Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Уфимский государственный нефтяной технический университет» Филиал ФГБОУ ВПО УГНТУ в г. Стерлитамаке

Администрация городского округа город Стерлитамак Республики Башкортостан

ОАО «Башкирская содовая компания»

ЗАО «Строительные материалы»

Посвящается Году охраны окружающей среды и 65-летию Уфимского государственного нефтяного технического университета

МАЛООТХОДНЫЕ, РЕСУРСОСБЕРЕГАЮЩИЕ ХИМИЧЕСКИЕ ТЕХНОЛОГИИ И ЭКОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ

Сборник материалов
Всероссийской научно-практической конференции с международным участием
21-22 ноября 2013 г.

УДК 661.124; 628.54; 67.08; 54.574

ББК 57

M-34

М-34 Малоотходные, ресурсосберегающие химические технологии и экологическая безопасность: Сборник материалов Всероссийской научнопрактической конференции с международным участием. – Стерлитамак: Типография «Фобос», 2013. – 384 с. ISBN 978-5-903334-67-4

Сборник научных статей включает в себя материалы Всероссийской научно-практической конференции с международным участием «Малоотходные, ресурсосберегающие химические технологии и экологическая безопасность», прошедшей в г. Стерлитамаке 21-23 ноября 2013 г.

Конференция посвящена Году охраны окружающей среды в России и 65летию Уфимского государственного нефтяного технического университета.

Издание предназначено для научных работников, преподавателей и студентов, а также всех, кто интересуется вопросами ресурсбережения и экологической безопасности.

Материалы публикуются в авторской редакции.

Авторы несут ответственность за достоверность материалов, изложенных в сборнике А.Н. Иванов, Г.Г. Тимербаев, А.А. Исламутдинова, Л.И. Калимуллин

Технология получения силикатов кальция

Филиал ФГБОУ ВПО «Уфимский государственный нефтяной технический университет» в г.Стерлитамаке

Широко известно, что на предприятиях ПО производству кальцинированной соды под сбор отходов производства выделяются земельные участки (шламонакопители) для хранения дистиллерной жидкости. Подобным образом предприятие ОАО «Башкирская содовая компания» в городе Стерлитамаке хранит свои отходы. Под шламонакопители выделяется территория, площадь которой превышает 5 млн. кв. метров. В связи с этим остро встаёт проблема её утилизации, так как площадь, отводимая под шламонакопители ограниченна. К тому же открытое хранение этих отходов угрожает окружающей флоре и фауне, так как оно расположено в 30 метрах от берегов реки Белой. Сокращение объёмов хранимых отходов производится путём сброса отстоявшегося раствора в бассейн реки Белой в паводковые периоды, а также за счёт самопроизвольного испарения воды. В результате этого образуются "Белые моря".

В качестве одного из методов утилизации отходов содового производства, нами предлагается принципиально новый и безопасный для окружающий среды способ утилизации дистиллерной жидкости. Данный способ предполагает получение различных структурных модификаций силиката кальция, в частности: аморфного силиката кальция, ксонотлита, тоберморита и волластонита в зависимости от условий проведения процесса.

В качестве основного способа получения данных соединений применяется взаимодействие хлористого кальция из дистиллерной жидкости с силикатом натрия из жидкого стекла [1, 2].

На основании проведённого литературного обзора и патентной проработки мы сделали вывод, что добавление определённых компонентов позволяет не только снизить требуемую температуру обжига, но и повлиять на структуру получаемого продукта. Диапазон значений содержания добавок на 5 г силиката кальция: $C = 0.2 \div 0.4$; $S = 0.3 \div 0.5$; $ZnO = 0.1 \div 0.3$; $P_2O_5 = 0.3 \div 0.5$; $NH_2CONH_2 = 0.3 \div 0.3$.

Для получения репрезентативных данных значения температур, при которых проводился обжиг в течении 2,5 часов, были взяты следующие значения: 800°C, 850°C, 900°C, 950°C и 1050°C.

По полученной матрице условий были приготовлены 16 образцов веществ. Для определения их состава, они были подвергнуты различным исследованиям. Результаты некоторых образцов представлены в таблице.

Из результатов исследований можно сделать следующие выводы:

1. При температуре обжига $850~^{0}$ С и выше происходит изменение микроструктуры силиката кальция.

- 2. Добавление гидроперита к силикату кальция значительно увеличивает твёрдость конечного продукта.
- 3. При добавлении в качестве компонентов угля, серы, оксида цинка и пентаоксида фосфора изменяется твёрдость и структура соединения твёрдость уменьшается, а микрокристаллы становятся более аморфными. Однако, при дальнейшем увеличении доли дополнительных компонентов в смеси, характеристики образцов возвращаются к исходным значениям.

