Basic Electrical Science Lab Course Code: EE152

Laboratory Manual

Name: Sadat Zubin Aftab Shah

Roll No: 20CSE1030

Section: B

Academic Session: April – August 2021

National Institute of Technology Goa

CERTIFICATE

This is to certify that Mr./ Ms	of Class <u>B.Tech</u>
1 st year (2 nd Sem), Division Sec A/B, bearing Roll. No	, has
satisfactorily completed the course experiments in	the Laboratory
Course Basic Electrical Science Lab (EE152) in the acade	emic year 2020-
2021 in the Institution of National Institute of Technolog	gy Goa.

Course Instructor

Table of Contents

SI. No.	Name of the Experiment	Pg. No.	Date of Experiment	Date of Submission	Marks/Expt. (10 M)
1	Verification of Ohms Law	04	20-05-2021	23-05-2021	
2	Verification of Kirchhoff's Laws – KVL and KCL	11	27-05-21	31-05-21	
3	Verification of Thevenin's and Norton's Theorem	04	03-06-21	17-06-21	
4	DC transient analysis of RC RL circuits	04	24-06-2021	02-07-21	
5	Power analysis in AC circuits	04	1-07-2021	9-07-2021	
6	Study of Diode Rectifier Circuits	05	8-7-2021	12-07-2021	
7	Study of Digital Logic gates	05	15-07-2021	18-07-2021	
8	Full-wave Diode Rectifier				
9	Transient analysis of RL, RC and RLC Circuits				
10	Digital Gate Circuits				

Digital Combinational Logic gates

8. A. Introduction:

This session makes students to understand various digital combinational logic gates- AND, OR, NOT, NAND, NOR, XOR, XNOR - and to verify through the Simulation in MATLAB/Simulink.

8. B. Objectives:

- Acquire a good knowledge on various digital combinational logic gates- AND, OR, NOT, NAND, NOR, XOR, XNOR.
- Verification of the theoretical knowledge on these logic gates through simulation in MATLAB/Simulink Platform.
- 8.C. Theory: Refer to the notes or necessary materials mentioned in EE151 course.

8. D. Statement of Experiments:

Fig. 8.1 represents various logic gates (NOT, AND, NAND, OR, NOR, XOR, XNOR). The input for these gates are digital in nature, i.e., it is either '0' or '1', and the output is also in digital in nature. Based on the theoretical knowledge, a truth table for each gate has to be prepared and that table has to be verified through simulation in Matlab/Simulink.

OR NOR AND NAND

XOR XNOR Buffer NOT

Fig. 8.1

8. E. Procedure:

Prepare the truth table for each logic gates asked in section-8.D theoretically and draw experimental circuit (necessary Measuring instruments are to be incorporated in the circuit) corresponding to the logic gates shown in Fig. 8.1. Construct the experimental circuits in Simulink domain, simulate it, and observe the output and validate corresponding truth table against each logic gates.

8. F. Assignments:

Part-1: Consider Fig. 8.2 and do the same as mentioned in Section - 8.D.

Part-2: Replace the gates shown in Fig. 8.2 by its inverted one and do the same as mentioned in Section - 8.D.

Fig. 8.2

Experiment 8

Digital Combinational Logic Gates

- Aim: To verify the theoretical analysis of various digital combinational logic gates NOT, AND, NAND, OR, NOR, XOR, XNOR
- 2. <u>Simulink Blockset used:</u> Logical operator AND, OR, NOR, NAND, NOT, XOR, XNOR. Display, scope, Pulse generator.

3. Theory:

❖ Logic Gate:

A logic gate is a device that acts as a building block for digital circuits. They perform basic logical functions that are fundamental to digital circuits. Most electronic devices we use today will have some form of logic gates in them. For example, logic gates can be used in technologies such as smartphones, tablets or within memory devices.

There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR, and XNOR.

> AND Gate	
The output is "true" when both inputs are "true." Otherwise, the output is "false."	
▶ OR Gate	
The output is "False" when both inputs are "false." Otherwise, the output is "true."	
➤ NAND Gate ——	
The output is "false" if both inputs are "true." Otherwise, the output is "true."	
> XOR Gate	
The output is "true" if inputs are different, and "false" when the inputs are same.	
NOT Gate ———	
If the input is "true", then the output is "false". If the input is "false", then the output	is "true".
> XNOR Gate	
Its output is "true" if the inputs are the same, and "false" if the inputs are different.	
➤ NOR Gate →	
Its output is "true" if both inputs are "false." Otherwise, the output is "false."	

