Semantics and Types - Exam 2024

Mikkel Willén bmq419 Eksamensnummer: 7

April 3, 2024

Task 1

Task 1.1

a)

Lemma 2 Let p be such that all l_j declared in p have j < i, and suppose $[\![c]\!] @ p \leadsto_{i'}^i p'$ (by \mathcal{C}), and $p_0 \supseteq p'$. If $\langle c, \sigma \rangle \downarrow \sigma''$ (by \mathcal{E}), and $p_0 \vdash \langle p, \sigma'' \rangle \downarrow \sigma'$ (by \mathcal{P}), then $p_0 \vdash \langle p', \sigma \rangle \downarrow \sigma'$ (by some \mathcal{P}').

Proof. By induction on the derivation \mathcal{E} . We show the cases for EC-Skip, EC-Seq, EC-Iff, EC-Whilef and EC-WhileT.

Case
$$\mathcal{E} = \text{EC-Skip} \frac{1}{\langle \mathbf{skip}, \sigma \rangle \downarrow \sigma}$$

so we have $c = \mathbf{skip}$ and $\sigma'' = \sigma$. In this case the derivation must look as follows:

$$\mathcal{C} = \text{C-Skip} \frac{1}{\|\mathbf{skip}\| \otimes p \leadsto_{i'}^{i} p}$$

and thus p' = p. Since \mathcal{P} is then a derivation of $p_0 \vdash \langle p, \sigma \rangle \downarrow \sigma'$, we can take $\mathcal{P}' = \mathcal{P}$ directly.

Case
$$\mathcal{E} = \text{EC-Seq} \frac{\langle c_0, \sigma \rangle \downarrow \sigma''' \quad \langle c_1, \sigma''' \rangle \downarrow \sigma''}{\langle (c_0; c_1), \sigma \rangle \downarrow \sigma''}$$

so we have $c = (c_0; c_1)$ and we must have

$$\mathcal{C} = \text{C-SeQ} \frac{\llbracket c_1 \rrbracket \ @ \ p \leadsto_{i''}^i p'' \quad \llbracket c_0 \rrbracket \ @ \ p'' \leadsto_{i'}^{i''} p'}{\llbracket c_0; c_1 \rrbracket \ @ \ p \leadsto_{i'}^i p'}$$

Let \mathcal{P}_1 of $p_0 \vdash \langle p'', \sigma \rangle \downarrow \sigma'''$ and \mathcal{P}_0 of $p_1 \vdash \langle p, \sigma''' \rangle \downarrow \sigma'$. By IH on \mathcal{E}_1 with \mathcal{C}_0 and \mathcal{P}_0 we get a derivation \mathcal{P}'_0 of $p_1 \vdash \langle p'', \sigma''' \rangle \downarrow \sigma'$, and by IH on \mathcal{E}_0 with \mathcal{C}_1 and \mathcal{P}_1 we get a derivation \mathcal{P}'_1 of $p_0 \vdash \langle p', \sigma'' \rangle \downarrow \sigma'''$. Thus we obtain \mathcal{P}' by first prepending c_1 to p, where we get p'' and then prepending c_0 to p'' to get p', where $p_0 \sqsubseteq p'' \sqsubseteq p'$.

Case
$$\mathcal{E} = \text{EC-IFF} \frac{\langle b, \sigma \rangle \downarrow \text{false} \quad \langle c_1, \sigma \rangle \downarrow \sigma''}{\langle \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \rangle \downarrow \sigma''}$$

so we have $c = \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1$ and we must have

$$\mathcal{C} = \text{C-If} \frac{ \begin{bmatrix} c_0 \end{bmatrix} \ @ \ l_{i+1} : p \leadsto_{i''}^{i+2} p'' & \llbracket c_1 \rrbracket \ @ \ \textbf{goto} \ l_{i+1}; l_i : p'' \leadsto_{i'}^{i''} p'''}{ \llbracket \textbf{if} \ b \ \textbf{then} \ c_0 \ \textbf{else} \ c_1 \rrbracket \ @ \ p \leadsto_{i'}^{i} \ \textbf{if} \ b \ \textbf{then} \ \textbf{goto} \ l_i; p'''}$$

so $p' = \mathbf{if} \ b \ \mathbf{then} \ \mathbf{goto} \ l_i; p'''$. Let \mathcal{P}_1 of $p_0 \vdash \langle p_1, \sigma'' \rangle \downarrow \sigma'$ with $p_1 = \mathbf{goto} \ l_{i+1}; l_i : p''$ where $p_0 \supseteq p'' \supseteq l_{i+1} : p$. By IH on \mathcal{E}_1 with \mathcal{C}_1 and \mathcal{P}_1 we get a derivation \mathcal{P}'_1 of $p_0 \vdash \langle p''', \sigma \rangle \downarrow \sigma'$, and thus, we can take

$$\mathcal{P}' = \text{P-IfGotoF} \frac{\langle b, \sigma \rangle \downarrow \text{false} \quad p_0 \vdash \langle p''', \sigma \rangle \downarrow \sigma'}{p_0 \vdash \langle \text{if } b \text{ then goto } l_i; p''', \sigma \rangle \downarrow \sigma'}$$

Case
$$\mathcal{E} = \text{EC-WhileF} \frac{\langle b, \sigma \rangle \downarrow \text{false}}{\langle \text{while } b \text{ do } c_0 \rangle \downarrow \sigma}$$

so c =while bdo c_0 and we must have

$$\mathcal{C} = \text{C-While} \frac{ \llbracket c_0 \rrbracket \ @ \ \textbf{goto} \ l_i; l_{i+1} : p \leadsto_{i'}^{i+2} p''}{\llbracket \textbf{while} \ b \ \textbf{do} \ c_0 \ @ \ p \leadsto_{i'}^{i} l_i : \textbf{if} \ \neg b \ \textbf{then goto} \ l_{i+1}; p''}$$

so $p' = l_i$: if $\neg b$ then goto l_{i+1} ; p'' and we have $\sigma'' = \sigma$, since c_0 is never executed. Since \mathcal{P} is then a derivation of $p_0 \vdash \langle p, \sigma \rangle \downarrow \sigma'$ we have p'' = p and we can take $\mathcal{P}' = \mathcal{P}$ directly.

