Mayuri Bhavan, Vijayawada RPTM-8

Subject: Mathematics Date: 21-09-2023

MATHEMATICS

<u>MATHEMATICS</u>									
01.	Let $\vec{a} = p\hat{i} + \sin\theta\hat{j} + \hat{k}$,								
	$\vec{b} = 2\hat{i} + p\hat{j} + \hat{k}, \ \vec{c} = \hat{i} + \hat{j} + \hat{k}. \ \text{If} \ \vec{a}, \vec{b}, \vec{c}$								
	are coplanar, then all possible values of								
	scalars p and θ respectively are								
	A) $1, 2n\pi + \frac{\pi}{2}(n \in I)$ B) $2, 2n\pi (n \in I)$	C) $3,3n\pi(n \in I)$ D)	$4,4n\pi(n\in I)$						
02.	'I' is the incentre of triangle ABC, whose corresponding sides are a, b, c respectively.		$a+b+c)\overrightarrow{BC}$						
	$a\overrightarrow{IA} + b\overrightarrow{IB} + c\overrightarrow{IC}$ is always equal to	C) $(\vec{a} + \vec{b} + \vec{c}) \overrightarrow{AC}$ D) (a	$a+b+c)\overline{AB}$						
03	4-points whose position Vectors $\vec{a}, \vec{b}, \vec{c}$,						
	and \vec{d} are coplanar and								
	$(\sin\alpha)\vec{a} + (2\sin2\beta)\vec{b} + (3\sin3\gamma)\vec{c} - \vec{d} = \vec{0}$								
	then the least value of	pro- section of the second of	1						
	$\sin^2 \alpha + \sin^2 2\beta + \sin^2 3\gamma$ is	A) $\frac{1}{14}$ B) 14 C) 6	D) $\frac{1}{\sqrt{6}}$						
04.	Let $\triangle ABC$ be a given triangle. If								
	$ \overline{BA} - t\overline{BC} \ge \overline{AC} $ for any $t \in R$ then A)Equi								
	Ditgittiged								
0.7									
05.	If \vec{a} and \vec{b} are two unit vectors and θ is	A) $\frac{\vec{a} - \vec{b}}{2\cos\theta/2}$ B) $\frac{\vec{a} + \vec{b}}{2\cos\theta}$	<u>- b</u>						
	the angle between them, then the unit		NE						
	vector along the angular bisector of a and	C) $\frac{\ddot{a} - \ddot{b}}{\cos \theta/2}$ D) $\frac{\ddot{a} + \ddot{b}}{\cos \theta}$	<u>- b</u>						
0.5	b will given by	cosθ/2 cos	9/2						
06.	If \vec{a} and \vec{b} are any two vectors of magnitudes 1 and 2 respectively, and		(1)						
	$(1-3\vec{a}.\vec{b})^2 + 2\vec{a}+\vec{b}+3(\vec{a}\times\vec{b}) ^2 = 47 \text{then}$	A) $\frac{\pi}{3}$ B) π – c	$\cos^{-1}\left(\frac{1}{4}\right)$						
		C) $\frac{2\pi}{3}$ D) \cos^{-1}	$(\underline{1})$						
07.	the angle between \vec{a} and \vec{b} is In figure, $\overrightarrow{AB} = 3\vec{i} - \vec{j}$, $\overrightarrow{AC} = 2\vec{i} + 3\vec{j}$ and	$C) \frac{1}{3}$	(4)						
07.	$\overrightarrow{DE} = 4\overrightarrow{i} - 2\overrightarrow{j}$ then the area of the shaded								
	region in square units is								
	P	•							

A) 5

B) 6

C) 7

D) 8

~ .	01			
Sri	Chaitanya	ΠТ	Academy,	India.

MPC Speed Test

08. If $\vec{a} = \hat{i} + \hat{i}$, $\vec{b} = \hat{i} - \hat{i} + 2\hat{k}$ and

 $\vec{c}' = 2\hat{i} + \hat{j} - \hat{k}$, then the altitude of the paralleleepiped formed by the vectors \vec{a} , \vec{b} , and \vec{c} having base formed by \vec{b}

and \vec{c} is (Where \vec{c} is reciprocal vector

a, etc.)

