## (19) World Intellectual Property Organization

International Bureau



# i **37**0 cou**s** 1 sous day 1911 faul de la company foit de la company de la company de la company de la company de la

(43) International Publication Date 16 June 2005 (16.06.2005)

PCT

#### (10) International Publication Number WO 2005/055512 A2

(51) International Patent Classification7:

H04L 9/00

(21) International Application Number:

PCT/US2004/040279

(22) International Filing Date: 1 December 2004 (01.12.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/526,301

Not furnished

1 December 2003 (01.12.2003) 30 November 2004 (30.11.2004)

- (71) Applicant (for all designated States except US): THE REGENTS OF THE UNIVERSITY OF CALIFOR-NIA [US/US]; 1111 Franklin Street, 12th Floor, Oakland, California 94607 (US).
- (72) Inventors; and

David [FR/FR]; 29, rue Victor Basch, F-94320 Thiais

- (74) Agents: MILNER, Joseph et al.; Lawrence Berkeley National Laboratory, One Cyclotron Road, Mail Stop 90B-0104, Berkeley, California 94720-8127 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FL GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),



next player, the upflow based on a random value  $\chi_1$ , a random value  $v_1$ , and "g", a generator of a finite cyclic group where a computational solution to a Diffie-Hellman problem is hard; 2) each player after the first  $U_p$  sends an upflow  $H_p$ , comprising information based on a random values  $\chi_0$ ,  $v_p$ , and the previous upflow  $F_{l_{p-1}}$ ; and 3) the last player  $U_n$  sends a downflow  $F_{l_n}$  to all other players in the dynamic group, where the downflow  $Fl_n$  comprises information based on a random values  $\chi_n$ ,  $\nu_n$ , and the previous upflow  $Fl_{n-1}$ . Players may be added to or removed from the dynamic group by adjusting the downflow to the remaining players. The dynamic groups may be refreshed and/or merged by adjusting the downflow.

i:

# WO 2005/055512 A2



#### Published:

 without international search report and to be republished upon receipt of that report For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

# PATENT APPLICATION

# CRYPTOGRAPHY FOR SECURE DYNAMIC GROUP COMMUNICATIONS

#### CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims benefit of priority to United States provisional patent application 60/526,301, "Cryptography for secure dynamic group communications: method, apparatus, and signal", filed 12/1/2003 and United States patent application \_\_/\_\_\_, \_\_\_ entitled "Cryptography for secure dynamic group communications", filed 11/30/2004.

#### STATEMENT REGARDING FEDERAL FUNDING

[0002] This invention was made with U.S. Government support under Contract Number DE-AC03-76SF00098 between the U.S. Department of Energy and The Regents of the University of California for the management and operation of the Lawrence Berkeley National Laboratory. The U.S. Government has certain rights in this invention.

#### REFERENCE TO A COMPUTER PROGRAM

[0003] Not Applicable.

#### **BACKGROUND OF THE INVENTION**

### 1. Field of the Invention

[0004] The present invention relates to provably secure communications, and more particularly relates to secure communications among dynamic groups.

#### 2. Description of the relevant art

[0005] US patent 5,241,599 discloses a method which permits computer users to authenticate themselves to a computer system without requiring that the computer system keep confidential the password files used to authenticate the respective user's

identities. The 5,440,635 invention is useful in that it prevents a compromised password file from being leveraged by crafty hackers to penetrate the computer system.

[0006] US patent 5,440,635 discloses a cryptographic communication system, which employs a combination of public and private key cryptography, allowing two players, who share only a relatively insecure password, to bootstrap a computationally secure cryptographic system over an insecure network. The 5,440,635 system is secure against active and passive attacks, and has the property that the password is protected against offline "dictionary" attacks.

[0007] US patent 6,226,383 discloses a cryptographic method, where two players use a small shared secret (S) to mutually authenticate one another other over an insecure network. The 6,226,383 methods are secure against off-line dictionary attack and incorporate an otherwise unauthenticated public key distribution system.

[0008] One major difficulty with the preceding patents, and other representative technology, is that none of them scale very well to groups of more than two players intercommunicating with a secure encrypted method which is provably secure.

[0009] Publication "Group Diffie-Hellman Key Exchange Secure Against Dictionary Attacks" by Bresson, Chevassut, and Pointcheval, discloses a cryptographic communication system, which may be secure against "dictionary" attacks.

[0010] Publication "Mutual Authentication and Group Key Exchange for Low-Power Mobile Devices" by Bresson, Chevassut, Essiari, and Pointcheval, discloses a cryptographic communication system for low computational power devices.

[0011] The mathematic field of algebraic groups contains several terms in colloquial use that are used in this patent application. Such terms are "Finite Group", "Cyclic Group", "Group Order", "Group", "Abelian Group", and "Identity Element". These terms are used to describe the mathematics behind the concept of a finite group or a finite cyclic group with prime generator "g".

