Programming Languages and Compiler Design

Natural Operational Semantics of Languages Block and Proc

Yliès Falcone, Jean-Claude Fernandez

Master of Sciences in Informatics at Grenoble (MoSIG)
Univ. Grenoble Alpes
(Université Joseph Fourier, Grenoble INP)

Academic Year 2015 - 2016

Outline - Natural Operational Semantics of Languages **Block** and **Proc**

Extending the Syntax of While with Blocks and Procedures
Language Block
Language Proc

Motivating Examples

Preliminaries

Natural Operational Semantics of Language Block

Natural Operational Semantics of **Proc**

Summar

Outline - Natural Operational Semantics of Languages **Block** and **Proc**

Extending the Syntax of While with Blocks and Procedures

Motivating Examples

Preliminaries

Natural Operational Semantics of Language Block

Natural Operational Semantics of Proc

Summary

Outline - Natural Operational Semantics of Languages **Block** and **Proc**

Extending the Syntax of While with Blocks and Procedures Language Block

Language Proc

Motivating Example

Preliminarie

Natural Operational Semantics of Language Block

Natural Operational Semantics of **Pro**

Summary

Blocks and variable declarations: syntax

Extending language While.

Definition (Language **Block**)

```
S \in Stm

S ::= x := a \mid skip \mid S; S \mid if b then S else S fi \mid while b do S od \mid begin <math>D_V S end
```

Definition (Syntactic category \mathbf{Dec}_V)

$$D_V ::= \text{var } x; \ D_V \mid \text{var } x := a; \ D_V \mid \epsilon$$

Example of program in **Block**

Example (Example of program in **Block**)

```
\begin{array}{ll} \operatorname{begin} & \operatorname{var} y := 1; \\ & \operatorname{var} \times := 1; \\ & \operatorname{begin} & \operatorname{var} \times := 2 \\ & y := x + 1 \\ & \operatorname{end}; \\ & x := y + x \end{array} end
```

132

Outline - Natural Operational Semantics of Languages **Block** and **Proc**

Extending the Syntax of While with Blocks and Procedures

Language Block

Language Proc

Motivating Examples

Preliminaries

Natural Operational Semantics of Language Block

Natural Operational Semantics of **Pro**

Summary

Introducing Procedures in the syntax

Extending **Block** with procedure declarations.

Definition (Language **Proc**)

Statements

$$S \in \mathbf{Stm}$$

 $S ::= x := a \mid \text{skip} \mid S_1; S_2 \mid \text{if } b \text{ then } S_1 \text{ else } S_2 \text{ fi} \mid \text{while } b \text{ do } S \text{ od} \mid \text{begin } D_V \mid D_P \mid S \text{ end } \mid \text{call } p$

Variable declarations:

$$D_V$$
 ::= var x ; $D_V \mid \text{var } x$:= a ; $D_V \mid \epsilon$

Definition (Syntactic category \mathbf{Dec}_P)

$$D_P ::= \operatorname{proc} p \text{ is } S; D_P \mid \epsilon$$

Example: a program with procedures

Example (Program in Proc)

```
begin var \mathbf{x} := 0;

var \mathbf{y} := 1;

proc \mathbf{p} is \mathbf{x} := \mathbf{x} * 2;

proc \mathbf{q} is call \mathbf{p};

begin var \mathbf{x} := 5;

proc \mathbf{p} is \mathbf{x} := \mathbf{x} + 1;

call \mathbf{q}; \mathbf{y} := \mathbf{x};

end;
```

Example of program in **Block**

Example (Program in Block)

```
\begin{array}{ll} \text{begin} & \text{var } y := 1; \\ & \text{var } \textbf{x} := 1; \\ & \text{begin} & \text{var } \textbf{x} := 2 \\ & y := \textbf{x} + 1 \\ & \text{end}; \\ & \textbf{x} := y + \textbf{x} \\ \text{end} \end{array}
```

Questions:

- 1. Are the declarations active during declaration execution?
- 2. Which order to choose when executing the declarations?
- 3. Do we need to restore the initial state?
- 4. If so, how to restore the initial state?

