Assignment 3

If you wish to submit your solutions to any of these questions, please send them via email to your TA by 02/05/2021. This deadline is strict!

Exercise 1 A bin contains n balls, labeled with the numbers 1, 2, ..., n. Exactly m balls are drawn uniformly at random from the bin. Let M be the maximum number of a ball that was drawn.

- 1. Calculate the distribution of M, when the samples are being made without replacement.
- 2. Calculate the distribution of M, when the samples are being made independently with replacement.

Exercise 2 A machine M is capable of sampling from $\{0,1\}$ such that $\mathbb{P}(M=1)=p$ and $\mathbb{P}(M=0)=1-p$ for some **unknown** $p \in (0,1)$. For every positive integer n, let $(L_n, R_n) \leftarrow M^2$ (i.e., we sample pairs of bits), be sampled independently of one another, and independently of all other samples. Define the algorithm A as follows: A will sample (L_n, R_n) until the first time $L_n \neq R_n$, and will then output the left element. Prove that A will output 1 with probability 1/2.

Exercise 3 Let (Ω, \mathbb{P}) be a probability space and let $X, Y : \Omega \to \mathbb{R}$ be random variables. Prove that for every $m \in \mathbb{R}$ it holds that

$$|\mathbb{P}(X=m) - \mathbb{P}(Y=m)| \leq \mathbb{P}(X \neq Y).$$

Exercise 4 A library has a total of N books. N_1 of the books are in English and N_2 of the books are in Hebrew (N could be larger than $N_1 + N_2$). Alice chooses n different books from the library uniformly at random. Let X_1 be the number of books in English that Alice chose and let X_2 be the number of books in Hebrew that Alice chose.

- 1. Calculate the distribution of $X_1 + X_2$.
- 2. After Alice returned all the books she borrowed, Bob came to the library and chose books to borrow in the following way: For every book in the library, he tossed a coin whose outcome is heads with some probability $p \in (0,1)$, all coin tosses being mutually independent. He borrowed each book if and only if the outcome of the corresponding coin toss was heads. Let Y_1 be the number of books in English that Bob chose and let Y_2 be the number of books in Hebrew that Bob chose. Prove that the distribution of $Y_1 + Y_2$, conditioned on the event that Bob took exactly n books, is equal to the distribution of $X_1 + X_2$.

Exercise 5 Let $X \sim \text{Geom}(\lambda n^{-1})$, for some real number $\lambda \geq 0$.

- 1. Calculate $\mathbb{P}\left(X>k\right)$ for every non-negative integer k.
- 2. Prove that

$$\mathbb{P}\left(n^{-1}X > t\right) = \left(1 - \frac{\lambda}{n}\right)^{\lfloor tn \rfloor},\,$$

for all $t \geq 0$.

3. Conclude that

$$\lim_{n \to \infty} \mathbb{P}\left(n^{-1}X > t\right) = e^{-\lambda t},$$

for all $t \geq 0$.