Harmonic Maps and Conformal Maps

David Gu

Yau Mathematics Science Center Tsinghua University Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

July 25, 2020

Harmonic Maps

Harmonic Map

Figure: Harmonic map between topological disks.

Harmonic Map

Figure: Harmonic map between topological spheres.

Harmonic Map

Figure: Harmonic map induced foliations.

Given a planar domain $\Omega \subset \mathbb{R}^2$, consider the electric potential $u:\Omega \to \mathbb{R}$. The gradient of the potential induces electric currents, and produces heat. The heat power is represented as *harmonic energy*

$$E(u) := \int_{\Omega} \langle \nabla u, \nabla u \rangle dx dy.$$

In nature, the distribution of u minimizes the heat power, and is called a harmonic function. Assume $h \in C_0^{\infty}(\Omega)$, then $E(u + \varepsilon h) \ge E(u)$,

$$\frac{d}{d\varepsilon} \int_{\Omega} \langle \nabla u + \varepsilon \nabla h, \nabla u + \varepsilon \nabla h \rangle dx dy \Big|_{\varepsilon=0} = 2 \int_{\Omega} \langle \nabla u, \nabla h \rangle dx dy = 0.$$

By relation

$$\nabla \cdot (h\nabla u) = \langle \nabla h, \nabla u \rangle + h\nabla \cdot \nabla u,$$

we obtain

$$\int_{\Omega} \nabla u, \nabla h \rangle = \int_{\Omega} h \Delta u dx dy - \int_{\Omega} \nabla \cdot (h \nabla u) dx dy = \int_{\omega} h \Delta u dx dy,$$

We obtain Laplace equation

$$\left\{ \begin{array}{ll} \Delta u & \equiv & 0 \\ u|_{\partial\Omega} & = & g \end{array} \right.$$

Steady temperature field, static electric field, elastic deformation, diffusion field, all are governed by the Laplace equation.

Theorem (Mean Value)

Assume $\Omega \subset \mathbb{R}^2$ is a planar open set, $u:\Omega \to \mathbb{R}$ is a harmonic function, then for any $p\in \Omega$

$$u(\rho) = \frac{1}{2\pi\varepsilon} \oint_{\gamma} u(q) ds,$$
 (1)

where γ is a circle centered at p, with radius ε .

Proof.

u is harmonic, du is a harmonic 1-form, its Hodge star *du is also harmonic. Define the conjugate function v, $dv = ^*du$, then $\varphi(z) := u + \sqrt{-1}v$ is holomorphic. By Cauchy integration formula,

$$\varphi(z) = \frac{1}{2\pi i} \oint_{\gamma} \frac{\varphi(\zeta)}{\zeta - z} dz \tag{2}$$

Hence, we obtain the mean value property of harmonic function.

Corollary (Maximal value principle)

Assume $\Omega \subset \mathbb{R}^2$ is a planar domain, and $u : \overline{\Omega} \to \mathbb{R}$ is a non-constant harmonic function, then u can't reach extremal values in the interior of Ω .

Proof.

Assume p is an interior point in Ω , p is a maximal point of u, u(p) = C. By mean value property, we obtain for any point q on the circle $B(p,\varepsilon)$, u(q) = C, where ε is arbitrary, therefore u is constant in a neighborhood of p. Therefore $u^{-1}(C)$ is open. On the other hand, u is continuous, $u^{-1}(C)$ is closed, hence $u^{-1}(C) = \Omega$. Contradiction.

Uniqueness of Harmonic Functions

Corollary

Suppose $\Omega \subset \mathbb{R}^2$ is a planar domain, $u_1, u_2 : \Omega \to \mathbb{R}$ are harmonic functions with the same boundary value, $u_1|_{\partial\Omega} = u_2|_{\partial\Omega}$, then $u_1 = u_2$ on Ω .

Proof.

 u_1-u_2 is also harmonic, with 0 boundary value, therefore the maximal and minimal values of u_1-u_2 must be on the boundary, namely they are 0, hence u_1, u_2 are equal in Ω .

Disk Harmonic Maps

Figure: Harmonic map between topological disks.

