# Tentamen i Digital o Datorteknik för E, GU, IT, Z. 2006-04-18

Kortform av lösningar till tentan. För full poäng krävs fullständiga lösningar enligt typtentan

**1a)** R=X-Y utförs som R=X+Y<sub>1k</sub>+1;  $Y_{1komp} = 00110$ .

 $\begin{array}{c} & & 011111 \\ X & & 01101 \\ \hline +Y_{1komp} & +00110 \\ \hline =R & = 10100 \\ \end{array}$ 

**1b)** N=1; Z=0; V=1; 
$$C_5=0 \Rightarrow C=1$$

- **1c)** X=13 Y=25; R=20 (Kontroll: 13-25≠20); verkar rimligt ty C=1) C anger att resultatet är fel vid tal utan tecken
- 1d) X= 13; Y= -7; R= -12 (Kontroll:  $13-(-7) \ne -12$ ); verkar rimligt ty V=1) V anger fel vid tal med tecken.
- Jämn paritet. Kodordet CB₁6 innehåller ett udda antal ettor vilket innebär fel. Kodorden motsvarar texten "Kert". Svenskt namn kan vara "Kurt". ASCII för "e" = 1100101. ASCII för "u" = 1110101. Troligen är b₅ i kodordet ändrat.

## Upg 2

- **2a)** Enligt tabellen är  $g(xyz) \neq f(xyz)$
- **2b)** Se blåa boken del 1 exempel 5.13

2c)

| xyz | F |
|-----|---|
| 000 | 0 |
| 001 | 0 |
| 010 | 0 |
| 011 | 0 |
| 100 | 1 |
| 101 | 1 |
| 110 | 0 |
| 111 | 1 |
|     |   |

Disjunktiv minimal form:

$$f=(xy')+(xz)$$

Konjunktiv minimal form:

$$f=(x)(y'+z)$$

| xyz | y⊕z | ΧZ | f | (x'+z') | (y'+z) | g |
|-----|-----|----|---|---------|--------|---|
| 000 | 0   | 0  | 0 | 1       | 1      | 1 |
| 001 | 1   | 0  | 1 | 1       | 1      | 1 |
| 010 | 1   | 0  | 1 | 1       | 0      | 0 |
| 011 | 0   | 0  | 0 | 1       | 1      | 1 |
| 100 | 0   | 0  | 0 | 1       | 1      | 1 |
| 101 | 1   | 1  | 1 | 0       | 1      | 0 |
| 110 | 1   | 0  | 1 | 1       | 0      | 0 |
| 111 | 0   | 1  | 1 | 0       | 1      | 0 |

|    |   | yz |     |    |    |
|----|---|----|-----|----|----|
|    |   | 00 | 01  | 11 | 10 |
| 37 | 0 | 0  | 6   | þ  | 0  |
| Х  | 1 | (1 | (1) | 1) | 0  |
|    |   |    | _   |    |    |

### 2d) Rita nätet

Upg 3 a)

| xyz | F |
|-----|---|
| 000 | 0 |
| 001 | 0 |
| 010 | 0 |
| 011 | 1 |
| 100 | 1 |
| 101 | 1 |
| 110 | 1 |
| 111 | 0 |

Minimerat blir f=(xy')+(xz')+(x'yz)

Rita nätet med NAND/NAND-logik



Upg 3b)

| Detta<br>Tillst                                                        | Nästa<br>tillst                                                |              |                               |
|------------------------------------------------------------------------|----------------------------------------------------------------|--------------|-------------------------------|
| $\mathbf{q}_{\scriptscriptstyle{1}}\mathbf{q}_{\scriptscriptstyle{0}}$ | $\mathbf{q}_{_{1}}^{^{\dagger}}\mathbf{q}_{_{0}}^{^{\dagger}}$ | $J_{1}K_{1}$ | J <sub>o</sub> K <sub>o</sub> |
| 00                                                                     | 01                                                             | 0 -          | 1 -                           |
| 01                                                                     | 11                                                             | 1 -          | - 0                           |
| 10                                                                     | 0.0                                                            | - 1          | 0 -                           |
| 11                                                                     | 10                                                             | - 0          | - 1                           |









Rita figur med följande insignaler till vipporna

| T - ~                 | T - ~ /       |
|-----------------------|---------------|
| $\sigma_1 = \sigma_0$ | $O_0 = Q_1$   |
| TT - ,                |               |
| $K_1 = q_0'$          | $K_0 = q_1$   |
|                       | 0 <u>-1</u> 1 |

## Upg 4 4a)

| State nr | RTN-beskrivning                                             | Styrsignaler (=1)                                 |
|----------|-------------------------------------------------------------|---------------------------------------------------|
| 0        | $PC \rightarrow MA, PC+1 \rightarrow PC, S-1 \rightarrow S$ | OE <sub>PC</sub> , LD <sub>MA</sub> , IncPC, DecS |
| 1        | $M \rightarrow T$                                           | $MR, LD_T$                                        |
| 2        | S→MA                                                        | OE <sub>S</sub> , LD <sub>MA</sub>                |
| 3        | $PC \rightarrow M, T \rightarrow R$                         | $OE_{PC}$ , MW, $f_{1}$ , $LD_{R}$                |
| 4        | R→PC, NF                                                    | OE <sub>R</sub> , LD <sub>PC</sub> , NF           |

