Autômato de Pilha

- Autômato de Pilha (PDA) é um NFA com um componente extra: a pilha.
- A pilha é uma memória ilimitada. O acesso se dá na forma LIFO.
- A pilha possibilita ao PDA reconhecer um conjunto mais abrangente de linguagens que um NFA.

Exemplo

- PDA para a linguagem $\{0^n1^n \mid n \ge 0\}$
 - 1. ler os símbolos na entrada,
 - 2. para cada 0 lido, empilhar um 0,
 - 3. para cada 1 lido, desempilhar um 0,
 - 4. se a pilha estiver vazia quando a entrada for λ , o string é aceito,
 - 5. se a pilha ficar vazia e a entrada não for vazia, ou se aparecer algum 0 na entrada, depois de lido algum 1, o string não é aceito.

Autômato de Pilha

- Autômato de Pilha é uma sêxtupla (Q, Σ , Γ , δ , q₀, F):
 - Q, Σ, q₀, F notação análoga ao AFN,
 - Γ é um alfabeto para a pilha,
 - $\delta: \mathbb{Q} \times (\Sigma \cup \{\lambda\}) \times (\Gamma \cup \{\lambda\}) \rightarrow \mathbb{P}(\mathbb{Q} \times (\Gamma \cup \{\lambda\})).$
- Transições:

\forall	$\delta (q_i, a, A) = [q_j, B]$	(q_i)	a A/B	q_j
A	$\delta (q_i, a, \lambda) = [q_j, B]$	(q_i)	a λ/B	q_{j}
A	$\delta (q_i, a, A) = [q_j, \lambda]$	q_i	a A/λ	
A	$\delta (q_i, a, \lambda) = [q_j, \lambda]$	<u> </u>	α λ/λ	q_{j}
\forall	$\delta (q_i, \lambda, \lambda) = [q_i, \lambda]$	q_i		$ (q_j)$

Autômato de Pilha

Um string w é aceito por um autômato de pilha M se existir uma computação [q₀, w, λ] ^{*}/_→ [qᵢ, λ, λ], qᵢ ∈ F.

L(M), a linguagem do autômato M, é o conjunto de todos os strings aceitos por M.

- ► Construa M para $L(M) = \{ 0^n1^n \mid n \ge 0 \}$.
- > Construa M para L(M) = { w | w = wR, w ∈ { a, b }* }.

Variações sobre PDA

- Autômatos Atômicos:
 - executam apenas uma operação em cada transição (operações atômicas):

```
\forall \delta(q_i, a, \lambda) = [q_i, \lambda] - \text{processa um símbolo da entrada},
```

$$\forall \delta(q_i, \lambda, \lambda) = [q_i, A] - \text{empilha um elemento},$$

$$\forall \delta(q_i, \lambda, A) = [q_i, \lambda] - desempilha um elemento.$$

- 2. Autômatos Estendidos:
 - permitem o empilhamento de N símbolos em uma transição:

$$\forall \delta(q_i, a, A) = [q_i, BCD]$$

Variações sobre PDA

- 3. Autômatos com Aceitação por Estado Final:
 - processam a entrada e terminam em um estado de aceitação.
- 4. Autômatos com Aceitação por Pilha Vazia:
 - processam a entrada e terminam com pilha vazia.
- Nota:
 - Sempre é possível construir um PDA a partir das variações.

Equivalência entre PDA e CFG

- Teorema: uma linguagem é livre de contexto se, e somente se, é reconhecida por um autômato de pilha.
- Prova:
 - 1. Dado L uma LLC construir o PDA que reconheça L
 - simular as regras na pilha.
 - 2. Dado um PDA definir uma GLC
 - para cada par de estados P e Q definir uma regra A_{pq}.

