Centrality

Argimiro Arratia & R. Ferrer-i-Cancho

Universitat Politècnica de Catalunya

Version 0.4
Complex and Social Networks (2020-2021)
Master in Innovation and Research in Informatics (MIRI)

Official website: www.cs.upc.edu/~csn/Contact:

- Ramon Ferrer-i-Cancho, rferrericancho@cs.upc.edu, http://www.cs.upc.edu/~rferrericancho/
- Argimiro Arratia, argimiro@cs.upc.edu, http://www.cs.upc.edu/~argimiro/

What do we mean by centrality?

Centrality is a node's measure w.r.t. others

- ► A central node is *important* and/or *powerful*
- ▶ A central node has an influential position in the network
- A central node has an advantageous position in the network

Graph-theoretical centrality

Degree centrality Closeness centrality Betweenness centrality

Eigenvector-based centrality

Eigenvector centrality Katz or α centrality Pagerank

Miscellanea

Power through connections

$$degree_centrality(i) \stackrel{def}{=} k(i)$$

Power through connections

$$in_degree_centrality(i) \stackrel{def}{=} k_{in}(i)$$

Power through connections

 $out_degree_centrality(i) \stackrel{def}{=} k_{out}(i)$

Power through connections

By the way, there is a *normalized* version which divides the centrality of each degree by the maximum centrality value possible, i.e. n-1 (so values are all between 0 and 1).

But look at these examples, does degree centrality look OK to you?

Closeness centrality

Power through proximity to others

closeness_centrality(i)
$$\stackrel{\text{def}}{=} \left(\frac{\sum_{j \neq i} d(i,j)}{n-1} \right)^{-1} = \frac{n-1}{\sum_{j \neq i} d(i,j)}$$

Here, what matters is to be close to everybody else, i.e., to be easily reachable or have the power to quickly reach others. **Be aware** of ambiguity and failures of this centrality measure!

Betweenness centrality

Power through brokerage

A node is important if it lies in many shortest-paths

▶ so it is essential in passing information through the network

Betweenness centrality

Power through brokerage

betweenness_centrality(i)
$$\stackrel{\text{def}}{=} \sum_{j < k} \frac{g_{jk}(i)}{g_{jk}}$$

Where

- $ightharpoonup g_{jk}$ is the number of shortest-paths between j and k, and
- $g_{jk}(i)$ is the number of shortest-paths through i

Oftentimes it is normalized:

$$norm_betweenness_centrality(i) \stackrel{def}{=} \frac{betweenness_centrality(i)}{\binom{n-1}{2}}$$

Remarks: i) This measure of centrality offers several advantages ii) [Newman 2010] recommends including extreme points in the count of paths $(j \le k)$: self-paths, etc. But igraph implements the fmla. above.

Betweenness centrality

Examples (non-normalized)

Eigenvector centrality

a.k.a. Bonacich centrality, an improvement over degree centrality

Main idea

In degree centrality, each neighbor contributes equally to centrality. With Bonacich centrality, *important* nodes contribute more. Namely, a node is central if it is connected to other central nodes.

More precisely, centrality of a node is proportional to the sum of scores of its neighbors.

$$eigenvector_centrality(i) \propto \sum_{i} A_{ij} eigenvector_centrality(j)$$

where A_{ij} is an element of the adjacency matrix, i.e. $A_{ij} = 1$ if i and j share and edge, and $A_{ij} = 0$ otherwise.

