CRN 21552:

Class Time: Monday, 09:30-12:20

Location: MEDAII

Signals and Systems for CE BLG 354E

2017 - 2018 Spring Term

Instructor:

CRN 21552: Prof. Dr. Gözde ÜNAL

Class Location:

Office: EEB- 5309

Email: gozde.unal@itu.edu.tr

Course Assistants:

-- Enes Albay

Email: albay@itu.edu.tr

Office: Vision Lab

Office Hour: TBA

Prerequisites:

- --Basic Linear Algebra Knowledge.
- --Basic Calculus Knowledge.
- --Basic Programming Skills.

Textbook:

- "Signal Processing First" by James H. McClellan, Ronald W. Schafer, Mark A. Yoder, Prentice Hall, 2003.
- -- "Signals and Systems", Oppenheim and Wilsky, Pearson.

Software tool:

MATLAB or Python

Additional Sources:

- -- Course Slides
- -- MIT Open Courseware : Signals and Systems Course materials

Grading Policy:

```
5 Homeworks → 4 x 5=20 %

Attendance Quizzes Every Week→ = 10 %

I x I2 (lowest 2 out of I2 will be deleted)

I Midterm → I x 30= 30 %

I Final→ 40%
```

VF Conditions (Final Exam Conditions) →

- * 70% Attendance to Lectures (through the Quizzes attendance is taken at TopHat System.)
- *At least 3 Homeworks submitted. A homework is counted as submitted when it receives a minimum grade: 25/100
 - *Weighted Average of Midterm + HWs + Quiz > 30/100

Cheating attempts: Disciplinary Action will be taken.

Interactive Teaching Platform: Top Hat will be used throughout the course

Prerequisites:

- -- https://tophat.com/
- -- You need to register for an account:
 You will receive an email in the following daya. Please, follow a link you receive by ITU email

Weekly Schedule / Tentative

	,
Week	Content
05.02.2018	Introduction, Sinusoids, Complex Exponential
12.02.2018	Phasors, Spectrum Representation
19.02.2018	Fourier Series-I
26.02.2018	Fourier Series-2
05.03.2018	LTI systems, FIR Filters
12.03.2018	Convolution - I
19.03.2018	Convolution - 2
26.03.2018	SPRING BREAK
02.04.2018	Frequency Response of FIR Filters
09.04.2018	MIDTERM EXAM
16.04.2018	Continuous-time Signals and systems
23.04.2018	Impulse response/ Frequency response of CT systems
30.04.2018	Continuous time Fourier Transform(CTFT) and DFT
07.05.2018	FT Applications: Modulation
14.05.2018	FT Applications: Sampling

Learning Outcomes

- I. Describe a periodic signal in time domain by defining its properties such as the fundamental period and fundamental frequency
- 2. Define a periodic signal as a sum of sinusoids or complex exponentials, i.e. create Fourier series representation of a periodic signal through both Fourier synthesis and analysis equations
- > 3. Construct the spectrum representation of a periodic signal
- 4. Identify Finite Impulse Response systems, Linear Time Invariant Systems, and their properties
- > 5. Define the impulse response of an LTI system both in continuous time and discrete-time, and system properties such as stability and causality
- ▶ 6. Define the frequency response of an LTI system and its properties
- 7. Construct forward and inverse Fourier Transform of both periodic and nonperiodic continuous-time signals
- 8. Describe ideal frequency selective filters (low-pass, high-pass, band-pass) in frequency domain
- > 9. Perform frequency filtering over the spectrum of a signal
- ▶ 10. Describe Sampling Theorem and conversion between continuous time and discrete-time domains
- ► II. Describe principles of an Amplitude Modulation and Demodulation System
- ▶ 12. Implement the above concepts in a programming environment (MATLAB)

