

OCTAL D-TYPE FLIP FLOP WITH CLEAR

- HIGH SPEED: f_{MAX} = 165 MHz (TYP.) at V_{CC} = 5V
- LOW POWER DISSIPATION: $I_{CC} = 4 \mu A \text{ (MAX.)}$ at $T_A=25^{\circ}\text{C}$
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28% V_{CC} (MIN.)
- POWER DOWN PROTECTION ON INPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 8 mA (MIN)
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- OPERATING VOLTAGE RANGE: V_{CC}(OPR) = 2V to 5.5V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 273
- IMPROVED LATCH-UP IMMUNITY
- LOW NOISE: V_{OLP} = 0.9V (MAX.)

The 74VHC273 is an advanced high-speed CMOS OCTAL D-TYPE FLIP FLOP WITH CLEAR fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS technology. Information signals applied to D inputs are transferred to the Q outputs on the positive going edge of the clock pulse.

ORDER CODES

PACKAGE	TUBE	T & R
SOP	74VHC273M	74VHC273MTR
TSSOP		74VHC273TTR

When the CLEAR input is held low, the Q outputs are held low independently of the other inputs.

Power down protection is provided on all inputs and 0 to 7V can be accepted on inputs with no regard to the supply voltage. This device can be used to interface 5V to 3V.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

June 2001 1/11

INPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	CLEAR	Asynchronous Master Reset (Active LOW)
2, 5, 6, 9, 12, 15, 16,19	Q0 to Q7	Flip-Flop Outputs
3, 4, 7, 8, 13, 14, 17, 18	D0 to D7	Data Inputs
11	CLOCK	Clock Input (LOW-to-HIGH Edge Triggered)
10	GND	Ground (0V)
20	V _{CC}	Positive Supply Voltage

TRUTH TABLE

	INPUTS		OUTPUT	FUNCTION	
CLEAR	D	В	Q	FUNCTION	
L	X	Х	L	CLEAR	
Н	L		L		
Н	Н		Н		
Н	X	7	Q _n	NO CHANGE	

X : Don't Care

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7.0	V
V _I	DC Input Voltage	-0.5 to +7.0	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	- 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 75	mA
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	2 to 5.5	V
V _I	Input Voltage	0 to 5.5	V
Vo	Output Voltage	0 to V _{CC}	V
T _{op}	Operating Temperature	-55 to 125	°C
dt/dv	Input Rise and Fall Time (note 1) (V_{CC} = 3.3 \pm 0.3V) (V_{CC} = 5.0 \pm 0.5V)	0 to 100 0 to 20	ns/V

¹⁾ V_{IN} from 30% to 70% of V_{CC}

DC SPECIFICATIONS

		7	Test Condition	Value							
Symbol	Parameter	v _{cc}	Vcc		T _A = 25°C -40 to			o 85°C -55 to 125			Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5		
	Voltage	3.0 to 5.5		0.7V _{CC}			0.7V _{CC}		0.7V _{CC}		V
V _{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	3.0 to 5.5				0.3V _{CC}		0.3V _{CC}		0.3V _{CC}	V
V _{OH}	High Level Output	2.0	I _O =-50 μA	1.9	2.0		1.9		1.9		
	Voltage	3.0	I _O =-50 μA	2.9	3.0		2.9		2.9		
		4.5	I _O =-50 μA	4.4	4.5		4.4		4.4		V
		3.0	I _O =-4 mA	2.58			2.48		2.4		
		4.5	I _O =-8 mA	3.94			3.8		3.7		
V _{OL}	Low Level Output	2.0	I _O =50 μA		0.0	0.1		0.1		0.1	
	Voltage	3.0	I _O =50 μA		0.0	0.1		0.1		0.1	
		4.5	I _O =50 μA		0.0	0.1		0.1		0.1	V
		3.0	I _O =4 mA			0.36		0.44		0.55	
		4.5	I _O =8 mA			0.36		0.44		0.55	
I _I	Input Leakage Current	0 to 5.5	V _I = 5.5V or GND			± 0.1		± 1		± 1	μΑ
I _{CC}	Quiescent Supply Current	5.5	$V_I = V_{CC}$ or GND			4		40		40	μΑ

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3ns$)

