CMSC 678 Machine Learning - Fall 2022 Homework Assignment 1 Due September 22^{nd} by 2:30pm

Submit a single PDF file to the TA via slack with your answers with a direct message to Mohammad Eskandari.

- 1. Suppose we have a dataset of the form $[(x_1, y_1) \dots (x_n, y_n)]$ where $x_i \in \mathbb{R}^d$ and $y \in \mathbb{R}$. We will learn a linear function of x of the form $\hat{y} = \theta x$ where $\theta \in \mathbb{R}^d$. If the loss function is the absolute difference $|y \hat{y}|$, write an expression for $F(\theta)$, the total loss over the entire datase.
- 2. Consider the following loss function on vectors $w \in \mathbb{R}^4$:

$$L(w) = w_1^2 + 2w_2^2 + w_3^2 - 2w_3w_4 + w_4^2 + 2w_1 - 4w_2 + 4$$

- What is $\nabla L(w)$?
- Suppose we use gradient descent to minimize this function and that the current estimate is (0,0,0,0). If the step size is η , what is the next estimate?
- 3. These questions are taken from

http://users.umiacs.umd.edu/~hal/courses/2013S_ML/math4ml.pdf which is a great refresher on math for machine learning practitioners. It is a good resource if you are having difficulty with any of these questions.

- What is the derivative of $f(x) = \exp(-\frac{1}{2}x^2)$?
- What is the derivative of $f(x) = \log(x^2 + x 1)$?
- Given n points of the form (x_i, y_i) where both x_i and y_i are real numbers, compute the partial derivative $\frac{\partial J}{\partial b}$, where $J(m, b) = \sum_{i=1}^{n} ((mx_i + b) y_i)^2$.
- 4. Consider the following function:

$$g(z_1, z_2) = (a - z_1)^2 + b(z_2 - z_1^2)^2$$

Write a program to numerically minimize this function. Turn in all of your code. Experiment and report on your experiments. Specifically:

- Derive the partial derivatives for the function and include the derivations in your write-up.
- Implement the function and its gradient.
- ullet Write code to minimize g using gradient descent with a fixed learning rate
- Run your code using (a = 1, b = 100) from a few different initial values for (z_1, z_2) and a few different learning rates, and repeat that process using one other set of values for a and b.
- Write up your results in a report using prose, graphs, and tables as needed to explain the optimal values (z_1^*, z_2^*) found for each run. Discuss the impact of the starting point and the learning rate.