Section 2.2

Graphs of Equations In Two Variables; Intercepts; Symmetry

1 Graph Equations by Plotting Points

equation in two variables

$$x^2 + y^2 = 5$$
 $2x - y = 6$ $y = 2x + 5$ $x^2 = y$

Determining Whether a Point Is on the Graph of an Equation

Determine if the following points are on the graph of the equation -3x + y = 6

(a)
$$(0,4)$$

(b)
$$(-2, 0)$$

(c)
$$(-1, 3)$$

$$-3(0)+4=4\neq 6$$

$$-3(-2)+0=6$$

(a)
$$(0, 4)$$
 (b) $(-2, 0)$ (c) $(-1, 3)$
 $-3(0)+4=4 \neq 6$ $-3(-2)+0=6$ $-3(-1)+3=3+3=6$

Pearson Education, Inc. Publishing as Prentice Hall.

Graphing an Equation by Plotting Points

Graph the equation: y = 2x + 5

lf	Then	Point on Graph
x = 0	y = 2(0) + 5 = 5	(0,5)
x = 1	y = 2(1) + 5 = 7	(1,7)
x = -5	y = 2(-5) + 5 = -5	(-5, -5)
x = 10	y = 2(10) + 5 = 25	(10, 25)

rson Education, Inc. Publishing as Prentice Hall.

Graphing an Equation by Plotting Points

Graph the equation: $y = x^2$

х	$y = x^2$	(x, y)	
-4	16	(-4, 16)	
-3	9	(-3,9)	
-2	4	(-2, 4)	
-1	1	(-1, 1)	
0	0	(0, 0)	
1	1	(1, 1)	
2	4	(2, 4)	
3	9	(3, 9)	
4	16	(4, 16)	

2012 Pearson Education, Inc. Publishing as Prentice Hall.

2 Find Intercepts from a Graph

Finding Intercepts from a Graph

Find the intercepts of the graph.

3 Find Intercepts from an Equation

Procedure for Finding Intercepts

- 1. To find the x-intercept(s), if any, of the graph of an equation, let y = 0 in the equation and solve for x, where x is a real number.
- 2. To find the y-intercept(s), if any, of the graph of an equation, let x = 0 in the equation and solve for y, where y is a real number.

Finding Intercepts from an Equation

Find the x-intercept(s) and the y-intercept(s) of the graph of $y = x^2 - 4$ then graph by plotting points.

х	$y=x^2-4$	(x, y)
-3	5	(-3, 5)
-1	-3	(-1, -3)
1	-3	(1, -3)
3	5	(3, 5)

4 Test an Equation for Symmetry with Respect to the x-Axis, the y-Axis, and the Origin

DEFINITION

A graph is said to be **symmetric with respect to the** x-axis if, for every point (x, y) on the graph, the point (x, -y) is also on the graph.

Symmetry with respect to the x-axis

Points Symmetric with Respect to the x-Axis

If a graph is symmetric with respect to the *x*-axis and the point (3,2) is on the graph, what other point is also on the graph?

DEFINITION

A graph is said to be symmetric with respect to the y-axis if, for every point (x, y) on the graph, the point (-x, y) is also on the graph.

Symmetry with respect to the *y*-axis

ublishing as Prentice Hall.

Points Symmetric with Respect to the y-Axis

If a graph is symmetric with respect to the *y*-axis and the point (3,2) is on the graph, what other point is also on the graph?

DEFINITION

A graph is said to be **symmetric with respect to the origin** if, for every point (x, y) on the graph, the point (-x, -y) is also on the graph.

Symmetry with respect to the origin

Points Symmetric with Respect to the Origin

If a graph is symmetric with respect to the origin and the point (3,2) is on the graph, what other point is also on the graph?

A graph is said to be **symmetric with respect to the** x**-axis** if, for every point (x, y) on the graph, the point (x, -y) is also on the graph.

A graph is said to be symmetric with respect to the y-axis if, for every point (x, y) on the graph, the point (-x, y) is also on the graph.

A graph is said to be **symmetric with respect to the origin** if, for every point (x, y) on the graph, the point (-x, -y) is also on the graph.

