Spring 2018: STA 6448 Advanced Probability and Inference II Lecture 9

Yun Yang

Uniform laws of large numbers via metric entropy

Covering and packing numbers

A way to measure the "size" of a set with infinitely many elements. Recall:

Definition

A metric space $(\mathbb{T},\,\rho)$ consists of a non-empty set \mathbb{T} equipped with a mapping $\rho:\,\mathbb{T}\times\mathbb{T}\to[0,\,\infty)$ satisfying:

- 1. $\rho(\theta, \theta') = 0$ if and only if $\theta = \theta'$;
- 2. It is symmetric: $\rho(\theta, \theta') = \rho(\theta', \theta)$;
- 3. Triangle inequality: $\rho(\theta, \theta'') \leq \rho(\theta, \theta') + \rho(\theta', \theta'')$.

If the first property is replaced with $\rho(\theta,\,\theta)=0$, then $(\mathbb{T},\,\rho)$ is called a pseudometric space.

Examples: Euclidean space $(\mathbb{R}^n, \|\cdot\|_2)$, function space $(L^2[0, 1], \|\cdot\|_\infty)$, function space with pseudometric $\rho(f, g) = \|f - g\|_n = \sqrt{n^{-1} \sum_{i=1}^n [f(x_i) - g(x_i)]^2}$.

Covering number

Definition

An ε -cover of a set $\mathbb T$ w.r.t. a metric ρ is a set $\{\theta^1,\dots,\theta^N\}\subset\mathbb T$ such that for each $\theta\in\mathbb T$, there exists some $i\in\{1,\dots,N\}$, $\rho(\theta,\,\theta^i)\leq \varepsilon$. The ε -covering number $N(\varepsilon,\,\mathbb T,\,\rho)$ is the smallest cardinality of all ε -covers.

A set $\mathbb T$ is **totally bounded** if for all $\varepsilon>0, N(\varepsilon,\,\mathbb T,\,\rho)<\infty$ (compact?).

The function $\varepsilon \mapsto \log N(\varepsilon, \mathbb{T}, \rho)$ is the **metric entropy** of \mathbb{T} w.r.t. ρ .

 $N(\varepsilon, \mathbb{T}, \rho)$ is non-increasing in ε . Often interested in the growth of metric entropy as $\varepsilon \to 0_+$. If $\lim_{\varepsilon \to 0_+} \log N(\varepsilon)/\log(1/\varepsilon)$ exists, it is called the **metric dimension**.

Example: Covering number of unit cubes

Example

Consider interval $[-1,\,1]$ in $\mathbb{R},$ equipped with the Euclidean metric $|\cdot|.$ Then we have

$$N(\varepsilon, [-1, 1], |\cdot|) \le \frac{1}{\varepsilon} + 1$$
, for all $\varepsilon > 0$.

More generally, for the d-dim cube $[-1, 1]^d$, we have $N(\varepsilon, [-1, 1]^d, \|\cdot\|_{\infty}) \leq \left(\frac{1}{\varepsilon} + 1\right)^d$, and its metric dimension is d.

Packing number

Definition

An ε -packing of a set $\mathbb T$ w.r.t. a metric ρ is a set $\{\theta^1,\dots,\theta^M\}\subset\mathbb T$ such that $\rho(\theta^i,\,\theta^j)>\varepsilon$ for all distinct pairs $(i,j)\in\{1,\dots,M\}^2$. The ε -packing number $M(\varepsilon,\,\mathbb T,\,\rho)$ is the largest cardinality of all ε -packings.

Covering and packing relation

Theorem

For all $\varepsilon > 0$, the packing and covering numbers are related by:

$$M(2\varepsilon, \mathbb{T}, \rho) \leq N(\varepsilon, \mathbb{T}, \rho) \leq M(\varepsilon, \mathbb{T}, \rho).$$

Thus, the scalings of the covering and packing numbers are the same.

