Understanding Model Performance: Confusion Matrix & Evaluation Metrics

		Predicted Label		
		Negative (Benign)	Positive (Malignant)	
True Label	Negative (Benign)	TN	FP	N = TN + FP = 88
		83	5	negative (benign)
				cases
	Positive (Malignant)	FN	TP	P = FN + TP = 42
		15	27	positive
				(malignant) cases
		TN + FN = 98 cases	FP + TP = 32 cases	
		predicted negative	predicted positive	
		(benign)	(malignant)	

- True Positive (TP): Case was predicted to be positive (malignant), and it actually is positive.
- False Positive: Case was predicted to be positive (malignant) and it actually is *negative* (benign).
- True Negative: Case was predicted to be negative (benign), and it actually is *negative* (benign).
- False Negative: Case was predicted to be negative (benign), and it actually is *positive* (malignant).

Metric	Formula	Results	Interpretation	What it means
Accuracy	(TP + TN)	84.62%	The model	Overall, how
	$\overline{(N+P)}$		correctly	often is the
	, ,		identified 83%	model correct?
			of cases	
Sensitivity	<i>TP</i>	64.29%	Out of all	How well does it
(Recall)	$\overline{(TP + FN)}$		positive cases,	catch all actual
			the model	positives?
			correctly	
			identified	
			78.7% of them,	
Specificity	<i>TN</i>	94.32%	The model	How well does it
	(TN + FP)		correctly	avoid false
			identified	alarms?
			78.7% of	
			negative cases	
Precision	<i>TP</i>	84.38%	Out of all the	When it says
	(TP + FP)		cases the	"positive", how
			model	often is it right?
			predicted as	
			positive,	
			86.4.2 % were	
			correct.	
F1 score	$2 \cdot (Sensitivity \times Precision)$	72.97%	Achieved 80.3%	Balances false
	(Sensitivity + Pecision)		considering	positives and
			negative and	false negatives
			positive cases.	

Receiver Operating Characteristics Curve (ROC Curve):

1. The ROC curve shows how well a model can **separate positive cases from negative ones** at different thresholds.

The curve plots:

- i) Sensitivity (true positive rate) on the Y-axis
- ii) **1 Specificity** (false positive rate) on the X-axis

Note: A good model has a curve that **hugs the top-left corner** of the graph — meaning high sensitivity and low false positives.

What the diagonal line means:

- The diagonal line represents a model that is guessing randomly like flipping a coin.
- If your curve is close to this line, the model is **no better than random chance**
- The **farther the curve is from the diagonal**, the **better the model** is at making accurate predictions

Figure 1. ROC Curve

Figure 2. Predictions and Ground Truth