सदिश बीजगणित

[VECTOR ALGEBRA]

िदिक् कोसाइन (Direction Cosines)

यहाँ r द्वारा अक्षों के साथ बने कोण α, β एवं γ के कोसाइन (cosine) यानि $\cos α$, $\cos β$ एवं $\cos γ$ सदिश r के दिक्-कोसाइन (direction cosines) कहलाते हैं। इन्हें क्रमशः

r के दिक्-कासाइन (direction cosines) कहलात है। इन्हें क्रमशा ।, m एवं n से निर्दिष्ट किया जाता है, अर्थात् $\cos \alpha = l$, $\cos \beta = m$ एवं $\cos \gamma = n$ से सूचित होते हैं।

 \rightarrow फिर आरेख से स्पष्ट है कि OA = x, OB = y, OC = z तथा |r| = OP = r हैं।

अब समकोण ΔOAP, ΔOBP, ΔOCP में क्रमशः

$$\cos \alpha = \frac{x}{r}, \cos \beta = \frac{y}{r}, \cos \gamma = \frac{z}{r}$$

दूसरे रूप में
$$l = \frac{x}{r}$$
, $m = \frac{y}{r}$, $n = \frac{z}{r}$.

$$\Rightarrow$$
 $x = lr, y = mr, z = nr.$

$$\Rightarrow$$
 बिन्दु P के निर्देशांक (lr, mr, nr) हैं।

पुन:, दिक्-कोसाइन (direction cosines) l, m, n

समानुपाती (proportional) संख्याएँ lr, mr, nr सदिश r के दिक्-अनुपात (direction ratios) कहलाते हैं

सदिशों के प्रकार (Types of Vectors)

इकाई (मात्रक) सदिश (Unit Vector) — किसी दिए हुए सदिश $\stackrel{\longrightarrow}{a}$ की दिशा में इकाई (मात्रक) सदिश को $\stackrel{\wedge}{a}$ (a कैप) से निर्दिष्ट किया

जाता है। इस प्रकार इकाई (मात्रक) सदिश
$$\hat{a} = \frac{\overrightarrow{a}}{|\overrightarrow{a}|}$$
 है।

शून्य सदिश (Zero (null) Vector) — एक सदिश जिसके प्रारंभिक बिन्दु (initial point) तथा अन्तिम बिन्दु

(terminal point) संपाती (concide) होते हैं, शून्य सदिश कहलाता है।

सह-प्रारंभिक (सह-आदिम) सदिश (Co-initial Vectors) — दो या अधिक सदिश जिनका एक ही प्रारंभिक (आदिम) बिन्दु है सह-प्रारम्भिक (सह-आदिम) सदिश कहलाते हैं। यहाँ \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} सह-प्रारंभिक सदिश हैं; क्योंकि इनके प्रारम्भिक बिन्दु (initial point) O एक ही है।

संरेख (या समान्तर) सदिश (Collinear or Parallel Al-Vectors)—दो या अधिक सदिशों के आधार (base) एक ही सरल रेखा हो अथवा समान्तर सरल रेखाएँ हों, तो उन्हें सरेख (या समान्तर) सदिश कहलाते हैं।

समान सिंदश (Equal Vectors) — दो सिंदश \overrightarrow{a} तथा \overrightarrow{b} समान हैं यदि और केवल यदि (if and only if) उनके परिमाण (मापांक) एवं दिशा समान हैं। यहाँ सिंदश \overrightarrow{b} \overrightarrow{A} \overrightarrow{b} \overrightarrow{A} \overrightarrow{b} \overrightarrow{a} \overrightarrow{b} केवल \overrightarrow{A} \overrightarrow{b} \overrightarrow{b} केवल \overrightarrow{A} \overrightarrow{b} \overrightarrow

स्वतंत्र सिंदश (Free Vectors) — एक सिंदश परिमाण एवं दिशा को परिवर्तन किए बिना स्वयं के समान्तर स्वेच्छ बिन्दु पर प्रतिस्थापित किया जा सकता है स्वतंत्र सिंदश कहलाता है।

सदिशों का योगफल (Addition of Vectors):

माना कि दो सदिश $\stackrel{\rightarrow}{a}$ तथा $\stackrel{\rightarrow}{b}$ हैं। कोई बिन्दु O लिया तथा इससे परिमाण एवं दिशा में $\stackrel{\rightarrow}{OA} = \stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{AB} = \stackrel{\rightarrow}{b}$, इस

