Cheatsheet

PhAI: Physik Anwendungen für Informatiker

Michael Wieland

August 31, 2017

C	onte	ents		4 Elektrizitä 4.1 Elekt		15 13
1		ndlagen Konstanten	2	2		
	$1.1 \\ 1.2$		2	2		
	1.3	Umrechnungen	2	2		
			2	2		
	1.4 1.5	Vektoren	2	2		
2	Med	hanik	3	3		
	2.1	Statik	3	3		
		2.1.1 Drehmoment	3	3		
		2.1.2 Gleichgewicht	3	3		
		2.1.3 Schwerpunkt	3	3		
	2.2	Kinematik	4	4		
		2.2.1 Translation	4	4		
		2.2.2 Rotation	4	4		
		2.2.3 Fall und Wurf	5	5		
	2.3	Dynamik	6	6		
		2.3.1 Kräfte	6	6		
		2.3.2 Arbeit	6	6		
		2.3.3 Energie	6	6		
		2.3.4 Leistung	7	7		
		2.3.5 Impuls und Stoss	7	7		
		2.3.6 Dynamik der Drehbewegung	7	7		
	2.4	Hydrostatik	8	8		
		2.4.1 Strömungen	8	8		
		2.4.2 Bernoulli-Gleichung	8	8		
		2.4.3 Laminare und Turbulente Strömung	9	9		
		2.4.4 Strömungswiderstand	9	9		
3	The	rmodynamik	10	0		
	3.1	Temperatur	10	0		
		3.1.1 Temperaturskalen	10	0		
	3.2	Gasgesetze				
	3.3	Stoffmenge	11	1		
	3.4	Wärmeenergie	12	2		
		3.4.1 Wärmeübertragung	12	2		
	3.5	Aggregatszustände	12	2		
		3.5.1 Luftfeuchtigkeit				
	3.6	Zustandsänderung des idealen Gases	13	3		
		3.6.1 Thermischer Wirkungsgrad des Carnot-Prozesses	13	3		
		3.6.2 Entropie	13	3		
	3.7	Wärmetransport	14	4		
	3.8	Temperaturstrahlung	14	4		

1 Grundlagen

1.1 Konstanten

Konstante	Bedeutung	Wert
u	Atomare Massenkonstante	$1.660538921(73) \cdot 10^{-27} kg$
N_A	${\bf Avogadro~Konstante} = {\bf 1mol}$	$6.02214129(27) \cdot 10^{23} \frac{1}{mol}$
k_b	Boltzmann-Konstante	$1.3806488(13) \cdot 10^{-23} \frac{J}{K}$
R	Universelle Gaskonstante	$N_A \cdot k_B = 8.3144621(75) \frac{J}{mol \cdot K}$
g	Normalfallbeschleunigung (Schwerkraft auf der Erde)	$9.80665 \frac{m}{s^2}$
T_n	Normtemperatur	273.15K
σ	Stefan-Boltzmann-Konstante	$5.670373(21) \cdot 10^{-8} \frac{W}{(m^2 \cdot K^4)}$
c	Lichtgeschwindigkeit	$3 \cdot 10^8 \frac{m}{s}$

1.2 Umrechnungen

Physikalische Dimension: Masse, Länge, Zeit, Temperatur, Stromstärke, Lichtstärke, Stoffmenge.

Volumen $1cm^3 = (10^{-2}m)^3 = 10^{-6}m^3$ Fläche $1cm^2 = (10^{-2}m)^2 = 10^{-4}m^2$ Geschwindigkeit $1\frac{m}{s} = 3.6\frac{km}{h} = 1\frac{km}{h} = 0.277\frac{m}{s}$ Grad in Fahrenheit $T_F = \frac{9}{5} \cdot T_C + 32 \Rightarrow 0^{\circ}\text{C} = 32F \text{ und } 100^{\circ}\text{C} = 212F$ Grad in Kelvin $T_K = T_C + 273.15$ Bar in Pascal $1bar = 100'000\frac{N}{m^2} = 100'000Pa(=10^5)$ kWh in kJ $1kWh = 1000W \cdot 3600s = 3.6 \cdot 10^6Ws = 3.6MJ = 3600kJ = 3.6 \cdot 10^6J$ kcal in Joule $1kcal = 4184J$ Watt in PS $1KW = 1.36PS \text{ und } 1PS = 735.499W$ Bogenmass (rad) in Gradmass $2\pi \text{rad} = 360^{\circ}$ Steigung in Prozent/Grad Steigungswinkel($^{\circ}$) = $arctan(Steigung(\%)/100)$		
Geschwindigkeit $1\frac{m}{s} = 3.6\frac{km}{h} = 1\frac{km}{h} = 0.277\frac{m}{s}$ Grad in Fahrenheit $T_F = \frac{9}{5} \cdot T_C + 32 \Rightarrow 0^{\circ}\text{C} = 32F \text{ und } 100^{\circ}\text{C} = 212F$ Grad in Kelvin $T_K = T_C + 273.15$ Bar in Pascal $1bar = 100'000\frac{N}{m^2} = 100'000Pa(=10^5)$ kWh in kJ $1kWh = 1000W \cdot 3600s = 3.6 \cdot 10^6Ws = 3.6MJ = 3600kJ = 3.6 \cdot 10^6J$ kcal in Joule $1kcal = 4184J$ Watt in PS $1KW = 1.36PS \text{ und } 1PS = 735.499W$ Bogenmass (rad) in Gradmass $2\pi \text{rad} = 360^{\circ}$	Volumen	$1cm^3 = (10^{-2}m)^3 = 10^{-6}m^3$
Grad in Fahrenheit $T_F = \frac{9}{5} \cdot T_C + 32 \Rightarrow 0^{\circ}\text{C} = 32F \text{ und } 100^{\circ}\text{C} = 212F$ Grad in Kelvin $T_K = T_C + 273.15$ Bar in Pascal $1bar = 100'000 \frac{N}{m^2} = 100'000Pa(=10^5)$ kWh in kJ $1kWh = 1000W \cdot 3600s = 3.6 \cdot 10^6Ws = 3.6MJ = 3600kJ = 3.6 \cdot 10^6J$ kcal in Joule $1kcal = 4184J$ Watt in PS $1KW = 1.36PS \text{ und } 1PS = 735.499W$ Bogenmass (rad) in Gradmass $2\pi \text{rad} = 360^{\circ}$	Fläche	$1cm^2 = (10^{-2}m)^2 = 10^{-4}m^2$
$T_K = T_C + 273.15$ Bar in Pascal $1bar = 100'000 \frac{N}{m^2} = 100'000 Pa (= 10^5)$ kWh in kJ $1kWh = 1000W \cdot 3600s = 3.6 \cdot 10^6Ws = 3.6MJ = 3600kJ = 3.6 \cdot 10^6J$ kcal in Joule $1kcal = 4184J$ Watt in PS $1KW = 1.36PS \text{ und } 1PS = 735.499W$ Bogenmass (rad) in Gradmass $2\pi \text{rad} = 360^\circ$	Geschwindigkeit	$1\frac{m}{s} = 3.6\frac{km}{h} = 1\frac{km}{h} = 0.277\frac{m}{s}$
Bar in Pascal $1bar = 100'000 \frac{N}{m^2} = 100'000 Pa (= 10^5)$ kWh in kJ $1kWh = 1000W \cdot 3600s = 3.6 \cdot 10^6Ws = 3.6MJ = 3600kJ = 3.6 \cdot 10^6J$ kcal in Joule $1kcal = 4184J$ Watt in PS $1KW = 1.36PS \text{ und } 1PS = 735.499W$ Bogenmass (rad) in Gradmass $2\pi \text{rad} = 360^\circ$	Grad in Fahrenheit	$T_F = \frac{9}{5} \cdot T_C + 32 \Rightarrow 0^{\circ}\mathrm{C} = 32F$ und $100^{\circ}\mathrm{C} = 212F$
kWh in kJ $1kWh = 1000W \cdot 3600s = 3.6 \cdot 10^6Ws = 3.6MJ = 3600kJ = 3.6 \cdot 10^6J$ kcal in Joule $1kcal = 4184J$ Watt in PS $1KW = 1.36PS$ und $1PS = 735.499W$ Bogenmass (rad) in Gradmass $2\pi \text{rad} = 360^\circ$	Grad in Kelvin	$T_K = T_C + 273.15$
kcal in Joule $1kcal = 4184J$ Watt in PS $1KW = 1.36PS \text{ und } 1PS = 735.499W$ Bogenmass (rad) in Gradmass $2\pi \text{rad} = 360^{\circ}$	Bar in Pascal	$1bar = 100'000 \frac{N}{m^2} = 100'000 Pa (= 10^5)$
Watt in PS $1KW = 1.36PS \text{ und } 1PS = 735.499W$ Bogenmass (rad) in Gradmass $2\pi \text{rad} = 360^{\circ}$	kWh in kJ	$1kWh = 1000W \cdot 3600s = 3.6 \cdot 10^6Ws = 3.6MJ = 3600kJ = 3.6 \cdot 10^6J$
Bogenmass (rad) in Gradmass $2\pi \text{rad} = 360^{\circ}$	kcal in Joule	1kcal = 4184J
	Watt in PS	1KW = 1.36PS und $1PS = 735.499W$
$\label{eq:Steigung} \text{Steigung in Prozent/Grad} \qquad \qquad \text{Steigungswinkel}(^\circ) = \arctan(Steigung(\%)/100)$	Bogenmass (rad) in Gradmass	$2\pi \text{rad} = 360^{\circ}$
	Steigung in Prozent/Grad	$Steigungswinkel(^\circ) = \arctan(Steigung(\%)/100)$

