Algorithms: Greedy Algorithms

Amotz Bar-Noy

CUNY

Spring 2012

Greedy Algorithms

- Greedy algorithms make decisions that "seem" to be the best following some greedy criteria.
- In Off-Line problems:
 - The whole input is known in advance.
 - Possible to do some preprocessing of the input.
 - Decisions are irrevocable.
- In Real-Time and On-Line problems:
 - The present cannot change the past.
 - The present cannot rely on the un-known future.

How and When to use Greedy Algorithms?

- Initial solution: Establish trivial solutions for a problem of a small size. Usually n = 0 or n = 1.
- Top bottom procedure: For a problem of size n, look for a greedy decision that reduces the size of the problem to some k < n and then, apply recursion.
- Bottom up procedure: Construct the solution for a problem of size n based on some greedy criteria applied on the solutions to the problems of size k = 1, ..., n 1.

The Coin Changing Problem

- Input:
 - Integer coin denominations $d_n > \cdots > d_2 > d_1 = 1$.
 - An integer amount to pay: A.
- Output: Number of coins n_i for each denomination d_i to get the exact amount.
 - $A = n_n d_n + n_{n-1} d_{n-1} + n_2 d_2 + n_1 d_1$.
- Goal: Minimize total number of coins.
 - $\mathcal{N} = n_n + \cdots + n_2 + n_1$.
- Remark: There is always a solution with $\mathcal{N} = \mathcal{A}$ since $d_1 = 1$.

Examples

- USA: $d_6 = 100$, $d_5 = 50$, $d_4 = 25$, $d_3 = 10$, $d_2 = 5$, $d_1 = 1$.
 - $A = 73 = 2 \cdot 25 + 2 \cdot 10 + 3 \cdot 1$.
 - $\mathcal{N} = 2 + 2 + 3 = 7$.

- Old British: $d_3 = 240$, $d_2 = 20$, $d_1 = 1$.
 - $A = 307 = 1 \cdot 240 + 3 \cdot 20 + 7 \cdot 1$.
 - $\mathcal{N} = 1 + 3 + 7 = 11$.

Greedy Solution

- Idea: Use the largest possible denomination and update A.
- Implementation:

Coin-Changing
$$(d_n > \cdots > d_2 > d_1 = 1)$$

for $i = n$ downto 1
 $n_i = \lfloor \mathcal{A}/d_i \rfloor$
 $\mathcal{A} = \mathcal{A} \mod d_i = \mathcal{A} - n_i d_i$
Return $(\mathcal{N} = n_n + \cdots + n_2 + n_1)$

- Correctness: $A = n_n d_n + n_{n-1} d_{n-1} + n_2 d_2 + n_1 d_1$.
- Complexity: $\Theta(n)$ division and mod integer operations.

Optimality

• Greedy is optimal for the USA system.

Optimality

- **Greedy** is optimal for the USA system.
- A coin system for which Greedy is not optimal:
 - $d_3 = 4$, $d_2 = 3$, $d_1 = 1$ and A = 6:
 - Greedy: $6 = 1 \cdot 4 + 2 \cdot 1 \Rightarrow \mathcal{N} = 3$.
 - Optimal: $6 = 2 \cdot 3 \Rightarrow \mathcal{N} = 2$.

Optimality

- Greedy is optimal for the USA system.
- A coin system for which Greedy is not optimal:
 - $d_3 = 4$, $d_2 = 3$, $d_1 = 1$ and A = 6:
 - Greedy: $6 = 1 \cdot 4 + 2 \cdot 1 \Rightarrow \mathcal{N} = 3$.
 - Optimal: $6 = 2 \cdot 3 \Rightarrow \mathcal{N} = 2$.
- A coin system for which Greedy is very "bad":
 - $d_3 = x + 1$, $d_2 = x$, $d_1 = 1$ and A = 2x:
 - Greedy: $2x = 1 \cdot (x+1) + (x-1) \cdot 1 \implies \mathcal{N} = x$.
 - Optimal: $2x = 2 \cdot x \Rightarrow \mathcal{N} = 2$.

