Problemas resolvidos de MNUM - Teste 1

Diogo Miguel Ferreira Rodrigues diogo.rodrigues@fe.up.pt

1 [2016T1] 2016 Teste 1

1.1 [2016T1-1] Problema 1

(a) O método da bisecção implica encontrar um intervalo inicial [a, b] ao qual pertença a raiz da função, que, apesar de bastante simples, consegue ser mais complexo do que utilizar o método de Picard-Peano, que neste problema corresponde a encontrar a única recorrência possível

$$\frac{Bx-1}{x-1} = 0 \iff Bx-1 = 0 \iff x = \frac{1}{B}$$
$$x_{n+1} = \frac{1}{B}$$

e aplicá-la uma única vez, dado que esta solução pelo método de Picard-Peano corresponde também à solução algébrica, para os valores de B em que a equação do enunciado é válida $(B \neq 0 \land B \neq 1)$. (b)

Ficheiro 1: Código-fonte 2016T1-1 (C++)

```
1 #include <bits/stdc++.h>
2 using namespace std;
3 int main(){
4     double B;
5     cin >> B;
6     cout << double(1.0L)/B << endl;
7     return 0;
8 }</pre>
```

Ficheiro 2: Input 2016T1-1

Ficheiro 3: Output 2016T1-1

0.629

1 1.58983

1.2 Problema 3

(a) Espero encontrar duas soluções, uma próxima de (-1.2, -0.6) e outra próxima de (0.2, 1).

$$\begin{cases} f_{1}(x,y) = 0.7 + x - y \\ f_{2}(x,y) = 1 - x^{2} - y \end{cases} \implies \mathbf{J} = \begin{bmatrix} f'_{1,x} & f'_{1,y} \\ f'_{2,x} & f'_{2,y} \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -2x & -1 \end{bmatrix} \implies |\mathbf{J}| = -2x - 1$$

$$h = -\frac{\begin{vmatrix} f_{1} & f'_{1,y} \\ f_{2} & f'_{2,y} \end{vmatrix}}{|\mathbf{J}|} = -\frac{\begin{vmatrix} 0.7 + x - y & -1 \\ 1 - x^{2} - y & -1 \end{vmatrix}}{|\mathbf{J}|} = -\frac{-x^{2} - x + 0.3}{-2x - 1} = -\frac{x^{2} + x - 0.3}{2x + 1}$$

$$k = -\frac{\begin{vmatrix} f'_{1,x} & f_{1} \\ f'_{2,x} & f_{2} \end{vmatrix}}{|\mathbf{J}|} = -\frac{\begin{vmatrix} 1 & 0.7 + x - y \\ -2x & 1 - x^{2} - y \end{vmatrix}}{|\mathbf{J}|} = -\frac{x^{2} + 1.4x - y - 2xy + 1}{-2x - 1} = \frac{x^{2} + 1.4x - y - 2xy + 1}{2x + 1}$$

$$\begin{cases} x' = x + h \\ y' = y + k \end{cases} \iff \begin{cases} x' = x - \frac{x^{2} + x - 0.3}{2x + 1} \\ y' = y + \frac{x^{2} + 1.4x - y - 2xy + 1}{2x + 1} \end{cases} \iff \begin{cases} x' = \frac{x^{2} + 0.3}{2x + 1} \\ y' = \frac{x^{2} + 1.4x + 1}{2x + 1} \end{cases}$$

Para avaliar a condição de convergência, já colocámos as recorrências da equação anterior na forma necessária

$$\begin{cases} x_{n+1} = g_1(x_n, y_n) \\ y_{n+1} = g_2(x_n, y_n) \end{cases}$$

$$\begin{aligned} g_{xx} &= \left| \frac{\partial g_1}{\partial x} \right| + \left| \frac{\partial g_2}{\partial x} \right| = \left| \frac{2x}{2x+1} - \frac{2x^2 + 0.6}{(2x+1)^2} \right| + \left| \frac{2x^2 + 2.8x + 2}{(2x+1)^2} - \frac{2x + 1.4}{2x+1} \right| \\ g_{yy} &= \left| \frac{\partial g_1}{\partial y} \right| + \left| \frac{\partial g_2}{\partial y} \right| = |0| \\ g_{xy} &= \left| \frac{\partial g_1}{\partial x} \right| + \left| \frac{\partial g_2}{\partial y} \right| = \left| \frac{2x}{2x+1} - \frac{2x^2 + 0.6}{(2x+1)^2} \right| + |0| \end{aligned} = \left| \frac{2x}{2x+1} - \frac{2x^2 + 0.6}{(2x+1)^2} \right|$$

Procedi à visualização de g_{xx} , g_{yy} e g_{xy} em gráfico com x como única variável independente, uma vez que y não influencia o valor de qualquer das funções.

