

Application Modules and Integrated circuits for C C D image sensors

Modules et circuits intégrés de mise en œuvre pour capteurs photosensibles DTC

CARTES DE MISE EN OEUVRE ET CIRCUITS INTÉGRÉS POUR DTC PHOTOSENSIBLES

THOMSON-CSF produit une gamme de cartes électroniques et circuits intégrés (CI) destinés à la réalisation de caméras complètes à partir de DTC photosensibles matriciels ou linéaires. Ces cartes et CI sont conçus pour la génération des horloges de commande ainsi que pour la gestion et le traitement des signaux vidéo et permettent éventuellement des mises en œuvre spécifiques. Il sont utilisables aussi bien pour la fabrication de caméras qu'en modules d'évaluation.

DRIVE BOARD MODULES AND INTEGRATED CIRCUITS FOR CCD IMAGE SENSORS

Our range of drive boards and integrated circuits (ICs) allows complete cameras to be constructed from Thomson-CSF linear and area array CCD image sensors. These boards and ICs provide the drive clock, video signal management, processing functions and are adaptable to specific applications. They can be used both as evaluation modules and for the production of cameras

CARTES D'INTERFACE POUR DTC LINEAIRES DRIVE BOARDS FOR LINEAR-ARRAY CCDs

Fonctions

- · Génération de phases
- · Support de capteur
- Interface TTL/MOS
- Sortie vidéo analogique

TH 79316 × 1024 e 256

Functions

- · Clock generation
- Sensor mount
- TTL/MOS interface
- · Analog video output

Tableau de correspondance des cartes de mise en œuvre/ Capteur DTC linéaire Drive board/Linear CCD sensor correspondence table

	Capteur Sensor		Carte de mise en œuvre Drive board	9
Référence capteur	Fréquence de sortie	Référence carte	Dimensions	Alimentations utilisées
Sensor reference	Output frequency	Board reference	Dimensions	Power supply req.
TH 7801ACDZ TH 7802ACDZ TH 7803ACDZ	1728 1024 1728 2 MHz	TH 7931B		+ 15 V
TH 7811CDZ ?		TH 7931B1	115 mm x 65 mm	+ 5 V
TH 7806CD TH 7806CDZ TH 7831CDZ	256 2 MHz	XTH 7931C 27	A ~ 4600.000	
TH 7804CDZ	1024 15 MHz	TH X1061	100 mm x 160 mm	+ 20 V + 5 V
TH 7805ACDZ	2048 20 MHz min. 5 mHz	X TH 7932 (ex TH X1074)	100 mm x 160 mm	+ 18 V + 5 V
THX 31510CDZ	40 MHz	T.B.D.*	-	
TH 7832CDZ 9	-	T.B.D.* *	-	

[·] En dours de definition ! To be definéa.

CIRCUITS INTEGRES POUR DTC MATRICIELS A TRANSFERT DE TRAME

Ces circuits intégrés, de conception VLSI avancée, ent été réalisés spécialement pour gérer les matrices DTC à transfert de trame THOMSON-CSF.

Caractérisés par leurs simplicité de mise en œuvre, raible consommation et haut degré de miniaturisation, is constituent des éléments de base pour la réalisation de systèmes de prise de vue à l'état solide sophistiqués. Les modèles présentés permettent de réaliser toutes les fonctions essentielles afférantes à ces capteurs, depuis leur séquencement jusqu'à la mise en forme du signal de sortie.

Ils peuvent ête proposés en classes de qualité militaire ou industrielle.

INTEGRATED CIRCUITS FOR FRAME TRANSFER CCD IMAGE SENSORS

These integrated circuits, based on an advanced VSLI design, are developed specifically for Thomson-CSF frame-transfer area-array CCD image sensors.

Characterized by their ease of use, low power consumption and high degree of miniaturization, they form the basis of state-of-the-art CCD cameras. The models described enable all essential sensor functions to be achieved, from clock sequencing to output signal shaping.

The integrated circuits can be supplied in military and industrial quality classes.

Organisation d'une caméra à circuits intégrés spéciaux Organization of integrated circuits for implementing a TV camera

CARTES POUR DTC MATRICIELS AREA-ARRAY CCD DRIVE BOARDS

Organization a une caméra utilisant des cartes de mise en œuvre Organization of drive boards for implementing a camera

Tableau de correspondance des cartes de mise en œuvre/ Capteur DTC matriciel Drive board/Area Array CCD correspondence table

		s de mise en œuvre, selon fo ve boards, according to func		
Référence capteur Sensor reference	Interface TTL/MOS (1) TTL/MOS interface (1)	Génération des phases et signaux logiques (1) Clock and logic signal generation (1)	Traitement de signal (1) Signal processing (1)	Boîtier Housing
TH 7852	TH 7960-1	TH 7961		
TH 7862A	TH 7966-2 (ex	(THX 5008-5)		
TH 7863	TH 7	966-3	TH 7962	
TH 7864	THX 5	5008-8	ou/ <i>or</i> TH 7963	TH 7965H1
TH 7866	THX 5	5008-9	111 1300	
TH 7882	THX 5	5008-5		
THX 31510A	TH 7960-6 (ex THX 5007-7)	TH 7961-6 (ex THX 5008-3)		

(1) Voir page 4 pour explications/ See page 4 for explanations

BOITIER/HOUSING

TH 7965H1

Caractéristiques

- Interconnection entre cartes (capacité 3 cartes)
- Boîtier câblé permettant de réaliser un kit de caméra (tous modèles)
- Entrées/sorties sur connecteur SUB-D 25 contacts
 Signal Vidéo sur fiche BNC

Characteristics

- Interconnection between boards (3-board capacity)
- Cabled housing for camera kit (any model)
- Inputs/outputs on SUB-D 25-pin connector
- Video signal on BNC connector

TABLEAU DE SÉLECTION POUR CARTES

SUPPORT CAPTEUR / INTERFACE / GENERATION DE SIGNAUX DE COMMANDE ET DE SYNCRONISATION

QUICK REFERENCE TABLE FOR

SENSOR MOUNT/INTERFACE/ DRIVE & SYNC SIGNAL GENERATION DRIVE BOARDS

Fonctions	Fund	ctions	TH 7960-1 TH 7960-6	TH 7961	TH 7961-6	TH 7966-3	TH 7966-2	THX 5008-8	THX 5008-9
Interface TTL/MOS	TTL/MOS i	interfacing	•			•			
Génération des tensions de polarisation	Bias voltage generation		•			•	•	•	•
Echantillonnage/ filtrage/adaptation d'impédance	Sampling/f. impedance		•			•	•	•	•
Adaptation opto- mécanique avec objectif monture "c"	Opto-mechanical interfacing with "c" type lens mount		•			•	•	•	•
Génération de	Drive and	CCIR TV		•		•	•	•	
signaux de commande et de synchronisation (horloge externe	SYNC Signal	EIA RS170 TV							•
possible)	generation (ext. clock possible)	SINGLE FIELD		•	•	•	•		

TABLEAU DE SELECTION POUR CARTES DE TRAITEMENT DU SIGNAL DE SORTIE VIDEO

QUICK REFERENCE TABLE FOR VIDEO OUTPUT SIGNAL PROCESSING BOARDS

Fonctions	Functions	TH 7962	TH 7963
Amplification du signal vidéo	Video signal amplification	•	•
Conversion A/N 1 bit, seuil variable	1-bit A/D conversion with threshold	•	•
Correction de GAMMA	GAMMA correction	•	
Voie vidéo TV	TV video channel	•	
Voie vidéo X, Y, Z pour moniteur électrostatique	X, Y, Z video channel for electrostatic monitor		•

Caractéristiques communes à toutes cartes pour DTC matriciels

- Dimensions: 160 mm x 100 mm (format "Europe")
- Alimentations utilisées :
 + 15 V; 15 V; + 5 V;
- Connecteur:
 Europe DIN 41612/C-64M

Characteristics common to all area array CCD drive boards

- Dimensions: 160 mm x 100 mm (Eurocard format)
- Power supply req.:
 + 15 V; 15 V; + 5 V;
- Connector: Europe DIN 41612/C-64M

Carry March 2 of a contract of a contract of the contract of t

The medicular field .

The medicular field .

The medicular field .

