Complexité d'un algorithme Application aux listes

Thomas Bellitto, Alix Munier-Kordon et Maryse Pelletier

LIP6 Sorbonne Université Paris

LU2IN003 Initiation à l'algorithmique

Plan du cours

- Complexité
 - Introduction
 - Complexité d'un algorithme
 - Exemples de calculs de complexité
 - Méthodologie
- 2 Listes
 - Définition, représentation, primitives
 - Complexité
- Conclusion

Questions au sujet de l'évaluation d'un algorithme

- Est-ce que l'algorithme résout le problème ?
 - terminaison
 - validité
- Quelle est la complexité de l'algorithme ?
 - en temps de calcul
 - en taille mémoire

Objet de ce cours : la complexité en temps de calcul.

Taille de codage des paramètres d'un algorithme

Definition

La *taille de codage* d'un paramètre est une évaluation, la plus "raisonnable" possible, de la place nécessaire en mémoire pour le stocker.

Quelle est la taille de codage d'un entier ? d'un tableau d'entiers ?

Complexité d'un algorithme

Definition

La complexité d'un algorithme est une évaluation du nombre d'instructions élémentaires¹ dans une exécution de l'algorithme.

On l'exprime en fonction de la taille de codage des paramètres.

On en calcule un ordre de grandeur (notations de Landau).

5

¹Parfois on se concentre sur une instruction élémentaire représentative.

Pire cas, meilleur cas

Complexité pire cas : on évalue le nombre d'instructions dans le pire des cas (borne supérieure).

Complexité meilleur cas : on évalue le nombre d'instructions dans le meilleur des cas (borne inférieure).

Exemple : recherche séquentielle d'un élément x dans un tableau T de taille n. Instruction élémentaire représentative : comparaison.

Pire cas : x en dernière place de T ou pas présent $\rightarrow n$ comparaisons

Meilleur cas : x en première place de $T \rightarrow 1$ comparaison

Par pessimisme, on identifie la complexité d'un algorithme avec sa complexité dans le pire des cas.

La complexité de la recherche séquentielle est en $\mathcal{O}(n)$.

Comparaison de complexités

Avec une durée de 10^{-9} secondes par instruction, on obtient les durées suivantes (en secondes) pour n = 60

complexité	durée	
In(<i>n</i>)	$1,77 \times 10^{-9}$	
n	6×10^{-8}	
<i>n</i> ln(<i>n</i>)	10^{-7}	
n ³	$2,1 \times 10^{-4}$	
2 ⁿ	$1,1 \times 10^{9}$	
3 ⁿ	$4,2 \times 10^{19}$	

Remarque : $1,1\times 10^9$ secondes $\approx 39,9$ ans et $4,2\times 10^{19}\approx 4,4\times 10^9$ siècles !

Un algorithme de complexité exponentielle est à bannir.

Et si on a un ordinateur 100 ou 1000 fois plus puissant ?

Le tableau suivant donne la taille d'un problème que l'on peut traiter par un ordinateur 100 ou 1000 fois plus rapide pour un algorithme de complexité $\Theta(f(n))$ avec $f(n) \in \{\log n, n, n^3, 2^n, 3^n\}$

Soit *N* est la taille maximale que l'on peut traiter en 1 seconde pour une machine donnée en fonction de *f*.

f(n)	×100	×1000	
log n	N^{100}	N^{1000}	
n	100. <i>N</i>	1000. <i>N</i>	
n ³	4, 64. <i>N</i>	10. <i>N</i>	
2 ⁿ	N + 6,64	N + 9,97	
3 ⁿ	<i>N</i> + 4, 19	N + 6,29	

Conclusion?

Somme des entiers

Pour $n \in \mathbb{N}$, on veut calculer la somme Som(n) des entiers de 0 à n.

Autrement dit:

$$Som(n) = \sum_{i=1}^{n} i$$

Cette somme vaut 0 si n = 0.

Somme des entiers, en itératif

Algorithme itératif calculant la somme Som(n):

```
def somIte(n):
    res = 0
    for i in range(1, n + 1):
        res = res + i
    return res
```

Complexité en nombre d'additions.

Soit c le nombre total d'additions et c_i le nombre d'additions dans le tour de boucle i. Alors $c_i = 1$ pour tout $i \in \{1, ..., n\}$ et

$$c=\sum_{i=1}^n c_i=n$$

La complexité est en $\Theta(n)$, elle est *linéaire*.

Remarquons que Som(n) = Som(n-1) + n si n > 0 et Som(0) = 0.

Algorithme récursif calculant la somme Som(n):

```
def somRec(n):
    if n == 0:
        return 0
    else:
        return n + somRec(n - 1)
```

Complexité en nombre d'opérations : tests et additions.

