Summary of β Instruction Formats

Operate Class:

31	26	25	21	20	16	15	11	10		0
10xxx	10xxxx		c	R	la	R	.b		unused	

Register	Symbol	Usage
R31	R31	Always zero
R30	XP	Exception pointer
R29	SP	Stack pointer
R28	LP	Linkage pointer
R27	BP	Base of frame pointer

OP(Ra,Rb,Rc): $Reg[Rc] \leftarrow Reg[Ra] \text{ op } Reg[Rb]$

Opcodes: **ADD** (plus), **SUB** (minus), **MUL** (multiply), **DIV** (divided by) **AND** (bitwise and), **OR** (bitwise or), **XOR** (bitwise exclusive or)

CMPEQ (equal), **CMPLT** (less than), **CMPLE** (less than or equal) [result = 1 if true, 0 if false]

SHL (left shift), SHR (right shift w/o sign extension), SRA (right shift w/ sign extension)

31 20	5 25	21	20	16	15	0
11xxxx	11xxxx Rc		F	₹a	literal (two's complement)	

 $OPC(Ra, literal, Rc): Reg[Rc] \leftarrow Reg[Ra] \text{ op SEXT(literal)}$

Opcodes: ADDC (plus), SUBC (minus), MULC (multiply), DIVC (divided by)

ANDC (bitwise and), **ORC** (bitwise or), **XORC** (bitwise exclusive or)

CMPEQC (equal), **CMPLTC** (less than), **CMPLEC** (less than or equal) [result = 1 if true, 0 if false]

SHLC (left shift), SHRC (right shift w/o sign extension), SRAC (right shift w/ sign extension)

Other:

_	31	26	25	21	20	16	15		0	_
	01xxxx		R	c	R	la	litera	l (two's complement)		

LD(Ra,literal,Rc): $Reg[Rc] \leftarrow Mem[Reg[Ra] + SEXT(literal)]$ **ST**(Rc,literal,Ra): $Mem[Reg[Ra] + SEXT(literal)] \leftarrow Reg[Rc]$

JMP(Ra,Rc): $Reg[Rc] \leftarrow PC + 4$; $PC \leftarrow Reg[Ra]$

BEQ/BF(Ra,label,Rc): Reg[Rc] \leftarrow PC + 4; if Reg[Ra] = 0 then PC \leftarrow PC + 4 + 4*SEXT(literal) **BNE/BT**(Ra,label,Rc): Reg[Rc] \leftarrow PC + 4; if Reg[Ra] \neq 0 then PC \leftarrow PC + 4 + 4*SEXT(literal)

LDR(label,Rc): $Reg[Rc] \leftarrow Mem[PC + 4 + 4*SEXT(literal)]$

Opcode Table: (*optional opcodes)

2:0								
5:3	000	001	010	011	100	101	110	111
000								
001								
010								
011	TD	COT						
OII	LD	ST		JMP		BEQ	BNE	LDR
100	ADD	SUB	MUL*	JMP DIV*	CMPEQ	BEQ CMPLT	CMPLE	LDR
			MUL* XOR		CMPEQ SHL			LDR
100	ADD	SUB				CMPLT	CMPLE	LDR

Control logic:

	OP	OPC	П	ST	ЭМР	ВЕО	BNE	LDR	Illop	IRQ
ALUFN	F(op)	F(op)	"+"	"+"	i			"A"		
WERF	1	1	1	0	1	1	1	1	1	1
BSEL	0	1	1	1	i	1	1			
WDSEL	1	1	2		0	0	0	2	0	0
WR	0	0	0	1	0	0	0	0	0	0
RA2SEL	0			1	i	1	1			
PCSEL	0	0	0	0	2	Z?1:0	Z ? 0 : 1	0	თ	4
ASEL	0	0	0	0	i	1		1		
WASEL	0	0	0		0	0	0	0	1	1