

Projekt: MMSS54 Modul: Antiruckelfunktion

Seite 1 von 7

Projekt: MMSS54

Modul: Antiruckelfunktion

	Abteilung	Datum	Name	Filename
Bearbeiter	ZE-E-57	05.07.2004	M. Adamczyk	AR.DOC

Projekt: MMSS54 Modul: Antiruckelfunktion

Seite 2 von 7

Inhaltsverzeichnis

Änder	rungsdokumentationrungsdokumentation	3
8.	Antiruckelfunktion	4
8.1	Allgemeines	4
8.2	Berechnung Drehzahlgradient für AR	4
8.3	Aktivierungsbedingung der AR	4
8.4	Zustände der AR	5
	Zündwinkeleingriff der AR	
	Daten der AR	

	Abteilung	Datum	Name	Filename
Bearbeiter	ZE-E-57	05.07.2004	M. Adamczyk	AR.DOC

Projekt: MMSS54 Modul: Antiruckelfunktion

Seite 3 von 7

Änderungsdokumentation

Version: 1.0 02.11.2004

Ersterstellung

	Abteilung	Datum	Name	Filename
Bearbeiter	ZE-E-57	05.07.2004	M. Adamczyk	AR.DOC

Projekt: MMSS54 Modul: Antiruckelfunktion

Seite 4 von 7

8. Antiruckelfunktion AR

8.1 Allgemeines

Bei einem schnellen Übergang von Schub bzw. niedriger Teillast in höhere Lastbereiche können im unteren Drehzahlbereich Schwingungen im Antriebsstrang auftreten. Diesen Ruckelschwingungen wirkt die Antiruckelfunktion der MSS54 entgegen, indem die Schwingungen des Antriebsstranges detektiert und durch phasenrichtige Momenteneingriffe gedämpft werden.

Während eines positiven Drehzahlgradienten (steigende Motordrehzahl) wird das abgegebene Motormoment mittels eines Momenteneingriffs (Zündwinkelspätverstellung) reduziert.

8.2 Berechnung Drehzahlgradienten für AR

Die Berechnung des Drehzahlgradienten "d_n_segment" basiert auf der Segmentdrehzahl "n_segment" und erfolgt alle 120°KW neu. Die Segmentdrehzahl wird aus der Dauer eines Segments (60°KW vor OT bis 60°KW nach OT) berechnet.

Berechnungsformel:

d_n_segment(t) = ((n_segment(t) - n_segment(t-120°) / t_segment(t)

+ d_n_segment(t-120°))/2

Drehzahlgradient = Mittelwert aus der Drehzahldifferenz zweier Segmente, normiert auf

Upm/sec und dem vorhergehenden Gradienten

8.3 Aktivierungsbedingung der AR

Um die Antiruckelfunktion zu aktivieren, müssen folgende Bedingungen erfüllt sein:

 $B_AR =$ B_TL : Betriebszustand Teillast und $tmot \ge K_AR_TMOT_MIN$; Motortemperatur größer Schwelle $K_AR_NMIN \le n \le K_AR_NMAX$; Drehzahl innerhalb Bereich und $K_AR_RFMIN \le tl \le K_AR_RFMAX$: Last innerhalb Bereich und ($K_AR_VMIN \le v \le K_AR_VMAX$; Geschwindigkeit innerhalb Bereich und oder B_V_FEHLER) solange V-Erfassung fehlerfrei und

d S_GANG ; Kraftschluß vorhanden ; (im Mooment noch nicht aktiv)

Die Aktivierungsbedingung ist für die nachfolgende Dokumentation zu der Bedingung B_AR zusammengefaßt.

 $\begin{array}{lll} B_AR = 1 & : & \text{Bedingung erfüllt} \\ B_AR = 0 & : & \text{Bedingung nicht erfüllt} \end{array}$

	Abteilung	Datum	Name	Filename
Bearbeiter	ZE-E-57	05.07.2004	M. Adamczyk	AR.DOC

Projekt: MMSS54 Modul: Antiruckelfunktion

Seite 5 von 7

8.4 Zustände der AR

Bild 8.1: Zustandsautomat der Antiruckelfunktion

Solange die Bedingung B_AR nicht erfüllt ist und die Zündwinkeleingriffe vorausgegangener AR-Regelungen abgeregelt sind, ist die AR im Zustand "inaktiv".

Ist die Bedingung B_AR erfüllt, wechselt die AR in den Zustand "Starttrigger", sobald ein Drehzahlgradient größer der Auslöseschwelle ar_ngrad1 (aus Kennfeld KF_AR_NGRAD1 = f(n, tl)) erkannt wird.

