Касьяненко Вера (Р3220, Теор.Вероятн. 5.1)

с. 299 (11 задач)

№1

$$\Delta = t \frac{\bar{S}}{\sqrt{n}}$$

$$0,2 = t * \frac{2}{\sqrt{626}}$$

$$t = \frac{\sqrt{626}}{10} = 2,502$$

$$y = \Phi(t) = 0.9876$$

№2

$$(S(1-a), S(1+a))$$

$$\begin{cases} 3 * (1-a) = 2 \\ 3 * (1+a) = 4 \end{cases} = > \begin{cases} 1 - a = \frac{2}{3} \\ 1 + a = \frac{4}{3} \end{cases} = > a = \frac{1}{3}$$

$$\begin{cases} a = \frac{1}{3} \\ n = 10 \end{cases} => \gamma = 0.8$$

№3

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} \frac{l_i + l_{i+1}}{n} m_i = \frac{1}{400} (955 * 5 + 965 * 35 + 975 * 60 + 985 * 72 + 995 * 80 + 1005 * 60 + 1015 * 55 + 1025 * 20 + 1035 * 10 + 1045 * 3) = 994,2$$

$$\sigma_{\rm B} = \sqrt{\frac{1}{n} \sum_{i=1}^{k} m_i \left(\frac{l_i + l_{i+1}}{n} - \bar{x} \right)^2} = \sqrt{\frac{1}{400} (139944)} = 18,7$$

i	x_i	y_i	x_i^2	x_i^3	x_i^4	x_i^5	x_i^6	$x_i y_i$	$x_i^2 y_i$	$x_i^3 y_i$
1	-4	-5,1	16	-64	256	-1024	4096	20,4	-81,6	326,4
2	-3	-3,5	9	-27	81	-243	729	10,5	-31,5	94,5
3	-2	-2	4	-8	16	-32	64	4	-8	16
4	-1	-0,15	1	-1	1	-1	1	0,15	-0,15	0,15
5	0	0,3	0	0	0	0	0	0	0	0
6	1	1,2	1	1	1	1	1	1,2	1,2	1,2
7	2	2,4	4	8	16	32	64	4,8	9,6	19,2
8	3	3,8	9	27	81	243	729	11,4	34,2	102,6
9	4	6	16	64	256	1024	4096	24	96	384
\sum_{i}	0	2,95	60	0	708	0	9780	76,45	19,75	944,05

$$\begin{cases} 9a_0 + 0a_1 + 60a_2 + 0a_3 = 2,95 \\ 0a_0 + 60a_1 + 0a_2 + 708a_3 = 76,45 \\ 60a_0 + 0a_1 + 708a_2 + 0a_3 = 19,75 \\ 0a_0 + 708a_1 + 0a_2 + 9780a_3 = 944,05 \end{cases} = > \begin{cases} 9a_0 + 60a_2 = 2,95 \\ 60a_1 + 708a_3 = 76,45 \\ 60a_0 + 708a_2 = 19,75 \\ 708a_1 + 9780a_3 = 944,05 \end{cases}$$

$$v = 0.312 + 0.927x + 0.002x^2 + 0.029x^3$$

№5

$$\bar{x} = \frac{1}{200}(2.5 * 133 + 7.5 * 45 + 12.5 * 15 + 17.5 * 4 + 22.5 * 2 + 27.5 * 1) = 5$$

$$M[X] = \int_0^{+\infty} x f(x) dx = \lambda \int_0^{+\infty} x e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$\frac{1}{\lambda} = \bar{x} = > \frac{1}{\lambda} = 5 = > \lambda = 0.2$$

