

From the:
INTERNATIONAL PRELIMINARY EXAMINING AUTHORITY

To:

AOYAMA, Tamotsu et al. Aoyama & Partners IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi Osaka 540-0001 JAPON

PCT

WRITTEN OPINION

(PCT Rule 66)

	1	
	Date of mailing (day/month/year)	02.05.2000
Applicant's or agent's file reference 661102	REPLY DUE	within 3 month(s) from the above date of mailing
PCT/JP99/03929 2:	national filing date <i>(day/month/year)</i> 07/1999	Priority date (day/month/year) 24/07/1998
International Patent Classification (IPC) or both no C12N15/12 Applicant	nal classification and IPC	
SAGAMI CHEMICAL RESEARCH CEN	R et al.	

1.	Thio							
١.	HIIIS W	This written opinion is the first drawn up by this International Preliminary Examining Authority.						
2.	This opinion contains indications relating to the following items:							
	1	☒	Basis of the opinion					
	11		Priority					
	111	\boxtimes	Non-establishment of opinion with regard to novelty, inventive step and industrial applicability					
	IV		Lack of unity of invention					
	V	×	Reasoned statement under Rule 66.2(a)(ii) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement					
	VI		Certain document cited					
	VII		Certain defects in the international application					
	VIII		Certain observations on the international application					
3.	The ap	plica	ant is hereby invited to reply to this opinion.					
	When?		See the time limit indicated above. The applicant may, before the expiration of that time limit, request this Authority to grant an extension, see Rule 66.2(d).					
	How?		By submitting a written reply, accompanied, where appropriate, by amendments, according to Rule 66.3. For the form and the language of the amendments, see Rules 66.8 and 66.9.					
	Also:		For an additional opportunity to submit amendments, see Rule 66.4. For the examiner's obligation to consider amendments and/or arguments, see Rule 66.4 bis. For an informal communication with the examiner, see Rule 66.6.					
	If no rep	ly is	filed, the international preliminary examination report will be established on the basis of this opinion.					

Name and mailing address of the international preliminary examining authority:

European Patent Office D-80298 Munich

Tel. +49 89 2399 - 0 Tx: 523656 epmu d

The final date by which the international preliminary

examination report must be established according to Rule 69.2 is: 24/11/2000.

Fax: +49 89 2399 - 4465

Authorized officer / Examiner

Vollbach, S

Formalities officer (incl. extension of time limits)

Vullo, C

Telephone No. +49 89 2399 8061

WRITTEN OPINION

International application No. PCT/JP99/03929

	١.	В	a	si	s	O	f 1	th	е	o	b	iŧ	ni	io	r	1
٩	••	_	-	Ψ.	•	_	•		_	_	r			_	•	

1.	Thi	is opinion has been response to an invit	drawn on the basis of (substitute sheets which have been furnished to the receiving Office ation under Article 14 are referred to in this opinion as "originally filed".):
	De	scription, pages:	
	1-1	21	as originally filed
	Cla	nims, No.:	
	1-6		as originally filed
	Dra	awings, sheets:	
	1/5	0-50/50	as originally filed
2.	The	amendments have	e resulted in the cancellation of:
		the description,	pages:
		the claims,	Nos.:
		the drawings,	sheets:
3.	This con	s opinion has been sidered to go beyor	established as if (some of) the amendments had not been made, since they have been not the disclosure as filed (Rule 70.2(c)):
4.	Add	litional observations	s, if necessary:
11.	Nor	n-establishment of	opinion with regard to novelty, inventive step and industrial applicability
Th or	e qu to be	estions whether the industrially applica	e claimed invention appears to be novel, to involve an inventive step (to be non-obvious), able have not been and will not be examined in respect of:
		the entire internation	onal application,
	×	claims Nos. 1-6 pa	rtially,
o e c	caus	e:	
		the said internation	nal application, or the said claims Nos, relate to the following subject matter which does

not require an international preliminary examination (specify):

WRITTEN OPINION

International application No. PCT/JP99/03929

	the description, claims or drawings (indicate particular elements below) or said claims Nos. are so unclear that no meaningful opinion could be formed (specify):
	the claims, or said claims Nos. are so inadequately supported by the description that no meaningful opinion could be formed.
\boxtimes	no international search report has been established for the said claims Nos. 1-6 partially.

- V. Reasoned statement under Rule 66.2(a)(ii) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement
- 1. Statement

Novelty (N)

Claims

Inventive step (IS)

Claims 1-6

Industrial applicability (IA)

Claims

2. Citations and explanations

see separate sheet

WRITTEN OPINION SEPARATE SHEET

International application No. PCT/JP99/03929

- 1. The search authority raised an objection for lack of unity of the application. Since no required additional search fees were paid by the applicant, search has only been carried out on the invention first mentioned in the claims i.e. Seq. ID Nos 1,11 and 21. Examination can thus only be based on said subject-matter.
- 2. The present application relates to a protein having the amino acid sequence shown in Seq ID No 1, the cDNA shown in Seq. ID Nos 11 and 21, expression vectors comprising these sequences and transformed eucaryotic hosts.

 The DNA sequences have been selected from cDNA libraries by the presence of a hydrophobic region being a putative secretory signal or transmembrane.

 In particular the clone HP01550 (Seq. ID Nos 1,11,and 21) is a clone from a human stomach cancer cDNA library which consists of 65-bp 5'-untranslated region, a 378-bp ORF, and a 67-bp 3' untranslated region. The ORF codes for a protein of 125 amino acids and the expressed protein has a molecular weight of 15 kDa. Search in a protein data base revealed a similarity to the Caenorhabditis elegans hypothetical proteins F45G2.c and F45G2.c. In addition the search of the GenBank revealed an EST which shares more than 90% homology.
- 3. As far as patentability of the specific claimed sequences are concerned the following considerations apply:

The specific claimed sequences are new according to the requirements set out in Article 33(2) PCT.

However, an inventive step cannot be recognized because in general the provision of a DNA sequence without an indication of how to use said DNA sequence (specific technical purpose) is not inventive per se (Article 33(3) PCT). This also apply to the encoded protein even if expression has been carried out.

It should be noted, that all subject-matter which might involve a certain contribution to the art, namely the determination of the function of the protein and methods which make use of said protein and the encoding DNA sequence have not been carried out. Therefore an inventive step is not recognized by the present authority for claims 1-6 (Article 33(3) PCT.

PCT

NOTIFICATION OF RECEIPT OF **RECORD COPY**

(PCT Rule 24.2(a))

From the INTERNATIONAL BUREAU

To:

AOYAMA, Tamotsu **AOYAMA & PARTNERS** IMP Building 3-7, Shiromi 1-chome, Chuo-ku Osaka-shi Osaka 540-0001 **JAPON**

Date of mailing (day/month/year) 17 August 1999 (17.08.99)	IMPORTANT NOTIFICATION
Applicant's or agent's file reference 661102	International application No. PCT/JP99/03929

The applicant is hereby notified that the International Bureau has received the record copy of the international application as detailed below.

Name(s) of the applicant(s) and State(s) for which they are applicants:

SAGAMI CHEMICAL RESEARCH CENTER et al (for all designated States except US) KATO, Seishi et al (for US)

International filing date

22 July 1999 (22.07.99) 24 July 1998 (24.07.98)

Priority date(s) claimed

07 August 1998 (07.08.98) 25 August 1998 (25.08.98) 09 September 1998 (09.09.98) 29 September 1998 (29.09.98)

Date of receipt of the record copy by the International Bureau

06 August 1999 (06.08.99)

List of designated Offices

AP:GH,GM,KE,LS,MW,SD,SZ,UG,ZW EA:AM,AZ,BY,KG,KZ,MD,RU,TJ,TM

EP:AT,BE,CH,CY,DE,DK,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE

OA:BF,BJ,CF,CG,CI,CM,GA,GN,GW,ML,MR,NE,SN,TD,TG

National :AE,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,CA,CH,CN,CU,CZ,DE,DK,EE,ES,FI,GB,GD,GE, GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MD,MG,MK,MN,MW,MX,NO,

NZ,PL,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TR,TT,UA,UG,US,UZ,VN,YU,ZA,ZW

The International Bureau of WIPO 34, chemin des Colombettes

Authorized officer:

M. Sakai

1211 Geneva 20, Switzerland

Telephone No. (41-22) 338.83.38

Facsimile No. (41-22) 740.14.35

Form PCT/IB/301 (July 1998)

002792677

NOTIFICATION OF RECEIPT OF RECORD COPY

Date of mailing (day/month/year) 17 August 1999 (17.08.99)	IMPORTANT NOTIFICATION
Applicant's or agent's file reference	International application No.
661102	PCT/JP99/03929
ATTENTION The applicant should carefully check the data a	ppearing in this Notification. In case of any discrepancy between these data ion, the applicant should immediately inform the International Bureau.
and the indications in the international application and the indication applicant's attention is drawn to	the information contained in the Annex, relating to:
X time limits for entry into the national pha	
X confirmation of precautionary designation	
requirements regarding priority docume	
	ring Office and to the International Searching Authority.
	-

INFORMATION ON TIME LIMITS FOR ENTERING THE NATIONAL PHASE

The applicant is reminded that the "national phase" must be entered before each of the designated Offices indicated in the Notification of Receipt of Record Copy (Form PCT/IB/301) by paying national fees and furnishing translations, as prescribed by the applicable national laws.

The time limit for performing these procedural acts is 20 MONTHS from the priority date or, for those designated States which the applicant elects in a demand for international preliminary examination or in a later election, 30 MONTHS from the priority date, provided that the election is made before the expiration of 19 months from the priority date. Some designated (or elected) Offices have fixed time limits which expire even later than 20 or 30 months from the priority date. In other Offices an extension of time or grace period, in some cases upon payment of an additional fee, is available.

In addition to these procedural acts, the applicant may also have to comply with other special requirements applicable in certain Offices. It is the applicant's responsibility to ensure that the necessary steps to enter the national phase are taken in a timely fashion. Most designated Offices do not issue reminders to applicants in connection with the entry into the national phase.

For detailed information about the procedural acts to be performed to enter the national phase before each designated Office, the applicable time limits and possible extensions of time or grace periods, and any other requirements, see the relevant Chapters of Volume II of the PCT Applicant's Guide. Information about the requirements for filing a demand for international preliminary examination is set out in Chapter IX of Volume I of the PCT Applicant's Guide.

GR and ES became bound by PCT Chapter II on 7 September 1996 and 6 September 1997, respectively, and may, therefore, be elected in a demand or a later election filed on or after 7 September 1996 and 6 September 1997, respectively, regardless of the filing date of the international application. (See second paragraph above.)

Note that only an applicant who is a national or resident of a PCT Contracting State which is bound by Chapter II has the right to file a demand for international preliminary examination.

CONFIRMATION OF PRECAUTIONARY DESIGNATIONS

This notification lists only specific designations made under Rule 4.9(a) in the request. It is important to check that these designations are correct. Errors in designations can be corrected where precautionary designations have been made under Rule 4.9(b). The applicant is hereby reminded that any precautionary designations may be confirmed according to Rule 4.9(c) before the expiration of 15 months from the priority date. If it is not confirmed, it will automatically be regarded as withdrawn between the applicant. There will be no reminder and no invitation. Confirmation of a designation consists of the filing of a notice specifying the designated State concerned (with an indication of the kind of protection or treatment desired) and the payment of the designation and confirmation fees. Confirmation must reach the receiving Office within the 15-month time limit.

REQUIREMENTS REGARDING PRIORITY DOCUMENTS

For applicants who have not yet complied with the requirements regarding priority documents, the following is recalled.

Where the priority of an earlier national, regional or international application is claimed, the applicant must submit a copy of the said earlier application, certified by the authority with which it was filed ("the priority document") to the receiving Office (which will transmit it to the International Bureau) or directly to the International Bureau, before the expiration of 16 months from the priority date, provided that any such priority document may still be submitted to the International Bureau before that date of international publication of the international application, in which case that document will be considered to have been received by the International Bureau on the last day of the 16-month time limit (Rule 17.1(a)).

Where the priority document is issued by the receiving Office, the applicant may, instead of submitting the priority document, request the receiving Office to prepare and transmit the priority document to the International Bureau. Such request must be made before the expiration of the 16-month time limit and may be subjected by the receiving Office to the payment of a fee (Rule 17.1(b)).

If the priority document concerned is not submitted to the International Bureau or if the request to the receiving Office to prepare and transmit the priority document has not been made (and the corresponding fee, if any, paid) within the applicable time limit indicated under the preceding paragraphs, any designated State may disregard the priority claim, provided that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity to furnish the priority document within a time limit which is reasonable under the circumstances.

Where several priorities are claimed, the priority date to be considered for the purposes of computing the 16-month time limit is the filing date of the earliest application whose priority is claimed.

From the INTERNATIONAL BUREAU

To:

AOYAMA, Tamotsu **AOYAMA & PARTNERS** IMP Building 3-7, Shiromi 1-chome, Chuo-ku Osaka-shi Osaka 540-0001 **JAPON**

NOTIFICATION CONCERNING SUBMISSION OR TRANSMITTAL OF PRIORITY DOCUMENT

(PCT Administrative Instructions, Section 411)

IMPORTANT NOTIFICATION
International filing date (day/month/year) 22 July 1999 (22.07.99)
Priority date (day/month/year) 24 July 1998 (24.07.98)

SAGAMI CHEMICAL RESEARCH CENTER et al

- The applicant is hereby notified of the date of receipt (except where the letters "NR" appear in the right-hand column) by the International Bureau of the priority document(s) relating to the earlier application(s) indicated below. Unless otherwise indicated by an asterisk appearing next to a date of receipt, or by the letters "NR", in the right-hand column, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
- 2. This updates and replaces any previously issued notification concerning submission or transmittal of priority documents.
- 3. An asterisk(*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b). In such a case, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
- The letters "NR" appearing in the right-hand column denote a priority document which was not received by the International Bureau or which the applicant did not request the receiving Office to prepare and transmit to the International Bureau, as provided by Rule 17.1(a) or (b), respectively. In such a case, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

Priority date

Priority application No.

Country or regional Office or PCT receiving Office

Date of receipt of priority document

24 July 1998 (24.07.98)

10/208820

JP

27 Sept 1999 (27.09.99)

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland

Authorized officer

Juan Cruz

Facsimile No. (41-22) 740.14.35

Telephone No. (41-22) 338.83.38

PCT

NOTICE INFORMING THE APPLICANT OF THE COMMUNICATION OF THE INTERNATIONAL APPLICATION TO THE DESIGNATED OFFICES

(PCT Rule 47.1(c), first sentence)

From the INTERNATIONAL BUREAU

To:

AOYAMA, Tamotsu Aoyama & Partners IMP Building 3-7, Shiromi 1-chome, Chuo-ku Osaka-shi Osaka 540-0001 JAPON

Date of mailing (day/month/year)

03 February 2000 (03.02.00)

Applicant's or agent's file reference

661102

International filing date (day/month/year)

Priority date (day/month/year) 24 July 1998 (24.07.98)

IMPORTANT NOTICE

International application No. PCT/JP99/03929

22 July 1999 (22.07.99)

Applicant

SAGAMI CHEMICAL RESEARCH CENTER et al

 Notice is hereby given that the International Bureau has communicated, as provided in Article 20, the international application to the following designated Offices on the date indicated above as the date of mailing of this Notice: AU,CN,EP,IL,JP,KR,US

In accordance with Rule 47.1(c), third sentence, those Offices will accept the present Notice as conclusive evidence that the communication of the international application has duly taken place on the date of mailing indicated above and no copy of the international application is required to be furnished by the applicant to the designated Office(s).

2. The following designated Offices have waived the requirement for such a communication at this time:

AE,AL,AM,AP,AT,AZ,BA,BB,BG,BR,BY,CA,CH,CU,CZ,DE,DK,EA,EE,ES,FI,GB,GD,GE,GH,GM,HR,HU,ID,IN,IS,KE,KG,KZ,LC,LK,LR,LS,LT,LU,LV,MD,MG,MK,MN,MW,MX,NO,NZ,OA,PL,PT,RO,RU,

SD,SE,SG,SI,SK,SL,TJ,TM,TR,TT,UA,UG,UZ,VN,YU,ZA,ZW The communication will be made to those Offices only upon their request. Furthermore, those Offices do not require the applicant to furnish a copy of the international application (Rule 49.1(a-bis)).

 Enclosed with this Notice is a copy of the international application as published by the International Bureau on 03 February 2000 (03.02.00) under No. WO 00/05367

REMINDER REGARDING CHAPTER II (Article 31(2)(a) and Rule 54.2)

If the applicant wishes to postpone entry into the national phase until 30 months (or later in some Offices) from the priority date, a demand for international preliminary examination must be filed with the competent International Preliminary Examining Authority before the expiration of 19 months from the priority date.

It is the applicant's sole responsibility to monitor the 19-month time limit.

Note that only an applicant who is a national or resident of a PCT Contracting State which is bound by Chapter II has the right to file a demand for international preliminary examination.

REMINDER REGARDING ENTRY INTO THE NATIONAL PHASE (Article 22 or 39(1))

If the applicant wishes to proceed with the international application in the national phase, he must, within 20 months or 30 months, or later in some Offices, perform the acts referred to therein before each designated or elected Office.

For further important information on the time limits and acts to be performed for entering the national phase, see the Annex to Form PCT/IB/301 (Notification of Receipt of Record Copy) and Volume II of the PCT Applicant's Guide.

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Authorized officer

J. Zahra

Telephone No. (41-22) 338.83.38

Facsimile No. (41-22) 740.14.35

From the INTERNATIONAL BUREAU

PCT

INFORMATION CONCERNING ELECTED OFFICES NOTIFIED OF THEIR ELECTION

(PCT Rule 61.3)

AOYAMA, Tamotsu Aoyama & Partners **IMP** Building 3-7, Shiromi 1-chome, Chuo-ku Osaka-shi Osaka 540-0001 **JAPON**

Date of mailing (day/month/year) 01 March 2000 (01.03.00)

Applicant's or agent's file reference

International application No.

PCT/JP99/03929

661102

International filing date (day/month/year)

22 July 1999 (22.07.99)

Priority date (day/month/year) 24 July 1998 (24.07.98)

IMPORTANT INFORMATION

Applicant

SAGAMI CHEMICAL RESEARCH CENTER et al

1. The applicant is hereby informed that the International Bureau has, according to Article 31(7), notified each of the following Offices of its election:

AP:GH,GM,KE,LS,MW,SD,SL,SZ,UG,ZW

EP:AT,BE,CH,CY,DE,DK,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE

National: AU, BG, BR, CA, CN, CZ, DE, IL, JP, KR, MN, NO, NZ, PL, RO, RU, SE, SK, US

2. The following Offices have waived the requirement for the notification of their election; the notification will be sent to them by the International Bureau only upon their request:

EA:AM,AZ,BY,KG,KZ,MD,RU,TJ,TM

OA:BF,BJ,CF,CG,CI,CM,GA,GN,GW,ML,MR,NE,SN,TD,TG

National: AE, AL, AM, AT, AZ, BA, BB, BY, CH, CU, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU,

ID,IN,IS,KE,KG,KZ,LC,LK,LR,LS,LT,LU,LV,MD,MG,MK,MW,MX,PT,SD,SG,SI,SL,TJ,

TM,TR,TT,UA,UG,UZ,VN,YU,ZA,ZW

3. The applicant is reminded that he must enter the "national phase" before the expiration of 30 months from the priority date before each of the Offices listed above. This must be done by paying the national fee(s) and furnishing, if prescribed, a translation of the international application (Article 39(1)(a)), as well as, where applicable, by furnishing a translation of any annexes of the international preliminary examination report (Article 36(3)(b) and Rule 74.1).

Some offices have fixed time limits expiring later than the above-mentioned time limit. For detailed information about the applicable time limits and the acts to be performed upon entry into the national phase before a particular Office, see Volume II of the PCT Applicant's Guide.

The entry into the European regional phase is postponed until 31 months from the priority date for all States designated for the purposes of obtaining a European patent.

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland

Authorized officer:

R. Forax

Telephone No. (41-22) 338.83.38

From the INTERNATIONAL PRELIMINARY EXAMINATIONAL PRELIMINARY EXAMINATIONAL PRELIMINARY EXAMINATION IN THE PRESENT OF ACCORDANCE	ni 14	OF DEMAND I PRELIMIN	PCT DIFICATION OF RECEIPT BY COMPETENT INTERNATIONAL ARY EXAMINING AUTHORITY Less 59.3(e) and 61.1(b), first sentence mistrative Instructions, Section 601(a))			
Applicant's or agent's file reference 661102		ІМРО	RTANT NOTIFICATION			
International application No. PCT/ JP 99/ 03929	International filing date 22/07/1999		Priority date (day/month/year) 24/07/1998			
Applicant SAGAMI CHEMICAL RESEAR	CH CENTER et a	1.				
date of receipt of the demand for inte	ernational preliminary ex	inary Examining Authorination of the intern	ority considers the following date as the national application:			
(Form PCT/IPEA/404),	of the demand on behalf uthority has, in response received the required cor	f of this Authority (Rul to the invitation to con rections.	e 59.3(e)). rrect defects in the demand			
ATTENTION: That date of receipt is AFTER the expiration of 19 months from the priority date. Consequently, the election(s) made in the demand does (do) not have the effect of postponing the entry into the national phase until 30 months from the priority date (or later in some Offices) (Article 39(1)). Therefore, the acts for entry into the national phase must be performed within 20 months from the priority date (or later in some Offices) (Article 22). For details, see the PCT Applicant's Guide, Volume II.						
(If applicable) This notion: 4. Only where paragraph 3 applies, a			thone, facsimile transmission or in person			

Name and mailing address of the IPEA/

European Patent Office D-80298 Munich Tel. (+49-89) 2399-0, Tx: 523656 epmu d Fax: (+49-89) 2399-4465

DANISSEN P T

Authorized officer

Tel. (+49-89) 2399-8862

PCT

REC'D	15 NOV	2000
WIPC		PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant's c	or ager	nt's file reference	FOR FURTUER ACTION	See Notification of Transmittal of International			
661102 FOR FORTH			FOR FURTHER ACTION	Preliminary Examination Report (Form PCT/IPEA/416)			
nternational	applic	ation No.	International filing date (day/monti	th/year) Priority date (day/month/year)			
PCT/JP99	9/039	29	22/07/1999	24/07/1998			
C12N15/1		nt Classification (IPC) or	national classification and IPC				
Applicant SAGAMI	CHE	MICAL RESEARCH	H CENTER et al.				
1. This ir and is	nterna trans	tional preliminary ex mitted to the applica	amination report has been prepare nt according to Article 36.	ed by this International Preliminary Examining Authority			
2. This F	REPO	RT consists of a total	of 5 sheets, including this cover s	sheet.			
be (s	een a see R	mended and are the ule 70.16 and Section	basis for this report and/or sheets n 607 of the Administrative Instruct	the description, claims and/or drawings which have containing rectifications made before this Authority ctions under the PCT).			
These	anne	exes consist of a tota	l of sheets.				
3. This r	eport	contains indications	relating to the following items:				
1	⊠	Basis of the report					
Ш	<u></u> □	Priority	of anialan with removal to povolts, in	inventive step and industrial applicability			
111	<u> </u>			inventive step and industrial applicability			
V		Reasoned statemer citations and explar		o novelty, inventive step or industrial applicability;			
VI		Certain documents					
VII		Certain defects in th	ne international application				
VIII		Certain observation	s on the international application				
Date of sub	omissio	on of the demand	Date o	of completion of this report			
03/02/20	000		13.11.	.2000			
Name and preliminary	exam	g address of the interna ining authority:	tional Author	prized officer			
<u>)</u>	D-8 Tel.	opean Patent Office 0298 Munich +49 89 2399 - 0 Tx: 52	3656 epmu d	pach, S			
Fax: +49 89 2399 - 4465			Teleph	Telephone No. +49 89 2399 8715			

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/JP99/03929

I. Basis	of the	report
----------	--------	--------

٠.	Duo.		
1.	resp the r	onse to an invitation	rawn on the basis of (substitute sheets which have been fumished to the receiving Office in on under Article 14 are referred to in this report as "originally filed" and are not annexed to o not contain amendments (Rules 70.16 and 70.17).):
	1-12	1	as originally filed
	Clai	ms, No.:	
	1-6		as originally filed
	Dra	wings, sheets:	
	1/50)-50/50	as originally filed
2.	With	n regard to the lan guage in which the	guage, all the elements marked above were available or furnished to this Authority in the international application was filed, unless otherwise indicated under this item.
	The	se elements were	available or furnished to this Authority in the following language: , which is:
		the language of a	translation furnished for the purposes of the international search (under Rule 23.1(b)).
			publication of the international application (under Rule 48.3(b)).
			translation furnished for the purposes of international preliminary examination (under Rule
3	. Witi inte	h regard to any n u rnational prelimina	icleotide and/or amino acid sequence disclosed in the international application, the arry examination was carried out on the basis of the sequence listing:
			international application in written form.
			n the international application in computer readable form.
			quently to this Authority in written form.
			quently to this Authority in computer readable form.
		the international	nat the subsequently furnished written sequence listing does not go beyond the disclosure in application as filed has been furnished.
		The statement the listing has been	nat the information recorded in computer readable form is identical to the written sequence furnished.
4	l. Th	e amendments ha	ve resulted in the cancellation of:
		the description,	pages:
		the claims,	Nos.:

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/JP99/03929

		the drawings,	sheets:	
5.		This report has been considered to go bey	established as if (so ond the disclosure a	some of) the amendments had not been made, since they have been as filed (Rule 70.2(c)):
		(Any replacement sh report.)	eet containing such	n amendments must be referred to under item 1 and annexed to this
6.	Ado	litional observations, i	f necessary:	
				I to novelty, inventive step and industrial applicability
Th or	ne qu to b	estions whether the o	laimed invention apple have not been exa	opears to be novel, to involve an inventive step (to be non-obvious), camined in respect of:
		the entire internation	al application.	
	Ø	claims Nos. 1-6 part	ially.	
be	ecau	se:		
		the said international not require an interr	l application, or the stational preliminary e	e said claims Nos. relate to the following subject matter which does examination (<i>specify</i>):
		the description, clai that no meaningful o	ms or drawings (<i>indi</i> o	dicate particular elements below) or said claims Nos. are so unclear med (specify):
		the claims, or said c could be formed.	laims Nos. are so ir	inadequately supported by the description that no meaningful opinion
	☒	no international sea	rch report has been	n established for the said claims Nos. 1-6 partially.
2	an	meaningful internatior d/or amino acid seque structions:	al preliminary exami ence listing to comply	nination report cannot be carried out due to the failure of the nucleotid bly with the standard provided for in Annex C of the Administrative
		the written form has	not been furnished	d or does not comply with the standard.
		the computer reada	ble form has not bee	een furnished or does not comply with the standard.
\	/. Re	easoned statement u ations and explanat	nder Article 35(2) v ions supporting su	with regard to novelty, inventive step or industrial applicability; uch statement
1	. St	atement		
	No	ovelty (N)	Yes: Claims	s 1-6

International application No. PCT/JP99/03929

No:

Claims

Inventive step (IS)

Yes: Claims

No:

Claims 1-6

Industrial applicability (IA)

Yes: Claims

No:

Claims 1-6

2. Citations and explanations see separate sheet

INTERNATIONAL PRELIMINARY

EXAMINATION REPORT - SEPARATE SHEET

- The search authority raised an objection for lack of unity of the application. Since no required additional search fees were paid by the applicant, search has only been carried out on the invention first mentioned in the claims i.e. Seq. ID Nos 1,11 and 21. Examination can thus only be based on said subject-matter.
- The present application relates to a protein having the amino acid sequence 2. shown in Seq ID No 1, the cDNA shown in Seq. ID Nos 11 and 21, expression vectors comprising these sequences and transformed eucaryotic hosts. The DNA sequences have been selected from cDNA libraries by the presence of a hydrophobic region being a putative secretory signal or transmembrane. In particular the clone HP01550 (Seq. ID Nos 1,11,and 21) is a clone from a human stomach cancer cDNA library which consists of 65-bp 5'-untranslated region, a 378-bp ORF, and a 67-bp 3' untranslated region. The ORF codes for a protein of 125 amino acids and the expressed protein has a molecular weight of 15 kDa. Search in a protein data base revealed a similarity to the Caenorhabditis elegans hypothetical proteins F45G2.c and F45G2.c. In addition the search of the GenBank revealed an EST which shares more than 90% homology.
- As far as patentability of the specific claimed sequences are concerned the 3. following considerations apply:

The specific claimed sequences are new according to the requirements set out in Article 33(2) PCT.

However, an inventive step cannot be recognized because in general the provision of a DNA sequence without an indication of how to use said DNA sequence (specific technical purpose) is not inventive per se (Article 33(3) PCT) and cannot be regarded as industrial applicable. This also apply to the encoded protein even if expression has been carried out.

It should be noted, that any subject-matter which might involve a certain contribution to the art, namely the determination of the function of the protein and methods which make use of said protein and the encoding DNA sequence have not been carried out. Therefore an inventive step is not recognized by the present authority for claims 1-6 (Article 33(3) PCT).

From the INTERNATIONAL PRELIMINARY EXAMINING AUTHORITY

To:

AOYAMA, Tamotsu et al. Aoyama & Partners IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi Osaka 540-0001 JAPON

PCT

NOTIFICATION OF TRANSMITTAL OF THE INTERNATIONAL PRELIMINARY EXAMINATION REPORT (PCT Rule 71.1)

Date of mailing (day/month/year)

13.11.2000

Applicant's or agent's file reference

661102
International application No.

International filing date (day/month/year) 22/07/1999

Priority date (day/month/year) 24/07/1998

IMPORTANT NOTIFICATION

Applicant

PCT/JP99/03929

SAGAMI CHEMICAL RESEARCH CENTER et al.

- 1. The applicant is hereby notified that this International Preliminary Examining Authority transmits herewith the international preliminary examination report and its annexes, if any, established on the international application.
- 2. A copy of the report and its annexes, if any, is being transmitted to the International Bureau for communication to all the elected Offices.
- 3. Where required by any of the elected Offices, the International Bureau will prepare an English translation of the report (but not of any annexes) and will transmit such translation to those Offices.

4. REMINDER

The applicant must enter the national phase before each elected Office by performing certain acts (filing translations and paying national fees) within 30 months from the priority date (or later in some Offices) (Article 39(1)) (see also the reminder sent by the International Bureau with Form PCT/IB/301).

Where a translation of the international application must be furnished to an elected Office, that translation must contain a translation of any annexes to the international preliminary examination report. It is the applicant's responsibility to prepare and furnish such translation directly to each elected Office concerned.

For further details on the applicable time limits and requirements of the elected Offices, see Volume II of the PCT Applicant's Guide.

Name and mailing address of the IPEA/

European Patent Office D-80298 Munich

Tel. +49 89 2399 - 0 Tx: 523656 epmu d

Fax: +49 89 2399 - 4465

Authorized officer

Emslander, S

Tel.+49 89 2399-8718

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference	FOR FURTHER ACTION	See Notification of Transmittal of International Preliminary Examination Report (Form PCT/IPEA/416)
61102	FOR FORTHER ACTION	
ternational application No.	International filing date (day/month	
CT/JP99/03929	22/07/1999	24/07/1998
nternational Patent Classification (i c12N15/12	PC) or national classification and IPC	
pplicant GAGAMI CHEMICAL RESE	ARCH CENTER et al.	
. This international prelimina and is transmitted to the a	ary examination report has been prepare pplicant according to Article 36.	d by this International Preliminary Examining Authority
2. This REPORT consists of	a total of 5 sheets, including this cover s	heet.
been amended and a	companied by ANNEXES, i.e. sheets of the transition of the transition of the transition of the Administrative Instruct	ne description, claims and/or drawings which have containing rectifications made before this Authority ions under the PCT).
These annexes consist of	a total of sheets.	
	ations relating to the following items:	
∣ ⊠ Basis of the r	eport	
II ☐ Priority	to the second to possible in	wentive step and industrial applicability
	nment of opinion with regard to novelty, it	ive nilve step and industrial approaching
IV ☐ Lack of unity V ☒ Reasoned st. citations and	of invention atement under Article 35(2) with regard to explanations suporting such statement	o novelty, inventive step or industrial applicability;
VI 🗆 Certain docu		
	cts in the international application	
	rvations on the international application	
Date of submission of the deman	Date of	of completion of this report
03/02/2000	13.11	.2000
Name and mailing address of the	international Author	rized officer
preliminary examining authority: European Patent O	ffice	
D-80298 Munich	(Voll	pach, S
Tel. +49 89 2399 - 0	7 Tx: 523656 epmu d	This page . 57

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/JP99/03929

1.	Basi	is of the report	
1.	resp the i	onse to an invitati	lrawn on the basis of (substitute sheets which have been fumished to the receiving Office i on under Article 14 are referred to in this report as "originally filed" and are not annexed to lo not contain amendments (Rules 70.16 and 70.17).):
	1-12	21	as originally filed
	Clai	ms, No.:	
	1-6		as originally filed
	Dra	wings, sheets:	
	1/50	0-50/50	as originally filed
2	. With	h regard to the lan guage in which the	guage, all the elements marked above were available or furnished to this Authority in the international application was filed, unless otherwise indicated under this item.
	The	ese elements were	available or furnished to this Authority in the following language: , which is:
		the language of a	a translation furnished for the purposes of the international search (under Rule 23.1(b)).
			publication of the international application (under Rule 48.3(b)).
		the language of a 55.2 and/or 55.3	a translation furnished for the purposes of international preliminary examination (under Rule).
3	. Wit	th regard to any nu ernational prelimina	ucleotide and/or amino acid sequence disclosed in the international application, the ary examination was carried out on the basis of the sequence listing:
		contained in the	international application in written form.
		filed together wit	h the international application in computer readable form.
		fumished subsec	quently to this Authority in written form.
		furnished subse	quently to this Authority in computer readable form.
		The statement the the international	nat the subsequently furnished written sequence listing does not go beyond the disclosure i application as filed has been furnished.
		The statement the listing has been	nat the information recorded in computer readable form is identical to the written sequence furnished.
	4. Th	e amendments ha	ve resulted in the cancellation of:
		the description,	pages:
		the claims,	Nos.:

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

		the drawings,	sheets:								
5.		This report has been considered to go bey						d not been	made, sind	ce they hav	e been
		(Any replacement sh report.)	neet containii	ng such a	mendn	nents mus	st be referi	red to unde	ritem 1 an	d annexed	to this
6.	Add	litional observations,	if necessary:								
111.	10N	n-establishment of o	pinion with	regard to	o nove	lty, inven	tive step :	and indust	rial applic	ability	
		restions whether the o						an inventiv	e step (to	be non-obv	ious),
		the entire internation	al applicatio	n.							
	×	claims Nos. 1-6 part	ially.								
be	caus	se:									
		the said internationa not require an intern						e following	subject ma	atter which	does
		the description, clair that no meaningful o					ments belo	ow) or said	claims Nos	s. are so ur	nclear
		the claims, or said c could be formed.	laims Nos.	are so ina	ıdequat	tely suppo	orted by the	e descriptio	n that no r	neaningful (opinion
	×	no international sea	rch report ha	s been e	stablish	hed for the	e said clair	ns Nos. 1-6	partially.		
2.	and	neaningful internation d/or amino acid seque tructions:	al preliminar ence listing to	y examin o comply	ation re with the	eport cann e standard	ot be carri i provided	ied out due for in Anne	to the failux C of the	ire of the nu Administrat	ucleotide tive
		the written form has	not been fu	rnished o	r does	not compl	y with the	standard.			
		the computer reada	ble form has	not beer	furnisl	hed or doe	es not com	nply with the	e standard		
	cit	easoned statement u ations and explanat	nder Article ions suppol	35(2) wi ting suc	th rega h state	ard to nov ement	elty, inve	ntive step	or industr	ial applica	bility;
1	. Sta	atement									
	No	ovelty (N)	Yes:	Claims	1-6						

International application No. PCT/JP99/03929

No:

Claims

Inventive step (IS)

Yes:

Claims

No:

Claims 1-6

Industrial applicability (IA)

Yes:

Claims

No: Claims 1-6

2. Citations and explanations see separate sheet

- 1. The search authority raised an objection for lack of unity of the application. Since no required additional search fees were paid by the applicant, search has only been carried out on the invention first mentioned in the claims i.e. Seq. ID Nos 1,11 and 21. Examination can thus only be based on said subject-matter.
- 2. The present application relates to a protein having the amino acid sequence shown in Seq ID No 1, the cDNA shown in Seq. ID Nos 11 and 21, expression vectors comprising these sequences and transformed eucaryotic hosts.

 The DNA sequences have been selected from cDNA libraries by the presence of a hydrophobic region being a putative secretory signal or transmembrane.

 In particular the clone HP01550 (Seq. ID Nos 1,11,and 21) is a clone from a human stomach cancer cDNA library which consists of 65-bp 5'-untranslated region, a 378-bp ORF, and a 67-bp 3' untranslated region. The ORF codes for a protein of 125 amino acids and the expressed protein has a molecular weight of 15 kDa. Search in a protein data base revealed a similarity to the Caenorhabditis elegans hypothetical proteins F45G2.c and F45G2.c. In addition the search of the GenBank revealed an EST which shares more than 90% homology.
- 3. As far as patentability of the specific claimed sequences are concerned the following considerations apply:

The specific claimed sequences are new according to the requirements set out in Article 33(2) PCT.

However, an inventive step cannot be recognized because in general the provision of a DNA sequence without an indication of how to use said DNA sequence (specific technical purpose) is not inventive per se (Article 33(3) PCT) and cannot be regarded as industrial applicable. This also apply to the encoded protein even if expression has been carried out.

It should be noted, that any subject-matter which might involve a certain contribution to the art, namely the determination of the function of the protein and methods which make use of said protein and the encoding DNA sequence have not been carried out. Therefore an inventive step is not recognized by the present authority for claims 1-6 (Article 33(3) PCT).

661102

PCT REQUEST

Original (for SUBMISSION) - printed on 16.07.1999 10:35:27 AM

For receiving Office use only International Application No. International Filing Date International Filing Date International Filing Date International Application" International Application" International Application Form - PCT/RO/101 PCT Request O-4-1 Prepared using PCT-EASY Version 2.84 (updated 01.07.1999) Petition The undersigned requests that the present international application be processed according to the Patent Cooperation Treaty Receiving Office (specified by the applicant) International Application No. International Application PCT International Application PCT International Application PCT International Application PCT-EASY Version 2.84 (updated 01.07.1999)	PCT 22.7.99 文領印
Name of receiving Office and "PCT International Application" 10-4 Form - PCT/RO/101 PCT Request Prepared using 10-4 Prepared using 10-5 Petition 10-6 The undersigned requests that the present international application be processed according to the Patent Cooperation Treaty 10-6 Receiving Office (specified by the applicant) 10-7 Receiving Office (specified by the applicant)	文領印
International Application" O-4 Form - PCT/RO/101 PCT Request O-4-1 Prepared using PCT-EASY Version 2.84 (updated 01.07.1999) O-5 Petition The undersigned requests that the present international application be processed according to the Patent Cooperation Treaty O-6 Receiving Office (specified by the applicant) Japanese Patent Office	(RO/JP)
O-4-1 Prepared using PCT-EASY Version 2.84 (updated 01.07.1999) O-5 Petition The undersigned requests that the present international application be processed according to the Patent Cooperation Treaty O-6 Receiving Office (specified by the applicant) Japanese Patent Office	(RO/JP)
O-4-1 Prepared using PCT-EASY Version 2.84 (updated 01.07.1999) O-5 Petition The undersigned requests that the present international application be processed according to the Patent Cooperation Treaty O-6 Receiving Office (specified by the applicant) Japanese Patent Office	(RO/JP)
The undersigned requests that the present international application be processed according to the Patent Cooperation Treaty O-6 Receiving Office (specified by the applicant) Japanese Patent Office	(RO/JP)
applicant)	(RO/JP)
0-7 Applicant's or agent's file reference 661102	
Title of invention HUMAN PROTEINS HAVING H DOMAINS AND DNAs ENCODI	
II Applicant	
II-1 This person is: applicant only	
II-2 Applicant for all designated States e	-
II-4 Name SAGAMI CHEMICAL RESEARC	CH CENTER
II-5 Address: 4-1, Nishi-Ohnuma 4-chc	ome,
Sagamihara-shi, Kanagaw Japan	a 229-0012
II-6 State of nationality JP	
II-7 State of residence JP	
III-1 Applicant and/or inventor	
III-1-1 This person is: applicant only	
III-1-2 Applicant for all designated States e	except US
Name PROTEGENE INC.	
III-1-5 Address: 2-20-3, Naka-cho,	
Meguro-ku, Tokyo 153-00	065
Japan	
III-1-6 State of nationality JP	
III-1-7 State of residence JP	

661102

PCT REQUEST

Original (for SUBMISSION) - printed on 16.07.1999 10:35:27 AM

III-2	Applicant and/or inventor	applicant and inventor			
111-2-1	This person is:	- 			
111-2-2	Applicant for	US only			
111-2-4	Name (LAST, First)	KATO, Seishi			
111-2-5	Address:	3-46-50, Wakamatsu,			
		Sagamihara-shi, Kanagawa 229-0014			
-	·	Japan			
111-2-6	State of nationality	JP			
111-2-7	State of residence	JP			
111-3	Applicant and/or inventor				
III-3-1	This person is:	applicant and inventor			
111-3-2	Applicant for	US only			
111-3-4	Name (LAST, First)	KIMURA, Tomoko			
111-3-5	Address: 302, 4-1-28, Nishiikuta, Tama-ku,				
		Kawasaki-shi, Kanagawa 214-0037			
		Japan			
111-3-6	State of nationality	JP			
111-3-7	State of residence	JP			
IV-1	Agent or common representative; or				
	address for correspondence				
	The person identified below is hereby/has been appointed to act on behalf of the	agent			
	applicant(s) before the competent				
	International Authorities as:	AOYAMA, Tamotsu			
IV-1-1	Name (LAST, First)				
IV-1-2	Address:	AOYAMA & PARTNERS			
		IMP Building, 3-7, Shiromi 1-chome,			
		chuo-ku,			
		Osaka-shi, Osaka 540-0001			
		Japan			
IV-1-3	Telephone No.	(06) 6949-1261			
IV-1-4	Facsimile No.	(06) 6949-0361			
IV-2	Additional agent(s)	additional agent(s) with same address as			
		first named agent			
IV-2-1	Name(s)	TAMURA, Yasuo; IWASAKI, Mitsutaka			

PCT REQUEST

Original (for SUBMISSION) - printed on 16.07.1999 10:35:27 AM

Designation of States	
Regional Patent	AP: GH GM KE LS MW SD SZ UG ZW and any
line are amonified between parentheses	other State which is a Contracting State
after the designation(s) concerned)	of the Harare Protocol and of the PCT
	EA: AM AZ BY KG KZ MD RU TJ TM and any
	other State which is a Contracting State
	of the Eurasian Patent Convention and of
	the PCT
	EP: AT BE CH&LI CY DE DK ES FI FR GB GR
	IE IT LU MC NL PT SE and any other State
	which is a Contracting State of the
	European Patent Convention and of the
	PCT
	OA: BF BJ CF CG CI CM GA GN GW ML MR NE
	SN TD TG and any other State which is a
	member State of OAPI and a Contracting
· ·	State of the PCT
National Patent	AE AL AM AT AU AZ BA BB BG BR BY CA
(other kinds of protection or treatment, if	CHELI CN CU CZ DE DK EE ES FI GB GD GE
any, are specified between parentheses	GH GM HR HU ID IL IN IS JP KE KG KR KZ
after the designation(s) concerned)	LC LK LR LS LT LU LV MD MG MK MN MW MX
	NO NZ PL PT RO RU SD SE SG SI SK SL TJ
	TM TR TT UA UG US UZ VN YU ZA ZW
	IM IR 11 OR OG OD OZ VR 10 ZI ZI
Precautionary Designation Statement	
items V-1, V-2 and V-3, the applicant also	
makes under Rule 4.9(b) all designations	
which would be permitted under the PC I	
indicated under item V-6 below. The	
applicant declares that those additional	
designations are subject to confirmation	
confirmed before the expiration of 15	
months from the priority date is to be	
regarded as withdrawn by the applicant at	
Exclusion(s) from precautionary	NONE
Priority claim of earlier national	
Filing date	24 July 1998 (24.07.1998)
Number	Patent Application No. 10-208820
Country	JP
Priority claim of earlier national	
1 * *	07 August 1998 (07.08.1998)
Filing date	10/ August 1990 (07:00:1990)
Number	Patent Application No. 10-224105
	(other kinds of protection or treatment, if any, are specified between parentheses after the designation(s) concerned) National Patent (other kinds of protection or treatment, if any, are specified between parentheses after the designation(s) concerned) Precautionary Designation Statement In addition to the designations made under items V-1, V-2 and V-3, the applicant also makes under Rule 4.9(b) all designations which would be permitted under the PCT except any designation(s) of the State(s) indicated under item V-6 below. The applicant declares that those additional designations are subject to confirmation and that any designation which is not confirmed before the expiration of 15 months from the priority date is to be regarded as withdrawn by the applicant at the expiration of that time limit. Exclusion(s) from precautionary designations Priority claim of earlier national application Filing date Number Country Priority claim of earlier national application

PCT REQUEST

Original (for SUBMISSION) - printed on 16.07.1999 10:35:27 AM

VI-3	Priority claim of earlier national					
1021	application Filing date	25 August 1998 (25.08	1998)			
VI-3-1 VI-3-2	Number	Patent Application No. 10-238116				
VI-3-2 VI-3-3	Country	- -				
VI-3-3	Priority claim of earlier national	JP				
VI-4	application					
VI-4-1	Filing date	09 September 1998 (09				
VI-4-2	Number	Patent Application No	o. 10-25 4 736			
VI-4-3	Country	JP				
VI-5	Priority claim of earlier national					
VI-5-1	application Filing date	29 September 1998 (29	0 09 1998)			
VI-5-1	Number	Patent Application No				
VI-5-2	Country	JP	. 10 2,0000			
VII-1	International Searching Authority	European Patent Offic	ce (EPO) (ISA/EP)			
VII-1	Chosen	·				
VIII	Check list	number of sheets	electronic file(s) attached			
VIII-1	Request	5	_			
VIII-2	Description (excluding sequence listing part)	121	-			
VIII-3	Claims	1	_			
VIII-4	Abstract	1	661102.txt			
VIII-5	Drawings	50	_			
VIII-6	Sequence listing part of description	177	_			
VIII-7	TOTAL	355				
	Accompanying items	paper document(s) attached	electronic file(s) attached			
VIII-8	Fee calculation sheet	~	-			
VIII-9	Separate signed power of attorney	✓				
VIII-15	Nucleotide and/or amino acid sequence		separate diskette			
VIII-16	listing in computer readable form PCT-EASY diskette		diskette			
VIII-10	Other (specified):	Revenue stamps of	-			
VIII-17	Other (specified).	transmittal fee for				
		receiving office				
1/11/ 47	Other (appointed):	Certificate of				
VIII-17	Other (specified):		_			
		payment of basic & designation fee for				
		International Bureau				
100 47	Other (one sife d):	Certificate of	_			
VIII-17	Other (specified):	1	_			
		payment of search fee for EPO				
		ree for EPO	<u> </u>			
VIII-18	Figure of the drawings which should accompany the abstract					
VIII-19		English				
		_ 				
IX-1	Signature of applicant or agent					
IX-1		A Para a				

5/5

PCT REQUEST

Original (for SUBMISSION) - printed on 16.07.1999 10:35:27 AM

661102

FOR RECEIVING OFFICE USE ONLY

10-1	Date of actual receipt of the purported international application	
10-2	Drawings:	
10-2-1	Received	
10-2-2	Not received	
10-3	Corrected date of actual receipt due to later but timely received papers or drawings completing the purported international application	
10-4	Date of timely receipt of the required corrections under PCT Article 11(2)	
10-5	International Searching Authority	ISA/EP
10-6	Transmittal of search copy delayed until search fee is paid	

FOR INTERNATIONAL BUREAU USE ONLY

11-1	Date of receipt of the record copy by		
	the International Bureau	 	

1/2

PCT (ANNEX - FEE CALCULATION SHEET) Original (for SUBMISSION) - printed on 16.07.1999 10:35:27 AM

661102

(This sheet is not part of and does not count as a sheet of the international application)

0	For receiving Office use only			
0-1	International Application No.			
0-2	Date stamp of the receiving Office			
				
0-4	Form - PCT/RO/101 (Annex) PCT Fee Calculation Sheet			
D-4-1	Prepared using	PCT-EASY Vers		
		(updated 01.0	7.1999)	
0-9	Applicant's or agent's file reference	661102		
2	Applicant		AL RESEARCH CE	NTER, et al.
12	Calculation of prescribed fees	fee amount/multiplier	total amounts (JPY)	
12-1	Trunstrikar ros	Γ ⇔	18,000	
12-2	Search fee	\$ □	120,000	
12-3	International fee	1		
	Basic fee (first 30 sheets) b	54,800		
12-4	Remaining sheets	325		
12-5	1	01,300		
12-6	Total additional amount b			
12-7	b1 + b2 =	477,300	ł	
12-8	Designation fees	<u> </u>		
	Number of designations contained in international application			
12-9	Number of designation fees payable (maximum 10)	10		
12-10	Amount of designation fee (X	12,600		
12-11	Total designation fees	126,000		
12-12	PCT-EASY fee reduction	-16,900		
12-13	Total International fee (B+D-R)	1	586,400	
2-17	TOTAL FEES PAYABLE (T+S+I+P)	□	724,400	
2-19	Mode: of payment	Transmittal f	ee: revenue st	amps
		Search fee: b	ank draft	
		International	fee: bank dra	ft
		Priority docu	nue stamps	
	VAL	IDATION LOG AND R	EMARKS	
13-1-1	Applicant remarks	6214 Patent A	ttorney AOYAMA	Tamotsu
	Names	6852 Patent A	ttorney TAMURA	Yasuo
		6703 Patent A	ttorney IWASAK	I Mitsutaka
13-2-1	Validation messages Request	Green?		
	i Vedacar	The title of the invention should		
		_	entered in ca	pital
		letters. Plea	se verify.	

From the INTERNATIONAL SEARCHING AUTHORITY To: NOTIFICATION OF RECEIPT Aoyama & Partners OF SEARCH COPY 8,23 Attn. AOYAMA, T IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi (PCT Rule 25.1) Osaka 540-0001 **JAPAN** Date of mailing (day/month/year) 20/08/1999 Applicant's or agent's file reference IMPORTANT NOTIFICATION 661102 International filing date(day/month/year) Priority date (day/month/year) International application No. PCT/JP 99/03929 22/07/1999 24/07/1998 Applicant SAGAMI CHEMICAL RESEARCH CENTER et al. Where the International Searching Authority and the Receiving Office are not the same office: The applicant is hereby notified that the search copy of the international application was received by this International Searching Authority on the date indicated below. Where the International Searching Authority and the Receiving Office are the same office: The applicant is hereby notified that the search copy of the international application was received on the date indicated below. 05/08/1999 __ (date of receipt). The search copy was accompanied by a nuclectide and/or amino acid sequence listing in computer readable form. 2. 3. Time limit for establishment of International Search Report The applicant is informed that the time limit for establishing the International Search Report is 3 months from the date of receipt indicated above or 9 months from the priority date, whichever time limit expires later A copy of this notification has been sent to the International Bureau and, where the first sentence of paragraph 1 applies, 4. to the Receiving Office. Name and mailing address of the International Searching Authority Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 ISA/EP NL-2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl Fax: (+31-70) 340-3016

.TENT COOPERATION T A

From the INTERNATIONAL BUREAU

PCT

- The state of the

NOTIFICATION OF ELECTION

(PCT Rule 61.2)

KATO, Seishi et al

То

Assistant Commissioner for Patents United States Patent and Trademark Office

Box PCT

Washington, D.C.20231 ÉTATS-UNIS D'AMÉRIQUE

Date of mailing (day/month/year) C1 March 2000 (01.03.00)	in its capacity as elected Office
International application No. PCT/JP99/03929	Applicant's or agent's file reference 661102
International filing date (day/month/year) 22 July 1999 (22.07.99)	Priority date (day/month/year) 24 July 1998 (24.07.98)
Applicant	-

	X in the demand filed with the International Preliminary Examining Authority on:
	03 February 2000 (03.02.00)
	in a notice effecting later election filed with the International Bureau on:
<u>.</u>	The election X was
	was not
	made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under Rule 32.2(b).

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland

Authorized officer

R. Forax

Telephone No.: (41-22) 338.83.38

Facsimile No.: (41-22) 740.14.35

From the INTERNATIONAL SEARCHING AUTHORITY To. NOTIFICATION OF TRANSMITTAL OF Aovama & Partners HE INTERNATIONAL SEARCH REPORT Attn. AOYAMA, T IMP Building, 3-7, Shiromi OR THE DECLARATION 12.3.27 1-chome, Chuo-ku, Osaka-shi (PCT Rule 44.1) Osaka 540-0001 JAPAN Date of mailing (day/month/year) 06/03/2000 Applicant's or agent's file reference FOR FURTHER ACTION See paragraphs 1 and 4 below 661102 International filing date International application No. (day/month/year) 22/07/1999 PCT/JP 99/03929 Applicant SAGAMI CHEMICAL RESEARCH CENTER et al. The applicant is hereby notified that the International Search Report has been established and is transmitted herewith. 1. X Filing of amendments and statement under Article 19: The applicant is entitled, if he so wishes, to amend the claims of the International Application (see Rule 46): When? The time limit for filing such amendments is normally 2 months from the date of transmittal of the International Search Report; however, for more details, see the notes on the accompanying sheet. International Bureau of WIPO Where? Directly to the 34, chemin des Colombettes 1211 Geneva 20, Switzerland Fascimile No.: (41-22) 740.14.35 For more detailed instructions, see the notes on the accompanying sheet. The applicant is hereby notified that no International Search Report will be established and that the declaration under Article 17(2)(a) to that effect is transmitted herewith. 3. With regard to the protest against payment of (an) additional fee(s) under Rule 40.2, the applicant is notified that: the protest together with the decision thereon has been transmitted to the International Bureau together with the applicant's request to forward the texts of both the protest and the decision thereon to the designated Offices. no decision has been made yet on the protest; the applicant will be notified as soon as a decision is made. 4. Further action(s): The applicant is reminded of the following: Shortly after 18 months from the priority date, the international application will be published by the International Bureau. If the applicant wishes to avoid or postpone publication, a notice of withdrawal of the international application, or of the priority claim, must reach the International Bureau as provided in Rules 90bis.1 and 90bis.3, respectively, before the completion of the technical preparations for international publication.

Name and mailing address of the International Searching Authority

European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

priority date or could not be elected because they are not bound by Chapter II.

Authorized officer

Within 19 months from the priority date, a demand for international preliminary examination must be filed if the applicant wishes to postpone the entry into the national phase until 30 months from the priority date (in some Offices even later).

Within 20 months from the priority date, the applicant must perform the prescribed acts for entry into the national phase before all designated Offices which have not been elected in the demand or in a later election within 19 months from the

Mireille Claudepierre

These Notes are intended to give the basic instructions concerning the filing of amendments under article 19. The Notes are based on the requirements of the Patent Cooperation Treaty, the Regulations and the Administrative Instructions under that Treaty. In case of discrepancy between these Notes and those requirements, the latter are applicable. For more detailed information, see also the PCT Applicant's Guide, a publication of WIPO.

In these Notes, "Article", "Rule", and "Section" refer to the provisions of the PCT, the PCT Regulations and the PCT Administrative Instructions, respectively.

INSTRUCTIONS CONCERNING AMENDMENTS UNDER ARTICLE 19

The applicant has, after having received the international search report, one opportunity to amend the claims of the international application. It should however be emphasized that, since all parts of the international application (claims, description and drawings) may be amended during the international preliminary examination procedure, there is usually no need to file amendments of the claims under Article 19 except where, e.g. the applicant wants the latter to be published for the purposes of provisional protection or has another reason for amending the claims before international publication. Furthermore, it should be emphasized that provisional protection is available in some States only.

What parts of the International application may be amended?

Under Article 19, only the claims may be amended.

During the international phase, the claims may also be amended (or further amended) under Article 34 before the International Preliminary Examining Authority. The description and drawings may only be amended under Article 34 before the International Examining Authority.

Upon entry into the national phase, all parts of the international application may be amended under Article 28 or, where applicable, Article 41.

When?

Within 2 months from the date of transmittal of the international search report or 16 months from the priority date, whichever time limit expires later. It should be noted, however, that the amendments will be considered as having been received on time if they are received by the International Bureau after the expiration of the applicable time limit but before the completion of the technical preparations for international publication (Rule 46.1).

Where not to file the amendments?

The amendments may only be filed with the International Bureau and not with the receiving Office or the International Searching Authority (Rule 46.2).

Where a demand for international preliminary examination has been/is filed, see below.

How?

Either by cancelling one or more entire claims, by adding one or more new claims or by amending the text of one or more of the claims as filed.

A replacement sheet must be submitted for each sheet of the claims which, on account of an amendment or amendments, differs from the sheet originally filed.

All the claims appearing on a replacement sheet must be numbered in Arabic numerals. Where a claim is cancelled, no renumbering of the other claims is required. In all cases where claims are renumbered, they must be renumbered consecutively (Administrative Instructions, Section 205(b)).

The amendments must be made in the language in which the international application is to be published.

What documents must/may accompany the amendments?

Letter (Section 205(b)):

The amendments must be submitted with a letter.

The letter will not be published with the international application and the amended claims. It should not be confused with the "Statement under Article 19(1)" (see below, under "Statement under Article 19(1)").

The letter must be in English or French, at the choice of the applicant. However, if the language of the international application is English, the letter must be in English; if the language of the International application is French, the letter must be in French.

The letter must indicate the differences between the claims as filed and the claims as amended. It must, in particular, indicate, in connection with each claim appearing in the international application (it being understood that identical indications concerning several claims may be grouped),whether

- (i) the claim is unchanged;
- (ii) the claim is cancelled;
- (iii) the claim is new;
- (iv) the claim replaces one or more claims as filed;
- (v) the claim is the result of the division of a claim as filed.

The following examples illustrate the manner in which amendments must be explained in the accompanying letter:

- [Where originally there were 48 claims and after amendment of some claims there are 51]:
 *Claims 1 to 29, 31, 32, 34, 35, 37 to 48 replaced by amended claims bearing the same numbers;
 claims 30, 33 and 36 unchanged; new claims 49 to 51 added.*
- [Where originally there were 15 claims and after amendment of all claims there are 11]: "Claims 1 to 15 replaced by amended claims 1 to 11."
- 3. [Where originally there were 14 claims and the amendments consist in cancelling some claims and in adding new claims]: "Claims 1 to 6 and 14 unchanged; claims 7 to 13 cancelled; new claims 15, 16 and 17 added." or "Claims 7 to 13 cancelled; new claims 15, 16 and 17 added; all other claims unchanged."
- 4. [Where various kinds of amendments are made]: "Claims 1-10 unchanged; claims 11 to 13, 18 and 19 cancelled; claims 14, 15 and 16 replaced by amended claim 14; claim 17 subdivided into amended claims 15, 16 and 17; new claims 20 and 21 added."

"Statement under article 19(1)" (Rule 46.4)

The amendments may be accompanied by a statement explaining the amendments and indicating any impact that such amendments might have on the description and the drawings (which cannot be amended under Article 19(1)).

The statement will be published with the international application and the amended claims.

It must be in the language in which the international application is to be published.

It must be brief, not exceeding 500 words if in English or if translated into English.

It should not be confused with and does not replace the letter indicating the differences between the claims as filed and as amended. It must be filed on a separate sheet and must be identified as such by a heading, preferably by using the words "Statement under Article 19(1)."

It may not contain any disparaging comments on the international search report or the relevance of citations contained in that report. Reference to citations, relevant to a given claim, contained in the international search report may be made only in connection with an amendment of that claim.

Consequence if a demand for international preliminary examination has already been filed

If, at the time of filing any amendments and any accompanying statement, under Article 19, a demand for international preliminary examination has already been submitted, the applicant must preferably, at the time of filing the amendments (and any statement) with the International Bureau, also file with the International Preliminary Examining Authority a copy of such amendments (and of any statement) and, where required, a translation of such amendments for the procedure before that Authority (see Rules 55.3(a) and 62.2, first sentence). For further information, see the Notes to the demand form (PCT/IPEA/401).

Consequence with regard to translation of the international application for entry into the national phase

The applicant's attention is drawn to the fact that, upon entry into the national phase, a translation of the claims as amended under Article 19 may have to be furnished to the designated/elected Offices, instead of, or in addition to, the translation of the claims as filed.

For further details on the requirements of each designated/elected Office, see Volume II of the PCT Applicant's Guide

INTERNATIONAL SEARCH REPORT

(PCT Article 18 and Rules 43 and 44)

Applicant's or agent's file reference	FOR FURTHER see Notification of Transmittal of International Search Report (Form PCT/ISA/220) as well as, where applicable, item 5 below.				
661102	ACTION	(Earliest) Priority Date (day/month/year)			
International application No.	International filing date (day/month/year)	(Camesty i nomy Date (day/monthlyear)			
PCT/JP 99/03929 22/07/1999 24/07/1998					
Applicant					
CACAMA CHEMICAL DECEADOR CENTED -4 -1					
SAGAMI CHEMICAL RESEARCH CENTER et al.					
This International Search Report has been prepared by this International Searching Authority and is transmitted to the applicant according to Article 18. A copy is being transmitted to the International Bureau.					
This International Search Report consists of a total ofsheets. It is also accompanied by a copy of each prior art document cited in this report.					
1. Basis of the report					
With regard to the language, the international search was carried out on the basis of the international application in the language in which it was filed, unless otherwise indicated under this item.					
the international search was carried out on the basis of a translation of the international application furnished to this Authority (Rule 23.1(b)).					
b. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search					
was carried out on the basis of the sequence listing:					
		п.			
filed together with the international application in computer readable form.					
furnished subsequently to this Authority in written form. X furnished subsequently to this Authority in computer readble form.					
the statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the					
international application as filed has been furnished. X the statement that the information recorded in computer readable form is identical to the written sequence listing has been furnished					
2. Certain claims were found unsearchable (See Box I).					
3.					
4. With regard to the title,					
the text is approved as submitted by the applicant.					
the text has been established by this Authority to read as follows:					
E. Mish around to the chetreet					
5. With regard to the abstract, The text is approved as submitted by the applicant.					
the text is approved as submitted by the applicant. the text has been established, according to Rule 38.2(b), by this Authority as it appears in Box III. The applicant may, within one month from the date of mailing of this international search report, submit comments to this Authority.					
	iblished with the abstract is Figure No.	-			
as suggested by the ap		None of the figures.			
	ailed to suggest a figure.				
1	ter characterizes the invention.				

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

1. Claims: Claims 1-6 partially

A protein comprising amino acid sequence SEQ ID NO 1, a DNA SEQ ID NO 11 or 21, encoding this protein, as well as an expression vector capable of expressing this sequence and a eukaryotic cell expressing the DNA

2. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 2 and DNA SEQ ID 12 and 22 $\,$

3. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 3 and DNA SEQ ID 13 and 23 $\,$

4. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 4 and DNA SEO ID 14 and 24 $\,$

5. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 5 and DNA SEQ ID 15 and 25

6. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 6 and DNA SEQ ID 16 and 36 $\,$

7. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 7 and DNA SEQ ID 17 and 37

8. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 8 and DNA SEO ID 18 and 38

9. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 9 and DNA SEQ ID 19 and 39

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

10. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 10 and DNA SEQ ID 20 and 30 $\,$

11. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 31 and DNA SEQ ID 41 and 51 $\,$

12. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 32 and DNA SEQ ID 42 and 52 $\,$

13. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 33 and DNA SEQ ID 43 and 53 $\,$

14. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 34 and DNA SEQ ID 44 and 54 $\,$

15. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 35 and DNA SEQ ID 45 and 55 $\,$

16. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 36 and DNA SEQ ID 46 and 56 $\,$

17. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 37 and DNA SEQ ID 47 and 57 $\,$

18. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 38 and DNA SEQ ID 48 and 58 $\,$

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

19. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 39 and DNA SEQ ID 49 and 59

20. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 40 and DNA SEQ ID 50 and 60 $\,$

21. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 61 and DNA SEQ ID 71 and 81 $\,$

22. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 62 and DNA SEO ID 72 and 82 $\,$

23. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 63 and DNA SEQ ID 73 and 83 $\,$

24. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 64 and DNA SEQ ID 74 and 84 $\,$

25. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 65 and DNA SEQ ID 75 and 85 $\,$

26. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 66 and DNA SEQ ID 76 and 86

27. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 67 and DNA SEQ ID 77 and 87 $\,$

28. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 68 and DNA SEQ ID 78 and 88 $\,$

29. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 69 and DNA SEO ID 79 and 89

30. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 70 and DNA SEQ ID 80 and 90 $\,$

31. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 91 and DNA SEQ ID 101 and 111 $\,$

32. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 92 and DNA SEQ ID 102 and 112 $\,$

33. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 93 and DNA SEQ ID 103 and 113 $\,$

34. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 94 and DNA SEQ ID 104 and 114 $\,$

35. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 95 and DNA SEQ ID 105 and 115

36. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 96 and DNA SEQ ID 106 and 116 $\,$

37. Claims: 1-6 partially

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Idem as subject 1 but limited to protein SEQ ID NO. 97 and DNA SEO ID 107 and 117

38. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 98 and DNA SEQ ID 108 and 118 $\,$

39. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 99 and DNA SEQ ID 109 and 119 $\,$

40. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 100 and DNA SEQ ID 110 and 120 $\,$

41. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 121 and DNA SEQ ID 131 and 141 $\,$

42. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 122 and DNA SEQ ID 132 and 142 $\,$

43. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 123 and DNA SEQ ID 133 and 143 $\,$

44. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 124 and DNA SEQ ID 134 and 144 $\,$

45. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 125 and DNA SEQ ID 135 and 145 $\,$

46. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 126 and

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

DNA SEQ ID 136 and 146

47. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 127 and DNA SEQ ID 137 and 147 $\,$

48. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 128 and DNA SEQ ID 138 and 148 $\,$

49. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 129 and DNA SEQ ID 139 and 149

50. Claims: 1-6 partially

Idem as subject 1 but limited to protein SEQ ID NO. 130 and DNA SEQ ID 140 and 150 $\,$

INTERMATIONAL SEARCH REPORT

a. classification of subject matter IPC 7 C12N15/12 C07 C12N5/10 C07K14/705 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C12N C07K IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category o WO 98 21328 A (KATO SEISHI ; PROTEGENE INC 1-6 Х (JP); SEKINE SHINGO (JP); SAGAMI CHEM R) 22 May 1998 (1998-05-22) abstract page 17, last paragraph -page 18, paragraph 1 DATABASE EMBLEMEST6 [Online] 1-6 X Accession Number AI057511, 22 July 1998 (1998-07-22) STRAUSBERG R: "H. sapiens cDNA clone IMAGE:1653181 3' similar to SW:YJK4 yeast P42929 hypothetical 16.2 kD protein in SME1-MEF2 intergenic region" XP002123564 100% identity in 357 BP overlap with SEQ ID NO:11 Patent family members are listed in annex. Further documents are listed in the continuation of box C. ΙX Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. *O* document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but "&" document member of the same patent family later than the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search **0** 6. 03. nn 23 November 1999 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, CUPIDO, M

Fax: (+31-70) 340-3016

1

INTERNATIONAL SEARCH REPORT

	THE CONCINCION TO BE DELEVANT	
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Category °	Citation of document, with indication, where appropriate, of the relevant passages	
X	DATABASE EMBLEST21 [Online] Accession Number AA 482452, 24 June 1997 (1997-06-24) HILLIER L ET AL.: "zv05b11.r1 Soares NhHMPu S1 Homo sapiens cDNA clone 7527733 5'similar to SW:YJK4 yeast P42929 hypothetical 16.2 kD protein in SME1-MEF2 intergenic region" XP002123565 99.7% identity in 367 BP overlap with SEQ ID NO 11	1-6
A	D'ANDREA ET AL: "Molecular Cloning of NKB1. A Natural Killer Cell Receptor for HLA -B Allotypes" JOURNAL OF IMMUNOLOGY, vol. 155, no. 5, 1 September 1995 (1995-09-01), pages 2306-2310 2310, XP002111500 ISSN: 0022-1767 abstract page 2307, right-hand column, line 16	1-6
A	GILLEN C M ET AL: "Molecular cloning and functional expression of the K-Cl cotransporter from rabbit, rat, and human." JOURNAL OF BIOLOGICAL CHEMISTRY., vol. 271, no. 27, 5 July 1996 (1996-07-05), pages 16237-16244, XP002119528 AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD., US ISSN: 0021-9258 abstract	1-6
A	KYTE J ET AL: "A SIMPLE METHOD FOR DISPLAYING THE HYDROPATHIC CHARACTER OF A PROTEIN" JOURNAL OF MOLECULAR BIOLOGY, vol. 157, no. 1, 5 May 1982 (1982-05-05), pages 105-132, XP000609692 ISSN: 0022-2836 cited in the application the whole document	1-6
P,X	DATABASE EMBLEST11 [Online] Accession Number AI 553893, 25 March 1999 (1999-03-25) STRAUSBERG R: "Homo sapiens cDNA clone IMAGE:2169115 3'" XP002123566 100% identity in 375 BP overlap with SEQ ID 11	1-6

1

INTERNATIONAL SEARCH REPORT

ion on patent family members

Patent document	Publication	Patent family	Publication	
cited in search report	date	member(s)	date	
WO 9821328 A	22-05-1998	AU 4885297 A EP 0941320 A	03-06-1998 15-09-1999	

national application No.
PCT/JP 99/03929

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
	ernational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. X	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-6 partially
Rema	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

661102

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: WO 00/05367 (11) International Publication Number: **A3** C12N 15/12, C07K 14/705, C12N 5/10 3 February 2000 (03.02.00) (43) International Publication Date:

(21) International Application Number: PCT/JP99/03929

(22) International Filing Date: 22 July 1999 (22.07.99)

(30) Priority Data: ในไ∦ 1998 (24.07**!**98) 10/208820 August 1998 (07.08.98) 10/224105 25 August 1998 (25.08.98) 10/238116 JP 9 September 1998 (09.09.98) 10/254736 29 September 1998 (29.09.98) 10/275505

(71) Applicants (for all designated States except US): SAGAMI [JP/JP]; 4-1, CHEMICAL RESEARCH CENTER Nishi-Ohnuma 4-chome, Sagamihara-shi, Kanagawa 229-0012 (JP). PROTEGENE INC. [JP/JP]; 2-20-3, Naka-cho, Meguro-ku, Tokyo 153-0065 (JP).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KATO, Seishi [JP/JP]; Sagamihara-shi, Kanagawa Wakamatsu, 3-46-50, 229-0014 (JP). KIMURA, Tomoko [JP/JP]; 302, 4-1-28, Nishiikuta, Tama-ku, Kawasaki-shi, Kanagawa 214-0037 (JP).

(74) Agents: AOYAMA, Tamotsu et al.; Aoyama & Partners, IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi, Osaka 540-0001 (JP).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report: 4 May 2000 (04.05.00)

(54) Title: HUMAN PROTEINS HAVING HYDROPHOBIC DOMAINS AND DNAS ENCODING THESE PROTEINS

(57) Abstract

The present invention provides human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors for these DNAs as well as eucaryotic cells expressing these DNAs.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT

	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AL AM	Amenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AU		GB	United Kingdom	MC	Monaco	TD	Chad
AZ BA	Azerbaijan Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BB		GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BE	Belgium Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BF		HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BG	Bulgaria	lE	Ireland	MN	Mongolia	UA	Ukraine
BJ	Benin		israel	MR	Mauritania	υG	Uganda
BR	Brazil	IL 10	Iceland	MW	Malawi	US	United States of America
BY	Belarus	IS			Mexico	UZ	Uzbekistan
CA	Canada	IT	Italy	MX		VN	Vict Nam
CF	Central African Republic	JP	Japan	NE	Niger		
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
cz	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	น	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 00/05367
C12N 15/12, C07K 14/705, C12N 5/10	A2	(43) International Publication Date: 3 February 2000 (03.02.00)
(21) International Application Number: PCT/JP (22) International Filing Date: 22 July 1999 (IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi,
(30) Priority Data: 10/208820 10/224105 10/238116 25 August 1998 (24.07.98) 10/254736 9 September 1998 (09.09.98) 10/275505 29 September 1998 (29.09.98) (71) Applicants (for all designated States except US): CHEMICAL RESEARCH CENTER [JP/JF] Nishi-Ohnuma 4-chome, Sagamihara-shi, R 229-0012 (JP). PROTEGENE INC. [JP/JP]; Naka-cho, Meguro-ku, Tokyo 153-0065 (JP).	SAGAN SAGAN Sagav	ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR,
(72) Inventors; and (75) Inventors/Applicants (for US only): KATO, Seish 3-46-50, Wakamatsu, Sagamihara-shi, F 229-0014 (JP). KIMURA, Tomoko [JP/JP]; 302 Nishiikuta, Tama-ku, Kawasaki-shi, Kanagawa (JP).	Kanagav , 4–1–2	wa upon receipt of that report. 28,

(54) Title: HUMAN PROTEINS HAVING HYDROPHOBIC DOMAINS AND DNAS ENCODING THESE PROTEINS

(57) Abstract

The present invention provides human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors for these DNAs as well as eucaryotic cells expressing these DNAs.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		

SE SG Sweden

Singapore

DK EE Denmark

Estonia

LK LR Sri Lanka

Liberia

1

DESCRIPTION

Human Proteins Having Hydrophobic Domains and DNAs Encoding These Proteins

5

10

15

20

25

30

TECHNICAL FIELD

The present invention relates to human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors for these DNAs as well as eucaryotic cells expressing these DNAs. The proteins of the present invention can be employed as pharmaceuticals or as antigens for preparing antibodies against these proteins. The human cDNAs of the present invention can be utilized as probes for the genetic diagnosis and gene sources for the gene therapy. Furthermore, the cDNAs can be utilized as gene sources for large-scale production of the proteins encoded by these into which these genes are introduced Cells express secretory proteins and membrane proteins in large amounts can be utilized for detection of the corresponding receptors and ligands, screening of novel low-molecular pharmaceuticals, and so on.

BACKGROUND ART

Cells secrete many proteins outside the cells. These important roles for the secretory proteins play proliferation control, the differentiation induction, material transportation, the biological protection, etc. in Different from intracellular proteins, cells. secretory proteins exert their actions outside the cells, whereby they can be administered in the intracorporeal manner such as the injection or the drip, so that there are

2

hidden potentialities as medicines. In fact, a number of human secretory proteins such as interferons, interleukins, erythropoietin, thrombolytic agents, etc. have currently employed as medicines. In addition, secretory described proteins other than those above undergoing clinical trials to develop as pharmaceuticals. Because it has been conceived that the human cells still produce many unknown secretory proteins, availability of these secretory proteins as well as genes coding for them is expected to lead to development of novel pharmaceuticals utilizing these proteins.

5

10

15

20

25

30

On the other hand, membrane proteins play important roles, as signal receptors, ion channels, transporters, etc. material transportation and the information transmission through the cell membrane. Examples thereof include receptors for a variety of cytokines, ion channels for the sodium ion, the potassium ion, the chloride ion, etc., transporters for saccharides and amino acids, and so on, where the genes for many of them have been cloned already. It has been clarified that abnormalities of these membrane proteins are associated with a number of hithertocryptogenic diseases. Therefore, discovery of a new membrane protein is anticipated to lead to elucidation of the causes of many diseases, so that isolation of a new gene coding for the membrane protein has been desired.

Heretofore, owing to difficulty in the purification from human cells, these secretory proteins and membrane proteins have been isolated by an approach from the gene side. A general method is the so-called expression cloning which comprises introduction of a cDNA library into eucaryotic cells to express cDNAs and then screening of the cells secreting, or expressing on the surface of membrane,

3

the objective active protein. However, this method is applicable only to cloning of a gene for a protein with a known function.

In general, secretory proteins and membrane proteins possess at least one hydrophobic domain inside the proteins, after synthesis thereof in the ribosome, wherein, secretory signal or remains domain works as a in phospholipid membrane to be trapped in the membrane. Accordingly, the evidence of this cDNA for encoding a secretory protein and a membrane protein is provided by determination of the whole base sequence of a full-length cDNA followed by detection of highly hydrophobic domain(s) in the amino acid sequence of the protein encoded by this CDNA.

15

20

10

5

OBJECTS OF THE INVENTION

The main object of the present invention is to provide novel human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors for these DNAs as well as transformed eucaryotic cells that are capable of expressing these DNAs. This object as well as other objects and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the accompanying drawings.

25

30

BRIEF DESCRIPTION OF DRAWINGS

- Fig. 1 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01550.
- Fig. 2 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02593.
 - Fig. 3 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10195.

5

10

15

20

25

30

- Fig. 4 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10423.
- Fig. 5 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10506.
- Fig. 6 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10507.
 - Fig. 7 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10548.
- Fig. 8 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10566.
- Fig. 9 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10567.
- Fig. 10 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10568.
- Fig. 11 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01426.
- Fig. 12 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02515.
- Fig. 13 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02575.
- Fig. 14 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10357.
- Fig. 15 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10447.
- Fig. 16 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10477.
- Fig. 17 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10513.
- Fig. 18 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10540.
 - Fig. 19 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10557.

5

10

15

20

25

30

Fig. 20 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10563.

Fig. 21 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01467.

Fig. 22 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01956.

Fig. 23 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02545.

Fig. 24 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02551.

Fig. 25 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02631.

Fig. 26 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02632.

Fig. 27 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10488.

Fig. 28 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10538.

Fig. 29 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10542.

Fig. 30 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10571.

Fig. 31 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01470.

Fig. 32 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02419.

Fig. 33 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02631.

Fig. 34 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02695.

Fig. 35 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10031.

Fig. 36 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10530.

- Fig. 37 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10541.
- Fig. 38 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10550.
 - Fig. 39 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10590.
 - Fig. 40 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10591.
 - Fig. 41 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01462.
 - Fig. 42 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02485.
- 15 Fig. 43 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02798.
 - Fig. 44 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10041.
 - Fig. 45 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10246.
 - Fig. 46 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10392.
 - Fig. 47 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10489.
 - Fig. 48 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10519.
 - Fig. 49 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10531.
- Fig. 50 illustrates the hydrophobicity/hydrophilicity 30 profile of the protein encoded by clone HP10574.

10

20

25

7

intensive studies, the present the result of inventors have been successful in cloning of cDNAs coding for proteins having hydrophobic domains from the human fulllength cDNA bank, thereby completing the present invention. invention provides the present words, other hydrophobic domains, proteins having namely comprising any of the amino acid sequences represented by SEQ ID Nos. 1 to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130. Moreover, the present invention provides DNAs coding above-mentioned proteins, exemplified by cDNAs comprising any of the base sequences represented by SEQ ID Nos. 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140, as well as expression vectors that are capable of expressing any of these DNAs by in vitro translation or in eucaryotic cells and transformed eucaryotic cells that are capable of expressing these DNAs and of producing the abovementioned proteins.

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

The proteins of the present invention can be obtained, for example, by a method for isolation from human organs, cell lines, etc., a method for preparation of peptides by the chemical synthesis, or a method for production with the recombinant DNA technology using the DNAs coding for the hydrophobic domains of the present invention, among which production with the recombinant method for technology is employed preferably. For instance, in vitro expression of the proteins can be achieved by preparation of an RNA by in vitro transcription from a vector having one of the cDNAs of the present invention, followed by in vitro translation using this RNA as a template. Also, introduction of the translated region into a suitable expression vector

8

by the method known in the art leads to expression of a large amount of the encoded protein in prokaryotic cells such as *Escherichia coli*, *Bacillus subtilis*, etc., and eucaryotic cells such as yeasts, insect cells, mammalian cells, etc.

5

10

15

20

25

30

In the case where one of the proteins of the present invention is produced by expressing the DNA by in vitro translation, the protein of the present invention can be produced in vitro, when the translated region of this cDNA introduced into a vector having an RNA polymerase promoter, followed by addition of the vector to an in vitro translation system such as a rabbit reticulocyte lysate or a extract, containing an RNA germ corresponding to the promoter. RNA polymerase promoters are exemplified by T7, T3, SP6, and the like. The vectors containing these RNA polymerase promoters are exemplified by pKA1, pCDM8, pT3/T7 18, pT7/3 19, pBluescript II, and so on. Furthermore, the protein of the present invention can be expressed as the secreted form or the form incorporated into the microsome membrane, when a canine pancreas microsome or the like is added to the reaction system.

In the case where one of the protein of the present expressing the DNA invention is produced by microorganism such as Escherichia coli etc., a recombinant expression vector bearing the translated region of the cDNA of the present invention is constructed in an expression vector having an origin which can be replicated in the microorganism, a promoter, a ribosome-binding site, a cDNAcloning site, a terminator etc. and, after transformation of the host cells with this expression vector, the resulting transformant is incubated, whereby the protein encoded by said cDNA can be produced on a large scale in the

9

microorganism. In this case, a protein fragment containing any region can be obtained by carrying out the expression with inserting an initiation codon and a termination codon in front of and behind the selected translated region. Alternatively, a fusion protein with another protein can be expressed. Only the portion of the protein encoded by this cDNA can be obtained by cleavage of this fusion protein with a suitable protease. The expression vector for Escherichia coli is exemplified by the pUC series, pBluescript II, the pET expression system, the pGEX expression system, and so on.

5

10

15

20

25

30

In the case where one of the proteins of the present invention is produced by expressing the DNA in eucaryotic cells, the protein of the present invention can be produced as a secretory protein or as a membrane protein on the cellmembrane surface, when the translated region of this cDNA is introduced into an expression vector for eucaryotic cells that has a promoter, a splicing region, a poly(A) addition site, etc., followed by introduction into the eucaryotic cells. The expression vector is exemplified by pKA1, pED6dpc2, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pYES2, and so on. Examples of eucaryotic cells to be used in general include mammalian cultured cells such as simian kidney cells COS7, Chinese hamster ovary cells CHO, etc., budding yeasts, fission yeasts, silkworm Xenopus oocytes, and so on, but any eucaryotic cells may be used, provided that they are capable of expressing the proteins of the present invention. The expression vector can be introduced into the eucaryotic cells by methods known in the art such as the electroporation method, the calcium the liposome method, the phosphate method, DEAE-dextran method, and so on.

After one of the proteins of the present invention is

10

expressed in prokaryotic cells or eucaryotic cells, the objective protein can be isolated from the culture and purified by a combination of separation procedures known in the art. Such examples include treatment with a denaturing agent such as urea or a detergent, sonication, enzymatic digestion, salting-out or solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion-exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography, and so on.

5

10

15

20

25

30

The proteins of the present invention include peptide fragments (5 amino acid residues or more) containing any partial amino acid sequence in the amino acid sequences represented by SEQ ID Nos. 1. to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130. These peptide fragments can be utilized as antigens for preparation of antibodies. Hereupon, among the proteins of the present invention, those having the signal sequences are secreted in the form of mature proteins, after the signal sequences are removed. Therefore, these mature proteins shall come within the scope of the present invention. The N-terminal amino acid sequences of the mature proteins can be easily determined by using the method for the determination of cleavage site of a signal [JP 8-187100 A]. Furthermore, some sequence proteins undergo the processing on the cell surface to be converted to the secretory forms. Such proteins or peptides in the secretory forms shall come within the scope of the present invention. In the case where sugar chain-binding sites are present in the amino acid sequences, expression in appropriate eucaryotic cells affords proteins to which sugar chains are attached. Accordingly, such proteins or peptides to which sugar chains are attached shall come within the

11

scope of the present invention.

5

10

15

20

25

30

The DNAs of the present invention include all the DNAs coding for the above-mentioned proteins. These DNAs can be obtained by using a method by chemical synthesis, a method by cDNA cloning, and so on.

The cDNAs of the present invention can be cloned, for example, from cDNA libraries derived from the human cells. These cDNAs are synthesized by using as templates poly(A)* RNAs extracted from human cells. The human cells may be cells delivered from the human body, for example, by the operation or may be the cultured cells. The cDNAs can be synthesized by using any method selected from the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J. Gene 25: 263-269 (1983)], and so on, but it is preferred to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)], as exemplified in Examples, in order to obtain a full-length clone in an effective manner. In addition, commercially available, human cDNA libraries can be utilized. Cloning of the cDNAs of the present invention from the cDNA libraries can be carried out by synthesis of an oligonucleotide on the basis of base sequences of any portion in the cDNA of the present invention, followed by screening using this oligonucleotide as the probe according to the colony or plaque hybridization by a method known in the art. In addition, the cDNA fragments of the present invention can be prepared by synthesis of oligonucleotides which hybridize with both termini of the objective cDNA fragment, followed by the usage of these oligonucleotides as the primers for the RT-PCR method using an mRNA isolated from human cells.

