

Module 2 – Flowcharts & Algorithms

BITS Pilani
Pilani Campus

Dr. Jagat Sesh Challa

Department of Computer Science & Information Systems

- Steps of Programming Practices
- Flowcharts
- Algorithms

Steps of Programming Practices

Steps of Programming Practices

- **Step1:** Requirements
- **Step2:** Creating a flow chart
- Step3: Creating algorithms
- Step4: Writing Code
- Step5: Debugging
- Step6: Documentation

We are going to look at *Flowcharts* and *Algorithms*

Flowcharts

Flow Chart

- A Graphical representation of a solution to a particular problem
- Created by Von Neumann in 1945
- Flowcharts help in developing logic and algorithms before writing a program

How to make a flow chart

Step 1: Identify input and output.

Step2: Apply reasoning skills to solve the problem

Step3: Draw the flowchart using the appropriate **symbols** and **arrows** to show the sequence of steps in solving the problem

Symbols used in Flow Charts

Flow Chart Example 1: Sum of two numbers

Flow Chart Example 2: Whether a number is even or odd

Flow Chart Example 3: Sum of 10 Numbers

Algorithms

"Algorithms are a way of laying out a problem independent of the programming language"

innovate achieve lead

Programming Methodologies

Top-down vs Bottom-up Programming

Top – Down Programming:

☐ Reverse	engineers	the	finished	products	by	breaking	it	into			
smaller, manageable or reusable modules.											

☐ Big picture is	visualized	first	before	breaking	it up	into	separate
components.							

Bottom – UP Programming:

- ☐ Low level components are designed first without fully knowing the big picture.
- ☐ The components are later integrated to form the complete system.

What is an Algorithm?

- * Step by step solution to a problem in English like language.
- It is a finite set of clear and unambiguous steps that must be followed to solve a computing problem.
- The programmer can convert the algorithm to a program in any language.

Programming Logic Constructs

- Imperative statements (Actions)
- Conditional statements (Decision Making)
- Iterative Statements (Repetition / Loops)

Algorithm Example 1: Sum of two numbers (Imperative)

- START
- 2. Declare variables num1, num2, sum
- 3. **INPUT** the numbers num1, num2
- 4. Set sum = num1 + num2.
- 5. PRINT sum
- 6. END

Algorithm Example 2:

innovate achieve lead

Whether a number is even or odd (Conditionals)

- 1. START
- 2. Declare num
- 3. **INPUT** the number num
- 4. IF num mod 2 == 0 THENGOTO step 5 ELSE GOTOstep 7
- 5. PRINT "number is even"
- 6. GOTO step 8
- 7. PRINT "number is ODD"
- 8. END

Algorithm Example 3: Sum of 10 Numbers (Iterative)

1. START

- 2. Declare n=1, sum=0, x=0
- 3. IF n <=10 THEN GOTO step 4
 ELSE GOTO step 8
- 4. INPUT x
- 5. Set sum = sum + x
- 6. Set n = n + 1
- 7. GOTO step 3
- 8. PRINT sum
- 9. END

Exercise

Roots of Quadratic equation

$$ax^2 + bx + c = 0$$
 has the following roots:
$$D = b^2 - 4ac$$

If D>0 thenx

root
$$1 = -b + \sqrt{D}/2a$$

root $2 = -b - \sqrt{D}/2a$

- Draw a flowchart to find roots of the above quadratic equation
- Write an equivalent algorithm for the above flow chart

More Exercises

- Draw a flowchart and write its corresponding algorithm for checking if a number n entered by the user is a prime number or not. [Hint: Check for all numbers from 1 to n/2 if they divide n with remainder 0 or not. If none of them divides, n is a prime number]
- Draw a flowchart and write its corresponding algorithm for computing the greatest common divisor (GCD) of two numbers entered by the user. [Hint: Follow this <u>link</u> to understand what is GCD]

BITS Pilani Pilani Campus

Thank you Q&A