X. Wu and D. Chen:

Optimal Net Surface Problems with Applications

In: Automata, Languages and Programming, Springer LNCS, vol 2380, pp 1029-1042, 2002.

Optimal Surface = ?

Step 1: Surface ⇔ Non-Empty Closed Set

Surface

Step 1: Surface ⇔ Non-Empty Closed Set

- C₇
- \bullet C_{G}
- C₅
- **C**₄
- C₃
- C₂
- \bullet c_1
- \mathbf{c}_0

$$\mathbf{w}_6 := \mathbf{c}_6 - \mathbf{c}_5$$

$$w_5 := c_5 - c_4$$

$$w_4 := c_4 - c_3$$

$$w_3 := c_3 - c_2$$

$$w_2 := c_2 - c_1$$

$$\mathbf{w}_1 := \mathbf{c}_1 - \mathbf{c}_0$$

$$w_0 := c_0$$

Step 1: Surface ⇔ Non-Empty Closed Set

- C₇
- \bullet c_6
- C₅
- C₄
- C₃
- C₂
- lacksquare c_1
- \mathbf{c}_0

Step 1: Surface ⇔ Non-Empty Closed Set

Step 1: Surface ⇔ Non-Empty Closed Set

Step 1: Surface ⇔ Non-Empty Closed Set

Step 1: Surface ⇔ Non-Empty Closed Set

Step 1: Surface ⇔ Non-Empty Closed Set

Step 1: Surface ⇔ Non-Empty Closed Set

Step 1: Surface ⇔ Non-Empty Closed Set

Step 1: Surface ⇔ Non-Empty Closed Set

Step 1: Surface ⇔ Non-Empty Closed Set

Step 1: Surface ⇔ Non-Empty Closed Set

Step 1: Surface ⇔ Non-Empty Closed Set

Step 1: Surface ⇔ Non-Empty Closed Set

Minimal Surface Problem

Minimum Non-Empty Closed Set Problem

Step 1: Surface ⇔ Non-Empty Closed Set

Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

Step 1: Surface ⇔ Non-Empty Closed Set

Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

Step 1: Surface ⇔ Non-Empty Closed Set

Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

Step 1: Surface ⇔ Non-Empty Closed Set

Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

Step 1: Surface ⇔ Non-Empty Closed Set

Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

$$w_7 := c_7 - c_6$$
 $w_6 := c_6 - c_5$
 $w_5 := c_5 - c_4$
 $w_4 := c_4 - c_3$
 $w_3 := c_3 - c_2$
 $w_2 := c_2 - c_1$
 $w_1 := c_1 - c_0$
 $w_0 := c_0$

Step 1: Surface ⇔ Non-Empty Closed Set

Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

Step 1: Surface ⇔ Non-Empty Closed Set

Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

Step 1: Surface ⇔ Non-Empty Closed Set

Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

Step 1: Surface ⇔ Non-Empty Closed Set

Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

Step 1: Surface ⇔ Non-Empty Closed Set

Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

Step 1: Surface ⇔ Non-Empty Closed Set

Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

Step 1: Surface ⇔ Non-Empty Closed Set

Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

Source set to t: $w(V^+ \cap S)$

Step 1: Surface ⇔ Non-Empty Closed Set

Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

Source set to t: $w(V^+ \cap S)$ s to Terminal set: $-w(V^- \cap T)$

Step 1: Surface ⇔ Non-Empty Closed Set

Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

Source set to t: $w(V^+ \cap S)$ s to Terminal set: $-w(V^- \cap T)$ Cost of cut: $w(V^+ \cap S) - w(V^- \cap T)$

Step 1: Surface ⇔ Non-Empty Closed Set

Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

Source set to t: $w(V^+ \cap S)$ s to Terminal set: $-w(V^- \cap T)$

Cost of cut: $w(V^+ \cap S) - w(V^- \cap T)$

 $= w(V^+ \cap S) + w(V^- \cap S) - w(V^- \cap T) - w(V^- \cap S)$

Step 1: Surface ⇔ Non-Empty Closed Set Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

Source set to t: $w(V^+ \cap S)$ s to Terminal set: $-w(V^- \cap T)$ Cost of cut: $w(V^+ \cap S) - w(V^- \cap T)$ = $w(V^+ \cap S) + w(V^- \cap S) - w(V^- \cap T) - w(V^- \cap S)$ = $w(S) - w(V^-)$

Step 1: Surface ⇔ Non-Empty Closed Set

Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

Source set to t: $w(V^+ \cap S)$

s to Terminal set: $-w(V^- \cap T)$

Cost of cut: $w(V^+ \cap S) - w(V^- \cap T)$

= w(S) - w(V)

