AN: PAT 1997-514325 $\mathtt{TI}:$ Network-based control of industrial stored-program controllers has facility for communication via field bus and via Internet or intranet using object-oriented program language PN: **DE19615190-**A1 PD: 23.10.1997 AB: The control of industrial processes uses memory programmable techniques configured as network-based controllers that can be connected via a field bus, communication bus, an internal modem and an internet compatible network to the industrial plant. The controllers have a field bus connections for process actuators and sensor control, an internal modem, a boot EPROM containing starter software, a RAM, a processor, e.g. for Java, and an internet network interface.; Programmable control of industrial processes. Improved control. PA: (FRIT-) FRITZ ELECTRONIC GMBH; IN: SPEIDEL T; DE19615190-A1 23.10.1997; WO9739393-A1 23.10.1997; FA: AT; BE; CH; DE; DK; ES; FI; FR; GB; GR; IE; IT; JP; LU; MC; NL; PT; SE; US; WO; DN: JP; US; AT; BE; CH; DE; DK; ES; FI; FR; GB; GR; IE; IT; LU; MC; NL; PT; SE; IC: G05B-015/02; G05B-019/05; G05B-019/418; G06F-013/00; MC: T01-H07C5C; T01-H07C5E; T01-J07B; T06-A04B1; T06-A07A; DC: T01; T06; FN: 1997514325.gif PR: DE1015190 18.04.1996; FP: 23.10.1997 UP: 24.11.1997

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)

(9) BUNDESREPUBLIK

DEUTSCHLAND

® Offenlegungsschrift ⁽¹⁰⁾ DE 196 15 190 A 1

G 05 B 15/02 G 06 F 13/00

DEUTSCHES PATENTAMT Aktenzeichen: Anmeldetag:

196 15 190.2 18. 4.96

Offenlegungstag:

23. 10. 97

(7) Anmelder:

Fritz Electronic GmbH, 73760 Ostfildern, DE

(74) Vertreter:

Patentanwalt Dipl.-Ing. Walter Jackisch & Partner, 70192 Stuttgart

2 Erfinder:

Speidel, Thomas, 71706 Markgröningen, DE

- (54) Netzwerkbasierende Steuerung für industrielle Anlagen
- Die Erfindung betrifft eine netzwerkbasierende Steuerung für industrielle Anlagen, insbesondere als Ersatz für eine speicherprogrammierbare Steuerung (SPS). Zur Reduzierung des vor Ort notwendigen Hardware-Aufwandes ist vorgesehen, die netzwerkbasierende Steuerung (NBC network based controller) über Feldbusse, Kommunikationsbusse, ein internes Modem und einen internetkompatiblen Netzwerkanschluß in die Daten- und Prozeßtechnik industrieller Anlagen einzubinden, wobei die Steuerung die Möglichkeiten verteilter Systeme, insbesondere die Leistungsmerkmale des Internets bzw. Intranets nutzt, so daß über die Feldbusanschaltung und die Kommunikationsbusse die Leistungsmerkmale herkömmlicher Steuerungstechnik erfüllt sind, und wobei die Software der netzwerkbasierenden Steuerung auf das Internet und die Steuerungsfunktionalität über den Feldbus abgestimmt ist.

10

SPS

Die Erfindung betrifft netzwerkbasierende Steuerungen für industrielle Anlagen.

Derartige Steuerungen können mit internen oder externen Computernetzen, z. B. Internet, zusammenarbeiten.

1. Begriffe Terminologien

Internet

I) Mehrere Paketvermittlungsnetze, die mit Hilfe von Brücken und Routern verbunden sind und über Protokolle kommunizieren, so daß sie als einheitliches virtuelles Netz erscheinen.

II) Ein weltweites Netz, das vom US-amerikanischen Verteidigungsministerium ins Leben gerufen wurde und das Transmission Protocol (TCP) sowie das Internet Protocol IP benutzt.

IAVA

Objektorientierte Programmiersprache, entwickelt von SUN-Microsystems. JAVA-Compiler generieren 25 keinen INTEL-Prozessorcode, sondern einen speziellen JAVA-Code. Dieser Code wird auf dem Zielsystem von geeigneten JAVA-Interpretern ausgewertet und auf die jeweilige Zielhardware übersetzt. Mittlerweile existieren JAVA-Prozessoren, die diese Übersetzung bereits hardwareseitig übernehmen. JAVA wurde inzwischen von allen bedeutenden Softwareunternehmen lizenziert (Microsoft, IBM usw.).

Intranet

Als Intranet wird ein lokales Netzwerk bezeichnet, das die gleiche physikalische und logische Struktur besitzt wie das Internet. Mit Intranets können voll internetkompatible firmeninterne Netzwerke aufgebaut werden, die jederzeit an das offizielle Internet angekoppelt werden können. Dabei wird wie beim Internet die Möglichkeit genutzt, das Netzwerk als globale firmenübergreifende Datenbank zu nutzen.

