

Algorithmen II Vorlesung am 28.11.2013

Randomisierte Algorithmen – Max Cut

Problem MaxCut: Gegeben ist ein Graph G = (V, E) mit Gewichtsfunktion $c: E \longrightarrow \mathbb{N}$. Gesucht ist ein Schnitt $(S, V \setminus S)$ von G mit maximalem Gewicht, d.h.

$$c(S, V \setminus S) := \sum_{\substack{u,v \in E \\ u \in S \text{ und } v \in V \setminus S}} c(\{u,v\})$$
 soll maximal sein.

Problem ist \mathcal{NP} -schwer.

$$c(S, V \setminus S) = 18$$

Problem MaxCut: Gegeben ist ein Graph G = (V, E) mit Gewichtsfunktion $c: E \longrightarrow \mathbb{N}$. Gesucht ist ein Schnitt $(S, V \setminus S)$ von G mit maximalem Gewicht, d.h.

$$c(S, V \setminus S) := \sum_{\substack{u,v \in E \\ u \in S \text{ und } v \in V \setminus S}} c(\{u,v\})$$
 soll maximal sein.

Problem ist \mathcal{NP} -schwer.

Idee: Berechne Lösung, die annähernd so gut ist, wie die optimale Lösung.

$$G = (V, E) \xrightarrow{\text{Transformation}} \xrightarrow{\text{1-dimensionales quadratisches programm}} \xrightarrow{\text{Sches Programm}} \xrightarrow{\text{Relaxierung auf } k \text{ Dimensionen für } k \leq n} \xrightarrow{\text{Programm QP}^k} \xrightarrow{\text{Rellwertige Lösung randomisierter Algo.}} \xrightarrow{\text{Rellwertige Lösung von } QP^k} \xrightarrow{\text{Rellwertige Lösung von } QP^k} \xrightarrow{\text{Rücktransformation in Schnitt}} \xrightarrow{\text{Näherungslösung für MaxCut auf } G$$

Problem MaxCut: Gegeben ist ein Graph G = (V, E) mit Gewichtsfunktion $c: E \longrightarrow \mathbb{N}$. Gesucht ist ein Schnitt $(S, V \setminus S)$ von G mit maximalem Gewicht, d.h.

$$c(S, V \setminus S) \coloneqq \sum_{\substack{u,v \in E \\ u \in S \text{ und } v \in V \setminus S}} c(\{u,v\}) \quad \text{soll maximal sein.}$$

Problem ist \mathcal{NP} -schwer.

Idee: Berechne Lösung, die annähernd so gut ist, wie die optimale Lösung.

Zu
$$i$$
 und $j \in V := \{1, ..., n\}$ definiere $c_{ij} := \begin{cases} c(\{i, j\}) & \text{falls } \{i, j\} \in E \\ 0 & \text{sonst} \end{cases}$

QP(/):

$$\max \frac{1}{2} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x_i \cdot x_j)$$

unter den Nebenbedingungen: $x_i^2 = 1$ für $1 \le i \le n$.

Idee:

Jede Variable x_i steht für einen Knoten. Es gilt: $x_i \in \{1, -1\}$

Es gilt für zwei Knoten i und j:

 $X_i = X_j$ Knoten in der selben Partition.

 $x_i = -x_j$ Knoten in unterschiedlichen Partitionen.

$$c_{ij} \cdot (1 - x_i \cdot x_j) = \begin{cases} 2 & \text{, wenn } x_i = -x_j \\ 0 & \text{, wenn } x_i = x_j \end{cases}$$

 $\Rightarrow c_{ij}$ geht nur in Zielfunktion ein, wenn $\{i, j\} \in E$ und Knoten befinden sich in unterschiedlichen Partitionen.

Zu
$$i$$
 und $j \in V := \{1, ..., n\}$ definiere $c_{ij} := \begin{cases} c(\{i, j\}) & \text{falls } \{i, j\} \in E \\ 0 & \text{sonst} \end{cases}$

QP(/):

$$\max \frac{1}{2} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x_i \cdot x_j)$$

unter den Nebenbedingungen: $x_i^2 = 1$ für $1 \le i \le n$.

Gewichtungsmatrix: c_{ij}

	1	2	3	4	5
1		3			1
2	3		5		2
2		5	6		
1			6		2
5	1	2		2	

Lösung:

$$X_2 = X_4 = 1$$

 $X_1 = X_5 = X_3 = -1$

Zu
$$i$$
 und $j \in V := \{1, ..., n\}$ definiere $c_{ij} := \begin{cases} c(\{i, j\}) & \text{falls } \{i, j\} \in E \\ 0 & \text{sonst} \end{cases}$

QP(/):

$$\max \frac{1}{2} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x_i \cdot x_j)$$

unter den Nebenbedingungen: $x_i^2 = 1$ für $1 \le i \le n$.

