Automatic Committed Belief Tagging

presented by Chris Hidey

Columbia University

February 26, 2015

Overview

- Background
- Corpus
- Methodology
- Results
- Critique

Background

Cognitive State

- Belief
- Desire
- Intention

Background

Cognitive State

- Belief
- Desire
- Intention

Examples

Desire and ¬ Belief

I know John won't be here but I wouldn't mind if he were

Background

Cognitive State

- Belief
- Desire
- Intention

Examples

- Desire and ¬ Belief
 I know John won't be here but I wouldn't mind if he were
- Belief and ¬ Belief
 #John won't be here but nevertheless I think he may be here.

10,000 tokens annotated for belief

Verbal Propositions

Verb

Republican leader Bill Frist said the Senate was hijacked.

10,000 tokens annotated for belief

Verbal Propositions

Verb

Republican leader Bill Frist said the Senate was hijacked.

Nominal/Adjectival/Prepositional predicate
 Republican leader Bill Frist said the Senate was useless.

Belief Tags

Committed belief (CB)
 GM has laid off workers.

Belief Tags

- Committed belief (CB)

 GM has laid off workers.
- Non-committed belief (NCB)
 GM may lay off workers.

Belief Tags

- Committed belief (CB)

 GM has laid off workers.
- Non-committed belief (NCB)
 GM may lay off workers.
- Not applicable (NA)
 Some wish GM would lay off workers.

Belief Tags

- Committed belief (CB)

 GM has laid off workers.
- Non-committed belief (NCB)
 GM may lay off workers.
- Not applicable (NA)
 Some wish GM would lay off workers.
- Other (O)

Belief Tags

- Committed belief (CB)
 GM has laid off workers.
- Non-committed belief (NCB)
 GM may lay off workers.
- Not applicable (NA)
 Some wish GM would lay off workers.
- Other (O)

Subtasks

- Identifying propositions (binary classification)
- Tagging propositions (3-way classification)

Methodology

Inference

- Joint Inference
 - Support Vector Machine (SVM) Chunker
 - Conditional Random Field (CRF)
- Pipeline

Methodology

Inference

- Joint Inference
 - Support Vector Machine (SVM) Chunker
 - Conditional Random Field (CRF)
- Pipeline

Feature Engineering

- Lexical
- Syntactic

Lexical Features

Derived without parsing

Informative

- numeric
- POS
- regular/modal/auxiliary

Uninformative

- lemma
- stem

Syntactic Features

Derived from dependency parse

Informative

- infinitive form
- reporting ancestor
- parent POS
- child
 - perfect tense
 - wh-word
 - auxilary/modal

Uninformative

- parent lemma/stem
- supertags

Experiments

SVM			
Kernel:	quadratic	Features	F1-score
Slack:	c = 0.5	Lexical	56.9
Context Width:	2	Lexical and Syntactic	64.0

Experiments

SVM			
Kernel:	quadratic	Features	F1-score
Slack:	c = 0.5	Lexical	56.9
Context Width:	2	Lexical and Syntactic	64.0

CRF			
Order:	1	Features	F1-score
Gaussian Variance:	1	Lexical	49.6
		Lexical and Syntactic	59.0

Experiments

SVM			
Kernel:	quadratic	Features	F1-score
Slack:	c = 0.5	Lexical	56.9
Context Width:	2	Lexical and Syntactic	64.0

CRF			
Order:	1	Features	F1-score
Gaussian Variance:	1	Lexical	49.6
		Lexical and Syntactic	59.0

Pipeline				
SVM binary tagger	Features	F1-score		
Context Width: 2	Lexical and Syntactic	46.1		
SVM 3-way classifier				
trained on gold data				

- Clarity?
 - Well-written and understandable
 - More explanation of features and parameters
 - Confusion matrix or error analysis

- Clarity?
 - Well-written and understandable
 - More explanation of features and parameters
 - Confusion matrix or error analysis
- Methodology/Evaluation?
 - Additional baselines
 - Training/testing
 - Statistical significance

- Clarity?
 - Well-written and understandable
 - More explanation of features and parameters
 - Confusion matrix or error analysis
- Methodology/Evaluation?
 - Additional baselines
 - Training/testing
 - Statistical significance
- Originality?

- Clarity?
 - Well-written and understandable
 - More explanation of features and parameters
 - Confusion matrix or error analysis
- Methodology/Evaluation?
 - Additional baselines
 - Training/testing
 - Statistical significance
- Originality?
- Reproducibility?
 - Depends on code and data availability
 - Parameter tuning
 - Training/evaluation/testing

- Clarity?
 - Well-written and understandable
 - More explanation of features and parameters
 - Confusion matrix or error analysis
- Methodology/Evaluation?
 - Additional baselines
 - Training/testing
 - Statistical significance
- Originality?
- Reproducibility?
 - Depends on code and data availability
 - Parameter tuning
 - Training/evaluation/testing
- Impact?

- Positives?
 - Well-defined problem, high IAA
 - Not too domain-specific
 - Comparison of pipeline versus joint inference

- Positives?
 - Well-defined problem, high IAA
 - Not too domain-specific
 - Comparison of pipeline versus joint inference
- Negatives?
 - Requires dependency parsing
 - Language-specific