#1#	DISTRIBUCIONES DISCRETAS	UNIDIMENSIONALES	5	44-3		
DISTRIBUCION	FUNCION DE PROBABILIDAD	PARAMETROS	ESPERANZA	VARIANZA	F. GENERATRIZ MOMENTOS	FUNCION CARA
UNIFORME DISCRETA	$p(X=x_i) = \frac{1}{N}$ $i=1,2N$	N (N=1,2,)	$\frac{1}{N} \sum_{i=1}^{N} x_i$	$\frac{1}{N} \underset{i:t}{\overset{N}{\underset{i}{\stackrel{\sim}{\sim}}}} \times_{\underline{i}}^{\underline{i}} - \left(\frac{1}{N} \underset{i:t}{\overset{N}{\underset{\sim}{\sim}}} \times_{\underline{i}}^{\underline{j}} \right)$		$\frac{1}{N} \sum_{j=1}^{N} e^{i}$
UNIFORME DISCRETA CASO PARTICULAR	$p(X=k) = \frac{1}{N}$ $k=1,2N$	N (N=1,2,)	N + 1 2	N ² - 1	$\frac{e^{t}(1-e^{tN})}{N(1-e^{t})}$	$\frac{e^{it}(1-e^{it})}{N(1-e^{it})}$
BERNOUILLI	$p(X=k)=p^{k}(1-p)^{1-k}$ $k=0,1$	p (q=1-p) (0≤p≤1)	p	pq	q + e ^t ·p	q + e ^{it} .
BINOMIAL Es reproductiva: Su	$p(X=k) = {n \choose k} p^{k} (1-p)^{n-k}$ $X = k = 0, 1, n$ $X = k = 0, 1, n$	$p (q=1-p), n$ $(0 \le p \le 1)$ $(n=1,2)$ $3(n_1++n_m,7)$	np Si XIDB(n,P) YID	npq >B(n,1-P) =>P(X=K)!=	(q + e ^t . r) ⁿ = P(1= n-k)	(q + e ^{it} .
POISSON K	$p(X=k) = e^{-\lambda} \frac{\lambda^k}{k!}$	(1>0) =DXX+Y=e 1	β(C ₁ /ξ)	λ	el(e ^t -1)	eλ(e ^{it} - 1
No dieue: X~>6(P) → P. Luceniona GEOMETRICA	$p(X=k)=(1-p)^{k} p$ $k=0,1,$	p (q=1-p) (0 < p≤1)	si X ex v.a. discreta com es emada. con distribe	walere ent of no hiere south peans from	p 1-e ^t · q	p 1-e ^{it} q
X; NG(P) = ZX; N BN BINOMIAL NEGATIVA BN(NP)	$\phi(\mathbf{r}, \mathbf{p})$ $\phi(\mathbf{X} = \mathbf{k}) = {\binom{k+r-1}{k}} (1-\mathbf{p})^k \mathbf{p}^r$ $\mathbf{k} = 0, 1, \dots$	p (q=1-p),r (0 <p≤1) (r=1,2) Fore</p≤1) 	eproductiva: Xind Brill.	TOP) => EXINABNITA	$\left(\frac{p}{1-e^{t}q}\right)^{r}$	$\left(\frac{p}{1-e^{it}}\right)$
HIPERGEOMETRICA H'(N,n,P)	$p(X=k) = \frac{\binom{Np}{k} \binom{Nq}{n-k}}{\binom{N}{N}}$	N,n,p (q=1-p) (N=1,2) (n=1,N)	np	$npq \frac{N-n}{N-1}$		

