华东理工大学 20 -20 学年第 学期

《化工热力学》课程模拟考试试卷 B(答案)

开课学院: 化工	<u>学院</u> ,专业	k: <u>化学工</u> 程	是与工艺_考试	形式:闭卷 所	「需时」	可:	<u>120</u>	
考生姓名: 学号:		:	班级:	任课教师				
题序			三	四	四总		分	
得分								
评卷人								
一、是非题(共	24 分,每	小题 2 分,对	力的打√,错的	打×)				
1. 纯物质由蒸汽	变成固体,	必须经过液	体。		(×)	
2. 纯物质逸度的	完整定义	是,在等温条	件下, $dG = R$	$2T$ d ln f \circ	(×)	
3. 符合热力学实	验一致性构	交验的数据一	定是可靠的。		(×)	
4. 对理想溶液来	说,混合	生质和过量性	质是一致的。		(×)	
5. 因 G ^E (或活度)	系数)模型	是温度和组成	的函数,故理证	$\&$ 上 γ_i 与压力	无关。(×)	
6. 在二元系统的	汽液平衡	中, 若组分1	是轻组分,组	.分 2 是重组分	·,则	<i>y</i> ₁ > 2	x_1 ,	
$y_2 < x_2$ o					(×)	
7. 在同一温度下	,纯物质的	的饱和液体与	饱和蒸汽的 G	ibbs 函数相等	。 ()	
8. 对于理想溶液	, <i>i</i> 组分在注	容液中的逸度	系数和 i 纯组	分的逸度系数	相等。	(√)	
9. 能量平衡关系	$\Lambda H + \frac{1}{2} \Lambda_{12}$	$a^2 + \alpha \Lambda z = 0$	w 对任何系统	: 任何过程均;	舌田 (¥)	
7. 此里 闵八尔	$\frac{\Delta H}{2}$	$r + g\Delta z - Q -$	M _s か1 正円 からに	八上門是在外	பா∘(^)	
10. 可逆过程的不	有效能守恒	Ī.			()	
11. 合理用能的总则是按质用能,按需供能。					()	
12. 化学反应的标	示准 Gibbs	自由焓变化△	G^{Θ} 可以用来判	判断反应进行的	的方向	。(×)	
二、单项选择题	(共 20 分	,每小题2分	})					
1. 下列方程中不	是活度系统	数关联式为(D).					
(A) Van Laar	方程	((B) Wilson 方科	呈				
(C) NRTL 方程	程	(D) 理想气体制	犬态方程				
2. 从工程实际出	发,合理人	用能分析的实	质是(B)。				
(A) 损耗功最	[h] (B)) 过程是否最	经济 (C) 能料	毛最小 (D) 理	型想功 量	最小		
3. 温度为 <i>T</i> 下的	过热纯蒸	汽的压力 p(A).					

