

05/0
07/17

Page 1 of 8

10

OIPE

ENTERED

RAW SEQUENCE LISTING
PATENT APPLICATION: US/09/941,193A

DATE: 07/23/2002 06
TIME: 13:04:51

Input Set : A:\Seqsub2.app
Output Set: N:\CRF3\07232002\I941193A.raw

SEQUENCE LISTING

4 (1) GENERAL INFORMATION:
6 (i) APPLICANT: BROW, MARY ANN D.
7 LYAMICHEV, VICTOR I.
8 OLIVE, DAVID M.
10 (ii) TITLE OF INVENTION: RAPID DETECTION AND IDENTIFICATION OF
11 PATHOGENS
13 (iii) NUMBER OF SEQUENCES: 165
15 (iv) CORRESPONDENCE ADDRESS:
16 (A) ADDRESSEE: MEDLEN & CARROLL
17 (B) STREET: 220 MONTGOMERY STREET, SUITE 2200
18 (C) CITY: SAN FRANCISCO
19 (D) STATE: CALIFORNIA
20 (E) COUNTRY: UNITED STATES OF AMERICA
21 (F) ZIP: 94104
23 (v) COMPUTER READABLE FORM:
24 (A) MEDIUM TYPE: Floppy disk
25 (B) COMPUTER: IBM PC compatible
26 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
27 (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
29 (vi) CURRENT APPLICATION DATA:
C--> 30 (A) APPLICATION NUMBER: US/09/941,193A
C--> 31 (B) FILING DATE: 28-Aug-2001
32 (C) CLASSIFICATION:
34 (viii) ATTORNEY/AGENT INFORMATION:
35 (A) NAME: CARROLL, PETER G.
36 (B) REGISTRATION NUMBER: 32,837
37 (C) REFERENCE/DOCKET NUMBER: FORS-01756
39 (ix) TELECOMMUNICATION INFORMATION:
40 (A) TELEPHONE: (415) 705-8410
41 (B) TELEFAX: (415) 397-8338
44 (2) INFORMATION FOR SEQ ID NO: 1:
46 (i) SEQUENCE CHARACTERISTICS:
47 (A) LENGTH: 2506 base pairs
48 (B) TYPE: nucleic acid
49 (C) STRANDEDNESS: double
50 (D) TOPOLOGY: linear
52 (ii) MOLECULE TYPE: DNA (genomic)
56 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
58 ATGAGGGGGA TGCTGCCCT CTTGAGCCC AAGGGCCGGG TCCTCCTGGT GGACGGCCAC 60
60 CACCTGGCCT ACCGCACCTT CCACGCCCTG AAGGGCCTCA CCACCAGCCG GGGGGAGCCG 120
62 GTGCAGGCAG 62 GTGCAGGCAG TCTACGGCTT CGCCAAGAGC CTCCTCAAGG CCCTCAAGGA GGACGGGGAC 180
64 GCGGTGATCG TGGTCTTGA CGCCAAGGCC CCCTCCTTCC GCCACGAGGC CTACGGGGGG 240

