Robotika in računalniško zaznavanje (RRZ)

Geometrijski model robota

Danijel Skočaj Univerza v Ljubljani Fakulteta za računalništvo in informatiko

Literatura: Tadej Bajd (2006).

Osnove robotike, poglavje 4

v7.0

Geometrijski model robota

- Robotski manipulator = veriga togih segmentov povezanih s sklepi
- Sklep je lahko rotacijski ali translacijski
 - 1DOF 1 spremenljivka

 Geometrijski model robota določa lego (pozicijo in orientacijo) prijemala v odvisnosti od spremenljivk sklepov

Geometrijski model robota

Geometrijski model izrazimo s homogeno transformacijo:

$$\mathbf{T}^{o}(\mathbf{q}) = \begin{bmatrix} \mathbf{n}^{o}(\mathbf{q}) & \mathbf{s}^{o}(\mathbf{q}) & \mathbf{a}^{o}(\mathbf{q}) & \mathbf{p}^{o}(\mathbf{q}) \\ 0 & 0 & 1 \end{bmatrix}$$

- p: pozicija prijemala v referenčnem koordinatnem sistemu
- n, s, a : enotski vektorji k.s. na prijemalu (vrha robota):
 - **a**: approach
 - s: sliding
 - **n**: normal
- q : vektor s spremenljivkami sklepov

Lege koordinatnih sistemov segmentov

- Vsak sklep povezuje dva zaporedna segmenta
 - Določimo zvezo med dvema segmentoma in potem rekurzivno zgradimo celoten model
- Koordinatne sisteme lahko poljubno postavljamo na posamezne segmente
- Denavit Hartenbergova pravila poenostavijo računanje geometrijskega modela robota
 - Določimo lego i-tega k.s. glede na lego (i-1). k.s.
 - Os i povezuje segmenta (i-1) in i

Denavit - Hartenbergova pravila

- Opiši koordinatni sistem i-tega segmenta (s sklepom i+1):
- 1. Izberi os z_i vzdolž osi sklepa (i+1)
- 2. Poišči skupno normalo na osi z_{i-1} in z_i
 - Postavi izhodišče O_i na presečišče osi z_i s skupno normalo
 - Postavi izhodišče O_i na presečišče osi z_{i-1} s skupno normalo
 - Če sta osi vzporedni, postavi izhodišče kamorkoli
- Postavi os x_i na skupno normalo, tako, da je usmerjena od sklepa i k sklepu i+1
 - Če se osi z_{i-1} in z_i sekata, postavimo os x_i pravokotno na ravnino, ki jo določata osi z_{i-1} in z_i
- 4. Izberi os y_i tako, da dobiš desnosučni k.s.
- Na podoben način opišemo (oz. smo že opisali) koordinatni sistem segmenta (i-1)
 - Izhodišče O_{i-1} je določeno s presečiščem skupne normale na osi i-1 in i
 - Os z_{i-1} poteka vzolž i-te osi sklepa
 - Os x_{i-1} poteka vzdolž skupne normale od sklepa i-1 proti sklepu i

Grafična ponazoritev DH zapisa

- Lega i-tega k.s. glede na (i-1). k.s. je določena s 4 parametri:
 - 1. (a_i) razdalja med O_i in O_i vzdolž osi x_i
 - 2. (d_i) razdalja med O_{i-1} in O_{i} vzdolž osi z_{i-1}
 - 3. a_i kot med osema z_{i-1} in z_i okrog x_i
 - 4. (θ_i) kot med osema x_{i-1} in x_i okrog osi z_{i-1}

Grafična ponazoritev DH parametrov

- a_i in a_i sta vedno konstantna
 - Odvisna sta od geometrije in povezav med sklepoma, ki povezujeta i-ti segment
 - Se ne spreminjata med delovanjem robota
- Od ostalih dveh parametrov je le en spremenljivka
 - Θ_i, če je i-ti sklep rotacijski
 - d_i, če je i-ti sklep translacijski