#### **BRIEF SUMMARY OF THE INVENTION**

**[0012]** This invention provides for a method for generating a cryptographic key by a player in a dynamic group, the method comprising: receiving, by a player U<sub>n</sub> in a dynamic group with a first player  $U_1$  and a last player  $U_n$ , where p>1, a previous upflow  $\mathbf{Fl}_{p,l}$  from a previous player  $\mathbf{U}_{p,l}$  in the dynamic group; player  $\mathbf{U}_{p}$  selecting a random value  $x_p$ , and a random value  $v_p$ ; and player  $U_p$  sending an outflow  $Fl_p$ , comprising information based on the random value  $x_p$ , the random value  $v_p$ , and the previous upflow  $\mathbf{Fl}_{p,l}$ . The first player  $\mathbf{U}_{l}$  may be a process on a computer that seeks to initiate a dynamic group, that in turn communicates with U<sub>2</sub> who may be either a user on the same computer, or another process on the same computer. In this instance, the last player,  $U_n$  would be a third or greater player. Dynamic groups of players may variously have size ranges from 1-2, 1-3, 3-20, 1-100, 1-1000 or more. Specifically, dynamic groups may initiate with 3 or more players, with subsequent departure of players, resulting in a dynamic group of 2 players. Similarly, dynamic groups may initiate with a single player, increasing to a dynamic group of 2 players may subsequently increase or decrease in number.

[0013] The method for generating a cryptographic key by a player in the dynamic group of paragraph [0012], may further comprise: for a first player  $U_I$  in the dynamic group: player  $U_p$  selecting a random value  $x_I$ , and a random value  $v_I$ ; setting an initial upflow  $FI_I$  comprising information based on the random value  $x_I$ , the random value  $v_I$ , and "g", a generator of a finite cyclic group where a computational solution to a Diffie-Hellman problem is hard.

[0014] In the method for generating a cryptographic key by a player in the dynamic group of paragraph [0013], the sending step may further comprise: when player  $U_p$  is not the last player in the dynamic group, then: player  $U_p$  sending an upflow  $Fl_p$  to a subsequent player  $U_{p+1}$  in the dynamic group, the upflow  $Fl_p$  comprising the outflow  $Fl_p$ ; when player  $U_p$  is the last player in the dynamic group, then: player  $U_p$  sending a downflow  $Fl_n$  to all other players in the dynamic group, the downflow  $Fl_n$  comprising the outflow  $Fl_p$ .

[0015] In the method for generating a cryptographic key by a player in the dynamic group above, one or more players may be deleted by steps comprising: forming a set of L players,  $U_L$ , leaving the dynamic group; forming a set of R players,

 $U_R$ , remaining in the dynamic group; choosing a controller  $U_C$  from the remaining set of R players  $U_R$ ; inputting, by controller  $U_C$ , the downflow  $Fl_n$ , where the downflow  $Fl_n$  has one entry associated with each player in the dynamic group; and sending a controller  $U_C$  downflow signal  $Fl'_C$ , comprising: controller  $U_C$  sending the controller downflow  $Fl'_C$  based upon a random value  $x_C$ , a random value  $v_C$ , and the downflow signal  $Fl_n$ , where each entry associated with the set of L players  $U_L$  leaving in the downflow signal  $Fl_n$  has been deleted.

[0016] In the method for generating a cryptographic key by a player in the dynamic group above, one ore more players may be added by steps comprising: forming a set of J players to form a larger dynamic gropu  $U_1, \ldots U_n, U_{n+1}, \ldots, U_{n+k}, \ldots$ ,  $U_{n+J}$ , where  $1 \le k \le J$ ; sending an upflow  $\mathsf{FI}_{n+k}$  from each player  $U_{n+k}$ , to player  $U_{n+k+1}$ , where  $1 \le k \le J-1$ , said upflow  $\mathsf{FI}_{n+k}$  based upon a random value  $x_{n+k}$ , a random value  $v_{n+k}$ , and the upflow  $\mathsf{FI}_{n+k-1}$  received from player  $U_{n+k-1}$ ; and sending a downflow  $\mathsf{FI}_{n+J}$  by player  $U_{n+J}$ , based upon a random value  $x_{n+J}$ , a random value  $v_{n+J}$ , and the upflow  $\mathsf{FI}_{n+J-1}$ .

[0017] In the method for generating a cryptographic key by a player in the dynamic group above, all players may be refreshed with a new cryptographic key by steps comprising: choosing a refresher  $U_r$  from the dynamic group  $U_1$ , ...  $U_n$ ; inputting, by refresher  $U_r$ , the downflow  $Fl_n$ , where the downflow  $Fl_n$  has one entry associated with each player in the dynamic group; and sending, by refresher  $U_r$ , a refresher  $U_r$  downflow  $Fl'_r$  based upon a random value  $x_r$ , a random value  $v_r$ , and the downflow signal  $Fl_n$ .

[0018] In the methods above for generating a cryptographic key wherein said upflows may be encrypted with a first encryption method. Alternatively, the downflows may be encrypted with a second encryption method, or still, both upflows and downflows may be encrypted with a single encryption method. Outflows may also be encrypted by either the first, second, or an entirely different encryption method. Any of these encryption methods may be based on symmetric-key, elliptic curve symmetric-key, or public key encryption methods.

## BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0019] The invention will be more fully understood by reference to the following drawings, which are for illustrative purposes only:

- [0020] Fig. 1A is a schematic of the flows involved in a secure dynamic group of four players.
- [0021] Fig. 1B is a schematic of the flows involved in a secure dynamic group of four players where player two has been deleted, and player four has been designated as the group controller.
- [0022] Fig. 1C is a schematic of the flows involved in a secure dynamic group of four players where player two has been deleted, and player three has been designated as the group controller.
- [0023] Fig. 2A is a schematic of the flows involved in a secure dynamic group of two players.
- [0024] Fig. 2B is a schematic of the flows involved in a secure dynamic group of two players adding another two players.
- [0025] Fig. 3 is a schematic of three secure dynamic groups in communication through players who are members of two of the groups.

#### DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

## **Definitions**

- [0026] "Computer" means any device capable of performing the steps, methods, or producing signals as described herein, including but not limited to: a microprocessor, a microcontroller, a digital state machine, a field programmable gate array (FGPA), a digital signal processor, a collocated integrated memory system with microprocessor and analog or digital output device, a distributed memory system with microprocessor and analog or digital output device connected by digital or analog signal protocols.
- [0027] "Computer readable media" means any source of organized information that may be processed by a computer to perform the steps described herein to result

in, store, perform logical operations upon, or transmit, a flow or a signal flow, including but not limited to: random access memory (RAM), read only memory (ROM), a magnetically readable storage system; optically readable storage media such as punch cards or printed matter readable by direct methods or methods of optical character recognition; other optical storage media such as a compact disc (CD), a digital versatile disc (DVD), a rewritable CD and/or DVD; electrically readable media such as programmable read only memories (PROMs), electrically erasable programmable read only memories (EEPROMs), field programmable gate arrays (FGPAs), flash random access memory (flash RAM); and information transmitted by electromagnetic or optical methods including, but not limited to, wireless transmission, copper wires, and optical fibers.

[0028] "Player" means any person using, or any computer process residing, on a client or server computer. Multiple players may reside on the same or different computers, and multiple instances of a control process or person may be so designated.

[0029] "<u>Dynamic Group</u>" means a collection of players communicating together, where one or more players may be added or deleted singly or in subgroups.

[0030] "Finite Group" means a group of finite order n defined by an element g, the group generator, and its n powers, up to  $g^n = I$ , where I is the identity element. Further details regarding group theory, finite, and finite cyclic groups, may be obtained in mathematical treatises on algebraic group theory.

#### Secure Group Encryption Setup

[0031] One aspect of this invention is a secure group setup protocol. In this aspect, an initial static group of players desire to exchange a cryptographic key using a group password pw, which is known to all players. Initially, a base "g" is chosen, where "g" is a generator of a finite cyclic group. Generator "g" is additionally a high order prime number chosen so as to make a solution of the Diffie-Hellman problem computationally hard.

[0032] A plurality of players  $U_1, ..., U_n$ , where  $1 \le j \le n$  are defined to be players  $U_j$  of the n players comprising a secure group.

[0033] The secure group is set up in the following manner. A first player,  $U_I$ , uses a generator "g", selects a random value  $x_I$ , and a random value  $v_I$ . Player  $U_I$  then sends an initial upflow signal  $FI_I$  from player  $U_I$  to player  $U_2$ , where the initial upflow signal  $FI_I$  is based upon generator "g", the random value  $x_I$ , and the random value  $v_I$ .

- [0034] Similarly, for player  $U_2$  through player  $U_{n-1}$ , each player  $U_j$  selects a random value  $\chi_j$ , and a random value  $v_j$ . Player  $U_j$  then sends an upflow signal  $Fl_j$  from player  $U_j$  to player  $U_{j+1}$ . The upflow signal  $Fl_j$  includes information based upon the preceding player  $U_{j+1}$  upflow  $Fl_{j-1}$ , the random value  $\chi_j$ , and the random value  $v_j$ .
- [0035] In a functionally equivalent manner, the preceding method describing the steps from player  $U_2$  to player  $U_{n-1}$  may instead be taken as though from player  $U_1$  through player  $U_{n-1}$  by the simple expedient of setting  $FI_0$  to be the generator "g".
- [0036] The final player,  $U_n$ , takes as an input the preceding player  $U_{n-1}$  upflow  $\mathbf{FI}_{n-1}$ . Player  $U_n$  selects a random value  $\chi_n$ , and a random value  $v_n$ . Player  $U_n$  then broadcasts a downflow signal  $\mathbf{FI}_n$  to the remaining players (also known as a multicast when substantially simultaneously broadcast to multiple players) in the plurality of players  $U_1 \dots U_{n-1}$ . Downflow signal  $\mathbf{FI}_n$  includes information based upon the preceding player  $U_{n-1}$  upflow  $\mathbf{FI}_{n-1}$ , the random value  $\chi_n$ , and the random value  $v_n$ .
- [0037] Once a player  $U_j$  has received the downflow signal  $\mathbf{Fl}_n$ , player  $U_j$  may calculate a cryptographic key for use in secure group communications based on the downflow signal  $\mathbf{Fl}_n$ , and its previously selected random value  $\chi_j$ . At this point, player  $U_j$  may be thought of as having connected to the group.
- [0038] In the description above, the upflows may be unencrypted, encrypted by a first encryption method, or indeed encrypted with a different encryption method between each successive player  $U_j$  to  $U_{j+1}$ . Similarly, the downflow may be encrypted with a second encryption method, the same first encryption method, or indeed no encryption whatsoever. At this time, the literature has shown proof of security where the upflows and downflow are protected by encryption methods. Examples of such encryption methods include, but are not limited to, the Diffie-Hellman key exchange method, elliptic curve-based Diffie-Hellman methods, public key encryption methods, etc.

