Computational Math Project

Illinois Institute of Technology

Miles Bakenhus Ahmed Lodhika Gunjan Sharma Quinn Stratton Jan-Eric Sulzbach

November 7, 2018

Contents

0.0	troduction	1
0.1	heory	1

0.0 Introduction

0.1 Theory

Theorem 0.1.1. If A is a tridiagonal matrix. Then R in the the product A = QR is a upper triangular matrix with non zero entries only in the diagonal and the two super diagonals.

Pf. To prove the statement we will use the classical Gram-Schmidt method for the QR decomposition.

Step 1: we want to show that
$$q_j$$
 has the form $q_j = \begin{pmatrix} * \\ \vdots \\ * \\ 0 \\ \vdots \end{pmatrix} \leftarrow j + 1$ -th entry.

We prove this by induction:

Base step j = 1 the if we assume that $||a_1|| = 1$ then $q_1 = a_1$ thus

$$q_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ 0 \\ \vdots \end{pmatrix}$$

Induction step Assume that the statement holds for j-1. Then

$$v_j = a_j - \sum_{k=1}^{j-1} (q_k^* a_j) q_k$$
 and $q_j = v_j / ||v||_j$

and by using the form of q_{j-1} we obtain

$$q_{j} = \begin{pmatrix} 0 \\ \vdots \\ a_{j-1,j} \\ a_{jj} \\ a_{j+1,j} \\ 0 \\ \vdots \end{pmatrix} - \sum_{k=1}^{j-1} \begin{pmatrix} * \\ \vdots \\ \vdots \\ * \\ 0 \\ \vdots \\ \vdots \end{pmatrix} \leftarrow k + 1 \text{-th entry} = \begin{pmatrix} * \\ \vdots \\ \vdots \\ * \\ 0 \\ \vdots \\ \vdots \end{pmatrix} \leftarrow j + 1 \text{-th entry}$$

Step 2: Compute r_{ij} in the CGS method

For j = 1 to n and for i = 1 to j - 1: $r_{ij} = q_i^* a_j$. Then by step 1 we obtain that $r_{ij} = 0$ if $i \le j - 3$ since then by the form of the vectors q_{j-3} and a_j

$$0 = \begin{pmatrix} * \\ \vdots \\ * \\ 0 \\ 0 \\ 0 \\ 0 \\ * \\ * \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$0 \\ * \\ * \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

The above argument holds for all $i \leq j-3$.

Now we want to generalize the above ideas to the case where A still has only three non-zero bands. But now, the lower band has the distance k-1 from the diagonal and the upper band has the distance l-1 from the diagonal.

Consider the following example for A:

Figure 1: k = 200 and l = 100

Theorem 0.1.2 (General case). The upper triangular matrix R in the QR decomposition of A has a k+l-band structure.

Pf. From the classical Gram Schmidt method we immediately see, that in the worst case, the first j+k entries are non zero. Therefore, the inner product in the computation of the entries r_{ij} is only zero if i < j - l - k + 2.

Example of a matrix close to the worst case, where the number of non-zero entries (nz) increases by order 50:

Figure 2: k = 131 and l = 101

A special case occurs when k = l. Then again R has only three non-zero band, i.e the diagonal, the band on the upper diagonal that has a distance k to the diagonal and the upper diagonal that has a distance 2k to the diagonal.

Again we have an example for this case:

Figure 3: k = l = 100