

PCS-2039 Modelagem e Simulação de Sistemas Computacionais

Graça Bressan gbressan@larc.usp.br

Graça Bressan LARC-PCS/EPUSP

Sistemas de Filas

 A maior parte dos sistemas de serviços tais como bancos, supermercados, postos de gasolina, lanchonetes, sistemas de comunicação e sistemas computacionais podem ser modelados por sistemas de filas.

Teoria de Filas

- Neste módulo será apresentada a teoria de filas que é um ramo da área de processos estocásticos.
- Esta teoria permitirá a obtenção métodos analíticos para avaliação desempenho de sistemas de filas simples como alternativa aos modelos de simulação.

- As filas simples são definidas por dois parâmetros principais:
 - T_c Intervalo entre chegadas que é parâmetro de carga
 - T_a Tempo de atendimento que é parâmetro de sistema
- Os parâmetros T_c e T_a em geral são variáveis aleatórias descritas por distribuições de probabilidade.

- Processo de chegada: é a sequência de variáveis aleatórias que definem os intervalos entre chegadas;
- Processo de atendimento ou serviço: é a sequência de variáveis aleatórias que definem os tempos de atendimento.
- As variáveis aleatórias formam uma seqüência de valores aleatórios Independentes e Identicamente Distribuídos (IID).

Parâmetros de Sistemas de Filas Simples

- Número de servidores: define o número de servidores disponíveis no sistema de fila. Normalmente, estes servidores são idênticos.
- Capacidade do sistema: é o número máximo de usuários que o sistema de fila pode apresentar. Este número considera tanto os usuários na fila como aqueles em serviço. Quando este parâmetro não representa nenhuma grande limitação é comum utilizar-se um valor infinito para a sua capacidade.

Parâmetros de Sistemas de Filas Simples

 Tamanho da população: representa o número total de usuários em potencial, que podem chegar no sistema de fila. Na maioria dos sistemas reais a população é finita, porém se esse número é suficientemente grande, pode-se utilizar o valor infinito como tamanho da população.

Parâmetros de Sistemas de Filas Simples

 Disciplina de Serviço: a ordem com que os usuários do sistema são tratados define a disciplina de serviço ou atendimento. A disciplina mais comum é a FCFS (Primeiro a Chegar- Primeiro a ser atendido). Outras disciplinas podem ser aplicadas, tais como: LCFS, LCFSpreemptivo, RR (Round Robin) e PS (Processor Sharing).

Parâmetros de Sistemas de Filas Simples

- A disciplina RR com um quantum suficientemente pequeno comparado com o tempo médio de serviço é chamado de PS, pois ele reparte o processador em n partes iguais.
- Sistemas de fila que não possuem tempo de espera são chamados de Centros de Atraso (Delay Center). Em geral, sistemas com infinitos servidores possuem esta característica;

Notação

- Indica-se os sistemas de fila simples na notação:
 M/M/1 –chegada e atendimento exponenciais e 1 servidor.
 M/M/m chegada e atendimento exponenciais e m servidores.
 M/M/m/k -chegada e atendimento exponenciais, m servidores e k espaços na fila.
 - M/G/1 chegada exponencial e atendimento genérico e 1 servidor.
- As distribuições dos intervalos entre chegadas e dos tempos de serviço são representadas em geral por uma letra:
 - M Exponencial;
 - D Determinística
 - G Genérica

Determinística e Genérica

- Uma distribuição determinística é aquela que define tempos constantes, portanto não existe nenhuma variabilidade.
- Uma distribuição genérica significa uma distribuição não especificada. Os resultados assim obtidos são válidos para qualquer distribuição.

Modelo de fila simples

- Uma distribuição muito utilizada nos modelos de fila é a exponencial cujo parâmetro 1/λ (ou 1/μ) pode representar o intervalo médio de chegada (ou tempo médio de atendimento).
- Sistemas em que a chegada e o tempo de serviço ambos têm distribuição exponencial são denominados M/M/1 (M de Markoviano).

