Errors and exceptions

Inteligencia Artificial en los Sistemas de Control Autónomo Máster Universitario en Ingeniería Industrial

Departamento de Automática

Objectives

- 1. To be aware of the error handling problem
- 2. Understand exceptions
- 3. Handle, create and raise exceptions in Python

References

Guido van Rossum, "Python Tutorial. Release 3.2.3", chapter 8

Table of Contents

- I. Definition
- 2. Handling exceptions
- 3. Exceptions with arguments
- 4. Clean-up actions

Exception definition (I)

- Errors happen
 - We need a mechanism to handle errors
- Some errors happen before execution (syntax errors)
- Others are only detected in execution (runtime errors)

```
>>> while True print('Hello world')
File "<stdin>", line 1
    while True print('Hello world')
^^I
```

SyntaxError: invalid syntax

- Exception: An error that disrupts the normal execution flow
 - File not found, division by zero, invalid argument, etc
 - Code cannot be executed
 - Elegant solution to handle errors

Exception definition (II)

Call stack: Sequence of invoked methods

Exception definition (III)

Exception handling Throws exception - Method where error occurred Looking for appropriate handler Method without an exception Forwards exception handler Looking for appropriate handler Catches some Method with an exception other exception handler main

When an error happens ...

- Code execution is stopped
- 2. An exception is thrown
- 3. The interpreter goes back in the call stack
- 4. When the interpreter finds an exception handler, it is executed

The exception handler catches the exception, the program finishes otherwise

Exception definition (IV)

```
>>> 10 * (1/0)
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
>>> 4 + spam*3
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
NameError: name 'spam' is not defined
>>> '2' + 2
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
TypeError: Can't convert 'int' object to str implicitly
```


Handling exceptions (I)

Handling an exception requires a try-except statement

- try: Encloses the vulnerable code
- catch: Code that handles the exception

```
try-catch statement
```

```
try:

# Risky code

except ExceptionType1:

# Handle error

except ExceptionType2:

# Handle error

except:

# Handle errors
```


Handling exceptions (II)

```
try-catch example

try:
    x = int(input("Please enter a number: "))
except ValueError:
    print("Oop!, that was not a number!")
except KeyboardInterrupt:
    print("Got Ctrl—C, good bye!")
```

The exception type contains the error

Handling exceptions (III)

```
try-catch example

try:
    f = open('file.txt')
    s = f.readline()
    i = int(s.strip())

except IOError as err:
    print("I/O error: {o}".format(err))

except ValueError:
    print("Could not convert data to integer")

except:
    print("Unexpected exception")
    raise
```

New Python element

Raise

Exceptions with arguments

x = spamy = eggs

Exception arguments: When we need more info

```
try:
     raise Exception ("spam", "eggs")
 except Exception as inst:
     print(type(inst))
   print(inst.args)
   print(inst)
  x, y = inst.args
8
    print('x = ', x)
     print('y = ', y)
class 'Exception'>
2 ('spam', 'eggs')
3 ('spam', 'eggs')
```


Clean-up actions

Sometimes we need to execute code under all circumstances

- Typically clean-up actions: Close files, database connections, sockets, etc
- The **finally** clause solves this problem

```
Example

try:
raise KeyboardInterrupt
finally:
print("Goodbye, world!")
```

