1、已知二维数组表示的图的邻接矩阵如下图所示,分别画出自顶点1出发进行遍历所得的深度优先生成树和广度优先生成树。

	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	1	0	1	0
2	0	0	1	0	0	0	1	0	0	0
3	0	0	0	1	0	0	0	1	0	0
4	0	0	0	0	1	0	0	0	1	0
5	0	0	0	0	0	1	0	0	0	1
6	1	1	0	0	0	0	0	0	0	0
7	0	0	1	0	0	0	0	0	0	1
8	1	0	0	1	0	0	0	0	1	0
9	0	0	0	0	1	0	1	0	0	1
10	1	0	0	0	0	1	0	0	0	0

M

 $1 \longrightarrow 7 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5 \longrightarrow 6 \longrightarrow 2 \longrightarrow 10 \longrightarrow 9 \longrightarrow 8$

Figure 1.1 从顶点1出发生成的深度优先生成树

$$1 \longrightarrow 7 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5 \longrightarrow 6 \longrightarrow 2 \longrightarrow 10 \longrightarrow 9 \longrightarrow 8$$

Figure1.2从顶点1出发的广度优先生成树

2、设计一个算法,判断一个未知顶点个数和边数的无向连通图 G 是否是棵树,假设图采用邻接表存储。若是树,返回 true;否则返回 false。 (用图 1 和图 2 验证作业题 2 算法的正确性)

解: <mark>该题的完整代码在 `Code` 文件夹下(HW11.2.cpp\HW11.1.exe)</mark> 运行结果:

Figure2.1 图一的运行结果(为无向连通图)

```
4 4
0
0
1
2
3
0 1
0 3
1 3
1 2
```

Figure 2.2 图二的运行结果(不为无向连通图)

主控函数:

bool IsTree(Graph G) { }

Figure 2.1 IsTree 函数代码快照(原图片在 Code Snap 文件夹下)

核心函数:

Figure 2.2 DFS 函数代码快照(原图片在 Code Snap 文件夹下)

图一图二的邻接表结构:

Figure2.3 图一图二邻接表的结构图(原图片在 Photo 文件夹下)

-END-