ПГ 2019\diamond1. Найдите прообраз точки $-\frac{35}{46}$ при дробно линейном преобразовании рациональной проективной прямой, переводящем точки $2, \frac{4}{3}, 1$ соответственно в точки $-\frac{5}{6}, -\frac{11}{14}, -\frac{3}{4}$.

Решение. Двойное отношение точек-образов

$$\left[-\frac{5}{6}, -\frac{11}{14}, -\frac{3}{4}, -\frac{35}{46} \right] = \frac{\det \begin{pmatrix} -11 & -35 \\ 14 & 46 \end{pmatrix} \det \begin{pmatrix} -5 & -3 \\ 6 & 4 \end{pmatrix}}{\det \begin{pmatrix} -5 & -35 \\ 6 & 46 \end{pmatrix} \det \begin{pmatrix} -11 & -3 \\ 14 & 4 \end{pmatrix}} = \frac{16 \cdot 2}{20 \cdot 2} = \frac{4}{5}.$$

Поскольку дробно линейное преобразование сохраняет двойные отношения, искомая точка (α : β) удовлетворяет уравнению

$$\frac{4}{5} = \left[2, \frac{4}{3}, 1, \frac{\alpha}{\beta}\right] = \frac{\det\begin{pmatrix} 4 & \alpha \\ 3 & \beta \end{pmatrix} \det\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}}{\det\begin{pmatrix} 2 & \alpha \\ 1 & \beta \end{pmatrix} \det\begin{pmatrix} 4 & 1 \\ 3 & 1 \end{pmatrix}} = \frac{4\beta - 3\alpha}{2\beta - \alpha},$$

откуда $8 \beta - 4 \alpha = 20 \beta - 15 \alpha$ и $\alpha/\beta = 12/11$.

ПГ 2019 \diamond 2. Найдите косинус меньшего из двух смежных углов между касательными прямыми, опущенными на конику $-12x^2+28xy+4x-9y^2-8y=0$ из точки $(\frac{2}{5},\frac{1}{5})$.

Первое решение. В однородных координатах $(x_0:x_1:x_2)=(1:x:y)$ коника имеет матрицу Грама

$$\begin{pmatrix} 0 & 2 & -4 \\ 2 & -12 & 14 \\ -4 & 14 & -9 \end{pmatrix}. \tag{1}$$

Прямая (pv), выходящая из заданной точки p=(5:2:1) в направлении $v=(0:t_1:t_2)$, касается коники если и только если ограничение квадратичной формы (1) на линейную оболочку векторов p,v вырождено. Поскольку матрица Грама этих векторов 1

$$\begin{pmatrix} 5 & 2 & 1 \\ 0 & t_1 & t_2 \end{pmatrix} \begin{pmatrix} 0 & 2 & -4 \\ 2 & -12 & 14 \\ -4 & 14 & -9 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 2 & t_1 \\ 1 & t_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -1 \\ 2 t_1 - 4 t_2 & -12 t_1 + 14 t_2 & 14 t_1 - 9 t_2 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 2 & t_1 \\ 1 & t_2 \end{pmatrix} =$$

$$= \begin{pmatrix} -1 & -t_2 \\ -t_2 & -12 t_1^2 + 28 t_1 t_2 - 9 t_2^2 \end{pmatrix}$$

имеет определитель $12\,t_1^2-28\,t_1t_2+8\,t_2^2$, касательные направления $t=(t_1:t_2)$ являются корнями квадратного уравнения $3t^2-7\,t+2=0$ с дискриминантом $49-24=5^2$ и равны $v_+=(2:1)$ и $v_-=(1:3)$. Косинус меньшего из смежных улов между этими направлениями равен

$$\frac{|(v_+, v_-)|}{\sqrt{(v_+, v_+)(v_-, v_-)}} = \frac{5}{\sqrt{5 \cdot 10}} = \frac{\sqrt{2}}{2}.$$

 $^{^{1}}$ Обратите внимание, что в силу симметричности матрицы Грама достаточно вычислить только три её элемента.

