CLAIMS

What is claimed is:

1. A compound of the formula:

wherein X is

wherein R_1 is hydrogen, loweralkyl, alkoxyalkyl, thioalkoxyalkyl or alkoxyalkoxyalkyl and R_2 and R_3 are independently $-((R_0)_d-R_5)$ wherein at each occurrence R_0 is independently selected from $-(CH_2R_4)$ and loweralkenylene wherein at each occurrence d is independently selected from 0 and 1, at each occurrence R_4 is independently selected from - S-, -O-, -NH-,

-N(loweralkyl)-, -S(O)-, -S(O) $_2$ - and -CH $_2$ - and at each occurrence R5 and R5* are independently selected from

- (i) loweralkyl,
- (ii) aryl,
- (iii) thioalkoxyalkyl
- (iv) (aryl)alkyl,
- (v) cycloalkyl,
- (vi) cycloalkylalkyl,
- (vii) hydroxyalkyl,
- (viii) alkoxyalkyl,
- (ix) aryloxyalkyl,
- (x) haloalkyl,

```
(xi)
          carboxyalkyl,
 (xii)
          alkoxycarbonylalkyl,
 (xiii) 'aminoalkyl,
 (xiv)
          (N-protected) aminoalkyl,
 (xv)
          alkylaminoalkyl,
          ((N-protected)(alkyl)amino)alkyl,
(xvi)
          dialkylaminoalkyl,
(xvii)
(xviii)
         guanidinoalkyl,
(xix)
          loweralkenyl,
(xx)
         heterocyclic,
(xxi)
          (heterocyclic) alkyl,
(xxii)
         hydrogen,
         arylthioalkyl,
(xxiii)
(xxiv)
         arylsulfonylalkyl,
(xxv)
          (heterocyclic) thioalkyl,
          (heterocyclic) sulfonylalkyl,
(xxvi)
(xxvii)
         (heterocyclic) oxyalkyl,
(xxviii
         arylalkoxyalkyl,
(xxix)
         arylthioalkoxyalkyl,
(xxx)
         arylalkylsulfonylalkyl,
         (heterocyclic) alkoxyalkyl,
(xxxi)
(xxxii)
         (heterocyclic) thioalkoxyalkyl,
(xxxiii
         (heterocyclic) alkylsulfonylalkyl,
         cycloalkyloxyalkyl,
(xxxiv)
(xxxv)
         cycloalkylthioalkyl,
         cycloalkylsulfonylalkyl,
(xxxvi)
(xxxvii
         cycloalkylalkoxyalkyl,
         cycloalkylthioalkoxyalkyl,
xxxviii
(xxxix)
         cycloalkylalkylsulfonylalkyl,
(x1)
         aminocarbonyl,
(xli)
         alkylaminocarbonyl,
(xlii)
         dialkylaminocarbonyl,
(xliii)
         aroylalkyl,
```

(xliv) (heterocyclic) carbonylalkyl,

(xlv) polyhydroxyalkyl,

(xlvi) aminocarbonylalkyl,

(xlvii) alkylaminocarbonylalkyl and

(xlviii dialkylaminocarbonylalkyl;

A and B are independently selected from (1) Z-W-

wherein at each occurrence W is absent or represents a peptide chain containing 1-3 amino acids wherein and at each occurrence Z is R_{6} -(C(R_{5*})(R_{5}))_e-(C(T))_f-(C(R_{5*})(R_{5}))_q-(U)_i- $(C(R_{5*})(R_{5}))_{i}-C(T)_{f}$ - wherein at each occurrence ${\rm R_{6^-}(C\,(R_{5^\star})\,\,(R_5)\,)_{\,e^-}(C\,(T)\,)_{\,f^-}(C\,(R_{5^\star})\,\,(R_5)\,)_{\,g^-}(U)_{\,i^-}(C\,(R_{5^\star})\,\,(R_5)\,)_{\,j^-} }$ $C(T)_{f}$ is bonded to the amino terminus of the peptide chain, at each occurrence T is independently selected from O and S, at each occurrence R_5 and R_{5*} are independently defined as above or R_5 , R_{5*} and the carbon atom to which they are bonded taken together form a carbocyclic ring of from 3 to 8 carbon atoms which can be optionally substituted with a loweralkyl group or when e, g or j is 2 or more, R5 and R5* on adjacent carbon atoms when taken together form a carbocyclic ring of from 3 to 8 carbon atoms which can be optionally substituted with a loweralkyl group, at each occurrence U is independently selected from O, S and $-N(R_5)$ - wherein R_5 is independently defined as above, at each occurrence e is independently selected from 0, 1, 2 and 3, at each occurrence f is independently selected from 0 and 1, at each occurrence g is independently selected from 0, 1, 2 and 3, at each occurrence i is independently selected from 0 and 1, at each occurrence j is independently selected from 0, 1, 2 and 3, and at each occurrence R6 is independently selected from

- (a) R_7 - $(R_9)_k$ wherein at each occurrence R_9 is independently selected from $N(R_7)$, O and S and at each occurrence k is independently selected from O and 1,
 - (b) $(R_7)_2N-O-$,

(xxi)

