

SSD2832G24 Guide

Solomon Systech Limited

晶門科技有限公司

Revision History

Rev.	Date	Author	Description
V0.0	2017. 12.13	Paul Lau	First draft

2

3

Block Diagram – SPI+RGB Interface

Checklist

- Hardware 1)
 - Power supply
 - OSC
 - SPI / MCU interface
 - **RGB** interface
 - Jumper settings
- Software
 - PLL settings
 - LP clock settings
 - Sync width, porch and active display settings
 - Pixel input assignment (RGB and MCU interface)
 - DPHY / CPHY register settings
 - **DSC** settings
 - V2C settings
- MIPI output waveforms 3)
 - CPHY LP/HS command mode
 - **CPHY** video mode
 - DPHY LP/HS command mode
 - DPHY video mode

6

Checklist

- 4) Reference information
 - A. Schematic
 - в. Layout guide
 - c. Initial code, 2 x 1440 x 2560
- 5) Debug steps
 - A. OSC check
 - в. SPI read back
 - c. MIPI LP read back
 - D. MIPI HS read back
 - E. MIPI video BIST mode

Checklist

6) **Q&A**

- A. No display
 - 1. No MIPI output
 - 2. Incorrect MIPI waveform
 - 3. Correct MIPI waveform
- в. Abnormal display
 - 1. Fade out display
 - 2. Display shift
 - 3. Tearing display
 - 4. Flickering display
 - 5. Dotted display
- c. V2C mode
 - 1. Random RAM display only
 - 2. Shifted display
 - 3. Cannot update display image
- D. DSC mode
 - 1. Random RAM display only
 - 2. Incorrect decompression image

1. Hardware

- Power supply
- Oscillator
- SPI Interface
- **RGB** Interface
- MCU Interface

1A Power Supply

- AVDD & VDD_CORE
 - Connect to 1.2V
- VDD3IO
 - Connect to 1.8V or 3.3V
- VCIP
 - Connect to 3.3V

1B Oscillator

▶ Solution 1

- → 5MHz < XTAL_IN ≤ 40MHz
 </p>
- Keep XTAL_OUT OPEN

1B Oscillator

▶ Solution 2

→ 5MHz < XTAL_IN ≤ 40MHz
</p>

1C SPI Interface

3 wire 24bit SPI interface

Write Operation

Read Operation

1C SPI Interface

▶ 3 wire 8 bit

14

P. 14

1C SPI Interface

4 wire 8 bit

Write Operation

P. 15

1D RGB Interface

- Sync Pulses
- SYNC width will not be counted for back porch value

1D RGB Interface

- Sync event
- SYNV width will be counted for back porch value

17

P. 17

1D RGB Interface

- HSYNC is active LOW
- Den is active HIGH
- VSYNC is active LOW
- Make sure PCLK is rising edge trigger
- Rising/Falling edge of HSYNC/VSYNC/DEN/DATA must be matched with PCLK falling edge

1E MCU Interface

Type A, fixed E mode

Illustration of Write Operation

Illustration of Read Operation

1E MCU Interface

Type A, Clocked E mode

Illustration of Write Operation

1E MCU Interface

Type B

Illustration of Write Operation

1E Jumper setting

- TEST_MODE0:
 - ▶ 0: CPHY
 - ▶ 1: DPHY
- IF_SEL_0:
 - 0: SPI + RGB interface
 - ▶ 1: MCU interface
- PN_D:
 - 0: sleep mode
 - 1: normal operation

2. Software

- A. PLL settings
- в. LP clock settings
- c. Input Sync width, porch and active display settings
- D. Output Sync width, porch and active display settings
- E. Pixel input assignment (RGB and MCU interface)
- F. DPHY / CPHY register settings
- G. DSC settings
- н. V2C settings

2A PLL setting - **DPHY**

- Related commands:
- 0xB9Control PLL on/off
- 0xBA PLL freq. setting
- PLL freq. can only be changed when PLL is off
- Minimum PLL clock frequency is related to PCLK
- Min. $PLL = pclk \times 30 \times 2/$ no. of lanes (for 30-bit color)
- E.g. PCLK=130MHz, 30bit color, 8 lanes
- Min.PLL freq. = 975Mbps

