Collection of arbitrary mathematical facts

Inhaltsverzeichnis

1	Set	Theory						
	1.1	Zorn's Lemma						
	1.2	Ultrafilter Lemma						
	1.3	Product Cardinality						
		1.3.1 Lemma						
	1.4	Power Cardinality						
	1.5	Ordinal arithmetic						
2	Logic 6							
	2.1	Deduction theorem						
	2.2	Constant lemma						
	2.3	Gödel's completeness theorem						
	2.4	Compactness theorem						
	2.5	Löwenheim-Skolem						
	2.6	Separation lemma						
	2.7	Vaught's test						
3	Algebra 7							
	3.1	Cauchy-Schwarz						
	3.2	Sylow Theorems						
	3.3	Mordell's inequality						
	3.4	Facts about finite rings						
	3.5	Chinese Remainder theorem						
	3.6	Main theorem of finitly generated modules over PIDs						
	3.7	Smith normal form						
	3.8	The module \mathbb{Z}^n						
	3.9	Hilbert's basis theorem						
4	Prol	babilities 10						
	4 1	Chernoff-Hoeffding 10						

Analysis 1					
5.1	Inequalities	0			
5.2	Transformation	1			
Topology 11					
6.1	Separation axioms	1			
6.2	Universal nets	1			
6.3	Initial topologies	1			
6.4	Characterization of compactness	1			
6.5	Tychonoffs Theorem	2			
6.6	Urysohn's Lemma	2			
6.7	Tietze's extension theorem	2			
6.8	Extension of uniformly continuous functions	3			
Disc	rete 1	3			
7.1					
Euna	etional analysis	3			
	, and the second se				
0.4	1 11 0				
8.5					
8.6					
0.50	vestov the con-	_			
-	•				
-	•				
	1 1				
	•				
	*				
9.10					
0 14	· · · · · · · · · · · · · · · · · · ·				
	5.1 5.2 Topo 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 Disc 7.1 Func 8.1 8.2 8.3 8.4 8.5 8.6 Ope 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.11 9.12 9.13	5.1 Inequalities 16 5.2 Transformation 1 Topology 1 6.1 Separation axioms 1 6.2 Universal nets 1 6.3 Initial topologies 1 6.4 Characterization of compactness 1 6.5 Tychonoffs Theorem 1 6.6 Urysohn's Lemma 1 6.7 Tietze's extension theorem 1 6.8 Extension of uniformly continuous functions 1 Discrete 1 7.1 Gamma Function 1 Functional analysis 1 8.1 Minkowski-functional 1 8.2 Kolmogorov's normability criterion 1 8.3 Baire's theorem 1 8.4 Open mapping theorem 1 8.5 Hahn-Banach dominated extension theorem 1 8.6 Banach-Alaoglu 1 Operator theory 1 9.1 Neumann series 1 9.2 \$P\$ spaces 1 9.3 Riesz lemma 1 9.4 Compact Operators and spaces 1 9.5 Arzela-Ascoli 1 9.6 Proposition of Schauder 1 9.7 C			

10	(Alg	ebraic) Number Theory	21			
	10.1	Propositions	21			
	10.2	Minkowski's theorem (Neukirch 4.4)	21			
	10.3	The Class group (Neukirch 6.3)	21			
	10.4	Dirichlet's unit theorem	21			
	10.5	Square number fields	22			
	10.6	Ramification (de: Verzweigung)	22			
		Quadratic Reciprocity				
11	1 Computational Algebraic Number theory and Cryptanalysis					
	11.1	Primality test	23			
		Hidden Subgroup Problem				

An undeniable fact: It holds $0 \in \mathbb{N}$. If you do not see that this is obviously, inarguably true, then you are lost.

1 Set Theory

1.1 Zorn's Lemma

Let X be a partially ordered set, in which every chain has an upper bound. Then X has a maximal element.

Proof Show that the set $\mathcal{X} \subseteq 2^X$ of chains in X has a maximal element, so X has a maximal chain (whose upper bound then is the required maximal element).

Let $f: 2^X \setminus \{\emptyset\} \to X$ be a choice function for X, so $f(S) \in S$ for each $S \subseteq X$. Then define

$$g: \mathcal{X} \to \mathcal{X}, \quad C \mapsto \begin{cases} C, & \text{if } C \text{ maximal } \\ C \cup \{f(\{x \in X \mid x \text{ comparable with } C\})\}, & \text{otherwise} \end{cases}$$

where we say that an element $x \in X$ is comparable with a set $S \subseteq X$, if x is comparable with s for all $s \in S$.

Definition Tower Call a subset $\mathcal{T} \subseteq \mathcal{X}$ tower, if

- $\emptyset \in \mathcal{T}$
- If $C \in \mathcal{T}$, then $g(C) \in \mathcal{T}$
- If $S \subseteq T$ is a chain, then $\bigcup S \in T$

The intersection of towers is a tower, so have a smallest tower $\mathcal{R} := \bigcap \{ \mathcal{T} \subseteq \mathcal{X} \mid \mathcal{T} \text{ tower} \}$ in \mathcal{X} . We show that \mathcal{R} is a chain. Consider the set $\mathcal{C} := \{ A \in \mathcal{R} \mid A \text{ comparable to } \mathcal{R} \}$ of comparable elements in \mathcal{R} .

Show \mathcal{C} is a tower, so $\mathcal{R} = \mathcal{C}$ and therefore, \mathcal{R} is a chain.

Trivially, we have $\emptyset \in \mathcal{C}$ as $\emptyset \subseteq A$ for each $A \in \mathcal{R}$. For a chain $\mathcal{S} \subseteq \mathcal{C}$ and any $A \in \mathcal{R}$, have either $A \subseteq S$ for some $S \in \mathcal{S}$, so $A \subseteq \bigcup \mathcal{S}$, or $S \subseteq A$ for each $S \in \mathcal{S}$, so $\bigcup \mathcal{S} \subseteq A$. Therefore, it is left to show that for \mathcal{C} is closed under g. Let $B \in \mathcal{C}$.

Show The set $\mathcal{U} := \{A \in \mathcal{R} \mid A \subseteq B \vee g(B) \subseteq A\} \subseteq \mathcal{R}$ is a tower. It then follows that $\mathcal{R} = \mathcal{U}$, so for each $A \in \mathcal{R}$, have $A \subseteq B \subseteq g(B)$ or $g(B) \subseteq A$. Hence, g(B) is comparable to \mathcal{R} . Obviously, $\emptyset \in \mathcal{U}$ and for a chain $\mathcal{S} \subset \mathcal{U}$, also $\bigcup \mathcal{S} \in \mathcal{U}$. Additionally, for $U \in \mathcal{U}$, have:

If $g(B) \subseteq U$, then also $g(B) \subseteq g(U)$.

Otherwise, $U \subseteq B$. If B = U, then $g(B) \subseteq g(U)$, so we may assume $U \subsetneq B$. We have that $U \in \mathcal{R}$, so $g(U) \in \mathcal{R}$ (because \mathcal{R} is a tower) and therefore, B is comparable to g(U). $\Rightarrow g(U) \subseteq B$, because if $B \subsetneq g(U)$, we would have $U \subsetneq B \subsetneq g(U)$, however, $g(U) \setminus U$ has at most one element. Hence, $g(U) \in \mathcal{U}$, so $\mathcal{U} = \mathcal{C} = \mathcal{R}$ are towers.

Show The set $C := \bigcup \mathcal{R}$ is a maximal element in \mathcal{X} .

 \mathcal{R} is a chain and a tower, so $C \in \mathcal{R}$. We also have $g(C) \in \mathcal{R}$, as \mathcal{R} is a tower. $\Rightarrow g(C) \subseteq C$ and therefore C = g(C), so C is maximal in \mathcal{X} by definition of g.

1.2 Ultrafilter Lemma

For each filter \mathcal{F} on a set X there is a ultrafilter \mathcal{U} such that $\mathcal{F} \subseteq \mathcal{U}$.

1.3 Product Cardinality

For infinite set X have $\operatorname{card}(X) = \operatorname{card}(X \times X)$. For a proof, consider the following lemma

1.3.1 Lemma

Let $f: On \to On$ be an increasing function with

- $f(\aleph_0) = \aleph_0$
- If $\operatorname{card}(\alpha) = \operatorname{card}(\beta)$ then $\operatorname{card}(f(\alpha)) = \operatorname{card}(f(\beta))$
- For limit ordinal λ have $f(\lambda) = \bigcup_{\delta < \lambda} f(\delta)$

Then $f(\aleph_{\delta}) = \aleph_{\delta}$ for each $\delta \in \text{On}$. This lemma is easy to show by transfinite induction.

Proof Consider the order \leq on On^2 given by

$$(a_0, a_1) \le (b_0, b_1) :\Leftrightarrow \begin{cases} \max\{a_0, a_1\} < \max\{b_0, b_1\} \lor \\ \max\{a_0, a_1\} = \max\{b_0, b_1\}, a_0 < b_0 \lor \\ \max\{a_0, a_1\} = \max\{b_0, b_1\}, a_0 = b_0, a_1 \le b_1 \end{cases}$$

Then $f: \operatorname{On} \to \operatorname{On}, \ \alpha \mapsto \operatorname{ord}(\alpha \times \alpha)$ fulfills the conditions from the lemma.