Distribuição Exponencial

Função densidade:

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{se } x \ge 0 \\ 0 & \text{se } x < 0 \end{cases}$$
Função distribuição:

se
$$x \ge 0$$

Função distribuição:

unção distribuição:
$$F(x) = \begin{cases} 1 - e^{-\lambda x} & \text{se } x < 0 \\ 0 & \text{se } x < 0 \end{cases}$$

se
$$x \ge 0$$

Média: $1/\lambda$

Variância: $1/\lambda^2$

Distribuição Exponencial - Histograma

 A distribuição pode ser obtida de dados amostrados em situações reais, através da construção de histogramas de frequências ajuste de curvas ao histograma (Best-fit).

Distribuição Exponencial

- O parâmetro λ é a taxa média de chegada (chegadas por unidade de tempo) e 1/λ é o intervalo médio de tempo entre chegadas.
- A distribuição exponencial possui a propriedade de não apresentar memória ("memoryless"), isto é, sendo 1/λ o tempo médio entre chegadas, o tempo esperado para a próxima chegada é sempre 1/λ, independente do tempo que já transcorreu desde a última chegada.

Processo de Poisson x Distribuição Exponencial

Processo de Chegada

Intervalo de chegada

- Seja um processo de chegada em que os intervalos de chegada são variáveis aleatórias IID (Independentes e Identicamentes Distribuídas) que obedecem distribuição exponencial com intervalo médio de chegada 1/λ.
- Neste caso, o número de elementos que chegam por unidade de tempo tem distribuição (discreta) de Poisson com taxa de chegada λ.

Parâmetros do sistema de filas:

Parâmetro	Significado
λ	Taxa média de chegada
1/ λ	Intervalo médio de chegada
μ	Taxa média de serviço por servidor
1/ μ	Tempo médio de serviço de um usuário
m	Número de servidores

Variáveis do sistema de filas

Variável	Significado
n	Número de usuários no sistema. Inclui os que estão na fila e sendo atendidos no servidor.
nq	Número de usuários esperando para serem atendidos. É sempre menor que n, pois não inclui os usuários em serviço.
ns	Número de usuários em serviço
E[n]	Número médio de usuários no sistema
E[nq]	Número médio de usuários na fila sem serem atendidos
E[ns]	Número médio de usuários sendo atendidos (≤m)

Variáveis do sistema de filas

Variável	Significado
r	Tempo de resposta ou simplesmente tempo no sistema. Inclui tanto o tempo de espera como o tempo de serviço.
W	Tempo de espera, isto é, intervalo de tempo entre o instante de chegada e o início do serviço
S	Tempo de serviço
E[r]	Tempo médio de resposta
E[w]	Tempo médio dos usuários na fila (sem serem atendidos)
$E[s] = 1/\mu$	Tempo médio de serviço

Sistema Balanceado

- Diz-se que um sistema é balanceado se usuários não são perdidos no sistema, isto é, todos que entraram no sistema saíram em algum momento.
- Este conceito não depende da distribuição da chegada ou do atendimento.
- De forma aproximada, o sistema será balanceado se dado um intervalo de tempo T suficientemente grande, o número de chegadas se aproxima do número de partidas.
- Sistemas balanceados equivalem a sistemas estáveis.

Fórmula de Little

- A Fórmula de Little exige que o sistema seja balanceado e é válida independentemente das distribuições de chegada e atendimento.
- Dados:
 - T um intervalo de tempo suficientemente grande;
 - λ a taxa média de chegada neste período;
 - **E[n]** número médio de usuários no sistema neste período;
 - **E[r]** tempo médio de resposta (entre a chegada e a saída) neste período.
- A Fórmula de Little relaciona o número de usuários com o tempo de resposta.

 $E[n] = \lambda^* E[r]$

Fórmula de Little

Além disso, sendo, neste período:

E[nq] - número médio de usuários no na fila (esperando para serem atendidos neste período;

E[w] - tempo médio de espera neste período.

