Midterm 1 Version 1 Solution

March 19, 2020

Question 1

a. $S_1 = \{aa, bb, cc, aaa, aab, aac, bba, bbb, bbc, cca, ccb, ccc, \dots\}$

Since S_2 is a set of elements with length 3,

 $S_1 \cap S_2 = \{aaa, aab, aac, bba, bbb, bbc, cca, ccb, ccc\}$

b. See below

p	q	$\mid r \mid$	$\neg r$	$(p \lor q)$	$(p \lor q) \Rightarrow \neg r$
Т	Τ	Т	F	Т	F
Т	F	F	Т	Т	Т
F	Т	F	Т	Т	Т
F	F	Т	F	F	Т
Τ	Τ	F	Т	Т	T
\overline{T}	F	Т	F	Т	Т
\overline{F}	Τ	Т	F	Т	Т
\overline{F}	F	F	Т	F	F

c. Negation: $\exists x \in \mathbb{N}, \forall y \in \mathbb{N}, \neg P(x, y) \land \neg Q(x, y)$.

Let
$$x = \underline{\hspace{1cm}}$$
, and $y \in \mathbb{N}$.

We will prove that predicate P and Q are not true.

Question 2

- a. $\exists x \in P, Student(x) \land Attends(x)$
- b. $\forall x \in P, \exists y \in P, Student(y) \land Attends(y) \land Loves(x, y)$
- c. $\forall x \in P$, $Student(x) \land Attends(x) \Rightarrow Loves(x, x)$
- d. $\forall x_1, x_2 \in P, \ x_1 \neq x_2 \land Loves(x_1, x_2) \Rightarrow (Attends(x_1) \land \neg Attends(x_2)) \lor (\neg Attends(x_2) \land Attends(x_1))$

Correct Solution:

 $\forall x_1, x_2 \in P, \ x_1 \neq x_2 \land Loves(x_1, x_2) \land Loves(x_1, x_2) \Rightarrow \neg Attends(x_1) \lor \neg Attends(x_2)$

Question 3

- a. $\forall a, b, c \in \mathbb{Z}, \exists k, l \in \mathbb{Z}, b = ka \land c = lb \Rightarrow \exists m \in \mathbb{Z}, c = ma$
- b. Let $a,b,c\in\mathbb{Z}$, and $k=\frac{b}{a},\ l=\frac{c}{b}\in\mathbb{Z}$. Assume, b=ka and c=lb.

Then,

$$c = lb (1)$$

$$= \left(\frac{c}{b}\right)a\tag{2}$$

$$= \left(\frac{c}{b}\right) \left(\frac{b}{a}\right) a \tag{3}$$

$$= \left\lceil \left(\frac{c}{b}\right) \left(\frac{b}{a}\right) \right\rceil a \tag{4}$$

Since $\binom{c}{b}$, $\binom{b}{a} \in \mathbb{Z}$, $\binom{c}{b}$ $\binom{b}{a} \in \mathbb{Z}$.

Then, it follows from the definition of divisibility that a divides c.

Question 4

• Let $x, y \in \mathbb{R}$.

Then, there exists ϵ_1 , $\epsilon_2 \in \mathbb{R}$, $0 \le \epsilon_1$, $\epsilon_2 < 1 \land x = \lfloor x \rfloor + \epsilon_1 \land y = \lfloor y \rfloor + \epsilon_2$ by fact 1.

Then,

Then,

$$\left| \left(\lfloor x \rfloor + \lfloor y \rfloor \right) + \left(\epsilon_1 + \epsilon_2 \right) \right| = \left(\lfloor x \rfloor + \lfloor y \rfloor \right) + \left| \epsilon_1 + \epsilon_2 \right| \tag{3}$$

by fact 2.

Then,

$$\left| (\lfloor x \rfloor + \lfloor y \rfloor) + (\epsilon_1 + \epsilon_2) \right| \ge \lfloor x \rfloor + \lfloor y \rfloor \tag{4}$$

Then, it follows from above that the statement $\forall x,y\in\mathbb{R}, \lfloor x+y\rfloor\geq \lfloor x\rfloor+\lfloor y\rfloor$ is true.