- Drugi pogled
 - r=a
 - n=i

Video:

http://en.wikipedia.org/wiki/Denavit-Hartenberg_Parameters

Izjeme

- Nekatere nedoločenosti in izjeme lahko izkoristimo, da postopek poenostavimo:
 - Osi z_i in z_{i-1} sta vzporedni -> d_i=0
 - Osi z_i in z_{i-1} se sekata -> O_i je v presečišču
 - V primeru baznega (0-tega) segmenta: določena je le os z₀
 - -> postavi izhodišče O₀ v prvi sklep
 - -> poravnaj x₀ in x₁
 - V primeru vrha robota (n-ti k.s.):
 določena je samo os x_n pravokotna na z_{n-1},
 - -> z_n naj bo vzporeden z z_{n-1}
 - Če imamo translacijski sklep:
 - -> smer osi z_{i-1} vzdolž translacije
 - -> O_{i-1} postavimo na začetek translacije

Denavit - Hartenbergova transformacija

- Transformacija med i-tim k.s. in (i-1)-im k.s.:
- 1. Izberi koordinatni sistem povezan s segmentom (i-1) O_{i-1}
- 2. Premakni ga za d_i in zavrti za Θ_i vzdolž in okrog z_{i-1} , da se poravna s k.s. O_i
- Premakni k.s. O_i za a_i in ga zavrti za α_i vzdolž in okrog x_i, da se poravna z O_i
- 4. DH transformacijo dobimo s postmultiplikacijo obeh transformacij
 - funkcija ene spr.:
 - Θ_i za rotacijski sklep
 - d_i za translacijski sklep

$$\mathbf{A}_{i'}^{i-1} = \begin{bmatrix} c\theta_i & -s\theta_i & 0 & 0 \\ s\theta_i & c\theta_i & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A}_{i}^{i'} = \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & c\alpha_{i} & -s\alpha_{i} & 0 \\ 0 & s\alpha_{i} & c\alpha_{i} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Izračun geometrijskega modela

- 1. Postavi koordinatne sisteme za vse segmente
- 2. Napiši tabelo DH parametrov a_i , d_i , α_i in θ_i za i=1,2,...,n
- 3. Izračunaj DH transformacije $A_i^{i-1}(q_i)$ za i=1,2,...,n
- 4. Izračunaj geometrijski model: $\mathbf{T}_n^o(\mathbf{q}) = \mathbf{A}_1^o(q_1) \cdot \mathbf{A}_2^1(q_2) \cdots \mathbf{A}_n^{n-1}(q_n)$

Uporaba geometrijskega modela

- Geometrijski model robota določa lego (pozicijo in orientacijo) prijemala v odvisnosti os spremenljivk sklepov q
- Poda lego koordinatnega sistema n glede na osnovni koordinatni sistem

Antropomorfni robotski manipulator

Antropomorfni robotski manipulator

Segment	\mathbf{a}_{i}	α_{i}	d_{i}	$\theta_{\rm i}$
1	0	$\pi/2$	0	θ_1
2	a_2	0	0	θ_2
3	\mathbf{a}_3	0	0	θ_3

$$\mathbf{A}_{i}^{i-1}(q_{i}) = \begin{bmatrix} c\theta_{i} & -s\theta_{i}c\alpha_{i} & s\theta_{i}s\alpha_{i} & a_{i}c\theta_{i} \\ s\theta_{i} & c\theta_{i}c\alpha_{i} & -c\theta_{i}s\alpha_{i} & a_{i}s\theta_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A}_{1}^{o}(\theta_{1}) = \begin{bmatrix} c_{1} & 0 & s_{1} & 0 \\ s_{1} & 0 & -c_{1} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A}_{1}^{o}(\theta_{1}) = \begin{bmatrix} c_{1} & 0 & s_{1} & 0 \\ s_{1} & 0 & -c_{1} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{A}_{i}^{i-1}(\theta_{1}) = \begin{bmatrix} c_{i} & -s_{i} & 0 & a_{i}c_{i} \\ s_{i} & c_{i} & 0 & a_{i}s_{i} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad i=2,3$$

$$\mathbf{T}_{3}^{o}(\mathbf{q}) = \mathbf{A}_{1}^{o} \cdot \mathbf{A}_{2}^{1} \cdot \mathbf{A}_{3}^{2} = \begin{bmatrix} c_{1}c_{23} & -c_{1}s_{23} & s_{1} & c_{1}(a_{2}c_{2} + a_{3}c_{23}) \\ s_{1}c_{23} & -s_{1}s_{23} & -c_{1} & s_{1}(a_{2}c_{2} + a_{3}c_{23}) \\ s_{23} & c_{23} & 0 & a_{2}s_{2} + a_{3}s_{23} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Stanfordski robotski manipulator

