Redes Neurais Multicamadas

Prof. Gustavo Willam Pereira

Bias (Viés)

Bias (Viés)

- Valores diferentes mesmo se todas as entradas forem zero
- Muda a saída com a unidade de bias

Erro

Algoritmo mais simples
 erro = respostaCorreta - respostaCalculada

X1	X2	CLASSE	CALCULADO	ERRO
0	0	0	0.406	-0.406
0	1	1	0.432	0.568
1	0	1	0.437	0.563
1	1	0	0.458	-0.458

Média absoluta = 0.49

Outros cálculos dos erros

MSE (Mean square error)

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - y_i)^2$$

Root Mean Square Error (RMSE)

RMSE =
$$\sqrt{\frac{1}{N}} \sum_{i=1}^{N} (f_i \cdot o_i)^2$$

Outros cálculos dos erros

x1	x2	Classe	Calculado	Erro
0	0	0	0.406	$(0 - 0.406)^2 = 0.164$
0	1	1	0.432	$(1 - 0.432)^2 = 0.322$
1	0	1	0.437	$(1 - 0.437)^2 = 0.316$
1	1	0	0.458	$(0 - 0.458)^2 = 0.209$

Soma = 1.011

$$MSE = 1.011 / 4 = 0.252$$

 $RMSE = 0.501$

Saídas com mais neurônios

Problemas mais complexos

Pode ser necessário colocar mais de um neurônio

na camada de saída

Será necessário realizar uma codificação para

determinar a saída

Ex: Análise de Risco (Saída: 2 Neurônios)

Classe Baixa 0-0

Classe Média 0 – 1

Classe Alta 1 – 1

Deep Learning

- Anos 90: Máquinas de vetores de suporte (SVM)
- A partir de 2006 foram criados algoritmos para treinamento de redes neurais
- Duas ou mais camadas escondidas (redes profundas)

Deep Learning

- São utilizadas outras técnicas
- "Problema do gradiente desaparecendo" –vanishing gradient problem–gradiente fica muito pequeno, mudanças nos pesos ficam pequenas
- Outras funções de ativação
- Redes neurais convolucionais
- Redes neurais recorrentes
- Keras, TensorFlow
- FastIA, PyTorch
- GPU

Camadas Ocultas

Quantidade de Neurônios na Camada Oculta

$$Neur\hat{o}nios = \frac{2+1}{2} = 1.5$$

Camadas Ocultas

- Problemas linearmente separáveis não necessitam de camadas ocultas
- Cross validation(validação cruzada)
- Em geral, duas camadas funcionam bem para poucos dados
- Pesquisas em deep learning mostram que mais camadas são essenciais para problemas mais complexos

Exemplo de um DataSet para avaliar risco de Cliente

História do crédito	Dívida	Garantias	Renda anual	Risco
Ruim	Alta	Nenhuma	< 15.000	Alto
Desconhecida	Alta	Nenhuma	>= 15.000 a <= 35.000	Alto
Desconhecida	Baixa	Nenhuma	>= 15.000 a <= 35.000	Moderado
Desconhecida	Baixa	Nenhuma	> 35.000	Alto
Desconhecida	Baixa	Nenhuma	> 35.000	Baixo
Desconhecida	Baixa	Adequada	> 35.000	Baixo
Ruim	Baixa	Nenhuma	< 15.000	Alto
Ruim	Baixa	Adequada	> 35.000	Moderado
Boa	Baixa	Nenhuma	> 35.000	Baixo
Boa	Alta	Adequada	> 35.000	Baixo
Boa	Alta	Nenhuma	< 15.000	Alto
Boa	Alta	Nenhuma	>= 15.000 a <= 35.000	Moderado
Boa	Alta	Nenhuma	> 35.0000	Baixo
Ruim	Alta	Nenhuma	>= 15.000 a <= 35.000	Alto

Exemplo de um DataSet para avaliar risco de Cliente

História do	Dívida	Garantias	Renda	Risco
crédito			anual	
3	1	1	1	Alto
2	1	1	2	Alto
2	2	1	2	Moderado
2	2	1	3	Alto
2	2	1	3	Baixo
2	2	2	3	Baixo
3	2	1	1	Alto
3	2	2	3	Moderado
1	2	1	3	Baixo
1	1	2	3	Baixo
1	1	1	1	Alto
1	1	1	2	Moderado
1	1	1	3	Baixo
3	1	1	2	Alto

Procurando pelo histórico da pessoa Dispara quando os dois critérios ocorrem, contribuindo para o risco

Camada de saída categórica

Realizar um enconder para cada saída:

Ex: Alto = 100

Moderado = 0.1.0

Baixo = 0.01

erro = respostaCorreta - respostaCalculada respostaCorreta = 100 respostaCalculada = 0.980.120.05 erro = (1-0.98)+(0-0.12)+(0-0.05) erro = 0.02+0.12+0.05=0.19

História do crédito	Dívida	Garantias	Renda anual	Risco
3	1	1	1	100
2	1	1	2	100
2	2	1	2	010
2	2	1	3	100
2	2	1	3	001
2	2	2	3	001
3	2	1	1	100

Descida do gradiente estocástico

- Problema com mínimos locais
- Em superfícies convexas existe apenas o mínimo global
- Em superfícies não convexas existe mínimos locais e mínimo global

Descida do gradiente estocástico

História do crédito	Dívida	Garantias	Renda anual	Risco
3	1	1	1	100
2	1	1	2	100
2	2	1	2	010
2	2	1	3	100
2	2	1	3	001
2	2	2	3	001
3	2	1	1	100
3	2	2	3	010
1	2	1	3	001
1	1	2	3	001
1	1	1	1	100
1	1	1	2	010
1	1	1	3	001
3	1	1	2	100

História do crédito	Dívida	Garantias	Renda anual	Risco
3	1	1	1	100
2	- 1	1	2	100
2	2	1	2	010
2	2	1	3	100
2	2	1	3	001
2	2	2	3	001
3	2	1	1	100
3	2	2	3	010
1	2	1	3	001
1	1	2	3	001
1	1	1	1	100
1	1	1	2	010
1	1	1	3	001
3	1	1	2	100

Calcula o erro para todos os registros e atualiza os pesos

Batch gradient descent

Calcula o erro para cada registro e atualiza os pesos

Stochastic gradient descent

Gradiente Descendente

Stochastic

Ajuda a prevenir mínimos locais (superfícies não convexas) Mais rápido (não precisa carregar todos os dados em memória)

Mini batch gradiente descent

Escolhe um número de registros para rodar e atualizar os pesos

Implementação de Redes Neurais Multicamadas

- Exemplo: Breast Cancer Wisnconsin
- Redes Neurais com Sklearn (dataset Iris)

Considerações finais

- Aplicações de redes neurais
- Perceptron simples de uma camada passo a passo (teoria e prática)
- Redes neurais multicamada

Ajuste dos pesos

Delta

Gradient descente (descida do gradiente)

Backpropagation (retropagação)

Implementação passo a passo

Redes Neurais com scikit-learn

