

Vorlesung: Statistik I

Prof. Dr. Simone Abendschön

6. Einheit

Plan für heute

Beginn bivariate Datenanalyse: Kreuztabelle

Lernziele

Kenntnis der Funktionsweise und Interpretation von Kreuztabellen

Kreuztabelle

Hintergrund:

- An einer Beobachtungseinheit werden i.d.R. mehrere Merkmale erfasst
- Quantitative sozialwissenschaftliche Analyse ist nicht nur an der Verteilung einzelner Merkmale bzw. Variablen interessiert
- Ziel: Zusammenhänge und Beziehungen zwischen Merkmalen untersuchen, um Hypothesen zu überprüfen

Kreuztabellen

Auch "Kontingenztafel"

- Werkzeug der deskriptiven Statistik
- 2 Merkmale werden in der (absoluten und relativen)
 Häufigkeit ihres gemeinsamen Auftretens dargestellt

Voraussetzung:

- Nominales bzw. ordinales Skalenniveau
- Metrische Daten gruppiert genutzt werden (bspw. Altersgruppen, Einkommensgruppen)
- → Kreuztabellen umfassen formal k-Zeilen und I-Spalten Aber: Nicht zu viele Ausprägungen, da sonst unübersichtlich

Kreuztabellen

- Kreuztabellen erlauben erste empirische Aussagen zum Verhältnis zweier Merkmale:
- gibt es Zusammenhänge oder sind die Merkmale "statistisch unabhängig" voneinander?

Beispiele:

- Haben Raucher häufiger schwere Corona-Krankheitsverläufe als Nichtraucher?
- Gehen h\u00f6her Gebildete eher zur Wahlurne als Niedriggebildete?
- Wählen Ostdeutsche häufiger die AfD als Westdeutsche?

Abendliche Bibliotheksnutzung und Studiengang, Befragung, Urliste mit 9 Studierenden aus 100 Befragten

Befragten-ID	Studiengang	Nutzung am Abend
1	BA	Nein
2	MA	Ja
3	МА	Nein
4	BA	Nein
5	ВА	Ja
6	MA	Ja
7	МА	Ja
8	BA	Nein
9	MA	Ja

- 4 Kombinationen möglich:
- 1) BA + Nutzung abends: I
- 2) BA Nutzung abends: III
- 3) MA + Nutzung abends: IV
- 4) MA Nutzung abends: I

Befragten- ID	Studiengang	Nutzung am Abend
1	ВА	Nein
2	MA	Ja
3	MA	Nein
4	ВА	Nein
5	ВА	Ja
6	MA	Ja
7	MA	Ja
8	ВА	Nein
9	MA	Ja

Beispiel: Kreuztabelle

4 Möglichkeiten→ 2x2-Tabelle (Vierfeldertafel) als einfachster Form der Kreuztabelle

Spalte: Studiengang

Zeile: Abend-Nutzung Ja/Nein

Studiengang Nutzung	ВА	MA	Gesamt
Ja	1	4	5
Nein	3	1	4
Gesamt	4	5	9

Kreuztabelle: Randhäufigkeiten

Studiengang Nutzung	ВА	MA	Gesamt
Ja	1	4	5
Nein	3	1	4
Gesamt	4	5	9

 Randhäufigkeiten: rechter und unterer "Rand" der Kreuztabelle Diese Informationen sind allgemein deskriptiver Natur und hätten wir auch durch univariate Häufigkeitsauszählungen herausbekommen

Kreuztabelle: Bedingte Häufigkeiten

2x2-Tabelle, Vierfeldertafel

Studiengang	ВА	MA	Gesamt
Nutzung			
Ja	1	4	5
Nein	3	1	4
Gesamt	4	5	9

- Bedingte (absolute) Häufigkeiten in den übrigen Feldern ->
 Berechnung der relativen prozentualen Häufigkeiten, um die
 Zellen besser miteinander vergleichen zu können
- 3 Möglichkeiten zur Prozentuierung: 1) Gesamtprozente, 2)
 Zeilenprozente, 3) Spaltenprozente

Beispiel Gesamtprozentuierung

Beispiel Befragung Bibliotheksnutzung, absolute Häufigkeiten, n=100

Frage: Wieviel Prozent der Befragten sind im BA-Studiengang eingeschrieben und nutzen das Abendangebot?

→ Ermittlung der **Gesamtprozente**: bedingter Anteil der Zelle wird im Hinblick auf alle Beobachtungseinheiten berechnet

Studiengang Nutzung	ВА	MA	Gesamt
Ja	13 13/100=13%	43 43/100=43%	56 56/100=56%
Nein	17	27	44
Gesamt	30 30/100=30%	70	100

Beispiel Gesamtprozentuierung

Beispiel Befragung Bibliotheksnutzung, absolute Häufigkeiten, n=100

Frage: Wieviel Prozent der Befragten sind im BA-Studiengang eingeschrieben und nutzen das Abendangebot?

Studiengang Nutzung	ВА	MA	Gesamt
Ja	13 13/100=13%	43 43/100=43%	56 56/100=56%
Nein	17	27	44
Gesamt	30 30/100=30%	70	100

Beispiel Zeilenprozentuierung

Beispiel Befragung Bibliotheksnutzung, absolute Häufigkeiten, n=100

Frage: Wieviel Prozent der abendlichen Nutzer sind im BA-Studiengang eingeschrieben?

→ Ermittlung der Zeilenprozente: bedingter Anteil der Zelle wird im Hinblick auf die jeweilige Zeile berechnet (Achtung: im Beispiel gerundet)

Studiengang Nutzung	ВА	MA	Gesamt
Ja	13 13/56=23%	43 43/56=77%	56 100%
Nein	17	27	44
Gesamt	30 30/100=30%	70	100

Beispiel Zeilenprozentuierung

Beispiel Befragung Bibliotheksnutzung, absolute Häufigkeiten, n=100

Frage: Wieviel Prozent der abendlichen Nutzer sind im BA-Studiengang eingeschrieben?

