DIALOG(R) File 352: Derwent WPI

(c) 2001 Derwent Info Ltd. All rts. reserv.

XRAM Acc No: C90-129327 XRPX Acc No: N90-230323

Multilayered organic electroluminescent device — has metal electrodes and several organic layers where conductivity electrons are injected and recombined

Patent Assignee: TOSHIBA KK (TOKE)

Inventor: EGUSA S; GEMMA N

Number of Countries: 005 Number of Patents: 008

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
EP 390551	Ä	19901003	EP 90303351	A	19900329	199040 B
JP 2261889	Α	19901024	JP 8983568	A	19890331	199049
JP 3115486	Α	19910516	JP 89254960	A	19890929	199126
JP 3230583	A	19911014	JP 9025100	A	19900206	199147
JP 3230584	Α	19911014	JP 9025101	A	19900206	199147
US 5294810	A	19940315	US 90501251	Α	19900329	199411
			US 92921379	Α	19920730	
EP 390551	B1	19960710	EP 90303351	Α	19900329	199632
DE 69027697	Ε	19960814	DE 627697	Α	19900329	199638
			EP 90303351	A	19900329	

Priority Applications (No Type Date): JP 9025101 A 19900206; JP 8983568 A

19890331; JP 89254960 A 19890929; JP 9025100 A 19900206 Cited Patents: 4. Jnl. Ref; A3... 9128; EP 120673; NoSR. Pub

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

US 5294810 A 39 HO1L-029/28 Cont of application US 90501251

EP 390551 B1 E 53 H05B-033/12

Designated States (Regional): DE FR GB

DE 69027697 E H05B-033/12 Based on patent EP 390551

Abstract (Basic): EP 390551 A

Electroluminescent device has a body with organic films (4, 5, 6) having light emitting layer sandwiched between two electrodes (2, 3). The work function of the metal electrode, conduction and valance-bands and Fermi levels of each organic film are chosen so that electrons and holes are easily injected into the organic layers.

When the device is biased above predetermined threshold, electrons and holes accumulated at the junction between the organic layers recombine causing light to be emitted.

ADVANTAGE - Increased luminous efficiency and working life. (49pp Dwg. No. 1/35)

Title Terms: MULTILAYER; ORGANIC; ELECTROLUMINESCENT; DEVICE; METAL;

ELECTRODE; ORGANIC; LAYER; CONDUCTING; ELECTRON; INJECTION; RECOMBINATION

Derwent Class: A85; L03; U12; U14

International Patent Class (Main): HO1L-029/28; H05B-033/12

International Patent Class (Additional): HOIL-033/00; HOIL-051/20;

H05B-029/28; H05B-033/14

File Segment: CPI; EPI

DIALOG(R) File 347: JAPIO (c) 2001 JPO & JAPIO. All rts. reserv.

03567684 **|mage available** ORGANIC-FILM LIGHT EMITTING ELEMENT

PUB. NO.:

03-230584 [JP 3230584 A]

PUBL I SHED:

October 14, 1991 (19911014)

INVENTOR(s): EKUSA TAKASHI

MOTOMA NOBUHIRO

APPLICANT(s): TOSHIBA CORP [000307] (A Japanese Company or Corporation), JP

(Japan)

APPL. NO.:

02-025101 [JP 9025101]

FILED:

February 06, 1990 (19900206)

INTL CLASS:

[5] H01L-033/00; H01L-029/28; H05B-033/22

JAPIO CLASS: 42.2 (ELECTRONICS -- Solid State Components); 14.2 (ORGANIC

CHEMISTRY -- High Polymer Molecular Compounds); 43.4

(ELECTRIC POWER -- Applications)

JAPIO KEYWORD:R116 (ELECTRONIC MATERIALS -- Light Emitting Diodes, LED)

JOURNAL:

Section: E, Section No. 1152, Vol. 16, No. 8, Pg. 145,

January 10, 1992 (19920110)

ABSTRACT

PURPOSE: To make one picture element emit rays of light of multiple colors by allowing electrons to be tunnel-injected into the second organic film and holes to be tunnel-injected into the first organic film to respectively make light emitting recombination.

CONSTITUTION: This organic-film light emitting element is constituted of the first electrode (M(sub 1)) 5, first organic film (O(sub 1)) 4, second organic film (O(sub 2)) 3, and second electrode (M(sub 2)) 2 in the descending order. The second electrode 2 is a transparent electrode of ITO, etc., formed on, for example, a glass substrate 1 and light is taken out from the substrate 1 side. Barriers to electrodes and holes are formed at the joining boundary of the films 4 and 3 and, when a bias voltage which makes the electrode 2 positive is applied across the electrodes 5 and 2, electrons are injected into the first organic film 4 from the first electrode 5 and holes are injected into the second organic film 3 from the second electrode 2. Thus the electrons and holes are tunnel-injected into the organic films and make light emitting recombination in the organic films, resulting in the light emission of a wavelength determined by the first organic film and the light emission of another wavelength determined by the second organic film.

