TUTORIAL-7

EE 101: Basic Electronics DEPARTMENT OF ELECTRONICS & ELECTRICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

(First question is the Pre-Tutorial Assignment problem to be solved in the space provided.)

Name:	Roll No.	Tutorial Group:

- 1. (a) Write advantages of a three-phase network or circuit. Find the line voltages for a balanced three-phase network if the phase voltages are given as $v_{an} = V_P \sin(\omega t + 20^o)$, $v_{bn} = V_P \sin(\omega t 100^o)$ and $v_{cn} = V_P \sin(\omega t 220^o)$. Draw the phasor diagram showing all the line and phase voltages
 - (b) Derive the balanced delta loads (Z_{AB} , Z_{BC} and Z_{CA}) in terms of a balanced star connected load (Z_A , Z_B and Z_C).

2. In the balanced three-phase system of Fig. Q2 let $Z_P = 12 + j5 \Omega$ and $I_{bB} = 20 \angle 0^0$ A rms with (+) phase sequence. If the source is operating with a power factor of 0.935, find (a) R_W , (b) V_{bn} , (c) V_{AB} and (d) the complex power supplied by the source.

Fig. Q2

- 3. A balanced three-phase three-wire system has a Y-connected load with $V_{ab} = 400$ V rms. Each load contains three loads in parallel: $-j100 \Omega$, 100Ω and $50 + j50 \Omega$. Find (a) V_{cn} , (b) I_{aA} and (c) the total power (kW) drawn by the load.
- 4. The gate G1 and G2 in figure below have propagation delays of 10 nsec and 20 nsec respectively. Draw the output waveform v_0 , if the input v_i makes an abrupt change form logic 0 to logic 1 at time $t=t_0$.

5. Given the gate T below whose output Boolean expression is given by $T = AB\overline{C} + A\overline{B}C + \overline{A}BC$, prove that if, the logical value 1 is given, T gate acts as a universal gate.

