TÓPICO 1 – INTRODUÇÃO AO ANTIBIOGRAMA

DEFINIÇÃO E OBJETIVO

O antibiograma é um exame laboratorial que avalia a sensibilidade de microrganismos isolados frente a diferentes antimicrobianos. Ele não é apenas um resultado técnico, mas uma ferramenta clínica essencial para guiar a escolha terapêutica, especialmente em tempos de aumento da resistência bacteriana.

Seu objetivo central é **indicar quais antibióticos apresentam maior probabilidade de eficácia contra o agente infeccioso isolado**, fornecendo suporte ao médico na definição da conduta mais segura e racional.

IMPORTÂNCIA CLÍNICA

- 1. **Tratamento eficaz** Permite a seleção do antimicrobiano mais ativo contra o microrganismo identificado.
- 2. **Redução de falhas terapêuticas** Evita uso de antibióticos ineficazes que podem prolongar a doença e aumentar mortalidade.
- 3. **Uso racional de antibióticos** Auxilia em políticas de "antimicrobial stewardship", prevenindo o uso indiscriminado.
- 4. **Monitoramento da resistência bacteriana** Os resultados alimentam bancos de dados que refletem a realidade epidemiológica de cada hospital ou região.
- 5. **Controle de infecção hospitalar** Apoia na escolha de esquemas empíricos adequados em surtos ou protocolos institucionais.

INTEGRAÇÃO COM O RACIOCÍNIO CLÍNICO

O antibiograma deve sempre ser interpretado à luz do contexto clínico do paciente.

 Um antibiótico classificado como "Sensível" (S) em laboratório pode falhar se não alcançar concentrações adequadas no sítio da infecção (por exemplo, na meningite).

- O resultado "Resistente" (R) deve ser respeitado, mesmo que haja relatos empíricos de melhora clínica ocasional, pois indica que o risco de falha é elevado.
- Resultados "Intermediários" (I) devem ser vistos com cautela: em alguns casos, podem ser úteis em doses otimizadas ou quando a droga atinge altas concentrações no local da infecção (ex.: infecções urinárias).

LIMITAÇÕES DO ANTIBIOGRAMA

- Tempo de execução: pode levar 24–48 horas após o isolamento da bactéria.
- Não detecta todos os mecanismos de resistência: alguns mecanismos só se manifestam in vivo ou em condições específicas.
- Não substitui a avaliação clínica: um resultado "S" não garante cura se o paciente estiver imunocomprometido, com foco infeccioso não drenado ou usando dose inadequada.
- Variação metodológica: diferentes padrões (CLSI vs. EUCAST) podem levar a interpretações divergentes para o mesmo microrganismo.

RESUMO DIDÁTICO (QUADRO)

Aspecto	Papel do antibiograma			
Definição	Teste de sensibilidade antimicrobiana			
Objetivo	Guiar escolha racional de antibióticos			
Importância	Reduz falhas terapêuticas e resistência			
Integração clínica	Resultado só tem valor dentro do contexto do paciente			
Limitações	Tempo, mecanismos ocultos de resistência, diferenças de padronização			

TÓPICO 2 – PRINCÍPIOS FUNDAMENTAIS DO ANTIBIOGRAMA

1. CONCEITOS BÁSICOS

O antibiograma é interpretado em três categorias principais, determinadas de acordo com padrões internacionais:

- **S Sensível (Susceptible)**: o microrganismo é inibido por concentrações de antibiótico alcançáveis nas doses usuais de tratamento.
- I Intermediário (ou Susceptível com Dose Aumentada, segundo EUCAST): o resultado indica eficácia incerta, mas pode haver sucesso terapêutico em condições específicas:
 - quando o antibiótico atinge altas concentrações no sítio da infecção (ex.: urina),
 - o u quando se utilizam doses mais elevadas com segurança.
- R Resistente: a bactéria não é inibida pelas concentrações usuais do antibiótico, implicando alto risco de falha terapêutica.

2. MIC - CONCENTRAÇÃO INIBITÓRIA MÍNIMA

- A MIC (Minimum Inhibitory Concentration) é a menor concentração de um antibiótico capaz de inibir o crescimento visível do microrganismo.
- Valores de MIC s\u00e3o comparados com breakpoints (pontos de corte estabelecidos por CLSI ou EUCAST).
- A interpretação clínica depende não apenas da MIC, mas também da farmacocinética/farmacodinâmica (PK/PD) do antimicrobiano.