9日本国特許庁(JP)

⑩特許出願公開

母 公 開 特 許 公 報 (A) 平3-230584

Solnt, Cl. 5

識別記号

庁内整理番号

❷公開 平成3年(1991)10月14日

H 01 L 33/00 29/28 H 05 B 33/22 A 8934-5F 6412-5F 8112-3K

審査請求 未請求 請求項の数 11 (全15頁)

❸発明の名称 有機

有機膜発光素子

②特 頤 平2-25101

②出 顋 平2(1990)2月6日

伊発明者 江 草

俊 神奈川県川崎市幸区小向東芝町 1 番地 株式会社東芝雄会

研究所内

伊発明者 瀬間

信弘

神奈川県川崎市幸区小向東芝町 1 番地 株式会社東芝総合

研究所内

勿出 願 人 株式会社東芝

神奈川県川崎市幸区堀川町72番地

四代 理 人 弁理士 鈴江 武彦 外3名

月 期 音

1. 発明の名称

行 膜 廢 発 光 楽 子

2. 特許請求の範囲

(1)電子および正孔に対して障壁接合を構成する第1の存機膜と第2の存機膜の放應構造と、この接機構造を挟んで第1の存機膜側に設けられた電子注入用の第1の電極および第2の電極とを育し、 設けられた正孔注入用の第2の電極とを育し、

前記第1、第2の電極関に第2の電極関に正の パイアスを与えたときに、前記第1の電腦から前 記第1の有機膜に注入された正孔と前記第2の有機膜に注入された正孔とが前 記陣壁接合の界面に書簡され、これらの書機に た電子、正孔のうち電子が前記第2の有機膜にト ンネル注入されて第2の有機膜内で免光再結合し、 正孔が前記第1の存機膜にトンネル注入されて第 1の行機調内で発光再結合する、

ことを特徴とする有機襲発光楽子。

(2) 前記第1、第2の電極の仕事開致をそれぞ

れEwi, Ewzとし、

図記第1の有機膜の伝導帯の下端。フェルミレベルおよび無電子帯の上端の真空準位からのエネルギー芝をそれぞれ Ecr. Er および Evi とし、前記第2の有機膜の伝導帯の下端。フェルミレベルおよび循電子帯の上端の真空準位からのエネルギー芝をそれぞれ Ecr. Er および Evr としたとき、

E m1 < E 1

E 2 < E m2

E c 1 > E c 2

E v 1 > E v 2

を満たし、かつ

E c 1 - E c 2 < E v 1 - E v 2

を満たすように材料が選択されていることを特徴 とする請求項1記数の有機應発光素子。

(3) 罰記第1, 第2の電極の仕事関数をそれぞれE_{n1}、E_{n2}とし、

第記第1の有機膜の伝導帯の下端。フェルミン ベルおよび質電子帯の上端の真空準位からのエネ ルギー差をそれぞれ Eci、Ei および Eviとし、 前記第2の行義機の伝導帯の下端。フェルミレ ベルおよび循電子帯の上端の真空単位からのエネ ルギー差をそれぞれ Eci、Ei および Eviとした とき、

E m: < E 1

E 2 < E m2

E c1 > E c2

E v 1 > E v 2

を満たし、かつ

E c1 - E c2 > E v1 - E v2

を満たすように材料が選択されていることを特徴 とする幼永項1 記載の有機膜免光素子。

(4) 電子および正孔に対して障壁接合を構成する第1の有機膜と第2の有機膜の發感構造と、この接触構造を挟んで第1の有機膜側に設けられた電子注入用の第1の電極および第2の有機膜側に第3の有機膜を介して設けられた正孔注入用の第2の電極とを有し、

前記第1、第2の電経間に第2の電極側に正の

バイアスを与えたときに、前記第1の電腦から 記第1の有機膜に注入された電子と前記第2の有機膜に注入された電子を 選がら前記第3の有機膜を 注入された正孔とが前記簿建設合の雰頭に書き れ、これらの書観にトンネル注入されて第2の有機膜にトンネル注入されて 頭にかって発展にトンネル注入されて 類談内で免光再結合し、 とを特徴とする有機膜免光素子。

(5) 前記第1. 第2の電極の仕事関数をそれぞれE_{N1}, E_{N2}とし、

取記第1の行機膜の伝導帯の下端。フェルミレベルおよび優電子帯の上端の真空単位からのエネルギー之をそれぞれ E c1, E1 および E v1としし、前記第2の行機膜の伝導帯の下端。フェルミレベルおよび循電子帯の上端の真空単位からのエネルギー差をそれぞれ E c2, E1 および E v1としたルギー差をそれぞれ E c3, E3 および E v1と た

