

Universidad Nacional del Litoral

Facultad de Ingeniería y Ciencias Hídricas

Estadística

Ingeniería en Informática

Ing. Susana Vanlesberg: Profesor Titular A.I.A. Juan Pablo Taulamet: Auxiliar de Primera

:: Anexo ::		
TABLAS ESTADÍSTICAS		
INFERE	NCIA	:: 2013 ::

Parámetro	Supuesto	Estimador	Distribución del estimador	Intervalo de confianza
μ	σ conocido	$\frac{-}{x}$	$\bar{x} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$	$\left(\bar{x} \pm Z_{\left(1-\frac{\alpha}{2}\right)} \frac{\sigma}{\sqrt{n}}\right)$
μ	σ desconocido, $n > 30$	$\frac{-}{x}$	$\bar{x} \sim N\left(\mu, \frac{S}{\sqrt{n}}\right)$	$\left(\frac{-}{x} \pm Z_{\left(1-\frac{\alpha}{2}\right)} \frac{S}{\sqrt{n}} \right)$
μ	σ desconocido, n < 30	_ x	$\frac{x-\mu}{\frac{S'}{\sqrt{n}}} = t_{(n-1)}$	$\left(\overline{x} \pm t_{\left(1-\frac{\alpha}{2}:n-1\right)} \frac{S'}{\sqrt{n}}\right)$
σ^2	Población normal	S^2	$\frac{n.S^2}{\sigma^2} = \chi^2_{(n-1)} \circ \frac{(n-1).S'^2}{\sigma^2} = \chi^2_{(n-1)}$	$\left(\begin{array}{ccc} \frac{n.S^2}{\chi^2_{\left(1-\frac{\alpha}{2}:n-1\right)}} & \leq & \sigma^2 & \leq & \frac{n.S^2}{\chi^2_{\left(\frac{\alpha}{2}:n-1\right)}} \end{array}\right)$
π	Población normal	p	$Z = \frac{p - \pi}{\sqrt{\frac{\pi(1 - \pi)}{n}}}$	$\left(p \pm Z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{\pi(1-\pi)}{n}}\right)$
$\mu_x - \mu_y$	$\sigma_{_{_{\it X}}},\sigma_{_{_{\it Y}}}$ conocidas	$\overline{x} - \overline{y}$	$\overline{x} - \overline{y} \sim N \left(\mu_x - \mu_y, \sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}} \right)$	$\left(\left(\overline{x} - \overline{y}\right) \pm Z_{\left(1 - \frac{\alpha}{2}\right)} \sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}\right)$
$\mu_x - \mu_y$	σ_x , σ_y desconocidas $n > 30$	$\overline{x} - \overline{y}$	$\overline{x} - \overline{y} \sim N \left(\mu_x - \mu_y, \sqrt{\frac{S_x^2}{n_x} + \frac{S_y^2}{n_y}} \right)$	$\left(\left(\overline{x}-\overline{y}\right) \pm Z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{S_x^2}{n_x}+\frac{S_y^2}{n_y}}\right)$

Tabla 6.1 – Estimadores, su distribución e intervalos derivados.

$\mu_x - \mu_y$	σ_x , σ_y desconocidas pero iguales $n < 30$	$\overline{x} - \overline{y}$	$ \frac{\bar{x} - \bar{y} - (\mu_x - \mu_y)}{Sw \cdot \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}} = t_{(n_x + n_y - 2)} $ $ con Sw = \sqrt{\frac{(n_x - 1) \cdot S'_x^2 + (n_y - 1) \cdot S'_y^2}{n_x + n_y - 2}} $ $ \delta con Sw = \sqrt{\frac{n_x \cdot S_x^2 + n_y \cdot S_y^2}{n_x + n_y - 2}} $	$\left(\left(\overline{x} - \overline{y}\right) \pm t_{\left(1 - \frac{\alpha}{2}\right)} \cdot S \cdot \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}\right)$
$\mu_x - \mu_y$	σ_x , σ_y desconocidas y distintas $n < 30$	$\overline{x} - \overline{y}$	$ \frac{\overline{x} - \overline{y} - (\mu_{x} - \mu_{y})}{\sqrt{\frac{S'_{x}^{2}}{n_{x}} + \frac{S'_{y}^{2}}{n_{y}}}} = t_{v} $ $ con v = \frac{\left(\frac{S'_{x}^{2}}{n_{x}} + \frac{S'_{y}^{2}}{n_{y}}\right)^{2}}{\left(\frac{S'_{x}^{2}}{n_{x}}\right)^{2} + \left(\frac{S'_{y}^{2}}{n_{y}}\right)^{2}} - 2 $ $ \frac{\left(\frac{S'_{x}^{2}}{n_{x}}\right)^{2} + \left(\frac{S'_{y}^{2}}{n_{y}}\right)^{2}}{n_{y} - 1}}{n_{y} - 1} $	$\left(\left(\overline{x} - \overline{y}\right) \pm t_{\left(1 - \frac{\alpha}{2}\right)} \cdot v \cdot \sqrt{\frac{S_x^2}{n_x} + \frac{S_y^2}{n_y}}\right)$
$\pi_1 - \pi_2$	Poblaciones normales	$p_{1} - p_{2}$	$p_1 - p_2 \sim N \left(\pi_1 - \pi_1; \sqrt{\frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2}} \right)$	$\left(\Delta p \pm Z_{\left(1-\frac{\alpha}{2}\right)} \left(I\right)\right)$ $\left(I\right) = \sqrt{\frac{\pi_1(1-\pi_1)}{n_1} + \frac{\pi_2(1-\pi_2)}{n_2}}$
$\frac{\sigma_x}{\sigma_y}$	Poblaciones normales	$\frac{S_x}{S_y}$	$F = \frac{\frac{S_x^2}{\sigma_x^2}}{\frac{S_y^2}{\sigma_y^2}}$	$ \left(\frac{S_x}{S_y}(I) \leq \frac{\sigma_x}{\sigma_y} \leq \frac{S_x}{S_y}(II)\right) (I) = \sqrt{\frac{1}{F_{\left(\frac{\alpha}{2}:n_x-1:n_y-1\right)}}} (II) = \sqrt{F_{\left(\frac{\alpha}{2}:n_x-1:n_y-1\right)}} $

Tabla 6.1 – Estimadores, su distribución e intervalos derivados.

Parámetro	Supuesto	Estimador	Distribución del estimador	Intervalo de confianza
α	Población Normal	а	$a \sim N \left(\alpha, \sqrt{\sigma^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2}\right)}\right)$	$\left(a \pm Z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\sigma^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})}\right)}\right)$
β	Población Normal	b	$b \sim N \left(\beta, \sqrt{\frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2}} \right)$	$\left(b \pm Z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{\sigma^2}{\sum_{i=1}^n \left(x_i - \overline{x}\right)^2}}\right)$

Varianza de la Predicción	Varianza del Pronóstico
$\sigma^{2}(\hat{Y}_{h}) = \sigma^{2}\left(\frac{1}{n} + \frac{(X_{h} - \overline{X})^{2}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}\right)$	$\sigma^{2}(Y_{i} - \hat{Y}_{h}) = \sigma^{2} \left(1 + \frac{1}{n} + \frac{(X_{h} - \overline{X})^{2}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}\right)$

Tabla 6.1 – Estimadores, su distribución e intervalos derivados.