1.4 Power Cardinality

For an infinite set X and any set Y have $\operatorname{card}(X^Y) = \max\{\operatorname{card}(X), \operatorname{card}(\mathfrak{P}(Y))\}.$

Proof Have bijections

$$\mathfrak{P}(Y)^Y \to \left(2^Y\right)^Y \to 2^{Y \times Y} \to \mathfrak{P}(Y^2)$$

So by the previous proposition, $\operatorname{card}(\mathfrak{P}(Y)^Y) = \operatorname{card}(\mathfrak{P}(Y))$. So in the case $\operatorname{card}(X) \leq \operatorname{card}(\mathfrak{P}(Y))$ the claim is already shown.

Otherwise have $\gamma = \operatorname{card}(Y)$ and use a variant of the lemma 1.3.1, where all conditions and the result only hold for ordinals $\geq \gamma$ to show that $\operatorname{card}(\mu^{\gamma}) = \operatorname{card}(\mu)$ for all $\mu \geq 2^{\gamma}$. Consider the order \leq on $\operatorname{On}^{\gamma}$ given by

$$(a_y)_y \le (b_y)_y :\Leftrightarrow \begin{cases} \sup_y a_y < \sup_y b_y \lor \\ \sup_y a_y = \sup_y b_y, \ (a_y)_y \le_{\text{lexiographic}} (b_y)_y \end{cases}$$

Then the function On \to On, $\alpha \mapsto \operatorname{ord}(\alpha^{\gamma})$ fulfills the conditions of the modified lemma, and the claim follows as $\operatorname{card}(X) \geq 2^{\gamma}$.

1.5 Ordinal arithmetic

For $\alpha, \beta \in \text{On define } \alpha + \beta := \text{ord}((\{0\} \times \alpha) \cup (\{1\} \times \beta))$ (with lexiographic ordering). Then have the following properties (which also define + by transfinite recursion)

- $\alpha + 0 = \alpha$
- $\alpha + (\beta + 1) = (\alpha + \beta) + 1$
- $\alpha + \lambda = \bigcup_{\beta < \lambda} \alpha + \beta$ for limit ordinal λ

Furthermore have then

- $0 + \alpha = \alpha$
- $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$
- $\alpha + \beta = \alpha + \gamma \implies \beta = \gamma$ (but in general not for right-addition)

Then define \cdot by $\alpha \cdot \beta := \operatorname{ord}(\alpha \times \beta)$ (with lexiographic ordering). Then have the following properties (which also define \cdot by transfinite recursion)

- $\alpha \cdot 0 = 0$
- $\alpha \cdot (\beta + 1) = \alpha \cdot \beta + \alpha$
- $\alpha \cdot \lambda = \bigcup_{\beta < \lambda} \alpha \cdot \beta$ for limit ordinal λ

Furthermore have then

- $0 \cdot \alpha = 0$
- $1 \cdot \alpha = \alpha \cdot 1 = \alpha$
- $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$
- $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$ (but in general no right-distributivity)
- $\alpha \cdot \beta = \alpha \cdot \gamma$, $\alpha \neq 0 \Rightarrow \beta = \gamma$ (but in general not for right-multiplication)

2 Logic

Definition Proof

In 1st order logic proofs, we allow Modus Ponens and Generalization, and the following base axioms:

2.1 Deduction theorem

Let $\Sigma \subseteq \operatorname{Fml}(\mathcal{L}), \phi \in \operatorname{Sen}(\mathcal{L}), \psi \in \operatorname{Fml}(\mathcal{L}).$ If $\Sigma \cup \{\phi\} \vdash \psi \text{ then } \Sigma \vdash (\phi \to \psi).$

2.2 Constant lemma

Let $\phi_1, ..., \phi_n, \phi \in \text{Fml}(\mathcal{L})$ and x a variable not occurring in the ϕ, ϕ_i and \mathcal{L}' an extension of \mathcal{L} by a constant c. If $\phi_1, ..., \phi_n \vdash_{\mathcal{L}'} \phi$ then $\phi_1(c/x), ..., \phi_n(c/x) \vdash_{\mathcal{L}} \phi(c/x)$.

2.3 Gödel's completeness theorem

Let $\Sigma \subseteq \operatorname{Fml}(\mathcal{L})$ and $\alpha \in \operatorname{Sen}(\mathcal{L})$. If $\Sigma \not\vdash \alpha$ then there is a model \mathcal{M} of Σ with $\mathcal{M} \not\models \alpha$.

Proof idea First we construct a witness extension for Σ , so an extension by constants \mathcal{L}' of \mathcal{L} and a consistent set $\Sigma' \supseteq \Sigma$ of \mathcal{L}' -sentences such that whenever $\Sigma' \vdash \exists x \ \phi$ for an \mathcal{L}' -formula ϕ with the only free variable x have $\Sigma' \vdash \phi(x/c_{\phi})$ for a constant c_{ϕ} . This can be done by recursivly adding witnesses for each suitable formula and then unifying the chain of languages that were creates.

Now have $\Sigma \cup \{\neg \alpha\}$ is consistent, so contained in a maximally consistent theory T. Repeatedly considering witness extensions and maximally consistent supertheories, get that wlog T is a witness extension of $\Sigma \cup \{\neg \alpha\}$. Using this, construct a model where the universe are all variable-free terms of \mathcal{L}' modulo T-provable equality. This is then a model of $\Sigma \cup \{\neg \alpha\}$ and the claim follows.

2.4 Compactness theorem

Let $\Sigma \subseteq \operatorname{Sen}(\mathcal{L})$. If every finite subset of Σ has a model, then Σ has a model.

2.5 Löwenheim-Skolem

Let $\Sigma \subseteq \operatorname{Sen}(\mathcal{L})$.

- If Σ has a model, then it has one of cardinality $\leq \kappa_{\mathcal{L}}$
- If Σ has an infinite model, then it has one of cardinality κ for each $\kappa \geq \kappa_{\mathcal{L}}$

Proof idea The construction in 2.3 creates a model of cardinality $\leq \kappa_{\mathcal{L}}$. Greater models can be constructed by adding as many constants and unequal-axioms to Σ (stays consistent by the compactness theorem).

2.6 Separation lemma

Let $\Sigma_1, \Sigma_2, \Gamma \subseteq \operatorname{Sen}(\mathcal{L})$. If for each $\mathcal{M}_1 \models \Sigma_1$ and $\mathcal{M}_2 \models \Sigma_2$ have $\gamma \in \Gamma$ that separates them (i.e. $\mathcal{M}_1 \models \gamma, \mathcal{M}_2 \models \neg \gamma$), then there is $\gamma^* = \bigvee_i \bigwedge_j \gamma_{ij}$ with $\gamma_{ij} \in \Gamma$ separating $\operatorname{Mod}_{\mathcal{L}}(\Sigma_1)$ and $\operatorname{Mod}_{\mathcal{L}}(\Sigma_2)$ (i.e. $\operatorname{Mod}_{\mathcal{L}}(\Sigma_1) \subseteq \operatorname{Mod}_{\mathcal{L}}(\gamma^*)$ and $\operatorname{Mod}_{\mathcal{L}}(\Sigma_2) \subseteq \operatorname{Mod}_{\mathcal{L}}(\neg \gamma^*)$).

Proof idea Use the compactness theorem twice on covers by $\operatorname{Mod}_{\mathcal{L}}(\gamma), \gamma \in \Gamma$.

2.7 Vaught's test

Let T be an \mathcal{L} -theory. If T has only infinite models and is κ -categorical for some $\kappa \geq \kappa_{\mathcal{L}}$, then T is complete.

Proof If $T \cup \{\alpha\}$ and $T \cup \{\neg \alpha\}$ would be consistent, Löwenheim-Skolem yields corresponding models of cardinality κ , which then are isomorphic. This is a contradiction. \square

3 Algebra

3.1 Cauchy-Schwarz

For $x, y \in V$ inner product space, have

$$\langle x, y \rangle^2 \le \langle x, x \rangle \langle y, y \rangle$$

Proof idea Start with

$$\langle x, x \rangle \left\langle y - \frac{\langle x, y \rangle}{\langle x, x \rangle} x, \ y - \frac{\langle x, y \rangle}{\langle x, x \rangle} x \right\rangle \ge 0$$

3.2 Sylow Theorems

For a finite group G with $|G| = n = p^e m$, $p \in \mathbb{P}$, $p \perp m$ have:

- There is $U \leq G$ with $|U| = p^e$
- For $U, V \leq G$ with $|U| = |V| = p^e$ have $U = qVq^{-1}$ for $q \in G$
- Let s be the count of $U \leq G$, $|U| = p^e$. Then s|m and $s \equiv 1 \mod p$

Proof idea Use group operations, for 1. on $\chi := \{U \leq G \mid |U| = p^e\}$, for 2. on $\chi := \{gU \mid g \in G\}$ and for 3. on $\chi := \{U \leq G \mid |U| = p^e\}$ with conjugation.

3.3 Mordell's inequality

Have $\gamma_d \leq \gamma_{d-1}^{(d-1)/(d-2)}$. Inductively, it follows $\gamma_d \leq \gamma_k^{(d-1)/(k-1)}$ (γ here is Hermite's constant).

