➡ DETERMINAR A DIMENSÃO DE CADA LAJE -

25.00

92

L1: 25m X 2,92m

L2: 25m X 2,92m

L3: 25m X 2,92m

L4: 25m X 2,92m

L5: 25m X 2,92m

■ VARIÁVEIS DAS DIMENSÕES -

LAJES CENTRAIS

L1X := 25 m

L2X := 25 m

L3X := 25 m

L4X := 25 m

L5X := 25 m

L1Y := 2,92 m

L2Y := 2,92 m L3Y := 2,92 m

L4Y := 2,92 m

L5Y := 2,92 m

➡ DETERMINARÇÃO DOS ENGASTES / APOIOS / BORDAS LIVRES -

⊡-LAJE L1 E L2 -

LAJE L1 E L2

$$\begin{array}{c|c} \text{if} & L1X < L2X \\ & D1 := L2X \\ & D2 := L1X \\ \\ \text{else} \\ & D1 := L1X \end{array}$$

D2 := L2X

D1 = 25 m

D2 = 25 m

R := "L1 ENGASTA EM L2 E L2 ENGASTA EM L1" else

R := "L1 APOIA NA VIGA E L2 ENGASTA EM L1"

R = "L1 ENGASTA EM L2 E L2 ENGASTA EM L1"

yconc := 25

L := 25 m

Lt := 14,6 m

 $Lt_{aux} := 2,92 \text{ m}$

H1aje := 0,20 m

Emed := 0,04 m

EPasseio := 0,04 m

Epav := 0,04 m

$$Adef := 0,28 \text{ m}^2$$

$$Qdef := \frac{\gamma conc \cdot Adef \cdot 1 \text{ m}}{L \cdot Lt_{aux}} = 0,0959 \frac{kN}{2}$$

$$\textit{PPpasseio1} := \frac{\textit{EPasseio} \cdot 2, \textit{5} \; \textit{m} \cdot \textit{L} \cdot \textit{\gamma} \textit{conc}}{\textit{L} \cdot \textit{Lt}_{\textit{aux}}} = \textit{0,8562} \; \frac{\textit{kN}}{\textit{2}}$$

$$\textit{PPpasseio2} := \frac{\textit{EPasseio} \cdot 2,92 \; \text{m} \cdot \textit{L} \cdot \textit{\gamma} \textit{conc}}{\textit{L} \cdot \textit{L} t_{\textit{aux}}} = 1 \; \frac{\text{kN}}{2}$$

$$PPpasseio3 := \frac{EPasseio \cdot 0,08 \text{ m} \cdot L \cdot \gamma conc}{L \cdot Lt_{aux}} = 0,0274 \text{ kN} \frac{\text{kN}}{2}$$

$$PPCiclovia := \frac{Emed \cdot 2,70 \text{ m} \cdot L \cdot \gamma pav}{L \cdot Lt_{aux}} = 0,8877 \text{ kN} \frac{\text{kN}}{2}$$

$$PPlaje1 := \frac{Hlaje \cdot \gamma conc}{2} = 2,5 \frac{kN}{2}$$

$$PPfaixa1 := \frac{Epav \cdot 2,92 \text{ m} \cdot L \cdot \gamma pav}{L \cdot Lt_{aux}} = 0,96 \frac{\text{kN}}{2}$$

$$PPfaixa2 := \frac{Epav \cdot 2,92 \text{ m} \cdot L \cdot \gamma pav}{L \cdot Lt_{aux}} = 0,96 \frac{\text{kN}}{2}$$

$$PPfaixa3 := \frac{Epav \cdot 0,42 \text{ m} \cdot L \cdot \gamma pav}{L \cdot Lt_{aux}} = 0,1381 \frac{\text{kN}}{2}$$

$$PPfaixa4 := \frac{Epav \cdot 0,14 \text{ m} \cdot L \cdot \gamma pav}{L \cdot Lt_{aux}} = 0,046 \frac{\text{kN}}{2}$$