RAW SEQUENCE LISTING DATE: 07/23/2002
 PATENT APPLICATION: US/09/941,193A TIME: 13:04:51

Input Set : A:\Seqsub2.app
 Output Set: N:\CRF3\07232002\I941193A.raw

66	TACAAGGCGG	CCCGGGCCCC	CACGCCGGAG	GACTTCCCC	GGCAACTCGC	CCTCATCAAG	300
68	GAGCTGGTGG	ACCTCCTGGG	GCTGGCGCGC	CTCGAGGTCC	CGGGCTACGA	GGCGGACGAC	360
70	GTCCTGGCCA	GCCTGGCAA	GAAGGCGGAA	AAGGAGGGCT	ACGAGGTCCG	CATCCTCACC	420
72	GCCGACAAAG	ACCTTACCA	GCTCCTTCC	GACCGCATCC	ACGTCCCTCA	CCCCGAGGGG	480
74	TACCTCATCA	CCCCGGCTG	GCTTGGGAA	AAGTACGGCC	TGAGGCCCCA	CCAGTGGGCC	540
76	GAECTACCGG	CCCTGACCGG	GGACGAGTCC	GACAACCTTC	CCGGGGTCAA	GGGCATCGGG	600
78	GAGAACAGCG	CGAGGAAGCT	TCTGGAGGAG	TGGGGAGCC	TGGAAGCCCT	CCTCAAGAAC	660
80	CTGGACCGGC	TGAAGCCC	CATCCGGAG	AAGATCCTGG	CCCACATGGA	CGATCTGAAG	720
82	CTCTCCTGGG	ACCTGGCAA	GGTGC	GACCTGCCCC	TGGAGGTGGA	CTTCGCCAAA	780
84	AGGCGGGAGC	CCGACCGGG	GAGGCTTAGG	GCTTCTG	AGAGGCTTGA	GTTTGGCAGC	840
86	CTCCTCCACG	AGTTCGGC	TCTGGAAAGC	CCCAAGGCC	TGGAGGAGGC	CCCCCTGGCCC	900
88	CCGCCGGAAG	GGGCCTCGT	GGGCTTTGTG	CTTTC	AGGAGCCCAT	GTGGGCCGAT	960
90	CTTCTGGCCC	TGGCCGCC	CAGGGGGGGC	CGGGTCCACC	GGGCCCCCGA	GCCTTATAAA	1020
92	GCCCTCAGGG	ACCTGAAGGA	GGCGCGGGGG	CTTCTCGCCA	AAGACCTGAG	CGTTCTGCC	1080
94	CTGAGGAAG	GCCTTGCCT	CCCGCCCGC	GACGACCCCA	TGCTCCTCGC	CTACCTCCTG	1140
96	GACCCCTCCA	ACACCACCCC	CGAGGGGGTG	GCCC	ACGGCGGGGA	GTGGACGGAG	1200
98	GAGGCGGGGG	AGCGGGCCG	CCTTCCGAG	AGGCTT	CCAACCTGTG	GGGGAGGCTT	1260
100	GAGGGGGAGG	AGAGGCTCCT	TTGGCTTAC	CGGGAGGTGG	AGAGGCCCT	TTCCGCTGTC	1320
102	CTGGCCCACA	TGGAGGCCAC	GGGGGTGCGC	CTGGACGTGG	CCTATCTCAG	GGCCTTGTCC	1380
104	CTGGAGGTGG	CCGAGGAGAT	CGCCCGCCTC	GAGGCCGAGG	TCTTCCG	GGCCGGCCAC	1440
106	CCCTTCAACC	TCAACTCCC	GGACCAGCTG	GAAAGGGTCC	TCTTGACGA	GCTAGGGCTT	1500
108	CCGCCATCG	GCAAGACGG	GAAGACCGGC	AAGCGCTCA	CCAGCGCCG	CGTCTGGAG	1560
