

Soutenance orale: Du capteur au banc de test

Par Nelly SCHEIBEL et Annaëlle CORVEC

Génie Physique 4^{ème} année Année 2020-2021

Sommaire

- I. Description générale
- II. Présentation du banc de test
 - III. Problèmes rencontrés
- IV. Caractéristiques typiques
 - Résultats
 - Analyse
 - V. Pistes d'améliorations

I. Description générale

- Jauge de contrainte : Dépôt de graphite (type 6B à 2H)
- Support et corps d'épreuve subissant les déformations : Feuille de papier de 0.4mm d'épaisseur
- Proportionnalité entre déformation et variation de résistance : Changement de conductivité des réseaux percolés
- * Mesure de la tension, amplification, puis calcul de la valeur de la résistance de la jauge

Datasheet

Rappel des caractéristiques générales

Connexion USB (faible consommation)
Facile d'utilisation, petit et léger
Bas coût
Temps de réponse rapide
Utilisation de plusieurs types de graphite
/isualisation en temps réel des variations de résistance

I. Description générale

- ❖ PCB shield comprenant → Circuit transimpédance + Module bluetooth + Écran OLED
- ❖ Code Arduino → Contrôle de l'acquisition des mesures de contrainte + Connexion bluetooth + Affichage OLED
- ❖ APK Android → Affichage de la valeur de la résistance et son changement relatif

Zoom sur les ...

Spécifications

Туре	Active sensor (thanks to a transimpedance amplifier circuit)
Sensing principle	Strain sensor
Materials	Graphite (several possibilities 6B, 3B, 2B, B, HB, 2H)
Power supply requirement	5V / USB port
Nature of output signals	Voltage
Nature of measurand	Resistance Deformation
Mounting	PCB shield and Arduino
Detectable Graphite	6B to HB
Typical response time	1 second

Measuring range	12.9 to 112 MΩ (depending on the graphite type)
Proof deformation	8,00 x10 ⁻³ to 1.00 x10 ⁻²
Burst deformation	1.00 x10 ⁻² to 1.60 x10 ⁻²
Zero (Vout @0 PSI)	Depending of the Graphite (from 11.8 to 52.7 M Ω)
Linearity	Depending of the Graphite
Resolution	Until +/- 0.1 MΩ
Operating Temperature Range	25°C (ambiant temperature)

Conditions standards d'utilisation

II. Présentation du banc de test

Deformation ϵ :

$$\epsilon = \frac{\Delta L}{L} = \frac{L - L0}{L0} \approx \frac{e}{2*R0}$$

- e: sensor thickness
- R0: radius of curvature
- · LO: initial length
- L0 : lenght after deformation

IV. Caractéristiques typiques

Résultats

GRAPHITE 6B

Mine 6B: la plus concentrée en graphite

Les 5 premières déformations : Variation relative comprise entre 13,6% et 15,3%

Mine 3B: Les meilleurs résultats

Choix d'une régression linéaire sur l'ensemble des mesures

Variation relative entre 8,5% et 17,4%

IV. Caractéristiques typiques Résultats

Mine 2B: Légère linéarité pour les trois dernières déformations

Variation relative entre 7,1% et 18,5%

Mine B: Variation plutôt linéaire

Variation relative plus élevée : de 18,8% à 43,7%

IV. Caractéristiques typiques Résultats

Mine HB: Variation relative plus faible: jusqu'à 14,8 %

- Données peu fiables
- Système plutôt instable

GRAPHITE 2H

Mine 2H: Mesures non fiables

- Très forte variation de la valeur de résistance
 - Système Instable

IV. Caractéristiques typiques Analyse

Particules de graphites :

- Sous forme de système granulaire
- Composées essentiellement de carbone

Déformation => connexion des réseaux des réseaux non connectés

Mines 6B à B: déconnexion des réseaux connectés

Seuil de percolation : probabilité à partir de laquelle on a une connexion

57% de conducteur => le film ne conduit pas Avec 1% de plus => on a une connexion

Graphite 2H : mesures difficiles car résistance élevée (taux de carbone insuffisant)
Hypothèse : Juste au-dessus du seuil

V. Pistes d'améliorations

Amélioration du PCB

Amélioration des mesures du banc de test

Développement du code Arduino

0

0

0

Révision de la schématique

Afin de diminuer les incertitudes des mesures dans la datasheet

Ajout de nouvelles fonctionnalités : Exemple : menu et encodeur rotatoire.

V. Pistes d'améliorations

Amélioration du PCB

 $Rc = -R5 - R1 + \left(1 + \frac{R3}{R2}\right) * R1 * \frac{Vcc}{Vadc}$

Pour le gain : Souder des plots pour positionner la résistance R2

Revoir les dimensions de piste et de plot pour composants

V. Pistes d'améliorations

Limite : Mesures peu répétables et capteur fragile

Amélioration du protocole de test

Variation des propriétés physiques des capteurs :
Concentration du dépôt de crayon
Epaisseur de la feuille

Pose du capteur sur le banc :

- → Variation de la contrainte pour un même rayon
- → endommagement des zones de connexion

Automatisation de l'application des contraintes sur le banc dans le but d'améliorer la répétabilité des mesures

Merci pour votre attention

