

Contents

- 1. C review -- pointers
- 2. Complexity
 - Calculations of Big-O, Big Omega,
 & Theta
 - 2. Sorting algorithms
- 3. Linked list

Pointers: what for?

- A pointer is defined by its type and holds a value
- value: indicates where in memory the pointer refers to
 - always a memory address
- type: indicates what in memory the pointer refers to
 - almost always indicates the object's size –
 there are two exceptions:
 - Pointer to void
 - Pointer to function

Pointers Examples

int
$$x = 4$$
;
int $*a = &x$;
int $**b = &a$;
b: $&a • &x • &x : 4$

X	4	a	addr(x)	b	addr(a)
&x	addr(x)	&a	addr(a)	&b	addr(b)
*x	illegal	*a	4	*b	addr(x)
*(&x)	4	**a	illegal	**b	4
				***b	illegal

Pointers and Arrays

- Array name is a pointer as well.
- In an array X, element index i
 - Address: &X[i] or (X+i)
 - Value: X[i] or *(X+i)
- First element address is the base address of the array
 - E.g. X or &X[0]
- Increment of Array name is illegal
 - E.g. X++ // illegal

Analyzing Algorithm -Operations

• Best Case B(n):

 constraints on the input, other than size, resulting in the fastest possible running time.

Worst Case W (n):

 constraints on the input, other than size, resulting in the slowest possible running time.

◆ Average Case A(n):

 average running time over every possible type of input (usually involves the probabilities of different types of input).

Analyzing Algorithm -- Operations

Some examples – what's the total operations?

$$x = x + 1;$$

Constant

For
$$(i = 1; i <= n; i + +)$$

 $x = x + 1;$ Linear Loop

For
$$(i = 1; i <= n; i + +)$$

for $(j = 1; j <= n; j + +)$
 $x = x + 1;$ Nested Loop (Quadratic)

Order of Growth

 Sub-linear, Linear, Polynomial and Exponential

 $1 < \log n < n < n \log n < n^2 < n^3 < 2^n < n!$

Big-O

Definition

Let f and g be two functions $f, g: N \rightarrow R^+$.

We say that $f(n) \in O(g(n))$

if $\exists c \in R^+$ and $n_0 \in N$ such that for every integer $n \ge n_0$, $f(n) \le cg(n)$.

Omega Notation (Ω)

Definition

Let f and g be two functions $f, g : N \rightarrow R^+$.

We say that $f(n) \in \Omega(g(n))$

if $\exists c \in R^+$ and $n_0 \in N$ such that for every integer $n \geq n_0$, $f(n) \geq cg(n)$.

Theta Notation (0)

Definition

Let f and g be two functions $f, g: N \to R^+$.

We say that $f(n) \in \Theta(g(n))$

if $f \in \Omega(g)$ and $f \in O(g)$

(or $\exists c_1, c_2 \in R^+ \text{ and } n_0 \in N, c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0$)

Little-o

Definition

Let f and g be two functions $f, g: N \rightarrow R^+$.

We say that $f(n) \in o(g(n))$

if $\exists c \in R^+$ and $n_0 \in N$ such that for any c > 0, $n_0 > 0$,

 $f(n) \le cg(n)$, for every integer $n \ge n_0$

Little Omega Notation (ω)

Definition

Let f and g be two functions $f, g: N \rightarrow R^+$.

We say that $f(n) \in \varpi(g(n))$

if $\exists c \in R^+$ and $n_0 \in N$ such that for any c > 0, $n_0 > 0$,

 $f(n) \ge cg(n)$, for every integer $n \ge n_0$

Sample Long Answer Questions

- Show that $2n^2 + n = \Theta(n^2)$
- Show that $2n = \Omega(n)$
- Questions and examples in the course slides and A1

Sample Long Answer Questions

• Describe the difference between big-O and little-o

Sorting

- Sorting: Rearranging the values in an array or collection into a specific order (usually into their "natural ordering").
 - one of the fundamental problems in computer science
- Input: A sequence of n objects

•
$$s = \langle a_1, a_2, \dots, a_n \rangle$$

• Output: A permutation (reordering) $\langle a'_1, a'_2, ..., a'_n \rangle$ such that $a'_1 \le a'_2 \le ... \le a'_n$.