2A PLL setting - CPHY

- Related commands:
- 0xB9 Control PLL on/off
- 0xBA PLL freq. setting
- PLL freq. can only be changed when PLL is off
- Minimum PLL clock frequency is related to PCLK
- Min. PLL = pclk x 30 x 2 / no. of lanes / 2.28
- E.g. PCLK=130MHz, 30bit color, 6 lanes
- Min.PLL freq. = 571Msps
- *PS: 1sps = 2.28bps

2B LP clock setting - **DPHY**

- Related commands:
 - ▶ 0xB9 Control PLL on/off
 - OxBA PLL freq. setting
 - ▶ 0xBB LP clock setting
- E.g. TX_CLK=20MHz, 0xBA 0xc132, 0xBB 0x000A

2B LP clock setting - CPHY

- Related commands:
 - OxB9 Control PLL on/off
 - 0xBA PLL freq. setting
 - 0xBB LP clock setting
- E.g. TX_CLK=20MHz, 0xBA 0xc132, 0xBB 0x000A

PLL freq. 0xBB 0x000A

Convert unit "sps" to "Hz"

- ▶ SSD2832 has 1 port of 60-bit RGB input
- Sync width, porch and active display settings of horizontal should be half of the panel setting
- Sync width, porch and active display settings of vertical remain unchanged
- E.g.

	Panel setting	Input setting	
Horizontal Sync width	10	5	
Horizontal back porch	36	18	
Horizontal front porch	100	50	
Horizontal Active display	1440	720	
Vertical Sync width	2	2	
Vertical back porch	10	10	
Vertical front porch	10	10	
Vertical Active display	2560	2560	

- SSD2832 has 2 DSI output
- Sync width, porch and active display setting depends on the no. of DSI output selected

	Related Register	Panel setting	Output setting of 1 DSI	Output setting of 2 DSI
Horizontal Sync width	0xB1	10	10	5
Horizontal back porch	0xB2	36	36+10	18+5
Horizontal front porch	0xB3	100	100	50
Horizontal Active display	0xB4	1440	1440	720
Vertical Sync width	0xB1	2	2	2
Vertical back porch	0xB2	10	10+2	10+2
Vertical front porch	0xB3	10	10	10
Vertical Active display	0xB5	2560	2560	2560

^{*}Horizontal / Vertical back porch of output is the sum of horizontal / vertical sync width and back porch of input

2E Pixel input assignment – RGB Interface

Left/Right mode

Output: 1440x2560

Original Image(RGB in)
Input: 720x2560

Original Image(RGB in)

Input: 720x2560

2E Pixel input assignment – RGB Interface

Copy DSI 0 to DSI 1

Original Image(RGB in) Input: 720x2560

2E Pixel input assignment – RGB Interface

Odd/Even mode

Output: 1440x2560

Original Image(RGB in) Input: 720x2560

Original Image(RGB in) Input: 720x2560

→ 30bit RGB: 10(R)-10(G)-10(B)

2E Pixel input assignment – MCU Interface

▶ 24bit RGB: 8(R)-8(G)-8(B)

▶ 18bit RGB: 6(R)-6(G)-6(B)

2E Pixel input assignment – MCU Interface

▶ 16bit RGB: 5(R)-6(G)-5(B)

2F DPHY / CPHY register setting

- SSD2832 supports both DPHY and CPHY MIPI
- Related register:
- 0xBB

Bit-28	PHY
0	CPHY
1	DPHY

2G DSC setting

- SSD2832 supports DSC compression mode packet transmission
- Related register: 0xB7

Compression mode entry setting:

0xB7	DSC setting	Default setting
Bit-12	1	0
Bit-6	1	0

Keep other settings as normal Video mode except video timing

2H V2C setting

- SSD2832 supports Video to Command(V2C) mode
- This function allows MIPI Tx output convert video packets to command mode packets
- Software control in SCM.0x0010.bit16
 - 0: Disable
 - 1: Enable

Note

- Once V2C is turned on, the MIPI would be in HS link when there is active video input
- It would remain in HS link until the mode is turned off
- User is recommended to switch off V2C periodically (e.g. after 2-3 frames of conversion) as there is a built-in HS timeout

