

Emotions, entropy and the brain: Overview of a research line

Beatriz García-Martínez

Ph.D. Student

Escuela Superior de Ingenieros Industriales de Albacete Universidad de Castilla-La Mancha (Spain)

Introduction

- Emotions play a key role in daily experiences and human interaction
- It is necessary to make human-machine interfaces (HMIs) able to properly interpret human emotions
- However, it is not an easy task:
 - No standard definition of emotions
 - High intercorrelation of emotional states
 - Influence of external and subjective factors

Measurement of emotions

- Traditional methods are based on speech and facial expressions analysis
- Many works are based on the assessment of physiological signals:
 - Electrocardiogram (ECG)
 - Electromyogram (EMG)
 - Electro-dermal activity (EDA)
- Electroencephalogram (EEG) signals are especially interesting because they represent the first bodily response against an stimulus

EEG signals

- Traditionally, EEG has been studied with frequency-domain methodologies
- It is known that the brain follows a complex and nonlinear behavior

 Hence, the application of nonlinear techniques could provide more valuable information about brain signals

Negative stress (distress)

- Long-term distress conditions can cause different physical and mental disorders
- Due to its negative consequences, distress has become a major problem in developed countries
- Distress and calm are highly correlated and usually studied together

Negative stress (distress)

- Long-term distress conditions can cause different physical and mental disorders
- Due to its negative consequences, distress has become a major problem in developed countries
- Distress and calm are highly correlated and usually studied together

Negative stress (distress)

- Long-term distress conditions can cause different physical and mental disorders
- Due to its negative consequences, distress has become a major problem in developed countries
- Distress and calm are highly correlated and usually studied together

Our research line

Study of calm and distress from EEG recordings with nonlinear metrics

ENTROPY INDICES

(rate of information given by a time series)

- Regularity
- Predictability
- Multiscale and multilag variants
- Coordination between areas

Database

- DEAP: A Database for Emotion Analysis using Physiological Signals
 - 32 subjects
 - 40 emotional videoclips of 1 minute-length
 - EEG + peripheral variables
 - Emotional ratings

Selection of subsets of calm and distress samples

EEG preprocessing

- EEG recordings require to be preprocessed before further analysis
- Preprocessing procedure EEGLAB:
 - Downsampling from 512 Hz to 128 Hz
 - Band-pass filter between 3 Hz and 45 Hz
 - Baseline and power line removal

 Artifacts derived from physical and technical sources were removed with an independent component analysis (ICA)

Our research line

Study of calm and distress from EEG recordings with nonlinear metrics

ENTROPY INDICES

(rate of information given by a time series)

- Regularity
- Predictability
- Multiscale and multilag variants
- Coordination between areas

Regularity metrics - QSampEn

- Irregularity is given by the repetitiveness of sequences
- Quadratic sample entropy (QSampEn) evaluates the probability that two patterns match for m and for m+1 points within a tolerance r
- It is an improvement of sample entropy (SampEn) insensitive to selection of r

$$QSampEn(m,r) = -\ln\left(\frac{B^{m+1}(r)}{B^m(r)}\right) + \ln(2r)$$

$$m = 2$$
 $r = 0.25*std$

Results QSampEn

Results QSampEn

- ANOVA → 27 / 32 statistically significant EEG channels
- Best results in right parietal and left frontal areas
- Decision tree classifier \rightarrow Acc = 75.21%

Our research line

Study of calm and distress from EEG recordings with nonlinear metrics

ENTROPY INDICES

(rate of information given by a time series)

- Regularity
- Predictability
- Multiscale and multilag variants
- Coordination between areas

Predictability metrics

 Predictability depends on the deterministic and stable temporal evolution of a nonstationary system

- Predictability is usually assessed by symbolic metrics:
 - Transformation of original signal into sequences of symbols
 - Application of different techniques: Shannon entropy, Rényi entropy...

Predictability metrics – PerEn and AAPE

- Permutation entropy (PerEn) evaluates the ordinal structure of symbolic patterns
- It evaluates the probability of appearance of symbolic sequences obtained from the original time series

$$PerEn(m) = -\frac{1}{\ln(m!)} \cdot \sum_{k=1}^{m!} p(\pi_k) \cdot \ln(p(\pi_k))$$

 Amplitude-aware permutation entropy (AAPE) also takes into account the amplitudes of the data in a pattern

$$AAPE(m) = -\frac{1}{\ln(m!)} \cdot \sum_{k=1}^{m!} p^*(\pi_k) \cdot \ln(p^*(\pi_k))$$

Predictability metrics – CEn and CCEn

- Conditional entropy (CEn) is a symbolic representation of the amplitudes of a signal
- It transforms the time series into symbols and analyses their recurrence

$$CEn(m,\xi) = \sum_{k=1}^{N_{m-1}+1} p(w_{m-1}(k)) \cdot \ln\left(p(w_{m-1}(k))\right) - \sum_{k=1}^{N_m+1} p(w_m(k)) \cdot \ln\left(p(w_m(k))\right)$$