## **Detailed Description of the Flows**

[0039] Each flow sent from a player  $U_j$  is dependent on the incoming upflow  $U_{j-1}$ , and the two selected random values  $\chi_j$  and  $v_j$ , with the understanding that  $Fl_0$  is comprised of generator "g". Table 1 below demonstrates this previous player dependency for a simple example case of four players:

 $FI_0$ g  $g^{\nu_1 \chi_1}$ g'n  $Fl_I$ R 4422122 g 4142222 g 414221  $Fl_2$ R "1"2"32123 g 4142432122 Q 111213212223 g "1"2"3#2#3 FI<sub>3</sub> R 11224344X1X3X4 Q<sup>V1V2V3V4X2X3X4</sup> R "1"2"3"4X1X2X4 Fl₄ Tem →  $\beta_I$ β2 β<sub>3</sub> · β4

Table 1. Flows Associated With Four Players

[0040] In Table 1 above, each term  $\beta_I$  ...  $\beta_A$  in each flow is a single-valued number evaluated by exponentiation of the generator "g" as indicated. Thus,  $\mathbf{Fl}_3$  can be seen to have four numbers. Each of the players  $U_I$  ...  $U_A$  may have the downflow  $\mathbf{Fl}_4$  sent to them in either a sequential or a multicast manner. Additionally,  $U_A$  may also send the downflow  $\mathbf{Fl}_4$  to itself should that be advantageous.

[0041] Each of the players  $U_k$  at this point has available to it a term  $\beta_k$  in the downflow  $Fl_4$  corresponding to player  $U_k$ , as well as its previously selected random value  $\chi_k$ . A cryptographic key is generated by raising the term  $\beta_k$  corresponding to the player  $U_k$  in the downflow to the power  $\chi_k$ .

[0042] As an example, still referring to Table 1 above, player  $U_I$  has term  $\beta_I$  in the downflow of  $g^{\nu_1\nu_2\nu_3\nu_4\chi_2\chi_3\chi_4}$ , notably without any  $\chi_I$  exponent. By raising  $\beta_I$  to the  $\chi_I$  power, we obtain  $(g^{\nu_1\nu_2\nu_3\chi_4\chi_2\chi_3\chi_4})^{2n}$ , or more simply  $g^{\nu_1\nu_2\nu_3\chi_2\chi_3\chi_4}$ , which is the cryptographic key for player  $U_I$ , and indeed, all of the other players  $U_I \dots U_I$ . Thus,

all players have the same cryptographic key, and may commence communications with the key using Data Encryption Standard (DES), Advanced Encryption Standard (AES), or other encryption method, based upon the cryptographic key. From the cryptographic key  $g^{\nu_1\nu_2\nu_3\nu_4\lambda_2\lambda_2\lambda_3\lambda_4}$ , a session key may be calculated.

[0043] Refer now to Figure 1A, which depicts the setup phase of the four players described previously in Table 1. Flow  $Fl_1$  originates with player  $U_1$ , and is propagated to player  $U_2$ . Similarly, player  $U_2$  originates flow  $Fl_2$ , which is propagated to player  $U_3$ , and  $U_3$  originates flow  $Fl_3$ , which is propagated to player  $U_4$ .  $U_4$  is shown as either sequentially broadcasting the downflow  $Fl_4$  to players  $U_1$ ,  $U_2$ , and  $U_3$ , or simultaneously multicasting the downflow  $Fl_4$  to players  $U_1$ ,  $U_2$ , and  $U_3$ . When a player  $U_1$ ,  $U_2$ , and  $U_3$  receives the downflow  $Fl_4$  and has generated the cryptographic key for a secure group session, the secure group 100 is established, and is ready for intragroup secure communication.

#### Secure Group Deletion

[0044] As may also be observed from Table 1 above, no term in any of the flows  $Fl_1 \dots Fl_4$  is repeated, and each flow term  $\beta_k$  is distinct. This distinctiveness property increases the difficulty of "cracking" the secure group cryptographic key, as none of the data values are repeated. Note that for each of the players  $U_k$  where  $k = 1 \dots 4$ , none of the flow terms  $\beta_k$  vertically above player  $U_k$  contains any exponentiation using  $\chi_k$ .

[0045] To delete a player  $U_j$ , the downflow (in this example  $Fl_4$ ) has the term  $\beta_j$  associated with the player  $U_j$  deleted. Additionally, one of the remaining players is designated as the group controller (denoted "gc" in subscripts). After the downflow has been redacted of the one or more players leaving the group, the group controller selects a new random value  $\chi_{gc}$ , and a new random value  $\nu_{gc}$ . Using the previously obtained random values  $\chi_{gc}$  and  $\nu_{gc}$  used to enter the secure group, the resulting redacted flow is adjusted by raising each remaining term  $\beta_j$  having exponent  $\chi_{gc}$ , to the power  $\frac{\chi'_{gc}}{\chi_{gc}}$ . For each remaining term  $\beta_j$  not having an exponent term containing  $\chi_{gc}$ , (i.e. where j=gc) the redacted flow term  $\beta_j$  is adjusted by being exponentiated to the power  $\frac{\nu'_{gc}}{\nu}$ .

[0046] The group controller may be chosen arbitrarily, but may also be chosen for reasons of security, computational power, logistical reasons, or convenience.

[0047] Refer now to Table 2 below, where, as an example, player  $U_2$  is leaving the original four player secure group session described above. The group controller, here taken as player  $U_4$ , selects new values  $\chi'_4$ , and a new random value  $\nu'_4$ , and adjusts the redacted downflow  $Fl'_{42}$ . The  $Fl'_{42}$  notation reflects a new flow including information based on the original downflow  $Fl_4$  with player  $U_2$  having been removed.

