

# Exploring Diffusion-Generated Image Detection Methods

**Aristotelis Dimitriou** 

aristotelis.dimitriou@epfl.ch

## Introduction to Deepfakes

#### Advancement in Al & Public Data

- Growth in deep learning, especially GANs and diffusion models
- Access to large-scale dataset

### Result

- Rise into realistic fake content
  - → Potential for misuse
  - → Need for reliable detection



## Introduction to **Deepfakes**

### Main Face Manipulation Techniques:

- Entire Face Synthesis: New, realistic faces.
- Attribute Manipulation: Changing features.
- Identity Swap: Face replacement.
- Expression Swap: Altering expressions.

→ In this project we focused on Entire **Face Synthesis for static images** 











Attribute Manipulation

[1]: Tolosana et al. (2020)















Expression Swap

## State of the Art (SoTA) Deepfake Detection

### **Technological Approaches**

Primarily based on Convolutional Neural Networks (CNNs) models

#### **Effectiveness**

- High effectiveness within the same generative model family (e.g. classifiers trained on ProGAN tend to successfully detect StyleGAN fakes)
- <u>Primary Challenge:</u> Lack of generalizability across different families of generative models (e.g. GANs vs Diffusion models)

#### **Datasets**

- *GAN based:* ProGAN [6], CycleGAN [7], BigGAN [8], StyleGAN [8]...
- <u>Diffusion based:</u> LDM [9], PNDM [10], DDIM [11], DDPM [12]...
- Real: LSUN [13], LAION [14], CelebAHQ [15]...

Semester Project Final Presentation (10.01.2024)



## **Zhang et al. 2019 Artifact identification**

- Insightful research, identifying specific artifacts in the frequency domain.
- Observed periodic grid-like patterns in GAN model frequency spectra, caused by upsampling
- These findings are very interesting as they suggest that frequency domains could be potentially the key to generalization
- This serves as a foundation for our research.







**GAN** 



### Wang et al. 2020 One of the best performing SoTA model

**Idea:** create a "universal" detector for telling apart real images from these generated by a CNN, regardless of architecture or dataset used.

→ With proper pre-/post-processing and data augmentation, training on data generated only by ProGAN can generalize very well for all CNN-based deepfakes

Classifier: ResNet50 (pre-trained on ImageNet)



[2]: Wana et al. (2020)



### Ojha et al. 2023 Universal Fake Detect

#### [4]: Ojha et al. (2023)



- Fake (GAN)
- Real (GAN)
- Fake (Diffusion)
- Real (Diffusion)

#### **Identified Classification Issue**

- Real class acts as a 'sink' class
- Include all fake images that are not from the same model as the training dataset's model

### **Spectrum Differences**

- Distinct spectrum characteristics in GAN vs. Diffusion model and Real images.
- These differences could explain the classification issue

t-SNE visualization of real and fake images associated with two types of generative models. The feature space used is of a classifier trained to distinguish Fake (GAN) from Real (GAN).



[4]: Ojha et al. (2023)

These spectra are obtained by applying a high-pass and subtracting the median blurred image before applying an FFT

Semester Project Final Presentation (10.01.2024)



## Ojha et al. 2023 Approach

Idea: classify in a feature space that hasn't learned to distinguish between the two classes, ensuring unbiased feature recognition for both classes.

**Feature Space** is defined by a vision transformer trained for the task of image-language alignment, CLIP: ViT/14

- → Trained on 400M images (internet-scale dataset)
- → Models general details, as well as low-level details of an image

### **Classifiers**

- k-Nearest Neighbors
- Linear



## **Ojha et al. 2023 Approach**



### **Classifiers**

- k-Nearest Neighbors Linear



## Our proposed method

- To address this generalization challenge, we build on Wang et al.'s simple architecture and their augmentation techniques.
- The core of our proposition lies in investigating the effect of various pre-processing techniques and frequency transformations on deepfake detection performance.
- These methods will be evaluated both individually and in combination.





