ЛАБОРАТОРНАЯ 5

ИНТЕРПОЛИРОВАНИЕ ФУНКЦИЙ

Пусть функция f(x) задана таблично, либо вычисление ее требует громоздких выкладок. Заменим приближенно функцию f(x) на какую-либо функцию F(x), так, чтобы отклонение f(x) от F(x) было в заданной области в некотором смысле минимальным. Подобная замена называется

аппроксимацией функции f(x), а функция F(x) — аппроксимирующей (приближающей) функцией.

Классический подход к решению задачи построения приближающей функции основывается на требование строгого совпадения значений f(x) и F(x) в точках x_i (i = 0, 1, 2,...n), т. е.

$$F(x_0) = y_0, F(x_1) = y_1, ..., F(x_n) = y_n.$$
 (3.1)

В этом случае нахождение приближенной функции называют интерполяцией (или интерполированием), точки $x_0, x_1, \cdots x_n$ — узлами интерполяции.

Интерполяционный многочлен Лагранжа:

$$L_n(x) = y_0 \cdot l_0(x) + y_1 \cdot l_1(x) + \dots + y_n \cdot l_n(x)$$
 где
$$l_i(x) = \frac{(x - x_0) \cdot (x - x_1) \cdot \dots \cdot (x - x_{i-1}) \cdot (x - x_{i+1}) \cdot \dots \cdot (x - x_n)}{(x_i - x_0) \cdot (x_i - x_1) \cdot \dots \cdot (x_i - x_{i-1}) \cdot (x_i - x_{i+1}) \cdot \dots \cdot (x_i - x_n)}$$

Интерполяция сплайнами:

Учитывая, что $a_i = y_{i-1}$:

$$\begin{cases} b_{i} \cdot h_{i} + c_{i} \cdot h_{i}^{2} + d_{i} \cdot h_{i}^{3} = y_{i} - y_{i-1} & i = 1, 2, ..., n \\ b_{i+1} - b_{i} - 2c_{i} \cdot h_{i} - 3d_{i} \cdot h_{i}^{2} = 0 & i = 1, 2, ..., n - 1 \\ c_{i+1} - c_{i} - 3d_{i} \cdot h_{i}^{2} = 0 & i = 1, 2, ..., n - 1 \\ c_{1} = 0 & c_{n} + 3d_{n} \cdot h_{n} = 0 \end{cases}$$

Данная система состоит из 3n уравнений с 3n неизвестными. Решив ее, получим значения неизвестных b_i , c_i , d_i . Учитывая, что $a_i = y_{i-1}$, получим значения всех коэффициентов для искомого сплайна.

Задание

Написать программу, которая строит интерполяционный многочлен по заданной пользователем функции

1. Вычислить значения заданной функции $y_i = f(x_i)$ в узлах интерполяции. Число узлов определяется следующим образом:

$$n = N + 2$$
, где N - номер варианта с 1 до 8 $n = N - 2$, где N - номер варианта с 9 до 16

Узлы неравноотстоящие, задаются пользователем

№ варианта	f(x)	[<i>a</i> , <i>b</i>]	№ варианта	f(x)	[<i>a</i> , <i>b</i>]
1	$\sin(x^2)$	[0,2]	9	$x\cos(x+\ln(1+x))$	[1,5]
2	$\cos(x^2)$	[0,2]	10	$10 \ln \frac{2x}{1+x}$	[1,5]
3	$e^{\sin(x)}$	[0,5]	11	$\sin x^2 \cdot e^{-\left(\frac{x}{2}\right)^2}$	[0,3]
4	$\frac{1}{0.5 + x^2}$	[0,2]	12	$\cos(x+\cos^3 x)$	[0,2]
5	$e^{-(x+\sin x)}$	[2,5]	13	$\cos(x+e^{\cos x})$	[3,6]
6	$\frac{1}{1+e^{-x}}$	[0,4]	14	$\cos(2x+x^2)$	[0,1]
7	$\sin(x + e^{\sin x})$	[0,3]	15	$e^{\cos x}\cos x^2$	[0,2]
8	$e^{-(x+\frac{1}{x})}$	[1,3]	16	$\sin(x+e^{x+2})$	[1,2]

- 2. По вычисленной таблице значений провести интерполяцию многочленам Лагранжа
- 3. По этой же таблице значений провести интерполяцию кубическими сплайнами. Способ решения системы уравнений для нахождения сплайна на выбор студента
- 4. Построить график, на котором отобразить исходную функцию, полученный интерполяционный многочлен Лагранжа и график кубического сплайна.