Case
$$\mathcal{E} = \text{EC-WhileT} \frac{\langle b, \sigma \rangle \downarrow \mathbf{true}}{\langle c_0, \sigma \rangle \downarrow \sigma'} \frac{\mathcal{E}_1}{\langle \mathbf{while}} \frac{\mathcal{E}_2}{\langle \mathbf{o}, \sigma' \rangle \downarrow \sigma'} \frac{\langle \mathbf{while}}{\langle \mathbf{while}} \frac{b \ \mathbf{do}}{\langle \mathbf{o}, \sigma' \rangle \downarrow \sigma'}$$

so c =while bdo c_0 and we must have

$$\mathcal{C} = \text{C-While} \frac{\llbracket c_0 \rrbracket \ @ \ \textbf{goto} \ l_i; l_{i+1} : p \leadsto_{i'}^{i+2} p''}{\llbracket \textbf{while} \ b \ \textbf{do} \ c_0 \rrbracket \ @ \ p \leadsto_{i'}^{i} l_i : \textbf{if} \ \neg b \ \textbf{then goto} \ l_{i+1}; p''}$$

so $p' = l_i$: if $\neg b$ then goto l_{i+1} ; p''. Let \mathcal{P}_1 be $p_0 \vdash \langle p_1, \sigma'' \rangle \downarrow \sigma'$ with $p_1 = \mathbf{goto}\ l_i$; $l_{i+1} : p$ where goto l_i ; $l_{i+1} : p$ where goto l_i ; $l_{i+1} : p$. By IH on \mathcal{E}_1 with \mathcal{C}_1 and \mathcal{P}_1 we get a derivation \mathcal{P}'_1 of $p_0 \vdash \langle p'', \sigma \rangle \downarrow \sigma'$, and thus, we can take

$$\mathcal{P}' = \text{P-IFGOTOF} \frac{\text{EC-NegT}}{\langle \neg b, \sigma \rangle \downarrow \mathbf{false}} \frac{\mathcal{E}_0}{\langle \neg b, \sigma \rangle \downarrow \mathbf{false}} p_0 \vdash \langle p'', \sigma \rangle \downarrow \sigma'}{p_0 \vdash \langle \mathbf{if} \neg b \mathbf{then goto} \ l_{i+1}; p'', \sigma \rangle \downarrow \sigma'}$$

b)

Theorem 1. Suppose $\llbracket c \rrbracket^{\text{top}} \leadsto p$. If $\langle c, \sigma \rangle \downarrow \sigma'$ then $p \vdash \langle p, \sigma \rangle \downarrow \sigma'$.

Proof. By induction on the translation derivation.

Case
$$C = C\text{-Skip} \frac{1}{[\![\mathbf{skip}]\!] @ p \leadsto_i^i p}$$

so $c = \mathbf{skip}$ and we must have

$$\mathcal{E} = \text{EC-Skip} \frac{}{\langle \mathbf{skip}, \sigma \rangle \downarrow \sigma}$$

so $\sigma = \sigma$, so the case is vacuously true.

Case
$$C = C$$
-Assign $X := a \otimes p \rightsquigarrow_i^i X := a; p$

so c = (X := a), and p = (X := a; p) and we must have

$$\mathcal{E} = \text{EC-Assign} \frac{\langle a, \sigma \rangle \downarrow n}{\langle X := a, \sigma \rangle \downarrow \sigma[X \mapsto n]}$$

so $\sigma' = \sigma[X \mapsto n]$. We observe that $X := a; p \supseteq p$ and thus we have that $X := a; p \vdash \langle X := a; p \rangle \downarrow \sigma[X \mapsto n]$ and

$$\mathcal{P} = \text{P-Assign} \frac{\langle a, \sigma \rangle \downarrow n \quad p_0 \vdash \langle p_1, \sigma[X \mapsto n] \rangle \downarrow \sigma'}{p_0 \vdash \langle X := a; p_1, \sigma \rangle \downarrow \sigma'}$$

Case
$$\mathcal{C} = \text{C-Seq} \frac{\llbracket c_1 \rrbracket \otimes p \leadsto_{i''}^i p'' \quad \llbracket c_0 \rrbracket \otimes p'' \leadsto_{i'}^{i''} p'}{\llbracket c_0; c_1 \rrbracket \otimes p \leadsto_{i'}^i p'}$$

so $c = (c_0; c_1)$ and we must have

$$\mathcal{E} = \text{EC-SeQ} \frac{\langle c_0, \sigma \rangle \downarrow \sigma'' \quad \langle c_1, \sigma'' \rangle \downarrow \sigma'}{\langle c_0; c_1, \sigma \rangle \downarrow \sigma'}$$

By IH on C_0 with E_1 we get $p'' \vdash \langle c_0, \sigma'' \rangle \downarrow \sigma'$, and by IH on C_1 with E_0 we get $p' \vdash \langle c_1, \sigma \rangle \downarrow \sigma''$, and then since $p \supseteq p'' \supseteq p'$ and thus $p \vdash \langle c_0; c_1, \sigma \rangle \downarrow \sigma'$.

