

Aula 02 – Fundamentos da imagem digital I

Prof. João Fernando Mari

<u>joaofmari.qithub.io</u> joaof.mari@ufv.br

Roteiro

- O olho humano
- Câmera fotográfica
- A imagem digital
- Imagens coloridas RGB
- O espaço de cores RGB
- Aquisição de imagens
- Sensores CCD e padrão de Bayer
- Amostragem
- Efeitos da resolução espacial
- Resolução de intensidade
- Efeitos da resolução de intensidade

O olho humano

O olho humano

O olho humano

Câmera fotográfica - diafragma

Câmera fotográfica - diafragma

Câmera fotográfica - diafragma

Imagem de intensidades (níveis de cinza):

Imagem de intensidades (níveis de cinza):

Imagem colorida (RGB):

Imagem de intensidades (níveis de cinza):

Imagem de intensidades (níveis de cinza):

Imagem de intensidades (níveis de cinza):

60	89	117	140
127	147	160	168
192	198	193	186
209	210	204	197

78	92	75	51
56	70	52	30
36	49	28	3
118	149	80	
108	133	58	
91	124	33	
211	176	81	
202	161	57	
200	158	17	
231	174	83	85
218	155	57	58
214	150	21	11

M linhas N colunas M × N pixels

Imagens coloridas - RGB

Imagens coloridas - RGB

vermelho – R (red)

Imagens coloridas - RGB

vermelho – R (red)

verde – G (green)

Imagens coloridas - RGB

vermelho – R (red)

verde – G (green)

azul – B (blue)

Imagens coloridas - RGB

vermelho – R (red)

verde – G (green)

azul – B (blue)

O espaço de cores RGB

- 8 bits por canal
 - 256 níveis de intensidade
- 24 bits
 - 16.777.216 cores

i(x, y) (em lux ou lúmen/m²)

 $f(x, y) = i(x, y) \times r(x, y)$

900 Dia ensolarado
100 Dia nublado
10 Escritório
0,001 Noite clara

r(x, y)
0,93 Neve
0,80 Parede branca
0,65 Aço inoxidável
0,01 Veludo preto

I : iluminância $0 < i(x,y) < \infty$

R: refletância 0 < r(x,y) < 1

$$I_D = \frac{1}{\Delta^2} \int_{l\Delta}^{(l+1)\Delta} \int_{c\Delta}^{(c+1)\Delta} I_c(\rho, \chi) \delta \rho \delta \chi$$

Baseado em: Alan Peters, 2019

Imagem RGB contínua

Imagem RGB contínua

Imagem RGB contínua

Imagem R contínua

Imagem G contínua

Imagem B contínua

Amostragem do canal R

Imagem RGB contínua Imagem R contínua Imagem G contínua Imagem B contínua

Amostragem do canal G

Amostragem do canal G

Amostragem do canal G

Imagem em níveis de cinza continua

Imagem em níveis de cinza continua

Amostragem da imagem em níveis de cinza

Imagem em níveis de cinza continua

Amostragem da imagem em níveis de cinza

Imagem em níveis de cinza discreta (amostrada)

Efeitos da resolução espacial

1,7 pol

300 ppi – 512 x 512

1,7 pol. a 150 ppi – 256 x 256

1,7 pol. a ~38 ppi – 64 x 64

1,7 pol. a 75 ppi – 128 x 128

1,7 pol. a 19 ppi – 32 x 32

Efeitos da resolução espacial

1,7 pol. 512 x 512 pixels 300 ppi

0,85 pol. 256 x 256 pixels 300 ppi

0,43 pol. 128 x 128 pixels 300 ppi

0,21 pol. 64 x 64 pixels 300 ppi

0,11 pol. 32 x 32 pixels 300 ppi

Resolução de intensidade

Resolução de intensidade

Efeitos da resolução de intensidade

4 bits. 2⁴ = 16 níveis de cinza

7 bits. 2^7 = 128 níveis de cinza

3 bits. $2^3 = 8$ níveis de cinza

6 bits. $2^6 = 64$ níveis de cinza

2 bits. $2^2 = 4$ níveis de cinza

5 bits. $2^5 = 32$ níveis de cinza

1 bit. 21 = 2 níveis de cinza

Bibliografia

- MARQUES FILHO, O.; VIEIRA NETO, H. Processamento digital de imagens. Brasport, 1999.
 - Disponível para download no site do autor (Exclusivo para uso pessoal)
 - http://dainf.ct.utfpr.edu.br/~hvieir/pub.html
 - Seção 2.1
- GONZALEZ, R.C.; WOODS, R.E.; Processamento Digital de Imagens. 3ª edição. Editora Pearson, 2009.
 - Seções 2.1, 2.2, 2.3 e 2.4
- Alan Peters. Lectures on Image Processing. Vanderbilt University, 2019.
 - https://archive.org/details/Lectures_on_Image_Processing
- J. E. R. Queiroz, H. M. Gomes. Introdução ao Processamento Digital de Imagens. RITA. v. 13, 2006.
 - http://www.dsc.ufcg.edu.br/~hmg/disciplinas/graduacao/vc-2016.2/Rita-Tutorial-PDI.pdf
 - Seção 2

Bibliografia complementar

- Felipe Arruda. Vídeo explica como funciona o sensor CCD das câmeras digitais. Tecmundo,
 2012.
 - https://www.tecmundo.com.br/fotografia-e-design/23626-video-explica-comofunciona-o-sensor-ccd-das-cameras-digitais.htm
- Bill Hammack. CCD: The heart of a digital camera (how a charge-coupled device works).
 YouTube. Canal: engineerguy.
 - https://www.youtube.com/watch?v=wsdmt0De8Hw&feature=youtu.be
- Raymond Siri. CMOS Animation Sequence. Vimeo
 - https://vimeo.com/103279734
- Raymond Siri. CCD Animation Sequence. Vimeo
 - https://vimeo.com/103279733

Bibliografia complementar

- Rafael Helerbrock. Quais são os limites da visão humana? Mundo Educação
 - https://mundoeducacao.uol.com.br/fisica/quais-sao-os-limites-visao-humana.htm
- Francie Diep. Humans Can Only Distinguish Between About 30 Shades Of Gray. Popular Science, 2015.
 - https://www.popsci.com/humans-can-only-distinguish-between-about-30-shades-gray/
- Luciana Galastri. Humanos conseguem distinguir apenas 30 tons de cinza. Galileu, 2015.
 - https://revistagalileu.globo.com/Ciencia/noticia/2015/02/humanos-conseguemdistinguir-apenas-30-tons-de-cinza.html

FIM