Análisis de Algoritmos y Estructura de Datos

Complejidad de algoritmos

Prof. Violeta Chang C

Semestre 2 – 2023

Complejidad de algoritmos

• Contenidos:

- Eficacia vs eficiencia de un algoritmo
- Análisis de complejidad
- Complejidad de algoritmos iterativos
- Complejidad de algoritmos recursivos

• Objetivos:

- Describir conceptos de complejidad algorítmica
- Explicar mecanismos de cálculo de complejidad de algoritmos iterativos y recursivos
- Calcular complejidad de algoritmos iterativos y recursivos

Ruta de la sesión

Eficiencia VS eficacia

Complejidad algorítmica

Cálculo de complejidad de algoritmos iterativos

Cálculo de complejidad de algoritmos recursivos

Contexto

- Características a considerar al construir algoritmos
 - Eficacia
 - RAE:
 "Capacidad de lograr el efecto que se desea o se espera."
 - El algoritmo hace correctamente lo que debe hacer
 - Eficiencia
 - RAE:
 "Capacidad de disponer de alguien o de algo para conseguir un efecto determinado"
 - El algoritmo usa la menor cantidad de recursos para cumplir con su tarea

¿Por qué construir algoritmos eficientes?

• El tiempo de ejecución y el espacio en memoria son recursos limitados.

- ¿Cómo se puede medir la eficiencia de un algoritmo?
 - Tiempo
 - Número de instrucciones
 - Cantidad de memoria usada
 - "Dificultad de un conjunto de instrucciones"
- ¿Es el tiempo una buena medida para medir la eficiencia de un algoritmo? ¿Qué factores influyen en este tiempo?

¿Se pueden comparar?

- Dados dos algoritmos A y B que resuelven un mismo problema
 - Ambos son eficaces
 - Los algoritmos fueron ejecutados en **dos máquinas distintas** y A fue más rápido que B.
 - Los algoritmos fueron ejecutados en la misma máquina y A (en C) fue más rápido que B (en JAVA)
 - Los algoritmos fueron ejecutados en la misma máquina y en el mismo lenguaje, pero por dos **programadores distintos**, y A fue más rápido que B
 - Los algoritmos fueron ejecutados en la misma máquina, en el mismo lenguaje, por el mismo programador, pero usando dos **compiladores distintos** y A fue más rápido que B.
 - Todo lo anterior igual (máquina, lenguaje, programador, compilador, etc, etc, etc) pero usando dos **instancias del problema distintas**, y A fue más rápido que B.

- Contabilizaremos la cantidad de instrucciones/pasos que realiza un algoritmo para dar una solución a una instancia del problema
- Para n = 5, ¿cuántas instrucciones se realizan en cada algoritmo?
- ¿y si n aumenta?

```
Alg1(num n)
acum ← 0
PARA i ← 0 HASTA n
acum ← acum + i
ESCRIBIR(acum)
```

```
Alg3(num n)

acum \leftarrow (n*(n+1))/2

ESCRIBIR(acum)
```

Contando instrucciones: Ejemplo 1

• Sumar los elementos de un arreglo A de n posiciones

```
sumaArreglo(arreglo A): num
```

- 1. $acum \leftarrow 0$
- 2. $n \leftarrow largoArreglo(A)$
- 3. para i← 1 hasta n
- 4. $acum \leftarrow acum + A[i]$
- 5. devolver(acum)

Contando instrucciones: Ejemplo 1

• Sumar los elementos de un arreglo A de n posiciones sumaArreglo(arreglo A): num

```
    acum ← 0
    n ← largoArreglo(A)
    para i← 1 hasta n
    acum ← acum+A[i]
    devolver(acum)
    linstrucción
    1 instrucción
    1 instrucción
```

Total instrucciones =
$$2 + n*2 + 1$$

= $3 + 2*n$

9. devolver(C)

Contando instrucciones: Ejemplo 2

Multiplicar dos matrices cuadradas de orden n

```
multMat(matriz A, matriz B): matriz
1. acum ← 0
2. n ← numFilas(A) ...numColumnas(A) o numFilas(B) o numColumnas(B)
3. para i← 1 hasta n
4.  para j← 1 hasta n
5.  acum ← 0
6.  para k ← 1 hasta n
7.  acum ← acum + A[i][k]*B[k][j]
8.  C[i][j] ← acum
```