Diffeomorphic Property of Disk Harmonic Maps

Theorem (Rado)

Suppose a harmonic map $\varphi:(S,\mathbf{g})\to(\Omega,dx^2+dy^2)$ satisfies:

- **1** planar domain Ω is convex
- ② the restriction of $\varphi:\partial S\to\partial\Omega$ on the boundary is homoemorphic, then u is diffeomorphic in the interior of S.

Proof.

By regularity theory of harmonic maps, we get the smoothness of the harmonic map. Assume $\varphi:(x,y)\to(u,v)$ is not homeomorphic, then there is an interior point $p\in\Omega$, the Jacobian matrix of φ is degenerated as p, there are two constants $a,b\in\mathbb{R}$, not being zeros simultaneously, such that

$$a\nabla u(p)+b\nabla v(p)=0.$$

By $\Delta u = 0$, $\Delta v = 0$, the auxiliary function f(q) = au(q) + bv(q) is also harmonic.

Diffeomorphic Property of Disk Harmonic Maps

continued

By $\nabla f(p) = 0$, p is an saddle point of f. Consider the level set of f near p

$$\Gamma = \{ q \in \Omega | f(q) = f(p) - \varepsilon \}$$

 Γ has two connected components, intersecting ∂S at 4 points.

But Ω is a planar convex domain, $\partial\Omega$ and the line au+bv=const have two intersection points. By assumption, the mapping φ restricted on the boundary $\varphi:\partial S\to\partial\Omega$ is homeomorphic. Contradiction.

Computational Algorithm for Disk Harmonic Maps

Input: A topological disk M;

Output:A harmonic map $\varphi:M o\mathbb{D}^2$

- **①** Construct boundary map to the unit circle, $g: \partial M \to \mathbb{S}^1$, g should be a homeomorphism;
- Compute the cotangent edge weight;
- **3** for each interior vertex $v_i \in M$, compute Laplacian

$$\Delta\varphi(v_i) = \sum_{v_j \sim v_i} w_{ij}(\varphi(v_i) - \varphi(v_j)) = 0;$$

9 Solve the linear system, to obtain φ .

Definition (Harmonic Energy)

Let (Σ_1,z) and (Σ_2,u) be two Riemann surfaces, with Riemannian metrics $\sigma(z)dzd\bar{z}$ and $\rho(u)dud\bar{u}$. Given a C^1 map $u:\Sigma_1\to\Sigma_2$, then the harmonic energy of u is defined as

$$E(z,\rho,u) := \int_{\Sigma_1} \rho^2(u) (u_z \bar{u}_{\bar{z}} + \bar{u}_z u_{\bar{z}}) \frac{i}{2} dz d\bar{z}$$

where $u_z := \frac{1}{2}(u_x - iu_y)$, $u_{\bar{z}} := \frac{1}{2}(u_x + iu_y)$ and $dz \wedge d\bar{z} = -2idx \wedge dy$.

Definition (Harmonic Map)

If the C^1 map $u: \Sigma_1 \to \Sigma_2$ minimizes the harmonic energy, then u is called a harmonic map.

Theorem (Euerl-Larange Equation for Harmonic Maps)

Suppose $u: \Sigma_1 \to \Sigma_2$ is a C^2 harmonic map between Riemannian surfaces, then

$$u_{z\bar{z}} + \frac{2\rho_u}{\rho} u_z u_{\bar{z}} = 0$$

Geodesics are special harmonic maps, harmonic maps are generalized geodesics:

$$\ddot{\gamma} + \frac{2\rho_{\gamma}}{\rho}\dot{\gamma}^2 \equiv 0 \quad u_{z\bar{z}} + \frac{2\rho_{u}}{\rho}u_{z}u_{\bar{z}} \equiv 0$$

Proof.

