# 复分析 (H) 作业

林晓烁 2024 春

https://xiaoshuo-lin.github.io

**习题 1.1.6** 设 |a| < 1, |z| < 1. 证明:

(3) 
$$\frac{||z| - |a||}{1 - |a||z|} \le \left| \frac{z - a}{1 - \bar{a}z} \right| \le \frac{|z| + |a|}{1 + |a||z|}.$$

证明  $\left| \frac{z-a}{1-\bar{a}z} \right|^2 = \frac{(z-a)(\bar{z}-\bar{a})}{(1-\bar{a}z)(1-a\bar{z})} = \frac{|z|^2 + |a|^2 - \bar{a}z - a\bar{z}}{1+|a|^2|z|^2 - \bar{a}z - a\bar{z}}$ .  $\Rightarrow f(t) = \frac{\alpha+t}{\beta+t} = 1 + \frac{\alpha-\beta}{\beta+t}$ , 其中  $\alpha < \beta$ , 则当  $t > -\beta$  时, f(t) 单调递增. 由于 |a| < 1, |z| < 1, 我们有  $(|z|^2-1)(|a|^2-1) > 0$ , 即  $|z|^2 + |a|^2 < 1 + |a|^2|z|^2$ , 因此取  $\alpha = |z|^2 + a^2$ ,  $\beta = 1 + |a|^2|z|^2$ , 则有

$$|a|^2|z|^2 + 1 - 2\operatorname{Re}(a\bar{z}) = \left[\operatorname{Re}(a\bar{z}) - 1\right]^2 + \left[\operatorname{Im}(a\bar{z})\right]^2 > 0 \implies t = -\bar{z} - a\bar{z} > -\beta,$$

从而

$$\left|\frac{z-a}{1-\bar{a}z}\right|^2 = f(-\bar{a}z-a\bar{z}) = f(2\operatorname{Re}(-\bar{a}z)) < f(2|a||z|) = \frac{|z|^2+|a|^2+2|a||z|}{1+|a|^2|z|^2+2|a||z|} = \left(\frac{|z|+|a|}{1+|a||z|}\right)^2.$$

又

$$(|a||z|-1)^2 > 0 \implies 2|a||z| < 1 + |a|^2|z|^2 \implies t = -2|a||z| > -\beta,$$

因此

$$\left(\frac{|z|-|a|}{1-|a||z|}\right)^2 = \frac{|z|^2+|a|^2-2|a||z|}{1+|a|^2|z|^2-2|a||z|} = f(-2|a||z|) \leqslant f(-2\operatorname{Re}(\bar{a}z)) = \left|\frac{z-a}{1-\bar{a}z}\right|^2.$$

故

$$\frac{||z| - |a||}{1 - |a||z|} \leqslant \left| \frac{z - a}{1 - \bar{a}z} \right| \leqslant \frac{|z| + |a|}{1 + |a||z|}.$$

**习题 1.2.6** 证明:三点  $z_1, z_2, z_3$  共线的充要条件为

$$\begin{vmatrix} z_1 & \overline{z_1} & 1 \\ z_2 & \overline{z_2} & 1 \\ z_3 & \overline{z_3} & 1 \end{vmatrix} = 0.$$

证明 记 
$$z_j = x_j + \mathrm{i} y_j$$
,则  $z_1, z_2, z_3$  共线  $\iff$   $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0 \iff \begin{vmatrix} x_1 & x_1 - \mathrm{i} y_1 & 1 \\ x_2 & x_2 - \mathrm{i} y_2 & 1 \\ x_3 & x_3 - \mathrm{i} y_3 & 1 \end{vmatrix} = 0 \iff$ 

$$\begin{vmatrix} 2x_1 & x_1 - iy_1 & 1 \\ 2x_2 & x_2 - iy_2 & 1 \\ 2x_3 & x_3 - iy_3 & 1 \end{vmatrix} = 0 \iff \begin{vmatrix} z_1 & \overline{z_1} & 1 \\ z_2 & \overline{z_2} & 1 \\ z_3 & \overline{z_3} & 1 \end{vmatrix} = 0.$$

**习题 1.2.12** 设 $z_1, z_2, z_3$  是单位圆周上的三个点,证明:这三个点是一个正三角形三个顶点的充要条件为

$$z_1 + z_2 + z_3 = 0.$$

**证明** 不妨设沿逆时针方向次序为  $z_1, z_2, z_3$ .

- (⇒) 由于  $z_1, z_2, z_3$  恰三等分单位圆周,  $z_2 = \omega z_1, z_2 = \omega^2 z_1$ , 其中  $\omega = e^{\frac{2\pi i}{3}}$ . 因此  $z_1 + z_2 + z_3 = z_1(1 + \omega + \omega^2) = 0$ .
- (**二**) 由于三点绕原点同方向旋转相同角度不影响正三角形的判定,通过除以  $z_1$ ,可不妨设  $z_1=1$ ,则  $z_2+z_3=-1$ . 因此  $|{\rm Im}\,z_2|=|{\rm Im}\,z_3|$ ,再由  $|z_2|=|z_3|=1$  得  ${\rm Re}\,z_2={\rm Re}\,z_3=-\frac{1}{2}$ ,于是  $z_2=\omega,z_3=\omega^2,z_1,z_2,z_3$  构成正三角形的三个顶点.

**习题 1.3.1** 证明: 在复数的球面表示下, z 和  $\frac{1}{z}$  的球面像关于复平面对称.

**证明** 在球极投影下, 对  $z \in \mathbb{C}$ , 有

$$z \mapsto \left(\frac{z + \bar{z}}{|z|^2 + 1}, \frac{z - \bar{z}}{\mathrm{i}(|z|^2 + 1)}, \frac{|z|^2 - 1}{|z|^2 + 1}\right),$$

$$\frac{1}{\bar{z}} \mapsto \left(\frac{\frac{1}{\bar{z}} + \frac{1}{z}}{\left|\frac{1}{\bar{z}}\right|^2 + 1}, \frac{\frac{1}{\bar{z}} - \frac{1}{z}}{\mathrm{i}\left(\left|\frac{1}{\bar{z}}\right|^2 + 1\right)}, \frac{\left|\frac{1}{\bar{z}}\right|^2 - 1}{\left|\frac{1}{\bar{z}}\right|^2 + 1}\right) = \left(\frac{z + \bar{z}}{|z|^2 + 1}, \frac{z - \bar{z}}{\mathrm{i}(|z|^2 + 1)}, \frac{1 - |z|^2}{|z|^2 + 1}\right).$$

故 z 和  $\frac{1}{z}$  的球面像关于复平面对称.

**习题 1.3.2** 证明: 在复数的球面表示下, z 和 w 的球面像是直径对点当且仅当  $z\overline{w} = -1$ .

**证明** ( $\Leftarrow$ ) 由习题 1.3.1, z 与  $\frac{1}{z} = -w$  的球面像关于复平面对称. 而 w 与 -w 的球面像关于单位球过原点的直径对称, 因此 z 和 w 的球面像是直径对点.

(⇒) 在球极投影下, 对  $(x_1, x_2, x_3) \in \mathbb{S}^2$ , 有

$$(x_1, x_2, x_3) \mapsto \frac{x_1 + ix_2}{1 - x_3}, \quad (-x_1, -x_2, -x_3) \mapsto \frac{-x_1 - ix_2}{1 + x_3} = \frac{-1}{\frac{x_1 - ix_2}{1 - x_2}}.$$

因此 z 和 w 的球面像是直径对点当且仅当  $z\overline{w} = -1$ .

**习题 1.4.2** 设  $z = x + iy \in \mathbb{C}$ , 证明:

$$\lim_{n\to\infty} \left(1 + \frac{z}{n}\right)^n = e^x(\cos y + i\sin y).$$

证明 注意到

$$\begin{split} \lim_{n\to\infty}&\left|\left(1+\frac{x+\mathrm{i}y}{n}\right)^n\right| = \lim_{n\to\infty}\left(1+\frac{2x}{n}+\frac{x^2+y^2}{n^2}\right)^{\frac{n}{2}} = \exp\left[\lim_{n\to\infty}\frac{n}{2}\log\left(1+\frac{2x}{n}+\frac{x^2+y^2}{n^2}\right)\right] \\ &= \exp\left[\lim_{n\to\infty}\frac{n}{2}\left(\frac{2x}{n}+\frac{x^2+y^2}{n^2}\right)\right] = \mathrm{e}^x \end{split}$$

以及

$$\lim_{n\to\infty} \arg \left(1+\frac{x+\mathrm{i}y}{n}\right)^n = \lim_{n\to\infty} n \arctan \frac{\frac{y}{n}}{1+\frac{x}{n}} = y,$$

便有

$$\lim_{n\to\infty} \left(1 + \frac{z}{n}\right)^n = e^x(\cos y + i\sin y).$$

习题 1.5.3 指出下列点集的内部、边界、闭包和导集:

(1)  $\mathbb{N}$ .

(2) 
$$E = \left\{ \frac{1}{k} : k \in \mathbb{N} \right\}.$$

- (3)  $D = \mathbb{B}(1,1) \cup \mathbb{B}(-1,1)$ .
- (4)  $G = \{z \in \mathbb{C} : 1 < |z| \leq 2\}.$
- (5) C.

解答 (1) 内部 =  $\emptyset$ , 边界 =  $\mathbb{N}$ , 闭包 =  $\mathbb{N}$ , 导集 =  $\emptyset$ .

- (2) 内部 =  $\emptyset$ , 边界 = 闭包 =  $E \cup \{0\}$ , 导集 =  $\{0\}$ .
- (3) 内部 = D, 边界 =  $\{z \in \mathbb{C} : |z-1| = 1 \text{ 或 } |z+1| = 1\}$ , 闭包 = 导集 =  $\{z \in \mathbb{C} : |z-1| \le 1 \text{ 或 } |z+1| \le 1\}$ .
- (4) 内部 =  $\{z \in \mathbb{C} : 1 < |z| < 2\}$ , 边界 =  $\{z \in \mathbb{C} : |z| = 1$ 或 $2\}$ , 闭包 = 导集 =  $\{z \in \mathbb{C} : 1 \leq |z| \leq 2\}$ .
- (5) 内部 =  $\mathbb{C}$ , 边界 =  $\emptyset$ , 闭包  $\mathbb{C}$ , 导集 =  $\mathbb{C}$ .

**习题 1.5.5** 证明: 若 D 为开集, 则  $D' = \overline{D} = \partial D \cup D$ .

- **证明** (1) 由于  $\overline{D} = D \cup D'$ , 为证  $D' = \overline{D}$ , 只需证  $D \subset D'$ . 对任意  $x \in D$ , 由 D 是开集, 存在 r > 0 使得  $\mathbb{B}(x,r) \subset D$ . 于是对任意  $\varepsilon \in (0,r)$  都有  $\mathbb{B}^{\circ}(x,\varepsilon) \subset D$ , 故  $x \in D'$ ,  $D \subset D'$ , 进而  $D' = \overline{D}$ .
  - (2) 由于 D 是开集, $\partial D \cap D = \emptyset$ ,而  $\overline{D} = D \cup D'$ ,为证  $\overline{D} = \partial D \cup D$ ,只需证  $\partial D \subset D'$ . 对任意  $x \in \partial D$  与 r > 0, $\mathbb{B}(x,r) \cap D = \mathbb{B}^{\circ}(x,r) \cap D \neq \emptyset$ ,因此  $x \in D'$ ,进而  $\partial D \subset D'$ , $\overline{D} = \partial D \cup D$ .

**习题 1.6.1** 满足下列条件的点 z 所组成的点集是什么?如果是域,说明它是单连通域还是多连通域?

- (1) Re z = 1.
- (2) Im z < -5.
- (3)  $|z \mathbf{i}| + |z + \mathbf{i}| = 5$ .
- (4)  $|z \mathbf{i}| \le |2 + \mathbf{i}|$ .
- (5)  $\arg(z-1) = \frac{\pi}{6}$ .
- (6)  $|z| < 1, \text{Im } z > \frac{1}{2}.$
- $(7) \left| \frac{z-1}{z+1} \right| \leqslant 2.$
- (8)  $0 < \arg \frac{z i}{z + i} < \frac{\pi}{4}$ .

**解答** (1) 直线  $\{z \in \mathbb{C} : \text{Re } z = 1\}$ , 非域.

- (2) 半平面  $\{z \in \mathbb{C} : \text{Im } z < -5\}$ , 单连通域.
- (3) 以±i为焦点、5为长轴长的椭圆,非域.
- (4) 以 i 为圆心、 $\sqrt{5}$  为半径的闭圆盘, 非域.
- (5) 以 1 为起点 (不含) 且与实轴夹角为  $\frac{\pi}{6}$  的射线, 非域.

- (6) 弓形  $\{z \in \mathbb{C} : |z| < 1, \text{Im } z > \frac{1}{2} \}$ , 单连通域.
- (7)  $\{z \in \mathbb{C} : |z+3| \ge 2\sqrt{2}\}$ , #is.

(8) 
$$\{z \in \mathbb{C} : \text{Re } z < 0 \; \exists \; |z+1| > \sqrt{2} \}$$
,单连通域.

**习题 1.6.2** 证明: 非空点集  $E \subset \mathbb{R}$  为连通集, 当且仅当 E 是一个区间.

**证明** ( $\Rightarrow$ ) 设 Ø  $\neq$   $E \subset \mathbb{R}$  连通. 若 E 不是一个区间, 则存在 x < z < y 满足  $x, y \in E$  但  $z \notin E$ . 于是

$$E = (E \cap (-\infty, z)) \sqcup (E \cap (z, +\infty))$$

是两个非空不交开集的并,与E连通矛盾.故E是区间.

(⇐) 设  $E \subset \mathbb{R}$  为区间. 若 E 不连通,则存在不交开集  $U,V \subset \mathbb{R}$  使得

$$U \cap E \neq \varnothing$$
,  $V \cap E \neq \varnothing$ ,  $E \subset U \sqcup V$ .

不失一般性, 假设存在 a < b 使得  $a \in U \cap E$  且  $b \in V \cap E$ . 令

$$A = \{x \in U \cap E : x < b\},$$

并记  $c = \sup A$ . 则由 A 是开集可知  $c \neq a$ , 于是  $a < c \leq b$ . 特别地,  $c \in E$ . 但是

- $\diamond$   $c \notin U$ : 若  $c \in U$ , 则存在  $\varepsilon > 0$  使得  $b > c + \varepsilon \in U$ . 由 E 是区间知  $c + \varepsilon \in U \cap E$ , 但这与  $c = \sup A$  矛盾.
- ◇  $c \notin V$ : 若  $c \in V$ , 则存在  $\varepsilon > 0$  使得  $(c \varepsilon, c] \subset V$ . 因为 c > a, 所以可取  $\varepsilon$  充分小使得  $(c \varepsilon, c] \subset E$ , 从而  $c \varepsilon < c$  也是 A 的上界 (因  $(c \varepsilon, c] \cap U = \emptyset$ ), 与  $c = \sup A$  矛盾.

故  $c \notin U \cup V$ , 进而  $c \notin E$ , 矛盾.

**习题 1.6.5** 证明: 若 D 是有界单连通域, 则  $\partial D$  连通. 举例说明, 若 D 是无界单连通域, 则  $\partial D$  可能不连通.

**证明** 先给出 D 是无界单连通域时的反例: 令  $D = \{z \in \mathbb{C} : |\text{Im } z| < 1\}$ ,它是无界单连通域,但  $\partial D = \{z \in \mathbb{C} : \text{Im } z = \pm 1\}$  不连通. 下证原命题.

引理 1 若  $D \subset \mathbb{C}$  是有界单连通域,则  $\mathbb{C} \setminus D$  连通.

**引理 2** ([Mun] Theorem 63.1(a)) 设 X 是两个开集 U 和 V 之并,且  $U \cap V$  可以表示成两个不交开集 A 和 B 之并. 假设有一条 U 中的道路  $\alpha$  从 A 的一个点 a 到 B 的一个点 b,并且有一条 V 中的道路  $\beta$  从 b 到 a. 记  $f = \alpha * \beta$ ,则 f 是一条回路,且道路同伦类 [f] 生成  $\pi_1(X,a)$  的一个无限循环子群.

[Mun] J. R. Munkres, Topology, 2nd ed., Pearson Education Limited, 2019.

原命题 设  $\partial D$  不连通,不妨设  $\partial D = D_1 \cup D_2$ ,其中  $D_1, D_2$  是两个不相交的闭集. 由于 D 有界, $D_1, D_2$  都是紧致的,设  $\varepsilon = \frac{1}{3}d(D_1, D_2) > 0$ ,构造开集  $A = \bigcup_{z \in D_1} \mathbb{B}(z, \varepsilon)$ , $B = \bigcup_{z \in D_2} \mathbb{B}(z, \varepsilon)$ ,显然  $D_1 \subset A$ , $D_2 \subset B$ ,并且仍然有  $A \cap B = \emptyset$ . 令  $U = D \cup A \cup B$ , $V = (\mathbb{C} \setminus D) \cup A \cup B$ ,显然 U 是开集. 对任意  $z \in \partial D$ ,都有  $\mathbb{B}(z, \varepsilon) \subset V$ ,因此 V 也是开的. 因为 D 连通,所以  $\overline{D}$  连通, $U = \overline{D} \cup \bigcup_{z \in \partial D} \mathbb{B}(z, \varepsilon)$ ,

其中每个开球  $\mathbb{B}(z,\varepsilon)$  连通,且和  $\overline{D}$  至少相交于 z,故 U 连通. 由引理 1 知  $\mathbb{C}\setminus D$  连通. 同理, V 连通. 注意到

$$U \cup V = \mathbb{C}$$
,  $U \cap V = A \cup B$ ,  $U, V$  道路连通 (因它们是连通开集).

选取  $a \in A$ ,  $b \in B$ , 由 U 道路连通, 存在一条 U 中的道路  $\alpha$  从 a 到 b. 同理存在一条 V 中的道路  $\beta$  从 b 到 a. 由引理 2,  $f = \alpha * \beta$  是一条回路, 并且 [f] 生成了  $\pi_1(U \cup V, u) = \pi_1(\mathbb{C}, u)$  的一个无限循环子群. 但因  $\mathbb{C}$  是单连通的, 其基本群平凡, 没有无限循环子群, 矛盾. 因此  $\partial D$  是连通的.

### **习题 2.2.2** 设 $f \in \mathfrak{H}(D)$ , 并且满足下列条件之一:

- (1) Re f(z) 是常数.
- (2) Im f(z) 是常数.
- (3) |f(z)| 是常数.
- (4)  $\arg f(z)$  是常数.
- (5) Re  $f(z) = [\text{Im } f(z)]^2, z \in D$ .

那么 f 是一常数.

- **证明** (1) 用 u 和 v 记 f(z) 的实部和虚部,则  $\frac{\partial u}{\partial x} \equiv \frac{\partial u}{\partial y} \equiv 0$ ,由 Cauchy-Riemann 方程, $\frac{\partial v}{\partial x} \equiv \frac{\partial v}{\partial y} \equiv 0$ ,因此  $f'(z) = \frac{\partial u}{\partial x} + \mathrm{i} \frac{\partial v}{\partial x} \equiv 0$ ,f 是一常数.
  - (2) 同 (1) 可得  $\frac{\partial u}{\partial x} \equiv \frac{\partial u}{\partial y} \equiv \frac{\partial v}{\partial x} \equiv \frac{\partial v}{\partial y} \equiv 0$ , 因此  $f'(z) \equiv 0$ , f 是一常数.
  - (3) 设  $|f(z)| \equiv C$ . 若 C = 0, 则  $f(z) \equiv 0$ ; 若  $C \neq 0$ , 由  $f(z)\overline{f(z)} \equiv C^2$  得

$$\frac{\partial f}{\partial z}\overline{f(z)} + f(z)\frac{\partial \overline{f}}{\partial z} \equiv \frac{\partial f}{\partial z}\overline{f(z)} \equiv 0.$$

而  $\overline{f(z)} \neq 0$ , 因此  $\frac{\partial f}{\partial z} = f'(z) = 0$ , f 是一常数.

(4) 用 u 和 v 记 f(z) 的实部和虚部,则  $\arg f(z)=\arctan\frac{v}{u}$ ,且  $u^2+v^2\neq 0$ . 由  $\arg f(z)$  是常数得

$$\begin{cases} \frac{\partial}{\partial x} \left( \arctan \frac{v}{u} \right) = \frac{1}{u^2 + v^2} \left( u \frac{\partial v}{\partial x} - v \frac{\partial u}{\partial x} \right) = 0, \\ \frac{\partial}{\partial y} \left( \arctan \frac{v}{u} \right) = \frac{1}{u^2 + v^2} \left( u \frac{\partial v}{\partial y} - v \frac{\partial u}{\partial y} \right) = 0 \end{cases} \implies \begin{cases} u \frac{\partial v}{\partial x} = v \frac{\partial u}{\partial x}, \\ u \frac{\partial v}{\partial y} = v \frac{\partial u}{\partial y}. \end{cases}$$

而由 Cauchy-Riemann 方程,  $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ ,  $\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x}$ , 代入上式即得

$$\begin{cases} -u\frac{\partial u}{\partial y} = v\frac{\partial u}{\partial x}, \\ u\frac{\partial u}{\partial x} = v\frac{\partial u}{\partial y} \end{cases} \implies \begin{cases} (u^2 + v^2)\frac{\partial u}{\partial x} \equiv 0, \\ (u^2 + v^2)\frac{\partial u}{\partial y} \equiv 0, \end{cases} \xrightarrow{u^2 + v^2 \neq 0} \frac{\partial u}{\partial x} \equiv \frac{\partial u}{\partial y} \equiv 0.$$

由 (1) 即得 f(z) 是一常数.

(5) 用 u 和 v 记 f(z) 的实部和虚部, 则  $u-v^2\equiv 0$ , 因此

$$\begin{cases} \frac{\partial u}{\partial x} - 2v \frac{\partial v}{\partial x} \equiv 0, \\ \frac{\partial u}{\partial y} - 2v \frac{\partial v}{\partial y} \equiv 0. \end{cases}$$

由 Cauchy-Riemann 方程, $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ , $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ ,代入上式即得

$$\begin{cases} \frac{\partial v}{\partial y} = 2v \frac{\partial v}{\partial x}, \\ \frac{\partial v}{\partial x} + 2v \frac{\partial v}{\partial y} \equiv 0 \end{cases} \implies \begin{cases} (1 + 4v^2) \frac{\partial v}{\partial x} \equiv 0, \\ (1 + 4v^2) \frac{\partial v}{\partial y} \equiv 0 \end{cases} \implies \frac{\partial v}{\partial x} \equiv \frac{\partial v}{\partial y} \equiv 0.$$

由 (1) 即得 f(z) 是一常数.

**习题 2.2.4** 设  $z = r(\cos \theta + i \sin \theta)$ ,  $f(z) = u(r, \theta) + iv(r, \theta)$ , 证明 Cauchy-Riemann 方程为

$$\begin{cases} \frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \\ \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}. \end{cases}$$

证明 记 
$$\begin{cases} x = r\cos\theta, \\ y = r\sin\theta, \end{cases} \quad \mathbb{M} \begin{pmatrix} \frac{\partial u}{\partial r} \\ \frac{\partial u}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -r\sin\theta & r\cos\theta \end{pmatrix} \begin{pmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \end{pmatrix}, 因此$$

$$\begin{pmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \end{pmatrix} = \begin{pmatrix} \cos \theta & -\frac{1}{r} \sin \theta \\ \sin \theta & \frac{1}{r} \cos \theta \end{pmatrix} \begin{pmatrix} \frac{\partial u}{\partial r} \\ \frac{\partial u}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \cos \theta \frac{\partial u}{\partial r} - \frac{1}{r} \sin \theta \frac{\partial u}{\partial \theta} \\ \sin \theta \frac{\partial u}{\partial r} + \frac{1}{r} \cos \theta \frac{\partial u}{\partial \theta} \end{pmatrix}.$$

同理可得

$$\begin{pmatrix} \frac{\partial v}{\partial x} \\ \frac{\partial v}{\partial y} \end{pmatrix} = \begin{pmatrix} \cos\theta \frac{\partial v}{\partial r} - \frac{1}{r}\sin\theta \frac{\partial v}{\partial \theta} \\ \sin\theta \frac{\partial v}{\partial r} + \frac{1}{r}\cos\theta \frac{\partial v}{\partial \theta} \end{pmatrix}.$$

此时 Cauchy-Riemann 方程为

$$\begin{cases} \cos\theta \frac{\partial u}{\partial r} - \frac{1}{r}\sin\theta \frac{\partial u}{\partial \theta} = \sin\theta \frac{\partial v}{\partial r} + \frac{1}{r}\cos\theta \frac{\partial v}{\partial \theta}, \\ \sin\theta \frac{\partial u}{\partial r} + \frac{1}{r}\cos\theta \frac{\partial u}{\partial \theta} = \frac{1}{r}\sin\theta \frac{\partial v}{\partial \theta} - \cos\theta \frac{\partial v}{\partial r}. \end{cases}$$

整理即得

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \frac{\partial u}{\partial r} - \frac{1}{r} \frac{\partial v}{\partial \theta} \\ \frac{\partial v}{\partial r} + \frac{1}{r} \frac{\partial u}{\partial \theta} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies \begin{cases} \frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \\ \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}. \end{cases}$$

**习题 2.2.7** 设  $D \in \mathbb{C}$  中的域,  $f \in \mathbb{C}^2(D)$ . 证明:对每个  $z \in D$ ,有

$$\frac{\partial^2 f}{\partial z \partial \bar{z}}(z) = \frac{\partial^2 f}{\partial \bar{z} \partial z}(z).$$

证明 由于  $f \in \mathcal{C}^2(D)$ ,其二阶偏导数具有对称性, $\frac{\partial^2}{\partial z \partial \bar{z}} = \frac{1}{4}\Delta = \frac{\partial^2}{\partial \bar{z} \partial z}$ .

**习题 2.2.11** 设 D 是域,  $f: D \to \mathbb{C} \setminus (-\infty, 0]$  是非常数的全纯函数, 则  $\log |f(z)|$  和  $\arg f(z)$  是 D 上的调和函数, 而 |f(z)| 不是 D 上的调和函数.

证明 由

$$\begin{split} \Delta \log |f(z)| &= \frac{1}{2} \Delta \log |f(z)|^2 = 2 \frac{\partial^2}{\partial z \partial \bar{z}} \log \Big( f(z) \overline{f(z)} \Big) \\ &= 2 \frac{\partial}{\partial z} \left( \frac{f(z) \overline{f'(z)}}{f(z) \overline{f(z)}} \right) = 2 \frac{\partial}{\partial z} \left( \frac{\overline{f'(z)}}{\overline{f(z)}} \right) \xrightarrow{\text{C-R } \overline{\pi} \overline{\text{RE}}} 0 \end{split}$$

知  $\log |f(z)|$  是 D 上的调和函数. 由

$$e^{2i\arg f(z)} = \frac{f(z)}{\overline{f(z)}}$$

可得

$$2\mathrm{i}\mathrm{e}^{2\mathrm{i}\arg f(z)}\frac{\partial}{\partial z}\arg f(z)=\frac{f'(z)}{\overline{f(z)}}\implies \frac{\partial}{\partial z}\arg f(z)=\frac{f'(z)}{2\mathrm{i}f(z)},$$

因此

$$\Delta \arg f(z) = 4 \frac{\partial^2}{\partial \bar{z} \partial z} \arg f(z) = \frac{\partial}{\partial \bar{z}} \left( \frac{f'(z)}{2 \mathrm{i} \, f(z)} \right) = 0,$$

即  $\arg f(z)$  是 D 上的调和函数. 而

$$\frac{\partial}{\partial z}|f(z)| = \frac{f'(z)\overline{f(z)}}{2\sqrt{f(z)}\overline{f(z)}},$$

进而

$$\Delta |f(z)| = 4 \frac{\partial^2}{\partial \overline{z} \partial z} |f(z)| = 2f'(z) \cdot \frac{\overline{f'(z)} |f(z)| - \frac{1}{2} |f(z)| \overline{f'(z)}}{|f(z)|^2} = \frac{|f'(z)|^2}{|f(z)|},$$

由 f(z) 非常数, |f'(z)| 不恒为 0, 因此 |f(z)| 不是 D 上的调和函数.

**习题 2.2.13** 设 u 是域 D 上的实值调和函数,  $|\nabla u| \neq 0$ ,  $\varphi$  是 u(D) 上的实函数. 证明:  $\varphi \circ u$  是 D 上的调和函数当且仅当  $\varphi$  是线性函数.

证明 记 
$$\psi = \varphi \circ u$$
, 则  $\Delta \psi = \varphi''(u) |\nabla u|^2 + \varphi'(u) \Delta u = \varphi''(u) |\nabla u|^2$ . 故  $\Delta \psi \equiv 0 \iff \varphi''(u) \equiv 0$ .

**习题 2.3.1** 求映射  $w = \frac{z - i}{z + i}$  在  $z_1 = -1$  和  $z_2 = i$  处的转动角和伸缩率.

**解答** 由于  $\frac{\partial w}{\partial z} = \frac{2i}{(z+i)^2}$ ,  $w'(z_1) = -1$ ,  $w'(z_2) = -\frac{i}{2}$ , 映射 w 在  $z_1$  处的转动角为  $\pi$ , 伸缩率为 1; 在  $z_2$  处的转动角为  $-\frac{\pi}{2}$ , 伸缩率为  $\frac{1}{2}$ .

**习题 2.3.2** 设 f 是域 D 上的全纯函数, 且 f'(z) 在 D 上不取零值. 试证:

- (1) 对每一个  $u_0 + iv_0 \in f(D)$ , 曲线 Re  $f(z) = u_0$  和曲线 Im  $f(z) = v_0$  正交.
- (2) 对每一个  $r_0e^{i\theta_0} \in f(D) \setminus \{0\}, -\pi < \theta_0 \leqslant \pi$ , 曲线  $|f(z)| = r_0$  与曲线  $\arg f(z) = \theta_0$  正交.

- 证明 (1) 用 u 和 v 记 f(z) 的实部和虚部,则曲线  $u(x,y) = u_0$  在 (x,y) 处的法向量为  $\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right)$ ,曲 线  $v(x,y) = v_0$  在 (x,y) 处的法向量为  $\left(\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}\right) \stackrel{\text{C-R} \, ext{ iny R}}{=} \left(-\frac{\partial u}{\partial y}, \frac{\partial u}{\partial x}\right)$ . 因此在这两条曲线交点处 两法向量正交,即这两条曲线正交.
  - (2) 设  $f(z) = R(r, \theta)e^{i\Theta(r, \theta)}$ .
    - ① 对  $\log f(z) = \log R(r,\theta) + i\Theta(r,\theta)$  运用习题 2.2.4 即得极坐标系下的 Cauchy-Riemann 方程

$$\begin{cases} \frac{\partial R}{\partial r} = \frac{R}{r} \frac{\partial \Theta}{\partial \theta}, \\ \frac{\partial R}{\partial \theta} = -Rr \frac{\partial \Theta}{\partial r}. \end{cases}$$

② 曲线  $R(r,\theta) = r_0$  在  $(r,\theta)$  处的法向量为  $\frac{\partial R}{\partial r} \mathbf{e}_r + \frac{1}{r} \frac{\partial R}{\partial \theta} \mathbf{e}_\theta$ , 曲线  $\Theta(r,\theta) = \theta_0$  在  $(r,\theta)$  处的法向量为  $\frac{\partial \Theta}{\partial r} \mathbf{e}_r + \frac{1}{r} \frac{\partial \Theta}{\partial \theta} \mathbf{e}_\theta$   $\frac{\mathsf{C-R}}{r} \frac{\partial R}{\partial \theta} \mathbf{e}_r + \frac{1}{R} \frac{\partial R}{\partial r} \mathbf{e}_\theta$ . 因此在这两条曲线交点处两法向量正交,即这两条曲线正交.

**习题 2.3.3** 设  $f \in \mathcal{H}(\mathbb{B}(0,1) \cup \{1\})$ ,且  $f(\mathbb{B}(0,1)) \subset \mathbb{B}(0,1)$ ,f(1) = 1. 证明:  $f'(1) \ge 0$ .

证明 由于 f(z) 在 z=1 处全纯,

$$f(z) = f(1) + f'(1)(z-1) + o(|z-1|) = 1 + f'(1) + o(|z-1|), \quad z \to 1.$$

由题设, 当 |z| < 1 时 |f(z)| < 1, 因此

$$|1 + f'(1) + o(|z - 1|)| < 1$$
,  $\mathbb{B}(0, 1) \ni z \to 1$ .

展开即得

$$Re(f'(1)(z-1)) + o(|z-1|) < 0, \quad \mathbb{B}(0,1) \ni z \to 1.$$

 $\diamondsuit z - 1 = re^{i\theta}, \theta \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ , 上式化为

$$\operatorname{Re}\big(f'(1)r\mathrm{e}^{\mathrm{i}\theta}\big) + o(r) < 0 \iff \operatorname{Re}\big(f'(1)\mathrm{e}^{\mathrm{i}\theta}\big) + o(1) < 0, \quad r \to 0^+.$$

于是

$$\operatorname{Re}(f'(1)e^{i\theta}) \leq 0, \quad \forall \theta \in (\frac{\pi}{2}, \frac{3\pi}{2}).$$

令  $f'(1) = |f'(1)|e^{i\arg f'(1)}$ . 若  $|f'(1)| \neq 0$ , 则

$$\operatorname{Re}\left(e^{i\left(\arg f'(1)+\theta\right)}\right)\leqslant 0,\quad \forall \theta\in\left(\frac{\pi}{2},\frac{3\pi}{2}\right).$$

因此

$$\arg f'(1) + \theta \in \left[ \tfrac{\pi}{2}, \tfrac{3\pi}{2} \right], \quad \forall \theta \in \left( \tfrac{\pi}{2}, \tfrac{3\pi}{2} \right),$$

由此可见  $\arg f'(1) = 0$ ,从而 f'(1) = |f'(1)| > 0. 故  $f'(1) \ge 0$ .

**习题 2.4.2** 求  $\left|e^{z^2}\right|$  和  $\arg e^{z^2}$ .

解答 
$$\left| e^{z^2} \right| = e^{(\operatorname{Re} z)^2 - (\operatorname{Im} z)^2}, \operatorname{arg} e^{z^2} = 2 \operatorname{Re} z \operatorname{Im} z.$$

#### **习题 2.4.4** 设 f 是整函数, f(0) = 1. 证明:

- (1) 若 f'(z) = f(z) 对每个  $z \in \mathbb{C}$  成立,则  $f(z) \equiv e^z$ .
- (2) 若对每个  $z, w \in \mathbb{C}$ , 有 f(z+w) = f(z)f(w), 且 f'(0) = 1, 则  $f(z) \equiv e^z$ .

#### 证明 (1) 由

$$\frac{\partial}{\partial z} \left( \frac{f(z)}{e^z} \right) = \frac{f'(z) - f(z)}{e^z} \equiv 0, \quad \frac{f(z)}{e^z} \bigg|_{z=0} = 1$$

即知  $f(z) \equiv e^z$ .

(2) 由于

$$\frac{f(z+w)-f(z)}{w}=f(z)\cdot\frac{f(w)-f(0)}{w-0}\xrightarrow[f'(0)=1]{w\to 0} f'(z)\equiv f(z),$$

由 (1) 即知  $f(z) = e^z$ .

