OLYMPIC TRÍ TUỆ NHÂN TẠO 2025

TOPIC 3: COMPUTER VISION (CV) - LOCAL VERSION

Phân vùng tổn thương phổi từ ảnh X-quang ngực (Medical Image Segmentation with Explainable AI - Local Development)

Contents

1	HƯ	ớng dẫn chung	4				
	1.1	Thể thức thi đấu	4				
		1.1.1 Hướng dẫn sử dụng Local Environment	4				
	1.2	Thư viện hỗ trợ	4				
	1.3	Quy định về dữ liệu và mã nguồn	4				
	1.4	Quy định về mô hình ngôn ngữ lớn (LLM)	5				
	1.5	Nộp bài và đánh giá	5				
	1.6	Bài tập bổ sung	5				
2	ΜÔ	MÔ TẢ BÀI TOÁN					
	2.1	Tổng quan	5				
	2.2	Mục tiêu học tập	5				
3	ΜÔ	MÔ TẢ DỮ LIỆU					
	3.1	Cấu trúc dữ liệu Local	6				
	3.2	Hướng dẫn sử dụng Dataset Local	6				
		3.2.1 Dataset chính thức	6				
		3.2.2 Cấu hình Local Environment	7				
		3.2.3 U'u điểm của Local Development	7				
	3.3	Thống kê dữ liệu	7				
4	ÐÁI	ĐÁNH GIÁ					
	4.1	Metrics chính	7				
		4.1.1 Dice Coefficient	7				
		4.1.2 IoU (Intersection over Union)	8				
		4.1.3 Binary F1-score	8				
	4.2	Yêu cầu visualization	8				
	4.3	Kết quả mong đợi	9				
5	MÔ HÌNH BASELINE						
	5.1	Kiến trúc đề xuất - Simple U-Net	9				
	5.2	Cấu trúc đề xuất	10				
	5.3	Hướng dẫn bắt đầu Local	10				
	5.4	Cấu hình Local Optimization	10				
6	YÊU	U CẦU NỘP BÀI	11				
	6.1	Deliverables bắt buộc	11				
	6.2	Criteria đánh giá	11				
	6.3	Deadline	11				

7	GÖ	Ý NÂNG CAO	12
	7.1	Self-supervised Segmentation	12
	7.2	Transformer-based models	12
	7.3	Multimodal fusion	12
	7.4	Advanced XAI	12
	7.5	Ensemble methods	12
	7.6	Local Development Tips	12

1 HƯỚNG DẪN CHUNG

1.1 Thể thức thi đấu

• Ngôn ngữ lập trình: Python 3.10

• Môi trường: Local development (Jupyter Notebook, VS Code, PyCharm)

• Thời gian: 4 giờ

• Hình thức: Lập trình thực hành trên máy tính local

1.1.1 Hướng dẫn sử dụng Local Environment

• Cài đặt Python: Python 3.10+ với pip/conda

• GPU Support: CUDA 11.8+ (khuyến nghị) hoặc CPU

• Dataset: Đã được xử lý và tối ưu hóa sẵn (283 ảnh)

• Chạy code: Chạy các cell theo thứ tự từ trên xuống

• Lưu kết quả: Files sẽ được lưu trong thư mục ./results/

1.2 Thư viện hỗ trợ

Cần cài đặt các thư viện sau:

- torch (PyTorch) với CUDA support
- torchvision
- numpy
- matplotlib
- scikit-learn
- Pillow
- opencv-python
- tqdm
- segmentation-models-pytorch
- albumentations
- captum

1.3 Quy định về dữ liệu và mã nguồn

- Thí sinh được phép sử dụng các thư viện đã cài đặt
- Không được sử dụng API ngoài hoặc dịch vụ cloud computing
- Tất cả mô hình phải chạy local trên máy tính của thí sinh
- Dataset đã được cung cấp sẵn và xử lý trong thư mục ./chest-xray-masks-and-labels/
- Local: Dataset có sẵn tại ./chest-xray-masks-and-labels/Lung Segmentation/
- Cấu trúc: Train (226 ảnh) và Test (57 ảnh) đã được chia sẵn

1.4 Quy định về mô hình ngôn ngữ lớn (LLM)

- Không được sử dụng ChatGPT, Claude, Gemini hoặc các LLM khác trong quá trình thi
- Không được tra cứu code từ GitHub, Stack Overflow hoặc các nguồn khác
- Chỉ được sử dụng tài liệu tham khảo đã được cung cấp