Efficiency

- Optimal solution: Check all possible combinations.
 - Not a polynomial time algorithm.
- Another optimal solution: Polynomial in both n and A.
 - Not a strongly polynomial time algorithm.
- Objective:
 - Find a solution that is polynomial only in *n*.
 - Probably impossible!?

The Knapsack Problem

Input:

- A thief enters a store and finds n items I_1, \ldots, I_n .
- The value of item I_i is $v(I_i)$ and its weight is $w(I_i)$.
 - Both are positive integers.
- The thief can carry at most weight W.
- The thief either takes all of item I_i or doesn't take item I_i .

The Knapsack Problem

Input:

- A thief enters a store and finds n items I_1, \ldots, I_n .
- The value of item I_i is $v(I_i)$ and its weight is $w(I_i)$.
 - Both are positive integers.
- The thief can carry at most weight W.
- The thief either takes all of item I_i or doesn't take item I_i .

- Goal: Carry items with maximum total value.
 - Which are these items?
 - What is their total value?

A General Greedy Scheme

- Order the items according to some greedy criterion.
 - Assume this order is J_1, J_2, \ldots, J_n .
 - Assume J_1 is the most desired item and J_n is the least desired item.
- If J_1 is not too heavy $(w(J_1) \leq W)$:
 - Take item J_1 .
 - Continue recursively with J_2, J_3, \ldots, J_n and updated maximum weight $W w(J_1)$.
- If J_1 is too heavy $(w(J_1) > W)$:
 - **Ignore** item J_1 .
 - Continue recursively with J_2, J_3, \ldots, J_n and the same maximum weight W.

A General Greedy Scheme – Implementation

```
Non-Recursive Knapsack(I_1, \ldots, I_n, w(\cdot), v(\cdot), W)
Let J_1, \ldots, J_n be the new order on the items.
S = \emptyset (* the set of items the thief takes *)
V = 0 (* the value of these items *)
for i = 1 to n
if w(J_i) \leq W then
S = S \cup \{J_i\}
V = V + v(J_i)
W = W - w(J_i)
Return(S, V)
```

Greedy Criteria

- Greedy criterion I: Order the items by their value from the most expensive to the cheapest.
- Greedy criterion II: Order the items by their weight from the lightest to the heaviest.
- Greedy criterion III: Order the items by their ratio of value over weight from the largest ratio to the smallest ratio.

The three criteria are not optimal

- Counter example for Greedy-by-Value and Greedy-by-Ratio:
 - 3 items and maximum weight is W = 10. Weights and values are: $I_1 = \langle 6, 10 \rangle$, $I_2 = \langle 5, 6 \rangle$, and $I_3 = \langle 5, 6 \rangle$.
 - Optimal takes items l_2 and l_3 for a profit of 12.
 - Greedy-by-Value or Greedy-by-Ratio take only item I₁ for a profit of 10.

The three criteria are not optimal

Counter example for Greedy-by-Value and Greedy-by-Ratio:

- 3 items and maximum weight is W = 10. Weights and values are: $I_1 = \langle 6, 10 \rangle$, $I_2 = \langle 5, 6 \rangle$, and $I_3 = \langle 5, 6 \rangle$.
- Optimal takes items l_2 and l_3 for a profit of 12.
- Greedy-by-Value or Greedy-by-Ratio take only item I₁ for a profit of 10.

Counter example for Greedy-by-Weight:

- 3 items and maximum weight is W = 10. Weights and values are: $I_1 = \langle 6, 13 \rangle$, $I_2 = \langle 5, 6 \rangle$, and $I_3 = \langle 5, 6 \rangle$.
- Optimal takes only item I_1 for a profit of 13.
- Greedy-by-Weight takes items l_2 and l_3 for a profit of 12.

Very Bad Counter Examples for Criteria I and II

Counter example for Greedy-by-Value:

- *n* items and maximum weight is *W*. Weights and values are: $I_1 = \langle W, 2 \rangle$, $I_2 = \langle 1, 1 \rangle$, ..., $I_3 = \langle 1, 1 \rangle$.
- Optimal takes items l_2, \ldots, l_n for a profit of n-1.
- Greedy-by-Value takes only item I₁ for a profit of 2.
- The ratio is (n-1)/2.

