The Design and Analysis of Algorithms's homework

BeanCb

28th September 2016

3.1-2 Show that for any real constants a and b, where b > 0,

$$(n+a)^b = \Theta(n^b) \tag{3.2}$$

Answer:

To show $(n+a)^b = \Theta(n^b)$, first we find constants c1, c2, $n_0 > 0$ so we can get:

$$0 \le c_1 n^b \le (n+a)^b \le c_2 n^b$$

for all $n \le n_0$.

Note that

$$n + a \le n + |a| \le 2n \text{ when } |a| \le n$$
 (3.2-1)

and

$$n+a \ge n-|a| \ge \frac{1}{2}n \text{ when } |a| \le \frac{1}{2}n$$
 (3.2-2)

when $n \ge 2|a|$,

$$0 \le \frac{1}{2}n \le n + a \le 2n. \tag{3.2-3}$$

Since b > 0, it will still holds when all parts are raised to the b:

$$0 \le (\frac{1}{2}n)^b \le (n+a)^b \le (2n)^b,\tag{3.2-4}$$

$$0 \le (\frac{1}{2})^b n^b \le (n+a)^b \le 2^b n^b. \tag{3.2-5}$$

So $c_1 = (\frac{1}{2})^b$, $c_2 = 2^b$, and $n_0 = 2|a|$ satisfy the difinition.

3.1-3 Explain why the statement, "The running time of algorithm A is at least $O(n^2)$," is meaningless.

Answer:

The running time of algorithm A is T(n). $T(n) \ge O(n^2)$ means $T(n) \ge f(n)$ for some function f(n) in the set $O(n^2)$. We get an upper bound for the worst situation to be the lower bound of the algorithm. So we know nothing about the running time.

3.1-4 Is $2^{n+1} = O(2^n)$? Is $2^{2n} = O(2^n)$?

Answer:

$$2^{n+1} = O(2^n), \ 2^{2n} \neq O(2^n)$$
(3.4-1)

To show $2^{n+1} = O(2^n)$, we must find constant c, $n_0 > 0$ so we can get

$$0 \le 2^{n+1} \le c \cdot 2^n \text{ for all } n \ge n_0.$$
 (3.4-2)

Both side divide 2^n so we can get

$$0 \le 2 \le c \tag{3.4-3}$$

So we can satisfy the definition with $c \ge 2$ and $n_0 \ge 1$.

To show $2^{2n} \neq O(2^n)$, we assume there exist constants $c, n_0 > 0$ so we can get

$$0 \le 2^{2n} \le c \cdot 2^n \text{ for all } n \le n_0 \tag{3.4-4}$$

Then both side divide 2^n so we can get

$$0 \le 2^n \le c \tag{3.4-5}$$

So we can get $c \ge 2^n$ to satisfy the definition, but no constant is greater than all 2^n , so the assumption does't hold.