

Ministério da Educação Universidade Tecnológica Federal do Paraná

Campus Cornélio Procópio

2ª Lista de Exercícios - Análise Matemática II

Prof. André L. M. Martinez

- 1. A fim de que $f: X \to \mathbb{R}$ seja derivável no ponto $a \in X \cap X'$ é necessário e suficiente que exista uma função $\eta: X \to \mathbb{R}$, contínua no ponto a, tal que $f(x) = f(a) + \eta(x)(x-a)$ para todo $x \in X$.
- 2. Seja $f: X \to \mathbb{R}$ derivável no ponto $a \in X \cap X'$, com f(a) = h(a) e f'(a) = h'(a) prove que g é derivável nesse ponto, com g'(a) = f'(a).
- 3. Seja I um intervalo com centro 0. Uma função $f: I \to \mathbb{R}$ chama-se par quando f(-x) = f(x) e ímpar quando f(-x) = -f(x), para todo $x \in I$. Se f é par, suas derivadas de ordem par (quando existem) são funções pares e suas derivadas de ordem ímpar são funções ímpares. Em particular, estas últimas se anulam no ponto 0. Enuncie resultado análogo para f ímpar.
- 4. Seja $f: \mathbb{R} \to \mathbb{R}$ derivável, tal que f(tx) = tf(x) para quaisquer $t, x \in \mathbb{R}$. Prove que f(x) = f'(0).x, qualquer que seja $x \in \mathbb{R}$. Mais geralmente, se $f: \mathbb{R} \to \mathbb{R}$ é k vezes derivável e $f(tx) = t^k.f(x)$ para quaisquer $t, x \in \mathbb{R}$, prove que $f(x) = [f^{(k)}(0)/k!].x^k$, para todo $x \in \mathbb{R}$.
- 5. Seja $f:[a,b]\to\mathbb{R}$ contínua, derivável no intervalo aberto (a,b), com $f'(x)\geq 0$ para todo $x\in(a,b)$. Se f'(x)=0 apenas num conjunto finito, prove que f é crescente.
- 6. Se $f: I \to \mathbb{R}$ cumpre $|f(y) f(x)| \le c|y x|^{\alpha}$ com $\alpha > 1, c \in \mathbb{R}$ e $x, y \in I$ arbitrários, prove que f é constante.
- 7. Suponha que g(t) seja uma primitiva de f(t) em [0,1], isto é, para todo t em [0,1], g'(t) = f(t). Suponha, ainda, que f(t) < 1 em (0,1). Prove que

$$g(t) - g(0) < t$$
, em $(0, 1]$.

- 8. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função. Dizemos que x_0 é um ponto fixo de f se $f(x_0) = x_0$.
 - (a) Determine os pontos fixos de $f(x) = x^2 3x$;
 - (b) $f(x) = x^2 + 1$ admite ponto fixo;
 - (c) Mostre que f terá ponto fixo se o gráfico de f interceptar a reta y = x.

9. Seja f definida em \mathbb{R} e derivável em p. Suponha f'(p) > 0. Prove que existe r > 0 tal que

$$f(x) > f(p)$$
 em $(p, p + r)$ e $f(x) < f(p)$ em $(p - r, p)$

- 10. Seja f definida e derivável em $\mathbb R$ e sejam a e b raízes consecutivas de f. Mostre que $f(a).f(b) \leq 0$
- 11. Suponha que f derivável no intervalo I. Prove que se f for estritamente crescente em I, então $f'(x) \geq 0$ em I.
- 12. Determine o ponto da parábola $y=x^2$ que se encontra mais próximo da reta y=x-2.
- 13. Mostre que, para todo $x \ge 0$, $e^x > x$.
- 14. Determine o polinômio de Taylor, de ordem 4, de $f(x) = e^x$ em volta de $x_0 = 0$.
- 15. Utilizando o polinômio de Taylor de ordem 2, calcule um valor aproximado e avalie o erro.
 - (a) ln 1.3

(c) $\sqrt{3.9}$

(b) $\sqrt{4.1}$

(d) sen0.1

16. Mostre que, para todo x,

(a)
$$|\sin x - x| \le \frac{1}{3!} |x|^3$$

(b)
$$\left| \cos x - \left(1 - \frac{x^2}{2} \right) \right| \le \frac{1}{2} x^3$$
.

17. Utilizando a relação $sen x = x + o(x^2)$, calcule

(a)
$$\lim_{x \to 0} \frac{\operatorname{sen} x - x}{x^2}$$

(b)
$$\lim_{x \to 0^+} \frac{\sin x - x^2}{x^2}$$

- 18. Mostre que o número e é irracional.
- 19. Dê uma demonstração de que $f'' \geq 0$ então f é convexa usando a fórmula de Taylor.
- 20. Examine a convexidade da soma e do produto de duas funções convexas.