Отчёта по лабораторной работе №6

Дисциплина: Архитектура компьютера

Камалиева Лия Дамировна.

Содержание

1	Цель работы	5	
2	Задание	6	
3	Теоретическое введение	7	
4	Выполнение лабораторной работы 4.1 1.1 Символьные и численные данные в NASM	8 8 16 16 21	
5	Выводы	23	
Сп	Список литературы		

Список иллюстраций

4.1	создание каталога	8
4.2	eax	9
4.3	подключение in_out.asm	10
4.4	запуск	10
4.5	изменяем программу	11
4.6	запуск	12
4.7	программа	13
4.8	исполняемый файл	14
4.9	измененная программа	15
4.10	изменённая функция	16
4.11	lab6-3.asm	17
	измененная программа lab6-3.asm	18
4.13	запуск измененной программы lab6-3.asm	19
4.14	запуск программы по расчету варианта	19
4.15	задание	21
4.16	файл	21
4.17	программа	22
4 18	проверка	22

Список таблиц

1 Цель работы

Освоение арифметических инструкций языка ассемблера NASM

2 Задание

- 1.1 Символьные и численные данные в NASM
- 1.2. Выполнение арифметических операций в NASM
- 1.3. Задание для самостоятельной работы

3 Теоретическое введение

Адресация в NASM Большинство инструкций на языке ассемблера требуют обработки операндов. Адрес операнда предоставляет место, где хранятся данные, подлежащие обработке. Это могут быть данные хранящиеся в регистре или в ячейке памяти. Далее рассмотрены все существующие способы задания адреса хранения операндов – способы адресации.

4 Выполнение лабораторной работы

4.1 1.1 Символьные и численные данные в NASM

Шаг 1. Создаем каталог для программ лабраторной работы №6.

Рис. 4.1: создание каталога

Шаг 2. Запишем программу вывода значения регистра еах

Рис. 4.2: eax

Шаг 3. Для корректной работы программы подключаемый файл in_out.asm

Рис. 4.3: подключение in_out.asm

Шаг 4.Создаем исполняемый файл и запускаем его

```
Терминал - ldkamalieva@ldkamalieva-VirtualBox: ~/work/arch-pc/lab06

Файл Правка Вид Терминал Вкладки Справка

ldkamalieva@ldkamalieva-VirtualBox: ~ cd ~/work/arch-pc/lab06

ldkamalieva@ldkamalieva-VirtualBox: ~/work/arch-pc/lab06$ nasm -f elf lab6-1.asm

ldkamalieva@ldkamalieva-VirtualBox: ~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-1 lab6-1.o

ldkamalieva@ldkamalieva-VirtualBox: ~/work/arch-pc/lab06$ ./lab6-1

j
ldkamalieva@ldkamalieva-VirtualBox: ~/work/arch-pc/lab06$
```

Рис. 4.4: запуск

Шаг 5. Изменяем файл убираем ковычки

Рис. 4.5: изменяем программу

Шаг 6. Снова создаем исполняемый файл и запускаем его

Рис. 4.6: запуск

Шаг 7. Создаём файл lab6-2.asm в каталоге ~/work/arch-pc/lab06 и вводим в него текст программы из листинга

%include 'in_out.asm' SECTION .text GLOBAL _start _start: mov eax, '6' mov ebx, '4' add eax, ebx call iprintLF call quit

```
Терминал - ldkamalieva@ldkamalieva-VirtualBox: ~/work/arch-pc/lab
 Файл Правка Вид Терминал Вкладки Справка
                   /home/ldkamalieva/work/arch-pc/lab06/lab6-2.2
  GNU nano 4.8
%include 'in out.asm'
       .text
      _start
mov eax,'6'
mov ebx,'4'
add eax,ebx
call iprintLF
call quit
Файл для вставки [из ./]:
                           М-Г Новый буфер
`G Помощь
                                                       X Выполнить
   0тмена
                           M-N Без преобразования
                                                         К файлам
```

