

Основные вопросы лекции

- 1. Классификация устройств печати.
- 2. Конструкция и принцип действия: матричного, струйного, лазерного, сублимационного принтеров.
- 3. Интерфейсы подключения.
- 4. Языки описания страниц PostScript и PCL.

1. Назначение устройств печати

Устройства печати (принтеры) предназначены для вывода компьютерной информации на твердые носители (обычно — бумагу), пригодные для человеческого и/или машинного восприятия.

Первый принтер был спроектирован еще Чарльзом Бэббиджем для своего механического компьютера.

Для ПК используется ограниченное количество типов устройств печати, в то время как для специальных применений существует большое разнообразие технологий.

Плоттеры тоже могут быть отнесены к устройствам печати. Сегодня они используются все реже, данное название унаследовал широкоформатный принтер (чаще струйный).

В отличие от других устройств, принтеры могут подключаться не к ПК, а к локальной сети для организации совместного доступа.

1. Способы задания цвета

Краска на бумаге сама не способна испускать свет. Каждый красящий пигмент поглощает световой поток лишь некоторой части спектра и отражает некоторую часть попавшего на него света.

Красная краска поглощает весь свет, кроме красной области, синяя — все цвета, кроме синего и т.д.

Если белый цвет на мониторе является смесью всех основных цветов, то на бумаге белый - это отсутствие краски, а черный теоретически должен был бы формироваться из смеси всех красок.

Способы задания цвета:

 колориметрический - описать цвет как точку в некоторой системе координат (цветовом пространстве);

• системой спецификаций - каждой точке дать определенный цвет.

1. Классификация принтеров

1. Основные классы принтеров для ПК

- Матричные: ударный тип, посимвольная печать, символьная и растровая информация.
- **2. Струйные**: пигмент (чернила), построчная печать, растровая информация.
- 3. Лазерные: фотоэлектронная печать, постраничная, растровая или (при наличии растеризатора) векторная информация.
- 4. Светодиодные (LED): по конструкции и принципу действия схожи с лазерными.
- **5. Термические принтеры**: обычно являются частью факсаппаратов или устройств печати бланков, чеков и т.п.
- 6. Термосублимационная и сублимационная печать применяются в области полиграфии. Существуют настольные модели для фотопечати, но они имеют высокую стоимость и малый размер отпечатка.

1. Характеристики принтеров

Три базовые характеристики принтеров:

- комплексная характеристика качества печати (ч/б, цвет, фото);
- **скорость печати**: выдача первой страницы, выдача последующих страниц (с указанием режима черновой, высокое качество);
- стоимость отпечатка (с указанием цветности, режима качества, формата и процента заполнения).

Качество печати — это не только разрешение, количество полутонов, чистота градиентов, точность цветопередачи, но и стойкость отпечатка (к свету, влаге, отпечаткам пальцев), поддержка бумаги различных типов и плотностей.

Скорость зависит от интерфейса, скорости обработки и подготовки информации и скорости вывода на бумагу.

Стоимость отпечатка — стоимость принтера, подходящей бумаги, расходных материалов, износ компонентов и расходных материалов, сложность ремонта и пр. факторы.

1. Разрешение

Термин разрешение (resolution) используется для описания контрастности и качества напечатанного образца. Разрешение принтера обычно измеряют в точках на дюйм (dots per inch - dpi).

Различие между разрешениями принтера и монитора: под термином разрешение в мониторах ПК понимают число пикселей, например 640х480 или 800х600. Если преобразовать это разрешение в "принтерный" стандарт, то получится 50-80 dpi. Измеряя реальный размер изображения (длина и ширина) на экране монитора и сравнивая его с количеством пикселей, вы можете вычислить разрешение монитора в точках на дюйм.

Улучшить качество изображения можно путем изменения размера точки, не увеличивая при этом разрешения.

Существует еще один способ увеличить разрешение изображения, называемый интерполяцией (interpolation). Разрешение принтера определяется не только размером печатаемой точки; большее разрешение - это гораздо больший объем данных, которые должен обработать принтер. Принтер с разрешением 600 dpi оперирует 360 тыс. точек на квадратный дюйм, а с разрешением 300 dpi - 90 тыс. точек на квадратный дюйм.