- (A) 小于该温度下的饱和蒸汽压 (B) p^s 大于该温度下的饱和蒸汽压 p^s (C) 等于该温度下的饱和蒸汽压 p^s (D) 以上说法都不对 4. Gibbs 函数变化与 p-V-T 关系为 $G^{ig}(T,p)$ - $G^x = RT \ln p$,则 G^x 的状态应该为 (C) (A) T和p下纯理想气体 (B) T和零压下的纯理想气体 (C) T 和单位压力下的纯理想气体 (D) 以上说法都不对 5. 一定 T、p 的二元等物质量的混合物,其组分逸度系数分别为 $\hat{\varphi}_1 = e^{-0.1}$, $\hat{\varphi}_2 = e^{-0.2}$, 已知 $\ln \varphi_{\text{m}} = \sum_{i=1}^{N} y_{i} \ln \hat{\varphi}_{i}$,则混合物的逸度系数 φ_{m} 为(B)。 (A) $\frac{e^{-0.1} + e^{-0.2}}{2}$; (B) $e^{-\frac{0.1 + 0.2}{2}}$; (C) $-\frac{e^{-0.1} + e^{-0.2}}{2}$; (D) $-e^{\frac{0.1 + 0.2}{2}}$ 6. 下列偏导数中,偏摩尔量 \overline{M} ,的正确表达是:(A $(A) \left[\frac{\partial (nM)}{\partial n_i} \right]_{T,p,n_{fil}}; (B) \left[\frac{\partial (nM)}{\partial n_i} \right]_{T,nV,n_{fil}}; (C) \left[\frac{\partial (nM)}{\partial n_i} \right]_{nS,nV,n_{fil}}; (D) \left[\frac{\partial (nM)}{\partial n_i} \right]_{nS,p,n_{fil}}$ 7. 气液平衡计算关系式 $py_i\hat{\varphi}_i = \gamma_i x_i p_i^s \varphi_i^s \exp \int_{p_i^s}^p \left(\frac{V_i^L}{RT}\right) dp$, (i=1,2,...,N),当气体为 理想气体, 液相为非理想溶液时, 上式可简化为(D)。 (A) $py_i\hat{\varphi}_i = \gamma_i x_i \varphi_i^s \exp\left|\frac{V_i^L}{RT}(p - p_i^s)\right|$ (B) $py_i\hat{\varphi}_i = \gamma_i x_i p_i^s \varphi_i^s$ (C) $py_i = x_i p_i^s$ (D) $py_i = \gamma_i x_i p_i^s$ 8. 某流体在稳流装置内经历一个不可逆绝热过程, 所产生的功为24kJ, 试问流 (A) 小于零 (B) 大于零
- 体的熵变(B)。

(C) 等于零

- (D) 说不清楚
- 9. 稳定流动系统的能量累积为零, 熵的累积则(D
 - (A) 大于零;

(B) 不确定;

(C) 小于零

(D) 等于零

10. 容器中开始有物质的量为 n_0 mol 的水蒸气,当按反应 $H_2O \rightleftharpoons H_2 + \frac{1}{2}O_2$ 分解

成为氢气和氧气的反应进度为 ε 时,氧气的摩尔分数为(CC)

(已知:
$$\frac{\mathrm{d}n_i}{v_i} = \mathrm{d}\varepsilon$$
)

(A)
$$\frac{n_0 - \varepsilon}{n_0 + 0.5\varepsilon}$$
 (B) $\frac{\varepsilon}{n_0 + 0.5\varepsilon}$

(B)
$$\frac{\varepsilon}{n_0 + 0.5\varepsilon}$$

(C)
$$\frac{0.5\varepsilon}{n_0 + 0.5\varepsilon}$$
 (D) $\frac{0.5\varepsilon}{n_0 + \varepsilon}$

(D)
$$\frac{0.5\varepsilon}{n_0 + \varepsilon}$$

三、计算题 (共50分)

1. (8分) 用 SRK 方程计算 3.76MPa、353K 下氨的气相摩尔体积。

已知: (1) SRK 方程为
$$p = \frac{RT}{V-b} - \frac{a}{V(V+b)}$$
, 其中:

$$a = a_{\rm c} \cdot \alpha(T_{\rm r})$$

$$a_{\rm c} = 0.42748 \frac{R^2 T_{\rm c}^2}{p_{\rm c}}$$

$$\sqrt{\alpha(T_{\rm r})} = 1 + (0.48 + 1.574\omega - 0.176\omega^2)(1 - T_{\rm r}^{0.5})$$

$$b = 0.08664 \frac{RT_{c}}{p_{c}}$$
.

