REED MULLER CODES ACHIEVE CAPACITY ON ERASURE CHANNELS

S.Kudekar, S.Kumar, M.Mondelli, H.D.Pfister, E.Sasoglu, R.Urbanke

E2:207:Concentration Inequalities
Course Project Report
by

Ramakrishnan Soumya Subhra Banerjee

> ECE,IISc December 2,2017

Motivation

The channel capacity is the largest rate at which communication can be made with arbitrary small error.

Channel coding tells us **how** capacity can be achieved. Turbo , SC-LDPC achieve capacity, but no proof is presented yet Polar and Reed-Muller were proved to achieve Capacity...

- Another* answer to the search for PROVABLY capacity achieving channel codes.
- Perhaps one of the most important applications of *threshold phenomenon*.
- Establishes that a certain class of codes achieve capacity, Which include Reed-Muller codes, Polar codes.

^{*}That polar codes achieve capacity was proved by E.Arikan before this.

This provides an alternate method of the same proof leveraging fewer properties of polar codes

Channel Capacity from the perspective of Threshold Phenomenon...proof idea

For transmission over BEC(p), with Capacity r=1-pFor a sequence of binary linear codes with rate r to be capacity achieving, the bit error probability, must converge to 0 for any erasure rate below 1 - r.

To prove this using Threshold Phenomenon.

- 1. Bit Error Probability for a code, under MAP decoding needs to be captured by a function of erasure probability. We shall explore MAP EXIT (Extrinsic Information Transfer) functions for this.
- 2. MAP EXIT function should be expressed as measure of a monotone set
- 3. The influences of the set must be equal, in other words, the set must be symmetric. This happens when we assume the code is 2-transitive under automorphic permutation.
- 4. Hence we will apply Russo's lemma.
- 5. The critical value will occur at p=1-r, this follows, from Area theorem
- 6. RM codes, Polar codes are 2-transitive.

Bit Map Decoding under BEC

Decoding rule

$$D_{i}: \mathcal{Y}^{N} \to \mathcal{X} \cup \{e\}$$
$$D_{i}(\underline{Y}) = X_{i}.$$

Bit error Probability

$$P_{b,i} \triangleq \mathbb{P}[D_{i}(\underline{Y}) \neq X_{i}].$$

$$P_{b} \triangleq \frac{1}{N} \sum_{i=1}^{N} P_{b,i}.$$

Observation 1, Bit error probability = Transinformation:

$$P_{b,i} = H(X_i|\underline{Y})$$
 , if X_i is $Ber(1/2)$.

Proof:

if X_i can be recovered from $\underline{Y} = \underline{y}$, $H(X_i | \underline{Y} = \underline{y}) = 0$. Else, $\mathbb{P}(X_i = x | \underline{Y} = y) = 1/2$ and $H(X_i | \underline{Y} = y) = 1$.

MAP EXIT functions...to capture bit error probability

Definition:

the vector EXIT function associated with bit i,

$$h_{\mathbf{i}}(\underline{p}) \triangleq H(X_{\mathbf{i}}|\underline{Y}_{\sim \mathbf{i}}(\underline{p}_{\sim \mathbf{i}})).$$

the average EXIT function,

$$h(\underline{p}) \triangleq \frac{1}{N} \sum_{i=1}^{N} h_i(\underline{p})$$

we can choose $p_i=p$ for all i.

Implication:

It is the Transinformation associated with each bit 'i', which comes from all bits of received vector except bit 'i' (hence the name EXtrinsic Information Transfer)

Observation 2,Bit error probability vs EXIT function:

By definition of conditional Entropy...

$$\begin{split} \mathsf{H}(\mathsf{X}_{\mathfrak{i}}|\underline{\mathsf{Y}}) &= \mathbb{P}(\mathsf{Y}_{\mathfrak{i}} = e) \mathsf{H}(\mathsf{X}_{\mathfrak{i}}|\underline{\mathsf{Y}}_{\sim \mathfrak{i}}, \mathsf{Y}_{\mathfrak{i}} = e) + \mathbb{P}(\mathsf{X}_{\mathfrak{i}} = \mathsf{Y}_{\mathfrak{i}}) \mathsf{H}(\mathsf{X}_{\mathfrak{i}}|\underline{\mathsf{Y}}_{\sim \mathfrak{i}}, \mathsf{Y}_{\mathfrak{i}} = \mathsf{X}_{\mathfrak{i}}) \\ &= \mathbb{P}(\mathsf{Y}_{\mathfrak{i}} = e) \mathsf{H}(\mathsf{X}_{\mathfrak{i}}|\underline{\mathsf{Y}}_{\sim \mathfrak{i}}). \end{split}$$

Further using Observation 1,

$$P_{b,i}(p) = ph_i(p)$$

MAP EXIT function ... area theorem

Propostion 1*.

