

ROS-I Academy Training

NOS-I Academy

ττ

MASCOR Institute

Mobile Autonomous Systems and Cognitive Robotics Institute (MASCOR)

2017ff

Outline

- ▶ Motivation
- ▶ tf for sensors
- ▶ tf in navigation
- ► Features & Notations

Motivation

Transformations

A moving robot system usually has many 3D coordinate frames with over time changing transformations. Transformations are essential for robot perception, localization and motion control.

Motivation

Task

Provide high level access to transformations for calculation between reference frames.

Options:

- Manually monitor joint states and manually calculate frame transformations
- **.**..

tf for sensors

Position and orientation of sensor devices

Sensor positioning

tf

Sensor positioning

H2020 funded GA no. 732287

tf in navigation

tf in navigation

ROS_SS2016_Rover_teb_local_planner.mp4

- ▶ Position and orientation of sensor devices
- Representation of complex tf structures

features (http://wiki.ros.org/tf)

- The distributed ROS Tool TF keeps track of all frames over time
- Easily add new frames (static & dynamic)
- Transformation of points, vectors, etc. between any two frames at a desired point of time
- Allows to ask questions like:
 - Where was the head frame relative to the world frame, 5 seconds ago?
 - What is the pose of the object in my gripper relative to my base?
 - What is the current pose of the base frame in the map frame?

tf

static

- constant transform (e.g. base_link → camera_link)
- Setup:
 - ▶ in launchfiles (static_transform_publisher
 - ▶ in urdf via joints of type fixed & robot_state_publisher
 - used to define the positions of actuators / sensors of robots

dynamic

- broadcast from custom nodes
- implementation by using a broadcaster in your ROS node

H2020 funded GA no. 732287

notations

- ▶ TFs are implemented with a forward description from parent to child (from \rightarrow to)
- One parent per frame
- ► Multiple childs per frame
- Orientations stored in Quaternions
 - Conversion to and from euler angles available

"Standards" → RFP-103

- SI units are used
- Right-hand rule
 - ► x forwards
 - y left
 - ▶ z upwards
 - yaw component increases counter-clockwise
- Rotation representation
 - ► roll around x-axis
 - ▶ pitch around y-axis
 - ▶ yaw around z-axis
 - 0 when facing east on geographic poses

Source: en.wikipedia.org