Qbasis Manual

Zhentao Wang

September 3, 2017

Contents

1	Intr	oduction	2
2	Mod	lel representation	3
	2.1	Matrix representation of local Hilbert Space	3
	2.2	Lin table	5
3	Fini	te size cluster	6
4	Sym	nmetry	7
	4.1	Translation symmetry	7
	4.2	Weisse table	7
5	Eige	envalue problem	8
	5.1	Lanczos algorithm	8
		5.1.1 Description	8
		5.1.2 Implementation	9
6	Cod	e examples	12
	6.1	Exact diagonalization	12

Introduction

Model representation

2.1 Matrix representation of local Hilbert Space

Fermi-Hubbard Model

$$\mathcal{H} = -t \sum_{\langle ij \rangle} \sum_{\sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + h.c.) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}. \tag{2.1.1}$$

Local Hilbert space is 4-dimensional:

$$\{|0\rangle, |\uparrow\rangle, |\downarrow\rangle, |\uparrow\downarrow\rangle\}.$$
 (2.1.2)

In this basis:

$$c_{\uparrow} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \tag{2.1.3a}$$

$$c_{\downarrow} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}. \tag{2.1.3b}$$

From these two opeators as input, the code is able to automatically derive the following operators:

$$c_{\uparrow}^{\dagger} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \tag{2.1.4a}$$

$$c_{\downarrow}^{\dagger} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \tag{2.1.4b}$$

$$c_{\downarrow}^{\dagger} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \tag{2.1.4b}$$

$$n_{\uparrow} = \begin{pmatrix} 0 & & & \\ & 1 & & \\ & & 0 & \\ & & & 1 \end{pmatrix}, \tag{2.1.4c}$$

$$n_{\downarrow} = \begin{pmatrix} 0 & & & \\ & 0 & & \\ & & 1 & \\ & & & 1 \end{pmatrix}. \tag{2.1.4d}$$

t-J Model

$$\mathcal{H} = -t \sum_{\langle ij \rangle} \sum_{\sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + h.c.) + J \sum_{\langle ij \rangle} \left[\frac{S_i^{+} S_j^{-} + S_i^{-} S_j^{+}}{2} + S_i^{z} S_j^{z} - \frac{1}{4} n_i n_j \right],$$
(2.1.5)

where

$$S_i^+ = c_{i\uparrow}^\dagger c_{i\downarrow}, \tag{2.1.6a}$$

$$S_i^- = c_{i\downarrow}^{\dagger} c_{i\uparrow}, \tag{2.1.6b}$$

$$S_i^z = \frac{1}{2} \left(c_{i\uparrow}^{\dagger} c_{i\uparrow} - c_{i\downarrow}^{\dagger} c_{i\downarrow} \right). \tag{2.1.6c}$$

Local Hilbert space is 3-dimensional:

$$\{|0\rangle, |\uparrow\rangle, |\downarrow\rangle\}.$$
 (2.1.7)

In this basis:

$$c_{\uparrow} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \tag{2.1.8a}$$

$$c_{\downarrow} = \begin{pmatrix} 0 & 0 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}, \tag{2.1.8b}$$

and all other derived operators can be derived automatically by the code.

Spinless Fermion

$$\mathcal{H} = -t \sum_{\langle ij \rangle} (c_i^{\dagger} c_j + h.c.) + V_1 \sum_{\langle ij \rangle} n_i n_j. \tag{2.1.9}$$

Local Hilbert space is 2-dimensional:

$$\{|0\rangle, |1\rangle\}. \tag{2.1.10}$$

In this basis:

$$c = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}. \tag{2.1.11}$$

Bose-Hubbard Model

$$\mathcal{H} = -t \sum_{\langle ij \rangle} (b_i^{\dagger} b_j + h.c.) + \frac{U}{2} \sum_i n_i (n_i - 1)$$
 (2.1.12)

Local Hilbert space restricted to at most N_{max} bosons:

$$\{|0\rangle, |1\rangle, \dots, |N_{max}\rangle\}. \tag{2.1.13}$$

In this basis:

$$b = \begin{pmatrix} 0 & \sqrt{1} & 0 & 0 & 0 \\ 0 & 0 & \sqrt{2} & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \ddots & \sqrt{N_{max}} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \tag{2.1.14}$$

and other operators should be automatically derived.

