CS1231S Chapter 7

Modular arithmetic and partial orders

7.1 Modular arithmetic

Definition 7.1.1. A representative of an equivalence class is an element of the equivalence class.

Exercise 7.1.2. Let A be a set and \sim be an equivalence relation on A. Prove that an element $x \in A$ is a representative of an equivalence class S if and only if [x] = S.

Example 7.1.3. We proved in Exercise 6.2.18 that the relation \sim on \mathbb{Z} defined by setting

$$x \sim y \quad \Leftrightarrow \quad x = y \text{ or } x = -y$$

for all $x, y \in \mathbb{Z}$ is an equivalence relation. Note $x \sim y$ means |x| = |y|. From Exercise 6.4.10, we know

$$[0] = \{0\}, \quad [1] = \{1, -1\} = [-1], \quad [2] = \{2, -2\} = [-2], \quad \dots$$

and so $\mathbb{Z}/\sim = \{\{0\}, \{1, -1\}, \{2, -2\}, \dots\}$. Define addition and multiplication on \mathbb{Z}/\sim as follows: whenever $[x], [y] \in \mathbb{Z}/\sim$,

$$[x] + [y] = [x + y]$$
 and $[x] \cdot [y] = [x \cdot y]$.

Then + is not well defined because [1] = [1] and [2] = [-2], but

$$[1] + [2] = [1+2] = [3] \neq [-1] = [1+(-2)] = [1] + [-2].$$

Ø 7b

Note \cdot is well defined because whenever $[x_1], [y_1], [x_2], [y_2] \in \mathbb{Z}/\sim$,

$$[x_1] = [x_2]$$
 and $[y_1] = [y_2]$ \Rightarrow $[x_1 \cdot y_1] = [x_2 \cdot y_2].$

Definition 7.1.4. Let $n \in \mathbb{Z}^+$. The quotient \mathbb{Z}/\sim_n , where \sim_n is the congruence-mod-n relation on \mathbb{Z} , is denoted \mathbb{Z}_n or $\mathbb{Z}/n\mathbb{Z}$. Define addition and multiplication on \mathbb{Z}_n as follows: whenever $[x], [y] \in \mathbb{Z}_n$,

$$[x] + [y] = [x + y]$$
 and $[x] \cdot [y] = [x \cdot y]$.

Proposition 7.1.5. Addition and multiplication are well defined on \mathbb{Z}_n for all $n \in \mathbb{Z}^+$, i.e., whenever $[x_1], [y_1], [x_2], [y_2] \in \mathbb{Z}_n$,

$$[x_1] = [x_2] \text{ and } [y_1] = [y_2] \quad \Rightarrow \quad [x_1] + [y_1] = [x_2] + [y_2] \text{ and } [x_1] \cdot [y_1] = [x_2] \cdot [y_2].$$

Proof. 1. Let $[x_1], [y_1], [x_2], [y_2] \in \mathbb{Z}_n$ such that $[x_1] = [x_2]$ and $[y_1] = [y_2]$.

- 2. Then Lemma 6.4.4 implies $x_1 \equiv x_2 \pmod{n}$ and $y_1 \equiv y_2 \pmod{n}$.
- 3. Use the definition of congruence to find $k, \ell \in \mathbb{Z}$ such that $x_1 x_2 = nk$ and $y_1 y_2 = n\ell$.
- 4. 4.1. Note $(x_1 + y_1) (x_2 + y_2) = (x_1 x_2) + (y_1 y_2) = nk + n\ell = n(k + \ell)$, where $k + \ell \in \mathbb{Z}$.
 - 4.2. So the definition of congruence tells us $x_1 + y_1 \equiv x_2 + y_2 \pmod{n}$.
 - 4.3. Hence $[x_1] + [y_1] = [x_1 + y_1] = [x_2 + y_2] = [x_2] + [y_2]$ by Lemma 6.4.4.
- 5. 5.1. Note $(x_1 \cdot y_1) (x_2 \cdot y_2) = (nk + x_2)(n\ell + y_2) x_2y_2 = n^2k\ell + nky_2 + n\ell x_2 + x_2y_2 x_2y_2 = n(nk\ell + ky_2 + \ell x_2)$, where $nk\ell + ky_2 + \ell x_2 \in \mathbb{Z}$.

- 5.2. So the definition of congruence tells us $x_1 \cdot y_1 \equiv x_2 \cdot y_2 \pmod{n}$.
- 5.3. Hence $[x_1] \cdot [y_1] = [x_1 \cdot y_1] = [x_2 \cdot y_2] = [x_2] \cdot [y_2]$ by Lemma 6.4.4.

7.2 Functions

Definition 7.2.1. Let A, B be sets. A function or a map from A to B is an assignment to each element of A exactly one element of B. We write $f: A \to B$ for "f is a function from A to B". Suppose $f: A \to B$.

