PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-288589

(43)Date of publication of application: 13.10.1992

(51)Int.Cl.

G09G 3/36

GO2F 1/133 HO4N 5/66

(21)Application number: 03-150577

(71)Applicant: TOSHIBA CORP

(22)Date of filing:

21.06.1991

(72)Inventor: OKUMURA HARUHIKO

FUJIWARA HISAO ITAKURA TETSURO

(30)Priority

Priority number: 02232821

Priority date: 03.09.1990

Priority country: JP

(54) LIQUID CRYSTAL DISPLAY DEVICE

(57)Abstract:

PURPOSE: To offer the liquid crystal display device equipped with a driving circuit which realize a response speed nearly as fast as or faster than that of a binary display even with a half—tone level.

CONSTITUTION: An image storage circuit 1 which holds at least one field image of an input image signal is provided, and a time base filter circuit 3 detects level variation of each picture element in the time-base direction from the image signal held in the storage circuit 1 and the input image signal and performs high-frequency emphasized filtration in the time-base direction of each picture element for the input image signal according to the detection output. Consequently, the response characteristics of the liquid crystal display device are improved, the response speed of a half-tone display is made fast, and high picture quality with a reduced after-image is obtained.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-288589

(43)公開日 平成4年(1992)10月13日

(51) Int.Cl. ⁵		識別記号	庁内整理番号	FΙ	技術表示箇所
G 0 9 G	3/36		7926-5G		
G02F	1/133	575	7820-2K		
H 0 4 N	5/66	102 B	7205-5C		

審査請求 未請求 請求項の数8(全14頁)

(21)出願番号	特願平3-150577	(71)出顧人	000003078
			株式会社東芝
(22)出願日	平成3年(1991)6月21日		神奈川県川崎市幸区堀川町72番地
	•	(72)発明者	奥村 治彦
(31)優先権主張番号	特顯平2-232821		神奈川県川崎市幸区小向東芝町1番地 株
(32)優先日	平2 (1990) 9月3日		式会社東芝総合研究所内
(33)優先権主張国	日本 (JP)	(72)発明者	藤原 久男
			神奈川県川崎市幸区小向東芝町1番地 株
			式会社東芝総合研究所内
		(72)発明者	板倉 哲朗
			神奈川県川崎市幸区小向東芝町1番地 株
			式会社東芝総合研究所内
		(74)代理人	弁理士 鈴江 武彦

(54) 【発明の名称】 液晶表示装置

(57) 【要約】

【目的】中間調レベルでも二値表示なみ若しくはそれ以 上の応答速度を実現し得る駆動回路を備えた液晶表示装 置を提供することを目的とする。

【構成】入力画像信号の少くとも一枚のフィールド画像を保持する画像用記憶回路1を備え、この記憶回路1に保持された画像信号と入力画像信号とから各画素の時間軸方向のレベル変動を検出して、その出力に応じて入力画像信号の各画素の時間軸方向に高域強調フィルタをかける時間軸フィルタ回路3を設けることにより、液晶表示装置の応答特性を改善し、特に中間調表示での応答速度を高速化して残像を低減した高画質を得る。

1

【特許請求の範囲】

【請求項1】入力画像信号の少くとも一枚のフィールド画像を保持する画像用記憶回路と、この記憶回路に保持された画像信号と前記入力画像信号とから各画素の時間軸方向のレベル変動を検出するレベル変動検出回路と、この検出回路の出力に応じて前記入力画像信号の各画素の時間軸方向に高域強調フィルタをかける時間軸フィルタ回路と、この時間軸フィルタ回路の出力信号が供給される液晶表示部と、を備えたことを特徴とする液晶表示

【請求項2】前記時間軸フィルタ回路は、前記レベル変動検出回路の出力と前記入力画像信号の各画素の入力レベルによりフィルタ特性が変化させられる適応型フィルタ回路であることを特徴とする請求項1記載の液晶表示装置。

