inBig

머신러닝 3팀

Q Search

박병현 이은성 최영효 한영동 김아연

Mome

◆ Compete

m Data

Notebooks

Communities

Ourses Courses

More

미국 성인 인구조사 소득 예측 대회 – 목차

1

미국 성인 인구조사 소득 예측 대회

_	•	
Ira	ın	.CSV

	TI GITTIES V													
id	age	workclas	s fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	capital_loss	hours_per_week native_count	y income
	0	10 Private	168538	HS-grad	9	Married-civ-spou	Sales	Husband	White	Male	0	0	60 United-States	>50K
	1	7 Private	101626	9th	5	Never-married	Machine-op-in	Own-child	White	Male	0	0	20 United-States	<=50K
	2	8 Private	353358	Some-college	10	Never-married	Other-service	Own-child	White	Male	0	0	16 United-States	<=50K
	3 2	21 Private	151158	Some-college	10	Never-married	Prof-specialty	Own-child	White	Female	0	0	25 United-States	<=50K
	4	24 Private	122234	Some-college	10	Never-married	Adm-clerical	Not-in-family	Black	Female	0	0	20 ?	<=50K
	5	13 Private	236985	HS-grad	9	Married-civ-spou	Craft-repair	Husband	Black	Male	0	0	40 United-States	<=50K
	6	13 State-go	v 206139	Bachelors	13	Married-civ-spou	Adm-clerical	Husband	White	Male	0	0	50 United-States	>50K
	7	7 Private	340599	11th	7	Separated	Other-service	Unmarried	Black	Female	0	0	40 United-States	<=50K
	8	17 Private	230136	HS-grad	9	Married-civ-spou	Other-service	Husband	Black	Male	0	0	60 United-States	>50K
	9	11 Private	153031	Some-college	10	Married-civ-spou	Sales	Husband	White	Male	0	0	65 United-States	>50K
1	0	84 Private	238376	1st-4th	2	Married-civ-spou	Craft-repair	Husband	White	Male	0	0	40 Mexico	<=50K

• age: 나이

• workclass: 고용 형태

• fnlwgt: 사람 대표성을 나타내는 가중치 (final weight의 약자)

education: 교육 수준

education_num: 교육 수준 수치

• marital_status: 결혼 상태

occupation: 업종

relationship: 가족 관계

• race: 인종

• sex: 성별

• capital_gain: 양도 소득

• capital_loss: 양도 손실

hours_per_week: 주당 근무 시간

• native_country: 국적

• income: 수익 (예측해야 하는 값)

>50K

<=50K

미국 성인 인구조사 소득 예측 대회

Train.csv

id	age	V	workclass fr	nlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	capital_loss ho	urs_per_week native_country	income
0		40 F	Private	168538	HS-grad	9	Married-civ-spou	Sales	Husband	White	Male	0	0	60 United-States	>50K
1		17 F	Private	101626	9th	5	Never-married	Machine-op-in	Own-child	White	Male	0	0	20 United-States	<=50K
2	,	18 F	Private	353358	Some-college	10	Never-married	Other-service	Own-child	White	Male	0	0	16 United-States	<=50K
3		21 F	Private	151158	Some-college	10	Never-married	Prof-specialty	Own-child	White	Female	0	0	25 United-States	<=50K
4		24 F	Private	122234	Some-college	10	Never-married	Adm-clerical	Not-in-family	Black	Female	0	0	20 ?	<=50K
5	4	43 F	Private	236985	HS-grad	9	Married-civ-spou	Craft-repair	Husband	Black	Male	0	0	40 United-States	<=50K
6	4	43 5	State-gov	206139	Bachelors	13	Married-civ-spou	Adm-clerical	Husband	White	Male	0	0	50 United-States	>50K
7		37 F	Private	340599	11th	7	Separated	Other-service	Unmarried	Black	Female	0	0	40 United-States	<=50K
8	4	47 F	Private	230136	HS-grad	9	Married-civ-spou	Other-service	Husband	Black	Male	0	0	60 United-States	>50K
9	4	41 F	Private	15303 1	Some-college	10	Married-civ-spou	Sales	Husband	White	Male	0	0	65 United-States	>50K
10		34 F	Private	238376	1st-4th	2	Married-civ-spou	Craft-repair	Husband	White	Male	0	0	40 Mexico	<=50K

