PATENT ABSTRACTS OF JAPAN

4)

(11)Publication number:

07-334950

(43)Date of publication of application: 22.12.1995

(51)Int.CI.

G11B 21/08 G11B 19/02

G11B 19/28

(21)Application number: 06-125375

(71)Applicant: HITACHI LTD

(22)Date of filing:

07.06.1994

(72)Inventor: KOIZUMI YUICHI

AMANO HIDEAKI

TOKIDA KATSUHIRO

(54) DISK DEVICE

(57)Abstract:

PURPOSE: To obtain a disk device capable of selecting performances being contrary to each other such as a high-speed transmission and high-speed access and a low power consumption and low noise in accordance with use conditions of users.

CONSTITUTION: Two operating modes (a quick mode in which the rotational speed of a disk motor 3 and the seeking speed of a head 5 are both a high—speed and a silent mode in which these two speeds are both a low—speed) are set in a microprocessor 8 and a switch 15 changes over operating modes by the instruction from a host device. Maximum current values of a motor driving circuit 4 and a head driving circuit 7 are determined by a current control circuit 16 linked with the switch 15, for example, maximum currents of the motor driving circuit 4 and the head driving circuit 7 are controlled respectively to be 2A, 0.9A in the quick mode and maximum currents of the motor driving circuit 4 and the head driving circuit 7 are controlled respectively to be 1.5A, 0.6A in the silent mode.

LEGAL STATUS

[Date of request for examination] 14.12.2000

[Date of sending the examiner's decision of 18.09.2001

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration]
[Date of final disposal for application]

[Patent number] 3413731

[Date of registration] 04.04.2003

[Number of appeal against examiner's decision 2001-18609

of rejection]
[Date of requesting appeal against examiner's 17.10.2001 decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-334950

(43)公開日 平成7年(1995)12月22日

(51) [1	nt.	CI	6

識別記号 庁内整理番号

FΙ

技術表示箇所

G11B 21/08

H 9058-5D

19/02

501 L 7525-5D

19/28

B 7525-5D

審査請求 未請求 請求項の数3 OL (全 9 頁)

(21)出願番号	特顯平6-125375	(71)出願人	000005108
			株式会社日立製作所
(22)出顧日	平成6年(1994)6月7日		東京都千代田区神田駿河台四丁目 6番地
		(72)発明者	小泉 雄一・
			神奈川県小田原市国府津2880番地 株式会
			社日立製作所ストレージシステム事業部内
		(72)発明者	天野 英明
			神奈川県小田原市国府津2880番地 株式会
			社日立製作所ストレージシステム事業部内
	•	(72)発明者	常田 勝啓
			神奈川県小田原市国府津2880番地 株式会

(54) 【発明の名称】 ディスク装置

(57)【要約】

【目的】 高速転送・高速アクセスと低消費電力・低騒音という相反する性能を、利用者の使用条件に合わせて 選択できるディスク装置を得る。

【構成】 マイクロプロセッサ8内には、2つの動作モード(ディスクモータ3の回転速度及びヘッド5のシーク速度が共に高速のクイックモードとそれら速度が共に低速のサイレントモード)が設定されていて、スイッチ15が上位装置(システム)からの命令で両動作モードを切り換える。モータ駆動回路4とヘッド駆動回路7の最大電流値は、スイッチ回路15と連携する電流制御回路16で決定され、例えばクイックモードでモータ駆動回路4が2A、ヘッド駆動回路7が0.9A、サイレントモードでモータ駆動回路4が1.5A、ヘッド駆動回路7が0.6Aである。

【図3】 マイクロブロセッサ内に電流制限回路を具備した駆動回路

(74)代理人 弁理士 武 顕次郎

社日立製作所ストレージシステム事業部内

【特許請求の範囲】

【簡求項1】 ディスク状の記録媒体を回転すると共に ヘッドを記録媒体の目標位置に向けて移動し、前記記録 媒体にデータを記録しまたはこれよりデータを再生する ディスク装置において、ヘッドのシーク移動速度を2段 階以上に切り換えるヘッド移動速度モード切り換え手段と、記録媒体の記録または再生時の回転速度を2段階以上に切り換える媒体回転速度モード切り換え手段とを備えたことを特徴とするディスク装置。

【請求項2】 前記ヘッドのシーク移動速度の切り換え 及び前記記録媒体の回転速度の切り換えを、上位装置か らの命令により行なうようにしたことを特徴とする請求 項1記載のディスク装置。