4. Statement of Experiments:

Fig. 8.1 represents various logic gates (NOT, AND, NAND, OR, NOR, XOR, XNOR). The input for these gates are digital in nature, i.e., it is either '0' or '1', and the output is also in digital in nature. Based on the theoretical knowledge, a truth table for each gate has to be prepared and that table has to be verified through simulation in MATLAB/Simulink.

5. **Procedure:**

Prepare the truth table for each logic gates asked in Section-8.D theoretically and draw experimental circuit (necessary Measuring instruments are to be incorporated in the circuit) corresponding to the logic gates shown in Fig. 8.1. Construct the experimental circuits in Simulink domain, simulate it, and observe the output and validate corresponding truth table against each logic gates.

Circuit Diagram:

Fig8a: Input Output for AND gate

Fig8b: Input Output for OR gate

Fig8c: Input Output for NAND gate

Fig8d: Input Output for NOR gate

Fig8e: Input Output for XNOR gate

Fig8f: Input Output for XOR gate

Fig8g: Input Output for NOT gate

Logic Cato	Input Input		Out	put
Logic Gate	Input	Input	Theoretical	Simulated
AND	1	1	1	1
	1	0	0	0
	0	1	0	0
	0	0	0	0

Table8a: Comparison between theoretical and simulated outputs of AND Gate

Logic Cato	Logic Cate Input Input	Out	put	
Logic Gate	Input	Input	Theoretical	Simulated
OR	1	1	0	0
	1	0	1	1
	0	1	1	1
	0	0	1	1

Table8b: Comparison between theoretical and simulated outputs of OR Gate

Logic Cato	Input	Input Input Out		put
Logic Gate	Input	Input	Theoretical	Simulated
NAND	1	1	0	0
	1	0	1	1
	0	1	1	1
	0	0	1	1

Table8c: Comparison between theoretical and simulated outputs of NAND Gate

Logic Cato	lnnut	Input	Outpu Outpu		put
Logic Gate	Input		Theoretical	Simulated	
NOR	1	1	0	0	
	1	0	0	0	
	0	1	0	0	
	0	0	1	1	

Table8d: Comparison between theoretical and simulated outputs of NOR Gate

Logio Coto	Input Input		Out	put
Logic Gate	Input	Input	Theoretical	Simulated
NXOR	1	1	1	1
	1	0	0	0
	0	1	0	0
	0	0	0	0

EE152

Table8e: Comparison between theoretical and simulated outputs of XNOR Gate

Logic Cato	Logic Cato Input Input	Innut	Innut	lanut		Output	
Logic Gate	Input	Input	Theoretical	Simulated			
	1	1	0	0			
XOR	1	0	1	1			
	0	1	1	1			
	0	0	0	0			

Table8f: Comparison between theoretical and simulated outputs of XOR Gate

Logic Cato	lnnut	Output		
Logic Gate	Sate Input Theoretical Sir		Simulated	
NOT	1	0	0	
NOT	0	1	1	

Table8g: Comparison between theoretical and simulated outputs of NOT Gate

6. Precautions:

- a) Ensure that 'powergui' block set is included in the Simulink file
- b) Ensure that connections are properly made
- c) Ensure that the scale of the graphs should be adjusted to the range in which the readings vary
- 7. <u>Conclusion:</u> Theoretical Knowledge on digital logic gates is verified through a Simulink platform.

Assignment:

Part-1: Consider Fig. 8.2 and do the same as mentioned in Section - 8.D.

Fig. 8.2

Fig8h: Simulink connections for circuit given in Fig 8.2

Λ	D	В С	Output F	
A	В		Theoretical	Simulated
1	1	1	1	1
1	1	0	1	1
1	0	1	1	1
1	0	0	0	0
0	1	1	1	1
0	1	0	0	0
0	0	1	0	0
0	0	0	0	0

Table8h: Comparison between theoretical and simulated outputs of circuit in Fig

Theoretical Results:

Assignment:

Part-2: Replace the gates shown in Fig. 8.2 by its inverted one and do the same as mentioned in Section - 8.D.

Fig. 8.2

Fig8i: Simulink connections for circuit described as per statement in assignment part 2

^	A B C		Output F	
A		Theoretical	Simulated	
1	1	1	0	0
1	1	0	0	0
1	0	1	0	0
1	0	0	0	0
0	1	1	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	0	0

Table8i: Comparison between theoretical and simulated outputs of circuit in Fig

Graphical Results:

Theoretical Results:

