

# Angka signifikan

• Angka signifikian menunjukkan presisi dari sebuah pengukuran

#### Contoh:

- 7 meter (1 angka signifikan)
- 7,00 meter (pengukuran teliti sampai 2 angka setelah koma → 3 angka signifikan)
- 0,020 gram (2 angka signifikan)
- 20 milligram (1 angka signifikan)

# Angka signifikan

- Semua angka tak nol adalah signifikan
- Nol di antara dua angka tak nol adalah signifikan
- Nol pendahulu (leading zeros) tidak signifikan
- Nol pengekor (trailing zeros) dari pecahan desimal adalah signifikan
- Nol pengekor bilangan bulat mungkin signifikan/tidak signifikan (ambigu)

#### Contoh:

- 0,00700 (3 angka signifikan: 7,0,0)
- 0,052 (2 angka signifikan: 5,2)
- 370,0 (4 angka signifikan: 3,7,0,0)
- 705,001 (6 angka signifikan:7,0,5,0,0,1)

#### Tentukan banyaknya angka signifikan pada bilangan berikut:

- 1. 163
- 2. 0,42000
- 3. 0,0624001
- 4. 4857,169
- 5. 601
- 6. 321

## Mengapa diperlukan pengukuran galat?

- Untuk menentukan akurasi solusi numerik.
- 2. Untuk menentukan kriteria penghentian algoritma iteratif.

#### Sumber galat numerik

- 1) Galat akibat pembulatan (round-off error)
- 2) Galat akibat pemotongan (truncation error)

Galat yang dihasilkan kedua sumber di atas menghasilkan galat sejati (true error)

# Galat akibat pembulatan

Disebabkan oleh aproksimasi sebuah bilangan dengan pembulatan

#### Contoh:

| Bilangan                     | Pembulatan | Galat akibat pembulatan |
|------------------------------|------------|-------------------------|
| $\frac{2}{3} = 0,6666 \dots$ | 0,67       | -0,00333                |
| $\sqrt{2} = 1,4142135 \dots$ | 1,414      | 0,0002135               |
| $\pi = 3,14159$              | 3,14       | <b>−0,00159</b>         |

## Galat akibat pemotongan

Galat akibat pemotongan terjadi dalam kasus antara lain:

- Mengaproksimasi nilai deret tak hingga dengan hanya mengambil beberapa suku pertama saja
- 2. Mengaproksimasi f'(x) dengan formula  $f'(x) = \frac{f(x+h)-f(x)}{h}$ , di mana h berhingga.
- 3. Mengaproksimasi  $\int_a^b f(x)dx$  dengan formula  $\sum_a^b f(x)\Delta x$ , di mana  $\Delta x$  berhingga

# Contoh galat akibat pemotongan pada ekspansi deret tak hingga

Bilangan e didefinisikan dalam deret MacLaurin sebagai berikut:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} \dots$$

Jika diambil 3 suku pertama:  $e^x \approx 1 + x + \frac{x^2}{2!}$ 

Galat akibat pemotongan 
$$= e^x - \left(1 + x + \frac{x^2}{2!}\right)$$

#### Jenis-jenis galat numerik

- Galat sejati
- 2. Galat sejati relatif
- 3. Galat aproksimasi
- 4. Galat aproksimasi relatif
- 5. Galat aproksimasi relatif absolut

# Galat sejati (true error)

Adalah perbedaan antara nilai eksak (*exact value*) yang diperoleh dari rumus, dengan nilai aproksimasi (*approximate value*) yang diperoleh dengan metode numerik.

 $E_t$  = nilai eksak — nilai aproksimasi

# Galat sejati relatif (relative true error)

Adalah rasio antara galat sejati dan nilai eksak.

$$\epsilon = \frac{E_t}{\text{Nilai eksak}}$$

#### Contoh

- Turunan f'(x) dari fungsi f(x) dapat diaproksimasi dengan persamaan  $f'(x) \approx \frac{f(x+h)-f(x)}{h}$
- Contoh: Diberikan  $f(x) = 7e^{0.5x}$ , tentukanlah:
  - a) nilai eksak dari f'(2)
  - b) nilai aproksimasi dari f'(2) dengan menggunakan h=0.3
  - c) galat sejati
  - d) galat relatif