Pode-se provar que, para valores x < -1.1 e 0.1 < x, as funções possuem todas ordenadas inferiores a 1, mas o gráfico é suficientemente esclarecedor quanto a essa questão.

Assim, se $x < -1.1 \land y \in \mathbb{R}$ ou se $0.1 < x \land y \in \mathbb{R}$, pela condição de convergência o processo converge. Escolhi o par ordenado (x,y) = (-2,0), por se encontrar dentro da primeira gama de valores de x para os quais o processo converge.

(c)

Ficheiro 4: Código-fonte 2016T1-3c (C++)

```
1 #include <bits/stdc++.h>
   using namespace std;
   const double epsilon = 1e-8;
3
4
   double fx (double x, double y) {
5
        double up = x*x+0.3L;
6
        double dw = 2.0L*x+1.0L;
7
        return up/dw;
   }
8
   double fy (double x, double y) {
9
        double up = x*x+1.4L*x+1.0L;
10
11
        double dw = 2.0L*x+1.0L;
12
        return up/dw;
13
   }
14
   int main(){
15
        double x, y; cin >> x >> y;
        double x_-, y_-;
16
        for (int i = 0; i < 1000; ++i){
17
            x_{-} = x; y_{-} = y;
18
19
            x = fx(x_{-}, y_{-}); y = fy(x_{-}, y_{-});
            if(fabs(x-x_-) < epsilon && fabs(y-y_-) < epsilon) break;
20
21
        cout \ll setprecision(7) \ll fixed \ll x \ll "" \ll y \ll endl;
22
23
        return 0;
24
```

```
Ficheiro 5: Input 2016T1-3c Ficheiro 6: Output 2016T1-3c -2.0 \ 0.0 1 -1.2416198 \ -0.5416198
```

(d)

```
\begin{cases} x_{n+1} = -\sqrt{1 - y_n} \\ y_{n+1} = 0.7 + x_n \end{cases} \begin{cases} x_{n+1} = -y_n - 0.7 \\ y_{n+1} = 1 - x_n^2 \end{cases}
```

Ficheiro 7: Código-fonte 2016T1-3di (C++)

Ficheiro 8: Código-fonte 2016T1-3dii (C++)

```
1 #include <bits/stdc++.h>
                                                1 #include <bits/stdc++.h>
                                                2
2
   using namespace std;
                                                   using namespace std;
   double fx(double x, double y)
                                                   double fx (double x, double y) {
4
        return -sqrt (1.0L-y);
                                                4
                                                        return y-0.7L;
                                                5
                                                   }
5
   }
6
   double fy (double x, double y) {
                                                6
                                                   double fy (double x, double y) {
7
        return 0.7L+x;
                                                7
                                                        return 1-x*x;
                                                8
8
9
   int main(){
                                                9
                                                   int main(){
10
        double x, y; cin \gg x \gg y;
                                                10
                                                        double x, y; cin \gg x \gg y;
        double x_, y_;
11
                                                11
                                                        double x_-, y_-;
12
                                                12
        int i;
                                                        int i;
13
        for (i=1; i<40; ++i)
                                                13
                                                        for (i=1; i<40; ++i)
14
             x_{-} = x; y_{-} = y;
                                                14
                                                             x_{-} = x; y_{-} = y;
             x = fx(x_-, y_-);
15
                                                15
                                                             x = fx(x_-, y_-);
16
             y = fy(x_{-}, y_{-});
                                                16
                                                             y = fy(x_-, y_-);
                                                             printf("%+.7f %+.7f"
             printf("%+.7f %+.7f"
                                                17
17
                     "%+.0E %+.0E\n",
                                                                     "%+.0E %+.0E\n",
                                                18
18
19
                     x, y, x-x_-, y-y_-);
                                                19
                                                                     x, y, x-x_-, y-y_-);
20
                                                20
21
        printf("%d\n%+.32f\n%+.32f\n")
                                                21
                                                        printf("%d\n%+.32f\n%+.32f\n")
22
                                                22
                i, x, y);
                                                                i, x, y);
23
        for (; i < 10000000; ++i)
                                                23
                                                        for (; i < 10000000; ++i)
                                                24
24
             x_{-} = x; y_{-} = y;
                                                             x_{-} = x; y_{-} = y;
25
             x = fx(x_-, y_-);
                                                25
                                                             x = fx(x_-, y_-);
             y = fy(x_{-}, y_{-});
26
                                                26
                                                             y = fy(x_{-}, y_{-});
27
             if(x = x_{-} \&\& y = y_{-})
                                                27
                                                             if(x == x_{-} \&\& y == y_{-})
28
                 break;
                                                28
                                                                 break;
29
                                                29
        }
        printf("%d\n\%+.32f\n\%+.32f\n\",
                                                        printf("%d\n\%+.32f\n\%+.32f\n\",
30
                                                30
31
                                                31
                i, x, y);
                                                                i, x, y);
32
        return 0;
                                                32
                                                        return 0;
                                                33
33
```