2. Страничный принтер

Лазерные и струйные принтеры называют **страничными**, поскольку они формируют образ целой страницы в памяти перед перемещением его на бумагу. Это основное отличие лазерных и струйных принтеров от матричных, которые являются символьными.

Для "общения" компьютера со страничным принтером применяется специализированный язык описания страницы (page description language - PDL). Это средство кодирования каждой части печатаемого документа в поток данных, который может быть передан на принтер.

После получения принтером кодов языка описания страницы встроенное программное обеспечение принтера преобразует код в шаблон точек, которые переносятся на бумагу.

В настоящее время существует два языка описания страниц, ставших фактическим стандартом в компьютерной индустрии, - PCL и PostScript.

2. Строчный принтер

- У строчного принтера головка отсутствует, но имеется печатающая планка, которая по всей длине снабжена иголками. Таким образом, при печати изображения матрица, соответствующая строке, полностью переносится на бумагу. Так как головка принтера не должна двигаться слева направо или справа налево, а строка печатается целиком за один раз, то это конечно же дает существенное преимущество в скорости печати. Такие принтеры выпускаются фирмами Genicom и Dataproducts. Скорость печати достигает 1500 строк в минуту (примерно 20 страниц формата А4 в минуту).
- Единицей измерения <u>скорости печати</u> обычно является число знаков, которое принтер переносит на бумагу за одну секунду, cps (characters per second).

Игольчатые принтеры по сравнению с безударными (non-impact) принтерами, имеют одно существенное преимущество, поскольку могут печатать одновременно несколько копий документа.

• Шум.

2. Цветной игольчатый принтер

Только сравнительно небольшое число игольчатых принтеров обладает возможностью цветной печати. Это можно объяснить тем, что к моменту появления на рынке первых моделей 24-игольчатых принтеров, способных печатать цветные изображения, цена на цветные струйные принтеры уже существенно снизилась. А качество печати 24-игольчатого принтера с помощью многоцветной красящей ленты не идет ни в какое сравнение с качеством печати на струйном принтере.

2. Матричные (игольчатые) принтеры

Самая старая, простая, надежная и предельно дешевая технология печати. Относится к печати ударного типа, когда отпечаток получается благодаря прижиму к бумаге носителя с красящим веществом. Печатающая головка представляет собой набор управляемых иголок, которые расположены вертикально (9 игл) или в два ряда со смещением (24 иглы). Бумага перемещается поступательно в одном направлении, головка — в перпендикулярном. Печать происходит посимвольно (растеризацию производит принтер), возможна поддержка растра. Перемещением игл управляют пьезоэлементы: символьные, строчные.

Драйвер направлял в такие устройства коды символов, а принтер печатал их с помощью единственного Кроме кодов алфавитно-цифровых символов, драйвер передавал в принтер простейшие команды форматирования: перевод строки, возврат каретки, перевод формата и т.д. встроенного шрифта. В плоттерах использовался графический язык для построения векторный изображений, который состоял из команд поднять/опустить перо, переместить перо в точку с указанными координатами или нарисовать простейшую геометрическую фигуру.

2. Матричные (игольчатые) принтеры

2. Струйные принтеры

(электро-каплеструйные)

2. Струйные (электро-каплеструйные) принтеры

Печать производится с помощью капель красителя (на основе различных пигментов и растворителей), которые поступают за счет капиллярного эффекта.

Два базовых принципа дозированного выбрасывания капель:

- пьезоэлектрический;
- термоструйный (метод газовых пузырьков).

В основе пьезоэлектрической технологии лежит способность пьезоэлемента деформироваться под воздействием электрического поля. В каждое сопло печатающей головки встроена плоская мембрана, изготовленная из пьезокристалла. Под воздействием электрического импульса мембрана деформируется, а создаваемое при этом давление выбрасывает из сопла микроскопическую каплю чернил.

Краска в струйных принтерах наносится непосредственно на бумагу каплями краски через очень малые отверстия называемые **дюзами**.

Каждая капля краски имеет объем порядка нескольких пиколитра с диаметром порядка от нескольких до десятых микрон (для сравнения толщина человеческого волоса порядка 100 - 130 микрон). В одном кубическом миллиметре помешается приблизительно десять тысяч таких капель.

2. Принтер непрерывной печати

Схема работы принтера непрерывной струйной печати с управляемой траекторией движения капли.

