Greedy Algorithms

 Make a greedy choice at each step - something that locally optimises the solution by some measure

The toy problem

Basic Framework

- Select a greedy choice and admit to the solution
- Convert the problem into a sub-problem of smaller size
- Repeat

To prove correctness

- 1. Prove Feasibility
- 2. Prove optimality
 - Exchange Argument
 - Greedy stays ahead

Exchange Argument

Prove that there always exists a solution with the greedy choice as part of it.

- Consider any solution
- Transform it into the solution found by greedy algorithm without decreasing the quality

Greedy stays ahead

Measure the greedy algorithm's progress in a step-by-step fashion and prove that it does as good as any other algorithm

Input : I = $\{i_1, i_2, \ldots\}$, set of n intervals, $i_j = [f_j, l_j]$

Output: $I'\subseteq I$ such that for all $i_1,i_2\in I',i_1\cap i_2=\varnothing$ and maximises |I'|.

Greedy choices

Greedy choices

$$R = I, A = \emptyset$$

while $R \neq \emptyset$

 \emph{i} be the interval in R with the smallest finishing time

$$A = A \cap \{i\}$$

 $I_i \subseteq R$ be the intervals that intersect i

$$R = R \setminus I_i$$

$$R = I, A = \emptyset$$

while $R \neq \emptyset$

 \emph{i} be the interval in R with the smallest finishing time

$$A = A \cap \{i\}$$

 $I_i \subseteq R$ be the intervals that intersect i

$$R = R \setminus I_i$$

Running Time?

Proof of Correctness:

Feasibility: easy to see

Optimality:

A: solution returned by greedy algorithm

O: an optimal solution

To prove |A| = |O|

$$A: \{a_1, a_2, ... a_k\}$$

$$O: \{o_1, o_2, ..., o_m\}$$

Claim : For all $r \leq k, l_{a_r} \leq l_{o_r}$

Claim : For all $r \leq k, l_{a_r} \leq l_{o_r}$

By induction on r:

r=1; true by definition of the algorithm

Induction step:

$$\text{let } l_{a_{r-1}} \leq l_{o_{r-1}}$$

Assume, for contradiction, $l_{a_r} > l_{o_r}$

We know, $f_{o_r} > l_{a_{r-1}}$ ie., o_r was in the input for A

A should have selected o_r , a contradiction.

To prove $k \leq m$

To prove $k \leq m$,

Assume not.

We know that $l_{a_k} \leq l_{o_k}$

 o_{k+1} is still present in the input after the kth iteration. A contradiction.

Interval Covering

Input: A set of m intervals I, set of n points P on the real line such that every point is contained in at least one interval in I.

Output: A subset I' of I, such that for every point $p \in P$, there exists $i \in I$ such that $p \in i$ and |I'| is minimised.