【請求項3】 商用電源と内蔵の電池電源とを有し、前 記へッド移動速度モード切り換え手段及び媒体回転速度 モード切り換え手段は、前記商用電源が使用されるとき ヘッドのシーク移動速度及び記録媒体の回転速度を共に 高速モードに切り換え、前記電池電源が使用されるとき ヘッドのシーク移動速度及び記録媒体の回転速度を共に 低速モードに切り換えるように構成したことを特徴とす る請求項1または2記載のディスク装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ディスク装置に係り、特に、ディスク記録媒体を高速回転しヘッドを高速移動してシーク及び記録再生(読み書き)を行なう高速転送・高速アクセスモードと、ディスク記録媒体を低速回転しヘッドを低速移動してシーク及び記録再生(読み書き)を行なう低消費電力・低騒音モードとを備えたディスク装置に関する。

[0002]

【従来の技術】従来、例えば特開平2-156470号公報(文献1)に記載されているように、コンパクトディスク(CD)あるいはデジタルオーディオテープレコーダ(DAT)において、制御信号TOCのような音声信号以外の信号の読み取りに対して、通常の音声信号の読み取り速度よりも早い第2の速度を自動的に設定し、再生装置の操作性を高めるようにしたものが知られている。

【0003】また特開平4-205963号公報(文献2)に記載されているディスク装置の概略構成を図8に示す。同図で、磁気ディスク装置1は、磁気ディスク2と、ディスク駆動モータ3と、磁気ヘッド5と、ディスク回路部13と、待機制御手段14とを有し、この待機制御手段14により、以下の動作を行なう。すなわち、待機制御手段14は、通常の動作モード(書き込み/読み取りモード)と全電源オフの停止モードのほかに、一定時間ファイルアクセス要求(書き込み/読み取り要求)がないときに、1/F,検出アンプ,ヘッド制御回路等の回路部13の電源をオフまたは待機状態としディ

スクドライブモータ3は通常回転速度とする第1の待機モードと、第1の待機モードが更にある一定時間以上続くときに、1/F,検出アンプ,ヘッド制御回路等の回路部13の電源をオフまたは待機状態としディスクドライブモータ3は低速回転とする第2の待機モードとを設定するもので、これにより消費電力の低減を図っている。

【0004】また、例えば特開平63-87663号公報(文献3)に記載されているように、磁気ディスク装置において、予め、次の読み書き開始時刻がわかっている場合、シーク開始から読み書き開始までの待ち時間を検出し、この待ち時間と予めヘッドの移動距離毎に求めておいた平均シーク時間との差がほぼ零になるようにヘッドのシーク速度(移動速度)を制御することにより、ヘッドを必要以上に加減速することを避け、シーク時の省電力化を図ったものが知られている。

[0005]

【発明が解決しようとする課題】上記文献1の従来技術は、CDまたはDATにおいて、利用者が必要とする音声信号は通常の一種類のみの速度で再生し、制御信号のような利用者が利用しない信号を通常の速度よりも高速で再生するものである。利用者が利用する任意のデータを利用者の求めに応じて高速、標準速度、低速度のような色々な媒体速度で記録/再生することや消費電力の省力化については、なにも考慮されていない。

【0006】また、上記文献2の従来技術は、読み書き (シークを含む)を行なっていない待機モード(第1及 び第2の待機モード)でヘッド制御回路の電源をオフと し、そのうちの第2待機モードで更にディスクドライブ モータの回転速度を通常の速度よりも低くするものであ って、読み書き速度は通常速度(一種類)のみであり、 任意のデータの読み書き速度を利用者の要求に応じて色 々設定することについては、なにも考慮されていない。 【0007】しかし、第1に、一般にディスク装置おい て、読み書きを行なっていない状態の生じる頻度は必ず しもさほど高くなく、また、一般にこの読み書きを行な っていない状態は、電源が投入されていない非動作状態 (消費電力OW) に次いで消費電力が少ない状態である ので(消費電力の最も多いのはモータ起動時、次に多い のはファイルアクセス時で、いずれも、モータを回転し たまま読み書きを行なっていないときよりも消費電力が 大きい)、文献2のように、この読み書きを行なってい ない状態で待機モード(第2待機モード)を設定してデ ィスクモータ速度を低くしても、全体としてあまり消費 電力の低減効果は得られない。むしろ、読み書き状態が この第2待機モードで分断されると、この待機モードか ら書き込み読み出し動作に移る際のディスクモータの立 ち上げを行なわせる必要が生じるため、一時的に大きな 電力が消費される。