Case
$$C = C-IF \frac{[\![c_0]\!] @ l_{i+1} : p \leadsto_{i''}^{i+2} p'' \quad [\![c_1]\!] @ \textbf{goto} \ l_{i+1}; l_i : p'' \leadsto_{i'}^{i''} p'''}{[\![\textbf{if} \ b \ \textbf{then} \ c_0 \ \textbf{else} \ c_1]\!] @ p \leadsto_{i'}^{i} \ \textbf{if} \ b \ \textbf{then goto} \ l_i; p'''}$$

so $c = \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1$, so since if-commands can have two rules, \mathcal{E} can take one of the following forms:

Subcase
$$\mathcal{E} = \text{EC-IFT} \frac{\langle b, \sigma \rangle \downarrow \text{true}}{\langle \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \rangle \downarrow \sigma''}$$

By IH on C_0 with E_1 we get $p'' \vdash \langle c_0, \sigma \rangle \downarrow \sigma'$ and thus $p \vdash \langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \downarrow \sigma'$ since

$$p \supseteq p''' \supseteq l_i : p'' \supseteq p''$$

and

$$P_0 = P\text{-}Lab \frac{p_0 \vdash \langle p, \sigma'' \rangle \downarrow \sigma'}{p_0 \vdash \langle l_i : p, \sigma'' \rangle \downarrow \sigma'}$$

Subcase
$$\mathcal{E} = \text{EC-IFF} \frac{\langle b, \sigma \rangle \downarrow \text{false}}{\langle \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \rangle \downarrow \sigma'}$$

By IH on C_1 with E_1 we get $p''' \vdash \langle c_1, \sigma \rangle \downarrow \sigma'$ for p'' = p, and thus $p \vdash \langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \downarrow \sigma'$, since $p \sqsubseteq p'''$.

$$\text{Case } \mathcal{C} = \text{C-While} \frac{ \begin{bmatrix} c_0 \end{bmatrix} @ \textbf{goto} \ l_i; l_{i+1} : p \leadsto_{i'}^{i+2} p''}{ \llbracket \textbf{while} \ b \ \textbf{do} \ c_0 \rrbracket @ p \leadsto_{i'}^{i} l_i : \textbf{if} \neg b \ \textbf{then goto} \ l_{i+1}; p''}$$

so c =while bdo c_0 and since there are two rules for while-commands, \mathcal{E} can take one of the following forms:

Subcase
$$\mathcal{E} = \text{EC-WhileF} \frac{\langle b, \sigma \rangle \downarrow \text{false}}{\langle \text{while } b \text{ do } c_0 \rangle \downarrow \sigma}$$

so $\sigma = \sigma$, so the case is vacuously true.

Subcase
$$\mathcal{E} = \text{EC-WhileT} \frac{\langle b, \sigma \rangle \downarrow \text{true}}{\langle c_0, \sigma \rangle \downarrow \sigma'} \frac{\mathcal{E}_1}{\langle \text{while } b \text{ do } c_0, \sigma'' \rangle \downarrow \sigma'} \frac{\mathcal{E}_2}{\langle \text{while } b \text{ do } c_0, \sigma \rangle \downarrow \sigma'}$$

By IH on C_0 with E_1 we get $p'' \vdash \langle c_0, \sigma \rangle \downarrow \sigma'$. We have that the execution of E_2 is already prepended to the program p in C_0 , which gives some intermediate program p''', and thus $p \vdash \langle \mathbf{while} \ b \ \mathbf{do} \ c_0, \sigma \rangle \downarrow \sigma'$, since $p \sqsubseteq p'' \sqsubseteq p'''$.

Task 2

Task 2.1

We show $\Delta/POST \vdash \{PRE\}S$.

$$\{x=n\} \\ \{0+x\times(x+1)/2=n\times(n+1)/2\} \quad \dagger_1 \\ s:=0; \\ \{s+x\times(x+1)/2=n\times(n+1)/2\}$$

```
2
       loop:
             {s + x \times (x+1)/2 = n \times (n+1)/2}
             \{(s+x)+(x-1)((x-1)+1)/2=n\times(n+1)/2\}
3
            s := s + x
             {s + (x - 1)((x - 1) + 1)/2 = n \times (n + 1)/2}
4
             if x = 1 then goto done;
             {s + (x - 1)((x - 1) + 1)/2 = n \times (n + 1)/2}
5
            x := x - 1;
             {s + x \times (x+1)/2}
6
            goto loop;
7
       done:
             \{s = n \times (n+1)/2\}
             {s+s=n\times(n+1)}
8
            s := s + s;
9
            halt
             \{s = n \times (n+1)\}
```

We will now prove each of the semantic reasonings marked with a †.

Here we get (a) directly from (1) since x = n, and thus $0 + x \times (x+1)/2 = x \times (x+1)/2 = n \times (n+1)/2$.

†₂:
$$s + x \times (x+1)/2 = n \times (n+1)/2 \Rightarrow (s+x) + (x-1)((x-1)+1)/2 = n \times (n+1)/2$$

Here we get (a) directly from (1) since $(s+x)(x-1)((x-1)+1)/2 = (s+x)(x-1)((x-1)+1)/2 = (s+x)(x-1)((x-1)+1)/2 = (s+x)(x-1)((x-1)+1)/2 = n \times (n+1).$

$$\dagger_3: \overbrace{s = n \times (n+1)/2}^{(1)} \Rightarrow \overbrace{s + s = n \times (n+1)}^{(a)}$$

Here we get (a) directly from (1) since s + s = 2s, and thus if we multiply both sides of (1) with 2 we get (a).

We will now show how to convert to a formal derivation, starting from line 9 and working backwards, with $PRE = \{x = n\}$ and $POST = \{s = n \times (n+1)\}$.

Line 9: halt has the postcondition of POST, so by rule W-Halt, we get $\Delta/POST \Vdash \{POST\}$ halt.

Line 8: For s := s + s, by rule W-Assign we need a precondition A such that $A \leadsto s = n \times (n+1)/2$. By the assignment axiom, the precondition that ensures this is $\Delta(done)$, and thus $\Delta/POST \Vdash \{\Delta(done)\}s := s + s$.

Line 7: For the label done, by rule W-Lab we get $\Delta/POST \Vdash \{\Delta(done)\}\ done : s := s + s$.

Line 6: The precondition of **goto** loop is the invariant $\Delta(loop)$, and so by rule W-Goto, we get $\Delta/POST \vdash \{\Delta(loop)\}$ **goto** loop.