- (c) $R_7S(0)_2N(R_5)$ and
- (d) $R_{170}R_{171}CH=CH-$ wherein at each occurrence R_{171} is absent, O, S, NH or -N (alkyl) and at each occurrence R_{170} is aryl or heterocyclic and wherein at each occurrence R_5 is independently defined as above and at each occurrence R_7 is independently selected from:
 - (i) hydrogen, (ii) loweralkyl, (iii) cycloalkyl, (iv) aryl, arylalkyl, (V) (vi) (aryl) alkoxyalkyl, (vii) aminoalkyl, (viii) N-protected-aminoalkyl, (ix) alkylaminoalkyl, (x) (N-protected) (alkyl) aminoalkyl, (xi) dialkylaminoalkyl, (xii) carboxyalkoxyalkyl, (xiii) (alkoxycarbonyl)alkoxyalkyl, (xiv) carboxyalkyl, (xv) alkoxycarbonylalkyl, (xvi) (amino) carboxyalkyl, (xvii) ((N-protected)amino)carboxyalkyl, (xviii) (alkylamino) carboxyalkyl, (xix) ((N-protected)alkylamino)carboxyalkyl, (xx) (dialkylamino) carboxyalkyl,

(amino) alkoxycarbonylalkyl,

-288-

	-200-
(xxii)	((N-protected)amino)alkoxycarbonyl-
	alkyl,
(xxiii)	(alkylamino)alkoxycarbonylalkyl,
(xxiv)	((N-protected)alkylamino)alkoxy-
	carbonylalkyl,
(xxv)	(dialkylamino)alkoxycarbonylalkyl,
(xxvi)	aminocycloalkyl,
(xxvii)	alkoxyalkyl,
(xxviii)	(polyalkoxy)alkyl,
(xxix)	heterocyclic,
(xxx)	(heterocyclic)alkyl,
(xxxi)	(hydroxyamino)alkyl,
(xxxii)	(alkoxyamino)alkyl,
(xxxiii)	N-protecting group,
(xxxiv)	cycloalkylalkyl,
(xxxv)	loweralkenyl,
(xxxvi)	hydroxyalkyl,
(xxxvii)	dihydroxyalkyl,
(xxxviii)	(alkoxy) (alkyl)aminoalkyl,
(xxxix)	alkylaminocycloalkyl,
(lx)	dialkylaminocycloalkyl,
(lxi)	polyhydroxyalkyl,
(lxii)	aryloxyalkyl,
(lxiii)	arylthioalkyl,
(lxiv)	arylsulfonylalkyl,
(lxv)	(heterocyclic)thioalkyl,
(lxvi)	(heterocyclic) sulfonylalkyl,
(lxvii)	(heterocyclic)oxyalkyl,
(lxviii)	arylalkoxyalkyl,
(lxix)	arylthioalkoxyalkyl,
(lxx)	arylalkylsulfonylalkyl,
(lxxi)	(heterocyclic)alkoxyalkyl,
(lxxii)	(heterocyclic)thioalkoxyalkyl,

```
(lxxiii)
           (heterocyclic) alkylsulfonyalkyl,
(lxxiv)
           cycloalkyloxyalkyl,
(lxxv)
           cycloalkylthioalkyl,
(lxxvi)
           cycloalkylsulfonylalkyl,
(lxxvii)
           cycloalkylalkoxyalkyl,
(lxxviii)
           cycloalkylthioalkoxyalkyl,
(lxxix)
           cycloalkylalkylsufonylalkyl,
(lxxx)
           aroylalkyl,
(lxxxi)
           (heterocyclic) carbonylalkyl,
(lxxxii)
           (aryl) aminoalkyl,
(lxxxiii)
           (aryl) (alkyl) aminoalkyl,
(lxxxiv)
           (arylalkyl) aminoalkyl,
(lxxxv)
           (arylalkyl) (alkyl) aminoalkyl,
(lxxxvi)
           (heterocyclic) aminoalkyl,
(lxxxvii)
           (heterocyclic) (alkyl) aminoalkyl,
(lxxxviii
           ((heterocyclic)alkyl)aminoalkyl,
(lxxxix)
           ((heterocyclic)alkyl)alkylaminoalkyl
           (alkoxyalkyl)aminoalkyl,
(xc)
(xci)
           thioalkoxyalkyl,
(xcii)
           mercaptoalkyl,
           aminocarbonylalkyl,
(xciii)
(xciv)
           alkylaminocarbonylalkyl and
(xcv)
           dialkylaminocarbonylalkyl;
```

and

(2) Z'-W'-

wherein at each occurrence W' is absent or represents a peptide chain containing 1-3 amino acids and wherein at each occurrence Z' is $R_{6}-(C(R_{5}*)(R_{5}))_{e}-(S(O))_{m}-(C(R_{5}*)(R_{5}))_{g}-(U)_{i}-(C(R_{5}*)(R_{5}))_{j}-C(T)_{i}-Wherein R_{6}-(C(R_{5}*)(R_{5}))_{e}-(S(O))_{m}-(C(R_{5}*)(R_{5}))_{g}-(U)_{i}-$

