Bent Sequences and Feedback with Carry Shift Registers

Charles Celerier

SASMC 2012

R1. uniform distribution

$$|\sum_{n=1}^{p} (-1)^{a_n}| \leq 1$$

R1. uniform distribution

$$|\sum_{n=1}^{p} (-1)^{a_n}| \leq 1$$

R2.

 $\frac{1}{2^i}$ of the runs have length i

R1. uniform distribution

$$|\sum_{n=1}^{p} (-1)^{a_n}| \leq 1$$

R2.

$$\frac{1}{2^i}$$
 of the runs have length i

R3. low auto-correlation,

$$C(\tau) = \frac{\sum_{n=1}^{p} (-1)^{a_n + a_{n+\tau}}}{p}$$

Example

$$a = [0, 0, 0, 1, 0, 1, 1]$$

Example

$$a = [0, 0, 0, 1, 0, 1, 1]$$

R1. true.

$$\sum_{n=1}^{7} (-1)^{a_n} = 1$$

Example

$$a = [0, 0, 0, 1, 0, 1, 1]$$

R1. true.

$$\sum_{n=1}^{7} (-1)^{a_n} = 1$$

R2. true.

Example

$$a = [0, 0, 0, 1, 0, 1, 1]$$

R1. true.

$$\sum_{n=1}^{7} (-1)^{a_n} = 1$$

R2. true.

R3. true.

$$C(\tau) = \frac{\sum_{n=1}^{7} (-1)^{a_n + a_{n+\tau}}}{7} = \frac{-1}{7}$$

0101001101000001010100110100110101000011 = SASMC

plaintext length is not always known

- plaintext length is not always known
- ▶ fast

- plaintext length is not always known
- ▶ fast
- easy to implement with hardware

- plaintext length is not always known
- ▶ fast
- easy to implement with hardware
- near one-time-pad security

Topics

- Boolean functions
- Feedback with Carry Shift Registers
- 2-adic integers
- Bent Sequences

\mathbb{F}_2 or "GF two"

XOR	AND
$0 \oplus 0 := 0$	$0 \cdot 0 := 0$
$0\oplus 1:=1$	$0 \cdot 1 := 0$
$1 \oplus 0 := 1$	$1 \cdot 0 := 0$
$1\oplus1:=0$	$1 \cdot 1 := 1$

Table: Binary Operations for \mathbb{F}_2

$$\mathbb{F}_2^n$$
 or "GF two to the n"

Let
$$a,b\in\mathbb{F}_2^3$$
 such that $a=(1,0,1)$ and $b=(0,1,1)$ then

$$a + b = (1 \oplus 0, 0 \oplus 1, 1 \oplus 1) = (1, 1, 0)$$

 $a \cdot b = 1 \cdot 0 \oplus 0 \cdot 1 \oplus 1 \cdot 1 = 1$

Fact

 \mathbb{F}_2^n is a vector space.

Properties of $x \in \mathbb{F}_2^n$

Definition

Let $x,y\in\mathbb{F}_2^n$. Then $wt:\mathbb{F}_2^n\to\{0,\cdots,n\}$ is defined by

$$wt(x) := \sum_{i=0}^{n-1} x_i$$

and $d:\mathbb{F}_2^n imes\mathbb{F}_2^n o\mathbb{N}\cup\{0,\cdots,n\}$ is defined by

$$d(x,y):=w(x+y).$$

Then wt(x) is the **Hamming weight** of x and d(x, y) is the **Hamming distance** between x and y.

Some examples

Example

Let $a,b,c\in\mathbb{F}_2^5$ such that

$$a = (0, 1, 1, 0, 1), b = (1, 1, 1, 0, 0), and c = (0, 0, 1, 1, 0).$$

Then,

$$wt(a) = 3$$
 $d(a, b) = 2$
 $wt(b) = 3$ $d(a, c) = 3$
 $wt(c) = 2$ $d(b, c) = 3$.

Boolean functions in \mathcal{BF}_n

Definition

Any function f defined such that

$$f: \mathbb{F}_2^n \to \mathbb{F}_2$$

is a **Boolean function**. The set of all Boolean functions on n variables will be denoted by \mathcal{BF}_n .

An example

Example Let
$$f = x_0 + x_1$$
.

<i>x</i> ₀	<i>x</i> ₁	$f(x_0,x_1)$
0	0	0
1	0	1
0	1	1
1	1	0

Table: Truth Table of f

Characters of \mathbb{F}_2^n

Definition

A character χ of a finite abelian group G is a group homomorphism from G into the multiplicative group of complex numbers.