 A Fórmula de Little pode ser aplicada resultando em:

 $E[nq] = \lambda^* E[w]$

Exemplo 1: Atendimento em caixa automático de banco (ATM)

- Em um período de 30 minutos chegaram 6 clientes para utilizar um caixa automático de um banco (ATM). Observou-se que entre a chegada à fila e a saída, cada cliente levou em média 2 minutos.
- Pergunta: Quantos clientes existem em média na fila do ATM, incluindo o que está sendo atendido?

Taxa de chegada λ = 6/30 clientes/minutos Tempo médio de resposta E[r] = 2 minutos

 Utilizando-se a fórmula de Little E[n] = λ*E[r] calcula-se o número médio de usuários na ATM:

E[n] = (6/30) * 2 = 0,4 usuários

Sistemas de Fila Única

 Estes sistemas são modelados como Processos de Markov de Nascimento e Morte.

- Sendo:
 - λ_i Taxa média de chegada quando o sistema possui i usuários.
 - μ_{i} Taxa média de atendimento quando o sistema possui i usuários.
- Esta é a situação geral em que λ_i e μ_i podem variar conforme o estado do sistema.

 Um pequeno supermercado possui uma única caixa sendo que os clientes chegam à fila do caixa em intervalos de tempo cuja média é 15 minutos com distribuição exponencial. O tempo médio de atendimento de um cliente pelo caixa é de 10 minutos também com distribuição exponencial.

Diagrama de Transição de Estados

 Inicialmente o sistema está vazio. A cada chegada, o sistema muda para o próximo estado e quando for completado um serviço o sistema volta para o estado anterior.

Diagrama de transição de estados

Sistemas de Fila Única M/M/1

 Nos Processo nascimento e morte o estado deste sistema indica o número de usuários no sistema.

Diagrama de transição de estados

 Quando o sistema está no estado j, existem j usuários no sistema.

1. Para este sistema tem-se os parâmetros básicos:

$$\lambda = 1/T_c$$
 onde $T_c = 15$ minutos, logo $\lambda = 1/15 = 4$ clientes/hora

$$\mu = 1/T_a$$
 onde $T_a = 10$ minutos, logo $\mu = 1/10 = 6$ clientes/hora

Define-se o parâmetro $\rho=\lambda/\mu$, sendo que ρ deve ser menor que 1 ($\rho<1$) para que o sistema seja estável (balanceado).

Neste caso, $\rho = 4/6 = 1/3$

Probabilidades em Equilíbrio do Sistema M/M/1

Probabilidade p₀ do sistema possuir zero usuários

$$p_0 = 1 - \lambda / \mu$$
 ou $p_0 = 1 - \rho$

 Probabilidade P_n de existirem n usuários no sistema (n = 1,2,3,...) é:

$$p_n = p_0 \left(\frac{\lambda}{\mu}\right)^n \quad \text{ou} \quad p_n = p_0 \rho^n$$

Soma de todas probabilidades :

$$\sum_{n=0}^{\infty} p_n = 1$$

2. Probabilidade de não existirem clientes no caixa, isto é, probabilidade de 0 clientes no sistema :

$$p_0 = 1 - \lambda / \mu$$

$$p_0 = 1 - 4/6 = 1 - 2/3 = 1/3 = 33,33\%$$

3. Probabilidade de n clientes no caixa, isto é, probabilidade de estar no estado n:

$$p_n = p_0 \left(\frac{\lambda}{\mu}\right)^n$$

Por exemplo para saber a probabilidade de existirem 4 clientes no caixa basta calcular