 $(C(R_{5*})(R_{5}))_{j}-C(T)_{i}$ is bonded to the amino terminus of the peptide chain wherein at each occurrence T is independently

selected from O and S, at each occurrence R_{5} and $R_{5\star}$ are independently defined as above or R_5 , $R_{5\star}$ and the carbon atom to which they are bonded taken together form a carbocyclic ring of from 3 to 8 carbon atoms which can be optionally substituted with a loweralkyl group or when e, g or j is 2 or more, R₅ and R_{5*} on adjacent carbon atoms when taken together form a carbocyclic ring of from 3 to 8 carbon atoms which can be optionally substituted with a loweralkyl group, at each occurrence U is independently selected from O, S and $-N(R_5)$ wherein R_5 is independently defined as above, at each occurrence e is independently selected from 0, 1, 2 and 3, at each occurrence m is independently selected from 1 and 2, at each occurrence g is independently selected from 0, 1, 2 and 3, at each occurrence i is independently selected from 0 and 1, at each occurrence j is independently selected from 0, 1, 2 and 3, and at each occurrence R₆ is independently defined as above; or a pharmaceutically acceptable salt, ester or prodrug thereof.

- 2. The compound of Claim 1 wherein R_1 is hydrogen and R_2 and R_3 are arylalkyl and wherein A is R_6 -C(O)-NH-CH(R_5)-C(O)- wherein R_5 is arylalkyl and R_6 is R_7 -NH-, R_7 -N(loweralkyl)-, R_7 -O- or R_7 -S- wherein R_7 is (heterocyclic)alkyl and B is -C(O)- R_6 wherein R_6 is independently R_7 -NH-, R_7 -N(loweralkyl)-, R_7 -O- or R_7 -S- wherein R_7 is (heterocyclic)alkyl.
- 3. The compound of Claim—1 wherein R_1 is hydrogen and R_2 and R_3 are arylalkyl and wherein B is R_6 -C(O)-NH-CH(R_5)-C(O)- wherein R_5 is arylalkyl and R_6 is R_7 -NH-, R_7 -N(loweralkyl)-, R_7 -O- or R_7 -S- wherein R_7 is (heterocyclic)alkyl and A is -C(O)- R_6 wherein R_6 is independently R_7 -NH-, R_7 -N(loweralkyl)-, R_7 -O- or R_7 -S- wherein R_7 is (heterocyclic)alkyl.
 - 4. A compound of the formula:

wherein X is

wherein R₁ is hydrogen, loweralkyl, alkoxyalkyl, thioalkoxyalkyl or alkoxyalkoxyalkyl and R₂ and R₃ are independently $-((R_0)_d-R_5)$ wherein at each occurrence R₀ is independently selected from $-(CH_2R_4)-$ and loweralkenylene

wherein at each occurrence d is independently selected from 0 and 1, at each occurrence R_4 is independently selected from -S-, -O-, -NH-,

-N(loweralkyl)-, -S(O)-, -S(O)₂- and -CH₂- and at each occurrence R_5 and $R_{5\star}$ are independently selected from

- (i) loweralkyl,
- (ii) aryl,
- (iii) thioalkoxyalkyl
- (iv) (aryl)alkyl,
- (v) cycloalkyl,
- (vi) cycloalkylalkyl,
- (vii) hydroxyalkyl,
- (viii) alkoxyalkyl,
- (ix) aryloxyalkyl,
- (x) haloalkyl,
- (xi) carboxyalkyl,
- (xii) alkoxycarbonylalkyl,
- (xiii) aminoalkyl,
- (xiv) (N-protected) aminoalkyl,
- (xv) alkylaminoalkyl,
- (xvi) ((N-protected)(alkyl)amino)alkyl,
- (xvii) dialkylaminoalkyl,
- (xviii) guanidinoalkyl,
- (xix) loweralkenyl,
- (xx) heterocyclic,
- (xxi) (heterocyclic)alkyl,
- (xxii) hydrogen,
- (xxiii) arylthioalkyl,
- (xxiv) arylsulfonylalkyl,
- (xxv) (heterocyclic)thioalkyl,
- (xxvi) (heterocyclic) sulfonylalkyl,
- (xxvii) (heterocyclic)oxyalkyl,
- (xxviii arylalkoxyalkyl,

```
(xxix)
         arylthioalkoxyalkyl,
(xxx)
         arylalkylsulfonylalkyl,
(xxxi)
         (heterocyclic) alkoxyalkyl,
(xxxii)
         (heterocyclic)thioalkoxyalkyl,
(xxxiii (heterocyclic)alkylsulfonylalkyl,
         cycloalkyloxyalkyl,
(xxxiv)
(xxxv)
         cycloalkylthioalkyl,
(xxxvi) cycloalkylsulfonylalkyl,
(xxxvii cycloalkylalkoxyalkyl,
xxxviii cycloalkylthioalkoxyalkyl,
(xxxix)
        cycloalkylalkylsulfonylalkyl,
(x1)
         aminocarbonyl,
(xli)
        alkylaminocarbonyl,
        dialkylaminocarbonyl,
(xlii)
(xliii) aroylalkyl,
(xliv)
         (heterocyclic) carbonylalkyl,
        polyhydroxyalkyl,
(xlv)
(xlvi)
        aminocarbonylalkyl,
(xlvii)
        alkylaminocarbonylalkyl and
(xlviii dialkylaminocarbonylalkyl;
```

