Fisiologia: Pressões parciais e transporte de gases - Maria Rita Bessa XXVII

- * a pressão parcial corresponde a força total que cada gás, isoladamente, exerce contra as paredes do recipiente em que está
- * as moléculas da área de alta pressão, por serem mais numerosas, têm a probabilidade maior de se moverem para a área de baixa pressão

ex.: quanto maior a pressão parcial do oxigênio no alvéolo, maior será sua tendência a atravessar a membrana alvéolo-capilar para atingir o sangue

* o ar alveolar não tem as mesmas concentrações do ar atmosférico porque é substituído apenas parcialmente pelo ar atmosférico a cada respiração, o oxigênio é absorvido constantemente pelo sangue pulmonar do ar alveolar, o dióxido de carbono se difunde constantemente do ar pulmonar para os alvéolos e o ar atmosférico seco que entra nas vias respiratórias é umidificado

Tabela 39-1 Pressões Parciais dos Gases Respiratórios Quando Entram e Saem dos Pulmões (no Nível do Mar)

Ar Atmosférico* (mmHg)		Ar Umidificado (mmHg)		Ar Alveolar (mmHg)		Ar Expirado (mmHg)		
N ₂	597,0	(78,62%)	563,4	(74,09%)	569,0	(74,9%)	566,0	(74,5%)
0,	159,0	(20,84%)	149,3	(19,67%)	104,0	(13,6%)	120,0	(15,7%)
CO ₂	0,3	(0,04%)	0,3	(0,04%)	40,0	(5,3%)	27,0	(3,6%)
H ₂ O	3,7	(0,50%)	47,0	(6,20%)	47,0	(6,2%)	47,0	(6,2%)
TOTAL	760,0	(100,0%)	760,0	(100,0%)	760,0	(100,0%)	760,0	(100,0%)

^{*} a lenta substituição do ar alveolar é de particular importância para evitar mudanças repentinas nas concentrações de gases no sangue como aumentos e quedas excessivas da oxigenação tecidual, da concentração tecidual de dióxido de carbono e do pH tecidual: mesmo após 16 respirações, o excesso de gás presente nos alvéolos não foi renovado completamente

Concentração de oxigênio e pressão parcial nos alvéolos

- * a concentração e pressão parcial do oxigênio nos alvéolos são controladas pela (1) intensidade de absorção de oxigênio pelo sangue e (2) pela intensidade de entrada de novo oxigênio pelo processo ventilatório
- * na intensidade ventilatória normal de 4,2L/min e com consumo de oxigênio de 250 mL/min, o ponto operacional normal é o A na figura

* durante o exercício moderado, 1000mL de oxigênio estão sendo absorvidos por minuto, precisando a intensidade de ventilação aumentar quatro vezes para manter a Po2 alveolar no valor normal de 104 mmHg

Figura 39-4 Efeito da ventilação alveolar na Po₂ alveolar, em duas intensidades de absorção de oxigênio dos alvéolos — 250 mL/min e 1.000 mL/min. O *ponto A* é o ponto operacional normal.

Concentração de dióxido de carbono e pressão parcial nos alvéolos

- * o ponto A na figura corresponde ao operacional da Pco2, em que a excreção normal de CO2 é de 200mL/min na intensidade normal de ventilação alveolar é 4,2L/min
- * a Pco2 aumenta diretamente na proporção da excreção de dióxido de carbono e diminui inversamente na proporção da ventilação alveolar

Figura 39-5 Efeito da ventilação na Pco_2 alveolar em duas intensidades de excreção de dióxido de carbono do sangue — 800 mL/min e 200 mL/min. O *ponto A* é o ponto operacional normal.

- * o ar expirado é a combinação de ar do espaço morto e do ar alveolar
- * a figura mostra as variações progressivas das pressões parciais de oxigênio e dióxido de carbono, no ar expirado, durante o curso da respiração

Figura 39-6 Pressões parciais de oxigênio e dióxido de carbono, nas diversas porções do ar expirado normal.

Unidade respiratória

- * composta pelo bronquíolo respiratório, ductos alveolares, átrios e alvéolos
- * existem cerca de 300 milhões de alvéolos nos dois pulmões
- * entre os alvéolos existe uma malha quase sólida de capilares interconectados → "lâmina" de fluxo sanguíneo
- * a troca gasosa entre o ar alveolar e o sangue pulmonar se dá através das membranas de todas as porções terminais dos pulmões, conhecidas coletivamente como **membrana respiratória**

Membrana respiratória

- * dotada de camadas:
- camada de líquido que reveste o alvéolo e contém surfactante
- ⇒ epitélio alveolar
- membrana basal do epitélio alveolar
- espaço intersticial (entre o epitélio alveolar e a membrana capilar)
- membrana basal do capilar
- membrana endotelial capilar
- * os fatores que determinam a rapidez com que um gás atravessará a membrana são (1) a espessura da membrana (qualquer fator que aumente a sua espessura por mais de duas a três vezes da normal pode interferir com a troca respiratória normal de gases), (2) a área superficial da membrana (se diminuída

compromete a troca gasosa), (3) o coeficiente de difusão do gás (depende da solubilidade do gás na membrana e seu peso molecular) e (4) a diferença de pressão através da membrana respiratória

- * no caso do oxigênio, a pressão alveolar é maior do que a pressão desse gás no sangue, tendendo a sua difusão dos alvéolos para o sangue
- * no caso do dióxido de carbono, a pressão alveolar é menor do que a pressão desse gás no sangue, tendendo a sua difusão do sangue para os alvéolos

Figura 39-9 Ultraestrutura da membrana respiratória alveolar, mostrada em corte transversal.

Efeito da altitude sobre a PpO₂

Ao nível do mar - Pressão atmosférica = 760 mmHg

Patm = 760 mmHg $PpO_2 = 760 \times 0,2094$ 159 mmHg

6000 m de altitude - Pressão atmosférica = 380 mmHg

Patm = 380 mmHg PpO₂ = 380 x 0,2094 79,57 mmHg