Outline - Natural Operational Semantics of Languages **Block** and **Proc**

Extending the Syntax of While with Blocks and Procedure

Motivating Examples

Preliminaries

Natural Operational Semantics of Language Block

Natural Operational Semantics of Proc

Summar

Example of program in Proc

Example (Program in Proc)

```
begin var \mathbf{x} := 0;

var \mathbf{y} := 1;

proc \mathbf{p} is \mathbf{x} := \mathbf{x} * 2;

proc \mathbf{q} is call \mathbf{p};

begin var \mathbf{x} := 5;

proc \mathbf{p} is \mathbf{x} := \mathbf{x} + 1;

call \mathbf{q}; \mathbf{y} := \mathbf{x};

end;
```

What is the final value of y?

5132

Example: a program with procedures

Example (Dynamic binding for variables and procedures)

```
begin var x := 0;

var y := 1;

proc p is x := x * 2;

proc q is call p;

begin var x := 5;

proc p is x := x + 1;

call q; y := x;

end;
```

We need to have some "memorization" of the current "procedure mapping"

```
\hookrightarrow when we call q we call p and modify x
```

Example: a program with procedures

Example (Static binding for procedures)

```
begin var \mathbf{x} := 0;

var \mathbf{y} := 1;

proc \mathbf{p} is \mathbf{x} := \mathbf{x} * 2;

proc \mathbf{q} is call \mathbf{p};

begin var \mathbf{x} := 5;

proc \mathbf{p} is \mathbf{x} := \mathbf{x} + 1;

call \mathbf{q}; \mathbf{y} := \mathbf{x};

end;
```

We need to:

▶ have some "memorization" of the current "procedure mapping" that "remembers the current procedure definitions when it has been defined"

```
\hookrightarrow when we call q we call p and modify x
```

7132 8133

Outline - Natural Operational Semantics of Languages **Block** and **Proc**

Extending the Syntax of **While** with Blocks and Procedures

Motivating Examples

Preliminaries

Notations

Revisiting the Semantics of Language While

Natural Operational Semantics of Language Block

Natural Operational Semantics of **Pro**

Summary

Outline - Natural Operational Semantics of Languages **Block** and **Proc**

Extending the Syntax of While with Blocks and Procedure

Motivating Example

Preliminaries

Notations

Revisiting the Semantics of Language While

Natural Operational Semantics of Language Block

Natural Operational Semantics of **Proc**

Summary

013

Some preliminary notations: stacks

We use a stack structure to manage local declarations.

Let \mathcal{F} be a set of (partial) functions.

Definition (Stack notations)

- ▶ The set of stacks over \mathcal{F} is noted \mathcal{F}^* .
- ▶ Elements of \mathcal{F}^* are noted $\hat{f}, \hat{f_1}, \hat{f_2}$...
- ▶ The empty stack is denoted by ∅.

Remark A stack can be seen as a sequence where:

- ▶ the push operation consists in appending to the right,
- ▶ the pop operation consists in suppressing from the right.

Remark When a stack \hat{f} is reduced to one element we use sometimes notation f instead of \hat{f} .

Some preliminary notations: stacks (ctd)

Definition (Evaluation on stacks)

Evaluation is defined inductively on stacks:

$$(\hat{f} \oplus f')(x) = \left\{ egin{array}{ll} f'(x) & ext{if } x \in ext{Dom}(f'), \\ \hat{f}(x) & ext{otherwise.} \end{array} \right.$$

 $(\hat{f} \oplus f')$ is the stack resulting in pushing local function f' to stack \hat{f} .)

▶ $\emptyset(x) = \text{undef}$.

Remark Consider the stack $\hat{f} = \hat{f}_1 \oplus \hat{f}_2$, \hat{f}_1 is a prefix of \hat{f} .

