Interpretable Machine Learning

Feature Importances 1 Permutation Feature Importance (PFI)

Figure: Bike Sharing Dataset

Learning goals

- Understand how PFI is computed
- Understanding strengths and weaknesses

MOTIVATION FOR PFI

- Goal: Assess how important feature(s) X_S are for predictive performance of a fixed trained model \hat{f} on a given dataset \mathcal{D}
- ullet Idea: Estimate performance change when X_S is "made uninformative"

MOTIVATION FOR PFI

- Goal: Assess how important feature(s) X_S are for predictive performance of a fixed trained model \hat{f} on a given dataset \mathcal{D}
- ullet Idea: Estimate performance change when X_S is "made uninformative"
- Question: Can we make X_S uninformative by removing it from model? \rightarrow No, \hat{f} was trained with X_S ; retraining without X_S gives a different model

MOTIVATION FOR PFI

- Goal: Assess how important feature(s) X_S are for predictive performance of a fixed trained model \hat{f} on a given dataset \mathcal{D}
- Idea: Estimate performance change when X_S is "made uninformative"
- Question: Can we make X_S uninformative by removing it from model? \rightarrow No, \hat{f} was trained with X_S ; retraining without X_S gives a different model
- **Solution:** Simulate feature removal by replacing X_S with a perturbed version \tilde{X}_S that is independent of (X_{-S}, Y) but preserves distrib. $\mathbb{P}(X_S)$ \leadsto Compare baseline predictions $\hat{f}(X)$ with perturbed predictions $\hat{f}(\tilde{X}_S, X_{-S})$

$$\mathsf{PFI}_S := \underbrace{\mathbb{E}\Big[L\big(\hat{f}(\tilde{X}_S, X_{-S}), Y\big)\Big]}_{\mathsf{risk after "destroying"} \ X_S} - \underbrace{\mathbb{E}\Big[L\big(\hat{f}(X), Y\big)\Big]}_{\mathsf{baseline risk}},$$

- How to perturb X_S ?
 - Add random noise: distorts $\mathbb{P}(X_S)$ (not used)
 - Permutation: preserves marginal $\mathbb{P}(X_S)$, breaks dependence with Y (used)

▶ BREIMAN 2001

Sample estimator (using independent test set $\mathcal{D} = \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^n$)

- ullet Measure error with feat. values x_S and with permuted feat. values x_S
- Repeat permutation (e.g., *m* times) and average difference of both errors:

$$\widehat{\mathit{PFI}}_{\mathcal{S}} = \tfrac{1}{m} \sum_{k=1}^{m} \left[\mathcal{R}_{\mathsf{emp}} \big(\hat{f}, \frac{\mathcal{D} \mathcal{S}_{(k)}}{\mathcal{O}} \big) - \mathcal{R}_{\mathsf{emp}} \big(\hat{f}, \mathcal{D} \big) \right]$$

- $\mathcal{D}_{S}^{(k)}$: dataset with column(s) x_{S} are **permuted** once (in repetition k)
- $\mathcal{R}_{emp}(\hat{f}, \mathcal{D}) = \frac{1}{n} \sum_{(x,y) \in \mathcal{D}} L(\hat{f}(x), y)$: Measures performance of \hat{f} using \mathcal{D}
- Average over m permutations to reduce Monte-Carlo variance

Example of permuting feature x_S with $S = \{1\}$ and m = 6 permutations:

Note: S refers to a subset of features, here |S| = 1 to measure impact of permuting x_1 on performance

		7	$DS_{(k)}$)
i	xs	\mathbf{x}_2	\mathbf{x}_3	
1	2	4	7	
:	1	5	8	
n	3	6	9	

		ν
X ₁	X ₂	X ₃
1	4	7
2	5	8
3	6	9

- **1. Perturbation:** Sample feature values from the distribution of x_S ($P(X_S)$).
 - \Rightarrow Randomly permute feature x_S
 - \Rightarrow Replace x_S with permuted feat. x_S and create data $\mathcal{D}S$ containing x_S

		1	$DS_{(k)}$			\mathcal{D}	
i	xs	\mathbf{x}_2	x ₃		X ₁	X ₂	x ₃
1	2	4	7		1	4	7
:	1	5	8		2	5	8
n	3	6	9		3	6	9
		$\overline{\bigcirc}$	_			\Diamond	_
		\hat{f}				\hat{f}	
		0.6				0.4	
		0.6				8.0	
		0.6				0.6	

- **1. Perturbation:** Sample feature values from the distribution of x_S ($P(X_S)$).
 - \Rightarrow Randomly permute feature x_S
 - \Rightarrow Replace x_S with permuted feat. x_S and create data $\mathcal{D}S$ containing x_S
- **2. Prediction:** Make predictions for both data, i.e., \mathcal{D} and $\mathcal{D}S$

		1	$DS_{(k)}$)			${\mathcal D}$
i	xs	\mathbf{x}_2	x ₃		X ₁	x ₂	\mathbf{x}_3
1	2	4	7		1	4	7
:	1	5	8		2	5	8
n	3	3 6			3	6	9
		$\frac{1}{(\hat{f}, y)}$ 0.9 0.5 0.1)			0.25 0.35 0.1)