2H V2C setting

- Switching of Video mode to V2C mode
- Set SCM.0x0010.bit16 v2c during VFP of incoming video timing
- To ensure all video data has been transmitted on the TX link, host shall wait for min of 3 hsync after VACT before setting v2c

2H V2C setting

- Switching of V2C mode to Video mode
 - Ensure 0xB7.bit3 VEN is cleared
 - Clear SCM.0x0010.bit16 v2c during VFP of incoming video timing

To ensure all video data has been transmitted on the TX link, host shall wait for min of 3 hsync after VACT before clearing v2c

2H V2C setting - Initialization

Register adr	Data [31:24]	Data [23:16]	Data [15:8]	Data [7:0]	Description
0x00CF	0x00	0x00	0x00	0x06	// set HS TX timer
0x00D0	0x00	0x00	0x9A	0x4F	// set HS TX timer
0x0010	0x1C	0x91	0x0E	0x00	// enable v2c

Register adr	Data [31:24]	Data [23:16]	Data [15:8]	Data [7:0]	Description
0xB7	0x00	0x00	0x03	0x00	// video mode is disable, i.e. VEN=0
0x0010	0x1C	0x90	0x0E	0x00	// disable v2c

3. MIPI output waveforms

- CPHY LP/HS command mode
- CPHY video mode
- DPHY LP/HS command mode
- DPHY video mode

LP command mode

- 0x7000b7, 0x720302
- 0x7000bc, 0x720001
- 0x7000bf, 0x720073

TXA_A0

TXA_B0

TXA_C0

3A CPHY CMD mode MIPI output waveform

HS command mode

- 0x7000b9, 0x720000
- 0x7000c4, 0x720001
- 0x7000b7, 0x720303
- 0x7000bc, 0x720001
- 0x7000bf, 0x723873

TXA_A0(Yellow)
TXA_B0(Blue)
TXA_C0(Green)))

TXA_C0(Green)

**TXA_

The written value can't be identified directly, need decoding according to the CPHY Wire states.(please refer to CPHY MIPI spec)

3B CPHY Video mode MIPI output waveform

3C DPHY CMD mode output MIPI waveform

- LP command(generic short write, 1 parameter)
- 0x7000b7, 0x720302
- 0x7000bc, 0x720001
- 0x7000bf, 0x723873

TXA_DP0
TXA_DN0

3C DPHY CMD mode output MIPI waveform

- HS Command(generic short write, 1 parameter)
- 0x7000b9, 0x720000
- 0x7000c4, 0x720001
- 0x7000b7, 0x720303
- 0x7000bc, 0x720001
- 0x7000bf, 0x720073

TXA_CP

TXA_DP0 TXA_DN0

3D DPHY Video mode output MIPI waveform

4. Reference Information

- A. Schematic
- в. Layout guideline
- c. Reference Initial Code

4A Schematic

SSD2832 reference schematic

53

4B Layout Guideline - CPHY

MIPI lanes

- MIPI lane traces should be routed with controlled 50 Ohm Single-ended impedance (+/-15%).
- Length matching is required.
- Length of MIPI lane should be as short as possible, no more than 20cm.
- ▶ Bends on traces should be ≥135°. Tighter bends should be avoided.

Layer of PCB board

4 layers is suggested

Via of BGA

Via of BGA should be 8mil

4B Layout Guideline - DPHY

MIPI lanes

- P/N pairs of MIPI should be routed with controlled 100ohm differential impedance(+/-20%)
- Length matching is required.
- Length of MIPI lane should be as short as possible, no more than 20cm.
- The traces length difference should be less than 5mil

Layer of PCB board

4 layers is suggested

Via of BGA

Via of BGA should be 8mil

4C Reference Initial Code

- 4 Initial codes in the excel worksheet
 - 24-bit MCU mode
 - 48-bit MCU mode
 - 30-bit DPHY Video mode
 - → 30-bit CPHY Video mode

