22. März 2022

Gruppe 1

- (1) Geben Sie die Formel für partielle Integration für zwei Funktionen u(x) und v(x) an.
- (2) Bestimmen Sie das Integral

$$\int_0^1 a^x \, \mathrm{d}x.$$

für a = 3.14

Gruppe 2

- (1) Geben Sie die Stammfunktionen für die folgenden Funktionen an.
 - $\alpha f'(x) + g'(x)$ für $\alpha \in \mathbb{R}$
 - $\sin(x)$
 - $\cos(x)$
 - \bullet $\frac{1}{x}$
 - e^{kx} für $k \in \mathbb{R}$
 - K für $K \in \mathbb{R}$
- (2) Bestimmen Sie das Integral

$$\int \frac{1}{\sqrt{x}} + 2\pi \cos(x) \, \mathrm{d}x.$$

Gruppe 3

(1) Gegeben sei ein Polynom vom Grad $n \in \mathbb{N}_{>0}$

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

mit Nullstellen $r_1, r_2, \ldots, r_n \in \mathbb{R}$. Wie kann man das Polynom p(x) als Produkt darstellen?

(2) Bestimmen Sie das Integral

$$\int \frac{(x+1)(x+2)(x+3)}{x^2 + 5x + 6} dx.$$

Gruppe 4

- (1) Geben Sie die Substitutionsregel für Integrale an.
- (2) Bestimmen Sie das Integral

$$\int_0^5 \frac{x}{\sqrt{x^2+2}} \, \mathrm{d}x.$$

Gruppe 5

Ein Kreis in 2D mit Radius R > 0 und Mittelpunkt (0,0) ist gegeben durch

$$S := \{(x, y) \in \mathbb{R}^2 \colon x^2 + y^2 \le R^2\}.$$

Polarkoordinaten ermöglichen die Darstellung

$$S = \{(r\cos\varphi, r\sin\varphi) \colon 0 \le r \le R, 0 \le \varphi < 2\pi\},\$$

welche (nach einigen Rechenschritten) zu einem einfachen Integral führt

$$A := \int_0^{2\pi} \int_0^R r \, \mathrm{d}r \mathrm{d}\varphi.$$

Bestimmen Sie dieses Integral und leiten Sie folglich die bekannte Formel für die Kreisfläche mit Radius R her.

Gruppe 6

Monte Carlo Integration ist ein numerischer Ansatz zur Approximation von Integralen mittels Zufallszahlen. Ein klassisches Beispiel ist die Bestimmung der Fläche eines Kreises mit Radius R > 0. Der Algorithmus sieht wie folgt aus.

- (i) Generiere zwei gleichverteilte Zufallszahlen x und y über das Interval [0, R].
- (ii) Berechne die Distanz r zum ensprechenden Punkt $r^2 = x^2 + y^2$.
- (iii) Teste ob r innerhalb oder außerhalb des Kreises mit Radius R liegt.
- (iv) Falls $r \leq R$ ist der Test ein Treffer. Wenn r > R ist der Test als verfehlt zu werten.
- (v) Nach N Gesamttests kann die Kreisfläche approximiert werden mittels $\frac{N_{\rm hit}}{N}4R^2$.

Hier ist $4R^2$ die Fläche der Box mit Seitenlänge D=2R das den Kreis umschreibt. Verwenden Sie die Vorlage monte_carlo.jl, welche im ZIP mit diesem Dokument vom OLAT geladen wurde und füllen Sie die Lücken aus. Führen Sie das Skript aus, um zu sehen, wie der obige Algorithmus funktioniert.

Figure 1: Monte Carlo Integration für einen Kreis mit Radius R > 0.

22. März 2022

Gruppe 7

Berechnen Sie folgende Integrale:

(1) Bestimmen Sie das Integral

$$\int (e^{x+3} + e^{x-3}) \mathrm{d}x.$$

(2) Bestimmen Sie das Integral

$$\int \frac{23 \cdot \sin(x)}{15 \cdot \tan(x)} \mathrm{d}x.$$

Gruppe 8

Berechnen Sie folgende Integrale:

(1) Bestimmen Sie das Integral

$$\int \frac{1}{4x^{+}4} dx.$$

$$\int \frac{6}{\sqrt{3x}} dx.$$

(2) Bestimmen Sie das Integral

$$\int \frac{6}{\sqrt{3x}} \mathrm{d}x.$$