

COURSEPACK (Fall 2023-24)

SCHEME

The scheme is an overview of work-integrated learning opportunities and gets students out into the real world. This will show what a course entails.

Course Title	Advanced Data Structures and Algorithms			Cours	Course Type Integrated					
Course Code	E2UC503C			Class B. Tech. (CSE) V Sem					V Sem.	
	Activity Credits Weekly Hours			Total Number of Classes per Assessmen						
	Lecture	3	3	Semes	ster			Weigh	tage	
Instruction delivery	Tutorial	0	0	ory	rial	Tutorial Practical Practical	x			
	Practical	1	2	Theory	uto		Self- study	CIE	SEE	
	Self-study	1	10	– –			S 2		S	
	Total	5	15	45	0	30	150	50%	50%	
Course	Dr. Anupam Kı	umar Sharn		Dr. N	abani	ta Mahata	ı	•		
Lead			Coordinator							
Names		Theory				Practical				
Course	Nabanita Maha	ta		Nabanita Mahata						
Instructors	, i			Vipul Narayan						
	Vijayant Pawar			Vijayant Pawar						
	Biswa Mohan S			Biswa Mohan Sahoo						
	Gopal Chandra	Jana		Gopal Chandra Jana						
	Alok Kumar			Alok Kumar						
	Mohd. Arquam			Mohd. Arquam						
	Abdul Mazid	G1		Abdul Mazid						
	Anupam Kuma			Anupam Kumar Sharma Aditya Kishore Saxena						
	Aditya Kishore									
	Krishna Kant A	-		Krishna Kant Agrawal						
	Gyanendra Kur	nar		Gyanendra Kumar						
	Pragya Shivani Goswa	mi		Pragy		NGIVOM1				
	Abdul Aleem	1111		Shivani Goswami Abdul Aleem						
	Ravi Kumar				Kuma					
	Vimal Kumar									
	G. Sakthi			Vimal Kumar G. Sakthi						
	Abhist Kumar			Abhist Kumar						
	Vimal Kumar Himanshu Verma Pragya									
				Vimal Kumar Himanshu Verma Pragya						
	Gyanendra Kur	nar		Gyanendra Kumar						
	Biswa Mohan S					nan Sahoo				
	Aditya Kishore			Aditya Kishore Saxena						

Abdul Mazid	Abdul Mazid
Vijayant Pawar	Vijayant Pawar
Vipul Narayan	Vipul Narayan
Raghvendra Ajay Mishra	Raghvendra Ajay Mishra

COURSE OVERVIEW

An advanced course in data structures and algorithms builds upon the foundational knowledge of basic data structures and algorithms. It delves deeper into more complex data structures and advanced algorithmic techniques. This course explores advanced data structures and algorithmic techniques used in computer science and software development. It focuses on the design, analysis, and implementation of data structures and algorithms for solving complex computational problems efficiently.

PREREQUISITE COURSE

PREREQUISITE COURSE REQUIRED	YES	
If, yes please fill in the Details.	Prerequisite course code	Prerequisite course name
		Data Structure and algorithms.

COURSE OBJECTIVE

This course aims to familiarize students with algorithmic design techniques of dynamic programming, greedy programming, and backtracking as well as advanced data structures AVL Tree, B+ tree, Quad-Tree, Octree, and Trie. They will be taught to compute time and space complexities of algorithms, and also implement them.

COURSE OUTCOMES(COs)

After the completion of the course, the student will be able to:

CO No.	Course
	Outcomes
E2UC503.1	Implement Stack, Queue, and Binary Tree data structures using Array and Linked
	Lists.
E2UC503.2	Analyze the time and space complexity of algorithms related to algorithm
	paradigms of dynamic programming, greedy algorithms, and back tracking.
E2UC503.3	Implement AVL Tree, B+ tree, Quadtree, Octree, and Trie using linked data structure.
	Develop programs for computational problems like shortest path, all pairs shortest path, N queens' problem, minimum spanning tree, longest common subsequence, 0/1 knapsack, choosing appropriate algorithmic techniques out of dynamic programming, greedy algorithms, and backtracking.
E2UC503.5	Develop simple software applications using basic and advanced data structures with dynamic programming, greedy algorithms, and backtracking.