Sorting Algorithms

- Bubble sort
- Insertion sort
- Selection sort

Implement and write the pseudocode/steps

- Merger sort
- Quick sort

Describe the process

Sorting Algorithms

- bubble sort: swap adjacent pairs that are out of order
- selection sort: look for the smallest element, move to front
- insertion sort: build an increasingly large sorted front portion
- merge sort: recursively divide the array in half and sort it
- quick sort: recursively partition array based on a middle value

Insertion Sort Algorithm

- Uses only a fixed amount of storage that needed for the data:
- Pseudocode:

```
Algorithm: Insertion—Sort(A)

for j = 2 to A.length

key = A[j]

i = j - 1

while i > 0 and A[i] > key

A[i + 1] = A[i]

i = i -1

A[i + 1] = key
```


Bubble Sort Algorithm

- Uses only a fixed amount of storage that needed for the data:
- Pseudocode:

```
Algorithm: Sequential-Bubble-Sort (A)
fori ← 1 to length [A] do
for j ← length [A] down-to i +1 do
   if A[A] < A[j-1] then
    Exchange A[j] ↔ A[j-1]</pre>
```


Selection Sort Algorithm

- Uses only a fixed amount of storage that needed for the data:
- Pseudocode:

```
Algorithm: Selection—Sort (A)
fori← 1 to n-1 do
   min j ←i;
   min x ← A[i]
   for j ←i + 1 to n do
       if A[j] < min x then
            min j ← j
            min x ← A[j]
   A[min j] ← A [i]
   A[i] ← min x</pre>
```


Sorting Algorithms Complexity Summary

Algorithm	Time Complexity		Space Complexity
	Best	Worst	Worst
Bubble Sort	$\Omega(n)$	$O(n^2)$	O(1)
Selection Sort	$\Omega(n^2)$	$O(n^2)$	O(1)
Insertion Sort	$\Omega(n)$	O(n ²)	O(1)
Merge Sort	$\Omega(n \log(n))$	O(n log(n))	O(n)
Quick Sort	$\Omega(n \log(n))$	$O(n^2)$	O(n)

Sample Short Answer Questions

• Some sorting algorithms are applied to the following data [25, 23, 17, 5, 13]. After 2 passes, the rearrangement of the data are shown below. Match the data with the sorting algorithms used.

Sample Short Answer Questions

• Some sorting algorithms are applied to the following data [25, 23, 17, 5, 13]. After 2 passes, the rearrangement of the data are shown below. Match the data with the sorting algorithms used.

[17, 5, 13, 23, 25]

Bubble Sort

[17, 23, 25, 5, 13]

Insertion Sort

[5, 13, 17, 25, 23]

24 Selection Sort

Sample Short Answer Questions

- In the worst case, selection sort has a time complexity of n^2 .
- In the worst case, insertion sort has a time complexity of _____.
- In the worst case, merge sort has a time complexity of 6/09 n.
- In the **best** case, **insertion** sort has a time complexity of .

List Implementations

Array:

 a container object that holds a fixed number of values of a single type. The length of an array is established when the array is created.

List Implementations

Linked Lists

 data structure which can change during execution. Successive elements are connected by pointers. Last element points to NULL.

Anatomy of a linked list

- A linked list consists of:
 - A sequence of nodes

Each node contains a value and a link (pointer or reference) to some other node The last node contains a null link

More terminology

- A node's successor is the next node in the sequence
 - The last node has no successor
- A node's predecessor is the previous node in the sequence
 - The first node has no predecessor
- A list's length is the number of elements in it
 - A list may be empty (contain no elements)

Inserting a node into a SLL

- Insert a new node into a list:
 - As the new first element
 - As the new last element
 - After a given node
 - After a given value
- Review the course slides to understand the implementation.

Deleting an element from a SLL

• To delete the first element, change the head

• To delete some other element, change the link in its predecessor

Doubly-linked lists

• Here is a doubly-linked list (DLL):

- Each node contains a value, a link to its successor (if any), and a link to its predecessor (if any)
- The head points to the first node in the list *and* to the last node in the list (or contains null links if the list is empty).

 The two pointers are also called head and tail.
- DLL structure -- two pointers for each node

Doubly-linked lists

- Operations
 - Append
 - Prepend
 - Traversal and Reverse Traversal
- Review course slides for examples

Sample Long Answer Questions

 Assume we have the following linked list created and a new node 0 created

- If you need to insert 0 before 1, how are the pointers will be updated?
- If you need to insert 0 after 2, how are the pointers will be updated?

Sample Long Answer Questions

• Write down one advantage and one disadvantage of doubly-linked list compared with singly-linked list.

More on Midterm Questions

• Please review ALL questions/examples/exercise in the lecture slides, labs, and A1.

