Számításelmélet

6. előadás

előadó: Kolonits Gábor kolomax@inf.elte.hu

Jelölés: $\mathcal{P}(X) = \{Y \mid Y \subseteq X\}$ az X halmaz hatványhalmaza.

Nemdeterminisztikus Turing gép (NTG)

Az egyszalagos nemdeterminisztikus Turing gép (továbbiakban röviden NTG) egy $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ rendezett hetes, ahol

- Q az állapotok véges, nemüres halmaza,
- $q_0, q_i, q_n \in Q$, q_0 a kezdő- q_i az elfogadó- és q_n az elutasító állapot,
- Σ és Γ ábécék, a bemenő jelek illetve a szalagszimbólumok ábécéje úgy, hogy $\Sigma \subseteq \Gamma$ és $\sqcup \in \Gamma \backslash \Sigma$,
- ▶ $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, S, R\}).$

Jelölés: $\mathcal{P}(X) = \{Y \mid Y \subseteq X\}$ az X halmaz hatványhalmaza.

Nemdeterminisztikus Turing gép (NTG)

Az egyszalagos **nemdeterminisztikus Turing gép** (továbbiakban röviden NTG) egy $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ rendezett hetes, ahol

- Q az állapotok véges, nemüres halmaza,
- $q_0, q_i, q_n \in Q$, q_0 a kezdő- q_i az elfogadó- és q_n az elutasító állapot,
- ▶ Σ és Γ ábécék, a bemenő jelek illetve a szalagszimbólumok ábécéje úgy, hogy $\Sigma \subseteq \Gamma$ és $\sqcup \in \Gamma \backslash \Sigma$,
- $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, S, R\}).$

Azaz míg a **determinisztikus** esetben a δ átmenetfüggvény minden egyes $(Q \setminus \{q_i, q_n\}) \times \Gamma$ -beli párhoz **pontosan egy**, addig egy **nemdeterminisztikus** TG **akárhány** (pl. 0,1,5,100) darab $Q \times \Gamma \times \{L, S, R\}$ -beli rendezett hármast rendelhet hozzá.

A konfiguráció fogalma azonos, jelölje most is C_M az M NTG lehetséges konfigurációinak halmazát.

A konfiguráció fogalma azonos, jelölje most is C_M az M NTG lehetséges konfigurációinak halmazát.

Definíció

Egy $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ egyszalagos nemdeterminisztikus Turing gép $\vdash \subseteq C_M \times C_M$ egylépéses konfigurációátmenet relációját az alábbiak szerint definiáljuk.

A konfiguráció fogalma azonos, jelölje most is C_M az M NTG lehetséges konfigurációinak halmazát.

Definíció

Egy $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ egyszalagos nemdeterminisztikus Turing gép $\vdash \subseteq C_M \times C_M$ egylépéses konfigurációátmenet relációját az alábbiak szerint definiáljuk.

Legyen uqav egy konfiguráció, ahol $a \in \Gamma$, $u, v \in \Gamma^*$.

A konfiguráció fogalma azonos, jelölje most is C_M az M NTG lehetséges konfigurációinak halmazát.

Definíció

Egy $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ egyszalagos nemdeterminisztikus Turing gép $\vdash \subseteq C_M \times C_M$ egylépéses konfigurációátmenet relációját az alábbiak szerint definiáljuk.

Legyen uqav egy konfiguráció, ahol $a \in \Gamma, u, v \in \Gamma^*$.

- ► Ha $(r, b, R) \in \delta(q, a)$, akkor $uqav \vdash ubrv'$, ahol v' = v, ha $v \neq \varepsilon$, különben $v' = \sqcup$,
- ▶ ha $(r, b, S) \in \delta(q, a)$, akkor $uqav \vdash urbv$,
- ▶ ha $(r, b, L) \in \delta(q, a)$, akkor $uqav \vdash u'rcbv$, ahol $c \in \Gamma$ és u'c = u, ha $u \neq \varepsilon$, különben u' = u és $c = \sqcup$.

A konfiguráció fogalma azonos, jelölje most is C_M az M NTG lehetséges konfigurációinak halmazát.

Definíció

Egy $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ egyszalagos nemdeterminisztikus Turing gép $\vdash \subseteq C_M \times C_M$ egylépéses konfigurációátmenet relációját az alábbiak szerint definiáljuk.

Legyen uqav egy konfiguráció, ahol $a \in \Gamma, u, v \in \Gamma^*$.

- ► Ha $(r, b, R) \in \delta(q, a)$, akkor $uqav \vdash ubrv'$, ahol v' = v, ha $v \neq \varepsilon$, különben $v' = \sqcup$,
- ▶ ha $(r, b, S) \in \delta(q, a)$, akkor $uqav \vdash urbv$,
- ▶ ha $(r, b, L) \in \delta(q, a)$, akkor $uqav \vdash u'rcbv$, ahol $c \in \Gamma$ és u'c = u, ha $u \neq \varepsilon$, különben u' = u és $c = \sqcup$.

Példa: Tegyük fel, hogy $\delta(\mathbf{q_2}, \mathbf{a}) = \{(q_5, b, L), (q_1, d, R)\}$ Legyen továbbá $C_1 = bc\mathbf{q_2}\mathbf{a} \sqcup b$, $C_2 = b\mathbf{q_5}cb\sqcup b$, $C_3 = bcd\mathbf{q_1}\sqcup b$.

A konfiguráció fogalma azonos, jelölje most is C_M az M NTG lehetséges konfigurációinak halmazát.

Definíció

Egy $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ egyszalagos nemdeterminisztikus Turing gép $\vdash \subseteq C_M \times C_M$ egylépéses konfigurációátmenet relációját az alábbiak szerint definiáljuk.

Legyen uqav egy konfiguráció, ahol $a \in \Gamma$, $u, v \in \Gamma^*$.

- ► Ha $(r, b, R) \in \delta(q, a)$, akkor $uqav \vdash ubrv'$, ahol v' = v, ha $v \neq \varepsilon$, különben $v' = \sqcup$,
- ▶ ha $(r, b, S) \in \delta(q, a)$, akkor $uqav \vdash urbv$,
- ▶ ha $(r, b, L) \in \delta(q, a)$, akkor $uqav \vdash u'rcbv$, ahol $c \in \Gamma$ és u'c = u, ha $u \neq \varepsilon$, különben u' = u és $c = \sqcup$.

Példa: Tegyük fel, hogy $\delta(\mathbf{q_2}, \mathbf{a}) = \{(q_5, b, L), (q_1, d, R)\}$ Legyen továbbá $C_1 = bc\mathbf{q_2}\mathbf{a} \sqcup b, \ C_2 = b\mathbf{q_5}cb \sqcup b, \ C_3 = bcd\mathbf{q_1} \sqcup b.$ Ekkor $C_1 \vdash C_2$ és $C_1 \vdash C_3$.

Vegyük észre, hogy míg a **determinisztikus** esetben minden nem-megállási C konfigurációhoz **pontosan egy** C' konfiguráció létezett, melyre $C \vdash C'$, addig a **nemdeterminisztikus** esetben **több** ilyen is létezhet. Pl. 0,1,5,100 darab. Persze csak véges sok, hiszen $|Q \times \Gamma \times \{L, S, R\}|$ véges!

Vegyük észre, hogy míg a **determinisztikus** esetben minden nem-megállási C konfigurációhoz **pontosan egy** C' konfiguráció létezett, melyre $C \vdash C'$, addig a **nemdeterminisztikus** esetben **több** ilyen is létezhet. Pl. 0,1,5,100 darab. Persze csak véges sok, hiszen $|Q \times \Gamma \times \{L, S, R\}|$ véges!

Többlépéses konfigurációátmenet: ⊢ reflexív, tranzitív lezártja, azaz:

Vegyük észre, hogy míg a **determinisztikus** esetben minden nem-megállási C konfigurációhoz **pontosan egy** C' konfiguráció létezett, melyre $C \vdash C'$, addig a **nemdeterminisztikus** esetben **több** ilyen is létezhet. Pl. 0,1,5,100 darab. Persze csak véges sok, hiszen $|Q \times \Gamma \times \{L, S, R\}|$ véges!

Többlépéses konfigurációátmenet: ⊢ reflexív, tranzitív lezártja, azaz:

Definíció

A $\vdash^* \subseteq C_M \times C_M$ többlépéses konfigurációátmenet relációját a következőképpen definiáljuk: $C \vdash^* C' \Leftrightarrow$

- ▶ ha C = C' vagy
- ▶ ha $\exists n > 0 \land C_1, C_2, \dots C_n \in C_M$, hogy $\forall 1 \leqslant i \leqslant n-1$ -re $C_i \vdash C_{i+1}$ valamint $C_1 = C$ és $C_n = C'$.

Vegyük észre, hogy míg a **determinisztikus** esetben minden nem-megállási C konfigurációhoz **pontosan egy** C' konfiguráció létezett, melyre $C \vdash C'$, addig a **nemdeterminisztikus** esetben **több** ilyen is létezhet. Pl. 0,1,5,100 darab. Persze csak véges sok, hiszen $|Q \times \Gamma \times \{L, S, R\}|$ véges!

Többlépéses konfigurációátmenet: \vdash reflexív, tranzitív lezártja, azaz:

Definíció

A $\vdash^* \subseteq C_M \times C_M$ többlépéses konfigurációátmenet relációját a következőképpen definiáljuk: $C \vdash^* C' \Leftrightarrow$

- ▶ ha C = C' vagy
- ▶ ha $\exists n > 0 \land C_1, C_2, \dots C_n \in C_M$, hogy $\forall 1 \leqslant i \leqslant n-1$ -re $C_i \vdash C_{i+1}$ valamint $C_1 = C$ és $C_n = C'$.

Példa: Tegyük fel, hogy $C_1 \vdash C_2$, $C_1 \vdash C_3$, $C_2 \vdash C_4$. Ekkor $C_1 \vdash^* C_1$, $C_1 \vdash^* C_2$, $C_1 \vdash^* C_3$ és $C_1 \vdash^* C_4$ is teljesül.

Definíció

Az $M=\langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ nemdeterminisztikus Turing gép által felismert nyelv

$$L(M) = \big\{ u \in \Sigma^* \, | \, q_0 u \sqcup \, \vdash^* x q_i y \text{ valamely } x, y \in \Gamma^*, y \neq \varepsilon \text{ -ra} \big\}.$$

Definíció

Az $M=\langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ nemdeterminisztikus Turing gép által felismert nyelv

 $L(M) = \big\{ u \in \Sigma^* \, | \, q_0 u \sqcup \, \vdash^* x q_i y \text{ valamely } x, y \in \Gamma^*, y \neq \varepsilon \text{ -ra} \big\}.$

Bár a definíció formálisan megegyezik a determinisztikus TG által felismert nyelv definíciójával az egylépéses átmenet fogalmának módosulása miatt újra érdemes átgondolni mit jelent ez.

