О псевдо-композиционных и трейн алгебрах

Старолетов Алексей Михайлович Институт математики имени С. Л. Соболева СО РАН staroletov@math.nsc.ru

Секция: Алгебра

Коммутативная неассоциативная алгебра имеет ранг r, если каждый её элемент порождает подалгебру размерности не более r-1. Нас будут интересовать следующие два класса алгебр ранга 3. Предположим, что \mathbb{F} – поле характеристики, отличной от 2 и 3. Коммутативная \mathbb{F} -алгебра A, на которой задана ненулевая симметрическая билинейная форма φ , называется псевдо-композицинной, если $x^3 = \varphi(x,x)x$ для всех $x \in A$. Эти алгебры активно изучались в прошлом, в частности Мейберг и Осборн получили классификацию, при некоторых ограничениях, в [1].

Второй класс — это трейн алгебры ранга 3. Пусть, как и ранее, A — коммутативная \mathbb{F} -алгебра, где char $\mathbb{F} \neq 2,3$. Главные степени элементов в A определяются следующим образом: $x^1 = x$ и $x^i = x^{i-1}x$ при $i \geq 2$. Если существует ненулевой гомоморфизм алгебр $\omega: A \to \mathbb{F}$, то A называется барической. В этом случае пара (A,ω) называется трейн алгеброй ранга r, если существуют такие элементы $\lambda_1,\ldots,\lambda_{r-1}\in\mathbb{F}$, что каждый $x\in A$ удовлетворяет равенству $x^r + \lambda_1\omega(x)x^{r-1} + \ldots + \lambda_{r-1}\omega(x)^{r-1}x = 0$. Эти алгебры были введены Этерингтоном в 1939 году как часть алгебраического формализма генетики в его фундаментальной работе [2].

Предположим, что A — коммутативная \mathbb{F} -алгебра и $a \in A$. Если $\lambda \in \mathbb{F}$, то обозначим $A_{\lambda}(a) = \{u \in A \mid au = \lambda u\}$ и для $L \subseteq F$ определим $A_{L}(a) := \bigoplus A_{\lambda}(a)$.

Псевдо-композиционные алгебры и трейн алгебры ранга 3 обладают следующим общим свойством: для алгебры A найдётся такой элемент $\eta \in \mathbb{F} \setminus \{\frac{1}{2},1\}$, что для каждого идемпотента $e \in A$ справедливо разложение Пирса

$$A = A_1(e) \oplus A_{\eta}(e) \oplus A_{\frac{1}{2}}(e),$$

где $A_1(e) = \langle e \rangle$, с правилами умножения

$$A_{\eta}(e)^2 \subseteq A_1(e), A_{1/2}(e)^2 \subseteq A_1(e) \oplus A_{\eta}(e), A_{\frac{1}{2}}(e)A_{\eta}(e) \subseteq A_{\frac{1}{2}}(e).$$

Будем называть такой идемпотент η -осью в алгебре A. Оказывается это свойство характеризует два упомянутых класса алгебр в следующем смысле.

Теорема. Пусть \mathbb{F} — поле характеристики, отличной от 2 и 3. Предположим, что $\eta \in \mathbb{F} \setminus \{\frac{1}{2},1\}$ и A — коммутативная \mathbb{F} -алгебра, порождённая множеством η -осей. Справедливы следующие утверждения.

- (a) если $\eta = -1$, то A nceeдo-композиционная алгебра;
- (b) если $\eta \neq -1$, то A трейн алгебра ранга 3.

При доказательстве используются методы, развитые ранее при исследовании аксиальных алгебр, определённых в [3]. Результаты доступны в виде препринта arXiv: 2309.05237.

- [1] K. Meyberg, J.M. Osborn, Pseudo-composition algebras, Math Z., 214:1 (1993), 67–77.
- [2] I.M.H. Etherington, Genetic algebras, Proc. Roy. Soc. Edinburgh, 59 (1939), 242–258.
- [3] J.I. Hall, F. Rehren and S. Shpectorov, *Universal axial algebras and a theorem of Sakuma*, J. Algebra, **421** (2015), 394–424.