Ficheiro 9: Input 2016T1-3d

 $1 \quad 0.0 \quad 0.5$

	Ficheiro 10: Output 2016T1-3di					Ficheiro 11: Output 2016T1-3dii			
1	-0.7071068	+0.7000000	-7E-01	+2E-01	1	-0.2000000	+1.0000000	-2E-01	+5E-01
2	-0.5477226	-0.0071068	+2E-01	-7E-01	2	+0.3000000	+0.9600000	+5E-01	-4E-02
3	-1.0035471	+0.1522774	-5E-01	+2E-01	3	+0.2600000	+0.9100000	-4E-02	-5E-02
4	-0.9207185	-0.3035471	+8E-02	-5E-01	4	+0.2100000	+0.9324000	-5E-02	+2E-02
5	-1.1417299	-0.2207185	-2E-01	+8E-02	5	+0.2324000	+0.9559000	+2E-02	+2E-02
6	-1.1048613	-0.4417299	+4E-02	-2E-01	6	+0.2559000	+0.9459902	+2E-02	-1E-02
7	-1.2007206	-0.4048613	-1E-01	+4E-02	7	+0.2459902	+0.9345152	-1E-02	-1E-02
8	-1.1852685	-0.5007206	+2E-02	-1E-01	8	+0.2345152	+0.9394888	-1E-02	+5E-03
9	-1.2250390	-0.4852685	-4E-02	+2E-02	9	+0.2394888	+0.9450026	+5E-03	+6E-03
10	-1.2187159	-0.5250390	+6E-03	-4E-02	10	+0.2450026	+0.9426451	+6E-03	-2E-03
11	-1.2349247	-0.5187159	-2E-02	+6E-03	11	+0.2426451	+0.9399737	-2E-03	-3E-03
12	-1.2323619	-0.5349247	+3E-03	-2E-02	12	+0.2399737	+0.9411233	-3E-03	+1E-03
13	-1.2389208	-0.5323619	-7E-03	+3E-03	13	+0.2411233	+0.9424126	+1E-03	+1E-03
14	-1.2378861	-0.5389208	+1E-03	-7E-03	14	+0.2424126	+0.9418595	+1E-03	-6E-04
15	-1.2405325	-0.5378861	-3E-03	+1E-03	15	+0.2418595	+0.9412361	-6E-04	-6E-04
16	-1.2401153	-0.5405325	+4E-04	-3E-03	16	+0.2412361	+0.9415040	-6E-04	+3E-04
17	-1.2411819	-0.5401153	-1E-03	+4E-04	17	+0.2415040	+0.9418051	+3E-04	+3E-04
18	-1.2410138	-0.5411819			18	+0.2418051	+0.9416758		
19	-1.2414435	-0.5410138			19	+0.2416758	+0.9415303	-1E-04	-1E-04
20	-1.2413758	-0.5414435			20	+0.2415303	+0.9415928		
21	-1.2415488	-0.5413758			21	+0.2415928	+0.9416631		
22	-1.2415216	-0.5415488			22	+0.2416631	+0.9416329		
23	-1.2415912	-0.5415216			23	+0.2416329	+0.9415989		
24	-1.2415803	-0.5415912			24	+0.2415989	+0.9416135		
25	-1.2416083	-0.5415803			25	+0.2416135	+0.9416300		
26	-1.2416039	-0.5416083			26	+0.2416300	+0.9416229		
27	-1.2416152	-0.5416039			27	+0.2416229	+0.9416150		
28		-0.5416152			28	+0.2416150	+0.9416184		
29	-1.2416180	-0.5416134			29	+0.2416184	+0.9416222		
30	-1.2416173	-0.5416180			30	+0.2416222	+0.9416206		
31	-1.2416191	-0.5416173			31	+0.2416206	+0.9416187		
32		-0.5416191			32	+0.2416187	+0.9416195		
33	-1.2416195	-0.5416188			33	+0.2416195	+0.9416204		
34		-0.5416195			34	+0.2416204	+0.9416200		
35		-0.5416194			35	+0.2416200	+0.9416196		
36		-0.5416197			36		+0.9416198		
37		-0.5416197			37		+0.9416200		
38		-0.5416198			38		+0.9416199		
39		-0.5416198	-5E-08	+2E-08	39		+0.9416198	-9E-08	-1E-07
40	40		=		$\frac{40}{41}$	40			
41	-1.24161982892665267996790134930052					+0.24161988759005487148456836621335 +0.94161978651690048103262142831227			
42		807320000112	26963343	3267562	42		865169004810	13262142	2831227
43	83	40 5 00 5 00000		-100000	43	100	40 5 00 5 0005		011010
44		487095662095			44		487095662650		
45	-0.54161984	487095662539	93034755	o688859	45	+0.94161984	487095662761	13480804	1939172

