Гомотетия и поворотная гомотетия

- 1. Дан параллелограмм ABCD. Рассмотрим всевозможные параллелограммы BCEF такие, что 1) AB = CE и 2) параллелограммы ABCD и BCEF лежат в разных полуплоскостях относительно прямой BC. Докажите, что всевозможные точки пересечения отрезков AE и DF лежат на одной окружности.
- 2. Выпуклый четырёхугольник ABCD вписан в окружность ω . Точки B_1 и D_1 симметричны A относительно середин сторон BC и CD соответственно. Описанная окружность треугольника CB_1D_1 пересекает ω в точках C и G. Докажите, что AG диаметр окружности ω .
- 3. Пусть A_1 середина стороны BC, а G точка пересечения медиан треугольника ABC. Через GBKL и GCMN обозначены квадраты, лежащие слева относительно лучей GB и GC соответственно. Пусть A_2 середина отрезка, соединяющего центры квадратов GBKL и GCMN. Найдите отношение $AG: A_1A_2$.
- 4. Пусть A_1 середина стороны BC, а G точка пересечения медиан неравнобедренного треугольника ABC. Через GBKL и GCMN обозначены квадраты, лежащие слева относительно лучей GB и GC соответственно. Пусть A_2 середина отрезка, соединяющего центры квадратов GBKL и GCMN. Описанная окружность треугольника A_1A_2G пересекает BC в точках A_1 и X. Найдите отношение $A_1X:XH$, где H основание высоты AH треугольника ABC.
- 5. Окружности ω_1 и ω_2 одинакового радиуса пересекаются в точках X_1 и X_2 . Окружность ω касается окружности ω_1 внешним образом в точке T_1 и окружности ω_2 внутренним образом в точке T_2 . Докажите, что прямые X_1T_1 и X_2T_2 пересекаются на окружности ω .
- 6. Дан выпуклый четырёхугольник ABCD, в котором углы $\angle DAB$ и $\angle BCD$ прямые и $\angle ABC > \angle CDA$. Пусть Q и R точки пересечения некоторой прямой с отрезками BC и CD соответственно, а P и S точки пересечения этой прямой с прямыми AB и AD соответственно. Известно, что PQ = RS. Обозначим середину отрезка BD через M, а середину отрезка QR через N. Докажите, что точки M, N, A и C лежат на одной окружности.

Степень точки и радикальная ось

Степенью точки P относительно окружности $\omega(O,R)$ называется число OP^2-R^2 . Если точка лежит вне окружности, то её степень равна квадрату касательной, проведённой из этой точки, и произведению отрезков любой секущей, проходящей через эту точку. Если точка лежит внутри окружности, то её степень отрицательна и равна минус произведению отрезков любой хорды, проходящей через эту точку.

Множество точек, имеющих равные степени относительно двух фиксированных окружностей — это прямая (радикальная ось), перпендикулярная линии центров (докажите это утверждение). Если окружности пересекаются, то эта прямая содержит их общую хорду.

- 7. ABCD вписанный четырёхугольник. Окружность Γ_1 проходит через точки A и B и касается стороны CD в точке E; окружность Γ_2 проходит через точки B и C и касается стороны DA в точке F; окружность Γ_3 проходит через точки C и D и касается стороны AB в точке G; окружность Γ_4 проходит через точки D и A и касается стороны BC в точке H. Докажите, что $EG \perp FH$.
- 8. Точка M точка пересечения диагоналей AC и BD трапеции ABCD ($BC \parallel AD$), у которой AD > BC. Окружность Γ_1 проходит через точку M и касается основания

- AD в точке A. Окружность Γ_2 проходит через точку M и касается основания AD в точке D. Точка S точка пересечения прямых AB и DC, X точка пересечения Γ_1 и прямой AS, Y точка пересечения Γ_2 и прямой DS, O центр окружности, описанной около треугольника ASD. Докажите, что $SO \perp XY$.
- 9. Пусть ABCD выпуклый четырёхугольник. Описанная вокруг треугольника ABD окружность пересекает отрезки BC и CD в точках K и L соответственно. Описанная вокруг треугольника BCD окружность пересекает отрезки AB и AD в точках M и N соответственно. Описанные около треугольников MBK и NDL окружности пересекаются в точках E и F. Докажите, что точки E и F лежат на прямой AC.
- 10. На медианах AA' и BB' треугольника ABC построены в сторону вершины C ду́ги с одинаковой градусной мерой. Докажите, что общая хорда окружностей, содержащих эти дуги, проходит через C.
- 11. В четырёхугольнике ABCD углы A и C прямые. На сторонах AB и CD как на диаметрах построены окружности, пересекающиеся в точках X и Y. Докажите, что прямая XY проходит через середину диагонали AC.
- 12. В остроугольном треугольнике ABC точка O центр описанной окружности, а A_1 , B_1 , C_1 основания высот. На прямых OA_1 , OB_1 и OC_1 нашли такие точки A', B' и C', соответственно, что четырёхугольники AOBC', BOCA' и COAB' вписанные. Докажите, что окружности, описанные около треугольников AA_1A' , BB_1B' и CC_1C' , имеют общую точку.
- 13. Дан вписанный четырехугольник ABCD. Окружности с диаметрами AB и CD пересекаются в точках X_1 и Y_1 . Окружности с диаметрами BC и AD пересекаются в точках X_2 и Y_2 . Окружности с диаметрами AC и BD пересекаются в точках X_3 и Y_3 . Докажите, что прямые X_1Y_1 , X_2Y_2 и X_3Y_3 пересекаются в одной точке.