### **Datasets**

#### Real:

CelebA  $\rightarrow$  1024x1024 JPEG (30k images)

#### Diffusion:

| _ | PNDM | $\rightarrow$ 256x256 | PNG | (40k images) |
|---|------|-----------------------|-----|--------------|
|   | DDIM | $\rightarrow$ 256x256 | PNG | (40k images) |
| - | DDPM | $\rightarrow$ 256x256 | PNG | (40k images) |
| _ | LDM  | $\rightarrow$ 256x256 | PNG | (40k images) |

#### GAN:

 $ProGAN \rightarrow 256x256$ PNG (50k images)

All models were **trained using ProGAN and PNDM**, having LDM, DDIM, DDPM as our generalization domain

### Baselines:

- Wang et al. is also trained with PNDM and ProGAN Ojha et al. uses a different approach for the prediction using a feature space extracted with non-face images (keep in mind)



## Frequency Analysis Fast Fourier Transform

Analysis of average FFT, following Zhang et al.'s approach

Similarly to what many other studies have found we found that:

- GAN datasets showcase unique grid-like patterns
- Diffusion model datasets have very similar average FFT spectra with the ones from real datasets.



→ Our results match what has been previously found in other studies! (see Zhang et al. [5], Wang et al. [2], Ojha et al. [4])



## Frequency Analysis Discrete Cosine Transform

**Analysis of average DCT**, similar to the approach used for the FFT

#### We can see that:

- Dominant low-frequency contributions in the upper-left corner.
- Gradual decrease in contribution towards higher frequencies (lower right corner).
- GAN datasets display again a grid-like pattern



→ Our results match what has been previously found in other studies! (see Frank et al. [17])



## Frequency Analysis Results

#### **Trained with PNDM and ProGAN**

Both the FFT and DCT used in our experiments fed into the ResNet50 were obtained by calculating the transform for each RGB channel and then concatenating them

- FFT achieves extremely good results
- DCT however achieves performances that are close to chance

| Category |                  | Test             |                  |          |               |  |
|----------|------------------|------------------|------------------|----------|---------------|--|
|          | Augmentations    | Pre-Processing   | Transforms       | Datasets | Acc./AP       |  |
| Ojha [4] | (Does not apply) | (Does not apply) | (Does not apply) | PNDM     | 0.6845/0.7849 |  |
|          |                  |                  |                  | DDIM     | 0.6855/0.7847 |  |
|          |                  |                  |                  | DDPM     | 0.5875/0.6543 |  |
|          |                  |                  |                  | LDM      | 0.8295/0.9405 |  |
| 100000   |                  |                  |                  | ProGAN   | 0.8035/0.9078 |  |
| Wang [5] | BlurJPEG(0.5)    | None             | None             | PNDM     | 0.7337/0.9925 |  |
|          |                  |                  |                  | DDIM     | 0.7323/0.9734 |  |
|          |                  |                  |                  | DDPM     | 0.7291/0.9371 |  |
|          |                  |                  |                  | LDM      | 0.2533/0.4007 |  |
|          |                  |                  |                  | ProGAN   | 0.7671/0.9977 |  |
| Ours     | BlurJPEG $(0.5)$ | None             | FFT              | PNDM     | 0.9983/0.9999 |  |
|          |                  |                  |                  | DDIM     | 0.9836/0.9997 |  |
|          |                  |                  |                  | DDPM     | 0.9736/0.9995 |  |
|          |                  |                  |                  | LDM      | 0.9973/1.0000 |  |
|          |                  |                  |                  | ProGAN   | 0.9986/1.0000 |  |
| Ours     | BlurJPEG $(0.5)$ | None             | DCT              | PNDM     | 0.5553/0.8839 |  |
|          |                  |                  |                  | DDIM     | 0.5363/0.7936 |  |
|          |                  |                  |                  | DDPM     | 0.5311/0.7899 |  |
|          |                  |                  |                  | LDM      | 0.5300/0.8550 |  |
|          |                  |                  |                  | ProGAN   | 0.5944/0.9069 |  |



### **Pre-Processing**

Three pre-processing techniques were explored:

- Low Pass (Median Blur)
- High Pass (Median Blur Subtraction)
- Sharp Edge Detection (Sharpen Image → Canny Edge Detection)

















## Pre-Processing High-Pass

In order to identify potential unique characteristics able to identify each generative model, frequency heatmaps were generated:

- There is a clear distinction between all 3 generative
- The GAN model displays a very peculiar wave-like pattern on the face
- Diffusion models have very well defined eyes
- Real images are more blurred due to greater variability of the position of the face characteristics

The heatmaps were obtained by applying the high-pass on all images and subsequently averaging all images of the dataset





## **Pre-Processing Sharp Edge Detection**

A very similar approach was taken with the sharp edge pre-processing, using frequency heatmaps:

The results yielded similar results with the high-pass frequency heatmaps

GAN model still has an interesting pattern on the face

- Diffusion models have very pronounced eyes and mouths
- Real images still have high variability but somewhat pronounced eyes

The heatmaps were obtained by applying the sharp edge on all images and subsequently averaging all images of the dataset



We can hope that these identifying characteristics will be picked by our model and separate the 3 generative models



## Pre-Processing Results

Unfortunately we do not observe significant increase in the performances in any of the three pre-processings:

- High pass yields decent results across all datasets (except LDM)
- All other techniques underperformed and were nowhere near our baselines

#### **Trained with PNDM and ProGAN**

| Category |                                        | Options          |                  |          | Test          |
|----------|----------------------------------------|------------------|------------------|----------|---------------|
| 7        | Augmentations                          | Pre-Processing   | Transforms       | Datasets | Acc./AP       |
| Ojha [4] | (Does not apply)                       | (Does not apply) | (Does not apply) | PNDM     | 0.6845/0.7849 |
|          |                                        |                  |                  | DDIM     | 0.6855/0.7847 |
|          |                                        |                  |                  | DDPM     | 0.5875/0.6543 |
|          |                                        |                  |                  | LDM      | 0.8295/0.9405 |
|          |                                        |                  |                  | ProGAN   | 0.8035/0.9078 |
| Wang [5] | BlurJPEG(0.5)                          | None             | None             | PNDM     | 0.7337/0.9925 |
|          |                                        |                  |                  | DDIM     | 0.7323/0.9734 |
|          |                                        |                  |                  | DDPM     | 0.7291/0.9371 |
|          |                                        |                  |                  | LDM      | 0.2533/0.4007 |
|          |                                        |                  | 8                | ProGAN   | 0.7671/0.9977 |
| Ours     | BlurJPEG $(0.5)$                       | High Pass        | None             | PNDM     | 0.7651/0.9992 |
|          |                                        |                  |                  | DDIM     | 0.7590/0.9761 |
|          |                                        |                  |                  | DDPM     | 0.7380/0.9346 |
|          |                                        |                  |                  | LDM      | 0.3670/0.5343 |
|          | ************************************** |                  |                  | ProGAN   | 0.7947/0.9999 |
| Ours     | BlurJPEG $(0.5)$                       | Low Pass         | None             | PNDM     | 0.6599/0.9778 |
|          |                                        |                  |                  | DDIM     | 0.6560/0.9516 |
|          |                                        |                  |                  | DDPM     | 0.6544/0.9048 |
|          | E A                                    |                  |                  | LDM      | 0.1489/0.3759 |
|          |                                        |                  |                  | ProGAN   | 0.7036/0.9954 |
| Ours     | BlurJPEG $(0.5)$                       | Edge             | None             | PNDM     | 0.5964/0.8801 |
|          |                                        |                  |                  | DDIM     | 0.5901/0.8647 |
|          |                                        |                  |                  | DDPM     | 0.5337/0.7432 |
|          |                                        |                  |                  | LDM      | 0.2864/0.4923 |
|          |                                        |                  |                  | ProGAN   | 0.6679/0.9921 |
| Ours     | BlurJPEG(0.5)                          | Sharp Edge       | None             | PNDM     | 0.5883/0.8741 |
|          |                                        |                  |                  | DDIM     | 0.5880/0.8591 |
|          |                                        |                  |                  | DDPM     | 0.5361/0.7417 |
|          |                                        |                  |                  | LDM      | 0.2951/0.4925 |
|          |                                        |                  |                  | ProGAN   | 0.6614/0.9904 |



## Combination of 2 Techniques FFT + Pre-processing

**Trained with PNDM and ProGAN** 

- We can observe very good results for the combination FFT + Low-Pass, however they are a downgrade from the FFT
- The combination FFT + High-Pass which looked promising, gave us very mediocre results
- FFT + Sharp-Edge also had very bad performances