White hand .

nevalue autor autoria

Company the comment

and the advisory

griffe to Mintellion

All Agi undistants on a my syl

the party of the same of the same

When a major pro- COG on the second

Para There and the state of the

Sanda M. - age - grant grant grant grant

Abnames to the state of the sta

Niveau de Qualité "H" - ne concerne que les modèles TH 7861 et TH 7862 (pour $V_{sortie} \leq V_{SAT}$) "H" Quality Grade- only for the TH 7861 and TH 7862 (for $V_{output} \leq V_{SAT}$)

Sur toutes zones : pas de colonnes visibles · On all zones : no visible columns

Conditions: $T = 50 \text{ °C}; \frac{\overline{V}_{\text{sortie}}}{\overline{V}_{\text{output}}} = 50 \text{ mV}$

DÉFINITION DES ZONES

DEFINITION OF ZONES

Spécification des défauts : Blemish specifications :	Zone 1		Zo	ne 2	Zor	ne 3
Type (blanc ou noir) Type (black or white)	B W	N B	B W	N B	B W	N B
Nombre Number	0	2		(+ B)		+ B) + W)
Surface en nombre de pixels Area in number of pixels	-	1	1	4	4	4
Amplitude d'un pixel sin- gulier rapporté aux pixels adjacents. α (mV) Amplitude of single pixel w.i.t.adjacent pixels α (mV)	5< α	5 < α ≤ 10	5< α ≤15	10< α ≤ 20	5< α	10< α

Addr 1445

Caractéristiques

TH 7990 et TH 7993

TH 7991 et TH X33504

- . Boîtier plat 44 passages plastique ou céramique
- Microcartes CMS
- Alimentations utilisées :
- » Alimentation utilisée :

- 5 V

- +5 V et + 15 V

Characteristics

TH 7990 and TH 7993

· 44 pin package plastic leaded chip carrier or ceramic leadless clip carrier

TH 7991 and TH X33504

- SMT microboards
- Power supply required: +5 V et + 15 V
- Power supply required:
 - + 5 V

(1) Pour la fonction de correction de pixels, le TH 7993 nécessite une mémoire dediée, vendue en option avec le DTC matriciel.

Les références à employer lors de la commande d'un capteur associé au circuit de correction des pixels sont

- TH 78__ CD_ + MEM (modèle du DTC matricel + mémoire dédiée)
- TH 7993

Lorsqu'un DTC matriciel est commandé "+ MEM", il sera livré avec une mémoire préprogammée, individuellement adaptée au DTC ravecidentification).

(1) For pixel correction, the TH 7993 requires a dedicated memory, sold on option with the CCD area-array sensor.

The ordering codes for a sensor and its pixel correction circuit is therefore:

- TH 78__ CD_ + MEM (CCD area-array model + dedicated MEMORY)
- TH 7993

When a area-array CCD is ordered "+ MEM", it is delivered with an individually matched, pre-programmed memory (with an identifying reference).

THOMSON COMPONENTES DO BRASIL LIDO Avenida Roque Petroni JR NR 1464 -CEP 04707 CER 34/07 BROOKLIF4 - SAO-PAULO Tel (55-11, 512 47 22 Fax (55-11, 51 50 18 Telex (11) 34226 TCSF BR

CATALIAN
THOMSON CSF Ltd. Life
1000 Sherbrocke Ouest - Suite 2340
VONTREA: +3A 3G4 - QUEBEC
Tel. (1.514, 288 41 48)
Fax. (1.514, 288 89 87
Telex. 5560248 TESAFI MTL.

DEUTSCHLAND THOMSON BAUELEMENTE GMBH Perchtir ger Straße 3 - Postfach 701909 3 + 700 MCs (244 N 70 1 = 129 89 / 18 70 1 = 129 89 / 18 70 1 = 120 80 / 18 70 1 ESPANA
THOMSON COMPONENTES Y TUBOS S.A.
Calle Albacete 5
E-28027 MADRID
Tel.: (34-1) 405 16 15
Fax. (34-1) 404 60 02
Telex. 46033 TCCE III

Telex 620683 THOMTE I

CHRONIX Inc CHICONIA INC.
MISHISHIRIDUKU MARUYANA
BId 4F 7 9-7 SHINJUKU-KU
TOKYO 160
Fel (81) 3 371 57 11
Fax (81) 3 371 57 28
Felex 232 31 22 50F2A 1 SVERIGE THOMSON-CSF ELEKTRONRÖR AB Radiovägen 1, A - Box 631 S-135 26 TYRESÖ Tel. (46-8) 742 02 10 Fax. (46-8) 742 80 20

UNITED KINGDOM
THOMSON COMPONENTS Ltd. Ringway House - Bell Road Daneshill Daneshii GB-BASINGSTOKE, Hants RG 24 0QG Tel. (44-256) 29 155 Fax (44-256) 23 172 Telex 858865 TESAFI G

THOMSON ELECTRON TUBES AND DEVICES CORPORATION 550 Mount Pleasant Avenue P.O. Bax 6500 DOVER, New Jersey 07801 Fel. (1:201) 328-1400 Fax. (1:201) 328-1747 NVX. 7109877901

En développement - In development

DISPOSITIFS PHOTOSENSIBLES MATRICIELS DTC

AREA ARRAY CCD IMAGE SENSORS

NIVEAUX DE QUALITÉ D'IMAGE

IMAGE QUALITY GRADES

La position des défauts est aléatoire. Un pixel est considére comme défectueux si son niveau de tension est à plus de 10 % de VSAT au-dessus ou au-dessous des pixels voisins, la mesure étant effectuée à un niveau moyen de VSAT/2.

La taille d'une zone défectueuse est exprimée par sa plus grande dimension dans chacune des deux directions (X-Y) mesurée en nombre de points adjacents sur une trame. Blemishes are randomly distributed. A pixel is considered blemished if its voltage level differs from that of its neighbors by more than 10% of VSAT, the measurement being made at VSAT/2.

The size of a blemish is expressed by the largest dimension in both directions (X-Y) and is measured in terms of adjacent pixels on a frame.

NIVEAU DE QUALITÉ		NIVE GRA	DE A			NIVE GRA	DE B			NIVE GRA	DE C	
D'IMAGE IMAGE QUALITY GRADE	TH 7852	TH 7861	TH 7862	TH'7882	TH 7852	TH 7861	TH 7862	TH 7682	TH 7852	TH 7861	TH 7862	TH 7882
Nombre de zones délectueuses, max Number of blemish zones, max	5	10	1.0	20	15	15	15	30	25	25	25	50
Taille des zones detec- tueuses, max. (pixels) Size of blemish zone, max. (pixels)	3 x 3	4 x 4	4 × 4	4 x 4	5 x 5	6 x 6	6 x 6	6 x 6	8 x 8	8 x 8	8 x 8	8 x 8

Est considere comme une colonne défectueuse tout délaut vertical d'une taille supérieure à celle de la zone défectueuse, définie ci-dessus, pour un niveau de qualife d'image et un produit donne.

A defective calumn is defined as a vertical blemish whose height exceeds that of the above defined blemished zone for a corresponding image quality grade and model.

									1		
0	0	0	0	2	0	4	0	4	8	4	8
			0		0	1		2	2	2	2
0	0	U	V		Ü			2			
	0										

Les mesures de la tension de sortie, V_{sortie}, sont prises à la sortie d'un amplificateur suiveur, et avant la voie vidéo. The output voltage, V_{out}, is measured at the output of an emitter follower, and before the video channel.

THOMSON-CSF TUBES ELECTRONIQUES

Linear Array Charge-Coupled Device (CCD) **Image Sensors**

Dispositifs photosensibles linéaires à transfert de charge (DTC)

DISPOSITIFS PHOTOSENSIBLES LINÉAIRES A TRANSFERT DE CHARGE

DESCRIPTION

Les DTC linéaires THOMSON-CSF sont constitués pour l'essentiel d'un réseau linéaire de photodiodes, formant la partie centrale du dispositif, associée à deux registres latéraux à transfert de charge, disposés de part et d'autre de la zone photosensible et chargés d'évacuer jusqu'à un circuit final de lecture, les charges créées dans les photodiodes par le faisceau lumineux incident.

La technologie n-MOS canal enterré, à deux niveaux de grille silicium polycristallin utilisée pour leur réalisation, l'emploi de substrats spécifiques de haute qualité (désignés par la lettre "Z" en fin de référence) ainsi qu'un contrôle sévère à toutes les étapes de fabrication, permettent de proposer des dispositifs de hautes performances caractérisés par :

 une capacité de stockage importante alliée à de faibles niveaux de bruits résiduels, permettant d'obtenir des valeurs de dynamique élevées (pou-

vant aller jusqu'à 7000 : 1),

 une excellente efficacité de transfert dans une gamme de fréquences étendue (inefficacité typique : 2.10⁻⁸/étage) permettant un large choix de temps d'intégration et de fréquences de lecture, de quelques centaines de kHz à quelques dizaines de MHz.

- une haute sensibilité et une excellente qualité de la réponse spectrale, de 400 à 1100 nm (visible et proche IR), ainsi que de bonnes performances de résolution (Fonction de Transfert de Modulation), y compris dans le proche infrarouge, du fait de la structure employée alliant photodiodes et faible épaisseur de la zone optiquement active,

 une excellente uniformité de la réponse (typiquement ± 5%) sur toute la zone photosensible, dans l'obscurité comme sous éclairement, avec un nombre réduit de défauts isolés (points singuliers)

noirs et blancs.

De plus, ces capteurs présentent les avantages de compacité, robustesse, durée de vie et faible consommation, inhérents aux circuits intégrés n-MOS.

