

CLAIMS

- 1 1. A method for authenticating an external module comprising the steps of:
2 creating data K using two different schemes, at least one scheme being based
3 on the integrity of the module to be verified;
4 creating an authentication token for said module which produces K in both
5 schemes;
6 using K as created by one scheme to disrupt said module; and
7 using K as created by the other scheme to restore the module.

- 1 2. The method as defined in claim 1, wherein one or more of the schemes is based
2 on RSA encryption.

- 1 3. The method as defined in claim 1, wherein one or more of the schemes is based
2 on digital signets.

- 1 4. The method as defined in claim 1, further comprising the step of:
2 embedding a public component of one or more of the schemes in a verification
3 code of the application.

- 1 5. The method as defined in claim 1, further comprising the step of:
2 conveying private components of all schemes to a module authentication
3 authority.

- 1 6. The method as defined in claim 5, wherein the creating an authentication token
2 step is automated by providing developers of the external module access to a Web site
3 which allows them to submit the hash of their module and to retrieve the authentication
4 token.

EXPRESS MAIL LABEL NO.: EL563155585US

- 1 7. The method as defined in claim 1, wherein the authentication token is embedded
2 in the external module as long as the external module itself remains functional.
- 1 8. The method as defined in claim 7, where the embedding is realized by adding an
2 additional data section to a DLL in Portable Executable (PE) format.
- 1 9. The method as defined in claim 1, wherein the authentication token is external to
2 the external module.
- 1 10. The method as defined in claim 1, wherein said scheme depending on code
2 integrity is independent of a location of the external module in memory.
- 1 11. The method as defined in claim 10, wherein location independence is achieved
2 by locating and reading the external module's image on a disk.
- 1 12. The method as defined in claim 10, wherein location independence is achieved
2 by using a canonical hash.

EXPRESS MAIL LABEL NO.: EL563155585US

- 1 13. A method for secure authentication of external modules on an entity comprising
2 the steps of:
3 loading an external module into memory; and
4 beginning a STOMPing process by decrypting a number of pseudo-random bytes
5 that are part of an authentication token using a public security code of a public and
6 private component pair security code.
- 1 14. The method as defined in claim 13, wherein the public and private components of
2 the security code comprise security codes selected from a group of security codes of: a
3 signet pair and an RSA pair.
- 1 15. The method as defined in claim 13, further comprising the step of:
2 XORing the decrypted pseudo-random bytes with the external module making
3 the external module unusable.
- 1 16. The method as defined in claim 15, further comprising the step of:
2 performing a signet extrication process to generate extrication data by using the
3 hash of the external module to begin an UNSTOMPing process.
- 1 17. The method as defined in claim 16, further comprising the step of:
2 using the extrication data to generate another stream of pseudo-random bytes.
- 1 18. The method as defined in claim 17, further comprising the step of:
2 XORing the another stream of pseudo-random bytes with the unusable external
3 module thereby making the unusable external module usable in the event there has
4 been no illicit patching of the external module and maintaining the unusable external
5 module unusable in the event that the external module has been illicitly patched such
6 that an application or program that is accessing the module fails to operate.

EXPRESS MAIL LABEL NO.: EL563155585US

- 1 19. The method as defined in claim 18, further comprising the step of:
 - 2 re-authenticating the external module by periodically performing the STOMP and
 - 3 UNSTOMPing process multiple times while interacting with the external module.

- 1 20. The method as defined in claim 18, further comprising the step of:
 - 2 performing run time checks to make sure that function calls to the external module are
 - 3 not intercepted by an attacker.

00000000000000000000000000000000

EXPRESS MAIL LABEL NO.: EL563155585US

- 1 21. A computer readable medium comprising instructions for secure authentication of
2 external modules on an entity comprising the instructions of:
3 loading an external module into memory; and
4 beginning a STOMPing process by decrypting a number of pseudo-random bytes
5 that are part of an authentication token using a public security code of a public and
6 private component pair security code.
- 1 22. The computer readable medium as defined in claim 21 wherein the public and
2 private components of the security code comprise security codes selected from a group
3 of security codes of: a signet pair and an RSA pair.

00000000000000000000000000000000

EXPRESS MAIL LABEL NO.: EL563155585US

4 23. The computer readable medium as defined in claim 21 further comprising the
5 instruction of:

6 XORing the decrypted pseudo-random bytes with the external module making
7 the external module unusable.

1 24. The computer readable medium as defined in claim 23 further comprising the
2 instruction of:

3 performing a signet extrication process to generate extrication data by using the
4 hash of the external module to begin an UNSTOMPing process.

1 25. The computer readable medium as defined in claim 24 further comprising the
2 instruction of:

3 using the extrication data to generate another stream of pseudo-random bytes.

1 26. The computer readable medium as defined in claim 25 further comprising the
2 instruction of:

3 XORing the another stream of pseudo-random bytes with the unusable external
4 module thereby making the unusable external module usable in the event there has
5 been no illicit patching of the external module and maintaining the unusable external
6 module unusable in the event that the external module has been illicitly patched such
7 that an application or program that is accessing the module fails to operate.

1 27. A system for secure authentication of external modules on an entity comprising
2 the units of:

3 a loader unit for loading an external module into memory; and beginning a
4 STOMPing process by

5 a decryption unit for decrypting a number of pseudo-random bytes that are part
6 of an authentication token using a public security code of a public and private
7 component pair security code.