【0008】第2に、文献2では、この待機モードから

書き込み読み取り動作に移る際に、モータの立ち上げ時間を要するため、書き込み読み取りの開始が遅れ、動作速度が遅れてしまうという問題が生じる。

【0009】また、文献3の従来技術は、予め分かっている読み書き開始時刻に合わせてその直前でシークが終了するようにシーク速度を調整するものである。利用者の求めに応じて、高速処理のできる高速シークと低騒音低電力で行なわれる低速シークとを使い分ける考えはなにもない。また、この文献3でも、文献1及び文献2と同様に、任意のデータを、利用者の求めに応じて、高速、標準速度、低速のような色々な読み書き速度で読み書きすることについては、なにも考慮されていない。

【0010】ところで、磁気ディスク装置や光ディスク 装置において、利用者の性能に対する要求は下配のよう に、大きく2つのタイプに分類することができる。

- ① 高速転送・高速アクセス
- ② 低消費電力·低騒音

①の性能を満たすのにはディスクの読み書き速度すなわち回転速度とヘッドのシーク速度を高速化する必要があり、②の性能を満たすのにはディスクの読み書き速度(回転速度)とヘッドのシーク速度を低くする必要がある。この2つの性能は、互いに相反するものであり、従来同時に2つの性能を満足するディスク装置は存在せず、一種類のデータ読み書き速度とシーク速度とを有する機種があるだけである。このため、利用者は、上記2つの性能を個々に満たす装置を各々最低1機種ずのルや最しておいて、使用の都度その使用条件(騒音レベルや最大電力の規制下で使用するか、転送・アクセス速度を置視するかなど)に適した性能を有する磁気ディスク装置を選択する形を採らざるを得ない。

【0011】その場合、下記のような問題が生ずることになる。

- ① 目的となる使用条件が明確になっていない場合で も、どちらかの性能の磁気ディスク装置を選択しなけれ ばならない。
- ② 使用条件の変化で使用途中において、磁気ディスク 装置に対してもう一方の性能に切り替えたいと思った時 に再購入するか入れ替える以外に方法がない。
- ③ 使用方法によって適時に性能を切り替えることができない。特に、このような問題は、例えばノートブック型パソコンのような、商用交流電源及び内蔵の電池電源を共用するパソコン付属のディスク装置で発生する。この種のパソコンでは、商用電源を使用する場合、電力を十分採れるので、ファイルアクセスする場合にヘッドシーク速度やディスク読み書き速度を十分高くすることが望ましく、一方、内蔵電池電源を使用する場合、システムの連続使用時間を長くするため、ヘッドシーク速度やディスク読み書き速度を低くして低消費電力で使用することが望ましい。

【0012】従って、本発明の目的は、上記従来技術の

問題点を解消し、高速でシーク及びデータ読み書きを行なうクイックモード(高速転送・高速アクセスモード)と、低速・低消費電力・低騒音でシーク及びデータ読み書きを行なうサイレントモード(低速・低消費電力・低騒音モード)との、少なくとも2つのモードを利用者の求めに応じて任意に選択することのできるディスク装置を提供することにある。

【0013】本発明の他の目的は、商用電源及び内蔵の 電池電源が共用されるパソコン付属のディスク装置において、商用電源が使用される場合は上記クイックモード が選択され、内蔵の電池電源が使用される場合は上記サイレントモードが選択されるように切り換え機能を有す るディスク装置を提供することにある。

[0014]

【課題を解決するための手段】上記目的を達成するため に、本発明は、以下のように構成する。

【0015】(1) ディスク状の記録媒体を回転すると共にヘッドを記録媒体の目標位置に向けて移動し、前記記録媒体にデータを記録しまたはこれよりデータを再生するディスク装置において、ヘッドのシーク移動速度を2段階以上に切り換えるヘッド移動速度モード切り換え手段と、記録媒体の記録または再生時の回転速度を2段階以上に切り換える媒体回転速度モード切り換え手段とを備えたものである。