2. Пьезоэлектрическая головка

Пьезоэлектрический способ.

Когда на пьезоэлемент подается электрический ток, он (в зависимости от типа печатающей головы) изгибается, удлиняется или тянет диафрагму вследствие чего создается локальную область повышенного давления возле дюзы — формируется капля, которая впоследствии выталкивается на материал. В некоторых головках технология позволяет изменять размер капли.

2. Термоструйный метод

Термический способ...

В основе метода газовых пузырьков лежит быстрое нагревание небольшого объема чернил до температуры кипения. Скорость нагрева столь велика, что она подобна взрывному процессу. Образующийся при этом пар выбрасывает из сопла микроскопическую каплю чернил. Для реализации этого метода в каждое сопло встраивается микроскопический нагревательный элемент. После остывания неиспользованные чернила возвращаются в сопла.

Минус технологии: в быстром износе головки из-за высоких температур, а также в инерционности процесса нагрева и охлаждения. Термоструйные головки обычно интегрированы с резервуаром чернил и заменяются вместе.

2. Принцип термической печати

2. Другие способы

Электростатический способ. Управляющие импульсы высокого напряжения вызывают выделение капель чернил из сопла. Электростатическое поле между печатающей головкой и бумагой является причиной, вызывающей отрыв от поверхности и перенос капли краски на бумагу. Электростатические силы могут формировать капли чернил меньшего диаметра, чем сопла, которые их образуют.

Акустический способ. При формировании капли используется энергия звуковых колебаний, полученных от электроакустического преобразователя. Импульс акустических колебаний в жидкости фокусируется на поверхности и приводит к отрыву капли, которая преодолевает поверхностное

сопротивление.

2. Взаимодействие чернил с бумагой

• Водорастворимые используют обычно для цветных красителей, так как они дают широкий цветовой охват. При падении на бумагу чернильный раствор впитывается в волокна, окрашивая их. Таким образом, вся поверхность рисунка закрашивается практически непрерывным слоем. Кроме того, они дают достаточное количество оттенков, чтобы обеспечить плавную цветопередачу.

К водорастворимым относятся: сольвентные чернила - самый распространенный тип чернил. Сольвентные чернила применяются в широкоформатной и интерьерной печати. Характеризуются очень высокой стойкостью к воздействию воды и атмосферных осадков. Характеризуются вязкостью, зернистостью и используемой фракцией сольвента.

• *Пигментные* чернила - используются для получения изображений высокого качества, в интерьерной и в фото печати.

2. Цветовые модели в струйных принтерах

В большинстве моделей струйных принтеров используется четыре основных цвета, так называемая модель цветности **CMYK**, где: Cyan - голубой, Magenta - розовый, Yellow - желтый, Key color - черный.

Все цвета получаются из трех основных цветов, красного, зеленого и синего, однако это справедливо лишь когда мы посредственно воспринимаем цвет, например с экрана компьютера, где формирования цвета как раз и происходит за счет этих трех цветов (так называемая модель цвета **RGB**).

Для получения качественных фото снимков этих четырех цветов недостаточно, поэтому в струйных принтерах к четырем основным цветам добавлено еще несколько ярких оттенков цветов, например для шестицветных принтеров применяют палитру **CMYKLcLm** (где Lc – светлый Cyan, Lm – светлая Magenta).

Цветопередача и насыщенность при использовании расширенной палитры гораздо лучше, поэтому фотопринтеры должны иметь расширенную цветовую палитру.

2. Цветовые модели в струйных принтерах

Первые три цвета являются парными комбинациями цветов схемы RGB (Red, Green, Blue) и их часто называют голубым (правильнее сине-зеленый), пурпурным и желтым, а в качестве четвертого используется черный - дополнительный цвет к аналогичной тройной комбинации

Реальное наложение красок в модели СМҮК, видно, что при смешивании трех цветов "черный" цвет не получается

2. Типы печати

Многопроходная печать

Однопроходная печать обычно подразумевает существование в принтере четырех отдельных механизмов, расположенных в ряд (тандемный тип) и создающих полноцветное изображение непосредственно на бумаге за один проход

Однопроходная печать с переносом реализована в принтерах Konica-Minolta и Xerox. На двух валах формируются два двухцветных изображения, которые при переносе на третий вал складываются, формируя полноценное цветное изображение

2. «Покапельная» струйная печать

Технология изменяемого размера капли: идея «выстреливать» по одной капле организовала вторую ветвь развития технологии струйной печати. Этот тип формирования капель получил название **drop-on-demand** (капля по требованию).