№6

$$y = \bar{y} + r_{xy} \frac{s_y}{s_x} (x - \bar{x})$$

$$\bar{x} = \frac{20*4 + 25(6+8) + 30(10+32+4) + 35(3+12+1) + 40(9+6+5)}{100} = \frac{3170}{100} = 31,7$$

$$\bar{y} = \frac{16(4+6) + 26(8+10) + 36(32+3+9) + 46(4+12+6) + 56(1+5)}{100} = 35,6$$

$$s_x^2 = \frac{20^2*4 + 25^2(6+8) + 30^2(10+32+4) + 35^2(3+12+1) + 40^2(9+6+5)}{100} - 31.7^2 = 28,61$$

$$s_y^2 = \frac{16^2(4+6) + 26^2(8+10) + 36^2(32+3+9) + 46^2(4+12+6) + 56^2(1+5)}{100} - 35.6^2 = 103,84$$

$$S_x = \sqrt{28,61} \approx 5,349$$

$$S_y = \sqrt{103,84} \approx 10,19$$

$$Cov(x,y) = (20*16*4 + 25*16*6 + 25*26*8 + 30*26*10 + 30*36*32 + 35*36*3 + 40*36*9 + 30*46*4 + 35*46*12 + 40*46*6 + 35*56*1 + 40*56*5)/100 - -31,7*35,6 = 41,68$$

$$r_{xy} = \frac{Cov(x,y)}{s_x s_y} = \frac{41,68}{5,349*10,19} = 0,7647$$

$$y = 35,6 + 0,7647 * \frac{10,19}{5,349}(x - 31,7)$$

$$y = 1,457x - 10,5798$$

№7

Номер интервала	Интервал	Середина интервала \bar{x}_i	Частота m_i	$x_i m_i$	$(x_i - \bar{x})m_i$	$(x_i - \bar{x})^2 m_i$	$\frac{m_i}{m}$
1	0 - 5	2,5	15	37,5	139,5	1297,35	0,06
2	5 – 10	7,5	75	562,5	322,5	1386,75	0,3
3	10 - 15	12,5	100	1250	70	49	0,4
4	15 - 20	17,5	50	875	285	1624,5	0,2
5	20 - 25	22,5	10	225	107	1144,9	0,04
\sum_{i}	_	_	250	2950	924	5502,5	1

$$\bar{x} = \frac{1}{n} \sum_{i=0}^{k} \bar{x}_i m_i = \frac{2950}{250} = 12$$

$$D_{\rm B} = \frac{1}{n} \sum_{i=1}^{k} (\bar{x}_i - \bar{x})^2 m_i = \frac{1}{n} \sum_{i=1}^{k} (\bar{x}_i)^2 m_i - \bar{x} = 22,01$$

$$\sigma_{\scriptscriptstyle\rm B} = \sqrt{D_{\scriptscriptstyle\rm B}} = 4,691$$

$$S_{\rm B}^2 = \frac{\sum (x_i - \bar{x})m_i}{\sum m_i - 1} = \frac{5502,5}{249} = 22,098$$

$$S_{\rm B} = 4,701$$

$$m'_i = mP_i = 250P_i$$

Интервал	m_i	$x_1 = \frac{(x_i - \bar{x})}{S_{\text{B}}}$	$x_2 = \frac{(x_{i+1} - \bar{x})}{S_{\scriptscriptstyle B}}$	$\Phi(x_1)$	$\Phi(x_2)$	$P_i = \Phi(x_2) - \Phi(x_1)$	$m_i' = 250P_i$
0 - 5	15	-2,5102	-1,4465	-0,5000	-0,4265	0,0735	18,4
5 - 10	75	-1,4465	-0,3829	-0,4265	-0,1517	0,2748	68,7
10 - 15	100	-0,3829	0,6807	-0,1517	0,2549	0,4066	101,65
15 - 20	50	0,6807	1,7443	0,2549	0,4599	0,205	51,25
20 - 25	10	1,7443	2,808	0,4599	0,5000	0,0401	10
\sum_{i}	250	-	-	_	-	1	250