The cDNAs of the present invention are characterized by

12

comprising either of the base sequences represented by SEQ ID Nos. 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140 or the base sequences represented by SEQ ID Nos. 21 to 30, 51 to 60, 81 to 90, 111 to 120, and 141 to 150. Table 1 summarizes the clone number (HP number), the cells from which the cDNA was obtained, the total base number of the cDNA, and the number of the amino acid residues of the encoded protein, for each of the cDNAs.

5

Table 1

Table 1								
				Number				
SEO ID No	HP	Cells	Base	of amino				
SEQ ID No.	number	Cells	number	acid				
				residues				
1, 11, 21	HP01550	Stomach cancer	510	125				
2, 12, 22	HP02593	Saos-2	697	131				
3, 13, 23	HP10195	HT-1080	1619	242				
4, 14, 24	HP10423	U-2 OS	1066	264				
5, 15, 25	HP10506	Stomach cancer	618	112				
6, 16, 26	HP10507	Stomach cancer	1021	146				
7, 17, 27	HP10548	Stomach cancer	1432	344				
8, 18, 28	HP10566	Stomach cancer	601	97				
9, 19, 29	HP10567	Stomach cancer	585	124				
10, 20, 30	HP10568	Stomach cancer	1100	327				
31, 41, 51	HP01426	Stomach cancer	1065	313				
32, 42, 52	HP02515	Saos-2	937	229				
33, 43, 53	HP02575	Saos-2	1678	467				
34, 44, 54	HP10357	Stomach cancer	467	99				
35, 45, 55	HP10447	Liver	875	189				
36, 46, 56	HP10477	Liver	1256	363				
37, 47, 57	HP10513	Stomach cancer	884	249				
38, 48, 58	HP10540	Saos-2	589	98				
39, 49, 59	HP10557	Stomach cancer	673	172				
40, 50, 60	HP10563	Saos-2	1425	120				
61, 71, 81	HP01467	HT-1080	1436	307				
62, 72, 82	HP01956	Liver	997	183				
63, 73, 83	HP02545	Saos-2	1753	327				
64, 74, 84	HP02551	Saos-2	1117	223				
65, 75, 85	HP02631	Saos-2	1380	48				
66, 76, 86	HP02632	HT-1080	1503	371				
67, 77, 87	HP10488	Liver	733	90				
68, 78, 88	HP10538	Saos-2	3768	499				
69, 79, 89	HP10542	Stomach cancer	770	106				
70, 80, 90	HP10571	Stomach cancer	1229	152				

14

91, 101, 111	HP01470	Stomach cancer	1619	358
92, 102, 112	HP02419	Stomach cancer	2054	226
93, 103, 113	HP02631	Saos-2	1380	195
94, 104, 114	HP02695	Stomach cancer	1292	339
95, 105, 115	HP10031	Saos-2	2168	487
96, 106, 116	HP10530	Saos-2	1357	393
97, 107, 117	HP10541	Stomach cancer	711	196
98, 108, 118	HP10550	Stomach cancer	651	107
99, 109, 119	HP10590	HT-1080	1310	350
100, 110, 120	HP10591	HT-1080	1400	107
121, 131, 141	HP01462	HT-1080	2050	483
122, 132, 142	HP02485	Stomach cancer	2746	334
123, 133, 143	HP02798	HT-1080	1136	267
124, 134, 144	HP10041	Saos-2	619	106
125, 135, 145	HP10246	KB	864	224
126, 136, 146	HP10392	U-2 OS	1527	258
127, 137, 147	HP10489	Stomach cancer	659	110
128, 138, 148	HP10519	Stomach cancer	710	91
129, 139, 149	HP10531	Saos-2	2182	344
130, 140, 150	HP10574	Stomach cancer	2773	428

Hereupon, the same clones as the cDNAs of the present invention can be easily obtained by screening of the cDNA libraries constructed from the human cell lines or human tissues utilized in the present invention by the use of an oligonucleotide probe synthesized on the basis of the cDNA base sequence described in any of SEQ ID Nos. 11 to 30, 41 to 60, 71 to 90, 101 to 120, and 131 to 150.

5

10

In general, the polymorphism due to the individual difference is frequently observed in human genes. Accordingly, any cDNA in which one or plural nucleotides are inserted, deleted and/or substituted with other nucleotides in SEQ ID Nos. 11 to 30, 41 to 60, 71 to 90, 101 to 120, and

15

131 to 150 shall come within the scope of the present invention.

In a similar manner, any protein in which one or plural amino acids are inserted, deleted and/or substituted with other amino acids shall come within the scope of the present invention, as far as the protein possesses the activity of any protein having the amino acid sequences represented by SEQ ID Nos. 1 to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130.

5

10

15

20

25

The cDNAs of the present invention include cDNA fragments (10 bp or more) containing any partial base sequence in the base sequences represented by SEQ ID Nos. 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140 or in the base sequences represented by SEQ ID Nos. 21 to 30, 51 to 60, 81 to 90, 111 to 120, and 141 to 150. Also, DNA fragments consisting of a sense strand and an anti-sense strand shall come within this scope. These DNA fragments can be utilized as the probes for the genetic diagnosis.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

Research Uses and Utilities

30 The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant

5

10

15

20

25

30

16

protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) identify chromosomes or to map related gene positions; to sequences compare with endogenous DNA in patients identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source derive PCR primers of information to for fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodiesusing DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can be used in interaction trap assays (such as, example, that described in Gyuris et al., Cell 75:791-803 identify polynucleotides encoding the other (1993)) to protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine

17

levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Nutritional Uses

5

10

15

20

25

30

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be

18

administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Cytokine and Cell Proliferation/Differentiation Activity

5

10

15

20

25

30

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell Many protein factors discovered to date, populations. including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of The activity of a protein of the present cytokine activity. invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Coligan, A.M. Kruisbeek, D.H. Immunology, Ed by J. E. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular

19

Immunology 133:327-341, 1991; Bertagnolli, et al., J.
Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol.
152: 1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ , Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

5

10

proliferation and differentiation for hematopoietic lymphopoietic cells include, and limitation, those described in: Measurement of Human and 15 Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., 20 Nature 336:690-692, Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6-In Current Protocols in Immunology. J.E.e.a. Nordan, R. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 25 83:1857-1861, 1986; Measurement of human Interleukin 11 -Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., 30 Giannotti, J., Clark, S.C. and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp.

6.13.1, John Wiley and Sons, Toronto. 1991.

5

10

15 .

20

25

30

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, described in: Current limitation. those Protocols Immunology, J. E. Coligan, A.M. Kruisbeek, D.H. Ed by Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing and Wiley-Interscience (Chapter 3, Associates In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

Immune Stimulating or Suppressing Activity

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including combined immunodeficiency (SCID)), severe regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity other cell populations. These cells and deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial orfungal infections, or may result from autoimmune disorders. More specifically, infectious by viral, bacterial, fungal diseases causes infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp.

21

and various fungal infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

5

10

15

20

25

30

Autoimmune disorders which may be treated using a protein of the present invention include, for example, multiple connective tissue disease, sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia graft-versus-host autoimmune disease gravis, and Such a protein of the present inflammatory eye disease. invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. immune suppression conditions, in which desired (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. regulation may be in the form of inhibiting or blocking an response already in progress or may preventing the induction of an immune response. The functions of activated T cells may be inhibited responses or by inducing specific suppressing Т cell tolerance in T cells, or both. Immunosuppression of T cell generally an active, non-antigen-specific, responses is process which requires continuous exposure of the T cells to Tolerance, which involves inducing the suppressive agent. non-responsiveness or anergy in T cells, is distinguishable immunosuppression in that it is generally antigenspecific and persists after exposure to the tolerizing agent

22

has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

5

10

15

20

25

30

regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will situations of tissue, useful in skin organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. transplants, rejection Typically, in tissue transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the The administration of a molecule which inhibits transplant. or blocks interaction of a B7 lymphocyte antigen with its immune cells (such natural ligand(s) on as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the cells without transmitting the corresponding immune costimulatory signal. Blocking В lymphocyte antigen function in this matter prevents cytokine synthesis T cells, and thus acts as immune cells, such as an immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing Induction of long-term tolerance by tolerance in a subject. antigen-blocking reagents may avoid lymphocyte of repeated administration of these blocking necessity achieve sufficient immunosuppression reagents. To

23

tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

5

10

15

20

25

30

particular blocking The efficacy of preventing organ transplant rejection or GVHD assessed using animal models that are predictive of efficacy Examples of appropriate systems which can be in humans. allogeneic cardiac grafts in rats include xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Iq fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate Administration of reagents which block disease symptoms. cells by disrupting receptor:ligand costimulation of ${f T}$ interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. efficacy of blocking reagents in preventing or alleviating

24

autoimmune disorders can be determined using a number of of well-characterized animal models human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr NZB hybrid mice, murine autoimmune arthritis, diabetes mellitus in NOD mice and BB rats, and experimental myasthenia gravis (see Paul 1989, pp. Fundamental Immunology, Raven Press, New York, 840-856).

5

10

15

20

25

30

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating be responses, may also useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the commoncold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the

25

transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

5

10

15

20

25

30

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. sarcoma, cells (e.q., melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the the surface of the transfected peptides on Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I α chain protein and , microglobulin protein or an MHC class

26

chain protein and an MHC class II chain protein to thereby express MHC class I or MHC class II proteins on the Expression of the appropriate class I or cell surface. class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against Optionally, a gene encoding an transfected tumor cell. antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific Thus, the induction of a T cell mediated immune immunity. response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

5

10

15

20

25

30

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable for thymocyte assays or splenocyte cytotoxicity include, without limitation, those described Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J.

Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

5

10

15

20

25

30

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Interscience (Chapter 3, In assays Vitro for Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965,

1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

5 Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 10 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 15 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

20

25

30

A protein of the present invention may be useful in hematopoiesis and, consequently, regulation of treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or factor-dependent of cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells in combination with other cytokines, thereby alone or indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to

5

10

15

20

25

30

stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation mveloid cells such as granulocytes monocytes/macrophages (i.e., traditional **CSF** activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting growth and proliferation of megakaryocytes consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the abovementioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, anemia and paroxysmal nocturnal aplastic hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo conjunction ' with bone (i.e., in marrow peripheral progenitor transplantation or with cell transplantation (homologous or heterologous)) as cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and

30

Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, described in: Methylcellulose colony forming assays, Freshney, M.G. In Culture of Hematopoietic Cells. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. 89:5907-5911, 1992; Primitive hematopoietic colony USA forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, Μ. Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

5

10

15

20

25

30

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is

31

not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

5

10

15

20

25

30

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair Such agents may provide an environment processes. attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of boneforming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair inflammation processes or by blocking orof activity, osteoclast activity, destruction (collagenase etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and

32

in repairing defects to tendon or ligament tissue. De novo tissue formation induced tendon/ligament-like by composition of the present invention contributes to repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful cosmetic plastic surgery for attachment or repair of tendons The compositions of the present invention may or ligaments. provide an environment to attract tendon or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, progenitors induce differentiation of of tendonligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect The compositions of the invention may also tissue repair. be useful in the treatment of tendinitis, carpal tunnel ligament defects. syndrome and other tendon or The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

5

10

15

20

25

30

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve More specifically, a protein may be used in the tissue. treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy localized neuropathies, and central nervous system diseases, such Alzheimer's, Parkinson's disease, Huntington's lateral sclerosis, and Shy-Drager disease, amyotrophic Further conditions which may be treated syndrome. accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head

33

trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

5

10

15

20

25

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. WO95/16035 (bone, cartilage, tendon);

34

International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

5

10

15

20

25

30

A protein of the present invention may also exhibit inhibin-related activities. Inhibins or characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among

5

10

15

20

25

30

other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for including, for example, monocytes, mammalian cells, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma tissues, as well as in treatment of localized infections. attraction of lymphocytes, monocytes example, For neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among

5

10

15

20

25

30

other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. 1744-1748; Gruber et 25: al. J. of 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (includinghereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include,

37

without limitation, those described in: Linet et al., J. 1986; 26:131-140, Burdick Clin. Pharmacol. et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Ligand Activity

5

10

15

20

30

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors cell-cell interactions and their (including without limitation, cellular adhesion molecules selectins, integrins and their ligands) involved in antigen presentation, receptor/ligand pairs antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful screening of potential peptide or small inhibitors of the relevant receptor/ligand interaction. protein of invention (including, the present and limitation, fragments of receptors ligands) inhibitors of receptor/ligand themselves be useful as interactions.

25 The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in:Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22),

Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

5

10

15

20

25

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cellcell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of ytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A

39

protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth

Other Activities

5

10

15

20

25

30

A protein of the invention may also exhibit one or more following additional activities or inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body shape (such as, for example, size or augmentation or diminution, change in bone form or shape); caricadic cycles effecting biorhythms or or rhythms; effecting fertility of male or female subjects; the effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of

40

embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

Examples

5

10

15

20

25

The present invention is specifically illustrated in more detail by the following Examples, but Examples are not intended to restrict the present invention. The basic operations with regard to the recombinant DNA and the enzymatic reactions were carried out according to the literature ["Molecular Cloning. A Laboratory Manual", Cold Spring Harbor Laboratory, 1989]. Unless otherwise stated, restrictive enzymes and a variety of modification enzymes to be used were those available from Takara Shuzo. The buffer compositions and the reaction conditions for each of the enzyme reactions were as described in the manufacturer's instructions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

(1) Selection of cDNAs Encoding Proteins Having Hydrophobic Domains

The cDNA library of fibrosarcoma cell line HT-1080 (WO98/11217), the cDNA library of osteosarcoma cell line Saos-2 (WO97/33993), the cDNA library of osteosarcoma cell line U-2 OS (WO98/21328), the cDNA library of epidermoid

carcinoma cell line KB (WO98/11217), the cDNA library of stomach cancer delivered by the operation (WO98/21328), the cDNA library of liver tissue delivered by the operation (WO98/21328), and were used for the CDNA libraries. Full-length cDNA clones were selected respective libraries and the whole base sequences thereof were determined to construct a homo-protein cDNA consisting of the full-length CDNA clones. The hydrophobicity/hydrophilicity profiles were determined for proteins encoded by the full-length cDNA registered in the homo-protein cDNA bank by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Biol. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic region. Any clone that has a hydrophobic region being putative as a secretory signal or a transmembrane domain in the amino acid sequence of the encoded protein was selected as a clone candidate.

(2) Protein Synthesis by In Vitro Translation

5

10

15

20

25

30

The plasmid vector bearing the cDNA of the present invention was used for in vitro transcription/translation with a T_uT rabbit reticulocyte lysate kit (Promega). In this case, [35] methionine was added to label the expression product with a radioisotope. Each of the reactions was carried out according to the protocols attached to the kit. Two micrograms of the plasmid was subjected to the reaction at 30°C for 90 minutes in the reaction solution of a total volume of 25 μ l containing 12.5 μ l μ of T_NT rabbit reticulocyte lysate, 0.5 μ l of a buffer solution (attached the kit), 2 μ l of an amino acid mixture (without methionine), 2 μ l of [35S]methionine (Amersham) (0.37 MBq/ μ l), 0.5 μ l of T7 RNA polymerase, and 20 U of RNasin. Also, an experiment in the presence of a membrane system was carried

42

out by adding to this reaction system 2.5 μ l of a canine pancreas microsome fraction (Promega). To 3 μ l of the resulting reaction solution was added 2 μ l of the SDS sampling buffer (125 mM Tris-hydrochloric acid buffer, pH 6.8, 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue, and 20% glycerol) and the resulting mixture was heated at 95°C for 3 minutes and then subjected to SDS-polyacrylamide gel electrophoresis. The molecular weight of the translation product was determined by carrying out the autoradiography.

(3) Expression by COS7

5

10

15

20

25

30

Escherichia coli cells bearing the expression vector for the protein of the present invention was incubated at 37°C for 2 hours in 2 ml of the 2xYT culture medium containing $100~\mu\text{g/ml}$ of ampicillin, the helper phage M13K07 ($50~\mu$ 1) was added, and the incubation was continued at 37°C overnight. A supernatant separated by centrifugation underwent precipitation with polyethylene glycol to obtain single-stranded phage particles. These particles were suspended in $100~\mu\text{l}$ of 1 mM Tris-0.1 mM EDTA, pH 8 (TE).

The cultured cells derived from simian kidney, COS7, were incubated at 37°C in the presence of 5% CO₂ in the Dulbecco's modified Eagle's culture medium (DMEM) containing 10% fetal calf serum. Into a 6-well plate (Nunc, well diameter: 3 cm) were inoculated with 1 x 10^5 COS7 cells and incubation was carried out at 37°C for 22 hours in the presence of 5% CO₂. After the culture medium was removed, the cell surface was washed with a phosphate buffer solution and then washed again with DMEM containing 50 mM Trishydrochloric acid (pH 7.5) (TDMEM). To the resulting cells was added a suspension of 1 μ l of the single-stranded phage suspension, 0.6 ml of the DMEM culture medium, and 3 μ l of

43

TRANSFECTAMTM (IBF) and the resulting mixture was incubated at 37°C for 3 hours in the presence of 5% CO2. After the sample solution was removed, the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf serum was added, and the incubation was carried out at 37°C for 2 days in the presence of 5% CO2. After the culture was replaced by a culture medium medium [35S]cystine or [35S]methionine, the incubation was carried out for one hour. After the culture medium and the cells were separated by centrifugation, proteins in the culture the cell-membrane fraction medium fraction and subjected to SDS-PAGE.

(4) Clone Examples
<HP01550> (SEQ ID Nos. 1, 11, and 21)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP01550 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 65-bp 5'-untranslated region, a 378-bp ORF, and a 67-bp 3'untranslated region. The ORF codes for a protein consisting of 125 amino acid residues and there existed one putative 1 depicts domain. Figure transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kyteof the present protein. method, translation resulted in formation of a translation product of 15 kDa that was almost identical with the molecular weight of 13,825 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis elegans hypothetical protein F45G2.c (GenBank Accession No. Z93382). Table 2 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C.

elegans hypothetical protein F45G2.c (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 44.5% in the entire region.

Table 2

20

25

5

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA338859) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02593> (SEQ ID Nos. 2, 12, and 22)

30

Determination of the whole base sequence of the cDNA insert of clone HP02593 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 103-bp 5'-untranslated region, a 396-bp ORF,

PCT/JP99/03929

45

and a 198-bp 3'-untranslated region. The ORF codes for a protein consisting of 131 amino acid residues and there existed four putative transmembrane domains at the C-terminus. Figure 2 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of a high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to a human OB-R gene-related protein (EMBL Accession No. Y12670). Table 3 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human OB-R gene-related protein (OB). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 67.9% in the entire region.

20

25

30

5

10

15

WO 00/05367

Table 3

46

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA306490) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10195> (SEQ ID Nos. 3, 13, and 23)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10195 obtained from cDNA library of human fibrosarcoma HT-1080 revealed the structure consisting of a 286-bp 5'-untranslated region, a 729-bp ORF, and a 604-bp The ORF codes for 3'-untranslated region. а consisting of 242 amino acid residues and there existed one putative transmembrane domain at the C-terminus. Figure 3 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. vitro translation resulted in formation of a translation product of 32 kDa that was somewhat larger than molecular weight of 27,300 predicted from the ORF. When expressed in COS7 cells, an expression product of about 21 kDa was observed in the supernatant fraction and the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein has revealed the registration of sequences that were similar to the Aplysia VAP-33 (SWISS-PROT Accession No. P53173). Table 4 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the Aplysia VAP-33 (AP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the

present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 46.5% in the entire region.

5

Table 4

HP MAKHEQILVLDPPTDLKFKGPFTDVVTTNLKLRNPSDRKVCFKVKTTAPRRYCVRPNSGI ***** *** ************* AP MASHEQALILEPAGELRFKGPFTDVVTADLKLSNPTDRRICFKVKTTAPKRYCVRPNSGI 10 HP IDPGSTVTVSVMLOPFDYDPNEKSKHKFMVQTIFAPPNTSD-MEAVWKEAKPDELMDSKL AP LEPKTSIAVAVMLQPFNYDPNEKNKHKFMVQSMYAPDHVVESQELLWKDAPPESLMDTKL HP RCVFEMPNENDKLNDMEPSK-----AVPLNASKQDGPMPKP-HSVSLNDTE 15 AP RCVFEMPDGSHQAPASDASRATDAGAHFSESALEDPTVASRKTETQSPKRVGAVGSAGED HP TRKLMEECKRLQGEMMKLSEENRHLRDEGLRLRKVAHSD--KPGSTSTASFRDNVTSPLP AP VKKLQHELKKAQSEITSLKGENSQLKDEGIRLRKVAMTDTVSPTPLNPSPAPAAAVRAFP 20 HP SLLVVIAAIFIGFFLGKFIL ... *.***..*..** AP PVVYVVAAIILGLIIGKFLL

25 30 Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA447905) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10423> (SEQ ID Nos. 4, 14, and 24)

5

10

15

20

Determination of the whole base sequence of the cDNA insert of clone HP10423 obtained from cDNA library of human osteosarcoma cell line U-2 OS revealed the consisting of a 64-bp 5'-untranslated region, a 795-bp ORF, and a 207-bp 3'-untranslated region. The ORF codes for a protein consisting of 264 amino acid residues and there secretory signal at the N-terminus existed a and one putative transmembrane domain at the N-terminus. Figure 4 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 30 kDa that was almost identical with the molecular weight of 29,377 predicted from the ORF. When expressed in COS7 cells, an expression product of about 31 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. D80116) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10506> (SEQ ID Nos. 5, 15, and 25)

Determination of the whole base sequence of the cDNA insert of clone HP10506 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 53-bp 5'-untranslated region, a 339-bp ORF, and a 226-bp 3'-untranslated region. The ORF codes for a protein consisting of 112 amino acid residues and there existed one putative transmembrane domain. Figure 5 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-

49

Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 12 kDa that was almost identical with the molecular weight of 11,821 predicted from the ORF. When expressed in COS7 cells, an expression product of about 13 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA282544) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

15 <HP10507> (SEQ ID Nos. 6, 16, and 26)

5

10

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10507 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 412-bp 5'-untranslated region, a 441-bp ORF, and a 168-bp 3'untranslated region. The ORF codes for a protein consisting of 146 amino acid residues and there existed a secretory signal at the N-terminus and one putative transmembrane 6 C-terminus. Figure domain at the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 19 kDa that was somewhat larger than the molecular weight of 16,347 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA424759) in ESTs, but, since they

are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

5 <HP10548> (SEQ ID Nos. 7, 17, and 27)

10

15

20

30

Determination of the whole base sequence of the cDNA insert of clone HP10548 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 330-bp 5'-untranslated region, a 1035-bp ORF, and a 67-bp 3'untranslated region. The ORF codes for a protein consisting of 344 amino acid residues and there existed four putative 7 depicts domains. Figure transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of a high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA143152) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

25 <HP10566> (SEQ ID Nos. 8, 18, and 28)

Determination of the whole base sequence of the cDNA insert of clone HP10566 obtained from cDNA library of the human stomach cancer revealed the structure consisting of a 61-bp 5'-untranslated region, a 294-bp ORF, and a 246-bp 3'-untranslated region. The ORF codes for a protein consisting of 97 amino acid residues and there existed one putative transmembrane domain at the C-terminus. Figure 8 depicts the

51

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 12 kDa that was almost identical with the molecular weight of 11,452 predicted from the ORF. When expressed in COS7 cells, an expression product of about 12 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W79821) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

15

20

25

30

10

5

<HP10567> (SEQ ID Nos. 9, 19, and 29)

Determination of the whole base sequence of the cDNA insert of clone HP10567 obtained from cDNA library of the human stomach cancer revealed the structure consisting of a 77-bp 5'-untranslated region, a 375-bp ORF, and a 133-bp 3'untranslated region. The ORF codes for a protein consisting of 124 amino acid residues and there existed one putative transmembrane domain at the C-terminus. Figure 9 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 14 kDa that was almost identical with the molecular weight of 14,484 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA428475) in ESTs, but, since they

52

are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

5 <HP10568> (SEQ ID Nos. 10, 20, and 30)

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10568 obtained from cDNA library of the human stomach cancer revealed the structure consisting of a 56-bp 5'-untranslated region, a 984-bp ORF, and a 60-bp 3'untranslated region. The ORF codes for a protein consisting of 327 amino acid residues and there existed a secretory at the N-terminus and one putative transmembrane signal depicts C-terminus. Figure 10 domain the hydrophobicity/hydrophilicity profile, obtained by the Kytemethod, of the present protein. translation resulted in formation of a translation product of 36.5 kDa that was almost identical with the molecular weight of 34,326 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 40 kDa which is considered to have a sugar chain being addition, there exist in the amino In sequence of this protein two sites at which N-glycosylation may occur (Asn-Leu-Thr at position 138 and Asn-Leu-Ser at position 206). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory sequence, allows to expect that the mature protein starts from valine at position 24. When expressed in COS7 cells, an expression product of about 31 kDa was observed in the supernatant fraction and the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein has revealed that the protein was similar to the human cell-surface A33 antigen

(SWISS-PROT Accession No. Q99795). Table 5 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human cell-surface A33 antigen (A3). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 30.0% in the N-terminal region of 243 residues.

10

5

Table 5

HP MAELPGPFLCGALLGFLCLSGLAVEVKVPTEPLSTPLGKTAELTCTYSTSVGDSFAL-EW MVGKMWPVLWTLCAVRVTVDAISVETPQDVLRASQGKSVTLPCTYHTSTSSREGLIQW 15 **A3** HP SFVQPGKPISESHPILYFTNGHLYPTGSKSKRVSLLQNPPTVGVATLKLTDVHPSDTGTY * *.* . * *. *. A3 DKLL--LTHTERVVIWPFSNKN-YIHGELYKNRVSISNNAEQSDASITIDQLTMADNGTY HP LCQVNNPPDFYTNGLGLINLTVLVPPSNPLCSQSGQTSVGGSTALRCSSSEGAPKPVYNW * *. .*. .*. . ..* ****** *. .*.* .*... * * *.*.*. * *.* 20 A3 ECSVSLMSDLEGNTKSRVRLLVLVPPSKPECGIEGETIIGNNIQLTCQSKEGSPTPOYSW HP VRLGTFPTPSPGSMVQDEVSGQLILTNLSLTSSGTYRCVATNQMGSASCELTLSVTEPS-A3 KRYNILNOEOP--LAOPASGOPVSLKNISTDTSGYYICTSSNEEGTQFCNITVAVRSPSM HP -QGRVAGALIGVLLGVLLLSVAAFCLVRFQKERGKKPKETYGGSDLREDAIAPGISEHTC 25 .**.* A3 NVALYVGIAVGVVAALIIIGIIIYCCCCRGKDDNTEDKEDARPNREAYEEPPEQLRELSR HP MRADSSKGFLERPSSASTVTTTKSKLPMVV 30 A3 EREEEDDYRQEEQRSTGRESPDHLDQ

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration

54

of sequences that shared a homology of 90% or more (for example, Accession No. T24595) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP01426> (SEQ ID Nos. 31, 41, and 51)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP01426 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 1-bp 5'-untranslated region, a 942-bp ORF, and a 122-bp untranslated region. The ORF codes for a protein consisting of 313 amino acid residues and there existed a putative depicts Figure 11 signal. hydrophobicity/hydrophilicity profile, obtained by the Kytepresent protein. method, of the translation resulted in formation of a translation product of 36 kDa that was almost identical with the molecular weight of 34,955 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 38 kDa which is considered to have a sugar chain being attached after secretion. In addition, there exists in the amino acid sequence of this protein one site at which Nglycosylation may occur (Asn-Ser-Ser at position Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from tryptophan at position 17. When expressed in COS7 cells, an expression product of about 39 kDa was observed in the supernatant fraction and the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the

5

10

protein was similar to the Xenopus laevis cortical granule lectin (EMBL Accession No. X82626). Table 6 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the X. laevis cortical granule lectin (XL). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 67.9% in the region other than the N-terminal region.

Table 6

HP MNOLSFLLFLIATTRGWSTDEANTYFKEWTCSSSPSLPRSCKEIKDECPSAFDGLYFLRT **** 15 XL MLVHILLLVTGGLSQSCEPVVIVASKNMVKQLDCDKFRSCKEIKDSNEEAQDGIYTLTS HP ENGVIYQTFCDMTSGGGGWTLVASVHENDMRGKCTVGDRWSSQQGSKADYPEGDGNWANY ..*. *******..**************** XL SDGISYQTFCDMTTNGGGWTLVASVHENNMAGKCTIGDRWSSQQGNRADYPEGDGNWANY HP NTFGSAEAATSDDYKNPGYYDIQAKDLGIWHVPNKSPMQHWRNSSLLRYRTDTGFLQTLG 20 XL NTFGSAGGATSDDYKNPGYYDIEAYNLGVWHVPNKTPLSVWRNSSLQRYRTTDGILFKHG HP HNLFGIYQKYPVKYGEGKCWTDNGPVIPVVYDFGDAQKTASYYSPYGQREFTAGFVQFRV ***..*. ***** *.* .*.*******.*.*.*** XL GNLFSLYRIYPVKYGIGSCSKDSGPTVPVVYDLGSAKLTASFYSPDFRSQFTPGYIOFRP 25 HP FNNERAANALCAGMRVTGCNTEHHCIGGGGYFPEASPQQCGDFSGFDWSGYGTHVGYSSS XL INTEKAALALCPGMKMESCNVEHVCIGGGGYFPEADPRQCGDFAAYDFNGYGTKKFNSAG HP REITEAAVLLFYR 30 ****** XL IEITEAAVLLFYL

56

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R06009) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02515> (SEQ ID Nos. 32, 42, and 52)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP02515 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the consisting of a 176-bp 5'-untranslated region, a 690-bp ORF. and a 71-bp 3'-untranslated region. The ORF codes for a protein consisting of 229 amino acid residues and there existed a putative secretory signal at N-terminus and one putative transmembrane domain at the C-terminus. Figure 12 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. vitro translation resulted in formation of a translation product of 27 kDa that was almost identical with the molecular weight of 26,000 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 25.5 kDa from which the secretory signal considered to have been cleaved. Application of the (-3,-1)rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from phenylalanine at position 28.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human T1/ST2 receptor binding protein (GenBank Accession No. U41804). Table 7 shows the

57

comparison between amino acid sequences of the human protein of the present invention (HP) and the human T1/ST2 receptor binding protein (T1). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 55.8% in the entire region.

10 Table 7

HP MGDKIWLPFPVLLLAALPPVLLPGAAGFTPSLDSDFTFTLPAGQKECFYQPMPLKASLE

*... ** .*** . *.** * *.*** ****.*.****. * .****

T1 MMAAGAALALALWLL--MPPVEV-GGAGPPPIQDGEFTFLLPAGRKQCFYQSAPANASLE

T1 TEYQVIGGAGLDVDFTLESPQGVLLVSESRKADGVHTVEPTEAGDYKLCFDNSFSTISEK

T1 LVFFELIFDSL-QDDEEVEGWAEAVEPEEMLDVKMEDIKESIETMRTRLERSIQMLTLLR

T1 AFEARDRNLQEGNLERVNFWSAVNVAVLLLVAVLQVCTLKRFFQDKRPVPT

25

30

15

20

5

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA381943) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

58

<HP02575> (SEQ ID Nos. 33, 43, and 53)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP02575 obtained from cDNA library of human Saos-2 line revealed the osteosarcome cell structure consisting of a 55-bp 5'-untranslated region, a 1404-bp ORF, and a 219-bp 3'-untranslated region. The ORF codes for a protein consisting of 467 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 13 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the protein. In vitro translation resulted in formation of a translation product of 52 kDa that was almost identical with the molecular weight of 54,065 predicted from the ORF. this case, the addition of a microsome led to the formation of a product of 57 kDa which is considered to have a sugar chain being attached afetr secretion. In addition, there exist in the amino acid sequence of this protein three sites at which N-qlycosylation may occur (Asn-Arg-Thr at position 171, Asn-Ser-Thr at position 239 and Asn-Asp-Thr at position Application of the (-3,-1)rule, а method predicting the cleavage site of the secretory sequence, allows to expect that the mature protein starts from histidine at position 29. When expressed in COS7 cells, an expression product of about 55 kDa was observed in the supernatant fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human α -L-fucosidase (SWISS-PROT Accession No. P04066). Table 8 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human α -L-fucosidase (FC). Therein,

the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 54.8% in the entire region.

5

Table 8

	HP	${\tt MRPQELPRLAFPLLLLLLLLPPPPC-PAHSATRFDPTWESLDARQLPAWFDQAKFGIFI}$
10		****** *
	FC	MRSRPAGPALLLLLLFLGAAESVRRAQPPRRYTPDWPSLDSRPLPAWFDEAKFGVFI
	HP	HWGVFSVPSFGSEWFWWYWQKEKIPKYVEFMKDNYPPSFKYEDFGPLFTAKFFNANQWAD
		******* * * * * * * * * * * * * * *
	FC	HWGVFSVPAWGSEWFWWHWQGEGRPQYQRFMRDNYPPGFSYADFGPQFTARFFHPEEWAD
15	HP	IFQASGAKYIVLTSKHHEGFTLWGSEYSWNWNAIDEGPKRDIVKELEVAIRNRTDLRFGL
		.***.***.**.***
	FC	LFQAAGAKYVVLTTKHHEGFTNWPSPVSWNWNSKDVGPHRDLVGELGTALRKR-NIRYGL
	HP	YYSLFEWFHPLFLEDESSSFHKRQFPVSKTLPELYELVNNYQPEVLWSDGDGGAPDQYWN
		*.**.***** ** .**.***.**.**.** ** **
20	FC	YHSLLEWFHPLYLLDKKNGFKTQHFVSAKTMPELYDLVNSYKPDLIWSDGEWECPDTYWN
	HP	STGFLAWLYNESPVRGTVVTNDRWGAGSICKHGGFYTCSDRYNPGHLLPHKWENCMTIDK
		..***.** * * * * * * * * * * * * *
	FC	STNFLSWLYNDSPVKDEVVVNDRWGQNCSCHHGGYYNCEDKFKPQSLPDHKWEMCTSIDK
	HP	${\tt LSWGYRREAGISDYLTIEELVKQLVETVSCGGNLLMNIGPTLDGTISVVFEERLRQMGSW}$
25		.*****
	FC	FSWGYRRDMALSDVTEESEIISELVQTVSLGGNYLLNIGPTKDGLIVPIFQERLLAVGKW
	HP	LKVNGEAIYETHTWRSQNDTVTPDVWYTSKPKEKLVYAIFLKWPTSGQLFLGHPKAILGA
		****** * ***** ****** *****.* * *
	FC	LSINGEAIYASKPWRVQWEKNTTSVWYTSKGSAVYAIFLHWPENGVLNLESPITT-ST
30	HP	TEVKLLGHGQPLNWISLEQNGIMVELPQLTIHQMPCKWGWALALTNVI
		*** *.********
	FC	TKITMLGIQGDLKWSTDPDKGLFISLPQLPPSAVPAEFAWTIKLTGVK

60

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. N28668) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

10 <HP10357> (SEQ ID Nos. 34, 44, and 54)

5

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10357 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 113-bp 5'-untranslated region, a 300-bp ORF, and a 54-bp untranslated region. The ORF codes for a protein consisting of 99 amino acid residues and there existed two putative transmembrare domains. Figure 14 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kytemethod, of the present protein. In translation resulted in formation of a translation product of 11 kDa that was almost identical with the molecular weight of 10,923 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA477156) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10447> (SEQ ID Nos. 35, 45, and 55)

Determination of the whole base sequence of the cDNA

61

insert of clone HP10447 obtained from cDNA library of human liver revealed the structure consisting of a 271-bp 5'untranslated region, а 570-bp ORF, and a untranslated region. The ORF codes for a protein consisting of 189 amino acid residues and there existed five putative transmembrare domains. Figure 15 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA296976) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10477> (SEQ ID Nos. 36, 46, and 56)

5

10

15

20 Determination of the whole base sequence of the cDNA insert of clone HP10477 obtained from cDNA library of human liver revealed the structure consisting of a 149-bp untranslated region, a 1092-bp ORF, and 15-bp a untranslated region. The ORF codes for a protein consisting 25 of 363 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 16 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product 30 of 40 kDa that was almost identical with the molecular weight of 39,884 predicted from the ORF.

The search of the protein data base using the amino

62

acid sequence of the present protein revealed that the protein was similar to the human peptidoglycan recognition protein (GenBank Accession No. AF076483). Table 9 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human peptidoglycan recognition protein (PG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 54.8% in the entire region.

Table 9

HP MVDSLLAVTLAGNLGLTFLRGSQTQSHPDLGTEGCWDQLSAPRTFTLLDPKASLLTKAFL
HP NGALDGVILGDYLSRTPEPRPSLSHLLSQYYGAGVARDPGFRSNFRRQNGAALTSASILA
HP QQVWGTLVLLQRLEPVHLQLQCMSQEQLAQVAANATKEFTEAFLGCPAIHPRCRWGAAPY

.. ** * * .

PG MSRRSMLLAWALPSLLRLGAAQETEDPACCSPIVPRNEWKALA-

HP RGRPKLLQLPLGFLYVHHTYVPAPPCTDFTRCAANMRSMQRYHQDTQGWGDIGYSFVVGS

PG SECAQHLSLPLRYVVVSHT--AGSSCNTPASCQQQARNVQHYHMKTLGWCDVGYNFLIGE

HP DGYVYEGRGWHWVGAHTLGH-NSRGFGVAIVGNYTAALPTEAALRTVRDTLPSCAVRAGL

PG DGLVYEGRGWNFTGAHSGHLWNPMSIGISFMGNYMDRVPTPQAIRAAOGLL-ACGVAOGA

HP LRPDYALLGHRQLVRTDCPGDALFDLLRTWPHFTATVKPRPARSVSKRSRREPPPRTLPA
..*. *.. ** ...*..**..***.

PG LRSNYVLKGHRDVQRTLSPGNQLYHLIQNWPHYRSP

5

10

20

25

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration

63

of sequences that shared a homology of 90% or more (for example, Accession No. AA424759) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10513> (SEQ ID Nos. 37, 47, and 57)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10513 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 134-bp 5'-untranslated region, a 750-bp ORF, and a 0-bp 3'-untranslated region. The ORF codes for a protein consisting of 249 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 17 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 29 kDa that was almost identical with the molecular weight of 27,373 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human hypothetical protein KIAA0512 (GenBank Accession No. AB011084). Table 10 shows the comparison between amino acid sequences of the human invention protein of the present (HP) and the hypothetical protein KIAA0512 (KI). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 31.6% in the C-terminal region of 196 amino acid residues.

64

Table 10

HP MGGPRGAGWVAAGLLLGAGACYCIYRLTRGRRRG 5 KI RGRGRRPVAMOKRPFPYEIDEILGVRDLRKVLALLQKSDDPFIQOVALLTLSNNANYSCN HP DRELGIRSSKSAEDLTDGSYDDVLNAEOLOKLLYLLESTEDPVIIERALITLGNNAAFSV* . * *. *.. KI QETIRKLGGLPIIANMINKTDPHIKEKALMAMNNLSENYENQGRLQVYMNKVMDDIMASN 10 HP NQAIIRELGGIPIVANKINHSNQSIKEKALNALNNLSVNVENQIKIKVQVLKLLLNLSEN*... * ****..**.* *..** KI LNSAVQVVGLKFLTNMTITNDYQHLLVNSIANF--FRLLSQGGGKIKVEILKILSNFAEN HP PAMTEGLLRAQVDSSFLSLYDSHVAKEILLRVLTLFQNIKNCLKIEGHLAVQPTFTEGSL *.* . **..** .** ***.*...***.. * . *. * 15 KI PDMLKKLLSTOVPASFSSLYNSYVESEILINALTLFEIIYDNLRAE--VFNYREFNKGSL HP FFL-LHGEECAQKIRALVDHHDAEVKEKVVTIIPKI *.* .. *..****..*** ** **... *. KI FYLCTTSGVCVKKIRALANHHDLLVKVKVIKLVNKF

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. N92228) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10540> (SEQ ID Nos. 38, 48, and 58)

30 Determination of the whole base sequence of the cDNA insert of clone HP10540 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure

65

consisting of a 47-bp 5'-untranslated region, a 297-bp ORF, and a 245-bp 3'-untranslated region. The ORF codes for a protein consisting of 98 amino acid residues and there existed two putative transmembrane domains. Figure 18 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein similar was to the Caenorhabditis hypothetical protein CEF49C12.12 (GenBank Accession Z68227). Table 11 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein CEF49C12.12 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 36.1% in the entire region.

Table 11

* *****

5

10

15

20

CE MGKICPLMGPKMSAFCMVMSVWGVIFLGLLGVFFYIQAVTLFPDLHF-EGHGKVPSSVID HP NLYEQVSYNCFIAAGLYLLLGGFSFCQVRLNKRKEYMVR

³⁰ CE AKYNEKATQCWIAAGLYAVTLIAVFWQ---NKYNTAQIF

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA420715) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

10 <HP10557> (SEQ ID Nos. 39, 49, and 59)

5

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10557 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 24-bp 5'-untranslated region, a 519-bp ORF, and a 130-bp 3'untranslated region. The ORF codes for a protein consisting of 172 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 19 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 32 kDa that was larger than the molecular weight of 18,844 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 39 kDa which considered to is have subjected to been modification after secretion. In addition, there exist in the amino acid sequence of this protein no site at which Nglycosylation may occur. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glycine at position 32. When expressed in COS7 cells, an expression product of about 20 kDa was observed in the supernatant fraction and the membrane fraction.

10

15

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human progesterone binding protein (EMBL Accession No. AJ002030). Table 12 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human progesterone binding protein (PG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 30.5% in the C-terminal region of 151 amino acid residues.

Table 12

PG MAAGDGDVKLGTLGSGSESSNDGGSESPGDAGAAAEGGGWAAAALALLTGGGEMLLNVAL
HP RRRLRPLAALALVLALAPGLPTARAGQTPRPAERGPPV--RLFTEEELARYGGEEEDQPI

20 ** ** . * * . * * . * * . * * . . *

PG VALVLLGAYRLWVRWGRRGLGAGAGAGEESPATSLPRMKKRDFSLEQLRQYDG-SRNPRI
HP YLAVKGVVFDVTSGKEFYGRGAPYNALTGKDSTRGVAKMSLDPADLTHDTTGLTAKELEA

***. * * * * * * * * * . . . * . . . *

PG LLAVNGKVFDVTKGSKFYGPAGPYGIFAGRDASRGLATFCLDKDALRDEYDDLSDLNAVQ

25 HP LDEV--FTKVYKAKYPIVGYTARRILNEDGSPNLDFKPEDQPHFDIKDEF

PG MESVREWEMQFKEKY---DYVG-RLLKPGEEPS-EYTDEEDTKDHNKQD

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for

68

example, Accession No. AA101709) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

5

10

15

20

25

30

<HP10563> (SEQ ID Nos. 40, 50, and 60)

Determination of the whole base sequence of the cDNA insert of clone HP10563 obtained from cDNA library of human Saos-2 osteosarcoma cell line revealed the consisting of a 126-bp 5'-untranslated region, a 363-bp ORF, and a 936-bp 3'-untranslated region. The ORF codes for a protein consisting of 120 amino acid residues and there putative transmembrane domains. existed two depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 18.5 kDa that was larger than the molecular weight of 13,180 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Arabidopsis thaliana hypothetical protein F27F23.15 (GenBank Accession No. AC003058). Table 13 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the A. thaliana hypothetical protein F27F23.15 (AT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 35.5% in the entire region.

Table 13

AT VLGFFMAYNRVG-GDRGHGIFFIVLGCLLFIPGFYYTRIAYYAYKGYKGFSFSNIPSV

10

15

5

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA083574) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP01467> (SEQ ID Nos. 61, 71, and 81)

_ •

25

30

20

Determination of the whole base sequence of the cDNA insert of clone HP01467 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 65-bp 5'-untranslated region, a 924-bp ORF, and a 447-bp 3'-untranslated region. The ORF codes for a protein consisting of 307 amino acid residues and there existed three putative transmembrane domains. Figure 21 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino

acid sequence of the present protein revealed that the protein was similar to the rat Sec22 homologue (GenBank Accession No. U42209). Table 14 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the rat Sec22 homologue (RN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 94.6% in the N-terminal region of 241 amino acid residues. The protein of the present invention was longer by 53 amino acids at the C-terminus than the rat Sec22 homologue.

15

20

25

30

10

5

Table 14

HP MSMILSASVIRVRDGLPLSASTDYEQSTGMQECRKYFKMLSRKLAQLPDRCTLKTGHYNI ************************** RN MSMILSASVVRVRDGLPLSASTDCEQSAGVQECRKYFKMLSRKLAQFPDRCTLKTGRHNI HP NFISSLGVSYMMLCTENYPNVLAFSFLDELQKEFITTYNMMKTNTAVRPYCFIEFDNFIQ ************** RN NFISSLGVSYMMLCTENYPNVLAFSFLDELQKEFITTYNMMKTNTAVRPYCFIEFDNFIO HP RTKQRYNNPRSLSTKINLSDMQTEIKLRPPYQISMCELGSANGVTSAFSVDCKGAGKISS *************** RN RTKQRYNNPRSLSTKINLSDMOMEIKLRPPYQIPMCELGSANGVTSAFSVDCKGAGKISS HP AHORLEPATLSGIVGFILSLLCGALNLIRGFHAIESLLOSDGDDFNYIIAFFLGTAACLY ********** RN AHQRLEPATLSGIVAFILSLLCGALNLIRGFHAIESLLQSDGEDFSYMIAFFLGTAACLY HP QCYLLVYYTGWRNVKSFLTFGLICLCNMYLYELRNLWOLFFHVTVGAFVTLOIWLROAOG

RN QMICLCLQGRKERT

71

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA421925) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP01956> (SEQ ID Nos. 62, 72, and 82)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP01956 obtained from cDNA library of human liver revealed the structure consisting of a 86-bp 359-bp untranslated region, 552-bp ORF, and а а untranslated region. The ORF codes for a protein consisting of 183 amino acid residues and there existed one putative transmembrane domain. Figure 22 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 20.5 kDa that was almost identical with the molecular weight of 20,073 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the yeast hypothetical protein 21.5 kDa (SWISS-PROT Accession No. P53073). Table 15 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the yeast hypothetical protein 21.5 kDa (SC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology

25

30

of 34.3% in the C-terminal region of 108 amino acid residues.

Table 15

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA159753) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02545> (SEQ ID Nos. 63, 73, and 83)

Determination of the whole base sequence of the cDNA insert of clone HP02545 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 133-bp 5'-untranslated region, a 984-bp ORF, and a 636-bp 3'-untranslated region. The ORF codes for a

10

15

protein consisting of 327 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain at the C-terminus. Figure 23 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the rat embigin (EMBL Accession No. AJ009698). Table 16 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the rat embigin (RN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 65.4% in the entire region.

PCT/JP99/03929

74

Table 16

HP MRALPGLLEARARTPRLLLLQCLLAAARPSSADGSAPDSPFTSPPLREEIMAN--NFSLE 5 RN MRSHTGLRALVAPGCSLLLL-YLLAATRPDRAVGDPADSAFTSLPVREEMMAKYANLSLE HP SHNISLTEHSSMPVEKNITLERPSNVNLTCQFTTSGDLNAVNVTWKKDGEQLE--NNYLV ..******... *.*******... *. **... *. ... ** RN TYNISLTEQTRVS-EQNITLERPSHLELECTFTATEDVMSMNVTWKKDDALLETTDGFNT HP SATGSTLYTQYRFTIINSKOMGSYSCFFREEKEQRGTFNFKVPELHGKNKPLISYVGDST 10 *.**.***..****..****..** RN TKMGDTLYSQYRFTVFNSKQMGKYSCFLGEE--LRGTFNIRVPKVHGKNKPLITYVGDST HP VLTCKCQNCFPLNWTWYSSNGSVKVPVGVQM-NKYVINGTYANETKLKITQLLEEDGESY **.*.*****.***** ***...**...*. ** ***...** RN VLKCECONCLPLNWTWYMSNGTAOVPIDVHVNDKFDINGSYANETKLKVKHLLEEDGGSY 15 HP WCRALFOLGESEEHIELVVLSYLVPLKPFLVIVAEVILLVATILLCEKYTOKKKKHSDEG RN WCRAAFPLGESEEHIKLVVLSFMVPLKPFLAIIAEVILLVAIILLCEVYTOKKKNDPDDG HP KEFEQIEQLKSDDSNGIENNVPRHRKNESLGQ ******** 20 RN KEFEQIEOLKSDDSNGIENNVPRYRKTDSGDQ

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA312629) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

30

25

<HP02551> (SEQ ID Nos. 64, 74, and 84)

Determination of the whole base sequence of the cDNA insert of clone HP02551 obtained from cDNA library of human

10

15

20

25

30

line Saos-2 revealed the osteosarcoma cell consisting of a 61-bp 5'-untranslated region, a 672-bp ORF, and a 384-bp 3'-untranslated region. The ORF codes for a protein consisting of 223 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 24 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 27 kDa that was somewhat larger than the molecular weight of 24,555 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 26 kDa from which the secretory signal is considered to have been cleaved. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamine at position 20.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the mouse FGF binding protein U49641). Table 17 No. Accession (GenBank comparison between amino acid sequences of the human protein of the present invention (HP) and the mouse FGF binding protein (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 21.2% in the entire region other than the N-terminal region. In particular, all the eight cysteine residues contained in the both proteins were conserved.

Table 17

HP MKFVPCLLLVTLSCLGTLGQAPRQKQGST 5 MM MRLHSLILLSFLLLATQAFSEKVRKRAKNAPHSTAEEGVEGSAPSLGKAQNKQRSRTSKS HP GEEFHFQTGGRDSCTMRPSSLGQGAGEVWLRVDCRNTDQTYWCEYRGQPSMCQAFAADPK MM LTHGKFVTKDQATC---RWAVTEEEQGISLKVQCTQADQEFSCVFAGDPTDCLKHDKD-Q HP SYWNOALOELRRLHHACOGA-PVLRPSVCREAGPQAHMQQVTSSLKGSPEPNOOPEAGTP 10 MM IYWKOVARTLRKOKNICRDAKSVLKTRVCRKRFPESNLKLVNPNARGNTKPRKEKAEVSA HP SLRPKATVKLTEATOLGKDSMEELGKAKPTTRPTAKPTQPGPRPGGNEEAKKKAWEHCWK *... .*. * . *. * MM REHNKVQEAVSTEPNRIKEDI-TLNPAATQTM-TIRDPECLEDPDVLNQ-RKTALEFCGE 15 HP PFQALCAFLISFFRG*.*..... MM SWSSICTFFLNMLOATSC

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA317400) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02631> (SEQ ID Nos. 65, 75, and 85)

Determination of the whole base sequence of the cDNA insert of clone HP02631 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 42-bp 5'-untranslated region, a 147-bp ORF,

and a 1191-bp 3'-untranslated region. The ORF codes for a protein consisting of 48 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 25 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 10 kDa or less.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA156969) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

15

20

25

10

5

<HP02632> (SEQ ID Nos. 66, 76, and 86)

Determination of the whole base sequence of the cDNA insert of clone HP02632 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 50-bp 5'-untranslated region, a 1116-bp ORF, and a 337-bp 3'-untranslated region. The ORF codes for a protein consisting of 371 amino acid residues and there existed eight putative transmembrane domains. Figure 26 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis elegans hypothetical protein CELC2H12 (GenBank Accession No. U23169). Table 18 shows the comparison between amino acid sequences

of the human protein of the present invention (HP) and the C. elegans hypothetical protein CELC2H12 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 51.4% in the entire region.

Table 18

10 HP MAWTKYQLFLAGLMLVTGSINTLSAKWADNFMAEGCGGSKEHSFQHPFLQAVGMFLGEFS * . * * * * . . . * * * * * * . . .*.***** **.** MVAFAVIISVMMVVTGSLNTICAKWADSIKAD-----GVPFNHPFLQATCMFFGEFL HP CLAAFYL-----LRCRAAGQSDS-----SVDPQQPFNPLLFLPPALCDMTGTSL 15 * ...*.*.* CE CLVVFFLIFGYKRYVWNRANVQGESGSVTEITSEEKPTLPPFNPFLFFPPALCDILGTSI HP MYVALNMTSASSFQMLRGAVIIFTGLFSVAFLGRRLVLSQWLGILATIAGLVVVGLADLL **..**.*.********** .*.*.* .. ***.**..* CE MYIGLNLTTASSFQMLRGAVIIFTGLLSVGMLNAQIKPFKWFGMLFVMLGLVIVGVTDIY 20 HP SKHDSQHKLSEVITGDLLIIMAQIIVAIQMVLEEKFVYKHNVHPLRAVGTEGLFGFVILS CE YDDDPLDDKNAIITGNLLIVMAQIIVAIQMVYEQKYLTKYDVPALFAVGLEGLFGMVTLS HP LLLVPMYYIPAG-SFSGNPRGTLEDALDAFCQVGQQPLIAVALLGNISSIAFFNFAGISV 25 CE ILMIPFYYIHVPRTFSTNPEGRLEDVFYAWKEITEEPTIALALSGTVVSIAFFNFAGVSV HP TKELSATTRMVLDSLRTVVIWALSLALGWEAFHALQILGFLILLIGTALYNGLHRPLLGR ************************ CE TKELSATTRMVLDSVRTLVIWVVSIPLFHEKFIAIQLSGFAMLILGTLIYNDILIGPWFR HP LSRGRPLAEESEQERLLGGTRTPINDAS 30 CE RNILPNLSSHANCARCWLCICGGDSELIEYEQEDQEHLMEA

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. N50907) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10488> (SEQ ID Nos. 67, 77, and 87)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10488 obtained from cDNA library of human liver revealed the structure consisting of a 39-bp untranslated region, a 273-bp ORF, and a 421-bp untranslated region. The ORF codes for a protein consisting of 90 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 27 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 10 kDa that was almost identical with the molecular weight of 10,151 predicted from the ORF. When expressed in COS7 cells, an expression product of about 6 observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H73534) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10538> (SEQ ID Nos. 68, 78, and 88)

Determination of the whole base sequence of the cDNA insert of clone HP10538 obtained from cDNA library of human Saos-2 revealed osteosarcoma cell line the consisting of a 357-bp 5'-untranslated region, a 1500-bp ORF, and a 1911-bp 3'-untranslated region. The ORF codes for a protein consisting of 499 amino acid residues and there existed at least four putative transmembrane domains. Figure 28 hydrophobicity/hydrophilicity depicts the obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

5

10

15

20

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the mouse pore-forming K⁺ channel subunit (GenBank Accession No. AF056492). Table 19 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the mouse pore-forming K⁺ channel subunit (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 32.4% in the N-terminal region of 241 amino acid residues.

PCT/JP99/03929

Table 19

HP MVDRGPLLTSAIIFYLAIGAAIFEVLEEPHWKEAKKNYYTQKLHLLKEFPCLGOEGLDK ***. ** .*..** ..*.*. 5 MM MRSTTLLALLALVLLYLVSGALVFQALEQPHEQQAQKKMDHGRDQFLRDHPCVSOKSLED HP ILEVVSDAAGOG----VAITGNOTFNNWNWPNAMIFAATVITTIGYGNVAPKTPAGRLF ..** .*..*.*******. . * ***** MM FIKLLVEALGGGANPETSWTNSSNHSSAWNLGSAFFFSGTIITTIGYGNIVLHTDAGRLF HP CVFYGLFGVPLCLTWISALGKFFGGRAKR----LGQFLTKRGVSLRKAQITCTVIFIVWG 10 *.**.* *.***. .*.. .* MM CIFYALVGIPLFGMLLAGVGDRLGSSLRRGIGHIEAIFLKWHVPPGLVRSLSAVLFLLIG HP VLVHLVIPPFVFMVTEGWNYIEGLYYSFITISTIGFGDFVAGVNPSANYHALYRYFVELW *.*. .*..*. ..*.****.*.* *. .* MM CLLFVLTPTFVFSYMESWSKLEAIYFVIVTLTTVGFGDYVPG-DGTGQNSPAYOPLVWFW 15 HP IYLGLAWLSLFVNWKVSMFVEVHKAIKKRRRRKESFESSPHSRKALQVKGSTASKDVNI * .***... MM ILFGLAYFASVLTTIGNWLRAVSRRTRAEMGGLTAQAASWTGTVTARVTQRTGPSAPPPE

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R25184) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10542> (SEQ ID Nos. 69, 79, and 89)

Determination of the whole base sequence of the cDNA insert of clone HP10542 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 23-bp 5'-untranslated region, a 321-bp ORF, and a 426-bp 3'-

82

untranslated region. The ORF codes for a protein consisting of 106 amino acid residues and there existed one putative transmembrane domain. Figure 29 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 12 kDa that was almost identical with the molecular weight of 11,724 predicted from the ORF. When expressed in COS7 cells, an expression product of about 13 kpa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA029683) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10571> (SEQ ID Nos. 70, 80, and 90)

5

10

15

20 Determination of the whole base sequence of the cDNA insert of clone HP10571 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 95-bp 5'-untranslated region, a 459-bp ORF, and a 675-bp 3'untranslated region. The ORF codes for a protein consisting 25 of 152 amino acid residues and there existed one putative transmembrane domain. Figure 30 depicts hydrophobicity/hydrophilicity profile, obtained by the Kytemethod, of the present protein. translation resulted in formation of a translation product 30 of 20 kDa that was larger than the molecular weight of 17,062 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 23 kDa

83

which is considered to have a sugar chain being attached after secretion. In addition, there exists in the amino acid sequence of this protein one site at which N-glycosylation may occur (Asn-Ile-Thr at position 10).

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA105822) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP01470> (SEQ ID Nos. 91, 101, and 111)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP01470 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 157-bp 5'-untranslated region, a 1077-bp ORF, and a 385-bp 3'untranslated region. The ORF codes for a protein consisting of 358 amino acid residues and there existed one putative transmembrane domain. Figure 31 depicts hydrophobicity/hydrophilicity profile, obtained by the Kytemethod. of the present protein. translation resulted in formation of a translation product of 43 kDa that was somewhat larger than the molecular weight of 40,489 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 40 kDa from which the secretory signal is considered to have been cleaved and a product of 43.5 kDa which is considered to have been subjected to some modification. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glycine at position 23. When

84

expressed in COS7 cells, an expression product of about 44 kDa was observed in the supernatant fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis hypothetical protein 39.9 kDa (SWISS-PROT Accession No. Q10005). Table 20 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein 39.9 kDa (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 58.9% in the entire region.

5

10

15

85

Table 20

HP MAPONLSTFCLLLLYLIGAVIAGRDFYKILGVPRSASIKDIKKAYRKLALOLHPDRNPDD *. * ********* ... * ... ******* . ***** 5 CE MRILNVSLLVLASSLVAFVECGRDFYKILGVAKNANANQIKKAYRKLAKELHPDRNODD HP PQAQEKFQDLGAAYEVLSDSEKRKQYDTYGEEGL--KDGHQSSHGDIFSHFFGDFGFMFG CE EMANEKFODLSSAYEVLSDKEKRAMYDRHGEEGVAKMGGGGGGGHDPFSSFFGDF-FG-G HP GTPRQQDRNIPRGSDIIVDLEVTLEEVYAGNFVEVVRNKPVARQAPGKRKCNCROEMRTT 10 CE GGGHGGEEGTPKGADVTIDLFVTLEEVYNGHFVEIKRKKAVYKOTSGTROCNCRHEMRTE HP QLGPGRFQMTQEVVCDECPNVKLVNEERTLEVEIEPGVRDGMEYPFIGEGEPHVDGEPGD CE OMGOGRFOMFOVKVCDECPNVKLVOENKVLEVEVGADNGHQQIFHGEGEPHIEGDPGD 15 HP LRFRIKVVKHPIFERRGDDLYTNVTISLVESLVGFEMDITHLDGHKVHISRDKITRPGAK *.*.*. *** ***.******** ..* ****.* **** *.. ***.*. CE LKFKIRIOKHPRFERKGDDLYTNVTISLQDALNGFEMEIQHLDGHIVKVQRDKVTWPGAR HP LWKKGEGLPNFDNNNIKGSLIITFDVDFPKEQLTEEAREGIKQLLKQGSVO-KVYNGLOG *.**.**.*.....** ** *...*****...*...* ...* ...* ...* ...* 20 CE LRKKDEGMPSLEDNNKKGMLVVTFDVEFPKTELSDEQKAQIIEILQONTVKPKAYNGL

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA282838) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

30 <HP002419> (SEQ ID Nos. 92, 102, and 112)

Determination of the whole base sequence of the cDNA insert of clone HP02419 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 253-bp

10

15

20

5'-untranslated region, a 681-bp ORF, and a 1120-bp 3'untranslated region. The ORF codes for a protein consisting
of 226 amino acid residues and there existed four putative
transmembrane domains. Figure 32 depicts the
hydrophobicity/hydrophilicity profile, obtained by the KyteDoolittle method, of the present protein. In vitro
translation resulted in formation of a translation product
of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human hypothetical protein KIAA0108 (SWISS-PROT Accession No. Q15012). Table 21 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human hypothetical protein KIAA0108 (KI). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 43.9% in the entire region.

30

Table 21

	HP	MKMVAPWTRFYSNSCCLCCHVRTGTILLGVWYLIINAVVLLILLSALADPDQY
		**** ** ******* ** ** * *
5	KI	MVSMSFKRNRSDRFYSTRCCGCCHVRTGTIILGTWYMVVNLLMAILLTVEVTHPNSMPAV
	HP	NFSSSELGGDFEF-MDDANMCIAIAISLLMILICAMATYGAYKQRAAWIIPFFCYQIFDF
		* *
	KI	NIQYEVIGNYYSSERMADNACVLFAVSVLMFIISSMLVYGAISYQVGWLIPFFCYRLFDF
	HP	ALNMLVAITVLIYPNSIQEYIRQLPPNFPYRDDVMSVNPTCLVLIILLFISIILTFKGYL
10		.*. ****. *.* .*.**. ** *.***.****.**
	KI	VLSCLVAISSLTYLPRIKEYLDQL-PDFPYKDDLLALDSSCLLFIVLVFFALFIIFKAYL
	HP	ISCVWNCYRYINGRNSSDVLVYVT-SNDTTVLLPPYDDATVNGAAKEPPPPYVSA
		*.******.** **
	KI	INCVWNCYKYINNRNVPEIAVYPAFEAPPQYVLPTY-EMAVKMPEKEPPPPYLPA
15		

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA173214) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

25 <HP02631> (SEQ ID Nos. 93, 103, and 113)

Determination of the whole base sequence of the cDNA insert of clone HP02631 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 42-bp 5'-untranslated region, a 588-bp ORF, and a 750-bp 3'-untranslated region. Although the 49th amino acid residue is encoded by a stop codon, it is likely that this codon encodes selenocysteine from the molecular weight

88

of the translation product and the sequence comparison data with the Caenorhabditis elegans homologue. The ORF codes for a protein consisting of 195 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the intermediate region. Figure 33 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 58 kDa. In this case, the addition of a microsome led to the formation of a product of 56 kDa from which the secretory signal is considered to have been cleaved. Since both of these products are larger than the molecular weight of 22 kDa predicted from the ORF, it is likely that the protein interacts with another protein.

5

10

15

20

25

30

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis hypothetical protein C35C5.3 (EMBL Accession No. Z78417). Table 22 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein C35C5.3 (CE). U at position 49 in the amino acid sequence of the protein of the present invention represents selenocysteine. Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 37.9% in the entire region other than the Nterminal region. Cystein was found in the sequence of the C. elegans protein at the posistion corresponding to position 49 encoded by the stop codon (selenocysteine) of the protein of the present invention.

89

Table 22

HP MRLLLL 5 CE MRIHDELQKODMSRFGVFIIGVLFFMSVCDVLRTEEHSHDENHVHEKDDFEAEFGDETDS HP LLVAASAMVRSEASANLGGVPSKRLKMQYATGPLLKFQICVSUGYRRVFEEYMRVISORY * *.. *** **...*... CE QSFSQGTEEDHIEVREOSSFVKPTAVHHAKDLPTLRIFYCVSCGYKOAFDOFTTFAKEKY HP PDIRIEGENYLPOPIYRHIASFLSVFKLVLIGLIIVGKDPFAFFGMQAPSIWOWGOENKV 10 ..* ** *... *.. * .** **. CE PNMPIEGANFAPVLWKAYVAQALSFVKMAVLVLVLGGINPFERFGLGYPQILQHAHGNKM HP YACMMVFFLSNMIENQCMSTGAFEITLNDVPVWSKLESGHLPSMQQLVQILDNEMKLNVH CE SSCMLVFMLGNLVEQSLISTGAFEVYLGNEQIWSKIESGRVPSPQEFMOLIDAOLAVLGK 15 HP MDSIPHHRS CE APVNTESFGEFQQTV

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA156969) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02695> (SEQ ID Nos. 94, 104, and 114)

Determination of the whole base sequence of the cDNA insert of clone HP02695 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 112-bp 5'-untranslated region, a 1020-bp ORF, and a 160-bp 3'-

untranslated region. The ORF codes for a protein consisting of 339 amino acid residues and there existed three putative transmembrane domains. Figure 34 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 38 kDa that was almost identical with the molecular weight of 38,274 kDa predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the rat hypertension-induced protein S-2 fragment (PIR Accession No. 539959). Table 23 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the rat hypertension-induced protein S-2 fragment (RN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 74.3% in the entire region.

PCT/JP99/03929

Table 23

HP MNWELLLWLLVLCALLLLLVQLLRFLRADGDLTLLWAEWQGRRPEWELTDMVVWVTGASS

5 HP GIGEELAYQLSKLGVSLVLSARRVHELERVKRRCLENGNLKEKDILVLPLDLTDTGSHEA

RN VKRRSLENGNLKEKDILVLPLDLADTSSHDI

RN ATKTVLQEFGRIDILVNNGGVAHASLVENTNMDIFKVLIEVNYLGTVSLTKCFLPHMMER

HP KQGKIVTVNSILGIISVPLSIGYCASKHALRGFFNGLRTELATYPGIIVSNICPGPVQSN

RN NOGKIVVMKS

.*****...

15

10

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T84331) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10031> (SEQ ID Nos. 95, 105, and 115)

25

30

20

Determination of the whole base sequence of the cDNA insert of clone HP10031 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 55-bp 5'-untranslated region, a 1464-bp ORF, and a 649-bp 3'-untranslated region. The ORF codes for a protein consisting of 487 amino acid residues and there existed eleven putative transmembrane domains. Figure 35 depicts the hydrophobicity/hydrophilicity profile, obtained

by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight. When expressed in COS7 cells, an expression product of about 55 kDa was observed in the membrane fraction.

5

10

15

The search of the protein data base using the amino acid sequence of the present protein revealed that the Caenorhabditis elegans similar the protein was to CELK07H8 (GenBank Accession hypothetical protein AF047659). Table 24 shows the comparison between amino acid sequences of the human protein of the present invention (HP) elegans hypothetical protein CELK07H8 and the C. Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 44.2% in the entire region.

Table 24

HP MDGTETRQRRLDSCGKPGELGLPHPLSTGGLPVAS 5 CE MKGGGGIGDGKKDYQSAVHEGLTTFDQLGIALEDVGKSMDAETATPGGSLFSRVIFRFRN HP EDGALRAPESQSVTPKPLETEPSRETAWSIGLQVTVPFMFAGLGLSWAGMLLDYFQHWPV . . *... . . ** ** **** . . ** . . *. CE ENSSLKSRTYDHSNDLVNMSVIPAESSYVLFFQVLFPFAVAGLGMVFAGLVLSIVVTWPL HP FVEVKDLLTLVPPLVGLKGNLEMTLASRLSTAANTGQIDDPQEQHRVISSNLALIQVQAT 10 * *. ..*.**.*.********** ** *..*.... *. .**** CE FEEIPEILILVPALLGLKGNLEMTLASRLSTLANLGHMDSSKQRKDVVIANLALVQVQAT HP VVGLLAAVAALLLGVVSREEVDVAKVELLCASSVLTAFLAAFALGVLMVCIVIGARKLGV CE VVAFLASAFAAALAFIPSGDFDWAHGALMCASSLATACSASLVLSLLMVVVIVTSRKYNI 15 HP NPDNIATPIAASLGDLITLSILALVSSFFYR-HKDSRYLTPLVCLSFAALTPVWVLIAKO ****.*************************** CE NPDNVATPIAASLGDLTTLTVLAFFGSVFLKAHNTESWLNVIVIVLFLLLLPFWIKIANE HP SPPIVKILKFGWFPIILAMVISSFGGLILSKTVSKQQYKGMAIFTPVICGVGGNLVAIQT 20 CE NEGTQETLYNGWTPVIMSMLISSAGGFILETAV--RRYHSLSTYGPVLNGVGGNLAAVOA HP SRISTYLHMWSAPGVLPLQ--MKKFWPNPCSTFCTSEINSMSARVLLLLVVPGHLIF-FY CE SRLSTYFHKAGTVGVLPNEWTVSRF-TSVQRAFFSKEWDSRSARVLLLLVVPGHICFNFL HP I-IYLVEGQSVINSQ--TFVVLYLLAGLIQVTILLYLAEVMVRLTWHQALDPDNHCIPYL 25 *. **..*..****.. ...* * *.* *** CE IQLFTLTSKNNVTPHGPLFTSLYMIAAIIQVVILLFVCQLLVALLWKWKIDPDNSVIPYL HP TGLGDLLGTGLLALCFFTDWLLKSKAELGGISELASGPP *.******* CE TALGOLLGTGLLFIVFLTTDHFDPKELTSS 30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for

94

example, Accession No. AA334000) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

5

10

15

20

25

30

<HP10530> (SEQ ID Nos. 96, 106, and 116)

Determination of the whole base sequence of the cDNA insert of clone HP10530 obtained from cDNA library of human cell line Saos-2 revealed the structure consisting of a 80-bp 5'-untranslated region, a 1182-bp ORF, and a 95-bp 3'-untranslated region. The ORF codes for a protein consisting of 393 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 36 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 46 kDa that was somewhat larger than the molecular weight of 44,912 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 45.5 kDa from which the secretory signal is considered to have been cleaved. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from lysine at position 23. When expressed in COS7 cells, an expression product of about 43 kDa was observed in the supernatant fraction and the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Arabidopsis thaliana hypothetical protein IG002N01 (GenBank Accession No. AF007269). Table 25 shows the comparison between amino acid sequences of the

human protein of the present invention (HP) and the A. thaliana hypothetical protein IG002N01 (AT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 27.0% in the N-terminal region of 355 amino acid residues.

96

Table 25

HP MRTLFNLLWL 5 AT MELTSFQKSPSSNDVVSFSVSLVRNSMARRRRSSAAESLKRRNDGYESLCQVVOODSDRR HP ALACSPVHTTLSKSDAKKAASKTLLEKSQFSDKPVQDRGLVVTDLKAESVVLEHRSYCSA *.* **.. **.. AT LITIFVIFFIVIPAVSIAVYKVKFADRVIQTESSIRQKGIVKTDINFOEILTEHSK--AS HP KARDRHFAGDVLGYVTPWNSHGYDVTKVFGSKFTQISPVWLQ-LKRRGREMFEVTGLHDV 10 AT ENSTRHYDYPVLAYITP--CQGSGL--VLEGR-HNADKGWIQELRSRGNALSASKGLPKL HP DQGWMRAVRKHAKGLHIVPRLLFEDWTYDDFRNVLDSEDEIEELSKTVVQVAKNQHFDGF AT ---YNSCIFHALKRMNFFTLELVNFNTYLVIMFALNS-REMEYNGIVLESWSRWAAYGVL 15 HP VVEVWNQLLSQKRVGLIHMLTHLAEALHQARLLALLVIPPAITPGTDQLGMFTHKEFEOL * . * * . *.... * AT HDPDLRKMALKFVKOLGDALHSTSSPRNNQOHMQFMYVVGPPRSEKLOMYDFGPEDLOFL HP APVLDGFSLMTYDYSTAHOPGPNAPLSWVRACVQ-VLDPKSK----WRSKILLGLNFYGM .*******.*.... 20 AT KDSVDGFSLMTYDFSNPQNPGPNAPVKWIDLTLKLLLGSSNNIDSNIARKVLLGINFYGN HP DYATSKDAREPVVGARYIOTLKDHRPRMVWDSQASEHFFEYKKSRSGRHVVFYPTLKSLO AT DFVISGGGGGAITGRDYLALLOKHKPTFRWDKESGEHLFMYRDDKNIKHAVFYPTLMSIL HP VRLELARELGVGVSIWELGQGLDYFYDLL 25 .*** ** *.*.***.**. ..* AT LRLENARLWGIGISIWEIGQDKGHFGKYAEASLEASSIFSGHTFDMQFRTNPRQLSRNGS Furthermore, the search of the GenBank using the base

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA302913) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the

30

protein of the present invention.

WO 00/05367

5

10

15

20

25

30

<HP10541> (SEQ ID Nos. 97, 107, and 117)

Determination of the whole base sequence of the cDNA insert of clone HP10541 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 7-bp 5'-untranslated region, a 591-bp ORF, and a 113-bp 3'untranslated region. The ORF codes for a protein consisting of 196 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 37 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyteprotein. method, of the present Doolittle translation resulted in formation of a translation product of 23 kDa that was somewhat larger than the molecular weight of 21,553 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 20 kDa from which the secretory signal is considered to have been cleaved and a product of 23 kDa which is considered to have a sugar chain being attached. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glycine at position 41. In addition, there exists in the amino acid sequence of this protein one site at which N-glycosylation may occur (Asn-Leu-Thr at position 185).

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human zymogen membrane protein (GenBank Accession No. AF056492). Table 26 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human zymogen membrane protein (ZM). Therein, the marks of -, *, and . represent a

98

gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 37.6% in the C-terminal region of 133 amino acid residues.

Table 26

5

25

30

HP MWRVPGTTRRPVTGESPGMHRPEAMLLLLTLALLGGPTWAGKMYGPGGGKYFS-TTEDYD 10 **.*** ** . . . * ZM MLTVALLALLCASASGNAIQARSSSYSGEYGSGGGKRFSHSGNOLD HP HEITGLRVSVGLLLVKSVQVKLGDSWDVKLGALGGNTQEVTLQPGEYITKVFVAFQAFLR . ..**. *. *. .*. .*. *. *.** ZM GPITALRVRVNTYYIVGLOVRYGKVWSDYVGGRNGDLEEIFLHPGESVIQVSGKYKWYLK 15 HP GMVMYTSKDRYFYFGKLDGOISSAYPSOEGOVLVGIYGQYQLLGIKSIGFEWN-YPLEEP .*. *.*.**. *** .* .* * . . ** * *. ZM KLVFVTDKGRYLSFGKDSGTSFNAVPLHPNTVLRFISGRSGSL-IDAIGLHWDVYPTSCS HP TTEPPVNLTYSANSPVGR 20 ZM RC

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA340605) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10550> (SEQ ID Nos. 98, 108, and 118)

Determination of the whole base sequence of the cDNA

insert of clone HP10550 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 241-bp 5'-untranslated region, a 324-bp ORF, and a 86-bp untranslated region. The ORF codes for a protein consisting of 107 amino acid residues and there existed one putative domain. Figure 38 depicts transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kytethe present protein. Doolittle method, of vitro translation resulted in formation of a translation product of high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA348310) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10590> (SEQ ID Nos. 99, 109, and 119)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10590 obtained from cDNA library of human line HT-1080 revealed the structure fibrosarcoma cell consisting of a 77-bp 5'-untranslated region, a 1053-bp ORF, and a 180-bp 3'-untranslated region. The ORF codes for a protein consisting of 350 amino acid residues and there existed one putative transmembrane domain. Figure 39 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 40 kDa that was almost identical with the molecular weight of 39,285 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of

PCT/JP99/03929

5

10

15

20

25

30

43 kDa which is considered to have a sugar chain being attached. In addition, there exist in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Asn-Ser at position 144 and Asn-Leu-Thr at position 328).

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA461346) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10591> (SEQ ID Nos. 100, 110, and 120)

Determination of the whole base sequence of the cDNA insert of clone HP10591 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 232-bp 5'-untranslated region, a 324-bp ORF, and a 844-bp 3'-untranslated region. The ORF codes for a protein consisting of 107 amino acid residues and there existed one putative transmembrane domain. Figure 40 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 12 kDa that was almost identical with the molecular weight of 11,328 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H09424) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein

10

15

20

25

30

of the present invention.

<HP01462> (SEQ ID Nos. 121, 131, and 141)

Determination of the whole base sequence of the cDNA insert of clone HP01462 obtained from cDNA library of human cell line HT-1080 revealed the fibrosarcoma consisting of a 121-bp 5'-untranslated region, a 1452-bp ORF, and a 477-bp 3'-untranslated region. The ORF codes for a protein consisting of 483 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 41 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 72 kDa that was larger than the 55,838 predicted from the molecular weight of Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from lysine position 21.

The search of the protein data base using the amino acid sequence of the present protein revealed that the the Caenorhabditis protein similar to was hypothetical protein ZK1058.4 (EMBL Accession No. Z35604). Table 27 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein ZK1058.4 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both shared a homology of 35.6% in the entire region.

Table 27

HP MKAFHTFCVVLLVFGSVSEAKFDDFEDEEDIVEYDDNDFAEFEDVMEDSVTESPORVIIT 5 CE MKIVWIFLIFFIGFAIST HP EDDE-DETTVELEGQDENQEGDFEDADTQEGDTESEPYDDEEFEGYEDKP-----D .*.* .* . *. * ...*.*.*. *..* CE DDNEFAEFEDEFVGSSATQAPEIQREGEPPVLKQKDDFEEEDFGVVEEEPEEAEKVREAD HP TSSSKNKDPITIVDVPAHLQNSWESYYLEILMVTGLLAYIMNYIIGKNKNSRLAQAWFNT 10 .*...*****...*.* CE SDDAAPAOPLKFADVPAHFRSNWASYQVEGIVVLIILIYMTNYLIGKTTNASIAQTIFDM HP HRELLESNFTLVGDDGTNKEATSTGKLNQENEHIYNLWCSGRVCCEGMLIQLRFLKRODL * **.*. **. ***** CE CRPTLEEOFAVVGDDGTTDLDKMIPSLKHDTDSTFSAWCTGRVNVNSLFLOMKMVKRODV 15 HP LNVLARMMRPVSDOVOIKVTMN-DEDMDTYVFAVGTRKALVRLQKEMQDLSEFCSDKPKS CE VSRIMEMFTPSGDKMTIKASLETTNDTDPLIFAVGEKKIASKYFKEMLDLNSFASERKOA HP GAKYGLPDSLAILSEMGEVTDGMMDTKMVHFLTHYADKIESVHFSDQFSGPKIMQEEGQP*************************** 20 CE AOOFNLPASWOVYADONEVVFSILDPGVVSLLKKHEDAIEFIHISDQFTGPKPAEGESYT HP LKLPDTKRTLLFTFNVPGSGNTYPKDMEALLPLMNMVIYSIDKAKKFRLNREGKQKADKN .**...**.. * . * * * . * * * * * . . . * . . . * * * . . . CE -RLPEAQRYMFVSLNLQYLG----QDEESVMEILNLVFYLIDKARKMKLSKDAKVKAERR HP RARVEENFLKLTHVQRQEAAQSRREEKKRAEKERIMNEEDPEKQRRLEEAALRREQKKLE 25 CE RKEFEDAFLKOTHOFROEAAOARREEKTRERKOKLMDESDPEROKRLEAKELKREAKA--HP KKQMKMKQIKVKAM * ****.** CE -KSPKMKOLKVK 30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for

103

example, Accession No. AA307793) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

5

10

15

20

25

30

<HP02485> (SEQ ID Nos. 122, 132, and 142)

Determination of the whole base sequence of the cDNA insert of clone HP02485 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 69-bp 5'-untranslated region, a 1005-bp ORF, and a 1672-bp 3'untranslated region. The ORF codes for a protein consisting of 334 amino acid residues and there existed one putative 42 domain. Figure depicts transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, the present protein. of translation resulted in formation of a translation product of 36 kDa that was almost identical with the molecular weight of 38,171 predicted from the ORF. When expressed in COS7 cells, an expression product of about 23 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the Caenorhabditis was similar to hypothetical protein W01A11.2 (GenBank Accession No. U64852). Table 28 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein W01A11.2 (CE). marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of present invention, respectively. The both proteins shared a homology of 45.5% in the entire region.

Table 28

MVEFAPLFMPWERRLQTLAVLQFVFSFLALAEICT-V HP .***..**.***** *.* .. *. 5 CE MRLRLSSISGKAKLPDKEICSSVSRILAPLLVPWKRRLETLAVMGFIFMWVILPIMDLWV HP GFIALLFTRFWLLTVLYAAWWYLDRDKPRQGGRHIQAIRCWTIWKYMKDYFPISLVKTAE CE PFHVLFNTRWWFLVPLYAVWFYYDFDTPKKASRRWNWARRHVAWKYFASYFPLRLIKTAD HP LDPSRNYIAGFHPHGVLAVGAFANLCTESTGFSSIFPGIRPHLMMLTLWFRAPFFRDYIM 10 CE LPADRNYIIGSHPHGMFSVGGFTAMSTNATGFEDKFPGIKSHIMTLNGQFYFPFRREFGI HP SAGLVTSEKESAAHILNRKGGGNLLGIIVGGAQEALDARPGSFTLLLRNRKGFVRLALTH * .. .*** ...*. * *. .*** ***.*.*. ** * **.** . **. 15 CE MLGGIEVSKESLEYTLTKCGKGRACAIVIGGASEALEAHPNKNTLTLINRRGFCKYALKF HP GAPLVPIFSFGENDLFDQIPNSSGSWLRYIQNRLQKIMGISLPLFHGRGVF-QYSFGLIP CE GADLVPMYNFGENDLYEQYENPKGSRLREVQEKIKDMFGLCPPLLRGRSLFNQYLIGLLP HP YRRPITTVVGKPIEVQKTLHPSEEEVNQLHQRYIKELCNLFEAHKLKFNIPADQHLEFC 20 CE FRKPVTTVMGRPIRVTOTDEPTVEOIDELHAKYCDALYNLFEEYKHLHSIPPDTHLIFQ

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. D25664) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02798> (SEQ ID Nos. 123, 133, and 143)

25

30

Determination of the whole base sequence of the cDNA

insert of clone HP02798 obtained from cDNA library of human revealed line HT-1080 the fibrosarcoma cell consisting of a 31-bp 5'-untranslated region, a 804-bp ORF, and a 301-bp 3'-untranslated region. The ORF codes for a protein consisting of 267 amino acid residues and there putative transmembrane domains. existed four depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 29 kDa that was almost identical with the molecular weight of 30,778 predicted from the ORF. When expressed in COS7 cells, an expression product of about 26 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human DHHC-containing cysteinerich protein (GenBank Accession No. U90653). Table 29 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human DHHCcontaining cysteine-rich protein (DH). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 35.0% in the intermediate region of 100 amino The positions of seven cysteines acid residues. conserved between the two proteins. The protein of the present invention also had the DHHC (Asp-His-His-Cys) sequence.

5

10

15

20

25

25

30

106

Table 29

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. D79050) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10041> (SEQ ID Nos. 124, 134, and 144)

Determination of the whole base sequence of the cDNA insert of clone HP10041 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 12-bp 5'-untranslated region, a 321-bp ORF, and a 286-bp 3'-untranslated region. The ORF codes for a protein consisting of 106 amino acid residues and there existed one putative transmembrane domain. Figure 44 depicts

107

the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 12 kDa that was almost identical with the molecular weight of 12,060 predicted from the ORF. When expressed in COS7 cells, an expression product of about 13 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the Caenorhabditis similar to the protein was hypothetical protein K10B2.4 (GenBank Accession No. U28730). Table 30 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein K10B2.4 (CE). Therein, marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 62.1% in the entire region.

