

AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning

Yiwu Zhong¹, Zhuoming Liu², Yin Li², Liwei Wang¹

The Chinese University of Hong Kong, University of Wisconsin-Madison (*Corresponding author)

Motivation Input Video **Question Query Substantial** (~6000 tokens) (~100 tokens) Computation Can we speed up MLLM without accuracy loss? Pre-trained inference 100% accuracy, 100% FLOPs MLLM 100% accuracy, 14.8% FLOPs Pre-trained our method MLLM 87% accuracy, 2.5% FLOPs 59 58.2 58.5 Superior of the state of the st 58.2 **9**53.6 **9**52.3 Base model **5**0.9 Our models 80 100

- Goal: developing adaptive inference for multi-modal LLMs.
- Key challenge: how to reduce redundancy & identify necessary visual tokens that contribute to "accuracy"?

FLOPs (TB)

- Key idea: introducing a training-free method based on visual token similarity and multi-modal token importance.
- Key results: 7x speed up & +4.6 accuracy for long videos

Project Page: https://github.com/LaVi-Lab/AIM

Method LLM Layer L . . . Pruning LLM Layer 3 LLM Layer 2 LLM Layer 1 Tokenizer

Visual Encoder

Video Benchmarks

Model	FLOPs	Prefill Time	VideoMME	VideoMME MVBench		EgoSchema	NextQA	PerceptionTest				
	(TB)	(ms)	wo/w-subs	test	m-avg	test	mc	val				
			Video LL	Ms								
LongVA-7B [92]	381.09	2186.04	52.6 / 54.3	-	56.3	-	68.3	-				
LLaVA-OV-7B [33]	99.63	439.58	58.2 / 61.5	56.7	64.7	60.1	79.4	57.1				
Training-free Method Applied during Inference												
VTW [40]	22.38	101.93	41.0 / 50.0	44.3	39.6	38.0	52.1	41.3				
PDrop [79]	24.22	104.88	51.7 / 56.6	52.3	55.6	51.8	74.2	52.8				
FastV [5]	21.24	79.56	55.9 / 60.0	55.9	61.1	57.5	77.5	56.3				
LLaVA-Prumerge [62]	23.65	86.89	57.0 / 59.9	56.5	60.6	61.0	77.6	55.8				
Ours	14.76	55.03	58.2 / 61.3	57.1	63.7	59.6	78.4	56.0				

General Video Understanding Benchmarks

Model	Number of	FLOPs	Prefill Time	VideoMME	MLVU	EgoSchema						
	Frames	(TB)	(ms)	wo/w-subs	m-avg	test						
Video LLMs												
LLaVA-OV-7B [33]	32	99.63	439.58	58.2 / 61.5	64.7	60.1						
	Training-f	ree Metho	d Applied durin	g Inference								
Ours	32	14.76	55.03	58.2 / 61.3	63.7	59.6						
Ours	192	99.27	471.20	59.2 / 62.3	69.3	60.8						

Long Video Understanding Benchmarks

AIM significantly reduces FLOPs / prefill time with small accuracy loss, and even improves on long video benchmarks.

Findings

Visual Encoder

Embedding

Input text

- AIM achieves a broad range of accuracy-efficiency trade-offs (adaptive inference).
- 2. Alm's overhead is negligible.

AIM Adaptive Inference

Visual Encoder

3. Visual tokens matter at early layers & text tokens are focused at later layers.

AIM Overhead

4. Pruning text tokens (at any layer) hurts performance.

Retention Latio	$egin{pmatrix} l_1 \ \end{matrix}$	l_2	FLOPs (TB)	Prefill Time (ms)	VideoMME wo-subs			Retention Ratio	FLOPs (TB)	Prefill Time (ms)	Wo-subs	Exp.	l_1	$l_2 \mid$	FLOPs (TB)	Prefill Time (ms)	wo-subs
	<u> </u> 		<u> </u>		<u> </u>	FLOPs	Video LLM		<u> </u>		1	1	28 21	29 29	22.90 20.15	83.94 73.61	58.0 58.0
00.0%	-	-	99.63	439.58	58.2	(GB)	(Qwen2-7B)	100.0%	99.63	439.58	58.2	3	14	29	20.13 17.41	63.34	57.7
0.0%	_	-	46.48	182.65	58.5	Token Merging	88.25	50.0%	46.48	182.65	58.5	4	7	29	14.66	53.08	57.4
5.0%	14	22	14.76	55.03	58.2	Token Pruning	4.18	25.0%	22.90	83.94	58.0	5	21	22	17.50	65.35	58.1
2.5%	14	22	11.14	39.41	56.4	Total	92.43	12.5%	11.64	41.22	56.6	6	14	22	14.76	55.03	58.2
.3%	14	22	6.17	21.69	53.6	I I M Informaci	1.4757	6.3%	6.41	22.54	53.6	7	1.4	22	12.01	44.75	56.8
.1%	14	22	3.72	13.26	52.3	LLM Inference	14757	3.1%	3.85	13.68	52.3	8 9	14 7	15 15	12.10 9.36	46.77 36.44	54.3 52.9
.6%	14	22	2.51	10.12	50.9			1.6%	2.57	10.15	50.9	10	7	8	6.71	28.18	41.9

Token Merging

Token Pruning

Image Benchmarks

Model	FLOPs (TB)	Prefill Time (ms)	VQA-v2 (107,394)	GQA (12,578)	MME (2,374)	TextVQA (5,000)	SQA-IMG (2,017)	MMB (4,377)	POPE (8,910)
			Image	e LLMs					
Qwen-VL-Chat-7B [1]	6.44	22.51	78.2	57.5	1487.5	61.5	68.2	60.6	-
LLaVA-1.5-7B [41]	8.18	29.30	78.5	62.0	1510.7	58.2	66.8	73.7	85.9
		Training-f	ree Method A	Applied duri	ing Inferen	ce			
VTW [40]	2.43	13.88	49.4	42.5	916.4	45.7	66.1	63.1	17.9
PDrop [79]	2.36	13.31	58.1	47.3	999.0	50.4	68.7	63.5	46.6
FastV [5]	2.58	10.34	74.1	56.6	1438.5	57.3	68.0	72.1	73.6
LLaVA-Prumerge+ [62]	2.41	9.73	74.6	57.4	1391.9	55.2	67.9	71.6	82.2
Ours	2.22	10.92	75.4	58.6	1443.5	53.8	68.4	72.5	85.7
VTW [40]	1.24	10.66	42.3	38.9	683.7	43.0	65.6	36.5	25.2
FastV [5]	1.12	9.56	55.4	45.5	960.4	51.3	66.0	61.5	33.4
LLaVA-Prumerge [62]	1.04	8.99	66.7	51.3	1242.5	53.8	68.0	67.1	76.2
Ours	1.00	8.98	69.0	54.6	1277.7	48.4	67.1	69.4	79.5

General Image Understanding Benchmarks: With less computation cost, our method outperforms baselines on most benchmarks.