1.3 Planimetrie und Stereometrie

Trapez Fläche $A = \frac{a+c}{2} \cdot h$	Umfang $U = 2 \cdot h + a + c$
Dreieck Fläche $A = \frac{g \cdot h}{2}$ Cosinus $\cos(\alpha) = \frac{A}{H}$	Sinus $\sin(\alpha) = \frac{G}{H}$ Tangens $\tan(\alpha) = \frac{G}{A}$
Kreis Fläche $A = r^2 \cdot \pi$	Umfang $U = 2 \cdot r \cdot \pi$
${f Kreis}$ Fläche $A=rac{d^2\cdot\pi}{4}$ Mantelfläche $M=d\cdot\pi\cdot h$	Volumen $V = r^2 \cdot \pi \cdot h$ Oberfläche $O = M + 2 \cdot A$

Kegel

Fläche	$A = \frac{3 \cdot V}{h}$	Volumen	$V = \frac{A \cdot h}{3}$
Höhe	$h = \frac{3 \cdot V}{A}$		

1.4 Vektoren

- Beim Vektorprodukt entsteht ein neuer Vektor, der senkrecht auf den beiden Ausgangsvektoren steht, wenn diese linear unabhängig sind.
 - Spannen die beiden Ausgangsvektoren ein Parallelogramm auf, so ist der Betrag des Vektorprodukts gleich dem Flächeninhalt des Parallelogramms.
- Das Skalarprodukt zweier Vektoren ist null, wenn sie senkrecht zueinander stehen.
- Die Multiplikation zweier Vektoren (Skalarprodukt) ergibt eine reelle Zahl (Skalar)

$$\begin{array}{ll} \text{Vektorprodukt} \ / \ \text{Kreuzprodukt} & \vec{a} \times \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \times \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix} \,. \\ \\ \text{Eingeschlossener Winkel} & \sin(\alpha) = \frac{|\vec{a}| \, |\vec{b}|}{|\vec{a} \times \vec{b}|} \\ \\ \text{Skalarprodukt} & \vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z \\ \\ \text{Länge eines Vektors (Betrag)} & |\vec{a}| = \sqrt{\vec{a} \cdot \vec{a}} = \sqrt{a_x^2 + a_y^2 + a_z^2} \\ \\ \text{Eingeschlossener Winkel} & \cos(\alpha) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \, |\vec{b}|} \\ \end{array}$$

1.5 SI-Einheiten

Einheit	Zeichen	Einheit für
Ampere	A	elektr. Stromstärke
Coulomb	cd	elektr. Ladung
Grad Celsius	$^{\circ}C$	Temperatur
Hertz	$_{ m Hz}$	Frequenz
Joule	$J = N \cdot m = W \cdot s$	Energie, Arbeit, Wärmemenge
Kelvin	K	absolute Temperatur
Kilogramm	kg	Masse
Meter	m	Länge
Mol	mol	Stoffmenge
Newton	$N = \frac{kg}{m/s^2}$	Kraft
Ohm	$\Omega = \frac{V}{A}$	elektr. Widerstand
Pascal	$Pa = \frac{N}{m^2}$	Druck, Spannung
Sekunde	S	Zeit
Volt	$V = \frac{W}{A}$	elektr. Spannung
Watt	$W = \frac{J}{s}$	Leistung

2 Mechanik

2.1 Statik

2.1.1 Drehmoment

- Die wirksame Hebellänge wird begrenzt zwischen dem Drehpunkt und dem Ansatzpunkt der Kraft
- Mehrere Drehmomente im Gegenuhrzeigersinn (positives Vorzeichen) und im Uhrzeigersinn (Vorzeichen) sind im Gleichgewicht, wenn das Gesamtdrehmoment M_{tot} null ist.
- Hebelgesetz: Kraft \cdot Kraftarm = Last \cdot Lastarm
- Der Bezugspunkt P ist frei wählbar
- Das Drehmoment $(M = J\alpha)$ ist für die Rotation, die Kraft in der Translation (F = ma)

Hebelgesetz	$F_1 l_1 = F_2 l_2 \Leftrightarrow M_1 = M_2$	

Drehmoment $M = F \cdot r \cdot \sin(\varphi)$

Drehmoment $M = J \cdot \alpha$ Trägheitsmoment $J = mr^2$

Variable	Bedeutung	SI-Einheit
M	Drehmoment	Nm
F	wirkende Kraft	Nm
r	Abstand Bezugspunkt-Angriffspunkt	m
a	Hebelarm: senkrechter Abstand Bezugspunkt-Wirkungslinie der Kraft	m
P	Bezugspunkt: Frei wählbar	

$$M_A: F \cdot r \cdot \sin(\alpha) - mg \cdot \frac{r}{2} = 0$$

$$\Rightarrow F = \frac{mg}{2\sin(\alpha)}$$

$$X: F\cos(\alpha) - F_x = 0$$

$$Y: F\sin(\alpha) + F_y - mg = 0$$

$$\Rightarrow F_x = F\cos(\alpha) \text{ und } F_y = mg - F\sin(\alpha)$$

$$\Rightarrow F_t = F_1 + F_2$$

2.1.2 Gleichgewicht

• Ein Massenpunkt ist im Gleichgewicht wenn die Summe der Kräfte gleich null ist.