Line 5: By rule W-Assign, we need s + (x-1)((x-1)+1)/2 = n(n+1)/2, which simplifies to $\Delta(loop)$, and thus $\Delta/POST \Vdash \{\Delta(loop)\}x := x-1$; **goto** loop;.

Line 4: By rule W-IFGOTO, we must ewnsure that both branches of the conditional preserve the invariant. The **true** branch requires the invariant at *done*, which is $\Delta(done)$. The **false** branch continues to line 5, which requires the invariant $\Delta(loop)$, and thus $\Delta/POST \Vdash \{\Delta(loop) \land (x \neq 1 \Rightarrow \Delta(loop) \land (x = 1 \Rightarrow \Delta(done))\}$ if x = 1 then **goto** done;

Line 1-3: To maintain the invariant, we need the state before the addition to satisfy $s + x \times (x+1)/2 = n \times (n+1)/2$, which simplifies to s = 0. This is precisely the action performed at line 1, and thus by W-Assign, we get $\Delta/POST \Vdash \{PRE\}s := 0$

Task 2.2

a)

Lemma 4. (Label lookup) If $\Delta/B \Vdash \{A_0\}p_0$ and $p_0 \vdash l \Downarrow p$, then $\Delta/B \vdash \{A\}p$.

Proof. By induction on judgement for label lookup.

Case
$$\mathcal{L} = \text{L-Labs} \frac{1}{l : p_1 \vdash l \Downarrow p_1}$$

Here $p_0 = l : p_1$ and $p = p_1$. Since $\Delta/B \Vdash \{A_0\}p_0$, the assertion $\Delta(l)$ must hold, and thus $\Delta/B \vdash \{\Delta(l)\}p_0$ by rule V-Weak with $A = \Delta(l)$ and $A' = A_0$.

Case
$$\mathcal{L} = \text{L-LabD} \frac{p_1 \vdash l \Downarrow p}{l' : p_1 \vdash l \Downarrow p} \ (l' \neq l)$$

Here $p_0 = l' : p_1$. By IH on \mathcal{L}_0 with $\Delta/B \Vdash \{A_0\}p_1$, we get $\Delta/B \vdash \{\Delta(l)\}p$. Since $l' \neq l$ the annotation Δ for l in p_1 is the same as in p_0 , and thus $\Delta/B \vdash \{\Delta(l)\}p$ holds.

Case
$$\mathcal{L} = \text{L-Labs} \frac{p_1 \vdash l \Downarrow p}{s; p_1 \vdash l \Downarrow p}$$

Here $p_0 = s$; p_1 . By IH on \mathcal{L}_0 with $\Delta/B \Vdash \{A_0\}p_1$, we get $\Delta/B \vdash \{\Delta(l)\}p$. Since the simple command s does not affect the label lookup, the annotation for l ramains uncanged, and $\Delta/B \vdash \{\Delta(l)\}p$ holds.

b)

Lemma 5. (Soundness for fragments) If $\Delta/B \Vdash \{A_0\}p_0$, and $\Delta/B \vdash \{A\}p$, then $p_0 \models \{A\}p\{B\}$.

Proof. Let W_0 be the derivation of $\Delta/B \Vdash \{A_0\}p_0$, and V of $\Delta/B \vdash \{A\}p$. To show $p_0 \models \{A\}p\{B\}$, let σ and σ' be given, with $\sigma \models A$ and $p_0 \vdash \langle p, \sigma \rangle \downarrow \sigma'$ by some \mathcal{P} ; we must show $\sigma' \models B$. The proof is by induction on \mathcal{P} .

Case
$$\mathcal{P} = P\text{-Halt} \frac{}{p_0 \vdash \langle \mathbf{halt}, \sigma \rangle \downarrow \sigma}$$

Here $P = \mathbf{halt}$ and $\sigma' = \sigma$, so W must have the following shape

$$\mathcal{W} = W\text{-Halt} \frac{\Delta/B \Vdash \{B\} \text{halt}}{\Delta}$$

Since $\sigma' = \sigma$ and $\sigma \models B$ the case is vacuously true.

Case
$$\mathcal{P} = P-LAB \frac{p_0 \vdash \langle p_1, \sigma \rangle \downarrow \sigma'}{p_0 \vdash \langle l : p_1, \sigma \rangle \downarrow \sigma'}$$

Here $p = l : p_1$, so W must have the following shape

$$\mathcal{W} = \text{W-Lab} \frac{\Delta/B \vdash \{\Delta(l)\}p_1}{\Delta/B \Vdash \{\Delta(l)\}l : p_1}$$

By IH on \mathcal{P}_0 with \mathcal{W}_0 we get $\sigma' \models B$, and since the presence of the label does not affect the execution or the state, preserving soundness, this case is true.

Case
$$\mathcal{P} = \text{P-IrGotoT} \frac{\langle b, \sigma \rangle \downarrow \mathbf{true}}{p_0 \vdash \langle \mathbf{if} b \mathbf{then goto} l; p_1, \sigma \rangle \downarrow \sigma'}{p_0 \vdash \langle \mathbf{if} b \mathbf{then goto} l; p_1, \sigma \rangle \downarrow \sigma'}$$

Here $p = \mathbf{if} \ b \ \mathbf{then} \ \mathbf{goto} \ l; p_1, \text{ so } \mathcal{W} \text{ must have the following shape}$

$$\mathcal{W} = \text{W-IfGoto} \frac{\Delta/B \Vdash \{A_1\}p_1}{\Delta/B \Vdash \{(b \Rightarrow \Delta(l)) \land (\neg b \Rightarrow A_1)\} \text{ if } b \text{ then goto } l; p_1}$$

Since $b = \mathbf{true}$ execution jumpts to p_2 . By IH on \mathcal{P}_2 with \mathcal{W}_0 we get $\sigma' \models B$, and since we have $\sigma \models \{(b \Rightarrow \Delta(l)) \land (\neg b \Rightarrow A_1)\}$, the final state must satisfy the postcondition B.