Gewichtungsmatrix: c_{ij}

	1	2	3	4	5
1		3			1
2	3		5		2
2 3 4 5		5	6		
4			6		2
5	1	2		2	

Lösung:

$$X_2 = X_4 = 1$$

 $X_1 = X_5 = X_3 = -1$

Problem:

Lösen von QP(I) ist \mathcal{NP} -schwer.

 $x_1 = x_5 = x_3 = -1$ Ansonsten wäre MAXCUT nicht \mathcal{NP} -schwer.

Zu
$$i$$
 und $j \in V := \{1, \ldots, n\}$ definiere $c_{ij} := \begin{cases} c(\{i,j\}) & \text{falls } \{i,j\} \in E \\ 0 & \text{sonst} \end{cases}$

QP(/):

$$\max \frac{1}{2} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x_i \cdot x_j)$$

unter den Nebenbedingungen: $x_i^2 = 1$ für $1 \le i \le n$.

2 5 3 V\S 6 6 5 2 4

Gewichtungsmatrix: c_{ij}

	1	2	3	4	5
1		3			1
2 3	3		5		2
3		5	6		
4			6		2
5	1	2		2	

Beachte:

 x_i und x_j sind 1-dimensionale Vektoren.

Lösung:

$$x_2 = x_4 = 1$$

 $x_1 = x_5 = x_3 = -1$

Problem:

Lösen von QP(I) ist \mathcal{NP} -schwer.

 $x_1 = x_5 = x_3 = -1$ Ansonsten wäre MAXCUT nicht \mathcal{NP} -schwer.

Problem MaxCut: Gegeben ist ein Graph G = (V, E) mit Gewichtsfunktion $c: E \longrightarrow \mathbb{N}$. Gesucht ist ein Schnitt $(S, V \setminus S)$ von G mit maximalem Gewicht, d.h.

$$c(S, V \setminus S) := \sum_{\substack{u,v \in E \\ u \in S \text{ und } v \in V \setminus S}} c(\{u,v\}) \qquad \text{soll maximal sein}.$$

Problem ist \mathcal{NP} -schwer.

Idee: Berechne Lösung, die annähernd so gut ist, wie die optimale Lösung.

$$G = (V, E)$$
Transformation
Sches Programm

1-dimensionales quadrati-sches quadrati-sches Programm

1-dimensionales quadrati-sches quadrati-

Ganzzahlige 1-d Lösung

Rücktransfo

Betrachte den Fall k = 2.

Vorteil: Prinzip leichter ersichtlich.

Nachteil: Nicht bekannt ob QP^2 optimal in poly. Zeit gelöst

werden kann.

Entsprechendes QP^n kann in poly. Zeit gelöst werden (später).

QP²(*I*): Sei $x^i = (x_1^i, x_2^i) \in \mathbb{R}^2$ normierter Vektor.

$$\max \frac{1}{2} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x^{i} \cdot x^{j})$$

unter den Nebenbedingungen $x^i, x^j \in \mathbb{R}^2$ sind normierte Vektoren

QP²(*I*): Sei $x^i = (x_1^i, x_2^i) \in \mathbb{R}^2$ normierter Vektor.

$$\max \frac{1}{2} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x^{i} \cdot x^{j})$$

unter den Nebenbedingungen x^i , $x^j \in \mathbb{R}^2$ sind normierte Vektoren

Für das Produkt von x^i und x^j gilt: $x^i \cdot x^j = x_1^i \cdot x_1^j + x_2^i \cdot x_2^j = cos(\alpha_{ij})$ mit $0 \le \alpha_{ij} \le \pi$

Damit wird $\frac{1}{2} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - cos(\alpha_{ij}))$ über Winkel α_{ij} maximiert.

QP²(*I*): Sei $x^i = (x_1^i, x_2^i) \in \mathbb{R}^2$ normierter Vektor.

$$\max \frac{1}{2} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x^{i} \cdot x^{j})$$

unter den Nebenbedingungen $x^i, x^j \in \mathbb{R}^2$ sind normierte Vektoren

Für das Produkt von x^i und x^j gilt: $x^i \cdot x^j = x_1^i \cdot x_1^j + x_2^i \cdot x_2^j = cos(\alpha_{ij})$ mit $0 \le \alpha_{ij} \le \pi$

Damit wird
$$\frac{1}{2} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - cos(\alpha_{ij}))$$
 über Winkel α_{ij} maximiert.

Beobachtung:

Je größer der Winkel α_{ij} zwischen x_i und x_j ist, umso mehr trägt c_{ij} zur Summe bei.

