清华大学本科生考试试题专用纸

考试科目 微积分A(1)

A卷

2024年1月12日

试题纸、答题卡、答题本上都要写清学号姓名, 考后全部交回.

除附加题外,所有答案请写在答题卡相应题号处.附加题答在答题本上.

- 一. 填空题 (共10题, 每題3分)

 - 6. 已知心脏线的极坐标方程为 $r=1+\cos\theta$, $0 \le \theta \le 2\pi$, 则心脏线所图平面有界区域的面积为 _______.
 - 7. 极限 $\lim_{x\to 0} \frac{\int_0^{3x} \ln(1+t^2) dt}{x^3} =$ _______
 - 8. 极限 $\lim_{n \to +\infty} \left(\frac{1}{\sqrt{4n^2 1^2}} + \frac{1}{\sqrt{4n^2 2^2}} + \dots + \frac{1}{\sqrt{4n^2 n^2}} \right) = \underline{\hspace{1cm}}$
 - 9. 一阶常徽分方程 y'+2y = y²e^x 满足 y(1) = e⁻¹ 的解为 _______
 - 10. 记常微分方程初值问题

$$\begin{cases} (1+x^2)y'' - 2xy' = 0\\ y(0) = 0, y'(0) = 1 \end{cases}$$

的唯一解为 y(x), 则 $y(3) = ______$

- 二. 解答题 (共7题, 每题10分)
 - 11. 考虑函数曲线 $y = (x+1)(x-2)^2, x \in \mathbb{R}$.
 - (a) 求函数的单调区间, 以及极值点和极值;
 - (b) 求函数的凹凸区间,并指出曲线的拐点.
 - 12. 求一阶常微分方程初值问题 $y' = \frac{y}{x} + \tan \frac{y}{x}$, $y(1) = \frac{\pi}{6}$ 的解.
 - 13. (a) 求旋轮线一拱 $x = t \sin t$, $y = 1 \cos t$ ($0 \le t \le 2\pi$) 与 x 轴所围平面有界区域的面积;
 - (b) 求旋轮线一拱的弧长.
 - 14. 计算广义积分 $\int_1^2 \frac{dx}{\sqrt{(x-1)(2-x)}}$.
 - 15. 求参数 p 的取值范围,使得广义积分 $\int_0^{+\infty} \frac{1}{x^p} \sin \frac{1}{x} dx$ 收敛.
 - 16. 考虑一阶线性常微分方程 $\frac{a}{dx} + a(x)y = b(x)$, 其中 a(x) 和 b(x) 为实轴 \mathbb{R} 上的连续函数. 假设
 - (i) 存在正数 c > 0, 使得 $a(x) \ge c$, $\forall x \ge 0$; (ii) $\lim_{x \to +\infty} b(x) = 0$. 证明方程 $\frac{dy}{dx} + a(x)y = b(x)$ 的每个解 y(x) 均满足 $\lim_{x \to +\infty} y(x) = 0$.
 - 17. 设函数 f(x) 在闭区间 [0,1] 上连续, 并且满足如下积分不等式

$$|f(x)| \le 1 + \int_0^x |f(t)| \mathrm{d}t, \quad \forall x \in [0, 1],$$

证明 $|f(x)| \leq e^x$, $\forall x \in [0,1]$.

- 三. 附加题 (仅用于评判总评成绩 A^+ , 在答题本作答, 并在答题本首页左上角标明 \bigstar)
 - 18. 设 $y_1(x), y_2(x)$ 为二阶线性齐次常微分方程 y'' + p(x)y' + q(x)y = 0 的两个线性无关解, 其中 p(x), q(x) 为开区间 J 上的连续函数. 证明 $y_1(x), y_2(x)$ 的零点相互分离,即在 $y_1(x)$ 的任意两个零点之间,必存在 $y_2(x)$ 的一个零点,反之亦然.