Eigenvector centrality I

Computation

To compute, let $x_i = eigenvector_centrality(i)$, for i = 1, ..., n. Guess an initial value $x_i(0)$ for each i = 1, ..., n. Then, compute next iteration of values using the formula

$$x_i(t+1) = \sum_{j=1}^n A_{ij}x_j(t)$$

Expressed in matrix notation, with $\vec{x} = (x_1, \dots, x_n)^T$ (as column)

$$\vec{x}(t+1) = \mathbf{A}\vec{x}(t)$$

And so

$$\vec{x}(t) = \mathbf{A}^t \vec{x}(0)$$

Eigenvector centrality II

Computation

Let us express $\vec{x}(0)$ as a linear combination of the eigenvectors \vec{v}_i of **A**. For the appropriate constants c_i :

$$\vec{x}(0) = \sum_i c_i \vec{v}_i$$

Let λ_i be the eigenvalues of **A**, and let λ_1 be the largest one. Then

$$\vec{x}(t) = \mathbf{A}^t \vec{x}(0) = \sum_i c_i \lambda_i^t \vec{v}_i = \lambda_1^t \sum_i c_i \left[\frac{\lambda_i}{\lambda_1} \right]^t \vec{v}_i$$

Since $\frac{\lambda_i}{\lambda_1} < 1$ for all i > 1, all terms (other than the first) decay exponentially as t grows.

Eigenvector centrality III Computation

Therefore, in the limit as $t \to \infty$, we have that $\vec{x}(t) \to c_1 \lambda_1 \vec{v}_1$

Eigenvector centrality is *proportional* to the leading eigenvector of **A** (and hence, the name!)

Equivalently, define centrality vector \vec{x} satisfying:

$$\mathbf{A}\vec{x} = \lambda_1\vec{x}$$

Caveat: Eigenvector centrality does not works in acyclic (directed) networks (asymmetric relations).

Katz or α centrality

An improvement over eigenvector centrality

Main idea: give each vertex a small amount of centrality for free

Define

$$x_i = \alpha \sum_j A_{ij} x_j + \beta$$

where α and β are positive constants. β is the free contribution for all vertices; hence, no vertex has zero centrality and will contribute at least β to other vertices centrality.

Works in directed acyclic graphs!

Katz or α centrality

In matrix terms:

$$\vec{x} = \alpha \mathbf{A} \vec{x} + \beta \vec{e}$$

where $\vec{e} = (1, 1, ..., 1)$. Rearranging for \vec{x} and setting $\beta = 1$:

$$\vec{x} = \beta (\mathbf{I} - \alpha \mathbf{A})^{-1} \cdot \vec{e} = (\mathbf{I} - \alpha \mathbf{A})^{-1} \cdot \vec{e}$$

This suggests a good value for α is $0 < \alpha < 1/\lambda_1$, λ_1 the largest eigenvalue of ${\bf A}$.

However, instead of computing inverse better to do iterative procedure:

$$\vec{x}(0) = \vec{e}, \quad \vec{x}(t+1) = \alpha \mathbf{A} \vec{x}(t) + \beta \vec{e}$$

¹We seek α such that $(\mathbf{I} - \alpha \mathbf{A})^{-1}$ does not diverges, i.e. $\det(\mathbf{I} - \alpha \mathbf{A}) \neq 0$, or $\det(\mathbf{A} - \alpha^{-1}\mathbf{I}) \neq 0$. The first value of α that makes this determinant 0 is $\alpha^{-1} = \lambda_1$

An improvement over α centrality

Main idea: the contribution of centrality from each vertex is not the same, it should be diluted in proportion to the amount that is shared with others. **Think:**

- If a very important (central) web page points to my page, as well as to 10 MM other pages, should my web page be equally important (wrto. α centrality), or is my web page just a curiosity as are possibly many of the 10 MM other pages?
- The president of the US connects to all his voters (to keep them informed, etc), is the regular citizen as (political) important as the president of the US?
- ► The president of the US connects with me (by email or phone) and with no other citizen, am I important?