प्रकार लिया कि सदिश $\overrightarrow{AB}(b)$ का प्रारम्भिक बिन्दु सदिश \overrightarrow{OA} का अन्तिम बिन्दु हो, तो सदिश \overrightarrow{OB} , यानि दूसरे सदिश \overrightarrow{b} का अन्तिम बिन्दु की स्थिति सदिश, \overrightarrow{a} तथा \overrightarrow{b} का योग (परिणामी) सदिश कहा जाता है।

ਤਸ਼ਰ:
$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{a} + \overrightarrow{b}$$
.

इस योग नियम को सदिश योग का त्रिभुज नियम (triangle law of vector addition) कहा जाता है।

सदिशों का व्यवकलन (Subtraction of Vectors) — यदि \overrightarrow{b} एक सदिश है, तो $-\overrightarrow{b}$ एक ऐसा सदिश है जिसका परिमाण सदिश \overrightarrow{b} के समान है, परन्तु दिशा विपरीत है। अतः दो दिये हुए सदिशों \overrightarrow{a} तथा \overrightarrow{b} के व्यवकलन की क्रिया को \overrightarrow{a} में $(-\overrightarrow{b})$ जोड़ने की क्रिया मान सकते हैं। इस प्रकार हम $\overrightarrow{a} - \overrightarrow{b}$ को $\overrightarrow{a} + (-\overrightarrow{b})$ लिख सकते हैं।

I. दो सदिश \overrightarrow{a} तथा \overrightarrow{b} के लिए $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$

[Commutative]

प्रमाण : माना कि $\overrightarrow{OA} = \overrightarrow{a}$ तथा $\overrightarrow{AB} = \overrightarrow{b}$ है।

$$\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$$

यहाँ OC = तथा || AB और CB = तथा || OA.

$$\overrightarrow{OC} = \overrightarrow{AB} = \overrightarrow{b}$$
 और $\overrightarrow{CB} = \overrightarrow{OA} = \overrightarrow{a}$.

अब.
$$\overrightarrow{b} + \overrightarrow{a} = \overrightarrow{OC} + \overrightarrow{CB} = \overrightarrow{OB}$$

अब संबंध (1) तथा (2) से, $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$, i.e., सदिश योग क्रम विनिमय है।

- (i) $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$ में यदि $\overrightarrow{b} = \overrightarrow{0}$, तो $\overrightarrow{a} + \overrightarrow{0} = \overrightarrow{0} + \overrightarrow{a} = \overrightarrow{a}$.

 यहाँ शन्य मिश्रा (Zero Vector) $\overrightarrow{0}$ सिदेश योग के लिए योज्य सर्वसिमका (additive identity) कहलाता
- यहाँ शून्य सदिश (Zero Vector) $\overrightarrow{0}$ सदिश योग के लिए योज्य सर्वसिमका (additive identity) कहलाता है। (ii) यदि $\overrightarrow{b} = -\overrightarrow{a}$, तो $\overrightarrow{a} + (-\overrightarrow{a}) = (-\overrightarrow{a}) + \overrightarrow{a} = \overrightarrow{0}$. यहाँ सदिश $-\overrightarrow{a}$ सदिश \overrightarrow{a} का योज्य प्रतिलोम (additive inverse) कहलाता है।

II. तीन सदिश \overrightarrow{a} , \overrightarrow{b} तथा \overrightarrow{c} के लिए $(\overrightarrow{a}+\overrightarrow{b})+\overrightarrow{c}=\overrightarrow{a}+(\overrightarrow{b}+\overrightarrow{c})$ [Associative]

प्रमाण : माना कि $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{AB} = \overrightarrow{b}$ तथा $\overrightarrow{BC} = \overrightarrow{c}$ है।

$$\overrightarrow{b} + \overrightarrow{c} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
 तथा $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$ सदिश योग के त्रिभुज नियम से,

$$\overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{OA} + (\overrightarrow{AB} + \overrightarrow{BC})$$

$$= \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC}$$

$$= (\overrightarrow{OA} + \overrightarrow{AB}) + \overrightarrow{BC} = (\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c}.$$

इस प्रकार (a+b)+c=a+(b+c),

i.e., सदिश योग साहचर्य है।

एक अदिश से सदिश का गुणन (Multiplication of a Vector by a Scalar):