La plupart d'entre eux possèdent une logique interne incorporée délivrant des signaux :

- de remise à niveau des circuits de lecture,

 d'échantillonnage et de maintien des signaux de sortie,

qui permettent de simplifier leur mise en œuvre à par-

tir de deux signaux d'horloge externes:

 ΦP: Impulsion de transfert commandant le passage des charges de la zone photosensible vers les registres et définissant la durée du temps d'intégration entre transferts successifs.

 - ΦT: Horloge de commande des registres, définissant la cadence de lecture des charges et donc la

cadence de délivrance des informations.

De par leur conception ces capteurs présentent une grande souplesse de mise en œuvre, selon le type d'applications considérées :

- remise à niveau interne ou externe,

- échantillonnage de sortie interne actif ou non,

 possibilité de sommation des pixels adjacents (accroîssement de la sensibilité au détriment de la résolution).

LINEAR ARRAY CCD IMAGE SENSORS

DESCRIPTION

THOMSON-CSF linear CCD image sensors essentially comprise a linear photodiode array, forming the central portion of the device, and analog shift registers located either or side. The shift registers transfer the charges generated in the photodiodes by the incident illumination into the final readout circuit.

By virtue of their two-layer polysilicon n-MOS buried-channel technology, high-quality, special-purpose substrates (designated by a "Z" at the end of their reference) and tight quality control at all fabrication stages, Thomson-CSF linear array CCD image sensors offer:

- large storage capacity with low residual noise level, leading to high dynamic range values (up to 7000:1),
- excellent charge transfer efficiency over a wide range of frequencies (typical inefficiency: 2 x 10⁻⁵ per stage), giving a large choice of integration periods and data output rates, from a few kHz to several tens of MHz,
- high sensitivity and spectral response from 400 to 1100 nm (visible to near IR) as well as good resolution performance (modulation transfer function). This performance is maintained in the near infrared owing to the sensor structure that combines photodiodes and a thin optically active zone,
- excellent response uniformity (typically ± 5%) throughout the photosensitive zone - both in darkness and illumination - with a small number of isolated defects (black or white spikes).

The sensors also share the advantages common to n-MOS integrated circuits: compactness, ruggedness, unlimited lifetime and low power drain.

Most models possess on-chip logic for:

- readout register reset, and

output signal sample-and-hold

which simplifies their operation by requiring only two external clocks:

- Φ P: transfer pulse controlling the passage of charge from the photosensitive zone to the shift registers. This clock defines the integration time period between successive transfers.
- Φ T: transfer clock defining the charge readout frequency, and hence the data output rate.

Their design offers a large degree of flexibility for different possible circuit applications:

- external or internal reset,
- internal sample-and-hold, active or disabled,
- possibility of pixel pairing (to increase sensitivity at the expense of resolution).

TABLEAU RÉSUMÉ DES DTC LINÉAIRES (valeurs typiques) LINEAR CCD QUICK-REFERENCE TABLE (Typical Values)

CARACTÉRISTIQUES CHARACTERISTICS	Unités Units	TH 7806 CD CDZ	TH 7803 ACDZ	TH 7801 ACDZ	TH 7831 CDZ	TH 7803 ACDZ	TH 7811 CDZ	TH 7832 CD2	TH 7804 CDZ	TH 7805 ACDZ	TH X31510 CDZ
PHYSIQUE - PHYSICAL				.1							
Nombre de photoéléments Nombre of photoelements		256	1024	1728	1728	1728	1728	2 x 2048 (3)	1024	2048	4096
Dimensions du photoélément (LxH) Pixel dimensions (WxH)	mu x mu	13 x 13	13 x 13	13 x 13	13 x 39	10 x 13	13 x 13	13 x 750	13 x 13	13 x 13	7x7
Pas du photoélément Pixel pitch	1	13	13	13	13	10	13	13	13	13	2
Longueur photosensible Photosensibve length	THE H	333	1331	22.46	22.46	17.28	22.46	26.62	1331	26.62	28.68
Bother (DIL) : largeur/broches Package (DIL): width/pins		0.37/10	0.6"/24	0.6"/24	0.6"/24	0.6*/24	0.6"/24	0.6"/20	0.6"/24	0.6"/28	0.6"/28
ÉLECTRIQUE - ELECTRICAL											
Fréquence de sortie (max.) Data output rate (max.)	MHz	62	63	63	63	53	63	10	15	88	\$
Tension continue du signal vidéo Video signal DC level	>	90	60	00	00	00	Ø	11	œ	01	11
Impédance de sortie Output impedance	а	1000	200	200	1000	1000	200	200	200	, 500	1000
Nombre de phases de commande Number of control clocks		83	63	83	က	63	N	m	60	63	n
Consommation Power drain	шW	08	100	100	100	100	100	150	150	150	200
Tension d'alimentation Power supply vollage	>	13	14	14	13	13	14	15	15	15	ħ
ELECTROOPTIQUE: ELECTROOPTICAL:	T - 28°C - C	Conditions de pola Ypical bias voltag	urisation typiques res - 2854 K sourc	T = 28 °C - Conditions de polarisation typiques - Source 2854 $\mathbb R$ + Filtre IR BG 38 $T=25$ °C - Typical bias voltages - 2654 K source + BG 38 IR filter	+ Filtre IR BG 38						
Tension vidéo à saturation Video voltage at saturation	>	20	20	20	2.0	20	20	2.0	2.5	20	870
Réponse Response	V/µJ/cm²	6.0	8.0	90	17.0	45	0.0	200	60	4.5	1.5
Bruit temporel dans l'obscunité Temporal noise in darkness	иу (гтз)	380	330	380	350	350	320	009	400	250	400
Dynamque : S/B (r.m.s) Dynamic range: S/N (r.m.s)		0009	9000	0009	0009	0009	0009	3000	0009	8000	3000
FTM à fréquence Nyquist MTF at Nyquist frequency	%	99	8	8	09	99	09	90	05	8	05

Carre de mise en ceuvre utilisable Compatible drive module

(1) Model'e equipe d'un disposit d'annéhloussement (100 z ESAT) (2) Vistant pristryps El Separatori entre les axes des 2 lagnes photosentables = 1250 matoris (4) Mécrésine curuc d'adapatori

(1) Model with built-in antiblocining device (190 x l_2Ap) \equiv Prototype version (2) Separation between the two linear array axes \approx 1,550 microhal (4) Requires eligible circuit

TBD*

TH 7932 (ex TH X1074)

TH X1061

TBD*

TH 7931 BI

TH 7931 B

TH 7931 C

TH 7931 B

TH 7931 B

TH 7931C

0.5

0.5

0.5

9

0.5

0.5

0.5

0.5

0.5

0.5

四

Non uniformité du signal d'obscurité.\V» Dark signal non-uniformity &V»

0.5

0.5

0.5

9

0.5

0.5

0.5

0.5

0.5

0.5

7日

Valeur moyenne de la tension d'obscunté V_{∞} Average dark signal voltage V_{∞}

H2

10 H

(S)

± 10

11

11

H 22

H 23

112

H

æ

Non-uniformité de réponse (points singuliers exclus) Response non-uniformity (spikes excluded)

ASSURANCE QUALITÉ

Les capteurs photosensibles livrés satisfont à une classe d'assurance qualité standard. Sur demande, des dispositifs répondant à des spécifications particulières - ainsi qu'à des contrôles et des tests de qualité propres à des classes de qualités supérieures - peuvent être fournis (applications spéciales, militaires, spatiales, etc.).

APPLICATIONS

Tous systèmes d'analyse d'image dans le domaine visible et proche infrarouge reposant sur un balayage ligne-par-ligne de l'image, associé à un défilement relatif du capteur par rapport à l'objet analysé, tels que:

- La transmission de documents : télécopie, fac-similé,
- La reconnaissance et le traitement d'images : lecteur optique de caractères, lecteur de codesbarre, lecteur de plans, machines de reprographie, analyseurs d'images fixes ou de microfilms,
- La reconnaissance de formes et l'analyse d'objets : contrôle dimensionnel et métrologie, tri, inspection, détection de défauts,
- La surveillance et l'observation: caméras de surveillance industrielle et de robotique, caméras d'observation par satellite, systèmes d'observation astronomique,
- Les applications scientifiques : analyse spectrale, détection de rayonnement.

En particulier:

- Les capteurs TH 7801ACDZ, TH 7802ACDZ et TH 7803ACDZ sont destinés aux applications qui requièrent une fréquence de lecture n'excédant pas 2 MHz.
- Les capteurs 1728 photoéléments TH 7801ACDZ, TH 7803ACD et TH 7803ACDZ sont tout particulièrement adaptés pour la télécopie moyenne définition (8 points/mm).
- Les TH 7804 CDZ, TH 7805ACDZ et TH X31510CDZ sont dévolus aux applications nécessitant des fréquences de lecture élevées (jusqu'à 20 et 40 MHz), telles que : télécopies et reprographie rapide, reconnaissance optique de caractères, télécinéma.
- Le TH X31510CDZ est plus spécialement destiné aux applications qui nécessitent une très haute définition et une grande vitesse d'analyse.
- Le TH 7831CDZ et TH 7832 CDZ, vue la hauteur de leurs photoéléments et leurs grande sensibilité, sont tout particulièrement adaptés à l'analyse spectrale.
- Le TH 7811 CDZ, de par sa caractéristique antiéblouissement, est destiné à toutes les applications où l'on doit pouvoir accepter de grandes variations des niveaux d'éclairement: flashes, éclairage jour et nuit, etc.

