Self-Test 2, Page 320

1.
$$\frac{7}{24}$$
 2. $\frac{24}{25}$ 3. $\frac{7}{25}$ 4. $\frac{24}{7}$ 5. 74 6. 74 7. 109 8. 113 9. about 45 m

Chapter Review, Pages 323-324

1. 6 3.
$$5\sqrt{6}$$
 5. $3\sqrt{5}$ 7. $7\sqrt{2}$ 9. acute 11. rt. 13. $5\sqrt{3}$ 15. 16 17. a. 1.5 b. $\frac{2}{3}$ c. 34 19. a. $\frac{12}{13}$ b. $\frac{12}{13}$ c. 67 21. 57 23. 23

Preparing for College Entrance Exams, Page 326

Cumulative Review, Page 327

1. Seg. Add. Post. 3. corollary 5. contrapositive 7. $1:\sqrt{2}$ 9. a. If a \triangle is equiangular, then it is isos. b. If a \triangle is isos., then it is equiangular. 11. 36 13. 20 15. Since \overline{AX} is a median, $\overline{BX} \cong \overline{CX}$. Since \overline{AX} is an altitude, $\angle AXB \cong \angle AXC$. Thus, $\triangle AXB \cong \triangle AXC$ (SAS) and $\overline{AB} \cong \overline{AC}$ (CPCT). By def., $\triangle ABC$ is isos. 17. 1. $\angle WXY \cong \angle XZY$ (Given) 2. $\angle Y \cong \angle Y$ (Reflex.) 3. $\triangle XYW \sim \triangle ZYX$ (AA \sim) 4. $\frac{XY}{ZY} = \frac{WY}{XY}$ or $(XY)^2 = WY \cdot ZY$ (Corr. sides of $\sim \triangle$ are in prop.)

Chapter 9

Written Exercises, Pages 330-331

1. The midpts. lie on a diam. \bot to the given chords.

3. b. It is equidist. from the vertices. c. at the midpt. of the hyp. d. 5

5. 8, 22

9. 15. $12\sqrt{3}$ 17. a. rhom.; $\bigcirc Q \cong \bigcirc R$ so \overline{QC} ,

3. b. It is equidist. from the vertices. c. at the midpt.

13. 24 15. $12\sqrt{3}$ 17. a. rhom.; $\bigcirc Q \cong \bigcirc R$ so \overline{QC} , \overline{QD} , \overline{RC} , and \overline{RD} are \cong . b. Diags. of rhom. are \bot bis. of each other. c. 16 19. $4\sqrt{6}$

Extra, Page 332

1. 4 odd, 1 even; cannot be traced 3. 2 odd, 6 even; can be traced 5. There are more than 2 odd vertices.

Written Exercises, Pages 335-337

1. 8 3. 12 5. 8.2 7. a. $\overline{AB} \cong \overline{CD}$ Proof: 1. Draw \overline{AB} and \overline{CD} int. at \overline{Z} . (Through any 2 pts. there is ex. 1 line.) 2. $\overline{ZA} + \overline{AB} = \overline{ZB}$; $\overline{ZC} + \overline{CD} = \overline{ZD}$ (Seg. Add. Post.) 3. $\overline{ZB} = \overline{ZD}$ (Thm. 9-1 Cor.) 4. $\overline{ZA} + \overline{AB} = \overline{ZC} + \overline{CD}$ (Subst.) 5. $\overline{ZA} = \overline{ZC}$ (Thm. 9-1 Cor.) 6. $\overline{AB} \cong \overline{CD}$ (Subtr. Prop. =) b. Yes 9. a. square; $\overline{XZ} \perp \overline{OX}$, so $\overline{XZ} \parallel \overline{OY}$. Similarly, $\overline{ZY} \parallel \overline{OX}$, so \overline{OXZY} is a rect. Since $\overline{OX} = \overline{OY}$, \overline{OXZY} is a square. b. $5\sqrt{2}$ 11. $\overline{AR} \perp \overline{RS}$ and $\overline{BS} \perp \overline{RS}$ (Thm. 9-1) so $\overline{AR} \parallel \overline{BS}$. Then $\overline{ZA} \cong \overline{ZB} \cong \overline{ZD}$ (Subst.) 6. $\overline{ZB} \cong \overline{ZD} \cong \overline{ZD$

Mixed Review Exercises, Page 337

1. 15 2. $9\sqrt{2}$ 3. $2\sqrt{7}$