

Министерство образования Российской Федерации Московский Государственный Технический Университет им. Н.Э. Баумана

Отчет по лабораторной работе №1 По курсу «Архитектура ЭВМ» на тему «Синхронные одноступенчатые триггеры со статическим и динамическим управлением записью»

Студент Группа Преподаватель Медведев А.В ИУ7-41 Шипилова Т.Д. **Цель работы** — изучить схемы асинхронного RS-триггера, который является запоминающей ячейкой всех типов триггеров, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью.

Асинхронный RS триггер

Асинхронный RS -триггер - это простейший триггер, который используется как запоминающая ячейка. Состояния RS-триггера, соответствующие различным сочетаниям сигналов на его входах R и S, приведены в таблице переходов Табл.1

S	R	Q(n)	Q(n+1)	Название	
0	0	0	0	Состояние	
0	0	1	1	хранения	
0	1	0	0	Установка 0	
0	1	1	0		
1	0	0	1	Установка 1	
1	0	1	1		
1	1	0	Χ	Запрещенное	
1	1	1	Χ	состояние	

При S=0 и R=1 триггер устанавливается в состояние "0", а при S=1 и R=0 - в состояние "1". Если S=0 и R=0, то в триггере сохраняется предыдущее внутреннее состояние. При S=R=1 состояние триггера является неопределенным.

Синхронный RS триггер

Синхронный RS-триггер имеет два информационных входа R и S и вход синхронизации C. ЛЭ 1 и 2 образуют схему управления, ЛЭ 3 и 4 — асинхронный RS - триггер (запоминающую ячейку).

Синхронный RS - триггер при C = 0 сохраняет предыдущее внутреннее состояние. При C=1 синхронный триггер переключается как асинхронный. Одновременная подача сигналов C=S=R= 1 запрещена.

С	R	S	Q	Q*		
0	0	0	0	0	Хранение	
0	0	0	1	1		
0	0	1	0	0		
0	0	1	1	1		
0	1	0	0	0		
0	1	0	1	1		
0	1	1	0	0		
0	1	1	1	1		
1	0	0	0	0	Хранение	
1	0	0	1	1		
1	0	1	0	0	Установка 0	
1	0	1	1	0		
1	1	0	0	1	Установка 1	
1	1	0	1	1		
1	1	1	0	Χ	Запрещенное	
1	1	1	1	Χ	состояние	

Таблица переходов CRS-триггера

Синхронный D триггер

Синхронный D -триггер имеет один информационный вход — D, состояние которого с каждым синхронизирующим импульсом передается на выход, т.е. выходные сигналы представляют собой задержанные входные сигналы.

Схему синхронного D -триггера можно получить из схемы синхронного RS — триггера, подавая сигнал D на вход S, а сигнал Ď на вход R. В результате на входах RS-триггера возможны только наборы сигналов SR =01 при D=0 или SR =10 при D=1, что соответствует записи в триггер логического 0 или 1.

С	D	Q	Q*	
0	0	0	0	Хранение
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	0	Установка 0
1	0	1	0	
1	1	0	1	Установка 1
1	1	1	1	

Синхронный D-триггер с ДУЗ (динамическое управление записью)

Особенностью синхронных триггеров с динамическим управлением записью является то, что прием информационных сигналов и передача на выход принятой информации выполняются в момент изменения синхросигнала на С -входе из "0" в "I" или из "I" в "0.

Таблица переходов синхронных D- и Т-триггеров

Таблица 4

	Время t_n		Время t_{n+1}		
C_n	D_n, T_n	Q_n	Q_{n+1}		
			D-триггер	Т-триггер	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	0	0	
0	1	1	1	1	
1	0	0	0	0	
1	0	1	0	1	
1	1	0	1	1	
1	1	1	1	0	

Т-триггер

Т-триггер имеет один информационный вход Т, называемый счетным входом. Асинхронный Т-триггер переходит в противоположное состояние каждый раз при подаче на Т-вход единичного сигнала.

Схема Т-триггера в Multisim

Список литературы:

- 1. Методические указания к работе №1. Синхронные одноступенчатые триггеры со статическим и динамическим управлением записью.
- 2. Лекции по курсу «Архитектура ЭВМ»