

Semester: 6th Mechatronics (Spring 2021)

Assignment 1

(Submission date: 10th May 2021)

Problem 1:

For the diode circuit shown in Fig. 1, D_1 and D_2 are battery modeled diodes. If 'V_i' is a sinusoidal signal with 1 kHz frequency and amplitude voltage of 20V,

- 1. Plot 'V₀' versus 'V_i'
- 2. Plot 'Vo' versus time

Figure 1

Course: Electronic Circuits for Mechatronics (ELCT 609)

Semester: 6th Mechatronics (Spring 2021)

Problem 2:

 I_D - V_D characteristics of both D_1 and D_2 in Fig.2 is approximated using a constant battery model of 0.6V; " V_{in} " is a sinusoidal signal with amplitude 10V and 1 kHz frequency; R_1 = R_2 = $2k\Omega$ and V_B =1.4V.

- Derive the circuit output voltage " V_{out} ", " I_{D1} " and " I_{D2} " as a function in " V_{in} "
- Sketch " V_{out} ", " I_{D1} " and " I_{D2} " vs. " V_{in} "
- Sketch "Vout" vs. time

 $Figure\ 2$

Course: Electronic Circuits for Mechatronics (ELCT 609)

Semester: 6th Mechatronics (Spring 2021)

Problem 3:

Using battery modeled diodes, design the following limiters Transfer functions given in Fig. 3 while assuming V_i is a variable voltage source

Figure 3

Course: Electronic Circuits for Mechatronics (ELCT 609)

Semester: 6th Mechatronics (Spring 2021)

Problem 4:

For the BJT Circuit shown in Fig.4 below,

- What is the minimum value for R_e so that the transistor's work in the saturation region?
- If R_e =0.5 k Ω , what is the mode of operation of the transistor? Verify your answer!

Figure 4

Semester: 6th Mechatronics (Spring 2021)

Problem 5:

The circuit below in Fig.5 is the hardware implementation of the combinational logic function 'C' whose inputs are signals 'A' and 'B'. If logic '1' voltage is equal to V_{CC} [V] and logic '0' voltage is 0.2 [V], then:

- 1. Derive the logic function truth table (binary)
- 2. Derive the voltage value of 'C' for all the possible input combinations. (Complete the table below as a guide and match it with the function's truth table).
- 3. Draw the combinational logic function 'C' circuit diagram on the gate level. (Note that: the circuit parameters are: $V_{D,on}=V_{BE}=0.7V$, $V_{BC}=0.5V$ and $\beta=90$)

Figure 5

Input Voltage	D _A mode	D _B mode	D ₁ mode	D ₂ mode	Q mode	'C' Value [V]	'C' Logic Value ('1' or '0')
$V_A=V_B=0.2V$							
$V_A=0.2V,$ $V_B=V_{CC}$							
$V_A = V_{CC},$ $V_B = 0.2V$							
$V_{A}=V_{CC}, V_{B}=V_{CC}$							