Feldbus

Feldbusse sind Netzwerke zur Verbindung dezentraler Ein-/Ausgabemodule bei industriellen Steuerungen. Sie sind nicht auf die Übertragung großer Datenmengen ausgelegt. Vielmehr dienen sie dem schnellen Austausch von Zuständen auf Prozeßebene. Gängige Feldbusse sind InterBus-S (PHOENIX), ProfiBus-DP (SIEMENS) und CAN-Bus.

Kommunikationsbussysteme

Um Steuerungen (SPS, Industriecomputer, CNC usw.) miteinander zu verbinden, gibt es Kommunikationsbusse. Sie sind physikalisch so ausgelegt, daß Datenpakete direkt adressiert von einer Steuerung an eine oder mehrere Steuerungen versandt werden können. Im Gegensatz zu Feldbussen werden auf dieser Protokollschicht immer größere Datenmengen verschickt. Jeder Steuerungshersteller bietet üblicherweise auf sein System zugeschnittene Kommunikationsbusse mit unterschiedlichen Preis- und Leistungsgestaltungen an.

Speicherprogrammierbare Steuerung: Controller zur logischen Verknüpfung von Prozeßzuständen. Hauptsächlich werden Anweisungsketten mit festen Zykluszeiten sequentiell abgearbeitet.

Konzeptionelle Überlegungen

2.1 Allgemeine Grundlagen

Mit der Verbreitung des Internets eröffnen sich immer neue Perspektiven. Es wird davon gesprochen, das Netzwerk als globalen Datenkonzentrator zu verwenden und nur noch mit intelligenten Terminals auf die Datenbestände zuzugreifen. Ein solches Terminal verfügt nach Angaben der Hersteller nur noch über ein Modern, den Hauptspeicher, ein Betriebssystem und die Bedieneinheit (Bildschirm, Tastatur und Maus). Festplatten für die Daten- und Programmhaltung sind nicht mehr nötig. Dies geschieht jetzt direkt auf dem Netzwerk, dem Internet.

Um die Netzbelastung nicht unnötig in die Höhe zu treiben, wird versucht, Informationen in möglichst kompakter Form zu verschicken. Die auf den intelligenten Terminals ablaufenden Browser interpretieren die Daten (z. B. HTML) und bereiten daraus Bilder und interaktive Menüs usw. auf.

Mit der Programmiersprache JAVA ist es möglich, komplexe Programme wie Textverarbeitungen, Tabellenkalkulationen, Multimedia-Anwendungen usw. objektorientiert zu schreiben. JAVA-Compiler erzeugen hardwareunabhängigen Code. Dieser muß von einem Interpreter (oder besser von einem JAVA-Prozessor) 35 auf dem Anwenderterminal übersetzt und ausgewertet werden. Alle zur Hardwareansteuerung notwendigen Programmteile befinden sich also auf dem Anwenderterminal. Nur die Anwendung selbst wird in JAVA codiert über das Netz verschickt. Durch diese Handhabung kann der für ein Anwendungsprogramm notwendige Code in zwei Teile zerlegt werden: a) Logischer Programmkern und Programmablaufstruktur, b) Bausteine zur Hardwaresteuerung/Verwaltung. Auf dem Anwenderterminal befindet sich in Zukunft nur noch 45 der zweite Teil. Programm-Kern, - Daten und -Struktur werden nach Bedarf vom Netz geladen.

Auf die sonstigen Möglichkeiten und Leistungen des Internets soll hier nicht näher eingegangen werden.

22 Erweiterung auf die industrielle Steuerungstechnik

Im Bereich der industriellen Steuerungen werden zusätzlich zu den herkömmlichen Steuerungsfunktionalitäten mehr und mehr die Funktionalitäten von PCs, Netzwerken und allgemeiner Datentechnik gefordert.

Auch Multimedia-Anwendungen sind in der Steuerungstechnik zunehmend denkbar. Serviceanleitungen per Videoclip, Montagebilder, Wartungsanleitungen, Stromlaufpläne usw. könnten auf dem Bildschirm der Maschinensteuerung verfügbar gemacht werden. Ebenso wird die zentrale Erfassung von produktbezogenen Herstellungsdaten über längere Zeiträume im Zuge der ISO-Zertifizierung immer häufiger gefordert.