QP²(*I*): Sei $x^i = (x_1^i, x_2^i) \in \mathbb{R}^2$ normierter Vektor.

$$\max \frac{1}{2} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x^{i} \cdot x^{j})$$

unter den Nebenbedingungen $x^i, x^j \in \mathbb{R}^2$ sind normierte Vektoren

Für das Produkt von x^i und x^j gilt: $x^i \cdot x^j = x_1^i \cdot x_1^j + x_2^i \cdot x_2^j = cos(\alpha_{ij})$ mit $0 \le \alpha_{ij} \le \pi$

Damit wird
$$\frac{1}{2} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - cos(\alpha_{ij}))$$
 über Winkel α_{ij} maximiert.

Beobachtung:

Je größer der Winkel α_{ij} zwischen x_i und x_j ist, umso mehr trägt c_{ij} zur Summe bei.

Lösung (x_1, \ldots, x_n) von QP(I) induziert Lösung (x^1, \ldots, x^n) von $QP^2(I)$ mittels $x^i = (x_i, 0)$. $\Rightarrow QP^2(I)$ ist Relaxierung von QP(I)

Problem MaxCut: Gegeben ist ein Graph G = (V, E) mit Gewichtsfunktion $c: E \longrightarrow \mathbb{N}$. Gesucht ist ein Schnitt $(S, V \setminus S)$ von G mit maximalem Gewicht, d.h.

$$c(S, V \setminus S) := \sum_{\substack{u,v \in E \\ u \in S \text{ und } v \in V \setminus S}} c(\{u,v\})$$
 soll maximal sein.

Problem ist \mathcal{NP} -schwer.

Idee: Berechne Lösung, die annähernd so gut ist, wie die optimale Lösung.

Eingabe: Graph G = (V, E) mit einer Gewichtsfunktion $c : E \longrightarrow \mathbb{N}$

Ausgabe: Ein Schnitt (S, $V \setminus S$) in G

- 1. Berechne optimale Lösung $(\tilde{x}^1, \dots, \tilde{x}^n)$ für $QP^2(G,c)$
- 2. Wähle zufällig einen zweidimensionalen Vektor r mit Norm 1

3.
$$S \leftarrow \{i \in V : \tilde{x}^i \cdot r \geq 0\}$$

 $ightharpoonup \widetilde{x_i}$ liegt oberhalb der zu r senkrechten Linie ℓ

Eingabe: Graph G = (V, E) mit einer Gewichtsfunktion $c : E \longrightarrow \mathbb{N}$

Ausgabe: Ein Schnitt ($S, V \setminus S$) in G

- 1. Berechne optimale Lösung $(\tilde{x}^1, \ldots, \tilde{x}^n)$ für QP²(G,c)
- 2. Wähle zufällig einen zweidimensionalen Vektor r mit Norm 1

3.
$$S \leftarrow \{i \in V : \tilde{x}^i \cdot r \geq 0\}$$

 $\widetilde{x_i}$ liegt oberhalb der zu r senkrechten Linie ℓ

1. Schritt: Berechne Lösung für QP^2 :

Eingabe: Graph G = (V, E) mit einer Gewichtsfunktion $c : E \longrightarrow \mathbb{N}$

Ausgabe: Ein Schnitt ($S, V \setminus S$) in G

- 1. Berechne optimale Lösung $(\tilde{x}^1, \ldots, \tilde{x}^n)$ für QP²(G,c)
- 2. Wähle zufällig einen zweidimensionalen Vektor r mit Norm 1

3.
$$S \leftarrow \{i \in V : \tilde{x}^i \cdot r \geq 0\}$$

 $ightharpoonup \widetilde{x_i}$ liegt oberhalb der zu r senkrechten Linie ℓ

2. Schritt: Rate Vektor r

Eingabe: Graph G = (V, E) mit einer Gewichtsfunktion $c : E \longrightarrow \mathbb{N}$

Ausgabe: Ein Schnitt (S, $V \setminus S$) in G

- 1. Berechne optimale Lösung $(\tilde{x}^1, \ldots, \tilde{x}^n)$ für QP²(G,c)
- 2. Wähle zufällig einen zweidimensionalen Vektor r mit Norm 1

3.
$$S \leftarrow \{i \in V : \tilde{x}^i \cdot r \geq 0\}$$

 $\widetilde{x_i}$ liegt oberhalb der zu r senkrechten Linie ℓ

3. Schritt: Berechne S

Satz 8.18: Sei I eine Instanz für MaxCut und $C_{RMC}(I)$ der Wert der Lösung, die Random MaxCut für I berechnet. Wenn die Vektoren r gleichverteilt angenommen werden, so gilt:

$$E[C_{RMC}(I)] = \frac{1}{\pi} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot \arccos(\tilde{x}^i \cdot \tilde{x}^j)$$

Eingabe: Graph G = (V, E) mit einer Gewichtsfunktion $c : E \longrightarrow \mathbb{N}$