【請求項3】前記時間軸フィルタ回路は、前記各画素の時間軸方向のレベル変動の極性に応じて異なる特性を持つことを特徴とする請求項1記載の液晶表示装置。

【請求項4】入力画像信号の少くとも一枚のフィールド画像を保持する画像用記憶回路と、この記憶回路に保持された画像信号と前記入力画像信号とから各画素の時間軸方向のレベル変動を検出するレベル変動検出回路と、この検出回路の出力に応じて前記入力画像信号の各画素の時間軸方向に高域強調フィルタをかける時間軸フィルタ回路と、この時間軸フィルタ回路の出力信号が供給される液晶表示部と、この液晶表示部の液晶温度を検出して、その検出出力に応じて前記時間軸フィルタの特性を可変制御する液晶温度検出回路と、を備えたことを特徴とする液晶表示装置。

【請求項5】入力画像信号の少くとも一枚のフィールド 30 画像を保持する画像用記憶回路と、この記憶回路に保持された画像信号と前記入力画像信号とから各画素の時間軸方向のレベル変動を検出するレベル変動検出回路と、前記入力画像信号の中で動いている部分を検出する動き検出回路と、前記レベル変動検出回路および動き検出回路の出力に応じて前記入力画像信号の各画素の時間軸方向に高域強調フィルタをかける時間軸フィルタ回路と、この時間軸フィルタ回路の出力信号が供給される液晶表示部と、を備えたことを特徴とする液晶表示装置。

【請求項6】入力画像信号の少くとも一枚のフィールド 40 画像を保持する画像用記憶回路と、この記憶回路に保持された画像信号と前記入力画像信号とから各画素の時間軸方向のレベル変動を検出するレベル変動検出回路と、前記入力画像信号の中で動いている部分を検出する動き検出回路と、前記レベル変動検出回路および動き検出回路の出力に応じて前記入力画像信号の各画素の時間軸方向に高域強調フィルタをかける時間軸フィルタ回路と、この時間軸フィルタ回路の出力信号が供給される液晶表示部と、この液晶表示部の液晶温度を検出して、その検出出力に応じて前記時間軸フィルタの特性を可変制御す 50

る液晶温度検出回路と、を備えたことを特徴とする液晶 事一柱機

【請求項7】前記液晶温度検出回路は、前記液晶表示部を複数個に分割した小画面毎に温度検出を行い、各小画面の温度検出出力により前記時間軸フィルタの特性を最適制御することを特徴とする請求項4または6に記載の液晶表示装置。

【請求項8】前記入力画像信号の雑音除去を行う雑音除 去フィルタが設けられていることを特徴とする請求項 10 1,4,5または6のいずれかに記載の液晶表示装置。

【発明の詳細な説明】 [発明の目的]

[0001]

【産業上の利用分野】本発明は、液晶表示装置に係り、 とくに中間調表示の応答特性を考慮した駆動回路部の改 良に関する。

[0002]

【従来の技術】一般に液晶の応答速度は、液晶分子が印加された電界によって立ち上がる速度 tr と、電界を零にしたときに各分子間の力によって元の状態に復帰する速度 td により決まる。これらの速度 tr, td は以下の式で表される。

 $tr = \eta d^2 / (\Delta \epsilon V - K \pi^2) \quad \cdots \quad (1)$ $td = \eta d^2 / K \pi^2 \quad \cdots \quad (2)$

【0003】ここに、Kは、液晶の発散,ねじれ,曲げの弾性定数をそれぞれK1, K2, K3 としたときに、K=K1+(K3-2K2)/4で表される定数である。 Δ ϵ は、液晶分子の長軸方向の誘電率 ϵ s と短軸方向の誘電率 ϵ p の差 ϵ s e p である。 η は液晶分子のねじれ粘性、d は液晶セルの厚み(セルギャップ)、v は印加電圧である。