QUALITY ASSURANCE

Image sensors are normally supplied in standard quality assurance classes. Upon request, Thomson-CSF can also supply sensors to custom specifications, as well as models submitted to quality control tests conforming to superior quality classes for special, military or space applications, etc.).

APPLICATIONS

Thomson-CSF linear array CCD image sensors can be used for all image pickup systems operating in the visible and near-infrared spectrum, by line-by-line scanning through relative displacement of the sensor with the scene, such as:

- Document transmission: telecopy, facsimile,
- Image recognition and processing: optical character recognition, bar-code readers, plan readers, electronic publishing, static image and microfilm scanning,
- Shape recognition and object analysis: dimensional control, metrology, sorting, inspection, defect detection.
- Surveillance and observation: industrial and robotic surveillance cameras, earth observation by satellite, astronomical observation systems,
- Scientific applications: spectral analysis, ray analysis, etc.

In particular:

- The TH 7801ACDZ, TH 7802ACDZ and TH 7803ACDZ are aimed at applications not requiring a readout rate above 2 MHz.
- The 1728 pixel format of the TH 7801ACDZ, TH 7803ACD, TH 7803ACDZ and TH X31510CDZ is particularly suited to medium-definition telecopy (8 points/mm).
- The TH 7804 CDZ, TH 7805ACDZ and TH X31510CDZ are destined for high-frequency applications (up to 20 and 40 MHz) such as: fast telecopy and reprography, optical character recognition and telecinema.
- The TH X31510CDZ is more specifically intended for application requiring a very high definition and the possibility of high-speed scanning.
- The TH 7831CDZ and TH 7832 CDZ are specially designed for spectral analysis, having extended photoelement height, and thus high sensitivity.
- The TH 7811 CDZ, by its antiblooming characteristics, is intended for all applications involving large light level variations: flashes, day-night lighting conditions, etc.

Trance
THOMSON-CSF Division Tubes Electroniques
38 rue Vauthier - B.P. 305
F-92102 BOULOGNE-BILLANCOURT CEDEX / FRANCE
Tél.: (33.1) = 04.81.75 - Télex : THOMTUB 200772 F
Fax: (33.1) 46.04.52.09

Brasil
THOMSON COMPONENTES DO BRASIL Lida Avenida Roque Petroni JR NR 1464 CEP 04707 - BROCKLIN - SAO PAULO Tel. : (55.11) 542 4722 - Telex : (011) 24226 TCSF BR Fax : (55.11) 61 50 18

Canada
THOMSON-CSF Ltd Ltée
1000 Sherbrooke Ouest - Suite 2340
MONTREAL H3A 3G4 - QUEBEC
Tel: 1-514) 288 41 48 - Telex 5560248 TESAFI MTL
Fax: (1.514) 288 89 87

THOMSON BAUELEMENTE GmbH Bereich Elektronenröhren Perchinger Str. 3 - Postfach 701909 D-8000 MÜNCHEN 70 Tel.: (49.89) 7879-0 - Telex: 522916 CSF D Fax: (49.89) 7879-145

THOMSON COMPONENTES Y TUBOS S.A. Calle Albacete E-28027 MADRID
Tel.: (34.1) 405 16 15 - Telex: 46033 TCCE E
Fax: (34.1) 404 60 02

Italia THOMSON COMPONENTI Via Sergio 1°, 32 I-00165 ROMA Tel.: (39.6) 639 02 48 - Telex: 620683 THOMTE-I Fax: (39.6) 639 02 07

japan CHRONIX Inc. Nishishinjuku 4-32-6 - Park Grace Bld. Shinjuku-Ku - TOKYO 160 Tel.: 03-374-1161 - Telex: 2323122 SOFRA Fax: (81) 33715738

Sverige THOMSON-CSF ELEKTRONRÖR AB Radiovägen l a Postadress: Box 631 S-135 26 TYRESÖ Tel: (48.8) 742 02 10 Fax: (46.8) 742 80 20

United Kingdom THOMSON-COMPONENTS Ltd Ringway House - Bell Road - Daneshill GB-BASINGSTOKE RG 24 OQG Tel.: (44.256) 29155 Telex: 858865 TESAFI G Fax: (44.256) 23172

THOMSON ELECTRON TUBES AND DEVICES CORP. 550 Mount Pleasant Avenue P.O. Box 6500 DOVER - NEW JERSEY 07801 Tel.: (1.201) 328-1400 TWX: 710 987 7901 Fax: (1.201) 328-1747

Linear CCD* Image Sensor

1728 pixels

- Pixel size : 10 μm x 13 μm (10 μm pitch)
- Simple operation :
 - two drive clocks
 - Internal sample-and-hold available
 - Dark reference incorporated
- Peak-to-peak output : 2 volts
- High sensitivity, dynamic range and resolution over a wide spectral range: from blue (400 nm) up to Near Infrared (1100 nm), thanks to special semi-conductor process
- Low dark signal
- Dynamic range : 6000:1 (typ.)
- Choice of operating modes for improved flexibility
- 24-pin DIL package

_	V _{SS}	INH Φ _{ECH} 23	V _{DO}	Vos 21	NC 20	NC 19	NC 18	INH	V _T	NC 15	Φ _T	Ф _Р	
}			T	H	78	30:	3 A	(Z)				
													207803 5
	Φ B EXT.	NC	NC	V _H	V _{Sg}	ADD	7 TP3	TP2	9 TP1	10 V _T	V _{ST}	12 V ₈₈	

PIN IDENTIFICATION

Pin no.	Symbol	Designation
1	Φ _R EXT	External Reset Clock
4	v _H	Internal Logic Supply Voltage
5-12-24	VSS	Substrate Voltage (Ground)
6	ADD	Addition of Odd and Even Pixels (DC Bias)
7-8-9	TP3-TP2-TP1	Test Points
10-16	VT	Shift Register DC Bias
11	V _{ST}	Photosensitive Zone DC Bias
13	Фр	Transfer Clock
14	ФТ	Shift Register Transport Clock
17	INH ØR	Internal Reset Clock Inhibiting Input (DC Bias)
21	Vos	Video Output Signal
22	V _{DD}	Output Amplifier Drain Supply
23	INH Ф ECH	Internal Sampling Clock Inhibiting Input (DC Bias)
2-3-15- 18-19-20	NC	No Connection (Do not ground)

* Charge Coupled Device

NOTE: To simplify sensor operation a drive board has been developed and may be purchased from Thomson-CSF (ref. TH 7931B). This board provides all the necessary electronics: DC supplies, driving clocks and video output buffer.

This data sheet cannot be considered to be a contractual specification. The information given herein may be modified without notice due product improvement or further development. Consult Thomson-CSF (Electron Tube division) before making use of this information for equipment design.

ABSOLUTE MAXIMUM RATINGS

Storage temperature	***************************************	55 °C to + 150 °C
Operating temperature		-40 °C to +70 °C
Maximum voltages :		
- Pins: 1, 4, 6, 7, 8, 9, 10, 14, 16, 17, 22, 23	***************************************	-0.3 V to +18 V
• Pins: 11, 13		-0.3 V to + 16 V
- Pins : 5 12 24		nV

OPERATING CONDITIONS (T = 25 °C)

Table I - DC Characteristics

Parameter	Symbol		Value	3	Unit	
raianielei	Symbol	Min.	Тур.	Мах.	Offic	
Internal Logic Supply Voltage	VH	11.4	13	14.5	٧	
Shift Register DC Bias	V _T	6	6.7	7.5	٧	
Photosensitive Zone DC Bias	V _{ST}	V _T	~	7	٧	
Output Amplifier Drain Supply	V _{DD}	11.4	13	14.5	٧	
Substrate Voltage	V _{SS}	0.0	0.0	-	٧	
Test Point 1	TP1	-	V _{DD}	-	٧	
Tests Points 2 and 3	TP2,TP3	*	V _{SS}	-	V	

Table II -**Drive Clock Characteristics** (See timing diagram - fig.1)

Parameter	Symbol	Symbol Logic		Value			
	Cymoon	Logio	Min.	Тур.	Max		
Transfer Clock (1) Register Trans-	Фр Фт	High	11.4	13	14.5	٧	
port Clock (1) External Reset	Φ _{REXT}	Low	0.0	0.4	0.6	٧	
Clock (1) (2) Register Clock Capacitance	СФТ		-	550	700	pF	
Transfer Clock Capacitance	СФР		-	150	200	pF	

⁽¹⁾ Transients under 0.0 V in the clock pulses will lead to charge injection, causing a localized increase in the dark signal. If such spurious negative transients are present, they can be suppressed by inserting a serial resistor of appropriate value (typically 20 to 100 Ω) in the corresponding driver output.