BLOOM'S LEVEL OF THE COURSE OUTCOMES

Bloom's taxonomy is a set of hierarchical models used for the classification of educational learning objectives into levels of complexity and specificity. The learning domains are cognitive, affective, and psychomotor.

COMPREHENSIVE

CO No.	Remember	Understand	Apply	Analyse	Evaluate	Create
CO No.	KL1	KL 2	KL 3	KL 4	KL 2	KL 6
E2UC 503.1						
E2UC 503.2						
E2UC 503.3						
E2UC 503.4						
E2UC 503.5			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$

PROGRAM OUTCOMES (POs): AS DEFINED BY CONCERNED THE APEX BODIES

PO1 Computing Science knowledge: Apply the knowledge of mathematics, statistics, computing science, and information science fundamentals to the solution of complex computer application problems.

PO2 Problem analysis: Identify, formulate, review research literature, and analyze complex computing science problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and computer sciences.

PO3 Design/development of solutions: Design solutions for complex computing problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4 Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern computing science and IT tools including prediction and modeling to complex computing activities with an understanding of the limitations.

PO6 IT specialist and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional computing science and information science practice.

PO7 Environment and sustainability: Understand the impact of professional computing science solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of computing science practice.

PO9 Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the IT analyst community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11 Project management and finance: Demonstrate knowledge and understanding of the computing science and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12 Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOME (PSO):

The students of Computer Science and Engineering shall:

PSO1: Have the ability to work with emerging technologies in computing requisite to Industry 4.0.

PSO2: Demonstrate Engineering Practice learned through industry internship and research project tosolve live problems in various domains.

COURSE ARTICULATIONMATRIX

The Course articulation matrix indicates the correlation between Course Outcomes and Program Outcomes and their expected strength of mapping in three levels (low, medium, and high).

COs#/ POs	P01	P02	P03	P04	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
E2UC 503.1	2				2									
E2UC 503.2	2	2			2									
E2UC 503.3	2	2	1		2									
E2UC 503.4	2	2	2		2						1	1	1	
E2UC 503.5	2	2	2		2				1	1	1	1	2	

Note: 1-Low, 2-Medium, 3-High

COURSE ASSESSMENT

The course assessment patterns are the assessment tools used both in formative and summative examinations.

Type of course	CIE			Total	Marks	Final Marks	
	Lab@ (Work + Record)		Course based project^	CIE	SEE	CIE*0.5+SEE*0.5	
Comprehensive	25	50	25	100	100	100	

@Lab Work-15 marks + Lab Record-10 marks

^ Typical Rubric for the Course-based project

Type of Assessment	Preliminary Project	Technical Seminar 1	Technical Seminar 2	Viva-voce
Tools	Plan			
Course-based	05	05	05	10
Project Work				

COURSE CONTENT

THEORY+ PRACTICAL

Contents

Theory

Arrays: Definition, Single and Multidimensional Arrays, Representation of Arrays: Row Major Order, and Column Major Order, Derivation of Index Formulae for 1-D, 2-D, 3-D, Sparse Matrices and their representations.

Linked lists: Implementation of Singly Linked Lists. Operations on Linked List. Insertion, Deletion, Traversal.

Stacks: List Implementation of Stack, Application of stack: infix, Prefix and Postfix Expressions, infix to postfix expression, Evaluation of postfix expression,

Recursion- Principles of recursion, Tail recursion, Removal of recursion Problem solving using iteration and recursion with examples such as binary search, Tower of Hanoi.

Queues: Operations on Queue: Create, Add, Delete, Full & Empty,

Searching, Index Sequential Search, Concept of Hashing & Collision resolution Techniques used in Hashing.

