

Chimera: Efficiently Training Large-Scale Neural Networks with Bidirectional Pipelines

Shigang Li, Torsten Hoefler SPCL Lab, ETH Zurich

Model size growing rapidly

Model size growing rapidly

Model size growing rapidly

Parallel and distributed training

Data parallelism

Pros:

a. Easy to realize

Cons:

- a. Not work for large models
- b. High allreduce overhead

Operator parallelism

Pros:

a. Make large model training feasible

Cons:

b. Communication for each operator (or each layer)

Pipeline parallelism

Pros:

- a. Make large model training feasible
- b. No collective, only P2P between stages

Cons:

- a. Bubbles in pipeline
- b. Removing bubbles leads to stale weights

Chimera (this work) aims to solve.

Bidirectional Pipelines

- X X Forward and backward passes of *replica*0
- y y Forward and backward passes of *replica*1

from Blizzard War3

Bidirectional Pipelines

X X Forward and backward passes of *replica*0

y y Forward and backward passes of *replica*1

Bidirectional Pipelines

Gradient synchronization between model replicas

(a) Gradient synchronization after all local computation is finished

Gradient synchronization between model replicas

(a) Gradient synchronization after all local computation is finished

(b) Eager gradient synchronization for deeper overlapping

Gradient synchronization between model replicas

(a) Gradient synchronization after all local computation is finished

(b) Eager gradient synchronization for deeper overlapping

Hybrid of pipeline and data parallelism

Scale to more micro-batches

																					flush	
P0	0		1	2	2	2	3	3	0		1	4		5	6	6	7	7	4		5	
P1		0	2	1	3		2	0	3	1	10 to		4	6	5	7	6	4	7	5		7
P2		2	0	3	1		0	2	1	3			6	4	7	5	4	6	5	7		
Р3	2		3	0	()	1	1	2		3	6		7	4	4	5	5	6		7	

N=2**D** micro-batches, where **D**=4

fluch

Scale to more micro-batches

																		_		IIUSII	
P0	0		1	2	2	3	3	0		1	4		5	6	6	7	7	4		5	
P1		0	2	1	3	2	0	3	1			4	6	5	7	6	4	7	5		•
P2		2	0	3	1	0	2	1	3			6	4	7	5	4	6	5	7		
P3	2		3	0	0	1	1	2		3	6		7	4	4	5	5	6		7	

N=2**D** micro-batches, where **D**=4

Method (1): Direct concatenation

Scale to more micro-batches

																					flush	l
P0	0		1	2	7	2	3	3	0		1	4		5	6	6	7	7	4		5	
P1		0	2	1	3		2	0	3	1	10 10 10 10 10 10 10 10 10 10 10 10 10 1		4	6	5	7	6	4	7	5		
P2		2	0	3	1		0	2	1	3			6	4	7	5	4	6	5	7		1
Р3	2		3	0	()	1	1	2		3	6		7	4	4	5	5	6		7	

N=2**D** micro-batches, where **D**=4

Method (2): Forward doubling

P0	0	1			4	5	2	3			6	7
P1			0	1	2	3	4	5	6	7		
P2			2	3	0	1	6	7	4	5		
P3	2	3			6	7	0	1			4	5

2		3	0		1
	2	0	3	1	
	0	2	1	3	
0		1	2		3

					flush
6		7	4		5
	6	4	7	5	
	4	6	5	7	
4		5	6		7

fluch

Contact email: shigangli.cs@gmail.com

fluch

Scale to more micro-batches

																					IIUSII	
P0	0		1	2	2	<u>)</u>	3	3	0		1	4		5	6	6	7	7	4		5	
P1		0	2	1	3		2	0	3	1	0 0 0 0 0 0		4	6	5	7	6	4	7	5		•
P2		2	0	3	1		0	2	1	3			6	4	7	5	4	6	5	7		
Р3	2		3	0	C)	1	1	2		3	6		7	4	4	5	5	6		7	

N=2**D** micro-batches, where **D**=4

Method (2): Forward doubling

																			IIUSII
P0	0	1		4	5	2	3	2	2	6	7	3	0	6	1	7	4		5
P1		0	1	2	3	4	5	6	7	2	-	0	3	1	6	4	7	5	
P2		2	3	0	1	6	7	4	5	C		2	1	3	4	6	5	7	
P3	2	3		6	7	0	1	C)	4	5	1	2	4	3	5	6		7