(2) 可供参考的迭代计算式为:

$$V^{(k+1)} = b + \frac{RT}{p + \frac{a}{V^{(k)}\left(V^{(k)} + b\right)}}$$
,初值可选用理想气体计算。

(3) 氨的临界参数为: $T_c = 405.3 \text{K}$, $p_c = 11.318 \text{MPa}$, $\omega = 0.255$

解:
$$a_c = 0.42748 \frac{(RT_c)^2}{p_c} = 0.42748 \times \frac{(8.314 \times 405.3)^2}{11.318} = 428863.8$$

$$\sqrt{\alpha(T_{\rm r})} = 1 + (0.48 + 1.574\omega - 0.176\omega^2)(1 - T_{\rm r}^{0.5})$$

$$= 1 + (0.48 + 1.574 \times 0.255 - 0.176 \times 0.255^{2})(1 - \frac{353}{405.3}^{0.5})$$

=1.05807

$$\alpha(T_r) = 1.11951$$

$$a = a_c \cdot \alpha(T_r) = 428863.8 \times 1.11951 = 480117.3$$

$$b = 0.08664 \frac{RT_c}{p_c} = 0.08664 \times \frac{8.314 \times 405.3}{11.318} = 25.79 \text{ (cm}^3 \text{.mol}^{-1}\text{)}$$

$$V^{(k+1)} = 25.79 + \frac{2934.842}{3.76 + \frac{480117.3}{V^{(k)}(V^{(k)} + 25.79)}}$$

取 $V^{(0)} = RT/p = 780.54 (cm^3.mol^{-1})$ 为初值,得

$$V^{(1)} = 674.68$$
, $V^{(2)} = 640.3$, $V^{(3)} = 626.49$, $V^{(4)} = 620.5$,

$$V^{(5)} = 617.82$$
, $V^{(6)} = 616.61$, $V^{(7)} = 616.05$, 已收敛,

- 2. (8分) 25℃和 0.1MPa 下组分 1 和组分 2 形成溶液,其体积可由下式表示: $V = 120 20x_1 8x_1^2$ (cm³.mol⁻¹),式中 x_1 为组分 1 的摩尔分数。试求:
- (1) \bar{V}_1, \bar{V}_2 , 的表达式; (2) V_1, V_2 , 的值。

已知: 二元系统的偏摩尔量和摩尔量之间的关系可写为:

$$\overline{M}_1 = M + (1 - x_1) \frac{\mathrm{d}M}{\mathrm{d}x_1}$$
, $\overline{M}_2 = M - x_1 \frac{\mathrm{d}M}{\mathrm{d}x_1}$

解: (1) 根据

$$\begin{cases} \overline{V_1} = V + (1 - x_1) \frac{dV}{dx_1} \\ \overline{V_2} = V - x_1 \frac{dV}{dx_1} \end{cases}$$

$$V = 120 - 20x_1 - 8x_1^2$$

$$\therefore \frac{\mathrm{d}V}{\mathrm{d}x_1} = -20 - 16x_1$$

$$\overline{V}_1 = 120 - 20x_1 - 8x_1^2 + (1 - x_1) \times (-20 - 16x_1)$$

$$= 100 - 16x_1 + 8x_1^2 \text{ (cm}^3 \text{.mol}^{-1}\text{)}$$

$$\overline{V}_2 = 120 - 20x_1 - 8x_1^2 - x_1 \times (-20 - 16x_1)$$
$$= 120 + 8x_1^2 \text{ (cm}^3 \text{.mol}^{-1}\text{)}$$

(2)
$$V_1 = \lim_{x_1 \to 1} \overline{V_1} = \lim_{x_1 \to 1} (100 - 16x_1 + 8x_1^2) = 92(\text{cm}^3.\text{mol}^{-1})$$

$$V_2 = \lim_{x_1 \to 0} \overline{V_2} = \lim_{x_1 \to 0} (120 + 8x_1^2) = 120 (\text{cm}^3.\text{mol}^{-1})$$

或:

将
$$x_1 = 1$$
及 $x_1 = 0$ 分别代入式 $V = 120 - 20x_1 - 8x_1^2$

得:
$$V_1 = 120 - 20 - 8 = 92 \text{ (cm}^3 \text{.mol}^{-1} \text{)}$$

$$V_2 = 120 \text{ (cm}^3 \text{.mol}^{-1} \text{)}$$

3.(12分)对于组分A、B组成的二元溶液,汽相可看作理想气体,液相为非理想溶液,溶液的过量Gibbs自由焓与组成的关系可表示为: $G^{E}=0.75RTx_{A}x_{B}$ 。已知300K下 $p_{A}^{s}=1.866$ kPa, $p_{B}^{s}=3.733$ kPa。试求: 该温度下当液相组成为 $x_{A}=0.2$ 时的汽相组成和压力。假设此系统符合低压下汽液平衡关系 $py_{i}=p_{i}^{s}x_{i}\gamma_{i}$ (i=1,2)。 (已知:活度系数 $\ln \gamma_{i}$ 为 G^{E}/RT 的偏摩尔量,即满足关系式