$$CP11 := PPpasseio1 + PPfaixa3 + Qdef = 1,0901 \frac{kN}{m}$$

$$CP12 := PPfaixa1 = \frac{24}{25} \frac{kN}{2}$$

$$CP13 := PPfaixa2 = 0,96 \frac{kN}{2}$$

$$CP14 := PPfaixa4 + PPCiclovia + PPpasseio3 = 0,9611 \frac{kN}{2}$$

$$CP15 := PPpasseio2 + Qdef = 1,0959 \frac{kN}{m}$$

□-CALCULO DOS COEFICIENTES PARA A DETERMINAÇÃO DAS TABELAS DE Rüsch e Dimensionamento-

$$b := 0, 5 \text{ m}$$
 $a := 2 \text{ m}$ $\varphi := 1,602$

$$T := \sqrt{(0,2 \text{ m} \cdot b)} + (2 \cdot Epav) + Hlaje = 0,5962 \text{ m}$$

F-Laje1 -

$$L1X = 25 \text{ m}$$
 $L1Y = 2,92 \text{ m}$

⊡—tabelas -

∃—Armaduras Principal —

$$Mxmq := 30,75 \cdot (kN m) \quad Mxmg := 0,1 \cdot (kN m)$$

Cálculo do momento de desing

$$Mxmqd := Mxmq \cdot 1, 5 = 46,125 (kN m)$$
 $Mxmgd := 1,35 \cdot Mxmg = 0,135 kN m$

$$Mxmd := Mxmqd + Mxmgd = 46,26 kN m$$

Cálculo da área de aço:

$$bw := 100 \text{ cm}$$
 $d' := 5 \text{ cm}$ $fck := 30 \text{ MPa} = 3 \frac{kN}{cm}$ $fyk := 500 \text{ MPa} = 50 \frac{kN}{cm}$ $d := Hlaje - d' = 15 \text{ cm}$ $fcd := \frac{fck}{1.4}$ $fyd := \frac{fyk}{1.15}$

Mxmd = 46,26 kN m

Cálculo da ductilidade ξ da seção transversal

$$a := 0, 4$$
 $b := -1$

$$c := \frac{Mxmd}{\left(0,68 \cdot bw \cdot d^{2} \cdot fcd\right)} = 0,1411$$

$$delta := b^2 - 4 \cdot a \cdot c = 0,7742$$

$$raiz_1 := \frac{(-b + \sqrt{delta'})}{(2 \cdot a)} = 2,3499$$

$$raiz_2 := \frac{\left(-b - \sqrt{delta'}\right)}{\left(2 \cdot a\right)} = 0,1501$$

$$epslon := min \left(\left[\begin{array}{cc} raiz_1 & raiz_2 \\ \end{array} \right] \right) = 0,1501$$

Verificação de necessidade de armadura dupla

Posição da Linha Neutra:

$$x := epslon \cdot d = 2,2517 \text{ cm}$$

 $y := 0,8 \cdot x = 1,8013 \text{ cm}$

```
Definição dos Domínios:
 Dominio := ""
 if epslon < 0
                                                                   = "Dominio 2"
    "Dominio 1"
    if (((0 < epslon)) \land (epslon \leq 0, 259))
       "Dominio 2"
       if ((0,259 < epslon)) \land (epslon \leq 0,450)
          "Dominio 3a"
       else
          if ((0,450 < epslon)) \land (epslon \leq 0,628)
             "Dominio 3b"
          else
             if (((0,628 < epslon)) \land (epslon \leq 1))
               "Dominio 4"
             else
                "Dominio 5"
 Área de Aço:
 bitola := 12,5 \text{ mm}
A_s := \frac{\textit{Mxmd}}{\left(\textit{fyd} \cdot \left(\textit{d} - 0, 4 \cdot \textit{x}\right)\right)} = 7,55 \text{ cm}^2
 taxa_armadura := \frac{0,208}{100} = 0,0021
 A_{s,min} := taxa\_armadura \cdot bw \cdot (d + d') = 4,16 cm^2
```

$$A_{a,min} := taxa \ armadura \cdot bw \cdot (d+d') = 4,16 \text{ cm}^2$$

$$area_bitola := \pi \cdot \frac{\left(bitola^{2}\right)}{4} = 0,0001 \text{ m}^{2}$$

$$num_bitolas := \frac{A_{s}}{area_bitola} = 6,15$$

casas decimais $= mod(num \ bitolas; 1) = 0,1493$

if casas decimais $\leq 0,5$ $Num_bitolasadotadas := num_bitolas + (1 - casas_decimais)$ else Num bitolasadotadas := round (num bitolas; 0)