Definition (Substitution (reminder))

$$f[y \mapsto v](x) = \begin{cases} v & \text{if } x = y, \\ f(x) & \text{otherwise.} \end{cases}$$

9132

Outline - Natural Operational Semantics of Languages **Block** and **Proc**

Extending the Syntax of While with Blocks and Procedures

Motivating Examples

Preliminaries

Notations

Revisiting the Semantics of Language While

Natural Operational Semantics of Language **Bloc**k

Natural Operational Semantics of **Pro**

Summary

Semantic domains

States are replaced by a symbol table plus a memory:

- a symbol table associates a memory address to a variable (an identifier);
- a memory associates a value to an address.

Definition (Symbol table: variable environment)

$$\mathsf{Env}_V = \mathsf{Var} \overset{\mathit{part.}}{ o} \mathsf{Loc} \ni \rho$$

Thus, $\hat{\rho}$ denotes a stack of tables.

Definition (Memory)

Store = **Loc**
$$\overset{\textit{part.}}{\rightarrow} \mathbb{Z} \ni \sigma$$

Intuition: function state corresponds to $\sigma \circ \hat{\rho}$.

Notation: new() is a function that returns a fresh memory location.

10 | 32

Semantic functions for arithmetical and boolean expressions

Definition (Semantic function for arithmetical expressions)

$$\begin{split} \mathcal{A}: \mathbf{Aexp} & \rightarrow \left(\left(\mathbf{Env}_{V}^{*} \times \mathbf{Store} \right) \rightarrow \mathbb{Z} \right) \\ \mathcal{A}[n](\hat{\rho}, \sigma) & = \mathcal{N}[n] \\ \mathcal{A}[x](\hat{\rho}, \sigma) & = \sigma(\hat{\rho}(x)) \\ \mathcal{A}[a_{1} + a_{2}](\hat{\rho}, \sigma) & = \mathcal{A}[a_{1}](\hat{\rho}, \sigma) +_{I} \mathcal{A}[a_{2}](\hat{\rho}, \sigma) \\ \mathcal{A}[a_{1} * a_{2}](\hat{\rho}, \sigma) & = \mathcal{A}[a_{1}](\hat{\rho}, \sigma) *_{I} \mathcal{A}[a_{2}](\hat{\rho}, \sigma) \\ \mathcal{A}[a_{1} - a_{2}](\hat{\rho}, \sigma) & = \mathcal{A}[a_{1}](\hat{\rho}, \sigma) -_{I} \mathcal{A}[a_{2}](\hat{\rho}, \sigma) \end{split}$$

Exercise

Give the semantic function for boolean expressions.

Transition rules for while and if

Definition (Transition system for While)

While:

• if
$$\mathcal{B}[b](\hat{\rho}, \sigma) = \mathbf{tt}$$

$$\frac{(S, \hat{\rho}, \sigma) \to \sigma', \quad \text{(while } b \text{ do } S \text{ od }, \hat{\rho}, \sigma') \to \sigma''}{\text{(while } b \text{ do } S \text{ od }, \hat{\rho}, \sigma) \to \sigma''}$$
• if $\mathcal{B}[b](\hat{\rho}, \sigma) = \mathbf{ff}$

(while $b \; \mathsf{do} \; \mathsf{S} \; \mathsf{od} \; , \hat{\rho}, \sigma) \to \sigma$

Exercise

Give the rules for the if ... then ... else ... fi statement.

Transition rules for assignment, skip, and sequential composition

Definition (Transition system for While)

Configurations:

 $\mathsf{Stm} \times \mathsf{Env}_V^* \times \mathsf{Store} \cup \mathsf{Store}$

Transitions:

► Assignment:

$$(x := a, \hat{\rho}, \sigma) \rightarrow \sigma[\hat{\rho}(x) \mapsto \mathcal{A}[a](\hat{\rho}, \sigma)]$$

► Skip:

$$(\mathsf{skip}, \hat{\rho}, \sigma) \to \sigma$$

► Sequential composition:

$$\frac{(S_1, \hat{\rho}, \sigma) \to \sigma' \quad (S_2, \hat{\rho}, \sigma') \to \sigma''}{(S_1; S_2, \hat{\rho}, \sigma) \to \sigma''}$$

12|32

Outline - Natural Operational Semantics of Languages **Block** and **Proc**

Extending the Syntax of While with Blocks and Procedures

Motivating Examples

Preliminaries

Natural Operational Semantics of Language Block

Natural Operational Semantics of **Proc**

Summan

Transition rules for blocks

To define the semantics, we define:

- ▶ a transition system for declarations, and
- ▶ an extended transition system for statements.

