Sistemas Computacionais Distribuídos

Prof. Marcos José Santana SSC-ICMC-USP

São Carlos, 2008

Grupo de Sistemas Distribuídos e Programação Concorrente

Departamento de Sistemas de Computação - SSC

Sistemas Computacionais Distribuídos

3a. Aula

Projeto de S.D.

Conteúdo

Sistemas Distribuídos

- **⇒** Características
- **⇒** Como atingir essas características
- ⇒ Itens a serem considerados no projeto
 - Nomeação
 - Comunicação
 - Estrutura de software
 - Alocação de carga
 - Manutenção de consistência

- Compartilhamento de recursos;
- Abertura;
- Concorrência;
- Escalabilidade;
- Tolerância a falhas;
- Transparência.

- Compartilhamento de recursos:
 - Fundamental em sistemas distribuídos;
 - Elementos de hardware:
 - Discos
 - Impressoras
 - Elementos lógicos:
 - Dados
 - Arquivos
 - mensagens

- Abertura:
 - Facilidade de extensão;
 - Facilidade de adaptação a evolução:
 - Física;
 - Lógica.
 - Obtém-se com:
 - Interfaces bem documentadas e disponibilizadas;
 - Adoção de padrões, sempre que possível;
 - Historicamente sistemas fechados!
 - Sistemas distribuídos ⇒ mudança de paradigma!

- Abertura:
 - Hardware:
 - Introdução de novos elementos;
 - Adaptação a novas tecnologias;
 - Etc.
 - Software:
 - Atualizações de software;
 - Atualizações de protocolos de comunicação;
 - Inserção de serviços compartilhados;
 - Etc.

- Concorrência:
 - Vários usuários
 - Vários processos clientes
 - Vários processos servidores
 - Trabalho concorrente
 - Recursos compartilhados
 - Acesso a dados compartilhados

- Escalabilidade:
 - Capacidade de crescer (e)
 - Manutenção do desempenho
 - Limitação da rede de comunicação
 - Limitação do modelo arquitetural
 - Duas estações e um servidor (até)
 - Milhares de estações e dezenas de servidores

Tolerância a falhas:

- Redundância em nível de hardware
 - Existência de múltiplos recursos capazes de oferecer o mesmo serviço.

- Recuperação em nível de software
 - Existência de procedimentos para recuperar (consistentemente) após falhas.

Tolerância a falhas:

- Granulosidade fina:
 - Replicação (física) de servidores.
- Alta disponibilidade

Aumento de complexidade

- Transparência:
 - Característica (conceito) fundamental
 - Visão uniforme e centralizada do sistema
 - Mobilidade dos usuários
 - Diversas formas de transparência

- Transparência:
 - Formas de transparência:
 - Acesso ⇒ acesso local e remoto semelhantes;
 - Localização ⇒ objetos remotos sem saber onde estão;
 - Concorrência ⇒ concorrencia a dados consistência;

- Transparência:
 - Formas de transparência:
 - Replicação ⇒ várias instâncias aumentando confiabilidade, desempenho, disponibilidade sem conhecimento dos usuários e/ou programas aplicativos;
 - Falhas ⇒esconder falhas de hardware e de software

- Transparência:
 - Formas de transparência:
 - Migração ⇒ migração de dados sem conseqüência para usuários e/ou programas aplicativos;
 - Desempenho ⇒ reconfiguração de acordo com a carga;
 - Escala ⇒ crescimento em escala sem alterar estrutura do sistema ou dos aplicativos

Como atingir estas características

- Objetivos para um bom projeto:
 - **⇒** Desempenho;
 - **⇒** Confiabilidade;
 - **⇒** Escalabilidade;
 - **⇒** Consistência;
 - **⇒** Segurança.

Itens a serem considerados no projeto:

- **⇒ Nomeação**;
- **⇒** Comunicação;
- **⇒** Estrutura de software;
- ⇒ Alocação de carga;
- ⇒ Manutenção de consistência.