test.csv Income : 예측하고자 하는 종속변수

id	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gai	capital_los	hours_per_	native_country	income
0	28	Private	67661	Some-college	10	Never-married	Adm-clerical	Other-relative	White	Female	0	0	40	United-States	?
1	40	Self-emp-inc	37869	HS-grad	9	Married-civ-spou	Exec-manageria	Husband	White	Male	0	0	50	United-States	?
2	20	Private	109952	Some-college	10	Never-married	Handlers-clean	Own-child	White	Male	0	0	25	United-States	?
3	40	Private	114537	Assoc-voc	11	Married-civ-spou	Exec-manageria	Husband	White	Male	0	0	50	United-States	?
4	37	Private	51264	Doctorate	16	Married-civ-spou	Prof-specialty	Husband	White	Male	0	0	99	France	?
5	36	Private	279615	Bachelors	13	Divorced	Sales	Own-child	White	Female	0	0	40	United-States	?
6	49	Private	87928	HS-grad	9	Married-civ-spou	Adm-clerical	Husband	White	Male	0	0	40	United-States	?
7	26	Private	130620	Assoc-acdm	12	Married-spouse-	Craft-repair	Other-relative	Asian-Pac-	Female	0	0	40	?	?
8	45	Private	28119	HS-grad	9	Married-civ-spou	Adm-clerical	Husband	White	Male	0	0	7	United-States	?
9	39	Private	236136	Assoc-voc	11	Divorced	Adm-clerical	Unmarried	Black	Female	0	0	40	United-States	?
10	57	Private	133126	Some-college	10	Never-married	Craft-repair	Not-in-family	Black	Female	0	0	40	United-States	?
11	36	?	216256	HS-grad	9	Married-civ-spou	?	Husband	White	Male	3464	0	30	United-States	?
12	52	Private	190333	Some-college	10	Married-civ-spou	Adm-clerical	Husband	White	Male	0	0	40	United-States	?

미국 성인 인구조사 소득 예측 대회 EDA

```
In [5]:
         ▶ # 대략적인 데이터 살펴보기
           tmp train.info()
            <class 'pandas.core.frame.DataFrame'>
            RangeIndex: 26049 entries, 0 to 26048
            Data columns (total 16 columns):
                Column
                                Non-Null Count Dtype
                                26049 non-null int64
                 id
                                26049 non-null int64
                age
                workclass
                                26049 non-null object
                fnlwgt
                                26049 non-null int64
                education
                                26049 non-null
                                               object
                education num
                                26049 non-null int64
                marital status
                               26049 non-null object
                occupation
                                26049 non-null object
                relationship
                                26049 non-null object
                                26049 non-null
                 race
                                               object
                                26049 non-null
                                               object
             10
                sex
                capital gain
                                26049 non-null int64
             12 capital loss
                                26049 non-null int64
                hours per week 26049 non-null int64
                native country 26049 non-null
                                               object
            15
                income
                                26049 non-null
                                               object
            dtypes: int64(7), object(9)
           memory usage: 3.2+ MB
```


