(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 8 February 2001 (08.02.2001)

PCT

(10) International Publication Number WO 01/09097 A1

(51) International Patent Classification7: C07
A61K 31/4427, 31/4409, A61P 25/00

C07D 213/40,

(21) International Application Number:

PCT/US00/18578

(22) International Filing Date:

6 July 2000 (06.07.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/146,588

30 July 1999 (30.07.1999) US

(71) Applicant (for all designated States except US): VERTEX PHARMACEUTICALS INCORPORATED [US/US]; 130 Waverly Street, Cambridge, MA 02139-4242 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MULLICAN, Michael [US/US]; 110 Parker Road, Needham, MA 02194 (US). LAUFFER, David [US/US]; 254 Taylor Road, Stow, MA 01775 (US).

(74) Agents: MARKS, Andrew et al.; Vertex Pharmaceuticals Inc., 130 Waverly Street, Cambridge, MA 02139-4242 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

<

(54) Title: CYCLIC AMINE DERIVATIVES FOR THE TREATMENT OF NEUROLOGICAL DISEASES

(57) Abstract: The present invention relates to cyclic amine derivatives of general formula (I) for treating or preventing neuronal damage associated with neurological diseases. The invention also provides compositions comprising the compounds of the present invention and methods of utilizing those compositions for treating or preventing neuronal damage.

CYCLIC AMINE DERIVATIVES FOR THE TREATMENT OF NEUROLOGICAL DISEASES

TECHNICAL FIELD OF THE INVENTION

The present invention relates to cyclic amine derivatives for treating or preventing neuronal damage associated with neurological diseases. The invention also provides compositions comprising the compounds of the present invention and methods of utilizing those compositions for treating or preventing neuronal damage.

10

15

20

25

30

BACKGROUND OF THE INVENTION

Neurological diseases are associated with the death of or injury to neuronal cells. Typical treatment of neurological diseases involves drugs capable of inhibiting neuronal cell death. A more recent approach involves the promotion of nerve regeneration by promoting neuronal growth.

Neuronal growth, which is critical for the survival of neurons, is stimulated in vitro by nerve growth factors (NGF). For example, Glial Cell Line-Derived Neurotrophic Factor (GDNF) demonstrates neurotrophic activity both, in vivo and in vitro, and is currently being investigated for the treatment of Parkinson's disease. Insulin and insulin-like growth factors have been shown to stimulate growth of neurites in rat pheochromocytoma PC12 cells and in cultured sympathetic and sensory neurons [Recio-Pinto et al., J. Neurosci., 6, pp. 1211-1219 (1986)]. Insulin and insulin-like growth factors also stimulate the regeneration of injured

30

motor nerves in vivo and in vitro [Near et al., Proc. Natl. Acad. Sci., pp. 89, 11716-11720 (1992); and Edbladh et al., Brain Res., 641, pp. 76-82 (1994)]. Similarly, fibroblast growth factor (FGF) stimulates neural proliferation [D. Gospodarowicz et al., Cell Differ., 19, p. 1 (1986)] and growth [M. A. Walter et al., Lymphokine Cytokine Res., 12, p. 135 (1993)].

There are, however, several disadvantages

10 associated with the use of nerve growth factors for treating neurological diseases. They do not readily cross the blood-brain barrier. They are unstable in plasma and they have poor drug delivery properties.

Recently, small molecules have been shown to 15 stimulate neurite outgrowth in vivo. In individuals suffering from a neurological disease, this stimulation of neuronal growth protects neurons from further degeneration, and accelerates the regeneration of nerve cells. For example, estrogen 20 has been shown to promote the growth of axons and dendrites, which are neurites sent out by nerve cells to communicate with each other in a developing or injured adult brain [(C. Dominique Toran-Allerand et al., J. Steroid Biochem. Mol. Biol., 56, pp. 25 169-78 (1996); and B. S. McEwen et al., Brain Res. Dev. Brain. Res., 87, pp. 91-95 (1995)]. The progress of Alzheimer's disease is slowed in women who take estrogen. Estrogen is hypothesized to complement NGF and other neurotrophins and thereby

help neurons differentiate and survive.

Other target sites for the treatment of neurodegenerative disease are the immunophilin class of proteins. Immunophilins are a family of soluble proteins that mediate the actions of

- immunosuppressant drugs such as cyclosporin A, FK506 and rapamycin. Of particular interest is the 12 kDa immunophilin, FK-506 binding protein (FKBP12). FKBP12 binds FK-506 and rapamycin, leading to an inhibition of T-cell activation and proliferation.
- Interestingly, the mechanism of action of FK-506 and rapamycin are different. For a review, see, S. H. Solomon et al., <u>Nature Med.</u>, 1, pp. 32-37 (1995). It has been reported that compounds with an affinity for FKBP12 that inhibit that protein's rotomase
- activity possess nerve growth stimulatory activity.

 [Lyons et al., <u>Proc. Natl. Acad. Sci. USA</u>, 91, pp. 3191-3195 (1994)]. Many of these such compounds also have immunosuppressive activity.

FK506 (Tacrolimus) has been demonstrated to act
20 synergistically with NGF in stimulating neurite
outgrowth in PC12 cells as well as sensory ganglia
[Lyons et al. (1994)]. This compound has also been
shown to be neuroprotective in focal cerebral
ischemia [J. Sharkey and S. P. Butcher, Nature, 371,
25 pp. 336-339 (1994)] and to increase the rate of
axonal regeneration in injured sciatic nerve [B.
Gold et al., J. Neurosci., 15, pp. 7509-16 (1995)].

The use of immunosuppressive compounds, however, has drawbacks in that prolonged treatment with these compounds can cause nephrotoxicity [Kopp et al., J. Am. Soc. Nephrol., 1, p. 162 (1991)],

15

20

25

WO 01/09097 PCT/US00/18578

-4-

neurological deficits [P.C. DeGroen et al., N. Eng. J. Med., 317, p. 861 (1987)] and vascular hypertension [Kahan et al., N. Eng. J. Med., 321, p. 1725 (1989)].

More recently, sub-classes of FKBP binding compounds which inhibit rotomase activity, but which purportedly lack immunosuppressive function have been disclosed for use in stimulating nerve growth [see, United States patent 5,614,547; WO 96/40633; WO 96/40140; WO 97/16190; J. P. Steiner et al., Proc. Natl. Acad. Sci. USA, 94, pp. 2019-23 (1997);

Proc. Natl. Acad. Sci. USA , 94, pp. 2019-23 (1997);
and G. S. Hamilton et al., Bioorg. Med. Chem. Lett.,
7, pp. 1785-90 (1997)].

Stimulation of neural axons in nerve cells by piperidine derivatives is described in WO 96/41609. Clinical use of the piperidine and pyrrolidine derivatives known so far for stimulating axonal growth has not been promising, as the compounds are unstable in plasma and do not pass the blood-brain barrier in adequate amounts.

Though a wide variety of neurological degenerative diseases may be treated by promoting repair of neuronal damage, there are relatively few agents known to possess these properties. Thus,

there remains a need for new compounds and compositions that have the ability to either prevent or treat neuronal damage associated with neuropathologic.