| Category |                  | Options          |                  | Test     |              |  |  |  |
|----------|------------------|------------------|------------------|----------|--------------|--|--|--|
|          | Augmentations    | Pre-Processing   | Transforms       | Datasets | Acc./AP      |  |  |  |
| Ojha 4   | (Does not apply) | (Does not apply) | (Does not apply) | PNDM     | 0.6845/0.784 |  |  |  |
|          |                  |                  |                  | DDIM     | 0.6855/0.784 |  |  |  |
|          |                  |                  |                  | DDPM     | 0.5875/0.654 |  |  |  |
|          |                  |                  |                  | LDM      | 0.8295/0.940 |  |  |  |
| 111      |                  |                  |                  | ProGAN   | 0.8035/0.907 |  |  |  |
| Wang [3] | BlurJPEG(0.5)    | None             | None             | PNDM     | 0.7337/0.992 |  |  |  |
| To die   |                  |                  |                  | DDIM     | 0.7323/0.973 |  |  |  |
|          |                  |                  |                  | DDPM     | 0.7291/0.937 |  |  |  |
|          |                  |                  |                  | LDM      | 0.2533/0.400 |  |  |  |
|          |                  |                  |                  | ProGAN   | 0.7671/0.997 |  |  |  |
| Ours     | BlurJPEG(0.5)    | High Pass        | FFT              | PNDM     | 0.5954/0.824 |  |  |  |
|          |                  |                  |                  | DDIM     | 0.5369/0.414 |  |  |  |
|          |                  |                  |                  | DDPM     | 0.4841/0.391 |  |  |  |
|          |                  |                  |                  | LDM      | 0.5400/0.499 |  |  |  |
|          |                  |                  |                  | ProGAN   | 0.6456/0.903 |  |  |  |
| Ours     | BlurJPEG(0.5)    | Low Pass         | FFT              | PNDM     | 0.9577/0.998 |  |  |  |
|          |                  |                  |                  | DDIM     | 0.9509/0.994 |  |  |  |
|          |                  |                  |                  | DDPM     | 0.9400/0.991 |  |  |  |
|          |                  |                  |                  | LDM      | 0.8186/0.935 |  |  |  |
|          |                  |                  |                  | ProGAN   | 0.9554/0.996 |  |  |  |
| Ours     | BlurJPEG(0.5)    | Sharp Edge       | FFT              | PNDM     | 0.5477/0.481 |  |  |  |
|          |                  |                  |                  | DDIM     | 0.5359/0.470 |  |  |  |
|          |                  |                  |                  | DDPM     | 0.4730/0.434 |  |  |  |
|          |                  |                  |                  | LDM      | 0.4894/0.471 |  |  |  |
|          |                  |                  |                  | ProGAN   | 0.6274/0.653 |  |  |  |
| Ours     | BlurJPEG(0.5)    | None             | FFT              | PNDM     | 0.9983/0.999 |  |  |  |
|          |                  |                  |                  | DDIM     | 0.9836/0.999 |  |  |  |
|          |                  |                  |                  | DDPM     | 0.9736/0.999 |  |  |  |
|          |                  |                  |                  | LDM      | 0.9973/1.000 |  |  |  |
|          |                  |                  |                  | ProGAN   | 0.9986/1.000 |  |  |  |



## Combination of 2 Techniques DCT + Pre-processing

Trained with PNDM and ProGAN

All of the results obtained with the DCT were very average, despite improving on the individual DCT performance, being somewhat consistent across all datasets