1.5 Nộp bài và đánh giá

- Nộp file notebook (.ipynb) đã hoàn thành
- Kèm theo file PDF báo cáo kết quả (tối đa 5 trang)
- Đánh giá dựa trên: Độ chính xác mô hình (40%), Code quality (30%), Báo cáo (30%)
- Thời gian nộp bài: Trong vòng 30 phút sau khi kết thúc thi

1.6 Bài tập bổ sung

Ngoài bài chính, thí sinh có thể làm thêm các bài tập nâng cao để cộng điểm:

- Implement thêm các kỹ thuật XAI khác (Integrated Gradients, SHAP)
- Thử nghiệm với các kiến trúc mô hình khác (UNet++, DeepLabv3)
- Áp dung data augmentation nâng cao
- So sánh hiệu suất với các pretrained encoders khác nhau

2 MÔ TẢ BÀI TOÁN

2.1 Tổng quan

Trong lĩnh vực chẩn đoán hình ảnh y học, việc phân vùng phối trên ảnh X-quang ngực là một bài toán quan trọng giúp hỗ trợ bác sĩ trong việc phát hiện và chẩn đoán các bệnh lý về phối. Nhiệm vụ của bạn là:

- 1. **Huấn luyện mô hình Simple U-Net** để phân vùng phổi trên ảnh X-quang ngực
- 2. Sử dụng kỹ thuật XAI (Explainable AI) để minh hoạ vùng mà model tập trung chú ý
- 3. **Đánh giá hiệu suất** bằng các metrics phù hợp cho bài toán segmentation

2.2 Mục tiêu học tập

- Hiểu và thực hành bài toán Medical Image Segmentation
- Làm quen với kiến trúc **Simple U-Net** và các biến thể
- Áp dung **Explainable AI** (GradCAM) để giải thích model
- Sử dụng các **metrics phù hợp** cho segmentation (Dice, IoU, F1-score)
- Thực hành Data Augmentation và Transfer Learning

3 MÔ TẢ DỮ LIỆU

3.1 Cấu trúc dữ liệu Local

Dataset "Chest X-ray Masks and Labels" đã được xử lý và tối ưu hóa với cấu trúc:

```
chest-xray-masks-and-labels/
  Lung Segmentation/
      train/
                         # 226 ånh (80%)
                          # Ånh X-quang gốc
          CXR_png/
            CHNCXR 0001 0.png
                          # Mask phân vùng
          masks/
            CHNCXR_0001_0_mask.png
          ClinicalReadings/ # Thông tin lâm sàng
                          # 57 ånh (20%) - Ấn đi
      test/
          CXR_png/
          masks/
          ClinicalReadings/
```

- Tổng số ảnh gốc: 800 ảnh X-quang ngực
- Số ảnh có mask hợp lệ: 566 ảnh (sau khi loại bỏ ảnh không có mask)
- **Số ảnh sử dụng**: 283 ảnh (50% reduction để tăng tốc training)
- **Kích thước dataset**: 2.4GB (đã được xử lý và tối ưu hóa)
- **Train set**: 226 anh (80%) Chia thành 203 train / 23 validation (90/10)
- **Test set**: 57 anh (20%) Ân đi, không sử dụng trong training
- Kích thước ảnh: 256×256 pixels (resized từ 3000×2919)
- Class balance: 50/50 normal/tuberculosis

3.2 Hướng dẫn sử dụng Dataset Local

3.2.1 Dataset chính thức

- Tên: Chest X-ray Masks and Labels (Processed Version)
- Tác giá: Nikhil Pandey (Original), Olympic AI Team (Processed)
- Link gốc: https://www.kaggle.com/datasets/nikhilpandey360/chest-xray-masks-and-lab
- **Kích thước**: 2.4GB (đã được xử lý và tối ưu hóa)
- Số lượng ảnh: 283 ảnh X-quang ngực (từ 800 ảnh gốc)
- Phân chia dataset: Train (226 ảnh), Validation (23 ảnh), Test (57 ảnh ẩn đi)
- **Kích thước ảnh**: 256×256 pixels (resized từ 3000×2919)

- **Định dạng**: PNG (ảnh RGB + mask grayscale)
- Class balance: 50/50 normal/tuberculosis

3.2.2 Cấu hình Local Environment

```
Bước 1: Kiểm tra cấu trúc dataset
```

- # Kiểm tra dataset đã có sẵn
- ls datasets/chest-xray-masks-and-labels/Lung\ Segmentation/
- # Kết quả mong đợi:
- # CXR png/ masks/ ClinicalReadings/ test/