A and B are independently selected from Z- wherein at each occurrence Z is $R_6-(C(R_{5*})(R_5))_e-(C(T))_f-(C(R_{5*})(R_5))_g-(U)_i-(C(R_{5*})(R_5))_j-C(T)_f-$ wherein at each occurrence T is independently selected from O and S, at each occurrence R_5 and R_{5*} are independently defined as above or R_5 , R_{5*} and the carbon atom to which they are bonded taken together form a carbocyclic ring of from 3 to 8 carbon atoms which can be optionally substituted with a loweralkyl group or when e, g or j is 2 or more, R_5 and R_{5*} on adjacent carbon atoms when taken together form a carbocyclic ring of from 3 to 8 carbon atoms which can be optionally substituted with a loweralkyl group, at each occurrence U is independently

selected from O, S and $-N(R_5)$ - wherein R_5 is independently defined as above, at each occurrence e is independently selected from 0, 1, 2 and 3, at each occurrence f is independently selected from 0 and 1, at each occurrence g is independently selected from 0, 1, 2 and 3, at each occurrence i is independently selected from 0 and 1, at each occurrence j is independently selected from 0, 1, 2 and 3, and at each occurrence R_6 is independently selected from 0.

- (a) $R_7-(R_9)_k$ wherein at each occurrence R_9 is independently selected from $N(R_7)$, O and S and at each occurrence k is independently selected from O and 1,
 - (b) $(R_7)_2N-O-$,
 - (c) $R_7S(0)_2N(R_5)$ and
- (d) $R_{170}R_{171}CH=CH-$ wherein at each occurrence R_{171} is absent, O, S, NH or -N (alkyl) and at each occurrence R_{170} is aryl or heterocyclic and wherein at each occurrence R_5 is independently defined as above and at each occurrence R_7 is independently selected from:
 - (i) hydrogen,
 - (ii) loweralkyl,
 - (iii) cycloalkyl,
 - (iv) aryl,
 - (v) arylalkyl,
 - (vi) (aryl)alkoxyalkyl,
 - (vii) aminoalkyl,
 - (viii) N-protected-aminoalkyl,
 - (ix) alkylaminoalkyl,
 - (x) (N-protected) (alkyl) aminoalkyl,
 - (xi) dialkylaminoalkyl,
 - (xii) carboxyalkoxyalkyl,
 - (xiii) (alkoxycarbonyl)alkoxyalkyl,
 - (xiv) carboxyalkyl,

	-235-
(xv)	alkoxycarbonylalkyl,
(xvi)	(amino) carboxyalkyl,
(xvii)	((N-protected)amino)carboxyalkyl,
(xviii)	(alkylamino)carboxyalkyl,
(xix)	((N-protected)alkylamino)carboxy-
	alkyl,
(xx)	(dialkylamino)carboxyalkyl,
(xxi)	(amino)alkoxycarbonylalkyl,
(xxii)	((N-protected)amino)alkoxycarbonyl-
	alkyl,
(xxiii)	(alkylamino)alkoxycarbonylalkyl,
(xxiv)	((N-protected)alkylamino)alkoxy-
	carbonylalkyl,
(xxv)	(dialkylamino)alkoxycarbonylalkyl,
(xxvi)	aminocycloalkyl,
(xxvii)	alkoxyalkyl,
(xxviii)	(polyalkoxy)alkyl,
(xxix)	heterocyclic,
(xxx)	(heterocyclic)alkyl,
(xxxi)	(hydroxyamino)alkyl,
(xxxii)	(alkoxyamino)alkyl,
(xxxiii)	N-protecting group,
(xxxiv)	cycloalkylalkyl,
(xxxv)	loweralkenyl,
(xxxvi)	hydroxyalkyl,
(xxxvii)	dihydroxyalkyl,
(xxxviii)	(alkoxy)(alkyl)aminoalkyl,
(xxxix)	alkylaminocycloalkyl,
(lx)	dialkylaminocycloalkyl,
(lxi)	polyhydroxyalkyl,
(lxii)	aryloxyalkyl,
(lxiii)	arylthioalkyl,
(lxiv)	arylsulfonylalkyl,

```
(lxv)
            (heterocyclic)thioalkyl,
(lxvi)
            (heterocyclic) sulfonylalkyl,
            (heterocyclic)oxyalkyl,
(lxvii)
(lxviii)
            arylalkoxyalkyl,
(lxix)
            arylthioalkoxyalkyl,
(lxx)
            arylalkylsulfonylalkyl,
            (heterocyclic) alkoxyalkyl,
(lxxi)
(lxxii)
            (heterocyclic) thioalkoxyalkyl,
(lxxiii)
            (heterocyclic) alkylsulfonyalkyl,
(lxxiv)
            cycloalkyloxyalkyl,
(lxxv)
            cycloalkylthioalkyl,
(lxxvi)
            cycloalkylsulfonylalkyl,
(lxxvii)
           cycloalkylalkoxyalkyl,
(lxxviii)
           cycloalkylthioalkoxyalkyl,
(lxxix)
           cycloalkylalkylsufonylalkyl,
(lxxx)
           aroylalkyl,
(lxxxi)
            (heterocyclic) carbonylalkyl,
(lxxxii)
            (aryl) aminoalkyl,
            (aryl) (alkyl) aminoalkyl,
(lxxxiii)
(lxxxiv)
            (arylalkyl) aminoalkyl,
(lxxxv)
            (arylalkyl) (alkyl) aminoalkyl,
(lxxxvi)
           (heterocyclic) aminoalkyl,
(lxxxvii)
           (heterocyclic) (alkyl) aminoalkyl,
(lxxxviii
           ((heterocyclic)alkyl)aminoalkyl,
(lxxxix)
           ((heterocyclic)alkyl)alkylaminoalkyl
(xc)
           (alkoxyalkyl) aminoalkyl,
(xci)
           thioalkoxyalkyl,
(xcii)
           mercaptoalkyl,
(xciii)
           aminocarbonylalkyl,
           alkylaminocarbonylalkyl and
(xciv)
(xcv)
           dialkylaminocarbonylalkyl;
```