Num bitolasadotadas = 7

Espaçamento

Comprimento := L1YNum espaçamento := Num bitolasadotadas -1=6

Espaçamento := Num espaçamento · Comprimento = 17,52 m

$$EspaçmentoReal := \frac{Comprimento}{Espaçamento} \cdot 100 = 16,67$$

$$Espaçamentoadotado := 16,5 \text{ cm}$$

Espaçamento máximo

if $Hlaje \cdot 2 > 20$ cm Smax := 20 cm else $Smax := Hlaje \cdot 2$ Smax = 20 cm

if Espaçamentoadotado > Smax
 Espaçamentoadotado := Smax

Espaçamentoadotado = 16,5 cm

Numero de bitolas totais

$$NumbitolasT := \frac{\textit{Comprimento}}{\textit{Espaçamentoadotado}} = 18$$

COMPRIMENTO DE ANCORAGEM(virada)

6118 - 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ¢;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 ϕ ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 ф.

Logo

 $Comprimentoancoragem := 8 \cdot bitola = 10 cm$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

$$\label{eq:mminq} \begin{aligned} \textit{Mminq} &:= \textit{Mxmq} \cdot 0 \quad \textit{Mming} := \textit{Mxmg} \quad \textit{Mmaxq} := \textit{Mxmq} \cdot 0 \text{, 8} \quad \textit{Mmaxg} := \textit{Mxmg} \\ \textit{Mxmin}_{freq} &:= \textit{Mminq} + \textit{Mming} = 0 \text{, 1 kN m} \qquad \textit{Mxmax}_{freq} := \textit{Mmaxq} + \textit{Mmaxg} = 24 \text{, 7 kN m} \\ \Delta \textit{M}_{freq} &:= \textit{Mxmax}_{freq} - \textit{Mxmin}_{freq} = 24 \text{, 6 kN m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 6,0606 \qquad area_bitola = 0,0001 \text{ m}^2$$

$$\alpha e := 10$$

$$As_f := NB \cdot area_bitola = 7,4375 \text{ cm}^2$$
 por metro

posição da linha neutra

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 4,0381 \text{ cm}$$

Not for commercial use

Momento de Inercia

$$\mathbf{I}_{ii} \coloneqq \frac{b\mathbf{w} \cdot \mathbf{x}_{ii}}{3} + \alpha \mathbf{e} \cdot \mathbf{A} \mathbf{s}_{f} \cdot \left(d - \mathbf{x}_{ii}\right)^{2} = 11131,9968 \text{ cm}^{4}$$

Variação maxima de tensão

$$\Delta \sigma S_{_{S}} := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - X_{_{\dot{1}\dot{1}}} \right)}{I_{_{\dot{1}\dot{1}}}} \right) = 242,2422 \text{ MPa}$$

if
$$\Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Não Okay"}$$
 $m := \text{"Okay"}$

else

 $m := \text{"Não Okay"}$

Num bitolasadotadas:= 9

Espaçamento

Comprimento := L1Y

 $Num\ espaçamento := Num\ bitolasadotadas - 1 = 8$

Espaçamento := Num espaçamento · Comprimento = 23,36 m

$$EspaçmentoReal := \frac{Comprimento}{Espaçamento} \cdot 100 = 12,5$$

$$Espaçamentoadotado := 12,5 \text{ cm}$$

Espaçamento máximo

Smax = 20 cm

if Espaçamentoadotado > Smax Espaçamentoadotado := Smax

Espaçamentoadotado = 12,5 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 23$$

COMPRIMENTO DE ANCORAGEM(virada) 6118 - 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ¢;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 φ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 ϕ .