4

미국 성인 인구조사 소득 예측 대회 EDA (변수 탐색) - age

낮은 연령대에서는 Target이 0, 높은 연령대에서는 Target이 1인 경향을 보인다. • Titanic 대회처럼 lage band 변수를 만들어 연령대 범위를 나눠서 적용해봤지만 그대로 사용할 때 Feature Importance가 높게 나왔다. 모델 스코어에 대한 결과는 급하게 적용하느라 제대로 확인을 못했다. ▶ print('최소 연령: ', tmp_train['age'].min()) print('최고 연령: ', tmp_train['age'].max()) print('평균 연령: {:.2f}'.format(tmp_train['age'].mean())) 최고 연령: 90 평균 연령: 38.57 M # 소득에 따른 연령 구분 plt.figure(figsize=(12, 6)) tmp_train.loc[tmp_train['income'] == '<=50K', 'age'].plot(kind='kde', label='income == <=50K')</pre> tmp train.loc[tmp train['income'] == '>50K', 'age'].plot(kind='kde', label='income == >50K') plt.title('Distribution of ages \nby income') plt.xticks(range(0, 100, 5)) plt.legend() plt.show() Distribution of ages by income income == <=50K 0.035 income == >50K 0.030 0.025 ≥ 0.020 0.015 0.010 0.005 0.000 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

```
def make_age_band(df):
    df['age_band'] = 0
    df.loc[df['age'] < 20, 'age_band'] = 10
    df.loc[(df['age'] >= 20) & (df['age'] < 30), 'age_band'] = 20
    df.loc[(df['age'] >= 30) & (df['age'] < 40), 'age_band'] = 30
    df.loc[(df['age'] >= 40) & (df['age'] < 50), 'age_band'] = 40
    df.loc[(df['age'] >= 50) & (df['age'] < 60), 'age_band'] = 50
    df.loc[(df['age'] >= 60) & (df['age'] < 70), 'age_band'] = 60
    df.loc[(df['age'] >= 70) & (df['age'] < 80), 'age_band'] = 70
    df.loc[(df['age'] >= 80) & (df['age'] < 90), 'age_band'] = 80
    df.loc[(df['age'] >= 90), 'age_band'] = 90

return df

tmp_train = make_age_band(tmp_train)
```

미국 성인 인구조사 소득 예측 대회 EDA (변수 탐색) – Capital_gain & loss

capital_gain & capital_los (양도 소득, 양도 손실)

- 0값이 상당히 많음
- 양도소득 + 양도손실로 새로운 Column 생성 => Log

> 양도세는 중요한 변수로 판단 가능

미국 성인 인구조사 소득 예측 대회 EDA (변수 탐색) - Education

```
# education 是王 확인
fig, ax = plt.subplots(1, 2, figsize=(24, 6))

tmp_train['education'].value_counts().plot(kind='bar', ax=ax[0])

# 타켓에 따른 분포 확인
sns.countplot(x='education', hue='income', data=tmp_train, ax=ax[1])
ax[1].tick_params(axis='x', labelrotation=90)
ax[1].legend(loc='upper right')
ax[1].set_ylabel('')
plt.show()
```


Education 특정값에서는 고소득자가 많음을 확인 가능

미국 성인 인구조사 소득 예측 대회 EDA (변수 탐색) – 결혼 여부

```
fig, ax = plt.subplots(1, 2, figsize=(24, 6))
sns.countplot(x='marital_status', hue='income', data=tmp_train, ax=ax[0])
ax[0].tick_params(axis='x', labelrotation=45)
ax[0].legend()
ax[0].set_ylabel('')
sns.countplot(x='relationship', hue='income', data=tmp_train, ax=ax[1])
ax[1].tick_params(axis='x', labelrotation=45)
ax[1].legend()
ax[1].set_ylabel('')
plt.show()
```


미국 성인 인구조사 소득 예측 대회 EDA (변수 탐색) – Work Class & Occupation

```
# workclass & occupation [#] [#] # 2] fig, ax = plt.subplots(1, 2, figsize=(24, 8))

sns.countplot('workclass', hue='income', data=tmp_train, ax=ax[0])
ax[0].tick_params(axis='x', labelrotation=60)
ax[0].set_ylabel('')
ax[0].legend(loc='upper right')

sns.countplot('occupation', hue='income', data=tmp_train, ax=ax[1])
ax[1].tick_params(axis='x', labelrotation=60)
ax[1].set_ylabel('')
ax[1].legend(loc='upper right')

plt.show()
```


결측치 처리

```
# workclass 및 occupation과의 관계를 보기 위해 그려념

fig, ax = plt.subplots(1, 2, figsize=(24, 8))

sns.boxplot(x='workclass', y='hours_per_week', data=tmp_train, ax=ax[0])

ax[0].tick_params(axis='x', labelrotation=60)

sns.boxplot(x='occupation', y='hours_per_week', data=tmp_train, ax=ax[1])

ax[1].tick_params(axis='x', labelrotation=60)

plt.show()

Y축:주평균노동시간
```