Второе решение. Касательные, опущенные на конику (1) из точки p=(5:2:1), касаются коники в точках её пересечения с полярой точки p, которая задаётся уравнением $\eta_0 x_0 + \eta_1 x_1 + \eta_2 x_2 = 0$ с коэффициентами

$$(\eta_0:\eta_1:\eta_2)=(5:2:1)\begin{pmatrix}0&2&-4\\2&-12&14\\-4&14&-9\end{pmatrix}=(0:0:-1)=(0:0:1).$$

Выберем в качестве базиса на поляре точки a=(1:0:0) и b=(0:1:0). Точка t_0a+t_1b лежит на конике если и только если

$$\begin{pmatrix} t_0 & t_1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 & -4 \\ 2 & -12 & 14 \\ -4 & 14 & -9 \end{pmatrix} \begin{pmatrix} t_0 \\ t_1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 t_1 & 2 t_0 - 12 t_1 & -4 t_0 + 14 t_1 \end{pmatrix} \begin{pmatrix} t_0 \\ t_1 \\ 0 \end{pmatrix} = 4 t_0 t_1 - 12 t_1^2 = 0 ,$$

т. е. при $(t_0:t_1)=(1:0)$ и $(t_0:t_1)=(12:4)=(3:1)$. Таким образом, касательные прямые пересекают конику в точках $q_1=(1:0:0)$ и $q_2=(3:1:0)$ с аффинными координатами (0,0) и (1/3,0) соответственно. Абсолютная величина косинуса угла между векторами $\overrightarrow{pq}_1=(-2/5,-1/5)$ и $\overrightarrow{pq}_2=(-1/15,-1/5)$ такая же, как между векторами $v_1=(2,1)$ и $v_2=(1,3)$, и равна

$$\frac{|(v_1, v_2)|}{\sqrt{(v_1, v_1)(v_2, v_2)}} = \frac{5}{\sqrt{5 \cdot 10}} = \frac{\sqrt{2}}{2}.$$

Третье решение. В двойственных координатах ($\xi_0:\xi_1:\xi_2$) на \mathbb{P}_2^{\times} матрица Грама двойственной коники пропорциональна присоединённой матрице² матрицы (1) и с точностью до умножения на константу равна³

$$\begin{pmatrix} -88 & -38 & -20 \\ -38 & -16 & -8 \\ -20 & -8 & -4 \end{pmatrix} \sim \begin{pmatrix} 44 & 19 & 10 \\ 19 & 8 & 4 \\ 10 & 4 & 2 \end{pmatrix}. \tag{2}$$

Коэффициенты ($\alpha_0:\alpha_1:\alpha_2$) касательных прямых $\alpha_0x_0+\alpha_1x_1+\alpha_2x_2=0$, опущенных на исходную конику (1) на \mathbb{P}_2 из точки $p=(5:2:1)\in\mathbb{P}_2$, суть точки пересечения двойственной коники (2) с прямой $5\xi_0+2\xi_1+\xi_2=0$ на \mathbb{P}_2^\times . Выберем в качестве базиса на этой прямой точки $\eta=(-2:5:0)$ и $\zeta=(0:-1:2)$. Точка $t_0\eta+t_1\zeta$ лежит на конике (2) если и только если

$$\begin{pmatrix} -2\,t_0 & 5\,t_0 - t_1 & 2\,t_1 \end{pmatrix} \begin{pmatrix} 44 & 19 & 10 \\ 19 & 8 & 4 \\ 10 & 4 & 2 \end{pmatrix} \begin{pmatrix} -2\,t_0 \\ 5\,t_0 - t_1 \\ 2\,t_1 \end{pmatrix} = \begin{pmatrix} 7\,t_0 + t_1 & 2\,t_1 & 0 \end{pmatrix} \begin{pmatrix} -2\,t_0 \\ 5\,t_0 - t_1 \\ 2\,t_1 \end{pmatrix} =$$

$$= -4\,t_0^2 - 4\,t_0t_1 = 0 \,,$$

т. е. при $(t_0:t_1)=(0:1)$ и $(t_0:t_1)=(-1:1)$. Поэтому искомые касательные прямые задаются однородными уравнениями $-x_1+2x_2=0$ и $2x_0-6x_1+2x_2=0$, которые в аффинной карте U_0 превращаются в x-2y=0 и 3x-y=1. Нормальные векторы этих прямых суть u=(1,-2) и w=(3,-1). Поэтому косинус меньшего из смежных улов между прямыми равен

$$\frac{|(u,w)|}{\sqrt{(u,u)(w,w)}} = \frac{5}{\sqrt{5\cdot 10}} = \frac{\sqrt{2}}{2}.$$

ПГ 2019 > 3. Напишите однородное уравнение проективной коники, проходящей через точки

²Т. е. матрице алгебраических дополнений к элементам матрицы (1).