**习题 2.4.15** 称  $\varphi(z)=rac{1}{2}igg(z+rac{1}{z}igg)$  为 Rokovsky 函数. 证明下面四个域都是  $\varphi$  的单叶性域:

- (1) 上半平面  $\{z \in \mathbb{C} : \text{Im } z > 0\}$ .
- (2) 下半平面  $\{z \in \mathbb{C} : \text{Im } z < 0\}$ .
- (3) 无心单位圆盘  $\{z \in \mathbb{C} : 0 < |z| < 1\}$ .
- (4) 单位圆盘的外部  $\{z \in \mathbb{C} : |z| > 1\}$ .

证明 设  $z_1, z_2 \in \mathbb{C}$  使得  $\varphi(z_1) = \varphi(z_2)$ , 则  $(z_1z_2 - 1)(z_1 - z_2) = 0$ , 因此只要域 D 中任意两点不满足  $z_1z_2 = 1$ , D 就是  $\varphi(z)$  的单叶性域.

- (1) 对任意  $z_1, z_2 \in \{z \in \mathbb{C} : \text{Im } z > 0\}$ , 由  $\arg z_1, \arg z_2 \in (0, \pi)$  得  $\arg(z_1 z_2) \in (0, 2\pi)$ , 因此  $z_1 z_2 \neq 1$ .
- (2) 通过  $z_1z_2 = 1 \iff \overline{z_1z_2} = 1$  转化为 (1).
- (3) 对任意  $z_1, z_2 \in \{z \in \mathbb{C} : 0 < |z| < 1\}$ , 由  $|z_1|, |z_2| < 1$  得  $|z_1 z_2| < 1$ , 因此  $z_1 z_2 \neq 1$ .

(4) 通过 
$$z_1 z_2 = 1 \iff \frac{1}{z_1} \frac{1}{z_2} = 1$$
 转化为 (3).

**习题 2.4.16** 求习题 **2.4.15** 中的四个域在映射  $\varphi(z) = \frac{1}{2} \left( z + \frac{1}{z} \right)$  下的像.

解答 设  $z = re^{i\theta}$ ,  $\varphi(z) = u + iv$ , 则

$$u = \frac{1}{2}\left(r + \frac{1}{r}\right)\cos\theta, \quad v = \frac{1}{2}\left(r - \frac{1}{r}\right)\sin\theta.$$

因此  $\varphi$  将圆周  $|z|=r_0\neq 0$  映为曲线

$$u = \frac{1}{2} \left( r_0 + \frac{1}{r_0} \right) \cos \theta, \quad v = \frac{1}{2} \left( r_0 - \frac{1}{r_0} \right) \sin \theta.$$

当  $r_0 \neq 1$  时,这是半轴长为  $a = \frac{1}{2} \left( r_0 + \frac{1}{r_0} \right)$ , $b = \frac{1}{2} \left| r_0 - \frac{1}{r_0} \right|$ ,且由  $a^2 - b^2 \equiv 1$  知  $z = \pm 1$  为所有椭圆的公共焦点. 当  $r_0 \to 1$  时, $a \to 1$ , $b \to 0$ ,椭圆压缩成实轴上的线段 [-1,1];当  $r_0 \to 0^+$  或  $r_0 \to +\infty$  时, $a,b \to +\infty$ ,椭圆扩张为圆周. 故

- ♦ 无心单位圆盘  $\{z \in \mathbb{C} : 0 < |z| < 1\} \stackrel{\varphi}{\to} \mathbb{C} \setminus [-1, 1].$
- $\diamond$  单位圆盘的外部  $\{z\in\mathbb{C}:|z|>1\}\overset{\varphi}{\longrightarrow}\mathbb{C}\setminus[-1,1].$

再考虑射线  $\arg z = \theta_0 \ (\theta \in [0, 2\pi))$ , 它在  $\varphi$  下的像为

$$u = \frac{1}{2}\left(r + \frac{1}{r}\right)\cos\theta_0, \quad v = \frac{1}{2}\left(r - \frac{1}{r}\right)\sin\theta_0.$$

当  $\theta_0 = 0$  时, 这是射线  $\{u : u \ge 1\}$ ; 当  $\theta_0 = \pi$  时, 这是射线  $\{u : u \le -1\}$ ; 当  $\theta_0 = \frac{\pi}{2}$  或  $\frac{3\pi}{2}$  时, 这是虚轴; 当  $\theta_0$  不取上述值时, 这是双曲线

$$\frac{u^2}{\cos^2\theta_0} - \frac{v^2}{\sin^2\theta_0} = 1,$$

且由  $\cos^2 \theta_0 + \sin^2 \theta_0 \equiv 1$  知  $z = \pm 1$  为所有双曲线的公共焦点. 故

♦ 上半平面  $\{z \in \mathbb{C} : \operatorname{Im} z > 0\} \xrightarrow{\varphi} \mathbb{C} \setminus ((-\infty, -1] \cup [1, +\infty)).$ 

$$\diamond$$
 下半平面  $\{z \in \mathbb{C} : \operatorname{Im} z > 0\} \xrightarrow{\varphi} \mathbb{C} \setminus ((-\infty, -1] \cup [1, +\infty)).$  □

**习题 2.4.18** 证明:  $w = \cos z$  将半条形域  $\{z \in \mathbb{C} : 0 < \text{Re } z < 2\pi, \text{Im } z > 0\}$  ——地映为  $\mathbb{C} \setminus [-1, +\infty)$ .

证明 记 
$$\mu(z)=\mathrm{i} z, \eta(z)=\mathrm{e}^z, \varphi(z)=rac{1}{2}\bigg(z+rac{1}{z}\bigg),$$
则  $w=\varphi\circ\eta\circ\mu,$ 且有

$$\begin{aligned} \{z \in \mathbb{C} : 0 < \operatorname{Re} z < 2\pi, \operatorname{Im} z > 0\} & \xrightarrow{\mu \atop 1:1} \{z \in \mathbb{C} : \operatorname{Re} z < 0, 0 < \operatorname{Im} z < 2\pi\} \\ & \overset{1:1}{\downarrow} \eta \\ & \mathbb{C} \setminus [-1, +\infty) \longleftarrow \frac{\varphi}{1:1} & \mathbb{B}(0, 1) \setminus [0, 1) \end{aligned}$$

其中第一个箭头为双射是显然的,第二个箭头为双射可由  $\{z \in \mathbb{C} : \operatorname{Re} z < 0, 0 < \operatorname{Im} z < 2\pi\}$  是  $\eta$  的单叶域得到,第三个箭头为双射证明如下:由习题 2.4.15,无心单位圆盘是  $\varphi$  的单叶域,进而  $\mathbb{B}(0,1) \setminus [0,1)$  也是  $\varphi$  的单叶域;再由习题 2.4.16, $\varphi$  将无心单位圆盘映为  $\mathbb{C} \setminus [-1,1]$ ,因此  $\varphi$  将  $\mathbb{B}(0,1) \setminus [0,1)$  映为

$$(\mathbb{C}\setminus[-1,1])\setminus\varphi([0,1))=\mathbb{C}\setminus([-1,1]\cup(1,+\infty))=\mathbb{C}\setminus[-1,+\infty),$$

由此得到第三个箭头, 且其为双射. 由双射的复合即得所欲证.

**习题 2.4.19** 证明:  $w=\sin z$  将半条形域  $\left\{z\in\mathbb{C}:-\frac{\pi}{2}<\operatorname{Re} z<\frac{\pi}{2},\operatorname{Im} z>0\right\}$  ——地映为上半平面.

证明 由于  $\sin z = \cos\left(z - \frac{\pi}{2}\right)$ ,只需考虑  $\{z \in \mathbb{C} : -\pi < \operatorname{Re} z < 0, \operatorname{Im} z > 0\}$  在函数  $w = \cos z$  下的像. 记  $\mu(z) = \mathrm{i} z, \eta(z) = \mathrm{e}^z, \varphi(z) = \frac{1}{2}\left(z + \frac{1}{z}\right)$ ,则  $w = \varphi \circ \eta \circ \mu$ ,且有

$$\begin{aligned} \{z \in \mathbb{C}: -\pi < \operatorname{Re} z < 0, \operatorname{Im} z > 0\} & \xrightarrow{\mu} \{z \in \mathbb{C}: \operatorname{Re} z < 0, -\pi < \operatorname{Im} z < 0\} \\ & \xrightarrow{1:1} \Big| \eta \\ \{z \in \mathbb{C}: \operatorname{Im} z > 0\} & \xleftarrow{\varphi} \{z \in \mathbb{C}: |z| < 1 \ \text{\rlap{\i}} \ \operatorname{Im} z < 0\} \end{aligned}$$

其中第一个箭头为双射是显然的,第二个箭头为双射可由  $\{z \in \mathbb{C} : \operatorname{Re} z < 0, -\pi < \operatorname{Im} z < 0\}$  是 $\eta$  的单叶域得到,第三个箭头为双射证明如下:由习题 2.4.15,无心单位圆盘是 $\varphi$  的单叶域,进而

 $\{z\in\mathbb{C}: \operatorname{Re} z<0, -\pi<\operatorname{Im} z<0\}$  也是  $\varphi$  的单叶域; 再由习题 2.4.16 中的讨论可见,  $\varphi$  将单位圆盘内部的 半径为  $r_0$  下半圆周映为半长轴长  $\frac{1}{2}\left(r_0+\frac{1}{r_0}\right)$ 、半短轴长  $\frac{1}{2}\left|r_0-\frac{1}{r_0}\right|$  的上半椭圆, 因此

$$\{z\in\mathbb{C}:\operatorname{Re} z<0, -\pi<\operatorname{Im} z<0\}\overset{\varphi}{\longrightarrow}\{z\in\mathbb{C}:\operatorname{Im} z>0\},$$

且这是双射.

**习题 2.4.21** 当 z 按逆时针方向沿圆周  $\{z \in \mathbb{C} : |z| = 2\}$  旋转一圈后, 计算下列函数辐角的增量:

- (1)  $(z-1)^{\frac{1}{2}}$ .
- (2)  $(1+z^4)^{\frac{1}{3}}$ .
- (3)  $(z^2+2z-3)^{\frac{1}{4}}$ .
- (4)  $\left(\frac{z-1}{z+1}\right)^{\frac{1}{2}}$ .
- (5)  $\left(\frac{z^2-1}{z^2+5}\right)^{\frac{1}{7}}$ .

解答 记  $C = \{z \in \mathbb{C} : |z| = 2\}$ . 对有理函数  $R(z) = \prod_{j=1}^{m} (z - a_j)^{n_j} 与 F(z) = R(z)^{\frac{1}{n}}, 若 C \cap \{a_j\}_{j=1}^{m} = \varnothing$ , 记  $\Lambda = \{j : a_j \in C \text{ 内部}\}$ , 则有

$$\Delta_C \operatorname{Arg} R(z) = \sum_{j=1}^m n_j \Delta_C \operatorname{Arg}(z - a_j) = 2\pi \sum_{j \in \Lambda} n_j \implies \Delta_C \operatorname{Arg} F(z) = \frac{2\pi}{n} \sum_{j \in \Lambda} n_j.$$

- (1) 由于 1 在 C 的内部,  $\Delta_C \operatorname{Arg}(z-1)^{\frac{1}{2}} = \frac{2\pi}{2} \cdot 1 = \pi$ .
- (2) 由  $1+z^4$  的根 z 均满足  $|z|^4=|-1|^4=1$ ,其 4 个根均位于 C 的内部, $\Delta_C \left(1+z^4\right)^{\frac{1}{3}}=\frac{2\pi}{3}\cdot 4=\frac{8\pi}{3}$ .
- (3) 由于  $z^2 + 2z 3 = (z+3)(z-1)$ , 1 在 C 的内部, 而 -3 在 C 的外部,  $\Delta_C(z^2 + 2z 3)^{\frac{1}{4}} = \frac{2\pi}{4} \cdot 1 = \frac{\pi}{2}$ .
- (4) 由于  $\pm 1$  均在 C 的内部,  $\Delta_C \left(\frac{z-1}{z+1}\right)^{\frac{1}{2}} = \frac{2\pi}{2} \cdot (1-1) = 0.$
- (5) 由于 ±1 在 C 的内部,而 ± $\sqrt{5}$ i 在 C 的外部, $\Delta_C \left(\frac{z^2-1}{z^2+5}\right)^{\frac{1}{7}} = \frac{2\pi}{7} \cdot 2 = \frac{4\pi}{7}$ .

**习题 2.4.22** 设  $f(z) = \frac{z^{p-1}}{(1-z)^p}$ , 0 . 证明: <math>f 能在域  $D = \mathbb{C} \setminus [0,1]$  上选出单值的全纯分支.

**证明** 由于  $f(z) = \frac{1}{z} \left(\frac{z}{1-z}\right)^p = \frac{1}{z} \exp\left(p \log \frac{z}{1-z}\right)$ ,只需证  $\log \frac{z}{1-z}$  能在  $D = \mathbb{C} \setminus [0,1]$  上选出单值的全纯分支. 当  $z \notin [0,1]$  时, $\frac{z}{1-z} \notin [0,+\infty)$ ,而  $\log z$  在  $\mathbb{C} \setminus [0,+\infty)$  上可选出单值全纯分支,得证.  $\square$ 

**习题 2.4.26** 设 D 是 z 平面上去掉线段 [-1,i], [1,i] 和射线 z=it  $(1 \le t < +\infty)$  后所得的域, 证明函数  $Log(1-z^2)$  能在 D 上分出单值全纯分支. 设 f 是满足 f(0)=0 的那个分支, 试计算 f(2) 的值.

证明 对任意不经过 ±1 的简单闭曲线,

$$\Delta_C \operatorname{Log}(1-z^2) = \Delta_C \operatorname{Log}(1+z) + \Delta_C \operatorname{Log}(1-z).$$

- ♦ 若 C 仅包含点 1 且沿逆时针方向,则  $\Delta_C \operatorname{Log}(1-z^2) = \Delta_C \operatorname{Log}(1-z) = \mathrm{i}\Delta_C \operatorname{Arg}(1-z) = 2\pi\mathrm{i}$ .
- ♦ 若 C 仅包含点 -1 且沿逆时针方向,则  $\Delta_C \operatorname{Log}(1-z^2) = \Delta_C \operatorname{Log}(1+z) = \mathrm{i}\Delta_C \operatorname{Arg}(1+z) = 2\pi\mathrm{i}$ .
- ♦ 若 C 同时包含 ±1 且沿逆时针方向,则  $\Delta_C \operatorname{Log}(1-z^2) = \Delta_C \operatorname{Log}(1-z) + \Delta_C \operatorname{Log}(1+z) = 4\pi i$ .
- ♦ 若 C 不包含  $\pm 1$ , 则  $\Delta_C \operatorname{Log}(1-z^2) = 0$ .

由于 D 中任一简单闭曲线无法仅包含 1 或 -1, 也无法同时包含  $\pm 1$ , 由上述讨论即知  $Log(1-z^2)$  能在 D 上分出单值全纯分支. 对于满足 f(0)=0 的分支 f, 当 z 沿 D 中简单曲线从 0 变动到 2 时,

$$f(2) - f(0) = \Delta_{\gamma} \operatorname{Log}(1 - z^{2}) = (\log|1 - 2^{2}| - \log 1) + i[\Delta_{\gamma} \operatorname{Arg}(1 + z) + \Delta_{\gamma} \operatorname{Arg}(1 - z)]$$
  
=  $i(0 + \pi) = \log 3 + \pi i$ .

故 
$$f(2) = \log 3 + \pi i$$
.

**习题 2.4.27** 证明函数  $\sqrt[4]{(1-z)^3(1+z)}$  能在  $\mathbb{C} \setminus [-1,1]$  上选出一个单值全纯分支 f,满足  $f(i) = \sqrt{2}e^{-\frac{\pi}{8}i}$ . 试计算 f(-i) 的值.

证明 承接习题 2.4.21 解答开头的讨论, 我们还有

$$\Delta_C F(z) = |R(z_0)|^{\frac{1}{n}} \mathrm{e}^{\frac{\mathrm{i}}{n} \operatorname{Arg} R(z_0)} \left[ \mathrm{e}^{\frac{\mathrm{i}}{n} \Delta_C \operatorname{Arg} R(z)} - 1 \right],$$

其中 $z_0$ 为环绕曲线C时的起点.因此

$$\Delta_C F(z) = 0 \iff \mathrm{e}^{\frac{\mathrm{i}}{n} \Delta_C \operatorname{Arg} R(z)} = 1 \iff \Delta_C \operatorname{Arg} R(z) = 2kn\pi \iff \sum_{j \in \Lambda} n_j = kn, \quad k \in \mathbb{Z}.$$

本题中, 对于  $R(z) = (1-z)^3(1+z)$  与  $F(z) = [(1-z)^3(1+z)]^{\frac{1}{4}}$ ,

- ◇ 由于 3 不是 4 的整数倍, 因此 1 是 F(z) 的枝点.
- ♦ 由于 1 不是 4 的整数倍, 因此 -1 是 F(z) 的枝点.
- ♦ 由于 3+1=4 是 4 的整数倍, 因此  $\infty$  不是 F(z) 的枝点.

因此对  $\mathbb{C}\setminus[-1,1]$  上的任一简单闭曲线  $\gamma$ ,要么  $\gamma$  同时包含  $\pm 1$  两点,要么  $\gamma$  不包含  $\pm 1$  两点,在这两种情况下均有  $\Delta_{\gamma}F(z)=0$ . 又  $(1-i)^3(1+i)=-4i=\left(\sqrt{2}\mathrm{e}^{-\frac{\pi}{8}i}\right)^4$ ,于是能在  $\mathbb{C}\setminus[-1,1]$  上选出一个满足  $f(i)=\sqrt{2}\mathrm{e}^{-\frac{\pi}{8}i}$  的单值全纯分支 f. 现取 E 为以  $\pm 1$  为焦点、 $\pm i$  为上下顶点的椭圆的左半部分,则

$$\begin{split} f(-\mathrm{i}) - f(\mathrm{i}) &= \Delta_E F(z) = \sqrt{2} \mathrm{e}^{\frac{\mathrm{i}}{4} \operatorname{Arg} R(\mathrm{i})} \Big( \mathrm{e}^{\frac{\mathrm{i}}{4} \Delta_E \operatorname{Arg} R(z)} - 1 \Big), \\ \Delta_E \operatorname{Arg} R(z) &= \frac{\pi}{2} \cdot 3 + \frac{3\pi}{2} = 3\pi. \end{split}$$

因此

$$f(-i) = \sqrt{2}e^{-\frac{\pi}{8}i} + \sqrt{2}e^{\frac{i}{4}\operatorname{Arg}(-4i)}\left(e^{\frac{3\pi}{4}i} - 1\right) = \sqrt{2}e^{\frac{5\pi}{8}i}.$$

**习题 2.5.2** 求出把上半平面映为单位圆盘的分式线性变换, 使得 -1,0,1 分别映为 1,i,-1.

**解答** 设所求的分式线性变换将 z 映为 w, 则  $\frac{z-0}{z-1}$  :  $\frac{-1-0}{-1-1} = \frac{w-\mathrm{i}}{w-(-1)}$  :  $\frac{1-\mathrm{i}}{1-(-1)}$ , 解得  $w = \frac{z-\mathrm{i}}{\mathrm{i}z-1}$ . 检验: 对  $x \in \mathbb{R}$  与 y > 0, 有  $\left|\frac{(x+\mathrm{i}y)-\mathrm{i}}{\mathrm{i}(x+\mathrm{i}y)-1}\right|^2 = \frac{x^2+(y-1)^2}{x^2+(y+1)^2} < 1$ .

**习题 2.5.3** 设  $a,b,c,d \in \mathbb{R}$ ,则分式线性变换  $w = \frac{az+b}{cz+d}$  把上半平面映为上半平面  $\iff ad-bc > 0$ .

**证明** 由于  $a,b,c,d \in \mathbb{R}$ ,  $w = \frac{az+b}{cz+d}$  必将  $\mathbb{R}$  映为  $\mathbb{R}$ . 又欲证两边均蕴含  $ad-bc \neq 0$ ,故不妨假设之.

- (⇒) 若 ad bc < 0, 则  $w' = \frac{ad bc}{(cz + d)^2} < 0$ . 当 z 在  $\mathbb{R}$  上由  $-\infty$  趋向  $+\infty$  时, w 由  $+\infty$  趋向  $-\infty$ , 根据 全纯函数的保角性, w 把上半平面映为下半平面,矛盾. 故 ad bc > 0.
- (⇐) 由  $w' = \frac{ad bc}{(cz + d)^2} > 0$ ,当 z 在  $\mathbb{R}$  上由  $-\infty$  趋向  $+\infty$  时,w 也由  $-\infty$  趋向  $+\infty$ ,根据全纯函数的保 角性,w 把上半平面映为上半平面.

**习题 2.5.4** 试求把单位圆盘的外部  $\{z: |z| > 1\}$  映为右半平面  $\{w: \text{Re } w > 0\}$  的分式线性变换, 使得

- (1) 1, -i, -1 分别变为 i, 0, -i.
- (2) -i, i, 1 分别变为 i, 0, -i.

证明 设所求的分式线性变换将z映为w.

- $(1) \ \frac{z-(-\mathrm{i})}{z-(-1)}: \frac{1-(-\mathrm{i})}{1-(-1)} = \frac{w-0}{w-(-\mathrm{i})}: \frac{\mathrm{i}-0}{\mathrm{i}-(-\mathrm{i})} \implies w = \frac{z+\mathrm{i}}{z-\mathrm{i}}.$  检验: 对满足  $x^2+y^2>1$  的  $x,y\in\mathbb{R}$ ,有  $\mathrm{Re}\,\frac{(x+\mathrm{i}y)+\mathrm{i}}{(x+\mathrm{i}y)-\mathrm{i}} = \frac{x^2+y^2-1}{x^2+(y-1)^2}>0.$
- $(2) \ \frac{z-\mathrm{i}}{z-1} : \frac{-\mathrm{i}-\mathrm{i}}{-\mathrm{i}-1} = \frac{w-0}{w-(-\mathrm{i})} : \frac{\mathrm{i}-0}{\mathrm{i}-(-\mathrm{i})} \implies w = \frac{z-\mathrm{i}}{(2-\mathrm{i})z+(2\mathrm{i}-1)}.$  检验: 对满足  $x^2+y^2>1$  的  $x,y\in\mathbb{R}, \ \text{fr} \ \mathrm{Re} \ \frac{(x+\mathrm{i}y)-\mathrm{i}}{(2-\mathrm{i})(x+\mathrm{i}y)+(2\mathrm{i}-1)} = \frac{2\big(x^2+y^2-1\big)}{(2x+y-1)^2+(2y-x+2)^2}>0.$

**习题 2.5.9** 证明:  $z_1, z_2$  关于圆周

$$az\bar{z} + \bar{\beta}z + \beta\bar{z} + d = 0$$

对称的充要条件是

$$az_1\overline{z_2} + \overline{\beta}z_1 + \beta\overline{z_2} + d = 0.$$

**证明** (直线) 此时 a=0. 若  $z_1, z_2$  关于所给直线对称,则  $z_2-z_1 \perp i\beta$ ,即  $Re(i\beta\overline{z_2-z_1})=0$ ,展开得

$$i\beta(\overline{z_2}-\overline{z_1})-i\bar{\beta}(z_2-z_1)=0 \iff \beta\overline{z_2}+\bar{\beta}z_1=\beta\overline{z_1}+\bar{\beta}z_2.$$

而  $\frac{z_1+z_2}{2}$  满足所给直线方程:

$$\bar{\beta}\frac{z_1+z_2}{2}+\beta\frac{\overline{z_1}+\overline{z_2}}{2}+d=0.$$

联立以上两式即得

$$\beta \overline{z_1} + \bar{\beta} z_2 + d = 0.$$

反之, 若 z1, z2 满足上式, 对上式取共轭得

$$\bar{\beta}z_1 + \beta \overline{z_2} + d = 0,$$

两式相加得

$$\bar{\beta}\frac{z_1 + z_2}{2} + \beta \frac{\overline{z_1} + \overline{z_2}}{2} + d = 0,$$

两式作差得

$$\beta(\overline{z_2} - \overline{z_1}) - \bar{\beta}(z_2 - z_1) = 0,$$

再乘  $\frac{\mathbf{i}}{2}$  即得  $\operatorname{Re}(\mathbf{i}\beta\overline{z_2-z_1})=0$ . 故  $z_1,z_2$  关于此直线对称.

**(圆周)** 记圆周的圆心为  $z_0$ 、半径为 R. 若  $z_1, z_2$  关于此圆周对称,则

$$z_2 - z_0 = \frac{R^2}{\overline{z_1} - \overline{z_0}}.$$

这是因为对上式取模与辐角可得

$$\begin{cases} |z_2 - z_0||z_1 - z_0| = R^2, \\ \operatorname{Arg}(z_2 - z_0) = -\operatorname{Arg}(\overline{z_1} - \overline{z_0}) = \operatorname{Arg}(z_1 - z_0). \end{cases}$$

代入所给圆周方程的等价形式

$$\left|z + \frac{\beta}{a}\right| = \frac{\sqrt{\left|\beta\right|^2 - ad}}{\left|a\right|}$$

即得

$$z_2 + \frac{\beta}{a} = \frac{\frac{|\beta|^2 - ad}{a^2}}{\frac{\overline{z_1} + \frac{\overline{\beta}}{2}}{\overline{z_1} + \frac{\overline{\beta}}{2}}},$$

化简即

$$az_1\overline{z_2} + \bar{\beta}z_1 + \beta\overline{z_2} + d = 0.$$

反之,若 z1, z2 满足上式,将上述过程反向即得 z1, z2 关于所给圆周对称.

**习题 2.5.10** 设  $T(z) = \frac{az+b}{cz+d}$  是一个分式线性变换, 如果记

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix},$$

那么

$$T^{-1}(z) = \frac{\alpha z + \beta}{\gamma z + \delta}.$$

证明 
$$T^{-1}(z) = \frac{-dz+b}{cz-a}$$
,而由题, $\begin{pmatrix} a\alpha+b\gamma & a\beta+b\delta \\ c\alpha+d\gamma & c\beta+d\delta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ ,因此

$$(c\alpha + d\gamma)z^2 + (c\beta + d\delta - a\alpha - b\gamma)z - (a\beta + b\delta) = 0 \iff \frac{-dz + b}{cz - a} = \frac{\alpha z + \beta}{\gamma z + \delta}.$$

**习题 2.5.11** 设  $T_1(z)=\frac{a_1z+b_1}{c_1z+d_1}$ ,  $T_2(z)=\frac{a_2z+b_2}{c_2z+d_2}$  是两个分式线性变换,如果记

$$\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

那么

$$(T_1 \circ T_2)(z) = \frac{az+b}{cz+d}.$$

证明 
$$(T_1 \circ T_2)(z) = \frac{(a_1a_2 + b_1c_2)z + (a_1b_2 + b_1d_2)}{(a_2c_1 + c_2d_1)z + (b_2c_1 + d_1d_2)}$$
,而由题, $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a_1a_2 + b_1c_2 & a_1b_2 + b_1d_2 \\ a_2c_1 + c_2d_1 & b_2c_1 + d_1d_2 \end{pmatrix}$ ,于是  $(T_1 \circ T_2)(z) = \frac{az + b}{cz + d}$ .

**习题 2.5.16** 求一单叶全纯映射,把半条形域  $\left\{z:-\frac{\pi}{2}<\operatorname{Re}z<\frac{\pi}{2},\operatorname{Im}z>0\right\}$  映为上半平面,且把  $\frac{\pi}{2},-\frac{\pi}{2},0$  分别映为 1,-1,0.

解答 由习题 2.4.19 知  $w = \sin z$  满足题意. 亦可如下分解求之, 复合结果仍为  $\sin z$ .

$$\left\{z \in \mathbb{C}: -\frac{\pi}{2} < \operatorname{Re} z < \frac{\pi}{2}, \operatorname{Im} z > 0\right\} \xrightarrow{z \mapsto iz} \left\{z \in \mathbb{C}: -\frac{\pi}{2} < \operatorname{Im} z < \frac{\pi}{2}, \operatorname{Re} z < 0\right\}$$
 
$$\left\{z \in \mathbb{C}: |z| < 1, \operatorname{Im} z > 0\right\} \leftarrow \xrightarrow{z \mapsto iz} \left\{z \in \mathbb{C}: |z| < 1, \operatorname{Re} z > 0\right\}$$
 
$$\left\{z \in \mathbb{C}: \operatorname{Re} z < 0, \operatorname{Im} z < 0\right\} \xrightarrow{z \mapsto z^2} \left\{z \in \mathbb{C}: \operatorname{Im} z > 0\right\}$$
 
$$\left\{z \in \mathbb{C}: \operatorname{Im} z > 0\right\}$$

其中用到的两个分式线性变换如下:

(1)  $w_1(z) = \frac{z+1}{z-1}$  将上半单位圆盘映为第三象限 (由于二者在 Riemann 球上为全等的新月形, 结合保 圆性及保角性可知这样的分式线性变换的确存在)。目使  $-1 \mapsto 0.1 \mapsto \infty$ .  $\mathbf{i} \mapsto -\mathbf{i}$ .

(2) 
$$w_2(z) = -\frac{z+1}{z-1}$$
 将上半平面映为上半平面,且使  $0 \mapsto 1, \infty \mapsto -1, -1 \mapsto 0$ .

**习题 2.5.17** 求一单叶全纯映射, 把除去线段 [a, a + hi] 的条形域  $\{z : 0 < \text{Im } z < 1\}$  映为条形域  $\{w : 0 < \text{Im } w < 1\}$ , 其中  $a \in \mathbb{R}$ , 0 < h < 1.

#### 解答 分解如下:

复合结果为

$$w = \frac{1}{2\pi} \log \left[ \left( \frac{e^{\pi(z+a)} - 1}{e^{\pi(z+a)} + 1} \right)^2 + \left( \frac{1 - \cos(h\pi)}{\sin(h\pi)} \right)^2 \right].$$

## **习题 2.5.18** 求一单叶全纯映射, 把图示的月牙形域映为 $\mathbb{B}(0,1)$ .



# 解答 记图示月牙形域为 D,则有

$$D \xrightarrow{z \mapsto \frac{z+1}{z-1}} \qquad \left\{z \in \mathbb{C} : \frac{7\pi}{6} < \arg z < \frac{3\pi}{2}\right\}$$

$$\downarrow^{z \mapsto \log z}$$

$$\left\{z \in \mathbb{C} : 0 < \operatorname{Im} z < 2\pi\right\} \xleftarrow{z \mapsto 6z - 7\pi} \left\{z \in \mathbb{C} : \frac{7\pi}{6} < \operatorname{Im} z < \frac{3\pi}{2}\right\}$$

$$\downarrow^{z \mapsto e^{z}}$$

$$\mathbb{C} \setminus [0, +\infty) \xrightarrow{z \mapsto \sqrt{z}} \left\{z \in \mathbb{C} : \operatorname{Im} z > 0\right\} \xrightarrow{z \mapsto \frac{z-i}{z+1}} \mathbb{B}(0, 1)$$

第一个箭头  $z\mapsto\frac{z+1}{z-1}$  将两圆弧映为共起点的两射线,注意到当 z 在  $\mathbb R$  上由 -1 到 1 时, $w=1+\frac{2}{z-1}$  在  $\mathbb R$  上由 0 到  $-\infty$ ,因此由保角性可确定负半实轴到两射线的角度分别为  $\frac{\pi}{6}$  和  $\frac{\pi}{2}$ . 复合结果为

$$w = \frac{\sqrt{\mathrm{e}^{6\log\frac{z+1}{z-1}-7\pi}} - \mathrm{i}}{\sqrt{\mathrm{e}^{6\log\frac{z+1}{z-1}-7\pi}} + \mathrm{i}} = \frac{(z+1)^3 - \mathrm{i}\mathrm{e}^{\frac{7\pi}{2}}(z-1)^3}{(z+1)^3 + \mathrm{i}\mathrm{e}^{\frac{7\pi}{2}}(z-1)^3}.$$

**习题 2.5.20** 求一单叶全纯映射, 把图示  $\mathbb{B}\left(-\frac{1}{2}, \frac{1}{2}\right)$  和  $\mathbb{B}\left(\frac{1}{2}, \frac{1}{2}\right)$  的外部除去线段 [-2i, 0] 所成的域映为上 半平面.



解答 记图示区域为 D,则有

$$D \xrightarrow{z \mapsto \frac{1}{z}} \qquad \{z \in \mathbb{C} : -1 < \operatorname{Re} z < 1\} \setminus \{z \in \mathbb{C} : \operatorname{Re} z = 0 \text{ } \underline{\mathbb{H}} \text{ } \operatorname{Im} z \geqslant \frac{1}{2}\}$$

$$\downarrow^{z \mapsto \pi \mathrm{i} z + \frac{\pi}{2} + \pi \mathrm{i}}$$

$$\mathbb{C} \setminus [-1, +\infty) \xleftarrow{z \mapsto \mathrm{e}^z} \{z \in \mathbb{C} : 0 < \operatorname{Im} z < 2\pi\} \setminus \{z \in \mathbb{C} : \operatorname{Im} z = \pi \text{ } \underline{\mathbb{H}} \text{ } \operatorname{Re} z \leqslant 0\}$$

$$\downarrow^{z \mapsto z + 1}$$

$$\mathbb{C} \setminus [0, +\infty) \xrightarrow{z \mapsto \sqrt{z}} \{z \in \mathbb{C} : \operatorname{Im} z > 0\}$$

复合结果为

$$w = \sqrt{e^{\frac{\pi i}{z} + \frac{\pi}{2} + \pi i} + 1} = \sqrt{1 - e^{\frac{\pi i}{z} + \frac{\pi}{2}}}.$$

**习题 2.5.21** 设 0 < r < a, 求一单叶全纯映射, 把域  $\{z \in \mathbb{C} : \operatorname{Re} z > 0, |z - a| > r\}$  映为同心圆环  $\{w \in \mathbb{C} : \rho < |w| < 1\}$ .

**解答** 虚轴与圆周 |z-a|=r 的公共对称点显然在实轴上, 设其为  $\pm x$  (0 < x < a), 则  $(a-x)(a+x)=r^2$ , 解得  $x = \sqrt{a^2-r^2}$ . 因此分式线性变换

$$w = k \cdot \frac{z + \sqrt{a^2 - r^2}}{z - \sqrt{a^2 - r^2}}, \quad k \in \mathbb{C}$$

将所给域映为同心于原点的圆环. 此时  $0\mapsto -k,\, a-r\mapsto -k\cdot \frac{a+\sqrt{a^2-r^2}}{r}$ . 取

$$k = \frac{r}{a + \sqrt{a^2 - r^2}} = \frac{a - \sqrt{a^2 - r^2}}{r},$$

则 w 将所给域映为同心圆环  $\{w \in \mathbb{C} : \rho < |w| < 1\}$ , 其中  $\rho = k$ .

**习题 3.1.2** 计算积分 
$$\int_{|z|=1}^{\infty} \frac{\mathrm{d}z}{z+2}$$
,并证明  $\int_{0}^{\pi} \frac{1+2\cos\theta}{5+4\cos\theta} \,\mathrm{d}\theta = 0$ .

