

Estruturas Aeroespaciais II – 10373

2022/2023

Trabalho de Estudo Dimensionamento do cone de cauda em compósito de uma aeronave de 6 lugares

1. OBJETIVO

Dimensionar a estrutura do cone de cauda de uma aeronave de seis lugares fabricado em compósito sujeita a restrições de resistência e de rigidez usando o método da idealização estrutural. Obter uma solução numérica (tensões e deslocamentos) da configuração obtida recorrendo a um programa comercial de análise estrutural pelo método dos elementos finitos. Comparar as duas soluções. Escrever um relatório.

2. DESCRIÇÃO

É necessário dimensionar o cone de cauda da fuselagem de uma aeronave de seis lugares com uma massa máxima de descolagem de m = 3350 kg e um fator de carga máximo de operação de n = 4.

A geometria aproximada e a definição dos parâmetros do cone de cauda da fuselagem estão mostradas na Figura 1. O cone de cauda tem uma altura h(z) e uma largura w(z).

A estrutura do cone de cauda é constituída por uma secção fechada de paredes finas unicelular. A casca superior e lateral do cone de cauda tem uma espessura $t_1 = n_1 t$ e casca inferior uma espessura $t_2 = n_2 t$. As áreas da secção transversal dos tensores superior e inferior são $A_3 = n_3 b_3 t$. Os parâmetros n_1 , n_2 e n_3 , representam o número de camadas dos laminados da casca superior e lateral, casca inferior e tensores, respetivamente, t = 0,05 mm é a espessura de cada camada e b_3 é a largura dos tensores. A raiz do cone de cauda encontra-se encastrado na fuselagem central (não mostrada) enquanto a sua ponta está livre. Podem ser usados três materiais diferentes no fabrico do cone de cauda, fibra de carbono/epóxi de elevada resistência (CFRP-HS), fibra de carbono/epóxi de elevada rigidez (CFRP-HM) e fibra de vidro/epóxi (GFRP), sendo todos os materiais ortotrópicos e estando as suas propriedades indicadas na Tabela 1.

O carregamento a aplicar no cone de cauda resulta de uma condição de voo com n = 4 e velocidade V = 152 m/s e inclui: forças verticais correspondentes à força de balanceamento na empenagem horizontal, F_b , aplicada em z = L e às forças de inércia das massas $m_1 = 250$ kg, $m_2 = 250$ kg e $m_3 = 150$ kg aplicadas no plano de simetria em $z_1 = 0.6$ m, $z_2 = 2.2$ m e $z_3 = L$,

respetivamente; e uma força horizontal igual a metade da força de balanceamento, $S_x = F_b/2$ aplicada na ponta livre do cone de cauda no plano de simetria vertical e numa posição vertical $y_V = 1,2$ m.

O coeficiente de sustentação máximo da asa é $C_{Lmax} = 1,66$, o coeficiente de sustentação é dado por $C_L = 0,011\pi^2b(\alpha+4)/(b+2c)$, onde α é o ângulo de ataque, b é a envergadura da asa, e c é a corda media da asa, e o coeficiente de momento de arfagem da asa é $C_M = -0,15$.

A posição do centro de gravidade do avião, z_{CG} , está 0.05c à frente do centro aerodinâmico da asa e este encontra-se em $z_W = -0.5$ m. O centro de gravidade da cauda está coincidente com os centros aerodinâmicos das empenagens horizontal e vertical, que estão localizados na ponta livre do cone de cauda.

Pretende-se o seguinte:

- a) Usando o método da idealização estrutural, determinar os valores de t_1 , t_2 e A_3 (e respetivo número de camadas e empilhamento) que minimizam a função f = 0.6M + 0.4C/100, onde M é a massa do cone de cauda e C é o preço do material do cone de cauda, tendo em conta os esforços aplicados no cone de cauda, os dados das Tabelas 1 e 2, e garantindo que a rotação máxima na ponta, θ_x , não excede 0.5° e que a torção máxima na ponta, θ_z , não excede 0.5° . O efeito do afilamento pode ser desprezado no cálculo dos fluxos de corte.
- b) Usando o método dos elementos finitos num programa comercial (ANSYS®), estimar as deflexões e o campo de tensões/critério de falha da estrutura obtida recorrendo a elementos tipo casca lineares e a uma análise estática. Nesta análise deve usar-se o módulo de compósitos ACP para criar e analisar os laminados.
- c) Comparar e comentar os resultados obtidos de forma crítica.
- d) Escrever um relatório.

3. RELATÓRIO

Cada grupo de 3 alunos (cada grupo usando dados diferentes da Tabela 3) deve apresentar os resultados das suas análises num relatório escrito, **com um máximo de 15 páginas**. Nele deverá explicar-se com o detalhe adequado todos os passos associados à resolução do problema (características dos laminados obtidos na idealização estrutural, geometria, sistema de unidades adotado, condições de fronteira, carregamento, tipo de elementos, malha, etc.), bem como os resultados finais, onde deverá constar especificamente os valores de f, t_1 , t_2 e A_3 (e respetiva definição dos empilhamentos), a rotação máxima, a torção da ponta e a variação do campo de tensões/critério de falha no componente. Deve ser feita uma análise crítica dos resultados onde deverão ser propostas alterações da estrutura para melhorar a eficiência estrutural.

A data limite para entrega do trabalho é <u>7 de junho de 2023</u>. O relatório deve ser enviado via e-mail <u>em formato pdf</u>, para o endereço <u>pgamboa@ubi.pt</u>.

Pedro V. Gamboa (2023)

4. DADOS

Tabela 1 – Propriedades dos materiais.

Propriedade	parâmetro	unidade	CFRP-HS	CFRP-HM	GFRP
Massa volúmica	ρ	kg/m³	1600	1600	1900
Módulo elástico longitudinal	, E ₁	GPa	140	180	40
Módulo elástico transversal	E_2	GPa	10	8	8
Módulo de corte	G_{12}	GPa	5	5	4
Coeficiente de Poisson maior	ν_{12}	-	0,30	0,30	0,25
Resistência longitudinal à tração	X_t	MPa	1500	1000	1000
Resistência longitudinal à compressão	χ_c	MPa	1200	850	600
Resistência transversal à tração	Y_t	MPa	50	40	30
Resistência transversal à compressão	Y_c	MPa	250	200	110
Resistência ao corte	S	MPa	70	60	40
Preço	C s	€/kg	100	120	50

Tabela 2 – Especificações do cone de cauda em função do número de grupo.

	Grupo	<i>b</i> , m	<i>c,</i> m	<i>h</i> , m	<i>w,</i> m	<i>L</i> , m
Ī	i = 1,30	12,8-0,2×(<i>i</i> -1)	1,4+0,02×(i-1)	0,9×(1-0,5z/L)	1,5×(1-0,7z/L)	5,1+0,02×(i-1)

Figura 1 – Geometria do cone de cuada e parâmetros.

Pedro V. Gamboa (2023)

Tabela 3 – Grupos.

Grupo	Aluno 1	Aluno 2	Aluno 3
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			