- (1) Let $x \in A$. Then f(x) denotes the element of B that f assigns x to. We call f(x) the image of x under f. If y = f(x), then we say that f maps x to y, and we may write $f: x \mapsto y$.
- (2) Here A is called the *domain* of f, and B is called the *codomain* of f.

Convention 7.2.2. Instead of +(x,y) and $\cdot(x,y)$, people usually write x+y and $x\cdot y$ respectively.

Convention 7.2.3. In mathematics, one can read

Define $f: A \to B$ by Then f is well defined.

as

The condition "..." defines a function $f: A \to B$. We use "..." to define f.

Similarly, one can read

Define $f: A \to B$ by We show that f is well defined. [Insert proof here.]

as

We show that the condition "..." defines a function $f: A \to B$. [Insert proof here.] We use "..." to define f.

Example 7.2.4. Define $f: \mathbb{Z}^+ \to \mathbb{Z}$ by setting, for each $x \in \mathbb{Z}$,

$$f(x) = x^3 - 23x.$$

Then the domain of f is \mathbb{Z}^+ and codomain of f is \mathbb{Z} . We know $f(1) = 1^3 - 23 \times 1 = -22$ and $f(2) = 2^3 - 23 \times 2 = -38$.

Definition 7.2.5. Let A be a set. Then the *identity function* on A, denoted id_A , is the function $A \to A$ which satisfies, for all $x \in A$,

$$id_A(x) = x.$$

Remark 7.2.6. The domain and the codomain of id_A are both A.

Question 7.2.7. Define $f: \mathbb{Q} \to \mathbb{Q}$ by setting $f(x) = 2^x$ for all $x \in \mathbb{Q}$. Why is f not well \mathcal{Q} 7c defined?

Question 7.2.8. Define $g: \mathbb{Q} \to \mathbb{Q}$ by setting

$$g(x) = \frac{x^2 + 1}{x^2 + 2x + 1}$$

for all $x \in \mathbb{Q}$. Why is g not well defined?

Question 7.2.9. Define $h: \mathbb{Q} \to \mathbb{Z}$ by setting h(m/n) = m for all $m, n \in \mathbb{Z}$ where $n \neq 0$. \varnothing 7e Why is h not well defined?

7.3 Partial orders

Definition 7.3.1. Let A be a set and R be a relation on A.

- (1) R is antisymmetric if $\forall x, y \in A \ (x R y \land y R x \Rightarrow x = y)$.
- (2) R is a (non-strict) partial order if R is reflexive, antisymmetric, and transitive.
- (3) Suppose R is a partial order. Let $x, y \in A$. Then x, y are comparable (under R) if

$$x R y$$
 or $y R x$.

(4) R is a *(non-strict) total order* or a *(non-strict) linear order* if R is a partial order and every pair of elements is comparable, i.e.,

$$\forall x, y \in A \ (x R y \lor y R x).$$

(5) We say that the ordered pair (A, R) is a partially ordered set, or a poset for short, if R is a partial order on A.

Note 7.3.2. A total order is always a partial order.

Example 7.3.3. Let R denote the non-strict less-than relation on \mathbb{Q} , i.e., for all $x, y \in \mathbb{Q}$,

$$x R y \Leftrightarrow x \leqslant y.$$

Then R is antisymmetric. In fact, it is a total order.

Example 7.3.4. Let R' denote the strict less-than relation on \mathbb{Q} , i.e., for all $x, y \in \mathbb{Q}$,

$$x R' y \Leftrightarrow x < y.$$

Is R' antisymmetric? Is R' a partial order? Is R' a total order?

Ø 7f

Example 7.3.5. Let R denote the equality relation on a set A, i.e., for all $x, y \in A$,

$$x R y \Leftrightarrow x = y.$$

Then R is antisymmetric. It is a partial order, but not a total order unless $|A| \leq 1$.

Example 7.3.6. Fix $n \in \mathbb{Z}^+$. Let R' denote the congruence-mod-n relation on \mathbb{Z} , i.e., for all $x, y \in \mathbb{Z}$,

$$x R' y \Leftrightarrow x \equiv y \pmod{n}$$
.

Then R' is not antisymmetric because 0 R' n and n R' 0 but $0 \neq n$.

Example 7.3.7. Let R denote the divisibility relation on \mathbb{Z} , i.e., for all $x, y \in \mathbb{Z}$,

$$x R y \Leftrightarrow x \mid y$$
.

Is R antisymmetric? Is R a partial order? Is R a total order?

Ø 7g

Example 7.3.8. Let R' denote the divisibility relation on \mathbb{Z}^+ , i.e., for all $x, y \in \mathbb{Z}^+$,

$$x R' y \Leftrightarrow x \mid y$$
.

Is R antisymmetric? Is R a partial order? Is R a total order?