सदिश राशि a तथा अदिश राशि m का गुणन ma द्वारा सूचित (निर्दिष्ट) किया जाता है, जो एक सदिश राशि b जिसका परिमाण सदिश a के परिमाण का |m| गुणा है तथा दिशा वही है जो दिशा a की है यदि m धनात्मक है तथा यदि m ऋणात्मक है तो उसकी दिशा a की दिशा के विपरीत है।

खंड सूत्र (Section Formula)

माना कि मूल बिन्दु O के सापेक्ष बिन्दु A तथा B के स्थित सदिश क्रमशः a तथा b है,

अर्थात्
$$\overrightarrow{OA} = \overrightarrow{a}$$
 तथा $\overrightarrow{OB} = \overrightarrow{b}$.

$$\frac{AP}{PB} = \frac{m}{n}, \quad \Rightarrow \quad n \ AP = m \ PB,$$

$$n \overrightarrow{AP} = m \overrightarrow{PB}$$

$$\Rightarrow$$
 $n(\overrightarrow{OP} - \overrightarrow{OA}) = m(\overrightarrow{OB} - \overrightarrow{OP})$

$$(m+n)\overrightarrow{OP} = m\overrightarrow{OB} + n\overrightarrow{OA}$$

$$\overrightarrow{OP} = \frac{\overrightarrow{mOB} + \overrightarrow{nOA}}{m+n}$$

$$\rightarrow r = \frac{m \overrightarrow{b} + n \overrightarrow{a}}{m + n}$$

अक्षों की दिशा में मात्रक (इकाई) सदिश (Units Vectors along the axes):

 $|\overrightarrow{OA}| = 1$, $|\overrightarrow{OB}| = 1$ तथा $|\overrightarrow{OC}| = 1$.

सदिश \overrightarrow{OA} , \overrightarrow{OB} तथा \overrightarrow{OC} जिनमें से प्रत्येक का परिमाण 1 है क्रमशः x-अक्ष (OX), y-अक्ष (OY) तथा, z-अक्ष (OZ) की धन दिशा के अनुदिश (along positive direction) मात्रक (इकाई) सदिश (Unit Vectors) कहलाते हैं और इनको क्रमशः \hat{I} , \hat{J} तथा \hat{k} द्वारा निर्दिष्ट किया जाता है।

एक सदिश के घटक (Components of a Vector):

$$\overrightarrow{OL} = \overrightarrow{OA} + \overrightarrow{AL} = x \hat{i} + y \hat{j}$$

तथा
$$\overrightarrow{OP} = \overrightarrow{OL} + \overrightarrow{LP} = x \hat{i} - y \hat{j} + z \hat{k}$$

इस प्रकार O के सापेश P(x, y, z) का स्थित सदिश $\stackrel{\longrightarrow}{OP}$ (यानि r) = x \hat{l} + y \hat{f} + z \hat{k} के रूप में प्राप्त होता है।

रूप (component form) कहलाता है।

किसी सदिश का यह रूप घटक

$$\Im r^2$$
: $OP^2 = OL^2 + LP^2 = (OA^2 + AL^2) + LP^2$
 $\Rightarrow r^2 = x^2 + y^2 + z^2$, $\Rightarrow r = \sqrt{(x^2 + y^2 + z^2)}$

दो बिन्दुओं को मिलाने वाला सदिश (Vector joining two points):

माना कि दो बिन्दु $A(x_1, y_1, z_1)$ तथा $B(x_2, y_2, z_2)$ है, तो A को B से मिलाने वाला सदिश AB है। $\overrightarrow{OA} = x$, $\widehat{I} + y$, $\widehat{I} + z$, \widehat{I} तथा $\overrightarrow{OB} = x$, $\widehat{I} + y$, $\widehat{I} + z$, \widehat{I}

 $\overrightarrow{OA} = x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k}$ तथा $\overrightarrow{OB} = x_2 \hat{i} + y_2 \hat{j} + z_2 \hat{k}$ है. सदिश त्रिभुज नियम का प्रयोग करने पर $\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$= (x_2 \hat{i} + y_2 \hat{j} + z_2 \hat{k}) - (x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k})$$

$$\overrightarrow{AB} = (x_2 - x_1) \hat{i} + (y_2 - y_1) \hat{j} + (z_2 - z_1) \hat{k}$$