³Опять-таки, в силу симметричности достаточно вычислить только шесть её элементов.

и касающейся прямой $16x_0 - 22x_1 + 14x_2 = 0$ в точке (27 : 26 : 10).

Решение. Коники, проходящие через точки a=(7:6:2), b=(3:2:1) и касающиеся прямой ℓ с уравнением $8x_0-11x_1+7x_2=0$ в точке c=(27:26:10), образуют пучок, порождённый распавшимися кониками $C=\ell\cup(ab)$ и $D=(ca)\cup(cb)$. Если последние задаются квадратичными формами f(x) и g(x) от однородных координат $x=(x_0:x_1:x_2)$, то единственная проходящая через точку p=(2:2:1) коника пучка с точностью до постоянного множителя задаётся квадратичной формой g(p) f(x)-f(p) g(x). Прямые (ab), (ac) и (bc) задаются линейными формами

$$\det \begin{pmatrix} x_0 & x_1 & x_2 \\ 7 & 6 & 2 \\ 3 & 2 & 1 \end{pmatrix} = 2 x_0 - x_1 - 4 x_2$$

$$\det \begin{pmatrix} x_0 & x_1 & x_2 \\ 7 & 6 & 2 \\ 27 & 26 & 10 \end{pmatrix} = 8 x_0 - 16 x_1 + 20 x_2 \sim 2 x_0 - 4 x_1 + 5 x_2$$

$$\det \begin{pmatrix} x_0 & x_1 & x_2 \\ 3 & 2 & 1 \\ 27 & 26 & 10 \end{pmatrix} = -6 x_0 - 3 x_1 + 24 x_2 \sim -2 x_0 - x_1 + 8 x_2,$$

откуда

$$\begin{split} f(x_0,x_1,x_2) &= (2\,x_0-x_1-4\,x_2)\,(8\,x_0-11\,x_1+7\,x_2) = \\ &= 16\,x_0^2+11\,x_1^2-28\,x_2^2-30\,x_0x_1-18\,x_0x_2+37\,x_1x_2\,, \\ f(2,2,1) &= (4-2-4)(16-22+7) = -2\,, \\ g(x_0,x_1,x_2) &= (2\,x_0-4\,x_1+5\,x_2)\,(-2\,x_0-x_1+8\,x_2) = \\ &= -4\,x_0^2+4\,x_1^2+40\,x_2^2+6\,x_0x_1+6\,x_0x_2-37\,x_1x_2\,, \\ g(2,2,1) &= (4-8+5)(-4-2+8) = 2\,. \end{split}$$

Искомая коника задаётся квадратичной формой

$$f(x_0, x_1, x_2) + g(x_0, x_1, x_2) = 12x_0^2 + 15x_1^2 + 12x_2^2 - 24x_0x_1 - 12x_0x_2 \sim 4x_0^2 + 5x_1^2 + 4x_2^2 - 8x_0x_1 - 4x_0x_2.$$

ПГ 2019\diamond4. Определите тип евклидовой коники $-x^2 + 2xy - 4x - y^2 + 6y - 3 = 0$, и если эта коника центральная, то найдите её центр и направления главных осей, а если парабола — направление оси и вершину.

Решение. В однородных координатах $(x_0 : x_1 : x_2) = (1 : x : y)$ коника имеет матрицу Грама

$$\begin{pmatrix} -3 & -2 & 3 \\ -2 & -1 & 1 \\ 3 & 1 & -1 \end{pmatrix} \tag{3}$$

с главными нижними угловыми минорами $\Delta_{12}=0$ и $\Delta_{012}=3$. Следовательно, она непустая и гладкая. Полюс бесконечно удалённой прямой $x_0=0$ находится в точке

$$x_* = \begin{pmatrix} \Delta_{12} : -\det \begin{pmatrix} -2 & 1 \\ 3 & -1 \end{pmatrix} : \det \begin{pmatrix} -2 & -1 \\ 3 & 1 \end{pmatrix} \end{pmatrix} = (0 : 1 : 1)$$