Exemplo prático:

- MIC de E. coli para ciprofloxacino = 0,25 μg/mL.
- Breakpoint de sensibilidade (CLSI) = ≤1 μg/mL.
- Interpretação: Sensível (S).
 No entanto, se a infecção for uma meningite, o resultado pode não ser aplicável, pois a penetração de ciprofloxacino no líquor é limitada.

3. HALO DE INIBIÇÃO (MÉTODO DE DIFUSÃO EM DISCO)

- Mede o diâmetro da zona sem crescimento ao redor do disco impregnado com antibiótico.
- Quanto maior o halo, maior a chance de o microrganismo ser sensível ao antibiótico.
- O diâmetro não é interpretado diretamente; ele é comparado a tabelas padronizadas que definem se o microrganismo é **S, I ou R**.

4. PADRONIZAÇÕES INTERNACIONAIS

- CLSI (Clinical and Laboratory Standards Institute) amplamente utilizado nas Américas.
- EUCAST (European Committee on Antimicrobial Susceptibility Testing) padrão europeu, cada vez mais adotado mundialmente.
- Diferenças podem ocorrer nos pontos de corte:
 - Um mesmo resultado pode ser classificado como Sensível pelo CLSI e Resistente pelo EUCAST.
 - o Por isso, os laboratórios devem especificar qual padrão estão seguindo.

5. ESCOLHA DOS ANTIBIÓTICOS TESTADOS

- Nem todos os antibióticos são testados para todos os microrganismos.
- A seleção é feita de acordo com:
 - o Perfil do microrganismo (Gram-negativo, Gram-positivo, anaeróbio).
 - o Relevância clínica do antimicrobiano.
 - o Protocolos institucionais e epidemiologia local.
- Exemplo:
 - o Staphylococcus aureus: oxacilina/cefoxitina, vancomicina, linezolida.

- Enterobacterales: cefalosporinas, carbapenêmicos, aminoglicosídeos, fluoroquinolonas.
- Pseudomonas aeruginosa: piperacilina-tazobactam, ceftazidima, meropenem, colistina.

RESUMO DIDÁTICO (QUADRO)

Conceito	Definição	Aplicação Clínica
S	Bactéria inibida em doses usuais	Antibiótico pode ser usado normalmente
I	Efetividade incerta, mas pode ser útil com dose maior ou em locais de alta concentração	Infecções urinárias, ajustes de dose
R	Não inibida por doses usuais	Não utilizar, risco elevado de falha
MIC	Menor concentração que inibe crescimento	Usado em métodos de diluição e E-test
Halo de Inibição	Zona sem crescimento em torno do disco	Interpretado via tabelas padronizadas
CLSI/EUCAST	Instituições que definem breakpoints	Devem ser mencionadas nos laudos

TÓPICO 3 - MÉTODOS DE TESTE DO ANTIBIOGRAMA

1. MÉTODO DE DIFUSÃO EM DISCO (KIRBY-BAUER)

• **Princípio**: discos de papel filtro impregnados com antibióticos são colocados sobre uma placa de ágar semeada com a bactéria.

- Leitura: após incubação (16–18h), mede-se o diâmetro do halo de inibição.
- Interpretação: comparação do diâmetro com tabelas do CLSI ou EUCAST para classificação em S, I ou R.

• Vantagens:

- o Simplicidade e baixo custo.
- Método padronizado internacionalmente.

Limitações:

- Não fornece valor exato de MIC.
- Menor precisão para microrganismos de crescimento lento.
- Menos indicado para antibióticos com difusão irregular no ágar.

2. MÉTODOS DE DILUIÇÃO

a) Diluição em Caldo (Macro e Microdiluição)

- Princípio: a bactéria é exposta a concentrações crescentes do antibiótico em tubos (macro) ou microplacas (micro).
- Leitura: identifica-se a menor concentração que inibe crescimento visível (MIC).

Vantagens:

- Método padrão-ouro para determinação da MIC.
- Permite estudar a relação concentração-atividade antimicrobiana.

Limitações:

- Mais trabalhoso e caro do que a difusão em disco.
- Necessita maior padronização e controle técnico.

b) Diluição em Ágar

• Antibiótico incorporado ao meio sólido em concentrações conhecidas.

- Inoculação de múltiplos microrganismos por ponto.
- Pouco usada rotineiramente, mas útil em pesquisa.

3. E-TEST (GRADIENTE DE DIFUSÃO)

- Princípio: tira de plástico impregnada com gradiente de concentrações do antibiótico.
- Leitura: após incubação, observa-se onde o halo de inibição cruza a escala da fita = valor da MIC.