解答 由于  $\frac{1}{z+2}$  在  $\mathbb{B}(0,1)$  上全纯, 在  $\overline{\mathbb{B}(0,1)}$  上连续,  $\int\limits_{|z|=1} \frac{\mathrm{d}z}{z+2} = 0$ . 另一方面, 由

$$0 = \int_{|z|=1}^{1} \frac{dz}{z+2} = \int_{0}^{2\pi} \frac{de^{i\theta}}{e^{i\theta}+2} = i \int_{0}^{2\pi} \frac{e^{i\theta}}{e^{i\theta}+2} d\theta$$

可得

$$\begin{split} 0 &= \int_0^{2\pi} \frac{\mathrm{e}^{\mathrm{i}\theta}}{\mathrm{e}^{\mathrm{i}\theta} + 2} \, \mathrm{d}\theta = \int_0^{2\pi} \frac{(\cos\theta + \mathrm{i}\sin\theta)(2 + \cos\theta - \mathrm{i}\sin\theta)}{(2 + \cos\theta + \mathrm{i}\sin\theta)(2 + \cos\theta - \mathrm{i}\sin\theta)} \, \mathrm{d}\theta \\ &= \int_0^{2\pi} \frac{2\cos\theta + 1 + 2\mathrm{i}\sin\theta}{5 + 4\cos\theta} \, \mathrm{d}\theta = \int_0^{2\pi} \frac{1 + 2\cos\theta}{5 + 4\cos\theta} \, \mathrm{d}\theta + 2\mathrm{i}\int_0^{2\pi} \frac{\sin\theta}{5 + 4\cos\theta} \, \mathrm{d}\theta, \end{split}$$

而

$$\int_0^{2\pi} \frac{1+2\cos\theta}{5+4\cos\theta}\,\mathrm{d}\theta = 2\int_0^\pi \frac{1+2\cos\theta}{5+4\cos\theta}, \quad \int_0^{2\pi} \frac{\sin\theta}{5+4\cos\theta}\,\mathrm{d}\theta = 0,$$

因此

$$\int_0^\pi \frac{1 + 2\cos\theta}{5 + 4\cos\theta} \,\mathrm{d}\theta = 0.$$

**习题 3.1.4** 如果多项式 Q(z) 比多项式 P(z) 高两次, 试证:

$$\lim_{R\to\infty}\int\limits_{|z|=R}\frac{P(z)}{Q(z)}\,\mathrm{d}z=0.$$

证明 设  $\lim_{|z|\to\infty}\left|\frac{z^2P(z)}{Q(z)}\right|=M$ ,则存在  $R_0>0$ ,使得当  $R>R_0$  时, $\left|\frac{z^2P(z)}{Q(z)}\right|\leqslant 2M$ ,此时

$$\left| \int\limits_{|z|=R} \frac{P(z)}{Q(z)} \, \mathrm{d}z \right| \leqslant \int\limits_{|z|=R} \left| \frac{P(z)}{Q(z)} \right| |\mathrm{d}z| \leqslant \int\limits_{|z|=R} \frac{2M}{|z|^2} |\mathrm{d}z| = \frac{4\pi M}{R} \to 0, \quad R \to \infty.$$

习题 3.1.5 计算积分  $\int_{|z|=r} z^n \bar{z}^k dz$ , 其中  $n, k \in \mathbb{Z}$ .

解答 
$$\int\limits_{|z|=r} z^n \bar{z}^k \, \mathrm{d}z = \int_0^{2\pi} \left( r \mathrm{e}^{\mathrm{i}\theta} \right)^n \left( r \mathrm{e}^{-\mathrm{i}\theta} \right)^k \mathrm{d}r \mathrm{e}^{\mathrm{i}\theta} = \mathrm{i} r^{n+k+1} \int_0^{2\pi} \mathrm{e}^{\mathrm{i}(n-k+1)\theta} \, \mathrm{d}\theta = \begin{cases} 0, & n+1 \neq k, \\ 2\pi \mathrm{i} r^{n+k+1}, & n+1 = k. \end{cases}$$

习题 3.2.1 计算积分:

(1) 
$$\int_{|z|=r} \frac{|dz|}{|z-a|^2}, |a| \neq r.$$

(2) 
$$\int_{|z|=2} \frac{2z-1}{z(z-1)} \, \mathrm{d}z.$$

(3) 
$$\int_{|z|=5} \frac{z \, \mathrm{d}z}{z^4 - 1}.$$

(4) 
$$\int_{|z|=2a} \frac{e^z}{z^2 + a^2} dz, a > 0.$$

故 
$$\int_{|z|=r} \frac{|dz|}{|z-a|^2} = \frac{2\pi r}{|r^2-|a|^2|}.$$

(2) 
$$\int_{|z|=2} \frac{2z-1}{z(z-1)} dz = \int_{|z|=2} \left(\frac{1}{z} + \frac{1}{z-1}\right) dz = 4\pi i.$$

(3) 
$$\int_{|z|=5} \frac{z \, dz}{z^4 - 1} = \frac{1}{2} \int_{|z|=5} \frac{dz^2}{(z^2 - 1)(z^2 + 1)} = \frac{1}{4} \int_{|z|=5} \left( \frac{1}{z^2 - 1} - \frac{1}{z^2 + 1} \right) dz^2 = 0.$$

(4) 由 Cauchy 积分公式,

$$\int_{|z|=2a} \frac{\mathrm{e}^z}{z^2+a^2} \, \mathrm{d}z = \frac{1}{2a\mathrm{i}} \int_{|z|=2a} \left( \frac{\mathrm{e}^z}{z-a\mathrm{i}} - \frac{\mathrm{e}^z}{z+a\mathrm{i}} \right) \mathrm{d}z = \frac{1}{2a\mathrm{i}} \left( 2\pi \mathrm{i} \mathrm{e}^{a\mathrm{i}} - 2\pi \mathrm{i} \mathrm{e}^{-a\mathrm{i}} \right) = \frac{2\pi \mathrm{i} \sin a}{a}.$$

**习题 3.2.2** 设 f 在  $\{z: r < |z| < \infty\}$  中全纯, 且  $\lim_{z \to \infty} zf(z) = A$ . 证明:

$$\int_{|z|=R} f(z) \, \mathrm{d}z = 2\pi \mathrm{i} A,$$

其中 R > r.

证明 对于 R' > R, 有

$$\left| \int\limits_{|z|=R} f(z) \, \mathrm{d}z - 2\pi \mathrm{i}A \right| = \left| \int\limits_{|z|=R'} \left( f(z) \, \mathrm{d}z - \frac{A}{z} \right) \mathrm{d}z \right| \leqslant \int\limits_{|z|=R'} \frac{|zf(z) - A|}{R'} |\mathrm{d}z|$$

$$\leqslant 2\pi \cdot \sup_{|z|=R'} |zf(z) - A| \to 0, \quad R' \to \infty.$$

**习题 3.4.1** 计算下列积分:

(1) 
$$\int_{|z-1|=1} \frac{\sin z}{z^2 - 1} \, \mathrm{d}z.$$

(2) 
$$\int_{|z|=2} \frac{\mathrm{d}z}{1+z^2}.$$

(3) 
$$\int_{4x^2+y^2=2y} \frac{e^{\pi z}}{(1+z^2)^2} dz.$$

(4) 
$$\int_{|z|=\frac{3}{2}} \frac{\mathrm{d}z}{(z^2+1)(z^2+4)}.$$

(5) 
$$\int_{|z|=2} \frac{\mathrm{d}z}{z^3(z-1)^3(z-3)^5}.$$

(6) 
$$\int_{|z|=R} \frac{\mathrm{d}z}{(z-a)^n(z-b)}$$
, 其中  $n$  为正整数,  $a,b$  不在圆周  $|z|=R$  上.

解答 (1) 
$$\int\limits_{|z-1|=1} \frac{\sin z}{z^2-1} \, \mathrm{d}z = \int\limits_{|z-1|=1} \frac{\frac{\sin z}{z+1}}{z-1} \, \mathrm{d}z = 2\pi \mathrm{i} \cdot \frac{\sin z}{z+1} \bigg|_{z=1} = \pi \mathrm{i} \sin 1.$$

(2) 记 
$$\varepsilon=\frac{1}{2}, \gamma_1=\{z:|z-\mathrm{i}|=\varepsilon\}, \gamma_2=\{z:|z+\mathrm{i}|=\varepsilon\},$$
 则

$$\int_{|z|=2} \frac{\mathrm{d}z}{1+z^2} = \int_{\gamma_1} \frac{\frac{\mathrm{d}z}{z+\mathrm{i}}}{z-\mathrm{i}} + \int_{\gamma_2} \frac{\frac{\mathrm{d}z}{z-\mathrm{i}}}{z-(-\mathrm{i})} = 2\pi\mathrm{i}\left(\frac{1}{\mathrm{i}+\mathrm{i}} + \frac{1}{-\mathrm{i}-\mathrm{i}}\right) = 0.$$

(3) 
$$i\exists E = \{(x,y): 4x^2 + y^2 = 2y\} = \{(x,y): 4x^2 + (y-1)^2 = 1\}, \ \emptyset$$

$$\int_{4x^2+y^2=2y} \frac{\mathrm{e}^{\pi z}}{(1+z^2)^2} \, \mathrm{d}z = \int_E \frac{\frac{\mathrm{e}^{\pi z}}{(z+\mathrm{i})^2} \, \mathrm{d}z}{(z-\mathrm{i})^2} = \frac{2\pi\mathrm{i}}{1!} \cdot \frac{\mathrm{d}}{\mathrm{d}z} \left( \frac{\mathrm{e}^{\pi z}}{(z+\mathrm{i})^2} \right) \bigg|_{z=\mathrm{i}} = 2\pi\mathrm{i} \cdot \frac{\mathrm{e}^{\pi z} (\pi z + \pi\mathrm{i} - 2)}{(z+\mathrm{i})^3} \bigg|_{z=\mathrm{i}}$$
$$= \frac{\pi(\pi\mathrm{i} - 1)}{2}.$$

(4) 记 
$$\varepsilon=rac{1}{4}, \gamma_1=\{z:|z-{
m i}|=\varepsilon\}, \gamma_2=\{z:|z+{
m i}|=\varepsilon\},$$
 则

$$\int\limits_{|z|=\frac{3}{2}} \frac{\mathrm{d}z}{(z^2+1)(z^2+4)} = \int\limits_{\gamma_1} \frac{\frac{\mathrm{d}z}{(z+\mathrm{i})(z^2+4)}}{z-\mathrm{i}} + \int\limits_{\gamma_2} \frac{\frac{\mathrm{d}z}{(z-\mathrm{i})(z^2+4)}}{z-(-\mathrm{i})} = 2\pi\mathrm{i} \left(\frac{1}{6\mathrm{i}} + \frac{1}{-6\mathrm{i}}\right) = 0.$$

(5) 记 
$$\varepsilon = \frac{1}{4}$$
,  $\gamma_1 = \{z : |z| = \varepsilon\}$ ,  $\gamma_2 = \{z : |z-1| = \varepsilon\}$ , 则

$$\begin{split} \int\limits_{|z|=2} \frac{\mathrm{d}z}{z^3(z-1)^3(z-3)^5} &= \int\limits_{\gamma_1} \frac{\frac{\mathrm{d}z}{(z-1)^3(z-3)^5}}{(z-0)^3} + \int\limits_{\gamma_2} \frac{\frac{\mathrm{d}z}{z^3(z-3)^5}}{(z-1)^3} \\ &= \frac{2\pi \mathrm{i}}{2!} \cdot \frac{\mathrm{d}^2}{\mathrm{d}z^2} \bigg( \frac{1}{(z-1)^3(z-3)^5} \bigg) \bigg|_{z=0} + \frac{2\pi \mathrm{i}}{2!} \cdot \frac{\mathrm{d}^2}{\mathrm{d}z^2} \bigg( \frac{1}{z^3(z-3)^5} \bigg) \bigg|_{z=1} \\ &= \pi \mathrm{i} \bigg( \frac{76}{3^6} - \frac{9}{2^6} \bigg). \end{split}$$

(6) ① 若 
$$a,b$$
 均在圆周  $|z|=R$  外,则由 Cauchy 定理,  $\int\limits_{|z|=R} \frac{\mathrm{d}z}{(z-a)^n(z-b)}=0.$ 

② 若a在圆周|z|=R外,b在圆周|z|=R内,记 $\varepsilon=\frac{R-|b|}{2}$ , $\gamma=\{z:|z-b|=\varepsilon\}$ ,则

$$\int_{|z|=R} \frac{\mathrm{d}z}{(z-a)^n (z-b)} = \int_{\gamma} \frac{\frac{\mathrm{d}z}{(z-a)^n}}{z-b} = \frac{2\pi \mathrm{i}}{(b-a)^n}.$$

③ 若 a 在圆周 |z|=R 内,b 在圆周 |z|=R 外,记  $\varepsilon=\frac{R-|a|}{2}$ , $\gamma=\{z:|z-a|=\varepsilon\}$ ,则

$$\int_{|z|=R} \frac{\mathrm{d}z}{(z-a)^n (z-b)} = \int_{\gamma} \frac{\frac{\mathrm{d}z}{z-b}}{(z-a)^n} = \frac{2\pi \mathrm{i}}{(n-1)!} \cdot \frac{\mathrm{d}^{n-1}}{\mathrm{d}z^{n-1}} \left(\frac{1}{z-b}\right) \bigg|_{z=a} = -\frac{2\pi \mathrm{i}}{(b-a)^n}.$$

④ 若 a,b 均在圆周 |z|=R 内,记  $\gamma_1=\{z:|z-a|=\varepsilon\}, \gamma_2=\{z:|z-b|=\varepsilon\}$ ,其中  $\varepsilon<\min\{R-|a|,R-|b|\}$  充分小以使  $\gamma_1,\gamma_2$  各自所围区域不交. 于是

$$\int_{|z|=R} \frac{\mathrm{d}z}{(z-a)^n (z-b)} = 0 = \int_{\gamma_1} \frac{\frac{\mathrm{d}z}{z-b}}{(z-a)^n} + \int_{\gamma_2} \frac{\frac{\mathrm{d}z}{z-b}}{(z-a)^n} = 3 + 2 = 0.$$

#### 习题 3.4.4 称

$$P_n(z) = \frac{1}{2^n n!} \frac{d^n}{dz^n} (z^2 - 1)^n$$

是 Legendre 多项式. 证明:

(1) Legendre 多项式有如下的积分表示:

$$P_n(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{(\zeta^2 - 1)^n}{2^n (\zeta - z)^{n+1}} d\zeta,$$

其中γ是任意内部包含 z 的可求长简单闭曲线.

(2) 如果取

$$\gamma = \left\{ \zeta \in \mathbb{C} : |\zeta - x| = \sqrt{x^2 - 1} \right\} \quad (1 < x < +\infty),$$

那么有如下的 Laplace 公式:

$$P_n(x) = \frac{1}{\pi} \int_0^{\pi} \left( x + \sqrt{x^2 - 1} \cos \theta \right)^n d\theta.$$

**证明** (1) 由 Cauchy 积分公式,

$$\frac{\mathrm{d}^n}{\mathrm{d}z^n} (z^2 - 1)^n = \frac{n!}{2\pi \mathrm{i}} \int\limits_{\gamma} \frac{\left(\zeta^2 - 1\right)^n}{(\zeta - z)^{n+1}} \,\mathrm{d}\zeta,$$

整理即得欲证积分表示.

(2) 由(1) 所得积分表示,

$$P_n(x) = \frac{1}{2\pi i} \int_{\gamma} \frac{\left(\zeta^2 - 1\right)^n}{2^n (\zeta - x)^{n+1}} d\zeta = \frac{1}{2\pi} \int_0^{2\pi} \left[ \frac{\left(x + \sqrt{x^2 - 1}e^{i\theta}\right)^2 - 1}{2\sqrt{x^2 - 1}e^{i\theta}} \right]^n d\theta.$$

而

$$\int_{\pi}^{2\pi} \left\lceil \frac{\left(x + \sqrt{x^2 - 1} \mathrm{e}^{\mathrm{i}\theta}\right)^2 - 1}{2\sqrt{x^2 - 1} \mathrm{e}^{\mathrm{i}\theta}} \right\rceil^n \mathrm{d}\theta \xrightarrow{\beta = 2\pi - \theta} \int_{0}^{\pi} \left\lceil \frac{\left(x + \sqrt{x^2 - 1} \mathrm{e}^{-\mathrm{i}\beta}\right)^2 - 1}{2\sqrt{x^2 - 1} \mathrm{e}^{-\mathrm{i}\beta}} \right\rceil^n \mathrm{d}\beta,$$

因此

$$\begin{split} P_n(x) &= \frac{1}{\pi} \int_0^{\pi} \text{Re} \left\{ \left[ \frac{\left( x + \sqrt{x^2 - 1} e^{i\theta} \right)^2 - 1}{2\sqrt{x^2 - 1} e^{i\theta}} \right]^n \right\} d\theta \\ &= \frac{1}{\pi} \int_0^{\pi} \text{Re} \left\{ \left[ \frac{\left( x^2 - 1 \right) + \sqrt{x^2 - 1} e^{i\theta} \left( \sqrt{x^2 - 1} e^{i\theta} + 2x \right)}{2\sqrt{x^2 - 1} e^{i\theta}} \right]^n \right\} d\theta \\ &= \frac{1}{\pi} \int_0^{\pi} \text{Re} \left\{ \left[ \frac{\sqrt{x^2 - 1} \left( e^{i\theta} + e^{-i\theta} \right) + 2x}{2} \right]^n \right\} d\theta \\ &= \frac{1}{\pi} \int_0^{\pi} \left( x + \sqrt{x^2 - 1} \cos \theta \right)^n d\theta. \end{split}$$

**习题 3.4.5** 设  $f \in \mathcal{H}(\mathbb{B}(0,1)) \cap \mathcal{C}\left(\overline{\mathbb{B}(0,1)}\right)$ . 证明:

(1) 
$$\frac{2}{\pi} \int_0^{2\pi} f(e^{i\theta}) \cos^2(\frac{\theta}{2}) d\theta = 2f(0) + f'(0).$$

(2) 
$$\frac{2}{\pi} \int_0^{2\pi} f(e^{i\theta}) \sin^2(\frac{\theta}{2}) d\theta = 2f(0) - f'(0).$$

证明 由 Cauchy 积分公式,

$$f(0) = \frac{1}{2\pi i} \int_{|z|=1}^{\pi} \frac{f(z)}{z} dz = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{f(e^{i\theta})}{e^{i\theta}} \cdot e^{i\theta} d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} f(e^{i\theta}) d\theta,$$

$$f'(0) = \frac{1}{2\pi i} \int_{|z|=1}^{\pi} \frac{f(z)}{z^2} dz = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{f(e^{i\theta})}{e^{2i\theta}} \cdot e^{i\theta} d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} f(e^{i\theta}) e^{-i\theta} d\theta.$$

由 Cauchy 定理,

$$\int\limits_{|z|=1} f(z) \, \mathrm{d}z = \mathrm{i} \int_0^{2\pi} f \big( \mathrm{e}^{\mathrm{i} \theta} \big) \mathrm{e}^{\mathrm{i} \theta} \, \mathrm{d}\theta = 0 \implies \frac{1}{2\pi} \int_0^{2\pi} f \big( \mathrm{e}^{\mathrm{i} \theta} \big) \mathrm{e}^{\mathrm{i} \theta} \, \mathrm{d}\theta = 0.$$

因此

$$\frac{2}{\pi} \int_0^{2\pi} f\!\left(\mathrm{e}^{\mathrm{i}\theta}\right) \cos^2\!\left(\tfrac{\theta}{2}\right) \mathrm{d}\theta = \frac{1}{\pi} \int_0^{2\pi} f\!\left(\mathrm{e}^{\mathrm{i}\theta}\right) \! \left(1 + \frac{\mathrm{e}^{\mathrm{i}\theta} + \mathrm{e}^{-\mathrm{i}\theta}}{2}\right) \mathrm{d}\theta = 2f(0) + f'(0),$$

进而

$$\frac{2}{\pi} \int_{0}^{2\pi} f(e^{i\theta}) \sin^{2}(\frac{\theta}{2}) d\theta = \frac{2}{\pi} \int_{0}^{2\pi} f(e^{i\theta}) \left[1 - \cos^{2}(\frac{\theta}{2})\right] d\theta = 4f(0) - \left[2f(0) + f'(0)\right] = 2f(0) - f'(0).$$

**习题 3.4.8** (Schwarz 积分公式) 设  $f \in \mathcal{H}(\mathbb{B}(0,R)) \cap \mathcal{C}\Big(\overline{\mathbb{B}(0,R)}\Big), f = u + \mathrm{i}v.$  证明: f 可用实部表示为

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{Re^{i\theta} + z}{Re^{i\theta} - z} u(Re^{i\theta}) d\theta + iv(0).$$

**证明** 对于  $z \in \mathbb{B}(0,R)$ , 由 Cauchy 积分公式,

$$f(z) = \frac{1}{2\pi \mathbf{i}} \int_{|z|=R} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(Re^{\mathbf{i}\theta})Re^{\mathbf{i}\theta}}{Re^{\mathbf{i}\theta} - z} d\theta.$$

记 z 关于圆周 |z|=R 的对称点为  $z^*=\frac{R^2}{\bar{z}}$ , 则由 Cauchy 定理,

$$\int\limits_{|z|=R} \frac{f(\zeta)}{\zeta-z^*} \,\mathrm{d}\zeta = 0 \implies \frac{1}{2\pi} \int_0^{2\pi} \frac{f\big(R\mathrm{e}^{\mathrm{i}\theta}\big)R\mathrm{e}^{\mathrm{i}\theta}\bar{z}}{R\mathrm{e}^{\mathrm{i}\theta}\bar{z}-R^2} \,\mathrm{d}\theta = 0.$$

将以上两式作差即得

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f\left(R\mathrm{e}^{\mathrm{i}\theta}\right) \left[\frac{R\mathrm{e}^{\mathrm{i}\theta}}{R\mathrm{e}^{\mathrm{i}\theta} - z} - \frac{\bar{z}}{\bar{z} - R\mathrm{e}^{-\mathrm{i}\theta}}\right] \mathrm{d}\theta = \frac{1}{2\pi} \int_0^{2\pi} f\left(R\mathrm{e}^{\mathrm{i}\theta}\right) \frac{R^2 - |z|^2}{|R\mathrm{e}^{\mathrm{i}\theta} - z|^2} \, \mathrm{d}\theta.$$

两端取实部即得

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} u \left(R\mathrm{e}^{\mathrm{i}\theta}\right) \frac{R^2 - |z|^2}{\left|R\mathrm{e}^{\mathrm{i}\theta} - z\right|^2} \, \mathrm{d}\theta.$$

注意到

$$\frac{R^2 - |z|^2}{\left|Re^{i\theta} - z\right|^2} = \text{Re}\left(\frac{Re^{i\theta} + z}{Re^{i\theta} - z}\right),\,$$

**令** 

$$g(z) = \frac{1}{2\pi} \int_0^{2\pi} u \left( R e^{i\theta} \right) \frac{R e^{i\theta} + z}{R e^{i\theta} - z} d\theta,$$

则 Re g(z)=u(z). 由于  $g(z)\in\mathfrak{H}(\mathbb{B}(0,R))$ ,令 h(z)=f(z)-g(z),则  $h(z)\in\mathfrak{H}(\mathbb{B}(0,R))$ ,且 Re  $h(z)\equiv0$ . 由习题 2.2.2 即知  $h(z)\equiv C$  为常数. 由

$$g(0) = \frac{1}{2\pi} \int_0^{2\pi} u(Re^{i\theta}) d\theta = \operatorname{Re}\left\{\frac{1}{2\pi} \int_0^{2\pi} f(Re^{i\theta}) d\theta\right\} \stackrel{\text{平均值公式}}{=\!=\!=\!=\!=} \operatorname{Re} f(0) = u(0)$$

即知

$$C = f(0) - g(0) = u(0) + iv(0) - u(0) = iv(0).$$

故

$$f(z) = g(z) + iv(0) = \frac{1}{2\pi} \int_0^{2\pi} \frac{Re^{i\theta} + z}{Re^{i\theta} - z} u(Re^{i\theta}) d\theta + iv(0).$$

**习题 3.5.1** 设 f 是有界整函数,  $z_1, z_2$  是  $\mathbb{B}(0, r)$  中任意两点. 证明:

$$\int_{|z|=r} \frac{f(z)}{(z-z_1)(z-z_2)} \, \mathrm{d}z = 0.$$

并由此得出 Liouville 定理.

证明 由 Cauchy 积分公式,

$$\int_{|z|=r} \frac{f(z)}{(z-z_1)(z-z_2)} dz = \frac{1}{z_1-z_2} \int_{|z|=r} \left( \frac{f(z)}{z-z_1} - \frac{f(z)}{z-z_2} \right) dz = 2\pi i \cdot \frac{f(z_1) - f(z_2)}{z_1-z_2}.$$

由于 f 有界, 存在 M>0 使得  $|f(z)| \leq M$ . 又  $f \in \mathfrak{H}(\mathbb{C})$ , 由 Cauchy 定理与长大不等式, 对 R>r, 有

$$\left| \int\limits_{|z|=r} \frac{f(z)}{(z-z_1)(z-z_2)} \, \mathrm{d}z \right| = \left| \int\limits_{|z|=R} \frac{f(z)}{(z-z_1)(z-z_2)} \, \mathrm{d}z \right| \leqslant \frac{2\pi RM}{(R-|z_1|)(R-|z_2|)} \to 0, \quad R \to +\infty.$$

故 
$$\int_{|z|=r} \frac{f(z)}{(z-z_1)(z-z_2)} dz = 0$$
, 进而  $f(z_1) = f(z_2)$ , 由  $z_1, z_2$  的任意性即证 Liouville 定理.

**习题 3.5.4** 设 f 是整函数, 如果  $f(\mathbb{C}) \subset \{z \in \mathbb{C} : \operatorname{Im} z > 0\}$ , 证明 f 是一个常值函数.

**证明** 令  $g(z) = \frac{f(z) - \mathbf{i}}{f(z) + \mathbf{i}}$ ,由题设即得  $g(z) \in \mathfrak{H}(\mathbb{C})$  且  $|g(z)| \leq 1$ . 根据 Liouville 定理,g(z) 为常值函数,从而 f(z) 亦为常值函数.

**习题 3.5.8** 设 f 是域 D 上的连续函数,如果对于任意边界和内部都位于 D 中的弓形域 G,总有  $\int_{\partial G} f(z) \, \mathrm{d}z = 0$ ,那么 f 是 D 上的全纯函数. 如果把弓形域换成圆盘,结论是否仍然成立?

**证明** (1) 沿弓形域积分为 0 蕴含沿圆盘积分为 0, 进而沿任意外切圆在 D 中的三角形积分为 0. 而 D 中任意三角形均可被剖分为若干个外切圆在 D 中的三角形, 因此沿 D 中任意三角形积分为 0.



为证 f 在 D 上全纯,只需证 f 在 D 中每个开球上全纯,因此可不妨设  $D=\mathbb{B}(a,R)$ . 任取  $z\in D$ ,设  $F(z)=\int\limits_{[a,z]}f(w)\,\mathrm{d}w.$  固定  $z_0\in G$ ,由沿三角形积分为 0 可得

$$F(z) = \int_{[a,z_0]} f(w) \, \mathrm{d}w + \int_{[z_0,z]} f(w) \, \mathrm{d}w \implies \frac{F(z) - F(z_0)}{z - z_0} = \frac{1}{z - z_0} \int_{[z_0,z]} f(w) \, \mathrm{d}w.$$

因此

$$\frac{F(z) - F(z_0)}{z - z_0} - f(z_0) = \frac{1}{z - z_0} \int_{[z, z_0]} [f(w) - f(z_0)] dw,$$

进而由长大不等式,

$$\left|\frac{F(z)-F(z_0)}{z-z_0}-f(z_0)\right|\leqslant \max_{w\in[z,z_0]} |f(w)-f(z_0)|.$$

由于  $f \in \mathcal{C}(D)$ , 对任意  $\varepsilon > 0$ , 存在  $\delta > 0$ , 当  $z \in \mathbb{B}(z_0, \delta) \cap D$  时, 就有  $|f(z) - f(z_0)| < \varepsilon$ . 此时

$$\max_{w \in [z, z_0]} |f(w) - f(z_0)| < \varepsilon,$$

故

$$\lim_{z \to z_0} \frac{F(z) - F(z_0)}{z - z_0} = f(z_0).$$

于是 F(z) 在 D 上全纯, 从而 f(z) = F'(z) 在 D 上全纯.

- (2) 若把弓形域换成圆盘, 结论仍成立.
  - ① 先考虑  $f = u + iv \in \mathcal{C}^1(D)$  的情形. 对任意  $\mathbb{B}(z_0, r) \subset D$ , 有

$$0 = \int\limits_{\partial \mathbb{B}(z_0,r)} f(z) \, \mathrm{d}z = \int\limits_{\partial \mathbb{B}(z_0,r)} \big( u \, \mathrm{d}x - v \, \mathrm{d}y \big) + \mathrm{i} \int\limits_{\partial \mathbb{B}(z_0,r)} \big( u \, \mathrm{d}y + v \, \mathrm{d}x \big).$$

由 Green 公式可得

$$0 = -\int_{\partial \mathbb{B}(z_0, r)} (u \, dx - v \, dy) = \iint_{\mathbb{B}(z_0, r)} \left( \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) dx \, dy,$$
$$0 = \int_{\partial \mathbb{B}(z_0, r)} (u \, dy + v \, dx) = \iint_{\mathbb{B}(z_0, r)} \left( \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dx \, dy.$$

将以上两式两边同除以  $\pi r^2$ , 并令  $r \to 0^+$ , 由  $u, v \in \mathcal{C}^1(D)$  即得

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0,$$

这是 Cauchy-Riemann 方程, 故 f 在 D 上全纯.

② 现考虑一般的  $f \in \mathcal{C}(D)$ . 设  $\phi(z)$  为  $\mathbb{C}$  上的实值函数, 且满足

 $\diamond \ \operatorname{supp}(\phi) \subset \overline{\mathbb{B}(0,1)}.$ 

对  $\varepsilon > 0$ , 定义  $\phi_{\varepsilon}(z) = \frac{\phi(\frac{z}{\varepsilon})}{\varepsilon^2}$ , 则  $\phi_{\varepsilon}(z)$  同样满足上述前三点性质, 且  $\operatorname{supp}(\phi_{\varepsilon}) \subset \overline{\mathbb{B}(0,\varepsilon)}$ . 设

$$f_{arepsilon}(z) = \iint_{\mathbb{C}} f(z-\zeta)\phi_{arepsilon}(\zeta) \,\mathrm{d}\xi \,\mathrm{d}\eta, \quad \zeta = \xi + \mathrm{i}\eta,$$

则当  $\varepsilon \to 0^+$  时,  $f_{\varepsilon}(z)$  局部一致收敛到 f(z), 且对任意  $\mathbb{B}(z_0,r) \subset D$ , 有

$$\begin{split} \int\limits_{\partial \mathbb{B}(z_0,r)} f_{\varepsilon}(z) \, \mathrm{d}z &= \int\limits_{\partial \mathbb{B}(z_0,r)} \iint_{\mathbb{C}} f(z-\zeta) \phi_{\varepsilon}(\zeta) \, \mathrm{d}\xi \, \mathrm{d}\eta \, \mathrm{d}z \\ &= \iint_{\mathbb{C}} \left\{ \int\limits_{\partial \mathbb{B}(z_0,r)} f(z-\zeta) \, \mathrm{d}z \right\} \phi_{\varepsilon}(\zeta) \, \mathrm{d}\xi \, \mathrm{d}\eta \end{split}$$

林晓烁 2024 年春季

$$= \iint_{\mathbb{C}} \left\{ \int_{\partial \mathbb{B}(z_0 - \zeta, r)} f(z) \, \mathrm{d}z \right\} \phi_{\varepsilon}(\zeta) \, \mathrm{d}\xi \, \mathrm{d}\eta$$
$$= 0$$

由①即知  $f_{\varepsilon}(z) \in \mathcal{H}(D)$ . 由于 f(z) 是  $f_{\varepsilon}(z)$  的局部一致极限,  $f(z) \in \mathcal{H}(D)$ .

习题 4.2.2 求下列幂级数的收敛半径:

(3) 
$$\sum_{n=0}^{\infty} [3 + (-1)^n]^n z^n.$$

$$(4) \sum_{n=0}^{\infty} \frac{n^n}{n!} z^n.$$

解答 (3)  $\limsup_{n \to \infty} \sqrt[n]{[3 + (-1)^n]^n} = \lim_{n \to \infty} \sqrt[n]{4^n} = 4 \implies 收敛半径 R = \frac{1}{4}$ .

(4) 
$$\limsup_{n \to \infty} \sqrt[n]{\frac{n^n}{n!}} = \lim_{n \to \infty} \frac{n}{(2\pi n)^{\frac{1}{2n}\frac{n}{n}}} = e \implies 收敛半径 R = \frac{1}{e}.$$

**习题 4.2.4** 设正数列  $\{a_n\}$  单调收敛于 0. 证明:

(1) 
$$\sum_{n=0}^{\infty} a_n z^n$$
 的收敛半径  $R \ge 1$ .

(2) 
$$\sum_{n=0}^{\infty} a_n z^n$$
 在  $\partial \mathbb{B}(0,1) \setminus \{1\}$  上处处收敛.

**证明** (1) 由于  $a_n \downarrow 0$ ,存在正整数 N,当 n > N 时, $a_n < 1$ ,从而  $\sqrt[n]{a_n} < 1$ ,因此  $\limsup_{n \to \infty} \sqrt[n]{a_n} \leqslant 1$ ,收 敛半径  $R \geqslant 1$ .

(2) 当 
$$z \in \partial \mathbb{B}(0,1) \setminus \{1\}$$
 时,  $\left| \sum_{k=0}^{n} z^k \right| = \left| \frac{1-z^{n+1}}{1-z} \right| \leqslant \frac{2}{|1-z|}$ ,而  $a_n \downarrow 0$ ,由 Dirichlet 判别法得证.

**习题 4.2.7** 证明: 若 
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 是  $\mathbb{B}(0,1)$  上的有界全纯函数,则  $\sum_{n=0}^{\infty} |a_n|^2 < +\infty$ .

**证明** 设  $|f(z)| \leq M, \forall z \in \mathbb{B}(0,1).$  对  $r \in (0,1)$ , 有

$$\begin{split} 2\pi M^2 \geqslant \int_0^{2\pi} \left| f \! \left( r \mathrm{e}^{\mathrm{i} \theta} \right) \right|^2 \mathrm{d} \theta &= \int_0^{2\pi} \sum_{n=0}^\infty a_n r^n \mathrm{e}^{\mathrm{i} n \theta} \sum_{m=0}^\infty \overline{a_m} r^n \mathrm{e}^{-\mathrm{i} m \theta} \, \mathrm{d} \theta \\ &= \sum_{n=0}^\infty \sum_{m=0}^\infty a_n \overline{a_m} r^{n+m} \int_0^{2\pi} \mathrm{e}^{\mathrm{i} (n-m) \theta} \, \mathrm{d} \theta = 2\pi \sum_{n=0}^\infty |a_n|^2 r^{2n}, \end{split}$$

因此

$$\sum_{n=0}^{\infty}|a_n|^2r^{2n}\leqslant M^2\implies \sum_{n=0}^{m}|a_n|^2r^{2n}\leqslant M^2,\quad \forall m\geqslant n\implies \sum_{n=0}^{m}|a_n|^2R^{2n}\leqslant M^2,\quad \forall m\geqslant n.$$

故

$$\sum_{n=0}^{\infty} |a_n|^2 < +\infty.$$

**习题 4.3.1** 设 D 是域,  $a \in D$ , 函数  $f \in \mathfrak{H}(D \setminus \{a\})$ . 证明: 若  $\lim_{z \to a} (z - a) f(z) = 0$ , 则  $f \in \mathfrak{H}(D)$ .

