MA 35300: HW 9

Jason Shipp

November 3, 2016

Problem 1

Answer

- (a) If A is similar to λI_n , then there exists Q_{-1} and Q such that $A = Q^{-1}\lambda I_n Q$ $= \lambda Q^{-1}I_n Q$ $= \lambda Q^{-1}Q$ $= \lambda I_n \square$
- (b) Let A be some diagonal matrix with elements along the diagonal a_1, \ldots, a_n with the rest of the elemnts being zero

 Then the characteristic polynomial of $A, p(\lambda) = det(A \lambda I_n) = (a_1 \lambda)...(a_n \lambda)$ Which means that for the diagonal matrix the eigen values are the values a_1, \ldots, a_n This means the matrix having only one eigen value is the matrix whose diagonal is λ, \ldots, λ or $\lambda * I_n \square$
- (c) $A \lambda I_n = \begin{pmatrix} 1 \lambda & 1 \\ 0 & 1 \lambda \end{pmatrix}$ $p_A(\lambda) = \det(A - \lambda I_n) = (1 - y)(1 - y)$ Therefore the only eigen value of A is 1 The nullity of $A - 1 * I_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ is one. Therefore we cannot find a set of 2 independent eigenvectors for a, which means A cannot be diago-

Problem 2

nizable. \square

Answer

(a) If A is similar to B then there exists Q^{-1} and Q such that $A = Q^{-1}BQ$ $p_A(\lambda) = det(A - \lambda I_n)$ $p_B(\lambda) = det(B - \lambda I_n)$ $= det(B - \lambda I_n)det(I_n) = det(B - \lambda I_n)(QQ^{-1})$ $= det((B - \lambda I_n)(QQ^{-1})) = det(Q^{-1}BQ - \lambda I_n)$ $= det(A - \lambda I_n)$ Therefore similar matrices have the same characteristic points.

Therefore similar matrices have the same characteristic polynomial. \Box

(b) Let Q be the matrix which takes $\beta \to \beta'$ Let B be the matrix representation of one of the matrixes in T By it's construction $A=Q^{-1}BQ$ Therefor A is similar to B and by part a: $p_A(\lambda) = p_B(\lambda)$ independent of choice of vbases \square

Problem 3

Answer

$$\begin{aligned} p_A(\lambda) &= \det(A - \lambda I_n) \\ &= \det(A - \lambda I_n)^t \\ &= \det((A - \lambda I_n)^t) \\ &= \det(A^t - \lambda I_n) \\ &= p_{A^t}(\lambda) \end{aligned}$$

Problem 4

Answer

Because B is invertible we can say that $A+cB=(B^{-1}A+cI_n)B$ $det(A+cB)=det(B^{-1}A+cI_n)det(B)$

This means the determinant is a polynomial of c which has some countable number of zeroes Therefore we can always get some value $c \in \mathbb{C}$ such that the determinant is nonzero and A+cB is not invertible