Vantagens:

- o Combina a praticidade do método em ágar com a informação da MIC.
- Útil em situações clínicas críticas (ex.: endocardite, meningite).

• Limitações:

- o Custo elevado.
- Pode apresentar variações dependendo da difusão do antimicrobiano.

4. MÉTODOS AUTOMATIZADOS

Exemplos: VITEK 2, Phoenix, MicroScan.

- **Princípio**: utilizam microplacas padronizadas com diferentes antibióticos em concentrações seriadas.
- **Leitura**: sistemas automatizados monitoram crescimento bacteriano por turbidez, fluorescência ou outros métodos.

• Vantagens:

- o Rapidez (resultados em até 8h para alguns microrganismos).
- o Padronização elevada.
- o Integração com sistemas de informação hospitalar.

• Limitações:

- o Alto custo de aquisição e manutenção.
- Podem falhar na detecção de alguns mecanismos de resistência emergentes (ex.: certas carbapenemases).

5. MALDI-TOF COM TESTES DE SUSCETIBILIDADE

- O MALDI-TOF (Espectrometria de Massas) é usado principalmente para identificação bacteriana rápida.
- Associado a técnicas complementares, pode avaliar atividade antimicrobiana em poucas horas.
- Ainda em fase de consolidação como ferramenta rotineira para antibiograma.

QUADRO RESUMO DIDÁTICO

Método	Informação obtida	Vantagens	Limitações
Difusão em disco	Classificação S/I/R	Simples, barato, padronizado	Não fornece MIC
Micro/Macro diluição	MIC exata	Padrão-ouro, alta precisão	Custo e tempo elevados
E-test	MIC aproximada	Prático, útil em casos clínicos críticos	Alto custo
Automatizados (VITEK, Phoenix)	MIC + interpretação	Rápidos, integrados, padronizados	Alto custo, podem falhar em resistências específicas
MALDI-TOF (em desenvolvimento)	Identificação + sensibilidade rápida	Velocidade, tecnologia avançada	Ainda não universalizado para rotina

TÓPICO 4 – INTERPRETAÇÃO DO ANTIBIOGRAMA

1. CATEGORIAS DE INTERPRETAÇÃO

- S Sensível: há alta probabilidade de sucesso terapêutico com doses habituais.
- I Intermediário (ou "Sensível com dose aumentada" no EUCAST): indica incerteza, mas pode haver eficácia:
 - o quando se utilizam doses otimizadas,
 - ou em infecções em sítios onde a droga atinge concentrações elevadas (ex.: urina).
- **R Resistente**: probabilidade de falha terapêutica, não deve ser usado.

2. MIC E FARMACOCINÉTICA/FARMACODINÂMICA (PK/PD)

A interpretação clínica do antibiograma não se limita ao resultado bruto. É necessário considerar a relação entre:

- MIC (Minimum Inhibitory Concentration): concentração mínima que inibe crescimento bacteriano.
- PK (Farmacocinética): como o fármaco se distribui no organismo.
- PD (Farmacodinâmica): como a droga atua sobre o microrganismo.

Parâmetros críticos:

- β-lactâmicos: eficácia relacionada ao tempo em que a concentração sérica fica acima da MIC (T > MIC).
- Aminoglicosídeos: eficácia relacionada ao pico de concentração em relação à MIC (Cmax/MIC).
- Fluoroquinolonas: eficácia relacionada à área sob a curva em 24h dividida pela MIC (AUC/MIC).

3. CONCEITO DE BREAKPOINTS

- **Breakpoint** é a concentração de antibiótico definida por instituições internacionais que separa os microrganismos em **S, I ou R**.
- São estabelecidos com base em:
 - o Distribuição das MICs na população bacteriana.
 - o PK/PD do antibiótico.
 - Dados clínicos de eficácia e falha.
- Exemplos:
 - o E. coli Ciprofloxacino (CLSI 2024):
 - $S \le 0.25 \,\mu g/mL$
 - $I = 0.5 \mu g/mL$
 - R ≥ 1 µg/mL

4. RESISTÊNCIA INTRÍNSECA × RESISTÊNCIA ADQUIRIDA

- Resistência intrínseca: característica natural da espécie bacteriana.
 - Ex.: Pseudomonas aeruginosa é naturalmente resistente a cefalosporinas de 1ª geração.
- Resistência adquirida: ocorre por mutações ou aquisição de genes de resistência.
 - o Ex.: Klebsiella pneumoniae adquirindo carbapenemase (KPC).