Definíció

Az $M=\langle Q,\Sigma,\Gamma,\delta,q_0,q_i,q_n\rangle$ nemdeterminisztikus Turing gép által felismert nyelv

 $L(M) = \big\{ u \in \Sigma^* \, | \, q_0 u \sqcup \, \vdash^* x q_i y \text{ valamely } x, y \in \Gamma^*, y \neq \varepsilon \text{ -ra} \big\}.$

Bár a definíció formálisan megegyezik a determinisztikus TG által felismert nyelv definíciójával az egylépéses átmenet fogalmának módosulása miatt újra érdemes átgondolni mit jelent ez.

Determinisztikus esetben csupán egyetlen számítása létezik a gépnek adott kezdőkonfigurációból, így ha elfogadó konfigurációba jut, akkor nincs elutasító konfigurációba jutó számítása és viszont.

Definíció

Az $M=\langle Q,\Sigma,\Gamma,\delta,q_0,q_i,q_n\rangle$ nemdeterminisztikus Turing gép által felismert nyelv

 $L(M) = \big\{ u \in \Sigma^* \, | \, q_0 u \sqcup \vdash^* x q_i y \text{ valamely } x, y \in \Gamma^*, y \neq \varepsilon \text{ -ra} \big\}.$

Bár a definíció formálisan megegyezik a determinisztikus TG által felismert nyelv definíciójával az egylépéses átmenet fogalmának módosulása miatt újra érdemes átgondolni mit jelent ez.

Determinisztikus esetben csupán egyetlen számítása létezik a gépnek adott kezdőkonfigurációból, így ha elfogadó konfigurációba jut, akkor nincs elutasító konfigurációba jutó számítása és viszont.

Egy NTG-nek azonban több számítása is lehet ugyanarra a szóra. Ezek között lehetnek elfogadó és elutasító (sőt nem termináló!) számítások is. Egy NTG akkor fogad el egy szót, ha az adott szóra legalább egy számítása q_i -ben ér véget (hiszen ekkor a kezdőkonfiguráció és ez az elfogadó konfiguráció \vdash * relációban áll).

Definíció

Egy M TG egy $u \in \Sigma^*$ inputjához tartozó **nemdeterminisztikus számítási fa** egy gyökeres fa, melynek csúcsai M konfigurációival címkézettek. $q_0u \sqcup a$ gyökér címkéje. Ha C egy csúcs címkéje, akkor $|\{C' \mid C \vdash C'\}|$ gyereke van és ezek címkéi éppen $\{C' \mid C \vdash C'\}$ elemei.

Definíció

Egy M TG egy $u \in \Sigma^*$ inputjához tartozó **nemdeterminisztikus számítási fa** egy gyökeres fa, melynek csúcsai M konfigurációival címkézettek. $q_0u \sqcup a$ gyökér címkéje. Ha C egy csúcs címkéje, akkor $|\{C' \mid C \vdash C'\}|$ gyereke van és ezek címkéi éppen $\{C' \mid C \vdash C'\}$ elemei.

Példa:

Definíció

Egy M TG egy $u \in \Sigma^*$ inputjához tartozó **nemdeterminisztikus számítási fa** egy gyökeres fa, melynek csúcsai M konfigurációival címkézettek. $q_0u \sqcup a$ gyökér címkéje. Ha C egy csúcs címkéje, akkor $|\{C' \mid C \vdash C'\}|$ gyereke van és ezek címkéi éppen $\{C' \mid C \vdash C'\}$ elemei.

Példa:

M elfogadja u-t, hiszen $q_0u \sqcup \vdash C_3 \vdash C_{32} \vdash C_{321}$ elfogadó számítás. Az elfogadáshoz **egyetlen** elfogadó számítás is elég!

Tehát adott inputra több számítás is lehetséges, ezek lehetnek elfogadóak, elutasítóak, **elakadóak** (ha olyan C-be jut, melyre $\{C' \mid C \vdash C'\} = \emptyset$), illetve végtelenek.

Tehát adott inputra több számítás is lehetséges, ezek lehetnek elfogadóak, elutasítóak, **elakadóak** (ha olyan C-be jut, melyre $\{C' \mid C \vdash C'\} = \emptyset$), illetve végtelenek.

Észrevétel: $u \in L(M) \Leftrightarrow az u$ -hoz tartozó nemdeterminisztikus számítási fának van olyan levele, ami elfogadó konfiguráció.

Tehát adott inputra több számítás is lehetséges, ezek lehetnek elfogadóak, elutasítóak, **elakadóak** (ha olyan C-be jut, melyre $\{C' \mid C \vdash C'\} = \emptyset$), illetve végtelenek.

Észrevétel: $u \in L(M) \Leftrightarrow$ az u-hoz tartozó nemdeterminisztikus számítási fának van olyan levele, ami elfogadó konfiguráció.

 $Megjegyz\acute{e}s:$ a nemdeterminisztikus Turing gép definíciója értelemszerűen kiterjeszthető k-szalagos gépekre is, így beszélhetünk k-szalagos nemdeterminisztikus Turing gépekről is.

Definíció

Az M NTG **felismeri** az $L \subseteq \Sigma^*$ nyelvet, ha L(M) = L.

Definíció

Az M NTG felismeri az $L \subseteq \Sigma^*$ nyelvet, ha L(M) = L.

Az M NTG **eldönti** az $L \subseteq \Sigma^*$ nyelvet, ha felismeri továbbá minden $u \in \Sigma^*$ input szóhoz tartozó nemdeterminisztikus számítási fa véges és a fa minden levele elfogadó vagy elutasító konfiguráció.

Definíció

Az M NTG felismeri az $L \subseteq \Sigma^*$ nyelvet, ha L(M) = L.

Az M NTG **eldönti** az $L \subseteq \Sigma^*$ nyelvet, ha felismeri továbbá minden $u \in \Sigma^*$ input szóhoz tartozó nemdeterminisztikus számítási fa véges és a fa minden levele elfogadó vagy elutasító konfiguráció.

Definíció

Az M NTG f(n) időkorlátos (időigényű), ha minden $u \in \Sigma^*$ n hosszú szóra u számítási fája legfeljebb f(n) magas.

Definíció

Az M NTG felismeri az $L \subseteq \Sigma^*$ nyelvet, ha L(M) = L.

Az M NTG **eldönti** az $L \subseteq \Sigma^*$ nyelvet, ha felismeri továbbá minden $u \in \Sigma^*$ input szóhoz tartozó nemdeterminisztikus számítási fa véges és a fa minden levele elfogadó vagy elutasító konfiguráció.

Definíció

Az M NTG f(n) időkorlátos (időigényű), ha minden $u \in \Sigma^*$ n hosszú szóra u számítási fája legfeljebb f(n) magas.

Tehát, ha M f(n) időkorlátos, akkor nincs végtelen számítása és minden n-re a legfeljebb n méretű bemeneteken a számításai (nemcsak az elfogadó, hanem az elutasító és elakadó számításai is) legfeljebb f(n) lépésben véget érnek.

Feladat: Készítsünk egy M nemdeterminisztikus Turing gépet, melyre $L(M) = \{ww^{-1} \mid w \in \{a,b\}^*\}!$

Feladat: Készítsünk egy M nemdeterminisztikus Turing gépet, melyre $L(M) = \{ww^{-1} \mid w \in \{a, b\}^*\}!$

Feladat: Készítsünk egy M nemdeterminisztikus Turing gépet, melyre $L(M) = \{ww^{-1} \mid w \in \{a, b\}^*\}!$

Példa

Feladat: Készítsünk egy M nemdeterminisztikus Turing gépet, melyre $L(M) = \{ww^{-1} \mid w \in \{a, b\}^*\}!$

$$t \in \{a,b\}$$

$$q$$

$$t \in \{a,b\}$$

$$(\forall \text{ más } q_n\text{-be})$$

$$(p,\varepsilon,abba,\varepsilon,\sqcup) \vdash (q,\varepsilon,bba,a,\sqcup) \vdash (r,\varepsilon,bba,\varepsilon,a) \vdash (q_n,\varepsilon,bba,\varepsilon,a)$$

$$(p,\varepsilon,abba,\varepsilon,\sqcup) \vdash (q,\varepsilon,bba,a,\sqcup) \vdash (q,\varepsilon,ba,ab,\sqcup) \vdash (r,\varepsilon,ba,ab,\sqcup) \vdash (r,\varepsilon,ba,a,b) \vdash (r,ba,\sqcup,\varepsilon,\sqcup ab) \vdash (q_i,ba,\sqcup,\varepsilon,\sqcup ab)$$

Definíció

Legyen $X = \{x_1 < x_2 < \cdots < x_s\}$ egy rendezett ábécé. Ekkor X^* szavainak hossz-lexikografikus (shortlex) rendezése alatt azt a $<_{\text{shortlex}}$ rendezést értjük, melyre a következők teljesülnek. Minden $u_1 \cdots u_n, v_1 \cdots v_m \in X^*$ -ra $u_1 \cdots u_n <_{\text{shortlex}} v_1 \cdots v_m \Leftrightarrow (n < m) \lor ((n = m) \land (u_k < v_k)$, ahol k a legkisebb olyan i, melyre $u_i \neq v_i$).

Definíció

Legyen $X = \{x_1 < x_2 < \cdots < x_s\}$ egy rendezett ábécé. Ekkor X^* szavainak hossz-lexikografikus (shortlex) rendezése alatt azt a $<_{\mathsf{shortlex}}$ rendezést értjük, melyre a következők teljesülnek. Minden $u_1 \cdots u_n, v_1 \cdots v_m \in X^*$ -ra $u_1 \cdots u_n <_{\mathsf{shortlex}} v_1 \cdots v_m \Leftrightarrow (n < m) \lor ((n = m) \land (u_k < v_k), \text{ ahol } k \text{ a legkisebb olyan } i, \text{ melyre } u_i \neq v_i).$

1. Példa: Ha $X = \{a, b\}$ és a < b, akkor X^* szavainak hossz-lexikografikus sorrendje:

Definíció

Legyen $X = \{x_1 < x_2 < \cdots < x_s\}$ egy rendezett ábécé. Ekkor X^* szavainak hossz-lexikografikus (shortlex) rendezése alatt azt a $<_{\mathsf{shortlex}}$ rendezést értjük, melyre a következők teljesülnek. Minden $u_1 \cdots u_n, v_1 \cdots v_m \in X^*$ -ra $u_1 \cdots u_n <_{\mathsf{shortlex}} v_1 \cdots v_m \Leftrightarrow (n < m) \lor ((n = m) \land (u_k < v_k)$, ahol k a legkisebb olyan i, melyre $u_i \neq v_i$).

