Methodology for Assessing the State of the **Practice for Domain X**

Spencer Smith McMaster University, Canada smiths@mcmaster.ca			
Jacques Carette McMaster University, Canada carette@mcmaster.ca			
Olu Owojaiye McMaster University, Canada owojaiyo@mcmaster.ca			
Peter Michalski McMaster University, Canada michap@mcmaster.ca			
Ao Dong McMaster University, Canada donga9@mcmaster.ca			
—— Abstract ————————————————————————————————————			
2012 ACM Subject Classification Author: Please fill in 1 or more \ccsdesc macro			
2012 New Gusjeet Gustinearies Harrier. Trease in in 1 of more (conduct matrix			
Keywords and phrases Author: Please fill in \keywords macro			
Contents			
1 Introduction 2			
2 Overview of Steps in Assessing Quality of the Domain Software 2			
3 Identify Candidate Software 2			
4 Domain Analysis			
5 Empirical Measures 3			
5.1 Raw Data			
5.2 Processed Data			
5.3.1 git-stats			
5.3.2 git-of-theseus			
5.3.3 hercules			

6 User Experiments

7 Analytic Hierarchy Process

4

5

2 Methodology for Assessing the State of the Practice for Domain X

8	Qua	lity Specific Measures	5
	8.1	Installability [owner —OO]	5
	8.2	Correctness [owner —OO]	5
	8.3	Verifiability/Testability [owner —OO]	5
	8.4	Validatability [owner —OO]	5
	8.5	Reliability [owner —OO]	5
	8.6	Robustness [owner —PM]	5
	8.7		5
	8.8	Usability [owner —JC]	5
	8.9	Maintainability [owner —PM]	5
	8.10		5
	8.11	Portability [owner —PM]	5
	8.12	Understandability [owner —JC]	5
	8.13	Interoperability [owner —AD]	5
	8.14	Visibility/Transparency [owner —AD]	5
	8.15	Reproducibility [owner —SS]	5
	8.16	Productivity [owner —AD]	5
	8.17	Sustainability [owner —SS]	5
	8.18	Completeness [owner —AD]	5
	8.19	Consistency [owner —AD]	5
	8.20	Modifiability [owner —JC]	5
			5
	8.22	Unambiguity [owner —SS]	5
	8.23	Verifiability [owner —SS]	5
	8.24	Abstract [owner —SS]	5
9	Usir	ng Data to Rank Family Members	5

1 Introduction

Purpose and scope of the document. [Needs to be filled in. Should reference the overall research proposal, and the "state of the practice" exercise in particular. —SS]

2 Overview of Steps in Assessing Quality of the Domain Software

- 1. Identify domain. (Provide criteria on a candidate domain.)
- 2.

3 Identify Candidate Software

- 1. Must be open source.
- 2. Must have GitHub repository.

4 Domain Analysis

Commonality analysis. Follow as for mesh generator (likely with less detail). Commonality analysis document Steps:

- 1. Introduction
- 2. Overview of Domain

Smith et al. 3

- 3. Add Commonalities Split into simulation, input, output, and nonfunctional requirements
- 4. Add Variabilites Split into simulation, input, output, system constraints, and nonfunctional requirements
- **5.** Add Parameters of Variation Split into simulation, input, output, system constraints, and nonfunctional requirements
- **6.** Add Terminology, Definitions, Acronyms

Commonality analysis for Lattice Boltzmann Solvers can be found here.

5 Empirical Measures

5.1 Raw Data

Measures that can be extracted from on-line repos.

[Still at brainstorm stage. —AD]

- number of contributors
- number of watches
- number of stars
- number of forks
- number of clones
- number of commits
- number of total/code/document files
- lines of total/logical/comment code
- lines/pages of documents (can pdf be extracted?)
- number of total/open/closed/merged pull requests
- number of total/open/closed issues
- number of total/open/closed issues with assignees

5.2 Processed Data

Metrics that can be calculated from the raw data.

[Still at brainstorm stage. —AD]

- percentage of total/open/closed issues with assignees Visibility/Transparency
- lines of new code produced per person-day Productivity
- lines/pages of new documents produced per person-day Productivity
- number of issues closed per person-day Productivity
- percentage of comment lines in the code maintainability [Not Ao's qualities —AD]

5.3 Tool Tests

[This section is currently a note of unorganized contents. Most parts will be removed or relocated. —AD]

[This citation needs to be deleted later. It's here because my compiler doesn't work with 0 citations —AD] Emms [2019]

Most tests were done targeting to the repo of 3D Slicer GitHub repo

5.3.1 git-stats

GitHub repo

Test results: http://git-stats-slicer.ao9.io/ the results are output as webpages, so I hosted for you to check. Data can be downloaded as spreadsheets.

4 Methodology for Assessing the State of the Practice for Domain X

5.3.2 git-of-theseus

GitHub repo

Test results: It took about 100 minutes for one repo on a 8 core 16G ram Linux machine. It only outputs graphs.

5.3.3 hercules

GitHub repo

Test results: this one seems to be promising, but the installation is complicated with various errors.

5.3.4 git-repo-analysis

GitHub repo

5.3.5 HubListener

GitHub repo

The data that HubListener can extract.

Raw:

- Number of Files
- Number of Lines
- Number of Logical Lines
- Number of Comments

Cyclomatic: Intro

Cyclomatic Complexity

Halstead: Intro

- Halstead Effort
- Halstead Bugs
- Halstead Length
- Halstead Difficulty
- Halstead Time
- Halstead Vocabulary
- Halstead Volume

Test results: HubListener works well on the repo of itself, but it did not work well on some other repos.

5.3.6 gitinspector

GitHub repo

Test results: it doesn't work well. Instead of creating output results, it prints the results directly in the console.

6 User Experiments

Describe experiments with users to assess usability, performance etc.

Smith et al. 5

7 Analytic Hierarchy Process

Describe process. Domain expert review.

```
8 Quality Specific Measures
```

- 8.1 Installability [owner 00]
- 8.2 Correctness [owner —OO]
- 8.3 Verifiability/Testability [owner —00]
- 8.4 Validatability [owner —00]
- 8.5 Reliability [owner —OO]
- 8.6 Robustness [owner —PM]
- 8.7 Performance [owner —PM]
- 8.8 Usability [owner —JC]
- 8.9 Maintainability [owner —PM]
- 8.10 Reusability [owner —PM]
- 8.11 Portability [owner —PM]
- 8.12 Understandability [owner —JC]
- 8.13 Interoperability [owner —AD]
- 8.14 Visibility/Transparency [owner —AD]
- 8.15 Reproducibility [owner —SS]
- 8.16 Productivity [owner —AD]
- 8.17 Sustainability [owner —SS]
- 8.18 Completeness [owner —AD]
- 8.19 Consistency [owner —AD]
- 8.20 Modifiability [owner —JC]
- 8.21 Traceability [owner —JC]
- 8.22 Unambiguity [owner —SS]
- 8.23 Verifiability [owner —SS]
- 8.24 Abstract [owner —SS]

9 Using Data to Rank Family Members

Describe AHP process (or similar).

6 REFERENCES

References

Steve Emms. 16 best free linux medical imaging software. https://www.linuxlinks.com/medicalimaging/, 2019. [Online; accessed 02-February-2020].