SOLUTIONS TO HW1

ZIXUAN CHEN X313572 zixuanchen@ucsb.edu

June 2024

Solution To Question 1

- (a): How tall is Stroke Tower is not a proposition as a question is neither true or false.
- (b): Storke Tower is as tall as 33 people stacked on top of each other is a proposition.

The negation is: Storke Tower is not as tall as 33 people stacked on top of each other.

Solution To Question 2

(a): $\neg n$

(b): $t \wedge m$

(c): $n \rightarrow \neg m$

(d): $\neg m \rightarrow (n \lor t)$

Solution To Question 3

(a) If 51 is an even number, then the sky is green.

- \bullet P: "51 is an even number." This is False because 51 is an odd number.
- Q: "The sky is green." This is also False because, typically, the sky is blue.

Since P is false and Q is also false, the statement $P \to Q$ is True.

(b) If 51 is an odd number, then the sky is blue.

- P: "51 is an odd number." This is true.
- \bullet Q: "The sky is blue." This is true.

Since both P and Q are true, the statement $P \to Q$ is TRUE.

(a) It either rains or	it pours.
	i ee j
(b) It is raining on or	ır parade.
	$i\wedge l$
(c) We are having this	s parade, come rain or shine.
	l
Solution To Quest	tion 5
(a) Rafael can ride th	ne elephant only if he is not afraid of heights.
Equivalent statement:	If Rafael rides the elephant, then he is not afraid of heights.
(b) Rafael can ride th	ne elephant if he is not afraid of heights.
Equivalent statement:	If Rafael is not afraid of heights, then he rides the elephant.
(c) Being able to swin	m is a necessary skill needed for Tyra to learn to surf.
Equivalent statement:	If Tyra learns to surf, then she is able to swim.
(d) Being able to swi	m is a sufficient skill needed for Tyra to learn to surf.
Equivalent statement:	If Tyra is able to swim, then she learns to surf.

(a)
$$\neg p \to q \equiv \neg q \to p$$

Proof:

$$\neg p \to q \quad \text{(Given)}
\neg \neg p \lor q \quad \text{(Conditional Identities)}
p \lor q \quad \text{(Double Negative Law)}
q \lor p \quad \text{(Commutative Laws)}
\neg \neg q \lor p \quad \text{(Double Negative Law)}
\neg q \to p \quad \text{(Conditional Identities)}$$

(b)
$$\neg p \rightarrow (q \land \neg q) \equiv p$$

Proof:

$$\neg p \to (q \land \neg q) \quad \text{(Given)}$$

$$\neg p \to F \quad \text{(Complement Laws)}$$

$$\neg \neg p \lor F \quad \text{(Conditional Identities)}$$

$$p \lor F \quad \text{(Double Negative Laws)}$$

$$p \quad \text{(Identity Laws)}$$

(c)
$$(p \land q \land \neg r) \lor (p \land \neg q \land \neg r) \equiv p \land \neg r$$

Proof:

$$\begin{array}{ccc} (p \wedge q \wedge \neg r) \vee (p \wedge \neg q \wedge \neg r) & \text{(Given)} \\ (\neg r \wedge p \wedge q) \vee (\neg r \wedge p \wedge \neg q) & \text{(Commutative Laws)} \\ \neg r \wedge ((p \wedge q) \vee (p \wedge \neg q)) & \text{(Distributive Laws)} \\ \neg r \wedge (p \wedge (q \vee \neg q)) & \text{(Distributive Laws)} \\ \neg r \wedge (p \wedge T) & \text{(Complement Laws)} \\ \neg r \wedge p & \text{(Domination Laws)} \\ p \wedge \neg r & \text{(Commutative Laws)} \end{array}$$

Solution To Question 7

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$(p \to q) \land (q \to r)$	$p \rightarrow r$	$((p \to q) \land (q \to r)) \to (p \to r)$
T	T	T	T	T	T	T	T
$\mid T$	T	F	T	F	F	F	T
$\mid T \mid$	F	T	F	T	F	T	T
$\mid T \mid$	F	F	F	T	F	F	T
F	T	T	T	T	T	T	T
F	T	F	T	F	F	T	T
F	F	T	T	T	T	T	\mid T
F	F	F	T	T	T	T	T

From the truth table, we prove that this is a tautology.

