Introduction to Partial Differential Equations - Exercises for Week 1 -

Contents

Contents

1. Exercise 1: Divergence theorem

2. Exercise 2: Coarea formula

3. Exercise 3: Volume of balls

4. Exercise 4: Laplacian

5. Exercise 5: Mollifiers

References

1. Exercise 1: Divergence theorem

The divergence of a vector field $v \in C^1(\bar{U}; \mathbb{C}^n)$ is

(1)
$$\operatorname{div}(v) = \sum_{j=1}^{n} \frac{\partial v_j}{\partial x_j} \in C(U).$$

Exercise 1.1. Prove the following: If $f \in C^1(U)$ and $v \in C^1(U; \mathbb{C}^n)$, then

(2)
$$\operatorname{div}(fv) = \nabla f \cdot v + f \operatorname{div}(v).$$

Theorem 1.1 (Divergence Theorem: [Tre75, Lemma 10.1]). Let $U \subset \mathbb{R}^n$ be an open set with C^1 boundary ∂U . We denote by $\nu : \partial U \to \mathbb{S}^{n-1}$ the outward normal. Let $v \in C^1(\bar{U}; \mathbb{C}^n)$ be a vector field. Then

(3)
$$\int_{U} \operatorname{div}(v) \, \mathrm{d}x = \int_{\partial U} v \cdot \nu \, \mathrm{d}S(x).$$

Use the divergence theorem to prove the following identities:

Exercise 1.2. Let $U \subset \mathbb{R}^n$ be an open set with C^1 boundary ∂U and outward normal $\nu : \partial U \to \mathbb{S}^{n-1}$. Show that, if $u, v \in C^1(\bar{U})$, then

(4)
$$\int_{U} \frac{\partial u}{\partial x_{i}} \cdot v \, dx = -\int_{U} u \cdot \frac{\partial v}{\partial x_{i}} \, dx + \int_{\partial U} uv \nu_{i}.$$

February 18, 2025. Last git commit: 406dc14 in branch: master

Exercise 1.3. Let $U \subset \mathbb{R}^n$ be an open set with C^1 boundary ∂U and outward normal $\nu : \partial U \to \mathbb{S}^{n-1}$. Show that, if $u, v \in C^2(\bar{U})$, then

(5)
$$\int_{U} \triangle u \, \mathrm{d}x = \int_{\partial U} Du \cdot \nu \, \mathrm{d}S,$$

(6)
$$\int_{U} Du \cdot Dv \, dx = -\int_{U} u \triangle v + \int_{\partial U} u Dv \cdot \nu \, dS,$$

(7)
$$\int_{U} (u\triangle v - v\triangle u) \, \mathrm{d}x = \int_{\partial U} (uDv - vDu) \cdot \nu \, \mathrm{d}S.$$

2. Exercise 2: Coarea formula

Theorem 2.1 (Coarea Formula: [AFP00, Theorem 2.93& Remark 2.94]). Let $\Omega \subset \mathbb{R}^n$ be an open set and $F: \Omega \to \mathbb{R}^k$ a C^1 -submersion, that is, a C^1 -smooth map with surjective differential at each point. As a consequence, we have that $F(\Omega)$ is open in \mathbb{R}^k and that, for every $y \in F(\Omega)$, the set $F^{-1}(y) \subset \Omega$ is an immersed submanifold of dimension n-k.

Then, for every $u \in L^1(\Omega)$ with compact support,

(8)
$$\int_{\Omega} u(x)J(DF(x)) dx = \int_{F(\Omega)} \int_{F^{-1}(y)} u(x)dS^{n-k}(x)dy,$$

where

1

1

(9)
$$J(DF(x)) = \det(DF(x) \times DF(x)^T) = \sqrt{\sum_{B \in \{k \times k \text{ minors of } DF(x)\}} \det(B)^2}.$$

Exercise 2.1. Compute J(DF) as in (9) when k = 1 and when k = n - 1.