[0004] (1), (2) 式から明らかなように、液晶の応答速度を速めるには、 η , dを小さくするか、またはKを大きくすればよい。ただし、 η , Kは物質定数であり、dは屈折率の異方性である Δ nとの兼ね合いで最小透過率が決まってくるので、それ程小さくすることはできない。そこで種々の液晶物質のプレンドによって η , K, Δ n等を変化させて高速応答を実現する努力が続けられている。また、立ち上がり速度 tr については、 Δ ϵ または V を変化させることにより高速化することができ、立ち下がり速度 td については、誘電率の異方性が低周波では正,高周波では負であることを利用して、電圧OFF時に高周波を重畳して高速化した例が知られている。

【0005】以上のような液晶応答速度の改善は、ON /OFFの二値表示の場合有効であるが、中間調表示を 考慮した場合には状況は複雑になる。その事情を図面を 参照して以下に説明する。

この時間軸フィルタ回路の出力信号が供給される液晶表 【 0006】図19は電極41,42間の一つの液晶分示部と、この液晶表示部の液晶温度を検出して、その検 子43を示している。液晶分子43は、x軸に対して出出力に応じて前記時間軸フィルタの特性を可変制御す 500、x軸に対してxΦ(xΦ)、xΦ (xΦ) xΦ (xΦ

.3

3に2軸方向の電界がかかったときの流体力学方程式 * [0007] 【数1】 は、

$$+h(\theta)DZ^2/4\pi$$
 ...(3)

$$r1 \cdot \partial \phi / \partial t = (1/\cos^2 \theta) \cdot (u(\theta)(\partial \theta / \partial z) + v(\theta))/\partial z$$

... (4)

【0008】で記述される。上式は非線形偏微分方程式 であり、解析的に解くことは出来ないが、数値計算によ り解くことができる。また電極間に印加される入力電圧※

$$%$$
Vは、 $\mathbf{a} = (\epsilon \mathbf{s} - \epsilon \mathbf{p}) / \epsilon \mathbf{p}$ として、 [0009] [数2]

$$V = (DZ/\epsilon_P) \int_{a}^{d} dZ/(1+a \sin^2 \theta) \cdots (5)$$

で表される。D1 は電束密度である。

【0010】以上の(3)~(5)式を連立して解くこ とにより、入力電圧変化による液晶分子の過渡応答特性 を求めることができる。これらの式から、液晶分子の時 間的変化量は、入力電圧に依存することが分かる。この 様にして求められた液晶分子の時間的変化量 θ (z, t) およびφ (z, t) をBarrmanの4×4マトリクス に入れて解くことにより、最終的な光学応答特性を導出 することができる。

【0011】一方、図20は液晶の透過率-入力電圧特 性を示している。この特性から、通常、100/1のコ ントラスト比をとるためには、ノーマリ・ホワイトの場 合で5V程度の入力振幅を必要とするが、中間調レベル だけを考えると、振幅は1.5~2 Vになる。以上のこ とは、中間調レベル表示においては、応答速度が二値表 示の場合より遅くなることを示している。このことは、 液晶をTV等のフルカラー表示に用いた場合問題にな

ー表示に用いる場合、中間調レベルでの応答速度を10 msec 程度にする必要があるが、現状は二値表示でも2 0 msec 程度にしかなっていない。このため、動画表示 には著しく残像が目立ち、高画質が得られない。

[0013]

【発明が解決しようとする課題】以上のように従来の液 晶表示装置では、中間調レベルでの応答速度が十分でな く、TV等のフルカラー表示に用いた場合に高画質が得 られないという問題があった。

【0014】本発明はこの様な点に鑑みなされたもの 50 持される。差分器2は、入力画像信号S(t)と画像用

で、中間調レベルでも二値表示なみ若しくはそれ以上の 応答速度を実現し得る駆動回路を備えた液晶表示装置を 提供することを目的とする。

[発明の構成]

[0015]