и лежит на этой прямой, т. е. коника касается бесконечно удалённой прямой в точке $x_* = (0:1:1)$ и, тем самым, является параболой с осью, направленной вдоль вектора (1:1). Ось является полярой евклидово перпендикулярного к x_* направления $y_* = (0:-1:1)$ и задаётся линейным однородным уравнением $\alpha_0 x_0 + \alpha_1 x_1 + \alpha_2 x_2 = 0$ с коэффициентами

$$(\alpha_0 : \alpha_1 : \alpha_2) = (0 : -1 : 1) \begin{pmatrix} -3 & -2 & 3 \\ -2 & -1 & 1 \\ 3 & 1 & -1 \end{pmatrix} = (5 : 2 : -2).$$

Выберем на оси точку e=(-2:5:0). Вершина z_* параболы является отличным от x_* и лежащим на прямой (ex_*) изотропным вектором билинейной формы β с матрицей Грама (3). Такой вектор получается отражением точки x_* в ортогонале к e относительно формы β :

$$z_* = \sigma_e(x_*) = x_* - 2 \frac{\beta(e, x_*)}{\beta(e, e)} e$$
.

Скалярные произведения $\beta(e,x_*)$ и $\beta(e,e)$ вычисляются умножением строки

$$(-2 \quad 5 \quad 0) \begin{pmatrix} -3 & -2 & 3 \\ -2 & -1 & 1 \\ 3 & 1 & -1 \end{pmatrix} = (-4 \quad -1 \quad -1)$$

на столбцы координат векторов x_* и e и равны $\beta(e,x_*)=-2$, $\beta(e,e)=3$. Таким образом, вершина параболы находится в точке $z_*=(0,1,1)+\frac{4}{3}(-2,5,0)=(-8\div23\div3)$ с аффинными координатами

$$(-23/8, -3/8)$$
.

 $\Pi\Gamma$ **2019** \diamond **5** * . Постройте рациональную параметризацию коники, заданной аффинным уравнением

$$-28x^2 + 20xy + 24x - 4y^2 - 8y - 5 = 0.$$

Первое решение. Умножим уравнение коники на -1. Получим квадратичную форму, матрица Грама которой в однородных координатах ($x_0: x_1: x_2$) = (1: x: y) равна

$$B = \begin{pmatrix} 5 & -12 & 4 \\ -12 & 28 & -10 \\ 4 & -10 & 4 \end{pmatrix}.$$

Если коника непустая и гладкая, то B-ортогональное дополнение к анизотропному базисному вектору e_2 должно быть гиперболической плоскостью. Эта плоскость порождается ортогональными проекциями базисных векторов e_0 , e_1 :

$$\begin{split} e_0 - \frac{\beta(e_0, e_2)}{\beta(e_2, e_2)} \, e_2 &= (1, 0, 0) - (0, 0, 1) = (1, 0, -1) \\ e_1 - \frac{\beta(e_1, e_2)}{\beta(e_2, e_2)} \, e_2 &= (0, 1, 0) + \frac{5}{2} \, (0, 0, 1) = (0, 1, 5/2) \, . \end{split}$$

Положим $u_0=(1,0,-1),\,u_1=(0,2,5).$ Эти векторы имеют матрицу Грама

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 5 \end{pmatrix} \begin{pmatrix} 5 & -12 & 4 \\ -12 & 28 & -10 \\ 4 & -10 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ -1 & 5 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 0 \\ -4 & 6 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ -1 & 5 \end{pmatrix} = \begin{pmatrix} 1 & -4 \\ -4 & 12 \end{pmatrix}.$$

Положим $w_1 = u_1 - \beta(u_0, u_1)u_0 = 4u_0 + u_1 = (4, 2, 1)$. Тогда $\beta(u_0, w_1) = 0$ и

$$\beta(w_1, w_1) = 16 - 8 \cdot 4 + 12 = -4$$
.

