Centro Federal Educação Tecnológica de Minas Gerais

Aluno(a):		
Curso	PPGMMC	04/07/2025
Disciplina	Otimização Linear Inteira	Pontos distribuídos:
Professora	Elisangela Martins de Sá	Nota da Avaliação:

1. (3 Pontos) Considere a seguinte instância do problema bin packing, em que cada caixa tem capacidade C = 10 e o peso do objeto $i \in w_i$, disponível na tabela a seguir.

Objetos	1	2	3	4	5
w_i	3	5	6	4	2

Considere a formulação genérica para o problema

$$\min \left\{ \sum_{j=1}^{m} y_j : \sum_{j=1}^{m} x_{ij} = 1 \ \forall i, \sum_{i=1}^{n} w_i x_{ij} \le C y_j \ \forall j, y_j \in \{0, 1\}, x_{ij} \in \{0, 1\} \right\}$$

Ao resolver a versão relaxada do problema, encontra-se a solução:

- $y_1 = 1, y_2 = 1, x_{11} = 1, x_{21} = 1, x_{31} = 0.33, x_{32} = 0.67, x_{42} = 1, x_{52} = 1$. Os valores das demais variáveis são iguais a zero.
- a) Apresente o passo a passo da aplicação da matheurística RENS (*Relaxation Enforced Neighbourhood Search*) na instância do problema.
- b) Apresente o passo a passo da aplicação da matheurística RINS (*Relaxation Induced Neighbourhood Search*), usando a seguinte solução como solução incumbente:

•
$$y_1 = 1, y_2 = 1, y_3 = 1, y_4 = 1, y_5 = 1, x_{11} = 1, x_{22} = 1, x_{33} = 1, x_{44} = 1, x_{55} = 1$$

- c) Aplique o procedimento fix-and-optimize no refinamento da solução incumbente
 - $y_1 = 1, y_2 = 1, y_3 = 1, y_4 = 1, y_5 = 1, x_{11} = 1, x_{22} = 1, x_{33} = 1, x_{44} = 1, x_{55} = 1$ considerando um particionamento a sua escolha.

Em todas as partes da questão (letras (a), (b) e (c)), apresente de forma explícita os subsproblemas de programação linear inteira obtidos por meio das fixações de variáveis.

2. (3 Pontos) Considere o seguinte problema de otimização inteira com duas restrições da mochila

$$\label{eq:sujeto} \begin{aligned} \max \, z &= 6x_1 + 4x_2 + 5x_3 + 3x_4\\ \text{sujeito a} \, 5x_1 + 4x_2 + 7x_3 + 2x_4 &\leq 9\\ 4x_1 + 1x_2 + 2x_3 + 2x_4 &\leq 5\\ x_1, x_2, x_3, x_4 &\in \{0, 1\}. \end{aligned}$$

Ao resolver a versão relaxada do problema encontramos a solução $\bar{x} = (0.44, 1, 0.11, 1)$.

- a) Descreva a aplicação da heurística RENS (*Relaxation Enforced Neighbourhood Search*) no problema acima (apresente inclusive o subproblema reduzido gerado e solução obtida).
- b) Usando a solução gerada pelo RENS (solução \tilde{x}), apresente a melhor solução que pode ser encontrada na vizinhança de tamanho 1, $N^1(\tilde{x})$, considerando a distância de hamming.
- c) Usando a solução gerada pelo RENS (solução \tilde{x}), apresente a melhor solução que pode ser encontrada na vizinhança de tamanho 2, $N^2(\tilde{x})$, considerando a distância de hamming.