• Corrected conditional entropy (CCEn) is insensitive to selection of m

$$CCEn(m,\xi) = CEn(m,\xi) + perc(m) \cdot \sum_{k=0}^{\xi-1} p_1(k) \cdot \ln(p_1(k))$$

$$m = 2$$
 $\xi = 10$

Results PerEn and AAPE

- ANOVA → <u>21 / 32</u> statistically significant EEG channels
- Best results in left parietal and right frontal areas
- Higher levels for calm than for distress in all brain regions

Results CEn and CCEn

- ANOVA → <u>15 / 32</u> statistically significant EEG channels
- Best results in left parietal and right frontal areas

 Higher levels for calm than for distress in all brain regions

Regularity + Predictability

Regularity + Predictability

Only AAPE and CCEn were studied (highly correlated with PerEn and CEn)

QSampEn + AAPE

FSVS

P4 of QSampEn and P3 of AAPE

SVM

Acc = 81.31%

QSampEn + CCEn

FSVS

P4 of QSampEn and P3 of CCEn

SVM

Acc = 80.31%

- Complementarity between regularity and predictability metrics
- AAPE and CCEn were not combined due to their high similarities

Our research line

Study of calm and distress from EEG recordings with nonlinear metrics

ENTROPY INDICES

(rate of information given by a time series)

- Regularity
- Predictability
- Multiscale and multilag variants
- Coordination between areas

Multiscale metrics

- Nonlinear systems present different simultaneous mechanisms that operate in multiple time scales → <u>Multiscale analysis</u>
- Composite multiscale QSampEn and AAPE (CMQSampEn and CMAAPE)

$$CMQSampEn(x, \tau, m, r) = \frac{1}{\tau} \sum_{k=0}^{\tau} QSampEn(y_{\tau}^{k}, m, r)$$

$$CMAAPE(x,\tau,m) = \frac{1}{\tau} \sum_{k=0}^{\tau} AAPE(y_{\tau}^{k},m)$$

Scales =
$$1,2,...,6$$

Results CMQSampEn and CMAAPE

- CMQSampEn and CMAAPE decreased with scales
- Relevance of areas as in single-scale analyses
- Calm-distress tendency as in single-scale analyses

Results CMQSampEn and CMAAPE

- Combination of CMQSampEn + CMAAPE at different scales
- Stepwise regression + decision tree and SVM classifiers
- Best results at scale 2 with both classifiers

	$egin{array}{c} ext{Channels from} \ ext{CMQSE} \end{array}$	Channels from CMAAPE	ho	$\begin{array}{c} \textbf{Decision Tree} \\ \textbf{Acc } (\%) \end{array}$	$rac{ ext{SVM}}{ ext{Acc}}$
Scale 1	Oz	PO3	6.48×10^{-7}	76.47	79.82
Scale 2	Oz, FC1, Pz	CP1, C4	6.24×10^{-8}	82.61	86.35
Scale 3	O2, FC1, CP1	-	1.92×10^{-9}	79.51	80.79
Scale 4	O2, FC1, CP1	-	1.47×10^{-8}	80.30	79.57
Scale 5	Pz	-	1.04×10^{-6}	-	-
Scale 6	O2, FC1, CP1, C3	-	1.61×10^{-9}	79.96	85.24

Multilag metrics

- Time-delayed analysis may reveal relevant underlying information of nonlinear systems, undiscovered with non-delayed or multiscale approaches
- Delayed AAPE (DPE) considers time-delayed samples for better evaluation of the nonlinear time series

$$DPE(m, \tau) = -\frac{1}{\ln(m!)} \cdot \sum_{k=1}^{m!} p^{\tau *}(\pi_k) \cdot \ln(p^{\tau *}(\pi_k))$$

Permutation min-entropy (PME) is an improvement based on Rényi entropy

$$PME(m, \tau) = -\frac{1}{\ln(m!)} \ln(\max_{k=1,2,...,m!} [p^{\tau}(\pi_k)])$$

$$m = 6$$
 $\tau = 1, 2, ..., 10$

Results DPE and PME

- DPE and PME increased with τ
- Best results in parietal and occipital areas
- Higher levels for calm than for distress in all brain regions

Results DPE and PME

- DPE + PME + curve-related parameters
- Sequential forward selection + different classifiers
- Best results:

Our research line

Study of calm and distress from EEG recordings with nonlinear metrics

ENTROPY INDICES

(rate of information given by a time series)

- Regularity
- Predictability
- Multiscale and multilag variants
- Coordination between areas

Cross-sample entropy

 Cross-sample entropy (CSE) evaluates the repetitiveness of patterns among two time series

$$CSE(m, r, N)(x_1||x_2) = -\ln \frac{\phi^{m+1}(r)(x_1||x_2)}{\phi^m(r)(x_1||x_2)}$$

- Each time series represents an EEG channel
- Higher CSE → lower coordination between areas

$$m = 2$$
 $r = 0.25*std$

Results CSE

- Higher coordination in distress → Fight or flight
- Strong coordination in central, parietal and occipital areas
 - Intrahemisphere
 - Interhemisphere

Conclusions

- It is possible to identify calm and distress from EEG recordings using entropy metrics
- Frontal and parieto-occipital brain areas are the most relevant
- Different entropy indices can be complementary
- The simplicity of classification models allows to give a clinical interpretation of the results

Thank you!

