Say, can it run locally?

Hacker Role Sean Fish

Motivation

- Field Robotics
 - Aerial, surface, underwater vehicles
 - Not the strongest network connection
 - Lower bandwidth, high latency, intermittent
 - Sometimes not possible
- SayCan uses OpenAI models
 - Not useful without internet
 - Recent innovations in powerful local LLMs
 - I don't want to pay for OpenAI credits

Part 1: Run the Colab Demo

- Simulation environment
 - Robot arm
 - Blocks of various colors
 - Bowls of various colors
- LLM
 - From OpenAl
 - text-ada-001 by default
- Affordance Function
 - No RL affordance
 - CLIPort for actions
 - Object detection from ViLD
 - If found, 1
 - If not found, 0
 - If termination, .2

Part 1: Run the Colab Demo

- Problems on Colab
 - My free OpenAl Credits are expired
 - Even if they weren't, lots of API calls to score
 - OpenAl API has changed too
 - Dependencies have moved on
 - Colab Python version changed
 - Versions not specified
 - Ex: Jax API has changed

XKCD 2347

Note for scoring model, due to limitations of the GPT-3 api, each option # requires a separate call and can be expensive. Recommend iterating with ada.

Part 2: Run the Colab Demo (locally)

- Move to a local notebook
 - Figure out the dependencies
 - CUDA driver incompatibilities
 - Whoops, tensorflow for Python 3.8 does not want CUDA 12
 - Luckily this is not a huge bottleneck
- Figure out how to run an LLM locally
 - Checked out llamafile start an OpenAI server with one command!
 - No logprobs...
 - Instead, let's use llama-cpp-python server with v1 API
 - Starting with TinyLLama 1.1B
 - Adjust OpenAl API calls for v1 API
 - llama.cpp server does not support lists of prompts!
 - Truncate output as calls require generating one token

The System

- OS: Fedora Silverblue 39
- CPU:
 - Intel Core i5-6600 (released 2015)
 - 4 Cores
 - RAM: 8GB
- GPU:
 - Nvidia GTX 1060 6GB (released 2016)
 - CUDA Cores **1280**
 - For reference, Nvidia Jetson AGX Orin has 2048
 - CUDA Version 12.4

Test Case

- Top 5 actions out of 53
- "To pick the blue block and put it on the red block, I should:"

Logprobs	Action
-16.40082025527954	done()
-39.61580505082384	<pre>robot.pick_and_place(red block, blue block)</pre>
-40.683303487021476	<pre>robot.pick_and_place(blue block, red block)</pre>
-42.85621754499152	<pre>robot.pick_and_place(green block, red block)</pre>
-43.30987396882847	<pre>robot.pick_and_place(red block, green block)</pre>

The Demo Task

• "put all the blocks in different corners"

```
**** Solution ****
objects = [yellow block, green block, red bowl, blue
block, red block]
# put all the blocks in different corners.
Step 0: robot.pick_and_place(blue block, top left corner)
Step 1: robot.pick_and_place(red block, top left corner)
Step 2: robot.pick_and_place(green block, top left
corner)
Initial state:
GPT-3 says next step: Pick the blue block and place it on
the top left corner.
```


The Demo Task (More Outputs)

It worked!

- What did I learn from running locally?
 - Don't run out of vRAM
 - It takes forever (unless logprob scores are cached)
 - But it does seem to work (somewhat)
- Limitations
 - Might be related to the LLM
 - The affordance functions are another big limiting factor
 - Overly rely on LLM to discriminate between actions
 - I did not work with the Socratic Model section

Part 3: Compare some local models

- What should we look at?
 - Time
 - From start to finish (without cache)
 - Performance
 - Number of blocks in corners
 - Number of blocks in unique corners
- Which models?
 - TinyLlama 1.1B
 - Rocket-3B
 - Phi-2

Local LLMs

TinyLlama 1.1B Q5_K_M

Parameters: 1.1B

Size: 0.78GB

Max RAM: 3.28GB

Datasets:

- starcoderdata
- SlimPajama
- oasst
- UltraChat
- UltraFeedback

Rocket-3B Q5_K_M

Parameters: 3B

Size: 1.99GB

Max RAM: 4.49GB

Datasets:

- A mix of datasets
- UltraFeedback
- JudgeLM

Phi-2 Q5_K_M

Parameters:

Size: 2.07GB

Max RAM: 4.57GB

Datasets:

- Textbooks
- Falcon RefinedWeb
- SlimPajama

Local LLMs

TinyLlama 1.1B Q5_K_M

Mean time/step: 9m38s

No. of steps: 4

No. blocks in corners: 3 No. corners w/ blocks: 2

Rocket-3B Q5_K_M

Mean time/step: 16m48s

No. of steps: 5

No. blocks in corners: 4

No. corners w/ blocks: 4

Phi-2 Q5_K_M

Mean time/step: 16m31s

No. of steps: 4

No. blocks in corners: 2

No. corners w/blocks: 1

Conclusions

- Can it run locally? Yes
- Does it run in a reasonable time frame? Not necessarily
 - This is an area to investigate for low resource systems
- Which model to use?
 - Apparently Rocket-3B but this is a limited experiment
- Get more vRAM
- GitHub
 - github.com/seantfish/CS8803DLM-HackSayCan
 - Don't leave your OpenAI key here
 - OpenAl finds out very fast

Resources and Citations

- TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF · Hugging Face
- TheBloke/rocket-3B-GGUF · Hugging Face
- TheBloke/phi-2-GGUF · Hugging Face
- Phi-2: The surprising power of small language models -Microsoft Research
- google-research/saycan at master · google-research/google-research (github.com)