Planche nº 5. Réduction

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Exercice $n^o 1$ (**):

Soit
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
. Pour $\mathfrak n$ entier relatif donné, calculer $A^{\mathfrak n}$ par trois méthodes différentes.

Exercice nº 2 (***):

Résoudre dans
$$\mathcal{M}_3(\mathbb{R})$$
 l'équation $X^2=A$ où $A=\left(\begin{array}{ccc} 3 & 0 & 0 \\ 8 & 4 & 0 \\ 5 & 0 & 1 \end{array}\right).$

Exercice no 3 (**):

$$\mathrm{Soit}\ A = \left(\begin{array}{ccc} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & 8 & -2 \end{array} \right).$$

- 1) Vérifier que A n'est pas diagonalisable.
- 2) Déterminer $Ker(A I)^2$.
- 3) Montrer que A est semblable à une matrice de la forme $\begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & 0 & b \end{pmatrix}$
- 4) Calculer Aⁿ pour n entier naturel donné.

Exercice nº 4 (***):

Soit f qui à P élément de $\mathbb{R}_{2n}[X]$ associe $f(P)=(X^2-1)P'-2nXP.$

Vérifier que f est un endomorphisme de $\mathbb{R}_{2n}[X]$ puis déterminer les valeurs et vecteurs propres de f. f est-il diagonalisable?

Exercice no 5 (***):

Soit $E = \mathbb{R}_3[X]$. Pour P élément de E, soit f(P) le reste de la division euclidienne de AP par B où $A = X^4 - 1$ et $B = X^4 - X$. Vérifier que f est un endomorphisme de E puis déterminer Kerf, Imf et les valeurs et vecteurs propres de f.

Exercice nº 6 (***):

Soit A une matrice rectangulaire de format (p,q) et B une matrice de format (q,p). Comparer les polynômes caractéristiques de AB et BA.

Exercice nº 7 (*** I):

Soient $\mathfrak u$ et $\mathfrak v$ deux endomorphismes d'un espace vectoriel de dimension finie. On suppose que $\mathfrak u$ et $\mathfrak v$ commutent et que $\mathfrak v$ est nilpotent. Montrer que $\det(\mathfrak u+\mathfrak v)=\det(\mathfrak u)$.

Exercice nº 8 (**** I):

Soit A une matrice carrée de format n.

Montrer que A est nilpotente si et seulement si $\forall k \in [1, n]$, Tr $(A^k) = 0$.

Exercice nº 9 (*** I):

Soient f et g deux endomorphismes d'un espace vectoriel de dimension finie vérifiant fg - gf = f. Montrer que f est nilpotent.

Exercice no 10 (****):

Soit E un C-espace vectoriel de dimension finie non nulle.

Soient u et v deux endomorphismes de E tels que $\exists (\alpha,\beta) \in \mathbb{C}^2 / uv - vu = \alpha u + \beta v$. Montrer que u et v ont un vecteur propre en commun.

Exercice no 11 (***):

Soit $E = SL_2(\mathbb{Z}) = \{\text{matrices carrées de format 2 à coefficients dans } \mathbb{Z} \text{ et de déterminant 1} \}.$

- 1) Montrer que (E, \times) est un groupe.
- 2) Soit A un élément de E tel que $\exists p \in \mathbb{N}^* / A^p = I_2$. Montrer que $A^{12} = I_2$.

Exercice no 12 (****):

Montrer que toute matrice de trace nulle est semblable à une matrice de diagonale nulle.

Exercice n° 13 (****):

Soient A un élément de $\mathcal{M}_n(\mathbb{C})$ et M l'élément de $\mathcal{M}_{2n}(\mathbb{C})$ défini par blocs par $M = \begin{pmatrix} A & 4A \\ A & A \end{pmatrix}$.

Calculer det(M). Déterminer les éléments propres de M puis montrer que M est diagonalisable si et seulement si A est diagonalisable.

Exercice no 14 (****):

Soient a et b deux réels non nuls tels que
$$|a| \neq |b|$$
. Soit $A = \begin{pmatrix} 0 & b & \dots & b \\ a & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ a & \dots & a & 0 \end{pmatrix}$.

