Some Useful Numbers on the Engineering Properties of Materials (Geologic and Otherwise) GEOL 615

Coefficient of sliding friction (µ)

For most rocks, μ varies between 0.8 and 0.5. A value of 0.60 would be a good number for general use.

Glass on glass 0.4 Rubber on concrete 0.75 Steel on steel 0.55

Angle of internal friction (\phi)

Rock 30° Sand 30-40° Gravel 35° Silt 34° 20° Clay Loose sand 30-35° Medium sand 40° Dense sand 35-45° Gravel with some sand 34-48° Silt 26-35°

Because the angle of internal friction, ϕ , is typically around 25-35°, the coefficient of internal friction (tan ϕ) is 0.5 to 0.7

Cohesive strength (τ_0)

Rock 10,000 kPa Silt 75 kPa Clay 10-20 kPa Very soft clay 0- 48 kPa Soft clay 48-96 kPa Medium clay 96-192 kPa Stiff clay 192-384 kPa Very stiff clay 384-766 kPa Hard clay >766 kPa

Density (ρ)

 1800 kg/m^3 Sandy soil 2000 kg/m^3 Gravel soil 2100 kg/m^3 Silty soil 1900 kg/m^3 Clay soil 3000 kg/m^3 Mafic igneous rocks 2700 kg/m^3 Felsic igneous rocks 2700 kg/m^3 Metamorphic rocks Sedimentary rocks 2600 kg/m^3 2700 kg/m^3 Granite 2500 kg/m^3 Shale

 $\begin{array}{lll} Limestone & 2700~kg/m^3 \\ Chalk & 2100~kg/m^3 \\ Sandstone & 2000~kg/m^3 \\ Steel & 8000~kg/m^3 \\ Concrete & 1680-3000~kg/m^3 \\ Water & 1000~kg/m^3 \end{array}$

Unit weight (γ) (recall that $\gamma = \rho g$)

"Rock" 26.5 kN/m³
Gravel soil 19 kN/m³
Sandy soil 16 kN/m³
Silty soil 20 kN/m³
Clay soil 18 kN/m³
Water 9.8 kN/m³
Concrete 23 kN/m³
Steel 78 kN/m³

Porosity

<u> </u>		
Gravel	30-40%	
Sand	20-35 %	
Silt	35-50 %	
Clay	33-60 %	
Sand and gravel, mixed	20-35 %	
Glacial till	10-20 %	
Sandstone	5-30%	
Limestone	5-30%	
Shale	10-30 %	
Fractured igneous rock	10-40%	
Granite	0.5-1.5 %	-
Diabase	0.1-0.5 %	
Gabbro	0.1-0.2 %	Ĺ
Basalt	0.1-1.0 %	III
Gneiss	0.5-1.5 %	101
Marble	0.5-2 %	Ire
Slate	0.1-0.5 %	(Uniractured)
Quartzite	0.1-0.5 %	į

Permeability

\mathcal{C}	10 ⁻² to 1 cm/sec
Well-sorted sands, glacial outwash	
Silty sands, fine sands	10^{-5} to 10^{-3} cm/sec
Silt, sandy silts, clayey sands, till	10 ⁻⁶ to 10 ⁻⁴ cm/sec
Clay	10 ⁻⁹ to 10 ⁻⁶ cm/sec

Soil Sensitivity

Insensitive clays <1
Low sensitive clays 1-2
Medium sensitive clays 2-4
Sensitive clays 4-8
Extra sensitive clays 8-16
Quick clay >16

Compressibility (C_c)

Soft clay >0.3 Clay 0.3-0.15 Silty clay 0.15-0.075 Sandy clay <0.075

Poisson's ratio (v)

Sandy Soil 0.25-0.4
Gravel soil 0.15-0.35
Granite 0.1-0.3
Sandstone 0.21-0.38
Shale 0.2-0.4
Limestone 0.18-0.33
Chalk 0.35
Marble 0.06-0.22
Steel 0.3

Young's Modulus (E)

Clay soil 10-200 MPa (soft to stiff)
Sandy soil 10-50 MPa (loose to compact)
Gravel soil 70-170 MPa (loose to compact
Soft clay 1-3 MPa

Hard clay 6-14 MPa
Loose sand 10-28 MPa
Dense sand 35-69 MPa
Granite 10-70 GPa
Sandstone 1-20 GPa
Shale 1-70 GPa
Limestone 15-55 GPa
Marble 50-70 GPa
Steel 200 GPa
Glass 45 GPa

Wood 6,000-15,000 MPa

Bulk modulus (K)

