Nombre de la asignatura: Termodinámica

Línea de trabajo: Básica

Tiempo de dedicación del estudiante a las actividades de:

DOC (48) - TIS (20) - TPS (100) - 168 horas totales - 6 Créditos

DOC: Docencia; TIS: Trabajo independiente significativo; TPS: Trabajo profesional supervisado

6. Historial de la asignatura.

Fechas revisión	Participantes	Observaciones, cambios o
/actualización	Faitidipantes	justificación
Marzo 2017	Dr. Guillermo Efrén Ovando Chacón	Análisis y conformación del
Instituto Tecnológico	MC. Jorge Arturo Mendoza Sosa	programa. Metodología del
de Veracruz		desarrollo del curso,
		prácticas propuestas

7. Pre-requisitos y correquisitos.

Pre-requisito:

Conceptos básicos de termodinámica y transferencia de calor

8. Objetivo de la asignatura.

Estudiar los principios básicos de la termodinámica enunciados en la Primera y Segunda leyes a través del análisis de energía, con el fin de facilitar la comprensión y su aplicación en problemas de procesos industriales así como en el diseño y optimización de equipos o sistemas.

9. Aportación al perfil del graduado.

Al finalizar el curso el alumno poseerá las bases y herramientas necesarias para analizar diversos ciclos así como el modelo utilizado para la elaboración de los mismos y será capaz de considerar procesos en transitorios. Conocerá las bases para el cálculo de balances de energía y energía. Desarrollará habilidades que le permitirán profundizar por cuenta propia en temas relacionados con termodinámica.

10. Contenido temático.

Unidad	Temas	Subtemas
I		1.1. CONCEPTOS FUNDAMENTALES DE
	1 TRABAJO Y CALOR	TERMODINÁMICA
		1.2.DEFINICION DE TRABAJO
		1.3. TRABAJO DE FRONTERA EN UN SISTEMA
		COMPRESIBLE SIMPLE
II	2 ENERGÍA Y PRIMERA LEY	2.1. SISTEMAS, PROPIEDADES Y ESTADOS
		TERMODINÁMICOS.
		2.2. CONSERVACIÓN Y BALANCE DE
		PROPIEDADES EN SISTEMAS ABIERTOS
		(ANÁLISIS DE VOLÚMENES DE CONTROL).
		2.3. INTERACCIONES DE TRABAJO Y DE CALOR.
III	3 ENTROPÍA Y SEGUNDA LEY	3.1. SEGUNDA LEY DE LA TERMODINÁMICA PARA
		SISTEMAS CERRADOS.
		3.2. DESIGUALDAD DE CLAUSIUS.
""		3.3. ENTROPÍA.
		3.4. SEGUNDA LEY DE LA TERMODINÁMICA PARA
		SISTEMAS ABIERTOS.
		4.1. TRABAJO DISPONIBLE PERDIDO (PÉRDIDA
IV		DE ENERGÍA).
	4 ENERGÍA Y LAS LEYES DE LA TERMODINÁMICA COMBINADAS. BALANCES.	4.2. CICLOS (POTENCIA, REFRIGERACIÓN,
		BOMBAS DE CALOR).
		4.3. PROCESOS SIN FLUJO Y PROCESOS CON
		FLUJO PERMANENTE.
		4.4. TERMODINÁMICA DE TIEMPO FINITO:
		MECANISMOS DE GENERACIÓN DE ENTROPÍA Y
		DESTRUCCIÓN DE ENERGÍA

		5.1. MECÁNICA DE TERMOFLUIDOS EN ESTADO
V		NO PERMANENTE.
		5.2. TIEMPO DE RELAJAMIENTO.
		5.3. FLUJOS PROPAGATIVOS Y GLOBALES.
	5 TERMODINÁMICA DE	5.4. FLUJO COMPRESIBLE EN DUCTOS.
	PROCESOS TRANSITORIOS	5.5. CARGA Y DESCARGA DE RECIPIENTES
		RIGIDOS.
		5.6. FLUJO ACELERADO EN UNA TUBERÍA.
		5.7. EXPULSIÓN DE UN LÍQUIDO DESDE UN
		TUBO.
VI		6.1. MODELADO DE PROCESOS Y EQUIPOS.
		6.2. SIMULACIÓN DE SISTEMAS.
		6.3. ANALISIS DIMENSIONAL Y DE ESCALAS.
	DISEÑO TÉRMICO	6.4. DINÁMICA DE SISTEMAS TÉRMICOS.
		6.5. IRREVERSIBILIDADES EN COMPETENCIA
		(FLUJO INTERNO Y TRANSFERENCIA DE
		CALOR).
		6.6. SELECCIÓN ÓPTIMA DE EQUIPO DE FLUJO.
VII		7.1. METODOLOGÍA DE ANÁLISIS EXERGÉTICO
	CONCEPTO DE EXERGÍA	EN PROCESOS INDUSTRIALES.
		7.2. BALANCE DE EXERGÍA EN PROCESOS
		INDUCTORAL FO

11. Metodología de desarrollo del curso.

- El profesor analizará y discutirá con los alumnos los conceptos fundamentales del curso, reforzándolos con ejercicios propuestos y dinámicas de grupo.
- El contenido del curso será teórico.
- Fuera de clase, el afianzamiento de los temas puede ser abordado por medio de tutorías con el profesor.

12. Sugerencias de evaluación.

- Constará de seis evaluaciones parciales y una evaluación final.
- Los alumnos reforzarán el aprendizaje con exposiciones y ejercicios teóricos de los temas vistos en clase.

A través de la participación en clase con la discusión de artículos relacionados con el tema.
Informe y análisis de la visita industrial.

13. Bibliografía y Software de apoyo.

- Bejan, A. Advanced engineering thermodynamics, 3rd ed., Wiley, Hoboken, NJ, 2006.
- Moody, F.J. Introduction to unsteady thermofluid mechanics, Wiley, New York, 1990.
- Burghardt, M.D. Ingeniería termodinámica, 2ª ed., Harla, México, 1984.
- Stoecker, W.F. Design of thermal systems, 3rd ed., McGraw-Hill, New York, 1989.
- Boehm, R.F. Design analysis of thermal systems, Wiley, New York, 1987.
- Van Wylen, G.J. y Sonntang R.E. Fundamentos de termodinámica, 2a ed., Limusa-Wiley, México, 1999.
- Moran, M.J. y Shapiro, H.N. Fundamentals of engineering thermodynamics, 6th ed., Wiley, Hoboken, NJ, 2008.
- Yunus A. Çengel & Michael A. Boles, Termodinámica, Mc Graw-Hill, 2003
- Incropera, Frank P. & Hewitt, David P. 1996. Fundamentos de transferencia de calor. Prentice-Hall.

14. Actividades propuestas.

Se deberán realizar las actividades correspondientes para cada tema.

15. Nombre y firma de los catedráticos responsables.

Dr. Guillermo Efren Ovando Chacon	
MC. Jorge Arturo Mendoza Sosa	