Reconhecer resistência intrínseca é fundamental para evitar interpretações erradas do laudo.

5. PERFIS DE MULTIRRESISTÊNCIA

• MDR (Multidrug Resistant): resistência a pelo menos 1 fármaco em ≥3 classes de antimicrobianos.

- XDR (Extensively Drug Resistant): sensível apenas a 1 ou 2 classes de antimicrobianos.
- PDR (Pandrug Resistant): resistente a todos os antimicrobianos disponíveis.

6. INTEGRAÇÃO COM O CONTEXTO CLÍNICO

O antibiograma é um **guia**, não uma sentença absoluta.

- Um antibiótico "S" pode falhar se:
 - não penetra no local da infecção (ex.: vancomicina no SNC sem inflamação meníngea).
 - o a dose for inadequada.
 - o houver barreiras físicas (abscesso sem drenagem).
- Um antibiótico "I" pode ser eficaz em condições adequadas (ex.: cefepime em altas doses contra Enterobacterales com MIC intermediária em ITU).

EXEMPLOS PRÁTICOS

- 1. Infecção urinária por *E. coli*
 - Nitrofurantoína: S
 - o Ciprofloxacino: R
 - Interpretação: nitrofurantoína é opção de escolha, ciprofloxacino não deve ser usado.
- 2. Bacteremia por Klebsiella pneumoniae produtora de KPC
 - Meropenem: R
 - Polimixina B: S
 - o Ceftazidima-avibactam: S

 Interpretação: considerar ceftazidima-avibactam como primeira escolha; polimixina apenas em situações limitadas.

QUADRO RESUMO DIDÁTICO

Conceito Aplicação clínica S/I/R Classificação padronizada de sensibilidade MIC Base da interpretação do antibiograma PK/PD Define eficácia real do antibiótico Valores de corte oficiais (CLSI/EUCAST) Breakpoints Resistência Natural da espécie, não depende de intrínseca mutação Resistência Por mutação ou genes móveis adquirida MDR / XDR / PDR Perfis de resistência com impacto clínico

TÓPICO 5 – MECANISMOS DE RESISTÊNCIA BACTERIANA

1. PRODUÇÃO DE ENZIMAS INATIVADORAS

Um dos mecanismos mais importantes e frequentes.

- β -lactamases: enzimas que hidrolisam o anel β -lactâmico de penicilinas e cefalosporinas, tornando-as inativas.
- Carbapenemases: enzimas que degradam até mesmo os carbapenêmicos.

 Exemplo clínico: Klebsiella pneumoniae produtora de KPC ou Enterobacterales com NDM.

2. ALTERAÇÃO DE ALVOS MOLECULARES

A bactéria modifica a estrutura da molécula-alvo, reduzindo a afinidade do antibiótico.

- Alteração de PBP (proteínas ligadoras de penicilina):
 - Staphylococcus aureus adquire o gene mecA, produzindo a PBP2a → resistência à oxacilina (MRSA).
- Mutação na DNA girase/topoisomerase IV:
 - Confere resistência às fluoroquinolonas em E. coli e Pseudomonas aeruginosa.
- Metilação do RNA ribossômico (gene erm):
 - Confere resistência cruzada a macrolídeos, lincosamidas e estreptograminas (fenótipo MLSb).

3. BOMBAS DE EFLUXO

Proteínas de membrana que expulsam o antibiótico do interior da célula.

- Podem afetar várias classes de antimicrobianos, levando à resistência multidroga (MDR).
- **Exemplo clínico**: *Pseudomonas aeruginosa* com superexpressão da bomba **MexAB-OprM**, eliminando fluoroquinolonas, tetraciclinas e β-lactâmicos.

4. REDUÇÃO DA PERMEABILIDADE

Alterações na membrana bacteriana impedem a entrada do antimicrobiano.

• **Perda ou modificação de porinas** em Gram-negativos → reduz penetração de carbapenêmicos e cefalosporinas.

• **Exemplo clínico**: *Klebsiella pneumoniae* com perda da porina OmpK35 associada à produção de ESBL → resistência a cefepime.