The MAP EXIT function satisfies ...

$$h_{i}(p) = \frac{\partial H(\underline{X}/\underline{Y}(\underline{p}))}{\partial p_{i}}$$

Proof:

$$\begin{split} H(\underline{X}/\underline{Y}(\underline{p})) &= H(X_{i}/\underline{Y}(\underline{p})) + H(X_{\sim i}/X_{i},\underline{Y}(\underline{p})) \\ &= H(X_{i}/\underline{Y}(\underline{p})) + H(X_{\sim i}/X_{i},Y_{\sim i}) \text{ ,by memorylessness} \\ &= p_{i}h_{i}(p) + H(X_{\sim i}/X_{i},Y_{\sim i}) \end{split}$$

noting that the second term is independent of pi, and differentiating gives the above result.

^{*} Note the propositions are numbered according to original paper

MAP EXIT function ... area theorem

Proposition 4(c), Area Theorem:

The area under average EXIT function is equal to the rate

$$\int_0^1 h(p) dp = \frac{K}{N}.$$

Implication:

This theorem will govern where the threshold will lie.

Proof:

from proposition 1, $h_i(p) = \frac{\partial H(\underline{X}/\underline{Y}(\underline{p}))}{\partial p_i}$ this implies, for a parameterized vector, $\underline{p}(t) = (p_1(t), \dots, p_n(t))$, $t \in (0,1)$

$$H\left(\underline{X}|\underline{Y}(\underline{p}(1))\right) - H\left(\underline{X}|\underline{Y}(\underline{p}(0))\right) = \int_0^1 \left(\sum_{i=1}^N h_i(\underline{p}(t))p_i'(t)\right) dt.$$

consider $p_i(t)=t$ noting, $H(\underline{X}|\underline{Y}(\underline{1})) = H(\underline{X}) = K$, $H(\underline{X}|\underline{Y}(\underline{0})) = 0$, and using the definition of h(p) completes the proof.

MAP EXIT function ... as a measure of a set

Consider bit erasure pattern a as a indicator vector s.t. $a_i = 1_{\{Yi=e\}}$ A binary vector a covers another vector c if $a_i > c_i$, for all i.

- A transmitted codeword can be recovered iff the erasure pattern does not cover any codeword.
- A bit **i** can be recovered uniquely iff the error pattern does not cover any codeword where bit **i** is non-zero.

	1	2	3	4	5	6	E does not cover
Е	1	0	0	1	0	0	
C1	1	0	1	1	1	0	True
C2	1	1	0	1	0	1	True
С3	1	0	0	1	0	0	True
C4	1	0	Θ	0	0	0	X

MAP EXIT function ... as a measure of a set

Indirect Recovery: Consider a code C and the indirect recovery of X_i from the subvector $Y_{\sim i}$ (i.e., the bit-MAP decoding of Y_i from Y_i when $Y_i = e$).

For $i \in [N]$, the set of erasure patterns that prevent indirect recovery of X_i under bit-MAP decoding is given by,

$$\Omega_{i} \triangleq \{A \subseteq [N] \setminus \{i\} : \exists B \subseteq [N] \setminus \{i\}, B \cup \{i\} \in \mathcal{C}, B \subseteq A\}.$$

Proposition 3(a),4(a), $h_i(p)$ is measure of Ω_i :

$$h_{\mathfrak{i}}(\mathfrak{p}) = \mu_{\mathfrak{p}}(\Omega_{\mathfrak{i}}) = \sum_{A \in \Omega_{\mathfrak{i}}} \mathfrak{p}^{|A|} (1 - \mathfrak{p})^{N - 1 - |A|}.$$

Intuitively, it is the set of all erasure patterns, that cover some codeword with bit 'i' = 1, if 'i' is included.hence strengthens $P_{b,i}(p) = ph_i(p)$

MAP EXIT function ... as a measure of a set

Proof:

by definition of conditional entropy,

$$h_{i}(\underline{p}) = H(X_{i}|\underline{Y}_{\sim i}(p_{\sim i}))$$

$$= \sum_{\underline{y}_{\sim i} \in \mathcal{Y}^{N-1}} \Pr(\underline{Y}_{\sim i} = \underline{y}_{\sim i}) H(X_{i}|\underline{Y}_{\sim i} = \underline{y}_{\sim i}).$$

WOLOG assume all 0's were sent.due to error pattern A, few bits got erased.

thus,
$$\Pr(\underline{Y}_{\sim i} = \underline{y}_{\sim i}) = \prod_{\ell \in A} p_{\ell} \prod_{\ell \in A^c \setminus \{i\}} (1 - p_{\ell}).$$

Now, if $A \in \Omega_i$, then decoding fails hence, $H(X_i|\underline{Y}_{\sim i} = \underline{y}_{\sim i}) = 1$, else 0.

thus,
$$h_i(\underline{p}) = \sum_{A \in \Omega_i} \prod_{\ell \in A} p_\ell \prod_{\ell \in A^c \setminus \{i\}} (1 - p_\ell).$$

the result follows on considering, $p_1=p$.

MAP EXIT function ... Influences of Ω_i

The measure of this set is the j-th influence of Ω_i

 $\partial_j \Omega_i \triangleq \{A \subseteq [N] \setminus \{i\} \mid A \setminus \{j\} \notin \Omega_i, A \cup \{j\} \in \Omega_i\}.$

MAP EXIT function ...Influences of Ω_i

Proposition 3(b),4(b), jth partial derivative of $h_i(p)$ is jth influence of Ω_i :

$$\frac{\partial^2 H(\underline{X}|\underline{Y}(\underline{p}))}{\partial p_j \partial p_i} = \frac{\partial h_i(\underline{p})}{\partial p_j} = \sum_{A \in \partial_j \Omega_i} \prod_{\ell \in A} p_\ell \prod_{\ell \in A^c \setminus \{i\}} (1 - p_\ell).$$

$$\left.\frac{\partial h_i(\underline{p})}{\partial p_j}\right|_{\underline{p}=(p,p,\dots,p)} = \mu_p(\partial_j\Omega_i) = \sum_{A\in\partial_j\Omega_i} p^{|A|}(1-p)^{N-1-|A|}.$$

Proof: similar to proposition 3(a),4(a)

We need to show next:

- all influences are equal, hence the set is symmetric ...
- all hi(p) are equal, hence area theorem can be applied... these will stem from the assumption that the code is 2-transitive

Permutation group...briefing

• Symmetric group S_N of [N]:

Is the set of all permutations of N possible.

$$[N=3]$$
, $SN=\{\{1,2,3\},\{1,3,2\},\{2,1,3\}...\}$

• **Permutation group** is a subset of symmetric group.

Considering [N] denotes the set of indices of a code a permutation operation (π) is a rearrangement of the bits of a code.

• A **Permutation automorphic group** $P_{Aut}(C)$ of a code is the permutation group, such that under $\pi \in P_{Aut}(C)$ the membership of the code is preserved, we denote $P_{Aut}(C)$, as

$$\mathcal{G} = \{ \pi \in \mathcal{S}_{\mathbb{N}} : \pi(A) \in \mathcal{C} \text{ for all } A \in \mathcal{C} \}.$$

Permutation group...transitivity

$$\begin{split} \mathcal{G} = & \{ \pi \in S_N : \pi(A) \in \mathcal{C} \text{ for all } A \in \mathcal{C} \}. \\ \text{if for any } & \mathfrak{i}, \mathfrak{j} \in [N], \text{ there exists.} \\ & \pi \in \mathcal{G} \text{ , such that } & \pi(\mathfrak{i}) = \mathfrak{j}, \\ \text{then } & \mathcal{G} \text{ is transitive.} \end{split}$$

$$\begin{split} \mathcal{G} = & \{ \pi \in S_N : \pi(A) \in \mathfrak{C} \text{ for all } A \in \mathfrak{C} \}. \\ \text{if for any } \mathfrak{i}, \mathfrak{j}, k \in [N], \text{ there exists,} \\ \pi \in \mathcal{G} \text{ , such that,} \\ \pi(\mathfrak{i}) = \mathfrak{i} \text{ and } \pi(\mathfrak{j}) = k. \\ \text{then } \mathcal{G} \text{ is doubly-transitive.} \end{split}$$

MAP EXIT function ... for doubly transitive code

Proposition 7, All EXIT functions are equal, for a transitive code:

$$h(p) = h_i(p)$$
 for $0 \le p \le 1$.

Proof. claim: if \mathfrak{G} is transitive, then so is $\Omega_{\mathfrak{i}}$.