Step 1: Surface ⇔ Non-Empty Closed Set

Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

Source set to t: $w(V^+ \cap S)$

s to Terminal set: $-w(V^- \cap T)$

Cost of cut: $w(V^+ \cap S) - w(V^- \cap T)$

= w(S) - w(V)

Step 1: Surface ⇔ Non-Empty Closed Set

Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

Source set to t: $w(V^+ \cap S)$

s to Terminal set: $-w(V^- \cap T)$

Cost of cut: $w(V^+ \cap S) - w(V^- \cap T)$

= w(S) - w(V)

Step 1: Surface ⇔ Non-Empty Closed Set

Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

Source set to t: $w(V^+ \cap S)$

s to Terminal set: $-w(V^- \cap T)$

Cost of cut: $w(V^+ \cap S) - w(V^- \cap T)$

= w(S) - w(V)

Step 1: Surface ⇔ Non-Empty Closed Set

Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

Minimum s-t Cut Problem

Minimum Non-Empty Closed Set Problem

Step 1: Surface ⇔ Non-Empty Closed Set

Step 2: Non-empty Closed Set ⇔ Finite Cost s-t-Cut

Minimum s-t Cut Problem

Minimum Non-Empty Closed Set Problem

Minimal Surface Problem

PART II
2 Surfaces with min/max distance

Two surfaces min 2 apart max 3 apart Optimal total cost

- C₇ C₇
- \bullet c_6 c_6
- \bullet C₅ C₅
- \bullet C₄ C₄
- C₃ C₃
- \bullet c_2 c_2
- \bullet c_1 c_1
- \bullet c_0 c_0

Two Surfaces

- \bullet C_7 C_7
- \bullet C_6 C_6
- \bullet C₅ C₅
- C₄ C₄
- \bullet C₃ C₃
- \bullet C_2 C_2
- \bullet c_1 c_1
- \bullet c_0 c_0

$$w_7 := c_7 - c_6$$
 $w_6 := c_6 - c_5$
 $w_6 := c_6 - c_5$
 $w_5 := c_5 - c_4$
 $w_4 := c_4 - c_3$
 $w_3 := c_3 - c_2$
 $w_2 := c_2 - c_1$
 $w_1 := c_1 - c_0$
 $w_0 := c_0$
 $w_7 := c_7 - c_6$
 $w_7 := c_7 - c_6$
 $w_8 := c_7 - c_8$
 $w_9 := c_8 - c_9$
 $w_9 := c_9 - c_1$
 $w_1 := c_1 - c_0$
 $w_1 := c_1 - c_0$

Two Surfaces

Two Surfaces

Two Surfaces

Two Surfaces

Two Surfaces

Two Surfaces

Two Surfaces

PART III

1 Surface with vertex- and edge costs

PART III

1 Surface with vertex- and edge costs

NP hard in general But...

PART III

1 Surface with vertex- and edge costs

PART III 1 Surface with vertex- and edge costs

NP hard in general But...

EdgeCost(k,k+d) := f(d) f convex, non-decreasing

PART III 1 Surface with vertex- and edge costs

NP hard in general But...

EdgeCost(k,k+d) := f(d) f convex, non-decreasing

EdgeCost(k,k+d) := f(d) f convex, non-decreasing Example: $f(d):=\alpha \cdot d$

EdgeCost(k,k+d) := f(d) f convex, non-decreasing

EdgeCost(k,k+d) := f(d) f convex, non-decreasing

EdgeCost(k,k+d) := f(d)f convex, non-decreasing

EdgeCost(k,k+d) := f(d)f convex, non-decreasing

EdgeCost(k,k+d) := f(d)f convex, non-decreasing

EdgeCost(k,k+d) := f(d) f convex, non-decreasing Example: $f(d):=\alpha \cdot d$

EdgeCost(k,k+d) := f(d)f convex, non-decreasing

$$f(1)=\alpha$$

 $f(2)=2\alpha$

EdgeCost(k,k+d) := f(d)f convex, non-decreasing

$$f(1)=\alpha$$

 $f(2)=2\alpha+\beta$

EdgeCost(k,k+d) := f(d)f convex, non-decreasing

$$f(1)=\alpha$$

$$f(2)=2\alpha+\beta$$

$$f(3)=3\alpha+2\beta+\gamma$$

•••

Finite Cost s-t-Cut

EdgeCost(k,k+d) := f(d) f convex, non-decreasing Example: $f(d):=\alpha \cdot d$