とき、

E M 1 < E 1

E 2 < E m 2

E c1 > E c2

E v1 > E v2

を満たし、かつ

E c1 - E c2 < E v1 - E v2

E c 2 < E c 3

E + 2 ~ E + 1

E w 2 < E ,

を満たすように付料が選択されていることを特徴 とする結束項 4 記載の有機膜発光素子。

(6) 電子および正孔に対して障壁接合を構成する第1の有機限と第2の有機膜の数層構造と、この複響構造を挟んで第1の有機機関に設けられた第3の有機膜を介して設けられた電子注入用の第1の電腦および第2の有機機関に設けられた正孔注入用の第2の電腦とを有し、

前記第1。第2の電極間に第2の電極側に正のパイアスを与えたときに、前記第1の電極から前

記第3の行機膜を介して第1の有機膜に注入された電子と前記第2の電優から前記第2の行機膜に注入された正孔とが前記陣壁接合の界面に審磁され、これらの審磁された電子,正孔のうち正孔が前記第1の有機膜にトンネル注入されて第1の有機膜内で発光再結合し、さらに第3の有機膜内で発光再結合する、

(7) 前記第1. 第2の電極の仕事関数をそれぞ れ E u i . E u z と し 、

ことを特徴とする有機腐発光素子。

前記第1の有機膜の伝導帯の下端。フェルミレベルおよび価電子帯の上端の真空準位からのエネルギー差をそれぞれ Ecr. Er および Evrel.

耐記第2の有機膜の伝導帯の下場、フェルミレベルおよび価電子帯の上端の真空準位からのエネルギー差をそれぞれ Ecz、Ez および Evzとし、

前記第3の有機膜の伝導帯の下端。フェルミレベルおよび顕電子帯の上端の真空単位からのエネルギー差をそれぞれEcs。 Es および Evs としたとき、

E m1 < E 1

E 2 < E m2

E c . > E c 2

E v1 > E v2

を満たし、かつ

E c1 - E c2 > E v1 - E v2

E c> ~ E c1

E ., < E .,

E m1 < E 3

を満たすように材料が選択されていることを特徴 とする請求項6記載の有機膜発光素子。

(8) 電子注入用の第1の電極と正孔注入用の第 2の電極の間に複数層の有機膜が挟まれた構造を 有し、前記第1,第2の電極間に第2の電極側に 正のパイアス電圧を与えたときにパイアス電圧の 大きさに応じて異なる有機膜からの異なる色の発 光が得られるように有機膜が選択されていること を特徴とする行機膜を光素子。

(9) 前記複数の有機要は、電子および正孔に対して降壁接合が形成される第1の有機膜と第2の

項8記載の有機膜発光素子。

3. 発明の準細な透明

[発明の目的]

(産業上の利出分野)

本意明は、有複雑を用いた発光素子に係り、 特に2階以上の有機器の組み合わせにより一画素 多色急光を可能とした有機展発光素子に関する。

(従来の技術)

近年、表示者子や照明素子等として用いられ る有機膜発光素子の研究開発が盛んに行われてい る。例えば、九州大学の斎藤省吾は、1986年 に企属電極/芳香族色素/ポリチオフェン/透明 電極を用いた有機2層構造業子を報告している (J. J. Appl. Phys. 25.L773,1986). では、 行機機の兼厚が 1 μ m 以上あり、 印加電圧 も100Vと大きい。これに対して、コダック社 のC. W. Tang 等は、Mg · Ag / Aiq3 /ジ アミンノITOという有機2層構造で、有機膜の 鎮厚を1000人以下にすることによって、印加 電圧10V以下で駆動して実用上十分な輝度を示 す業子が得られたことを報告している(APL。 51.913.1987)。これらの発光紫子は、電子注入 性的な色素と正孔注入性的な色素とを組合わせて 有機2陥得達とすることを基本とし、有機関をで きるだけ薄くすること、電子注入側の金属電腦に 仕事関数の小さいものを選ぶこと、真空蒸着法式 いは昇華法によって有量度を形成する原に電気的

欠船が発生しないような材料を選択すること、零を主要な特徴としている。九州大学の斉鵬省吾は更に1988年には、電子注入厨/発光局/正孔注入厨という有機3周標高素子を提案し、発光層に高いフォトルミネセンスを示す色素を選ぶことによって高輝度免先が得られることを示した(J. J. Appl. Phys. . . 27. L259. 1988)。

その他これまでに、各種の有機関の組合わせによる発光素子構造、単層の有機関であっても、発光剤と正孔注人剤を混合することによってある程度の発光が認められること、発光体であるAiq3の特性劣化に関する研究等が次々に報告されており、また阅读の特許出顧が多くなされている。

(発明が解決しようとする課題)

有機関発光業子は、発光輝度についてはほぼ 実用段階まできているが、発光効率や煮子寿命、 業子作成プロセス等はまだまだ技術的に未解決の 関型が多い。発光効率は現状では良くて1%、通 な0、1%程度である。発光効率が低いことは発 光に寄与しない電波が電極関に流れることを意味