SUMMARY OF THE INVENTION

The present invention provides compounds having formula (I):

WO 01/09097

-5-

PCT/US00/18578

and pharmaceutically acceptable derivatives thereof, wherein:

X, when present, is O, S, or NR¹;

5 y is 0 or 1;

10

20

A, B and R^1 are independently E,

 (C_1-C_{10}) -straight or branched alkyl, (C_2-C_{10}) -straight or branched alkenyl or alkynyl, or (C_5-C_7) -cycloalkyl or cycloalkenyl; wherein 1 or 2 hydrogen atoms in said alkyl, alkenyl or alkynyl are optionally and independently replaced with E, (C_5-C_7) -cycloalkyl or cycloalkenyl; and wherein 1 to 2 of the -CH₂- groups

in said alkyl, alkenyl, or alkynyl groups is optionally and independently replaced by -O-, -S-,

15 -S(0) -, $-S(0)_2$ -, =N -, -N = or $-N(R^3)$ -;

or, B and R^1 are independently hydrogen;

wherein R3 is selected from hydrogen,

 (C_1-C_4) -straight or branched alkyl, (C_3-C_4) -straight or branched alkenyl or alkynyl, or (C_1-C_4) bridging

alkyl, wherein a bridge is formed between the nitrogen atom to which said R³ is bound and any carbon atom of said alkyl, alkenyl or alkynyl to form a ring, and wherein said ring is optionally benzofused;

or unsaturated, or aromatic monocyclic or bicyclic ring system, wherein each ring comprises 5 to 7 ring

30

4

atoms independently selected from C, N, $N(R^3)$, O, S, S(0), or $S(0)_2$; and wherein no more than 4 ring atoms are selected from N, $N(R^3)$, O, S, S(0), or $S(0)_2$;

wherein 1 to 4 hydrogen atoms in E are optionally and independently replaced with halogen, hydroxyl, hydroxymethyl, nitro, SO₃H, trifluoromethyl, trifluoromethoxy/ (C₁-C₆)-straight or branched alkyl, (C₂-C₆)-straight or branched alkyl, O-[(C₁-C₆)-straight or branched alkyl],

10 O-[(C₃-C₆)-straight or branched alkenyl], $(CH_2)_n-N(R^4)(R^5), \quad (CH_2)_n-NH(R^4)-(CH_2)_n-Z, \\ (CH_2)_n-N(R^4-(CH_2)_n-Z)(R^5-(CH_2)_n-Z), \quad (CH_2)_n-Z, \\ O-(CH_2)_n-Z, \quad (CH_2)_n-O-Z, \quad S-(CH_2)_n-Z, \quad CH=CH-Z, \\ 1,2-methylenedioxy, C(O)OH, C(O)O-[(C₁-C₆)-straight]$

or branched alkyl], C(0)0-(CH₂)_n-Z or C(0)-N(R⁴)(R⁵);
wherein each of R⁴ and R⁵ are independently
hydrogen, (C₁-C₆)-straight or branched alkyl,
(C₃-C₅)-straight or branched alkenyl, or wherein R⁴
and R⁵, when bound to the same nitrogen atom, are

taken together with the nitrogen atom to form a 5 or 6 membered ring, wherein said ring optionally contains 1 to 3 additional heteroatoms independently selected from N, N(R³), O, S, S(O), or S(O)₂; wherein said alkyl, alkenyl or alkynyl groups in R₄ and R₅ are optionally substituted with Z.

each n is independently 0 to 4;

each Z is independently selected from a saturated, partially saturated or unsaturated, monocyclic or bicyclic ring system, wherein each ring comprises 5 to 7 ring atoms independently selected from C, N, $N(R^3)$, O, S, S(0), or $S(0)_2$; and

wherein no more than 4 ring atoms are selected from N, $N(R^3)$, O, S, S(O), or S(O)₂;

wherein 1 to 4 hydrogen atoms in Z are

optionally and independently replaced with halo,

hydroxy, nitro, cyano, C(0)OH, (C₁-C₃)-straight or

branched alkyl, O-(C₁-C₃)-straight or branched alkyl,

C(0)O-[(C₁-C₃)-straight or branched alkyl], amino,

NH[(C₁-C₃)-straight or branched alkyl], or

N-[(C₁-C₃)-straight or branched alkyl]₂;

- J is H, methyl, ethyl or benzyl; or wherein J is directly bound to a ring atom of ring Q to form with ring Q a fused bicyclic ring system, wherein the ring comprising J and the nitrogen atom to which J is bound is a 5-7 membered saturated or
- unsaturated heterocyclic ring, optionally containing up to 3 additional heteroatoms selected from N, $N(R^3)$, O, S, S(O), or S(O)₂, wherein 1 to 4 hydrogen atoms in said ring comprising J are optionally and independently replaced with (C_1-C_6) -straight or
- branched alkyl, (C_2-C_6) -straight or branched alkenyl or alkynyl, oxo, hydroxyl or Z; and wherein any $-CH_2$ -group in said alkyl, alkenyl or alkynyl substituent is optionally and independently replaced by -O-, -S-, -S(O)-, -S(O2)-, -N-, or -N(R3)-; and
- 25 wherein said ring comprising J is optionally fused
 with E;

wherein J, when not in a ring fused to ring Q, is optionally substituted with up to 3 substituents selected from halogen, OH, $O-(C_1-C_6)$ -alkyl,

30 O-(CH₂)n-Z, NO₂, C(0)OH, C(0)-O-(C₁-C₆)-alkyl, C(0)NR⁴R⁵, NR⁴R⁵ and (CH₂)_n-Z;

ring Q is a 5-7 membered saturated or unsaturated heterocyclic ring, optionally containing up to 3 additional heteroatoms selected from N, N(R³), O, S, S(O), or S(O)2, wherein 1 to 4 hydrogen atoms in said heterocyclic ring are optionally and independently replaced with (C1-C6)-straight or branched alkyl, (C2-C6)-straight or branched alkenyl or alkynyl, oxo, hydroxyl or Z; and wherein any -CH2-group in said alkyl, alkenyl or alkynyl substituent is optionally and independently replaced by -O-, -S-, -S(O)-, -S(O2)-, =N-, -N=, or -N(R³)-; and wherein said heterocyclic ring is optionally fused with E;

G, when present, is $-S(0)_2-$, -C(0)-, $-S(0)_2-$ Y-, ___ 15 -C(0)-Y-, -C(0)-C(0)-, or -C(0)-C(0)-Y-;

Y is oxygen, or $N(R^6)$;

wherein R⁶ is hydrogen, E, (C₁-C₆)-straight or branched alkyl, (C₃-C₆)-straight or branched alkenyl or alkynyl; or wherein R⁶ and D are taken together with the atoms to which they are bound to form a 5 to 7 membered ring system wherein said ring optionally contains 1 to 3 additional heteroatoms independently selected from N, N(R³), O, S, S(O), or S(O)₂; and wherein said ring is optionally

25 benzofused;

30

D is hydrogen, (C_1-C_7) -straight or branched alkyl, (C_2-C_7) -straight or branched alkenyl or alkynyl, (C_5-C_7) -cycloalkyl or cycloalkenyl optionally substituted with (C_1-C_6) -straight or branched alkyl or (C_2-C_7) -straight or branched

5

alkenyl or alkynyl, $\{(C_1-C_7)-alkyl\}-E$, $\{(C_2-C_7)-alkenyl \text{ or alkynyl}\}-E$, or E;

wherein 1 to 2 of the CH_2 groups of said alkyl, alkenyl or alkynyl chains in D is optionally 'replaced by -O-, -S-, -S(O)-, -S(O₂)-, =N-, -N=, or -N(R³);

provided that when J is hydrogen or G is selected from $-S(0)_2-$, C(0)C(0)-, SO_2-Y , C(0)-Y, or C(0)C(0)-Y, wherein Y is O; then D is not hydrogen;

10 m is 0 to 3; and x is 0 or 1.