证明 设  $\varphi(z) = \begin{cases} (z-a)f(z), & z \in D \setminus \{a\}, \\ 0, & z=a. \end{cases}$  则  $\varphi \in \mathcal{C}(D) \cap \mathcal{H}(D \setminus \{a\})$ . 任取 D 中可求长简单闭曲线  $\gamma$ , 且  $\gamma$  所围区域在 D 中,则不论 a 与  $\gamma$  的位置关系,均有  $\int\limits_{\gamma} \varphi(z) \, \mathrm{d}z = 0$  (当 a 在  $\gamma$  所围区域中时,可添加过 a 的曲线). 由 Morera 定理得  $\varphi \in \mathcal{H}(D)$ . 于是,当补充定义  $f(a) = \varphi'(a)$  后便有

$$\lim_{z \to a} f(z) = \lim_{z \to a} \frac{\varphi(z) - \varphi(a)}{z - a} = \varphi'(a) = f(a),$$

因此  $f \in \mathcal{C}(D) \cap \mathcal{H}(D \setminus \{a\})$ , 同前可得  $f \in \mathcal{H}(D)$ .

**习题 4.3.5** 是否存在  $f \in \mathcal{H}(\mathbb{B}(0,1))$ ,使得下述条件之一成立:

(2) 
$$f\left(\frac{1}{2n}\right) = 0, f\left(\frac{1}{2n-1}\right) = 1, n = 1, 2, 3, \cdots$$

(3) 
$$f\left(\frac{1}{n}\right) = f\left(-\frac{1}{n}\right) = \frac{1}{n^2}, n = 2, 3, 4 \cdots$$

**解答** (2) 不存在.  $\Diamond n \to \infty$ , 由  $f \in \mathbb{Z} = 0$  处连续即得矛盾.

(3) 不存在. 因为由唯一性定理, 
$$f(\frac{1}{n}) = \frac{1}{n^2}$$
 要求  $f(z) = z^2$ , 但这与  $f(-\frac{1}{n}) = \frac{1}{n^2}$  矛盾.

**习题 4.3.6** 设  $f(z) = \sum_{n=0}^{\infty} a_n z^n$  的收敛半径 R > 0, 0 < r < R,  $A(r) = \max_{|z|=r} \operatorname{Re} f(z)$ . 证明:

$$(1) \ a_n r^n = \frac{1}{\pi} \int_0^{2\pi} \left[ \operatorname{Re} f \left( r \mathrm{e}^{\mathrm{i} \theta} \right) \right] \mathrm{e}^{-\mathrm{i} n \theta} \, \mathrm{d} \theta, \forall n \in \mathbb{N}.$$

(2) 
$$|a_n|r^n \leq 2A(r) - 2\operatorname{Re} f(0), \forall n \in \mathbb{N}.$$

**证明** (1) 由 Cauchy 积分公式,

$$a_n = \frac{1}{2\pi i} \sum_{m=0}^{\infty} \int_{|z|=r} \frac{a_m}{z^{m+1}} dz = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(re^{i\theta})}{r^{n+1}e^{i(n+1)\theta}} rie^{i\theta} d\theta = \frac{1}{2\pi r^n} \int_0^{2\pi} f(re^{i\theta}) e^{-in\theta} d\theta.$$

∭

$$0 = \int\limits_{|z|=r} f(z)z^{n-1} dz = \mathrm{i} r^n \int_0^{2\pi} f\big(r\mathrm{e}^{\mathrm{i}\theta}\big) \mathrm{e}^{\mathrm{i} n\theta} d\theta \implies \frac{1}{2\pi r^n} \int_0^{2\pi} \overline{f(r\mathrm{e}^{\mathrm{i}\theta})} \mathrm{e}^{-\mathrm{i} n\theta} d\theta = 0,$$

因此

$$a_n = \frac{1}{\pi r^n} \int_0^{2\pi} \left[ \operatorname{Re} f(re^{i\theta}) \right] e^{-in\theta} d\theta.$$

(2) 利用 
$$\int_{0}^{2\pi} e^{-in\theta} d\theta = 0$$
 可得

$$\begin{split} |a_n|r^n &= \frac{1}{\pi} \bigg| \int_0^{2\pi} \big[ \operatorname{Re} f \big( r \mathrm{e}^{\mathrm{i} \theta} \big) - A(r) \big] \mathrm{e}^{-\mathrm{i} n \theta} \, \mathrm{d} \theta \bigg| \\ &\leqslant \frac{1}{\pi} \int_0^{2\pi} \big| \operatorname{Re} f \big( r \mathrm{e}^{\mathrm{i} \theta} \big) - A(r) \big| \, \mathrm{d} \theta \\ &= \frac{1}{\pi} \int_0^{2\pi} \big[ A(r) - \operatorname{Re} f \big( r \mathrm{e}^{\mathrm{i} \theta} \big) \big] \, \mathrm{d} \theta \end{split}$$

$$= 2A(r) - \frac{1}{\pi} \operatorname{Re} \left\{ \int_0^{2\pi} f(re^{i\theta}) d\theta \right\}$$
$$= 2A(r) - 2 \operatorname{Re} f(0),$$

其中最后一个等式用到了平均值公式.

**习题 4.3.14** 设 D 是域,  $a \in D$ ,  $f \in \mathfrak{H}(D)$ , 并且  $\sum_{n=0}^{\infty} f^{(n)}(a)$  收敛. 证明:

- (1) f 是整函数.
- (2)  $\sum_{n=0}^{\infty} f^{(n)}(z)$  在  $\mathbb{C}$  上内闭一致收敛.

**证明** (1) 由于  $f \in \mathcal{H}(D)$ , 存在  $\varepsilon > 0$ , 使得在  $\mathbb{B}(a, \varepsilon)$  上有展开式

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n.$$

由  $\sum_{n=0}^{\infty} f^{(n)}(a)$  收敛可知  $\lim_{n\to\infty} \left| f^{(n)}(a) \right| = 0$ , 因此

$$\limsup_{n\to\infty} \sqrt[n]{\left|\frac{f^{(n)}(a)}{n!}\right|} = 0 \implies \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n \text{ in which the proof of th$$

设  $S(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n, z \in \mathbb{C}$ ,则 S(z) 是 f(z) 在  $\mathbb{C}$  上的解析延拓 (由零点孤立性知延拓唯一). 故 f 可延拓为整函数.

(2) 由于  $\sum_{n=0}^{\infty} f^{(n)}(a)$  收敛, 对任意  $\varepsilon > 0$ , 存在正整数 N, 使得

$$\left| f^{(p+1)}(a) + \dots + f^{(q)}(a) \right| < \varepsilon, \quad \forall q > p > N.$$

对任意紧集  $K \subset \mathbb{C}$ , 记  $M = \max_{z \in K} \left\{ e^{|z-a|} \right\}$ , 则

$$\left| \sum_{k=p+1}^{q} S^{(k)}(z) \right| = \left| \sum_{k=p+1}^{q} \sum_{n=0}^{\infty} \frac{f^{(n+k)}(a)}{n!} (z-a)^n \right| = \left| \sum_{n=0}^{\infty} \frac{f^{(n+p+1)}(a) + \dots + f^{(n+q)}(a)}{n!} (z-a)^n \right|$$

$$\leqslant \varepsilon \sum_{n=0}^{\infty} \frac{|z-a|^n}{n!} = \varepsilon e^{|z-a|} \leqslant M\varepsilon.$$

因此  $\sum_{n=0}^{\infty} S^{(n)}(z)$  在 K 上一致收敛. 再由 K 的任意性即得  $\sum_{n=0}^{\infty} S^{(n)}(z)$  在  $\mathbb{C}$  上内闭一致收敛.

**习题 4.4.6** 设 0 < r < 1. 证明: 当 n 充分大时, 多项式  $1 + 2z + 3z^2 + \cdots + nz^{n-1}$  在  $\mathbb{B}(0,r)$  中没有根.

**证明** 由于级数 
$$\sum_{k=0}^{\infty} (k+1)z^k$$
 的收敛半径为 1,当  $|z| < 1$  时, $\sum_{k=0}^{\infty} (k+1)z^k = \left(\sum_{k=0}^{\infty} z^{k+1}\right)' = \frac{1}{(1-z)^2}$ . 由

于此级数在  $\mathbb{B}(0,r)$  中内闭一致收敛,由 Hurwitz 定理,当 n 充分大时,部分和  $\sum_{k=0}^{n}(k+1)z^{k}$  在  $\mathbb{B}(0,r)$  中的零点个数与  $\frac{1}{(1-z)^{2}}$  相同,即无零点.

**习题 4.4.7** 设 r > 0. 证明: 当 n 充分大时,多项式  $1 + z + \frac{1}{2!}z^2 + \cdots + \frac{1}{n!}z^n$  在  $\mathbb{B}(0,r)$  中没有根.

**证明** 由于级数  $\sum_{k=0}^{\infty} \frac{z^k}{k!}$  在  $\mathbb{B}(0,r)$  中内闭一致收敛到  $\mathbf{e}^z$ , 由 Hurwitz 定理,当 n 充分大时,部分和  $\sum_{k=0}^{n} \frac{z^k}{k!}$  在  $\mathbb{B}(0,r)$  中的零点个数与  $\mathbf{e}^z$  相同,即无零点.

**习题 4.4.8** 设  $f(z) \in \mathcal{H}(\overline{\mathbb{B}(0,1)})$ , 且 f'(z) 在  $\partial \mathbb{B}(0,1)$  上无零点. 证明: 当 n 充分大时,  $F_n(z) = n[f(z+\frac{1}{n})-f(z)]$  与 f'(z) 在  $\mathbb{B}(0,1)$  中的零点个数相等.

**证明** 对任意 0 < r < 1,由于  $f'(z) \in \mathcal{C}\left(\overline{\mathbb{B}(0,r)}\right)$ , $F_n(z)$  在  $\overline{\mathbb{B}(0,r)}$  上一致收敛到 f'(z),即  $F_n(z)$  在  $\mathbb{B}(0,1)$  中内闭一致收敛到 f'(z).又 f'(z) 在  $\partial \mathbb{B}(0,1)$  上无零点,由 Hurwitz 定理,当 n 充分大时, $F_n(z)$  在  $\mathbb{B}(0,1)$  中的零点个数与 f'(z) 相同.

#### **习题 4.4.11** 求下列全纯函数在 $\mathbb{B}(0,1)$ 中的零点个数:

- (1)  $z^9 2z^6 + z^2 8z 2$ .
- (2)  $2z^5 z^3 + 3z^2 z + 8$ .
- (3)  $z^7 5z^4 + z^2 2$ .
- (4)  $e^z 4z^n + 1$ .

**解答** 记每问中的函数为 f(z),  $\gamma = \partial \mathbb{B}(0,1)$ .

- (1) 设 g(z) = -8z, 则当  $z \in \gamma$  时,  $|f(z) g(z)| = |z^9 2z^6 + z^2 2| \le |z|^9 + 2|z|^6 + |z|^2 + 2 = 6 < 8 = |g(z)|$ , 由 Rouché 定理知 f 和 g 在  $\mathbb{B}(0,1)$  中的零点个数相同,为 1 个.
- (2) 设 g(z) = 8, 则当  $z \in \gamma$  时,  $|f(z) g(z)| = |2z^5 z^3 + 3z^2 z| \le 2|z|^5 + |z|^3 + 3|z|^2 + |z| = 7 < 8 = |g(z)|$ , 由 Rouché 定理知 f 和 g 在  $\mathbb{B}(0,1)$  中的零点个数相同,为 g 个.
- (3) 设  $g(z) = -5z^4$ , 则当  $z \in \gamma$  时,  $|f(z) g(z)| = |z^7 + z^2 2| \le |z|^7 + |z|^2 + 2 = 4 < 5 = |g(z)|$ , 由 Rouché 定理知 f 和 g 在  $\mathbb{B}(0,1)$  中的零点个数相同,为 4 个.
- (4) 设  $g(z) = -4z^n$ , 则当  $z \in \gamma$  时,  $|f(z) g(z)| = |\mathbf{e}^z 1| \leq \mathbf{e}^{|z|} + 1 = \mathbf{e} + 1 < 4 = |g(z)|$ , 由 Rouché 定理知 f 和 g 在  $\mathbb{B}(0,1)$  中的零点个数相同,为 n 个.

**习题 4.4.12** 若  $f \in \mathcal{H}(\mathbb{B}(0,1)) \cap \mathcal{C}\left(\overline{\mathbb{B}(0,1)}\right), f\left(\overline{\mathbb{B}(0,1)}\right) \subset \mathbb{B}(0,1), \, \text{则} \, f(z) \, \text{在} \, \mathbb{B}(0,1) \, \text{中有唯一的不动点.}$ 

证明 令 g(z) = f(z) - z, h(z) = -z, 则当  $z \in \partial \mathbb{B}(0,1)$  时, |g(z) - h(z)| = |f(z)| < 1 = |h(z)|, 由 Rouché 定理知 g 和 h 在  $\mathbb{B}(0,1)$  中的零点个数相同,为 1 个,即 f(z) 在  $\mathbb{B}(0,1)$  中有唯一的不动点.

**习题 4.4.13** 设 
$$a_1, a_2, \dots, a_n \in \mathbb{B}(0,1), f(z) = \prod_{k=1}^n \frac{a_k - z}{1 - \overline{a_k} z}.$$
 证明:

- (1) 若  $b \in \mathbb{B}(0,1)$ , 则 f(z) = b 在  $\mathbb{B}(0,1)$  中恰有 n 个根.
- (2) 若 $b \in \mathbb{B}(\infty, 1)$ , 则 f(z) = b在  $\mathbb{B}(\infty, 1)$  中恰有 n 个根.

证明 (1) 注意到 Blaschke 因子  $\frac{a-z}{1-\bar{a}z}$  (|a|<1) 有如下性质:

$$\left|\frac{a-z}{1-\bar{a}z}\right|<1\iff |z|<1,\quad \left|\frac{a-z}{1-\bar{a}z}\right|=1\iff |z|=1,\quad \left|\frac{a-z}{1-\bar{a}z}\right|>1\iff |z|>1.$$

而  $f(z) = b \iff \prod_{k=1}^{n} (a_k - z) = b \prod_{k=1}^{n} (1 - \overline{a_k} z)$  (这是 n 次方程,因为  $|b\overline{a_1 \cdots a_n}| < 1$ ) 在  $\mathbb{C}$  上恰有 n 个根. 此时 |f(z)| = |b| < 1,因此 |z| < 1 (否则,每项  $\left| \frac{a_k - z}{1 - \overline{a_k} z} \right| \ge 1$ ,进而  $|f(z)| \ge 1$ ),即 f(z) = b 在  $\mathbb{B}(0,1)$  中恰有 n 个根.

(2) 即证  $f(\frac{1}{\bar{z}}) = b$  在  $\mathbb{B}(0,1)$  中恰有 n 个根, 这等价于证明  $\frac{1}{f(\frac{1}{\bar{z}})} = \frac{1}{\bar{b}}$  在  $\mathbb{B}(0,1)$  中恰有 n 个根. 而

$$\frac{1}{\overline{f(\frac{1}{z})}} = \prod_{k=1}^{n} \frac{1 - a_k \frac{1}{z}}{\overline{a_k} - \frac{1}{z}} = \prod_{k=1}^{n} \frac{a_k - z}{1 - \overline{a_k} z} = f(z),$$

而此时  $\left|\frac{1}{b}\right| < 1$ , 因此由 (1) 即得证.

**习题 4.5.4** 设  $f\in\mathcal{H}(\mathbb{B}(0,R))$ . 证明:  $M(r)=\max_{|z|=r}|f(z)|$  是 [0,R) 上的增函数.

证明 不妨设 f 非常数. 由最大模原理,  $M(r) = \max_{|z| \le r} |f(z)|$ , 由此可见 M(r) 为 [0,R) 上的增函数.

习题 4.5.5 利用最大模原理证明代数学基本定理.

证明 设  $P(z) \in \mathbb{C}[z]$ ,  $\deg P = n$   $(n \ge 1)$ . 假设 P(z) 在  $\mathbb{C}$  中没有零点. 取 R > 0 使得当  $|z| \ge R$  时有 |P(z)| > |P(0)|, 则 |P(z)| 在闭圆盘  $\overline{\mathbb{B}(0,R)}$  上的最小值在内部取到. 由于 P(z) 在  $\mathbb{B}(0,R)$  中无零点,由最大模原理, $\left|\frac{1}{P(z)}\right|$  在  $\mathbb{B}(0,R)$  内取不到最大值,即 |P(z)| 在  $\mathbb{B}(0,R)$  内取不到最小值,矛盾.

**习题 4.5.10** 设  $f \in \mathcal{H}(\mathbb{B}(0,R)), f(\mathbb{B}(0,R)) \subset \mathbb{B}(0,M), f(0) = 0.$  证明:

- $(1) |f(z)| \leqslant \frac{M}{R}|z|, |f'(0)| \leqslant \frac{M}{R}, \forall z \in \mathbb{B}(0,R) \setminus \{0\}.$
- (2) 等号成立当且仅当  $f(z) = \frac{M}{R} e^{i\theta} z$  ( $\theta \in \mathbb{R}$ ).

证明 考虑函数

$$g: \mathbb{B}(0,1) \to \mathbb{B}(0,1), \quad z \mapsto \frac{1}{M} f(Rz).$$

由于  $g \in \mathcal{H}(\mathbb{B}(0,1)), g(0) = 0$ , 由 Schwarz 引理可得

$$|g(z)| \leq |z|, \quad |g'(0)| \leq 1, \quad \forall z \in \mathbb{B}(0,1),$$

也即

$$|f(z)| \leqslant \frac{M}{R}|z|, \quad |f'(0)| \leqslant \frac{M}{R}, \quad \forall z \in \mathbb{B}(0, R).$$

等号成立当且仅当  $g(z)=\mathrm{e}^{\mathrm{i}\theta}z$  ( $\theta\in\mathbb{R}$ ) 即  $f(z)=\frac{M}{R}\mathrm{e}^{\mathrm{i}\theta}z$  ( $\theta\in\mathbb{R}$ ).

**习题 4.5.11** 设  $f \in \mathcal{H}(\mathbb{B}(0,1)), f(0) = 0$ , 并且存在 A > 0, 使得 Re  $f(z) \leqslant A, \forall z \in \mathbb{B}(0,1)$ . 证明:

$$|f(z)| \leqslant \frac{2A|z|}{1-|z|}, \quad \forall z \in \mathbb{B}(0,1).$$

证明 设  $g(z) = \frac{z}{z-2A}$ ,则 g 是从  $\{z \in \mathbb{C} : \operatorname{Re} z < A\}$  到  $\mathbb{B}(0,1)$  的共形变换 (分解如下),且 g(0) = 0.

$$\{z \in \mathbb{C} : \operatorname{Re} z < A\} \xrightarrow[0 \mapsto -A]{z \mapsto z - A \atop 0 \mapsto -A} \{z \in \mathbb{C} : \operatorname{Re} z < 0\} \xrightarrow[-A \mapsto Ai]{z \mapsto -iz \atop -A \mapsto Ai} \mathbb{H} \xrightarrow[A_1 \mapsto 0]{z \mapsto \frac{z - Ai}{z + Ai}} \mathbb{B}(0, 1)$$

考虑  $h(z)=g\circ f(z)=\dfrac{f(z)}{f(z)-2A},$  则 h(0)=0 且  $|h(z)|\leqslant 1,$  由 Schwarz 引理可得  $|h(z)|\leqslant |z|,$  因此

$$\frac{|f(z)|}{|f(z)|+2A} \leqslant \frac{|f(z)|}{|f(z)-2A|} \leqslant |z| \implies |f(z)| \leqslant \frac{2A|z|}{1-|z|}, \quad \forall z \in \mathbb{B}(0,1).$$

**习题 4.5.12** (Carathéodory 不等式) 设  $f \in \mathcal{H}(\mathbb{B}(0,R)) \cap \mathcal{C}(\overline{\mathbb{B}(0,R)})$ ,  $M(r) = \max_{|z|=r} |f(z)|$ ,  $A(r) = \max_{|z|=r} |f(z)|$  ( $0 \le r \le R$ ). 证明:

$$M(r) \leqslant \frac{2r}{R-r}A(R) + \frac{R+r}{R-r}|f(0)|, \quad \forall r \in [0,R).$$

**证明** 设 g(z) = f(Rz) - f(0), 则  $g(z) \in \mathcal{H}(\mathbb{B}(0,1))$  且 g(0) = 0. 对  $\mathbb{B}(0,1)$  上的调和函数 Re g(z) 使用最大模原理可得

$$\max_{|z|\leqslant 1}\operatorname{Re} g(z)=\max_{|z|=1}\operatorname{Re} g(z)=A(R)-\operatorname{Re} f(0).$$

由习题 4.5.11 即得

$$|g(z)| \leqslant \frac{2[A(R) - \operatorname{Re} f(0)] \cdot |z|}{1 - |z|} \leqslant \frac{2[A(R) + |f(0)|] \cdot |z|}{1 - |z|}, \quad \forall z \in \mathbb{B}(0, 1).$$

由  $f(z) = g\left(\frac{z}{R}\right) + f(0)$  即得

$$|f(z)| \le |g\left(\frac{z}{R}\right)| + |f(0)| \le \frac{2[A(R) + |f(0)|] \cdot \left|\frac{z}{R}\right|}{1 - \left|\frac{z}{R}\right|} + |f(0)| = \frac{2[A(R) + |f(0)|] \cdot |z|}{R - |z|} + |f(0)|$$

$$= \frac{2|z|}{R - |z|} A(R) + \frac{R + |z|}{R - |z|} |f(0)|, \quad \forall z \in \mathbb{B}(0, R).$$

故

$$M(r) = \max_{|z|=r} |f(z)| \leqslant \frac{2r}{R-r} A(R) + \frac{R+r}{R-r} |f(0)|, \quad \forall r \in [0,R).$$

**习题 4.5.18** 设  $f \in \mathcal{H}(\mathbb{B}(0,1)), f(\mathbb{B}(0,1)) \subset \mathbb{B}(0,1)$ . 证明:

$$\frac{|f(0)| - |z|}{1 - |f(0)||z|} \le |f(z)| \le \frac{|f(0)| + |z|}{1 + |f(0)||z|}.$$

证明 记 b = f(0), 对  $a \in \mathbb{B}(0,1)$ , 记  $\phi_a(z) = \frac{z-a}{1-\bar{a}z}$ , 则由 Schwarz-Pick 定理,

$$|\varphi_b(f(z))| \le |\varphi_0(z)|$$
  $\mathbb{BI}$   $\left| \frac{f(z) - f(0)}{1 - \overline{f(0)}f(z)} \right| \le |z|, \quad z \in \mathbb{B}(0, 1).$ 

另一方面, 由习题 1.1.6 (3),

$$\frac{||f(z)| - |f(0)||}{1 - |f(0)||f(z)|} \le \left| \frac{f(z) - f(0)}{1 - \overline{f(0)}f(z)} \right|.$$

由上述两个不等式即得

$$\frac{||f(z)| - |f(0)||}{1 - |f(0)||f(z)|} \le |z|,$$

也即

$$\begin{cases} |z| - |f(0)||f(z)||z| \geqslant |f(z)| - |f(0)|, \\ |z| - |f(0)||f(z)||z| \geqslant |f(0)| - |f(z)|. \end{cases}$$

整理即得

$$\frac{|f(0)| - |z|}{1 - |f(0)||z|} \le |f(z)| \le \frac{|f(0)| + |z|}{1 + |f(0)||z|}.$$

**习题 4.5.19** 设  $f \in \mathcal{H}(\mathbb{B}(0,1)), f(\mathbb{B}(0,1)) \subset \mathbb{B}(0,M)$ . 证明:

$$M|f'(0)| \leq M^2 - |f(0)|^2$$
.

**证明** 记  $a=\frac{f(0)}{M}, g(z)=\frac{a-z}{1-\bar{a}z}\in \operatorname{Aut}(\mathbb{B}(0,1)).$  考虑  $h(z)=g\Big(\frac{f(z)}{M}\Big),$  则 h 是从  $\mathbb{B}(0,1)$  到  $\mathbb{B}(0,1)$  的共形变换,且 h(0)=0. 由 Schwarz 引理, $|h'(0)|\leqslant 1$ . 注意到  $g^{-1}=g$ ,因此  $M\cdot g\circ h=f$ ,

$$|f'(0)| = M|g'(0)| \cdot |h'(0)| \leqslant M|g'(0)| = M||a|^2 - 1| = M(1 - |a|^2) = \frac{M^2 - |f(0)|^2}{M},$$

得所欲证.

**习题 4.5.20** 设  $f \in \mathcal{H}(\mathbb{B}(0,1)), f(0) = 0, f(\mathbb{B}(0,1)) \subset \mathbb{B}(0,1).$  证明: 若存在  $z_1, z_2 \in \mathbb{B}(0,1),$  使得  $z_1 \neq z_2, |z_1| = |z_2|, f(z_1) = f(z_2),$  则

$$|f(z_1)| = |f(z_2)| \le |z_1|^2 = |z_2|^2$$
.

证明 令

$$F(z) = \frac{f(z_1) - f(z)}{1 - \overline{f(z_1)}f(z)} \cdot \frac{1 - \overline{z_1}z}{z_1 - z} \cdot \frac{1 - \overline{z_2}z}{z_2 - z}.$$

注意到  $z_1, z_2$  均为 F(z) 的可去奇点, 因此  $F(z) \in \mathcal{H}(\mathbb{B}(0,1))$ , 由最大模原理, 及  $f(\mathbb{B}(0,1)) \subset \mathbb{B}(0,1)$ , 有

$$\max_{|z| \le 1} |F(z)| = \max_{|z|=1} |F(z)| = 1.$$

特别地,

$$|F(0)| = \left| \frac{f(z_1)}{z_1 z_2} \right| \le 1 \implies |f(z_1)| = |f(z_2)| \le |z_1 z_2| = |z_1|^2 = |z_2|^2.$$

**习题 4.5.21** 设  $f \in \mathcal{H}(\mathbb{B}(0,1)), f(0) = 0, f(\mathbb{B}(0,1)) \subset \mathbb{B}(0,1).$  证明:

$$|z|\frac{|f'(0)| - |z|}{1 - |f'(0)||z|} \le |f(z)| \le |z|\frac{|f'(0)| + |z|}{1 + |f'(0)||z|}.$$

证明 令  $g(z) = \begin{cases} \frac{f(z)}{z}, & 0 < |z| < 1, \\ f'(0), & z = 0. \end{cases}$  由 Schwarz 引理知  $|g(z)| \leqslant 1$ . 对 g(z) 用习题 4.5.18 结论即可.  $\square$ 

**习题 4.5.30** 设  $f \in \mathcal{H}(\mathbb{B}(0,1)), f(0) = 0$ ,并且  $|\text{Re } f(z)| < 1, \forall z \in \mathbb{B}(0,1)$ . 证明:

(1) 
$$|\operatorname{Re} f(z)| \leqslant \frac{4}{\pi} \arctan |z|, \forall z \in \mathbb{B}(0,1).$$

(2) 
$$|\operatorname{Im} f(z)| \leq \frac{2}{\pi} \log \left( \frac{1+|z|}{1-|z|} \right), \forall z \in \mathbb{B}(0,1).$$

**证明** 先构造共形变换  $g: \{z \in \mathbb{C} : |\text{Re } f(z)| < 1\} \to \mathbb{B}(0,1)$  使得 g(0) = 0, 分解如下:

$$\begin{aligned} \{z \in \mathbb{C} : |\text{Re}\,z| < 1\} & \xrightarrow{z \mapsto \frac{\pi \mathrm{i}}{2}z} \\ \xrightarrow{0 \mapsto 0} & \left\{z \in \mathbb{C} : |\text{Im}\,z| < \frac{\pi}{2}\right\} \xrightarrow[0 \mapsto 1]{z \mapsto \mathrm{e}^z} \\ & \left\{z \in \mathbb{C} : \text{Re}\,z > 0\right\} \\ & \xrightarrow{1 \mapsto \mathrm{i}} \left\{z \mapsto \mathrm{i}z \\ & \mathbb{B}(0,1) \xleftarrow{z \mapsto \frac{z - \mathrm{i}}{z + \mathrm{i}}} \\ & \left\{z \in \mathbb{C} : \text{Im}\,z > 0\right\} \end{aligned}$$

复合结果为  $g(z)=\frac{\mathrm{e}^{\frac{\pi\mathrm{i}}{2}z}-1}{\mathrm{e}^{\frac{\pi\mathrm{i}}{2}z}+1}.$  考虑  $h(z)=g\circ f(z)=\frac{\mathrm{e}^{\frac{\pi\mathrm{i}}{2}f(z)}-1}{\mathrm{e}^{\frac{\pi\mathrm{i}}{2}f(z)}+1},$  则  $h:\mathbb{B}(0,1)\to\mathbb{B}(0,1)$  且 h(0)=0, 由 Schwarz 引理可得  $|h(z)|\leqslant |z|$ . 而由 f(0)=0 可解得

$$f(z) = \frac{2}{\pi i} \log \frac{1 + h(z)}{1 - h(z)} \implies \begin{cases} \operatorname{Re} f(z) = \frac{2}{\pi} \arg \left( \frac{1 + h(z)}{1 - h(z)} \right), \\ \operatorname{Im} f(z) = -\frac{2}{\pi} \log \left| \frac{1 + h(z)}{1 - h(z)} \right|. \end{cases}$$

因此由

$$\log\left(\frac{1-|z|}{1+|z|}\right) \leqslant \log\left|\frac{1+h(z)}{1-h(z)}\right| \leqslant \log\left(\frac{1+|z|}{1-|z|}\right)$$

即得结论 (2). 由 |Re f(z)| < 1 可得

$$\left| \arg \left( \frac{1 + h(z)}{1 - h(z)} \right) \right| < \frac{\pi}{2}$$

因此

$$\frac{1 + h(z)}{1 - h(z)} = \frac{1 + |h(z)|^2 + 2\mathrm{i} \operatorname{Im} h(z)}{\left|1 - h(z)\right|^2} \implies \operatorname{arg} \left(\frac{1 + h(z)}{1 - h(z)}\right) = \operatorname{arctan} \left(\frac{2 \operatorname{Im} h(z)}{1 - |h(z)|^2}\right),$$

进而

$$|\mathrm{Re}\, f(z)| = \frac{2}{\pi} \left| \arctan \left( \frac{2 \, \mathrm{Im}\, h(z)}{1 - |h(z)|^2} \right) \right| \leqslant \frac{2}{\pi} \arctan \left( \frac{2|z|}{1 - |z|^2} \right) \stackrel{\star}{=\!\!=} \frac{2}{\pi} \cdot 2 \arctan |z|,$$

\* 处用到了正切函数的二倍角公式及 |z| < 1 时  $\arctan |z| \in (0, \frac{\pi}{4})$ . 故结论 (1) 得证.

**习题 4.5.31** 设  $f \in \mathcal{H}(\mathbb{B}(0,1) \cup \{1\}), f(0) = 0, f(1) = 1, f(\mathbb{B}(0,1)) \subset \mathbb{B}(0,1).$  证明:  $f'(1) \ge 1$ .

证明 设 
$$g(z) = \begin{cases} \frac{f(z)}{z}, & z \neq 0, \\ f'(0), & z = 0. \end{cases}$$
 由习题 4.3.1 即知  $g \in \mathcal{H}(\mathbb{B}(0,1))$ . 由最大模原理,

$$\max_{|z|\leqslant 1}|g(z)| = \max_{|z|=1}|g(z)| = \max_{|z|=1}\left|\frac{f(z)}{z}\right| = \max_{|z|=1}|f(z)| = \max_{|z|\leqslant 1}|f(z)|,$$

因此  $g(\mathbb{B}(0,1)) \subset \mathbb{B}(0,1)$  且 g(1) = 1. 由习题 2.3.3 即得  $g'(1) = f'(1) - f(1) \ge 0$ , 故  $f'(1) \ge 1$ .

**习题 4.5.32** 设 P 是一个 k 次多项式, 在单位圆周上满足  $|P(e^{i\theta})| \le 1$ . 证明:对任意单位圆盘外的 z, 有  $|P(z)| \le |z|^k$ .

证明 设  $f(z) = \frac{P(z)}{z^k}$ ,则  $f \in \mathcal{H}\left(\overline{\mathbb{B}(0,1)}^{\mathbf{c}}\right)$ . 由最大模原理, $\max_{|z| \ge 1} |f(z)| = \max_{|z| = 1} |f(z)| \le 1$ ,得所欲证.

习题 5.2.2 下列初等全纯函数有哪些奇点? 指出其类别:

- (2)  $\frac{e^{\frac{1}{1-z}}}{e^z-1}$ .
- (4)  $\tan z$ .
- (6)  $e^{\cot \frac{1}{z}}$ .

解答 (2) 1 阶极点:  $2k\pi i$  ( $k \in \mathbb{Z}$ ); 本性奇点: 1; 非孤立奇点:  $\infty$ .

(4) 
$$\tan z = -\mathrm{i} \frac{\mathrm{e}^{2\mathrm{i}z}-1}{\mathrm{e}^{2\mathrm{i}z}+1}$$
. 1 阶极点:  $\left(k+\frac{1}{2}\right)\pi$   $(k\in\mathbb{Z})$ ;非孤立奇点:  $\infty$ .

(6) 
$$e^{\cot \frac{1}{z}} = \exp\left(i\frac{e^{\frac{2i}{z}}+1}{e^{\frac{2i}{z}}-1}\right)$$
. 本性奇点:  $\frac{1}{k\pi}$   $(k \in \mathbb{Z}), \infty$ ; 非孤立奇点: 0.

**习题 5.2.3** 若  $z_0$  是全纯函数  $f: \mathbb{B}(z_0,r)\setminus\{z_0\}\to\mathbb{C}\setminus\{0\}$  的本性奇点,则  $z_0$  也是  $\frac{1}{f(z)}$  的本性奇点.

**证明** 由  $f(z) \neq 0, \forall z \in \mathbb{B}(z_0, r) \setminus \{z_0\}$  知  $z_0$  是  $\frac{1}{f(z)}$  的孤立奇点. 由于  $z_0$  是 f(z) 的本性奇点, 对任意  $A \in \mathbb{C}$ , 在任意  $\mathbb{B}(z_0, \delta) \setminus \{z_0\} \subset \mathbb{B}(z_0, r)$  中存在一列互异的  $z_n \to z_0$  使得  $f(z_n) \to \frac{1}{A}$ , 进而  $\frac{1}{f(z_n)} \to A$ , 即  $z_0$  是  $\frac{1}{f(z)}$  的本性奇点.

**习题 5.2.4** 设 R(z) 是有理函数,  $z_1, z_2, \cdots, z_n$  是 R(z) 在  $\overline{\mathbb{C}}$  上的全部不同的极点. 证明: 若  $z_0$  是全纯函数  $f: \mathbb{B}(z_0, r)\setminus \{z_0\} \to \overline{\mathbb{C}}\setminus \{z_1, z_2, \cdots, z_n\}$  的本性奇点, 则  $z_0$  也是 R(f(z)) 的本性奇点.