Kräftegleichgewicht
$$\vec{F}_{res} = \vec{F}_1 + \vec{F}_2 + ... + \vec{F}_n \Rightarrow \sum_{i=1}^n \vec{F}_i = \vec{0} \Rightarrow \sum_{i=1}^n \vec{M}_i = \vec{0}$$
Massenmittelpunkt $\sum_{i=1}^n \frac{r_i \cdot m_i}{r_i}$

Variable	Bedeutung	SI-Einheit	
m_i	Massenelemente		
r_i	Ortsvektoren der Massenelemente		

Die Summe muss mit Vektoraddition ausgerechnet werden. Nach Festlegung eines Koordinatensystems kann mit Komponenten der Vektoren gerechnet werden. In zwei Dimensionen erhalten wir somit zwei Gleichungen und können maximal zwei Unbekannte bestimmen.

$$X: F_1 \cos(\alpha) - F_2 \cos(\beta) - F_3 \sin(\gamma) = 0$$
$$Y: -F_1 \sin(\alpha) - F_2 \sin(\beta) + F_3 \cos(\gamma) = 0$$

2.1.3 Schwerpunkt

Die Gewichtskräfte eines Körpers ist gleich der Summe der Gewichtskräfte seiner Teilchen. Die Summe der Gewichtskräfte greift im Schwerpunkt an.

- \bullet Wenn ein Körper im Schwerpunkt aufgehängt wird, ist er im Gleichgewicht. Somit ist das Drehmoment um den Schwerpunkt = 0
- Die Schwerkraft, welche auf einen starren Körper wirkt, kann durch eine Kraft im Schwerpunkt ersetzt werden. $r_p \sum_i m_i = \sum_i m_i r_i$

2.2 Kinematik

- Man unterscheidet zwei Arten von Bewegungen
 - Translation (geradlinige Bewegung)
 - Rotation (Drehbewegung)
- Die meisten Kinematikaufgaben können am einfachsten mit einem v-t Diagramm gelöst werden. Die Fläche unter der Kurve stellt die Geschwindigkeit dar. Die Steigung der Kurve ist die Beschleunigung.

2.2.1 Translation

Art	Geschwindigkeit v	Beschleunigung a
gleichförmig	konstant	0
gleichmässig beschleunigt	ändert sicht gleichmässig	konstant
ungleichmässig beschleunigt	ändert sich ungleichmässig	ändert sich

Konstante Geschwindigkeit (gleichförmig)

Geschwindigkeit	$v = \frac{s}{2}$	Strecke	$s = v \cdot t + s_0$	Zeit $t = \frac{s}{a}$
Geschwindighen	U — +	Durcenc	3 - 0 + 0 = 0	$L_{CIU} = v - v$

Konstante Beschleunigung (gleichmässig)

Strecke

Constante	Beschieun	iguing (giciciiiiussig)	
		Ohne Anfangsgeschwindigkeit	Mit Anfangsgeschwindigkeit
Beschleun	igung	$a = \frac{\Delta v}{\Delta t} = \frac{v^2}{2s} = \frac{2s}{t^2}$	$a = \frac{v^2 - v_0^2}{2s}$
Geschwine	digkeit	$v = a \cdot t = \sqrt{2as}$	$v = \sqrt{2a(s - s_0) + v_0^2} = a \cdot t + v_0$
Ø Geschw	indigkeit	$v_m = \frac{v_1 + v_2}{2} = \frac{at}{2} = \frac{s}{t}$	
Strecke		$s = \frac{vt}{2} = \frac{at^2}{2} = \frac{v^2}{2a}$	$s = \frac{1}{2}at^2 + v_0t + s_0 = \frac{v^2 - v_0^2}{2a}$
Zeit		$t = \frac{v}{a} = \sqrt{\frac{2s}{a}}$	
Variable	Bedeutu	ng	SI-Einheit
v	Geschwi	ndigkeit	$rac{m}{s}$
a	Beschleu	nigung	$\frac{m}{s^2}$
t	Zeit		s

2.2.2 Rotation

- ullet Eine Rotation heisst gleichförmig, wenn die Winkelgeschwindigkeit ω konstant ist.
- Die Tangentialgeschwindigkeit $(\vec{v} = \omega r)$ ist die Geschwindigkeit die in der Rotation gerade aus geht

Konstante Geschwindigkeit (gleichförmig)

Winkelgeschwindigkeit	$\omega = \frac{\varphi}{t} = 2\pi f$	Rotationswinkel	$\varphi = \omega \cdot t$
Zeit	$t = \frac{\varphi}{\omega}$	Drehzahl	$n = \frac{z}{t} = \frac{1}{T} = \frac{\omega}{2\pi}$
Periodendauer	$T = \frac{1}{n} = \frac{2\pi r}{v} = \frac{2\pi}{\omega}$	Anz. Umdrehungen	$N = \frac{\varphi}{2\pi}$

Konstante Beschleunigung (gleichmässig)

	Ohne Anfangsgeschwindigkeit	Mit Anfangsgeschwindigkeit
Winkelbeschleunigung	$\alpha = \frac{\omega}{t} = \frac{2\varphi}{t^2} = \frac{\omega^2}{2\varphi}$	$\alpha = \frac{\omega^2 - \omega_0^2}{2\varphi}$
Winkelgeschwindigkeit	$\omega = \alpha t = \sqrt{2\alpha\varphi}$	$\omega = \alpha t + \omega_0 = \sqrt{2\alpha\varphi + \omega_0^2}$
\emptyset Winkelgeschwindigkeit	$\omega_m = \frac{\alpha t}{2} = \frac{\varphi}{t}$	
Rotationswinkel	$\varphi = \frac{\omega t}{2} = \frac{\omega^2}{2\alpha} = \frac{\alpha t^2}{2} = \frac{s}{r} = 2\pi N$	$\varphi = \frac{(\omega_0 + \omega_1)t}{2} = \frac{\omega^2 - \omega_0^2}{2\alpha} = \frac{\alpha t^2}{2} + \omega_0 t + \varphi_0$

Umrechnung Translation und Rotation

Geschwindigkeit	$v = r \cdot \omega$	Beschleunigung	$a = r \cdot \alpha$	Strecke	$s = r \cdot \varphi$
Winkelgeschwindigkeit	$\omega = \frac{v}{r}$	Winkelbeschleunigung	$\alpha = \frac{a}{r}$	Rotationswinkel	$\varphi = \frac{s}{r}$

Variable	Bedeutung	SI-Einheit
φ	Rotationswinkels	rad (Bogenmass)
ω	Winkelgeschwindigkeit	$\frac{rad}{s}$
α	Winkelbeschleunigung	$\frac{rad}{s^2}$
n = f	Drehzahl rsp. Umdrehungsfrequenz	$\frac{1}{s} = Hz$
N	Anzahl ausgeführte Umdrehungen	
T	Periodendauer, Umlaufdauer	s
t	Zeit die für die Drehung um den Winkel φ benötigt wird	s
s	Weg beim Umfang	m
r	Radius	m
z	Anzahl der Umdrehungen während der Zeit t	

2.2.3 Fall und Wurf

Freier Fall

ullet Beim freien Fall wird eine gleichmässig beschleunigte Bewegung durch die Erdanziehung hervorgerufen. (a=q und s=h)

Höhe
$$h = \frac{vt}{2} = \frac{gt^2}{2}$$

Geschwindigkeit
$$v = gt = \sqrt{2gh}$$

Zeit
$$t = \sqrt{\frac{2h}{g}}$$

Schiefer Wurf

• 45° ist der optimale Winkel, falls keine Höhe überwunden werden muss!