Granite 50 GPa Shale 10 GPa Limestone 65 GPa Chalk 9 GPa Sandstone 0.7 GPa

Modulus of rigidity (μ)

Granite 24 GPa
Shale 1.6 GPa
Limestone 24 GPa
Chalk 3.2 GPa
Sandstone 0.4 GPa
Steel 80 GPa
Wood 4 GPa
Glass 19 GPa

Lithostatic pressure gradient

26.46 MPa/km (for $\rho = 2.70$)

Hydrostatic pressure gradient

9.8 MPa/km

Unconfined compressive strength

Granite 100-250 MPa Basalt 100-300 MPa Quartzite 150-300 MPa Sandstone 20-170 MPa Shale 5-100 MPa Limestone 30-250 MPa Marble 35-60 MPa Slate 100-200 MPa Quartzite 150-300 MPa Concrete 14-42 MPa High strength concrete 70 MPa Steel 250 MPa Wood 5 MPa

Field test for compressive strength of soils and rocks

Term	Diagnostic features Undrained c	ompressive strength
Very soft soil	Exudes between fingers when squeezed	<25 kPa
Soft soil	Easily indented by fingers	25-50 kPa
Firm soil	Indented only by strong finger pressure	50-100 kPa
Stiff soil	Indented by thumb pressure	100-200 kPa
Very stiff soil	Indented by thumb nail	200-400 kPa
Hard soil	Difficult to indent by thumbnail	400-1000 kPa
Very strong rock	Very hard rock, requires repeated hammer blows	>100 MPa
Strong rock	Hand specimen can be broken with single blow	50-100 MPa
Mod. strong rock	5 mm indentations with hammer pick end	12.5-50 MPa
Mod. weak rock	Too hard to cut by hand	5-12.5 MPa
Weak rock	Crumbles with blows of pick end of hammer	1.25-5 MPa

Shear strength

Granite 14-50 MPa Diabase 25-60 MPa **Basalt** 20-60 MPa Slate 15-30 MPa Quartzite 20-60 MPa Sandstone 8-40 MPa Shale 3-30 MPa Limestone 10-50 MPa Gravel 200-600 kPa Sand 100-300 kPa 0-25 kPa Very soft clay Soft clay 25-50 kPa Medium clay 50-100 kPa Stiff clay 100-200 kPa Very Stiff clay 200-400 kPa Hard clay >400 kPa Wood 10 MPa Concrete 2 MPa Steel 230 MPa

Tensile strength

Granite 7-25 MPa Basalt 10-30 MPa Gneiss 5-20 MPa **Ouartzite** 10-30 MPa Sandstone 4-25 MPa Shale 2-10 MPa Limestone 5-25 MPa Marble 15 MPa Steel 400 MPa High strength steel 750 MPa Cast iron 170 MPa Aluminum 450 MPa Concrete 5 MPa Rubber 15 MPa

P-wave velocity

Soil 100-500 m/sec Glacier ice 3000-4000 m/sec Clay (dry) 200-1400 m/sec Clay (wet) 1200-2200 m/sec Alluvium 3000-5000 m/sec Water 1450-1500 m/sec Sand 400-2300 m/sec Oil 1300 m/sec Air 320-340 m/sec 3000-5900 m/sec Granite Basalt 4500-6500 m/sec

 Quartzite
 5000-6500 m/sec

 Sandstone
 1400-4000 m/sec

 Shale
 1400-3000 m/sec

 Limestone
 2500-6000 m/sec

 Marble
 3500-6000 m/sec

 Salt
 4500 m/sec

S-wave velocity

Clay (dry) 410 m/sec Clay (saturated) 390 m/sec Alluvium 1900 m/sec

Water 0 m/sec (because no shear strength)
Oil 0 m/sec (because no shear strength)
Air 0 m/sec (because no shear strength)

Limestone 3100 m/sec
Sandstone 2400 m/sec
Dolomite 3000 m/sec
Shale 2600 m/sec
Granite 3400-3600 m/sec
Dolerite 3500-3600 m/sec
Salt 2700 m/sec

Resistivity

 $5 \times 10^7 - 10^9$ Ohm-m Marble 10¹¹-10¹⁴ Ohm-m 10¹²-10¹⁴ Ohm-m Mica Quartz $1-2 \times 10^6$ Ohm-m Slate $2 \times 10^{14} \text{ Ohm-m}$ Petroleum Distilled water 5000 Ohm-m Saltwater 2 ppm 3.4 Ohm-m Saltwater 10 ppm 0.72 Ohm-m Saltwater 20 ppm 0.38 Ohm-m Saltwater 100 ppm 0.09 Ohm-m