Classificador de Dígitos Utilizando a Base Mnist Filtros Conv2D e TF2D

Processamento Digital de Sinais

Nome: Hugo Silveira Sousa

Matrícula: 378998

Sumário

*	Introdução	03
	Convolução 2D	04
	Transformada de Fourier 2D	12
*	Base de Dados	17
*	Fluxograma	18
	Estrutura	
	Resultados	20
*	Conclusão	27
*	Referências	28

Introdução

- Classificador
- Objetivos
 - > Convolução
 - > Transformada de Fourier
- CNN

Fonte: https://github.com/vdumoulin/conv_arithmetic

4 30 0	6 0 2	1 2	8 5 4	$ * \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = $
1	1	1	3	7 5

Fonte: Convolutional Neural Network in Matlab (YouTube)

Original Lenna

Original Lenna

Fonte: https://en.wikipedia.org/wiki/Lenna

Fonte: Autoria Própria.

Average

Cinza Lenna

Fonte: Autoria Própria.

0.11	0.11	0.11
0.11	0.11	0.11
0.11	0.11	0.11

Filtro Average

Cinza Lenna

Fonte: Autoria Própria.

0.01	0.08	0.01
0.08	0.61	0.08
0.01	0.08	0.01

Filtro Gaussian

Cinza Lenna

Fonte: Autoria Própria.

1	1	1
0	0	0
-1	-1	-1

Filtro prewitt

Disk

Cinza Lenna

Fonte: Autoria Própria.

0.02	0.14	0.02
0.14	0.31	0.14
0.02	0.14	0.02

Filtro disk

Imagem + Ruído

Original Cameraman

Fonte: MATLAB

Cameraman Ruido

Fonte: Autoria Própria.

❖ Imagem Filtrada

Original Cameraman

Fonte: MATLAB

Filtro Cameraman

Fonte: Autoria Própria.

Cinza Lenna

Fonte: Autoria Própria.

log tf

Passa-Baixa Gaussian

Original Cameraman

Fonte: MATLAB

log ft

Fonte: Autoria Própria.

Filtro Gaussian

Passa-Baixa Gaussian

Original Cameraman

Fonte: MATLAB

fft filtrada

Fonte: Autoria Própria.

Imagem Filtrada

Passa-Baixa

Original Cameraman

Fonte: MATLAB

Filtro

Fonte: Autoria Própria.

Filtrada na F

Fonte: Autoria Própria.

Imagem Filtrada

Fonte: Autoria Própria.

Passa-Alta

Original Cameraman

Fonte: MATLAB

Filtro

Fonte: Autoria Própria.

Filtrada na F

Fonte: Autoria Própria.

Imagem Filtrada

Fonte: Autoria Própria.

Base de Dados

- Mnist
- ❖ 70.000 amostras
- ❖ 28x28

Fonte: Autoria Própria.

Fluxograma

Convolução:

Fonte: Autoria Própria.

Transformada de Fourier:

Estrutura

Convolução

- Carregar a Base
- Permutar a Base
- Separar
 - > 80% Treino
 - > 20% Teste
- Convolução (Filtro 1,2 ou 3)
- Extrair os Atributos
- Treino (KNN, NB ou DT)
- Teste
- Resultados

Base: 20% 20% 20% 20% 20%

Fourier

- Carregar a Base
- Permutar a Base
- Separar
 - ➤ 80% Treino
 - > 20% Teste
- Transformada de Fourier
- Multiplicação (Filtro Low ou High)
- Extrair os Atributos
- Treino (KNN, NB ou DT)
- Teste
- Resultados

- Convolução
- Exemplos:

Sem Filtro

5 10 15 20 25

- Convolução
- KNN

- Sem Filtro
 - o 92.8414 %
- Filtro 1: Average
 - o 95.1329 %
- Filtro 2: Prewitt
 - 0 87.3271%
- Filtro 3: Disk
 - o **94.4071**%

- Convolução
- Naive Bayes

- Sem Filtro
 - o 76.3129 %
- Filtro 1: Average
 - 0 78.7800 %
- Filtro 2: Prewitt
 - o 72.5786 %
- Filtro 3: Disk
 - o 77.7700 %

- Convolução
- Decision Tree

- Sem Filtro
 - 0 78.1286 %
- Filtro 1: Average
 - 0 80.4086 %
- Filtro 2: Prewitt
 - o 71.9357 %
- Filtro 3: Disk
 - 0 79.4343 %

- Transformada de Fourier
- ❖ KNN

- Sem Filtro
 - 0 83.5543 %
- Filtro Low
 - 0 80.4443 %
- Filtro High
 - 0 81.5800 %

- Transformada de Fourier
- Naive Bayes

- Sem Filtro
 - o 65.1271%
- Filtro Low
 - o 59.8786 %
- Filtro High
 - 0 61.1986 %

- Transformada de Fourier
- Decision Tree

- Sem Filtro
 - 0 62.4157%
- Filtro Low
 - 0 64.6457 %
- Filtro High
 - 0 62.7943 %

Conclusão

- Convolução
- Transformada de Fourier

https://github.com/hugosousa111/classificador_numeros

Referências

- MATHWORKS. Documentation. Disponível em: https://www.mathworks.com/help/ Acesso em: 26 de Junho de 2019.
- MATHWORKS. conv2. Disponível em: https://www.mathworks.com/help/matlab/ref/conv2.html Acesso em: 26 de Junho de 2019.
- MATHWORKS. fft2. Disponível em: https://www.mathworks.com/help/matlab/ref/fft2.html Acesso em: 26 de Junho de 2019.
- MATHWORKS. fitcknn. Disponível em: https://www.mathworks.com/help/stats/fitcknn.html Acesso em: 26 de Junho de 2019.
- MATHWORKS. fitcnb. Disponível em: https://www.mathworks.com/help/stats/fitcnb.html Acesso em: 26 de Junho de 2019.
- MATHWORKS. fitctree. Disponível em: https://www.mathworks.com/help/stats/fitctree.html Acesso em: 26 de Junho de 2019.
- Wiki YouTube. Fast Fourier Transform of an Image in Matlab (TUTORIAL). Disponível em: https://bit.ly/2JdwCmJ Acesso em: 26 de Junho de 2019.
- Rashi Agrawal. IMAGE PROCESSING USING MATLAB. Disponível em: https://bit.ly/2FxivaQ Acesso em: 26 de Junho de 2019.

28