Variable Sized Droplet Technology (VSDT): **dpd (dots per dot)** — точек на точку, или, точнее, количество субкапель на одну печатающую каплю.

Из дюзы, практически непрерывно, выпускается необходимое количество субкапель, которые в полете объединяются в одну каплю большего размера.

2. VSDT печать

VSDT печать разрешением 360 dpi. Разрешение определяется шагом перемещения печатающей головки, а печатается изображение каплями разного размера, в том числе и мелкими, соответствующими более высокому разрешению растрирования.

Струйный принтер, использующий VSDT-технологию печатает вариантом FM растра, но при этом, имея несколько уровней размера капли, в какойто мере использует AM вариант.

2. Лазерный принтер

2. Лазерный принтер

В основе лазерной и светодиодной печати лежит принцип электрографии:

- 1. Источник освещает заряженную поверхность фоточувствительного вала.
- 2. На освещенных местах поверхности меняется заряд и к ним притягивается тонер.
- 3. С поверхности фотовала тонер переносится электростатическими силами на бумагу.
- 4. Здесь перенесенный тонер закрепляется под действием высокой температуры и давления.

В основе печати лазерного принтера лежит эффект адгезии микрочастиц тонера вследствие статического электричества.

Фотобарабан покрыт полимерным фоточувствительным материалом (обычно на основе селена), который под воздействием лазера способен терять или приобретать заряд.

2. Лазерный принтер

Этапы лазерной печати:

- 1. Барабан заряжается с помощью валика.
- 2. Луч лазера построчно наносит монохромный рисунок, снимая заряд с барабана (процесс может протекать наоборот).
- 3. Ролик наносит заряженный тонер, который прикрепляется в местах, где лазер не снял заряд (или наоборот).
- 4. Бумага заряжается, чтобы притягивать тонер (не обязательно).
- 5. Барабан делает оттиск на бумаге.
- 6. Валики снимают заряд, нагревают бумагу и фиксируют тонер.
- 7. Барабан разряжается специальной лампой, излишки тонера удаляются (обычно пластиковым ножом).

2. Лазерный принтер. Фотобарабан

Фотобарабан представляет собой металлический цилиндр, покрытый тонкой пленкой из фотопроводящего полупроводника (обычно оксид цинка). По поверхности барабана равномерно распределяется статический заряд с помощью тонкой проволоки или сетки, называемой коронирующим проводом. На этот провод подается высокое напряжение, вызывающее возникновение вокруг него светящейся ионизированной области, называемой короной.

Лазер, управляемый микроконтроллером, генерирует тонкий световой луч, отражающийся от вращающегося зеркала. Этот луч, попадая на фотобарабан, засвечивает на нем элементарные площадки (точки), и в результате фотоэлектрического эффекта в этих точках изменяется электрический заряд.

Для некоторых типов принтеров потенциал поверхности барабана уменьшается от -900 до -200 В. Таким образом, на фотобарабане возникает копия изображения в виде потенциального рельефа.

2. Лазерный принтер. Фотобарабан

На следующем рабочем шаге с помощью другого барабана, называемого девелопером (developer), на фотобарабан наносится тонер — мельчайшая красящая пыль. Под действием статического заряда мелкие частицы тонера легко притягиваются к поверхности барабана в точках, подвергшихся экспозиции, и формируют на нем изображение.

Лист бумаги из подающего лотка с помощью системы валиков перемещается к барабану. Затем листу сообщается статический заряд, противоположный по знаку заряду засвеченных точек на барабане. При соприкосновении бумаги с барабаном частички тонера с барабана притягиваются на бумагу. Для фиксации тонера на бумаге листу вновь сообщается заряд и он пропускается между двумя роликами, нагревающими его до температуры около 180° – 200°С.

После собственно процесса печати барабан полностью разряжается, очищается от прилипших частиц тонера и готов для нового цикла печати. Описанная последовательность действий происходит очень быстро и обеспечивает высокое качество печати.