**证明** 由于  $z_0$  是 f(z) 的本性奇点, 取互异的  $A, B \in \mathbb{C} \setminus \{z_1, z_2, \dots, z_n\}$  满足  $R(A) \neq R(B)$ , 则存在两列 点列  $a_n \to z_0$  与  $b_n \to z_0$  使得  $f(a_n) \to A$  且  $f(b_n) \to B$ . 此时  $R(f(a_n)) \to A$  而  $R(f(b_n)) \to B$ ,二者不 等,因此  $z_0$  是 R(f(z)) 的本性奇点.

**习题 5.2.8** 设  $f \in \mathbb{B}(0,R) \setminus \{0\}$  上全纯. 若 Re  $f(z) > 0, \forall z \in \mathbb{B}(0,R) \setminus \{0\}$ , 则  $0 \in f$  的可去奇点.

**证明** 由 Re f(z) > 0,  $\forall z \in \mathbb{B}(0,R) \setminus \{0\}$  可见 0 不是 f 的本性奇点. 故只需证 0 不是 f 的极点. 用反证法,若 0 是 f 的极点,设  $g(z) = \frac{1}{f(z)}$ ,则 g(0) = 0. 而对  $z \in \mathbb{B}(0,R) \setminus \{0\}$ ,由 Re f(z) > 0 可知 Re g(z) > 0,由平均值公式,当  $r \in (0,R)$  时,

$$0 = \operatorname{Re} g(0) = \operatorname{Re} \left\{ \frac{1}{2\pi} \int_0^{2\pi} g \big( r \mathrm{e}^{\mathrm{i} \theta} \big) \, \mathrm{d} \theta \right\} = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re} g \big( r \mathrm{e}^{\mathrm{i} \theta} \big) \, \mathrm{d} \theta > 0,$$

矛盾. 故 0 不是 f 的极点, 从而 0 是 f 的可去奇点.

**习题 5.4.1** 证明: 留数定理与 Cauchy 积分公式等价.

**定理 1 (留数定理)** 设  $\gamma$  是可求长 Jordan 曲线, 函数 f(z) 在  $\gamma$  内部 D 中除去  $z_1, z_2, \cdots, z_n$  外全纯, 且 在  $\overline{D} \setminus \{z_1, z_2, \cdots, z_n\}$  上连续, 则

$$\int\limits_{\gamma} f(z) \, \mathrm{d}z = 2\pi \mathrm{i} \sum_{k=1}^{n} \mathrm{Res}(f, z_k).$$

**定理 2 (Cauchy 积分公式)** 设区域 D 是可求长 Jordan 曲线  $\gamma$  的内部,  $f(z) \in \mathcal{H}(D) \cap \mathcal{C}(\overline{D})$ , 则

(1) 
$$\not\equiv D \not\mid f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

(2) 
$$f(z)$$
 在  $D$  内有各阶导数,且在  $D$  内  $f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$   $(n = 1, 2, \cdots)$ .

**证明** [1]  $\Rightarrow$  (2) 对  $n \ge 0$ ,  $\zeta = z$  是  $\frac{f(\zeta)}{(\zeta - z)^{n+1}}$  的 n + 1 阶极点, 由留数定理,

$$\int\limits_{\gamma} \frac{f(\zeta)}{(\zeta-z)^{n+1}} \,\mathrm{d}\zeta = 2\pi\mathrm{i}\,\mathrm{Res}\Big(\frac{f(\zeta)}{(\zeta-z)^{n+1}},z\Big) = \frac{2\pi\mathrm{i}}{n!}\lim_{\zeta\to z} \frac{\mathrm{d}^n}{\mathrm{d}\zeta^n} \bigg[ (\zeta-z)^{n+1} \frac{f(\zeta)}{(\zeta-z)^{n+1}} \bigg] = \frac{2\pi\mathrm{i}f^{(n)}(z)}{n!}.$$

[(2)  $\Rightarrow$  (1)] 由多连通域的 Cauchy 定理, 不妨设 f(z) 在 D 中只有 1 个奇点 a, 并设 f 在 a 的邻域内有 Laurent 展开  $f(z) = \sum_{n=-\infty}^{+\infty} c_n (z-a)^n$ . 由 Cauchy 积分公式,

$$\int\limits_{\gamma} f(z) \, \mathrm{d}z = \int\limits_{\gamma} \sum_{n=-\infty}^{+\infty} c_n (z-a)^n \, \mathrm{d}z = \sum_{n=-\infty}^{+\infty} \int\limits_{\gamma} c_n (z-a)^n \, \mathrm{d}z = 2\pi \mathrm{i} c_{-1} = 2\pi \mathrm{i} \operatorname{Res}(f,a).$$

**习题 5.4.2** 若 a 是  $f \in \mathfrak{H}(\mathbb{B}(a,R) \setminus \{a\})$  的可去奇点, 其中  $a \neq \infty$ , 则显然  $\mathrm{Res}(f,a) = 0$ . 举例说明, 若  $\infty$  是  $f \in \mathfrak{H}(\mathbb{B}(\infty,R))$  的可去奇点, 则  $\mathrm{Res}(f,\infty)$  可能不等于 0.

解答 设  $f(z)=1+rac{1}{z},$  则  $\infty$  是  $f(z)\in\mathcal{H}(\mathbb{B}(\infty,R))$  (R>0) 的可去奇点, 但

$$\operatorname{Res}(f,\infty) = -\frac{1}{2\pi \mathbf{i}} \int_{|z|=1} \left(1 + \frac{1}{z}\right) \mathrm{d}z = -1.$$

**习题 5.4.3** 设  $f \in \mathcal{H}(\mathbb{B}(\infty, R))$ . 证明:

- (1) 若  $\infty$  是 f 的可去奇点,则  $\operatorname{Res}(f,\infty) = \lim_{z \to \infty} z^2 f'(z)$ .
- (2) 若  $\infty$  是 f 的 m 阶极点,则  $\mathrm{Res}(f,\infty) = \frac{(-1)^m}{(m+1)!} \lim_{z \to \infty} z^{m+2} f^{(m+1)}(z)$ .

证明 (1) 若  $\infty$  是 f 的可去奇点, 可设

$$f(z) = \sum_{n=0}^{\infty} \frac{c_n}{z^n}, \quad z \in \mathbb{B}(\infty, R).$$

于是

$$\operatorname{Res}(f,\infty) \xrightarrow{\rho > R} -\frac{1}{2\pi \mathrm{i}} \int\limits_{|z| = \rho} \sum_{n=0}^{\infty} \frac{c_n}{z^n} \, \mathrm{d}z = -c_1 = \lim_{z \to \infty} \sum_{n=1}^{\infty} \frac{-nc_n}{z^{n-1}} = \lim_{z \to \infty} z^2 f'(z).$$

(2) 若  $\infty$  是 f 的 m 阶极点, 可设

$$f(z) = \sum_{n=-m}^{\infty} \frac{c_n}{z^n}, \quad z \in \mathbb{B}(\infty, R).$$

于是

$$\operatorname{Res}(f,\infty) \stackrel{\rho > R}{=\!\!\!=\!\!\!=} -\frac{1}{2\pi \mathrm{i}} \int_{|z|=\rho} \sum_{n=-m}^{\infty} \frac{c_n}{z^n} \, \mathrm{d}z = -c_1.$$

而

$$f^{(m+1)}(z) = \frac{\mathrm{d}^{m+1}}{\mathrm{d}z^{m+1}} \left( \sum_{n=1}^{\infty} \frac{c_n}{z^n} \right) = (-1)^{m+1} \sum_{n=1}^{\infty} \frac{(n+m)!}{(n-1)!} \cdot \frac{c_n}{z^{n+m+1}},$$

因此

$$\frac{(-1)^m}{(m+1)!}\lim_{z\to\infty}z^{m+2}f^{(m+1)}(z)=-\frac{1}{(m+1)!}\lim_{z\to\infty}\sum_{n=1}^{\infty}\frac{(n+m)!}{(n-1)!}\cdot\frac{c_n}{z^{n-1}}=-c_1=\mathrm{Res}(f,\infty).$$

**习题 5.4.4** 设  $f,g \in \mathfrak{H}(\mathbb{B}(a,r)), f(a) \neq 0, a$  是 g 的 2 阶零点, 计算  $\mathrm{Res}\Big(\frac{f}{g},a\Big).$ 

解答 设

$$f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n, \quad g(z) = \sum_{n=0}^{\infty} b_n (z-a)^n, \quad z \in \mathbb{B}(a,r),$$

其中

$$a_n = \frac{f^{(n)}(a)}{n!}, a_0 \neq 0, \quad b_n = \frac{g^{(n)}(a)}{n!}, b_0 = b_1 = 0, b_2 \neq 0.$$

设  $h(z) = \frac{g(z)}{(z-a)^2} = \sum_{n=2}^{\infty} b_n (z-a)^{n-2}$ . 由于  $h(a) = b_2 \neq 0$ , 在 a 的邻域内  $g(z) \neq 0$ , 此时

$$\frac{f(z)}{g(z)} = \frac{f(z)}{(z-a)^2 h(z)}$$

以 a 为 2 阶极点, 因此

$$\operatorname{Res}\left(\frac{f}{g}, a\right) = \lim_{z \to a} \frac{\mathrm{d}}{\mathrm{d}z} \left[ (z - a)^2 \frac{f(z)}{g(z)} \right] = \lim_{z \to a} \left( \frac{f(z)}{h(z)} \right)'$$
$$= \lim_{z \to a} \frac{f'(z)h(z) - f(z)h'(z)}{h^2(z)} = \frac{f'(a)h(a) - f(a)h'(a)}{h^2(a)},$$

代入  $h(a) = b_2 = \frac{g''(a)}{2}$  与  $h'(a) = b_3 = \frac{g'''(a)}{6}$  即得

$$\mathrm{Res}\Big(\frac{f}{g},a\Big) = \frac{f'(a)\frac{g''(a)}{2} - f(a)\frac{g'''(a)}{6}}{\left(\frac{g''(a)}{2}\right)^2} = \frac{6f'(a)g''(a) - 2f(a)g'''(a)}{3[g''(a)]^2}.$$

**习题 5.4.8** 指出下列初等函数在  $\overline{\mathbb{C}}$  中的全部孤立奇点,并求出这些初等函数在它们各自孤立奇点处的留数:

(1) 
$$\frac{1}{z^3 - z^5}$$
.

(2) 
$$\frac{z^3+z^2+2}{z(z^2-1)^2}$$
.

(3) 
$$\frac{z^2+z-1}{z^2(z-1)}$$
.

(4) 
$$\frac{z^{n-1}}{z^n + a^n}$$
  $(a \neq 0, n \in \mathbb{N}).$ 

$$(5) \ \frac{1}{\sin z}.$$

(6) 
$$\sin \frac{z}{z+1}$$
.

$$(7) \ \frac{\mathrm{e}^z}{z(z-1)}.$$

(8) 
$$\frac{e^{\pi z}}{z^2+1}$$
.

## **解答** 将每问中的函数记为 f(z).

(1) 孤立奇点为 0, 1, -1, ∞.

① 由 
$$\frac{1}{z^3-z^5} = \frac{1}{z^3(1-z^2)} = \frac{1}{z^3} (1+z^2+z^4+z^6+\cdots)$$
 知  $\operatorname{Res}(f,0) = 1$ .

② 1为1阶极点, 因此 
$$\operatorname{Res}(f,1) = \lim_{z \to 1} \frac{z-1}{z^3 - z^5} = \lim_{z \to 1} \frac{-1}{z^3(1+z)} = -\frac{1}{2}$$
.

③ -1 为 1 阶极点,因此 
$$\operatorname{Res}(f,-1) = \lim_{z \to -1} \frac{z+1}{z^3 - z^5} = \lim_{z \to -1} \frac{1}{z^3(1-z)} = -\frac{1}{2}$$
.

(2) 孤立奇点为  $0, 1, -1, \infty$ .

① 0为1阶极点, 因此 
$$\operatorname{Res}(f,0) = \lim_{z \to 0} \frac{z^3 + z^2 + 2}{(z^2 - 1)^2} = 2.$$

② 1为2阶极点, 因此 
$$\operatorname{Res}(f,1) = \frac{1}{1!} \lim_{z \to 1} \left( \frac{z^3 + z^2 + 2}{z(z+1)^2} \right)' = \lim_{z \to 1} \frac{z^4 + 2z^3 - 5z^2 - 8z - 2}{z^2(z+1)^4} = -\frac{3}{4}.$$

③ 
$$-1$$
 为 2 阶极点,因此  $\operatorname{Res}(f,1) = \frac{1}{1!} \lim_{z \to -1} \left( \frac{z^3 + z^2 + 2}{z(z-1)^2} \right)' = -\frac{5}{4}.$ 

(3) 孤立奇点为  $0,1,\infty$ .

① 
$$0$$
 为  $2$  阶极点,因此  $\mathrm{Res}(f,0) = \frac{1}{1!} \lim_{z \to 0} \left( \frac{z^2 + z - 1}{z - 1} \right)' = 0.$ 

② 1为1阶极点, 因此 
$$\operatorname{Res}(f,1) = \lim_{z \to 1} \frac{z^2 + z - 1}{z^2} = 1.$$

$$\Re \operatorname{Res}(f,\infty) = -(0+1) = -1.$$

(4) 孤立奇点为  $a(-1)^{\frac{1}{n}}=a\mathrm{e}^{\frac{\mathrm{i}(2k+1)\pi}{n}}$   $(k=0,1,\cdots,n-1)$  及  $\infty$ . 由于  $z_k=a\mathrm{e}^{\frac{\mathrm{i}(2k+1)\pi}{n}}$  是 1 阶极点,

$$\operatorname{Res}(f, z_k) = \lim_{z \to z_k} \frac{z^{n-1}(z - z_k)}{z^n + a^n} = \lim_{z \to z_k} \frac{z^{n-1}}{\frac{z^n + a^n}{z - z_k}} = \frac{z_k^{n-1}}{(z^n + a^n)'|_{z = z_k}} = \frac{1}{n}.$$

由于 
$$\infty$$
 为可去奇点, $\operatorname{Res}(f,\infty) = -\sum_{k=0}^{n-1} \operatorname{Res}(f,z_k) = -1.$ 

(5) 孤立奇点为  $k\pi$   $(k \in \mathbb{Z})$ . 由于  $k\pi$  为 1 阶极点, $\operatorname{Res}(f, k\pi) = \lim_{z \to k\pi} \frac{z - k\pi}{\sin z} = (-1)^k$ .

- (6) 孤立奇点为 -1,∞.
  - ① 由于  $\infty$  是 f 的可去奇点, 由习题 5.4.3 (1),

$$\operatorname{Res}(f,\infty) = \lim_{z \to \infty} z^2 f'(z) = \lim_{z \to \infty} \frac{z^2}{(1+z)^2} \cos\left(\frac{z}{1+z}\right) = \cos 1.$$

- (7) 孤立奇点为 0,1,∞.

① 0为1阶极点, 因此 
$$Res(f,0) = \lim_{z \to 0} \frac{e^z}{z-1} = -1.$$

② 1为1阶极点, 因此 
$$\operatorname{Res}(f,1) = \lim_{z \to 1} \frac{\mathrm{e}^z}{z} = \mathrm{e}.$$

- $\Re \operatorname{Res}(f, \infty) = -(-1 + e) = 1 e.$
- (8) 孤立奇点为 i, -i, ∞.

① 
$$i$$
 为  $1$  阶极点,因此  $\operatorname{Res}(f, \mathbf{i}) = \lim_{z \to \mathbf{i}} \frac{e^{\pi z}}{(z + \mathbf{i})} = \frac{\mathbf{i}}{2}$ .

② 
$$-i$$
 为 1 阶极点,因此  $\operatorname{Res}(f,-\mathbf{i}) = \lim_{z \to -\mathbf{i}} \frac{\mathbf{e}^{\pi z}}{z - \mathbf{i}} = -\frac{\mathbf{i}}{2}.$ 

**习题 5.4.9** 设  $f,g \in \mathcal{H}(\mathbb{B}(0,R)) \cap \mathcal{C}(\overline{\mathbb{B}(0,R)})$ , g 在  $\partial \mathbb{B}(0,R)$  上无零点, g 在  $\mathbb{B}(0,R)$  中的全部零点  $z_1,z_2,\cdots,z_n$  都是 1 阶零点, 求

$$\frac{1}{2\pi \mathbf{i}} \int\limits_{|z|=R} \frac{f(z)}{zg(z)} \, \mathrm{d}z.$$

**解答** (1) 若  $z_1, z_2, \dots, z_n \neq 0$ .

① 若 
$$f(z_k) \neq 0$$
,则  $z_k$  为  $\frac{f(z)}{zg(z)}$  的 1 阶极点, $\operatorname{Res}\left(\frac{f(z)}{zg(z)}, z_k\right) = \lim_{z \to z_k} \frac{f(z)}{\frac{zg(z)}{z-z_k}} = \frac{f(z_k)}{z_k g'(z_k)}$ .

② 若 
$$f(z_k)=0$$
,则  $z_k$  为  $\frac{f(z)}{zg(z)}$  的可去奇点, $\operatorname{Res}\left(\frac{f(z)}{zg(z)},z_k\right)=0$ .

③ 对于充分小的 
$$\varepsilon$$
,由 Cauchy 积分公式, $\frac{1}{2\pi \mathbf{i}}\int\limits_{|z|=\varepsilon}\frac{f(z)}{zg(z)}\,\mathrm{d}z=\frac{f(0)}{g(0)}.$ 

故由留数定理,
$$\frac{1}{2\pi i} \int_{|z|=R} \frac{f(z)}{zg(z)} dz = \frac{f(0)}{g(0)} + \sum_{k=1}^{n} \frac{f(z_k)}{z_k g'(z_k)}.$$

- (2) 若  $z_1, z_2, \dots, z_n$  中有 0, 不妨设  $z_n = 0$ .
  - ① 若 0 是 f(z) 的 m 阶零点  $(m \ge 2)$ ,则 0 是  $\frac{f(z)}{zg(z)}$  的可去奇点, $\operatorname{Res}\left(\frac{f(z)}{zg(z)},0\right) = 0$ .
  - ② 若 0 是 f(z) 的 1 阶零点,则 0 是  $\frac{f(z)}{zg(z)}$  的 1 阶极点, $\operatorname{Res}\left(\frac{f(z)}{zg(z)},0\right) = \lim_{z \to 0} \frac{f(z)}{g(z)} = \frac{f'(0)}{g'(0)}$ .
  - ③ 若  $f(0) \neq 0$ , 由于 0 是 zg(z) 的 2 阶零点, 由习题 5.4.4,

$$\operatorname{Res}\left(\frac{f(z)}{zg(z)},0\right) = \frac{6f'(z)(zg(z))'' - 2f(z)(zg(z))'''}{3[(zg(z))'']^2}\bigg|_{z=0} = \frac{6f'(0) \cdot 2g'(0) - 2f(0) \cdot 3g''(0)}{12[g'(0)]^2}$$

$$= \frac{f'(0)}{g'(0)} - \frac{f(0)g''(0)}{2[g'(0)]^2}.$$

故由留数定理,

$$\frac{1}{2\pi \mathrm{i}} \int\limits_{|z|=R} \frac{f(z)}{zg(z)} \, \mathrm{d}z = \begin{cases} \sum_{k=1}^{n-1} \frac{f(z_k)}{z_k g'(z_k)}, & 0 \not\equiv f(z) \text{ 的 } m \text{ 阶零点, } m \geqslant 2, \\ \frac{f'(0)}{g'(0)} - \frac{f(0)g''(0)}{2[g'(0)]^2} + \sum_{k=1}^{n-1} \frac{f(z_k)}{z_k g'(z_k)}, & \sharp \text{他.} \end{cases}$$

**习题 5.4.12** 设 D 是由有限条可求长简单闭曲线围成的域, f(z) 在 D 上亚纯, 在 D 中的全部彼此不同的极点为  $w_1, w_2, \cdots, w_m$ , 其相应的 Laurent 展开式的主要部分为  $f_1(z), f_2(z), \cdots, f_m(z)$ , 并且在  $\overline{D} \setminus \{w_1, w_2, \cdots, w_m\}$  上连续. 证明: 对于任意  $z \in D$ , 有

$$\frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} \, d\zeta = f(z) - \sum_{j=1}^{m} f_j(z).$$

证明 设  $f_j(z) = \sum_{k=1}^{\infty} \frac{c_{-k}}{(z-w_j)^k}$ . 由留数定理, $\frac{1}{2\pi \mathrm{i}} \int\limits_{\partial D} \frac{f(\zeta)}{\zeta-z} \,\mathrm{d}\zeta = \sum_{j=1}^m \mathrm{Res} \left(\frac{f(\zeta)}{\zeta-z}, w_j\right) + \mathrm{Res} \left(\frac{f(\zeta)}{\zeta-z}, z\right)$ .

(1) 若 $z \notin \{w_1, w_2, \cdots, w_m\}$ , 则 $z \in \frac{f(\zeta)}{\zeta - z}$ 的 1 阶极点, 从而

$$\begin{split} \operatorname{Res} \left( \frac{f(\zeta)}{\zeta - z}, z \right) &= \lim_{\zeta \to z} (\zeta - z) \frac{f(\zeta)}{\zeta - z} = f(z), \\ \operatorname{Res} \left( \frac{f(\zeta)}{\zeta - z}, w_j \right) &= \operatorname{Res} \left( \frac{f_j(\zeta)}{\zeta - z}, w_j \right) = \frac{c_{-1}}{w_j - z} = -f_j(z). \end{split}$$

因此 
$$\frac{1}{2\pi \mathbf{i}} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta = f(z) - \sum_{j=1}^{m} f_j(z).$$

(2) 若  $z \in \{w_1, w_2, \dots, w_m\}$ , 不妨设  $w_m = z$ , 则

$$\frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{j=1}^{m-1} \operatorname{Res}\left(\frac{f(\zeta)}{\zeta - z}, w_j\right) + \operatorname{Res}\left(\frac{f(\zeta)}{\zeta - z}, z\right)$$

$$\stackrel{(1)}{=} - \sum_{j=1}^{m-1} f_j(z) + \underbrace{\operatorname{Res}\left(\frac{f(\zeta) - f_m(\zeta)}{\zeta - z}, z\right)}_{z \text{ $\mathbb{Z}$ $\mathbb{Z}$ $\mathbb{I}$ $1$ $ $\mathbb{M}$ $\mathbb{M}$$$

**习题 5.5.1** 利用留数定理和 Cauchy 积分公式计算下列积分:

(1) 
$$\int_0^{+\infty} \frac{x^2 + 1}{x^4 + 1} \, \mathrm{d}x.$$

(4) 
$$\int_0^{2\pi} \frac{1}{a + b \cos \theta} d\theta$$
 (0 < b < a).

$$(9) \int_0^{+\infty} \left(\frac{\sin x}{x}\right)^2 \mathrm{d}x.$$

(17) 
$$\int_{-1}^{1} \frac{\sqrt[4]{(1-x)^3(1+x)}}{1+x^2} \, \mathrm{d}x.$$

(21) 
$$\int_{0}^{+\infty} \frac{\log x}{x^2 - 1} dx$$
.

(24) 
$$\int_{0}^{+\infty} \frac{\sin x}{e^{x} - 1} dx$$
.

(28) 
$$\int_0^{+\infty} e^{-ax^2} \cos(bx^2) dx$$
 (a > 0).

(29) 
$$\int_0^{\frac{\pi}{2}} \log \sin \theta \, d\theta.$$

解答 (1) 由于  $gcd(x^2+1,x^4+1)=1$ ,  $x^4+1$  无实根, 在上半平面中有根  $a_1=\zeta_8,a_2=\zeta_8^3$ , 且  $deg(x^4+1)-deg(x^2+1)=2$ , 因此

$$\int_{-\infty}^{+\infty} \frac{x^2 + 1}{x^4 + 1} \, \mathrm{d}x = 2\pi \mathrm{i} \sum_{k=1}^{2} \mathrm{Res} \left( \frac{z^2 + 1}{z^4 + 1}, a_k \right),$$

其中

$$\begin{split} \operatorname{Res} \left( \frac{z^2 + 1}{z^4 + 1}, a_1 \right) &= \lim_{z \to \zeta_8} \frac{\left( z^2 + 1 \right) (z - \zeta_8)}{z^4 + 1} = \lim_{z \to \zeta_8} \frac{z^2 + 1}{\frac{z^4 + 1}{z - \zeta_8}} = \frac{z^2 + 1}{\left( z^4 + 1 \right)'} \bigg|_{z = \zeta_8} = -\frac{\mathrm{i}}{2\sqrt{2}}, \\ \operatorname{Res} \left( \frac{z^2 + 1}{z^4 + 1}, a_2 \right) &= \lim_{z \to \zeta_8^3} \frac{\left( z^2 + 1 \right) (z - \zeta_8^3)}{z^4 + 1} = \lim_{z \to \zeta_8^3} \frac{z^2 + 1}{\frac{z^4 + 1}{z - \zeta_8^3}} = \frac{z^2 + 1}{\left( z^4 + 1 \right)'} \bigg|_{z = \zeta_8^3} = -\frac{\mathrm{i}}{2\sqrt{2}}. \end{split}$$

故

$$\int_0^{+\infty} \frac{x^2 + 1}{x^4 + 1} \, \mathrm{d}x = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{x^2 + 1}{x^4 + 1} \, \mathrm{d}x = \frac{\pi}{\sqrt{2}}.$$

(4) 
$$\diamondsuit z = \mathrm{e}^{\mathrm{i}\theta}$$
,则  $\cos \theta = \frac{1}{2} \left(z + \frac{1}{z}\right)$ , $\mathrm{d}z = \mathrm{i}z\,\mathrm{d}\theta$ ,从而

$$\int_{0}^{2\pi} \frac{1}{a + b \cos \theta} d\theta = \int_{|z|=1} \frac{dz}{iz \left[a + \frac{b}{2} \left(z + \frac{1}{z}\right)\right]} = \frac{2}{bi} \int_{|z|=1} \frac{dz}{z^{2} + \frac{2a}{b}z + 1}$$

$$= \frac{2}{bi} \cdot 2\pi i \operatorname{Res} \left(\frac{1}{z^{2} + \frac{2a}{b}z + 1}, \frac{-a + \sqrt{a^{2} - b^{2}}}{b}\right)$$

$$= \frac{4\pi}{b} \cdot \frac{1}{\left(\frac{-a + \sqrt{a^{2} - b^{2}}}{b}\right) - \left(\frac{-a - \sqrt{a^{2} - b^{2}}}{b}\right)}$$

$$= \frac{2\pi}{\sqrt{a^{2} - b^{2}}}.$$

(9) 选取如图积分路径.



设  $\gamma=\gamma_1\cup\gamma_2\cup\gamma_3\cup\gamma_4$  所围区域为 D. 由  $\frac{\mathrm{e}^{2\mathrm{i}z}-1}{z^2}\in\mathfrak{H}(D)$  知  $\int\limits_{\partial D}\frac{\mathrm{e}^{2\mathrm{i}z}-1}{z^2}\,\mathrm{d}z=0$ . 我们有

$$\begin{split} \operatorname{Re} \left\{ \int\limits_{\gamma_1} \frac{\mathrm{e}^{2\mathrm{i}z} - 1}{z^2} \, \mathrm{d}z \right\} &= \int\limits_{\gamma_1} \operatorname{Re} \left\{ \frac{\cos 2x + \mathrm{i} \sin 2x - 1}{x^2} \right\} \mathrm{d}x \xrightarrow{\varepsilon \to 0^+} -2 \int_0^{+\infty} \left( \frac{\sin x}{x} \right)^2 \mathrm{d}x, \\ \operatorname{Re} \left\{ \int\limits_{\gamma_3} \frac{\mathrm{e}^{2\mathrm{i}z} - 1}{z^2} \, \mathrm{d}z \right\} &= \int\limits_{\gamma_3} \operatorname{Re} \left\{ \frac{\cos 2x + \mathrm{i} \sin 2x - 1}{x^2} \right\} \mathrm{d}x \xrightarrow{\varepsilon \to 0^+} -2 \int_0^{+\infty} \left( \frac{\sin x}{x} \right)^2 \mathrm{d}x, \\ \left| \int\limits_{\gamma_2} \frac{\mathrm{e}^{2\mathrm{i}z} - 1}{z^2} \, \mathrm{d}z \right| \leqslant \int_0^{\pi} \frac{\left| \mathrm{e}^{2\mathrm{i}R\mathrm{e}^{\mathrm{i}\theta}} \right| + 1}{R} \, \mathrm{d}\theta = \int_0^{\pi} \frac{\mathrm{e}^{-2R\sin\theta} + 1}{R} \, \mathrm{d}\theta \leqslant \frac{2\pi}{R} \xrightarrow{R \to +\infty} 0. \end{split}$$

以及

$$\int\limits_{\gamma_4} \frac{\mathrm{e}^{2\mathrm{i}z} - 1}{z^2} \, \mathrm{d}z = \int\limits_{\gamma_4} \sum_{k=1}^{\infty} \frac{(2\mathrm{i}z)^k}{k!} \cdot z^{-2} \, \mathrm{d}z = \int\limits_{\gamma_4} \frac{2\mathrm{i}}{z} \, \mathrm{d}z + \int\limits_{\gamma_4} \sum_{k=0}^{\infty} \frac{(2\mathrm{i})^{k+2} z^k}{(k+2)!} \, \mathrm{d}z,$$

其中

$$\int\limits_{\gamma_4} \frac{2\mathrm{i}}{z} \,\mathrm{d}z = \int_{\pi}^0 \frac{2\mathrm{i}}{\varepsilon \mathrm{e}^{\mathrm{i}\theta}} \cdot \mathrm{i}\varepsilon \mathrm{e}^{\mathrm{i}\theta} \,\mathrm{d}\theta = 2\pi,$$
 
$$\left| \int\limits_{\gamma_4} \sum_{k=0}^{\infty} \frac{(2\mathrm{i})^{k+2} z^k}{(k+2)!} \,\mathrm{d}z \right| \overset{\varepsilon < 1}{\leqslant} \pi\varepsilon \cdot \max_{|z| \leqslant 1} \left| \sum_{k=0}^{\infty} \frac{(2\mathrm{i})^{k+2} z^k}{(k+2)!} \right| \overset{\varepsilon \to 0^+}{\longrightarrow} 0.$$

故令  $\varepsilon \to 0^+, R \to +\infty$  就得到

$$0 = \operatorname{Re}\left\{ \int_{\partial D} \frac{e^{2iz} - 1}{z^2} \, dz \right\} = -4 \int_0^{+\infty} \left( \frac{\sin x}{x} \right)^2 dx + 2\pi,$$

即

$$\int_0^{+\infty} \left(\frac{\sin x}{x}\right)^2 \mathrm{d}x = \frac{\pi}{2}.$$

(17) 令  $f(z) = \frac{1}{1+z^2}$ ,  $r = \frac{1}{4}$ ,  $s = \frac{3}{4}$ , 则  $r+s=1 \in \mathbb{Z}$ , f(z) 在  $\mathbb{C}$  中仅有极点  $a_1 = \mathbf{i}$ ,  $a_2 = -\mathbf{i}$ , 且  $\lim_{z \to \infty} z^{r+s+1} f(z) = \lim_{z \to \infty} \frac{z^2}{1+z^2} = 1$ , 由定理 5.5.14,

$$\int_{-1}^{1} (x+1)^{r} (1-x)^{s} f(x) dx = -\frac{\pi}{\sin s\pi} + \frac{\pi}{e^{-s\pi i} \sin s\pi} \sum_{k=1}^{2} \text{Res}\left(\frac{\sqrt[4]{(1-z)^{3}(1+z)}}{1+z^{2}}, a_{k}\right).$$

而

$$\operatorname{Res}\left(\frac{\sqrt[4]{(1-z)^3(1+z)}}{1+z^2}, \mathbf{i}\right) = \lim_{z \to \mathbf{i}} \frac{\sqrt[4]{(1-z)^3(1+z)}}{z+\mathbf{i}} = \frac{1}{2\mathbf{i}} \lim_{z \to \mathbf{i}} \sqrt[4]{(1-z)^3(1+z)},$$

$$\operatorname{Res}\left(\frac{\sqrt[4]{(1-z)^3(1+z)}}{1+z^2}, -\mathbf{i}\right) = \lim_{z \to -\mathbf{i}} \frac{\sqrt[4]{(1-z)^3(1+z)}}{z-\mathbf{i}} = \frac{1}{-2\mathbf{i}} \lim_{z \to -\mathbf{i}} \sqrt[4]{(1-z)^3(1+z)},$$

由习题 2.4.27 即得

$$\begin{split} & \operatorname{Res}\!\left(\frac{\sqrt[4]{(1-z)^3(1+z)}}{1+z^2}, \mathbf{i}\right) + \operatorname{Res}\!\left(\frac{\sqrt[4]{(1-z)^3(1+z)}}{1+z^2}, -\mathbf{i}\right) \\ = & \frac{1}{2\mathbf{i}}\!\left(\lim_{z\to\mathbf{i}}\sqrt[4]{(1-z)^3(1+z)} - \lim_{z\to-\mathbf{i}}\sqrt[4]{(1-z)^3(1+z)}\right) = \frac{\sqrt{2}}{2\mathbf{i}}\!\left(\mathbf{e}^{-\frac{\pi}{8}\mathbf{i}} - \mathbf{e}^{\frac{5\pi}{8}\mathbf{i}}\right). \end{split}$$

故

$$\int_{-1}^{1} \frac{\sqrt[4]{(1-x)^3(1+x)}}{1+x^2} \, \mathrm{d}x = -\frac{\pi}{\sin\frac{3\pi}{4}} + \frac{\pi}{\mathrm{e}^{-\frac{3\pi\mathrm{i}}{4}}} \cdot \frac{1}{\sqrt{2}\mathrm{i}} \Big( \mathrm{e}^{-\frac{\pi}{8}\mathrm{i}} - \mathrm{e}^{\frac{5\pi}{8}\mathrm{i}} \Big) = \bigg( \sqrt{2+\sqrt{2}} - \sqrt{2} \bigg) \pi.$$

## (21) 选取如图积分路径.



设  $\gamma=\gamma_1\cup\gamma_2\cup\gamma_3\cup\gamma_4$  所围区域为 D. 由  $\frac{\log z}{z^2-1}\in\mathcal{H}(D)$  知  $\int\limits_{\partial D}\frac{\log z}{z^2-1}\,\mathrm{d}z=0$  (注意 1 是  $\frac{\log z}{z^2-1}$  的可去奇点).