Soit u_n le nombre d'opérations effectuées par l'appel somRec(n). Alors u_n est la suite récurrente définie par :

$$u_n = u_{n-1} + 2$$
 si $n > 0$ et $u_0 = 0$

Par substitution:

$$u_n = u_{n-1} + 2 = u_{n-2} + 4 = \dots = u_0 + 2n = 2n + 1$$

La complexité est en $\Theta(n)$.

Fibonacci, en itératif

Algorithme itératif calculant F_n :

```
def fibIte(n):
    if (n == 0):
        return 0
    else:
        x = 0 ; y = 1
        for i in range(2, n + 1):
             z = x + y ; x = y ; y = z
    return y
```

Complexité en nombre d'additions.

Soit c le nombre total d'additions et c_i le nombre d'additions dans le tour de boucle i. Alors $c_i = 1$ et

$$c=\sum_{i=2}^n c_i=n-1$$

La complexité en $\Theta(n)$.

Remarque : la complexité en nombre d'affectations est aussi linéaire.

Fibonacci, en récursif

Algorithme récursif calculant F_n :

```
def fibRec(n):
    if (n == 0) or (n == 1):
        return n
    else:
        return fibRec(n - 1) + fibRec(n - 2)
```

Pour simplifier, on évalue la complexité en nombre d'additions.

Soit u_n le nombre d'additions effectuées par l'appel fibRec(n). Alors u_n est la suite récurrente définie par :

$$u_n = u_{n-1} + u_{n-2} + 1$$
 si $n > 1$ et $u_0 = u_1 = 0$

Fibonacci, en récursif

$$u_n = u_{n-1} + u_{n-2} + 1$$
 si $n > 1$ et $u_0 = u_1 = 0$

Theorem

$$u_n = F_{n+1} - 1$$
.

Preuve par récurrence.

Theorem

$$F_n \ge \frac{1}{\sqrt{5}}(\varphi^n - 1)$$
 où φ est le nombre d'or : $\varphi = \frac{1+\sqrt{5}}{2} \approx 1,618$.

Preuve par récurrence.

La complexité est en $\Omega(\varphi^n)$. Comme $\varphi > 1$, elle est exponentielle. Elle croît très vite, par exemple : $\varphi^{100} > 7,9*10^{20}$.

Calcul de la puissance : un premier algorithme

Algorithme basé sur la définition récursive *naturelle* de x^n :

$$x^n = x * x^{n-1}$$
 si $n > 0$ et $x^0 = 1$

```
def puissSeq(x, n):
    if (n == 0):
        return 1
    else:
        return x * puissSeq(x, n - 1)
```

La complexité, en nombre de multiplications, est en $\Theta(n)$.

Calcul de la puissance par dichotomie

On peut faire un calcul de x^n par dichotomie :

$$x^{n} = \begin{cases} 1 & \text{si } n = 0\\ (x^{n+2})^{2} & \text{si } n \text{ pair et } n > 0\\ (x^{n+2})^{2} \times x & \text{si } n \text{ impair} \end{cases}$$

où $n \div 2$ est le résultat de la division entière de n par 2.

Calcul de la puissance par dichotomie : algorithme

Algorithme calculant x^n par dichotomie :

```
def puissDicho(x, n):
    if (n == 0):
        return 1
    else:
        if n % 2 == 0:
            return carre(puissDicho(x, n // 2))
        else:
            return carre(puissDicho(x, n // 2)) * x

où la fonction carre est ainsi définie:

def carre(x):
    return x * x
```

Calcul de la puissance par dichotomie : complexité

Soit u_n le nombre de multiplications effectuées par l'appel puissDicho(n).

$$u_n = \begin{cases} 0 & \text{si } n = 0 \\ u_{n \div 2} + 1 & \text{si } n \text{ pair et } n > 0 \\ u_{n \div 2} + 2 & \text{si } n \text{ impair et } n > 0 \end{cases}$$

Dans tous les cas, pour n > 0, on a $u_n \le u_{n_1} + 2$ où $n_1 = n \div 2$.

$$u_n \le u_{n_1} + 2 \text{ avec } n_1 = n \div 2$$

 $\le u_{n_2} + 4 \text{ avec } n_2 = n_1 \div 2 = n \div 2^2$
 $\le u_{n_3} + 6 \text{ avec } n_3 = n_2 \div 2 = n \div 2^3$
 $\le \dots$
 $\le u_{n_k} + 2 * k \text{ avec } n_k = n \div 2^k$

Les calculs s'arrêtent lorsque $n_k = 0$, c'est-à-dire lorsque $k = \lfloor log_2(n) \rfloor + 1$. Donc $u_n \le 2 * \lfloor log_2(n) \rfloor + 2$. La complexité est en $\mathcal{O}(\log_2(n))$, elle est logarithmique.

Un peu de méthodologie

Complexité d'un algorithme itératif :

- évaluer la complexité c_i du tour de boucle i,
- calculer la somme des c_i pour tous les tours de boucle.