Stanfordski robotski manipulator

Segment	a _i	α_{i}	di	$\theta_{\rm i}$
1	0	$-\pi/2$	0	θ_1
2	0	$\pi/2$	d_2	θ_2
3	0	0	d_3	0

$$\mathbf{q} = \left[\theta_1, \theta_2, d_3\right]^T$$

$$\mathbf{A}_{1}^{o}(\theta_{1}) = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{A}_{2}^{1}(\theta_{1}) = \begin{bmatrix} c_{2} & 0 & s_{2} & 0 \\ s_{2} & 0 & -c_{2} & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{A}_{3}^{2}(d_{3}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A}_{2}^{1}(\theta_{1}) = \begin{bmatrix} c_{2} & 0 & s_{2} & 0 \\ s_{2} & 0 & -c_{2} & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A}_{3}^{2}(d_{3}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T}_{3}^{o}(\underline{q}) = \mathbf{A}_{1}^{o} \cdot \mathbf{A}_{2}^{1} \cdot \mathbf{A}_{3}^{2} = \begin{bmatrix} \mathbf{c}_{1} \mathbf{c}_{2} & -\mathbf{s}_{1} & \mathbf{c}_{1} \mathbf{s}_{2} & \mathbf{c}_{1} \mathbf{s}_{2} \mathbf{d}_{3} - \mathbf{s}_{1} \mathbf{d}_{2} \\ \mathbf{s}_{1} \mathbf{c}_{2} & \mathbf{c}_{1} & \mathbf{s}_{1} \mathbf{s}_{2} & \mathbf{s}_{1} \mathbf{s}_{2} \mathbf{d}_{3} + \mathbf{c}_{1} \mathbf{d}_{2} \\ -\mathbf{s}_{2} & 0 & \mathbf{c}_{2} & \mathbf{c}_{2} \mathbf{d}_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Sferično robotsko zapestje

Ponavadi je pričvrščeno na vrh robotske roke

 Vse tri osi rotacijskih sklepov se sekajo v isti točki

$$\mathbf{q} = \left[\theta_4, \theta_5, \theta_6\right]^T$$

Segment	a _i	α_{i}	d_{i}	$\theta_{\rm i}$
4	0	$-\pi/2$	0	θ_4
5	0	π/2	0	θ_5
6	0	0	d_6	θ_6

Sferično robotsko zapestje

Segment	a_i	α_{i}	di	$\theta_{\rm i}$
4	0	$-\pi/2$	0	θ_4
5	0	π/2	0	θ_5
6	0	0	d_6	θ_6

$$\mathbf{q} = \begin{bmatrix} \theta_4 \\ \theta_5 \\ \theta_6 \end{bmatrix}^T$$

$$\mathbf{A}_{4}^{3}(\theta_{4}) = \begin{bmatrix} c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{A}_{5}^{4}(\theta_{5}) = \begin{bmatrix} c_{5} & 0 & s_{5} & 0 \\ s_{5} & 0 & -c_{5} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{A}_{6}^{5}(\theta_{6}) = \begin{bmatrix} c_{6} & -s_{6} & 0 & 0 \\ s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & 1 & d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A}_{5}^{4}(\theta_{5}) = \begin{bmatrix} c_{5} & 0 & s_{5} & 0 \\ s_{5} & 0 & -c_{5} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A}_{6}^{5}(\theta_{6}) = \begin{bmatrix} c_{6} & -s_{6} & 0 & 0 \\ s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & 1 & d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T}_{6}^{3}(\underline{q}) = \mathbf{A}_{4}^{3} \cdot \mathbf{A}_{5}^{4} \cdot \mathbf{A}_{6}^{5} = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{4}c_{5}s_{6} - s_{4}c_{6} & c_{4}s_{5} & c_{4}s_{5}d_{6} \\ s_{4}c_{5}c_{6} + c_{4}s_{6} & -s_{4}c_{5}s_{6} + c_{4}c_{6} & s_{4}s_{5} & s_{4}s_{5}d_{6} \\ -s_{5}c_{6} & s_{5}s_{6} & c_{5} & c_{5}d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Stanfordski manipulator z zapestjem