20

25

5

10

15

Table 30

HP MSTNNMSDPRRPNKVLRYKP---PPSECNPALDDPTPDYMNLLGMIFSMCGLMLKLKWCA

CE MQQNGDPRRTNRIVRYKPLDSTANQQQAISEDPLPEYMNVLGMIFSMCGLMIRMKWCS

HP WVAVYCSFISFANSRSSEDTKQMMSSFMLSISAVVMSYLQNPQPMTPPW
.. ** ***** *...********** *...***

CE WLALVCSCISFANTRTSDDAKQIVSSFMLSVSAVVMSYLQNPSPIIPPWVTLLQS

30

Furthermore, the search of the GenBank using the base

108

sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H20098) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10246> (SEQ ID Nos. 125, 135, and 145)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10246 obtained from cDNA library of human epidermoid carcinoma cell line KB revealed the structure consisting of a 110-bp 5'-untranslated region, a 675-bp ORF, and a 79-bp 3'-untranslated region. The ORF codes for a protein consisting of 224 amino acid residues and there existed five putative transmembrane domains. Figure 45 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 23 kDa that was somewhat smaller than the molecular weight of 25,244 predicted from the ORF. When expressed in COS7 cells, an expression product of about 21 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the similar the putative protein was to human seven transmembrane domain protein (GenBank Accession No. Y18007). Table 31 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human putative seven transmembrane domain protein (TM). Therein, the marks of -, \star , and \cdot represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that

of the protein of the present invention, respectively. The both proteins shared a homology of 93.3% in the entire region.

5 Table 31

HP MTLFHFGNCFALAYFPYFITYKCSGLSEYNAFWKCVQAGVTYLFVQLCKMLFLATFFPTW

 ${\tt TM} \ \, {\tt MTLFHFGNCFALAYFPYFITYKCTDLSEYNAFWKCVQAGVTYLFVQLCKMLFLATFFPTW}$

HP EGGIYDFIGEFMKASVDVADLIGLNLVMSRNAGKGEYKIMVAALGWATAELIMSRCIPLW

TM EGGIYDFIGEFMKASVDVADLIGLNLVMSRNAGKGEYKIMVAALGWATAELIMSRCIPLW

HP VGARGIEFDWKYIQMSIDSNISLVHYIVASAQVWMITRYDLYHTFRPAVLLLMFLSVYKA

TM VGARGIEFDWKYIQMSIDSNISLGPYIVASAQVWMITRYDLYHTFRPAVLLLMFLRVYKA

HP FVMETFVHLCSLGSWAALLARAVVTGLLALSTLALYVAVVNVHS

TM FVMETFVHLCSLGSWAVLMAGVVVKGLLVIRNLAMYVAVVNVHS

20

25

10

15

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA453931) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10392> (SEQ ID Nos. 126, 136, and 146)

30 Determination of the whole base sequence of the cDNA insert of clone HP10392 obtained from cDNA library of human osteosarcoma cell line U-2 OS revealed the structure

110

consisting of a 24-bp 5'-untranslated region, a 777-bp ORF, and a 726-bp 3'-untranslated region. The ORF codes for a protein consisting of 258 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 46 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 34 kDa that was somewhat larger than the molecular weight of 29,623 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from leucine at position 49.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H15999) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention. In addition, partial identity with the hypothetical protein KIAA0384 (Accession No. AB002382) was observed, although the hypothetical protein had a different ORF.

<HP10489> (SEQ ID Nos. 127, 137, and 147)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10489 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 137-bp 5'-untranslated region, a 333-bp ORF, and a 189-bp 3'-untranslated region. The ORF codes for a protein consisting of 110 amino acid residues and there existed two putative transmembrane domains. Figure 47 depicts the

111

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 19 kDa that was somewhat larger than the molecular weight of 12,010 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA262162) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10519> (SEQ ID Nos. 128, 138, and 148)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10519 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 67-bp 5'-untranslated region, a 276-bp ORF, and a 367-bp 3'untranslated region. The ORF codes for a protein consisting of 91 amino acid residues and there existed one putative domain. Figure 48 depicts transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 10 kDa that was almost identical with the molecular weight of 10,275 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W16639) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein

112

of the present invention.

5

10

15

20

25

30

<HP10531> (SEQ ID Nos. 129, 139, and 149)

Determination of the whole base sequence of the cDNA insert of clone HP10531 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 55-bp 5'-untranslated region, a 1035-bp ORF, and a 1092-bp 3'-untranslated region. The ORF codes for a protein consisting of 344 amino acid residues and there existed five putative transmembrane domains. Figure 49 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R50695) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10574> (SEQ ID Nos. 130, 140, and 150)

Determination of the whole base sequence of the cDNA insert of clone HP10574 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 210-bp 5'-untranslated region, a 1287-bp ORF, and a 1276-bp 3'-untranslated region. The ORF codes for a protein consisting of 428 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the intermediate region. Figure 50 depicts the hydrophobicity/hydrophilicity profile, obtained

113

by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from serine at position 36.

5

10

15

20

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Drosophila melanogaster GOLIATH protein (SWISS-PROT Accession No. Q06003). Table 32 shows the comparison between amino acid sequences of the human invention (HP) protein of the present and the melanogaster GOLIATH protein (DM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The intermediate region of 169 amino acids of the protein of the present invention shared a homology of 41.4% with the N-terminal region of the D. melanogaster GOLIATH protein.

Table 32

HP MGPPPGAGVSCRGGCGFSRLLAWCFLLALSPQAPGSRGAEAVWTAYLNVSWRVPHTGVNR HP TVWELSEEGVYGQDSPLEPVAGVLVPPDGPGALNACNPHTNFTVPTVWGSTVQVSWLALI 5 HP QRGGGCTFADKIHLAYERGASGAVIFNFPGTRNEVIPMSHPGAVDIVAIMIGNLKGTKIL .*.*.. . * .. DM **MQLEKMQIKGKTRNIAAVITYQNIGQDLS** HP QSIQRGIQVTMVIEVGKK---HGPWVNHYSIFFVSVSFFIITAATVGYFIFYSARRLRNA . .*. *..***.* **.*** .*.* 10 DM LTLDKGYNVTISIIEGRRGVRTISSLNRTSVLFVSIS-FIV-DDILCWLIFYYIQRFRYM HP RAQSRKQRQLKADAKKAIGRLQLRTLKQGDKEIGPDGDSCAVCIELYKPNDLVRILTCNH DM QAKDQQSRNLCSVTKKAIMKIPTKTGKFSD-EKDLDSDCCAICIEAYKPTDTIRILPCKH HP IFHKTCVDPWLLEHRTCPMCKCDILKALGIEVDVEDGSVSLQVPVSNEISNSASSHEEDN 15 ***.*.*.****** * * * * * DM EFHKNCIDPWLIEHRTCPMCKLDVLKFYGYVVGDQIYQTPSPQHTAPIASIEEVPVIVVA HP RSETASSGYASVQGTDEPPLEEHVQSTNESLQLVNHEANSVAVDVIPHVDNPTFEEDETP DM VPHGPQPLQPLQASNMSSFAPSHYFQSSRSPSSSVQQQLAPLTYQPHPQQAASERGRRNS 20 HP NQETAVREIKS DM APATMPHAITASHQVTDV

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA155685) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

INDUSTRIAL APPLICABILITY

115

The present invention provides human proteins having hydrophobic domains, DNAs coding for these proteins, expression vectors for these DNAs as well as eucaryotic cells expressing these DNAs. All of the proteins of the present invention are secreted or exist in the cell membrane, so that they are considered to be proteins controlling the proliferation and/or the differentiation of Accordingly, the proteins of the present invention can be employed as pharmaceuticals such as carcinostatic agents control the proliferation which act to and/or the differentiation of the cells, or as antigens for preparing antibodies against these proteins. The DNAs of the present be utilized probes for invention can as the diagnosis and gene sources for the gene therapy. Furthermore, the DNAs can be utilized for large-scale expression of these proteins. Cells into which these genes are introduced to express these proteins, can be utilized for detection of the corresponding receptors and ligands, screening of novel lowmolecular pharmaceuticals, and so on.

5

10

15

20

25

30

The present invention also provides genes corresponding polynucleotide sequences disclosed to "Corresponding genes" are the regions of the genome that are transcribed to produce the mRNAs from which CDNA derived polynucleotide sequences are and may include contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with using the sequence information disclosed known methods Such methods include the preparation of probes or herein.

116

primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. An "isolated gene" is a gene that has been separated from the adjacent coding sequences, if any, present in the genome of the organism from which the gene was isolated.

5

10

15

20

25

30

Organisms that have enhanced, reduced, or modified expression of the gene(s) corresponding to the polynucleotide sequences disclosed herein are provided. The desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave the mRNA transcribed from the gene (Albert and 1994. Trends Pharmacol. Sci. 15(7): 250-254: Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 11-22; and Hampel, 1998, Prog. Nucleic Acid Res. Mol. Biol. 58: 1-39; all of which are incorporated by reference herein). Transgenic animals that have multiple copies of the gene(s) corresponding to the polynucleotide sequences disclosed herein, preferably produced by transformation of cells with genetic constructs that are stably maintained within the transformed cells and their progeny, are provided. Transgenic animals that have modified genetic control regions that increase or reduce gene expression levels, or that change temporal or spatial patterns of gene expression, are also provided (see European Patent No. 0 649 464 Bl, incorporated by reference herein). In addition, organisms are provided in which the gene(s) corresponding to polynucleotide sequences disclosed herein have been partially or completely inactivated, through insertion of extraneous sequences into the corresponding gene(s) through deletion of all or part of the corresponding gene(s). Partial or complete gene inactivation can be accomplished

5

10

15

20

25

30

through insertion, preferably followed by imprecise excision, of transposable elements (Plasterk, 1992, Bioessays 14(9): 629-633; Zwaal et al., 1993, Proc. Natl. Acad. Sci. USA 90(16): 7431-7435; Clark et al., 1994, Proc. Natl. Acad. Sci. 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination, preferably detected by positive/negative genetic selection strategies (Mansour et al., 1988, Nature 336: 348-352; U.S. Patent Nos. 5,464,764; 5,487,992; 5,627,059; 5,631,153; 5,614, 396; 5,616,491; and 5,679,523; all of which are incorporated by reference herein). These organisms with altered gene expression are preferably eukaryotes and more preferably are mammals. Such organisms are useful for the development of non-human models for the study of disorders involving the corresponding gene(s), and for the development of assay systems for the identification of molecules that interact with the protein product(s) of the corresponding gene(s). Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. intracellular and transmembrane domains of proteins of the invention can be identified in accordance with techniques for determination of such domains from sequence information.

Proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at least 25%(more preferably at least 50%, and most preferably at least 75%) of the length of a disclosed protein and have at least 60% sequence identity (more

118

preferably, at least 75% identity; most preferably at least 90% or 95% identity) with that disclosed protein, where sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that shares at least 75% sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.

5

10

15

20

25

30

homologs of the disclosed polynucleotides Species and proteins are also provided by the present invention. As "species homologue" is herein, a а protein or polynucleotide with a different species of origin from that of a given protein or polynucleotide, but with significant sequence similarity to the given protein or polynucleotide, as determined by those of skill in the art. homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous, or related to that encoded by the polynucleotides.

The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.

The present invention also includes polynucleotides

119

capable of hybridizing under reduced stringency conditions, more preferably stringent conditions, and most preferably highly stringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in the table 33 below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

10

5

Table 33

Stringency	Polynucleotide	Hybrid	Hybridization Temperature	Wash
Condition	Hybrid	Length	and Buffer [†]	Temperature
		(bp) [‡]		and Buffer [†]
Α	DNA: DNA	≥50	65°C; 1×SSC -or-	65°C; 0.3×SSC
			42°C; 1×SSC,50% formamide	
В	DNA : DNA	< 50	T _B *; 1×SSC	T _B *; 1×SSC
С	DNA: RNA	≥50	67°C; 1×SSC -or-	67°C; 0.3×SSC
			45°C; 1×SSC,50% formamide	
D	DNA : RNA	<50	T _D *; 1×SSC	T _D *; 1×SSC
E	RNA : RNA	≥50	70°C; 1×SSC -or-	70°C; 0.3×SSC
			50°C; 1×SSC,50% formamide	
F	RNA: RNA	<50	T _F *; 1×SSC	T _F *; 1×SSC
G	DNA : DNA	≥50	65°C; 4×SSC -or-	65°C; 1×SSC
			42°C; 4×SSC,50% formamide	
Н	DNA : DNA	<50	T _H *; 4×SSC	T _H *; 4×SSC
I	DNA : RNA	≥50	67°C; 4×SSC -or-	67℃; 1×SSC
			45°C; 4×SSC,50% formamide	
J	DNA : RNA	<50	T _J *; 4×SSC	T _J *; 4×SSC
K	RNA: RNA	≥50	70°C; 4×SSC -or-	67°C; 1×SSC
			50°C; 4×SSC,50% formamide	
L	RNA: RNA	<50	T _L *; 2×SSC	T _L *; 2×SSC
M	DNA : DNA	≥50	50°C; 4×SSC -or-	50°C; 2×SSC
			40°C; 6×SSC,50% formamide	
N	DNA : DNA	<50	T _N *; 6×SSC	T _N *; 6×SSC
0	DNA : RNA	≥50	55°C; 4×SSC -or-	55°C; 2×SSC
			42°C; 6×SSC,50% formamide	
P	DNA : RNA	< 50	T _P *; 6×SSC	T _P *; 6×SSC
Q	RNA: RNA	≥50	60°C; 4×SSC -or-	60°C; 2×SSC
	·		45°C; 6×SSC,50% formamide	
R	RNA: RNA	<50	T _R *; 4×SSC	T _R *; 4×SSC

- ‡: The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.
- \dagger : SSPE (1×SSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH7.4) can be substituted for SSC (1×SSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.
 - *T_B T_R: The hybridization temperature for hybrids anticipated to be less than

10

10

15

20

25

50 base pairs in length should be 5-10°C less than the melting temperature (T_m) of the hybrid, where T_m is determined according to the following equations. For hybrids less than 18 base pairs in length, $T_m(^{\circ}C)=2(\#of\ A+T\ bases)+4(\#of\ G+C\ bases)$. For hybrids between 18 and 49 base pairs in length, $T_m(^{\circ}C)=81.5+16.6(\log_{10}[Na^+])+0.41$ (%G+C) - (600/N), where N is the number of bases in the hybrid, and [Na⁺] is the concentration of sodium ions in the hybridization buffer ([Na⁺] for 1×SSC=0.165M).

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.

Preferably, each such hybridizing polynucleotide has a length that is at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of invention the present to which it hybridizes, and has at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with the polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

10

CLAIMS

- 1. A protein comprising any one of an amino acid sequence selected from the group consisting of SEQ ID Nos. 1 to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130.
- 2. An isolated DNA coding for the protein according to Claim 1.
- 3. An isolated cDNA comprising any one of a base sequence selected from the group consisting of SEQ ID Nos. 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140.
- 4. The cDNA according to Claim 3 consisting of any one of a base sequence selected from the group consisting of SEQ ID Nos. 21 to 30, 51 to 60, 81 to 90, 111 to 120, and 141 to 150.
- 5. An expression vector that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 by in vitro translation or in eucaryotic cells.
- 6. A transformed eucaryotic cell that is capable of expressing the DNA according to any one of Claim 2 to Claim
 4 and of producing the protein according to Claim 1.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

上。1

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18

Fig. 19

Fig. 20

Fig. 21

Fig. 22

Fig. 23

Fig. 24

Fig. 25

Fig. 26

Fig.27

Fig. 28

Fig. 29

Fig. 30

Fig. 31

Fig.32

Fig. 33

Fig. 34

Fig. 35

Fig. 36

Fig. 37

Fig. 38

Fig. 39

Fig. 40

Fig. 41

Fig. 42

Fig. 43

-ig. 44

Fig. 45

Fig. 46

Fig.47

Fig. 48

Fig. 49

Fig. 50

Sequence listing

<110> Sagami Chemical Research Center; Protegene Inc.

5 <120> Human Proteins Having Hydrophobic Domains And DNAs Encoding These Proteins

<130> 661102

10 <150> JP 10-208820 <151> 1998-07-24

<150> JP 10-224105

<151> 1998-08-07

15

<150> JP 10-238116

<151> 1998-08-25

<150> JP 10-254736

20 <151> 1998-09-09

<150> JP 10-275505

<151> 1998-09-29

25 <160> 150

<170> Windows 95 (Word 98)

<210> 1

30 <211> 125

<212> PRT

<213> Homo sapiens

<400> 1

35 Met Ala Lys Tyr Leu Ala Gln Ile Ile Val Met Gly Val Gln Val Val

	1				5					10)				15	•
	Gly	Arg	Ala	Phe	Ala	Arg	Ala	Leu	Arg	Glr	Glu	Phe	Ala	Ala	. Ser	Arg
				20					25					30)	
	Ala	Ala	Ala	Asp	Ala	Arg	Gly	Arg	Ala	Gly	His	Arg	Ser	Ala	Ala	Ala
5			35					40					45			
	Ser	Asn	Leu	Ser	Gly	Leu	Ser	Leu	Gln	Glu	Ala	Gln	Gln	Ile	Leu	Asn
		50					55					60				
	Val	Ser	Lys	Leu	Ser	Pro	Glu	Glu	Val	Gln	Lys	Asn	Tyr	Glu	His	Leu
	65					70					75					80
10	Phe	Lys	Val	Asn	Asp	Lys	Ser	Val	Gly	Gly	Ser	Phe	Tyr	Leu	Gln	Ser
					85					90					95	
	Lys	Val	Val	Arg	Ala	Lys	Glu	Arg	Leu	Asp	Glu	Glu	Leu	Lys	Ile	Gln
				100					105					110		
	Ala	Gln	Glu	Asp	Arg	Glu	Lys	Gly	Gln	Met	Pro	His	Thr			
15			115					120					125			
	<210)> 2														
	<21	l> 1:	31													
	<212	2> PI	RT													
20	<213	3> но	omo s	sapie	ens											
	<400)> 2														
	Met	Ala	Gly	Ile	Lys	Ala	Leu	Ile	Ser	Leu	Ser	Phe	Gly	Gly	Ala	Ile
	1				5					10					15	
25	Gly	Leu	Met	Phe	Leu	Met	Leu	Gly	Cys	Ala	Leu	Pro	Ile	Tyr	Asn	Lys
				20					25					30		
	Tyr	Trp	Pro	Leu	Phe	Val	Leu	Phe	Phe	Tyr	Ile	Leu	Ser	Pro	Ile	Pro
			35					40					45			
	Tyr	Cys	Ile	Ala	Arg	Arg	Leu	Val	Asp	Asp	Thr	Asp	Ala	Met	Ser	Asn
30		50					55					60				
	Ala	Cys	Lys	Glu	Leu	Ala	Ile	Phe	Leu	Thr	Thr	Gly	Ile	Val	Val	Ser
	65					70					75					80
	Ala	Phe	Gly	Leu	Pro	Ile	Val	Phe	Ala	Arg	Ala	His	Leu	Ile	Glu	Trp
					85					90					95	
35	Gly	Ala	Cys	Ala	Leu	Val	Leu	Thr	Gly	Asn	Thr	Val	Ile	Phe	Ala	Thr

WO 00/05367 PCT/JP99/03929

				100					105					110		
	Ile	Leu	Gly	Phe	Phe	Leu	Val	Phe	Gly	Ser	Asn	Asp	Asp	Phe	Ser	Trp
			115					120					125			
	Gln	Gln	Trp													
5		130														
	<21	0> 3														
	<21	1> 2	42													
	<21	2> P	RT													
10	<21	3> H	omo :	sapi	ens											
										•						
	<400	0> 3														
	Met	Ala	Lys	His	Glu	Gln	Ile	Leu	Val	Leu	Asp	Pro	Pro	Thr	Asp	Leu
	1				5					10					15	
15	Lys	Phe	Lys	Gly	Pro	Phe	Thr	Asp	Val	Val	Thr	Thr	Asn	Leu	Lys	Leu
				20					25					30		
	Arg	Asn	Pro	Ser	Asp	Arg	Lys	Val	Cys	Phe	Lys	Val	Lys	Thr	Thr	Ala
			35					40					45			
	Pro	Arg	Arg	Tyr	Cys	Val	Arg	Pro	Asn	Ser	Gly	Ile	Ile	Asp	Pro	Gly
20		50					55					60				
		Thr	Val	Thr	Val		Val	Met	Leu	Gln		Phe	Asp	Tyr	Asp	Pro
	65					70					75					80
	Asn	Glu	Lys	Ser	-	His	Lys	Phe	Met		Gln	Thr	Ile	Phe		Pro
0.5					85		_		_	90		_			95	
25	Pro	Asn	Thr		Asp	Met	Glu	Ala		Trp	Lys	Glu	Ala	Lys	Pro	Asp
	~1	-		100	_	_	_	_	105		_,			110	_	
	GIU	Leu		Asp	Ser	Lys	Leu	_	Cys	Val	Phe	GIu		Pro	Asn	GLu
	3	N	115	T	3			120	D	o	T	.1.	125	D	T	3
30	ASII	_	гуѕ	Leu	Asn	Asp		GIU	PIO	Ser	тÀг		vaı	Pro	Leu	Asn
50	λla	130	Tara	C1 5	N	C1	135	Mot	D=-	T	Dwa	140	C	1701	C = =	T ===
	145	Ser	Бу	GIII	Asp	_	PLO	Mec	PIO	гур		HIS	ser	Val	Ser	
		Aen	ጥኮ፦	G1··	ጥኮ፦	150	Lvc	Lou	Me+	Glu	155	Cvc	Tuc	Arg	T ev	160
	******			JIU	165	ary	пJэ	⊒eu	1756	170	JIU	Cys	Lys	.a. 9	175	3111
35	Glv	Glu	Met	Met		T.eu	Ser	Glu	Glu		Ara	Hic	T.en	Ara		Glu

				180)				185	,				190)	
	Gly	Leu	Arg	Leu	Arg	Lys	. Val	Ala	His	Ser	Asp	Lys	Pro	Gly	' Ser	Th:
			195	ı				200					205	•		
	Ser	Thr	Ala	Ser	Phe	Arg	, Asp	Asn	Val	Thr	Ser	Pro	Leu	Pro	Ser	Let
5		210					215					220				
	Leu	Val	Val	Ile	Ala	Ala	Ile	Phe	Ile	Gly	Phe	Phe	Leu	Gly	Lys	Phe
	225					230	i				235					240
	Ile	Leu														
10	<21	0> 4														
	<21	1> 2	64													
	<21	2> P	RT													
	<21	3> H	ото	sapi	ens											
. ~																
15		0> 4		_						_						
		Pne	Val	Pro	_	GTÀ	Glu	Ser	Ala		Asp	Leu	Ala	GTA		Thr
	1	T	24-4	D	5		0	** - 1	01	10	**-7	61	a 1	+	15	
	reu	red	Met	20	Ala	val	Ser	vaı	25	ASII	val	GIÀ	GIN	леи 30	Ата	Met
20	Asn	T.em	Tle		Ser	ጥኮሎ	Leu	λεν		Ser	Luc	Tle	Gly		Dho	m
20	Twp	Leu	35	116	Ser	1111	ьеu	40	Mec	Ser	цуз	110	45	TÄT	File	тăг
	Thr	Asp		Leu	Val	Pro	Met		Glv	Asn	Asn	Pro		Ala	Thr	ሞከኮ
		50	-1-				55		1			60	-1-			
	Glu	Gly	Asn	Ser	Thr	Glu	Leu	Ser	Ile	Asn	Ala	Glu	Val	Tyr	Ser	Leu
25	65	_				70					75			•		80
	Pro	Ser	Arg	Lys	Leu	Val	Ala	Leu	Gln	Leu	Arg	Ser	Ile	Phe	Ile	Lys
					85					90					95	-
	Tyr	Lys	Ser	Lys	Pro	Phe	Cys	Glu	Lys	Leu	Leu	Ser	Trp	Val	Lys	Ser
				100					105					110		
30	Ser	Gly	Cys	Ala	Arg	Val	Ile	Val	Leu	Ser	Ser	Ser	His	Ser	Tyr	Gln
			115					120					125			
	Arg	Asn	Asp	Leu	Gln	Leu	Arg	Ser	Thr	Pro	Phe	Arg	Tyr	Leu	Leu	Thr
		130					135					140				
	Pro	Ser	Met	Gln	Lys	Ser	Val	Gln	Asn	Lys	Ile	Lys	Ser	Leu	Asn	Trp
35	145					150					155					160

	GIU	GIU	Met	GIU	. Lys 165		Arc	Cys	s Ile	9 Pro 170		ı Ile	e Asp) Asp	Ser 175	Glu
	Phe	Cvs	Ile	Ara	-		Glu	, Gla	, G1v	-		· T.vs	ጥኮኮ	T.e.1		Asp
		0,0		180		, 110	, GI	GLy	185			. LJ S	. 1111	190	_	мър
5	Glu	Ser	Cys	Ser	Lvs	Glu	Ile	Glr			Val	Leu	Leu			Val
			195		-4-			200					205	_		var
	Ser	Glu			Asn	Ile	Pro			Leu	Glv	Leu			ጥህጕ	Leu
		210	1				215				,	220	• • • • • • • • • • • • • • • • • • • •	. 014	*1-	nea
	Asn	Glu	Trp	Leu	Gln	Ile	Leu	Lys	Pro	Leu	Ser	Asp	Asp	Pro	Thr	Val
10	225					230		_			235	_	-			240
	Ser	Ala	Ser	Arg	Trp	Lys	Ile	Pro	Ser	Ser	Trp	Arg	Leu	Leu	Phe	Gly
					245					250					255	-
	Ser	Gly	Leu	Pro	Pro	Ala	Leu	Phe								
				260												
15																
	<210)> 5														
	<211	l> 1:	12													
	<212	?> PI	RT													
	<213	3> H	omo s	sapi	ens											
20																
	<400)> 5														
	Met	Gly	Ser	Arg	Leu	Ser	Gln	Pro	Phe	Glu	Ser	Tyr	Ile	Thr	Ala	Pro
	1				5					10					15	
	Pro	Gly	Thr	Ala	Ala	Ala	Pro	Ala	Lys	Pro	Ala	Pro	Pro	Ala	Thr	Pro
25				20					25					30		
	Gly	Ala	Pro	Thr	Ser	Pro	Ala	Glu	His	Arg	Leu	Leu	Lys	Thr	Cys	Trp
			35					40					45			
	Ser		Arg	Val	Leu	Ser	Gly	Leu	Gly	Leu	Met	Gly	Ala	Gly	Gly	Tyr
00		50					55					60				
30		Tyr	Trp	Val	Ala	Arg	Lys	Pro	Met	Lys	Met	Gly	Tyr	Pro	Pro	Ser
	65					70					75					80
	Pro	Trp	Thr	Ile		Gln	Met	Val	Ile	Gly	Leu	Ser	Ile	Ala	Thr	Trp
	_				85					90					95	
	Gly	Ile			Met	Ala	Asp	Pro	Lys	Gly	Lys	Ala	Tyr	Arg	Val	Val
35				100					105					110		

	<210>	6													
	<211>	146													
	<212>	PRT													
5	<213>	Homo	sapi	ens											
	<400>	6													
	Met Le	u Ala	Gly	Ala	Gly	Arg	Pro	Gly	Leu	Pro	Gln	Gly	Arg	His	Leu
	1			5					10					15	
10	Cys Tr	p Leu	Leu	Cys	Ala	Phe	Thr	Leu	Lys	Leu	Cys	Gln	Ala	Glu	Ala
			20					25					30		
	Pro Va	l Gln	Glu	Glu	Lys	Leu	Ser	Ala	Ser	Thr	Ser	Asn	Leu	Pro	Cys
		35					40					45			
	Trp Le	u Val	Glu	Glu	Phe	Val	Val	Ala	Glu	Glu	Cys	Ser	Pro	Cys	Ser
15	5	0				55					60				
	Asn Ph	e Arg	Ala	Lys	Thr	Thr	Pro	Glu	Cys	Gly	Pro	Thr	Gly	Tyr	Val
	65				70					75					80
	Glu Ly	s Ile	Thr	Cys	Ser	Ser	Ser	Lys	Arg	Asn	Glu	Phe	Lys	Ser	Cys
				85					90					95	
20	Arg Se	r Ala	Leu	Met	Glu	Gln	Arg	Leu	Phe	Trp	Lys	Phe	Glu	Gly	Ala
			100					105					110		
	Val Va	l Cys	Val	Ala	Leu	Ile	Phe	Ala	Cys	Leu	Val	Ile	Ile	Arg	Gln
		115					120					125			
0.7	Arg Gl		Asp	Arg	Lys		Leu	Glu	Lys	Val	Arg	Lys	Gln	Ile	Glu
25	13					135					140				
	Ser Ile	e													
	145														
	-210 5 1	-													
30	<210>														
30	<211> :														
	<212> 1														
	<213> I		sapıe	:ns											
	<400> 1	7													
35	Met Asp		Leu	Val	Leu	Phe	Leu	Phe	Tvr	Leu	Ala	Ser	Val	Leu	Met
									- 3 -						

	1				5	5				10)				15	j
	Gly	Leu	ı Val	. Leu	ıle	Cys	Va]	Cys	Ser	Lys	Thr	His	Ser	Leu	Lys	Gly
				20)				25					30)	
	Leu	Ala	Arg	Gly	Gly	Ala	Glr	ıle	Phe	Ser	Cys	Ile	Ile	Pro	Glu	Cys
5			35					40)				45			
	Leu	Gln	Arg	Ala	Val	. His	Gly	Leu	Leu	His	Tyr	Leu	Phe	His	Thr	Arg
		50					55					60				
	Asn	His	Thr	Phe	Ile	Val	Leu	His	Leu	Val	Leu	Gln	Gly	Met	Val	Tyr
	65					70					75					80
10	Thr	Glu	Tyr	Thr	Trp	Glu	Val	Phe	Gly	Tyr	Cys	Gln	Glu	Leu	Glu	Leu
					85					90					95	
	Ser	Leu	His			Leu	Leu	Pro	Tyr	Leu	Leu	Leu	Gly	Val	Asn	Leu
				100					105					110		
1.5	Phe	Phe		Thr	Leu	Thr	Cys	Gly	Thr	Asn	Pro	Gly		Ile	Thr	Lys
15			115					120					125			
	Aia		Glu	Leu	Leu	Phe		His	Val	Tyr	Glu		Asp	Glu	Val	Met
	Dh.a	130	•	_		_	135	_	_,	_	_	140		_		_
	145	PIO	гÀг	Asn	Val		Cys	Ser	Thr	Cys		Leu	Arg	Lys	Pro	
20		Sor	T 110	TT: -	C	150	17-1	C	3		155	77-7	***	3	-1	160
20	мy	Ser	гус	uis	165	ser	Val	Cys	ASN	170	cys	val	HIS	Arg		Asp
	His	His	Cve	Val		Uel	a en	Asn	Cue		Gly	בות	m-r-n	λεν	175	N ====
		*****	cys	180	115	Val	ASII	ASII	185	116	GIY	AIG	тъ	190	116	Arg
	Tvr	Phe	Leu		ጥ ህጉ	Val	Leu	Thr		Thr	Ala	Ser	Ala		Thr	Va7
25	-3-		195		-1-	•	Lou	200					205	*****	****	vai
	Ala	Ile		Ser	Thr	Thr	Phe	Leu	Val	His	Leu	Val		Met.	Ser	Asp
		210					215					220				P
	Leu	Tyr	Gln	Glu	Thr	Tyr		Asp	Asp	Leu	Gly		Leu	His	Val	Met
	225					230		-	-		235					240
30	Asp	Thr	Val	Phe	Leu	Ile	Gln	Tyr	Leu	Phe	Leu	Thr	Phe	Pro		
					245					250					255	
	Val	Phe	Met	Leu	Gly	Phe	Val	Val	Val	Leu	Ser	Phe	Leu	Leu	Gly	Gly
				260					265					270	_	-
	Tyr	Leu	Leu	Phe	Val	Leu	Tyr	Leu	Ala .	Ala	Thr	Asn	Gln	Thr	Thr	Asn
35			275					280					285			

Glu Trp Tyr Arg Gly Asp Trp Ala Trp Cys Gln Arg Cys Pro Leu Val 290 295 Ala Trp Pro Pro Ser Ala Glu Pro Gln Val His Arg Asn Ile His Ser 305 310 315 320 5 His Gly Leu Arg Ser Asn Leu Gln Glu Ile Phe Leu Pro Ala Phe Pro 325 330 335 Cys His Glu Arg Lys Lys Gln Glu 340 <210> 8

10 <210> 8 <211> 97 <212> PRT <213> Homo sapiens

15 <400> 8 Met Thr Lys Lys Lys Arg Glu Asn Leu Gly Val Ala Leu Glu Ile Asp 1 5 10 Gly Leu Glu Lys Leu Ser Gln Cys Arg Arg Asp Leu Glu Ala Val 20 25 30 20 Asn Ser Arg Leu His Ser Arg Glu Leu Ser Pro Glu Ala Arg Arg Ser 40 Leu Glu Lys Glu Lys Asn Ser Leu Met Asn Lys Ala Ser Asn Tyr Glu 50 55 60 Lys Glu Leu Lys Phe Leu Arg Gln Glu Asn Arg Lys Asn Met Leu Leu 25 70 Ser Val Ala Ile Phe Ile Leu Leu Thr Leu Val Tyr Ala Tyr Trp Thr

85 90 95

Met

30 <210> 9 <211> 124 <212> PRT <213> Homo sapiens

35 <400> 9

WO 00/05367 PCT/JP99/03929

9/177

Met Ala Thr Ser Ser Met Ser Lys Gly Cys Phe Val Phe Lys Pro Asn Ser Lys Lys Arg Lys Ile Ser Leu Pro Ile Glu Asp Tyr Phe Asn Lys 20 25 5 Gly Lys Asn Glu Pro Glu Asp Ser Lys Leu Arg Phe Glu Thr Tyr Gln Leu Ile Trp Gln Gln Met Lys Ser Glu Asn Glu Arg Leu Gln Glu Glu 50 55 60 Leu Asn Lys Asn Leu Phe Asp Asn Leu Ile Glu Phe Leu Gln Lys Ser 10 70 75 His Ser Gly Phe Gln Lys Asn Ser Arg Asp Leu Gly Gly Gln Ile Lys Leu Arg Glu Ile Pro Thr Ala Ala Leu Val Leu Gly Ile Tyr Ala Tyr 100 110 105 15 Val Cys Ser Cys Met His Leu Cys Val Phe Arg Phe 115 120 <210> 10 <211> 327 20 <212> PRT <213> Homo sapiens <400> 10 Met Ala Glu Leu Pro Gly Pro Phe Leu Cys Gly Ala Leu Leu Gly Phe 25 Leu Cys Leu Ser Gly Leu Ala Val Glu Val Lys Val Pro Thr Glu Pro 25 30 Leu Ser Thr Pro Leu Gly Lys Thr Ala Glu Leu Thr Cys Thr Tyr Ser 40 30 Thr Ser Val Gly Asp Ser Phe Ala Leu Glu Trp Ser Phe Val Gln Pro 55 Gly Lys Pro Ile Ser Glu Ser His Pro Ile Leu Tyr Phe Thr Asn Gly 65 70 His Leu Tyr Pro Thr Gly Ser Lys Ser Lys Arg Val Ser Leu Leu Gln 35 90 85 95

	Asn	Pro	Pro	Thr	Val	Gly	Val	Ala	Thr	Leu	Lys	Leu	Thr	Asp	Val	Hi
				100					105					110		
	Pro	Ser	Asp	Thr	Gly	Thr	Tyr	Leu	Cys	Gln	Val	Asn	Asn	Pro	Pro	As
			115					120					125			
5	Phe	Tyr	Thr	Asn	Gly	Leu	Gly	Leu	Ile	Asn	Leu	Thr	Val	Leu	Val	Pro
		130					135					140				
	Pro	Ser	Asn	Pro	Leu	Cys	Ser	Gln	Ser	Gly	Gln	Thr	Ser	Val	Gly	Gly
	145					150					155					160
	Ser	Thr	Ala	Leu	Arg	Cys	Ser	Ser	Ser	Glu	Gly	Ala	Pro	Lys	Pro	Va]
10					165					170					175	
	Tyr	Asn	Trp	Val	Arg	Leu	Gly	Thr	Phe	Pro	Thr	Pro	Ser	Pro	Gly	Ser
				180					185					190		
	Met	Val	Gln	Asp	Glu	Val	Ser	Gly	Gln	Leu	Ile	Leu	Thr	Asn	Leu	Ser
			195					200					205			
15	Leu	Thr	Ser	Ser	Gly	Thr	Tyr	Arg	Cys	Val	Ala	Thr	Asn	Gln	Met	Gly
		210					215					220				
	Ser	Ala	Ser	Cys	Glu	Leu	Thr	Leu	Ser	Val	Thr	Glu	Pro	Ser	Gln	Gly
	225					230					235					240
	Arg	Val	Ala	Gly	Ala	Leu	Ile	Gly	Val	Leu	Leu	Gly	Val	Leu	Leu	Leu
20					245					250					255	
	Ser	Val	Ala	Ala	Phe	Cys	Leu	Val	Arg	Phe	Gln	Lys	Glu	Arg	Gly	Lys
				260					265					270		
	Lys	Pro	Lys	Glu	Thr	Tyr	Gly	Gly	Ser	Asp	Leu	Arg	Glu	Asp	Ala	Ile
			275					280					285			
25	Ala	Pro	Gly	Ile	Ser	Glu	His	Thr	Cys	Met	Arg	Ala	Asp	Ser	Ser	Lys
		290					295					300				
	Gly	Phe	Leu	Glu	Arg	Pro	Ser	Ser	Ala	Ser	Thr	Val	Thr	Thr	Thr	Lys
	305					310					315					320
	Ser	Lys	Leu	Pro	Met	Val	Val									
30					325											
	<210	> 11														
	<211	> 37	5													
	<212	> DN	ΙA													
35	<213	> Ho	mo s	apie	ns											

	<400> 11						
	atggccaagt	acctggccca	gatcattgtg	atgggcgtgc	aggtggtgg	g cagggeettt	60
	gcacgggcct	tgcggcagga	gtttgcagcc	agccgggccg	cagetgatge	ccgaggacgc	120
5	gctggacacc	ggtctgcagc	cgcttccaac	ctctccggcc	tcagcctcca	ggaggcacag	180
	cagattctca	acgtgtccaa	gctgagccct	gaggaggtcc	agaagaacta	tgaacactta	240
	tttaaggtga	atgataaatc	cgtgggtggc	tccttctacc	tgcagtcaaa	ggtggtccgc	300
	gcaaaggagc	gcctggatga	ggaactcaaa	atccaggccc	aggaggacag	agaaaaaggg	360
	cagatgcccc	atacg					375
10							
	<210> 12						
	<211> 393						
	<212> DNA						
	<213> Homo	sapiens					
15							
	<400> 12						
	atggcaggca	tcaaagcttt	gattagtttg	tcctttggag	gagcaatcgg	actgatgttt	60
	ttgatgcttg	gatgtgccct	tccaatatac	aacaaatact	ggcccctctt	tgttctattt	120
	ttttacatcc	tttcacctat	tccatactgc	atagcaagaa	gattagtgga	tgatacagat	180
20	gctatgagta	acgcttgtaa	ggaacttgcc	atctttctta	caacgggcat	tgtcgtgtca	240
	gcttttggac	tccctattgt	atttgccaga	gcacatctga	ttgagtgggg	agcttgtgca	300
	cttgttctca	caggaaacac	agtcatcttt	gcaactatac	taggcttttt	cttggtcttt	360
	ggaagcaatg	acgacttcag	ctggcagcag	tgg			393
25	<210> 13						
	<211> 726						
	<212> DNA						
	<213> Homo	sapiens					
20							
30	<400> 13						
					cagaceteaa		60
					atccatcgga		120
					tgaggcccaa		180
0.5					agccctttga		240
35	aatgaaaaga	gtaaacacaa	gtttatggta	cagacaattt	ttgctccacc	aaacacttca	300

WO 00/05367 PCT/JP99/03929

	gatatggaag	ctgtgtggaa	agaggcaaaa	cctgatgaat	taatggattc	caaattgaga	360
	tgcgtatttg	aaatgcccaa	tgaaaatgat	aaattgaatg	atatggaacc	tagcaaagct	420
	gttccactga	atgcatctaa	gcaagatgga	cctatgccaa	aaccacacag	tgtttcactt	480
	aatgataccg	aaacaaggaa	actaatggaa	gagtgtaaaa	gacttcaggg	agaaatgatg	540
5	aagctatcag	aagaaaatcg	gcacctgaga	gatgaaggtt	taaggctcag	aaaggtagca	600
	cattcggata	aacctggatc	aacctcaact	gcatccttca	gagataatgt	caccagtect	660
	cttccttcac	ttcttgttgt	aattgcagcc	attttcattg	gattctttct	agggaaattc	720
	atcttg						726
10	<210> 14						
	<211> 792						
	<212> DNA						
	<213> Homo	sapiens					
15	<400> 14						
	atgttcgttc	cctgcgggga	gteggeeee	gaccttgccg	gcttcaccct	cctaatgcca	60
	gcagtatctg	ttggaaatgt	tggccagctt	gcaatggatc	tgattatttc	tacactgaat	120
	atgtctaaga	ttggttactt	ctataccgat	tgtcttgtgc	caatggttgg	aaacaatcca	180
	tatgcgacca	cagaaggaaa	ttcaacagaa	cttagcataa	atgctgaagt	gtattcattg	240
20	ccttcaagaa	agctggtggc	tctacagtta	agatccattt	ttattaagta	taaatcaaag	300
	ccattctgtg	aaaaactgct	ttcctgggtg	aaaagcagtg	gctgtgccag	agtcattgtt	360
	ctttcgagca	gtcattcata	tcagcgtaat	gatetgeage	ttcgtagtac	tecetteegg	420
	tacctactta	caccttccat	gcaaaaaagt	gttcaaaata	aaataaagag	ccttaactgg	480
	gaagaaatgg	aaaaaagccg	gtgcattcct	gaaatagatg	attccgagtt	ttgtateege	540
25	attccgggag	gaggtatcac	aaaaacactc	tatgatgaaa	gctgttctaa	agaaatccaa	600
	atggcagttc	tgctgaaatt	tgtttcagaa	ggggacaaca	tcccagatgc	attaggtctt	660
	gttgagtatc	ttaatgagtg	gcttcagata	ctcaaaccac	ttagcgatga	ccccacagta	720
	tctgcctcac	ggtggaaaat	accaagttct	tggagattac	tctttggcag	tggtcttccc	780
	cctgcacttt	tc					792
30							
	<210> 15						
	<211> 336						
	<212> DNA						
	<213> Homo	sapiens					

	<400> 15						
	atggggtctc	ggttgtccca	gccttttgag	tcctatatca	ctgcgcctcc	cggtaccgcc	60
	gccgcgcccg	ccaaacctgc	gcccccagct	acacccggag	cgccgacctc	cccagcagaa	120
	caccgcctgt	tgaagacctg	ctggagctgt	cgcgtgcttt	ctgggttggg	gctgatgggg	180
5	gcgggcgggt	acgtgtactg	ggtggcacgg	aagcccatga	agatgggata	cccccgagt	240
	ccatggacca	ttacgcagat	ggtcatcggc	ctcagcattg	ccacctgggg	tategttgte	300
	atggcagacc	ccaaagggaa	ggcctaccgc	gttgtt			336
	<210> 16						
10	<211> 438						
	<212> DNA						
	<213> Homo	sapiens					
	<400> 16						
15	atgcttgcgg	gtgccgggag	gcctggcctc	ccccagggcc	gccacctctg	ctggttgctc	60
	tgtgctttca	ccttaaagct	ctgccaagca	gaggeteeeg	tgcaggaaga	gaagetgtea	120
	gcaagcacct	caaatttgcc	atgctggctg	gtggaagagt	ttgtggtagc	agaagagtgc	180
	tetecatget	ctaatttccg	ggctaaaact	acccctgagt	gtggtcccac	aggatatgta	240
	gagaaaatca	catgcagctc	atctaagaga	aatgagttca	aaagctgccg	ctcagctttg	300
20	atggaacaac	gcttattttg	gaagttcgaa	ggggctgtcg	tgtgtgtggc	cctgatcttc	360
	gcttgtcttg	tcatcattcg	tcagcgacaa	ttggacagaa	aggetetgga	aaaggtccgg	420
	aagcaaatcg	agtccata					438
	<210> 17						
25	<211> 1032						
	<212> DNA						
	<213> Homo	sapiens					
00	<400> 17						
30				ctggcttcgg			60
				aaaggcctgg			120
				agagccgtgc			180
	ttccatacga	gaaaccacac	cttcattgtc	ctgcacctgg	tcttgcaagg	gatggtttat	240
0.5				tgtcaggagc		_	300
35	cttcttctcc	cctatctact	actagatata	aacctotttt	ttttcaccct	gagttataga	360

WO 00/05367 PCT/JP99/03929

	accaatcctg gcattataac aaaagcaaat gaattattat ttcttcatgt ttatg	aattt 420
	gatgaagtga tgtttccaaa gaacgtgagg tgctctactt gtgatttaag gaaac	caget 480
	cgatecaage actgeagtgt gtgtaactgg tgtgtgeace gtttegacea teact	gtgtt 540
	tgggtgaaca actgcatcgg ggcctggaac atcaggtact tcctcatcta cgtct	tgacc 600
5	ttgacggcct cggctgccac cgtcgccatt gtgagcacca cttttctggt ccact	tggtg 660
	gtgatgtcag atttatacca ggagacttac atcgatgacc ttggacacct ccatg	ttatg 720
	gacacggtct ttcttattca gtacctgttc ctgacttttc cacggattgt cttca	tgctg 780
	ggetttgteg tggttetgag etteeteetg ggtggetaee tgttgtttgt eetgt	atctg 840
	geggeeacea accagactae taacgagtgg tacagaggtg actgggeetg gtgee	agegt 900
10	tgteecettg tggeetggee teegteagea gageeceaag teeaceggaa eatte	actcc 960
	catgggette ggageaacet teaagagate tttetaeetg cettteeatg teatg	agagg 1020
	aagaaacaag aa	1032
_	<210> 18	
15	<211> 291	
	<212> DNA	
	<213> Homo sapiens	
90	<400> 18	
20	atgactaaaa agaagcggga gaatctgggc gtcgctctag agatcgatgg gctaga	
	aagetgteee agtgteggag agaeetggag geegtgaaet eeagaeteea eageeg	
	ctgageccag aggecaggag gteeetggag aaggagaaa acageetaat gaacaa	
	tecaactaeg agaaggaact gaagtttett eggeaagaga aeeggaagaa eatget	gete 240
0.5	tetgtggeea tetttateet eetgaegete gtetatgeet aetggaeeat g	291
25	2010: 40	
	<210> 19	
	<211> 372	
	<212> DNA	
30	<213> Homo sapiens	
30	4400× 10	
	<400> 19	
	atggetacgt cetegatgte taagggttge tttgttttta agecaaacte caaaaa	
	aagatetete tgecaataga ggaetatttt aacaaaggga aaaatgagee tgagga	_
35	aagettegat tegaaaetta teagttgata tggcagcaga tgaaatetga aaatga	
uu	ctacaagagg aattaaataa aaacttgttt gacaatctga ttgaatttct gcaaaaa	atca 240

	cattctggat tecagaagaa tteaagagae ttgggeggte aaataaaaet cagagaaat	t 300
	ccaactgctg ctcttgttct tggtatatat gcgtatgttt gttcatgcat gcatctctg	t 360
	gtatttegtt tt	372
5	<210> 20	
	<211> 981	
	<212> DNA	
	<213> Homo sapiens	
10	<400> 20	
	atggccgage teceggggce etttetetge ggggccctge taggetteet gtgcctgag	60
	gggctggccg tggaggtgaa ggtacccaca gagccgctga gcacgcccct ggggaagaca	a 120
	geegagetga eetgeaeeta eageaegteg gtgggagaea gettegeeet ggagtggag	180
	tttgtgcage etgggaaace catetetgag teccatecaa teetgtaett caccaatgge	240
15	catetgtate caactggtte taagteaaag egggteagee tgetteagaa eeceecaea	300
	gtgggggtgg ccacactgaa actgactgac gtccacccct cagatactgg aacctacctc	360
	tgccaagtca acaacccacc agatttctac accaatgggt tggggctaat caaccttact	420
	gtgctggttc cccccagtaa tcccttatgc agtcagagtg gacaaacctc tgtgggaggc	480
	tctactgcac tgagatgcag ctcttccgag ggggctccta agccagtgta caactgggtg	540
20	cgtcttggaa cttttcctac accttctcct ggcagcatgg ttcaagatga ggtgtctggc	600
	cageteatte teaceaacet etecetgace teetegggea cetacegetg tgtggecace	660
	aaccagatgg gcagtgcatc ctgtgagctg accetetetg tgaccgaacc ctcccaagge	720
	cgagtggccg gagctctgat tggggtgctc ctgggcgtgc tgttgctgtc agttgctgcg	780
	ttctgcctgg tcaggttcca gaaagagagg gggaagaagc ccaaggagac atatgggggt	840
25	agtgacette gggaggatge categeteet gggatetetg ageacaettg tatgaggget	900
	gattetagea aggggtteet ggaaagaeee tegtetgeea geaeegtgae gaeeaeeaag	960
	tecaagetee etatggtegt g	981
	<210> 21	
30	<211> 510	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
35	<222> (66)(443)	

	<400> 21	
	acgettgate eceggeegeg gggeeaggaa gteggagttt gageeeegga ggeagagegg	60
	ctgee atg gee aag tae etg gee eag ate att gtg atg gge gtg eag gtg	110
5	Met Ala Lys Tyr Leu Ala Gln Ile Ile Val Met Gly Val Gln Val	
	1 5 10 15	
	gtg ggc agg gcc ttt gca cgg gcc ttg cgg cag gag ttt gca gcc agc	158
	Val Gly Arg Ala Phe Ala Arg Ala Leu Arg Gln Glu Phe Ala Ala Ser	
	20 25 30	
10	egg gee gea get gat gee ega gga ege get gga eae egg tet gea gee	206
	Arg Ala Ala Asp Ala Arg Gly Arg Ala Gly His Arg Ser Ala Ala	
	35 40 45	
	gct tee aac ete tee gge ete age ete eag gag gea eag eat ete	254
	Ala Ser Asn Leu Ser Gly Leu Ser Leu Gln Glu Ala Gln Gln Ile Leu	
15	50 55 60	
	aac gtg tcc aag ctg agc cct gag gag gtc cag aag aac tat gaa cac	302
	Asn Val Ser Lys Leu Ser Pro Glu Glu Val Gln Lys Asn Tyr Glu His	
	65 70 75	
00	tta ttt aag gtg aat gat aaa tee gtg ggt gge tee tte tae etg eag	350
20	Leu Phe Lys Val Asn Asp Lys Ser Val Gly Gly Ser Phe Tyr Leu Gln	
	80 85 90 95	
	tea aag gtg gte ege gea aag gag ege etg gat gag gaa ete aaa ate	398
	Ser Lys Val Val Arg Ala Lys Glu Arg Leu Asp Glu Glu Leu Lys Ile	
25	100 105 110	
20	cag gec cag gag gac aga gaa aaa ggg cag atg eec cat aeg tgaetgete	450
	Gln Ala Gln Glu Asp Arg Glu Lys Gly Gln Met Pro His Thr 115 120 125	
	123	
	gctccccccg cccaccccgc cgcctctaat ttatagcttg gtaataaatt tcttttctgc	510
30	<210> 22	
	<211> 697	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
35	<221> CDS	

<222> (104)...(499)

<4	Λ	^	22
~4	v	0-	22

	<400> 22	
	actteegggt gttgtetgge egeegtageg egtettgggt eteeeggetg eegetgetge	60
5	egeegeegee tegggtegtg gageeaggag egaegteace gee atg gea gge ate	115
	Met Ala Gly Ile	
	. 1	
	aaa get ttg att agt ttg tee ttt gga gga gea ate gga etg atg ttt	163
	Lys Ala Leu Ile Ser Leu Ser Phe Gly Gly Ala Ile Gly Leu Met Phe	
10	5 10 15 20	
	ttg atg ett gga tgt gee ett eea ata tae aae aaa tae tgg eee ete	211
	Leu Met Leu Gly Cys Ala Leu Pro Ile Tyr Asn Lys Tyr Trp Pro Leu	
	25 30 35	
	ttt gtt cta ttt ttt tac atc ctt tca cct att cca tac tgc ata gca	259
15	Phe Val Leu Phe Phe Tyr Ile Leu Ser Pro Ile Pro Tyr Cys Ile Ala	
	40 45 50	
	aga aga tta gtg gat gat aca gat gct atg agt aac gct tgt aag gaa	307
	Arg Arg Leu Val Asp Asp Thr Asp Ala Met Ser Asn Ala Cys Lys Glu	
	55 60 65	
20	ctt gcc atc ttt ctt aca acg ggc att gtc gtg tca gct ttt gga ctc	355
	Leu Ala Ile Phe Leu Thr Thr Gly Ile Val Val Ser Ala Phe Gly Leu	
	70 75 80	
	cct att gta ttt gcc aga gca cat ctg att gag tgg gga gct tgt gca	403
~ -	Pro Ile Val Phe Ala Arg Ala His Leu Ile Glu Trp Gly Ala Cys Ala	
25	85 90 95 100	
	ett gtt ete aca gga aac aca gte ate ttt gea act ata eta gge ttt	451
	Leu Val Leu Thr Gly Asn Thr Val Ile Phe Ala Thr Ile Leu Gly Phe	
	105 110 115	
00	ttc ttg gtc ttt gga agc aat gac gac ttc agc tgg cag cag tgg tgaa	500
30	Phe Leu Val Phe Gly Ser Asn Asp Asp Phe Ser Trp Gln Gln Trp	
	120 125 130	
	aagaaattac tgaactattg tcaaatggac ttcctgtcat ttgttggcca ttcacgcaca	560
	caggagatgg ggcagttaat getgaatggt atageaagee tettggggggt attttaggtg	620
~-	ctcccttctc acttttattg taagcatact attttcacag agacttgctg aaggattaaa	680
35	aggattttct cttttgg	697

	<210> 23	
	<211> 1619	
	<212> DNA	
5	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (287)(1015)	
10	<400> 23	
	gcagaggccg teacgtgggt cgccgagget cgcaagtgcg cgtggccgtg gcggctggtg	60
	tggggttgag teagttgtgg gacceggage tgetgaeeea gegggtggee cacegaaeeg	120
	gtgacacage ggcaggegtt agggeteggg ageegegage etggeetegt eetagagete	180
	ggeegageeg tegeegeegt egteeeeege eeceagteag caaacegeeg eegegggege	240
15	geceeegete tgegetgtet eteegatgge gteegeetea ggggee atg geg aag	295
	Met Ala Lys	
	1	
	cac gag cag atc ctg gtc ctc gat ccg ccc aca gac ctc aaa ttc aaa	343
	His Glu Gln Ile Leu Val Leu Asp Pro Pro Thr Asp Leu Lys Phe Lys	
20	5 10 15	
	ggc ccc ttc aca gat gta gtc act aca aat ctt aaa ttg cga aat cca	391
	Gly Pro Phe Thr Asp Val Val Thr Thr Asn Leu Lys Leu Arg Asn Pro	
	20 25 30 35	
0.5	tog gat aga aaa gtg tgt tto aaa gtg aag act aca gca cot ogo ogg	439
25	Ser Asp Arg Lys Val Cys Phe Lys Val Lys Thr Thr Ala Pro Arg Arg	
	40 45 50	
	tac tgt gtg agg ccc aac agt gga att att gac cca ggg tca act gtg	487
	Tyr Cys Val Arg Pro Asn Ser Gly Ile Ile Asp Pro Gly Ser Thr Val	
20	55 60 65	
30	act gtt tca gta atg cta cag ccc ttt gac tat gat ccg aat gaa aag	535
	Thr Val Ser Val Met Leu Gln Pro Phe Asp Tyr Asp Pro Asn Glu Lys	
	70 75 80	
	agt aaa cac aag ttt atg gta cag aca att ttt gct cca cca aac act	583
0.5	Ser Lys His Lys Phe Met Val Gln Thr Ile Phe Ala Pro Pro Asn Thr	
35	85 90 95	

	tca	gat	atg	gaa	gct	gtg	tgg	aaa	gag	gca	aaa	cct	gat	gaa	tta	atg	631
	Ser	Asp	Met	Glu	Ala	Val	Trp	Lys	Glu	Ala	Lys	Pro	Asp	Glu	Leu	Met	
	100					105					110					115	
	gat	tcc	aaa	ttg	aga	tgc	gta	ttt	gaa	atg	ccc	aat	gaa	aat	gat	aaa	679
5	Asp	Ser	Lys	Leu	Arg	Cys	Val	Phe	Glu	Met	Pro	Asn	Glu	Asn	Asp	Lys	
					120					125					130		
	ttg	aat	gat	atg	gaa	cct	agc	aaa	gct	gtt	cca	ctg	aat	gca	tct	aag	727
	Leu	Asn	Asp	Met	Glu	Pro	Ser	Lys	Ala	Val	Pro	Leu	Asn	Ala	Ser	Lys	
				135					140					145			
10	caa	gat	gga	cct	atg	cca	aaa	cca	cac	agt	gtt	tca	ctt	aat	gat	acc	775
	Gln	Asp	Gly	Pro	Met	Pro	Lys	Pro	His	Ser	Val	Ser	Leu	Asn	Asp	Thr	
			150					155					160				
	gaa	aca	agg	aaa	cta	atg	gaa	gag	tgt	aaa	aga	ctt	cag	gga	gaa	atg	823
	Glu	Thr	Arg	Lys	Leu	Met	Glu	Glu	Cys	Lys	Arg	Leu	Gln	Gly	Glu	Met	
15		165					170					175					
	atg	aag	cta	tca	gaa	gaa	aat	cgg	cac	ctg	aga	gat	gaa	ggt	tta	agg	871
	Met	Lys	Leu	Ser	Glu	Glu	Asn	Arg	His	Leu	Arg	Asp	Glu	Gly	Leu	Arg	
	180					185					190					195	
	ctc	aga	aag	gta	gca	cat	tcg	gat	aaa	cct	gga	tca	acc	tca	act	gca	919
20	Leu	Arg	Lys	Val	Ala	His	Ser	Asp	Lys	Pro	Gly	Ser	Thr	Ser	Thr	Ala	
					200					205					210		
	tcc	ttc	aga	gat	aat	gtc	acc	agt	cct	ctt	cct	tca	ctt	ctt	gtt	gta	967
	Ser	Phe	Arg	Asp	Asn	Val	Thr	Ser	Pro	Leu	Pro	Ser	Leu	Leu	Val	Val	
				215					220					225			
25	att	gca	gcc	att	ttc	att	gga	ttc	ttt	cta	ggg	aaa	ttc	atc	ttg		1012
	Ile	Ala	Ala	Ile	Phe	Ile	Gly	Phe	Phe	Leu	Gly	Lys	Phe	Ile :	Leu		
			230					235					240				
	taga	gtga	ag c	atgc	agag	t gc	tgtt	tctt	ttt	tttt	ttt	ttct	cttg	ac c	agaa	aaa	1070
	gatt	tgtt	ta c	ctac	catt	t ca	ttgg	tagt	atg	gccc	acg	gtga	ccat	tt t	tttg	tgtgt	1130
30	acag	cgtc	at a	tagg	cttt	g cci	ttta	atga	tet	ctta	cgg	ttag	aaaa	ca c	aata	aaaac	1190
	aaac	tgtt	cg g	ctac	tgga	c ago	gttg	tata	tta	ccag	atc	atca	ctag	ca g	atgt	cagtt	1250
	gcac	attg	ag t	cctt	tatg	a aat	ttca	taaa	taa	agaa	ttg	ttct	ttct	tt gi	tggt	tttaa	1310
	taag	agtt	ca a	gaat	tgtt	e aga	agtc	ttgt	aaat	tgtt	att	ttaa	taat	ee et	ttta	aattt	1370
	tatc	tgtt	gc t	gtta	cata	t tga	aaata	atga	ttta	attt	aga '	ttgc	taat	CC CE	actc	attca	1430
35	ggaa	atge	ca a	gagg	tatto	ctt	ggg	gaaa	tggt	tgeet	tct	taca	gtgta	aa at	tttt	teete	1490

	ct	ttac	cttt	gct	aata	tca	tggc	agaa	tt t	ttct	tatc	c ct	tgtg	aggc	agt	tgttgac	1550
	tg	agtt	tttc	atc	ctta	caa	tect	gtcc	ca t	ggta	ttta	a ca	taaa	aaaa	aat	aaaactg	1610
	tt	aaca	gat														1619
5	<2	10> 2	24														
	<2	11> :	1066														
	<2	12> 1	ONA														
	<2	L3> F	Homo	sapi	iens												
	<22	20>								,							
10	<22	21> 0	CDS														
	<22	22> ((65).	(8	359)												
	<40	0> 2	24														
	ctt	cttg	gctg	ccct	cgtt	ct t	geeg	jgggc	c go	ggtt	agto	cat	gato	gcc	acco	cactgo	60
15																c ttc	109
																y Phe	
			1				5				1	.0				- 15	
	acc	ctc	cta	atg	cca	gca	gta	tct	gtt	gga	aat	gtt	ggc	cag	ctt	gca	157
	Thr	Leu	Leu	Met	Pro	Ala	Val	Ser	Val	Gly	Asn	Val	Gly	Gln	Leu	Ala	
20					20					25					30		
	atg	gat	ctg	att	att	tct	aca	ctg	aat	atg	tct	aag	att	ggt	tac	ttc	205
	Met	Asp	Leu	Ile	Ile	Ser	Thr	Leu	Asn	Met	Ser	Lys	Ile	Gly	Туr	Phe	
				35					40					45			
	tat	acc	gat	tgt	ctt	gtg	cca	atg	gtt	gga	aac	aat	cca	tat	gcg	acc	253
25	Tyr	Thr	Asp	Cys	Leu	Val	Pro	Met	Val	Gly	Asn	Asn	Pro	Tyr	Ala	Thr	
			50					55					60				
	aca	gaa	gga	aat	tca	aca	gaa	ctt	agc	ata	aat	gct	gaa	gtg	tat	tca	301
	Thr	Glu	Gly	Asn	Ser	Thr	Glu	Leu	Ser	Ile	Asn	Ala	Glu	Val	Tyr	Ser	
		65					70					75					
30	ttg	cct	tca	aga	aag	ctg	gtg	gct	cta	cag	tta	aga	tcc	att	ttt	att	349
	Leu	Pro	Ser	Arg	Lys	Leu	Val	Ala	Leu	Gln	Leu	Arg	Ser	Ile	Phe	Ile	
	80					85					90					95	
	aag	tat	aaa	tca	aag	cca	ttc	tgt	gaa	aaa	ctg	ctt	tcc	tgg	gtg	aaa	397
	Lys	Tyr	Lys	Ser	Lys	Pro	Phe	Cys	Glu	Lys	Leu	Leu	Ser	Trp	Val	Lys	
35					100					105					110		

	age	c agt	gg	tgt:	t gcc	aga	gto	att	gtt	ctt	teg	ago	agt	cat	to	a tat	445
	Se	r Ser	Gly	cys	a Ala	Arg	Val	l Ile	va]	Lev	Ser	Ser	Ser	His	Se	r Tyr	
				115	5				120)				125	,		
	cag	g cgt	aat	gat	ctg	cag	ctt	: cgt	agt	act	ccc	tto	: cgg	tac	cta	ctt	493
5	Glr	n Arg	J Asn	Asp	Leu	Gln	Let	Arg	Ser	Thr	Pro	Phe	Arg	Tyr	Let	Leu	
			130	ı				135					140				
	aca	cct	tcc	atg	, caa	aaa	agt	gtt	caa	aat	aaa	ata	aag	agc	ctt	aac	541
	Thr	Pro	Ser	Met	Gln	Lys	Ser	Val	Gln	Asn	Lys	Ile	Lys	Ser	Leu	Asn	
		145					150					155					
10		gaa													_		589
		Glu	Glu	Met	Glu	Lys	Ser	Arg	Cys	Ile	Pro	Glu	Ile	Asp	Asp	Ser	
	160					165					170					175	
		ttt															637
1.5	Glu	Phe	Cys	Ile	Arg	Ile	Pro	Gly	Gly	Gly	Ile	Thr	Lys	Thr	Leu	Tyr	
15					180					185					190		
		gaa															685
	Asp	Glu	Ser		Ser	Lys	Glu	Ile	Gln	Met	Ala	Val	Leu	Leu	Lys	Phe	
				195					200					205			
20		tca															733
20	val	Ser		GIY	Asp	Asn	Ile		Asp	Ala	Leu	Gly	Leu	Val	Glu	Tyr	
			210					215					220				
		aat															781
	rea	Asn	GIU	Trp	Leu			Leu	Lys	Pro			Asp .	Asp	Pro	Thr	
25	at a	225		.			230					235					
20		tct															829
	240	Ser	Ата	ser			Lys	Ile	Pro			rp.	Arg 1	Leu :			
		act	aat			245					250					255	
		agt Ser								tgat	ctaat	it to	ctgti	ttta	t ac	ct	880
30	 y	DCI	Gry .		260 260	PIO A	ala .	Leu .	Pne								
	tata	CCCA	88 a						المسرية	.							
																tgtat	940
																gtctc	1000
	ctaa		9 0 0	LLCC	accat	- atc	caco	caaa	rgta	aaatt	tt g	rtaca	ataa	ıa at	ttt	atttc	1060
		3 -															1066

	<210> 25	
	<211> 618	
	<212> DNA	
	<213> Homo sapiens	
5	<220>	
	<221> CDS	
	<222> (54)(392)	
	<400> 25	
10	gtttacgcca gtttgaacca aagacgccca aggttgaggc cgagttccag agc atg	56
	Met	
	1	
	ggg tot egg ttg tee eag eet ttt gag tee tat ate aet geg eet eec	104
	Gly Ser Arg Leu Ser Gln Pro Phe Glu Ser Tyr Ile Thr Ala Pro Pro	
15	5 10 . 15	
	ggt ace gcc gcc gcc gcc aaa cct gcg ccc cca gct aca ccc gga	152
	Gly Thr Ala Ala Ala Pro Ala Lys Pro Ala Pro Pro Ala Thr Pro Gly	
	20 25 30	
	gcg eeg ace tee eea gea gaa eae ege etg ttg aag ace tge tgg age	200
20	Ala Pro Thr Ser Pro Ala Glu His Arg Leu Leu Lys Thr Cys Trp Ser	
	35 40 45	
	tgt ege gtg ett tet ggg ttg ggg etg atg ggg geg gge ggg tae gtg	248
	Cys Arg Val Leu Ser Gly Leu Gly Leu Met Gly Ala Gly Gly Tyr Val	
0.5	50 55 60 65	
25	tac tgg gtg gca cgg aag ccc atg aag atg gga tac ccc ccg agt cca	296
	Tyr Trp Val Ala Arg Lys Pro Met Lys Met Gly Tyr Pro Pro Ser Pro	
	70 75 80	
	tgg acc att acg cag atg gtc atc ggc ctc agc att gcc acc tgg ggt	344
30	Trp Thr Ile Thr Gln Met Val Ile Gly Leu Ser Ile Ala Thr Trp Gly	
30	85 90 95	
	ate gtt gte atg gea gae eee aaa ggg aag gee tae ege gtt gtt t	390
	Ile Val Val Met Ala Asp Pro Lys Gly Lys Ala Tyr Arg Val Val	
35	gaaagtacca ccagtgaatc tgtcttctgt ctctgtccct ttccccgtga cacacacagc	450
	aggcatggaa tttaatgggt gttctggaca gacacttgta catggacaga catcactact	510

	gtggatacta caagactgag aagaaaatcg tatgttgtca ttctctggct atggagtgtt	570
	tgtggccttc acagatttca caggaaccaa taaatccctc agagaagt	618
		_
	<210> 26	
5	<211> 1021	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
10	<222> (413)(853)	
	<400> 26	
	aagactataa geeecagegg gegaegaeeg aacgeeeeeg ggaacaeegg geeeegaget	60
	eggteeegeg eeegaggate eteeaegggg etagatgget gegteggggg egggagegga	120
15	ggtgageggg egetagggee gegageeeee geeggeeett eeteeagege eetgeggaee	180
	cegeagaagg egetegeete eetageeege aaaaacatat egatttttet egetgtggea	240
	acggggacgt cctgatagat cctctgctcc aataggcaac tccggccttc cctgccctga	300
	cetggaacet etgggaggge tgeagagtaa gtgeegeete tgegeteega eggaggeaeg	360
	aggeetgtgg agtaggteee tetgtteega caggtgegae aettggeget ee atg ett	418
20	Met Leu	
	1	
	gog ggt god ggg agg oot ggd otd ood dag ggd.ogd dad otd tgd tgg	466
	Ala Gly Ala Gly Arg Pro Gly Leu Pro Gln Gly Arg His Leu Cys Trp	
	5 10 15	
25	ttg ctc tgt gct ttc acc tta aag ctc tgc caa gca gag gct ccc gtg	514
	Leu Leu Cys Ala Phe Thr Leu Lys Leu Cys Gln Ala Glu Ala Pro Val	
	20 25 30	
	cag gaa gag aag ctg tca gca agc acc tca aat ttg cca tgc tgg ctg	562
	Gln Glu Glu Lys Leu Ser Ala Ser Thr Ser Asn Leu Pro Cys Trp Leu	
30	35 40 45 50	
	gtg gaa gag ttt gtg gta gca gaa gag tgc tct cca tgc tct aat ttc	610
	Val Glu Glu Phe Val Val Ala Glu Glu Cys Ser Pro Cys Ser Asn Phe	
	55 60 65	
	cgg gct aaa act acc cct gag tgt ggt ccc aca gga tat gta gag aaa	658
3 5	Arg Ala Lys Thr Thr Pro Glu Cvs Glv Pro Thr Glv Tvr Val Glu Lys	

	70 75 80	
	atc aca tgc agc tca tct aag aga aat gag ttc aaa agc tgc cgc tca	706
	Ile Thr Cys Ser Ser Ser Lys Arg Asn Glu Phe Lys Ser Cys Arg Ser	
	85 90 95	
5	gct ttg atg gaa caa cgc tta ttt tgg aag ttc gaa ggg gct gtc gtg	754
	Ala Leu Met Glu Gln Arg Leu Phe Trp Lys Phe Glu Gly Ala Val Val	
	100 105 110	
	tgt gtg gee etg ate tte get tgt ett gte ate att egt eag ega caa	802
	Cys Val Ala Leu Ile Phe Ala Cys Leu Val Ile Ile Arg Gln Arg Gln	
10	115 120 125 130	
	ttg gac aga aag gct ctg gaa aag gtc cgg aag caa atc gag tcc ata	850
	Leu Asp Arg Lys Ala Leu Glu Lys Val Arg Lys Gln Ile Glu Ser Ile	
	135 140 145	
	tagetacatt ceaccettgt atcetgggte ttagagacce tateteagae agtgaaagtg	910
15	aaatggactg atttgcactc ttggttcttt ggagccttgt ggtggaatcc ccttttcccc	970
	atcttcttct ttcagatcat taatgagcag aataaaaaga gtaaaatggt t	1021
	<210> 27	
	<211> 1432	
20	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (331)(1365)	
25		
	<400> 27	
	ategegeeeg ggaggegeeg gageeeageg getggeggge egeegteeea ceeeeacete	60
	gecegagtee ggggeggeee eggtgteeee teegageetg etgeaeteea egteeeeeta	120
	ccagggctcc ageccccagg gaaatetccg accaggeccg cccaggagec agatecagge	180
30	teetggaaga accatgteeg geagetaetg gteatgeeag geacacaetg etgeeeaaga	240
	ggagetgetg tttgaattat etgtgaatgt tgggaagagg aatgeeagag etgeeggetg	300
	aaaattaccc aaccaagaga aatctgcagg atg gac ttt ctg gtc ctc ttc ttg	354
	Met Asp Phe Leu Val Leu Phe Leu	
	1 5	
35	tto tac ctg got tog gtg ctg atg ggt ctt gtt ctt atc tgc gtc tgc	402

	Phe	Tyr	Leu	Ala	Ser	. Val	. Leu	Met	Gly	Leu	ı Va]	Let	Ile	е Суа	val	Cys	
		10					15	•				20)				
	tcg	aaa	acc	cat	ago	: ttg	aaa	ggo	ctg	geo	agg	g gga	gga	a gca	cag	g ata	450
	Ser	Lys	Thr	His	Ser	Leu	Lys	Gly	/ Leu	Ala	Arg	Gly	Gly	Ala	Glr	lle	
5	25					30					35	i				40	
	ttt	tcc	tgt	ata	att	cca	gaa	tgt	ctt	cag	aga	gcc	gtg	cat	gga	ttg	498
	Phe	Ser	Cys	Ile	Ile	Pro	Glu	Cys	Leu	Gln	Arg	Ala	Val	His	Gly	Leu	
					45					50					55		
						cat								-	_		546
10	Leu	His	Tyr	Leu	Phe	His	Thr	Arg	Asn	His	Thr	Phe	Ile	Val	Leu	His	
				60					65					70			
						atg									_		594
	Leu	Val		Gln	Gly	Met	Val	Tyr	Thr	Glu	Tyr	Thr	Trp	Glu	Val	Phe	
15			75					80					85				
15						ctg -									_		642
	GTÅ		Cys	Gin	Glu	Leu		Leu	Ser	Leu	His		Leu	Leu	Leu	Pro	
	+=+	90				.4.	95					100					
						gta							_		-		690
20	105	neu	nea	ьeu	GTÅ	Val	Asn	Leu	Pne	Pne		Thr	Leu	Thr	Cys	_	
20		aat	cct	aac	s++	ata	202	222	~ ~~	a a +	115	++-				120	720
						Ile											738
			110	O _T y	125	116	1111	пуs	AIG	130	GIU	Leu	ьеи	Pne	135	HIS	
	att	tat	gaa	ttt		gaa	ata	ata	+++		aar	220	ata	200		tat	786
25						Glu									_		780
		· 2 -		140					145	110	۵,5	21011	Vul	150	Cys	Del	
	act	tgt	gat	tta	agg	aaa	cca	act		tee	aag	cac	tac		at.a	tat	834
						Lys							_	_		_	00.
			155		_	-		160			•		165			-2-	
30	aac	tgg	tgt	gtg	cac	cgt	ttc	gac	cat	cac	tgt	gtt	tgg	gtg	aac	aac	882
						Arg											
		170					175	-				180	-				
	tgc .	atc	ggg	gcc	tgg	aac	atc	agg	tac	ttc	ctc	atc	tac	gtc	ttg	acc	930
						Asn									-		
35	185					190		_			195		-			200	

	ttg acg	gcc	tcg	gct	gee	acc	gto	gad	att	gtg	ago	acc	act	ttt	ctq	978
	Leu Thr														_	
				205					210					215		
	gtc cac	ttg	gtg	gtg	atg	tca	gat	tta	tac	cag	gag	act	tac	ato	gat	1026
5	Val His	Leu	Val	Val	Met	Ser	Asp	Leu	Tyr	Gln	Glu	Thr	Tyr	Ile	Asp	
			220					225					230			
	gac ctt	gga	cac	ctc	cat	gtt	atg	gac	acg	gtc	ttt	ctt	att	cag	tac	1074
	Asp Leu	Gly	His	Leu	His	Val	Met	Asp	Thr	Val	Phe	Leu	Ile	Gln	Tyr	
		235					240					245				
10	ctg ttc															1122
	Leu Phe	Leu	Thr	Phe	Pro	Arg	Ile	Val	Phe	Met	Leu	Gly	Phe	Val	Val	
	250					25 5					260					
	GTT CTG															1170
15	Val Leu	Ser	Phe	Leu		Gly	Gly	Tyr	Leu	Leu	Phe	Val	Leu	Tyr	Leu	
15	265				270					275					280	
	geg gee														-	1218
	Ala Ala	Thr I			Thr	Thr	Asn	Glu		Tyr	Arg	Gly		_	Ala	
	+aa +aa			285					290					295		
20	tgg tgc													_		1266
	Trp Cys		300	Cys	PIO	Leu	Val		тър	Pro	Pro			Glu	Pro	
	caa gtc			220	a++	020	+	305					310	- 4- 1		
	caa gtc Gln Val															1314
		315	9 /	ND11	116		320	птэ	сту.	neu .		325 325	ASN .	Leu	Gin	
2 5	gag atc		eta d	aat (acc			tat	cat /	nan :				•••		1262
	Glu Ile														_	1362
	330		_			335		-,-			340	Lyb.	.	G I II	GIU	
	tgacaagt	gt at	gact	tgaat			tata	att	cccat			acaca	at on	taga	taa	1420
	tegtttte			-			,						9	- 55~		1432
30	•															1102
	<210> 28															
	<211> 60	1														
	<212> DN2	A														
	<213> Homo sapiens															
35	<220>															

<221> CDS <222> (62)...(355)

	<400> 28	
5	atgegeacat agegaettgg tgggegegte eagtgatgae tggggggatee eggeaagtaa	60
	c atg act aaa aag aag cgg gag aat ctg ggc gtc gct cta gag atc gat	109
	Met Thr Lys Lys Lys Arg Glu Asn Leu Gly Val Ala Leu Glu Ile Asp	
	1 - 5 10 15	
	ggg cta gag gag aag ctg tcc cag tgt cgg aga gac ctg gag gcc gtg	157
10	Gly Leu Glu Glu Lys Leu Ser Gln Cys Arg Arg Asp Leu Glu Ala Val	
	20 25 30	
	aac tec aga ete cae age egg gag etg age eea gag gee agg agg tee	205
	Asn Ser Arg Leu His Ser Arg Glu Leu Ser Pro Glu Ala Arg Arg Ser	
	35 40 45	
15	ctg gag aag gag aaa aac age cta atg aac aaa gee tee aac tae gag	253
	Leu Glu Lys Glu Lys Asn Ser Leu Met Asn Lys Ala Ser Asn Tyr Glu	
	50 55 60	
	aag gaa ctg aag ttt ctt cgg caa gag aac cgg aag aac atg ctg ctc	301
	Lys Glu Leu Lys Phe Leu Arg Gln Glu Asn Arg Lys Asn Met Leu Leu	
20	65 70 75 80	
	tet gtg gee ate ttt ate ete etg aeg ete gte tat gee tae tgg ace	349
	Ser Val Ala Ile Phe Ile Leu Leu Thr Leu Val Tyr Ala Tyr Trp Thr	
	85 90 95	
	atg tgagcetgge acttecceae aaccageaea ggettecaet tggeeeet	400
2 5	Met	
	tgatcaggat caagcaggca cttcaagcct caataggacc aaggtgctgg ggtgttcccc	460
	teccaaceta gtgtteaage atggetteet ggeggeeeag geettgeete eetggeetge	520
	tggggggtte egggteteca gaaggaeatg gtgetggtee etecettage eeaagggaga	580
30	ggcaataaag acacaaagct g	601

<210> 29

<211> 585

<212> DNA

<213> Homo sapiens 35

<220>
<221> CDS
<222> (78)...(452

	<222> (78)(452)	
5	<400> 29	
	actaacctct geeetgeage egegaggeg egegggaaat eeegagtgea tetggaatae	60
	geagagteag taagace atg get acg tee teg atg tet aag ggt tge ttt	110
	Met Ala Thr Ser Ser Met Ser Lys Gly Cys Phe	
	1 5 10	
10	gtt ttt aag cca aac tcc aaa aag aga aag atc tct ctg cca ata gag	158
	Val Phe Lys Pro Asn Ser Lys Lys Arg Lys Ile Ser Leu Pro Ile Glu	
	15 20 25	
	gac tat ttt aac aaa ggg aaa aat gag cct gag gac agt aag ctt cga	206
- -	Asp Tyr Phe Asn Lys Gly Lys Asn Glu Pro Glu Asp Ser Lys Leu Arg	
15	30 35 40	
	ttc gaa act tat cag ttg ata tgg cag cag atg aaa tct gaa aat gag	254
	Phe Glu Thr Tyr Gln Leu Ile Trp Gln Gln Met Lys Ser Glu Asn Glu	
	45 50 55	200
20	cga cta caa gag gaa tta aat aaa aac ttg ttt gac aat ctg att gaa	302
20	Arg Leu Gln Glu Glu Leu Asn Lys Asn Leu Phe Asp Asn Leu Ile Glu 60 65 70 75	
	ttt ctg caa aaa tca cat tct gga ttc cag aag aat tca aga gac ttg	350
	Phe Leu Gln Lys Ser His Ser Gly Phe Gln Lys Asn Ser Arg Asp Leu	330
	80 85 90	
25	gge ggt caa ata aaa ete aga gaa att eea aet get get ett gtt ett	398
	Gly Gly Gln Ile Lys Leu Arg Glu Ile Pro Thr Ala Ala Leu Val Leu	
	95 100 105	
	ggt ata tat gcg tat gtt tgt tca tgc atg cat ctc tgt gta ttt cgt	446
	Gly Ile Tyr Ala Tyr Val Cys Ser Cys Met His Leu Cys Val Phe Arg	
30	110 115 120	
	ttt taaatttttt tttattgttg agaatagtgg aaggacctgt tttgatgagc c	500
	Phe	
	tattttgtct ctcttatttg tacaattaaa ccaactatag tttatattac atattttcaa	560
35	aaaccaataa aaattootta tottt	585

	<21	0> 3	0															
	<21	1> 1	100															
	<21	2> D	NA															
5	<21	3> н	omo	sapi	ens													
	<22	<220>																
	<22	1> C	DS															
	<22	2> (57).	(1	040)													
10	<40	0> 3	0															
	aga	ccga	cct	tgac	cgcc	ca c	ctgg	cagg	a gc	agga	cagg	acg	gccg	gac	gcgg	cc ato	9	59
																Met	t	
																-	1	
	gcc	gag	ctc	ccg	9 99	ccc	ttt	ctc	tgc	ggg	gcc	ctg	cta	ggc	ttc	ctg	1	07
15	Ala	Glu	Leu	Pro	Gly	Pro	Phe	Leu	Cys	Gly	Ala	Leu	Leu	Gly	Phe	Leu		
				5					10					15				
																ctg	1	55
	Cys	Leu		Gly	Leu	Ala	Val	Glu	Val	Lys	Val	Pro		Glu	Pro	Leu		
00			20					25					30					
20								gcc									2	03
	Ser		Pro	Leu	Gly	Lys		Ala	Glu	Leu	Thr	_	Thr	Tyr	Ser	Thr		
		35					40					45						
					_		_	ctg			_			_			2:	51
25	50	VAI	GIY	Asp	Ser	55	Ala	Leu	GIU	Trp	Ser 60	Pne	vai	GIN	PIO	_		
20		CCC	atc	+~+	~~~		ant	cca	sta	ata		++a	200	+	<i>aaa</i>	65 6 5	2.6	00
								Pro							-		2:	99
				Del	70	Der	1112	FIO	110	75	171	FIIC	****	ASII	80	nrs		
	ctq	tat	cca	act.		tet	aag	tca	aad		atc	age	cta	ctt		aac	3,	47
30								Ser									J	-,
		•		85	1		-1-		90	9				95				
	ccc	ccc	aca	gtg	ggg	gtg	gcc	aca	ctg	aaa	ctg	act	gac	gtc	cac	ccc	39	95
	Pro	Pro	Thr	Val	Gly	Val	Ala	Thr	Leu	Lys	Leu	Thr	Asp	Val	His	Pro		
			100					105					110					
35	tca	gat	act	gga	acc	tac	ctc	tgc	caa	gtc	aac	aac	cca	cca	gat	ttc	44	43

