

Universidade de Aveiro Departamento de Matemática

Aplicações lineares

- 1. Averigue se são aplicações lineares as funções definidas por
 - (a) $\phi(x,y) = (x+1, y, x+y)$;
- (b) $\phi(x, y, z) = (x + y, y, x z);$
- (c) $\phi(x, y, z) = (x + y, 0, 2x z);$
- (d) $\phi(x, y, z) = (x y, x^2, 2z);$
- (e) $\phi(at^2 + bt + c) = at + b + 1$;
- (f) $\phi(at^2 + bt + c) = a + (t+1)(bt+c)$.
- 2. Seja $\phi: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ definida por

$$\phi(A) = \begin{cases} A^{-1} & \text{se } A \text{ n\~ao \'e singular} \\ 0 & \text{se } A \text{ \'e singular} \end{cases}$$

para $A \in \mathbb{R}^{n \times n}$. Averigue se ϕ é uma aplicação linear.

- 3. Dada uma matriz $A \ n \times n$, defina-se $\phi : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ por $\phi(B) = AB BA$ para $B \in \mathbb{R}^{n \times n}$. Averigue se ϕ é uma aplicação linear.
- 4. Seja $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ uma aplicação linear, satisfazendo $\phi(1,1) = (2,-3)$ e $\phi(0,1) = (1,2)$. Determine
 - (a) $\phi(3,-2)$:

- (b) $\phi(a,b)$.
- 5. Seja $\phi: \mathcal{P}_2 \to \mathcal{P}_3$ uma aplicação linear tal que $\phi(1) = 1$, $\phi(t) = t^2$ e $\phi(t^2) = t^3 + t$. Determine
 - (a) $\phi(2t^2 5t + 3)$;

(b) $\phi(at^2 + bt + c)$.

Matriz de uma aplicação linear

6. Seja $\phi: \mathbb{R}^3 \to \mathbb{R}^3$ uma aplicação linear definida por

$$\phi(x, y, z) = (x + 2y + z, 2x - y, 2y + z).$$

Seja \mathcal{C} a base canónica de \mathbb{R}^3 e $\mathcal{B} = ((1,0,1),(0,1,1),(0,0,1))$ uma base de \mathbb{R}^3 . Determine a matriz representativa de ϕ relativamente

- (a) à base C;
- (b) às bases C e B;
- (c) às bases B e C:
- (d) à base B;

e determine $\phi(1,1,-2)$ usando cada uma das matrizes obtidas em (a)-(d).

7. Seja $\phi: \mathbb{R}^2 \to \mathbb{R}^3$ uma aplicação linear definida por

$$\phi\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}1 & 1\\1 & -1\\1 & 2\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}.$$

Sejam $S = \left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$ e $\mathfrak{T} = \left(\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right)$ bases de \mathbb{R}^2 e \mathbb{R}^3 , respetivamente.

- (a) Determine a matriz representativa de ϕ relativamente às bases canónicas de \mathbb{R}^2 e \mathbb{R}^3 .
- (b) Determine a matriz representativa de ϕ relativamente às bases S e T i. diretamente e ii. usando matrizes de mudanca de base.
- (c) Determine $\phi\left(\begin{bmatrix} 2\\ -3 \end{bmatrix}\right)$, usando cada uma das matrizes obtidas anteriormente.

8. Seja $\phi: \mathcal{P}_2 \to \mathcal{P}_2$ uma aplicação linear definida por

$$\phi(at^2 + bt + c) = (a + 2c)t^2 + (b - c)t + (a - c)$$

e sejam $S = (t^2, t, 1)$ e $T = (t^2 - 1, t, t - 1)$ bases de \mathcal{P}_2 .

