USN Model Question Paper-II with effect from 2022

Third Semester B.E Degree Examination Transform Calculus, Fourier Series and Numerical Techniques (21MAT31)

TIME: 03 Hours Max. Marks: 100

Note: Answer any FIVE full questions, choosing at least ONE question from each module.

		Module -1	Marks		
		Find the Laplace transform of			
Q.01	a	$(i) e^{-3t} \sin 5t \cos 3t \qquad (ii) \frac{1-e^t}{t}$	06		
		Find the Laplace transform of the square—wave function of period a given by			
	b	$f(t) = \begin{cases} 1, & 0 < t < a/2 \\ -1, & a/2 < t < 2 \end{cases}$	07		
	c	Using convolution theorem find the inverse Laplace transform of $\frac{1}{(s^2+1)(s^2+9)}$			
	ı	OR			
Q.02	a	Using unit step function, find the Laplace transform of $f(t) = \begin{cases} \cos t, & 0 \le t \le \pi \\ \cos 2t, & \pi \le t \le 2\pi \\ \cos 3t, & t \ge 2\pi \end{cases}$	06		
	b	Find the inverse Laplace transform of $\frac{2s^2-6s+5}{s^3-6s^2+11s-6}$	07		
	С	Solve by using Laplace transform techniques $\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = e^t \text{ with } x(0) = 2 \text{ and } x'(0) = -1$			
		Module-2			
Q. 03	a				
	b	Obtain the half range cosine series for $f(x) = x \sin x$ in $(0, \pi)$ and hence show that $\frac{\pi - 2}{4} = \frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \cdots \infty$	07		
		The following table gives the variation of periodic current over a period.	,		
	c	t sec0T/6T/3T/22T/35T/6TA amp1.981.301.051.30-0.88-0.251.98Show that there is a direct current part of 0.75 amp in the variable current and obtain the	07		
		amplitude of the first harmonic.			
		OR			
Q.04	Q.04 a Find the Fourier series expansion of $f(x) = 2x - x^2$, $in(0, 3)$				
b Obtain half-range sine series for					

		$\left(kx, 0 \le x \le \frac{l}{2}\right)$					
		$f(x) = \begin{cases} kx, & 0 \le x \le \frac{l}{2} \\ k(l-x), & \frac{l}{2} \le x \le l \end{cases}$					
	С	Expand y as a Fourier series up to first harmonic if the values of y given by x 0° 30° 60° 90° 120° 150° 180° 210° 240 270 300 330 y 1.80 1.10 0.30 0.16 1.50 1.30 2.16 1.25 1.30 1.52 1.76 2.00	07				
	ı I	Module-3					
Q. 05	Find the Fourier transform of $f(x) = \begin{cases} 1, & x \le 1 \\ 0, & x > 1 \end{cases}$ Hence evaluate $\int_0^\infty \frac{\sin x}{x} dx$						
	b	Find the Fourier cosine and sine transforms of e^{-ax}					
	с	Find the Z-transforms of (i) $(n + 1)^2$ and (ii) $\sin(3n + 5)$	07				
		OR					
Q. 06	a	Find the Fourier transform of $e^{-a^2x^2}$, $a > 0$. Hence deduce that it is self reciprocal in respect of Fourier series	06				
	b	Find the inverse z –transform of $\frac{2z^2+3z}{(z+2)(z-4)}$	07				
	Using z-transformation, solve the difference equation $u_{n+2}+4u_{n+1}+3u_n=3^n$, $u_0=0$, $u_1=1$						
	I	Module-4					
Q. 07	a	Classify the following partial differential equations (i) $u_{xx} + 4u_{xy} + 4u_{yy} - u_x + 2u_y = 0$ (ii) $x^2u_{xx} + (1 - y^2)u_{yy} = 0, -1 < y < 1$ (iii) $(1 + x^2)u_{xx} + (5 + 2x^2)u_{xt} + (4 + x^2)u_{tt} = 0$ (iv) $y^2u_{xx} - 2yu_{xy} + u_{yy} - u_y = 8y$					
	Find the values of $u(x,t)$ satisfying the parabolic equation $u_t = 4u_{xx}$ and the boundary conditions $u(0,t) = 0 = u(8,0)$ and $u(x,0) = 4x - \frac{x^2}{2}$ at the points $x = i : i = 0,1,2,,8$ and $t = \frac{j}{8} : j = 0,1,2,3,4$.						
		OR					
Q. 08	Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the conditions $u(x,0) = \sin \pi x$, $0 \le x \le 1$ $u(0,t) = u(1,t) = 0$, Carry out computations for two levels, taking $h = \frac{1}{34}$ and $k = \frac{1}{36}$						
	b	The transverse displacement u of a point at a distance x from one end and at any time t of a vibrating string satisfies the equation $u_{tt} = 25 u_{xx}$, with the boundary conditions $u(x,t) = u(5,t) = 0$ and the initial conditions $u(x,0) = \begin{cases} 20x, & 0 \le x \le 1 \\ 5(5-x), & 1 \le x \le 5 \end{cases}$ and $u_t(x,0) = 0$. Solve this equation numerically up to $t = 5$ taking $t = 1$, $t = 0.2$.	10				