Case
$$\mathcal{P} = \text{P-IfGotoF} \frac{\langle b, \sigma \rangle \downarrow \mathbf{true}}{p_0 \vdash \langle \mathbf{if} \ b \ \mathbf{then} \ \mathbf{goto} \ l; p_1, \sigma \rangle \downarrow \sigma'}$$

Here $p = \mathbf{if} \ b$ then goto $l; p_1$, so \mathcal{W} must have the following shape

$$\mathcal{W} = \text{W-IfGoto} \frac{\Delta/B \Vdash \{A_1\}p_1}{\Delta/B \Vdash \{(b \Rightarrow \Delta(l)) \land (\neg b \Rightarrow A_1)\} \text{ if } b \text{ then goto } l; p_1}$$

Since b =false execution jumps to p_1 . By IH on \mathcal{P}_1 with \mathcal{W}_0 we get $\sigma' \models B$, and since we have $\sigma \models \{(b \Rightarrow \Delta(l)) \land (\neg b \Rightarrow A_1)\}$, the final state must satisfy the postcondition B.

Task 3

Task 3.1

a)

Theorem 4.2 If $t \downarrow c$, then $t \to^* c$.

Proof. By induction on the big-step derivation.

$$\operatorname{Case} \, \mathcal{E} = \operatorname{E-Nil}_{\text{\tiny $\|\downarrow\|$}}$$

Here t = [] and c = []. This case is vacuously true, since [] is already on canonical form.

Case
$$\mathcal{E} = \text{E-Cons} \frac{t_1 \downarrow c_1 \quad t_2 \downarrow c_2}{t_1 :: t_2 \downarrow c_1 :: c_2}$$

Here $t = t_1 :: t_2$ and $c = c_1 :: c_2$. By IH on \mathcal{E}_0 we get \mathcal{SS}_0 of $t_1 \to^* c_1$, and we can then, by step-wise use of S-Cons1, get

$$t_1::t_2\to^*c_1::t_2$$

By IH on \mathcal{E}_1 we get \mathcal{SS}_1 of $t_2 \to^* c_2$ and we can then, by step-wise use of S-Cons2, get

$$c_1 :: t_2 \rightarrow^* c_1 :: c_2$$

Concatenating these two derivations together with Lemma 4.1, we get the desired

$$t_1 :: t_2 \rightarrow^* c_1 :: c_2$$

Case
$$\mathcal{E} = \text{E-FoldN} \frac{t_0 \downarrow [] \quad t_n \downarrow c}{\mathbf{fold}(t_n, x.y.t_c)(t_0) \downarrow c}$$

Here $t = \mathbf{fold}(t_n, x.y.t_c)(t_0)$ and c = c. By IH on \mathcal{E}_0 we get \mathcal{SS}_0 of $t_0 \downarrow []$, and we can then, by step-wise use of S-Fold, get

$$\mathbf{fold}(t_n, x.y.t_c)(t_0) \to^* \mathbf{fold}(t_n, x.y.t_c)([])$$

Now, by a simple use of S-Fold, we get

$$\mathbf{fold}(t_n, x.y.t_c)([]) \to t_n$$

By IH on \mathcal{E}_1 we get \mathcal{SS}_1 of $t_n \downarrow c$, and concatenating the first derivation with \mathcal{SS}_1 by Lemma 4.1, we get

$$\mathbf{fold}(t_n, x.y.t_c)(t_0) \to^* c$$

Case
$$\mathcal{E} = \text{E-FoldC} \frac{\mathcal{E}_0}{t_0 \downarrow c_1 :: c_2} \frac{\mathcal{E}_0}{\text{fold}(t_n, x.y.t_c)(c_2) \downarrow c'} \frac{\mathcal{E}_2}{t_c[c_1/x][c'/y] \downarrow c}$$

Here $t = \mathbf{fold}(t_n, x.y.t_c)(t_0)$ and c = c. By IH on \mathcal{E}_0 we get \mathcal{SS}_0 of $t \to^* c_1 :: c_2$, and we can then, by step-wise use of S-Cons2 get

$$t_0 \rightarrow^* c_1 :: c_2$$

By IH on \mathcal{E}_1 we get \mathcal{SS}_1 of $\mathbf{fold}(t_n, x.y.t_c)(c_2) \to^* c'$, and then by IH on \mathcal{E}_2 we get \mathcal{SS}_2 of $t_c[c_1/x][c'/y] \to c$, and we can, by a step-wise use S-FoldC get

$$\mathbf{fold}(t_n, x.y.t_c)(c_1 :: c_2) \to^* \mathbf{let} \ y \Leftarrow \mathbf{fold}(t_n, x.y.t_c)(c_2) \ \mathbf{in} \ t_c[c_1/x]$$

and we can then use E-Let to get

let
$$y \Leftarrow \text{fold}(t_n, x.y.t_c)(c_2)$$
 in $t_c[c_1/x] \rightarrow^* c$

Concatenating these three derivations together with Lemma 4.1, we get the required

$$\mathbf{fold}(t_n, x.y.t_c)(t_0) \to^* c$$

b)

Lemma 4.4 If $t \to t'$ and $t' \downarrow c$, then $t \downarrow c$.

Proof. By induction on the first derivation.