or a pharmaceutically acceptable salt, ester or prodrug thereof.

- 5. The compound of Claim 4 wherein R_1 is hydrogen and R_2 and R_3 are arylalkyl and wherein A is R_6 -C(O)-NH-CH(R_5)-C(O)- wherein R_5 is arylalkyl and R_6 is R_7 -NH-, R_7 -N(loweralkyl)-, R_7 -O- or R_7 -S- wherein R_7 is (heterocyclic)alkyl and B is -C(O)- R_6 wherein R_6 is independently R_7 -NH-, R_7 -N(loweralkyl)-, R_7 -O- or R_7 -S- wherein R_7 is (heterocyclic)alkyl.
- 6. The compound of Claim 4 wherein R_1 is hydrogen and R_2 and R_3 are arylalkyl and wherein B is R_6 -C(O)-NH-CH(R_5)-C(O)- wherein R_5 is arylalkyl and R_6 is R_7 -NH-, R_7 -N(loweralkyl)-, R_7 -O- or R_7 -S- wherein R_7 is (heterocyclic)alkyl and A is -C(O)- R_6 wherein R_6 is independently R_7 -NH-, R_7 -N(loweralkyl)-, R_7 -O- or R_7 -S- wherein R_7 is (heterocyclic)alkyl.

7. A compound of the formula:

wherein X is

wherein R_1 is hydrogen, loweralkyl, alkoxyalkyl, thioalkoxyalkyl or alkoxyalkoxyalkyl and R_2 and R_3 are independently selected from arylalkyl, cycloalkylalkyl and (heterocyclic)alkyl;

A and B are independently selected from $R_6-C(0)-(NH)-(CH(R_5))-C(0)-$ and $R_6-C(0)-$ wherein at each occurrence R_6 is independently selected from R_7-NH- , $R_7-N(loweralkyl)-$, R_7-O- and R_7-S- wherein R_7 is (heterocyclic)alkyl and at each occurrence R_5 is independently selected from loweralkyl; or a pharmaceutically acceptable salt, ester or prodrug thereof.

- 8. (2S,3S,5S)-2-(N-(N-((2-Pyridinyl)methoxycarbonyl)-valinyl)amino)-5-(N-((3-pyridinyl)methoxycarbonyl)amino)-1,6-diphenyl-3-hydroxyhexane; or a pharmaceutically acceptable salt, ester or prodrug thereof.
- 9. (2S,3S,5S)-5-(N-(N-((N-Methyl-N-((2-pyridinyl)-methyl)amino)carbonyl)valinyl)amino)-2-(N-((3-pyridinyl)-methoxycarbonyl)amino)-1,6-diphenyl-3-hydroxyhexane; or a pharmaceutically acceptable salt, ester or prodrug thereof.
- 10. (2S,3S,5S)-2-(N-((3-Pyridinyl)methoxycarbonyl)amino-5-(N-(N-((N-Methyl-N-((6-methyl2-pyridinyl)methyl)-amino)carbonyl)valinyl)amino)-1,6diphenyl-3-hydroxyhexane; or a pharmaceutically
 acceptable salt, ester or prodrug thereof.
- 11. A compound selected from the group consisting of:

 (2S,3S,5S)-2-(N-(N-((N-Methyl-N-((2-pyridinyl)methyl)amino)carbonyl)valinyl)amino)-5-(N-((3-pyridinyl)methoxycarbonyl)amino)-1,6-diphenyl-3-hydroxyhexane;

 (2S,3S,5S)-5-(N-(N-((2-Pyridinyl)methoxycarbonyl)valinyl)amino)-2-(N-((3-pyridinyl)methoxycarbonyl)amino)-1,6diphenyl-3-hydroxyhexane;

(2S,3S,5S)-5-(N-(N-((N-methyl-N-((2-pyridinyl)methyl)amino)carbonyl)isoleucinyl)amino)-2-(N-((3pyridinyl)methoxycarbonyl)amino)-1,6-diphenyl-3-hydroxyhexane.
(2S,3S,5S)-2,5-Di{N-(3-pyridylmethyl)oxy-carbonyl)amino}-3hydroxy-1,6-diphenylhexane;
(2S,3S-5S)-2-(N-(N-((N-Methyl-N-((6-methyl-2pyridinyl)methyl)amino)carbonyl)valinyl)amino)-5-(N-((3pyridinyl)-methoxycarbonyl)amino)-1,6-diphenyl-3hydroxyhexane; and
(2S,3S,5S)-2-(N-[(pyridin-3-yl)methoxycarbonyl]amino)5-(N-[(6-methylpyridin-2-yl)methoxycarbonylvalyllamino)-1,6-diphenyl-3-hydroxyhexane;
or a pharmaceutically acceptable salt, ester or prodrug
thereof.