- (a) Encontre a matriz representativa de ϕ relativamente às bases S e T.
- (b) Determine $\phi(2t^2 3t + 1)$ usando a alínea anterior.
- 9. Dada a matriz C $n \times n$, considere-se $\phi : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ definida por $\phi(A) = CA$ para $A \in \mathbb{R}^{n \times n}$.
 - (a) Mostre que ϕ é uma aplicação linear.
 - (b) Considerando n=2, sejam $C=\begin{bmatrix}1&2\\2&3\end{bmatrix}$, $\mathbb{S}=\left(\begin{bmatrix}1&0\\0&0\end{bmatrix},\begin{bmatrix}0&1\\0&0\end{bmatrix},\begin{bmatrix}0&0\\1&1\end{bmatrix},\begin{bmatrix}1&0\\0&1\end{bmatrix}\right)$ uma base de $\mathbb{R}^{2\times 2}$ e \mathbb{C} a base canónica de $\mathbb{R}^{2\times 2}$. Determine a matriz representativa de ϕ relativamente
 - i. à base C:
- ii. às bases C e S;
- iii. às bases S e C;
- iv à base S
- 10. Sejam $X_1=t+1,\,X_2=t-1,\,Y_1=t^2+1,\,Y_2=t,\,Y_3=t-1$ e $\phi:\mathcal{P}_1\to\mathcal{P}_2$ a aplicação linear tal que

$$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ -1 & -2 \end{bmatrix}$$

é a matriz que representa ϕ relativamente às bases $S = (X_1, X_2)$ e $\mathfrak{T} = (Y_1, Y_2, Y_3)$. Determine

- (a) os vetores das coordenadas de $\phi(X_1)$ e $\phi(X_2)$ na base \mathfrak{T} ;
- (b) $\phi(X_1) \in \phi(X_2);$

(c) $\phi(2t+1)$;

- (d) $\phi(at+b)$.
- 11. Determine a matriz representativa da aplicação linear $\phi: \mathcal{P}_3 \to \mathcal{P}_3$ definida por $\phi(p(t)) = p''(t) + p(0)$ relativamente à
 - (a) base canónica de \mathcal{P}_3 ;
 - (b) base $\mathfrak{T}=(t^3,t^2-1,t,1)$ de \mathcal{P}_3 , diretamente e usando matrizes de mudança de base.
- 12. Se $\mathrm{id}_{\mathcal{V}}: \mathcal{V} \to \mathcal{V}$ é a aplicação identidade definida por $\mathrm{id}_{\mathcal{V}}(X) = X$ para qualquer $X \in \mathcal{V}$, mostre que a matriz de $\mathrm{id}_{\mathcal{V}}$ relativamente a qualquer base de \mathcal{V} é a matriz identidade I_n com $n = \dim \mathcal{V}$.

Núcleo e imagem de uma aplicação linear

- 13. Seja $\phi: \mathbb{R}^4 \to \mathbb{R}^3$ uma aplicação linear definida por $\phi(x,y,z,w) = (x+y,z+w,x+z)$.
 - (a) Determine o núcleo e a imagem de ϕ .
 - (b) Encontre uma base para o núcleo e uma base para a imagem de ϕ .
 - (c) Averigue se ϕ é injetiva e/ou sobrejetiva.
 - (d) Verifique o Teorema das Dimensões.
- 14. Seja $\phi: \mathcal{P}_2 \to \mathcal{P}_2$ uma aplicação linear definida por $\phi(at^2 + bt + c) = (a+c)t^2 + (b+c)t$.
 - (a) Verifique se os elementos $t^2 t 1$ e $t^2 + t 1$ pertencem a $\ker(\phi)$.
 - (b) Verifique se os elementos $2t^2 t$ e $t^2 t + 2$ pertencem a $im(\phi)$.
 - (c) Determine uma base para $ker(\phi)$ e uma base para $im(\phi)$.
 - (d) Diga, justificando, se ϕ é injetiva e/ou sobrejetiva.
- 15. Encontre uma base para o núcleo e uma base para a imagem da aplicação linear $\phi: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ definida por

(a)
$$\phi \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = \begin{bmatrix} a-b & b-c \\ a-d & b-d \end{bmatrix}$$
;

(b)
$$\phi(A) = A^T$$
.