110	GCCCTCCGCG	AGGCCACCC	CATCGTGGAG	AAGATCCTGC	AGTACCGGGA	GCTCACCAAG	1620
112	CTGAAGAGCA	CCTACATTGA	CCCCTGCG	GACCTCATCC	ACCC	GGCCGCCTC	1680
114	CACACCCGCT	TCAACCAGAC	GGCCACGGCC	ACGGCAGGC	TAAGTAGCTC	CGATCCAAAC	1740
116	CTCCAGAAC	TCCCCGTCCG	CACCCCGCTT	GGGCAGAGGA	TCCGCCGGC	CTTCATCGCC	1800
118	GAGGAGGGGT	GGCTATTGGT	GGCCCTGGAC	TATAGCCAGA	TAGAGCTCAG	GGTGTG	1860
120	CACCTCTCG	GCGACGAGAA	CCTGATCCGG	GTCTTCCAGG	AGGGGCGGGGA	CATCCACACG	1920
122	GAGACCGCCA	GCTGGATGTT	CGCGTCCCC	CGGGAGGCCG	TGGACCC	GATGCGCCGG	1980
124	GCGGCCAAGA	CCATCAACTT	CGGGGTCTC	TACGGCATGT	CGGCC	ACCGC	2040
126	GAGCTAGCCA	TCCCTTACGA	GGAGGCCAG	GCCTTCATTG	AGCGCTACTT	TCAGAGCTTC	2100
128	CCCAAGGTGC	GGGCCTGGAT	TGAGAAGACC	CTGGAGGAGG	GCAGGAGGCCG	GGGGTACGTG	2160
130	GAGACCCCTC	TCGGCCGCCG	CCGCTACGTG	CCAGACCTAG	AGGCCCGGGT	GAAGAGCGTG	2220
132	CGGGAGGCCG	CCGAGCGCAT	GGCCTCAAC	ATGCCGTCC	AGGGCACCGC	CGCCGACCTC	2280
134	ATGAAGCTGG	CTATGGTGA	GCTTCCCC	AGGCTGGAGG	AAATGGGGC	CAGGATGCTC	2340
136	CTTCAGGTCC	ACGACGAGCT	GTCCTCGAG	GCCCCAAAAG	AGAGGGCGGA	GGCCGTGCC	2400
138	CGGCTGGCCA	AGGAGGTCA	GGAGGGGGTG	TATCCCCTGG	CCGTGCC	GGAGGTGGAG	2460
140	GTGGGGATAG	GGGAGGACTG	GCTCTCCGCC	AAGGAGTGAT	ACCACC		2506
142	(2) INFORMATION FOR SEQ ID NO: 2:						
144	(i) SEQUENCE CHARACTERISTICS:						
145	(A) LENGTH: 2496 base pairs						
146	(B) TYPE: nucleic acid						
147	(C) STRANDEDNESS: double						
148	(D) TOPOLOGY: linear						
150	(ii) MOLECULE TYPE: DNA (genomic)						
154	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:						
156	ATGGCGATGC	TTCCCCCTCTT	TGAGCCAAA	GGCCCGTGC	TCCTGGTGA	CGGCCACCAC	60
158	CTGGCCTACC	GCACCTTCTT	TGCCCTCAAG	GGCCTCACCA	CCAGCGCGG	CGAACCCGTT	120
160	CAGGCGGTCT	ACGGCTTC	CAAAGCCTC	CTCAAGGCC	TGAAGGAGGA	CGGGGACGTG	180