| Category |                  | Options          |                  | Test     |               |  |  |  |
|----------|------------------|------------------|------------------|----------|---------------|--|--|--|
|          | Augmentations    | Pre-Processing   | Transforms       | Datasets | Acc./AP       |  |  |  |
| Ojha [4] | (Does not apply) | (Does not apply) | (Does not apply) | PNDM     | 0.6845/0.7849 |  |  |  |
|          | N                |                  |                  | DDIM     | 0.6855/0.784  |  |  |  |
|          |                  |                  |                  | DDPM     | 0.5875/0.654  |  |  |  |
|          |                  |                  |                  | LDM      | 0.8295/0.940  |  |  |  |
| -        |                  |                  |                  | ProGAN   | 0.8035/0.907  |  |  |  |
| Wang [3] | BlurJPEG(0.5)    | None             | None             | PNDM     | 0.7337/0.992  |  |  |  |
|          |                  |                  |                  | DDIM     | 0.7323/0.973  |  |  |  |
|          |                  |                  |                  | DDPM     | 0.7291/0.937  |  |  |  |
|          |                  |                  |                  | LDM      | 0.2533/0.400  |  |  |  |
|          |                  |                  |                  | ProGAN   | 0.7671/0.997  |  |  |  |
| Ours     | BlurJPEG(0.5)    | High Pass        | DCT              | PNDM     | 0.6866/0.991  |  |  |  |
|          |                  |                  |                  | DDIM     | 0.624/0.888   |  |  |  |
|          |                  |                  |                  | DDPM     | 0.5794/0.804  |  |  |  |
|          |                  |                  |                  | LDM      | 0.6281/0.923  |  |  |  |
|          |                  |                  |                  | ProGAN   | 0.7229/0.990  |  |  |  |
| Ours     | BlurJPEG(0.5)    | Low Pass         | DCT              | PNDM     | 0.5684/0.839  |  |  |  |
|          |                  |                  |                  | DDIM     | 0.5686/0.771  |  |  |  |
|          |                  |                  |                  | DDPM     | 0.5691/0.804  |  |  |  |
|          |                  |                  |                  | LDM      | 0.5139/0.456  |  |  |  |
|          |                  |                  |                  | ProGAN   | 0.5739/0.512  |  |  |  |
| Ours     | BlurJPEG(0.5)    | Sharp Edge       | DCT              | PNDM     | 0.7/0.7508    |  |  |  |
|          |                  |                  |                  | DDIM     | 0.6999/0.737  |  |  |  |
|          |                  |                  |                  | DDPM     | 0.6619/0.654  |  |  |  |
|          |                  |                  |                  | LDM      | 0.6451/0.701  |  |  |  |
|          |                  |                  |                  | ProGAN   | 0.7501/0.877  |  |  |  |
| Ours     | BlurJPEG(0.5)    | None             | DCT              | PNDM     | 0.5553/0.883  |  |  |  |
|          |                  |                  |                  | DDIM     | 0.5363/0.793  |  |  |  |
|          |                  |                  |                  | DDPM     | 0.5311/0.789  |  |  |  |
|          |                  |                  |                  | LDM      | 0.5300/0.855  |  |  |  |
|          |                  |                  |                  | ProGAN   | 0.5944/0.906  |  |  |  |



### **Conclusion**

- Identified that generative models generate images with facial characteristics in similar locations, through frequency heatmaps
- GAN model introduce high-frequency artifacts within the face of the generated images
- With our models we managed to achieve interesting results in two cases:
  - Individual FFT
  - FFT + Low-Pass
- Would be interesting to look at the performance of these models on unseen GAN models, or to evaluate other combination of training sets



### **Future Research**

- Assess how the current models generalize to previously unseen GAN-generated images.
- Evaluate the impact of various training dataset combinations on model effectiveness.
- Examine the influence of different image pre-processing techniques on model performance.
- Train distinct models using varied inputs (original, pre-processed, transformed), and integrate their feature maps prior to the Fully Connected layer to enhance the classification feature map.

**M** M

SPG EPFL

### References

```
[1]: Tolosana et al. (2020): <a href="https://arxiv.org/abs/2001.00179">https://arxiv.org/abs/2001.00179</a>
[2]: Wang et al. (2020): <a href="https://arxiv.org/pdf/1912.11035">https://arxiv.org/pdf/1912.11035</a>
[3]: Ricker et al. (2023): https://arxiv.org/pdf/2210.14571
[4]: Ojha et al. (2023): <a href="https://arxiv.org/pdf/2302.10174">https://arxiv.org/pdf/2302.10174</a>
[5]: Zhang et al. (2019): <a href="https://arxiv.org/pdf/1907.06515">https://arxiv.org/pdf/1907.06515</a>
[6]: ProGAN: https://arxiv.org/abs/1710.10196
[7]: CycleGAN: https://arxiv.org/abs/1703.10593
[8]: BigGAN: https://arxiv.org/abs/1809.11096
[9]: StyleGAN: https://arxiv.org/abs/1812.04948
[10]: LDM: https://arxiv.org/abs/2112.10752
[11]: PNDM: https://arxiv.org/abs/2202.09778
[12]: DDIM: <a href="https://arxiv.org/abs/2010.02502">https://arxiv.org/abs/2010.02502</a>
[13]: DDPM: https://arxiv.org/abs/2006.11239
[14]: LSUN: https://arxiv.org/abs/1506.03365
[15]: LAION: https://arxiv.org/abs/2311.13028
[16]: CelebA: <a href="https://ieeexplore.ieee.org/document/7410782">https://ieeexplore.ieee.org/document/7410782</a>
```