$$\ln \gamma_i = \left[\frac{\partial \left(nG^{E}/RT \right)}{\partial n_i} \right]_{T,p,n_{i[i]}})_{\circ}$$

解: 由
$$\frac{nG^{E}}{RT} = n0.75x_{A}x_{B} = \frac{0.75n_{A}n_{B}}{n}$$

则:
$$\ln \gamma_A = 0.75 x_B^2 = 0.75 \times 0.8^2 \Rightarrow \gamma_A = 1.6161$$

$$\ln \gamma_{\rm B} = 0.75 x_{\rm A}^2 = 0.75 \times 0.2^2 \Longrightarrow \gamma_{\rm B} = 1.0305$$

$$p = p_{\rm A}^{\rm s} x_{\rm A} \gamma_{\rm A} + p_{\rm B}^{\rm s} x_{\rm B} \gamma_{\rm B} = 1.866 \times 0.2 \times 1.6161 + 3.733 \times 0.8 \times 1.0305 = 3.681 {\rm (kPa)}$$

$$y_{\rm A} = \frac{p_{\rm A}^{\rm s} x_{\rm A} \gamma_{\rm A}}{p} = \frac{1.866 \times 0.2 \times 1.6161}{3.681} = 0.164$$

$$y_{\rm B} = 1 - y_{\rm A} = 1 - 0.164 = 0.836$$

4、(12 分)某换热器完全保温,热流体的流量为 $0.042\,\mathrm{kg\cdot s^{-1}}$,进出换热器时

的温度分别为 150 \mathbb{C} 、35 \mathbb{C} ,其恒压比热容为 4.36kJ·kg⁻¹·K⁻¹,冷流体进出时的温度分别为 25 \mathbb{C} 、110 \mathbb{C} ,其恒压比热容为 4.69kJ·kg⁻¹·K⁻¹ 。试计算此换热器的损耗功 W_{L} 。已知大气温度为 25 \mathbb{C} ,气体按理想气体近似计算。

已知: 稳流过程的热力学第一定律 $\Delta H = Q - W_{\rm s}$; 热力学第二定律 $\sum_i (m_i S_i)_{\rm in} - \sum_j (m_j S_j)_{\rm out} + \Delta S_{\rm f} + \Delta S_{\rm g} = 0$; 损耗功 $W_{\rm L} = T^\Theta \Delta S_{\rm g}$, 理想气体的焓

变和熵变计算式分别为:
$$\Delta H = c_p \Delta T$$
, $\Delta S = c_p \ln \frac{T_2}{T_1} - R \ln \frac{p_2}{p_1}$.

解: 取换热器为系统,根据热力学第一定律知: $\Delta H = Q - W_s$

因为
$$Q=0$$
, $W_S=0$, 所以 $\Delta H=0$

即:
$$m_{\rm H} c_{p_{\rm H}} (T_{\rm H_2} - T_{\rm H_1}) + m_{\rm L} c_{p_{\rm L}} (t_{\rm L_2} - t_{\rm L_1}) = 0$$

$$0.042 \times 4.36 \times (35-150) + m_2 \times 4.69 \times (110-25) = 0$$
解得 $m_2 = 0.0528 (kg \cdot s^{-1})$

热流体:
$$\Delta S_{\rm H} = m_{\rm H} c_{p_{\rm H}} \ln \frac{T_{\rm H_2}}{T_{\rm H_1}} = 0.042 \times 4.36 \times \ln \frac{308.15}{423.15} = -0.05807 \left({\rm kJ \cdot K^{-1} \cdot s^{-1}} \right)$$

