mombf package vignette

David Rossell

Department of Biostatistics and Bioinformatics
Institute for Research in Biomedicine, Barcelona, Spain
david.rossell@irbbarcelona.org

This manual shows how to use the mombf library to compute Moment and inverse Moment Bayes factors (Mom BF and iMom BF, respectively). The appeal of Mom and iMom BF is that, when the null hypothesis is true, they present better convergence rates than BF resulting from most standard procedures. When the alternative hypothesis is true, they present the same convergence rates as most standard procedures.

The routines compute exact BF for linear regression models, and approximate BF for generalized linear models. Approximate BF can also be obtained in other situations where the regression coefficients are asymptotically normally distributed and sufficient. The library also contains routines to evaluate the prior density and to elicit the prior parameters by specifying the mode *a priori* of the standardized regression coefficients.

In Section 1 we briefly review the definition of the Mom and iMom priors, and we present routines to evaluate them. In Section 2 we analyze Hald's data with linear models and compute Bayes factors to assess whether some predictors can be dropped from the model. Section 3 shows the analysis of some simulated logistic regression data.

1 Mom and iMom priors

Let $\boldsymbol{\theta}' = (\boldsymbol{\theta}_1', \boldsymbol{\theta}_2')$ be the vector of regression coefficients, σ^2 be a dispersion parameter (i.e. the residual variance in a linear regression setup) and suppose that the goal is to test $H_0: \boldsymbol{\theta}_1 = \boldsymbol{\theta}_0$ versus $H_1 = \boldsymbol{\theta}_1 \neq \boldsymbol{\theta}_0$. Define the quadratic distance $Q(\boldsymbol{\theta}_1) = (\boldsymbol{\theta}_1 - \boldsymbol{\theta}_0)^T V_1^{-1} (\boldsymbol{\theta}_1 - \boldsymbol{\theta}_0) / (ng\sigma^2)$, where $\boldsymbol{\theta}_1$ is a $p_1 \times 1$ dimensional real vector, V_1 is a $p_1 \times p_1$ positive definite matrix and g > 0 is a scalar. We set V_1 to be proportional to the asymptotic covariance matrix of the maximum likelihood estimate $\hat{\boldsymbol{\theta}}_1$. For instance, in a linear regression setup with design matrix X we set $V_1 = (X'X)^{-1}$.

We define an improper prior density on θ_2 proportional to 1, and in the situation where σ^2 is unknown we specify an independent improper prior on σ^2 proportional to $1/\sigma$.

1.1 Mom prior

Let π_Z denote the g-prior of Zellner and Siow (1980), i.e. $\pi_Z(\boldsymbol{\theta}_1) = N(\boldsymbol{\theta}_0, ng\sigma^2 V_1)$. We define the multivariate Mom prior as

$$\pi_M(\boldsymbol{\theta}_1) = \frac{Q(\boldsymbol{\theta}_1)^k}{E_{\pi_Z}[Q(\boldsymbol{\theta}_1)^k]} \pi_Z(\boldsymbol{\theta}_1). \tag{1}$$

, where $E_{\pi_Z}(Q(\boldsymbol{\theta})^k) = \prod_{i=0}^{k-1} (p_1+2i)$ is the k^{th} raw moment of a chi-square distribution with p_1 degrees of freedom. Currently the library only implements the case k=1, i.e. $E_{\pi_Z}(Q(\boldsymbol{\theta})^k)=1$.

1.2 iMom prior

The iMom prior on θ_1 is

$$\pi_I(\boldsymbol{\theta}_1) = c_I \ Q(\boldsymbol{\theta}_1)^{-\frac{\nu + p_1}{2}} \exp\left[Q(\boldsymbol{\theta}_1)^{-k}\right], \tag{2}$$

where

$$c_I = \left| \frac{V_1^{-1}}{ng\sigma^2} \right|^{1/2} \frac{k}{\Gamma(\nu/2k)} \frac{\Gamma(p_1/2)}{\pi^{p_1/2}}.$$
 (3)

As $Q(\boldsymbol{\theta}_1)$ increases, the influence of the exponential term in (2) disappears and the tails of π_I are of the same order as those of a multivariate T with ν degrees of freedom. Several authors have found appealing to set $\nu = 1$ (Bayarri and Garcia-Donato, 2007), which is the default value in our routines. Currently the library only implements the case k = 1.