Bước 2: Thiết lập đường dẫn trong code

```
# Đường dẫn dataset
```

```
DATA_DIR = "./datasets/chest-xray-masks-and-labels/Lung Segmentation"
IMAGES_DIR = os.path.join(DATA_DIR, "CXR_png")
MASKS DIR = os.path.join(DATA_DIR, "masks")
```

Bước 3: Tạo thư mục output

```
# Tao thu muc output
os.makedirs('./output/models', exist_ok=True)
os.makedirs('./output/visuals', exist_ok=True)
```

3.2.3 Ưu điểm của Local Development

- **Tốc độ**: Không phụ thuộc vào kết nối internet
- GPU: Sử dụng GPU local với hiệu suất cao
- **Tùy chính**: Có thể điều chính batch size, epochs theo hardware
- **Debugging**: Dễ dàng debug và test code
- Offline: Có thể làm việc offline hoàn toàn

3.3 Thống kê dữ liệu

4 ĐÁNH GIÁ

4.1 Metrics chính

Bài toán segmentation sẽ được đánh giá bằng các metrics sau:

Thông số	Giá trị
Tổng số ảnh gốc	800
Số ảnh có mask hợp lệ	566
Số ảnh sử dụng	283
Kích thước dataset	2.4GB
Kích thước ảnh	256×256 pixels
Định dạng ảnh	PNG (RGB)
Định dạng mask	PNG (Grayscale)
Train set	226 ảnh (80%)
Train/Validation split	203/23 (90/10)
Test set	57 ảnh (20%)
Class balance	50/50 normal/tuberculosis

Table 1: Thống kê dataset đã xử lý

4.1.1 Dice Coefficient

Dice coefficient đo độ tương đồng giữa prediction và ground truth:

Dice =
$$\frac{2|A \cap B|}{|A| + |B|} = \frac{2 \times TP}{2 \times TP + FP + FN}$$
(1)

Trong đó:

• *A*: Predicted mask

• *B*: Ground truth mask

• TP: True Positive

• FP: False Positive

• FN: False Negative

4.1.2 IoU (Intersection over Union)

IoU đo tỷ lệ giao nhau giữa prediction và ground truth:

$$IoU = \frac{|A \cap B|}{|A \cup B|} = \frac{TP}{TP + FP + FN}$$
 (2)

4.1.3 Binary F1-score

F1-score cân bằng giữa Precision và Recall:

$$F1 = \frac{2 \times Precision \times Recall}{Precision + Recall}$$
 (3)

Với:

$$Precision = \frac{TP}{TP + FP}$$
 (4)

$$Recall = \frac{TP}{TP + FN} \tag{5}$$

4.2 Yêu cầu visualization

CÁC THÍ SINH PHẢI THỰC HIỆN:

- Hiển thị ảnh gốc, ground truth mask, predicted mask, và overlay
- Tạo heatmap XAI (GradCAM) để minh hoạ vùng chú ý của model
- Lưu 5 kết quả visualization tốt nhất vào ./results/predictions/
- So sánh prediction với ground truth trên validation set
- **BĂT BUỘC**: Đạt Dice Score > 0.85 trên tập validation
- BẮT BUỘC: Implement GradCAM để giải thích model

4.3 Kết quả mong đợi

Hình 1 minh họa kết quả mong đợi từ mô hình segmentation với GradCAM:

Figure 1: Kết quả mong đợi: Segmentation với GradCAM visualization. Các cột từ trái sang phải: Ảnh gốc, Ground Truth, Prediction, GradCAM Heatmap, Overlay (Enhanced). Dice scores cao (0.934, 0.965, 0.974) cho thấy chất lượng segmentation tốt.

Giải thích hình:

• **Cột 1**: Ảnh X-quang gốc với Dice scores cao (0.934, 0.965, 0.974)

- Cột 2: Ground truth mask (màu trắng = vùng phổi)
- Cột 3: Predicted mask từ mô hình
- Cột 4: GradCAM heatmap (màu sáng = vùng quan trọng)
- Cột 5: Overlay GradCAM trên ảnh gốc để hiểu vùng model tập trung

5 MÔ HÌNH BASELINE

5.1 Kiến trúc đề xuất - Simple U-Net

CẤU HÌNH BẮT BUỘC CHO THÍ SINH:

- **Simple U-Net** với encoder từ đầu (không pretrained)
- **Encoder**: 4 blocks Conv2D + MaxPool (64, 128, 256, 512 filters)
- Bottleneck: 1024 filters
- **Decoder**: ConvTranspose2D + skip connections
- Loss function: Combined Loss (Dice Loss + BCE Loss)
- Optimizer: Adam với learning rate 0.001
- Batch size: 4 (phù hợp với GPU local)
- **Epochs**: 10 (quick experiment) hoặc 50+ (full training)
- **Image size**: 256×256 pixels
- Data augmentation: Horizontal flip, rotation, brightness/contrast adjustment
- XAI: GradCAM với target layer model.enc4[-2]
- Workers: 2 (tối ưu cho CPU local)

5.2 Cấu trúc đề xuất

CÁC BƯỚC THÍ SINH PHẢI THỰC HIÊN:

- 1. **Data Loading & Preprocessing** (resize, augment, local paths)
- 2. **Model Initialization** (Simple U-Net architecture)
- 3. **Training & Evaluation** (train/val split với local config)
- 4. **Metric Calculation** (Dice, IoU, F1)
- 5. **XAI Implementation** (GradCAM heatmap generation)
- 6. Visualization & Saving (5 best results vào ./results/)

5.3 Hướng dẫn bắt đầu Local

CÁC BƯỚC THÍ SINH PHẢI LÀM:

- 1. **Kiểm tra dataset** đã có sẵn trong ./chest-xray-masks-and-labels/
- 2. Cài đặt dependencies cần thiết cho local

- 3. **Thiết lập DataLoader** với train/val split (203/23)
- 4. Xây dựng Simple U-Net với architecture từ đầu
- 5. Huấn luyện model với monitoring metrics
- 6. **Implement GradCAM** để tạo heatmap
- 7. Visualize kết quả và lưu model vào ./results/

5.4 Cấu hình Local Optimization

CẤU HÌNH KHUYẾN NGHỊ:

- Batch size: 4 (phù hợp với GPU local)
- **Epochs**: 10 (quick experiment) hoặc 50+ (full training)
- Image size: 256×256 (cân bằng giữa chất lượng và tốc độ)
- Workers: 2 (tối ưu cho CPU local)
- Device: Tự động detect CUDA/CPU
- **Learning rate**: 0.001 (Adam optimizer)
- Scheduler: ReduceLROnPlateau

6 YÊU CẦU NỘP BÀI

6.1 Deliverables bắt buộc

CÁC THÍ SINH PHẢI NỘP:

- 1. Notebook hoàn chỉnh (.ipynb) với tất cả cells đã chạy
- 2. Model checkpoint (.pth) dã được lưu trong ./results/models/
- 3. Visualization results (5 samples tốt nhất) trong ./results/predictions/
- 4. GradCAM heatmaps trong ./results/gradcam/
- 5. **Training plots** (loss, dice, IoU, F1) trong ./results/plots/
- 6. Báo cáo PDF (tối đa 5 trang) mô tả:
 - Approach và architecture
 - Kết quả metrics (Dice, IoU, F1)
 - · Phân tích GradCAM results
 - · Discussion và limitations

6.2 Criteria đánh giá

- **Model Performance** (40%): Dice Score > 0.85 trên validation set
- Code Quality (30%): Clean code, proper documentation, error handling
- XAI Implementation (20%): GradCAM visualization chất lượng cao
- Report Quality (10%): Báo cáo rõ ràng, phân tích sâu sắc

6.3 Deadline

• Thời gian thi: 4 giờ

• Nộp bài: Trong vòng 30 phút sau khi kết thúc thi

• Hình thức nộp: Upload lên hệ thống thi đấu

7 GỢI Ý NÂNG CAO

7.1 Self-supervised Segmentation

Sử dụng contrastive learning để pretrain encoder trên medical images trước khi fine-tune cho segmentation task.

7.2 Transformer-based models

Thử nghiệm với SegFormer, Vision Transformer, hoặc Swin Transformer cho segmentation.

7.3 Multimodal fusion

Kết hợp với thông tin lâm sàng (clinical notes) để cải thiện hiệu suất segmentation.

7.4 Advanced XAI

Implement thêm LayerGradCam, Integrated Gradients, SHAP để có nhiều góc nhìn về model interpretability.

7.5 Ensemble methods

Kết hợp nhiều model để cải thiện performance và robustness.

7.6 Local Development Tips

• Memory Management: Sử dụng torch.cuda.empty cache() khi cần

• Checkpoint: Lưu model định kỳ để tránh mất dữ liệu

• Logging: Sử dung TensorBoard hoặc Weights & Biases

• **Profiling**: Sử dụng torch.profiler để tối ưu performance