

КАССАНДРА К21

комплекс радиомониторинга и анализа сигналов

Руководство по эксплуатации

Содержание:

Наименование	Стр	
Введение		
1. Описание и работа	2	
1.1. Назначение	2	
1.2. Технические характеристики	2	
1.3. Состав	3	
1.4. Устройство и работа	4	
1.5. Программное обеспечение	5	
1.6. Конструкция	6	
2. Использование по назначению	8	
2.1. Эксплуатационные ограничения	8	
2.2. Подготовка к использованию	8	
2.3. Использование комплекса	9	
2.4. Завершение работы	9	
2.5. Обслуживание	9	
3. Хранение и транспортирование	9	
Возможные неисправности и способы их устранения	10	

Настоящее руководство предназначено для пояснения принципа работы, устройства и конструкции комплекса радиомониторинга и анализа сигналов "Кассандра К21" (далее по тексту – комплекс). Для правильной эксплуатации комплекса необходимо изучить настоящее руководство. Кроме того, при изучении и эксплуатации комплекса необходимо использовать «Руководство пользователя программного обеспечения» с описанием интерфейса управляющей программы.

Внимание! К работе с комплексом допускается персонал, прошедший обучение и имеющий навыки уверенного пользователя ПК с операционной системой, используемой в ПЭВМ управления комплекса (Windows® 7, Windows® 10).

1. Описание и работа

1.1. Назначение

- 1.1.1. Комплекс отличается простотой конструкции, эргономичностью, минимумом органов управления и нетребователен в эксплуатации.
- 1.1.2 Комплекс предназначен для:
- постоянного, периодического или оперативного мониторинга радиообстановки,
- обнаружения несанкционированных радиоизлучений в проверяемых помещениях, в том числе излучения передатчиков, использующих сложные алгоритмы скрытия своей работы (с накоплением информации, с перестройкой по частоте, широкополосные и шумоподобные излучения и т.д.).
- детального исследования физических параметров принятых радиосигналов,
- локализации источников радиоизлучений,
- создания архивов результатов радиомониторинга.

1.2. Технические характеристики

1.2.1 Основные технические характеристики основного блока. (таб. 1)

Радиочастотная часть	
Диапазон рабочих частот	
- по входу НЧ	9 кГц – 30 МГц
- по коммутируемым входам ВЧ	25 – 6000 МГц
- по входу СВЧ	6 – 21 ГГц
Чувствительность	минус 158 дБм/Гц
Динамический диапазон по одному сигналу в полосе 25 –	105 дБ
6000 МГц (от уровня шума (1 Гц) до точки компрессии 1 дБ)	
Динамический диапазон по интермодуляционным искаже-	
ниям 2-го и 3-го порядка при с/ш 10±1 дБ:	80 дБ
Максимальное разрешение по частоте	8 Гц
Назначенная скорость сканирования	10000 МГц/с
Полоса обзора в режиме ВЧ анализа	настраиваемая до 20 МГц
Количество каналов встроенного коммутатора	4 (для диапазона ВЧ)
Тип разъемов	N-тип, 50 Ом
Цифровая обработка	
Полоса БПФ анализа	20 МГц
Запись I Q	потоковая
Низкочастотная часть	
Внутренние демодуляторы	AM, YM, APCO25, DMR,PAL
Полоса демодуляторов	настраиваемая 10 Гц – 8 МГц
Дополнительная обработка	АРУ, шумоподавление
Питание	
Сеть	100-250В, 50Гц
Автономное	Встроенный аккумулятор
Время автономной работы	2 часа
Масса и габариты	
Габариты основного блока (кейса)	530×420×120 мм
Масса основного блока (кейса)	9.9 кг
Условия эксплуатации	
Диапазон рабочих температур	от 5 до 40°С
Относительная влажность	80 % (25°C)

3

1.2.2 Рекомендуемые параметры ПЭВМ. (таб. 2)

Операционная система	Windows 10
Процессор	Intel CORE I3 2 ГГц и выше
Оперативная память	4000 Мб и более
Разрешение экрана	1460×900 и выше
LAN	не менее 1000 Мб