FI4 original  $g^{\nu_1\nu_2\nu_3\nu_4\chi_2\chi_3\chi_4}$   $g^{\nu_1\nu_2\nu_3\nu_4\chi_1\chi_3\chi_4}$   $g^{\nu_1\nu_2\nu_3\nu_4\chi_1\chi_2\chi_4}$   $g^{\nu_1\nu_2\nu_3\nu_4\chi_1\chi_2\chi_3}$ FI4.2 redacted  $g^{\nu_1\nu_2\nu_3\nu_4\chi_2\chi_3\chi_4}$   $g^{\nu_1\nu_2\nu_3\nu_4\chi_1\chi_3\chi_4}$   $g^{\nu_1\nu_2\nu_3\nu_4\chi_1\chi_2\chi_4}$   $g^{\nu_1\nu_2\nu_3\nu_4\chi_1\chi_2\chi_3}$ FIY4.2 redacted  $g^{\nu_1\nu_2\nu_3\nu_4\chi_2\chi_3\chi_4}$   $g^{\nu_1\nu_2\nu_3\nu_4\chi_1\chi_3\chi_4}$   $g^{\nu_1\nu_2\nu_3\nu_4\chi_1\chi_2\chi_3}$   $g^{\nu_1\nu_2\nu_3\nu_4\chi_1\chi_2\chi_3}$ Player  $\rightarrow$   $U_1$   $U_2$   $U_3$   $U_4$ 

 $\beta_2$ 

βз

β4

Table 2. Four Original Players With Player Two Redacted

[0048] The deleted secure dynamic group that results is shown below, and denoted with primes to indicate the change in the group state. This updated state is then broadcast to the remaining group players.

 $\beta_I$ 

Term  $\rightarrow$ 

[0049] Note that in this example, redaction is conceptually indicated by crossing out the cell containing the corresponding term in Table 2. While actual deletion of the corresponding term in the redacted outflow  $Fl_{42}$  is one option for forming the redacted outflow  $Fl_{42}$ , it may also be formed by simply outputting the other terms of the redacted outflow, and skipping over the term(s) corresponding to the player(s) being deleted. Restating this, in the skipping method, the term  $\beta_2$  is never actually deleted, merely skipped over and not included in the downflow  $Fl_{42}$ . In either event, Table 3 shows the resulting downflow  $Fl_{42}$  terms comprising the actual flow.

Table 3. Multicast Resulting From Four Original Players With Player Two Redacted

| Fl' <sub>4-2</sub> | g 41424341222324 | g <sup>v1v2v3</sup> v4X1X2X4 | g <sup>414243</sup> 44212223 |
|--------------------|------------------|------------------------------|------------------------------|
| Player' →          | U'1              | U′₃                          | U′₄                          |

[0050] Refer now to Figure 1B, which graphically indicates the removal of player  $U_2$  previously described in Tables 2 and 3. In this case, player  $U_4$  has been designated as the group controller, and been renamed as  $U_{gc}$ . The adjusted downflow, having player  $U_2$  redacted, is denoted  $FI'_{gc}$ , which is either sequentially or simultaneously broadcast to players  $U_1$  and  $U_3$ . Once a player has received the adjusted downflow  $FI'_{gc}$  and has calculated a new cryptographic key, intragroup communications may be either commenced or resumed in the redacted group 130.

[0051] Refer now to Figure 1C, which graphically indicates the removal of player  $U_2$ . In this case, player  $U_3$  has been designated as the group controller, and been renamed as  $U_{gc}$ . The adjusted downflow, having player  $U_2$  redacted, is again denoted  $FI'_{gc}$ , which is either sequentially or simultaneously broadcast to players  $U_1$  and  $U_4$ . Once a player has received the adjusted downflow  $FI'_{gc}$  and has calculated a new cryptographic key, intragroup communications may be either commenced or resumed in the redacted group 170. The resulting group 170 is functionally equivalent to group 130 described above in Figure 1B, with the exception that the cryptographic key and downflow  $FI'_{gc}$  terms will be entirely different.

[0052] In the example above, player U<sub>2</sub> has been shown as actually removed. In practice, the player(s) being removed need just be skipped over in the multicast updated flow. After a player determines that it is no longer a member of the secure group, it would preferably delete all references and data relating to the group. As implied, this process may be used for several players leaving a dynamic secure group simultaneously, with the proviso that at least one player remain in the dynamic secure group. Additionally, the removal steps may be combined with the joining operations described below.

#### Secure Group Refresh

[0053] It may readily be seen that in the trivial case where no party is leaving, the previous steps of selecting a group controller, picking new random values for the group controller, and updating the downflow to the other group members has the effect of refreshing all downflow terms, and thereby refreshing the cryptographic key. Insofar as a hacker trying to break the cryptographic key, this has the effect of starting the attack all over, with no history whatsoever. This refresh technique may be useful if it appears that the secure group is under attack, or if there have been a number of unsuccessful joining events (joining is described below).

#### Secure Group Joining

[0054] Generally speaking, a set of J new players may join an existing plurality of players  $U_1 \dots U_n$  to form an expanded plurality of players  $U_1 \dots$ 

 $U_{n}, U_{n+1} \dots U_{n+k} \dots U_{n+J}$ , where  $1 \le k \le J$ . In this process, one or more players are added to an ongoing group of players  $U_{I} \dots U_{n}$ , so that both the existing and new players may communicate among the expanded secure group.

