WEEK 6 DISCUSSION THURSDAY WORKSHEET

- (1) Prove that for any integer n, 2 divides n(n + 1).
- (2) Prove or disprove that if a|bc, where a, b, and c are positive integers and $a \neq 0$, then a|b or a|c.
- (3) Prove that if a is a positive integer, then 4 does not divide $a^2 + 2$.
- (4) Suppose that a and b are integers, $a\equiv 11(mod19),$ and $b\equiv 3(mod19).$ Find the integer c with $0\leq c\leq 18$ such that
 - (a) $c \equiv 13a (mod 19)$
 - (b) $c \equiv 8b \pmod{19}$
 - (c) $c \equiv a b \pmod{19}$
- (5) Evaluate these quantities
 - (a) -17 mod 2
 - (b) -101 mod 13
 - (c) 144 mod 7
 - (d) 199mod19
- (6) Show that if n is an integer then $n2 \equiv 0$ or $1 \pmod{4}$.
- (7) Prove that if n is an odd positive integer, then $n^2 \equiv 1 \pmod{8}$.
- (8) Use problem 5 to show that the equation $x^2 + y^2 = 3443$ has no integer solutions.
- (9) Given a nonzero integer a, find gcd(a, 0) and gcd(a, 1)
- (10) Find:
 - (a) Find gcd(4567, 91837) and lcm(4567, 91837)
 - (b) Find integers x, y such that gcd(4567, 91837) = 4567x + 91837y
 - (c) Solve the congruence $91837x \equiv 1 \pmod{4567}$