裏を報帰した素子においては各層の接合面における電気的特性が素子特性を支配する。すなわち金属電極の仕事関数と、有機質の伝導帯レベル。フェルミレベルおよび循電子帯レベルを考えたときに、各接合面でそれぞれのエネルギーレベルがどの様な関係にあるかが重要になる。本発明はこの様な製点から、半導体モデルを用いて一遍素多色の発光素子構造を提案する。

すなわち本党明に係る党先素子は、地子および 正孔に対して陣壁接合を構成する第1の有機限と 第2の有機膜の積層構造と、この積層構造を挟ん で第1の有機膜側に設けられた電子注入用の第1 の電腦および第2の有機膜側に設けられた正孔注 入用の第2の電極と有することを基本とする。

そして本発明の第1の発光素子は、上述の基本 構造において、第1、第2の電極間に第2の電極 側に正のパイアスを与えたときに、第1の電極か ら第1の有機膜に注入された電子と第2の電極か ら第2の有機膜に注入された正孔とが障壁接合の 界面に基础され、これらの蓄積された電子、正孔 し、この電流はジュール無を発生するから業子等命を低下させる大きな原因となっている。したがって有機襲発光素子を実用化するためには、発光効率を少なくとも数%から10%以上まで高めることが望まれる。

発光効率を高めるためには、素子構造の最適化 と、用いる材料の磁気的性質の最適化が必要であ る。これまでのところ、有機材料の性質に関して は、電子(正孔)輸送性、電子(正孔)注入性、 免光性といった定性的な定義しかなされておらず、 これでは素子条件が十分規定されているとはいえ ない。

本発明は、複数の有機膜の視層構造と金属電極の組合わせにおいて、それらの各材料の電気的性質を厳密に定義した上で、一面素多色の発光を可能とした有機膜発光素子を提供することを目的とする。

【発明の構成】

(建面を解決するための手段)

有機膜は一種の半導体とみなせるので、有機

のうち電子が第2の有機膜にトンネル注入されて第2の有機膜内で発光再結合し、正孔が第1の有機膜にトンネル注入されて第1の有機膜内で発光 再結合することを利用する。

具体的には、第1、第2の電腦の仕事関数をそれぞれを mi、 E maとし、第1の有機膜の伝導帯下端の真空準位からのエネルギー差(以下これを単に伝導帯レベルと呼ぶ)、フェルミレベルの真空準位からのエネルギー差(以下これを単に 面電子帯の上端の 電子帯 レベルと呼ぶ)をそれぞれ E c1、 E 1 および E v1 とし、第2の分機 競の 伝導帯レベル、フェルミレベルおよび 面電子器 レベルをそれぞれ E c2、 E 2 および E v2としたとき、

 $E_{M1} < E_{\Lambda} \qquad ... \qquad (1)$

 $E_{z} < E_{M2}$... (2)

 $\dot{E}_{c_1} > E_{c_2} \qquad \qquad \cdots \qquad (3)$

 $E_{v_1} > E_{v_2}$ -- (4)

を満たすように材料が選択される。より具体的に

は、 (1) 式および (2) 式は、 $E_{M1} - E_{C1}$ および $E_{V2} - E_{M2}$ が $1 e V 以下、好ましくはり、 <math>5 \sim 0$. $3 e V 以下になることを意味し、また (3) 式および (4) 式は、<math>E_{C1} - E_{C2}$ および $E_{V1} - E_{V2}$ が 好ましくはり、 5 e V 以上、例えば <math>1 e V 以上と ナる。

そしてバイアス選圧によって発光色制御が可能 となるためには、

$$E_{c1} - E_{c1} < E_{v1} - E_{v2}$$
 ... (5)

また本発明の第2の危光本子は、上述した基本構造にさらに、第2の有機膜と第2の電極との間に第3の有機膜を介在させる。そして第1、第2の電極に第2の電極から第1の有機膜に注入された正孔とが前記障壁を合の界面に蓄積され、これらの器質された電子。

2の有機膜に注入された正孔とが降型接合の界面に蓄積され、これらの蓄積された電子。正孔のうち正孔が第1のしきい値で第1の有機膜に下ンネル注入されて第1の有機膜内で発光再結合し、さらに第2のしきい値で第3の有機膜に注入されて第3の有機膜内で発光再結合する。

このはな多色免光が可能となるためには具体的には、第1の免光波子での各材料の電気的特性の関係に加えて、第3の有機膜の伝導帯レベル、フェルミレベルおよび顕電子帯レベルをそれぞれ Ecs. E, および Evs としたとき、

$$E_{c1} - E_{c2} > E_{v1} - E_{v2}$$
 -- (11)

$$E_{c_3} \sim E_{c_1}$$
 ... (12)

$$E_{M1} < E_{J}$$
 -- (14)

を満たすように材料が選択される。

(作用)