Ausgabe: Ein Schnitt (S, $V \setminus S$) in G

- 1. Berechne optimale Lösung $(\widetilde{x^1}, \ldots, \widetilde{x^n})$ für $QP^2(G,c)$
- 2. Wähle zufällig einen zweidimensionalen Vektor r mit Norm 1

3.
$$S \leftarrow \{i \in V : \widetilde{x^i} \cdot r \geq 0\}$$

Satz 8.18: Sei I eine Instanz für MaxCut und $C_{RMC}(I)$ der Wert der Lösung, die Random MaxCut für I berechnet. Wenn die Vektoren r gleichverteilt angenommen werden, so gilt:

$$E[C_{RMC}(I)] = \frac{1}{\pi} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot \arccos(\tilde{x}^i \cdot \tilde{x}^j)$$

$$sgn(x) := \begin{cases} 1 & falls \quad x \ge 0 \\ -1 & sonst \end{cases}$$

Eingabe: Graph G = (V, E) mit einer Gewichtsfunktion $c : E \longrightarrow \mathbb{N}$

Ausgabe: Ein Schnitt (S, $V \setminus S$) in G

- 1. Berechne optimale Lösung $(\widetilde{x^1}, \ldots, \widetilde{x^n})$ für QP²(G,c)
- 2. Wähle zufällig einen zweidimensionalen Vektor r mit Norm 1

3.
$$S \leftarrow \{i \in V : \widetilde{x^i} \cdot r \geq 0\}$$

Satz 8.18: Sei I eine Instanz für MaxCut und $C_{RMC}(I)$ der Wert der Lösung, die Random MaxCut für I berechnet. Wenn die Vektoren r gleichverteilt angenommen werden, so gilt:

$$E[C_{RMC}(I)] = \frac{1}{\pi} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot \arccos(\tilde{x}^i \cdot \tilde{x}^j)$$

Beweis:

$$sgn(x) := \begin{cases} 1 & falls \quad x \ge 0 \\ -1 & sonst \end{cases}$$

Es gilt:

$$E(C_{\mathsf{RMC}}(I)) = \sum_{j=1}^{n} \sum_{i=1}^{J-1} c_{ij} \cdot \mathsf{Pr}[\mathsf{sgn}(\tilde{x}^{i} \cdot r) \neq \mathsf{sgn}(\tilde{x}^{j} \cdot r)]$$

wobei r gleichverteilt zufällig gewählt wird.

Eingabe: Graph G = (V, E) mit einer Gewichtsfunktion $c : E \longrightarrow \mathbb{N}$

Ausgabe: Ein Schnitt ($S, V \setminus S$) in G

- 1. Berechne optimale Lösung $(\widetilde{x^1}, \ldots, \widetilde{x^n})$ für QP²(G,c)
- 2. Wähle zufällig einen zweidimensionalen Vektor r mit Norm 1

3.
$$S \leftarrow \{i \in V : \widetilde{x^i} \cdot r \geq 0\}$$

Satz 8.18: Sei I eine Instanz für MaxCut und $C_{RMC}(I)$ der Wert der Lösung, die Random MaxCut für I berechnet. Wenn die Vektoren r gleichverteilt angenommen werden, so gilt:

$$E[C_{RMC}(I)] = \frac{1}{\pi} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot \arccos(\tilde{x}^i \cdot \tilde{x}^j)$$

Beweis:

$$sgn(x) := \begin{cases} 1 & falls \quad x \ge 0 \\ -1 & sonst \end{cases}$$

Es gilt:

$$E(C_{\mathsf{RMC}}(I)) = \sum_{j=1}^{n} \sum_{i=1}^{J-1} c_{ij} \cdot \mathsf{Pr}[\mathsf{sgn}(\tilde{x}^{i} \cdot r) \neq \mathsf{sgn}(\tilde{x}^{j} \cdot r)]$$

wobei r gleichverteilt zufällig gewählt wird.

Zeige:

$$\Pr[\operatorname{sgn}(\tilde{x}^i \cdot r) \neq \operatorname{sgn}(\tilde{x}^j \cdot r)] = \frac{\operatorname{arccos}(\tilde{x}^i \cdot \tilde{x}^j)}{\pi}$$

Eingabe: Graph G = (V, E) mit einer Gewichtsfunktion $c : E \longrightarrow \mathbb{N}$

Ausgabe: Ein Schnitt ($S, V \setminus S$) in G

1. Berechne optimale Lösung $(\widetilde{x^1}, \ldots, \widetilde{x^n})$ für QP²(G,c)

2. Wähle zufällig einen zweidimensionalen Vektor r mit Norm 1

3.
$$S \leftarrow \{i \in V : \widetilde{x^i} \cdot r \geq 0\}$$

Satz 8.18: Sei I eine Instanz für MaxCut und $C_{RMC}(I)$ der Wert der Lösung, die Random MaxCut für I berechnet. Wenn die Vektoren r gleichverteilt angenommen werden, so gilt:

$$E[C_{RMC}(I)] = \frac{1}{\pi} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot \arccos(\tilde{x}^i \cdot \tilde{x}^j)$$

