Fixation rates of mutation types can be used to infer those mutations' impacts on fitness.

Scan for presenter's website, incl. CV and copy of poster.

The Cascade Effect: Mutation fixation rates over evolutionary time Acacia Ackles, Clifford Bohm, Vincent Ragusa, and Arend Hintze

Background

Different mutation types (e.g. insertions, deletions, point mutations, etc.) have different effects on organisms' fitness and on organisms' underlying genome structure.

Previous work in digital organisms has focused on the effects of **particular** mutations, e.g. changing one instruction to another.

We expand upon this work by investigating mutations classified by their structural impact.

Methods

MABE: Modular Agent Based Evolver

Results

The yellow line indicates the expected mutation rate of 0.001 if mutations were under drift.

Discussion

Mutations which are **beneficial early** in evolution are **suppressed later**, at a rate **inversely proportional** to their early benefit. We call this the **cascade effect**.

Future Directions

Do these results hold under rapidly changing environments?

What effect do **epistatic interactions** have on fixation rates and on the cascade effect?

References

[1] Bohm, C., C G, N., and Hintze, A. (2017). MABE (Modular Agent Based Evolver): A framework for digital evolution research. In *Proceedings of the European Conference on Artificial Life*, pages 76–83, Lyon, France. The MIT Press.

[2] C G, N., LaBar, T., Hintze, A., and Adami, C. (2017). Origin of life in a digital microcosm. *Phil. Trans. R. Soc. A*, 375(2109):20160350.

[3] LaBar, T., Hintze, A., and Adami, C. (2016). Evolvability Tradeoffs in Emergent Digital Replicators. *Artificial Life*, 22(4):483-498.

Additional Information

MaxOne

Acknowledgments

We thank Michael Wiser for his input on this project. This material was based in part upon work supported by the National Science Foundation under Cooperative Agreement No. DBI-0939454 and by Michigan State University via computational resources provided by the Institute for Cyber-Enabled Research. Funding for the work was partially provided by Michigan State University College of Natural Sciences Recruiting Fellowship to AA and by BEACON Top-Up Fellowships to AA and VR.

