alors la matrice d'observation construite avec les variables articulaires simulées est proche de la matrice d'observation réelle $W_{r\acute{e}el}$. Dans ce cas l'approximation de la jacobienne (10) est vérifiée. Par conséquence le vecteur de paramètres estimés X_I est proche du vecteur de paramètres réel $\chi_{r\acute{e}el}$. Finalement $W_0\hat{\chi}_I$ est proche de Y et le critère C_τ est minimisé. On formalise cette explication de la manière suivante:

$$\lim_{\substack{f_{cb} \to {}^{a} f_{cb} \\ g_{r}/M_{bar} \to {}^{a} g_{r}/{}^{a} M_{tot}}} W_{0} = W_{r\acute{e}el} \Rightarrow \lim_{W_{0} \to W_{r\acute{e}el}} \hat{\chi}_{l} = \chi_{r\acute{e}el}$$
(18)

4.4 Initialisation de la procédure itérative

L'initialisation de la procédure itérative pose la question du choix du vecteur $\hat{\chi}^k$ pour k=0. Dans (Gautier et al. 2011a) et (Gautier et al. 2011b), une initialisation régulière est proposée:

$$M_1^0 = M_2^0 = K_{12}^0 = 1, F_{v1}^0 = F_{v2}^0 = F_{c1}^0 = F_{c2}^0 = 0$$
 (19)

On rappelle que par l'utilisation des gains d'adaptation $g_{m/k}$ et $g_{c/k}$, la sensibilité aux paramètres des variables articulaires est très faible. Une deuxième initialisation appelée initialisation pseudo-régulière a été décrite dans (Gautier et al. 2011d):

$$M_I^0 = M_2^0 = M_{tot} / 2, F_{vI}^0 = F_{v2}^0 = F_{tot} / 2,$$

 $F_{cI}^0 = F_{c2}^0 = F_{ctot} / 2$ (20)

5. VALIDATION EXPERIMENTALE

5.1 Acquisition de donnée

La position du moteur et du chariot sont mesurées par des encodeurs à haute résolution (12500 points par tour). La fréquence d'échantillonnage des positions et de la consigne est de 1000Hz. L'effort moteur est calculé par la relation suivante:

$$\tau_1 = {}^{ap} g_{\tau} v_{\tau} \text{ avec } {}^{ap} g_{\tau} = 35.15 \text{N/V}$$
 (21)

Où v_{τ} est le tension de référence de l'amplificateur de courant et ap g_{τ} est le gain d'actionnement du moteur. Ce dernier est pris comme un gain constant car la bande passante de la boucle de courant est supérieure à la bande passante du robot. Un essai à sortie bloquée estime le premier mode flexible f_{nat} aux alentours de 30Hz. La bande passante de la boucle fermée avec un régulateur PD est fixé à 20.05Hz. Cette fréquence permet d'identifier tous les paramètres du robot. La trajectoire excitante est composée d'un signal de type trapèze-vitesse sommé d'un sinus à fréquence variable à faible amplitude. Le signal en trapèze-vitesse permet d'exciter les inerties et les frottements. Le sinus à fréquence variable excite la raideur.

5.1 Identification du modèle dynamique rigide

Le modèle dynamique rigide est valable à basse fréquence (inférieur à 10Hz). Le filtre decimate est donc réglé à une fréquence de 5Hz. Les conditions initiales sur les paramètres

utilise l'initialisation régulière ($M_{tot}^0 = 1 \ F v_{tot}^0 = 0$, $F c_{tot}^0 = 0$). Les gains du simulateur sont adaptés dans le simulateur à chaque itération k comme expliqué dans (Gautier et al.2011a).

TABLE 3. IDENTIFICATION AVEC LA METHODE DIDIM DU MODELE

DYNAMIQUE RIGIDE					
Paramètre	$\hat{\chi}_2$	$100*\left \sigma_{\hat{\chi}_2}/\hat{\chi}_2\right $			
M_{tot} (Kg)	107	0.382			
$F_{v_{tot}}$ (N/m/s)	209	1.75			
$F_{c_{tot}}(\mathbf{N})$	19.5	1.63			
//Y-W.X /// //Y //	4.25%				
$Cond(\Theta)$	11.3				

Ces valeurs vont permettre par la suite de calculer les conditions initiales des paramètres avec l'initialisation pseudo-régulière.

5.3 Identification du rapport optimal et de la fréquence naturelle à entrée bloquée optimale

La méthode d'optimisation choisie utilise l'algorithme Nelder-Mead. Pour l'optimisation avec le critère C_{q_i} , la fréquence de coupure basse est de 5Hz et la fréquence de coupure haute est de 60Hz. Un sous-échantillonnage des mesures est effectué. La fréquence de coupure pour le critère C_{τ} est aussi de 60Hz avec un sous-échantillonnage.

Les conditions initiales sont les suivantes: $\left(g_{\tau}/M_{tot}\right)_0 = 0.45$ et $f_{eb_{opt}} = 30 Hz$. La convergence sur le critère C_{τ} prend 12 itérations et 15 pour le critère C_{q_i} pour respectivement 2 et 26 simulations du MDD.

TABLE 2. RÉSULTAT D'IDENTIFICATION

Critère	$C_{q_{I}}$		$C_{ au}$	
Gains	$\left(g_{\tau}/M_{tot}\right)_{opt}$	$f_{eb_{opt}}$	$\left(g_{\tau}/M_{tot}\right)_{opt}$	$f_{eb_{\mathit{opt}}}$
	0.3458	23.76	0.3095	23.65
	$C_{q_{i}final}$ =2.12%		$C_{ au final}$ =10.91%	•

Logiquement la valeur de $(g_{\tau}/M_{tot})_{opt}$ doit être proche de $^{ap}g_{\tau}/M_{tot}$ si $^{ap}g_{\tau}$ est connu avec assez de précision. On remarque que c'est le cas: $^{ap}g_{\tau}/M_{tot} = 0.3285 \approx (g_{\tau}/M_{tot})_{opt}$

L'identification de ces valeurs va permettre de conserver précisément les bandes passantes des ddl rigide et flexible et de prendre en compte l'erreur sur g_{τ} et M_{tot} . Les valeurs de $\left(g_{\tau}/M_{tot}\right)_{opt}$ et de $f_{eb_{opt}}$ prises pour la suite sont celles identifiées avec le deuxième critère qui n'utilise que l'effort moteur.

5.4 Identification du modèle dynamique flexible