Exemple:

- somIte(n): $c_i = 1$ pour $i \in \{1, ..., n\}$ et il y a n tours de boucle
- fibIte(n), pour $n \ge 2$: $c_i = 1$ pour $i \in \{2, ..., n\}$ et il y a n 1 tours de boucle.

Un peu de méthodologie

Complexité d'un algorithme récursif :

- évaluer la complexité des cas de base,
- établir une relation de récurrence permettant de calculer c_n . c_n est exprimé en fonction des complexités des appels récursifs et de la complexité b(n) des autres calculs.

Exemples:

- fibRec(n): $c_0 = c_1 = 0$, $c_n = c_{n-1} + c_{n-2} + b(n)$ pour n > 1, avec b(n) = 1
- puissDicho(x, n): $c_0 = 0$, $c_n = c_{n+2} + b(n)$ pour n > 0, avec $b(n) \le 2$.

Notion de liste

Definition

Une liste $L = (a_0, \dots, a_n)$ est une succession d'éléments.

```
jour=['lundi', 'mardi', 'mercredi']
corbeille=[56, 'jeudi', 45, 67, 'coucou']
```

Quels points communs (différences) voyez-vous entre listes et ensembles ?

Definition

La liste *L* est *homogène* si tous ses éléments sont de même type.

Représentation des listes

Une liste peut être implémentée par :

- un tableau,
- une liste simplement chaînée,
- une liste circulaire doublement chaînée.

Primitives et opérations sur les listes

- L[i]: renvoie l'élément en position i dans la liste L (positions numérotées à partir de 0);
- L[i:j]: renvoie la sous-liste de L composée des éléments situés entre la position i et la position j – 1 comprises;
- L.append(x): insertion de l'élément x en queue de la liste L;
- L. insert(i, x): insertion de l'élement x en i-ème place;
- L. pop(i): renvoie l'élément en i-ème position et le supprime de la liste;
- L.remove(x): détruit la première instance de l'élément x dans la liste L;
- len(L): renvoie le nombre d'éléments de L;
- L.index(x): indice du premier élément de valeur x dans L;
- L. count(x): nombre d'occurrences de x dans L;
- L₁ + L₂: renvoie la concaténation des deux listes;
- L * k : crée une liste de k occurrences de L.

Complexité des primitives

Primitive	Tableau	Liste simpl. chaînée	Liste doubl. circulaire
L[i]	Θ(1)	$\Theta(i)$ $\Theta(i)$	
L.append(x)	$\mathcal{O}(n)$	Θ(<i>n</i>)	Θ(1)
L.insert(i,x)	$\Theta(n-i)$	$\Theta(i)$	$\Theta(i)$
L.pop(i)	$\Theta(n-i)$	$\Theta(i)$	$\Theta(i)$
L.remove(x)	Θ(<i>n</i>)	$\mathcal{O}(n)$	$\mathcal{O}(n)$
L.index(x)	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$
L.count(x)	Θ(<i>n</i>)	Θ(<i>n</i>)	$\Theta(n)$
$L_1 + L_2$	$\mathcal{O}(n_1+n_2)$	$\Theta(n_1)$	Θ(1)
L ⋆ K	$\Theta(n \times k)$	$\Theta(n \times k)$	$\Theta(n \times k)$
len(L)	Θ(1)	⊖(<i>n</i>)	⊖(<i>n</i>)

$$n = |L|, n_1 = |L_1|, \text{ et } n_2 = |L_2|.$$

Exemple: fonction miroir

```
def swapp (tab, i, j):
    aux = tab[i]; tab[i]=tab[j]; tab[j]=aux

def miroir(tab):
    n = len(tab)
    i = 0 ; j = n -1
    while i < j:
        swapp(tab, i, j)
        i = i + 1; j = j - 1</pre>
```

Complexité de miroir en fonction de la représentation de *tab*

	len(tab)	swapp(tab, i, j)	miroir(tab)
Tableau	Θ(1)	Θ(1)	$\Theta(n)$
Liste simpl. chaînée	$\Theta(n)$	$\Theta(max(i,j))$	$\Theta(n^2)$
Liste doubl. circulaire	$\Theta(n)$	$\Theta(max(i,j))$	$\Theta(n^2)$

n = |tab|.

Conclusion

Sur la complexité

- Un même problème peut être résolu par différents algorithmes.
- Il est important de connaître un ordre de grandeur de la complexité de chaque algorithme.
- Il faut proscrire les algorithmes de complexité exponentielle.

Sur les listes

- Plusieurs représentations possibles des listes avec des primitives d'accès et de gestion de complexité différentes.
- Quand on évalue la complexité d'un algorithme, il faut connaître précisement la complexité de toutes les primitives associées aux structures de données.
- Choisir la structure de données en fonction des traitements à réaliser.

