Øving 3

Oppgave 1

En person skal måle den vertikale akselerasjonen til en heis ved å stå på en elektronisk badevekt inne i heisen. Heisen starter i ro i 1. etasje ved t=0, og beveger seg så direkte opp til 2. etasje der den stanser ved $t=t_5$. Grafen under viser den målte krafta mot badevekta som funksjon av tid.

Hvilke påstander er riktige?

- A. Heisens maksimale akselerasjon er 0,071g, der g er tyngdens akselerasjon.
- B. Heisen har sin største fart oppover ved $t=t_2$.
- C. Heisen har sin største fart oppover ved $t=t_3$.
- D. Heisen har tilnærmet konstant fart i tidsrommet $[t_2, t_4]$.
- E. Personen kjenner seg "vektløs" ved $t=t_4$.

Oppgave 2

I et enkelt labforsøk skal vi bestemme hvilefriksjonstallet μ_s og glidefriksjonstallet μ_k for kontaktflaten mellom en kloss og et skråplan.

- a) Klossen legges i ro på skrålanet, og skråvinkelen θ justeres til en kritisk verdi θ_0 der klossen akkurat begynner å bli. Hva blir hvilkefriksjonstallet μ_s uttrykt ved θ_0 ?
- b) Skråplanvinkelen økes til en verdi $heta> heta_0$, slik at klossen kan gli nedover skråplanet med konstant akselerasjon. Vi måler at den sklir en lengde x målt langs skråplanet i løpet av tiden t. Hva blir glidefriksjonstallet μ_k ?

Oppgave 3

En vogn i en berg-og-dalbane starter i en viss høyde h over det laveste punktet A i en sirkulær loop med radius R. To andre punkter i loopen er markerte: B er midtveis oppe, og C er det høyeste punktet. Vogna har tilstrekkelig fart til at den fullfører en hel loop uten å miste kontakten med underlaget. Se figuren under.

I denne oppgaven skal vi se bort fra friksjon og luftmotstand.

- a) Hvilke påstander er riktige?
- A. I punkt A er normalkrafta på vogna like stor som vognas tyngde.
- B. I punkt A er normalkrafta på vogna større enn vognas tyngde.
- C. I punkt B er sentripetalakselerasjonen til vogna lik 0.
- D. I punkt B er den tangentielle akselerasjonen til vogna lik g.
- E. I punkt C er sentripetalakselerasjonen til vogna lik g.
- b) Et akselerometer i vogna måler en sentripetalakselerasjon $a_{\perp}=3g$ i det høyste punktet, der g er tyngdeakselerasjonen. Hva er normalkrafta på vogna i C, angitt i antall ganger vognas tyngde G?
- A. N=0
- B. N = 0, 5G
- $\mathsf{C}.\,N=G$
- D. N=2G
- E. N=3G

Oppgave 4

En bil masse masse $m=1500~{
m kg}$ kjører på horisontalt underlag med fart $v_0=80~{
m km/h}$ idet den bråbremser for en hindring. Bilen har blokkeringsfrie bremser slik at det hele tiden virker maksimal hvilkefriksjon mot dekkene. Hvilefriksjonstallet mellom dekk og underlag er $\mu_s=0,80$.

- a) Hvor lang strekning trenger bilen for å stoppe, målt fra punktet der nedbremsingen startet?
- b) Hvor stor fart ville bilen ha truffet hindringen med, dersom den hadde kjørt i 90 km/h?

c) Ved en annen anledning kjøre bilen for å stoppe i dette tilfellet	еп ракке теа	15 % stigning.	Hvor lang strekn	ing trenge