Week 9: Linear Regression!

DSUA111: Data Science for Everyone, NYU, Fall 2020

TA Jeff, jpj251@nyu.edu

- This slideshow: https://jjacobs.me/dsua111-sections/week-09 (https://jjacobs.me/dsua111-sections/week-09
- All materials: https://github.com/jpowerj/dsua111-sections (https://github.com/jpowerj/dsua111-sections)

Overview

- 1. Regression in General: What it is and what it isn't
- 2. Ordinary Least Squares (OLS) Regression

This is the most important topic in the course, practically speaking

 All the fancy machine learning / Al / neural net methods, they are all glorified regressions

The "best fit" line: make sure you check your intuition!

Figure 4.2 Data simulated from a bivariate normal distribution with correlation 0.5. The regression line, which represents the best prediction of y given x, has half the slope of the principal component line, which goes closest through the cloud of points.

- When given this sort of scatterplot (without any lines superimposed) and asked to draw the regression line of y on x, students tend to draw the principal component line shown in Figure 4.2a. However, for the goal of predicting y from x, or for estimating the average of y for any given value of x, the regression line is in fact better--even if it does not appear so at first.
- The superiority of the regression line for estimating the average of y given x can be seen from a careful study of Figure 4.2.

The "best fit" line: make sure you check your intuition!

Figure 4.2 Data simulated from a bivariate normal distribution with correlation 0.5. The regression line, which represents the best prediction of y given x, has half the slope of the principal component line, which goes closest through the cloud of points.

- For example, consider the points at the **extreme left** of either graph. They all lie above the principal components line but are roughly half below and half above the regression line. Thus, the principal component line **underpredicts** y for low values of x.
- Similarly, a careful study of the right side of each graph shows that the principal component line **overpredicts** y for high values of x.
- In contrast, the regression line again gives unbiased predictions, in the sense of going through the average value of y given x.

(Gelman and Hill, "Data Analysis Using Regression and Multilevel/Hierarchical Models", 58)

Regression Overview

(Lecture 16.1, Slide 7)

Ordinary Least Squares (OLS) Regression: The *Model*

This is the non-"fitted" model, since we don't yet know the precise values of a or b

Ordinary Least Squares (OLS) Regression: The Fitted Model

By estimating the parameters of our model using the data in the dataset, we obtain a=23.4 and b=-1.59

The "full" OLS model

(Lecture 16.2, Slide 19)

Regression in Python

In [2]: import statsmodels.formula.api as smf

The Dataset: Colonial History and Life Expectancy

```
In [4]: import pandas as pd
import numpy as np
colonial_df = pd.read_csv("colonial_life_expectancy.csv")
```

In [5]: colonial_df

Out[5]:

	country	ind_date	yrs_since_ind	year	life_exp
0	Afghanistan	191908	97	2016	62.7
1	Albania	191307	103	2016	76.4
2	Algeria	196207	54	2016	76.4
3	Angola	197511	41	2016	62.6
4	Antigua and Barbuda	198111	35	2016	75.0
•••		•••			
178	Venezuela	183001	186	2016	74.1
179	Vietnam	195407	62	2016	76.3
180	Yemen	196711	49	2016	65.3
181	Zambia	196410	52	2016	62.3
182	Zimbabwe	198004	36	2016	61.4

183 rows × 5 columns

Exploratory Data Analysis

NOTE: YOU ACTUALLY DO NEED TO DO THIS IRL...

```
In [19]: import matplotlib.pyplot as plt
    plt.boxplot(colonial_df['life_exp'], vert=False)
    plt.xlabel("Life Expectancy (Years)")
    # https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.tick_params.html
    plt.tick_params(axis='y', which='both', left=False, labelleft=False)
    plt.show()
```


Outliers?

In [23]: colonial_df.sort_values(by='life_exp')

Out[23]:

	country	ind_date	yrs_since_ind	year	life_exp
94	Lesotho	196610	50	2016	52.9
31	Central African Republic	196010	56	2016	53.0
145	Sierra Leone	196104	55	2016	53.1
32	Chad	196008	56	2016	54.3
39	Côte d'Ivoire	196008	56	2016	54.6
•••		•••			•••
146	Singapore	196508	51	2016	82.9
7	Australia	190101	115	2016	82.9
154	Spain	147901	537	2016	83.1
159	Switzerland	129108	725	2016	83.3
84	Japan	159000	426	2016	84.2

183 rows × 5 columns

(btw, "Lesotho" is pronounced "Leh-Soo-Too"... fun fact)