Table III - Static and Dynamic Electrical Characteristics

Parameter	Symbol	Value			Unit	Remark	
CHAINE	- Cylilodi	Min.	Тур.	Max.		Tioman	
DC Ouput Level	V _{REF}	5	8	11	٧	(5)	
Ouput Impedance	Z _s	-	1000	-	Ω	(5)	
Single-stage Transfer Efficiency	-	99.992	99.998	-	%	$\bar{V}_{OS} = 1V(3)$	
Max. Data Ouptut Frequency	Fs max.	1.0	2.0	-	MHz	(4) See fig. 2	
Input Current on Pins : 7, 8, 9, 10, 11, 13, 14, 16	l _e		-	2	μА	Ve = 15 V All other pins : 0V	
Input Current on Mode Selection Pins (V _{DD} =VH=15V)	Φ REXT INHΦ _{ECH} ADD	_	-	0.2	mA	Ve = 15 V	
	INH Φ_{R}	- 0.2	40	-	mA	Ve = 0V	
Average Current Sink on Φ _T Clock	ΙΦΤ	-	1.5	-	mA	t _{rise} = 50ns Fs = 2 MHz	
Peak Current Sink on Φ _T Clock	(ΙΦ _Τ) _ρ	-	200	-	mA	t _{rise} = 50 ns	
Peak Current Sink on Φ _P Clock	(I Φ ρ) _p	-	70	-	mA	t _{rise} = 50 ns	
Internal Logic Supply Current	l _H	-	3.5	5.0	mA	-	
Output Amplifier Supply Current	l _{DD}	-	2.0	5.0	mA	-	
Static Power Dissipation	P _D	-	100	150	mW		

⁽³⁾ \overline{V}_{OS} = average video output voltage. Measurement excludes first and last pixels. (4) Fs = 2F Φ_T . The minimum clock frequency is limited by the increase in dark signal.

⁽²⁾ In external reset configuration (Φ REXT)

⁽⁵⁾ Shorting the video output to VSS or VDD, even temporarily, can permanently damage the output amplifier

Figure 1a - Standard operating configuration (all internal clocks used)

Figure 1b - Operating configuration with external reset ($\Phi_{R, EXT}$) and / or external sample-and-hold

Figure 1 - Timing diagram

- pari durata del regnale dottios durata del pixel

COMPLEMENTARY MODE CONTROL SIGNALS

- ADD: Pixel pairing control (allows analog addition of odd and even pixels resulting in a video signal corresponding to 864 pixels of dimensions 20 μm x 13 μm with 20 μm center-to-center spacing).
- INH Φ_R :Internal reset clock Φ_R inhibited and replaced by an external reset clock applied on the $\Phi_{R \; EXT}$ input.
- INH Φ_{ECH} -: Internal sample-and-hold clock Φ_{ECH} inhibited. An external sample-and-hold circuit may then be substituted for the internal circuit.

The last two modes can be used to derive the utmost performance from TH 7803A(Z) or to add pixels in groups of 3 or more.

OPERATING MODES

Table IV - Selection of Operating Modes

Pin	1	6	17	23
Operating mode	ΦR EXT	ADD	INΗΦR	INH Φ _{ECH}
Normal mode : All clocks internal	NC or VSS	NC or	NC or VDD	NC or VSS
Complementary modes: Un-sampled video output signal & internal reset (Φ R)	NC or VSS	NC or VSS	NC or V _{DD}	V _{DD}
Un-sampled video output signal & external reset (Ф R EXT)	Φ _{REXT}	NC or VSS	V _{SS}	V _{DD}
Pixel pairing	NC or V _{SS}	V _{DD}	NC or V _{DD}	NC or VSS

NC = not connected

^{*} Option on specific request Please consult Thomson-CSF

ELECTROOPTICAL PERFORMANCE

General measurement conditions:

 $T_p = 25 \,^{\circ}\text{C}$; Ti = 10 ms; Fs = 1 MHz;

Light source : tungsten filament lamp (2854 K) + IR cut-off filter (Schott KG1 + BG38).

Typical operating conditions; internal clock mode (See table IV).

First and last pixels, as well as dummy elements are excluded from measurement.

Table V - Electrooptical Performance

_		Value			Unit	Remark
Parameter	Symbol	Min.	Тур.	Мах.	Utilit	Heitialk
Saturation Output Voltage	VSAT	1.3	2.0	3.5	٧	(6) (8)
Saturation Exposure	ESAT	-	0.45	-	μJ/cm ²	(7)
Responsivity	R	3.0	4.5	-	V/µJ/cm²	See Fig. 3
Temporal Noise in Darkness		-	350	-	μV(rms)	-
Dynamic Range (relative to rms noise)	DR	3000	6000	46	-	•
Average Dark Signal	V _{DS}	-	0.5	8	mV	(6)
Dark Signal Non-Uniformity	DSNU		0.5	8	mV	-
Amplitude of Signal Defects in Darkness	-	-	-	80	mV	-
Photo Response Non- Uniformity: - Single Defects Excluded - Peak-to-peak	PRNU	-	±5	± 15	% Vos	V _{OS} =1volt
Contrast Transfer Function at FN (50 p/mm)	CTF	-	60	-	%	See Fig. 4

Power Supply voltage (V) $V_{DD} = V_{H}$

Figure 2 - Max. data output rate vs. supply voltage (Typical curves)

Figure 3 - Typical spectral response

ELECTROOPTICAL PERFORMANCE WITHOUT INFRARED CUT-OFF FILTERING

The TH 7803A(Z)'s special semiconductor process enables II to exploit the silicon's high near infrared sensitivity while maintaining good imaging performance in terms of response uniformity and resolution. Typical changes in performance with and without IR filtering are summarized below.

	With IR cut-off Filter	No IR cut-off Filter
Average video signal due to a given scene illumination	Vos	V _{OS} x 6
PRNU (Single Defects Excluded)	±5%	±5%
CTF at Nyquist frequency	60 %	50 %

Normalized Spatial Frequency (F/FN)

Figure 4 - CTF Typical curves (2854K source)

⁽⁶⁾ Value measured with respect to signal zero reference level.

⁽⁷⁾ For $T_i = 10$ ms, the corresponding illumination is 45 μ W/cm²

⁽⁸⁾ Conversion factor i.e. video output signal / readout charge is typically 1.6 μV/e⁻

OUTLINE DRAWING

30.1 - 32.6

29

4

24

X = 6.7

13

14.2

12 207803 10

15

Note (i) ⊄ (ii) 1

ima

equi

Y = 7.75

AA CROSS-SECTION

PIN DETAIL

- ① Window
- 2 Photosensitive area
- ③ Optical distance between external face of window and photosensitive area
- Pixel n°1 (first useful pixel in the video line defined by its X,Y,Z coordinates)
- (5) Index (notch or dot)

Dimensions in mm

ORDERING CODES

Product markings are detailed in selection guide DTE-120 The ordering code for standard product is

TH 7803 ACD Z

C : Ceramic substrate

D: Temperature range: - 25°C to + 70°C (other ranges may be available)

Z: Special Near Infra Red optimized substrate

THISTA

Linear CCD* Image Sensor

1728 pixels
With Antiblooming

- Pixel size : 13 μm x 13 μm (13 μm pitch)
- Simple operation :
 - two drive clocks
 - Internal sample-and-hold available
 - Dark reference incorporated
- Peak-to-peak output: 2 volts
- High sensitivity, dynamic range and resolution over a wide spectral range: from blue (400 nm) up to Near Infrared (1100 nm), thanks to special semi-conductor process
- Low dark signal
- Dynamic range: 6000:1 (typ.)
- Choice of operating modes for improved flexibility
- 24-pin DIL package
- Similar to TH 7801A except for antiblooming function

* Charge Coupled Device

PIN IDENTIFICATION

Pin no	Symbol	Designation
1	Ф _В EXT	External Reset Clock
4	V_{H}	Internal Logic Supply Voltage
5-12-24	V _{SS}	Substrate Voltage (Ground)
6	ADD	Addition of Odd and Even Pixels (DC Bias)
7-8-9	TP3 TP2-TP1	Test Points
10	VT	Shift Register DC Bias
11	V _{ST}	Photosensitive Zone DC Bias
13	ΦP	Transfer Clock
14	Φ _T	Shift Register Transport Clock
15	VA	Blooming Control DC Bias
16	V _{GS}	Output Gate DC Bias
17	INH PR	Internal Reset Clock Inhibiting Input (DC Bias)
21	Vos	Video Output Signal
22	V _{DD}	Output Amplifier Drain Supply
23	INH Ф ECH	Internal Sampling Clock Inhibiting Input (DC Bias)
2 3 18 19 20	NC I	No Connected (Do not ground)

NOTE: To simplify sensor operation a drive board has been developed and may be purchased from Thomson-CSF (ref. TH 7931B1). This board provides all the necessary electronics: DC supplies, driving clocks and video output buffer

This data sheet cannot be considered to be a contractual specification. The information given herein may be modified without notice due to product improvement or further development. Consult Thomson CSI (Electron Tube division) before making use of this information for equipment design

