

Figura 3.2.1 Approximationes lineally cuadrática a z = sen(xy) cerca de $(1, \pi/2)$.

En el punto de aproximación, tenemos

$$f_x(4,6) = \frac{2}{3}$$
, $f_y = -\frac{2}{3}$, $f_{xy} = f_{yx} = -\frac{4}{9}$, $f_{xx} = \frac{2}{9}$, $f_{yy} = \frac{2}{3}$.

La aproximación lineal es entonces

$$1 + \frac{2}{3}(-0.02) - \frac{2}{3}(-0.03) = 1,00666.$$

La aproximación cuadrática es

$$1 + \frac{2}{3}(-0.02) - \frac{2}{3}(-0.03) + \frac{2}{9}\frac{(-0.02)^2}{2} - \frac{4}{9}(-0.02)(-0.03) + \frac{2}{3}\frac{(-0.03)^2}{2}$$

= 1,00674.

El valor "exacto" utilizando una calculadora es 1,00675.

Ejercicios

- **1.** Sea $f(x,z) = e^{x+y}$.
 - (a) Determinar la fórmula de Taylor de primer orden de f en (0, 0).
 - (b) Determinar la fórmula de Taylor de segundo orden de f en (0, 0).
- **2.** Supóngase que $L: \mathbb{R}^2 \to \mathbb{R}$ es lineal, por lo que L tiene la forma L(x,y) = ax + by.
- (a) Determinar la aproximación de Taylor de primer orden para L.
- (b) Determinar la aproximación de Taylor de segundo orden para ${\cal L}.$
- (c) ¿Cómo serán las aproximaciones de orden superior?

En los Ejercicios 3 a 8, determinar la fórmula de Taylor de segundo orden para la función dada alrededor del punto (x_0, y_0) .