2.2 Lin table

Finite size cluster

Symmetry

- 4.1 Translation symmetry
- 4.2 Weisse table

Eigenvalue problem

5.1 Lanczos algorithm

5.1.1 Description

The m-step Lanczos algorithm performs a factorization in the Krylov subspace:

$$HV = VT + b_m \mathbf{v}_m \mathbf{e}_m^T, \tag{5.1.1}$$

where H is the $N \times N$ matrix of our problem, $V = (v_0, v_1, \dots, v_{m-1})$ is $N \times m$ matrix formed by the basis in the Krylov subspace, T is the tridiagonal Hessenberg matrix

$$T = \begin{pmatrix} a_0 & b_1 \\ b_1 & a_1 & \ddots \\ & \ddots & \ddots & b_{m-1} \\ & & b_{m-1} & a_{m-1} \end{pmatrix}, \tag{5.1.2}$$

and $e_m^T = (0, 0, \dots, 0, 1)$ has only one non-zero element.

Note that v_i are orthonormal, i.e.

$$V^{\dagger}V = 1. \tag{5.1.3}$$

We can diagonalize the Hessenberg matrix T, giving eigen-pair (θ_i, s_i) satisfying

$$Ts_i = s_i \theta_i, \tag{5.1.4}$$

With such information, we can form the Ritz pair (θ_i, y_i) which is a good approximation of the eigenvalues and eigenvectors of the original problem H, where

$$y_i \equiv V s_i. \tag{5.1.5}$$

To estimate the error of the eigenvalues, let's first roughly assume y_i is indeed the true eigenvector with eigenvalue E_i , such that $Hy_i = E_i y_i$. Then $||Hy_i - \theta_i y_i|| =$

 $|E_i - \theta_i|$, which shows that $||Hy_i - \theta_i y_i||$ is a good estimate of the error of eigenvalue E_i . Now we relax the assumption about y_i , and calculate $||Hy_i - \theta_i y_i||$ directly:

$$||H\boldsymbol{y}_{i} - \boldsymbol{\theta}_{i}\boldsymbol{y}_{i}|| = ||HV\boldsymbol{s}_{i} - V\boldsymbol{s}_{i}\boldsymbol{\theta}_{i}|| = ||HV\boldsymbol{s}_{i} - VT\boldsymbol{s}_{i}||$$

$$= ||(HV - VT)\boldsymbol{s}_{i}|| = ||\boldsymbol{b}_{m}\boldsymbol{v}_{m}\boldsymbol{e}_{m}^{T}\boldsymbol{s}_{i}||$$

$$= |\boldsymbol{b}_{m}\boldsymbol{e}_{m}^{T}\boldsymbol{s}_{i}|, \qquad (5.1.6)$$

which shows that we can use $\left|b_m e_m^T s_i\right|$ as the error estimation for the Lanczos procedure.

5.1.2 Implementation

Algorithm 5.1 Simple Lanczos algorithm to obtain extreme eigenvalue, 3-vector vesion

```
Require: Space for 3 vectors in RAM: v_0, v_1, v_2
Require: An array of pointers \{\tilde{\boldsymbol{v}}_j \to \boldsymbol{v}_{j \bmod 3}\}
Require: v_0 normalized, v_1 = v_2 = 0, b_0 = 0.
  1: for m = 1, 2, \dots do
            \tilde{\boldsymbol{v}}_m = -b_{m-1}\tilde{\boldsymbol{v}}_{m-2} (copy from \tilde{\boldsymbol{v}}_{m-2})
            \tilde{\boldsymbol{v}}_m = H\tilde{\boldsymbol{v}}_{m-1} + \tilde{\boldsymbol{v}}_m
  4:
            a_{m-1} = (\tilde{\boldsymbol{v}}_m, \tilde{\boldsymbol{v}}_{m-1})
            \tilde{\boldsymbol{v}}_m = \tilde{\boldsymbol{v}}_m - a_{m-1}\tilde{\boldsymbol{v}}_{m-1}
  5:
            b_m = \|\tilde{\boldsymbol{v}}_m\|
  6:
            \tilde{\boldsymbol{v}}_m = \tilde{\boldsymbol{v}}_m/b_m
  7:
            calculate \{\theta_i, s_i\}
  8:
            for the smallest \theta_i, calcualte |b_m e_m^T s_i|. Stop if small enough
  9:
 10: end for
```