In another embodiment, the invention provides

pharmaceutical compositions comprising the compounds 15 of formula (I). These compositions may be utilized in methods treating various neurological diseases which are influenced by neuronal regeneration and axon growth or for stimulating neuronal regeneration in an ex vivo nerve cell. Examples of such diseases 20 include peripheral nerve destruction due to physical injury or diseases such as diabetes; physical injuries to the central nervous system (e.g., brain or spinal cord); stroke; neurological disturbances due to nerve degeneration, such as Parkinson's 25 disease, Alzheimer's disease, and amylotrophic lateral sclerosis.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides compounds having formula (I):

20

$$D \xrightarrow{Q} (X) \xrightarrow{A} B$$

$$D \xrightarrow{Q} (X) \xrightarrow{M} B$$

$$D \xrightarrow{Q} (X) \xrightarrow{M} B$$

$$D \xrightarrow{Q} (X) \xrightarrow{M} B$$

and pharmaceutically acceptable derivatives thereof, wherein:

X, when present, is O, S, or NR1;

5 y is 0 or 1;

A, B and R¹ are independently E. (C_1-C_{10}) -straight or branched alkyl, (C_2-C_{10}) -straight or branched alkenyl or alkynyl, or (C5-C7)-cycloalkyl or cycloalkenyl; wherein 1 or 2 hydrogen atoms in said alkyl, alkenyl or alkynyl are optionally and independently replaced with E, (C5-C7)-cycloalkyl or cycloalkenyl; and wherein 1 to 2 of the -CH2- groups in said alkyl, alkenyl, or alkynyl groups is optionally and independently replaced by -O-, -S-, -S(0)-, $-S(0)_2-$, =N-, -N= or $-N(R^3)-$; 1.5

or, B and R1 are independently hydrogen; wherein R³ is selected from hydrogen, (C_1-C_4) -straight or branched alkyl, (C_3-C_4) -straight or branched alkenyl or alkynyl, or (C1-C4) bridging alkyl, wherein a bridge is formed between the nitrogen atom to which said R³ is bound and any carbon atom of said alkyl, alkenyl or alkynyl to form a ring, and wherein said ring is optionally benzofused;

25 wherein E is a saturated, partially saturated or unsaturated, or aromatic monocyclic or bicyclic ring system, wherein each ring comprises 5 to 7 ring atoms independently selected from C, N, $N(R^3)$, O, S, S(O), or $S(O)_2$; and wherein no more than 4 ring atoms are selected from N, $N(R^3)$, O, S, S(O), or $S(O)_2$;

wherein 1 to 4 hydrogen atoms in E are

- optionally and independently replaced with halogen, hydroxyl, hydroxymethyl, nitro, SO₃H, trifluoromethyl, trifluoromethoxy, (C₁-C₆)-straight or branched alkyl, (C₂-C₆)-straight or branched alkyl, O-[(C₁-C₆)-straight or branched alkyl],
- $\begin{array}{lll} 10 & O-\{(C_3-C_6)-\text{straight or branched alkenyl}\}, \\ & (CH_2)_n-N(R^4)(R^5)\,, & (CH_2)_n-NH(R^4)-(CH_2)_n-Z\,, \\ & (CH_2)_n-N(R^4-(CH_2)_n-Z)(R^5-(CH_2)_n-Z)\,, & (CH_2)_n-Z\,, \\ & O-(CH_2)_n-Z\,, & (CH_2)_n-O-Z\,, & S-(CH_2)_n-Z\,, & CH=CH-Z\,, \\ & 1,2-\text{methylenedioxy}, & C(O)OH, & C(O)O-\{(C_1-C_6)-\text{straight}\}, \\ \end{array}$
- or branched alkyl], C(0)O-(CH₂)_n-Z or C(0)-N(R⁴)(R⁵); wherein each of R⁴ and R⁵ are independently hydrogen, (C₁-C₆)-straight or branched alkyl, (C₃-C₅)-straight or branched alkenyl, or wherein R⁴ and R⁵, when bound to the same nitrogen atom, are
- taken together with the nitrogen atom to form a 5 or 6 membered ring, wherein said ring optionally contains 1 to 3 additional heteroatoms independently selected from N, N(R³), O, S, S(O), or S(O)₂; wherein said alkyl, alkenyl or alkynyl groups in R₄ and R₅
- 25 are optionally substituted with Z.

30

each n is independently 0 to 4;

each Z is independently selected from a saturated, partially saturated or unsaturated, monocyclic or bicyclic ring system, wherein each ring comprises 5 to 7 ring atoms independently, selected from C, N, N(R³), O, S, S(O), or S(O)₂; and

WO 01/09097

wherein no more than 4 ring atoms are selected from $N, N(R^3), O, S, S(O), or S(O)_2;$

wherein 1 to 4 hydrogen atoms in Z are optionally and independently replaced with halo, hydroxy, nitro, cyano, C(O)OH, (C₁-C₃)-straight or branched alkyl, O-(C₁-C₃)-straight or branched alkyl, C(O)O-[(C₁-C₃)-straight or branched alkyl], amino, NH[(C₁-C₃)-straight or branched alkyl], or N-[(C₁-C₃)-straight or branched alkyl]₂;

- J is H, methyl, ethyl or benzyl; or wherein J is directly bound to a ring atom of ring Q to form with ring Q a fused bicyclic ring system, wherein the ring comprising J and the nitrogen atom to which J is bound is a 5-7 membered saturated or
- up to 3 additional heteroatoms selected from N, N(R³), O, S, S(O), or S(O)₂, wherein 1 to 4 hydrogen atoms in said ring comprising J are optionally and independently replaced with (C₁-C₆)-straight or
- branched alkyl, (C2-C6)-straight or branched alkenyl
 or alkynyl, oxo, hydroxyl or Z; and wherein any -CH2 group in said alkyl, alkenyl or alkynyl substituent
 is optionally and independently replaced by -O-,
 -S-, -S(O)-, -S(O2)-, =N-, -N=, or -N(R3)-; and
- 25 wherein said ring comprising J is optionally fused
 with E;

wherein J, when not in a ring fused to ring Q, is optionally substituted with up to 3 substituents selected from halogen, OH, $O-(C_1-C_6)$ -alkyl,

30 · O-(CH₂) n-Z, NO₂, C(O)OH, C(O)-O-(C₁-C₆)-alkyl, C(O)NR⁴R⁵, NR⁴R⁵ and (CH₂)_n-Z;

30

3

ring Q is a 5-7 membered saturated or unsaturated heterocyclic ring, optionally containing up to 3 additional heteroatoms selected from N, N(R³), O, S, S(O), or S(O)2, wherein 1 to 4 hydrogen atoms in said heterocyclic ring are optionally and independently replaced with (C1-C6)-straight or branched alkyl, (C2-C6)-straight or branched alkenyl or alkynyl, oxo, hydroxyl or Z; and wherein any -CH2-group in said alkyl, alkenyl or alkynyl substituent is optionally and independently replaced by -O-, -S-, -S(O)-, -S(O2)-, =N-, -N=, or -N(R³)-; and wherein said heterocyclic ring is optionally fused with E;

G, when present, is $-S(0)_2-$, -C(0)-, $-S(0)_2-$ Y-, -C(0)-Y-, -C(0)-C(0)-, or -C(0)-C(0)-Y-; Y is oxygen, or $N(R^6)$;

wherein R⁶ is hydrogen, E, (C₁-C₆)-straight or branched alkyl, (C₃-C₆)-straight or branched alkenyl or alkynyl; or wherein R⁶ and D are taken together with the atoms to which they are bound to form a 5 to 7 membered ring system wherein said ring optionally contains 1 to 3 additional heteroatoms independently selected from N, N(R³), O, S, S(O), or S(O)₂; and wherein said ring is optionally benzofused;

D is hydrogen, (C_1-C_7) -straight or branched alkyl, (C_2-C_7) -straight or branched alkenyl or alkynyl, (C_5-C_7) -cycloalkyl or cycloalkenyl optionally substituted with (C_1-C_6) -straight or branched alkyl or (C_2-C_7) -straight or branched

-14-

alkenyl or alkynyl, $[(C_1-C_7)-alkyl]-E$, $[(C_2-C_7)-alkenyl or alkynyl]-E, or E;$

wherein 1 to 2 of the CH2 groups of said alkyl, alkenyl or alkynyl chains in D is optionally replaced by -0-, -S-, -S(0)-, $-S(0_2)-$, =N-, -N=, or - $N(R^3)$;

provided that when J is hydrogen or G is selected from $-S(0)_2-$, C(0)C(0)-, SO_2-Y , C(0)-Y, or C(0)C(0)-Y, wherein Y is O; then D is not hydrogen;

10 m is 0 to 3; and x is 0 or 1.

15

20

30

According to a preferred embodiment, each of A and B in formula (I) is (C_1-C_{10}) straight or branched alkyl, wherein 1-2 hydrogen atoms in said alkyl are optionally substituted with E.

In another preferred embodiment, B is hydrogen.

According to another preferred embodiment, each of A and B in formula (I) is -CH2-CH2-E or - $CH_2-CH_2-CH_2-E$.

According to another preferred embodiment, D in formula (I) is (C_1-C_7) straight or branched alkyl, E or $[(C_1-C_6)$ -straight or branched alkyl]-E.