本発明による有機競発光素子の基本構造においては、第1, 第2の有機競の接合界面に電子に 対する除壁および正孔に対する障壁が形成される 近孔のうち電子が第1のしきい値で第2の有機膜 にトンネル注入されて第2の有機膜内で発光再結 合し、さらに第2のしまい値で第3の有機膜に注 人されて第3の有機器内で発光再結合する。

この様な多色発光が可能となるためには具体的には、第1の発光素子での各材料の電気的特性の関係に加えて、第3の有機膜の伝導帯レベル。フェルミレベルおよび優電子帯レベルをそれぞれ Ecs. E, およびEvsとしたとき、

$$E_{c1} - E_{c2} < E_{v1} - E_{v2}$$
 ... (7)

を満たすように材料が選択される。

さらに本角明の知 3 の発光素子は、上述した基本構造において、第 1 の電極と第 1 の有機製の間に第 3 の有機製を介在させる。そして第 1 . 第 2 の電極間に第 2 の電極間に正のパイアスを与えたときに、第 1 の電機から第 3 の有機膜を介して第 1 の石機膜に注入された電子と第 2 の電極から第

(条件式(3)・(4))。また、第2の電極が正になるパイアスを与えると、第1の電極から第1の有機膜に電子が注入され(条件式(1))、第2の電極から第2の有機膜に正孔が注入される(条件式(2))。この結果、第1,第2の有機膜の間の障壁接合界面には、電気二重層が形成される。

 ほめられる。条件式(8) を調すときにはこの関係 は逆になる。

第2の発光素子においては、第1、第2の分機 膜間の陣整接合について、電子に対する陣壁が正 孔に対する障壁より低く設定され(条件式(7). (8))、また第2の電極から第3の有機膜に注入 された正孔はほとんど陣客なく第2の有機競求 で流れるように材料が選択される (条件式(9). (10))。これによって、パイアスを与えたときに 独1、第2の有機整調の強硬接合に製造されて常 有機額にトンネル注人されて、第2の有機膜で発 光丹結合する。第2の有機膜の膜形がキャリアの 平均自由行程より薄ければ、さらにバイアスが上 昇すると多くの電子は施るの有機既まで流れて范 3の有機農内で免光再結合する。これにより、バ イアスにより発光色が制御される多色発光素子が 得られる。

第3の発光素子においては、第1,第2の行 機膜間の陣壁接合について、正孔に対する陣壁

1 に形成された I T O 等の透明電腦であって、光は基板 I 関から取出される。透明電極として化合物半導体を用いてもよい。この素子の製造プロセスは、後に具体的に説明するが、基板上に真空蒸苔法、真空昇率法等によって順次膜を積層形成する。

第3回は、これらの各層が接合された免光素子

が電子に対する障型より低く設定され(条件式(11)・(12))、また第1の電極から第3の有複調に注入された電子はほとんど障害なく第2の有複調に注入されるは、付けてスを与えたはい。第1の有機関といるが、第1の有機関によって、がイアスが上昇するとある。これによって、がイアスが上昇すると多くの正れは第3の有機関まで流れて第3の有機関で免光再結合し、さらにバイアスが上昇すると多くの正れは第3の有機関まで流れて第3の有機関ウで免光再結合する。これにより、バイアスにより発光色が制御される多色発光素子が得られる。

1)

(実施例)

以下、本発明の実施例を図面を参照して説明する。

第1図は一次施例の発光楽子断面構造を示す。この素子は、上から見て第1の電極(M:)5。第1の育機膜(O:)4、第2の育機膜(O:)3および第2の電極(M:)2により構成されている。第2の電極2はこの実施例ではガラス基板

この実施例の発光素子の動作原理を第4図を用いて透明する。第4図(a)は、第1の電腦5に対して第2の電腦2に正のあるバイアス電圧V」を印加したときの素子のバンド図である。第1の電腦5からは第1の有機膜4に電子が注入され、第2の電腦2からは第2の有機膜3に正孔が注射されて、これらの電子、正孔は第1、第2の脊機膜3、4の障壁接合界面に審複される。この蓄積さ

第1の波長の発光と第2の波長の発光のいずれが支配的になるかは、第1、第2の有機機4、3の障壁接合の電子に対する障壁高さΔEcと、正孔に対する障壁高さΔEcと、正したがって材料を選択することによって、

①あるしきい値で第1.第2の波長光が同時に

トンネル注入も始まり、第1の有機膜で発光再結合して波長 Al の発光が置なる。

第6図(a) (b) は、Eci-Ec2>Evi-Ev2を 満すように材料が選択された多色発光素子の動作 を説明するためのバンド図である。この場合は第 5図と逆に、第1のしきい値 V thl で第1の有規 膜での危光(波長 A L)が生じ、第2のしぎい値 V th2 で第2の有機膜での危光(波長 A 2)が 重なる。なお第6 図での第1。第2のしきい値 V th1 、 V th2 、 波長 A L 、 A 2 は第5図でのそ れらとは一般には同じではない。

なおこの実施例の発光素子におけるような各接合画でのエネルギーレベルの大小関係を設定した 材料を選択するに当たっては、 そのエネルギーレ ベルの大小関係を測定する方法が必要である。こ れは、次に説明するような本発明者等が発見した 方法を用いればよい。

第15図に示すように、金属電極11/シリコン12/シリコン酸化膜13/有機膜14/金属電極15からなる岩子を形成する。この光子に第

得られる発光素子、

② 第 1 のしきい値では第 1 の被長の発光のみとし、第 2 のしきい値で多重発光を得る多色発光素子、

③ 第1のしきい値では第2の波長の発光のみと し、第2のしきい値で多量発光を得る多色発光素 子、

のいずれも得ることができる。

1 6 図に示すような三角波電圧を印加し、その時の業子の変位電流を測定する。いま素子の容量を C とすれば、変位電流は、

1 - C · d V / d t

で表される。第15図の案子で有機数14かない場合を考えると、案子は遊客知られたM05案子となり、その容益はシリコン酸化膜13によって決まる。これに対して有機路14がある場合には、有機路14のフェルミレベルと金属電極15の仕事路数の大小関係によって次のような変位電流が超過される。

(a) 金属電極15の仕事関数と有機機14のフェルミレベルが略等しい場合

この場合、金属電極15と有機勝14の接合は電子、正孔いずれに対しても高い障壁を持つ接合となる。したがって有機膜14は絶録体とみなせるため、業子容量はシリコン酸化膜と有機膜の値列容量となり、MOS 常子のそれより小さに三角変種を示す。これにより、第16回のように三角波電圧を素子に印加したときの変位電流は、第17

図に示すような一定の小さい遺を示す。

(b) 企属電極 1 5 の仕事関数が行義膜 1 4 のフェルミレベルより小さい場合

1)

(c) 全属電極15の仕事関数が有機膜14のフェルミレベルより大きい場合

この場合、金属電優15と行機膜14の接合は、 金属電優15から行機膜14に対して正孔が注入

るとする。そして金属電極15から第1の有機膜14、に電子が注入されるとする。これは先の有機膜が単層の煮下で調べられている。もし、変化で調べられている。もし、変子で調べられてもとすれば、第1の有機膜14。まで注入されている事になる。これに第14。まで注入されている事になる。これに第14。まで注入されている事になる。これに第14。までは、の存れより低いことが分かる。は、第2の行機膜14。のそれより高いことが分かる。

番電子帯レベルについても、正孔生人を利用した同様の要位電流部定によって大小関係が分かる。

第1図の素子構造を用いた有機多色発光素子のより具体的な災流機を次に説明する。

火施例1

第1図の素子において、 第1の電極5:エルピウム膜 されやすい接合を形成する。したがって第15回 の三角波電圧を素子に印加したとき、金属電極 15側が正になると全属電極15から有機膜14 に正孔が注入され、この正孔は有機膜14な 膜13の界面に審視される。この状態では素を 量は酸化膜13で決まる値となり、第19回に すように変位電液はM05素子のレベルまでは する。印加電圧が全属電極15側が負になるを では、有機膜14内の正孔は全属電極15に流れ より、変位電流は有機膜14が絶縁体であるとし た場合

以上は、金属電極と有機膜の間の関係であるが、次に第15回の素子構造における有機膜14の部分を第1、第2の有機膜の積層構造として同様の変位電流測定を行う。これにより、二つの有機膜の伝導帯レベル、フェルミレベル、価電子番レベルの関係が明らかになる。

例えば、第15図の素子構造に於いて、有機膜 14の全域電極15に接する部分が第1の有機膜 14」であり、その下が第2の有機膜142であ

第1の有機膜4:

$$E \cdot 000$$
 $C = CR - C COOE.$

第2の台機機 3: ビビレニル 第2の電腦 2: ITO 機 を用いた。

この材料系が第2図の条件を満し、かつ EciーEcz < Evi-Evzなる条件を満すことは、先に製明した要位電波測定法によって確認されている。 オ子作成プロセスは次の通りである。 1 T O 裏が形成されたガラス基板上にまず、真空昇華法(真空度~10~4Torr)によって第2の有機を1000点形成し、その上に同様に真空昇華法によって第1の有機を1000点形成し、最近に真空蒸若法によってエルビウム農を1000点形成する。

得られた素子にITO電極が正になるパイアス

を印加すると、 3 V で 5 m A の電流が液れ、輝度 5 0 0 C d / m² の 値色発光が見られた。これは、第 1 の 有機膜での 免光である。 バイアス 選出を 1 5 V まで上げると、 輝度は 2 0 0 C d / m² まで上昇し、 発光色は黄緑色に変化した。これは 第 2 の 行機膜による 育色発光が 混色した 結果である。

; 1

実趋例 2

第1図の妻子において、

第1の電極5:エルピウム装

第1の有機膜4:

$$\frac{NC}{E \cdot 000} > C - CH - COOE$$

第2の有機顕3:

機模4、第2の有機模3、第2の電極2の材料特性用互間の関係は、第1図の実施附と基本的に同じである。ただし、第1の有機膜4と第2の有機 膜3のエネルギレベルについて、

E c 1 - E c 2 < E v 1 - E v 2

なる関係に設定されている。第3の有機数6については、第2の有機数3および第2の電極2との関係で、伝導帯レベルE ca、フェルミレベルE a および価電子帯レベルE vaが次のように設定されている。

E c1 > E c1

E v . ~ E v 2

E . < E ...

したがってこれらの勝が接合された素子の無平 高状態でのバンド団は、第9回のようになる。第 1、第2の行機模4、3回に電子および正孔いずれに対しても障壁が形成されることは先の実施例 と同様である。ただし伝導帯側の電子に対する障壁 Δ E 、 より小さくなっている。第2の有機膜3の腹厚は 第2の電極2:ITO腐 を用いた。

業子作成プロセスおよび各層の襲厚は実施例1 と同様である。

得られた業子に「TO電極が正になるパイアス 電圧を印加して、5Vで黄色の発光がみとめられ た。これは第1の有機膜4での発光による。さら にパイアス電圧を15Vまで上げると発光色は赤 植色に変化した。これは第2の有機膜3での発光 が強なった結果である。

第1回は2回の有機膜を用いた多色発光素子の 実施例であるが、これを基本として更に第3の有機膜を組み合わせて多色発光素子を作ることがで きる。その様な実施例を次に説明する。

第7図はその様な実施例の有模膜多色発光素子の際面図である。第1図と異なりこの実施例では、第2の有機膜3と第2の電極2との間に第3の有機膜6が挟まれている。

第8図は、第7図の案子の各層の仕事関数その 他の電気的特性を示す。第1の電極5.第1の有

キャリアの平均自由行程より減く、第2の有機膜3から第3の有機膜6への電子の流れに対しては降壁は形成されない。また第2の電極2から第3の有機膜6には正孔が注入され易く、第3の有機膜6に注入された正孔はほとんど障害なく第2の有機膜3まで流れ得るようになっている。

この免光素子での多色危光の動作を覚10 図を 用いて説明する。先の実施例と同様のバイ第1の電極 の電極を対したより、第1の電極をから第2の電極 の有機膜4に電子が注入され、第2の電極正正の電子が でで、第1の電機のでは、第1のでは 合に電気にはでいる。バイアの 合に電気にはでいると、第10 図 のしきい値 V th1 を越えると、第10 図 派子がトンネル注入され、第2の有機膜7 に 電子がトンネル注入され、第2の有機膜7 に 電子がトンネル注入され、第2の有機膜7 に 電子がトンネル注入され、第2の有機膜7 に 電子がトンネル注入され、第2の有機膜7 に でで、第1の有機膜4から第2の存機で でで、第1の有機膜4から第2の存機で でで、第1の有機膜4から第3に でで、第1の有機膜4から第2の存機 のにがように第1の有機膜4から第2の存機 のにがする。さらにバイアの のにで、第1の有機膜4から第2の存機 のにで、第1の有機膜4から第2の存機 のにで、第1の有機膜4から第2の存機 のにで、第1の有機膜4から第2の存機 のにで、第1の有機膜4から第2の存機 のにで、第1の有機膜4から第2の存機 のにで、第1の存機膜4から第2の存機 のにで、第1の存機膜4から第3のに のににで、第1の存機膜4から第2の存機 のにで、第1の存機膜4から第2の存機 のにで、第1の存機膜4から第2の存機 のにで、第1の存機膜4から第2の存機 のにで、第1の存機膜4から第2の存機 のにで、第1の存機膜4が高されずに のにで、第1の存機膜4が高されずに 3の行機関もまで注入され、第3の行機関も内で正孔と再結合して発光する。すなわち低パイアス条件ではパンドギャップの広い第2の有機関3からの短波長発光が得られ、高パイアスではこれにパンドギャップの狭い第3の有機関6からの長波長発光が混色した発光となる。例えば第2の有機関3を背色発光剤とし、第3の有機関6を減色発光剤とすれば、低印加電圧では骨色発光となる。

第11図は、3 断有機膜を用いた別の実施例の 多色発光素子である。この実施例では、第1の形 極5と第1の有機膜4の間に第3の有機膜6が設 けられている。

第12図は各版の接合前のエネルギーレベルで ある。第1の石機膜4と第2の石機膜3のエネル ギレベルについては、第7図のそれと逆に

Ect - Ecz > Evi - Evz なる関係に設定されている。また第3の有機膜6

については、第1の有機膜4および第1の電極2 との関係で、伝導帯レベルEco、フェルミレベル

実施腭3

第7절の素子において、

第1の 仟級 裏4: ピス (ジシアノ - 9 - フルオレ ノニル)エタン E ,および価電子帯レベルE v ,が次のように設定されている。

E c > ~ E c :