Bahngleichung des Schiefen Wurfs:

$$y = x \cdot tan(\varphi) - \frac{gx^2}{2v_0^2 \cos^2(\varphi)}$$

Strecke in X

$$s_x = v_0 t \cos(\alpha)$$

Strecke in Y

$$s_y = v_0 t \sin(\alpha) - \frac{gt^2}{2}$$

Maximale Wurfhöhe

$$y_{max} = \frac{v_0^2 \cdot \sin^2(\alpha)}{2g}$$

Maximale Wurfweite

$$d = \frac{v_0^2 \cdot \sin(2\alpha)}{g}$$

Momentan Geschwindigkeit

$$v(t) = \sqrt{v_0^2 + g^2 t^2 - 2v_0 \sin(\alpha)gt}$$

Distanz bis zur maximale Höhe

$$x_{ymax} = \frac{v_0^2 \sin^2(\alpha) \cos(\alpha)}{g} = \frac{d}{2}$$

Y für bekanntes X

$$y = \tan(\alpha) \cdot x - \frac{g}{2 \cdot v_0^2 \cos^2(\alpha)} \cdot x^2$$

Horizontale Geschwindigkeit

$$v_x = v_0 \cdot cos(\alpha)$$

Vertikale Geschwindigkeit

$$v_y = v_0 \cdot \sin(\alpha) - gt$$

Variable	Bedeutung	SI-Einheit
α	Abwurfwinkel	$\operatorname{Grad}^{\circ}$
g	Fallbeschleunigung	$\frac{m}{s^2}$
v_0	Betrag der Anfangsgeschwindigkeit	$\frac{m}{s}$
t	Zeit	s

Senkrechter Wurf und Horizontaler Wurf

- \bullet Beim senkrechten Wurf gelten die Formeln des Schiefen Wurfs mit dem Winkel $\varphi=90^\circ$
- \bullet Beim horizontale Wurf gelten die Formeln des Schiefen Wurfs mit dem Winkel $\varphi=0^\circ$

2.3 Dynamik

Die Dynamik behandelt die Kräfte als Ursache von Bewegungsabläufen. Man unterscheidet dabei die Dynamik der Translation und Rotation. (Merke: Kraft = Gegenkraft!)

2.3.1 Kräfte

- Die Haft und Gleitreibung ist unabhängig von der Fläche
- Bei der schrägen Ebene wählt man das Koordinaten-System mit Vorteil parallel zur Gleitebene
- \bullet Körper von 1kg mit $1\frac{m}{s^2}$ beschleunigen = Es wirkt eine Kraft von 1N
- \bullet Beschleunigungskraft in der Schiefen Ebene: $F_B=F_H-F_G$

Kraft	$F = m \cdot a$	Kraft in Wegrichtung	$F_s = F\cos(\alpha)$
Gewichtskraft	$F_G = mg$	Federkraft (Hookesches Gesetz)	$F_F = k \cdot s$
Haftreibungskraft (max)	$F_R \le \mu_H \cdot F_N$	Gleitreibungskraft	$F_R = \mu_G \cdot F_N$
Normalkraft	$F_N = mg \cdot \cos(\alpha)$	${\bf Hangabtriebskraft}$	$F_H = F_G \cdot \sin(\alpha)$
Zentripetalkraft	$F_r = \frac{mv^2}{r} = m\omega^2 r = p\omega$	Zentrifugalkraft	$F_Z = \frac{mv^2}{r} = m\omega^2 r = p\omega$
Gravitationskraft	$F_G = G \cdot \frac{m_1 m_2}{-2}$		

Variable	Bedeutung	SI-Einheit
F	Kraft	$N = \frac{kg \cdot m}{s^2}$
k	Federkonstante	$\frac{N}{m}$
s	Längenänderung	m
μ_G	Gleitreibungszahl	
μ_H	Haftreibungszahl	
G	Gravitationskonstante = $6.67 \cdot 10^{-11}$	$\frac{m^3}{kgs^2}$

Netwonsche Axiome

Arbeit $W = \vec{F} \cdot \vec{s} = |\vec{F}| |\vec{s}| \cos(\alpha)$

I Axiom	Trägheitsprinzip	$\vec{v} = const$, wenn $\vec{F}_{res} = \vec{0}$
II Axiom	Aktionsprinzip	$ec{F}_{res} = m ec{a}$
III Axiom	Wechselwirkungsprinzip	$ec{F}_{12} = -ec{F}_{21}$

2.3.2 Arbeit

	, .	
Variable	Bedeutung	SI-Einheit
\overline{W}	Arbeit	Nm = J

•	1110010	1	-
3	Wegstrecke	m	

2.3.3 Energie

- Die Energie ist eine Zustandsgrösse eines Systems, die zunimmt, wenn von aussen Arbeit am System verrichtet wird, und die abnimmt, wenn das System nach aussen Arbeit verrichtet.
- ullet Energieerhaltungssatz: Die Gesamtenergie E_{tot} in einem abgeschlossenen System hat einen konstanten Wert, der von Vorgängern im Symsten nicht beeinfluss wird.
- Die Ausdehnung einer Feder ist proportional zur Kraft
- \bullet Rollen auf der schiefen Ebene: $E_{pot} = E_{kin} + E_{rot}$

Energie	$E = P \cdot t$	Rotationsenergie	$E_{rot} = \frac{J}{2} \cdot \omega^2$
Kinetische Energie	$E_{kin} = \frac{1}{2}mv^2$	Potentielle Energie	$E_{pot} = F_G \cdot h = mgh$
Federenergie	$E_f = \frac{F \cdot s}{2} = \frac{k \cdot s^2}{2}$	Federkonstante	$k = \frac{F}{s}$

Va	ariable	Bedeutung	SI-Einheit
E		Energie	$J = Nm = Ws = \frac{kgm^2}{s^2}$
k		Federkonstante	$\frac{N}{m}$
s		Strecke welche die Feder ausgedehnt wird	m
J		Trägheitsmoment	$J = kg \cdot m^2$

 $E_{pot} = E_f + E_{kin}$

 $v_{Kehrpunkt} = 0$

2.3.4 Leistung

mittlere L	eistung $\bar{P} = \frac{W}{t}$	Wirkungsgrad	$\eta = \frac{\Delta E_{ab}}{\Delta E_{zu}} = \frac{\Delta P_{ab}}{\Delta P_{zu}} < 1$
Momenta	nleistung $P = F \cdot v$		
Variable	Bedeutung		SI-Einheit
P	Leistung		$W = \frac{J}{s} = \frac{kg \cdot m^2}{s^3}$
E_{ab}	abgegebene Nutzenergie		J
E_{zu}	aufgenommene Energie		J
W	verrichtete Arbeit		J
F	Momentankraft		N
v	Momentangeschwindigkeit		$\frac{m}{s^2}$