$$p_4 = p_0^* (\lambda / \mu)^4$$

 $p_4 = 1/3 * (2/3)^4 = 0,0658 \text{ isto é, 6,58 } \%$

4. O fator de utilização **U** do caixa é a porcentagem do tempo que o caixa ficou ocupado:

$$U = 1 - P_0$$

No exemplo,

$$U = 1 - P_0 = 1 - 1/3 = 0,6666$$

Logo a utilização do sistema é de 66,66 %

5. Número médio de clientes no sistema:

$$E[n] = \rho / (1-\rho)$$

 $E[n] = (2/3)/[1-(2/3)] = 2$

6. Variância do número de clientes no sistema:

Var[n] =
$$\rho / (1-\rho)^2$$

Var[n] = $(2/3)/[1-(2/3)]^2 = 6$

5. Probabilidade de se ter n ou mais usuários no sistema:

$$P_{>n} = \rho^n = (10/15)^n$$

No exemplo, a probabilidade de ter 4 ou mais clientes na fila é

$$p_{>4} = (10/15)^4 = 0,1975$$
 isto é, 19,75 %

6. Tempo médio de resposta: E[r]

E[n] =
$$\lambda$$
 * E[r) Fórmula de Little
então E[r] = E[n]/ λ
E[r] = 2 / (1/15) = 30 minutos

Sistemas de Fila Única

 No caso geral de Processo nascimento e morte o estado deste sistema indica o número de usuários no sistema.

Diagrama de transição de estados

 Quando o sistema está no estado j, existem j usuários no sistema.

Probabilidades em Equilíbrio

 A solução geral de um processo nascimento e morte é dada por:

$$p_{0} = \frac{1}{1 + \sum_{n=1}^{\infty} \prod_{j=0}^{n-1} \frac{\lambda_{j}}{\mu_{j+1}}}$$

$$p_{n} = p_{0} * \prod_{j=0}^{n-1} \frac{\lambda_{j}}{\mu_{j+1}}$$

Fila Única M/M/m

m é o número de servidores

Diagrama de transição de estados

Fila Única M/M/1/B

Diagrama de transição de estados

Fila Única M/M/m/B

Diagrama de transição de estados

Exercícios

- 1) O tempo médio de resposta em um sistema de bases de dados do campus de uma universidade é 3 segundos. Durante um período de observação de 1 minuto, o tempo ocioso no sistema foi medido como 10 segundos. Usando o modelo M/M/1 para o sistema determine o seguinte:
 - a) Utilização do sistema
 - b) Tempo médio de serviço por consulta
 - c) Número de consultas completadas durante o intervalo de observação
 - d) Número médio de consultas no sistema
 - e) Probabilidade do número de consultas no sistema ser maior que 10
 - f) Tempo de resposta em 90%
 - g) Tempo de espera em 90%.

Resp.: a) 5/6; b) 0,5 s; c)100; d) 5; e) 0,135; f) 6,9 s; g) 6,36 s.

Exercícios

- 2) Considerando que o tempo médio de resposta no exercício anterior não está aceitável, a universidade está analisando uma das seguintes alternativas. Qual dessas alternativas garante um tempo médio de resposta menor?
 - a) Substituir o computador por um que seja duas vezes mais rápido.
 - b) Colocar outro computador idêntico ao primeiro em outro lugar do campus recebendo a metade da carga.
 - c) Colocar outro computador idêntico ao primeiro com um balanceado de carga entre os dois.

Anexo: Fórmulário

Variáveis associadas a um sistema de filas:

Prâmetros do sistema de filas:

Parâmetro	Significado
λ	Taxa média de chegada
1/ λ	Intervalo médio de chegada
μ	Taxa média de serviço por servidor
1/ μ	Tempo médio de serviço de um usuário
m	Número de servidores

Variáveis do sistema de filas

Variável	Significado
n	Número de usuários no sistema. Inclui os que estão na fila e sendo atendidos no servidor.
nq	Número de usuários esperando para serem atendidos. É sempre menor que n, pois não inclui os
ns	usuários em serviço. Número de usuários em serviço
E[n]	Número médio de usuários no sistema
E[nq]	Número médio de usuários na fila sem serem
E[ns]	Número médio de usuários sendo atendidos (≤m)

Variáveis do sistema de filas

Variável	Significado
r	Tempo de resposta ou simplesmente tempo no sistema. Inclui tanto o tempo de espera como o
W	Tempodesespiçoa, isto é, intervalo de tempo entre o instante de chegada e o início do serviço
S	Tempo de serviço
E[r]	Tempo médio de resposta
E[w]	Tempo médio dos usuários na fila (sem serem
$E[s] = 1/\mu$	Tempo médio de serviço

Variáveis do sistema de filas

- Todas as variáveis anteriores com exceção de λ e μ são variáveis aleatórias.
- As variáveis λ e μ são parâmetros das distribuições.