1. Példa: Ha $X = \{a, b\}$ és a < b, akkor X^* szavainak hossz-lexikografikus sorrendje:

 ε , a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, . . .

Definíció

Legyen $X = \{x_1 < x_2 < \cdots < x_s\}$ egy rendezett ábécé. Ekkor X^* szavainak **hossz-lexikografikus** (shortlex) rendezése alatt azt a $<_{\text{shortlex}}$ rendezést értjük, melyre a következők teljesülnek. Minden $u_1 \cdots u_n, v_1 \cdots v_m \in X^*$ -ra $u_1 \cdots u_n <_{\text{shortlex}} v_1 \cdots v_m \Leftrightarrow (n < m) \lor ((n = m) \land (u_k < v_k), \text{ ahol } k \text{ a legkisebb olyan } i, \text{ melyre } u_i \neq v_i).$

- 1. Példa: Ha $X = \{a, b\}$ és a < b, akkor X^* szavainak hossz-lexikografikus sorrendje:
- ε , a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, . . .
- 2. Példa: Tekintsük a természetes számokat (azaz 0 számjeggyel nem kezdődhetnek, a 0 kivételével), mint számjegysorozatokat.

Definíció

Legyen $X = \{x_1 < x_2 < \cdots < x_s\}$ egy rendezett ábécé. Ekkor X^* szavainak hossz-lexikografikus (shortlex) rendezése alatt azt a $<_{\text{shortlex}}$ rendezést értjük, melyre a következők teljesülnek. Minden $u_1 \cdots u_n, v_1 \cdots v_m \in X^*$ -ra $u_1 \cdots u_n <_{\text{shortlex}} v_1 \cdots v_m \Leftrightarrow (n < m) \lor ((n = m) \land (u_k < v_k), \text{ ahol } k \text{ a legkisebb olyan } i, \text{ melyre } u_i \neq v_i).$

1. Példa: Ha $X = \{a, b\}$ és a < b, akkor X^* szavainak hossz-lexikografikus sorrendje:

 ε , a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, . . .

2. Példa: Tekintsük a természetes számokat (azaz 0 számjeggyel nem kezdődhetnek, a 0 kivételével), mint számjegysorozatokat.

Ekkor n < m pontosan akkor igaz, ha az $X = \{0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9\}$ rendezett ábécé feletti szavaknak tekintve őket $n <_{\text{shortlex}} m$ teljesül, $n \in \mathbb{R}$

Szimulálás determinisztikus TG-pel

Tétel

Minden $M=\langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ f(n) időkorlátos NTG-hez megadható egy ekvivalens, $2^{O(f(n))}$ időkorlátos M' determinisztikus TG.

Szimulálás determinisztikus TG-pel

Tétel

Minden $M=\langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ f(n) időkorlátos NTG-hez megadható egy ekvivalens, $2^{O(f(n))}$ időkorlátos M' determinisztikus TG.

Bizonyítás (vázlat): Ötlet: Vegyük észre, hogy minden $u \in \Sigma^*$ -ra u számítási fájának csúcsai éppen u parciális (nem feltétlen befejezett) számításainak felelnek meg.

Szimulálás determinisztikus TG-pel

Tétel

Minden $M=\langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ f(n) időkorlátos NTG-hez megadható egy ekvivalens, $2^{O(f(n))}$ időkorlátos M' determinisztikus TG.

Bizonyítás (vázlat): Ötlet: Vegyük észre, hogy minden $u \in \Sigma^*$ -ra u számítási fájának csúcsai éppen u parciális (nem feltétlen befejezett) számításainak felelnek meg. M' egy adott $u \in \Sigma^*$ bemeneten tehát szimulálni tudja u M-beli összes parciális számítását a számítási fájának szélességi bejárása által.

Szimulálás determinisztikus TG-pel

Tétel

Minden $M=\langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ f(n) időkorlátos NTG-hez megadható egy ekvivalens, $2^{O(f(n))}$ időkorlátos M' determinisztikus TG.

Bizonyítás (vázlat): Ötlet: Vegyük észre, hogy minden $u \in \Sigma^*$ -ra u számítási fájának csúcsai éppen u parciális (nem feltétlen befejezett) számításainak felelnek meg. M' egy adott $u \in \Sigma^*$ bemeneten tehát szimulálni tudja u M-beli összes parciális számítását a számítási fájának szélességi bejárása által.

Legyen d az M átmenetfüggvényének jobb oldalán szereplő halmazok számosságának a maximuma, azaz $d = \max_{(q,a) \in Q \times T} |\delta(q,a)|$.

Szimulálás determinisztikus TG-pel

Tétel

Minden $M=\langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ f(n) időkorlátos NTG-hez megadható egy ekvivalens, $2^{O(f(n))}$ időkorlátos M' determinisztikus TG.

Bizonyítás (vázlat): Ötlet: Vegyük észre, hogy minden $u \in \Sigma^*$ -ra u számítási fájának csúcsai éppen u parciális (nem feltétlen befejezett) számításainak felelnek meg. M' egy adott $u \in \Sigma^*$ bemeneten tehát szimulálni tudja u M-beli összes parciális számítását a számítási fájának szélességi bejárása által.

- Legyen d az M átmenetfüggvényének jobb oldalán szereplő halmazok számosságának a maximuma, azaz $d=\max_{(q,a)\in Q\times T}|\delta(q,a)|.$
- Legyen $T = \{1, 2, ..., d\}$ egy (rendezett) ábécé.

Szimulálás determinisztikus TG-pel

Tétel

Minden $M=\langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ f(n) időkorlátos NTG-hez megadható egy ekvivalens, $2^{O(f(n))}$ időkorlátos M' determinisztikus TG.

Bizonyítás (vázlat): Ötlet: Vegyük észre, hogy minden $u \in \Sigma^*$ -ra u számítási fájának csúcsai éppen u parciális (nem feltétlen befejezett) számításainak felelnek meg. M' egy adott $u \in \Sigma^*$ bemeneten tehát szimulálni tudja u M-beli összes parciális számítását a számítási fájának szélességi bejárása által.

- Legyen d az M átmenetfüggvényének jobb oldalán szereplő halmazok számosságának a maximuma, azaz $d = \max_{(q,a) \in Q \times T} |\delta(q,a)|$.
- Legyen $T = \{1, 2, ..., d\}$ egy (rendezett) ábécé.
- ▶ minden $(q, a) \in Q \times \Gamma$ esetén rögzítsük le $\delta(q, a)$ elemeinek egy sorrendjét

A számítási fa minden csúcsához egyértelműen hozzárendelhető egy T^* -beli szó, az adott konfigurációhoz tartozó parciális számítás (konfigurációátmenet-sorozat) ún. szelektora.

A számítási fa minden csúcsához egyértelműen hozzárendelhető egy T^* -beli szó, az adott konfigurációhoz tartozó parciális számítás (konfigurációátmenet-sorozat) ún. szelektora.

A gyökér szelektora ε . Tekintsük a gyökértől egy x csúcsig vezető egyértelmű utat, ha a szülő konfigurációnak x az i-edik gyereke és a szülő szelektora $w \in T^*$, akkor x szelektora $wi \in T^*$.

M' működése:

 M' kezdőkonfigurációja: az 1-es szalag tartalmazza a bemenetet, a 2-es és 3-as szalagok üresek.

- M' kezdőkonfigurációja: az 1-es szalag tartalmazza a bemenetet, a 2-es és 3-as szalagok üresek.
- Amíg nincs elfogadás
 - ullet M' rámásolja az 1-es szalag tartalmát a 2-esre

- M' kezdőkonfigurációja: az 1-es szalag tartalmazza a bemenetet, a 2-es és 3-as szalagok üresek.
- Amíg nincs elfogadás
 - M' rámásolja az 1-es szalag tartalmát a 2-esre
 - Amíg a 3-ik szalagon a fej nem ⊔-re mutat

- M' kezdőkonfigurációja: az 1-es szalag tartalmazza a bemenetet, a 2-es és 3-as szalagok üresek.
- Amíg nincs elfogadás
 - M' rámásolja az 1-es szalag tartalmát a 2-esre
 - - \circ Legyen k a 3-ik szalagon a fej pozíciójában lévő betű

- M' kezdőkonfigurációja: az 1-es szalag tartalmazza a bemenetet, a 2-es és 3-as szalagok üresek.
- Amíg nincs elfogadás
 - M' rámásolja az 1-es szalag tartalmát a 2-esre
 - Amíg a 3-ik szalagon a fej nem ⊔-re mutat
 - Legyen k a 3-ik szalagon a fej pozíciójában lévő betű
 - Legyen a 2-ik szalagon a fej pozíciójában lévő betű a és a szimulált M aktuális állapota q

- M' kezdőkonfigurációja: az 1-es szalag tartalmazza a bemenetet, a 2-es és 3-as szalagok üresek.
- Amíg nincs elfogadás
 - M' rámásolja az 1-es szalag tartalmát a 2-esre
 - Amíg a 3-ik szalagon a fej nem ⊔-re mutat
 - \circ Legyen k a 3-ik szalagon a fej pozíciójában lévő betű
 - Legyen a 2-ik szalagon a fej pozíciójában lévő betű a és a szimulált M aktuális állapota q
 - ∘ Ha $\delta(q, a)$ -nak $\exists k$ -adik eleme, akkor

- M' kezdőkonfigurációja: az 1-es szalag tartalmazza a bemenetet, a 2-es és 3-as szalagok üresek.
- Amíg nincs elfogadás
 - M' rámásolja az 1-es szalag tartalmát a 2-esre
 - Amíg a 3-ik szalagon a fej nem ⊔-re mutat
 - \circ Legyen k a 3-ik szalagon a fej pozíciójában lévő betű
 - \circ Legyen a 2-ik szalagon a fej pozíciójában lévő betű a és a szimulált M aktuális állapota q
 - ∘ Ha $\delta(q, a)$ -nak $\exists k$ -adik eleme, akkor
 - M' szimulálja M egy lépését ezen elem szerint

- M' kezdőkonfigurációja: az 1-es szalag tartalmazza a bemenetet, a 2-es és 3-as szalagok üresek.
- Amíg nincs elfogadás
 - M' rámásolja az 1-es szalag tartalmát a 2-esre
 - Amíg a 3-ik szalagon a fej nem ⊔-re mutat
 - \circ Legyen k a 3-ik szalagon a fej pozíciójában lévő betű
 - Legyen a 2-ik szalagon a fej pozíciójában lévő betű a és a szimulált M aktuális állapota q
 - ∘ Ha $\delta(q, a)$ -nak $\exists k$ -adik eleme, akkor
 - M' szimulálja M egy lépését ezen elem szerint
 - Ha ez q_i -be vezet, akkor M' is elfogad