Definition (Transition system for Variable Declarations)

► Configurations:

$$(\mathsf{Dec}_V \times \mathsf{Env}_V^* \times \mathsf{Env}_V \times \mathsf{Store}) \cup (\mathsf{Env}_V \times \mathsf{Store})$$

(i.e., of the form $(D_{\nu}, \hat{\rho}, \rho', \sigma)$ or (ρ', σ))

15|32

Transition rules for blocks

If we allow only declarations of the form var x:

$$D_V ::= \text{var } x; D_V \mid \epsilon$$

Then, the transition system for declarations can be simplified.

Definition (Transition system for Variable Declarations)

► Configurations:

$$(\mathsf{Dec}_V \times \mathsf{Env}_V) \cup \mathsf{Env}_V$$

(i.e., of the form (D_{ν}, ρ) or ρ)

▶ Transitions given by the transition relation \rightarrow_D (where I = new()):

$$(\epsilon, \rho') \rightarrow_D \rho'$$

$$\frac{(D_V, \rho[x \mapsto I]) \to_D \rho}{(\text{var } x; \ D_V, \rho) \to_D \rho}$$

Transition rules for blocks

To define the semantics, we define:

- ▶ a transition system for declarations, and
- ▶ an extended transition system for statements.

Definition (Transition system for Variable Declarations)

▶ Transitions given by the transition relation \rightarrow_D (where I = new()):

$$(\epsilon, \hat{\rho}, \rho', \sigma) \rightarrow_D (\rho', \sigma)$$

$$\frac{(D_V, \hat{\rho}, \rho[x \mapsto I], \sigma) \to_D (\rho', \sigma')}{(\text{var } x; D_V, \hat{\rho}, \rho, \sigma) \to_D (\rho', \sigma')}$$

$$\frac{(D_V, \hat{\rho}, \rho[x \mapsto I], \sigma[I \mapsto \mathcal{A}[a](\hat{\rho} \oplus \rho, \sigma)]) \to_D (\rho', \sigma')}{(\text{var } x := a; \ D_V, \hat{\rho}, \rho, \sigma) \to_D (\rho', \sigma')}$$

($\hat{\rho}$ means that the global env. is used to evaluate expressions.) (ρ means that the local env. is used to evaluate expressions.)

Transition rules for blocks

To define the semantics we define:

- ▶ a transition system for declarations, and
- ▶ a transition system for statements.

Definition (Natural Semantics for statements of **Block**)

► Configurations:

$$\operatorname{Stm} \times \operatorname{Env}_V^* \times \operatorname{Store} \cup \operatorname{Store}$$

▶ Transitions:

$$\frac{(D_V, \hat{\rho}, \emptyset, \sigma) \to_D (\rho_I, \sigma') \quad (S, \hat{\rho} \oplus \rho_I, \sigma') \to \sigma''}{(\text{begin } D_V \quad S \text{ end}, \hat{\rho}, \sigma) \to \sigma''}$$

17|32 18|32

Execution of one statement of **Block**

```
Example begin var y:=1; var x:=1; begin var x:=2 y:=x+1 end x:=y+x end Let us note:

• D_{V_0}: \text{var } y:=1; \text{var } x:=1;
• S_0: (\text{begin var } x:=2 y:=x+1 end); x:=y+x
• S_{00}: (\text{begin var } x:=2 y:=x+1 end)
• S_{01}: x:=y+x
• D_{V_1}: \text{var } x:=2
• S_1=y:=x+1
Let us compute a derivation tree of root (begin D_{V_0}: S_0 \text{ end}, \hat{\rho}_0, \sigma_0) \rightarrow \sigma_0'' starting from \sigma_0=\emptyset, \hat{\rho}_0=\emptyset.
```