Contando instrucciones: Ejemplo 2

• Multiplicar dos matrices de orden n multMat(matriz A, matriz B): matriz

```
1. acum \leftarrow 0
                                                                1 instrucción
2. n \leftarrow numFilas(A)
                                                                 1 instrucción
3. para i← 1 hasta n
       para j← 1 hasta n
5.
            acum ← 0
                                                                 1 instrucción
6.
            para k← 1 hasta n
                acum \leftarrow acum + A[i][k]*B[k][j]
                                                                 3 instrucciones
8.
            C[i][j] \leftarrow acum
                                                                 1 instrucción
   devolver( C )
                                                                 1 instrucción
```

Multiplicación, suma y asignación

Total instrucciones =
$$2 + n*(n*(1 + n*3 + 1)) + 1$$

= $3 + 2n^2 + 3n^3$

Contando instrucciones

Cantidad de operaciones que se deben realizar, dependiendo de algún parámetro de entrada Crecimiento del tiempo de ejecución de un algoritmo con respecto a alguna variable de entrada

La unidad de T(n) ("tiempo" de un algoritmo) puede ser pensada en términos de número de pasos a ser ejecutados en un computador ideal

Complejidad: Computador ideal

- El análisis de realiza sobre una máquina hipotética ideal (RAM: Random Access Machine)
 - Las instrucciones se ejecutan de manera secuencial
 - No hay operaciones concurrentes
 - Cada operación tiene un costo asociado
- Esta definición simplifica el análisis y permite estimar adecuadamente la complejidad de tiempo de un algoritmo

Complejidad algorítmica

- Se entiende como la cantidad de recursos necesarios para ejecutar un algoritmo
 - Tiempo (pasos): complejidad de tiempo
 - Memoria: complejidad de espacio
- Complejidad de tiempo:
 - cómo crece el tiempo de ejecución del algoritmo con respecto tamaño n de la entrada: función en términos del tamaño de la entrada n -> f(n)
 - Tiempo de un algoritmo: T(n) representa el número de pasos a ser ejecutados en un computador ideal
 - Orden de complejidad de un algoritmo: O() representa la cota superior de T(n)

Orden de complejidad

- Análisis del peor caso:
 - Se considera a T(n) como el peor caso de una ejecución, el tiempo máximo que puede alcanzar para una entrada n
 - Entrega una función del tiempo que puede ser muy pesimista
- Análisis del caso promedio:
 - T_{avg}(n) entrega el tiempo promedio sobre todos los valores de n
 - Dificil de calcular
 - Se puede estimar sobre una muestra de datos, pero puede ser costoso
- El análisis se realizará siempre pensando en el <u>peor caso</u>, salvo que se indique algo diferente

• Todo algoritmo posee un nombre, entradas (y salidas)

```
NOMBRE_ALGORITMO(entradas): SALIDA Talg(n)
```

- Tipos de instrucciones
 - Asignación: ←
 - Comparación: =, <>, >, <, >=, <=
 - Comentarios: ...
 - Aritméticas: +, -, *, / , MÓDULO
 - Lógicas: Y,O,NO
 - Input/Output:

```
LEER(valor)
ESCRIBIR(valor)
```


Instrucciones de control

SI condición ENTONCES

InstruccionesV

SINO

InstruccionesF

$$T_{IF} = T_{cond} + max(T_{V}, T_{F})$$

• Instrucciones de control

PARA varControl← valorInicio HASTA valorFin Instrucciones

MIENTRAS condición HACER
Instrucciones

$$T_{CICLO} = \sum_{inicio}^{fin} (Tco_{nd} + Tin_s)$$

• Retorno:

DEVOLVER(valor)

• Llamada a procedimiento:

[variable ←] algoritmoX (ent1, ent2, ...)