① 在  $\gamma_1$  上,

$$\operatorname{Re}\left\{ \int_{\gamma_{1}} \frac{\log z}{z^{2} - 1} \, \mathrm{d}z \right\} = -\int_{\varepsilon}^{R} \operatorname{Im}\left\{ \frac{\log(\mathrm{i}t)}{t^{2} + 1} \right\} \mathrm{d}t = -\int_{\varepsilon}^{R} \frac{\frac{\pi}{2}}{t^{2} + 1} \, \mathrm{d}t \xrightarrow{\varepsilon \to 0^{+}} -\frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \frac{\mathrm{d}t}{t^{2} + 1} \, \mathrm{d}t = -\frac{\pi^{2}}{4}.$$

② 在  $\gamma_2$  上,由于  $\lim_{z\to 0} \frac{z\log z}{z^2-1} = 0$ ,若记  $M(\varepsilon) = \max_{\gamma_2(\varepsilon)} \left| \frac{z\log z}{z^2-1} \right|$ ,则  $\lim_{\varepsilon\to 0^+} M(\varepsilon) = 0$ . 当  $z=\varepsilon \mathrm{e}^{\mathrm{i}\theta}$  时,  $\mathrm{d}z=\mathrm{i}z\,\mathrm{d}\theta$ ,因此

$$\left| \int\limits_{\gamma_2} \frac{\log z}{z^2 - 1} \, \mathrm{d}z \right| = \left| \int\limits_{\gamma_2} \frac{\frac{z \log z}{z^2 - 1}}{z} \, \mathrm{d}z \right| \leqslant \int_0^{\frac{\pi}{2}} M(\varepsilon) = \frac{\pi}{2} M(\varepsilon) \xrightarrow{\varepsilon \to 0^+} 0.$$

③ 在  $\gamma_3$  上,

$$\int_{\gamma_3} \frac{\log z}{z^2 - 1} \, \mathrm{d}z = \int_{\varepsilon}^{R} \frac{\log x}{x^2 - 1} \, \mathrm{d}x \xrightarrow{\varepsilon \to 0^+} \int_{0}^{+\infty} \frac{\log x}{x^2 - 1} \, \mathrm{d}x.$$

④ 在  $\gamma_4$  上,由于  $\lim_{z\to\infty}\frac{\log z}{z^2-1}=0$ ,若记  $M(R)=\max_{\gamma_4(R)}\left|\frac{\log z}{z^2-1}\right|$ ,则  $\lim_{R\to+\infty}M(R)=0$ . 当  $z=R\mathrm{e}^{\mathrm{i}\theta}$  时, $\mathrm{d}z=\mathrm{i}z\,\mathrm{d}\theta$ ,因此

$$\left| \int_{\gamma_4} \frac{\log z}{z^2 - 1} \, \mathrm{d}z \right| \leqslant \int_0^{\frac{\pi}{2}} M(R) \, \mathrm{d}\theta = \frac{\pi}{2} M(R) \xrightarrow{R \to +\infty} 0.$$

故

$$0 = \text{Re}\left\{ \int_{\gamma} \frac{\log z}{z^2 - 1} \, dz \right\} = -\frac{\pi^2}{4} + \int_{0}^{+\infty} \frac{\log x}{x^2 - 1} \, dx,$$

即

$$\int_0^{+\infty} \frac{\log x}{x^2 - 1} \, \mathrm{d}x = \frac{\pi^2}{4}.$$

(24) 选取如图积分路径.



设  $\gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4 \cup \gamma_5 \cup \gamma_6$  所围区域为 D. 由  $\frac{e^{iz}}{e^z - 1} \in \mathfrak{H}(D)$  知  $\int_{\partial D} \frac{e^{iz}}{e^z - 1} dz = 0$ . 我们有

① 在 
$$\gamma_1$$
 上,由于  $\lim_{z \to 2\pi i} (z - 2\pi i) \frac{e^{iz}}{e^z - 1} = \lim_{z \to 2\pi i} \frac{e^{iz}}{\frac{e^z - 1}{z - 2\pi i}} = \frac{e^{iz}}{(e^z - 1)'} \bigg|_{z = 2\pi i} = e^{-2\pi}$ ,若记  $M(\varepsilon) = \max_{\gamma_1(\varepsilon)} \left| \frac{e^{iz}(z - 2\pi i)}{e^z - 1} - e^{-2\pi} \right|$ ,则  $\lim_{\varepsilon \to 0^+} M(\varepsilon) = 0$ . 当  $z = 2\pi i + \varepsilon e^{i\theta}$  时, $dz = i(z - 2\pi i) d\theta$ ,因此

$$\left| \int\limits_{\mathbb{C}_i} \frac{\frac{\mathrm{e}^{\mathrm{i}z}(z-2\pi\mathrm{i})}{\mathrm{e}^z-1} - \mathrm{e}^{-2\pi}}{z-2\pi\mathrm{i}} \, \mathrm{d}z \right| \leqslant \int_{-\frac{\pi}{2}}^0 M(\varepsilon) \, \mathrm{d}\theta = \frac{\pi}{2} M(\varepsilon) \xrightarrow{\varepsilon \to 0^+} 0,$$

即

$$\lim_{\varepsilon \to 0^+} \int\limits_{\gamma_1} \frac{\mathrm{e}^{\mathrm{i}z}}{\mathrm{e}^z - 1} \, \mathrm{d}z = \lim_{\varepsilon \to 0^+} \int\limits_{\gamma_1} \frac{\mathrm{e}^{-2\pi}}{z - 2\pi \mathrm{i}} \, \mathrm{d}z = -\frac{\pi \mathrm{i}}{2} \mathrm{e}^{-2\pi}.$$

② 在  $\gamma_2$  上,

$$\operatorname{Im}\left\{\int\limits_{2\pi-\varepsilon}\frac{\mathrm{e}^{\mathrm{i}z}}{\mathrm{e}^z-1}\,\mathrm{d}z\right\}=\operatorname{Im}\left\{\int_{2\pi-\varepsilon}^\varepsilon\frac{\mathrm{e}^{-t}}{\mathrm{e}^{\mathrm{i}t}-1}\mathrm{i}\,\mathrm{d}t\right\}\xrightarrow{\varepsilon\to 0^+}-\int_0^{2\pi}\operatorname{Re}\left\{\frac{\mathrm{e}^{-t}}{\mathrm{e}^{\mathrm{i}t}-1}\right\}\mathrm{d}t$$

$$= \int_0^{2\pi} \frac{e^{-t}(1-\cos t)}{2-2\cos t} dt = \frac{1-e^{-2\pi}}{2}.$$

③ 在  $\gamma_3$  上, 同 (1) 可得

$$\int_{\gamma_3} \frac{\mathrm{e}^{\mathrm{i}z}}{\mathrm{e}^z - 1} \,\mathrm{d}z \xrightarrow{\varepsilon \to 0^+} -\frac{\pi \mathrm{i}}{2}.$$

④ 在  $\gamma_4$  上,

$$\operatorname{Im}\left\{\int\limits_{\gamma_4}\frac{\mathrm{e}^{\mathrm{i}z}}{\mathrm{e}^z-1}\,\mathrm{d}z\right\}\xrightarrow[R\to+\infty]{\varepsilon\to0^+}\int_0^{+\infty}\operatorname{Im}\left\{\frac{\cos x+\mathrm{i}\sin x}{\mathrm{e}^x-1}\right\}\mathrm{d}x=\int_0^{+\infty}\frac{\sin x}{\mathrm{e}^x-1}\,\mathrm{d}x.$$

⑤ 在 γ<sub>5</sub> 上,

$$\left| \int_{\gamma_5} \frac{\mathrm{e}^{\mathrm{i}z}}{\mathrm{e}^z - 1} \, \mathrm{d}z \right| = \left| \int_0^{2\pi} \frac{\mathrm{e}^{\mathrm{i}(R + \mathrm{i}t)}}{\mathrm{e}^{R + \mathrm{i}t} - 1} \mathrm{i} \, \mathrm{d}t \right| \leqslant \int_0^{2\pi} \frac{\mathrm{e}^{-t}}{\mathrm{e}^R - 1} \, \mathrm{d}t \leqslant \frac{2\pi}{\mathrm{e}^R - 1} \xrightarrow{R \to +\infty} 0.$$

⑥ 在 γ<sub>6</sub> 上,

$$\begin{split} \operatorname{Im} \left\{ \int\limits_{\gamma_6} \frac{\mathrm{e}^{\mathrm{i}z}}{\mathrm{e}^z - 1} \, \mathrm{d}z \right\} &= \operatorname{Im} \left\{ \int_R^\varepsilon \frac{\mathrm{e}^{\mathrm{i}(x + 2\pi \mathrm{i})}}{\mathrm{e}^{x + 2\pi \mathrm{i}} - 1} \, \mathrm{d}x \right\} \xrightarrow{\varepsilon \to 0^+} - \int_0^{+\infty} \operatorname{Im} \left\{ \frac{\mathrm{e}^{\mathrm{i}x - 2\pi}}{\mathrm{e}^x - 1} \right\} \mathrm{d}x \\ &= -\mathrm{e}^{-2\pi} \int_0^{+\infty} \frac{\sin x}{\mathrm{e}^x - 1} \, \mathrm{d}x. \end{split}$$

故

$$0 = \operatorname{Im} \left\{ \int_{\gamma} \frac{e^{iz}}{e^z - 1} \, dz \right\} = -\frac{\pi}{2} e^{-2\pi} + \frac{1 - e^{-2\pi}}{2} - \frac{\pi}{2} + \left(1 - e^{-2\pi}\right) \int_{0}^{+\infty} \frac{\sin x}{e^x - 1} \, dx,$$

即

$$\int_0^{+\infty} \frac{\sin x}{e^x - 1} \, \mathrm{d}x = \frac{\pi}{2} \left( \frac{e^{2\pi} + 1}{e^{2\pi} - 1} \right) - \frac{1}{2}.$$

(28) 
$$\int_0^{+\infty} \mathrm{e}^{-ax^2} \cos \left( bx^2 \right) \mathrm{d}x = \mathrm{Re} \bigg\{ \int_0^{+\infty} \mathrm{e}^{(-a+b\mathrm{i})x^2} \bigg\}. \ \text{Fix} \ \mathrm{Re}(c) > 0 \ \text{Hz}, \\ \int_0^{+\infty} \mathrm{e}^{-cx^2} \, \mathrm{d}x = \frac{1}{2} \sqrt{\frac{\pi}{c}}.$$



选取如图积分路径. 设  $\gamma=\gamma_1\cup\gamma_2\cup\gamma_3$  所围区域为 D. 由  $\mathrm{e}^{-cz^2}\in\mathfrak{H}(D)$  知  $\int\limits_{\partial D}\mathrm{e}^{-cz^2}\,\mathrm{d}z=0$ .

① 
$$\dot{a} \gamma_1 \perp$$
,  $\int_{\gamma_1} e^{-cz^2} dz \xrightarrow{R \to +\infty} \int_0^{+\infty} e^{-cx^2} dx$ .

② 在  $\gamma_2$  上,由于  $\lim_{z\to\infty}z\mathrm{e}^{-cz^2}=0$ ,若记  $M(R)=\max_{\gamma_2(R)}\left|z\mathrm{e}^{-cz^2}\right|$ ,则  $\lim_{R\to+\infty}M(R)=0$ . 当  $z=R\mathrm{e}^{\mathrm{i}\theta}$  时, $\mathrm{d}z=\mathrm{i}z\,\mathrm{d}\theta$ ,因此

$$\left| \int_{\gamma_0} e^{-cz^2} dz \right| = \left| \int_{\gamma_0} \frac{z e^{-cz^2}}{z} dz \right| \leqslant \int_0^{\varphi} M(R) d\theta = \varphi M(R) \xrightarrow{R \to +\infty} 0.$$

③ 在  $\gamma_3: z = kt$  (待定  $k \in \mathbb{C}$  于第一象限) 上,

$$\int\limits_{\gamma_2} \mathrm{e}^{-cz^2} \, \mathrm{d}z \xrightarrow{R \to +\infty} \int_{+\infty}^0 \mathrm{e}^{-ck^2t^2} k \, \mathrm{d}t = -k \int_0^{+\infty} \mathrm{e}^{-ck^2t^2} \, \mathrm{d}t.$$

取 
$$k = \frac{1}{\sqrt{c}}$$
,则 
$$\int\limits_{\gamma_3} \mathrm{e}^{-cz^2} \, \mathrm{d}z \xrightarrow{R \to +\infty} -\frac{1}{\sqrt{c}} \int_0^{+\infty} \mathrm{e}^{-t^2} \, \mathrm{d}t = -\frac{1}{\sqrt{c}} \cdot \frac{\sqrt{\pi}}{2}.$$

故

$$\int_0^{+\infty} e^{-cx^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{c}}.$$

利用此结论即得

$$\int_0^{+\infty} e^{-(a+bi)x^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{a-bi}} = \frac{1}{2} \sqrt{\frac{\pi}{a^2+b^2}} \cdot \sqrt{a+bi}.$$

设  $\sqrt{a+b\mathbf{i}}=u+\mathbf{i}v$   $(u,v\in\mathbb{R}),$  则  $a=u^2-v^2$  且 b=2uv, 从而

$$a=u^2-\left(\frac{b}{2u}\right)^2 \implies u^2=\frac{a+\sqrt{a^2+b^2}}{2} \xrightarrow{\text{$\overrightarrow{A}$ this $b\geqslant 0$}} u=\sqrt{\frac{a+\sqrt{a^2+b^2}}{2}},$$

故

$$\int_0^{+\infty} \mathrm{e}^{-ax^2} \cos(bx^2) \, \mathrm{d}x = \frac{1}{2} \sqrt{\frac{\pi}{a^2 + b^2}} \cdot u = \frac{\sqrt{2\pi}}{4} \sqrt{\frac{\sqrt{a^2 + b^2} + a}{a^2 + b^2}}.$$

(29) 选取如图积分路径.



设  $\gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4 \cup \gamma_5 \cup \gamma_6$  所围区域为 D. 由于  $\sin z$  在  $\mathbb{C}$  中零点为  $k\pi$  ( $k \in \mathbb{Z}$ ),因此  $\log \sin z \in \mathcal{H}(D)$ , $\int\limits_{\Omega \mathbb{C}} \log \sin z \, \mathrm{d}z = 0$ .

① 在 
$$\gamma_1: z = \mathrm{i}t$$
 上, $\sin(\mathrm{i}t) = \frac{\mathrm{i}(\mathrm{e}^t - \mathrm{e}^{-t})}{2}$ ,因此

$$\operatorname{Re}\left\{\int\limits_{\gamma_1}\log\sin z\,\mathrm{d}z\right\}=\operatorname{Re}\left\{\int_R^\varepsilon\log\sin(\mathrm{i}t)\mathrm{i}\,\mathrm{d}t\right\}=\int_\varepsilon^R\operatorname{Im}(\log\sin(\mathrm{i}t))\,\mathrm{d}t=\int_\varepsilon^R\frac{\pi}{2}\,\mathrm{d}t=\frac{\pi}{2}(R-\varepsilon).$$

② 在  $\gamma_2$  上,由于  $\lim_{z\to 0}z\log\sin z=0$ ,若记  $M(\varepsilon)=\max_{\gamma_2(\varepsilon)}|z\log\sin z|$ ,则  $\lim_{\varepsilon\to 0^+}M(\varepsilon)=0$ . 当  $z=\varepsilon \mathrm{e}^{\mathrm{i}\theta}$  时, $\mathrm{d}z=\mathrm{i}z\,\mathrm{d}\theta$ ,因此

$$\left| \int\limits_{\gamma_2} \log \sin z \, \mathrm{d}z \right| = \left| \int\limits_{\gamma_2} \frac{z \log \sin z}{z} \, \mathrm{d}z \right| \leqslant \int_0^{\frac{\pi}{2}} M(\varepsilon) \, \mathrm{d}\theta = \frac{\pi}{2} M(\varepsilon) \xrightarrow{\varepsilon \to 0^+} 0.$$

③ 在  $\gamma_3$  上,

$$\int\limits_{\gamma_3} \log \sin z \, \mathrm{d}z = \int_{\varepsilon}^{\pi - \varepsilon} \log \sin x \, \mathrm{d}x \xrightarrow{\varepsilon \to 0^+} \int_0^{\pi} \log \sin x \, \mathrm{d}x.$$

④ 在  $\gamma_4$  上,由于  $\lim_{z\to\pi}(z-\pi)\log\sin z=0$ ,同 (2)可得

$$\left| \int_{\gamma_4} \log \sin z \, \mathrm{d}z \right| \xrightarrow{\varepsilon \to 0^+} 0.$$

⑤ 在 $\gamma_5: z = \pi + it$ 上,  $\sin(\pi + it) = -\frac{i}{2}(e^t - e^{-t})$ , 因此

$$\begin{split} \operatorname{Re} &\left\{ \int\limits_{\gamma_5} \log \sin z \, \mathrm{d}z \right\} = \operatorname{Re} \left\{ \int_{\varepsilon}^R \log \sin (\pi + \mathrm{i}t) \mathrm{i} \, \mathrm{d}t \right\} = - \int_{\varepsilon}^R \operatorname{Im} (\log \sin (\pi + \mathrm{i}t)) \, \mathrm{d}t \\ &= - \int_{\varepsilon}^R - \frac{\pi}{2} \, \mathrm{d}t = \frac{\pi}{2} (R - \varepsilon). \end{split}$$

⑥ 在  $\gamma_6: z = t + iR$  上,由

$$\sin(t + iR) = \frac{1}{2} (e^{-R} + e^{R}) \sin t + i \cdot \frac{1}{2} (e^{R} - e^{-R}) \cos t$$

可知

$$\begin{split} |\sin(t+\mathrm{i}R)|^2 &= \frac{1}{4} \big(\mathrm{e}^{-R} + \mathrm{e}^R\big)^2 \sin^2 t + \frac{1}{4} \big(\mathrm{e}^R - \mathrm{e}^{-R}\big)^2 \cos^2 t \\ &= \frac{1}{4} \big[ \big(\mathrm{e}^{2R} + \mathrm{e}^{-2R}\big) \big(\sin^2 t + \cos^2 t\big) + 2 \big(\sin^2 t - \cos^2 t\big) \big] \\ &= \frac{1}{4} \mathrm{e}^{2R} (1 + \mu(R)), \end{split}$$

其中  $\lim_{R\to +\infty} \mu(R) = 0$ . 于是

$$\log|\sin(t+\mathrm{i}R)|^2 = \log\left(\frac{1}{4}\mathrm{e}^{2R}\right) + \log(1+\mu(R)) \xrightarrow{R\to+\infty} 2R - 2\log 2,$$

从而

$$\begin{split} \operatorname{Re} \left\{ \int\limits_{\gamma_6} \log \sin z \, \mathrm{d}z \right\} &= \operatorname{Re} \left\{ \int_{\pi}^{0} \log \sin (t + \mathrm{i}R) \, \mathrm{d}t \right\} = - \int_{0}^{\pi} \log |\sin (t + \mathrm{i}R)| \, \mathrm{d}t \\ &\xrightarrow{R \to +\infty} - \frac{1}{2} (2R - 2\log 2) \pi = \pi (\log 2 - R). \end{split}$$

$$0 = \operatorname{Re} \left\{ \int\limits_{\gamma} \log \sin z \, \mathrm{d}z \right\} \xrightarrow[R \to +\infty]{\varepsilon \to 0^{+}} \int_{0}^{\pi} \log \sin x \, \mathrm{d}x + \pi \log 2,$$

即

$$\int_0^{\frac{\pi}{2}} \log \sin x \, dx = \frac{1}{2} \int_0^{\pi} \log \sin x \, dx = -\frac{\pi}{2} \log 2.$$

**习题 5.5.2** 设 f(z) 是有理函数, 在  $[0, +\infty)$  上无极点, 并且  $\infty$  是 f(z) 的零点. 证明:

$$\int_0^{+\infty} \frac{f(x)}{(\log x)^2 + \pi^2} \, \mathrm{d}x = \sum_{k=1}^n \mathrm{Res} \bigg( \frac{f(z)}{\log z - \pi \mathrm{i}}, a_k \bigg),$$

其中  $a_1 = -1$ ,  $a_2, a_3, \dots, a_n$  是 f(z) 在  $\mathbb C$  中的全部彼此不同的极点,  $\operatorname{Log} z = \log |z| + \operatorname{i} \operatorname{Arg} z, 0 < \operatorname{Arg} z < 2\pi, z \in \mathbb C \setminus [0, +\infty)$ .

证明 选取如图"锁钥"路径.



设 $\gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4$ 包含 f(z)的全部极点. 由留数定理,

$$\frac{1}{2\pi \mathbf{i}} \int_{\gamma} \frac{f(z)}{\operatorname{Log} z - \pi \mathbf{i}} \, \mathrm{d}z = \sum_{k=1}^{n} \operatorname{Res} \left( \frac{f(z)}{\operatorname{Log} z - \pi \mathbf{i}}, a_{k} \right).$$

我们有

$$\int\limits_{\gamma_1} \frac{f(z)}{\log z - \pi \mathrm{i}} \, \mathrm{d}z = \int_{\varepsilon}^R \frac{f(z)}{\log x - \pi \mathrm{i}} \, \mathrm{d}x \xrightarrow{R \to +\infty} \int_0^{+\infty} \frac{f(x)}{\log x - \pi \mathrm{i}} \, \mathrm{d}x,$$
 
$$\left| \int\limits_{\gamma_2} \frac{f(z)}{\log z - \pi \mathrm{i}} \, \mathrm{d}z \right| \leqslant \int\limits_{\gamma_2} \frac{|f(z)| \, \mathrm{d}z|}{|\log z - \pi \mathrm{i}|} \leqslant \int\limits_{\gamma_2} \frac{|f(z)|}{\log R} |\, \mathrm{d}z| \leqslant \frac{2\pi R \max_{|z| = R} |f(z)|}{\log R} \xrightarrow{R \to +\infty} \int_0^{+\infty} \frac{f(x)}{\log x - \pi \mathrm{i}} \, \mathrm{d}x,$$

$$\int\limits_{\gamma_3} \frac{f(z)}{\log z - \pi \mathrm{i}} \, \mathrm{d}z = \int_R^\varepsilon \frac{f(x)}{\log x + 2\pi \mathrm{i} - \pi \mathrm{i}} \, \mathrm{d}x \xrightarrow{R \to +\infty} - \int_0^{+\infty} \frac{f(x)}{\log x + \pi \mathrm{i}} \, \mathrm{d}x,$$

$$\left| \int\limits_{\gamma_4} \frac{f(z)}{\log z - \pi \mathrm{i}} \, \mathrm{d}z \right| \leqslant \int\limits_{\gamma_4} \frac{|f(z)| \, |\mathrm{d}z|}{|\mathrm{Log}\,z - \pi \mathrm{i}|} \leqslant \frac{2\pi\varepsilon \max_{|z| = \varepsilon} |f(z)|}{|\log \varepsilon|} \xrightarrow{\varepsilon \to 0^+} 0.$$

因此在  $\varepsilon \to 0^+, R \to +\infty$  时就有

$$\frac{1}{2\pi \mathrm{i}} \left\{ \int_0^{+\infty} \frac{f(x)}{\log x - \pi \mathrm{i}} \, \mathrm{d}x - \int_0^{+\infty} \frac{f(x)}{\log x + \pi \mathrm{i}} \, \mathrm{d}x \right\} = \sum_{k=1}^n \mathrm{Res} \left( \frac{f(z)}{\log z - \pi \mathrm{i}}, a_k \right),$$

即

$$\int_0^{+\infty} \frac{f(x)}{(\log x)^2 + \pi^2} \, \mathrm{d}x = \sum_{k=1}^n \mathrm{Res}\left(\frac{f(z)}{\log z - \pi \mathrm{i}}, a_k\right).$$

**习题 6.2.6** 证明:  $\sum_{n=0}^{\infty} z^{2^n}$  的收敛圆周上的每个点皆为其和函数的奇异点.

**证明** 级数收敛半径为 1. 注意到对正整数  $k, \ell$ , 有

$$\sum_{n=0}^{\infty} \left( \mathrm{e}^{2\pi \mathrm{i} \frac{\ell}{2^k}} z \right)^{2^n} = \sum_{n=0}^{k-1} \left( \mathrm{e}^{2\pi \mathrm{i} \frac{\ell}{2^k}} z \right)^{2^n} + \sum_{n=k}^{\infty} z^{2^n},$$

因此在收敛圆周上z与  $e^{2\pi i \frac{\ell}{2^k}}z$  同为奇异点或正则点,而 1 显然是奇异点,由  $\left\{e^{2\pi i \frac{\ell}{2^k}}\right\}_{k,\ell\geqslant 1}$  在收敛圆周上稠密即知收敛圆周上的每个点皆为和函数的奇异点.

**习题 6.2.7** 证明:  $\sum_{n=0}^{\infty} \frac{z^{2^n}}{2^n}$  的收敛圆周上的每个点皆为其和函数的奇异点.

**证明** 级数收敛半径为 1. 注意到对正整数  $k, \ell$ , 有

$$\sum_{n=0}^{\infty} \Bigl( \mathrm{e}^{2\pi \mathrm{i} \frac{\ell}{2^k}} z \Bigr)^{2^n} = \sum_{n=0}^{k-1} \Bigl( \mathrm{e}^{2\pi \mathrm{i} \frac{\ell}{2^k}} z \Bigr)^{2^n} + \sum_{n=k}^{\infty} \frac{z^{2^n}}{2^n},$$

因此在收敛圆周上z与  $\mathrm{e}^{2\pi\mathrm{i}\frac{\ell}{2^k}z}$  同为奇异点或正则点,而 2 显然是奇异点,由  $\left\{\mathrm{e}^{2\pi\mathrm{i}\frac{\ell}{2^k}}\right\}_{k,\ell\geqslant 1}$  在收敛圆周上稠密即知收敛圆周上的每个点皆为和函数的奇异点.

**习题 6.2.8** 设  $f(z) = \sum_{n=0}^{\infty} a_n z^n$  的收敛半径为 1,  $a_n \in \mathbb{R}$   $(n \ge 0)$ ,  $S_n = \sum_{k=0}^{n} a_k$ . 证明: 若  $S_n \to \infty$   $(n \to \infty)$ , 则 1 是 f(z) 的奇异点. 举例说明, 仅有  $|S_n| \to \infty$  不能保证 1 是 f(z) 的奇异点.

**证明** (1) 若 1 不是 f 的奇异点,则 f 在 1 的某个邻域中全纯且 f(1) 存在. 由于 f 限制在实轴上为实值函数,故 f(1)  $\in \mathbb{R}$ . 考虑 g(z) =  $\frac{f(z) - f(1)}{1 - z}$ ,则由全纯函数的解析性知 g 在 1 处全纯. 由于 f(z) 在单位圆周上必有奇异点,因此 g(z) 在单位圆周上必有非 1 的奇异点,从而 g(z) 的的幂级数的收敛半径仍为 1. 而 g(z) 的幂级数为

$$g(z) = \left(\sum_{n=0}^{\infty} a_n z^n - f(1)\right) \left(\sum_{m=0}^{\infty} z^m\right) = \sum_{n=0}^{\infty} [S_n - f(1)]z^n,$$

由于  $S_n - f(1) \to \infty$ , 当 n 充分大时  $S_n - f(1) > 0$ , 由定理 6.2.4 知 1 是 g(z) 的奇点, 矛盾.

(2) 考虑  $f(z) = \sum_{n=0}^{\infty} (-1)^n (n+1) z^n$ , 其收敛半径为 1,  $S_n = (-1)^n \left( \left\lfloor \frac{n}{2} \right\rfloor + 1 \right)$ . 但当 |z| < 1 时,

$$f(z) = \sum_{n=0}^{\infty} \left[ (-1)^n z^{n+1} \right]' = \left( z \sum_{n=0}^{\infty} (-z)^n \right)' = \left( \frac{z}{1+z} \right)' = \frac{1}{(1+z)^2},$$

由于 
$$\frac{1}{(1+z)^2}\Big|_{z=1} = \frac{1}{4}$$
, 因此 1 是  $f(z)$  的正则点.

**习题 7.1.1** 设  $\{f_n\}$  是域 D 上的全纯函数列, 并且在 D 上内闭一致有界. 证明: 若  $\lim_{n\to\infty} f_n(z)$  在 D 上处处存在, 则  $\{f_n\}$  在 D 上内闭一致收敛.

证明 记  $f(z) = \lim_{\substack{n \to \infty \\ n \to \infty}} f_n(z)$ . 由于  $\{f_n\}$  在 D 上内闭一致有界,由 Montel 定理, $\{f_n\}$  是正规族. 若  $\{f_n\}$  在 D 上非内闭一致收敛,则存在紧集  $K \subset D$  与子列  $\{f_{n_k}\}$ ,使得

$$\sup_{z \in K} |f_{n_k}(z) - f(z)| \geqslant \varepsilon > 0, \quad \forall k.$$

于是该子列  $\{f_{n_k}\}$  在 K 上无一致收敛子列, 这与  $\{f_n\}$  是正规族矛盾.

**习题 7.1.2** 设  $\{f_n\}$  是域 D 上的全纯函数列,并且在 D 上内闭一致有界, $A = \{x + iy \in D : x, y \in \mathbb{Q}\}$ . 证明: 若  $\lim_{n \to \infty} f_n(z)$  在 A 上处处存在,则  $\{f_n\}$  在 D 上内闭一致收敛.

**证明** 用反证法, 假设  $\{f_n\}$  在 D 上非内闭一致收敛, 则存在紧集  $K \subset D$ , 使得  $\{f_n\}$  在 K 上非一致收敛. 由于  $\{f_n\}$  在 D 上内闭一致有界, 由 Montel 定理,  $\{f_n\}$  是 D 上的正规族, 因此存在子列  $\{f_{n_k}\}$  在 K 上一致收敛, 记极限函数为 f. 由于  $\{f_n\}$  在 K 上不一致收敛, 存在子列  $\{f_{n_i}\}$  使得

$$\sup_{z \in K} |f_{n_j}(z) - f(z)| \geqslant \varepsilon > 0, \quad \forall j.$$

由于  $\{f_n\}$  是正规族, 对于子列  $\{f_{n_j}\}$ , 存在其子列  $\{f_{n_{j_\ell}}\}$  在 K 上一致收敛, 记极限函数为  $\widetilde{f}$ . 由于  $f,\widetilde{f}\in\mathfrak{H}(K)$ , 且  $f|_A=\widetilde{f}|_A$ ,  $A\cap K$  在 K 中稠密, 由全纯函数零点孤立性即知  $f=\widetilde{f}$ . 于是  $f_{n_{j_\ell}}\rightrightarrows f$ , 与

$$\sup_{z \in K} \left| f_{n_{j_{\ell}}}(z) - f(z) \right| \geqslant \varepsilon > 0, \quad \forall \ell$$

矛盾. 故  $\{f_n\}$  在 D 上内闭一致收敛.

**习题 7.1.4** 设  $\mathcal{F}$  是域 D 上的全纯函数族,  $z_0 \in D$ . 证明: 若

- (1) Re  $f(z) \ge 0, \forall z \in D, f \in \mathcal{F}$ ;
- (2)  $f(z_0) = g(z_0), \forall f, g \in \mathcal{F}$ ,

则 牙是 D 上的正规族. 并举例说明条件 (2) 是不可去掉的.

- **证明** (1) 由 Montel 定理, 只需证  $\mathcal{F}$  在 D 上内闭一致有界, 结合有限覆盖定理, 只需证  $\mathcal{F}$  在 D 中任一圆盘上一致有界, 故不妨设 D 为单位圆盘,  $z_0=0$ , f(0)=w, 其中  $f\in\mathcal{F}$ . 进一步地, 可不妨设  $|w|\leqslant 1$ . 考虑  $g(z)=\frac{f(z)-1}{f(z)+1}$ , 令  $h(z)=\frac{g(0)-g(z)}{1-\overline{g(0)}g(z)}$ , 则 h(0)=0 且  $|h(z)|\leqslant 1$ , 由 Schwarz 引理知  $|h(z)|\leqslant |z|$ . 由此可得  $\mathcal{F}$  在 D 上内闭一致有界, 结论得证.
  - (2) 考虑  $f_n(z) = n$ , 则  $\{f_n(z)\}_{n=0}^{\infty}$  是  $D = \{z \in \mathbb{C} : \text{Re } z > 0\}$  上的全纯函数列, 条件 (2) 显然不满足, 此时  $\{f_n(z)\}$  在 D 上不一致有界, 因此不是正规族.

**习题 7.1.5** 设  $\mathcal{F}$  是域 D 上的正规全纯函数族, g 是整函数. 证明:  $\{g \circ f : f \in \mathcal{F}\}$  也是 D 上的正规族.

**证明**  $\{g \circ f : f \in \mathcal{F}\}$  在 D 上显然内闭一致有界, 因此是 D 上的正规族.

**习题 7.1.6** 设 D 是有界域,  $0 < M < +\infty$ . 证明:

$$\mathfrak{F} = \left\{ f \in \mathfrak{H}(D) : \iint\limits_{D} |f(z)|^2 \, \mathrm{d}x \, \mathrm{d}y \leqslant M \right\}$$

是 D 上的正规族.

**证明** 对任意紧集  $K \subset D$ , 由有限覆盖定理可知, 存在 R > 0, 使得对任意  $z \in D$  均有  $\mathbb{B}(z,R) \subset D$ . 由定理 8.4.5 知, 对任意  $f \in \mathcal{F}$ ,  $|f|^2$  都是 D 上的次调和函数, 因此

$$|f(z)|^2 \leqslant \frac{1}{\pi R^2} \int_{\mathbb{B}(z,R)} |f(\zeta)|^2 dx dy \leqslant \frac{1}{\pi R^2} \int_D |f(\zeta)|^2 dx dy \leqslant \frac{M}{\pi R^2},$$

因此 f(z) 在 D 上内闭一致有界, 由 Montel 定理,  $\mathcal{F}$  是 D 上的正规族.

**习题 7.2.1** (推广的 Liouville 定理) 设 D 是异于  $\mathbb C$  的单连通域. 证明: 若 f 是整函数, 并且  $f(\mathbb C) \subset D$ , 则 f 是常值函数.

**证明** 由 Riemann 映射定理, 可取双全纯变换  $g: D \to \mathbb{B}(0,1)$ , 则  $g \circ f$  为有界整函数, 由 Liouville 定理,  $g \circ f$  为常值函数, 从而 f 为常值函数.

**习题 7.2.2** 设 D 是异于  $\mathbb{C}$  的单连通域,  $a \in D$ . 证明: 若 f 将 D 双全纯地映为  $\mathbb{B}(0,1)$ , 并且 f(a) = 0, f'(a) > 0, 则

$$\min_{z \in \partial D} |z - a| \leqslant \frac{1}{f'(a)} \leqslant \max_{z \in \partial D} |z - a|.$$

称  $\frac{1}{f'(a)}$  为 D 在 a 处的映射半径.