Como é evidente pelos resultados, ambos os conjuntos de expressões recorrentes convergiram para soluções, se bem que para soluções diferentes:

- (I) para (-1.24161984870956620952142657188233, -0.54161984870956625393034755688859);
- (II) para (+0.24161984870956626503257780314016, +0.94161984870956627613480804939172);

Apesar de ambos os métodos convergirem com velocidade comparável, inicialmente o método (II) parece convergir ligeiramente mais depressa até à iteração 26, quando parece que o método (I) ganha um pequeno avanço, sendo que a diferença entre iterações consecutivas se torna indiscernível para o método (I) à iteração 83, e para o método (II) à iteração 100.

De entre as operações utilizadas, $\sqrt{}$ é a que confere menor segurança em termos de implementação, sugerindo que o método (I) pode não ser tão confiável como o método (II) por utilizar $\sqrt{}$. As soluções exatas em x são as soluções da equação

$$x^{2} + x - 0.3 = 0 \iff x = \frac{-1 \pm \sqrt{1^{2} - 4 * 1 * (-0.3)}}{2 * 1} \iff x = \frac{-1 \pm \sqrt{2.2}}{2}$$

que, por Python3, dão os pares (x, y) com os valores:

- $(x_1, y_1) = (-1.24161984870956632481162816431227, -0.54161984870956632481162816431227)$
- $(x_2, y_2) = (0.24161984870956632481162816431227, 0.94161984870956632481162816431227)$

Os erros absolutos na última iteração são

em (I),
$$\varepsilon_x = 2.22E - 16$$
 e $\varepsilon_y = 1.11E - 16$ em (II), $\varepsilon_x = 5.55E - 17$ e $\varepsilon_y = 4.87E - 17$

que são compreensivelmente resultado do limite de precisão do double em C++ (até porque o nosso critério de paragem é a indescirnibilidade entre iterações consecutivas, que se verifica em computadores como consequência do limite da representação de números).

Os erros absolutos na 40ª iteração são

em (I),
$$\varepsilon_x = 1.98E - 8 \text{ e } \varepsilon_y = 6.80E - 8$$
 em (II), $\varepsilon_x = 3.89E - 8 \text{ e } \varepsilon_y = 6.22E - 8$

o que também suporta o facto de que (I) converge mais rapidamente que (II), uma vez que y depende apenas de x, x depende de si próprio e o erro absoluto à $40^{\rm a}$ iteração em x é menor em (I) do que em (II).

2 [2017T1] 2017 Teste 1

2.1 [2017T1-1] Problema 1

$$f(x) = (x - 3.6) + \cos^{3}(x + 1.2)$$

$$f'(x) = 1 - 3\cos^{2}(x + 1.2)\sin(x + 1.2)$$

$$g(x) = x - \frac{f(x)}{f'(x)} = \frac{-\cos^{2}(x + 1.2)[3x\sin(x + 1.2) + \cos(x + 1.2)] + 3.6}{1 - 3\cos^{2}(x + 1.2)\sin(x + 1.2)}$$

Se definirmos

$$x' = x + 1.2$$

$$c = \cos(x')$$

$$s = \sin(x')$$

$$d = c^{2}$$

ficamos com

$$g(x) = \frac{-d(3xs+c) + 3.6}{1 - 3ds}$$

Ficheiro 12: Código-fonte 2017T1-1 (C++)

```
1 #include <bits/stdc++.h>
   using namespace std;
3
   double g(double x){
        double x_{-} = x+1.2;
4
5
        double c = cos(x_-);
        double s = \sin(x_-);
6
7
        double d = c * c;
        double up = -d*(3.0L*x*s+c)+3.6L;
8
        double dw = 1.0L - 3.0L*d*s;
9
10
        return up/dw;
11
12
   int main(){
13
        double x; cin >> x;
        cout \ll setprecision(10) \ll fixed \ll g(x) \ll endl;
14
15
        return 0;
16
```

