

Plano de Aquisição de Competências Essenciais

Representação gráfica de domínios planos

I-Algumas funções importantes e sua representação gráfica: Função afim e função quadrática, função exponencial e função logarítmica. Cónicas.

1. Função afim (Recta)

$$y = f(x)$$
 ou $x = f(y)$

$$y = mx + b$$
, m é o declive e b a ordenada na origem

Represente graficamente as seguintes rectas:

- a. y = x que conclusões pode tirar para a representação das rectas $y = x + k, k \in \Re$
- b. y = -x que conclusões pode tirar para a representação das rectas $y = -x + k, k \in \Re$
- c. Que conclusões pode tirar para a representação das rectas $y = mx, m \in \Re$?
- d. x = -y 2

2. Função quadrática (Parábola)

Caso 1:
$$y = f(x)$$

i)
$$y = ax^2 + bx + c$$

Vértice: mínimo da função (y = f'(x) = 0) para a > 0máximo da função (y = f'(x) = 0) para a < 0

ii)
$$y - y_0 = a(x - x_0)^2$$

Vértice: mínimo da função (x_0, y_0) para a > 0máximo da função (x_0, y_0) para a < 0

Represente graficamente as parábolas e explicite-as como x = f(y)

a.
$$y = x^2 - x - 2$$

c.
$$y = -x^2 + 3x - 2$$

b.
$$y = 2x^2 - 3x + 1$$

a.
$$y = x^2 - x - 2$$

b. $y = 2x^2 - 3x + 1$
c. $y = -x^2 + 3x - 2$
d. $y - 2 = 2(x + 1)^2$

Caso 2:
$$x = f(y)$$

$$i) x = ay^2 + by + c$$

Vértice: mínimo da função (x = f'(y) = 0) para a > 0máximo da função (x = f'(y) = 0) para a < 0

ii)
$$x - x_0 = a(y - y_0)^2$$

Vértice: mínimo da função (x_0, y_0) para a > 0máximo da função (x_0, y_0) para a < 0

Represente graficamente as parábolas e explicite-as como y = f(x)

a.
$$x = -y^2 + y + 2$$
 c. $x = y^2 - 3y + 2$

c.
$$x = y^2 - 3y + 2$$

b.
$$x = 2y^2 - 3y + 1$$

d.
$$x-2=2(y+1)^2$$

3. Cónicas (Circunferência)

Não é considerada como y = f(x) nem x = f(y)

$$(x-x_0)^2 + (y-y_0)^2 = r^2$$
 tem centro (x_0, y_0) e raio r

Represente graficamente as seguintes circunferências

a.
$$x^2 + (y-2)^2 = 9$$

b.
$$(x+1)^2 + (y-1)^2 = 4$$

c.
$$(x-1)^2 + (y+2)^2 = 3$$

Defina cada uma das circunferências como funções f(x) e f(y).

4. Função exponencial

Trace geometricamente as seguintes funções:

a.
$$f(x) = e^{x-1}$$

c.
$$f(x) = e^{x-1} - 2$$

b.
$$f(x) = -e^x$$

$$d. \quad f(x) = -e^{-x}$$

e.
$$f(x) = e^{3x}$$

$$f. f(x) = 2e^x$$

5. Função logarítmica

Trace geometricamente as seguintes funções:

a.
$$f(x) = ln(x+1)$$

c.
$$f(x) = -ln(x+1)$$

a.
$$f(x) = ln(x+1)$$

b. $f(x) = ln(x+1) + 1$
c. $f(x) = -ln(x+1)$
d. $f(x) = 3ln(x)$

d.
$$f(x) = 3ln(x)$$

e.
$$f(x) = ln(-x)$$

f.
$$f(x) = -ln(-x)$$

II-Domínios planos

1. Definidos por limitação de curvas:

a. Limitada por
$$x = 1, x = e, y = ln(x), y = 0$$

b. Limitada por
$$y = x^2 + 2x - 1, y = 0$$

c. Limitada por
$$y = sen(x), y = cos(x), x = 0, x = \frac{\pi}{2}$$

d. Limitada por
$$x = y^2 + 4y + 3, y = x - 3$$

2. Definidos por interseção de condições:

a.
$$D_1 = \{(x, y) \in \Re^2 : y - 1 \le -2(x - 1)^2 \land y \ge 0\}$$

b.
$$D_2 = \{(x, y) \in \Re^2 : y \le x + 1 \land y \ge x^2 - x - 2\}$$

c.
$$D_3 = \{(x, y) \in \Re^2 : x^2 + y^2 \le 4 \land y \le x - 2\}$$

d.
$$D_4 = \{(x, y) \in \Re^2 : x^2 + y^2 \le 1 \land x \ge y^2 \}$$

III- Faça a correspondência entre a expressão do domínio plano e a sua representação gráfica:

Domínio plano R	Representação gráfica
a) $D = \{(x, y) \in \Re^2 : y - 1 \le -2(x - 1)^2 \land y \ge 0\}$	3 3 4 4 3 -2 -1 2 3 4 4 -3 -2 -1 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
b) $D = \{(x, y) \in \Re^2 : x \ge 0 \land x \le -2y^2 + 1\}$	2.
c) $D = \{(x, y) \in \Re^2 : y \ge x + 1 \land x \ge y^2 - y - 2\}$	3.
d) $D = \{(x, y) \in \mathbb{R}^2 : y \le 0 \land 0 \le x \le 1 \land y \ge -e^{-x} \}$	4.
e) $D = \{(x, y) \in \Re^2 : x^2 + y^2 \le 1 \land x \ge y^2 \}$	5.
f) $D = \{(x, y) \in \mathbb{R}^2 : y \le x + 1 \land y \ge x^2 - x - 2\}$	3 x x x x x x x x x x x x x x x x x x x
g) $D = \{(x, y) \in \mathbb{R}^2 : x \le 0 \land 0 \le y \le 1 \land x \ge -e^{-y} \}$	7.
h) $D = \{(x, y) \in \mathbb{R}^2 : y \ge 2x - 3 \land x - 1 \ge 2(y - 2)^2 \}$	3 2 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3