2.3.5 Impuls und Stoss

- Impulserhaltungssatz In einem abgeschlossenen System bleibt der Impuls erhalten. Wenn nur Kräfte zwischen zwei Körpern wirken (Kraft = Gegenkraft) bleibt der Impuls erhalten. Die Bewegung des Schwerpunktes ändert sich nicht durch die Kollision.
- Elastischer Stoss (z.B Billiardkugel) nach dem Stoss bleibt die kinetische Energie unverändert. Der Energieerhaltungssatz für die Bewegungsenergie sowie der Impulserhaltungssatz gilt. Es geht keine Energie verloren. Der Impuls vor dem Stoss = Impuls nach dem Stoss
 - bewegen sich zwei Objekte aufeinander zu, ist eine Geschwindigkeit vor dem Zusammenstoss negativ.
- Unelastischer Stoss (z.B Autounfall) nach dem Stoss ist die kinetische Energie kleiner. (wird in Wärme und Verformungsenergie umgewandelt) (nur der Impulserhaltungssatz gilt: $p_1 + p_2 = p_1' + p_2'$)

Impuls	$\vec{p}=m\vec{v}$	Kraftstoss	$\vec{I} = \Delta \vec{p} = \vec{F} \Delta t = m \Delta \vec{v}$
Elastischer Stoss (Obj 1)	$v_1' = \frac{(m_1 - m_2) \cdot v_1 + 2m_2 v_2}{m_1 + m_2}$	Elastischer Stoss (Obj 2)	$v_2' = \frac{(m_2 - m_1) \cdot v_2 + 2m_1 v_1}{m_2 + m_1}$
Unelastischer Stoss	$v_1' = v_2' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$	Verformungsarbe	$\operatorname{eit} W = E_1 - E_2 = \frac{m_1 m_2}{2(m_1 + m_2)} (v_1 - v_2)^2$

Variable	Bedeutung	SI-Einheit
$ec{I}$	Kraftstoss	$Ns = \frac{kg \cdot m}{s}$
$ec{p}$	Impulsänderung	$Ns = \frac{kg \cdot m}{s}$
m	Masse des Körpers	kg
Δv	Geschwindigkeitsänderung	$\frac{m}{s}$
F	beschleunigte konstante Kraft	N
Δt	Dauer der Krafteinwirkung	s
v^{\prime}	Geschwindigkeit des Körpers nach dem Stoss	$\frac{m}{s}$
v	gemeinsame Geschwindigkeit beider Körper nach dem Stoss (unelastisch)	$\frac{m}{s}$
W	Verformungsarbeit	J
E_1	Summe der Bewegungsenergie beider Körper vor dem Stoss	J
E_2	Summe der Bewegungsenergie beider Körper nach dem Stoss	J

2.3.6 Dynamik der Drehbewegung

- Zentripetalkraft (Ursache für Zentralbewegung) und Zentrifugalkraft (Fliehkraft) sind gleich gross, aber entgegengerichtet.
- Trägheitsmoment: Bei einem drehbaren Körper ist das Verhältnis von wirkendem Drehmoment zur erzielten Winkelbeschleunigung eine konstante Grösse, dem Trägheitsmoment.

Trägheitsmoment	$J=r^2\Delta m$	Trägheitsmoment	$J = \sum_{i=1}^{n} r_i^2 \Delta m_i$
Zentripetalkraft	$F_r = F_z = \frac{mv^2}{r} = m\omega^2 r = p\omega$	Zentripetalbeschl	$a_r = a_z = r\omega^2 = \frac{v^2}{r}$
Rotationsleistung	$P = M\omega$	Rotationenergie	$E_{rot} = \frac{J\omega^2}{2}$
Drehmoment	$M = J\alpha$	Rotationsarbeit	$W = M\varphi$
Drehimpuls	$L = J\omega = M \cdot t = r \cdot p$	Drehimpuls einer Punktmasse	$\Delta M = \frac{\Delta L}{\Delta t}$

Variable	Bedeutung	SI-Einheit
J	Trägheitsmoment	$J = kg \cdot m^2$
m	Masse eines dünnen Kreisringes (Umfang)	kg
r	einheitlicher Abstand aller Massenelemente von der Drehachse	m
m_i	Massenelement	kg
P	Leistung	W
p	Impuls des Körpers	$N \cdot s$
M	Drehmoment, das die Drehung verursacht	$N\cdot m$
ω	Winkelgeschwindigkeit des Körpers	$\frac{rad}{s} = \frac{1}{s}$
L	Drehimpuls des rotierenden Körpers	$\frac{kg \cdot m^2}{s} = N \cdot m \cdot s$
α	Winkelbeschleunigung	$\frac{rad}{s^2} = \frac{1}{s^2}$

2.4 Hydrostatik

- Druck ist Kraft pro Fläche
- Das Gesetz von Pascal: Der Druck ist eine skalare Grösse und auf jede Fläche gleich.
- Hydraulische Presse: Der Druck ist überall gleich. Die Kraft auf den Kolben ist proportional zur Fläche.
- Hydrostatischer Druck: Der Druck nimmt mit der Wassertiefe zu (≈ 1 bar pro 10m Tiefe).
- Der mittlere Luftdruck der Atmosphäre auf Meereshöhe beträgt $101'325Pa \approx 1bar$.

Dichte	$ ho = \frac{m}{V}$	Druck (Druckkraft)	$p = \frac{F}{A}$
Auftriebsl	$\operatorname{kraft} F_A = \rho_F \cdot g \cdot V_K$	Schweredruck / Tiefendruck	$p = \rho g h + p_0$
Gewichtsk	$\operatorname{raft} F_G = \rho_K \cdot g \cdot V_K$	Masse	$m = \rho \cdot V$
Variable	Bedeutung		SI-Einheit
p	Druck		$1Pa = 1\frac{N}{m^2} = 1\frac{kg}{m \cdot s^2}$
F	Kraft		N
A	Fläche		m^2
F_A	Auftriebskraft		N
V_K	eingetauchtes Volumen (Körpe	r), der verdrängten Flüssigkeit	m^3
ho	Dichte des Körpers		$rac{kg}{m^3}$
m	Masse der verdrängten Flüssigl	keit	kg
g	Fallbeschleunigung		$\frac{m}{s^2}$

Hydrostatische Presse

$$F_{1} = pA_{1}$$

$$F_{2} = pA_{2}$$

$$\frac{F_{1}}{A_{1}} = \frac{F_{2}}{A_{2}} \Rightarrow F2 = \frac{A_{2}}{A_{1}}F_{1}$$

Die Druckverteilung auf einen Körper erzeugt Auftrieb. Die benötigte Seilkraft, um ein Gewicht zu halten, ist somit.

$$F_s = mg - \rho_f \cdot g \cdot V_E = (\rho_k - \rho_f) \cdot g \cdot V_E$$

Wenn die Dichte des Körpers ρ_k kleiner als die des Fluids ρ_f (z.B Holzklotz im Wasser) wird die Kraft negativ, d.h. die Gewichtskraft ist nicht gross genug damit der Klotz untertaucht.