Offensichtlich ist eine Synthese von den Vorzügen der modernen Kommunikationstechnik mit den Notwendigkeiten der herkömmlichen Steuerungstechnik zu su-

2.3 Konzeption der Network-Based-Controller (NBC)

Ein NBC ist ein intelligenter Teilnehmer am Internet oder an hausinternen Intranets. Sie verfügt über alle Fähigkeiten und Leistungen eines modernen Internet-Terminals. Zusätzlich ist jedoch ein Feldbusinterface integriert. Der NBC enthält, wie alle Internet-Terminals, keine Festplatte. Der Feldbus kann entweder direkt vom Hauptprozessor aus bedient werden oder verfügt über einen eigenen Controller. Ein Ausführungsbeispiel 10 nur für zeitunkritische Prozesse einsetzbar. einer netzwerkbasierenden Steuerung ist in der Zeichnung dargestellt.

Vorteile dieser Konzeption

- Steuerungsprogramm und Multimedia-Anwendungen/Netzwerkkopplung laufen auf demselben System. Bei Verwendung eines zusätzlichen Controllers für die Feldbuskopplung sind beide Systeme sogar entkoppelt.
- Bei Spannungs-/Netzwerkausfall kann der Prozeßzustand gesichert werden.
- Festplatten und anfällige PC-Komponenten (Steckkarten) entfallen grundsätzlich.
- Ohne zusätzliche Softwareaufwendungen kann 25 von der Maschinensteuerung auf alle Daten/Bilder/ Anwendungen im Internet/Intranet zugegriffen werden.
- Das eigentliche Steuerungsprogramm (bisheriges SPS-Programm) kann per Download über das 30 Netzwerk geladen werden.
- Fernwartungen, Programmänderungen und Datenerfassungen sind via Internet problemlos mög-
- Herstellungsdaten, Stillstandszeiten, 35 Schichtprotokolle usw. sind im zentralen Netzwerk gespeichert und können weiterverarbeitet werden.
- Funktionalitäten und Leistungen der höheren Programmiersprachen können im Steuerungsprogramm verwendet werden.
- Die fest installierte Software auf dem NBC beschränkt sich auf ein BOOT-EPROM.

3. Physikalischer Aufbau eines NBC (Network-Based-Controller)

Jeder Intranet-(Internet-)Teilnehmer (NBC) besitzt folgende Hardwarekomponenten:

- Feldbusanschaltung (z. B. ProfiBus, InterBus, 50 CAN)
- Boot-EPROM
- Hauptspeicher (RAM)
- Modem (ISDN oder analog)
- Prozessor (eventuell JAVA-Prozessor)
- Internet-/intranetkompatible Netzwerkanschaltung
- Bildschirm/Flachdisplay/Eingabegeräte
- Optional: Zusätzliche Kommunikationsanschaltung für schnelle Direktverbindung (nicht über In- 60 ternet/Intranet) zwischen einzelnen NBCs
- SafeState-System bei Netzwerk- oder Spannungsverlust

3.1 Network-Based-Controller (ohne zusätzlichen Controller für die Prozeßperipherie)

In dieser Form besitzt der Feldbus keinen eigenen

intelligenten Controller zur zeitkonstanten Bearbeitung der Prozeßdaten. Alle Prozeßzustände müssen vom Prozessor der NBC über den Feldbus erfaßt und ausgewertet werden. Parallellaufende Vorgänge auf dem Internet/Intranet können somit die Bearbeitung der Prozeßdaten abbremsen. Auch wenn die steuerungstechnischen Vorgänge priorisierbar wären, ist eine Entkopplung von Prozeßsteuerung und eventuellen Multimedia-Anwendungen nicht möglich. NBCs dieser Bauart sind

3.2 Network-Based-Controller (mit zusätzlichem Controller für die Prozeßperipherie)

Für die notwendige Entkopplung von Prozeßsteuerung und Multimedia-Anwendung wird ein zusätzlicher Controller für die autarke Feldbussteuerung eingesetzt. Über einen gemeinsamen Speicher oder spezielle Mechanismen zum Datenaustausch können Prozeßsteue-20 rung und Multimedia-Anwendung intern miteinander kommunizieren.

Patentansprüche

1. Netzwerkbasierende Steuerung für industrielle Anlagen, insbesondere als Ersatz für eine speicherprogrammierbare Steuerung (SPS),

dadurch gekennzeichnet, daß die netzwerkbasierende Steuerung (NBC network based controller) über Feldbusse, Kommunikationsbusse, ein internes Modem und einen internetkompatiblen Netzwerkanschluß in die Daten- und Prozeßtechnik industrieller Anlagen eingebunden ist,

wobei die Steuerung die Möglichkeiten verteilter Systeme, insbesondere die Leistungsmerkmale des Internets bzw. Intranets nutzt, so daß über die Feldbusanschaltung und die Kommunikationsbusse die Leistungsmerkmale herkömmlicher Steuerungstechnik erfüllt sind,

wobei die Software der netzwerkbasierenden Steuerung auf das Internet und die Steuerungsfunktionalität über den Feldbus abgestimmt ist.

