A Probabilistic Hierarchical Clustering Algorithm

 \square For a set of objects partitioned into m clusters C_1, \ldots, C_m , the quality can be measured by,

$$Q(\{C_1, \dots, C_m\}) = \prod_{i=1}^m P(C_i)$$

where P() is the maximum likelihood

 \square If we merge two clusters C_{j1} and C_{j2} into a cluster $C_{j1}UC_{j2}$, the change in quality of the overall clustering is

$$Q((\{C_1, \dots, C_m\} - \{C_{j_1}, C_{j_2}\}) \cup \{C_{j_1} \cup C_{j_2}\}) - Q(\{C_1, \dots, C_m\}))$$

$$= \frac{\prod_{i=1}^m P(C_i) \cdot P(C_{j_1} \cup C_{j_2})}{P(C_{j_1})P(C_{j_2})} - \prod_{i=1}^m P(C_i)$$

$$= \prod_{i=1}^m P(C_i) \left(\frac{P(C_{j_1} \cup C_{j_2})}{P(C_{j_1})P(C_{j_2})} - 1\right)$$

 \square Distance between clusters C_1 and C_2 :

$$dist(C_i, C_j) = -\log \frac{P(C_1 \cup C_2)}{P(C_1)P(C_2)}$$

□ If dist(C_i , C_j) < 0, merge C_i and C_j

