1 Marche de Gröbner

On suppose que nous avons une base de Gröbner marquée G_{old} pour un ordre $<_{M_{old}}$ et on cherche à calculer la base de Gröbner marquée pour un ordre $<_{M_t}$. On va alors se déplacer dans l'éventail de Gröbner, de la première ligne w_{old} de M_{old} vers la première ligne w_t de M_t . On cherche à savoir comment la base change lorsqu'on passe d'un cône de l'éventail à l'autre.

1.1 Calcul du dernier point dans le cône $C_{G_{old}}$.

Soit le segment de ligne reliant w_{old} et w_t : $(1-u)w_{old}+uw_t$ pour $u\in[0,1]$. On cherche à trouver le dernier point sur cette ligne à l'intérieur du cône $C_{G_{old}}$. On note ce point w_{new} . Soit $G_{old}=\{x^{\alpha(i)}+\sum_{i,\beta}c_{i,\beta}x^{\beta}:1\leq i\leq t\}$, où pout tout $i,\,x^{\alpha(i)}$ est le terme dominant par rapport à l'ordre $>_{M_{old}}$. On note v_1,\ldots,v_m les vecteurs $\alpha(i)-\beta$, pour tout $1\leq u\leq t$ et $c_{i,\beta}\neq 0$. Alors, w_{new} est le vecteur

$$w_{new} = (1 - u_{last})w_{old} + u_{last}w_t,$$

où u_{last} est calculé par l'algorithme suivant :

Algorithm 1

```
Require: w_{old}, w_t, v_1, \ldots, v_m
Ensure: u_{last}

1: u_{last} \leftarrow 1

2: for j = 1, \ldots m do

3: if w_t \cdot v_j < 0 then u_j \leftarrow \frac{w_{old} \cdot v_j}{w_{old} \cdot v_j - w_t \cdot v_j}

4: if u_j < u_{last} then u_{last} \leftarrow u_j

5: end if

6: end for
```

L'idée dernier cet algorithme est que le point $(1-u)w_{old} + uw_t$ est dans $C_{G_{old}}$ si et seulement si

$$(1-u)(w_{old} \cdot v_j) + u(w_t \cdot v_j) \ge 0, \quad 1 \le j \le m.$$
 (1)

Si $w_t \cdot v_j \geq 0$ alors (1) est vraie pour tout $u \in [0,1]$. De l'autre côté, si $w_t \cdot v_j < 0$, alors u_j nous donne la plus grande valeur de u tel que (1) est vraie pour ce j particulier car $(1-u_j)(w_{old} \cdot v_j) + u_j(w_t \cdot v_j) = 0$.

1.2 Rappel sur la notion w-poids

Soit $w = (w_1, \dots, w_n) \in \mathbb{R}^n_+$ et soit $t = ax_1^{i_1} \cdots x_n^{i_n}$ un terme dans $k[x_1, \dots, x_n]$. Le w-poids de t est donné par

$$i_1 \cdot w_1 + \cdots + i_n \cdot w_n$$
.

Pour un polynôme $f \neq 0$ on définit $in_w(f)$ comme étant la somme des termes de f de w-poids maximal.

2 Exercice 14.3.1

Soit

$$I = \langle x^2 + y^2 - 1, x + 2y \rangle.$$

Effectuer une marche de Gröbner pour convertir la base de Gröbner marquée pour l'ordre lex avec x > y en celle pour l'ordre lex avec y > x.

Correction. La base de Gröbner marquée de I pour l'ordre lex sera notée G_{old} :

$$G_{old} = \{\underline{x} + 2y, \underline{y^2} - \frac{1}{5}\}$$

On note:

- $M_{old} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, la matrice correspondant à l'ordre lex avec x > y.
- $M_t = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, la matrice correspondant à l'ordre lex, avec y > x.
- $w_{old} = (1,0)$ (resp. $w_t = (0,1)$), la première ligne de M_{old} (resp. de M_t).

On peut remarquer ici que la matrice M_{old} donne le même ordre que la matrice $\begin{pmatrix} w_{old} \\ M_t \end{pmatrix}$.

- 1. On utilise maintenant l'algorithme 1 pour calculer le dernier point dans le cône $C_{G_{old}}$:
 - $(\underline{x} + 2y) \Rightarrow v_1 = (1,0) (0,1) = (1,-1) \Rightarrow v_1 \cdot w_t = (1,-1)(0,1) = -1 < 0.$
 - $(y^2 \frac{1}{5}) \Rightarrow v_2 = (0, 2) (0, 0) = (0, 2) \Rightarrow v_2 \cdot w_t = (0, 2)(0, 1) = 2 > 0.$

Pour j = 1, et puisque $w_{old} \cdot v_1 = (1,0) \cdot (1,-1) = 1$, on obtient $u_1 = \frac{w_{old} \cdot v_1}{w_{old} \cdot v_1 - w_t \cdot v_1} = \frac{1}{2}$.