T alg

Cálculo de complejidad: ejemplo

• Tomando el ejemplo particular de la suma de elementos de un arreglo

```
sumaArreglo(arreglo A): num

acum ← 0

n← largoArreglo(A)

para i← 1 hasta n

acum← acum+A[i]

devolver(acum)
```


Cálculo de complejidad: ejemplo

• Tomando el ejemplo particular de la suma de elementos de un arreglo

```
sumaArreglo(arreglo A): num
acum ← 0
n← largoArreglo(A)
para i← 1 hasta n
acum← acum+A[i]
devolver(acum)
```

Cálculo de complejidad: ejemplo

• Tomando el ejemplo particular de la suma de elementos de un arreglo

```
sumaArreglo(arreglo A): num

acum ← 0

n← largoArreglo(A)

para i← 1 hasta n

acum← acum+A[i]

devolver(acum)
```

```
c
c
3c (suma, asignación, comparación)
2c (suma, asignación)
c
```

$$T(n) = 2c + \sum (3c + 2c) + c$$

$$T(n) = 3c + 5cn$$

$$T(n) \le 8cn \dots por lo tanto O(n)$$

Tipos de orden de complejidad

La función de O(f(n)) indica qué tan bueno es un algoritmo para distintos tamaños de entrada

Tiempo	Orden	Tipo
T(n)=c	O(1)	Constante
$T(n)=c\log_2 n$	$O(\log_2 n)$	Orden logarítmico
T(n)=c n	O(n)	Orden lineal
$T(n)=c n^2$	$O(n^2)$	Orden cuadrático
$T(n)=c n^3$	$O(n^3)$	Orden cúbico
$T(n)=c 2^n$	O(2 ⁿ)	Orden exponencial
T(n)=c n!	O(n!)	Orden factorial

Análisis de algoritmos

Complejidad Algorítmica

Complejidad Algorítmica

Complejidad Algorítmica

Complejidad Algorítmica

Complejidad Algorítmica

Complejidad Algorítmica

Complejidad Algorítmica

Complejidad de algoritmos iterativos

- Se debe conocer el tiempo de ejecución teórico de cada instrucción (modelo RAM teórico)
- Anotar la suma de todos los tiempos (T(n))
- Resolver y acotar la función (f(n))
- Determinar orden de complejidad O(f(n))

• Un algoritmo recursivo posee la siguiente estructura general

• La complejidad de estos algoritmos se expresa como una ecuación de recurrencia de la forma:

$$T(n) = \begin{cases} c & c & cond \ t\'{e}rmino \\ T(n \ modificado) + c, & otro \ caso \end{cases}$$

• La función recurrente para el factorial es:

$$Factorial(n) = \begin{cases} n \cdot (n-1)! & n > 1 \\ 1 & n = 0 \end{cases}$$

• La función recurrente para el factorial es:

$$Factorial(n) = \begin{cases} n \cdot (n-1)! & si \ n > 1 \\ 1 & si \ n \le 1 \end{cases}$$

```
factorial(num n):num
si n = 1 entonces
   devolver(1)
valor← n*factorial(n-1)
devolver(valor)
```

• La función recurrente para el factorial es:

$$Factorial(n) = \begin{cases} n \cdot (n-1)! & si \ n > 1 \\ 1 & si \ n \le 1 \end{cases}$$

```
factorial(num n):num
si n = 1 entonces
   devolver(1)
valor← n*factorial(n-1)
devolver(valor)
```

• La ecuación de recurrencia para el tiempo de ejecución es:

$$T(n) = \begin{cases} c_1, & \text{si } n \le 1 \\ T(n-1) + c_2, & \text{si } n > 1 \end{cases}$$

• La función recurrente para el factorial es:

$$Factorial(n) = \begin{cases} n \cdot (n-1)! & si \ n > 1 \\ 1 & si \ n \le 1 \end{cases}$$

```
factorial(num n):num
si n = 1 entonces
   devolver(1)
valor← n*factorial(n-1)
devolver(valor)
```

• La ecuación de recurrencia para el tiempo de ejecución es:

$$T(n) = \begin{cases} c_1, & si \ n \le 1 \\ T(n-1) + c_2, & si \ n > 1 \end{cases}$$

• La función recurrente para el factorial es:

$$Factorial(n) = \begin{cases} n \cdot (n-1)! & \text{si } n > 1 \\ 1 & \text{si } n \le 1 \end{cases}$$

```
factorial(num n):num
si n = 1 entonces
    devolver(1)
valor← n*factorial(n-1)
devolver(valor)
```