Fact

$$\chi_{\lambda}(x) := (-1)^{\lambda \cdot x}$$
 where $\lambda, x \in \mathbb{F}_2^n$ is a group character of \mathbb{F}_2^n .

Let the **dual group** $\hat{\mathbb{F}}_2^n$ be the group of all characters of \mathbb{F}_2^n .

Let the **dual group** $\hat{\mathbb{F}}_2^n$ be the group of all characters of \mathbb{F}_2^n .

$$(\chi \cdot \psi)(x) = \chi(x)\psi(x), \ x \in \mathbb{F}_2^n$$

Let the **dual group** $\hat{\mathbb{F}}_2^n$ be the group of all characters of \mathbb{F}_2^n .

$$(\chi \cdot \psi)(x) = \chi(x)\psi(x), \ x \in \mathbb{F}_2^n$$

$$\mathbb{F}_2^n \cong \hat{\mathbb{F}_2^n}$$

Definition

Let $f \in \mathcal{BF}_n$. Then $\hat{f}: \mathbb{F}_2^n \to \{1, -1\}$ such that $\hat{f}(x) = (-1)^{f(x)}$ is a pseudo-Boolean function

Example

Let $f = x_0 + x_1$.

<i>x</i> ₀	<i>x</i> ₁	$f(x_0,x_1)$	$\hat{f}(x_0,x_1)$
0	0	0	1
1	0	1	-1
0	1	1	-1
1	1	0	1

Table: Truth Table of \hat{f}

Definition

Let $f \in \mathcal{BF}_n$ and $\lambda \in \mathbb{F}_2^n$. Then the *Walsh transform* of f is defined by:

$$W_f(\lambda) = \sum_{x \in \mathbb{F}_2^n} \hat{f}(x) \chi_{\lambda}(x). \tag{1}$$

Lemma

The characters of \mathbb{F}_2^n belong to $\hat{\mathcal{BF}}_n = \{\hat{f} : f \in \mathcal{BF}_n\}$ and form an orthonormal basis of $\hat{\mathcal{BF}}_n \otimes \mathbb{R}$.

Lemma

For $\hat{f} \in \mathcal{BF}_n$,

$$\hat{f}(x) = \frac{1}{2^{n/2}} \sum_{\lambda \in \mathbb{F}_2^n} c(\lambda) \chi_{\lambda}(x)$$
 (2)

where $c(\lambda)$ are given by

$$c(\lambda) = \frac{1}{2^{n/2}} \mathcal{W}_f(\lambda) \tag{3}$$

Call the $c(\lambda)$'s Fourier coefficients.

Rothaus' Definition and First Theorem

Definition

If all of the Fourier coefficients of \hat{f} are ± 1 then f is a **bent function**.

Theorem

If f is a bent function on \mathbb{F}_2^n , then n is even, n=2k. Moreover, the degree of f is at most k, except in the case k=1.

Properties of Bent Functions

Properties of Bent Functions

(R1) 1.
$$wt(f) = 2^{n-1} \pm 2^{n/2-1}$$

Properties of Bent Functions

```
(R1) 1. wt(f) = 2^{n-1} \pm 2^{n/2-1}
(R2) 2. perfectly non-linear
```

Properties of Bent Functions

(R1) 1.
$$wt(f) = 2^{n-1} \pm 2^{n/2-1}$$

(R2) 2. perfectly non-linear

(R3) 3.
$$\sum_{x \in \mathbb{F}_2^n} f(x) + f(x+a) = 0 \ \forall a \in \mathbb{F}_2^n$$

Finite State Machines

Definition

A finite state machine consists of a finite collection of states K, which sequentially accepts a sequence of **inputs** from a finite set A, and produces a sequence of **outputs** from a finite set B. Moreover, there is an **output function** μ which computes the present output as a fixed function of present input and present state, and a **next state function** δ which computes the next states as a fixed function of present input and present state. In a more mathematical manner, μ and δ are defined such that

$$\mu: K \times A \to B \qquad \mu(k_n, a_n) = b_n$$
 (4)

$$\delta: K \times A \to K \qquad \delta(k_n, a_n) = k_{n+1}$$
 (5)

Figure: Feedback with Carry Shift Register

Breaking a Stream Cipher

Kerckhoffs' principle: "In assessing the security of a cryptosystem, one should always assume the enemy knows the method being used."

Typically, breaking a stream cipher will mean recovering the state of the shift register at a given time.