Tree: Linked List Representation, Binary Search Tree, Tree Traversal algorithms: In-order, Preorder, and Post-order, Constructing Binary Tree from given Tree Traversal, Operation of Insertion, Deletion, Searching Modification of data in Binary Search. Concept & Basic Operations for AVL Tree, B+ tree. Implementation of Quad-Tree and Octree

Graph: Representations: Adjacency Matrices, Adjacency List, Graph Traversal: Depth First Search & Breadth First Search.

Minimum Cost Spanning Trees: Prims and Kruskal algorithm. Shortest Path algorithm: Warshal Algorithm.

Dynamic Programming: Elements of dynamic programming, longest common subsequence, Optimal binary search trees, 0/1 Knapsack.

Greedy Algorithms: Elements of the greedy strategy, Offline caching, Fractional knapsack

Back Tracking: Sum of subset, N queens' problem

Bipartite Graphs: Maximum bipartite matching, The stable-marriage problem

Trie Data structure, Trie insert and search

Bitonic Sort and Radix sort

Lab (To be implemented in Java and Python)

S.	Review Practicals
No.	
1	Write a program to implement linked list, also implement add, delete nodes in a linked list.
2	Write a program to implement Stack operations using linked list implementation of Stack.
3.	Write a program to implement Queue operations using linked list implementation.
	List of Practicals
1	Write a program to implement Tower of Hanoi.
2	Write a program for to convert infix expression to postfix and evaluate it.
3	Write a program to implement Queue operations using linked list implementation.
4	Write a program to implement Binary Search Tree.
5	Write a program to traverse a binary tree using PRE-ORDER, IN-ORDER, POST-ORDER traversal techniques.
6	Write a program to construct a binary tree using given tree traversal.
7	Write a program for B+ Tree
8	Write a program to implement AVL Tree.
9	Write a program to implement Quad Tree.
10	Write a program to implement Octree.
11	Write a program to traverse a graph using breadth-first search (BFS).
12	Write a program to traverse a graph using depth-first search (DFS).
13	Write a program for Kruskal's algorithm for a given graph
14	Write a program for Prim's algorithm for a given graph
15	Write a program for all pairs shortest path.
16	Write a program for 0/1 knapsack.
17	Write a program for fractional knapsack.
18	Write a program to implement Radix sort.
19	Write a program to insert and delete in Trie data structure.

	Value Added Practicals						
1	Write a program to implement N queens' problem.						
2	Write a program for Longest Common Subsequence.						
3	Write a program for sum of subsets problems.						

LESSON PLAN FOR COMPREHENSIVE COURSES

FOR THEORY 15 weeks * 3 Hours = 45 Classes) (1credit = 1Lecture Hour) FOR PRACTICAL 15 weeks * 2Hours = 30 Hours lab sessions (1 credit = 2 lab hours)

SL- No	Topic for Delivery	Tutorial/ Practical Plan	Skill	Competency
1	Arrays: Definition, Single and Multidimensional Arrays, Representation of Arrays: Row Major Order, and Column Major Order	Theory		
2	Derivation of Index Formulae for 1-D, 2-D array	Theory	Implement Stack data	
3	Derivation of Index Formulae for 3D array, Sparse Matrices, and their representations	Theory	structures using linked. lists, and will be able to	CO1, CO2
4	Write a program to implement Stack operations using linked list	Practical	find the complexity of program.	
5	implementation of Stack. Find complexity of program.	Practical		
6	Implementation of Singly Linked Lists	Theory	Implement the concept	
7	Operations on Linked List: Insertion, Deletion, Traversal	Theory	of recursion. and will be able to find	
8	Linked list Implementation of Stack	Theory	the complexity of the program using	
9	Write a program to implement	Practical	recursion.	
10	Tower of Hanoi. Find complexity of program.	Practical		

