

Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes

Yang Zhang*, Philip David**, Boqing Gong*

*Center for Research in Computer Vision, University of Central Florida, Orlando, FL 32816 **Computational and Information Sciences Directorate, U.S. Army Research Laboratory, Adelphi, MD 20783 yangzhang@knights.ucf.edu, philip.j.david4.civ@mail.mil, bgong@crcv.ucf.edu

Motivation

Segmentation model trained on synthetic data does not work well on real images

Laborious to annotate real training images Synthetic training images mismatch with real images

Goal: Domain adaptation for semantic segmentation:

Boost performance of models trained on synthetic images

Curriculum Domain Adaptation

How to improve segmentation training without accessing real image annotation?

Regularize it with segmentation posteriors of the target domain, which are learned from easier tasks Posterior 1: Global label distributions of images Constrain segmentation CNN training w/ predicted label histograms of real images

Posterior 2: Local label distributions of landmark superpixels Constrain segmentation CNN training w/ predicted chosen confident superpixel classes of real images

Approach

Superpixel Label Transfer

Trained on synthetic data

Segmentation Conventional segmentation loss

Superpixel loss

Local superpixel constraint Network prediction need to match predicted local superpixel's classes

Label Distribution

Global label distributions constraint Network prediction's label histogram needs to match predicted ones

Conclusion

Proposed a segmentation domain adaptation method:

Infer properties of target domain in simpler tasks Regularize segmentation network by the properties By adaptation, significantly outperforms original network

Qualitative & Quantitative Results

Code & dataset available at: https://github.com/YangZhang4065/AdaptationSeg