E + , < E + 2

E , > E m:

したがってこれらの路が接合されたま子の無平 高状態でのバンド図は、第13図のようになる。 第1、第2の有機膜4、3間に電子およは先の実践 別と同様である。ただし伝導帯側の正孔に対しても障壁が形成されることは先の実践 る降壁 Δ E c が価 電子帯側の正孔に対する 及 E v より大きくなっている。第2の対しまり表現の中では関する。 の 所はキャリアの平均自由行程より薄えの 可機膜3から第3の行機膜6への正孔の電気の の では障壁は形成されない。また第1の電気の の では障壁は形成されない。また第1の電気の の では障壁は形成されない。また第1の電気が の が で で で で で で な な な る の の で 後 膜 6 に は 電子 は ほとんど 障 っ な な る の の で 後 膜 3 まで 流れ得るように

第14図はこの発光素子での多色発光の動作を 示すパンド図である。パイアス印加により、第1。

第2の有機膜3:ピピレニル

箔3の有機験6:ピコロネニル

第1の危艦5:エルピウム

第2の花槿:ITO

を用いた。この材料系が第8図に示した条件を満たすことは変位者波測定法により確認されている。 素子作成プロセスは、先の実施例で説明したのと 同様である。

時られた素子にバイアスを印加すると、5Vで 約5mAの電流が流れ、輝度1000cd/m² の胃色発光が得られた。この発光は第2の存機展 3によるものである。バイアス電圧を15Vまで 上げると、電流は約20mA流れ、輝度2000 cd/m²の白黄色発光が得られた。これは、第 3の育機膜6の橙色発光が第2の有機膜3による 骨色発光と混色したものである。 支施男4

第11回の走子において、

第1の有機関4:

第2の有機購3:

第3の有機離6:

第1の電価5:エルピウム

第2の電極:ITO

膜の組合わせによって、パイアスにより発光色を 制御できる一調素多色の発光素子を得ることがで きる。

4. 図面の簡単な説明

第1図は本発明の一実施例の有機膜発光素子を 示す断面図、

第2回はその案子の各層の接合前の電気的特性 を示すパンド関、

第3図はその桌子の熱平衡状態でのパンド図、

第4図(a)(b)はその素子の動作原理を説明するためのパンド図、

第5回(a)(b)は第2の有機膜の発光が支配的である場合の動作を説明するためのバンド図、

第6四(a) (b) は第1の有機膜の発光が支配的である場合の動作を提明するためのバンド菌、

第7凶は他の実施例の有機膜発光素子を示す断

第8図はその素子の各層の接合前の電気的特性 を示すパンド図、

第9回はその潜子の熱平海状態でのパンド國、

を用いた。この材料系が第12回に示した条件を 満たすことは変位電波測定法により確認されてい る。素子作成プロセスは、先の実施例で説明した のと同様である。

得られた素子にバイアスを印加すると、 5 Vで約5 m A の電流が流れ、 輝度 1 0 0 0 C d / m²の 黄色発光が得られた。 この発光は第 2 の 有機膜 3 によるものである。 バイアス電圧を 1 5 V まで上げると、 電流は約 2 0 m A 流れ、 輝度 2 0 0 0 C d / m²の赤色発光が得られた。 これは、第 3 の有機膜 6 の赤色発光が第 2 の有機膜 3 による 黄色免光と起色したものである。

以上の支施例では、2階の有機膜段階構造においてその2層が共に危光腸である場合、および3層の有機膜段層構造においてそのうち2層が発光層である場合、すなわち二色発光の場合のみ説明したが、これらの原理を応用拡大して更に発光層を多くした多色発光素子を得ることができる。

[発明の効果]

以上述べたように本発明によれば、複数の行機

第10図(a) (b) はその素子の動作を説明する ためのパンド図、

第11日はさらに他の実施例の有機膜発光素子 を示す断面図、

第12図はその業子の各層の接合前の電気的特性を示すパンド図、

第13回はその素子の熱平衡状態でのパンド図、 第14回(a)(b)はその素子の動作を説明する ためのパンド図、

第15回は有機膜の材料特性を知るための変位 電流測定法を示す図、

第16図は印加電圧波形を示す図、

第17回は有機繋がない場合の変位電波 - 電圧 特性を示す図、

第18回は電腦-存機機接合が電子注入性である場合の変位電流-電圧特性を示す図、

第19回は電腦一有機轉接合が正孔注入性である場合の変位電流一電圧特性を示す図である。

1 … ガラス基板、 2 … 第 2 の電極、 3 … 第 2 の 有機跳、 4 … 第 1 の有機調、 5 … 第 1 の電極、

. 6 … 第3の有機額。

第1 図

出願人代理人 弁理士 蜂 江 武 彦

第 2 図

第3図

第4図

第10 図

持開平3-230584 (13)

第 5 図

第 6 図

第18 図

放10 图