2. Лазерный принтер. Цветная печать

При печати на цветном лазерном принтере используются две технологии:

- в соответствии с первой, широко используемой до недавнего времени, на фотобарабане последовательно для каждого отдельного цвета (Cyan, Magenta, Yellow, Black) формировалось соответствующее изображение, и лист печатался за четыре прохода, что, естественно, сказывалось на скорости и качестве печати.
- в современных моделях в результате 4х последовательных прогонов на фотобарабан наносится тонер каждого из 4х цветов. Затем при соприкосновении бумаги с барабаном на нее наносятся все 4 краски одновременно, образуя нужные цветовые сочетания на отпечатке. В результате достигается более ровная передача цветовых оттенков.

2. Лазерный принтер. Конструкция

2. Светодиодный принтер

2. Светодиодный принтер

2. Светодиодный (LED) принтер

Преимущества светодиодного принтера:

- в меньшей сложности: отсутствует лазер, отклоняющая система, зеркала и призмы;
- принтер дешевле в производстве и обслуживании, зачастую обеспечивает более высокую точность и однородность изображения.

Недостатки светодиодного принтера:

• в физическом ограничении горизонтального разрешения числом светодиодов в линейке.

2. Новая светодиодная печатающая головка Xerox HiQ LED

- Новая светодиодная печатающая головка Xerox HiQ LED состоит из линейки с 14,592 светодиодами.
- Миниатюрная система сканирования светового потока частично примыкает к каждому светодиоду, а остальная часть системы встроена в управляющий чип ASIC, расположенный на самой плате светодиодной линейки.
- Кроме того, каждая печатающая головка имеет новую самофокусирующуюся линзовую решетку.
- Решетка состоит из групп линзовых элементов с однородными оптическими характеристиками, которые систематически накладываются друг на друга, позволяя создавать изображения с высоким разрешением. Свет, излучаемый диодами, проходит через линзовую решетку и формирует скрытое изображение на барабане фоторецептора.
- В цветных принтерах установлены 4 отдельные печатающие головки. Каждая содержит светодиодную линейку с плотностью светодиодов 1200 на дюйм и обеспечивает необходимое высокое разрешение, при этом являясь более компактной по сравнению с лазерной печатающей головкой.

2. Новая светодиодная печатающая головка Xerox HiQ LED

- «Мозгом» печатающей головки HiQ LED, стоящим за всем процессом печати, является новый управляющий чип ASIC от Xerox. Эти высокопроизводительные чипы контролируют интенсивность светового потока и точность синхронизации каждого из 14 592 светодиодов в каждой печатающей головке для получения разрешения 1200 x 2400 dpi (1200x 1200 dpi для Phaser 7500) такого же, а зачастую даже более высокого по сравнению с лазерными системами.
- Благодаря постоянному автоматическому отслеживанию информации по каждому светодиоду, чип ASIC может настраивать для каждого из них интенсивность светового потока и точность синхронизации. Благодаря этой возможности обеспечивается однородность на протяжении всей линейки светодиодов и, следовательно, неизменно высокое качество печати.

2. Точность совмещения цветов с возможностью цифровой коррекции

Благодаря управляющему чипу ASIC и возможности контролировать интенсивность светового потока от диодов в каждой печатающей головке, HiQ LED так же гарантирует более точное совмещение цветов. Традиционная светодиодная печать имеет ряд дефектов из-за возможных деформаций линейки — наклона и изгиба, а так же различий в положении диодов в самой линейке. Коррекция этих дефектов требует механического вмешательства.

Технология HiQ LED автоматически исправляет все три причины ошибок совмещения, постоянно корректируя работу каждого светодиода в линейке. Фактически, тесты показывают, что технология HiQ LED справляется с коррекцией даже лучше, чем аналогичные лазерные принтеры.

2. Совмещение различных цветов

Устройства на основе технологии HiQ LED имеют возможность цифровой коррекции совмещения.

Обратите внимание на белые линии на лазерных отпечатках. Также обратите внимание на белые края буквы «М».

Новая технология улучшения качества линий и изображения

1. Коррекция ошибок совмещения отдельных светодиодов вдоль направления сканирования

2. Корректировка ошибок совмещения цветов — перекос и изгиб линейки светодиодов.