2.4.1 Strömungen

- Die Ausflussgeschwindigkeit ist so gross wie nach einem freien Fall aus der Höhe h. Der Luftdruck (1bar) ist ohne Wirkung, weil er beidseitig wirkt.
- Der Massenfluss einer Strömung ist erhalten. Somit gilt $\dot{m} = \rho_1 v_1 A_1 = \rho_2 v_2 A_2$

Ausflussgeschwindigkeit	$v_2 = \sqrt{2gh}$	Kontinuitätsgleichung	$A_1v_1 = A_2v_2$
Volumenstrom	$\dot{V} = Av = \frac{V}{t} = \frac{\pi \cdot r^4}{8 \cdot \eta} \frac{\Delta p}{l}$	Druckdifferenz	$\Delta p = \rho \cdot g \cdot h$

Variable	Bedeutung	SI-Einheit
\dot{V}	Volumenstrom $\left(\frac{1000l}{1min} = \frac{1m^3}{60s}\right)$	$\frac{m^3}{s}$
v	mittlere Geschwindigkeit	$\frac{m}{s}$
r	Innernradius des Rohrs	m
l	Länge des Rohrs	m
η	dynamische Viskosität der strömenden Flüssigkeit	$Pa \cdot s$
ho	Dichte	$\frac{kg}{m^3}$
Δp	Druckdifferenz zwischen Anfang und Ende des Rohres	$Pa = \frac{N}{m^2} = \frac{kg}{m \cdot s^2}$

2.4.2 Bernoulli-Gleichung

 p_1

- Die Bernoulli Gleichung wird als grundlegende Formel der Strömungslehre bezeichnet. Sie zeigt die Zusammenhänge zwischen Strömung und Energieerhaltung.
- Bei der stationären Strömung viskositätsfreier inkompressibler Fluide (Flüssigkeiten und Gase) besagt sie, dass die spezifische Energie der Fluidelemente entlang einer Stromlinie konstant ist.
- Die Summe aus statischem Druck p, Schweredruck $\rho g h$ und dynamischem Druck $\frac{\rho}{2} v^2$ ist an jeder Stelle einer Stromlinie konstant.
- Statischer Druck folgt aus der potentiellen Energie der unter Druck stehenden Flüssigkeit
- Dynamischer Druck folgt aus der kinetischen Energie der Strömung

Statischer Druck an der Stelle 1

• Der Umgebungsdruck ist $1.013 \cdot 10^5 \frac{N}{m^2}$ und die Dichte von Wasser $1000 \frac{kg}{m^3} = 1 \frac{kg}{l}$

Bernoulli-Gleichung	$p_1 + \frac{\rho}{2}v_1^2 + \rho g h_1 = p_2 + \frac{\rho}{2}v_2^2 + \rho g h_2$
Bernoulli-Gleichung (gleiche Höhe der Strömung)	$p_1 + \frac{\rho}{2}v_1^2 = p_2 + \frac{\rho}{2}v_2^2$
Torricelli Gleichung (mit Druckunterschied)	$v_2 = \sqrt{2gh + \frac{p1 - p2}{\rho}}$
Variable Bedeutung	SI-Einheit

$$V = \sqrt{\frac{2a^2 \Delta p}{\rho(A^2 - a^2)}} = \sqrt{\frac{2a^2 \rho_w gh}{\rho(A^2 - a^2)}}$$
$$v_1 = \sqrt{\frac{2\Delta p}{\omega[(\frac{A_1}{A_2})^2 - 1]}}$$

2.4.3 Laminare und Turbulente Strömung

• Die dimensionslose Reynolds-Zahl entscheidet, ob eine Strömung Laminar oder Viskos ist. Eine Rohrströmung ist laminar für Re<2400.

Rohrreibungszahl	$\lambda = \frac{D}{\rho \cdot v^2} \frac{2dp}{dx}$	Reynoldszahl	$Re = \frac{\rho \cdot v \cdot d}{\eta}$
Reibungszahl (laminar)	$\lambda_l = \frac{64}{Re}$	Reibungszahl (turbulent)	$\lambda_t = \frac{0.3164}{Re^{1/4}}$
Innere Reibungskraft	$F_R = \frac{\eta A v}{d}$	Druckabfall im Rohr	$\Delta p = \lambda \frac{\rho v^2}{2} \frac{l}{D}$

Variable	Bedeutung	SI-Einheit
D	Rohrdurchmesser	m
v	mittlere Strömungsgeschwindigkeit	$\frac{m}{s}$
ho	Dichte	$\frac{kg}{m^3}$
d	charakteristische Länge	m
η	dynamische Viskosität der strömenden Flüssigkeit	$Pa \cdot s$
A	Berührungsfläche	

2.4.4 Strömungswiderstand

- C_w ist eine dimensionslose Zahl, welche die aerodynamischen Eigenschaften des Körpers beschreibt. (z.B Auto, Kugel, Quader, Tropfen)
- \bullet Der Widerstandsbeiwert und der Auftriebsbeiwert eines Tragflügels sind von der Form des Flügels und von dem Anstellwinkel α abhängig.
- \bullet Der Gleitwinkel ϕ gibt an, wie schnell das Flugzeug im Gleitflug an Höhe verliert.

Strömungswiderstand	$F_W = c_W \frac{\rho}{2} v^2 A$	Strömungsleistung	$P = c_W A \frac{\rho}{2} v^3$
Dynamischer Auftrieb	$F_A = c_A \frac{\rho}{2} v^2 A$	Gleitwinkel	$\tan(\phi) = \frac{c_W}{c_A}$

Variable	Bedeutung	SI-Einheit
F_W	Strömungswiderstand	N
c_W	Widerstandsbeiwert	dimensionslos
A	grösster Köperquerschnitt senkrecht zur Strömung	m
ho	Dichte	$\frac{kg}{m^3}$
v	Relativgeschwindigkeit	$\frac{m}{s}$
ϕ	Gleitwinkel	

3 Thermodynamik

- Die spezifische Wärmekapazität eines Stoffes gibt an, wieviel Energie zugeführt werden muss, um die Temperatur von 1 kg des Stoffes um 1°C zu erhöhen.
- Die Temperatur ist ein Maß für die Bewegungsenergie der sich ungeordnet bewegenden Atome eines Systems.
- Wärme ist die Energie, die zwischen einem System und seiner Umgebung aufgrund eines Temperaturunterschieds ausgetauscht wird.

Klassifizierung

Bezeichnung	Systemgrenze ist offen für	Beispiel
Offen	Energie und Materie	Verbrennung
Geschlossen	Energie	Wärmepumpe
Abgeschlossen	nichts	Thermosflasche
Adiabatisch	Mechanische Arbeit (aber keine Wärme)	Schnelle Vorgänge (z.B. Kompression)

- **0.** Hauptsatz Wenn zwei Körper die gleiche Temperatur haben, befinden sie sich in einem thermischen Gleichgewicht
- 1. Hauptsatz Die Energie eines abgeschlossenen Systems ist erhalten. Die Innere Energie eines Systems kann durch Zufuhr von Arbeit oder durch Zufuhr von Wärme erhöht werden.
 - 1. In einem abgeschlossenen System bleibt die Gesamtenergie konstant.
 - 2. Energie kann nicht erzeugt, sondern nur umgewandelt und übertragen werden.
 - 3. Es gibt kein Perpetuum mobile 1. Art.

1. Haupts	satz $\Delta U = Q + W$	Kompressionsarbeit	$W = -p\Delta V$	
Variable	Bedeutung			SI-Einheit
ΔU	Änderung der inneren Energie eines Systems			
Q	Energieaustausch mit der Umgebung in Form von Wärme			
W	Energieaustausch mit der Umgebungin Form von Arbeit			

- 2. Hauptsatz Die Entropie eines abgeschlossenen Systems kann nie abnehmen
 - 1. Wärme fliesst von selbst nur von einem heißen System zu einem kalten System.
 - 2. Keine zyklisch arbeitende Einrichtung kann Wärme vollständig in mechanishce Nutzenergie umwandeln; d.h., es gibt kein Perpetuum mobile 2. Art
 - 3. Abgeschlossene Systeme streben einen Zustand maximaler Unordnung bzw. grösster Wahrscheinlichkeit an. (Prinzip der max. Entropie)
- 3. Hauptsatz Der absolute Nullpunkt der Temperatur -273, 16°C (das sind 0 Kelvin) ist unerreichbar.

