ガンマ分布の中心極限定理とStirlingの公式

黒木玄

2016年5月1日作成*

目次

0	Stirling の公式	2
1	ガンマ分布に関する中心極限定理からの"導出"	2
2	ガンマ分布の特性函数を用いた表示からの導出	3
	2.1 Stirling の公式の証明	3
	2.2 正規化されたガンマ分布の確率密度函数の各点収束	4
3	ガンマ函数の Gauss 積分による近似を使った導出	5
4	対数版の易しい Stirling の公式	6
	4.1 易しい証明	6
	4.2 大学入試問題への応用例	7
5	付録: Fourier の反転公式	8
	5.1 Gauss 分布の場合	8
	5.2 一般の場合	9
6	付録: ガウス分布の Fourier 変換	11
	6.1 熱方程式を使う方法	11
	6.2 項別積分で計算する方法	11
	6.3 Cauchy の積分定理を使う方法	
7	付録: Gauss 積分の計算	12
	7.1 極座標変換による計算	13
	7.2 Jacobian を使わずにすむ座標変換による計算	13
	7.3 ガンマ函数とベータ函数の関係を用いた計算	13
	7.4 同一の体積の2通りの積分表示を用いた計算	
	7.5 他の方法	

^{*2016} 年 5 月 1 日 Ver.0.1. 2016 年 5 月 2 日 Ver.0.2: 対数版の易しい Stirling の公式の節を追加した. 2016 年 5 月 3 日 Ver.0.3: 色々追加. 特に Fourier の反転公式に関する付録を追加した. 2016 年 5 月 4 日 Ver.0.4: ガウス分布の Fourier 変換の付録と Gauss 積分の計算の付録を追加した.

0 Stirlingの公式

Stirling の公式とは

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$
 $(n \to \infty)$

という階乗の近似公式のことである. ここで $a_n \sim b_n \ (n \to \infty)$ は $\lim_{n \to \infty} (a_n/b_n) = 1$ を意味する. このノートではまず最初にガンマ分布に関する中心極限定理から Stirling の公式が "導出" されることを説明する. 精密かつ厳密な議論はしない.

1 ガンマ分布に関する中心極限定理からの"導出"

ガンマ分布とは次の確率密度函数で定義される確率分布のことである1:

$$f_{\alpha,\tau}(x) = \begin{cases} \frac{e^{-x/\tau} x^{\alpha-1}}{\Gamma(\alpha)\tau^{\alpha}} & (x > 0), \\ 0 & (x \le 0). \end{cases}$$

ここで $\alpha, \tau > 0$ はガンマ分布を決めるパラメーターである². 以下簡単のため $\alpha = n > 0$, $\tau = 1$ の場合のガンマ分布のみを扱うために $f_n(x) = f_{n,1}(x)$ とおく:

$$f_n(x) = \frac{e^{-x}x^{n-1}}{\Gamma(n)}$$
 $(x > 0).$

確率密度函数 $f_n(x)$ で定義される確率変数を X_n と書くことにする. 確率変数 X_n の平均 μ_n と分散 σ_n^2 は両方 n になる³:

$$\mu_n = E[X_n] = \int_0^\infty x f_n(x) \, dx = \frac{\Gamma(n+1)}{\Gamma(n)} = n,$$

$$E[X_n^2] = \int_0^\infty x^2 f_n(x) \, dx = \frac{\Gamma(n+2)}{\Gamma(n)} = (n+1)n,$$

$$\sigma_n^2 = E[X_n^2] - \mu_n^2 = n.$$

ゆえに確率変数 $Y_n=(X_n-\mu_n)/\sigma_n=(X_n-n)/\sqrt{n}$ の平均と分散はそれぞれ 0 と 1 になり, その確率密度函数は

$$\sqrt{n}f_n(\sqrt{n}y+n) = \sqrt{n}\frac{e^{-(\sqrt{n}y+n)}(\sqrt{n}y+n)^{n-1}}{\Gamma n}$$

になる⁴. この確率密度函数で y=0 とおくと

$$\sqrt{n}f_n(n) = \sqrt{n}\frac{e^{-n}n^{n-1}}{\Gamma(n)} = \frac{n^n e^{-n}\sqrt{n}}{\Gamma(n+1)}$$

¹ガンマ函数は s>0 に対して $\Gamma(s)=\int_0^\infty e^{-x}x^{s-1}\,dx$ と定義される. 直接の計算によって $\Gamma(1)=1$ を、部分積分によって $\Gamma(s+1)=s\Gamma(s)$ を示せるので、0 以上の整数 n について $\Gamma(n+1)=n!$ となる.

 $^{^{2}\}alpha$ は shape parameter と, τ は scale parameter と呼ばれているらしい.

³確率密度函数 f(x) を持つ確率変数 X に対して、期待値汎函数が $E[g(X)] = \int_{\mathbb{R}} g(x)f(x)\,dx$ と定義され、平均が $\mu = E[X]$ と定義され、分散が $\sigma^2 = E[(X-\mu)^2] = E[X^2] - \mu^2$ と定義される.

 $^{^4}$ 確率変数 X の確率分布函数が f(x) のとき、確率変数 Y を Y=(X-a)/b と定めると、 $E[g(Y)]=\int_{\mathbb{R}}g((x-a)/b)f(x)\,dx=\int_{\mathbb{R}}g(y)bf(by+a)\,dy$ なので、Y の確率分布函数は bf(by+a) になる.

となる. n>0 が整数のとき $\Gamma(n+1)=n!$ なので, これが $n\to\infty$ で $1/\sqrt{2\pi}$ に収束することと Stirling の公式の成立は同値になる.

ガンマ分布が再生性を満たしていることより、中心極限定理を適用できるので、 $\mathbb R$ 上の有界連続函数 $\varphi(x)$ に対して、 $n\to\infty$ のとき

$$\int_0^\infty \varphi\left(\frac{x-n}{\sqrt{n}}\right) f_n(x) \, dx = \int_0^\infty \varphi(y) \sqrt{n} f_n(\sqrt{n}y+n) \, dy \longrightarrow \int_{-\infty}^\infty \varphi(y) \frac{e^{-y^2/2}}{\sqrt{2\pi}} \, dy.$$

 $\varphi(y)$ をデルタ函数 $\delta(y)$ に近付けることによって (すなわち被積分函数の y に 0 を代入することによって),

$$\sqrt{n}f_n(n) = \sqrt{n}\frac{e^{-n}n^{n-1}}{\Gamma(n)} = \frac{n^n e^{-n}\sqrt{n}}{\Gamma(n+1)} \longrightarrow \frac{1}{\sqrt{2\pi}} \qquad (n \to \infty)$$

を得る. この結果はStirlingの公式の成立を意味する.

以上の"導出"の最後のステップには論理的にギャップがある。このギャップを埋めるためには中心極限定理をブラックボックスとして利用するのではなく、中心極限定理の特性函数を用いた証明に戻る必要がある。そのような証明の方針については次の節を見て欲しい。

2 ガンマ分布の特性函数を用いた表示からの導出

前節では中心極限定理を便利なブラックボックスとして用いて Stirling の公式を "導出" した. しかし, その "導出" には論理的なギャップがあった. そのギャップを埋めるためには, 中心極限定理が確率密度函数を特性函数 (確率密度函数の逆 Fourier 変換) の Fourier 変換で表示することによって証明されることを思い出す必要がある.

この節ではガンマ分布の確率密度函数を特性函数の Fourier 変換で表わす公式を用いて,直接的に Stirling の公式を証明する 5 .

2.1 Stirling の公式の証明

ガンマ分布の確率密度函数 $f_n(x) = e^{-x}x^{n-1}/\Gamma(n)$ (x>0) の特性函数 (逆 Fourier 変換) $F_n(t)$ は次のように計算される⁶:

$$F_n(t) = \int_0^\infty e^{itx} f_n(x) \, dx = \frac{1}{\Gamma(n)} \int_0^\infty e^{-(1-it)x} x^{n-1} \, dx = \frac{1}{(1-it)^n}.$$

ここで、実部が正の複素数 α に対して

$$\frac{1}{\Gamma(n)} \int_0^\infty e^{-\alpha t} t^{n-1} dt = \frac{1}{\alpha^n}$$

となること使った. この公式は Cauchy の積分定理を使って示せる7.

⁵筆者はこの証明法を https://www.math.kyoto-u.ac.jp/~nobuo/pdf/prob/stir.pdf を見て知った.

 $^{^6}$ 確率分布がパラメーター n について再生性を持つことと特性函数がある函数の n 乗の形になることは同値である.

⁷ Cauchy の積分定理を使わなくても示せる. 左辺を $f(\alpha)$ と書くと, f(1)=1 でかつ部分積分によって $f'(\alpha)=-(n/\alpha)f(\alpha)$ となることがわかるので, その公式が得られる. 正の実数 α に対するこの公式は $t=x/\alpha$ という置換積分によって容易に証明される.

Fourier の反転公式より8.

$$f_n(x) = \frac{e^{-x}x^{n-1}}{\Gamma(n)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} F_n(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-itx}}{(1-it)^n} dt \qquad (x > 0).$$

この公式さえ認めてしまえば Stirling の公式の証明は易しい.

上の公式より, $t = \sqrt{nu}$ と置換することによって,

$$\sqrt{n} f_n(n) = \frac{n^n e^{-n} \sqrt{n}}{\Gamma(n+1)} = \frac{\sqrt{n}}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-itn}}{(1-it)^n} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-iu\sqrt{n}}}{(1-iu/\sqrt{n})^n} du.$$

Stirling の公式を証明するためには、これが $n\to\infty$ で $1/\sqrt{2\pi}$ に収束することを示せばよい. そのために被積分函数の対数の様子を調べよう:

$$\begin{split} \log \frac{e^{-iu\sqrt{n}}}{(1-iu/\sqrt{n})^n} &= -n\log\left(1-\frac{iu}{\sqrt{n}}\right) - iu\sqrt{n} \\ &= n\left(\frac{iu}{\sqrt{n}} - \frac{u^2}{2n} + o\left(\frac{1}{n}\right)\right) - iu\sqrt{n} = -\frac{u^2}{2} + o(1). \end{split}$$

したがって, $n \to \infty$ のとき

$$\frac{e^{-iu\sqrt{n}}}{(1-iu/\sqrt{n})^n} \longrightarrow e^{-u^2/2}.$$

$$\sqrt{n} f_n(n) = \frac{n^n e^{-n} \sqrt{n}}{\Gamma(n+1)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-iu\sqrt{n}}}{(1 - iu/\sqrt{n})^n} du \longrightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-u^2/2} du = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-u^2/2} du$$

となることがわかる 9 . 最後の等号で一般に正の実数 α に対して

$$\int_{-\infty}^{\infty} e^{-u^2/\alpha} \, du = \sqrt{\alpha \pi}$$

となることを用いた10. これで Stirling の公式が証明された.

2.2 正規化されたガンマ分布の確率密度函数の各点収束

確率密度函数 $f_n(x)=e^{-x}x^{n-1}$ を持つ確率変数を X_n と書くとき, $Y_n=(X_n-n)/\sqrt{n}$ の平均と分散はそれぞれ 0 と 1 になるのであった (前節を見よ). Y_n の確率密度函数は

$$\sqrt{n} f_n(\sqrt{n}y + n) = \sqrt{n} \frac{e^{-\sqrt{n}y - n}(\sqrt{n}y + n)^{n-1}}{\Gamma(n)} = \frac{e^{-n}n^{n-1/2}}{\Gamma(n)} \frac{e^{-\sqrt{n}y}(1 + y/\sqrt{n})^n}{(1 + y/\sqrt{n})}$$

 10 この公式は Gauss 積分の公式 $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$ で $x = u/\sqrt{\alpha}$ と積分変数を変換すれば得られる. Gauss 積分の公式は以下のようにして証明される. 左辺を I とおくと $I^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)} dx \, dy$ であり, I^2 は $z = e^{-(x^2+y^2)}$ のグラフと平面 z = 0 で挟まれた「小山状の領域」の体積だと解釈される. その小山の高さ $0 < z \le 1$ における断面積は $-\pi \log z$ になるので, その体積は $\int_0^1 (-\pi \log z) \, dz = -\pi [z \log z - z]_0^1 = \pi$ になる. ゆえに $I = \sqrt{\pi}$. Gauss 積分の公式の不思議なところは円周率が出て来るところであり, しかもその平方根が出て来るところである. しかしその二乗が小山の体積であることがわかれば, その高さ z での断面が円盤の形になることから円周率 π が出て来る理由がわかる. 平方根になるのは I そのものを直接計算したのではなく, I^2 の方を計算したからである.

⁸Fourier の反転公式の証明の概略については第5節を参照せよ.

⁹厳密に証明したければ、たとえば Lebesgue の収束定理を使えばよい.

$$\log\left(e^{-\sqrt{n}y}\left(1+\frac{y}{\sqrt{n}}\right)^n\right) = n\log\left(1+\frac{y}{\sqrt{n}}\right) - \sqrt{n}y$$
$$= n\left(\frac{y}{\sqrt{n}} - \frac{y^2}{2n} + o\left(\frac{1}{n}\right)\right) - \sqrt{n}y = -\frac{y^2}{2} + o(1)$$

なので, $n\to\infty$ で $e^{\sqrt{n}y}(1+y/\sqrt{n})^n\to e^{-y^2/2}$ となり, さらに $1+y/\sqrt{n}\to 1$ となる. ゆえに, 次が成立することと Stirling の公式は同値になる:

$$\sqrt{n}f_n(\sqrt{n}y+n) = \sqrt{n}\frac{e^{-\sqrt{n}y-n}(\sqrt{n}y+n)^{n-1}}{\Gamma(n)} \longrightarrow \frac{e^{-y^2/2}}{\sqrt{2\pi}} \qquad (n \to \infty).$$

すなわち Y_n の確率密度函数が標準正規分布の確率密度函数に各点収束することと Stirling の公式は同値である.

ガンマ分布について確率密度函数の各点収束のレベルで中心極限定理が成立していることと Stirling の公式は同じ深さにある.

 Y_n の確率分布函数が標準正規分布の確率密度函数に各点収束することの直接的証明は $\sqrt{n} f(n)$ の収束の証明と同様に以下のようにして得られる:

$$\sqrt{n} f_n(\sqrt{n}y + n) = \frac{\sqrt{n}}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-it(\sqrt{n}y + n)}}{(1 - it)^n} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iuy} \frac{e^{-it\sqrt{n}}}{(1 - iu/\sqrt{n})^n} dt$$

$$\longrightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iuy} e^{-u^2/2} du = \frac{1}{\sqrt{2\pi}} e^{-y^2/2} \qquad (n \to \infty).$$

最後の等号で、Cauchy の積分定理より11

$$\int_{-\infty}^{\infty} e^{-iuy} e^{-u^2/2} \, du = \int_{-\infty}^{\infty} e^{-(u+iy)^2/2 - y^2/2} \, du = e^{-y^2/2} \int_{-\infty}^{\infty} e^{-v^2/2} \, dv = e^{-y^2/2} \sqrt{2\pi}$$

となることを用いた.

このように、ガンマ分布の確率密度函数の特性函数の Fourier 変換による表示を使えば確率密度函数の各点収束のレベルでの中心極限定理を容易に示すことができ、その結果は Stirling の公式と同値になっている.

3 ガンマ函数の Gauss 積分による近似を使った導出

前節までに説明した Stirling の公式の証明は本質的にガンマ函数 (ガンマ分布) が Gauss 積分 (正規分布) で近似されることを用いた証明だと考えられる.

この節ではガンマ函数の値を Gauss 積分で直接近似することによって Stirling の公式を 示そう 12 .

 $^{^{11}}$ 複素解析を使わなくても容易に証明される. たとえば, e^{-ity} の Taylor 展開を代入して項別積分を実行しても証明できる. もしくは, 両辺が f'(y)=-yf(y), $f(0)=\sqrt{2\pi}$ を満たしていることからも導かれる (左辺が満たしていることは部分積分すればわかる). Cauchy の積分定理を使えば形式的に u+iy (u>0) をv>0 で置き換える置換積分を実行したのと同じように見える証明が得られる.

¹²この方法は Laplace の方法と呼ばれることがある. Laplace の方法による Stirling の公式の証明とその一般化に関しては Gergö Nemes, Asymptotic expansions for integrals, 2012, M. Sc. Thesis, 40 pages が詳しい.

 $g_n(x) = \log(e^{-x}x^n) = n\log x - x$ を x = n で Taylor 展開すると

$$g_n(x) = n \log n - n - \frac{(x-n)^2}{2n} + \frac{(x-n)^3}{3n^2} - \frac{(x-n)^4}{4n^3} + \cdots$$

これより, n が大きなとき $n! = \Gamma(n+1) = \int_0^\infty e^{-x} x^n dx$ が

$$\int_{-\infty}^{\infty} \exp\left(n\log n - n - \frac{(x-n)^2}{2n}\right) dx = n^n e^{-n} \int_{-\infty}^{\infty} e^{-(x-n)^2/(2n)} dx = n^n e^{-n} \sqrt{2\pi n}$$

で近似されることがわかる. ゆえに

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$
 $(n \to \infty).$

この近似の様子を scilab でグラフで描くことによって作った画像をツイッターの過去口グで見ることができる.

以上の証明法ではStirlingの公式中の因子 $n^n e^{-n}$, $\sqrt{2\pi n}$ のそれぞれが $g_n(x) = \log(e^{-x}x^n) = n\log x - x$ の x = n における Taylor 展開の定数項と 2 次の項に由来していることがわかる. 3 次の項は $\int_{-\infty}^{\infty} y^3 e^{-y^2/\alpha} \, dy = 0$ なので寄与しない.

4 対数版の易しい Stirling の公式

Stirling の公式は次と同値である:

$$\log n! - (n+1/2)\log n - n \longrightarrow \log \sqrt{2\pi} \qquad (n \to \infty).$$

これより

$$\log n! = n \log n - n + o(n) \qquad (n \to \infty).$$

ここで o(n) は n で割った後に $n \to \infty$ とすると 0 に収束する量を意味する. これをこの節では対数版 Stirling の公式と呼ぶことにする. この公式であれば以下で説明するように初等的に証明することができる¹³.

4.1 易しい証明

単調増加函数 f(x) について $f(k) \leq \int_k^{k+1} f(x) dx \leq f(k+1)$ が成立しているので, $f(1) \geq 0$ を満たす単調増加函数 f(x) について,

$$f(1) + f(2) + \dots + f(n-1) \le \int_1^n f(x) dx \le f(1) + f(2) + \dots + f(n).$$

ゆえに

$$\int_{1}^{n} f(x) \, dx \le f(1) + f(2) + \dots + f(n) \le \int_{1}^{n} f(x) \, dx + f(n).$$

これを $f(x) = \log x$ に適用すると

$$\int_{1}^{n} \log x \, dx = [x \log x - x]_{1}^{n} = n \log n - n + 1, \qquad \log 1 + \log 2 + \dots + \log n = \log n!$$

¹³以下の証明を見ればわかるように o(n) の部分は $O(\log n)$ であることも証明できる. ここで $O(\log n)$ は $\log n$ で割った後に有界になる量を意味している.

なので

$$n\log n - n + 1 \le \log n! \le n\log x - n + 1 + \log n.$$

すなわち

$$1 \le \log n! - n \log n + n \le 1 + \log n.$$

したがって

$$\log n! = n \log n - n + O(\log n) = n \log n - n + o(n) \qquad (n \to \infty).$$

ここで $O(\log n)$ は $\log n$ で割ると有界になるような量を意味している.

4.2 大学入試問題への応用例

対数版の易しい Stirling の公式を使うと, an 個から bn 個取る組み合わせの数 (二項係数) の対数は

$$\log \binom{an}{bn} = \log(an)! - \log(bn)! - \log((a-b)n)!$$

$$= an \log a + an \log n - an + o(n)$$

$$- bn \log b - bn \log n + bn + o(n)$$

$$- (a-b)n \log(a-b) - (a-b)n \log n + (a-b)n + o(n)$$

$$= n \log \frac{a^a}{b^b(a-b)^{a-b}} + o(n).$$

となる. ゆえに

$$\log \binom{an}{bn}^{1/n} \longrightarrow \log \frac{a^b}{b^b(a-b)^{a-b}} \qquad (n \to \infty).$$

すなわち

$$\lim_{n \to \infty} \binom{an}{bn}^{1/n} = \lim_{n \to \infty} \left(\frac{(an)!}{(bn)!((a-b)n)!} \right)^{1/n} = \frac{a^a}{b^b(a-b)^{a-b}}.$$

要するに an 個から bn 個取る組み合わせの数の n 乗根の $n \to \infty$ での極限は二項係数部分の式の分子分母の (kn)! を k^k で置き換えれば得られる.

この結果を使えば次の東工大の1988年の数学の入試問題を暗算で解くことができる:

$$\lim_{n \to \infty} \left(\frac{3nC_n}{2nC_n} \right)^{1/n}$$
 を求めよ.

この極限の値は

$$\frac{3^3/(1^12^2)}{2^2/(1^11^1)} = \frac{3^3}{2^4} = \frac{27}{16}.$$

入試問題を作った人は、まずStirlingの公式を使うと自明な問題を考え、その後に高校数学の範囲内でも解けることを確認したのだと思われる.

追記. 東工大では1968年にも次の問題を出しているようだ:

$$\lim_{n\to\infty}\frac{1}{n}\sqrt[n]{2nP_n}$$
を求めよ. (答えは 2^2e^{-1} .)

この問題も明らかに元ネタはStirlingの公式である.より一般に次を示せる:

$$\lim_{n \to \infty} \frac{((an)!)^{1/n}}{n^a} = a^a e^{-a}.$$

なぜならば

$$\log \frac{((an)!)^{1/n}}{n^a} = \frac{1}{n} \log(an)! - a \log n$$

$$= \frac{1}{n} (an \log a + an \log n - an + o(n)) - a \log n$$

$$= a \log a - a + o(1)$$

$$= \log(a^a e^{-a}) + o(1).$$

5 付録: Fourier の反転公式

厳密な証明をするつもりはないが、Fourierの反転公式の証明の概略について説明しよう. 函数 f(x) に対してその逆 Fourier 変換 F(p) を

$$F(p) = \int_{-\infty}^{\infty} e^{ipx} f(x) \, dx$$

と定める. このとき函数 f について適切な条件を仮定しておくと, それに応じた適切な意味で

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} F(p) dp$$

が成立する. これを Fourier の反転公式と呼ぶ.

5.1 Gauss 分布の場合

a > 0 であるとし、

$$f(x) = e^{-x^2/(2a)}$$

とおき, F(p) はその逆 Fourier 変換であるとする. このとき

$$F(p) = \int_{-\infty}^{\infty} e^{ipx} e^{-x^2/(2a)} dx = e^{-p^2/(2a^{-1})} \sqrt{2a\pi}$$

が容易に得られる¹⁴. この公式で x, a のそれぞれと p, a^{-1} の立場を交換することによって

$$\int_{-\infty}^{\infty} e^{-ipx} e^{-p^2/(2a^{-1})} dp = e^{-x^2/(2a)} \sqrt{2a^{-1}\pi}$$

が得られる.以上の2つの結果を合わせると、

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} F(p) \, dp$$

 $^{^{14}}$ Cauchy の積分定理を使う方法, e^{ipx} の Taylor 展開を代入して項別積分する方法, 左辺と右辺が同じ微分方程式を満たしていることを使う方法など複数の方法で容易に計算可能である.

5.2. 一般の場合 9

が得られる. すなわち $f(x) = e^{-x^2/(2a)}$ については Fourier の反転公式が成立している.

一般に f(x) について Fourier の反転公式が成立していれば f(x) を平行移動して得られる函数 $f(x-\mu)$ についても Fourier の反転公式が成立していることが容易に示される. 実際, F(p) を f(x) の逆 Fourier 変換とすると, $f(x-\mu)$ の逆 Fourier 変換は

$$\int_{-\infty}^{\infty} e^{ipx} f(x-\mu) dx = \int_{-\infty}^{\infty} e^{ip(x'+\mu)} f(x') dx' = e^{ip\mu} F(p)$$

になり,

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} e^{ip\mu} F(p) \, dp = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ip(x-\mu)} F(p) \, dp = f(x-\mu).$$

以上によって, $f(x-\mu)=e^{-(x-\mu)^2/(2a)}$ についても Fourier の反転公式が成立することがわかった.

逆 Fourier 変換および Fourier 変換の線形性より, $f(x-\mu)=e^{-(x-\mu)^2/(2a)}$ の形の函数の線形和についても Fourier の反転公式が成立していることがわかる¹⁵.

5.2 一般の場合

a>0 に対して函数 $\rho_a(x)$ を

$$\rho_a(x) = \frac{1}{\sqrt{2\pi a}} e^{-x^2/(2a)}$$

と定める. これは $\rho_a(x)>0$ と $\int_{-\infty}^{\infty}\rho_a(x)\,dx=1$ を満たしている. そして前節の結果によって, $\rho_a(x-\mu)$ は Fourier の反転公式を満たしている.

函数 f(x) に対して函数 $f_a(x)$ を ρ_a との畳み込み積によって函数 $f_a(x)$ を定める:

$$f_a(x) = \int_{-\infty}^{\infty} \rho_a(x-y) f(y) \, dy.$$

このとき $f_a(x)$ については Fourier の反転公式が成立している 16. 実際, $f_a(x)$ の逆 Fourier 変換 $F_a(p)$ と書くと,

$$F_a(p) = \int_{-\infty}^{\infty} e^{ipx} f_a(x) dx = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} e^{ipx} \rho_a(x-y) dx \right) f(y) dy$$

なので

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} F_a(p) dp = \int_{-\infty}^{\infty} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} \left(\int_{-\infty}^{\infty} e^{ipx'} \rho_a(x'-y) dx' \right) dp \right) f(y) dy$$
$$= \int_{-\infty}^{\infty} \rho_a(x-y) f(y) dy = f_a(x).$$

2つ目の等号で $\rho_a(x-\mu)$ について Fourier の反転公式が成立することを使った. さらに

$$\int_{-\infty}^{\infty} e^{ipx} \rho_a(x-y) dx = e^{ipy} e^{-ap^2/2}$$

¹⁵ "任意の函数" はそのような線形和の "極限" で表わされる. したがって, Fourier の反転公式の証明の本質的部分はこれで終了しているとみなせる.

 $^{^{16}}f_a(x)$ は Fourier の反転公式が成立している函数 $\rho_a(x-\mu)$ の重み $f(\mu)$ での重ね合わせなので、これはほとんど明らかである。

なので

$$F_a(p) = \int_{-\infty}^{\infty} e^{ipy} e^{-ap^2/2} f(y) \, dy = e^{-ap^2/2} F(p)$$

となる¹⁷. ゆえに

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} F_a(p) \, dp = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} e^{-ap^2/2} F(p) \, dp.$$

したがって

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} e^{-ap^2/2} F(p) \, dp = \int_{-\infty}^{\infty} \rho_a(x-y) f(y) \, dy = f_a(x).$$

もしも F(p) が可積分ならば、Lebesgue の収束定理より、左辺について

$$\lim_{a \to 0} \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} e^{-ap^2/2} F(p) \, dp = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} F(p) \, dp$$

が言える. あとは, 函数 f(x) について適切な条件を仮定したとき, $a \to 0$ のとき函数 $f_a(x)$ が適切な意味で函数 f(x) に収束することを示せれば, f(x) 自身が適切な意味で Fourier の反転公式を満たすことがわかる¹⁸.

たとえば、f は有界かつ点 x で連続だと仮定する。ある M>0 が存在して $|f(y)-f(x)| \le M$ $(y \in \mathbb{R})$ となる。任意に $\varepsilon>0$ を取る。ある $\delta>0$ が存在して $|y-x| \le \delta$ ならば $|f(y)-f(x)| \le \varepsilon/2$ となる。函数 ρ_a の定義より、a>0 を十分小さくすると $\int_{|y-x|>\delta} \rho_a(x-y)\,dy \le \varepsilon/(2M)$ となることもわかる。以上の状況のもとで

$$|f_{a}(x) - f(x)| = \left| \int_{-\infty}^{\infty} \rho_{a}(x - y)(f(y) - f(x)) \, dy \right|$$

$$\leq \int_{-\infty}^{\infty} \rho_{a}(x - y)|f(y) - f(x)| \, dy$$

$$\leq \int_{|y - x| \leq \delta} \rho_{a}(x - y) \frac{\varepsilon}{2} \, dy + \int_{|y - x| > \delta} \rho_{a}(x - y) M \, dy$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2M} M = \varepsilon.$$

これで $\lim_{a\to 0} f_a(x) = f(x)$ が示された.

筆者は実解析一般については次の教科書をおすすめする.

猪狩惺, 実解析入門, 岩波書店 (1996), xii+324頁, 定価 3,800 円.

筆者は学生時代に猪狩惺先生の授業で Lebesgue 積分論や Fourier 解析について勉強した. 信じられないほどクリアな講義であり, 数学の分野の中で実解析が最もクリアな分野なのではないかと思えて来るほどだった. 上の教科書が 2016 年 5 月 3 日現在品切れ中であり, プレミア価格のついた中古本しか手に入らないことはとても残念なことである.

 $^{^{17}}$ これは畳み込み積の逆 Fourier 変換が逆 Fourier 変換の積に等しいことの特殊な場合にすぎない.

 $^{^{18}\}rho_a(x)$ の $a\to 0$ での様子のグラフを描けば, $\rho_a(x)$ が Dirac のデルタ函数 (超函数) に "収束" しているように見えることから、これもほとんど明らかだと言える.

6 付録: ガウス分布の Fourier 変換

t>0 に対して次の公式が成立している:

$$\int_{-\infty}^{\infty} e^{-ipx} \frac{e^{-x^2/(2t)}}{\sqrt{2\pi t}} dx = e^{-tp^2/2}.$$
 (*)

この公式が成立していることを以下で示そう.

6.1 熱方程式を使う方法

函数 u(t,x) を次のように定める:

$$u(t,x) = \frac{e^{-x^2/(2t)}}{\sqrt{2\pi t}}.$$

この u(t,x) は熱方程式を満たしている¹⁹:

$$\frac{\partial u(t,x)}{\partial t} = \frac{1}{2} \frac{\partial^2 u(t,x)}{\partial x^2}.$$

ゆえに $U(t,p) = \int_{-\infty}^{\infty} e^{-ipx} u(t,x) dx$ とおくと,

$$\frac{\partial}{\partial t}U(t,p) = \frac{1}{2} \int_{-\infty}^{\infty} e^{-ipx} \frac{\partial^2 u(t,x)}{\partial x^2} dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\partial^2 e^{-ipx}}{\partial x^2} u(t,x) dx = -\frac{p^2}{2}U(t,p).$$

2つ目の等号で部分積分を行なった. さらに $U(t,0) = \int_{-\infty}^{\infty} u(t,x) \, dx = 1$ なので

$$U(t,p) = e^{-tp^2/2}$$

であることがわかる. これで公式(*)が示された.

6.2 項別積分で計算する方法

もしも t=1 の場合の公式 (*)

$$\int_{-\infty}^{\infty} e^{-ipx} \frac{e^{-x^2/2}}{\sqrt{2\pi}} \, dx = e^{-p^2/2} \tag{**}$$

が示されたならば, x, p をそれぞれ x/\sqrt{t} , $\sqrt{t}p$ で置換することによって一般の t>0 に関する公式 (*) が得られる. ゆえに公式 (*) を示すためには公式 (**) を証明すれば十分である.

さらに $\sin(px)$ は奇函数なので $\int_{-\infty}^{\infty} e^{-x^2/2} \sin(px) dx = 0$ となる. ゆえに

$$\int_{-\infty}^{\infty} e^{-x^2/2} \cos(px) \, dx = e^{-p^2/2} \sqrt{2\pi}$$

を示せば十分である. 左辺の $\cos(px)$ にその Taylor-Maclaulin 展開を代入した後に項別積分することによってこの公式を示そう.

 $^{^{19}}u(t,x)$ は熱方程式の基本解である.

準備. まず $\int_{-\infty}^{\infty} e^{-x^2/2} x^{2n} dx$ を計算しよう. 部分積分によって

$$\int_{-\infty}^{\infty} e^{-x^2/2} x^{2n} dx = \int_{-\infty}^{\infty} \left(-e^{-x^2/2} \right)' x^{2n-1} dx$$
$$= \int_{-\infty}^{\infty} e^{-x^2/2} (x^{2n-1})' dx = (2n-1) \int_{-\infty}^{\infty} e^{-x^2/2} x^{2n-2} dx.$$

ゆえに帰納的に n = 0, 1, 2, ... に対して

$$\int_{-\infty}^{\infty} e^{-x^2/2} x^{2n} \, dx = (2n-1)\cdots 5 \cdot 3 \cdot 1\sqrt{2\pi} = \frac{(2n)!}{2^n n!} \sqrt{2\pi}.$$

2つ目の等号は左辺の分子分母に $2n \cdots 4 \cdot 2 = 2^n n!$ をかけることによって得られる. 上で準備した結果を用いると,

$$\int_{-\infty}^{\infty} e^{-x^2/2} \cos(px) \, dx = \int_{-\infty}^{\infty} e^{-x^2/2} \sum_{n=0}^{\infty} (-1)^n \frac{(px)^{2n}}{(2n)!} \, dx$$
$$= \sum_{n=0}^{\infty} \frac{(-p^2)^n}{(2n)!} \int_{-\infty}^{\infty} e^{-x^2/2} x^{2n} \, dx = \sum_{n=0}^{\infty} \frac{(-p^2/2)^n}{n!} \sqrt{2\pi} = e^{-p^2/2} \sqrt{2\pi}.$$

これで公式 (**) が示された.

6.3 Cauchy の積分定理を使う方法

複素解析を知っている人であれば詳しい説明は必要ないと思うので、以下の説明では大幅に手抜きをする. Cauchy の積分定理を使うと実数 p に対して

$$\int_{-\infty}^{\infty} e^{-(x+ip)^2/2} dx = \int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi}$$

となることを示せる. ゆえに

$$\int_{-\infty}^{\infty} e^{-ipx} e^{-x^2/2} dx = \int_{-\infty}^{\infty} e^{-(x+ip)^2/2 - p^2/2} dx = e^{-p^2/2} \int_{-\infty}^{\infty} e^{-(x+ip)^2/2} dx = e^{-p^2/2} \sqrt{2\pi}.$$

これで公式 (**) が示された.

7 付録: Gauss 積分の計算

次の公式の様々な証明の仕方を解説しよう:

$$I := \int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}.$$

この公式の面白いところ (不思議なところ) は円周率の気配が見えない積分の値が円周率の平方根になっていることである. 実際の証明では

$$I^{2} = \iint_{\mathbb{R}^{2}} e^{-(x^{2} + y^{2})} dx dy = \pi$$

を示すことになる.

7.1 極座標変換による計算

 $x = r\cos\theta$, $y = r\sin\theta$ と極座標変換すると,

$$I^{2} = \iint_{\mathbb{R}^{2}} e^{-(x^{2}+y^{2})} dx dy = \int_{0}^{2\pi} d\theta \int_{0}^{\infty} e^{-r^{2}} r dr = 2\pi \left[\frac{e^{-r^{2}}}{-2} \right]_{0}^{\infty} = \pi.$$

2つ目の等号で極座標変換の Jacobian がr になることを使った. もしくは

$$dx \wedge dy = (\cos\theta \, dr - r\sin\theta \, d\theta) \wedge (\sin\theta \, dr + r\cos\theta \, d\theta) = r \, dr \wedge d\theta$$

なので, $K = \{ (r, \theta) \mid r > 0, 0 \le \theta < 2\pi \}$ とおくと,

$$I^{2} = \iint_{\mathbb{R}^{2}} e^{-(x^{2}+y^{2})} dx \wedge dy = \iint_{K} e^{-r^{2}} r dr \wedge d\theta = \int_{0}^{2\pi} d\theta \int_{0}^{\infty} e^{-r^{2}} r dr = \pi.$$

7.2 Jacobian を使わずにすむ座標変換による計算

y から θ に $y = x \tan \theta$ によって積分変数を変換すると,

$$I^{2} = 4 \int_{0}^{\infty} \left(\int_{0}^{\infty} e^{-(x^{2} + y^{2})} dy \right) dx = 4 \int_{0}^{\infty} \left(\int_{0}^{\pi/2} e^{-x^{2} \cos^{2} \theta} x \cos^{2} \theta d\theta \right) dx$$
$$= 4 \int_{0}^{\pi/2} \left(\int_{0}^{\infty} e^{-x^{2} \cos^{2} \theta} x \cos^{2} \theta dx \right) d\theta = 4 \int_{0}^{\pi/2} \left[\frac{e^{-x^{2} \cos^{2} \theta}}{-2} \right]_{x=0}^{x=\infty} d\theta$$
$$= 4 \int_{0}^{\pi/2} \frac{1}{2} d\theta = \pi.$$

この計算では1変数の置換積分しか用いていない.

7.3 ガンマ函数とベータ函数の関係を用いた計算

s, p, q > 0 (もしくは実部が正の複素数 s, p, q) に対して,

$$\Gamma(s) = \int_0^\infty e^{-x} x^{s-1} dx$$
 $B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$

によってガンマ函数 $\Gamma(s)$ とベータ函数 B(p,q) が定義される²⁰.

部分積分によって $\Gamma(s+1)=s\Gamma(s)$ であることがわかり, $\Gamma(1)=1$ なので, 0 以上の整数 n に対して $\Gamma(n+1)=n!$ となる.

Gauss 積分 I は $\Gamma(1/2)$ に等しい:

$$I = 2 \int_0^\infty e^{-x^2} dx = 2 \int_0^\infty e^{-t} \frac{t^{-1/2}}{2} dt = \int_0^\infty e^{-t} t^{1/2-1} dt = \Gamma(1/2).$$

2つ目の等号で $x=\sqrt{t}$ とおいた. したがって $\Gamma(1/2)^2=\pi$ を証明できれば Gauss 積分が計算できたことになる.

²⁰他にもたくさんの同値な定義の仕方がある. 以下では解析接続については扱わない.

ベータ函数は以下のような複数の表示を持つ:

$$B(p,q) = 2 \int_0^{\pi/2} \cos^{2p-1}\theta \sin^{2q-1}\theta \, d\theta = \int_0^\infty \frac{t^{p-1} \, dt}{(1+t)^{p+q}} = \frac{1}{p} \int_0^\infty \frac{du}{(1+u^{1/p})^{p+q}}.$$

 $x=\cos^2\theta=t/(1+t),\,t=u^{1/p}$ と変数変換した. 最後の表示の p=1/2 の場合の被積分函数が t 分布の確率密度函数の表示で使用され、真ん中の表示の被積分函数は F 分布の確率密度函数の表示で使用される. $\Gamma(1/2)$ の Gauss 積分による表示の被積分函数は正規分布の確率密度函数の表示で使用され、ガンマ函数の表示の被積分函数は χ^2 分布の被積分函数の表示で使用される. このようにガンマ函数とベータ函数はよく使用される確率分布を理解するためには必須の教養になっている.

特に最初の表示より $B(1/2,1/2) = \pi$ となることがわかる. ゆえに, もしも

$$\Gamma(p)\Gamma(q) = \Gamma(p+q)B(p,q)$$

が示されたならば, $\Gamma(1/2)^2 = \Gamma(1)B(1/2,1/2) = \pi$ となることがわかる. したがって Gauss 積分の計算はガンマ函数とベータ函数のあいだの関係式を示すことに帰着される.

ガンマ函数とベータ函数のあいだの関係式は1変数の置換積分と積分順序の交換のみを使って証明可能である. 以下でそのことを簡単に説明しよう. 条件 A に対して, x,y が A をみたすとき値が1 になり, それ以外のときに値が0 になる x,y の函数を $1_A(x,y)$ と書くことにすると,

$$\begin{split} \Gamma(p)\Gamma(q) &= \int_0^\infty \left(\int_0^\infty e^{-(x+y)} x^{p-1} y^{q-1} \, dy \right) \, dx \\ &= \int_0^\infty \left(\int_x^\infty e^{-z} x^{p-1} (z-x)^{q-1} \, dz \right) \, dx \\ &= \int_0^\infty \left(\int_0^\infty 1_{x < z} (x,z) e^{-z} x^{p-1} (z-x)^{q-1} \, dz \right) \, dx \\ &= \int_0^\infty \left(\int_0^\infty 1_{x < z} (x,z) e^{-z} x^{p-1} (z-x)^{q-1} \, dx \right) \, dz \\ &= \int_0^\infty \left(\int_0^z e^{-z} x^{p-1} (z-x)^{q-1} \, dx \right) \, dz \\ &= \int_0^\infty \left(\int_0^1 e^{-z} (zt)^{p-1} (z-zt)^{q-1} z \, dt \right) \, dz \\ &= \int_0^\infty e^{-z} z^{p+q-1} \, dz \, \int_0^1 t^{p-1} (1-t)^{q-1} \, dt = \Gamma(p+q) B(p,q). \end{split}$$

2つ目の等号で y=z-x と置換積分し、6つ目の等号で x=zt と置換積分した.

7.4 同一の体積の2通りの積分表示を用いた計算

 $I^2 = \iint_{\mathbb{R}^2} e^{-(x^2+y^2)} \, dx \, dy$ は $z = e^{-(x^2+y^2)}$ の小山状のグラフと平面 z=0 に挟まれた部分の体積を表わしている. 同じ体積は高さ z の断面の面積 $\pi(-\log z)$ を $0 < z \le 1$ で積分した結果に等しい. ゆえに

$$I^{2} = \int_{0}^{1} \pi(-\log z) \, dz = -\pi [z \log z - z]_{0}^{1} = \pi.$$

7.5. 他の方法 15

7.5 他の方法

他の方法については Hirokazu Iwasawa, Gaussian Integral Puzzles, The Mathematical Intelligencer, Vol. 31, No. 3, 2009, pp. 38-41 および Steven R. Dunbar, Evaluation of the Gaussian Density Integral, October 22, 2011 を参照して欲しい.