# Count Data

Rahul Telang

#### Count data

- How do you account for heterogeneity in your sample where the mean rate ( $\lambda$ ) is not same for all observations?
- If there are excessive zeros in the sample, how do you account for those?

#### Poisson and zero inflation

- What do to when count data has too many zeros?
  - Number of times a machine fails each month
  - Number of exoplanets discovered each year
  - The number of billionaires living in every single city in the world.



### Too many zeros

- Excessive zeros could be because some observations are always zero and may not follow Poisson data generation process, but they are part of the sample.
- There must be a mechanism to classify such observations and exclude them from analysis. Otherwise, the results will be erroneous.

#### Zero count

- However, observing y = 0 does not signal that it does not follow Poisson distribution and hence should be excluded. Recall P(y=0) is also possible when mean rate ( $\lambda > 0$ ).
- To accommodate zero counts, we need to allow the model to explicitly classify data (y = 0) which does not follow Poisson distribution.

#### Zero inflated model structure

• The model introduces two segments (regular - R or zero - Z)-



### Likelihood function

- Observations belong to zero segment (Z) with *probability*  $\varphi$  and belong to regular segment (R) with *probability* (1- $\varphi$ ).
- We write the likelihood of observing data  $y_i$ ,
  - if  $y_i = 0$ , then data can come from both segments with respective probabilities

• 
$$P(y_i=0) = \phi + (1-\phi) \frac{e^{-\lambda} * \lambda^0}{0!} = \phi + (1-\phi) e^{-\lambda}$$

• When we observe  $y_i > 0$ , it can only come from R segment

• 
$$P(y_i=1,...,n) = (1-\varphi) \frac{e^{-\lambda} * \lambda^{y_i}}{y_i!}$$

• As before  $\lambda$  is affected by covariates Z. So  $\lambda = \lambda_0 e^{\delta Z}$ 

### Zero inflated model

- We need a classification tool which can classify an observation belonging to zero segment.
- Probability φ can be written as a logistics distribution such that
  - $\varphi = \frac{e^{X\beta}}{1 + e^{X\beta}}$  where X is the covariates which are used for classifying segments and  $\beta$  are the estimates which capture the impact of X on classification.

• With these probabilities, one can readily write the likelihood function and maximize it to recover  $\beta$  and  $\delta$ .

### Zero inflated model

- Once we have φ in hand, we can fit Poisson model.
- Statsmodel provide ZeroinflatedPoisson() function to estimate the parameters in GLM models.



# An Example

- See the reading material on fish purchase.
- Take a different example: During camping trips people also may for fishing. We have data on number of fish caught by groups who go for camping trips.
  - data consists of camping trips taken by 250 groups of people:
- Variables in the data set
  - FISH\_COUNT: The number of fish that were caught. This will be our dependent variable y.
  - LIVE\_BAIT: A binary variable indicating whether live bait was used.
  - **CAMPER:** Whether the fishing group used a camper van.
  - **PERSONS:** Total number of people in the fishing group. Note that in some groups, none of them may have fished.
  - **CHILDREN:** The number of children in the camping group.

### Data

• No. of fish caught looks like this. Clearly there are lots of zeros



### Model

- We want to predict number of fish caught.
- Since this is count data, Poisson will be a good starting point. However, there are many of zeros, zero inflated python can be suitable choice.
- In a zero inflated model
  - We model the number of fish caught (using Poisson distribution)
  - The fish is caught only after campers go for fishing. We need a classifier that can classify campers who for fishing. We use logistic distribution.
- Fortunately, GLM provides a function which can model zero inflated Poisson
  - sm.ZeroInflatedPoisson(endog=y\_train, exog=X\_train, exog\_infl=X\_train, inflation='logit').fit()
- exog\_infl is the list of covariates for logistics model. We can define the covariates in this vector.