- 16. Considere a aplicação linear $\phi : \mathbb{R}^4 \to \mathbb{R}^2$ definida por $\phi(X) = AX$, sendo $A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 3 & 1 & 0 & -1 \end{bmatrix}$.
 - (a) Verifique que a matriz de ϕ relativamente às bases canónicas de \mathbb{R}^4 e \mathbb{R}^2 é a matriz A.
 - (b) Sem determinar o núcleo de ϕ , verifique que dim $\ker(\phi) \geq 2$.
 - (c) Sejam $\mathcal{S} = ((1,1,1,0),(1,1,1,1),(1,0,1,1),(0,1,1,1))$ e $\mathcal{T} = ((1,1),(1,-1))$ bases de \mathbb{R}^4 e \mathbb{R}^2 , respetivamente. Determine a matriz de ϕ relativamente
 - i. à base S e à base canónica \mathcal{C} de \mathbb{R}^2 :
- ii. às bases S e T,
- 17. Seja $\phi: \mathbb{R}^3 \to \mathbb{R}^3$ uma aplicação linear representada relativamente à base canónica de \mathbb{R}^3 pela matriz

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 3 & 2 & 3 \end{bmatrix}.$$

- (a) Determine $\phi(1,2,3)$ e $\phi(x,y,z)$ para $(x,y,z) \in \mathbb{R}^3$.
- (b) Averigue se ϕ é um isomorfismo.
- (c) Determine a imagem de ϕ e uma sua base, o núcleo de ϕ e uma sua base.
- (d) Determine a matriz de ϕ relativamente à base $\mathcal{B} = ((1,1,0),(1,1,1),(1,0,0))$
 - i. por definição;
- ii. usando matrizes de mudança de base.
- 18. Seja $\mathcal{B} = ((1,1,1),(1,1,0),(1,0,0))$ e considere a transformação linear $\phi: \mathbb{R}^3 \to \mathbb{R}^2$ definida por

$$\phi(1,1,1) = (-1,1),$$

$$\phi(1,1,0) = (1,1),$$

$$\phi(1,0,0) = (0,2).$$

- (a) Determine a matriz de ϕ relativamente à base \mathcal{B} de \mathbb{R}^3 e à base canónica \mathbb{R}^2 .
- (b) Calcule $\phi(X)$ sabendo que $[X]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.
- (c) Determine a matriz de ϕ relativamente às bases canónicas de \mathbb{R}^3 e de \mathbb{R}^2 .
- (d) Determine $\phi(x, y, z)$ para um elemento genérico (x, y, z) de \mathbb{R}^3 .
- (e) Determine o núcleo de ϕ e indique uma base para este subespaço de \mathbb{R}^3 .
- (f) Diga, justificando, se ϕ é injetiva.
- (g) Sem determinar a imagem de ϕ , diga qual a dimensão deste subespaço, usando i. a característica de uma das matrizes representativas de ϕ e ii. o Teorema das Dimensões.
- (h) Usando a dimensão da imagem de ϕ como justificação, diga se ϕ é sobrejetiva.
- (i) Determine a imagem de ϕ , assim como uma base para este subespaço de \mathbb{R}^2 a partir i. da matriz calculada em (c) e ii. da imagem do elemento genérico $\phi(x, y, z)$ calculada em (d).
- 19. Considere a aplicação linear $\phi: \mathbb{R}^2 \to \mathbb{R}^3$ definida por $\phi(1,1) = (3,0,2)$ e $\phi(1,-1) = (1,0,2)$.
 - (a) Determine $\phi(x,y)$ para um elemento genérico (x,y) de \mathbb{R}^2 .
 - (b) Determine uma base para a imagem de ϕ . Diga, justificando, se ϕ é sobrejetiva.
 - (c) Sem determinar o núcleo de ϕ , indique a sua dimensão. Diga, justificando, se ϕ é injetiva.
 - (d) Determine a matriz que representa ϕ relativamente às bases

$$S = ((1,1), (1,-1))$$
 e $T = ((0,1,0), (1,0,1), (0,0,1)).$

(e) Calcule $[X]_{\mathbb{S}}$ sabendo que $[\phi(X)]_{\mathfrak{T}} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$.

20. Considere a transformação linear $\phi: \mathbb{R}^3 \to \mathbb{R}^3$ representada pela matriz

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 3 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$

relativamente à base canónica de \mathbb{R}^3 .