Exercise 2.2. Show that, for $\Omega \subset \mathbb{R}^n$ open,

(10)
$$\int_{\Omega} u(x) \, \mathrm{d}x = \int_{0}^{\infty} \int_{\partial B(0,r) \cap \Omega} u(x) \, \mathrm{d}S^{n-1}(x) \, \mathrm{d}r \qquad \forall u \in C^{0}(\Omega).$$

From Theorem 2.1, we can deduce seemingly more general results. For instance, a coarea formula on the sphere:

Exercise 2.3. Show the following formulas. Let \mathbb{S}^{n-1} the unit sphere in \mathbb{R}^n centered at 0. If $f \in C^1(\mathbb{R}^n)$, then, for every $u \in C^0(\mathbb{S}^{n-1})$,

(11)
$$\int_{\mathbb{S}^{n-1}} u(x) |\nabla f(x) - (\nabla f(x) \cdot x) x| \, dS^{n-1}(x) = \int_{\mathbb{R}} \int_{\mathbb{S}^{n-1} \cap \{f=z\}} u(x) \, dS^{n-2}(x) \, dz.$$

For example, if $f(x) = x_n$, then, for every $u \in C^0(\mathbb{S}^{n-1})$,

(12)
$$\int_{\mathbb{S}^{n-1}} u(x) \sqrt{1 - x_n^2} \, dS^{n-1}(x) = \int_{-1}^1 \int_{\mathbb{S}^{n-1} \cap \{f = z\}} u(x) \, dS^{n-2}(x) \, dz.$$

1

3. Exercise 3: Volume of Balls

Exercise 3.1. Compute the volume of the ball B(0,1) of radius 1 in \mathbb{R}^n , that is,

(13)
$$\alpha_n := \mathcal{L}^n(B(0,1)) = |B(0,1)|.$$

Exercise 3.2. Show that the surface measure of the sphere $\partial B(0,r)$ satisfies

(14)
$$S^{n-1}(\partial B(0,r)) = \frac{\mathrm{d}}{\mathrm{d}r}|B(0,r)| = n\alpha_n r^{n-1}.$$

Exercise 3.3. Show that, if $u \in C^0(\partial B(0,r))$ for some r > 0, then

(15)
$$\int_{\partial B(0,r)} u(x) \, dS^{n-1}(x) = \int_{-r}^{r} \int_{\partial B(0,r) \cap \{x_3 = z\}} u(x) \, dS^{n-2}(x) \frac{1}{\sqrt{r^2 - z^2}} \, dz.$$

Exercise 3.4. For k > 0, compute the integral

$$\int_{B(0,R)} \frac{1}{|x|^k} \, \mathrm{d}x.$$

4. Exercise 4: Laplacian

Exercise 4.1. Let $u \in C^2(U)$, $O \in O(n)$, $b \in \mathbb{R}^n$, $\lambda \neq 0$ real. Define $\bar{u}(y) =$ $u(\lambda(Oy+b))$. Compute $\triangle \bar{u}$ in terms of $\triangle u$.

Exercise 4.2. Consider the differential operator on \mathbb{R}^2

(17)
$$P = 2\frac{\partial^2}{\partial x^2} + 2\frac{\partial^2}{\partial x \partial y} + \frac{\partial^2}{\partial y^2}.$$

Find coordinates on \mathbb{R}^2 such that, in the new coordinates, P is the Laplace operator.

Exercise 4.3. Describe harmonic polynomials of degree 3 in two variables.

Exercise 4.4. Compute the laplacian of the functions $\mathbb{R}^n \to \mathbb{C}$,

(18)
$$u_{v+iw}(x) = \exp(v \cdot x + iw \cdot x)$$

where $v, w \in \mathbb{R}^n$.

Exercise 4.5. (Try to) find nonzero solutions $u \in C^{\infty}(\mathbb{R}^n)$ to the PDE

$$(19) -\Delta u = \lambda u$$

for $\lambda \in \mathbb{C}$. (These functions u are called eigenfunctions of the Laplacian. Not every λ gives a solution).