→ Ermittlung der Zeilenprozente: bedingter Anteil der Zelle wird im Hinblick auf die jeweilige Zeile berechnet (Achtung: im Beispiel gerundet)

Studiengang Nutzung	ВА	MA	Gesamt
Ja	13 13/56=23%	43 43/56=77%	56 100%
Nein	17	27	44
Gesamt	30 30/100=30%	70	100

Beispiel Spaltenprozentuierung

Beispiel Befragung Bibliotheksnutzung, absolute Häufigkeiten, n=100

Frage: Wieviel Prozent der BA-Studierenden nutzen das Abendangebot?

→ Ermittlung der **Spaltenprozente**: bedingter Anteil der Zelle wird im Hinblick auf die jeweilige Spalte berechnet

Studiengang Nutzung	ВА	MA	Gesamt
Ja	13 13/30=43%	43 43/70=61%	56 56/100=56%
Nein	17 17/30=57%	27	44
Gesamt	30 100%	70	100

Beispiel Spaltenprozentuierung

Beispiel Befragung Bibliotheksnutzung, absolute Häufigkeiten, n=100

Frage: Wieviel Prozent der BA-Studierenden nutzen das Abendangebot?

→ Ermittlung der **Spaltenprozente**: bedingter Anteil der Zelle wird im Hinblick auf die jeweilige Spalte berechnet

Studiengang Nutzung	ВА	MA	Gesamt
Ja	13 13/30=43%	43 43/70=61%	56 56/100=56%
Nein	17 17/30=57%	27	44
Gesamt	30 100%	70	100

Sinnvolle und konventionelle Erstellung:

- Spalte: "unabhängige" Variable, Zeile: "abhängige" Variable
- Als Basis der Prozentuierung dabei die unabhängige Variable wählen und interpretieren: Spaltenprozente

Aussagen über Merkmalszusammenhänge – meistens:
 Beziehung zwischen unabhängiger/n und abhängiger Variablen

"Wenn Eltern über eine hohe Bildung verfügen, dann haben auch die Kinder einen hohen Bildungsabschluss"

Exkurs: Abhängige und unabhängige Variable

Abhängige Variable (aV)

- "Das zu erklärende",
- Beispiel: Höhe des Bildungsabschlusses einer Person
- ("Y")

Unabhängige Variable (uV)

- (mögliche) Erklärungsfaktoren, z.B. Bildung der Eltern, Intelligenz, etc.
- ("X")

Sinnvolle und konventionelle Erstellung:

- Spalte: "unabhängige" Variable, Zeile: "abhängige" Variable
- Als Basis der Prozentuierung dabei die unabhängige Variable wählen und interpretieren: Spaltenprozente

Grundlegende Idee bei der Überprüfung der "Unabhängigkeit" von Variablen:

- Bei Unabhängigkeit muss die prozentuale Verteilung der unabhängigen Variablen in jeder Kategorie der abhängigen Variablen (annähernd) gleich sein
- Abweichungen von diesen Verteilungen lassen darauf schließen, dass die Variablen nicht unabhängig voneinander sind
- → "Es besteht ein Zusammenhang"

Sinnvolle und konventionelle Erstellung:

- Spalte: "unabhängige" Variable, Zeile: "abhängige" Variable
- Als Basis der Prozentuierung dabei die unabhängige Variable wählen und interpretieren: Spaltenprozente

Lesen" und Interpretieren einer (konventionell erstellten) Kreuztabelle:

- Spaltenprozente zeilenweise vergleichen,
- "Prozentsatzdifferenz" ermitteln
- → Beispiel: Gender gap im politischen Interesse? Hängt das Geschlecht mit dem politischen Interesse zusammen?

Kreuztabelle, Beispiel

Geschlecht Politisches Interesse	Männliche Befragte	Weibliche Befragte	Gesamt
Sehr stark	311	116	427
	17,6%	6,7%	12,2%
Stark	537	345	882
	30,3%	20,1%	25,3%
Mittel	634	795	1429
	35,8%	46,2%	40,9%
Wenig	207	349	556
	11,7%	20,3%	15,9%
Überhaupt nicht	81	115	196
	4,6%	6,7%	5,6%
Gesamt	1770	1720	3490
	100,0%	100,0%	100,0%

Daten: ALLBUS 2016. Eigene Berechnungen

- liegt vor, wenn sich die Spaltenprozente in einer Zeile nicht oder nur kaum unterscheiden
- Faustregel (nach Kühnel/Krebs 2007)
 - Differenzen unter 5 Prozentpunkte kaum interpretierbar
 - Differenzen unter 10 Prozentpunkte gelten als gering
 - Differenzen von 25 und mehr Prozentpunkten pro Zelle) weisen auf einen starken Zusammenhang hin

Dabei: auf Besetzung der einzelnen Zellen achten (mind. 15 Fälle)

- Kreuztabellen ermöglichen die kombinierte Betrachtung der Häufigkeiten
- Aussagekräftige bedingte prozentuale Häufigkeiten anzeigen lassen!

 Aber Hinweis: In den Sozialwissenschaften betrachten wir meistens komplexe Merkmale, die in Zusammenhang mit einer Vielzahl von Merkmalen stehen

- Erstellung einer Indifferenztabelle → Basis der
- Zusammenhangsmaße

- Erstellung einer Indifferenztabelle → Basis der
- Zusammenhangsmaße

Lernziele

 Kenntnis und Verständnis der Funktionsweise und Interpretation von Kreuztabellen