Execution of one statement of **Block** (ctd)

Rule of block

$$\frac{(D_{V_0}, \hat{\rho}_0, \emptyset, \sigma_0) \to_D (\rho_1, \sigma_1) \quad (S_0, \hat{\rho}_0 \oplus \rho_1, \sigma_1) \to \sigma_0''}{(\text{begin } D_{V_0} \quad S_0 \text{ end, } \hat{\rho}_0, \sigma_0) \to \sigma_0''}$$

Rules of sequential composition and block

$$\frac{(D_{V_1},\hat{\rho}_1,\emptyset,\sigma_1)\rightarrow_D(\rho_2,\sigma_2)\quad (S_1,\hat{\rho}_1\oplus\rho_2,\sigma_2)\rightarrow\sigma_3}{(S_{00},\hat{\rho}_0\oplus\rho_1,\sigma_1)\rightarrow\sigma_3} \quad (S_{01},\hat{\rho}_0\oplus\rho_1,\sigma_3)\rightarrow\sigma_0''}{(S_0,\hat{\rho}_0\oplus\rho_1,\sigma_1)\rightarrow\sigma_0''}$$

where

$$\begin{array}{lll} \rho_{0} & = & \emptyset \\ \rho_{1} & = & [y \mapsto l_{1}, x \mapsto l_{2}] \\ \sigma_{1} & = & [l_{1} \mapsto 1, l_{2} \mapsto 1] \\ \hat{\rho}_{1} & = & \hat{\rho}_{0} \oplus \rho_{1} = \emptyset \oplus \rho_{1} = \rho_{1} \\ \rho_{2} & = & [x \mapsto l_{3}] \\ \sigma_{2} & = & [l_{1} \mapsto 1, l_{2} \mapsto 1, l_{3} \mapsto 2] \\ \sigma_{3} & = & [l_{1} \mapsto 3, l_{2} \mapsto 1, l_{3} \mapsto 2] \\ \sigma_{0}'' & = & [l_{1} \mapsto 3, l_{2} \mapsto 4, l_{3} \mapsto 2] \end{array}$$

19 | 32

Outline - Natural Operational Semantics of Languages **Block** and **Proc**

Extending the Syntax of **While** with Blocks and Procedures

Motivating Examples

Preliminaries

Natural Operational Semantics of Language Block

Natural Operational Semantics of Proc

Summarv

Dynamic bindings: remember the intuition

Example (Dynamic binding for variables and procedures)

```
begin var \mathbf{x} := 0;

var \mathbf{y} := 1

proc \mathbf{p} is \mathbf{x} := \mathbf{x} * 2;

proc \mathbf{q} is call \mathbf{p};

begin var \mathbf{x} := 5;

proc \mathbf{p} is \mathbf{x} := \mathbf{x} + 1;

call \mathbf{q}; \mathbf{y} := \mathbf{x};

end;
```

We need to have some "memorization" of the current "procedure mapping"

 \hookrightarrow when we call q we call p and modify x

21 | 32

20 | 32

Semantics with dynamic bindings

Procedure names belong to a syntactic category called Pname.

```
\begin{array}{lll} \mathbf{Env}_V & = & \mathbf{Var} \overset{part.}{\rightarrow} \mathbf{Loc} \ni \rho & \mathbf{Variable} \ \ \mathbf{environment} \\ \mathbf{Store} & = & \mathbf{Loc} \overset{part.}{\rightarrow} \mathbb{Z} \ni \sigma & \mathbf{Store} \\ \mathbf{Env}_P & = & \mathbf{Pname} \overset{part.}{\rightarrow} \mathbf{Stm} \ni \lambda & \mathbf{Procedure} \ \ \mathbf{environment} \\ \end{array}
```

Example (Environment)

- ▶ $[p \mapsto x := x + 1]$: procedure name p is associated to statement x := x + 1.
- ▶ $[q \mapsto \text{call } p]$: procedure name q is associated to procedure call to p.