- eliminate intermediate bubbles
- 2x activation memory

Scale to more micro-batches

																					flush	
P0	0		1	2	2	2	3	3	0		1	4		5	6	6	7	7	4		5	
P1		0	2	1	3		2	0	3	1			4	6	5	7	6	4	7	5		•
P2		2	0	3	1		0	2	1	3			6	4	7	5	4	6	5	7		
Р3	2		3	0	()	1	1	2		3	6		7	4	4	5	5	6		7	

N=2**D** micro-batches, where **D**=4

Method (3): Backward halving

P0	0	1		4	5	2	3	2	2	6	7	3	0	6	1	7	4		5
P1		0	1	2	3	4	5	6	7	2		0	3	1	6	4	7	5	
P2		2	3	0	1	6	7	4	5	0)	2	1	3	4	6	5	7	
P3	2	3		6	7	0	1	()	4	5	1	2	4	3	5	6		7

fluch

Scale to more micro-batches

																				Hush	
P0	0		1	2	2	3	3	0		1	4		5	6	6	7	7	4		5	
P1		0	2	1	3	2	0	3	1			4	6	5	7	6	4	7	5		-
P2		2	0	3	1	0	2	1	3			6	4	7	5	4	6	5	7		
P3	2		3	0	0	1	1	2		3	6		7	4	4	5	5	6		7	

N=2**D** micro-batches, where **D**=4

fluch

Method (3): Backward halving

																										111	นวเเ
P0	0	1		4	5	2	3	1 4	2	6	7	3	0	6	1	7	4		5								
P1		0	1	2	3	4	5	6	7	2		0	3	1	6	4	7	5									
P2		2	3	0	1	6	7	4	5	0		2	1	3	4	6	5	7									
P3	2	3		6	7	0	1	()	4 !	5	1	2	4	3	5	6		7								

- eliminate intermediate bubbles
- halving micro-batch size

Generalize to more pipelines

Generalize to more pipelines

model replicas 0-3																1	flu	sh,
PO stage 0 stage 7 stage 3	0		1	6	2	7	3	4	4	5	5	2	6	3	7	0		1
P1 stage1 stage5 stage6 stage2		0	6	1	7	2	4	3	5	4	2	5	3	6	0	7	1	
P2 stage2 stage6 stage5 stage1		6	0	7	1	4	2	5	3	2	4	3	5	0	6	1	7	
P3 stage3 stage7 stage4 stage0	6		7	0	4	1	5	2	2	3	3	4	0	5	1	6		7
P4 stage4 stage0 stage3 stage7	2		3	4	0	5	1	6	6	7	7	0	4	1	5	2		3
P5 stage5 stage1 stage2 stage6		2	4	3	5	0	6	1	7	6	0	7	1	4	2	5	3	
P6 stage6 stage2 stage1 stage5		4	2	5	3	6	0	7	1	0	6	1	7	2	4	3	5	
P7 stage7 stage3 stage0 stage4	4		5	2	6	3	7	0	0	1	1	6	2	7	3	4		5

Chimera (a combination of four pipelines)

Generalize to more pipelines

Chimera (a combination of four pipelines)

Performance Modelling

Given a **P**, how to decide the best **D** (depth) and **W** (width)?

 C_f – the number of forward $C_f = 6$ passes in critical path C_h – the number of backward $C_h = 10$

 C_b – the number of backward C_b = passes in critical path

The runtime of a single training iteration is

$$T = (F_t + Comm_{p2p})C_f + (B_t + Comm_{p2p})C_b +$$

Performance Modelling

Given a **P**, how to decide the best **D** (depth) and **W** (width)?

training *iteration*0

training iteration1

The runtime of a single training iteration is

$$T = (F_t + Comm_{p2p})C_f + (B_t + Comm_{p2p})C_b +$$

Performance Modelling

Given a **P**, how to decide the best **D** (depth) and **W** (width)?