Ø 7h

Example 7.3.9. Let R denote the subset relation on a set U of sets, i.e., for all $x, y \in U$,

$$x R y \Leftrightarrow x \subseteq y.$$

Then R is antisymmetric. It is always a partial order, but it may not be a total order.

Notation 7.3.10. We often use \leq to denote a partial order. This symbol is often defined and redefined to mean different partial orders in different situations. We may read \leq as "curly less than or equal to" or simply "less than or equal to" if there is no risk of ambiguity. If \leq denotes a partial order, then we write $x \prec y$ for $x \leq y \land x \neq y$.

Definition 7.3.11. Let \leq be a partial order on a set A. A Hasse diagram of \leq satisfies the following condition for all $x, y \in A$:

If $x \prec y$ and no $z \in A$ is such that $x \prec z \prec y$, then x is placed below y and there is a line joining x to y, else no line joins x to y.

Example 7.3.12. Consider $\{d \in \mathbb{Z}^+ : d \mid 30\}$ partially ordered by the divisibility relation |. A Hasse diagram is as follows:

Example 7.3.13. Consider $\mathcal{P}(\{1,2,3\})$ partially ordered by the inclusion relation \subseteq . A Hasse diagram is as follows:

Example 7.3.14. Consider $\{1, 2, 3, 4\}$ partially ordered by the non-strict less-than relation \leq . A Hasse diagram is as follows:

7.4 Linearization

Definition 7.4.1. Let \leq be a partial order on a set A, and $c \in A$.

(1) c is a minimal element if no $x \in A$ is strictly \leq -less than c, i.e.,

$$\forall x \in A \ (x \leq c \Rightarrow c = x).$$

(2) c is a maximal element if no $x \in A$ is strictly \leq -bigger than c, i.e.,

$$\forall x \in A \ (c \leq x \Rightarrow c = x).$$

(3) c is the *smallest element* (or the *minimum element*) if all $x \in A$ are \preccurlyeq -bigger than or equal to c, i.e.,

$$\forall x \in A \ (c \leq x).$$

(4) c is the largest element (or the maximum element) if all $x \in A$ are \preccurlyeq -less than or equal to c, i.e.,

$$\forall x \in A \ (x \leq c).$$

Example 7.4.2. The divisibility relation | on $\{1, 2, ..., 10\}$ is represented by the Hasse diagram

- The only minimal element is 1.
- The maximal elements are 6, 7, 8, 9, 10.
- The smallest element is 1.
- There is no largest element.

Example 7.4.3. (1) \mathbb{Q}^+ under the non-strict less-than relation \leq has neither a minimal element nor a maximal element.

(2) \mathbb{Z}^+ under the non-strict less-than relation \leq has a smallest element but no maximal element.

Proposition 7.4.4. Consider a partial order \leq on a set A.

- (1) A smallest element is minimal.
- (2) There is at most one smallest element.

Proof. (1) 1. Let c be a smallest element.

- 2. Take any $x \in A$ such that $x \leq c$.
- 3. By smallestness, we know $c \leq x$ too.
- 4. So c = x by antisymmetry.
- (2) 1. Let c, c' be smallest elements.
 - 2. Then $c \leq c'$ and $c' \leq c$ by the smallestness of c and c' respectively.
 - 3. So c = c' by antisymmetry.

Exercise 7.4.5. Show the statements analogous to Proposition 7.4.4 for largest and maximal elements.

Proposition 7.4.6. With respect to any partial order \leq on a nonempty finite set A, one can find a minimal element.

Proof (optional material). 1. Take any $c_0 \in A$. This is possible since $A \neq \emptyset$.

- 2. If c_0 is not minimal, then find $c_1 \in A$ such that $c_1 \prec c_0$.
- 3. Continue this process: if c_n is not minimal, then find $c_{n+1} \in A$ such that $c_{n+1} \prec c_n$.
- 4. Note that $c_{n+1} \neq c_i$ for any $i \in \{0, 1, ..., n\}$ because if $i \in \{0, 1, ..., n\}$ such that $c_{n+1} = c_i$, then
 - 4.1. $c_n \prec c_{n-1} \prec \cdots \prec c_i = c_{n+1}$;
 - 4.2. so $c_n \leq c_{n+1}$ by transitivity;
 - 4.3. so $c_n = c_{n+1}$ by antisymmetry as $c_{n+1} \prec c_n$;
 - 4.4. so we have a contradiction with $c_{n+1} \prec c_n$.
- 5. Since A is finite, this process must end, say with c_n .
- 6. c_n must be minimal for this process to end.

Exercise 7.4.7. Convince yourself that the statement analogous to Proposition 7.4.6 is true 75 for maximal elements.