Stanfordski manipulator z zapestjem

$$\mathbf{p}^{o} = \begin{bmatrix} c_{1}s_{2}d_{3} - s_{1}d_{2} + (c_{1}(c_{2}c_{4}s_{5} + s_{2}c_{5}) - s_{1}s_{4}s_{5})d_{6} \\ s_{1}s_{2}d_{3} + c_{1}d_{2} + (s_{1}(c_{2}c_{4}s_{5} + s_{2}c_{5}) + c_{1}s_{4}s_{5})d_{6} \\ c_{2}d_{3} + (-s_{2}c_{4}s_{5} - c_{2}c_{5})d_{6} \end{bmatrix}$$

$$\mathbf{n}^{o} = \begin{bmatrix} c_{1} \left(c_{2} \left(c_{4} c_{5} c_{6} - s_{4} s_{6} \right) - s_{2} s_{5} c_{6} \right) - s_{1} \left(s_{4} c_{5} c_{6} + c_{4} s_{6} \right) \\ s_{1} \left(c_{2} \left(c_{4} c_{5} c_{6} - s_{4} s_{6} \right) - s_{2} s_{5} c_{6} \right) + c_{1} \left(s_{4} c_{5} c_{6} + c_{4} s_{6} \right) \\ - s_{2} \left(c_{4} c_{5} c_{6} - s_{4} s_{6} \right) - c_{2} s_{5} s_{6} \end{bmatrix}$$

$$\mathbf{s}^{o} = \begin{bmatrix} c_{1} \left(-c_{2} \left(c_{4} c_{5} s_{6} + s_{4} c_{6} \right) + s_{2} s_{5} s_{6} \right) - s_{1} \left(-s_{4} c_{5} c_{6} + c_{4} c_{6} \right) \\ s_{1} \left(-c_{2} \left(c_{4} c_{5} s_{6} + s_{4} c_{6} \right) + s_{2} s_{5} s_{6} \right) + c_{1} \left(-s_{4} c_{5} c_{6} + c_{4} c_{6} \right) \\ s_{2} \left(c_{4} c_{5} s_{6} + s_{4} c_{6} \right) + c_{2} s_{5} s_{6} \end{bmatrix}$$

$$\mathbf{a}^{o} = \begin{bmatrix} c_{1} (c_{2}c_{4}s_{5} + s_{2}c_{5}) - s_{1}s_{4}s_{5} \\ s_{1} (c_{2}c_{4}s_{5} + s_{2}c_{5}) + c_{1}s_{4}s_{5} \\ -s_{2}c_{4}s_{5} + c_{2}c_{5} \end{bmatrix}$$

Inverzni geometrijski model robota

- Geometrijski model robota določa lego prijemala v odvisnosti od spremenljivk sklepov
 - Kako se bo prijemalo premaknilo, če premaknem posamezne segmente za določen kot oz. razdaljo T(q)
 - Lega prijemala je enoumno določena
- Inverzni model pomeni določiti spremenljivke sklepov, ki ustrezajo dani legi prijemala
 - Kako naj premaknemo posamezne segmente, da bo prijemalo prišlo v dano lego
 - Zahteven problem:

q(T)

- Enačbe, ki jih rešujemo so nelinearne
- Rešitev ni enoumno določena
 - Lahko dobimo več rešitev
 - V nekaterih primerih dobimo tudi neskončno rešitev
 - V nekaterih primerih rešitev sploh ni možna
- Pri računanju upoštevamo razne kriterije, ki določijo katera rešitev je optimalna
- Včasih lahko izračunamo analitično rešitev, včasih pa lahko rešitev dobimo le na numerični način