Case
$$S = S$$
-Cons1 $\frac{t_1 \xrightarrow{S_0} t'_1}{t_1 :: t_2 \rightarrow t'_1 :: t_2}$

Here $t = (t_1 :: t_2)$, and then \mathcal{E}' must have the following shape

$$\mathcal{E}' = \text{E-Cons} \frac{t_1' \downarrow c_1 \quad t_2 \downarrow c_2}{t_1' :: t_2 \to c_1 :: c_2}$$

with $t' = (t'_1 :: t_2)$. By IH on \mathcal{S}_0 with \mathcal{E}'_0 we get \mathcal{E}_0 of $t_1 \downarrow c_1$ and we can construct \mathcal{E} as

$$\mathcal{E} = \text{E-Cons} \frac{\substack{\mathcal{E}_0 \\ t_1 \downarrow c_1 \\ t_2 \downarrow c_2}}{\substack{\mathcal{E}'_1 \\ t_2 \therefore t_2 \rightarrow c_1 :: c_2}}$$

Case
$$S = S\text{-Cons2} \frac{t_2 \xrightarrow{S_0} t'_2}{t_1 :: t_2 \xrightarrow{} t_1 :: t'_2}$$

Here $t = (t_1 :: t_2)$, and then \mathcal{E}' must have the following shape

$$\mathcal{E}' = \text{E-Cons} \frac{\substack{\mathcal{E}'_0 \\ t_1 \downarrow c_1 \quad t'_2 \downarrow c_2 \\ t_1 :: t'_2 \to c_1 :: c_2}}$$

with $t'=(t_1::t_2')$. By IH on \mathcal{S}_0 with \mathcal{E}_0' we get \mathcal{E}_0 of $t_2\downarrow c_2$ and we can construct \mathcal{E} as

$$\mathcal{E} = \text{E-Cons} \frac{t_1 \downarrow c_1 \quad t_2 \downarrow c_2}{t_1 :: t_2 \to c_1 :: c_2}$$

Case
$$S = \text{S-Fold1} \frac{t_0 \to t'_0}{\text{fold}(t_n, x.y.t_c)(t_0) \to \text{fold}(t_n, x.y.t_c)([])}$$

Here $t = (\mathbf{fold}(t_n, x.y.t_c)(t_0))$, which means we have two possibilities for \mathcal{E}' depending on which of the two big-step rules are used:

Subcase
$$\mathcal{E}' = \text{E-FoldN} \frac{t_0' \quad \mathcal{E}_n'}{\mathbf{fold}(t_n, x, y, t_c)(t_0') \downarrow c}$$

with $t' = (\mathbf{fold}(t_n, x.y.t_c)(t'_0))$. By IH on \mathcal{S}_0 with \mathcal{E}'_0 we get \mathcal{E}_0 of $t_0 \downarrow []$, and we can construct \mathcal{E} as

$$\mathcal{E} = \text{E-Foldn} \frac{t_0 \downarrow [] \quad t_n \downarrow c}{\text{fold}(t_n, x.y.t_c)(t_0) \downarrow c}$$

Subcase
$$\mathcal{E}' = \text{E-FoldC} \frac{t_0' \downarrow c_1 :: c_2}{c_1} \frac{\text{fold}(t_n, x.y.t_c)(c_2) \downarrow c'}{\text{fold}(t_n, x.y.t_c)(t_0') \downarrow c} \frac{\mathcal{E}'_2}{c_1}$$

with $t' = (\mathbf{fold}(t_n, x.y.t_c)(t'_0))$. By IH on \mathcal{S}_0 with \mathcal{E}'_0 we get \mathcal{E}_0 of $t_0 \downarrow c_1 :: c_2$, and we can construct \mathcal{E} as

$$\mathcal{E} = \text{E-FoldC} \frac{t_0 \downarrow c_1 :: c_2 \quad \mathbf{fold}(t_n, x.y.t_c)(c_2) \downarrow c' \quad t_c[c_1/x][c'/y] \downarrow c}{\mathbf{fold}(t_n, x.y.t_c)(t_0) \downarrow c}$$

Task 3.2

a)

Lemma 4.11 If $t \to t'$ (by S) and $[] \vdash t : \tau$ (by T), then also $[] \vdash t' : \tau$ (by some T').

Proof. By induction on the derivation S.

Case
$$S = S$$
-Cons1 $\frac{t_1 \to t_1'}{t_1 :: t_2 \to t_1' :: t_2}$

Here $t = (t_1 :: t_2)$, and then \mathcal{T} must have the following shape

$$\mathcal{T} = \text{T-Cons} \frac{\begin{bmatrix} -\tau_0 & \tau_1 \\ +t_1 : \tau_0 & -\tau_2 : \mathbf{list} \\ -\tau_0 & \tau_1 : \mathbf{t}_2 : \mathbf{list} \end{bmatrix}}{\begin{bmatrix} -\tau_0 \\ +t_1 : \tau_2 : \mathbf{list} \end{bmatrix}}$$

By IH on S_0 with T_0 we get a derivation T_0' of $[] \vdash t_1' : \tau_0$, and we can construct T' as

$$\mathcal{T}' = \text{T-Cons} \frac{ \begin{bmatrix} \mathcal{T}'_0 & \mathcal{T}_1 \\ \mathcal{T}'_1 : \mathcal{T}_0 & \begin{bmatrix} \mathcal{T}_1 \\ \mathcal{T}_2 : \mathbf{list} \end{bmatrix} (\mathcal{T}_0) }{ \begin{bmatrix} \mathcal{T}_1 \\ \mathcal{T}'_1 : \mathcal{T}_2 : \mathbf{list} \end{bmatrix} (\mathcal{T}_0) }$$

Case
$$S = S$$
-Cons2 $\frac{t_1 \to t'_1}{t_1 :: t_2 \to t'_1 :: t_2}$

Here $t = (t_1 :: t_2)$, and then \mathcal{T} must have the following shape

$$\mathcal{T} = \text{T-Cons} \frac{\begin{bmatrix} \tau_0 & \tau_1 \\ +t_1 : \tau_0 & \end{bmatrix} + t_2 : \mathbf{list} (\tau_0)}{\begin{bmatrix} +t_1 : t_2 : \mathbf{list} (\tau_0) \end{bmatrix}}$$

By IH on S_1 with T_1 we get a derivation T_1' of $[] \vdash t_2' : \mathbf{list} \ (\tau_0)$, and we can construct T' as

$$\mathcal{T}' = \text{T-Cons} \frac{\begin{bmatrix} \mathcal{T}_0 & \mathcal{T}_1' \\ \mathcal{T}_1 : \mathcal{T}_0 & \begin{bmatrix} \mathcal{T}_1' \\ \mathcal{T}_2' : \mathbf{list} & (\mathcal{T}_0) \end{bmatrix}}{\begin{bmatrix} \mathcal{T}_1' \\ \mathcal{T}_1' : \mathcal{T}_2' : \mathbf{list} & (\mathcal{T}_0) \end{bmatrix}}$$