【0016】(2) 上記(1)で、ヘッドのシーク移動速度の切り換え及び前記記録媒体の回転速度の切り換えを、上位装置からの命令により行なうように構成した。

【0017】(3) 上記(1)または(2)で、商用 電源と内蔵の電池電源とを有し、前記ヘッド移動速度モード切り換え手段及び媒体回転速度モード切り換え手段 は、前配商用電源が使用されるときヘッドのシーク移動 速度及び記録媒体の回転速度を共に高速モードに切り換 え、前記電池電源が使用されるときヘッドのシーク移動 速度及び記録媒体の回転速度を共に低速モードに切り換 えるように構成した。

[0018]

【作用】上記構成に基づく作用を説明する。

【0019】上記(1)の構成によれば、ヘッドのシーク移動速度及び記録媒体(ディスク)の回転速度をそれぞれ2段階以上切り換えられるようにしたので、利用者が、1台のディスク装置で、信号の書き込み読み出しを高速に行いたいときは、クイックモード(ヘッドとディスクが共に最高速度)を選択した状態で書き込み読み出しを行なえばよいし、低騒音で消費電力を低減したいときには、サイレントモード(ヘッドとディスクが共に最低速度)を選択した状態で書き込み読み出しを行なえばよい。このように動作モードが選択できるので、①予め使用条件が未確定でも、あとで使用条件を決定してそれに合った動作モードを選択することができ、②使用条件

に変更が生じても、新たなディスク装置を購入する必要がなく、また、③利用者が使用条件に合わせて、使用途中でも動作モードを変更することができる。

【0020】速度モード切り換え機構としては、利用者が随時自由に各モードを選択できるようにするため、上記(2)の構成のように、上位装置からディスク装置内のマイクロプロセッサへの命令によりモード切り換えを行なうようにすれば、利用者はキー操作等により簡単に所要モードを選択できる。なお、これに代えて、ディスク装置のヘッド駆動回路及びディスクモータ駆動回路上に設けたジャパンコネクタのようなハードウェアの切り換えスイッチで各モードの切り換えを行なうこともできる。

【0021】上記(3)の構成によれば、パソコン及びディスク装置の電源として、商用電源が使用される場合は高速読み書き及び高速シークのクイックモードが選択され、高速高性能のデータ転送・アクセスができ、内蔵の電池電源が使用される場合は低速読み書き及び低速シークのサイレントモードが選択され、低騒音低消費電力で長時間連続動作可能なデータ転送・アクセスができる。

[0022]

【実施例】以下、本発明の実施例を図面により説明する。

【0023】図1は、本発明の第1実施例の磁気ディスク装置の構成図である。

【0024】図1で、ディスク装置1は、記録媒体としての磁気ディスク2と、このディスク2を回転支持するモータ3と、ディスク2に信号を書き込み読み出しを行なうヘッド5と、ヘッド駆動機構6と、モータ3を駆動するモータ駆動回路4と、ヘッド駆動機構6に接続されたヘッド駆動回路7とを備えている。両駆動回路4、7はマイクロプロセッサ8に接続されている。

【0025】マイクロプロセッサ8にはスイッチ9~12が少なくとも1個、図1の場合には4個のスイッチが接続されている。これらのスイッチの組み合わせにより、後述するように色々な動作モードを設定できる。

【0026】マイクロプロセッサ8内には2つの動作モードが設定されていて、1つはモータ回転速度が720 Orpmでヘッドのシーク移動時間が8msとなるようなクイックモード、もう1つはモータ回転速度が540 Orpm(起動時の電流値はクイックモードと同じ)、ヘッドのシーク移動時間が10ms(加減速度はクイックモードと同じ)となるようなサイレントモードである。クイックモードはディスク装置に対して、高速転送・高速アクセスを実現できるモードであり、一方サイレントモードは、低消費電力・低騒音を実現できるモードである。

【0027】この2つのモードは、マイクロプロセッサ8に接続されているスイッチ9~12の設定によって選

択することができるようになっている。例えば、スイッチ9をoffの状態に設定すると動作モードはクイックモードとされ、onの状態に設定するとサイレントモードで動作するといった具合である。図1には4つのスイッチ9~12が接続されているので、これらのスイッチの組み合わせにより、24通りまでの動作モード設定が可能である。図1の場合、動作モードの設定は例えばジャンパスイッチのようなディスク装置上に設けたスイッチ9~12で行われるので、上位装置(システム)からの命令では設定することはできない。

【0028】図2は、本発明の第2実施例のディスク装置の概略構成図であり、本実施例は、上位装置(システム)からの命令で動作モードの切り替えを行なう駆動回路を備えた場合である。