【課題を解決するための手段】本発明にかかる液晶表示 装置は、入力画像信号の少くとも一枚のフィールド画像 を保持する画像用記憶回路を備え、この記憶回路に保持 30 された画像信号と入力画像信号とから各画素の時間軸方 向のレベル変動を検出して、その出力に応じて入力画像 信号の各画素の時間軸方向に高域強調フィルタをかける 時間軸フィルタ回路を設けたことを特徴とする。

[0016]

【作用】本発明によれば、液晶分子の応答速度が遅い場 合でも、入力画像信号の高域成分を予め持ち上げるとい う処理を行って液晶部に供給することにより、応答の立 ち上がり、たち下がりを高速化することができる。した がって特に中間調レベルでの応答速度が改善され、TV 【0012】すなわち液晶表示装置をTV等のフルカラ 40 等のフルカラー表示に用いて高画質を得ることができ る。

[0017]

【実施例】以下、本発明の実施例を説明する。

【0018】図1は第1の実施例の要部構成を示す。図 の入力画像信号S(t)は、ビデオ信号をR,G,Bに 分解した後の信号であるが、R,G,B信号に対して同 じ処理になるので、ここではそのうちの1チャネルのみ 示している。入力画像信号S(t)は、少なくとも1フ ィールド分の画像信号を記憶する画像用記憶回路1に保 5

記憶回路1とから、対応する各画素信号の差をとるもの で、1フィールドの間の信号レベルの変化を検出するレ ベル変化検出回路となっている。この差分器2から得ら れる時間軸方向の差信号Sd (t)は、入力画像信号S

(t)と共に時間軸フィルタ回路3に入力される。

【0019】時間軸フィルタ回路3は、差信号Sd (t) に応答速度に応じた重み係数 α をかける重み付け 回路32と、重み付けられた差信号と入力画像信号S

(t) を加算する加算器31とから構成されている。こ れはレベル変動検出回路の出力と入力画像信号の各画素 10 考えられる。これを実現したのが第2の実施例である。 の入力レベルによりフィルタ特性が変化させられる適応 型フィルタ回路である。この時間軸フィルタ回路3によ って入力画像信号S(t)は時間軸方向の高域が強調さ れる。こうして得られた高域強調信号は、極性反転回路 4によって交流信号に変換されて液晶表示部5に供給さ れる。液晶表示部5は、複数本のデータ信号配線とこれ と交差する複数本の駆動信号配線の各交差部に表示電極 を持つ、アクティブマトリクス方式の液晶表示部であ る。

される様子を示す信号波形である。説明を分かり易くす るため入力画像信号S(t)が1フィールド周期で変化 するものとし、図では2フィールドで信号レベルが急激 に変化している場合を示している。この場合時間軸方向 の入力信号変化すなわち差信号Sd (t)は図に示すよ うに、入力画像信号が正に変化するときに1フィールド 間正になり、負に変化するときに1フィールド間負にな る。基本的にはこの差信号を入力信号に加えることによ り、高域強調ができる。しかしながら実際には、液晶の 応答速度によって入力信号変化がどの程度液晶セルの透 30 過率変化になるかが変わってくるので、オーパーシュー トが生じない範囲で補正するように重み係数αをかけ る。これにより図示のような高域が補正された信号Sc (t) が得られる。この様に高域が強調される信号が液 晶表示部に入力されることにより、光学応答特性 I

【0021】具体的には、図3に示すように液晶の伝達 関数をHLCD (ωt)とすると、高域強調関数Hc (ω ようになる。

(t) は、破線で示す従来のものに対して実線で示すよ

Ht $(\omega t) = HLCD (\omega t) \cdot Hc (\omega t)$

 $Hc (\omega t)$

うに改善される。

 $= \alpha \{1 - \exp(j \cdot 2\pi\omega t / \omega c)\} + 1$ $\omega c = 2\pi/60$

【0022】すなわちこの実施例では、Ht (ωt) が 広帯域化できるように、HLCD (ωt)が低下するとこ ろをHc (ωt)により補償することになる。実際にこ の特性を求め、或いは重み係数 α を決めるためには、従

