ECE 321 Software Requirements Engineering

LAB 1. Introduction

Lab Instructor: Ahmed Chaari
Department of Electrical and Computer Engineering
University of Alberta

Basic Information

Laboratory Instructor

- Ahmed Chaari
- email: chaari@ualberta.ca
- Office Hours: TBA

Teaching Assistant

- Mahsa Panahandeh
- email: panahand@ualberta.ca
- Office Hours: TBA

Laboratories

- Mon, 14:00 - 16:50 pm, ETLC 5-005

Class web site

https://eclass.srv.ualberta.ca

Planned Topics

The course will provide background that concerns development, specification, and verification of software requirements.

The lab will be used to reinforce the knowledge you will gain during lectures

- three main parts:
 - 1. readings at the beginning of the semester
 - 1 lab: today
 - will give you industrial and research perspective on the software requirements subject
 - in the meantime the lectures will focus on building up background for the remaining labs

Planned Topics

- three main parts:
 - 2. elicitation of requirements and requirement specifications
 - 4 labs: LAB2 + LAB3 + LAB4 + LAB5
 - training in elicitation methods and supporting software
 - » Gatherspace
 - development of the requirement specification document
 - 3. formal requirements methods
 - 3 labs: LAB6 + LAB7 + LAB8
 - learning formal methodologies and supporting software
 - » Finite State Machines and Petri Nets

Group Effort

During the labs you will be working mostly in groups

- 5 groups of 3-4 people (we will divide into groups today)
 - total of 47 registered students
- total 30%
 - 5 lab reports for 3% each
 - all except two are finished during the lab
 - final project (SRS document) for 15%
 - complete SRS document using IEEE 830 standard
- Everyone in the same group gets the same mark
 - cooperate

Schedule

LAB1	Introduction	
LAB2	Requirements Elicitation - Interview	Report 1 assigned (interview notes)
LAB3	Software Supported Elicitation and Specification of Requirements - demo of GatherSpace	Report 1 due
LAB4	Requirements Elicitation - Use Cases with GatherSpace	Report 2 assigned (use cases and review notes in GatherSpace)
LAB5	IEEE 830 SRS Standard	Report 2 due Group Projects (SRS document) assigned (due at the final exam)
LAB6	Finite State Machines	Report 3 assigned and due (FSM models)
LAB7	Introduction to Petri Nets – introduction to PIPE	Report 4 assigned and due (PIPE models)
LAB8	Petri Nets	Report 5 assigned and due (advanced PIPE models)

Instructor reserves the right to change the lab outline, based on students' progress and coverage of the material.

Today

- establishing 5 groups
 - 4 undergrad students per group
 - 3 grad students per group
 - each group must nominate a team leader
 - write the names on a piece of paper

first group task is an interview during LAB2 on Sept. 24

LAB 1 Homework

Reading assignment

read the following two articles after the lab

Maiden, N., Requirements 25 Years On, *IEEE Software*, pp.26-28, Nov/Dec 2008

Wever, A., Maiden, N., Requirements Analysis: The Next Generation, *IEEE Software*, pp.22-23, Mar/Apr 2011

available on class web site under "Reading assignment" reading is voluntary and will not be marked do not post them anywhere else

Requirements elicitation

- we will train interviewing technique discussed during the lectures
 - the software system that will be modeled in the remaining two assignments will be discussed
 - traffic lights system
 - main task will be to perform interview to learn about the system to be developed
 - based on the review each student group will develop system definition
 - » template will be described during lectures
 - each group will submit one page summary of the elicited information

Requirements elicitation

- demo of GatherSpace software
- each group will enter the information elicited during the previous lab using this software

Requirements elicitation

- each group will develop use cases for the elicited during the LAB3 system
 - system's definition will be refined and analyzed
 - use cases will be developed
 - each group will submit a set of all uses cases based on the elicited information
 - use cases will be entered into GatherSpace

IEEE Standard 830: Software Requirements Specifications

- we will learn the standard
- we will also discuss an example industrial requirement specification developed using the standard
- each group will develop the specification for the traffic lights system
 - you will structure the information about the system defined during LABS 2, 3 and 4 as a formal document using the IEEE template
 - the specification will be due at the end of the term (Project report)

Finite State Machines

- we will model real life systems using FSMs
 - telephone model
 - cruise control system model

LAB 7 and LAB 8

Petri Nets

- during LAB 7 we will work on a tutorial-style demo of Petri Nets software
- during LAB 8 we will model real life system
 - cruise control system model
- Lecture assignment 4 will concern modeling in Petri Nets
 - traffic light system