3. Aggregation:

• Compute the loss for each observation in both data sets

		7	$DS_{(k)}$)	${\cal D}$				
i	xs	\mathbf{x}_2	X ₃		X ₁	\mathbf{x}_2	x ₃	ΔL	
1	2	4	7		1	4	7	0.65	
:	1	5	8		2	5	8	0.15	
n	3	6	9		3	6	9	0	
	L	0.9 0.5 0.1)	_		0.25 0.35 0.1)	Ĵ	

3. Aggregation:

- Compute the loss for each observation in both data sets
- Take the difference of both losses ΔL for each observation

3. Aggregation:

- Compute the loss for each observation in both data sets
- ullet Take the difference of both losses ΔL for each observation
- \bullet Average this change in loss across all observations Note: Same as computing \mathcal{R}_{emp} on both data sets and taking difference

		\mathcal{R}_{emp}	$_{o}(\hat{f}, 1$	$DS_{(k)}$))	$-\mathcal{R}$	emp($\hat{f}, \mathcal{D})$	
	i	xs	X ₂	\mathbf{x}_3		X ₁	X ₂	\mathbf{x}_3	Δ L
1	1	2	4	7		1	4	7	0.65
ı	:	1	5	8		2	5	8	0.15 = 0.267
	n	3	6	9		3	6	9	0
:									1/ (0.007 + 0.4)
	i	xs	\mathbf{x}_2	\mathbf{x}_3		X ₁	\mathbf{X}_2	x ₃	ΔL $\widehat{PFI}_S = \frac{1}{2} (0.267 + 0.4)$
m	1	3	4	7		1	4	7	0.85
m	:	2	5	8		2	5	8	0 = 0.4
	n	1	6	9		3	6	9	0.35

3. Aggregation:

- Compute the loss for each observation in both data sets
- Take the difference of both losses ΔL for each observation
- Average this change in loss across all observations
- Repeat perturbation and average over multiple repetitions

EXAMPLE: BIKE SHARING DATASET

Interpretation:

- yr and temp are most important feats using mean absolute error (MAE)
- Destroying info. about yr by permuting it increases MAE of model by 816
- Error bars show 5% and 95% quantiles over multiple permutations

• Interpretation: Increase in error when feature's information is destroyed

- Interpretation: Increase in error when feature's information is destroyed
- Results can be unreliable due to random permutations
 - \Rightarrow Solution: Average results over multiple repetitions

- Interpretation: Increase in error when feature's information is destroyed
- Results can be unreliable due to random permutations
 Solution: Average results over multiple repetitions
- Permuting features despite correlation/dependence with other features can lead to unrealistic combinations of feature values
 - → Extrapolation issue

- Interpretation: Increase in error when feature's information is destroyed
- Results can be unreliable due to random permutations
 - \Rightarrow Solution: Average results over multiple repetitions
- Permuting features despite correlation/dependence with other features can lead to unrealistic combinations of feature values
 Extrapolation issue
- PFI automatically includes importance of interaction effects with other features
 - \Rightarrow Permuting x_i also destroys interactions with permuted feature
 - ⇒ PFI score contains importance of all interactions with permuted feature

- Interpretation: Increase in error when feature's information is destroyed
- Results can be unreliable due to random permutations
 - \Rightarrow Solution: Average results over multiple repetitions
- Permuting features despite correlation/dependence with other features can lead to unrealistic combinations of feature values
 Extrapolation issue
- PFI automatically includes importance of interaction effects with other features
 - \Rightarrow Permuting x_i also destroys interactions with permuted feature
 - ⇒ PFI score contains importance of all interactions with permuted feature
- Interpretation of PFI depends on whether training or test data is used

COMMENTS ON PFI - EXTRAPOLATION

Example: Let $y = x_3 + \epsilon_y$, with $\epsilon_y \sim \mathcal{N}(0, 0.1)$.

- $x_1 := \epsilon_1, x_2 := x_1 + \epsilon_2$; highly correlated $(\epsilon_1 \sim \mathcal{N}(0, 1), \epsilon_2 \sim \mathcal{N}(0, 0.01))$
- $x_3 := \epsilon_3, x_4 := \epsilon_4$, with $\epsilon_3, \epsilon_4 \sim \mathcal{N}(0, 1)$; all noise terms ϵ_j are indep.
- ullet Fitting a linear model yields $\hat{f}(\mathbf{x}) pprox 0.3x_1 0.3x_2 + x_3$

COMMENTS ON PFI - EXTRAPOLATION

Example: Let $y = x_3 + \epsilon_y$, with $\epsilon_y \sim \mathcal{N}(0, 0.1)$.

- $x_1 := \epsilon_1, x_2 := x_1 + \epsilon_2$; highly correlated $(\epsilon_1 \sim \mathcal{N}(0, 1), \epsilon_2 \sim \mathcal{N}(0, 0.01))$
- $x_3 := \epsilon_3, x_4 := \epsilon_4$, with $\epsilon_3, \epsilon_4 \sim \mathcal{N}(0, 1)$; all noise terms ϵ_j are indep.
- Fitting a linear model yields $\hat{f}(\mathbf{x}) \approx 0.3x_1 0.3x_2 + x_3$

Hexbin plot of (x_1, x_2) before (left) and after (center) permuting x_1 ; PFI scores (right).

