- **例 1.** a) 写出模 9 的一个完全剩余系, 它的每个数是奇数;
 - b) 写出模 9 的一个完全剩余系, 它的每个数是偶数.
- 解. a) $\{-7, -5, -3, -1, 1, 3, 5, 7, 9\}$;
 - b) $\{-8, -6, -4, -2, 0, 2, 4, 6, 8\}$.
- **例 2.** 证明: 当 m > 2 时, $0^2, 1^2, \ldots, (m-1)^2$ 一定不是模 m 的完全剩余系.

证明. 由于 $(m-1)^2 \equiv m^2 - 2m + 1 \equiv m(m-2) + 1 \equiv 1 \pmod{m}$, 我们得出 $0,1,\ldots,m-1$ 中至多有 m-1 个互相不同余的数. 所以该数列不可能是模 m 的 完全剩余系.

例 3. 证明: 如果 $a^k \equiv b^k \pmod{m}$, $a^{k+1} \equiv b^{k+1} \pmod{m}$, 这里 a, b, k, m 是整数, k > 0, m > 0, 并且 (a, m) = 1, 那么 $a \equiv b \pmod{m}$. 如果去掉 (a, m) = 1 这个条件, 结果仍成立吗?

证明. 从 $a^k \equiv b^k \pmod{m}$, $a^{k+1} \equiv b^{k+1} \pmod{m}$ 开始, 将其两边同乘 b, 得到 $a^k b \equiv b^{k+1} \equiv a^{k+1} \pmod{m}$, 经移项得 $a^k (a-b) \equiv 0 \pmod{m}$, 即 $m \mid a^k (a-b)$. 由于 (a,m) = 1, 必然有 $(a^k,m) = 1$ 成立. 所以 $m \mid (a-b)$, 即 $a \equiv b \pmod{m}$.

例 4. $1^3 + 2^3 + \dots + (n-1)^3 \equiv 0 \pmod{n}$ 对于符合什么条件的正整数 n 成立?

证明. 已知平方和公式为 $\sum_{k=1}^n k^2 = n(n+1)(2n+1)/6$, 首先求出立方和公式, 设 $S_n = \sum_{k=1}^n k^3$, $E_n = S_n - \int_0^n x^3 \, \mathrm{d}x$, 我们有

$$E_n = S_n - \int_0^n x^3 dx$$

$$= \sum_{k=1}^n \left(k^3 - \int_{k-1}^k x^3 dx \right)$$

$$= \sum_{k=1}^n \left(\frac{3}{2} k^2 - k + \frac{1}{4} \right)$$

$$= (2n^3 + n^2)/4,$$

$$= S_n - \int_0^n x^3 dx$$

$$S_n = E_n + n^4/4$$

$$= (n(n+1))^2/4.$$

所以 $1^3 + 2^3 + \dots + (n-1)^3 = (n(n-1))^2/4$. 题目便转为求使 $(n(n-1))^2/4 \equiv 0 \pmod{n}$ 成立的 n, 即 $n \mid (n(n-1))^2/4$. 由此得存在整数 k 使得 $kn = (n(n-1))^2/4$. 经移项得 $4k = n(n-1)^2$, 即 $4 \mid n(n-1)^2$.

- i) $\exists n = 4k \text{ ff}, n(n-1)^2 = 4k(4k-1), \text{ fix } 4 \text{ \mathbb{R}};$
- ii) $\leq n = 2k + 1$ $\forall n, n(n-1)^2 = 4k^2(2k+1)$, it is 4 \otimes ;
- iii) 当 n = 4k + 2 时, $n(n-1)^2 = (4k+2)(4k+1)^2 = 4(16k^3 + 16k^2 + 5k) + 2$. 故 $n(n-1)^2 \equiv 2 \pmod{4}$, 它不能被 4 整除.

П

所以, 当 n 不取形式为 4k+2 形式的整数时, 原式成立.

例 5. 证明: 如果 p 是素奇数, 那么 $1^2 \cdot 3^2 \cdots (p-4)^2 \cdot (p-2)^2 \equiv (-1)^{(p+1)/2} \pmod{p}$.