### Results

• It does not converge.
We specify maxiter=100
in the fit function when
we estimate the
equation. See next
slide.

|                                             | ZeroIntla          | tedPoisson     | Regression R      | esults         |                 |        |
|---------------------------------------------|--------------------|----------------|-------------------|----------------|-----------------|--------|
| =======================================     |                    | =======        | ========          | =======        |                 | ===    |
| Dep. Variable:                              | FISH COUNT         |                | No. Observations: |                | 205             |        |
| Model:                                      | ZeroInflate        | dPoisson       | Df Residuals:     |                | 200             |        |
| Method:                                     |                    | MLE            | Df Model:         |                | 4               |        |
| Date:                                       | Wed, 27            | Sep 2023       | Pseudo R-squ.:    |                | 0.3747          |        |
| Time:                                       |                    |                | Log-Likeliho      | od:            | -619.57         |        |
| converged:                                  | False              |                | LL-Null:          |                | -990.77         |        |
| Covariance Type:                            | nonrobust          |                | LLR p-value:      |                | 2.280e-159      |        |
| =======================================     |                    | =======        | ========          |                | _               |        |
|                                             | coef               | std err        | Z                 | P> z           | [0.025          | 0.975] |
| inflata Intercent                           | 0 2461             | 0.076          | 0.254             | 0 722          | 1 567           | 2 250  |
| inflate_Intercept                           |                    |                | 0.354             |                |                 |        |
| inflate_LIVE_BAIT                           |                    | 0.836          |                   |                |                 |        |
| inflate_CAMPER                              | -0.2632            | 0.400<br>0.329 |                   | 0.511<br>0.000 |                 |        |
| <pre>inflate_CHILDREN inflate PERSONS</pre> | 1.6484<br>-0.4904  | 0.209          |                   | 0.019          |                 |        |
| Intercept                                   | -0.4904<br>-2.2451 | 0.308          | -2.341<br>-7.282  | 0.000          |                 |        |
| •                                           |                    | 0.285          |                   | 0.000          |                 |        |
| LIVE_BAIT<br>CAMPER                         | 1.5296<br>0.6587   | 0.285          | 6.517             | 0.000          | 0.971<br>0.461  |        |
| CHILDREN                                    | -1.1055            | 0.094          |                   | 0.000          |                 |        |
| PERSONS                                     | -1.1055<br>0.8644  | 0.045          | 19.392            | 0.000          | -1.289<br>0.777 | 0.952  |
| CNIOCNIA                                    | 0.8044             | 0.045          | 13.332            | 0.000          | Ø.///           | 0.952  |

#### Results

- sm.ZeroInflatedPoisson(endog=y\_ train, exog=X\_train, exog\_infl=X\_train, inflation = 'logit'). fit(maxiter=100)
- For the logit part children and persons are significant. Campers with children are more likely to be classified as λ=0.
- One unit increase in children increases the log odds of λ=0 by 72% Similarly when one more person decreases the log odds of being classified as λ=0 by 12%
- For the count model, all covariates are significant and have the same interpretation as Poisson model. A unit increase in live bait increases the count by exp(1.70) =547%.

| ZeroInflatedPoisson Regression R            | CSGICS            |           |         |  |
|---------------------------------------------|-------------------|-----------|---------|--|
| Dep. Variable: FISH_COUNT No. Observat      | ========<br>ions: | 200       |         |  |
| Model: ZeroInflatedPoisson Df Residuals     | :                 | 195       |         |  |
| Method: MLE Df Model:                       |                   | 4         |         |  |
| Date: Wed, 27 Sep 2023 Pseudo R-squ         | .:                | 0.3276    |         |  |
| Time: 13:31:42 Log-Likeliho                 | od:               | -465.27   |         |  |
| converged: True LL-Null:                    |                   | -691.92   |         |  |
| Covariance Type: nonrobust LLR p-value:     |                   | 8.391e-97 |         |  |
|                                             | ========          |           | ======= |  |
| coef std err z                              | P> z              | [0.025    | 0.975]  |  |
|                                             |                   |           |         |  |
| inflate_Intercept 1.1474 1.021 1.124        | 0.261             | -0.853    | 3.148   |  |
| inflate_LIVE_BAIT 0.5275 0.890 0.593        |                   |           |         |  |
| <u>inflate_CAMPER</u> 0.394 -2.489          |                   |           |         |  |
| inflate_CHILDREN 1.7247 0.346 4.990         | 0.000             |           |         |  |
| <u>inflate_PERSONS</u> -0.8855 0.223 -3.979 | 0.000             |           |         |  |
| Intercept -1.7911 0.288 -6.226              | 0.000             | -2.355    |         |  |
| LIVE_BAIT 1.7026 0.247 6.881                | 0.000             | 1.218     | 2.188   |  |
| CAMPER 0.1928 0.100 1.923                   | 0.054             |           | 0.389   |  |
| CHILDREN -0.9827 0.102 -9.598               | 0.000             | -1.183    |         |  |
| PERSONS 0.7105 0.048 14.659                 | 0.000             | 0.616     | 0.806   |  |

