

Transistores: TBJ

Grupo: Felipe dos Anjos Rezende ES96694

Mateus Silva Ribeiro ES96702

AGENDA

- 1. INTRODUÇÃO
- 2. CONSTRUÇÃO
- 3. POLARIZAÇÃO
- 4. FUNCIONAMENTO
- 5. AREA DE ATUAÇÃO
- 6. APLICAÇÃO

BIBLIOGRAFIA

1. INTRODUÇÃO

- Transistores Evolução das válvulas
- ▶ Os transistores são dispositivos semicondutores de 3 terminais
- ▶ Podem ser operados de 3 maneiras:
 - Corte;
 - Saturação;
 - Ativa.

2. CONSTRUÇÃO

- ▶ Os TBJ's consistem na associação de 3 semicondutores dopados: Emissor, Base, Coletor
- Quanto a dopagem: Emissor > Coletor > Base
- Quanto ao tamanho: Coletor > Emissor > Base

2. CONSTRUÇÃO

Analogia com diodos:

► Acomodação de cargas:

3. POLARIZAÇÃO

Modo	Diodo Emissor	Diodo Coletor	Ic e Vce
Corte	Reverso	Reverso	Ic=0 e Vce>0
Saturação	Direto	Direto	Ic>0 e Vce=0
Ativo	Direto	Reverso	Ic(Vbe,Ib) e Vce>0
Não se aplica	Reverso	Direto	??????

Obs: Normalmente a tensão de ruptura reversa da JEB é muito baixa.

- 6

Corte

- Ambas as junções estão polarizadas reversamente
- \blacktriangleright Ib = Ic = Ie = 0
- ► Comporta-se como chave aberta
- Ambas as tensões das fontes tendem a aumentar as camadas de depleção

Ativa

- A junção JEB está polarizada diretamente enquanto a JCB, reversamente
- ightharpoonup Ie = Ic + Ib
- ightharpoonup Ic = β .Ib

Ativa

Saturação

- Ambas as junções estão polarizadas diretamente
- ► Comporta-se como chave fechada
- ► Ambas as tensões das fontes tendem a anular as camadas de depleção

Saturação

5. AREA DE ATUAÇÃO

- ► Identificação por 3 formas diferentes:
 - Softwares;
 - Análise gráfica;
 - Método por analogia.

5. AREA DE ATUAÇÃO

Análise gráfica

5. AREA DE ATUAÇÃO

Análise gráfica

- Para as diversas aplicações de transistores devemos considerar a sua área de atuação:
 - Atuando como chave;
 - Atuando como fonte de corrente controlada.
- ► Chave: Base de circuitos digitais e acionamento de cargas de potencia (relés, motores CC, inversores de frequência, fontes chaveadas, entre outros)
- ▶ Fonte de corrente: Base de amplificadores e fontes lineares

Reguladores de Tensão

- 1

Amplificadores Ampop

- 1

Amplificadores Ampdif

18

BIBLIOGRAFIA

BOYLESTAD, Robert L.; NASHELSKY, Louis. **Dispositivos eletrônicos e teoria de circuitos**. 11 ed. [S.L.]: Pearson, 2014.

PROF. THIAGO DE OLIVEIRA. Eletrônica. Disponível em: www.troliveira.com/elt. Acesso em: 17 set. 2018.