[17]: Frank et al. (2023): https://arxiv.org/abs/2003.08685



## **Multimedia Signal Processing Group**

**EPFL** 

https://mmspg.epfl.ch/

# Thank you!

Aristotelis Dimitriou aristotelis.dimitriou@epfl.ch

 Ecole polytechnique fédérale de Lausanne



### Wang et al. 2020 Results

|             | Name            |               | Trainin | g setting | ,s   |          |      |           |      |        | Individu | al test ge | nerators |      |      |      |       | Total |
|-------------|-----------------|---------------|---------|-----------|------|----------|------|-----------|------|--------|----------|------------|----------|------|------|------|-------|-------|
| Family      |                 | Train         | Input   | No.       | Aug  | Augments |      | o- Style- | Big- | Cycle- | Star-    | Gau-       | CRN      | IMLE | SITD | SAN  | Deep- | mAP   |
|             |                 |               | input   | Class     | Blur | JPEG     | GAN  | GAN       | GAN  | GAN    | GAN      | GAN        | CIU,     |      | 0112 | 0.11 | Fake  |       |
| Thona       | Cyc-Im          | CycleGAN      | RGB     | _         |      |          | 84.3 | 65.7      | 55.1 | 100.   | 99.2     | 79.9       | 74.5     | 90.6 | 67.8 | 82.9 | 53.2  | 77.6  |
| Zhang       | Cyc-Spec        | CycleGAN      | Spec    | -         |      |          | 51.4 | 52.7      | 79.6 | 100.   | 100.     | 70.8       | 64.7     | 71.3 | 92.2 | 78.5 | 44.5  | 73.2  |
| et al. [50] | Auto-Im         | AutoGAN       | RGB     |           |      |          | 73.8 | 60.1      | 46.1 | 99.9   | 100.     | 49.0       | 82.5     | 71.0 | 80.1 | 86.7 | 80.8  | 75.5  |
|             | Auto-Spec       | AutoGAN       | Spec    | _         |      |          | 75.6 | 68.6      | 84.9 | 100.   | 100.     | 61.0       | 80.8     | 75.3 | 89.9 | 66.1 | 39.0  | 76.5  |
|             | 2-class         | ProGAN        | RGB     | 2         | 1    | <b>√</b> | 98.8 | 78.3      | 66.4 | 88.7   | 87.3     | 87.4       | 94.0     | 97.3 | 85.2 | 52.9 | 58.1  | 81.3  |
|             | 4-class         | ProGAN        | RGB     | 4         | V    | 1        | 99.8 | 87.0      | 74.0 | 93.2   | 92.3     | 94.1       | 95.8     | 97.5 | 87.8 | 58.5 | 59.6  | 85.4  |
|             | 8-class         | <b>ProGAN</b> | RGB     | 8         | V    | 1        | 99.9 | 94.2      | 78.9 | 94.3   | 91.9     | 95.4       | 98.9     | 99.4 | 91.2 | 58.6 | 63.8  | 87.9  |
|             | 16-class        | ProGAN        | RGB     | 16        | 1    | <b>V</b> | 100. | 98.2      | 87.7 | 96.4   | 95.5     | 98.1       | 99.0     | 99.7 | 95.3 | 63.1 | 71.9  | 91.4  |
| Ours        | No aug          | ProGAN        | RGB     | 20        |      |          | 100. | 96.3      | 72.2 | 84.0   | 100.     | 67.0       | 93.5     | 90.3 | 96.2 | 93.6 | 98.2  | 90.1  |
|             | Blur only       | ProGAN        | RGB     | 20        | V    |          | 100. | 99.0      | 82.5 | 90.1   | 100.     | 74.7       | 66.6     | 66.7 | 99.6 | 53.7 | 95.1  | 84.4  |
|             | JPEG only       | ProGAN        | RGB     | 20        |      | 1        | 100. | 99.0      | 87.8 | 93.2   | 91.8     | 97.5       | 99.0     | 99.5 | 88.7 | 78.1 | 88.1  | 93.0  |
|             | Blur+JPEG (0.5) | ProGAN        | RGB     | 20        | 1    | 1        | 100. | 98.5      | 88.2 | 96.8   | 95.4     | 98.1       | 98.9     | 99.5 | 92.7 | 63.9 | 66.3  | 90.8  |
|             | Blur+JPEG (0.1) | ProGAN        | RGB     | 20        | †    | †        | 100. | 99.6      | 84.5 | 93.5   | 98.2     | 89.5       | 98.2     | 98.4 | 97.2 | 70.5 | 89.0  | 92.6  |

[2]: Wang et al. (2020)

- Indeed the ProGAN classifier performs very well on CNN-based models
- Significant improvements with respect to the baseline