【0029】図2で、ディスク装置1は、記録媒体としてのディスク2と、このディスク2を回転支持するモータ3と、ディスク2に信号を書き込み読み出しを行なうへッド5と、ヘッド駆動機構6と、モータ3を駆動するモータ駆動回路4と、ヘッド駆動機構6に接続されたヘッド駆動回路7とを備え、また、両駆動回路4、7はマイクロプロセッサ8に接続されている。

【0030】マイクロプロセッサ8内には、2つの動作モード、クイックモードとサイレントモードが設定されていて、さらに上位装置(システム)からの命令でこれら2つの動作モードを切り換えるスイッチ回路15が内蔵されている。マイクロプロセッサ8内のスイッチ回路15は、図1に示したスイッチ回路9~12と等価であって、その設定状態で色々な動作モードが決定される。【0031】図3は、本発明の第3実施例のディスク装

【0031】図3は、本発明の第3実施例のテイスク装置の概略構成図であり、本実施例では、マイクロプロセッサ8内に電流制限回路16を内蔵した場合を示している。

【0032】図3で、ディスク装置1は、記録媒体としてのディスク2と、このディスク2を回転支持するモータ3と、ディスク2に信号を書き込み読み出しを行なうヘッド5と、ヘッド駆動機構6と、モータ3を駆動するモータ駆動回路4と、ヘッド駆動機構6に接続されたヘッド駆動回路7とを備え、両駆動回路4、7はマイクロプロセッサ8に接続されている。

【0033】マイクロプロセッサ8内には、2つの動作モード、クイックモードとサイレントモードが設定されていて、さらに上位装置(システム)からの命令でこれら2つの動作モードを切り換えるスイッチ回路15と、両駆動回路4、7に流れる最大電流値を個別に決定している電流制限回路16とが内蔵されている。

【0034】電流制限回路16で決定される最大電流値は、スイッチ回路15の設定により選択された動作モードと連携していて、例えば、クイックモードが選択されている場合には最大電流値は制限なしで、モータ駆動回路4が2A、ヘッド駆動回路7が0.9A(各々電圧と

抵抗値で決定される値)とされ、サイレントモードが選択されている場合には最大電流値は、モータ駆動回路 4 が 1.5A、ヘッド駆動回路 7 が 0.6A といったように決定されるものである。

【0035】図4は、本発明の第4実施例のディスク装置の概略構成図であり、本実施例では、各駆動回路4、7内に電流制限回路17、18を内蔵した場合を示している。

【0036】図4で、ディスク装置1は、記録媒体としてのディスク2と、このディスク2を回転支持するモータ3と、ディスク2に信号を書き込み読み出しを行なうヘッド5と、ヘッド駆動機構6と、モータ3を駆動するモータ駆動回路4と、ヘッド駆動機構6に接続されたヘッド駆動回路7とを備え、また、両駆動回路4、7はマイクロプロセッサ8に接続されている。

【0037】マイクロプロセッサ8内には、2つの動作モードの、クイックモードとサイレントモードが設定されていて、さらに上位装置(システム)からの命令でこれら2つの動作モードを切り換えるスイッチ回路15が内蔵されている。

【0038】電流制限回路17、18で決定される最大電流値は、スイッチ回路15の設定により選択された動作モードと連携していて、例えば、クイックモードが選択されている場合には最大電流値は制限なしの駆動回路4及び7でモータ3及びヘッド駆動機構6が動作し、各駆動回路4、7に流れる最大電流値は、モータ駆動回路4が2A、ヘッド駆動回路7が0.9A(各々電圧と抵抗値で決定される値)とされ、サイレントモードが選択されている場合には最大電流値は、モータ駆動回路4が1.5A、ヘッド駆動回路7が0.6Aとなる駆動回路4が1.5A、ヘッド駆動回路7が0.6Aとなる駆動回路4が1.5A、ヘッド駆動回路7が0.6Aとなる駆動回路4が1.5A、ヘッド駆動回路7が0.6Aとなる駆動回路4が1.5A、ヘッド駆動回路7が0.6Aとなる駆動回路2の駆動回路が各々2通り設定されているが、動作内容は図3の駆動回路と等価である。