Semantics with dynamic bindings: transition system

Configurations: $(\mathbf{Stm} \times \mathbf{Env}_P^* \times \mathbf{Env}_V^* \times \mathbf{Store}) \cup \mathbf{Store}$ Transition rules:

$$\frac{(D_V, \hat{\rho}, \emptyset, \sigma) \to_D (\rho_I, \sigma') (S, \hat{\lambda} \oplus \mathsf{upd}(\emptyset, D_P), \hat{\rho} \oplus \rho_I, \sigma') \to \sigma''}{(\mathsf{begin} \ D_V \ D_P \ S \ \mathsf{end}, \hat{\lambda}, \hat{\rho}, \sigma) \to \sigma''}$$

where

- ▶ upd(λ, ϵ) = λ and
- $\operatorname{upd}(\lambda, \operatorname{proc} p \text{ is } S; D_P) = \operatorname{upd}(\lambda[p \mapsto S], D_P)$

$$\frac{(\hat{\lambda}(p), \hat{\lambda}, \hat{\rho}, \sigma) \to \sigma'}{(\text{call } p, \hat{\lambda}, \hat{\rho}, \sigma) \to \sigma'}$$

Updating the rule for sequential composition:

$$\frac{(S_1, \hat{\lambda}, \hat{\rho}, \sigma) \to \sigma' \ (S_2, \hat{\lambda}, \hat{\rho}, \sigma') \to \sigma''}{(S_1; S_2, \hat{\lambda}, \hat{\rho}, \sigma) \to \sigma''}$$

Similarly, other rules are adapted in a straightforward manner. . .

22 | 32

Static binding for procedures: remember the intuition

Example (Static binding for variables and procedures)

```
begin var \mathbf{x} := 0;

var \mathbf{y} := 1

proc \mathbf{p} is \mathbf{x} := \mathbf{x} * 2;

proc \mathbf{q} is call \mathbf{p};

begin var \mathbf{x} := 5;

proc \mathbf{p} is \mathbf{x} := \mathbf{x} + 1;

call \mathbf{q}; \mathbf{y} := \mathbf{x};

end;
```

We need to:

- ► have some "memorization" of the current "procedure mapping" that "remembers the current procedure definitions when it has been defined"
- \hookrightarrow when we call q we call p and modify x

Semantics with static bindings

```
\begin{array}{lll} \mathbf{Env}_{V} & = & \mathbf{Var} \overset{part.}{\rightarrow} \mathbf{Loc} \ni \rho & \text{Variable environment} \\ \mathbf{Store} & = & \mathbf{Loc} \overset{part.}{\rightarrow} \mathbb{Z} \ni \sigma & \text{Store} \\ \mathbf{Env}_{P} & = & \mathbf{Pname} \overset{part.}{\rightarrow} \mathbf{Stm} \times \mathbf{Env}_{P}^{*} \times \mathbf{Env}_{V}^{*} \ni \rho & \text{Procedure environment} \end{array}
```

23 | 32

Definition (Updating the procedure environment)

$$\mathsf{upd} : \mathbf{Env}_P^* \times \mathbf{Env}_V^* \times \mathbf{Env}_P \times \mathbf{Dec}_P \longrightarrow \mathbf{Env}_P$$

▶ upd($\hat{\lambda}_g, \hat{\rho}, \lambda_I, \epsilon$) = λ_I , and ▶ upd($\hat{\lambda}_g, \hat{\rho}, \lambda_I$, proc p is $S; D_P$) = upd($\hat{\lambda}_g, \hat{\rho}, \lambda_I[p \mapsto (S, \hat{\lambda}_g \oplus \lambda_I, \hat{\rho})], D_P$).