11	Infix to postfix expression,	Theory			
	Evaluation of postfix expression				
12	Recursion: Principles of recursion, Tail recursion	Theory			
13	Removal of recursion Problem solving using iteration and recursion with examples such as binary search	Theory	Implement queue data structures		
14	Write a program for to convert infix expression to postfix and	Practical	using linked. lists, and will be able to		
15	evaluate it. Find complexity of program.	Practical	find the complexity of		
16	recursion examples: Tower of Hanoi.	Theory	program.		
17	Queues: linked implementation of queues Operations on Queue: Create, Add, Delete, Full & Empty	Theory		CO1, CO2	
18	Index Sequential Search	Theory			
19	Write a program to implement Queue operations using linked	Practical	Implement the concept of indexed		
20	list implementation. Find complexity of program.	Practical	sequential search and hashing.		
21	Concept of Hashing & Collision resolution Techniques used in Hashing.	Theory			
22	Linked List Representation, Binary Search Tree,	Theory	Implement		
23	Operation of Insertion, Deletion, Searching Modification of data in Binary Search.	Theory	Binary search tree, tree traversal, and		
24	Write a program to implement	Practical	will be able to find time and space	CO2, CO3.	
25	Binary Search Tree. Find complexity of program.	Practical	complexity of program.		
26	Tree Traversal algorithms: Inorder, Pre-order, and Post-order,	Theory	18		

27	Constructing Binary Tree from given Tree Traversal,	Theory		
28	Concept & Basic Operations for AVL Tree	Theory		
29	Write a program to traverse a binary tree using PRE-ORDER,	Practical		
30	IN-ORDER, POST-ORDER traversal techniques. Find complexity of program.	Practical		
31	Insertion in AVL trees	Theory	Implement AVL Tree,	
32	Deletion in AVL trees	Theory	B+ tree, Quadtree, Octree, and	
33	Implementation of Quad tree and Octree.	Theory	Trie using linked data	CO2, CO3.
34	Write a program to construct a binary tree using given tree	Practical	structure, and will be able	
35	traversal. Find complexity of program.	Practical	to find time and space	
36	Introduction B+ tree, insertion and Deletion in B+ tree	Theory	- complexity of program.	
37	Data Structure for Graph Representations: Adjacency Matrices, Adjacency List,	Theory		
38	Graph Traversal: Depth First Search, Breadth First Search	Theory	Develop	
39	Write a program for	Practical	program for	
40	implementation of B+ Tree. Find complexity of program.	Practical	graph data structure and	CO2, CO4
41	Graph Traversal: Breadth First Search	Theory	its traversal, spanning tree	
42	Spanning Trees, Minimum Cost Spanning Trees: Prim's algorithm	Theory	and conversion of graph to	
43	Kruskal algorithm	Theory	MST.	
44	Write a program to implement	Practical		
45	AVL Tree. Find complexity of program.	Practical		
46	Shortest Path algorithm: Warshal's Algorithm	Theory		
47	Elements of dynamic programming	Theory		

48	Longest common subsequence	Theory		
	Write a program to implement	Practical	_	
49	Quad Tree.	Tractical		
50	Write a program to implement	Practical	Develop and	
50	Octree.		analyse	
51	Optimal binary search trees (1)	Theory	dynamic	
52	Optimal binary search trees (2)	Theory	programming	
53	0/1 knapsack problem	Theory	program for longest	CO2, CO4
54	Write a program to traverse a graph using breadth-first search (BFS). Find complexity of program.	Practical	common subsequence, 0/1 knapsack,	
55	Write a program to traverse a graph using depth-first search (DFS). Find complexity of program.	Practical		
56	Elements of the greedy strategy	Theory		
57	Offline caching	Theory	1	
58	Fractional knapsack	Theory	1	
59	Write a program for Kruskal's algorithm for a given graph. Find complexity of program.	Practical	Develop and analyse greedy	
60	Write a program for Prim's algorithm for a given graph. Find complexity of program.	Practical	method, backtracking,	
61	Back Tracking, Sum of subset	Theory		
62	N queens' problem	Theory		CO2, CO4
63	Bipartite graph, maximum bipartite matching	Theory		
64	Write a program for all pairs shortest path. Find complexity of program.	Practical		
65	Write a program for Longest Common Subsequence. Find complexity of program.	Practical	Develop and analyse	
66	The stable-marriage problem	Theory	Bipartite	
67	Trie Data structure	Theory	graph, Trie	
68	Trie insert and search	Theory	data structure, Radix sort, and	
69	Write a program for 0/1 knapsack.	Practical	Bitonic sort	
70	Write a program to implement N queens' problem. Find complexity of program.	Practical		
71	Trie delete	Theory]	
L	<u> </u>	1 -	1	