Par conséquent, $w_{new} = (1 - u_{last})w_{old} + u_{last}w_t = \frac{1}{2}w_{old} + \frac{1}{2}w_t = (\frac{1}{2}, \frac{1}{2}).$

- 2. On calcule maintenant l'ensemble $in_{w_{new}}(G_{old})=in_{(\frac{1}{2},\frac{1}{2})}(x+2y,y^2-\frac{1}{5})=(x+2y,y^2)$.
- 3. On calcule la base de Gröbner de l'idéal généré par $in_{w_{new}}(G_{old})$, H, pour l'ordre donné par $\begin{pmatrix} w_{new} \\ M_t \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 \\ 0 & 1 \end{pmatrix}$:

$$H = \{y + \frac{1}{2}x, x^2\}.$$

4. On écrit chaque polynôme h_j dans H comme

$$h_j = \sum_{g \in G_{old}} P_{j,g} \cdot in_{w_{new}}(g).$$

De cette façon on obtient que

- $y + \frac{1}{2}x = \frac{1}{2} \cdot (x + 2y) + 0 \cdot (y^2)$
- $x^2 = (x 2y) \cdot (x + 2y) + 4 \cdot (y^2)$

On calcule maintenant pour tout j:

$$\overline{h_j} = \sum_{g \in G_{old}} P_{j,g} \cdot g,$$

ce que nous donne

•
$$\overline{h_1} = \frac{1}{2} \cdot (x+2y) + 0 \cdot (y^2 - \frac{1}{5}) = \frac{1}{2}x + y$$

•
$$\overline{h_2} = (x - 2y) \cdot (x + 2y) + 4 \cdot (y^2 - \frac{1}{5}) = x^2 - \frac{4}{5}$$

On note $G_{new}=\{y+\frac{1}{2}x,x^2-\frac{4}{5}\}$ qui est une base de Gröbner pour $<_{M_{new}}$. On vérifie que G_{new} est G_t et que donc la conversion est réussie.

3 Exercice 14.3.2

Soit

$$I = \langle x^3 - y, x + y^3 + 1 \rangle.$$

Effectuer une marche de Gröbner pour convertir la base de Gröbner marquée pour l'ordre lex avec x > y en celle pour l'ordre lex avec y > x.

Correction. La base de Gröbner marquée de I pour l'ordre lex sera notée G_{old} :

$$G_{old} = \{\underline{x} + y^3 + 1, \underline{y}^9 + 3y^6 + 3y^3 + y + 1\}$$

On note:

- $M_{old} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, la matrice correspondant à l'ordre lex avec x > y.
- $M_t = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, la matrice correspondant à l'ordre lex, avec y > x.
- $w_{old} = (1,0)$ (resp. $w_t = (0,1)$), la première ligne de M_{old} (resp. de M_t).

On peut remarquer ici que la matrice M_{old} donne le même ordre que la matrice $\begin{pmatrix} w_{old} \\ M_t \end{pmatrix}$.

1. On utilise l'algorithme 1 pour calculer le dernier point dans le cône $C_{G_{old}}$. Le seul v_j intéressant est le suivant :

•
$$(\underline{x} + y^3 + 1) \Rightarrow v_1 = (1, 0) - (0, 3) = (1, -3) \Rightarrow v_1 \cdot w_t = (1, -3)(0, 1) = -3 < 0.$$

Puisque $w_{old} \cdot v_1 = (1,0) \cdot (1,-3) = 1$, on obtient $u_1 = \frac{w_{old} \cdot v_1}{w_{old} \cdot v_1 - w_t \cdot v_1} = \frac{1}{4}$.

On pose $u_{last} = u_1$.

Par conséquent, $w_{new}=(1-u_{last})w_{old}+u_{last}w_t=\frac{3}{4}w_{old}+\frac{1}{4}w_t=(\frac{3}{4},\frac{1}{4}).$

- 2. On calcule maintenant l'ensemble $in_{w_{new}}(G_{old}) = in_{(\frac{3}{4},\frac{1}{4})}(x+y^3,y^9+3y^6+3y^3+y+1) = (x+y^3,y^9).$
- 3. On calcule la base de Gröbner de l'idéal généré par $in_{w_{new}}(G_{old})$, H, pour l'ordre donné par $\begin{pmatrix} w_{new} \\ M_t \end{pmatrix} = \begin{pmatrix} 3/4 & 1/4 \\ 0 & 1 \end{pmatrix}$:

$$H = \{y^3 + x, x^3\}.$$

4. On écrit chaque polynôme h_j dans H comme

$$h_j = \sum_{g \in G_{old}} P_{j,g} \cdot in_{w_{new}}(g).$$

De cette façon on obtient que

- $y^3 + x = 1 \cdot (x + y^3) + 0 \cdot (y^9)$
- $x^3 = (y^6 xy^3 + x^2) \cdot (x + y^3) + (-1) \cdot (y^9)$