3.1 Temperatur

3.1.1 Temperaturskalen

• Die Kelvin Skala hat ihren Nullpunkt bei der tiefsten Temperatur die theoretisch möglich ist. (absoluter Nullpunkt)

Fixpunkt	Celcius	Kelvin	Fahrenheit
Gefrierpunkt	$0 \circ C$	273.15 K	32 F
Siedepunkt	$100 \circ C$	$373.15~\mathrm{K}$	212 F

3.2 Gasgesetze

- Das **Gesetz von Boyle-Mariotte** besagt: Bei konstanter Temperatur verhalten sich die Volumen umgekehrt wie die zugehörigen absoluten Drücke (umgekehrt proportional)
- Das Gesetz von Gay-Lussac besagt: Bei konstantem Volumen verhalten sich die absoluten Drücke gleich wie die zugehörigen absoluten Temperaturen (proportional) ⇒ konstantes Volumen = Isochore

Zustandsgleichung des idealen Gases	$pV = nRT = Nk_BT$	Spezifische ichung	Gasgle-	$p = \rho R_s T$
Boyle-Mariotte (konst Temperatur)	$\frac{V_1}{V_2} = \frac{p_1}{p_2} \Rightarrow pV = konst.$	Gay-Lussac Volumen)	(konst	$\frac{p_1}{p_2} = \frac{T_1}{T_2} \Rightarrow \frac{p}{T} = konst.$
Molzahl	$n = \frac{m}{M}$	Gaskostante		$N_A \cdot k_B$
Variable Bedeutung				SI-Einheit
p Absolutdruc	k			bar

Variable	Bedeutung	SI-Einheit
\overline{p}	Absolutdruck	bar
V	Volumen	m^3
n	Molzahl	
N	Anzahl Teilchen	
R	Gaskonstante	$8.314 \frac{J}{mol \cdot K}$
k_B	Bolztmannkonstante	$1.381\cdot 10{-23}\tfrac{J}{K}$
T	Temperatur	Kelvin

Beispiel Kompression von Gasen

Die Kompression eines Gases erfordert Arbeit.

$$dW = -p \cdot dV$$

$$W = -\int_{V_1}^{V_2} p \cdot dV$$

Um das Integral berechnen zu können, brauchen wir den Druck in Abhängigkeit vom Volumen. Bei einer **isothermen** Kompression bleibt die Temperatur konstant. Aus dem idealen Gasgesetz haben wir:

$$p(V) = \frac{nRT}{V} \Rightarrow W = nRT \ln(\frac{V_1}{V_2})$$

3.3 Stoffmenge

- \bullet Das Gewicht von Atomen und Molekülen wird in atomic mass units (u)angegeben. $1u=1.660538782(83)\cdot 10^{-27}kg$
- Es gilt $1g = N_A \cdot u$
- Die Masse eines Kohlenstoffatoms (C) ist etwa 12 u. Somit wiegt ein Mol Kohlenstoff etwa 12 g.

Teilchenza	$N = n \cdot N_A$	Stoffmenge	$n = \frac{m}{M}$	
molare Ma	asse $M = N_A \cdot m_T$	molares Volumen	$V_m = \frac{V}{n}$	
Variable	Bedeutung			SI-Einheit
\overline{n}	Stoffmenge			mol
N_A	${\bf Avogadro~Konstante}={\bf 1}{\bf mol}$			$6.02214 \cdot 10^{23} \frac{1}{mol}$
N	Teilchenzahl			mol^{-1}
m	Gasmasse			kg
M	molare Masse			$rac{kg}{mol}$
m_T	Masse eines Teilchen			

3.4 Wärmeenergie

• Wenn ein Gas erwärmt wird, dehnt es sich aus. Ein Teil der zugeführten Energie wird deshalb für die Expansionsarbeit aufgewendet. Somit braucht die Erwärmung eines Gases mehr Energie.

_				
	Wärmekapazität	$C = \frac{Q}{\Delta T}$	Wärmekapazität (spezifisch)	$c = \frac{C}{m}$
	Wärmekapazität (molar)	$C_M = \frac{C}{n}$	Wärmemenge	$Q=c\dot{m}\Delta T$
	Kondensatons, Schmelzwärme	$\dot{Q}_s = \dot{m}_D q_s$	Wirkungsgrad	$\eta = \frac{\dot{Q}_L}{\dot{Q}_A} < 1$
	Wärmekapazität (Gasen)	$c_p = c_v + R_i$	Adiabatenexponenten	$\kappa = \frac{c_p}{c_v}$

Variable	Bedeutung	SI-Einheit	
\overline{Q}	Wärmemenge	kJ	
C	Wärmekapazität	$\frac{J}{K}$	
C_m	molare Wärmekapazität		
c	spezifische Wärmekapazität		
c_p	spezifische Wärmekapazität bei konstantem Druck		
c_v	spezifische Wärmekapazität bei konstantem Volumen		
R_i	spezielle Gaskonstante		
n	Stoffmenge		
ΔQ	Verhältnis der zugeführten Wärme		
ΔT	damit bewirkte Temperaturänderung		
m	Masse		
\dot{m}_D	produzierte Dampf Masse		
\dot{q}_s	Verdampfungswärme / Schmelzwärme	$\frac{kJ}{kg}$	
\dot{Q}_L	Wärmeleistung	$\frac{kJ}{s} = kW$	
\dot{Q}_A	Wärmebelastung	$\frac{kJ}{s} = kW$	

Äquipartitionstheorem

• Die Wärmekapazität ist von der Anzahl Freiheitsgrade abhängig. In der klassischen Physik gilt das Äquipartionstheorem

Wärmeka	pazität $C = \frac{f}{2}Nk_B = \frac{f}{2}nR$	
Variable	Bedeutung	SI-Einheit
f	Anzahl Freiheitgrade bei Molekülen $(x,y,z=3)$	
f	Anzahl Freiheitgrade kristalliner Festkörper (6)	
N	Anzahl Teilchen (Atome oder Moleküle)	

3.4.1 Wärmeübertragung

- Durch direkten Kontakt: Wärmeleitung (Beispiel: Hand kaltes Metall)
- Durch Strahlung: Wärmestrahlung (Beispiel: Sonne, Lebewesen)
- Durch Transport von Materie: Konvektion (Beispiel: Thermik)

Variable Bedeutung SI-Einheit Emissionsgrad (0 (perfekter Spiegel)-1 (Schwarzer Körper)

Stefan-Boltzmann-Konstante

AOberfläche des abstrahlenden Körpers

Tabsolute Temperatur des abstrahlenden Körpers

3.5 Aggregatszustände

Wärmestrahlung $\dot{Q} = \varepsilon \sigma A T^4$

• Die meisten Substanzen kommen in unterschiedlichen Aggregatszuständen (Phasen) vor: Fest, Flüssig und Gas. Mit den Phasenübergängen ist eine latente Wärme verbunden

Beispiel: Wasser

Wärmekapazität = $C_v = 4.187 \frac{kJ}{kg} kJ$ Schmelzwärme = $Q_f = 334 \frac{kJ}{kq}$ Verdampfungswärme = $Q_s = 2256 \frac{kJ}{ka}$

