អង្គធាតុពាក់កណ្តាលចំលង (Semiconductors)

បណ្ឌិត ឃុន គឺមហិង

បញ្ជីអត្ថបទ

- ១- សេចក្តីផ្តើម
- ២-អង្គធាតុចំលង
- ៣-អង្គធាតុពាក់កណ្ដាលចំលង
- ៤- សឺមីកង់ឌុចទ៏រប្រភេទ N
- ៥- សឺមីកង់ឌុចទ័រប្រភេទ P
- ៦-លំហារ នៃអេឡិចត្រុង និងរន្ធអេឡិចត្រុង
- ៧- បញ្ញាប់ P-N

សេចក្តីផ្តើម

- 🗆 អង្គធាតុចំលងអគ្គិសនី (Conductor)
- 🗖 អ៊ីសូឡង់ (Insulator)
- **ា** អង្គធាតុពាក់កណ្តាលចំលង

(Semiconductors)

Conductor Material	Resistivity (Ohm meters @ 20°C)
Silver	1.64 × 10 ⁻⁸
Copper	1.72 × 10 ⁻⁸
Aluminum	2.83 × 10 ⁻⁸
Tungsten	5.50 × 10 ⁻⁸
Nickel	7.80 × 10 ⁻⁸
Iron	12.0 × 10 ⁻⁸
Constantan	49.0 × 10 ⁻⁸
Nichrome II	110 × 10 ⁻⁸

Figure 10-41. Resistivity table.

អង្គធាតុពាក់កណ្តាលចំលង (Semiconductors)

សឺមីកុងឌុចទ័រគឺជាអង្គធាតុពាក់កណ្ដាលចំលង ដែលមាន
 រេស៊ីស្ទីវិតេស្ថិតនៅចន្លោះអង្គធាតុចំលង និង អ៊ីសូឡង់ ។

អង្គធាតុសឺមីកុងឌុចទ័រ មាន៖

- ស៊ីលីហ្ស៊ម (Silicon) Si
- ហៃមានី៍ញ៉ូម (Germanium) Ge

ស៊ីលីហ្សូម (Silicon) Si

ហែមានីញ៉ូម (Germanium) Ge

□ សម្ព័ន្ធអ៊ីយ៉ូនិច (ionic bond)

សម្ព័ន្ធអ៊ីយ៉ូនិច គឺជាប្រភេទមួយរបស់សម្ព័ន្ធគីមីដែល កើតឡើងរវាងអ៊ីយ៉ុងពីរមានបន្ទុកផ្ទុយគ្នា ដោយកំលាំង ទំនាញអេឡិចត្រូស្តាទិច និងអន្តរកម្មបឋមនេះកើតឡើង នៅក្នុងសមាសធាតុអ៊ីយ៉ុង។

សម្ព័ន្ធកូវ៉ាំឡង់ (Covalent bond)

□សម្ព័ន្ធកូវ៉ាឡង់រឹសម្ព័ន្ធម៉ូលេគុល គឺជាសម្ព័ន្ធ គីមីដែលកើតឡើង ដោយការដាក់ទុនអេ ឡិចត្រុង រវាងអាតូជាច្រើន។

Bonding Basics Practice

អង្គធាតុពាក់ **ចំ**លង

Covalent Bonds

$$O = Si = O$$

SiO₂

Material	Resitivity, $\rho(\Omega-m)$	Temperature Coefficient, α(c°)-1
Conductors	A	51 34 70 E
Silver	1.59×10 ⁻⁸	0.0061
Copper	1.68×10 ⁻⁸	0.0068
Gold	2.44×10 ⁻⁸	0.0034
Aluminium	2.65×10 ⁻⁸	0.00429
Tungsten	5.6×10 ⁻⁸	0.0045
Iron	9.71×10 ⁻⁸	0.00651
Platinum	10.6×10 ⁻⁸	0.003927
Mercuy	98×10 ⁻⁸	0.0009
Nichrome(Ni,Fe,Cr alloy)	100×10 ⁻⁸	0.0004
Semiconductors		
Carbon(Graphite)	(3-60)×10 ⁻⁵	-0.0005
Germanium	(1-500)×10 ⁻³	-0.05
Silicon	0.1 - 60	-0.07
Insulators		
Glass	10 ⁹ -10 ¹²	
Hard rubber	10 ¹³ -10 ¹⁵	

- ចំពោះក្រាមសឺមីកុងឌុចទ័រសុទ្ធ មានកំរិតចំលងតិច តូចបំផុត ហើយនៅសីតុណ្ហភាពខ្ពស់ វាអាចចំលង បានខ្លះៗ។
- ដើម្បីអោយសឺមីកុងឌុចទ័រអាចចំលងបានល្អគេត្រូវផ
 លិតក្រាមពីរប្រភេទ គឺសឺមីកុងឌុចទ័រប្រភេទP និង
 ប្រភេទN ។

បញ្ញាប់ P-N

charge separation

ប៉ូលកម្មស្រប

Forward bias

ប៉ូលកម្មច្រាស

Reverse biased p-n junction

កិច្ចការផ្លុះ

- 1- ចូរអោយនិយមន័យចំពោះ ÷ អង្គធាតុចំលង អង្គធាតុអ៊ីសូឡង់ និង អង្គធាតុសីមីកុងខុចទ័រ ?
- 2- ចូរអោយនិយមន័យចំពោះ ÷ សម្ព័ន្ធកូវ៉ាឡង់ សម្ព័ន្ធអ៊ីយ៉ូនិច និង ស្រទាប់ P-N junction ?
- 3- ចូរពិនិត្យពីទំរង់អាតូមរបស់ទង់ដែង ហើយពិភាក្សាថា ហេតុអ្វីបានជាវាជាអង្គធាតុចំលងល្អ និងទំរង់ អាតូម របស់វា គីខុសពីស៊ែម៉ាញ៉ូម និងស៊ីលីស្យូម ?
- 4- ចូរពន្យល់ ពីការបង្កើតក្រាមសីមីកុងឌុចទ័រប្រភេទ P និងក្រាមសីមីកុងឌុចទ័រប្រភេទ N ?

កិច្ចការផ្ទះ

- 5- តើចាតុ Majority carriers និងចាតុ Minority carriers នៅក្នុងក្រាមសីមីកុងឌុចទ័រប្រភេទ P និង នៅក្នុងក្រាមសីមីកុងឌុចទ័រប្រភេទ N គឺជាអ្វី ហើយមានលក្ខណៈ ដូចម្ដេច ?
- 6- ចូរពន្យល់យ៉ាងខ្លី ចំពោះចលនារបស់អេឡិចត្រុង និង ហួល ?
- 7- ច្ចរបង្ហាញ ពីប៉ូលកម្ម ចំពោះ ក្រាមស៊ីមីកុងឌុចទ័រប្រភេទ P និងក្រាមស៊ីមីកុងឌុចទ័រប្រភេទ N ?
- 8- ចូរពន្យល់ពីប៉្នែលកម្ម ចំពោះស្រទាប់ P-N Junction ?