• La ecuación de recurrencia para el tiempo de ejecución es:

$$T(n) = \begin{cases} c_1, & \text{si } n \le 1 \\ T(n-1) + c_2, & \text{si } n > 1 \end{cases}$$

- Solución por reducción:
 - Reducción por sustracción:
 - se realizan *a* llamadas recursivas
 - tamaño del problema se reduce una cantidad constante b en cada llamada
 - Operaciones parte no recursiva tienen O(n^k)

•
$$T(n) = aT(n-b) + O(n^k)$$
, $si n \ge b$

$$O(\quad) = \begin{cases} n^k & \text{si } a < 1\\ n^{k+1} & \text{si } a = 1\\ \frac{n}{a^{\overline{b}}} & \text{si } a > 1 \end{cases}$$

INGENIERÍA Complejidad algoritmos recursivos

Solución por reducción:

- Reducción por división:
 - se realizan **a** llamadas recursivas
 - tamaño del problema se reduce en una proporción b (n/b) en cada llamada
 - Operaciones parte no recursiva tienen O(n^k)

•
$$T(n) = aT\left(\frac{n}{b}\right) + O(n^k)$$
, $si \ n \ge b$

$$O(\) = \begin{cases} n^k & \text{si } a < b^k \\ n^k \log n & \text{si } a = b^k \\ n^{\log_b a} & b \text{ si } a > b^k \end{cases}$$

$$Factorial(n) = \begin{cases} n \cdot (n-1)! & si \ n > 1 \\ 1 & si \ n \le 1 \end{cases}$$

$$T(n) = \begin{cases} c_1, & \text{si } n \le 1 \\ T(n-1) + c_2, & \text{si } n > 1 \end{cases}$$

```
factorial(num n):num
si n = 1 entonces
    devolver(1)
valor← n*factorial(n-1)
devolver(valor)
```

INGENIERÍA Complejidad de algoritmos recursivos

$$Factorial(n) = \begin{cases} n \cdot (n-1)! & si \ n > 1 \\ 1 & si \ n \le 1 \end{cases}$$

$$T(n) = \begin{cases} c_1, & \text{si } n \le 1 \\ T(n-1) + c_2, & \text{si } n > 1 \end{cases}$$

$$T(n)=$$
 2c $n=1$
 $4c+T(n-1)$ otro caso

```
factorial(num n):num
si n = 1 entonces
  devolver(1)
valor← n*factorial(n-1)
devolver(valor)
```

INGENIERÍA Complejidad de algoritmos recursivos

$$Factorial(n) = \begin{cases} n \cdot (n-1)! & si \ n > 1 \\ 1 & si \ n \le 1 \end{cases}$$

$$T(n) = \begin{cases} c_1, & \text{si } n \le 1 \\ T(n-1) + c_2, & \text{si } n > 1 \end{cases}$$

$$T(n)=$$
 2c $n=1$
4c+ $T(n-1)$ otro caso

```
factorial(num n):num
si n = 1 entonces
  devolver(1)
valor← n*factorial(n-1)
devolver(valor)
```

$$T(n) = aT(n-b) + O(n^k) \text{ si } n \ge b$$

$$O(\quad) = \begin{cases} n^k & \text{si } a < 1\\ n^{k+1} & \text{si } a = 1\\ \frac{n}{a^{\overline{b}}} & \text{si } a > 1 \end{cases}$$

$$Factorial(n) = \begin{cases} n \cdot (n-1)! & si \ n > 1 \\ 1 & si \ n \le 1 \end{cases}$$

$$T(n) = \begin{cases} c_1, & \text{si } n \le 1 \\ T(n-1) + c_2, & \text{si } n > 1 \end{cases}$$

$$T(n) = 2c$$
 $n=1$
 $4c+T(n-1)$ otro caso
 $T(n) = 1*T(n-1)+O(1)$

```
factorial(num n):num
si n = 1 entonces
    devolver(1)
valor← n*factorial(n-1)
devolver(valor)
```

$$T(n) = aT(n-b) + O(n^k) \text{ si } n \ge b$$

$$O(\quad) = \begin{cases} n^k & \text{si } a < 1\\ n^{k+1} & \text{si } a = 1\\ \frac{n}{a^{\overline{b}}} & \text{si } a > 1 \end{cases}$$