Scatterplottin

```
In [25]: plt.scatter(colonial_df['yrs_since_ind'], colonial_df['life_exp'])
    plt.xlabel("Year Since Independence")
    plt.ylabel("Life Expectancy (Years)")
    plt.show()
```


(sidebar: for variables with skewed distributions like years since independence, you really should take the log to "de-skew" them)

```
In [65]: plt.scatter(np.log(colonial_df['yrs_since_ind']), colonial_df['life_exp'])
    plt.xlabel("Log(Year Since Independence)")
    plt.ylabel("Life Expectancy (Years)")
    plt.show()
```


Before we estimate the model, remember what our hypotheses are!

- ullet H_0 : Changes in the independent variable have no effect on the dependent variable
 - i.e., $\beta_1 = 0$
 - So, in our case: number of years since independence has no effect on life expectancy
- H_A : Changes in the independent variable have some (nonzero) effect on the dependent variable
 - i.e., $\beta_1 \neq 0$
 - In our case: number of years since independence has an effect on life expectancy
- (Remember our model: $Y_i = eta_0 + eta_1 X_i + arepsilon_i$)
 - $\qquad \textbf{LifeExpectancy}_i = \beta_0 + \beta_1 \textbf{YrsSinceIndependence}_i + \varepsilon_i$

```
In [28]: results = smf.ols('life_exp ~ yrs_since_ind', data=colonial_df).fit()
```

(Why do we have to add .fit()?)

```
In [79]: summary = results.summary()
summary.extra_txt = None; summary
```

Out[79]: OLS

OLS Regression Results

Dep. Variable:	life_exp	R-squared:	0.164
Model:	OLS	Adj. R-squared:	0.159
Method:	Least Squares	F-statistic:	35.52
Date:	Tue, 10 Nov 2020	Prob (F-statistic):	1.29e-08
Time:	00:23:41	Log-Likelihood:	-614.72
No. Observations:	183	AIC:	1233.
Df Residuals:	181	BIC:	1240.
Df Model:	1		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	69.5870	0.636	109.483	0.000	68.333	70.841
yrs_since_ind	0.0169	0.003	5.960	0.000	0.011	0.022

Omnibus:	8.399	Durbin-Watson:	1.912
Prob(Omnibus):	0.015	Jarque-Bera (JB):	8.177
Skew:	-0.470	Prob(JB):	0.0168
Kurtosis:	2.564	Cond. No.	275.

```
In [58]: import seaborn as sns
    sns.regplot(x='yrs_since_ind', y='life_exp', data=colonial_df)
    plt.title("All Countries")
    plt.xlabel("Years Since Independence")
    plt.ylabel("Life Expectancy (Years)")
    plt.show()
```


Appendix I: Removing Outliers

Number of countries after dropping outliers: 168

• Sketchy, but in this case we have a historical reason for removing outliers: we can revise our population of interest to be countries that achieved independence since the 1648 <u>Treaty of Westphalia (https://en.wikipedia.org/wiki/Peace_of_Westphalia)</u>, which (long story short) inaugurated the era of the sovereign nation-state

```
In [40]: tw_df = colonial_df[colonial_df['yrs_since_ind'] < 368].copy()
In [43]: print("Number of countries before dropping outliers: " + str(len(colonial_df)))
    print("Number of countries after dropping outliers: " + str(len(tw_df)))
    Number of countries before dropping outliers: 183</pre>
```

```
In [46]: plt.scatter(tw_df['yrs_since_ind'], tw_df['life_exp'])
    plt.show()
```



```
In [44]: results_tw = smf.ols('life_exp ~ yrs_since_ind', data=tw_df).fit()
```

Out[80]: OLS Regression Results

Dep. Variable:	life_exp	R-squared:	0.110
Model:	OLS	Adj. R-squared:	0.105
Method:	Least Squares	F-statistic:	20.61
Date:	Tue, 10 Nov 2020	Prob (F-statistic):	1.08e-05
Time:	00:24:07	Log-Likelihood:	-565.18
No. Observations:	168	AIC:	1134.
Df Residuals:	166	BIC:	1141.
Df Model:	1		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	67.8297	0.889	76.285	0.000	66.074	69.585
yrs_since_ind	0.0387	0.009	4.539	0.000	0.022	0.056