1.3 Evaluating the Mom and iMom priors

The functions dmom and dimom evaluate the Mom and iMom priors, respectively. The functions pmom and pimom evaluate the distribution functions, and qmom and qimom return quantiles. Let's set the prior parameter g = 1 and plot the Mom and iMom priors in a univariate setting for $\theta_1 \in (-3,3)$. By default θ_0 is set to 0, n = 1 and $V_1 = 1$.

> library(mombf)
> g <- 1</pre>

Figure 1: Moment and inverse Moment priors for g = 1

```
> thseq <- seq(-3, 3, length = 1000)
> plot(thseq, dmom(thseq, g = g), type = "1", ylab = "Prior density")
> lines(thseq, dimom(thseq, g = g), lty = 2, col = 2)
```

The iMom prior density is lower than the Mom prior density for θ_1 values that are either in a neighborhood of 0 or that are large in absolute value. We can also plot the corresponding distribution functions.

```
> library(mombf)
> plot(thseq, pmom(thseq, g = g), type = "1", ylab = "Prior cdf")
> lines(thseq, pimom(thseq, g = g), lty = 2, col = 2)
```

2 Bayes factors for linear regression models

2.1 Linear model fit and prior elicitation

The Hald data contains 13 observations, a continuous response variable and 4 predictors. We start by loading the data and fitting a linear regression model.

```
> data(hald)
> dim(hald)
```


Figure 2: Moment and inverse Moment cdf for g = 1

```
[1] 13 5
> lm1 <- lm(hald[, 1] ~ hald[, 2] + hald[, 3] + hald[, 4] + hald[,
      5])
> summary(lm1)
lm(formula = hald[, 1] ~ hald[, 2] + hald[, 3] + hald[, 4] +
    hald[, 5])
Residuals:
    Min
             1Q
                 Median
                              3Q
                                     Max
-3.1750 -1.6709
                 0.2508
                         1.3783
                                  3.9254
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
             62.4054
(Intercept)
                          70.0710
                                    0.891
                                             0.3991
hald[, 2]
                           0.7448
                                    2.083
                                             0.0708
               1.5511
hald[, 3]
               0.5102
                           0.7238
                                    0.705
                                             0.5009
hald[, 4]
               0.1019
                           0.7547
                                    0.135
                                             0.8959
hald[, 5]
              -0.1441
                           0.7091
                                   -0.203
                                             0.8441
```

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ

```
Residual standard error: 2.446 on 8 degrees of freedom
Multiple R-squared: 0.9824, Adjusted R-squared: 0.9736
F-statistic: 111.5 on 4 and 8 DF, p-value: 4.756e-07
```

The goal is to obtain Bayes factors to assess whether any one predictor can be dropped from the model. First, we specify the prior parameter g based on considerations about the standardized regression coefficient $(\theta_1/(\sigma nV_1)^2)$. θ_1/σ is known as the signal-to-noise ratio, or as the standardized effect size. To find the g value that gives a prior mode at $\pm .2$, we use the function mode2g. For instance, for the regression coefficient associated to hald[,2] we would do as follows.

```
> prior.mode <- 0.2^2
> V <- summary(lm1)$cov.unscaled
> gmom <- mode2g(prior.mode, prior = "Mom")
> gimom <- mode2g(prior.mode, prior = "iMom")
> gmom
[1] 0.02
> gimom
[1] 0.04
```

We can check the obtained g values by plotting the prior density.

```
> thseq <- seq(-1, 1, length = 1000)
> plot(thseq, dmom(thseq, V1 = V[2, 2], g = gmom, n = nrow(hald)),
+ type = "l", xlab = "theta/sigma", ylab = "Prior density")
> lines(thseq, dimom(thseq, V1 = V[2, 2], g = gimom, n = nrow(hald)),
+ lty = 2, col = 2)
> abline(v = c(-prior.mode, prior.mode), lty = 2)
```