$$Factorial(n) = \begin{cases} n \cdot (n-1)! & si \ n > 1 \\ 1 & si \ n \le 1 \end{cases}$$

$$T(n) = \begin{cases} c_1, & \text{si } n \le 1 \\ T(n-1) + c_2, & \text{si } n > 1 \end{cases}$$

$$T(n) = 2c$$
 $n=1$
 $4c+T(n-1)$ otro caso
 $T(n) = 1*T(n-1)+O(1)$

```
factorial(num n):num
si n = 1 entonces
    devolver(1)
valor← n*factorial(n-1)
devolver(valor)
```

$$T(n) = aT(n-b) + O(n^{k}) \text{ si } n \ge b$$

$$O(\quad) = \begin{cases} n^{k} & \text{si } a < 1 \\ n^{k+1} & \text{si } a = 1 \\ \frac{n}{a^{\frac{n}{b}}} & \text{si } a > 1 \end{cases} \qquad b=1$$

Factorial recursivo:

$$Factorial(n) = \begin{cases} n \cdot (n-1)! & si \ n > 1 \\ 1 & si \ n \le 1 \end{cases}$$

$$T(n) = \begin{cases} c_1, & \text{si } n \le 1 \\ T(n-1) + c_2, & \text{si } n > 1 \end{cases}$$

$$T(n) = 2c$$
 $n=1$
 $4c+T(n-1)$ otro caso
 $T(n) = 1*T(n-1)+O(1)$

$$(n^{k+1})=0(n^{0+1})=0(n)$$

factorial(num n):num
si n = 1 entonces
 devolver(1)
valor← n*factorial(n-1)
devolver(valor)

$$T(n) = aT(n-b) + O(n^{k}) \text{ si } n \ge b$$

$$O(\quad) = \begin{cases} n^{k} & \text{si } a < 1 \\ n^{k+1} & \text{si } a = 1 \\ \frac{n}{a^{\frac{n}{b}}} & \text{si } a > 1 \end{cases} \qquad b=1$$

$$Fib(n) = \begin{cases} Fib(n-1) + Fib(n-2) & n \ge 2 \\ 1 & n = 1 \\ 1 & n = 0 \end{cases}$$

$$Fib(n) = \begin{cases} Fib(n-1) + Fib(n-2) & n \ge 2\\ 1 & n = 1\\ 1 & n = 0 \end{cases}$$

```
fib(num n):num
si n=1 O n=0 entonces
  devolver(n)
valor←fib(n-1)+fib(n-2)
devolver(valor)
```

$$Fib(n) = \begin{cases} Fib(n-1) + Fib(n-2) & n \ge 2 \\ 1 & n = 1 \\ 1 & n = 0 \end{cases}$$

$$T(n) = \begin{cases} T(n-1) + T(n-2) & n > 1 \\ c & n \le 1 \end{cases}$$

$$T(n)=4c$$
 $n=0,1$ $6c+T(n-1)+T(n-2)$ otro caso

```
fib(num n):num
si n=1 O n=0 entonces
    devolver(n)
valor←fib(n-1)+fib(n-2)
devolver(valor)
```

Fibonacci recursivo:

$$Fib(n) = \begin{cases} Fib(n-1) + Fib(n-2) & n \ge 2\\ 1 & n = 1\\ 1 & n = 0 \end{cases}$$

$$T(n) = \begin{cases} T(n-1) + T(n-2) & n > 1 \\ c & n \le 1 \end{cases}$$

fib(num n):num si n=1 O n=0 entonces devolver(n) $valor \leftarrow fib(n-1) + fib(n-2)$ devolver(valor)

$$T(n)=4c$$
 $n=0,1$ $6c+T(n-1)+T(n-2)$ otro caso

4c
$$n=0,1$$
 $6c+T(n-1)+T(n-2)$ otro caso
$$O() = \begin{cases} n^k & \text{si } a < 1 \\ n^{k+1} & \text{si } a = 1 \\ \frac{n}{a^{\frac{n}{b}}} & \text{si } a > 1 \end{cases}$$