		Т	est Co	ndition	Value							
Symbol	Parameter	v _{cc}	CL		Т	A = 25°	С	-40 to 85°C		-55 to 125°C		Unit
		(V)	(pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{PLH}	Propagation Delay	3.3 ^(*)	15			8.7	13.6	1.0	16.0	1.0	16.0	
t _{PHL}	Time CLOCK to Q	3.3 ^(*)	50			11.2	17.1	1.0	19.5	1.0	19.5	nc
	02001110 4	5.0 ^(**)	15			5.8	9.0	1.0	10.5	1.0	10.5	ns
		5.0 ^(**)	50			7.3	11.0	1.0	12.5	1.0	12.5	
t _{PHL}	Propagation Delay	3.3 ^(*)	15			8.9	13.6	1.0	16.0	1.0	16.0	
	Time CLEAR to Q	3.3 ^(*)	50			11.4	17.1	1.0	19.5	1.0	19.5	
	CLLAN IO Q	5.0 ^(**)	15			5.2	8.5	1.0	10.0	1.0	10.0	ns
		5.0 ^(**)	50			6.7	10.5	1.0	12.0	1.0	12.0	
t _W	CLEAR Pulse Width LOW	3.3 ^(*)					5.0		6.0		6.0	20
		5.0 ^(**)					5.0		5.0		5.0	ns
t _W	CLOCK Pulse	3.3 ^(*)					5.5		6.5		6.5	
	Width HIGH or LOW	5.0(**)					5.0		5.0		5.0	ns
t _s	Setup Time D to	3.3 ^(*)					5.5		6.5		6.5	
	CLOCK, HIGH or LOW	5.0(**)					4.5		4.5		4.5	ns
t _h	Hold Time D to	3.3 ^(*)					1.0		1.0		1.0	
	CLOCK, HIGH or LOW	5.0 ^(**)					1.0		1.0		1.0	ns
t _{REM}	Removal Time	3.3 ^(*)					2.5		2.5		2.5	
	CLEAR to CLOCK	5.0(**)					2.0		2.0		2.0	ns
f _{MAX}	Maximum Clock	3.3 ^(*)	15		75	120		65		65		
	Frequency	3.3 ^(*)	50		50	75		45		45		NAL I-
		5.0 ^(**)	15		120	165		100		100		MHz
		5.0 ^(**)	50		80	110		70		70		
t _{OSLH}	Output to Output	3.3 ^(*)	50				1.5		1.5		1.5	nc
toshl	Skew time (note 1)	5.0 ^(**)	50				1.0		1.0		1.0	ns

(*) Voltage range is $3.3 \text{V} \pm 0.3 \text{V}$ (**) Voltage range is $5.0 \text{V} \pm 0.5 \text{V}$ Note 1 : Parameter guaranteed by design. $t_{\text{SoLH}} = |t_{\text{pLHm}} - t_{\text{pLHn}}|$, $t_{\text{soHL}} = |t_{\text{pHLm}} - t_{\text{pHLn}}|$

CAPACITIVE CHARACTERISTICS

		Test Condition		Value						
Symbol	Parameter		T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit
			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance			7	10		10		10	pF
C _{PD}	Power Dissipation Capacitance (note 1)			31						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/8$ (per Flip-Flop)

DYNAMIC SWITCHING CHARACTERISTICS

			Test Condition		Value						
Symbol	Parameter	v _{cc}		Т	$T_A = 25^{\circ}C$		-40 to 85°C		-55 to	125°C	Unit
	(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
V _{OLP}	Dynamic Low	5.0			0.6	0.9					.,
V _{OLV}	Voltage Quiet Output (note 1, 2)		C _L = 50 pF	-0.9	-0.6						V
V _{IHD}	Dynamic High Voltage Input (note 1, 3)	5.0		3.5							V
V _{ILD}	Dynamic Low Voltage Input (note 1, 3)	5.0				1.5					V

TEST CIRCUIT

 C_L =15/50pF or equivalent (includes jig and probe capacitance) R_T = Z_{OUT} of pulse generator (typically 50 Ω)

¹⁾ Worst case package.
2) Max number of outputs defined as (n). Data inputs are driven 0V to 5.0V, (n-1) outputs switching and one output at GND.
3) Max number of data inputs (n) switching. (n-1) switching 0V to 5.0V. Inputs under test switching: 5.0V to threshold (V_{ILD}), 0V to threshold (V_{IHD}), f=1MHz.

WAVEFORM 1: PROPAGATION DELAYS, SETUP AND HOLD TIMES (f=1MHz; 50% duty cycle)

WAVEFORM 2: PROPAGATION DELAYS (f=1MHz; 50% duty cycle)

WAVEFORM 3: RECOVERY TIME (f=1MHz; 50% duty cycle)

SO-20 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			2.65			0.104		
a1	0.1		0.2	0.004		0.008		
a2			2.45			0.096		
b	0.35		0.49	0.014		0.019		
b1	0.23		0.32	0.009		0.012		
С		0.5			0.020			
c1			45°	(typ.)				
D	12.60		13.00	0.496		0.512		
E	10.00		10.65	0.393		0.419		
е		1.27			0.050			
e3		11.43			0.450			
F	7.40		7.60	0.291		0.300		
L	0.50		1.27	0.020		0.050		
М			0.75			0.029		
S			8° (r	max.)		•		

TSSOP20 MECHANICAL DATA

DIM.		mm.		inch				
DIW.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			1.2			0.047		
A1	0.05		0.15	0.002	0.004	0.006		
A2	0.8	1	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.0089		
D	6.4	6.5	6.6	0.252	0.256	0.260		
E	6.2	6.4	6.6	0.244	0.252	0.260		
E1	4.3	4.4	4.48	0.169	0.173	0.176		
е		0.65 BSC			0.0256 BSC			
K	0°		8°	0°		8°		
L	0.45	0.60	0.75	0.018	0.024	0.030		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