- M' kezdőkonfigurációja: az 1-es szalag tartalmazza a bemenetet, a 2-es és 3-as szalagok üresek.
- Amíg nincs elfogadás
 - M' rámásolja az 1-es szalag tartalmát a 2-esre
 - Amíg a 3-ik szalagon a fej nem ⊔-re mutat
 - \circ Legyen k a 3-ik szalagon a fej pozíciójában lévő betű
 - Legyen a 2-ik szalagon a fej pozíciójában lévő betű a és a szimulált M aktuális állapota q
 - ∘ Ha $\delta(q, a)$ -nak $\exists k$ -adik eleme, akkor
 - M' szimulálja M egy lépését ezen elem szerint
 - Ha ez q_i -be vezet, akkor M' is elfogad
 - Ha ez q_n -be vezet, akkor M' kilép ebből a ciklusból

- M' kezdőkonfigurációja: az 1-es szalag tartalmazza a bemenetet, a 2-es és 3-as szalagok üresek.
- Amíg nincs elfogadás
 - M' rámásolja az 1-es szalag tartalmát a 2-esre
 - Amíg a 3-ik szalagon a fej nem ⊔-re mutat
 - \circ Legyen k a 3-ik szalagon a fej pozíciójában lévő betű
 - Legyen a 2-ik szalagon a fej pozíciójában lévő betű a és a szimulált M aktuális állapota q
 - ∘ Ha $\delta(q, a)$ -nak $\exists k$ -adik eleme, akkor
 - M' szimulálja M egy lépését ezen elem szerint
 - Ha ez q_i -be vezet, akkor M' is elfogad
 - Ha ez q_n -be vezet, akkor M' kilép ebből a ciklusból különben (ha $\delta(q,a)$ -nak \nexists k-adik eleme) kilép a ciklusból

- M' kezdőkonfigurációja: az 1-es szalag tartalmazza a bemenetet, a 2-es és 3-as szalagok üresek.
- Amíg nincs elfogadás
 - M' rámásolja az 1-es szalag tartalmát a 2-esre
 - Amíg a 3-ik szalagon a fej nem ⊔-re mutat
 - \circ Legyen k a 3-ik szalagon a fej pozíciójában lévő betű
 - Legyen a 2-ik szalagon a fej pozíciójában lévő betű a és a szimulált M aktuális állapota q
 - ∘ Ha $\delta(q, a)$ -nak $\exists k$ -adik eleme, akkor
 - M' szimulálja M egy lépését ezen elem szerint
 - Ha ez q_i -be vezet, akkor M' is elfogad
 - Ha ez q_n -be vezet, akkor M' kilép ebből a ciklusból különben (ha $\delta(q,a)$ -nak \nexists k-adik eleme) kilép a ciklusból
 - o M' a 3-ik szalagon eggyel jobbra lép

- M' kezdőkonfigurációja: az 1-es szalag tartalmazza a bemenetet, a 2-es és 3-as szalagok üresek.
- Amíg nincs elfogadás
 - M' rámásolja az 1-es szalag tartalmát a 2-esre
 - Amíg a 3-ik szalagon a fej nem ⊔-re mutat
 - \circ Legyen k a 3-ik szalagon a fej pozíciójában lévő betű
 - \circ Legyen a 2-ik szalagon a fej pozíciójában lévő betű a és a szimulált M aktuális állapota q
 - ∘ Ha $\delta(q, a)$ -nak $\exists k$ -adik eleme, akkor
 - M' szimulálja M egy lépését ezen elem szerint
 - Ha ez q_i -be vezet, akkor M' is elfogad
 - Ha ez q_n -be vezet, akkor M' kilép ebből a ciklusból különben (ha $\delta(q,a)$ -nak \nexists k-adik eleme) kilép a ciklusból
 - o M' a 3-ik szalagon eggyel jobbra lép
 - M' törli a 2. szalagot és előállítja a 3. szalagon a hossz-lexikografikus (shortlex) rendezés szerinti következő szót T felett (a fejet a szó elejére állítva)

M' akkor és csak akkor lép elfogadó állapotba, ha a szimulált
 M elfogadó állapotba lép, azaz a két gép ekvivalens

- M' akkor és csak akkor lép elfogadó állapotba, ha a szimulált
 M elfogadó állapotba lép, azaz a két gép ekvivalens
- M'-nek f(n)-ben exponenciálisan sok számítást kell megvizsgálnia, legfeljebb annyit, mint amennyi egy f(n) magasságú teljes d-áris fa csúcsainak száma. Ez

$$\sum_{i=0}^{f(n)} d^{i} = \frac{d^{f(n)+1}-1}{d-1} = O(d^{f(n)}).$$

- a parciális számítások szimulálása O(n + f(n)) időkorlátos,
- így M' $O(n + f(n))O(d^{f(n)}) = 2^{O(f(n))}$ időkorlátos.

- M' akkor és csak akkor lép elfogadó állapotba, ha a szimulált
 M elfogadó állapotba lép, azaz a két gép ekvivalens
- M'-nek f(n)-ben exponenciálisan sok számítást kell megvizsgálnia, legfeljebb annyit, mint amennyi egy f(n) magasságú teljes d-áris fa csúcsainak száma. Ez

$$\sum_{i=0}^{f(n)} d^{i} = \frac{d^{f(n)+1}-1}{d-1} = O(d^{f(n)}).$$

- a parciális számítások szimulálása O(n + f(n)) időkorlátos,
- így M' $O(n + f(n))O(d^{f(n)}) = 2^{O(f(n))}$ időkorlátos.

Megjegyzés:

 Abból, hogy a bizonyításban alkalmazott szimuláció exponenciális időigényű még nem következik, hogy nincs hatékonyabb szimuláció.

- M' akkor és csak akkor lép elfogadó állapotba, ha a szimulált
 M elfogadó állapotba lép, azaz a két gép ekvivalens
- M'-nek f(n)-ben exponenciálisan sok számítást kell megvizsgálnia, legfeljebb annyit, mint amennyi egy f(n) magasságú teljes d-áris fa csúcsainak száma. Ez

$$\sum_{i=0}^{f(n)} d^i = \frac{d^{f(n)+1}-1}{d-1} = O(d^{f(n)}).$$

- a parciális számítások szimulálása O(n + f(n)) időkorlátos,
- így M' $O(n + f(n))O(d^{f(n)}) = 2^{O(f(n))}$ időkorlátos.

Megjegyzés:

- Abból, hogy a bizonyításban alkalmazott szimuláció exponenciális időigényű még nem következik, hogy nincs hatékonyabb szimuláció.
- Az a sejtés, hogy nem lehet NTG-t az időigény drasztikus romlása nélkül determinisztikus TG-pel szimulálni.

A véges halmazok fontos tulajdonsága a méretük

A véges halmazok fontos tulajdonsága a méretük (→ **természetes** számok fogalma).

A véges halmazok fontos tulajdonsága a méretük (→ természetes számok fogalma). Cél: ennek kiterjesztése végtelen halmazokra. Ez vezetett a számosság fogalmához(*G. Cantor, 1845-1918*).

A véges halmazok fontos tulajdonsága a méretük (→ természetes számok fogalma). Cél: ennek kiterjesztése végtelen halmazokra. Ez vezetett a számosság fogalmához(*G. Cantor, 1845-1918*).

Definíció

A és B halmazoknak megegyezik a számosságuk, ha ∃ bijekció köztük. Jelölése: |A| = |B|.

A véges halmazok fontos tulajdonsága a méretük (→ természetes számok fogalma). Cél: ennek kiterjesztése végtelen halmazokra. Ez vezetett a számosság fogalmához(*G. Cantor, 1845-1918*).

Definíció

- A és B halmazoknak megegyezik a számosságuk, ha ∃ bijekció köztük. Jelölése: |A| = |B|.
- A-nak legalább annyi a számossága, mint B-nek, ha ∃ B-ből injekció A-ba. Jelölése: |A| ≥ |B|.

A véges halmazok fontos tulajdonsága a méretük (→ természetes számok fogalma). Cél: ennek kiterjesztése végtelen halmazokra. Ez vezetett a számosság fogalmához(*G. Cantor, 1845-1918*).

Definíció

- A és B halmazoknak megegyezik a számosságuk, ha ∃ bijekció köztük. Jelölése: |A| = |B|.
- A-nak legalább annyi a számossága, mint B-nek, ha ∃ B-ből injekció A-ba. Jelölése: |A| ≥ |B|.
- A-nak nagyobb a számossága, mint B-nek, ha ∃ B-ből A-ba injekció, de ∄ bijeckió. Jelölése: |A| > |B|.

A véges halmazok fontos tulajdonsága a méretük (→ természetes számok fogalma). Cél: ennek kiterjesztése végtelen halmazokra. Ez vezetett a számosság fogalmához(*G. Cantor, 1845-1918*).

Definíció

- A és B halmazoknak megegyezik a számosságuk, ha ∃ bijekció köztük. Jelölése: |A| = |B|.
- A-nak legalább annyi a számossága, mint B-nek, ha ∃ B-ből injekció A-ba. Jelölése: |A| ≥ |B|.
- A-nak nagyobb a számossága, mint B-nek, ha ∃ B-ből A-ba injekció, de ∄ bijeckió. Jelölése: |A| > |B|.

Cantor-Bernstein-Schröder tétel

Ha \exists injekció A-ból B-be és B-ből A-ba is, akkor \exists bijekció A és B között, azaz ha $|A| \leq |B|$ és $|A| \geq |B|$, akkor |A| = |B|.

Számosság – példák

1. Példa: $|\mathbb{N}| = |\mathbb{Z}|$.

Számosság – példák

1. Példa: $|\mathbb{N}| = |\mathbb{Z}|$.

Számosság – példák

1. Példa: $|\mathbb{N}| = |\mathbb{Z}|$.

2. példa: $|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$.

Számosság – példák

1. Példa: $|\mathbb{N}| = |\mathbb{Z}|$.

2. példa: $|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$.

3. példa: $|\mathbb{N}| = |\mathbb{Q}|$.

3. példa: $|\mathbb{N}| = |\mathbb{Q}|$.

Bizonyítás:

 $\mathbb{N} \subset \mathbb{Q}$, ezért $|\mathbb{N}| \leq |\mathbb{Q}|$.

3. példa: $|\mathbb{N}| = |\mathbb{Q}|$.

Bizonyítás:

 $\mathbb{N} \subset \mathbb{Q}$, ezért $|\mathbb{N}| \leqslant |\mathbb{Q}|$.

 $\mathbb{Q}^+:=\{\tfrac{p}{a}\,|\,p\in\mathbb{N}^+,q\in\mathbb{N}^+,\text{a t\"{o}rt nem egyszerűs\'{i}thet\'{o}}\}.$

 $\mathbb{Q}^-:=\{\frac{\neg}{q}\,|\,p\in\mathbb{N}^+,q\in\mathbb{N}^+,\text{a t\"{o}rt nem egyszerűs\'{n}thet\'{o}}\}.$

3. példa: $|\mathbb{N}| = |\mathbb{Q}|$.