Fällt der Drehzahlgradient wieder unter den Wert ar_ngrad2 (aus Kennfeld KF_AR_NGRAD2 = f(nt, tl)), wechselt die AR in den Zustand "Warte auf Folgetrigger". Wird diese Gradientenschwelle innerhalb der Zeit K_AR_T_TRIGGER nach dem Erkennen der Starttriggerung nicht unterschritten, wird daraus gefolgert, daß keine Ruckelschwingung vorliegt und die AR wechselt in den Zustand "abregeln".

Im Zustand "Warte auf Folgetriggerung" ist kein AR-Zündwinkeleingriff aktiv. Sobald der Drehzahlgradient die Schwelle ar_ngrad2 wieder übersteigt, wechselt die AR in den Zustand "Folgetriggerung". Ist diese Schwelle noch nicht erreicht, geht die AR in den Zustand "abregeln" über, sobald eine der folgenden Bedingungen erkannt ist.

Zeit seit letztem Zustandsübergang > K_AR_T_TRIGGER
 Gesamtzeit von AR aktiv > K_AR_T_AKTIV

Anzahl der Triggerungen > K_AR_COUNT_MAX

Im Zustand "Folgetriggerung" ist wiederum ein Zündwinkeleingriff aktiv. Ein Wechsel in den Zustand "Warte auf Folgetriggerung" erfolgt, wenn der Drehzahlgradient wieder kleiner ar_ngrad2 wird und die Bedingungen für die Beendigung der AR noch nicht erfüllt sind.

Im Zustand "abreglen" soll die AR beendet werden. Eventuell bestehende Zündwinkeleingriffe werden abgeregelt. Anschließend erfolgt ein Wechsel in den Zustand "inaktiv".

Für alle aktiven Zustände gilt: Sobald die Bedingung B_AR nicht mehr erfüllt ist, erfolgt ein Wechsel in den Zustand "abregeln".

	Abteilung	Datum	Name	Filename
Bearbeiter	ZE-E-57	05.07.2004	M. Adamczyk	AR.DOC

Projekt: MMSS54 Modul: Antiruckelfunktion

8.5 Zündwinkeleingriff der AR

Bild 8.2: Berechnung des Zündwinkeloffsets

8.6 Daten der AR

Variable der AR:

Name	Bedeutung	Тур	Auflösung
ar_mdroh	ungefilteter Dremomentenoffset der AR	sw	1/10 °KW
ar_grad1	Gradientenschwelle für AR Auslösung	SW	1 Upm/s
ar_grad2	Gradientenschwelle für AR Folgetriggerung	SW	1 Upm/s
ar_taktiv	Systemzeit, bei der zuletzt die AR aktiviert worden ist	uw	1 ms
ar_ttrigger	Systemzeit bei der letzten AR-Triggerung	uw	1 ms
ar_count	Anzahl der Triggerungen	uc	1
ar_zustand	Zustandsvariable der AR (nur jeweils 1 Bit gesetzt) Bit 0: AR inaktiv 1: Starttriggerung erkannt 2: warte auf Folgetriggerung 3: Folgetriggerung erkannt 4: AR-Eingriffe abregeln	uc	
ar_md_offset	Zündwinkeloffset der AR	SW	1/10 °KW

	Abteilung	Datum	Name	Filename
Bearbeiter	ZE-E-57	05.07.2004	M. Adamczyk	AR.DOC

Projekt: MMSS54 Modul: Antiruckelfunktion

Applikationsdaten der AR:

Name	Bedeutung
K_AR_TMOT_MIN	untere Temperaturschwelle für AR
K_AR_NMIN	untere Drehzahlschwelle für AR
K_AR_NMAX	obere Drehzahlschwelle für AR
K_AR_RFMIN	untere Füllungschwelle für AR
K_AR_RFMAX	obere Füllungschwelle für AR
K_AR_VMIN	untere Geschwindigkeitsschwelle für AR
K_AR_VMAX	obere Geschwindigkeitsschwelle für AR
K_AR_T_TRIGGER	max. Zeitraum für die nächste Triggerung
K_AR_T_AKTIV	max. Aktivzeit der AR
K_AR_ANZ_TRIGGER	max. Anzahl von Triggerungen
K_AR_MDB1	Zündwinkeländerungsbegrenzung für AR Spätverstellungen
K_AR_MDB2	Zündwinkeländerungsbegrenzung für AR Abregelung (früh)
KF_AR_NGRAD1	Gradintenschwelle für Starttriggerung = f(n,rf)
KF_AR_NGRAD2	Gradintenschwelle für Folgetriggerung = f(n,rf)
KF_AR_MD	Zündwinkeloffset der AR = f (n,dn/dt)

	Abteilung	Datum	Name	Filename
Bearbeiter	ZE-E-57	05.07.2004	M. Adamczyk	AR.DOC