72	Radix Sort	Theory		
73	Bitonic Sort	Theory		
74	Write a program to insert and delete in Trie data structure. Find complexity of program.	Practical		
75	Write a programs to implement Bitonic sort, radix sort. Find complexity of programs.	Practical		
76	Project	Project	Students will	
77	Project	Project	be able to develop small	
78	Project	Project	software	
79	Project	Project	application	
80	Project	Project	based on dynamic programming, backtracking, and greedy algorithms.	CO5

BIBLIOGRAPHY

- Text Book Corman, Introduction to Algorithms
- Reference Books
 - Data Structures and Algorithms in Java, Roberto Tamassia and Michael T Goodrich, John Wiley
 - R. Kruse etal, "Data Structures and Program Design in C", Pearson Education
- Webliography
 - https://www.geeksforgeeks.org/advanced-data-structures/
 - https://github.com/topics/advanced-data-structures
- SWAYAM/NPTEL/MOOCs Certification
 - https://www.coursera.org/specializations/data-structures-algorithms.
 - https://www.codespaces.com/best-data-structures-and-algorithms-courses-classes.html#3-data-structures-and-algorithms-nanodegree-certification-udacity

•

PRACTICE PROBLEMS

SNo	Problem	KL
1	Write a program in Java or Python and find time complexity for 2–Sum	K3
	Problem: Finding two numbers in an array that add up to a given target value.	
2	Write a program in Java or Python and find time complexity for Longest	K3
	Common Subsequence Problem: Finding longest subsequence which is	
	common in all given input sequences.	
	Write a program in Java or Python and find time complexity for Maximum	K3
3	Subarray Problem: Finding a contiguous subarray with the largest sum, within a	
	given one-dimensional array A[1n] of numbers.	
	Write a program in Java or Python and find time complexity for Coin Change	K3
4	Problem: Finding the number of ways to make sum by using different	
•	denominations from an integer array of coins[] of size N representing different	
	types of denominations and an integer sum.	
5	Write a program in Java or Python and find time complexity for 0–1 Knapsack	K3
	Problem: Restrict the number of copies of each kind of item to zero or one.	
	Write a program in Java or Python and find time complexity for Subset Sum	K3
6	Problem: Checking if there is a subset of the given set whose sum is equal to	
	the given sum.	
	Write a program in Java or Python and find time complexity for Longest	K3
7	Palindromic Subsequence Problem: Finding a maximum-length subsequence of	
	a given string that is also a Palindrome.	
	Write a program in Java or Python and find time complexity for Matrix Chain	K3
8	Multiplication Problem: Finding the most efficient way to multiply these	
	matrices together such that the total number of element multiplications is	
	minimum.	***
	Write a program in Java or Python and find time complexity for Longest	K3
9	Common Substring Problem: A set of strings can be found by building a	
	generalized suffix tree for the strings, and then finding the deepest internal	
	nodes which have leaf nodes from all the strings in the subtree below it.	77.0
	Write a program in Java or Python and find time complexity for Rod Cutting	K3
10	Problem: A rod is given of length n. Another table is also provided, which	
10	contains different size and price for each size. Determine the maximum price by	
	cutting the rod and selling them in the market.	1// 2
	Write a program in Java or Python and find time complexity for Word Break	K3
11	Problem: You will be given a string, say "s", and a dictionary of strings say	
	"wordDict". You have to return true if s can be segmented into a space-	
	separated sequence of one or more dictionary words.	K3
	Write a program in Java or Python and find time complexity for Edit Distance Problem: Quantifying how dissimilar two strings (e.g., words) are to one	КЭ
12		
	another, that is measured by counting the minimum number of operations	
	required to transform one string into the other. Write a program in Java or Bython and find time complexity for Chass Knight	K3
13	Write a program in Java or Python and find time complexity for Chess Knight Problem: A knight starting at any square of the board and moving to the	КЭ
	remaining 63 squares without ever jumping to the same square more than once.	

14	Write a program in Java or Python and find time complexity for Partition Problem: A given set can be partitioned in such a way, that sum of each subset	K3
	is equal.	
15	Write a program in Java or Python and find time complexity for 3—Partition Problem: Deciding whether a given multiset of integers can be partitioned into triplets that all have the same sum.	К3
	Write a program in Java or Python and find time complexity for Snake and	K3
	Ladder Problem: Write a function that returns the minimum number of	KS
16		
	jumps to take top or destination position. You can assume the dice you	
	throw results in always favor of you means you can control the dice.	
	Write a program in Java or Python and find time complexity for Largest	K3
17	Consecutive Subarray Problem: Finding out the largest sum of the consecutive	
	numbers of the array.	
	Write a program in Java or Python and find time complexity for Dutch National	К3
1.0	Flag Problem: The flag of the Netherlands consists of three colors: white, red,	
18	and blue. The task is to randomly arrange balls of white, red, and blue such that	
	balls of the same color are placed together.	
	Write a program in Java or Python and find time complexity for Knight's Tour	K3
	Problem: a puzzle where a chess knight is placed on an empty chess board and	110
19	the goal is to move the knight to every square on the board exactly once without	
	re-visiting any squares.	
	Write a program in Java or Python and find time complexity for Maximum Sum	K3
20	Submatrix Problem: A 2D array arr[][] of dimension N*M is given, the task is	IXJ
20	·	
	to find the maximum sum sub-matrix from the matrix arr[][]. Write a program in Java or Python and find time complexity for Longest	K3
21		K3
<i>L</i> 1	Palindromic Substring Problem: Finding a maximum-length contiguous	
	substring of a given string that is also a palindrome.	1/2
22	Write a program in Java or Python and find time complexity for Job Sequencing	K3
22	Problem: You have a single processor operating system and a set of jobs that	
	have to be completed with given deadline constraints.	
	Write a program in Java or Python and find time complexity for N–Queens	K3
23	Problem: Placing N chess queens on an N×N chessboard so that no two queens	
	attack each other.	
	Write a program in Java or Python and find time complexity for Maximum	K3
24	Product Subarray Problem: Find the contiguous subarray within the array which	
21	has the largest product of its elements. You have to report this maximum	
	product.	
	Write a program in Java or Python and find time complexity for Longest	K3
25	Repeated Subsequence Problem: Find the length of the longest repeating	
43	subsequence in a given string such that the two subsequences don't have the	
	same original string character at the same position.	
	Write a program in Java or Python and find time complexity for 3–Sum	К3
2.5	Problem: Given an array and a value, find if there is a triplet in array whose sum	-
26	is equal to the given value. If there is such a triplet present in array, then print	
	the triplet and return true. Else return false.	
	Write a program in Java or Python and find time complexity for Shortest	K3
27	Common Super Sequence Problem: Given two strings X and Y of lengths m	133
	Common Super Sequence Hostem. Siven two sumgs A and T of lengths in	

	and a manuscriptor for data largeth of the small set stains with in heads at V and	
	and n respectively, find the length of the smallest string which has both, X and Y as its sub-sequences.	
28	Write a program in Java or Python and find time complexity for Longest Alternating Subarray Problem: Given an array containing positive and negative elements, find a subarray with alternating positive and negative elements, and in which the subarray is as long as possible.	K3
29	Write a program in Java or Python and find time complexity for 4–Sum Problem: Given an array nums of n integers and an integer target, are there elements a, b, c, and d in nums such that $a + b + c + d = target$ we need to find all unique quadruplets in the array which gives the sum of target.	К3
30	Write a program in Java or Python and find time complexity for K-Partition Problem: Partitioning an array of positive integers into k disjoint subsets that all have an equal sum, and they completely cover the set.	К3
31	Write a program in Java or Python and find time complexity for Minimum Sum Partition Problem: Given a set of positive integers S, partition set S into two subsets, S1 and S2, such that the difference between the sum of elements in S1 and S2 is minimized. The solution should return the minimum absolute difference between the sum of elements of two partitions.	K3
32	Write a program in Java or Python and find time complexity for Wildcard Pattern Matching Problem: We have a string and a pattern then we have to compare the string with a pattern that whether the pattern matches with a string or not	К3
33	Write a program in Java or Python and find time complexity for Maximum Overlapping Intervals Problem: Print the maximum number of overlap among these intervals at any time.	K3
34	Write a program in Java or Python and find time complexity for Graph Coloring Problem: Assigning colors to the vertices such that no two adjacent vertexes have the same color.	К3
35	Write a program in Java or Python and find time complexity for Longest Increasing Subsequence Problem: Given an array arr[] of size N , the task is to find the length of the Longest Increasing Subsequence (LIS).	К3
36	Write a program in Java or Python and find time complexity for Pots of Gold Game Problem: Two players X and Y are playing a game in which there are pots of gold arranged in a line, each containing some gold coins. They get alternating turns in which the player can pick a pot from one of the ends of the line. The winner is the player who has a higher number of coins at the end. The objective is to maximize the number of coins collected by X, assuming Y also plays optimally. Return the maximum coins X could get while playing the game. Initially, X starts the game.	K3
37	Write a program in Java or Python and find time complexity for Activity Selection Problem: Selection of non-conflicting activities that needs to be executed by a single person or machine in a given time frame.	K3
38	Write a program in Java or Python and find time complexity for Longest Alternating Subsequence Problem:One wants to find a subsequence of a given sequence in which the elements are in alternating order, and in which the sequence is as long as possible.	К3

		Write a program in Java or Python and find time complexity for Longest	К3
39	20	Consecutive Subsequence Problem: First sort the array and find the longest	
	39	subarray with consecutive elements. After sorting the array and removing the	
		multiple occurrences of elements, run a loop and keep a count and max (both	
		initially zero).	
		Write a program in Java or Python and find time complexity for Weighted	K3
	40	Interval Scheduling Problem: A value is assigned to each executed task and the	
		goal is to maximize the total value. The solution need not be unique.	
		Write a program in Java or Python and find time complexity for Longest	К3
	41	Bitonic Subarray Problem: Find a subarray of a given sequence in which the	
	41	subarray's elements are first sorted in increasing order, then in decreasing order,	
		and the subarray is as long as possible.	
Ī		Write a program in Java or Python and find time complexity for Water Jugs	K3
		Problem: You are given two jugs, a 4-gallon one and a 3-gallon one, a pump	
	42	which has unlimited water which you can use to fill the jug, and the ground on	
		which water may be poured. Neither jug has any measuring markings on it.	
		How can you get exactly 2 gallons of water in the 4-gallon jug?	
		Write a program in Java or Python and find time complexity for Hat Check	К3
	43	Problem: Given a positive number n, find the total number of ways in which n	110
		hats can be returned to n people such that no hat makes it back to its owner.	
		Write a program in Java or Python and find time complexity for Merging	K3
14	44	Overlapping Intervals: Start from the first interval and compare it with all other	IXJ
	77	intervals for overlapping.	
-		11 0	K3
	15	Write a program in Java or Python and find time complexity for Longest	K3
45	Common Prefix (LCP) Problem: An array of strings is the common prefix		
		between 2 most dissimilar strings.	