Montrer que les images dans le plan complexe des valeurs propres de A sont cocycliques. (Indication : pour calculer χ_A ,

considérer
$$f(x) = \begin{vmatrix} X+x & -b+x & \dots & -b+x \\ -a+x & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & -b+x \\ -a+x & \dots & -a+x & X+x \end{vmatrix}$$
.)

$$\mathrm{Soit}\ A=(\alpha_{i,j})_{1\leqslant i,j\leqslant n}\in \mathscr{M}_n(\mathbb{R})\ \mathrm{telle}\ \mathrm{que}\ \forall (i,j)\in [\![1,n]\!]^2,\ \alpha_{i,j}\in [0,1]\ \mathrm{et}\ \forall i\in [\![1,n]\!],\ \sum_{j=1}^n\alpha_{i,j}=1.$$

- 1) Montrer que 1 est valeur propre de A.
- 2) Soit λ une valeur propre de A.
 - a) Montrer que $|\lambda| \leq 1$.
 - b) Montrer qu'il existe un réel ω de [0,1] tel que $|\lambda \omega| \le 1 \omega$. Conséquence géométrique?

Exercice no 16 (**):

Soit A une matrice antisymétrique réelle. Etudier la parité de son polynôme caractéristique.

Exercice no 17 (*):

Soit
$$A = \begin{pmatrix} 0 & \dots & 0 & 1 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \ddots & \ddots & \vdots \\ 1 & 0 & \dots & 0 \end{pmatrix}$$
. Montrer que A est diagonalisable.

Exercice nº 18 (*** I) : (déterminant circulant).

$$\textbf{1) Soit } J_n = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & 0 \\ 0 & & & \ddots & 1 \\ 1 & 0 & \dots & \dots & 0 \end{pmatrix} \text{ (de format } n \geqslant 3\text{). Diagonaliser } J_n.$$

$$\textbf{2) En déduire la valeur de} \begin{vmatrix} a_0 & a_1 & \dots & a_{n-2} & a_{n-1} \\ a_{n-1} & a_0 & a_1 & \dots & a_{n-2} \\ \vdots & & \ddots & \ddots & \vdots \\ a_2 & & \ddots & a_0 & a_1 \\ a_1 & a_2 & \dots & a_{n-1} & a_0 \end{pmatrix} .$$

2) En déduire la valeur de
$$\begin{vmatrix} a_{n-1} & a_0 & a_1 & & a_{n-2} \\ \vdots & & \ddots & \ddots & \vdots \\ a_2 & & \ddots & a_0 & a_1 \\ a_1 & a_2 & \dots & a_{n-1} & a_0 \end{vmatrix}$$

Exercice nº 19 (*** I): (matrices de permutations).

Pour $\sigma \in S_n$, $n \geqslant 2$, on définit la matrice P_{σ} par $P_{\sigma} = (\delta_{i,\sigma(j)})_{1 \leqslant i,j \leqslant n}$.

- 1) Calculer $\det(P_{\sigma})$ pour tout $\sigma \in S_n$.
- **2) a)** Montrer que $\forall (\sigma, \sigma') \in S_n^2$, $P_{\sigma} \times P_{\sigma'} = P_{\sigma \circ \sigma'}$.

2

 $\mathbf{b)} \text{ On pose } G = \{P_\sigma, \ \sigma \in S_n\}. \text{ Montrer que } (G, \times) \text{ est un groupe isomorphe à } S_n.$

- 3) Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{C})$. Calculer AP_{σ} .
- 4) Trouver les valeurs propres d'une matrice de permutation (on pourra utiliser le résultat : toute permutation se décompose de manière unique à l'ordre près des facteurs en produit de cycles à supports disjoints).

Exercice nº 20 (*** I) : (Décomposition de DUNFORD).

Soit E un \mathbb{K} -espace vectoriel de dimension finie non nulle et f un endomorphisme de E dont le polynôme caractéristique est scindé sur \mathbb{K} .

Montrer qu'il existe un couple d'endomorphismes (d, n) et un seul tel que d est diagonalisable, n est nilpotent, n et d commutent, et f = d + n.