The runtime of a single training iteration is

 $T = (F_t + Comm_{p2p})C_f + (B_t + Comm_{p2p})C_b + max\{Comm_{unoverlapped}(i) : i \in [0, D-1]\}.$

Evaluation

- CSCS Piz Daint supercomputer
 - Each node contains a 12-core Intel Xeon E5-2690 CPU, and one NVIDIA Tesla P100 GPU
 - Cray Aries interconnected network
- A small cluster with 32 NVIDIA Tesla V100 GPUs
 - 4x8 GPUs connected by NVLink and Infiniband
- Baselines include all schemes listed in Table 1:
 GPipe, GEMS, DAPPLE, PipeDream, PipeDream-2BW
- All schemes are implemented in PyTorch with GLOO distributed backend for both P2P and allreduce

Table 3. Neural networks used for evaluation

Networks	Layers	Parameters	Mini-batch size				
Bert-48	48	669,790,012	>=256				
GPT-2	64	1,389,327,360	>=512				

Table 4. List of symbols

D	The number of pipeline stages (depth)
W	The number of replicated pipelines (width) for data parallelism
B	Micro-batch size
\hat{B}	Mini-batch size (= $B * N * W$)
R	Activation recomputation is required

Memory consumption

Pipeline Schemes	Weights Memory	Activations Memory
PipeDream [38] PipeDream-2BW [39]	$\begin{bmatrix} M_{\theta}, \ D * M_{\theta} \end{bmatrix} \overset{1}{=} \qquad \qquad 2M_{\theta} \overset{\bullet}{C}$	$[M_a, D * M_a]^1$ \triangle $[M_a, D * M_a]^1$ \triangle
GPipe [26]	M_{θ} \mathcal{L}	$N*M_a$
GEMS [28]	$2M_{\theta}$ \mathcal{C}	M_a $\mathcal{O}\mathcal{O}$
DAPPLE [16]	M_{θ} \square	$[M_a, D * M_a]^1$ (2)
Chimera (this work)	$2M_{\theta}$ \mathcal{C}	$[(D/2+1)M_a, D*M_a]^1$ +

Tuning for baselines

The parameters of **D**, **W**, and **B** affect the performance significantly.

Performance tuning for the baselines for Bert-48 on 32 GPU nodes.

R denotes **activation recomputation** to avoid **OOM**. *Star* marks the best performance.

Performance modelling of Chimera

The runtime of a single training iteration is modelled as

$$T = (F_t + Comm_{p2p})C_f + (B_t + Comm_{p2p})C_b + max\{Comm_{unoverlapped}(i) : i \in [0, D-1]\}.$$

Weak scaling

Weak scaling for GPT-2 on Piz Daint (512 to 2048 GPU nodes)

- 1.38x 2.34x speedup over synchronous approaches (GPipe, GEMS, DAPPLE)
 - Less bubbles
 - More balanced memory thus no recomputation
- 1.16x 2.01x speedup over asynchronous approaches (PipeDream-2BW, PipeDream)
 - More balanced memory thus no recomputation
 - Gradient accumulation thus low synch frequency

Weak scaling

Weak scaling for Bert-48 on a cluster with 32 V100 GPUs, sequence length is 512.

 Similar conclusion holds for BERT on the cluster with newer GPUs and heterogeneous interconnected networks.

Scale to large mini-batches

Scale to large mini-batch size for Bert-48 on 32 GPU nodes of Piz Daint.

Scale to large mini-batches

Scale to large mini-batch size for GPT-2 on 512 GPU nodes of Piz Daint.

P0	0	1		4	5	2	3	2	6	6 7 3		0	6	
P1		0	1	2	3	4	5	≶ 7	2	2	0	3	1	
P2		2	3	0	7	6	7	4 5	()	2	1	3	•••
Р3	2	3		6	7	0	1	0	4	5	1	2	4	
→ p2p More space to overlap P2P														

Chimera with forward doubling

Conclusion

1. Model size rapidly grows

2. Distributed training approaches

3. Pipeline schedule of Chimera

4. Scalability and generalization

5. Performance modelling

6. Evaluation on supercomputer

For any questions contact: shigangli.cs@gmail.com

Any commercial usage of the slides and the artifact without the authors' consent is an INFRINGEMENT and ILLEGAL.