

Lecture 4.0 From keypoints to correspondences

Trym Vegard Haavardsholm

Illustrations from K. Grauman, B. Leibe, Svetlana Lazebnik, David Lowe, Matthew Brown

Point correspondences from keypoints

How do we match these keypoints?

- Covariant feature point detectors
 - Location (x, y), scale σ and orientation θ .
- Normalize local patches surrounding keypoints
 - Canonical scale

- Covariant feature point detectors
 - Location (x, y), scale σ and orientation θ .
- Normalize local patches surrounding keypoints
 - Canonical scale
 - Canonical orientation

Estimating canonical orientation

- Find dominant orientation of the image patch
 - This is given by \mathbf{x}_{max} , the eigenvector of \mathbf{M} corresponding to λ_{max} (the *larger* eigenvalue)
 - Rotate the patch according to this angle

Estimating canonical orientation

Orientation from Histogram of Gradients (HoG)

Estimating canonical orientation: Example

Estimating canonical orientation: Example

- Covariant feature point detectors
 - Location (x, y), scale σ and orientation θ .
- Normalize local patches surrounding keypoints
 - Canonical scale
 - Canonical orientation

- Covariant feature point detectors
 - Affine transformation A
- Normalize local patches surrounding keypoints
 - Canonical affine transformation

Detect regions Normalize regions

1. Detect a set of distinct feature points

- 1. Detect a set of distinct feature points
- 2. Define a patch around each point

- 1. Detect a set of distinct feature points
- 2. Define a patch around each point
- 3. Extract and normalize the patch

- 1. Detect a set of distinct feature points
- 2. Define a patch around each point
- 3. Extract and normalize the patch
- 4. Compute a local descriptor

- 1. Detect a set of distinct feature points
- 2. Define a patch around each point
- 3. Extract and normalize the patch
- 4. Compute a local descriptor
- 5. Match local descriptors

Feature descriptors

Simplest descriptor: Vector of raw intensity values

How to compare two such vectors?

Feature descriptors

- Simplest descriptor: Vector of raw intensity values
- How to compare two such vectors?
 - Sum of squared differences (SSD)

$$SSD(u, v) = \sum_{i} (u_i - v_i)^2$$

Feature descriptors

- Simplest descriptor: Vector of raw intensity values
- How to compare two such vectors?
 - Sum of squared differences (SSD)

$$SSD(u, v) = \sum_{i} (u_i - v_i)^2$$

Normalized correlation

$$\rho(u,v) = \frac{\sum_{i} (u_i - \overline{u})(v_i - \overline{v})}{\sqrt{\left(\sum_{j} (u_j - \overline{u})^2\right)\left(\sum_{j} (v_j - \overline{v})^2\right)}}$$

A better descriptor

- Robust to small deformations
- Distinctive
- Fast to construct
- Fast to compare