Very Bad Counter Examples for Criteria I and II

Counter example for Greedy-by-Value:

- *n* items and maximum weight is *W*. Weights and values are: $I_1 = \langle W, 2 \rangle$, $I_2 = \langle 1, 1 \rangle$, ..., $I_3 = \langle 1, 1 \rangle$.
- Optimal takes items l_2, \ldots, l_n for a profit of n-1.
- Greedy-by-Value takes only item I₁ for a profit of 2.
- The ratio is (n-1)/2.

Counter example for Greedy-by-Weight:

- 2 items and maximum weight is 2. Weights and values are: $I_1 = \langle 1, 1 \rangle$ and $I_2 = \langle 2, x \rangle$ for a very large x.
- Optimal takes item l_2 for a profit of x.
- Greedy-by-Weight takes item I₁ for a profit of 1.
- The ratio is x.

A Very Bad Counter Example for Criterion III

Counter example for Greedy-by-Ratio:

- 2 items and maximum weight is W. Weights and values are: $I_1 = \langle 1, 2 \rangle$ and $I_2 = \langle W, W \rangle$.
- Optimal takes items I_2 for a profit of W.
- Greedy-by-Ratio takes item I_1 for a profit of 2.
- The ratio is almost $\frac{W}{2}$.

A Very Bad Counter Example for Criterion III

Counter example for Greedy-by-Ratio:

- 2 items and maximum weight is W. Weights and values are: $I_1 = \langle 1, 2 \rangle$ and $I_2 = \langle W, W \rangle$.
- Optimal takes items l₂ for a profit of W.
- Greedy-by-Ratio takes item I₁ for a profit of 2.
- The ratio is almost $\frac{W}{2}$.

• A 1/2 guaranteed approximation algorithm:

- Greedy-by-Ratio guarantees half of the profit of Optimal with a tweak.
- Select either the output of greedy or the one item with the maximum value whose weight is at most W.

The Fractional Knapsack Problem

- The thief can take portions of items.
- If the thief takes a fraction $0 \le p_i \le 1$ of item l_i :
 - Its value is $p_i v(l_i)$.
 - Its weight is $p_i w(I_i)$.

The Fractional Knapsack Problem

- The thief can take portions of items.
- If the thief takes a fraction $0 \le p_i \le 1$ of item l_i :
 - Its value is $p_i v(I_i)$.
 - Its weight is $p_i w(I_i)$.

Theorem: Greedy-by-Ratio is optimal.

Proof

- Assume that Greedy-by-Ratio fails on the input I₁,..., I_n and the weight W.
- Let the portions taken by **Optimal** be p_1, \ldots, p_n .
 - $p_i = 1$: all of item I_i is taken.
 - $p_i = 0$: none of item I_i is taken.
 - $0 < p_i < 1$: some but not all of item I_i is taken.
- Since **Greedy-by-Ratio** fails, there exist I_i and I_j such that:
 - $\frac{v(l_i)}{w(l_i)} > \frac{v(l_j)}{w(l_i)}$ and $p_i < 1$ and $p_j > 0$.
- Because each unit of weight of item I_i has more value than each unit of weight of item I_j , it is more profitable to take more of item I_i and less of item I_i .
- A contradiction to the optimality of Optimal.

The 0 – 1 Knapsack Problem

- Optimal solution: Check all possible sets of items.
 - Not a polynomial time algorithm.
- Another optimal solution: Polynomial in both n and W.
 - Not a strongly polynomial time algorithm.
- Objective:
 - Find a solution that is polynomial only in *n*.
 - Probably impossible!?
 - However, Greedy-by-Ratio produces "good" solutions.

