

## **Description**

The VSM120N05 uses advanced trench technology and design to provide excellent  $R_{DS(ON)}$  with low gate charge. It can be used in a wide variety of applications.

#### **General Features**

- $V_{DS}$  =55V, $I_{D}$  =120A  $R_{DS(ON)}$  < 5.5mΩ @  $V_{GS}$ =10V (Typ:4.1mΩ)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E<sub>AS</sub>
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

## **Application**

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply





Schematic Diagram

## **Package Marking and Ordering Information**

| Device Marking | Device    | Device Package | Reel Size | Tape width | Quantity |  |
|----------------|-----------|----------------|-----------|------------|----------|--|
| VSM120N05-TC   | VSM120N05 | TO-220C        | -         | -          | -        |  |

### Absolute Maximum Ratings (T<sub>A</sub>=25℃unless otherwise noted)

| Parameter                                       | Symbol                | Limit | Unit |
|-------------------------------------------------|-----------------------|-------|------|
| Drain-Source Voltage                            | V <sub>DS</sub>       | 55    | V    |
| Gate-Source Voltage                             | V <sub>G</sub> s      | ±20   | V    |
| Drain Current-Continuous                        | I <sub>D</sub>        | 120   | А    |
| Drain Current-Continuous(T <sub>C</sub> =100°C) | I <sub>D</sub> (100℃) | 85    | Α    |
| Pulsed Drain Current                            | I <sub>DM</sub>       | 420   | А    |
| Maximum Power Dissipation                       | P <sub>D</sub>        | 200   | W    |
| Derating factor                                 |                       | 1.33  | W/℃  |





Shenzhen VSEEI Semiconductor Co., Ltd

| Single pulse avalanche energy (Note 5)           | E <sub>AS</sub>     | 1100       | mJ                     |
|--------------------------------------------------|---------------------|------------|------------------------|
| Operating Junction and Storage Temperature Range | $T_{J}$ , $T_{STG}$ | -55 To 175 | $^{\circ}\!\mathbb{C}$ |

## **Thermal Characteristic**

| Thermal Resistance,Junction-to-Case <sup>(Note 2)</sup> | R <sub>0</sub> JC | 0.75 | °C/W |  |
|---------------------------------------------------------|-------------------|------|------|--|
|---------------------------------------------------------|-------------------|------|------|--|

**Electrical Characteristics (T<sub>A</sub>=25°Cunless otherwise noted)** 

| Parameter                                 | Symbol              | Condition                                                    | Min      | Тур      | Max        | Unit  |
|-------------------------------------------|---------------------|--------------------------------------------------------------|----------|----------|------------|-------|
| Off Characteristics                       | •                   |                                                              |          |          |            |       |
| Drain-Source Breakdown Voltage            | BV <sub>DSS</sub>   | V <sub>GS</sub> =0V I <sub>D</sub> =250μA                    | 55       | 65       | -          | V     |
| Zero Gate Voltage Drain Current           | I <sub>DSS</sub>    | V <sub>DS</sub> =55V,V <sub>GS</sub> =0V                     | -        | -        | 1          | μΑ    |
| Gate-Body Leakage Current                 | I <sub>GSS</sub>    | V <sub>GS</sub> =±20V,V <sub>DS</sub> =0V                    | -        | -        | ±100       | nA    |
| On Characteristics (Note 3)               | •                   |                                                              |          |          |            |       |
| Gate Threshold Voltage                    | $V_{GS(th)}$        | $V_{DS}=V_{GS}$ , $I_{D}=250\mu A$                           | 2        | 3        | 4          | V     |
| Drain-Source On-State Resistance          | R <sub>DS(ON)</sub> | V <sub>GS</sub> =10V, I <sub>D</sub> =40A                    | -        | 4.1      | 5.5        | mΩ    |
| Forward Transconductance                  | <b>g</b> FS         | V <sub>DS</sub> =25V,I <sub>D</sub> =40A                     | 50       | -        | -          | S     |
| Dynamic Characteristics (Note4)           |                     |                                                              |          |          |            |       |
| Input Capacitance                         | C <sub>lss</sub>    | - V <sub>DS</sub> =25V,V <sub>GS</sub> =0V, - F=1.0MHz       | -        | 4900     | -          | PF    |
| Output Capacitance                        | Coss                |                                                              | -        | 470      | -          | PF    |
| Reverse Transfer Capacitance              | C <sub>rss</sub>    |                                                              | -        | 460      | -          | PF    |
| Switching Characteristics (Note 4)        | •                   |                                                              |          |          |            |       |
| Turn-on Delay Time                        | t <sub>d(on)</sub>  |                                                              | -        | 20       | -          | nS    |
| Turn-on Rise Time                         | t <sub>r</sub>      | $V_{DD}$ =30 $V$ , $I_{D}$ =2 $A$                            | -        | 19       | -          | nS    |
| Turn-Off Delay Time                       | t <sub>d(off)</sub> | $V_{GS}$ =10V,R <sub>GEN</sub> =2.5 $\Omega$                 | -        | 70       | -          | nS    |
| Turn-Off Fall Time                        | t <sub>f</sub>      |                                                              | -        | 30       | -          | nS    |
| Total Gate Charge                         | Qg                  | V 00VI 00A                                                   | -        | 125      | -          | nC    |
| Gate-Source Charge                        | Q <sub>gs</sub>     | V <sub>DS</sub> =30V,I <sub>D</sub> =30A,                    | -        | 24       | -          | nC    |
| Gate-Drain Charge                         | $Q_{gd}$            | - V <sub>GS</sub> =10V                                       | -        | 49       | -          | nC    |
| <b>Drain-Source Diode Characteristics</b> |                     |                                                              |          |          |            |       |
| Diode Forward Voltage (Note 3)            | V <sub>SD</sub>     | V <sub>GS</sub> =0V,I <sub>S</sub> =40A                      | -        | -        | 1.2        | V     |
| Diode Forward Current (Note 2)            | Is                  |                                                              | -        | -        | 120        | Α     |
| Reverse Recovery Time                     | t <sub>rr</sub>     | (Noto2)                                                      | -        | 37       | -          | nS    |
| Reverse Recovery Charge                   | Qrr                 | Tj=25°C,I <sub>F</sub> =75A,di/dt=100A/μs <sup>(Note3)</sup> | -        | 58       | -          | nC    |
| Forward Turn-On Time                      | t <sub>on</sub>     | Intrinsic turn-on time is negligible                         | (turn-or | is domir | nated by L | S+LD) |

#### Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board,  $t \le 10$  sec.
- 3. Pulse Test: Pulse Width  $\leq$  300 $\mu$ s, Duty Cycle  $\leq$  2%.
- 4. Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25  $^{\circ}\text{C}$  ,VDD=28V,VG=10V,L=0.5mH,Rg=25 $\Omega$



## **Test circuit**

# 1) E<sub>AS</sub> test Circuits



## 2) Gate charge test Circuit:



### 3) Switch Time Test Circuit:





## **Typical Electrical and Thermal Characteristics (Curves)**



**Figure 1 Output Characteristics** 



**Figure 2 Transfer Characteristics** 



Figure 3 Rdson- Drain Current



Figure 4 Rdson-JunctionTemperature



Figure 5 Gate Charge



Figure 6 Source- Drain Diode Forward





Figure 7 Capacitance vs Vds



Figure 8 Safe Operation Area



Figure 9 BV<sub>DSS</sub> vs Junction Temperature



Figure 10 V<sub>GS(th)</sub> vs Junction Temperature



**Figure 11 Normalized Maximum Transient Thermal Impedance**