Рис. 4.7: программа

Шаг 8. Проверяем программу

Рис. 4.8: исполняемый файл

Шаг 9. Аналогично предыдущему примеру изменим символы на числа, создаём исполняемый файл и запускаем его

Рис. 4.9: измененная программа

Шаг 10. Замените функцию iprintLF на iprint. Создаём исполняемый файл и запускаем его.

```
Терминал - ldkamalieva@ldkamalieva-VirtualBox: ~/work/arch-pc/lab06
                                                                            Файл Правка Вид Терминал Вкладки Справка
ldkamalieva@ldkamalieva-VirtualBox:~$ nasm -f elf lab6-2.asm
nasm: fatal: unable to open input file `lab6-2.asm'
ldkamalieva@ldkamalieva-VirtualBox:~$ cd ~/work/arch-pc/lab06
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ ld -m elf i386 -o lab6-
2 lab6-2.o
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ ./lab6-2
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ ld -m elf i386 -o lab6-
2 lab6-2.o
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ ./lab6-2
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ ld -m elf i386 -o lab6-
2 lab6-2.o
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ ./lab6-2
10ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$
```

Рис. 4.10: изменённая функция

4.2 1.2 Выполнение арифметических операций в NASM

4.2.1 В качестве примера выполнения арифметических операций в NASM приведем программу вычисления арифметического выражения F(x) = (5 * 2 + 3)/3

Шаг 1. Создаём файл lab6-3.asm в каталоге ~/work/arch-pc/lab06, пишем в нем программу и запускаем её.

%include 'in_out.asm'; подключение внешнего файла SECTION .data div: DB 'Peзультат:',0 rem: DB 'Oстаток от деления:',0 SECTION .text GLOBAL _start _start: ; —- Вычисление выражения mov eax,5 ; EAX=5 mov ebx,2 ; EBX=2 mul ebx ;

EAX=EAX*EBX add eax,3; EAX=EAX+3 xor edx,edx; обнуляем EDX для корректной работы div mov ebx,3; EBX=3 div ebx; EAX=EAX/3, EDX=остаток от деления mov edi,eax; запись результата вычисления в 'edi'; —- Вывод результата на экран mov eax,div; вызов подпрограммы печати call sprint; сообщения 'Peзультат:' mov eax,edi; вызов подпрограммы печати значения call iprintLF; из 'edi' в виде символов mov eax,rem; вызов подпрограммы печати call sprint; сообщения 'Остаток от деления:' mov eax,edx; вызов подпрограммы печати значения call iprintLF; из 'edx' (остаток) в виде символов call quit; вызов подпрограммы завершения

Рис. 4.11: lab6-3.asm

Шаг 2. Изменяем текст программы для вычисления выражения $\mathbb{Z}(\mathbb{Z}) = (4 \mathbb{Z} 6 + 2)/5$.

Рис. 4.12: измененная программа lab6-3.asm

Шаг 3. Создаем исполняемый файл и проверьте его работу

```
Терминал - ldkamalieva@ldkamalieva-VirtualBox: ~/work/arch-pc/lab06
                                                                           Файл Правка Вид Терминал Вкладки Справка
106
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ ld -m elf i386 -o lab6-
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ ./lab6-2
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ ld -m elf i386 -o lab6-
2 lab6-2.o
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ ./lab6-2
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ touch lab6-3.asm
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ nasm -f elf lab6-3.asm
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ ld -m elf i386 -o lab6·
3 lab6-3.o
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ ./lab6-3
Результат: 4
Остаток от деления: 1
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ nasm -f elf lab6-3.asm
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ ld -m elf i386 -o lab6-
3 lab6-3.o
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ ./lab6-3
Результат: 5
Остаток от деления: 1
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$
```

Рис. 4.13: запуск измененной программы lab6-3.asm

Шаг 4. Рассмотрим также программу, вычисляющую вриант задания по номеру студенческого билета, для этого создаем файл variant.asm. Создаём исполняемый файл и запускаем его.

```
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ nasm -f elf variant.asm ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ ld -m elf_i386 -o varia nt variant.o ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ ./variant Введите No студенческого билета: 1132239098 Ваш вариант: 19 ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$
```

Рис. 4.14: запуск программы по расчету варианта

Ответы на вопросы: #### 1. Какие строки листинга 6.4 отвечают за вывод на

экран сообщения 'Ваш вариант:'?

