QUESTION 4 [6 marks] Given

$$F(A, B, C, D) = \Sigma m(1,2,4,6,8,9,11,14) + d(3,10,12)$$

Use Karnaugh maps to find a minimal POS and SOP of F.

$$F(A,B,C,D) = \frac{BD + AB + CD + BD}{(Sum-of-Products)}$$

$$F(A,B,C,D) = \frac{A + B + C + D}{(Product-of-Sums)}$$

QUESTION 5 [8 marks] You are given the following Karnaugh map:

ABCI	01	11	10
00		1	
01		1	1
11		1	
10		p 1	

Realize the function above (i.e., draw a circuit) using one 8-to-1 multiplexer and any number of 2-input gates and inverters. Observe that A, B and C are connected to the select inputs. Show your work.

QUESTION 6 [6 marks] Design a multi-output digital circuit that maps the 3-bit input to a 3-bit output as follows:

INPUT	OUTPUT		
ABC	XYZ		
000	010		
001	X 1 1		
010	100		
011	110		
100	0 X O		
101	01X		
110	X 0 1		
111	001		

