A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 2EE

Bookmark

Show all steps: ON

ON

Problem

Let *G* and *H* be groups. Suppose *J* is a normal subgroup of *G* and *K* is a normal subgroup of *H*. Find the kernel of *f*.

Step-by-step solution

Step 1 of 4

Suppose that G and H are two arbitrary groups. Also let J is a normal subgroup of G and K is a normal subgroup of H.

Consider a mapping $f: G \times H \to (G/J) \times (H/K)$ defined by

$$f(x, y) = (Jx, Ky)$$

Since let J is a normal subgroup of G, therefore the group G/J is defined. Also J_X is the coset of G/J for some $X \in G$. Note that f is an onto homomorphism from $G \times H$ to $G/J \times (H/K)$.

Objective is to determine the kernel of homomorphism *f*.

Comment

Step 2 of 4

According to the definition of kernel,

$$\ker f = \{(x, y) \in G \times H : f(x, y) = e\},\$$

where e is the identity of $(G/J)\times (H/K)$.

Note that, the identity of quotient group G/J is J and the identity of H/K is K. And then the identity of direct product $(G/J)\times (H/K)$ will be an ordered pair (J,K).

Substitute f(x, y) = (Jx, Ky) and e = (J, K) in kernel set and get,

$$\ker f = \{(x, y) \in G \times H : (Jx, Ky) = (J, K)\}.$$

Comment

Step 3 of 4

On comparing the equation (Jx, Ky) = (J, K), one get,

$$Jx = J$$
, $Ky = K$

According to the coset property: if H is a subgroup of G and let $a,b\in G$. Then aH=H if and only if $a\in H$.

So, by this property, the condition $J_X = J$ implies that $x \in J$. Similarly, from Ky = K it implies that $y \in K$.

Thus,

$$\ker f = \{(x, y) \in G \times H : (Jx, Ky) = (J, K)\}\$$
$$= \{(x, y) \in G \times H : x \in J, y \in K\}\$$

Since $x \in J$, $y \in K$, therefore $(x, y) \in J \times K$. So, $\ker f = J \times K$.

Comment

Step 4 of 4

Hence, the required kernel of homomorphism f will be:

$$\ker f = J \times K$$

Comment