В базисе $(u_0,\,w_1,\,e_2)$ форма β имеет диагональную матрицу Грама с элементами (1,-4,4) на диагонали. В однородных координатах $(z_0\,:\,z_1\,:\,z_2)$ относительно этого базиса коника задаётся уравнением

$$z_0^2 = 4(z_1 + z_2)(z_1 - z_2)$$

и имеет рациональную параметризацию

$$z_0 = 2t_0t_1$$
, $z_1 + z_2 = t_0^2$, $z_1 - z_2 = t_1^2$, T. e. $(z_0 : z_1 : z_2) = (4t_0t_1 : t_0^2 + t_1^2 : t_0^2 - t_1^2)$.

В исходных однородных координатах ($x_0: x_1: x_2$) эта параметризация приобретает вид

$$\begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 4 & 0 \\ 0 & 2 & 0 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} z_0 \\ z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} 1 & 4 & 0 \\ 0 & 2 & 0 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 4 t_0 t_1 \\ t_0^2 + t_1^2 \\ t_0^2 - t_1^2 \end{pmatrix} = \begin{pmatrix} 4 t_0 t_1 + 4 t_0^2 + 4 t_1^2 \\ 2 t_0^2 + 2 t_1^2 \\ 2 t_0^2 - 4 t_0 t_1 \end{pmatrix}.$$

В исходных аффинных координатах на евклидовой плоскости это записывается формулами

$$x = \frac{t^2 + 1}{2t^2 + 2t + 2}, \quad y = \frac{t^2 - 2t}{2t^2 + 2t + 2}, \quad \text{где} \quad t = t_0 / t_1 \in \mathbb{Q} \sqcup \infty.$$
 (4)

Второе решение. Ограничение коники на прямую y = 0 задаётся уравнением

$$28x^2 - 24x + 5 = 0$$

с $D/4=144-140=2^2$ и корнями 1/2, 5/14. Таким образом, точка p=(2:1:0) лежит на конике. Все рациональные направления $t=(0:t_1:t_2)$ анизотропны, поскольку ограничение коники на бесконечно удалённую прямую задаётся уравнением $7x^2-5xy+y^2=0$, у которого нет рациональных корней. Каждая прямая (pt) пересекает конику в точке p и точке p

$$q(t) = \sigma_t(p) = p - 2\frac{\beta(t,p)}{\beta(t,t)} t = (2\beta(t,t) : \beta(t,t) - 2t_1\beta(t,p) : -2t_2\beta(t,p)).$$

Скалярные произведения $\beta(t,p)$ и $\beta(t,t)$ получаются умножением столбцов координат векторов p и t на строку

$$\begin{pmatrix} 0 & t_1 & t_2 \end{pmatrix} \begin{pmatrix} 5 & -12 & 4 \\ -12 & 28 & -10 \\ 4 & -10 & 4 \end{pmatrix} = \begin{pmatrix} -12 t_1 + 4 t_2 & 28 t_1 - 10 t_2 & -10 t_1 + 4 t_2 \end{pmatrix}$$

Они равны $\beta(t,p)=4\,t_1-2\,t_2$ и $\beta(t,t)=28\,t_1^2-20\,t_1t_2+4\,t_2^2$, откуда

$$\begin{split} q(t) &= \left(56\,t_1^2 - 40\,t_1t_2 + 8\,t_2^2 \,:\, 20\,t_1^2 - 16\,t_1t_2 + 4\,t_2^2 \,:\, -8\,t_1t_2 + 4\,t_2^2\right) = \\ &= \left(14\,t_1^2 - 10\,t_1t_2 + 2\,t_2^2 \,:\, 5\,t_1^2 - 4\,t_1t_2 + t_2^2 \,:\, -2\,t_1t_2 + t_2^2\right) \,. \end{split}$$

В исходных аффинных координатах на евклидовой плоскости это записывается формулами

$$x = \frac{t^2 - 4t + 5}{2t^2 - 10t + 14}, \quad y = \frac{t^2 - 2t}{2t^2 - 10t + 14}, \quad \text{где} \quad t = t_2/t_1 \in \mathbb{Q} \sqcup \infty.$$
 (5)

Вопрос: какое дробно линейное преобразование переменной t превращает параметризацию (4) в параметризацию (5)?

Ответ: $t \mapsto 2 - t$, ибо оно оставляет на месте 1 и ∞ и меняет местами 0 и 2.

 $^{^4}$ Эта точка является отражением изотропного вектора p в ортогонале к анизотропному вектору t .