ABSOLUTE MAXIMUM RATINGS

Storage temperature Operating temperature Maximum voltages:

- Pins: 1, 4, 6, 7, 8, 9, 10, 14, 16, 17, 22, 23

- Pins: 11, 13 ... - Pins: 5, 12, 24

-55 °C to +150 °C -40 °C to +70 °C

-0.3 V to + 18 V

-0.3 V to + 16 V

OPERATING CONDITIONS (T = 25 °C)

Table I - DC Characteristics

	Complete		Unit			
Paramutur	Symbol	Min. Typ.		Max.	GHH	
Internal Logic Supply Voltage	VH	13.5	14	14.5	٧	
Shift Register and Output Gate DC Bias	V _T , V _{GS}	6	6.4	6.8	٧	
Photosensitive Zone DC Bias	V _{ST}	5.5	V _T	7	٧	
Output Amplifier Drain Supply	V _{DD}	13.5	14	14.5	٧	
Substrate Voltage	V _{SS}	0.0	0.0	-	٧	
Test Point 1	TP1	-	V _{DD}	- [V	
Tests Points 2 and 3	TP2,TP3		V _{SS}	-	٧	
Blooming Control DC Bias	V _A		h AB	5.4V AB:3V	(3)	

Table II - Drive Clock Characteristics (See timing diagram - fig.1)

Parameter	Symbol	Logic	Min	Value Typ Max	Unit
Transfer Clock (1)	Фр	High	12	12.5 13	V
Register Trans- port Clock (1)	Ф 1				
External Reset Clock (1) (2)	Φ REXT		i 0.0 !	04 06	V
Register Clock Capacitance	СФТ	<u> </u>		650 850	pF
Transfer Clock Capacitance	Сфр	,	<u> </u>	150 200	pF

- (1) Transients under 0.0 V in the clock pulses will lead the charge injection, causing a localized increase in the dark signal. If such spurious negative transients are present, they can be suppressed by inserting a serial resistor of appropriate value (typically 20 to 100 Ω) in the corresponding driver output.
- (2) In external reset configuration (Φ REXT)
- (3) Typical : Exact value to be adjusted depending on device and $V_{\mbox{\scriptsize OS}}$ max desired

Table III - Static and Dynamic Electrical Characteristics

5	Sumbol	Symbol			Unit	Remark
Paramoter	Зуппон	Min	Тур	Max		
DC Ouput Level	V _{HE1}	5	8	1 f	V	(6)
Ouput Impedance	Z _s		500		Ω	(6)
Single-stage Transfer Efficiency		99.992	99 998		. · ·/u	$\vec{V}_{OS} = tV(4)$
Max Data Ouptut Frequency	Fs max.	1.0	2.0		MHz	(5) See fig 2
Input Current on Pins : 7, 8, 9, 10, 11, 13, 14, 16	l _e		-	2	μΑ	Ve = 15 V All other pins : CV
Input Current on Mode Selection Pins (VDD=VH=15V)	Φ REXT INHΦ _{ECH} ADD	~	-	0.2	mA	Ve = 15 V
	INH Φ _R	- 0.2	-	-	mA	Ve = 0V
Average Current Sink on Φ _T Clock	ΙΦΤ		1.8	-	n1 A	trise = 50ns Fs = 2 MHz
Peak Current Sink on ® Clock	(I Φ Τ) _p	-	240	-	mA	t _{rise} = 50 ns
Peak Current Sink on Φp Clock	(IΦP) _p		70		mA	t _{rise} = 50 ns
Internal Logic Supply Current	I _H	-	3.5	5.0	mA	
Output Amplifier Supply Current	I _{DD}		2.0	5.0	mA	
Static Power Dissipation	PD	-	100	150	mW	-

⁽⁴⁾ VOS = average video output voltage. Measurement excludes first and last pixels.

⁽⁵⁾ F s = $2F \Phi_T$. The minimum clock frequency is limited by the increase in dark signal.

⁽⁶⁾ Shorting the video output ■ V_{SS} or V_{DD}, even temporarily, can permanently damage the output amplifier

Figure 1a - Standard operating configuration (all internal clocks used)

Figure 1b - Operating configuration with external reset $(\Phi_{R,E,X1})$ and / or external sample and hold

Figure 1 - Timing diagram

OPERATING MODES

COMPLEMENTARY MODE CONTROL SIGNALS

- ADD Pixel pairing control (allows analog addition of odd and even pixels resulting in video signal corresponding to 864 pixels of dimensions 26 µm x 13 µm with 26 µm center-to-center spacing).
- INH $\Phi_{\pmb{R}}$:Internal reset clock $\Phi_{\pmb{R}}$ inhibited and replaced by an external reset clock applied on the $\Phi_{\pmb{R}\, T\, X\, T}$ input.
- INH Φ_{ECH^*} : Internal sample-and-hold clock Φ_{ECH} inhibited. An external sample-and-hold circuit may then be substituted for the internal circuit.

The last two modes can be used to derive the utmost performance from TH 7811(Z) or to add pixels in groups of 3 or more.

Table IV - Selection of Operating Modes

Pin	1	6	17	23
Operating mode	ФВEXT	ADD	INH ФR	INH Ф ECH
Normal mode : All clocks internal	NC or VSS	NC or VSS	NC or	NC or
Complementary modes: Un-sampled video output signal & internal reset (NC or	NC or VSS	NC or V _{DD}	V _{DD}
Un sampled video output signal & external reset (Ф REXT	NC or VSS	Vss	VDD
Pixel pairing	NC or VSS	. V _{DD}	NC or VDD	NC or VSS

NC = not connected

Option on specific request Please consult Thomson-CSF

ELECTROOPTICAL PERFORMANCE

General measurement conditions:

 $T_D = 25 \,^{\circ}\text{C}$; Ti = 10 ms; Fs = 1 MHz;

Light source: tungsten filament lamp (2854 K) + IR cut-off filter (Schott KG1 + BG38).

Typical operating conditions; internal clock mode (See table IV).

First and last pixels, as well as dummy elements are excluded from measurement.

Table V - Electrooptical Performance

D	0 1	Value			4.1		
Paramoter	Symbol		Тур	Max.	Unit	Remark	
Saturation Output Voltage	VSAT	13	20	3 5	٧	V _A =3V (7)(9)	
Saturation Exposure	ESAT	-	0.33		μJ/cm ²	V _A 3V (8)	
Responsivity	R	4	6		V/µJ/cm²	See Fig. 3	
Temporal Noise in Darkness			350		μV(rms)		
Dynamic Range (relative to rms noise)	DR	3000	6000				
Average Dark Signal	VDS	-	0.5	8	mV	(7)	
Dark Signal Non-Uniformity	DSNU	-	0.5	8	mV		
Amplitude of Signal Defects in Darkness			. "	80	mV		
Photo Response Non- Uniformity - Single Defects Excluded - Peak to peak	PRNU		<u>†</u> 5	- ± 15	% Ÿos	V _{OS} 1volt	
Contrast Transfer Function at FN (38 Tp/mm)	CTF		60		%	See Fig. 4	

Figure 2 Max data output rate vs. supply voltage (Typical curves)

Figure 3 - Typical spectral response

ELECTROOPTICAL PERFORMANCE WITHOUT INFRARED CUT-OFF FILTERING

The TH 7811(Z)'s special semiconductor process enables it to exploit the silicon's high near infrared sensitivity while maintaining good imaging performance in terms of response uniformity and resolution. Typical changes in performance with and without IR filtering are summarized below.

	With IR cut-off Filter	No 18 cut off Filter
Average video signal due to a given scene illumination	Vos	V _{OS} x 6
PRNU (Single Defects Excluded)	±5%	±5%
CTF at Nyquist frequency	60 %	50 %

Figure 4 - CTF Typical curves (2854K source)

⁽⁷⁾ Value measured with respect to signal zero reference level (8) for $T_{\rm r}$ = 10 ms, the corresponding illumination is 33 μW cm²

⁽⁹⁾ Conversion factor (e. video output signal *reacout charge is typically 1.4 μVe

Blooming Control

Blooming control on the TH 7811(Z) is achieved by associating to each element a MOS transistor controlled by the external V_A DC bias.

The voltage under the photodiodes increases with the quantity of charge they and the associated MOS capacitors store.

At a threshold value, determined by the applied V_A voltage, the MOS transistor is switched on and thereby sweeps away all excess charges. This greatly reduces pollution of neighboring photosites caused by sensor overillumination.

Antiblooming Adjustment

- a) Apply + 3V on V_A this makes antiblooming inoperative.
- b) Increase the illumination level till an exposure of 5 x E_{SAT} is reached.
- c) Increase the V_A DC bias to a value giving satisfactory blooming reduction.

Activation of the antiblooming control decreases the photodiode storage capacity and consequently the maximum signal at the output.

A good compromise can be found with $(V_{OS})_{max} = 2V$ (about 0.8 V_{SAT} without antiblooming), in which case the V_A value will be 5.4V typically (see fig. 5).

