pro 1	blem_sets/problem_set_3/problem_set_3_code.m
2 3 4	Purpose: Coding part of problem set 3 Created: Nico Rotundo 2024-11-13
6 7 8	%} %{
9 10 11	Define parameters
12 13 14	%} clear all;
	<pre>% Relative risk aversion coefficient sigma = 2;</pre>
19 20	% Income z_e = 0.2; z_u = 0.1;
22 23	% Transition rates
28	% Interest rate r = 0.03;
31	% Discount rate rho = 0.05;
34 35 36	%{
37 38 39	
41 42	
44 45	<pre>% Borrowing constraint maximum a_max = 3; % Number of grid points</pre>
47 48	<pre>num_points = 1000;</pre>
50 51	a_grid = linspace(a_min, a_max, num_points)';
54 55	% Define double length a and z vectors
57 58	
63 64 65	Define utility function and its derivative
	% Utility function (CRRA), handling vector inputs
70 71	% Derivative of utility, handling vector inputs
73 74	<pre>U_prime = @(c) c.^(-sigma); % Inverse of derivative of utility U_prime_inv = @(Vp) (Vp).^(-1 / sigma);</pre>
76	
80 81	%}
82 83 84	
86 87	
89 90 91	<pre>V_prime_forward = zeros(num_points,2); % Initialize arrays for forward finite difference approximation for V'_i,j</pre>
93 94	
95 96 97	% Construct block matrix with transition probabilities (slide 41) A = [-speye(num_points)*lambda(1), speye(num_points)*lambda(1); speye(num_points)*lambda(2),-speye(num_points)*lambda(2)
98 99 100 101	%{
102	Compute optimal savings using both the forward and backward difference approximations, and use the approximation for V'_{i, j} from the slides
105 106	%}
110	% Employed column $V_0(:,1) = U(z(1) + r * a_grid)/rho;$
113	% Unemployed column $V_0(:,2) = U(z(2) + r * a_grid)/rho;$
	% Set initial approximation of value function $v_{approximation} = V_0$;
118	% Iterate from 1 to max_iterations for i = 1:max_iterations
121 122 123	<pre>V = v_approximation;</pre>
124125126127	for j = 1:2
128 129 130	% Forward difference for state j
131 132 133	% State constraint a <= a_max (slide 38)
134135136	<pre>% Backward difference for state j V_prime_backward(2:num_points, j) = (V(2:num_points, j) - V(1:num_points-1, j)) / delta_a;</pre>
137138139140	<pre>% Borrowing constraint (slide 38) V_prime_backward(1, j) = U_prime(z(j) + r * a_min);</pre>
140141142143	<pre>% Consumption finite difference approximations for state j (hw page 1) c_forward(:, j) = U_prime_inv(V_prime_forward(:, j));</pre>
144 145 146	$c_0(:, j) = z(j) + r * a_grid;$
147 148 149	savings_backward(:, j) = $z(j)$ + $r * a_grid - c_backward(:, j);$
150151152153	<pre>V_prime_bar(:, j) = U_prime(c_0(:, j));</pre>
154 155 156	<pre>V_prime_upwind(:, j) = V_prime_forward(:, j) * (savings_forward(:, j) > 0) +</pre> <pre>V_prime_backward(:, j) * (savings_backward(:, j) < 0) +</pre>
157 158 159	% Optimal consumption for state j
160161162	<pre>% Maximized utility for state j u_optimal(:, j) = U(c(:, j));</pre>
163164165166	% Construct matrices for each state (slide 36)
167 168 169	<pre>z_matrix = max(savings_forward, 0) / delta_a;</pre>
170171172	% Employed
173174175176	<pre>spdiags(x_matrix(2:num_points, 1), -1, num_points, num_points) + spdiags([0; z_matrix(1:num_points-1, 1)], 1, num_points, num_points);</pre>
177 178 179	% Unemployed S_D_unemployed = spdiags(y_matrix(:, 2), 0, num_points, num_points) +
180 181 182	spdiags([0; z_matrix(1:num_points-1, 2)], 1, num_points, num_points); % N-step transition matrix (slide 45)
183 184 185 186	% Construct discretized Bellman operator
186 187 188 189	% Stack optimal utility and value function matrices for both states
190 191 192	<pre>V_stacked = [V(:, 1); V(:, 2)]; % Solve system of equations</pre>
193 194 195 196	V_stacked = B \ b;
196 197 198 199	<pre>V = [V_stacked(1:num_points), V_stacked(num_points+1:2*num_points)];</pre>
200 201 202	<pre>v_approximation = V; end</pre>
	% Optimal savings (hw page 1) s_optimal = z_matrix_expanded + r ** a_grid_expanded - c;
207	% Question 1: Plot optimal consumption figure;
210 211 212	plot(a_grid, c(:, 2), 'r', 'LineWidth', 1.5, 'DisplayName', 'Unemployed', 'Color', [250/255, 165/255, 35/255]);
213214215216	<pre>xlabel('Assets (a)'); xlim([a_min a_max]);</pre>
217 218 219	ylabel('Optimal Consumption (c)');
220 221 222	title('Optimal Consumption for Employed and Unemployed States across Asset Grid');
223224225226	box off;
	hold off; % Export graph
231 232	% Question 2: Plot optimal savings
233234235236	hold on;
237 238 239	plot(a_grid, s_optimal(:, 2), 'r', 'LineWidth', 1.5, 'DisplayName', 'Unemployed', 'Color', [250/255, 165/255, 35/255]);
240 241 242	<pre>xlim([a_min a_max]); ylabel('Optimal Savings (s)');</pre>
243 244 245 246	legend('Employed', 'Unemployed', 'Location', 'southeast');
246247248249	set(gca, 'TickDir', 'out');
250 251 252	grid on; hold off;
253 254 255	% Export graph exportgraphics(gcf, '/Users/nicorotundo/Documents/GitHub/DynamicProgramming2024/problem_sets/problem_set_3/output/question_2.pdf', 'ContentType', 'vector');
259 260 261 262	plot(a_grid, V(:, 1), 'b-', 'LineWidth', 1.5, 'DisplayName', 'Employed', 'Color', [41/255, 182/255, 164/255]); hold on;
263 264 265	<pre>plot(a_grid, V(:, 2), 'r', 'LineWidth', 1.5, 'DisplayName', 'Unemployed', 'Color', [250/255, 165/255, 35/255]); xlabel('Assets (a)');</pre>
266 267 268 269	ylabel('Value Function (V)');
269270271272	legend('Employed', 'Unemployed', 'Location', 'southeast');
273 274 275	set(gca, 'TickDir', 'out'); box off;
276 277 278 279	grid on; hold off;
	% Export graph exportgraphics(gcf, '/Users/nicorotundo/Documents/GitHub/DynamicProgramming2024/problem_sets/problem_set_3/output/question_3.pdf', 'ContentType', 'vector');
283 284 285	
286	