Logo

 $\textit{Comprimentoancoragem} := 8 \cdot \textit{bitola} = 10 \text{ cm}$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

 $\label{eq:mminq} \begin{aligned} \mathit{Mminq} &:= \mathit{Mxmq} \cdot 0 \quad \mathit{Mming} := \mathit{Mxmg} \quad \mathit{Mmaxq} := \mathit{Mxmq} \cdot 0,8 \quad \mathit{Mmaxg} := \mathit{Mxmg} \\ \mathit{Mxmin}_{freq} &:= \mathit{Mminq} + \mathit{Mming} = 0,1 \text{ kN m} \quad \mathit{Mxmax}_{freq} := \mathit{Mmaxq} + \mathit{Mmaxg} = 24,7 \text{ kN m} \\ \mathit{\Delta M}_{freq} &:= \mathit{Mxmax}_{freq} - \mathit{Mxmin}_{freq} = 24,6 \text{ kN m} \end{aligned}$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

posição da linha neutra

$$\mathbf{x}_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 4,5333 \text{ cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii})^{2} = 13860,6564 \text{ cm}^{4}$$

Variação maxima de tensão

$$\Delta \sigma S_s := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot (d - x_{ii})}{I_{ii}} \right) = 185,763 \text{ MPa}$$

if
$$\Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Okay"}$$

 $m := \text{"Okay"}$
else
 $m := \text{"Não Okay"}$

Verificação e Formação de Fissura

$$\alpha := 1,5$$
 $Yt := \frac{Hlaje}{2} = 10 \text{ cm}$ $F_{ct} := 0,7 \cdot \left(0,3 \cdot \left(\sqrt[3]{fck}^2\right)\right)$ $\frac{1,7955}{10} = 0,1795$

$$Ic := \frac{bw \cdot Hlaje}{12} = 66666,6667 \text{ cm}^4$$

Momento fissuração para lajes

$$\mathit{Mr} := \frac{\alpha \cdot \mathit{F}_{\mathit{ct}} \cdot \mathit{Ic}}{\mathit{Yt}}$$

Mr := 2027,528 kN cm

 $Md_{rara} := Mxmg + Mxmq = 3085 \text{ kN cm}$

if $Mr < Md_{rara}$

m := "Ocorre fissuras e a peça trabalha no estádio 2" else

m := "não ocorre fissuras"

m = "Ocorre fissuras e a peça trabalha no estádio 2"

Verificação de Abertura de Fissuras

barras nervuradas

$$\mathit{Md}_{\mathit{freq}} := \mathit{Mxmg} + 0$$
, $5 \cdot \mathit{Mxmq} = 15$, 475 kN m $\alpha e := 15$ $\eta_1 := 2$, 25 bitola = 12,5 mm $d' = 5$ cm $\mathit{Esi} := 210$ GPa

$$fct_m := 0, 3 \cdot \left(\frac{2}{3}\right)$$

$$fct_m := 0,28964 \frac{kN}{cm^2}$$

$$A_{cri} := bw \cdot (d' + 8 \cdot bitola) = 1500 \text{ cm}^2$$

$$\rho_{cri} := \frac{As_f}{A_{cri}} = 0,6545 \%$$

O cálculo no estádio II (que admite comportamento linear dos materiais e despreza a resistência à tração do concreto) pode ser feito considerando a relação α_{e} entre os módulos de elasticidade do aço e do concreto igual a 15.

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 5,3353 \text{ cm}$$

$$I_{ii} := \frac{bw \cdot x_{ii}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii})^{2} = 18817,6179 \text{ cm}^{4}$$

$$\sigma_{si} := \alpha e \cdot \left(\frac{Md_{freq} \cdot (d - x_{ii})}{I_{ii}} \right) = 11,922 \cdot \frac{kN}{2}$$

logo

O valor caracterítico da abertura de fissuras (w_k) , determinado para cada parte da região de envolvimento, é o menor obtido pelas expressões a seguir.

$$w_{k} = \frac{\phi_{i}}{12.5\eta_{I}} \frac{\sigma_{Si}}{E_{Si}} \frac{3\sigma_{Si}}{f_{ct,m}}$$
(8.161)

$$w_k = \frac{\phi_i}{12.5 \, \eta_I} \frac{\sigma_{Si}}{E_{Si}} \left(\frac{4}{\rho_{ri}} + 45 \right) \tag{8.162}$$

$$\textit{Wk1} := \left(\frac{\textit{bitola}}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{\textit{si}}}{\textit{Esi}}\right) \cdot \left(\frac{3 \cdot \sigma_{\textit{si}}}{\textit{fct}_{\textit{m}}}\right) = 0,0312 \; \text{mm}$$