According to a more preferred embodiment,

25 D is an aromatic monocyclic or bicyclic ring system,

wherein each ring comprises 5-7 ring atoms independently selected from C, N, N(R3), O, S, S(O), or $S(0)_2$, and wherein no more than 4 ring atoms are selected from N, $N(R^3)$, O, S, S(0), or $S(0)_2$.

According to an even more preferred

WO 01/09097

-15-

PCT/US00/18578

embodiment, D is phenyl or C_1 - C_7 straight or branched alkyl group.

According to another preferred embodiment, E in formula (I) is a monocyclic or bicyclic

5 aromatic ring system, wherein said ring comprises

5-7 ring atoms independently selected from C, N, N(R³), O, S, S(O), or S(O)₂, and wherein 1 to 4 ring atoms are independently selected from N, N(R³), O, S, S(O), or S(O)₂.

- Preferred embodiments of E include phenyl, napthyl, indenyl, azulenyl, fluorenyl, anthracenyl, furyl, thienyl, pyridyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, isothiazolyl, 1,3,4-thiadiazolyl,
- pyridazinyl, pyrimidinyl, 1,3,5-trazinyl,
 1,3,5-trithianyl, benzo[b]furanyl,
 benzo[b]thiophenyl, purinyl, cinnolinyl,
 phthalazinyl, isoxazolyl, triazolyl, oxadiazolyl,
 pyrimidinyl, pyrazinyl, indolinyl, indolizinyl,
- 20 isoindolyl, benzimidazolyl, benzothiophenyl,
 quinolinyl, isoquinolinyl, quinazolinyl,
 quinoxalinyl, 1,8-naphthyridinyl, pteridinyl,
 carbazolyl, acridinyl, phnazinyl, phenothiazinyl,
 phenoxazinyl and benzothiazolyl, wherein E is
 25 optionally substituted as described above.
 - More preferred embodiments of E include phenyl, furyl, thienyl, pyridyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, triazolyl, oxadiazolyl, pyrimidinyl, pyrazinyl,
- indoly1, isoindoly1, benzimidazoly1,
 benzothiopheny1, quinoliny1, isoquinoliny1, and

benzothiazolyl, wherein E is optionally substituted as described above.

According to another preferred embodiment, J is H, methyl, ethyl or benzyl.

According to another preferred embodiment, Q is selected from any one of the following:

The most preferred compounds of formula

(I) are set forth in Tables 1, below:

Table 1.

#	D-(G) _x -	X-	A-	B-
1	CH₃-	NH-	3-pyrCH₂CH₂CH₂-	3-pyrCH ₂ CH ₂ CH ₂ -
2	.CH₃CH₂-	NH-	3-pyrCH₂CH₂CH₂	3-pyrCH ₂ CH ₂ CH ₂
3	C ₆ H ₅ CH ₂ -	NH-	3-pyrCH₂CH₂CH₂	3-pyrCH ₂ CH ₂ CH ₂
4	CH₃C(=O)-	NH-	3-pyrCH ₂ CH ₂ CH ₂	3-pyrCH ₂ CH ₂ CH ₂
5	C ₆ H ₅ C(=O)-	NH-	3-pyrCH₂CH₂CH₂	3-pyrCH ₂ CH ₂ CH ₂
6	C ₆ H ₅ CH ₂ OC(=O)-	NH-	3-pyrCH₂CH₂CH₂	3-pyrCH ₂ CH ₂ CH ₂
7	C ₆ H ₅ C(=O)C(=O)-	NH-	3-pyrCH ₂ CH ₂ CH ₂	3-pyrCH ₂ CH ₂ CH ₂
8	CH₃-	C ₆ H ₅ CH ₂ N-	4-pyrCH₂CH₂-	4-pyrCH ₂ CH ₂ -
9	CH₃CH₂-	C ₆ H ₅ CH ₂ N-	4-pyrCH₂CH₂-	4-pyrCH ₂ CH ₂ -
10	C ₆ H ₅ CH ₂ -	C ₆ H ₅ CH ₂ N-	4-pyrCH ₂ CH ₂ -	4-pyrCH ₂ CH ₂ -
11	CH ₃ C(=O)-	C ₆ H ₅ CH ₂ N-	4-pyrCH ₂ CH ₂ -	4-pyrCH ₂ CH ₂ -
12	C ₆ H ₅ C(=O)-	C ₆ H ₅ CH ₂ N-	4-pyrCH₂CH₂-	4-pyrCH ₂ CH ₂ -

13	C ₆ H ₅ CH ₂ OC(=O)-	C ₆ H ₅ CH ₂ N-	4-pyrCH ₂ CH ₂ -	4-pyrCH₂CH₂-
14	C ₆ H ₅ C(=O)C(=O)-	C ₆ H ₅ CH ₂ N-	4-pyrCH ₂ CH ₂ -	4-pyrCH ₂ CH ₂ -
15	CH ₃ -	4-pyrCH₂N-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -
16	CH₃CH₂-	4-pyrCH₂N-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -
17	C ₆ H ₅ CH ₂ -	4-pyrCH₂N-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -
18	CH ₃ C(=O)-	4-pyrCH₂N-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -
19	C ₆ H ₅ C(=O)-	4-pyrCH₂N-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -
20	C ₆ H ₅ CH ₂ OC(=O)-	4-pyrCH₂N-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -
21	C ₆ H ₅ C(=O)C(=O)-	4-pyrCH₂N-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -

The compounds of formula (I) may be stereoisomers, geometric isomers or stable tautomers. The invention envisions all possible isomers, such as E and Z isomers, S and R enantiomers, diastereoisomers, racemates, and mixtures of those. It is preferred that the substituent in the 2 position have the S configuration.

The compounds of the present invention may

10 be readily prepared using known synthetic methods.

For example, compounds of formula (I) may be
prepared as shown below in Scheme I and II:

The compounds of the present invention may be readily prepared using known synthetic methods.

15 For example, compounds of formula (I) may be prepared as shown below in Scheme I (wherein y in (X)_y is 1) and Scheme II (wherein y in (X)_y is 0): Scheme I

$$\begin{array}{c} & & & \\ & &$$

· of

$$Q$$
 CH_3
 PG
 CH_3
 CH_3

; wherein

PG is a protecting group; LG is a leaving group and Li is lithium. In each of these schemes, the initial step involves the coupling of the compounds, followed by removal of the protecting group (PG).

One of skill in the art will be well aware

analogous synthetic methods for preparing compounds of formula (I).

WO 01/09097

5

25

30

According to another embodiment, this invention

provides compositions comprising a compound of formula (I) and a pharmaceutically acceptable carrier.

Pharmaceutically acceptable carriers that may be used in these pharmaceutical compositions include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum 10 proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, 15 sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxy methylcellulose, polyacrylates, 20 waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.

In another embodiment, the pharmaceutical composition of the present invention is comprised of a compound of formula (I), a pharmaceutically acceptable carrier, and a neurotrophic factor.

The term "neurotrophic factor," as used herein, refers to compounds which are capable of stimulating growth or proliferation of nervous tissue. Numerous neurotrophic factors have been identified in the art and any of those factors may be utilized in the compositions of this invention.

-21-

These neurotrophic factors include, but are not limited to, nerve growth factor (NGF), insulin-like growth factor (IGF-1) and its active truncated derivatives such as gIGF-1 and Des(1-3)IGF-I, acidic and basic fibroblast growth factor (aFGF and bFGF, respectively), platelet-derived growth factors (PDGF), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factors (CNTF), glial cell line-derived neurotrophic factor (GDNF),

10 neurotrophin-3 (NT-3) and neurotrophin 4/5 (NT-4/5).

The most preferred neurotrophic factor in the compositions of this invention is NGF.

15

20

25

30

As used herein, the described compounds used in the pharmaceutical compositions and methods of this invention, are defined to include pharmaceutically acceptable derivatives thereof. A "pharmaceutically acceptable derivative" denotes any pharmaceutically acceptable salt, ester, or salt of such ester, of a compound of this invention or any other compound which, upon administration to a patient, is capable of providing (directly or indirectly) a compound of this invention, or a metabolite or residue thereof, characterized by the ability to promote repair or prevent damage of neurons from disease or physical trauma.