- (a) Indique qual é o transformado $\phi(x,y,z)$ de um elemento genérico (x,y,z) de \mathbb{R}^3 .
- (b) Determine a imagem de ϕ e uma base para este subespaço e indique a sua dimensão.
- (c) Diga, justificando, se ϕ é sobrejetiva.
- (d) Sem calcular o núcleo de ϕ , indique, justificando, a sua dimensão e averigue se ϕ é injetiva.
- (e) Calcule a matriz de ϕ relativamente à base $\mathcal{B} = ((1,2,1),(0,1,1),(0,0,1))$.
- (f) Sabendo que $[Y]_{\mathcal{B}} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$,
 - i. verifique que $Y \in \text{im}(\phi)$;
 - ii. determine o vetor de coordenadas na base \mathcal{B} de X, $[X]_{\mathcal{B}}$, sendo X um vetor tal que $\phi(X) = Y$.
- 21. Seja \mathcal{V} um espaço vetorial real de dimensão n e (X_1, X_2, \dots, X_n) uma base de \mathcal{V} . Seja $\phi : \mathbb{R}^n \to \mathcal{V}$ definida por

$$\phi(a_1, a_2, \dots, a_n) = a_1 X_1 + a_2 X_2 + \dots + a_n X_n.$$

Mostre que ϕ é um isomorfismo.

- 22. Seja $\phi: \mathbb{R}^4 \to \mathbb{R}^6$ uma aplicação linear.
 - (a) Se dim $\ker(\phi) = 2$, qual é a dimensão de $\operatorname{im}(\phi)$?
 - (b) Se dim $im(\phi) = 3$, qual é a dimensão de $ker(\phi)$?
- 23. Seja $\phi: \mathcal{V} \to \mathbb{R}^5$ uma aplicação linear.
 - (a) Se ϕ é sobrejetiva e dim $\ker(\phi) = 2$, qual é a dimensão de \mathcal{V} ?
 - (b) Se ϕ é bijetiva, qual é a dimensão de \mathcal{V} ?
- 24. Seja $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear. Mostre que
 - (a) $\dim \operatorname{im}(\phi) \leq \dim \mathcal{V}$;
 - (b) se ϕ é sobrejetiva, então dim $W \leq \dim V$.
- 25. Considere $\phi_A : \mathbb{R}^n \to \mathbb{R}^n$ uma aplicação linear definida por $\phi_A(X) = AX$, onde $A \in \mathbb{R}^{n \times n}$.
 - (a) Mostre que ϕ_A é injetiva se e só se $\det(A) \neq 0$.
 - (b) Verifique que A é diagonalizável com vetores próprios linearmente independentes X_1, \ldots, X_n se e só se a matriz representativa de ϕ_A relativamente à base $\mathcal{B} = (X_1, \ldots, X_n)$ é diagonal.
 - (c) Se A é uma matriz ortogonal, mostre que $\phi_A(X) \cdot \phi_A(Y) = X \cdot Y$, para todo $X, Y \in \mathbb{R}^n$.
 - (d) Um subespaço \mathcal{W} de \mathbb{R}^n diz-se ϕ_A -invariante se $\phi_A(X) \in \mathcal{W}$, para todo $X \in \mathcal{W}$. Mostre que
 - i. o subespaço próprio de A associado a um valor próprio λ é ϕ_A -invariante;
 - ii. o núcleo e a imagem de ϕ_A são subespaços ϕ_A -invariantes.
 - (e) Considerando n=3 e

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 3 & 0 \\ 3 & 2 & -2 \end{bmatrix},$$

determine uma matriz diagonal D representativa da aplicação linear ϕ_A relativamente a uma base \mathcal{B} de \mathbb{R}^3 , indicando essa base.

soluções 7 aplicações lineares página 1/2

- 1. (a) Não; (b) sim; (c) sim; (d) não; (e) não; (f) sim.
- 2. Não.
- 3. Sim.
- 4. (a) (1,-19); (b) (a+b,-5a+2b).
- 5. (a) $3 + 2t 5t^2 + 2t^3$; (b) $c + at + bt^2 + at^3$.