За вывод на экран отвечает строка: mov eax,rem, которая загружает в регистр адрес строки с текстом

4.2.1.1 2. Для чего используется следующие инструкции?

mov ecx, x mov edx, 80 call sread

первая команда помещает х в регистр а вторая команда делает тоже самое, но с регистром edx и значением 80 команда call spread обеспечивает считывание студенчиского билета и присваивание его х

4.2.1.2 3. Для чего используется инструкция "call atoi"?

эта функция переводит строковые данные в целочисленное значение

4.2.1.3 4. Какие строки листинга 6.4 отвечают за вычисления варианта?

xor edx,edx mov ebx,20 div ebx inc edx

4.2.1.4 5. В какой регистр записывается остаток от деления при выполнении инструкции "div ebx"?

edx, также мы его часто обнуляем

4.2.1.5 6. Для чего используется инструкция "inc edx"?

команда inc edx увеличивает значение регистра на 1

####7. Какие строки листинга 6.4 отвечают за вывод на экран результата вычислений?

mov eax,edx call iprintLF

4.3 1.3 Задание для самостоятельной работы

Написать программу вычисления выражения у = F(x). Программа должна выводить выражение для вычисления, выводить запрос на ввод значения ⊠, вычислять задан- ное выражение в зависимости от введенного ⊠, выводить результат вычислений. Вид функции F(x) выбрать из таблицы 6.3 вариантов заданий в соответствии с номером полученным при выполнении лабораторной работы. Создайте исполняемый файл и проверьте его работу для значений x1 и x2 из 6.3 У меня это вариант №19

19
$$(\frac{1}{3}x+5)\cdot 7$$
 3 9

Рис. 4.15: задание

Шаг 1. создаем файл lab6-4.asm

```
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ ./variant
Введите No студенческого билета:
1132239098
Ваш вариант: 19
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ touch lab6-4.asm
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$
```

Рис. 4.16: файл

Шаг 2. пишем программу по вычисению примера

```
lab6-4.asm (~/work/arch-pc/lab06)
                                                                                           ⊓
Файл Правка Вид Поиск Сервис Документы Справка
          8
                             × 🖆 🗎
 ■ lab6-4.asm ×
%include 'in out.asm'
SECTION .data
msq: DB 'Введите X ',0
rem: DB 'выражение = : ',0
SECTION .bss
x: RESB 80
SECTION .text
GLOBAL _start
start:
mov eax, msq
call sprintLF
mov ecx, x
mov edx, 80
call sread
mov eax,x
                                                                      I
call atoi
xor edx,edx
mov ebx,3
div ebx
add eax,5
mov ebx,7
mul ebx
mov ebx,eax
Matlab ▼ Пробелы: 4 ▼
                                                                              Стр 21, Стлб 10
                                                                                               BCT
```

Рис. 4.17: программа

Шаг3. делаем проверку корней

```
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ nasm -f elf lab6-4.asm lab6-4.asm:31: error: symbol `div' undefined ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ nasm -f elf lab6-4.asm ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-4 lab6-4.o ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ ./lab6-4
Введите X

выражение = : 42
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$ ./lab6-4
Введите X

выражение = : 56
ldkamalieva@ldkamalieva-VirtualBox:~/work/arch-pc/lab06$
```

Рис. 4.18: проверка

5 Выводы

Вывод: я научилась писать арифметические инструкции в ассемблере NASM

Список литературы