Bizonyítás:

 $\mathbb{N} \subset \mathbb{Q}$, ezért $|\mathbb{N}| \leqslant |\mathbb{Q}|$.

 $\mathbb{Q}^+ := \{ \frac{p}{q} \mid p \in \mathbb{N}^+, q \in \mathbb{N}^+, \text{a t\"ort nem egyszerűsíthető} \}.$

 $\mathbb{Q}^- := \{ -\frac{p}{a} \mid p \in \mathbb{N}^+, q \in \mathbb{N}^+, \text{a tört nem egyszerűsíthető} \}.$

 $\tfrac{p}{q} \in \mathbb{Q}^+ \mapsto (p,q) \in \mathbb{N} \times \mathbb{N} \text{ injektiv, tehát } |\mathbb{Q}^+| \leqslant |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|.$

3. példa: $|\mathbb{N}| = |\mathbb{Q}|$.

Bizonyítás:

 $\mathbb{N} \subset \mathbb{Q}$, ezért $|\mathbb{N}| \leqslant |\mathbb{Q}|$.

 $\mathbb{Q}^+ := \{ \frac{p}{q} \mid p \in \mathbb{N}^+, q \in \mathbb{N}^+, \text{a tört nem egyszerűsíthető} \}.$

 $\mathbb{Q}^- := \{ -\frac{p}{a} \mid p \in \mathbb{N}^+, q \in \mathbb{N}^+, \text{a tört nem egyszerűsíthető} \}.$

 $\frac{p}{q} \in \mathbb{Q}^+ \mapsto (p,q) \in \mathbb{N} \times \mathbb{N} \text{ injektiv, tehát } |\mathbb{Q}^+| \leqslant |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|.$

Legyen $\mathbb{Q}^+=\{a_1,a_2\ldots,\}$, $\mathbb{Q}^-=\{b_1,b_2\ldots,\}$, ekkor

3. példa: $|\mathbb{N}| = |\mathbb{Q}|$.

Bizonyítás:

 $\mathbb{N} \subset \mathbb{Q}$, ezért $|\mathbb{N}| \leqslant |\mathbb{Q}|$.

 $\mathbb{Q}^+ := \{ \frac{p}{q} \mid p \in \mathbb{N}^+, q \in \mathbb{N}^+, \text{a t\"ort nem egyszerűsíthető} \}.$

 $\mathbb{Q}^- := \{ -\frac{p}{q} \mid p \in \mathbb{N}^+, q \in \mathbb{N}^+, \text{a tört nem egyszerűsíthető} \}.$

 $\tfrac{p}{q} \in \mathbb{Q}^+ \mapsto (p,q) \in \mathbb{N} \times \mathbb{N} \text{ injektiv, tehát } |\mathbb{Q}^+| \leqslant |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|.$

Legyen $\mathbb{Q}^+ = \{a_1, a_2 \dots, \}$, $\mathbb{Q}^- = \{b_1, b_2 \dots, \}$, ekkor $\mathbb{Q} = \{0, a_1, b_1, a_2, b_2, \dots \}$.

3. példa: $|\mathbb{N}| = |\mathbb{Q}|$.

Bizonyítás:

 $\mathbb{N} \subset \mathbb{Q}$, ezért $|\mathbb{N}| \leqslant |\mathbb{Q}|$.

 $\mathbb{Q}^+:=\{\tfrac{p}{q}\ |\ p\in\mathbb{N}^+, q\in\mathbb{N}^+, \text{a t\"{o}rt nem egyszerűs\'{n}thet\'{o}}\}.$

 $\mathbb{Q}^- := \{ -\frac{p}{q} \mid p \in \mathbb{N}^+, q \in \mathbb{N}^+, \text{a t\"ort nem egyszerűsíthető} \}.$

 $\frac{p}{q} \in \mathbb{Q}^+ \mapsto (p,q) \in \mathbb{N} \times \mathbb{N}$ injektív, tehát $|\mathbb{Q}^+| \leqslant |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$.

Legyen $\mathbb{Q}^+ = \{a_1, a_2 \dots, \}$, $\mathbb{Q}^- = \{b_1, b_2 \dots, \}$, ekkor $\mathbb{Q} = \{0, a_1, b_1, a_2, b_2, \dots \}$.

Definíció

Egy A halmaz megszámlálhatóan végtelen számosságú, ha létezik A és $\mathbb N$ között bijekció.

3. példa: $|\mathbb{N}| = |\mathbb{Q}|$.

Bizonyítás:

 $\mathbb{N} \subset \mathbb{Q} \text{, ez\'ert } |\mathbb{N}| \leqslant |\mathbb{Q}|.$

 $\mathbb{Q}^+:=\{\tfrac{p}{q}\ |\ p\in\mathbb{N}^+, q\in\mathbb{N}^+, \text{a t\"{o}rt nem egyszerűs\'{i}thet\'{o}}\}.$

 $\mathbb{Q}^-:=\{-\frac{p}{q}\,|\,p\in\mathbb{N}^+,q\in\mathbb{N}^+,\text{a t\"{o}rt nem egyszerűs\'{n}thet\'{o}}\}.$

 $\frac{p}{q} \in \mathbb{Q}^+ \mapsto (p,q) \in \mathbb{N} \times \mathbb{N}$ injektív, tehát $|\mathbb{Q}^+| \leq |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$.

Legyen $\mathbb{Q}^+ = \{a_1, a_2 \dots, \}, \ \mathbb{Q}^- = \{b_1, b_2 \dots, \}, \text{ ekkor } \mathbb{Q} = \{0, a_1, b_1, a_2, b_2, \dots \}.$

Definíció

Egy A halmaz megszámlálhatóan végtelen számosságú, ha létezik A és $\mathbb N$ között bijekció.

Azaz egy A halmaz számossága megszámlálhatóan végtelen, ha elemei megindexelhetők a természetes számokkal.

Egy halmaz **megszámlálható**, ha számossága véges vagy megszámlálhatóan végtelen.

Tétel: Megszámlálható sok megszámlálható halmaz uniója megszámlálható.

Egy halmaz **megszámlálható**, ha számossága véges vagy megszámlálhatóan végtelen.

Tétel: Megszámlálható sok megszámlálható halmaz uniója megszámlálható.

Bizonyítás (vázlat) Konstrukció: mint $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$ bizonyításánál.

Egy halmaz **megszámlálható**, ha számossága véges vagy megszámlálhatóan végtelen.

Tétel: Megszámlálható sok megszámlálható halmaz uniója megszámlálható.

Bizonyítás (vázlat) Konstrukció: mint $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$ bizonyításánál.

Definíció

Egy A halmaz **continuum számosságú**, ha létezik A és \mathbb{R} között bijekció.

Egy halmaz **megszámlálható**, ha számossága véges vagy megszámlálhatóan végtelen.

Tétel: Megszámlálható sok megszámlálható halmaz uniója megszámlálható.

Bizonyítás (vázlat) Konstrukció: mint $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$ bizonyításánál.

Definíció

Egy A halmaz **continuum számosságú**, ha létezik A és \mathbb{R} között bijekció.

Be fogjuk látni, hogy $|\mathbb{R}| > |\mathbb{N}|$.

Egy halmaz **megszámlálható**, ha számossága véges vagy megszámlálhatóan végtelen.

Tétel: Megszámlálható sok megszámlálható halmaz uniója megszámlálható.

Bizonyítás (vázlat) Konstrukció: mint $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$ bizonyításánál.

Definíció

Egy A halmaz **continuum számosságú**, ha létezik A és \mathbb{R} között bijekció.

Be fogjuk látni, hogy $|\mathbb{R}| > |\mathbb{N}|$.

4. példa: $|\mathbb{R}| = |(0,1)|$.

Egy halmaz **megszámlálható**, ha számossága véges vagy megszámlálhatóan végtelen.

Tétel: Megszámlálható sok megszámlálható halmaz uniója megszámlálható.

Bizonyítás (vázlat) Konstrukció: mint $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$ bizonyításánál.

Definíció

Egy A halmaz **continuum számosságú**, ha létezik A és \mathbb{R} között bijekció.

Be fogjuk látni, hogy $|\mathbb{R}| > |\mathbb{N}|$.

4. példa: $|\mathbb{R}| = |(0,1)|$.

Bizonyítás: $\operatorname{tg}(\pi(x-\frac{1}{2}))\big|_{(0,1)}:(0,1)\to\mathbb{R}$ bijekció (0,1) és \mathbb{R} között.

Egy halmaz megszámlálható, ha számossága véges vagy megszámlálhatóan végtelen.

Tétel: Megszámlálható sok megszámlálható halmaz uniója megszámlálható.

Bizonyítás (vázlat) Konstrukció: mint $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$ bizonyításánál.

Definíció

Egy A halmaz **continuum számosságú**, ha létezik A és \mathbb{R} között bijekció.

Be fogjuk látni, hogy $|\mathbb{R}| > |\mathbb{N}|$.

4. példa: $|\mathbb{R}| = |(0,1)|$.

Bizonyítás: $\operatorname{tg}(\pi(x-\frac{1}{2}))\big|_{(0,1)}:(0,1)\to\mathbb{R}$ bijekció (0,1) és \mathbb{R} között.

Megjegyzés:
$$|\mathbb{R}| = |(a,b)| = |[c,d]|$$
 és $|\mathbb{R}| = |\mathbb{R}^n|$.

5. Példa: $|\{0,1\}^*| = |\mathbb{N}|$.

5. Példa: $|\{0,1\}^*| = |\mathbb{N}|$.

A hossz-lexikografikus (shortlex) rendezés egy bijekciót ad: ε ,0,1,00,01,10,11,000,001,010,011,100,101,110,111,0000,...

5. Példa: $|\{0,1\}^*| = |\mathbb{N}|$.

A hossz-lexikografikus (shortlex) rendezés egy bijekciót ad: ε ,0,1,00,01,10,11,000,001,010,011,100,101,110,111,0000,...

Jelöljük a megszámlálhatóan ∞ hosszúságú $\{0,1\}\text{-sorozatok}$ halmazát $\{0,1\}^{\mathbb{N}}\text{-nel, azaz}$

$$\{0,1\}^{\mathbb{N}} := \{(b_1,\ldots,b_i,\ldots) \mid b_i \in \{0,1\}, \ i \in \mathbb{N}\}.$$

6. Példa:
$$|\{L \mid L \subseteq \{0,1\}^*\}| = |\{0,1\}^{\mathbb{N}}|$$

5. Példa: $|\{0,1\}^*| = |\mathbb{N}|$.

A hossz-lexikografikus (shortlex) rendezés egy bijekciót ad: ε ,0,1,00,01,10,11,000,001,010,011,100,101,110,111,0000,...