If pharmaceutically acceptable salts of the described compounds are used, those salts are preferably derived from inorganic or organic acids and bases. Included among such acid salts are the following: acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate,

citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, oxalate, palmoate, pectinate, persulfate, 3-phenyl-propionate, picrate, pivalate, 10 propionate, succinate, tartrate, thiocyanate, tosylate and undecanoate. Base salts include ammonium salts, alkali metal salts, such as sodium and potassium salts, alkaline earth metal salts, such as calcium and magnesium salts, salts with organic bases, such as dicyclohexylamine salts, 15 N-methyl-D-glucamine, and salts with amino acids such as arginine, lysine, and so forth. Also, the basic nitrogen-containing groups can be quaternized with such agents as lower alkyl halides, such as 20 methyl, ethyl, propyl, and butyl chloride, bromides and iodides; dialkyl sulfates, such as dimethyl, diethyl, dibutyl and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides, 25 such as benzyl and phenethyl bromides and others. Water or oil-soluble or dispersible products are thereby obtained.

The described compounds utilized in the compositions and methods of this invention may also be modified by appending appropriate functionalities to enhance selective biological properties. Such

modifications are known in the art and include those which increase biological penetration into a given biological system (e.g., blood, lymphatic system, central nervous system), increase oral availability, increase solubility to allow administration by injection, alter metabolism and alter rate of excretion.

The compositions of the present invention may be administered orally, parenterally, by

10 inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir.

The term "parenteral" as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal,

15 intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques.

Preferably, the compositions are administered orally, intraperitoneally or intravenously.

Sterile injectable forms of the 20 compositions of this invention may be aqueous or oleaginous suspension. These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. The sterile injectable 25 preparation may also be a sterile injectable solution or suspension in a non-toxic parenterallyacceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are 30 water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils

-24-

are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic monoor di-glycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, such as Ph. Helv or similar alcohol.

10

30

The pharmaceutical compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or 15 solutions. In the case of tablets for oral use, carriers which are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral 20 administration in a capsule form, useful diluents include lactose and dried corn starch. When aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, 25 flavoring or coloring agents may also be added.

Alternatively, the pharmaceutical compositions of this invention may be administered in the form of suppositories for rectal administration. These can be prepared by mixing the agent with a suitable non-irritating excipient which is solid at room temperature but liquid at rectal

-25-

temperature and therefore will melt in the rectum to release the drug. Such materials include cocoa butter, beeswax and polyethylene glycols.

The pharmaceutical compositions of this

invention may also be administered topically,
especially when the target of treatment includes
areas or organs readily accessible by topical
application, including diseases of the eye, the
skin, or the lower intestinal tract. Suitable
topical formulations are readily prepared for each
of these areas or organs.

Topical application for the lower intestinal tract can be effected in a rectal suppository formulation (see above) or in a suitable enema formulation. Topically-transdermal patches may also be used.

15

20

25

30

pharmaceutical compositions may be formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers.

Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water. Alternatively, the pharmaceutical compositions can be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl

-26-

esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.

5

10

15

20

25

30

For ophthalmic use, the pharmaceutical compositions may be formulated as micronized suspensions in isotonic, pH adjusted sterile saline, or, preferably, as solutions in isotonic, pH adjusted sterile saline, either with our without a preservative such as benzylalkonium chloride. Alternatively, for ophthalmic uses, the pharmaceutical compositions may be formulated in an ointment such as petrolatum.

The pharmaceutical compositions of this invention may also be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.

The amount of both a described compound and the optional neurotrophic factor that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. Preferably, the compositions should be formulated so that a dosage of between 0.01 - 100 mg/kg body weight/day of the described compound can be administered. If a neurotrophic factor is present in the composition, then a dosage of between 0.01 µg

-27-

- 100 mg/kg body weight/day of the neurotrophic factor can be administered to a patient receiving these compositions.

It should also be understood that a

5 specific dosage and treatment regimen for any
particular patient will depend upon a variety of
factors, including the activity of the specific
compound employed, the age, body weight, general
health, sex, diet, time of administration, rate of
10 excretion, drug combination, and the judgment of the
treating physician and the severity of the
particular disease being treated. The amount of
active ingredients will also depend upon the
particular described compound and neurotrophic
15 factor in the composition.

According to another embodiment, this invention provides methods for promoting repair or preventing neuronal damage or neurodegeneration in vivo or in an ex vivo nerve cell. Such methods

20 comprise the step of treating nerve cells with any of the compounds described above. Preferably, this method promotes repair or prevents neuronal damage in a patient, and the compound is formulated into a composition additionally comprising a

25 pharmaceutically acceptable carrier. The amount of the compound utilized in these methods is between about 0.01 and 100 mg/kg body weight/day.

According to an alternate embodiment, the method of promoting repair or preventing neuronal damage comprises the additional step of treating nerve cells with a neurotrophic factor, such as

30

WO 01/09097

10

15

20

25

30

those contained in the pharmaceutical compositions of this invention. This embodiment includes administering the compound and the neurotrophic agent in a single dosage form or in separate, multiple dosage forms. If separate dosage forms are utilized, they may be administered concurrently, consecutively or within less than about 5 hours of one another.

Preferably, the methods of this invention are used to stimulate axonal growth in nerve cells. The compounds are, therefore, suitable for treating or preventing neuronal damage caused by a wide variety of diseases or physical traumas. These include, but are not limited to, Alzheimer's disease, Parkinson's disease, ALS, Huntington's disease, Tourette's syndrome, stroke and ischemia associated with stroke, neural paropathy, other neural degenerative diseases, motor neuron diseases, sciatic crush, spinal cord injuries and facial nerve crush.

In a particularly preferred embodiment of the invention, the method is used to treat a patient suffering from trigeminal neuralgia, glosspharyngeal neuralgia, Bell's Palsy, myasthenia gravis, muscular dystrophy, muscle injury, progressive muscular atrophy, progressive bulbar inherited muscular atrophy, herniated, ruptured, or prolapsed invertebrae disk syndrome's, cervical spondylosis, plexus disorders, thoracic outlet destruction syndromes, peripheral neuropathies, such as those caused by lead, dapsone, ticks, or porphyria, other peripheral myelin disorders, Alzheimer's disease,

Gullain-Barre syndrome, Parkinson's disease and other Parkinsonian disorders, ALS, Tourette's syndrome, multiple sclerosis, other central myelin disorders, stroke and ischemia associated with stroke, neural paropathy, other neural degenerative diseases, motor neuron diseases, sciatic crush, neuropathy associated with diabetes, spinal cord' injuries, facial nerve crush and other trauma, chemotherapy- and other medication-induced neuropathies, and Huntington's disease.

10

15

20

25

More preferably, the compositions of the present invention are used for treating Parkinson's disease, amylotrophic lateral sclerosis, Alzheimer's disease, stroke, neuralgias, muscular atrophies, and Guillain-Barré syndrome.

For use of the compounds according to the invention as medications, they are administered in the form of a pharmaceutical preparation containing not only the active ingredient but also carriers, auxiliary substances, and/or additives suitable for enteric or parenteral administration.

Administration can be oral or sublingual as a solid in the form of capsules or tablets, as a liquid in the form of solutions, suspensions, elixirs, aerosols or emulsions, or rectal in the form of suppositories, or in the form of solutions for injection which can be given subcutaneously,

intramuscularly, or intravenously, or which can be

30 substances for the desired medicinal formulation include the inert organic and inorganic carriers

given topically or intrathecally. Auxiliary

.

5

15

30

as

of

-30-

known to those skilled in the art, such as water, gelatin, gum arabic, lactose, starches, magnesium stearate, talc, vegetable oils, polyalkylene glycols, etc. The medicinal formulations may also contain preservatives, stabilizers, wetting agents, emulsifiers, or salts to change the osmotic pressure or as buffers.

Solutions or suspensions for injection are suitable for parenteral administration, and

10 especially aqueous solutions of the active compounds in polyhydroxy-ethoxylated castor oil.