证明. 将平方项拆分成正负两项相乘,

$$\begin{aligned} &1^2 \cdot 3^2 \cdots (p-4)^2 \cdot (p-2)^2 \\ &\equiv 1 \cdot (-1) \cdot 3 \cdot (-3) \cdots (p-4) \cdot (4-p) \cdot (p-2) \cdot (2-p) \cdot (-1)^{(p-1)/2} \\ &\equiv 1 \cdot (p-1) \cdot 3 \cdot (p-3) \cdots (p-4) \cdot 4 \cdot (p-2) \cdot 2 \cdot (-1)^{(p-1)/2} \\ &\equiv 1 \cdot 2 \cdot 3 \cdots (p-2) \cdot (p-1) \cdot (-1)^{(p-1)/2} \\ &\equiv (-1)^{(p+1)/2} \pmod{p}. \end{aligned}$$

定理 1. 若 x, y 是整数, p 是素数, 且 $x^2 \equiv y^2 \pmod{p}$, 那么 $x \equiv \pm y \pmod{p}$.

证明. 由 $x^2 \equiv y^2 \pmod{p}$ 知 $p \mid (x^2 - y^2) = (x - y)(x + y)$. 因为 p 是素数, 我 们有 $p \mid (x - y)$ 或 $p \mid (x + y)$, 故 $x \equiv y \pmod{p}$ 或 $x \equiv -y \pmod{p}$.

例 6. 运用 Wilson 理论证明: 如果 p 是素数, 并且 $p \equiv 1 \pmod{4}$, 那么同余式 $x^2 \equiv -1 \pmod{p}$ 就有两不同余解 $x \equiv \pm \left(\frac{p-1}{2}\right)! \pmod{p}$.

证明. 由 $x^2 \equiv -1 \pmod{p}$ 得

$$x^{2} \equiv 1 \cdot 2 \cdots (p-2) \cdot (p-1)$$

$$\equiv 1 \cdot 2 \cdots \frac{p-1}{2} \cdot \frac{p+1}{2} \cdots (p-2) \cdot (p-1)$$

$$\equiv \left(\frac{p-1}{2}\right)^{2} \cdots 2^{2} \cdot 1^{2} \cdot (-1)^{(p-1)/2} \pmod{p}.$$

由于 $p \equiv 1 \pmod{4}$, 存在整数 k, 使得 n = 4k + 1 成立, 则 (p-1)/2 = 2k 是偶数, $(-1)^{(p-1)/2} = 1$. 再由定理 1 可得 $x \equiv \pm \left(\frac{p-1}{2}\right)! \pmod{p}$.

例 7. 证明: 如果 $c_1, c_2, \ldots, c_{\phi(m)}$ 是模 m 的简化剩余系, 其中 $m \geq 3$, 那么 $c_1 + c_2 + \cdots + c_{\phi(m)} \equiv 0 \pmod{m}$.

证明. 如果 c 在 m 的简化剩余系中, 那么 n-c 也在 m 的简化剩余系中, 因为 (c,n)=(n-c,n). 但是不可能出现 c=n-c 的情况, 否则 2c=n, 则 (c,n)=c, 不符合 c 与 n 互质的要求. 所以, 可以将简化剩余系中 c_i 和 $n-c_i$ 两两配对, 使各对中两个元素的和为 n, 进而使所有元素的总和与 0 模 m 同余.

例 8. 设 p 是奇素数, k 是正整数. 证明: 同余式 $x^2 \equiv 1 \pmod{p^k}$ 正好有两个不同余的解 $x \equiv \pm 1 \pmod{p^k}$.

证明. 假设 $x^2 \equiv 1 \pmod{p^k}$, 那么 $x^2 - 1 \equiv (x - 1)(x + 1) \equiv 0 \pmod{p^k}$, 这要求了 $p^k \mid (x - 1)(x + 1)$. 由于 (x + 1) - (x - 1) = 2, 并且 p 是奇素数 $(p^k \ge 3)$, 所以 p^k 只能整除 x - 1 和 x + 1 中的一个. 故原同余式恰好有两个解, 即 $x \equiv \pm 1 \pmod{p^k}$.

例 9. 证明: k > 2 时, 同余式 $x^2 \equiv 1 \pmod{2^k}$ 恰好有四个不同余的解, 它们是 $x \equiv \pm 1$ or $\pm (1 + 2^{k-1}) \pmod{2^k}$; k = 1 时, 该同余式有一个解; k = 2 时, 该同余式有两个不同余的解.