Jelöljük a megszámlálhatóan ∞ hosszúságú $\{0,1\}\text{-sorozatok}$ halmazát $\{0,1\}^{\mathbb{N}}\text{-nel, azaz}$

$$\{0,1\}^{\mathbb{N}} := \{(b_1,\ldots,b_i,\ldots) \mid b_i \in \{0,1\}, i \in \mathbb{N}\}.$$

6. Példa:
$$|\{L \mid L \subseteq \{0,1\}^*\}| = |\{0,1\}^{\mathbb{N}}|$$

Bizonyítás: Jelölje w_i $\{0,1\}^*$ hossz-lexikografikus rendezésének i. szavát $(i \in \mathbb{N})$.

Egy L nyelvhez rendeljük hozzá azt a megszámlálhatóan végtelen hosszúságú $\mathbf{b}_L = (b_1, \dots, b_i, \dots)$ bitsorozatot, amelyre $b_i = 1 \Leftrightarrow w_i \in L$.

Ez nyilván bijekció, \mathbf{b}_L -t nevezhetjük is az L nyelv karakterisztikus sorozatának.

7. Példa: $|\{0,1\}^{\mathbb{N}}| = |[0,1)|$.

7. Példa: $|\{0,1\}^{\mathbb{N}}| = |[0,1)|$.

Bizonyítás (vázlat):

Minden $x \in [0,1)$ -hez rendeljük hozzá x kettedestört alakjának "0." utáni részét. Ez nem feltétlen egyértelmű, hiszen a véges kettedestörteknek két végtelen kettedestört alakja is van. (Például 0,01=0,0100...=0,0011...)

Válasszuk ilyenkor a ∞ 0-ra végződő alakot. Ez a leképezés így nem bijekció, de injektív, azaz $|[0,1)|\leqslant |\{0,1\}^\mathbb{N}|$.

7. Példa: $|\{0,1\}^{\mathbb{N}}| = |[0,1)|$.

Bizonyítás (vázlat):

Minden $x \in [0,1)$ -hez rendeljük hozzá x kettedestört alakjának "0." utáni részét. Ez nem feltétlen egyértelmű, hiszen a véges kettedestörteknek két végtelen kettedestört alakja is van. (Például 0,01=0,0100...=0,0011...)

Válasszuk ilyenkor a ∞ 0-ra végződő alakot. Ez a leképezés így nem bijekció, de injektív, azaz $|[0,1)| \leqslant |\{0,1\}^{\mathbb{N}}|$.

Fordítva, $\mathbf{z} \in \{0,1\}^{\mathbb{N}}$ minden 1-esét helyettesítsük 2-essel, írjunk elé "0."-t és tekintsük végtelen harmadostörtnek. Meggondolható, hogy csak 0-ásokat és 2-eseket tartalmazó harmadostört alakja egy valós számnak legfeljebb 1 lehet (azaz a véges harmadostörtek két alakja közül legaláb az egyik tartalmaz 1-est). Tehát $|\{0,1\}^{\mathbb{N}}| \leqslant |[0,1)|$.

7. Példa: $|\{0,1\}^{\mathbb{N}}| = |[0,1)|$.

Bizonyítás (vázlat):

Minden $x \in [0,1)$ -hez rendeljük hozzá x kettedestört alakjának "0." utáni részét. Ez nem feltétlen egyértelmű, hiszen a véges kettedestörteknek két végtelen kettedestört alakja is van. (Például 0,01=0,0100...=0,0011...)

Válasszuk ilyenkor a ∞ 0-ra végződő alakot. Ez a leképezés így nem bijekció, de injektív, azaz $|[0,1)| \leqslant |\{0,1\}^{\mathbb{N}}|$.

Fordítva, $\mathbf{z} \in \{0,1\}^{\mathbb{N}}$ minden 1-esét helyettesítsük 2-essel, írjunk elé "0."-t és tekintsük végtelen harmadostörtnek. Meggondolható, hogy csak 0-ásokat és 2-eseket tartalmazó harmadostört alakja egy valós számnak legfeljebb 1 lehet (azaz a véges harmadostörtek két alakja közül legaláb az egyik tartalmaz 1-est). Tehát $|\{0,1\}^{\mathbb{N}}| \leqslant |[0,1)|$.

A Cantor-Bernstein-Schröder tétel alapján $|\{0,1\}^{\mathbb{N}}| = |[0,1)|$.

Tétel

 $|\mathbb{R}| > |\mathbb{N}|$

Tétel

$$|\mathbb{R}| > |\mathbb{N}|$$

Bizonyítás:

$$\begin{split} & \text{Mivel } |\{0,1\}^{\mathbb{N}}| = |\mathbb{R}| \text{, ezért elég belátni, hogy } |\{0,1\}^{\mathbb{N}}| > |\mathbb{N}|. \\ & |\{0,1\}^{\mathbb{N}}| \geqslant |\mathbb{N}| \text{:} \\ & H_0 := \{(1,0,0,0,\ldots), (0,1,0,0,\ldots), (0,0,1,0,\ldots), \ldots\} \\ & H_0 \subset \{0,1\}^{\mathbb{N}} \text{, és } |H_0| = |\mathbb{N}|. \end{split}$$

Tétel

$$|\mathbb{R}| > |\mathbb{N}|$$

Bizonyítás:

Mivel
$$|\{0,1\}^{\mathbb{N}}| = |\mathbb{R}|$$
, ezért elég belátni, hogy $|\{0,1\}^{\mathbb{N}}| > |\mathbb{N}|$. $|\{0,1\}^{\mathbb{N}}| \geqslant |\mathbb{N}|$:
$$H_0 := \{(1,0,0,0,\ldots), (0,1,0,0,\ldots), (0,0,1,0,\ldots), \ldots\}$$

$$H_0 \subset \{0,1\}^{\mathbb{N}}, \text{ és } |H_0| = |\mathbb{N}|.$$
 $|\{0,1\}^{\mathbb{N}}| \neq |\mathbb{N}|$:

Tétel

$$|\mathbb{R}| > |\mathbb{N}|$$

Bizonyítás:

Mivel $|\{0,1\}^{\mathbb{N}}| = |\mathbb{R}|$, ezért elég belátni, hogy $|\{0,1\}^{\mathbb{N}}| > |\mathbb{N}|$. $|\{0,1\}^{\mathbb{N}}| \geqslant |\mathbb{N}|$: $H_0 := \{(1,0,0,0,\ldots), (0,1,0,0,\ldots), (0,0,1,0,\ldots), \ldots\}$ $H_0 \subset \{0,1\}^{\mathbb{N}}, \text{ és } |H_0| = |\mathbb{N}|.$ $|\{0,1\}^{\mathbb{N}}| \neq |\mathbb{N}|$:

Indirekt tegyük fel, hogy bijekcióba lehet állítani $\{0,1\}^{\mathbb{N}}$ elemeit \mathbb{N} elemeivel, azaz $\{0,1\}^{\mathbb{N}}=\{u_i\,|\,i\in\mathbb{N}\}=\{u_1,u_2,\ldots\}$ a $\{0,1\}^{\mathbb{N}}$ elemeinek egy felsorolása (a természetes számokkal való megindexelése).

Jelölje $u_{i,j}$ u_i j. bitjét $(i, j \in \mathbb{N}, u_{i,j} \in \{0, 1\})$, azaz

$$u_i = (u_{i,1}, u_{i,2}, \ldots, u_{i,j}, \ldots).$$

Jelölje $u_{i,j}$ u_i j. bitjét $(i,j\in\mathbb{N},u_{i,j}\in\{0,1\})$, azaz

$$u_i = (u_{i,1}, u_{i,2}, \ldots, u_{i,j}, \ldots).$$

Tekintsük az $u=\{\overline{u_{1,1}},\overline{u_{2,2}},\ldots,\overline{u_{i,i}},\ldots)$ megszámlálhatóan végtelen hosszúságú bináris (azaz $\{0,1\}^{\mathbb{N}}$ -beli) szót, ahol $\overline{b}=0$, ha b=1 és $\overline{b}=1$, ha b=0.

Jelölje $u_{i,j}$ u_i j. bitjét $(i,j\in\mathbb{N},u_{i,j}\in\{0,1\})$, azaz

$$u_i = (u_{i,1}, u_{i,2}, \ldots, u_{i,j}, \ldots).$$

Tekintsük az $u=\{\overline{u_{1,1}},\overline{u_{2,2}},\ldots,\overline{u_{i,i}},\ldots)$ megszámlálhatóan végtelen hosszúságú bináris (azaz $\{0,1\}^{\mathbb{N}}$ -beli) szót, ahol $\overline{b}=0$, ha b=1 és $\overline{b}=1$, ha b=0.

Mivel, minden megszámlálhatóan végtelen hosszúságú bináris szó fel van sorolva, ezért létezik olyan $k \in \mathbb{N}$, melyre $u = u_k$.

Jelölje $u_{i,j}$ u_i j. bitjét $(i,j\in\mathbb{N},u_{i,j}\in\{0,1\})$, azaz

$$u_i = (u_{i,1}, u_{i,2}, \ldots, u_{i,j}, \ldots).$$

Tekintsük az $u=\{\overline{u_{1,1}},\overline{u_{2,2}},\ldots,\overline{u_{i,i}},\ldots)$ megszámlálhatóan végtelen hosszúságú bináris (azaz $\{0,1\}^{\mathbb{N}}$ -beli) szót, ahol $\overline{b}=0$, ha b=1 és $\overline{b}=1$, ha b=0.

Mivel, minden megszámlálhatóan végtelen hosszúságú bináris szó fel van sorolva, ezért létezik olyan $k \in \mathbb{N}$, melyre $u = u_k$.

Ekkor u k.bitje $u_{k,k}$ (így jelöltük u_k k. bitjét), másrészt $\overline{u_{k,k}}$ (így definiáltuk u-t).

Jelölje $u_{i,j}$ u_i j. bitjét $(i,j \in \mathbb{N}, u_{i,j} \in \{0,1\})$, azaz

$$u_i = (u_{i,1}, u_{i,2}, \ldots, u_{i,j}, \ldots).$$

Tekintsük az $u=\{\overline{u_{1,1}},\overline{u_{2,2}},\ldots,\overline{u_{i,i}},\ldots)$ megszámlálhatóan végtelen hosszúságú bináris (azaz $\{0,1\}^{\mathbb{N}}$ -beli) szót, ahol $\overline{b}=0$, ha b=1 és $\overline{b}=1$, ha b=0.

Mivel, minden megszámlálhatóan végtelen hosszúságú bináris szó fel van sorolva, ezért létezik olyan $k \in \mathbb{N}$, melyre $u = u_k$.