Zeige:

$$\Pr[\operatorname{sgn}(\tilde{x}^i \cdot r) \neq \operatorname{sgn}(\tilde{x}^j \cdot r)] = \frac{\operatorname{arccos}(\tilde{x}^i \cdot \tilde{x}^j)}{\pi}$$

 $\operatorname{sgn}(\tilde{x}^i \cdot r) \neq \operatorname{sgn}(\tilde{x}^j \cdot r) \Leftrightarrow \ell \operatorname{trennt} \tilde{x}^i \operatorname{und} \tilde{x}^j$

 ℓ =Senkrechte Gerade zu r s, t= Schnittpunkte von ℓ und Einheitskreis.

Satz 8.18: Sei I eine Instanz für MaxCut und $C_{RMC}(I)$ der Wert der Lösung, die Random MaxCut für I berechnet. Wenn die Vektoren r gleichverteilt angenommen werden, so gilt:

$$E[C_{RMC}(I)] = \frac{1}{\pi} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot \arccos(\tilde{x}^i \cdot \tilde{x}^j)$$

Zeige:

$$\Pr[\operatorname{sgn}(\tilde{x}^{i} \cdot r) \neq \operatorname{sgn}(\tilde{x}^{j} \cdot r)] = \frac{\operatorname{arccos}(\tilde{x}^{i} \cdot \tilde{x}^{j})}{\pi}$$

 $\operatorname{sgn}(\tilde{x}^i \cdot r) \neq \operatorname{sgn}(\tilde{x}^j \cdot r) \Leftrightarrow \ell \operatorname{trennt} \tilde{x}^i \operatorname{und} \tilde{x}^j$

 \Leftrightarrow s oder t liegt auf dem kürzeren Kreisbogen B zwischen \tilde{x}^i und \tilde{x}^j

B hat Länge $arccos(\tilde{x}^i \cdot \tilde{x}^j)$

 ℓ =Senkrechte Gerade zu r s, t= Schnittpunkte von ℓ und Einheitskreis.

Satz 8.18: Sei I eine Instanz für MaxCut und $C_{RMC}(I)$ der Wert der Lösung, die Random MaxCut für I berechnet. Wenn die Vektoren r gleichverteilt angenommen werden, so gilt:

$$E[C_{RMC}(I)] = \frac{1}{\pi} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot \arccos(\tilde{x}^i \cdot \tilde{x}^j)$$

Zeige:

$$\Pr[\operatorname{sgn}(\tilde{x}^i \cdot r) \neq \operatorname{sgn}(\tilde{x}^j \cdot r)] = \frac{\operatorname{arccos}(\tilde{x}^i \cdot \tilde{x}^j)}{\pi}$$

 $\operatorname{sgn}(\tilde{x}^i \cdot r) \neq \operatorname{sgn}(\tilde{x}^j \cdot r) \Leftrightarrow \ell \operatorname{trennt} \tilde{x}^i \operatorname{und} \tilde{x}^j$

 \Leftrightarrow s oder t liegt auf dem kürzeren Kreisbogen B zwischen \tilde{x}^i und \tilde{x}^j

B hat Länge $arccos(\tilde{x}^i \cdot \tilde{x}^j)$

$$\Pr[s \text{ oder } t \text{ liegt auf } B] = \frac{\arccos(\tilde{x}^i \cdot \tilde{x}^j)}{2 \cdot \pi} + \frac{\arccos(\tilde{x}^i \cdot \tilde{x}^j)}{2 \cdot \pi}$$
$$= \frac{\arccos(\tilde{x}^i \cdot \tilde{x}^j)}{\pi}$$

 ℓ =Senkrechte Gerade zu r

s, t= Schnittpunkte von ℓ und Einheitskreis.

Satz 8.19: Für eine Instanz / von MaxCut berechnet Random MaxCut eine Lösung mit dem Wert $C_{\rm RMC}(I)$, für die gilt

$$\frac{E[C_{\mathsf{RMC}}(I)]}{OPT(I)} \geq 0,8785.$$

Satz 8.19: Für eine Instanz / von MAXCUT berechnet RANDOM MAXCUT eine Lösung mit dem Wert $C_{\rm RMC}(I)$, für die gilt

$$\frac{E[C_{\mathsf{RMC}}(I)]}{OPT(I)} \geq 0,8785.$$

$$E[C_{RMC}(I)] = \frac{1}{\pi} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot \underbrace{\arccos(\tilde{x}^i \cdot \tilde{x}^j)}_{\alpha_{ij}} = \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot \frac{\alpha_{ij}}{\pi}$$