RAW SEQUENCE LISTING DATE: 07/23/2002
 PATENT APPLICATION: US/09/941,193A TIME: 13:04:51

Input Set : A:\Seqsub2.app
 Output Set: N:\CRF3\07232002\I941193A.raw

162	GTGGTGGTGG	TCTTGACGC	CAAGGCCCCC	TCCTTCCGCC	ACGAGGCCTA	CGAGGCCTAC	240
164	AAGGCAGGCC	GGGCCAC	CCCAGGAGAC	TTTCCCCGGC	AGCTGGCCCT	CATCAAGGAG	300
166	TTGGTGGACC	TCCTAGGCCT	TGTGGCGCTG	GAGGTTCCCG	GCTTGAGGC	GGACGACGTG	360
168	CTGGCCACCC	TGGCCAAGCG	GGCGGAAAAG	GAGGGGTACG	AGGTGCGCAT	CCTCACTGCC	420
170	GACCAGCGACC	TCTACCAGCT	CCTTCGGAG	CGCATCGCCA	TCCTCCACCC	TGAGGGGTAC	480
172	CTGATCACCC	CGGCGTGGCT	TTACGAGAAAG	TACGGCCTGC	GCCCGGAGCA	GTGGGTGGAC	540
174	TACCGGGCCC	TGGCGGGGGA	CCCCTCGGAT	AACATCCCCG	GGGTGAAGGG	CATCGGGGAG	600
176	AAGACCGCCC	AGAGGCTCAT	CCGCGAGTGG	GGGAGCCTGG	AAAACCTCTT	CCAGCACCTG	660
178	GACCAGGTGA	AGCCCTCCTT	GCAGGAGAAAG	CTCCAGGCGG	GCATGGAGGC	CCTGGCCCTT	720
180	TCCCAGGAAGC	TTTCCCAGGT	GCACACTGAC	CTGCCCCCTGG	AGGTGGACTT	CGGGAGGCAC	780
182	CGCACACCCA	ACCTGGAGGG	TCTGCGGGCT	TTTTGGAGC	GGTTGGAGTT	TGGAAGCCTC	840
184	CTCCACGAGT	TCGGCCTCCT	GGAGGGGCCG	AAGGCGGCAG	AGGAGGCC	CTGGCCCCCT	900
186	CGGGAAGGGG	CTTTTTGGG	CTTTTCCTT	TCCCGTCCCG	AGCCCATGTG	GGCCGAGCTT	960
188	CTGGCCCTGG	CTGGGGCGTG	GGAGGGGCCG	CTCCATCGGG	CACAAGACCC	CCTTAGGGGC	1020
190	CTGAGGGACC	TTAAGGGGGT	GCAGGGAAATC	CTGGCCAAGG	ACCTGGCGGT	TTTGGCCCTG	1080
192	CGGGAGGGCC	TGGACCTCTT	CCCAGAGGAC	GACCCCATGC	TCCTGGCCTA	CCTTCTGGAC	1140
194	CCCTCCAACA	CCACCCCTGA	GGGGGTGGCC	CGCGCTTACG	GGGGGGAGTG	GACGGAGGAT	1200
196	GGGGGGGAGA	GGGCCCTCCT	GGCCGAGCGC	CTCTTCCAGA	CCCTAAAGGA	GGCCCTTAAG	1260
198	GGAGAAGAAC	GCCTGCTTTG	GCTTACGAG	GAGGTGGAGA	AGCCGCTTTC	CGGGGTGTTG	1320
200	GCCCAGGATGG	AGGCCACGGG	GGTCCGGCTG	GACGTGGCCT	ACCTCCAGGC	CCTCTCCCTG	1380
202	GAGGTGGAGG	CGGAGGTGCG	CCAGCTGGAG	GAGGAGGTCT	TCCGCCTGGC	CGGCCACCC	1440
