EMA 601/NE 602 Problem set #4 Due 12/15 at 11:59 pm on Canvas, in pdf format

Guidelines:

- Typed solutions are preferred, but you may scan your handwritten solutions as long as the writing is legible.
- Please compile your responses into a single pdf document.
- You are welcome to work together on the problems, but you must write your own responses and code.
- Please show your derivations or describe how you arrived at your responses.
- 1. (10 points) **Optical pumping** Atoms with J = 1 ground states are being excited to J' with a resonant and linearly polarized (π) light. Here, you can assume that the transitions are closed, meaning that atoms that have been excited can only decay back to the ground states.
 - (a) (2 points) Identify all allowed transitions $J \rightarrow J'$.
 - (b) (6 points) Draw the energy diagrams that include the magnetic sublevels (m_J) for every allowed transition $J \to J'$. Indicate on each diagram all absorption and spontaneous emission pathways, as well as the sublevel(s) that atoms will accumulate in due to optical pumping.
 - (c) (2 points) Evaluate for every allowed transition $J \rightarrow J'$ whether the optical pumping would increase or decrease absorption through the atoms.
- 2. (20 points) **Laser spectroscopy of caesium** (Cs) Cs-133 has a nuclear spin of I = 7/2. Saturated absorption spectroscopy of the $6^2S_{1/2}$ to $6^2P_{3/2}$ transition of Cs-133 vapor yielded the following spectrum. The relative positions of the saturation absorption peaks within each Doppler-broadened dip are also given below in MHz. For this problem, it may be useful to consult the Cs reference data posted under the "Handouts" page on Canvas.

A	0	a	0
В	100.7	b	75.8
C	201.5	c	151.5
D	226.5	d	176.5
Е	327.2	e	252.2
F	452.9	f	353.0

- (a) (5 points) Draw the energy diagram of the $6^2S_{1/2}$ to $6^2P_{3/2}$ transition of Cs-133, showing labeled hyperfine sub-levels and the allowed transitions between these sub-levels.
- (b) (5 points) Assign each peak in the saturated absorption spectrum to the appropriate transition or crossover resonance.
- (c) (5 points) Based on the hyperfine energy shift (derived in Lecture 13), justify the following interval rule for the hyperfine splittings: $\Delta E(F \to F + 1) = A_{n,l,j}F$. Estimate $A_{n,l,j}$ for $6^2S_{1/2}$ and $6^2P_{3/2}$ based on the relative peak positions.
- (d) (5 points) Estimate the temperature of the Cs vapor.