【0039】図5は、以上の実施例におけるディスクモータ起動時(定常回転速度に達するまで)の回転速度の変化(同図(a))と電流値の変化(同図(b))を示す。

【0040】実線は、クイックモードにおける時間経過に伴うモータ回転速度 v と電流値 I の変化を示し、図 1、2、3、4のクイックモードに対応する。一点鎖線は、電流制限なしのサイレントモードにおける時間経過に伴うモータ回転速度と電流値の変化を示し、図 1、2のサイレントモードに対応する。破線は、電流制限ありのサイレントモードにおける時間経過に伴うモータ回転速度と電流値の変化を示し、図 3、4のサイレントモードに対応する。なお、図 5 ではモータ起動時の動作を示したが、モータを停止するときにはその逆の動作をさせる。

【0041】図6は、以上の実施例におけるヘッド移動

時の移動速度の変化(同図(a))と電流値の変化(同図(b))を示す。

【0042】実線は、クイックモードにおける時間経過に伴うヘッド移動速度 v と電流値 I の変化を示し、図1、2、3、4のクイックモードに対応する。一点鎖線は、加減速度はクイックモードと同じで最高速度を v 1 に制限したサイレントモードにおける時間経過に伴うヘッド移動速度と電流値の変化を示し、図1、2のサイレントモードに対応する。破線は、最高速度は制限せず加減速時の電流値を I 1, ー I 1に制限したサイレントモードにおける時間経過に伴う移動速度と電流値の変化を示し、図3、4のサイレントモードに対応する。

【0043】このほかに、最高速度及び加減速時の電流値を共に制限したサイレントモードも考えることができる。

【0044】また、上記実施例では、クイックモードとサイレントモードの2種類の動作モードとしたが、ノーマル(標準)モードと、これよりも高速アクセスできるクイックモードと、ノーマルモードよりも低速、低消費電力のサイレントモードの3種類もしくはそれ以上の動作モードを切り換え選択するように構成することもできる。

【0045】以上の実施例では、一旦システムがあるモードで立ち上がると、途中でモード変更を行なわない限りディスクモータ速度は一定であるので、個々のアクセス毎にモータ回転速度を立ち上げる動作は不要となり、立ち上げに伴う読み書き動作の遅れは発生しない。

【0046】図7は、本発明におけるディスク装置及び 上位装置の動作関係を説明するフロー図である。

【0047】まず、ディスク装置を備えた上位装置本体の電源が投入され(701)、それと付随してディスク装置の電源が投入される(702)。電源が投入された直後は、ROMに格納されている情報によって動作モードが設定され、安定状態に達し(703)、その直後に、ディスク面上に配憶された前回終了時の動作モードの情報をロードし、その情報をRAM内に格納する(704)。そして、RAM内に格納された情報に基く動作モードで安定動作状態に達する(705)。このとき、予めROMにはクイックモードとサイレントモードの中間的な性能を設定できるノーマルモードが設定されている。

【0048】ディスク装置の動作モードを変更する場合には(706)、上位装置の使用者の操作により、まず、上位装置からディスク装置のROM内に格納されている動作モードのリストのロードを行なう(707)。ロードされた動作モードのリストは、上位装置のディスプレイ上に特に前回設定されていた動作モードは強調されて表示され、使用者は1つの動作モードを選択する(708)。それに伴い、RAM内に格納されている動作モードの情報は、使用者によって選択された動作モー

ドの情報に書き替えられ、これにより動作モードが確定される(709)。上配のように動作モードが使用者によって変更された場合、再度安定動作状態になるのを待つ。

【0049】この後、設定された動作モードで上位装置からディスク装置へのファイルアクセスが開始され、所要のデータ転送が行なわれる。又、上位装置の終了処理が開始されると(710)、ディスク装置のRAM内に格納されていた最終の動作モードの情報は、ディスク面の特定の場所に記録され(711)、次回上位装置が再起動したときに使用される"前回の動作モード"となる。以上のすべての処理が終了すると、上位装置及びディスク装置の電源はオフされる(712)。

【0050】次に、第5実施例として、本願発明のディ スク装置を、商用交流電源及び内蔵の電池電源の共用さ れるコンピュータ例えばノートブック型のパーソナルコ ンピュータ(パソコン)に適用した実施例を説明する。 【0051】一般に、ノートブックタイプのパーソナル コンピュータ20は、その電源形態として、携帯用とし て使用する場合は内蔵の電池を用い、事務所などで使用 する場合は商用100VACを用いている。携帯用とし て内蔵の電池を使用する場合は、システムの消費電力が 連続使用時間に直接影響し、連続使用時間が長い方がよ いといえるので、消費電力が少ないディスク装置は性能 がよいといえる。一方、100 VACを電源として使用 する場合は、停電でもしない限り、消費電力を特別気に する必要はないので、ファイルアクセスする際に高速に 情報の書き込み/読み出しを行なうことができるディス ク装置の方が性能がよいといえる。従って、ノートブッ クタイプのパーソナルコンピュータにとって、携帯用と して使用する場合は消費電力が少ないが、必要に応じて 高速にファイルアクセスできるディスク装置は、使い勝 手がよいといえる。