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

दो सदिशों का अदिश गुणनफल (Scalar (or dot) Product of two Vectors) :

दो शून्येतर सदिश $\stackrel{\rightarrow}{a}$ तथा $\stackrel{\rightarrow}{b}$, जिनके बीच का कोण θ है, के अदिश गुणनफल (Scalar Product) या बिन्दु गुणनफल (Dot product) को $\stackrel{\rightarrow}{a} \cdot \stackrel{\rightarrow}{b}$ द्वारा निर्दिष्ट किया जाता है और इसे अदिश राशि ($ab\cos\theta$) से परिभाषित किया जाता है। संकेतन में लिखा जाता है,

$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta = ab \cos \theta.$$

यदि $\stackrel{\rightarrow}{a=0}$ या $\stackrel{\rightarrow}{b=0}$, तो θ परिभाषित नहीं है और इस दशा में हम $\stackrel{\rightarrow}{a} \cdot \stackrel{\rightarrow}{b=0}$ परिभाषित करते हैं। विशिष्ट परिणाम (Special results):

(i) यदि
$$\theta = \pi/2$$
, तो $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos(\pi/2) = 0$,
i.e., $\overrightarrow{a} \cdot \overrightarrow{b} = 0 \Leftrightarrow \overrightarrow{a} \perp \overrightarrow{b}$

(ii) यदि
$$\theta = 0$$
, तो $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos 0 = |\overrightarrow{a}| |\overrightarrow{b}| = ab$

(iii) यदि
$$\theta = \pi$$
, तो $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \pi = -|\overrightarrow{a}| |\overrightarrow{b}| = -ab$

(iv)
$$\vec{i} \cdot \vec{i} = 1 = \vec{j} \cdot \vec{j} = \vec{k} \cdot \vec{k}$$
 तथा $\vec{i} \cdot \vec{j} = 0 = \vec{j} \cdot \vec{k} = \vec{k} \cdot \vec{i}$

	î	ĵ	k
î	1	0	0
ĵ	0	1	0
ƙ	0	0	1

एक सदिश का किसी रेखा पर प्रक्षेप (Projection of a vector on a line) :

माना कि एक सदिश a=AB एक दत्त दिष्ट रेखा (directed line) l के साथ बामावर्त दिशा (anticlockwise direction) में θ कोण बनाता है। अब a=AB बप्र रेखा l पर प्रक्षेप (Projection) एक सदिश, माना कि p है जिसका

परिमाण (magnitude) $|\stackrel{\rightarrow}{a}|\cos\theta$ यानि $|\stackrel{\rightarrow}{AB}|\cos\theta$ है

दो शून्येतर सदिश \overrightarrow{a} तथा \overrightarrow{b} , जिनके बीच का कोण θ है, के सदिश गुणनफल (vector product) या बज गुणनफल (cross product) को $\overrightarrow{a} \times \overrightarrow{b}$ द्वारा निर्दिष्ट किया जाता है और उसे सदिश राशि से परिभाषित किया जाता है जो \overrightarrow{a} तथा \overrightarrow{b} के तल पर लम्ब होता है एवं जिसका मापांक $|\overrightarrow{a}| |\overrightarrow{b}| \sin \theta$ होता है। $|\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}| |\overrightarrow{b}| \sin \theta$ जहाँ \overrightarrow{a} मात्रक सदिश है, जो \overrightarrow{a} तथा \overrightarrow{b} पर लम्ब है

विशिष्ट परिणाम (Special results):

(i) यदि
$$\theta = 0$$
 या π , तो $\sin \theta = 0$. i.e., $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$ $\iff \overrightarrow{a} \parallel \overrightarrow{b}$

(ii) यदि
$$\theta = \pi/2$$
, तो $\sin \theta = 1$, $\Rightarrow \overrightarrow{a} \times \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \hat{n}$

(iii) परस्पर लम्बवत् मात्रक सदिश
$$\hat{i}$$
, \hat{j} , \hat{k} के लिए,
$$\hat{i} \times \hat{i} = 0 = \hat{j} \times \hat{j} = \hat{k} \times \hat{k}. \quad \hat{i} \times \hat{j} = \hat{j} \times \hat{k} = \hat{i}, \quad \hat{k} \times \hat{i} = \hat{j},$$
$$\hat{j} \times \hat{i} = -\hat{k}, \quad \hat{k} \times \hat{j} = -\hat{i}, \quad \hat{i} \times \hat{k} = -\hat{j}.$$

