GLS 7 - Data set: CRIME

INTRODUZIONE

Il seguente dataset contiene il seguente set di variabili:

- 1. M: percentuale di maschi in età 14-24 anni
- 2. SO: dummy che indica se lo stato è del sud
- 3. ED: media degli anni trascorsi a suola
- 4. PO1: spese per la polizia nel 1960
- 5. PO2: spese per la polizia nel 1959
- 6. LF: tasso di forza lavoro
- 7. M.F: numero di maschi per 1000 femmine
- 8. POP: popolazione dello stato
- 9. NW: numero di individui non bianchi
- 10. U1: tasso di occupazione dei maschi in età 14-24
- 11. U2: tasso di occupazione dei maschi in età 35-39
- 12. GDP: gross domestic product per head
- 13. INEQ: income inequality
- 14. PROB: probabilità di essere imprigionato
- 15. TIME: tempo medio trascorso nelle prigioni dello stato
- 16. Y: tasso di crimini

Analisi proposte:

- 1. Statistiche descrittive
- 2. Regressione
- 3. Gestione dell'autocorrelazione

```
#-- R CODE
library(Hmisc)
library(pander)
library(car)
library(olsrr)
library(systemfit)
library(het.test)
panderOptions('knitr.auto.asis', FALSE)
#-- White test function
white.test <- function(lmod,data=d){</pre>
  u2 <- lmod$residuals^2</pre>
  y <- fitted(lmod)
  Ru2 <- summary(lm(u2 \sim y + I(y^2)))$r.squared
  LM <- nrow(data)*Ru2
  p.value <- 1-pchisq(LM, 2)
  data.frame("Test statistic"=LM,"P value"=p.value)
}
#-- funzione per ottenere osservazioni outlier univariate
FIND_EXTREME_OBSERVARION <- function(x,sd_factor=2){</pre>
  which(x>mean(x)+sd_factor*sd(x) | x<mean(x)-sd_factor*sd(x))</pre>
```

```
#-- import dei dati
d <- UScrime

#-- vettore di variabili numeriche presenti nei dati
VAR_NUMERIC <- c("Ed","Po1","M.F","Pop","U1","U2","GDP","Time","y")
#-- print delle prime 6 righe del dataset
pander(head(d),big.mark=",")</pre>
```

Table 1: Table continues below

M	So	Ed	Po1	Po2	LF	M.F	Pop	NW	U1	U2	GDP	Ineq
151	1	91	58	56	510	950	33	301	108	41	394	261
143	0	113	103	95	583	1,012	13	102	96	36	557	194
142	1	89	45	44	533	969	18	219	94	33	318	250
136	0	121	149	141	577	994	157	80	102	39	673	167
141	0	121	109	101	591	985	18	30	91	20	578	174
121	0	110	118	115	547	964	25	44	84	29	689	126

Prob	Time	У
0.0846	26.2	791
0.0296	25.3	1,635
0.0834	24.3	578
0.0158	29.9	1,969
0.0414	21.3	1,234
0.0342	21	682

STATISTICHE DESCRITTIVE

```
#-- R CODE
pander(summary(d[,VAR_NUMERIC]),big.mark=",") #-- statistiche descrittive
```

Table 3: Table continues below

Ed	Po1	M.F	Pop
Min.: 87.0	Min.: 45.0	Min.: 934.0	Min.: 3.00
1st Qu.: 97.5	1st Qu.: 62.5	1st Qu.: 964.5	1st Qu.: 10.00
Median : 108.0	Median: 78.0	Median: 977.0	Median: 25.00
Mean : 105.6	Mean: 85.0	Mean: 983.0	Mean: 36.62
3rd Qu.:114.5	3rd Qu.:104.5	3rd Qu.: 992.0	3rd Qu.: 41.50
Max. :122.0	Max. $:166.0$	Max. :1071.0	Max. $:168.00$

U1	U2	GDP	Time	у
Min.: 70.00	Min. :20.00	Min. :288.0	Min. :12.20	Min.: 342.0
1st Qu.: 80.50	1st Qu.:27.50	1st Qu.:459.5	1st Qu.:21.60	1st Qu.: 658.5
Median: 92.00	Median $:34.00$	Median $:537.0$	Median $:25.80$	Median: 831.0
Mean: 95.47	Mean $: 33.98$	Mean $:525.4$	Mean : 26.60	Mean: 905.1
3rd Qu.:104.00	3rd Qu.:38.50	3rd Qu.:591.5	3rd Qu.:30.45	3rd Qu.:1057.5
Max. $:142.00$	Max. $:58.00$	Max. $:689.0$	Max. $:44.00$	Max. $:1993.0$

pander(cor(d[,VAR_NUMERIC]),big.mark=",") #-- matrice di correlazione

Table 5: Table continues below

	Ed	Po1	M.F	Pop	U1	U2
Ed	1	0.483	0.4369	-0.01723	0.0181	-0.2157
Po1	0.483	1	0.03376	0.5263	-0.0437	0.1851
M.F	0.4369	0.03376	1	-0.4106	0.3519	-0.01869
Pop	-0.01723	0.5263	-0.4106	1	-0.03812	0.2704
$\mathbf{U}1$	0.0181	-0.0437	0.3519	-0.03812	1	0.7459
$\mathbf{U2}$	-0.2157	0.1851	-0.01869	0.2704	0.7459	1
GDP	0.736	0.7872	0.1796	0.3083	0.04486	0.09207
${f Time}$	-0.254	0.1034	-0.4277	0.4642	-0.1699	0.1014
\mathbf{y}	0.3228	0.6876	0.2139	0.3375	-0.05048	0.1773