Example: Packing number of unit cubes

Example

Consider interval $[-1,\,1]$ in $\mathbb{R},$ equipped with the Euclidean metric $|\cdot|.$ Then we have

$$M(2\varepsilon, [-1, 1], |\cdot|) \ge \left|\frac{1}{\varepsilon}\right|, \text{ for all } \varepsilon > 0.$$

Therefore, from the previous theorem, we can conclude

$$\log N(\varepsilon, [-1, 1], |\cdot|) \simeq \log \frac{1}{\varepsilon}, \text{ for all } \varepsilon > 0.$$

More generally, for the *d*-dim cube $[-1, 1]^d$, we have $\log N(\varepsilon, [-1, 1]^d, \|\cdot\|_{\infty}) \simeq d \log(1/\varepsilon)$.

Volume ratios and metric entropy

Theorem

Consider a pair of norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on \mathbb{R}^d , Let \mathbb{B}_1 and \mathbb{B}_2 be the corresponding unit balls. The the ε -covering number of \mathbb{B}_1 in the $\|\cdot\|_2$ norm satisfies

$$\left(\frac{1}{\varepsilon}\right)^{d} \frac{\operatorname{vol}(\mathbb{B}_{1})}{\operatorname{vol}(\mathbb{B}_{2})} \leq N(\varepsilon, \, \mathbb{B}, \, \|\cdot\|_{2}) \leq \frac{\operatorname{vol}(\frac{2}{\varepsilon} \, \mathbb{B}_{1} + \mathbb{B}_{2})}{\operatorname{vol}(\mathbb{B}_{2})}.$$

In particular, if $\|\cdot\|_1 = \|\cdot\|_2 = \|\cdot\|$, then

$$\left(\frac{1}{\varepsilon}\right)^d \leq N(\varepsilon, \, \mathbb{B}, \, \|\cdot\|) \leq \left(\frac{2}{\varepsilon} + 1\right)^d.$$

Example: smoothly parameterized functions

Let \mathcal{F} be a parameterized class of functions

$$\mathcal{F} = \big\{ f_{\theta}(\cdot) : \theta \in \Theta \big\}.$$

- ▶ Let $\|\cdot\|_{\Theta}$ be a norm on Θ and $\|\cdot\|_{\mathcal{F}}$ be a norm on \mathcal{F} .
- ▶ Suppose the mapping $\theta \mapsto f_{\theta}(\cdot)$ is *L*-Lipschitz,

$$||f_{\theta} - f_{\theta'}||_{\mathcal{F}} \le L ||\theta - \theta'||_{\Theta}.$$

Then $N(\varepsilon, \mathcal{F}, \|\cdot\|_{\mathcal{F}}) \leq N(\varepsilon/L, \Theta, \|\cdot\|_{\Theta})$.

- ▶ For example: $f_{\theta} = 1 e^{-\theta|x|}$, $\theta \in [0, 1]$ and $x \in [0, 1]$; $\|\cdot\|_{\theta} = |\cdot|$ and $\|\cdot\|_{\mathcal{F}} = \|\cdot\|_{\infty}$. Then $N(\varepsilon, \mathcal{F}, \|\cdot\|_{\infty}) \leq \lfloor 2/\varepsilon \rfloor + 1$.
- ▶ A function class with a metric entropy that scales as $\log(1/\varepsilon)$ when $\varepsilon \to 0$ is relatively small.

Example: Lipschitz functions on the unit interval

Consider the class of Lipschitz functions

$$\mathcal{F}_L = \{g: [0,1] \to \mathbb{R} \mid g(0) = 0, g \text{ is } L\text{-Lipschitz}\}.$$

Property

The metric entropy of \mathcal{F}_L w.r.t. the sup-norm scales as

$$\log N(\varepsilon, \mathcal{F}_L, \|\cdot\|_{\infty}) \asymp L/\varepsilon, \quad \text{as } \varepsilon \to 0.$$

More generally, for *d*-dimensional *L*-Lipschitz (w.r.t. the sup-norm) function class $\mathcal{F}_L([0,1]^d)$, then

$$\log N(\varepsilon, \mathcal{F}_L([0,1]^d), \|\cdot\|_{\infty}) \asymp \left(L/\varepsilon\right)^d, \quad \text{as } \varepsilon \to 0.$$

It has exponential dependence on the dimension d (curse of dimensionality).