Suppose u is harmonic, u_t is a variation in a local coordinates system,

$$u+t\varphi, \quad \varphi\in C^0\cap W_0^{1,2}(\Sigma_1,\Sigma_2)$$

we obtain

$$\left. \frac{d}{dt} E(u + t\varphi) \right|_{t=0} = 0,$$

continued

$$0 = \frac{d}{dt} \left\{ \int \rho^{2} (u + t\varphi)((u + t\varphi)_{z}(\bar{u} + t\bar{\varphi})_{\bar{z}} + (\bar{u} + t\bar{\varphi})_{z}(u + t\varphi)_{\bar{z}})idzd\bar{z} \right\} \Big|_{t=0}$$

$$= \int \left\{ \rho^{2} (u)(u_{z}\bar{\varphi}_{\bar{z}} + \bar{u}_{\bar{z}}\varphi_{z} + \bar{u}_{z}\varphi_{\bar{z}} + u_{\bar{z}}\bar{\varphi}_{z}) + 2\rho(\rho_{u}\varphi + \rho_{\bar{u}}\bar{\varphi})(u_{z}\bar{u}_{\bar{z}} + \bar{u}_{z}u_{\bar{z}}) \right\} idzd\bar{z}.$$

continued

We set
$$\varphi = \frac{\psi}{\rho^2(u)}$$
,

$$\rho^{2}\varphi_{z} = \psi_{z} - \frac{2\psi}{\rho}(\rho_{u}u_{z} + \rho_{\bar{u}}\bar{u}_{z})$$

$$\rho^{2}\varphi_{\bar{z}} = \psi_{\bar{z}} - \frac{2\psi}{\rho}(\rho_{u}u_{\bar{z}} + \rho_{\bar{u}}\bar{u}_{\bar{z}})$$

$$\rho^{2}\bar{\varphi}_{z} = \bar{\psi}_{z} - \frac{2\bar{\psi}}{\rho}(\rho_{u}u_{z} + \rho_{\bar{u}}\bar{u}_{z})$$

$$\rho^{2}\bar{\varphi}_{\bar{z}} = \bar{\psi}_{\bar{z}} - \frac{2\bar{\psi}}{\rho}(\rho_{u}u_{\bar{z}} + \rho_{\bar{u}}\bar{u}_{\bar{z}})$$

continued

$$\bar{u}_{\bar{z}}\rho^{2}\varphi_{z} = \psi_{z}\bar{u}_{\bar{z}} - \frac{2\psi}{\rho}(\rho_{u}u_{z}\bar{u}_{\bar{z}} + \rho_{\bar{u}}\bar{u}_{z}\bar{u}_{\bar{z}})$$

$$\bar{u}_{z}\rho^{2}\varphi_{\bar{z}} = \psi_{\bar{z}}\bar{u}_{z} - \frac{2\psi}{\rho}(\rho_{u}u_{\bar{z}}\bar{u}_{z} + \rho_{\bar{u}}\bar{u}_{\bar{z}}\bar{u}_{z})$$

$$u_{\bar{z}}\rho^{2}\bar{\varphi}_{z} = \bar{\psi}_{z}u_{\bar{z}} - \frac{2\bar{\psi}}{\rho}(\rho_{\bar{u}}\bar{u}_{z}u_{\bar{z}} + \rho_{u}u_{z}u_{\bar{z}})$$

$$u_{z}\rho^{2}\bar{\varphi}_{\bar{z}} = \bar{\psi}_{\bar{z}}u_{z} - \frac{2\bar{\psi}}{\rho}(\rho_{\bar{u}}\bar{u}_{\bar{z}}u_{z} + \rho_{u}u_{\bar{z}}u_{z})$$

continued

$$\frac{2}{\rho}(\rho_{u}\psi + \rho_{\bar{u}}\bar{\psi})(u_{z}\bar{u}_{\bar{z}} + \bar{u}_{z}u_{\bar{z}})$$

$$= \frac{2\psi}{\rho}\rho_{u}(u_{z}\bar{u}_{\bar{z}} + \bar{u}_{z}u_{\bar{z}}) + \frac{2\bar{\psi}}{\rho}\rho_{\bar{u}}(\bar{u}_{z}u_{\bar{z}} + u_{z}\bar{u}_{\bar{z}})$$