Surface-active auxiliary substances such

salts of gallic acid, animal or vegetable phospholipids, or mixtures of them, and liposomes or their components, can be used as carrier systems.

The neurotrophic effect of the compounds

formula (I) of the present invention and their

20 physiologically acceptable salts can be determined
by the methods of W. E. Lyons et al., Proc. Natl.Acad.Sci. USA, Vol. 91, pp. 3191-3195 (1994) and W.

E. Lyons et al., Proc. Natl. Acad.Sci. USA, Vol.

91, pages 3191-3195 (1994), the disclosures of which

25 are herein incorporated by reference.

In order that this invention be more fully understood, the following examples are set forth. These examples are for the purpose of illustration only and are not to be construed as limiting the scope of the invention in any way.

EXAMPLE 1

Compounds 1--21 are tabulated below and have the general formula:

#	D-(G) _x -	X-	A-	B-
1	CH₃-	NH-	3-pyrCH₂CH₂CH₂-	3-pyrCH₂CH₂CH₂-
2	CH₃CH₂-	NH-	3-pyrCH ₂ CH ₂ CH ₂	3-pyrCH₂CH₂CH₂
3	C ₆ H ₅ CH ₂ -	NH-	3-pyrCH ₂ CH ₂ CH ₂	3-pyrCH₂CH₂CH₂
4	CH ₃ C(=O)-	NH-	3-pyrCH ₂ CH ₂ CH ₂	3-pyrCH₂CH₂CH₂
5	C ₆ H ₅ C(=O)-	NH-	3-pyrCH ₂ CH ₂ CH ₂	3-pyrCH ₂ CH ₂ CH ₂
6	C ₆ H ₅ CH ₂ OC(=O)-	NH-	3-pyrCH₂CH₂CH₂	3-pyrCH₂CH₂CH₂
7	C ₆ H ₅ C(=O)C(=O)-	NH-	3-pyrCH₂CH₂CH₂	3-pyrCH₂CH₂CH₂
8	CH₃-	C ₆ H ₅ CH ₂ N-	4-pyrCH ₂ CH ₂ -	4-pyrCH ₂ CH ₂ -
9	CH₃CH₂-	C ₆ H ₅ CH ₂ N-	4-pyrCH₂CH₂-	4-pyrCH₂CH₂-
10	C ₆ H ₅ CH ₂ -	C ₆ H ₅ CH ₂ N-	4-pyrCH ₂ CH ₂ -	4-pyrCH ₂ CH ₂ -
11	CH ₃ C(=O)-	C ₆ H ₅ CH ₂ N-	4-pyrCH₂CH₂-	4-pyrCH ₂ CH ₂ -
12	C ₆ H ₅ C(=O)-	C ₆ H ₅ CH ₂ N-	4-pyrCH ₂ CH ₂ -	4-pyrCH ₂ CH ₂ -
13	C ₆ H ₅ CH ₂ OC(=O)-	C ₆ H ₅ CH ₂ N-	4-pyrCH₂CH₂-	4-pyrCH ₂ CH ₂ -
14	C ₆ H ₅ C(=O)C(=O)-	C ₆ H ₅ CH ₂ N-	4-pyrCH₂CH₂-	4-pyrCH₂CH₂-
15	CH₃-	4-pyrCH₂N-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -
16	CH₃CH₂-	4-pyrCH₂N-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	C ₆ H ₅ CH ₂ CH ₂ -
17	C ₆ H ₅ CH ₂ -	4-pyrCH₂N-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -
18	CH₃C(=O)-	4-pyrCH ₂ N-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -
19	C ₆ H ₅ C(=O)-	4-pyrCH₂N-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -
20	C ₆ H ₅ CH ₂ OC(=O)-	4-pyrCH₂N-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -
21	C ₆ H ₅ C(=O)C(=O)-	4-pyrCH₂N-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -

5

-32-

While we have hereinbefore presented a number of embodiments of this invention, it is apparent that our basic construction may be altered to provide other embodiments which utilize the products, processes and methods of this invention. Therefore, it will be appreciated that the scope of this invention is to be defined by the appended claims, rather than by the specific embodiments which have been presented by way of example.

-33-

CLAIMS

1. A compound having formula (I):

and pharmaceutically acceptable derivatives thereof, wherein:

X, when present, is 0, S, or NR¹;

y is 0 or 1;

A, B and R¹ are independently E,

 (C_1-C_{10}) -straight or branched alkyl, (C_2-C_{10}) -straight or branched alkenyl or alkynyl, or (C_5-C_7) -cycloalkyl or cycloalkenyl; wherein 1 or 2 hydrogen atoms in said alkyl, alkenyl or alkynyl are optionally and independently replaced with E, (C_5-C_7) -cycloalkyl or cycloalkenyl; and wherein 1 to 2 of the -CH₂- groups in said alkyl, alkenyl, or alkynyl groups is optionally and independently replaced by -O-, -S-, -S(0)-, -S(0)₂-, =N-, -N= or -N(R³)-;

or, B and R^1 are independently hydrogen;

wherein R^3 is selected from hydrogen, (C_1-C_4) -straight or branched alkyl, (C_3-C_4) -straight or branched alkenyl or alkynyl, or (C_1-C_4) bridging alkyl, wherein a bridge is formed between the nitrogen atom to which said R^3 is bound and any carbon atom of said alkyl, alkenyl or alkynyl to form a ring, and wherein said ring is optionally benzofused;

wherein E is a saturated, partially saturated

or unsaturated, or aromatic monocyclic or bicyclic ring system, wherein each ring comprises 5 to 7 ring atoms independently selected from C, N, $N(R^3)$, O, S, S(0), or $S(0)_2$; and wherein no more than 4 ring atoms are selected from N, $N(R^3)$, O, S, S(0), or $S(0)_2$;

wherein 1 to 4 hydrogen atoms in E are optionally and independently replaced with halogen, hydroxyl, hydroxymethyl, nitro, SO₃H, trifluoromethyl, trifluoromethoxy, (C_1-C_6) -straight or branched alkyl, (C_2-C_6) -straight or branched alkenyl, $O-[(C_1-C_6)$ -straight or branched alkyl], $O-[(C_3-C_6)$ -straight or branched alkenyl], $O-[(C_3-C_6)$ -straight or branched alkenyl], $(CH_2)_n-N(R^4)$ (R^5) , $(CH_2)_n-NH(R^4)-(CH_2)_n-Z$, $(CH_2)_n-N(R^4-(CH_2)_n-Z)$ $(R^5-(CH_2)_n-Z)$, $(CH_2)_n-Z$,

wherein each of R^4 and R^5 are independently hydrogen, (C_1-C_6) -straight or branched alkyl, (C_3-C_5) -straight or branched alkenyl, or wherein R^4 and R^5 , when bound to the same nitrogen atom, are taken together with the nitrogen atom to form a 5 or 6 membered ring, wherein said ring optionally contains 1 to 3 additional heteroatoms independently selected from N, $N(R^3)$, O, S, S(O), or S(O)₂; wherein said alkyl, alkenyl or alkynyl groups in R_4 and R_5 are optionally substituted with Z.

each n is independently 0 to 4;

each Z is independently selected from a saturated, partially saturated or unsaturated, monocyclic or bicyclic ring system, wherein each

ring comprises 5 to 7 ring atoms independently selected from C, N, $N(R^3)$, O, S, S(O), or $S(O)_2$; and wherein no more than 4 ring atoms are selected from N, $N(R^3)$, O, S, S(O), or $S(O)_2$;

wherein 1 to 4 hydrogen atoms in Z are optionally and independently replaced with halo, hydroxy, nitro, cyano, C(0)OH, (C_1-C_3) -straight or branched alkyl, $O-(C_1-C_3)$ -straight or branched alkyl, $C(0)O-\{(C_1-C_3)$ -straight or branched alkyl, amino, $O(C_1-C_3)$ -straight or branched alkyl, or $O(C_1-C_3)$ -straight or branched alkyl, or $O(C_1-C_3)$ -straight or branched alkyl,