Proof Let L be a d-rank lattice for which Hermite's constant is reached, with dual L^* and $x \in L^*$ with $||x|| = \lambda(L^*)$.

$$\Rightarrow \left(\langle x \rangle^{\perp} \cap L\right)^{*} = \pi_{\langle x \rangle^{\perp}}(L^{*}) \Rightarrow \operatorname{vol}(L^{*}) = \|x\| \operatorname{vol}\left(\langle x \rangle^{\perp} \cup L\right)^{*}$$

$$\Rightarrow \sqrt{\gamma_{n-1}}^{1-n} \lambda(L)^{n-1} \leq \operatorname{vol}\left(\langle x \rangle^{\perp} \cap L\right) = \|x\| \operatorname{vol}(L) \leq \sqrt{\gamma_{n}} \operatorname{vol}(L^{*})^{\frac{1}{n}} \operatorname{vol}(L)$$

$$\Rightarrow \sqrt{\gamma_{n}} \sqrt{\gamma_{n-1}}^{n-1} \geq \frac{\lambda(L)^{n-1}}{\operatorname{vol}(L)^{\frac{n-1}{n}}} = \sqrt{\gamma_{n}}^{n-1} \Rightarrow \sqrt{\gamma_{n}}^{n-2} \geq \sqrt{\gamma_{n-1}}^{n-1}$$

where M^* denotes the unique "dual" of M in $\langle M \rangle$.

3.4 Facts about finite rings

• \mathbb{F}_q^* is cyclic for $q = p^n$

Proof By the theorem on finitely generated abelian groups, have

$$\mathbb{F}_q^* \cong \mathbb{Z}/n_1\mathbb{Z} \times ... \times \mathbb{Z}/n_s\mathbb{Z}$$

with $n_1|...|n_s$. Assume s>1 and $n_1\neq 1$. Then $n_s< N:=|\mathbb{F}_q^*|$. For $x\in\mathbb{F}_q^*$, have therefore that $\operatorname{ord}(x)|n_s$, so p(x)=0 with $p(X):=X^{n_s}-1$. But this is a contradiction, as p is a polynomial of degree n_s with $N > n_s$ roots in the field \mathbb{F}_q .

• $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^*$ is cyclic if p > 2 or $\alpha < 2$

Proof Use induction over α .

 $\alpha = 1$ Follows directly from the previous point, as $\mathbb{F}_p \cong \mathbb{Z}/p\mathbb{Z}$ as rings.

 $\alpha > 1$ Consider the canonical ring homomorphism

$$\pi: \mathbb{Z}/p^{\alpha}\mathbb{Z} \to (\mathbb{Z}/p^{\alpha}\mathbb{Z}) / ([p^{\alpha-1}]), \quad x \mapsto [x]$$

Then the restriction of π to $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^*$

$$f: (\mathbb{Z}/p^{\alpha}\mathbb{Z})^* \to \left((\mathbb{Z}/p^{\alpha}\mathbb{Z}) \ / \ ([p^{\alpha-1}]) \right)^*, \quad x \mapsto \pi(x)$$

is a surjective group homomorphism. We have

$$\ker(f) = \pi^{-1}(\{1\}) = 1 + ([p^{\alpha - 1}]) = \left\{1 + k[p^{\alpha - 1}] \mid k \in \{0, ..., p - 1\}\right\}$$

As $[p^{\alpha-1}]^2 = 0$, have $\ker(f) = \langle 1 + [p^{\alpha-1}] \rangle$ by the binomial theorem. On the other hand, by the second isomorphism theorem, have the ring isomorphy $((\mathbb{Z}/p^{\alpha}\mathbb{Z}) / ([p^{\alpha-1}])) \cong \mathbb{Z}/p^{\alpha-1}\mathbb{Z}$, which is cyclic by the induction hypothesis. Therefore, $G/\operatorname{im}(f) \cong \ker(f)$ vields:

$$(\mathbb{Z}/p^{\alpha}\mathbb{Z})^*/\langle 1+[p^{\alpha-1}]\rangle \cong \langle [g]\rangle$$
 for some $g\in (\mathbb{Z}/p^{\alpha}\mathbb{Z})^*$

Assume now that $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^*$ is not cyclic. Then $\operatorname{ord}(g) \neq (p-1)p^{\alpha-1}$, so $\operatorname{ord}(g) = (p-1)p^{\alpha-2}$, as $\operatorname{ord}(1+[p^{\alpha-1}]) = p$. If $\alpha = 2$, then $\operatorname{ord}(g) = p-1 \perp p$, and the Chinese Remainder theorem yields that

$$(\mathbb{Z}/p^{\alpha}\mathbb{Z})^* \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/(p-1)p^{\alpha-2}\mathbb{Z} \cong \mathbb{Z}/(p-1)p^{\alpha-1}\mathbb{Z}$$

and we are done. Therefore, let $\alpha > 2$ and p > 2 and consider the mapping

$$\phi: \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/(p-1)p^{\alpha-2}\mathbb{Z} \to (\mathbb{Z}/p^{\alpha}\mathbb{Z})^*, \quad (k,n) \mapsto (1+k[p^{\alpha-1}])g^n$$

which is a homomorphism, as $(1+k[p^{\alpha-1}])(1+l[p^{\alpha-1}])=1+(l+k)[p^{\alpha-1}]$ and $\operatorname{ord}(g)=(p-1)p^{\alpha-2}$ and bijective, so an isomorphism. How to continue from here?

3.5 Chinese Remainder theorem

Let R be any commutative ring. For pairwise coprime ideals $I_1, ..., I_n \leq R$ have

$$R/(I_1 \cdot \ldots \cdot I_n) \cong R/I_1 \times \ldots \times R/I_n$$

3.6 Main theorem of finitly generated modules over PIDs

Let R be a principal ideal domain and M a finitly generated R-module. Then

$$M \cong R^d \oplus \bigoplus_{p \in \mathcal{P}} \bigoplus_{j \in \{1, \dots, n_p\}} R/(p^{e_{pj}})$$

where $\mathcal{P} \subseteq R$ is a set of prime elements and $n_p \in \mathbb{N}_{>0}$ for $p \in \mathcal{P}$. The set \mathcal{P} is unique, as are the exponents e_{pj} (up to order).

By the Chinese Remainder theorem, we get for finitly generated abelian groups G that

$$G \cong \mathbb{Z}^d \oplus \bigoplus_{j \in \{1, \dots, s\}} \mathbb{Z}/n_j \mathbb{Z}$$

for $n_1|n_2|...|n_s$ with $s \in \mathbb{N}$.

3.7 Smith normal form

Let $A \in \mathbb{R}^{m \times n}$ for a principal ideal domain R. Then there are $U \in \mathrm{SL}_m(R)$ and $V \in \mathrm{SL}_n(R)$ such that

$$UAV = diag(n_1, ..., n_s, 0, ..., 0) \in R^{m \times n}$$

where $n_1|n_2|...|n_s$ with $s \in \mathbb{N}$.

3.8 The module \mathbb{Z}^n

 \mathbb{Z}^n is a free, noetherian \mathbb{Z} -module.

3.9 Hilbert's basis theorem

If R is a noetherian ring, then so is $R[s_1,...,s_n]$ for $s_1,...,s_n \in S$ with a finitly generated ring extension $S \supseteq R$.

4 Probabilities

4.1 Chernoff-Hoeffding

 $X_1, ..., X_n$ independent, $0 \le X_i \le 1$. Then

$$\Pr\left[\sum X_i - \operatorname{E}\left[\sum X_i\right] \ge t\right] \le \exp\left(-2\frac{t^2}{n}\right)$$

5 Analysis

5.1 Inequalities

Young's inequality

$$xy \le \frac{x^p}{p} + \frac{y^q}{q} \text{ for } \frac{1}{p} + \frac{1}{q} = 1, \ x, y \ge 0$$

Proof By convexity of log, have

$$\frac{1}{p}\log x^p + \frac{1}{q}\log y^q \le \log\left(\frac{1}{p}x^p + \frac{1}{q}y^q\right)$$

$$\Rightarrow \log(xy) \le \log\left(\frac{1}{p}x^p + \frac{1}{q}y^q\right)$$

Hölder's inequality For measurable functions f,g and $\frac{1}{p} + \frac{1}{q} = 1$ (w.r.t measure μ) have:

$$||fg||_1 = \int |fg| d\mu \le \left(\int |f|^p d\mu\right)^{\frac{1}{p}} \left(\int |g|^q d\mu\right)^{\frac{1}{q}} = ||f||_p ||g||_q$$

Proof By Young's inequality have

$$\begin{split} &\frac{|fg|}{\|f\|_p \|g\|_q} \leq \frac{|f|^p}{p\|f\|_p^p} + \frac{|g|^q}{q\|f\|_q^q} \\ \Rightarrow &\frac{|fg|}{\|f\|_p \|g\|_q} \leq \frac{1}{p\|f\|_p^p} \|f\|_p^p + \frac{1}{q\|g\|_q^q} \|f\|_q^q = 1 \end{split}$$

5.2 Transformation

 $\phi: U \to \mathbb{R}^n$ injective. Then

$$\int_{\phi(U)} f(x)dx = \int_{U} f(\phi(x)) |\det(D\phi)(u)| dx$$

6 Topology

6.1 Separation axioms

T0 for distinct points x, y, have either $x \in U, y \notin U$ or $x \notin U, y \in U$ for open U

T1 for distinct points x, y have $x \in U, y \notin U$ and $x \notin V, y \in V$ for open U, V (equivalent to singletons are closed)

T2 or Hausdorff; points can be separated by open sets

T3 T1 + points can be separated from closed sets by open sets

T4 T1 + closed sets can be separated from closed sets by open sets

6.2 Universal nets

Every net $(x_i)_{i \in I}$ has a universal subnet.

