SATELLITE LIFETIME PREDICTION

Gerald Wittenstein, NASA/Marshall Space Flight Center

Satellite lifetime predictions are critically dependent on the ability to forecast future solar and geomagnetic activity. These quantities are inputs to the atmospheric model with which values of atmospheric density are computed along a projected orbital path. Density values are combined with the predicted ballistic coefficient timeline to compute drag and predict decay histories. The major uncertainty in making predictions that pertain to time periods that are years in the future is in the solar and geomagnetic activity projections, although the ballistic coefficient is also frequently in doubt.

Reliable lifetime predictions are of great importance. Lifetime in terms of years of on-station operation and reboost requirements are major drivers of system costs. For the space station a major issue is to predict when reboost is necessary. For low solar activity (sunspot number 50) it is estimated that 1000 lb of propellant are required for reboost each year, while for high activity (sunspot number 200) 10,000 lb are required.

Comparisons between actual and predicted orbit lifetimes show large differences that are due mostly to the uncertainties in predicting solar/geomagnetic activity. When the actual solar/geomagnetic indices that were observed during the orbital lifetime are put into the models during post-flight orbital analyses, the models work quite well, within about 10 - 15 percent in lifetime. High inclination orbits may be expected to exhibit the greatest variability (Roble).

Given present knowledge, solar cycle uncertainties are unavoidable. A reasonable procedure is to go with the best forecasts available, and try to allow for variations by estimating lifetimes for both nominal and plus two-sigma solar activity levels. Short term variations are essentially unpredictable.

USER SUMMARY Satellite lifetime

In summary, while present density models are adequate for planning, the inputs to them, particularly solar/geomagnetic activity indices, are unreliable.

PRECEDING PAGE BLANK NOT FILMED

ORGANIZATION:	MARSHALL SPACE FLIGHT CENTER	NAME:
EL25 CHART NO.:	SATELLITE LIFETIME	G. WITTENSTEIN DATE:
		November 18, 1985
00	INTRODUCTION DESIGN PROBLEMS CONCERNING SATELLITE LIFETIME	ETIME
00	THE UNAVOIDABLE - EFFECT OF SOLAR CYCLE UNCERTAINTIES	UNCERTAINTIES
00	MISSION PLANNING EFFECTS	
00	SUMMARY	

SATELLITE LIFETIME OF OPERATION, REBOOST DESIGN, SPACE TELESCOPE, EBOOST/ORBIT TRIM SYSTEM ORATION - O (ATOMIC OXYG			NAME:
SATELLITE LIFETIME OD DESIGN PROBLEMS CONCERNING SATELLITE LIFETIME O SYSTEM COST - \$ vs YEARS OF OPERATION, REBOOST SKYLAB, SPACE STATION O ORBIT ALT MAINTENANCE - REBOOST/ORBIT TRIM SYSTEM SPACE STATION O SATELLITE MATERIAL DETERIORATION - O (ATOMIC OXYG ALL	ORGANIZATION:	MARSHALL SPACE FLIGHT CENIER	NICHONLEFE
OD DESIGN PROBLEMS CONCERNING SATELLITE LIFETIME O SYSTEM COST - \$ vS YEARS OF OPERATION, REBOOST O SATELLITE CONTROL SYSTEM DESIGN, SPACE TELESCOPE, SKYLAB, SPACE STATION O ORBIT ALT MAINTENANCE - REBOOST/ORBIT TRIM SYSTEM SPACE STATION O SATELLITE MAIERIAL DETERIORATION - O (ATOMIC OXYG ALL	FI 25		DATE:
	CHART NO.:	SATELLITE LIFETIME	November 18, 1985
			LIFETIME ION, REBOOST PACE TELESCOPE, BIT TRIM SYSTEM - O (ATOMIC OXYGEN) -

