Automata and Reactive Systems

Lecture No. 11

Prof. Dr. Wolfgang Thomas

thomas@informatik.rwth-aachen.de

Lehrstuhl für Informatik VII
RWTH Aachen

6 Classification of Regular ω -Languages

We have introduced properties of system runs:

- guarantee condition ("Sometime p₁ becomes true")
- safety condition ("Always p₁ is true")
- recurrence condition ("Again and again, p₁ is true")

Plan:

- Definition of a natural classification scheme based on deterministic automata
- 2. Comparison of the levels of this classification
- 3. Decision to which level a given property belongs

The four basic types of sequence properties

Intuition:

- Guarantee condition requires that some finite prefix has a certain property
- Safety condition requires that all finite prefixes have a certain property
- Recurrence condition requires that infinitely many finite prefixes have a certain property
- Persistence condition requires that almost all (i.e. from a certain point onwards all) finite prefixes have a certain property

We shall describe the prefix properties by deterministic automata

The four basic acceptance conditions

Let $\mathcal{A} = (Q, \Sigma, q_0, \delta, F)$ be a deterministic automaton.

We introduce four acceptance conditions for runs of \mathcal{A} . Call a run ρ

- E-accepting if for some i, the state $\rho(i)$ belongs to F
- A-accepting if for all i, the state $\rho(i)$ belongs to F
- Büchi accepting if for infinitely many $i, \rho(i) \in F$
- co-Büchi accepting if for almost all $i, \rho(i) \in F$

Formally, the acceptance conditions are

- $\exists i \ \rho(i) \in F$, $\forall i \ \rho(i) \in F$
- $\forall j \exists i \geq j \ \rho(i) \in F$, $\exists j \ \forall i \geq j \ \rho(i) \in F$

Recognizability

We speak of a (deterministic)

E-automaton, A-automaton, Büchi automaton, co-Büchi automaton

if the E-, A-, Büchi, co-Büchi acceptance condition is used

The corresponding ω -languages are called

E-recognizable, A-recognizable, deterministic Büchi recognizable, deterministic co-Büchi recognizable.

In the following we always consider deterministic automata (and sometimes skip the term "deterministic").

Illustration

Pictoral illustration of accepting paths:

E-acceptance and A-acceptance

Büchi acceptance and co-Büchi acceptance

Characterization of E- and Büchi-recognizability

Remark:

- (a) An ω -language $L\subseteq \Sigma^\omega$ is E-recognizable iff it is of the form $L=U\cdot \Sigma^\omega$ for some regular *-language U.
- (b) An ω -language $L \subseteq \Sigma^{\omega}$ is det. Büchi-recognizable iff it is of the form $\lim(U)$ for some regular *-language U.

Proof of (a): [(b) was shown earlier]:

Let L be E-recognized by $\mathcal{A} = (Q, \Sigma, q_0, \delta, F)$

Let U be the *-language recognized by ${\mathcal H}$

 ${\mathcal A}$ accepts α

iff the unique run of ${\mathcal H}$ reaches F after a finite prefix of α

iff some prefix of lpha belongs to U

iff $\alpha \in U \cdot \Sigma^{\omega}$

Complementation and Dual Acceptance

6.1 Lemma (Complementation Lemma):

- (a) An ω -language $L \subseteq \Sigma^{\omega}$ is E-recognizable iff the complement language $\Sigma^{\omega} \setminus L$ is A-recognizable.
- (b) An ω -language $L \subseteq \Sigma^{\omega}$ is Büchi-recognizable iff the complement language $\Sigma^{\omega} \setminus L$ is co-Büchi-recognizable.

Proof: Assume *L* is E-recognized by $\mathcal{A} = (Q, \Sigma, q_0, \delta, F)$.

$$\alpha \in \Sigma^{\omega} \setminus L$$

iff α has no prefix leading $\mathcal H$ into F

iff all prefixes of α lead $\mathcal H$ into states of $Q \setminus F$

iff α is A-accepted by $\mathcal{A}' = (Q, \Sigma, q_0, \delta, Q \setminus F)$

The other cases are analogous.

E versus A, Büchi versus co-Büchi

Remark:

- 1. $\mathbb{B}^* \cdot 1 \cdot \mathbb{B}^{\omega}$ is E-recognizable, but not A-recognizable
- 2. $\{0^{\omega}\}\$ is A-recognizable but not E-recognizable
- 3. $(0*1)^{\omega}$ is Büchi recognizable but not co-Büchi recognizable
- 4. \mathbb{B}^*0^ω is co-Büchi recognizable but not Büchi recognizable.