る式(3) \sim (5) $\epsilon\alpha$ をパラメータとして解いていく ことになる。

【0023】図4は第2の実施例の要部構成を示す。な お以下の実施例では図1と対応する部分に図1と同一符 号を付して詳細な説明は省略する。従来技術で説明した ように液晶の応答速度は、立上がりと立ち下がりとで異 なるのが通常である。そこで入力の変化が立上がり方向 の変化であるか、立ち下がり方向の変化であるかを検出 して、それぞれの場合で高域強調量を異ならせる方法が

【0024】すなわちこの実施例では、二つの重み付け 回路321と322を設け、フィールド間差分が正の場 合(つまり立上がりの時)は、高域強調のための重み係 数をα1、負の場合(つまり立ち下がりの時)はこれを α2 とする。これらの重み付け回路 3 21 , 3 22 の出 力を切り替え回路33により切り替えて、加算器33に 与えるようにしている。

【0025】これにより、図5に示すように、立ち上が りと立ち下がりとで異なるそれぞれ最適の高域強調量を 【0020】図2はこの実施例により、応答特性が改善20 付けた補正信号 Sc (t)を得て、光学応答特性 I (t)をより高速化することができる。

> 【0026】図6は第3の実施例の要部構成である。図 6(a) が第2の実施例と異なる点は、高域強調量を変化 させる制御パラメータとして、入力の変化だけでなく、 入力レベルそのものをも含めたことである。これは、液 晶の応答速度が入力電圧の変化だけでなく、電圧の初期 値または変化後の電圧にも依存することを考慮して、よ り正確な高域補償を行うためである。

> 【0027】図6(b) は図6(a) をより一般化した実施 例である。重み付け回路32の重み係数αは、入力のフ ィールド間差分および入力レベルにより変化する。さら に図6(c) に示す実施例は、高域を持ち上げたい部分の 周波数を高次のパンドパスフィルタBPF(またはハイ パスフィルタHPF) 1′により抽出して、その出力と 入力レベルにより重み付け回路32の重み係数αを制御 する構成としている。この実施例によると、液晶の応答 特性を補償する上でより適した高域強調フィルタとする ことができる。

【0028】図7は第4の実施例の要部構成を示す。従 t) が掛けられた後の周波数特性Ht (ω t) は以下の 40 来技術で少し説明したが、応答速度はセルギャップの二 乗d゚ に反比例している。つまり、セルギャップdを小 さくすれば応答速度は速くなる。しかし、コントラスト を高くとるためには、 $\Delta n d / \lambda$ (Δn : 屈折率の異方 性、入:入力波長)をモーガンの条件を満たすようにし なければならない。したがって最適なコントラストを得 るためには、R、G、Bによってセルギャップを変える 必要がある。これは、マルチギャップと呼ばれる。この 様な場合当然ではあるが、R,G,Bによって応答速度 が異なるという問題が生じる。そこでマルチギャップに 来技術で説明した液晶分子のダイナミック特性を記述す 50 対応させるべく、R, G, Bでそれぞれ高域強調量を最

適に制御するようにしたのがこの実施例である。ここで は図6(b)の基本回路を3つ用いたが、他の実施例の基 本回路3つを用いてもよい。

【0029】図8は第5の実施例の要部構成を示す。こ の実施例では、図6(b)の実施例の回路に加えて、液晶 表示部5の液晶温度を検出する温度検出器6を設け、こ の温度検出器6の出力により重み付け回路32を制御す るようにしている。

【0030】図9に示したように、液晶の応答特性には りとで異なった温度依存性を示す。これは、立上がりは 粘性ηの温度依存性に大きく影響されるのに対し、立ち 下がりは粘性ηの温度依存性を分母の弾性定数Kの温度 特性が緩和するように働くことに起因している。したが ってこの実施例のように、液晶温度を検出してその出力 に応じて高域強調パラメータである重み係数 α を変化さ せるように制御する事により、応答特性の最適補償を行 うことが可能になる。