Definition (Sergey Brin and Larry Page, 1998)

Originally conceived to rank pages in the web (directed graph)

- $V = \{1, ..., n\}$ are the nodes (that is, the pages)
- ▶ $(i,j) \in E$ if page i points to page j (i.e. $A_{ij} = 1$)
- we associate to each page i, a real value π_i (i's pagerank)
- we impose that $\sum_{i=1}^{n} \pi_i = 1$

Define

$$\pi_{i} = \alpha \sum_{j=1}^{n} A_{ji} \frac{\pi_{j}}{out(j)} + \beta$$

where $\alpha, \beta > 0$, and out(j) is j's outdegree.

Definition (Sergey Brin and Larry Page, 1998)

Brin and Page consider $\beta=\frac{\left(1-\alpha\right)}{n}$ (and $\alpha=0.85$). Then

$$\pi_{i} = \alpha \sum_{j=1}^{n} A_{ji} \frac{\pi_{j}}{out(j)} + \frac{(1-\alpha)}{n}$$

Note: To avoid indeterminate (out(j) = 0) assume every node has at least out(j) = 1 (In graph terms means to allow self-loops) Then in matrix form

$$(\mathbf{I} - \alpha \mathbf{A} \mathbf{D}^{-1})\pi = \frac{(1 - \alpha)}{n} \vec{e}$$

where **D** is diagonal matrix with $D_{ii} = \max[out(i), 1]$, $\pi = (\pi_1, \dots, \pi_n)^T$ is the Page Rank vector (a probability vector), and $\vec{e} = (1, 1, \dots, 1)$.

Pagerank: Example

Want to compute $\pi = (\pi_1, \dots, \pi_5)$. Solve the system:

$$\pi_{1} = \frac{1-\alpha}{5} + \alpha \left(\frac{\pi_{2}}{2}\right),$$

$$\pi_{2} = \frac{1-\alpha}{5} + \alpha \left(\frac{\pi_{5}}{2}\right),$$

$$\pi_{3} = \frac{1-\alpha}{5} + \alpha \left(\frac{\pi_{1}}{2} + \frac{\pi_{5}}{2}\right),$$

$$\pi_{4} = \frac{1-\alpha}{5} + \alpha \left(\pi_{3}\right),$$

$$\pi_{5} = \frac{1-\alpha}{5} + \alpha \left(\frac{\pi_{1}}{2} + \frac{\pi_{2}}{2} + \pi_{4}\right).$$

For giant network (the WWW) it is unfeasible to do as above.

Pagerank. Example. The power method

Consider in the example the matrix

and $\pi = \begin{pmatrix} \frac{\pi_1}{\pi_2} \\ \frac{\pi_3}{\pi_4} \end{pmatrix}$, Then previous system of equations is summarize

$$\pi = G\pi$$

and in this form we can try solving through the iteration

$$p(k+1) = Gp(k)$$

with initial $p(0) = (p_1, p_2, p_3, p_4, p_5)$, with $0 \le p_i \le 1$ and such that $\sum p_i = 1$. (Recall p_i is the probability of being at page j.)

Pagerank. Example. The power method

Approx. solution with k = 11 iterations and p(0) = (0.2, 0.2, 0.2, 0.2, 0.2)

$$p(11) = \begin{pmatrix} 0.10097776016061\\ 0.16535594101776\\ 0.20757694925625\\ 0.20845457237414\\ 0.31763477719124 \end{pmatrix}$$

The exact solution by solving the linear system:

$$\pi = \begin{pmatrix} 0.10035700400292 \\ 0.16554589177158 \\ 0.20819761847282 \\ 0.20696797570190 \\ 0.31893151005078 \end{pmatrix}.$$

Pagerank. General matrix form.

In general the Google (or transition) matrix is given by

$$G = \frac{1 - \alpha}{n} J + \alpha \mathbf{A} \mathbf{D}^{-1}$$

where *J* is the $n \times n$ matrix of 1.

And **it is easy** to show that a solution π to

$$(\mathbf{I} - \alpha \mathbf{A} \mathbf{D}^{-1})\pi = \frac{(1 - \alpha)}{n} \vec{e}$$
, is the same as solving $\pi = G\pi$.