Ficheiro 13: Input 2017T1-1

Ficheiro 14: Output 2017T1-1

1 0.5

1 3.7633057619

$[2.2 \quad [2017T1-2]]$ Problema 2

Utilizaria a fórmula (a), uma vez que:

(a) Tem concavidade voltada para cima e é crescente em x > 0, pelo que se $x_n > \xi_x$ a tangente nesse ponto interseta o eixo das abcissas em $x_{n+1} > \xi_x$ mais próxima de ξ_x do que x_n . Agora, basta usar um guess $>= \xi_x$; se x > 1, o guess pode ser R, se $x \le 1$ o guess pode ser 1.

(b) Tem concavidade voltada para baixo e é crescente em x > 0, pelo que teria que se verificar $0 < x_n < \xi_x$ para que a tangente nesse ponto intersete o eixo das abcissas em x_{n+1} que verifica $0 < x_{n+1} < \xi_x$ e que está mais próximo de ξ_x do que x_n ; mas o guess também não pode ser demasiado próximo de 0, uma vez que o declive de $f(x) = 1 - R/x^m$ é muito elevado na proximidade de 0, o que significa que a convergência é lenta.

Em ambos os exemplos, são utilizados os parâmetros R = 100 e m = 2, 3, 4. Em suma, é mais fácil determinar um guess para (a) do que para (b), além de (a) convergir mais depressa do que (b).

Ficheiro 15: Código-fonte 2017T1-2 (Python3)

```
def g(x, m, R):
1
        return x-x/m+R/(m*x**(m-1))
2
3
  m = int(input())
   R = float(input())
5
   x = \max(R, 1.0)
   i = 0
   while i < 100:
8
        x_{-} = x
9
        x = g(x, m, R)
10
        print ("\%+.31f"\%(x))
        if(x == x_-): break
11
12
        i = i+1
```

Ficheiro 16: Input 2017T1-2

```
1 2
2 100.0
```

Ficheiro 17: Output 2016T1-2

2.3 [2017T-5] Problema 5

Com truncagem.

on l	Ι±	l m	antis	ugo	Ι±	own	comentários				
op	1	1111	anus	ssa	1	exp	comentarios				
	+	1	3	3	+	0	x = 2/15	+0.133e+0			
*	+	1	3	3	+	0	x	+0.133e+0			
	+	1	7	6	-	1	$x^2 = 0.017689$	+0.176e-1			
*	+	1	3	3	+	0	x	+0.133e+0			
	+	2	3	4	-	2	$x^3 = 0.0023408$	+0.234e-2			
	-	2	0	0	+	1	-2	-0.200e+1			
	+	1	3	3	+	0	x	+0.133e+0			
*	+	4	0	0	+	1	4	+0.400e+1			
	+	5	3	2	+	0	4x = 0.532	+0.532e+0			
	+	1	7	6	-	1	x^2	$+0.176e{-1}$			
*	-	3	0	0	+	1	-3	-0.300e+1			
	-	5	2	8	-	1	$-3x^2 = -0.0528$	-0.528e - 1			
	+	2	3	4	-	2	x^3	$+0.234e{-2}$			
*	+	5	0	0	+	1	5	+0.500e+1			
	+	1	1	7	-	1	$5x^3 = 0.0117$	+0.117e-1			

$$x = 0.133$$

$$x^{2} = 0.0176$$

$$x^{3} = 0.00234$$

$$5x^{3} = 0.0117$$

$$-3x^{2} = -0.0528$$

$$5x^{3} - 3x^{2} = -0.0411$$

$$4x = 0.532$$

$$5x^{3} - 3x^{2} + 4x = 0.491$$

$$5x^{3} - 3x^{2} + 4x - 2 = -1.51$$

$$x = 0.133$$

$$x^{2} = 0.0176$$

$$x^{3} = 0.00234$$

$$5x^{3} = 0.0117$$

$$-3x^{2} = -0.0528$$

$$4x = 0.532$$

$$4x - 2 = -1.46 - 3x^{2} + 4x - 2 = -1.515x^{3} - 3x^{2} + 4x - 2 = -1.50$$