Zifan Wang

Background

Design & Ir

System-leve Hardware Software

Results

Evaluation

An Extensible Framework for At-Speed Evaluation of Arithmetic Hardware

Zifan Wang Supervisor: Dr. James Davis

Imperial College London

June 26, 2019

Zifan Wang

Background

Design & Im plementation System-level

Result

Evaluation

1 Background

2 Design & Implementation System-level Hardware Software

3 Results

4 Evaluation

Zifan Wang

Background

Design & Im-

plementation System-level

Hardware Software

Result

Evaluation

Background

Background

Design & Im plementation System-level

Hardware Software

Result

Evaluation

Motivation

- Started as a specialised evaluation system for high-radix online arithmetic units
 - At-speed (Overclockable)
 - Precision Checking

Motivation

Background

plementation System-level Hardware

nesuit

Evaluation

- Started as a specialised evaluation system for high-radix online arithmetic units
 - At-speed (Overclockable)
 - Precision Checking
- Digital designers all use their own testbenches

Motivation

Background

Design & Implementation System-level Hardware

Result

Evaluation

- Started as a specialised evaluation system for high-radix online arithmetic units
 - At-speed (Overclockable)
 - Precision Checking
- Digital designers all use their own testbenches
- Ad hoc, one-time use, inefficient

Motivation

Background

plementation
System-level
Hardware
Software

riesuite

Evaluatio

- Started as a specialised evaluation system for high-radix online arithmetic units
 - At-speed (Overclockable)
 - Precision Checking
- Digital designers all use their own testbenches
- Ad hoc, one-time use, inefficient
- Propose an extensible framework
 - With variable frequency with a high maximum (Assume DUT @300MHz)
 - Extensible
 - User-friendly

Zifan Wang

Background

Design & Implementation

System-level Hardware

Result

Evaluation

Design & Implementation

Evaluatio

Hardware Choice

Cyclone V SX SoC Development Board

- HPS user interaction and test control
- FPGA actual hardware testing

System-level

System Architecture

- Inspired by UVM agent
- Modular, thus extensible

Zifan Wang

Background

Design & Im

System-level Hardware

Dooult

Evaluatio

System Architecture

 Software accepts user commands from files or command line

Zifan Wang

Background

Design & Im

System-level

Daguille

Evaluation

System Architecture

Randomiser generate random data with LFSRs

Zifan Wang

Background

Design & Im

System-level

_

Evaluatio

System Architecture

 Driver filters inputs and drives them to the DUT and the monitor

Zifan Wang

Background

Design & Im

System-level

D ...

Evaluatio

System Architecture

 Monitor watches for the differences between DUT and reference outputs

Zifan Wang

Background

Design & Im

System-level

Software

riesuit

Evaluation

System Architecture

Scoreboard tallies them and provides results to software

Zifan Wang

Background

Design & Im

System-level

Daguille

Evaluatio

System Architecture

Software reads results and present them to user

Zifan Wang

Hardware

Hardware Project Hierarchy

Adapted from a golden system reference design

Zifan Wang

Background

Design & Im

Hardware Software

Results

Evaluation

Hardware Project Hierarchy

Adapted from a golden system reference design

Already uses Qsys for soc_system

Hardware Project Hierarchy

Adapted from a golden system reference design

- Already uses Qsys for soc_system
- Frequency control uses pll (Phase-locked loop) and pll_reconfig IP, easy integration with Qsys.

Joitware

Hardware Project Hierarchy

Adapted from a golden system reference design

- Already uses Qsys for soc_system
- Frequency control uses pll (Phase-locked loop) and pll_reconfig IP, easy integration with Qsys.
- Great interface for user to connect their design and reference modules

Zifan Wang

Background

Design & In

System-lev

Dagulk

Evaluation

Hardware Project Hierarchy

Access to software through hps

Zifan Wang

Background

Design & Ir

System-le

Results

Evaluatio

Hardware Project Hierarchy

- Access to software through hps
- Access to hardware design through dut and ref

Zifan Wang

System-level

Hardware

Providing test data

 Assume DUT is 32-bit @300MHz, need sustained data input for stress testing

Zifan Wang

Hardware

Providing test data

- Assume DUT is 32-bit @300MHz, need sustained data input for stress testing
- Real time, on board generation of random test data
 - Low effort, significant coverage, can discover subtle errors
 - Include filters to give user control
 - Accept manual inputs from users for critical path

Zifan Wang

Background

Design & I plementati

Hardware Software

nesuit

Evaluatio

Relaxed Reference

- Monitors needs reference module to check correctness
- Has to be functionally correct
- Sensible to have reduced timing requirements
- Harder for users to make mistakes

Hardware

Monitor Structure

- Parallel Monitor
 - Checks all data points in parallel

Zifan Wang

Software

Software Design

- Requirement
 - Manual and auto input controls
 - Test duration
 - PLL frequency

Software Design

Software

- Requirement
 - Manual and auto input controls
 - Test duration
 - PLL frequency
- Considered solutions
 - Test configuration files
 - Easy to build and scale
 - Slightly harder to use and manage
 - Interactive REPL system
 - Intuitive to control
 - Easy to automate and scale

Zifan Wang

Background

Design & Im-

plementation System-level Hardware

Results

Evaluation

Results

Zifan Wang

Background

Design & Imolementation

Hardware Software

Results

Evaluation

Results

- Maximum frequency
 - TimeQuest: 394.01MHz
 - Hardware test: Stable at 400MHz; breaks at 425MHz
 - DUT initially assume to work at 300MHz

