

Vector Space Model

NLP Andreas Marfurt

Information Technology 27.02.2025

Overview

- Representing text
 - Words
 - Sentences/Documents
- Bag of words
 - One-hot encoding
 - TF-IDF
- Cosine similarity

(You have seen this in ADML. Check if my explanation matches your memory.)

Representing Text

- Represent text with numbers, so we can compute something with it
- How should we do that?

Representing Text

- Document 1: "Science is a rigorous, systematic endeavor that builds and organizes knowledge in the form of testable explanations and predictions about everything." (Wikipedia)
- Document 2: "The last question was asked for the first time, half in jest, on May 21, 2061, at a time when humanity first stepped into the light." (<u>The Last</u> <u>Question</u>)

Representing Text

- Build a vocabulary: [science, is, a, rigorous, ...]
- Use one-hot encoding
 - Vector with length of vocabulary
 - Each dimension is a word
 - Word vector is all 0, except 1 for the position of the word in the vocabulary
 - Example "is": [0, 1, 0, 0, ...]

Vector Space Model

- Document vectors: Combination of all their words
 - 1 if present, 0 if absent (= max of word vectors)
 - Use word count (= sum of word vectors)
- Word ordering doesn't play a role in this model, just counts
 - This is called the "bag of words" (BoW) model

• Build a word-document matrix (large and sparse)

	Document 1	Document 2	Document 3	Document 4
Word 1	1	0	3	0
Word 2	0	0	1	0
Word 3	0	0	0	1
Word 4	2	0	1	0
Word 5	0	0	0	0

Build a word-document matrix (large and sparse)

Document representation

		Document 1	Document 2	Document 3	Document 4
Word representation	Word 1	1	0	3	0
	Word 2	0	0	1	0
	Word 3	0	0	0	1
	Word 4	2	0	1	0
	Word 5	0	0	0	0
	•••				

 Pros: Simple to understand, efficient and effective for easy tasks

- Cons: Word order matters, does not relate words (all are equally far apart)
 - cat and feline
 vs.
 - cat and beach

- Intuition: If a term appears 50 times in a document, it is more important for that document than if it appears only once
- Term frequency (TF): TF(term t, doc d) = count(t, d)
- ... but 50 times as important?
 - Can use sublinear function, e.g. logarithmic:
 TF(t, d) = ln(1 + count(t, d))

- Some words (stopwords) appear often in almost all documents (the, a, an, is, I, am, ...)
 - They are not indicative of the content of the document
- Idea: Down-weight the terms that appear in many documents
- Document frequency (DF_t): In how many documents does term t appear?
- Inverse document frequency (IDF):
 IDF(t) = log(|D| / DF_t)

TF-IDF Model

- Combines frequency (TF) with how much information the term provides (IDF)
- TF-IDF(t, d) = TF(t, d) \times IDF(t)

TF-IDF Model

Weights of frequent words get reduced

	Document 1	Document 2	Document 3	Document 4
Word 1	0.05	0	0.33	0
Word 2	0	0	0.04	0
Word 3	0	0	0	0.2
Word 4	0.001	0	0.1	0
Word 5	0	0	0	0

Measuring Similarity

- We would like to relate documents, determine their similarity
- Find similar documents
 - Retrieval: Find similar documents to a query "document"
 - Recommendation: Similar articles to the ones you liked

Measuring Similarity

- Euclidean distance: Distance between points euclid(d_1 , d_2) = $|d_1 - d_2|$
- Should d₂ and d₃ be equally far from d₁?
 - Not if our dimensions are terms/semantic concepts
 - Direction is more important than length
- Curse of dimensionality: Everything is equally far apart in high dimensions

Measuring Similarity

• Cosine similarity: Angle between vectors $cos(d_1, d_2) = d_1d_2/(|d_1||d_2|)$

Vector Space Model

Pros

- simple, well-founded approach
- continuous degree of similarity between queries and documents
- ranks documents according to relevance
- allows for partial matching

Cons

- documents/queries with similar content but different term vocabularies (e.g., synonyms or plurals) will not be associated
- word order in documents is ignored ("parking fine" vs. "fine parking")