OSS "개발자"의 Machine Learning 분투기

머신러닝 시작부터 예측모델 배포까지 http://aka.ms/soscon2016-ml

한국마이크로소프트 | 김대우 2016-11-18

OSS "개발자"의 Machine Learning 분투기

개발자와 머신러닝(?)	01
어디에 어떻게 사용해야 하나	02
머신러닝 데모	03
학습모델 / 예측모델	04
지도 학습 / 비지도 학습 / 분석 알고리즘	05
예측모델 생성 데모	06
예측 모델을 API로 노출 및 Python 등에서 사용	07

오늘 진행한 모든 발표자료+코드

http://aka.ms/soscon2016-ml

Redirect to

https://github.com/CloudBreadPaPa/soscon2016-ml

개발자 & 머신러닝

뭐… 뭔데 그게?

deep dive: handling of time

extend our example to an RNN

```
\begin{array}{lll} h_1(t) = \sigma(W_1\,x(t) + H_1\,h_1(t\text{-}1) + b_1) & \text{h1} = \text{Sigmoid}(\text{W1 * x} + \text{H1 * PastValue}(\text{h1}) + \text{b1}) \\ h_2(t) = \sigma(W_2\,h_1(t) + H_2\,h_2(t\text{-}1) + b_2) & \text{h2} = \text{Sigmoid}(\text{W2 * h1} + \text{H2 * PastValue}(\text{h2}) + \text{b2}) \\ P(t) = \text{softmax}(W_{\text{out}}\,h_2(t) + b_{\text{out}}) & \text{P} = \text{Softmax}(\text{Wout * h2} + \text{bout}) \\ ce(t) = L^{\text{T}}(t)\log P(t) & \text{ce} = \text{CrossEntropy}(\text{L}, \text{P}) \\ \sum_{\text{corpus}} ce(t) = \max \end{array}
```

→ no explicit notion of time

deep dive: 1-bit SGD

- quantize gradients to but 1 bit per value with error feedback
 - · carries over quantization error to next minibatch

$$G_{ij\ell}^{\text{quant}}(t) = \mathcal{Q}(G_{ij\ell}(t) + \Delta_{ij\ell}(t-N))$$

 $\Delta_{ij\ell}(t) = G_{ij\ell}(t) - \mathcal{Q}^{-1}(G_{ij\ell}^{\text{quant}}(t))$

Transferred Gradient (bits/value), smaller is better

1-Bit Stochastic Gradient Descent and its Application to Data-Parallel Distributed Training of Speech DNNs, InterSpeech 2014, F. Seide, H. Fu, J. Droppo, G. Li, D. Yu

여긴 어디? 난 누구?

OK. 잠시 방황한거 뿐이야.

어느 고수님 말씀:

단지, 우리와 단어가 다를 뿐이야

R, SAS, Python?
Tensorflow, CNTK, H2O, keras?
Scikit, Caret, fastcluster, party?
Azure ML, Google ML, Amazon ML?

Machine Learning의 영역은 통계적 방법, 데이터마이닝 등 기존 분석기법들을 포괄하고 있음

Machine Learning & Cloud(?)

ML로 태어나 Cloud에서 산다

ML 알고리즘을 "개발"하는 개발자 ML 알고리즘을 "활용"하는 개발자

Machine Learning 어디에 어떻게 활용해야 하나?

예측 분석을 이용한 기술은 향후 모든 산업에 필요 충분 조건

산업별 Machine Learning 사례

금융

계정생성 시 검증 Fraud 방지 부정거래 예금관리 보험 설계 대출처리

유통

고객의 입장에서의 분석 브랜드 분석 개인화 서비스 (가격 민감도 분석) 개인 프로모션 및 지역화 웹 사이트 최적화 매장의 전시계획

통신

CDR(Call detail record)분석 인프라 투자 계획예측 차기 제품 구매 실시간 대역폭 할당 신제품 개발 Azure 투자 계획 및 실행

제조

재료공급 시기 SCM 및 물류 조립라인의 품질검증 사전 품질 관리 장치의 오류 분석 및 AS시기예측

의료

유전자 데이터 분석 실험 환자 상태 모니터링 재발율 감소 의료 데이터의 저장 약품의 개발 질병 패턴 분석

석유화학

원전 분석 에너지 개발 및 수요량 분석/예측 컴플라이언스 보고서 능동적인 장치수리 이미지 프로세싱

공공 서비스

공공 자료 분석
재난재해 위험상황의 예측
자원이 낭비와 소모감시
사회시설에 대한 모니터링과 예산 편성
각종 통계성 업무 활용

Machine Learning & Cognitive Service

살짝 - Kiosk 데모

머신러닝 데모

- IRIS Data

(뵨사마와 무관한 통계업계의 "Hello World")