12. A compound of the formula:

wherein P_1 and P_2 are independently selected from hydrogen and an N-protecting group; R_1' is hydrogen, loweralkyl, alkoxyalkyl or an O-protecting group; and R_2 and R_3 are independently $-((R_0)_d-R_5)$ wherein at each occurrence R_0 is independently selected from $-(CH_2R_4)$ and loweralkenylene wherein at each occurrence d is independently selected from 0 and 1, at each occurrence R_4 is independently selected from $-S_-$, $-O_-$, $-NH_-$, $-N(loweralkyl)_-$, $-S(O)_-$, $-S(O)_2$ and $-CH_2$ and at each occurrence R_5 is independently selected from (i) loweralkyl, (ii) aryl, (iii) thioalkoxyalkyl,

(iv) (aryl)alkyl, (v) cycloalkyl, (vi) cycloalkylalkyl, (vii) hydroxyalkyl, (viii) alkoxyalkyl, (ix) aryloxyalkyl, (x) haloalkyl, (xi) caboxyalkyl, (xii) alkoxycarbonylalkyl, (xiii) aminoalkyl, (xiv) (N-protected)aminoalkyl, (xv) alkylaminoalkyl, (xvi) ((N-protected)(alkyl)amino)alkyl, (xvii) dialkylaminoalkyl, (xviii) guanidinoalkyl, (xix) loweralkenyl, (xx) heterocyclic, (xxi) (heterocyclic)alkyl, (xxii) hydrogen, (xxiii) arylthioalkyl, (xxiv) arylsulfonylalkyl, (xxv) (heterocyclic) thioalkyl, (xxvi) (heterocyclic) sulfonylalkyl, (xxvii) (heterocyclic)oxyalkyl, (xxviii) arylalkoxyalkyl, (xxix) arylthioalkoxyalkyl, (xxx) arylalkylsulfonylalkyl, (xxxi) (heterocyclic)alkoxyalkyl, (xxxii) (heterocyclic)thioalkoxyalkyl, (xxxiii) (heterocyclic) alkylsulfonylalkyl, (xxxiv) cycloalkyloxyalkyl, (xxxv) cycloalkylthioalkyl, (xxxvi) cycloalkylsulfonylalkyl, (xxxvii) cycloalkylalkoxyalkyl, (xxxviii) cycloalkylthioalkoxyalkyl, (xxxix) cycloalkylalkylsulfonylalkyl, (xl) aminocarbonyl, (xli) alkylaminocarbonyl, (xlii) dialkylaminocarbonyl, (xliii) aroylalkyl, (xliv) (heterocyclic)carbonylalkyl, (xlv) polyhydroxyalkyl, (xlvi) aminocarbonylalkyl, (xlvii) alkylaminocarbonylalkyl and (xlviii) dialkylaminocarbonylalkyl; or a salt or ester thereof.

- 13. The compound of Claim 12 wherein R_2 and R_3 are benzyl.
- 14. A method for inhibiting HIV protease comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound of Claim 1.

- 15. A method for treating an HIV infection comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound of Claim 1.
- 16. A pharmaceutical composition for treating an HIV infection comprising a pharmaceutical carrier and a therapeutically effective amount of a compound of Claim 1.
- 17. A method for inhibiting HIV protease comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound of Claim 8.
- 18. A method for treating an HIV infection comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound of Claim 8.
- 19. A pharmaceutical composition for treating an HIV infection comprising a pharmaceutical carrier and a therapeutically effective amount of a compound of Claim 8.
 - 20. A compound of the formula:

wherein X is

wherein R_1 and R_1 , are independently selected from hydrogen, loweralkyl, alkoxyalkyl, thioalkoxyalkyl and alkoxyalkoxyalkyl or R_1 and R_1 , and the oxygen atoms to which they are bonded taken together are -0-C(0)-0- or -0-C(S)-0- and R_2 and R_3 are independently $-((R_0)_d-R_5)$ wherein at each occurrence R_0 is independently selected from $-(CH_2R_4)-$ and loweralkenylene wherein at each occurrence d is independently selected from 0 and 1, at each occurrence R_4 is independently selected from -S-, -0-, -NH-,

-N(loweralkyl)-, -S(O)-, -S(O)₂- and -CH₂- and at each occurrence R_5 and $R_{5\star}$ are independently selected from