[0055] A method used to join new players  $U_{n+k}$ , ...,  $U_{n+J}$ , where  $1 \le k \le J$  to an existing group  $U_1 \ldots U_n$  of n players comprises choosing one of the existing group players to act as a group controller  $U_{gc}$ . The group controller has available to it the initial group downflow  $Fl_n$ , as do all players of the initial group. The group controller  $U_{gc}$  selects a new value  $\chi'_{gc}$ , a new random value  $\nu'_{gc}$ , and adjusts the initial downflow with the new  $\chi'_{gc}$  and  $\nu'_{gc}$ , values. As the initial downflow  $Fl_n$  is adjusted, the cryptographic key term missing from the initial flow is added. The resulting adjusted flow  $Fl'_{gc}$  is then sent to the first new player  $U_{n+1}$ , in the expanded secure group.

[0056] For players  $U_{n+1}$  through player  $U_{n+k-1}$ , each player  $U_{n+k}$  selects a random value  $\chi_{n+k}$ , and a random value  $v_{n+k}$ . Player  $U_{n+k}$  then sends an upflow signal  $Fl'_{n+k}$  from player  $U_{n+k}$  to player  $U_{n+k+1}$ . The upflow signal  $Fl'_{n+k}$  comprises information based upon the preceding player  $U_{n+k-1}$  upflow  $Fl'_{n+k-1}$ , the random value  $\chi_{n+k}$ , and the random value  $v_{n+k}$ .

[0057] The final player in the expanded group,  $U_{n+J}$ , takes as an input the preceding player  $U_{n+J-1}$  upflow  $FI'_{n+J-1}$ . Player  $U_{n+J}$  selects a random value  $\chi_{n+J}$ , and a random value  $v_{n+J}$ . Player  $U_{n+J}$  then broadcasts a downflow signal  $FI'_{n+J}$  to the remaining players (also known as a multicast) in the expanded plurality of players  $U_{I}$ , ...  $U_{n}$ ,  $U_{n+J}$ , ...,

 $U_{n+k}, \ldots, U_{n+J}$ , where  $1 \le k \le J-1$ . Downflow signal  $FI'_{n+J}$  comprises information based upon the preceding player  $U_{n+J-1}$  upflow  $FI'_{n+J-1}$ , the random value  $\chi_{n+J}$ , and the random value  $v_{n+J}$ . Broadcast from the final player  $U_{n+J}$  in the expanded group to itself if not necessary, but may also be done.

[0058] Once a player  $U_j$  has received the downflow signal  $\mathbf{Fl'}_{n+J}$ , player  $U_j$  may calculate a cryptographic key for use in secure group communications based on the downflow signal  $\mathbf{Fl'}_{n+J}$ , and its previously selected random value  $\chi_j$ .

[0059] In the description above, as with the initial setup of the secure group, the upflows may be unencrypted, encrypted by a first encryption method, or indeed encrypted with a different encryption method between each successive player  $U_j$  to  $U_{j+1}$ .

[0060] Similarly, the downflow may be encrypted with a second encryption method, the same first encryption method, or indeed no encryption whatsoever. At this time, the literature has shown proof of security where the upflows and downflow are protected by symmetric key encryption methods. Examples of such symmetric key encryption methods include the Diffie-Hellman method, elliptic curve-based Diffie-Hellman methods, etc.

[0061] The method described above for forming an expanded group is likely easier to understand with an example. Refer now to Figures 2A, 2B, and Table 4, which illustrate the steps and flows involved in expanding a secure group of two players to a secure group of four players.

[0062] In Figure 2A, we see an initial secure group 200 comprised of two players  $U_I$  and  $U_2$ . In this very simple example  $FI_I$  player  $U_I$  transmits an upflow  $FI_I$  to player  $U_2$ . Player  $U_2$  responds by in turn transmitting a downflow  $FI_2$  to player  $U_I$ . After both players have calculated the cryptographic key, secure communications may commence between them.

[0063] Table 4 details the two flows between players  $U_1$  and  $U_2$  that comprise this initial secure group 200 with  $Fl_1$  and  $Fl_2$ . In this example, the two flows comprise two exponentiated terms. As usual, the zeroth flow  $Fl_0$  is set to comprise g.

[0064] Figure 2B indicates the addition of two more players to the secure group, forming a secure group 250 comprising four players:  $U_1$ ,  $U_2$ ,  $U'_3$  and  $U'_4$ . All new components in this Figure are reflected with primed notation. Thus, we see that players  $U'_3$ ,  $U'_4$ , and flows  $FI'_2$ ,  $FI'_3$ , and  $FI'_3$  are new. In this example, player  $U_2$  is designated as the group controller.

[0065] Player  $U_2$  forms the adjusted flow, denoted as "Fl'<sub>2</sub> Adjusted" comprising information based on a new random value  $\chi'_2$ , a new random value  $v'_2$ , and the previous downflow Fl<sub>2</sub>, denoted in Table 4 as "Fl<sub>2</sub> Initial". Player  $U_2$ , acting as the group controller, then sends an upflow signal Fl'<sub>3</sub> to player  $U'_3$ . Player  $U'_3$  then forms a new upflow, Fl'<sub>3</sub>, comprising information based on a random value  $\chi'_3$ , a random value  $v'_3$ , and the previous upflow "Fl'<sub>2</sub> Adjusted". Player  $v'_3$  then sends upflow signal Fl'<sub>3</sub> to player  $v'_4$ .

[0066] Player  $U'_4$  then forms a new downflow,  $FI'_4$ , comprising information based on a random value  $\chi'_4$ , a random value  $V'_4$ , and the previous upflow  $FI'_3$ . Player  $U'_4$  then sends downflow signal  $FI'_4$  to players  $U_1$ ,  $U_2$ , and  $U'_3$ . When players  $U_1$ ,  $U_2$ , and  $U'_3$  receive the downflow signal  $FI'_4$ , they may then use their private exponent values of  $\chi$  to calculate the cryptographic key.