Iris setosa

Iris versicolor

Iris virginica

출처 : 디에스이트레이드 이성희

Iris 붓꽃 데이터 현황

Sepal.Length 5.1 4.9 4.7 4.6 5.0	Sepal.Width 3.5 3.0 3.2 3.1 3.6	Petal.Length 1.4 1.4 1.3 1.5	Petal.Width 0.2 0.2 0.2 0.2 0.2	setosa setosa setosa setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa
5.0 4.4	3.4	1.5 1.4	0.2	
4.4	2.9 3.1	1.4	0.2	setosa setosa
5.4	3.7	1.5	0.2	setosa
4.8	3.4	1.6	0.2	
4.8	3.0	1.4	0.1	setosa
4.3	3.0	1.1	0.1	setosa
5.8	4.0	1.2	0.2	setosa
5.7	4.4	1.5	0.4	setosa
5.4	3.9	1.3	0.4	setosa
5.1	3.5	1.4	0.3	setosa
5.7 5.1	3.8 3.8	1.7 1.5	0.3	setosa
5.1	3.0	1.5	0.5	setosa

- Column : 4개
- Row : 150개
- Sepal.Length: num
- Sepal.Width: num
- Petal.Length : num
- Petal.Width: num
- · Species : Factor

학습모델 / 예측모델

바보(머신)에게 공부할 기회를 = 학습모델

바보(머신)에게 배운거 물어볼까 = 예측모델

모델 구축 데모 + 코드

+ Bot Framework 데모 및 코드 https://aka.ms/dpartybot

순식간에 완성한

IRIS 예측 모델!

(너무 쉬운데 뭔가 함정이?)

예를 들면 이정도는 되어야

···?

더 많은 다양한 모델 : https://gallery.cortanaintelligence.com/

Data Munging(Wrangling) ETL

Set by task & Record oriented task

우리 개발자들은!?

Python - NumPy, Pandas

R - array, Datafarme

. . .

또는, 완소 SQL + ETL 도구들!

지도 학습

(Supervised Learning)

비지도 학습

(Unsupervised Learning)

구분	Reinforcement Learning	Machine Learning (Supervised Learning)	비고
목적함수	보상을 최대화 (또는 손실을 최소화)	오차를 최소화 (오차 = 추정 - 실제)	
산출방식	순차적으로 현재 스테이지의 보상과 총 보상을 산출하여 "총 보상"이 최대화 되도록 함	실제 사례를 기반으로 사례와 가장 유사하게 모사하도록 함수를 구성하도록 함	
산출 방법론	Optimization	분류문제와 예측문제로 구분되며 다양한 알고리즘 존재	
데이터 구성	State 별 Action Matrix (모든 가능한 State 각각에 대한 모든 실행 가능한 Action과 확률)	State vs. Action에 대한 성공과 실패 사례	
특징	규칙기반으로의 설계가 용이함 (Heuristic 설계 용이)	- 데이터마이닝: 규칙(if/else) 기반 설계 용이 - 기계학습: 규칙 파악이 어려움	기계학습은 정확도 향상이 주 목표임
구현 방법	최적화 엔진 (Dynamic LP 등)	통계 소프트웨어 또는 기계학습 엔진	

Supervised Learning

출처 : 디에스이트레이드 이성희

학습대상이 있는지(Target의 여부)에 따라

→ Unsupervised Learning(自律학습)과 Supervised Learning(指導학습)으로 구분

다양한 분석 알고리즘 Clustering

어떤 사용자가 화면에 클릭한 위치들의 집합을 찾기 위해 Grouping을 한다고 하면 여기서, 각 점은 클릭한 위치를 의미

클릭한 포인트 간의 비유사도(거리)로 표현 가능) 정의

Distance =
$$\sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2}$$

 $d_{ij} = d(X_i, X_j) = \left[\sum_{k=1}^p |X_{ik} - X_{jk}|^m\right]^{1/m}$
 $d_{ij} = d(X_i, X_j) = \left[\sum_{k=1}^p |\frac{X_{ik} - X_{jk}}{S_k}|^m\right]^{1/m}$

출처 : 디에스이트레이드 이성희

군집분석 알고리즘별 원리와 특성

군집분석 알고리즘

Hierarchical Cluster Procedures

- Single Linkage Method
- Complete Linkage Method
- Average Linkage Method
- Ward's Method
- Centroid Method

- Nonhierarchical Cluster Procedures
 - K-means Clustering

- Agglomerative: '가까운' 객체끼리 군집화 시키는 방법
- Divisive: '먼' 객체들을 나누어 가는 방법
- 군집의 병합 또는 분리되는 과정을 이차원도면의 Dendrogram를 사용하여 간략히 표현
- 군집화 과정에서 어떤 개체가 일단 다른 군집에 속하면 다시는 다른 군집에 속하지 못함
- 개체의 수가 적을 때 유용

출처: 디에스이트레이드 이성희

R을 이용한 Clustering 알고리즘 분석 DEMO

repo의 r-code/r-script.r 파일 참조

산업 시나리오

게임 User가 게임을 이탈 {할지 | 안할지} : 예측

게임 User를 위한 아이템 추천 { i1 | i2 | i3 ···} : 예측

Machine Learning

Game user churn prediction In-Game item suggestion

예측모델 생성 데모

API로 노출

Python 등에서 API 사용 DEMO

Restful Front-End를 이용한

Machine Learning API 호출

+ 대량 Batch 분석

DEMO

오늘 진행한 모든 발표자료+코드

http://aka.ms/soscon2016-ml

Redirect to

https://github.com/CloudBreadPaPa/soscon2016-ml

Q & A

OSS "개발자"의 Machine Learning 분투기

머신러닝 시작부터 예측모델 배포까지

한국마이크로소프트 | 김대우 2016-11-18