The Activity-Selection Problem

- Input:
 - Activities A_1, \ldots, A_n that need the service of a common resource.
 - Activity A_i is associated with a time interval $[s_i, f_i)$ for $s_i < f_i$.
 - A_i needs the service from time s_i until just before time f_i .
- Mutual Exclusion: The resource serves at most one activity at any time.
- **Definition:** A_i and A_j are compatible if either $f_i \leq s_j$ or $f_j \leq s_i$.
- Goal: Find a maximum size set of compatible activities.

Example

• Input: 3 activities $A_1 = [1, 4), A_2 = [3, 6), A_3 = [5, 8).$

Example

- Input: 3 activities $A_1 = [1,4), A_2 = [3,6), A_3 = [5,8).$
- A graphical representation:

Example

- Input: 3 activities $A_1 = [1,4), A_2 = [3,6), A_3 = [5,8).$
- A graphical representation:

• The best solution:

Static vs. Dynamic Greedy

- Static: The greedy criterion is determined in advance and cannot be changed during the execution of the algorithm.
- Dynamic: The greedy criterion may be modified during the execution of the algorithm based on prior decisions.
- Remark: A static criterion is also a dynamic criterion.

A General Static Greedy Scheme

- Maintain a set S of the activities that have been selected so far.
- Initially, $S = \emptyset$ and at the end, S is an optimal solution.
- Order the activities following some greedy criterion and consider the activities according to this order.
- Let A be the current considered activity. If A is compatible with all the activities in S:
 - Then add A to S.
 - Else ignore A.
- Continue until there are no activities to consider

A General Dynamic Greedy Scheme

- Maintain two sets of activities:
 - S those that have been selected so far.
 - \bullet \mathcal{R} those that can still be selected.
 - Initially, $S = \emptyset$ and $R = \{A_1, \dots, A_n\}$.
 - At the end, S is an **optimal** solution and $R = \emptyset$.
- Select a "good" activity A from \mathcal{R} , following some greedy criterion.
- Add A to S.
- ullet Delete from ${\mathcal R}$ the activities that are not compatible with activity ${\it A}$.
- Continue until \mathcal{R} is empty.

Greedy Criteria

Four criteria:

- Prefer short activities.
- Prefer activities intersecting few other activities.
- Prefer activities that start earlier.
- Prefer activities that terminate earlier.
- Optimality: Only the fourth criterion is optimal.

Remarks:

- All four criteria are static in their nature.
- The second criterion has a dynamic version.

An Optimal Greedy Solution

```
Preprocessing (A_1, \ldots, A_n)
  Sort the activities according to their finish time
  Let this order be A_1, \ldots, A_n (*i < j \Rightarrow f_i \le f_i *)
Greedy-Activity-Selector(A_1, \ldots, A_n)
  S = \{A_1\} (* A_1 terminates the earliest *)
  j = 1 (* A_i is the current selected activity *)
  for i = 2 to n (* scan all the activities *)
     if s_i \geq f_i (* check compatibility *)
     then (* select A_i that is compatible with S *)
        S = S \cup \{A_i\}
       i = i
     else (* A_i is not compatible *)
  Return(S)
```

Correctness and Complexity

Correctness: By definition.

Complexity:

- The sorting can be done in $O(n \log n)$ time.
- There are O(1) operations per each activity.
- All together: $O(n \log n) + n \cdot O(1) = O(n \log n)$ time.

Example - Input

Example - Output

Optimality

- ullet Let ${\mathcal T}$ be an optimal set of activities.
- Transform \mathcal{T} to \mathcal{S} preserving the size of \mathcal{T} .
- Let A_1, \ldots, A_n be ordered by their *finish* time.
- Let A_i be the first activity that is in \mathcal{T} and not in \mathcal{S} .
- All the activities in \mathcal{T} that finish before A_i are also in \mathcal{S} .

Optimality

- $A_i \notin S \Rightarrow \exists A_j \in S$ that is not in T in which j < i.
- A_j is compatible with all the activities in \mathcal{T} that finish before it since they are all in \mathcal{S} .
- A_j is compatible with all the activities in \mathcal{T} that finish after A_i since it finishes before A_i .
- Therefore, $\mathcal{T} \cup \{A_j\} \setminus \{A_i\}$ is a solution with the same size as \mathcal{T} and hence optimal.
- Continue this way until \mathcal{T} becomes \mathcal{S} .