4b)

- 0) Förbered för läsning av adressoperand i minnet, Öka PC med ett, Minska stackpekaren
- 1) Läs adressoperanden från minnet till register T
- 2) Förbered för att spara PC
- 3) Spara PC på stacken, Flytta adressoperanden till R
- 4) Och vidare till PC, Ny Fetch

Instruktionen är JSR \$Adr

4c)

| State nr | RTN-beskrivning    | Styrsignaler (=1)                           |
|----------|--------------------|---------------------------------------------|
| 0        | PC→MA, PC+1→PC     | OE <sub>PC</sub> , LD <sub>MA</sub> , IncPC |
| 1        | $M \rightarrow MA$ | $MR, LD_{MA}$                               |
| 2        | M→A, NF            | MR, LD <sub>A</sub> , NF                    |

#### Upg 5

- **5a)** PC är 8 bitar  $2^8$ =256 adresser. Databussen är 8 bitar bred; 256\*8=2048. Ant bitar totalt= 2048.
- **5b)** Alla siffror = Hexsiffror! Först minskas X, och vi får 3 varv 17+16+15=42 som skrivs till adr F0
- **5c)** ADCA och DEC påverkar båda C-flaggan vilket verkar konstigt. Å andra sidan kan det verka fel att utnyttja ADCA i snurran.

```
Upg 6a
IRQINIT
         psha
         pshx
         movw
                    0,CLOCK
                                   nollställ kolckan
                   0,CLOCK+2
         movb
                    #100
          ldaa
                                 Avbrottsräknare
          staa
                   TEMP
          staa
                    IRQRES
                                 nollställ avbrottsvippan
          ldx
                    #IRQ
                                 avbrottsvektor
                   $fff2
                                 (alt 3ff2)
         stx
         cli
         pulx
         pula
         rts
TEMP
                               Avbrottsräknare (100 IRQ = 1s)
        rmb
                   1
IRQ
                    IRQRES
                                 nollställ avbrottsvippan
          sta
          dec
                   TMP
                                 100 avbrott?
         bne
                    IExit
                                   nej
                    #100
         ldaa
                                 Avbrottsräknare
          staa
                   TEMP
 * Öka sekunder
          ldaa
                    CLOCK+2
          adda
                    #1
         daa
                    CLOCK+2
          staa
                                 Hel minut?
          cmpa
                    #60
         bne
                    IExit
                                   nej
 * Öka minuter
                   CLOCK+2
          clr
                                   Nolla sekunder
          ldaa
                    CLOCK+1
          adda
                    #1
          daa
                    CLOCK+1
          staa
         cmpa
                    #60
                                 Hel timme?
                    IExit
         bne
                                   nej
 * Öka timmar
          clr
                   CLOCK+1
                                   Nolla minuter
                   CLOCK
          ldaa
          adda
                    #1
          daa
          staa
                   CLOCK
                    #24
                                  24 timmar?
          cmpa
                   IExit
         bne
                                    nej
         clr
                   CLOCK
IExit
        rti
                                   (Plus programhuvud och flödesplan)
```

## Upg 6b

| Start | LDX  | #SegCode | Pekare till tabell              |
|-------|------|----------|---------------------------------|
|       | LDAB | Inport   | Läs inporten                    |
|       | CMPB | #10      | Giltigt värde                   |
|       | BLO  | OK       | hoppa om JA                     |
|       | LDAA | #Error   | Skriv Error                     |
|       | STAA | Utport   |                                 |
|       | BRA  | End      |                                 |
| OK    | LDAA | B,X      | Översätt indata till Segmentkod |
|       | STAA | Utport   | och skriv ut                    |
| End   | BRA  | Start    |                                 |

# Upg 7 – för D-linjen

# 7. a) Synkront sekvensnät

**b**) Tillstånds- och utsignalstabellen

Ur kopplingen kan vi teckna de Booleska uttrycken för  $q_1^+$ ,  $q_0^+$  och u:

$$q_1^+ = x_2' x_1 x_0' q_0$$

$$q_0^+ = x_2' x_1 x_0$$

$$u = (x_2x_1'x_0'q_1)'$$

| Tillstånd |           | Insign                         | Nästa<br>tillst              | Utsign           |
|-----------|-----------|--------------------------------|------------------------------|------------------|
|           | $q_1 q_0$ | $x_2x_1x_0$                    | $q_1^{\dagger}q_0^{\dagger}$ | u                |
| $	au_0$   | 0 0       | 0 1 0<br>0 1 1<br>1 0 0<br>övr | 0 0<br>0 1<br>0 0<br>0 0     | 1<br>1<br>1      |
| $\tau_1$  | 0 1       | 0 1 0<br>0 1 1<br>1 0 0<br>övr | 1 0<br>0 1<br>0 0<br>0 0     | 1<br>1<br>1      |
| $\tau_2$  | 1 0       | 0 1 0<br>0 1 1<br>1 0 0<br>övr | 0 0<br>0 1<br>0 0<br>0 0     | 1<br>1<br>0<br>1 |
| $\tau_3$  | 1 1       | 0 1 0<br>0 1 1<br>1 0 0<br>övr | 1 0<br>0 1<br>0 0<br>0 0     | 1<br>1<br>0<br>1 |

## c) Funktionsbeskrivning i ASM-plan