$$Wk2 := \left(\frac{bitola}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{si}}{Esi}\right) \cdot \left(\frac{4}{\rho_{cri}} + 45\right) = 0,1656 \text{ mm}$$

if Wk1 < Wk2 Wk := Wk1else

Wk := Wk2

Abertura da fissura

$$Wk = 0,0312 \text{ mm}$$

∃-Armaduras Secundária -

$$Mxmq := 18,28 \cdot (kN m)$$
 $Mxmg := 0,58 \cdot (kN m)$

Cálculo do momento de desing

$$Mxmqd := Mxmq \cdot 1, 5 = 27, 42 (kN m)$$

$$Mxmgd := 1,35 \cdot Mxmg = 0,783 \text{ kN m}$$

$$Mxmd := Mxmqd + Mxmgd = 28,203 \text{ kN m}$$

Cálculo da área de aço:

$$bw := 100 \text{ cm}$$
 $d' := 5 \text{ cm}$ $fck := 30 \text{ MPa} = 3 \frac{\text{kN}}{\text{cm}^2}$ $fyk := 500 \text{ MPa} = 50 \frac{\text{kN}}{\text{cm}^2}$

$$d := Hlaje - d' = 15 \text{ cm}$$

$$fcd := \frac{fck}{1,4} \qquad \qquad fyd := \frac{fyk}{1,15}$$

Mxmd = 28,203 kN m

Cálculo da ductilidade ξ da seção transversal

$$a := 0, 4$$

$$b := -1$$

$$c := \frac{Mxmd}{\left(0,68 \cdot bw \cdot d^2 \cdot fcd\right)} = 0,086$$

$$delta := b^2 - 4 \cdot a \cdot c = 0,8624$$

else

"Ok"

$$raiz_1 := \frac{(-b + \sqrt{delta'})}{(2 \cdot a)} = 2,4108$$

```
raiz_2 := \frac{\textbf{Created using a free version of SMath Studio}}{(2 \cdot a)} = 0,0892
```

$$epslon := \min \left(\left[\begin{array}{cc} raiz_1 & raiz_2 \end{array} \right] \right) = 0,0892$$

Verificação de necessidade de armadura dupla

```
if epslon \le 0,45 = "okay"
  "okay"
else
  "não okay"
```

Posição da Linha Neutra:

```
x := epslon \cdot d = 1,3381 \text{ cm}
y := 0, 8 \cdot x = 1,0705 cm
```

Definição dos Domínios:

```
Dominio := ""
if epslon < 0
                                                     = "Dominio 2"
  "Dominio 1"
else
  if (((0 < epslon)) \land (epslon \leq 0, 259))
    "Dominio 2"
    if (((0,259 < epslon)) \land (epslon \leq 0,450))
       "Dominio 3a"
    else
       if ((0,450 < epslon)) \land (epslon \leq 0,628)
         "Dominio 3b"
       else
         if ((0,628 < epslon)) \land (epslon \leq 1)
           "Dominio 4"
         else
            "Dominio 5"
```

Área de Aço:

bitola := 10 mm

$$A_s := \frac{Mxmd}{(fyd \cdot (d-0, 4 \cdot x))} = 4,48 \text{ cm}^2$$

$$taxa_armadura := \frac{0,208}{100} = 0,0021$$

$$A_{s,min} := taxa_armadura \cdot bw \cdot (d + d') = 4,16 cm^2$$

$$area_bitola := \pi \cdot \frac{\left(bitola^{2}\right)}{4} = 7,854 \cdot 10^{-5} \text{ m}^{2}$$

$$num_bitolas := \frac{A_{s}}{area_bitola} = 5,71$$

$$num_bitolas := \frac{A_s}{area\ bitola} = 5,71$$

 $casas_decimais := mod(num_bitolas; 1) = 0,7098$

if casas decimais $\leq 0,5$

Num bitolasadotadas := num bitolas +(1-casas decimais)else

Num_bitolasadotadas := round (num_bitolas; 0)
Not for commercial use

Created using a free version of SMath Studio

Num bitolasadotadas = 6

Espaçamento

$$Comprimento := L1X$$

$$Num_espaçamento := Num_bitolasadotadas - 1 = 5$$

 $\textit{Espaçamento} := \textit{Num_espaçamento} \cdot \textit{Comprimento} = 125 \; \text{m}$

$$\textit{EspaçmentoReal} := \frac{\textit{Comprimento}}{\textit{Espaçamento}} \cdot 100 = 20$$