证明. 假设 $x^2 \equiv 1 \pmod{2^k}$, 那么 $x^2 - 1 \equiv (x-1)(x+1) \equiv 0 \pmod{2^k}$, 这要求了 $2^k \mid (x-1)(x+1)$. 注意到 x-1 和 x+1 都是偶数, 并且 (x+1)-(x-1)=2, 所以这两数中的一个不能被 2 以上的 2 的正幂次整除. 故 $2^{k-1} \mid x-1$ 且 $2 \mid x+1$ 或 $2^{k-1} \mid x+1$ 且 $2 \mid x-1$. 由此得出原同余式的解有形式 $x=t2^{k-1}+1$ 和 $x=t2^{k-1}-1$.

- i) k > 2 时, 取 t = 0 or 1, 得到四个不同余的解 $x \equiv \pm 1$ or $\pm (1 + 2^{k-1})$ (mod 2^k);
- ii) k = 1 时, 取 t = 0, 只得到一个解 $x \equiv 1 \pmod{2}$;
- iii) k=2 时, 取 t=0, 得到两个不同余的解 $x\equiv \pm 1\pmod 4$.

例 10. 证明: 同余方程组 $x \equiv a_1 \pmod{m_1}$, $x \equiv a_2 \pmod{m_2}$ 有解当且仅当 $(m_1, m_2) \mid a_1 - a_2$. 并证明若有解, 则该解模 $[m_1, m_2]$ 是唯一的.

证明. 若第一条同余式成立, 当且仅当存在整数 k, 使得 $x = a_1 + m_1 k$ 成立. 将其代入第二条同余式, 得到 $a_1 + m_1 k \equiv a_2 \pmod{m_2}$, 或者

$$m_1 k \equiv a_2 - a_1 \pmod{m_2}. \tag{1}$$

如果该同余式有解, 那么原同余方程组有解, 这当且仅当 $(m_1, m_2) \mid a_1 - a_2$.

现在假定 (m_1, m_2) | $a_1 - a_2$, 则 (1) 式恰好有 (m_1, m_2) 个解. 将 (1) 式的一个解记为 k_0 , 这些解为 $k_0 + jm_2/(m_1, m_2)$, $j = 0, 1, \ldots, (m_1, m_2) - 1$. 那么根据 $x = a_1 + m_1 k$, 得出原同余方程组的解为 $a_1 + m_1 k_0 + j m_1 m_2/(m_1, m_2) = a_1 + m_1 k_0 + j [m_1, m_2]$, $j = 0, 1, \ldots, (m_1, m_2) - 1$, 它们模 $[m_1, m_2]$ 同余. 所以原方程组的解模 $[m_1, m_2]$ 是唯一的.

例 11. 求解同余式 $59x \equiv 20 \pmod{91}$. 使用欧几里得算法和中国剩余定理.

解. a) 使用欧几里得算法.

求解原同余式, 首先求解 59x - 91y = (59, 91). 使用欧几里得算法 (递推式 $s_j = s_{j-2} - q_{j-1}s_{j-1}$ 和 $t_j = t_{j-2} - q_{j-1}t_{j-1}$, 其中 q_j 代表第 j 次使用带余除法的商):

1								
	j	r_{j}	r_{j+1}	q_{j+1}	r_{j+2}	s_{j}	t_{j}	
	0	91	59	1	32	1	0	
	1	59	32	1	27	0	1	
	2	32	27	1	5	1	-1	这说明了该方程的特解
	3	27	5	5	2	-1	2	
	4	5	2	2	1	2	-3	
	5	2	1	2	0	-11	17	
	6					24	-37	

所以 $59 \cdot (-37) \equiv 59 \cdot 54 \equiv 1 \pmod{91}$, 即 59 模 91 的乘法逆元为 54. 代入原方程, $x \equiv 20 \cdot (59)^{-1} \equiv 20 \cdot 54 \equiv 79 \pmod{91}$.

b) 使用中国剩余定理.

首先求出 x 模 91 的乘法逆元. 由于 91 = $7 \cdot 13$, 得出同余方程组

根据例 10, 该方程组模 91 有唯一解且该解就是原同余式的解. 根据中国剩余定理, 我们有 $M=7\cdot 13=91$, $M_1=91/7=13$, $M_2=91/13=7$. 要确定 y_1 和 y_2 , 解 $13y_1\equiv 1\pmod{7}$ 得出 $y_1=6$, 解 $7y_2\equiv 1\pmod{13}$ 得出 $y_2=2$. 所以该同余方程组的解为 $x=a_1M_1y_1+a_2M_2y_2=2\cdot 13\cdot 6+1\cdot 7\cdot 2\equiv 79\pmod{91}$.