Propriedades das Variáveis

 As propriedades a serem vistas a seguir valem para qualquer sistema de filas, não apenas aquelas com distribuições exponenciais).

Sistema Balanceado

- Diz-se que um sistema é balanceado se usuários não são perdidos no sistema, isto é, todos que entraram no sistema saíram em algum momento.
- Se o número de usuários cresce continuamente e se torna infinito, o sistema é dito instável.
- Para que um sistema seja balanceado, é necessário que a seguinte relação seja verdadeira

$\lambda < m\mu$

- De forma aproximada, o sistema será balanceado se dado um intervalo de tempo T suficientemente grande, o número de chegadas se aproxima do número de partidas.
- Sistemas balanceados equivalem a sistemas estáveis (em equilíbrio).

Fórmulas de Little

- As fórmulas de Little exigem que o sistema seja balanceado e são válidas independentemente das distribuições de chegada e atendimento.
- Número x Tempo: As fórmulas de Little relacionam o número de usuários com o tempo de resposta.

$$E[n] = \lambda^* E[r]$$

$$e$$

$$E[nq] = \lambda^* E[w]$$

Relações entre as variáveis

 Número no sistema, número em serviço e número na fila:

$$n = nq + ns$$

 Número médio de entidades no sistema: sendo n, nq e ns variáveis aleatórias então:

$$E[n] = E[nq] + E[ns]$$

 Se o número de usuários no servidor é independente do número de usuários na fila, isto é, Cov(nq, ns) = 0

então Var[n] = Var[nq] + Var[ns]

Relações entre as variáveis

Tempo no sistema x Tempo na fila

$$r = w + s$$

então

 Tempo médio no sistema: sendo r,w e s variáveis aleatórias então:

$$E[r] = E[w] + E[s]$$

 Se o tempo de serviço é independente do tempo na fila, isto é,

Sistemas de Fila Única

 No caso geral de Processo nascimento e morte o estado deste sistema indica o número de usuários no sistema.

Diagrama de transição de estados

 Quando o sistema está no estado j, existem j usuários no sistema.

Probabilidades em Equilíbrio

 A probabilidade P_n de equilíbrio de um processo nascimento e morte se encontrar num determinado estado é:

$$p_n = p_0 \prod_{j=0}^{n-1} \frac{\lambda_{p_n j}}{\mu_{j+1}}$$
 $n = 1,2,3,...$

• $\mathbf{p_0}$ é a probabilidade do sistema possuir zero usuários.

• Considerando que $\sum_{n=0}^{\infty} P_n$

Probabilidades em Equilíbrio

 A solução geral de um processo nascimento e morte é dada por:

$$p_{0} = \frac{1}{1 + \sum_{n=1}^{\infty} \prod_{j=0}^{n-1} \frac{\lambda_{j}}{\mu_{j+1}}}$$

$$n - 1 = \lambda$$

$$p_n = p_0 * \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_{j+1}}$$

Fila Única M/M/1

Diagrama de transição de estados

M/M/1

Para este sistema tem-se:

$$\lambda_n = \lambda$$
 $\mu_n = \mu$

1. Aplicando a forma geral de solução do processo nascimento e morte, chega-se:

$$p_n = (\frac{\lambda}{\mu})^n * p_0$$

Denominando

$$\rho = \lambda/\mu$$

, tem-se

$$p_n = p_0 * \rho^n$$
, onde $p_0 = 1 - \rho$

M/M/1

2. Fator de utilização do servidor: **U**

$$U = 1 - P_0 = \rho$$

3. Número médio de usuários no sistema:

$$E[n] = \sum_{n=1}^{\infty} n.P_n = \frac{\rho}{(1-\rho)}$$

4. Variância do número de usuários no sistema:

$$Var[n] = E[n^2] - E[n]^2 = \frac{\rho}{(1-\rho)^2}$$

M/M/1

5. Probabilidade de se ter n ou mais usuários no sistema:

$$p_{\geq n} = \sum_{j=n}^{\infty} p_j = \sum_{j=n}^{\infty} \rho^j . (1 - \rho) = \rho^n$$