Proof idea Consider the filter $\mathcal{F} = \{F \subseteq I \mid \exists i \in I \ \forall j \in I: \ j \geq i \Rightarrow j \in F\}$ and use ultrafilter $\mathcal{U} \supseteq \mathcal{F}$ as index set.

6.3 Initial topologies

 $\{\bigcap_{\alpha\in\mathcal{F}} f_{\alpha}^{-1}(U_{\alpha}) \mid \mathcal{F}\subseteq\mathcal{A} \text{ finite, } U_{\alpha}\in\tau_{\alpha}\} \text{ is a basis for the initial topology of } f_{\alpha}:X\to (X_{\alpha},\tau_{\alpha}).$

6.4 Characterization of compactness

The following are equivalent, where (X, τ) is a topological space

• Every open cover of X has a finite subcover

- For all $\mathcal{D} \subseteq 2^X$ of nonempty, closed sets with $\bigcap \mathcal{F} \neq \emptyset$ for each finite $\mathcal{F} \subseteq \mathcal{D}$ have that $\bigcap \mathcal{D} \neq \emptyset$
- For each chain $\mathcal{C} \subseteq 2^X$ of nonempty, closed sets have $\bigcap \mathcal{C} \neq \emptyset$
- Each universal net converges
- Each net has a convergent subnet
- Each closed $S \subseteq X$ is compact w.r.t the subspace topology

Proof Interesting is only (iii) \Rightarrow (ii). Given $\mathcal{D} \subseteq 2^X$ consider $\mathcal{S} := \{\mathcal{A} \subseteq \mathcal{D} \mid \bigcap \mathcal{A} \neq \emptyset\}$. Then by assumption, \mathcal{S} contains all finite sets. Also, \mathcal{S} is also closed w.r.t monotone unions, as for a chain $\mathcal{C} \subseteq \mathcal{S}$ have that $\{\bigcap C \mid C \in \mathcal{C}\}$ is a chain of nonempty closed sets, so $\bigcap \{\bigcap C \mid C \in \mathcal{C}\} \neq \emptyset$ by assumption. But this is a lower bound for each $C \in \mathcal{C}$, so for $\bigcup \mathcal{C}$. Therefore, $\bigcup \mathcal{C} \in \mathcal{S}$.

Assume $\mathcal{A} \subseteq 2^{\mathcal{D}}$ is a set of smallest cardinality κ not in \mathcal{S} . Then we can well-order $\mathcal{A} = \{a_{\xi} \mid \xi \in \kappa\}$ and get $\mathcal{A} = \bigcup_{\chi \in \kappa} \{a_{\xi} \mid \xi \in \chi\}$ as κ is infinite, so a limit ordinal. Therefore \mathcal{A} is a monotone union of sets in \mathcal{S} (by minimality of κ), so in \mathcal{S} . Then $\mathcal{S} = 2^{\mathcal{D}}$ so $\mathcal{D} \in \mathcal{S}$ and therefore $\bigcap \mathcal{D} \neq \emptyset$.

6.5 Tychonoffs Theorem

For a collection of compact topological spaces $(X_i)_{i\in I}$ the product space $\prod_{i\in I} X_i$ is compact.

Proof idea Follows directly from the fact that projections of universal nets are universal, and a space is compact iff every universal net converges.

6.6 Urysohn's Lemma

For closed C_0, C_1 in a T4 space X there is a continuous $f: X \to [0,1]$ with $f|_{C_0} = 0$ and $f|_{C_1} = 1$.

Proof idea Construct by induction open sets U_q for $q \in \mathbb{Q} \cap [0,1]$ with $C_0 \subseteq U_q \subseteq \bar{U}_q \subseteq U_r \subseteq \bar{U}_r \subseteq C_1^c$ for q < r. Then take $f(x) := \inf\{q \in \mathbb{Q} \cap [0,1] \mid x \in U_q\} \cup \{1\}$.

6.7 Tietze's extension theorem

For closed C in a T4 space X and continuous $f: C \to \mathbb{R}$ there is a continuous extension $\tilde{f}: X \to \mathbb{R}$.

Proof idea Prove extension of $f: C \to]-1, 1[$ to $\tilde{f}: X \to]-1, 1[$, then the result follows by using a homeomorphism $]-1, 1[\to \mathbb{R}$. By Urysohn's Lemma, it suffices to extend $f: C \to [-1,1]$ to $\tilde{f}: X \to [-1,1]$. For this, construct a sequence $h_n: X \to (\frac{2}{3})^n[-\frac{1}{3},\frac{1}{3}]$ of continuous functions such that $\sum_n h_n$ converges uniformly.

6.8 Extension of uniformly continuous functions

Let S be a set in a metric space M and $f: S \to \mathbb{R}$ uniformly continuous. Then f can be continuously extended to $\tilde{f}: M \to \mathbb{R}$.

Proof idea Use the following result: If X is a topological space and Y is T3, then for $D \subseteq X$ and continuous $f: D \to Y$ we can extend f to $\bar{D} \to Y$ if

$$\forall x \in \partial D \ \exists y \in Y \ \forall (x_i)_{i \in I} \ \text{net in } D: \ x_i \to x \ \Rightarrow \ f(x_i) \to y$$

This condition already determines the extension function \tilde{f} , and its continuity can be proven by contradiction. Assume a universal net $(x_i)_{i\in I}$ in \bar{D} converges to $x\in \bar{D}$ but not $\tilde{f}(x_i)\to \tilde{f}(x)$. Construct a net $(w_j)_{j\in J}$ in D such that $w_j\to x$ and $\tilde{f}(w_j)$ is outside of the closure of a fixed neighborhood N of $\tilde{f}(x)$. This contradicts the assumption.

7 Discrete

7.1 Gamma Function

Defined for $\mathbb{C} \setminus -\mathbb{N}$. Possible definitions:

$$\Gamma(z) := \int_0^\infty t^{z-1} e^{-t} dt \text{ if } \operatorname{Re}(z) > 0$$

$$\frac{1}{\Gamma(z)} = \lim_{n \to \infty} \binom{n+z-1}{n} n^{1-z}$$

We get

$$\Gamma(z+1) = z\Gamma(z)$$

8 Functional analysis

8.1 Minkowski-functional

For an absorbing set $A \subseteq X$ the functional

$$p_A: X \to \mathbb{R}, \quad x \mapsto \inf\{t \ge 0 \mid x \in tA\}$$

is

- subadditive if A is convex
- homogenous if A is balanced
- point-separating if A is bounded and X Hausdorff

8.2 Kolmogorov's normability criterion

X is normable, iff an open, bounded, convex set $A \subseteq X$ exists.

Proof idea Use the Minkowski-functional for $\tilde{A} = A \cap -A$ which is open, nonempty, bounded, convex.

8.3 Baire's theorem

X complete and metric, $(A_n)_n$ open and dense $\Rightarrow \bigcap A_n$ is dense.

Proof idea For each $y \in X$, construct sequence $(x_n)_n$ with

$$x_n \in B_{\frac{1}{n}}(y) \cap \left(\bigcap_{k \le n} A_n\right) \Rightarrow y = \lim x_n \in \operatorname{cl}\left(\bigcap_{i \le k} A_i\right) \text{ for all } k$$

8.4 Open mapping theorem

X, Y Banach and $T: X \to Y$ linear, continuous and surjective. Then T is open.

Proof idea

$$\bigcup_{K\in\mathbb{N}}\operatorname{cl}\left(T(B_K(0))\right)=Y \ \Rightarrow \ \operatorname{cl}\left(T(B_K(0))\right)^\circ\neq\emptyset \text{ for some } K$$

by Baire's theorem. It follows that $B_{\epsilon}(0) \subseteq T(B_1(0))$, so T is open, by the following lemma:

8.4.1 Lemma

Let $T \in \mathcal{L}(X,Y)$ such that $0 \in \text{cl}(T(B_X))^{\circ} \neq \emptyset$. Then $0 \in T(B_X)^{\circ}$, where $B_X = B_1(0)$ is the unit ball.

Proof The idea is, that T is linear and continuous, so we can work with series. Let $y \in \epsilon B_Y \subseteq \operatorname{cl}(T(B_X))$. Recursively construct sequences $(x_n)_{n \in \mathbb{N}}$ in X and $(y_n)_{n \in \mathbb{N}}$ in Y with

$$y_0 = y, \quad ||y_n|| < 2^{-n}\epsilon,$$

 $||x_n|| < 2^{-n}, \quad ||y_n - T(x_n)|| < 2^{-n-1}\epsilon$
 $y_{n+1} = y_n - T(x_n)$

This is possible as $T(2^{-n}B_X)$ is dense in $2^{-n}\epsilon B_Y$ for each $n \in \mathbb{N}$. By completeness of X have then that $\sum_n x_n$ converges to $x \in X$. Therefore, $T(x) = \sum_n T(x_n) = \sum_n y_n - y_{n+1} = y_0 = y$ as $y_n \to 0$ for $n \to 0$.