ORGANIZATION:	MARSHALL SPACE FLIGHT CENTER	NAME:
<u>EL.25</u> снаят no.:	SATELLITE LIFETIME	G, WITTENSTEIN DATE: NOVEMBER 18, 1985
00	THE UNAVOIDABLE - EFFECT OF UNCERTAINTIES IN PREDICTING SOLAR ACTIVITY	SI
	- -	
	O SOME POLITICAL/PROGRAMMATIC EFFECTS - \$, TIME, vs IMPACT ON GO AHEAD IF PROJECT WON'T SUCCEED WITH A CERTAIN PROBABILITY	- \$, TIME, V'T SUCCEED
	0 NOMINAL AND $\pm 2^{\sigma}$ ATMOS. VARIATIONS - WHEN AND HOW BIG	. WHEN AND HOW BIG
	O DAILY VARIATIONS - SPIKES INS, AP, F 10,7	F 10.7

ACTUAL AND PREDICTED SOLAR FLUX

SOLAR FLUX, F_{10.7}

ACTUAL AND PREDICTED SOLAR FLUX

æ

∢ ⊿

04 H 4

ORGANIZATION:	MARSHALL SPACE FLIGHT CENTER	NAME: G WITTENSTEIN
EL25 CHART NO.:	SATELLITE LIFETIME	DATE: NOVEMBER 18, 1985
00	MISSION PLANNING EFFECTS	
	O SKYLAB - SOME INTERESTING NOTES ON LIFETIME	TIME
	O SOLAR ACTIVITY - PREDICTIONS - ACTUAL O TIMELAGS, BIASES AND FUDGE FACTORS O SPACE TELESCOPE AND REACTION WHEEL ASSEMBLY DESIGN SPIKE IN P, AP WHAT TO DO.	L SSEMBLY DESIGN -
	O SPACE STATION - ORBIT MAINT, ORBIT DECAY PREDICTION AND FREQUENCY TO UPDATE	ECAY PREDICTION

ORIGINAL PAGE IS OF POOR QUALITY

MISSION DESCRIPTION FOR CLUSTER CONFIGURATION AND LIFETIME PREDICTION (SKYLAB)

4.52		3.87	3.82	3.95		3.32		3.07	- Years	ı
1650		1415	1394	1442		1210		1120	- Days	+20 -
6.64		5.68	5.67	5.73		4.82		4.54	Years	
2360		2074	2070	2093		1760		1660	Predicted Lifetime Nominal - Days	Predic Nomina
74558		67962	67962	67962		52317		44826	ass (kg) at end of mission	Mass end o
50		50	20	50		20		35	Inclination (deg)	Inclin
235		235	235	235		235		235	Altitude (nmi)	Altitu
4/30/73	72	21/9/11	27/15/12 11/15/72	7/15/7		3/15/72		3/15/72	i Date	Launch Date
240-Im- 122.0 pact	229-Im- 111.56 pact	229-Im Pa	111.56 t	236-Im- 111.56 pact	9.06	245-Im- pact	77.64	236-Im- pact	WS	7
Mission	173-229 126.38	173-22	126.83	180-236 126.83	107.4	190-245 107.4	98.84	180-236	WS + CSM	9
Manned	3 112.64	127-173	112.64	146-180	95.0	140-190	82.32	146-180	WS	S
Until End of	127.84	71-127	127.84	90-146	111.5	85-140	103.18	90-146	WS + CSW	4
Maintained	114.16	29-71	114.16	30-90	99.3	29-85	87.10	30-90	WS	e
Altítude	128.83	1-29	128.83	2-30	115.2	2-29	106.42	2-30	WS + CSM	7
Initial	115.24	0-1	115.24	0-2	101.6	0-2	89.33	0-2	WS	7
(Days) (kg/m²)	s) (kg/m²)	(Days)	(Days) (kg/m²)	(Days)	(kg/m²)	(Days)	(kg/m²)	(Days)	Phase Configura- tion	Phase
Time M/CDA	M/CDA	Time	M/C_DA	Tine	M/CDA	Time	M/C_DA	Time		
9/6/72 (MSFC)	12/2/70 (MSFC)	12/2,	(LMSC)	4/70	1/20/70 (MSFC)	1/20/1	(MSFC)	9/20/69 (MSI	Memorandum Date	Memor
(SKYLAB)	MISSION DESCRIPTION FOR CLUSTER CONFIGURATION AND LIFETIME PREDICTION (SKYLAB)	ETIME P	N AND LIF	IGURATIO	STER CONF	FOR CLU	SCRIPTION	SSION DES	Ψ	

