Un corrigé type du CF-ANA4-2018/2019

Exercice 1: On a $D_f = \mathbb{R}^2$, $f \in C^{\infty}(\mathbb{R}^2)$ [0,25] car c'est un polynôme.

Extrema Locaux : 1) CN: Recherche des points critiques.

Résolution du système
$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0, \\ \frac{\partial f}{\partial y}(x,y) = 0. \end{cases} \iff \begin{cases} 3x^2 - 3 = 0, \dots (1) \\ 3y^2 - 12 = 0 \dots (2) \end{cases} 0.25$$

 \rightarrow (1) donne $x^2 = 1$ ie x = 1 ou $x = -1... \boxed{0.25}$

 \rightarrow (2) donne $y^2 = 4$ ie y = 2 ou $y = -2... \boxed{0.25}$

Alors on a quatre points critiques :. $M_1 = (1, 2), M_2 = (1, -2), M_3 = (-1, 2),$ et $M_4 = (-1, -2).$ $\boxed{0,25}$

2) CS: Test.. Calculons les dérivées secondes:

$$\frac{\partial^2 f}{\partial x^2}(x,y) = 6x, \ \frac{\partial^2 f}{\partial x \partial y}(x,y) = 0, \ \frac{\partial^2 f}{\partial y^2}(x,y) = 6y. \ \boxed{0.25} x3$$

Méthode 1 : Utilisons la méthode du discriminant.

<u>Méthode 2</u>: Utilisons la méthode de la Hessienne. On a $Hess(f)(x,y) = \begin{pmatrix} 6x & 0 \\ 0 & 6y \end{pmatrix}$.

 $\begin{aligned} & \text{Ainsi}, Hess(f)(M_1) = \left(\begin{array}{cc} 6 & 0 \\ 0 & 12 \end{array} \right), \ Hess(f)(M_2) = \left(\begin{array}{cc} 6 & 0 \\ 0 & -12 \end{array} \right), Hess(f)(M_3) = \left(\begin{array}{cc} -6 & 0 \\ 0 & 12 \end{array} \right), \\ & Hess(f)(M_4) = \left(\begin{array}{cc} -6 & 0 \\ 0 & -12 \end{array} \right). \end{aligned}$

Point Les valeurs propres de la $Hess(f)(M_i)$ Conlusion * M_1 sont toutes positifs.... $\begin{bmatrix} 0.25 \end{bmatrix}$ $(M_1, f(M_1))$ est un min local $\begin{bmatrix} 0.25 \end{bmatrix}$ * M_4 sont de signes négatifs.... $\begin{bmatrix} 0.25 \end{bmatrix}$ $(M_4, f(M_4))$ est un max local $\begin{bmatrix} 0.25 \end{bmatrix}$ * M_2 sont de signes différents.... $\begin{bmatrix} 0.25 \end{bmatrix}$ $(M_2, f(M_2))$ n'est pas un extrémum $(M_3, f(M_3))$ n'est pas un extrémum $\begin{bmatrix} 0.25 \end{bmatrix}$

Extrema globaux : On a $\lim_{x \to +\infty} f(x,0) = +\infty$ et $\lim_{x \to -\infty} f(x,0) = -\infty$, donc f n'a pas d'extrema globaux 0,5.

Exercice 2: On a $D_f = \mathbb{R}^2$, $f \in C^{\infty}(\mathbb{R}^2)$ 0,25 car c'est un polynôme.

Il s'agit de déterminer les extrémums liés de f sous la contrainte φ où $\varphi(x,y)=x^2+y^2-8$.

