week9

QUESTION 1

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the and the mass of water vapor in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

			o oggi in I , 03 Dicen				
	13:00	14:00	16:00	18:00	20:00	21:00	22:00
	24	*	25	*	*	*	華
	LightCloud	LightCloud	PartlyCloud	LightCloud	Sun	Sun	Sun
Temperatura effettiva	9°C	10°C	8°C	6°C	4°C	2°C	2°C
Temperatura percepita	7°C	10°C	6°C	4°C	2°C	0°C	0°C
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm
Umidifi	67 %	65 %	69 %	70 %	75 %	83 %	87 %
Pressione atmosferica	1025 nPa	1025 hPa	1025 NPa	1026 hPa	1027 hPs	1927 hPa	1028 hPa

As the weather forecast shows above, we can have these data:

$$\phi = 75\%$$
, $T = 4^{\circ}C = 277K$, $P = 102.7 \ kPa$

From the Psychrometric Chart, when $T=4^{\circ}C$ and $\phi=75\%$, the $\omega=0$

From formula:

 $\omega = 0.622^* \text{ Pv/(P-Pv)}$

Pv= 0.62 KPa

We consider the size of Aula A is 20m*10m*3m, V=20*10*3=600m,

from the class we have Rv=0.4615

Mv=Pv*V/(T*Rv)=2.91 Kg

QUESTION 2

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

A building with a height of 2.5 m and an GOOD construction quality, is located in Brindisi, considering two occupants and one bed room calculate, and a conditioned floor area of 200 m², and wall area is 144m², calculate the internal gains, infiltration, and ventilation loads.

Internal gain

Qig sensible= 136+ 2.2*Acf+ 22* Noc= 620 W

Qig latent= 20+ 2.2*Acf+ 12* Noc= 88 W

Infiltration

Table 3 Unit Leakage Areas

	The state of the s		
Construction	Description	A_{nl} , $\cos^2 lm^2$	
Tight	Construction supervised by air-sealing specialist	0.7	V 2004 747
Good	Carefully scaled construction by knowledgeable builder	1.4	$A_L = A_{cs}A_{sd}$
Average	Typical current production housing	2.8	where
Lanky	Typical pre-1970 houses	5.6	A_{es} = building exposed surface area, m ²
Very leaky	Old houses in original condition	10.4	$A_{nl} = \text{unit leakage area, cm}^2/\text{m}^2 \text{ (from } \underline{\text{Table 3}}\text{)}$

From Table 3, we can know:

Good quality \rightarrow A= 1.4 cm/m

Exposed surface = Wall area +roof area

A_{ES}=200+144=344 m

 $A_{L} = A_{ES} A_{UL} = 344 \times 1.4 = 481.6 \text{ cm}$

H. m	Heating Design Temperature, °C					Cooling Design Temperature, °C			
	-40	-30	-20	-10	0	10	30	35	40
2.5	0.10	0.095	0.086	0.077	0.059	0.000	0.031	0.035	0.046
3	0.11	0.10	0.093	0.083	0.072	0.061	0.032	0.038	0.04)
4	0.14	0.12	0.11	0.099	0.079	0.065	0.034	0.042	0.049
3	0.10	0.14	0.12	0.10	0.080	0.009	0.036	0.046	0.03
6	0.18	0.16	0.14	0.11	0.093	0.072	0.039	0.050	0.06
7	0.20	0.17	0.15	0.12	0.10	0.075	0.041	0.051	0.063
8	0.22	0.19	0.16	0.14	0.11	0.079	0,043	0.038	0.074

 $Q_t = A_L 1 DF$

where

 A_L = building effective loskage area (including flue) at reference pressure difference = 4 Pa, assuming discharge coefficient C_D = 1, cm²

IDF = infiltration driving force, La(s em²)

From Table 5, we can know when T heating design =4.1° \mathcal{C} , T cooling design =31.1° \mathcal{C}

 \rightarrow

IDF heating = 0.065 L/(s·cm)

IDF cooling = 0.032 L/(s·cm)

 \rightarrow

 $Q = A \times IDF = 481.6 * 0.065 = 31.30 L/s$ infiltration heating

 $Q = A \times IDF = 481.6 * 0.032 = 15.41 L/s$ infiltration cooling

ventilation

Indoor Conditions.

Based on ASHRAE Standard 55 typical practices are the following:

For cooling: 24°C db and a maximum of 50 to 65% rh.

For heating: 20°C db and 30% rh

△T_{heating}= 15.9 °C

 $\triangle T$ cooling= 7.7 °C

 $DR = 7.1 \,^{\circ}C$

$$Q_v = 0.05A_{cf} + 3.5(N_{br} + 1)$$

where

 Q_v = required ventilation flow rate, L/s

 A_{cf} = building conditioned floor area, m²

 N_{br} = number of bedrooms (not less than 1)

Qv = 17L/s

Qv-heating= 48.3 L/s

Qv-cooling= 32.41 L/s

We have already known : C = 1.23 , C = 3010

Qv-cooling sensible= 306.96W

Qv-cooling latent= 380.46W

Qv-heating sensible= 944.60W