Names: Kyle Thompson, Konnor Kivimagi

Section: 4

Lab Time: Wednesday 11am - 1:50pm

TAs: Raufer Khan and Yang Tian

Lab 7: Design Lab - Active crossover network

Tweeter

The high pass filter or tweeter was designed using the third equation in the figure below. This was used to find a first-order high pass circuit with a cutoff frequency of 6000Hz and a capacitor value of 1 nano-farad to create an input resistance of greater than 10000Ω . Then two of these first-order high pass filters were cascaded together to make a second-order high pass with a cutoff frequency of 6000Hz as shown in the LtSpice figure below.

High Pass Second Order Filters

Woofer

The low-pass filter or woofer was designed using the image and equations shown below. It was designed with an input resistance of 10000Ω and the ability to change its gain between 1 and 5. The gain was changed by replacing resistor Ra with a potentiometer.

Second Order Low Pass Filter

Squawker

The band pass filter or squawker was designed using the equations and layout pictured in the picture below. The resistor values were chosen to be $150k\Omega$ and had to be equal to obtain a gain of 1. The capacitor values were calculated based on these resistor values.

Inverting Band Pass Filter Circuit

Voltage Gain =
$$-\frac{R_2}{R_1}$$
, $fc_1 = \frac{1}{2\pi R_1 C_1}$, $fc_2 = \frac{1}{2\pi R_2 C_2}$

Below is our design implemented on a breadboard.

Below is the full circuit diagram for our design.