Another optimal solution with 4 activities.

A third optimal solution: after the first transformation.

The greedy solution: after the second transformation.

Huffman Codes

Input:

- An alphabet of n symbols a_1, \ldots, a_n .
- A frequency f_i for each symbol a_i :
 - $\sum_{i=1}^{n} f_i = 1$.
- A File \mathcal{F} containing L symbols from the alphabet.
 - a_i appears exactly $n_i = f_i \cdot L$ times in \mathcal{F} .

Huffman Codes

Input:

- An alphabet of n symbols a_1, \ldots, a_n .
- A frequency f_i for each symbol a_i :

•
$$\sum_{i=1}^{n} f_i = 1$$
.

- A File \mathcal{F} containing L symbols from the alphabet.
 - a_i appears exactly $n_i = f_i \cdot L$ times in \mathcal{F} .

Output:

- For symbol a_i , $1 \le i \le n$: A binary codeword w_i of length ℓ_i .
- A compressed (encoded) binary file \mathcal{F}' of \mathcal{F} .

Huffman Codes - Goals

- L' the length of \mathcal{F}' should be minimal.
- An efficient algorithm to find the n codewords.
 - Good polynomial running time: $(O(n \log n))$.
- Efficient encoding and decoding of the file
 - Should be done in O(B)-time.
 - *B* is the size of the original file in bits.

- A file with the alphabet a, b, c, d, e, f containing 100 symbols.
 - $n_a = 45$, $n_b = 13$, $n_c = 12$, $n_d = 16$, $n_e = 9$, $n_f = 5$.

Code I:

- $w_a = 000$, $w_b = 001$, $w_c = 010$, $w_d = 011$, $w_e = 100$, $w_f = 101$.
- Length of encoded file is 300.

Code II:

- $w_a = 0$, $w_b = 101$, $w_c = 100$, $w_d = 111$, $w_e = 1101$, $w_f = 1100$.
- Length of encoded file is 224
 - $\bullet \ 1 \cdot 45 + 3 \cdot 13 + 3 \cdot 12 + 3 \cdot 16 + 4 \cdot 9 + 4 \cdot 5 = 224.$
- Remark: Code II is optimal, $\approx 25\%$ better than code I.

Prefix Free Codes

- Definition: A prefix free code is a code in which no codeword is a prefix of another codeword.
- Examples: Both code I and code II are prefix free.
- Proposition: A code in which the lengths of all the codewords is the same is a prefix free code.
- Theorem: Always exists an optimal prefix free code.
- Encoding: "Easy" using tables.
- Decoding: By scanning the coded text once.

Binary Tree Representation for Prefix Free Codes

- A code can be represented by a rooted and ordered binary tree with n leaves.
- Each leaf stores a codeword.
- The codeword corresponding to a leaf is defined by the unique path from the root to the leaf:
 - 0 for going left.
 - 1 for going right.

Example: Code II

- A leaf is represented by the symbol and its frequency.
- An internal node is labelled by the sum of the frequencies of all the leaves in its subtree.

Binary Tree Representation

 Proposition: The binary tree represents a prefix free code since a path to a leaf cannot be a prefix of any other path.

Complexity Parameters:

- f(x) the frequency of a leaf x.
- $\ell(x)$ the length of the path from the root to x.
- The cost of the tree is: $B(T) = \sum_{\text{a leaf } x} (f(x) \cdot \ell(x))$.
 - B(T) is the average length of a codeword.
- The length of the encoded file: $\sum_{a \text{ leaf } x} (n(x) \cdot \ell(x))$.

A Structural Claim

• Lemma: Let *T* be a tree that represents an optimal code. Then each internal node in the tree has two children.

A Structural Claim

• Lemma: Let *T* be a tree that represents an optimal code. Then each internal node in the tree has two children.

- Proof:
 - Let z be an internal node with only one child y.
 - There are 2 cases:
 - Case I: z is the root.
 - Case II: z is not the root.

