4. Дифференциальные уравнения

4.1 Общие понятия

1* Постановка задачи

 $Pr.\ 1.\$ Скорость распада радия в текущий момент времени t пропорциональна его наличному количеству Q. Требуется найти закон распада радия:

$$Q = Q(t)$$
,

если в начальный момент времени $t_0 = 0$ количество равнялось Q_0 Коэффициент пропорциональности k найден эмпирически.

Решение. Скорость распада.

$$\dfrac{dQ(t)}{dt}=kQ$$
 - ищем $Q(t)$ $dQ(t)=kQdt$ $\dfrac{dQ(t)}{Q}$ = $\underbrace{kdt}_{\text{содержит только }t}$ - «разделение переменных»

содержит только Q

Внесем все в дифференциал:

$$d\ln Q = kdt = dkt$$

$$d(\ln Q - kt) = 0$$

Нашли семейство первообразных:

$$\ln Q - kt = \tilde{C}$$

$$\ln Q = \tilde{C} + kt$$

$$O = e^{\tilde{C} + kt} \stackrel{e^{\tilde{C} = C}}{===} Ce^{kt}$$

По смыслу k < 0, так как Q уменьшается. Обозначим n = -k, n > 0

Тогда
$$Q(t) = Ce^{-nt}$$

Получили вид закона распада. Выбор константы С определен Н.У. (начальными условиями):

$$t_0 = 0$$
 $Q(t_0) = Q_0 = C$
Тогда, закон - $Q^*(t) = Q_0 e^{-nt}$

Nota. Оба закона: общий $Q(t)=Ce^{-nt}$ и частный $Q^*(t)=Q_0e^{-nt}$ - являются решением дифференциального уравнения:

$$Q'(t) = kQ$$
 (явный вид) $d \ln Q(t) - k dt = 0$ (в дифференциалах)

 $Pr.\ 2$ Тело массой m брошено вверх с начальной скоростью v_0 . Нужно найти закон движения y=y(t). Сопротивлением воздуха пренебречь.

По II закону Ньютона:

$$\overrightarrow{ma} = \overrightarrow{mg}$$

$$\overrightarrow{a} = \overrightarrow{g}$$

$$\frac{a-g}{a} = \overrightarrow{q}$$

$$a = \boxed{\frac{d^2y}{dt^2} = -g} - ДУ$$

$$\underline{Peшение.} \quad y''(t) = -g$$

$$y'(t) = -\int gdt = -gt + C_1$$

$$y(t) = \int (-gt + C_1)dt = \boxed{-\frac{gt^2}{2} + C_1t + C_2 = y(t)} - \text{общий закон}$$

$$C_{1,2} \text{ ищем из H.У.}$$
 В задаче нет условия для $y(t_0)$. Возьмем $y_0 = y(t_0) = 0$ Кроме того $y'(t_0) = v(t_0) = v_0$ Таким образом,
$$\begin{cases} y(t_0) = v_0 \\ y'(t_0) = v_0 \end{cases}$$
 Найдем C_1 : $y'(t_0) = y(0) = -gt_0 + C_1 = v_0$ $C_1 = v_0$ Найдем C_2 : $y(t_0) = y(0) = -\frac{gt^2}{2} + C_1t + C_2 = C_2 = 0$ Частный закон:
$$\boxed{y^*(t) = v_0t - \frac{gt^2}{2}}$$

2* Основные определения

 $Def\ 1.\$ Уравнение $F(x,y(x),y'(x),\ldots,y^{(n)}(x))=0$ - называется обыкновенным ДУ n-ого порядка (*)

$$Ex. Q' + nQ = 0$$
 $y'' + g = 0$

 $Def\ 2.$ Решением ДУ (*) называется функция y(x), которая при подстановке обращает (*) в тождество

Def 2'. Если y(x) имеет неявное задание $\Phi(x,y(x))=0$, то $\Phi(x,y)$ называется интегралом уравнения (*)

Nota. Разделяют общее решение ДУ - семейство функций, при этом каждое из них - решение; и частное решение - отдельная функция

Def 3. Кривая с уравнением y = y(x) или $\Phi(x, y(x)) = 0$ называют интегральной кривой

$$Def~4. egin{cases} y(x_0) = y_0 \ dots & - ext{система начальных условий (**)} \ y^{(n-1)}(x_0) = y_0^{(n-1)} \end{cases}$$
 Тогда $egin{cases} (*) \ (**) \end{cases}$ - задача Коши (ЗК)

Nota. Задача Коши может не иметь решений или иметь множество решений

$$Th. y' = f(x, y) - ДУ$$

$$M_0(x_0,y_0) \in D$$
 - точка, принадлежащая ОДЗ

Если
$$f(x,y)$$
 и $\frac{\partial f}{\partial y}$ непрерывны в M_0 , то ЗК

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

имеет единственное решение $\varphi(x,y) = 0$, удовлетворяющее Н.У. (без док-ва)

Nota. Преобразуем ДУ:
$$\underbrace{y'-f(x,y)}_{F(x,y(x),y'(x))} = 0$$

См. определения обыкн. и особых точек

Def 5. Точки, в которых нарушаются условия теоремы называются особыми, а решения, у которых каждая точка особая, называются особыми

Def 6. Общим решением ДУ (*) называется $y = f(x, C_1, C_2, \dots, C_n)$

Nota. $\Phi(x,y(x),C_1,\ldots,C_n)=0$ - общий интеграл

Def7. Решением (*) с определенными значениями C_1^*,\dots,C_n^* называется частным

Nota. Форма записи:

Разрешенное относительно производной y' = f(x, y)

Сведем к виду:
$$\frac{dy}{dx} = \frac{P(x,y)}{-Q(x,y)} \Longrightarrow -Q(x,y)dy = P(x,y)dx \Longrightarrow$$

P(x,y)dx + Q(x,y)dy = 0 - форма в дифференциалах