5. BIOFILMES E PERSISTÊNCIA

- Biofilmes: comunidades bacterianas envoltas em matriz extracelular que dificultam a penetração de antibióticos e protegem contra o sistema imune.
 - Exemplo clínico: infecções crônicas associadas a próteses ortopédicas ou cateteres por Staphylococcus epidermidis.
- **Células persistentes**: subpopulações bacterianas metabolicamente inativas que sobrevivem à antibioticoterapia e podem causar recidivas.
 - Relevante em Mycobacterium tuberculosis e em Pseudomonas em fibrose cística.

6. TRANSFERÊNCIA HORIZONTAL DE GENES

- Conjugação: transferência de plasmídeos entre bactérias (ex.: plasmídeos com genes de ESBL).
- Transformação: incorporação de DNA livre do ambiente.
- Transdução: transferência mediada por bacteriófagos.
- Impacto: acelera a disseminação da resistência em ambiente hospitalar.

QUADRO RESUMO DIDÁTICO

Mecanismo	Exemplo molecular	Exemplo clínico
Produção de enzimas	β-lactamases, carbapenemases	E. coli ESBL, K. pneumoniae KPC
Alteração de alvo	PBP2a (mecA), mutações em gyrA/parC	MRSA, <i>P. aeruginosa</i> resistente a quinolona
Bombas de efluxo	MexAB-OprM, AcrAB-TolC	P. aeruginosa, Enterobacter MDR

Redução permeabilidade	da	Perda de porinas	K. pneumoniae resistente a cefepime
Biofilme		Matriz extracelular protetora	S. epidermidis em cateter
Persistência		Células dormentes	M. tuberculosis, Pseudomonas em fibrose cística

TÓPICO 6 – APLICAÇÕES CLÍNICAS DO ANTIBIOGRAMA

1. TERAPIA EMPÍRICA × TERAPIA DIRIGIDA

- Terapia empírica: início do antibiótico antes do resultado do antibiograma, baseada em:
 - Epidemiologia local (mapa de resistência do hospital ou comunidade).
 - o Situação clínica (gravidade da infecção, imunidade do paciente).
 - o Foco provável (urinário, respiratório, pele, corrente sanguínea).
- **Terapia dirigida**: ajuste do tratamento após o resultado do antibiograma, escolhendo o antimicrobiano mais eficaz e seguro, geralmente de espectro mais restrito.
- Objetivo: iniciar amplo quando necessário, mas sempre descalonar assim que possível → reduz resistência e efeitos adversos.

2. CENÁRIOS CLÍNICOS COMUNS

- a) Infecções do Trato Urinário (ITU)
 - Patógeno mais comum: Escherichia coli.
 - Exemplo de antibiograma:

o Ampicilina: R

Ciprofloxacino: R

o Ceftriaxona: S

Nitrofurantoína: S

Conduta:

o ITU não complicada: nitrofurantoína é a droga de escolha.

 ITU complicada ou pielonefrite: considerar ceftriaxona ou outro beta-lactâmico sensível.

b) Pneumonia Comunitária

• Principais agentes: Streptococcus pneumoniae, Haemophilus influenzae, atípicos (Mycoplasma, Chlamydophila).

• Interpretação importante:

- S. pneumoniae pode apresentar resistência a penicilinas por alteração de PBP.
- o Macrolídeos podem ser ineficazes em áreas com resistência >25%.

Aplicação clínica:

- Caso grave: iniciar empiricamente β-lactâmico + macrolídeo ou quinolona respiratória.
- Após antibiograma, ajustar para penicilina ou ceftriaxona se o isolado for sensível.

c) Pneumonia Hospitalar e Infecções por Pseudomonas aeruginosa

 Patógeno com resistência variável e múltiplos mecanismos (bombas de efluxo, porinas, β-lactamases).

• Exemplo de antibiograma:

Piperacilina-tazobactam: R

o Ceftazidima: R

o Meropenem: I

o Polimixina B: S

• Conduta:

- Considerar uso de polimixina B, ceftolozano-tazobactam ou ceftazidima-avibactam (quando disponíveis).
- Avaliar necessidade de terapia combinada em casos críticos.

d) Bacteremia e Sepse por Klebsiella pneumoniae KPC

Alta mortalidade se n\u00e3o houver escolha adequada de antibi\u00f3tico.

• Exemplo de antibiograma:

o Meropenem: R

o Tigeciclina: I

o Ceftazidima-avibactam: S

Conduta:

- Preferir ceftazidima-avibactam (quando disponível).
- o Considerar associação em casos graves ou com alta carga bacteriana.

e) Infecções de Pele e Partes Moles por Staphylococcus aureus

Duas situações clínicas:

- MSSA (S. aureus sensível à oxacilina): pode ser tratado com oxacilina ou cefazolina.
- MRSA (S. aureus resistente à oxacilina): exige drogas como vancomicina, linezolida, daptomicina, clindamicina (dependendo do sítio).