Module-5							
Q. 09	Using Runge – Kutta method of order four, solve $\frac{d^2y}{dx^2} = y + x\frac{dy}{dx}$ for $x = 0.2$, that, $y(0) = 1$, $y'(0) = 0$						
	b Find the extremals of the functional $\int_{x_1}^{x_2} [y^2 + (y')^2 + 2ye^x] dx$						
	С	Find the path on which a particle in the absence of friction, will slide from one point to another in the shortest time under the action of gravity	07				
		OR					
Q. 10	a	Apply Milne's method to solve $\frac{d^2y}{dx^2} = 1 + \frac{dy}{dx}$ at $x = 0.4$. given that $y(0) = 1$, $y(0.1) = 1.1103$, $y(0.2) = 1.2427$, $y(0.3) = 1.399$ $y'(0) = 1$, $y'(0.1) = 1.2103$, $y'(0.2) = 1.4427$, $y'(0.3) = 1.699$	06				
	b	Find the extremals of the functional $\int_{x_1}^{x_2} \frac{(y')^2}{x^3} dx$	07				
	С	Find the curve on which the functional $\int_0^{\pi/2} [(y')^2 + 12xy] dx$ with $y(0) = 0$ and $y(\pi/2) = 0$ can be extremised	07				

Question		Bloom's Taxonomy	Course	Program Outcome
		Level attached	Outcome	
	(a)	L1	CO 01	PO 01
Q.1	(b)	L2	CO 01	PO 02
	(c)	L2	CO 01	PO 02
	(a)	L2	CO 01	PO 02
Q.2	(b)	L2	CO 01	PO 02
	(c)	L2	CO 01	PO 02
	(a)	L2	CO 02	PO 02
Q.3	(b)	L2	CO 02	PO 02
	(c)	L3	CO 02	PO 02
	(a)	L2	CO 02	PO 02
Q.4	(b)	L2	CO 02	PO 02
	(c)	L2	CO 02	PO 02
	(a)	L2	CO 03	PO 02
Q.5	(b)	L2	CO 03	PO 02
	(c)	L2	CO 03	PO 02
	(a)	L2	CO 03	PO 02
Q.6	(b)	L2	CO 03	PO 02
-	(c)	L3	CO 03	PO 02
Q.7	(a)	L1	CO 04	PO 01
	(b)	L2	CO 04	PO 02
Q.8	(a)	L2	CO 04	PO 02
	(b)	L3	CO 04	PO 02

Levels		Analyzing (Analysis):L ₄	Higher order thinking skills (rsis):L ₄ Valuating (Evaluation): L ₅		Creating (Synthesis): L ₆		
Bloom's Taxonomy		(knowledge): L ₁	• •	hension): L ₂	(Application): L ₃		
		Remembering	Understa		Applying		
Lower order thinking skills							
	(c)	L2		CO 05	PO 02		
Q.10	(b)	L2		CO 05	PO 02		
	(a)	L2		CO 05	PO 01		
	(c)	L3		CO 05	PO 02		
Q.9	(b)	L2		CO 05	PO 02		
	(a)	L2		CO 05	PO 01		