Exercice 1 - (Suite exacte)

On dit qu'une suite d'application linéaires

$$\{0\} \xrightarrow{f_0} E_1 \xrightarrow{f_1} E_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} E_n \xrightarrow{f_n} \{0\}$$
 (1)

est exacte si on a $\forall k \in [0, n-1], Im f_k = Ker f_{k+1}$

1. Dans ce cas, montrer que si tous les E_k sont de dimension finie, on a la formule suivante (Euler-Poincaré) :

$$\sum_{k=1}^{n} (-1)^k \dim E_k = 0$$

Exercice 2 – (Théorème de Weierstrass trigonométrique)

Soit E l'ensemble des applications de \mathbb{R} dans \mathbb{C} continues et 2π -périodiques. Pour f et g dans E, on définit le produit de convulction par $f*g:=\int_0^{2\pi}f(x-t)g(t)dt$.

- 1. Montrer que f * g est un élément de E.
- 2. Que dire de f * g si f est C^{∞} ?

Pour $n \in \mathbb{N}$, on considère l'application $u_n : \mathbb{R} \to \mathbb{R}$ définie par $u_n(x) = c_n(1+cos(x))^n$ où $c_n \in \mathbb{R}$ est choisi tel que $\int_0^{2\pi} u_n(t) dt = 1$. On pose alors $f_n = f * u_n$. On va montrer que (f_n) CVU vers f sur \mathbb{R} .

- 3. Soit $\epsilon > 0$, on suppose qu'il existe $\eta \in]0, \pi[$ tel que si $|s-t| \le \eta$ alors $|f(s)-f(t)| \le \epsilon$. Montrer que $\forall x \in \mathbb{R}$, $\int_{-\pi}^{\pi} |f(x-t)-f(x)| u_n(t) dt \le \epsilon + 4||f||_{\infty} \int_{\eta}^{\pi} u_n(t) dt$
- 4. Justifier que $\int_0^{\pi} (1 + \cos(t))^n \sin(t) dt \le \int_0^{\pi} (1 + \cos(t))^n dt$.
- 5. Conclure.

Exercice 3 - (Intégrale de Gauss)

On pose $f(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$

- 1. Montrer que f est de classe C^1 sur \mathbb{R} .
- 2. Relier f' à $F: x \mapsto \int_0^x e^{-t^2} dt$ et en déduire $\int_0^\infty e^{-t^2} dt$

Exercice 4 – (Projecteurs)

Soient p_1 et p_2 deux projecteurs d'un espace vectoriel E de dimension finie.

- 1. Soit p un projecteur. Montrer que tr(p) = rq(p)
- 2. Montrer que $Im(p_1 + p_2) = Im(p_1) \oplus Im(p_2)$ et $ker(p_1 + p_2) = ker(p_1) \cap ker(p_2)$
- 3. Montrer que $p_1 + p_2$ est un projecteur $\Leftrightarrow p_1 \circ p_2 = p_2 \circ p_1 = 0$

Exercice 5 - (Vandermonde)

Soient $a_0, a_1, ..., a_n$ des réels non nuls deux à deux distincts. On note $\mathbb{R}_n[X]^* = \{f : \mathbb{R}_n[X] \mapsto \mathbb{R}, \text{ où } f \text{ est linéaire}\}$, le dual de $\mathbb{R}_n[X]$ qui est de dimension finie.

- 1. Montrer que $V(a_0,\ldots,a_n)=\begin{vmatrix}a_0&a_0^2&\ldots&a_0^{n+1}\\\vdots&\vdots&\vdots&\vdots\\a_n&a_n^2&\ldots&a_n^{n+1}\end{vmatrix}=a_0a_1\ldots a_n\prod_{i>j}(a_i-a_j).$ Que dire de la valeur de ce déterminant?
- 2. Soit $j \in [0, n]$. On note $F_j : \mathbb{R}_n[X] \mapsto \mathbb{R}$ l'application définie par $F_j(P) = \int_0^{a_j} P(x) dx$. Montrer que $(F_0, F_1, ..., F_n)$ est une base de $\mathbb{R}_n[X]^*$.

Exercice 6 - (CVD et suite)

Soit d > 0. Soit $g \in C^0([0,d])$ telle que $g(0) \neq 0$

- 1. Rappeler la caractérisation séquentielle de la limite.
- 2. Construire une fonction g_t continue par morceaux sur $[0, +\infty[$, bornée, telle que $\int_0^d e^{-tx^2} g(x) dx = \frac{1}{t} \int_0^{+\infty} e^{-x} g_t(x) dx$
- 3. Montrer que $\int_0^d e^{-tx^2} g(x) dx \underset{t \mapsto +\infty}{\sim} \frac{g(0)}{t}$

(Questions de cours)

- Limite de ζ en $+\infty$.
- ζ est C^{∞} sur $]1, +\infty[$.
- $-\int_0^\infty \frac{\sqrt{t}}{e^t 1} dt = \frac{\sqrt{\pi}}{2} \sum_{k=1}^{+\infty} \frac{1}{k\sqrt{k}}$