6. (a)
$$M(\phi, \mathcal{C}, \mathcal{C}) = \begin{bmatrix} 1 & 2 & 1 \\ 2 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$
; (b) $M(\phi, \mathcal{C}, \mathcal{B}) = \begin{bmatrix} 1 & 2 & 1 \\ 2 & -1 & 0 \\ -3 & 1 & 0 \end{bmatrix}$; (c) $M(\phi, \mathcal{B}, \mathcal{C}) = \begin{bmatrix} 2 & 3 & 1 \\ 2 & -1 & 0 \\ 1 & 3 & 1 \end{bmatrix}$; $M(\phi, \mathcal{B}, \mathcal{B}) = \begin{bmatrix} 2 & 3 & 1 \\ 2 & -1 & 0 \\ -3 & 1 & 0 \end{bmatrix}$. $\phi(1, 1, -2) = (1, 1, 0)$

7. (a)
$$M(\phi, \mathcal{C}_2, \mathcal{C}_3) = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 2 \end{bmatrix}$$
; (b) $M(\phi, \mathcal{S}, \mathcal{T}) = \begin{bmatrix} 1 & -1/3 \\ 0 & 2/3 \\ -1 & 4/3 \end{bmatrix}$; (c) $\begin{bmatrix} -1 \\ 5 \\ -4 \end{bmatrix}$.

8. (a)
$$M(\phi, S, \mathcal{T}) = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ -2 & 0 & -1 \end{bmatrix}$$
. (b) $4t^2 - 4t + 1$.

9. (b) i.
$$M(\phi, \mathcal{C}, \mathcal{C}) = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 2 & 0 & 3 & 0 \\ 0 & 2 & 0 & 3 \end{bmatrix}$$
; ii. $M(\phi, \mathcal{C}, \mathcal{S}) = \begin{bmatrix} 3 & -2 & 5 & -3 \\ 0 & 1 & 0 & 2 \\ 2 & 0 & 3 & 0 \\ -2 & 2 & -3 & 3 \end{bmatrix}$; iii. $M(\phi, \mathcal{S}, \mathcal{C}) = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 2 & 2 \\ 2 & 0 & 3 & 2 \\ 0 & 2 & 3 & 3 \end{bmatrix}$; iv. $M(\phi, \mathcal{S}, \mathcal{S}) = \begin{bmatrix} 3 & -2 & 2 & 0 \\ 0 & 1 & 2 & 2 \\ 2 & 0 & 3 & 2 \\ -2 & 2 & 0 & 1 \end{bmatrix}$.

10. (a)
$$[\phi(X_1)]_{\mathfrak{T}} = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \ [\phi(X_2)]_{\mathfrak{T}} = \begin{bmatrix} 0\\1\\-2 \end{bmatrix};$$
 (b) $\phi(X_1) = t^2 + t + 2, \ \phi(X_2) = -t + 2;$ (c) $\frac{3}{2}t^2 + t + 4;$ (d) $(\frac{a+b}{2})t^2 + bt + 2a.$

11. (a)
$$\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}; (b) \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}.$$

- 13. (a) $\ker(\phi) = \{(x, y, z, t) \in \mathbb{R}^4 : x = -y = -z = t\}$ e $\operatorname{im}(\phi) = \mathbb{R}^3$. (b) Por exemplo, $\{(1, -1, -1, 1)\}$ é uma base de $\ker(\phi)$ e $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ é uma base de $\operatorname{im}(\phi)$. (c) ϕ não é injetiva e é sobrejetiva.
- 14. (a) O primeiro elemento não pertence e o segundo pertence. (b) O primeiro elemento pertence e o segundo não pertence. (c) Por exemplo, $\{t^2+t-1\}$ é uma base de $\ker(\phi)$ e $\{t^2,t\}$ é uma base de $\operatorname{im}(\phi)$. (d) ϕ não é injetiva nem sobrejetiva.
- 15. (a) $\left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\}$ é uma base de $\ker(\phi)$ e $\left\{ \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} \right\}$ é uma base da $\operatorname{im}(\phi)$. (b) O conjunto vazio é base de $\ker(\phi)$ e a base canónica de $\mathbb{R}^{2\times 2}$ é uma base da $\operatorname{im}(\phi)$.