Satz 8.19: Für eine Instanz I von MAXCUT berechnet RANDOM MAXCUT eine Lösung mit dem Wert $C_{RMC}(I)$, für die gilt

$$\frac{E[C_{\mathsf{RMC}}(I)]}{OPT(I)} \ge 0,8785.$$

$$E[C_{RMC}(I)] = \frac{1}{\pi} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot \underbrace{\arccos(\tilde{x}^i \cdot \tilde{x}^j)}_{\alpha_{ij}} = \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot \frac{\alpha_{ij}}{\pi}$$

Sei $\tilde{x}^1, \dots, \tilde{x}^n$ eine optimale Lösung von $QP^2(I)$ mit dem Wert

$$C(QP^{2}(I)) = \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} (1 - \tilde{x}^{i} \cdot \tilde{x}^{j}) = \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \frac{1 - \cos \alpha_{ij}}{2}$$

Satz 8.19: Für eine Instanz / von MAXCUT berechnet RANDOM MAXCUT eine Lösung mit dem Wert $C_{\rm RMC}(I)$, für die gilt

$$\frac{E[C_{\mathsf{RMC}}(I)]}{OPT(I)} \ge 0,8785.$$

$$E[C_{RMC}(I)] = \frac{1}{\pi} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot \underbrace{\arccos(\tilde{x}^i \cdot \tilde{x}^j)}_{\alpha_{ij}} = \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot \frac{\alpha_{ij}}{\pi}$$

Sei $\tilde{x}^1, \dots, \tilde{x}^n$ eine optimale Lösung von $QP^2(I)$ mit dem Wert

$$C(QP^{2}(I)) = \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} (1 - \tilde{x}^{i} \cdot \tilde{x}^{j}) = \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \frac{1 - \cos \alpha_{ij}}{2}$$

$$\frac{E[C_{RMC}(I)]}{OPT(I)} \ge \frac{E[C_{RMC}(I)]}{C(QP^2(I))}$$

Satz 8.19: Für eine Instanz / von MAXCUT berechnet RANDOM MAXCUT eine Lösung mit dem Wert $C_{RMC}(I)$, für die gilt

$$\frac{E[C_{\mathsf{RMC}}(I)]}{OPT(I)} \ge 0,8785.$$

$$E[C_{RMC}(I)] = \frac{1}{\pi} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot \underbrace{\arccos(\tilde{x}^i \cdot \tilde{x}^j)}_{\alpha_{ij}} = \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot \frac{\alpha_{ij}}{\pi}$$

Sei $\tilde{x}^1, \dots, \tilde{x}^n$ eine optimale Lösung von $QP^2(I)$ mit dem Wert

$$C(QP^{2}(I)) = \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} (1 - \tilde{x}^{i} \cdot \tilde{x}^{j}) = \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \frac{1 - \cos \alpha_{ij}}{2}$$

Da $QP^2(I)$ Relaxierung von IQP(I) ist, gilt $OPT(I) \leq C(QP^2(I))$

$$\frac{E[C_{RMC}(I)]}{OPT(I)} \ge \frac{E[C_{RMC}(I)]}{C(QP^2(I))}$$

Zeige:
$$\frac{\alpha_{ij}}{\pi} \geq \frac{1 - \cos \alpha ij}{2} \cdot 0.8785$$

Satz 8.19: Für eine Instanz / von MAXCUT berechnet RANDOM MAXCUT eine Lösung mit dem Wert $C_{RMC}(I)$, für die gilt

$$\frac{E[C_{\mathsf{RMC}}(I)]}{OPT(I)} \geq 0,8785.$$

Zeige:
$$\frac{\alpha_{ij}}{\pi} \geq \frac{1 - \cos \alpha ij}{2} \cdot 0.8785$$

Karlsruher Institut für Technologie

1. Schritt: Bestimme QP

$$\max \frac{1}{2} \cdot \sum_{j=1}^{6} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x_i \cdot x_j)$$

unter NB: $x_i^2 = 1$ für $1 \le i \le n$.

Gewichtungsmatrix: c_{ij}

	_			_	,
1	2	3	4	5	6
	2		1		
2		1		3	
	1			4	2
1				2	
	3	4	2		3
		2		3	
	2	2 2 1 1	2 2 1 1 1 3 4	2 1 2 1 1 1 3 4 2	1 2 3 4 5 2 1 3 1 4 4 1 2 3 3 4 2

1. Schritt: Bestimme QP

$$\max \frac{1}{2} \cdot \sum_{j=1}^{6} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x_i \cdot x_j)$$

unter NB: $x_i^2 = 1$ für $1 \le i \le n$.