204	TTCAACCTCA	ACTCCCGCGA	CCAGCTGGAG	CGGGTGCTCT	TTGACGAGCT	GGGCCTGCCT	1500
206	GCCATCGGCA	AGACGGAGAA	GACGGGGAAA	CGCTCCACCA	GCGCTGCCGT	GCTGGAGGCC	1560
208	CTGCGAGAGG	CCCACCCAT	CGTGGACCGC	ATCCTGCAGT	ACCAGGAGCT	CACCAAGCTC	1620
210	AAGAACACCT	ACATAGACCC	CCTGCCCGCC	CTGGTCCACC	CCAAGACCCG	CGGCTCCAC	1680
212	ACCCGTTCA	ACCAGACGGC	CACGCCACG	GGCAGGCTTT	CCAGCTCCGA	CCCCAACCTG	1740
214	CAGAACATCC	CCGTGCGCAC	CCCTCTGGC	CAGGCATCC	GCCGAGCCTT	CGTGGCCGAG	1800
216	GAGGGCTGGG	TGCTGGTGGT	CTTGGACTAC	AGCCAGATTG	AGCTTCGGGT	CCTGGCCAC	1860
218	CTCTCCGGGG	ACGAGAACCT	GATCCGGGTC	TTTCAGGAGG	GGAGGGACAT	CCACACCCAG	1920
220	ACCGCCAGCT	GGATGTTCGG	CGTTTCCCCC	GAAGGGTAG	ACCCCTGTGAT	GGCCCGGGCG	1980
222	GCCAAGACCA	TCAACTTCGG	GGTGTCTAC	GGCATGTCCG	CCCACCGCCT	CTCCGGGGAG	2040
224	CTTCCATCC	CCTACGAGGA	GGCGGTGGCC	TTCATTGAGC	GCTACTTCCA	GAGCTACCC	2100
226	AAGGTGGGGG	CCTGGATTGA	GGGGACCCCTC	GAGGAGGGCC	GCCGGCGGGG	GTATGTGGAG	2160
228	ACCCCTTCG	GCCGCCGGCG	CTATGTGCC	GACCTAACG	CCCGGGTGAA	GAGCGTGCAC	2220
230	GAGGCGGGCG	AGCGCATGGC	CTTCAACATG	CCGGTCCAGG	GCACCGCCGC	CGACCTCATG	2280
232	AAGCTGGCCA	TGGTGGGCT	TTTCCCCCGG	CTTCAGGAAC	TGGGGGCGAG	GATGCTTTG	2340
234	CAGGTGCACG	ACGAGCTGGT	CCTCGAGGCC	CCCAAGGACC	GGGCGGAGAG	GGTAGCCGCT	2400
236	TTGGCCAAGG	AGGTCAATGGA	GGGGGTCTGG	CCCCTGCAGG	TGCCCCTGGA	GGTGGAGGTG	2460
238	GGCCTGGGGG	AGGACTGGCT	CTCCGCCAAG	GAGTAG			2496
240	(2) INFORMATION FOR SEQ ID NO: 3:						
242	(i) SEQUENCE CHARACTERISTICS:						
243	(A) LENGTH: 2504 base pairs						
244	(B) TYPE: nucleic acid						
245	(C) STRANDEDNESS: double						
246	(D) TOPOLOGY: linear						
248	(ii) MOLECULE TYPE: DNA (genomic)						
252	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:						
254	ATGGAGGCCGA	TGCTTCCGCT	CTTTGAACCC	AAAGGCCGGG	TCCTCCTGGT	GGACGGCCAC	60
256	CACCTGGCCT	ACCGCACCTT	CTTCGCCCTG	AAGGGCCTCA	CCACGAGCCG	GGGCGAACCG	120

