K. Wiegand, T. Stalljohann, T. Witt Sommersemester 2025 Heidelberg, 20. Mai 2025

Grundlagen der Geometrie und Topologie

ÜBUNGSBLATT 6

Stichworte: Lie-Gruppen, Exponentialabbildung

Aufgabe 1 Trotter-Produktformel (1+2+1+1 Punkte)

Sei G eine Lie-Gruppe mit Lie-Algebra $\mathfrak{g}=T_eG$ und Exponentialabbildung exp : $\mathfrak{g}\longrightarrow G$. Zeigen Sie:

- a) Es gibt Umgebungen $\mathcal{U} \subset \mathfrak{g}$ von 0 und $exp(\mathcal{U}) \subset G$ von e, so dass $exp : \mathcal{U} \longrightarrow exp(\mathcal{U})$ ein Diffeomorphismus ist.
- b) Zu vorgegebenen $X, Y \in \mathfrak{g}$ gibt es eine glatte Funktion $Z: (-\epsilon, \epsilon) \longrightarrow \mathfrak{g} \cong \mathbb{R}^d$, so dass

$$\exp(tX)\exp(tY) = \exp\left(t(X+Y) + t^2Z(t)\right) \ \, \forall t \in (-\epsilon,\epsilon)$$

(Tipp: Zu jeder glatten Funktion $\phi: (-\epsilon, \epsilon) \longrightarrow \mathbb{R}^d$ mit $\phi(0) = 0$ gibt es eine glatte Funktion φ , so dass $\phi(t) = t \cdot \varphi(t)$)

c) In der Situation von b) haben wir bei festem $t \in (-\epsilon, \epsilon)$ punktweise Konvergenz

$$\lim_{n\to\infty} \bigg(\exp\bigg(\frac{t}{n}X\bigg) \exp\bigg(\frac{t}{n}Y\bigg) \bigg)^n = \exp\bigg(t(X+Y)\bigg)$$

d) Sei $H \subset G$ eine abgeschlossene Teilmenge, die zugleich (im algebraischen Sinne) eine Untergruppe von G ist. Dann ist die Menge

$$\mathfrak{h} = \left\{ X \in \mathfrak{g} \,\middle|\, \exp(tX) \in H \,\,\forall t \in \mathbb{R} \,\right\}$$

ein linearer Unterraum von g.

Aufgabe 2 Automatische Abgeschlossenheit (3 Punkte)

Sei G eine Lie-Gruppe und $H \subset G$ eine **eingebettete** Lie-Untergruppe (d.h. eine eingebettete Untermannigfaltigkeit, die im algebraischen Sinne eine Untergruppe von G ist). Zeigen Sie, dass H als Teilmenge von G abgeschlossen ist.

(Tipp: Die Identität $h_i h_j^{-1} = (h_i g^{-1}) \cdot (h_j g^{-1})^{-1}$ könnte nützlich sein.)

In den folgenden Aufgaben benötigen wir den Begriff der (Links-)Wirkung einer Lie-Gruppe G auf einer Mannigfaltigkeit M. Dies ist eine glatte Abbildung $G \times M \longrightarrow M, (g, m) \longmapsto g \cdot m$, welche die algebraischen Relationen $g_1 \cdot (g_2 \cdot m) = (g_1g_2) \cdot m$ und $e \cdot m = m$ erfüllt.

Wir nennen die Wirkung transitiv, wenn es für alle $p, q \in M$ ein $g \in G$ mit $p = g \cdot q$ gibt.

Eine Abbildung $F: M_1 \longrightarrow M_2$ heißt äquivariant bzgl. der jeweiligen Gruppenwirkungen, falls $F(g \cdot \bullet) = g \cdot F(\bullet) \ \forall g \in G$.

Aufgabe 3 Äquivariante Abbildungen und konstanter Rang (2+2 Punkte) Seien M, N glatte Mannigfaltigkeiten und G eine Lie-Gruppe.

- a) Sei $F:N\longrightarrow M$ eine glatte Abbildung, welche äquivariant bzgl. einer transitiven G-Wirkung auf N und einer beliebigen G-Wirkung auf M ist. Beweisen Sie: Die Abbildung F hat konstanten Rang.
- b) Zeigen Sie, dass für eine beliebige Gruppenwirkung von G auf M gilt: Die zu $p \in M$ assoziierte Orbitabbildung $\iota_p : G \longrightarrow M, \ g \longmapsto g \cdot p$ hat konstanten Rang. Schlussfolgern Sie daraus: Die zu $p \in M$ assoziierte Stabilisatorgruppe

$$G_p := \left\{ g \in G \,\middle|\, g \cdot p = p \right\}$$

ist eine eingebettete Untermannigfaltigkeit (und somit eine Lie-Untergruppe) von G. ($Tipp: Rangsatz/Constant\ Rank\ Theorem$)

Aufgabe 4 Quotienten unter Liegruppenwirkung (4 Punkte)

Recherchieren Sie die Begriffe 'freie' und 'eigentliche' Gruppenwirkung ('free and proper group action'). Zeigen Sie: Wirkt eine Lie-Gruppe G frei und eigentlich auf einer Mannigfaltigkeit M, so trägt der Quotient $M/G = M/_{m \sim g \cdot m}$ eine differenzierbare Struktur, welche die Projektionsabbildung $\pi: M \longrightarrow M/G$ zu einer Submersion macht.

(Tipp: Sie dürfen ohne Beweis das Godement-Kriterium ÜB2 Aufgabe 2 benutzen.)

Abgabe bis Dienstag, 27. Mai 2025, 13:00 Uhr im MaMpf in Zweiergruppen. Abgabe zu dritt ist erlaubt.