Blooming Efficiency

Fig. 6 shows the TH 7811(Z)'s antiblooming efficiency, evaluated in terms of the diffusion of ■ 10-pixel diameter dot projected on the array with overexposures respectively of :

- -1 x ESAT
- -5 x ESAT
- 100 x ESAT

At 5 x E_{SAT}, no diffusion occurs

At 100 x E_{SAT}, only limited diffusion occurs (between 5 and 10 pixels beyond the edge of the original light spot).

Use of ■ glass window with an antireflective coating on both faces will considerably increase antiblooming efficiency and is strongly recommended.

The characteristics of this coating will depend on the application - please consult Thomson-CSF on this point.

Figure 5: Vos MAX vs VA Bias

Figure 6: Antiblooming Efficiency
Conditions: V_A = 5.4V; Glass Window removed
(Vos)_{max} = 2V

OUTLINE DRAWING

AA CROSS-SECTION

30.1 32.6 29 13 14.2 15 14.2 15 14.2 15 14.2 15

PIN DETAIL

- (1) Window
- (2) Photosensitive area
- (3) Optical distance between external face of window and photosensitive area
- (4) Pixel n°1 (first useful pixel in the video line defined by its X,Y,Z coordinates)
- (5) Index (notch or dot)

Dimensions in mm

ORDERING CODES

Product markings are detailed in selection guide DTE-120 The ordering code for standard product is

TH 7811 CD Z

C : Ceramic substrate

D: Temperature range: - 25°C to + 70°C (other ranges may be available)

Z : Special Near Infra Red optimized substrate

Linear CCD* Image Sensor

1728 pixels

- Pixel size : 13 μm x 39 μm (13 μm pitch)
- Especially high sensitivity, due to the threefold enlarged aperture width
- Simple operation :
 - three drive clocks
 - Internal sample-and-hold with disabling option
 - Dark reference incorporated
- Peak-to-peak output : 2 voits
- High dynamic range and resolution over a wide spectral range: from blue (400 nm) up to Near Infrared (1100 nm), thanks to special semiconductor process
- Low dark signal
- Dynamic range: 6000:1 (typ.)
- 24-pin DIL package

TH 7831(Z) TH 7831(Z)

PIN IDENTIFICATION

Pin no.	Symbol	Designation
1	Φ _R EXT	External Reset Clock
4	VH	Internal Logic Supply Voltage
12-24	VSS	Substrate Voltage (Ground)
9	TP	Test Point
10	V _T	Shift Register DC Bias
11	VST	Photosensitive Zone DC Bias
13	ФР	Transfer Clock
14	ΦΤ	Shift Register Transport Clock
16	V_{GS}	Output Gate DC Bias
21	Vos	Video Output Signal
22	V _{DD}	Output Amplifier Drain Supply
23	INH Ф ECH	Internal Sampling Clock Inhibiting Input (DC Bias)
2-3-5-6-7- 8-15-17- 18-19-20	NC	No Connection (Do not ground)

^{*} Charge Coupled Device

NOTE: To simplify sensor operation a drive board has been developed and may be purchased from Thomson-CSF (ref. TH 7931C). This board provides all the necessary electronics: DC supplies, driving clocks and video output buffer.

This data sheet cannot be considered to be a contractual specification. The information given herein may be modified without notice due to product improvement or further development. Consult Thomson-CSF (Electron Tube division) before making use of this information for equipment design.

ABSOLUTE MAXIMUM RATINGS

Storage temperature Operating temperature	-55 °C to +150 °C -40 °C to +70 °C
Maximum voltages:	
- Pins : 1, 4, 9, 10, 14, 16, 22, 23	- 0.3 V to + 18 V
- Pins: 11, 13	0.3 V to + 16 V
- Pins : 12, 24	

OPERATING CONDITIONS (T = 25 °C)

Table I - DC Characteristics

December	Symbol		Unit			
Parameter	Symbol	Min.	Тур.	Max.	Q1116	
Internal Logic Supply Voltage	VH	13.5	14	14.5	٧	
Shift Register and Output Gate DC Bias	V _T , V _{GS}	6	6.4	6.8	٧	
Photosensitive Zone DC Bias	V _{ST}	5.5	V _T	7	V	
Output Amplifier Drain Supply	V _{DD}	13.5	14	14.5	٧	
Substrate Voltage	V _{SS}	0.0	0.0	-	٧	
Test Point	TP	-	V_{DD}	-	V	

Drive Clock Characteristics Table II -(See timing diagram - fig.1)

Parameter	Symbol	Logic	Value			Unit
T GIGIFIG GT	Cymoon	Logio	Min.	Тур.	Max	
Transfer Clock (1) Register Transport Clock (1)	Фр	High	12	12.5	13	٧
External Reset Clock (1)	Φ REXT	Low	0.0	0.4	0.6	٧
Register Clock Capacitance	СФТ		-	650	850	ρF
Transfer Clock Capacitance	СФр		-	150	200	pF

(1) Transients under 0.0 V in the clock pulses will lead to charge injection, causing a localized increase in the dark signal. If such spurious negative transients are present, they can be suppressed by inserting a serial resistor of appropriate value (typically 20 to 100 Ω) in the corresponding driver output.

Table III - Static and Dynamic Electrical Characteristics

Parameter	Symbol	Value			Unit	Remark	
Parameter	Symbol	Min.	Тур.	Max.			
DC Ouput Level	V _{REF}	6	8	11	٧	(5)	
Ouput Impedance	Z _s	-	500		Ω	(5)	
Single-stage Transfer Efficiency	-	99.992	99.998	-	%	V _{OS} = 1V (3)	
Max. Data Ouplut Frequency	Fs max.	1.0	2.0	-	MHz	(4) See fig. 2	
Input Current on Pins : 9, 10, 11, 13, 14, 16	le	-	-	2	μА	Ve = 15 V All other pins : 0V	
Input Current on Mode Selection Pins (VDD=VH=15V)	Φ REXT INH ΦECH	_	-	0.2	mA	Ve = 15 V	
Average Current Sink on Φ _T Clock	ТФТ		1.8	-	mA	t _{rise} = 50ns Fs = 2 MHz	
Peak Current Sink on Φ _T Clock	(Φ _T) _p	-	240		mA	t _{rise} = 50 ns	
Peak Current Sink on Φ _P Clock	(IΦp) _p	-	70	*	mA	t _{rise} = 50 ns	
Internal Logic Supply Current	IH.	-	3.5	5.0	mA	-	
Output Amplifier Supply Current	I _{DD}	-	2.0	5.0	mA	-	
Static Power Dissipation	PD	-	100	150	mW	-	

⁽³⁾ V_{OS} = average video output voltage. Measurement excludes first and last pixels. (4) Fs = 2F ϕ_T . The minimum clock frequency is limited by the increase in dark signal.

⁽⁵⁾ Shorting the video output to V_{SS} or V_{DD}, even temporarily, can permanently damage the ouput amplifier

Figure 1a - Standard operating configuration (all internal clocks used)

Figure 1b - Operating configuration with external reset $(\Phi_{R \; EXT})$ and / or external sample-and-hold

Figure 1 - Timing diagram

VIDEO OUTPUT SAMPLING

The output amplifier incorporates m sample-and-hold circuit controlled by Φ_{ECH} sampling pulses at F_S data frequency. The resulting V_{OS} output signal is in the form of a staircase waveform, as shown on figure 1.

UN-SAMPLED OUTPUT OPTION *

The INH Φ_{ECH} control input is accessible to inhibit the internal sample-and-hold function. An external sample-and-hold may then be substituted for the internal circuit.

Table IV - Sampling Mode Selection

Mode	INHФ _{ECH} (pin 23) connection
Normal : Internal Sampling	NC or V _{SS}
Unsampled Output Option	V _{DD}

NC = Not Connected

Available on specific request only - devices are individually tested for this option.
 Please consult Thomson-CSF.

Réalisé par BMG System - Tél : 46.04.93.36

ELECTROOPTICAL PERFORMANCE

General measurement conditions:

 $T_p = 25 \,^{\circ}\text{C}$; Ti = 10 ms; Fs = 1 MHz;

Light source : tungsten filament lamp (2854 K) + IR cut-off filter (Schott KG1 + BG38).

Typical operating conditions; normal mode (internal sampling)

First and last pixels, as well as dummy elements are excluded from measurement.

Table V - Electrooptical Performance

		Value			Unit	Remark
Parameter	Symbol	Min.	Min. Typ. M		Onit	Pernark
Saturation Output Voltage	V _{SAT}	1,3	2.0	3.5	V	(6) (8)
Saturation Exposure	ESAT		0.11	-	μJ/cm ²	(7)
Responsivity	R	12	17	-	V/µJ/cm²	See Fig. 3
Temporal Noise in Darkness	-	-	350	-	μV(rms)	-
Dynamic Range (relative to rms noise)	DR	3000	6000	-		-
Average Dark Signal	V _{DS}		0.5	8	mV	(6)
Dark Signal Non-Uniformity	DSNU	-	0.5	8	mV	-
Amplitude of Signal Defects in Darkness	-		-	80	mV	
Photo Response Non- Uniformity: - Single Defects Excluded - Peak-to-peak	PRNU	-	±5	- ± 15	% Vos	V _{OS} =1voli
Contrast Transfer Function at FN (38 I p/mm)	CTF	-	60		%	See Fig. 4

The TH 7831(Z)'s special semiconductor process enables it to exploit the silicon's high near infrared sensitivity while maintaining good imaging performance in terms of response uniformity and resolution. Typical changes in performance with and without IR filtering are summarized below.