- 2. Steuerung nach Anspruch 1, gekennzeichnet durch:
 - Feldbusanschaltung zur Anschaltung der Prozeßperipherie (Sensorik/Aktorik).
 - Boot-EPROM. Beinhaltet hauptsächlich Software zum Aufstarten des NBC, zur Grundverwaltung der Feldbusperipherie und zum Download von Programmen aus den Netzwerken.
 - Hauptspeicher (RAM).
 - Internes Modem (digital ISDN oder analog).
 - Prozessor (insbesondere JAVA-Prozesso-
 - Internet-/intranetkompatible Netzwerkanschaltung (mit Protokoll TCP/IP).
 - Optional: Bildschirm/Flachdisplay/Eingabegeräte (Maus, Trackball, Touchscreen, Tastatur, elektronischer Stift).
 - Optional: Zusätzliche Kommunikationsanschaltung für schnelle Direktverbindung (nicht über Internet/Intranet) zwischen einzelnen NBCs.
 - SafeState-System bei Netzwerk- oder Spannungsverlust. Die Prozeßdaten, die über den Feldbus eingelesen ein aktuelles Prozeß-

abbild ergeben, werden netzausfallsicher in einem nichtflüchtigen Speicher gesichert.

 Optional: Intelligenter Controller zur autarken Verwaltung des Feldbusses ohne Belastung des NBC-Prozessors.

- Ōptional: Bausteine für Multimedia-Anwendungen (beispielsweise Soundcontroller, Videocontroller, MPEG, JPEG, Grafikcontroller).
- 3. Steuerung nach Anspruch 1 oder 2, gekennzeich- 10 net durch:
 - Feldbusse, durch die die Sensorik/Aktorik an dezentralen Stellen zusammengefaßt an ein zentrales Steuerungssystem gekoppelt ist, wobei es sich bei dem Bussystem vorzugsweise

 15
 alternativ
 - um einen InterBus-S handelt (PHOENIX),
 - um einen ProfiBus handelt (SIEMENS),

- um einen CAN-Bus handelt.

4. Steuerung nach einem der Ansprüche 1 bis 3, 20 dadurch gekennzeichnet,

 daß einzelne NBCs an unterschiedlichen Standorten über ein Netzwerk direkt miteinander verbunden werden,

daß Datenpakete zwischen den einzelnen 25
 NBCs ausgetauscht werden, und

 daß von einem NBC direkt auf Speicherbereiche eines der jeweils anderen am Bus angekoppelten NBCs zugegriffen werden kann.

- 5. Steuerung nach einem der Ansprüche 1 bis 4, 30 dadurch gekennzeichnet, daß über ein Modem und über analoge oder digitale Leitungen eines offiziellen Telefonnetzes eine Wählverbindung zu anderen Rechnern aufgebaut werden kann.
- 6. Steuerung nach einem der Ansprüche 1 bis 5, 35 dadurch gekennzeichnet, daß eine physikalische Schnittstelle auf dem NBC existiert, mit der über das Protokoll TCP/IP auf das Internet zugegriffen werden kann.
- 7. Steuerung nach Anspruch 6, gekennzeichnet 40 durch:
 - mehrere Paketvermittlungsnetze, die mit Hilfe von Brücken und Routern verbunden sind und über Protokolle kommunizieren, so daß sie als einheitliches virtuelles Netz erscheinen.

ein weltweites Netz, das vom US-amerikanischen Verteidigungsministerium ins Leben gerufen wurde und das Transmission Protocol (TCP) sowie das Internet Protocol IP benutzt.

- 8. Steuerung nach einem der Ansprüche 1 bis 7, gekennzeichnet durch ein lokales Netzwerk (Intranet), das die gleiche physikalische und logische Struktur besitzt wie das Internet, wobei mit Intranets voll internetkompatible firmeninterne Netzwerke aufgebaut werden können, die jederzeit an das offizielle Internet anzukoppeln sind, wobei wie beim Internet die Möglichkeit genutzt wird, das Netzwerk als globale firmenübergreifende Datenbank zu nutzen.
- 9. Steuerung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß eine NBC-Software zur Verfügung gestellt ist,
 - die über Netzwerk auf NBC heruntergeladen werden kann;
 - über die auf die komplette Internetfunktionalität zugegriffen werden kann;

- wobei die NBC-Programme als JAVA-Pro-

gramme ablaufen können;

— wobei Steuerungsprogramme, wie sie von der SPS bekannt sind, auf dem NBC ablaufen können und als Kopplung zum Prozeß der Feldbus dient, wobei auf einem autarken Feldbuscontroller die Steuerungssoftware abgearbeitet wird;

über die Multimedia-Anwendungen des Internets abspielbar sind.

Hierzu 1 Seite(n) Zeichnungen

- Leerseite -

Nummer:

DE 196 15 190 A1 G 05 B 15/02

int. Cl.⁶: Offenlegungstag:

23. Oktober 1997