As $A \in \Omega_i$, by definition $\exists B$, s.t., $B \cup \{i\} \in \mathcal{C}$, but by transitivity of \mathcal{G} , $\pi(B \cup \{i\}) \in \mathcal{C}$. Observe.

$$\pi(B \cup \{i\}) = \pi(B) \cup \pi(\{i\}) = \pi(B) \cup j$$

Since $\pi(B) \subseteq \pi(A)$, it follows $\pi(A) \in \Omega_j$. This indicates a bijection between Ω_i and Ω_j , i.e, $|\Omega_i| = |\Omega_j|$. Moreover since, $|A| = |\pi(A)|$, propostion follows from proposition4 (a)

$$\textit{i.e.,using,} \ \ h_i(p) = \mu_p(\Omega_i) = \sum_{A \in \Omega_i} p^{|A|} (1-p)^{N-1-|A|}.$$

MAP EXIT function ...symmetry

Proposition 8, All Influences are equal, for a transitive code:

$$\left. \frac{\partial h_{i}(\underline{p})}{\partial p'_{j}} \right|_{\underline{p}=(p,p,\ldots,p)} = \left. \frac{\partial h_{i}(\underline{p})}{\partial p'_{k}} \right|_{\underline{p}=(p,p,\ldots,p)}$$

for distinct, $i, j, k \in [N]$,

Proof:

Similar to Proposition 7.Intuitively we expect that once we permute the locations, the bits which were pivotal must continue to remain so. Otherwise we could have decoded the concerned bit using simple permutations.

11/29/2017 MAP 17

Capacity achieving codes...equivalence

Suppose $\{C_n\}$ is a sequence of codes with rates $\{r_n\}$ where $r_n \to r$ for $r \in (0, 1)$. a) $\{C_n\}$ is said to be **capacity achieving on the BEC** under bit-MAP decoding, if for any $p \in [0, 1-r)$, the average bit-erasure probabilities satisfy,

$$\lim_{n\to\infty} P_b^{(n)}(p) = 0.$$

The following are equivalent,

- •S1: {Cn } is capacity achieving on the BEC under bit-MAP decoding.
- S2: The sequence of average EXIT functions satisfies

$$\lim_{n \to \infty} h^{(n)}(p) = \left\{ \begin{array}{l} 0 \text{ if } 0 \leqslant p < 1 - r \\ 1 \text{ if } 1 - r < p \leqslant 1. \end{array} \right.$$

•*S3*: *For any,*

$$\lim_{n\to\infty} \mathfrak{p}_{1-\epsilon}^{(n)} - \mathfrak{p}_{\epsilon}^{(n)} = 0.$$

note, $h^{(n)}(p_{\epsilon}^{(n)}) = \epsilon$.

While S1 S2, follows from relationship between $h_i(p)$ and probability of bit error, the rest follow from area theorem

Capacity achieving codes...

The average EXIT function of Rate-1/2 RM-code with, Block length N. Shows threshold phenomenon.

Main result...threshold phenomenon

Influence:

for a Monotone set Ω , the j-th influence is defined as.

$$I_{j}^{(p)}(\Omega) \triangleq \mu_{p}(\partial_{j}\Omega)$$

the total, Influence is defined as,

$$I^{(p)} \triangleq \sum_{j=1}^{N} I_{j}^{(p)}.$$

Theorem 19:Let Ω be a monotone set and suppose that, for all $0 \le p \le 1$, the influences of all bits are equal, i.e,

$$I_1^{(p)}(\Omega) = \ldots = I_M^{(p)}(\Omega).$$

Then, for any $0 < \epsilon \le 1/2$,

$$p_{1-\epsilon} - p_{\epsilon} \leqslant \frac{2\log\frac{1-\epsilon}{\epsilon}}{C\log(N-1)}$$

where $p_t = \inf\{p \in [0, 1] : \mu p(\Omega) > t\}$ is well defined because $\mu p(\Omega)$ is strictly increasing in p with $\mu_0(\Omega) = 0$ and $\mu_1(\Omega) = 1$.