8.5 Hahn-Banach dominated extension theorem

Let X be a \mathbb{R} -vector space, $p: X \to \mathbb{R}$ sublinear (i.e. subadditive and homogenous w.r.t $\lambda \geq 0$) and $Y \subseteq X$ a subspace. A form $f: Y \to \mathbb{R}$ with $f \leq p$ can be extended to $F: X \to \mathbb{R}$ with $F \leq p$.

Proof idea Let $F: U \to \mathbb{R}$ be the maximal element (exists by Zorn's lemma) in

$$\left\{F:U\to\mathbb{R}\ |\ Y\subseteq U\subseteq X,\ F\big|_Y=f,\ F\leq p\right\}$$

Then U = X, as for $v \in X \setminus U$ have $p(v + y) - F(y) \ge \lambda \ge F(z) - p(z - v)$ for $y, z \in U$ by the reverse triangle inequality. Then $F'(u + tv) := F(u) + \lambda t$ is greater than F.

8.6 Banach-Alaoglu

 $V \subseteq X$ neighborhood of $0 \Rightarrow K = \{\phi \in X' \mid |\phi(V)| \le 1\}$ compact w.r.t weak-*-topology (weakest topology on X' so that all $\hat{x} \in X''$ are continuous, $\hat{x} : X' \to \mathbb{K}, \ \phi \mapsto \phi(x)$).

Proof idea Let $\gamma(x) > 0$ with $x \in \gamma(x)V$ for all $x \in X$. Then

$$\mathbb{K}^X = \underset{x \in X}{\times} \mathbb{K} \implies K \subseteq \underset{x \in X}{\times} B_{\gamma(x)}(0)$$
 compact by Tychonoff's theorem

The topologies on the sets match, as the weak-*-topology on K has a local base of finite intersections of $\hat{x_i}^{-1}(] - \epsilon_i, \epsilon_i[)$ and

$$\underset{x \in X}{\textstyle \times} B_{\gamma(x)}(0) \cap X' \text{ has one of sets } \bigcap_{1 \leq i \leq n}] - \epsilon_i, \epsilon_i [\times \underset{x \neq x_i}{\textstyle \times} \mathbb{K} \cap X'$$

9 Operator theory

9.1 Neumann series

Let $T \in \mathcal{L}(X)$. If $\sum_{n \in \mathbb{N}} T^n$ converges, then 1 - T is invertible with

$$(1-T)^{-1} = \sum_{n \in \mathbb{N}} T^n$$

To get convergence, it is sufficient to have ||T|| < 1 and X is complete.

9.2 l^p spaces

Note that from 5.1 we get that $l^p \simeq (l^q)'$ for p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$.

9.3 Riesz lemma

Let $U \subseteq \text{closed subspace}$ of a normed space. For $\delta > 0$ have then $x \in X$ with ||x|| = 1 and distance greater than $1 - \delta$ from U.

Proof idea Consider any $x \in X \setminus U$ and an almost closest point $u \in U$. Then scale x - u appropriately.

9.4 Compact Operators and spaces

From 9.3 one can conclude that the unit ball B_X is compact iff dim $X < \infty$. Therefore, consider operators $T \in \mathcal{L}(X,Y)$ such that $\operatorname{cl}(T(B_X))$ compact, these are a Banach space $\mathcal{K}(X,Y)$.

Proof idea To show that $\mathcal{K}(X,Y)$ is closed in $\mathcal{L}(X,Y)$, consider diagonal sequences.

9.5 Arzela-Ascoli

Let X be a compact topological space. Then the continuous functions C(X) from X to \mathbb{R} are normed via $\|\cdot\|_{\infty}$. If a $M \subseteq C(X)$ is bounded, closed and equicontinuous (i.e. $\forall x \in X, \epsilon > 0$ \exists neighborhood N of $x \forall x \in M : x(N) \subseteq B_{\epsilon}(x(s))$), then M is compact.

Proof Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in M. As X is compact, it is separable, so have $X = \{s_n \mid n \in \mathbb{N}\}$. Therefore, recursively construct subsequences

$$\left(x_n^{(k)}\right)_{n\in\mathbb{N}}$$
 such that $\left(x_n^{(k)}(s_k)\right)_{n\in\mathbb{N}}$ converges

and consider the diagonal sequence $(y_n)_{n\in\mathbb{N}}$. Then $(y_n(s_k))_{n\in\mathbb{N}}$ converges for each $k\in\mathbb{N}$. By equicontinuity, have for each $k\in\mathbb{N}$ a neighborhood N_k of s_k such that $\forall x\in M:$ $x(N_k)\subseteq B_\epsilon(x(s_k))$. Therefore, there is a subcover N_i for $i\in I$ finite. As $(y_n(s_k))_{n\in\mathbb{N}}$ converges for each k, it simultaneously converges for each $i\in I$. This yields that $(y_n)_{n\in\mathbb{N}}$ is a Cauchy-sequence w.r.t $\|\cdot\|_{\infty}$.

9.6 Proposition of Schauder

For $T \in \mathcal{L}(X,Y)$ between Banach-spaces, have that T is compact if and only if $T' \in \mathcal{L}(Y',X')$ is compact.

Proof Prove \Rightarrow , the other direction follows. Then $K := \operatorname{cl}(T(B_X))$ is compact metric space. For $(y'_n)_{n \in \mathbb{N}}$ have

$$\left(y_n'\big|_K\right)_{n\in\mathbb{N}}$$
 is a sequence in $C(K)$

It also fulfills the conditions of 9.5, so there is a convergent subsequence indexed by $(n_k)_{k\in\mathbb{N}}$. Then also $(T'y_{n_k})_{k\in\mathbb{N}}$ converges, so $T'(B_{Y'})$ is relatively compact.

9.7 Closed range theorem

Let X, Y be Banach spaces, $T \in \mathcal{L}(X, Y)$. The the following are equivalent

- ran(T) closed
- $\operatorname{ran}(T) = (\ker(T'))_{\perp}$
- ran(T') closed
- $\operatorname{ran}(T') = (\ker(T))^{\perp}$

Proof Show (ii) \Leftrightarrow (iv), the rest is relatively easy. Let $x' \in (\ker(T))^{\perp}$. Then have $z' : \operatorname{ran}(T) \to \mathbb{K}$ linear with $z' \circ T = x'$ (isomorphism theorem). A complex computation using the open mapping theorem shows that z' is continuous. A Hahn-Banach extension of z' to Y then yields a preimage under T' of x'.

For the other direction, consider $Z := \operatorname{cl}(\operatorname{ran}(T))$. By the Hahn-Banach theorem, we can extend functionals on Z to functionals on Y, so $\operatorname{ran}(T') \simeq Z'$ by the isomorphism $\operatorname{ran}(T') \to Z', \ T'(y') \mapsto y'\big|_{Z}$.

Therefore, for all $y' \in Y'$ have that $||y'||_Z || \le c||y' \circ T||$ where c > 0.

Consider any $y \in Z$ with $||y|| \le 1$. If $y \notin \operatorname{cl}(T(2cB_X))$, the Hahn-Banach separation theorem yields $y' \in Y'$ such that

$$2c||y' \circ T|| = \sup (2c(y' \circ T)(B_X)) \le y'(y) = ||y'|_Z(y)|| \le ||y'|_Z|| \le c||y' \circ T||$$

a contradiction. Therefore, $\operatorname{cl}(T(B_X))^{\circ} \neq \emptyset$ and so $\tilde{T}: X \to Z, \ x \mapsto T(x)$ is open by 8.4.1. It follows that $\operatorname{ran}(T) = \operatorname{ran}(\tilde{T})$ is closed, as X is closed.

9.8 Projection theorem

Let H be a Hilbert space and $K \subseteq H$ convex and closed. Then for $x \in H$ the infimum $\inf_{y \in K} \|y - x\|$ is reached by some $y \in K$. In particular, for $U \subseteq H$ closed subspace, U^{\perp} is also closed and $H = U \oplus U^{\perp}$ is a topological decomposition.

9.9 Frechet-Riesz representation theorem

Let H be a Hilbert space. Then a isometric, bijective, conjugate linear map is given by

$$\phi: H \to H', \quad y \mapsto \langle \cdot, y \rangle$$

Proof Show surjectivity, the rest is clear: For $x' \in H'$ have that $(\ker(x'))^{\perp}$ has dimension 1. By using 9.8 the claim follows.

9.10 Orthonormal bases

Let H be a Hilbert space and $S \subseteq H$ a maximal orthonormal system. As

$$\left\langle x - \sum_{s \in F} \langle x, s \rangle s, \ x - \sum_{s \in F} \langle x, s \rangle s \right\rangle \ge 0 \ \Rightarrow \ \sum_{s \in F} |\langle x, s \rangle|^2 \le \langle x, x \rangle$$

for finite $F \subseteq S$, get that $\sum_{s \in S} \langle x, s \rangle s$ converges absolutely, and if $x \in \text{cl}(\text{span}(S))$, to x. For a maximal orthonormal system $S \subseteq H$ have that cl(span(S)) = H, so it is an orthonormal basis.