Таблица 2

1.3. Варианты комплектации: (таб. 3)

Базовый комплект в составе:

Блок основной

Программное обеспечение RadioInspectorRT

Антенна АШП-12

Антенна АШП-21

Кабель управления LAN

Сумка – укладка

Зарядное устройство

Руководство по эксплуатации и Руководство пользователя ПО на электронном носителе

Паспорт

Основной комплект в составе:

Блок основной

Управляющая ПЭВМ в комплекте

Программное обеспечение RadioInspectorRT с опцией DTest

Программное обеспечение RadioInsprctorWiFi с приёмным модулем

. Антенна АШП-12 – 2 шт.

Антенна АШП-21

Кабель-удлинитель высокочастотный 20м

Кабель управления LAN

Разветвитель USB

Сумка – укладка

Зарядное устройство

Руководство по эксплуатации и Руководство пользователя ПО на электронном носителе

Паспорт

Расширенный комплект в составе:

Блок основной

Управляющая ПЭВМ в комплекте

Программное обеспечение RadioInspectorRT с опцией DTest

Программное обеспечение RadioInspectorRP

Программное обеспечение RadioInsprctorWiFi с приемным модулем

. Антенна АШП-12 – 3 шт.

Антенна АШП-21

Антенна АШН-2060

Антенна АШН-60600

Кабель-удлинитель высокочастотный 20м – 2 шт.

Кабель-удлинитель высокочастотный 10м

Кабель управления LAN

Манипулятор "мышь"

Головные телефоны

Разветвитель USB

Сумка – укладка

Зарядное устройство

Руководство по эксплуатации и Руководство пользователя ПО на электронном носителе

Паспорт

Таблица 3

Конкретный состав Вашего комплекса указан в паспорте на изделие.

1.4. Устройство и работа

1.4.1. Функциональная схема комплекса приведена на рис. 1.

Рис. 1

Основной блок функционально состоит из ВЧ коммутатора, двух радиоприемных устройств, блока цифровой обработки сигналов, системы питания - блока питания и аккумулятора. Радиоприемное устройство 1 работает в диапазоне 25-6000 МГц, радиоприемное устройство 2 - в диапазоне 6-21 ГГц.

В диапазоне ВЧ радиосигналы принимаются широкополосными антеннами (до 4-х антенн) и по ВЧ кабелям подаются на входы А1-А4 антенного коммутатора комплекса.

Для достижения наименьшего затухания сигналов в диапазоне СВЧ антенна этого диапазона подключается без кабельного удлинителя к входному СВЧ разъему радиоприемного устройства 2.

Управление комплексом и обработка результатов его работы осуществляется компьютером, подключенным к основному блоку через LAN порт. Вся информация о работе комплекса и принятых сигналах представляется оператору в виде графиков, диаграмм, панорам, спектрограмм.

1.4.2. Комплекс работает в режимах:

- последовательное выполнение задачи или группы задач радиомониторинга частотного диапазона и/или отдельных частот,
- высокочастотный анализ сигналов в реальном масштабе времени,
- низкочастотный анализ сигналов в реальном масштабе времени,

 анализ сетей цифровых стандартов и определение принадлежности сигнала к стандартам DECT, TETRA, GSM, APCO-P25, Bluetooth, при наличии соответствующей опции ПО,

- отложенный анализ.

Документирование результатов может осуществляться в ходе выполнения основных задач.