3.5.1 Luftfeuchtigkeit

- Der Dampfdruck von Wasser ist eine eindeutige Funktion der Temperature $p_S(T)$
- Der Dampfdruck entscheidet, wann Wasser kocht und definiert den Sättigungsdruck für Wasserdampf. Somit kann auch der Taupunkt berechnet werden

Taupunkt	$f_r p_s(T) = p_s(T_t)$	
Variable	Bedeutung	SI-Einheit
f_r	relative Luftfeuchtigkeit	
T_t	Temperatur des Taupunktes	

3.6 Zustandsänderung des idealen Gases

- Der 1. Hauptsatz der Wärmelehre gilt.
- Die innere Energie eines idealen Gases ist nur von der Temperaturänderungen abhängig

Änderung der inneren Energie $\Delta U = Q + W$ Innere Energie des idealen Gases $U = c_V mT$					
Zustandsänderung	Wärmeenergie	Arbeit	Änderung der inneren Energie		
Isochor	$\Delta Q = \Delta U$	$\Delta W = 0$	$\Delta U = c_V m \Delta T$		
Isobar	$\Delta U = c_P m (T_2 - T_1)$	$W = -p(V_2 - V_1)$	$\Delta U = c_V m \Delta T$		
Isotherm	Q = -W	$W = nRT \ln(\frac{V1}{V2})$	$\Delta U = 0$		
Adiabatisch $(pV^{\kappa} = const)$	Q = 0	$W = \Delta U$	$\Delta U = c_V m \Delta T$		
Variable Bedeutung			SI-Einheit		
Q mit der Umge	mit der Umgebung ausgetauschte Wärmeenergie				
W am System ve	am System verrichtete mechanische Arbeit				
c_p spezifische Wä	spezifische Wärmekapazität bei konstantem Druck				
m Masse des Gas	Masse des Gases				

3.6.1 Thermischer Wirkungsgrad des Carnot-Prozesses

• Wir betrachten einen Maschine, welche Wärme von einem heissen Reservoir transportiert und gleichzeitig Arbeit leistet (Dampfmaschine, Stirling-Motor)

Carnot Wirkungs		Wirkungsgrad	$ \eta = \frac{Q_{zu} + Q_{ab}}{Q_{zu}} = 1 - \frac{Q_{ab}}{Q_{zu}} \le 1 - \frac{T_{ab}}{T_{zu}} $
Variable	Bedeutung		SI-Einheit
S	Entropie		$\frac{J}{K}$

Wir wollen einen Dampfmaschine mit einer Temperatur von $T_H=120C^\circ$ betreiben. Das Kühlwasser hat eine Temperatur von $T_L=10C^\circ$. Der maximale Wirkungsgrad ist dann

$$\eta = 1 - \frac{283K}{393K} \approx 0.25$$

3.6.2 Entropie

Entropieänderung $dS = \frac{dQ_{rev}}{T}$

Variable	Bedeutung	SI-Einheit
S	Entropie	$\frac{J}{V}$

Bei diesem Experiment ändert sich die Energie des Systems nicht. Die Entropie nimmt aber zu. Deshalb ist das Experiment irreversibel: Das Gas wird nicht von sich aus zurückfliessen. Dies ist ein statistischer Effekt

3.7 Wärmetransport

Wärmestromdichte	$j_q = -\lambda \frac{dT}{dx}$	Wärmeübergang (Konvektion)	$j_q = \alpha (T - T_w)$
Wärmedurchgang	$Q = kA\Delta T$	Wärmedurchgangskoeffizient	$\frac{1}{k} = \frac{1}{\alpha_1} + \frac{1}{\alpha_2} + \frac{l}{\lambda}$

Variable	Bedeutung	SI-Einheit
Q	durch die ebene Wand übertragenen Wärmemenge	J
k	Wärmeduchgangskoeffizient	$\frac{W}{m^2K}$
A	Grösse der Durchgangsfläche	m^2
l	Wanddicke	m
t	Zeit des Durchgangs	s
ΔT	Temperaturdifferenz zwischen den Medien vor und hinter der Wand	
j_q	Wärmestromdichte	$\frac{W}{m^2}$
λ	Wärmeleitfähigkeit	$\frac{W}{mK}$
α	Wärmeübergangskoeffizient	$\frac{W}{m^2K}$

Beispiel: Wärmeverlust Haus Die benötigte Heizleistung eines Hauses ist gegeben durch die Summe der Wärmflüsse durch alle Flächen (Q_w) plus den Luftaustausch mit der Aussenluft. (Q_L)

$$\dot{Q} = \dot{Q_w} + \dot{Q_L}$$
$$= (\sum_{q} (A_q k_q + \rho c_p \dot{V}) \Delta T$$

Beispiel: Wärmedurchgang durch eine ebene Wand

Übergangsschicht innen:
$$j = \alpha_i (T_i - T_{wi})$$

Wärmeleitung in der Wand:
$$j = \frac{\lambda}{d}(T_{wi} - T_{wa})$$

Übergangsschicht aussen:
$$j = \alpha_i (T_{wa} - T_a)$$

3.8 Temperaturstrahlung

- \bullet Ein Körper mit den (nicht realisierbaren) Eigenschaften $\varrho=0, \tau=0, \alpha=1$ heisst schwarzer Körper
- Absorption $\alpha = \text{Emission } \varepsilon$
- Das Emissionsverhältnis und Absorptionsverhältnis sind beide im Bereich [0,1]

Stefan-Bo	ltzmann'sche Gesetz	$P = \sigma \varepsilon A T^4$	Emissionsvermögen Körper)	(schwarzer	$P = \sigma T^4$
Kirchhoff	sche Strahlungsgesetz	$\varepsilon(\lambda, T) = \alpha(\lambda, T)$			
Variable	Bedeutung			SI-Einheit	
P	Strahlungsleistung				
ε	Emissionsgrad				
A	strahlende Oberfläche des Körpers				
σ	Stefan-Boltzmann-Konstante, Strahlungskonstante			$5.670373 \cdot 1$	$0^{-8} \frac{W}{m^2 K^4}$

4 Elektrizitätslehre

4.1 Elektrischer Stromkreis

Stromstär	·ke	$I = \frac{\Delta Q}{\Delta t}$	Widerstand	$R = \frac{U}{I}$	
Ohmsches	Gesetz	$U=R\cdot I$	Widerstand eines Drahtes	$R = \rho_{el} = \frac{l}{A}$	
Elektrisch	e Leistung	$P = UI = \frac{U^2}{R} = I^2 R$	Elektrische Arbeit	$W=UI\Delta t$	
Stromkost	ten	$K = W \cdot T$			
Kapazität	Kondensators	$C = \frac{\varepsilon A}{d} \Leftrightarrow Q = CU$	El. Energie Kondensator	$E = \frac{1}{2}CU^2$	
Variable	Bedeutung			SI-Einheit	
\overline{U}	Spannung			V	_
R	Widerstand			Ω	
l	länge des Drahtes				
$ ho_{el}$	spezifischer Widerstand				
I	Stromstärke			A	\mathbf{s}
Q	geflossene Lad	ung		As = C (couloumb)	
P	Leistung			W	
W	Arbeit			Ws/kwH	
T	Tarif			$\frac{Fr.}{kWh}$	
K	Kosten			Fr.	_