Take summation,

$$\begin{split} & \bar{u}_{\bar{z}}\rho^2\varphi_z + u_z\rho^2\bar{\varphi}_{\bar{z}} = \left(\psi_z\bar{u}_{\bar{z}} - \frac{2\psi}{\rho}\rho_{\bar{u}}\bar{u}_z\bar{u}_{\bar{z}}\right) + \left(\bar{\psi}_{\bar{z}}u_z - \frac{2\bar{\psi}}{\rho}\rho_uu_{\bar{z}}u_z\right) \\ & \bar{u}_z\rho^2\varphi_{\bar{z}} + u_{\bar{z}}\rho^2\bar{\varphi}_z = \left(\psi_{\bar{z}}\bar{u}_z - \frac{2\psi}{\rho}\rho_{\bar{u}}\bar{u}_{\bar{z}}\bar{u}_z\right) + \left(\bar{\psi}_zu_{\bar{z}} - \frac{2\bar{\psi}}{\rho}\rho_uu_zu_{\bar{z}}\right) \end{split}$$

continued

The above equation becomes

$$0 = 2\Re \int \left(\bar{\psi}_{\bar{z}} u_z - \frac{2\bar{\psi}}{\rho} \rho_u u_{\bar{z}} u_z \right) i dz d\bar{z}$$
$$+ 2\Re \int \left(\psi_{\bar{z}} \bar{u}_z - \frac{2\psi}{\rho} \rho_{\bar{u}} \bar{u}_{\bar{z}} \bar{u}_z \right) i dz d\bar{z}$$

If $u\in \mathcal{C}^2$, we can integrate by parts, $(u_z\bar{\psi})_{\bar{z}}=u_{z\bar{z}}\bar{\psi}+u_z\bar{\psi}_{\bar{z}}$,

$$0 = 2\Re \int \left(u_{z\bar{z}} + \frac{2\rho_u}{\rho} u_{\bar{z}} u_z \right) \bar{\psi} i dz d\bar{z}$$
$$+ 2\Re \int \left(\bar{u}_{z\bar{z}} + \frac{2\rho_{\bar{u}}}{\rho} \bar{u}_{\bar{z}} \bar{u}_z \right) \psi i dz d\bar{z}$$

continued

Therefore

$$0 = 2\Re \int \left(u_{z\bar{z}} + \frac{2\rho_u}{\rho} u_{\bar{z}} u_z \right) \bar{\psi} i dz d\bar{z}$$

Hopf Differential of Harmonic Maps

Theorem (Hopf Diffential of Harmonic Maps)

Let $u:(\Sigma_1,\lambda^2(z)dzd\bar{z})\to (\Sigma_2,\rho^2(u)dud\bar{u})$ is harmonic, then the Hopf differential of the map

$$\Phi(u) := \rho^2 u_z \bar{u}_z dz^2$$

is holomorphic quadratic differential on Σ_1 . Furthermore $\Phi(u)\equiv 0$, if and only if u is holomorphic or anti-holomorphic.

Proof.

If u is harmonic, then

$$\frac{\partial}{\partial \bar{z}}(\rho^2 u_z \bar{u}_z) = \rho^2 u_{z\bar{z}} \bar{u}_z + \rho^2 u_z \bar{u}_{z\bar{z}} + 2\rho \rho_u u_{\bar{z}} u_z \bar{u}_z + 2\rho \rho_{\bar{u}} \bar{u}_{\bar{z}} u_z \bar{u}_z
= (\rho^2 u_{z\bar{z}} + 2\rho \rho_u u_{\bar{z}} u_z) \bar{u}_z + (\rho^2 \bar{u}_{z\bar{z}} + 2\rho \rho_{\bar{u}} \bar{u}_{\bar{z}} \bar{u}_z) u_z = 0.$$

Therefore $\Phi(u)$ is holomorphic.

Hopf Differential of Harmonic Maps

Proof.

If $\Phi(u) = \rho^2 u_z \bar{u}_z \equiv 0$, then either $u_z = 0$ or $\bar{u}_z = 0$. Since the Jacobian determinant equals to

$$|u_z|^2 - |u_{\bar{z}}|^2 > 0,$$

therefore $\bar{u}_z=0$, namely $u_{\bar{z}}=0$, u is holomorphic or anti-holomorphic. u is holomorphic, equivalent to $L\equiv 0$; u is anti-holomorphic, equivalent to $H\equiv 0$. We know H and L have isolated zeros, unless they are zero everywhere. Hence u is entirely holomorphic or anti-holomorphic.