Have also the following laws

Bessel For an orthonormal system S have $\sum_{s \in S} |\langle x, s \rangle|^2 \le ||x||^2$ for all x

Parseval S is an orthonormal basis iff there is equality above, i.e. $||x||^2 = \sum_{s \in S} |\langle x, s \rangle|^2$

9.11 Spectra

Let $T \in \mathcal{L}(X)$ for a Banach space X. With

point spectrum
$$\sigma_p(T) := \{\lambda \in \mathbb{K} \mid \ker(T - \lambda) \neq \emptyset\}$$

continuous spectrum $\sigma_c(T) := \{\lambda \in \mathbb{K} \mid \ker(T - \lambda) = \emptyset, \operatorname{cl}(\operatorname{im}(T - \lambda)) \neq X\}$
residual spectrum $\sigma_r(T) := \{\lambda \in \mathbb{K} \mid \ker(T - \lambda) = \emptyset, \operatorname{cl}(\operatorname{im}(T - \lambda)) = X, \operatorname{im}(T - \lambda) \neq X\}$
spectrum $\sigma(T) := \sigma_p(T) \cup \sigma_c(T) \cup \sigma_r(T)$

have that $\sigma(T)$ compact and bounded by $||T||_{\text{op}}$.

Proof idea Use the Neumann series.

9.12 Decomposition compact operator

Let $T \in \mathcal{K}(X)$ for Banach space X. Then $X = \ker((T-1)^p) \oplus \operatorname{im}((T-1)^p)$ for some $p \in \mathbb{N}$ (where the direct sum is a decomposition in the topological sense).

Proof idea Show that the sequence of $N_i = \ker((T-1)^i)$ is stationary. Assume not, then have $x_i \in N_i$ with $||x_i|| = 1$ and distance $\frac{1}{2}$ to N_{i-1} by Riesz Lemma. Applying T then yields a non-Cauchy sequence as for m < n have

$$Tx_n - Tx_m = x_n - x_m + (T - 1)(x_n - x_m) \in x_n - \underbrace{x_m + \ker((T - 1)^{n-1})}_{=N_{n-1}}$$

a contradiction to the compactness of T. Similar show that $\operatorname{im}((T-1)^i)$ is stationary and for an index $p \in \mathbb{N}$ at which both are constant the claim holds. The closedness of $\operatorname{im}((T-1)^p)$ follows as $(T-1)^p$ is open by the open mapping theorem.

9.13 Spectral theorem for compact, normal operators

Let $T \in \mathcal{K}(H)$ on a Hilbert space H be normal (if $\mathbb{K} = \mathbb{C}$) resp. self-adjoint (if $\mathbb{K} = \mathbb{R}$). Then there is a countable orthonormal system E and $\lambda_e \in \mathbb{K} \setminus \{0\}$ for $e \in E$ such that

$$T = \sum_{e \in E} \lambda_e \langle \cdot, e \rangle e$$

Additionally, $\{\lambda_e \mid e \in E\}$ has 0 as only accumulation point, is bounded by $||T||_{\text{op}}$ and λ_e takes the same value for only finitely many $e \in E$. Also $H = \ker T \oplus \text{cl}(\text{span}(E))$.

Proof For $\lambda, \mu \in \sigma(T)$ with $\lambda \neq \mu$ have that $\ker(T - \lambda) \perp \ker(T - \mu)$ as $\mu v = Tv = \lambda v$ implies v = 0. Therefore, take for $\lambda \in \sigma(T)$ orthonormal basis $\{e_{\lambda,1}, ..., e_{\lambda,n_{\lambda}}\}$ of $\ker(T - \lambda)$ and set

$$E = \{e_{\lambda,i} \mid \lambda \in \sigma(T) \setminus \{0\}\}, \quad \lambda_{e_{\lambda,i}} = \lambda$$

Now consider $H_2 := (\ker T + \operatorname{cl}(\operatorname{span}(E)))^{\perp}$. Then $T(H_2) \subseteq H_2$ and $T_2 := T|_{H_2} : H_2 \to H_2$ is compact and self-adjoint. If $T_2 = 0$ then $\ker(T_2) \subseteq H_2 \cap \ker(T) = \{0\}$ so we are done. So assume $T_2 \neq 0$. Then $T_2x = \lambda x$ for some $\lambda \neq 0$ (see next lemma). However, then $x \in \ker(T - \lambda)$, a contradiction. The rest of the proposition follows from the two lemmas:

9.13.1 Lemma

A compact operator $T \in \mathcal{K}(H)$ that is normal (if $\mathbb{K} = \mathbb{C}$) resp. self-adjoint (if $\mathbb{K} = \mathbb{R}$) has $\lambda \in \sigma(T)$ where $|\lambda| = ||T||_{\text{op}}$.

9.13.2 Lemma (Spectrum of compact operators)

Let $T \in \mathcal{K}(X)$. Then $\sigma(T)$ is countable with only accumulation point 0.

Proof idea Assume there are infinitely many $\lambda_n \in \sigma(T)$ pairwise distinct with $|\lambda_n| > \epsilon > 0$. By 9.12 each $T - \lambda_n$ is injective iff surjective, so have $Tx_n = \lambda_n x_n$ for non-zero x_n . It follows that they are linearly independent. By Riesz lemma, have $y_n \in \text{span}\{x_1, ..., x_n\}$ with distance $\frac{1}{2}$ to $\text{span}\{x_1, ..., x_{n-1}\}$ and $||y_n|| = 1$. Then Ty_n has distance $\frac{1}{2}\epsilon$ from $\text{span}\{Tx_1, ..., Tx_{n-1}\}$, but this contradicts the compactness of T.

9.14 Singular value decomposition

Let $T \in \mathcal{K}(H_1, H_2)$. Then there is $N = \{1, ..., n\}$ or $N = \mathbb{N}$ and orthonormal systems $\{e_n \mid n \in N\}$ of H_1 and $\{f_n \mid n \in N\}$ of H_2 and $\{s_n \mid n \in N\} \subseteq \mathbb{R}_{>0}$ with 0 as only accumulation point such that

$$T = \sum_{n \in N} s_n \langle \cdot, e_n \rangle f_n$$

Proof idea The operator $T^* \circ T$ is positive, self-adjoint and compact, so has a unique positive, self-adjoint compact root S with $S \circ S = T^* \circ T$ (take the root of each eigenvalue in the representation of 9.13). Then $T = U \circ S$ for a unitary operator U and with $S = \sum_{e \in E} \lambda_e \langle \cdot, e \rangle e$ have that

$$T = \sum_{e \in E} \lambda_e \langle \cdot, e \rangle U e$$

which is of the specified form.

9.15 Operator hierarchy

Let H be a Hilbert space. Consider

Compact operators $\mathcal{K}(H)$ In $T = \sum_n s_n \langle \cdot, e_n \rangle f_n \in \mathcal{K}(H)$ have $(s_n)_n \in c_0$

Hilbert-Schmidt operators HS(H) Compact operators where $(s_n)_n \in \ell^2$

Nuclear operators $\mathcal{N}(H)$ Compact operators where $(s_n)_n \in \ell^1$

Have the corresponding norms $\|\cdot\|_{\text{op}}$, $\|\cdot\|_{\text{HS}}$, $\|\cdot\|_{\text{nuk}}$ as the ℓ^{∞} , ℓ^{2} , ℓ^{1} -norms of the $(s_{n})_{n}$. Then

- $\|\cdot\|_{op} \ge \|\cdot\|_{HS} \ge \|\cdot\|_{nuk}$, so the identity embedding is continuous
- The nuclear operators can be defined as operators of the form $\sum y_i x_i'(\cdot)$ where $\sum ||y_i|| ||x_i'||$ converges
- $(\mathcal{N}(H), \|\cdot\|_{\text{nuk}})$ is a Banach space
- Nuclear operators have the "ideal property": $T \circ S \circ R \in \mathcal{N}(H)$ if $S \in \mathcal{N}(H)$

For a nuclear operator $T = \sum s_n \langle \cdot, e_n \rangle f_n$ and an orthonormal basis E the series

$$\operatorname{tr}(T) := \sum_{e \in E} \langle Te, e \rangle = \sum s_n \langle f_n, e_n \rangle$$

is independent of the choice of E and defines the trace of T. We then further get

- For $T, S \in HS(H)$ have $T \circ S \in \mathcal{N}(H)$ and $||T \circ S||_{\text{nuk}} \leq ||T||_{\text{HS}} ||S||_{\text{HS}}$ (compare the Hölder inequality 5.1)
- (HS(H), $\langle \cdot, \cdot \rangle_{HS}$) defines a Hilbert space via $\langle x, y \rangle_{HS} := \operatorname{tr}(T^* \circ S)$ (well-defined by the above point)

10 (Algebraic) Number Theory

10.1 Propositions

Let $K|\mathbb{Q}$ separable and \mathcal{O}_K integral closure of \mathbb{Z} . The following basic propositions can be found in Neukirch's book.

