TianLai FRB Rate Estimate

- FRB110523 was discovered from GBT off line data.
- It was found near 800MHz,and remains the only FRB not found in 1.4GHz.

According to this FRB event, Liam Connor etc. estimated the FRB rate of GBT and extrapolate a universal formula for other telescope survey estimate. [MNRAS 460, 1054–1058 (2016)]

$$N_{\Sigma} = \frac{1}{27.5} \left(\frac{G_{\Sigma}}{G_{\text{GBT}}} \frac{\langle T_{\text{GBT}}^{\text{sys}} \rangle}{\langle T_{\Sigma}^{\text{sys}} \rangle} \sqrt{\frac{B_{\Sigma}}{B_{\text{GBT}}}} \right)^{\gamma} \left(\frac{\Omega_{\Sigma}}{\Omega_{\text{GBT}}} \right) d^{-1}$$

Where as N_{Σ} stand for the number of FRB That survey Σ could observed.

G is the gain depends on the effective aperture and the receive area. T_{sys} is system temperature. B is the observed bandwidth. Ω is the beam size and γ is depend what universe is. Here We assume $\gamma = 1.5$ which stand for a Euclidean Universe. More details in Connor's paper above.

TianLai parameter calculate

 G_{TL} :

The radius of GBT is 50m. With a 75% aperture effective, The equal receive area is 5890 m².

We use actual $12\times11.4 = 136.8 \text{ m}^2$, and 2/3 aperture effective for one TianLai cylinder. So that the equal receive area is 91.2 m^2 .

As $G_{GBT} = 2 \text{ K / Jy}$, So the $G_{TI} = 2 \text{ K/Jy} * 91.2 / 5890 <math>\backsimeq 0.031 \text{ K /Jy}$

TianLai parameter calculate

 Ω_{TL} :

TianLai telescope is cylinder, of which The N-S beam ϕ could reach120 degree. And according to $\lambda*1.22$ / D, W-E beam θ is 1.86 degree.

The actual beam shape is a ellipse, We could regard it as a rectangular to make a rough estimate.

So the Total beam $\Omega_{TI} = \theta * \phi = 1.86 * 120 = 223.2 deg^2$

Compare

	GBT	TianLai
G (k/Jy)	2	0.031
T ^{sys} (K)	26.5	80
B (MHz)	200	100
Ω (deg ²)	0.055	223.2

With the formula developed by Liam Connor, The TianLai survey might observe 0.032 day⁻¹ FRB event or 1 burst a month.