STUDENT-CENTEREDLEARNING (SELF-LEARNING TOWARDS LIFE-LONG-LEARNING)

Self-Learning (it's a typical course-based project to be carried out by a whole class in groups of four students each; they should exhibit higher level KLs)

The students, in a group, are expected to conceive an idea based on the content (objectives/outcomes) and apply suitable knowledge to demonstrate their learning.

A) COURSE-BASED PROJECT (Psychomotor skills)

To enhance their skill set in the integrated course, the students are advised to execute course based. **design projects**. Some sample projects are given below:

SNo	Suggested Projects	KL
1	Develop a software for Snake Game	K6
2	Develop a software for Sudoku	K6
3	Develop a project on To-Do list	K6
4	Develop a project on Social Media Network	K6
5	Develop a software for Phonebook	K6
6	Develop software for Library Management System	K6
7	Develop a project on Maze	K6
8	Develop a project on Music Playlist	K6
9	Develop a software for Calendar	K6
10	Develop a software for Student Grade Checker	K6
11	Develop a software for Flight Route Planner	K6
12	Develop a software for Spell Checker	K6
13	Develop a software for Web Crawler	K6
14	Develop a software for File Compression Tool	K6
15	Develop a software for Real-Time Traffic Analysis	K6
16	Develop a software for Shopping Cart App	K6
17	Develop a software for Word Frequency Counter	K6
18	Develop a software for Online Bookstore	K6
19	Develop a software for Decision Support System	K6
20	Develop a software for Banking System	K6
21	Develop a software for Tic-Tac-Toe	K6
22	Develop a software for Memory Matching Game	K6
23	Develop a software for Tower of Hanoi Puzzle	K5
24	Develop a software for Crossword Puzzle	K6
25	Develop a software for Hangman	K6

26	Develop a software for Real Estate Property Search	K6
27	Develop a software for Email Spam Filter	K6
28	Develop a software for Contacts directory System	K6
29	Develop a software for Library Management System	K6
30	Develop a software for Travelling Agency Project In C	K6
31	Develop a software for Traffic Light Implementation	K6
32	Develop a software for Tic Tac Toe Game	K6
33	Develop a software for Telephone Directory Project	K6
34	Develop a software for Restaurant billing Project	K6
35	Develop a software for Travelling Agency Project	K6
36	Develop a software for Hospital Management System	K6
37	Develop a software for Restaurant billing Project	K6
38	Develop a software for Travelling Agency Project	K6
39	Develop a software for Banking Management System Project	K6
40	Develop a software for Train Reservation System	K6
41	Develop a software for Supermarket Billing System Project	K6
42	Develop a software for Cruise Management Project	K6
43	Develop a software for Diabetes Analysis Project	K6
44	Develop a software for Calendar Application	K6
45	Develop a software for 3D Bounce game	K6

B) SELF-LEARNING THROUGH MOOCs (Cognitive Skills): Certification

- 1. "Algorithms Specialization" by Stanford University on Coursera: This specialization covers multiple courses on algorithms and data structures, including "Divide and Conquer, Sorting, and Searching" and "Graph Search, Shortest Paths, and Data Structures."
- 2. "Data Structures and Algorithms" by University of California San Diego & National Research University Higher School of Economics on Coursera: This course covers essential data structures and algorithms, and the programming assignments are often in C++.
- 3. "Data Structures and Algorithms The Complete Masterclass" on Udemy: This course covers a wide range of data structures and algorithms topics using C++ and includes coding exercises.

- 4. "Mastering Data Structures & Algorithms using C and C++" on Udemy: Another comprehensive course that covers data structures and algorithms with a focus on C and C++ programming languages.
- **5.** "Data Structures and Algorithms in C++" by Coding Blocks on YouTube: This is a free YouTube series that covers data structures and algorithms in C++.