Х	î	1	Ŕ
^	†o	£	- ∱
î	-£	†	ſ
Ê	f	-1	ŏ

घटक के रूप में अदिश-गुणनफल (Scalar Product in terms of Components)

इस प्रकार, यदि $\overrightarrow{a} = a_1 \ \widehat{i} + a_2 \ \widehat{j} + a_3 \ \widehat{k}$ तथा $\overrightarrow{b} = b_1 \ \widehat{i} + b_2 \ \widehat{j} + b_3 \ \widehat{k}$ तो $\overrightarrow{a} \cdot \overrightarrow{b} = a_1 \ b_1 + a_2 \ b_2 + a_3 \ b_3$.

घटक के रूप में सदिश गुणनफल (Vector product in terms of components)

यदि
$$\overrightarrow{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
 तथा $\overrightarrow{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$,
$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

सदिश गुणनफल के दो महत्त्वपूर्ण गुण (Two important properties of vector product):

I. दो सदिश $\stackrel{\rightarrow}{a}$ तथा $\stackrel{\rightarrow}{b}$ और एक अदिश m के लिए $(ma) \times \stackrel{\rightarrow}{b} = m (a \times b) = a \times (mb)$

II. तीन सदिश
$$\stackrel{\rightarrow}{a}$$
, $\stackrel{\rightarrow}{b}$ तथा $\stackrel{\rightarrow}{c}$ के लिए

$$\frac{\rightarrow}{a \times (b + c)} = \frac{\rightarrow}{a \times b} + \frac{\rightarrow}{a \times c}.$$

(वितरण गुण)

सदिश गुणनफल के ज्यामितीय निरूपण पर परिणाम (Results on geometrical interpretation of the vector product) :

- I. সিমুল জা ধ্রীসফল = $\frac{1}{2}$ | $\stackrel{\longrightarrow}{a}$ × $\stackrel{\longrightarrow}{b}$ |
- \prod . स∗ च∗ का (अदिश) क्षेत्रफल = $\begin{vmatrix} \rightarrow & \rightarrow \\ a \times b \end{vmatrix}$

उदाहरण (Example)

उदाहरण 1- In a ABC, if D, E and F are the mid-points of sides BC, CA and AB respectively, show that

$$\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \overrightarrow{0}$$

हल : $\triangle ABC$ में, हम जानते हैं कि $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$.

... (1)

माना कि भुजा BC, CA तथा AB के मध्य बिन्दु क्रमशः D, E तथा F है। बगल के आरेख से हम पाते हैं कि

$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD}, \ \overrightarrow{BE} = \overrightarrow{BC} + \overrightarrow{CE} \text{ TIMI } \overrightarrow{CF} = \overrightarrow{CA} + \overrightarrow{AF}$$

$$\Rightarrow \overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = (\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}) + (\overrightarrow{BD} + \overrightarrow{CE} + \overrightarrow{AF})$$

$$= \overrightarrow{0} + \frac{1}{2}(\overrightarrow{BC} + \overrightarrow{CA} + \overrightarrow{AB}) = \overrightarrow{0} + \overrightarrow{0} = \overrightarrow{0}.$$

उदाहरण 2— Find a vector whose magnitude is 3 units and which is perpendicular to $\vec{a} = 3 \hat{i} + \hat{j} - 4 \hat{k}$ and $\vec{b} = 6 \hat{i} + 5 \hat{j} - 2 \hat{k}$.

हल : यहाँ दत्त सदिश $\stackrel{\rightarrow}{a}=3\hat{i}+\hat{j}-4\hat{k}$ तथा $\stackrel{\rightarrow}{b}=6\hat{i}+5\hat{j}-2\hat{k}$ है।

$$\Rightarrow \overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & -4 \\ 6 & 5 & -2 \end{vmatrix}$$
$$= (-2 + 20) \hat{i} - (-6 + 24) \hat{j} + (15 - 6) \hat{k}$$

$$= 18\hat{i} - 18\hat{j} + 9\hat{k} = 9(2\hat{i} - 2\hat{j} + \hat{k})$$

$$\Rightarrow$$
 $|\overrightarrow{a} \times \overrightarrow{b}| = 9\sqrt{4+4+1} = 27.$