Ekkor u k.bitje $u_{k,k}$ (így jelöltük u_k k. bitjét), másrészt $\overline{u_{k,k}}$ (így definiáltuk u-t).

De egy bit nem lehet 0 és 1 is egyszerre, tehát az indirekt feltevésünk, azaz hogy $\{0,1\}^{\mathbb{N}}$ és \mathbb{N} között \exists bijekció helytelen volt.

Jelölje $u_{i,j}$ u_i j. bitjét $(i,j\in\mathbb{N},u_{i,j}\in\{0,1\})$, azaz

$$u_i = (u_{i,1}, u_{i,2}, \ldots, u_{i,j}, \ldots).$$

Tekintsük az $u=\{\overline{u_{1,1}},\overline{u_{2,2}},\ldots,\overline{u_{i,i}},\ldots)$ megszámlálhatóan végtelen hosszúságú bináris (azaz $\{0,1\}^{\mathbb{N}}$ -beli) szót, ahol $\overline{b}=0$, ha b=1 és $\overline{b}=1$, ha b=0.

Mivel, minden megszámlálhatóan végtelen hosszúságú bináris szó fel van sorolva, ezért létezik olyan $k \in \mathbb{N}$, melyre $u = u_k$.

Ekkor u k.bitje $u_{k,k}$ (így jelöltük u_k k. bitjét), másrészt $\overline{u_{k,k}}$ (így definiáltuk u-t).

De egy bit nem lehet 0 és 1 is egyszerre, tehát az indirekt feltevésünk, azaz hogy $\{0,1\}^{\mathbb{N}}$ és \mathbb{N} között \exists bijekció helytelen volt.

Megjegyzés: A bizonyítás módszerét **Cantor-féle átlós módszernek** nevezik.

Túl sok a nyelv

Következmény

A $\{0,1\}$ feletti nyelvek halmazának számossága nagyobb, mint a $\{0,1\}$ feletti szavak számossága.

Túl sok a nyelv

Következmény

A $\{0,1\}$ feletti nyelvek halmazának számossága nagyobb, mint a $\{0,1\}$ feletti szavak számossága.

Ezekhez csak foglaljuk össze amit tudunk:

Túl sok a nyelv

Következmény

A $\{0,1\}$ feletti nyelvek halmazának számossága nagyobb, mint a $\{0,1\}$ feletti szavak számossága.

Ezekhez csak foglaljuk össze amit tudunk:

$$|\mathbb{R}| = |[0,1)| = |\{0,1\}^{\mathbb{N}}| = |\{L \mid L \subseteq \{0,1\}^*\}| > |\mathbb{N}| = |\{0,1\}^*|.$$

Túl sok a nyelv

Következmény

A $\{0,1\}$ feletti nyelvek halmazának számossága nagyobb, mint a $\{0,1\}$ feletti szavak számossága.

Ezekhez csak foglaljuk össze amit tudunk:

$$|\mathbb{R}| = |[0,1)| = |\{0,1\}^{\mathbb{N}}| = |\{L \mid L \subseteq \{0,1\}^*\}| > |\mathbb{N}| = |\{0,1\}^*|.$$

Észrevétel: $\{L \mid L \subseteq \{0,1\}^*\} = \mathcal{P}(\{0,1\}^*).$

Túl sok a nyelv

Következmény

A $\{0,1\}$ feletti nyelvek halmazának számossága nagyobb, mint a $\{0,1\}$ feletti szavak számossága.

Ezekhez csak foglaljuk össze amit tudunk:

$$|\mathbb{R}| = |[0,1)| = |\{0,1\}^{\mathbb{N}}| = |\{L \mid L \subseteq \{0,1\}^*\}| > |\mathbb{N}| = |\{0,1\}^*|.$$

Észrevétel: $\{L \mid L \subseteq \{0,1\}^*\} = \mathcal{P}(\{0,1\}^*).$

Igaz-e általában, hogy $|\mathcal{P}(H)| > |H|$?

Tétel

Minden H halmazra $|\mathcal{P}(H)| > |H|$.

Tétel

Minden H halmazra $|\mathcal{P}(H)| > |H|$.

Tétel

Minden H halmazra $|\mathcal{P}(H)| > |H|$.

$$|\mathcal{P}(H)| \geqslant |H|$$
, hiszen $\{\{h\} \mid h \in H\} \subseteq \mathcal{P}(H)$.

Tétel

Minden H halmazra $|\mathcal{P}(H)| > |H|$.

$$|\mathcal{P}(H)| \geqslant |H|$$
, hiszen $\{\{h\} \mid h \in H\} \subseteq \mathcal{P}(H)$.

$$|\mathcal{P}(H)| \neq |H|$$
:

Tétel

Minden H halmazra $|\mathcal{P}(H)| > |H|$.

Bizonyítás: [Cantor-féle átlós módszerrel]

$$|\mathcal{P}(H)| \geqslant |H|$$
, hiszen $\{\{h\} \mid h \in H\} \subseteq \mathcal{P}(H)$.

 $|\mathcal{P}(H)| \neq |H|$: Indirekt $\exists f : \mathcal{P}(H) \leftrightarrow H$ bijekció. Definiálunk egy $A \subseteq H$ halmazt:

Tétel

Minden H halmazra $|\mathcal{P}(H)| > |H|$.

Bizonyítás: [Cantor-féle átlós módszerrel]

$$|\mathcal{P}(H)| \geqslant |H|$$
, hiszen $\{\{h\} \mid h \in H\} \subseteq \mathcal{P}(H)$.

 $|\mathcal{P}(H)| \neq |H|$: Indirekt $\exists f : \mathcal{P}(H) \leftrightarrow H$ bijekció. Definiálunk egy

 $A \subseteq H$ halmazt: $\forall x \in H : x :\in A \Leftrightarrow x \notin f^{-1}(x)$

Tétel

Minden H halmazra $|\mathcal{P}(H)| > |H|$.

Bizonyítás: [Cantor-féle átlós módszerrel]

 $|\mathcal{P}(H)| \geqslant |H|$, hiszen $\{\{h\} \mid h \in H\} \subseteq \mathcal{P}(H)$.

 $|\mathcal{P}(H)| \neq |H|$: Indirekt $\exists f : \mathcal{P}(H) \leftrightarrow H$ bijekció. Definiálunk egy $A \subseteq H$ halmazt: $\forall x \in H : x :\in A \Leftrightarrow x \notin f^{-1}(x)$

 $f(A)\in A$ igaz-e? Ha igaz, $f(A)\notin A$, ha nem igaz $f(A)\in A$ következik A definíciójából. Tehát $f(A)\in A$ se igaz, se hamis nem lehet, ellentmondás.

Tétel

Minden H halmazra $|\mathcal{P}(H)| > |H|$.

Bizonyítás: [Cantor-féle átlós módszerrel]

$$|\mathcal{P}(H)| \geqslant |H|$$
, hiszen $\{\{h\} \mid h \in H\} \subseteq \mathcal{P}(H)$.

 $|\mathcal{P}(H)| \neq |H|$: Indirekt $\exists f : \mathcal{P}(H) \leftrightarrow H$ bijekció. Definiálunk egy $A \subseteq H$ halmazt: $\forall x \in H : x :\in A \Leftrightarrow x \notin f^{-1}(x)$

 $f(A) \in A$ igaz-e? Ha igaz, $f(A) \notin A$, ha nem igaz $f(A) \in A$ következik A definíciójából. Tehát $f(A) \in A$ se igaz, se hamis nem lehet, ellentmondás.

Következmény

Minden számosságnál van nagyobb számosság, tehát végtelen sok számosság van.

Tétel

Minden H halmazra $|\mathcal{P}(H)| > |H|$.

Bizonyítás: [Cantor-féle átlós módszerrel]

$$|\mathcal{P}(H)| \geqslant |H|$$
, hiszen $\{\{h\} \mid h \in H\} \subseteq \mathcal{P}(H)$.

$$|\mathcal{P}(H)| \neq |H|$$
: Indirekt $\exists f : \mathcal{P}(H) \leftrightarrow H$ bijekció. Definiálunk egy $A \subseteq H$ halmazt: $\forall x \in H : x :\in A \Leftrightarrow x \notin f^{-1}(x)$

 $f(A) \in A$ igaz-e? Ha igaz, $f(A) \notin A$, ha nem igaz $f(A) \in A$ következik A definíciójából. Tehát $f(A) \in A$ se igaz, se hamis nem lehet, ellentmondás.

Következmény

Minden számosságnál van nagyobb számosság, tehát végtelen sok számosság van.

$$\aleph_0:=|\mathbb{N}|,\aleph_1:=|\mathcal{P}(\mathbb{N})|=|\mathbb{R}|. \text{ Ha } |H|=\aleph_i \text{ akkor } \aleph_{i+1}:=|\mathcal{P}(H)|.$$

Tegyük fel, hogy $\Sigma=\{0,1\}$. Ez feltehető, mivel minden input hatékonyan kódolható Σ felett.

Tegyük fel, hogy $\Sigma=\{0,1\}$. Ez feltehető, mivel minden input hatékonyan kódolható Σ felett.

Definíció

Egy M Turing-gép **kódja** (jelölése $\langle M \rangle$) a következő:

Tegyük fel, hogy $\Sigma=\{0,1\}$. Ez feltehető, mivel minden input hatékonyan kódolható Σ felett.

Definíció

Egy M Turing-gép **kódja** (jelölése $\langle M \rangle$) a következő: Legyen $M = (Q, \{0, 1\}, \Gamma, \delta, q_0, q_i, q_n)$, ahol

Tegyük fel, hogy $\Sigma=\{0,1\}$. Ez feltehető, mivel minden input hatékonyan kódolható Σ felett.

Definíció

Egy M Turing-gép **kódja** (jelölése $\langle M \rangle$) a következő: Legyen $M = (Q, \{0, 1\}, \Gamma, \delta, q_0, q_i, q_n)$, ahol

- $Q = \{p_1, \dots, p_k\}, \Gamma = \{X_1, \dots, X_m\}, D_1 = R, D_2 = S, D_3 = L$
- $k \geqslant 3, \ p_1 = q_0, \ p_{k-1} = q_i, \ p_k = q_n,$
- ▶ $m \ge 3$, $X_1 = 0$, $X_2 = 1$, $X_3 = \sqcup$.
- Egy $\delta(p_i, X_i) = (p_r, X_s, D_t)$ átmenet kódja $0^i 10^j 10^r 10^s 10^t$.
- $\langle M \rangle$ az átmenetek kódjainak felsorolása 11-el elválasztva.

Tegyük fel, hogy $\Sigma=\{0,1\}$. Ez feltehető, mivel minden input hatékonyan kódolható Σ felett.

