MIDA 1

Prediction

1. Introduction

- Prediction problem, prediction error
- Transfer function, zeros and poles
- Random Variable v: $\mathbb{E}[v]$, Var(v)
- Random Vector \underline{v} : $\mathbb{E}[\underline{v}]$, $Var(\underline{v})$, ρ
- Random/Stochastic Process v(t): $\mathbb{E}[v(t,s)], Var(v(t)), \gamma(t_1,t_2)$
- Stationary Process
- White Noise (i.e. Unpredictable Signal)

2. MA, AR and ARMA Processes

- MA(n): Moving Average Process
 - $\rightarrow \mathbb{E}[v(t)], Var(v(t)), \gamma(\tau)$
 - \rightarrow Dynamic representation
 - \rightarrow MA(n) vs. White Noise
 - $\rightarrow MA(\infty)$
- AR(n): Autoregressive Process
 - $\rightarrow AR(1)$ as $MA(\infty)$
 - $\rightarrow AR(n)$ vs. MA(n)
 - $\rightarrow \gamma(\tau)$: Yule-Walker equations
- ARMA (n_a, n_c)

3. Frequency Domain

- Spectral representation: real spectrum $\Gamma(\omega)$, complex spectrum $\phi(z)$
- Anti-transform formula
- Fundamental theorem of spectral analysis (magic formula in real and complex form)
- ARMA process: dynamical representation (long division and interpretation of coefficients w_i)
- ARMA process: multiplicity of representations
- Canonical representation

4. Prediction

- Fake problem (knowing the past of η)
- Real problem (knowing the past of v)
- Prediction for MA(1), AR(1), ARMA(n_a , n_c)
- Exogenous variables: ARX, ARMAX

Identification

5. PEM (Prediction Error Minimization) methods

- LS (Least Squares) identification method
- Identifiability: invertibility of S(N) and R(N)
- Persisten excitation
- Uniqueness of estimation
- ML (Maximum Likelihood) method
- Asymptotic analysis of PEM methods: performance of identification models
- Asymptotic behaviour of PEM
- LS estimate procedure

6. Model Complexity Selection

- Naive approach
- FPE (Final Prediction Error)
- AIC (Akaike Information Criteria)
- AIC vs. FPE
- MDL (Minimum Description Length)

7. Durbin Levinson Algorithm

- Recursion from AR(n) to AR(n+1)
- 8. Time Series Analysis
- 9. Recursive identification methods

MIDA 2

Chapter 1

Non-parametric (direct/constructive) black box identification of I/O systems using state-space models.

- Representations:
 - 1. State space
 - 2. Transfer function (I/O)
 - 3. Convolution of input and input resposne (IR)
- Change of representation (*)
- Observability, controllability of a dynamical system
- (*) 4SID method (without/with noisy meas. of IR)

Chapter 2

Parametric identification of black box I/O systems with a frequency domain approach.

- Parametric system identification:
 - Step 1: Frequency domain dataset
 - Step 2: Model class selection $M(\theta)$
 - Step 3: Performance index $J(\theta)$
 - Step 4: Optimization $\hat{\theta}$

Chapter 3

Kalman filter for software sensing using feedback on white box models.

- Motivations and goals of Kalman filter theory
- Software sensing
- Basic system
- KF for the basic solution of the basic system
- Block scheme representation of KF
- Extensions of basic problem of basic systems:
 - 1. Exogenous input
 - 2. Multi-step prediction
 - 3. Filter 11
 - 4. Time-varying system
 - 5. Non-linear systems (*)
- Asymptotic solution of KF: 1^{st} and 2^{nd} asymptotic theorems
- (*) Extension of KF to non-linear systems

Chapter 4

Black box methods for softw. sensing without feedback.

- Black box estimate of $\hat{x}(t)$ from y(t), u(t)
- Black box software sensing vs. KF software sensing
- Architectures: 4 types of

Chapter 5

Gray-box system identification (1) using Kalman filter, (2) using simulation error methos (SEM).

- Gray-box system identification using KF
- Parametric system identification based on SEM
- SEM in black box methods: PEM (prediction error methods) vs. SEM

Chapter 6

Minimum variance control (MVC). Design of optimal feedback controllers using the theoretical background of the MIDA 1 course.

- Setup of the problem
- Simplified problem 1: noise free
- Simplified problem 2: with noise
- General solution
- Stability and performance analysis

Appendix

Discretization of an analog system