Two Methods

Two Methods

1. 2-adic integers

Two Methods

- 1. 2-adic integers
- 2. Boolean sequences

What happens when we write positive integers with infinitely many digits?

What happens when we write positive integers with infinitely many digits?

Definition

The infinite integer sequence (x_n) determines a **2-adic integer** α , or $(x_n) \to \alpha$, if

$$x_{i+1} \equiv x_i \pmod{2^{i+1}} \quad \forall i \ge 0. \tag{6}$$

Two sequences (x_n) and (x'_n) determine the same 2-adic integer if

$$x_i \equiv x_i' \pmod{2^{i+1}} \quad \forall i \ge 0. \tag{7}$$

The **set of all 2-adic integers** will be denoted by \mathbb{Z}_2 .

Example

Let $(x_n) \to \alpha \in \mathbb{Z}_2$. Then the first 5 terms of (x_n) may look something like:

$$(x_n) = (1, 1+1\cdot 2, 1+1\cdot 2+0\cdot 2^2, 1+1\cdot 2+0\cdot 2^2+0\cdot 2^3, 1+1\cdot 2+0\cdot 2^2+1\cdot 2^4, \ldots)$$

= (1,3,3,3,19,...)

Then an equivalent sequence to (x_n) could look entirely different:

$$(y_n) = (19, 3, 3, 19, 19, \dots)$$

```
\alpha = 11001 \cdots
1 = 1000 \cdots
2 = 0100 \cdots
3 = 1100 \cdots
-1 = 1111 \cdots
1/3 = 1101010101 \cdots
-1/3 = 1010101010 \cdots
```

Definition

Let $\alpha=(a_n)\in\mathbb{Z}_2\setminus (0)$. If m is the smallest number in $\mathbb{N}\cup\{0\}$ such that $a_m\not\equiv 0\pmod 2^{m+1}$, then the **2-adic valuation** of α is m, or $\log_2(\alpha)=m$. If $\alpha=0$, then $\log_2(\alpha)=\infty$.

Example

Let $\alpha = 00010111011111\cdots$. Then $\log_2(\alpha) = 3$.

Boolean Sequence

Boolean Sequence

Definition

Let (a_n) be a sequence. If T is the smallest integer such that $a_i = a_{i+T}$, then the **minimal period** of (a_n) is T.

Definition

Let $f \in \mathcal{BF}_n$ and $v_i \in \mathbb{F}_2^n$ such that $v_i = B^{-1}(i)$ for $0 \le i < 2^n$. Then,

$$seq(f) = (f(v_0), f(v_1), \dots, f(v_{2^n-1}), f(v_0), \dots)$$
 (8)

is a lexicographical Boolean sequence.

Theorem

The lexicographical Boolean sequence of a Bent function has a period exactly 2^n .

Boolean Sequence

Definition

Let $f \in \mathcal{BF}_n$ and $v_i \in \mathbb{F}_2^n$ such that $v_i = B^{-1}(i)$ for $0 \le i < 2^n$. Then,

$$\alpha_f = (f(v_0), f(v_0) + f(v_1) \cdot 2, \cdots, f(v_0) + \cdots + f(v_i) \cdot 2^i, \cdots)$$
 (9)

where $\alpha_f \in \mathbb{Z}_2$ is called the **2-adic expansion** of f.

Lemma

The digit representation of α_f is seq(f).

Maiorana-McFarland Class Boolean Functions

A simple bent function construction is accomplished by the Boolean functions in the **Maiorana-McFarland class**. This is the the set \mathcal{M} which contains all Boolean functions on $\mathbb{F}_2^n = \{(x,y): x,y \in \mathbb{F}_2^{n/2}\}$, of the form:

$$f(x,y) = x \cdot \pi(y) \oplus g(y)$$

where π is any permutation on $\mathbb{F}_2^{n/2}$ and g any Boolean function on $\mathbb{F}_2^{n/2}$.

All functions in the Maiorana-McFarland class of Boolean functions are bent.

Consider the subset of Maiorana-McFarland class Boolean functions where g(y)=0. $\bar{\pi}$ will be the function which specifies where each index moves to under the permutation π .

Theorem

$$\log_2(\alpha_{x \cdot \pi(y)}) = 2^{n/2} + 2^{\bar{\pi}(y_0)}$$

The 2-adic valuation of the Boolean sequence of the functions in this subset is entirely dependent on the permutation π .

Conclusion

- Pseudorandom sequences
- Stream Ciphers
- Shift Registers
- ► Analysis using Boolean functions and 2-adic integers
- ▶ Connections between Bent functions and 2-adic valuation