Given the statements:

• Andromeda: "Clytemnestra is the knave."

• Brunhilda: "Andromeda is the knight."

• Clytemnestra: "I am the spy."

Case 1: Andromeda is the knight

If Andromeda is the knight, she tells the truth. Therefore, her statement "Clytemnestra is the knave" is true. Thus:

- Clytemnestra is the knave.
- Brunhilda must be the spy.

We verify the statements:

- Brunhilda says, "Andromeda is the knight." As the spy, she can tell the truth.
- Clytemnestra says, "I am the spy." As the knave, she lies.

Case 2: Brunhilda is the knight

If Brunhilda is the knight, she tells the truth. Therefore, her statement "Andromeda is the knight" must be true. This is a contradiction.

Case 3: Clytemnestra is the knight

If Clytemnestra is the knight, she tells the truth. Therefore, her statement "I am the spy" must be true. This is a contradiction.

Conclusion

- Andromeda is the knight.
- Brunhilda is the spy.
- Clytemnestra is the knave.

Solution To Question 9

$$Q = (\neg p \wedge q \wedge r) \vee (\neg p \wedge \neg q \wedge r) \vee (p \wedge q \wedge r) \vee (p \wedge \neg q \wedge \neg r)$$

(a) An element from the set $B \times A \times C$

(foam, tall, non-fat)

(b) The set $B \times C$ in roster notation

$$B \times C = \{(\text{foam}, \text{non-fat}), (\text{foam}, \text{whole}), (\text{no-foam}, \text{non-fat}), (\text{no-foam}, \text{whole})\}$$

Solution To Question 11

(a) Negation of $\forall x \exists y (P(x,y) \land Q(x,y))$

$$\neg(\forall x \exists y (P(x,y) \land Q(x,y)))$$
$$\exists x \neg(\exists y (P(x,y) \land Q(x,y)))$$
$$\exists x \forall y \neg(P(x,y) \land Q(x,y))$$
$$\exists x \forall y (\neg P(x,y) \lor \neg Q(x,y))$$

(b) Negation of $\exists x \forall y (P(x,y) \rightarrow Q(x,y))$

$$\neg(\exists x \forall y (P(x,y) \to Q(x,y)))$$
$$\forall x \neg(\forall y (P(x,y) \to Q(x,y)))$$
$$\forall x \exists y \neg(P(x,y) \to Q(x,y))$$
$$\forall x \exists y (P(x,y) \land \neg Q(x,y))$$

Solution To Question 12

- P(x): x showed up with a pencil. - C(x): x showed up with a calculator.

(a) At least one of the students showed up with a pencil.

$$\exists x P(x)$$

Negation:

$$\neg(\exists x P(x))$$

$$\forall x \, \neg P(x)$$

English translation: Every student showed up without a pencil.

(b) Every student showed up with a pencil or a calculator (or both).

$$\forall x (P(x) \lor C(x))$$

Negation:

$$\neg(\forall x (P(x) \lor C(x)))$$

$$\exists x \neg (P(x) \lor C(x))$$

$$\exists x \, (\neg P(x) \land \neg C(x))$$

English translation: There is at least a student who showed up without a pencil and without a calculator.

(c) Every student who showed up with a calculator also had a pencil.

 $\forall x (C(x) \to P(x))$

Negation:

$$\neg(\forall x \, (C(x) \to P(x)))$$

$$\exists x \, \neg (C(x) \to P(x))$$

$$C(x) \to P(x) \equiv \neg C(x) \lor P(x)$$

$$\exists x \left(\neg (\neg C(x) \lor P(x)) \right)$$

$$\exists x (C(x) \land \neg P(x))$$

English translation: There is at least a student who showed up with a calculator and without a pencil.

(d) There is a student who showed up with both a pencil and a calculator.

$$\exists x (P(x) \land C(x))$$

Negation:

$$\neg(\exists x (P(x) \land C(x)))$$

$$\forall x \, \neg (P(x) \land C(x))$$

$$\forall x (\neg P(x) \lor \neg C(x))$$

English translation: Every student showed up without a pencil or without a calculator (or both).