- 1.4.2.1. В режиме радиомониторинга осуществляется последовательное выполнение заданий на сканирование, для каждого из которых заданы параметры: интервал сканируемых частот (в рамках рабочего частотного диапазона комплекса), частотное разрешение, порог обнаружения. Все графики, панорамы, параметры принятых сигналов фиксируется в памяти компьютера. В этом режиме возможно производить маркерные и курсорные измерения на графиках спектров, так же могут выполняться заданные оператором действия по автоматическому анализу обнаруженных (превысивших порог) сигналов.
- 1.4.2.2. В режиме высокочастотного анализа программа с помощью аппаратуры комплекса эмулирует работу с типовым анализатором спектра сигналов. Выбор центральной частоты анализа можно производить прямо на полученной в результате мониторинга панораме спектра.
- 1.4.2.3. В режиме низкочастотного анализа сигнал со встроенного демодулятора выводится на программный осциллограф, низкочастотный анализатор спектра и 12-полосный октавный анализатор. В этом режиме может производиться аудиозапись низкочастотной составляющей сигнала.
- 1.4.2.4. Сохраненные в процессе мониторинга и анализа данные хранятся в файлах панорам, спектров, звукозаписи. Кроме этого, по каждому сигналу, попавшему в список обнаруженных, собирается статистика физических параметров. Это позволяет осуществлять полноценный отложенный анализ (постанализ).
- 1.4.2.5. Документирование результатов работы производится экспортом данных, рисунков и графиков в документы Microsoft Office[®], если это ПО установлено, либо сохранением их в виде файлов рисунков(.bmp). Кроме этого, программа позволяет вести расширенную базу частотных присвоений, хранить примечания и комментарии к сохраненным данным.
- 1.4.3. Функциональность комплекса может быть расширена с помощью дополнительных программ и устройств.

1.5. Программное обеспечение

- 1.5.1. Описание программного обеспечения и порядок работы с ним изложены в прилагаемом к комплексу "Руководстве пользователя программного обеспечения".
- 1.5.2. "RadioInspectorRT" основная программа программного обеспечение комплекса "Кассандра К21", разработана на базе комплекта программ "RadioInspector".

Предоставляет оператору следующие средства, методы и алгоритмы:

- формирование пакета заданий на сканирование в пределах рабочего диапазона с любым количеством последовательно обрабатываемых задач, каждая из которых имеет свои параметры;
- панорамы принятых сигналов в заданном диапазоне частот панорамы текущих значений, панорамы максимальных, минимальных и усредненных значений;
- спектрограмму представление полученных панорам во времени (уровень сигнала отображается цветом) в двумерном (2D) и трехмерном (3D) изображении без ограничений по времени записи;
- возможность оперативно изменять и настраивать в широких пределах вид графического представления;
- маркерные и курсорные измерения на панораме спектров и при ВЧ анализе;
- сохранение всех результатов работы и возможность отложенного анализа;
- возможность активации ранее сохраненного задания и продолжения записи в ранее сохраненную базу данных;
- сохранение эталонной панорамы и возможность сравнения панорам с эталонной;
- метод разнесенного приема с использованием встроенного антенного коммутатора;
- математическую обработку результатов измерений;
- управляемую линию порога и адаптивное значение линии порога;

- список сигналов, превысивших порог;
- фиксацию минимального уровня превышения линии порога для исключения влияния флуктуации шумов и частотной девиации известных сигналов;
- формирование базы данных частотных присвоений и средства их обработки, включая специализированный калькулятор;
- ВЧ анализатор спектра для анализа отдельных сигналов в реальном масштабе времени;
- осциллограф, низкочастотный анализатор спектра, октавный анализатор спектра для анализа демодулированных сигналов;
- запись фонограмм демодулированного аудиосигнала, включая пятисекундный отрезок времени, предшествующий моменту начала записи, анализ и редактирование записанных фонограмм;
- запись демодулированного аудиосигнала в автоматическом режиме при превышении сигналом линии порога;
- анализ излучений на принадлежность к классу аналоговых телевизионных сигналов, в том числе передаваемых с использованием методов кодирования;
- дополнительный анализ списка обнаруженных сигналов (числовой и графический), формирование отчетов об исследованных диапазонах частот и обнаруженных сигналах, возможность экспортировать их в форматы Microsoft Word®, Microsoft Excel®, в текстовые и графические файлы.
- 1.5.3. Программа "RadioInspectorRP" предназначена для осуществления отложенного анализа сохраненной базы данных. Поставляется с отдельным ключом. Это дает возможность установить программу на любой, не подключенный к комплексу компьютер и производить полноценный анализ сохраненных данных без прерывания процесса сканирования. Входит в основной комплект поставляемых программ.
- 1.5.4. Программа "RadioInspectorWiFi" поставляется с автономным радиоприемным иодулем, предназначена для анализа сетей WiFi на возможность организации каналов утечки информации, является дополнительной опцией при поставке комплекса.
- 1.5.5. Опция "DTest" предназначена для анализа цифровых сетей передачи данных и идентификации сигналов на принадлежность к сетям TETRA, DECT, APCO25, DMR, FBlueTooth, GSM. Так же предоставляет возможность просмотреть квадратурную составляющую сигнала в векторном виде и визуализировать телевизионный сигнал на экране компьютера. Не имеет собственной программной оболочки, поставляется интегрированной в ПО "RadioInspectorRT".
- 1.5.6. Программа "RadioInspector_IQProcess" позволяет воспроизвести ВЧ сигнал из записанных IQ файлов в реальном масштабе времени.
- 1.5.7 Программное обеспечение комплекса защищено электронным ключом. Использование специального программного обеспечения не ограничено количеством инсталляций и сроком использования.

