立体几何

- - (A) $S_1 = S_2 = S_3$

(B) $S_1 = S_2 \perp S_3 \neq S_1$

(C) $S_1 = S_3 \perp S_3 \neq S_2$

- (D) $S_2 = S_3 \perp S_1 \neq S_3$
- 2. 如图, 正方体 $ABCD-A_1B_1C_1D_1$ 的棱长为 2, 动点 E,F 在棱 A_1B_1 上, 动点 P,Q 分别在棱 AD,CD 上, 若 EF=1, $A_1E=x$, DQ=y, DP=z (x,y,z大于零), 则四面体 P-EFQ 的体积
 - (A) 与 x, y, z 都有关
 - (B) 与 x 有关, 与 y, z 无关
 - (C)与y有关,与x,z无关
 - (D) 与 z 有关, 与 x,y 无关

- 3. 如图,在边长为 2 的正方体 $ABCD A_1B_1C_1D_1$ 中,E 为 BC 中点,点 P 在底面 ABCD 上移动,且满足 $B_1P \bot D_1E$,则线段 B_1P 的长度的最大值为 ()
 - $(A) \frac{4\sqrt{5}}{5}$
- (B) 2

- (C) $2\sqrt{2}$
- (D) 3

4. 如图,在棱长为 2 的正方体 $ABCD - A_1B_1C_1D_1$ 中,E 为 BC 中点,点 P 在线段 D_1E 上,点 P 到直线 CC_1 的距离的最小值为_____.

5. 如图,四面体 ABCD 的一条棱长为 x,其余棱长均为 1,记四面体 ABCD 体积为 F(x),则 F(x) 的单调区间是______; 最大值为______.

- 6. 如图,正方形 ABCD 和四边形 ACEF 所在的平面互相垂直, $CE\bot AC, EF /\!\!/ AC, AB = \sqrt{2}, CE = EF = 1.$
 - (1) 求证: AF // 平面BDE;
 - (2) 求证: *CF* 上平面 *BDE*;
 - (3) 求二面角 A BE D 的大小.

- 7. 如果,在四棱锥 P-ABCD 中,平面PAD 上平面ABCD,PA 上 PD,PA=PD,AB 上 AD=1,AD=2, $AC=CD=\sqrt{5}$.
 - (1) 求证: *PD*⊥平面*PAB*;
 - (2) 求直线 PB 与平面 PCD 所成角的正弦值;
 - (3) 在棱 PA 上是否存在点 M,使得 BM // 平面 PCD?若存在,求 $\frac{AM}{AP}$ 的值,若不存在,说明理由.

- 8. (2016・全国 III,19) 如图, 四棱锥 P-ABCD 中, $PA\perp$ 底面ABCD, $AD \not \mid BC$, AB=AD=AC=3, PA=BC=4, M 为线段 AD 上一点, AM=2MD, N 为 PC 的中点.
 - (1) 证明: MN // 平面PAB;
 - (2) 求直线 AN 与平面 PMN 所成角的正弦值.

- 9. (2013 新课标 I) 如图三棱柱 $ABC A_1B_1C_1$ 中,侧面 BB_1C_1C 为菱形, $AB \bot B_1C$.
 - (1) 证明 $AC = AB_1$;
 - (2) 若 $AC \perp AB_1$, $\angle CBB_1 = 60^\circ$, AB = BC, 求二面角 $A A_1B_1 C_1$ 的 余弦值

- 10. 如图,三棱柱 $ABC A_1B_1C_1$ 中,CA = CB, $AB = AA_1$, $\angle BAA_1 = 60^\circ$.
 - (1) 证明 *AB*⊥*A*₁*C*;
 - (2) 若平面ABC \bot 平面 AA_1B_1B , AB=CB=2, 求直线 A_1C 与平面 BB_1C_1C 所成角的正弦值.

- 11. (2012 理) 如图 1,在 $Rt\triangle ABC$ 中, $\angle C = 90^{\circ}$,BC = 3,AC = 6,D,E 分别是 AC,AB 上的点,且 $DE /\!\!/ BC$,DE = 2,将 $\triangle ADE$ 沿 DE 折起到 $\triangle A_1DE$ 的位置,使 $A_1C\bot CD$,如图 2.
 - (1) 求证: $A_1C \perp$ 平面BCDE;
 - (2) 若 M 是 A_1D 的中点,求 CM 与平面 A_1BE 所成角的大小;
 - (3) 线段 BC 上是否存在点 P,使平面 A_1DP 与平面 A_1BE 垂直?说明理由.

- 12. (2012 文) 如图 1,在 $Rt\triangle ABC$ 中, $\angle C=90^\circ$,D,E 分别为 AC,AB 的中点,点 F 为线段 CD 上的一点. 将 $\triangle ADE$ 沿 DE 折起到 $\triangle A_1DE$ 的位置,使 $A_1F\bot CD$,如图 2.
 - (1) 求证: *DE* // 平面*A*₁*CB*;
 - (2) 求证: *A*₁*F*⊥*BE*;
 - (3) 线段 A_1B 上是否存在点 Q,使得 $A_1C \perp$ 平面 DEQ? 说明理由.

- 13. 如图,在四棱锥 P-ABCD 中, $AB \not\parallel CD$, $AB \bot AD$,CD=2AB, $PAD \bot$ 底面ABCD, $PA \bot AD$,E和F 分别是 CD 和 PC 的中点,求证:
 - (1) *PA*⊥底面*ABCD*;
 - (2) BE // 平面PAD;
 - (3) 平面 BEF⊥平面PCD

- 14. 如图,在四棱锥 P-ABCD 中,PA上平面ABCD,底面 ABCD 是菱形,AB=2, $\angle BAD=60^{\circ}$.
 - (1) 求证: *BD*⊥平面*PAC*;
 - (2) 若 PA = AB, 求 PB 与 AC 所成角的余弦值;
 - (3) 当平面 PBC 与平面 PCD 垂直时,求 PA 的长.

