Marked Poset Polytopes in Representation Theory

Federico Ardila, Thomas Bliem, Dido Salazar-Torres. San Francisco State University

Supported by NSF CAREER Award DMS-0956178, DFG Grant SPP 1388, and NSF GK-12 Grant DGE-0841164.

GT and FFLV Patterns

Consider a partition $\lambda = (\lambda_1, \dots, \lambda_n)$, with $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n \ge 0$.

A Gelfand-Tsetlin pattern for λ (or simply a $GT(\lambda)$ pattern) is an array of integers satisfying the inequalities on the left panel of Figure 1 below.

A Feigin-Fourier-Littelmann-Vinberg pattern for λ (or simply a $FFLV(\lambda)$ pattern) is an array of non-negative integers such that, for any Dyck path from λ_i to λ_j , the sum of the numbers along the path is at most $\lambda_i - \lambda_j$.

Figure 1: Left: GT patterns. Right: FFLV patterns.

Theorem 1. (ABS '10, Feigin-Fourier-Littelmann '10) (Conjecture: Vinberg '05) The number of $GT(\lambda)$ patterns equals the number of $FFLV(\lambda)$ patterns.

Motivation

This work is rooted in the representation theory of the special linear Lie algebra

$$\mathfrak{sl}_n(\mathbb{C}) := \{n \times n \text{ matrices of trace } 0\}, \qquad [A, B] = AB - BA.$$

The irreducible representations $V(\lambda)$ of $\mathfrak{sl}_n(\mathbb{C})$ are in bijection with partitions $\lambda = (\lambda_1, \dots, \lambda_n)$ (modulo addition of $(1, \dots, 1)$).

• (1950) Gelfand and Tsetlin constructed a basis for $V(\lambda)$ indexed by the GT patterns for λ . Therefore

$$\dim V(\lambda) = \text{ number of } GT(\lambda) \text{-patterns.}$$

- (2005) Vinberg proposed a conjectural construction of a basis for $V(\lambda)$ indexed by the FFLV patterns for λ .
- (2010) Feigin, Fourier, and Littelmann proved that Vinberg's conjectural basis is *independent* and *spanning*. (via two subtle algebraic arguments.) Thus

$$\dim V(\lambda) = \text{ number of } FFLV(\lambda) \text{ patterns}$$

• (2010) We found a combinatorial/discrete geometric explanation for number of $GT(\lambda)$ -patterns = number of $FFLV(\lambda)$ patterns.

Marked poset polytopes

We generalize to the context of marked posets, extending work of Stanley (1986). A marked poset (P, A, λ) is

- \bullet a poset P,
- ullet a subset $A\subseteq P$ containing all extremal elements of P, and
- a vector $\lambda \in \mathbb{Z}^P$ such that $\lambda_p \leq \lambda_q$ for $p \leq q$.

The marked order polytope of (P, A, λ) is

$$\mathcal{O}(P, A)_{\lambda} = \{ x \in \mathbf{R}^{P-A} \mid x_p \le x_q \text{ for } p < q, \\ \lambda_a \le x_p \text{ for } a < p, \\ x_p \le \lambda_a \text{ for } p < a \},$$

where p and q represent elements of P-A, and a represents an element of A.

$$0 \le x_p \le x_q \le x_r \le 3$$
$$1 \le x_q \le 2$$

The marked chain polytope of (P, A, λ) is

$$C(P, A)_{\lambda} = \{ x \in \mathbf{R}^{P-A}_{\geq 0} \mid x_{p_1} + \dots + x_{p_k} \leq \lambda_b - \lambda_a$$
 for $a < p_1 < \dots < p_k < b \},$

where a, b represent elements of A, and p_1, \ldots, p_k represent elements of P - A.

$$x_p, x_q, x_r \ge 0$$

 $x_p + x_q + x_r \le 3, x_q \le 1$
 $x_p + x_q \le 2, x_q + x_r \le 2$

Theorem 2. (ABS, '10) The polytopes $\mathcal{O}(P,A)_{\lambda}$ and $\mathcal{C}(P,A)_{\lambda}$ have the same Ehrhart polynomial. In particular, they have the same number of lattice points.

They are very different combinatorially! We give a piecewise linear bijection.

The bijection

Stanley (1986) proved the analogous result for the order and chain polytopes of an unmarked poset. Essentially the same bijection works here:

$$\phi: \mathscr{O}(P, A)_{\lambda} \longrightarrow \mathscr{C}(P, A)_{\lambda}$$
$$\phi(x)_{p} = x_{p} - \max\{x_{q} \mid q < p\}$$

The bijection shows that $\mathscr{C}(P,A)_{\lambda}$ is integral. (non-trivial!)

Back to representation theory

• \mathfrak{sl}_n : For the marked poset on the right,

lattice points of $\mathcal{O}(P, A)_{\lambda} = GT(\lambda)$ patterns,

lattice points of $\mathscr{C}(P,A)_{\lambda} = FFLV(\lambda)$ patterns.

So Theorem 2 implies Theorem 1.

Question 1. What does this bijection say about the change of basis between the GT and FFLV bases of $V(\lambda)$?

Question 2. The bijection induces natural subdivisions on $\mathcal{O}(P, A)_{\lambda}$ and $\mathcal{C}(P, A)_{\lambda}$. Do these have an algebraic meaning?

• \mathfrak{sp}_{2n+1} : Berenstein-Zelevinsky (1989) constructed bases for the irreducible representations of all semisimple Lie algebras in terms of "generalized Gelfand-Tsetlin patterns".

For the marked poset on the right,

lattice points of $\mathcal{O}(P, A)_{\lambda} = GT(\lambda)$ patterns of \mathfrak{sp}_{2n+1}

Our bijection gives a definition of "FFLV patterns of \mathfrak{sp}_{2n+1} ", and:

Theorem 3. (Feigin-Fourier-Littelmann '11) (Conjecture: ABS '10) There is a FFLV basis for \mathfrak{sp}_{2n+1} indexed by the lattice points of $\mathscr{C}(P,A)_{\lambda}$.

• \mathfrak{so}_{2n+1} : The $GT(\lambda)$ patterns of \mathfrak{so}_{2n+1} are some (non-lattice) points of $\mathcal{O}(P,A)_{\lambda}$ as above. This suggests:

Question 3. Is there a FFLV basis for \mathfrak{o}_{2n+1} in terms of $\mathscr{C}(P,A)_{\lambda}$?

• \mathfrak{so}_{2n} , etc: The $GT(\lambda)$ patterns of type $D_n, E_6, E_7, E_8, F_4, G_2$ do not seem to correspond to points in a marked order polytope. What can be done here?