Таблица1. Характеристика образцов

	T +	Tawinijai. Zapakie	7211112
Микрофотографии (увеличение в 640 раз)	Показатели при температуре 1050°C	Микрофотографии (увеличение в 640 раз)	Показатели при температуре 1050°C
	Дополнительные компоненты, г на 100 г СаSiO ₃ : NH ₂ CONH ₂ · H ₂ O ₂ – 0,3 Эмпирическая твёрдость: очень твёрдый		Дополнительны е компоненты отсутствуют Эмпирическая твёрдость: твёрдый
4	Дополнительные компоненты: $C-0,2$; $S-0,3$; $ZnO-0,1$; $P_2O_5-0,3$ Эмпирическая твёрдость: средней твёрдости		Дополнительны е компоненты: $C - 0,4$; $S - 0,5$; $ZnO - 0,3$; $P_2O_5 - 0,5$ Эмпирическая твёрдость: твёрдый

Литература

- 1. Иванов А.Н., Тимербаев Г.Г., Исламутдинова А.А., Калимуллин Л.И., Проблема утилизации дистиплерной жидкости. Международная научнопрактическая конференция с участием государств-участников СНГ «Технологические тенденции повышения промышленной экологической безопасности, охраны окружающей среды, рациональной и эффективной жизнедеятельности человека» Тезисы докладов. Минск: ГУ «БелИСА», 2013. С.35-38
- 2. Тимербаев Г.Г., Иванов А.Н., Исламутдинова А.А., Калимуллин Л.И. Технология утилизации дистиплерной жидкости. Актуальные вопросы науки и образования: тезисы Всероссийской молодежной научно-практической конференции (25-27 апреля 2013 г., г. Уфа)/отв. Ред. В.Ю.Гуськов. Уфа: РИЦ БашГУ, 2013 с.295-296

В.В. МИХАЙЛЕНКО, А.Е. КАПУСТИН Устранение загрязнения водных объектов фильтратом полигона твердых бытовых отходов	46
Д.Р. АБДУЛЛИН, Е.А. НИКОЛАЕВ, Н.С. ШУЛАЕВ Микрореакторы на основе роторно-дисковых смесителей	48
Е.М. АБУТАЛИПОВА, Д.Ф. СУЛЕЙМАНОВ, Н.С. ШУЛАЕВ Разработка энергосберегающей технологии производства ПВХ пленки с применением СВЧ-излучения	50
А. А. ШАТОВ, Р.Н. БАДЕРТДИНОВ Использование отходов соды для выпуска товарной продукции	52
Э.Х. КАРИМОВ, Л.З. КАСЬЯНОВА, Э.М. МОВСУМЗАДЕ, Р.Р. ДАМИНЕЕ Внедрение экзотермических реакций в процесс дегидрирования изоамилено изопрен	
И.И. АДИГАМОВА, Л.И. КАЛИМУЛЛИН, А.А. ИСЛАМУТДИНОВА Способ снижения доли остаточного мономера в полиэлектролите ВПК-402 дополимеризацией под воздействием излучения СВЧ-диапазон	64
Г.Д. НАДРШИНА, Л.И. КАЛИМУЛЛИН, А.А. ИСЛАМУТДИНОВА Получение диметилдиаллиламмонийхлорида двухстадийным алкилированием диметиламина и его полимеризация	66
А.Н. ИВАНОВ, Г.Г. ТИМЕРБАЕВ, А.А. ИСЛАМУТДИНОВА, Л.И. КАЛИМУЛЛИН Технология получения силикатов кальция	68
Г.Г. ТИМЕРБАЕВ, А.Н. ИВАНОВ, А.А. ИСЛАМУТДИНОВА, Л.И. КАЛИМУЛЛИН Синтез ингибитора кислотной коррозии	
на основе циклических азотсодержащих соединений	70
О.Ф. БУЛАТОВА, Ю.И. БУЛАТОВА Бактерии на страже чистоты и порядка	72
Д.А. ЛЕВЧЕНКО, А.Е. АРТЮХОВ Утилизация закиси азота при гранулировании аммиачной селитры	73
С.А. АХМЕТОВ, Р.Д. ЕНИКЕЕВ Ресурсо- и энергосберегающая технология нефтепереработки применительно к производству топлив для экологичных топливоуниверсаль двигателей	ных 74

Администрация городского округа город Стерлитамак Республики Башкортостан

ОАО «Башкирская содовая компания»

ЗАО «Строительные материалы»

Посвящается Году охраны окружающей среды и 65-летию Уфимского государственного нефтяного технического университета

МАЛООТХОДНЫЕ, РЕСУРСОСБЕРЕГАЮЩИЕ ХИМИЧЕСКИЕ ТЕХНОЛОГИИ И ЭКОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ

Сборник материалов
Всероссийской научно-практической конференции с международным участием

21-22 ноября 2013 г.

Формат 60 х 84/16. Усл. печ. л. 22,32. Уч.-изд. л. 28,08. Гарнитура «Таймс». Печать офсетная. Тираж 200. Заказ № 3490 Типография ИП Сергеев С.А. г. Салават, ул. Ленина, 5/11. Тел.: (3476) 35-31-02