Introduction to Constraint Programming

Combinatorial Problem Solving (CPS)

Enric Rodríguez-Carbonell (based on materials by Javier Larrosa)

February 11, 2020

Constraint Satisfaction Problem

- lacktriangle A constraint satisfaction problem (CSP) is a tuple (X, D, C) where:
 - $lack X = \{x_1, x_2, \dots, x_n\}$ is the set of variables
 - $lack D = \{d_1, d_2, \dots, d_n\}$ is the set of domains $(d_i \text{ is a finite set of potential values for } x_i)$
 - $C = \{c_1, c_2, \dots, c_m\}$ is a set of constraints
- For example: $x, y, z \in \{0, 1\}, x + y = z$ is a CSP where:
 - lacktriangle Variables are: x, y, z
 - lacktriangle Domains are: $d_x = d_y = d_z = \{0, 1\}$
 - lacktriangle There is a single constraint: x + y = z

Constraints

- lacksquare A constraint C is a pair (S,R) where:
 - lacktriangle $S = (x_{i_1}, ..., x_{i_k})$ are the variables of C (scope)
 - lacktriangle $R \subseteq d_{i_1} \times ... \times d_{i_k}$ are the tuples satisfying C (relation)
- According to this definition: x + y = z in the CSP $x, y, z \in \{0, 1\}, x + y = z$ is short for

$$((x,y,z),\{(0,0,0),(1,0,1),(0,1,1)\})$$

- lacksquare A tuple $au \in d_{i_1} imes ... imes d_{i_k}$ satisfies C iff $au \in R$
- The arity of a constraint is the size of its scope
 - Arity 1: unary constraint (usually embedded in domains)
 - ◆ Arity 2: binary constraint
 - ◆ Arity 3: ternary constraint
 - **♦** ...
- This corresponds to the extensional representation of constraints

Constraints

- But constraints are usually described more compactly: intensional representation
- lacktriangle A constraint with scope S is determined by a function

$$\prod_{x_i \in S} d_i \longrightarrow \{\text{true}, \text{false}\}$$

- Satisfying tuples are exactly those that give true
- In the example: x + y = z
- Unless otherwise stated, we will assume that evaluating a constraint takes time linear in the arity
- This is usually, but not always, true

Solution

- Given a CSP with variables $X = \{x_1, x_2, \dots, x_n\}$, domains $D = \{d_1, d_2, \dots, d_n\}$ and constraints C, a solution is an assignment of values $(x_1 \mapsto \nu_1, \dots, x_n \mapsto \nu_n)$ such that:
 - lacktriangle Domains are respected: $\nu_i \in d_i$
 - ◆ The assignment satisfies all constraints in C
- Solving a CSP consists in finding a solution to it
- Other related problems:
 - Finding all solutions
 - Finding a best solution wrt. an objective function (then we talk of a Constraint Optimization Problem)

- lacksquare Given a formula F in propositional logic, is F satisfiable?
- Variables are the atoms of the formula
- Variables have all domain {true, false}
- lacktriangle A single constraint: the evaluation of F must be 1
- Let F be $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$:

- \blacksquare Given a formula F in propositional logic, is F satisfiable?
- Variables are the atoms of the formula
- Variables have all domain {true, false}
- lacktriangle A single constraint: the evaluation of F must be 1
- Let F be $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$:
 - lacktriangle Variables are p, q

- lacksquare Given a formula F in propositional logic, is F satisfiable?
- Variables are the atoms of the formula
- Variables have all domain {true, false}
- lacktriangle A single constraint: the evaluation of F must be 1
- Let F be $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$:
 - lacktriangle Variables are p, q
 - lacktriangle Domains are $d_p = d_q = \{\text{true}, \text{false}\}$

- \blacksquare Given a formula F in propositional logic, is F satisfiable?
- Variables are the atoms of the formula
- Variables have all domain {true, false}
- lacktriangle A single constraint: the evaluation of F must be 1
- Let F be $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$:
 - lacktriangle Variables are p, q
 - lacktriangle Domains are $d_p = d_q = \{\text{true}, \text{false}\}$
 - lacktriangle Constraint is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q) = true$

Given a graph G = (V, E) and K > 0 colors, can vertices be painted so that neighbors have different colors?

Given a graph G = (V, E) and K > 0 colors, can vertices be painted so that neighbors have different colors?

lacktriangle Variables are $\{c_v \mid v \in V\}$, the color for each vertex

Given a graph G = (V, E) and K > 0 colors, can vertices be painted so that neighbors have different colors?

- lack Variables are $\{c_v \mid v \in V\}$, the color for each vertex
- lacktriangle Domains are $\{1, 2, \dots, K\}$, the available colors

Given a graph G = (V, E) and K > 0 colors, can vertices be painted so that neighbors have different colors?

- lack Variables are $\{c_v \mid v \in V\}$, the color for each vertex
- lack Domains are $\{1, 2, \dots, K\}$, the available colors
- lacktriangle Constraints are: for each $(u,v)\in E$, $c_u
 eq c_v$

■ Given:

- lacktriangle n items with weights w_i and values v_i
- lack a capacity W
- lack a number V,

is there a subset S of the items s.t. $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq V$?

- Given:
 - lacktriangle n items with weights w_i and values v_i
 - lack a capacity W
 - lack a number V,

is there a subset S of the items s.t. $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq V$?