# Individual predictions

- It does pretty well.
- zip\_predictions = zip\_training\_results.predict(X\_test,exog\_infl =X\_test, which = 'mean')
- One can output different predictions see here
- https://www.statsmodels.org/dev/generate d/statsmodels.discrete.count\_model.ZeroIn flatedPoisson.predict.html

#### Predicted versus actual counts using the ZIP model



# **Aggregate Predictions**

- We can aggregate the data in bins
- Here we have divided the fish count in 40 bins



# Heterogeneity

- In all the models we have studied (timing, count and even choice), we assume that all observation are homogeneous and come from same distribution. In Poisson model, we estimate one  $\lambda$  for all observations.
- However, observations are heterogeneous, and data could be come from two different Poisson distribution with parameters  $\lambda_1$  and  $\lambda_2$ .
- GLM focuses more on the estimating the impact of covariates ( $\beta$ ) than the parameter of the distribution
- Estimating two  $\lambda$  is non-trivial.

# Heterogeneity

- We can readily accommodate heterogeneity by assuming two segments (Seg1 and Seg2). Probability of observing data (outcome y) will be a weighted average of Seg1 and Seg2.
- The data comes from segment 1 with probability  $\phi$ , and Segment 2 with probability (1-  $\phi$ ).

• 
$$P(y_i) = (\varphi) \frac{e^{-\lambda_1 * \lambda_1 y_i}}{y_i!} + (1 - \varphi) \frac{e^{-\lambda_2 * \lambda_2 y_i}}{y_i!}$$

• One can readily write the likelihood expression and estimate parameters  $\lambda_1$  and  $\lambda_2$ . However, GLM does not provide a function to estimate  $\lambda_1$  and  $\lambda_2$ .

# Negative Binomial

- However, if we allow  $\lambda$  to be heterogeneous in a more general way, GLM offers a model
- $\bullet$   $\lambda$  is heterogeneous not in discrete segments but captured by continuous distribution (gamma distribution). The probability of observing a data

```
f^{m}(y) = f(y/\lambda)*f(\lambda) where f(y/\lambda) is Poisson distribution (y conditional on \lambda) f(\lambda) \text{ is a distribution of } \lambda \text{ (assumed to be gamma)}. Recall when we assume two segments, f(\lambda) is a discrete distribution of f(\lambda) = \phi \lambda_1 + (1-\phi) \lambda_2
```

• It turns out that mixture of Poisson  $f(y/\lambda)$  with gamma  $f(\lambda)$ , leads to a widely used negative binomial distribution.

# Negative Binomial

The probability distribution for NBD is

• 
$$P(y; p, r) = \frac{(y+r-1)!}{(y!(r-1)!)} p^r (1-p)^r$$

where y is number of failures, r is number of success and p is the probability of success.

- A critical assumption in Poisson model is that the mean  $\mu = \lambda$  is equal to the variance  $\sigma^2 = \lambda$ .
- Clearly in reality this assumption does not always hold true.
- When we let  $\lambda$  to be heterogeneous, we do not estimate Poisson distribution but instead use negative binomial distribution

#### **NBD**

- Statsmodel in python allows us to estimate NBD model like Poisson model.
  - sm.negativebinomial()
- Along with covariates, it also estimate a parameters α where variance
  - Variance = mean +  $\alpha$  mean<sup>2</sup>
- Higher value of  $\alpha$  signals how different mean is from the variance.
- Interpretation of estimates remain same as in Poisson. A Unit increase in X leads to  $\beta$  unit increase in log( $\lambda$ ).
- Going back to the billboard exposure problem we solved using Poisson

# Aggregate Predictions using Poisson

- We calculate P(x=0,1...).
- 48 users had 0 exposure. We can calculate P(x=0). Since we have 250 users in the sample, number of people who have 0 exposure is 250\*p(x=0).
- As one can see, the fit is not great. One possibility is that assumption of homogeneous  $\lambda$  in too restrictive.
- What if we allow the distribution as negative Binomial?