$$Fib(n) = \begin{cases} Fib(n-1) + Fib(n-2) & n \ge 2\\ 1 & n = 1\\ 1 & n = 0 \end{cases}$$

$$T(n) = \begin{cases} T(n-1) + T(n-2) & n > 1 \\ c & n \le 1 \end{cases}$$

```
fib(num n):num
si n=1 O n=0 entonces
   devolver(n)
valor←fib(n-1)+fib(n-2)
devolver(valor)
```

$$T(n) = 4c n = \emptyset, 1 T(n) = aT(n-b) + O(n^k) \text{ si } n \ge b$$

$$6c + T(n-1) + T(n-2) \text{ otro } caso$$

$$T(n) \le 2*T(n-1) + O(1)$$

$$O() = \begin{cases} n^k & \text{si } a < 1 \\ n^{k+1} & \text{si } a = 1 \\ \frac{n}{a^{\overline{b}}} & \text{si } a > 1 \end{cases}$$

$$Fib(n) = \begin{cases} Fib(n-1) + Fib(n-2) & n \ge 2\\ 1 & n = 1\\ 1 & n = 0 \end{cases}$$

$$T(n) = \begin{cases} T(n-1) + T(n-2) & n > 1 \\ c & n \le 1 \end{cases}$$

```
fib(num n):num
si n=1 O n=0 entonces
   devolver(n)
valor←fib(n-1)+fib(n-2)
devolver(valor)
```

$$T(n) = 4c$$
 $n = 0, 1$
 $6c + T(n-1) + T(n-2)$ otro caso
 $T(n) \le 2*T(n-1) + O(1)$

$$T(n) = aT(n-b) + O(n^k) \text{ si } n \ge b$$

$$O(\quad) = \begin{cases} n^k & \text{si } a < 1 \\ n^{k+1} & \text{si } a = 1 \\ \frac{n}{a^{\frac{n}{b}}} & \text{si } a > 1 \end{cases} \qquad b=1$$

$$Fib(n) = \begin{cases} Fib(n-1) + Fib(n-2) & n \ge 2\\ 1 & n = 1\\ 1 & n = 0 \end{cases}$$

$$T(n) = \begin{cases} T(n-1) + T(n-2) & n > 1 \\ c & n \le 1 \end{cases}$$

$$T(n) = 4c$$
 $n=0,1$
 $6c+T(n-1)+T(n-2)$ otro caso
 $T(n) \le 2*T(n-1)+O(1)$
 $0(a^{n/b})=0(2^{n/1})=0(2^n)$

$$T(n) = aT(n-b) + O(n^k) \text{ si } n \ge b$$

$$O(\quad) = \begin{cases} n^k & \text{si } a < 1 \\ n^{k+1} & \text{si } a = 1 \\ \frac{n}{a^{\overline{b}}} & \text{si } a > 1 \end{cases} \qquad b=1$$

Clases de problemas

- Un problema P es aquel que tiene un algoritmo de orden polinómico que lo resuelve.
- Un problema NP tiene un algoritmo de orden polinómico que lo verifica.
- Un problema es **NP-Completo** si es imposible encontrar un algoritmo eficiente para encontrar una solución óptima ... hasta ahora...
- Los algoritmos de fuerza bruta son capaces de encontrar la solución a cualquier problema por complicado que sea. Prueban todas las posibles combinaciones hasta dar con la situación que es igual que la solución... no son eficientes

Resumen

- En análisis de complejidad en tiempo de un algoritmo entrega la tasa de crecimiento del tiempo de respuesta a medida que aumenta el tamaño de la entrada
- Se "ejecuta" sobre una "máquina ideal"
- Se debe definir el tiempo de cada tipo de instrucción
- Técnicas de cálculo para algoritmos iterativos y recursivos
- Algoritmos recursivos
 - Reducción por sustracción
 - Reducción por división

Actividad de cierre

Ir a menti.com e ingresar código 8702 9916

Próximas fechas...

U1 - S2

- Resumen de la semana:
 - Complejidad de algoritmos iterativos
 - Complejidad de algoritmos recursivos

- Próxima semana:
 - Algoritmos de búsqueda y ordenamiento

Domingo	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	£ncuentro de Dos Muno 16	17	18	19	20	21
22	23	24	25	26	27	28