電子學報告

CE組態 電子二甲 黄名廷 26號

2016/4/13

- 1.量β值(利用三用電表歐姆檔RX10(先歸零)在測量)
- 2.决定直流工作點(IbQ、IcQ、Vcc、VceQ、Icc(max))

(1)特性曲線

更改電晶體為你剛剛量到的β值

從圖中可訂出Ibq,Vcc得數值(通常我我們會將Q點設計在二分之一Vcc的地方)

3.求出rπ≒ <u>IbQ</u>

4.利用輸出方程式算出Rc,Re

 $V_{cc} = I_{c}(R_{c}+R_{e})+V_{ce}$

Ic(max)、Vcc由第二步驟得知

因為Vce=0.2

所以
$$Vcc$$
与 $Ic(max) \times (Rc+Re) \rightarrow Rc+Re = \frac{\textit{Vcc}}{\textit{Ic}(max)}$

$$Ai = \frac{Rb}{Rb + r\pi + (1 + \beta) \times Re / RL} \times (1 + \beta) \times \frac{Re}{Re + RL}$$

$$IbQ = \frac{\text{Vcc} - 0.7}{\text{Rb} + (1 + \beta)\text{Re}}$$

$$100 = \frac{Rb}{Rb + 742 + 131 \times \frac{200 \times Re}{200 + Re}} \times 131 \times \frac{Re}{Re + 200}$$

$$35u = \frac{14.3}{\text{Rb} + 131 * \text{Re}} \rightarrow \text{Rb} + 131 * \text{Re} = 408571$$

$$R_{\rm C} + R_{\rm E} = \frac{15}{6m} = 2500$$

解出方程式即可求出Re,Rb

將Re帶入Rc+Re =
$$\frac{Vcc}{Ic(max)}$$

即可求出Rc

三、結果

1.方程式結果

911.6007103
289151.7355
1555.065956
99.99968195
15
0.006
130
742.8571429
0.000035
200

2.模擬結果

(1)電路圖

(2)輸出波形

得知Ai≒100