Case I

• z is the root: Make y the new root.

Case II

 z is not a root and p is its parent: Bypass z by making y the child of p.

Proof

- In both cases:
 - $\ell(x)$ of all the leaves in the sub-tree rooted at z is reduced by 1.
 - These are the only changes.
 - As a result the cost of the tree is improved.
 - A contradiction to the optimality of the code.

Example: Code I

$$B(T) = 300$$

Example: Improving Code I

$$B(T) = 3 \cdot 86 + 2 \cdot 14 = 286$$

Huffman Algorithm

- Construct a coding tree bottom-up.
- Maintain a forest with n leaves in all of its trees. Each tree is optimal for its leaves.
- Initially, there are *n* singleton trees in the forest. Each tree is a leaf.
- The frequency of a tree is the sum of the frequencies of all of its leaves.
- Greedy step:
 - Find the two trees with the minimum frequencies.
 - Combine them together into one tree.
 - The frequency of the new tree is the sum of the frequencies of the two combined trees.
- Terminate when there is only one tree in the forest.

.....

.....

25 (55) (30) (d.16) (e.5) (e.9)

.....

Huffman Code Animation

http://www.cs.auckland.ac.nz/~jmor159/PLDS210/huffman.html

Correctness

- Huffman algorithm generates a binary tree with *n* leaves.
- A binary tree represents a prefix free code.

Implementation – Data Structure

- A forest of binary trees.
 - Initially, the forest contains *n* singleton trees.
 - At the end, the forest contains one tree.
- The frequencies of the trees in the forest are maintained in a priority queue Q.
 - Initially, the queue contains the *n* original frequencies.
 - At the end, the queue contains one frequency which is the sum of all original frequencies.

Implementation - Procedure

```
Huffman(\langle a_1, f_1 \rangle, \ldots, \langle a_n, f_n \rangle)
  Build-Queue(\{f_1,\ldots,f_n\},Q)
 for i = 1 to n - 1 (* the combination loop *)
   z = Allocate-Node() (* creating a new root *)
   x = left(z) = Extract-Min(Q)
     (* lightest tree is the left sub-tree *)
   y = right(z) = Extract-Min(Q)
     (* second lightest tree is the right sub-tree *)
   f(z) = f(x) + f(y) (* frequency of new root *)
   Insert(Q, f(z)) (* inserting the new root to the queue *)
 return Extract-Min(Q) (* last tree is the Huffman code *)
```

Complexity

- Implement the priority queue with a Binary Heap.
- The complexity of **Build-Queue** is O(n).
- The complexity of **Extract-Min** and **Insert** is $O(\log n)$.
- The loop is executed O(n) times.
- The complexity of all the **Extract-Min** and the **Insert** operations is $O(n \log n)$.
- The total complexity is: O(n log n).

Optimality - First Lemma

- Let A be an alphabet.
- Let x and y be the two symbols in \mathcal{A} with the smallest frequencies.
- Then, there exists an optimal tree in which:
 - x and y are adjacent leaves (differ only in their last bit).
 - x and y are the farthest leaves from the root.

Proof

- Let z and w be adjacent leaves in an optimal tree that are the farthest from the root.
- Exchanging z and w with x and y yields a tree with a smaller or equal cost.

Optimality - Second Lemma

- Let T be an optimal tree for the alphabet A.
- Let x, y be adjacent leaves in T and let z be their parent.
- Let A' be A with a new symbol z replacing x and y with frequency: f(z) = f(x) + f(y).
- Let T' be the tree T without the leaves x and y and with z as a new leaf.
- Then T' is an optimal tree for the alphabet A'.

Proof

- Let T'' be an optimal tree with smaller cost than T'.
- Replacing z in T" with the two leaves x and y creates a tree with a smaller cost than T.
- A contradiction to the optimality of *T*.

Optimality

• Theorem: Huffman code is optimal.

Proof by Induction:

- The first lemma implies that the first greedy step is a first step towards an optimal solution.
- The second lemma justifies the inductive steps, applying again and again the first lemma.