Another way to specify g is by finding the value that assigns a desired prior probability to a certain interval. This can be achieved with the function priorp2g. For instance, to find the g value that gives 5% probability to the interval (-0.2,0.2) we use the following code.

```
> a <- 0.2
> priorp <- 0.05
> gmom2 <- priorp2g(priorp = priorp, q = a, prior = "Mom")
> gimom2 <- priorp2g(priorp = priorp, q = -a, prior = "iMom")
> gmom2
```


Figure 3: Hald data. Mom and iMom priors for a regression coefficient. The prior mode for θ_1/σ is set at ± 0.2

[1] 0.113686

> gimom2

[1] 0.07682918

2.2 Bayes factor computation

Bayes factors can be easily computed using the functions mombf and imombf. The Mom BF can be computed in explicit form, whereas the iMom BF require numerical integration. The numerical integration can be achieved either via adaptive quadratures (as implemented in the routines integrate) by setting method='adapt', or via Monte Carlo simulation by setting method='MC'. When σ^2 is unknown, method=='adapt' combines integrate with the quantile method of Johnson (1992). The parameter nquant determines the number of quantiles of the posterior distribution of σ^2 at which to evaluate the integral. The default nquant=100 usually gives a fairly good approximation. For Monte Carlo integration, the argument B specifies the number of Monte Carlo samples.

In our example, for computational speed we use B=100000, even though in real examples a higher value can be used to ensure proper accuracy. For comparison, we also compute the Bayes factors that would be obtained under Zellner's g-prior with the default value g=1, which can be achieved with the function **zellnerbf**. For reproducibility, we set the random number generator seed to the date this document was produced.

```
> set.seed(4 * 2 * 2008)
> mombf(lm1, coef = 2, g = gmom)

[,1]
[1,] 1.690808
> imombf(lm1, coef = 2, g = gimom, method = "adapt")

[,1]
[1,] 1.714063
> imombf(lm1, coef = 2, g = gimom, method = "MC", B = 10^5)

[,1]
[1,] 1.720640
> zellnerbf(lm1, coef = 2, g = 1)

[,1]
[1,] 1.582311
```

We assess the Monte Carlo error by re-computing the iMom BF with a different set of Monte Carlo samples. We find the error to be acceptable.

```
> imombf(lm1, coef = 2, g = gimom, method = "MC", B = 10^5)
[,1]
[1,] 1.71718
```

We now assess the sensitivity to the prior mode specification. For illustration purposes, we exclude the iMom BF as these take longer to compute. The estimated standardized regression coefficient is

```
> sr <- sqrt(sum(lm1$residuals^2)/(nrow(hald) - 5))
> thest <- coef(lm1)[2]/sr
> thest
hald[, 2]
0.6341364
```


Figure 4: Hald data. BF obtained for Mom and Zellner's g-prior for several prior mode specifications.

We define a sequence of prior modes, find the corresponding g values and compute Bayes factors. Note that mombf, imombf and zellnerbf accept g to be a vector instead of a single value. For large g vectors setting the option method='MC' in imombf can save considerable computing time, as the Monte Carlo samples need only be generated once for all g values.

```
> prior.mode <- seq(0.01, 1, length = 100)^2
> gmom <- mode2g(prior.mode, prior = "Mom")
> bf1 <- mombf(lm1, coef = 2, g = gmom)
> bf2 <- zellnerbf(lm1, coef = 2, g = gmom)
> plot(prior.mode, bf1, type = "1", ylab = "BF")
> lines(prior.mode, bf2, lty = 2, col = 2)
> abline(v = thest, lty = 2)
```

The highest possible BF are observed when the prior mode is slightly smaller than the estimated 0.634. As the mode converges to zero both priors converge to a point mass at zero, and hence the BF converges to 1. As the mode goes to infinity the BF goes to 0, as predicted by Lindley's paradox (Lindley, 1957). Although the Mom and Zellner BF show some sensitivity to the prior specification, any prior mode between 0 and 1 results in evidence in favor of including the variable in the model.