SKYLAB LIFETIME (IMPACT) PREDICTIONS DURING THE PASSIVE PERIOD

Memo Date	Ballistic Coefficient (kg/m²)		ed Impact Mo/Day/Y	
	(xg/m)	Nominal	+2σ	– 2 o
Aug. 1, 1973	170	7/81	9/78	10/85
Mar. 11, 1974	207	3/83	11/79	6/92
Sep. 3, 1974	140	5/81	10/78	10/84
Nov. 27, 1974	140	4/81	10/78	6/84
Dec. 12, 1974	140	4/81	10/78	6/84
Feb. 20, 1975	120	1/81	9/78	1/83
May 20, 1975	120	12/80	9/78	11/82
Jul. 27, 1977	144	12/2/80	8/21/79	
Aug. 16, 1977	144	12/7/80	8/23/79	
Oct. 15, 1977	144	4/16/80	5/31/79	
Nov. 18, 1977	144	3/23/80	5/14/79	
Dec. 18, 1977	144	3/14/80	5/22/79	
Feb. 9, 1978	144	12/21/79	5/3/79	
Apr. 10, 1978	144	8/29/79	4/13/79	

TYPICAL 27 DAY PREDICTION OF DAILY F_{10.7} (FROM NOAA)

ACTUAL DAILY F_{10.7}

NOMINAL PREDICTED F_{10.7} JUNE 1979

COMPARISON OF PREDICTED AND ACTUAL SOLAR FLUX

EOVV PREDICTED AND ACTUAL DECAY RATES USING THEORETICAL BC

ORGANIZATION:	MARSHALL SPACE FLIGHT CENTER	NAME:
EL25		G. WITTENSTEIN
CHART NO.:	STATEMENT ON BIAS IN EL25 ATMOSPHERIC MODEL	рате: November 18, 1985
0	FOR A HIGH RAPIDLY RISING SOLAR ACTIVITY BC APPEARS	IPPEARS
	5% TO 10% LOWER	
0	FOR A LOW STEADILY RISING SOLAR ACTIVITY BC APPEARS 5 TO 10% HIGHER	PPEARS

*SUNSPOT PEAK--OCCURRED IN DECEMBER 1979.

SPACE TELESCOPE/REACTION WHEEL ASSEMBLY O TWO MAJOR PROBLEMS O WHEEL SPEED AND CONTROL O JITTER AND SCIENCE QUALITY	ORGANIZATION:	MARSHALL SPACE FLIGHT CENTER	NAME:
DESIGN DATE: O TWO MAJOR PROBLEMS O WHEEL SPEED AND CONTROL O JITTER AND SCIENCE QUALITY	EL25	SPACE TELESCOPE/REACTION WHEEL ASSEMBLY	G. WITTENSTEIN
O 0	1ABT NO.:	DESIGN	DATE: NOVEMBER 18, 1985
O 0			
O O			. 10
0 0 0			
0 0 0			
O 0			
O 0 0			
0 0			
	,		

ORGANIZATION: EL25	MARSH	MARSHALL SPACE FLIGHT CENTER	G. WITTENSTEIN
CHART NO.:	ORBITAL	ORBITAL LIFETIME APPLICATIONS	DATE: NOVEMBER 18, 1985
	ORBITA	ORBITAL LIFETIME APPLICATIONS	
FOR LOW ORBIT EARTH SATELLI REBOOST WILL BE NECESSARY T PERIODIC REBOOSTS COULD BE COULD HAVE ITS OWN SYSTEM F PROPELLENT REQUIRED FOR REB	TES (O PRODONE OOR RECOOST	SUCH AS THE PLANNED MANNED SPACE SOVIDE THE LONG DURATION LIFETIME, WITH A PROPULSIVE VEHICLE OR THE EBOOST, ESTIMATES HAVE BEEN MADE FOR LEVELS OF SOLAR ACTIVITY AS	E STATION IE, THESE HE SPACE STATION DE OF THE S SHOWN BELOW,
SOLAR ACTIVITY LOW MEDIUM HIGH	Sunspot Number 50 100 200	PROPELLENT REQUIRED IN POUNDS EACH YEAR 1,000 3,000 10,000	