### Wang et al. 2020 Tested on Diffusion models

[3]: Ricker et al. (2023)

| AUDOCADIOSS ADIOLS    | Wang et al. [51] |         |                 |         |         |       |  |  |  |  |  |  |
|-----------------------|------------------|---------|-----------------|---------|---------|-------|--|--|--|--|--|--|
| AUROC / Pd@5% / Pd@1% | Blur+            | JPEG (  | Blur+JPEG (0.1) |         |         |       |  |  |  |  |  |  |
| ProGAN                | 100.0 /          | 100.0 / | 100.0           | 100.0 / | 100.0 / | 100.0 |  |  |  |  |  |  |
| StyleGAN              | 98.7/            | 93.7/   | 81.4            | 99.0/   | 95.5/   | 84.4  |  |  |  |  |  |  |
| ProjectedGAN          | 94.8/            | 73.8 /  | 49.1            | 90.9/   | 61.8/   | 34.5  |  |  |  |  |  |  |
| Diff-StyleGAN2        | 99.9/            | 99.6/   | 97.9            | 100.0 / | 99.9/   | 99.3  |  |  |  |  |  |  |
| Diff-ProjectedGAN     | 93.8/            | 69.5 /  | 43.3            | 88.8/   | 54.6/   | 27.2  |  |  |  |  |  |  |
| Average               | 97.4/            | 87.3 /  | 74.3            | 95.7/   | 82.4/   | 69.1  |  |  |  |  |  |  |
| DDPM                  | 85.2/            | 37.8 /  | 14.2            | 80.8 /  | 29.6/   | 9.3   |  |  |  |  |  |  |
| IDDPM                 | 81.6/            | 30.6/   | 10.6            | 79.9 /  | 27.6/   | 7.8   |  |  |  |  |  |  |
| ADM                   | 68.3 /           | 13.2/   | 3.4             | 68.8 /  | 14.1/   | 4.0   |  |  |  |  |  |  |
| PNDM                  | 79.0 /           | 27.5/   | 9.2             | 75.5 /  | 22.6/   | 6.3   |  |  |  |  |  |  |
| LDM                   | 78.7/            | 24.7/   | 7.4             | 77.7/   | 24.3/   | 6.9   |  |  |  |  |  |  |
| Average               | 78.6/            | 26.8 /  | 9.0             | 76.6/   | 23.7/   | 6.8   |  |  |  |  |  |  |

The performance of this classifier clearly deteriorates upon evaluating on diffusion models



## Wang et al. 2020 Reproduction of Results

| Model       | AP (My Results) | AP (Wang et al.) |
|-------------|-----------------|------------------|
| ProGAN      | 100.0           | 100.0            |
| StyleGAN    | 98.5            | 98.5             |
| BigGAN      | 88.2            | 88.2             |
| CycleGAN    | 96.8            | 96.8             |
| StarGAN     | 95.4            | 95.4             |
| GauGAN      | 98.1            | 98.1             |
| CRN         | 98.9            | 98.9             |
| IMLE        | 99.5            | 99.5             |
| SITD        | 92.7            | 92.7             |
| SAN         | 63.9            | 63.9             |
| DeepFake    | 66.3            | 66.3             |
| Overall mAP | 90.8            | 90.8             |

Surprisingly the results of their model underperforms for all datasets especially on ProGAN on which it should perform best

| Model  | Acc./AP   |
|--------|-----------|
| PNDM   | 42.7/44.2 |
| DDIM   | 42.7/42.5 |
| DDPM   | 42.4/39.4 |
| LDM    | 43.2/45.5 |
| ProGAN | 37.7/48.2 |

Average Precision Results (their datasets): Using **Blur+JPEG(0.5)** 

Average Precision Results (our datasets): Using **Blur+JPEG(0.5)** 



### Ojha et al 2023 Results

[4]: Ojha et al. (2023)