3. PAPEL DO ANTIBIOGRAMA NO PACIENTE IMUNOCOMPROMETIDO

- Resultados "S" devem ser interpretados com cautela:
 - O paciente pode n\u00e3o responder adequadamente, mesmo com antibi\u00f3tico sens\u00edvel.
 - o Necessário considerar terapias mais potentes ou combinações.
- Exemplo: paciente neutropênico com Pseudomonas aeruginosa "sensível" a ceftazidima → ainda assim pode requerer associação com aminoglicosídeo ou outro agente ativo.

4. O ANTIBIOGRAMA E O CONTROLE DE SURTOS

- Em ambientes hospitalares, os perfis de resistência ajudam a identificar clones epidêmicos.
- Exemplo: aumento súbito de *Acinetobacter baumannii* multirresistente em UTI → reforçar medidas de precaução e avaliar coorte de pacientes.

QUADRO RESUMO DIDÁTICO

Cenário clínico	Patógeno comum	Ponto crítico da interpretação	Opções terapêuticas guiadas pelo antibiograma
ITU comunitária	E. coli	Resistência a quinolonas	Nitrofurantoína, fosfomicina, cefalosporinas
Pneumonia comunitária	S. pneumoniae, H. influenzae	Resistência a penicilinas/macrolídeos	β-lactâmico + macrolídeo, ou quinolona respiratória
Pneumonia hospitalar	P. aeruginosa	Resistência múltipla, perda de porinas	Polimixina, ceftolozano-tazobactam, associação

Sepse		K. pneumoniae KPC	Produção de carbapenemase	Ceftazidima-avibactam, associação em casos graves
Infecção pele	de	S. aureus (MSSA/MRSA)	Detecção do gene mecA (PBP2a)	Oxacilina (MSSA) / Vancomicina, Linezolida (MRSA)

TÓPICO 7 - ESTUDOS DE CASO EM ANTIBIOGRAMA

CASO 1 – INFECÇÃO URINÁRIA POR *ESCHERICHIA COLI* RESISTENTE A QUINOLONAS

Contexto clínico

Paciente do sexo feminino, 27 anos, previamente saudável, apresenta disúria, polaciúria e urgência miccional há 3 dias. Sem febre. Sem comorbidades.

Exame complementar

- Urocultura: E. coli >100.000 UFC/mL.
- Antibiograma:
 - o Ampicilina: R
 - o Ciprofloxacino: R
 - o Sulfametoxazol-trimetoprima: R
 - Nitrofurantoína: S
 - o Fosfomicina: S

Interpretação

• A cepa é multirresistente a antibióticos de uso comum na comunidade.

 Nitrofurantoína e fosfomicina permanecem como opções seguras para ITU não complicada.

Conduta clínica

- Prescrever nitrofurantoína por 5 dias.
- Orientar sobre hidratação, sinais de complicação e retorno se febre ou dor lombar.

CASO 2 – SEPSE POR *KLEBSIELLA PNEUMONIAE* PRODUTORA DE CARBAPENEMASE (KPC)

Contexto clínico

Homem, 64 anos, internado em UTI por choque séptico após cirurgia abdominal. Histórico: uso prévio de carbapenêmicos por 10 dias.

Exame complementar

- Hemocultura: K. pneumoniae.
- Antibiograma:
 - o Meropenem: R
 - o Imipenem: R
 - o Amicacina: R
 - o Tigeciclina: I
 - o Polimixina B: S
 - Ceftazidima-avibactam: S

Interpretação

- Resistência a carbapenêmicos confirma fenótipo de KPC.
- Ceftazidima-avibactam mostra sensibilidade, sendo superior em eficácia e menor toxicidade comparado à polimixina.

Conduta clínica

- Iniciar ceftazidima-avibactam como primeira escolha.
- Considerar terapia combinada em casos críticos (ex.: ceftazidima-avibactam + amicacina em dose otimizada, se parcialmente ativa).

CASO 3 – PNEUMONIA HOSPITALAR POR PSEUDOMONAS AERUGINOSA

Contexto clínico

Paciente, 45 anos, internado há 12 dias em ventilação mecânica. Apresenta febre, secreção purulenta em TOT, leucocitose e infiltrado difuso em RX de tórax.