【0031】図10は、液晶の物性定数の温度依存性を 示している。図に示すように液晶の物性定数は温度によ 20 って変化する。したがってこの物性定数の変化を検出す ることにより温度検出を行うことができる。同じパネル 内の液晶を用いて温度検出ができれば、そのパネルに最 も適した温度補償ができる。

【0032】図11は、その様な液晶を用いた液晶温度 検出器の構成例である。図10に示したように液晶の誘 電率 ε は温度によって変化する。したがって誘電率の変 化、つまり液晶容量 CLCD の変化を外づけの容量 CD に よって電圧に変換して出力するのが、図11の温度検出 原理である。つまり、図11の入出力の関係は、

 $Vout = Vin \cdot CLCD / (CD + CLCD)$

と表されるので、液晶容量 CLCD の変化を出力 Vout の 変化として検出することができる。

【0033】液晶温度検出法としてはこの他に、光検出 器を用いて液晶のしきい値Vthの温度による変化を光量 変化として検出する方法、マイクロプロセッサを用いて ある一定時間毎に立ち上がり、立ち下がり時間を計算 し、オーパーシュートのないような制御を常にフィード パックで行う方法等が考えられる。

【0034】図12は、第6の実施例の要部構成であ 40 る。この実施例では、入力画像信号の動きを検出する動 き検出回路8が設けられている。この動き検出回路8に より検出された動き量に応じて、フィールド内とフィー ルド間の補間の重み付け量が決定されると共に、順次走 査変換回路 7 において、時間軸圧縮によりインタレース 信号(順次走査信号)に変換される。この順次走査変換 された信号が液晶を実際に駆動する信号になるので、こ の信号が1フィールド期間つまり1画素の信号書き替え 周期にどれだけ変化したかが、液晶の応答速度を決める **重要なパラメータになる。**

【0035】そこで、記憶回路1と差分器2により求ま る1フィールド期間内の変化量に入力レベルと動き量に 応じて変化する重み係数 αを掛ける重み付け回路 3 2 と 加算回路31により構成される時間軸強調フィルタによ って、順次走査変換信号が補正される。

【0036】図13は、動き検出回路8の具体的な構成 例である。輝度信号の動きは、フレームメモリ11の入 出力の差を差分器13により検出して、LPF14によ り1フレーム差分として検出される。色信号の動きはフ 強い温度依存性があるだけでなく、立上がりと立ち下が 10 レームメモリ11とフレーム遅延回路12の直列回路の 入出力の差を差分器16により検出して、BPF17に より2フレーム差分として検出される。これらの差分信 号はそれぞれ絶対値検出回路15,18を通り、最大値 検出回路19により最大値が検出される。この最大値検 出回路19の出力は伸長回路20を通り、デコーダ21 を通って動き信号として出力される。伸長回路20は、 速い動きに対して検出漏れがないように、2フィールド の動き情報を利用して時空間フィルタをかけるために設 けられている。

> 【0037】この様な構成により画像の動きが検出され るわけであるが、誤検出はやはりある。たとえば、静止 画のノイズを動画として検出すると、図12の構成では そのノイズをα倍してしまうことになる。

【0038】この誤検出を救済するためには、たとえば 重み係数 αのテーブルを、図14(a)(b)のように設定 することが考えられる。図14(a) に示すように、動き 量が小さい時はこれをノイズと判断して、高域強調をか けないようにする。実際に、動き量をフィールド間差分 とした場合で、図14(a)の破線のテーブルと実線のテ 30 ープルで比較した結果、実線のテープルの方がノイズが 大幅に減少することが確認されている。

【0039】図14(a) のテーブルの場合、画像によっ ては、不連続点が目立つ可能性がある。 したがって図 1 4(b) に示すように段階的に理想の線に近付けるテープ ルを用いることも考えられる。

【0040】図15は、図12の実施例において、図8 の実施例と同様に液晶温度検出を行って、その出力に応 じて高域強調パラメータである重み係数 α を変化させる 制御を行うようにした実施例である。

