یادگیری ماشین

(Classification)

محمد دهقانی

آنچه در این جلسه یاد خواهیم گرفت:

- ۱. دسته بندی چیست
- ۲. انواع الگوریتم های دسته بندی
 - ۳. پیاده سازی

MACHINE LEARNING SUPERVISED UNSUPERVISED **LEARNING LEARNING** CLASSIFICATION REGRESSION CLUSTERING Support Vector Machines K-Means, K-Medoids Fuzzy C-Means Linear Regression, GLM Discriminant SVR, GPR Hierarchical Analysis Naive Bayes Ensemble Methods Gaussian Mixture Hidden Markov Model Nearest Neighbor **Decision Trees** Neural Networks Neural Networks Neural Networks

یادگیری ماشین

Classification

یادگیری بانظارت

2	Overcast	Hot	High	False	Yes
3	Sunny	Mild	High	False	Yes
4	Sunny	Cool	Normal	False	Yes
5	Sunny	Cool	Normal	True	No
6	Overcast	Cool	Normal	True	Yes
7	Rainy	Mild	High	False	No
8	Rainy	Cool	Normal	False	Yes
9	Sunny	Mild	Normal	False	Yes
10	Rainy	Mild	Normal	True	Yes

K-nearest neighbor does not "learn" per-se. It is lazy and just memorizes the data.

ChrisAlbon

Finds the linear hyperplane that separates Maximum Margin. with classes Margin Support Vectors Support Decision vectors boundary Chris Albon

Decision Tree

Decision Tree

Decision Tree Diagram

احتمال پیشین (Prior Probability)

• احتمالِ اینکه شیر بیاید چقدر است؟

$$P(heads) = ...$$

• احتمالِ مونث بودن یک دانشجوی آمریکایی ۱۸ ساله؟

P(female) =
$$\circ.\Delta$$

احتمال پسین (Posterior Probability)

فرض کنیم طبق آمار در آمریکا، ۴۰ درصد دانشجویانی که ۱۸ ساله هستند مرد باشند پس:

احتمالِ مونث بودن یک دانشجوی آمریکایی ۱۸ ساله؟
 P(female|American and age=۳۰ and student) = ۰.۶

احتمال شرطی (Conditional Probability)

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

name	laptop	phone	
Kate	PC	Android	
Tom	PC	Android	
Harry	PC	Android	
Annika	Мас	iPhone	
Naomi	Мас	Android	
Joe	Мас	iPhone	
Chakotay	Мас	iPhone	
Neelix	Мас	Android	
Kes	PC	iPhone	
B'Elanna	Mac	iPhone	

مثال

احتمال این که یک شخص، که به صورتِ تصادفی انتخاب شده است، از iPhone استفاده کند چقدراست؟

name	laptop	phone
Kate	PC	Android
Tom	PC	Android
Harry	PC	Android
Annika	Mac	iPhone
Naomi	Mac	Android
Joe	Mac	iPhone
Chakotay	Mac	iPhone
Neelix	Mac	Android
Kes	PC	iPhone
B'Elanna	Mac	iPhone

$$P(iPhone) = \frac{5}{10} = 0.5$$

مثال

احتمالِ اینکه یک شخص، که به صورتِ تصادفی انتخاب شدهاست، از iPhone استفاده کند، با این شرط که بدانیم لپتاپِ او Mac است، چیست؟

name	laptop	phone
Kate	PC	Android
Tom	PC	Android
Harry	PC	Android
Annika	Mac	iPhone
Naomi	Mac	Android
Joe	Mac	iPhone
Chakotay	Mac	iPhone
Neelix	Мас	Android
Kes	PC	iPhone
B'Elanna	Mac	iPhone

$$P(iPhone \mid mac) = \frac{P(mac \cap iPhone)}{P(mac)}$$

$$P(mac \cap iPhone) = \frac{4}{10} = 0.4$$

$$P(mac) = \frac{6}{10} = 0.6$$

$$P(iPhone \mid mac) = \frac{0.4}{0.6} = 0.667$$

$$P\left(\frac{A}{B}\right)$$
, $P\left(\frac{B}{A}\right)$

$$P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)}$$

$$P\left(\frac{B}{A}\right) = \frac{P(A \cap B)}{P(A)}$$

$$P\left(\frac{B}{A}\right) = \frac{P(A \cap B)}{P(A)}$$

$$P\left(\frac{B}{A}\right) = P\left(\frac{A}{B}\right) * P(B) = P\left(\frac{B}{A}\right) * P(A)$$

$$P\left(A \cap B\right) = P\left(\frac{A}{B}\right) * P(B) = P\left(\frac{B}{A}\right) * P(A)$$

$$P\left(\frac{B}{A}\right) = P\left(\frac{A}{B}\right) * \frac{P(B)}{P(A)}$$

قضيه بيز

قضیه بیز

Likelihood Class Prior Probability
$$P(c \mid x) = \frac{P(x \mid c)P(c)}{P(x)}$$
Posterior Probability Predictor Prior Probability

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

Train&Test

#DONTFORGETUS

آموزش های رایگان بیشتر

www.data-hub.ir
www.t.me/data hub ir
www.github.com/datahub-ir
www.linkedin.com/company/data-hub-ir
www.youtube.com/channel/UCrBcbQWcD0ortW
qHAlP94ug