Sardar Vallabhbhai Patel Institute of Technology, Vasad B. E. First Sem (Mathematics 1)

Tutorial-8

- Express $f(x) = \frac{(\pi x)}{2}$ as a Fourier series with period 2π to be valid in the interval 0 to 2π . Hence prove that $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots = \frac{\pi}{4}$.
- 2 Find the fourier series for the function f(x) given by

$$f(x) = \begin{cases} 1 + \frac{2x}{\pi} & ; -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi} & ; 0 \le x \le \pi \end{cases}$$

- 3 Find a Fourier series with period 3 to represent $f(x) = 2x x^2$ in the range (0, 3).
- 4 (i) Find the Fourier sine series of $f(x) = \pi x$, $(0 < x < \pi)$.
 - (ii) Find the Fourier cosine series for $f(x) = x^2$, (0 < x < c).
- 5 Find the Fourier series to represent $f(x) = x^2 2$ when -2 < x < 2.
- 6 Find the Fourier series expansion for $f(x) = x x^3$ in the interval -1 < x < 1.