$$\chi^2_{{ ext{Ha6}}\pi} = \sum_{i=1}^{5} \frac{(m_i - m_i')^2}{m_i'} = 1,26$$

Для
$$\alpha=0.05$$
 и $k=2$: $x_{\rm Kp}^2(0.05;2)=6.0$

$$x_{{\scriptscriptstyle {
m Ha6}}{\scriptscriptstyle {
m J}}}^2 < x_{{\scriptscriptstyle {
m KP}}}^2 =>$$
 гипотеза не отвергается

x_i	\bar{x}_i	m_i	$ar{x_i}m_i$	$(\bar{x}_i - \bar{x})^2 m_i$
40,24 - 40,26	40,25	1	40,25	0,0025
40,26 - 40,28	40,27	4	161,08	0,0036
40,28 - 40,30	40,29	6	241,74	0,0006
40,30 - 40,32	40,31	11	443,41	0,0011
40,32 - 40,34	40,33	15	604,95	0,0135
40,34 - 40,36	40,35	16	645,6	0,04
40,36 - 40,38	40,37	12	484,44	0,0588
40,38 - 40,40	40,39	7	282,73	0,0567
40,40 - 40,42	40,41	5	202,05	0,0605
40,42 - 40,44	40,43	3	121,29	0,0507
\sum_{l}	_	80	3227,54	0,288

$$\bar{x} = \frac{1}{n} \sum_{i=0}^{k} \bar{x}_i m_i = \frac{3227,54}{80} = 40,3$$

$$S^2 = \frac{1}{n-1} \sum (\bar{x} - x_i)^2 m_i = 0.004$$

$$S = \sqrt{0.004} = 0.063$$

$$F^*(x) = \int_{-\infty}^{x} \frac{1}{0.063\sqrt{2\pi}} \exp\left(-\frac{(t-40.3)^2}{2*0.004}\right) dt = \frac{1}{2} + \Phi\left(\frac{x-40.3}{0.063}\right)$$

$$\lambda_{\text{опыт}} = \max |F(x_i) - F^*(x_i)| * \sqrt{n} = (0.6714 - 0.597) * \sqrt{80} = 0.665$$

$$\lambda_{\rm Kp} = 1,63$$

 $\lambda_{
m onbit} < \lambda_{
m kp} = >$ гипотеза согласуется

№9

Заметим, что это геометрическое распределение. Известно, что первый начальный момент есть математическое ожидание m, равное $\frac{1}{p}$, тогда система сводится к уравнению $m=\frac{1}{p}=\bar{x}=\frac{1}{n}\sum_{i=1}^n x_i$. То есть $p=\frac{1}{\bar{x}}$.

№10

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a;b] \\ 0, & x \notin [a;b] \end{cases}$$

Используя выборку $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$, находим выборочные первый начальный и второй центральные моменты: $\bar{x} = \frac{1}{n} \sum_{i=0}^k x_i, \, \sigma_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$

Для равномерного распределения имеем теоретические моменты $m_{\chi}=\frac{a+b}{2}$, $\sigma_{\chi}^2=\frac{(b-a)^2}{12}$

Прировняем теоретические моменты выборочным и получаем систему двух уравнений с двумя неизвестными для нахождения оценок параметров a, b:

$$\begin{cases} \frac{a+b}{2} = \bar{x} \\ \frac{(b-a)^2}{12} = D \end{cases}$$

$$a = \bar{x} - \sqrt{3D}, b = \bar{x} + \sqrt{3D}$$

№11

Истинное значение измеряемой величины равно ее математическому ожиданию. Поэтому задача сводится к оценке математического ожидания при помощи доверительного интервала

$$\bar{x} - t_{\gamma} \frac{s}{\sqrt{n}} \le m_{x} \le \bar{x} + t_{\gamma} \frac{s}{\sqrt{n}}$$

$$\begin{cases} n = 16 \\ \gamma = 0.999 \end{cases} => t = 4.07$$

$$42.8 - 4.07 * \frac{s}{\sqrt{16}} \le m_{x} \le 42.8 + 4.07 * \frac{s}{\sqrt{16}}$$

$$34.66 \le m_{x} \le 50.94$$