Linear Algebra

[KOMS120301] - 2023/2024

13.2 - Eigenvector

Dewi Sintiari

Program Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 14 (Desember 2023)

Tujuan pembelajaran

Setelah perkuliahan ini, Anda diharapkan mampu:

- menjelaskan konsep nilai eigen dan vektor eigen;
- mencari nilai eigen suatu matriks;
- mencari vektor eigen suatu matriks;
- mencari basis ruang eigen suatu matriks.

Contoh motivasi

Bagian 1: Vektor eigen dan nilai eigen

Apa yang dimaksud dengan vektor eigen dan nilai eigen?

Definisi

$$A\mathbf{x} = \lambda \mathbf{x}$$

untuk suatu skalar $\lambda \in \mathbb{R}$.

 λ disebut eigenvalue (nilai eigen) dari A (atau T_A), dan \mathbf{x} disebut eigenvector (vektor eigen) yang sesuai dengan λ .

Interpretasi geometris

Vektor eigen **x** mewakili:

vektor kolom yang mengalikannya dengan matriks persegi A menghasilkan vektor $\lambda \mathbf{x}$ untuk beberapa $\lambda \in \mathbb{R}$, yaitu vektor yang merupakan perkalian \mathbf{x} (arahnya sama dengan \mathbf{x} tetapi besarnya berbeda).

Interpretasi geometris

Bergantung pada sign dan magnitude dari nilai eigen λ yang berhubungan dengan \mathbf{x} , operasi $A\mathbf{x}=\lambda\mathbf{x}$ compresses atau stretches \mathbf{x} dengan faktor λ .

Contoh

Diberikan $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$. Vektor $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ adalah vektor eigen dari A yang bersesuaian dengan $\lambda = 3$.

Contoh

Diberikan $A=\begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$. Vektor $\mathbf{x}=\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ adalah vektor eigen dari A yang bersesuaian dengan $\lambda=3$.

$$A\mathbf{x} = A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3\mathbf{x}$$

Latihan

Bagian 2: Menghitung nilai eigen

Bagaimana menghitung nilai eigen?

Contoh

Bagaimana cara mendapatkan nilai $\lambda=3$ dan vektor $\mathbf{x}=\begin{bmatrix}1\\2\end{bmatrix}$ dari contoh sebelumnya?

Ingatlah bahwa nilai eigen λ dan vektor eigen ${\bf x}$ dari A harus memenuhi

$$A\mathbf{x} = \lambda \mathbf{x}$$

Dengan demikian,

$$A\mathbf{x} = \lambda \mathbf{x} \Leftrightarrow AI\mathbf{x} = \lambda I\mathbf{x} \Leftrightarrow A\mathbf{x} = \lambda I\mathbf{x} \Leftrightarrow (\lambda I - A)\mathbf{x} = 0$$

Ingatlah bahwa $(\lambda I - A)\mathbf{x} = 0$ memiliki solusi bukan nol ketika

$$\det(\lambda I - A) = 0$$

Bagaimana menghitung nilai eigen?

Teorema (Nilai eigen)

Jika A adalah matriks $n \times n$, maka λ adalah nilai eigen dari A jika dan hanya jika memenuhi persamaan:

$$\det(\lambda I - A) = 0$$

Ini disebut persamaan karakteristik dari A.

Contoh: Bagaimana mencari ruang eigen?

Diberikan $A=\begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$. Dengan teorema tersebut, kita menyelesaikan $\det(\lambda I-A)=0$, yaitu:

Contoh: Bagaimana mencari ruang eigen?

Diberikan $A=\begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$. Dengan teorema tersebut, kita menyelesaikan $\det(\lambda I-A)=0$, yaitu:

$$\det\left(\lambda\begin{bmatrix}1&0\\0&1\end{bmatrix}-\begin{bmatrix}3&0\\8&-1\end{bmatrix}\right)=0 \;\Leftrightarrow\; \begin{vmatrix}\lambda-3&0\\-8&\lambda+1\end{vmatrix}=0$$

yang menghasilkan:

$$(\lambda - 3)(\lambda + 1) = 0 \Leftrightarrow \lambda_1 = 3 \text{ and } \lambda_2 = -1$$

This means that the eigenvalues of A are 3 and -1.