- **2.9** For $\alpha_1, ..., \alpha_n \in \mathcal{O}_K$ basis of K, then $d(\alpha_1, ..., \alpha_n)\mathcal{O}_K \subseteq \alpha_1\mathbb{Z} + ... + \alpha_n\mathbb{Z}$.
- **2.10** Each finitely generated \mathcal{O}_K -module $M \subseteq K$ is a free \mathbb{Z} -module.
- **3.1** \mathcal{O}_K is a Dedekind domain, so noetherian, integrally closed and each prime ideal $p \neq 0$ is maximal.
- **3.3** Each ideal except (0), (1) has a unique factorization in prime ideals (up to order).

10.2 Minkowski's theorem (Neukirch 4.4)

Let V be a n-dimensional euclidean vector space, $\Gamma \subseteq V$ be a complete lattice, $X \subseteq V$ convex and balanced with $\operatorname{vol}(X) > 2^n \operatorname{vol}(\Gamma)$, then $X \cap \Gamma \neq \emptyset$.

10.3 The Class group (Neukirch 6.3)

Let K be a number field with ring of integers \mathcal{O}_K . Then the set of fractional ideals is a group and the principal ideals form a subgroup. The quotient group is finite and called the class group Cl_K . In particular, every $c \in \operatorname{Cl}_K$ contains an integral ideal I of norm

$$N(I) := [\mathcal{O}_K : I] \le M_K := \left(\frac{4}{\pi}\right)^s \frac{n!}{n^n} \sqrt{|d_k|}$$

where s is the number of pairs of complex embeddings $K \to \mathbb{C}$ and $n = [K : \mathbb{Q}]$.

Proof idea Consider an equivalence class $[\mathfrak{a}]$. Then $\gamma \mathfrak{a}^{-1} \subseteq \mathcal{O}_K$ for some $\gamma \in \mathcal{O}_K$. By Minkowski's theorem, there is a $a \in \gamma \mathfrak{a}^{-1}$ of norm

$$N_{K|\mathbb{Q}}(a) \leq \left(\frac{2}{\pi}\right)^s \frac{n!}{n^n} \sqrt{|d_k|} N(\gamma \mathfrak{a}^{-1}) = \left(\frac{4}{\pi}\right)^s \frac{n!}{n^n} \sqrt{|d_K|} N(\gamma) N(\mathfrak{a})^{-1}$$

Therefore for the ideal $a\gamma^{-1}\mathfrak{a}$ in $[\mathfrak{a}]$ we have

$$N(a\gamma^{-1}\mathfrak{a}) \le \left(\frac{4}{\pi}\right)^s \frac{n!}{n^n} \sqrt{|d_K|}$$

This is integral, as $(\gamma) = \gamma \mathfrak{a}^{-1} \mathfrak{a} \mid a\mathfrak{a}$.

10.4 Dirichlet's unit theorem

For K/\mathbb{Q} finite with ring of integers \mathcal{O}_K , have $\mathcal{O}_K^* \cong \mu(K) \oplus G$, where $\mu(K)$ are the roots of unity and G is a free group of rank r+s-1, where r is the number of real \mathbb{Q} -embeddings $K \to \mathbb{R}$ and s is the number of conjugate pairs of complex \mathbb{Q} -embeddings $K \to \mathbb{C}$.

10.5 Square number fields

For a square-free $D \in \mathbb{Z}$, $D \neq 0, 1$ have $K = \mathbb{Q}(\sqrt{D})$. Then $d := d_K = D$ if $D \equiv 1 \mod 4$ and $d := d_K = 4D$ otherwise. Furthermore, $\mathcal{O}_K = \mathbb{Z}[\frac{1}{2}(1 + \sqrt{d_K})]$.

In the case D > 1, have that $\mathcal{O}_K^* = \langle \epsilon_1 \rangle$, where $\epsilon_1 = \frac{1}{2}(x + y\sqrt{d})$ for the smallest solution $x, y \geq 0$ of $x^2 - dy^2 = -4$ (or ... = 4 if this has no integral solution).

In the case D < 0, have that

$$\mathcal{O}_{K}^{*} = \begin{cases} \{1, -1, i, -i\} & \text{if } D = -1\\ \left\{e^{\frac{2\pi i k}{6}} \middle| k \in \{0, ..., 5\}\right\} & \text{if } D = -3\\ \{1, -1\} & \text{otherwise} \end{cases}$$

Proof idea of the second part For $\epsilon = \frac{1}{2}(u + v\sqrt{d_K}) \in \mathcal{O}_K^*$ have

$$N_{K|\mathbb{Q}}(\epsilon) = \frac{1}{4}(u^2 - d_K v^2) \in \{-1, 1\} \implies u^2 - d_K v^2 = \pm 4$$

By Dirichlet's unit theorem have fundamental unit $\epsilon = \frac{1}{2}(u + v\sqrt{d_K})$ and as $-\epsilon$ and ϵ^{-1} together with -1 also generate \mathcal{O}_K^* , we may assume $u, v \geq 0$. Therefore, $\epsilon^k = \frac{1}{2}(x + y\sqrt{d_K})$ and as in

$$\frac{1}{2}(w + t\sqrt{d_K})\frac{1}{2}(u + v\sqrt{d_K}) = \frac{1}{4}(wu + d_Ktv + (ut + vw)\sqrt{d_K})$$

the part $\frac{1}{4}(wu + d_K tv)$ is greater than $\frac{1}{2}w$ as wlog $u \geq 2$, have that u, v must be the smallest solution of Pell's equation.

10.6 Ramification (de: Verzweigung)

Let \mathcal{R} be a Dedekind domain, $K = \operatorname{Quot}(\mathcal{R})$ and \mathcal{O} the integral closure of \mathcal{R} in an algebraic and separable field extension L|K. Then \mathcal{O} is a Dedekind domain.

For a prime ideal \mathfrak{p} in \mathcal{R} , have

- **8.2** Have $\sum e_i f_i = n := [L:K]$ where $\mathfrak{p}\mathcal{O} = \mathfrak{B}_1^{e_1} ... \mathfrak{B}_r^{e_r}$ is the factorization of \mathfrak{p} into prime ideals in \mathcal{O} and $f_i = [\mathcal{O}/\mathfrak{B}_i : \mathcal{R}/\mathfrak{p}]$. The proof uses the CRT and the properties of $\mathcal{O}/\mathfrak{B}_i$ as \mathcal{R}/\mathfrak{p} -vector space.
- **8.3** Let $L = K(\alpha)$ for an integral, primitive element $\alpha \in \mathcal{O}$. If \mathfrak{p} is a prime ideal that does not divide the leader \mathcal{F} of $\mathcal{R}[\alpha]$ (the largest ideal contained in $\mathcal{R}[\alpha]$), then $\mathfrak{p} = \mathfrak{B}_1^{e_1}...\mathfrak{B}_r^{e_r}$ for $\mathfrak{B}_i = \mathfrak{p}\mathcal{O} + p_i(\alpha)\mathcal{O}$, where the minimal polynomial p of α splits into irreducible factors mod $\mathfrak{p}\mathcal{O}$

$$p(X) \equiv p_1(X)^{e_1} ... p_r(X)^{e_r} \mod \mathfrak{p}\mathcal{O}$$

Also have $f_i = \deg(p_i)$.

By definition of \mathcal{F} , note that for a number field K (i.e. $\mathcal{R} = \mathbb{Z}$) it is sufficient if $\mathfrak{p} = (p) \not \mid ([\mathcal{O} : \mathbb{Z}[\alpha]])$.

If L|K is galoisch, we can consider the effect of the Galois group on the prime ideals $\mathfrak{B} \leq \mathcal{O}$ over some prime ideal $\mathfrak{p} \leq \mathcal{R}$. Fix some prime ideal $\mathfrak{B} \leq \mathcal{O}$ over \mathfrak{p} and consider

"Zerlegungsgruppe"
$$G_{\mathfrak{B}}:=\{\sigma\in G\mid \sigma\mathfrak{B}=\mathfrak{B}\}$$
 with fixed field $Z_{\mathfrak{B}}=L^{G_{\mathfrak{B}}}$ "Trägheitsgruppe" $I_{\mathfrak{B}}:=\ker(\phi)$ with fixed field $T_{\mathfrak{B}}=L^{I_{\mathfrak{B}}}$

where

$$\phi_{\sigma}: \mathcal{O}/\mathfrak{B} \to \mathcal{O}/\mathfrak{B}, \quad [a] \mapsto [\sigma a]$$

Let then be e resp. f be the "Verzweigungsindex" (maximal power such that $\mathfrak{B}^e|\mathfrak{p}$) resp. "'Trägheitsindex" (the index of $\mathcal{O}/\mathfrak{B}|\mathcal{R}/\mathfrak{p}$) of \mathfrak{B} over \mathfrak{p} . If $\mathcal{O}/\mathfrak{B}|\mathcal{R}/\mathfrak{p}$ is separable, have the following representation:

$$\mathfrak{p} \quad \stackrel{1}{\overset{\frown}{\subseteq}} \quad \mathfrak{B}_Z := \mathfrak{B} \cap Z_{\mathfrak{B}} \quad \stackrel{f}{\overset{\frown}{\subseteq}} \quad \mathfrak{B}_T := \mathfrak{B} \cap T_{\mathfrak{B}} \quad \stackrel{1}{\overset{\frown}{\subseteq}} \quad \mathfrak{B} \cap T_{\mathfrak{B}} := \mathfrak{B} \cap T_{\mathfrak{B}} \quad \stackrel{1}{\overset{\frown}{\subseteq}} \quad \mathfrak{B} \cap T_{\mathfrak{B}} := \mathfrak$$

where the "Verzweigungsindizes" are written over the corresponding ideal decompositions and the "Trägheitsindizes" are written below, respectivly.