#### **NBD**

- NBD\_results = sm.negativebinomial("exposures~1" , df\_l).fit()
- Estimate for Intercept, which is  $\lambda_0$ , remains the same.
- Estimate for α is large and statistically significant. This suggest that mean ≠ variance.
- We want to make prediction using NBD. Recall the mean prediction is still going to be  $\lambda^{1.49} = 4.35$ .
- We can use negative binomial pmf to calculate the probability of each number of exposure

|                                                                   | Ne               | egativeBinomi           | ial Regres                                                 | sion Results              |                |                                                    |
|-------------------------------------------------------------------|------------------|-------------------------|------------------------------------------------------------|---------------------------|----------------|----------------------------------------------------|
| Dep. Variable Model: Method: Date: Time: converged: Covariance Ty | Ne<br>Si         | un, 01 Oct 20<br>11:18: | ial Df Ro<br>MLE Df Mo<br>23 Pseud<br>21 Log-<br>Due LL-No | do R-squ.:<br>Likelihood: |                | 250<br>249<br>0<br>6.499e-12<br>-649.69<br>-649.69 |
| ========                                                          | coef             | std err                 | Z                                                          | P> z                      | [0.025         | 0.975]                                             |
| Intercept<br>alpha                                                | 1.4943<br>1.0317 | 0.071<br>0.121          | 21.080<br>8.539                                            | 0.000<br>0.000            | 1.355<br>0.795 | 1.633<br>1.269                                     |

# NBD predictions

- NBD\_pmf = stats.nbinom.pmf(x\_range, n, p)
- One needs to convert estimates intercept (which is mean) mu and alpha into n and p.
- mu, alpha = NBD\_results.params
- It can be shown that
- n = 1/alphap = 1/(1+alpha\*exp(mu))

NBD\_pmf = stats.nbinom.pmf(x\_range, n, p)



#### NBD for Fish count

- We estimated zero inflated Poisson model for number of fish caught and see evidence of excessive zeros.
- What if we estimate NBD model? How does the prediction look?

- We use the function
  - sm.NegativeBinomial(endog=y\_train, exog=X\_train).fit()
- We are using NBD instead of Poisson. Going back to our example

| Dep. Variable: |         | FISH_COUNT       |         | No. Observations: |           | ıs:     | 194    |
|----------------|---------|------------------|---------|-------------------|-----------|---------|--------|
| Model:         |         | NegativeBinomial |         | Df Residuals:     |           | ls:     | 189    |
| Me             | ethod:  | MLE              |         | Df Model:         |           | el:     | 4      |
|                | Date: N | 1on, 02 O        | ct 2023 | Pseu              | ıdo R-sq  | u.:     | 0.1805 |
|                | Time:   | 10:46:14         |         | Log-Likelihood:   |           | od: -:  | 294.54 |
| converged:     |         | True             |         | LL-Null:          |           | ıll: -  | 359.44 |
| Covariance     | Туре:   | nor              | robust  | LI                | LR p-valu | ie: 4.3 | 18e-27 |
|                | coef    | std err          | Z       | P> z              | [0.025    | 0.975]  |        |
| Intercept      | -3.0022 | 0.546            | -5.503  | 0.000             | -4.071    | -1.933  |        |
| LIVE_BAIT      | 1.1990  | 0.474            | 2.531   | 0.011             | 0.271     | 2.127   |        |
| CAMPER         | 1.1848  | 0.259            | 4.572   | 0.000             | 0.677     | 1.693   |        |
| CHILDREN       | -2.1643 | 0.225            | -9.623  | 0.000             | -2.605    | -1.724  |        |
| PERSONS        | 1.0317  | 0.118            | 8.747   | 0.000             | 0.800     | 1.263   |        |
| alpha          | 1.5294  | 0.290            | 5.277   | 0.000             | 0.961     | 2.097   |        |
|                |         |                  |         |                   |           |         |        |