证明 令  $F(w) = \begin{cases} \dfrac{f^{-1}(w) - a}{w}, & w \in \mathbb{B}(0,1) \setminus \{0\}, \\ \dfrac{1}{f'(a)}, & w = 0. \end{cases}$  由 Morera 定理易知  $F \in \mathcal{H}(\mathbb{B}(0,1))$ . 由最大模原

理,

$$\min_{|w|=1} \left| f^{-1}(w) - a \right| = \min_{|w|=1} |F(w)| \leqslant |F(0)| \leqslant \max_{|w|=1} |F(w)| = \max_{|w|=1} \left| f^{-1}(w) - a \right|.$$

由边界对应定理,  $f^{-1}$  将  $\partial \mathbb{B}(0,1)$  ——地映为  $\partial D$ , 因此上式可改写为

$$\min_{z \in \partial D} |z - a| \leqslant \frac{1}{f'(a)} \leqslant \max_{z \in \partial D} |z - a|.$$

**习题 7.2.3** 设 D 是异于  $\mathbb{C}$  的单连通域,  $a \in D$ , f 将 D 双全纯地映为  $\mathbb{B}(0,1)$ , 并且 f(a) = 0, f'(a) > 0. 证明: 若 g 将 D 双全纯地映为  $\mathbb{B}(0,1)$ ,  $p = g^{-1}(0)$ , 则

$$g(z) = \frac{g'(a)}{|g'(a)|} \cdot \frac{f(z) - f(p)}{1 - \overline{f(p)}f(z)}.$$

证明 由于  $g \circ f^{-1} \in \operatorname{Aut}(\mathbb{D})$ ,故它具有形式  $g \circ f^{-1}(z) = \operatorname{e}^{\mathrm{i}\theta} \frac{z - z_0}{1 - \overline{z_0} z}$ ,其中  $|z_0| < 1, \theta \in \mathbb{R}$  待定. 由于

 $g \circ f^{-1}(f(p)) = g(p) = 0$ , 因此  $z_0 = f(p)$ . 由

$$\frac{g'(a)}{f'(a)} = \left(g \circ f^{-1}\right)'(0) = e^{i\theta} \left(\frac{z - f(p)}{1 - \overline{f(p)}z}\right)' \bigg|_{z=0} = e^{i\theta} \left(1 - |f(p)|^2\right)$$

及 f'(a) > 0, |f(p)| < 1 可知  $e^{i\theta} = \frac{g'(a)}{|g'(a)|}$ . 故

$$g \circ f^{-1}(z) = \frac{g'(a)}{|g'(a)|} \cdot \frac{z - f(p)}{1 - \overline{f(p)}z} \xrightarrow{z \to f(z)} g(z) = \frac{g'(a)}{|g'(a)|} \cdot \frac{f(z) - f(p)}{1 - \overline{f(p)}f(z)}.$$

**习题 7.2.4** 设 D 为异于  $\mathbb C$  的凸域,  $a \in D$ ,  $\mathfrak F = \{f \in \mathfrak H(D): f(a) = 0, f'(a) > 0\}$ . 证明:  $\mathfrak F$  中满足  $f(D) = \mathbb B(0,1)$  和 Re  $f'(z) \geqslant 0$  ( $\forall z \in D$ ) 的 f 最多只有一个.

**证明** 对任意  $f \in \mathcal{F}$ , 若 Re  $f'(z) \ge 0$ ,  $\forall z \in D$ , 我们证明 f 必为单叶函数. 用反证法, 假设存在不同的两点  $z_1, z_2 \in D$ , 使得  $f(z_1) = f(z_2)$ , 由于 D 为凸域 (从而为单连通域), 我们有

$$0 = f(z_2) - f(z_1) = \int_{[z_1, z_2]} f'(\zeta) \, d\zeta = \int_0^1 f'(z_1 + t(z_2 - z_1))(z_2 - z_1) \, dt,$$

因此

$$\int_0^1 f'(z_1 + t(z_2 - z_1)) dt = 0 \implies \int_0^1 \operatorname{Re} f'(z_1 + t(z_2 - z_1)) dt = 0$$

$$\xrightarrow{\operatorname{Re} f'(z) \geqslant 0} \operatorname{Re} f'(z) = 0, \quad \forall z \in [z_1, z_2].$$

同习题 2.2.2 (1) 可知 f'(z) 在  $[z_1, z_2]$  上为常数, 再由全纯函数零点孤立性可知 f'(z) 在 D 上为常数, 从而在 D 上 Re  $f'(z) \equiv 0$ , 这与 Re f'(a) = f'(a) > 0 矛盾. 故 f 为单叶函数, 结合  $f(D) = \mathbb{B}(0,1)$ , 由 Riemann 映射定理, f 唯一.

**习题 7.2.7** 设 D 是异于  $\mathbb C$  的单连通域,  $a \in D$ , R 为 D 在 a 处的映射半径 (定义见习题 7.2.2). 证明: 若  $F \in \mathcal H(D), F(a) = 0, F'(a) = 1$ , 则

$$\iint\limits_{D} |F'(z)|^2 \, \mathrm{d}x \, \mathrm{d}y \geqslant \pi R^2.$$

等号成立当且仅当 F 是将 D 映为  $\mathbb{B}(0,R)$  的双全纯映射.

**证明** 令 f 为从  $\mathbb{B}(0,1)$  到 D 的双全纯映射,满足 f(0) = a, f'(0) > 0. 由于 f 作为  $\mathbb{R}^2$  上映射的 Jacobi 行列式为  $|f'|^2$ ,且由定理 8.4.5,  $|(F \circ f)'|^2$  为次调和函数,我们有

$$\iint_{D} |F'(z)|^{2} dx dy = \iint_{\mathbb{B}(0,1)} |F' \circ f(w)|^{2} |f'(w)|^{2} dx dy = \iint_{\mathbb{B}(0,1)} |(F \circ f)'(w)|^{2} dx dy$$

$$\geqslant \pi |(F \circ f)'(0)|^{2} = \pi |F'(a)f'(0)|^{2} = \frac{\pi}{\left|(f^{-1})'(a)\right|^{2}} = \pi R^{2}.$$

等号成立当且仅当  $|(F \circ f)'|$  为常值函数,由习题 2.2.2,  $(F \circ f)'$  为常值函数,结合  $F \circ f(0) = F(a) = 0$  即 知  $F \circ f(z) = cz$ ,其中  $c \in \mathbb{C}$ ,故  $F(z) = cf^{-1}(z)$  是将 D 映为  $\mathbb{B}(0,R)$  的双全纯映射.

**习题 7.3.1** 利用 Schwarz 对称原理和边界对应定理证明:将  $\mathbb{B}(0,1)$  映为自身的双全纯映射一定是分式 线性变换.

证明 任取将  $\mathbb{B}(0,1)$  映为自身的双全纯映射 f,由边界对应定理,f 可延拓为  $\overline{\mathbb{B}(0,1)}$  上的连续函数,且将  $\partial\mathbb{B}(0,1)$  一一地映为  $\partial\mathbb{B}(0,1)$ . 于是 f(z) 可延拓为  $\widetilde{f}(z) = \begin{cases} f(z), & |z| \leqslant 1, \\ \frac{1}{\overline{f\left(\frac{1}{z}\right)}}, & |z| > 1. \end{cases}$  仅有 1 个零点, $\widetilde{f}$  在  $\partial\mathbb{B}(0,1)$  上连续,由 Painlevé 原理可知  $\widetilde{f}$  为  $\overline{\mathbb{C}}$  上的亚纯函数,进而  $\widetilde{f} \in \operatorname{Aut}(\overline{\mathbb{C}})$ . 由定

**习题 7.3.3** 设 D 是由简单闭曲线所围成的单连通域,  $z_1, z_2, z_3 \in \partial D$  是彼此不同的三点, 按  $\partial D$  的正向排列. 证明: 若  $w_1, w_2, w_3 \in \partial \mathbb{B}(0,1)$  是彼此不同的三点, 按  $\partial \mathbb{B}(0,1)$  的正向排列, 则存在唯一的  $\varphi$ , 将 D 双全纯地映为  $\mathbb{B}(0,1)$ , 将  $\overline{D}$  同胚地映为  $\overline{\mathbb{B}(0,1)}$ , 并且  $f(z_k) = w_k, k = 1, 2, 3$ .

**证明** (存在性) 由 Riemann 映射定理与边界对应定理, 存在函数 f, 将 D 双全纯地映为  $\mathbb{B}(0,1)$ , 并将  $\overline{D}$  同胚地映为  $\overline{\mathbb{B}(0,1)}$ , 再取分式线性变换 g 使得  $g(f(z_i)) = w_i$  (i=1,2,3), 由分式线性变换的保圆性即知  $\varphi \coloneqq g \circ f$  为所求.

(唯一性) 设函数  $\varphi_1, \varphi_2$  均满足题意,则  $\varphi_1 \circ \varphi_2^{-1}$  是  $\mathbb{B}(0,1)$  的全纯自同构 (从而为分式线性变换),且  $\varphi_1 \circ \varphi_2^{-1}(w_i) = w_i$  (i = 1, 2, 3),由于三点可确定一个分式线性变换, $\varphi_1 \circ \varphi_2^{-1} = \mathrm{Id}$ ,即  $\varphi_1 = \varphi_2$ .  $\square$ 

**习题 7.3.5** 设  $f \in \mathcal{H}(\mathbb{B}(0,1)), f(0) = 0, f'(0) = a > 0$ . 证明: 若  $f(\mathbb{B}(0,1)) \subset \mathbb{B}(0,1)$ , 则 f 在  $\mathbb{B}\left(0, \frac{a}{1+\sqrt{1-a^2}}\right)$ 上双全纯.

**证明** 由 Schwarz 引理知  $a = f'(0) \in (0,1)$ . 设 f(z) 在  $\mathbb{B}(0,\rho)$  上非单叶函数,则存在不同的两点  $z_1, z_2 \in \mathbb{B}(0,\rho)$  使得  $f(z_1) = f(z_2)$ . 由于  $z_1, z_2$  均为  $f(z) - f(z_1)$  的零点,由定理 4.4.1,

$$\frac{1}{2\pi \mathbf{i}} \int_{|z|=\rho} \frac{f'(z)}{f(z) - f(z_1)} \, \mathrm{d}z \geqslant 2.$$

记  $\gamma_{\rho} = f(\partial \mathbb{B}(0, \rho))$ , 则  $\gamma_{\rho}$  不是简单闭曲线, 否则

理 5.3.5,  $\tilde{f}$  为分式线性变换, 从而 f 为分式线性变换.

$$\frac{1}{2\pi \mathbf{i}} \int\limits_{|z|=\rho} \frac{f'(z)}{f(z) - f(z_1)} dz = \frac{1}{2\pi \mathbf{i}} \int\limits_{|z|=\rho} d \operatorname{Log}(f(z) - f(z_1)) \xrightarrow{w=f(z)} \frac{1}{2\pi} \Delta_{\gamma_{\rho}} \operatorname{Arg}(w - f(z_1)) = 1,$$

与前一式矛盾. 因此  $\gamma_{\rho}$  自交, 即存在不同的两点  $\zeta_1, \zeta_2 \in \partial \mathbb{B}(0, \rho)$ , 使得  $f(\zeta_1) = f(\zeta_2)$ . 由习题 4.5.20 即得  $|f(\zeta_1)| \leq \rho^2$ . 而由习题 4.5.21,

$$|\zeta_1| \frac{a - |\zeta_1|}{1 - a|\zeta_1|} \leqslant |f(\zeta_1)| \implies \rho \cdot \frac{a - \rho}{1 - a\rho} \leqslant |f(\zeta_1)| \leqslant \rho^2 \implies \rho \geqslant \frac{1 - \sqrt{1 - a^2}}{a} = \frac{a}{1 + \sqrt{1 - a^2}}.$$

故 
$$f$$
 在  $\mathbb{B}\left(0, \frac{a}{1+\sqrt{1-a^2}}\right)$  上双全纯.

**补充题 1** 求分式线性变换  $T \in \operatorname{Aut}(\mathbb{D})$ , 使得  $T(1) = e^{\frac{5\pi i}{4}}$  且  $T(a) = e^{\frac{\pi i}{4}}$ , 其中 |a| = 1.

解答 注意到  $e^{\frac{5\pi i}{4}}$  与  $e^{\frac{\pi i}{4}}$  为对径点, 故先求分式线性变换  $w\in \operatorname{Aut}(\mathbb{D})$  使得 w(1)=1,w(-1)=a. 设

 $w(z) = e^{i\theta} \frac{z - z_0}{1 - \overline{z_0}z}$ , 其中  $|z_0| < 1, \theta \in \mathbb{R}$  待定. 我们有

$$\begin{cases} e^{i\theta} \frac{1-z_0}{1-\overline{z_0}} = 1, \\ e^{i\theta} \frac{-1-z_0}{1+\overline{z_0}} = a \end{cases} \implies \overline{z_0} = 1 - e^{i\theta} (1-z_0) \stackrel{\text{inft}}{\Longrightarrow} z_0 = \frac{a-1}{a+1} - \frac{2a}{a+1} e^{-i\theta} \\ \stackrel{\text{inft}}{\Longrightarrow} e^{i\theta} = \frac{a+1}{\overline{a}+1} \stackrel{\text{inft}}{\Longrightarrow} z_0 = \frac{a-3}{a+1}. \end{cases}$$

由  $w^{-1}: 1 \mapsto 1, a \mapsto -1$  知

$$T(z) = e^{\frac{5\pi i}{4}} w^{-1}(z) = e^{\frac{5\pi i}{4}} \cdot \frac{z + e^{i\theta} z_0}{e^{i\theta} + \overline{z_0} z} = e^{\frac{5\pi i}{4}} \cdot \frac{(\bar{a} + 1)z + (a - 3)}{(\bar{a} - 3)z + (a + 1)}.$$

**补充题 2** 对 t>0 定义  $\vartheta(t)=\sum_{n=-\infty}^{\infty}\mathrm{e}^{-\pi n^2t},$  证明:  $\vartheta(t)=t^{-\frac{1}{2}}\vartheta\left(\frac{1}{t}\right).$ 

证明  $\Rightarrow f(z) = e^{-\pi z^2 t}$ ,则

$$\begin{split} \hat{f}(\xi) &= \int_{\mathbb{R}} \mathrm{e}^{-\pi x^2 t} \mathrm{e}^{-2\pi \mathrm{i} x \xi} \, \mathrm{d} x = \mathrm{e}^{-\frac{\pi \xi^2}{t}} \int_{\mathbb{R}} \mathrm{e}^{-\pi t \left(x + \frac{\mathrm{i} \xi}{t}\right)^2} \, \mathrm{d} x \\ &= \mathrm{e}^{-\frac{\pi \xi^2}{t}} \int_{\mathbb{R}} \mathrm{e}^{-\pi t x^2} \, \mathrm{d} x \stackrel{t>0}{=\!=\!=} 2 \mathrm{e}^{-\frac{\pi \xi^2}{t}} \cdot \frac{1}{2\sqrt{t}} = \frac{1}{\sqrt{t}} \mathrm{e}^{-\frac{\pi \xi^2}{t}}. \end{split}$$

由于  $f \in \mathfrak{F}$ , 由 Poisson 求和公式得

$$\vartheta(t) = \sum_{n = -\infty}^{\infty} f(n) = \sum_{n = -\infty}^{\infty} \hat{f}(n) = \frac{1}{\sqrt{t}} \sum_{n = -\infty}^{\infty} e^{-\frac{\pi n^2}{t}} = t^{-\frac{1}{2}} \vartheta\left(\frac{1}{t}\right).$$

**补充题 3** 设  $t>0, a\in\mathbb{R}$ . 证明:  $\sum_{n=-\infty}^{\infty}\frac{\mathrm{e}^{-2\pi\mathrm{i}an}}{\cosh\left(\frac{\pi n}{t}\right)}=\sum_{n=-\infty}^{\infty}\frac{t}{\cosh(\pi(n+a)t)}$ 

证明 由于  $\frac{1}{\cosh \pi x}$  是 Fourier 变换的不动点,

$$\int_{\mathbb{R}} \frac{e^{-2\pi i x \xi}}{\cosh \pi x} \, \mathrm{d}x = \frac{1}{\cosh \pi \xi},$$

由此可知  $f(z) = \frac{\mathrm{e}^{-2\pi\mathrm{i}az}}{\mathrm{cosh}\left(\frac{\pi z}{t}\right)}$  的 Fourier 变换为

$$\hat{f}(\xi) = \int_{\mathbb{R}} \frac{\mathrm{e}^{-2\pi\mathrm{i}x(a+\xi)}}{\cosh(\frac{\pi x}{\xi})} \, \mathrm{d}x \xrightarrow{\underline{x=ty}} t \int_{\mathbb{R}} \frac{\mathrm{e}^{-2\pi\mathrm{i}y[t(a+\xi)]}}{\cosh(\pi y)} \, \mathrm{d}y = \frac{t}{\cosh(\pi(\xi+a)t)}.$$

由

$$|f(x)| = \left| \frac{e^{-2\pi i ax}}{\cosh\left(\frac{\pi x}{t}\right)} \right| = \frac{2}{e^{\frac{\pi x}{t}} + e^{-\frac{\pi x}{t}}} \leqslant 2e^{-\frac{\pi |x|}{t}}$$

可见  $f \in \mathfrak{F}$ , 故由 Poisson 求和公式得

$$\sum_{n=-\infty}^{\infty} \frac{\mathrm{e}^{-2\pi\mathrm{i}an}}{\cosh\left(\frac{\pi n}{t}\right)} = \sum_{n=-\infty}^{\infty} \frac{t}{\cosh(\pi(n+a)t)}.$$

**补充题 4** 补充用 Phragmén-Lindelöf 定理实现 Paley-Wiener 定理证明中 Step 3 的细节:

$$\begin{cases} |f(x)| \leqslant 1, \\ |f(z)| \leqslant e^{2\pi M|z|} \end{cases} \implies |f(z)| \leqslant e^{2\pi M|y|}.$$

**证明** 通过乘恰当的旋转因子可知,Phragmén-Lindelöf 定理中的角状区域可换为第一象限. 令  $F(z) = f(z)e^{2\pi i M z}$ ,注意到 F(z) 在第一象限的边界上有上界 1:

$$|F(x)| = |f(x)| \le 1, \quad \forall x \in \mathbb{R}_+,$$
  
 $|F(iy)| = |f(iy)|e^{-2\pi My} \le e^{2\pi M|y|}e^{-2\pi My} = 1, \quad \forall y \in \mathbb{R}_+,$ 

又  $|F(z)| = |f(z)| |\mathbf{e}^{2\pi \mathrm{i} M z}| \le \mathbf{e}^{4\pi M |z|}$ ,由 Phragmén-Lindelöf 定理知,在第一象限中有  $|F(z)| \le 1$ ,即  $|f(z)| \le |\mathbf{e}^{-2\pi \mathrm{i} M z}| = \left|\mathbf{e}^{-2\pi \mathrm{i} M (x+\mathrm{i} y)}\right| = \mathbf{e}^{2\pi M y}$ . 对余下三个象限类似讨论可得结论成立.

**Stein 4.4.1** Suppose f is continuous and of moderate decrease, and  $\hat{f}(\xi) = 0$  for all  $\xi \in \mathbb{R}$ . Show that f = 0 by completing the following outline:

(1) For each fixed real number t consider the two functions

$$A(z) = \int_{-\infty}^t f(x) \mathrm{e}^{-2\pi \mathrm{i} z(x-t)} \, \mathrm{d}x \quad \text{and} \quad B(z) = -\int_t^\infty f(x) \mathrm{e}^{-2\pi \mathrm{i} z(x-t)} \, \mathrm{d}x.$$

Show that  $A(\xi) = B(\xi)$  for all  $\xi \in \mathbb{R}$ .

- (2) Prove that the function F equal to A in the closed upper half-plane, and B in the lower half-plane, is entire and bounded, thus constant. In fact, show that F = 0.
- (3) Deduce that

$$\int_{-\infty}^{t} f(x) \, \mathrm{d}x = 0,$$

for all t, and conclude that f = 0.

**证明** (1) For all  $\xi \in \mathbb{R}$ , we have

$$A(\xi) - B(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i \xi(x-t)} dx = e^{2\pi i \xi t} \hat{f}(\xi) = 0.$$

(2) The function F is entire by the symmetry principle. Since f is of moderate decrease, we have

$$|A(z)| \leqslant \int_{-\infty}^{t} |f(x)| \mathrm{e}^{2\pi \operatorname{Im}(z)(x-t)} \, \mathrm{d}x \leqslant \int_{-\infty}^{t} \frac{C}{1+x^2} \, \mathrm{d}x \leqslant \pi C \quad \text{whenever } \operatorname{Im}(z) \geqslant 0,$$

and similarly

$$|B(z)| \leqslant \int_t^\infty |f(x)| \mathrm{e}^{2\pi \operatorname{Im}(z)(x-t)} \, \mathrm{d}x \leqslant \int_t^\infty \frac{C}{1+x^2} \, \mathrm{d}x \leqslant \pi C \quad \text{whenever } \operatorname{Im}(z) < 0.$$

Thus F is a bounded entire function, which must be constant by Liouville's theorem. Now, take z = is for  $s \ge 0$  and note that

$$A(is) = \int_{-\infty}^{t} f(x)e^{2\pi s(x-t)} dx \xrightarrow{s \to \infty} 0$$

by Lebesgue's dominated convergence theorem. Therefore F=0.

(3) By (2), 
$$F(0) = \int_{-\infty}^{t} f(x) dx = 0$$
 for all  $t \in \mathbb{R}$ , which implies that  $f = 0$ .

**Stein 4.4.3** Show, by contour integration, that if a > 0 and  $\xi \in \mathbb{R}$  then

$$\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{a}{a^2+x^2}\mathrm{e}^{-2\pi\mathrm{i}x\xi}\,\mathrm{d}x=\mathrm{e}^{-2\pi a|\xi|},$$

and check that

$$\int_{-\infty}^{\infty} \mathrm{e}^{-2\pi a |\xi|} \mathrm{e}^{2\pi \mathrm{i} \xi x} \, \mathrm{d} \xi = \frac{1}{\pi} \frac{a}{a^2 + x^2}.$$

**Proof** Let  $f(z) = \frac{a}{a^2 + z^2} e^{-2\pi i z \xi}$ .

(1) If 
$$\xi = 0$$
 then LHS =  $\frac{1}{\pi} \int_{\mathbb{R}} \frac{a}{a^2 + x^2} dx = 1 = \text{RHS}.$ 

(2) For  $\xi$  < 0, choose upper semicircle contour, from the residue formula we get



$$\int\limits_{\gamma_1} f(z) \,\mathrm{d}z + \int\limits_{\gamma_2} f(z) \,\mathrm{d}z = 2\pi \mathrm{i} \operatorname{Res}(f, a\mathrm{i}) = 2\pi \mathrm{i} \lim_{z \to a\mathrm{i}} \frac{a}{z + a\mathrm{i}} \mathrm{e}^{-2\pi \mathrm{i} z \xi} = \pi \mathrm{e}^{-2\pi a |\xi|}.$$

Since when  $R \to +\infty$ ,

$$\left| \int_{\gamma_2} f(z) \, \mathrm{d}z \right| \leqslant \int_0^{\pi} \left| \frac{a}{a^2 + R^2 \mathrm{e}^{2\mathrm{i}\theta}} \mathrm{e}^{2\pi R\xi \sin \theta} \right| \mathrm{d}\theta \leqslant \frac{\pi a}{R^2 - a^2} \to 0,$$

it follows that

$$\int_{\mathbb{R}} \frac{a}{a^2 + x^2} e^{-2\pi i x \xi} dx = \pi e^{-2\pi a |\xi|}.$$

(3) For  $\xi > 0$ , choose lower semicircle contour, like in (2) we get



$$\int\limits_{\gamma_1} f(z) \, \mathrm{d}z + \int\limits_{\gamma_2} f(z) \, \mathrm{d}z = 2\pi \mathrm{i} \, \mathrm{Res}(f, -a\mathrm{i}) = 2\pi \mathrm{i} \lim_{z \to -a\mathrm{i}} \frac{a}{z - a\mathrm{i}} \mathrm{e}^{-2\pi \mathrm{i} z \xi} = -\pi \mathrm{e}^{-2\pi a |\xi|}.$$

When  $R \to +\infty$ ,

$$\left| \int_{\gamma_2} f(z) \, \mathrm{d}z \right| \leqslant \int_{-\pi}^0 \left| \frac{a}{a^2 + R^2 \mathrm{e}^{2\mathrm{i}\theta}} \mathrm{e}^{2\pi R\xi \sin \theta} \right| \mathrm{d}\theta \leqslant \frac{\pi a}{R^2 - a^2} \to 0,$$

hence

$$\int_{\mathbb{D}} \frac{a}{a^2 + x^2} \, \mathrm{d}x = -\left(-\pi e^{-2\pi a|\xi|}\right) = \pi e^{-2\pi a|\xi|}.$$

For the second part of the exercise, notice  $f \in \mathfrak{F}$ , so Fourier inversion implies the result.

**Stein 4.4.7** The Poisson summation formula applied to specific examples often provides interesting identities.

(1) Let  $\tau$  be fixed with  $\text{Im}(\tau) > 0$ . Apply the Poisson summation formula to

$$f(z) = (\tau + z)^{-k},$$

where k is an integer  $\geq 2$ , to obtain

$$\sum_{n=-\infty}^{\infty} \frac{1}{(\tau+n)^k} = \frac{(-2\pi \mathrm{i})^k}{(k-1)!} \sum_{m=1}^{\infty} m^{k-1} \mathrm{e}^{2\pi \mathrm{i} m \tau}.$$

(2) Set k=2 in the above formula to show that if  $\text{Im}(\tau)>0$ , then

$$\sum_{n=-\infty}^{\infty} \frac{1}{(\tau+n)^2} = \frac{\pi^2}{\sin^2(\pi\tau)}.$$

(3) Can one conclude that the above formula holds true whenever  $\tau$  is any complex number that is not an integer?

**Proof** (1) ① For  $\xi \leq 0$ , choose upper semicircle contour.



Since  $(\tau + z)^{-k} e^{-2\pi i z \xi}$  is holomorphic in the upper half-plane, we have

$$\int_{\gamma_1} (\tau + z)^{-k} e^{-2\pi i z \xi} dz + \int_{\gamma_2} (\tau + z)^{-k} e^{-2\pi i z \xi} dz = 0.$$

When  $R \to +\infty$ ,

$$\left| \int_{\Omega} (\tau + z)^{-k} \mathrm{e}^{-2\pi \mathrm{i} z \xi} \, \mathrm{d}z \right| = \left| \int_{0}^{\pi} \frac{\mathrm{e}^{-2\pi \mathrm{i} \xi R \mathrm{e}^{\mathrm{i} \theta}} R \mathrm{i}}{(\tau + R \mathrm{e}^{\mathrm{i} \theta})^{k}} \, \mathrm{d}\theta \right| \leqslant \int_{0}^{\pi} \frac{R \left| \mathrm{e}^{-2\pi \mathrm{i} \xi R \mathrm{e}^{\mathrm{i} \theta}} \right|}{(R - |\tau|)^{k}} \, \mathrm{d}\theta$$

$$\leqslant \frac{\pi R^2 \mathrm{e}^{2\pi \xi R \sin \theta}}{(R - |\tau|)^k} \stackrel{\xi \leqslant 0}{\leqslant} \frac{\pi R^2}{(R - |\tau|)^k} \xrightarrow{k \geqslant 2} 0,$$

hence when  $\xi \leq 0$  we get

$$\hat{f}(\xi) = \int_{\mathbb{R}} (\tau + x)^{-k} e^{-2\pi i x \xi} dx = 0.$$

② For  $\xi > 0$ , choose lower semicircle contour.



The residue at  $-\tau$  is

$$\operatorname{Res}((\tau+z)^{-k}e^{-2\pi iz\xi},-\tau) = \frac{1}{(k-1)!} \left(e^{-2\pi iz\xi}\right)^{(k-1)} \bigg|_{z=-\tau} = \frac{(-2\pi i\xi)^{k-1}}{(k-1)!} e^{2\pi i\tau\xi},$$

thus

$$\int\limits_{\gamma_1} (\tau+z)^{-k} \mathrm{e}^{-2\pi \mathrm{i} z \xi} \, \mathrm{d}z + \int\limits_{\gamma_2} (\tau+z)^{-k} \mathrm{e}^{-2\pi \mathrm{i} z \xi} \, \mathrm{d}z = -\frac{(-2\pi \mathrm{i})^k \xi^{k-1}}{(k-1)!} \mathrm{e}^{2\pi \mathrm{i} \tau \xi}.$$

When  $R \to +\infty$ ,

$$\left| \int_{\gamma_2} (\tau + z)^{-k} e^{-2\pi i z \xi} dz \right| = \left| \int_{-\pi}^0 \frac{e^{-2\pi i \xi R e^{i\theta}} Ri}{(\tau + R e^{i\theta})^k} d\theta \right| \leqslant \int_{-\pi}^0 \frac{R \left| e^{-2\pi i \xi R e^{i\theta}} \right|}{(R - |\tau|)^k} d\theta$$
$$\leqslant \frac{\pi R^2 e^{2\pi \xi R \sin \theta}}{(R - |\tau|)^k} \leqslant \frac{\pi R^2}{(R - |\tau|)^k} \xrightarrow{k \geqslant 2} 0,$$

hence when  $\xi > 0$  we get

$$\hat{f}(\xi) = \int_{\mathbb{R}} (\tau + x)^{-k} e^{-2\pi i x \xi} dx = \frac{(-2\pi i)^k \xi^{k-1}}{(k-1)!} e^{2\pi i \tau \xi}.$$

Since  $f \in \mathfrak{F}$ , by Poisson summation formula we have

$$\sum_{n=-\infty}^{\infty} \frac{1}{(\tau+n)^k} = \frac{(-2\pi \mathrm{i})^k}{(k-1)!} \sum_{m=1}^{\infty} m^{k-1} \mathrm{e}^{2\pi \mathrm{i} m \tau}.$$

(2) Set k = 2 in the above formula, we get

$$\sum_{n=-\infty}^{\infty}\frac{1}{(\tau+n)^2}=-4\pi^2\sum_{m=1}^{\infty}m\mathrm{e}^{2\pi\mathrm{i}m\tau}.$$

To finish the proof, notice that when  ${\rm Im}(\tau)>0$  we have  $\left|{\rm e}^{2\pi {\rm i}\tau}\right|={\rm e}^{-2\pi\,{\rm Im}(\tau)}<1$ , hence

$$\begin{split} \sum_{m=1}^{\infty} m \mathrm{e}^{2\pi \mathrm{i} m \tau} &= \frac{1}{2\pi \mathrm{i}} \sum_{m=1}^{\infty} \frac{\partial}{\partial \tau} \left( \mathrm{e}^{2\pi \mathrm{i} m \tau} \right) = \frac{1}{2\pi \mathrm{i}} \frac{\partial}{\partial \tau} \left( \sum_{m=1}^{\infty} \mathrm{e}^{2\pi \mathrm{i} m \tau} \right) = \frac{1}{2\pi \mathrm{i}} \frac{\partial}{\partial \tau} \left( \frac{\mathrm{e}^{2\pi \mathrm{i} \tau}}{1 - \mathrm{e}^{2\pi \mathrm{i} \tau}} \right) \\ &= \frac{\mathrm{e}^{2\pi \mathrm{i} \tau}}{\left( 1 - \mathrm{e}^{2\pi \mathrm{i} \tau} \right)^2} = \frac{1}{\left( \mathrm{e}^{\pi \mathrm{i} \tau} - \mathrm{e}^{-\pi \mathrm{i} \tau} \right)^2} = \frac{1}{-4 \sin^2(\pi \tau)}. \end{split}$$

(3) For the case that  $\operatorname{Im}(\tau) < 0$ , by replacing  $\tau$  with  $-\tau$ , we see the formula in (2) still holds. When  $\tau$  is a real number that is not an integer, the same formula holds by the isolating property of the zeros of a holomorphic function.

## **Stein 4.4.9** Here are further results similar to the Phragmén-Lindelöf theorem.

(1) Let F be a holomorphic function in the right half-plane that extends continuously to the boundary, that is, the imaginary axis. Suppose that  $|F(iy)| \le 1$  for all  $y \in \mathbb{R}$ , and

$$|F(z)| \leqslant C e^{c|z|^{\gamma}}$$

for some c, C > 0 and  $\gamma < 1$ . Prove that  $|F(z)| \le 1$  for all z in the right half-plane.

(2) More generally, let S be a sector whose vertex is the origin, and forming an angle of  $\frac{\pi}{\beta}$ . Let F be a holomorphic function in S that is continuous on the closure of S, so that  $|F(z)| \leq 1$  on the boundary of S and

$$|F(z)| \leqslant C e^{c|z|^{\alpha}}$$
 for all  $z \in S$ 

for some c, C > 0 and  $0 < \alpha < \beta$ . Prove that  $|F(z)| \leqslant 1$  for all  $z \in S$ .

**Proof** We prove (2) directly. Let  $F_{\varepsilon}(z) = F(z)e^{-\varepsilon z^r}$ , where  $r \in (\alpha, \beta) \cap \mathbb{Q}$  and  $\varepsilon > 0$ . Then

$$|F_{\varepsilon}(z)| = |F(z)| \mathrm{e}^{-\varepsilon |z|^r \cos(r\arg z)} \leqslant C \mathrm{e}^{c|z|^{\alpha} - \varepsilon |z|^r \cos(r\arg z)}.$$

Without loss of generality, we consider the sector

$$S = \left\{ z \in \mathbb{C} : -\frac{\pi}{2\beta} < \arg z < \frac{\pi}{2\beta} \right\},\,$$

then  $r \arg z \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$  and  $\cos(r \arg z) > 0$ . Hence  $|F_{\varepsilon}(z)| \to 0$  as  $|z| \to \infty$ , and we can conclude that  $|F_{\varepsilon}(z)|$  achieves its maximum on  $\overline{S}$  at some point  $z_0 \neq \infty$ . Using the maximum modulus principle on some region with compact closure that contains  $z_0$ , we see that  $z_0$  must lie on the boundary of S. Thus  $|F_{\varepsilon}(z)| \leq |F_{\varepsilon}(z_0)| \leq 1$ , and by letting  $\varepsilon \to 0$  we get  $|F(z)| \leq 1$  for all  $z \in S$ .

**Stein 4.4.11** One can give a neater formulation of the result in Exercise 10 by proving the following fact.

Suppose f(z) is an entire function of strict order 2, that is,

$$f(z) = O\left(e^{c_1|z|^2}\right)$$

for some  $c_1 > 0$ . Suppose also that for x real,

$$f(x) = O\left(e^{-c_2|x|^2}\right)$$

林晓烁 2024 年春季

for some  $c_2 > 0$ . Then

$$|f(x+iy)| = O\left(e^{-ax^2 + by^2}\right)$$

for some a, b > 0. The converse is obviously true.

**Proof** For z = x + iy, if  $x^2 \le y^2$ , then

$$|c_1|z|^2 = c_1(x^2 + y^2) \le 2c_1y^2 \le 3c_1y^2 - c_1x^2$$

and so we already have

$$|f(z)| = O(e^{c_1|z|^2}) = O(e^{-c_1x^2 + 3c_1y^2}),$$

which is the desired result. So we may assume  $x^2 > y^2$ . By symmetry, we can only focus on the sector  $S = \{z \in \mathbb{C} : 0 < \arg z < \frac{\pi}{4}\}$ . Let

$$g_{\varepsilon}(z) = f(z)e^{[c_2 - \varepsilon + i(c_1 + \varepsilon)]z^2}$$
 for  $\varepsilon > 0$ ,

then  $|g_{\varepsilon}(z)| \leq e^{c|z|^2}$  in S for some c > 0. And on the boundary of S, we have

$$|g_{\varepsilon}(x)| = |f(x)| e^{(c_2 - \varepsilon)x^2} \le C_2 e^{-c_2 x^2} e^{(c_2 - \varepsilon)x^2} = C_2 e^{-\varepsilon x^2}, \quad x \geqslant 0,$$

$$|g_{\varepsilon}(Re^{i\frac{\pi}{4}})| = |f(x)| e^{-(c_1 + \varepsilon)R^2} \le C_1 e^{c_1 R^2} e^{-(c_1 + \varepsilon)R^2} = C_1 e^{-\varepsilon R^2}, \quad R \geqslant 0.$$

So  $|g_{\varepsilon}(z)| \leqslant C \mathrm{e}^{-\varepsilon |z|^2}$  on the boundary of S for some C>0. Now we can apply Exercise 4.4.9 (2), where we take  $\alpha=2$  and  $\beta=4$ , to the function  $g_{\varepsilon}(z)\mathrm{e}^{\varepsilon |z|^2}$  (recall  $\left|g_{\varepsilon}(z)\mathrm{e}^{\varepsilon |z|^2}\right| \leqslant \mathrm{e}^{(c+\varepsilon)|z|^2}$ ), and conclude that

$$\left|g_{\varepsilon}(z)e^{\varepsilon|z|^2}\right| \leqslant C \quad \text{for all } z \in S.$$

Then let  $\varepsilon \to 0$  we get

$$|f(z)| \cdot |e^{(c_2 + ic_1)(x + iy)^2}| = |f(z)|e^{c_2(x^2 - y^2) - 2c_1 xy} \le C \quad \text{for } x + iy \in S.$$

Hence

$$|f(x)| \leqslant C e^{-c_2(x^2 - y^2) + 2c_1 xy} \stackrel{\lambda > 0}{\leqslant} C e^{-c_2(x^2 - y^2) + c_1 \lambda x^2 + \frac{c_1}{\lambda} y^2} = C e^{-(c_2 - c_1 \lambda)x^2 + \left(c_2 + \frac{c_1}{\lambda}\right)y^2}.$$

choosing  $\lambda < \frac{c_2}{c_1}$  we complete the proof with  $a = c_2 - c_1 \lambda$  and  $b = c_2 + \frac{c_1}{\lambda}$ .