1.6. Конструкция

- 1.6.1. Основной блок комплекса, включающий ВЧ коммутатор, радиоприемные устройства, блок цифровой обработки сигналов, сетевой блок питания и аккумулятор, выполнен в корпусе специального ударопрочного герметичного кейса. Все органы управления и коммутации основного блока комплекса расположены на передней панели и имеют пояснительные надписи. На передней панели так же размещена наклейка с заводским номером изделия.
- 1.6.2. Органы управления и коммутации (рис.2):
- 1 входные ВЧ разъемы (А1 А4) со светодиодами-индикаторами подключения (4 канала);
- 2 входной СВЧ разъем **(А5)**;
- 3 разъем для подключения сетевого адаптера;
- 4 вход 9 кГц 30 МГц **(А6)**;
- 5 разъем управления периферийными устройствами (I^2 C);
- 6 разъем LAN для подключения управляющего компьютера:
- 7 индикатор степени разряда аккумулятора;
- 8 кнопки включения/выключения питания (I, O);

Рис. 2

1.6.3. Внешний вид антенны широкополосной АШП-12 в рабочем положении представлен на рис. 3.

- 1 широкополосная антенна;
- 2 штатив струбцина тренога;
- 3 ВЧ кабель антенны.
- 1.6.4. Для подключения антенн к входам комплекса может использоваться ВЧ кабель длиной 20 м.

Рис. 3

1.6.5. Внешний вид антенны АШП-21 представлен на рис. 4.

2. Использование по назначению

2.1. Эксплуатационные ограничения

- 2.1.1. После транспортирования комплекса при температуре окружающей среды, отличающейся от рабочей, перед включением его необходимо выдержать при рабочей температуре не менее 2 часов.
- 2.1.2. Внутри адаптера питания есть опасное для людей напряжение. Неправильное обращение может привести к поражению электрическим током.
- 2.1.3. Оберегайте аппаратуру от воздействия температур, выходящих за пределы условий эксплуатации.
- 2.1.4. При выполнении всех коммутаций основной блок должен быть выключен.
- 2.1.5. Берегите входы антенного коммутатора от воздействия статического электричества. Бережно обращайтесь с разъемами, особенно с высокочастотными, от их состояния зависит качество приема и, следовательно, достоверность полученной информации.
- 2.1.6. Оберегайте кабели, особенно высокочастотные, от механических повреждений и критических перегибов.
- 2.1.7. Комплекс предназначено только для использования внутри закрытых пространств (помещений). Защитите прибор от попадания воды, влаги, конденсата, а так же прямых солнечных лучей. Запрещается включать комплекс при явном наличии влаги внутри блока или адаптера питания.
- 2.1.8. Не пытайтесь разобрать или модифицировать устройство. Не используйте электрические вывод адаптера питания как источник электроэнергии. Он предназначен только для питания комплекса.
- 2.1.9. Используйте только штатные блоки и компоненты. Использование нештатных устройств лишает гарантии и может привести к выходу изделия из строя.

