Individual-Level Fatality Prediction of COVID-19 Patients

Xia ZHENG, Alex LIU, Haoyu SHI

March 14, 2021

Introduction

Introduction

- ► COVID-19 has impacted everyone but not equally.
- ► Are there any association between different symptoms and pre-existing health conditions?
- ▶ What are the predominating symptoms and chronic diseases that may lead one to die from COVID-19?
- ▶ Provide better healthcare based on outcome prediction of a patient

Data

- ► Wolfram, "Patient Medical Data for Novel Coronavirus COVID-19" Dec, 2019 April, 2020
- contains several variables for age, sex, symptoms, chronic disease, and binary code for death
- select patients with all the information recorded

Can onset of some symptoms imply the onset of others?

PCA solution - clear separation

Correlation among symptoms

Correlation among symptoms

Positive correlated symptoms:

- ▶ nausea, weakness/pain, other symptoms
- multiple chronic diseases, cardiac symptoms
- gastrointestinal symptoms, orthopedic chronic disease

Surprising discover:

► 64.76% symptomatic patients experience fever. Fever is a relatively independent symptom but it is strongly negative correlated to cardiac symptoms. Fatality Prediction using Tree-Based Learners

A Simple Classification Tree

9/21

A Pruned Classification Tree

Pruned Classification tree predicting fatality

10/21

ROC Curve

Variable Importance Plot

Bagged Trees

fatal_bag

Random Forests

fatal_rf

Comparing the Tree-Based Learners

Model	Prediction Accuracy on	
	Test Set	
Simple Classification Tree	0.9440	
Pruned Tree	0.9483	
Bagged Trees	0.9310	
Random Forests	0.9526	

Fatality Prediction Results from Other Methods

SVM

- ► SVM provides non-binary values
- ▶ 0.5 cut-off
- ▶ hard to interpret than tree

17/21

Comparing KNN (K=6) and SVM

Statistics	KNN (K=6)	SVM
Sensitivity	0.7931	0.7931
Specificity	0.9753	0.9704
Precision	0.8214	0.7931
Accuracy	0.9526	0.9483

Conclusion

Result and Discussion

- Our models are very consistent in terms of prediction and interpretation
- ▶ Very high specificity but lower sensitivity. Need to be cautious to merely rely on our machine learning models for evaluation.
- ► Chronic diseases, such as hypertension, diabetes, and cardiac, are predominant risk factors associated with the death for COVID-19 cases.
- ► Provide better prevention and healthcare for old people with chronic diseases.

Limitation and Improvement

- ▶ Not very sure about ChronicDiseaseQ and NonChronic in our data due to lack of sufficient documentation. However, dropping these two variables makes the sensitivities in our models lower. Trade-off between accuracy and interpretation.
- Only use patients with all records may have bias.
- ► In the early stage, many death with COVID-19 might not be recorded. Most early cases are clustered in certain regions, which may not be generalized to all populations.
- ► May contact to healthcare system/medical institution for more reliable and up-to-date records