3 Bayes factors for generalized linear regression models

As an illustration, we simulate data with 50 observations from a probit regression model. We simulate two correlated predictors with coefficients equal to log(2) and 0 (i.e. the second variable is not actually in the model). The predictors are stored in the matrix x, the success probabilities in the vector p and the observed responses in the vector p. As in Section 2.2, for reproducibility purposes we set the random number generator seed to the date this document was produced.

```
> set.seed(4 * 2 * 2008)
> n <- 50
> theta <- c(log(2), 0)
> x <- matrix(NA, nrow = n, ncol = 2)
> x[, 1] <- rnorm(n, 0, 1)
> x[, 2] <- rnorm(n, 0.5 * x[, 1], 1)
> p <- pnorm(x %*% matrix(theta, ncol = 1))
> y <- rbinom(n, 1, p)</pre>
```

Before computing Bayes factors, we fit a probit regression model with the function glm. The maximum likelihood estimates are stored in thetahat and the asymptotic covariance matrix in V.

```
> glm1 \leftarrow glm(y \sim x[, 1] + x[, 2], family = binomial(link = "probit"))
> thetahat <- coef(glm1)
> V \leftarrow summary(glm1)$cov.scaled
```

To compute Bayes factors we use the functions momknown and imomknown. These functions take as primary arguments a vector of regression coefficients and their covariance matrix, and hence they can be used in any setting where one has a statistic that is asymptotically sufficient and normally distributed. The resulting Bayes factors are approximate. The functions also allow for the presence of a dispersion parameter sigma, *i.e.* the covariance of the regression coefficients is sigma*V, but they assume that sigma is known. The probit regression model that we simulated has no over-dispersion and hence it corresponds to sigma=1. We first compare the full model with the model resulting from excluding the second covariate, setting g=0.5 for illustration (note that thetahat[1] contains the intercept).

```
> g <- 0.5
> bfmom.1 <- momknown(thetahat[2], V[2, 2], n = n, g = g, sigma = 1)
```

[,1] [1,] 0.02784354

> bfimom.2

> bfmom.2

[,1]

[1,] 0.00825012

Both Mom and iMom BF provide strong evidence in favor of the simpler model, i.e. excluding x[,2]. To compare the full model with the model that has no covariates (i.e. only the constant term remains) we use the same routines, passing a vector as the first argument and a matrix as the second argument.

[,1] [1,] 0.5272556 [,1] [1,] 0.953978

Based on the resulting BF being close to 1, it is not clear whether the full model is preferable to the model with no covariates.

The BF can be used to easily compute posterior probabilities for each of the four considered models: no covariates, only x[,1], only x[,2] and both x[,1] and x[,2]. We assume equal probabilities a priori.

```
> prior.prob <- rep(1/4, 4)
> bf <- c(bfmom.0, bfmom.1, bfmom.2, 1)
> pos.prob <- prior.prob * bf/sum(prior.prob * bf)
> pos.prob
```

[1] 0.090632677 0.732686026 0.004786169 0.171895128

The model with the highest posterior probability is the one including only x[,1], *i.e.* the correct model, and the model with the lowest posterior probability is that including only x[,2].

References

- M.J. Bayarri and G. Garcia-Donato. Extending conventional priors for testing general hypotheses in linear models. *Biometrika*, 94:135–152, 2007.
- V.E. Johnson. A technique for estimating marginal posterior densities in hierarchical models using mixtures of conditional densities. *Journal of American Statistical Association*, 87:852–860, 1992.
- D.V. Lindley. A statistical paradox. Biometrika, 44:187–192, 1957.
- A. Zellner and A. Siow. Posterior odds ratios for selected regression hypotheses, volume 1. Valencia: University Press, 1980.