■ Variables: n variables x_i meaning "item i is selected"

- Given:
 - lacktriangle n items with weights w_i and values v_i
 - lack a capacity W
 - lack a number V,

is there a subset S of the items s.t. $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq V$?

- Variables: n variables x_i meaning "item i is selected"
- lacksquare Domains: $d_i = \{0, 1\}$

- Given:
 - lacktriangle n items with weights w_i and values v_i
 - lack a capacity W
 - lack a number V,

is there a subset S of the items s.t. $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq V$?

- lacktriangle Variables: n variables x_i meaning "item i is selected"
- Domains: $d_i = \{0, 1\}$
- Constraints: $\sum_{i=1}^{n} w_i x_i \leq W$, $\sum_{i=1}^{n} v_i x_i \geq V$

Complexity

- **Theorem**. Solving a CSP is an NP-complete problem *Proof:*
 - ◆ It is in NP, because one can check a solution in polynomial time
 - ◆ It is NP-hard, as there is a reduction e.g. from Prop. Satisfiability (which is known to be NP-complete)
- For any CSP, there are instances that require exp time Can we solve real life instances in reasonable time?

Constraint Programming

- Constraint programming (CP) is a general framework for modeling and solving CSP's:
 - Offers the user many kinds of constraints, which makes modeling easy and natural
 Check out the Global Constraint Catalogue at

https://sofdem.github.io/gccat/gccat/sec5.html with more than 400 different types of constraints!

Provides solving engines for those constraints (CP toolkits: in this course, Gecode http://www.gecode.org)

Generate and Test

- How can we solve CSP's?
- 1st naïf approach: Generate and Test (aka Brute Force)
 - Generate all possible candidate solutions
 (assignments of values from domains to variables)
 - ◆ Test whether any of these is a true solution indeed

Generate and Test

- Example: Queens Problem. Given $n \geq 4$, put n queens on an $n \times n$ chessboard so that they don't attack each other Wlog, we can place one queen per row so that no two are in the same column or diagonal.
 - lacktriangle Variables: c_i , column of the queen of row i
 - lacktriangle Domains: all domains are $\{1, 2, \dots, n\}$
 - ◆ Constraints: no two are in same column/diagonal

Q		
Q		
Q		
Q		
\overline{Q}		

Q			
Q			
Q			
Q			
	\overline{Q}		

- Generate and Test is very inefficient
- 2nd approach to solving CSP's: Basic Backtracking
- The algorithm maintains a partial assignment that is consistent with the constraints whose variables are all assigned:
 - Start with an empty assignment
 - ◆ At each step choose a var and a value in its domain
 - ◆ Whenever we detect a partial assignment that cannot be extended to a solution, backtrack: undo last decision

■ We can solve the problem by calling backtrack (x1): function backtrack (variable X) returns bool for all a in domain(X) do val(X) := aif compatible(X, assigned) assigned := assigned U {X} **if** no next(X) then return TRUE else if backtrack(next(X)) then return TRUE else assigned := assigned - {X} return FALSE function compatible (variable X, set A) returns bool for all constraint C with scope in AU {X} and not in A do // Let A be {Y1, ..., Yn} if (val(X), val(Y1),..., val(Yn)) don't satisfy C then return FALSE return TRUE

- The set of all possible partial assignments forms a search tree:
 - ♦ The root corresponds to the empty assignment
 - Each edge corresponds to assigning a value to a var
 - For each node, there are as many children as values in the domain of the chosen variable
 - ◆ Generate and Test corresponds to visiting each of the leaves until a solution is found
 - lacktriangle Complexity: $O(m^n \cdot e \cdot r)$
 - \blacksquare n = no. of variables
 - $\mathbf{m} =$ size of the largest domain
 - \bullet e = no. of constraints
 - $lap{r} = largest arity$
 - Basic Backtracking performs a depth-first traversal
 - ◆ Complexity: the same, as in the worst case we need to visit all leaves
 - ◆ But in practice it works much better than Generate and Test

- Problems with backtracking
 - ◆ Inconsistencies may be found late, after a lot of useless work

```
If x_1 \mapsto a is incompatible with x_n \mapsto \text{anything}, then BT explores the subtree rooted at x_1 \mapsto a (if x_1 can take m values, this subtree is \frac{1}{m} of the whole search tree!) to realize that no solution can be found
```

The right backtracking point may not be the last decision

					Q				
		Q		X	X	X			
Q	X	X	X		X		X		
X	X	X		X	X			X	Q
X	X	X			X	Q		X	X
X		X	X		X	X	X	Q	X
X		X		X	X	X	X	X	X
X		X	X		X	X		X	X
X		X		X	X	X		X	X
X	X	X	X	X	X	X	X	X	X

CP approach: prune search tree a priori by removing values from the domains that can't appear in any solution

```
while (solution not found) do
    assign values to some of the variables
    propagate with constraints to prune other domains
    if (found inconsistency) undo last decision
```

- Smaller search tree, at the cost of more time per node
- There exist different kinds of propagation with different tradeoffs between pruning power and cost in time

Q				
X	X	Q		
X	X	X	X	
X		X	X	X
X		X		X

Q				
X	X	Q		
X	X	X	X	Q
X		X	X	X
X		X		X

Q				
X	X	Q		
X	X	X	X	Q
X	\overline{Q}	X	X	X
X	X	X		X

No search!