10.7 Quadratic Reciprocity

For $a \in \mathbb{Z}$ and $p \in \mathbb{P}$ and $n = \prod_{p} p^{e_p} \in \mathbb{N}_{\geq 2}$ define

$$\left(\frac{a}{p}\right) := \begin{cases} 0 & \text{if } a = 0 \\ 1 & \text{if there is } x \text{ with } a \equiv x^2 \mod p \quad \text{ and } \quad \left(\frac{a}{n}\right) := \prod_p \left(\frac{a}{p}\right)^{e_p} \\ -1 & \text{otherwise} \end{cases}$$

Then for odd a, n have

$$\left(\frac{a}{n}\right) = \begin{cases}
-\left(\frac{n}{a}\right) & \text{if } a \equiv n \equiv 3 \mod 4 \\
\left(\frac{n}{a}\right) & \text{otherwise}
\end{cases} \quad \text{and} \quad \left(\frac{2}{n}\right) = \begin{cases}
1 & \text{if } n \equiv \pm 1 \mod 8 \\
-1 & \text{if } n \equiv \pm 3 \mod 8
\end{cases}$$

11 Computational Algebraic Number theory and Cryptanalysis

11.1 Primality test

Let $n \in \mathbb{N}_{\geq 2}$ be odd with $n-1=d2^s$, $d \perp 2$ and consider

$$U_n := \{ a \in \mathbb{Z}_n^* \mid a^{n-1} \equiv 1 \mod n \} \le \mathbb{Z}_n^*$$
 (Fermat)

$$V_n := \{ x \in \mathbb{Z}_n^* \mid x^{\frac{n-1}{2}} \equiv \left(\frac{x}{n}\right) \mod n \} \le \mathbb{Z}_n^*$$
 (Solovay-Strassen)

$$W_n := \{ a \in \mathbb{Z}_n^* \mid a^d \equiv 1 \text{ or } a^{2^r d} \equiv -1 \text{ for some } r < s \}$$
 (Miller-Rabin)

$$W_n := \{ a \in \mathbb{Z}_n^* \mid a^d \equiv 1 \text{ or } a^{2^r d} \equiv -1 \text{ for some } r < s \}$$
 (Miller-Rabin)

If n is prime, then $U_n = V_n = W_n = \mathbb{Z}_n^*$ and otherwise, $V_n, W_n \neq \mathbb{Z}_n^*$. Furthermore, if n is composite, then $\#W_n \leq \frac{1}{4}n$.

Proof That $U_n, V_n \leq \mathbb{Z}_n^*$ are subgroups can bee seen easily (note that $(\frac{\cdot}{n})$ is multiplicative). Similarly, see that $V_n \subseteq U_n$ and if n is prime, then all are equal by using that \mathbb{Z}_n^* is cyclic.

For the other parts, use some key ideas: First, for each prime p (so in particular for p|n) have \mathbb{Z}_p^* is cyclic of even order (wlog n odd) and we get that a is a square if $2 \operatorname{ord}[a]_p | p-1$. Furthermore, we have the CRT and if $a^k \equiv -1$ then $[a]_p^k = [-1]$ for each prime factor p|n.

If $n = \prod_i p_i^{e_i}$ is composite, consider $x \in \mathbb{Z}_n^*$ which is congruent to a non-square modulo p_1 and congruent to 1 modulo every other p_i . Then note that $x \notin V_n$ as

$$x^{\frac{n-1}{2}} \equiv 1^{\frac{n-1}{2}} \equiv 1 \not\equiv -1 \mod p_i$$
 for some $i \neq 1$ so $x^{\frac{n-1}{2}} \not\equiv -1$

where congruences are modulo n unless otherwise mentioned.

Now we consider W_n . Let $n = \prod_i p_i^{e_i}$ be odd and $a \in W_n$.

If $a^d \equiv 1$ then the order $\operatorname{ord}[a]_{p_i}$ is odd for each i, and therefore a is a square modulo p_i by using that $\mathbb{Z}_{p_i}^*$ is cyclic of even order. Therefore,

$$\left(\frac{a}{n}\right) = 1 \equiv a^{\frac{n-1}{2}} \text{ so } a \in V_n$$

If $a^{2^rd} \equiv -1$ for r < s have that $[a]_{p_i}^{2^rd} = [-1]$. It follows that $\operatorname{ord}[a]_{p_i} = 2^{r+1}d_i$ for $d_i \perp 2$, as $2^k f := \operatorname{ord}[a] \mid 2^{r+1}d$, $f \perp 2$ and if $k \leq r$ then

$$[-1] = [a]^{2^r d_i} = ([a]^{2^k f})^{\frac{d_i}{f} 2^{r-k}} = [1]^{\frac{d_i}{f} 2^{r-k}} = [1],$$
 a contradiction

So $\operatorname{ord}[a]_{p_i} = 2^{r+1}d_i$, hence $2^{r+1} \mid p_i - 1$. We set $p_i = 2^{r+1}b_i + 1$. As above, $\mathbb{Z}_{p_i}^*$ is cyclic of even order, so we get

$$\left(\frac{a}{p_i}\right) = -1 \Leftrightarrow 2\operatorname{ord}[a]_{p_i} \not\mid p_i - 1 \Leftrightarrow 2^{r+2}d_i \not\mid p_i - 1 \Leftrightarrow 2^{r+2} \not\mid p_i - 1 \Leftrightarrow b_i \perp 2^{r+2}d_i \not\mid p_i - 1 \Leftrightarrow b_i \perp 2^{r+2}d_i \mid p_i - 1 \Leftrightarrow b_i$$

This yields

$$\left(\frac{a}{p_i}\right) = (-1)^{b_i} \quad \Rightarrow \quad \left(\frac{a}{n}\right) = \prod_i \left(\frac{a}{p_i}\right)^{e_i} = (-1)^{\sum_i b_i e_i}$$

Furthermore we get for the representation of n modulo 2^{2r+2} that

$$n = \prod_{i} p_i^{e_i} = \prod_{i} (2^{r+1}b_i + 1)^{e_i} \equiv \prod_{i} (2^{r+1}b_i e_i + 1) \equiv 1 + 2^{r+1} \sum_{i} b_i e_i \mod 2^{2r+2}$$

SO

$$2^{s-1}d = \frac{n-1}{2} \equiv 2^r \sum_i b_i e_i \mod 2^{2r+1} \implies 2^{s-r-1} \equiv 2^{s-r-1}d \equiv \sum_i b_i e_i \mod 2$$

and at last we get

$$a^{\frac{n-1}{2}} = a^{2^{s-1}d} = \left(a^{2^r d}\right)^{2^{s-r-1}} = (-1)^{2^{s-r-1}} = (-1)^{\sum_i b_i e_i} = \left(\frac{a}{n}\right)^{2^{s-r-1}}$$

11.2 Hidden Subgroup Problem

Given a group G together with a group homomorphism $f: G \to X$ that is constant on all cosets of some subgroup $H \leq G$ and different on different cosets, find a generating set of H.

Quantum Algorithm for $G = \mathbb{Z}$ Each subgroup $H \leq \mathbb{Z}$ is of the form $H = q\mathbb{Z}$, so f is periodic with periode $b \in \mathbb{Z}$. Now consider some big $N = 2^n \in \mathbb{Z}$ and consider

$$\sum_{x=0}^{N-1} |x\rangle |f(x)\rangle$$

With a N-th root of unity ζ , applying the QFT yields

$$\frac{1}{N} \sum_{x=0}^{N-1} \sum_{k=0}^{N-1} \zeta^{kx} |k\rangle |f(x)\rangle$$

When measuring both states, the probability to get some $k \in \{0, ..., N-1\}, f(x_0) \in X$ is equal to

$$\frac{1}{N^2} \left| \sum_{x=0, \ f(x)=f(x_0)}^{N-1} \zeta^{kx} \right|^2 = \frac{1}{N^2} \left| \sum_{l=0}^{M} \zeta^{k(x_0+bl)} \right|^2 = \frac{1}{N^2} \left| \zeta^{kx_0} \sum_{l=0}^{M} \zeta^{kbl} \right|^2 \\
= \frac{1}{N^2} \left| \sum_{l=0}^{M} \zeta^{kbl} \right|^2 = \frac{1}{N^2} \left| \frac{1 - \zeta^{kb(M+1)}}{1 - \zeta^{kb}} \right|^2 = \frac{1}{N^2} \left| \frac{\sin(2\pi \frac{kb(M+1)}{N})}{\sin(2\pi \frac{kb}{N})} \right|^2$$

where $M = \left\lfloor \frac{N-x_0}{b} \right\rfloor \approx \frac{N}{b}$ and the denominators are non-zero as b is wlog odd. TODO