【0052】しかし、従来のディスク装置は、どちらか一方の性能を持つものか、あるいは、どちらとも言えない中間的な性能を持つものしかなかった。これは、消費電力が少ないことと高速にファイルアクセスすることを同時に達成することが技術的に困難であるためである。

【0053】そこで、本実施例では、上記各実施例の複数の動作モードを具備したディスク装置1を、ノートブックタイプのパーソナルコンピュータ(パソコン)に適用し、パソコン及び付属ディスク装置の電源として商用AC電源を使用するときは高速アクセスのクイックモードが自動的に選択され、内蔵電池電源を使用するときは低消費電力のサイレントモードが自動的に選択されるようにする。これらの動作モードは、上位装置(ノートブックタイプのパーソナルコンピュータ)からの命令で随時切り換えられるので、常に、上位装置にとって良好な性能を提供することができる。

【0054】上記装置(パソコン)からの具体的なモー

ド切り換えの命令方法として、下記のような工夫をする ことにより、いちいち使用者がキーボードをたたいて命 令を入力する必要がない。

【〇〇55】すなわち、まず上位装置の受電部に、外部 電源からの供給を受けているかどうかを感知する機構と して、図示しない外部電源電圧を測定する手段を設け る。通常ノートブック型パソコンでは電池から商用電源 への逆流を防止するダイオードなどが設けてあり、外部 商用電源が切れると自動的に内部電池に切り換わるよう になっている。そこで、上記感知機構によって、外部電 源から受電していない、つまり内蔵電池によって上位装 置が使用されていると感知された場合には、ディスク装 置に対して低消費電力を目的とする動作モード(サイレ ントモード) で動作するように命令する。また、感知機 構が上位装置が外部電源から供給を受けていると感知し た場合には、ディスク装置に対して髙速でファイルアク セスすることを目的とする動作モード(クイックモー ド)で動作するように命令する。上位装置からディスク 装置へ命令することは、見方を変えると、ディスク装置 が上位装置の状態を感知することと同等である。以上に より、ノートブックタイプのパーソナルコンピュータの 使用形態とディスク装置の動作モードの関係は、携帯用 として使用する場合には低消費電力の動作モードを自動 的に設定し、事務所で使用する場合には高速ファイルア クセスを行なう動作モードを自動的に設定する関係とさ れるものである。

【0056】本発明に用いる磁気ディスク装置としては、負圧スライダ構造を有する磁気ヘッドを有するものを使用できる。この磁気ヘッドは、磁気ディスクが静止しているときはディスク面に接触しているが、ディスクの回転速度が所定値以上になると、その回転数の如何に拘らず(上記のいずれの動作モードでも)一定の浮上量を保つものである。

【0057】以上の実施例では、磁気ディスク装置について説明したが、本発明は光ディスク装置や光磁気ディスク装置にも同様に適用できる。

[0058]

【発明の効果】以上詳しく説明したように、本発明によれば、1台のディスク装置で、ヘッドのシーク速度及びディスク記録媒体の回転速度をそれぞれ2段階以上に切り換えられるようにしたので、低騒音・低消費電力のファイルアクセス、データ転送を望むときは低速のサイントモードを選択し、高速のファイルアクセス、データ転送を望むときはクイックモードを選択するなど、利用者の求めに応じた動作モードを任意に選択できるという効果が得られる。また、従来の待機モード(個々アクセス読み書きの間で、ディスクモータの回転速度を設みないので、次々のデータアクセス時にモータ回転速度をアップする(立ち上げる)動作は不要であり、立ち上げに

伴う読み書き動作の遅れも発生しないという効果も得られる。

【0059】また、これらの動作モードの選択切り換えを上位装置から行なうようにすれば、利用者は容易に所要モードを選択できるという効果が得られる。

【0060】更に、ノートブック型パソコンのような商用電源と内蔵電池電源を共用するパソコンに適用した場合、商用電源を使用するときは高速読み書き及び高速シークのクイックモードが選択されるので、高速高性能のデータ転送・アクセスができ、電池電源が使用されるときは低速読み書き及び低速シークのサイレントモードが選択されるので、低騒音低消費電力で長時間連続動作できる等、使用条件に応じた使い分けができるという効果が得られる。