2.2. Подготовка комплекса к использованию

- 2.2.1. Меры безопасности:
- 2.2.1.1. При подключении к электросети необходимо соблюдать правила электробезопасности. Перед подключением прибора к сети 220В убедитесь в исправности шнура питания, вилки и розетки. Рекомендуется использовать для подключения розетки, имеющие заземляющий контакт. Сетевые удлинители рекомендуется использовать трехпроводные с заземляющим контактом.
- 2.2.1.3. Запрещается вскрывать и самостоятельно ремонтировать блоки комплекса.
- 2.2.1.3. При малейших признаках ненормальной работы, искрении, задымлении, немедленно обесточьте аппаратуру.
- 2.2.2. Подготовка к работе:
- 2.2.2.1. Расположить основной блок комплекса в удобном для работы месте. По возможности подключить сетевой адаптер.
- 2.2.2.2. Проложить антенные ВЧ кабели от места установки основного блока к местам установки антенн. Укрепить ВЧ антенны с использованием штатива, подключить антенные кабели к антеннам, подключить кабели к входным разъемам основного блока. Подключение осуществляется последовательно, начиная с младших номеров антенных входов. Подключить СВЧ антенну.
- Примечание. Антенны должны быть максимально возможно разнесены друг от друга, насколько позволяют длина кабелей и место размещения комплекса, для обеспечения максимальной базы разноса между ними. Это необходимо для уверенного различения сигналов с помощью метода разнесенного приема.

2.2.2.3. Установить компьютер. По возможности подключить сетевой блок питания к компьютеру. Включить питание компьютера. Дождаться загрузки операционной системы.

- 2.2.2.4. Включить питание основного блока кнопкой включения (I). При включении основного блока происходит тестирование аппаратуры, при этом индикаторы каналов антенного коммутатора должны поочередно засветиться и погаснуть, в конце теста должен гореть индикатор первого канала.
- 2.2.2.5. Соединить кабелем управления компьютер и основной блок. Обмен пакетами между компьютером и основным блоком будет индицироваться миганием светодиода сетевой карты компьютера.
- 2.2.2.6. Дать время (порядка 30 секунд) на установление уверенной связи устройств по LAN. Запустить программное обеспечение "RadioInspectorRT". Комплекс готов к работе.

2.3. Использование комплекса

- 2.3.1. Порядок ведение мониторинга исследуемых объектов изложен в соответствующих методиках и инструкциях для подразделений.
- 2.3.2. Функциональные возможности комплекса и описание работы с программой изложены в "Руководстве пользователя программного обеспечения" из комплекта эксплуатационной документации.

2.4. Завершение работы

- 2.4.1. Остановить сканирование, закрыть исполняемую программу кнопкой "закрыть" (**X**) основного окна программы.
- 2.4.2. Выключить компьютер стандартным способом, используя меню **ПУСК**. Выключить основной блок кнопкой выключения (**O**), отключить кабель управления, отключить адаптеры питания, свернуть антенны и фидеры.

2.5. Обслуживание

- 2.4.1. ETO самотестирование комплекса, контрольный осмотр на наличие механических повреждений блоков, кабелей питания, высокочастотных кабелей, антенн, контроль "чистоты" спектра без подключения антенн. Порядок контроля "чистоты" спектра:
- 2.4.1.1. Развернуть комплекс, как указанно в пп 2.2.2.1 2.2.2.5 не подключая антенн. Запустить сканирование, убедиться, что в отображаемой панораме присутствуют только естественные шумы (исключения могут составлять небольшие всплески на частотах, проникающих через входной разъем мощных легальных передатчиков).
- 2.4.1.2. Подключить антенны с помощью кабелей к входным разъемам основного блока.
- 2.4.1.3. Включить имитатор сигналов и проконтролировать наличие отклика его сигнала на панораме.
- 2.4.1. Периодическое ТО полугодовое, включает в себя ЕТО, общую чистку от грязи и пыли оборудования, очистку высокочастотных разъемов спиртом техническим мягкой тканью. Для внешней очистки применяйте смоченную водой мягкую ткань, применение бытовых моющих и сильнодействующих технических средств недопустимо.

