Task 1: Wine Quality Prediction

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
```

In [2]:

```
1 # Loading dataset
```

In [3]:

```
data = pd.read_csv("C:\\Users\\Vikas\\OneDrive\\Desktop\\DATASET\\winequality-red.csv")
```

In [4]:

1 data.head()

Out[4]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

In [5]:

1 # Number of rows and columns in the dataset

In [6]:

1 data.shape

Out[6]:

(1599, 12)

In [7]:

1 # Checking for missing values

In [8]:

1 data.isnull().sum()

Out[8]:

fixed acidity 0 volatile acidity 0 citric acid 0 residual sugar 0 chlorides free sulfur dioxide 0 total sulfur dioxide 0 0 density 0 рΗ 0 sulphates 0 alcohol 0 quality dtype: int64

Data Analysis and Visualization

In [9]:

1 data.describe()

Out[9]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	den
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.003
4								

In [10]:

1 # Number of values of each quality

In [11]:

```
1 sns.catplot(x='quality',data=data, kind='count')
```

Out[11]:

<seaborn.axisgrid.FacetGrid at 0x1bbf7b999a0>

In [12]:

1 # volatile acidity Vs Quality

In [13]:

```
plot = plt.figure(figsize= (5,5))
sns.barplot(x='quality',y= 'volatile acidity',data = data)
```

Out[13]:

<AxesSubplot:xlabel='quality', ylabel='volatile acidity'>

```
In [14]:
```

```
1 plt.show()
```


In []:

1

In [15]:

```
plot = plt.figure(figsize= (5,5))
sns.barplot(x='quality',y= 'citric acid',data = data)
```

Out[15]:

<AxesSubplot:xlabel='quality', ylabel='citric acid'>

```
In [16]:
```

```
1 plt.show()
```


Correlation

```
In [17]:
```

```
1 correlation = data.corr()
```

In [18]:

1 # Constructing a heatmap to understand the correlation between the columns

In [19]:

```
plt.figure(figsize=(10,10))
sns.heatmap(correlation, cbar = True, square=True,fmt = '.1f',annot = True, annot_kws= {'size':8}
```

Out[19]:

<AxesSubplot:>

In [20]:

1 plt.show()

Data Preprocessing

In [21]:

1 # Separate the data and Label

In [22]:

```
1 X = data.drop('quality',axis = 1)
```

```
In [23]:
```

```
1 print(X)
      fixed acidity volatile acidity citric acid residual sugar chlorides \
0
               7.4
                                0.700
                                              0.00
                                                               1.9
                                                                        0.076
1
                7.8
                                0.880
                                              0.00
                                                               2.6
                                                                        0.098
2
               7.8
                                0.760
                                              0.04
                                                               2.3
                                                                        0.092
3
               11.2
                                0.280
                                              0.56
                                                               1.9
                                                                        0.075
4
               7.4
                                0.700
                                              0.00
                                                               1.9
                                                                        0.076
                                               . . .
                                                               . . .
                                0.600
1594
                6.2
                                              0.08
                                                               2.0
                                                                        0.090
1595
                5.9
                                0.550
                                              0.10
                                                               2.2
                                                                        0.062
1596
                6.3
                                0.510
                                              0.13
                                                               2.3
                                                                        0.076
1597
                5.9
                                0.645
                                              0.12
                                                               2.0
                                                                        0.075
1598
                6.0
                                0.310
                                              0.47
                                                               3.6
                                                                        0.067
      free sulfur dioxide total sulfur dioxide density
                                                          pH sulphates \
0
                     11.0
                                           34.0 0.99780 3.51
                                                                     0.56
1
                     25.0
                                           67.0 0.99680 3.20
                                                                     0.68
                     15.0
                                           54.0 0.99700 3.26
2
                                                                     0.65
                                           60.0 0.99800 3.16
3
                     17.0
                                                                     0.58
4
                                           34.0 0.99780 3.51
                                                                     0.56
                     11.0
                     . . .
                                           . . .
                                                     . . .
                                                                      . . .
1594
                     32.0
                                           44.0 0.99490 3.45
                                                                     0.58
                                           51.0 0.99512 3.52
                     39.0
1595
                                                                     0.76
                                          40.0 0.99574 3.42
1596
                     29.0
                                                                     0.75
                                          44.0 0.99547 3.57
1597
                    32.0
                                                                     0.71
1598
                    18.0
                                          42.0 0.99549 3.39
                                                                     0.66
      alcohol
0
         9.4
1
         9.8
2
         9.8
3
         9.8
         9.4
...
         . . .
         10.5
1594
        11.2
1595
1596
         11.0
1597
         10.2
1598
        11.0
```

Label Binarization

[1599 rows x 11 columns]

In [24]:

```
1 Y = data['quality'].apply(lambda y_value: 1 if y_value>=7 else 0)
```

```
In [25]:
```

```
1 print(Y)
0
        0
1
        0
2
        0
3
        0
4
        0
1594
        0
1595
        0
1596
        0
1597
        0
1598
Name: quality, Length: 1599, dtype: int64
```

Train and Test Split

```
In [26]:
```

```
1 X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.2,random_state=3)
```

In [27]:

```
print(Y.shape,Y_train.shape,Y_test.shape)
```

```
(1599,) (1279,) (320,)
```

Model Training

Random Forest Classifier

```
In [28]:
```

```
1 model = RandomForestClassifier()
```

```
In [29]:
```

```
1 model.fit(X_train,Y_train)
```

Out[29]:

RandomForestClassifier()

Model Evaluation

Accuracy Score

```
In [30]:
```

```
# Accuracy on test data
X_test_prediction = model.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction,Y_test)
```

```
In [31]:
```

```
print('Accuracy : ', test_data_accuracy)
```

Accuracy: 0.93125

Building a Predictive System

In [32]:

```
input_data = (7.3,0.65,0.0,1.2,0.065,15.0,21.0,0.9946,3.39,0.47,10.0)

# Changing the input data to a numpy array
input_data_as_numpy_array = np.asarray(input_data)

# Reshape the data as we are predicting the Label for only one instance
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

prediction = model.predict(input_data_reshaped)
print(prediction)
```

[1]

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X does no
t have valid feature names, but RandomForestClassifier was fitted with feature names
warnings.warn(

In [33]:

```
if (prediction[0]==1):
    print('Good Quality Wine')
else :
    print("Bad Quality Wine")
```

Good Quality Wine

In [34]:

```
input_data = (7.5,0.5,0.36,6.1,0.071,17.0,102.0,0.9978,3.35,0.8,10.5)

# Changing the input data to a numpy array
input_data_as_numpy_array = np.asarray(input_data)

# Reshape the data as we are predicting the label for only one instance
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

prediction = model.predict(input_data_reshaped)
print(prediction)
```

[0]

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X does no
t have valid feature names, but RandomForestClassifier was fitted with feature names
warnings.warn(

In [35]:

```
if (prediction[0]==1):
    print('Good Quality Wine')

else:
    print("Bad Quality Wine")
```

Bad Quality Wine