Case
$$S = \text{S-Fold} \frac{t_0 \to t'_0}{\text{fold}(t_n, x.y.t_c)(t_0) \to \text{fold}(t_n, x.y.t_c)([])}$$

Here $t = \mathbf{fold}(t_n, x.y.t_c)(t_0)$. and then \mathcal{T} must have the following shape

$$\mathcal{T} = \text{T-Fold} \frac{\begin{bmatrix} \tau_0 & \tau_1 & \tau_2 \\ \vdash t_n : \tau & [x \mapsto \tau_0][y \mapsto \tau] \vdash t_c : \tau & [\vdash t_0 : \mathbf{list} \ \tau_0 \\ \hline \\ |\vdash \mathbf{fold}(t_n, x.y.t_c)(t_0) : \tau \end{bmatrix}$$

By IH on S_0 with T_2 we get a derivation T_2' of $[] \vdash t_0' : \mathbf{list} \ \tau_0$, and we can construct T' as

$$\mathcal{T} = \text{T-Fold} \frac{\begin{bmatrix} \mathcal{T}_0 & \mathcal{T}_1 & \mathcal{T}_2' \\ \mathcal{T}_1 & \mathcal{T} & [x \mapsto \mathcal{T}_0][y \mapsto \mathcal{T}] \vdash t_c : \mathcal{T} & [] \vdash t_0' : \mathbf{list} \ \mathcal{T}_0 \end{bmatrix}}{\begin{bmatrix} \mathcal{T}_1 & \mathcal{T}_2' \\ \mathcal{T}_2 & \mathcal{T}_2 & \mathcal{T}_2 \end{bmatrix}}$$

Case
$$S = S\text{-FoldN} \frac{}{\mathbf{fold}(t_n, x.y.t_c)([]) \to t_n}$$

Here $t = \mathbf{fold}(t_n, x.y.t_c)([])$ and $t' = t_n$, and the typing derivation for t must look like

$$\mathcal{T} = \text{T-Fold} \frac{\begin{bmatrix} \mathcal{T}_0 \\ \vdash t_n : \tau & [x \mapsto \tau_0][y \mapsto \tau] \vdash t_c : \tau & \text{T-Nil} \\ \hline \\ & & \\ \end{bmatrix} \vdash \mathbf{fold}(t_n, x.y.t_c)([]) : \tau}$$

But then we can directly take $T' = T_0$ as the typing derivation for t'.

Case
$$S = \text{S-FoldC} \frac{1}{\text{fold}(t_n, x.y.t_c)(c_1 :: c_2)} \rightarrow \text{let } y \leftarrow \text{fold}(t_n, x.y.t_c)(c_2) \text{ in } t_c[c_1/x]$$

Here $t = \mathbf{fold}(t_n, x.y.t_c)(c_1 :: c_2)$ and $t' = \mathbf{let} \ y \leftarrow \mathbf{fold}(t_n, x.y.t_c)(c_2)$ in $t_c[c_1/x]$, and the typing derivation for t must look like

$$\mathcal{T} = \text{T-Fold} \frac{\begin{bmatrix} \tau_0 & \tau_1 & \tau_1 & \tau_2 & \tau_3 \\ -\tau_1 & \tau_2 & \tau_3 & \tau_4 \end{bmatrix} + \tau_2 + \tau_2 \cdot \tau_1}{\begin{bmatrix} \tau_1 & \tau_2 & \tau_3 \\ -\tau_2 & \tau_3 & \tau_4 \end{bmatrix} + \tau_2 \cdot \tau_3}{\begin{bmatrix} \tau_1 & \tau_2 & \tau_3 \\ -\tau_1 & \tau_2 & \tau_3 \end{bmatrix} + \tau_2 \cdot \tau_3}$$

And so we get \mathcal{T}_4' of $[y \mapsto \tau_1] \vdash t_c[c_1/x] : \tau$ by Lemma 4.10 on \mathcal{T}_1 and \mathcal{T}_2 , and so we can construct \mathcal{T}' as

$$\mathcal{T}' = \text{T-Let} \frac{ \text{T-Fold} \underbrace{ \begin{bmatrix} -\tau_0 & \tau_1 & \tau_1 & [x \mapsto \tau_0][y \mapsto \tau_1] \vdash t_c : \tau_1 & [] \vdash c_2 : \mathbf{list} & (\tau_0) \\ \hline \mathbf{fold}(t_n, x.y.t_c)(c_2) : \tau_1 & [y \mapsto \tau_1] \vdash t_c[c_1/x] : \tau_2 \\ \hline \mathbf{let} \ y \Leftarrow \mathbf{fold}(t_n, x.y.t_c)(c_2) \ \mathbf{in} \ t_c[c_1/x] : \tau_2 \\ \end{bmatrix}$$

where $\tau = \tau_2 = \tau_1$.

b)

Theorem 4.13 (Termination) If $\Gamma \vdash t : \tau$ without using rule T-Rec, then $\Gamma \vDash t : \tau$.

Proof. Let \mathcal{T} by a derivation of $\Gamma \vdash t : \tau$, and let s be such that, whenever $\Gamma(x) = \tau'$, then $\vDash^c x[s] : \tau'$. We must show that $\vDash^t t[s] : \tau$. i.e., that $t[s] \downarrow c$ for some c with $\vDash^c c : \tau$. We proceed by induction on \mathcal{T} .

Case
$$\mathcal{T} = \text{T-Nil} \frac{\Gamma}{\Gamma \vdash []: \mathbf{list} (\tau_0)}$$

so $\tau = \mathbf{list} \ (\tau_0)$. We then have $[[s] \downarrow []$, and $\vDash^c [] : \mathbf{list} \ (\tau_0)$, as required.