Table 4. Flows Associated With Two Players Joining An Initial Two Players

| FI <sub>0</sub>           | g         |          |             |            |
|---------------------------|-----------|----------|-------------|------------|
| FI <sub>I</sub>           | gn        | grizi    |             | •          |
| Fl <sub>2</sub> Initial   | g 71×2×22 | 8 442    |             |            |
| Fl' <sub>2</sub> Adjusted | 8"142%    | 8"142    | 8 41/2212/2 |            |
| Fľ <sub>3</sub>           | 8 4145425 | g wiszts | 8 442452122 | 8 44542525 |

| Fľ₄    | 8 41424344243244 | 8 444444212544 | g v <sub>1</sub> v <sub>2</sub> v <sub>3</sub> v <sub>4</sub> x <sub>1</sub> x <sub>1</sub> x <sub>4</sub> | g v.v.zv.gv.gz.gz.gs |
|--------|------------------|----------------|------------------------------------------------------------------------------------------------------------|----------------------|
| Term → | βι               | β2             | β3                                                                                                         | β4                   |

#### **Dynamic Secure Groups**

[0067] It may be readily understood that groups may arbitrarily grow and shrink by sequential join and delete operations. Additionally, the join and delete operations may be simultaneously applied. This fluid nature of group size, with players coming and going, is why the term "dynamic" is used to describe such groups.

#### Distinct Secure Groups With Common Players

[0068] Refer now to Figure 3, where players  $U_1 U_4$  form secure group 100. Another secure group 330 comprises players  $U_1$  also in group 100, as well as  $U_A U_D$ . Additionally, another secure group 360 comprises players  $U_4$  also in group 100, as well as  $U_X U_Z$ . Since player  $U_I$  is a member of both groups 100 and 330, and since player  $U_4$  is a member of both groups 100 and 360, it is possible for all players  $U_A U_D$ ,  $U_I U_A$  and  $U_X U_D$  to all intercommunicate. Players  $U_I$  and  $U_A$  would be required to translate from one secure group cryptographic key to the other, or in a sense act as a secure transmission router. In this manner, different secure groups may be joined by common players. Although not illustrated in Figure 3, a player may be in an unlimited number of groups, and group interconnection topologies are not limited.

#### Merging Of Distinct Secure Groups With Common Players

[0069] Although not described in Figure 3, some or all of the players  $U_1 \dots U_4$ ,  $U_A \dots U_D$  and  $U_X \dots U_Z$  may be merged into either a separate or distinct union of the secure dynamic groups. These operations would be straightforward applications of the setup and/or join operations previously described above.

[0070] Alternatively, it is possible for some or all players  $U_A \dots U_D$  and  $U_X \dots U_Z$  to be joined to initial group 100 formed initially by players  $U_I \dots U_d$ , thereby all players may intercommunicate directly by merging into one supergroup comprising players  $U_A \dots U_D$ ,  $U_I \dots U_d$  and  $U_X \dots U_Z$ . This may be accomplished by straightforward application of the join operation described above. Alternatively, by

taking advantage of already formed groups 330 and 360, a combination of join and refresh operations on the groups 330 and 360 may more rapidly be used to form a supergroup comprised of  $U_A \dots U_D$ ,  $U_1 \dots U_4$  and  $U_X \dots U_2$ .

#### Conclusion

[0071] All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application were each specifically and individually indicated to be incorporated by reference.

[0072] The description given here, and best modes of operation of the invention, are not intended to limit the scope of the invention. Many modifications, alternative constructions, and equivalents may be employed without departing from the scope and spirit of the invention.

[0073] Arithmetic is in a finite cyclic group G=<alpha> of prime order beta. This group is assumed to be given a generator <alpha>. We assume that G, alpha, and beta are well-known. The group G should be a group on which the computational Diffie-Hellman problem is hard. There are three possibilities for such group:  $G = Z^*p$  where p is a large prime number; G is an appropriate subgroup of  $Z^*p$ ; and G is an appropriate elliptic curve group.

[0074] Encryption methods may be instantiated by either the AES symmetric cipher or the bit-wise Boolean XOR-ing of the password with a public key.

#### **CLAIMS**

#### We claim:

- A method for generating a cryptographic key by a player in a dynamic group, the method comprising:
  - a) receiving,
    - i) by a player  $U_p$  in a dynamic group with a first player  $U_I$  and a last player  $U_n$ , where p>I,
    - ii) a previous upflow  $\mathbf{Fl}_{p-1}$  from a previous player  $\mathbf{U}_{p-1}$  in the dynamic group;
  - b) player  $U_p$  selecting a random value  $x_p$ , and a random value  $v_p$ ; and
  - c) player  $U_p$  sending an outflow  $\mathbf{Fl}_p$ , comprising information based on the random value  $x_p$ , the random value  $v_p$ , and the previous upflow  $\mathbf{Fl}_{p-1}$ .
- The method for generating a cryptographic key by a player in the dynamic group of claim 1, further comprising:
  - a) for a first player  $U_l$  in the dynamic group:
    - i) player  $U_p$  selecting a random value  $x_l$ , and a random value  $v_l$ ;
    - ii) setting an initial upflow  $Fl_I$  comprising information based on the random value  $x_{I_0}$ , the random value  $v_I$ , and "g", a generator of a finite group where a computational solution to a Diffie-Hellman problem is hard.
- 3. The method for generating a cryptographic key by a player in the dynamic group of claim 2, the sending step further comprising:
  - a) when player Up is not the last player in the dynamic group, then:
    - i) player  $U_p$  sending an upflow  $\mathbf{Fl}_p$  to a subsequent player  $U_{p+1}$  in the dynamic group,
      - (1) the upflow  $\mathbf{Fl}_p$  comprising the outflow  $\mathbf{Fl}_p$ ;
  - b) when player  $U_p$  is the last player in the dynamic group, then:
    - i) player  $U_p$  sending a downflow  $Fl_n$  to all other players in the dynamic group,
      - (1) the downflow  $\mathbf{Fl}_n$  comprising the outflow  $\mathbf{Fl}_n$ .
- 4. The method for generating a cryptographic key by a player in the dynamic group of claim 3 comprising:
  - a) forming a set of L players,  $U_L$ , leaving the dynamic group;

- b) forming a set of R players,  $U_R$ , remaining in the dynamic group;
- c) choosing a controller  $U_C$  from the remaining set of R players  $U_R$ ;
- d) inputting, by controller  $U_C$ , the downflow  $\mathbf{Fl}_n$ ,
  - i) where the downflow  $Fl_n$  has one entry associated with each player in the dynamic group; and
- e) sending a controller  $U_C$  downflow signal  $FI'_C$ , comprising:
  - i) controller  $U_C$  sending the controller downflow  $\mathbf{FI}_C$  based upon a random value  $x_C$ , a random value  $v_C$ , and the downflow signal  $\mathbf{FI}_n$ ,
    - (1) where each entry associated with the set of L players  $U_L$  leaving in the downflow signal  $\mathbf{Fl}_n$  has been deleted.
- 5. The method for generating a cryptographic key by a player in the dynamic group of claim 3 comprising:
  - a) forming a set of J players to form a larger dynamic group  $U_1, ..., U_n, U_{n+1}, ..., U_{n+k}, ..., U_{n+J}$ , where  $1 \le k \le J$ ;
  - b) sending an upflow  $\mathsf{Fl}_{n+k}$  from each player  $\mathsf{U}_{n+k}$ , to player  $\mathsf{U}_{n+k+1}$ , where  $1 \leq k < J-1$ ,
    - i) said upflow  $\mathbf{Fl}_{n+k}$  based upon a random value  $x_{n+k}$ , a random value  $v_{n+k}$ , and the upflow  $\mathbf{Fl}_{n+k-l}$  received from player  $\mathbf{U}_{n+k-l}$ ; and
  - c) sending a downflow  $F_{n+J}$  by player  $U_{n+J}$ , based upon a random value  $x_{n+J}$ , a random value  $v_{n+J}$ , and the upflow  $F_{n+J-J}$ .
- 6. The method for generating a cryptographic key by a player in the dynamic group of claim 3 comprising:
  - a) choosing a refresher  $U_r$  from the dynamic group  $U_1, \dots U_n$ ;
  - b) inputting, by refresher  $U_n$ , the downflow  $Fl_n$ ,
    - i) where the downflow  $\mathbf{Fl}_n$  has one entry associated with each player in the dynamic group; and
  - c) sending, by refresher  $U_r$ , a refresher  $U_r$  downflow  $FI'_r$  based upon a random value  $x_r$ , a random value  $v_r$ , and the downflow signal  $FI_n$ .
- The method for generating a cryptographic key of claim 1 wherein said upflows are encrypted with a first encryption method.

8. The method for generating a cryptographic key of claim 3 wherein said downflows are encrypted with a second encryption method.

- 9. The method for generating a cryptographic key of claim 3 wherein said upflows and downflows are encrypted with a single encryption method.
- 10. An apparatus for generating a cryptographic key of claim 1.
- 11. The method for generating a cryptographic key of claim 1, wherein said steps are recorded on a computer readable medium.
- 12. The method for generating a cryptographic key of claim 1, wherein said upflows form a data structure transmitting through a computer readable medium.
- 13. The method for generating a cryptographic key of claim 1, wherein said steps are performed in a computer.
- 14. The method for generating a cryptographic key of claim 1, wherein said upflows are signal transmissions.
- 15. The method for generating a cryptographic key of claim 3, wherein said downflows are signal transmissions.
- 16. An apparatus for connecting a player to a dynamic group, the apparatus comprising a computer generating the cryptographic key of claim 1.
- 17. The method for generating a cryptographic key of claim 2 wherein said finite group is a finite cyclic group.
- 18. The method for generating a cryptographic key of claim 1, further comprising the step of:
  - a) limiting the dynamic group to a size of three or more parties.
- 19. A method for generating a cryptographic key by a player in a dynamic group, the method comprising:
  - a) providing a candidate player  $U_p$  wishing to be a party for a dynamic group with a first player  $U_1$  and a last player  $U_n$ , where p>1,
  - b) means for connecting player U<sub>n</sub> to the dynamic group.
- 20. The method for generating a cryptographic key by a player in a dynamic group of claim 19, the method further comprising:
  - a) means for removing a set of L players,  $U_L$ , leaving the dynamic group.

21. The method for generating a cryptographic key by a player in a dynamic group of claim 19, the method further comprising:

- a) means for generating a downflow by the last player  $U_n$  in the dynamic group to the other players in the dynamic group.
- 22. The method for generating a cryptographic key by a player in a dynamic group of claim 19, the method further comprising:
  - a) means for joining a set of J player to the dynamic group.







250



FIG. 2B

FI'2 FI'3 FI'4 FI'4