Perumuman

Untuk matriks A berukuran $n \times n$, persamaan karakteristik $(\lambda I - A)\mathbf{x} = 0$ menghasilkan:

$$\lambda^n + c_1 \lambda^{n-1} + \dots + c_{n-1} \lambda + c_n = 0 \tag{1}$$

Polinomial: $(\lambda^n + c_1\lambda^{n-1} + \cdots + c_{n-1}\lambda + c_n)$ disebut polinomial karakteristik dari A.

Contoh

Polinomial karakteristik dari $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$ is

$$p(\lambda) = (\lambda - 3)(\lambda + 1) = \lambda^2 - 2\lambda - 3$$

Latihan 1: Nilai eigen dari suatu matriks 3×3

Temukan nilai eigen dari:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$$

Solusi:

Latihan 1: Nilai eigen dari suatu matriks 3×3

Temukan nilai eigen dari:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$$

Solusi:

Hitung polinomial karakteristik:

$$\det(\lambda I - A) = \det\begin{bmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -4 & 17 & \lambda - 8 \end{bmatrix} = \lambda^3 - 8\lambda^2 + 17\lambda - 4$$

Nilai eigen adalah solusi dari:

$$\lambda^3 - 8\lambda^2 + 17\lambda - 4 = 0$$

yakni:

$$(\lambda - 4)(\lambda^2 - 4\lambda + 1) = 0 \iff \lambda_1 = 4, \ \lambda_2 = 2 + \sqrt{3}, \ \text{and} \ \lambda_3 = 2 - \sqrt{3}$$

Latihan 2: Nilai eigen dari matriks segitiga atas

Diberikan:
$$A = \begin{bmatrix} \frac{1}{2} & -1 & 5 \\ 0 & \frac{2}{3} & -8 \\ 0 & 0 & -\frac{1}{4} \end{bmatrix}$$
. Temukan nilai eigen dari A .

Latihan 3: Nilai eigen dari matriks segitiga bawah

Diberikan:
$$A = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -1 & \frac{2}{3} & 0 \\ 5 & -8 & -\frac{1}{4} \end{bmatrix}$$
. Temukan nilai eigen dari A .

Apa yang dapat Anda katakan tentang nilai eigen dari **matriks** segitiga?

Temukan nilai eigen dari:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{bmatrix}$$

Apa yang dapat Anda katakan tentang nilai eigen dari matriks segitiga?

Temukan nilai eigen dari:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{bmatrix}$$

Solusi:

$$\det(\lambda I - A) = \det \begin{bmatrix} \lambda - a_{11} & -a_{12} & -a_{13} & -a_{14} \\ 0 & \lambda - a_{22} & -a_{23} & -a_{24} \\ 0 & 0 & \lambda - a_{33} & -a_{34} \\ 0 & 0 & 0 & \lambda - a_{44} \end{bmatrix}$$
$$= (\lambda - a_{11})(\lambda - a_{22})(\lambda - a_{33})(\lambda - a_{44})$$

Maka persamaan karakteristiknya adalah:

$$(\lambda - a_{11})(\lambda - a_{22})(\lambda - a_{33})(\lambda - a_{44}) = 0$$

that gives $\lambda_1=a_{11},\ \lambda_2=a_{22},\ \lambda_3=a_{33},\ \lambda_4=a_{44}$

Apakah berlaku untuk matriks diagonal?

Ya, karena matriks diagonal merupakan matriks segitiga.

Bagian 3: Menghitung vektor eigen

Rangkuman

Sejauh ini, kita telah melihat...

Teorema

Jika A adalah matriks $n \times n$, pernyataan berikut adalah ekuivalen.

- \bullet λ adalah nilai eigen dari A.
- ② λ adalah solusi dari persamaan karakteristik det $(\lambda I A) = 0$.
- **3** Sistem persamaan $(\lambda I A)\mathbf{x} = \mathbf{0}$ memiliki solusi nontrivial.
- **4** Ada vektor bukan nol **x** sehingga A**x** = λ **x**.