RAW SEQUENCE LISTING

PATENT APPLICATION: US/09/941,193A

DATE: 07/23/2002

TIME: 13:04:51

Input Set : A:\Seqsub2.app

Output Set: N:\CRF3\07232002\I941193A.raw

258	GTGCAGGC	GG	TCTACGG	CT	CC	CTCA	CC	CTGAAG	GGACGG	TAC	180							
260	AAGGCC	TCT	TCGTGG	TT	TGACG	CCAG	GCCC	CTCCT	TCCGCC	ACGA	GGCCTACG	240						
262	GCC	TACA	AGG	CGGGGAGG	GC	CCGAC	CCC	GAGGACTT	CGCC	GCAG	TAC	300						
264	AAGGAG	CTGG	TGGAC	CTCCT	GGGG	TTT	AACC	CGAGG	TCCC	CGGCTA	CGAGGCGG	360						
266	GACG	TCTCG	CCAC	CCCTGG	CAAGA	AGGCG	GAAA	AGGAGG	GGTAC	CGAGG	TACGAGGT	420						
268	ACCGCC	GACC	GAC	CTCTA	CCA	ACTCG	TCCG	ACCG	TCGCC	GTCTC	TCT	480						
270	GCCC	AC	CCTCA	TCAC	CCC	GGGA	GTGG	GCTT	GGAGA	GTACG	GCAGGCC	540						
272	GTGG	ACTT	CC	CGCC	CTCG	GGGG	GACCCC	TCCG	ACAACC	TCCC	CGGGGT	600						
274	GGGG	GAGA	AGA	CCG	CCCT	CAA	GCTC	CTCAAG	GAGT	GGGGAA	GCCTG	660						
276	AACT	TGG	GACC	GGGT	AAAG	AGCC	AGAAA	ACGTC	CGGG	GAGAAG	TCAAGGCCA	720						
278	CTC	AGG	GCT	C	CTT	GGAG	CT	CCC	GGGT	CGCAC	TCCC	CTGGA	780					
280	GCCC	AGGG	GG	GGGAG	CCC	GGAGGG	CTT	AGGG	CCT	GGAGAG	GCT	GGAGTT	840					
282	GGC	AGC	CCT	TCC	ACG	AGT	CCG	GGG	CTC	CTG	GGAGG	CCCC	900					
284	TGG	CCCC	CGC	CGGA	AGGG	GGC	CTCG	GGGG	TTCG	CTCT	CCC	GCCCCG	960					
286	GCGG	GAG	CTT	TA	AGC	CC	CTG	CAGG	GAC	GGCC	GCGG	TGCA	CCGG	1020				
288	TTGG	C	GGGG	GC	TAA	AGG	AC	CT	CAAG	GG	TCG	CCG	TCTC	1080				
290	TTGG	C	CTCG	GA	GGG	AGGG	GCT	CT	CTCAAG	GG	CC	CT	TAC	1140				
292	CTC	CTGG	A	CC	TCAAC	ACAC	CAC	CCCC	GAG	GGG	TGG	CCG	GCG	1200				
294	ACGG	AGG	GAC	CC	GCCC	CACCG	GGC	CC	CTCG	AGG	TGGAG	AC	CTCTTAAG	1260				
296	CGC	CTCG	GAG	GGG	AGG	GAGA	GCT	CTT	GGAG	AGG	TGG	AGG	AA	1320				
298	CGGG	TCTG	GG	CCCAC	ATG	GGGA	GGCC	ACCG	GTAC	GGCTG	ACGT	GGCC	TA	1380				
300	CTT	CC	CTG	GG	AGCT	TGCG	GA	GAT	CCG	CCTG	AGG	AGGT	CTT	CGCTTGCG	1440			
302	GGCC	AC	CC	CT	CA	CT	CC	GGG	AC	GTG	AAA	GGGT	GCT	CTT	TGACGAG	1500		
304	AGG	CT	CC	CG	CTT	GGG	AA	GAC	GCAA	AG	AC	AGG	CA	GC	1560			
306	CTG	GAG	GG	CC	AC	CC	ATC	CC	AC	TG	GAGA	AGA	TCC	CAG	1620			
308	ACCA	AG	GCT	CA	AG	AC	CTA	CG	AC	CT	CC	AG	GG	AC	GGG	1680		
310	CGC	CT	CC	A	CC	CG	CT	CC	AC	GG	CC	AC	GG	GT	CCG	1740		
312	CCCA	AC	CT	GC	AGA	AC	AT	CCC	CG	CC	CT	GGG	CC	CT	TC	1800		
314	GTGG	CC	GAG	GG	GGG	TG	GG	GG	CT	GG	ACT	TATA	GCA	GAT	AGA	1860		
316	CTC	GCC	C	AC	TCT	GGG	GA	AAA	AC	CTG	GGT	CT	TCC	AGG	AGGG	1920		
318	CA	AC	CC	A	CG	CA	AG	CTG	TG	G	TG	CCCC	CCG	GG	AGG	CT	1980	
320	CGC	GGG	CG	GG	CA	AG	AC	GG	TG	GG	CT	CT	AC	G	GT	CC	2040	
322	TCC	CAG	G	GG	CC	AT	CCC	CTG	GG	GG	CT	GG	CC	CT	GG	CT	2100	
324	GCT	CCC	CC	AA	GG	TG	GA	AGA	AG	CC	CTG	GA	GG	GGG	GG	G	2160	
326	AC	GTG	GG	AA	AC	C	C	GG	TG	GG	CT	AC	GC	TA	AC	GG	2220	
328	GCG	T	CAG	GG	GG	CA	GG	CG	GT	CC	AG	GG	GC	AC	CG	CC	2280	
330	AC	CT	CAT	G	G	TG	CC	GC	AT	GG	CT	GG	CC	GT	GG	GC	2340	
332	TG	C	CT	CCA	GG	TG	CC	AC	G	AG	CT	GG	CC	GG	CC	GG	2400	
334	TGG	GGG	CTT	GG	CC	AA	GG	GA	GG	CC	TAT	CC	CTG	CC	GT	GG	AGG	2460
336	TGG	AGG	TG	GG	G	AT	GG	CTT	CC	GG	CA	AG	GG	TT	AG	GT	2504	
338	(2)	INFORMATION	FOR	SEQ	ID	NO:	4:											
340	(i)	SEQUENCE	CHARACTERISTICS:															
341	(A)	LENGTH:	832	amino	acids													
342	(B)	TYPE:	amino	acid														
343	(C)	STRANDEDNESS:	single															
344	(D)	TOPOLOGY:	linear															
346	(ii)	MOLECULE	TYPE:	protein														
350	(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:	4:											
352	Met	Arg	Gly	Met	Leu	Pro	Leu	Phe	Glu	Pro	Lys	Gly	Arg	Val	Leu	Leu		