Exame complementar

- Aspirado traqueal: Pseudomonas aeruginosa.
- Antibiograma:
 - o Piperacilina-tazobactam: R
 - o Ceftazidima: R
 - o Cefepime: R
 - o Meropenem: I
 - o Colistina: S
 - Ceftolozano-tazobactam: S

Interpretação

- Perfil típico de *Pseudomonas* multirresistente, com perda de porinas e bombas de efluxo.
- Apesar do meropenem "I", há risco de falha clínica em pneumonia grave.
- Ceftolozano-tazobactam é a melhor opção disponível.

Conduta clínica

• Prescrever ceftolozano-tazobactam.

• Associar a aminoglicosídeo em casos de alta gravidade, até melhora clínica.

CASO 4 – INFECÇÃO DE PELE POR STAPHYLOCOCCUS AUREUS (MRSA)

Contexto clínico

Homem, 32 anos, sem comorbidades, apresenta celulite com abscesso em coxa direita. Sem sinais de sepse.

Exame complementar

- Cultura da secreção: Staphylococcus aureus.
- Antibiograma:

o Oxacilina: R

Clindamicina: S

o Eritromicina: R

o Vancomicina: S

o Linezolida: S

Interpretação

- Resistência à oxacilina confirma MRSA.
- Clindamicina é sensível, mas deve-se avaliar teste de indução de resistência (teste D).
- Vancomicina e linezolida são opções eficazes.

Conduta clínica

- Realizar drenagem cirúrgica do abscesso (fundamental).
- Se necessário, iniciar vancomicina intravenosa.
- Em casos leves, considerar clindamicina (se D-test negativo).

QUADRO RESUMO DOS CASOS

Caso	Microrganismo	Padrão de resistência	Escolha terapêutica
1 – ITU comunitária	E. coli	Resistência a quinolonas e SMX-TMP	Nitrofurantoína ou fosfomicina
2 – Sepse	K. pneumoniae KPC	Resistência a carbapenêmicos	Ceftazidima-avibactam
3 – Pneumonia hospitalar	P. aeruginosa MDR	Resistência múltipla, meropenem l	Ceftolozano-tazobactam ± aminoglic.
4 – Infecção de pele	S. aureus MRSA	Resistência à oxacilina	Vancomicina ou linezolida

TÓPICO 8 – ANTIBIOGRAMA E POLÍTICAS DE SAÚDE

1. ANTIBIOGRAMA COMO FERRAMENTA EPIDEMIOLÓGICA

- Além do valor individual para o paciente, o antibiograma contribui para o mapeamento da resistência bacteriana.
- Laboratórios e hospitais utilizam dados agregados para construir **mapas de resistência local**, que orientam protocolos de tratamento empírico.
- Exemplo: se >20% das *E. coli* urinárias forem resistentes a ciprofloxacino, esse antibiótico não deve ser usado empiricamente para ITU.

2. POLÍTICAS DE CONTROLE DE INFECÇÃO

• Perfis de resistência ajudam a identificar surtos hospitalares.

- O uso sistemático do antibiograma é parte do **Programa de Controle de Infecção Hospitalar (PCIH)**.
- Resultados atípicos (ex.: resistência emergente a carbapenêmicos em Klebsiella) devem ser rapidamente comunicados à equipe de CCIH (Comissão de Controle de Infecção Hospitalar).

3. ANTIMICROBIAL STEWARDSHIP

- Programas de **uso racional de antibióticos** (stewardship) integram médicos, farmacêuticos, microbiologistas e enfermeiros.
- Objetivos:
 - Melhorar desfechos clínicos.
 - Reduzir tempo de internação.
 - Minimizar efeitos adversos e custos.
 - Conter a resistência antimicrobiana.
- Estratégias:
 - Restrição de antibióticos de amplo espectro.
 - o Revisão do tratamento após resultado do antibiograma ("descalonamento").
 - o Protocolos baseados na epidemiologia local.

4. IMPACTO NA SAÚDE PÚBLICA

- Resistência bacteriana é reconhecida pela OMS como uma das maiores ameaças globais à saúde.
- Dados de antibiograma alimentam sistemas de vigilância:
 - GLASS (Global Antimicrobial Resistance Surveillance System) da OMS.
 - ANVISA no Brasil (rede de hospitais sentinela).

- O uso adequado do antibiograma fortalece políticas de saúde ao:
 - o Prevenir disseminação de bactérias multirresistentes.
 - o Evitar uso indiscriminado de antibióticos na comunidade.
 - o Promover atualização constante de guias clínicos.