Tests for Symmetry

To test the graph of an equation for symmetry with respect to the

- x-Axis Replace y by -y in the equation and simplify. If an equivalent equation results, the graph of the equation is symmetric with respect to the x-axis.
- y-Axis Replace x by -x in the equation and simplify. If an equivalent equation results, the graph of the equation is symmetric with respect to the y-axis.
- Origin Replace x by -x and y by -y in the equation and simplify. If an equivalent equation results, the graph of the equation is symmetric with respect to the origin.

Testing an Equation for Symmetry

Test
$$y = \frac{x^2 - 9}{x^2 + 2}$$
 for symmetry.

$$x$$
- $Axis: -y = \frac{x^2 - 9}{x^2 + 2}$

x-Axis: $-y = \frac{x^2 - 9}{x^2 + 2}$ Not equivalent so not symmetric with respect to the x-axis

y-Axis:
$$y = \frac{(-x)^2 - 9}{(-x)^2 + 2}$$

IS equivalent so symmetric with respect to the *y*-axis.

Origin:
$$-y = \frac{(-x)^2 - 9}{(-x)^2 + 2}$$

Not equivalent so not symmetric with respect to the origin.

Seeing the Concept

5 Know How to Graph Key Equations

Graphing the Equation $y = x^3$ by Finding Intercepts, Checking for Symmetry, and Plotting Points

Graph the equation $y = x^3$ by hand by plotting points. Find any intercepts and check for symmetry first.

First, find the intercepts. When x = 0, then y = 0; and when y = 0, then x = 0. The origin (0, 0) is the only intercept. Now test for symmetry.

x-Axis: Replace y by -y. Since $-y = x^3$ is not equivalent to $y = x^3$, the graph is not symmetric with respect to the x-axis.

y-Axis: Replace x by -x. Since $y = (-x)^3 = -x^3$ is not equivalent to $y = x^3$, the graph is not symmetric with respect to the y-axis.

Origin: Replace x by -x and y by -y. Since $-y = (-x)^3 = -x^3$ is equivalent to $y = x^3$ (multiply both sides by -1), the graph is symmetric with respect to the origin.

Graphing the Equation $y = x^3$ by Finding Intercepts, Checking for Symmetry, and Plotting Points

Graph the equation $y = x^3$ by hand by plotting points. Find any intercepts and check for symmetry first.

EXAMPLE Graphing the Equation $x = y^2$

Graph the equation $x = y^2$.

Find any intercepts and check for symmetry first.

The lone intercept is (0,0). The graph is symmetric with respect to the x-axis. (Do you see why? Replace y by -y.) Figure 22 shows the graph.

EXAMPLE Graphing the Equation $x = y^2$

Graph the equation $x = v^2$.

Graph
$$x = y^2, y \ge 0$$
.

If we restrict y so that $y \ge 0$, the equation $x = y^2$, $y \ge 0$, may be written equivalently as $y = \sqrt{x}$. The portion of the graph of $x = y^2$ in quadrant I is therefore the graph of $y = \sqrt{x}$.

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Graphing the Equation $y = \frac{1}{x}$

Graph the equation $y = \frac{1}{x}$.

Find any intercepts and check for symmetry first.

Check for intercepts first. If we let x = 0, we obtain 0 in the denominator, which makes y undefined. We conclude that there is no y-intercept. If we let y = 0, we get the equation $\frac{1}{x} = 0$, which has no solution. We conclude that there is no x-intercept.

The graph of $y = \frac{1}{x}$ does not cross or touch the coordinate axes.

x-Axis: Replacing y by -y yields $-y = \frac{1}{x}$, which is not equivalent to $y = \frac{1}{x}$.

y-Axis: Replacing x by -x yields $y = \frac{1}{-x} = -\frac{1}{x}$, which is not equivalent to

Origin: Replacing x by -x and y by -y yields $-y = -\frac{1}{x}$, which is equivalent to $y = \frac{1}{x}$. The graph is symmetric with respect to the origin.

Graphing the Equation $y = \frac{1}{x}$

Graph the equation $y = \frac{1}{x}$.

×	$y = \frac{1}{x} \qquad (x, y)$	
1 10		
1/3		
1/2		
1		
2		
3		
10		