- (i) loweralkyl,
- (ii) aryl,
- (iii) thioalkoxyalkyl
- (iv) (aryl)alkyl,
- (v) cycloalkyl,
- (vi) cýcloalkylalkyl,
- (vii) hydroxyalkyl,

```
(viii)
          alkoxyalkyl,
(ix)
          aryloxyalkyl,
(x)
          haloalkyl,
(xi)
          carboxyalkyl,
(xii)
         alkoxycarbonylalkyl,
(xiii)
         aminoalkyl,
(xiv)
          (N-protected) aminoalkyl,
         alkylaminoalkyl,
(xv)
(xvi)
          ((N-protected) (alkyl) amino) alkyl,
(xvii)
         dialkylaminoalkyl,
(xviii)
         guanidinoalkyl,
(xix)
         loweralkenyl,
         heterocyclic,
(xx)
          (heterocyclic) alkyl,
(xxi)
(xxii)
         hydrogen,
(xxiii)
         arylthioalkyl,
         arylsulfonylalkyl,
(xxiv)
(xxv)
         (heterocyclic) thioalkyl,
         (heterocyclic) sulfonylalkyl,
(xxvi)
         (heterocyclic) oxyalkyl,
(xxvii)
(xxviii arylalkoxyalkyl,
(xxix)
         arylthioalkoxyalkyl,
         arylalkylsulfonylalkyl,
(xxx)
         (heterocyclic) alkoxyalkyl,
(xxxi)
(xxxii)
         (heterocyclic) thioalkoxyalkyl,
(xxxiii
         (heterocyclic) alkylsulfonylalkyl,
(xxxiv)
         cycloalkyloxyalkyl,
(xxxv)
         cycloalkylthioalkyl,
(xxxvi)
         cycloalkylsulfonylalkyl,
(xxxvii cycloalkylalkoxyalkyl,
xxxviii
         cycloalkylthioalkoxyalkyl,
(xxxix)
         cycloalkylalkylsulfonylalkyl,
(x1)
         aminocarbonyl,
```

(xli)	alkylaminocarbor	iyl,
-------	------------------	------

(xlii) dialkylaminocarbonyl,

(xliii) aroylalkyl,

(xliv) (heterocyclic) carbonylalkyl,

(xlv) polyhydroxyalkyl,

(xlvi) aminocarbonylalkyl,

(xlvii) alkylaminocarbonylalkyl and

(xlviii dialkylaminocarbonylalkyl;

A and B are independently selected from (1) Z-W-

wherein at each occurrence W is absent or represents a peptide chain containing 1-3 amino acids wherein and at each occurrence Z is R_{6} -(C(R_{5} *)(R_{5})) $_{e}$ -(C(T)) $_{f}$ -(C(R_{5} *)(R_{5})) $_{g}$ -(U) $_{i}$ - $(C(R_{5*})(R_{5}))_{j}-C(T)_{f}$ wherein at each occurrence ${R_6}^- \left({C\left({{R_5}*} \right)\left({{R_5}} \right)} \right){e^ - } \left({C\left(T \right)} \right){f^ - } \left({C\left({{R_5}*} \right)\left({{R_5}} \right)} \right){g^ - } \left(U \right){i^ - } \left({C\left({{R_5}*} \right)\left({{R_5}} \right)} \right){j^ - }$ $C(T)_{f}$ is bonded to the amino terminus of the peptide chain, at each occurrence T is independently selected from O and S, at each occurrence R_5 and R_{5*} are independently defined as above or R_5 , $R_{5\star}$ and the carbon atom to which they are bonded taken together form a carbocyclic ring of from 3 to 8 carbon atoms which can be optionally substituted with a loweralkyl group or when e, g or j is 2 or more, R_5 and $R_{5\star}$ on adjacent carbon atoms when taken together form a carbocyclic ring of from 3 to 8 carbon atoms which can be optionally substituted with a loweralkyl group, at each occurrence U is independently selected from O, S and $-N(R_5)$ - wherein R_5 is independently defined as above, at each occurrence e is independently selected from 0, 1, 2 and 3, at each occurrence f is independently selected from 0 and 1, at each occurrence g is independently selected from 0, 1, 2 and 3, at each occurrence i is independently selected from 0 and 1, at each

occurrence j is independently selected from 0, 1, 2 and 3, and at each occurrence R_6 is independently selected from

- (a) R_7 - $(R_9)_k$ wherein at each occurrence R_9 is independently selected from $N(R_7)$, O and S and at each occurrence k is independently selected from O and 1,
 - (b) $(R_7)_2N-O-$,
 - (c) $R_7S(0)_2N(R_5)$ and
- (d) $R_{170}R_{171}CH=CH-$ wherein at each occurrence R_{171} is absent, O, S, NH or -N(alkyl)- and at each occurrence R_{170} is aryl or heterocyclic and wherein at each occurrence R_5 is independently defined as above and at each occurrence R_7 is independently selected from:
 - (i) hydrogen, (ii) loweralkyl, (iii) cycloalkyl, (iv) aryl, (v) arylalkyl, (vi) (aryl) alkoxyalkyl, (vii) aminoalkyl, (viii) N-protected-aminoalkyl, (ix) alkylaminoalkyl, (N-protected) (alkyl) aminoalkyl, (x) (xi) dialkylaminoalkyl, (xii) carboxyalkoxyalkyl, (xiii) (alkoxycarbonyl)alkoxyalkyl, carboxyalkyl, (xiv) (xv) alkoxycarbonylalkyl, (xvi) (amino) carboxyalkyl, (xvii) ((N-protected) amino) carboxyalkyl, (xviii) (alkylamino) carboxyalkyl, (xix) ((N-protected)alkylamino)carboxyalkyl,