- A) 1 B) $3\sqrt{2}/2$ C) $1/\sqrt{6}$ D) $1/\sqrt{2}$
- If the two diagonals of one of its faces 09. are $6\hat{i} + 6\hat{k}$ and $4\hat{i} + 2\hat{k}$ and of the edges not containing the given diagonals

is $\vec{c} = 4\hat{j} - 8\hat{k}$, then the valume of a parallelepiped is

- A) 60
- B) 80
- C) 100
- D) 120

10. Let a, b, c are three vectors along the adjacent edges of a tetrahedron, if

> $|\vec{a}| = |\vec{b}| = |\vec{c}| = 2$ and $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 1$, then $\vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{c}$ volume of tetrahedron is

11. $\overline{a}, \overline{b}, \overline{c}$ are three unit vectors equally inclined

to each other at an angle $\frac{\pi}{3}$ then the

value of

$$\left[\overline{a} + \overline{b} \ \overline{b} + \overline{c} \ \overline{c} + \overline{a}\right]^2 + \left[\overline{a} \times \overline{b} \ \overline{b} \times \overline{c} \ \overline{c} \times \overline{a}\right]$$
 is $A)\frac{3}{4}$ $B)\frac{5}{2}$ $C)\frac{7}{2}$

- D)4

If $\vec{a} \cdot \vec{b} = \beta$ and $\vec{a} \times \vec{b} = \vec{c}$ then \vec{b} is

- A) $\frac{\left(\beta\vec{a}-\vec{a}\times\vec{c}\right)}{\left|\vec{a}\right|^2}$ B) $\frac{\left(\beta\vec{a}+\vec{a}\times\vec{c}\right)}{\left|\vec{a}\right|^2}$ C) $\frac{\left(\beta\vec{c}-\vec{a}\times\vec{c}\right)}{\left|\vec{a}\right|^2}$ D) $\frac{\left(\beta\vec{a}+\vec{a}\times\vec{c}\right)}{\left|\vec{a}\right|^2}$ If unit vectors \vec{a} and \vec{b} are inclined at an A) $\left(0,\frac{\pi}{6}\right)$ B) $\left(\frac{5\pi}{6},\pi\right)$ 13.

angle 2θ such that $\left| \vec{a} - \vec{b} \right| < 1$ and $C > \left[\frac{\pi}{6}, \frac{\pi}{2} \right]$ D) $\left[\frac{\pi}{2}, \frac{5\pi}{6} \right]$

- If the vectors \vec{a} and \vec{b} are linearly 14. independent
- A) $n\pi \frac{\pi}{6}, n \in Z$ B) $2n\pi + \frac{11\pi}{6}, n \in Z$

satisfying $(\sqrt{3} \tan \theta + 1)\vec{a} + (\sqrt{3} \sec \theta - 2)\vec{b} = 0$, then the most general values of θ are

- C) $2n\pi \pm \frac{\pi}{6}, n \in Z$ D) $2n\pi \pm \frac{7\pi}{6}, n \in Z$
- 15. The unit vector \vec{c} if -i+j-k bisects the

angle between vectors \vec{c} and 3i+4j is

Sri Chaitanya IIT Academy, India.

MPC Speed Test

A)
$$-\frac{1}{15} \left(11\hat{i} + 10\hat{j} - 2\hat{k} \right)$$
 C) $\frac{1}{15} \left(11\hat{i} - 10\hat{j} - 2\hat{k} \right)$

C)
$$\frac{1}{15} \left(11\hat{i} - 10\hat{j} - 2\hat{k} \right)$$

(B)
$$\frac{1}{15} \left(-11\hat{i} - 10\hat{j} - 2\hat{k} \right)$$
 D) $\frac{1}{15} \left(11\hat{i} - 10\hat{j} + 2\hat{k} \right)$
16. If $\bar{a}, \bar{b}, \bar{c}$ are unit vectors such that

D)
$$\frac{1}{15} \left(11\hat{i} - 10\hat{j} + 2\hat{k} \right)$$

$$|\overline{a} + 2\overline{b} + 3\overline{c}| = \sqrt{3 + 2\sqrt{2}}$$
, angle between \overline{a}

and \bar{b} is α , angle between \bar{a} and \bar{c} is β

and angle between \bar{b} and \bar{c} varies in

$$\left[\frac{\pi}{2}, \frac{2\pi}{3}\right]$$
 then the greatest value of

A)
$$2\sqrt{2} + 5$$

A)
$$2\sqrt{2} + 5$$
 B) $-2\sqrt{2} + 5$

$$4\cos\alpha + 6\cos\beta$$

C)
$$2\sqrt{2}-5$$
 D) $\sqrt{42}$

D)
$$\sqrt{42}$$

17. If the vector $\vec{b} = \left(\tan \alpha, -1, 2\sqrt{\sin \frac{\alpha}{2}}\right)$ and

$$\vec{c} = \left(\tan \alpha, \tan \alpha, -\frac{3}{\sqrt{\sin \frac{\alpha}{2}}}\right)$$
 are orthogonal and