Note:

$$\{0^{\omega}\} = \mathbb{B}^{\omega} \setminus (\mathbb{B}^* \cdot 1 \cdot \mathbb{B}^{\omega}), \quad \mathbb{B}^*0^{\omega} = \mathbb{B}^{\omega} \setminus (0^*1)^{\omega}$$

Proof:

ad 1.: E-recognizability is clear.

Assume $\mathbb{B}^* \cdot 1 \cdot \mathbb{B}^{\omega}$ is A-recognizable, say by \mathcal{A} with n states.

Consider \mathcal{A} on $0^n 10^\omega$; all states of the run are final.

Before input letter 1 there is a state repetition (loop of final states).

So with this loop $\mathcal A$ accepts also the input word 0^ω , contradiction.

ad 2.: $\{0^{\omega}\}$ is A-recognizable but not E-recognizable follows by the Complement Lemma.

ad 4.: \mathbb{B}^*0^ω is co-Büchi recognizable but not Büchi recognizable was shown earlier.

ad 3.: $(0*1)^{\omega}$ Büchi recognizable but not co-Büchi recognizable follows by the Complement Lemma.

The Hierarchy Theorem

For the classes of E-, A-, deterministic Büchi-, and deterministic co-Büchi recognizable ω -languages, the following inclusion diagram holds:

Proof strategy

- (a) For the inclusion claims show: An E-recognizable ω -language is both deterministic Büchi and co-Büchi recognizable. (The other claims are clear.)
- (b) For the properness of the inclusions we have to exhibit seven ω -languages. We have exhibited already four of them:

ad (a):

An E-recognizable ω -language is both deterministic Büchi and co-Büchi recognizable.

Modify a given E-automaton by changing all transitions from final states into transitions to a new state q_f which is now the only final state:

Then the E-automaton reaches a final state iff the new automaton eventually stays in q_f (i.e. Büchi accepts and co-Büchi accepts).

Three example languages

ad (b):

- **1.** $L_1 := 1 \cdot \mathbb{B}^{\omega}$ is E- and A-recognizable.
- **2.** $L_2 := \{ \alpha \in \mathbb{B}^\omega \mid 00 \text{ occurs, but 11 never occurs in } \alpha \}$
- 3. $L_3 := \{ \alpha \in \mathbb{B}^{\omega} \mid 00 \text{ occurs infinitely often,}$ but 11 occurs only finitely often in $\alpha \}$

 L_1 : clear. L_3 : Exercise

 $L_2 := \{ \alpha \in \mathbb{B}^{\omega} \mid 00 \text{ occurs, but 11 never occurs in } \alpha \}$

is neither E- nor A-recognizable, but both deterministic Büchi and co-Büchi recognizable.

Assume L is E-recognizable, say by $\mathcal H$ with n states.

On input 0^{ω} a final state occurs within prefix 0^{n} .

Then \mathcal{H} E-accepts also 0^n001^ω , contradiction.

Assume L is A-recognizable, say by \mathcal{A} with n states.

On input $(01)^{n+1}0^{\omega}$ only final states are visited.

Before the 0-suffix a state repetition occurs after letters 1.

So also $(01)^{\omega}$ is accepted, a contradiction.

 $L_2 := \{ \alpha \in \mathbb{B}^{\omega} \mid 00 \text{ occurs, but 11 never occurs in } \alpha \}$ is both deterministic Büchi and co-Büchi recognizable.

Deciding the levels

Question: Given a Muller automaton $\mathcal{A} = (Q, \Sigma, q_0, \delta, \mathcal{F})$,

can one decide algorithmically whether the language $L(\mathcal{A})$ is already det. Büchi recognizable or even E-recognizable?

We shall formulate criteria which can be checked effectively.

So the hierarchy of regular ω -languages is "effective".

We assume that in a given Muller automaton each state is reachable from the initial state via some finite input word.

By a loop we mean a nonempty subset $S \subseteq Q$ such that for all $s, s' \in S$ there is a word $w \in \Sigma^+$ with $\delta(s, w) = s'$

Remark: Any set $Inf(\rho)$ is a loop. We may assume that \mathcal{F} only contains loops.

Deciding E-recognizability

Given $\mathcal{A} = (Q, \Sigma, q_0, \delta, \mathcal{F})$ define

 $\mathcal{F}_1 = \{S \subseteq Q \mid S \text{ is loop and reachable from a loop of } \mathcal{F}\}$

Remark: $\mathcal{F} \subseteq \mathcal{F}_1$

6.2 Theorem (E-Recognizability):

Given a Muller automaton $\mathcal A$ as above, $L(\mathcal A)$ is E-recognizable iff $\mathcal F=\mathcal F_1$

(in other words: each loop reachable from a loop in $\mathcal F$ already is in $\mathcal F$ itself).

Note: This closure property of the system of accepting loops can be checked effectively.