Equivalência entre PDA e CFG

Considere $S \rightarrow a S b S \mid \lambda$ na forma normal de Greibach:

$$S \rightarrow \lambda$$

 $A \rightarrow a$
 $A \rightarrow a A_1 A_2 ... A_n$

S'
$$\rightarrow$$
 aSBS | aSB | aBS | aB | λ
S \rightarrow aSBS | aSB | aBS | aB
B \rightarrow b

Forma Normal de Greibach

- 1. Alterar G, gerando G₁ na FN Chomsky
- 2. Eliminar recursividade à esquerda (direta e indireta) de G₁ gerando G₂
- 3. Efetuar as substituições para colocar G_2 na forma $A
 ightarrow a A_1 A_2 ... A_n$

Forma Normal de Greibach

G:
$$S \rightarrow SaB \mid a \mid B \rightarrow bB \mid \lambda$$

G₁:
$$G_2$$
: ?

S' \rightarrow ST | AB | SA | a

S \rightarrow ST | AB | SA | a

B \rightarrow CB | b

A \rightarrow a

C \rightarrow b

T \rightarrow AB

Equivalência entre PDA e CFG

1. Seja a gramática $G = (V, \Sigma, P, S)$, na forma normal de Greibach. O autômato estendido M = (Q, Σ_M , Γ , δ , q_0 , F) é:

$$Q = \{q_0, q_1\}$$

$$\Sigma_{\mathsf{M}} = \Sigma$$

$$\Sigma_{M} = \Sigma$$
 $\Gamma = V - \{S\}$

$$F = \{q_1\}$$

para cada produção S → aw crie a transição

para cada produção A -> aw crie a transição

se existe a produção S' $\rightarrow \lambda$ crie a transição

Dado um PDA definir uma GLC: livro.

- Considere:
 - G = (V, Σ, P, S) uma gramática na forma normal de Chomsky,
 - w um string gerado por G e,
 - T a árvore de parse de w, com altura n.
- Como G está na FN Chomsky, o número de folhas de T é no máximo 2^{n-1} (árvore binária $|w| \le 2^{n-1}$).

- Seja n o número de símbolos não-terminais de G.
 - se existe um string z gerado por G com $|z| \ge 2^n$, então a árvore de parse de z tem altura $\ge n+1$:
 - no caminho de maior tamanho que parte da raiz e chega a alguma folha, existe pelo menos um símbolo que se repete.

- O processo A ⇒ vAx pode ser omitido, ou repetido i vezes, logo:
 - uviwxiy também pode ser gerado pela gramática, $i \ge 0$.

- Seja L uma LLC gerada por uma gramática G na FN de Chomsky com K símbolos não-terminais. Qualquer string z ∈ L, tal que |z| > 2^k pode ser escrito na forma z = uvwxy, onde:
 - 1. $| vwx | \leq 2^k$,
 - 2. |v| + |x| > 0 e,
 - 3. $\forall i \geq 0$, $uv^iwx^iy \in L$.

- Provar que L = { aibici | $i \ge 0$ } não é livre do contexto:
 - 1. faça w = akbkck, com k = 2n, (n o número de variáveis da gramática G que gere L),
 - 2. como $|w| > 2^n$ aplique o lema do bombeamento.

Propriedades das Linguagens Livres do Contexto

- ➤ Teorema: se L₁ e L₂ são linguagens livres do contexto, então:
 - L₁ U L₂, (L₁)*, L₁L₂ são LLC, mas
- Teorema: o conjunto das LLC's não é fechado sob interseção ou complemento:
 - 1. $L_1 \cap L_2$ pode não ser LLC aibick \cap akbkci = akbkck i, k > 0.

Propriedades das Linguagens Livres do Contexto

- 2. (L₁)' pode não ser LLC. Prova:
 - considere L₁ e L₂ LLC. Faça L = ((L₁)' U (L₂)')'. Note que o resultado contradiz (1).
 - L = { ww | w ∈ { a,b }* } não é LLC. Mas L' é LLC.

- Teorema: seja L₁ uma LR e L₂ uma LLC, então:
 - L₁ ∩ L₂ é uma LLC. Prova por construção do PDA.

Autômatos com 2 Pilhas

- Em cada transição o autômato verifica o símbolo no topo de cada pilha e executa uma operação em cada pilha.
- Exemplo: autômato para L = { aibici | i ≥ 0 }.

Autômatos com 2 Pilhas

- Nem toda linguagem reconhecida por um autômato com duas pilhas é livre do contexto.
- E para $L = \{ a_i b_i c_i d_i \mid i \ge 0 \}$. Precisamos de 3 pilhas?