Asignatura: Física

<u>Titulación:</u> Ciencias Ambientales (1r curso)

Curso: 2008/2009

Profesor: Daniel Campos Moreno

Horarios:

Teoría: Grupo 1: DL, DM, DX, (17:00-18:00)

Grupo 2: DL, DM, DX, (18:00-19:00)

Aplicaciones y pasatiempos: Grupo 1: DJ (17:00-18:00)

Grupo 2: DJ (18:00-19:00)

Problemas: Grupos 1-4: DV (17:00-18:00)

Problemas de evaluación: Grupos 1-2: DV (18:00-19:00)

(las clases de problemas de evaluación serán cada 15 días, los días siguientes: 6 y 20 de marzo, 3 y 24 de abril, 15 y 29 de mayo)

Temario:

0. Introducción al pensamiento físico

- 0.1. Análisis dimensional
- 0.2. Leyes de escala

1. Dinámica y cinemática

- 1.1. Movimiento rectilíneo uniforme. 1ª Ley de Newton
- 1.2. Movimiento acelerado. 2ª y 3ª leyes de Newton
- 1.3. Fuerzas centrales. Movimiento circular y armónico
- 1.4. Sistemas no inerciales. Fuerza de Coriolis
- 1.5. Dinámica del sólido rígido. Momento de una fuerza. Rotación

2. Energía y trabajo

- 2.1. El teorema trabajo-energía
- 2.2. Energía potencial y energía mecánica
- 2.3. Fuerzas disipativas
- 2.4. Colisiones entre partículas
- 2.5. Aplicaciones: generación de energía a gran escala

3. Elasticidad

- 3.1. Esfuerzos de compresión y tracción
- 3.2. Esfuerzos de flexión
- 3.3. Esfuerzos tangenciales
- 3.4. Esfuerzos de torsión

4. Mecánica de fluidos

- 4.1. Medios continuos
- 4.2. Ley de Pascal. Principio de Arquímedes
- 4.3. Fuerzas de cohesión. Tensión superficial
- 4.4. Ecuación de continuidad del flujo
- 4.5. Ecuación de Bernouilli
- 4.6. Viscosidad de un fluido. Análisis dimensional
- 4.7. Ley de Poiseuille
- 4.8. Movimiento de objetos en un fluido real

5. Termodinámica

- 5.1. Principio cero de la termodinámica
- 5.2. Primer principio de la termodinámica
- 5.3. Gases ideales y reales
- 5.4. Segundo principio de la termodinámica
- 5.5. Máquinas térmicas y ciclos termodinámicos

- 5.6. Contaminación térmica
- 6. Transporte de materia
- 6.1. Random Walks
- 6.2. Procesos de difusión
- 6.3. Otros modos de transporte biológico
- 6.4. Transporte de contaminantes en la atmósfera
- 6.5. Transporte de contaminantes en medios líquidos
- 7. Oscilaciones y ondas
- 7.1. Oscilaciones
- 7.2. Propagación de ondas
- 7.3. Superposición e interferencias
- 7.4. Naturaleza ondulatoria de la luz
- 7.5. Ondas sonoras
- 7.6. Contaminación acústica

8. Electromagnetismo

- 8.1. El campo electrostático
- 8.2. Corriente continua
- 8.3. Inducción electromagnética
- 8.4. Corriente alterna
- 8.5. Contaminación electromagnética
- 8.6. Contaminación lumínica

Bibliografía básica:

- Jou, D, Llebot, J.E. y Pérez Garcia, C. Física para ciencias de la vida. Mc Graw-Hill.
- Kane, J.W. y Sternheim, M.M. Física. Ed. Reverté.
- Tipler, P.A. y Mosca, G. Física para la ciencia y la tecnología. Ed. Reverté.

Evaluación de la asignatura:

Evaluación continuada (30 %)	Problemas de evaluación	22 %
	Trabajo escrito	8 %
Examen (70 %)	Teoría	35 %
	Problemas	35 %

Comentarios:

- Habrá 12 problemas de evaluación, que se deberán ir entregando durante el curso. La fecha límite de entrega para cada problema vendrá especificada en cada uno de los enunciados, que irán apareciendo en el Campus Virtual a medida que avance el curso. Cada 2 problemas entregados habrá una clase de "problemas de evaluación" en la cual se comentarán las soluciones.
- El trabajo escrito debe ser un trabajo (entre 1200 y 2500 palabras, bibliografía incluida) de búsqueda de información y ampliación sobre alguno de los temas vistos en las clases de "Aplicaciones y Pasatiempos". La fecha límite de presentación del trabajo es el 29 de mayo.
- El examen final consistirá en 35 preguntas de teoría (tipo test), y entre 3 y 5 problemas de temática similar a los problemas resueltos en clase durante el curso.