Kita telah melihat angka 1, 2, dan 3. Sekarang kita akan melihat bahwa

Menghitung vektor eigen (1)

Berdasarkan definisi, vektor eigen dari A yang berkorespondensi dengan nilai eigen λ adalah vektor **bukan nol** yang memenuhi:

$$(\lambda I - A)\mathbf{x} = 0$$

Contoh

Pada contoh sebelumnya, kita diberikan $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$ dengan nilai eigen 3 dan -1.

Kita dapat menghitung vektor eigen untuk setiap nilai eigen dengan menyelesaikan:

- **1** (3I A)x = 0;
- **2** (-I A)x = 0;

Menghitung vektor eigen (2)

For
$$\lambda = 3$$

$$(3I - A)\mathbf{x} = 0$$

$$\left(\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}\right) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ -8 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ -8x_1 + 4x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Oleh karena itu, pasti $-8x_1 + 4x_2 = 0 \Leftrightarrow x_1 = \frac{1}{2}x_2$. Solusi parametriknya adalah $x_1 = s$, $x_2 = 2s$ dengan $s \in \mathbb{R} \setminus \{0\}$.

Menghitung vektor eigen (3)

Untuk $\lambda = -1$

$$(-I - A)\mathbf{x} = 0$$

$$\left(\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}\right) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -4 & 0 \\ -8 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -4x_1 \\ -8x_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Sehingga, $x_1 = 0$ dan $x_2 = t$ dimana $t \in \mathbb{R} \setminus \{0\}$.

Jadi, bisakah Anda menjelaskan langkah demi langkah penghitungan nilai eigen dan vektor eigen?

Untuk menghitung **nilai eigen**, langkahnya adalah...

Untuk menghitung **vektor eigen**, langkahnya adalah...

Bagian 4: Basis untuk ruang eigen

Apa itu ruang eigen?

Perhatikan bahwa vektor eigen dari A yang bersesuaian dengan λ adalah solusi dari **sistem linier**:

$$(\lambda I - A)\mathbf{x} = \mathbf{0}$$

Jadi vektor eigen \mathbf{x} adalah vektor bukan nol dalam ruang solusi sistem linier.

Ruang solusi sistem linier $(\lambda I - A)\mathbf{x} = \mathbf{0}$ disebut eigenspace dari A.

Ruang eigen A yang sesuai dengan λ dapat dilihat sebagai:

- **1** ruang *null* dari matriks $\lambda I A$;
- ② kernel operator matriks $T_{(\lambda I-A)}: \mathbb{R}^n \to \mathbb{R}^n$;
- **3** himpunan vektor yang $A\mathbf{x} = \lambda \mathbf{x}$

Contoh: Bagaimana mencari ruang eigen?

Lihat kembali contoh sebelumnya.

Diberikan
$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$
 dengan nilai eigen 3 dan -1 .

• Untuk $\lambda = 3$, vektor eigen ditentukan oleh:

$$x_1 = s, \ x_2 = 2s \text{ with } s \in \mathbb{R} \setminus \{0\} \ \text{ or } \ \mathbf{x}_1 = \begin{bmatrix} s \\ 2s \end{bmatrix} = s \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

• Untuk $\lambda = -1$, vektor eigen ditentukan oleh:

$$x_1=0 \text{ and } x_2=t\in \mathbb{R}\setminus\{0\} \text{ or } \mathbf{x}_2=\begin{bmatrix}0\\t\end{bmatrix}=t\begin{bmatrix}0\\1\end{bmatrix}$$

Oleh karena itu, $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ adalah basis untuk ruang eigen yang terkait dengan $\lambda=3$, dan

adalah basis untuk ruang eigen yang terkait dengan lambda = -1.

Latihan

Latihan 1.

Temukan basis untuk ruang eigen matriks:

$$A = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$$

Latihan 2.

Temukan basis untuk ruang eigen matriks:

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

Bagian 5: Nilai eigen dan invertibilitas

Contoh motivasi

Pertanyaan 1.

We have seen (in the previous example) that the matrix

$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$
 memiliki nilai eigen 3 dan -1 .

Tugas: Hitunglah det(A).

Pertanyaan 2.

Given matrix
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$$
.

Task:

- Hitung nilai eigen A.
- Hitung determinan A

Jadi, apa yang dapat Anda katakan tentang hubungan antara determinan A dan nilai eigen A?

bersambung...