冷流体:
$$\Delta S_{\rm L} = m_{\rm L} c_{p_{\rm L}} \ln \frac{T_{\rm L_2}}{T_{\rm L_1}} = 0.0528 \times 4.69 \times \ln \frac{383.15}{298.15} = 0.06211 \left(\text{kJ} \cdot \text{K}^{-1} \cdot \text{s}^{-1} \right)$$

根据热力学第二定律知:

$$\begin{split} &-(\Delta S_{\rm H} + \Delta S_{\rm L}) + \Delta S_{\rm f} + \Delta S_{\rm g} = 0 \;, \quad : Q = 0, \quad \Delta S_{\rm f} = 0 \\ &\Delta S_{\rm g} = \Delta S_{\rm H} + \Delta S_{\rm L} = -0.05807 + 0.06211 = 0.00404 \left({\rm kJ \cdot K^{-1} \cdot s^{-1}} \right) \\ &W_{\rm L} = T^{\Theta} \Delta S_{\rm g} = 0.00404 \times 298.15 = 1.205 \left({\rm kJ \cdot s^{-1}} \right) \end{split}$$

5、(10 分) 某蒸汽压缩制冷循环,制冷量 $Q_0 = 4 \times 10^4 \mathrm{kJ \cdot h^{-1}}$,蒸发室温度为-10 \mathbb{C} ,若冷凝器用水冷却,冷却水进口温度为 $8 \, \mathbb{C}$,循环水量无限大,请设计一套功耗最小的循环装置,并计算制冷循环消耗的最小功。若用空气来冷却冷凝,室温为25 \mathbb{C} ,消耗的最小功又是多少?已知制冷系数为 $\xi = \frac{Q_0}{|-W_s|}$, $\xi_{\mathsf{Carnot}} = \frac{T_\mathsf{L}}{T_\mathsf{H} - T_\mathsf{L}}$ 。

解: (1) 设计的最小功耗装置为逆向 Carnot 循环,对逆向 Carnot 循环则有:

$$\xi_{\rm C} = \frac{Q_0}{-W_{\rm S}} = \frac{T_{\rm L}}{T_{\rm H} - T_{\rm L}}, \quad \exists \Gamma : \quad \frac{4 \times 10^4}{-W_{\rm S}} = \frac{263.15}{281.15 - 263.15}$$
$$-W_{\rm S} = 2736.1 (\text{kJ} \cdot \text{h}^{-1}) = 0.76 (\text{kW})$$

(2) 当以25℃空气冷却时,则有:

$$\frac{4\times10^4}{-W_S} = \frac{263.15}{298.15 - 263.15}, \quad -W_S = 5320.2 \left(\text{kJ} \cdot \text{h}^{-1} \right) = 1.48 \left(\text{kW} \right)$$

四、证明与推导题 (6分)

试运用热力学基本方程及基本关系式证明下式成立:

(a)(4
$$\Re$$
) $\left[\frac{\partial (G/T)}{T}\right]_p = -\frac{H}{T^2};$ (b) (2 \Re) $\left[\frac{\partial (G/T)}{p}\right]_T = \frac{V}{T}$

已知: dG = -SdT + Vdp; G = H - TS

证明: (a):
$$d\left(\frac{G}{T}\right) = \frac{T\frac{dG}{dT} - G}{T^2} dT$$

$$\therefore dG = -SdT + Vdp \qquad \therefore \left[\frac{\partial G}{\partial T}\right]_{P} = -S$$

则:
$$\left[\frac{d \left(\frac{G}{T} \right)}{dT} \right] = \frac{-TS - (H - TS)}{T^2} \Rightarrow \left[\frac{\partial \left(\frac{G}{T} \right)}{\partial T} \right] = -\frac{H}{T^2}$$

(b)
$$\mathbb{Z}\left[\frac{\partial G}{\partial p}\right]_T = V$$

$$\therefore \left[\frac{\partial \left(G/T\right)}{p}\right]_{T} = \frac{V}{T}$$