Spherical Harmonic Map

Lemma

A holomorphic quadratic differential ω is on the unit sphere, then ω is zero.

Proof.

Choose two charts z and $w = \frac{1}{z}$. Let $\omega = \varphi(z)dz^2$, then

$$\varphi(z)dz^2 = \varphi\left(\frac{1}{w}\right)\left(\frac{dz}{dw}\right)^2dw^2 = \varphi\left(\frac{1}{w}\right)\frac{1}{w^4}dw^2.$$

since ω is globally holomorphic, when $w \to 0$,

$$\varphi\left(\frac{1}{w}\right)\frac{1}{w^4}<\infty,$$

hence $z \to \infty$, $\varphi(z) \to 0$. By Liouville theorem, $\varphi \equiv 0$.

Spherical Harmonic Map

Theorem (Spherical Harmonic Maps)

Harmonic maps between genus zero closed metric surfaces must be conformal.

Proof.

Suppose $u:\Sigma_1\to\Sigma_2$ is a harmonic map, then $\Phi(u)$ must be a holomorphic quadratic differential. Since Σ_1 is of genus zero, therefore $\Phi(u)\equiv 0$. Hence u is holomorphic.

Spherical Harmonic Map

Figure: Spherical Harmonic Map

Uniqueness Spherical Harmonic Map

Definition (Möbius Transformation)

A Möbius transformation $\varphi:\hat{\mathbb{C}}\to\hat{\mathbb{C}}$ has the form

$$z\mapsto rac{az+b}{cz+d},\quad a,b,c,d\in\mathbb{C},\quad ad-bc=1.$$

Given $\{z_0,z_1,z_2\}$, there is a unique Möbius transformation, that maps them to $\{0,1,\infty\}$,

$$z \mapsto \frac{z - z_0}{z - z_2} \frac{z_1 - z_2}{z_1 - z_0}.$$

Theorem (Uniquess of Spherical Conformal Automorphisms)

Suppose $f: \mathbb{S}^2 \to \mathbb{S}^2$ is a biholomorphic automorphism, then f must be a Möbius transformation.

Uniqueness of Spherical Harmonic Map

Proof.

By stereo-graphic projection, we map the sphere to the extened complex plane $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. First, the poles of f must be finite. Suppose there are infinite poles of f, because \mathbb{S}^2 is compact, there must be accumulation points, then f must be a constant value function.

Let z_1, z_2, \ldots, z_n be the finite poles of f, with degrees e_1, e_2, \ldots, e_n . Let $g = \prod_i (z - z_i)^{e_i}$, then fg is a holomorphic function on \mathbb{C} , therefore fg is entire, namely, fg is a polynomial. Therefore

$$f = \frac{\sum_{i=1}^{n} a_i z^i}{\sum_{j} b_j z^j},$$

if n > 1 then f has multiple zeros, contradict to the condition that f is an automorphism. Therefore n = 1. Similarly m = 1.

Computational Algorithm for Spherical Harmonic Map

Input: A genus zero closed mesh M;

Output: A spherical harmonic map $\varphi: M \to \mathbb{S}^2$;

- **①** Compute Gauss map $\varphi: M \to \mathbb{S}^2$, $\varphi(v) \leftarrow \mathbf{n}(v)$;
- Compute the cotangent edge weight, compute Laplacian

$$\Delta\varphi(\mathbf{v}_i) = \sum_{\mathbf{v}_i \sim \mathbf{v}_j} w_{ij}(\varphi(\mathbf{v}_j) - \varphi(\mathbf{v}_i)),$$

project the Laplacian to the tangent plane,

$$D\varphi(v_i) = \Delta\varphi(v_i) - \langle \Delta\varphi(v_i), \varphi(v_i) \rangle \varphi(v_i)$$

- for each vertex, $\varphi(v_i) \leftarrow \varphi(v_i) \lambda D\varphi(v_i)$;
- compute the mass center $c = \sum A_i \varphi(v_i) / \sum_j A_j$; normalize $\varphi(v_i) = \varphi(v_i) c / |\varphi(v_i) c|$;
- **1** Repeat step 2 through 5, until the Laplacian norm is less than ε .