24|32 25|32

Semantics with static bindings: transition system

Configurations: $(\mathbf{Stm} \times \mathbf{Env}_P^* \times \mathbf{Env}_V^* \times \mathbf{Store}) \cup \mathbf{Store}$

Transition rules:

$$\frac{(D_V, \hat{\rho}, \emptyset, \sigma) \to_D (\rho_I, \sigma') (S, \hat{\lambda} \oplus \mathsf{upd}(\hat{\lambda}, \hat{\rho} \oplus \rho_I, \emptyset, D_P), \hat{\rho} \oplus \rho_I, \sigma') \to \sigma''}{(\mathsf{begin}\ D_V\ D_P\ S\ \mathsf{end}, \hat{\lambda}, \hat{\rho}, \sigma) \to \sigma''}$$

Procedure call:

[call]
$$\frac{(S, \hat{\lambda}', \hat{\rho}', \sigma) \to \sigma''}{(\mathsf{call} \; p, \hat{\lambda}, \hat{\rho}, \sigma) \to \sigma''}$$

where $\hat{\lambda}(p) = (S, \hat{\lambda}', \hat{\rho}')$.

Example dynamic bindings

Example (Program in **Proc**)

begin
$$D_{V_0} \quad \left[\begin{array}{l} \text{var } \textbf{x} := 0; \\ \text{var } \textbf{y} := 1; \end{array} \right.$$

$$DP_0 \quad \left[\begin{array}{l} \text{proc } \textbf{p} \text{ is } \textbf{x} := \textbf{x} * 2; \\ \text{proc } \textbf{q} \text{ is call } \textbf{p}; \end{array} \right.$$

$$S_0 \quad \left[\begin{array}{l} \text{begin} \\ DV_1 \quad \left[\begin{array}{l} \text{var } \textbf{x} := 5; \\ DP_1 \quad \left[\begin{array}{l} \text{proc } \textbf{p} \text{ is } \textbf{x} := \textbf{x} + 1; \\ S_1 \quad \left[\begin{array}{l} \text{call } \textbf{q}; \textbf{y} := \textbf{x}; \\ \text{end} \end{array} \right] \right]$$

26132 27132

Derivation tree for dynamic case

$$\underbrace{\frac{\gamma_1 \rightarrow (\rho_2, \sigma_2) \quad \overbrace{(S_1, \hat{\lambda}_1 \oplus \lambda_2, \hat{\rho}_1 \oplus \rho_2, \sigma_2) \rightarrow \sigma_0''}}{(S_0, \hat{\lambda}_1, \rho_1, \sigma_1) \rightarrow \sigma_0''} }_{\left(\text{begin } D_{V_0}; D_{P_0}; S_0 \text{ end}, \hat{\lambda}_0, \hat{\rho}_0, \sigma_0\right) \rightarrow \sigma_0''}$$

where

$$\begin{array}{lll} \gamma_0 &=& \left(D_{V_0},\hat{\rho}_0,\emptyset,\sigma_0\right) \\ \hat{\lambda}_0 &=& \lambda_0 = \emptyset \\ \hat{\rho}_0 &=& \rho_0 = \emptyset \\ \sigma_0 &=& \emptyset \\ \gamma_1 &=& \left(D_{V_1},\hat{\rho}_1,\emptyset,\sigma_1\right) \\ \rho_1 &=& \left[x\mapsto l_1,y\mapsto l_2\right] \\ \sigma_1 &=& \left[l_1\mapsto 0,l_2\mapsto 1\right] \\ \hat{\lambda}_1 &=& \lambda_1 = \left[p\mapsto x:=x*2,q\mapsto \mathsf{call}\;p\right] (\mathsf{function}\;\mathsf{upd}) \\ \rho_2 &=& \left[x\mapsto l_3\right] \\ \sigma_2 &=& \left[l_1\mapsto 0,l_2\mapsto 1,l_3\mapsto 5\right] \\ \lambda_2 &=& \left[p\mapsto x:=x+1\right] \end{array}$$