Background

Design & Implementation
System-level
Hardware

Results

Evaluation

Maximum frequency

- TimeQuest: 394.01MHz
- Hardware test: Stable at 400MHz; breaks at 425MHz
- DUT initially assume to work at 300MHz

User-friendliness

- Performed an OOTB Testing
- Knowledge of digital designs and testbenches
- No previous knowledge on Qsys or the framework
- · Obtained results in 2 hours
- No major interruptions, positive feedback

Zifan Wang

Results

Background

Design & Im-

System-level Hardware Software

Results

Evaluatio

Maximum frequency

- TimeQuest: 394.01MHz
- Hardware test: Stable at 400MHz; breaks at 425MHz
- DUT initially assume to work at 300MHz
- User-friendliness
 - Performed an OOTB Testing
 - Knowledge of digital designs and testbenches
 - No previous knowledge on Qsys or the framework
 - Obtained results in 2 hours
 - No major interruptions, positive feedback
- Flexibility

Zifan Wang

Background

Design & Implementation
System-level

Hardware Software

Results

Evaluation

Flexibility

Item	Reconfigurability
WIDTH	≤32 bits
NUM_SUB_MON	≥2
f _{dut}	≤400MHz
DUT I/O	2 in 1 out
DUT delay	All values
bitset/bitclr	All values
manual	All values
time	All values

Demo

Background

Design & Im plementation System-level Hardware

Results

Evaluation

Shows the configuration process

Shows software interaction

Command	Explanation
reset	Resets the system and test results.
version	Prints the system version.
freq <speed></speed>	Sets the clock speed to the specified value in MHz. Prints the actual frequency configured.
mode <m a></m a>	Choose between \underline{m} anual and \underline{a} uto test mode.
manual <a b> <hex></hex></a b>	Give input in manual mode.
bitset <a b> <hex></hex></a b>	Force bits to be 1 in auto mode.
bitclr <a b> <hex></hex></a b>	Force bits to be 0 in auto mode.
run <time></time>	Runs the test for the duration specified in seconds. Prints the results at the end of the test.
exit	Exits the REPL.

Zifan Wang

Background

Design & Im-

System-level

Hardware Software

Result

Evaluation

Evaluation

System-leve Hardware Software

Results

Evaluation

What have we done?

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.

xkcd.com/927

Evaluation

Background

Design & Implementation

System-level

Hardwar

Result

Evaluation

Limitations

Customisability of current implementation

Background

Design & Implementation System-level Hardware

Result

Evaluation

- Limitations
 - Customisability of current implementation
- Improvements
 - User experience can be made better with a unified software system + Verilog preprocessor
 - Set up a more powerful HPS-FPGA communication system to allow more insightful results

Evaluation

Background

- LimitationsCustomisability of current implementation
- Improvements
 - User experience can be made better with a unified software system + Verilog preprocessor
 - Set up a more powerful HPS-FPGA communication system to allow more insightful results
- Not limits to the extensibility of the framework

Design & Implementation System-level Hardware Software

Questions?

Design & Im-System-level

Hardware Software

Result

Evaluation

Providing test data

- Assume 32-bit @600MHz, need sustained 19.2Gbps for stress testing
- HPS-FPGA bridge
 - Assume perfect packing and always burst transfer
 - 128-bit @133MHz, 17.0Gbps
- Off-chip SDRAM
 - Assume always burst, access pipelined
 - 32-bit DDR3 @400MHz, 25.6Gbps
 - Sufficient, but needs time to fill up
 - SDRAM controller can be complex to use and manage
- On-chip memory
 - Assume widest possible arrangement
 - 768.9kB @315MHz, 242Gbps
 - Very fast, but extremely small capacity for sustained load
- Real time generation

Zifan Wang

Background

Design & Im-

System-level Hardware Software

Pocult

Evaluation

LFSRs

Zifan Wang

Background

Design & Im-

System-level Hardware

Software Results

Evaluation

Randomiser Structure

Background

Design & Implementation

System-level Hardware Software

Results

Evaluation

Hardware

Hardwar Software

Results

Evaluation

Monitor Structure

- Lazy Monitor
 - Randomly selects data points to check

Software Design

mode: auto
bit.set:

a: 00000001 b: 00000000

bitclr:

a: 00000000 b: 00000001

input:

- a: 00000000 b: 00000000

freq: 200
runtime: 60

> mode auto

> bitset a 00000001

> bitclr b 00000001

> freq 200

PLL Configured to 200.00MHz

> run 60 Results: ...

Zifan Wang

Background

Design & Implementation
System-level
Hardware

Software

Evaluation

REPL Commands

Command	Explanation
reset	Resets the system and test results.
version	Prints the system version.
freq <speed></speed>	Sets the clock speed to the specified value in MHz. Prints the actual frequency configured.
mode <m a></m a>	Choose between <u>manual</u> and <u>auto</u> test mode.
manual <a b> <hex></hex></a b>	Give input in manual mode.
bitset <a b> <hex></hex></a b>	Force bits to be 1 in auto mode.
bitclr <a b> <hex></hex></a b>	Force bits to be 0 in auto mode.
run <time></time>	Runs the test for the duration specified in seconds. Prints the results at the end of the test.
exit	Exits the REPL.

Background

Design & Implementation
System-level

Hardware Software

Result

Evaluation

clk
rand
f_bitset
f_bitclr
drive_dut
drive_mon
dut_out

Background

Design & Implementation
System-level
Hardware

Results

Zifan Wang

Background

Design & Implementation System-level Hardware

Results

Evaluation

Scoreboard