Gewichtungsmatrix: c_{ij}

			<i>y</i>		1	J
	1	2	3	4	5	6
1		2		1		
2	2		1		3	
2 3 4 5		1			4	2
4	1				2	
5		3	4	2		3
6			2		3	

2. Schritt: Relaxiere QP \rightarrow QP^2

$$\max \frac{1}{2} \cdot \sum_{j=1}^{6} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x^{i} \cdot x^{j})$$

unter NB: x^i , $x^j \in \mathbb{R}^2$ sind normierte Vektoren

1. Schritt: Bestimme QP

$$\max \frac{1}{2} \cdot \sum_{j=1}^{6} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x_i \cdot x_j)$$

unter NB: $x_i^2 = 1$ für $1 \le i \le n$.

Gewichtungsmatrix: c_{ij}

		•			11	
	1	2	3	4	5	6
1		2		1		
2	2		1		3	
3		1			4	2
4	1				2	
1 2 3 4 5 6		3	4	2		3
6			2		3	

2. Schritt: Relaxiere QP \rightarrow *QP*²

$$\max \frac{1}{2} \cdot \sum_{j=1}^{6} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x^{i} \cdot x^{j})$$

unter NB: x^i , $x^j \in \mathbb{R}^2$ sind normierte Vektoren

3. Schritt: Löse QP²

1 2	2 1 3
1	3 4 2
4 2	5 6

Variable	X^1	x^2	<i>x</i> ³	<i>x</i> ⁴	<i>x</i> ⁵	<i>x</i> ⁶
Winkel	0	180	120	165	345	210

1. Schritt: Bestimme QP

$$\max \frac{1}{2} \cdot \sum_{j=1}^{6} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x_i \cdot x_j)$$

unter NB: $x_i^2 = 1$ für $1 \le i \le n$.

Gewichtungsmatrix: c_{ij}

0.01.		;	<i></i>		 0 ₁	1
	1	2	3	4	5	6
1		2		1		
2	2		1		3	
3		1			4	2
4	1				2	
1 2 3 4 5 6		3	4	2		3
6			2		3	

2. Schritt: Relaxiere QP \rightarrow *QP*²

$$\max \frac{1}{2} \cdot \sum_{j=1}^{6} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x^{i} \cdot x^{j})$$

unter NB: x^i , $x^j \in \mathbb{R}^2$ sind normierte Vektoren

3. Schritt: Löse QP²

1 2	2 1 3
1	3 4 2
4 2	5 3 6

Variable	X^1	x^2	<i>x</i> ³	<i>x</i> ⁴	<i>x</i> ⁵	<i>x</i> ⁶
Winkel	0	180	120	165	345	210

4. Schritt: Rate Vektor *r*.

1. Schritt: Bestimme QP

$$\max \frac{1}{2} \cdot \sum_{j=1}^{6} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x_i \cdot x_j)$$

unter NB: $x_i^2 = 1$ für $1 \le i \le n$.

Gewichtungsmatrix: c_{ij}

	 اد ا		,	4		,
	1	2	3	4	5	6
1		2		1		
2	2		1		3	
1 2 3 4 5		1			4	2
4	1				2	
5		3	4	2		3
6			2		3	

2. Schritt: Relaxiere QP \rightarrow QP^2

$$\max \frac{1}{2} \cdot \sum_{j=1}^{6} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x^{i} \cdot x^{j})$$

unter NB: x^i , $x^j \in \mathbb{R}^2$ sind normierte Vektoren

3. Schritt: Löse QP²

Variable	$ x^1 $	x^2	<i>x</i> ³	<i>x</i> ⁴	<i>x</i> ⁵	<i>x</i> ⁶
Winkel	0	180	120	165	345	210

- **4. Schritt:** Rate Vektor *r*.
- 5. Schritt: Bestimme Schnitt

- Gewicht 14

1. Schritt: Bestimme QP

$$\max \frac{1}{2} \cdot \sum_{j=1}^{6} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x_i \cdot x_j)$$

unter NB: $x_i^2 = 1$ für $1 \le i \le n$.

Gewichtungsmatrix: Ciii

Journal gomatin o							
	1	2	3	4	5	6	
1		2		1			
2	2		1		3		
1 2 3 4 5 6		1			4	2	
4	1				2		
5		3	4	2		3	
6			2		3		

2. Schritt: Relaxiere QP \rightarrow *QP*²

$$\max \frac{1}{2} \cdot \sum_{j=1}^{6} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x^{i} \cdot x^{j})$$

unter NB: $x^i, x^j \in \mathbb{R}^2$ sind normierte Vektoren

3. Schritt: Löse QP²

Variable	X^1	x^2	<i>x</i> ³	<i>x</i> ⁴	<i>x</i> ⁵	<i>x</i> ⁶
Winkel	0	180	120	165	345	210

- **4. Schritt:** Rate Vektor *r*.
- **5. Schritt:** Bestimme Schnitt
 - Gewicht 14

Optimal 15

quadratisches

Programm QPk

Problem MaxCut: Gegeben ist ein Graph G = (V, E) mit Gewichtsfunktion $c: E \longrightarrow \mathbb{N}$. Gesucht ist ein Schnitt (S, $V \setminus S$) von G mit maximalem Gewicht, d.h.

$$c(S, V \setminus S) := \sum_{\substack{u,v \in E \\ u \in S \text{ und } v \in V \setminus S}} c(\{u,v\})$$
 soll maximal sein.

