$Seminar\ Report$

Hall's Theorem

Report

Submitted by

Himanshu Prajapati

 $\begin{array}{c} {\rm Roll\ no.\ 222123026} \\ {\rm M.Sc.\ Mathematics\ and\ Computing} \end{array}$

Indian Institute of Technology Guwahati-781039,India

9th November, 2023

Graph

Definition

A graph is an ordered triple $G = (V(G), E(G), I_G)$, where:- V(G) is a nonempty set.- E(G) is a set disjoint from V(G). - I_G is an "incidence" relation that associates with each element of E(G) an unordered pair of elements (same or distinct) of V(G).

Elements of V(G) are called the vertices (or nodes or points) of G, and elements of E(G) are called the edges (or lines) of G. V(G) and E(G) are the vertex set and edge set of G, respectively.

If, for the edge e of G, $I_G(e) = \{u, v\}$, we write $I_G(e) = uv$.

Example:

If $V(G) = \{v_1, v_2, v_3, v_4, v_5\}$, $E(G) = \{e_1, e_2, e_3, e_4, e_5, e_6\}$, and I_G is given by: $I_G(e_1) = \{v_1, v_5\} - I_G(e_2) = \{v_2, v_3\} - I_G(e_3) = \{v_2, v_4\} - I_G(e_4) = \{v_2, v_5\} - I_G(e_5) = \{v_2, v_5\} - I_G(e_6) = \{v_3, v_3\}$ Then $(V(G), E(G), I_G)$ is a graph.

Figure 1: Graph $(V(G), E(G), I_G)$ described in Example

Some Definitions Related to Graph

- 1. A subset M of the edge set E of a loopless graph G is called independent if no two edges of M are adjacent in G.
- 2. A matching in G is a set of independent edges.
- 3. An edge covering of G is a subset L of E such that every vertex of G is incident to some edge of L .Hence, an edge covering of G exists if and only if $\gamma > 0$.
- 4. A matching M of G is maximum if G has no matching M_0 with $|M_0| > |M|$. M is maximal if G has no matching M_0 strictly containing M. $|M^*(G)|$ is the cardinality of a maximum matching, and $|C^*(G)|$ is the size of a minimum edge covering of G.

5. A set S of vertices of G is said to be saturated by a matching M of G or M-saturated if every vertex of S is incident to some edge of M. A vertex v of G is M-saturated if fv is M-saturated. v is M-unsaturated if it is not M-saturated.

Bipartite Graph

Definition

A graph is bipartite if its vertex set can be partitioned into two nonempty subsets X and Y such that each edge of G has one end in X and the other in Y. The pair (X,Y) is called a bipartition of the bipartite graph. The bipartite graph G with bipartition (X,Y) is denoted by G[X,Y].

Example:

Figure 2: A bipartite graph $K_{2,3}$

Matching in Bipartite Graph

Assignment Problem

Suppose in a factory there are n jobs j_1, j_2, \ldots, j_n and s workers w_1, w_2, \ldots, w_s . Also, suppose that each job j_i can be performed by a certain number of workers, and each worker w_j has been trained to do a certain number of jobs. Is it possible to assign each of the n jobs to a worker who can do that job so that no two jobs are assigned to the same worker?

We convert this job assignment problem into a problem in graphs as follows: Form a bipartite graph G with bipartition J, W, where $J = \{j_1, j_2, \ldots, j_n\}$ and $W = \{w_1, w_2, \ldots, w_s\}$, and make j_i adjacent to w_j if and only if worker w_j can do the job j_i . Then our assignment problem translates into the following graph problem: Is it possible to find a matching in G that saturates all the vertices of J?

A solution to the above matching problem in bipartite graphs has been given by Hall.

For a subset $S \subseteq V$ in a graph G, N(S) denotes the neighbor set of S, that is, the set of all vertices, each of which is adjacent to at least one vertex in S.

Definition

Let G be a bipartite graph on the parts X and Y, and let S be a matching of G. If every vertex in X is covered by an edge of S, then we say that S is a perfect matching of X into Y.

For a graph G and a subset T of V(G), we let $N_G(T)$ denote the set of vertices of G that are adjacent to some vertex in T, that is,

$$N_G(T) := \{ v \in V(G) \mid vw \in E(G) \text{ for some } w \in T \}.$$

Observe that if G is bipartite on the parts A and B, then $N_G(T) \subseteq B$ for any $T \subseteq A$.

Hall's Theorem

For a bipartite graph G on the parts X and Y, the following conditions are equivalent.

- (a) There is a perfect matching of X into Y.
- (b) For each $T \subseteq X$, the inequality $|T| \leq |N_G(T)|$ holds.

