Double Tracking Antennas for UAS Communication Control and Automation

June 18, 2016

Group CA832 16gr832@student.aau.dk

Department of Electronics and IT
Aalborg University
Denmark

Introduction

Overvie

Hardwai

Telecommunica

Method

wodelling

Controller

Simulatio

nesuit

Conclusion

The project is about UAS:

- ► What?
- ► Why?
- ► How ?
- ► State each part and whom will present.

Introduction

Introduction

Overview

Hardware

Frames

Telecommunication

Methods

Modelling

Controller

Simulation

Results

Conclusion

Introductio

Hardware

1101100

releconninuinc

Madagala

....

Controlle

Simulatio

Result

Conclusion

Unmanned Aicraft System (UAS)

- 1. Unmanned Aircraft (UA)
- 2. Ground Station (GS)
- 3. Antennas
- 4. DC Servomotor

Introduction

....

_

Frames

Tologommuni

Methor

Modelli

_

Conclusio

Geodetic Coordinate System

Earth-Centered Earth-Fixed (ECEF)

North-East-Down (NED)

Body Coordinate System

Introductio

Hardwa

Frame

Telecommunication

Method

....

Cimulatia

Resu

Conclusio

Line-Of-Sight (LOS) Propagation

Link Budget

Fresnel Zones

MAVLink Protocol

Modelling

Moving Angle System (MAS)

Optimal Angle

Antenna

Introductio

Hardw

Telesconocidos

Telecommunica

Methods

Controller

Simulation

Result

Conclusion

PID

Tunning

Comparion

Simulation

LOS Coverage Map

2D UAS

3D UAS

Circup C

Introductio

Overview

Hardw

Tologommunion

Mothor

Method

Controll

Simulatio

Results

Conclusion

Angle Range

Earth Curvature

Above GS

Mountain

Conclusion

We did this: ...

We can see that: ...

We conclude that: ...

Further work that can be built on the current project:

Thank you for flying with us!

