Algebra 1 Exercise sheet 7

Solutions by: Eric Rudolph and David Čadež

26. Mai 2023

Exercise 1.

1. Lets first prove that it is well-defined. For any $\varphi\colon M\to N$ we use the universal property of $B\otimes_A M$

where $\tau \colon B \times M \to N$ with $\tau(b,m) = b\varphi(m)$. It is obviously bilinear, so universal property gives us the map in the exercise. So it is well defined.

We can construct the inverse to the map given in the exercise with

$$\operatorname{Hom}_B(B \otimes_A M, N) \to \operatorname{Hom}_A(M, N)$$

 $\psi \mapsto (m \mapsto \psi(1 \otimes m))$

It is easy to check that their compositions are identities.

2. It is well defined, because it comes from a bilinear map

$$M \times N \to (M \otimes_A B) \otimes_B N$$

 $(m,n) \mapsto (m \otimes 1) \otimes n$

It is an isomorphism, because it has an inverse

$$(M \otimes_A B) \otimes_B N \to M \otimes_A N$$
$$(m \otimes b) \otimes n \mapsto m \otimes (bn)$$

It is easy to check that their compositions are identities.

3. We can define $B=S^{-1}A$ and $M=S^{-1}M_1, N=S^{-1}M_2$. We just have to put this in previous part and use $M\otimes_A S^{-1}A=M$.

Exercise 2.

1. We have to show

$$M_{\mathfrak{p}} = 0 \Longleftrightarrow M \otimes_A k(\mathfrak{p}) = 0. \tag{1}$$

Suppose $M_{\mathfrak{p}} = 0$. Then for every $x \in M$ and $q \in A \setminus \mathfrak{p}$ we have $\frac{x}{q} = \frac{0}{1}$ which means there exists $r \in A \setminus \mathfrak{p}$ such that rx = 0. Pick now any $\sum_{i} n_{i} \otimes (b_{i} + \mathfrak{p}) \in M \otimes_{A} k(\mathfrak{p})$. For every n_{i} we find $r_{i} \in A \setminus \mathfrak{p}$ as above. Since $r_{i} \notin \mathfrak{p}$, it is non zero in A/\mathfrak{p} and thus invertible in $\operatorname{Quot}(A/\mathfrak{p})$. So we get

$$\sum_{i} n_{i} \otimes (b_{i} + \mathfrak{p}) = \sum_{i} n_{i} \otimes \left(\frac{r_{i} + \mathfrak{p}}{r_{i} + \mathfrak{p}}(b_{i} + \mathfrak{p})\right)$$

$$= \sum_{i} n_{i} \otimes \left(r_{i} \frac{1 + \mathfrak{p}}{r_{i} + \mathfrak{p}}(b_{i} + \mathfrak{p})\right)$$

$$= \sum_{i} r_{i} n_{i} \otimes \left(\frac{1 + \mathfrak{p}}{r_{i} + \mathfrak{p}}(b_{i} + \mathfrak{p})\right)$$

$$= \sum_{i} r_{i} n_{i} \otimes \left(\frac{1 + \mathfrak{p}}{r_{i} + \mathfrak{p}}(b_{i} + \mathfrak{p})\right)$$

$$= \sum_{i} 0 \otimes \left(\frac{1 + \mathfrak{p}}{r_{i} + \mathfrak{p}}(b_{i} + \mathfrak{p})\right)$$

$$= 0$$

Which proves one implication.

2. By associativity of the tensor product we have $\operatorname{supp}(M \otimes_A N) \subseteq \operatorname{supp}(M) \cap \operatorname{supp}(N)$. Suppose now $M_p \neq 0$ and $N_p \neq 0$. We have to show $(M \otimes_A N)_p \neq 0$. Using properties of localizations we get $M_p \otimes_{A_p} N_p \neq 0$. We know A_p is a local ring with unique maximal ideal pA_p .

Not sure how to continue.

Exercise 4. Let

$$\varphi \colon (f,T) \to A[T]$$
 (2)

be the inclusion. Then

$$id \otimes \varphi \colon (f,T) \otimes_{A[T]} (f,T) \to (f,T) \otimes_{A[T]} A[T]$$
 (3)

is not injective, because

$$(\mathrm{id} \otimes \varphi)(f \otimes T - T \otimes f) = f \otimes T - T \otimes f = fT \otimes 1 - fT \otimes 1 = 0 \tag{4}$$

but $f \otimes T \neq T \otimes f \in (f, T) \otimes_{A[T]} (f, T)$. Module (f, T) is not flat by proposition 1 in lecture notes 12.