Proof:

- (a) \Rightarrow (b): Let S be a perfect matching of X into Y. As S is a perfect matching, for every $x \in X$, there exists a unique $y_x \in Y$ such that $xy_x \in S$. Define the map $f: X \to Y$ by $f(x) = y_x$. Since S is a matching, the function f is injective. Therefore, for any $T \subseteq X$, we see that $|T| = |f(T)| \leq |N_G(T)|$ because $f(T) \subseteq N_G(T)$.
- (b) \Rightarrow (a): Conversely, suppose that $|T| \leq |N_G(T)|$ for each $T \subseteq X$. We will prove that there exists a perfect matching of X into Y by induction on n := |X|. If n = 1, then the only vertex x in X must be adjacent to some vertex y in Y by condition (b), and, therefore, $\{xy\}$ is a perfect matching of X into Y. Now assume that every bipartite graph on the parts X_0 and Y_0 with $|X_0| < |X|$ and satisfying condition (b) has a perfect matching of X_0 into Y_0 . We split the rest of the proof into two cases.

Case 1: For every nonempty proper subset T of X (that is, $T \subset X$), the strict inequality $|T| < |N_G(T)|$ holds. Take $x \in X$ and $y \in NG(\{x\})$. Let G_0 be the bipartite graph we obtain by removing x and y (and the edges incident to them) from G. Now for every subset A of $X \setminus \{x\}$, we see that

$$|N_{G_0}(A)| \ge |N_G(A)| - 1 \ge |A|,$$

where the last inequality holds because A is a strict subset of X. By induction hypothesis, there exists a perfect matching S_0 in G_0 of $X \setminus \{x\}$ into $Y \setminus \{y\}$. It is clear now that $S_0 \cup \{xy\}$ is a perfect matching in G of X into Y.

Case 2: There exists a nonempty proper subset A of X such that $|A| = |N_G(A)|$. Let G_1 be the subgraph of G induced by the set of vertices $A \cup N_G(A)$,

and let G_2 be the subgraph of G we obtain by removing $A \cup N_G(A)$ (and their incident edges) from G. It is clear that $G_1 = (A, N_G(A))$ and $G_2 = (X \setminus A, Y \setminus N_G(A))$ are bipartite graphs.

Let us show that both G_1 and G_2 satisfy condition (b). To show that G_1 satisfies (b), take $T \subseteq A$. It follows by the way G_1 was constructed that $N_{G_1}(T) = N_G(T)$. As a result, $|N_{G_1}(T)| = |N_G(T)| \ge |T|$. Then G_1 satisfies condition (b). In order to argue that G_2 also satisfies condition (b), take $T_0 \subseteq X \setminus A$ and observe that $N_{G_2}(T_0 \cup A) = N_G(A) \cup N_{G_2}(T_0)$, where the union on the right-hand side is disjoint. Since $|N_{G_2}(T_0 \cup A)| \ge |T_0 \cup A|$ and $|N_G(A)| = |A|$, $|N_{G_2}(T_0)| = |N_{G_2}(T_0 \cup A)| - |N_{G_1}(A)| \ge |T_0 \cup A| - |A| = (|T_0| + |A|) - |A| = |T_0|$. Therefore, G_2 also satisfies condition (b).

Since |A| < |X| and $|X \setminus A| < |X|$, our induction hypothesis guarantees the existence of a perfect matching S_1 in G_1 of A into $N_G(A)$ and a perfect matching S_2 in G_2 of $X \setminus A$ into $Y \setminus N_G(A)$. Then it follows from the construction of G_1 and G_2 that $S_1 \cup S_2$ is a perfect matching in G of X into Y, which concludes the proof.

Figure 3: Illustration of a matching with boldfaced edges.

We now give some important consequences of Hall's theorem;

Theorem

A k(>1)-regular bipartite graph is 1-factorable

Proof:

Let G be a k-regular bipartite graph with bipartition X and Y. Then, E(G) is the set of edges incident to the vertices of X and is also equal to the set of edges incident to the vertices of Y. Hence, k|X| = |E(G)| = k|Y|, and therefore |X| = |Y|.

Now, consider any subset $S \subseteq X$. By the definition of a bipartite graph, the neighborhood of S, denoted as N(S), is contained in Y, and N(N(S)) contains S.

Let E_1 and E_2 be the sets of edges of G incident to S and N(S), respectively. Then, $E_1 \cup E_2$ contains all the edges of G incident to vertices in S. We have $|E_1| = k|S|$ and $|E_2| = k|N(S)|$. Therefore, since $|E_1| + |E_2| = |E_1 \cup E_2| \le k|S|$, it follows that $k|N(S)| \le k|S|$.

As k > 1, we can conclude that $|N(S)| \leq |S|$. So, by Hall's theorem (Theorem 5.5.2), G has a matching that saturates all the vertices of X, which means that G has a perfect matching M.

Deletion of the edges in M from G results in a (k-1)-regular bipartite graph. Repeated application of this argument shows that G is 1-factorable.

Bibliography

- [1] R. Balakrishnan K. Ranganathan Author. A Textbook of Graph Theory. Springer(Second Edition), 2012.
- [2] FELIX GOTTI. Combinatorial analysis. Department of Mathematics ,Massachusetts Institute of Technology.