Class Activation Map series 2019/01/14

김강열

CAM Series

 Learning Deep Features for Discriminative Localization(i.e. CAM)

 Grad-CAM: Gradient-weighted Class Activation Mapping

 Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks

Global Average Pooling

- Network In Network에서 처음 제안됨 ← Fully connected layers are prone to overfitting
 - No parameter to optimize(parameter▼) → Overfitting 방지
 - Average pooling은 spatial한 정보를 합하는 방식이기 때문에 입력 이미지의 spatial 변환에 robust
 - feature map들과 category 사이에 직관적인 관계 해석 가능

Class Activation Mapping

Class score $S_c = \sum w_k^c \sum f_k(x, y)$ $F_k = \sum_{x,y} f_k(x,y)$ **CAM** Australian CON CONV CO terrier CONV 각 feature map의 weight **Class Activation Mapping** resize Class $+ ... + w_{n *}$ $+ w_{2} *$ = Activation Map (Australian terrier) CAM $M_c(x,y) = \sum_k w_k^c f_k(x,y)$.

Class Activation Mapping Intuition

4x4 input / 2x2 2-filters with stride=2 /

1	0
0	1

1	0	0	0
0	1	0	0
0	0	0	0
0	0	0	0

2	•	0
C)	0

$$w_1^1 \times 2 + w_2^1 \times 0$$

 w_1^1 x $2 + w_2^1$ x 0 $w_1^1 > w_2^1$; pattern detector로써 filter ~ 해당 class에 맞는 filter에 대응해서 가중치가 증가

convolution op

$$w_1^2 \times 0 + w_2^2 \times 2$$

$$w_1^2 \mathbf{x} \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} + w_2^2 \mathbf{x} \begin{vmatrix} 0 & 2 \\ 0 & 0 \end{vmatrix}$$

Result

Limitations => Grad-CAM

- CAM trades off model complexity and performance for more transparency into the working of the model => Grad-CAM does not need to alter model architecture
- CAM must perform GAP preceding softmax layer(feature maps -> GAP -> softmax)
- => Grad-CAM could use intermediate feature maps to compute the gradient value
- CAM is applied on the limited area such as classification => Grad-CAM broadened the areas to captioning, VQA or reinforce learning
- Grad-CAM is a generalization of CAM

CAM vs. Grad-CAM

CAM ARCHITECTURE

$$L_{CAM}^{c} = \sum_{k} w_{k}^{c} A^{k}$$

Grad-CAM ARCHITECTURE

$$L_{Grad-CAM}^{c} = ReLU(\sum_{k} a_{k}^{c} A^{k})$$
 $a_{k}^{c} = \frac{1}{Z} \sum_{i} \sum_{j} \frac{\delta y^{c}}{\delta A_{ij}^{k}}$

Overall Structure

Implications:

- Given filters, As indicate where the patterns appear and the intensity of it. Thus,
 the maps generated by fitted filter would make higher value of it.
- It's obvious then the value of alpha(i.e. weight of feature map) would amplify with the fitted filter
- ReLU after linear combination: detect only regions that pixel should increase

Result

Limitations => Grad-CAM++

- Grad-CAM's results are not frequently precise or cannot cover all area of object =>
 Grad-CAM++ generates better result with well-covered heatmap
- Grad-CAM++ formulated generation process strictly
- Grad-CAM introduced pixel-wise weighting of the gradients of the output w.r.t. the final convolutional feature map of the CNN
- Propose new metric for evaluating the faithfulness of the proposed explanations to the underlying model.
- Propose a training methodology to involve newly generated explanation image in the relationship between teacher and student(Knowledge distillation field)

Why Grad-CAM++? - Multi objects perception

Why Grad-CAM++? - Coarse Heatmap

Why Grad-CAM++? - Coarse Heatmap

Why? Activated

 $L_{ij}^c = \sum_k w_k^c.A_{ij}^k$

0	0	0
4	0	4
0	0	0

Eyes

0	0	0
0	0	0
0	100	0

Mouth

$$w_k^c = \sum_i \sum_j [\frac{\frac{\partial^2 Y^c}{(\partial A_{ij}^k)^2}}{2\frac{\partial^2 Y^c}{(\partial A_{ij}^k)^2}} + \sum_a \sum_b A_{ab}^k \{\frac{\partial^3 Y^c}{(\partial A_{ij}^k)^3}\}}].relu(\frac{\partial Y^c}{\partial A_{ij}^k})$$

$$L_{ij}^c = \sum_k w_k^c.A_{ij}^k$$

Some Computations for alpha and w

Reformulation

$$\begin{split} Y^c &= \sum_k w_k^c. \sum_i \sum_j A_{ij}^k \\ w_k^c &= \sum_i \sum_j \alpha_{ij}^{kc}.relu(\frac{\partial Y^c}{\partial A_{ij}^k}) \end{split} \qquad Y^c = \sum_k \{\sum_a \sum_b \alpha_{ab}^{kc}.relu(\frac{\partial Y^c}{\partial A_{ab}^k})\} [\sum_i \sum_j A_{ij}^k] \end{split}$$

Computation Simplicity

$$Y^{c} = \exp(S^{c}) \qquad \frac{\partial Y^{c}}{\partial A_{ij}^{k}} = \exp(S^{c}) \frac{\partial S^{c}}{\partial A_{ij}^{k}}$$
$$\frac{\partial Y^{c}}{\partial A_{ij}^{k}} = \sum_{c} \sum_{d} \alpha_{ab}^{kc} \cdot \frac{\partial Y^{c}}{\partial A_{ab}^{k}} + \sum_{c} \sum_{d} A_{ab}^{k} \{\alpha_{ij}^{kc} \cdot \frac{\partial^{2} Y^{c}}{(\partial A_{ij}^{k})^{2}}\}$$

Result

$$\alpha_{ij}^{kc} = \frac{\frac{\partial^2 Y^c}{(\partial A_{ij}^k)^2}}{2\frac{\partial^2 Y^c}{(\partial A_{ij}^k)^2} + \sum_a \sum_b A_{ab}^k \{\frac{\partial^3 Y^c}{(\partial A_{ij}^k)^3}\}}$$

$$w_k^c = \sum_i \sum_j \left[\frac{\frac{\partial^2 Y^c}{(\partial A_{ij}^k)^2}}{2\frac{\partial^2 Y^c}{(\partial A_{ij}^k)^2} + \sum_a \sum_b A_{ab}^k \{\frac{\partial^3 Y^c}{(\partial A_{ij}^k)^3}\}}\right] .relu(\frac{\partial Y^c}{\partial A_{ij}^k})$$

Overall Structure

Result