For Statsmodel, Python used this pdf for NBD.

$$P(y|\alpha, \beta_0, \beta_1, ...) = \frac{\Gamma(1/\alpha + y)}{\Gamma(1/\alpha)y!} \left( \frac{1}{\alpha \exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ...) + 1} \right)^{1/\alpha} \left( \frac{\alpha \exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ...)}{\alpha \exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ...) + 1} \right)^{y}$$

#### **Estimates**

- $\alpha > 0$  suggest that variance is bigger than the mean.
- $\alpha > 1.52$  and significant,  $\alpha > 0$  suggests that variance is different than mean
  - $Var(\lambda) = mean + \alpha mean^2$
- The interpretation remains the same as in Poisson. A unit change in X will impact  $\beta$  unit change in log(y) all else constant. So, a unit change in LIVE\_BAIT changes the log of fish count by 1.19 or one can tale the exponent and hence by  $(e^{1.19})\% = 328\%$
- Intercept is the mean of Poisson with other covariates held at zero so  $\lambda = \exp(-3.0) = 0.05$ .

### What about Zero inflated NBD?

- In a zero inflated model, expected number of outcome (say visits) is
  - E(visits) = P(visits=0) \*0 + P(visits>0)\*E(visits)
- In Zero-inflated Poisson model, we calculate the probability of visits=0 and find the expected number E(.) based on Poisson distribution. We can do the same thing using NBD.
- In zero inflated NBD, we follow the same process and outline NBD as the distribution.

#### Zero inflated NBD

• In Python sm.ZeroInflatedNegativeBinomialP(endog=y\_train, exog=X\_train, exog\_infl=X\_train, inflation='logit').fit(maxiter=100)

|                   | coef    | std err | Z      | P> z  | [0.025   | 0.975]  |
|-------------------|---------|---------|--------|-------|----------|---------|
| inflate_Intercept | 1.6393  | 9.288   | 0.177  | 0.860 | -16.564  | 19.843  |
| inflate_LIVE_BAIT | 0.5837  | 7.440   | 0.078  | 0.937 | -13.998  | 15.165  |
| inflate_CAMPER    | -1.8998 | 3.152   | -0.603 | 0.547 | -8.077   | 4.277   |
| inflate_CHILDREN  | -8.9837 | 316.294 | -0.028 | 0.977 | -628.908 | 610.941 |
| inflate_PERSONS   | -2.4099 | 3.521   | -0.684 | 0.494 | -9.310   | 4.491   |
| Intercept         | -2.7423 | 0.584   | -4.698 | 0.000 | -3.886   | -1.598  |
| LIVE_BAIT         | 1.4577  | 0.461   | 3.159  | 0.002 | 0.553    | 2.362   |
| CAMPER            | 0.1864  | 0.282   | 0.661  | 0.508 | -0.366   | 0.739   |
| CHILDREN          | -1.8049 | 0.205   | -8.822 | 0.000 | -2.206   | -1.404  |
| PERSONS           | 1.0972  | 0.153   | 7.177  | 0.000 | 0.798    | 1.397   |
| alpha             | 1.8402  | 0.365   | 5.042  | 0.000 | 1.125    | 2.55    |

#### Predictions

- These are different commands one can use to see various output
- https://www.statsmodels.org/dev/generated/statsmodels.discrete.co unt model.ZeroInflatedPoisson.html

### **Predictions**

Predicted versus actual counts using the ZI-NBD model



### Summary

- For any count data, Poisson is the starting distribution. In GLM Poisson fits in the exponential family.
- GLM estimate the impact of covariates and parameters of distribution.
- Many times, there are too many zeros and we use Logit to classify zeros and positive numbers before applying Poisson distribution.
- Poisson imposes the restriction that mean=variance. We use Negative binomial distribution to relax this assumption.