5. CASO EXEMPLAR - IMPACTO INSTITUCIONAL

Um hospital universitário notou aumento de *Klebsiella pneumoniae* resistente a carbapenêmicos.

- Medidas tomadas com base nos antibiogramas:
 - Revisão do protocolo empírico de sepse (uso de ceftazidima-avibactam quando disponível).
 - o Intensificação de higiene de mãos e precaução de contato.
 - Restrição do uso indiscriminado de meropenem.
- Resultado: redução da incidência de bactérias produtoras de carbapenemase em 18 meses.

QUADRO RESUMO DIDÁTICO

Nível	Papel do antibiograma	Impacto
Paciente individual	Guiar escolha do antibiótico	Maior eficácia, menor toxicidade
Hospital	Definir protocolos empíricos, controlar surtos	Menor mortalidade e custos
Saúde pública	Alimentar vigilância epidemiológica	Combate global à resistência

TÓPICO 9 – LIMITAÇÕES E PERSPECTIVAS FUTURAS

1. LIMITAÇÕES DO ANTIBIOGRAMA CONVENCIONAL

• **Tempo de execução**: entre 24 e 48 horas após isolamento bacteriano. Em infecções graves (sepse, meningite), esse tempo pode comprometer a vida do paciente.

Fatores técnicos:

- o Condições in vitro não reproduzem perfeitamente o ambiente do hospedeiro.
- Biofilmes e focos sépticos não são simulados em laboratório.

Mecanismos ocultos de resistência:

- Algumas bactérias apresentam resistência induzível, detectada apenas em situações específicas (ex.: resistência induzível à clindamicina em *S. aureus* – detectada com D-test).
- Variações de padronização: diferenças entre CLSI e EUCAST podem gerar interpretações divergentes.
- Não avalia toxicidade ou viabilidade clínica: um antibiótico "sensível" pode não ser a melhor opção para o paciente (ex.: colistina, nefrotóxica).

2. LIMITAÇÕES CLÍNICAS

Resultado isolado não basta:

- Um antibiótico "S" pode falhar se não atingir boa penetração no foco (ex.: vancomicina em osteomielite).
- Um antibiótico "R" pode ocasionalmente funcionar se a concentração local for excepcionalmente alta, mas não deve ser indicado.
- Paciente imunocomprometido: resultados de "sensibilidade" precisam ser interpretados com maior cautela, pois a resposta clínica depende também da imunidade do hospedeiro.

3. PERSPECTIVAS FUTURAS

a) Testes Moleculares Rápidos

- Detectam genes de resistência diretamente de amostras clínicas em poucas horas.
- Exemplos: PCR multiplex para detecção de genes de carbapenemase (KPC, NDM, OXA-48).
- Vantagem: orientação precoce da terapia antimicrobiana.

b) Sequenciamento Genômico

- Identificação completa do resistoma bacteriano.
- Aplicável em vigilância epidemiológica e em surtos hospitalares.
- Ainda limitado pelo custo e pela necessidade de expertise.

c) Testes Fenotípicos Rápidos

- Métodos que medem atividade bacteriana em tempo real (fluorescência, espectrometria de massas).
- Redução do tempo de resultado para 4–6 horas em alguns casos.

d) Inteligência Artificial e Big Data

- Integração de antibiogramas com sistemas de decisão clínica.
- IA pode sugerir o antibiótico mais adequado, considerando:
 - o perfil local de resistência,
 - o histórico do paciente,
 - o PK/PD do antibiótico.

4. VISÃO DE FUTURO

• O antibiograma tradicional continuará como **padrão de referência**, mas será cada vez mais complementado por testes rápidos e moleculares.

- A tendência é a **personalização da terapia antimicrobiana**, combinando:
 - o dados laboratoriais,
 - o informações clínicas do paciente,
 - o análises epidemiológicas locais,
 - o ferramentas digitais de apoio à decisão.

QUADRO RESUMO DIDÁTICO

Limitações			Impacto clínico	Perspectivas futuras	
Tempo (24-48h)			Atraso em terapia crítica	Testes rápidos (PCR, MALDI-TOF)	
Mecanismos ocultos			Resistência não detectada	Sequenciamento genômico	
Divergência CLSI/EUCAST			Interpretação variável	Harmonização de critérios	
Contexto clínico não simulado		não	Falhas terapêuticas mesmo com "S"	Integração com PK/PD e IA	