On peut calculer les coefficients $P_{j,g}$ avec Sage. Par exemple pour ce calcule on fait :

On calcule maintenant pour tout j:

$$\overline{h_j} = \sum_{g \in G_{old}} P_{j,g} \cdot g,$$

ce que nous donne

- $\overline{h_1} = 1 \cdot (x + y^3 + 1) + 0 \cdot (y^9 + 3y^6 + 3y^3 + y + 1) = x + y^3 + 1$
- $\overline{h_2} = (y^6 xy^3 + x^2) \cdot (x + y^3 + 1) + (-1) \cdot (y^9 + 3y^6 + 3y^3 + y + 1) = x^3 2y^6 xy^3 + x^2 3y^3 y 1$

On réduit la base $\{x+y^3+1,x^3-2y^6-xy^3+x^2-3y^3-y-1\}$ pour obtenir $G_{new}=\{x^3-y,y^3+x+1\}$ qui est une base de Gröbner pour $<_{M_{new}}$. Pour cela on peut utiliser Sage :

A.
$$\langle x,y \rangle$$
 = PolynomialRing(QQ, order = matrix(2,[3, 1, 0, 1]))
I = A.ideal(x + y^3 + 1, x^3 - 2*y^6 - x*y^3 + x^2 - 3*y^3 - y - 1)
I.interreduced_basis()

On peut vérifier que la base que nous venons de calculer est la base de I pour l'ordre deglex avec x > y.

On pose maintenant $M_{old}=M_{new}=\begin{pmatrix} 3 & 1 \\ 0 & 1 \end{pmatrix},$ $G_{old}=G_{new}=\{x^3-y,y^3+x+1\}$ et on mets à jour w_{new} en appliquant l'algorithme 1 à $w_{new}=(3,1)$ et $w_t=(0,1)$.

5. •
$$(\underline{x}^3 - y) \Rightarrow v_1 = (3,0) - (0,1) = (3,-1) \Rightarrow v_1 \cdot w_t = (3,-1)(0,1) = -1 < 0.$$

- $(y^3 + x) \Rightarrow v_2 = (0,3) (1,0) = (-1,3) \Rightarrow v_1 \cdot w_t = (-1,3)(0,1) = 3 > 0.$
- $(\underline{y}^3+1) \Rightarrow v_2 = (0,3) (0,0) = (0,3) \Rightarrow v_1 \cdot w_t = (0,3)(0,1) = 3 > 0.$ Seul v_1 est donc intéressant. Puisque $w_{old} \cdot v_1 = (3,1) \cdot (3,-1) = 8$, on obtient $u_1 = \frac{w_{old} \cdot v_1}{w_{old} \cdot v_1 - w_t \cdot v_1} = \frac{8}{9}.$

On pose $u_{last} = u_1$.

Par conséquent, $w_{new} = (1 - u_{last})w_{old} + u_{last}w_t = \frac{1}{9}w_{old} + \frac{8}{9}w_t = (\frac{1}{3}, 1)$. On pose $M_{new} = \begin{pmatrix} w_{new} \\ M_t \end{pmatrix}$ qui donne le même ordre que la matrice carrée $M_{new} = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$.

- 6. On calcule l'ensemble $in_{w_{new}}(G_{old}) = in_{(1,3)}(x^3 y, y^3 + x + 1) = (x^3 y, y^3).$
- 7. On calcule la base de Gröbner de l'idéal généré par $in_{w_{new}}(G_{old})$, H, pour l'ordre donné par $M_{new}=\begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$:

$$H = \{x^9, y - x^3\}.$$

8. On écrit chaque polynôme h_j dans H comme

$$h_j = \sum_{g \in G_{old}} P_{j,g} \cdot in_{w_{new}}(g).$$

De cette façon on obtient que

- $x^9 = (y^2 + x^3y + x^6) \cdot (x^3 y) + 1 \cdot (y^3)$
- $y x^3 = (-1) \cdot (x^3 y) + 0 \cdot (y^3)$

On calcule maintenant pour tout $j:\overline{h_j}=\sum_{g\in G_{old}}P_{j,g}\cdot g$, ce que nous donne

- $\overline{h_1} = (y^2 + x^3y + x^6) \cdot (x^3 y) + 1 \cdot (y^3 + x + 1) = x^9 + x + 1$
- $\overline{h_2} = (-1) \cdot (x^3 y) + 0 \cdot (y^3 + x + 1) = y x^3$

Ici la base est déjà réduite. On note donc $G_{new} = \{y - x^3, x^9 + x + 1\}$ et on voit qu'elle correspond à la base de Gröbner de I pour l'ordre lex avec y > x. La transformation est donc terminée.