GEOMETRIA DIFERENCIAL

Seminari 14

Integració de formes diferencials: Teorema d'Stokes

Exercici 14.1. Donat el camp $\mathbf{X} = X_1 \partial/\partial x + X_2 \partial/\partial y + X_3 \partial/\partial z$ i una funció f suficientment derivables, definim $\omega_{\mathbf{X}}^1 = X_1 dx + X_2 dy + X_3 dz, \omega_{\mathbf{X}}^2 = X_1 dy \wedge dz + X_2 dz \wedge dx + X_3 dx \wedge dy, \omega_f^3 = f \ dx \wedge dy \wedge dz$. Usant les identitats $d(\omega_{\mathbf{X}}^1) = \omega_{\mathrm{rot}\,\mathbf{X}}^2$ i $d(\omega_{\mathbf{X}}^2) = \omega_{\mathrm{div}\,\mathbf{X}}^3$, deduïu del teorema de Stokes les fórmules clàssiques: $\int_S \mathrm{rot}\,\mathbf{X} \cdot dS = \int_{\partial S} \mathbf{X} \cdot dL$ i $\int_U \mathrm{div}\,\mathbf{X} \, dV = \int_{\partial U} \mathbf{X} \cdot dS$, amb $dL = \vec{t} \, ds$, $dS = \vec{N} \, dA$ on $S \subset \mathbb{R}^3$ és una superfície amb vora i $U \subset \mathbb{R}^3$ és un domini acotat. Les orientacions donades per \vec{t} i \vec{N} són les orientacions compatibles. Recordeu que div $\mathbf{X} = \nabla \cdot \mathbf{X}$ i que rot $\mathbf{X} = \nabla \times \mathbf{X}$, on ∇ és l'operador diferencial vectorial $\nabla := \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$. Aquestes dues fórmules es coneixen com teorema del rotacional (o de Stokes) i teorema de la divergència (o de Gauss) respectivament.

Solució: Pel teorema de Stokes tenim $\int_U d\omega_{\mathbf{X}}^2 = \int_{\partial U} \omega_{\mathbf{X}}^2$ i $\int_S i^* d\omega_{\mathbf{X}}^1 = \int_{\partial S} i^* \omega_{\mathbf{X}}^1$ on i és l'aplicació

d'inclusió. Fent servir les igualtats tenim, per una banda

$$\int_{\partial U} \mathbf{X} \cdot dS = \int_{\partial U} \omega_{\mathbf{X}}^2 = \int_{U} d\omega_{\mathbf{X}}^2 = \int_{U} \omega_{\text{div } \mathbf{X}}^3 = \int_{U} \text{div } \mathbf{X} \, dV$$

on la primera igualtat es pot veure fent servir una parametrització $\varphi(u,v)$ de ∂U compatible amb l'orientació. En efecte

$$\varphi^*\omega_{\mathbf{X}}^2 = X_1 \circ \varphi \ d(y \circ \varphi) \wedge d(z \circ \varphi) + X_2 \circ \varphi \ d(z \circ \varphi) \wedge d(x \circ \varphi) + X_3 \circ \varphi \ d(x \circ \varphi) \wedge d(y \circ \varphi) = \cdots = \mathbf{X} \cdot dS.$$

Per altra banda

$$\int_{\partial S} \mathbf{X} \cdot dL = \int_{\partial S} i^* \omega_{\mathbf{X}}^1 = \int_{S} i^* d\omega_{\mathbf{X}}^1 = \int_{S} i^* \omega_{\text{rot}\mathbf{X}}^2 = \int_{S} \text{rot } \mathbf{X} \cdot dS.$$

La primera igualtat es veu parametritzant ∂S per $\gamma(t)$ compatible amb l'orientació i la darrera igualtat es veu com hem fet per la primera igualtat de l'eanterior fórmula.

Exercici 14.2. Calculeu la circulació del camp vectorial $\mathbf{F}(x,y,z) = (x^3 - 3xy^2) \frac{\partial}{\partial x} + (y^3 - 3x^2y) \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}$. al llarg de la trajectòria que va seguint les arestes del cub, $0 \le x \le 1$, $0 \le y \le 1$ i $0 \le z \le 1$ sortint de l'origen, seguint després a (0,0,1) a (0,1,1) a (1,1,1) i que finalment torna a l'origen per la diagonal des de (1,1,1). Calculeu el rotacional de \mathbf{F} i deduïu-ne que existeix una funció f tal que $\mathbf{F} = \nabla f = \operatorname{grad} f$. Expliciteu-la.

Solució: Tenim els camins c1 de (0,0,0) a (0,0,1), c2 de (0,0,1) a (0,1,1), c3 de (0,1,1) a (1,1,1)

i el de tornada c4 de (1,1,1) a l'origen. Fem la circulació per cada un d'ells.

$$\int_{c1} \mathbf{F} = \int_0^1 (0, 0, z) \cdot (0, 0, 1) dz = \frac{1}{2}.$$

Anàlogament $\int_{c2} \mathbf{F} = \frac{1}{4}$ i $\int_{c3} \mathbf{F} = -\frac{5}{4}$. Fem el darrer cas. Parametritzem la corba com $\alpha(t) = (1-t)(1,1,1)$. Llavors

$$\oint_{c4} \mathbf{F} = \int_0^1 (4(1-t)^3 + t - 1)dt = \frac{1}{2}.$$

Per tant la circulació que volem calcular és 0.

Si fem el rotacional veiem que és zero.

Per trobar un camp potencial podem triar un camí $\gamma(t)$ que quan $t=t_0$ passi per (x_0,y_0,z_0) i quan $t=t_1$ passi per (x,y,z), llavors $f(x,y,x)=\int_{\gamma} \mathbf{F} \cdot d\mathbf{L}$ ens donarà una funció potencial.

Triem com a corba la corba trencada que segueix (paral·lela als eixos) el cami (0,0,0)-(x,0,0)-(x,y,0)-(x,y,z). Fem el càlcul i obtenim $f(x,y,z)=\frac{1}{4}x^4+\frac{1}{4}y^4-\frac{3}{2}x^2y^2+\frac{1}{2}z^2$.

(1) Fem
$$f(x_1, x_1) = \int_0^x X_1(t_1, 0, 0) dt + \int_0^x X_2(x_1, t_1, 0) dt + \int_0^x X_3(x_1, t_1) dt$$
.

Four knir que 10/
$$\overline{X} = 0$$
 $\Rightarrow \frac{2\overline{X}_3}{27} - \frac{3\overline{X}_3}{27} = 0$ $\Rightarrow \frac{2\overline{X}_3}{27} - \frac{3\overline{X}_3}{27} = 0$ $\Rightarrow \frac{2\overline{X}_3}{27} - \frac{3\overline{X}_3}{27} = 0$ Anilyment per $\frac{2f}{27}$ i $\frac{2f}{27}$.

Exercici 14.3. Trobeu la integral de superfície (o flux) del camp radial $\mathbf{X} = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}$ a través de la superfície amb vora donada per $S = \{(x, y, z), z = x^2 + y^2 - 1, -1 \le z \le 0\}$.

Solució: Parametritzem la superfície com $\varphi(t,r)=(r\cos t,r\sin t,r^2-1)$. Llavors considerem la

direcció de flux donada pel normal $\varphi_t \times \varphi_r$. Tenim

$$Flux_S(\mathbf{X}) = \int_0^{2\pi} \int_0^1 (r\cos t, r\sin t, r^2 - 1) \cdot (2r^2\cos t, 2r^2\sin t, -r)dr \ dt = \frac{3}{2}\pi.$$

Exercici 14.4. Apliqueu el teorema de Gauss per calcular el flux del camp $\mathbf{F} = xy^2 \frac{\partial}{\partial x} + x^2 y \frac{\partial}{\partial y} + y \frac{\partial}{\partial z}$ a través de la superfície tancada delimitada pel cilindre $x^2 + y^2 = 1$ i els plans z = 1 i z = -1.

Solució: La divergència de **F** és $x^2 + y^2 = \rho^2$. Integrem, $\int_{\text{CilSolid}} \rho^2 \rho d\rho d\theta dz = \pi$.

Exercici 14.5. Calcular el flux del camp $\mathbf{X} = r \frac{\partial}{\partial r} + r \sin \theta \frac{\partial}{\partial \theta} - 3r \varphi \sin \theta \frac{\partial}{\partial \varphi}$ a través de la semiesfera superior de radi R i centrada a l'origen.

Solució: El normal exterior unitari és $N = \partial/\partial r$ llavors $X \cdot N = r$. Llavors els flux és $2\pi R^3$.

Exercici 14.6. Sigui $\mathbf{F} = ye^z \frac{\partial}{\partial x} + xe^z \frac{\partial}{\partial y} + xye^z \frac{\partial}{\partial z}$, demostreu que la circulació del camp \mathbf{F} al llarg d'una corba tancada que és vora d'una superfície és zero.

Solució: El rotacional és zero.

Exercici 14.7. Considerem la superfície $S = \{(x, y, z) \in \mathbb{R}^3 : 3x^2 + 2y^2 + 8z^2 = 1, z \ge 0\}$ i el camp $\mathbf{X}(x, y, z) = (4x + 2, 2y + 5, 5z - 1)$. Calculeu el flux de \mathbf{X} a través de S.

Solució: La divergència del camp en questió és 11. Llavors el flux demanat serà

$$11 \cdot \frac{1}{2}$$
vol(Elipsoide) – Flux(Tapa $z = 0$) = $\frac{11\pi}{6\sqrt{3}} - \frac{\pi}{\sqrt{6}} \approx 2.0427$

Exercici 14.8. Una partícula comença a moure's al punt (-2,0) i es desplaça al llarg de l'eix d'abscisses fins al punt (2,0). Després comença a moure's al llarg del semicercle $y = \sqrt{4-x^2}$ fins a tornar al començament. Determineu la circulació del camp $\mathbf{F} = x\mathbf{i} + (x^3 + 3xy^2)\mathbf{j}$ al llarg de la trajectòria que descriu la partícula.

Solució: 12π .

Exercici 14.9. Avalueu $\iint_S (\nabla \times \mathbf{F})$, on $\mathbf{F} = (x^2 + y - 4)\mathbf{i} + 3xy\mathbf{j} + (2xz + z^2)\mathbf{k}$ i S és la superfície $x^2 + y^2 + z^2 = 16$, $z \ge 0$.

Solució: El rotacional del camp és (0, -2z, 3y - 1). Com que el normal unitari exterior és (x, y, z)/4 el flux del rotacional és

$$\frac{1}{4} \int_{\text{semiesfera}} (-2zy + 3yz - z) dA = -\frac{1}{4} \int_{\text{semiesfera}} z \ dA = -16\pi.$$

Com que div $(rot(\mathbf{X})) = 0$ el flux de $rot(\mathbf{X})$ a travès d'una superfície tancada és zero. Llavors el flux de $rot(\mathbf{X})$ a traves de la superfície S que es dona i a través de la superfície T definida per $x^2 + y^2 \le 16, z = 0$ amb normal (0, 0, -1) és igual de signe contrari. Tenim que

$$Flux_T(rot(\mathbf{X})) = \int_T \langle (0, -2z, 3y - 1), (0, 0, -1) \rangle dx \ dy = \int_T (1 - 3y) dx \ dy = 16\pi.$$

També es pot calcular directament la circul·lació a través de la corba parametritzada positivament per $\gamma(t) = (4\cos t, 4\sin t, 0)$.

$$\oint_{\gamma} \langle (12\cos^2 t + 4\sin t - 4, 3 \cdot 16\cos t \sin t, 0), (-4\sin t, 4\cos t, 0) \rangle dt = -16 \int_{0}^{2\pi} \sin^2 t \ dt = -16\pi.$$

Exercici 14.10. Calculeu el flux del camp $\mathbf{X}=(xy^2,yz^2,zx^2)$ a través de la superfície limitada pels cilindres $x^2+y^2=4$ i $x^2+y^2=9$ i els plans z=-1 i z=2.

Solució: $225\pi/2$.

Exercici 14.11. Calculeu la circulació del camp **X** que en coordenades cilíndriques de \mathbb{R}^3 s'expressa com $\mathbf{X} = \rho \sin \theta \frac{\partial}{\partial \rho} + \rho z \frac{\partial}{\partial \theta} + \rho^3 \frac{\partial}{\partial z}$ al llarg de la corba $L = \{\rho = \sin \theta, z = 0 : \theta \in [0, \pi]\}.$

Solució: 0.