Worksheet: Neural Networks

1163150 - Ausgewählte Kapitel sozialer Webtechnologien

2. Mai 2022

- 1. So far, you should be able to describe the following terms. Give a short and crisp explanation of:
 - (a) Backprop
 - (b) Artifical Neuron
 - (c) (Hidden) Layer
 - (d) Activation function
 - (e) Fully connected layer (dense layer)
 - (f) Hypothesis (score function)
 - (g) Cost function (loss function)
 - (h) Optimzier, i.e., Gradient Descent
- 2. Given is three layer neual network. Layer L_1 has 500 neurons, Layer L_2 has 250 neurons and Layer L_3 is the output layer. The network classifies the CIFAR dataset. A 10-class problem consisting of images (32x32x3) showing common objects (https://www.cs.toronto.edu/kriz/cifar.html).
 - (a) Assuming you are using the *sigmoid* function as activation function. What does the equation that computes the hypothesis (scores) look like?
 - (b) What are the dimension of each matrix/vector in that equation?
 - (c) Draw the network as a graph organized in a layer-structure.
 - (d) Calculate the number of learnable parametes in the neural network.
- 3. Following information are given about a neural network N_{SIMPLE} :

Weight matrices W_{HIDDEN} and W_{OUTPUT} , where the first column corresponds to a bias value:

$$W_{HIDDEN} = \begin{pmatrix} 10 & -20 & 20 & -40 \\ 20 & -40 & 0 & 0 \end{pmatrix}$$

$$W_{OUTPUT} = \begin{pmatrix} 20 & 40 & -40 \end{pmatrix}$$

Activation function g(z), which applies to all neurons in the network:

$$g(z) = \begin{cases} 0 & z \le -10\\ 1 & z \ge 10\\ 0.5 & else \end{cases}$$

- (a) Draw a graph of the network N_{SIMPLE} including all neurons and their connections. Note all weight and bias values on the corresponding nodes and edges of the graph.
- (b) Use the given vectors x_1, x_2, x_3 to create a mini-batch matrix as input for the network and calculate its output. Only use matrix operations for the calculation and note all intermediate results.

$$\vec{x}_{(1)} = [0, 1, 1], \, \vec{x}_{(2)} = [1, 1, 0], \, \vec{x}_{(3)} = [1, 0, 1]$$

- 4. From the teaching materials you know that the *ReLU* (rectified linear unit) function is more advantageous at least in the context of image classification.
 - (a) Recap the equation for the *ReLU* and *sigmoid* function and sketch their plots.
 - (b) Discuss why the *ReLU* function is more beneficial compared with the sigmoid function.
 - (c) Which layer of a neural network does not have an activation function?
- 5. What does it mean that a neural network is a /textituniversal function approximator? Discuss why that could be important?