A) Recherche des
$$(x, y)$$
 tel que
$$\begin{cases} \frac{\partial \varphi}{\partial x}(x, y) = 0 \\ \frac{\partial \varphi}{\partial y}(x, y) = 0 \end{cases} \iff \begin{cases} 2x = 0 \\ 2y = 0 \end{cases}$$

 \iff (x,y)=(0,0), mais ce point ne vérifie pas la contraite. 0,5

B) Utilisons les multiplicateurs de Lagrange. Soit la fonction auxiliaire :

$$F(x,y) = f(x,y) + \lambda \varphi(x,y) = x^2 + y^2 - 4xy + \lambda (x^2 + y^2 - 8) \cdot \boxed{0.25}$$

D'abord résolvons le systéme (S)
$$\begin{cases} \frac{\partial F}{\partial x}(x,y) = 0 \\ \frac{\partial F}{\partial y}(x,y) = 0 \\ \varphi(x,y) = 0 \end{cases} \iff \begin{cases} 2x + 2\lambda x - 4y = 0.....(1) \\ 2y + 2\lambda y - 4x = 0.....(2) \\ x^2 + y^2 = 8......(3) \end{cases}$$

$$(1)+(2):2\left(x+y\right)+2\lambda\left(x+y\right)-4\left(x+y\right)=0\Leftrightarrow\left(\lambda-1\right)\left(x+y\right)=0\Longleftrightarrow\left(\lambda=1\right)$$
 $\forall y=-x$.

$$\underbrace{1 \text{er cas } \lambda = 1 :}_{} (S) \iff \begin{cases} 4x - 4y = 0.....(1) \\ 4y - 4x = 0.....(2) \\ x^2 + y^2 = 8......(3) \end{cases} \iff \begin{cases} y = x.....(*) \\ x^2 + y^2 = 8.....(3) \end{cases}$$

(*) dans (3): $y^2 = 4 \iff y = 2 \lor y = -2$.

Donc (2,2,1) et (-2,-2,1) sont des solutions de (S).

Donc (2, -2, -3) et (-2, 2, -3) sont des solutions de (S).

Les seuls points susceptibles de donner les extrema liés sous la contraintes φ sont donc

$$M_1 = (2,2), M_2 = (-2,-2), M_3 = (2,-2)$$
 et $M_4 = (-2,2)$ 0.25×4

<u>Conclusion</u>: ici il s'agit de détrminer les extrema de f sur le cercle $C\left((0,0),\sqrt{8}\right)$ qui est un férmé borné, donc f atteint ses bornes. $\boxed{0,25}$

Puisque, $f(M_1) = -8$, $f(M_2) = -8$, $f(M_3) = 24$ et $f(M_4) = 24$,...0.25 alors $(M_1, f(M_1))$ et $(M_2, f(M_2))$ sont des minimums pour f...[0.25], d'autre part $(M_3, f(M_3))$ et $(M_4, f(M_4))$ sont des maximums 0.25 pour f sur le cercle d'equation $x^2 + y^2 = 8$.

Exercice 3 : Utilisons les coordonnées cylindriques:

$$\varphi: \left\{ \begin{array}{l} x = r\cos\theta \\ z = r\sin\theta \\ y = y \end{array} \right. \quad \text{avec} \left\{ \begin{array}{l} r = \sqrt{x^2 + z^2} \\ \det J_{\varphi} = r. \boxed{0,25} \end{array} \right.$$

On a

$$(x,y,z) \in \Omega \iff \begin{cases} x > 0 \\ y > 0 \\ x^2 + y^2 < z^2 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \sin \theta > 0 \\ r^2 < z^2 \\ 1 < z < 2 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \\ \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \\ \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \\ \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \\ \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \\ \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0 \\ \cos \theta > 0 \end{cases} \dots \boxed{0,25}$$

$$\downarrow CC \iff \begin{cases} \cos \theta > 0$$

Donc, le transformé par les CC est donné par:

$$\Omega' = \left\{ (r, \theta, y) \in \mathbb{R}_+^* \times] - \pi, \pi[\times \mathbb{R} / 0 < r < z, \ 0 < \theta < \frac{\pi}{2}, \ 1 < z < 2 \right\}. \boxed{0.25}$$

Ce qui implique

$$Vol(\Omega) = \iiint_{\Omega} dx dy dz \boxed{0,25}$$

$$= \iint_{\Omega} \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} \int_{0}^{z} r dr dz d\theta \boxed{0,5}$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \int_{1}^{2} \left[r^{2}\right]_{0}^{z} dz d\theta \boxed{0,25}$$

$$= \frac{1}{6} \int_{0}^{\frac{\pi}{2}} \left[z^{3}\right]_{1}^{2} d\theta = \frac{7\pi}{12} \cdot \boxed{0,25}$$

Exercice 4: 1) Posons
$$f(t,x) = \frac{\sin t}{e^{xt} - 1}$$
. La fonction $F(x) = \int_{1}^{+\infty} \frac{\sin t}{e^{xt} - 1} dt$.

est une intégrale paramétrée impropre .. $\boxed{0,25}$

On a

 $\to f$ est continue comme rapport, somme et composée de fonctions continues sur $[1,+\infty[\times\,]0,+\infty[.\boxed{0,25}\,]$

$$ightharpoonup ext{Pour tout } (t,x) \in [1,+\infty[imes]0,+\infty[\,,\quad |f(t,x)| \leq \frac{1}{e^{xt}-1}.$$
 Or $e^{\alpha t} \leq e^{xt}$ pour tout $(t,x) \in [1,+\infty[imes[\alpha,+\infty[$ (avec $\alpha>0)$, il vient

$$|f(t,x)| \le \frac{1}{e^{at} - 1} = \varphi(t) \boxed{0,5}, \ \forall t \in [1, +\infty[0,25], \ \forall x \in [a, +\infty[, \ a > 0], 0,25]$$

Voyons la convergence de
$$\int_{1}^{+\infty} \varphi(t)dt$$
, $\varphi \in R_{loc}[1, +\infty[$:

Au
$$v(+\infty)$$
 : $\varphi(t) \sim \frac{1}{e^{at}} \cdot \boxed{0,25}$ Or: $\int_{1}^{+\infty} e^{-at} dt$ converge (intégrale de

référence) 0.25

Utilisons le théorème de conservation de la continuité sous \int pour le cas intégrale impropre paramétrée, on en déduit que F est continue sur tout $[a, +\infty[,\ a>0.\ 0.25]$

<u>Conclusion</u>: Par recouvrement, F est continue sur $]0, +\infty[.0,5]$

2) Posons
$$g(t,x) = \frac{e^{x(t+1)}}{t+1}$$
. La fonction $G(x) = \int_{0}^{1} \frac{e^{x(t+1)}}{t+1} dt$. est une intégrale

paramétrée de Rieman . $\boxed{0,25}$

On a:

 \rightarrow g est continue comme rapport, de fonctions continues sur $[0,1] \times \mathbb{R}$.

$$ightharpoonup \frac{\partial g}{\partial x}(t,x) = e^{x(t+1)}$$
 qui est continue sur $[0,1] \times \mathbb{R}$.. $\boxed{0,25}$

Conclusion : Utilisons le théorème de conservation de la dérivabilité sous \int pour le cas d'intégrale de Rieman, paramétrée , on en déduit que G est dérivable sur $\mathbb{R}.\boxed{0,25}$

De plus, on a

$$G'(x) = \int_{0}^{1} g'(t, x) dt = \int_{0}^{1} e^{x(t+1)} dt \quad \boxed{0,25} = \begin{cases} \frac{e^{2x} - e^{x}}{x}, & \text{si } x \neq 0 \\ 1, & \text{si } x \neq 0. \end{cases} \boxed{0,5}$$