Definition 7.4.8. Let A be a set and \leq be a partial order on A. A linearization of \leq is a total order \leq * on A such that

$$\forall x, y \in A \ (x \leq y \Rightarrow x \leq^* y).$$

Question 7.4.9. Is the total order \leq * represented by the right Hasse diagram a linearization of the partial order \leq represented by the left Hasse diagram?

Theorem 7.4.10. Let A be a set and \leq be a partial order on A. Then there exists a total order \leq * on A such that for all $x, y \in A$,

$$x \preccurlyeq y \quad \Rightarrow \quad x \preccurlyeq^* y.$$

Algorithm 7.4.11 (Kahn's Algorithm (1962)). Input: a finite set A, a partial order \leq on A.

- (1) Set $A_0 := A$ and i := 0.
- (2) Repeat until $A_i = \emptyset$:
 - (2.1) use Proposition 7.4.6 to find a minimal element c_i of A_i with respect to \leq ;
 - $(2.2) \operatorname{set} A_{i+1} := A_i \setminus \{c_i\};$
 - (2.3) set i := i + 1.

Output: a linearization \leq^* of \leq defined by setting, for all indices i, j,

$$c_i \preccurlyeq^* c_j \quad \Leftrightarrow \quad i \leqslant j.$$

Note 7.4.12. In step (2.1) of Kahn's Algorithm, there may be several minimal elements to choose from. Different choices give different linearizations.

Example 7.4.13. Consider $\{d \in \mathbb{Z}^+ : d \mid 30\}$ partially ordered by the divisibility relation | as in Example 7.3.12.

- Set $A_0 := \{ d \in \mathbb{Z}^+ : d \mid 30 \}.$
- 1 is the only minimal element of A_0 . Set $c_0 := 1$ and $A_1 := A_0 \setminus \{1\}$.
- 2, 3, 5 are the minimal elements of A_1 . Set $c_1 := 3$ and $A_2 := A_1 \setminus \{3\}$.
- 2,5 are the minimal elements of A_2 . Set $c_2 := 2$ and $A_3 := A_2 \setminus \{2\}$.
- 5, 6 are the minimal elements of A_3 . Set $c_3 := 6$ and $A_4 := A_3 \setminus \{6\}$.
- 5 is the only minimal element of A_4 . Set $c_4 := 5$ and $A_5 := A_4 \setminus \{5\}$.
- 10, 15 are the minimal elements of A_5 . Set $c_5 := 15$ and $A_6 := A_5 \setminus \{15\}$.
- 10 is the only minimal element of A_6 . Set $c_6 := 10$ and $A_7 := A_6 \setminus \{10\}$.
- 30 is the only (minimal) element of A_7 . Set $c_7 := 30$ and $A_8 := A_7 \setminus \{30\}$.
- $A_8 = \emptyset$ and so we stop.

A linearization is given by $1 \leq^* 3 \leq^* 2 \leq^* 6 \leq^* 5 \leq^* 15 \leq^* 10 \leq^* 30$.

Why Kahn's Algorithm stops. The input set A is finite. Each time the repeat-until loop is run, one element is taken out of A. So this loop is run exactly |A| times. Then the set of remaining elements is empty, and the stopping condition is satisfied.

Proof that Kahn's Algorithm is correct (optional material). 1. Input a finite set A and a partial order \leq on A to Kahn's Algorithm.

- 2. Suppose the run produces $A_0, A_1, \ldots, A_n, c_0, c_1, \ldots, c_{n-1}$ and \leq^* .
- 3. Note $A = \{c_0, c_1, \dots, c_{n-1}\}$, because the removal of c_0, c_1, \dots, c_{n-1} from A makes the set empty following Kahn's Algorithm.
- 4. Note also that \preceq^* is a total order on A because it is by definition only a renaming of the total order \leq on $\{0, 1, \dots, n-1\}$.
- 5. 5.1. Take any $x, y \in A$ such that $x \leq y$.
 - 5.2. Use line 2 to find $j \in \{0, 1, \dots, n-1\}$ such that $y = c_j$.
 - 5.3. 5.3.1. Case 1: suppose $x = c_j$.
 - 5.3.2. Then $x = c_j \preccurlyeq^* c_j$ by the definition of \preccurlyeq^* .
 - 5.4. 5.4.1. Then $x \notin A_j$ as c_j is minimal in A_j .
 - 5.4.2. So $x \in A \setminus A_j$, where $A \setminus A_j = \{c_0, c_1, \dots, c_{j-1}\}$ by the choices of A_0, A_1, \dots, A_j and c_0, c_1, \dots, c_{j-1} in Kahn's Algorithm.

- 5.4.3. Let $i \in \{0, 1, \dots, j-1\}$ such that $x = c_i$.
- 5.4.4. Then $x = c_i \preceq^* c_j = y$ by the definition of \preceq^* , as $i \leq j 1 < j$.
- 6. Hence \leq^* is a linearization of \leq .

Figure 7.1: A partial order on a set of relations