Case
$$\mathcal{T} = \text{T-Cons} \frac{\Gamma \vdash \overset{\mathcal{T}_0}{t_1} : \tau_0 \quad \Gamma \vdash t_2 : \mathbf{list} \ (\tau_0)}{\Gamma \vdash t_1 :: t_2 : \mathbf{list} \ (\tau_0)}$$

By IH on \mathcal{T}_0 we get a derivation \mathcal{E}_0 of $t_1[s] \downarrow c_0$, where $\vDash^c c_0 : \tau_0$. By IH on \mathcal{T}_1 , we get a derivation \mathcal{E}_1 of $t_1[s] \downarrow \mathbf{list}$ (c_0) . But then by E-Cons on \mathcal{E}_0 and \mathcal{E}_1 , we get $t_1[s] :: t_2[s] \downarrow c_1 :: c_2$, and $\vDash^c c_1 :: c_2 : \mathbf{list}$ (τ_0) by definition.

$$\mathcal{T} = \text{T-Fold} \frac{\Gamma \vdash \overset{\mathcal{T}_0}{t_n} : \tau \quad \Gamma[x \mapsto \tau_0][y \mapsto \tau] \vdash t_c : \tau \quad \Gamma \vdash t_0 : \mathbf{list} \ \tau_0}{\Gamma \vdash \mathbf{fold}(t_n, x.y.t_c)(t_0) : \tau}$$

By IH on \mathcal{T}_0 , we get a derivation \mathcal{E}_0 of $t_n[s] \downarrow c_n$, where $\vDash^c c_n : \tau$. By IH on \mathcal{T}_2 , we get a derivation \mathcal{E}_2 of $t_0[s] \downarrow c_0$, where $\vDash^c c_0 : \mathbf{list}$ (τ_0) .

We now need to prove, that for any t_n and any list of canoical forms c_0 , the term $\mathbf{fold}(t_n, x.y.t_c)(c_0)$ evaluates to a canonical form of type τ . We split it up into two cases.

For an empty list $c_0 = []$, we get $\mathbf{fold}(t_n, x.y.t_c)([])[s] \downarrow c_n$, with $\models^c c_n : \tau$.

For a non-empty list $c_0 = (c_1 :: c_2)$ the term $\mathbf{fold}(t_n, x.y.t_c)(c_1 :: c_2)$ can step by S-FoldC to

let $y \Leftarrow \mathbf{fold}(t_n, x.y.t_c)(c_2)$ in $t_c[c_1/x]$, and by induction on the typing derivation of $\mathbf{fold}(t_n, x.y.t_c)(c_2)$, we get \mathcal{E}_1 of $\mathbf{fold}(t_n, x.y.t_c)(c_2)[s] \downarrow c_2'$ for some c_2' on canonical form, with $\vDash^c c_2' : \tau$. By Lemma 4.10 on $\Gamma[c_2'/y] \vdash t_c[c_1/x]$ with the typing derivation for c_2' , we get \mathcal{E}_3 of $t_c[c_1/x, c_2'/y]$, and thus by E-Fold on \mathcal{E}_0 , \mathcal{E}_1 and \mathcal{E}_3 we obtain $\mathbf{fold}(t_n[s], x.y.t_c[s])(c_1 :: c_2)[s] \downarrow c$ with $\vDash^c c : \tau$ as required.

Task 3.3

a)

We write out the constraint-typing rules for new list construct.

$$\text{CT-Nil}: \frac{1}{\hat{\Gamma} \vdash^{i} []: \mathbf{list}(\hat{\tau})|i'}$$

$$\text{CT-Cons}: \frac{\hat{\Gamma} \vdash^{i} t_{1} : \tau_{1} \mid^{i''} C_{0} \quad \hat{\Gamma} \vdash^{i''} t_{2} : \tau_{2} \mid^{i'} C_{1}}{\hat{\Gamma} \vdash^{i} t_{1} :: t_{2} : \mathbf{list} \left(\boxed{i} \right) \mid^{i'} C_{0}, C_{1}, \boxed{i} \stackrel{!}{=} \tau_{1}, \mathbf{list} \left(\boxed{i} \right) \stackrel{!}{=} \tau_{2}}$$

$$\text{CT-Fold}: \frac{\hat{\Gamma} \vdash^{i} t_{n} : \hat{\tau_{n}} \mid^{i''} C_{0} \quad \hat{\Gamma}[x \mapsto \boxed{i''}, y \mapsto \hat{\tau}] \vdash^{i''+1} t_{c} : \hat{\tau_{c}} \mid^{i''} C_{1} \quad \hat{\Gamma} \vdash^{i'''} t_{0} : \tau_{0} \mid^{i'} C_{2}}{\hat{\Gamma} \vdash^{i} \mathbf{fold}(t_{n}, x.y.t_{c})(t_{0}) : \tau_{n} \mid^{i'} C_{0}, C_{1}, C_{2}, \tau_{0} \doteq \mathbf{list}(\boxed{i''}), \hat{\tau_{n}} \doteq \hat{\tau_{c}}}$$

b)

 (\Rightarrow)

Claim: If $\Gamma \vdash \mathbf{let} \ n \Leftarrow [] \ \mathbf{in} \ t : \tau \Rightarrow \Gamma \vdash t[[]/n] : \tau$.

The let binding introduces a local scope where n is bound to []. If t, in the context of this binding, has type τ , substituting n with [] directly should preserve the type, since the semantic meaning of n as [] is the same in both expressions.

(⇔)

Claim: If $\Gamma \vdash t[\lceil \rceil/n \rceil : \tau \Rightarrow \Gamma \vdash \mathbf{let} \ n \Leftarrow \lceil \rceil \ \mathbf{in} \ t : \tau$.

Here t[[]/n] being well-typed indicates that substituting [] for n in t results in a term of type τ . Introducing a **let**-binding that assigns [] to n before evaluating t essentially provides the same setup for n within the scope of t. Therefore the typing should be preserved.

This proof relies on the fact that if n is bound to some other type in Γ neither expression would be well-typed.