Problem ist $\mathcal{N}_{\mathcal{R}}$

Idee: Berechne

G = (V, E) Tran

Bisher: k=2

Problem:

Nicht bekannt, ob QP^2 optimal in poly. Zeit gelöst werden kann.

Entsprechendes *QP*ⁿ kann in poly. Zeit gelöst werden.

Ganzzahlige 1-dim. Lösung

Runden der Lösung randomisierter Algo. Reellwertige Lösung Lösen von QPk von QP^k

ing.

ionen

Rücktransformation in Schnitt

Näherungslösung für MaxCut auf G

Effiziente Lösung

$$\max \frac{1}{2} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x^{i} \cdot x^{j})$$

unter den Nebenbedingungen

 $x^i, x^j \in \mathbb{R}^2$ sind normierte Vektoren.

wird zu

$$QP^{n} \max_{j=1} \frac{1}{2} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - m_{ij})$$

mit $m_{ij} = x^i \cdot x^j$ und $m_{ii} = 1$ und unter den Nebenbedingungen

 $x^i, x^j \in \mathbb{R}^n$ sind normierte Vektoren.

Effiziente Lösung

$$\max \frac{1}{2} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x^{i} \cdot x^{j})$$

unter den Nebenbedingungen

 $x^i, x^j \in \mathbb{R}^2$ sind normierte Vektoren.

wird zu

$$QP^n \max_{j=1} \frac{1}{2} \cdot \sum_{j=1}^n \sum_{i=1}^{j-1} c_{ij} \cdot (1 - m_{ij})$$

mit $m_{ij} = x^i \cdot x^j$ und $m_{ii} = 1$ und unter den Nebenbedingungen

 $x^i, x^j \in \mathbb{R}^n$ sind normierte Vektoren.

Definition 8.20: Eine $n \times n$ -Matrix M heißt *positiv semidefinit*, falls für jeden Vektor $x \in \mathbb{R}^n$ gilt:

$$x^T \cdot M \cdot x > 0$$

Die Matrix $M := (m_{ij})$ ist positiv semidefinit.

Denn: Symmetrische Matrix M ist genau dann positiv semidefinit, wenn es $m \times n$ -Matrix P $(m \le n)$ gibt, sodass

$$M = P^T \cdot P$$

(P ist in polynomieller Zeit berechenbar, falls M positiv semidefinit.)

(Für jede positiv semidefinite $n \times n$ -Matrix M mit $m_{ii} = 1$ gilt, dass n normierte Vektoren $x^1, \ldots, x^n \in \mathbb{R}^n$ mit $m_{ij} = x^i \cdot x^j$ in polynomieller Zeit berechnet werden können.)

Effiziente Lösung

$$\max \frac{1}{2} \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} c_{ij} \cdot (1 - x^{i} \cdot x^{j})$$

unter den Nebenbedingungen

 $x^i, x^j \in \mathbb{R}^2$ sind normierte Vektoren.

wird zu

$$QP^n \max_{j=1} \frac{1}{2} \cdot \sum_{j=1}^n \sum_{i=1}^{j-1} c_{ij} \cdot (1 - m_{ij})$$

mit $m_{ij} = x^i \cdot x^j$ und $m_{ii} = 1$ und unter den Nebenbedingungen

 $x^i, x^j \in \mathbb{R}^n$ sind normierte Vektoren.

Definition 8.20: Eine $n \times n$ -Matrix M heißt *positiv semidefinit*, falls für jeden Vektor $x \in \mathbb{R}^n$ gilt:

$$x^T \cdot M \cdot x > 0$$

Die Matrix $M := (m_{ij})$ ist positiv semidefinit.

Damit entspricht $QP^n(I)$ dem Problem SEMI-DEFINIT-CUT(I).

Satz: Es gibt Algorithmus A_{ϵ} für jedes ϵ , sodass A_{ϵ} polynomiell in Eingabegröße und $\log(\frac{1}{\epsilon})$ ist und

$$A_{\epsilon}(I) \geq OPT_{SD}(I) - \epsilon$$
,

wobei $OPT_{SD}(I)$ optimaler Lösungswert von SEMI-DEFINIT-CUT(I).

(Ohne Beweis)

Man kann zeigen: Für $\epsilon = 10^{-5}$ wird Approximationsgüte von RANDOM MAXCUT erreicht.