Exercice n° 21 (**):

Trouver une matrice carrée A vérifiant $A^4 - 3A^3 + A^2 - I = 0$.

Exercice n° 22 (** I):

Calculer
$$\begin{vmatrix} a & b & \dots & b \\ b & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \dots & b & a \end{vmatrix}.$$

Exercice nº 23 (**):

Soit A une matrice carrée de format 2 telle que A^2 est diagonalisable et $TrA \neq 0$. Montrer que A est diagonalisable dans \mathbb{C} .

Exercice nº 24 (***):

 $E = C^0(\mathbb{R}, \mathbb{R})$. Pour f élément de E, $\varphi(f)$ est l'application définie par :

$$\forall x \in \mathbb{R}^*, \ (\phi(f))(x) = \frac{1}{x} \int_0^x f(t) \ dt \ \mathrm{si} \ x \neq 0 \ \mathrm{et} \ (\phi(f))(0) = f(0).$$

- 1) Montrer que φ est un endomorphisme de E.
- 2) Etudier l'injectivité et la surjectivité de φ .
- 3) Déterminer les éléments propres de φ .

Exercice n° 25 (*** I):

Sur E un \mathbb{R} -espace vectoriel. On donne trois endomorphismes f, u et v tels qu'il existe deux réels λ et μ tels que pour $k \in \{1,2,3\}$, $f^k = \lambda^k u + \mu^k v$. Montrer que f est diagonalisable.

Exercice n° 26 (** I):

Résoudre dans
$$\mathcal{M}_3(\mathbb{C})$$
 l'équation $X^2=\left(egin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right).$

Exercice nº 27 (***):

Soient f et g deux endomorphismes d'un \mathbb{C} -espace vectoriel de dimension finie non nulle qui commutent. Montrer que f et g sont simultanément trigonalisables.

Exercice nº 28 (**):

Soient A et B deux matrices carrées complexes de format n. Montrer que A et B n'ont pas de valeurs propres communes si et seulement si la matrice $\chi_A(B)$ est inversible.

Exercice no 29 (**):

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie et P un polynôme. Montrer que P(f) est inversible si et seulement si P et χ_f sont premiers entre eux.

Exercice no 30 (**): (ESTP1994)

Soit $M_{a,b} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 1 & b \\ 0 & 0 & 0 & 1 \end{pmatrix}$. Peut-on trouver deux matrices distinctes semblables parmi les quatre matrices $M_{0,0}$,

Exercice no 31 (****):

Trouver A dans $\mathcal{M}_n(\mathbb{R})$ telle que la comatrice de A soit $\begin{pmatrix} 1 & 0 & \dots & 0 \\ 2 & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ n & 0 & \dots & 0 \end{pmatrix}.$

Exercice no 32 (**):

Soit
$$A = \begin{pmatrix} 0 & \dots & 0 & a_1 \\ \vdots & & \vdots & \vdots \\ 0 & \dots & 0 & a_{n-1} \\ a_1 & \dots & a_{n-1} & a_n \end{pmatrix}$$
 où a_1, \dots, a_n sont n nombres complexes $(n \ge 2)$. A est-elle diagonalisable?

Exercice no 33 (***):

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est A. Trouver les sous espaces stables par f dans chacun des cas suivants :

1)
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 2) $A = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$ 3) $A = \begin{pmatrix} 6 & -6 & 5 \\ -4 & -1 & 10 \\ 7 & -6 & 4 \end{pmatrix}$.

Exercice no 34 (***):

Résoudre dans $\mathcal{M}_3(\mathbb{C})$ l'équation $X^2=\left(\begin{array}{ccc}1&3&-7\\2&6&-14\\1&3&-7\end{array}\right).$

Exercice nº 35:

Commutant de $\begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$.

Exercice no 36 (**):

Soit f un endomorphisme d'un espace vectoriel E de dimension finie non nulle et F un sous-espace non nul de E stable par f. On suppose que f est diagonalisable. Montrer que la restriction de f à F est un endomorphisme diagonalisable de F.

Exercice nº 37 (** I):

Soit A une matrice carrée réelle de format $n \ge 2$ vérifiant $A^3 + A^2 + A = 0$. Montrer que le rang de A est un entier pair.