CSE 100 Advanced Data Structures

Homework 1

Fall 2018

Instructors: Leo Porter (Sec. A)

& Debashis Sahoo (Sec. B)

Due on: Tuesday 16 October (24 points)

ame:			PID:	Date: 10 /	/ 2018
nstruc	tions				
res	swer each problem in the boxes conses recorded on separate sho ndwritten or typed responses ar responses must be neat and legi	eets. e accepted. In either case, n	nake sure all answers a	_	
-	oints - Correctness) <i>BST Inser</i> ence of keys into an initially em	•	search tree created by	inserting the following	5
(a)	Draw the tree T .	12, 4, 17, 8, 15, 16, 23	3, 42, 13, 21		
(b)	Find another sequence (differen	nt from the one above) that	results in exactly the s	same tree as T .	
(c)	True or False It is always pos (Answer with <u>T for true</u> , or <u>F</u>		sequence that resulted	d in a binary tree.	
(d)	What's the expected (average) We're not looking for a generic comparison to find an element simplify your work.	expression: your work will	involve adding up frac	tions. Assume it takes	one

		1			
2. (4 points - Correctness)	BST Deletions.	. Use the BST give	n below to answer e	each of the que	stions independently.

(a) Draw the above binary search tree after removing ${\bf D}.$

	oints - Correctness) K - d $Trees$. Let T be the 2- d tree built from the following sequence of points with (x,y) dinates: $(8,2)$; $(6,4)$; $(5,7)$; $(10,6)$; $(13,7)$; $(2,1)$; $(12,5)$
(a)	Draw the tree T , using the typical visualization scheme for binary trees – i.e. do not draw a K -d tree grid. Make sure to include the coordinates of the nodes, as seen in lecture (i.e. root should be a circle with (8,2) inside it).
ሌ)	Now, say we're querying for the nearest neighbor of point (12, 6.1) . Assume a <i>recursive</i> method findNN exists
ָנט	with all the necessary arguments to recursively find the nearest neighbor.
	How many nodes in the tree are evaluated as potential nearest neighbors of (12, 6.1)?
	Make sure to include the root node in your calculations. We only care about concrete nodes,
	recursive calls of findNN on null nodes don't matter.
	recursive calls of findNN on null nodes don't matter. e.g. findNN((6,4),) looks at 2 nodes (the root node (8,2), and (6,4)). findNN((14,5),) returns (12,5) after evaluating 4 nodes as potential nearest neighbors: (8,2), (10,6), (12,5) and (13,7).
(c)	e.g. findNN((6,4),) looks at 2 nodes (the root node (8,2), and (6,4)). findNN((14,5),) return (12,5) after evaluating 4 nodes as potential nearest neighbors: (8,2), (10,6), (12,5) and (13,7). Finally, derive the <i>worst case</i> time complexity of the <i>build tree</i> operation shown in lecture (BuildRecurse),
(c)	e.g. findNN((6,4),) looks at 2 nodes (the root node (8,2), and (6,4)). findNN((14,5),) returns (12,5) after evaluating 4 nodes as potential nearest neighbors: (8,2), (10,6), (12,5) and (13,7). Finally, derive the <i>worst case</i> time complexity of the <i>build tree</i> operation shown in lecture (BuildRecurse), findly derive the with n points known a priori. Your result should be a function of n and n and n and n and n and n are tighter that
(c)	e.g. findNN((6,4),) looks at 2 nodes (the root node (8,2), and (6,4)). findNN((14,5),) returns (12,5) after evaluating 4 nodes as potential nearest neighbors: (8,2), (10,6), (12,5) and (13,7). Finally, derive the <i>worst case</i> time complexity of the <i>build tree</i> operation shown in lecture (BuildRecurse), for building a K-d tree with n points known a priori. Your result should be a function of n and n
(c)	e.g. findNN((6,4),) looks at 2 nodes (the root node (8,2), and (6,4)). findNN((14,5),) returns (12,5) after evaluating 4 nodes as potential nearest neighbors: (8,2), (10,6), (12,5) and (13,7). Finally, derive the <i>worst case</i> time complexity of the <i>build tree</i> operation shown in lecture (BuildRecurse), for building a K-d tree with n points known a priori. Your result should be a function of n and n
(c)	e.g. findNN((6,4),) looks at 2 nodes (the root node (8,2), and (6,4)). findNN((14,5),) returns (12,5) after evaluating 4 nodes as potential nearest neighbors: (8,2), (10,6), (12,5) and (13,7). Finally, derive the <i>worst case</i> time complexity of the <i>build tree</i> operation shown in lecture (BuildRecurse), for building a K-d tree with n points known a priori. Your result should be a function of n and n and n and n and n are tighter than
(c)	e.g. findNN((6,4),) looks at 2 nodes (the root node (8,2), and (6,4)). findNN((14,5),) returns (12,5) after evaluating 4 nodes as potential nearest neighbors: (8,2), (10,6), (12,5) and (13,7). Finally, derive the <i>worst case</i> time complexity of the <i>build tree</i> operation shown in lecture (BuildRecurse), for building a K-d tree with n points known a priori. Your result should be a function of n and n and n and n and n are tighter than

4. (4 points - **Completeness**) *Lookup with BST*. You may have realized by now that BSTs are great for implementing lookup structures. As such, in this question, we wish to implement a Set using Binary Search Trees. You can assume you have a **bst** container with methods to support search, insert, delete and traverse. Given below are the headers to a C++ Set class and the bst container (implementation details omitted):

```
template <class T>
class Set {
  private:
    // standard BST implementation
    bst<T> *tree;
  public:
    Set() {
      tree = new bst<T>();
    }

    // insert will add an element to the BST
    // if the BST does not already contain it
    // returns: true if inserted,
    // false if already in tree
    bool insert(const T& value);
};
```

```
template <class T>
class bst {
  /* member variables, etc */
public:
    // returns true if found, false if not
    bool search(const T& value);

    // overwrites if duplicate
    void insert(const T& value);

    // true if deleted, false if not
    bool delete(const T& value);

    // values from in-order traversal
    vector<T> traverse();
};
```

Write the implementation of the insert method below.

5. (6 points - **Completeness**) *Invariant of a BST*. As seen in lecture, a binary search tree is a data structure in which all nodes have *at most two children*, and for which the following *invariant* must hold: the left descendents of any node are of *lesser* value than such node, whereas its right descendents are of *greater* value (duplicates not allowed in this case). Given the following TreeNode definition:

Implement the isBST function below. You may assume that T overloads all comparison operators, and feel free to define a helper method.

```
/* all necessary includes */
template <class T> // functions can also be templated how cool is that!
bool isBST(const TreeNode<T> * node)
```