Definíció

Egy M Turing-gép **kódja** (jelölése $\langle M \rangle$) a következő: Legyen $M = (Q, \{0, 1\}, \Gamma, \delta, q_0, q_i, q_n)$, ahol

- $Q = \{p_1, \dots, p_k\}, \Gamma = \{X_1, \dots, X_m\}, D_1 = R, D_2 = S, D_3 = L$
- $k \geqslant 3, \ p_1 = q_0, \ p_{k-1} = q_i, \ p_k = q_n,$
- ▶ $m \ge 3$, $X_1 = 0$, $X_2 = 1$, $X_3 = \sqcup$.
- Egy $\delta(p_i, X_j) = (p_r, X_s, D_t)$ átmenet kódja $0^i 10^j 10^r 10^s 10^t$.
- $\langle M \rangle$ az átmenetek kódjainak felsorolása 11-el elválasztva.

Észrevétel: $\langle M \rangle$ 0-val kezdődik és végződik, nem tartalmaz 3 darab 1-t egymás után.

Tegyük fel, hogy $\Sigma=\{0,1\}$. Ez feltehető, mivel minden input hatékonyan kódolható Σ felett.

Definíció

Egy M Turing-gép **kódja** (jelölése $\langle M \rangle$) a következő: Legyen $M = (Q, \{0, 1\}, \Gamma, \delta, q_0, q_i, q_n)$, ahol

- $Q = \{p_1, \dots, p_k\}, \Gamma = \{X_1, \dots, X_m\}, D_1 = R, D_2 = S, D_3 = L$
- $k \geqslant 3, \ p_1 = q_0, \ p_{k-1} = q_i, \ p_k = q_n,$
- ▶ $m \ge 3$, $X_1 = 0$, $X_2 = 1$, $X_3 = \square$.
- Egy $\delta(p_i, X_i) = (p_r, X_s, D_t)$ átmenet kódja $0^i 10^j 10^r 10^s 10^t$.
- $\langle M \rangle$ az átmenetek kódjainak felsorolása 11-el elválasztva.

Észrevétel: $\langle M \rangle$ 0-val kezdődik és végződik, nem tartalmaz 3 darab 1-t egymás után.

Jelölés:
$$\langle M, w \rangle := \langle M \rangle 111w$$

Tétel

Létezik nem Turing-felismerhető nyelv.

Tétel

Létezik nem Turing-felismerhető nyelv.

Bizonyítás: A TG-ek számossága megszámlálható (a fenti kódolás injekció $\{0,1\}^*$ -ba, amiről tudjuk, hogy megszámlálható). Másrészt azt is tudjuk, hogy a $\{0,1\}$ feletti nyelvek számossága continuum. Tehát nem jut minden nyelvre őt felismerő TG (minden TG egyetlen nyelvet ismer fel).

Tétel

Létezik nem Turing-felismerhető nyelv.

Bizonyítás: A TG-ek számossága megszámlálható (a fenti kódolás injekció $\{0,1\}^*$ -ba, amiről tudjuk, hogy megszámlálható). Másrészt azt is tudjuk, hogy a $\{0,1\}$ feletti nyelvek számossága continuum. Tehát nem jut minden nyelvre őt felismerő TG (minden TG egyetlen nyelvet ismer fel).

Megjegyzés: Tehát valójában a nyelvek "többsége" ∉ RE. Tudnánk-e konkrét nyelvet mondani?

Tétel

Létezik nem Turing-felismerhető nyelv.

Bizonyítás: A TG-ek számossága megszámlálható (a fenti kódolás injekció $\{0,1\}^*$ -ba, amiről tudjuk, hogy megszámlálható). Másrészt azt is tudjuk, hogy a $\{0,1\}$ feletti nyelvek számossága continuum. Tehát nem jut minden nyelvre őt felismerő TG (minden TG egyetlen nyelvet ismer fel).

Megjegyzés: Tehát valójában a nyelvek "többsége" ∉ RE. Tudnánk-e konkrét nyelvet mondani?

Jelölés: Minden $i \geqslant 1$ -re,

Tétel

Létezik nem Turing-felismerhető nyelv.

Bizonyítás: A TG-ek számossága megszámlálható (a fenti kódolás injekció $\{0,1\}^*$ -ba, amiről tudjuk, hogy megszámlálható). Másrészt azt is tudjuk, hogy a $\{0,1\}$ feletti nyelvek számossága continuum. Tehát nem jut minden nyelvre őt felismerő TG (minden TG egyetlen nyelvet ismer fel).

Megjegyzés: Tehát valójában a nyelvek "többsége" ∉ RE. Tudnánk-e konkrét nyelvet mondani?

Jelölés: Minden $i \geqslant 1$ -re,

• jelölje w_i a $\{0,1\}^*$ halmaz i-ik elemét a hossz-lexikografikus rendezés szerint.

Tétel

Létezik nem Turing-felismerhető nyelv.

Bizonyítás: A TG-ek számossága megszámlálható (a fenti kódolás injekció $\{0,1\}^*$ -ba, amiről tudjuk, hogy megszámlálható). Másrészt azt is tudjuk, hogy a $\{0,1\}$ feletti nyelvek számossága continuum. Tehát nem jut minden nyelvre őt felismerő TG (minden TG egyetlen nyelvet ismer fel).

Megjegyzés: Tehát valójában a nyelvek "többsége" ∉ RE. Tudnánk-e konkrét nyelvet mondani?

Jelölés: Minden $i \ge 1$ -re,

- jelölje w_i a $\{0,1\}^*$ halmaz i-ik elemét a hossz-lexikografikus rendezés szerint.
- jelölje M_i a w_i által kódolt TG-t (ha w_i nem kódol TG-t, akkor M_i egy tetszőleges olyan TG, ami nem fogad el semmit)

Tétel

 $L_{\mathsf{\acute{a}tl\acute{o}}} := \{w_i \mid w_i \notin L(M_i)\} \notin RE.$

Tétel

 $L_{\text{átló}} := \{ w_i \mid w_i \notin L(M_i) \} \notin RE.$

Tétel

 $L_{\text{átló}} := \{ w_i \mid w_i \notin L(M_i) \} \notin RE.$

Bizonyítás: [Cantor-féle átlós módszerrel]

Tekintsük azt a mindkét dimenziójában megszámlálhatóan végtelen T bittáblázatot, melyre $T(i,j)=1 \Leftrightarrow w_j \in L(M_i) \ (i,j\geqslant 1).$

Tétel

 $L_{\mathsf{\acute{a}tl\acute{o}}} := \{ w_i \mid w_i \notin L(M_i) \} \notin RE.$

Bizonyítás: [Cantor-féle átlós módszerrel]

Tekintsük azt a mindkét dimenziójában megszámlálhatóan végtelen T bittáblázatot, melyre $T(i,j)=1 \Leftrightarrow w_j \in L(M_i) \ (i,j\geqslant 1).$

Tétel

 $L_{\text{átló}} := \{ w_i \mid w_i \notin L(M_i) \} \notin RE.$

Bizonyítás: [Cantor-féle átlós módszerrel]

Tekintsük azt a mindkét dimenziójában megszámlálhatóan végtelen T bittáblázatot, melyre $T(i,j)=1 \Leftrightarrow w_j \in L(M_i) \ (i,j\geqslant 1).$

Legyen $\mathbf{z} = (T(1,1),\ldots,T(i,i),\ldots)$ a T átlójában olvasható megszámlálhatóan végtelen hosszú bitsztring és $\bar{\mathbf{z}}$ a \mathbf{z} bitenkénti komplementere. Ekkor:

▶ minden $i \ge 1$ -re, T i-ik sora az $L(M_i)$ nyelv karakterisztikus sorozata

Tétel

 $L_{\text{átló}} := \{ w_i \mid w_i \notin L(M_i) \} \notin RE.$

Bizonyítás: [Cantor-féle átlós módszerrel]

Tekintsük azt a mindkét dimenziójában megszámlálhatóan végtelen T bittáblázatot, melyre $T(i,j)=1 \Leftrightarrow w_j \in L(M_i) \ (i,j\geqslant 1).$

- ▶ minden $i \ge 1$ -re, T i-ik sora az $L(M_i)$ nyelv karakterisztikus sorozata
- ▶ **z** az L_{átló} karakterisztikus sorozata.

Tétel

 $L_{\text{átló}} := \{ w_i \mid w_i \notin L(M_i) \} \notin RE.$

Bizonyítás: [Cantor-féle átlós módszerrel]

Tekintsük azt a mindkét dimenziójában megszámlálhatóan végtelen T bittáblázatot, melyre $T(i,j)=1 \Leftrightarrow w_j \in L(M_i) \ (i,j\geqslant 1).$

- ▶ minden $i \ge 1$ -re, T i-ik sora az $L(M_i)$ nyelv karakterisztikus sorozata
- ▶ **z** az L_{átló} karakterisztikus sorozata.
- Minden TG-pel felismerhető, azaz RE-beli nyelv karakterisztikus sorozata megegyezik T valamelyik sorával.

Tétel

 $L_{\text{átló}} := \{ w_i \mid w_i \notin L(M_i) \} \notin RE.$

Bizonyítás: [Cantor-féle átlós módszerrel]

Tekintsük azt a mindkét dimenziójában megszámlálhatóan végtelen T bittáblázatot, melyre $T(i,j)=1 \Leftrightarrow w_j \in L(M_i) \ (i,j\geqslant 1).$

- ▶ minden $i \ge 1$ -re, T i-ik sora az $L(M_i)$ nyelv karakterisztikus sorozata
- ▶ **z** az L_{átló} karakterisztikus sorozata.
- Minden TG-pel felismerhető, azaz RE-beli nyelv karakterisztikus sorozata megegyezik T valamelyik sorával.
- **z** különbözik *T* minden sorától.

Tétel

 $L_{\text{átló}} := \{ w_i \mid w_i \notin L(M_i) \} \notin RE.$

Bizonyítás: [Cantor-féle átlós módszerrel]

Tekintsük azt a mindkét dimenziójában megszámlálhatóan végtelen T bittáblázatot, melyre $T(i,j) = 1 \Leftrightarrow w_i \in L(M_i) \ (i,j \geqslant 1)$.

Legyen $z = (T(1, 1), \dots, T(i, i), \dots)$ a T átlójában olvasható megszámlálhatóan végtelen hosszú bitsztring és z a z bitenkénti komplementere. Ekkor:

- ▶ minden $i \ge 1$ -re, T i-ik sora az $L(M_i)$ nyelv karakterisztikus sorozata
- z az Látló karakterisztikus sorozata.
- Minden TG-pel felismerhető, azaz RE-beli nyelv karakterisztikus sorozata megegyezik T valamelyik sorával.
- z különbözik T minden sorától.
- ► Tehát L_{átló} különbözik az összes RE-beli nyelvtől.