Exercice 5: Appliquons les TL au système donné, $Y = \mathcal{L}(y)$, $Z = \mathcal{L}(z)$:

$$\begin{cases} \mathcal{L}(y'') + (\mathcal{L}(z') - \mathcal{L}(y')) = -\frac{3}{4}\mathcal{L}(y) \\ \mathcal{L}(z'') - (\mathcal{L}(z') - \mathcal{L}(y')) = -\frac{3}{4}\mathcal{L}(z) \end{cases} = 0.25 \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{x^2Y - xy(0) - y'(0)}{[0.5]} + \left(\underbrace{xZ - z(0) - xY + y(0)}_{[0.25]}\right) = -\frac{3}{4}Y \\ \frac{x^2Z - xz(0) - z'(0) - (xZ - z(0) - xY + y(0)) = -\frac{3}{4}Z \end{cases}$$

$$\Leftrightarrow \begin{cases} x^2Y - 1 + (xZ - xY) = -\frac{3}{4}Y \\ x^2Z + 1 - (xZ - xY) = -\frac{3}{4}Z \end{cases} \xrightarrow{(0.25)} \Leftrightarrow \begin{cases} x^2Y - 1 + x(Z - Y) = -\frac{3}{4}Y ...(1) \\ x^2Z + 1 - x(Z - Y) = -\frac{3}{4}Z ...(2) \end{cases}$$

$$\Leftrightarrow \begin{cases} x^2(Y + Z) = -\frac{3}{4}(Y + Z) ...(1) + (2) \\ x^2(Y - Z) - 2 + 2x(Z - Y) = -\frac{3}{4}(Y - Z) ...(1) - (2) \end{cases} \xrightarrow{(0.5)}$$

$$\Leftrightarrow \begin{cases} (Y + Z) \left(x^2 + \frac{3}{4}\right) = 0 \\ x^2Z + 1 - x(Z - Y) = -\frac{3}{4}Z \end{cases} \Leftrightarrow \begin{cases} Y + Z = 0 \\ x^2Z + 1 - x(Z - Y) = -\frac{3}{4}Z \end{cases}$$

$$\Leftrightarrow \begin{cases} Y = -Z \\ x^2Z + 1 - x(Z - Y) = -\frac{3}{4}Z \end{cases} \Leftrightarrow \begin{cases} Z = -Y \\ -x^2Y + 1 + 2xY = \frac{3}{4}Y \end{cases} \Leftrightarrow \begin{cases} Z = -Y \\ -4x^2Y + 8xY - 3Y = -4 \end{cases}$$

$$\Leftrightarrow \begin{cases} Z = -Y \\ -4x^2Y + 8xY - 3Y = -4 \end{cases} \Leftrightarrow \begin{cases} Z = -Y \\ (4x^2 - 8x + 3)Y = 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} Z = -Y \\ -4x^2Y + 8xY - 3Y = -4 \end{cases} \Leftrightarrow \begin{cases} Z = -Y \\ (4x^2 - 8x + 3)Y = 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} Z = -Y \\ -4x^2Y + 8xY - 3Y = -4 \end{cases} \Leftrightarrow \begin{cases} Z = -Y \\ (4x^2 - 8x + 3)Y = 4 \end{cases}$$

Or
$$4x^2 - 8x + 3 = 4\left(x - \frac{1}{2}\right)\left(x - \frac{3}{2}\right)$$
 d'où $Y = \frac{1}{\left(x - \frac{1}{2}\right)\left(x - \frac{3}{2}\right)} = \boxed{0,25}$
donc, $Y = -\frac{1}{\left(x - \frac{1}{2}\right)} + \frac{1}{\left(x - \frac{3}{2}\right)} \boxed{0,5}$ et $y(t) = -\mathcal{L}^{-1}\left(\frac{1}{x - \frac{1}{2}}\right) + \mathcal{L}^{-1}\left(\frac{1}{x - \frac{3}{2}}\right) \boxed{0,5}$
Ainsi, $Y = -e^{\frac{t}{2}} + e^{\frac{3t}{2}} \boxed{0,5}$ et $Z(t) = -Y(t) = e^{\frac{t}{2}} - e^{\frac{3t}{2}} \cdot \boxed{0,25}$