SYLLABUS

MATHEMATICS OF COMPETITIVE BEHAVIOR

CTY Summer Session 2017 Princeton, NJ

INSTRUCTOR: Ben Cohen TEACHING ASSISTANT: Cara Xiao

Textbook: Straffin, Phillip. Game Theory and Strategy. Washington, D.C.: Mathematical

Association of America, 1993.

A calculator is necessary for this course. Although a graphing calculator may be helpful for a few activities, a scientific calculator is sufficient.

Mathematics of Competitive Behavior includes some probability and statistics content, but the primary focus is the mathematical theory of games. Formally, game theory is the study of rational behavior in social decision-making. While it includes traditional games such as tic-tactoe and matching pennies, the real value of game theory is in its real-world applications. Students will play games, analyze their play, and develop successful strategies. They will frequently present their findings to other class members, and will explore applications to social interaction, politics and voting, business strategies, biology, and anthropology.

COURSE SCHEDULE

WEEK ONE

WEEKONE		
DAY	TOPICS AND ACTIVITIES	
1	Morning:	
	• Introductions	
	• Pretest	
	Course and topic overview	
	Historical introduction to probability (The Unfinished Game)	
	Afternoon:	
	• Introduction to probability: dependent and mutually exclusive events; expected	
	value; class lottery	
	Probability with permutations and combinations	
	• "The Birthday Problem"	
	Evening:	
	Practice with probability and expected value	
2	Morning:	
	• Expected value	
	• "A Fascinating Game"	
	• Introduction to games and payoff matrices	
	• Two-person <i>N</i> -strategy zero-sum games; saddle points	
	Dominance and IESDS	
	Afternoon:	
	• "Matching Pennies"	

	Oddments and mixed strategies; importance of unpredictability
	Evening:
	• "Solving 2x2 Zero-Sum Games" handout
3	• Read Straffin ch. 2, exercises #2-5
3	Morning:Graphical solution to M x 2 or 2 x N games
	 Jamaican fisherman problem
	• Two Envelopes Problem: "The Other Person's Envelope Is Always Greener"
	• Algebraic solution to 3 x 3 games
	The second second to the guillet
	Afternoon:
	• The Umbrella Problem
	Games against nature
	• Bayes' theorem
	Newcomb's Problem
	Evening:
	• Bayes' theorem worksheet
	• Read Straffin ch. 3, exercises #3-6, 8
4	Morning:
	• Quiz #1
	• Utility theory
	Afternoon:
	• 2-person non-zero-sum games
	• Pure strategy Nash equilibrium
	Pareto optimalityPayoff polygons
	• Battle of the Sexes
	Danie of the series
	Evening:
	Solving Non-Zero-Sum Games worksheet
	• Read Straffin ch. 4, exercises #1, 2; read ch. 6, exercise #2a
5	Morning:
	• Group project research (computer lab)
	Mixed strategy Nash equilibrium
	• SSS games
	Afternoon:
	Rock-paper-scissors tournament and importance of unpredictability
	• Unexpected Hanging Paradox
	Evening (Sunday):
	• Read Straffin ch. 11, exercises #1, 2a-c, 3, 4a; read ch. 9-10; "Card Bingo"

WEEK TWO

DAY	TOPICS
6	Morning:
	Monty Hall Problem
	Prisoner's Dilemma interrogation and discussion
	• Extensive form of a game
	Backward induction
	Afternoon:
	• Group project research (computer lab)
	Evening:
	• Read Straffin ch. 7, exercises #2, 5, 6a-c
7	Morning:
	Group project presentations
	Mutually assured destruction
	1120000200 00012001001
	Afternoon:
	• Evolutionarily stable strategies (ESS)
	Probability challenge problems
	Treeweinity enumerings processing
	Evening:
	• Midterm exam
8	Morning:
	• Chicken and stag hunt
	• Strategic moves
	• Introduction to fair division: "Divide the Chip" and Pirate Game
	Introduction to fair division. Divide the Chip and I hate Game
	Afternoon:
	• Introduction to differential calculus: slope as a rate of change
	Application: Monopoly
	Application: Cournot and Stackelberg duopolies
	Application. Cournot and Stackerserg daopones
	Evening:
	• Read Straffin ch. 15, exercises #4, 6; read ch. 12, exercise #2; read ch. 13
9	Morning:
	• Individual project preparation (computer lab)
	• Trust, suspicion, and the F-scale: "split or steal?"
	Trust, suspicion, and the research spirit or stear.
	Afternoon:
	• Trust Game
	Centipede Game
	Contipode Guine
	Evening:
	• Read and respond to NY Times article on North Korea strategies
	• Read Straffin ch. 14, exercises #1, 3a-e; read ch. 8, exercises #1, 2
10	Morning:
10	Application: Bertrand duopoly
	"Noblesse Oblige"
	- Induicase Oulige

• Individual project preparation (computer lab)

Afternoon:

• *n*-person games

Evening:

- Read Straffin ch. 18; read ch. 19, exercises #1-3
- Final Jeopardy! strategies worksheet

WEEK THREE

DAY	TOPICS
11	Morning:
	Individual project presentations
	• "Pimsler's Dementia"
	Tragedy of the Commons
	Afternoon:
	Voting games and methods: majority, plurality, runoff, sequential runoff, Borda
	count, pairwise comparisons
	• Arrow's Impossibility Theorem
	Arrow's impossibility Theorem
	Evening:
	Voting exercises handout
	Read and respond to Tragedy of the Commons article
12	Morning:
	• eBay auction strategies
	Voting power and the Banzhaf index
	Case study: Supreme Court nominations
	Case study: Nassau County Board of Supervisors
	Apportionment and the Alabama Paradox
	Video: "Nice Guys Finish First"
	Afternoon:
	• Estate division by sealed bids
	Continuous fair division: divider-chooser, last diminisher
	Case study: NFL Draft
	Evening
	Evening: • Fair division activity
	• Read Straffin ch. 20, exercises #1-3; read ch. 21, exercises #1, 3a-b
13	Morning:
13	Case study: Bankruptcy law
	Auctions: Vickrey auction, English auction, Dutch auction
	Proof that sincere bidding is best in a Vickrey auction
	• Dollar auction
	• John Nash's "hex" game
	Some Comments of Marie
	Afternoon:

	• Video: "A Brilliant Madness," discussion
	• Review for final exam
	Evening:
	• Final exam
14	Morning:
	Case study: Tacit collusion and OPEC
	• Coalitions game, round 1
	Proof by mathematical induction
	Afternoon:
	• Course evaluations
	• Class auction
	Three-way duel
	• Video: "Dr. Strangelove," discussion
15	Morning:
	• Coalitions game, round 2
	• Course wrap-up
	• Game theory: What is it good for?

PRESENTATIONS:

There will be two presentations in the class. For the first, students will work in groups of three and select a topic from a list provided by the instructor. The students will then conduct research using the Internet and print materials and make a 15-minute presentation to the class describing their findings. For the second, students will work individually and make a five-minute presentation to the class describing their findings. Four hours of research time will be provided for each.

EVALUATION:

There will be two tests during the course: a midterm and a comprehensive final exam. Evaluation of student performance and achievement will be based on completion and accuracy of written assignments and tests, active participation in class discussions, and presentations of projects.