2. Сублимационный принтер

2. Сублимационная печать

Принтеры, использующие термосублимационный метод печати, обычно применяются в полиграфии, но существуют и сравнительно доступные модели для цифровой фотопечати.

Сублимационный принтер использует эффект испарения твердого красителя (сублимацию) для нанесения на бумагу цветовых пятен. Как правило, для полноцветной печати используется несколько проходов.

Классический сублимационный принтер использует красящую ленту с несколькими цветовыми сегментами. Испарение красителя обеспечивается при помощи печатающей головки с нагревательными элементами.

Преимущество: заключается в хорошей передаче полутонов (за счет возможности варьировать интенсивность впитывания паров красителя) и более долговечном (по сравнению со струйным методом) отпечатке.

Недостаток: более сложная конструкция устройства и повышенный расход материалов при печати. Кроме того, поверхность бумаги после печати требуется покрывать защитным слоем, что повышает стоимость отпечатка.

2. Сублимационная печать

2. Твердочернильные принтеры

Технология <mark>твердочернильной (</mark>Solid Ink) печати часто называется сублимационной, хотя этот термин не верен.

Основное их <u>отличие</u> от струйной и сублимационной печати заключается в применении красящего вещества, имеющего воскообразную консистенцию при комнатной температуре. После разогрева воск переходит в жидкую или газообразную форму и может быть нанесен на барабан (как в лазерной технологии) или прямо на бумагу (как в струйной).

По многим характеристикам, особенно по качеству печати, твердочернильная технология схожа с сублимационной, поэтому обычно она применяется для фотопечати.

К недостаткам можно отнести как высокую сложность устройства и стоимость материалов, так и низкое быстродействие при сравнительно низком разрешении.

2. Твердочернильный принтер

2. Твердочернильная печать

Особенность печати состоит в том, что чернила расплавляются непосредственно перед нанесением на бумагу. Их основной компонент — воск, который очень быстро плавится, а попадая на бумагу сразу застывает. В целом же технология повторяет струйную: микроскопические разноцветные точки наносятся на бумагу и формируют на ней узор.

2. Многофункциональные устройства

- Рынок офисной техники переориентируется на применение компактных многофункциональных устройств (МФУ, MFD), которые совмещают в себе как минимум сканер и принтер. При этом они могут использоваться как копиры, а при наличии модема как факсаппараты.
- Благодаря использованию интерфейса USB и сетевого подключения устройства МФУ просты и удобны в эксплуатации.
- Состав и тип применяемых устройств зависит от назначения и целевой аудитории пользователей. Наиболее простые МФУ сочетают в одном корпусе сканер типа CIS и струйный принтер (обычно расположены друг над другом). Офисные МФУ состоят из CCD-сканера и лазерного принтера, работающих как по отдельности, так и в составе копира.
- К недостаткам МФУ можно отнести только сложность обслуживания и высокую стоимость, не всегда соответствующую качеству результата.

2. Сравнительный анализ принтеров

Название	Плюсы	Минусы	Применения
Лазерная	Скорость, качество, низкая стоимость	Принтеры дорогие	Офисная печать
Светодиодная	Скорость, качество, низкая стоимость	Качество и скорость чуть хуже	Офисная и домашняя печать
Струйная	Высокое качество, цена принтера	Низкая скорость, цена материалов	Домашняя и профессональная печать
Матричная	Стоимость, обслуживание	Цена принтера, уровень шума	Специальные применения
Твердочернильная	Высокое качество стоимость печати	Цена принтера	Офисная и профессональная печать
Сублимационная	Высокое качество, удобство	Не для печати текста	Офисная и домашняя печать

3. Подключение принтеров

Специализированный интерфейс для принтеров — **Centronics** — ограничен в использовании ввиду низкого быстродействия и отсутствия гибкости.

Интерфейс **SCSI** применялся для высокоскоростных сканеров, но сегодня он не актуален.

Для подключения принтера чаще всего применяется универсальный интерфейс **USB**.

Сетевые принтеры содержат встроенные сетевые узлы, и таким образом подключаются с помощью **Ethernet**, **Wi-Fi** и др. сетевых интерфейсов.

Фотопринтеры (мини-фотолабы) позволяют использовать твердотельные носители информации (карточки памяти), оптические диски и USB-накопители в качестве источника данных, не требуя подключения к ПК.

