Série 4

Exercice 1. 1. Montrer que tout sous-groupe d'un groupe commutatif est distingue.

2. Soit $\phi: G \to H$ un morphisme montrer que si G est commutatif alors $\mathrm{Im}(G)$ est commutatif.

Exercice 2. soit G un groupe et $A \subset G$ un sous-ensemble.

- 1. Montrer que l'intersection de tous les sous-groupes de G contenant A est un sous-groupe de G (pourquoi cette intersection n'est pas faite sur un ensemble vide.) On note ce sous-groupe $\langle A \rangle$ et on l'appelle sous-groupe engendre par A.
- 2. Montrer que $\langle A \rangle$ est le plus petit sous-groupe contenant A.
- 3. On suppose que $G = \langle A \rangle$. Soit $\phi : G \to H$ un morphisme de groupes. Montrer que si

$$A \subset \ker \phi$$

alors ϕ est le morphisme trivial $\phi \equiv e_H$ (ie. $\forall g \in G, \phi(g) = e_H$).

4. Montrer qu'un morphisme de groupe $\phi: G \to H$ est completement determine par ses valeurs prises au differentes elements de A (si deux morphismes ϕ, ϕ' coincidents pour tous les elements de A alors $\phi = \phi'$).

Exercice 3. soit G un groupe et $g \in G$. Pour $n \in \mathbb{Z}$ on definit

$$g^{n} = \begin{cases} e_{G} & \text{si } n = 0\\ g \star \dots \star g \text{ (n fois)}, & \text{si } n \geqslant 1\\ g^{-1} \star \dots \star g^{-1}(|n| \text{ fois)}, & \text{si } n \leqslant -1 \end{cases}$$

et on pose

$$g^{\mathbb{Z}} = \{g^n, \ n \in \mathbb{Z}\}.$$

1. Montrer que l'application

$$g^{\cdot}: \begin{matrix} \mathbb{Z} & \mapsto & G \\ n & \mapsto & g^n \end{matrix}$$

est un morphisme de groupe.

2. Montrer que $g^{\mathbb{Z}} = \langle \{g\} \rangle$.

3. On suppose que G est fini de cardinal |G|=p premier. Montrer que pour tout $g\neq e_G$ on a

$$G = g^{\mathbb{Z}}.$$

(On pourra considerer le morphisme d'inclusion $g^{\mathbb{Z}} \hookrightarrow G$.)

4. Montrer que G est commutatif.

Exercice 4. On considere l'application exponentielle (reelle)

$$\exp: x \in \mathbb{R} \mapsto \exp(x) = e^x$$
.

- 1. Montrer que exp un isomorphisme du groupe additif $(\mathbb{R}, +)$ vers le groupe multiplicatif $(\mathbb{R}_{>0}, \times)$. Quel est l'isomorphisme inverse?
- 2. Soit $\phi: (\mathbb{R}, +) \mapsto (\mathbb{R}_{>0}, \times)$ un morphisme de groupes. On suppose de plus que l'application $x \mapsto \phi(x)$ est continue et on pose $a = \phi(1)$. Soit $\lambda = \log a$, on va demontrer que $\phi(x) = \exp(\lambda x)$
 - Montrer que pour tout $n \in \mathbb{Z}$, on a $\phi(n) = \exp(\lambda n)$.
 - Montrer que pour tout $x \in \mathbb{R}$ et $n \in \mathbb{Z}$, $n \neq 0$, on a $\phi\left(\frac{x}{n}\right) = \phi(x)^{1/n}$. En deduire que pour tout $q \in \mathbb{Q}$, on a $\phi(q) = \exp(\lambda q)$
 - Conclure (utiliser le fait que tout nombre reel est la limite d'une suite de nombres rationnels).