

Space-Time Adaptive Processing Using Sparse Arrays

Michael Zatman

11th Annual ASAP Workshop

March 11th-14th 2003

This work was sponsored by the DARPA under Air Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author, and are not necessarily endorsed by the United States Government.

MIT Lincoln Laboratory

999999-1 XYZ 4/23/2003

20040303 260

Application: Space Based Radar

Long range to target
(Large aperture ~
location accuracy) Fast orbital velocity **GMTI** performance) (Large aperture ~ ~low weight and size (folded) Launch cost

Outline

- Introduction
- Theory
- **Performance**
- Summary

STAP Units

Doppler Ambiguous Clutter

Aperture and Doppler Limited Performance

Some Sparse Array Concepts

- Sparse arrays trade mainlobe width against grating lobe height to find the optimum sparseness
- Energy transferred from the mainlobe to the grating lobes is useless for Tx.
 - Use a filled section of the sparse array for Tx. And form multiple Rx. beams

 \boxtimes

 \Diamond

X

 \Diamond

 \Diamond

 \boxtimes

Ŏ

X

Many Apertures

ž

Tx+RX

ž

Sparse Array Issues

- Angle estimation performance
- Improved accuracy due to narrower beamwidth (CRB)
- Non-local errors due to grating lobes (WWB, ZZB, AB, …)
- SAR performance
- Multiple spatial samples per pulse
- Tight PRF constraints
- Hardware and cost
- Sparse arrays require less hardware
- Cheaper & lighter

Outline

Introduction

Theory

Clutter RankWaveforms

SINR Loss

Performance

Summary

Brennan's Rule & Ward's Rules*

*J. Ward, Asilomar 1998

N= Number of elements, M= Number of pulses, $\beta=2$ v T d_0^{-1} , $N_{fii}=$ Number of elements in filled array

---- MIT Lincoln Laboratory

Additional Sparse Array Behavior

N = 24, M = 10, $\beta = 4$ Example

New (?) Rules for Sparse Arrays

For arrays which move less than the smallest subarray aperture during a pulse the rank is given by :

$$\min[N+\beta(M-1)+G, N+S\beta(M-1)]$$

Jim Ward's r_{max}

Using each sub array independently

For equal size subarrays a sparse array is no better than a single subarray if

$$G > \beta(S-1)(M-1)$$

I.e., The array is so sparse that there is no redundancy

Sparse Aperture Waveforms

- Ambiguous waveforms (e.g., pulse-Doppler) and sparse (ambiguous) apertures lead to multiple clutter nulls
- Unambiguous waveforms preferable

MIT Lincoln Laboratory

999999-14 XYZ 4/23/2003

Long Single Pulse Waveforms

Phase Encoded Waveform

- Single pulse means no range or Doppler ambiguities
 - High chip rate sets Doppler ambiguities
- Must pulse compress each Doppler bin separately
- More computation than pulse-Doppler waveforms
- Concern about strong sidelobe clutter > noise floor
 - Wide bandwidth & narrow antenna beampatterns

Processing Long Single Pulse Waveform

- Long single pulse radar can be made to 'appear' like a regular pulse-Doppler radar
- Looks like high PRF radar without the range ambiguities

Space Time Adaptive Processing

Grating lobes lead to reduced detection performance at particular Doppler frequencies

SINRLoss
$$\approx \mathbf{v}^H \mathbf{v} - |\mathbf{v}^H \mathbf{e}|^2 = 1 - \frac{\text{GratingLobe Gain}}{\text{MainbeamGain}}$$

main lobe gain (Σ grating lobes for pulse-Doppler waveforms?) For <3 dB SINR loss grating lobe gain must be 3 dB less than

Outline

- Introduction
- Theory
- **Performance**
- Dependence on waveform
 - SBR Design Example
- Summary

Unambiguous vs. Ambiguous Waveforms Interferometer Example

- Filled rank = 8+1(32-1)
- 8+2(32-1) = 70 (reached with a 31 element gap) Max. sparse rank =

- Filled rank = 8+4(8-1)
- Runs out of DOFs with 8+27+2(32-1)=63a 27 element gap

Unambiguous vs. Ambiguous Waveforms

Space Based GMTI Radar Examples

Parameters

- 32m x 2.5m filled aperture
- 10 GHz operating frequency
- 1000 km orbit
- 7282 m/s orbital velocity
- 1 kw peak transmit power
- 200 MHz bandwidth
- Unambiguous waveform
- -12 dB const. γ clutter model
- 2500 km range
- 16.67ms CPI length
- Travel ~120m in a CPI

Space Based Radar GMTI Designs

Interferometer Array

Even Spaced Equal Size

Uneven Spaced Equal Size

Many Apertures

* Issues being addressed by Aerospace Corporation

0° Rotation Scenario

60° Rotation Scenario

-3 dB MDV vs. Array Length

- Many unequal subarrays configuration needs a larger baseline to obtain the same performance as the other configurations, but ultimately provides the best MDV
- 165m aperture optimizes MDV for 2500 km range
- Longer apertures improve angle metrics

Summary

- Sparse arrays potentially improve the minimum detectable performance of space-based radars
- Approach the MDV performance of a large filled aperture much with lower size, weight and cost
- Sparse arrays and sparse (pulse-Doppler) waveforms do not mix well
- Sparse arrays perform well with Doppler unambiguous waveforms
- Sparse waveforms (pulse-Doppler) perform well with filled arrays
- Doppler unambiguous operation and are compatible Long single-pulse waveforms provide range and with current STAP algorithms
- spaced subarrays provide the best GMTI performance Sparse arrays with many unevenly sized unevenly

Backup Viewgraphs

Interferometer Array Grating Lobes

- Grating lobes quickly appear for interferometer array
- ~2/3 fill fraction -3 dB grating lobes untapered apertures

Grating Lobe Distributions 3 Equal Arrays

Gap Ratio = Big Gap : Small Gap

- Lower grating lobes than interferometer
- Higher gap ratios lead to lower grating lobes Also poorer MDV performance

Grating Lobe Distributions Unequal Arrays

50% filled aperture in center subarray

X

 \aleph

 \Diamond

Ŏ

0° Rotation Scenario

Three Equal Apertures Target Location

- 96 m aperture largest possible without increasing the threshold SNR
- Provides 89 m rms error at 6° grazing
- 82 m gives 107 m rms error

Three Unequal Apertures Target Location

- 72 m aperture largest possible without increasing the threshold SNR
- 72m aperture Provides 119m rms error at 6º grazing

SINR Loss Due To Grating Lobe

(Spatial Only Example)

20 Element Array Example

Under the high INR assumption:

SINR Loss
$$\approx \mathbf{v}^H \mathbf{v} - |\mathbf{v}^H \mathbf{e}|^2 = 1 - \frac{\text{Grating Lobe Gain}}{\text{Mainbeam Gain}}$$

i.e., for 3 dB loss grating lobe gain (sum grating lobes for pulse-Doppler ?) must be 3 dB less than main lobe gain