RAW SEQUENCE LISTING
PATENT APPLICATION: US/09/941,193A

DATE: 07/23/2002
TIME: 13:04:51

Input Set : A:\Seqsub2.app
Output Set: N:\CRF3\07232002\I941193A.raw

353	1	5	10	15												
355	Val	Asp	Gly	His	His	Leu	Ala	Tyr	Arg	Thr	Phe	His	Ala	Leu	Lys	Gly
356						20				25					30	
358	Leu	Thr	Thr	Ser	Arg	Gly	Glu	Pro	Val	Gln	Ala	Val	Tyr	Gly	Phe	Ala
359						35				40					45	
361	Lys	Ser	Leu	Leu	Lys	Ala	Leu	Lys	Glu	Asp	Gly	Asp	Ala	Val	Ile	Val
362						50				55					60	
364	Val	Phe	Asp	Ala	Lys	Ala	Pro	Ser	Phe	Arg	His	Glu	Ala	Tyr	Gly	Gly
365						65				70					80	
367	Tyr	Lys	Ala	Gly	Arg	Ala	Pro	Thr	Pro	Glu	Asp	Phe	Pro	Arg	Gln	Leu
368						85				90					95	
370	Ala	Leu	Ile	Lys	Glu	Leu	Val	Asp	Leu	Leu	Gly	Leu	Ala	Arg	Leu	Glu
371						100				105					110	
373	Val	Pro	Gly	Tyr	Glu	Ala	Asp	Asp	Val	Leu	Ala	Ser	Leu	Ala	Lys	Lys
374						115				120					125	
376	Ala	Glu	Lys	Glu	Gly	Tyr	Glu	Val	Arg	Ile	Leu	Thr	Ala	Asp	Lys	Asp
377						130				135					140	
379	Leu	Tyr	Gln	Leu	Leu	Ser	Asp	Arg	Ile	His	Val	Leu	His	Pro	Glu	Gly
380						145				150					160	
382	Tyr	Leu	Ile	Thr	Pro	Ala	Trp	Leu	Trp	Glu	Lys	Tyr	Gly	Leu	Arg	Pro
383						165				170					175	
385	Asp	Gln	Trp	Ala	Asp	Tyr	Arg	Ala	Leu	Thr	Gly	Asp	Glu	Ser	Asp	Asn
386						180				185					190	
388	Leu	Pro	Gly	Val	Lys	Gly	Ile	Gly	Glu	Lys	Thr	Ala	Arg	Lys	Leu	Leu
389						195				200					205	
391	Glu	Glu	Trp	Gly	Ser	Leu	Glu	Ala	Leu	Leu	Lys	Asn	Leu	Asp	Arg	Leu
392						210				215					220	
394	Lys	Pro	Ala	Ile	Arg	Glu	Lys	Ile	Leu	Ala	His	Met	Asp	Asp	Leu	Lys
395						225				230					240	
397	Leu	Ser	Trp	Asp	Leu	Ala	Lys	Val	Arg	Thr	Asp	Leu	Pro	Leu	Glu	Val
398						245				250					255	
400	Asp	Phe	Ala	Lys	Arg	Arg	Glu	Pro	Asp	Arg	Glu	Arg	Leu	Arg	Ala	Phe
401						260				265					270	
403	Leu	Glu	Arg	Leu	Glu	Phe	Gly	Ser	Leu	Leu	His	Glu	Phe	Gly	Leu	Leu
404						275				280					285	
406	Glu	Ser	Pro	Lys	Ala	Leu	Glu	Glu	Ala	Pro	Trp	Pro	Pro	Pro	Glu	Gly
407						290				295					300	
409	Ala	Phe	Val	Gly	Phe	Val	Leu	Ser	Arg	Lys	Glu	Pro	Met	Trp	Ala	Asp
410						305				310					320	
412	Leu	Leu	Ala	Leu	Ala	Ala	Ala	Arg	Gly	Gly	Arg	Val	His	Arg	Ala	Pro
413						325				330					335	
415	Glu	Pro	Tyr	Lys	Ala	Leu	Arg	Asp	Leu	Lys	Glu	Ala	Arg	Gly	Leu	Leu
416						340				345					350	
418	Ala	Lys	Asp	Leu	Ser	Val	Leu	Ala	Leu	Arg	Glu	Gly	Leu	Gly	Leu	Pro
419						355				360					365	
421	Pro	Gly	Asp	Asp	Pro	Met	Leu	Leu	Ala	Tyr	Leu	Leu	Asp	Pro	Ser	Asn
422						370				375					380	
424	Thr	Thr	Pro	Glu	Gly	Val	Ala	Arg	Arg	Tyr	Gly	Gly	Glu	Trp	Thr	Glu
425						385				390					400	

