Assignment: NP-Completeness and Heuristic Algorithms

Note: You will discuss Question 1 as part of the Group Assignment. (Check this week's Group Assignment on Canvas for details).

1. NP-Completeness: Consider the Travelling Salesperson (TSP) problem that was covered in the exploration.

Problem: Given a graph G with V vertices and E edges, determine if the graph has a TSP solution with a cost of at most k.

Prove that the above stated problem is NP-Complete.

2. Implement Heuristic Algorithm:

a. Below matrix represents the distance of 5 cities from each other. Represent it in the form of a graph

	Α	В	С	D	E
Α	0	2	3	20	1
В	2	0	15	2	20
С	3	15	0	20	13
D	20	2	20	0	9
Е	1	20	13	9	0

- b. Apply Nearest-neighbor heuristic to this matrix and find the approximate solution for this matrix if it were for TSP problem.
- c. What is the approximation ratio of your approximate solution?
- d. Implement Travelling Salesman Problem using the nearest-neighbor heuristic.

Input: The input Graph is provided in the form of a 2-D matrix (adjacency matrix). Consider the first node as the starting point.

Sample input:

```
G = [
[0, 2, 3, 20, 1],
[2, 0, 15, 2, 20],
[3, 15, 0, 20, 13],
[20, 2, 20, 0, 9],
[1, 20, 13, 9, 0],
```

Output: A list of indices indicating the path taken. You must return the sequence of nodes, the path taken starting from node 0. In this example, G is 5x5, indicating there are 5 nodes in this graph: 0-4. You will always begin with node 0, and your

path should include every node exactly once, and only go between nodes with a nonzero edge between them. You path will end at the starting node.

Sample output (For above graph G):

Note: Not all graphs are fully connected: some rows in G may have more than one 0. These indicate absence of an edge.

Name your function **solve_tsp(G)**. Name your file **TSP.py**.