WZ4 NIZW MOSZ TECNICUE ("PARADIGMI") X PROJECT ALGO. FUTURI ARGUMENT ZODM \$U TECMONE ALGORITHICHE - ALGORIUM GREEDY - PROGRATIONE DINATICA - BLGO, PER MAX FLOW CROBLEMI NP-COMPLETI ESAMI · 6 APPELLI · PUSSO DERIDERE CHE MOD. FARE ALGORITMI GREE VEDRETO Z ALGORITHI GRERDY: 1 INTERVAL SCHEDULING -DAM DRI PROBLEMA: INSIEME DI "JOBS" (PROCESSI) CON: · A -> ISTANGE DI INIZIO JOB 6BB.): IN UN INTERVALLO + TO METTERE CUBITI PIÙ TOBS & COMPATBLE POSSIBLE! N.B. TOBJ COTPATBLE JOBS CON INTERNOLLI DI t IN CORUNE

· JORT JOBS IN UN			
. APPROCCUS GREEDY			
(> COM ROLD)			
ORDINE SORT -> # OPPO		1 5010	WORK
(1) EARLIEST START TIME		prouse Lui	RE BBE
0		+	
(Z) SWRTEST INTERVAL			
	KE HIM		
		TAKE F	4 E 7
(3) FEWER CONFLICT			~

E

IL MIGHORE & SORT BY FINISH - TIME QUINOI. S = START TIME E OTTIMISSARE X COFROURD, BASTA EARLIEST-FINISH-TIME-FIRST $(n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)$ SORT jobs by finish times and renumber so that $f_1 \le f_2 \le ... \le f_n$. $S \leftarrow \varnothing$. set of jobs selected FOR j = 1 TO nIF J > F, -> COPPOTIBLE IF (job *j* is compatible with *S*) $S \leftarrow S \cup \{ j \}.$ RETURN S. -> C(CLO DI CONFRONTI = O(n) -> SORT = O(nlgm) O(n.logn XCHE E IL MIGHORE? DIM SIA SET JOB CHOOSE GREDY (1 OPTIMO2 J1, J2, ..., Jn 11 (PLG. ORINO) LENGE: $\times V = 0,1,...,K$ $f(i_r) \leq f(T_r)$ INDUSTONE > IL TEMPS F(it) DRUE < f(Jr) t=1 -> ow10 ALTRINEUT COULD TAKE

· GREEDY	NOT OF	-1M1 JE			
	1 m>k,_	MQ:			
Greedy:	i_1 i_2	i_3 i_k			
Optimal:	j_1 j_2	j_3 j_k	<i>j</i> _{k+1}		
<u> </u>			C> SE VER DA	CL FOSSE 'IU REB'RE PRRSO GREEDY	TKIJ, QUESTO
GREED.	Y ALGO.	OPTIMAL	_ (\omega	MCRADDIZ COUS	Z
IMER	VAL PAC	271710012	16		
- INPUT	->·SE+ tc	DBS CON ((z't) nom	pel Di Peru)
-50L."FL	EJ31131176,, ->	SUBSRI OF PART OF JOB	JOB € 1	N C= 1, 2,,	n VColtlene
-00TP(ンベー > H【N	m. CLASS ((C), OW	UNO CONTIENE	JOB. COMPATBLE.
PALGO	RITMO ->	SIMILLE A	SCHEDUL.		
		SIMILLE A			
	DRY JOB		E DA TR		
	JORT JOBS Sufrouro TRE L> 1F	S -> SROIM	E DA TR		
	DRT JOBS outrouro TRE L> 1F	S -> ORPING S JOB-CLASS & COMPAT.	E DA TR	ovark	
- G	JORT JOBS OFFICE OF THE STREET	S -> ORPIN S JOB - CLASS OF COMPAT. JOB U CLASS	E DA TR	ovare ss' u jubs	

ALGO RITIO

EARLIEST-START-TIME-FIRST $(n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)$

SORT lectures by start times and renumber so that $s_1 \leq s_2 \leq ... \leq s_n$.

 $d \leftarrow 0$. — number of allocated classrooms

FOR j = 1 TO n

IF (lecture *j* is compatible with some classroom)

Schedule lecture *j* in any such classroom *k*.

ELSE

Allocate a new classroom d + 1.

Schedule lecture i in classroom d + 1.

 $d \leftarrow d + 1$.

RETURN schedule.

$$.DRT -> O(n logn)$$

$$\begin{array}{lll}
\text{SORT} &> O(n \log m) \\
\text{OP } &\cup C \cdot PP4 \text{ ORITA} &> OP \cdot TOTAM IS O(m) \cdot, OGNUND \\
\text{IN } &\cup O(lym)
\end{array}$$

$$\begin{array}{llll}
\text{TOT} &= O(n \cdot \log m)
\end{array}$$

Def. The depth of a set of open intervals is the maximum number of intervals that contain any given point.

Key observation. Number of classrooms needed ≥ depth.

- Q. Does minimum number of classrooms needed always equal depth?
- A. Yes! Moreover, earliest-start-time-first algorithm finds a schedule whose number of classrooms equals the depth.

Observation. The earliest-start-time first algorithm never schedules two incompatible lectures in the same classroom.

Theorem. Earliest-start-time-first algorithm is optimal.

- Let d = number of classrooms that the algorithm allocates.
- Classroom d is opened because we needed to schedule a lecture, say j, that is incompatible with a lecture in each of d-1 other classrooms.
- Thus, these d lectures each end after s_i .
- Since we sorted by start time, each of these incompatible lectures start no later than s_j .
- Thus, we have d lectures overlapping at time $s_i + \varepsilon_i$