#### "Generalization Domain"

| Detection                 | Variant                                                  | G                                         | enerativ      | e Adve         | rsarial l               | Networl                 | ks                      |                | Low le                  | vel vision                                       | Perceptual loss                           |                                           | Guided                  | LDM                                              |                                                  |                                                  | Glide                                            |                |                | DALL-E                  | Total                                            |
|---------------------------|----------------------------------------------------------|-------------------------------------------|---------------|----------------|-------------------------|-------------------------|-------------------------|----------------|-------------------------|--------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------|----------------|-------------------------|--------------------------------------------------|
| method                    |                                                          | Pro-<br>GAN                               | Cycle-<br>GAN |                | Style-<br>GAN           |                         |                         | fakes          | SITD                    | SAN                                              | CRN                                       | IMLE                                      |                         | 200<br>steps                                     | 200<br>w/ CFG                                    | 100<br>steps                                     | 100<br>27                                        | 50<br>27       | 100<br>10      |                         | mAP                                              |
| Trained deep network [50] | Blur+JPEG (0.1)<br>Blur+JPEG (0.5)<br>ViT:CLIP (B+J 0.5) |                                           | 96.83         |                | 98.29                   | 98.09                   | 95.44                   | 66.27          | 86.0                    | 59.47<br>61.2<br>55.21                           | 98.24<br><b>98.94</b><br>88.75            | 98.4<br><b>99.52</b><br>96.22             | 73.72<br>68.57<br>55.74 | 70.62<br>66.0<br>52.52                           | 71.0<br>66.68<br>54.51                           | 70.54<br>65.39<br>52.2                           | 80.65<br>73.29<br>56.64                          | 78.02          |                |                         | 83.58<br>81.52<br>73.44                          |
| Patch classifier [10]     | ResNet50-Layer1<br>Xception-Block2                       |                                           |               |                | 92.96<br>85.75          |                         |                         | 60.18<br>76.55 |                         | 52.87<br>76.34                                   | 68.74<br>74.52                            | 67.59<br>68.52                            | 70.05<br>75.03          | 87.84<br>87.1                                    | 84.94<br>86.72                                   | 88.1<br>86.4                                     |                                                  |                | 75.84<br>78.38 | 77.07<br>75.67          | 75.28<br>77.73                                   |
| Co-occurence [35]         | -                                                        | 99.74                                     | 80.95         | 50.61          | 98.63                   | 53.11                   | 67.99                   | 59.14          | 68.98                   | 60.42                                            | 73.06                                     | 87.21                                     | 70.20                   | 91.21                                            | 89.02                                            | 92.39                                            | 89.32                                            | 88.35          | 82.79          | 80.96                   | 78.11                                            |
| Freq-spec [53]            | CycleGAN                                                 | 55.39                                     | 100.0         | 75.08          | 55.11                   | 66.08                   | 100.0                   | 45.18          | 47.46                   | 57.12                                            | 53.61                                     | 50.98                                     | 57.72                   | 77.72                                            | 77.25                                            | 76.47                                            | 68.58                                            | 64.58          | 61.92          | 67.77                   | 66.21                                            |
| Ours                      | NN, k = 1<br>NN, k = 3<br>NN, k = 5<br>NN, k = 9<br>LC   | 100.0<br>100.0<br>100.0<br>100.0<br>100.0 |               | 94.46<br>94.46 | 86.67<br>86.66<br>86.66 | 99.25<br>99.25<br>99.25 | 99.53<br>99.53<br>99.53 |                | 78.54<br>78.54<br>78.54 | 67.54<br>67.54<br>67.54<br>67.54<br><b>79.02</b> | 83.13<br>83.13<br>83.12<br>83.12<br>96.72 | 91.07<br>91.06<br>91.06<br>91.06<br>99.00 | 79.26<br>79.25<br>79.24 | 95.84<br>95.81<br>95.81<br>95.81<br><b>99.14</b> | 79.84<br>79.78<br>79.78<br>79.77<br><b>92.15</b> | 95.97<br>95.94<br>95.94<br>95.93<br><b>99.17</b> | 93.98<br>93.94<br>93.94<br>93.93<br><b>94.74</b> | 95.13<br>95.12 | 94.60<br>94.59 | 88.47<br>88.46<br>88.45 | 90.32<br>90.22<br>90.22<br>90.14<br><b>93.38</b> |

Noticeable improvements over the best performing baseline when evaluating on unseen generative models

<u>Best performing baseline:</u> +9.8 mAP overall and +19.49 mAP across unseen diffusion & autoregressive models.



### Ojha et al 2023 Performance on our datasets

| Model  | Acc./AP   |
|--------|-----------|
| PNDM   | 68.5/78.5 |
| DDIM   | 68.6/78.5 |
| DDPM   | 58.8/65.4 |
| LDM    | 83.0/94.1 |
| ProGAN | 85.4/90.8 |

The cross-model performance, observed in the paper is verified through testing on our own datasets, were we observe similar performances synthetic

real

**ProGAN** 

StyleGAN

Real

Real

[2]: Wang et al. (2020)







[17]: Frank et al. (2023)