	With IR cut-off Filter	No IR cut-off Filter
Average video signal due to a given scene illumination	V _{QS}	V _{OS} x 6
PRNU (Single Defects Excluded)	±4%	±5%
CTF at Nyquist frequency	60 %	40 %

⁽⁷⁾ For $T_1 = 10$ ms, the corresponding illumination is 11 μ W/cm²

 $V_{DO} = V_H$

Figure 2 - Max. data output rate vs. supply voltage (Typical curves)

Figure 3 - Typical spectral response

Figure 4 - CTF Typical curves (2854K source)

DATA TEV 3650

⁽⁸⁾ Conversion factor i.e. video output signal / readout charge is typically 1.4 μV/e⁻

DRAWING OUTLINE

AA CROSS-SECTION

-30.1 - 32.6 24 14.2 Y = 7.75207803 10 12 X = 4.2

PIN DETAIL

- ① Window
- ② Photosensitive area
- 3 Optical distance between external face of window and photosensitive area
- 4 Pixel nº1 (first useful pixel in the video line defined by its X,Y,Z coordinates)
- (5) Index (notch or dot)

Dimensions in mm

ORDERING CODES

Product markings are detailed in selection guide DTE-120 The ordering code for standard product is

TH 7831 CD Z

C: Ceramic substrate

D: Temperature range: - 25°C to + 70°C

(other ranges may be ávailable)
Z: Special Near Infra Red optimized substrate

DETA SHEET AND THAT

APRIL 88

DRIVE MODULE

FOR TH 7805A(Z) LINEAR CCD IMAGE SENSOR

In order to improve operation at 10MHz on 50 Ω impedance, TH 7932 board is modified with respect to the data sheet (TEV 3675).

Modifications are following:

- suppression of C41, C42, C46, C47 capacitors,

- video output A : Pin 17

GND video output A : Pin 18

- video output B : Pin 15

GND video output B : Pin 16

Pin 11 and Pin 13 are no more used as video output.

TH 7932 (ex TH X1074)

Drive Module for TH 7805A(Z) Linear CCD* Image Sensor

- Provides both (odd and even) video signals**
- Inputs:
 - two external dc voltages
 - two external drive clocks
- Five outputs:
 - 50 Ω matched video signal with or without filtering
 - line synchronization signal
 - pixel synchronization signal
 - envelope signal for first 4 dark ref. pixels
 - external sample and hold pulses
- Two adjustments possible (internally on board or by external signals)
 - integration time
 - video signal readout time
- Eurocard format PCB with DIN41612 connector

The TH 7932 (ex TH X1074) drive module is designed to simplify the use of the TH 7805A(Z) linear CCD image sensor.

The board requires only two external dc voltages (+ 5 V and + 18 V) and provides all the necessary drive signals and dc biasing. In conjunction with the image sensor used, it delivers ■ low impedance video output signal, as well as the "line" and "pixel" synchronization signals.

The integration time is adjustable to control the exposure and thus adapt to scene illumination. The signal readout time can also be adjusted as a function of the integration time and the operating mode chosen.

Integration and readout times can be adjusted on the board or by external drive clocks.

This data sheet cannot be considered to be a contractual specification. The information given herein may be modified without notice due to product improvement or further development. Consult Thomson-CSF (Electron Tube Division) before making use of this information for equipment design.

^{*} Charge-Coupled Device.

^{**} Does not include optics or power supply.

DESCRIPTION

The TH 7932 comes as a 100 mm \times 160 mm fitted printed circuit board. The schematic diagram is given in Figure 6.

An oscillator Z4 (74S124) or an external clock with TTL output controls the readout output transfer phase ϕ_T as well as the synchronization of the internal phase ϕ_P with ϕ_T . The frequency of the oscillator is four times that of the transfer clock ϕ_T and twice the readout frequency of the video line output. The frequency division is ensured

The integration time is defined by the rising edges from monostable Z1 (74HC123) or an external TTL signal.

POWER SUPPLIES

Only two external power supplies are required:

- Pin no. 31 : connects to \pm 5 V \pm 5 % / 250 mA.
- Pin no. 3: connects to + 18 V $^{+}_{-0.5}$ V / 150 mA.
- Pin no. 32: connects to the logic ground.
- Pin no. 1: connects to the analog ground.

INPUT SIGNALS

They comprise two external clocks:

- Pin no. 30: integration time command clock.
- Coaxial micro-connector: readout clock.

OUTPUT SIGNALS

The output signals are provided on:

- Pin no. 13: unfiltered video output (A channel)
- Pin no. 11 : unfiltered video output (B channel)
- Pin no. 17: filtered video output (A channel)
- Pin no. 15 : filtered video output (B channel)
- Pin no. 28: line sync. signal
- Pin no. 26: pixel sync. signal TTL logic (see figure 2)
- Pin no. 8: envelope signal of first 4 dark reference pixels in the line.

Figure 1 - Timing diagram of linear CCD drive signals

Figure 2 - Timing diagram of logic circuit command signals

Figure 3 - Video and sync. output signal displayed on digital oscilloscope

ADJUSTMENTS

Integration Time

For nominal value of $C_{10}+C_{11}=570\ nF$: The integration time (t_i) is adjustable from 6 ms to 60 ms by potentiometer P2.

This adjustment range can be altered by replacing capacitor $C_{10} + C_{11}$ with another capacitor C_x , the new integration times being given by the formula:

$$t_i = 1.1 (R_{11} + P2) C_x$$

where: ti is in ms

P2 in $k\Omega$; $R_{11} = 4.7 k\Omega$

 C_x is in μF .

Readout Time

For nominal $C_{14}=4.7\ pF$: The readout frequency (f_L) is adjustable between 10 MHz and 20 MHz by P1.

The readout time (t_L) in ms is the number of CCD shift register stages divided by the readout frequency in kHz.

TH 7805A(Z)

(1040 stages)

t_L min. 0.05 ms t_L max. 0.1 ms

The above readout times (min. and max.) may be modified by replacing capacitor C_{14} by a capacitor C_y , the new readout times being given by the formula:

TH 7805A(Z)
$$\begin{cases} t_L \text{ max.} = \frac{1040 \times C_y}{49.000}. \ 10^{-3} \\ \\ t_L \text{ min.} = \frac{1040 \times C_y}{98.000}. \ 10^{-3} \end{cases}$$

Remark : If the original values for $C_{10} + C_{11}$ and C_{14} have been changed, ensure that the readout time always remains shorter than the integration time.

CONFIGURATIONS

Several operating configurations are possible (see tables 2 & 3 and figure 5).

NB: The TH 7932 is delivered with the following jumper configuration:

Cv in pF; tL in ms.

— E3A	integration time controlled by the board.
— E5A and E7A	use of internal reset clock.
— E4B	internal sampling. sampled video output.

TYPICAL BIAS VALUES

The TH 7932 delivers all the necessary dc levels : $V_{DD} = 15 \, \text{V}$; $V_T = V_{GS} = 6.15 \, \text{V}$. These voltages ensure optimum operation irrespective of the sensor used and no adjustment of these values is necessary.

Table 1 - Pin-out of TH 7932 connector

	Designation	
31 3 32 1 30 13-11 17-15 26 28 8	+ 5 V + 18 V Logic ground Analog ground Integration time command input (or ext. integration frequency) Unfiltered video output (channel A - B) Filtered video output (channel A - B) Pixel sync. output Line sync. output Clamp pulse output	

Table 2 - TH 7932 operating modes

Function modified	Configur			
	Jumper Jumper in position A	Jumper in position B	Jumper E3	
Integration frequency	Internal	odinper in position B		
Clock	internal	External		
	Internal	External		
φ reset	Internal	LATERNAL	E1 and E2	
Internal sampling		External	E5 and E7	
nhibition	Normal mode internally sampled	Internal sampling		
Video output sampling		clock disabled	E4	
,	Sampled	Unsampled	E6 and E8	

Table 3 - Jumper selections for different operating modes

Operating mode	-				
	E3	E1 E2	E5 E7	E4	E6
All internal	A or B	AorB			E8
Internal sampling and	A ox D		A	A	A
external ϕR	A or B	A or B	В	A	A
Unsampled video putput internal φR	A or B	4 -			
	7018	AorB	A	В	В
Jnsampled video utput external pR	A or B	A or D			
		A or B	В	В	В

Figure 4 - Fitted printed circuit board

Figure 5 - Jumper and variable resistor locations

107932-4

Figure 6 - Circuit diagram