Proof: follows from Russo's lemma

Main result...notations

Redefinitions

We can redefine Ω_i as a set of indicator vectors of A.

$$[\varphi_{\mathfrak{i}}(A)]_{\mathfrak{l}} = \left\{ \begin{array}{l} \mathbf{1}_{A}(\mathfrak{l}) \text{ if } \mathfrak{l} < \mathfrak{i} \\ \mathbf{1}_{A}(\mathfrak{l}+1) \text{ if } \mathfrak{l} \geqslant \mathfrak{i}. \end{array} \right.$$

$$\begin{split} \Omega_i' &\triangleq \{ \varphi_i(A) \in \{0,1\}^{N-1} : A \in \Omega_i \} \\ \partial_j \Omega_i' &\triangleq \{ \varphi_i(A) \in \{0,1\}^{N-1} : A \in \partial_j \Omega_i \}. \\ &= \{ \underline{x} \in \{0,1\}^{N-1} | \mathbb{1}_{\Omega_i}(\underline{x}) \neq \mathbb{1}_{\Omega_i}(\underline{x}^{(j)}) \} \end{split}$$

Accordingly, we can refine the definition of the measure...

$$\mu_p(\Omega) = \sum_{\underline{x} \in \Omega} p^{|\underline{x}|} (1-p)^{M-|\underline{x}|}, \text{ for } \Omega \subseteq \{0,1\}^M,$$

Main result...

Let $\{C_n\}$ be a sequence of codes where the blocklengths satisfy $N_n \to \infty$, the rates satisfy $r_n \to r$, and the permutation group $G_{(n)}(of C_n)$ is **doubly transitive** for each n. If $r \in (0, 1)$, then $\{C_n\}$ is capacity achieving on the BEC under bit-MAP decoding.

Proof:

Note,
$$h(p) = h_i(p) = \mu_p(\Omega'_i)$$
, where $h^{(n)}(p)$ is the EXIT function of C_n .

Properties of Ω_i

- Ω_i ' is the set of error patterns that prevent the detection of Xi. Consider $A \in \Omega_i$ ', any B > A will surely cause error. Hence $B \in \Omega_i$ ' and thus, Ω_i ' is monotone.
- $\begin{array}{l} \bullet \quad \textit{Recall,} \quad I_j^p(\Omega_i') = \mu_p(\partial_j\Omega_i') = \frac{\partial h_i(\underline{p})}{\partial p_j'} \bigg|_{\underline{p} = (p,p,\ldots,p)} \\ \textit{hence,} \quad I_j^p(\Omega_i') = I_k^p(\Omega_i') \text{ for all j, } k \in [N-1]. \text{ } \textbf{Q}_i' \text{ is symmetric.} \end{array}$

This implies,
$$p_{1-\varepsilon} - p_{\varepsilon} \leqslant \frac{2\log\frac{1-\varepsilon}{\varepsilon}}{C\log(N-1)}$$
,

Hence
$$\lim_{n\to\infty}(\mathfrak{p}_{1-\varepsilon}-\mathfrak{p}_{\varepsilon})=0$$
., and C_n achieves Capacity.

Polar codes are Capacity achieving...

Introduction to polar codes

Channel polarization is an operation by which one manufactures out of N independent copies of a given B-DMC W, a second set of N channels $\{W^{(i)}_N: 1 \le i \le N\}$ that show a polarization effect in the sense that, as N becomes large, the symmetric capacity terms $\{I(W^{(i)}_N)\}$ tend towards 0 or 1, for all but a vanishing fraction of indices i. This operation consists of a channel combining and a channel splitting phase.

$$x_1^N = u_1^N G_N$$

11/29/2017 Application-1,Polar codes 23

Polar codes are Capacity achieving...

polar codes are doubly - transitive, hence achieve capacity

Proof:

Assume we are given four distinct locations in the code a,b,c and $d \in [N]$,we need to give a permutation $\pi:[N] \to [N]$ such that,

 $\pi(a) = c$ and $\pi(b) = d$, and it is automorphic.

Consider any permutation which satisfies the above constraint, proving it is automorphic suffices.

Note,
$$\pi_{N\times N} * [u_1 ... u_n] = [u_{\pi(1)} ... u_{\pi(n)}]$$

and, $\pi_{N\times N} * [x_1 ... x_n] = [x_{\pi(1)} ... x_{\pi(n)}]$

Hence, upon premultiplying the encoding equation with π , we get

$$\pi * [x_1 ... x_n] = \pi * [u_1 ... u_n] * Gn$$

 $\Rightarrow [x_{\pi(1)} ... x_{\pi(n)}] = [u_{\pi(1)} ... u_{\pi(n)}] * Gn$

As polar codes are linear, and $[u_{\pi(1)}...u_{\pi(n)}]$ is a valid message, so $[x_{\pi(1)}...x_{\pi(n)}]$ is a valid codeword too.hence proved

Thanks...

11/29/2017 25