EE24BTECH11006 - Arnav Mahishi

2) Let $P = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$, $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $Q = PAP^T$. If $P^TQ^{2007}P = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then 2a + b - 3c - 4d equal to

a) $(\neg q) \land p$ b) $p \lor (\neg q)$ c) $(\neg p) \lor q$ d) $q \land (\neg p)$

c) 2005

c) 20

d) 18

d) 2006

1) The area of the region $\{(x, y) : x^2 \le y \le 8 - x^2, y \le 7\}$

b) 2007

3) Negation of $(p \to q) \to (q \to q)$ is

b) 21

a) 24

a) 2004

4) Let $C(\alpha,\beta)$ be the circumcenter of the triangle formed by the lines							
4x + 3y = 69							
4y - 3x = 17							
x + 7y = 61							
Then $(\alpha - \beta)^2 + \alpha + \beta$ is equal to							
a) 18	b) 15	c) 16	d) 17				
5) Let α, β, γ , be the three roots of the equation $x^3 + bx + c = 0$. If $\beta y = 1 = -\alpha$, then $b^3 + 2c^3 - 3\alpha^3 - 6\beta^3 - 8\gamma^3$ is equal to							
a) $\frac{155}{8}$	b) 21	c) 19	d) $\frac{169}{8}$				
6) Let the number of elements in set A and B be five and two respectively. Then the number of subsets of $A \times B$ each having at least 3 and at most 6 elements is:							
a) 752	b) 772	c) 782	d) 792				
7) If the coefficients of three consecutive terms in the expansion of $(1 + x)^n$ are in the ratio 1:5:20, then the coefficient of the fourth term is							

d) 1817

d) 317

	a) $A + B$ is divisible by D b) $A + B = 5(D - C)$		c) $A + C + D$ is not divisible by B d) $A + B + D$ is divisible by 5				
10)	0) The shortest distance between the lines $\frac{x-4}{4} = \frac{y+2}{5} = \frac{z+3}{3}$ and $\frac{x-1}{3} = \frac{y-3}{4} = \frac{z-4}{2}$						
	a) $2\sqrt{6}$	b) $3\sqrt{6}$	c) $6\sqrt{3}$	d) $6\sqrt{2}$			
11)	1) The number of arrangements of the letters of the word "INDEPENDENCE" in which all the vowels always occur together is						
	a) 16800	b) 14800	c) 18000	d) 33600			
12)	2) If the points with position vectors $\alpha \hat{i} + 10\hat{j} + 13\hat{k}$, $6\hat{i} + 11\hat{j} + 11\hat{k}$, $\frac{9}{2}\hat{i} + \beta\hat{j} - 8\hat{k}$ are collinear then, $(19\alpha - 6\beta)^2$ is equal to						
	a) 49	b) 36	c) 25	d) 16			
13)	13) In a bolt factory, machines <i>A</i> , <i>B</i> , and <i>C</i> manufacture respectively 20%, 30%, and 50% of the total bolts. Of their output 3,4, and 2 percent are respectively defective bolts. A bolt is drawn at random from the product. If the bolt drawn is found to be defective, then the probability that it is manufactured by the machine <i>C</i> .						
	a) $\frac{5}{14}$	b) $\frac{3}{7}$	c) $\frac{9}{28}$	d) $\frac{2}{7}$			
14)	4) If for $z = \alpha + i\beta$, $ z + 2 = z + (4 + i)$, then $\alpha + \beta$ and $\alpha\beta$ are the roots of the equation						
	a) $x^2 + 3x - 4$	b) $x^2 + 7x + 12$	c) $x^2 + x - 12$	d) $x^2 + 2x - 3$			
15) $\lim_{x\to 0} \left(\left(\frac{(1-\cos^2(3x))}{\cos^3(4x)} \right) \left(\frac{\sin^3(4x)}{\log_e(2x+1)^5} \right) \right)$ is equal to							
	a) 24	b) 19	c) 18	d) 15			

b) 3654

b) 346

PQR. If c - m = 6 then $(PQ)^2$ is

a) 5481

a) 325

least value. Then

c) 2436

c) 296

8) Let R be the focus of the parabola $y^2 = 20x$ and the line y = mx + c intersect the parabola at two points P and Q. Let the point G(10, 10) be the centroid of the triangle

9) Let $S_K = \frac{1+2+...+K}{K}$ and $\sum_{j=1}^n S_j^2 = \frac{n}{A} \left(Bn^2 + Cn + D \right)$ where $A, B, C, D \in N$ and A has