		U3C 111	.y. 201	V1114				
Modify FPB,0,1.8			size: 2		600			
VDDVoltage VDD1,0		•		JOOKI	000			
Modify PUB,0,0x100F90		pll: 10	abps					
IOP EXT_OUT,CLR,0		Pclk: 130Mhz						
Modify PUB,0,0x0080								
IOP EXT_OUT,SET,0		output: DPHY 2DSI 8 lanes						
Modify PUB,0,0x0100	,							
IOP EXT_OUT,SET,0								
Modify PUB,0,0x0200								
IOP EXT_OUT,SET,0								
Modify PUB,0,0x0800								
IOP EXT_OUT,SET,0								
Modify PUB,0,0x100000		//sync on						
IOP EXT_OUT,SET,0								
//Modify PUB,0,0x100000		//sync off,	check bist	mode				
//IOP EXT_OUT,CLR,0								
LE US DUD O O OOLO					-			
Modify PUB,0,0x0010					-			
IOP EXT_OUT,SET,0					-			
Modify PUB,0,0x0400					-			
IOP EXT_OUT,SET,0					-			
Issue					_	_		
wait 200ms					-			
wait 200ms					_			
Modify FPB,0,1.8					-			
VDDVoltage VDD0,0								
Modify FPB,0,1.8								
VDDVoltage VDD1,0								
VDD VOILIGE VDD1,0								
wait 200ms								
wat 200mb								
ClipImg 1280, 1600	//2560, 16	00						
SetClock 0,50,130//80.0 //set pixel clock								
Modify FPGA,23,0x40	//vsyn -ve							
Modify FPGA,15,3 //set HSync								
Modify FPGA,16,27 //set HBP								
Modify FPGA,17,1280	//set HAct	ive						
Modify FPGA, 18,60 //set HFP								
Modify FPGA, 19,4 //set VHync								
Modify FPGA,20,4 //set VBP								
Modify FPGA,21,1600 //set VActive								
Modify FPGA,22,12 //set VFP								
//display image								
DrawFigure CLIPSIZE,0,0				-				
DrawColor IMM,0,0,0				-				
DrawFigure LOCATE,0,0								
DrawFigure LINE,159,0				-	-			
DrawColor IMM,255,0,0					-			
DrawFigure LOCATE,160,0				-	+			
DrawFigure LINE,319,0				-	+			
DrawColor IMM,0,255,0					-			
DrawFigure LOCATE,320,0 DrawFigure LINE,479,0					-			
DrawFigure LINE,479,0 DrawColor IMM,255,255,0					-			
DIAWCOIOI IIVIIVI,233,233,0								

5. Debug Steps

- OSC check
- SPI read back
- MIPI LP read back
- MIPI HS read back
- MIPI video BIST mode

5A. OSC Check

- Both Oscillator and Crystal can be clock solutions
- 5MHz < OSC frequency ≤ 40MHz
- TE_OUT_0 can output same frequency of the external clock.

If oscillator is adopted as clock source, make sure to keep XTAL_OUT pin open

5B. Reset Timing

- Reset "low" pulse width must ≥ 10us
- Initialization of SSD2832 should be after reset high

59

Dec 2017

P. 59

5C. SPI read back

Read SSD2832 ID(0xB0)

- E.g. 3 wire 24-bit SPI read
- 0x002830 will be returned

5D. MIPI LP read back

MIPI LP write: Rx register (BTA)

Tx SSD2832

Rx register data

Rx Display Driver

• E.g. LP Generic read back

0x7000b7, 0x720382 0x7000c1, 0x720001 0x7000c0, 0x720001 0x7000bc, 0x720001 0x7000bf, 0x7000b3

*LP frequency of Tx should match with RX

61

5E. MIPI HS read back

HS Generic read back

0x7000b9, 0x720000 0x7000c4, 0x720001 0x7000b7, 0x720383 0x7000c1, 0x720001 0x7000c0, 0x720001 0x7000bc, 0x720001

5F. MIPI Video Bist Mode

Related APB register:

- 0x5000
- → 0x5004
- 0x5008
- 0x500C
- ▶ 0x5010
- ▶ 0x5014
- → 0x5018

Display Pattern of bist mode 0

6. Q&A

No display

- No MIPI output
- Incorrect MIPI waveform
- Correct MIPI waveform
- MIPI read error

