:

- Classifiers: e.g., Decision trees / SVM
- Frequent item sets

uploadtime deviceid driveid dest server companyid hardware manufacturer hardware model hardware bootloader hardware build hardware carrier android fw version android api version android_codename android baseband raw_hardware_string raw os string utc offset with dst app_version file format start reason stop reason previous driveid userid tag_mac_address tag trip number primary driver app user id tag last connection number gps_points_lsh_key_1 gps_points_lsh_key_2 gps points lsh key 3 hidden by support dataset id uploadtime runtime

state

trin start

The Internet of Things: Roadmap to a Connected World

TECHNIQUE 1: CLASSIFICATION (VIA SUPPORT VECTOR MACHINES)

TECHNIQUE 2: FREQUENT ITEMSET MINING

Works for categorical data, or binned continuous data; example:

Outliers

- {iPhone6, Canada}
 - _ {iPhone6, USA}
 - {iPhone5, Canada}
 - {iPhone6, USA} {iPhone5, Canada}

Inliers {iPhone6, USA} {iPhone6, USA} {iPhone5, USA} {iPhone6, USA} {iPhone5, USA} {iPhone6, USA} {iPhone6 USA} {iPhone5

Looks like Canada may have a problem!

TECHNIQUE 2: FREQUENT ITEMSET MINING

Outliers

```
{iPhone6, USA}
{iPhone6, Canada}
{iPhone5, Canada}
{iPhone6, USA}
{iPhone5, Canada}
{iPhone5, Canada}
{iPhone5, Canada}
```

Inliers

```
{iPhone6, USA}
{iPhone6, USA}
{iPhone5, USA}
{iPhone6, USA}
{iPhone5, USA}
{iPhone6, USA}
{iPhone6, USA}
{iPhone6, USA}
```

```
Outliers with support >
```

```
{iPhone6} (3)
{Canada} (4)
{iPhone5} (3)
{iPhone5, Canada} (3)
```

Inliers with support > 2

{iPhone6} (5)

{iPhone5} (3)

{iPhone5,USA} (3)

{iPhone6,USA} (5)

SCORPION: OUTLIER EXPLANATION TOOL

Given an outlier:

Find common properties of points that contributed to outlier to explain why outliers exist

DEFINITION OF WHY

Given an outlier group, find a *predicate* over the inputs that makes the output no longer an outlier.

p = predicate
The Internet of Things: Roadmap to a Connected World

DEFINITION OF WHY

Given an outlier group, find a *predicate* over the inputs that makes the output no longer an outlier.

DEFINITION OF WHY

Given an outlier group, find a *predicate* over the inputs that makes the output no longer an outlier.

Removing the predicate makes US no longer an outlier

{Warren Buffet, Tim

What are common properties of those records? Cook}

p: Job = CEO

SCORPION ANOMALY DETECTION & EXPLANATION WORKFLOW

Anomaly Detector

Human Labels

Inlier classifier

Bounding Hypercubes

Outlier classifier

Ranker

Largest cubes

SCORPION EXPLANATION APPROACH

Find hypercubes that contain outliers

VARIABLE SPECIFICITY

Many possible answers depending on tightness of fit

OUTLIER CONCLUSION

Many IoT applications are fundamentally about finding anomalies in a timely fashion

Important to go beyond *finding* outliers to also *explain* them

Explanation is a complex process, as data is often very high dimensional

MODULE SUMMARY

IoT data is quite different than traditional data sources, because it is *noisy* and *approximate*.

Further, IoT systems have special requirements, especially resource limitations and a need for outlier and anomaly detection

The Internet of Things: Roadmap to a Connected World

THANK YOU!

Samuel Madden

Professor, MIT EECS

Computer Science and Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology

