MA 141 P Geometria analítica

Segundo Semestre de 2008

Prof. Marcos Jardim

Segunda Prova - 16/10/2008

Nome:	RA:

Questões	Pontos
Q 1	
Q 2	
Q 3	
Q 4	
Q 5	

Justifique cuidadosamente todas as suas respostas.

Questão 1 (2 pontos)

Considere os vetores

$$\vec{W} = \begin{bmatrix} 3 \\ 6 \\ 11 \end{bmatrix}$$
 $\vec{V} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ e $\vec{U} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

Encontre vetores $\vec{W_1}$ e $\vec{W_2}$, com $\vec{W_1}$ paralelo a \vec{V} e $\vec{W_2}$ ortogonal a \vec{U} , tais que $\vec{W} = \vec{W_1} + \vec{W_2}$.

Solução: \vec{W}_1 é paralelo a \vec{V} , portanto $\vec{W}_1 = \lambda \vec{V} = (\lambda, 0, 0)$. Defina $\vec{W}_2 = (a, b, c)$; como \vec{W}_2 é perpendicular a \vec{U} , temos que $\vec{W}_2 \cdot \vec{U} = a + b + c = 0$. Fazendo $\vec{W} = \vec{W}_1 + \vec{W}_2$, temos $(3, 6, 11) = (\lambda + a, b, c)$, portanto b = 6 e c = 11. Segue que a = -17 e $\lambda = 20$. Temos então que:

$$\vec{W}_1 = \begin{bmatrix} 20\\0\\0 \end{bmatrix} \quad \text{e} \quad \vec{W}_2 = \begin{bmatrix} -17\\6\\11 \end{bmatrix}.$$

Questão 2 (2 pontos)

Seja r a reta que passa pelos pontos A=(1,-1,4) e B=(0,1,2). Seja Π o plano que passa pela origem e é perpendicular à reta r.

- a) Escreva a equação geral de Π .
- b) Encontre a distância do ponto C=(7,4,3) ao plano $\Pi.$

Solução:

O vetor diretor da reta $r \notin \vec{v} = (0, 1, 2) - (1, -1, 4) = (-1, 2, -2)$; este também é o vetor normal ao plano Π , portanto a equação de Π é da forma

$$-x + 2y - 2z = d$$

Substituindo o ponto (0,0,0) na equação acima, concluímos que d=0, e a equação de Π é

$$-x + 2y - 2z = 0.$$

A distância de C a Π é calculada pela fórmula:

$$\operatorname{dist}(C,\Pi) = \frac{|(7,4,3) \cdot (-1,2,-2)||}{||(-1,2,-2)||} = \frac{5}{3}$$

Questão 3 (0,7 ponto cada item)

Seja $m \in \mathbb{R}$ um parâmetro, e considere as retas:

$$r_1: (x, y, z) = (1, 1, 2) + (t, 3t, 2t); t \in \mathbb{R} e$$

$$r_2: (x, y, z) = (1, 2, 1) + (mt, t, 2mt); t \in \mathbb{R}.$$

- a) Determine o valor de m tal que r_1 e r_2 sejam coplanares.
- b) Para o valor de m encontrado acima, determine a posição relativa entre r_1 e r_2 .
- c) Para o valor de m encontrado acima, escreva a equação do plano determinado por r_1 e r_2 .

Solução: Seja $P_1=(1,1,2)$ e $P_2=(1,2,1)$. As retas r_1 e r_2 serão coplanares se o determinante

$$\det \begin{pmatrix} 0 & 1 & -1 \\ 1 & 3 & 2 \\ m & 1 & 2m \end{pmatrix} = -1 + 3m$$

for nulo. (A primeira linha é o vetor $\vec{P_1P_2}$ e as outras são os vetores diretores de r_1 e r_2 , respectivamente). Segue que r_1 e r_2 são coplanares se e só se m=1/3.

Para m = 1/3, o vetor diretor da reta r_2 é (1/3, 1, 2/3), que é 1/3 vezes o vetor diretor de r_1 . Portanto estas duas retas são paralelas.

Neste caso, o vetor normal ao plano definido por r_1 e r_2 é dado por

$$\vec{n} = \vec{P_1 P_2} \times (1, 3, 2) = (-5, 1, 1),$$

e a equação deste plano será da forma -5x + y + z = d. Como o ponto P_1 pertence ao plano, temos d = -2.

Questão 4 (1 ponto cada item)

Seja \mathcal{C} o lugar geométrico dos pontos P em \mathbb{R}^2 tais que a distância de P ao foco F=(3,0) é igual a 3 vezes a distância de P à reta s: 3x-1=0.

- a) Encontre a equação da curva \mathcal{C} em coordenadas polares e cartesianas.
- b) Classifique-a (elipse, hipérbole ou parábola), encontre o seu centro, sua excentricidade e os seus focos.

Solução:

Sendo P = (x, y) um ponto qualquer e $P_0 = (x_0, y_0)$ um ponto da reta s, veja que:

$$dist(P, F) = \sqrt{(x-3)^2 + y^2}$$

$$dist(C, s) = \frac{|(x - x_0, y - y_0) \cdot (0, 3)|}{||(0, 3)||} = x - 1/3.$$

Fazendo dist $(P, F) = 3 \cdot \text{dist}(C, s)$, obtemos:

$$\sqrt{(x-3)^2 + y^2} = 3(x-1/3) = 3x-1 \implies x^2 - 6x + 9 + y^2 = 9x^2 - 6x + 1 \implies 8x^2 - y^2 = 8$$

que é a equação desejada em coordenadas cartesianas. Em coordenadas polares

$$8r^2\cos^2\theta - r^2\sin^2\theta = 8 \implies r^2(7r^2\cos^2\theta + 1) = 8.$$

Sobre o item (b): A curva é uma hipérbole, de excentricidade igual a 3, centro na origem e focos nos pontos (3,0) e (-3,0).

Questão 5 (1 ponto cada item)

Verdadeiro ou Falso?

- (i) A curva determinada por equações paramétricas $x=t^2\cos t$ e $y=t^2\sin t$ é idêntica à curva polar $r=\theta^2$.
- (ii) Os pontos (1,1,1), (1,2,3), (3,2,1) e (1,0,1) são coplanares.

Solução:

O item (a) é VERDADEIRO. Basta ver que $r^2 = x(t)^2 + y(t)^2 = t^4$, então $r = t^2$. Por outro lado, $\cos \theta = x/r = \cos t$, portanto $\theta = t$. Concluímos assim que $r = \theta^2$, como desejado.

O item (b) é FALSO. O determinante da matriz cujas linhas são os vetores \vec{AB} , \vec{AC} e \vec{AD} é não-nulo:

$$\det \left(\begin{array}{ccc} 0 & 1 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 2 \end{array} \right) = -4.$$