【0041】ところで液晶表示部に場所によって温度ム ラがある場合、一点の温度検出では最適温度制御ができ ない。この様な場合、液晶表示部の複数箇所の温度検出 を行うことが有効である。

【0042】図16は、この様な観点から図15を改良 した実施例である。この実施例では、液晶表示部5を4 分割して、各小画面の4角の温度をスイッチ22により 切り替えて検出する。スイッチ22は画面位置検出回路 23によって制御される。この様にして検出される複数 箇所の温度のなかから重み係数 αの制御データとして最 50 適のものを用いる。同様の変形は、先の図15の実施例

9

に対しても行うことができる。

【0043】なお、液晶表示部の4角の温度データをそのまま用いるのではなく、例えば図17に示すような基準となる温度ムラパターンを用意しておいて、端xeの温度がCT0になったら、距離x1での温度をCT1にするという予測を行うようにすることも有効である。

【0044】図18は、図12の実施例に対して更に、画像信号入力部に雑音除去フィルタ24を設けた実施例である。先に説明したように入力信号に雑音があると、誤検出によって雑音を増幅してしまう可能性がある。こ 10の実施例のように雑音除去フィルタ24を設けることによって、誤検出を少なくすることができる。この雑音除去が有効に働くならば、動き検出回路8を省略することもできる。先に説明した図1、図4、図8の実施例に対しても同様に雑音除去フィルタを入力端子部に設けることは有効である。

[0045]

【発明の効果】以上詳細に説明したように本発明によれば、時間軸フィルタを用いて入力画像信号の高域強調を行うことにより、液晶表示装置の応答特性を改善し、特 20 に中間調表示での応答速度を高速化して、残像を低減した高画質の液晶TVを実現することができる。

【図面の簡単な説明】

- 【図1】本発明の第1の実施例の要部構成を示す図。
- 【図2】同実施例の動作を説明するための信号波形図。
- 【図3】同実施例の高域強調フィルタの特性を示す図。
- 【図4】第2のの実施例の要部構成を示す図。
- 【図5】同実施例の動作を説明するための信号波形図。
- 【図6】本発明の第3の実施例の要部構成を示す図。
- 【図7】本発明の第4の実施例の要部構成を示す図。

【図8】本発明の第5の実施例の要部構成を示す図、

10

【図9】液晶の応答速度の温度依存性を示す図。

【図10】液晶の物性定数の温度依存性を示す図。

【図11】液晶の温度検出器の構成例を示す図。

【図12】動き検出回路を備えた実施例の要部構成を示す図。

- 【図13】同実施例の動き検出回路の構成例を示す図。
- 【図14】動き量と高域強調量の関係を示す図。
- 【図15】図12の実施例に温度検出器を設けた実施例の要部構成を示す図。
 - 【図16】図15を変形して複数箇所の温度検出を行うようにした実施例を示す図。
 - 【図17】 温度制御のための基準温度分布を示す図。
 - 【図18】雑音除去フィルタを設けた実施例の要部構成を示す図。
 - 【図19】液晶の応答速度を説明するための図。
 - 【図20】液晶の透過率の入力電圧依存性を示す図。 【符号の説明】
 - 1…画像用記憶回路、
- 20 2…差分器(レベル変化検出回路)、
 - 3…時間軸フィルタ回路、
 - 3 1 …加算器、
 - 32…重み付け回路、
 - 33…切替え回路、
 - 4…極性反転回路、
 - 5…液晶表示部、
 - 6…温度検出器。
 - 7…順次走査変換回路、
 - 8…動き検出回路。

30

【図1】

(図15)

| (図15)
| (図15)
| (図15)
| (図15)
| (図25)
| (図35)
| (図4)
| (図4)
| (図4)
| (図4)
| (図5)
| (図5)
| (図5)
| (図6)
| (図6)
| (図6)
| (図7)
| (ロ7)
|

【図18】

[図20]