	-307-
(xx)	(dialkylamino)carboxyalkyl,
(xxi)	(amino)alkoxycarbonylalkyl,
(xxii)	((N-protected)amino)alkoxycarbonyl-
	alkyl,
(xxiii)	(alkylamino)alkoxycarbonylalkyl,
(xxiv)	((N-protected)alkylamino)alkoxy-
	carbonylalkyl,
(xxv)	(dialkylamino)alkoxycarbonylalkyl,
(xxvi)	aminocycloalkyl,
(xxvii)	alkoxyalkyl,
(xxviii)	(polyalkoxy)alkyl,
(xxix)	heterocyclic,
(xxx)	(heterocyclic)alkyl,
(xxxi)	(hydroxyamino)alkyl,
(xxxii)	(alkoxyamino)alkyl,
(xxxiii)	N-protecting group,
(xxxiv)	cycloalkylalkyl,
(xxxv)	loweralkenyl,
(xxxvi)	hydroxyalkyl,
(xxxvii)	dihydroxyalkyl,
(xxxviii)	(alkoxy) (alkyl)aminoalkyl,
(xxxix)	alkylaminocycloalkyl,
(1x)	dialkylaminocycloalkyl,
(lxi)	polyhydroxyalkyl,
(lxii)	aryloxyalkyl,
(lxiii)	arylthioalkyl,
(lxiv)	arylsulfonylalkyl,
(lxv)	(heterocyclic)thioalkyl,
(lxvi)	(heterocyclic) sulfonylalkyl,
(lxvii)	(heterocyclic)oxyalkyl,
(lxviii)	arylalkoxyalkyl,
(lxix)	arylthioalkoxyalkyl,
(lxx)	arylalkylsulfonylalkyl,

```
(lxxi)
            (heterocyclic)alkoxyalkyl,
(lxxii)
            (heterocyclic)thioalkoxyalkyl,
(lxxiii)
            (heterocyclic) alkylsulfonyalkyl,
(lxxiv)
           cycloalkyloxyalkyl,
(lxxv)
           cycloalkylthioalkyl,
(lxxvi)
           cycloalkylsulfonylalkyl,
(lxxvii)
           cycloalkylalkoxyalkyl,
(lxxviii)
           cycloalkylthioalkoxyalkyl,
(lxxix)
           cycloalkylalkylsufonylalkyl,
(lxxx)
           aroylalkyl,
(lxxxi)
            (heterocyclic) carbonylalkyl,
(lxxxii)
           (aryl) aminoalkyl,
(lxxxiii)
           (aryl) (alkyl) aminoalkyl,
(lxxxiv)
           (arylalkyl) aminoalkyl,
(lxxxv)
           (arylalkyl) (alkyl) aminoalkyl,
(lxxxvi)
           (heterocyclic) aminoalkyl,
(lxxxvii)
           (heterocyclic) (alkyl) aminoalkyl,
(lxxxviii
           ((heterocyclic)alkyl)aminoalkyl,
(lxxxix)
           ((heterocyclic)alkyl)alkylaminoalkyl
(xc)
           (alkoxyalkyl) aminoalkyl,
           thioalkoxyalkyl,
(xci)
(xcii)
           mercaptoalkyl,
(xciii)
           aminocarbonylalkyl,
(xciv)
           alkylaminocarbonylalkyl and
(xcv)
           dialkylaminocarbonylalkyl;
```

and

(2) Z'-W'-

wherein at each occurrence W' is absent or represents a peptide chain containing 1-3 amino acids and wherein at each occurrence Z' is $R_{6}-(C(R_{5}\star)(R_{5}))_{e}-(S(O))_{m}-(C(R_{5}\star)(R_{5}))_{g}-(U)_{i}-(C(R_{5}\star)(R_{5}))_{j}-C(T)_{i}-(C(R_{5}\star)(R_{5}))_{g}-(C(R_{5}\star)(R_{5})(R_{5}))_{g}-(C(R_{5}\star)(R_{5})(R_{5}))_{g}-(C(R_{5}\star)(R_{5})(R_{5})(R_{5}))_{g}-(C(R_{5}\star)(R_{5})(R_{5})(R_{5})(R_{5})(R_{5})(R_{5})$

wherein R_{6} -($C(R_{5}*)(R_{5}))_{e}$ -($S(O))_{m}$ -($C(R_{5}*)(R_{5}))_{g}$ -($U)_{i}$ - $(C(R_{5*})(R_{5}))_{i}-C(T)_{i}$ is bonded to the amino terminus of the peptide chain wherein at each occurrence T is independently selected from O and S, at each occurrence R5 and R5* are independently defined as above or R_5 , $R_{5\star}$ and the carbon atom to which they are bonded taken together form a carbocyclic ring of from 3 to 8 carbon atoms which can be optionally substituted with a loweralkyl group or when e, g or j is 2 or more, R₅ and R_{5*} on adjacent carbon atoms when taken together form a carbocyclic ring of from 3 to 8 carbon atoms which can be optionally substituted with a loweralkyl group, at each occurrence U is independently selected from O, S and -N(R5)wherein R5 is independently defined as above, at each occurrence e is independently selected from 0, 1, 2 and 3, at each occurrence m is independently selected from 1 and 2, at each occurrence g is independently selected from 0, 1, 2 and 3, at each occurrence i is independently selected from 0 and 1, at each occurrence j is independently selected from 0, 1, 2 and 3, and at each occurrence R6 is independently defined as above; or a pharmaceutically acceptable salt, prodrug or ester thereof.