В качестве хоста может также выступать портативное фото-устройство. Разработаны протоколы (PictBridge, DirectPrint, BubbleDirect и др.) для обмена изображениями между принтером и фотокамерой.

4. Языки описания

Использование языков описания страниц позволяет разгрузить интерфейс и процессор хоста, переложив задачу растеризации на принтер.

Принтеры, реализующие аппаратную поддержку языков PS и PCL, обычно оснащаются микроконтроллерами или микропроцессорами, имеют солидный объем памяти, иногда — жесткий диск (для хранения подготовленных страниц).

Задача принтера — интерпретация языка, выполнение растеризации, буферизация готовых к печати страниц.

Рендеринг: на этом этапе математическая (векторная) пространственная модель превращается в плоскую (растровую) картинку.

4. Эмуляция или язык описания страниц

Эмуляция - имитация работы одной системы средствами другой, без потери функциональных возможностей и искажений результатов, другими словами это программный продукт, позволяющий понимать печатному устройству компьютер.

- PostScript, PCL, GDI это языки, на которых описывается содержимое страницы (где какая буква, геометрическая фигура, фотография, какого они цвета и т.д.) специфические языки программирования для управления принтером или другим устройством для создания изображений. Разница только в наборе команд, которые в эти языки входят.
- Другие эмуляции *BR-Script, IBM Proprinter XL, Epson FX850* и др.

4. Использование языков описания страниц

Создание языков описания страниц связано с лазерными (электрофотографическими) принтерами. Именно они позволили выводить на печать текстовую информацию в сочетании с рисунками, для чего и потребовался стандартный формат описания изображений при передаче данных из драйвера в принтер.

Многие компании создавали собственные языки описания страниц для своих моделей принтеров. Можно вспомнить IBM ProPrinter, CaPSL (Canon Printing System Language), язык RENO в принтерах Agfa, а немецкой компании Mannesmann Tally даже удалось утвердить спецификацию ANSI 3.64 на основе собственного языка MTPL (Mannesmann Tally Printer Language).

К настоящему времени все эти языки описаний благополучно забыты, за единственным исключением — языка ESC/P2 (Epson Standard Code for Printers, Level 2) для текстового режима в принтерах Epson, но сохранились и благополучно развиваются языки PCL (Printer Control Language, язык управления принтером) компании Hewlett-Packard и PostScript компании Adobe Systems Inc, которые стали промышленными стандартами для пересылки данных в принтеры.

4. Язык PostScript

Создан основателями Adobe для лазерных принтеров, разработанных Apple, для описания векторной и растровой графики в стиле объектно-ориентированных языков программирования.

Поддерживаются:

- графические примитивы,
- масштабируемые шрифты,
- 💠 кривые Безье и другие элементы для поддержки векторной графики.

На принтер отправляется не изображение, а геометрические объекты. Для того чтобы напечатать текст определенным шрифтом, драйвер принтера должен указать последнему контур шрифта и его размер. Контур шрифта служит шаблоном для создания символов любого размера. Принтер генерирует изображение символа из его контура, а не загружает из памяти. Этот тип изображения, который генерируется индивидуально для каждой страницы, называется векторной графикой, в отличие от растровой графики, которая отправляется на принтер в виде готового набора точек.

4. Язык PCL

Язык PCL (Printer Command Language) разработан HP. Этот язык более объектно-ориентированный, имеет широкие средства управления шрифтами и объектами, близок к API программирования интерфейса Windows (GUI).

Поток данных языка PCL содержит 4 типа команд управления принтером:

- Управляющие коды. Стандартные коды ASCII, которые представляют собой функцию (например, возврат каретки (CR), а не символы.
- Команды PCL. Составляют значительную часть управляющего кода PCLфайла и включают специфичные для каждого принтера эквиваленты параметров документа (например, форматирование страницы, шрифт).
- Команды HP-GL/2 (Hewlett-Packard Graphics Language язык графики Hewlett-Packard). Служат для печати векторной графики составного документа.
- Команды PJL (Printer Job Language язык выполнения печати).
 Позволяют принтеру «общаться» с компьютером по двунаправленной линии для обмена информацией о состоянии, процессе печати и других параметрах.