Feature Engineering

Feature Engineering

<적용 사항>

- income
- age_band 변수
- education_num 삭제
- capital_log 변수
- native_country_bin 변수
- LabelEncoding (Ordinal Encoding 이라는 개념이 있었는데 다음번에 적용해볼만 할 것 같다.) workclass, education, marital_status, occupation, relationship, race
- Scaling fnlwgt
- '?' 값 workclass와 occupation의 6개의 값을 제외하고는 그대로 사용했다.

Modeling – Classification (이진 분류)

- RandomForest (66.5%)
- LightGBM (87.5%)
- CatBoost (87.4%)

```
Random Forest

If = RandomForestClassifier(n_jobs=-1, random_state=seed)

rf.fit(X_train, y_train)
y_pred = rf.predict(X_valid)
y_pred_proba = rf.predict_proba(X_valid)

rf_score = f1_score(y_valid, y_pred)
print("RF 기본 성능 확인 스코어: {:.4f}".format(rf_score))

RF 기본 성능 확인 스코어: 0.6650

If get_clf_eval(y_valid, y_pred, y_pred_proba[:, 1])

오차 행렬
[[4596 342]
[620 955]]
정확도: 0.8523, 정밀도: 0.7363, 재현율: 0.6063, F1: 0.6650, AUC: 0.9022
```

```
LightGBM

| Igbm = LGBMClassifier(n_jobs=-1, random_state=seed)
| lgbm.fit(X_train, y_train)
| y_pred_lgbm = lgbm.predict(X_valid)
| y_pred_proba_lgbm = lgbm.predict_proba(X_valid)[:, 1]
| get_clf_eval(y_valid, y_pred_lgbm, y_pred_proba_lgbm)
| 오차 행렬
| [[4671 267]
| [546 1029]]
| 정확도: 0.8752, 정밀도: 0.7940, 재현율: 0.6533, F1: 0.7168, AUC: 0.9306
```

CatBoost (Categorical Boost)

```
Description of the control of the c
```

Modeling – 하이퍼 파라미터 튜닝 (GirdSearch CV)

LGBM 하이퍼 파라미터 튜닝 - GridSearchCV (0.87353)

https://lightgbm.readthedocs.io/en/latest/Parameters-Tuning.html (공식 문서 참조)

- num_leaves: 가장 메인 파라미터 (일반적으로 num_leaves = 2^(max_depth)로 깊이별 트리와 동일한 수의 잎을 얻을 수 있다. 실제로는 num_leaves < 2^(max_depth) 이렇게 두어야함. leaf-wise tree 이기 때문)
- min data in leaf: overfitting 방지 매개변수. 최적값은 훈련 샘플 수와 num leaves에 따라 다른데, 대규모 데이터에서 수백 ~ 수천으로 두면 충분하다.
- max_depth: 트리 깊이 조절

<정확도를 위한 변수>

- max_bin: 크게 적용(속도는 느려진다.)
- 작은 learning rate, 큰 num iterations
- 큰 num leaves (overfitting이 일어날 수 있다.)
- 데이터 세트 늘리기
- boosting_type 을 dart(Dropouts meet Multiple Additive Regression Trees)로 적용 (defalt: 'gbdt'(gradient boosting decision tree))

```
lgbm = LGBMClassifier(random_state=seed)

params = {
    'boosting_type': ['gbdt', 'dart'], # defalt 'gbdt'
    'num_leaves': [20, 31, 50, 70], # default 31
    'max_depth': [-1, 5, 7, 10, 15, 20, 30], # default -1. 温州지 만드는 것
    'learning_rate': [0.001, 0.01, 0.05, 0.1], # defaut 0.1
}

lgbm_grid_cv = GridSearchCV(lgbm, param_grid=params, scoring='f1', n_jobs=-1, cv=5, verbose=1)
lgbm_grid_cv.fit(X, y)
```