COMMENTS ON PFI - EXTRAPOLATION

Example: Let $y = x_3 + \epsilon_y$, with $\epsilon_y \sim \mathcal{N}(0, 0.1)$.

- $x_1 := \epsilon_1, x_2 := x_1 + \epsilon_2$; highly correlated $(\epsilon_1 \sim \mathcal{N}(0, 1), \epsilon_2 \sim \mathcal{N}(0, 0.01))$
- $x_3 := \epsilon_3, x_4 := \epsilon_4$, with $\epsilon_3, \epsilon_4 \sim \mathcal{N}(0, 1)$; all noise terms ϵ_j are indep.
- Fitting a linear model yields $\hat{f}(\mathbf{x}) \approx 0.3x_1 0.3x_2 + x_3$

Hexbin plot of (x_1, x_2) before (left) and after (center) permuting x_1 ; PFI scores (right).

- $\Rightarrow x_1, x_2$ cancel in \hat{t} since $x_1 \approx x_2$, hence $0.3x_1 0.3x_2 \approx 0$ \Rightarrow should be irrelevant
- \Rightarrow Permuting x_1 breaks joint structure \rightsquigarrow unrealistic inputs
- \Rightarrow *PFI* > 0 due to extrapolation (PFI evaluates model on unrealistic inputs)
 - $\rightarrow x_1, x_2$ are misleadingly considered relevant

COMMENTS ON PFI - INTERACTIONS

Example: Let x_1, \ldots, x_4 be independently and uniformly sampled from $\{-1, 1\}$ and

$$y := x_1x_2 + x_3 + \epsilon_Y \text{ with } \epsilon_Y \sim N(0,1)$$

Fitting a LM yields $\hat{f}(x) \approx x_1 x_2 + x_3$.

COMMENTS ON PFI - INTERACTIONS

Example: Let $x_1, ..., x_4$ be independently and uniformly sampled from $\{-1, 1\}$ and

$$y := x_1x_2 + x_3 + \epsilon_Y \text{ with } \epsilon_Y \sim N(0,1)$$

Fitting a LM yields
$$\hat{f}(x) \approx x_1 x_2 + x_3$$
.

Although x_3 alone contributes as much to the prediction as x_1 and x_2 jointly, all three are considered equally relevant.

 \Rightarrow PFI does not fairly attribute the performance to the individual features.

COMMENTS ON PFI - TRAIN VS. TEST DATA

Example:

- x_1, \ldots, x_{20}, y are independently sampled from $\mathcal{U}(-10, 10)$
- Train set: n = 50 (intentionally small) and large test set
- Model: xgboost with default settings (overfits strongly)

Observation:

- PFI on train data highlights features that the model overfitted to.
- PFI on test data detects no relevant features.

COMMENTS ON PFI - TRAIN VS. TEST DATA

Example:

- x_1, \ldots, x_{20}, y are independently sampled from $\mathcal{U}(-10, 10)$
- Train set: n = 50 (intentionally small) and large test set
- Model: xgboost with default settings (overfits strongly)

Observation:

- PFI on train data highlights features that the model overfitted to.
- PFI on test data detects no relevant features.

Why? $PFI \neq 0$ if permuting a feature breaks a dependency the model relies on. Model overfits due to spurious feature-target dependencies in train that vanish on test.

⇒ To find features that help the model to generalize, compute PFI on test data.

IMPLICATIONS OF PFI

Can we get insight into whether the ...

- feature x_j is causal for the prediction?
 - $PFI_j \neq 0 \Rightarrow$ model relies on x_j
 - As the train vs. test data example shows, the converse does not hold

IMPLICATIONS OF PFI

Can we get insight into whether the ...

- feature x_i is causal for the prediction?
 - $PFI_i \neq 0 \Rightarrow$ model relies on x_i
 - As the train vs. test data example shows, the converse does not hold
- 2 feature x_i contains prediction-relevant information?
 - $PFI_i \neq 0 \Rightarrow x_i$ is dependent on y, x_{-i} , or both (due to extrapolation)
 - x_j is not exploited by model (regardless of its usefulness for y)
 ⇒ PFI_i = 0

IMPLICATIONS OF PFI

Can we get insight into whether the ...

- feature x_i is causal for the prediction?
 - $PFI_j \neq 0 \Rightarrow$ model relies on x_j
 - As the train vs. test data example shows, the converse does not hold
- **2** feature x_j contains prediction-relevant information?
 - $PFI_j \neq 0 \Rightarrow x_j$ is dependent on y, x_{-j} , or both (due to extrapolation)
 - x_j is not exploited by model (regardless of its usefulness for y)
 ⇒ PFI_i = 0
- \odot model requires access to x_i to achieve it's prediction performance?
 - As shown by the extrapolation example, such insight is not possible