A)
$$\alpha = (4n+1)\pi - \tan^{-1} 2$$

B)
$$\alpha = (4n+2)\pi + \tan^{-1} 3$$

a vector $\vec{a} = (1, 3, \sin 2\alpha)$ makes an obtuse angle with the z-axis then the value of α

C)
$$\alpha = (4n+1)\pi + \tan^{-1} 2$$

D)
$$\alpha = (4n+2)\pi + \tan^{-1} 2$$

18. If $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$ and $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = \cos \theta$

then maximum value of θ is

A)
$$\frac{\pi}{2}$$
 2) $\frac{\pi}{4}$ C) $\frac{2\pi}{3}$ D) $\frac{\pi}{6}$

2)
$$\frac{\pi}{4}$$

C)
$$\frac{2\pi}{3}$$

D)
$$\frac{\pi}{6}$$

19. If \vec{a} and \vec{b} are any two vectors of magnitudes 2 and 3 respectively such that

$$\left| 2\left(\vec{a} \times \vec{b} \right) \right| + \left| 3\left(\vec{a} \cdot \vec{b} \right) \right| = k$$
 then the maximum value of k is

A)
$$\sqrt{13}$$
 B) 2

A)
$$\sqrt{13}$$
 B) $2\sqrt{13}$ C) $6\sqrt{13}$ D) $10\sqrt{13}$

Let O be an interior point of $\triangle ABC$ such 20.

that $\overrightarrow{OA} + 2\overrightarrow{OB} + 3\overrightarrow{OC} = \overrightarrow{0}$, Then the ratio

of the area of $\triangle ABC$ to the area of $\triangle AOC$ is

21. ABCD is a parallelogram A, and B, are midpoints of sides BC and CD respectively.

If
$$\overline{AA_1} + \overline{AB_1} = \lambda \overline{AC}$$
 then 2λ

Sri Chaitanya IIT Academy, India.

MPC Speed Test

- 22. Let \vec{A} and \vec{B} be two non-parallel unit vectors in a plane. If $(\alpha \vec{A} + \vec{B})$ bisects the internal angle between \vec{A} and \vec{B} , then the value of α is
- 23. $|\vec{a}| = |\vec{b}| = |\vec{c}| = |\vec{a} + \vec{b}| = 1$, $\vec{a}.\vec{c} = 0$, If $\vec{a} = \frac{\hat{i}}{\sqrt{2}} + \frac{\hat{j}}{\sqrt{2}}$ and $\vec{a}, \hat{k}, \vec{b}$ are linearly dopendent if maximum, and mimimum value of $\vec{b}.\vec{c}$ is M and m respectively, then $4(M^2 + m^2)$ is equal to
- then $4(M^2 + m^2)$ is equal to

 24. If $\vec{a} = x\hat{i} + (x-1)\hat{j} + \hat{k}$ and $\vec{b} = (x+1)\hat{i} + \hat{j} + a\hat{k}$ always make an acute angle for all $x \in R$, then the least integral value of a is
- 25. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = 1$ then the value of $\begin{bmatrix} \vec{a} + \vec{b} \vec{b} + \vec{c} \vec{c} + \vec{a} \end{bmatrix} + \begin{bmatrix} \vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a} \end{bmatrix} + \begin{bmatrix} \vec{a} \times (\vec{b} \times \vec{c}), \vec{b} \times (\vec{c} \times \vec{a}), \vec{c} \times (\vec{a} \times \vec{b}) \end{bmatrix}$ is

- 28. $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$, $\vec{c} = \hat{i} + x_1\hat{j} + x_2\hat{k}$ are linearly dependent, $|\vec{c}| = 2$ then (i) $x_1^2 = (ii) x_2 =$
- 29. Let \vec{c} be a unit vector coplanar with $\vec{a} = \hat{i} \hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} \hat{j} + \hat{k}$ such that \vec{c} is perpendicular to \vec{a} . If P be the projection of \vec{c} along \vec{b} then the value of $\frac{\sqrt{11}}{p}$ is.
- 30. The resultant of vectors \vec{a} and \vec{b} is \vec{c} . If \vec{c} trisects the angle between \vec{a} and \vec{b} , $|\vec{a}| = 6, |\vec{b}| = 4, then |\vec{c}|$ is

MATHEMATICS

1) A	2) A	3) A	4) B	5) B	6) C
7) C	8) D	9) D	10) C	11) B	12) A
13) A,B	14) B	15) B	16) C	17) A	18)
19) C	20) C	21) 3	22) 1	23) 6	24) 3
25) 3	26) 5	27) 6	28) 1,2	29) 6	30) 5