	GDP	Time	У
Ed	0.736	-0.254	0.3228
Po1	0.7872	0.1034	0.6876
$\mathbf{M.F}$	0.1796	-0.4277	0.2139
\mathbf{Pop}	0.3083	0.4642	0.3375
U1	0.04486	-0.1699	-0.05048
$\mathbf{U2}$	0.09207	0.1014	0.1773
GDP	1	0.0006486	0.4413
${f Time}$	0.0006486	1	0.1499
\mathbf{y}	0.4413	0.1499	1

plot(d[,VAR_NUMERIC],pch=19,cex=.5) #-- scatter plot multivariato


```
par(mfrow=c(3,3))
for(i in VAR_NUMERIC){
  boxplot(d[,i],main=i,col="lightblue",ylab=i)
}
```


REGRESSIONE

#-- R CODE
mod1 <- lm(y ~ Ed + GDP + U1 + U2 + M.F + Po1, d) #-- stima modello lineare semplice
pander(summary(mod1), big.mark=",")

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-4,117	1,466	-2.808	0.007668
\mathbf{Ed}	7.37	6.606	1.116	0.2712
GDP	-1.746	0.8762	-1.993	0.05309
U1	-10.28	4.301	-2.389	0.02168
$\mathbf{U2}$	21.89	9.463	2.313	0.02593
M.F	4.584	1.668	2.748	0.008954
Po1	10.49	2.31	4.543	5.016e-05

Table 8: Fitting linear model: y ~ Ed + GDP + U1 + U2 + M.F + Po1

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
47	257.4	0.6147	0.5569

pander(anova(mod1),big.mark=",")

Table 9: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Ed	1	717,146	717,146	10.82	0.0021
GDP	1	623,064	623,064	9.401	0.003878
U1	1	34,129	34,129	0.5149	0.4772
$\mathbf{U2}$	1	866,003	866,003	13.07	0.0008317
$\mathbf{M.F}$	1	$621,\!536$	$621,\!536$	9.378	0.003917
Po1	1	1,367,878	1,367,878	20.64	5.016e-05
Residuals	40	$2,\!651,\!172$	66,279	NA	NA

pander(white.test(mod1),big.mark=",") #-- white test

Test.statistic	P.value
9.519	0.00857

pander(dwtest(mod1),big.mark=",") #-- Durbin-Whatson test

Table 11: Durbin-Watson test: mod1

Test statistic	P value	Alternative hypothesis
1.868	0.3384	true autocorrelation is greater than 0

Gli errori risultano omoschedastici e incorrelati. Si ripropone ora il modello solo con le variabili significative.

#-- R CODE
mod2 <- lm(y ~ U1 + U2 + M.F + Po1, d) #-- stima modello lineare semplice
pander(summary(mod2),big.mark=",")</pre>

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-4,241	1,500	-2.828	0.00714
U1	-10.42	4.147	-2.513	0.0159
U2	20.18	8.42	2.397	0.02105
M.F	4.906	1.625	3.019	0.004296
Po1	7.446	1.426	5.223	5.145 e-06

Table 13: Fitting linear model: $y \sim U1 + U2 + M.F + Po1$

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
47	263.5	0.5761	0.5357

pander(anova(mod2),big.mark=",")

Table 14: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
U1	1	17,533	17,533	0.2524	0.618
$\mathbf{U2}$	1	716,850	716,850	10.32	0.002526
$\mathbf{M.F}$	1	1,334,682	1,334,682	19.22	7.653 e-05
Po1	1	1,894,779	1,894,779	27.28	5.145 e-06
Residuals	42	2,917,084	69,454	NA	NA

pander(white.test(mod2),big.mark=",") #-- white test

Test.statistic	P.value
10.16	0.00621

pander(dwtest(mod2),big.mark=",") #-- Durbin-Whatson test

Table 16: Durbin-Watson test: mod2

Test statistic	P value	Alternative hypothesis	
1.649	0.1213	true autocorrelation is greater than 0	

#-- R CODE
plot(mod2, which=1, pch=19)

plot(mod2, which=2, pch=19)

plot(mod2, which=3, pch=19)

plot(mod2, which=4, pch=19)
abline(h=2*4/nrow(d), col=2, lwd=3, lty=2)

plot(mod2, which=5, pch=19)