J is H, methyl, ethyl or benzyl; or wherein J is directly bound to a ring atom of ring Q to form with ring Q a fused bicyclic ring system, wherein the ring comprising J and the nitrogen atom to which J is bound is a 5-7 membered saturated or unsaturated heterocyclic ring, optionally containing up to 3 additional heteroatoms selected from N, $N(R^3)$, O, S, S(0), or S(0)₂, wherein 1 to 4 hydrogen atoms in said ring comprising J are optionally and independently replaced with (C_1-C_6) -straight or branched alkyl, (C2-C6)-straight or branched alkenyl or alkynyl, oxo, hydroxyl or Z; and wherein any $-CH_2$ group in said alkyl, alkenyl or alkynyl substituent is optionally and independently replaced by -O-, -S-, -S(0)-, $-S(0_2)-$, =N-, -N=, or $-N(R^3)-$; and wherein said ring comprising J is optionally fused with E;

wherein J, when not in a ring fused to ring Q, is optionally substituted with up to 3 substituents selected from halogen, OH, $O-(C_1-C_6)$ -alkyl,

WO 01/09097

PCT/US00/18578

O- (CH_2) n-Z, NO₂, C(O)OH, C(O)-O- (C_1-C_6) -alkyl, C(O)NR⁴R⁵, NR⁴R⁵ and (CH_2) _n-Z;

-36-

ring Q is a 5-7 membered saturated or unsaturated heterocyclic ring, optionally containing up to 3 additional heteroatoms selected from N, $N(R^3)$, O, S, S(O), or $S(O)_2$, wherein 1 to 4 hydrogen atoms in said heterocyclic ring are optionally and independently replaced with (C_1-C_6) -straight or branched alkyl, (C_2-C_6) -straight or branched alkenyl or alkynyl, oxo, hydroxyl or Z; and wherein any $-CH_2$ -group in said alkyl, alkenyl or alkynyl substituent is optionally and independently replaced by -O-, -S-, -S(O)-, -S(O₂)-, -N-, -N-, or -N(R³)-; and wherein said heterocyclic ring is optionally fused with E;

G, when present, is $-S(0)_2-$, -C(0)-, $-S(0)_2-$ Y-, -C(0)-Y-, -C(0)-C(0)-C(0)-C(0)-Y-; Y is oxygen, or $N(R^6)$;

wherein R^6 is hydrogen, E, (C_1-C_6) -straight or branched alkyl, (C_3-C_6) -straight or branched alkenyl or alkynyl; or wherein R^6 and D are taken together with the atoms to which they are bound to form a 5 to 7 membered ring system wherein said ring optionally contains 1 to 3 additional heteroatoms independently selected from N, $N(R^3)$, O, S, S(O), or $S(O)_2$; and wherein said ring is optionally benzofused;

D is hydrogen, (C_1-C_7) -straight or branched alkyl, (C_2-C_7) -straight or branched alkenyl or alkynyl, (C_5-C_7) -cycloalkyl or cycloalkenyl optionally substituted with (C_1-C_6) -straight or

branched alkyl or (C_2-C_7) -straight or branched alkenyl or alkynyl, $[(C_1-C_7)$ -alkyl]-E, $[(C_2-C_7)$ -alkenyl or alkynyl]-E, or E;

wherein 1 to 2 of the CH_2 groups of said alkyl, alkenyl or alkynyl chains in D is optionally replaced by -O-, -S-, -S(O)-, -S(O₂)-, =N-, -N=, or -N(R³);

provided that when J is hydrogen or G is selected from $-S(0)_2-$, C(0)C(0)-, SO_2-Y , C(0)-Y, or C(0)C(0)-Y, wherein Y is O; then D is not hydrogen;

m is 0 to 3; and x is 0 or 1.

2. The compound according to claim 1, wherein:

each of A and B is independently selected from -CH₂-CH₂-E or -CH₂-CH₂-CH₂-E; and

E is a monocyclic or bicyclic aromatic ring system, wherein said ring comprises 5-7 ring atoms independently selected from C, N, $N(R^3)$, O, S, S(O), or $S(O)_2$, and wherein 1 to 4 ring atoms are independently selected from N, $N(R^3)$, O, S, S(O), or $S(O)_2$;

wherein 1 to 4 hydrogen atoms in E are optionally and independently replaced with halogen, hydroxyl, hydroxymethyl, nitro, SO₃H, trifluoromethyl, trifluoromethoxy, (C_1-C_6) -straight or branched alkyl, (C_2-C_6) -straight or branched alkenyl, $O-[(C_1-C_6)$ -straight or branched alkyl], $O-[(C_3-C_6)$ -straight or branched alkyl], $O-[(C_3-C_6)$ -straight or branched alkenyl], $(CH_2)_n-N(R^4)(R^5)$, $(CH_2)_n-NH(R^4)-(CH_2)_n-Z$, $(CH_2)_n-N(R^4-(CH_2)_n-Z)(R^5-(CH_2)_n-Z)$, $(CH_2)_n-Z$,

O- $(CH_2)_n$ -Z, $(CH_2)_n$ -O-Z, S- $(CH_2)_n$ -Z, CH=CH-Z, 1,2-methylenedioxy, C(0)OH, or C(0)-N(R⁴)(R⁵).

- 3. The compound according to claim 1 or 2, wherein D is an aromatic monocyclic or bicyclic ring system, wherein each ring comprises 5 to 7 ring atoms independently selected from C, N, $N(R^3)$, O, S, S(O), or $S(O)_2$; and wherein no more than 4 ring atoms are selected from N, $N(R^3)$, O, S, S(O), or $S(O)_2$.
- 4. The compound according to claim 3, wherein:

D is phenyl; and x is 1.

- 5. The compound according to claim 4, wherein G is -C(0)C(0)-.
- 6. The compound according to claim 4, wherein G is $-SO_2-$.
- 7. The compound according to claim 4, wherein G is -C(0)-.
- 8. The compound according to claim 4, wherein G is -C(O)Y-.
- 9. The compound according to claim 1 or 2, wherein:

x is 0;

D is selected from (C_1-C_5) -straight or branched alkyl, or $[(C_1-C_3)$ -straight or branched alkyl)]-E; and

E is an aromatic monocyclic or bicyclic ring system, wherein in said ring system each ring comprises 5 to 7 ring atoms independently selected from C, N, $N(R^3)$, O, S, S(O), or $S(O)_2$; and wherein no more than 4 ring atoms are selected from N, $N(R^3)$, O, S, S(O), or $S(O)_2$.

- 10. The compound according to claim 9, wherein E is phenyl.
- 11. The compound according to claim 2, wherein
 each of A and B is independently selected from
 -CH₂-CH₂-E or -CH₂-CH₂-CH₂-E; and
 E is pyridyl.
- 12. The compound according to claim 1, wherein said compound is selected from any one of compounds 1-21 in Table 1 as follows.

 Table 1

#	D-(G) _x -	X-	A-	B-
1	CH₃-	NH-	3-pyrCH ₂ CH ₂ CH ₂ -	3-pyrCH ₂ CH ₂ CH ₂ -
2	CH₃CH₂-	NH-	3-pyrCH₂CH₂CH₂	3-pyrCH ₂ CH ₂ CH ₂
3	C ₆ H ₅ CH ₂ -	NH-	3-pyrCH ₂ CH ₂ CH ₂	3-pyrCH ₂ CH ₂ CH ₂
4	CH ₃ C(=O)-	NH-	3-pyrCH ₂ CH ₂ CH ₂	3-pyrCH ₂ CH ₂ CH ₂
5	C ₆ H ₅ C(=O)-	NH-	3-pyrCH ₂ CH ₂ CH ₂	3-pyrCH₂CH₂CH₂
6	C ₆ H ₅ CH ₂ OC(=O)-	NH-	3-pyrCH ₂ CH ₂ CH ₂	3-pyrCH₂CH₂CH₂