6. Tempo médio de resposta: E[r]

$$E[n] = \lambda * E[r]$$

$$E[r] = \frac{E[n]}{\lambda} = \frac{\rho}{(1-\rho)} \cdot \frac{1}{\lambda} = \frac{\mu}{1-\rho}$$

Fila Única M/M/m

m é o número de servidores

Diagrama de transição de estados

Fórmulas do M/M/1 e M/M/m

	M/M/1	M/M/m
Taxa de chegadaTaxa de serviçoNúmero de Servidores	λ μ 1	$\begin{array}{c} \lambda \\ \mu \\ m \end{array}$
• Fator de utilização	$U = \rho = \frac{\lambda}{\mu}$	$U = \rho = \frac{\lambda}{m \cdot \mu}$
 Probabilidade de zero usuários no sistema Probabilidade de n 	$p_0 = 1 - \rho$	$p_0 = \left[1 + \frac{(\mathbf{m} \cdot \mathbf{p})^m}{\mathbf{m}(1 - \mathbf{p})} + \sum_{n=1}^{m-1} \frac{(\mathbf{m} \cdot \mathbf{p})^n}{\mathbf{p}(1 - \mathbf{p})}\right]^{-1}$
usuários no sistema n= 0,1,2,,∞	$p_n = (1 - \rho) \cdot \rho^n$	$p_n = p_0 \frac{(m \cdot \rho)^n}{n!} \qquad n < m$
 Probabilidade de n ou mais usuários no sistema 	$p_{\geq n} = \rho^n$	$p_n = p_0 \frac{m^m \cdot \rho^n}{m!} \qquad n \ge m$

Fórmulas do M/M/1 e M/M/m

	M/M/1	M/M/m
Probabilidade de esperar na fila	$p_{\geq 1} = \rho$	$\varsigma = P(\ge m \text{ usu\'arios}) = \frac{(m\rho)^m}{m!(1-\rho)}P_0$
 Número médio de usuários no sistema 	$E[n] = \rho / (1 - \rho)$	$E[n] = m\rho + \rho\varsigma/(1-\rho)$
 Variância do número de usuários no sistema 	$Var[n] = \rho/(1-\rho)^2$	Var[n] = $m\rho + \rho\varsigma \left[\frac{1+\rho-\rho\varsigma}{(1-\rho)^2} + m\right]$
Tempo médio de resposta	$E[r] = (1/\mu)/(1-\rho)$	$E[r] = \frac{1}{\mu} \left[1 + \frac{\varsigma}{m(1-\rho)} \right]$
 Variância do tempo de resposta 	$Var[r] = (1/\mu^2)/(1-\rho)^2$	$Var[r] = \frac{1}{\mu^2} \left[1 + \frac{\varsigma(2-\varsigma)}{m^2(1-\rho)^2} \right]$
 Número médio de usuários na fila 	$E[n_{q}] = \rho^2 / (1 - \rho)$	$E[n_{q}] = \rho\varsigma/(1-\rho)$