अब, $\stackrel{\rightarrow}{a}$ तथा $\stackrel{\rightarrow}{b}$ पर लम्ब मात्रक सदिश

$$\hat{n} = \frac{\overrightarrow{a} \times \overrightarrow{b}}{|\overrightarrow{a} \times \overrightarrow{b}|} = \frac{9(2 \hat{i} - 2 \hat{j} + \hat{k})}{27} = \frac{2 \hat{i} - 2 \hat{j} + \hat{k}}{3}$$

अतः, अपेक्षित मापांक 3 वाला सदिश = $3 \hat{n} = 2 \hat{i} - 2 \hat{j} + \hat{k}$.

उदाहरण 3-

If
$$a + 2b + 3c = 0$$
, show that

(i)
$$\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} = 2 (\overrightarrow{a} \times \overrightarrow{b})$$

(ii)
$$\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} = 6 (\overrightarrow{b} \times \overrightarrow{c})$$

हल : यहाँ $\overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c} = 0$

$$\Rightarrow \qquad \overrightarrow{a} \times (\overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}) = \overrightarrow{0}, \qquad \Rightarrow 2\overrightarrow{a} \times \overrightarrow{b} = 3\overrightarrow{c} \times \overrightarrow{a}$$

$$\overrightarrow{b} \times (\overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}) = \overrightarrow{0}, \qquad \Rightarrow 3\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b}$$
तथा
$$\overrightarrow{c} \times (\overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}) = \overrightarrow{0}, \qquad \Rightarrow \overrightarrow{c} \times \overrightarrow{a} = 2\overrightarrow{b} \times \overrightarrow{c}$$

अख, (i)
$$\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} = \overrightarrow{a} \times \overrightarrow{b} + \frac{1}{3} \overrightarrow{a} \times \overrightarrow{b} + \frac{2}{3} \overrightarrow{a} \times \overrightarrow{b} = 2 \overrightarrow{a} \times \overrightarrow{b}$$

(ii)
$$a \times b + b \times c + c \times a = 3b \times c + b \times c + 2b \times c = 6b \times c$$
.

उदाहरण 4— If $\overrightarrow{u} = \widehat{i} + \widehat{j}$, $\overrightarrow{v} = \widehat{i} - \widehat{j}$ and $\overrightarrow{w} = \widehat{i} + 2\widehat{j} + 3\widehat{k}$ and \widehat{n} is a unit vector such that $\overrightarrow{u} \cdot \widehat{n} = 0$ and $\overrightarrow{v} \cdot \widehat{n} = 0$, find $|\overrightarrow{w} \cdot \widehat{n}| = 0$.

हल : यहाँ $\overrightarrow{u} \cdot \widehat{n} = 0$ तथा $\overrightarrow{v} \cdot \widehat{n} = 0 \Rightarrow \widehat{n} \perp \overrightarrow{u}$ तथा $\widehat{n} \perp v, \Rightarrow \widehat{n} \perp \overrightarrow{u}$ तथा $\overrightarrow{v}, \Rightarrow \overrightarrow{n} = \frac{\overrightarrow{u} \times \overrightarrow{v}}{|\overrightarrow{u} \times \overrightarrow{v}|}$

फिर,
$$\overrightarrow{u} \times \overrightarrow{v} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 0 \\ 1 & -1 & 0 \end{vmatrix} = -2 \overrightarrow{k}, \Rightarrow |\overrightarrow{u} \times \overrightarrow{v}| = \sqrt{(-2)^2} = 2.$$

अतः
$$\hat{n} = -\frac{2\hat{k}}{2} = -\hat{k}$$
.

अब,
$$\overrightarrow{w} \cdot \hat{n} = (\hat{i} + 2\hat{j} + 3\hat{k}) \cdot (-\hat{k}) = -3, \Rightarrow |\overrightarrow{w} \cdot \hat{n}| = |-3| = 3.$$

अतः
$$\hat{n} = -\frac{2 \hat{k}}{2} = -\hat{k}$$
.

अब,
$$\overrightarrow{w} \cdot \widehat{n} = (\widehat{i} + 2\widehat{j} + 3\widehat{k}) \cdot (-\widehat{k}) = -3$$
, $\Rightarrow |\overrightarrow{w} \cdot \widehat{n}| = |-3| = 3$.