Example: Higher-order smoothness classes

For some integer α and parameter $\gamma \in (0,1]$, consider the class $\mathcal{F}_{\alpha,\gamma}$ of functions $f:[0,1] \to \mathbb{R}$ such that

$$|f^{(j)}(x)| \leq C, \quad \text{for all } x \in [0,1], j=0,1,\ldots,\alpha, \text{ and }$$

$$|f^{(\alpha)}(x)-f^{(\alpha)}(y)| \leq L\,|x-y|^\gamma, \quad \text{for all } x,y \in [0,1].$$

Property

The metric entropy of $\mathcal{F}_{\alpha,\gamma}$ w.r.t. the sup-norm scales as

$$\log N(\varepsilon, \mathcal{F}_L, \|\cdot\|_{\infty}) \asymp (1/\varepsilon)^{\frac{1}{\alpha+\gamma}}, \quad \text{as } \varepsilon \to 0.$$

More generally, we can similarly define d-dimensional class $\mathcal{F}_{\alpha,\gamma}([0,1]^d)$, and

$$\log N(\varepsilon, \mathcal{F}_L([0,1]^d), \|\cdot\|_{\infty}) \asymp \left(1/\varepsilon\right)^{\frac{d}{\alpha+\gamma}}, \quad \text{as } \varepsilon \to 0.$$

Example: Infinite dimensional ellipsoids in $\ell^2(\mathbb{N})$

Given a sequence of non-negative real numbers $\mu_1 \geq \mu_2 \geq \cdots$ such that $\sum_{j=1}^{\infty} \mu_j < \infty$, consider the ellipsoid

$$\mathcal{E} = \left\{ (\theta_j)_{j=1}^{\infty} \, \middle| \, \sum_{i=1}^{\infty} \frac{\theta_j^2}{\mu_j} \le 1 \right\} \subset \ell^2(\mathbb{N}).$$

More concretely, focusing on $\mu_j=j^{-2\alpha}$ for $j=1,2,\ldots$ and some $\alpha>1/2$.

Property

$$\log N(\varepsilon,\,\mathcal{E},\,\|\cdot\|_2) symp \left(rac{1}{arepsilon}
ight)^{1/lpha} \quad ext{for sufficiently small } arepsilon>0.$$

Canonical Rademacher and Gaussian processes

Definition

Fix a set $\mathcal{T} \subset \mathbb{R}^n$.

1. The **canonical Gaussian process** is the stochastic process $\{G_{\theta}: \theta \in \mathcal{T}\}$, where

$$G_{\theta} = \langle g, \theta \rangle = \sum_{i=1}^{n} g_{i} \theta_{i}, \quad g_{i} \stackrel{iid}{\sim} \mathcal{N}(0, 1).$$

2. The **canonical Rademacher process** is the stochastic process $\{R_{\theta}: \theta \in \mathcal{T}\}$, where

$$R_{\theta} = \langle \varepsilon, \theta \rangle = \sum_{i=1}^{n} \varepsilon_{i} \theta_{i}, \quad g_{i} \stackrel{iid}{\sim} \text{uniform over } \{-1, +1\}.$$

Canonical Rademacher and Gaussian processes

Recall the Gaussian complexity of \mathcal{T} is $\mathcal{G}(\mathcal{T}) = \mathbb{E}[\sup_{\theta \in \mathcal{T}} G_{\theta}]$, and the Rademacher complexity of \mathcal{T} is $\mathcal{R}(\mathcal{T}) = \mathbb{E}[\sup_{\theta \in \mathcal{T}} R_{\theta}]$.

Properties

1. (Relation) for $\mathcal{T} \subset \mathbb{R}^d$,

$$\mathcal{R}(\mathcal{T}) \le \sqrt{\frac{\pi}{2}} \mathcal{R}(\mathcal{G}) \le c \sqrt{\log d} \, \mathcal{R}(\mathcal{T}).$$

2. (Finite Lemma) $g=(g_1,\ldots,g_d)$ has sub-Gaussian components with parameters σ^2 . If $\mathcal{A}\subset\mathbb{R}^d$ has finite size, then

$$\mathbb{E} \max_{a \in \mathcal{A}} \langle g, a \rangle \leq \sigma \, \max_{a \in \mathcal{A}} \|a\|_2 \, \sqrt{2 \log |\mathcal{A}|}.$$

Proof: Left as a homework problem.