	5e	I AS	р тп	r G1	y Tr	ır Ty	r Le	eu Cy	/s G]	.n Va	ıl As	sn A	sn P	ro I	Pro	As	p Phe	
		11	5				12	0				1	25					
	ta	c ac	c aa	t gg	g tt	g gg	g ct	a at	c aa	c ct	t ac	t g	tg c	tg ç	jtt	CC	c ccc	491
	ту	r Th	r As	n Gl	y Le	u Gl	y Le	u Il	e As	n Le	u Th	r Va	al L	eu V	al	Pr	o Pro	
5	130	כ				13	5				14	0					145	
	agt	t aa	t cc	c tt	a tg	c ag	t ca	g ag	t gg	a ca	a ac	c to	et gi	-g g	ga	gge	tat	539
	Sei	As:	n Pro	o Le	u Cy	s Se	r Gl	n Se	r Gl	y Gl	n Th	r Se	er Va	al G	ly	Gly	y Ser	
					15	0				15	5					160)	
	act	gea	a ct	g aga	a tg	c ag	c tc	t to	c ga	g gg	g gc	t co	t aa	ıg c	ca	gto	tac	587
10	Thr	Ala	a Lei	ı Ar	g Cy:	s Se	r Se	r Se	r Glu	ı Gl	y Ala	a Pr	o Ly	s P	ro	Va]	Tyr	
				165	5				170)				1	75		_	
	aac	tg	gt	g cgt	ctt	gga	a act	tti	t cct	aca	a cct	tc	t cc	t g	ge	ago	atg	635
	Asn	Tr	Val	Arc	Leu	Gly	7 Thi	Phe	e Pro	Thi	Pro	Se	r Pr	o G:	Ly	Ser	Met	
			180)				185	5				19	0				
15	gtt	caa	gat	gag	gtg	tet	ggc	cac	gete	att	cto	ac	c aa	c ct	c ·	tcc	ctg	683
	Val	Gln	Asp	Glu	Val	Ser	Gly	Glr	1 Leu	Ile	Leu	Th:	r As	n Le	eu l	Ser	Leu	
		195					200					20						
	acc	tcc	tcg	ggc	acc	tac	cgc	tgt	gtg	gcc	acc	aad	ca	g at	g	gge	agt	731
	Thr	Ser	Ser	Gly	Thr	Tyr	Arg	Cys	Val	Ala	Thr	Asr	ı Glı	n Me	t (Gly	Ser	
20	210					215					220						225	
	gca	tcc	tgt	gag	ctg	acc	ctc	tct	gtg	acc	gaa	aac	tec	ca	a ç	ggc	cga	779
	Ala	Ser	Cys	Glu	Leu	Thr	Leu	Ser	Val	Thr	Glu	Pro	Ser	Gl	n G	3ly	Arg	
					230					235					2	240		
	gtg	gcc	gga	gct	ctg	att	ggg	gtg	ctc	ctg	ggc	gtg	ctg	tt	go	tg	tca	827
2 5	Val	Ala	Gly	Ala	Leu	Ile	Gly	Val	Leu	Leu	Gly	Val	Leu	Le	ı L	eu	Ser	
				245					250					25	5			
	gtt	gct	gcg	ttc	tgc	ctg	gtc	agg	ttc	cag	aaa	gag	agg	gg	g a	ag	aag	875
	Val	Ala	Ala	Phe	Cys	Leu	Val	Arg	Phe	Gln	Lys	Glu	Arg	Gly	7 L	ys :	Lys	
			260					265					270					
30	ccc	aag	gag	aca	tat	9 99	ggt	agt	gac	ctt	cgg	gag	gat	gco	: a	tc	gct	923
	Pro	Lys	Glu	Thr	Tyr	Gly	Gly	Ser	Asp	Leu	Arg	Glu	Asp	Ala	ı I	le i	Ala	
		275					280					285						
	cct	999	atc	tct	gag	cac	act	tgt	atg	agg	gct	gat	tct	agc	aa	ag o	ggg	971
	Pro																	
35	290					295					300	-			_		305	

	tte etg gaa aga eee teg tet gee age ace gtg acg ace ace aag tee	1019
	Phe Leu Glu Arg Pro Ser Ser Ala Ser Thr Val Thr Thr Lys Ser	
	310 315 320	
	aag ctc cct atg gtc gtg tgacttctcc cgatccctga gggcggtgag ggg	1070
5	Lys Leu Pro Met Val Val	
	325	
	gaatatcaat aattaaagtc tgtgggtacc	1100
	<210> 31	
10	<211> 313	
	<212> PRT	
	<213> Homo sapiens	
	<400> 31	
15	Met Asn Gln Leu Ser Phe Leu Leu Phe Leu Ile Ala Thr Thr Arg Gly	
	1 5 10 15	
	Trp Ser Thr Asp Glu Ala Asn Thr Tyr Phe Lys Glu Trp Thr Cys Ser	
	20 25 30	
	Ser Ser Pro Ser Leu Pro Arg Ser Cys Lys Glu Ile Lys Asp Glu Cys	
20	35 40 45	
	Pro Ser Ala Phe Asp Gly Leu Tyr Phe Leu Arg Thr Glu Asn Gly Val	
	50 55 60	
	Ile Tyr Gln Thr Phe Cys Asp Met Thr Ser Gly Gly Gly Trp Thr	
0.5	65 70 75 80	
25	Leu Val Ala Ser Val His Glu Asn Asp Met Arg Gly Lys Cys Thr Val	
	85 90 95	
	Gly Asp Arg Trp Ser Ser Gln Gln Gly Ser Lys Ala Asp Tyr Pro Glu	
	100 105 110	
20	Gly Asp Gly Asn Trp Ala Asn Tyr Asn Thr Phe Gly Ser Ala Glu Ala	
30	115 120 125	
	Ala Thr Ser Asp Asp Tyr Lys Asn Pro Gly Tyr Tyr Asp Ile Gln Ala	
	130 135 140	
	Lys Asp Leu Gly Ile Trp His Val Pro Asn Lys Ser Pro Met Gln His	
0.5	145 150 155 160	
3 5	Trp Arg Asn Ser Ser Leu Leu Arg Tvr Arg Thr Asp Thr Glv Phe Leu	

					165	5				17	0				17	5
	Glr	Th	r Leu	ı Gly	/ His	Asr	ı Le	ı Phe	e Gly	, Il	е Туі	Gl	ı Lys	з Ту	r Pr	o Val
				180					185					190		
	Lys	туз	c Gly	Glu	Gly	Lys	Cys	Trp	Thr	: Ası	o Asr	Gly	/ Pro	va:	l Ile	e Pro
5			195					200					205			
	Val	Va]	l Tyr	Asp	Phe	Gly	' Asp	Ala	Gln	Lys	s Thr	Ala	Ser	Туг	Tyı	Ser
		210					215					220		_	-	
	Pro	Туг	Gly	Gln	Arg	Glu	Phe	Thr	Ala	Gly	/ Phe	. Val	Gln	Phe	Arc	. Val
	225					230					235				•	240
10	Phe	Asn	Asn	Glu	Arg	Ala	Ala	Asn	Ala	Leu	Cys	Ala	Gly	Met	Arc	
					245					250			-		255	
	Thr	Gly	Cys	Asn	Thr	Glu	His	His	Cys	Ile	Gly	Gly	Gly	Gly		
				260					265			_	-	270	•	
	Pro	Glu	Ala	Ser	Pro	Gln	Gln	Cys	Gly	Asp	Phe	Ser	Gly	Phe	Asp	Tro
15			275					280					285		•	•
	Ser	Gly	Tyr	Gly	Thr	His	Val	Gly	Tyr	Ser	Ser	Ser	Arg	Glu	Ile	Thr
		290					295					300	-			
	Glu	Ala	Ala	Val	Leu	Leu	Phe	Tyr	Arg							
	305					310										
20																
	<210)> 3:	2													
	<211	l> 2:	29													
	<212	?> PI	RT													
	<213	3> H	omo s	apie	ens											
2 5																
	<400	> 32	2													
	Met	Gly	Asp	Lys	Ile	Trp	Leu	Pro	Phe	Pro	Val	Leu	Leu	Leu	Ala	Ala
	1				5					10					15	
	Leu	Pro	Pro	Val	Leu	Leu	Pro	Gly	Ala	Ala	Gly	Phe	Thr	Pro	Ser	Leu
3 0				20					25					30		
	Asp	Ser	Asp	Phe	Thr	Phe	Thr	Leu	Pro .	Ala	Gly	Gln :	Lys	Glu	Cys	Phe
			35					40					45			
	Tyr	Gln	Pro i	Met	Pro :	Leu :	Lys	Ala	Ser :	Leu	Glu :	Ile	Glu '	Tyr	Gln	Val
		50					55					60				
35	Leu .	Asp	Gly	Ala	Glv :	Leu i	Asp	Ile i	Asp 1	Phe	His 1	len i	Ala :	Ser	Dro.	61 11

	65					7	0				75	5				80
	Gly	Lys	Thr	Leu	Va]	l Phe	e Glu	ı Glr	Arg	J Lys	Ser	Asp	Gly	y Val	l His	Thr
					85	5				90)				95	ı
	Val	Glu	Thr	Glu	[Va]	Gly	y Asp	туг	Met	Phe	Cys	Phe	Asp	Asr	Thr	Phe
5				100					105	,				110)	
	Ser	Thr	Ile	Ser	Glu	Lys	val	. Ile	Phe	Phe	Glu	Leu	Ile	Leu	Asp	Asn
			115					120					125	,		
	Met	Gly	Glu	Gln	Ala	Glr	Glu	Gln	Glu	Asp	Trp	Lys	Lys	Туг	Ile	Thr
		130					135					140				
10	Gly	Thr	Asp	Ile	Leu	Asp	Met	Lys	Leu	Glu	Asp	Ile	Leu	Glu	Ser	Ile
	145					150	,				155					160
	Asn	Ser	Ile	Lys	Ser	Arg	Leu	Ser	Lys	Ser	Gly	His	Ile	Gln	Ile	Leu
					165					170					175	
	Leu	Arg	Ala	Phe	Glu	Ala	Arg	Asp	Arg	Asn	Ile	Gln	Glu	Ser	Asn	Phe
15				180					185					190		
	Asp	Arg	Val	Asn	Phe	Trp	Ser	Met	Val	Asn	Leu	Val	Val	Met	Val	Val
			195					200					205			
	Val	Ser	Ala	Ile	Gln	Val	Tyr	Met	Leu	Lys	Ser	Leu	Phe	Glu	Asp	Lys
		210					215					220				
20	Arg	Lys	Ser	Arg	Thr											
	225															
	<210	> 33	3													
	<211	> 46	7													
25	<212	> PR	T													
	<213	> Ho	mo s	apie	ns											
	<400	> 33														
	Met	Arg	Pro	Gln	Glu	Leu	Pro	Arg	Leu	Ala	Phe	Pro :	Leu	Leu	Leu :	Leu
30	1				5					10					15	
	Leu	Leu	Leu :	Leu	Leu	Pro	Pro	Pro	Pro	Cys	Pro	Ala :	His	Ser	Ala	Phr
				20					25					30		
	Arg :	Phe .	Asp :	Pro '	Thr	Trp	Glu	Ser	Leu .	Asp .	Ala .	Arg (Gln :	Leu	Pro I	Ala
			35					40					45			
35	Trp :	Phe .	Asp (Gln :	Ala	Lys	Phe	Gly	Ile :	Phe :	Ile :	His :	rp (Gly '	Val I	he

		50	0				5	5				6	0			
	Sei	r Vai	l Pro	Se:	r Phe	e Gl	y Se	r Gl	ı Tr	p Ph	e Tr	p Tr	р Ту:	r Tr	p G lı	n Lys
	65	5				70	0				7	5				80
	Glu	ı Lys	3 Ile	e Pro	o Lys	ту	va.	l Glu	ı Ph	e Me	t Ly	s Asp	Ası	ı Tyı	r Pro	Pro
5					85	,				9	0				95	5
	Ser	Phe	E Lys	ту:	Glu	Asp	Phe	e Gly	Pr	o Le	u Phe	e Thi	: Ala	a Lys	Phe	Phe
				100)				10	5				110)	
	Asn	Ala	Asr.	Glr	Trp	Ala	Asp) Ile	Phe	e Glı	n Ala	a Ser	Gly	Ala	Lys	Tyr
			115	,				120)				125	;		
10	Ile	· Val	. Leu	Thr	Ser	Lys	His	His	Glu	ı Gly	Phe	Thr	Leu	Trp	Gly	Ser
		130					135					140				
			Ser	Trp	Asn	Trp	Asn	Ala	Ile	a Asp	Glu	Gly	Pro	Lys	Arg	Asp
	145					150					155					160
	Ile	Val	Lys	Glu	Leu	Glu	Val	Ala	Ιle	Arg	Asn	Arg	Thr	Asp	Leu	Arg
15	_				165					170					175	
	Phe	Gly	Leu		Tyr	Ser	Leu	Phe	Glu	Trp	Phe	His	Pro	Leu	Phe	Leu
			_	180					185					190		
	Glu	Asp		Ser	Ser	Ser	Phe	His	Lys	Arg	Gln	Phe	Pro	Val	Ser	Lys
90	_,	_	195					200					205			
20	Thr		Pro	Glu	Leu	Tyr		Leu	Val	Asn	Asn	Tyr	Gln	Pro	Glu	Val
	T	210	_				215					220				
		Trp	Ser	Asp	Gly		Gly	Gly	Ala	Pro	Asp	Gln	Tyr	Trp	Asn	Ser
	225	0 1	_,	_		230					235					240
25	Inr	GIY	Pne	Leu	Ala	Trp	Leu	Tyr	Asn		Ser	Pro	Val	Arg	Gly	Thr
20	17a l	17-1	m b	_	245	_	_		_	250					255	
	Vai	val	THE		Asp	Arg	Trp	Gly		Gly	Ser	Ile			His	Gly
	Gly	Pho	m	260	a .	_	_		265					270		
	GIY	rne	275	Thr	Cys	Ser			Tyr	Asn	Pro			Leu	Leu	Pro
30	Hie	Luc		~ 3	>	_		280		_			285			
00		290	тър	GIU	Asn (Thr	Ile	Asp	Lys		Ser	Trp	Gly	Tyr
			C1	n 7 -	a 1		295	_				300				
	305	arg	GIU	ATG	Gly :		ser .	Asp	Tyr	Leu		Ile	Glu	Glu :		
		C1=	T 0	17-7		310 -\		_	_		315					320
35	פעם	GTII .	ren		Glu 1	ınr '	Val :	Ser	Cys		Gly .	Asn 1	Leu 1			Asn
50					325					330					335	

	Il	e Gl	y Pro	Thr	Let	ı Ası	Gly	y Thi	r Ile	e Sei	r Va	l Vai	l Phe	e Glu	Glu	1 Arg
				340					345	5				350)	
	Let	ı Ar	g Gln	Met	Gl	/ Sei	Tr	Le	Lys	va]	l Ası	n Gly	/ Glu	Ala	Ile	Tyr
			355	i				360)				365			
5	Gl	ı Th	r His	Thr	Trp	Arg	, Ser	Glr	Asn	Asp	Thi	. Val	Thr	Pro	Asp	Val
		37	0				375	i				380)			
	Tr	ту	r Thr	Ser	Lys	Pro	Lys	Glu	Lys	Leu	Va]	Tyr	Ala	Ile	Phe	Leu
	385	j				390					395	;				400
	Lys	Tr	p Pro	Thr	Ser	Gly	Gln	Leu	Phe	Leu	Gly	His	Pro	Lys	Ala	Ile
10					405					410					415	
	Leu	Gly	y Ala	Thr	Glu	Val	Lys	Leu	Leu	Gly	His	Gly	Gln	Pro	Leu	Asn
				420					425					430		
	Trp	Ile	e Ser	Leu	Glu	Gln	Asn	Gly	Ile	Met	Val	Glu	Leu	Pro	Gln	Leu
			435					440					445			
15	Thr	Ile	His	Gln	Met	Pro	Cys	Lys	Trp	Gly	Trp	Ala	Leu	Ala	Leu	Thr
		450)				455					460				
	Asn	Val	Ile													
	465															
20	<21															
	<21															
	<212	2> P	RT													
	<213	3> н	omo s	apie	ns											
25	-40-		_													
20	<400			_												
		Asp	Asn '	Val (Pro	Lys	Ile	Lys :	His .	Arg	Pro	Phe (Cys 1	Phe :	Ser
	1	.			5					10					15	
	val	гÀг	Gly		Val :	Lys 1	Met :	Leu .		Leu 1	Asp	Ile :	Ile A	Asn S	Ser I	Leu
30	17n 1	m l	5 1 -	20	_				25					30		
50	vai	Tnr	Thr v	Val I	Phe 1	Met]	Leu :		Val S	Ser V	Val :	Leu 1	Ala I	.eu]	le E	Pro
	a 3	m)	35					40					45			
	GIU		Thr 1	Chr I	∠eu :	Thr V	Val (Gly (Gly (Gly V	/al :	Phe A	Ala I	eu V	al 1	hr
		50	_				55					60				
25		Val	Cys C	ys I	eu A	Ala A	Asp (Sly A	Ala I	Leu 1	le :	Fyr A	arg I	ys L	eu I	eu
35	65					70					75					80

	Phe A	sn Pr	o Se	r Gl	y Pro	э Ту	r Gl	n Gl	n Ly	s Pr	o Va	l Hi	s Gl	u Ly	s Lys
				8	5				9	0				9	5
	Glu V	al Le	u												
5	<210>	35													
	<211>	189													
	<212>	PRT													
	<213>	Homo	sapi	Lens											
10	<400>	35													
	Met G	lu Glı	ı Gly	gly	Asn	Leu	Gly	Gly	Let	Ile	Lys	Met	Val	His	Leu
	1			5					10		_			15	
	Leu V	al Leu	ı Ser	Gly	Ala	Trp	Gly	Met	Gln	Met	Trp	Val	Thr	Phe	Val
			20					25					30		
15	Ser G	ly Phe	Leu	Leu	Phe	Arg	Ser	Leu	Pro	Arg	His	Thr	Phe	Gly	Leu
		35					40					45			
	Val G	ln Ser	Lys	Leu	Phe	Pro	Phe	Tyr	Phe	His	Ile	Ser	Met	Gly	Cys
		50				55					60				
	Ala Ph	ne Ile	Asn	Leu	Cys	Ile	Leu	Ala	Ser	Gln	His	Ala	Trp	Ala	Gln
20	65				70					75					80
	Leu Th	r Phe	Trp	Glu	Ala	Ser	Gln	Leu	Tyr	Leu	Leu	Phe	Leu	Ser	Leu
				85					90					95	
	Thr Le	u Ala	Thr	Val	Asn	Ala	Arg	Trp	Leu	Glu	Pro	Arg	Thr	Thr	Ala
			100					105					110		
2 5	Ala Me	t Trp	Ala	Leu	Gln	Thr	Val	Glu	Lys	Glu	Arg	Gly	Leu	Gly	Gly
		115					120					125			
	Glu Va	l Pro	Gly	Ser	His	Gln	Gly	Pro	Asp	Pro	Tyr	Arg	Gln	Leu	Arg
	13	0				135					140				
	Glu Ly	s Asp	Pro	Lys	Tyr	Ser	Ala	Leu	Arg	Gln	Asn	Phe	Phe	Arg	Tyr
30	145				150					155					160
	His Gl	y Leu	Ser	Ser	Leu	Cys	Asn	Leu	Gly	Cys	Val	Leu	Ser	Asn	Gly
				165					170					175	
	Leu Cy	s Leu	Ala	Gly	Leu	Ala	Leu	Glu	Ile	Arg	Ser	Leu			
			180					185							
25															

	<21	0> 3	16													
	<21	.1> 3	63													
	<21	.2> F	RT													
	<21	.3> I	lomo	sapi	ens											
5																
	<40	0> 3	6													
	Met	Val	Asp	Ser	Leu	Leu	Ala	Val	Thr	Leu	Ala	Gly	' Asn	Leu	Gly	Leu
	1				5					10					15	
	Thr	Phe	Leu	Arg	Gly	Ser	Gln	Thr	Gln	Ser	His	Pro	Asp	Leu	Gly	Thr
10				20					25					30		
	Glu	Gly	Cys	Trp	Asp	Gln	Leu	Ser	Ala	Pro	Arg	Thr	Phe	Thr	Leu	Leu
			35					40					45			
	Asp	Pro	Lys	Ala	Ser	Leu	Leu	Thr	Lys	Ala	Phe	Leu	Asn	Gly	Ala	Leu
		50					55					60				
15	Asp	Gly	Val	Ile	Leu	Gly	Asp	Tyr	Leu	Ser	Arg	Thr	Pro	Glu	Pro	Arg
	65					70					75					80
	Pro	Ser	Leu	Ser	His	Leu	Leu	Ser	Gln	Tyr	Tyr	Gly	Ala	Gly	Val	Ala
					85					90					95	
	Arg	Asp	Pro	Gly	Phe	Arg	Ser	Asn	Phe	Arg	Arg	Gln	Asn	Gly	Ala	Ala
20				100					105					110		
	Leu	Thr	Ser	Ala	Ser	Ile	Leu	Ala	Gln	Gln	Val	Trp	Gly	Thr	Leu	Val
			115					120					125			
	Leu	Leu	Gln	Arg	Leu	Glu	Pro	Val	His	Leu	Gln	Leu	Gln	Cys	Met	Ser
		130					135					140				
25	Gln	Glu	Gln	Leu	Ala	Gln	Val	Ala	Ala	Asn	Ala	Thr	Lys	Glu	Phe	Thr
	145					150					155					160
	Glu	Ala	Phe	Leu	Gly	Cys	Pro	Ala	Ile	His	Pro	Arg	Cys	Arg	Trp	Gly
					165					170					175	
	Ala	Ala	Pro	Tyr	Arg	Gly	Arg	Pro	Lys	Leu	Leu	Gln	Leu	Pro	Leu	Gly
30				180					185					190		
	Phe	Leu	Tyr	Val	His	His	Thr	Tyr	Val	Pro	Ala	Pro	Pro	Cys	Thr	Asp
			195					200					205			
	Phe	Thr	Arg	Cys	Ala	Ala	Asn	Met	Arg	Ser	Met	Gln	Arg	Tyr	His	Gln
		210					215					220				
3 5	Asp	Thr	Gln	Gly	Trp	Gly	Asp	Ile	Gly	Tyr	Ser	Phe	Val	Val	Gly	Ser

225

240

38/177

235

	Asp	Gly	Tyr	Val	Tyr	Glu	Gly	Arg	Gly	Trp	His	Trp	Val	Gly	Ala	His
					245					250	ı				255	
	Thr	Leu	Gly	His	Asn	Ser	Arg	Gly	Phe	Gly	Val	Ala	Ile	Val	Gly	Asn
5				260					265					270		
	Tyr	Thr	Ala	Ala	Leu	Pro	Thr	Glu	Ala	Ala	Leu	Arg	Thr	Val	Arg	Asp
			275					280					285			
	Thr	Leu	Pro	Ser	Cys	Ala	Val	Arg	Ala	Gly	Leu	Leu	Arg	Pro	Asp	Tyr
		290					295					300				
10	Ala	Leu	Leu	Gly	His	Arg	Gln	Leu	Val	Arg	Thr	Asp	Cys	Pro	Gly	Asp
	305					310					315					320
	Ala	Leu	Phe	Asp	Leu	Leu	Arg	Thr	Trp	Pro	His	Phe	Thr	Ala	Thr	Val
					325					330					335	
	Lys	Pro	Arg	Pro	Ala	Arg	Ser	Val	Ser	Lys	Arg	Ser	Arg	Arg	Glu	Pro
15				340					345					350		
	Pro	Pro	Arg	Thr	Leu	Pro	Ala	Thr	Asp	Leu	Gln					
			355					360								
	<210)> 37	7													
20	<213	l> 24	19													
	<212	2> PI	RT													
	<213	3> Ho	omo s	sapie	ens											
	<400)> 37	7													
25	Met	Gly	Gly	Pro	Arg	Gly	Ala	Gly	Trp	Val	Ala	Ala	Gly	Leu	Leu	Leu
	1				5					10					15	
	Gly	Ala	Gly	Ala	Cys	Tyr	Cys	Ile	Tyr	Arg	Leu	Thr	Arg	Gly	Arg	Arg
				20					25					30		
	Arg	Gly	Asp	Arg	Glu	Leu	Gly	Ile	Arg	Ser	Ser	Lys	Ser	Ala	Glu	Asp
30			35					40					45			
	Leu	Thr	Asp	Gly	Ser	Tyr	Asp	Asp	Val	Leu	Asn	Ala	Glu	Gln	Leu	Gln
		50					55					60				
	Lys	Leu	Leu	Tyr	Leu	Leu	Glu	Ser	Thr	Glu	Asp	Pro	Val	Ile	Ile	Glu
	65					70					75					80
35	Arg	Ala	Leu	Ile	Thr	Leu	Gly	Asn .	Asn	Ala	Ala	Phe	Ser	Val.	Asn (Gln

230

					85					90					95	
	Ala	Ile	Ile	Arg	Glu	Leu	Gly	Gly	Ile	Pro	Ile	Val	Ala	Asn	Lys	Ile
				100					105					110		
	Asn	His	Ser	Asn	Gln	Ser	Ile	Lys	Glu	Lys	Ala	Leu	Asn	Ala	Leu	Asn
5			115					120					125			
	Asn	Leu	Ser	Val	Asn	Val	Glu	Asn	Gln	Ile	Lys	Ile	Lys	Val	Gln	Val
		130					135					140				
	Leu	Lys	Leu	Leu	Leu	Asn	Leu	Ser	Glu	Asn	Pro	Ala	Met	Thr	Glu	Gly
	145					150					155					160
10	Leu	Leu	Arg	Ala	Gln	Val	Asp	Ser	Ser	Phe	Leu	Ser	Leu	Tyr	Asp	Ser
			-		165		_			170					175	
	His	Val	Ala	Lys	Glu	Ile	Leu	Leu	Arg	Val	Leu	Thr	Leu	Phe	Gln	Asn
				180					185					190		
	Ile	Lys	Asn	Cys	Leu	Lys	Ile	Glu		His	Leu	Ala	Val	Gln	Pro	Thr
15			195	_		-		200	-				205			
	Phe	Thr	Glu	Gly	Ser	Leu	Phe	Phe	Leu	Leu	His	Gly	Glu	Glu	Cys	Ala
		210					215					220			-	
	Gln	Lys	Ile	Arg	Ala	Leu	Val	Asp	His	His	Asp	Ala	Glu	Val	Lys	Glu
	225	_		_		230		-			235				_	240
20	Lys	Val	Val	Thr	Ile	Ile	Pro	Lys	Ile							
					245			-								
	<21	0> 38	3													
	<21	1> 98	3													
25	<21	2> P F	RT.													
	<21	3> Ho	omo s	sapie	ens											
				-												
	<40	0> 38	3													
	Met	Ala	Ser	Leu	Leu	Cys	Cys	Gly	Pro	Lys	Leu	Ala	Ala	Cys	Gly	Ile
30	. 1				5	-	•	-		10				-	15	
	Val	Leu	Ser	Ala		Gly	Val	Ile	Met	Leu	Ile	Met	Leu	Gly	Ile	Phe
				20	*	•			25					30		
	Phe	Asn	Val	His	Ser	Ala	Val	Leu		Glu	Asp	Val	Pro	Phe	Thr	Glu
			35					40			•		45			
35	Lys	Asp	Phe	Glu	Asn	Gly	Pro	Gln	Asn	Ile	Tyr	Asn	Leu	Tyr	Glu	Gln
	-	-				-					-			-		

		50					55					60				
	Val	Ser	Tyr	Asn	Cys	Phe	Ile	Ala	Ala	Gly	Leu	Tyr	Leu	Leu	Leu	Gly
	65					70					75					80
	Gly	Phe	Ser	Phe	Cys	Gln	Val	Arg	Leu	Asn	Lys	Arg	Lys	Glu	Tyr	Met
5					85					90					95	
	Val	Arg														
	<210	0> 3	9													
		1> 1														
10	<212	2> P 1	RT													
	<213	3> H	omo	sapi	ens											
	. 4.0.4															
		0> 39		_		_			_	_	_	_	_			_
15		val	GIY	Pro	Ala	Pro	Arg	Arg	Arg		Arg	Pro	Leu	Ala		Leu
10	1	T	*** 7	T	5	.		5	a 3	10	D	mh		•	15	
	wra	Leu	vai		Ala	Leu	Ala	PIO	_	теп	PIO	THE	Ala	_	ATa	GIY
	Gln	ጥኮኮ	Dro	20	Pro	פות	Clu	D.r.a	25	Dro	Pro	17=1	Ara	30	Dho	mb ∽
	GIII	1111	35	Arg	PIO	ATG	GIU	40	сту	PIO	PIO	vai	A19	ъeи	Pne	THE
20	Glu	Glu		T.e.11	Ala	Ara	ጥኒኒዮ		Glv	Glu	Glu	Glu		Gln	Pro	Tle
		50			****	•••	55	-	O ₁	014		60	1.05	U 111	110	
	Tyr	Leu	Ala	Val	Lys	Gly		Val	Phe	Asp	Val		Ser	Gly	Lys	Glu
	65				•	70				•	75			-	•	80
	Phe	Tyr	Gly	Arg	Gly	Ala	Pro	Tyr	Asn	Ala	Leu	Thr	Gly	Lys	Asp	Ser
25					85					90					95	
	Thr	Arg	Gly	Val	Ala	Lys	Met	Ser	Leu	Asp	Pro	Ala	Asp	Leu	Thr	His
				100					105					110		
	Asp	Thr	Thr	Gly	Leu	Thr	Ala	Lys	Glu	Leu	Glu	Ala	Leu	Asp	Glu	Val
			115					120					125			
30	Phe	Thr	Lys	Val	Tyr	Lys	Ala	Lys	Tyr	Pro	Ile	Val	Gly	Tyr	Thr	Ala
		130					135					140				
	Arg	Arg	Ile	Leu	Asn	Glu	Asp	Gly	Ser	Pro	Asn	Leu	Asp	Phe	Lys	Pro
	145					150					155					160
	Glu	Asp	Gln	Pro	His	Phe	Asp	Ile	Lys	Asp	Glu	Phe				
35					165					170						

	<210> 40	
	<211> 120	
	<212> PRT	
5	<213> Homo sapiens	
	<400> 40	
	Met Met Pro Ser Arg Thr Asn Leu Ala Thr Gly Ile Pro Ser Ser Lys	
	1 5 10 15	
10	Val Lys Tyr Ser Arg Leu Ser Ser Thr Asp Asp Gly Tyr Ile Asp Leu	
	20 25 30	
	Gln Phe Lys Lys Thr Pro Pro Lys Ile Pro Tyr Lys Ala Ile Ala Leu	
	35 40 45	
	Ala Thr Val Leu Phe Leu Ile Gly Ala Phe Leu Ile Ile Ile Gly Ser	
15	50 55 60	
	Leu Leu Leu Ser Gly Tyr Ile Ser Lys Gly Gly Ala Asp Arg Ala Val	
	65 70 75 80	
	Pro Val Leu Ile Ile Gly Ile Leu Val Phe Leu Pro Gly Phe Tyr His	
90	85 90 95	
20	Leu Arg Ile Ala Tyr Tyr Ala Ser Lys Gly Tyr Arg Gly Tyr Ser Tyr	
	100 105 110	
	Asp Asp Ile Pro Asp Phe Asp Asp	
	115 120	
25	<210> 41	
	<211> 939	
	<212> DNA	
	<213> Homo sapiens	
30	<400> 41	
	atgaaccaac tcagettect getgtttete atagegacca ccagaggatg gagtacagat	60
	gaggetaata ettaetteaa ggaatggaee tgttettegt etecatetet geecagaage	120
	tgcaaggaaa tcaaagacga atgtcctagt gcatttgatg gcctgtattt tctccgcact	180
	gagaatggtg ttatctacca gaccttctgt gacatgacct ctggggggtgg cggctggacc	240
35	ctggtggcca gcgtgcatga gaatgacatg cgtgggaagt gcacggtggg cgatcgctgg	300

35 <213> Homo sapiens

	tccagtcagc	agggcagcaa	agcagactac	ccagagggg	acggcaactg	ggccaactac	360
	aacacctttg	gatctgcaga	ggcggccacg	agcgatgact	acaagaaccc	tggctactac	420
	gacatccagg	ccaaggacct	gggcatctgg	cacgtgccca	ataagtcccc	catgcagcac	480
	tggagaaaca	gctccctgct	gaggtaccgc	acggacactg	gcttcctcca	gacactggga	540
5	cataatctgt	ttggcatcta	ccagaaatat	ccagtgaaat	atggagaagg	aaagtgttgg	600
	actgacaacg	gcccggtgat	ccctgtggtc	tatgattttg	gcgacgccca	gaaaacagca	660
	tcttattact	caccctatgg	ccagcgggaa	ttcactgcgg	gatttgttca	gttcagggta	720
	tttaataacg	agagagcagc	caacgccttg	tgtgctggaa	tgagggtcac	cggatgtaac	780
	actgagcacc	actgcattgg	tggaggagga	tactttccag	aggccagtcc	ccagcagtgt	840
10	ggagatttt (ctggttttga	ttggagtgga	tatggaactc	atgttggtta	cagcagcagc	900
	cgtgagataa d	ctgaggcagc	tgtgcttcta	ttctatcgt			939
	<210> 42						
	<211> 687						
15	<212> DNA						
	<213> Homo s	sapiens					
	<400> 42						
	atgggcgaca a	agatetgget	gcccttcccc	gtgeteette	tggccgctct	geeteeggtg	60
20	ctgctgcctg c	ggcggccgg	cttcacacct	tccctcgata	gcgacttcac	ctttaccctt	120
	cccgccggcc a	agaaggagtg	cttctaccag	cccatgcccc	tgaaggcctc	gctggagatc	180
	gagtaccaag t	tttagatgg	agcaggatta	gatattgatt	tccatcttgc	ctctccagaa	240
	ggcaaaacct t	agtttttga	acaaagaaaa	tcagatggag	ttcacactgt	agagactgaa	300
	gttggtgatt a	catgttctg	ctttgacaat	acattcagca	ccatttctga	gaaggtgatt	360
2 5	ttctttgaat t	aatcctgga	taatatggga	gaacaggcac	aagaacaaga	agattggaag	420
	aaatatatta c	tggcacaga	tatattggat	atgaaactgg	aagacatcct	ggaatecate	480
	aacagcatca a	gtccagact	aagcaaaagt	gggcacatac	aaattctgct	tagagcattt	540
	gaagctcgtg a	itcgaaacat	acaagaaagc	aactttgata	gagtcaattt	ctggtctatg	600
	gttaatttag t	ggtcatggt	ggtggtgtca	gccattcaag	tttatatgct	gaagagtetg	660
30	tttgaagata a	gaggaaaag	tagaact				687
	4010						
	<210> 43						
	<211> 1401						
	<212> DNA						

<400> 43 atgeggeece aggageteec eaggetegeg tteeegttge tgetgttget gttgetgetg 60 ctgccgccgc cgccgtgccc tgcccacagc gccacgcgct tcgaccccac ctgggagtcc 120 5 etggaegeee geeagetgee egegtggttt gaeeaggeea agtteggeat etteateeae 180 tggggagtgt tttccgtgcc cagettcggt agcgagtggt tctggtggta ttggcaaaag 240 gaaaagatac cgaagtatgt ggaatttatg aaagataatt accctcctag tttcaaatat 300 gaagattttg gaccactatt tacagcaaaa ttttttaatg ccaaccagtg ggcagatatt 360 tttcaggcct ctggtgccaa atacattgtc ttaacttcca aacatcatga aggctttacc 420 10 ttgtgggggt cagaatattc gtggaactgg aatgccatag atgaggggcc caagagggac 480 attgtcaagg aacttgaggt agccattagg aacagaactg acctgcgttt tggactgtac 540 tattcccttt ttgaatggtt tcatccgctc ttccttgagg atgaatccag ttcattccat 600 aagcggcaat ttccagtttc taagacattg ccagagctct atgagttagt gaacaactat 660 cageetgagg ttetgtggte ggatggtgae ggaggageae eggateaata etggaacage 720 15 acaggettet tggeetggtt atataatgaa ageceagtte ggggeacagt agteaceaat 780 gatcgttggg gagctggtag catctgtaag catggtggct tctatacctg cagtgatcgt 840 tataacccag gacatetttt gccacataaa tgggaaaact gcatgacaat agacaaactg 900 teetgggget ataggaggga agetggaate tetgaetate ttacaattga agaattggtg 960 aagcaacttg tagagacagt ttcatgtgga ggaaatcttt tgatgaatat tgggcccaca 1020 20 ctagatggca ccatttctgt agtttttgag gagcgactga ggcaaatggg gtcctggcta 1080 aaagtcaatg gagaagctat ttatgaaacc catacctggc gatcccagaa tgacactgtc 1140 accccagatg tgtggtacac atccaagcct aaagaaaaat tagtctatgc catttttctt 1200 aaatggccca catcaggaca gctgttcctt ggccatccca aagctattct gggggcaaca 1260 gaggtgaaac tactgggcca tggacagcca cttaactgga tttctttgga gcaaaatggc 1320 25 attatggtag aactgecaca getaaceatt cateagatge egtgtaaatg gggetggget 1380 ctagecetga ctaatgtgat c 1401 <210> 44 <211> 297 30 <212> DNA <213> Homo sapiens <400> 44 atggataacg tgcagccgaa aataaaacat cgccccttct gcttcagtgt gaaaggccac 60 35 gtgaagatgc tgcggctgga tattatcaac tcactggtaa caacagtatt catgctcatc 120

	gtatctgtgt	tggcactgat	accagaaac	c acaacattga	a cagttggtg	g aggggtgttt	180
	gcacttgtga	cagcagtato	ctgtcttgcd	gacggggcc	ttatttacco	g gaagettetg	240
	ttcaatccca	geggteetta	ccagcaaaag	g cctgtgcatg	g aaaaaaaaga	a agttttg	297
5	<210> 45						
	<211> 567						
	<212> DNA						
	<213> Homo	sapiens					
10	<400> 45						
	atggaggaag	gcgggaacct	aggaggcctg	attaagatgg	tccatctact	ggtcttgtca	60
	ggtgcctggg	gcatgcaaat	gtgggtgacc	ttegteteag	gcttcctgct	tttccgaagc	120
	cttccccgac	ataccttcgg	actagtgcag	agcaaactct	teceetteta	cttccacatc	180
	tccatgggct	gtgccttcat	caacctctgc	atcttggctt	cacagcatgc	ttgggctcag	240
15	ctcacattct	gggaggccag	ccagctttac	ctgctgttcc	tgagccttac	gctggccact	300
	gtcaacgccc	gctggctgga	accccgcacc	acagctgcca	tgtgggccct	gcaaaccgtg	360
	gagaaggagc	gaggcctggg	tggggaggta	ccaggcagcc	accagggtcc	cgatccctac	420
	cgccagctgc	gagagaagga	ccccaagtac	agtgctctcc	gccagaattt	cttccgctac	480
	catgggctgt	cctctctttg	caatctgggc	tgcgtcctga	gcaatgggct	ctgtctcgct	540
20	ggccttgccc	tggaaataag	gageete				567
	<210> 46						
	<211> 1089						
	<212> DNA						
25	<213> Homo	sapiens					
	<400> 46						
	atggtggaca (gcctcctggc	agtcaccctg	gctggaaacc	tgggcctgac	cttcctccga	60
	ggttcccaga (cccagagcca	tccagacctg	ggaactgagg	gctgctggga	ccagctctct	120
30	gcccctcgga (cctttacgct	tttggacccc	aaggcatctc	tgttaaccaa	ggccttcctc	180
	aatggcgccc 1	tggatggggt	catccttgga	gactacctga	gccggactcc	tgagccccgg	240
	ccatccctca	gecacttget	gagccagtac	tatggggctg	gggtggccag	agacccaggg	300
	ttccgcagca a	acttccgacg	gcagaacggt	gctgctctga	cttcagcctc	catectggee	360
	cagcaggtgt g	ggggaaccct	tgtccttcta	cagaggctgg	agccagtaca	cctccagctt	420
35	cagtgcatga c	gccaagaaca	gctggcccag	gtggctgcca	atgctaccaa	ggaattcact	480

35

<212> DNA

gaggeettee tgggatgeee ggeeateeae ceeegetgee getggggage ggegeettat	540
eggggeegee egaagetget geagetgeeg etgggattet tgtaegtgea teacacetae	600
gtgcctgcac caccctgcac ggacttcacg cgctgcgcag ccaacatgcg ctccatgcag	660
cgctaccacc aggacacgca aggctgggga gacatcggct acagtttcgt ggtgggctcg	720
gacggctacg tgtacgaggg acgcggctgg cactgggtgg gcgcccacac gctcggccac	780
aactcccggg gcttcggcgt ggccatagtg ggcaactaca ccgcggcgct gcccaccgag	840
geogetetge geaeggtgeg egaeaegete eegagttgtg eggtgegege eggeeteetg	900
eggecagaet aegegetget gggecacege eagetggtge geacegaetg ceceggegae	960
gegetetteg acctgetgeg cacctggeeg cactteaceg egactgttaa gecaagaeet	1020
gccaggagtg tetetaagag atecaggagg gagecaeeee caaggaeeet gecagecaca	1080
gacctccaa	1089
<210> 47	
<211> 747	
<212> DNA	
<213> Homo sapiens	
<213> Homo sapiens	
<213> Homo sapiens <400> 47	
	60
<400> 47	60 120
<400> 47 atgggtggcc cccggggcgc gggctgggtg gcggcgggcc tgctgctcgg cgcggggcc	
<400> 47 atgggtggcc cccggggcgc gggctgggtg gcggcgggcc tgctgctcgg cgcggggcc tgctactgca tttacaggct gacccggggt cggcggcggg gcgaccgcga gctcgggata	120
<400> 47 atgggtggcc cccggggcgc gggctgggtg gcggcgggcc tgctgctcgg cgcggggccc tgctactgca tttacaggct gacccggggt cggcggcggg gcgaccgcga gctcgggata cgctcttcga agtccgcaga agacttaact gatggttcat atgatgatgt tctaaatgct	120 180
<pre><400> 47 atgggtggcc cccggggcgc gggctgggtg gcggcgggcc tgctgctcgg cgcgggggcc tgctactgca tttacaggct gacccggggt cggcggcggg gcgaccgcga gctcgggata cgctcttcga agtccgcaga agacttaact gatggttcat atgatgatgt tctaaatgct gaacaacttc agaaactcct ttacctgctg gagtcaacgg aggatcctgt aattattgaa</pre>	120 180 240
<pre><400> 47 atgggtggcc cccggggcgc gggctgggtg gcggcgggcc tgctgctcgg cgcggggcc tgctactgca tttacaggct gacccggggt cggcggggg gcgaccgcga gctcgggata cgctcttcga agtccgcaga agacttaact gatggttcat atgatgatgt tctaaatgct gaacaacttc agaaactcct ttacctgctg gagtcaacgg aggatcctgt aattattgaa agagctttga ttactttggg taacaatgca gccttttcag ttaaccaagc tattattcgt</pre>	120 180 240 300
<400> 47 atgggtggcc cccggggcgc gggctgggtg gcggcgggcc tgctgctcgg cgcgggcgcc tgctactgca tttacaggct gacccggggt cggcgggggggggg	120 180 240 300 360
<400> 47 atgggtggcc cccggggcgc gggctgggtg gcggcgggcc tgctgctcgg cgcgggcgcc tgctactgca tttacaggct gacccggggt cggcgggggg gcgaccgcga gctcgggata cgctcttcga agtccgcaga agacttaact gatggttcat atgatgatgt tctaaatgct gaacaacttc agaaactcct ttacctgctg gagtcaacgg aggatcctgt aattattgaa agagctttga ttactttggg taacaatgca gccttttcag ttaaccaagc tattattcgt gaattgggtg gtattccaat tgttgcaaac aaaatcaacc attccaacca gagtattaaa gagaaagctt taaatgcact aaataacctg agtgtgaatg ttgaaaatca aatcaagata	120 180 240 300 360 420
<400> 47 atgggtggcc cccggggcgc gggctgggtg gcggcgggcc tgctgctcgg cgcggggcc tgctactgca tttacaggct gacccggggt cggcgggggggggg	120 180 240 300 360 420 480
<400> 47 atgggtggcc ceeggggcgc gggctgggtg geggcgggcc tgetgetegg egegggggcc tgetactgca tttacaggct gacceggggt eggeggggg gegaccgcga getegggata eggetettega agteegeaga agaettaact gatggtteat atgatgatgt tetaaatget gaacaactte agaaacteet ttacetgetg gagteaacgg aggateetgt aattattgaa agagetttga ttactttggg taacaatgca geetttteag ttaaccaage tattattegt gaattgggtg gtatteeaat tgttgeaaac aaaateaace atteeaacca gagtattaaa gagaaagett taaatgeact aaataacctg agtgtgaatg ttgaaaatca aatcaagata aaggtgeaag ttttgaaact gettttgaat ttgtetgaaa ateeagecat gacagaagga etteteegtg eccaagtgga tteateatte ettteeettt atgacageca egtageaaag	120 180 240 300 360 420 480 540
<400> 47 atgggtggcc ceeggggegc gggetgggtg geggegggec tgctgctegg egegggggcc tgctactgca tttacaggct gaceeggggt eggeggggg gegacegega getegggata egetettega agteegeaga agacttaact gatggttcat atgatgatgt tetaaatgct gaacaactte agaaacteet ttacetgetg gagtcaacgg aggateetgt aattattgaa agagetttga ttactttggg taacaatgca geettttcag ttaaccaage tattattegt gaattgggtg gtattccaat tgttgcaaac aaaatcaacc attccaacca gagtattaaa gagaaagett taaatgcact aaataacctg agtgtgaatg ttgaaaatca aatcaagata aaggtgcaag ttttgaaact gettttgaat ttgtctgaaa atccagecat gacagaagga ettetcegtg eecaagtgga tteatcatte ettteeettt atgacageca egtagcaaag gagattette ttegagtact tacgetattt cagaatataa agaactgcet caaaatagaa	120 180 240 300 360 420 480 540 600
<pre><400> 47 atgggtggcc cccggggcgc gggctgggtg gcggcgggcc tgctgctcgg cgcggggcgc tgctactgca tttacaggct gacccggggt cggcgggggg gcgaccgcga gctcgggata cgctcttcga agtccgcaga agacttaact gatggttcat atgatgatgt tctaaatgct gaacaacttc agaaactcct ttacctgctg gagtcaacgg aggatcctgt aattattgaa agagctttga ttactttggg taacaatgca gccttttcag ttaaccaagc tattattcgt gaattgggtg gtattccaat tgttgcaaac aaaatcaacc attccaacca gagtattaaa gagaaagctt taaatgcact aaataacctg agtgtgaatg ttgaaaatca aatcaagata aaggtgcaag ttttgaaact gcttttgaat ttgtctgaaa atccagccat gacagaagga cttctccgtg cccaagtgga ttcatcattc ctttcccttt atgacagcca cgtagcaaag gagattcttc ttcgagtact tacgctattt cagaatataa agaactgcct caaaatagaa ggccatttag ctgtgcagcc tactttcact gaaggttcat tgtttttcct gttacatgga</pre>	120 180 240 300 360 420 480 540 600 660
<400> 47 atgggtggcc cccggggcgc gggctgggtg gcggcgggcc tgctgctcgg cgcggggggcc tgctactgca tttacaggct gacccggggt cggcggggggg gcgaccgcga gctcgggata cgctcttcga agtccgcaa agacttaact gatggttcat atgatgatgt tctaaatgct gaacaacttc agaaactcct ttacctgctg gagtcaacgg aggatcctgt aattattgaa agagctttga ttactttggg taacaatgca gccttttcag ttaaccaagc tattattcgt gaattgggtg gtattccaat tgttgcaaac aaaatcaacc attccaacca gagtattaaa gagaaagctt taaatgcact aaataacctg agtgtgaatg ttgaaaatca aatcaagata aaggtgcaag ttttgaaact gcttttgaat ttgtctgaaa atccagccat gacagaagga cttctccgtg cccaagtgga ttcatcattc ctttcccttt atgacagca cgtagcaaag gagattcttc ttcgagtact tactttcact gaagttcat tgttttcct gttacatgga ggccatttag ctgtgcagcc tactttcact gaaggttcat tgttttcct gttacatgga gaagaatgtg cccagaaaat aagagcttta gttgatcacc atgatgcag ggtgaaggaa	120 180 240 300 360 420 480 540 600 660 720
<400> 47 atgggtggcc cccggggcgc gggctgggtg gcggcgggcc tgctgctcgg cgcggggggcc tgctactgca tttacaggct gacccggggt cggcggggggg gcgaccgcga gctcgggata cgctcttcga agtccgcaa agacttaact gatggttcat atgatgatgt tctaaatgct gaacaacttc agaaactcct ttacctgctg gagtcaacgg aggatcctgt aattattgaa agagctttga ttactttggg taacaatgca gccttttcag ttaaccaagc tattattcgt gaattgggtg gtattccaat tgttgcaaac aaaatcaacc attccaacca gagtattaaa gagaaagctt taaatgcact aaataacctg agtgtgaatg ttgaaaatca aatcaagata aaggtgcaag ttttgaaact gcttttgaat ttgtctgaaa atccagccat gacagaagga cttctccgtg cccaagtgga ttcatcattc ctttcccttt atgacagca cgtagcaaag gagattcttc ttcgagtact tactttcact gaagttcat tgttttcct gttacatgga ggccatttag ctgtgcagcc tactttcact gaaggttcat tgttttcct gttacatgga gaagaatgtg cccagaaaat aagagcttta gttgatcacc atgatgcag ggtgaaggaa	120 180 240 300 360 420 480 540 600 660 720
	cggggccgcc cgaagctgct gcagctgccg ctgggattet tgtacgtgca tcacacctac gtgcctgcac caccctgcac ggacttcacg cgctgcgag ccaacatgcg ctccatgcag cgctaccacc aggacacgca aggctggga gacatcggct acagtttcgt ggtgggctcg gacggctacg tgtacgaggg acgcggctgg cactgggtgg gcgcccacac gctcggccac aactcccggg gcttcggcgt ggccatagtg ggcaactaca ccgcggcgct gcccaccgag gccgctctgc gcaccggtgc cacacgctc ccgagttgtg cggtgcgcc cggcctctg cggccagact acgcgctgct gggccaccgc cagctggtgc gcaccgact gcccaccgag gcgctcttcg acctgctgc gggccaccgc cagctggtgc gcaccgactg ccccggcgac gcgctcttcg acctgctgc cacctggccg cacttcaccg cgactgttaa gccaagacct gccaggagtg tctctaagag atccaggagg gagccaccc caaggacct gccagccaca gacctccaa

<213> Homo sapiens

	<400> 48		
	atggegtege teetgtgetg tgggeegaag etgge	egect geggeategt ceteagegee	60
5	tggggagtga tcatgttgat aatgctcgga atatt	tttca atgtccattc cgctgtgttg	120
	attgaggacg ttcccttcac ggagaaagat tttga	gaatg gcccccagaa catatacaac	180
	ctttacgage aagtcagcta caactgtttc atcgc	tgcag geetttaeet eeteetegga	240
	ggettetett tetgecaagt teggeteaat aageg	caagg aatacatggt gcgc	294
10	<210> 49		
	<211> 516		
	<212> DNA		
	<213> Homo sapiens		
15	<400> 49		
	atggtgggcc cogcgccgcg gcggcggctg cggcc	getgg cagegetgge cetggteetg	60
	gcgctggccc cggggctgcc cacagcccgg gccgg	gcaga caccgegeee tgeegagegg	120
	gggcccccag tgcggctttt caccgaggag gagct		180
90	gateageeea tetaettgge agtgaaggga gtggt		240
20	ttttatggac gaggagcccc ctacaatgcc ttgac		300
	gccaagatgt ccttggatcc tgcagacctc acceat		360
	gaactggagg ccctggatga ggtcttcacc aaagto		420
	ggctacactg cooggagaat totcaatgag gatggo		480
2 5	gaagaccage cccattttga catcaaggat gagtto	•	516
20	<210> 50		
	<211> 360		
	<212> DNA		
	<213> Homo sapiens		
30	12132 Nomo Sapiens		
	<400> 50		
	atgatgccgt cccgtaccaa cctggctact ggaatc	and atagtapagt gootette	60
	aggeteteca geacagaega tggetaeatt gaeett		60 120
	atcccttata aggccatcgc acttgccact gtgctg		120 180
35	attatagget cectectget greaggetae ateage		240

ccagtgct	ga tcattggcat	tetggtgtte et	acceggat tttaccacct gegeateget	300
tactatge	at ccaaaggcta	ccgtggttac to	ectatgatg acattccaga ctttgatgac	360
<210> 51				
5 <211> 106				
<212> DNA				
	no sapiens			
<220>				
<221> CDS				
10 <222> (2)	(943)			
<400> 51				
			tt ctc ata geg acc acc aga gga	49
		Phe Leu Leu P	he Leu Ile Ala Thr Thr Arg Gly	
15 1	5		10 15	
			ttc aag gaa tgg acc tgt tct	97
Trp Ser T	_	-	Phe Lys Glu Trp Thr Cys Ser	
	20	25	30	
			aag gaa atc aaa gac gaa tgt	145
20 Ser Ser P		_	Lys Glu Ile Lys Asp Glu Cys	
aat sat -	35	40	45	
			ctc cgc act gag aat ggt gtt	193
50 Set A	ta Phe Asp Giy	_	Leu Arg Thr Glu Asn Gly Val 60	
O.	27 200 tto tot	55 - asa sta sas	tet ggg ggt gge gge tgg ace	241
	_	_	Ser Gly Gly Gly Gly Trp Thr	241
65	70 71 71 71 71 71 71 71 71 71 71 71 71 71	_	75 80	
	/\	j	70 00	
ctg gtg q				289
	cc agc gtg cat	gag aat gac	atg cgt ggg aag tgc acg gtg	289
	cc agc gtg cat	gag aat gac		289
Leu Val A	cc agc gtg cat la Ser Val His 85	gag aat gac Glu Asn Asp	atg cgt ggg aag tgc acg gtg Met Arg Gly Lys Cys Thr Val 90 95	289 337
Leu Val A 30 ggc gat c	cc agc gtg cat la Ser Val His 85 gc tgg tcc agt	gag aat gac Glu Asn Asp cag cag ggc	atg cgt ggg aag tgc acg gtg Met Arg Gly Lys Cys Thr Val 90 95 agc aaa gca gac tac cca gag	
Leu Val A 30 ggc gat c	cc agc gtg cat la Ser Val His 85 gc tgg tcc agt	gag aat gac Glu Asn Asp cag cag ggc	atg cgt ggg aag tgc acg gtg Met Arg Gly Lys Cys Thr Val 90 95	
Leu Val A 30 ggc gat c Gly Asp A	cc agc gtg cat la Ser Val His 85 gc tgg tcc agt rg Trp Ser Ser 100	gag aat gac Glu Asn Asp cag cag ggc Gln Gln Gly	atg cgt ggg aag tgc acg gtg Met Arg Gly Lys Cys Thr Val 90 95 agc aaa gca gac tac cca gag Ser Lys Ala Asp Tyr Pro Glu	

			115					120					125				
	gcc	acg	agc	gat	gac	tac	aag	aac	cct	ggc	tac	tac	gac	atc	cag	gcc	433
	Ala	Thr	Ser	Asp	Asp	Tyr	Lys	Asn	Pro	Gly	Tyr	Tyr	Asp	Ile	Gln	Ala	
		130					135					140					
5	aag	gac	ctg	ggc	atc	tgg	cac	gtg	ccc	aat	aag	tcc	ccc	atg	cag	cac	481
	Lys	Asp	Leu	Gly	Ile	Trp	His	Val	Pro	Asn	Lys	Ser	Pro	Met	Gln	His	
	145					150					155					160	
	tgg	aga	aac	agc	tcc	ctg	ctg	agg	tac	cgc	acg	gac	act	ggc	ttc	ctc	529
	Trp	Arg	Asn	Ser	Ser	Leu	Leu	Arg	Tyr	Arg	Thr	Asp	Thr	Gly	Phe	Leu	
10					165					170					175		
	cag	aca	ctg	gga	cat	aat	ctg	ttt	ggc	atc	tac	cag	aaa	tat	cca	gtg	577
	Gln	Thr	Leu	Gly	His	Asn	Leu	Phe	Gly	Ile	Tyr	Gln	Lys	Tyr	Pro	Val	
				180					185					190			
	aaa	tat	gga	gaa	gga	aag	tgt	tgg	act	gac	aac	ggc	ccg	gtg	atc	cct	625
15	Lys	Tyr	Gly	Glu	Gly	Lys	Cys	Trp	Thr	Asp	Asn	Gly	Pro	Val	Ile	Pro	
			195					200					205				
	gtg	gtc	tat	gat	ttt	ggc	gac	gcc	cag	aaa	aca	gca	tct	tat	tac	tca	673
	Val	Val	Tyr	Asp	Phe	Gly	Asp	Ala	Gln	Lys	Thr	Ala	Ser	Tyr	Tyr	Ser	
		210					215					220					
20	ccc	tat	ggc	cag	cgg	gaa	ttc	act	gcg	gga	ttt	gtt	cag	ttc	agg	gta	721
	Pro	Tyr	Gly	Gln	Arg	Glu	Phe	Thr	Ala	Gly	Phe	Val	Gln	Phe	Arg	Val	
	225					230					235	•				240	
	ttt	aat	aac	gag	aga	gca	gcc	aac	gcc	ttg	tgt	gct	gga	atg	agg	gtc	769
	Phe	Asn	Asn	Glu	Arg	Ala	Ala	Asn	Ala	Leu	Cys	Ala	Gly	Met	Arg	Val	
25					245					250					255		
	acc	gga	tgt	aac	act	gag	cac	cac	tgc	att	ggt	gga	gga	gga	tac	ttt	817
	Thr	Gly	Cys	Asn	Thr	Glu	His	His	Cys	Ile	Gly	Gly	Gly	Gly	Tyr	Phe	
				260					265					270			
	cca	gag	gcc	agt	ccc	cag	cag	tgt	gga	gat	ttt	tct	ggt	ttt	gat	tgg	865
30	Pro	Glu	Ala	Ser	Pro	Gln	Gln	Cys	Gly	Asp	Phe	Ser	Gly	Phe	Asp	Trp	
			275					280					285				
	agt	gga	tat	gga	act	cat	gtt	ggt	tac	agc	agc	agc	cgt	gag	ata	act	913
	Ser	Gly	Tyr	Gly	Thr	His	Val	Gly	Tyr	Ser	Ser	Ser	Arg	Glu	Ile	Thr	
		290					295					300					
35	gag	aca.	act	ata	ctt	cta	ttc	tet	cat	taaa	actt	tt a	+ aaa	adda	а		960

WO 00/05367 PCT/JP99/03929

	GIG MI	a Ala	val	neu	Leu	Pne	TAT	MIG								
	30 5				310											
	acccag	acct	ctcc	taca	aa c	catg	agato	c cc	aagg	atgg	aga	acaa	ctt	accc	agtage	1020
	tagaat	gtta	atgg	caga	ag a	gaaa	acaat	t aa	atca	tatt	gac	tc				1065
5																
	<210>	52														
	<211>	937														
	<212>	DNA														
	<213>	Homo	sapi	ens												
10	<220>															
	<221>	CDS														
	<222>	(177)	(866)												
	<400>	52														
15	cttttg	gaga	actg	egeti	to to	cttt	cggag	g gg	agtgt	tcg	ccg	cege	cgc ·	ggcc	gccacc	60
	tggagt	ttct	tcag	actco	ca ga	attt	ccct	g to	aacca	acga	gga	gtcc	aga	gagg	aaacgc	120
	ggagcg	gaga	caac	agtad	ec to	gacg	cctct	tto	cageo	ccgg	gate	egee	cca	gcag	gg	176
	atg gg	c gac	aag	atc	tgg	ctg	ccc	ttc	ccc	gtg	ctc	ctt	ctg	gcc	gct	224
	Met Gl	y Asp	Lys	Ile	Trp	Leu	Pro	Phe	Pro	Val	Leu	Leu	Leu	Ala	Ala	
20	1			5					10					15		
	ctg cc	t ccg	gtg	ctg	ctg	cct	ggg	gcg	gcc	ggc	ttc	aca	cct	tcc	ctc	272
	Leu Pr	o Pro	Val	Leu	Leu	Pro	Gly	Ala	Ala	Gly	Phe	Thr	Pro	Ser	Leu	
			20					25					30			
	gat ag	c gac	ttc	acc	ttt	acc	ctt	ccc	gcc	ggc	cag	aag	gag	tgc	ttc	320
25	Asp Se	r Asp	Phe	Thr	Phe	Thr	Leu	Pro	Ala	Gly	Gln	Lys	Glu	Cys	Phe	
		35					40					45				
	tac ca	g ccc	atg	ccc	ctg	aag	gcc	tcg	ctg	gag	atc	gag	tac	caa	gtt	368
	Tyr Gl	n Pro	Met	Pro	Leu	Lys	Ala	Ser	Leu	Glu	Ile	Glu	Tyr	Gln	Val	
	5	0				55					60					
30	tta ga	t gga	gca	gga	tta	gat	att	gat	ttc	cat	ctt	gcc	tct	cca	gaa	416
	Leu As	p Gly	Ala	Gly	Leu	Asp	Ile	Asp	Phe	His	Leu	Ala	Ser	Pro	Glu	
	65				70					75					80	
	ggc aa	a acc	tta	gtt	ttt	gaa	caa	aga	aaa	tca	gat	gga	gtt	cac	act	464
	Gly Ly	s Thr	Leu	Val	Phe	Glu	Gln	Arg	Lys	Ser	Asp	Gly	Val	His	Thr	
35				85					90					95		

	gta	gag	act	gaa	gtt	ggt	gat	tac	atg	ttc	tgc	ttt	gac	aat	aca	ttc	512
	Val	Glu	Thr	Glu	Val	Gly	Asp	Tyr	Met	Phe	Cys	Phe	Asp	Asn	Thi	Phe	
				100					105					110			
	agc	acc	att	tct	gag	aag	gtg	att	ttc	ttt	gaa	tta	atc	ctg	gat	aat	560
5	Ser	Thr	Ile	Ser	Glu	Lys	Val	Ile	Phe	Phe	Glu	Leu	Ile	Leu	Asp	Asn	
			115					120					125				
	atg	gga	gaa	cag	gca	caa	gaa	caa	gaa	gat	tgg	aag	aaa	tat	att	act	608
	Met	Gly	Glu	Gln	Ala	Gln	Glu	Gln	Glu	Asp	Trp	Lys	Lys	Tyr	Ile	Thr	
		130					135					140					
10							-						_	_		atc	656
		Thr	Asp	Ile	Leu	Asp	Met	Lys	Leu	Glu	Asp	Ile	Leu	Glu	Ser	Ile	
	145					150					155					160	
						-		-		-						ctg	704
1.5	Asn	Ser	Ile	Lys		Arg	Leu	Ser	Lys	Ser	Gly	His	Ile	Gln	Ile	Leu	
15					165					170					175		
									cga								752
	Leu	Arg	Ala		Glu	Ala	Arg	Asp	Arg	Asn	Ile	Gln	Glu		Asn	Phe	
				180					185					190			
20								-	gtt					_			800
20	Asp	Arg		Asn	Phe	Trp	Ser		Val	Asn	Leu	Val		Met	Val	Val	
		+	195					200					205				
									ctg							-	848
	val	210	Ата	11e	GIN	vai		Met	Leu	Lys	ser		Pne	GIU	Asp	Lys	
25	900						215					220					
20			Ser			taaa	acto	ca a	acta	ıgagı	a cg	taac	attg	aaa	laato	J	900
	225	пуs	ser	Arg	Thr												
		atas		+ ~~					caa	~~~							027
	4990	u cac	iaa a	itgea	acaa	a cu	gcta	icagi	. caa	gacc							937
30	<210	> 53	ł														
	<211																
	<212																
	<213			anie	ns												
	<220			- <u>-</u>													
3 5	<221		s														

<222> (56)...(1459)

<400> 53

			_														
	agc	gata	ccg	aggc	cgcg	gg a	gcct	gcag	a ga	ggac	agcc	ggo	ctgc	gcc	ggga	ıc	55
5	atg	cgg	ccc	cag	gag	ctc	ccc	agg	ctc	gcg	ttc	ccg	ttg	ctg	ctg	ttg	103
	Met	Arg	Pro	Gln	Glu	Leu	Pro	Arg	Leu	Ala	Phe	Pro	Leu	Leu	Leu	Leu	
	1				5					10					15		
	ctg	ttg	ctg	ctg	ctg	ccg	ccg	ccg	ccg	tgc	cct	gcc	cac	agc	gcc	acg	151
	Leu	Leu	Leu	Leu	Leu	Pro	Pro	Pro	Pro	Cys	Pro	Ala	His	Ser	Ala	Thr	
10				20					25					30			
	cgc	ttc	gac	ccc	acc	tgg	gag	tcc	ctg	gac	gcc	cgc	cag	ctg	ccc	gcg	199
	Arg	Phe	Asp	Pro	Thr	Trp	Glu	Ser	Leu	Asp	Ala	Arg	Gln	Leu	Pro	Ala	
			35					40					45				
	tgg	ttt	gac	cag	gcc	aag	ttc	ggc	atc	ttc	atc	cac	tgg	gga	gtg	ttt	247
15	Trp	Phe	Asp	Gln	Ala	Lys	Phe	Gly	Ile	Phe	Ile	His	Trp	Gly	Val	Phe	
		50					5 5					60					
	tcc	gtg	ccc	agc	ttc	ggt	agc	gag	tgg	ttc	tgg	tgg	tat	tgg	caa	aag	295
	Ser	Val	Pro	Ser	Phe	Gly	Ser	Glu	Trp	Phe	Trp	Trp	Tyr	Trp	Gln	Lys	
	65					70					75					80	
20	gaa	aag	ata	ccg	aag	tat	gtg	gaa	ttt	atg	aaa	gat	aat	tac	cct	cct	343
	Glu	Lys	Ile	Pro	Lys	Tyr	Val	Glu	Phe	Met	Lys	Asp	Asn	Tyr	Pro	Pro	
					85					90					95		
	agt	ttc	aaa	tat	gaa	gat	ttt	gga	cca	cta	ttt	aca	gca	aaa	ttt	ttt	391
	Ser	Phe	Lys	Tyr	Glu	Asp	Phe	Gly	Pro	Leu	Phe	Thr	Ala	Lys	Phe	Phe	
2 5				100					105					110			
	aat	gcc	aac	cag	tgg	gca	gat	att	ttt	cag	gcc	tct	ggt	gcc	aaa	tac	439
	Asn	Ala	Asn	Gln	Trp	Ala	Asp	Ile	Phe	Gln	Ala	Ser	Gly	Ala	Lys	Tyr	
			115					120					125				
	att	gtc	tta	act	tcc	aaa	cat	cat	gaa	ggc	ttt	acc	ttg	tgg	ggg	tca	487
30	Ile	Val	Leu	Thr	Ser	Lys	His	His	Glu	Gly	Phe	Thr	Leu	Trp	Gly	Ser	
		130					135					140					
	gaa	tat	tcg	tgg	aac	tgg	aat	gcc	ata	gat	gag	ggg	ccc	aag	agg	gac	535
	Glu	Tyr	Ser	Trp	Asn	Trp	Asn	Ala	Ile	Asp	Glu	Gly	Pro	Lys	Arg	Asp	
	145					150					155					160	
35	att	gtc	aag	gaa	ctt	gag	gta	gcc	att	agg	aac	aga	act	gac	ctg	cgt	583

	Ile	Val	Lys	Glu	Leu	Glu	Val	Ala	lle	Arg	Asr	Arg	Thr	Asp	Leu	Arg	
					165	ı				170)				175		
	ttt	gga	ctg	tac	tat	tcc	ctt	ttt	gaa	tgg	ttt	cat	ccg	cto	ttc	ctt	631
	Phe	Gly	Leu	Tyr	Tyr	Ser	Leu	Phe	Glu	Trp	Phe	His	Pro	Leu	Phe	Leu	
5				180					185					190			
														_		aag	679
	Glu	Asp			Ser	Ser	Phe	His	Lys	Arg	Gln	Phe	Pro	Val	Ser	Lys	
			195					200					205				
10					•				gtg							-	727
10	Thr		Pro	Glu	Leu	Tyr		Leu	Val	Asn	Asn		Gln	Pro	Glu	Val	
	- 4-	210					215					220					
									gca							-	775
	225	Trp	Ser	Asp	GIŻ	_	GIÀ	GTÀ	Ala	Pro	_	GIn	Tyr	Trp	Asn		
15		~~~	++-	**		230					235					240	
10									aat								823
	1111	GIY	FILE	тец	245	rrp	Leu	туг	Asn	250	Ser	PIO	vai	Arg	_	Thr	
	αta	atc	acc	aat		cat	taa	aas	gct		acc	atc	+ \(\tau \)	224	255	aat	071
									Ala								871
20				260		****9		O-J	265	O1,	501	110	Cyb	270	1113	Gry	
	qqc	ttc	tat		tae	agt	gat.	cat	tat	aac	cca	gga	cat		tta	CCA	919
							•	_	Tyr						-		313
	-		275		•		L	280	- 2 -			2	285				
	cat	aaa	tgg	gaa	aac	tgc	atq	aca	ata	gac	aaa	ctg	tcc	tgg	aac	tat	967
2 5									Ile			_					
		290					295					300		_	-	-	
	agg	agg	gaa	gct	gga	atc	tct	gac	tat	ctt	aca	att	gaa	gaa	ttg	gtg	1015
	Arg	Arg	Glu	Ala	Gly	Ile	Ser	Asp	Tyr	Leu	Thr	Ile	Glu	Glu	Leu	Val	
	305					310					315					320	
30	aag	caa	ctt	gta	gag	aca	gtt	tca	tgt	gga	gga	aat	ctt	ttg	atg	aat	1063
	Lys	Gln	Leu	Val	Glu	Thr	Val	Ser	Cys	Gly	Gly	Asn	Leu	Leu	Met	Asn	
					325					330					335		
	att	ggg	ccc	aca	cta	gat	ggc	acc	att	tct	gta	gtt	ttt	gag	gag	cga	1111
	Ile	Gly	Pro	Thr	Leu	Asp	Gly	Thr	Ile	Ser	Val	Val	Phe	Glu	Glu .	Arg	
35				340					345					350			

	ctg agg caa atg ggg tcc tgg cta aaa gtc aat gga gaa gct att tat	1159
	Leu Arg Gln Met Gly Ser Trp Leu Lys Val Asn Gly Glu Ala Ile Tyr	
	355 360 365	
	gaa acc cat acc tgg cga tec cag aat gac act gtc acc cca gat gtg	1207
5	Glu Thr His Thr Trp Arg Ser Gln Asn Asp Thr Val Thr Pro Asp Val	
	370 375 380	
	tgg tac aca tcc aag cct aaa gaa aaa tta gtc tat gcc att ttt ctt	1255
	Trp Tyr Thr Ser Lys Pro Lys Glu Lys Leu Val Tyr Ala Ile Phe Leu	
- 0	385 390 395 400	
10	aaa tgg ccc aca tca gga cag ctg ttc ctt ggc cat ccc aaa gct att	1303
	Lys Trp Pro Thr Ser Gly Gln Leu Phe Leu Gly His Pro Lys Ala Ile	
	405 410 415	
	etg ggg gea aca gag gtg aaa eta etg gge eat gga eag eea ett aac	1351
15	Leu Gly Ala Thr Glu Val Lys Leu Leu Gly His Gly Gln Pro Leu Asn	
15	420 425 430	
	tgg att tet ttg gag caa aat gge att atg gta gaa etg eea eag eta	1399
	Trp Ile Ser Leu Glu Gln Asn Gly Ile Met Val Glu Leu Pro Gln Leu 435 440 445	
	435 440 445 acc att cat cag atg ccg tgt aaa tgg ggc tgg gct cta gcc ctg act	1447
20	Thr Ile His Gln Met Pro Cys Lys Trp Gly Trp Ala Leu Ala Leu Thr	144/
	450 455 460	
	aat gtg atc taaagtgcag cagagtggct gatgctgcaa gttatgtcta aggc	1500
	Asn Val Ile	
	465	
2 5	taggaactat caggtgtcta taattgtagc acatggagaa agcaaatgta aaactggata	1560
	agaaaattat tttggcagtt cagccctttc cctttttccc actaaatttt ttcttaaatt	1620
	acccatgtaa ccattttaac tetecagtge actttgecat taaagtetet teacattg	1678
	<210> 54	
30	<211> 467	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
35	<222> (114)(413)	

	<400> 54	1												
	aggggagg	ggc ggt	getee	ge egeg	gtggc	g gt	tgct	atcg	ctt	cgca	gaa	ccta	ctcago	j 60
	cagccago	ctg aga	agagtt	g aggg	aaagt	g ct	gctg	ctgg	gtc	tgca	gac	gcg	atg	116
5													Met	
													1	
	gat aac	gtg ca	g ccg	aaa at	a aaa	cat	cgc	ccc	ttc	tgc	ttc	agt	gtg	164
	Asp Asn	Val Gl	n Pro	Lys Il	e Lys	His	Arg	Pro	Phe	Cys	Phe	Ser	Val	
		į	5			10					15			
10	aaa ggc	cac gt	g aag	atg ct	g egg	ctg	gat	att	atc	aac	tca	ctg	gta	212
	Lys Gly	His Val	L Lys	Met Le	u Arg	Leu	Asp	Ile	Ile	Asn	Ser	Leu	Val	
		20			25					30				
	aca aca	gta tto	atg	ctc at	c gta	tct	gtg	ttg	gca	ctg	ata	cca	gaa	260
	Thr Thr	Val Phe	e Met	Leu Il	e Val	Ser	Val	Leu	Ala	Leu	Ile	Pro	Glu	
15	35			4	0				45					
	acc aca	aca tto	g aca	gtt gg	t gga	ggg	gtg	ttt	gca	ctt	gtg	aca	gca	308
	Thr Thr	Thr Let	Thr	Val Gl	y Gly	Gly	Val	Phe	Ala	Leu	Val	Thr	Ala	
	50			55				60					65	
	gta tgc		_									_		356
20	Val Cys	Cys Let	Ala	Asp Gl	y Ala	Leu	Ile	Tyr	Arg	Lys	Leu	Leu	Phe	
			70				75					80		
	aat ccc	agc ggt	cct	tac ca	g caa	aag	cct	gtg	cat	gaa	aaa	aaa	gaa	404
	Asn Pro	Ser Gly	Pro	Tyr Gl	n Gln	Lys	Pro	Val	His	Glu	Lys	Lys	Glu	
		85				90					95			
25	gtt ttg	taatttt	ata t	tacttt	tta g	tttga	atact	aaq	gtati	caaa				450
	Val Leu													
	catatttc	tg tatt	ctt											467
20	1010: 5-													
30	<210> 55													
	<211> 87													
	<212> DN													
	<213> Ho	omo sapi	ens.											
05	<220>	_												
35	<221> CD	5												

<222> (272)...(841)

<400> 55

	att	ggtt	ggg	ggaa	accc	ac g	gaggg	gacg	c gg	ıccga	ggag	ggt	eget	gtc	cacc	eggggg	60
5	cgt	ggga	gtg	aggt	acca	ga t	tcag	ccca	t tt	ggcc	ccga	cgo	ctct	gtt	ctcg	gaatee	120
	ggg	tgct	gcg	gatt	gagg	tc c	cggt	tect	a ac	gaat	ctct	gct	ggat	tgg	ccgt	aaccct	180
	gtc	cccg	agc	gggc	tcac	ag g	gtct	gaag	g cc	acgc	atga	ggo	aaag	gta	aagt	tctgag	240
	cca	ccg	gtg	cctc	cttc	cc a	ggac	tgca	a g	atg	gag	gaa	ggc	ggg	aac	cta	292
										Met	Glu	Glu	Gly	Gly	Asn	Leu	
10										1				5			
	gga	ggc	ctg	att	aag	atg	gtc	cat	cta	ctg	gtc	ttg	tca	ggt	gcc	tgg	340
	Gly	Gly	Leu	Ile	Lys	Met	Val	His	Leu	Leu	Val	Leu	Ser	Gly	Ala	Trp	
			10					15					20				
	ggc	atg	caa	atg	tgg	gtg	acc	ttc	gtc	tca	ggc	ttc	ctg	ctt	ttc	cga	388
15	Gly	Met	Gln	Met	Trp	Val	Thr	Phe	Val	Ser	Gly	Phe	Leu	Leu	Phe	Arg	
		25					30					35					
	agc	ctt	ccc	cga	cat	acc	ttc	gga	cta	gtg	cag	agc	aaa	ctc	ttc	ccc	436
	Ser	Leu	Pro	Arg	His	Thr	Phe	Gly	Leu	Val	Gln	Ser	Lys	Leu	Phe	Pro	
	40					45					50					55	
20	ttc	tac	ttc	cac	atc	tcc	atg	ggc	tgt	gcc	ttc	atc	aac	ctc	tgc	atc	484
	Phe	Tyr	Phe	His	Ile	Ser	Met	Gly	Cys	Ala	Phe	Ile	Asn	Leu	Cys	Ile	
					60					65		•			70		
	ttg	gct	tca	cag	cat	gct	tgg	gct	cag	ctc	aca	ttc	tgg	gag	gee	agc	532
	Leu	Ala	Ser	Gln	His	Ala	Trp	Ala	Gln	Leu	Thr	Phe	Trp	Glu	Ala	Ser	
25				75					80					85			
	cag	ctt	tac	ctg	ctg	ttc	ctg	agc	ctt	acg	ctg	gcc	act	gtc	aac	gcc	580
	Gln	Leu	Tyr	Leu	Leu	Phe	Leu	Ser	Leu	Thr	Leu	Ala	Thr	Val	Asn	Ala	÷
			90					95					100				
	cgc	tgg	ctg	gaa	CCC	cgc	acc	aca	gct	gcc	atg	tgg	gcc	ctg	caa	acc	628
30	Arg	Trp	Leu	Glu	Pro	Arg	Thr	Thr	Ala	Ala	Met	Trp	Ala	Leu	Gln	Thr	
		105					110					115					
	gtg	gag	aag	gag	cga	ggc	ctg	ggt	ggg	gag	gta	cca	ggc	agc	cac	cag	676
	Val	Glu	Lys	Glu	Arg	Gly	Leu	Gly	Gly	Glu	Val	Pro	Gly	Ser	His	Gln	
	120					125					130					135	
35	ggt	ccc	gat	ccc	tac	cgc	cag	ctg	cga	gag	aag	gac	ccc	aag	tac	agt	724

WO 00/05367 PCT/JP99/03929

	GLY Pro Asp Pro Tyr Arg Gln Leu Arg Glu Lys Asp Pro Lys Tyr Ser	
	140 145 150	
	get ete ege eag aat tte tte ege tae eat ggg etg tee tet ett tge	772
	Ala Leu Arg Gln Asn Phe Phe Arg Tyr His Gly Leu Ser Ser Leu Cys	
5	155 160 165	
	aat etg gge tge gte etg age aat ggg ete tgt ete get gge ett gee	820
	Asn Leu Gly Cys Val Leu Ser Asn Gly Leu Cys Leu Ala Gly Leu Ala	
	170 175 180	
	ctg gaa ata agg agc ctc tagcatgggc cctgcatgct aataaatgct tcttcag	875
10	Leu Glu Ile Arg Ser Leu	
	185	
	<210> 56	
	<211> 1256	
15	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (150)(1241)	
20		
	<400> 56	
	atgtaagage caceteetee ecaggaetea gggatggete tecagatgte accaetgeag	60
	atattggage caacacteca gatgetacaa aaggetgtee agatgtecaa getteettge	120
	cagatgecaa agecaagtee ecacegaee atg gtg gae age ete etg gea gte	173
25	Met Val Asp Ser Leu Leu Ala Val	
	1 5	
	acc ctg gct gga aac ctg ggc ctg acc ttc ctc cga ggt tcc cag acc	221
	Thr Leu Ala Gly Asn Leu Gly Leu Thr Phe Leu Arg Gly Ser Gln Thr	
	10 15 20	
30	cag age cat eea gae etg gga aet gag gge tge tgg gae eag ete tet	269
	Gln Ser His Pro Asp Leu Gly Thr Glu Gly Cys Trp Asp Gln Leu Ser	
	25 30 35 40	
	gcc cct cgg acc ttt acg ctt ttg gac ccc aag gca tct ctg tta acc	317
	Ala Pro Arg Thr Phe Thr Leu Leu Asp Pro Lys Ala Ser Leu Leu Thr	
35	45 50 55	

	aag	gcc	ttc	ctc	aat	ggc	gcc	ctg	gat	9 99	gto	ato	ctt	gga	gac	: tac	365
	Lys	Ala	Phe	Leu	Asn	Gly	Ala	Leu	Asp	Gly	Val	. Ile	Leu	Gly	Asp	Tyr	
				60					65					70)		
	ctg	agc	cgg	act	cct	gag	ccc	cgg	cca	tcc	ctc	agc	cac	ttg	ctg	agc	413
5	Leu	Ser	Arg	Thr	Pro	Glu	Pro	Arg	Pro	Ser	Leu	Ser	His	Leu	Leu	Ser	
			75					80					85				
	cag	tac	tat	9 99	gct	ggg	gtg	gcc	aga	gac	cca	ggg	ttc	cgc	ago	aac	461
	Gln	Tyr	Tyr	Gly	Ala	Gly	Val	Ala	Arg	Asp	Pro	Gly	Phe	Arg	Ser	Asn	
		90					95					100					
10	ttc	cga	cgg	cag	aac	ggt	gct	gct	ctg	act	tca	gcc	tcc	atc	ctg	gee	509
	Phe	Arg	Arg	Gln	Asn	Gly	Ala	Ala	Leu	Thr	Ser	Ala	Ser	Ile	Leu	Ala	
	105					110					115					120	
	cag	cag	gtg	tgg	gga	acc	ctt	gtc	ctt	cta	cag	agg	ctg	gag	cca	gta	557
	Gln	Gln	Val	Trp	Gly	Thr	Leu	Val	Leu	Leu	Gln	Arg	Leu	Glu	Pro	Val	
15					125					130					135		
	cac	ctc	cag	ctt	cag	tgc	atg	agc	caa	gaa	cag	ctg	gcc	cag	gtg	gct	605
	His	Leu	Gln	Leu	Gln	Cys	Met	Ser	Gln	Glu	Gln	Leu	Ala	Gln	Val	Ala	
				140					145					150			
	gcc	aat	gct	acc	aag	gaa	ttc	act	gag	gcc	ttc	ctg	gga	tgc	ccg	gcc	653
20	Ala	Asn	Ala	Thr	Lys	Glu	Phe	Thr	Glu	Ala	Phe	Leu	Gly	Cys	Pro	Ala	
			155					160					165				
	atc	cac	ccc	cgc	tgc	cgc	tgg	gga	gcg	gcg	cct	tat	cgg	ggc	cgc	ccg	701
	Ile	His	Pro	Arg	Cys	Arg	Trp	Gly	Ala	Ala	Pro	Tyr	Arg	Gly	Arg	Pro	
		170					175					180					
25	aag	ctg	ctg	cag	ctg	ccg	ctg	gga	ttc	ttg	tac	gtg	cat	cac	acc	tac	749
	Lys	Leu	Leu	Gln	Leu	Pro	Leu	Gly	Phe	Leu	Tyr	Val	His	His	Thr	Tyr	
	185					190					195					200	
	gtg	cct	gca	cca	CCC	tgc	acg	gac	ttc	acg	cgc	tgc	gca	gcc	aac	atg	79 7
	Val	Pro	Ala	Pro	Pro	Cys	Thr	Asp	Phe	Thr	Arg	Cys	Ala	Ala	Asn	Met	
30					205					210					215		
	cgc	tcc	atg	cag	cgc	tac	cac	cag	gac	acg	caa	ggc	tgg	gga	gac	atc	845
	Arg	Ser	Met	Gln	Arg	Tyr	His	Gln	Asp	Thr	Gln	Gly	Trp	Gly	Asp	Ile	
				220					225					230			
	ggc	tac	agt	ttc	gtg	gtg	ggc	tcg	gac	ggc	tac	gtg	tac	gag	gga	cgc	893
35	Gly	Tyr	Ser	Phe	Val	Val	Glv	Ser	Asp	Gly	Tyr	Val	Tyr	Glu	Glv	Arg	

		235					240					245				
	ggc tgg	cac	tgg	gtg	ggc	gcc	cac	acg	ctc	ggc	cac	aac	tcc	cgg	ggc	941
	Gly Trp	His	Trp	Val	Gly	Ala	His	Thr	Leu	Gly	His	Asn	Ser	Arg	Gly	
	250					255					260					
5	ttc ggc	gtg	gcc	ata	gtg	ggc	aac	tac	acc	gcg	gcg	ctg	ccc	acc	gag	989
	Phe Gly	Val	Ala	Ile	Val	Gly	Asn	Tyr	Thr	Ala	Ala	Leu	Pro	Thr	Glu	
	265				270					275					280	
	gcc gct	ctg	cgc	acg	gtg	cgc	gac	acg	ctc	ccg	agt	tgt	gcg	gtg	cgc	1037
	Ala Ala	Leu	Arg	Thr	Val	Arg	Asp	Thr	Leu	Pro	Ser	Cys	Ala	Val	Arg	
10				285					290					295		
	gee gge	ctc	ctg	cgg	cca	gac	tac	gcg	ctg	ctg	ggc	cac	cgc	cag	ctg	1085
	Ala Gly	Leu	Leu	Arg	Pro	Asp	Tyr	Ala	Leu	Leu	Gly	His	Arg	Gln	Leu	
			300					305					310			
	gtg cgc	acc	gac	tgc	CCC	ggc	gac	gcg	ctc	ttc	gac	ctg	ctg	cgc	acc	1133
15	Val Arg	Thr	Asp	Cys	Pro	Gly	Asp	Ala	Leu	Phe	Asp	Leu	Leu	Arg	Thr	
		315					320					325				
	tgg ccg	cac	ttc	acc	gcg	act	gtt	aag	cca	aga	cct	gcc	agg	agt	gtc	1181
	Trp Pro	His	Phe	Thr	Ala	Thr	Val	Lys	Pro	Arg	Pro	Ala	Arg	Ser	Val	
	330					335					340					
20	tct aag	_														1229
	Ser Lys	Arg	Ser	Arg	Arg	Glu	Pro	Pro	Pro		Thr	Leu	Pro	Ala		
	345				350					355					360	
	gac ctc		taaa	gaca	agc a	tgga	aac									1256
o E	Asp Leu	Gln														
25	4010× E4	_														
	<210> 5° <211> 8°															
	<211> bi															
	<213> Ho															
30	<220>		apre	:115												
00	<221> CI	ns														
	<222> (3		/ 9	1841						•						
	(.			,54)												
	<400> 5	7														
3 5	catttect	ttt c	tcca	cato	c aç	gtca	ggtg	geg	rtttg	ctg	tggc	ggct	ag g	lacad	egtge	60

	gct	ggag	acc	tccg	cgct	gg c	cccc	gcga	g cc	tcct	gccc	tgg	cccg	gcg	ctgc	ggetet	120
	gcc	gegg	cgg	cagc	atg	ggt	ggc	ccc	cgg	ggc	gcg	ggc	tgg	gtg	gcg	gcg	170
					Met	Gly	Gly	Pro	Arg	Gly	Ala	Gly	Trp	Val	Ala	Ala	
					1				5					10			
5	ggc	ctg	ctg	ctc	ggc	gcg	ggc	gcc	tgc	tac	tgc	att	tac	agg	ctg	acc	218
	Gly	Leu	Leu	Leu	Gly	Ala	Gly	Ala	Cys	Tyr	Cys	Ile	Tyr	Arg	Leu	Thr	
			15					20					25				
	cgg	ggt	cgg	cgg	cgg	ggc	gac	cgc	gag	ctc	ggg	ata	cgc	tct	tcg	aag	266
	Arg	Gly	Arg	Arg	Arg	Gly	Asp	Arg	Glu	Leu	Gly	Ile	Arg	Ser	Ser	Lys	
10		30					35					40					
	tcc	gca	gaa	gac	tta	act	gat	ggt	tca	tat	gat	gat	gtt	cta	aat	gct	314
	Ser	Ala	Glu	Asp	Leu	Thr	Asp	Gly	Ser	Tyr	Asp	Asp	Val	Leu	Asn	Ala	
	45					50					55					60	
	gaa	caa	ctt	cag	aaa	ctc	ctt	tac	ctg	ctg	gag	tca	acg	gag	gat	cct	362
15	Glu	Gln	Leu	Gln	Lys	Leu	Leu	Tyr	Leu	Leu	Glu	Ser	Thr	$\operatorname{\mathbf{Glu}}$	Asp	Pro	
					65					70					75		
	gta	att	att	gaa	aga	gct	ttg	att	act	ttg	ggt	aac	aat	gca	gcc	ttt	410
	Val	Ile	Ile	Glu	Arg	Ala	Leu	Ile	Thr	Leu	Gly	Asn	Asn	Ala	Ala	Phe	
				80					85					90			
20	tca	gtt	aac	caa	gct	att	att	cgt	gaa	ttg	ggt	ggt	att	cca	att	gtt	458
	Ser	Val	Asn	Gln	Ala	Ile	Ile	Arg	Glu	Leu	Gly	Gly	Ile	Pro	Ile	Val	
			95					100					105				
	gca	aac	aaa	atc	aac	cat	tcc	aac	cag	agt	att	aaa	gag	aaa	gct	tta	506
	Ala	Asn	Lys	Ile	Asn	His	Ser	Asn	Gln	Ser	Ile	Lys	Glu	Lys	Ala	Leu	
25		110					115					120					
	aat	gca	cta	aat	aac	ctg	agt	gtg	aat	gtt	gaa	aat	caa	atc	aag	ata	554
	Asn	Ala	Leu	Asn	Asn	Leu	Ser	Val	Asn	Val	Glu	Asn	Gln	Ile	Lys	Ile	
	125					130					135					140	
	aag	gtg	caa	gtt	ttg	aaa	ctg	ctt	ttg	aat	ttg	tct	gaa	aat	cca	gcc	602
30	Lys	Val	Gln	Val	Leu	Lys	Leu	Leu	Leu	Asn	Leu	Ser	Glu	Asn	Pro	Ala	
					145					150					155		
	atg	aca	gaa	gga	ctt	ctc	cgt	gcc	caa	gtg	gat	tca	tca	ttc	ctt	tcc	650
	Met	Thr	Glu	Gly	Leu	Leu	Arg	Ala	Gln	Val	Asp	Ser	Ser	Phe	Leu	Ser	
				160					165					170			
35	ctt	tat	gac	agc	cac	gta	qca	aaq	gag	att	ctt	ctt	cqa	gta	ctt	acq	698

PCT/JP99/03929

	Leu	Tyr	Asp	Ser	His	Val	Ala	Lys	Glu	Ile	Leu	Leu	Arg	Val	Leu	Thr	
			175					180					185				
			_			_		tgc				_				-	746
_	Leu		Gln	Asn	Ile	Lys		Cys	Leu	Lys	Ile		Gly	His	Leu	Ala	
5		190					195					200					
		_					-	ggt		_			_				794
		Gln	Pro	Thr	Phe		Glu	Gly	Ser	Leu		Phe	Leu	Leu	His	_	
	205					210					215					220	
10	-	-	_	_	_			aga	_		_	_			•	_	842
10	G1u	GIu	Cys	Ala	G1n 225	Lys	He	Arg	Ala	Leu 230	Val	Asp	His	His	Asp 235	Ala	
	gag	ata	aag	gaa		att	αta	aca	ata		ggg	aaa	atc	tga			884
			-	-	-	-	-	Thr									
				240	-1-				245			-1-					
15																	
	<210	> 58	3														
	<211	> 58	39														
	<212	> DN	IA.														
	<213	> Hc	omo s	sapie	ens												
20	<220	>															
	<221	> CI	s							•							
	<222	> (4	18).	(34	14)												
	<400	> 58	3														
25	gctt	tecc	gag d	ccg	ettgo	ca co	etcg	gcgat		cgac	tcc	ctto	ttt	atg	gcg	tcg	56
														Met	Ala	Ser	
														1			
	ctc	ctg	tgc	tgt	9 99	ccg	aag	ctg	gcc	gcc	tgc	ggc	atc	gtc	ctc	agc	104
	Leu	Leu	Cys	Cys	Gly	Pro	Lys	Leu	Ala	Ala	Cys	Gly	Ile	Val	Leu	Ser	
30		5					10					15					
	gcc	tgg	gga	gtg	atc	atg	ttg	ata	atg	ctc	gga	ata	ttt	ttc	aat	gtc	152
	Ala	Trp	Gly	Val	Ile	Met	Leu	Ile	Met	Leu	Gly	Ile	Phe	Phe	Asn	Val	
	20					25					30					35	
	cat	tcc	gct	gtg	ttg	att	gag	gac	gtt	ccc	ttc	acg	gag	aaa	gat	ttt	200
35	His	Ser	Ala	Val	Leu	Ile	Glu	Asp	Val	Pro	Phe	Thr	Glu	Lys	Asp	Phe	

	4	0	45	50
	gag aat ggc ccc ca	g aac ata tac aac	ctt tac gag caa	gtc agc tac 248
	Glu Asn Gly Pro Gl	n Asn Ile Tyr Asn	Leu Tyr Glu Gln	Val Ser Tyr
	55	60		65
5	aac tgt ttc atc gc	t gca ggc ctt tac	ctc ctc ctc gga	ggc ttc tct 296
	Asn Cys Phe Ile Al	a Ala Gly Leu Tyr	Leu Leu Gly	Gly Phe Ser
•	70	75	80	
	ttc tgc caa gtt cg	g ctc aat aag cgc	aag gaa tac atg	gtg ege 341
	Phe Cys Gln Val Ar	g Leu Asn Lys Arg	Lys Glu Tyr Met	Val Arg
10	85	90	95	
	tagggcccc ggcgcgtt	te ecegeteeag eece	tcctct atttaaaga	c teeetgeace 400
	gtgtcaccca ggtcgcg	tee eaccettgee ggo	gecetet gtgggaet:	gg gtttcccggg 460
	cgagagactg aatccct	tct cccatctctg gca	iteeggee eeegtgga	ga gggctgaggc 520
	tggggggctg ttccgtc	tet ecaceetteg etg	rtgtcccg tatctcaa	ta aagagaatct 580
15	gctctcttc			589
	<210> 59			
	<211> 673			
	<212> DNA			
20	<213> Homo sapiens			
	<220>			
	<221> CDS			
	<222> (25)(543)			
25	<400> 59			
	cttgccttgc gctgcgcg	get cace atg gtg g	ge eee geg eeg e	gg cgg cgg 51
		Met Val G	ly Pro Ala Pro A	rg Arg Arg
		1	5	
	ctg cgg ccg ctg gca	geg etg gee etg	gtc ctg gcg ctg	gee eeg ggg 9 9
30	Leu Arg Pro Leu Ala	Ala Leu Ala Leu	Val Leu Ala Leu A	Ala Pro Gly
	10	15	20	25
	ctg ccc aca gcc cgg	gcc ggg cag aca	ceg ege eet gee	gag cgg ggg 147
	Leu Pro Thr Ala Arc	Ala Gly Gln Thr	Pro Arg Pro Ala (Glu Arg Gly
	30	•	35	40
35	ccc cca gtg cgg ctt	ttc acc gag gag	gag ctg gcc cgc t	tat ggc ggg 195

	Pro	Pro	Val	Arg	Leu	Phe	Thr	Glu	Glu	Glu	Leu	Ala	Arg	Tyr	Gly	Gly	
				45					50					55			
	gag	gag	gaa	gat	cag	ccc	atc	tac	ttg	gca	gtg	aag	gga	gtg	gtg	ttt	243
	Glu	Glu	Glu	Asp	Gln	Pro	Ile	Tyr	Leu	Ala	Val	Lys	Gly	Val	Val	Phe	
5			60					65					70				
	gat	gtc	acc	tcc	gga	aag	gag	ttt	tat	gga	cga	gga	gcc	CCC	tac	aat	291
	Asp	Val	Thr	Ser	Gly	Lys	Glu	Phe	Tyr	Gly	Arg	Gly	Ala	Pro	Tyr	Asn	
		75					80					85					
	_	_	_	9 99	_	•			-								339
10		Leu	Thr	Gly	Lys	Asp	Ser	Thr	Arg	Gly		Ala	Lys	Met	Ser		
	90					95					100					105	
				gac													387
	Asp	Pro	Ala	Asp		Thr	His	Asp	Thr		Gly	Leu	Thr	Ala		Glu	
1 5					110					115					120		425
15				ctg	_		_										435
	Leu	GIu	Ala	Leu	Asp	G1u	Vai	Phe		гÀг	vaı	туг	гуs		ьуs	туг	
				125					130	a++	ata	22+	asa	135	770	200	483
				ggc													403
20	PIO	TIE	140	Gly	Tyr	Thr	Ala	145	Arg	TTE	neu	ASII	150	Asp	GIY	Sel	
20	cct	220		gac	++~	224	aat	_	asc.	cac	ccc	cat		gac	atc	aan	531
				Asp													331
	110	155	шец	лър	FIIC	пуз	160	Giu	nop	01		165				-,-	
	gat		ttc	tgat	atta			ragga	ag ca	agat.t	ctto		acat	.aaa			580
25		Glu		-yu.	-900			2499	-9	-55-		, ,,,,	- 5 - 5 -	- 5 5			
	170																
	gca	ggaa	gac a	actac	aata	et qa	atct	cata	ı caa	aact	ggc	tgcc	tgga	agg d	cat	jagcca	640
				aataa													673
		_				_	_		-								
30	<21	0> 60)														
	<21	1> 14	425														
	<21	2> DI	AV														
	<21	3> H	omo:	sapie	ens												
	<22	0>		•													
35	<22	1> CI	os														

<222> (127)...(489)

<400> 60

	tecegeetgg ggeeggetga gtggeaetta agegggeeat geeatgeaac ettgggeget	60
5	gccaaccgtg ggcgagctct gggtgtgcgg gcggcctggc gcggcgctcc gctgtgtcag	120
	egtgtt atg atg eeg tee egt ace aac etg get act gga ate eee agt	168
	Met Met Pro Ser Arg Thr Asn Leu Ala Thr Gly Ile Pro Ser	
	1 5 10	
	agt aaa gtg aaa tat toa agg oto too ago aca gao gat ggo tao att	216
10	Ser Lys Val Lys Tyr Ser Arg Leu Ser Ser Thr Asp Asp Gly Tyr Ile	
	15 20 25 30	
	gac ctt cag ttt aag aaa acc cct cct aag atc cct tat aag gcc atc	264
	Asp Leu Gln Phe Lys Lys Thr Pro Pro Lys Ile Pro Tyr Lys Ala Ile	
	35 40 45	
15	gca ctt gcc act gtg ctg ttt ttg att ggc gcc ttt ctc att att ata	312
	Ala Leu Ala Thr Val Leu Phe Leu Ile Gly Ala Phe Leu Ile Ile	
	50 55 60	
	ggc tcc ctc ctg ctg tca ggc tac atc agc aaa ggg ggg gca gac cgg	360
	Gly Ser Leu Leu Ser Gly Tyr Ile Ser Lys Gly Gly Ala Asp Arg	
20	65 70 75	
	gee gtt eea gtg etg ate att gge att etg gtg tte eta eee gga ttt	408
	Ala Val Pro Val Leu Ile Ile Gly Ile Leu Val Phe Leu Pro Gly Phe	
	80 85 90	
	tac cac ctg cgc atc gct tac tat gca tcc aaa ggc tac cgt ggt tac	456
25	Tyr His Leu Arg Ile Ala Tyr Tyr Ala Ser Lys Gly Tyr Arg Gly Tyr	
	9 5 100 105 110	
	tee tat gat gae att eea gae ttt gat gae tageacceae eeca	500
	Ser Tyr Asp Asp Ile Pro Asp Phe Asp Asp	
	115 120	
30	tagetgagga ggagteacag tggaactgte ecagetttaa gatatetage agaaactata	560
	gctgaggact aaggaattct gcagcttgca gatgtttaag aaaataatgg ccagattttt	620
	tgggtccttc ccaaagatgt taagtgaacc tacagttagc taattaggac aagctctatt	680
	tttcatccct gggccctgac aagtttttcc acaggaatat gtatcatgga agaatagagg	740
	ttattctgta atggaaaagt gttgcctgcc accaccctct gtagagctga gcatttcttt	800
35	taaatagtet teattgeeaa tttgttettg tageaaatgg aacaatgtgg tatggetaat	860

	ttcttatt	at t	aagt	agtt	t a	tttt	aaaa	a tai	tctg	agta	tat	tatc	ctg	taca	cttatc	920
	cctacctt	ca t	gtto	cagt	g g	aaga	cctta	a gta	aaaa	tcaa	aga	tcag	tga	gtte	atctgt	980
	aatattt	tt t	tact	tgct	t to	ctta	ctgad	e ago	caac	cagg	aat	tttt	tta	teet	gcagag	1040
	caagtttt	ca e	aaato	gtaaa	it a	cttc	etete	g tti	taac	agtc	ctt	ggac	cat	tetg	atccag	1100
5	ttcacca	gta ç	gtto	ggaca	ig c	atata	aatti	t gca	atca	tttt	gtc	cctt	gta	aatc	aagatg	1160
	ttctgcag	gat t	atto	cttt	a a	egge	eggad	tt1	ttgg	etgt	ttc	ctaa	tga	aaca	tgtagt	1220
	ggttatta	att t	agag	gttta	t a	geeg	tatto	g cta	agca	ectt	gta	gtat	gtc	atca	tt ct gc	1280
	tcatgatt	cc a	aagga	atcaç	je e	tggat	tgcct	t aga	agga	ctag	atc	acct	tag	tttg	attcta	1340
	ttttttag	get t	gcaa	aaaag	rt ga	actta	atatt	c cca	aaag	aaat	taa	aatg	ttg	aaat	ccaaat	1400
10	cctagaaa	ata a	aato	gagtt	a a	ette										1425
	<210> 61	ı														
	<211> 30	07														
	<212> PF	RT														
15	<213> Ho	omo s	apie	ens												
	<400> 63	1														
	Met Ser	Met	Ile	Leu	Ser	Ala	Ser	Val	Ile	Arg	Val	Arg	Asp	Gly	Leu	
	1			5					10					15		
20	Pro Leu	Ser	Ala	Ser	Thr	Asp	Tyr	Glu	Gln	Ser	Thr	Gly	Met	Gln	Glu	
			20					25					30			
	Cys Arg	Lys	Tyr	Phe	Lys	Met	Leu	Ser	Arg	Lys	Leu		Gln	Leu	Pro	
		35					40					45		_		
	Asp Arg	Cys	Thr	Leu	Lys	Thr	Gly	His	Tyr	Asn		Asn	Phe	Ile	Ser	
25	50	_				55					60	_	_	_	_	
	Ser Leu	Gly	Val	Ser	_	Met	Met	Leu	Cys		Glu	Asn	Tyr	Pro		
	65				70	_	_		_	75	•	~ 3	Dh.	7 3.	80 mb=	
	Val Leu	Ala	Phe		Phe	Leu	Asp	G1u		GIN	ьys	GIU	Pne		Thr	
20	Mhan massa			85		-1		m	90	77-3	N	D~0	m	95	Dho	
30	Thr Tyr	Asn		Met	Lys	Thr	Asn		Ala	vai	Arg	PIO	110	Cys	Pne	
	Tle Clu	nh -	100		Dh -	- 1-	a1	105	mh =	7	Cln	۸۳۵		λen	Aen	
	Ile Glu		Asp	ASN	rne	TTE		Arg	Tnr	тйя	GTII	125	ıyı	WOII	USII	
	Pro Arg	115	Ton	66~	መኮ∽	T ***	120	y c.z.	T.eu	Ser	Δen		Gln	Thr	Glu	
35	130	SEL	ьeu	ser.	THE	டழக 135	TTE	MSII	₽€U	DEI	140	rice	O111	****	214	
JU	120					133					_ 10					

	Ile	Lys	Leu	Arg	Pro	Pro	Tyr	Gln	Ile	Ser	Met	Cys	Glu	Leu	Gly	Ser
	145					150					155					160
	Ala	Asn	Gly	Val	Thr	Ser	Ala	Phe	Ser	Val	Asp	Cys	Lys	Gly	Ala	Gly
					165					170					175	
5	Lys	Ile	Ser	Ser	Ala	His	Gln	Arg	Leu	Glu	Pro	Ala	Thr	Leu	Ser	Gly
				180					185					190		
	Ile	Val	Gly	Phe	Ile	Leu	Ser	Leu	Leu	Cys	Gly	Ala	Leu	Asn	Leu	Ile
			195					200					205			
	Arg	Gly	Phe	His	Ala	Ile	Glu	Ser	Leu	Leu	Gln	Ser	Asp	Gly	Asp	Asp
10		210					215					220				
	Phe	Asn	Tyr	Ile	Ile	Ala	Phe	Phe	Leu	Gly	Thr	Ala	Ala	Cys	Leu	Tyr
	225					230					235					240
	Gln	Cys	Tyr	Leu	Leu	Val	Tyr	Tyr	Thr	Gly	Trp	Arg	Asn	Val	Lys	Ser
					245					250					255	
15	Phe	Leu	Thr	Phe	Gly	Leu	Ile	Cys	Leu	Cys	Asn	Met	Tyr	Leu	Tyr	Glu
				260					265					270		
	Leu	Arg	Asn	Leu	Trp	Gln	Leu	Phe	Phe	His	Val	Thr	Val	Gly	Ala	Phe
			275					280					285			
	Val	Thr	Leu	Gln	Ile	Trp	Leu	Arg	Gln	Ala	Gln	Gly	Lys	Ala	Pro	Asp
20		290					295					300				
	Tyr	Asp	Val													
	305															
	<210	0> 62	2													
25	<21	1> 18	33													
	<212	2> P F	RT.													
	<213	3> Hc	omo s	sapie	ens											
	<400	0> 62	2													
30	Met	Thr	Ala	Gln	Gly	Gly	Leu	Val	Ala	Asn	Arg	Gly	Arg	Arg	Phe	Lys
	1				5					10					15	
	Trp	Ala	Ile	Glu	Leu	Ser	Gly	Pro	Gly	Gly	Gly	Ser	Arg	Gly	Arg	Ser
				20					25					30		
	Asp	Arg	Gly	Ser	Gly	Gln	Gly	Asp	Ser	Leu	Tyr	Pro	Val	Gly	Tyr	Leu
35			35					40					45			

	Asp	Lys	Gln	Val	Pro	Asp	Thr	Ser	Val	Gln	Glu	Thr	Asp	Arg	Ile	Leu
		50					55					60				
	Val	Glu	Lys	Arg	Cys	Trp	Asp	Ile	Ala	Leu	Gly	Pro	Leu	Lys	Gln	Ile
	65					70					75					80
5	Pro	Met	Asn	Leu	Phe	Ile	Met	Tyr	Met	Ala	Gly	Asn	Thr	Ile	Ser	Ile
					85					90					95	
	Phe	Pro	Thr	Met	Met	Val	Cys	Met	Met	Ala	Trp	Arg	Pro	Ile	Gln	Ala
				100					105					110		
	Leu	Met	Ala	Ile	Ser	Ala	Thr	Phe	Lys	Met	Leu	Glu	Ser	Ser	Ser	Gln
10			115					120					125			
	Lys		Leu	Gln	Gly	Leu	Val	Tyr	Leu	Ile	Gly		Leu	Met	Gly	Leu
		130					135					140				
		Leu	Ala	Val	Tyr	_	Cys	Gln	Ser	Met		Leu	Leu	Pro	Thr	
1.5	145	_				150		_		_	155		_			160
15	Ala	Ser	Asp	Trp	Leu	Ala	Phe	Ile	Glu		Pro	Glu	Arg	Met		Phe
	a	6 3	-3		165	_	_			170					175	
	ser	GIY	GIA	-	Leu	Leu	Leu									
				180												
20	<210	0> 63	2													
20		1> 32														
		2> PI														
			omo s	sanie	ens											
			-													
25	<400	0> 63	3													
	Met	Arg	Ala	Leu	Pro	Gly	Leu	Leu	Glu	Ala	Arg	Ala	Arg	Thr	Pro	Arg
	1				5					10					15	
	Leu	Leu	Leu	Leu	Gln	Cys	Leu	Leu	Ala	Ala	Ala	Arg	Pro	Ser	Ser	Ala
				20					25					30		
30	Asp	Gly	Ser	Ala	Pro	Asp	Ser	Pro	Phe	Thr	Ser	Pro	Pro	Leu	Arg	Glu
			35					40					45			
	Glu	Ile	Met	Ala	Asn	Asn	Phe	Ser	Leu	Glu	Ser	His	Asn	Ile	Ser	Leu
		50					55					60				
	Thr	Glu	His	Ser	Ser	Met	Pro	Val	Glu	Lys	Asn	Ile	Thr	Leu	Glu	Arg
35	65					70					75					80

WO 00/05367 PCT/JP99/03929

67/177

		Pro	Ser	Asn	Val	Asn	Leu	Thr	Cys	Gln	Phe	Thr	Thr	Ser	Gly	Asp	Leu
						85					90					95	
		Asn	Ala	Val	Asn	Val	Thr	Trp	Lys	Lys	Asp	Gly	Glu	Gln	Leu	Glu	Asn
					100					105					110		
	5	Asn	Tyr	Leu	Val	Ser	Ala	Thr	Gly	Ser	Thr	Leu	Tyr	Thr	Gln	Tyr	Arg
				115					120					125			
		Phe	Thr	Ile	Ile	Asn	Ser	Lys	Gln	Met	Gly	Ser	Tyr	Ser	Cys	Phe	Phe
			130					135					140				
		Arg	Glu	Glu	Lys	Glu	Gln	Arg	Gly	Thr	Phe	Asn	Phe	Lys	Val	Pro	Glu
1	.0	145					150					155					160
		Leu	His	Gly	Lys	Asn	Lys	Pro	Leu	Ile	Ser	Tyr	Val	Gly	Asp	Ser	Thr
						165					170					175	
		Val	Leu	Thr	Cys	Lys	Cys	Gln	Asn	Cys	Phe	Pro	Leu	Asn	Trp	Thr	Trp
					180					185					190		
1	.5	Tyr	Ser	Ser	Asn	Gly	Ser	Val	Lys	Val	Pro	Val	Gly	Val	Gln	Met	Asn
				19 5					200					205			
		Lys	Tyr	Val	Ile	Asn	Gly	Thr	Tyr	Ala	Asn	Glu	Thr	Lys	Leu	Lys	Ile
			210					215					220				
		Thr	Gln	Leu	Leu	Glu	Glu	Asp	Gly	Glu	Ser	Tyr	Trp	Cys	Arg	Ala	Leu
2	20	225					230					235					240
		Phe	Gln	Leu	Gly	Glu	Ser	Glu	Glu	His	Ile	Glu	Leu	Val	Val	Leu	Ser
						245					250					255	
		Tyr	Leu	Val	Pro	Leu	Lys	Pro	Phe	Leu	Val	Ile	Val	Ala	Glu	Val	Ile
					260					265					270		
2	25	Leu	Leu	Val	Ala	Thr	Ile	Leu	Leu	Cys	Glu	Lys	Tyr	Thr	Gln	Lys	Lys
				275					280					285			
		Lys	Lys	His	Ser	Asp	Glu	Gly	Lys	Glu	Phe	Glu	Gln	Ile	Glu	Gln	Leu
			290					295					300				
		Lys	Ser	Asp	Asp	Ser	Asn	Gly	Ile	Glu	Asn	Asn	Val	Pro	Arg	His	Arg
3	30	305					310					315					320
		Lys	Asn	Glu	Ser	Leu	Gly	Gln									
						325											

<210> 64

35 <211> 223

WO 00/05367 PCT/JP99/03929

68/177

<212> PRT

<213> Homo sapiens

<400> 64

	~4U	0- 0	4													
5	Met	Lys	Phe	Val	Pro	Cys	Leu	Leu	Leu	Val	Thr	Leu	Ser	Cys	Leu	Gly
	1				5					10					15	
	Thr	Leu	Gly	Gln	Ala	Pro	Arg	Gln	Lys	Gln	Gly	Ser	Thr	Gly	Glu	Glu
				20					25					30		
	Phe	His	Phe	Gln	Thr	Gly	Gly	Arg	Asp	Ser	Cys	Thr	Met	Arg	Pro	Ser
10			35					40					45			
	Ser	Leu	Gly	Gln	Gly	Ala	Gly	Glu	Val	Trp	Leu	Arg	Val	Asp	Cys	Arg
		50					55					60				
	Asn	Thr	Asp	Gln	Thr	Tyr	Trp	Cys	Glu	Tyr	Arg	Gly	Gln	Pro	Ser	Met
	65					70					75					80
15	Cys	Gln	Ala	Phe	Ala	Ala	Asp	Pro	Lys	Ser	Tyr	Trp	Asn	Gln	Ala	Leu
					85					90					95	
	Gln	Glu	Leu	Arg	Arg	Leu	His	His	Ala	Cys	Gln	Gly	Ala	Pro	Val	Leu
				100					105					110		
	Arg	Pro	Ser	Val	Cys	Arg	Glu	Ala	Gly	Pro	Gln	Ala	His	Met	Gln	Gln
20			115					120					125			
	Val	Thr	Ser	Ser	Leu	Lys	Gly	Ser	Pro	Glu	Pro	Asn	Gln	Gln	Pro	Glu
		130					135					140				
	Ala	Gly	Thr	Pro	Ser	Leu	Arg	Pro	Lys	Ala	Thr	Val	Lys	Leu	Thr	Glu
	145					150					155					160
25	Ala	Thr	Gln	Leu	Gly	Lys	Asp	Ser	Met	Glu	Glu	Leu	Gly	Lys	Ala	Lys
					165					170					175	
	Pro	Thr	Thr	Arg	Pro	Thr	Ala	Lys	Pro	Thr	Gln	Pro	Gly	Pro	Arg	Pro
				180					185					190		
	Gly	Gly	Asn	Glu	Glu	Ala	Lys	Lys	Lys	Ala	Trp	Glu	His	Cys	Trp	Lys
30			195					200					205			
	Pro	Phe	Gln	Ala	Leu	Cys	Ala	Phe	Leu	Ile	Ser	Phe	Phe	Arg	Gly	
		210					215					220				

<210> 65

35 <211> 48

10

45

<212> PRT <213> Homo sapiens <400> 65 5 Met Arg Leu Leu Leu Leu Leu Val Ala Ala Ser Ala Met Val Arg Ser Glu Ala Ser Ala Asn Leu Gly Gly Val Pro Ser Lys Arg Leu Lys 20 25 Met Gln Tyr Ala Thr Gly Pro Leu Leu Lys Phe Gln Ile Cys Val Ser 10 35 40 <210> 66 <211> 371 <212> PRT 15 <213> Homo sapiens <400> 66

35

1 10 15 20 Thr Gly Ser Ile Asn Thr Leu Ser Ala Lys Trp Ala Asp Asn Phe Met 20 25 Ala Glu Gly Cys Gly Gly Ser Lys Glu His Ser Phe Gln His Pro Phe 40 45 Leu Gln Ala Val Gly Met Phe Leu Gly Glu Phe Ser Cys Leu Ala Ala 25 50 60 55 Phe Tyr Leu Leu Arg Cys Arg Ala Ala Gly Gln Ser Asp Ser Ser Val 70 75 Asp Pro Gln Gln Pro Phe Asn Pro Leu Leu Phe Leu Pro Pro Ala Leu 85 90 30 Cys Asp Met Thr Gly Thr Ser Leu Met Tyr Val Ala Leu Asn Met Thr

Met Ala Trp Thr Lys Tyr Gln Leu Phe Leu Ala Gly Leu Met Leu Val

105 Ser Ala Ser Ser Phe Gln Met Leu Arg Gly Ala Val Ile Ile Phe Thr 115 120 125 Gly Leu Phe Ser Val Ala Phe Leu Gly Arg Arg Leu Val Leu Ser Gln 130 140 135

	Trp	Leu	Gly	Ile	Leu	Ala	Thr	Ile	Ala	Gly	Leu	Val	Val	Val	Gly	Leu
	145					150					155					160
	Ala	Asp	Leu	Leu	Ser	Lys	His	Asp	Ser	Gln	His	Lys	Leu	Ser	Glu	Val
					165					170					175	
5	Ile	Thr	Gly	Asp	Leu	Leu	Ile	Ile	Met	Ala	Gln	Ile	Ile	Val	Ala	Ile
				180					185					190		
	Gln	Met	Val	Leu	Glu	Glu	Lys	Phe	Val	Tyr	Lys	His	Asn	Val	His	Pro
			195					200					205			
	Leu	Arg	Ala	Val	Gly	Thr	Glu	Gly	Leu	Phe	Gly	Phe	Val	Ile	Leu	Ser
10		210					215					220				
	Leu	Leu	Leu	Val	Pro	Met	Tyr	Tyr	Ile	Pro	Ala	Gly	Ser	Phe	Ser	Gly
	225					230					235					240
	Asn	Pro	Arg	Gly	Thr	Leu	Glu	Asp	Ala	Leu	Asp	Ala	Phe	Cys	Gln	Val
					245					250					255	
15	Gly	Gln	Gln	Pro	Leu	Ile	Ala	Val	Ala	Leu	Leu	Gly	Asn	Ile	Ser	Ser
				260					265					270		
	Ile	Ala	Phe	Phe	Asn	Phe	Ala	Gly	Ile	Ser	Val	Thr	Lys	Glu	Leu	Ser
			275					280					285			
	Ala		Thr	Arg	Met	Val	Leu	Asp	Ser	Leu	Arg	Thr	Val	Val	Ile	Trp
20		290					295					300				
		Leu	Ser	Leu	Ala	Leu	Gly	Trp	Glu	Ala	Phe	His	Ala	Leu	Gln	Ile
	305					310					315					320
	Leu	Gly	Phe	Leu	Ile	Leu	Leu	Ile	Gly	Thr	Ala	Leu	Tyr	Asn	Gly	Leu
-					325					330					335	
2 5	His	Arg	Pro		Leu	Gly	Arg	Leu	Ser	Arg	Gly	Arg	Pro		Ala	Glu
	_			340					345					350		
	Glu	Ser		Gln	Glu	Arg	Leu	Leu	Gly	Gly	Thr	Arg		Pro	Ile	Asn
	_	_	355					360					365			
20	Asp	Ala	Ser													
30		370														
	<210	0> 67	7													
	<21	1> 90)													
	<212	2> PF	RT													
3 5	<213	3> Ho	omo s	sapie	ens											

	<40	0> 6	7													
	Met	Phe	His	Gln	Ile	Trp	Ala	Ala	Leu	Leu	Tyr	Phe	Tyr	Gly	Ile	Ile
	1				5					10					15	
5	Leu	Asn	Ser	Ile	Tyr	Gln	Cys	Pro	Glu	His	Ser	Gln	Leu	Thr	Thr	Leu
				20					25					30		
	Gly	Val	Asp	Gly	Lys	Glu	Phe	Pro	Glu	Val	His	Leu	Gly	Gln	Trp	Tyr
			35					40					45			
	Phe	Ile	Ala	Gly	Ala	Ala	Pro	Thr	Lys	Glu	Glu	Leu	Ala	Thr	Phe	Asp
10		50					55					60				
	Pro	Val	Asp	Asn	Ile	Val	Phe	Asn	Met	Ala	Ala	Gly	Ser	Ala	Pro	Met
	65					70					75					80
	Gln	Leu	His	Leu	Arg	Ala	Thr	Ile	Arg	Met						
					85					90						
15																
		0> 68														
		1> 49														
		2> PI														
20	<213	3> H	omo s	sapie	ens											
20																
		0> 68		_		_	_	_		_		_,		_,	_	_
		vaı	Asp	Arg	_	Pro	Leu	Leu	Thr		Ala	TTE	TTE	Pne		Leu
	1	T1.	~ 1	.	5	- 1-	n .	01	**- 1	10	a 1	63	Dwa	77 i -	15	T
25	Ата	TTE	Gly		Ala	TTE	Pne	GIU		Leu	GIU	GIU	Pro		тгр	гуѕ
20	C1	7 1-	T	20	3			mh	25	T	T 011	171.0	Tou	30	T	C1
	GIU	MIG	Lys 35	гуs	Asn	туг	TYL	40	GIII	гàг	Leu	nıs	45	Leu	гуѕ	GIU
	Phe	Pro	Cys	Len	Cly	Gln	Clu		T.eu	Aen	Tare	Tla		Glu	Val	Val
	1	50	Cys	neu	Gly	GIII	55	GIY	Deu	иор	цуs	60	Deu	O14	VUI	vui
30	Ser		Ala	Δla	Glv	Gln		Val	Δla	Tle	Thr		Asn	Gln	ጥከተ	Phe
	65			7124	Ory	70	Cly	Vul	****		75	-				80
		Asn	Trp	Asn	ጥተው		Asn	Ala	Met	Ile		Ala	Ala	Thr	Val	
			-	··	85					90					95	
	Thr	Thr	Ile	Glv		G] v	Asn	Val	Ala		Lvs	Thr	Pro	Ala		Ara
35	_			100	- , -	- - 1			105		-4 -			110	1	,

	Leu	Phe	Cys	Val	Phe	Tyr	Gly	Leu	Phe	Gly	Val	Pro	Leu	Cys	Leu	Thr
			115					120					125			
	Trp	Ile	Ser	Ala	Leu	Gly	Lys	Phe	Phe	Gly	Gly	Arg	Ala	Lys	Arg	Leu
		130					135					140				
5	Gly	Gln	Phe	Leu	Thr	Lys	Arg	Gly	Val	Ser	Leu	Arg	Lys	Ala	Gln	Ile
	145					150					155					160
	Thr	Cys	Thr	Val	Ile	Phe	Ile	Val	Trp	Gly	Val	Leu	Val	His	Leu	Val
					165					170					175	
	Ile	Pro	Pro	Phe	Val	Phe	Met	Val	Thr	Glu	Gly	Trp	Asn	Tyr	Ile	Glu
10				180					185					190		
	Gly	Leu	Tyr	Tyr	Ser	Phe	Ile	Thr	Ile	Ser	Thr	Ile	Gly	Phe	Gly	Asp
			195					200					205			
	Phe	Val	Ala	Gly	Val	Asn	Pro	Ser	Ala	Asn	Tyr	His	Ala	Leu	Tyr	Arg
		210					215					220				
15	Tyr	Phe	Val	Glu	Leu	Trp	Ile	Tyr	Leu	Gly	Leu	Ala	Trp	Leu	Ser	Leu
	225					230					235					240
	Phe	Val	Asn	Trp	Lys	Val	Ser	Met	Phe	Val	Glu	Val	His	Lys	Ala	Ile
					245					250					255	
	Lys	Lys	Arg	Arg	Arg	Arg	Arg	Lys	Glu	Ser	Phe	Glu	Ser	Ser	Pro	His
20				260					265					270		
	Ser	Arg	Lys	Ala	Leu	Gln	Val	Lys	Gly	Ser	Thr	Ala	Ser	Lys	Asp	Val
			275					280					285			
	Asn	Ile	Phe	Ser	Phe	Leu	Ser	Lys	Lys	Glu	Glu	Thr	Tyr	Asn	Asp	Leu
		290					295					300				
25	Ile	Lys	Gln	Ile	Gly	Lys	Lys	Ala	Met	Lys	Thr	Ser	Gly	Gly	Gly	Glu
	305					310					315					320
	Thr	Gly	Pro	Gly	Pro	Gly	Leu	Gly	Pro	Gln	Gly	Gly	Gly	Leu	Pro	Ala
					325					330					335	
	Leu	Pro	Pro	Ser	Leu	Val	Pro	Leu	Val	Val	Tyr	Ser	Lys	Asn	Arg	Val
30				340					345					350		
	Pro	Thr	Leu	Glu	Glu	Val	Ser	Gln	Thr	Leu	Arg	Ser	Lys	Gly	His	Val
			355					360					365			
	Ser	Arg	Ser	Pro	Asp	Glu	Glu	Ala	Val	Ala	Arg	Ala	Pro	Glu	Asp	Ser
		370					375					380				
35	Ser	Pro	Ala	Pro	Glu	Val	Phe	Met	Asn	Gln	Leu	Asp	Arg	Ile	Ser	Glu

	385					390					395					40
	Glu	Cys	Glu	Pro	Trp	Asp	Ala	Gln	Asp	Tyr	His	Pro	Leu	Ile	Phe	Gl
					405					410					415	
	Asp	Ala	Ser	Ile	Thr	Phe	Val	Asn	Thr	Glu	Ala	Gly	Leu	Ser	Asp	Gl
5				420					425					430		
	Glu	Thr	Ser	Lys	Ser	Ser	Leu	Glu	Asp	Asn	Leu	Ala	Gly	Glu	Glu	Se
			435					440					445			
	Pro	Gln	Gln	Gly	Ala	Glu	Ala	Lys	Ala	Pro	Leu	Asn	Met	Gly	Glu	Phe
		450					455					460				
10	Pro	Ser	Ser	Ser	Glu	Ser	Thr	Phe	Thr	Ser	Thr	Glu	Ser	Glu	Leu	Sex
	465					470					475					480
	Val	Pro	Tyr	Glu	Gln	Leu	Met	Asn	Glu	Tyr	Asn	Lys	Ala	Asn	Ser	Pro
					485					490					495	
	Lys	Gly	Thr													
15																
	<21	0> 69	9													
	<21	1> 10	06													
	<21	2> PI	RT													
20	<21	3> H	omo s	sapie	ens											
	<40	0> 69	9													
	Met	Ala	Ser	Ser	Gly	Ala	Gly	Asp	Pro	Leu	Asp	Ser	Lys	Arg	Gly	Glu
	1				5					10					15	
25	Ala	Pro	Phe	Ala	Gln	Arg	Ile	Asp	Pro	Thr	Arg	Glu	Lys	Leu	Thr	Pro
				20					25					30		
	Glu	Gln	Leu	His	Ser	Met	Arg	Gln	Ala	Glu	Leu	Ala	Gln	Trp	Gln	Lys
			35					40					45			
	Val	Leu	Pro	Arg	Arg	Arg	Thr	Arg	Asn	Ile	Val	Thr	Gly	Leu	Gly	Ile
30		50					55					60				
	Gly	Ala	Leu	Val	Leu	Ala	Ile	Tyr	Gly	Tyr	Thr	Phe	Tyr	Ser	Ile	Ser
	65					70					75					80
	Gln	Glu	Arg	Phe	Leu	Asp	Glu	Leu	Glu	Asp	Glu	Ala	Lys	Ala	Ala	Arg
					85					90					95	
35	Ala	Arg	Ala	Leu	Ala	Arg	Ala	Ser	Gly	Ser						

100 105

<210> 70

<211> 152

5 <212> PRT

<213> Homo sapiens

<400> 70

Met Asp Tyr Val Cys Cys Ala Tyr Asn Asn Ile Thr Gly Arg Gln Asp

10 1 5 10 15

Glu Thr His Phe Thr Val Ile Ile Thr Ser Val Gly Leu Glu Lys Leu
20 25 30

Ala Gln Lys Gly Lys Ser Leu Ser Pro Leu Ala Ser Ile Thr Gly Ile 35 40 45

Ser Leu Phe Leu Ile Ile Ser Met Cys Leu Leu Phe Leu Trp Lys Lys
50 55 60

Tyr Gln Pro Tyr Lys Val Ile Lys Gln Lys Leu Glu Gly Arg Pro Glu 65 70 75 80

Thr Glu Tyr Arg Lys Ala Gln Thr Phe Ser Gly His Glu Asp Ala Leu

20 85 90 95

Asp Asp Phe Gly Ile Tyr Glu Phe Val Ala Phe Pro Asp Val Ser Gly
100 105 110

Val Ser Arg Ile Pro Ser Arg Ser Val Pro Ala Ser Asp Cys Val Ser 115 120 125

25 Gly Gln Asp Leu His Ser Thr Val Tyr Glu Val Ile Gln His Ile Pro 130 135 140

Ala Gln Gln Asp His Pro Glu

145 150

30 <210> 71

<211> 921

<212> DNA

<213> Homo sapiens

35 <400> 71

	atgtctatga	ttttatctgc	ctcagtcatt	cgtgtcagag	atggactgcc	actttctgct	60
	tctactgatt	atgaacaaag	cacaggaatg	caggagtgca	gaaagtattt	taaaatgctt	120
	tcgaggaaac	ttgctcaact	tcctgataga	tgtacactga	aaactggaca	ttataacatt	180
	aattttatta	gctctctggg	agtgagetae	atgatgttgt	gcactgaaaa	ttacccaaat	240
5	gttetegeet	tctctttcct	ggatgagett	cagaaggagt	tcattactac	ttataacatg	300
	atgaagacaa	atactgctgt	cagaccatac	tgtttcattg	aatttgataa	cttcattcag	360
	aggaccaagc	agcgatataa	taatcccagg	tctcttcaa	caaagataaa	tctttctgac	420
	atgcagacgg	aaatcaagct	gaggeeteet	tatcaaattt	ccatgtgcga	actggggtca	480
	gccaatggag	tcacatcagc	attttctgtt	gactgtaaag	gtgctggtaa	gatttcttct	540
10	gctcaccagc	gactggaacc	agcaactctg	tcagggattg	taggatttat	ccttagtctt	600
	ttatgtggag	ctctgaattt	aattcgaggc	tttcatgcta	tagaaagtct	cctgcagagt	660
	gatggtgatg	attttaatta	catcattgca	tttttccttg	gaacagcagc	ctgcctttac	720
	cagtgttatt	tacttgtcta	ctacaccggc	tggcggaatg	tcaaatcttt	tttgactttt	780
	ggcttaatct	gtctatgcaa	catgtatete	tatgaactgc	gcaacctctg	gcagcttttc	840
15	tttcatgtga	ctgtgggagc	atttgttaca	ctacagatct	ggctaaggca	agcccagggc	900
	aaggctcccg	attatgatgt	c				921
	<210> 72						
	<211> 549						
20	<212> DNA						

<213> Homo sapiens

<400> 72

	argaeggeee	aggggggcct	ggtggctaac	egaggeegge	getteaagtg	ggecartgag	60
25	ctaageggge	ctggaggagg	cagcaggggt	cgaagtgacc	ggggcagtgg	ccagggagac	120
	tegetetace	cagtcggtta	cttggacaag	caagtgcctg	ataccagcgt	gcaagagaca	180
	gaccggatcc	tggtggagaa	gcgctgctgg	gacatcgcct	tgggtcccct	caaacagatt	240
	cccatgaatc	tcttcatcat	gtacatggca	ggcaatacta	tctccatctt	ccctactatg	300
	atggtgtgta	tgatggcctg	gcgacccatt	caggcactta	tggccatttc	agccactttc	360
30	aagatgttag	aaagttcaag	ccagaagttt	cttcagggtt	tggtctatct	cattgggaac	420
	ctgatgggtt	tggcattggc	tgtttacaag	tgccagtcca	tgggactgtt	acctacacat	480
	gcatcggatt	ggttagcctt	cattgagccc	cctgagagaa	tggagttcag	tggtggagga	540
	ctgcttttg						549

	<211> 981						
	<212> DNA						
	<213> Homo	sapiens					
5	<400> 73						
	atgcgcgccc	teceeggeet	gctggaggcc	agggcgcgta	egeceegget	gctcctcctc	60
	cagtgccttc	tegetgeege	gegeecaage	teggeggaeg	gcagtgcccc	agattegeet	120
	tttacaagtc	cacctctcag	agaagaaata	atggcaaata	acttttcctt	ggagagtcat	180
	aacatatcac	tgactgaaca	ttctagtatg	ccagtagaaa	aaaatatcac	tttagaaagg	240
10	ccttctaatg	taaatctcac	atgccagttc	acaacatctg	gggatttgaa	tgcagtaaat	300
	gtgacttgga	aaaaagatgg	tgaacaactt	gagaataatt	atcttgtcag	tgcaacagga	360
	agcaccttgt	atacccaata	caggttcacc	atcattaata	gcaaacaaat	gggaagttat	420
	tettgtttet	ttcgagagga	aaaggaacaa	aggggaacat	ttaatttcaa	agtecetgaa	480
	cttcatggga	aaaacaagcc	attgatctct	tacgtagggg	attctactgt	cttgacatgt	540
15	aaatgtcaaa	attgttttcc	tttaaattgg	acctggtaca	gtagtaatgg	gagtgta aa g	600
	gttectgttg	gtgttcaaat	gaataaatat	gtgatcaatg	gaacatatgc	taacgaaaca	660
	aagctgaaga	taacacaact	tttggaggaa	gatggggaat	cttactggtg	ccgtgcacta	720
	ttccaattag	gcgagagtga	agaacacatt	gagettgtgg	tgctgagcta	tttggtgccc	780
	ctcaaaccat	ttcttgtaat	agtggctgag	gtgattcttt	tagtggccac	cattctgctt	840
20	tgtgaaaagt	acacacaaaa	gaaaaagaag	cactcagatg	aggggaaaga	atttga gca g	900
	attgaacagc	tgaaatcaga	tgatagcaat	ggtatagaaa	ataatgtccc	caggcataga	960
	aaaaatgagt	ctctgggcca	g				981
	<210> 74						
2 5	<211> 669						
	<212> DNA						
	<213> Homo	sapiens					
	<400> 74						
30	atgaagttcg	teceetgeet	cctgctggtg	accttgtcct	gcctggggac	tttgggtcag	60
	gccccgaggc	aaaagcaagg	aagcactggg	gaggaattcc	atttccagac	tgga gggag a	120
	gattcctgca	ctatgcgtcc	cagcagcttg	gggcaaggtg	ctggagaagt	ctggcttcgc	180
	gtcgactgcc	gcaacacaga	ccagacctac	tggtgtgagt	acagggggca	gcccagcatg	240
	tgccaggctt	tegetgetga	ccccaaatct	tactggaatc	aagccctgca	ggagetgagg	300
35	cgccttcacc	atgegtgeea	gggggcccq	gtgcttaggc	catccgtgtg	cagggaggct	360

cgccttcacc atgcgtgcca gggggccccg gtgcttaggc catccgtgtg cagggaggct

360

	ggaccccagg	cccatatgca	gcaggtgact	tecageetea	agggcagccc	agagcccaac	420
	cagcagcctg	aggctgggac	gccatctctg	aggcccaagg	ccacagtgaa	actcacagaa	480
	gcaacacagc	tgggaaagga	ctcgatggaa	gagctgggaa	aagccaaacc	caccacccga	540
	cccacagcca	aacctaccca	gcctggaccc	aggcccggag	ggaatgagga	agcaaagaag	600
5	aaggcctggg	aacattgttg	gaaacccttc	caggccctgt	gegeetttet	catcagcttc	660
	ttccgaggg						669
	<210> 75						
	<211> 144						
10	<212> DNA						
	<213> Homo	sapiens					
	<400> 75						
	atgaggette	tgctgcttct	cctagtggcg	gcgtctgcga	tggtccggag	cgaggcctcg	60
15	gccaatctgg	geggegtgee	cagcaagaga	ttaaagatgc	agtacgccac	ggggeegetg	120
	ctcaagttcc	agatttgtgt	ttcc				144
					•		
	<210> 76						
90	<211> 1113						
20	<212> DNA						
	<213> Homo	sapiens					
	<400> 76						
	atggcctgga	ccaagtacca	getgtteetg	geegggetea	tgcttgttac	cggctccatc	60
2 5	aacacgctct	cggcaaaatg	ggcggacaat	ttcatggccg	agggctgtgg	agggagcaag	120
	gagcacagct	tccagcatcc	cttcctccag	gcagtgggca	tgttcctggg	agaattctcc	180
	tgcctggctg	ccttctacct	cctccgatgc	agagctgcag	ggcaatcaga	ctccagcgta	240
	gacccccagc	agcccttcaa	ccctcttctt	ttcctgcccc	cagcgctctg	tgacat gac a	300
	gggaccagcc	tcatgtatgt	ggctctgaac	atgaccagtg	cctccagctt	ccagatgctg	360
30	cggggtgcag	tgatcatatt	cactggcctg	ttctcggtgg	ccttcctggg	ccggaggctg	420
	gtgctgagcc	agtggctggg	catcctagee	accatcgcgg	ggctggtggt	cgtgggcctg	480
	gctgacctcc	tgagcaagca	cgacagtcag	cacaagctca	gcgaagtgat	cacaggggac	540
	ctgttgatca	tcatggccca	gatcatcgtt	gccatccaga	tggtgctaga	ggagaagttc	600
	gtctacaaac	acaatgtgca	cccactgcgg	gcagttggca	ctgagggcct	ctttggcttt	660
35	gtgatcctct	ccctgctgct	ggtgcccatg	tactacatcc	ccgccggctc	cttcagcgga	720

aaccctcgtg	ggacactgga	ggatgcattg	gacgccttct	gccaggtggg	ccagcagccg	780
ctcattgccg	tggcactgct	gggcaacatc	agcagcattg	ccttcttcaa	cttcgcaggc	840
atcagcgtca	ccaaggaact	gagegeeace	acccgcatgg	tgttggacag	cttgcgcacc	900
gttgtcatct	gggcactgag	cctggcactg	ggctgggagg	ccttccatgc	actgcagatc	960
cttggcttcc	tcatactcct	tataggcact	gccctctaca	atgggctaca	ccgtccgctg	1020
ctgggccgcc	tgtccagggg	ceggeceetg	gcagaggaga	gcgagcagga	gagactgctg	1080
ggtggcaccc	gcactcccat	caatgatgcc	agc			1113
<210> 77						
<211> 270						
<212> DNA						
<213> Homo	sapiens					
<400> 77						
						60
						120
						180
gcaacttttg	accctgtgga	caacattgtc	ttcaatatgg	ctgctggctc	tgccccgatg	240
cagctccacc	ttcgtgctac	catccgcatg				270
<213> Homo	sapiens					
						60
						60 120
						180
						240
						300
					•	360
						420
						480
acgtgcacag	tcatcttcat	cgtgtggggc	greeragree	acctggtgat	CCCACCCTTC	540
	ctcattgceg atcagcgtca gttgtcatct cttggctcc ctgggccgcc ggtggcaccc <210> 77 <211> 270 <212> DNA <213> Homo <400> 77 atgttcacc taccagtgcc gaggtcact gcaacttttg cagctcacc <210> 78 <211> 1497 <212> DNA <213> Homo <400> 78 atgtgcacc gaggtgcacc cacc cagaagtgccacc cacc	cteatige giggeactget ateaggete ecaaggaact ggggeege teategggg ggtggeeee geacteeat 210> 77 <211> 270 <211> 270 <212> DNA <213> Homo sapiens <400> 77 atgtteace aaatttggge taceagtge etggeeact tgggeeagtg geactttg accetgga accag gaggteeac tteggge etgetgee etgeeagtg eagatette acagtge atetgeeact tgggeeatet gegatette gegatette acgaggtg tatetgaa etagaggtg tatetgaa etagaggtg tatetgatge accag accag etggeeaacttte accagtge accag etggeeact tagaggtg tatetgaa etagaggtg tatetgatge accagaagtge actggeeaa etagaggtg tatetgatge accagaagtge egetetgeet geeaactga tagggeeate tagggeeate tagaggtg tatetgatge accagaagtge egetetgeet geeaagagetg egetetgeet geeaagagaget tagggeeagtt	ctcattgceg tggcactgct gggcacacac gttgtcatct gggcactgag cctggcactg cttggctcc tcatactcct tataggcact ggtggcaccc ggtggcaccc ggcactcacccac tgggcaccc gcactcaccac catgggcaccc gcactcacac catgggcaccc gcactcacac catgggcaccc gcactcacac catgggcaccc gcactcacac catgggcaccc acactcacac catgggcaccc acactcacac catgggcaccc tatgggcacacac catgggcacacac catggggaccacac catgggcacacac ggggaccacac ggggaccacac ggggaccacac ggggaccacac ggggaccacac ggggaccacac catggacacac ggggaccacac catggagacacac ggggaccacac ggggaccacac ggggaccacac cagaagcac actggcacaa ggagtcacac cagaagcag actggcacaa ggagtcacac cagaagcag actggcacaa gaccaccac gacagagaca actggcacaa gaccaccac cagaagacac actggaccaa gaccaccac cagaagacacac actggaccaa actggcacaa gaccaccac gacagaacac actggaccaa actggcacaa gaccaccac gacagaacac actggacacac acacacacacac acacacacac acacacac	cteattgcg tgggaactgct agggaacacacacacacacacacacacacacacacacac	ctcattgccg tggcactgct gggcacacce agcagcattg cettetteaa atcagcgtca ccaaggaact gagcgcacce accegcatgg tgttggacag gttgtcatct tggcactgag ccttcactg gcctctaca atgggcacg cttggccqcc tgtccagggg ccgcccctg gcagaggaga gcgagcagga ggtggcaccc gcactcccat agc ccttcactg c210> 77 c211> 270 c212> DNA cccttacac cactgagaca agc c400> 77 agttccacc aaatttggge agctctgctc tacttctatg gtattatcct taccagtgcc ctgagcacag tcaactgaca actctgggeg tggatgggaa gaggtccact tgggcaatg gtacttatc gcaggggag ctcccaccaa gaggtccacc ttgggcaatg gtacttatc tcaatatgg ctccaccaa gagacttttg accttgtga caacattgt ttcaatatgg ctgctggcacaa cagctcacac ttcgtgacac gcagagaac ctgctggcacaa ctgctggcacaa c210> 78 c211> 1497 c212> DNA c213> Homo sapceccg	<210> 77 <211> 270 <212> DNA <213> Homo sapiens <400> 77 atgttccacc aaatttgggc agctctgctc tacttctatg gtattatcct taactccatc taccagtgcc ctgagcacag tcaactgaca actctgggcg tggatgggaa ggagttcca gaggtccact tgggccagtg gtactttatc gcaggggcag ctcccaccaa ggaggagttg gcaacttttg accctgtgga caacattgtc ttcaatatgg ctgctggctc tgccccgatg cagctccacc ttcgtgctac catccgcatg <210> 78 <211> 1497 <212> DNA <213> Homo sapiens

79/177

				,			
	gtattcatgg	tgactgaggg	gtggaactac	atcgagggcc	tctactactc	cttcatcacc	600
	atctccacca	teggettegg	tgactttgtg	gccggtgtga	accccagcgc	caactaccac	660
	gccctgtacc	gctacttcgt	ggagctctgg	atctacttgg	ggctggcctg	gctgtccctt	720
	tttgtcaact	ggaaggtgag	catgtttgtg	gaagtccaca	aagccattaa	gaagcggcgg	780
5	cggcgacgga	aggagtcctt	tgagagetee	ccacactccc	ggaaggccct	gcaggtgaag	840
	gggagcacag	cctccaagga	cgtcaacatc	ttcagctttc	tttccaagaa	ggaagagacc	900
	tacaacgacc	tcatcaagca	gatcgggaag	aaggccatga	agacaagcgg	gggtggggag	960
	acgggcccgg	gcccagggct	ggggcctcaa	ggeggtggge	tcccagcact	gececttee	1020
	ctggtgcccc	tggtagtcta	ctccaagaac	cgggtgccca	ccttggaaga	ggtgtcacag	1080
10	acactgagga	gcaaaggcca	cgtatcaagg	tccccagatg	aggaggctgt	ggcacgggcc	1140
	cctgaagaca	geteceetge	ccccgaggtg	ttcatgaacc	agctggaccg	catcagcgag	1200
	gaatgcgagc	catgggacgc	ccaggactac	cacccactca	tcttccagga	cgccagcatc	1260
	accttcgtga	acacggaggc	tggcctctca	gacgaggaga	cctccaagtc	ctcgctagag	1320
	gacaacttgg	caggggagga	gagcccccag	cagggggctg	aagccaaggc	gcccctgaac	1380
15	atgggcgagt	tecetecte	ctccgagtcc	accttcacca	gcactgagtc	tgagctctct	1440
	gtgccttacg	aacagctgat	gaatgagtac	aacaaggcta	acagccccaa	gggcaca	1497
	<210> 79						
	<211> 318						
20	<212> DNA						
	<213> Homo	sapiens					
	<400> 79						
	atggcgtctt	cgggagctgg	tgaccctctg	gattctaagc	gtggagaggc	cccgttcgct	60
25	cagcgtatcg	acccgactcg	ggagaagctg	acacccgage	aactgcattc	catgcggcag	120
	geggagettg	cccagtggca	gaaggteeta	ccacggcggc	gaacccggaa	categtgace	180
	ggcctaggca	teggggeeet	ggtgttggct	atttatggtt	acaccttcta	ctcgatttcc	240
	caggagcgtt	tcctagatga	gctagaagac	gaggccaaag	ctgcccgagc	ccgagctctg	300
	gcaagggcgt	cagggtcc					318
30							
	<210> 80						
	<211> 456						
	<212> DNA						

<213> Homo sapiens

	<400> 80	
	atggactatg tgtgctgtgc ttacaacaac ataaccggca ggcaagatga aactcatttc	60
	acagttatca tcacttccgt aggactggag aagcttgcac agaaaggaaa atcattgtca	120
	cetttageaa gtataactgg aatateacta tttttgatta tateeatgtg tettetette	180
5	ctatggaaaa aatatcaacc ctacaaagtt ataaaacaga aactagaagg caggccagaa	240
	acagaataca ggaaagetea aacattttea ggeeatgaag atgetetgga tgaettegga	300
	atatatgaat ttgttgcttt tccagatgtt tctggtgttt ccaggatccc aagcaggtct	360
	gttecageet etgattgtgt ateggggeaa gatttgeaca gtacagtgta tgaagttatt	420
	cagcacatcc ctgcccagca gcaagaccat ccagag	456
10		
	<210> 81	
	<211> 1436	
	<212> DNA	
	<213> Homo sapiens	
15	<220>	
	<221> CDS	
	<222> (66)(989)	
	<400> 81	
20	gcactteggg gegegteact eggageggeg ggteeegtet egaeaggtet tetetgttgg	60
	ttgaa atg tot atg att tta tot goo toa gto att ogt gto aga gat	107
	Met Ser Met Ile Leu Ser Ala Ser Val Ile Arg Val Arg Asp	
	1 5 10	
	gga ctg cca ctt tct gct tct act gat tat gaa caa agc aca gga atg	155
25	Gly Leu Pro Leu Ser Ala Ser Thr Asp Tyr Glu Gln Ser Thr Gly Met	
	15 20 25 30	
	cag gag tgc aga aag tat ttt aaa atg ctt tcg agg aaa ctt gct caa	203
	Gln Glu Cys Arg Lys Tyr Phe Lys Met Leu Ser Arg Lys Leu Ala Gln	
	35 40 45	
30	ctt cct gat aga tgt aca ctg aaa act gga cat tat aac att aat ttt	251
	Leu Pro Asp Arg Cys Thr Leu Lys Thr Gly His Tyr Asn Ile Asn Phe	
	50 55 60	
	att age tet etg gga gtg age tae atg atg ttg tge act gaa aat tae	299
	Ile Ser Ser Leu Gly Val Ser Tyr Met Met Leu Cys Thr Glu Asn Tyr	
35	65 70 75	

	CCa	aat	gcc	CLC	gee	ננט	בטנ	LLC	ecg	yac	gag	CLL	cay	aag	gag	LLC	34 /
	Pro	Asn	Val	Leu	Ala	Phe	Ser	Phe	Leu	Asp	Glu	Leu	Gln	Lys	Glu	Phe	
		80					85					90					
	att	act	act	tat	aac	atg	atg	aag	aca	aat	act	gct	gtc	aga	cca	tac	395
5	Ile	Thr	Thr	Tyr	Asn	Met	Met	Lys	Thr	Asn	Thr	Ala	Val	Arg	Pro	Tyr	
	95					100					105					110	
	tgt	ttc	att	gaa	ttt	gat	aac	ttc	att	cag	agg	acc	aag	cag	cga	tat	443
	Cys	Phe	Ile	Glu	Phe	Asp	Asn	Phe	Ile	Gln	Arg	Thr	Lys	Gln	Arg	Tyr	
					115					120					125		
10	aat	aat	ccc	agg	tct	ctt	tca	aca	aag	ata	aat	ctt	tct	gac	atg	cag	491
	Asn	Asn	Pro	Arg	Ser	Leu	Ser	Thr	Lys	Ile	Asn	Leu	Ser	Asp	Met	Gln	
				130					135					140			
	acg	gaa	atc	aag	ctg	agg	cct	cct	tat	caa	att	tcc	atg	tgc	gaa	ctg	539
	Thr	Glu	Ile	Lys	Leu	Arg	Pro	Pro	Tyr	Gln	Ile	Ser	Met	Cys	Glu	Leu	
15			145					150					155				
	ggg	tca	gcc	aat	gga	gtc	aca	tca	gca	ttt	tct	gtt	gac	tgt	aaa	ggt	587
	Gly	Ser	Ala	Asn	Gly	Val	Thr	Ser	Ala	Phe	Ser	Val	Asp	Cys	Lys	Gly	
		160					165					170					
	gct	ggt	aag	att	tct	tct	gct	cac	cag	cga	ctg	gaa	cca	gca	act	ctg	635
20	Ala	Gly	Lys	Ile	Ser	Ser	Ala	His	Gln	Arg	Leu	Glu	Pro	Ala	Thr	Leu	
	175					180					185					190	
	tca	ggg	att	gta	gga	ttt	atc	ctt	agt	ctt	tta	tgt	gga	gct	ctg	aat	683
	Ser	Gly	Ile	Val	Gly	Phe	Ile	Leu	Ser	Leu	Leu	Cys	Gly	Ala	Leu	Asn	
					195					200					205		
25	tta	att	cga	ggc	ttt	cat	gct	ata	gaa	agt	ctc	ctg	cag	agt	gat	ggt	731
	Leu	Ile	Arg	Gly	Phe	His	Ala	Ile	Glu	Ser	Leu	Leu	Gln	Ser	Asp	Gly	
				210					215					220			
	gat	gat	ttt	aat	tac	atc	att	gca	ttt	ttc	ctt	gga	aca	gca	gcc	tgc	779
	Asp	Asp	Phe	Asn	Tyr	Ile	Ile	Ala	Phe	Phe	Leu	Gly	Thr	Ala	Ala	Cys	
30			225					230					235				
	ctt	tac	cag	tgt	tat	tta	ctt	gtc	tac	tac	acc	ggc	tgg	cgg	aat	gtc	827
	Leu	Tyr	Gln	Cys	Tyr	Leu	Leu	Val	Tyr	Tyr	Thr	Gly	Trp	Arg	Asn	Val	
		240					245					250					
	aaa	tct	ttt	ttg	act	ttt	ggc	tta	atc	tgt	cta	tgc	aac	atg	tat	ctc	875
35	Lys	Ser	Phe	Leu	Thr	Phe	Gly	Leu	Ile	Cys	Leu	Cys	Asn	Met	Tyr	Leu	

	255 260 265 270	
	tat gaa ctg cgc aac ctc tgg cag ctt ttc ttt cat gtg act gtg gga	923
	Tyr Glu Leu Arg Asn Leu Trp Gln Leu Phe Phe His Val Thr Val Gly	
	275 280 285	
5	gca ttt gtt aca cta cag atc tgg cta agg caa gcc cag ggc aag gct	971
	Ala Phe Val Thr Leu Gln Ile Trp Leu Arg Gln Ala Gln Gly Lys Ala	
	290 295 300	
	ccc gat tat gat gtc tgacaccatc cttcagatct attgccttgg cttc	1020
	Pro Asp Tyr Asp Val	
10	305	
	agggggataa ggagggaaca tatcataact gcactgtgat gaagaagctg ttccccacag	1080
	aggagaaget etgetttett teteteeaae ttteettttt taaaateage atgatgtgee	1140
	tgtgagcatg gaagagteet eteagaagaa tgttggeeat gagaetatea tteagaggag	1200
	gaggggattt ctctcttcaa ggccataaca gtggaagaac agtcatatgc cattggaagt	1260
15	cttggccagc agtcctgaat ccttcctgaa gagttcagaa aatagatgtg gtattgctct	1320
	gaggaccagg caggaggaac tctacaacct gagtttgcct ttgtgaggca ttagtataga	1380
	ccaaataaaa agctgcagaa attggaaagt ttatgtttta aataaatgac tgtgat	1436
	<210> 82	
20	<211> 997	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
35	<221> CDS	
25	<222> (87)(638)	
	4400- 00	
	<400> 82	60
	gagacaaagc ggagaacgct ggtgggcctg ttgtggagta cgctttggac tgagaagcat	110
30	cgaggctata ggacgcagct gttgcc atg acg gcc cag ggg ggc ctg gtg Met Thr Ala Gln Gly Gly Leu Val	110
50	1 5	
	-	158
	gct aac cga ggc cgg cgc ttc aag tgg gcc att gag cta agc ggg cct Ala Asn Arg Gly Arg Arg Phe Lys Trp Ala Ile Glu Leu Ser Gly Pro	1.70
	10 15 20	
35	gga gga ggc agc agg ggt cga agt gac cgg ggc agt ggc cag gga gac	206
<i></i>	gga gga qqc aqc agg ggc cga agc gac cyy yyc ayc yyc cay yya gac	200

	Gly	Gly	Gly	Ser	Arg	Gly	Arg	Ser	Asp	Arg	Gly	Ser	Gly	Gln	Gly	Asp	
	25					30					3 5					40	
	tcg	ctc	tac	cca	gtc	ggt	tac	ttg	gac	aag	caa	gtg	cct	gat	acc	agc	254
	Ser	Leu	Tyr	Pro	Val	Gly	Tyr	Leu	Asp	Lys	Gln	Val	Pro	Asp	Thr	Ser	
5					45					50					55		
	gtg	caa	gag	aca	gac	cgg	atc	ctg	gtg	gag	aag	cgc	tgc	tgg	gac	atc	302
	Val	Gln	Glu	Thr	Asp	Arg	Ile	Leu	Val	Glu	Lys	Arg	Cys	Trp	Asp	Ile	
				60					65					70			
	gcc	ttg	ggt	ccc	ctc	aaa	cag	att	CCC	atg	aat	ctc	ttc	atc	atg	tac	350
10	Ala	Leu	Gly	Pro	Leu	Lys	Gln	Ile	Pro	Met	Asn	Leu	Phe	Ile	Met	Tyr	
			75					80					85				
	atg	gca	ggc	aat	act	atc	tcc	atc	ttc	cct	act	atg	atg	gtg	tgt	atg	398
	Met	Ala	Gly	Asn	Thr	Ile	Ser	Ile	Phe	Pro	Thr	Met	Met	Val	Cys	Met	
		90					95					100					
15	atg	gcc	tgg	cga	ccc	att	cag	gca	ctt	atg	gcc	att	tca	gcc	act	ttc	446
	Met	Ala	Trp	Arg	Pro	Ile	Gln	Ala	Leu	Met	Ala	Ile	Ser	Ala	Thr	Phe	
	105					110					115					120	
				_											gtc		494
	Lys	Met	Leu	Glu	Ser	Ser	Ser	Gln	Lys	Phe	Leu	Gln	Gly	Leu	Val	Tyr	
20					125					130					135		
															tgc		542
	Leu	Ile	Gly	Asn	Leu	Met	Gly	Leu	Ala	Leu	Ala	Val	Tyr	Lys	Cys	Gln	
				140					145					150			
				_											ttc		590
25	Ser	Met	Gly	Leu	Leu	Pro	Thr	His	Ala	Ser	Asp	Trp		Ala	Phe	Ile	
			155					160					165				
																tgaac	640
	Glu	Pro	Pro	Glu	Arg	Met	Glu	Phe	Ser	Gly	Gly		Leu	Leu	Leu		
		170					175					180					
30																aagcc	700
																agactc	760
																aacaca	820
																ttcca	880
																getget	940
35	aaat	caa	gaa d	etgtt	gcag	gc at	ctcc	tttc	aat	aaat	taa	atg	gttga	aga a	acaat	ge	997

	<210> 83	
	<211> 1753	
	<212> DNA	
5	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (134)(1117)	
10	<400> 83	
	tetteagegt ectaceegeg geactggetg egagegeegg gecacetgeg agtgtgegea	60
	gggaetetgg acaceegegg eggegagetg agggageagt etecaegagg acceaggegg	120
	accetetgge gee atg ege gee ete eee gge etg etg gag gee agg geg	169
	Met Arg Ala Leu Pro Gly Leu Leu Glu Ala Arg Ala	
15	1 5 10	
	egt acg ecc egg etg etc etc etc eag tge ett etc get gec geg ege	217
	Arg Thr Pro Arg Leu Leu Leu Gln Cys Leu Leu Ala Ala Arg	
	15 20 25	
	cca age teg geg gae gge agt gee eea gat teg eet ttt aca agt eea	265
20	Pro Ser Ser Ala Asp Gly Ser Ala Pro Asp Ser Pro Phe Thr Ser Pro	
	30 35 40	
	cct ctc aga gaa gaa ata atg gca aat aac ttt tcc ttg gag agt cat	313
	Pro Leu Arg Glu Glu Ile Met Ala Asn Asn Phe Ser Leu Glu Ser His	
0.5	45 50 55 60	
25	aac ata tca ctg act gaa cat tct agt atg cca gta gaa aaa aat atc	361
	Asn Ile Ser Leu Thr Glu His Ser Ser Met Pro Val Glu Lys Asn Ile	
	65 70 75	400
	act tta gaa agg cct tct aat gta aat ctc aca tgc cag ttc aca aca	409
30	Thr Leu Glu Arg Pro Ser Asn Val Asn Leu Thr Cys Gln Phe Thr Thr 80 85 90	
30		457
	tot ggg gat ttg aat gca gta aat gtg act tgg aaa aaa gat ggt gaa	457
	Ser Gly Asp Leu Asn Ala Val Asn Val Thr Trp Lys Lys Asp Gly Glu 95 100 105	
	95 100 105 caa ctt gag aat aat tat ctt gtc agt gca aca gga agc acc ttg tat	505
35	Gln Leu Glu Asn Asn Tyr Leu Val Ser Ala Thr Gly Ser Thr Leu Tyr	303
JU	orn ned ord wan wan the ned har set wro the ork set the per the	

		110					115					120					
	acc	caa	tac	agg	ttc	acc	atc	att	aat	agc	aaa	caa	atg	gga	agt	tat	553
	Thr	Gln	Tyr	Arg	Phe	Thr	Ile	Ile	Asn	Ser	Lys	Gln	Met	Gly	Ser	Tyr	
	125					130					135					140	
5	tct	tgt	ttc	ttt	cga	gag	gaa	aag	gaa	caa	agg	gga	aca	ttt	aat	ttc	601
	Ser	Cys	Phe	Phe	Arg	Glu	Glu	Lys	Glu	Gln	Arg	Gly	Thr	Phe	Asn	Phe	
					145					150					155		
	aaa	gtc	cct	gaa	ctt	cat	ggg	aaa	aac	aag	cca	ttg	atc	tct	tac	gta	649
	Lys	Val	Pro	Glu	Leu	His	Gly	Lys	Asn	Lys	Pro	Leu	Ile	Ser	Tyr	Val	
10				160					165					170		•	
	ggg	gat	tct	act	gtc	ttg	aca	tgt	aaa	tgt	caa	aat	tgt	ttt	cct	tta	697
	Gly	Asp	Ser	Thr	Val	Leu	Thr	Cys	Lys	Cys	Gln	Asn	Cys	Phe	Pro	Leu	
			175					180					185				
	aat	tgg	acc	tgg	tac	agt	agt	aat	ggg	agt	gta	aag	gtt	cct	gtt	ggt	745
15	Asn	Trp	Thr	Trp	Tyr	Ser	Ser	Asn	Gly	Ser	Val	Lys	Val	Pro	Val	Gly	
		190					195					200					
	gtt	caa	atg	aat	aaa	tat	gtg	atc	aat	gga	aca	tat	gct	aac	gaa	aca	793
	Val	Gln	Met	Asn	Lys	Tyr	Val	Ile	Asn	Gly	Thr	Tyr	Ala	Asn	Glu	Thr	•
	205					210					215					220	
20	aag	ctg	aag	ata	aca	caa	ctt	ttg	gag	gaa	gat	ggg	gaa	tct	tac	tgg	841
	Lys	Leu	Lys	Ile	Thr	Gln	Leu	Leu	Glu	Glu	Asp	Gly	Glu	Ser	Tyr	Trp	
					225					230					235		
	tgc	cgt	gca	cta	ttc	caa	tta	ggc	gag	agt	gaa	gaa	cac	att	gag	ctt	889
	Cys	Arg	Ala	Leu	Phe	Gln	Leu	Gly	Glu	Ser	Glu	Glu	His	Ile	Glu	Leu	
2 5				240					245					250			
	gtg	gtg	ctg	agc	tat	ttg	gtg	ccc	ctc	aaa	cca	ttt	ctt	gta	ata	gtg	937
	Val	Val	Leu	Ser	Tyr	Leu	Val	Pro	Leu	Lys	Pro	Phe	Leu	Val	Ile	Val	
			255					260					265				
	gct	gag	gtg	att	ctt	tta	gtg	gcc	acc	att	ctg	ctt	tgt	gaa	aag	tac	985
30	Ala	Glu	Val	Ile	Leu	Leu	Val	Ala	Thr	Ile	Leu	Leu	Cys	Glu	Lys	Tyr	
		270					275					280					
	aca	caa	aag	aaa	aag	aag	cac	tca	gat	gag	ggg	aaa	gaa	ttt	gag	cag	1033
	Thr	Gln	Lys	Lys	Lys	Lys	His	Ser	Asp	Glu	Gly	Lys	Glu	Phe	Glu	Gln	
	285					290					295					300	
35	att	gaa	cag	ctg	aaa	tca	gat	gat	agc	aat	ggt	ata	gaa	aat	aat	gtc	1081

	lie Giu Gin Leu Lys Ser Asp Asp Ser Asn Giy lie Giu Ash Ash Val	
	305 310 315	
	ccc agg cat aga aaa aat gag tct ctg ggc cag tgaatacaaa acatca	.1130
	Pro Arg His Arg Lys Asn Glu Ser Leu Gly Gln	
5	320 325	
	tgtcgagaat cattggaaga tatacagagt tcgtatttca gctttattta tccttcctgt	1190
	taagageete tgagttttta gttttaaaag gatgaaaage ttatgeaaca tgeteageag	1250
	gagetteate aacgatatat gteagateta aaggtatatt tteattetgt aattatgtta	1310
	cataaaagca atgtaaatca gaataaatat gttagaccag aataaaatta attatattct	1370
10	ggtetteaaa ggacacacag aacagatate agcagaatea ettaataett catagaacaa	1430
	aaatcactca aaacctgttt ataaccaaag aattcatgaa aaagaaagcc tttgccattt	1490
	gtcttagaaa gttatttttt taaaaaaaat catacttact attagtatct atggaagtat	1550
	atgtaacaat ttttatgtaa aggtcatett tetgtgatag tgaaaaaata tgtetttaet	1610
	aagttgaaat gaatacttte tgeetttget eatgatagtt attetacaat eteeacaaga	1670
15	aaaatatacc ttttatccgg aaatattggt ttaaggcaaa taaataaaac tgtgcttgct	1730
	ctaaagctct gcactacaaa agc	1753
	<210> 84	
	<211> 1117	
20	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (62)(733)	
25		
	<400> 84	
	cgtcccactt gtgttctctc tcctggtgca gagttgcaag caagtttatc ggagtatcgc	60
	c atg aag tto gto eec tgo etc etg etg gtg acc ttg tee tge etg	106
	Met Lys Phe Val Pro Cys Leu Leu Leu Val Thr Leu Ser Cys Leu	
30	1 5 10 15	
	ggg act ttg ggt cag gcc ccg agg caa aag caa gga agc act ggg gag	154
	Gly Thr Leu Gly Gln Ala Pro Arg Gln Lys Gln Gly Ser Thr Gly Glu	
	20 25 30	
	gaa tte cat tte cag act gga ggg aga gat tee tge act atg egt eee	202
35	Glu Phe His Phe Glu Thr Glu Glu Arg Asp Ser Cus Thr Met Arg Pro	

				35					40					45			
	agc	agc	ttg	ggg	caa	ggt	gct	gga	gaa	gtc	tgg	ctt	cgc	gtc	gac	tge	250
	Ser	Ser	Leu	Gly	Gln	Gly	Ala	Gly	Glu	Val	Trp	Leu	Arg	Val	Asp	Cys	
			50					55					60				
5	cgc	aac	aca	gac	cag	acc	tac	tgg	tgt	gag	tac	agg	ggg	cag	ccc	agc	298
	Arg	Asn	Thr	Asp	Gln	Thr	Tyr	Trp	Cys	Glu	Tyr	Arg	Gly	Gln	Pro	Ser	
		65					70					7 5					
	atg	tgc	cag	gct	ttc	gct	gct	gac	ccc	aaa	tct	tac	tgg	aat	caa	gcc	346
	Met	Cys	Gln	Ala	Phe	Ala	Ala	Asp	Pro	Lys	Ser	Tyr	Trp	Asn	Gln	Ala	
10	80					85					90					95	
	ctg	cag	gag	ctg	agg	cgc	ctt	cac	cat	gcg	tgc	cag	999	gcc	ccg	gtg	394
	Leu	Gln	Glu	Leu	Arg	Arg	Leu	His	His	Ala	Cys	Gln	Gly	Ala	Pro	Val	
					100					105					110		
	ctt	agg	cca	tcc	gtg	tgc	agg	gag	gct	gga	ccc	cag	gcc	cat	atg	cag	442
15	Leu	Arg	Pro	Ser	Val	Cys	Arg	Glu	Ala	Gly	Pro	Gln	Ala	His	Met	Gln	
				115					120					125	÷		
	cag	gtg	act	tcc	agc	ctc	aag	ggc	agc	cca	gag	ccc	aac	cag	cag	cct	490
	Gln	Val	Thr	Ser	Ser	Leu	Lys	Gly	Ser	Pro	Glu	Pro	Asn	Gln	Gln	Pro	
			130					135					140				
20	gag	gct	ggg	acg	cca	tct	ctg	agg	ccc	aag	gcc	aca	gtg	aaa	ctc	aca	538
	Glu	Ala	Gly	Thr	Pro	Ser	Leu	Arg	Pro	Lys	Ala	Thr	Val	Lys	Leu	Thr	
		145					150					155					
	gaa	gca	aca	cag	ctg	gga	aag	gac	tcg	atg	gaa	gag	ctg	gga	aaa	gcc	586
	Glu	Ala	Thr	Gln	Leu	Gly	Lys	Asp	Ser	Met	Glu	Glu	Leu	Gly	Lys	Ala	
25	160					165					170					175	
	aaa	ccc	acc	acc	cga	ccc	aca	gcc	aaa	cct	acc	cag	cct	gga	CCC	agg	634
	Lys	Pro	Thr	Thr	Arg	Pro	Thr	Ala	Lys	Pro	Thr	Gln	Pro	Gly	Pro	Arg	
					180					185					190		
	ccc	gga	ggg	aat	gag	gaa	gca	aag	aag	aag	gcc	tgg	gaa	cat	tgt	tgg	682
30	Pro	Gly	Gly	Asn	Glu	Glu	Ala	Lys	Lys	Lys	Ala	Trp	Glu	His	Cys	Trp	
				195					200					205			
	aaa	ccc	ttc	cag	gcc	ctg	tgc	gcc	ttt	ctc	atc	agc	ttc	ttc	cga	ggg	730
	Lys	Pro	Phe	Gln	Ala	Leu	Cys	Ala	Phe	Leu	Ile	Ser	Phe	Phe	Arg	Gly	
			210					215					220				
35	tgad	aggt	caa a	aagaa	caact	a ca	gato	tgad	cto	ctccc	tga	caga	acaac	ca t	ctct	tttta	790

	tattatgccg ctttcaatcc aacgttctca cactggaaga agagagtttc taatcagatg	850
	caacggccca aattcttgat ctgcagcttc tctgaagttt ggaaaagaaa ccttcctttc	910
	tggagtttge agagtteage aatatgatag ggaacaggtg etgatgggee caagagtgae	970
	aagcatacac aactacttat tatctgtaga agttttgctt tgttgatctg agccttctat	1030
5	gaaagtttaa atatgtaacg cattcatgaa tttccagtgt tcagtaaata gcagctatgt	1090
	gtgtgcaaaa taaaagaatg atttcag	1117
	<210> 85	
	<211> 1380	
10	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (43)(189)	
15		
	<400> 85	
	gcagtetgte tgagggegge egaagtgget ggeteattta ag atg agg ett etg	54
	Met Arg Leu Leu	
	1	
20	ctg ctt ctc cta gtg gcg gcg tct gcg atg gtc cgg agc gag gcc tcg	102
	Leu Leu Leu Val Ala Ala Ser Ala Met Val Arg Ser Glu Ala Ser	
	5 10 15 20	
	gcc aat ctg ggc ggc gtg ccc agc aag aga tta aag atg cag tac gcc	150
	Ala Asn Leu Gly Gly Val Pro Ser Lys Arg Leu Lys Met Gln Tyr Ala	
2 5	25 30 35	
	acg ggg ccg ctg ctc aag ttc cag att tgt gtt tcc tgag	190
	Thr Gly Pro Leu Leu Lys Phe Gln Ile Cys Val Ser	
	40 45	
00	gttataggeg ggtgtttgag gagtacatge gggttattag ceageggtae ceagacatee	250
30	gcattgaagg agagaattac ctccctcaac caatatatag acacatagca tctttcctgt	310
	cagtetteaa actagtatta ataggettaa taattgttgg caaggateet tttgetttet	370
	ttggcatgca agctcctagc atctggcagt ggggccaaga aaataaggtt tatgcatgta	430
	tgatggtttt ettettgage aacatgattg agaaceagtg tatgteaaca ggtgeatttg	490
0.5	agataacttt aaatgatgta cetgtgtggt ctaagetgga atetggteac ettecateca	550
35	tgcaacaact tgttcaaatt cttgacaatg aaatgaagct caatgtgcat atggattcaa	610

	teceacacea tegateatag caccacetat cageactgaa aactettttg cattaaggga	670
	tcattgcaag agcagcgtga ctgacattat gaaggcctgt actgaagaca gcaagctgtt	730
	agtacagace agatgettte ttggcagget egttgtacet ettggaaaac etcaatgcaa	790
	gatagtgttt cagtgctggc atattttgga attctgcaca ttcatggagt gcaataatac	850
5	tgtatagett tecceacete ecacaaaate acceagttaa tgtgtgtgtg tgtttttttt	910
	tttaaggtaa acattactac ttgtaacttt ttttcttagt catatttgaa aaagtagaaa	970
	attgagttac aatttgattt tttttccaaa gatgtctgtt aaatctgttg tgctttata	1030
	tgaatatttg ttttttatag tttaaaattg atcetttggg aatceagttg aagtteceaa	1090
	atactttata agagtttatc agacatetet aatttggeea tgteeagttt atacagttta	1150
10	caaaatatag cagatgcaag attatggggg aaatcctata ttcagagtac tctataaatt	1210
	tttgtgtatg tgtgtatgtg cgtgtgatta ccagagaact actaaaaaaa ccaactgctt	1270
	tttaaateet attgtgtagt taaagtgtea tgeettgaee aatetaatga attgattaat	1330
	taactgggcc tttatactta actaaataaa aaactaagca gatatgagtt	1380
15	<210> 86	
	<211> 1503	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
20	<221> CDS	
	<222> (51)(1166)	
	<400> 86	
	gtgaegggge eeggegeege taaetggage gaaeeeeage gteegeegae atg gee	56
25	Met Ala	
	1	
	tgg acc aag tac cag ctg ttc ctg gcc ggg ctc atg ctt gtt acc ggc	104
	Trp Thr Lys Tyr Gln Leu Phe Leu Ala Gly Leu Met Leu Val Thr Gly	
	5 10 15	
30	too ato aac acg ctc tog goa aaa tgg gog gac aat ttc atg goc gag	152
	Ser Ile Asn Thr Leu Ser Ala Lys Trp Ala Asp Asn Phe Met Ala Glu	
	20 25 30	
	ggc tgt gga ggg agc aag gag cac agc ttc cag cat ccc ttc ctc cag	200
	Gly Cys Gly Gly Ser Lys Glu His Ser Phe Gln His Pro Phe Leu Gln	
3 5	35 40 45 50	

	gca	gtg	ggc	atg	ttc	ctg	gga	gaa	ttc	tcc	tgc	ctg	gct	gcc	ttc	tac	248
	Ala	Val	Gly	Met	Phe	Leu	Gly	Glu	Phe	Ser	Cys	Leu	Ala	Ala	Phe	Tyr	
					55					60					65		
	ctc	ctc	cga	tgc	aga	gct	gca	ggg	caa	tca	gac	tcc	agc	gta	gac	ccc	296
5	Leu	Leu	Arg	Cys	Arg	Ala	Ala	Gly	Gln	Ser	Asp	Ser	Ser	Val	Asp	Pro	
				70					75					80			
	cag	cag	ccc	ttc	aac	cct	ctt	ctt	ttc	ctg	ccc	cca	gcg	ctc	tgt	gac	344
	Gln	Gln	Pro	Phe	Asn	Pro	Leu	Leu	Phe	Leu	Pro	Pro	Ala	Leu	Cys	Asp	
			85					90					95				
10	_				_		_								agt		392
	Met	Thr	Gly	Thr	Ser	Leu	Met	Tyr	Val	Ala	Leu	Asn	Met	Thr	Ser	Ala	
		100					105					110					
															ggc		440
	Ser	Ser	Phe	Gln	Met	Leu	Arg	Gly	Ala	Val		Ile	Phe	Thr	Gly		
15	115					120					125	•				130	
		_	-	_											tgg		488
	Phe	Ser	Val	Ala		Leu	Gly	Arg	Arg	•	Val	Leu	Ser	Gln	Trp	Leu	
					135					140					145		
2.5															gct		536
20	Gly	Ile	Leu		Thr	Ile	Ala	Gly		Val	Val	Val	Gly		Ala	Asp	
				150					155					160			-04
			_	_											atc		584
	Leu	Leu		Lys	His	Asp	Ser		His	Lys	Leu	Ser		Val	Ile	Thr	
0.5			165					170					175	_ • _		-4	622
25															cag		632
	GIÀ	_	Leu	Leu	He	He		Ala	GIN	тте	TIE		Ala	TTE	Gln	Met	
		180					185	4				190			a+a		680
															ctg		660
30	195	ьeu	GIU	GIU	гàг		vai	Tyr	гуз	urs	205	vai	UTP	FIO	Leu	210	
30						200				+++		a to	ata	+00	ctg		728
															Leu		,20
	viq	val	атА	THE	215	отй	т∈п	FIIE	ату	220	v a⊥	T 7.E	Ten	DET	225	204	
	ct~	ata	000	a+~		tec	ato	ccc	acc	_	tcc	tto	age	gga	aac	cct	776
35	_			_											Asn		
OO.	⊥eu	val	PIO	Met	TAT	TÀT	TTE	FIU	TIG	GIY	JUL	£ 11G	J-12		-1511		

				230					235					240			
	cgt (ggg	aca	ctg	gag	gat	gca	ttg	gac	gcc	ttc	tgc	cag	gtg	ggc	cag	824
	Arg (Gly	Thr	Leu	Glu	Asp	Ala	Leu	Asp	Ala	Phe	Cys	Gln	Val	Gly	Gln	
			245					250					255				
5	cag	ccg	ctc	att	gcc	gtg	gca	ctg	ctg	ggc	aac	atc	agc	agc	att	gcc	872
	Gln 1	Pro	Leu	Ile	Ala	Val	Ala	Leu	Leu	Gly	Asn	Ile	Ser	Ser	Ile	Ala	
	:	260					265					270					
	ttc 1	ttc	aac	ttc	gca	ggc	atc	agc	gtc	acc	aag	gaa	ctg	agc	gcc	acc	920
	Phe !	Phe	Asn	Phe	Ala	Gly	Ile	Ser	Val	Thr	Lys	Glu	Leu	Ser	Ala	Thr	
10	275					280					285					290	
	acc (cgc	atg	gtg	ttg	gac	agc	ttg	cgc	acc	gtt	gtc	atc	tgg	gca	ctg	968
	Thr I	Arg	Met	Val	Leu	Asp	Ser	Leu	Arg	Thr	Val	Val	Ile	Trp	Ala	Leu	
					295					300					305		
	agc (1016
15	Ser 1	Leu	Ala	Leu	Gly	Trp	Glu	Ala	Phe	His	Ala	Leu	Gln	Ile	Leu	Gly	
				310					315					320			
	ttc																1064
	Phe 1	Leu	Ile	Leu	Leu	Ile	Gly	Thr	Ala	Leu	Tyr	Asn		Leu	His	Arg	
			325					330					335				
20	ccg (1112
	Pro 1		Leu	Gly	Arg	Leu	Ser	Arg	Gly	Arg	Pro		Ala	Glu	Glu	Ser	
		340					345					350					
	gag																1160
	Glu	Gln	Glu	Arg	Leu		Gly	Gly	Thr	Arg		Pro	Ile	Asn	Asp		
2 5	355					360					365					370	
	agc	tgaç	ggtto	ccc t	ggag	ggctt	c ta	actgo	cacc	cgg	ggtgo	tcc	ttct	ccc			1210
	Ser																
	tgag	acto	gag d	gccad	cacaç	gg ct	ggto	gggcd	e dag	gaato	gecc	tato	ccca	aag g	geete	caccct	1270
30																ccaagt	1330
																gagtgc	1390
																agttg	1450
	aatt																1503

	7217 733	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
5	<221> CDS	
	<222> (40)(312)	
	<400> 87	
	gttaaggcac acagagcace agetecetee tgeetgaag atg tte cac caa att	54
10	Met Phe His Gln Ile	
	1 5	
	tgg gca get etg ete tae tte tat ggt att ate ett aae tee ate tae	102
	Trp Ala Ala Leu Leu Tyr Phe Tyr Gly Ile Ile Leu Asn Ser Ile Tyr	
	10 15 20	
15	cag tgc cct gag cac agt caa ctg aca act ctg ggc gtg gat ggg aag	150
	Gln Cys Pro Glu His Ser Gln Leu Thr Thr Leu Gly Val Asp Gly Lys	
	25 30 35	
	gag ttc cca gag gtc cac ttg ggc cag tgg tac ttt atc gca ggg gca	198
	Glu Phe Pro Glu Val His Leu Gly Gln Trp Tyr Phe Ile Ala Gly Ala	
20	40 45 50	
	get eee ace aag gag gag ttg gea act ttt gac eet gtg gac aac att	246
	Ala Pro Thr Lys Glu Glu Leu Ala Thr Phe Asp Pro Val Asp Asn Ile	
	55 60 65	
	gto tto aat atg got got ggo tot gco cog atg cag oto cac ott ogt	294
25	Val Phe Asn Met Ala Ala Gly Ser Ala Pro Met Gln Leu His Leu Arg	
	70 75 80 85	
	get ace ate ege atg tgagtggaaa gatgggetet gtgtgeeeeg g	340
	Ala Thr Ile Arg Met	
	90	
30	aaatggatet accaeetgae tgaagggage acagatetea gaactgaagg eegeeetgae	400
	atgaagactg agetetttte cageteatge eeaggtggaa teatgetgaa tgagacagge	460
	cagggttace agegetttet cetetacaat egeteaceae ateeteeega aaagtgtgtg	520
	gaggaattca agteeetgae tteetgeetg gaeteeaaag eettettatt gaeteetagg	580
	aatcaagagg cetgtgaget gtecaataae tgaeetgtaa etteatetaa gteeeeagat	640
35	gggtacaatg ggagetgagt tgttggaggg agaagetgga gaetteeage teeageteee	700

	actcaagata ataaagataa tttttcaatc ctc	733
	<210> 88	
	<211> 3768	
5	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (358)(1857)	
10		
	<400> 88	
	gctagtggcg cgcggaggag cgacgcgtgg agaagcggcc cacgtgtctg cccagagtca	60
	agtectgtgt tetteceget cettaegeat cegeggteca gggegeeett teageceege	120
	tggtgttege ccaeceeggg cegegtgagt ggggeeceae geageteece gcaeteegtg	180
15	ggccaacttg gccaagcaac tctgtccggg gagcggtgct tgcggggggt gagtaccggg	240
	cactgegeat geggagetee aaatteaaae agetgtttte agaggetgga gggegggegg	300
	actggtagca gctggggcta ggagaggctt tetetaggag gcggccgctc gggagcc	357
20	atg gtg gac egg gge eet etg ete ace teg gee ate ate tte tae etg	405
	Met Val Asp Arg Gly Pro Leu Leu Thr Ser Ala Ile Ile Phe Tyr Leu	
	1 5 10 15	
	gcc atc ggg gcg gcg atc ttc gaa gtg ctg gag gag cca cac tgg aag	453
0.5	Ala Ile Gly Ala Ala Ile Phe Glu Val Leu Glu Glu Pro His Trp Lys	
25	20 25 30	
	gag gcc aag aaa aac tac tac aca cag aag ctg cat ctg ctc aag gag	501
	Glu Ala Lys Lys Asn Tyr Tyr Thr Gln Lys Leu His Leu Lys Glu	
	35 40 45	
30	The Dre Cur Law Classical Classical Control Co	549
00	Phe Pro Cys Leu Gly Gln Glu Gly Leu Asp Lys Ile Leu Glu Val Val 50 55 60	
	tet gat get gea gga eag ggt gtg gee ate aca ggg aac eag ace tte Ser Asp Ala Ala Gly Gln Gly Val Ala Ile Thr Gly Asn Gln Thr Phe	597
	65 70 75 80	
35	aac aac tgg aac tgg ccc aat gca atg att ttt gca gcg acc gtc att	645

	Asn	Asn	Trp	Asn	Trp	Pro	Asn	Ala	Met	Ile	Phe	Ala	Ala	Thr	Val	Ile	
					85					90					95		
	acc	acc	att	gga	tat	ggc	aat	gtg	gct	ccc	aag	acc	ccc	gcc	ggt	cgc	693
	Thr	Thr	Ile	Gly	Tyr	Gly	Asn	Val	Ala	Pro	Lys	Thr	Pro	Ala	Gly	Arg	
5				100					105					110			
	ctc	ttc	tgt	gtt	ttc	tat	ggt	ctc	ttc	ggg	gtg	ccg	ctc	tgc	ctg	acg	741
	Leu	Phe	Cys	Val	Phe	Tyr	Gly	Leu	Phe	Gly	Val	Pro	Leu	Cys	Leu	Thr	
			115					120					125				
	tgg	atc	agt	gcc	ctg	ggc	aag	ttc	ttc	ggg	gga	cgt	gcc	aag	aga	cta	789
10	Trp	Ile	Ser	Ala	Leu	Gly	Lys	Phe	Phe	Gly	Gly	Arg	Ala	Lys	Arg	Leu	
		130					135					140					
		_				_	_			_	-	cgg	_		_		837
	_	Gln	Phe	Leu	Thr	Lys	Arg	Gly	Val	Ser		Arg	Lys	Ala	Gln		
	145					150					155					160	
15	acg	tgc	aca	gtc	atc	ttc	atc	gtg	tgg	ggc	gtc	cta	gtc	cac	ctg	gtg	885
	Thr	Cys	Thr	Val		Phe	Ile	Val	Trp	_	Val	Leu	Val	His		Val	
					165					170					175		
					-		_					tgg					933
	Ile	Pro	Pro		Val	Phe	Met	Val		Glu	Gly	Trp	Asn		Ile	Glu	
20				180					185					190			
												atc					981
	Gly	Leu	-	Tyr	Ser	Phe	Ile		Ile	Ser	Thr	Ile	_	Phe	Gly	Asp	
			195					200					205				
~ =			_					_	_			cac	_				1029
25	Phe		Ala	Gly	Val	Asn		Ser	Ala	Asn	Tyr	His	Ala	Leu	Tyr	Arg	
		210					215					220					
									_		_	gcc	-				1077
		Phe	Val	Glu	Leu		Ile	Tyr	Leu	Gly		Ala	Trp	Leu	Ser		
• •	225					230					235					240	
30		-			_		_	_			_	gtc					1125
	Phe	Val	Asn	Trp	Lys	Val	Ser	Met	Phe		Glu	Val	His	Lys		Ile	
					245					250					255		
	_	_										gag					1173
	Lys	Lys	Arg	Arg	Arg	Arg	Arg	Lys		Ser	Phe	Glu	Ser		Pro	His	
35				260					265					270			

	tcc	cgg	aag	gcc	ctg	cag	gtg	aag	ggg	agc	aca	gcc	tcc	aag	gac	gtc	1221
	Ser	Arg	Lys	Ala	Leu	Gln	Val	Lys	Gly	Ser	Thr	Ala	Ser	Lys	Asp	Val	
			275					280					285				
	aac	atc	ttc	agc	ttt	ctt	tcc	aag	aag	gaa	gag	acc	tac	aac	gac	ctc	1269
5	Asn	Ile	Phe	Ser	Phe	Leu	Ser	Lys	Lys	Glu	Glu	Thr	Tyr	Asn	Asp	Leu	
		290					295					300					
	atc	aag	cag	atc	ggg	aag	aag	gcc	atg	aag	aca	agc	ggg	ggt	ggg	gag	1317
	Ile	Lys	Gln	Ile	Gly	Lys	Lys	Ala	Met	Lys	Thr	Ser	Gly	Gly	Gly	Glu	
	305					310					315					320	
10	acg	ggc	ccg	ggc	cca	999	ctg	ggg	cct	caa	ggc	ggt	aaa	ctc	cca	gca	1365
	Thr	Gly	Pro	Gly	Pro	Gly	Leu	Gly	Pro	Gln	Gly	Gly	Gly	Leu	Pro	Ala	
					325					330					335		
	ctg	ccc	cct	tcc	ctg	gtg	ccc	ctg	gta	gtc	tac	tcc	aag	aac	cgg	gtg	1413
	Leu	Pro	Pro	Ser	Leu	Val	Pro	Leu	Val	Val	Tyr	Ser	Lys	Asn	Arg	Val	
15				340					345					350			
	ccc	acc	ttg	gaa	gag	gtg	tca	cag	aca	ctg	agg	agc	aaa	ggc	cac	gta	1461
	Pro	Thr	Leu	Glu	Glu	Val	Ser	Gln	Thr	Leu	Arg	Ser		Gly	His	Val	
			355					360					365				
					_	_	gag										1509
20	Ser	Arg	Ser	Pro	Asp	Glu	Glu	Ala	Val	Ala	Arg		Pro	Glu	Asp	Ser	
		370					375					380					
							ttc										1557
		Pro	Ala	Pro	Glu		Phe	Met	Asn	Gln		Asp	Arg	Ile	Ser		
o.=	385					390					395					400	
25							gcc										1605
	Glu	Cys	Glu	Pro		Asp	Ala	Gln	Asp		Hıs	Pro	Leu	Ile		Gin	
					405					410					415		1653
							gtg -										1653
20	Asp	Ala	Ser		Thr	Phe	Val	Asn		GIu	А1а	GIY	Leu		Asp	G1u	
30				420					425					430			1701
				_		_	cta -		-								1701
	GIU	Thr		Lys	Ser	Ser	Leu		Asp	Asn	Leu	ATA		GIU	GIU	ser	
			435					440					445				1740
25		-	_		_	_	gcc	_									1749
35	Pro	Gln	Gln	Gly	Ala	Glu	Ala	Ĺys	Ala	Pro	Leu	Asn	Met	GTĀ	GIU	rne	

	450	455	460	
	ccc tcc tcc tcc gag t	ccc acc ttc acc agc act	gag tot gag oto tot	1797
	Pro Ser Ser Ser Glu S	Ser Thr Phe Thr Ser Thr	Glu Ser Glu Leu Ser	
	465	170 475	480	
5	gtg cct tac gaa cag c	etg atg aat gag tac aac	aag get aac age eec	1845
	Val Pro Tyr Glu Gln I	Leu Met Asn Glu Tyr Asn	Lys Ala Asn Ser Pro	
	485	490	495	
	aag ggc aca tgaggcagg	gg ccggctcccc accccacct	t tgatgg	1890
	Lys Gly Thr			
10				
	cctcttcccc cctcacccta	a gggtgtcccg agatgaccgg	gacgeetgge eeetggtggg	1950
	ggggcagcct cggaactggg	g agtggggggc caggggcctt	cctaaccttc catcatcccc	2010
	agctagatgt atgcccggga	a cagggeetet gttetecage	tgaaccatac cctggctgtg	2070
	ggggcatetg teetgagett	ggetggtgta teteacaatg	caaagacatg ctggctggcg	2130
15	ggacaggtgg gcaggactga	a ccctgaggag gccttgcctg	cagggtettt gteceaceat	2190
	ttggtggagt atcacacggt	tetetgaggt eeggggeete	agctgtttaa gtttaccggt	2250
	attactgage teggeatttg	g gagagggagc tctgaagtgt	ctggggaggt accgctgtgc	2310
	gtggggtcag gtgtttccgt	accacagcag gagcagggcc	egeeegeate eeagetgtgg	2370
	gcctgccggt caggtcgggc	e acctactaca aaccgtagtg	gggtggaggc tgctggaggt	2430
20		e agggteteaa acagteetga		2490
		ctggggtcct catectcctt		2550
		ctcaggtcaa gcagtggcag		2610
	ccccaagtgg taggagggag	g agtagcagag catgggttac	tggaageegg gaetgetagg	2670
		aagagtgagg ctcagctctg		2730
25		g cacaccctgc ccgctggccc		2790
		gtgccctgaa caaggacctc		2850
		g cagggtgagg ccaaattgct		2910
		gctcctttct ctagctagtg		2970
		cgcacacctg tgcactcgtg		3030
30		gataatgtga aactgttggt		3090
		gagttettgg gttetecatg		3150
		ttgttatttt ttgttttatt		3210
		gttggcttca gagccagtgg		3270
		geeeteetge eetgeaacte		3330
35	cctcatccaa ggccatgatg	tcaagggcca tgtccccaag	cagaggtgga gaaggggaca	3390

				•	•						2452
	ctgaggtgag										3450
	gcaagtcato										3510
	gcagtgggg										3570
	ccccactto										3630
5	cctcgtattt										3690
	gegeacacte	tatgtad	cata ci	rggcaacg	a tgtcaa	aatgt	aatttati	ttt a	aacai	ttttta	3750
	caataaaaca	tgaggt	9 9								3768
	<210> 89										
10	<211> 770										
	<212> DNA										
	<213> Homo	sapiens	3								
	<220>										
	<221> CDS										
15	<222> (24)	(344))								
	<400> 89										
	accgcgaagg	gaggagt	tggc as	ac atg go	g tot t	cg gg	a get ge	gt ga	ac co	et ctg	53
				Met A	la Ser S	er Gl	y Ala Gl	Ly As	sp Pı	co Leu	
20				1			5			10	
	gat tct aa	g egt go	ga gag	gcc ccg	ttc gct	cag	cgt atc	gac	ccg	act	101
	Asp Ser Ly	s Arg G]	ly Glu	Ala Pro	Phe Ala	Gln .	Arg Ile	Asp	Pro	Thr	
		1	15		20)			25		
	cgg gag aa	g ctg ac	ca ccc	gag caa	ctg cat	tcc	atg cgg	cag	gcg	gag	149
25	Arg Glu Ly	s Leu Th	nr Pro	Glu Gln	Leu His	Ser !	Met Arg	Gln	Ala	Glu	
		30			35			40			
	ctt gcc ca	g tgg ca	ag aag	gtc cta	cca cgg	cgg	cga acc	cgg	aac	atc	197
	Leu Ala Gl	n Trp Gl	ln Lys	Val Leu	Pro Arg	Arg.	Arg Thr	Arg	Asn	Ile	
	4	5		50			55				
30	gtg acc gg	c cta go	gc atc	ggg gcc	ctg gtg	ttg	gct att	tat	ggt	tac	245
	Val Thr Gl	y Leu Gl	ly Ile	Gly Ala	Leu Val	Leu .	Ala Ile	Tyr	Gly	Tyr	
	60			65			70				
	acc ttc ta	c tcg at	t tcc	cag gag	cgt ttc	cta	gat gag	cta	gaa	gac	293
	Thr Phe Ty	r Ser Il	le Ser	Gln Glu	Arg Phe	Leu	Asp Glu	Leu	Glu	Asp	
35	Thr Phe Ty	r Ser Il	Le Ser 80	Gln Glu	Arg Phe	E Leu 2	Asp Glu	Leu	Glu	Asp 90	

	gag gee aaa get gee ega gee ega get etg gea agg geg tea ggg tee	341
	Glu Ala Lys Ala Ala Arg Ala Arg Ala Leu Ala Arg Ala Ser Gly Ser	
	95 100 105	
	taatctgga tgggtattga tcatgtccaa cctgctggag ccccttcaca tggtggatga	400
5	tgccccatga ccctgtagaa attgaatcct gctcacaaca ttgttggcct tcttactaac	460
	cttggaccgt gattgagccc aagaaaccag ggacttacgc atttggccaa tgtcaaaaga	520
	acagaacttt geceaetgea eacttgetgt gtacaatgae tgageeettt ettgtagttt	580
	gttteettgt ttgagaggtg tgeatgegae egtggetttt eecaaagttt etgaetttgt	640
	ggtttacccc cttcaccttc cagggacgca gttgttacga ggttagacgt ggcagctctg	700
10	tgcagtgttt gagcctacag tgggatacat agggtcaaat tgagaataat aaactgagtc	760
	atteteetgg	770
	<210> 90	
	<211> 1229	
15	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (96)(554)	
20		
	<400> 90	
	cctactcctg gattaggagg actgacaata ctacatatat cattaagcat gggcctcgct	60
	tagaagttgc atctgagaaa gtagcccaga agaca atg gac tat gtg tgc tgt	113
	Met Asp Tyr Val Cys Cys	
25	1 5	
	gct tac aac aac ata acc ggc agg caa gat gaa act cat ttc aca gtt	161
	Ala Tyr Asn Asn Ile Thr Gly Arg Gln Asp Glu Thr His Phe Thr Val	
	10 15 20	
	atc atc act tcc gta gga ctg gag aag ctt gca cag aaa gga aaa tca	209
30	Ile Ile Thr Ser Val Gly Leu Glu Lys Leu Ala Gln Lys Gly Lys Ser	
	25 30 35	
	ttg tca cct tta gca agt ata act gga ata tca cta ttt ttg att ata	257
	Leu Ser Pro Leu Ala Ser Ile Thr Gly Ile Ser Leu Phe Leu Ile Ile	
	40 45 50	
35	too atg tgt ctt ctc ttc cta tgg aaa aaa tat caa ccc tac aaa gtt	305

99/177

	Ser	Met	Cys	Leu	Leu	Phe	Leu	Trp	Lys	Lys	Tyr	Gln	Pro	Tyr	Lys	Val	
	55					60					65					70	
	ata	aaa	cag	aaa	cta	gaa	ggc	agg	cca	gaa	aca	gaa	tac	agg	aaa	gct	353
	Ile	Lys	Gln	Lys	Leu	Glu	Gly	Arg	Pro	Glu	Thr	Glu	Tyr	Arg	Lys	Ala	
5					75					80					85		
	caa	aca	ttt	tca	ggc	cat	gaa	gat	gct	ctg	gat	gac	ttc	gga	ata	tat	401
	Gln	Thr	Phe	Ser	Gly	His	Glu	Asp	Ala	Leu	Asp	Asp	Phe	Gly	Ile	Tyr	
				90					95					100			
	gaa	ttt	gtt	gct	ttt	cca	gat	gtt	tct	ggt	gtt	tcc	agg	atc	cca	age	449
10	Glu	Phe	Val	Ala	Phe	Pro	Asp	Val	Ser	Gly	Val	Ser	Arg	Ile	Pro	Ser	
			105					110					115				
	agg	tct	gtt	cca	gcc	tct	gat	tgt	gta	tcg	ggg	caa	gat	ttg	cac	agt	497
	Arg	Ser	Val	Pro	Ala	Ser	Asp	Cys	Val	Ser	Gly	Gln	Asp	Leu	His	Ser	
		120					125					130					
15	aca	gtg	tat	gaa	gtt	att	cag	cac	atc	cct	gcc	cag	cag	caa	gac	cat	545
	Thr	Val	Tyr	Glu	Val	Ile	Gln	His	Ile	Pro	Ala	Gln	Gln	Gln	Asp	His	
	135					140					145					150	
	cca	gag	tgaa	cttt	ca t	gggc	taaa	c aç	rtaca	tteç	g agt	gaaa	ttc	tgaa	agaaa	ıc	600
	Pro	Glu															
20																	
	attt	taaç	gga a	aaac	agto	g aa	aagt	atat	taa	itato	ggaa	tcaç	jtgaa	ıga a	acca	agacc	660
	aaca	accto	tt a	ctca	ittat	t co	ttta	cato	caç	gaata	ıgag	gcat	ttat	gc a	aaatt	gaact	720
	gcag	gttt	tt c	agca	atata	c ac	aato	rtctt	gtg	gcaac	aga	aaaa	cato	rtt ç	gggge	aatat	780
	tect	cagt	gg a	ıgagt	cgtt	c to	atgo	tgac	ggg	gaga	acg	aaaç	rtgac	ag g	gggtt	teete	840
25	ataa	gttt	tg t	atga	aata	t ct	ctac	aaac	cto	aatt	agt	tcta	ctct	ac a	acttt	cacta	900
	tcat	caac	ac t	gaga	ctat	c ct	gtct	cacc	tac	aaat	gtg	gaaa	cttt	ac a	ittgt	tcgat	960
	tttt	cago	ag a	cttt	gttt	t at	taaa	tttt	tat	tagt	gtt	aaga	atgo	ta a	agtt	tcaat	1020
	ttta	tttc	ca a	attt	ctat	c tt	gtta	tttg	tac	aaca	aag	taat	aagg	rat c	gtto	tcaca	1080
	aaaa	caaa	ac t	atgo	cttc	t ct	tttt	tttc	aat	cacc	agt	agta	tttt	tg a	gaag	acttg	1140
30	tgaa	cact	ta a	ıggaa	atga	c ta	ttaa	agto	tta	tttt	tat	tttt	ttca	ag g	gaaag	gatgga	1200
	ttca	aata	aa t	tatt	ctgt	t tt	tget	ttt									1229

<210> 91

<211> 358

35 <212> PRT

<213> Homo sapience

	<400	0> 9:	1													
	Met	Ala	Pro	Gln	Asn	Leu	Ser	Thr	Phe	Cys	Leu	Leu	Leu	Leu	Tyr	Leu
5	1				5					10					15	
	Ile	Gly	Ala	Val	Ile	Ala	Gly	Arg	Asp	Phe	Tyr	Lys	Ile	Leu	Gly	Val
				20					25					30		
	Pro	Arg	Ser	Ala	Ser	Ile	Lys	Asp	Ile	Lys	Lys	Ala	Tyr	Arg	Lys	Leu
			35					40					45			
10	Ala	Leu	Gln	Leu	His	Pro	Asp	Arg	Asn	Pro	Asp	Asp	Pro	Gln	Ala	Gln
		50					55					60				
	Glu	Lys	Phe	Gln	Asp	Leu	Gly	Ala	Ala	Tyr	Glu	Val	Leu	Ser	Asp	Ser
	65					70					75					80
	Glu	Lys	Arg	Lys	Gln	Tyr	Asp	Thr	Tyr	Gly	Glu	Glu	Gly	Leu	Lys	Asp
15					85					90					95	
	Gly	His	Gln	Ser	Ser	His	Gly	Asp	Ile	Phe	Ser	His	Phe	Phe	Gly	Asp
				100					105					110		
	Phe	Gly	Phe	Met	Phe	Gly	Gly	Thr	Pro	Arg	Gln	Gln	Asp	Arg	Asn	Ile
			115					120					125			
20	Pro	Arg	Gly	Ser	Asp	Ile	Ile	Val	Asp	Leu	Glu	Val	Thr	Leu	Glu	Glu
		130					135					140				
	Val	Tyr	Ala	Gly	Asn	Phe	Va1	Glu	Val	Val	Arg	Asn	Lys	Pro	Val	Ala
	145					150					155					160
	Arg	Gln	Ala	Pro	Gly	Lys	Arg	Lys	Cys	Asn	Cys	Arg	Gln	Glu	Met	Arg
25					165					170					175	
	Thr	Thr	Gln	Leu	Gly	Pro	Gly	Arg	Phe	Gln	Met	Thr	Gln	Glu	Val	Val
				180					185					190		
	Cys	Asp	Glu	Cys	Pro	Asn	Val	Lys	Leu	Val	Asn	Glu	Glu	Arg	Thr	Leu
			195					200					205			
30	Glu	Val	Glu	Ile	Glu	Pro	Gly	Val	Arg	Asp	Gly	Met	Glu	Tyr	Pro	Phe
		210					215					220				
	Ile	Gly	Glu	Gly	Glu	Pro	His	Val	Asp	Gly	Glu	Pro	Gly	Asp	Leu	Arg
	225					230					235					240
	Phe	Arg	Ile	Lys	Val	Val	Lys	His	Pro	Ile	Phe	Glu	Arg	Arg	Gly	Asp
35					245					250					255	

	Asp	nen	ıyı	1111	ASII	Val	TIIL	TTE	Ser	Leu	Val	Giu	DCI	LCu	VUI	GIY
				260					265					270		
	Phe	Glu	Met	Asp	Ile	Thr	His	Leu	Asp	Gly	His	Lys	Val	His	Ile	Ser
			275					280					285			
5	Arg	Asp	Lys	Ile	Thr	Arg	Pro	Gly	Ala	Lys	Leu	Trp	Lys	Lys	Gly	Glu
		290					295					300				
	Gly	Leu	Pro	Asn	Phe	Asp	Asn	Asn	Asn	Ile	Lys	Gly	Ser	Leu	Ile	Ile
	305					310					315					320
	Thr	Phe	Asp	Val	Asp	Phe	Pro	Lys	Glu	Gln	Leu	Thr	Glu	Glu	Ala	Arg
10					325					330					335	
	Glu	Gly	Ile	Lys	Gln	Leu	Leu	Lys	Gln	Gly	Ser	Val	Gln	Lys	Val	Tyr
				340					345					350		
	Asn	Gly	Leu	Gln	Gly	Tyr										
			355													
15																
	<21	0> 92	2													
	<21	1> 22	26													
	<21	2> PI	RT													
	<21	3> но	omo s	sapie	ence											
20																
	<40	0> 92	2													
	Met	Lys	Met	Val	Ala	Pro	Trp	Thr	Arg	Phe	Tyr	Ser	Asn	Ser	Cys	Cys
	1				5					10					15	
	Leu	Cys	Cys	His	Val	Arg	Thr	Gly	Thr	Ile	Leu	Leu	Gly	Val	Trp	Tyr
25				20					25					30		
	Leu	Ile	Ile	Asn	Ala	Val	Val	Leu	Leu	Ile	Leu	Leu	Ser	Ala	Leu	Ala
			35					40					45			
	Asp	Pro	Asp	Gln	Tyr	Asn	Phe	Ser	Ser	Ser	Glu	Leu	Gly	Gly	Asp	Phe
		50					55					60				
30	Glu	Phe	Met	Asp	Asp	Ala	Asn	Met	Cys	Ile	Ala	Ile	Ala	Ile	Ser	Leu
	65					70					75					80
		Met	Ile	Leu	Ile		Ala	Met	Ala	Thr		Gly	Ala	Tyr	Lys	
		Met	Ile	Leu	Ile 85		Ala	Met	Ala	Thr 90		Gly	Ala	Tyr	Lys 95	
	Leu				85	Cys				90	туr	Gly Gln			95	Gln

102/177

Ala Leu Asn Met Leu Val Ala Ile Thr Val Leu Ile Tyr Pro Asn Ser Ile Gln Glu Tyr Ile Arg Gln Leu Pro Pro Asn Phe Pro Tyr Arg Asp Asp Val Met Ser Val Asn Pro Thr Cys Leu Val Leu Ile Ile Leu Leu Phe Ile Ser Ile Ile Leu Thr Phe Lys Gly Tyr Leu Ile Ser Cys Val Trp Asn Cys Tyr Arg Tyr Ile Asn Gly Arg Asn Ser Ser Asp Val Leu Val Tyr Val Thr Ser Asn Asp Thr Thr Val Leu Leu Pro Pro Tyr Asp Asp Ala Thr Val Asn Gly Ala Ala Lys Glu Pro Pro Pro Pro Tyr Val Ser Ala <210> 93 <211> 195 <212> PRT <213> Homo sapience <400> 93 Met Arg Leu Leu Leu Leu Leu Val Ala Ala Ser Ala Met Val Arg Ser Glu Ala Ser Ala Asn Leu Gly Gly Val Pro Ser Lys Arg Leu Lys Met Gln Tyr Ala Thr Gly Pro Leu Leu Lys Phe Gln Ile Cys Val Ser Xaa Gly Tyr Arg Arg Val Phe Glu Glu Tyr Met Arg Val Ile Ser Gln Arg Tyr Pro Asp Ile Arg Ile Glu Gly Glu Asn Tyr Leu Pro Gln Pro Ile Tyr Arq His Ile Ala Ser Phe Leu Ser Val Phe Lys Leu Val Leu

	Ile	Gly	Leu	Ile	Ile	Val	Gly	Lys	Asp	Pro	Phe	Ala	Phe	Phe	Gly	Met
				100					105					110		
	Gln	Ala	Pro	Ser	Ile	Trp	Gln	Trp	Gly	Gln	Glu	Asn	Lys	Val	Tyr	Ala
			115					120					125			
5	Cys	Met	Met	Val	Phe	Phe	Leu	Ser	Asn	Met	Ile	Glu	Asn	Gln	Cys	Met
		130					135					140				
	Ser	Thr	Gly	Ala	Phe	Glu	Ile	Thr	Leu	Asn	Asp	Val	Pro	Val	Trp	Ser
	145					150					155					160
	Lys	Leu	Glu	Ser	Gly	His	Leu	Pro	Ser	Met	Gln	Gln	Leu	Val	Gln	Ile
10					165					170					175	
	Leu	Asp	Asn	Glu	Met	Lys	Leu	Asn	Val	His	Met	Asp	Ser	Ile	Pro	His
				180					185					190		
	His	Arg	Ser													
			195													
15																
	<210)> 94	1													
	<21	l> 33	39													
	<212	2> PI	TS.													
	<213	3> Ho	omo s	sapi	ence											
20																
	<400)> 94	1													
	Met	Asn	Trp	Glu	Leu	Leu	Leu	Trp	Leu	Leu	Val	Leu	Cys	Ala	Leu	Leu
	1				5					10					15	
	Leu	Leu	Leu	Val	Gln	Leu	Leu	Arg	Phe	Leu	Arg	Ala	Asp	Gly	Asp	Leu
25				20					25					30		
	Thr	Leu	Leu	Trp	Ala	Glu	Trp	Gln	Gly	Arg	Arg	Pro	Glu	Trp	Glu	Leu
			35					40					45			
	Thr	Asp	Met	Val	Val	Trp	Val	Thr	Gly	Ala	Ser	Ser	Gly	Ile	Gly	Glu
		50					55					60				
30		Leu	Ala	Tyr	Gln	Leu	Ser	Lys	Leu	Gly	Val	Ser	Leu	Val	Leu	Ser
	65					70					75					80
	Ala	Arg	Arg	Val	His	Glu	Leu	Glu	Arg	Val	Lys	Arg	Arg	Cys	Leu	Glu
					85					90					95	
	Asn	Gly	Asn	Leu	Lys	Glu	Lys	Asp	Ile	Leu	Val	Leu	Pro	Leu	Asp	Leu
35				100					105					110		

	Thr	Asp	Thr	Gly	Ser	His	Glu	Ala	Ala	Thr	Lys	Ala	Val	Leu	Gln	Glu
			115					120					125			
	Phe	Gly	Arg	Ile	Asp	Ile	Leu	Val	Asn	Asn	Gly	Gly	Met	Ser	Gln	Arg
		130					135					140				
5	Ser	Leu	Cys	Met	Asp	Thr	Ser	Leu	Asp	Val	Tyr	Arg	Lys	Leu	Ile	Glu
	145					150					155					160
	Leu	Asn	Tyr	Leu	Gly	Thr	Val	Ser	Leu	Thr	Lys	Cys	Val	Leu	Pro	His
					165					170					175	
	Met	Ile	Glu	Arg	Lys	Gln	Gly	Lys	Ile	Val	Thr	Val	Asn	Ser	Ile	Leu
10				180					185					190		
	Gly	Ile	Ile	Ser	Val	Pro	Leu	Ser	Ile	Gly	Tyr	Cys	Ala	Ser	Lys	His
			195					200					205			
	Ala	Leu	Arg	Gly	Phe	Phe	Asn	Gly	Leu	Arg	Thr	Glu	Leu	Ala	Thr	Tyr
		210					215					220				
15	Pro	Gly	Ile	Ile	Val	Ser	Asn	Ile	Cys	Pro	Gly	Pro	Val	Gln	Ser	Asn
	225					230					235					240
	Ile	Val	Glu	Asn	Ser	Leu	Ala	Gly	Glu	Val	Thr	Lys	Thr	Ile	Gly	Asn
					245					250					255	
	Asn	Gly	Asp	Gln	Ser	His	Lys	Met	Thr	Thr	Ser	Arg	Cys	Val	Arg	Leu
20				260					265					270		
	Met	Leu	Ile	Ser	Met	Ala	Asn	Asp	Leu	Lys	Glu	Val	Trp	Ile	Ser	Glu
			275					280					285			
	Gln	Pro	Phe	Leu	Leu	Val	Thr	Tyr	Leu	Trp	Gln	Tyr	Met	Pro	Thr	Trp
		290					295					300				
25	Ala	Trp	Trp	Ile	Thr	Asn	Lys	Met	Gly	Lys	Lys	Arg	Ile	Glu	Asn	Phe
	305					310					315					320
	Lys	Ser	Gly	Val	Asp	Ala	Asp	Ser	Ser	Tyr	Phe	Lys	Ile	Phe	Lys	Thr
					325					330					335	
	Lys	His	Asp													
30																
	<210)> 95	5													
	<211	> 48	37													
	<212	!> PF	TS													
	<213	3> Hc	omo s	apie	ence											
35																

	<40	0> 9	5													
	Met	Asp	Gly	Thr	Glu	Thr	Arg	Gln	Arg	Arg	Leu	Asp	Ser	Cys	Gly	Lys
	1				5					10					15	
	Pro	Gly	Glu	Leu	Gly	Leu	Pro	His	Pro	Leu	Ser	Thr	Gly	Gly	Leu	Pro
5				20					25					30		
	Val	Ala	Ser	Glu	Asp	Gly	Ala	Leu	Arg	Ala	Pro	Glu	Ser	Gln	Ser	Val
			35					40					45			
	Thr	Pro	Lys	Pro	Leu	Glu	Thr	Glu	Pro	Ser	Arg	Glu	Thr	Ala	Trp	Ser
		50					55					60				
10	Ile	Gly	Leu	Gln	Val	Thr	Val	Pro	Phe	Met	Phe	Ala	Gly	Leu	Gly	Leu
	65					70					75					80
	Ser	Trp	Ala	Gly	Met	Leu	Leu	Asp	Tyr	Phe	Gln	His	Trp	Pro	Val	Phe
					85					90					95	
	Val	Glu	Val	Lys	Asp	Leu	Leu	Thr	Leu	Val	Pro	Pro	Leu	Val	Gly	Leu
15				100					105					110		
	Lys	Gly	Asn	Leu	Glu	Met	Thr	Leu	Ala	Ser	Arg	Leu	Ser	Thr	Ala	Ala
			115					120					125			
	Asn		Gly	Gln	Ile	Asp	Asp	Pro	Gln	Glu	Gln		Arg	Val	Ile	Ser
20		130					135					140				
20		Asn	Leu	Ala	Leu		Gln	Val	Gln	Ala		Val	Val	Gly	Leu	
	145		_			150			_	_	155					160
	Ala	Ala	Val	Ala		Leu	Leu	Leu	Gly		Val	Ser	Arg	Glu		Val
	_	•	_ •	_	165		_			170	_	_	_	_	175	_
or.	Asp	Val	Ala	_	Val	Glu	Leu	Leu	_	Ala	Ser	Ser	Val		Thr	Ala
25	Dl	•		180			_		185					190		
	Pne	Leu		Ala	Phe	Ala	Leu	Gly	Val	Leu	Met	Val	_	Ile	Val	Ile
	C 1	71 -	195	•		03	••- 1	200	~		•	-1 -	205	m\		-1
	GIY		Arg	ьуs	Leu	СТА		Asn	Pro	Asp	Asn		Ala	Thr	Pro	1 Te
30	. ד ה	210	C	T	01	>	215	- 1-	m l	T	C	220	T		-	**- 1
30	225	AIG	ser	Leu	GIÀ	_	Leu	Ile	Thr	Leu		11e	Leu	Ala	Leu	
		C	Dh.	5 1		230	**! _	-	3	C	235		7		.	240
	Ser	ser	rue	rne	=	arg	HIS	Lys	Asp		Arg	туг	∟eu			Leu
	₹7 ~ 7	C	T	C =	245	. 1	5 1-	T	m\	250	17.0.1	<i>m</i>	77a 7		255	- 1
25	val	cys	ьеи		rne	Ala	ALA	Leu		LLO	val	тrр			TTE	Ala
35				260					265					270		

	Lys	Gln	Ser 275	Pro	Pro	Ile	Val	Lys 280	Ile	Leu	Lys	Phe	Gly 285	Trp	Phe	Pro
	~ 1 -	- 1-			14- 4-	11-1	- 1.		C	Dha	C3	~1		*1~	T 0	C
	ire	290	Leu	Ala	Met	vai	Ile 295	ser	Ser	Pne	GIY	300	Leu	TTE	Leu	Sei
5	Tue		17a1	Sor	Tue	Gln	Gln	ጥነታም	Lve	Glv	Met		Tle	Phe	Thr	Dro
U	305	1111	Val	Der	шуз	310	GIII	171	шуз	GLY	315	ALG		1110	****	320
		~ 1_	C	~ 1	1707		C 1	3	T 011	1707		T10	C1 n	mh =	C ~ ~	
	Val	116	Cys	GIŸ	325	GIÀ	Gly	ASII	Leu	330	MIG	TTE	GIII	TIIL	335	MI
	Tle	505	ωh.~	M***		uic	Met	Т т	Ser		Pro	Glv	17a]	T.eu		T.O.
10	TTE	Ser	1111	340	Dea	nis	Mec	rrp	345	AIG	110	GTÅ	Vai	350	FIG	пес
10	C1 5	Mot	T ***		Dho	Ш ***	Dro) an		Cvc	Sor	Ψh~	Dhe		mb ≻	501
	GIN	Met	_	гÀг	Pne	TLD	Pro		PIO	cys	ser	TIIT	365	Cys	THE	Sei
	a 1	- 1-	355	0	5 4_4	C	N 7 -	360	**-7	T	T	T		17.07	7707	D
	GIU		Asn	ser	Met	Ser	Ala	Arg	vai	ьeu	rea		red	Val	vai	PIC
15	~1	370	~	~3.	5 1	5 1	375	- 1 -	-1 -		T	380	0 3	G 3	01 -	0
15	_	HIS	Leu	тте	Pne		Tyr	TIE	TTE	Tyr		var	GIU	GIA	GIN	
	385	-1.		_	~ 3	390	- 1		3	•	395	.	.	3.7°-	01	400
	Vai	He	Asn	Ser		Thr	Phe	Val	Val		Tyr	Leu	Leu	Ата		Leu
			-		405	_	_		_	410					415	_
90	Ile	GIn	Val		Ile	Leu	Leu	Tyr		Ala	Glu	Val	Met		Arg	Leu
20				420	_	_	_		425			_		430	_	_
	Thr	Trp		Gln	Ala	Leu	Asp		Asp	Asn	His	Cys		Pro	Tyr	Leu
			435					440		_			445			
	Thr	_	Leu	Gly	Asp	Leu	Leu	Gly	Thr	Gly	Leu		Ala	Leu	Cys	Phe
o #		450					455					460	_			
25		Thr	Asp	Trp	Leu		Lys	Ser	Lys	Ala		Leu	Gly	Gly	Ile	
	465					470					475					480
	Glu	Leu	Ala	Ser	_	Pro	Pro									
					485											
0.0																
30)> 96														
		l> 39														
		?> PF														
	<213	3> Hc	omo s	apie	ence											
35	<400)> 9 <i>6</i>	;													
	- 2 - 0		•													

	Met	Arg	Thr	Leu	Phe	Asn	Leu	Leu	Trp	Leu	Ala	Leu	Ala	Cys	Ser	Pro
	1				5					10					15	
	Val	His	Thr	Thr	Leu	Ser	Lys	Ser	Asp	Ala	Lys	Lys	Ala	Ala	Ser	Lys
				20					25					30		
5	Thr	Leu	Leu	Glu	Lys	Ser	Gln	Phe	Ser	Asp	Lys	Pro	Val	Gln	Asp	Arg
			35					40					45			
	Gly	Leu	Val	Val	Thr	Asp	Leu	Lys	Ala	Glu	Ser	Val	Val	Leu	Glu	His
		50					55					60				
	Arg	Ser	Tyr	Cys	Ser	Ala	Lys	Ala	Arg	Asp	Arg	His	Phe	Ala	Gly	Asp
10	65					70					75					80
	Val	Leu	Gly	Tyr	Val	Thr	Pro	Trp	Asn	Ser	His	Gly	Tyr	Asp	Val	Thr
					85					90					95	
	Lys	Val	Phe	Gly	Ser	Lys	Phe	Thr	Gln	Ile	Ser	Pro	Val	Trp	Leu	Gln
				100					105					110		
15	Leu	Lys	Arg	Arg	Gly	Arg	Glu	Met	Phe	Glu	Val	Thr	Gly	Leu	His	Asp
			115					120					125			
	Val	Asp	Gln	Gly	Trp	Met	Arg	Ala	Val	Arg	Lys	His	Ala	Lys	Gly	Leu
		130					135					140				
	His	Ile	Val	Pro	Arg	Leu	Leu	Phe	Glu	Asp	Trp	Thr	Tyr	Asp	Asp	Phe
20	145					150					155					160
	Arg	Asn	Val	Leu	Asp	Ser	Glu	Asp	Glu	Ile	Glu	Glu	Leu	Ser	Lys	Thr
					165					170		•			175	
	Val	Val	Gln	Val	Ala	Lys	Asn	Gln	His	Phe	Asp	Gly	Phe	Val	Val	Glu
				180					185					190		
25	Val	Trp	Asn	Gln	Leu	Leu	Ser	Gln	Lys	Arg	Val	Gly	Leu	Ile	His	Met
			195					200					205			
	Leu	Thr	His	Leu	Ala	Glu	Ala	Leu	His	Gln	Ala	Arg	Leu	Leu	Ala	Leu
		210					215					220				
	Leu	Val	Ile	Pro	Pro	Ala	Ile	Thr	Pro	Gly	Thr	Asp	Gln	Leu	Gly	Met
30	225					230					235					240
	Phe	Thr	His	Lys	Glu	Phe	Glu	Gln	Leu	Ala	Pro	Val	Leu	Asp	Gly	Phe
					245					250					255	
	Ser	Leu	Met	Thr	Tyr	Asp	Tyr	Ser	Thr	Ala	His	Gln	Pro	Gly	Pro	Asn
				260					265					270		
35	Ala	Pro	Leu	Ser	Trp	Val	Arg	Ala	Cys	Val	Gln	Val	Leu	Asp	Pro	Lys

Ser Lys Trp Arg Ser Lys Ile Leu Leu Gly Leu Asn Phe Tyr Gly Met Asp Tyr Ala Thr Ser Lys Asp Ala Arg Glu Pro Val Val Gly Ala Arg Tyr Ile Gln Thr Leu Lys Asp His Arg Pro Arg Met Val Trp Asp Ser Gln Ala Ser Glu His Phe Phe Glu Tyr Lys Lys Ser Arg Ser Gly Arg His Val Val Phe Tyr Pro Thr Leu Lys Ser Leu Gln Val Arg Leu Glu Leu Ala Arg Glu Leu Gly Val Gly Val Ser Ile Trp Glu Leu Gly Gln Gly Leu Asp Tyr Phe Tyr Asp Leu Leu <210> 97 <211> 196 <212> PRT <213> Homo sapience <400> 97 Met Trp Arg Val Pro Gly Thr Thr Arg Arg Pro Val Thr Gly Glu Ser Pro Gly Met His Arg Pro Glu Ala Met Leu Leu Leu Leu Thr Leu Ala Leu Leu Gly Gly Pro Thr Trp Ala Gly Lys Met Tyr Gly Pro Gly Gly Gly Lys Tyr Phe Ser Thr Thr Glu Asp Tyr Asp His Glu Ile Thr Gly Leu Arg Val Ser Val Gly Leu Leu Leu Val Lys Ser Val Gln Val Lys Leu Gly Asp Ser Trp Asp Val Lys Leu Gly Ala Leu Gly Gly Asn Thr Gln Glu Val Thr Leu Gln Pro Gly Glu Tyr Ile Thr Lys Val Phe Val

			100					105					110		
	Ala Phe	Gln	Ala	Phe	Leu	Arg	Gly	Met	Val	Met	Tyr	Thr	Ser	Lys	Asp
		115					120					125			
	Arg Tyr	Phe	Tyr	Phe	Gly	Lys	Leu	Asp	Gly	Gln	Ile	Ser	Ser	Ala	Tyr
5	130					135					140				
	Pro Ser	Gln	Glu	Gly	Gln	Val	Leu	Val	Gly	Ile	Tyr	Gly	Gln	Tyr	Gln
	145				150					155					160
	Leu Leu	Gly	Ile	Lys	Ser	Ile	Gly	Phe	Glu	Trp	Asn	Tyr	Pro	Leu	Glu
				165					170					175	
10	Glu Pro	Thr	Thr	Glu	Pro	Pro	Val	Asn	Leu	Thr	Tyr	Ser	Ala	Asn	Ser
			180					185					190		
	Pro Val	Gly	Arg												
		195													
15	<210> 9	8													
	<211> 1														
	<212> P														
	<213> н	omo s	sapie	ence											
90		_													
20	<400> 9		_	_		~ 1	-3	-1-	~	a 1-	27-	+ 7 -	mb	14 4-	~
	Met Glu	Gin	гàг		vaı	GIU	GIU	тте		GIII	Ald	TTE	THE		Ser
	1								10					1 5	
	mh »	mb	0 3	5	C	T	Dava	C~~	10	C1	Cl.) an	Cln	15	507
	Thr Asp	Thr	_		Ser	Leu	Pro			Glu	Gl u	Asp			Ser
25			20	Val				25	туr				30	Gly	
25	Thr Asp	Ile	20	Val			Glu	25	туr			Pro	30	Gly	
25	Lys Leu	Ile 35	20 Arg	Val Lys	Ala	Lys	Glu 40	25 Ala	Tyr Pro	Phe	Val	Pro 45	30 Val	Gly	Ile
25	Lys Leu	Ile 35	20 Arg	Val Lys	Ala	Lys Val	Glu 40	25 Ala	Tyr Pro	Phe	Val Tyr	Pro 45	30 Val	Gly	Ile
25	Lys Leu Ala Gly 50	Ile 35 Phe	20 Arg Ala	Val Lys Ala	Ala Ile	Lys Val 55	Glu 40 Ala	25 Ala Tyr	Tyr Pro Gly	Phe Leu	Val Tyr 60	Pro 45 Lys	30 Val Leu	Gly Gly Lys	Ile Ser
	Lys Leu Ala Gly 50 Arg Gly	Ile 35 Phe	20 Arg Ala	Val Lys Ala	Ala Ile Met	Lys Val 55	Glu 40 Ala	25 Ala Tyr	Tyr Pro Gly	Phe Leu Ile	Val Tyr 60	Pro 45 Lys	30 Val Leu	Gly Gly Lys	Ile Ser Ala
2530	Lys Leu Ala Gly 50 Arg Gly 65	Ile 35 Phe Asn	20 Arg Ala Thr	Val Lys Ala Lys	Ala Ile Met 70	Lys Val 55 Ser	Glu 40 Ala Ile	25 Ala Tyr His	Tyr Pro Gly Leu	Phe Leu Ile 75	Val Tyr 60 His	Pro 45 Lys Met	30 Val Leu Arg	Gly Gly Lys Val	Ile Ser Ala 80
	Lys Leu Ala Gly 50 Arg Gly	Ile 35 Phe Asn	20 Arg Ala Thr	Val Lys Ala Lys Val	Ala Ile Met 70	Lys Val 55 Ser	Glu 40 Ala Ile	25 Ala Tyr His	Tyr Pro Gly Leu Thr	Phe Leu Ile 75	Val Tyr 60 His	Pro 45 Lys Met	30 Val Leu Arg	Gly Gly Lys Val	Ile Ser Ala 80
	Lys Leu Ala Gly 50 Arg Gly 65 Ala Glu	Ile 35 Phe Asn Gly	20 Arg Ala Thr	Val Lys Ala Lys Val 85	Ala Ile Met 70 Val	Lys Val 55 Ser Gly	Glu 40 Ala Ile Ala	25 Ala Tyr His Met	Tyr Pro Gly Leu Thr 90	Phe Leu Ile 75 Val	Val Tyr 60 His	Pro 45 Lys Met	30 Val Leu Arg	Gly Gly Lys Val	Ile Ser Ala 80
	Lys Leu Ala Gly 50 Arg Gly 65	Ile 35 Phe Asn Gly	20 Arg Ala Thr	Val Lys Ala Lys Val 85	Ala Ile Met 70 Val	Lys Val 55 Ser Gly	Glu 40 Ala Ile Ala	25 Ala Tyr His Met	Tyr Pro Gly Leu Thr 90	Phe Leu Ile 75 Val	Val Tyr 60 His	Pro 45 Lys Met	30 Val Leu Arg	Gly Gly Lys Val	Ile Ser Ala 80

	<21	0> 9:	9													
	<21	1> 3	50													
	<21	2> P	RT													
	<21	3> H	omo :	sapi	ence											
5																
	<40	0> 99	9													
	Met	Ser	Glu	Val	Lys	Ser	Arg	Lys	Lys	Ser	Gly	Pro	Lys	Gly	Ala	Pro
	1				5					10					15	
	Ala	Ala	Glu	Pro	Gly	Lys	Arg	Ser	Glu	Gly	Gly	Lys	Thr	Pro	Val	Ala
10				20					25					30		
	Arg	Ser	Ser	Gly	Gly	Gly	Gly	Trp	Ala	Asp	Pro	Arg	Thr	Cys	Leu	Ser
			35					40					45			
	Leu	Leu	Ser	Leu	Gly	Thr	Cys	Leu	Gly	Leu	Ala	Trp	Phe	Val	Phe	Gln
		50					55					60				
15	Gln	Ser	Glu	Lys	Phe	Ala	Lys	Val	Glu	Asn	Gln	Tyr	Gln	Leu	Leu	Lys
	65					70					75					80
	Leu	Glu	Thr	Asn	Glu	Phe	Gln	Gln	Leu	Gln	Ser	Lys	Ile	Ser	Leu	Ile
					85					90					95	
	Ser	Glu	Lys	Trp	Gln	Lys	Ser	Glu	Ala	Ile	Met	Glu	Gln	Leu	Lys	Ser
20				100					105					110		
	Phe	Gln	Ile	Ile	Ala	His	Leu	Lys	Arg	Leu	Gln	Glu	Glu	Ile	Asn	Glu
			115					120					125			
	Val	Lys	Thr	\mathtt{Trp}	Ser	Asn	Arg	Ile	Thr	Glu	Lys	Gln	Asp	Ile	Leu	Asn
		130					135					140				
25	Asn	Ser	Leu	Thr	Thr	Leu	Ser	Gln	Asp	Ile	Thr	Lys	Val	Asp	Gln	Ser
	145					150					155					160
	Thr	Thr	Ser	Met	Ala	Lys	Asp	Val	Gly	Leu	Lys	Ile	Thr	Ser	Val	Lys
					165					170					175	
	Thr	Asp	Ile	Arg	Arg	Ile	Ser	Gly	Leu	Val	Thr	Asp	Val	Ile	Ser	Leu
30				180					185					190		
	Thr	Asp	Ser	Val	Gln	Glu	Leu	Glu	Asn	Lys	Ile	Glu	Lys	Val	Glu	Lys
			195					200					205			
	Asn	Thr	Val	Lys	Asn	Ile	Gly	Asp	Leu	Leu	Ser	Ser	Ser	Ile	Asp	Arg
		210					215					220				
35	Thr	Ala	Thr	Leu	Arg	Lys	Thr	Ala	Ser	Glu	Asn	Ser	Gln	Arg	Ile	Asn

	225					230					235					240
	Ser	Val	Lys	Lys	Thr	Leu	Thr	Glu	Leu	Lys	Ser	Asp	Phe	Asp	Lys	His
					245					250					255	
	Thr	Asp	Arg	Phe	Leu	Ser	Leu	Glu	Gly	Asp	Arg	Ala	Lys	Val	Leu	Lys
5				260					265					270		
	Thr	Val	Thr	Phe	Ala	Asn	Asp	Leu	Lys	Pro	Lys	Val	Tyr	Asn	Leu	Lys
			275					280					285			
	Lys	_	Phe	Ser	Arg	Leu	Glu	Pro	Leu	Val	Asn	Asp	Leu	Thr	Leu	Arg
		290					295					300				
10		Gly	Arg	Leu	Val		Asp	Leu	Leu	Gln	_	Glu	Lys	Glu	Ile	
	305	_	_		_	310					315	-				320
	Phe	Leu	Ser	Glu	=	Ile	Ser	Asn	Leu		Ile	Val	Gln	Ala		Ile
	T	•	~ 7_	.	325	01	-1		••• <u>•</u> _	330	a	-	N 4 L .	•	335	
15	гÀг	Asp	TTE		Asp	GIU	lie	AIa		TTE	ser	Asp	Met			
10				340					345					350		
	<21	0> 10	00													
		1> 10														
	<21	2> PI	RT													
20		3> Ho		sapie	ence											
	<40	0> 10	00													
	Met	Ser	Ser	Ala	Gly	Thr	Ala	Thr	Pro	Leu	Glu	Met	Asp	His	Lys	Leu
	1				5					10					15	
25	Thr	Ser	Gln	Pro	Gly	Arg	Pro	Ser	Phe	Tyr	Cys	Asn	Ser	Arg	His	Ser
				20					25					30		
	Ile	Val	Gly	Ser	Ser	His	Gln	Leu	Gly	Phe	Trp	Phe	Ser	His	Leu	Glu
			35					40					45			
	Ser	Ser	Gly	Leu	Lys	Val	Phe	Gln	Val	Ser	Leu	Pro	Cys	Glu	Cys	Val
30		50					55					60				
		Leu	Pro	Thr	Arg		Ala	Ser	Val	Val	Leu	Ser	Leu	Met	Ser	Leu
	65					70					75					80
	Leu	Val	Val	Gly		Ala	Pro	Ala	Trp		Gly	Ser	Leu	Leu	_	Gly
05	_	_	- -		85	_ •		_	_	90	_ •				95	
35	Arg	Pro	Ala	Gly	Gly	Ala	His	Leu	Cys	Ala	Ala					

112/177

100 105 <210> 101

<210> 101
<211> 1074
<212> DNA
<213> Homo Sapience

<400> 101

5

atggeteege agaacetgag eacettttge etgttgetge tataceteat eggggeggtg 60 10 attgccggac gagatttcta taagatcttg ggggtgcctc gaagtgcctc tataaaggat 120 attaaaaagg cetataggaa actageeetg cagetteate eegaeeggaa eeetgatgat 180 ccacaagccc aggagaaatt ccaggatctg ggtgctgctt atgaggttct gtcagatagt 240 gagaaacgga aacagtacga tacttatggt gaagaaggat taaaagatgg tcatcagagc 300 teceatggag acatttttte acaettettt ggggattttg gttteatgtt tggaggaace 360 15 cctcgtcagc aagacagaaa tattccaaga ggaagtgata ttattgtaga tctagaagtc 420 actttggaag aagtatatgc aggaaatttt gtggaagtag ttagaaacaa acctgtggca 480 aggcaggete etggcaaacg gaagtgcaat tgteggcaag agatgeggae cacceagetg 540 ggccctgggc gcttccaaat gacccaggag gtggtctgcg acgaatgccc taatgtcaaa 600 ctagtgaatg aagaacgaac gctggaagta gaaatagagc ctggggtgag agacggcatg 660 20 gagtacccct ttattggaga aggtgagcct cacgtggatg gggagcctgg agatttacgg 720 ttocgaatca aagttgtcaa gcacccaata tttgaaagga gaggagatga tttgtacaca 780 840 aatgtgacaa teteattagt tgagteaetg gttggetttg agatggatat taeteaettg 900 gatggtcaca aggtacatat ttcccgggat aagatcacca ggccaggagc gaagctatgg aagaaagggg aagggeteee caactttgae aacaacaata teaagggete tttgataate 960 25 acttttgatg tggattttcc aaaagaacag ttaacagagg aagcgagaga aggtatcaaa 1020 1074 cagctactga aacaagggtc agtgcagaag gtatacaatg gactgcaagg atat

<210> 102 <211> 678 <212> DNA <213> Homo Sapience

<400> 102

30

35

atgaagatgg tegegeeetg gaegeggtte taeteeaaea getgetgett gtgetgeeat 60 gteegeaeeg geaeeateet geteggegte tggtatetga teateaatge tgtggtaetg 120

	ttgattttat	tgagtgccct	ggctgatccg	gatcagtata	acttttcaag	ttctgaactg	180
	ggaggtgact	ttgagttcat	ggatgatgcc	aacatgtgca	ttgccattgc	gatttctctt	240
	ctcatgatcc	tgatatgtgc	tatggctact	tacggagcgt	acaagcaacg	cgcagcctgg	300
	atcatcccat	tcttctgtta	ccagatcttt	gactttgccc	tgaacatgtt	ggttgcaatc	360
5	actgtgctta	tttatccaaa	ctccattcag	gaatacatac	ggcaactgcc	toctaatttt	420
	ccctacagag	atgatgtcat	gtcagtgaat	cctacctgtt	tggtccttat	tattcttctg	480
	tttattagca	ttatcttgac	ttttaagggt	tacttgatta	gctgtgtttg	gaactgctac	540
	cgatacatca	atggtaggaa	ctcctctgat	gtcctggttt	atgttaccag	caatgacact	600
	acggtgctgc	tacccccgta	tgatgatgcc	actgtgaatg	gtgctgccaa	ggagecaceg	660
10	ccaccttacg	tgtctgcc					678
	<210> 103						
	<211> 585						
	<212> DNA						
15	<213> Homo	Sapience					
	<400> 103						
	atgaggette	tgctgcttct	cctagtggcg	gegtetgega	tggtccggag	cgaggcctcg	60
	gccaatctgg	gcggcgtgcc	cagcaagaga	ttaaagatgc	agtacgccac	ggggccgctg	120
20	ctcaagttcc	agatttgtgt	ttcctgaggt	tataggcggg	tgtttgagga	gtacatgcgg	180
	gttattagcc	agcggtaccc	agacateege	attgaaggag	agaattacct	ccctcaacca	240
	atatatagac	acatagcatc	tttcctgtca	gtcttcaaac	tagtattaat	aggettaata	300
	attgttggca	aggateettt	tgctttcttt	ggcatgcaag	ctcctagcat	ctggcagtgg	360
	ggccaagaaa	ataaggttta	tgcatgtatg	atggttttct	tcttgagcaa	catgattgag	420
25	aaccagtgta	tgtcaacagg	tgcatttgag	ataactttaa	atgatgtacc	tgtgtggtct	480
	aagctggaat	ctggtcacct	tccatccatg	caacaacttg	ttcaaattct	tgacaatgaa	540
	atgaagetea	atgtgcatat	ggattcaatc	ccacaccatc	gatca		585
	<210> 104						
30	<211> 1017						
	<212> DNA						
	<213> Homo	Sapience					
	<400> 104						
35	atgaactggg	agetgetget	ataactacta	atactataca	eactactcct	actettaata	60

	cagctgctgc	gcttcctgag	ggctgacggc	gacctgacgc	tactatgggc	cgagtggcag	120
	ggacgacgcc	cagaatggga	gctgactgat	atggtggtgt	gggtgactgg	agcctcgagt	180
	ggaattggtg	aggagetgge	ttaccagttg	tctaaactag	gagtttctct	tgtgctgtca	240
	gccagaagag	tgcatgagct	ggaaagggtg	aaaagaagat	gcctagagaa	tggcaattta	300
5	aaagaaaaag	atatacttgt	tttgcccctt	gacctgaccg	acactggttc	ccatgaagcg	360
	gctaccaaag	ctgttctcca	ggagtttggt	agaatcgaca	ttctggtcaa	caatggtgga	420
	atgtcccagc	gttctctgtg	catggatacc	agcttggatg	tctacagaaa	gctaatagag	480
	cttaactact	tagggacggt	gtccttgaca	aaatgtgttc	tgcctcacat	gatcgagagg	540
	aagcaaggaa	agattgttac	tgtgaatagc	atcctgggta	tcatatctgt	acctctttcc	600
10	attggatact	gtgctagcaa	gcatgctctc	cggggtttt	ttaatggcct	tcgaacagaa	660
	cttgccacat	acccaggtat	aatagtttct	aacatttgcc	caggacctgt	gcaatcaaat	720
	attgtggaga	attccctagc	tggagaagtc	acaaagacta	taggcaataa	tggagaccag	780
	tcccacaaga	tgacaaccag	tcgttgtgtg	cggctgatgt	taatcagcat	ggccaatgat	840
	ttgaaagaag	tttggatctc	agaacaacct	ttcttgttag	taacatattt	gtggcaatac	900
15	atgccaacct	gggcctggtg	gataaccaac	aagatgggga	agaaaaggat	tgagaacttt	960
	aagagtggtg	tggatgcaga	ctcttcttat	tttaaaatct	ttaagacaaa	acatgac	1017
	<210> 105						
	<211> 1461						
20	<212> DNA						
	<213> Homo	Sapience					
					•		
	<400> 105						
	atggatggga	cagagacccg	gcagcggagg	ctggacagct	gtggcaagcc	aggggagetg	60
25	gggcttcctc	accccctcag	cacaggagga	ctccctgtag	cctcagaaga	tggagetete	120
	agggcccctg	agagccaaag	cgtgaccccc	aagccactgg	agactgagcc	tagcagggag	180
	accgcctggt	ccataggcct	tcaggtgacc	gtgcccttca	tgtttgcagg	cctgggactg	240
	tectgggeeg	gcatgcttct	ggactatttc	cagcactggc	ctgtgtttgt	ggaggtgaaa	300
	gaccttttga	cattggtgcc	geecetggtg	ggcctgaagg	ggaacctgga	gatgacactg	360
30	gcatccagac	tetecacage	tgccaacact	ggacaaattg	atgaccccca	ggagcagcac	420
	agagtcatca	gcagcaacct	ggccctcatc	caggtgcagg	ccactgtcgt	ggggetettg	480
	gctgctgtgg	ctgcgctgct	gttgggcgtg	gtgtctcgag	aggaagtgga	tgtcgccaag	540
	gtggagttgc	tgtgtgccag	cagtgtcctc	actgccttcc	ttgcagcctt	tgecetgggg	600
	gtgctgatgg	tctgtatagt	gattggtgct	cgaaagctcg	gggtcaaccc	agacaacatt	660
35	gccacgccca	ttgcagccag	cctgggagac	ctcatcacac	tgtccattct	ggctttggtt	720

	agcagettet t	ctacagaca	caaagatagt	cggtatctga	cgccgctggt	ctgcctcagc	780
	tttgeggete t	gaccccagt	gtgggtcctc	attgccaagc	agagcccacc	categtgaag	840
	atcctgaagt t	tggctggtt	cccaatcatc	ctggccatgg	tcatcagcag	tttcggagga	900
	ctcatcttga g	gcaaaaccgt	ttctaaacag	cagtacaaag	gcatggcgat	atttacccc	960
5	gtcatatgtg g	jtgttggtgg	caatctggtg	gccattcaga	ccagccgaat	ctcaacctac	1020
	ctgcacatgt g	gagtgcacc	tggcgtcctg	cccctccaga	tgaagaaatt	ctggcccaac	1080
	ccgtgttcta c	tttctgcac	gtcagaaatc	aattccatgt	cagctcgagt	cctgctcttg	1140
	ctggtggtcc c	aggecatet	gattttcttc	tacatcatct	acctggtgga	gggtcagtca	1200
	gtcataaaca g	gccagacctt	tgtggtgctc	tacctgctgg	caggcctgat	ccaggtgaca	1260
10	atcctgctgt a	cctggcaga	agtgatggtt	cggctgactt	ggcaccaggc	cctggatcct	1320
	gacaaccact g	catececta	ccttacaggg	ctgggggacc	tgctcggtac	tggcctcctg	1380
	gcactctgct t	tttcactga	ctggctactg	aagagcaagg	cagagctggg	tggcatctca	1440
	gaactggcat c	tggacctcc	c				1461
15	<210> 106						
	<211> 1179						
	<212> DNA						
	<213> Homo S	apience					
20	<400> 106						
	atgcggacac to	cttcaacct	cctctggctt	geeetggeet	gcagccctgt	tcacactacc	60
	ctgtcaaagt c	agatgccaa	aaaagccgcc	tcaaagacgc	tgctggagaa	gagtcagttt	120
	tcagataagc co	ggtgcaaga (ccggggtttg	gtggtgacgg	acctcaaagc	tgagagtgtg	180
	gttcttgagc a	tegeageta	ctgctcggca	aaggcccggg	acagacactt	tgctggggat	240
25	gtactgggct at	tgtcactcc	atggaacagc	catggctacg	atgtcaccaa	ggtctttggg	300
	agcaagttca ca	acagatete a	accegtetgg	ctgcagctga	agagacgtgg	ccgtgagatg	360
	tttgaggtca co	gggcctcca (cgacgtggac	caagggtgga	tgcgagctgt	caggaagcat	420
	gccaagggcc to	gcacatagt (gcctcggctc	ctgtttgagg	actggactta	cgatgatttc	480
	cggaacgtct ta	agacagtga (ggatgagata	gaggagctga	gcaagaccgt	ggtccaggtg	540
30	gcaaagaacc ag	gcatttcga 1	tggcttcgtg	gtggaggtct	ggaaccagct	gctaagccag	600
	aagegegtgg ge	cctcatcca d	catgctcacc	cacttggccg	aggctctgca	ccaggcccgg	660
	ctgctggccc to	cctggtcat (cccgcctgcc	atcacccccg	ggaccgacca	gctgggcatg	720
	ttcacgcaca ag	ggagtttga 🤅	gcagetggee	cccgtgctgg	atggtttcag	cctcatgacc	780
	tacgactact ct	tacagegea t	tcagectgge	cctaatgcac	ccctgtcctg	ggttcgagcc	840
35	tgcgtccagg to	cetggaece q	gaagtccaag	tggcgaagca	aaatcctcct	ggggctcaac	900

	ttctatggta	tggactacgc	gacctccaag	gatgcccgtg	agcctgttgt	cggggccagg	960
	tacatccaga	cactgaagga	ccacaggccc	cggatggtgt	gggacagcca	ggcctcagag	1020
	cacttcttcg	agtacaagaa	gagccgcagt	gggaggcacg	tegtetteta	cccaaccctg	1080
	aagtccctgc	aggtgcggct	ggagctggcc	cgggagctgg	gcgttggggt	ctctatctgg	1140
5	gagctgggcc	agggcctgga	ctacttctac	gacctgctc			1179
	<210> 107						
	<211> 588						
	<212> DNA						
10	<213> Homo	Sapience					
	<400> 107						
	atgtggaggg	tgcccggcac	aaccagacgc	ccagtcacag	gcgagagccc	tgggatgcac	60
	cggccagagg	ccatgctgct	gctgctcacg	cttgccctcc	tggggggccc	cacctgggca	120
15	gggaagatgt	atggccctgg	aggaggcaag	tatttcagca	ccactgaaga	ctacgaccat	180
	gaaatcacag	ggctgcgggt	gtctgtaggt	cttctcctgg	tgaaaagtgt	ccaggtgaaa	240
	cttggagact	cctgggacgt	gaaactggga	gccttaggtg	ggaataccca	ggaagtcacc	300
	ctgcagccag	gcgaatacat	cacaaaagtc	tttgtcgcct	tccaagcttt	cctccggggt	360
	atggtcatgt	acaccagcaa	ggaccgctat	ttctattttg	ggaagettga	tggccagatc	420
20	tectetgeet	accccagcca	agaggggcag	gtgctggtgg	gcatctatgg	ccagtatcaa	480
	ctccttggca	tcaagagcat	tggctttgaa	tggaattatc	cactagagga	gccgaccact	540
	gagccaccag	ttaatctcac	atactcagca	aactcacccg	tgggtege		588
	<210> 108						
2 5	<211> 321						
	<212> DNA						
	<213> Homo	Sapience					
00	<400> 108						
30			ggagattctt				60
			ggaagatcag				120
			aatagcgggt				180
			tactaaaatg				240
0.5			agcaatgact	gttggtatgg	gctattccat	gtatcgggaa	300
35	ttctgggcaa	aacctaagcc	t				321

	<210> 109						
	<211> 1050						
	<212> DNA						
5	<213> Homo	Sapience					
	<400> 109						
	atgtctgagg	tgaagagccg	gaagaagtcg	gggcccaagg	gagecectge	tgcggagccc	60
	gggaagcgga	gcgagggcgg	gaagaccccc	gtggcccgga	gcagcggagg	cgggggctgg	120
10	gcagaccccc	gaacgtgcct	gageetgetg	tegetgggga	egtgeetggg	cctggcctgg	180
	tttgtatttc	agcagtcaga	aaaatttgca	aaggtggaaa	accaatacca	gttactgaaa	240
	ctagaaacca	atgaattcca	acaacttcaa	agtaaaatca	gtttaatttc	agaaaagtgg	300
	cagaaatctg	aagctatcat	ggaacaattg	aagtcttttc	aaataattgc	tcatctaaag	360
	cgtctacagg	aagaaattaa	tgaggtaaaa	acttggtcca	ataggataac	tgaaaaacag	420
15	gatatactga	acaacagtct	gacgacgctt	tctcaagaca	ttacaaaagt	agaccaaagt	480
	acaacttcca	tggcaaaaga	tgttggtctc	aagattacaa	gtgtaaaaac	agatatacga	540
	cggatttcag	gtttagtaac	tgatgtaata	tcattgacag	attctgtgca	agaactagaa	600
	aataaaatag	agaaagtaga	aaaaaataca	gtaaaaaata	taggtgatct	tctttcaagc	660
	agtattgatc	gaacagcaac	gctccgaaag	acagcatctg	aaaattcaca	aagaattaac	720
20	tctgttaaga	agacgctaac	cgaactaaag	agtgacttcg	acaaacatac	agatagattt	780
	ctaagcttag	aaggtgacag	agccaaagtt	ctgaagacag	tgacttttgc	aaatgatcta	840
	aaaccaaagg	tgtataatct	aaagaaggac	ttttcccgtt	tagaaccatt	agtaaatgat	900
	ttaacactac	gcattgggag	attggttacc	gacttactac	aaagagagaa	agaaattgct	960
	ttcttaagtg	aaaaaatatc	taatttaaca	atagtccaag	ctgagattaa	ggatattaaa	1020
25	gatgaaatag	cacacatttc	agatatgaat				1050
	<210> 110						
	<211> 321						
	<212> DNA						
30	<213> Homo	Sapience					
	<400> 110						
	atgtcctcag	caggcacagc	aacccctctg	gaaatggatc	acaaactcac	ttctcagcca	60
	ggcaggccaa	gcttctattg	taacagtagg	cacagtatag	teggateate	acatcagctg	120
35	ggtttttggt	ttagtcatct	agagtcgtct	ggactaaagg	tctttcaggt	ctccttgccc	180

	tgtgagtgcg	tgaacctccc	cacccgaat	t gcctcagttg	tectgageet	catgtetete 2	240
	ctggtggtgg	gccaggcccc	tgcatggga	a gggagcctgc	tgcggggcag	gccagctggg 3	300
	ggtgctcacc	tatgcgcagc	a			3	321
5	<210> 111						
	<211> 1619						
	<212> DNA						
	<213> Homo	Sapience					
	<220>						
10	<221> CDS						
	<222> (158)	(1234)					
	<400> 111						
_					acccccgcgc (60
15					geggeggegg		120
	gaggagtgtg	tggaacagga	cccgggaca		g get eeg ca		175
					t Ala Pro Gli		
					1	5	
20					ggg gcg gtg	_	223
20	ser Thr Phe		eu Leu Leu	15	Gly Ala Val	ite Ala	
		10				tot ata 2	271
					cga agt gcc Arg Ser Ala		
	25	rne lyl b	30	Gry var 110	35		
25		aaa aag g		aaa cta gcc	ctg cag ctt	cat ccc 3	319
					Leu Gln Leu		
	40	-77	45		50		
	gac cgg aac	cct gat ga	at cca caa	qee eag gag	aaa ttc cag	gat ctg 3	367
					Lys Phe Gln		
30	55	=	- 50	65		70	
	ggt gct gct	tat gag gi	tt ctg tca	gat agt gag	aaa cgg aaa	cag tac 4	115
	Gly Ala Ala	Tyr Glu Va	al Leu Ser	Asp Ser Glu	Lys Arg Lys	Gln Tyr	
		75		80		85	
	gat act tat	ggt gaa g	aa gga tta	aaa gat ggt	cat cag age	tcc cat 4	163
35	Asp Thr Tyr	Gly Glu G	lu Gly Leu	Lys Asp Gly	His Gln Ser	Ser His	

				90					95					100			
	gga	gac	att	ttt	tca	cac	ttc	ttt	ggg	gat	ttt	ggt	ttc	atg	ttt	gga	511
	Gly	Asp	Ile	Phe	Ser	His	Phe	Phe	Gly	Asp	Phe	Gly	Phe	Met	Phe	Gly	
			105					110					115				
5	gga	acc	cct	cgt	cag	caa	gac	aga	aat	att	cca	aga	gga	agt	gat	att	559
	Gly	Thr	Pro	Arg	Gln	Gln	Asp	Arg	Asn	Ile	Pro	Arg	Gly	Ser	Asp	Ile	
		120					125					130					
	att	gta	gat	cta	gaa	gtc	act	ttg	gaa	gaa	gta	tat	gca	gga	aat	ttt	607
	Ile	Val	Asp	Leu	Glu	Val	Thr	Leu	Glu	Glu	Val	Tyr	Ala	Gly	Asn	Phe	
10	135					140					145					150	
	gtg	gaa	gta	gtt	aga	aac	aaa	cct	gtg	gca	agg	cag	gct	cct	ggc	aaa	655
	Val	Glu	Val	Val	Arg	Asn	Lys	Pro	Val	Ala	Arg	Gln	Ala	Pro	Gly	Lys	
					155					160					165		
	cgg	aag	tgc	aat	tgt	cgg	caa	gag	atg	cgg	acc	acc	cag	ctg	ggc	cct	703
15	Arg	Lys	Cys	Asn	Cys	Arg	Gln	Glu	Met	Arg	Thr	Thr	Gln	Leu	Gly	Pro	
				170					175					180			
	9 99	cgc	ttc	caa	atg	acc	cag	gag	gtg	gtc	tgc	gac	gaa	tgc	cct	aat	751
	Gly	Arg	Phe	Gln	Met	Thr	Gln	Glu	Val	Val	Cys	Asp	Glu	Cys	Pro	Asn	
			185					190					195				
20	gtc	aaa	cta	gtg	aat	gaa	gaa	cga	acg	ctg	gaa	gta	gaa	ata	gag	cct	799
	Val	Lys	Leu	Val	Asn	Glu	Glu	Arg	Thr	Leu	Glu	Val	Glu	Ile	Glu	Pro	
		200					205					210					
		gtg															847
	Gly	Val	Arg	Asp	Gly	Met	Glu	Tyr	Pro	Phe	Ile	Gly	Glu	Gly	Glu	Pro	
25	215					220					225					230	
	cac	gtg	gat	ggg	gag	cct	gga	gat	tta	cgg	ttc	cga	atc	aaa	gtt	gte	895
	His	Val	Asp	Gly	Glu	Pro	Gly	Asp	Leu	Arg	Phe	Arg	Ile	Lys	Val	Val	
					235					240					245		
	aag	cac	cca	ata	ttt	gaa	agg	aga	gga	gat	gat	ttg	tac	aca	aat	gtg '	943
30	Lys	His	Pro	Ile	Phe	Glu	Arg	Arg	Gly	Asp	Asp	Leu	Tyr	Thr	Asn	Val	
				250					255					260			
	aca	atc	tca	tta	gtt	gag	tca	ctg	gtt	ggc	ttt	gag	atg	gat	att	act	991
	Thr	Ile	Ser	Leu	Val	Glu	Ser	Leu	Val	Gly	Phe	Glu	Met	Asp	Ile	Thr	
			265					270					275				
35	cac	tta	gat	aat	Cac	aaa	ata	cat	att	taa	caa	gat	aad	atc	acc	agg	1039

	His Leu Asp Gly His Lys Val His Ile Ser Arg Asp Lys Ile Thr Arg	
	280 285 290	
	cca gga gcg aag cta tgg aag aaa ggg gaa ggg ctc ccc aac ttt gac	1087
	Pro Gly Ala Lys Leu Trp Lys Lys Gly Glu Gly Leu Pro Asn Phe Asp	
5	295 300 305 310	
	aac aac aat atc aag ggc tet ttg ata atc act ttt gat gtg gat ttt	1135
	Asn Asn Asn Ile Lys Gly Ser Leu Ile Ile Thr Phe Asp Val Asp Phe	
	315 320 325	
	cca aaa gaa cag tta aca gag gaa gcg aga gaa ggt atc aaa cag cta	1183
10	Pro Lys Glu Gln Leu Thr Glu Glu Ala Arg Glu Gly Ile Lys Gln Leu	
	330 335 340	
	ctg aaa caa ggg tca gtg cag aag gta tac aat gga ctg caa gga tat	1231
	Leu Lys Gln Gly Ser Val Gln Lys Val Tyr Asn Gly Leu Gln Gly Tyr	
	345 350 355	
15	tgagagtga ataaaattgg actttgttta aaataagtga ataagcgata tttattatct	1290
	gcaaggtttt tttgtgtgtg tttttgtttt tattttcaat atgcaagtta ggcttaattt	1350
	ttttatctaa tgatcatcat gaaatgaata agagggetta agaatttgte catttgcatt	1410
	cggaaaagaa tgaccagcaa aaggtttact aatacctctc cctttgggga tttaatgtct	1470
	ggtgctgccg cctgagtttc aagaattaaa gctgcaagag gactccagga gcaaaagaaa	1530
20	cacaatatag agggttggag ttgttagcaa tttcattcaa aatgccaact ggagaagtct	1590
	gtttttaaat acattttgtt gttattttt	1619
	<210> 112	
	<211> 2054	
25	<212> DNA	
	<213> Homo Sapience	
	<220>	
	<221> CDS	
	<222> (254)(934)	
30		
	<400> 112	
	cacatggeea agteegeece geeeeeteee egteeeegee getgeagegg tegeettegg	60
	agcgaagggt accgacccgg cagaagctcg gagctctcgg ggtatcgagg aggcaggccc	120
	gegggegeae gggegagegg geegggagee ggageggegg aggageegge ageageggeg	180
35	eggegggete eaggegagge ggtegaeget cetgaaaaet tgegegegeg etegegeeae	240

	tge	gece	gga (geg	atg .	aag	atg	gtc	gcg	ccc '	cgg	acg	cgg	LLC	tac	tcc	289
				i	Met :	Lys 1	Met '	Val .	Ala :	Pro '	Trp	Thr .	Arg	Phe	Tyr	Ser	
					1				5					10			
	aac	agc	tgc	tgc	ttg	tgc	tgc	cat	gtc	cgc	acc	ggc	acc	atc	ctg	ctc	337
5	Asn	Ser	Cys	Cys	Leu	Cys	Cys	His	Val	Arg	Thr	Gly	Thr	Ile	Leu	Leu	
			15					20					25				
	ggc	gtc	tgg	tat	ctg	atc	atc	aat	gct	gtg	gta	ctg	ttg	att	tta	ttg	385
	Gly	Val	Trp	Tyr	Leu	Ile	Ile	Asn	Ala	Val	Val	Leu	Leu	Ile	Leu	Leu	
		30					35			•		40					
10	agt	gcc	ctg	gct	gat	ccg	gat	cag	tat	aac	ttt	tca	agt	tct	gaa	ctg	433
	Ser	Ala	Leu	Ala	Asp	Pro	Asp	Gln	Tyr	Asn	Phe	Ser	Ser	Ser	Glu	Leu	
	45					50					55					60	
	gga	ggt	gac	ttt	gag	ttc	atg	gat	gat	gcc	aac	atg	tgc	att	gcc	att	481
	Gly	Gly	Asp	Phe	Glu	Phe	Met	Asp	Asp	Ala	Asn	Met	Cys	Ile	Ala	Ile	
15					65					70					75		
	gcg	att	tct	ctt	ctc	atg	atc	ctg	ata	tgt	gct	atg	gct	act	tac	gga	529
	Ala	Ile	Ser	Leu	Leu	Met	Ile	Leu	Ile	Cys	Ala	Met	Ala	Thr	Tyr	Gly	
				80					85					90			
	gcg	tac	aag	caa	cgc	gca	gcc	tgg	atc	atc	cca	ttc	ttc	tgt	tac	cag	577
20	Ala	Tyr	Lys	Gln	Arg	Ala	Ala	Trp	Ile	Ile	Pro	Phe	Phe	Cys	Tyr	Gln	
			95					100					105				
	atc	ttt	gac	ttt	gcc	ctg	aac	atg	ttg	gtt	gca	ạtc	act	gtg	ctt	att	625
	Ile	Phe	Asp	Phe	Ala	Leu	Asn	Met	Leu	Val	Ala	Ile	Thr	Val	Leu	Ile	
		110					115					120					
25	tat	cca	aac	tcc	att	cag	gaa	tac	ata	cgg	caa	ctg	cct	cct	aat	ttt	673
	Tyr	Pro	Asn	Ser	Ile	Gln	Glu	Tyr	Ile	Arg	Gln	Leu	Pro	Pro	Asn	Phe	
	125					130					135					140	
	ccc	tac	aga	gat	gat	gtc	atg	tca	gtg	aat	cct	acc	tgt	ttg	gtc	ctt	721
	Pro	Tyr	Arg	Asp	Asp	Val	Met	Ser	Val	Asn	Pro	Thr	Cys	Leu	Val	Leu	
30					145					150					155		
	att	att	ctt	ctg	ttt	att	agc	att	atc	ttg	act	ttt	aag	ggt	tac	ttg	769
	Ile	Ile	Leu	Leu	Phe	Ile	Ser	Ile	Ile	Leu	Thr	Phe	Lys	Gly	Tyr	Leu	
				160					165					170			
	att	agc	tgt	gtt	tgg	aac	tgc	tac	cga	tac	atc	aat	ggt	agg	aac	tcc	817
35	Ile	Ser	Cys	Val	Trp	Asn	Cys	Tyr	Arg	Tyr	Ile	Asn	Gly	Arg	Asn	Ser	

	17	75	180		185	
	tct gat gt	te etg gtt ta	at gtt acc	agc aat gac	act acg gtg d	etg cta 865
	Ser Asp Va	al Leu Val Ty	r Val Thr	Ser Asn Asp	Thr Thr Val I	Leu Leu
	190		195		200	
5	ccc ccg ta	at gat gat go	c act gtg	aat ggt gct	gcc aag gag d	ca ccg 913
	Pro Pro Ty	yr Asp Asp Al	a Thr Val	Asn Gly Ala	Ala Lys Glu I	Pro Pro
	205	21	.0	215		220
	cca cct ta	ac gtg tct go	c taagcett	ca agtgggcg	ga gctgagggc	960
	Pro Pro Ty	yr Val Ser Al	.a	•		
10		225				
	agcagcttga	a ctttgcagac	atctgagcaa	tagttctgtt	atttcacttt to	gecatgage 1020
	ctctctgago	ttgtttgttg	ctgaaatgct	actttttaaa	atttagatgt ta	igattgaaa 1080
	actgtagttt	tcaacatatg	ctttgctgga	acactgtgat	agattaactg ta	gaattett 1140
	cctgtacgat	tggggatata	atgggcttca	ctaaccttcc	ctaggcattg as	acttcccc 1200
15	caaatctgat	: ggacctagaa	gtctgctttt	gtacctgctg	ggccccaaag tt	gggcattt 1260
	ttctctctgt	tecctetett	ttgaaaatgt	aaaataaaac	caaaaataga ca	acttttc 1320
	ttcagccatt	ccagcataga	gaacaaaacc	ttatggaaac	aggaatgtca at	tgtgtaat 1380
	cattgttcta	a attaggtaaa	tagaagtcct	tatgtatgtg	ttacaagaat tt	ccccaca 1440
	acatccttta	a tgactgaagt	tcaatgacag	tttgtgtttg	gtggtaaagg at	tttctcca 1500
20	tggcctgaat	taagaccatt	agaaagcacc	aggeegtggg	agcagtgacc at	ctgctgac 1560
	tgttcttgtg	g gatcttgtgt	ccagggacat	ggggtgacat	gcctcgtatg to	rttagaggg 1620
	tggaatggat	gtgtttggcg	ctgcatggga	tetggtgeee	ctcttctcct gg	attcacat 1680
	ccccacccac	g ggcccgcttt	tactaagtgt	tctgccctag	attggttcaa gg	gaggtcatc 1740
	caactgactt	tatcaagtgg	aattgggata	tatttgatat	acttctgcct as	caacatgg 1800
25	aaaagggttt	tetttteeet	gcaagctaca	tcctactgct	ttgaacttcc as	gtatgtct 1860
	agtcaccttt	: taaaatgtaa	acattttcag	aaaaatgagg	attgccttcc tt	gtatgcgc 1920
	tttttacctt	gactacetga	attgcaaggg	atttttatat	attcatatgt ta	caaagtca 1980
	gcaactctcc	tgttggttca	ttattgaatg	tgctgtaaat	taagttgttt go	aattaaaa 2040
	caaggtttgc	ccac				2054
30						
	<210> 113					
	<211> 1380)				
	<212> DNA					
	<213> Homo	Sapience				

35 <220>

<221> CDS <222> (43)...(630)

	<400	0> 1	13														
5	gca	gtct	gtc 1	tgag	ggcg	gc c	gaag	tggc	t gg	ctca	ttta	ag	atg	agg	ctt	ctg	54
													Met .	Arg	Leu :	Leu	
													1				
	ctg	ctt	ctc	cta	gtg	gcg	gcg	tct	gcg	atg	gtc	cgg	agc	gag	gcc	teg	102
	Leu	Leu	Leu	Leu	Val	Ala	Ala	Ser	Ala	Met	Val	Arg	Ser	Glu	Ala	Ser	
10	5					10					15					20	
	gcc	aat	ctg	ggc	ggc	gtg	ccc	agc	aag	aga	tta	aag	atg	cag	tac	gcc	150
	Ala	Asn	Leu	Gly	Gly	Val	Pro	Ser	Lys	Arg	Leu	Lys	Met	Gln	Tyr	Ala	
					25					30					35		
	acg	ggg	ccg	ctg	ctc	aag	ttc	cag	att	tgt	gtt	tcc	tga	ggt	tat	agg	198
15	Thr	Gly	Pro	Leu	Leu	Lys	Phe	Gln	Ile	Cys	Val	Ser	Xaa	Gly	Tyr	Arg	
				40					45					50			
			ttt				_		_							_	246
	Arg	Val	Phe	Glu	Glu	Tyr	Met	_	Val	Ile	Ser	Gln		Tyr	Pro	Asp	
20			55					60					65				
20			att	_													294
	Ile	_	Ile	Glu	Gly	Glu		Tyr	Leu	Pro	Gln		Ile	Tyr	Arg	His	
		70					75					80					
			tct		_		-				-						342
3F		Ala	Ser	Phe	Leu		Val	Phe	Lys	Leu		Leu	He	GIÀ	Leu		
25	85					90					95					100	200
			ggc	_	_			_									390
	TTE	vaı	Gly	ьўs	_	Pro	Pne	Ala	Pne		GIY	Met	GIN	Ala		ser	
	a+-	+		.	105					110				-+-	115		420
30			cag				•		-	_		-					438
50	TTE	тгр	Gln	_	GIY	GIN	GIU	Asn	_	vai	туг	Ата	cys	130	Met	vai	
	++-	++-	++	120			_ 4.4.		125			- 	t .a.a			77	106
			ttg	•		-				_	-					_	486
	FIIC	rne	Leu 135	ser	ASN	Mec	тте	140	ASN	GIII	cys	riet	145	THE	GTÀ	wta	
35	+++	~ ~~	ata	9.C+	++-		~=±		ac+	a+ a	+~~	+~+		ota	W2 2	tat	534
,,,		yay	ala	act	LLA	aaı	yaı	yıa	CCL	949	-99		aay		yaa		234

124/177

	Phe Glu Ile Thr Leu Asn Asp Val Pro Val Trp Ser Lys Leu Glu Ser	
	150 155 160	
	ggt cac ctt cca tcc atg caa caa ctt gtt caa att ctt gac aat gaa	582
	Gly His Leu Pro Ser Met Gln Gln Leu Val Gln Ile Leu Asp Asn Glu	
5	165 170 175 180	
	atg aag ctc aat gtg cat atg gat tca atc cca cac cat cga tca	627
	Met Lys Leu Asn Val His Met Asp Ser Ile Pro His His Arg Ser	
	185 190 195	
	tag caccacctat cagcactgaa aactcttttg cattaaggga tcattgcaag	680
10	ageagegtga etgaeattat gaaggeetgt aetgaagaea geaagetgtt agtaeagaee	740
	agatgettte ttggeagget egttgtacet ettggaaaae etcaatgeaa gatagtgttt	800
	cagtgctggc atattttgga attctgcaca ttcatggagt gcaataatac tgtatagett	860
	tecceacete ecacaaaate acceagttaa tgtgtgtgtg tgtttttttt tttaaggtaa	920
	acattactac ttgtaacttt ttttcttagt catatttgaa aaagtagaaa attgagttac	980
15	aatttgattt tttttccaaa gatgtctgtt aaatctgttg tgcttttata tgaatatttg	1040
	ttttttatag tttaaaattg atcctttggg aatccagttg aagttcccaa atactttata	1100
	agagtttatc agacatctct aatttggcca tgtccagttt atacagttta caaaatatag	1160
	cagatgcaag attatggggg aaatcctata ttcagagtac tctataaatt tttgtgtatg	1220
	tgtgtatgtg cgtgtgatta ccagagaact actaaaaaaa ccaactgctt tttaaatcct	1280
20	attgtgtagt taaagtgtca tgccttgacc aatctaatga attgattaat taactgggcc	1340
	tttatactta actaaataaa aaactaagca gatatgagtt	1380
	<210> 114	
	<211> 1292	
25	<212> DNA	
	<213> Homo Sapience	
	<220>	
	<221> CDS	
	<222> (113)(1132)	
30		
	<400> 114	
	aaaagtgegg etetgggetg geegaagggg tggegetgeg atecegeagg geagegaege	60
	gactetggtg egggeegtet tetteeecee gagetgggeg tgegeggeeg ea atg aac	118
	Met Asn	

35

	tgg	gag	ctg	ctg	ctg	tgg	ctg	ctg	gtg	ctg	tgc	gcg	ctg	ctc	ctg	ctc	166
	Trp	Glu	Leu	Leu	Leu	Trp	Leu	Leu	Val	Leu	Cys	Ala	Leu	Leu	Leu	Leu	
			5					10					15				
	ttg	gtg	cag	ctg	ctg	cgc	ttc	ctg	agg	gct	gac	ggc	gac	ctg	acg	cta	214
5	Leu	Val	Gln	Leu	Leu	Arg	Phe	Leu	Arg	Ala	Asp	Gly	Asp	Leu	Thr	Leu	
		20					25					30					
	cta	tgg	gcc	gag	tgg	cag	gga	cga	cgc	cca	gaa	tgg	gag	ctg	act	gat	262
	Leu	Trp	Ala	Glu	Trp	Gln	Gly	Arg	Arg	Pro	Glu	Trp	Glu	Leu	Thr	Asp	
	35					40					45					50	
10	atg	gtg	gtg	tgg	gtg	act	gga	gcc	tcg	agt	gga	att	ggt	gag	gag	ctg	310
	Met	Val	Val	Trp	Val	Thr	Gly	Ala	Ser	Ser	Gly	Ile	Gly	Glu	Glu	Leu	
					55					60					65		
	_		_	_		aaa			-				_		_	-	358
	Ala	Tyr	Gln		Ser	Lys	Leu	Gly		Ser	Leu	Val	Leu		Ala	Arg	
15				70					75					80			
	_				_	gaa				_							406
	Arg	Val		GIu	Leu	Glu	Arg		Lys	Arg	Arg	Cys		Glu	Asn	GTÀ	
			85					90					95				454
20						gat											454
20	ASII	100	гàг	GIU	гуя	Asp	105	Leu	vaı	Tea	PIO	110	Asp	Leu	Int	Asp	
	ect.		+00	cat	~ 22	gcg		200	999	act	att		Car	aaa	+++	aat	502
					_	Ala	-										
	115	013	201	*****	014	120					125	200				130	
25		atc	gac	att	cta	gtc	aac	aat	aat	gga		tee	cag	cat	tat		550
					_	Val										•	
	_		•		135				4	140					145		
	tge	atg	gat	acc		ttg	gat	gtc	tac		aag	cta	ata	gag	ctt	aac	598
					-	Leu	-	_									
30				150			_		155	_				160			
	tac	tta	ggg	acg	gtg	tcc	ttg	aca	aaa	tgt	gtt	ctg	cct	cac	atg	atc	646
	Tyr	Leu	Gly	Thr	Val	Ser	Leu	Thr	Lys	Cys	Val	Leu	Pro	His	Met	Ile	
			165					170					175				
	gag	agg	aag	caa	gga	aag	att	gtt	act	gtg	aat	agc	atc	ctg	ggt	atc	694
35	Glu	Arg	Lys	Gln	Gly	Lys	Ile	Val	Thr	Val	Asn	Ser	Ile	Leu	Gly	Ile	

		180					185					190					
	ata	tct	gta	cct	ctt	tcc	att	gga	tac	tgt	gct	agc	aag	cat	gct	ctc	742
	Ile	Ser	Val	Pro	Leu	Ser	Ile	Gly	Tyr	Cys	Ala	Ser	Lys	His	Ala	Leu	
	195					200					205					210	
5	cgg	ggt	ttt	ttt	aat	ggc	ctt	cga	aca	gaa	ctt	gcc	aca	tac	cca	ggt	790
	Arg	Gly	Phe	Phe	Asn	Gly	Leu	Arg	Thr	Glu	Leu	Ala	Thr	Tyr	Pro	Gly	
					215					220					225		
	ata	ata	gtt	tct	aac	att	tgc	cca	gga	cct	gtg	caa	tca	aat	att	gtg	838
	Ile	Ile	Val	Ser	Asn	Ile	Cys	Pro	Gly	Pro	Val	Gln	Ser	Asn	Ile	Val	
10				230					235					240			
	gag	aat	tcc	cta	gct	gga	gaa	gtc	aca	aag	act	ata	ggc	aat	aat	gga	886
	Glu	Asn	Ser	Leu	Ala	Gly	Glu	Val	Thr	Lys	Thr	Ile	Gly	Asn	Asn	Gly	
			245					250					255				
	gac	cag	tcc	cac	aag	atg	aca	acc	agt	cgt	tgt	gtg	cgg	ctg	atg	tta	934
15	Asp	Gln	Ser	His	Lys	Met	Thr	Thr	Ser	Arg	Cys	Val	Arg	Leu	Met	Leu	
		260					265					270					
			atg														982
		Ser	Met	Ala	Asn	_	Leu	Lys	Glu	Val		Ile	Ser	Glu	Gln		
2.5	275					280					285					290	
20		_	tta	_			_						_				1030
	Phe	Leu	Leu	Val		Tyr	Leu	Trp	Gln	_	Met	Pro	Thr	Trp		Trp	
					295					300					305		1050
			acc														1078
05	Trp	Ile	Thr		Lys	Met	GIY	Lys		Arg	ше	GIU	Asn		ràs	Ser	
25				310					315				225	320			1126
		_	gat	_	_												1126
	GIY	val	Asp 325	Ата	Asp	ser	ser	330	Pne	туз	TTE	Pile	335	TILL	пуs	ute	
	asc.	tas	aaaga	.~~	.+a+a	+ 20+	.+ ++		,,,,,,,	. +	ים ממני	1222		raaas	.ac =		1180
30	Asp	cyac	aaaga	ige a		jeace		.caaç	jecac	. Lyg	,4995	juuu	uucg	guuc		•	1100
00	nsp																
	tgas	aaca	age a	atct	tatt	a to	rette	taaa	ı taa	itcas	aga	ctaa	ittto	rtg c	rtttt	acttt	1240
			ata t														1292
		uy	-cu (-guct	90			~~25	,					,			

	<21	1> 2	168														
	<21	2> D	NA														
	<21	3> н	omo	Sapi	ence												
	<22	0>															
5	<22	1> C	DS														
	<22	2> (56).	(1	519)												
	-																
	<40	0> 1	15														
	ttt	ccgc	ege (egeet	tggg	ag g	ggac	ccgg	g ct	gcca	ggcg	ccc	agct	gtg	ccca	g	55
10	atg	gat	ggg	aca	gag	acc	cgg	cag	cgg	agg	ctg	gac	agc	tgt	ggc	aag	103
	Met	Asp	Gly	Thr	Glu	Thr	Arg	Gln	Arg	Arg	Leu	Asp	Ser	Cys	Gly	Lys	
	1				5					10					15		
	cca	ggg	gag	ctg	ggg	ctt	cct	cac	ccc	ctc	agc	aca	gga	gga	ctc	cct	151
	Pro	Gly	Glu	Leu	Gly	Leu	Pro	His		Leu	Ser	Thr	Gly		Leu	Pro	
15				20					25					30			
	_	-		gaa	-		_			-					_		199
	Val	Ala		Glu	Asp	Gly	Ala		Arg	Ala	Pro	Glu		GIn	Ser	Val	
			35					40					45		.	.	2.42
20			_	cca													247
20	THE	50	rys	Pro	Leu	Giu	55	GIU	PIO	Ser	Arg	60	IIIL	Ата	ттр	ser	
	ata		c++	cag	at a	acc		ccc	ttc	ato	+++		aac	cta	gga	cta	295
				Gln													2,3
	65	1				70					75				2	80	
25		taa	qcc	ggc	atq	ctt	ctq	qac	tat	ttc	caq	cac	tgg	cct	gtg	ttt	343
				Gly													
		-		-	85			-	_	90					95		
	gtg	gag	gtg	aaa	gac	ctt	ttg	aca	ttg	gtg	ccg	ccc	ctg	gtg	ggc	ctg	391
	Val	Glu	Val	Lys	Asp	Leu	Leu	Thr	Leu	Val	Pro	Pro	Leu	Val	Gly	Leu	
30				100					105					110			
	aag	ggg	aac	ctg	gag	atg	aca	ctg	gca	tcc	aga	ctc	tcc	aca	gct	gcc	439
	Lys	Gly	Asn	Leu	Glu	Met	Thr	Leu	Ala	Ser	Arg	Leu	Ser	Thr	Ala	Ala	
			115					120					125				
	aac	act	gga	caa	att	gat	gac	ccc	cag	gag	cag	cac	aga	gtc	atc	agc	487
35	Asn	Thr	Gly	Gln	Ile	Asp	Asp	Pro	Gln	Glu	Gln	His	Arg	Val	Ile	Ser	

		130					133					140					
	agc	aac	ctg	gcc	ctc	atc	cag	gtg	cag	gcc	act	gtc	gtg	ggg	ctc	ttg	535
	Ser	Asn	Leu	Ala	Leu	Ile	Gln	Val	Gln	Ala	Thr	Val	Val	Gly	Leu	Leu	
	145					150					155					160	
5	gct	gct	gtg	gct	gcg	ctg	ctg	ttg	ggc	gtg	gtg	tct	cga	gag	gaa	gtg	583
	Ala	Ala	Val	Ala	Ala	Leu	Leu	Leu	Gly	Val	Val	Ser	Arg	Glu	Glu	Val	
					165					170					175		
	gat	gtc	gcc	aag	gtg	gag	ttg	ctg	tgt	gcc	agc	agt	gtc	ctc	act	gcc	631
	Asp	Val	Ala	Lys	Val	Glu	Leu	Leu	Cys	Ala	Ser	Ser	Val	Leu	Thr	Ala	
10				180					185					190			
	tte	ctt	gca	gcc	ttt	gcc	ctg	ggg	gtg	ctg	atg	gtc	tgt	ata	gtg	att	679
	Phe	Leu	Ala	Ala	Phe	Ala	Leu	Gly	Val	Leu	Met	Val	Суз	Ile	Val	Ile	
			195					200					205				
	ggt	gct	cga	aag	ctc	ggg	gtc	aac	cca	gac	aac	att	gcc	acg	ccc	att	727
15	Gly	Ala	Arg	Lys	Leu	Gly	Val	Asn	Pro	Asp	Asn	Ile	Ala	Thr	Pro	Ile	
		210					215					220					
	gca	gcc	agc	ctg	gga	gac	ctc	atc	aca	ctg	tcc	att	ctg	gct	ttg	gtt	775
	Ala	Ala	Ser	Leu	Gly	Asp	Leu	Ile	Thr	Leu	Ser	Ile	Leu	Ala	Leu	Val	
	225					230					235					240	
20	agc	agc	ttc	ttc	tac	aga	cac	aaa	gat	agt	cgg	tat	ctg	acg	ccg	ctg	823
	Ser	Ser	Phe	Phe	Tyr	Arg	His	Lys	Asp	Ser	Arg	Tyr	Leu	Thr	Pro	Leu	
					245					250		٠			255		
	gtc	tgc	ctc	agc	ttt	gcg	gct	ctg	acc	cca	gtg	tgg	gtc	ctc	att	gcc	871
	Val	Cys	Leu	Ser	Phe	Ala	Ala	Leu	Thr	Pro	Val	Trp	Val	Leu	Ile	Ala	
25				260					265					270			
	aag	cag	agc	cca	ccc	atc	gtg	aag	atc	ctg	aag	ttt	ggc	tgg	ttc	cca	919
	Lys	Gln	Ser	Pro	Pro	Ile	Val	Lys	Ile	Leu	Lys	Phe	Gly	Trp	Phe	Pro	
			275					280					285				
	atc	atc	ctg	gcc	atg	gtc	atc	agc	agt	ttc	gga	gga	ctc	atc	ttg	agc	967
30	Ile	Ile	Leu	Ala	Met	Val	Ile	Ser	Ser	Phe	Gly	Gly	Leu	Ile	Leu	Ser	
		290					295					300					
	aaa	acc	gtt	tct	aaa	cag	cag	tac	aaa	ggc	atg	gcg	ata	ttt	acc	ccc	1015
	Lys	Thr	Val	Ser	Lys	Gln	Gln	Tyr	Lys	Gly	Met	Ala	Ile	Phe	Thr	Pro	
	305					310					315					320	
35	gtc	ata	tgt	ggt	gtt	ggt	ggc	aat	ctg	gtg	gcc	att	cag	acc	agc	cga	1063

	Val	Ile	Суѕ	Gly	Val	Gly	Gly	Asn	Leu	Val	Ala	Ile	Gln	Thr	Ser	Arg	
					325					330					335		
	atc	tca	acc	tac	ctg	cac	atg	tgg	agt	gca	cct	ggc	gtc	ctg	ccc	ctc	111
	Ile	Ser	Thr	Tyr	Leu	His	Met	Trp	Ser	Ala	Pro	Gly	Val	Leu	Pro	Leu	
5				340					345					350			
	cag	atg	aag	aaa	ttc	tgg	ccc	aac	ccg	tgt	tct	act	ttc	tgc	acg	tca	1159
	Gln	Met	Lys	Lys	Phe	Trp	Pro	Asn	Pro	Cys	Ser	Thr	Phe	Cys	Thr	Ser	
			355					360					365				
	gaa	atc	aat	tcc	atg	tca	gct	cga	gtc	ctg	ctc	ttg	ctg	gtg	gtc	cca	1207
10	Glu	Ile	Asn	Ser	Met	Ser	Ala	Arg	Val	Leu	Leu	Leu	Leu	Val	Val	Pro	
		370					375					380					
	ggc	cat	ctg	att	ttc	ttc	tac	atc	atc	tac	ctg	gtg	gag	ggt	cag	tca	1255
	Gly	His	Leu	Ile	Phe	Phe	Tyr	Ile	Ile	Tyr	Leu	Val	Glu	Gly	Gln	Ser	
	385					390					395					400	
15	gtc	ata	aac	agc	cag	acc	ttt	gtg	gtg	ctc	tac	ctg	ctg	gca	ggc	ctg	1303
	Val	Ile	Asn	Ser	Gln	Thr	Phe	Val	Val	Leu	Tyr	Leu	Leu	Ala	Gly	Leu	
					405					410					415		
	atc	cag	gtg	aca	atc	ctg	ctg	tac	ctg	gca	gaa	gtg	atg	gtt	cgg	ctg	1351
	Ile	Gln	Val	Thr	Ile	Leu	Leu	Tyr	Leu	Ala	Glu	Val	Met	Val	Arg	Leu	
20				420					425					430			
	act	tgg	cac	cag	gcc	ctg	gat	cct	gac	aac	cac	tgc	atc	ccc	tac	ctt	1399
	Thr	Trp	His	Gln	Ala	Leu	Asp	Pro	Asp	Asn	His	Cys	Ile	Pro	Tyr	Leu	
			435					440					445				
	aca	ggg	ctg	ggg	gac	ctg	ctc	ggt	act	ggc	ctc	ctg	gca	ctc	tgc	ttt	1447
25	Thr	Gly	Leu	Gly	Asp	Leu	Leu	Gly	Thr	Gly	Leu	Leu	Ala	Leu	Cys	Phe	
		450					455					460					
	ttc	act	gac	tgg	cta	ctg	aag	agc	aag	gca	gag	ctg	ggt	ggc	atc	tca	1495
	Phe	Thr	Asp	Trp	Leu	Leu	Lys	Ser	Lys	Ala	Glu	Leu	Gly	Gly	Ile	Ser	
	465					470					475					480	
30	gaa	ctg	gca	tct	gga	cct	ccc	taac	tggg	raa c	eget	ggto	c ca	tttç	jctca	ttag	1550
	Glu	Leu	Ala	Ser	Gly	Pro	Pro										
					485												
	aatt	tcct	ct o	cacat	cagt	g gg	ratac	agaa	tto	agtt	tct	ccct	tgcc	ag g	rtect	tggga	1610
	tggt	tgad	ece c	etgeo	tete	gc ag	rtago	cttt	tgt	gagt	ctg	ctaa	iggta	.gc t	ctca	cacac	1670
35	ctc	ggata	tg c	ggtt	gata	c ct	gago	ctgo	aat	agag	jece	tgaa	atca	ag a	gcat	ggatt	1730

	gagtgtgtga atatgatgtg tgcacatgct taatgagcgt gcaagtgtgc acacgtttgt	1790
	ggagaggagg gtgttctggc ctgagaagct aaagaagagg catgtccagt atgctttgca	1850
	gggtgtgttt getettttee atgeeeatge aacceagatt ggggtggage aggaaggage	1910
	tettttetgt teecaageet cagaactett gagetgtgge ttacttgetg tettcaccag	1970
5	gttcaagete egtgggeeae aetgetgetg tgeeaagaag gtgtacagee teeccaggat	2030
	ggggcctcat acaacccttc atctgcactc aacatttaat cgtgtccttg ctgtcttttt	2090
	attttccttt ttgttagcaa aaacctctat ttagatttca ataatcagag aagtgtaaaa	2150
	taaaacagat tatattgt	2168
10	<210> 116	
	<211> 1357	
	<212> DNA	
	<213> Homo Sapience	
	<220>	
15	<221> CDS	
	<222> (81)(1262)	
	<400> 116	
	egtgegtttg tggeegteeg geeteeetga catgeageee tetggaeeee gaggttggae	60
20	cetactgtga cacacetace atg egg aca ete tte aac ete ete tgg ett	110
	Met Arg Thr Leu Phe Asn Leu Leu Trp Leu	
	1 5 10	
	gee etg gee tge age eet gtt eae aet ace etg tea aag tea gat gee	158
OF.	Ala Leu Ala Cys Ser Pro Val His Thr Thr Leu Ser Lys Ser Asp Ala	
25	15 20 25	
	aaa aaa goo goo toa aag acg otg otg gag aag agt cag ttt toa gat	203
	Lys Lys Ala Ala Ser Lys Thr Leu Leu Glu Lys Ser Gln Phe Ser Asp	
	20	
	30 35 40	
20	aag ccg gtg caa gac cgg ggt ttg gtg gtg acg gac ctc aaa gct gag	254
30	aag ccg gtg caa gac cgg ggt ttg gtg gtg acg gac ctc aaa gct gag Lys Pro Val Gln Asp Arg Gly Leu Val Val Thr Asp Leu Lys Ala Glu	254
30	aag eeg gtg eaa gae egg ggt ttg gtg gtg aeg gae ete aaa get gag Lys Pro Val Gln Asp Arg Gly Leu Val Val Thr Asp Leu Lys Ala Glu 45 50 55	
30	aag ccg gtg caa gac cgg ggt ttg gtg gtg acg gac ctc aaa gct gag Lys Pro Val Gln Asp Arg Gly Leu Val Val Thr Asp Leu Lys Ala Glu 45 50 55 agt gtg gtt ctt gag cat cgc agc tac tgc tcg gca aag gcc cgg gac	25 4 302
30	aag ccg gtg caa gac cgg ggt ttg gtg gtg acg gac ctc aaa gct gag Lys Pro Val Gln Asp Arg Gly Leu Val Val Thr Asp Leu Lys Ala Glu 45 50 55 agt gtg gtt ctt gag cat cgc agc tac tgc tcg gca aag gcc cgg gac Ser Val Val Leu Glu His Arg Ser Tyr Cys Ser Ala Lys Ala Arg Asp	
30 35	aag ccg gtg caa gac cgg ggt ttg gtg gtg acg gac ctc aaa gct gag Lys Pro Val Gln Asp Arg Gly Leu Val Val Thr Asp Leu Lys Ala Glu 45 50 55 agt gtg gtt ctt gag cat cgc agc tac tgc tcg gca aag gcc cgg gac	

	Arg	His	Phe	Ala	GIY	Asp	Val	Leu	GIY	Tyr	Val	Thr	Pro	Trp	Asn	Ser	
	75					80					85					90	
	cat	ggc	tac	gat	gtc	acc	aag	gtc	ttt	9 99	agc	aag	ttc	aca	cag	atc	398
	His	Gly	Tyr	Asp	Val	Thr	Lys	Val	Phe	Gly	Ser	Lys	Phe	Thr	Gln	Ile	
5					95					100					105		
	tca	ccc	gtc	tgg	ctg	cag	ctg	aag	aga	cgt	ggc	cgt	gag	atg	ttt	gag	446
	Ser	Pro	Val	Trp	Leu	Gln	Leu	Lys	Arg	Arg	Gly	Arg	Glu	Met	Phe	Glu	
				110					115					120			
	gtc	acg	ggc	ctc	cac	gac	gtg	gac	caa	ggg	tgg	atg	cga	gct	gtc	agg	494
10	Val	Thr	Gly	Leu	His	Asp	Val	Asp	Gln	Gly	Trp	Met	Arg	Ala	Val	Arg	
			125					130					135				
	aag	cat	gcc	aag	ggc	ctg	cac	ata	gtg	cct	cgg	ctc	ctg	ttt	gag	gac	542
	Lys	His	Ala	Lys	Gly	Leu	His	Ile	Val	Pro	Arg	Leu	Leu	Phe	Glu	Asp	
		140					145					150					
15	tgg	act	tac	gat	gat	ttc	cgg	aac	gtc	tta	gac	agt	gag	gat	gag	ata	590
	Trp	Thr	Tyr	Asp	Asp	Phe	Arg	Asn	Val	Leu	Asp	Ser	Glu	Asp	Glu	Ile	
	155					160					165					170	
	gag	gag	ctg	agc	aag	acc	gtg	gtc	cag	gtg	gca	aag	aac	cag	cat	ttc	638
	Glu	Glu	Leu	Ser	Lys	Thr	Val	Val	Gln	Val	Ala	Lys	Asn	Gln	His	Phe	
20					175					180					185		
	gat	ggc	ttc	gtg	gtg	gag	gtc	tgg	aac	cag	ctg	cta	agc	cag	aag	cgc	686
	Asp	Gly	Phe	Val	Val	Glu	Val	Trp	Asn	Gln	Leu	Leu	Ser	Gln	Lys	Arg	
				190					195					200			
	gtg	ggc	ctc	atc	cac	atg	ctc	acc	cac	ttg	gcc	gag	gct	ctg	cac	cag	734
25	Val	Gly	Leu	Ile	His	Met	Leu	Thr	His	Leu	Ala	Glu	Ala	Leu	His	Gln	
			205					210					215				
	gcc	cgg	ctg	ctg	gcc	ctc	ctg	gtc	atc	ccg	cct	gcc	atc	acc	ccc	aaa	782
	Ala	Arg	Leu	Leu	Ala	Leu	Leu	Val	Ile	Pro	Pro	Ala	Ile	Thr	Pro	Gly	
		220					225					230					
30	acc	gac	cag	ctg	ggc	atg	ttc	acg	cac	aag	gag	ttt	gag	cag	ctg	gcc	830
	Thr	Asp	Gln	Leu	Gly	Met	Phe	Thr	His	Lys	Glu	Phe	Glu	Gln	Leu	Ala	
	235					240					245					250	
	ccc	gtg	ctg	gat	ggt	ttc	agc	ctc	atg	acc	tac	gac	tac	tct	aca	gcg	878
	Pro	Val	Leu	Asp	Gly	Phe	Ser	Leu	Met	Thr	Tyr	Asp	Tyr	Ser	Thr	Ala	
35					255					260					265		

	cat	cag	cct	ggc	cct	aat	gca	ccc	ctg	tcc	tgg	gtt	cga	gcc	tgc	gtc	926
	His	Gln	Pro	Gly	Pro	Asn	Ala	Pro	Leu	Ser	Trp	Val	Arg	Ala	Cys	Val	
				270					275					280			
	cag	gtc	ctg	gac	ccg	aag	tcc	aag	tgg	cga	agc	aaa	atc	ctc	ctg	9 99	974
5	Gln	Val	Leu	Asp	Pro	Lys	Ser	Lys	Trp	Arg	Ser	Lys	Ile	Leu	Leu	Gly	
			285					290					295				
	ctc	aac	ttc	tat	ggt	atg	gac	tac	gcg	acc	tcc	aag	gat	gcc	cgt	gag	1022
	Leu	Asn	Phe	Tyr	Gly	Met	Asp	Tyr	Ala	Thr	Ser	Lys	Asp	Ala	Arg	Glu	
		300					305					310					
10	cct	gtt	gtc	ggg	gcc	agg	tac	atc	cag	aca	ctg	aag	gac	cac	agg	ccc	1070
	Pro	Val	Val	Gly	Ala	Arg	Tyr	Ile	Gln	Thr	Leu	Lys	Asp	His	Arg	Pro	
	315					320					325					330	
	cgg	atg	gtg	tgg	gac	agc	cag	gcc	tca	gag	cac	ttc	ttc	gag	tac	aag	1118
	Arg	Met	Val	Trp	Asp	Ser	Gln	Ala	Ser	Glu	His	Phe	Phe	Glu	Tyr	Lys	
15					335					340					345		
	aag	agc	cgc	agt	ggg	agg	cac	gtc	gtc	ttc	tac	cca	acc	ctg	aag	tcc	1166
	Lys	Ser	Arg	Ser	Gly	Arg	His	Val	Val	Phe	Tyr	Pro	Thr	Leu	Lys	Ser	
				350					355					360			
	ctg	cag	gtg	cgg	ctg	gag	ctg	gcc	cgg	gag	ctg	ggc	gtt	aaa	gtc	tct	1214
20	Leu	Gln	Val	Arg	Leu	Glu	Leu	Ala	Arg	Glu	Leu	Gly	Val	Gly	Val	Ser	
			365					370					375				
	atc	tgg	gag	ctg	ggc	cag	ggc	ctg	gac	tac	ttc	tac	gac	ctg	ctc	t	1260
	Ile	Trp	Glu	Leu	Gly	Gln	Gly	Leu	Asp	Tyr	Phe	Tyr	Asp	Leu	Leu		
		380					385					390					
25	aggt	gggc	at t	gege	geete	ec go	ggtç	gaco	, tgt	tctt	ttc	taaç	rccat	gg a	igtga	igtgag	1320
	cago	tgt	gaa a	taca	agged	et co	acto	egtt	tgc	tgtg	Ī						1357
)> 11															
	<211	> 71	1														
30		:> DN															
	<213	> Ho	omo S	apie	ence												
	<220	>															
	<221	.> CI	S														
	<222	> (8	1)	(598	3)												

133/177

<400> 117 aaaggeg atg tgg agg gtg eee gge aca ace aga ege eea gte aca gge 49 Met Trp Arg Val Pro Gly Thr Thr Arg Arg Pro Val Thr Gly 5 gag age cet ggg atg cac egg cea gag gee atg etg etg etc aeg 97 Glu Ser Pro Gly Met His Arg Pro Glu Ala Met Leu Leu Leu Thr 15 ctt gee etc etg ggg gge eec ace tgg gea ggg aag atg tat gge eet 145 Leu Ala Leu Leu Gly Gly Pro Thr Trp Ala Gly Lys Met Tyr Gly Pro 10 35 40 gga gga ggc aag tat ttc agc acc act gaa gac tac gac cat gaa atc 193 Gly Gly Lys Tyr Phe Ser Thr Thr Glu Asp Tyr Asp His Glu Ile 241 aca ggg ctg cgg gtg tet gta ggt ett ete etg gtg aaa agt gte cag 15 Thr Gly Leu Arg Val Ser Val Gly Leu Leu Val Lys Ser Val Gln 70 289 gtg aaa ctt gga gac tee tgg gac gtg aaa etg gga gee tta ggt ggg Val Lys Leu Gly Asp Ser Trp Asp Val Lys Leu Gly Ala Leu Gly Gly 90 80 20 aat acc cag gaa gtc acc ctg cag cca ggc gaa tac atc aca aaa gtc 337 Asn Thr Gln Glu Val Thr Leu Gln Pro Gly Glu Tyr Ile Thr Lys Val 95 385 ttt gte gee tte caa get tte ete egg ggt atg gte atg tae ace age Phe Val Ala Phe Gln Ala Phe Leu Arg Gly Met Val Met Tyr Thr Ser 25 120 115 aag gac cgc tat ttc tat ttt ggg aag ctt gat ggc cag atc tcc tct 433 Lys Asp Arg Tyr Phe Tyr Phe Gly Lys Leu Asp Gly Gln Ile Ser Ser 130 135 140 gec tac ecc age caa gag ggg cag gtg etg gtg gge ate tat gge cag 481 30 Ala Tyr Pro Ser Gln Glu Gly Gln Val Leu Val Gly Ile Tyr Gly Gln tat caa ctc ctt ggc atc aag agc att ggc ttt gaa tgg aat tat cca 529 Tyr Gln Leu Leu Gly Ile Lys Ser Ile Gly Phe Glu Trp Asn Tyr Pro 170 160 165 35 cta gag gag eeg ace act gag eea eea gtt aat ete aca tae tea gea 577

	Leu Glu Glu Pro Thr Glu Pro Pro Val Asn Leu Thr Tyr Ser Ala	
	175 180 185 ,190	
	aac tea eee gtg ggt ege tagggtgggg tatggggeea teegagetga ggeea	630
	Asn Ser Pro Val Gly Arg	
5	195	
	tetgtgtggt ggtggetgat ggtactggag taactgagte gggaegetga atetgaatee	690
	accaataaat aaagcttctg c	711
	<210> 118	
10	<211> 651	
	<212> DNA	
	<213> Homo Sapience	
	<220>	
	<221> CDS	
15	<222> (242)(565)	
	<400> 118	
	aaagaaacaa geeggggae tgegageeag ggaeteggge egeggggegg gaagaagtgg	60
	ggeagegett ggeeaggeeg aaaggaettt gggggtgggg getgggagte egtgtetega	120
20	atgagggagg agaggtggag ttgccggggc tcaggcccgg cctcgagcat gggcggatga	180
	gaggagtegg gageegagge etagggteet tegggtgagg ggagaeggag eeagegagga	240
	g atg gag cag aag ctt gtg gag gag att ctt caa gca atc act atg	286
	Met Glu Gln Lys Leu Val Glu Glu Ile Leu Gln Ala Ile Thr Met	
	1 5 10 15	
25	tca aca gac aca ggt gtt tee ett eet tea tat gag gaa gat eag gga	334
	Ser Thr Asp Thr Gly Val Ser Leu Pro Ser Tyr Glu Glu Asp Gln Gly	
	20 25 30	
	tca aaa ctc att cga aaa gct aaa gag gca cca ttc gta ccc gtt gga	382
	Ser Lys Leu Ile Arg Lys Ala Lys Glu Ala Pro Phe Val Pro Val Gly	
30	35 40 45	
	ata gcg ggt ttt gca gca att gtt gca tat gga tta tat aaa ctg aag	430
	Ile Ala Gly Phe Ala Ala Ile Val Ala Tyr Gly Leu Tyr Lys Leu Lys	
	50 55 60	
	age agg gga aat act aaa atg tee att eat etg ate eac atg egt gtg	478
35	Ser Arg Gly Asn Thr Lys Met Ser Ile His Leu Ile His Met Arg Val	

	65 70 75	
	gea gee caa gge ttt gtt gta gga gea atg aet gtt ggt atg gge tat	526
	Ala Ala Gln Gly Phe Val Val Gly Ala Met Thr Val Gly Met Gly Tyr	
	80 85 90 95	
5	tee atg tat egg gaa tte tgg gea aaa eet aag eet tagaagaa	570
	Ser Met Tyr Arg Glu Phe Trp Ala Lys Pro Lys Pro	
	100 105	
	gagatgctgt cttggtcttg ttggaggagc ttgctttagt tagatgtctt attattaaag	630
	ttacctatta ttgttggaaa t	651
10		
	<210> 119	
	<211> 1310	
	<212> DNA	
	<213> Homo Sapience	
15	<220>	
	<221> CDS	
	<222> (78)(1130)	
	<400> 119	
20	cgaacgccaa ggcggccacg teetgeteee eetggtgaag aagetgeeet gggettgteg	60
	tectagggte tecagae atg tet gag gtg aag age egg aag aag teg ggg	110
	Met Ser Glu Val Lys Ser Arg Lys Lys Ser Gly	
	1 5 10	
	ccc aag gga gcc cct gct gcg gag ccc ggg aag cgg agc gag ggc ggg	158
25	Pro Lys Gly Ala Pro Ala Ala Glu Pro Gly Lys Arg Ser Glu Gly Gly	
	15 20 25	
	aag acc ccc gtg gcc cgg agc agc gga ggc ggg ggc tgg gca gac ccc	206
	Lys Thr Pro Val Ala Arg Ser Ser Gly Gly Gly Trp Ala Asp Pro	
	30 35 40	
30	cga acg tgc ctg agc ctg ctg tcg ctg ggg acg tgc ctg ggc ctg gcc	254
	Arg Thr Cys Leu Ser Leu Ser Leu Gly Thr Cys Leu Gly Leu Ala	
	45 50 55	
	tgg ttt gta ttt cag cag tca gaa aaa ttt gca aag gtg gaa aac caa	302
	Trp Phe Val Phe Gln Gln Ser Glu Lys Phe Ala Lys Val Glu Asn Gln	
35	60 65 70 75	

	tac	cag	tta	ctg	aaa	cta	gaa	acc	aat	gaa	ttc	caa	caa	ctt	caa	agt	350
	Tyr	Gln	Leu	Leu	Lys	Leu	Glu	Thr	Asn	Glu	Phe	Gln	Gln	Leu	Gln	Ser	
					80					85					90		
	aaa	atc	agt	tta	att	tca	gaa	aag	tgg	cag	aaa	tct	gaa	gct	atc	atg	398
5	Lys	Ile	Ser	Leu	Ile	Ser	Glu	Lys	Trp	Gln	Lys	Ser	Glu	Ala	Ile	Met	
				95					100					105			
	gaa	caa	ttg	aag	tct	ttt	caa	ata	att	gct	cat	cta	aag	cgt	cta	cag	446
	Glu	Gln	Leu	Lys	Ser	Phe	Gln	Ile	Ile	Ala	His	Leu	Lys	Arg	Leu	Gln	
			110					115		•			120				
10	gaa	gaa	att	aat	gag	gta	aaa	act	tgg	tcc	aat	agg	ata	act	gaa	aaa	494
	Glu	Glu	Ile	Asn	Glu	Val	Lys	Thr	Trp	Ser	Asn	Arg	Ile	Thr	Glu	Lys	
		125					130					135					
	cag	gat	ata	ctg	aac	aac	agt	ctg	acg	acg	ctt	tct	caa	gac	att	aca	542
	Gln	Asp	Ile	Leu	Asn	Asn	Ser	Leu	Thr	Thr	Leu	Ser	Gln	Asp	Ile	Thr	
15	140					145					150					155	
	aaa	gta	gac	caa	agt	aca	act	tcc	atg	gca	aaa	gat	gtt	ggt	ctc	aag	590
	Lys	Val	Asp	Gln	Ser	Thr	Thr	Ser	Met	Ala	Lys	Asp	Val	Gly	Leu	Lys	
					160					165					170		
	att	aca	agt	gta	aaa	aca	gat	ata	cga	cgg	att	tca	ggt	tta	gta	act	638
20	Ile	Thr	Ser	Val	Lys	Thr	Asp	Ile	Arg	Arg	Ile	Ser	Gly	Leu	Val	Thr	
				175					180					185			
	gat	gta	ata	tca	ttg	aca	gat	tct	gtg	caa	gaa	cta	gaa	aat	aaa	ata	686
	Ąsp	Val	Ile	Ser	Leu	Thr	Asp	Ser	Val	Gln	Glu	Leu	Glu	Asn	Lys	Ile	
			190					195					200				
25	gag	aaa	gta	gaa	aaa	aat	aca	gta	aaa	aat	ata	ggt	gat	ctt	ctt	tca	734
	Glu	Lys	Val	Glu	Lys	Asn	Thr	Val	Lys	Asn	Ile	Gly	Asp	Leu	Leu	Ser	
		205					210					215					
	agc	agt	att	gat	cga	aca	gca	acg	ctc	cga	aag	aca	gca	tct	gaa	aat	782
	Ser	Ser	Ile	Asp	Arg	Thr	Ala	Thr	Leu	Arg	Lys	Thr	Ala	Ser	Glu	Asn	
30	220					225					230					235	
	tca	caa	aga	att	aac	tct	gtt	aag	aag	acg	cta	acc	gaa	cta	aag	agt	830
	Ser	Gln	Arg	Ile	Asn	Ser	Val	Lys	Lys	Thr	Leu	Thr	Glu	Leu	Lys	Ser	
					240					245					250		
	gac	ttc	gac	aaa	cat	aca	gat	aga	ttt	cta	agc	tta	gaa	ggt	gac	aga	878
35	Asp	Phe	αzA	Lvs	His	Thr	Asp	Arg	Phe	Leu	Ser	Leu	Glu	Gly	Asp	Arg	

	255 260 265	
	gee aaa gtt etg aag aca gtg act ttt gea aat gat eta aaa eea aag	926
	Ala Lys Val Leu Lys Thr Val Thr Phe Ala Asn Asp Leu Lys Pro Lys	
	270 275 280	
5	gtg tat aat cta aag aag gac ttt tcc cgt tta gaa cca tta gta aat	974
	Val Tyr Asn Leu Lys Lys Asp Phe Ser Arg Leu Glu Pro Leu Val Asn	
	285 290 295	
	gat tta aca cta cgc att ggg aga ttg gtt acc gac tta cta caa aga	1022
	Asp Leu Thr Leu Arg Ile Gly Arg Leu Val Thr Asp Leu Leu Gln Arg	
10	300 305 310 315	
	gag aaa gaa att gct ttc tta agt gaa aaa ata tct aat tta aca ata	1070
	Glu Lys Glu Ile Ala Phe Leu Ser Glu Lys Ile Ser Asn Leu Thr Ile	
	320 325 330	
	gtc caa gct gag att aag gat att aaa gat gaa ata gca cac att tca	1118
15	Val Gln Ala Glu Ile Lys Asp Ile Lys Asp Glu Ile Ala His Ile Ser	
	335 340 345	
	gat atg aat tagtttgaca ttattgagat tagactaagg taattttttt aat	1170
	Asp Met Asn	
	350	
20	gggacctctc atgagaagac tggtaaatca aaaataatga tattttggag caaaagtcat	1230
	tttatattta atcctatttt gtacagtaaa aataaaactt taaaacaggt tgattttcca	1290
	aaataaatat getaaaacet	1310
	<210> 120	
25	<211> 1400	
	<212> DNA	
	<213> Homo Sapience	
	<220>	
	<221> CDS	
30	<222> (233)(556)	
	<400> 120	
	tggctgtatg ctattggagg gtggaaatca catctcctgt ttatccgtgt gcttgttagg	60
	tgtcagcege cacececee ceatatgeag atttactegg catggtagtg gecagettet	120
35	aacacagetg gtattteaag teteetggga eeteaeteag gaatgatace eeeteagtag	180

	aagcagcagg tgatcttaac tcctttcaaa gagcaggcct gtctgggaag cc atg	235
	Met	
	1	
	tec tea gea gge aca gea ace cet etg gaa atg gat cae aaa ete act	283
5	Ser Ser Ala Gly Thr Ala Thr Pro Leu Glu Met Asp His Lys Leu Thr	
	5 10 15	
	tot cag coa ggo agg coa ago tto tat tgt aac agt agg cac agt ata	331
	Ser Gln Pro Gly Arg Pro Ser Phe Tyr Cys Asn Ser Arg His Ser Ile	
	20 25 30	
10	gtc gga tca tca cat cag ctg ggt ttt tgg ttt agt cat cta gag tcg	379
	Val Gly Ser Ser His Gln Leu Gly Phe Trp Phe Ser His Leu Glu Ser	
	35 40 45	
	tet gga eta aag gte ttt eag gte tee ttg eee tgt gag tge gtg aac	427
	Ser Gly Leu Lys Val Phe Gln Val Ser Leu Pro Cys Glu Cys Val Asn	
15	50 55 60 65	
	ctc ccc acc cga att gcc tca gtt gtc ctg age ctc atg tct ctc ctg	475
	Leu Pro Thr Arg Ile Ala Ser Val Val Leu Ser Leu Met Ser Leu Leu	
	70 75 80	
	gtg gtg ggc cag gcc cct gca tgg gaa ggg agc ctg ctg cgg ggc agg	523
20	Val Val Gly Gln Ala Pro Ala Trp Glu Gly Ser Leu Leu Arg Gly Arg	
	85 90 95	
	cca gct ggg ggt gct cac cta tgc gca gca tgaagttatt gaaggac	570
	Pro Ala Gly Gly Ala His Leu Cys Ala Ala	
	100 105	
25	tggttgttga tgttggtgag cgtatcctte atggccagcg cgaagtcggc caggtcagcc	630
	aggtgetgee agegetetet eteggaettg tetteetgtg eeaggggaee gtggagaaag	690
	tgtcaggggc cgctcactgc agcagcctgc tctgctgcct tccctggcag tgttctgggg	750
	gtggattccc tacacctaga tgttcaaggc cttacttttc ctcccacaaa ggagtcgcag	810
	ccacgctagc tetgacttgc cactgtgaca aagttcacgt agcaggteta ggcaaagact	870
30	gggcaattga gcagaggaga cggacctgtg agtctgacca cgaggcggac cccttcacct	930
	tggetgggee tggteetggt cettaggttt tgteaggttg teettgtttg gateeeteaa	990
	ctaggtgata agcactggag ggggatgacc cgccttggac gtgtttcttt aacctcatcc	1050
	atataatagg geegtgggat ggttgtagag gtaaageagg atgatggtgt tttaagaeea	1110
	gagettggga ecagggetee tacacetaat ttteteteet ggtagetgaa caaaggteta	1170
35	aattagetta acaaaagaae aggetgeegt cageeagagt tetgaaggee atgettteag	1230

	tttccct	tgt 1	tgac	aatt	gc t	etec	agtt	c ct	atga	aagc	aca	gage	ctt	aggg	ggeetg	1290
	gccacag	aac a	acaa	ccat	ct t	aggc	ctga	g ct	gtga	acag	cag	9 999	ttg	tgtg	tatgtt	1350
	ctgtttc	tct	gctt	geeg	aa c	tttc	tcaa	t aa	accc	tatt	tct	tatt	tat			1400
5	<210> 13	21														
	<211> 48	83														
	<212> P	RT														
	<213> H	omo :	sapi	ence												
10	<400> 13	21														
	Met Lys	Ala	Phe	His	Thr	Phe	Cys	Val	Val	Leu	Leu	Val	Phe	Gly	Ser	
	1			5					10					15		
	Val Ser	Glu	Ala	Lys	Phe	Asp	Asp	Phe	Glu	Asp	Glu	Glu	Asp	Ile	Val	
			20					25					30			
15	Glu Tyr	Asp	Asp	Asn	Asp	Phe	Ala	Glu	Phe	Glu	Asp	Val	Met	Glu	Asp	
		35					40					45				
	Ser Val	Thr	Glu	Ser	Pro	Gln	Arg	Val	Ile	Ile	Thr	Glu	Asp	Asp	Glu	
	50					55					60					
	Asp Glu	Thr	Thr	Val	Glu	Leu	Glu	Gly	Gln	Asp	Glu	Asn	Gln	Glu	Gly	
20	65				70					75					80	
	Asp Phe	Glu	Asp	Ala	Asp	Thr	Gln	Glu		Asp	Thr	Glu	Ser		Pro	
				85					90					95		
	Tyr Asp	Asp		Glu	Phe	Glu	Gly	Tyr	Glu	Asp	Lys	Pro		Thr	Ser	
			100					105					110			
25	Ser Ser	_	Asn	Lys	Asp	Pro		Thr	Ile	Val	Asp		Pro	Ala	His	
		115					120					125		_	_	
	Leu Gln	Asn	Ser	Trp	Glu		Tyr	Tyr	Leu	Glu		Leu	Met	Val	Thr	
	130					135					140					
00	Gly Leu	Leu	Ala	Tyr		Met	Asn	Tyr	Ile		Gly	Lys	Asn	Lys		
30	145				150					155					160	
	Ser Arg	Leu	Ala		Ala	Trp	Phe	Asn		His	Arg	Glu	Leu		GLu	
				165					170					175		
	Ser Asn	Phe		Leu	Val	Gly	Asp	_	Gly	Thr	Asn	Lys		Ala	Thr	
. =			180					185		•			190	_	_	
35	Ser Thr	Gly	Lys	Leu	Asn	Gln	Glu	Asn	Glu	His	Ile	Tyr	Asn	Leu	Trp	

			195	•				200)				205	•		
	Cys	Ser	Gly	' Arg	, Val	. Cys	Cys	Glu	Gly	/ Met	Leu	Ile	Gln	Leu	Arg	Phe
		210					215	,				220)			
	Leu	Lys	Arg	Gln	Asp	Leu	Leu	Asn	Val	Leu	Ala	Arg	Met	Met	Arg	Pro
5	225					230	1				235					240
	Val	Ser	Asp	Gln	Val	Gln	Ile	Lys	Val	Thr	Met	Asn	Asp	Glu	Asp	Met
					245					250					255	
	Asp	Thr	Tyr	Val	Phe	Ala	Val	Gly	Thr	Arg	Lys	Ala	Leu	Val	Arg	Let
				260					265					270		
10	Gln	Lys	Glu	Met	Gln	Asp	Leu	Ser	Glu	Phe	Cys	Ser	Asp	Lys	Pro	Lys
			275					280					285			
	Ser	Gly	Ala	Lys	Tyr	Gly	Leu	Pro	Asp	Ser	Leu	Ala	Ile	Leu	Ser	Glu
		290					295					300				
	Met	Gly	Glu	Val	Thr	Asp	Gly	Met	Met	Asp	Thr	Lys	Met	Val	His	Phe
15	305					310					315					320
	Leu	Thr	His	Tyr	Ala	Asp	Lys	Ile	Glu	Ser	Val	His	Phe	Ser	Asp	Gln
					325					330					335	
	Phe	Ser	Gly	Pro	Lys	Ile	Met	Gln	Glu	Glu	Gly	Gln	Pro	Leu	Lys	Leu
				340					345					350		
20	Pro	Asp	Thr	Lys	Arg	Thr	Leu	Leu	Phe	Thr	Phe	Asn	Val	Pro	Gly	Ser
			355					360					365			
	Gly	Asn	Thr	Tyr	Pro	Lys	Asp	Met	Glu	Ala	Leu	Leu	Pro	Leu	Met	Asn
		370					375					380				
	Met	Val	Ile	Tyr	Ser	Ile	Asp	Lys	Ala	Lys	Lys	Phe	Arg	Leu	Asn	Arg
25	385					390					395					400
	Glu	Gly	Lys	Gln	Lys	Ala	Asp	Lys	Asn	Arg	Ala	Arg	Val	Glu	Glu	Asn
					405					410					415	
	Phe	Leu	Lys	Leu	Thr	His	Val	Gln	Arg	Gln	Glu	Ala	Ala	Gln	Ser	Arg
				420					425					430		
30	Arg			Lys	Lys	Arg	Ala	Glu	Lys	Glu	Arg	Ile	Met	Asn	Glu	Glu
			435					440					445			
	Asp	Pro	Glu	Lys	Gln	Arg	Arg	Leu	Glu	Glu	Ala	Ala	Leu	Arg	Arg	Glu
		450					455					460				
~~		Lys	Lys	Leu	Glu	Lys	Lys	Gln	Met	Lys	Met	Lys	Gln	Ile	Lys	Val
35	465					470					475					480

	Lys	Ala	a Met	:												
		-														
	<21	.0> 1	22													
	<21	.1> 3	34													
5	<21	.2> F	RT													
	<21	3> H	omo	sapi	.ence	:										
	<40	0> 1	.22													
	Met	Val	Glu	Phe	Ala	Pro	Leu	Phe	Met	Pro	Trp	Glu	Arg	Arg	Leu	Gln
10	1				5					10					15	
	Thr	Leu	Ala	Val	Leu	Gln	Phe	Val	Phe	Ser	Phe	Leu	Ala	Leu	Ala	Glu
				20					25					30		
	Ile	Cys	Thr	Val	Gly	Phe	Ile	Ala	Leu	Leu	Phe	Thr	Arg	Phe	Trp	Leu
			35					40					45			
15	Leu	Thr	Val	Leu	Tyr	Ala	Ala	Trp	Trp	Tyr	Leu	Asp	Arg	Asp	Lys	Pro
		50					55					60				
	Arg	Gln	Gly	Gly	Arg	His	Ile	Gln	Ala	Ile	Arg	Cys	Trp	Thr	Ile	Trp
	65					70					75					80
	Lys	Tyr	Met	Lys	Asp	Tyr	Phe	Pro	Ile	Ser	Leu	Val	Lys	Thr	Ala	Glu
20					85					90					95	
	Leu	Asp	Pro	Ser	Arg	Asn	Tyr	Ile	Ala	Gly	Phe	His	Pro	His	Gly	Val
				100					105					110		
	Leu	Ala	Val	Gly	Ala	Phe	Ala	Asn	Leu	Cys	Thr	Glu	Ser	Thr	Gly	Phe
			115					120					125			
25	Ser	Ser	Ile	Phe	Pro	Gly	Ile	Arg	Pro	His	Leu	Met	Met	Leu	Thr	Leu
		130					135					140				
	Trp	Phe	Arg	Ala	Pro	Phe	Phe	Arg	Asp	Tyr	Ile	Met	Ser	Ala	Gly	Leu
	145					150					155					160
	Val	Thr	Ser	Glu	Lys	Glu	Ser	Ala	Ala	His	Ile	Leu	Asn	Arg	Lys	Gly
30					165					170					175	
	Gly	Gly	Asn	Leu	Leu	Gly	Ile	Ile	Val	Gly	Gly	Ala	Gln	Glu	Ala	Leu
			•	180					185					190		
	Asp	Ala	Arg	Pro	Gly	Ser	Phe	Thr	Leu	Leu	Leu	Arg	Asn	Arg	Lys	Gly
			195					200					205			
35	Phe	Val	Arg	Leu	Ala	Leu	Thr	His	Gly	Ala	Pro	Leu	Val	Pro	Ile	Phe

Ser Phe Gly Glu Asn Asp Leu Phe Asp Gln Ile Pro Asn Ser Ser Gly Ser Trp Leu Arg Tyr Ile Gln Asn Arg Leu Gln Lys Ile Met Gly Ile Ser Leu Pro Leu Phe His Gly Arg Gly Val Phe Gln Tyr Ser Phe Gly Leu Ile Pro Tyr Arg Arg Pro Ile Thr Thr Val Val Gly Lys Pro Ile Glu Val Gln Lys Thr Leu His Pro Ser Glu Glu Glu Val Asn Gln Leu His Gln Arg Tyr Ile Lys Glu Leu Cys Asn Leu Phe Glu Ala His Lys Leu Lys Phe Asn Ile Pro Ala Asp Gln His Leu Glu Phe Cys <210> 123 <211> 267 <212> PRT <213> Homo sapience <400> 123 Met Ala Pro Trp Ala Leu Leu Ser Pro Gly Val Leu Val Arg Thr Gly His Thr Val Leu Thr Trp Gly Ile Thr Leu Val Leu Phe Leu His Asp Thr Glu Leu Arg Gln Trp Glu Glu Gln Gly Glu Leu Leu Pro Leu Thr Phe Leu Leu Val Leu Gly Ser Leu Leu Tyr Leu Ala Val Ser Leu Met Asp Pro Gly Tyr Val Asn Val Gln Pro Gln Pro Gln Glu Glu Leu Lys Glu Glu Gln Thr Ala Met Val Pro Pro Ala Ile Pro Leu Arg Arg Cys Arg Tyr Cys Leu Val Leu Gln Pro Leu Arg Ala Arg His

				100					102					110		
	Cys	Arg	Glu	Cys	Arg	Arg	Cys	Val	Arg	Arg	Tyr	Asp	His	His	Cys	Pro
			115					120					125			
	Trp	Met	Glu	Asn	Cys	Val	Gly	Glu	Arg	Asn	His	Pro	Leu	Phe	Val	Val
5		130					135					140				
	Tyr	Leu	Ala	Leu	Gln	Leu	Val	Val	Leu	Leu	Trp	Gly	Leu	Tyr	Leu	Ala
	145					150					155					160
	Trp	Ser	Gly	Leu	Arg	Phe	Phe	Gln	Pro	Trp	Gly	Leu	Trp	Leu	Arg	Ser
					165					170					175	
10	Ser	Gly	Leu	Leu	Phe	Ala	Thr	Phe	Leu	Leu	Leu	Ser	Leu	Phe	Ser	Leu
				180					185					190		
	Val	Ala	Ser	Leu	Leu	Leu	Val	Ser	His	Leu	Tyr	Leu	Val	Ala	Ser	Asn
			195					200					205			
	Thr	Thr	Thr	Trp	Glu	Phe	Ile	Ser	Ser	His	Arg	Ile	Ala	Tyr	Leu	Arg
15		210					215					220				
	Gln	Arg	Pro	Ser	Asn	Pro	Phe	Asp	Arg	Gly	Leu	Thr	Arg	Asn	Leu	Ala
	225					230					235					240
	His	Phe	Phe	Cys	Gly	Trp	Pro	Ser	Gly	Ser	Trp	Glu	Thr	Leu	\mathtt{Trp}	Ala
					245					250					255	
20	Glu	Glu	Glu	Glu	Glu	Gly	Ser	Ser	Pro	Ala	Val					
				260					265							
	<210)> 12	24													
	<211	l> 10)6													
2 5	<212	?> PF	RT													
	<213	3> Hc	omo s	apie	ence											
)> 12														
00	Met	Ser	Thr	Asn	Asn	Met	Ser	Asp	Pro	Arg	Arg	Pro	Asn	Lys	Val	Leu
30	1				5					10					15	
	Arg	Tyr	Lys	Pro	Pro	Pro	Ser	Glu	Cys	Asn	Pro	Ala	Leu	Asp	Asp	Pro
				20					25					30		
	Thr	Pro	_	Tyr	Met	Asn	Leu		Gly	Met	Ile	Phe		Met	Cys	Gly
0.5			35					40				_	45			
35	Leu	Met	Leu	Lys	Leu	Lys	Trp	Cys	Ala	Trp	Val	Ala	Val	Tyr	Cys	Ser

		50					55					60	•			
	Phe	Ile	Ser	Phe	Ala	Asn	Ser	Arg	Ser	Ser	Glu	Asp	Thr	Lys	Gln	Met
	65					70					75					80
	Met	Ser	Ser	Phe	Met	Leu	Ser	Ile	Ser	Ala	Val	Val	Met	Ser	Tyr	Leu
5					85					90					95	
	Gln	Asn	Pro	Gln	Pro	Met	Thr	Pro	Pro	Trp						
				100					105							
	<21	0> 1	25													
10	<21	1> 2	24													
	<21	2> P	RT													
	<21	3> н	omo	sapi	ence											
	<400	0> 1	25													
15	Met	Thr	Leu	Phe	His	Phe	Gly	Asn	Cys	Phe	Ala	Leu	Ala	Tyr	Phe	Pro
	1				5					10					15	
	Tyr	Phe	Ile	Thr	Tyr	Lys	Cys	Ser	Gly	Leu	Ser	Glu	Tyr	Asn	Ala	Phe
				20					25					30		
	Trp	Lys	Cys	Val	Gln	Ala	Gly	Val	Thr	Tyr	Leu	Phe	Val	Gln	Leu	Cys
20			35					40					45			
	Lys	Met	Leu	Phe	Leu	Ala	Thr	Phe	Phe	Pro	Thr	Trp	Glu	Gly	Gly	Ile
		50					55					60				
	Tyr	Asp	Phe	Ile	Gly	Glu	Phe	Met	Lys	Ala	Ser	Val	Asp	Val	Ala	Asp
	65					70					75					80
25	Leu	Ile	Gly	Leu	Asn	Leu	Val	Met	Ser	Arg	Asn	Ala	Gly	Lys	Gly	Glu
					85					90					95	
	Tyr	Lys	Ile	Met	Val	Ala	Ala	Leu	Gly	Trp	Ala	Thr	Ala	Glu	Leu	Ile
				100					105					110		
	Met	Ser	Arg	Cys	Ile	Pro	Leu	Trp	Val	Gly	Ala	Arg	Gly	Ile	Glu	Phe
30			115					120					125			
	Asp	Trp	Lys	Tyr	Ile	Gln	Met	Ser	Ile	Asp	Ser	Asn	Ile	Ser	Leu	Val
		130					135					140				
	His	Tyr	Ile	Val	Ala	Ser	Ala	Gln	Val	Trp	Met	Ile	Thr	Arg	Tyr	Asp
	145					150					155					160
35	Leu	Tyr	His	Thr	Phe	Arg	Pro	Ala	Val	Leu	Leu	Leu	Met	Phe	Leu	Ser

					165					170					175	
	Val	Tyr	Lys	Ala	Phe	Val	Met	Glu	Thr	Phe	Val	His	Leu	Cys	Ser	Leu
				180					185					190		
	Gly	Ser	Trp	Ala	Ala	Leu	Leu	Ala	Arg	Ala	Val	Val	Thr	Gly	Leu	Leu
5			195					200					205			
	Ala	Leu	Ser	Thr	Leu	Ala	Leu	Tyr	Val	Ala	Val	Val	Asn	Val	His	Ser
		210					215					220				
	<21	0> 1	26													
10	<21	1> 2	58													
	<21	2> P	RT													
	<21	3> н	omo :	sapi	ence											
	<400	0> 1:	26													
15	Met	Ala	Val	Leu	Ala	Pro	Leu	Ile	Ala	Leu	Val	Tyr	Ser	Val	Pro	Arg
	1				5					10					15	
	Leu	Ser	Arg	Trp	Leu	Ala	Gln	Pro	туr	Tyr	Leu	Leu	Ser	Ala	Leu	Leu
				20					25					30		
	Ser	Ala	Ala	Phe	Leu	Leu	Val	Arg	Lys	Leu	Pro	Pro	Leu	Cys	His	Gly
20			35					40					45			
	Leu	Pro	Thr	Gln	Arg	Glu	Asp	Gly	Asn	Pro	Cys	Asp	Phe	Asp	Trp	Arg
		50					55					60				
	Glu	Val	Glu	Ile	Leu	Met	Phe	Leu	Ser	Ala	Ile	Val	Met	Met	Lys	Asn
	65					70					75					80
25	Arg	Arg	Ser	Met	Phe	Leu	Met	Thr	Cys	Lys	Pro	Pro	Leu	Tyr	Met	Gly
					85					90					95	
	Pro	Glu	Tyr	Ile	Lys	Tyr	Phe	Asn	Asp	Lys	Thr	Ile	Asp	Glu	Glu	Leu
				100					105					110		
	Glu	Arg	Asp	Lys	Arg	Val	Thr	Trp	Ile	Val	Glu	Phe	Phe	Ala	Asn	Trp
30			115					120					125			
	Ser	Asn	Asp	Cys	Gln	Ser	Phe	Ala	Pro	Ile	Tyr	Ala	Asp	Leu	Ser	Leu
		130					135					140				
	Lys	Tyr	Asn	Cys	Thr	Gly	Leu	Asn	Phe	Gly	Lys	Val	Asp	Val	Gly	Arg
	145					150					155					160
35	Tyr	Thr	Asp	Val	Ser	Thr	Arg	Tyr	Lys	Val	Ser	Thr	Ser	Pro	Leu	Thr

146/177

Lys Gln Leu Pro Thr Leu Ile Leu Phe Gln Gly Gly Lys Glu Ala Met Arg Arg Pro Gln Ile Asp Lys Lys Gly Arg Ala Val Ser Trp Thr Phe Ser Glu Glu Asn Val Ile Arg Glu Phe Asn Leu Asn Glu Leu Tyr Gln Arg Ala Lys Lys Leu Ser Lys Ala Gly Asp Asn Ile Pro Glu Glu Gln Pro Val Ala Ser Thr Pro Thr Thr Val Ser Asp Gly Glu Asn Lys Lys Asp Lys <210> 127 <211> 110 <212> PRT <213> Homo sapience <400> 127 Met Ala Ala Val Val Ala Lys Arg Glu Gly Pro Pro Phe Ile Ser Glu Ala Ala Val Arg Gly Asn Ala Ala Val Leu Asp Tyr Cys Arg Thr Ser Val Ser Ala Leu Ser Gly Ala Thr Ala Gly Ile Leu Gly Leu Thr Gly Leu Tyr Gly Phe Ile Phe Tyr Leu Leu Ala Ser Val Leu Leu Ser Leu Leu Leu Ile Leu Lys Ala Gly Arg Arg Trp Asn Lys Tyr Phe Lys Ser Arg Arg Pro Leu Phe Thr Gly Gly Leu Ile Gly Gly Leu Phe Thr Tyr Val Leu Phe Trp Thr Phe Leu Tyr Gly Met Val His Val Tyr <210> 128

<211> 91 <212> PRT <213> Homo sapience 5 <400> 128 Met Val Tyr Ile Ser Asn Gly Gln Val Leu Asp Ser Arg Ser Gln Ser Pro Trp Arg Leu Ser Leu Ile Thr Asp Phe Phe Trp Gly Ile Ala Glu 20 25 30 10 Phe Val Val Leu Phe Phe Lys Thr Leu Leu Gln Gln Asp Val Lys 40 Arg Arg Ser Tyr Gly Asn Ser Ser Asp Ser Arg Tyr Asp Asp Gly Arg 55 Gly Pro Pro Gly Asn Pro Pro Arg Met Gly Arg Ile Asn His Leu 15 65 70 80 Arg Gly Pro Ser Pro Pro Pro Met Ala Gly Gly 85 90 <210> 129 20 <211> 344 <212> PRT <213> Homo sapience <400> 129 25 Met Phe Thr Ser Thr Gly Ser Ser Gly Leu Tyr Lys Ala Pro Leu Ser Lys Ser Leu Leu Val Pro Ser Ala Leu Ser Leu Leu Ala Leu 20 30 25 Leu Leu Pro His Cys Gln Lys Leu Phe Val Tyr Asp Leu His Ala Val 30 Lys Asn Asp Phe Gln Ile Trp Arg Leu Ile Cys Gly Arg Ile Ile Cys 55 60 Leu Asp Leu Lys Asp Thr Phe Cys Ser Ser Leu Leu Ile Tyr Asn Phe

70

Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser Phe Leu

75

65

35

					85					90					95	
	Leu	Gly	Ser	Trp	Val	Leu	Ser	Ala	Leu	Phe	Asp	Phe	Leu	Leu	Ile	Glu
				100					105					110		
	Ala	Met	Gln	Tyr	Phe	Phe	Gly	Ile	Thr	Ala	Ala	Ser	Asn	Leu	Pro	Ser
5			115					120					125			
	Gly	Phe	Leu	Ala	Pro	Val	Phe	Ala	Leu	Phe	Val	Pro	Phe	Tyr	Cys	Ser
		130					135					140				
	Ile	Pro	Arg	Val	Gln	Val	Ala	Gln	Ile	Leu	Gly	Pro	Leu	Ser	Ile	Thr
	145					150					155					160
10	Asn	Lys	Thr	Leu	Ile	Tyr	Ile	Leu	Gly	Leu	Gln	Leu	Phe	Thr	Ser	Gly
					165					170					175	
	Ser	Tyr	Ile	Trp	Ile	Val	Ala	Ile	Ser	Gly	Leu	Met	Ser	Gly	Leu	Cys
				180					185					190		
	Tyr	Asp	Ser	Lys	Met	Phe	Gln	Val	His	Gln	Val	Leu	Cys	Ile	Pro	Ser
15			195					200					205			
	Trp	Met	Ala	Lys	Phe	Phe	Ser	Trp	Thr	Leu	Glu	Pro	Ile	Phe	Ser	Ser
		210					215					220				
	Ser	Glu	Pro	Thr	Ser	Glu	Ala	Arg	Ile	Gly	Met	Gly	Ala	Thr	Leu	Asp
	225					230					235					240
20	Ile	Gln	Arg	Gln	Gln	Arg	Met	Glu	Leu	Leu	Asp	Arg	Gln	Leu	Met	Phe
					245					250					255	
	Ser	Gln	Phe	Ala	Gln	Gly	Arg	Arg	Gln	Arg	Gln	Gln	Gln	Gly	Gly	Met
				260					265					270		
	Ile	Asn	Trp	Asn	Arg	Leu	Phe	Pro	Pro	Leu	Arg	Gln	Arg	Gln	Asn	Val
25			275					280					285			
	Asn	Tyr	Gln	Gly	Gly	Arg	Gln	Ser	Glu	Pro	Ala	Ala	Pro	Pro	Leu	Glu
		290					295					300				
	Val	Ser	Glu	Glu	Gln	Val	Ala	Arg	Leu	Met	Glu	Met	Gly	Phe	Ser	Arg
	305					310					315					320
30	Gly	Asp	Ala	Leu	Glu	Ala	Leu	Arg	Ala	Ser	Asn	Asn	Asp	Leu	Asn	Val
					325					330					335	
	Ala	Thr	Asn	Phe	Leu	Leu	Gln	His								
				340												

	<21	1> 42	28													
	<212	2> PI	RT													
	<213	3> Ho	omo s	sapi	ence											
5	<400	0> 13	30													
	Met	Gly	Pro	Pro	Pro	Gly	Ala	Gly	Val	Ser	Cys	Arg	Gly	Gly	Cys	Gly
	1				5					10					15	
	Phe	Ser	Arg	Leu	Leu	Ala	Trp	Cys	Phe	Leu	Leu	Ala	Leu	Ser	Pro	Gln
				20					25					30		
10	Ala	Pro	Gly	Ser	Arg	Gly	Ala	Glu	Ala	Val	Trp	Thr	Ala	Tyr	Leu	Asn
			35					40					45			
	Val	Ser	Trp	Arg	Val	Pro	His	Thr	Gly	Val	Asn	Arg	Thr	Val	Trp	Glu
		50					55					60				
	Leu	Ser	Glu	Glu	Gly	Val	Tyr	Gly	Gln	Asp	Ser	Pro	Leu	Glu	Pro	Val
15	65					70					75					80
	Ala	Gly	Val	Leu	Val	Pro	Pro	Asp	Gly	Pro	Gly	Ala	Leu	Asn	Ala	Cys
					85					90					95	
	Asn	Pro	His	Thr	Asn	Phe	Thr	Val	Pro	Thr	Val	Trp	Gly	Ser	Thr	Val
				100					105					110		
20	Gln	Val	Ser	Trp	Leu	Ala	Leu	Ile	Gln	Arg	Gly	Gly	Gly	Cys	Thr	Phe
			115					120					125			
	Ala	Asp	Lys	Ile	His	Leu	Ala	Tyr	Glu	Arg	Gly	Ala	Ser	Gly	Ala	Val
		130					135					140				
	Ile	Phe	Asn	Phe	Pro	Gly	Thr	Arg	Asn	Glu	Val	Ile	Pro	Met	Ser	His
2 5	145					150					155					160
	Pro	Gly	Ala	Val	Asp	Ile	Val	Ala	Ile	Met	Ile	Gly	Asn	Leu	Lys	Gly
					165					170					175	
	Thr	Lys	Ile	Leu	Gln	Ser	Ile	Gln	Arg	Gly	Ile	Gln	Val	Thr	Met	Val
				180					185					190		
30	Ile	Glu	Val	Gly	Lys	Lys	His	Gly	Pro	Trp	Val	Asn	His	Tyr	Ser	Ile
			195					200					205			
	Phe	Phe	Val	Ser	Val	Ser	Phe	Phe	Ile	Ile	Thr	Ala	Ala	Thr	Val	Gly
		210					215					220				
	Tyr	Phe	Ile	Phe	Tyr	Ser	Ala	Arg	Arg	Leu	Arg	Asn	Ala	Arg	Ala	Gln
35	225					230					235					240

	Ser	Arg	Lys	Gln	Arg	Gln	Leu	Lys	Ala	Asp	Ala	Lys	Lys	Ala	Ile	Gly	
					245					250					255		
	Arg	Leu	Gln	Leu	Arg	Thr	Leu	Lys	Gln	Gly	Asp	Lys	Glu	Ile	Gly	Pro	
				260					265					270			
5	Asp	Gly	Asp	Ser	Cys	Ala	Val	Cys	Ile	Glu	Leu	Tyr	Lys	Pro	Asn	Asp	
			275					280					285				
	Leu	Val	Arg	Ile	Leu	Thr	Cys	Asn	His	Ile	Phe	His	Lys	Thr	Cys	Val	
		290					295					300					
	Asp	Pro	Trp	Leu	Leu	Glu	His	Arg	Thr	Cys	Pro	Met	Cys	Lys	Cys	Asp	
10	305					310					315					320	
	Ile	Leu	Lys	Ala	Leu	Gly	Ile	Glu	Val	Asp	Val	Glu	Asp	Gly	Ser	Val	
					325					330					335		
	Ser	Leu	Gln	Val	Pro	Val	Ser	Asn	Glu	Ile	Ser	Asn	Ser	Ala	Ser	Ser	
				340					345					350			
15	His	Glu	Glu	Asp	Asn	Arg	Ser	Glu	Thr	Ala	Ser	Ser	Gly	Tyr	Ala	Ser	
			355					360					365				
	Val	Gln	Gly	Thr	Asp	Glu	Pro	Pro	Leu	Glu	Glu	His	Val	Gln	Ser	Thr	
		370					375					380					
	Asn	Glu	Ser	Leu	Gln	Leu	Val	Asn	His	Glu	Ala	Asn	Ser	Val	Ala	Val	
20	385					390					395					400	
	Asp	Val	Ile	Pro	His	Val	Asp	Asn	Pro	Thr	Phe	Glu	Glu	Asp	Glu	Thr	
					405					410					415		
	Pro	Asn	Gln	Glu	Thr	Ala	Val	Arg	Glu	Ile	Lys	Ser					
				420					425								
25																	
	<210)> 13	31														
	<211	l> 14	149														
	<212	2> DI	IA														
	<213	3> Hc	omo s	apie	ence												
30																	
	<400)> 13	31														
	atga	aago	ct t	ccac	actt	t ct	gtgt	tgto	ctt	ctgg	tgt	ttgg	gagt	gt c	etctg	aagcc	60
	aagt	ttga	itg a	tttt	gagg	a tg	agga	ggad	ata	gtag	agt	atga	tgat	aa t	gact	teget	120
	gaat	ttga	igg a	tgto	atgg	a ag	acto	tgtt	act	gaat	ctc	ctca	acgg	gt c	ataa	tcact	180
35	gaag	gatga	itg a	agat	gaga	c ca	ctgt	ggag	ttg	gaag	ggc	agga	tgaa	aa c	caag	aagga	240

	gattttgaag	atgcagatac	ccaggaggga	gatactgaga	gtgaaccata	tgatgatgaa	300
	gaatttgaag	gttatgaaga	caaaccagat	acttcttcta	gcaaaaataa	agacccaata	360
	acgattgttg	atgttcctgc	acacctccag	aacagctggg	agagttatta	tctagaaatt	420
	ttgatggtga	ctggtctgct	tgcttatatc	atgaattaca	tcattgggaa	gaataaaaac	480
5	agtegeettg	cacaggeetg	gtttaacact	catagggagc	ttttggagag	caactttact	540
	ttagtggggg	atgatggaac	taacaaagaa	gccacaagca	caggaaagtt	gaaccaggag	600
	aatgagcaca	tctataacct	gtggtgttct	ggtcgagtgt	gctgtgaggg	catgcttatc	660
	cagctgaggt	tecteaagag	acaagactta	ctgaatgtcc	tggcccggat	gatgaggcca	720
	gtgagtgatc	aagtgcaaat	aaaagtaacc	atgaatgatg	aagacatgga	tacctacgta	780
10	tttgctgttg	gcacacggaa	agccttggtg	cgactacaga	aagagatgca	ggatttgagt	840
	gagttttgta	gtgataaacc	taagtctgga	gcaaagtatg	gactgccgga	ctctttggcc	900
	atcctgtcag	agatgggaga	agtcacagac	ggaatgatgg	atacaaagat	ggttcacttt	960
	cttacacact	atgctgacaa	gattgaatct	gttcattttt	cagaccagtt	ctctggtcca	1020
	aaaattatgc	aagaggaagg	tcagccttta	aagctacctg	acactaagag	gacactgttg	1080
15	tttacattta	atgtgcctgg	ctcaggtaac	acttacccaa	aggatatgga	ggcactgcta	1140
	cccctgatga	acatggtgat	ttattctatt	gataaagcca	aaaagttccg	actcaacaga	1200
	gaaggcaaac	aaaaagcaga	taagaaccgt	gcccgagtag	aagagaactt	cttgaaactg	1260
	acacatgtgc	aaagacagga	agcagcacag	teteggeggg	aggagaaaaa	aagagcagag	1320
	aaggagcgaa	tcatgaatga	ggaagatcct	gagaaacagc	gcaggctgga	ggaggetgea	1380
20	ttgaggcgtg	agcaaaagaa	gttggaaaag	aagcaaatga	aaatgaaaca	aatcaaagtg	1440
	aaagccatg						1449
	<210> 132						
	<211> 1002						
25	<212> DNA						
	<213> Homo	sapience					
	<400> 132						
	atggtagagt	tagagacatt	gtttatgccg	tgggagcgca	ggctgcagac	acttgctgtc	60
30	ctacagtttg	tetteteett	cttggcactg	gccgagatct	gcactgtggg	cttcatagcc	120
	ctcctgttta	caagattctg	gctcctcact	gtcctgtatg	eggeetggtg	gtatctggac	180
	cgagacaagc	cacggcaggg	gggccggcac	atccaggcca	tcaggtgctg	gactatatgg	240
	aagtacatga	aggactattt	ccccatctcg	ctggtcaaga	ctgctgagct	ggacccctct	300
	cggaactaca	ttgcgggctt	ccacccccat	ggagtcctgg	cagtcggagc	ctttgccaac	360
35	ctgtgcactg	agagcacagg	cttctcttcg	atcttccccg	gtatccgccc	ccatctgatg	420

	atgctgacct	tgtggttccg	ggececette	ttcagagatt	acatcatgtc	tgcagggttg	480
	gtcacatcag	aaaaggagag	tgctgctcac	attctgaaca	ggaagggtgg	cggaaacttg	540
	ctgggcatca	ttgtaggggg	tgcccaggag	gccctggatg	ccaggcctgg	atccttcacg	600
	ctgttactgc	ggaaccgaaa	gggcttcgtc	aggctcgccc	tgacacacgg	ggcacccctg	660
5	gtgccaatct	tctccttcgg	ggagaatgac	ctatttgacc	agattcccaa	ctcttctggc	720
	tcctggttac	gctatatcca	gaatcggttg	cagaagatca	tgggcatctc	cctcccactc	780
	tttcatggcc	gtggtgtctt	ccagtacagc	tttggtttaa	taccctaccg	ccggcccatc	840
	accactgtgg	tggggaagcc	catcgaggta	cagaagacgc	tgcatccctc	ggaggaggag	900
	gtgaaccagc	tgcaccagcg	ttatatcaaa	gagctgtgca	acctcttcga	ggcccacaaa	960
10	cttaagttca	acatecetge	tgaccagcac	ttggagttct	gc		1002
	<210> 133						
	<211> 801						
	<212> DNA						
15	<213> Homo	sapience					
	<400> 133						
	atggegeeet	gggcgctcct	cagecetggg	gtcctggtgc	ggaccgggca	caccgtgctg	60
	acctggggaa	tcacgctggt	getetteetg	cacgataccg	agctgcggca	atgggaggag	120
20	cagggggagc	tgctcctgcc	cctcaccttc	ctgctcctgg	tgctgggctc	cctgctgctc	180
	tacctcgctg	tgtcactcat	ggaccctggc	tacgtgaatg	tgcagcccca	gcctcaggag	240
	gagctcaaag	aggagcagac	agccatggtt	cctccagcca	tecetetteg	gcgctgcaga	300
	tactgcctgg	tgctgcagcc	cctgagggct	cggcactgcc	gtgagtgccg	ccgttgcgtc	360
	cgccgctacg	accaccactg	cccctggatg	gagaactgtg	tgggagagcg	caaccaccca	420
25	ctctttgtgg	tctacctggc	gctgcagctg	gtggtgcttc	tgtggggcct	gtacctggca	480
	tggtcaggcc	teeggttett	ccagccctgg	ggtctgtggt	tgcggtccag	cgggctcctg	540
	ttcgccacct	teetgetget	gtccctcttc	tcgttggtgg	ccagcctgct	cctcgtctcg	600
	cacctctacc	tggtggccag	caacaccacc	acctgggaat	tcatctcctc	acaccgcatc	660
	gcctatctcc	gccagcgccc	cagcaacccc	ttcgaccgag	gcctgacccg	caacctggcc	720
30	cacttcttct	gtggatggcc	ctcagggtcc	tgggagaccc	tctgggctga	ggaggaggaa	780
	gagggcagca	gcccagctgt	t				801
	<210> 134						

<211> 318

<212> DNA

35

153/177

<213> Homo sapience

35

<400> 136

	<400> 134						
		acaatatotc	ggacccacgg	aggeegaaca	aagtgctgag	gtacaagccc	60
5						gaacetgetg	120
			cggcctcatg				180
						gaagcaaatg	240
						gaatcctcag	300
	cccatgacgc		-		_	,	318
10							
	<210> 135						
	<211> 672						
	<212> DNA						
	<213> Homo	sapience					
15							
	<400> 135				•		
	atgaccctgt	ttcacttcgg	gaactgcttc	gctcttgcct	acttccccta	cttcatcacc	60
	tacaagtgca	geggeetgte	cgagtacaac	gccttctgga	aatgcgtcca	ggctggagtc	120
	acctacctct	ttgtccaact	ctgcaagatg	ctgttcttgg	ccactttctt	teccacetgg	180
20	gaaggcggca	tctatgactt	cattggggag	ttcatgaagg	ccagcgtgga	tgtggcagac	240
	ctgataggtc	taaaccttgt	catgtcccgg	aatgccggca	agggagagta	caagatcatg	300
	gttgctgccc	tgggctgggc	cactgctgag	cttattatgt	cccgctgcat	tecectatgg	360
	gtcggagccc	ggggcattga	gtttgactgg	aagtacatcc	agatgagcat	agactccaac	420
	atcagtctgg	tccattacat	egtegegtet	gctcaggtct	ggatgataac	acgctatgat	480
25	ctgtaccaca	ccttccggcc	agctgtcctc	ctgctgatgt	tectcagtgt	ctacaaggcc	540
	tttgttatgg	agaccttcgt	ccacctctgc	tegetgggea	gttgggcagc	tctactggcc	600
	cgagcagtgg	taacggggct	gctggccctc	agcactttgg	ccctgtatgt	cgccgttgtc	660
	aatgtgcact	cc					672
20	.010						
30	<210> 136						
	<211> 774						
	<212> DNA						
	<213> Homo	sapience					

	acquegate typeaceter aarryctere gryrariegy tycegegate treacque	.99 6
	ctegeceaac ettaetaeet tetgteggee etgetetetg etgeetteet aetegtga	.gg 12
	aaactgeege egetetgeea eggtetgeee acceaacgeg aagaeggtaa eeegtgtg	ac 180
	tttgactgga gagaagtgga gatectgatg ttteteagtg ceattgtgat gatgaaga	ac 240
5	cgcagatcca tgttcctgat gacgtgcaaa cccccctat atatgggccc tgagtata	tc 300
	aagtacttca atgataaaac cattgatgag gaactagaac gggacaagag ggtcactt	gg 360
	attgtggagt tetttgecaa ttggtetaat gaetgeeaat eatttgeece tatetatg	ct 420
	gacetetece ttaaatacaa etgtacaggg etaaattttg ggaaggtgga tgttggac	gc 480
	tatactgatg ttagtacgcg gtacaaagtg agcacatcac ccctcaccaa gcaactcc	ct 540
10	accetgatee tgtteeaagg tggeaaggag geaatgegge ggeeacagat tgacaaga	aa 600
	ggacgggctg tetcatggac ettetetgag gagaatgtga teegagaatt taaettaa	at 660
	gagetatace agegggeeaa gaaactatea aaggetggag acaatateee tgaggage	ag 720
	cctgtggctt caacccccac cacagtgtca gatggggaaa acaagaagga taaa	774
15	<210> 137	
	<211> 330	
	<212> DNA	
	<213> Homo sapience	
90		
20	<400> 137	
	atggeegegg tggtggeeaa gegggaaggg eegeegttea teagegagge ggeegtge	
	ggcaacgccg ccgtcctgga ttattgccgg acctcggtgt cagcgctgtc gggggccac	-
	gccggcatcc teggcctcac eggcctctac ggcttcatct tetacetgct egcctccgt	
o #	etgetetece tgeteeteat teteaaggeg ggaaggaggt ggaacaaata ttteaaate	
25	eggagacete tetttacagg aggeeteate gggggeetet teacetacgt cetgttete	-
	acgtteetet aeggeatggt geaegtetae	330
	<210> 138	
	<211> 273	
30	<212> DNA	
	<213> Homo sapience	
	<400> 138	
	atggtttaca totogaacgg acaagtgttg gacagccgga gtcagtctcc atggagatt	:a 60
35	tettigataa cagattiett etggggaata getgagttig tggttitgtt titeaaaac	

	ctgcttcagc	aagatgtgaa	aaaaagaaga	agctatggaa	actcatctga	ttccagatat	180
	gatgatggaa	gagggccacc	aggaaaccct	ccccgaagaa	tgggtagaat	caatcatctg	240
	cgtggcccta	gtececetee	aatggctggt	gga			273
5	<210> 139						
	<211> 1032						
	<212> DNA						
	<213> Homo	sapience					
10	<400> 139						
	atgttcacca	geaceggete	cagtgggctc	tacaaggcgc	ctctgtcgaa	gagccttctg	60
	ctggtcccca	gtgccctctc	cctcctgctc	gccctcctcc	tgcctcactg	ccagaagete	120
	tttgtgtatg	accttcacgc	agtcaagaac	gacttccaga	tttggaggtt	gatatg tg ga	180
	agaataattt	gccttgattt	gaaagatact	ttctgcagta	gtctgcttat	ttataatttt	240
15	aggatatttg	aaagaagata	tggaagcaga	aaatttgcat	cctttttgct	gggttcctgg	300
	gttttgtcag	ccttatttga	ctttctcctc	attgaagcta	tgcagtattt	ctttggcatc	360
	actgcagcta	gtaatttgcc	ttctggattc	ctggcacctg	tgtttgctct	gtttgtacca	420
	ttttactgct	ccataccaag	agtccaagtg	gcacaaattc	tgggtccgtt	gtccatcaca	480
	aa caagacat	tgatttatat	attgggactg	cagcttttca	cctctggttc	ctacatctgg	540
20	attgtagcca	taagtggact	tatgtccggt	ctgtgctacg	acagcaaaat	gttccaggtg	600
	catcaggtgc	tetgeatece	cagetggatg	gcaaaattct	tttcttggac	acttgaaccc	660
	atcttctctt	cttcagaacc	caccagegaa	gccagaattg	ggatgggagc	cacgctggac	720
	atecagagae	agcagagaat	ggagctgctg	gaccggcagc	tgatgttctc	tcagtttgca	780
	caagggaggc	gacagagaca	gcagcaggga	ggaatgatca	attggaatcg	tctttttcct	840
25	cctttacgtc	agcgacaaaa	cgtaaactat	cagggcggtc	ggcagtctga	gccagcagcg	900
	ccccctctag	aagtttctga	ggaacaggtc	geceggetea	tggagatggg	attttccaga	960
	ggtgatgctt	tggaagccct	gagagcttca	aacaatgacc	tcaatgtcgc	caccaacttc	1020
	ctgctgcagc	ac					1032
30	<210> 140						
	<211> 1284						
	<212> DNA						
	<213> Homo	sapience					
35	<400> 140						

	atggggccgc cgcctggggc cggggtctcc tgccgcggtg gctgcggctt ttccagat	tg 60
	ctggcatggt gcttcctgct ggccctgagt ccgcaggcac ccggttcccg gggggctg	aa 120
	gcagtgtgga ccgcgtacct caacgtgtcc tggcgggttc cgcacacggg agtgaacc	gt 180
	acggtgtggg agctgagcga ggagggcgtg tacggccagg actcgccgct ggagcctg	tg 240
5	getggggtee tggtaeegee egaegggeee ggggegetta aegeetgtaa eeegeacae	eg 300
	aatttcacgg tgcccacggt ttggggaagc accgtgcaag tctcttggtt ggccctca	tc 360
	caacgeggeg ggggetgeae ettegeagae aagateeate tggettatga gagagggg	eg 420
	tetggageeg teatetttaa etteeeeggg accegeaatg aggteateee eatgtetea	ac 480
	ccgggtgcag tagacattgt tgcaatcatg atcggcaatc tgaaaggcac aaaaattc	540
10	caatctattc aaagaggcat acaagtgaca atggtcatag aagtagggaa aaaacatgg	gc 600
	ccttgggtga atcactattc aatttttttc gtttctgtgt ccttttttat tattacgg	eg 660
	gcaactgtgg gctattttat cttttattct gctcgaaggc tacggaatgc aagagctca	aa 720
	agcaggaagc agaggcaatt aaaggcagat gctaaaaaag ctattggaag gcttcaact	a 780
	cgcacactga aacaaggaga caaggaaatt ggccctgatg gagatagttg tgctgtgtg	gc 840
15	attgaattgt ataaaccaaa tgatttggta cgcatcttaa cgtgcaacca tattttcca	at 900
	aagacatgtg ttgacccatg gctgttagaa cacaggactt gccccatgtg caaatgtga	ıc 960
	atactcaaag ctttgggaat tgaggtggat gttgaagatg gatcagtgtc tttacaagt	c 1020
	cctgtatcca atgaaatatc taatagtgcc tcctcccatg aagaggataa tcgcagcga	ıg 1080
	accgcatcat ctggatatgc ttcagtacag ggaacagatg aaccgcctct ggaggaaca	ic 1140
20	gtgcagtcaa caaatgaaag tctacagctg gtaaaccatg aagcaaattc tgtggcagt	g 1200
	gatgttatte eteatgttga caacceaace tttgaagaag acgaaactee taatcaaga	ıg 1260
	actgctgttc gagaaattaa atct	1284
	<210> 141	
2 5	<211> 2050	
	<212> DNA	
	<213> Homo sapience	
	<220>	
	<221> CDS	
30	<222> (122)(1573)	
	<400> 141	
	aaaaaacege tgegategeg gaggeggegg eeaggeegag aggeaggeeg ggeaggggt	g 60
	teggacgeag ggegetggge egggtttegg etteggeeae agetttttt eteaaggtg	c 120
35	a atg aaa gee tte eac act tte tgt gtt gte ett etg gtg ttt ggg	166
	•	

	M	et L	ys A	la P	he H	is T	hr P	he C	ys V	al V	al L	eu L	eu V	al P	he G	ly	
		1				5					10					15	
	agt	gtc	tct	gaa	gcc	aag	ttt	gat	gat	ttt	gag	gat	gag	gag	gac	ata	214
	Ser	Val	Ser	Glu	Ala	Lys	Phe	Asp	Asp	Phe	Glu	Asp	Glu	Glu	Asp	Ile	
5					20					25					30		
	gta	gag	tat	gat	gat	aat	gac	ttc	gct	gaa	ttt	gag	gat	gtc	atg	gaa	262
	Val	Glu	Tyr	Asp	Asp	Asn	Asp	Phe	Ala	Glu	Phe	Glu	Asp	Val	Met	Glu	
				35					40					45			
	gac	tct	gtt	act	gaa	tct	cct	caa	cgg	gtc	ata	atc	act	gaa	gat	gat	310
10	Asp	Ser	Val	Thr	Glu	Ser	Pro	Gln	Arg	Val	Ile	Ile	Thr	Glu	Asp	Asp	
			50					55					60				
	gaa	gat	gag	acc	act	gtg	gag	ttg	gaa	ggg	cag	gat	gaa	aac	caa	gaa	358
	Glu	Asp	Glu	Thr	Thr	Val	Glu	Leu	Glu	Gly	Gln	Asp	Glu	Asn	Gln	Glu	
		65					70					75					
15	gga	gat	ttt	gaa	gat	gca	gat	acc	cag	gag	gga	gat	act	gag	agt	gaa	406
	Gly	Asp	Phe	Glu	Asp	Ala	Asp	Thr	Gln	Glu	Gly	Asp	Thr	Glu	Ser	Glu	
	80					85					90					95	
	cca	tat	gat	gat	gaa	gaa	ttt	gaa	ggt	tat	gaa	gac	aaa	cca	gat	act	454
2.2	Pro	Tyr	Asp	Asp	Glu	Glu	Phe	Glu	Gly	Tyr	Glu	Asp	Lys	Pro	Asp	Thr	
20					100					105					110		
			_				_	cca		_		-	-	_		_	502
	Ser	Ser	Ser	_	Asn	Lys	Asp	Pro		Thr	Ile	Val	Asp		Pro	Ala	
				115					120					125			
0.5			_		_			agt				_		_	-		550
25	His	Leu		Asn	Ser	Trp	Glu	Ser	Tyr	Tyr	Leu	Glu		Leu	Met	Val	
			130					135					140				
			_		-			atg									598
	Thr	_	Leu	Leu	Ala	Tyr		Met	Asn	Tyr	Ile		GLY	Lys	Asn	Lys	
20		145					150					155					
30					_	_	_	tgg -									646
		Ser	Arg	Leu	Ala		Ala	Trp	Phe	Asn		His	Arg	GIu	Leu		
	160					165					170					175	
		_						999	_	_					_	_	694
25	Glu	Ser	Asn	Phe		Leu	Val	Gly	Asp	_	GIY	Thr	Asn	Lys		Ala	
35					180					185					190		

	aca	agc	aca	gga	aag	ttg	aac	cag	gag	aat	gag	cac	atc	tat	aac	ctg	742
	Thr	Ser	Thr	Gly	Lys	Leu	Asn	Gln	Glu	Asn	Glu	His	Ile	Tyr	Asn	Leu	
				195					200					205			
	tgg	tgt	tct	ggt	cga	gtg	tgc	tgt	gag	ggc	atg	ctt	atc	cag	ctg	agg	790
5	Trp	Cys	Ser	Gly	Arg	Val	Cys	Cys	Glu	Gly	Met	Leu	Ile	Gln	Leu	Arg	
			210					215					220				
	ttc	ctc	aag	aga	caa	gac	tta	ctg	aat	gtc	ctg	gcc	cgg	atg	atg	agg	838
	Phe	Leu	Lys	Arg	Gln	Asp	Leu	Leu	Asn	Val	Leu	Ala	Arg	Met	Met	Arg	
		225					230					235					
10	cca	gtg	agt	gat	caa	gtg	caa	ata	aaa	gta	acc	atg	aat	gat	gaa	gac	886
	Pro	Val	Ser	Asp	Gln	Val	Gln	Ile	Lys	Val	Thr	Met	Asn	Asp	Glu	Asp	
	240					245					250					255	
	atg	gat	acc	tac	gta	ttt	gct	gtt	ggc	aca	cgg	aaa	gcc	ttg	gtg	cga	934
	Met	Asp	Thr	Tyr	Val	Phe	Ala	Val	Gly	Thr	Arg	Lys	Ala	Leu	Val	Arg	
15					260					265					270		
	cta	cag	aaa	gag	atg	cag	gat	ttg	agt	gag	ttt	tgt	agt	gat	aaa	cct	982
	Leu	Gln	Lys	Glu	Met	Gln	Asp	Leu	Ser	Glu	Phe	Cys	Ser	Asp	Lys	Pro	
				275					280					285			
	aag	tct	gga	gca	aag	tat	gga	ctg	ccg	gac	tct	ttg	gcc	atc	ctg	tca	1030
20	Lys	Ser	Gly	Ala	Lys	Tyr	Gly	Leu	Pro	Asp	Ser	Leu	Ala	Ile	Leu	Ser	
			290					295					300				
	gag	atg	gga	gaa	gtc	aca	gac	gga	atg	atg	gat	aca	aag	atg	gtt	cac	1078
	Glu	Met	Gly	Glu	Val	Thr	Asp	Gly	Met	Met	Asp	Thr	Lys	Met	Val	His	
		305					310					315					
25	ttt	ctt	aca	cac	tat	gct	gac	aag	att	gaa	tct	gtt	cat	ttt	tca	gac	1126
	Phe	Leu	Thr	His	Tyr	Ala	Asp	Lys	Ile	Glu	Ser	Val	His	Phe	Ser	Asp	
	320					325					330					335	
		ttc															1174
	Gln	Phe	Ser	Gly	Pro	Lys	Ile	Met	Gln	Glu	Glu	Gly	Gln	Pro	Leu	Lys	
30					340					345					350		
		cct	-		-			_									1222
	Leu	Pro	Asp	Thr	Lys	Arg	Thr	Leu	Leu	Phe	Thr	Phe	Asn	Val	Pro	Gly	
				355					360					365			
	tca	ggt	aac	act	tac	cca	aag	gat	atg	gag	gca	ctg	cta	ccc	ctg	atg	1270
35	Ser	Gly	Asn	Thr	Tyr	Pro	Lys	Asp	Met	Glu	Ala	Leu	Leu	Pro	Leu	Met	

159/177

	370 375 380	
	aac atg gtg att tat tet att gat aaa gee aaa aag tte ega ete aac	1318
	Asn Met Val Ile Tyr Ser Ile Asp Lys Ala Lys Lys Phe Arg Leu Asn	
	385 390 395	
5	aga gaa ggc aaa caa aaa gca gat aag aac cgt gcc cga gta gaa gag	1366
	Arg Glu Gly Lys Gln Lys Ala Asp Lys Asn Arg Ala Arg Val Glu Glu	
	400 405 410 415	
	aac ttc ttg aaa ctg aca cat gtg caa aga cag gaa gca gca cag tct	1414
	Asn Phe Leu Lys Leu Thr His Val Gln Arg Gln Glu Ala Ala Gln Ser	
10	420 425 430	
	cgg cgg gag gag aaa aaa aga gca gag aag gag cga atc atg aat gag	1462
	Arg Arg Glu Glu Lys Lys Arg Ala Glu Lys Glu Arg Ile Met Asn Glu	
	435 440 445	
	gaa gat eet gag aaa eag ege agg etg gag get gea ttg agg egt	1510
15	Glu Asp Pro Glu Lys Gln Arg Arg Leu Glu Glu Ala Ala Leu Arg Arg	
	450 455 460	
	gag caa aag aag ttg gaa aag aag caa atg aaa atg aaa caa atc aaa	1558
	Glu Gln Lys Lys Leu Glu Lys Lys Gln Met Lys Met Lys Gln Ile Lys	
	465 470 475	
20	gtg aaa gcc atg taaagccatc ccagagattt gagttctgat gccacctgta	1610
	Val Lys Ala Met	
	480	
	agetetgaat teacaggaaa catgaaaaac gecagtecat tteteaacet taaattteag	1670
	acagtettgg geaactgaga aateettatt teateateta etetgtttgg ggtttggggt	1730
25	tttacagaga ttgaagatac ctggaaaggg ctctgtttca agaatttttt tttccagata	1790
	atcaaattat tttgattatt ttataaaagg aatgatctat gaaatctgtg taggttttaa	1850
	atattttaaa aattataata caaatcatca gtgcttttag tacttcagtg tttaaagaaa	1910
	taccatgaaa tttataggta gataaccaga ttgttgcttt ttgtttaaac caagcagttg	1970
	aaatggetat aaagaetgae tetaaaceaa gattetgeaa ataatgattg gaattgeaca	2030
30	ataaacattg cttgatgttt	2050
	<210> 142	
	<211> 2746	

<212> DNA

<213> Homo sapience

35

<220>
<221> CDS
<222> (70)...(1074)

		·	•	,	•												
5	<40	0> 1	142														
	aaa	acct	gtg	ggtg	racto	ag a	ccac	cagca	ag ag	jetea	caga	acc	tge	gga	gcca	iggata	ja 60
															gag c		108
			M	iet V	al G	lu P	he A	la F	ro I	eu P	he M	et I	ro I	rp (lu A	ırg	
				1				5					10			_	
10	agg	ctg	cag	, aca	ctt	get	gto	: cta	cag	ttt	gto	tto	tco	tto	: ttg	gca	156
	Arg	Leu	Gln	Thr	Leu	Ala	. Val	. Leu	Gln	Phe	Val	. Phe	Ser	Phe	Leu	Ala	
		15					20)				25	;				
	ctg	gcc	gag	atc	tgc	act	gtg	gge	ttc	ata	gcc	cto	ctg	ttt	aca	aga	204
	Leu	Ala	Glu	Ile	Cys	Thr	Val	Gly	Phe	Ile	Ala	Leu	Leu	Phe	Thr	Arg	
15	30					35					40					45	
	ttc	tgg	ctc	ctc	act	gtc	ctg	tat	gcg	gcc	tgg	tgg	tat	ctg	gac	cga	252
	Phe	Trp	Leu	Leu	Thr	Val	Leu	Tyr	Ala	Ala	Trp	Trp	Tyr	Leu	Asp	Arg	
					50					55					60		
	gac	aag	cca	cgg	cag	ggg	ggc	cgg	cac	atc	cag	gcc	atc	agg	tgc	tgg	300
20	Asp	Lys	Pro	Arg	Gln	Gly	Gly	Arg	His	Ile	Gln	Ala	Ile	Arg	Cys	Trp	
				65					70					75			
	act	ata	tgg	aag	tac	atg	aag	gac	tat	ttc	ccc	atc	tcg	ctg	gtc	aag	348
	Thr	Ile	Trp	Lys	Tyr	Met	Lys	Asp	Tyr	Phe	Pro	Ile	Ser	Leu	Val	Lys	
			80					85					90				
25	act	gct	gag	ctg	gac	ccc	tct	cgg	aac	tac	att	gcg	ggc	ttc	cac	ccc	396
	Thr	Ala	Glu	Leu	Asp	Pro	Ser	Arg	Asn	Tyr	Ile	Ala	Gly	Phe	His	Pro	
		95					100					105					
													-		gag	_	444
0.0		Gly	Val	Leu	Ala	Val	Gly	Ala	Phe	Ala	Asn	Leu	Cys	Thr	Glu	Ser	
30	110					115					120					125	
											-			_	atg	_	492
	Thr	Gly	Phe	Ser	Ser	Ile	Phe	Pro	Gly	Ile	Arg	Pro	His	Leu	Met	Met	
					130					135					140		
0.5												_			atg		540
35	Leu	Thr	Leu	Trp	Phe	Arq	Ala	Pro	Phe	Phe	Arg	Asp	Tvr	Ile	Met	Ser	

				145					150					155			
	gca	ggg	ttg	gto	aca	tca	gaa	aag	gag	agt	gct	gct	cac	att	ctg	aac	588
	Ala	Gly	Leu	Val	Thr	Ser	Glu	Lys	Glu	Ser	Ala	Ala	His	Ile	Leu	Asn	
			160					165					170				
5	agg	aag	ggt	ggc	gga	aac	ttg	ctg	ggc	atc	att	gta	ggg	ggt	gcc	cag	636
	Arg	Lys	Gly	Gly	Gly	Asn	Leu	Leu	Gly	Ile	Ile	Val	Gly	Gly	Ala	Gln	
		175					180					185					
	gag	gcc	ctg	gat	gcc	agg	cct	gga	tcc	ttc	acg	ctg	tta	ctg	cgg	aac	684
	Glu	Ala	Leu	Asp	Ala	Arg	Pro	Gly	Ser	Phe	Thr	Leu	Leu	Leu	Arg	Asn	
10	190					195					200					205	
	cga	aag	ggc	ttc	gtc	agg	ctc	gcc	ctg	aca	cac	999	gca	ccc	ctg	gtg	732
	Arg	Lys	Gly	Phe	Val	Arg	Leu	Ala	Leu	Thr	His	Gly	Ala	Pro	Leu	Val	
					210					215					220		
	cca	atc	ttc	tcc	ttc	ggg	gag	aat	gac	cta	ttt	gac	cag	att	ccc	aac	780
15	Pro	Ile	Phe	Ser	Phe	Gly	Glu	Asn	Asp	Leu	Phe	Asp	Gln	Ile	Pro	Asn	
				225					230					235			
	tct	tct	ggc	tcc	tgg	tta	cgc	tat	atc	cag	aat	cgg	ttg	cag	aag	atc	828
	Ser	Ser	Gly	Ser	Trp	Leu	Arg	Tyr	Ile	Gln	Asn	Arg	Leu	Gln	Lys	Ile	
			240					245					250				
20	atg	ggc	atc	tcc	ctc	cca	ctc	ttt	cat	ggc	cgt	ggt	gtc	ttc	cag	tac	876
	Met		Ile	Ser	Leu	Pro	Leu	Phe	His	Gly	Arg	Gly	Val	Phe	Gln	Tyr	
		255					260					265					
								_	cgg								924
0.5		Phe	Gly	Leu	Ile	Pro	Tyr	Arg	Arg	Pro	Ile	Thr	Thr	Val	Val	Gly	
25	270					275					280					285	
					_	_	_	_	ctg			_					972
	Lys	Pro	Ile	Glu		Gln	Lys	Thr	Leu		Pro	Ser	Glu	Glu		Val	
					290					295					300		
00									aaa			_					1020
30	Asn	Gln	Leu		Gln	Arg	Tyr	Ile	Lys	Glu	Leu	Cys			Phe	Glu	
				305					310					315			
					_				cct	_	_	_		_			1068
	Ala			Leu	Lys	Phe			Pro	Ala	Asp			Leu	Glu	Phe	
25			320					325					330				
35	tgc	tgag	rcca	ia ag	ggca	gggc	caa	catt	agg	gagc	ccag	rca g	gagg	tgct	g		1120

162/177

	Cys						
	tgctgagaag	acttcctgga	ggtgtttgtt	gaacatatct	gcagagcctt	cccagactcc	1180
	tgcaaatcca	acccatatca	ggctgtaagt	cagagcaggc	aatgcagaag	aggagaccag	1240
	accaaggggt	cagetgggge	taggacagtg	agggctgcta	gaggggctgg	geetetettt	1300
5	gcacatggac	actgggcccc	tctctatatt	gagtggtctg	ttaacattca	ttggtggctg	1360
	attccaaaag	atgagagcca	aagctgcacg	gactcgagtc	ctaggctgca	cacctcacaa	1420
	gcatctcttc	tactgcattc	tgttggtcga	agcaagtcac	aacccagcag	attcaaggag	1480
	taaggaatag	gateceete	tggatgggag	gagcagcaat	gtcatattac	aaaagggtgt	1540
	ggacacatgc	agggattctt	actgccgtct	ttgcaaacaa	tccaccaaaa	cttaaaaact	1600
10	aaaagcctga	agcacaagca	ctctccaccc	caggcacaca	caccctggaa	ttccctgtgt	1660
	gaccatggta	ccaccactgt	gtgtcccgag	gatcccagct	cagctttgca	tegetgeeet	1720
	atctccctct	cgctctcccc	tgttgatccc	tcatgcacag	ccacagcgag	ctgtctaaaa	1780
	cacaaagctg	accgcgccat	ttcctactca	gcatccttcc	atgaccctcc	attgctccta	1840
	ggatagggtt	tggaccagtc	tgaatccaga	ggatcaggat	ccagcaggaa	ccagaggata	1900
15	atttgaggag	ggtttaaaaa	ggaaccattt	tttgaggtgt	gtgcactgtt	tccaccctga	1960
	ggcctggaag	gatgaatgga	agcagcagtt	cctgaaccag	gaagactcat	gtgtgggggc	2020
	cattgctggt	caaggggcac	gaacaggtct	ggtgaccctg	caagggagga	gccaggagca	2080
	agcattccca	cttcaccttc	ctccattcag	tctgctgcca	agttccccac	tgcctgagcc	2140
	caactagaag	ctggagggaa	ggagggcctg	tggctgcagt	ccaggcatgt	aggeeteetg	2200
20	ggaaagggag	aatggcaaag	acaggcagag	tggatctgga	ggggtcaacg	gaagacggaa	2260
	catgtccact	tecaggeeeg	agcttctcag	cctgccgttt	gccactctcc	agcatctggc	2320
	ccagcctgtc	catcctcatc	tctcttcctc	ccttactccg	tgctcccatc	acteggaace	2380
	atttgcattt	ctttgtctca	gctatattgt	ctcacctctg	agtttttgcc	catgatgttg	2440
	gatgccatgg	aatgccatat	cctccccatt	atctcccct	tgtctggata	attectacte	2500
25	atcctacaat	actgatttta	tctgtgcaaa	gaagtettee	ccagtgcctc	tggttgacag	2560
	gggtttcctc	tggcttctcc	agactttctg	ttcctccacc	acagccctta	gcaccctggg	2620
	gaggaggtgt	tgctgtccag	gtaaatgctg	cgccaatgcc	cctgcctcta	gtgcactccc	2680
	tccagcctac	ccacaaacag	gacctgcatc	ctgtctcaca	aataaaactg	aactcttgaa	2740
	atggtg						2746
30							

,0

<210> 143

<211> 1136

<212> DNA

<213> Homo sapience

35 <220>

<221> CDS <222> (32)...(835)

	<40	0> 1	43														
5	att	cttc	egg (gtgg	ggcc	ee g	ggcc	gagg	c g	atg	gcg	ccc	tgg	gcg	ctc	ctc	52
									1	Met .	Ala	Pro	Trp .	Ala	Leu	Leu	
										1				5			
	agc	cct	ggg	gtc	ctg	gtg	cgg	acc	9 99	cac	acc	gtg	ctg	acc	tgg	gga	100
	Ser	Pro	Gly	Val	Leu	Val	Arg	Thr	Gly	His	Thr	Val	Leu	Thr	Trp	Gly	
10			10					15					20				
	atc	acg	ctg	gtg	ctc	ttc	ctg	cac	gat	acc	gag	ctg	cgg	caa	tgg	gag	148
	Ile	Thr	Leu	Val	Leu	Phe	Leu	His	Asp	Thr	Glu	Leu	Arg	Gln	Trp	Glu	
		25					30					35					
	gag	cag	ggg	gag	ctg	ctc	ctg	ccc	ctc	acc	ttc	ctg	ctc	ctg	gtg	ctg	196
15	Glu	Gln	Gly	Glu	Leu	Leu	Leu	Pro	Leu	Thr	Phe	Leu	Leu	Leu	Val	Leu	
	40					45					50					55	
	ggc	tcc	ctg	ctg	ctc	tac	ctc	gct	gtg	tca	ctc	atg	gac	cct	ggc	tac	244
	Gly	Ser	Leu	Leu	Leu	Tyr	Leu	Ala	Val	Ser	Leu	Met	Asp	Pro	Gly	Tyr	
					60					65					70		
20	gtg	aat	gtg	cag	CCC	cag	cct	cag	gag	gag	ctc	aaa	gag	gag	cag	aca	292
	Val	Asn	Val	Gln	Pro	Gln	Pro	Gln	Glu	Glu	Leu	Lys	Glu	Glu	Gln	Thr	
				75					80					85			
	gcc	atg	gtt	cct	cca	gcc	atc	cct	ctt	cgg	cgc	tgc	aga	tac	tgc	ctg	340
	Ala	Met	Val	Pro	Pro	Ala	Ile	Pro	Leu	Arg	Arg	Cys	Arg	Tyr	Cys	Leu	
25			90					95					100				
	gtg	ctg	cag	CCC	ctg	agg	gct	cgg	cac	tgc	cgt	gag	tgc	cgc	cgt	tgc	388
	Val	Leu	Gln	Pro	Leu	Arg	Ala	Arg	His	Cys	Arg	Glu	Cys	Arg	Arg	Cys	
		105					110					115					
		-	cgc		-			_			_			-		-	436
30		Arg	Arg	Tyr	Asp	His	His	Cys	Pro	Trp		Glu	Asn	Cys	Val	Gly	
	120					125					130					135	
			aac					_									484
	Glu	Arg	Asn	His	Pro	Leu	Phe	Val	Val	_	Leu	Ala	Leu	Gln	Leu	Val	
					140					145					150		
35	gtg	ctt	ctg	tgg	ggc	ctg	tac	ctg	gca	tgg	tca	ggc	ctc	cgg	ttc	ttc	532

	Val Leu Leu Trp Gly Leu Tyr Leu Ala Trp Ser Gly Leu Arg Phe Phe	
	155 160 165	
	cag eee tgg ggt etg tgg ttg egg tee age ggg ete etg tte gee ace	580
	Gln Pro Trp Gly Leu Trp Leu Arg Ser Ser Gly Leu Leu Phe Ala Thr	
5	170 175 180	
	tte etg etg tee ete tte teg ttg gtg gee age etg ete ete gte	628
	Phe Leu Leu Ser Leu Phe Ser Leu Val Ala Ser Leu Leu Val	
	185 190 195	
	tog cac etc tac etg gtg gec age acc acc acc tgg gaa ttc atc	676
10	Ser His Leu Tyr Leu Val Ala Ser Asn Thr Thr Thr Trp Glu Phe Ile	
	200 205 210 215	
	too toa cae ego ate goo tat ete ego eag ego eco ago aac eec tto	724
	Ser Ser His Arg Ile Ala Tyr Leu Arg Gln Arg Pro Ser Asn Pro Phe	
	220 225 230	
15	gac ega gge etg ace ege aac etg gee cac tte tte tgt gga tgg ece	772
	Asp Arg Gly Leu Thr Arg Asn Leu Ala His Phe Phe Cys Gly Trp Pro	
	235 240 245	
	tea ggg tee tgg gag ace ete tgg get gag gag gag gaa gag gge age	820
	Ser Gly Ser Trp Glu Thr Leu Trp Ala Glu Glu Glu Glu Glu Gly Ser	
20	250 255 260	
	age eea get gtt tagggttget ggaggeeggg etacegtett gtgeetga	870
	Ser Pro Ala Val	
	265	
	aaaccacggg geetgteece agetggggtg agegeteaga gggeetgggg ceeteaetee	930
25	tgcccacgcc teccagaccc cagaacggag ettcaagtca gacagatece tgccttggtg	990
	ggcagttctg ccttccaagg aagaagggga agaaaaggac ctgtgggtgg ctcaggccca	1050
	ageagacece gggetecace ceageecege ceaggetget gecagtgeae acttttacaa	1110
	atttaatata aagcaagtcc agtctt	1136
30	<210> 144	
	<211> 619	
	<212> DNA	
	<213> Homo sapience	
	<220>	
35	<221> CDS	

165/177

<222> (13)...(333)

<400> 144

	<400> 144												
	cttcgactcg ct atg tcc act aac aat atg tcg gac cca cgg agg ccg	48											
5	Met Ser Thr Asn Asn Met Ser Asp Pro Arg Arg Pro												
	1 5 10												
	aac aaa gtg ctg agg tac aag eee eeg eeg age gaa tgt aac eeg gee	96											
	Asn Lys Val Leu Arg Tyr Lys Pro Pro Pro Ser Glu Cys Asn Pro Ala												
	15 20 25												
10	ttg gac gac ccg acg ccg gac tac atg aac ctg ctg ggc atg atc ttc	144											
	Leu Asp Asp Pro Thr Pro Asp Tyr Met Asn Leu Leu Gly Met Ile Phe												
	30 35 40												
	age atg tge gge ete atg ett aag etg aag tgg tgt get tgg gte get	192											
	Ser Met Cys Gly Leu Met Leu Lys Leu Lys Trp Cys Ala Trp Val Ala												
15	45 50 55 60												
	gte tac tge tee tte ate age ttt gee aac tet egg age teg gag gae	240											
	Val Tyr Cys Ser Phe Ile Ser Phe Ala Asn Ser Arg Ser Ser Glu Asp												
	65 70 75												
	acg aag caa atg atg agt agc ttc atg ctg tcc atc tct gcc gtg gtg	288											
20	Thr Lys Gln Met Met Ser Ser Phe Met Leu Ser Ile Ser Ala Val Val												
	80 85 90												
	atg tee tat etg eag aat eet eag eee atg aeg eee eea tgg	340											
	Met Ser Tyr Leu Gln Asn Pro Gln Pro Met Thr Pro Pro Trp												
05	95 100 105												
25	tgataceage etagaagggt cacattttgg accetgteta tecaetagge etgggetttg	390											
	gctgctaaac ctgctgcctt cagctgccat cctggacttc cctgaatgag gccgtctcgg	450											
	tgccccage tggatagagg gaacetggce ctttcctagg gaacacccta ggcttacccc	510											
	tectgeetee etteeeetge etgetgetgg gggagatget gteeatgttt etaggggtat	570											
30	tcatttgctt tctcgttgaa acctgttgtt aataaagttt ttcactcag	619											
30	<210× 145												
	<210> 145 <211> 864												
	<212> DNA <213> Homo sapience												
35	<213> Homo sapience <220>												
00	-6207												

<221> CDS <222> (111)...(785)

gagacgccgc ctcgcgatcc ccgcgcgggc gggaccggc ggccggcatc atg acc Met Thr 1 ctg ttt cac ttc ggg aac tgc ttc gct ctt gcc tac ttc ccc tac ttc 164 10 Leu Phe His Phe Gly Asn Cys Phe Ala Leu Ala Tyr Phe Pro Tyr Phe 5 10 15 atc acc tac aag tgc agc ggc ctg tcc gag tac aac gcc ttc tgg aaa 212 Ile Thr Tyr Lys Cys Ser Gly Leu Ser Glu Tyr Asn Ala Phe Trp Lys 20 25 30 15 tgc gtc cag gct gga gtc acc tac ctc ttt gtc caa ctc tgc aag atg Cys Val Gln Ala Gly Val Thr Tyr Leu Phe Val Gln Leu Cys Lys Met 35 40 45 50		<40	0> 1	45														
Met Thr 1	5	agg	tggg	tgc (cagg	ccct	gg c	cgtg	gcga	a ag	agcc	ggcg	gag	ccgg	aga	cccg	ctcccg	60
10		gaga	acgc	ege (ctcg	cgate	cc c	cgcg	cggg	c gg	gacc	gggc	ggc	egge	atc .	atg	acc	116
ctg ttt cac ttc ggg aac tgc ttc gct ctt gcc tac ttc ccc tac ttc 164															1	Met	Thr	
10																1		
atc acc tac aag tgc age ggc ctg tcc gag tac aac gcc ttc tgg aaa 212 Ile Thr Tyr Lys Cys Ser Gly Leu Ser Glu Tyr Asn Ala Phe Trp Lys 20 25 30 15 tgc gtc cag gct gga gtc acc tac ctc ttt gtc caa ctc tgc aag atg 260 Cys Val Gln Ala Gly Val Thr Tyr Leu Phe Val Gln Leu Cys Lys Met 35 40 45 50 ctg ttc ttg gcc act ttc ttt ccc acc tgg gaa ggc ggc atc tat gac 308 Leu Phe Leu Ala Thr Phe Phe Pro Thr Trp Glu Gly Gly Ile Tyr Asp 20 55 60 65 ttc att ggg gag ttc atg aag gcc agc gtg gat gtg gac ctg ata 356 Phe Ile Gly Glu Phe Met Lys Ala Ser Val Asp Val Ala Asp Leu Ile 70 75 80 ggt cta aac ctt gtc atg tcc cgg aat gcc ggc aag gag gag tac aag 404 25 Gly Leu Asn Leu Val Met Ser Arg Asn Ala Gly Lys Gly Glu Tyr Lys 85 90 95 atc atg gtt gct gcc cta tgg gcc act gcg gcc act gcc gcg gcd atc att atg ccc 452 Ile Met Val Ala Ala Leu Gly Trp Ala Thr Ala Glu Leu Ile Met Ser 100 Arg Cys Ile Pro Leu Trp Val Gly Ala Arg Gly Ile Glu Phe Asp Trp		ctg	ttt	cac	ttc	ggg	aac	tgc	ttc	gct	ctt	gcc	tac	ttc	ccc	tac	ttc	164
atc acc tac aag tgc age ggc ctg tcc gag tac aac gcc ttc tgg aaa Ile Thr Tyr Lys Cys Ser Gly Leu Ser Glu Tyr Asn Ala Phe Trp Lys 20	10	Leu	Phe	His	Phe	Gly	Asn	Cys	Phe	Ala	Leu	Ala	Tyr	Phe	Pro	Tyr	Phe	
The Thy Tyr Lys Cys Ser Gly Leu Ser Glu Tyr Asn Ala Phe Trp Lys 20 25 30 30 30 30 30 30 30 3				. 5					10					15				
15 tgc gtc cag gct gga gtc acc tac ctc ttt gtc caa ctc tgc aag atg 260 Cys Val Gln Ala Gly Val Thr Tyr Leu Phe Val Gln Leu Cys Lys Met 35		atc	acc	tac	aag	tgc	agc	ggc	ctg	tcc	gag	tac	aac	gcc	ttc	tgg	aaa	212
15 tgc gtc cag gct gga gtc acc tac ctc ttt gtc caa ctc tgc aag atg 260 Cys Val Gln Ala Gly Val Thr Tyr Leu Phe Val Gln Leu Cys Lys Met 35		Ile	Thr	Tyr	Lys	Cys	Ser	Gly	Leu	Ser	Glu	Tyr	Asn	Ala	Phe	Trp	Lys	
Cys Val Gln Ala Gly Val Thr Tyr Leu Phe Val Gln Leu Cys Lys Met 35			20					25					30					
20	15	_	-	_	-		-					-			_	-	-	260
ctg ttc ttg gcc act ttc ttt ccc acc tgg gaa ggc ggc atc tat gac 308 Leu Phe Leu Ala Thr Phe Phe Pro Thr Trp Glu Gly Gly Ile Tyr Asp 20		Cys	Val	Gln	Ala	Gly	Val	Thr	Tyr	Leu	Phe	Val	Gln	Leu	Cys	Lys	Met	
Leu Phe Leu Ala Thr Phe Phe Pro Thr Trp Glu Gly Gly Ile Tyr Asp 20		35					40					45					50	
20		_		_	_							-					_	308
ttc att ggg gag ttc atg aag gcc agc gtg gat gtg gca gac ctg ata 356 Phe Ile Gly Glu Phe Met Lys Ala Ser Val Asp Val Ala Asp Leu Ile 70 75 80 ggt cta aac ctt gtc atg tcc cgg aat gcc ggc aag gga gag tac aag 404 25 Gly Leu Asn Leu Val Met Ser Arg Asn Ala Gly Lys Gly Glu Tyr Lys 85 90 95 atc atg gtt gct gcc ctg ggc act gct gag ctt att atg tcc 452 Ile Met Val Ala Ala Leu Gly Trp Ala Thr Ala Glu Leu Ile Met Ser 100 105 110 30 cgc tgc att ccc cta tgg gtc gga gcc cgg ggc att gag ttt gac tgg 500 Arg Cys Ile Pro Leu Trp Val Gly Ala Arg Gly Ile Glu Phe Asp Trp	20	Leu	Phe	Leu	Ala		Phe	Phe	Pro	Thr	_	Glu	Gly	Gly	Ile	_	Asp	
Phe Ile Gly Glu Phe Met Lys Ala Ser Val Asp Val Ala Asp Leu Ile 70 75 80 ggt cta aac ctt gtc atg tcc cgg aat gcc ggc aag gga gag tac aag 404 25 Gly Leu Asn Leu Val Met Ser Arg Asn Ala Gly Lys Gly Glu Tyr Lys 85 90 95 atc atg gtt gct gcc ctg ggc tgg gcc act gct gag ctt att atg tcc 452 Ile Met Val Ala Ala Leu Gly Trp Ala Thr Ala Glu Leu Ile Met Ser 100 105 105 110 30 cgc tgc att ccc cta tgg gtc gga gcc cgg ggc att gag ttt gac tgg 500 Arg Cys Ile Pro Leu Trp Val Gly Ala Arg Gly Ile Glu Phe Asp Trp	20																	
70 75 80 ggt cta aac ctt gtc atg tcc cgg aat gcc ggc aag gga gag tac aag 404 25 Gly Leu Asn Leu Val Met Ser Arg Asn Ala Gly Lys Gly Glu Tyr Lys 85 90 95 atc atg gtt gct gcc ctg ggc tgg gcc act gct gag ctt att atg tcc 452 Ile Met Val Ala Ala Leu Gly Trp Ala Thr Ala Glu Leu Ile Met Ser 100 105 110 30 cgc tgc att ccc cta tgg gtc gga gcc cgg ggc att gag ttt gac tgg 500 Arg Cys Ile Pro Leu Trp Val Gly Ala Arg Gly Ile Glu Phe Asp Trp					-		_	_										356
ggt cta aac ctt gtc atg tcc cgg aat gcc ggc aag gga gag tac aag 404 25 Gly Leu Asn Leu Val Met Ser Arg Asn Ala Gly Lys Gly Glu Tyr Lys 85 90 95 atc atg gtt gct gcc ctg ggc tgg gcc act gct gag ctt att atg tcc 11e Met Val Ala Ala Leu Gly Trp Ala Thr Ala Glu Leu Ile Met Ser 100 105 110 30 cgc tgc att ccc cta tgg gtc gga gcc cgg ggc att gag ttt gac tgg 500 Arg Cys Ile Pro Leu Trp Val Gly Ala Arg Gly Ile Glu Phe Asp Trp		Phe	Ile	Gly		Phe	Met	Lys	Ala		Val	Asp	Val	Ala		Leu	Ile	
Gly Leu Asn Leu Val Met Ser Arg Asn Ala Gly Lys Gly Glu Tyr Lys 85 90 95 atc atg gtt gct gcc ctg ggc tgg gcc act gct gag ctt att atg tcc Ile Met Val Ala Ala Leu Gly Trp Ala Thr Ala Glu Leu Ile Met Ser 100 105 110 30 cgc tgc att ccc cta tgg gtc gga gcc cgg ggc att gag ttt gac tgg Arg Cys Ile Pro Leu Trp Val Gly Ala Arg Gly Ile Glu Phe Asp Trp																		
85 90 95 atc atg gtt gct gcc ctg ggc tgg gcc act gct gag ctt att atg tcc 452 Ile Met Val Ala Ala Leu Gly Trp Ala Thr Ala Glu Leu Ile Met Ser 100 105 110 30 cgc tgc att ccc cta tgg gtc gga gcc cgg ggc att gag ttt gac tgg 500 Arg Cys Ile Pro Leu Trp Val Gly Ala Arg Gly Ile Glu Phe Asp Trp	0.5					_	_				_		_				_	404
atc atg gtt gct gcc ctg ggc tgg gcc act gct gag ctt att atg tcc Ile Met Val Ala Ala Leu Gly Trp Ala Thr Ala Glu Leu Ile Met Ser 100 105 110 30 cgc tgc att ccc cta tgg gtc gga gcc cgg ggc att gag ttt gac tgg Arg Cys Ile Pro Leu Trp Val Gly Ala Arg Gly Ile Glu Phe Asp Trp	25	GIĄ	Leu		Leu	Val	Met	Ser	_	Asn	Ala	GIŻ	гĀЗ		GIU	туr	гуs	
Ile Met Val Ala Ala Leu Gly Trp Ala Thr Ala Glu Leu Ile Met Ser 100 105 110 30 cgc tgc att ccc cta tgg gtc gga gcc cgg ggc att gag ttt gac tgg Arg Cys Ile Pro Leu Trp Val Gly Ala Arg Gly Ile Glu Phe Asp Trp																		450
100 105 110 30 ege tge att eee eta tgg gte gga gee egg gge att gag ttt gae tgg 500 Arg Cys Ile Pro Leu Trp Val Gly Ala Arg Gly Ile Glu Phe Asp Trp			_	_	-	-	_			-								452
30 cgc tgc att ccc cta tgg gtc gga gcc cgg ggc att gag ttt gac tgg 500 Arg Cys Ile Pro Leu Trp Val Gly Ala Arg Gly Ile Glu Phe Asp Trp		TTE		Val	AId	Ата	reu	_	Trp	WTG	1111	Ala		rea	116	Met	Ser	
Arg Cys Ile Pro Leu Trp Val Gly Ala Arg Gly Ile Glu Phe Asp Trp	30	000		a++	222	at a	+ ~~		~~~	a 00	aaa	aaa		asa	+++	ana.	taa	500
	00																	500
115 120 125 130			cys	116	FIO	пец		Val	GIY	AIG	n.y		110	Olu	1110	nsp		
aag tac atc cag atg agc ata gac tcc aac atc agt ctg gtc cat tac 548			tac	atc	cac	ato		ata	аас	tcc	aac		agt	cta	atc	cat		548
Lys Tyr Ile Gln Met Ser Ile Asp Ser Asn Ile Ser Leu Val His Tyr		-				_	_		_				_	_				2.0
35 135 140 145	35	_,_	-1-							-							-1-	

	ate gte geg tet get eag gte tgg atg ata aca ege tat gat etg tae	596
	Ile Val Ala Ser Ala Gln Val Trp Met Ile Thr Arg Tyr Asp Leu Tyr	
	150 155 160	
	cac acc ttc cgg cca gct gtc ctc ctg ctg atg ttc ctc agt gtc tac	644
5	His Thr Phe Arg Pro Ala Val Leu Leu Met Phe Leu Ser Val Tyr	
	165 170 175	
	aag goo ttt gtt atg gag acc tto gto cac cto tgo tog otg ggo agt	692
	Lys Ala Phe Val Met Glu Thr Phe Val His Leu Cys Ser Leu Gly Ser	
	180 185 190	
10	tgg gca gct cta ctg gcc cga gca gtg gta acg ggg ctg ctg gcc ctc	740
	Trp Ala Ala Leu Leu Ala Arg Ala Val Val Thr Gly Leu Leu Ala Leu	
	195 200 205 210	
	age act ttg gee etg tat gte gee gtt gte aat gtg eac tee taggettg	790
	Ser Thr Leu Ala Leu Tyr Val Ala Val Val Asn Val His Ser	
15	215 220	
	gtgtctcaga cattgatgta ccttttccct gcctcgctcc aggttttagt gaagtaaaca	850
	gtatttggaa agtt	864
	<210> 146	
20	<211> 1527	
	<212> DNA	
	<213> Homo sapience	
	<220>	
	<221> CDS	
25	<222> (25)(801)	
	<400> 146	
	geagtggeeg ttaeggeega aaag atg geg gte ttg gea eet eta att get	51
	Met Ala Val Leu Ala Pro Leu Ile Ala	
30	1 5	
	ctc gtg tat tcg gtg ccg cga ctt tca cga tgg ctc gcc caa cct tac	99
	Leu Val Tyr Ser Val Pro Arg Leu Ser Arg Trp Leu Ala Gln Pro Tyr	
	10 15 20 25	
	tac ctt ctg tcg gcc ctg ctc tct gct gcc ttc cta ctc gtg agg aaa	147
35	Tyr Leu Leu Ser Ala Leu Leu Ser Ala Ala Phe Leu Leu Val Arg Lys	

					30					35					40		
	ctg	ccg	ccg	ctc	tgc	cac	ggt	ctg	ccc	acc	caa	cgc	gaa	gac	ggt	aac	195
	Leu	Pro	Pro	Leu	Cys	His	Gly	Leu	Pro	Thr	Gln	Arg	Glu	Asp	Gly	Asn	
				45					50					55			
5	ccg	tgt	gac	ttt	gac	tgg	aga	gaa	gtg	gag	atc	ctg	atg	ttt	ctc	agt	243
	Pro	Cys	Asp	Phe	Asp	Trp	Arg	Glu	Val	Glu	Ile	Leu	Met	Phe	Leu	Ser	
			60					65					70				
	gcc	att	gtg	atg	atg	aag	aac	cgc	aga	tcc	atg	ttc	ctg	atg	acg	tgc	291
	Ala	Ile	Val	Met	Met	Lys	Asn	Arg	Arg	Ser	Met	Phe	Leu	Met	Thr	Cys	
10		75					80					85					
	aaa	ccc	ccc	cta	tat	atg	ggc	cct	gag	tat	atc	aag	tac	ttc	aat	gat	339
	Lys	Pro	Pro	Leu	Tyr	Met	Gly	Pro	Glu	Tyr	Ile	Lys	Tyr	Phe	Asn	Asp	
	90					95					100					105	
	aaa	acc	att	gat	gag	gaa	cta	gaa	cgg	gac	aag	agg	gtc	act	tgg	att	387
15	Lys	Thr	Ile	Asp	Glu	Glu	Leu	Glu	Arg	Asp	Lys	Arg	Val	Thr	Trp	Ile	
					110					115					120		
	gtg	gag	ttc	ttt	gcc	aat	tgg	tct	aat	gac	tgc	caa	tca	ttt	gcc	cct	435
	Val	Glu	Phe	Phe	Ala	Asn	Trp	Ser	Asn	Asp	Cys	Gln	Ser	Phe	Ala	Pro	
				125					130					135			
20			_	_				aaa			-						483
	Ile	Tyr	Ala	Asp	Leu	Ser	Leu	Lys	Tyr	Asn	Cys	Thr	Gly	Leu	Asn	Phe	
			140					145					150				
				-	-		_	tat									531
~ =	Gly		Val	Asp	Val	Gly	Arg	Tyr	Thr	Asp	Val		Thr	Arg	Tyr	Lys	
25		155					160					165					
		_						aag					_		_		579
		Ser	Thr	Ser	Pro		Thr	Lys	Gln	Leu		Thr	Leu	Ile	Leu		
	170					175					180					185	
00				-		_	_	cgg									627
30	Gln	Gly	Gly	Lys	Glu	Ala	Met	Arg	Arg	Pro	Gln	Ile	Asp	Lys	_	Gly	
					190					195					200		
	cgg	gct	gtc	tca	tgg	acc	ttc	tct	gag	gag	aat	gtg	atc	cga	gaa	ttt	675
	Arg	Ala			Trp	Thr	Phe	Ser		Glu	Asn	Val	Ile	Arg	Glu	Phe	
~=				205					210					215			
35	aac	tta	aat	gag	cta	tac	caq	cgg	qcc	aaq	aaa	cta	tca	aaq	gct	qqa	723

	Asn Leu Asn Glu Leu Tyr Gln Arg Ala Lys Lys Leu Ser Lys Ala Gly	
	220 225 230	
	gac aat atc cct gag gag cag cct gtg gct tca acc ccc acc aca gtg	771
	Asp Asn Ile Pro Glu Glu Gln Pro Val Ala Ser Thr Pro Thr Thr Val	
5	235 240 245	
	tca gat ggg gaa aac aag aag gat aaa taagateete ac	810
	Ser Asp Gly Glu Asn Lys Lys Asp Lys	
	250 255	
	tttggcagtg etteetetee tgtcaattee aggetettte cataaccaca ageetgagge	870
10	tgcagccttt tatttatgtt ttccctttgg ctgtgactgg gtggggcagc atgcagcttc	930
	tgattttaaa gaggcatcta gggaattgtc aggcacccta caggaaggcc tgccatgctg	990
	tggccaactg tttcactgga gcaagaaaga gatctcatag gacggagggg gaaatggttt	1050
	ccctccaage ttgggtcagt gtgttaactg cttatcaget attcagacat ctccatggtt	1110
	totocatgaa actotgtggt ttoatcatto ottottagtt gacotgoaca gottggttag	1170
15	acctagattt aaccctaagg taagatgctg gggtatagaa cgctaagaat tttcccccaa	1230
	ggactettge tteettaage eettetgget tegtttatgg tetteattaa aagtataage	1290
	ctaactttgt cgctagtcct aaggagaaac ctttaaccac aaagttttta tcattgaaga	1350
	caatattgaa caacccccta ttttgtgggg attgagaagg ggtgaataga ggcttgagac	1410
	tttcctttgt gtggtaggac ttggaggaga aatcccctgg actttcacta accctctgac	1470
20	atactececa cacceagitg atggetitee gtaataaaaa gatigggati teetitt	1527
	<210> 147	
	<211> 659	
	<212> DNA	
2 5	<213> Homo sapience	
	<220>	
	<221> CDS	
	<222> (138)(470)	
2.0		
30	<400> 147	
	agtetteega geaagatgge geegegggea tttetteeae tgeeegtetg agggaaeget	60
	aagtagtgtg teeggegeeg tgtteeaget eegegttgtt eegegagaaa gegagaggee	120
	gageceggge tggtgeg atg gee geg gtg gtg gee aag egg gaa ggg eeg	170
0.5	Met Ala Ala Val Val Ala Lys Arg Glu Gly Pro	
35	1 5 10	

	ccg ttc atc agc gag gcg gcc gtg cgg ggc aac gcc gcc gtc ctg gat	218
	Pro Phe Ile Ser Glu Ala Ala Val Arg Gly Asn Ala Ala Val Leu Asp	
	15 20 25	
	tat tge egg ace teg gtg tea geg etg teg ggg gee acg gee gge ate	266
5	Tyr Cys Arg Thr Ser Val Ser Ala Leu Ser Gly Ala Thr Ala Gly Ile	
	30 35 40	
	ete gge ete ace gge ete tae gge tte ate tte tae etg ete gee tee	314
	Leu Gly Leu Thr Gly Leu Tyr Gly Phe Ile Phe Tyr Leu Leu Ala Ser	
10	45 50 55	
10	gte etg ete tee etg ete ete att ete aag geg gga agg agg tgg aac	362
	Val Leu Leu Ser Leu Leu Leu Ile Leu Lys Ala Gly Arg Arg Trp Asn	
	60 65 70 75	
	aaa tat ttc aaa tca cgg aga cct ctc ttt aca gga ggc ctc atc ggg	410
1.5	Lys Tyr Phe Lys Ser Arg Arg Pro Leu Phe Thr Gly Gly Leu Ile Gly	
15	80 85 90	
	gge ete tte ace tae gte etg tte tgg acg tte ete tae gge atg gtg	458
	Gly Leu Phe Thr Tyr Val Leu Phe Trp Thr Phe Leu Tyr Gly Met Val	
	95 100 105	
90	cac gtc tac tgaaatgggg geceggggga ettttttaaa aaa	500
20	His Val Tyr	
	110	
	ccagatcggg aggactgtgg ccagcaatta acaccatgta gacttcctta gttcttaagt	560
	ggttgaatte getgettgtt etgtaaegtt ataaataatt tatatetgaa gaeggagage	620
o E	ctgtaatatt etteagatta aatgaagegt gagaeaett	659
25	4210 140	
	<210> 148	
	<211> 710	
	<212> DNA	
30	<213> Homo sapience <220>	
50	<221> CDS	
	<222> (68)(343)	
	<400> 148	
35	agagggagat acagaaaccg acaggggcca ggcgcccggt ggctccgaag cggggaagtg	60

	ggacaag	atg	gtt	tac	atc	tcg	aac	gga	caa	gtg	ttg	gac	agc	cgg	agt	109
		Met	Val	Tyr	Ile	Ser	Asn	Gly	Gln	Val	Leu	Asp	Ser	Arg	Ser	
		1				5					10					
	cag tct	cca	tgg	aga	tta	tct	ttg	ata	aca	gat	ttc	ttc	tgg	gga	ata	157
5	Gln Ser	Pro	Trp	Arg	Leu	Ser	Leu	Ile	Thr	Asp	Phe	Phe	Trp	Gly	Ile	
	15				20					25					30	
	gct gag	ttt	gtg	gtt	ttg	ttt	ttc	aaa	act	ctg	ctt	cag	caa	gat	gtg	205
	Ala Glu	Phe	Val	Val	Leu	Phe	Phe	Lys	Thr	Leu	Leu	Gln	Gln	Asp	Val	
				35					40					45		
10	aaa aaa	aga	aga	agc	tat	gga	aac	tca	tct	gat	tcc	aga	tat	gat	gat	253
	Lys Lys	Arg	Arg	Ser	Tyr	Gly	Asn	Ser	Ser	Asp	Ser	Arg	Tyr	Asp	Asp	
			50					55					60			
	gga aga	ggg	cca	cca	gga	aac	cct	CCC	cga	aga	atg	ggt	aga	atc	aat	301
	Gly Arg	Gly	Pro	Pro	Gly	Asn	Pro	Pro	Arg	Arg	Met	Gly	Arg	Ile	Asn	
15		65					70					75				
	cat ctg	cgt	ggc	cct	agt	ccc	cct	cca	atg	gct	ggt	gga	tga	ggaag	gt	350
	His Leu	Arg	Gly	Pro	Ser	Pro	Pro	Pro	Met	Ala	Gly	Gly				
	80					85					90					
	aaatgtct	gc t	ctaa	ıgaag	rc ag	acaa	ccgg	aca	tgcg	cat	tcat	agca	iga a	aggaa	accat	410
20	caagaagt	gg a	aggo	tgac	c at	gatg	agca	gta	gatg	raat	gtgt	atgt	ct a	aaca	aggac	470
	tgctctgt	gt c	ctca	caga	it ga	atga	ggtc	ato	ctgg	gaa	ttcc	ctct	gc a	aggga	actgg	530
	cctgactg	ac a	tgca	gttc	c at	aaat	gcag	atg	rtttg	rtct	catt	acct	tt t	tgta	tagtt	590
	tattaaag															650
0 =	catctttat	ta t	tcac	gaaa	a ag	caat	ctga	aga	aaac	aaa	taaa	agcc	tg t	gtat	ttagc	710
25																
	<210> 149															
	<211> 218															
	<212> DN2		_													
20	<213> Hor	no s	apie	nce												
30	<220>	_														
	<221> CDS															
	<222> (56)	.(10	90)												
	<400> 149	€														
35	gcacttcac	gc t	tece	ctcc	c cc	ggcg	ccct	ctg	gggc	tec	gago	ccgg	cg g	gacc		58

	acg	LLC	acc	ago	acc	gge	LCC	agu	999	CLC	Lac	aay	geg	CCL	. etg	teg	10.
	Met	Phe	Thr	Ser	Thr	Gly	Ser	Ser	Gly	Leu	Туг	Lys	Ala	Pro	Leu	Ser	
	1				5					10					15		
	aag	ago	ctt	ctg	ctg	gtc	ccc	agt	gcc	ctc	tcc	cto	ctg	cto	gee	ctc	151
5	Lys	Ser	Leu	Leu	Leu	Val	Pro	Ser	Ala	Leu	Ser	Leu	Leu	Leu	. Ala	Leu	
				20					25					30)		
	ctc	ctg	cct	cac	tgc	cag	aag	ctc	ttt	gtg	tat	gac	ctt	cac	gca	gtc	199
	Leu	Leu	Pro	His	Cys	Gln	Lys	Leu	Phe	Val	Tyr	Asp	Leu	His	Ala	Val	
			35					40					45				
10	aag	aac	gac	ttc	cag	att	tgg	agg	ttg	ata	tgt	gga	aga	ata	att	tgc	247
	Lys	Asn	Asp	Phe	Gln	Ile	Trp	Arg	Leu	Ile	Cys	Gly	Arg	Ile	Ile	Cys	
		50					5 5					60					
	ctt	gat	ttg	aaa	gat	act	ttc	tgc	agt	agt	ctg	ctt	att	tat	aat	ttt	295
	Leu	Asp	Leu	Lys	Asp	Thr	Phe	Cys	Ser	Ser	Leu	Leu	Ile	Tyr	Asn	Phe	
15	65					70					75					80	
	agg	ata	ttt	gaa	aga	aga	tat	gga	agc	aga	aaa	ttt	gca	tcc	ttt	ttg	343
	Arg	Ile	Phe	Glu	Arg	Arg	Tyr	Gly	Ser	Arg	Lys	Phe	Ala	Ser	Phe	Leu	
					85					90	•				95		
	ctg	ggt	tee	tgg	gtt	ttg	tca	gcc	tta	ttt	gac	ttt	ctc	ctc	att	gaa	391
20	Leu	Gly	Ser	Trp	Val	Leu	Ser	Ala	Leu	Phe	Asp	Phe	Leu	Leu	Ile	Glu	
				100					105					110			
	gct	atg	cag	tat	ttc	ttt	ggc	atc	act	gca	gct	agt	aat	ttg	cct	tct	439
	Ala	Met	Gln	Tyr	Phe	Phe	Gly	Ile	Thr	Ala	Ala	Ser	Asn	Leu	Pro	Ser	
			115					120					125				
25	gga	ttc	ctg	gca	cct	gtg	ttt	gct	ctg	ttt	gta	cca	ttt	tac	tgc	tcc	487
	Gly	Phe	Leu	Ala	Pro	Val	Phe	Ala	Leu	Phe	Val	Pro	Phe	Tyr	Cys	Ser	
		130					135					140					
	ata	cca	aga	gtc	caa	gtg	gca	caa	att	ctg	ggt	ccg	ttg	tcc	atc	aca	535
	Ile	Pro	Arg	Val	Gln	Val	Ala	Gln	Ile	Leu	Gly	Pro	Leu	Ser	Ile	Thr	
30	145					150					155					160	
	aac	aag	aca	ttg	att	tat	ata	ttg	gga	ctg	cag	ctt	ttc	acc	tct	ggt	583
	Asn	Lys	Thr	Leu	Ile	Tyr	Ile	Leu	Gly	Leu	Gln	Leu	Phe	Thr	Ser	Gly	
					165					170					175		
	tcc	tac	atc	tgg	att	gta	gcc	ata	agt	gga	ctt	atg	tcc	ggt	ctg	tgc	631
35	Ser	Tyr	Ile	Tro	Ile	Val	Ala	Ile	Ser	Gly	Leu	Met	Ser	Gly	Leu	Cvs	

				180					185					190			
	tac	gac	agc	aaa	atg	ttc	cag	gtg	cat	cag	gtg	ctc	tgc	atc	ccc	agc	679
	Tyr	Asp	Ser	Lys	Met	Phe	Gln	Val	His	Gln	Val	Leu	Cys	Ile	Pro	Ser	
			195					200					205				
5	tgg	atg	gca	aaa	ttc	ttt	tct	tgg	aca	ctt	gaa	ccc	atc	ttc	tct	tct	727
	Trp	Met	Ala	Lys	Phe	Phe	Ser	Trp	Thr	Leu	Glu	Pro	Ile	Phe	Ser	Ser	
		210					215					220					
	tca	gaa	ccc	acc	agc	gaa	gcc	aga	att	9 99	atg	gga	gcc	acg	ctg	gac	775
	Ser	Glu	Pro	Thr	Ser	Glu	Ala	Arg	Ile	Gly	Met	Gly	Ala	Thr	Leu	Asp	
10	225					230					235					240	
	atc	cag	aga	cag	cag	aga	atg	gag	ctg	ctg	gac	cgg	cag	ctg	atg	ttc	823
	Ile	Gln	Arg	Gln	Gln	Arg	Met	Glu	Leu	Leu	Asp	Arg	Gln	Leu	Met	Phe	
					245					250					255		
	tct	cag	ttt	gca	caa	9 99	agg	cga	cag	aga	cag	cag	cag	gga	gga	atg	871
15	Ser	Gln	Phe	Ala	Gln	Gly	Arg	Arg	Gln	Arg	Gln	Gln	Gln	Gly	Gly	Met	
				260					265					270			
	atc	aat	tgg	aat	cgt	ctt	ttt	cct	cct	tta	cgt	cag	cga	caa	aac	gta	919
	Ile	Asn	Trp	Asn	Arg	Leu	Phe	Pro	Pro	Leu	Arg	Gln	Arg	Gln	Asn	Val	
			275					280					285				
20						cgg	_										967
	Asn	_	Gln	Gly	Gly	Arg	Gln	Ser	Glu	Pro	Ala	Ala	Pro	Pro	Leu	Glu	
		290					295					300					
				_	_	gtc	_									_	1015
	Val	Ser	Glu	Glu	Gln	Val	Ala	Arg	Leu	Met	Glu	Met	Gly	Phe	Ser	Arg	
25	305					310					315					320	
		-	-	_	-	gcc	_	-	-				_			_	1063
	Gly	Asp	Ala	Leu	Glu	Ala	Leu	Arg	Ala		Asn	Asn	Asp	Leu		Val	
					325					330					335		
					_	ctg	_		tgat	agto	cc a	aggeo	aaca	c to	19		1110
30	Ala	Thr	Asn		Leu	Leu	Gln	His									
				340													
				_	-	-	_									ggacc	1170
					_		_									geeet	1230
																atgta	1290
₹5	++++		+-	+-++	-+++	++	~~~	+ + +	+	otec	ratt	adac	racto	207 0	acto	~++++	1350

	gaatgtgttt aaaatgcatt aaaatggaag atttctgcag gcagttgaat ggcactccag	1410
	atggggaatt getgtaacce tettaetgta acatgteate teetgegteg tgatggggag	1470
	agggtaatgt tacttcacaa aggacatgtc agatccttct tcatggactt ttttagttac	1530
	tgttttttct ctcaaacttg ttttcgaatc tcctgggagt gagggagaaa cagggagetg	1590
5	aatecteece caagetgtte caggecagag gactetgeag tacettetee tacatetagt	1650
	aacaaagaat ggtgataacc atgcactggt tcaaggttct ggagttctcc atgaaacttg	1710
	ggttaatttt geteagagta teeggagtta geeactagge tgegggtgaa atgggatgga	1770
	gtagaacaac agcaggette etggagecae atgggetgae tagggeaete tgtggetgge	1830
	ctggcacggg ctcagcccag gaagaggaga aacgatccct tgcctgcccc tccctgtggc	1890
10	agggetaaet geetggeeet eetggetege ageeageeag eeceetggea geaggttete	1950
	ctcagggctt gggtcttcaa cctgtggcga caggaggcag ggcagactgt ggaggacagg	2010
	atgeaggtea gggagaggga aggeaggggt ggacegeeat gageatgaaa agaeeegaag	2070
	caagttgact cttgcaatgt gcaactgtta tgttctgcaa aatgagcaac gatgtatcaa	2130
	attgatgcaa atttagatgt tgatacttac aataaagttt ttaatgtgtt tt	2182
15		
	<210> 150	
	<211> 2773	
	<212> DNA	
	<213> Homo sapience	
20	<220>	
	<221> CDS	
	<222> (211)(1497)	
•	<400> 150	
25	gtageggaga agactggage teegaggage tgeatetgeg geaacetgtg tgetgaeget	60
	acgtgcctcc tggctccgac gtagctcgca gctccccagt ctcactccat tccttcccca	120
	cetggegege acetgeteaa gaceagggte etgeeaageg etaggaggge gegtgeeagg	180
	ggcgctaggg aactgcggag cgcgcgcc atg ggg ccg cct ggg gcc	231
	Met Gly Pro Pro Gly Ala	
30	1 5	
	ggg gte tee tge ege ggt gge tge gge ttt tee aga ttg etg gea tgg	279
	Gly Val Ser Cys Arg Gly Gly Cys Gly Phe Ser Arg Leu Leu Ala Trp	
	10 15 20	
	tgc ttc ctg ctg gcc ctg agt ccg cag gca ccc ggt tcc cgg ggg gct	327
35	Cys Phe Leu Leu Ala Leu Ser Pro Gln Ala Pro Gly Ser Arg Gly Ala	

		25					30					35	•				
	gaa	gca	gtg	tgg	acc	geg	tac	cto	aac	gtg	tco	tgg	cgg	gtt	ccg	cac	375
	Glu	Ala	Val	Trp	Thr	Ala	Tyr	Leu	Asn	Val	Ser	Trp	Arg	Val	Pro	His	
	40					45					50)				55	
5	acg	gga	gtg	aac	cgt	acg	gtg	tgg	gag	ctg	ago	gag	gag	ggc	gtg	tac	423
	Thr	Gly	Val	Asn	Arg	Thr	Val	Trp	Glu	Leu	Ser	Glu	Glu	Gly	Val	Tyr	
					60					65					70		
	ggc	cag	gac	tcg	ccg	ctg	gag	cct	gtg	gct	gg g	gtc	ctg	gta	ccg	ccc	471
	Gly	Gln	Asp	Ser	Pro	Leu	Glu	Pro	Val	Ala	Gly	Val	Leu	Val	Pro	Pro	
10				75					80					85			
	gac	ggg	ccc	ggg	gcg	ctt	aac	gcc	tgt	aac	ccg	cac	acg	aat	ttc	acg	519
	Asp	Gly	Pro	Gly	Ala	Leu	Asn	Ala	Cys	Asn	Pro	His	Thr	Asn	Phe	Thr	
			90					95					100				
	gtg	ccc	acg	gtt	tgg	gga	agc	acc	gtg	caa	gtc	tct	tgg	ttg	gcc	ctc	567
15	Val	Pro	Thr	Val	Trp	Gly	Ser	Thr	Val	Gln	Val	Ser	Trp	Leu	Ala	Leu	
		105					110					115					
	atc	caa	cgc	ggc	ggg	ggc	tgc	acc	ttc	gca	gac	aag	atc	cat	ctg	gct	615
	Ile	Gln	Arg	Gly	Gly	Gly	Cys	Thr	Phe	Ala	Asp	Lys	Ile	His	Leu	Ala	
	120					125					130					135	
20	tat	gag	aga	ggg	gcg	tct	gga	gcc	gtc	atc	ttt	aac	ttc	ccc	aaa	acc	663
	Tyr	Glu	Arg	Gly	Ala	Ser	Gly	Ala	Val	Ile	Phe	Asn	Phe	Pro	Gly	Thr	
					140					145					150		
		aat														-	711
	Arg	Asn	Glu	Val	Ile	Pro	Met	Ser	His	Pro	Gly	Ala	Val	Asp	Ile	Val	
25				155					160					165			
		atc															759
	Ala	Ile	Met	Ile	Gly	Asn	Leu	Lys	Gly	Thr	Lys	Ile	Leu	Gln	Ser	Ile	
			170					175					180				
00		aga															807
30	GIn	Arg	Gly	Ile	Gln	Val		Met	Val	Ile	Glu		Gly	Lys	Lys	His	
		185					190					195					
		cct										-					855
	Gly	Pro	Trp	Val			Tyr	Ser	Ile			Val	Ser	Val	Ser	Phe	
) E	200					205					210					215	
15	+++	att	att	200	aca	~~=	aat	at a	000	+ = +	+++	ata	+++	+ = +	+~+	+	002

	Phe	Ile	Ile	Thr			Thr	Val	Gly	туг	Phe	Ile	Phe	Tyr	Ser	Ala	
					220					225					230		
	cga	agg	cta	cgg	aat	gca	aga	gct	caa	agc	agg	aag	cag	agg	caa	tta	951
	Arg	Arg	Leu	Arg	Asn	Ala	Arg	Ala	Gln	Ser	Arg	Lys	Gln	Arg	Gln	Leu	
5				235					240					245			
	aag	gca	gat	gct	aaa	aaa	gct	att	gga	agg	ctt	caa	cta	cgc	aca	ctg	999
	Lys	Ala	Asp	Ala	Lys	Lys	Ala	Ile	Gly	Arg	Leu	Gln	Leu	Arg	Thr	Leu	
			250					255					260				
	aaa	caa	gga	gac	aag	gaa	att	ggc	cct	gat	gga	gat	agt	tgt	gct	gtg	1047
10	Lys	Gln	Gly	Asp	Lys	Glu	Ile	Gly	Pro	Asp	Gly	Asp	Ser	Cys	Ala	Val	
		265					270					275					
	tgc	att	gaa	ttg	tat	aaa	cca	aat	gat	ttg	gta	cgc	atc	tta	acg	tge	1095
	Cys	Ile	Glu	Leu	Tyr	Lys	Pro	Asn	Asp	Leu	Val	Arg	Ile	Leu	Thr	Cys	
	280					285					290					295	
15	aac	cat	att	ttc	cat	aag	aca	tgt	gtt	gac	cca	tgg	ctg	tta	gaa	cac	1143
	Asn	His	Ile	Phe	His	Lys	Thr	Cys	Val	Asp	Pro	Trp	Leu	Leu	Glu	His	
					300					305					310		
	agg	act	tgc	ccc	atg	tgc	aaa	tgt	gac	ata	ctc	aaa	gct	ttg	gga	att	1191
	Arg	Thr	Cys	Pro	Met	Cys	Lys	Cys	Asp	Ile	Leu	Lys	Ala	Leu	Gly	Ile	
20				315					320					325			
	gag	gtg	gat	gtt	gaa	gat	gga	tca	gtg	tct	tta	caa	gtc	cct	gta	tcc	1239
	Glu	Val	Asp	Val	Glu	Asp	Gly	Ser	Val	Ser	Leu	Gln	Val	Pro	Val	Ser	
			330					335					340				
	aat	gaa	ata	tct	aat	agt	gcc	tcc	tcc	cat	gaa	gag	gat	aat	cgc	agc	1287
25	Asn	Glu	Ile	Ser	Asn	Ser	Ala	Ser	Ser	His	Glu	Glu	Asp	Asn	Arg	Ser	
		345					350					355					
	gag	acc	gca	tca	tct	gga	tat	gct	tca	gta	cag	gga	aca	gat	gaa	ccg	1335
	Glu	Thr	Ala	Ser	Ser	Gly	Tyr	Ala	Ser	Val	Gln	Gly	Thr	Asp	Glu	Pro	
	360					365					370					375	
30	cct	ctg	gag	gaa	cac	gtg	cag	tca	aca	aat	gaa	agt	cta	cag	ctg	gta	1383
	Pro	Leu	Glu	Glu	His	Val	Gln	Ser	Thr	Asn	Glu	Ser	Leu	Gln	Leu	Val	
					380					385					390		
	aac	cat	gaa	gca	aat	tct	gtg	gca	gtg	gat	gtt	att	cct	cat	gtt	gac	1431
	Asn	His	Glu	Ala	Asn	Ser	Val	Ala	Val	Asp	Val	Ile	Pro	His	Val	Asp	
35				395					400					405			

	aac cca	acc	ttt	gaa	gaa ga	c gaa	act	cct	aat	caa	gag	act	gct	gtt	1479
	Asn Pro	Thr	Phe	Glu	Glu As	p Glu	Thr	Pro	Asn	Gln	Glu	Thr	Ala	Val	
		410				415					420				
	cga gaa	att	aaa	tct	taaaat	ctgt	gtaa	ataga	aa aa	actto	jaacc	at	tagt		1530
5	Arg Glu	Ile	Lys	Ser											
	425														
	aataaca	gaa d	etged	aatc	a gggc	ctagt	t to	tatta	aata	aatt	ggat	aa	attta	ataaa	1590
	ataagagt	ga 1	tacto	gaaag	t gata	agatg	a cta	aatat	tat	gcta	tagt	ta	aatgg	cttaa	1650
	aatattta	ac o	ctgtt	aact	t tttt	ccaca	a ac	tcatt	ata	atat	tttt	ca	taggc	aagtt	1710
10	tectetes	igt a	agtga	taac	a acat	tttta	g ac	attca	aaaa	ctgt	cttc	aa	gaagt	cacgt	1770
	ttttcatt	ta t	taaca	attt	t ctta	taaaa	a cat	tgttg	gctt	ttaa	aatg	tg	gagta	gctgt	1830
	aatcactt	ta t	tttta	atgata	a gtat	cttaa	t gaa	aaaat	act	actt	cttt	ag (cttgg	gctac	1890
	atgtgtca	igg (gtttt	tete	e aggt	gctta	t at	tgato	etgg	aatt	gtaa	tg '	taaaa	agcaa	1950
	tgcaaact	ta	ggcga	gtac	t tott	gaaat	g tc	tattt	aag	ctgo	ttta	ag ·	ttaat	agaaa	2010
15	agattaaa	igc a	aaaat	atte	a tttt	tactt	t tto	cttat	ttt	taaa	atta	gg (ctgaa	tgtac	2070
	ttcatgtg	gat 1	ttgto	aacc	a tagt	ttatc	a ga	gatta	itgg	actt	aatt	ga '	ttggt	atatt	2130
	agtgacat	ca a	actto	gacaca	a agat	tagac	a aa	aaatt	cct	taca	aaaa	ta (ctgtg	taact	2190
	atttctca	aa o	ettgt	ggga	t tttt	caaaa	g cto	cagta	itat	gaat	catc	at a	actgt	ttgaa	2250
	attgctaa	itg a	acaga	gtaa	g taac	actaa	t ati	tggto	att	gato	ttcg	tt (catga	attag	2310
20	tctacaga	aa a	aaaaa	tgtt	c tgta	aaatt	a gto	ctạtt	gaa	aatg	tttt	cc a	aaaca	atgtt	2370
	actttgae	aa t	ttgag	ttta	t gttt	gacct	a aat	tgggc	taa	aatt	atat	ta (gataa	actaa	2430
	aattctgt	cc q	gtgta	acta	t aaat	tttgt	g aat	tgcat	ttt	cctg	gtgt	tt (gaaaa	agaag	2490
	ggggggag	gaa 1	ttcca	ggtg	c ctta	atata	a agt	tttga	agc	ttca	tcca	cc a	aaagt	taaat	2550
	agagctat	tt a	aaaaa	tgca	ttta	tttgt	a cto	etgtg	jtgg	cttt	tgtt	tt a	agaat	tttgt	2610
25	tcaaatta	ıta ç	gcaga	attt	a ggca	aaaat	a aaa	acaga	cat	gtat	tttt	gt 1	ttgct	gaatg	2670
	gatgaaac	ca t	ttgca	ttct	t gtac	actga	t tt	gaaat	gct	gtaa	atat	gt (cccaa	tttgt	2730
	attgatto	tc t	tttaa	atata	a aaat	gtaaa	t aaa	aatat	tcc	aat					2773