	DISTRIBUCIONES CONTINUAS	UNIDIMENSIONALE	The second secon		Contract Con	i Maryard - Loui e Milita. T
# 2 # DISTRIBUCION	FUNCION DE DENSIDAD	PARAMETROS	ESPERANZA	VARIANZA .	F. GENERATRIZ MOMENTOS	FUNCION CARAC
UNIFORME CONTINUA	$f_X(x) = \frac{1}{b-a}$ $a < x < b$	a, b (-∞∠a∠b∠∞)	<u>b + a</u> 2	(b - a) ²	etb _ eta _ t(b - a)	eitb - eit it(b - a)
NORMAL	$f_X(x) = \frac{1}{\sigma \sqrt{2}\pi} e^{-\frac{(x-\mu)^2}{2\sigma^2}} - \infty < x < \infty$	μ, σ (-∞<μ<ω) (σ>0)	Д	σ²	$e^{t\mu} + \frac{t^2\sigma^2}{2}$	$e^{it}\mu - \frac{t^2\sigma}{2}$
LOG-NORMAL	$f_{X}(x) = \frac{1}{x\sigma\sqrt{2\pi}} e^{-\frac{(\ln x - \mu)^{2}}{2\sigma^{2}}}$	μ,σ (-ω<μ<∞) (σ>0)	$e^{\mu + \frac{\sigma^2}{2}}$	$e^{2\mu}(e^{2\sigma^2}-e^{\sigma^2})$		
GAMMA Remoderatives pard	$f_{X}(x) = \frac{a^{p}}{l'(p)} x^{p-1} e^{-ax}$ $x > 0$ $x > 0$ $x > 0$	(a,p) => KX (p) a,p (a>0) (p>0)	[(은, P)	<u>p</u> a ·	$\left(1 - \frac{t}{a}\right)^{-p}$	$\left(1 - \frac{it}{a}\right)^{-p}$
EXPONENCIAL NEGATIVA	$f_{\chi}(x) = a e^{-ax} x \geqslant 0$	a	<u>1</u> a	1/a²	$\left(1 - \frac{t}{a}\right)^{-1}$	$\left(1-\frac{it}{a}\right)^{-1}$
BETA	$f_{X}(x) = \int_{\sqrt{p+q}}^{p} \int_{\sqrt{q}}^{q+q} x^{p-1} (1-x)^{q-1}$ $0 < x < 1$	p,q (p > 0) (q > 0)	<u>p</u> p+q	qp (p+q+1)(p+q) ²		
PARETO	$f_{\chi}(x) = \frac{\alpha}{x} \cdot \left(\frac{x_{0}}{x}\right)^{\alpha} x \ge x_{0}$ $f(x) = \begin{cases} 0 & \text{if } x > 0 \\ 1 - \left(\frac{x_{0}}{x}\right)^{\chi} & \text{if } x > 0 \end{cases}$	(x°,>0) (x°,>0)	$\frac{\alpha \times_{0}}{\alpha - 1}$ $(\alpha > 1)$	$\frac{\propto \times_{0}^{2}}{(\alpha-2)(\alpha-1)^{2}}$ $(\alpha>2)$	No existe	
CÂUCHY STANDARD	$f_{v}(x) = \frac{1}{\pi(\Lambda + \chi^{2})}$		No existe	No existe	No existe	e- t

DISTRIBUCION	FUNCION DE DENSIDAD	PARAMETROS	ESPERANZA	VARIANZA	F. GEN. MOMENTOS	F. CARACTER
χ^2 de pearson $\chi(\pm 1\pm)$	$f_{\chi}(x) = \frac{(1/2)^{n/2}}{\int_{0}^{x} (n/2)} x^{\frac{n}{2} - 1} e^{-x/2}$ $x > 0$	n (n=1,2,)	n	2n	$(1 - 2t)^{-n/2}$	(1 - 2it)
t DE STUDENT	$f_{X}(x) = \sqrt{\frac{n+1}{2}} \frac{1}{\left(1 + \frac{x^{2}}{n}\right)} \frac{1}{\left(1 + \frac{x^{2}}{n}\right)} \frac{1}{(n+1)/2}$	n (n=1,2,)	0 (si n > 1)	n n-2 (si n>2)	No existe	
F DE SNEDECOR	$f_{\chi}(x) = \frac{\int \left(\frac{n_{1} + n_{2}}{2}\right)}{\int \left(\frac{n_{1}}{2}\right) \cdot \int \left(\frac{n_{2}}{2}\right)} \frac{n_{1}^{\frac{n_{1}}{2}} n_{2}^{\frac{n_{2}}{2}} x^{\frac{n_{1}}{2}} - 1}{(n_{2} + n_{1}^{2}x)^{+\frac{n_{1} + n_{2}}{2}}}$ $x > 0$	n ₁ , n ₂ (n ₁ =1,2,) (n ₂ =1,2,)	$\frac{n_2}{n_2-2}$ (si $n_2 > 2$)	$\frac{2n_2^2(n_1+n_2-2)}{n_1(n_2-4)(n_2-2)^2}$ (si n ₂ 74)	No existe	

DISTRIBUCIONES n-DIMENSIONALES FUNCION DE PROBABILIDAD/DENSIDAD PARAMETROS **ESPERANZA** VARIANZA COVARIANZA F. G. MOMENTOS F. CARACTER has luarginales non benemiales MULTINOMIAL $p(X_1=k_1...X_n=k_n) = \frac{m!}{k_1!...k_1!} p_1^{k_1}...p_n^{k_n} {m,p_1,...,p_n \atop (m=1,2,...)}$ $V(X_i) = mp_i(1-p_i) \left| C(X_i, X_j) = -mp_i p_j \left| \left(\sum_{j=1}^n e^{t_j} p_j \right) \right|$ $k_i = 0, 1, ..., m / k_1 + ... + k_n = m$ $(0 \le p, \le 1)$ Las marginales son supersone fricas una rate intronfuto whe k =0,1..., m/k +...k =m $0 \le p_i \le 1$ NORMAL $f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{|\mathbf{z}|} (2\eta)^{n} e} e^{-\frac{1}{2} [(\mathbf{x} - \mu)] \mathbf{z}' (\mathbf{x} - \mu)]} \mathbf{z} = (\sigma_{ij})$ $\mathbf{z} = (\sigma_{ij})$ $\mathbf{z} = (x_{i}) = \mu_{i}$ $\mathbf{z} = (x_{i}) = \mu_{i}$ $\mathbf{z} = (x_{i}) = \mu_{i}$ $\mathbf{z} = (x_{i}) = \mu_{i}$