Hoja de ejercicios Agentes y búsqueda

Inteligencia Artificial Facultad de Ciencias, UNAM Pérez Jacome David.

1. Llenar la siguiente tabla con base a los tipos de entorno que le corresponda a cada tarea:

Entorno	Observable?	Agente?	Determinista?	Episódico?	Estático?	Discreto?
Go	Totalmente	Multiagente	Estratégico	Secuencial	Dinámico	Discreto
Traducción automática	Totalmente	Individual	Determinista	Episódico	Dinámico	Continuo
Voz-a-texto	Completamente	Multiagente	Estocástico	Episódico	Dinámico	Continuo
Clasificación de objetos en imágenes	Totalmente	Multiagente	Determinista	Episódico	Semidinámico	Continuo
Aumento de calidad de video	Parcialmente	Individual	Determinista	Secuencial	Semidinámico	Continuo

2. Considerar el mundo de la aspiradora con 3 cuartos (casillas) configurados de la siguiente forma:

(A, 1)	(B, 1)
(C, 1)	-

Es decir, sólo están disponibles los cuartos A, B y C. El 1 indica sucio y el 0 limpio. Suponiendo que el agente comienza en el cuarto A, con todos los cuartos sucios y el objetivo es limpiar todos los cuartos, formalizar analíticamente el problema como un problema de búsqueda asumiendo un costo $c(s_i,a,s_j)=1$ para cualesquiera estados s_i,s_j y cualquier posible acción a.

- 3. A partir del problema anterior, dibujar la gráfica de búsqueda del problema y proponer una solución óptima.
- 4. Considerar el siguiente problema de búsqueda con **inicial** s_0 y final s_6 :

Describir a partir de la gráfica el problema en forma analítica.

- 5. A partir del problema anterior, utilizar el algoritmo de **depth-first search** para encontrar el árbol de búsqueda y la solución.
- 6. A partir del problema 2, utilizar el algoritmo de **best-first search** para encontrar el árbol de búsqueda y la solución, usar función de costo del problema.
- 7. A partir del problema 2 y la siguiente función heurística de abajo, obtener el

	s_0	s_1	s_2	s_3	s_4	s_5	s_6	s_7
h	4	3	3	2	1	1	0	∞

árbol de búsqueda y la solución por medio del algoritmo de **Greedy Best-First Search**.

- 8. A partir del problema 2 y de la heurística anterior usar el algoritmo \mathbf{A}^* para obtener la solución y el árbol de búsqueda.
- 9. A partir del siguiente problema de búsqueda (inicial: s_0 , final: s_6):

aplicar el algoritmo de **primero mejor** (Best-first search), dibujar el árbol de búsqueda, y dar la solución resultante.

10. A partir del problema de búsqueda anterior y usando la siguiente heurística: Aplicar el algoritmo de A^* , dibujar el árbol de búsqueda y dar la solución

	s_0	$\mathbf{s_1}$	$\mathbf{s_2}$	$\mathbf{s_3}$	s_4	$\mathbf{s_5}$	s_6
h	3	2	6	1	2	1	0

encontrada.