5. Exercise 5: Mollifiers

Exercise 5.1. Consider the function $\phi: \mathbb{R} \to \mathbb{R}$,

(20)
$$\phi(x) = \begin{cases} 0 & x \le 0, \\ \exp(-1/x) & x > 0. \end{cases}$$

Show that $\phi \in C^{\infty}(\mathbb{R})$.

Exercise 5.2. Show that there exists $\phi \in C_c^{\infty}(\mathbb{R}^n)$ such that $\operatorname{spt}(\phi) \subset B(0,1), \phi \geq 0$ and $\int_{\mathbb{R}^n} \phi(x) dx = 1$.

Exercise 5.3 (Fundamental theorem of calculus of variations). Let $U \subset \mathbb{R}^n$. Suppose that $f \in L^1_{loc}(U)$ is such that

(21)
$$\int_{U} f(x)\phi(x) dx = 0 \qquad \forall \phi \in C_{c}^{\infty}(U).$$

Show that f = 0 almost everywhere in U.

Exercise 5.4. Let $\psi \in C_c^{\infty}(\mathbb{R}^n)$ and $f \in L_{loc}^1(\mathbb{R}^n)$. Define

(22)
$$f \star \psi(x) := \int_{\mathbb{R}^n} f(y)\psi(x-y) \, \mathrm{d}y$$

Prove the following:

- (1) $f \star \psi(x) = \int_{\mathbb{R}^n} f(x y) \psi(y) \, dy$. (2) $f \star \psi \in C^{\infty}(\mathbb{R}^n)$.
- (3) For every $j \in \{1, \dots, n\}$, $\frac{\partial}{\partial x_i}(f \star \psi) = f \star \frac{\partial \psi}{\partial x_i}$.

Exercise 5.5. Let $\psi \in C_c^{\infty}(\mathbb{R}^n)$ such that $\int_{\mathbb{R}^n} \psi = 1$. For $\epsilon > 0$, define

(23)
$$\psi_{\epsilon}(x) := \frac{1}{\epsilon^n} \psi(x/\epsilon).$$

Prove the following:

- (1) If $f \in L^1_{loc}(\mathbb{R}^n)$, then, for almost every $x \in \mathbb{R}^n$, $\lim_{\epsilon \to 0} f \star \psi_{\epsilon}(x) = f(x)$.
- (2) If $p \in [1, \infty]$ and $f \in L^p(\mathbb{R}^n)$, then $\lim_{\epsilon \to 0} \|f \star \psi_{\epsilon} f\|_{L^p} = 0$.
- (3) If $f \in C^0(\mathbb{R}^n)$, then $f \star \psi_{\epsilon} \to f$ uniformly on compact sets, as $\epsilon \to 0$.
- (4) If $k \geq 1$ and $f \in C^k(\mathbb{R}^n)$, then, for all $\alpha \in \mathbb{N}^n$ with $|\alpha| \leq k$, $D_x^{\alpha}(f \star \psi_{\epsilon}) \rightarrow$ $D_x^{\alpha} f$ uniformly on compact sets, as $\epsilon \to 0$.

Exercise 5.6. Show that, if $K \subseteq U \subset \mathbb{R}^n$, where K is compact and U is open, then there exists $\psi \in C^{\infty}(\mathbb{R}^n)$ such that $\phi(\mathbb{R}^n) \subset [0,1]$, $K \subset \{\psi = 1\}$ and $\operatorname{spt}(\psi) \subset U$.

References

- [AFP00] Luigi Ambrosio, Nicola Fusco, and Diego Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. MR 1857292
- François Treves, Basic linear partial differential equations, Academic Press [A subsidiary [Tre75] of Harcourt Brace Jovanovich, Publishers, New York-London, 1975, Pure and Applied Mathematics, Vol. 62. MR 0447753