Exercises for §8

E8.1 (the \hbar -adic algebra $U_{\hbar} = U_{\hbar}(\mathfrak{sl}_2)$) The algebra $U_{\hbar} := U_{\hbar}(\mathfrak{sl}_2)$ is defined, as an \hbar -adic algebra over the ring $\mathbb{C}[[\hbar]]$ of formal power series in \hbar , by the presentation

$$U_{\hbar} = \mathbb{C}\langle E, H, F \mid HE - EH = 2E, HF - FH = -2F, EF - FE = \frac{K - K^{-1}}{q - q^{-1}} \rangle$$

where q denotes the formal power series $e^{\hbar} \in \mathbb{C}[[\hbar]]$, K denotes $e^{\hbar H}$ and K^{-1} denotes $e^{-\hbar H}$.

(a) Which facts are used to deduce the following relations? Remind yourself of a proof of those facts, or try to prove them.

$$KK^{-1} = K^{-1}K = 1$$
, $KE = q^2EK$, $KF = q^{-2}FK$

- (b) Expand $\frac{K-K^{-1}}{q-q^{-1}}$, as a formal power series in \hbar , to $O(\hbar^7)$ (that is, ignoring all terms which contain \hbar^7 or higher power of \hbar).
- **E8.2** Recall that U_{\hbar} acts on the 2-dimensional space V with basis $\{x,y\}$ (more precisely, on $V[[\hbar]]$) via

$$E \triangleright x = 0$$
, $E \triangleright y = x$, $F \triangleright x = y$, $F \triangleright y = 0$, $H \triangleright x = x$, $H \triangleright y = -y$,

and that this action extends to a covariant action of U_{\hbar} on the quantum plane $\mathbb{C}_{\hbar}[x,y] = \mathbb{C}[[\hbar]]\langle x,y \mid yx = e^{\hbar}xy\rangle$. Calculate the action of E, H and F on a standard monomial x^ay^b in $\mathbb{C}_{\hbar}[x,y]$, expressing $E \triangleright (x^ay^b)$ etc in terms of standard monomials in $\mathbb{C}_{\hbar}[x,y]$. You will need (why?) the coproduct on U_{\hbar} , given by

$$\Delta H = 1 \otimes H + H \otimes 1, \quad \Delta E = E \otimes K + 1 \otimes E, \quad \Delta F = F \otimes 1 + K^{-1} \otimes F.$$

Some of the exercises which appeared on the draft version of the current worksheet have been moved to the Week 09 review worksheet.

Part B. Extra exercises

- **E8.3** (the antipode of $U_q(\mathfrak{sl}_2)$) Deduce or review the formulas for S(E) and S(F) in $U_q(\mathfrak{sl}_2)$. Calculate S(EF) and S(EKF), expressing the answer as a linear combination of monomials from the PBW-type basis of $U_q(\mathfrak{sl}_2)$. Show that $S^2 \neq \operatorname{id}$ on $U_q(\mathfrak{sl}_2)$.
- E8.4 (the PBW-type theorem for $U_q(\mathfrak{sl}_2)$) Review the formulae which describe the action of the generators $E, K^{\pm 1}, F$ of the \mathbb{C} -algebra U_q on the basis $\{x^my^n \mid m, n \in \mathbb{Z}_{\geq 0}\}$ of the quantum plane $A_q := \mathbb{C}_{\hbar}[x,y]$. Use this action to show that the PBW-like monomials $E^mK^nF^p$, where $m, p \geq 0, n \in \mathbb{Z}$, are linearly independent in U_q . Hint: assume that there is a non-trivial linear combination L of the PBW-like monomials is zero in U_q . Take the least p such that a monomial of the form $E^mK^nF^p$ appears in L with non-zero coefficient. Act by L on x^py^b ; note that all monomials $E^{m'}K^{n'}F^{p'}$ with p'>p act on x^py^b by zero. You are left to choose p so as to get a contradiction.