Omnibus:	7.032	Durbin-Watson:	1.876
Prob(Omnibus):	0.030	Jarque-Bera (JB):	6.257
Skew:	-0.399	Prob(JB):	0.0438
Kurtosis:	2.493	Cond. No.	171.

```
In [81]: import seaborn as sns
    sns.regplot(x='yrs_since_ind', y='life_exp', data=tw_df)
    plt.title("Post-Westphalia Countries")
    plt.xlabel("Years Since Independence")
    plt.ylabel("Life Expectancy (Years)")
    plt.show()
```


Appendix II: ...You really should log the skewed variables

```
In [82]:
             colonial df['log yrs since ind'] = colonial df['yrs since ind'].apply(np.log)
In [83]:
             results log = smf.ols('life exp ~ log_yrs_since_ind', data=colonial_df).fit()
In [84]:
             summary log = results log.summary()
             summary log.extra txt = None; summary log
             OLS Regression Results
Out[84]:
              Dep. Variable:
                                              R-squared:
                                                              0.190
                              life_exp
              Model:
                              OLS
                                              Adj. R-squared:
                                                             0.186
                                                              42.53
              Method:
                              Least Squares
                                              F-statistic:
                                              Prob (F-statistic):
                               Tue, 10 Nov 2020
                                                              6.74e-10
              Date:
                              00:24:32
              Time:
                                              Log-Likelihood:
                                                              -611.80
              No. Observations:
                              183
                                              AIC:
                                                              1228.
              Df Residuals:
                              181
                                              BIC:
                                                              1234.
              Df Model:
                              1
              Covariance Type:
                              nonrobust
                                                           [0.025 0.975]
                              coef
                                      std err t
                                                     P>|t|
                                             22.897
                                                           51.307
                              56.1455
                                      2.452
                                                     0.000
                                                                  60.984
              Intercept
              log yrs since ind
                             3.5956
                                      0.551
                                             6.521
                                                     0.000
                                                           2.508
                                                                  4.684
              Omnibus:
                             8.079
                                   Durbin-Watson:
                                                   1.850
              Prob(Omnibus):
                            0.018
                                   Jarque-Bera (JB):
                                                   8.422
                             -0.505 Prob(JB):
              Skew:
                                                   0.0148
                                                   22.5
              Kurtosis:
                             2.712
                                   Cond. No.
```

```
In [85]: import seaborn as sns
    sns.regplot(x='log_yrs_since_ind', y='life_exp', data=colonial_df)
    plt.title("All Countries")
    plt.xlabel("Log(Years Since Independence)")
    plt.ylabel("Life Expectancy (Years)")
    plt.show()
```


(and now with just the post-Westphalia countries)

```
In [86]:
            tw df['log yrs since ind'] = tw df['yrs since ind'].apply(np.log)
In [87]:
             results tw log = smf.ols('life_exp ~ log_yrs_since_ind', data=tw_df).fit()
In [88]:
             results summary = results tw log.summary()
             results summary.extra txt = None; results summary
             OLS Regression Results
Out[88]:
                                                             0.093
              Dep. Variable:
                                              R-squared:
                              life_exp
              Model:
                              OLS
                                             Adj. R-squared:
                                                             0.088
              Method:
                              Least Squares
                                                             17.02
                                              F-statistic:
                              Tue, 10 Nov 2020
              Date:
                                             Prob (F-statistic):
                                                             5.84e-05
                              00:24:42
                                             Log-Likelihood:
                                                             -566.81
              Time:
              No. Observations:
                                              AIC:
                                                             1138.
                              168
              Df Residuals:
                              166
                                              BIC:
                                                             1144.
              Df Model:
                              1
              Covariance Type:
                              nonrobust
                                      std err t
                                                    P>|t|
                                                          [0.025 0.975]
                             coef
              Intercept
                             57.6155
                                     3.297
                                             17.477
                                                    0.000 51.107 64.124
                                                    0.000 1.680
                                                                 4.763
              log yrs since ind
                             3.2210
                                      0.781
                                             4.125
                                   Durbin-Watson:
              Omnibus:
                            7.992
                                                  1.857
                            0.018
                                   Jarque-Bera (JB): 7.861
              Prob(Omnibus):
                            -0.484
                                   Prob(JB):
                                                  0.0196
              Skew:
                                   Cond. No.
                                                   26.8
              Kurtosis:
                            2.570
```

```
In [89]: import seaborn as sns
    sns.regplot(x='log_yrs_since_ind', y='life_exp', data=tw_df)
    plt.title("Post-Westphalia Countries")
    plt.xlabel("Log(Years Since Independence)")
    plt.ylabel("Life Expectancy (Years)")
    plt.show()
```