(Hint: note that $J\pi = \vec{e}$ and unravel $(\mathbf{I} - G)\pi = 0$.)

So, we seek a solution π for $G\pi=\pi$, and a proposed method is

The Power Method

- ▶ Chose initial vector $\vec{p}(0)$ randomly
- ▶ Repeat $\vec{p}(t) \leftarrow G\vec{p}(t-1)$
- ▶ Until convergence (i.e. $\vec{p}(t) \approx \vec{p}(t-1)$)

So, we seek a solution π for $G\pi=\pi$, and a proposed method is

The Power Method

- ▶ Chose initial vector $\vec{p}(0)$ randomly
- ▶ Repeat $\vec{p}(t) \leftarrow G\vec{p}(t-1)$
- ▶ Until convergence (i.e. $\vec{p}(t) \approx \vec{p}(t-1)$)

What guarantees do we have for :

existence of a solution ?

So, we seek a solution π for $G\pi=\pi$, and a proposed method is

The Power Method

- ▶ Chose initial vector $\vec{p}(0)$ randomly
- ▶ Repeat $\vec{p}(t) \leftarrow G\vec{p}(t-1)$
- ▶ Until convergence (i.e. $\vec{p}(t) \approx \vec{p}(t-1)$)

What guarantees do we have for :

- existence of a solution ?
- the power method converges to that solution ?

So, we seek a solution π for $G\pi=\pi$, and a proposed method is

The Power Method

- ▶ Chose initial vector $\vec{p}(0)$ randomly
- ▶ Repeat $\vec{p}(t) \leftarrow G\vec{p}(t-1)$
- ▶ Until convergence (i.e. $\vec{p}(t) \approx \vec{p}(t-1)$)

What guarantees do we have for :

- existence of a solution ?
- the power method converges to that solution ?
- ► The method converges fast to the pagerank solution ?

So, we seek a solution π for $G\pi=\pi$, and a proposed method is

The Power Method

- Chose initial vector $\vec{p}(0)$ randomly
- ▶ Repeat $\vec{p}(t) \leftarrow G\vec{p}(t-1)$
- ▶ Until convergence (i.e. $\vec{p}(t) \approx \vec{p}(t-1)$)

What guarantees do we have for :

- existence of a solution ?
- the power method converges to that solution ?
- The method converges fast to the pagerank solution ?
- ► The method converges fast to the pagerank solution regardless of the initial vector ?

Pagerank. Guarantee of a solution.

That a solution exists is guaranteed by

Theorem (Perron-Frobenius)

If M is stochastic, then it has at least one stationary vector, i.e., one non-zero vector p such that $M^T p = p$.

(M is stochastic if all entries are in the range [0,1] and each row adds up to 1)

The transpose of Google matrix is row-stochastic. (check)

Pagerank. Guarantee for convergence of power method

A useful theorem from Markov chain theory

Theorem

If a matrix M is strongly connected and aperiodic, then:

- $M^T \vec{p} = \vec{p}$ has exactly one non-zero solution such that $\sum_i p_i = 1$
- ▶ 1 is the largest eigenvalue of M^T
- ▶ the Power method converges to the \vec{p} satisfying $M^T \vec{p} = \vec{p}$, from any initial non-zero $\vec{p}(0)$
- ► Furthermore, we have exponential fast convergence

The Google Matrix,

$$G = \frac{1 - \alpha}{n} J + \alpha \mathbf{A} \mathbf{D}^{-1}$$

The Google Matrix,

$$G = \frac{1 - \alpha}{n} J + \alpha \mathbf{A} \mathbf{D}^{-1}$$

where J is a $n \times n$ matrix containing 1 in each entry.