Algorithm 5.2 Simple Lanczos algorithm to obtain extreme eigenvalue, 2-vector vesion

```
Require: Space for 2 vectors in RAM: v_0, v_1
Require: An array of pointers \{\tilde{v}_i \rightarrow v_{i \bmod 2}\}
Require: v_0 normalized, v_1 = 0, b_0 = 0.
  1: for m = 1, 2, \dots do
            \tilde{m{v}}_m = -b_{m-1} \tilde{m{v}}_{m-2} (rescale itself, since \tilde{m{v}}_m and \tilde{m{v}}_{m-2} overlap in RAM)
  2:
            \tilde{\boldsymbol{v}}_m = H\tilde{\boldsymbol{v}}_{m-1} + \tilde{\boldsymbol{v}}_m
            a_{m-1} = (\tilde{\boldsymbol{v}}_m, \tilde{\boldsymbol{v}}_{m-1})
  4:
  5:
            \tilde{\boldsymbol{v}}_m = \tilde{\boldsymbol{v}}_m - a_{m-1}\tilde{\boldsymbol{v}}_{m-1}
            b_m = \|\tilde{\boldsymbol{v}}_m\|
  6:
            \tilde{\boldsymbol{v}}_m = \tilde{\boldsymbol{v}}_m/b_m
  7:
            calculate \{\theta_i, s_i\}
  8:
            for the smallest \theta_i, calcualte |b_m e_m^T s_i|. Stop if small enough
10: end for
```

In Fig. 5.1.1, we show the evolution of Ritz values and three possible stopping criteria:

- 1. Relative change of the ground state energy: $|(\theta_0^m \theta_0^{m-1})/\theta_0^m|.$
- 2. Relative change of the 1st excited state energy: $|(\theta_1^m \theta_1^{m-1})/\theta_1^m|$.
- 3. $|b_m e_m^T s_i|$.

Figure 5.1.1: Evolution of Ritz values for spin- $\frac{1}{2}$ Heisenberg model on 4×4 triangular lattice, with periodic boundary condition and $S_z^{\rm total}=0,\,J=1.$ Starting vector is chosen as $(1,1,1,\ldots,1)$.

After convergence, we need extract the ground state eigenvector \boldsymbol{y} (subscript omitted), via

$$y = Vs = (v_0, v_1, \dots, v_{m-1}) s.$$
 (5.1.7)

Since v_j is not stored along the way, we need one more m-step Lanczos, with the same initial vector v_0 .

Algorithm 5.3 Simple Lanczos algorithm to obtain eigenvector, 2 + 1 vector version

Require: Space for 3 vectors in RAM: v_0, v_1, y

Require: An array of pointers $\{\tilde{v}_j \rightarrow v_{j \bmod 2}\}$

Require: v_0 same as the one used for eigenvalue, $y = s_0 v_0$, $v_1 = 0$.

- 1: **for** $m = 1, 2, \dots$ **do**
- $2: \quad \tilde{\boldsymbol{v}}_m = -b_{m-1}\tilde{\boldsymbol{v}}_{m-2}$
- 3: $\tilde{m{v}}_m = H \tilde{m{v}}_{m-1} + \tilde{m{v}}_m$
- 4: $\operatorname{\mathsf{check}} a_{m-1} = (\tilde{\boldsymbol{v}}_m, \tilde{\boldsymbol{v}}_{m-1})$
- 5: $\tilde{\boldsymbol{v}}_m = \tilde{\boldsymbol{v}}_m a_{m-1}\tilde{\boldsymbol{v}}_{m-1}$
- 6: check $b_m = \|\tilde{\boldsymbol{v}}_m\|$
- 7: $\tilde{m{v}}_m = \tilde{m{v}}_m/b_m$
- 8: $\mathbf{y} = \mathbf{y} + s_m \mathbf{v}_m$
- 9: end for

Code examples

6.1 Exact diagonalization