RAW SEQUENCE LISTING ERROR SUMMARY DATE: 07/23/2002
PATENT APPLICATION: US/09/941,193A TIME: 13:04:52

Input Set : A:\Seqsub2.app
Output Set: N:\CRF3\07232002\I941193A.raw

Please Note:

Use of n and/or Xaa have been detected in the Sequence Listing. Please review the Sequence Listing to ensure that a corresponding explanation is presented in the <220> to <223> fields of each sequence which presents at least one n or Xaa.

Seq#:7; N Pos. 4,5,181,182,190,366,617,628,685,714,722,738,784,1022,1029
Seq#:7; N Pos. 1038,1053,1098,1105,1206,1227,1244,1251,1252,1253,1350,1380
Seq#:7; N Pos. 1497,1530,1569,1572,1641,1653,1655,1770,1812,2319,2346,2396
Seq#:8; Xaa Pos. 2,63,109,186,205,209,227,228,233,240,243,244,247,260,290
Seq#:8; Xaa Pos. 329,336,340,368,414,417,418,431,551,605,773,794,798,823,833

VERIFICATION SUMMARY

DATE: 07/23/2002

PATENT APPLICATION: US/09/941,193A

TIME: 13:04:52

Input Set : A:\Seqsub2.app

Output Set: N:\CRF3\07232002\I941193A.raw

L:30 M:220 C: Keyword misspelled or invalid format, [(A) APPLICATION NUMBER:]
L:31 M:220 C: Keyword misspelled or invalid format, [(B) FILING DATE:]
L:1126 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:0
L:1135 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:48
L:1144 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:96
L:1159 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:176
L:1162 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:192
L:1165 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:208
L:1168 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:224
L:1171 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:240
L:1174 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:256
L:1180 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:288
L:1186 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:320
L:1189 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:336
L:1192 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:352
L:1201 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:400
L:1204 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:416
L:1228 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:544
L:1237 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:592
L:1270 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:768
L:1273 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:784
L:1279 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:816
L:1282 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:832