Abnormal display

- Fade out display
- Display shift
- Tearing display
- Flickering display
- **Dotted display**

V2C mode

- Random RAM display only
- Shifted display
- Cannot update display image

DSC mode

- Random RAM display only
- Incorrect decompression image

1. No MIPI Output

- check power supply (refer to section 1A)
- check oscillator (refer to section 1B and 5A)
- check SPI interface (refer to section 1C)
- try SPI read (refer to section 5C)
- check resect timing (refer to section 5B)

2. Incorrect MIPI waveform

- Check whether PLL is greater than min. PLL requirement (refer to section 2A)
- Make sure PLL ≤ 1.5Gbps for DPHY and 1.5Gsps for CPHY

- 3. No display even have correct MIPI waveform
 - Check whether MIPI video can sync with VSYNC

- Check porch setting, display size(refer to section 2C and 2D)
- Check Pclk / Hsync / Vsync polarity(refer to section 1D)
- Several MIPI Rx ICs do not have internal oscillator, so they need MIPI clock for normal operation including generic/DCS command. 0xB7 bit-1 "CKE" must be "1" to enable HS clock output all the time.
- Try Bist Mode(refer to section 5E)

4. MIPI read error

- SoT Error
 - Check prepare / zero timing
- Sot Sync Error
 - Check prepare / zero timing
- EoT Sync Error
 - Check EOT timing
- Peripheral Timeout Error
 - Check LP frequency, need to match with panel
- ECC Error, single-bit(detected and corrected)
 - Lane quality issue, check MIPI lane connection or slow down PLL
- ECC Error, multi-bit(detected, not corrected)
 - Lane quality issue, check MIPI lane connection or slow down PLL
- DSI Protocol Violation
 - ▶ Check MIPI lane connection e.g. Open circuit? Lane swapped?

6B. Abnormal display

- 1. Fade out display
 - Check video input connection, discontinue of Hsync / Vsync / DEN / PCLK will cause fading out display.
 - Check MIPI link quality, packet dropped will cause this issue
 - Can try to decrease both PCLK and PLL for debug

Process of fading out

6B. Display shift

- ▶ 2. Display shift
 - Check VSYNC / HSYNC setting(refer to section 2C)
 - Check polarity and porch setting(refer to section 1D and 2D)

6B. Abnormal Display

- 3. Tearing display
 - Pixel clock is too fast or PLL is too slow will cause such tearing effect.

Tearing effect

6B. Abnormal Display

- 4. Flickering display
 - Check PLL frequency which maybe too fast(refer to section 2A)

6B. Abnormal Display

- ▶ 5. Dotted display
 - Noise from PCLK / HSYNC / VSYNC. Please reduce the noise or adjust delay time for PCLK.

red / blue / green dots -

6C. V2C mode

- ▶ 1. Random RAM display only
 - Check whether the panel is in CMD mode
 - Check whether MIPI lane is in HS mode
 - Check V2C initialization sequence(follow section 2H, page___)
 - Check whether PLL is too slow(refer to section 2A)
 - Check HS read back from panel

6C. V2C mode

- 2. Shift display
 - Check RAM size related settings
 - ► Related command : 0xBCh, 0xBDh, 0xBEh
 - Check RAM Size of the panel
 - ▶ Related command: 0x2Ah, 0x2Bh of panel register

6C. V2C mode

- 3. Cannot update display image
 - User is recommended to switch off V2C periodically (e.g. after 2-3 frames of conversion) as there is a built-in HS timeout (refer to section 2H, page___)
 - Send V2C ON command in order to update display image(refer to section) 2H, page___)

6D. DSC mode

- 1. Random RAM display only
 - Check whether command mode output is enabled
 - ▶ Make sure the correct settings of 0xBCh, 0xBDh and 0xBE
 - Check whether the HS communication has no error
 - Make sure the correct HS read from panel

6D DSC mode

- 2. Incorrect decompression image
 - Check whether compression mode packet is enabled(refer to section 2G)
 - Enable bit-12 and bit-6 of 0xB7
 - Check whether RGB input signal is correct
 - Make sure the connection of all data pins
 - Check whether panel initial code is correct
 - Make sure panel compression mode is enabled

Thank You