$$16. \ (\mathrm{c}) \quad \mathrm{i.} \ M(\phi, \mathbb{S}, \mathbb{C}) = \begin{bmatrix} 3 & 4 & 4 & 3 \\ 4 & 3 & 2 & 0 \end{bmatrix}; \ \mathrm{ii.} \ M(\phi, \mathbb{S}, \mathbb{T}) = \tfrac{1}{2} \begin{bmatrix} 7 & 7 & 6 & 3 \\ -1 & 1 & 2 & 3 \end{bmatrix}.$$

página 2/2

soluções 7

aplicações lineares

(c) $im(\phi) = \{(a, b, c) \in A\}$

- 17. (a) $\phi(1,2,3) = (9,7,16)$ e $\phi(x,y,z) = (x+y+2z,2x+y+z,3x+2y+3z)$. (b) Não. (c) $\operatorname{im}(\phi) = \{(a,b,c) \in \mathbb{R}^3 : a+b-c=0\}$ e $\{(1,0,1),(0,1,1)\}$ é uma sua base; $\ker(\phi) = \{(x,y,z) \in \mathbb{R}^3 : x=z \text{ e } y=-3z\}$ e $\{(1,-3,1)\}$ é uma sua base. (d) $\begin{bmatrix} -2 & -4 & -1 \\ 5 & 8 & 3 \\ -1 & 0 & -1 \end{bmatrix}.$
- 18. (a) $M(\phi, \mathcal{B}, \mathcal{C}_2) = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$. (b) $\phi(X) = (1,9)$. (c) $M(\phi, \mathcal{C}_3, \mathcal{C}_2) = \begin{bmatrix} 0 & 1 & -2 \\ 2 & -1 & 0 \end{bmatrix}$. (d) $\phi(x, y, z) = (y 2z, 2x y)$. (e) $\ker(\phi) = \{(x, y, z) \in \mathbb{R}^3 : x = z \text{ e } y = 2z\}$ e $\{(1, 2, 1)\}$ é uma sua base. (f) ϕ não é injetiva. (g) 2. (h) ϕ é sobrejetiva. (i) $\operatorname{im}(\phi) = \mathbb{R}^2$.
- 19. (a) $\phi(x,y) = (2x + y, 0, 2x)$. (b) $\{(1,0,0), (0,0,1)\}$ é uma base para $\operatorname{im}(\phi)$ e ϕ não é sobrejetiva. (c) $\dim \ker(\phi) = 0$ e ϕ é injetiva. (d) $\begin{bmatrix} 0 & 0 \\ 3 & 1 \\ -1 & 1 \end{bmatrix}$. (e) $\begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$.
- 20. (a) $\phi(x,y,z) = (x+2y+z,3y+z,x-y)$. (b) $\operatorname{im}(\phi) = \{(a,b,c) \in \mathbb{R}^3 : a-b-c=0\}$, $\{(1,1,0),(1,0,1)\}$ é uma base para $\operatorname{im}(\phi)$ e $\operatorname{dim}\operatorname{im}(\phi) = 2$. (c) ϕ não é sobrejetiva. (d) $\operatorname{dim}\ker(\phi) = 1$ e ϕ não é injetiva. (e) $\begin{bmatrix} 6 & 3 & 1 \\ -5 & -2 & -1 \\ -2 & -2 & 0 \end{bmatrix}$. (f) ii. Por exemplo, $[X]_{\mathcal{B}} = \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ 0 \end{bmatrix}$.
- 22. (a) 2; (b) 1.
- 23. (a) 7; (b) 5.
- 25. (e) $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ é a matriz representativa de ϕ em relação à base $\mathcal{B} = \begin{pmatrix} \begin{bmatrix} 0 \\ 5 \\ 2 \end{bmatrix}, \begin{bmatrix} 6 \\ 3 \\ 8 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix}$.