General theory for Surface Harmonic Maps

Existence of Harmonic Map

Theorem (Existence of Harmonic Maps)

Assume Σ is a Riemann surface, $(N, \rho(u)dud\bar{u})$ is a metric surface, then for any smooth mapping $\varphi : \Sigma \to N$, there is a harmonic map $f : \Sigma \to N$ homotopic to φ .

The can be proven using Courant-Leesgue lemma, which controls the geodesic distance between image points by harmonic energy.

Regularity of Harmonic Map

Theorem (Regularity of Harmonic Maps)

Let $u: \Sigma_1 \to \Sigma_2$ be a (weak) harmonic map between Riemann surfaces, Σ_2 is with hyperbolic metric, the harmonic energy of u is finite, then u is a smooth map.

This is based on the regularity theory of ellptic PDEs.

Diffeomorphic Properties of Harmonic Maps

Theorem (Diffeomorphic Properties of Harmonic Maps)

Let Σ_1 and Σ_2 are compact Riemann surfaces with the same genus, $K_2 \leq 0$. If $u: \Sigma_1 \to \Sigma_2$ is a degree one harmonic map, then u is a diffeomorphism.

Theorem (Uniqueness of Harmonic Map)

Suppose Σ_1 and Σ_2 are compact Riemann surface, Σ_2 is with hyperbolic metric. $u_0, u_1 : \Sigma_1 \to \Sigma_2$ are homotopic harmonic maps. If one of the Jacobian matrix is non-degenerated at a point, then $u_0 \equiv u_1$.

Theorem

Suppose Σ_1 and Σ_2 are Riemann surfaces, the Riemannian metric on Σ_2 induces non-positive curvature K. Let $u \in C^2(\Sigma_1, \Sigma_2)$, $\varphi(z,t)$ is the variation of u, $\dot{\varphi} \neq 0$. If u is harmonic, or for any point $z \in \Sigma_1$, $\varphi(z_1, \cdot)$ is geodesic, then

$$\left. \frac{d}{dt^2} E(u + \varphi(t)) \right|_{t=0} \ge 0. \tag{3}$$

If K < 0, then either

$$\left. \frac{d}{dt^2} E(u + \varphi(t)) \right|_{t=0} > 0. \tag{4}$$

or

$$u_z \bar{u}_{\bar{z}} - u_{\bar{z}} \bar{u}_z \equiv 0, \tag{5}$$

Namely the rank of u is ≤ 1 everywhere.

Consider the variation of the mapping u, $u(z) + \varphi(z,t)$, where $\varphi(z,0) \equiv 0$. Let $\dot{\varphi} = \frac{\partial}{\partial t} \varphi$, $\ddot{\varphi} := \frac{\partial^2}{\partial t^2} \varphi$. $K = -\Delta \log \rho = -\frac{4}{\rho^4} (\rho \rho_{u\bar{u}} - \rho_u \rho_{\bar{u}})$

$$\frac{d^{2}}{dt^{2}}E(u+\varphi(t))\Big|_{t=0} = 2\int \left\{ \rho^{2} \left(\dot{\varphi}_{z} + 2\frac{\rho_{u}}{\rho} u_{z} \dot{\varphi} \right) \left(\dot{\bar{\varphi}}_{\bar{z}} + 2\frac{\rho_{\bar{u}}}{\rho} \bar{u}_{\bar{z}} \dot{\bar{\varphi}} \right) \right. \\
\left. + \rho^{2} \left(\dot{\bar{\varphi}}_{z} + 2\frac{\rho_{\bar{u}}}{\rho} \bar{u}_{z} \dot{\bar{\varphi}} \right) \left(\dot{\varphi}_{\bar{z}} + 2\frac{\rho_{u}}{\rho} u_{\bar{z}} \dot{\varphi} \right) \right. \\
\left. - \rho^{4} \frac{K}{2} \left(u_{z} \dot{\bar{\varphi}} - \bar{u}_{z} \dot{\varphi} \right) (\bar{u}_{\bar{z}} \dot{\varphi} - u_{\bar{z}} \dot{\bar{\varphi}}) \right. \\
\left. - \left(\rho^{2} \ddot{\varphi} + 2\rho \rho_{u} \dot{\varphi}^{2} \right) \left(\bar{u}_{z\bar{z}} + \frac{2\rho_{\bar{u}}}{\rho} \bar{u}_{z} \bar{u}_{\bar{z}} \right) \right. \\
\left. - \left(\rho^{2} \ddot{\bar{\varphi}} + 2\rho \rho_{\bar{u}} \dot{\bar{\varphi}}^{2} \right) \left(u_{z\bar{z}} + \frac{2\rho_{u}}{\rho} u_{z} u_{\bar{z}} \right) \right\} i dz d\bar{z} \tag{6}$$

