Econ.720 Recitation#9 11/1/2019

TVC on Page-20 in Perpetual Youth Slide

The standard TVC should be

$$\lim_{t \to \infty} e^{-(\rho+\nu)(t-\tau)} \mu_t a(t|\tau) = 0$$

Due to eq. (11)

$$\frac{c(\dot{t}|\tau)}{c(t|\tau)} = r(t) - \rho$$

Hence

$$c(t|\tau) = c(\tau|\tau)e^{(r(t)-\rho)(t-\tau)}$$

From FOC, we know that

$$\mu_t = \frac{1}{c(t|\tau)} = \frac{1}{c(\tau|\tau)} e^{(\rho - r(t))(t - \tau)}$$

Plug the equation for μ_t back to the TVC

$$\lim_{t \to \infty} e^{-(\rho+\nu)(t-\tau)} \frac{1}{c(\tau|\tau)} e^{(\rho-r(t))(t-\tau)} a(t|\tau) = 0$$

Since $c(\tau|\tau)$ is some constant, so we can take it away. So the TVC becomes

$$\lim_{t \to \infty} e^{-(\rho+\nu)(t-\tau)} e^{(\rho-r(t))(t-\tau)} a(t|\tau) = 0$$

Rearrange the terms

$$\lim_{t \to \infty} e^{[-(\rho+\nu) + (\rho-r(t))](t-\tau)} a(t|\tau) = \lim_{t \to \infty} e^{-(r(t) + \nu)(t-\tau)} a(t|\tau) = 0$$

Notice that in this model, r varies along with time, hence the correct way to writ $r_t(t-\tau)$ should be $\int_{\tau}^{t} r_z dz$ Since ν is a parameter, hence $\nu(t-\tau) = \int_{\tau}^{t} \nu dz$

$$\lim_{t \to \infty} e^{-(r(t)+\nu)(t-\tau)} a(t|\tau) = \lim_{t \to \infty} e^{-(\int_{\tau}^{t} r_z dz + \int_{\tau}^{t} \nu dz)} a(t|\tau) = \lim_{t \to \infty} e^{-\int_{\tau}^{t} (r_z + \nu) dz} a(t|\tau) = 0$$

Hence the TVC is

$$\lim_{t \to \infty} e^{-\int_{\tau}^{t} (r_z + \nu) dz} a(t|\tau) = \lim_{t \to \infty} D_{t,\tau} a(t|\tau) = 0$$

where $D_{t,\tau} = e^{-\int_{\tau}^{t} (r_z + \nu) dz}$

Exercise. Macroeconomics Qualifying Examination January 2012. An Investment Problem

Consider the problem of an infinitely lived firm that invests in capital K_t subjects to an adjustment cost. Time is continuous. The profit stream is given by

$$\pi_t = f(k_t) - I_t - \phi(I_t)$$

where f obeys Inada conditions and the adjustment cost is convex: $\phi' > 0$ and $\phi'' > 0$. $\phi(0) = 0$. The firm maximizes the discounted present value of profits

$$\max_{I_t, K_t; t \ge 0} \int_0^\infty e^{-rt} \pi_t dt$$

subject to the law of motion

$$\dot{k_t} = I_t - \delta k_t$$

- 1. Derive the necessary conditions for the firm's optimal investment plan, including the TVC.
- 2. From the necessary conditions, derive the differential equation for I_t .
- 3. Draw a phase diagram in (k_t, I_t) space. For simplicity, assume that the $\dot{I} = 0$ locus is downward sloping.
- 4. Discuss the stability properties of the steady state.