Fórmulas do M/M/1 e M/M/m

	M/M/1	M/M/m
 Probabilidade de k usuários na fila 	$p(n_q = k) = 1 - \rho^2$ $p(n_q = k) = (1 - \rho) \cdot \rho^{k+1}$	
	$p(n_q = k) = (1 - \rho) \cdot \rho^{k+1}$	
 Variância do número de usuários na fila 	Var[n_q] = $\rho^2 (1 + \rho - \rho^2) / (1 - \rho)^2$	$Var[n_q] = \rho\varsigma(1 + \rho - \rho\varsigma)/(1 - \rho)^2$
 Tempo médio de espera 	$E[w] = \rho / [\mu(1-\rho)]$	$E[w] = \varsigma / [m\mu(1 - \rho)]$
 Variância do tempo de espera 	Var[w] = $(2 - \rho)\rho/[\mu^2(1 - \rho)^2]$	Var[w] = $\varsigma(2 - \varsigma)/[m^2\mu^2(1 - \rho)^2]$
 Tempo de resposta em q% 	$r_{q\%} = E[r] ln \left(\frac{100}{100 - q} \right)$	
• Tempo de espera em q%	$w_{q\%} = max \left[0, \frac{E[w]}{\rho} ln \left(\frac{100\rho}{100 - q} \right) \right]$	$w_{q\%} = \max \left(0, \frac{E[w]}{\varsigma} \ln \frac{100\varsigma}{100 - q}\right)$

Fila Única M/M/1/B

Diagrama de transição de estados

Fila Única M/M/m/B

Diagrama de transição de estados

Fórmulas do M/M/1/B e M/M/m/B

	M/M/1/B	M/M/m/B
 Taxa de chegada Taxa de serviço Número de servidores Número de buffers Probabilidade de zero usuários no sistema 	λ μ 1 $B (B \ge 1)$ $p_0 = \frac{(1 - \rho)}{(1 - \rho^{B+1})}$ $\rho \ne 1$ $\rho = \frac{1}{(B + 1)}$	$\begin{array}{l} \lambda \\ m \\ B \ (B \ge 1) \\ p_0 = \left[1 + \frac{(1 - \rho^{B-m+1})(m \cdot \rho)^m}{m(1 - \rho)} + \sum_{n=1}^{m-1} \frac{(m \cdot \rho)^n}{n!} \right]^{-1} \end{array}$
Probabilidade de n usuários no sistema		$p_n = p_0 \frac{(m \cdot \rho)^n}{n!} 0 \le n \le m$ $p_n = p_0 \frac{m^m \cdot \rho^n}{m!} m \le n \le B$

Fórmulas do M/M/1/B e M/M/m/B

	M/M/1/B	M/M/m/B
Taxa de chegada efetiva	$\lambda' = \lambda(1 - P_B)$	$\lambda' = \lambda(1 - P_B)$
• Taxa de perda	λP_{B}	λP_{B}
• Fator de utilização	$U = \rho(1 - P_B)$	$U = \rho(1 - P_B)$
 Número médio de usuários no sistema 	$E[n] = \frac{\rho}{1-\rho} - \frac{(B+1)\rho^{B+1}}{1-\rho^{B+1}}$	
 Número médio de usuários na fila 	$E[n_{q}] = \frac{\rho}{1 - \rho} - \rho \frac{1 + B\rho^{B}}{1 - \rho^{B+1}}$	
 Tempo médio de resposta 	$E[r] = E[n]/[\lambda(1 - P_B)]$	$E[r] = E[n]/[\lambda(1 - P_B)]$
 Tempo médio de espera 	$E[w] = E[n_q]/[\lambda(1 - P_B)]$	$E[w] = E[n_q]/[\lambda(1 - P_B)]$

Processo de Poisson x Distribuição Exponencial

Processo de Chegada

Intervalo de chegada

- Seja um processo de chegada em que os intervalos de chegada são variáveis aleatórias IID que obedecem distribuição exponencial com média 1/λ.
- Neste caso, o número de elementos que chegam por unidade de tempo tem distribuição (discreta) de Poisson com taxa de chegada λ.

Junção de processos de Poisson:

Poisson

Poisson

• Distribuição de processos de Poisson:

 Chegadas e partidas de um sistema M/M/1:

Poisson

Poisson

 Chegadas e partidas de um sistema M/M/m:

Fim do módulo Sistemas de Filas Simples