【図面の簡単な説明】

【図1】本発明の実施例の駆動回路を備えたディスク装置の構成図である。

【図2】本発明の実施例の上位装置からの命令でモード 切り換えを行なう駆動回路を備えたディスク装置の構成 図である。

【図3】本発明の実施例のマイクロプロセッサ内に電流 制限回路を有する駆動回路を備えたディスク装置の構成 図である。

【図4】本発明の実施例の各駆動回路内に電流制限回路 を有する駆動回路を備えたディスク装置の構成図であ る。

【図1】

【図1】

【図5】モータ起動時の回転速度変化と電流値変化を示す図である。

【図6】ヘッド移動速度変化と電流値変化を示す図である。

【図7】本発明の実施例のディスク装置と上位装置の関連動作を説明するフロー図である。

【図8】従来の駆動回路を備えたディスク装置の構成図である。

【図9】本発明のディスク装置を適用したノートブック型のパーソナルコンピュータの概略斜視図である。

【符号の説明】

- 1 ディスク装置
- 2 ディスク (媒体)
- 3 モータ
- 4 モータ駆動回路
- 5 ヘッド
- 6 ヘッド駆動機構
- 7 ヘッド駆動回路
- 8 マイクロプロセッサ
- 9~12 スイッチ
- 13 ディスク回路部
- 14 待機制御手段
- 15 スイッチ回路
- 16~18 電流制限回路
- 20 ノートブック型パーソナルコンピュータ

【図2】

【図2】 上位装置からの命令でモード物替えを行なう駆動回路

【図3】

[四4]

【図3】 マイクロプロセッサ内に電流制限回路を具備した駆動回路

各駆動回路内に電流制限回路を具備した駆動回路

【図4】

【図5】

【図5】

モータ起動時の回転速度と電流値変化

[图6]

【図7】

【図8】

【図7】

本発明による実施例の動作フロー

【図9】

[留9]

[図8]

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第6部門第4区分

【発行日】平成13年10月12日(2001.10.12)

【公開番号】特開平7-334950

【公開日】平成7年12月22日(1995.12.22)

【年通号数】公開特許公報7-3350

【出願番号】特願平6-125375

【国際特許分類第7版】

G11B 21/08

19/02 501

3702 00

19/28

[FI]

G11B 21/08 H

19/02 501 L

19/28 i

【手続補正書】

【提出日】平成12年12月14日(2000.12.14)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 ディスク状の記録媒体を回転すると共に ヘッドを記録媒体の目標位置に向けて移動し、前記記録 媒体にデータを記録しまたはこれよりデータを再生する ディスク装置において、

低騒音モードを有効にするスイッチを有することを特徴 とするディスク装置。

【請求項2】 請求項1 記載のディスク装置において、 前記低騒音モードは、前記ディスク状の記録媒体の回転 のための電流を制限することで得られるディスク装置。

【請求項3】 請求項1記載のディスク装置において、前記ヘッドの移動速度が少なくとも2種類あり、かつ、前記ディスク状の記録媒体の回転速度が少なくとも2種類あるとき、前記低騒音モードは、前記ヘッドの移動速度及び前記ディスク状の記録媒体の回転速度の双方が、低い方の速度で移動し、低い方の速度で回転するディスク装置。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0015

【補正方法】変更

【補正内容】

【0015】(1)ディスク状の記録媒体を回転すると共にヘッドを記録媒体の目標位置に向けて移動し√前記記録媒体にデータを記録しまたはこれよりデータを再生するディスク装置において、低騒音モードを有効にするスイッチを有するディスク装置。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0016

【補正方法】変更

【補正内容】

【0016】(2)上記(1)で、前記低騒音モードは、前記ディスク状の記録媒体の回転のための電流を制限することで得られるように構成した。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0017

【補正方法】変更

【補正内容】

【0017】(3)上記(1)で、前記ヘッドの移動速度が少なくとも2種類あり、かつ、前記ディスク状の記録媒体の回転速度が少なくとも2種類あるとき、前記低騒音モードは、前記ヘッドの移動速度及び前記ディスク状の記録媒体の回転速度の双方が、低い方の速度で移動し、低い方の速度で回転するように構成した。