Derivation tree T_1 for dynamic case

$$\begin{split} \frac{\left(\mathbf{x} := \mathbf{x} + 1, \hat{\lambda}_1 \oplus \lambda_2, \hat{\rho}_1 \oplus \rho_2, \sigma_2\right) \to \sigma_3}{\left(\text{call } p, \hat{\lambda}_1 \oplus \lambda_2, \hat{\rho}_1 \oplus \rho_2, \sigma_2\right) \to \sigma_3}{\left(\text{call } q, \hat{\lambda}_1 \oplus \lambda_2, \hat{\rho}_1 \oplus \rho_2, \sigma_2\right) \to \sigma_3} \quad \left(\mathbf{y} := \mathbf{x}, \hat{\lambda}_1 \oplus \lambda_2, \hat{\rho}_1 \oplus \rho_2, \sigma_3\right) \to \sigma_0''} \\ & \left(S_1, \hat{\lambda}_1 \oplus \lambda_2, \hat{\rho}_1 \oplus \rho_2, \sigma_2\right) \to \sigma_0'' \end{split}$$

where

$$\sigma_3 = [l_1 \mapsto 0, l_2 \mapsto 1, l_3 \mapsto 6]
\sigma_0'' = [l_1 \mapsto 0, l_2 \mapsto 6, l_3 \mapsto 6]$$

28 | 32

Example of static bindings

The only things that change are:

- ▶ function upd, and
- ightharpoonup derivation tree T_1 .

Changes to function upd

$$\begin{array}{lll} \hat{\lambda}_{0} & = & \emptyset = \lambda_{0} \\ \hat{\lambda}_{01} & = & [p \mapsto (x := x * 2, \hat{\lambda}_{0}, \rho_{1})] = \lambda_{01} \\ \hat{\lambda}_{1} & = & [p \mapsto (x := x * 2, \hat{\lambda}_{0}, \rho_{1}), q \mapsto (\text{call } p, \hat{\lambda}_{01}, \rho_{1})] = \lambda_{1} \\ \lambda_{2} & = & [p \mapsto (x := x + 1, \hat{\lambda}_{1}, \hat{\rho}_{1} \oplus \rho_{2})] \end{array}$$

Derivation tree T_1 for the static case

$$\frac{(\mathbf{x}:=\mathbf{x}*2,\hat{\lambda}_0,\hat{\rho}_1,\sigma_2)\to\sigma_3}{(\mathsf{call}\ \boldsymbol{\rho},\hat{\lambda}_{01},\hat{\rho}_1,\sigma_2)\to\sigma_3}}{\frac{(\mathsf{call}\ \boldsymbol{\rho},\hat{\lambda}_0,\hat{\rho}_1\oplus\rho_2,\sigma_2)\to\sigma_3}{(S_0,\hat{\lambda}_1\oplus\lambda_2,\hat{\rho}_1\oplus\rho_2,\sigma_2)\to\sigma_0''}}$$

where

$$\begin{array}{rcl} \sigma_3 & = & [I_1 \mapsto 0, I_2 \mapsto 1, I_3 \mapsto 5] \\ \sigma_0'' & = & [I_1 \mapsto 0, I_2 \mapsto 5, I_3 \mapsto 5] \end{array}$$

31 | 32

Outline - Natural Operational Semantics of Languages **Block** and **Proc**

Extending the Syntax of **While** with Blocks and Procedures

Motivating Examples

Preliminaries

Natural Operational Semantics of Language Block

Natural Operational Semantics of Proc

Summary

Summary

Summary Natural Operational Semantics

Definition of the programming languages While, Block, Proc:

- Syntax (inductive definitions of the syntactic categories)
- ► Semantics for arithmetical and Boolean expressions
- Semantics for statements
- ► Termination of programs
- ► Semantics of blocks (semantics of declaration)
- Semantics of procedures (environment for procedures):
 - dynamic link for variables and procedures
 - static link for variables and procedures (symbol table and a memory)
 - dynamic link for variables and static link for procedures
 - recursive vs non-recursive calls (in the tutorial)