7	C ₆ H ₅ C(=O)C(=O)-	NH-	3-pyrCH ₂ CH ₂ CH ₂	3-pyrCH ₂ CH ₂ CH ₂
8	CH₃-	C ₆ H ₅ CH ₂ N-	4-pyrCH ₂ CH ₂ -	4-pyrCH ₂ CH ₂ -
9	CH₃CH₂-	C ₆ H₅CH₂N-	4-pyrCH ₂ CH ₂ -	4-pyrCH ₂ CH ₂ -
10	C ₆ H ₅ CH ₂ -	C ₆ H ₅ CH ₂ N-	4-pyrCH ₂ CH ₂ -	4-pyrCH ₂ CH ₂ -
11 .	CH ₃ C(=O)-	C ₆ H ₅ CH ₂ N-	4-pyrCH₂CH₂-	4-pyrCH ₂ CH ₂ -
12	C ₆ H ₅ C(=O)-	C ₆ H ₅ CH ₂ N-	4-pyrCH ₂ CH ₂ -	4-pyrCH₂CH₂-
13	C ₆ H ₅ CH ₂ OC(=O)-	C ₆ H ₅ CH ₂ N-	4-pyrCH ₂ CH ₂ -	4-pyrCH₂CH₂-
14	C ₆ H ₅ C(=O)C(=O)-	C ₆ H ₅ CH ₂ N-	4-pyrCH ₂ CH ₂ -	4-pyrCH₂CH₂-
15	CH ₃ -	4-pyrCH ₂ N-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -
16	CH₃CH₂-	4-pyrCH₂N-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -
17	C ₆ H ₅ CH ₂ -	4-pyrCH₂N-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -
18	CH ₃ C(=O)-	4-pyrCH₂N-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -
19	C ₆ H ₅ C(=O)-	4-pyrCH ₂ N-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -
20	C ₆ H ₅ CH ₂ OC(=O)-	4-pyrCH₂N-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -
21	C ₆ H ₅ C(=O)C(=O)-	4-pyrCH ₂ N-	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -	C ₆ H ₅ CH ₂ CH ₂ CH ₂ -

- 13. A composition comprising a compound according to claim 1 and a pharmaceutically effective carrier.
- 14. The composition according to claim 13, further comprising a neurotrophic factor.
- 15. The composition according to claim 14, wherein said neurotrophic factor is selected from nerve growth factor (NGF), insulin-like growth factor (IGF-1) and its active truncated derivatives such as gIGF-1 and Des(1-3)IGF-I, acidic and basic fibroblast growth factor (aFGF and bFGF, respectively), platelet-derived growth factors (PDGF), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factors (CNTF), glial cell

line-derived neurotrophic factor (GDNF),
neurotrophin-3 (NT-3) and neurotrophin 4/5 (NT-4/5).

- 16. The composition according to claim 15, wherein said neurotrophic factor is nerve growth factor (NGF).
- 17. A method for stimulating neuronal regeneration or preventing neuronal damage or neurodegeneration in a patient or in an *ex vivo* nerve cell, comprising the step of administering to said patient or said nerve cell a compound according to any one of claims 1-12.
- 18. The method according to claim 17, wherein said compound is administered to a patient and is formulated together with a pharmaceutically suitable carrier into a pharmaceutically acceptable composition.
- 19. The method according to claim 18, comprising the additional step of administering to said patient a neurotrophic factor either as part of a multiple dosage form together with said compound or as a separate dosage form.
- 20. The method according to claim 19, wherein said neurotrophic factor is selected from nerve growth factor (NGF), insulin-like growth factor (IGF-1) and its active truncated derivatives such as gIGF-1 and Des(1-3)IGF-I, acidic and basic fibroblast growth factor (aFGF and bFGF,

WO 01/09097 PCT/US00/18578

-42-

respectively), platelet-derived growth factors (PDGF), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factors (CNTF), glial cell line-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3) and neurotrophin 4/5 (NT-4/5).

- 21. The method according to claim 20, wherein said neurotrophic factor is nerve growth factor (NGF).
- The method according to claim 17, wherein said method is used to treat a patient suffering from a disease selected from trigeminal neuralgia, glosspharyngeal neuralgia, Bell's Palsy, myasthenia gravis, muscular dystrophy, muscle injury, progressive muscular atrophy, progressive bulbar inherited muscular atrophy, herniated, ruptured, or prolapsed invertebrae disk syndrome's, cervical spondylosis, plexus disorders, thoracic outlet destruction syndromes, peripheral neuropathies, such as those caused by lead, dapsone, ticks, or porphyria, other peripheral myelin disorders, Alzheimer's disease, Gullain-Barre syndrome, Parkinson's disease and other Parkinsonian disorders, ALS, Tourette's syndrome, multiple sclerosis, other central myelin disorders, stroke and ischemia associated with stroke, neural paropathy, other neural degenerative diseases, motor neuron diseases, sciatic crush, neuropathy associated with diabetes, spinal cord injuries, facial nerve crush and other trauma, chemotherapy-

and other medication-induced neuropathies, and Huntington's disease.

- 23. The method according to claim 16, wherein said method is used to stimulate neuronal regeneration in an ex vivo nerve cell.
- 24. The method according to claim 23, comprising the additional step of contacting said ex vivo nerve cell with a neurotrophic factor.
- 25. The method according to claim 24, wherein said neurotrophic factor is selected from nerve growth factor (NGF), insulin-like growth factor (IGF-1) and its active truncated derivatives such as gIGF-1 and Des(1-3)IGF-I, acidic and basic fibroblast growth factor (aFGF and bFGF, respectively), platelet-derived growth factors (PDGF), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factors (CNTF), glial cell line-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3) and neurotrophin 4/5 (NT-4/5).
- 26. The method according to claim 25, wherein said neurotrophic factor is nerve growth factor (NGF).

Intern I Application No PCT/US 00/18578

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C070213/40 A61K A61K31/4427 A61K31/4409 A61P25/00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7D A61K A61P Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) CHEM ABS Data, EPO-Internal, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. WO 96 41609 A (VERTEX PHARMA) 1,13, 27 December 1996 (1996-12-27) 17-26 cited in the application claims 1,12-25; examples; tables 1,2 WO 99 10340 A (VERTEX PHARMA) Α 1,13, 4 March 1999 (1999-03-04) 17 - 26claims 1,25,30; examples Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or "Y" document of particular relevance; the ctaimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled in the art. which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use. exhibition or other means document published prior to the international filing date but later than the priority date claimed *&* document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 08/12/2000 20 November 2000 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Bosma, P Fax: (+31-70) 340-3016

1

Intern 121 Application No
PCT/US 00/18578

	PCT/US 00/185			
(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT ategory Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.				
1	HAMILTON G S ET AL: "FKBP12-binding domain analogues of FK506 are potent, nonimmunosuppressive neurotrophic agents		1,13, 17-26	
,	in vitro and promote recovery in a mouse model of Parkinson's disease" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS,GB,OXFORD, vol. 7, no. 13, 8 July 1997 (1997-07-08), pages 1785-1790, XP004136300 ISSN: 0960-894X cited in the application the whole document			
ŕ				
	: :			

International Application No. PCT/US 00 /18578

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Present claims 1-11, 13-26 relate to an extremely large number of possible compounds. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the compounds claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely those parts relating to the compounds according to formula (I) of claim 1, in which A and B are as defined in claim 2, X is nitrogen with y is 1; and to claim 12. It is noted that the search included both the carbocyclic and heterocyclic derivatives of the moiety Q although in claim 1 only the heterocyclic derivatives have been defined, and claim 12 only covers carbocyclic rings of Q.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

harormation on patent family members

Intern 1al Application No PCT/US 00/18578

	atent document d in search report		Publication date		Patent family member(s)	Publication date
WO	9641609	A	27-12-1996	US AU BR CA CN EP PL US US ZA	5654332 A 6111996 A 9609333 A 2222430 A 1202104 A 0831812 A 328723 A 6037370 A 6124328 A 9604852 A	05-08-1997 09-01-1997 13-10-1999 27-12-1996 16-12-1998 01-04-1998 15-02-1999 14-03-2000 26-09-2000 29-07-1996
WO	9910340	A	04-03-1999	AU BR CN EP NO ZA	8923698 A 9811923 A 1271354 T 1007521 A 20000953 A 9807478 A	16-03-1999 15-08-2000 25-10-2000 14-06-2000 02-05-2000 22-02-1999