3. Хранение и транспортирование

- 3.1. Комплекс должен храниться в отапливаемых помещениях при температуре от 5 до 50°C и относительной влажности воздуха не более 80 % при 25°C.
- 3.2. Транспортирование комплекса рекомендуется производить в штатной упаковке в пассажирских салонах транспорта.
- 3.3. Штатные упаковки на транспортных средствах должны быть размещены так, чтобы исключались их удары друг о друга или об ограждающие конструкции.

Возможные неисправности и способы их устранения. (таб. 4)

Проявление неисправности	Возможная причина	Устранение
Комплекс не включается в ре-	Разряжен аккумулятор	Зарядить аккумулятор
жиме автономного питания		
Аккумулятор не заряжается	Нет напряжения в сети	Проверить сеть
	Плохие контакты в разъемах,	Проверить контакты, провода
	повреждены провода питания	питания
	Неисправность сетевого адапте-	Направить комплекс в ремонт
	ра или зарядного модуля основ-	
	ного блока	
При запуске программы выдает-	После переустановки ПО непра-	Переустановить драйвера
ся сообщение "не найден ключ"	вильно установлены драйвера	
	Не подключен кабель управления	
	Плохой контакт в разъемах или	Проверить кабель управления
	поврежден кабель управления	
	Используется нелегальное ПО	Использовать легальное ПО
	Неисправность комплекса	Направить комплекс в ремонт
При запуске программы в поле	Не подключен или поврежден	Проверить кабель управления.
"Измерительная схема" выдает-	кабель управления.	
ся сообщение " прибор не най-	Не включено питание основного	Включить питание
ден "	блока	
	Неисправность комплекса	Направить комплекс в ремонт
При запуске программы в поле	Плохой контакт в разъемах или	Проверить кабель управления
"Измерительная схема" выдает-	поврежден кабель управления	
ся сообщение "не найден при-	Не включено питание основного	Включить питание
емник (коммутатор)"	блока	
	Нарушен порядок включения.	Осуществить порядок включе-
		ния, как описано в пп 2.2.2.4.
	Неисправность основного блока	Направить комплекс в ремонт
В ходе мониторинга на панора-	Плохой контакт, "дребезг" высо-	Проверить, наладить контакт
ме спектров появляются много-	кочастотного разъема, особенно	
численные ложные сигналы	при механических воздействиях.	
Спектр принимаемых сигналов	Вблизи приемной антенны рас-	Расположить антенну в другом
"замусорен"	положен источник ПЭМИН	удобном месте.
Программа "зависла"	Основной блок комплекса обес-	Перезапустить программу
	точен на какое-то время	_
	Плохой контакт в разъемах или	Проверить кабель управления
	поврежден кабель управления	_
		Деинсталлировать стороннее
		ПО
2	программы	
Значительное снижение скоро-	Мощности ПЭВМ управления не	Завершить выполнение сторон-
сти сканирования		них задач, требующих значи-
	задачами.	тельных ресурсов ПЭВМ
	l · · · · · · · · · · · · · · · · · · ·	Выставить более "легкие" пара-
		метры сканирования, обработки
	значительно загружающие ПЭВМ	
	(при пользовании нештатной ПЭВМ)	
	Используется ПЭВМ управления,	Использовать рекомендованнук
	отличная от рекомендованной	модель ПЭВМ
	Используется нештатный кабель	Использовать штатный кабель
	rionesing of the manufacture in the costs	

Таблица 4

ЮТДН.468166.006РЭ Руководство по эксплуатации комплекса. Редакция 1.7к21 Москва, 2017.

<u>Группа компаний «STT» г. Москва, тел/факс: +7 (495) 788 77 32 http://detektor.ru/,</u> e-mail: stt@detektor.ru