**Stein 4.4.12** The principle that a function and its Fourier transform cannot both be too small at infinity is illustrated by the following theorem of Hardy.

If f is a function on  $\mathbb{R}$  that satisfies

$$f(x) = O\left(e^{-\pi x^2}\right)$$
 and  $\hat{f}(\xi) = O\left(e^{-\pi \xi^2}\right)$ ,

then f is a constant multiple of  $e^{-\pi x^2}$ . As a result, if  $f(x) = O\left(e^{-\pi Ax^2}\right)$ , and  $\hat{f}(\xi) = O\left(e^{-\pi B\xi^2}\right)$ , with AB > 1 and A, B > 0, then f is identically zero.

(1) If f is even, show that  $\hat{f}$  extends to an even entire function. Moreover, if  $g(z) = \hat{f}(z^{\frac{1}{2}})$ , then g satisfies

$$|g(x)| \leqslant c e^{-\pi x}$$
 and  $|g(z)| \leqslant c e^{\pi R \sin^2 \frac{\theta}{2}} \leqslant c e^{\pi |z|}$ 

when  $x \in \mathbb{R}$  and  $z = Re^{i\theta}$  with  $R \geqslant 0$  and  $\theta \in \mathbb{R}$ .

(2) Apply the Phragmén-Lindelöf principle to the function

$$F(z) = g(z) \mathrm{e}^{\gamma z}$$
 where  $\gamma = \mathrm{i} \pi \frac{\mathrm{e}^{-\frac{\mathrm{i} \pi}{2\beta}}}{\sin \frac{\pi}{2\beta}}$ 

and the sector  $0 \leqslant \theta \leqslant \frac{\pi}{\beta} < \pi$ , and let  $\beta \to 1$  to deduce that  $\mathrm{e}^{\pi z} g(z)$  is bounded in the closed upper half-plane. The same result holds in the lower half-plane, so by Liouville's theorem  $\mathrm{e}^{\pi z} g(z)$  is constant, as desired.

(3) If f is odd, then  $\hat{f}(0)=0$ , and apply the above argument to  $\frac{\hat{f}(z)}{z}$  to deduce that  $f=\hat{f}=0$ . Finally, write an arbitrary f as an appropriate sum of an even function and an odd function.

**Proof** (1) Since  $\hat{f}(\xi) = O(e^{-\pi \xi^2})$ ,  $\hat{f}$  can be extended to an entire function by Theorem 3.1. Moreover, when f is even,

$$\hat{f}(-\xi) = \int_{\mathbb{R}} f(x) e^{2\pi i x \xi} dx = \int_{\mathbb{R}} f(-x) e^{-2\pi i x \xi} dx = \hat{f}(\xi)$$

for all  $\xi \in \mathbb{R}$ , which implies that  $\hat{f}(z) - \hat{f}(-z)$  is identically zero in the whole complex plane. So  $\hat{f}$  extends to an even entire function. For  $g(z) = \hat{f}(z^{\frac{1}{2}})$ , we have

$$|g(x)| = \left|\hat{f}\left(x^{\frac{1}{2}}\right)\right| \leqslant ce^{-\pi x}$$

and

$$\begin{split} \left| \hat{f} \big( R \mathrm{e}^{\mathrm{i} \theta} \big) \right| &= \left| \int_{\mathbb{R}} f(x) \mathrm{e}^{-2\pi \mathrm{i} x R (\cos \theta + \mathrm{i} \sin \theta)} \, \mathrm{d} x \right| \leqslant \int_{\mathbb{R}} |f(x)| \mathrm{e}^{2\pi x R \sin \theta} \, \mathrm{d} x \\ &\leqslant \int_{\mathbb{R}} c \mathrm{e}^{-\pi x^2 + 2\pi x R \sin \theta} \, \mathrm{d} x = c \mathrm{e}^{\pi R^2 \sin^2 \theta} \int_{\mathbb{R}} \mathrm{e}^{-\pi (x - R \sin \theta)^2} \, \mathrm{d} x \\ &= c \mathrm{e}^{\pi R^2 \sin^2 \theta}. \end{split}$$

and so

$$|g(Re^{i\theta})| = |f(R^{\frac{1}{2}}e^{i(\frac{\theta}{2} + k\pi)})| \le ce^{\pi R \sin^2 \frac{\theta}{2}} \le ce^{\pi R}.$$

(2) First we show that

$$\begin{split} \left| F \big( R \mathrm{e}^{\mathrm{i} \theta} \big) \big| &= \left| g \big( R \mathrm{e}^{\mathrm{i} \theta} \big) \right| \cdot \left| \mathrm{e}^{\mathrm{i} \frac{\pi R}{\sin \frac{\pi}{2\beta}} \mathrm{e}^{\mathrm{i} \left( \theta - \frac{\pi}{2\beta} \right)}} \right| = \left| g \big( R \mathrm{e}^{\mathrm{i} \theta} \big) \right| \mathrm{e}^{-\frac{\pi R}{\sin \frac{\pi}{2\beta}} \sin \left( \theta - \frac{\pi}{2\beta} \right)} \\ &\leqslant c \mathrm{e}^{\pi R (1 - \varepsilon_{\theta})}, \quad \text{where } \varepsilon_{\theta} = \frac{\sin \left( \theta - \frac{\pi}{2\beta} \right)}{\sin \frac{\pi}{2\beta}}. \end{split}$$

For  $\beta>1$ , consider the sector  $S=\left\{z\in\mathbb{C}:0<\arg z<\frac{\pi}{\beta}\right\}$ , on its boundary we have

$$|F(x)| = |g(x)| \cdot \left| e^{i\frac{\pi x}{\sin\frac{\pi}{2\beta}} \left(\cos\frac{\pi}{2\beta} - i\sin\frac{\pi}{2\beta}\right)} \right| = |g(x)| e^{\pi x} \leqslant c e^{-\pi x} \cdot e^{\pi x} = c, \quad \forall x \geqslant 0,$$
$$\left| F\left(Re^{i\frac{\pi}{\beta}}\right) \right| \leqslant c e^{\pi R(1-1)} = c, \quad \forall R \geqslant 0.$$

Hence  $|F(z)| \le 1$  on the boundary of S. Note that  $|\varepsilon_{\theta}| \le 1$  for  $0 \le \theta \le \frac{\pi}{\beta}$ , so

$$|F(Re^{i\theta})| \leqslant ce^{2\pi R}, \quad 0 \leqslant \theta \leqslant \frac{\pi}{\beta}.$$

Since  $\beta>1$ , we can apply result in Exercise 4.4.9 (2) to  $\frac{F(z)}{c}$  to get  $|F(z)|\leqslant c$  for all z in S. Let  $\beta\to 1$ , then  $\gamma\to\pi$  and we conclude that  $|g(z)\mathrm{e}^{\pi z}|\leqslant c$  for all z in the upper half-plane. The same result holds in the lower half-plane, so by Liouville's theorem  $\mathrm{e}^{\pi z}g(z)$  is constant.

(3) If f is odd, then  $\hat{f}(0)=0$ ,  $\hat{f}$  extends to an odd entire function by the same argument in (1), and  $\frac{\hat{f}(z)}{z}$  is even. Let  $h(z)=\hat{f}(z^{\frac{1}{2}})z^{-\frac{1}{2}}$  and we get the same bound as in (1), then follow the same argument in (2) to conclude that h(z) is constant for all  $z\in\mathbb{C}$ . Hence from  $\hat{f}(0)=0$  we see  $\hat{f}\equiv 0$  and then  $f\equiv 0$  by Fourier inversion.

Finally, for an arbitrary f, by decomposing f into even and odd parts, we see that f is a constant multiple of  $e^{-\pi x^2}$ .

**Stein 4.5.3** In this problem, we investigate the behavior of certain bounded holomorphic functions in an infinite strip. The particular result described here is sometimes called the three-lines lemma.

- (1) Suppose F(z) is holomorphic and bounded in the strip 0 < Im(z) < 1 and continuous on its closure. If  $|F(z)| \le 1$  on the boundary lines, then  $|F(z)| \le 1$  throughout the strip.
- (2) For the more general F, let  $\sup_{x\in\mathbb{R}}|F(x)|=M_0$  and  $\sup_{x\in\mathbb{R}}|F(x+\mathrm{i})|=M_1$ . Then,

$$\sup_{x\in\mathbb{R}}|F(x+\mathrm{i}y)|\leqslant M_0^{1-y}M_1^y,\quad\text{if }0\leqslant y\leqslant 1.$$

(3) As a consequence, prove that  $\log \sup_{x \in \mathbb{R}} |F(x + iy)|$  is a convex function of y when  $0 \le y \le 1$ .

**Proof** (1) Let  $F_{\varepsilon}(z) = F(z)e^{-\varepsilon z^2}$  for some  $\varepsilon > 0$ , then

$$|F_{\varepsilon}(z)| = |F(z)|e^{-\varepsilon(x^2-y^2)} \to 0 \quad \text{as } x \to \infty.$$

Hence  $|F_{\varepsilon}(z)|$  achieves its maximum in the strip at some point  $z_0 \neq \infty$ . Using the maximum modulus principle on some region with compact closure that contains  $z_0$ , we see that  $z_0$  must lie on the boundary of the strip. Thus  $|F_{\varepsilon}(z)| \leq |F_{\varepsilon}(z_0)| \leq 1$ , and by letting  $\varepsilon \to 0$  we get  $|F(z)| \leq 1$  throughout strip.

(2) Let  $G(z) = M_0^{-iz-1} M_1^{iz} F(z)$ , then G(z) satisfies the conditions of (1), i.e.

$$\begin{split} |G(x)| &= \left| M_0^{-\mathrm{i}x-1} \right| \cdot \left| M_1^{\mathrm{i}x} \right| \cdot |F(x)| = M_0^{-1} |F(x)| \leqslant 1, \quad \forall x \in \mathbb{R}, \\ |G(x+\mathrm{i})| &= \left| M_0^{-\mathrm{i}(x+\mathrm{i})-1} \right| \cdot \left| M_1^{\mathrm{i}(x+\mathrm{i})} \right| \cdot |F(x+\mathrm{i})| = M_1^{-1} |F(x+\mathrm{i})| \leqslant 1, \quad \forall x \in \mathbb{R}. \end{split}$$

By (1), we have  $|G(z)| \le 1$  throughout the strip, i.e.

$$|G(z)| = \left| M_0^{-\mathrm{i}(x+\mathrm{i}y)-1} \right| \cdot \left| M_1^{\mathrm{i}(x+\mathrm{i}y)} \right| \cdot |F(z)| = M_0^{y-1} M_1^{-y} |F(x+\mathrm{i}y)| \leqslant 1,$$

which implies the desired result.

(3) Set  $M(y) = \sup_{x \in \mathbb{R}} |F(x+\mathrm{i}y)|$  for  $y \in [0,1]$ . For  $0 \leqslant y_1 < y_2 \leqslant 1$ , by scaling we see the result in (2) applies to the strip  $y_1 < \operatorname{Im} z < y_2$ , i.e., for all  $y \in [y_1, y_2]$ ,

$$\log M(y) \leqslant \log \left( M(y_1)^{\frac{y_2-y}{y_2-y_1}} M(y_2)^{\frac{y-y_1}{y_2-y_1}} \right) = \frac{y_2-y}{y_2-y_1} \log M(y_1) + \frac{y-y_1}{y_2-y_1} \log M(y_2),$$

which implies the convexity of  $\log M(y)$ .

**补充题 5** 设  $|w| \le 1$ , 估计使  $|1 - e^w| \le c|w|$  成立的常数 c.

解答 记  $f(w)=\frac{1-\mathrm{e}^w}{w}$ ,由于 0 是可去奇点,因此  $f\in\mathfrak{H}(\mathbb{B}(0,1))$ ,作幂级数展开可得

$$e^{w} - 1 = \sum_{n=1}^{\infty} \frac{w^{n}}{n!} \implies |f(w)| = \left| \sum_{n=0}^{\infty} \frac{w^{n}}{(n+1)!} \right| \le \sum_{n=0}^{\infty} \frac{1}{(n+1)!} = e - 1.$$

因此可取 c = e - 1 (代人 w = 1 可知这是最佳常数).

**Stein 5.6.1** Give another proof of Jensen's formula in the unit disc using the functions (called Blaschke factors)

$$\psi_{\alpha}(z) = \frac{\alpha - z}{1 - \bar{\alpha}z}.$$

**Proof** Let  $\Omega$  be an open set that contains the closure of a disc  $D_R$  and suppose that f is holomorphic in  $\Omega$ ,  $f(0) \neq 0$ , and f vanishes nowhere on the circle  $C_R$ . Let  $z_1, \dots, z_N$  denote the zeros of f inside the disc (counted with multiplicities), we want to show that

$$\log|f(0)| = \sum_{k=1}^{N} \log\left(\frac{|z_k|}{R}\right) + \frac{1}{2\pi} \int_0^{2\pi} \log\left|f(Re^{i\theta})\right| d\theta.$$

- (1) First, we observe that if  $f_1$  and  $f_2$  are two functions satisfying the hypotheses and the conclusion of the theorem, then so does their product  $f_1f_2$ .
- (2) By setting  $\widetilde{f}(z) = f(Rz)$ , what we want to prove can be reduced to the specific case when R = 1. Note that the function

$$g(z) = \frac{f(z)}{\psi_{z_1}(z)\cdots\psi_{z_N}(z)}$$

initially defined on  $\Omega \setminus \{z_1, \dots, z_N\}$ , is bounded near each  $z_j$ . Therefore each  $z_j$  is a removable singularity, and hence we can write

$$f(z) = \psi_{z_1}(z) \cdots \psi_{z_N}(z)g(z)$$

where g is holomorphic in  $\Omega$  and nowhere vanishing in  $\mathbb{B}(0,1)$ . By (1) above, it suffices to prove Jensen's formula for functions like g that vanish nowhere, and for Blaschke factors.

(3) The case of functions that vanish nowhere follows from the mean value theorem for holomorphic functions. So it remains to show the result for Blaschke factors. We have

$$\log|\psi_{\alpha}(0)| = \log|\alpha| = \log|\alpha| + \frac{1}{2\pi} \int_{0}^{2\pi} \log|\psi_{\alpha}(\mathbf{e}^{\mathbf{i}\theta})| \, \mathrm{d}\theta$$

since  $|\psi_{\alpha}(z)| = 1$  for  $z \in \partial \mathbb{B}(0,1)$ .

**Stein 5.6.3** Show that if  $\tau$  is fixed with  $\text{Im}(\tau) > 0$ , then the Jacobi theta function

$$\Theta(z \mid \tau) = \sum_{n = -\infty}^{\infty} e^{\pi i n^2 \tau} e^{2\pi i n z}$$

is of order 2 as a function of z.

**Proof** We have

$$\begin{split} |\Theta(z\mid\tau)| &\leqslant \sum_{n=-\infty}^{\infty} \left| \mathrm{e}^{\pi \mathrm{i} n^2 \tau} \mathrm{e}^{2\pi \mathrm{i} n z} \right| \leqslant \sum_{n=-\infty}^{\infty} \mathrm{e}^{-\pi n^2 \operatorname{Im}(\tau) + 2\pi n |z|} \\ &= \sum_{n < \frac{4|z|}{\operatorname{Im}(\tau)}} \mathrm{e}^{-\pi n^2 \operatorname{Im}(\tau) + 2\pi n |z|} + \sum_{n \geqslant \frac{4|z|}{\operatorname{Im}(\tau)}} \mathrm{e}^{-\pi n^2 \operatorname{Im}(\tau) + 2\pi n |z|} \\ & 2\pi n |z| \leqslant \frac{8\pi |z|^2}{\operatorname{Im}(\tau)} \text{ when } n < \frac{4|z|}{\operatorname{Im}(\tau)} - n^2 \operatorname{Im}(\tau) + 2n |z| \leqslant -\frac{n^2 \operatorname{Im}(\tau)}{2} \text{ when } n \geqslant \frac{4|z|}{\operatorname{Im}(\tau)} \\ &\leqslant \mathrm{e}^{\frac{8\pi |z|^2}{\operatorname{Im}(\tau)}} \sum_{n < \frac{4|z|}{\operatorname{Im}(\tau)}} \mathrm{e}^{-\pi n^2 \operatorname{Im}(\tau)} + \sum_{n \geqslant \frac{4|z|}{\operatorname{Im}(\tau)}} \mathrm{e}^{-\frac{\pi n^2 \operatorname{Im}(\tau)}{2}} \\ & e^{-x} \leqslant \frac{1}{x+1} \, \mathrm{e}^{\frac{8\pi |z|^2}{\operatorname{Im}(\tau)}} \sum_{n < \frac{4|z|}{\operatorname{Im}(\tau)}} \frac{1}{\pi n^2 \operatorname{Im}(\tau) + 1} + \sum_{n \geqslant \frac{4|z|}{\operatorname{Im}(\tau)}} \frac{1}{\frac{\pi n^2 \operatorname{Im}(\tau)}{2} + 1} \\ &\leqslant C_1 \mathrm{e}^{\frac{8\pi |z|^2}{\operatorname{Im}(\tau)}} + C_2. \end{split}$$

It remains to show that the order is at least 2. We use repeatedly Proposition 1.1 (iii) in Chapter 10, which is about the quasi-periodicity of  $\Theta(z \mid \tau)$ , to see that

$$\Theta(x + m\tau \mid \tau) = e^{-2\pi i mx - \pi i m^2 \tau} \Theta(x \mid \tau).$$

Then take x = 0 to get

$$|\Theta(m\tau \mid \tau)| = e^{\pi m^2 \operatorname{Im}(\tau)} \Theta(0 \mid \tau) = A e^{B|m\tau|^2},$$

which shows that the order of  $\Theta(z \mid \tau)$  is at least 2.

**Stein 5.6.5** Show that if  $\alpha > 1$ , then

$$F_{\alpha}(z) = \int_{-\infty}^{\infty} e^{-|t|^{\alpha}} e^{2\pi i zt} dt$$

is an entire function of growth order  $\frac{\alpha}{\alpha - 1}$ .

**Proof** By Fubini's theorem we have

$$\int\limits_{\gamma} F_{\alpha}(z) \, \mathrm{d}z = \int\limits_{\gamma} \int_{-\infty}^{\infty} \mathrm{e}^{-|t|^{\alpha}} \mathrm{e}^{2\pi \mathrm{i}zt} \, \mathrm{d}t \, \mathrm{d}z = \int_{-\infty}^{\infty} \int\limits_{\gamma} \mathrm{e}^{-|t|^{\alpha}} \mathrm{e}^{2\pi \mathrm{i}zt} \, \mathrm{d}z \, \mathrm{d}t = \int_{-\infty}^{\infty} 0 \, \mathrm{d}t = 0$$

for all closed curves  $\gamma$ , hence from Morera's theorem we see that  $F_{\alpha}(z)$  is an entire function. To approximate the order of  $F_{\alpha}(z)$ , we first set  $A=4\pi$  and observe that

$$\diamond$$
 If  $|t|^{\alpha-1} \leqslant A|z|$ , then

$$-\frac{|t|^{\alpha}}{2} + 2\pi|z||t| \leqslant 2\pi|z||t| \leqslant 2\pi|z|A^{\frac{1}{\alpha-1}}|z|^{\frac{1}{\alpha-1}} = 2\pi A^{\frac{1}{\alpha-1}}|z|^{\frac{\alpha}{\alpha-1}}.$$

林晓烁 2024 年春季

 $\diamond$  If  $|t|^{\alpha-1} > A|z|$ , then

$$-\frac{|t|^{\alpha}}{2} + 2\pi|z||t| \leqslant 2\pi|z||t| = |t|\left(-\frac{|t|^{\alpha-1}}{2} + 2\pi|z|\right) \leqslant |t|\left(-\frac{A|z|}{2} + 2\pi|z|\right) = |t||z|\left(2\pi - \frac{A}{2}\right) = 0.$$

So we can conclude that

$$-\frac{|t|^{\alpha}}{2} + 2\pi|z||t| \leqslant 2\pi|z||t| \leqslant c|z|^{\frac{\alpha}{\alpha-1}}$$
 (5.6.5–1)

for some constant c > 0. Denote  $\rho$  the order of growth of  $F_{\alpha}(z)$ .

(1) We first show that  $\rho \leqslant \frac{\alpha}{\alpha - 1}$ . Using (5.6.5–1) we have

$$\begin{split} |F_{\alpha}(z)| &\leqslant \int_{\mathbb{R}} \mathrm{e}^{-|t|^{\alpha} + 2\pi|z||t|} \, \mathrm{d}t = \int_{\mathbb{R}} \mathrm{e}^{-\frac{|t|^{\alpha}}{2}} \mathrm{e}^{-\frac{|t|^{\alpha}}{2} + 2\pi|z||t|} \, \mathrm{d}t \\ &\leqslant \mathrm{e}^{c|z|^{\frac{\alpha}{\alpha-1}}} \int_{\mathbb{R}} \mathrm{e}^{-\frac{|t|^{\alpha}}{2}} \, \mathrm{d}t = 2\mathrm{e}^{c|z|^{\frac{\alpha}{\alpha-1}}} \int_{0}^{+\infty} \mathrm{e}^{-\frac{t^{\alpha}}{2}} \, \mathrm{d}t \\ &\leqslant 2\mathrm{e}^{c|z|^{\frac{\alpha}{\alpha-1}}} \left(1 + \int_{1}^{+\infty} \mathrm{e}^{-\frac{t}{2}} \, \mathrm{d}t\right) = 2c \left(1 + \mathrm{e}^{-\frac{1}{2}}\right) \mathrm{e}^{c|z|^{\frac{\alpha}{\alpha-1}}}, \end{split}$$

hence  $\rho \leqslant \frac{\alpha}{\alpha - 1}$ .

(2) Next we show that  $\rho \geqslant \frac{\alpha}{\alpha - 1}$ . For simplicity we consider  $G_{\alpha}(z) = F_{\alpha}\left(\frac{z}{2\pi \mathrm{i}}\right) = \int_{\mathbb{R}} \mathrm{e}^{-|t|^{\alpha}} \mathrm{e}^{zt} \, \mathrm{d}t$  and it has the same order of growth as  $F_{\alpha}(z)$ . Suppose to the contrary that  $\rho < \frac{\alpha}{\alpha - 1}$ , and that

$$|G_{\alpha}(z)| \leqslant A e^{B|z|^{\rho}}, \quad \forall z \in \mathbb{C}$$

for some positive constants A and B. For  $R \in \mathbb{R}_{>0}$ , we have

$$G_{\alpha}(R) = \int_{\mathbb{R}} e^{-|t|^{\alpha}} e^{Rt} dt > \int_{0}^{+\infty} e^{-t^{\alpha}} e^{Rt} dt > \int_{0}^{\frac{R^{\frac{1}{\alpha-1}}}{2}} e^{-t^{\alpha}} e^{Rt} dt > e^{-\frac{R^{\rho}}{2^{\alpha}}} \int_{0}^{\frac{R^{\frac{1}{\alpha-1}}}{2}} e^{Rt} dt.$$

Therefore we have

$$G_{\alpha}(R) > e^{-\frac{R^{\frac{\alpha}{\alpha-1}}}{2^{\alpha}}} \frac{1}{R} \left( e^{\frac{R^{\frac{\alpha}{\alpha-1}}}{2}} - 1 \right) = \frac{1}{R} \left( e^{\left(\frac{1}{2} - \frac{1}{2^{\alpha}}\right)R^{\frac{\alpha}{\alpha-1}}} - 1 \right).$$

But we know that

$$G_{\alpha}(R) \leqslant A \mathrm{e}^{BR^{\rho}} \implies \frac{1}{R} \left( \mathrm{e}^{\left(\frac{1}{2} - \frac{1}{2^{\alpha}}\right)R^{\frac{\alpha}{\alpha - 1}}} - 1 \right) < A \mathrm{e}^{BR^{\rho}},$$

which does not hold for large R by our assumption that  $\rho < \frac{\alpha}{\alpha - 1}$ .

Now we conclude that  $F_{\alpha}(z)$  is an entire function of growth order  $\frac{\alpha}{\alpha-1}$ .

**Stein 5.6.7** Establish the following properties of infinite products.

(1) Show that if  $\sum_{n=1}^{\infty} |a_n|^2$  converges, then the product  $\prod_{n=1}^{\infty} (1+a_n)$  converges to a non-zero limit if and only if  $\sum_{n=1}^{\infty} a_n$  converges.

- (2) Find an example of a sequence of complex numbers  $\{a_n\}$  such that  $\sum_{n=1}^{\infty} a_n$  converges but  $\prod_{n=1}^{\infty} (1+a_n)$  diverges.
- (3) Also find an example such that  $\prod_{n=1}^{\infty} (1 + a_n)$  converges and  $\sum_{n=1}^{\infty} a_n$  diverges.

解答 (1) If  $\sum_{n=1}^{\infty} |a_n|^2$  converges, then  $\lim_{n\to\infty} a_n = 0$ , and

$$\lim_{n \to \infty} \frac{a_n - \log(1 + a_n)}{a_n^2} = \frac{1}{2}.$$

By the limit comparison test, the series  $\sum_{n=1}^{\infty} [a_n - \log(1 + a_n)]$  converges. Hence,

 $\prod_{n=1}^{\infty} (1+a_n) \text{ converges to a non-zero limit } \iff \sum_{n=1}^{\infty} \log(1+a_n) \text{ converges } \iff \sum_{n=1}^{\infty} a_n \text{ converges.}$ 

(2) Let  $a_n = \frac{(-1)^n}{\sqrt{n}}$ . Then  $\sum_{n=2}^{\infty} a_n$  converges by Leibniz's test for alternating series. Since

$$\prod_{n=2}^{\infty} (1+a_n) = \prod_{k=1}^{\infty} \left(1 + \frac{1}{\sqrt{2k}}\right) \left(1 - \frac{1}{\sqrt{2k+1}}\right) =: \prod_{k=1}^{\infty} b_k,$$

where  $b_k<\left(1+\frac{1}{\sqrt{2k+1}}\right)\left(1-\frac{1}{\sqrt{2k+1}}\right)=1-\frac{1}{2k+1}$ , we have  $1-b_k>\frac{1}{2k+1}$  and so  $\sum_{k=1}^{\infty}(1-b_k)$  diverges. Note that  $b_k\to 1$ , therefore

$$\lim_{k \to \infty} -\frac{\log b_k}{1 - b_k} = 1.$$

Hence  $\sum_{k=1}^{\infty} -\log b_k$  diverges by the limit comparison test, and it follows that

$$\prod_{n=2}^{\infty} (1+a_n) = \prod_{k=1}^{\infty} b_k \text{ diverges.}$$

(3) Let

$$a_n = \begin{cases} -\frac{1}{\sqrt{k}}, & n = 2k - 1, \\ \frac{1}{\sqrt{k}} + \frac{1}{k} + \frac{1}{k\sqrt{k}}, & n = 2k. \end{cases}$$

Then

$$\sum_{n=1}^{2N} a_n = \sum_{k=1}^{N} (a_{2k-1} + a_{2k}) = \sum_{k=1}^{N} \frac{1}{\sqrt{k}} + \sum_{k=1}^{N} \frac{1}{k\sqrt{k}} \xrightarrow{N \to \infty} +\infty,$$

while

$$\prod_{n=2}^{2N} (1+a_n) = (1+a_2) \prod_{k=2}^{N} (1+a_{2k-1})(1+a_{2k}) = 4 \prod_{k=2}^{N} \left(1 - \frac{1}{\sqrt{k}}\right) \left(1 + \frac{1}{\sqrt{k}}\right) \left(1 + \frac{1}{\sqrt{k}}\right)$$

$$=4\prod_{k=2}^{N}\frac{k-1}{k}\cdot\frac{k+1}{k}=4\cdot\frac{N+1}{2N}\xrightarrow{N\to\infty}2.$$

**Stein 5.6.9** Prove that if |z| < 1, then

$$(1+z)(1+z^2)(1+z^4)(1+z^8)\cdots = \prod_{k=0}^{\infty} (1+z^{2^k}) = \frac{1}{1-z}.$$

**Proof** If we denote  $P_n = \prod_{k=0}^{n-1} (1+z^{2^k})$ , then

$$(1-z)P_n = (1-z)(1+z)(1+z^2)\cdots(1+z^{2^{n-1}}) = 1-z^{2n}.$$

Hence  $P_n = \frac{1-z^{2n}}{1-z}$  and by taking the limit as  $n \to \infty$  we get the desired result when |z| < 1.

Stein 5.6.10 Find the Hadamard products for:

- (1)  $e^z 1$ ;
- (2)  $\cos \pi z$ .

**Solution** (1) Since  $e^z - 1$  has growth order 1 and  $e^z - 1 = 0 \iff z = 2\pi i n$  for  $n \in \mathbb{Z}$ , by Hadamard's factorization theorem we see it has the form

$$\mathrm{e}^z - 1 = \mathrm{e}^{Az + B} z \prod_{n=1}^{\infty} \Big( 1 - \frac{z}{2\pi \mathrm{i} n} \Big) \Big( 1 + \frac{z}{2\pi \mathrm{i} n} \Big) \mathrm{e}^{\frac{z}{2\pi \mathrm{i} n} - \frac{z}{2\pi \mathrm{i} n}} = \mathrm{e}^{Az + B} z \prod_{n=1}^{\infty} \bigg( 1 + \frac{z^2}{4\pi^2 n^2} \bigg).$$

Then

$$e^{\frac{z}{2}} - e^{-\frac{z}{2}} = e^{\left(A - \frac{1}{2}\right)z + B} z \prod_{n=1}^{\infty} \left(1 + \frac{z^2}{4\pi^2 n^2}\right).$$

Since LHS is odd we get  $A = \frac{1}{2}$ , and from

$$1 = \lim_{z \to 0} \frac{e^z - 1}{z} = \lim_{z \to 0} e^B \prod_{n=1}^{\infty} \left( 1 + \frac{z^2}{4\pi^2 n^2} \right)$$

we see that B = 0. So we have

$$e^{z} - 1 = z \prod_{n=1}^{\infty} \left( 1 + \frac{z^{2}}{4\pi^{2}n^{2}} \right).$$

(2) Since  $\cos \pi z$  has growth order 1 and  $\cos \pi z = 0 \iff z = n + \frac{1}{2}$  for  $n \in \mathbb{Z}$ , by Hadamard's factorization theorem we see it has the form

$$\cos \pi z = \mathrm{e}^{Az+B} \prod_{n \in \mathbb{Z}} \left( 1 - \frac{z}{n + \frac{1}{2}} \right) \mathrm{e}^{\frac{z}{n + \frac{1}{2}}} = \mathrm{e}^{Az+B} \prod_{n=1}^{\infty} \left( 1 - \frac{4z^2}{(2n-1)^2} \right).$$

Since LHS is even we get A = 0, and by letting z = 0 we see that B = 0. So we have

$$\cos \pi z = \prod_{n=1}^{\infty} \left( 1 - \frac{4z^2}{(2n-1)^2} \right).$$

**Stein 5.6.13** Show that the equation  $e^z - z = 0$  has infinitely many solutions in  $\mathbb{C}$ .

**Proof** Suppose to the contrary that  $e^z-z=0$  has only finitely many solutions, then since  $e^z-z$  is entire and has growth order 1, by Hadamard's factorization theorem we have  $e^z-z=e^{Az+B}P(z)$  for some polynomial P(z). Then  $P(z)=\frac{e^z-z}{e^{Az+B}}=O\Big(e^{(1-A)z}\Big)$ , which is possible only when P(z) is constant and A=1, and hence  $z=e^z\big(1-e^BC\big)$  for some constant C, which is impossible.

**Stein 5.6.14** Deduce from Hadamard's theorem that if F is entire and of growth order  $\rho$  that is non-integral, then F has infinitely many zeros.

**Proof** Let  $k = \lfloor \rho \rfloor$ , then  $k < \rho < k+1$ . Suppose to the contrary that F has only finitely many zeros, then by Hadamard's factorization theorem we have  $F(z) = \mathrm{e}^{P(z)}Q(z)$  for some polynomials with  $\deg P \leqslant k$ . However, this implies that F has growth order at most k, which is a contradiction.

**Stein 5.7.1** Prove that if f is holomorphic in the unit disc, bounded and not identically zero, and  $z_1, z_2, \dots, z_n, \dots$  are its zeros ( $|z_k| < 1$ ), then

$$\sum_{n} (1 - |z_n|) < \infty.$$

**Proof** Without loss of generality, we may assume that  $f(0) \neq 0$  (otherwise just factor out  $z^m$ ) and the number of zeros is infinite. Fix  $k \in \mathbb{N}$  and consider  $r \in (0,1)$  such that  $\mathfrak{n}(r) > k$  and f vanishes nowhere on the circle |z| = r, where  $\mathfrak{n}(r)$  denotes the number of zeros of f (counted with their multiplicities) inside the disc |z| < r. Recall Jensen's formula:

$$\frac{1}{2\pi} \int_0^{2\pi} \log \left| f(re^{i\theta}) \right| d\theta - \log |f(0)| = \sum_{n=1}^{\mathfrak{n}(r)} \log \left( \frac{r}{|z_n|} \right).$$

The boundedness of f implies that there exists M > 0 such that

$$|f(0)|\prod_{n=1}^k\frac{r}{|z_n|}\leqslant |f(0)|\prod_{n=1}^{\mathfrak{n}(r)}\frac{r}{|z_n|}=\exp\biggl\{\frac{1}{2\pi}\int_0^{2\pi}\log\bigl|f\bigl(r\mathrm{e}^{\mathrm{i}\theta}\bigr)\bigr|\,\mathrm{d}\theta\biggr\}\leqslant M.$$

Let  $r \to 1^-$  to see that

$$\prod_{n=1}^k |z_n| \geqslant \frac{|f(0)|}{M} \quad \text{for all } k \in \mathbb{N}.$$

Then by taking  $k \to \infty$  we find

$$\prod_{n=1}^{\infty} |z_n| \geqslant \frac{|f(0)|}{M} > 0.$$

Therefore, by taking the logarithm we have

$$\sum_{n=1}^{\infty} (-\log|z_n|) < \infty$$

and  $\lim_{n\to\infty}|z_n|=1$ . Hence  $\lim_{n\to\infty}\frac{-\log|z_n|}{1-|z_n|}=1$  and by the comparison test we get

$$\sum_{n=1}^{\infty} (1 - |z_n|) < \infty.$$