Itens a serem considerados no projeto: Nomeação

- **⇒** Compartilhamento de recursos;
- **⇒** Transparência.
- ✓ Recursos ou objetos devem receber nomes:
 - Significado global.
 - Independente da localização.
- ✓ Sistema de interpretação de nomes:
 - Escalabilidade.
 - Desempenho.

Itens a serem considerados no projeto:

Nomeação

* Em um Sistema Distribuído:

- * Importância do contexto:
 - **⇒** Hierarquia Domínios

Itens a serem considerados no projeto:

Nomeação

- * Proteção:
 - **⇒** Servidor de Nome
 - Protege recurso de uso n\u00e3o autorizado!

✓ Para primeiro acesso ao recurso.

Itens a serem considerados no projeto: Comunicação

- **⇒** Desempenho;
- **⇒** Confiabilidade.
- S.D.: vários processos que requisitam ou fornecem serviços.
- **⇒** Comunicação entre processos
 - ✓ Transferência de dados;
 - ✓ Sincronização.

Itens a serem considerados no projeto: Comunicação

- **⇒** Troca de mensagens
 - ✓ Send / Receive
 - ✓ Bloqueante / Não bloqueante
 - ✓ Cliente / Servidor
 - ✓ Multicast

Itens a serem considerados no projeto:

Comunicação

* Comunicação Cliente / Servidor

Itens a serem considerados no projeto: Comunicação

* RPC - Chamada a Procedimento Remoto

* MULTICAST:

1 proc

 \Rightarrow

n procs

1 group Send

 \Rightarrow

n receives

Ex.:

- Atualização relógio.
- Tolerância a falha.
- Localização de objetos

Itens a serem considerados no projeto: Estrutura do Software

- ✓ Abertura.
- ✓ Componentes de software com interfaces bem definidas.
 - Serviços: gerenciadores de objetos de um dado tipo.
 - Interface: conjunto de operações.
- ✓ Introdução de novos serviços.

Itens a serem considerados no projeto:

Estrutura do Software

- * Sistema Centralizado
 - ✓ Organização:
 - Aplicações
 - Suporte para linguagem de programação
 - Sistema Operacional
 - Hardware
 - ✓ Gerenciamento de recursos:
 - memória;
 - criação de processos;
 - periféricos
 - ✓ Serviços para usuários:
 - autenticação;
 - controle de acesso;
 - gerenciamento de arquivos;
 - clock.

Itens a serem considerados no projeto: Estrutura do Software

- * Sistemas Distribuídos
 - ✓ Organização:

Itens a serem considerados no projeto: Estrutura do Software

- * Sistemas Distribuídos
 - **✓** S.O.:
- memória;
- criação de processos;
- comunicação entre processos;
- periféricos.
- ✓ Serviços abertos:
 - serviços compartilhados.
- ✓ Suporte para programação distribuída:
 - RPC;
 - Multicast.

Itens a serem considerados no projeto: Alocação de Carga

- * Como utilizar
 - **⇒ Processamento e comunicação**
 - **⇒** Recursos

para obter o melhor desempenho!

- * Escalonamento de tarefas em S.D.
 - **⇒** escalonamento local
 - **⇒** escalonamento global

Itens a serem considerados no projeto: Alocação de Carga

* Modelos Arquiteturais

- ⇒ Modelo E.T. / Servidor + E.T. ociosas
- **⇒** Pool de processadores
- **⇒** outras organizações

Itens a serem considerados no projeto: Manutenção de consistência

- **⇒** Confiabilidade
- **⇒** Disponibilidade
- Desempenho (Cache, replicação, falha, clock, etc.)
- Consistência de manutenção de dados
 - **⇒ Modificação Atômica.**
- Consistência em Replicação
 - Sincronismo entre múltiplas cópias.

Itens a serem considerados no projeto: Manutenção de consistência

- * Consistência em cache
 - **⇒** Cache nas E.T.
- * Consistência em falha
 - **⇒** Dados em diferentes componentes **⇒** Compatíveis.
- * Consistência de clock
 - **⇒** Timestamp;
 - ⇒ Tempo de transmissão;
 - ⇒ Clock Lógico.

Fim!