If *u* is harmonnic, then

$$u_{z\bar{z}} + \frac{2\rho_u}{\rho} u_z u_{\bar{z}} = 0,$$

or if $\varphi(z,\cdot)$ is geodesic, then

$$\rho^2 \ddot{\varphi} + 2\rho \rho_u \dot{\varphi}^2 = 0.$$

Then, the last two items vanish. Since $K \leq 0$, there first three items are non-negative.

If K < 0, then $\frac{d^2}{dt^2} E(u + \varphi(t))|_{t=0}$ is either positive or zero. If it is 0, then the integrands must be 0 everywhere, therefore

$$u_z\dot{\bar{\varphi}} - \bar{u}_z\dot{\varphi} \equiv \bar{u}_{\bar{z}}\dot{\varphi} - u_{\bar{z}}\dot{\bar{\varphi}} \equiv 0. \tag{7}$$

Furthermore

$$\frac{\partial}{\partial z}(\rho^2\dot{\varphi}\dot{\bar{\varphi}}) = (\rho^2\dot{\varphi}_z + 2\rho\rho_u u_z\dot{\varphi})\dot{\bar{\varphi}} + (\rho^2\dot{\bar{\varphi}} + 2\rho\rho_u \bar{u}_z\dot{\bar{\varphi}})\dot{\varphi} = 0.$$
 (8)

Similarly

$$\frac{\partial}{\partial \bar{z}}(\rho^2 \dot{\varphi} \dot{\bar{\varphi}}) = 0. \tag{9}$$

We obtain

$$\rho^2 \dot{\varphi} \dot{\bar{\varphi}} \equiv \text{const.} \tag{10}$$

By assumption $\dot{\varphi} \not\equiv 0$, the constant is non-zero, hence $\dot{\varphi}$ and $\dot{\bar{\varphi}}$ are non-zero everywhere, by (7) we get

$$|u_z||\dot{\varphi}|=|\bar{u}_z||\dot{\bar{\varphi}}|$$

hence

$$|u_z|=|\bar{u}_z|=|u_{\bar{z}}|$$

we get (5). \square

Theorem (Uniqueness)

Suppose Σ_1 and Σ_2 are compact Riemann surface, Σ_2 is with hyperbolic metric. $u_0, u_1 : \Sigma_1 \to \Sigma_2$ are homotopic harmonic maps. If one of the Jacobian matrix is non-degenerated at a point, then $u_0 \equiv u_1$.

Proof.

Given a homotopy connecting u_0 and u_1 , $h(z,t): \Sigma_1 \times [0,t] \to \Sigma_2$, such that $h(z,0)=u_0(z)$, $h(z,1)=u_1(z)$. Let $\psi(z,t)$ is a geodesic from $u_0(z)$ to $u_1(z)$ and homotopic to h(z,t), with parameter

$$ho(\psi(z,t))|\dot{\psi}(z,t)|\equiv {\sf const}$$

then $u_t(z) := \psi(z, t)$ is also a homotopy connecting u_0 and u_1 .

continue

We define function $f(t):=E(u_t)$. By above theorem, $\forall t\in[0,1]$, $\ddot{f}(t)\geq 0$, hence f(t) is convex. Since u_0 and u_1 are harmonic, $\dot{f}(0)=\dot{f}(1)=0$. By the assumption of the Jacobian matrix, either $\ddot{f}(0)>0$ or $\ddot{f}(1)>0$, hence we must have $\dot{\psi}(t)\equiv 0$, namely $u_0\equiv u_1$. \square