#### Solusi:

a) Nilai eksak:

$$f'(x) = (0,5)(7e^{0,5x}) = 3,5e^{0,5x}$$
  
 $f'(2) = 3,5e^{0,5(2)} = 9,5140$ 

b) Nilai aproksimasi f'(2) dengan menggunakan h = 0.3

$$f'(2) \approx \frac{f(2+0,3)-f(2)}{0.3} = \frac{7e^{0,5(2,3)}-7e^{0,5(2)}}{0.3} = 10,263$$

c) Galat sejati:

$$E_t = \text{eksak} - \text{aproksimasi} = 9,5140 - 10,263 = -0,722$$

d) Galat relatif:

$$\epsilon = \frac{E_t}{\text{Nilai eksak}} = \frac{-0,722}{9,5140} = -0,075888 = -7,5888\%$$

## Galat aproksimasi (approximate error)

- Galat aproksimasi digunakan jika nilai eksak tidak diketahui atau sulit dihitung
- Galat aproksimasi adalah selisih antara aproksimasi terkini dengan aproksimasi sebelumnya.

 $E_a$  = aproksimasi terkini — aproksimasi sebelumnya

# Galat aproksimasi relatif

Adalah rasio antara galat aproksimasi dan aproksimasi terkini

$$\epsilon_a = \frac{E_a}{\text{Aproksimasi terkini}}$$

#### Contoh

Untuk  $f(x) = 7e^{0.5x}$ , aproksimasilah f'(2):

- a) dengan menggunakan h = 0.3
- b) dengan menggunakan h = 0.15
- c) galat aproksimasi untuk h = 0.15
- d) galat aproksimasi relatif untuk h=0.15

Jawab:

a) 
$$f'(2) \approx \frac{f(2+0.3)-f(2)}{0.3} = \frac{7e^{0.5(2.3)}-7e^{0.5(2)}}{0.3} = 10,263$$

b) 
$$f'(2) \approx \frac{f(2+0.15)-f(2)}{0.15} = \frac{7e^{0.5(2.15)}-7e^{0.5(2)}}{0.15} = 9,8800$$

- c) galat aproksimasi  $E_a = 9,8800 10,263 = -0,38300$
- d) galat aproksimasi relatif  $\epsilon_a = \frac{-0.38300}{9.8800} = -0.38765 = -38.765\%$

## Kriteria penghentian iterasi

- Algoritma pada metode numerik umumnya bersifat iteratif. Agar iterasi berakhir, maka diperlukan kriteria untuk menghentikan iterasi
- Untuk itu dapat digunakan galat aproksimasi relatif absolut  $|\epsilon_a|$

#### Terdapat dua jenis kriteria penghentian iterasi:

- 1. Jika  $\epsilon_{\scriptscriptstyle S}$  adalah toleransi galat, maka  $|\epsilon_a| \leq \epsilon_{\scriptscriptstyle S}$ , atau
- 2. Jika solusi mensyaratkan memiliki minimal m angka signifikan, maka  $|\epsilon_a|\% \leq 0.5 \cdot 10^{2-m}$

# Tabel aproksimasi

Aproksimasi f'(2) di mana  $f(x) = 7e^{0.5x}$ , dengan beragam nilai h

| h     | f'(2)  | $ \epsilon_a \%$ | m |
|-------|--------|------------------|---|
| 0.3   | 10.263 | N/A              | 0 |
| 0.15  | 9.8800 | 3.877%           | 1 |
| 0.10  | 9.7558 | 1.273%           | 1 |
| 0.01  | 9.5378 | 2.285%           | 1 |
| 0.001 | 9.5164 | 0.2249%          | 2 |

## Mengaproksimasi nilai e

Hitung nilai  $e^{1,2}=1+1.2+\frac{1.2^2}{2!}+\frac{1.2^3}{3!}+\cdots$  dengan galat aproksimasi relatif absolut <1%.

| n | $e^{1,2}$ | $E_a$    | $ \epsilon_a \%$ |
|---|-----------|----------|------------------|
| 1 | 1         | -        | -                |
| 2 | 2.2       | 1.2      | 54.545           |
| 3 | 2.92      | 0.72     | 24.658           |
| 4 | 3.208     | 0.288    | 8.9776           |
| 5 | 3.2944    | 0.0864   | 2.6226           |
| 6 | 3.3151    | 0.020736 | 0.62550          |