▶ G is stochastic

The Google Matrix,

$$G = \frac{1 - \alpha}{n} J + \alpha \mathbf{A} \mathbf{D}^{-1}$$

- ▶ G is stochastic
 - ▶ ... because G is a weighted average of \mathbf{AD}^{-1} and $\frac{1}{n}J$, which are also stochastic

The Google Matrix,

$$G = \frac{1 - \alpha}{n} J + \alpha \mathbf{A} \mathbf{D}^{-1}$$

- G is stochastic
 - ▶ ... because G is a weighted average of AD^{-1} and $\frac{1}{n}J$, which are also stochastic
- ▶ for each integer k > 0, there is a non-zero probability path of length k from every state to any other state of G

The Google Matrix,

$$G = \frac{1 - \alpha}{n} J + \alpha \mathbf{A} \mathbf{D}^{-1}$$

- G is stochastic
 - ▶ ... because G is a weighted average of AD^{-1} and $\frac{1}{n}J$, which are also stochastic
- ▶ for each integer k > 0, there is a non-zero probability path of length k from every state to any other state of G
 - ▶ ...implying that G is strongly connected and aperiodic

The Google Matrix,

$$G = \frac{1 - \alpha}{n} J + \alpha \mathbf{A} \mathbf{D}^{-1}$$

- ▶ G is stochastic
 - ▶ ... because G is a weighted average of AD^{-1} and $\frac{1}{n}J$, which are also stochastic
- ▶ for each integer k > 0, there is a non-zero probability path of length k from every state to any other state of G
 - ...implying that G is strongly connected and aperiodic
- ▶ and so the Power method will converge on G, and fast!

Teleportation in the random surfer view

The meaning of α (the damping factor)

- ▶ With probability α , the random surfer follows a link in current page
- ▶ With probability 1α , the random surfer jumps to a random page in the graph (teleportation)

Excercise.

Compute the pagerank value of each node of the following graph assuming a damping factor $\alpha = 2/3$:

Hint: solve the following system, using $p_2 = p_3 = p_4$

Eigenvector-based centrality as power series

α -centrality

If α is smaller than the inverse of the spectral radius of **A**, i.e. $\alpha < 1/\lambda_1$, we have convergence of the series

$$(\sum_{k=0}^{\infty} \alpha^k \mathbf{A}^k) \vec{e} = (\mathbf{I} - \alpha \mathbf{A})^{-1} \cdot \vec{e} = \vec{x}$$

This series is in fact the original form of centrality conceived by Katz (1953): it considers for each vertex i the influence of all the vertices connected by a walk to i.

This suggests other way of computing \vec{x} by taking successive partial sums.

Eigenvector-based centrality as power series

Pagerank on rooted trees

Theorem (Arratia-Marijuán (LAA16))

If a rooted tree has N vertices and height h, then the PageRank of its root r is given by

$$PageRank(r) = \frac{1 - \alpha}{N} \sum_{k=0}^{h} \alpha^{k} n_{k}$$
 (1)

where n_k is the number of vertices of the kth-level of the tree.

This shows that we can do any rearrangements of links between two consecutive levels of a web set up as a rooted tree, and the PageRank of the root will be the same.

Eigenvector-based centrality as power series

Pagerank as power series [Brinkmeier, 2006]

For a given walk $\rho = v_1 v_2 \dots v_n$ in the graph define the **branching** factor of ρ by the formula

$$D(\rho) = \frac{1}{od(v_1)od(v_2)\cdots od(v_{n-1})}$$
(2)

Then, for any vertex $a \in V$, we have

$$PageRank(a) = \frac{1 - \alpha}{N} \sum_{l \ge 0} \sum_{\rho : w \xrightarrow{l} a} \alpha^l D(\rho)$$
 (3)

where $\rho: w \xrightarrow{I} a$ denotes a walk ρ from any w to a of length I. Note: For $D(\rho) = 1$ for all walks ρ , we recover the power series for α -centrality

Centrality measures in igraph

- ▶ degree()
- betweenness() , (vertex and edge)
- alpha.centrality()
- page.rank()