Espaçamentoadotado := 20 cm

Espaçamento máximo

if
$$Hlaje \cdot 2 > 20$$
 cm $Smax := 20$ cm

$$Smax := Hlaje \cdot 2$$

$$Smax = 20 \text{ cm}$$

Espaçamentoadotado = 20 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 125$$

COMPRIMENTO DE ANCORAGEM(virada)

6118 - 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ϕ ;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4ϕ ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 $\ensuremath{\varphi}\xspace$

Logo

Comprimentoancoragem $:= 8 \cdot bitola = 8 \text{ cm}$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

$$\label{eq:mminq} \begin{aligned} \mathit{Mminq} &:= \mathit{Mxmq} \cdot 0 \quad \mathit{Mming} := \mathit{Mxmg} \quad \mathit{Mmaxq} := \mathit{Mxmq} \cdot 0,8 \quad \mathit{Mmaxg} := \mathit{Mxmg} \\ \mathit{Mxmin}_{freq} &:= \mathit{Mminq} + \mathit{Mming} = 0,58 \text{ kN m} \quad \mathit{Mxmax}_{freq} := \mathit{Mmaxq} + \mathit{Mmaxg} = 15,204 \text{ kN m} \\ \Delta \mathit{M}_{freq} &:= \mathit{Mxmax}_{freq} - \mathit{Mxmin}_{freq} = 14,624 \text{ kN m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

Not for commercial use

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 5$$

$$area_bitola = 7,854 \cdot 10$$
 m

 $\alpha e := 10$

$$As_f := NB \cdot area_bitola = 3,927 \text{ cm}^2$$

por metro

posição da linha neutra

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 3,062 \text{ cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii})^{2} = 6553,5453 \text{ cm}^{4}$$

Variação maxima de tensão

$$\Delta \sigma S_S := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - x_{ii} \right)}{I_{ii}} \right) = 266,3914 \text{ MPa}$$

if
$$\Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Não Okay"}$$
 $m := \text{"Okay"}$

else

 $m := \text{"Não Okay"}$

Num bitolasadotadas:= 8

Espaçamento

Comprimento := L1Y

Num espaçamento := Num bitolasadotadas -1 = 7

Espaçamento:= Num espaçamento · Comprimento = 20,44 m

EspaçmentoReal :=
$$\frac{Comprimento}{Espaçamento} \cdot 100 = 14,29$$

Espaçamentoadotado:=14 cm

Espaçamento máximo

if
$$Hlaje \cdot 2 > 20$$
 cm $Smax := 20$ cm

else

 $Smax := Hlaje \cdot 2$

Smax = 20 cm

if Espaçamentoadotado > Smax
 Espaçamentoadotado := Smax

Espaçamentoadotado = 14 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 21$$

COMPRIMENTO DE ANCORAGEM(virada)

6118 - 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ¢;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 ϕ ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 φ.

Logo

Comprimentoancoragem := 8 ⋅ bitola = 8 cm

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

$$\begin{aligned} \textit{Mminq} &:= \textit{Mxmq} \cdot 0 \quad \textit{Mming} := \textit{Mxmg} \quad \textit{Mmaxq} := \textit{Mxmq} \cdot 0,8 \quad \textit{Mmaxg} := \textit{Mxmg} \\ \textit{Mxmin}_{freq} &:= \textit{Mminq} + \textit{Mming} = 0,58 \text{ kN m} \qquad \textit{Mxmax}_{freq} := \textit{Mmaxq} + \textit{Mmaxg} = 15,204 \text{ kN m} \\ &\Delta \textit{M}_{freq} := \textit{Mxmax}_{freq} - \textit{Mxmin}_{freq} = 14,624 \text{ kN m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 7,1429 \qquad area_bitola = 7,854 \cdot 10^{-5} \text{ m}^2$$

$$\alpha e := 10$$

$$As_f := NB \cdot area_bitola = 5,61 \text{ cm}^2 \qquad \text{por metro}$$

posição da linha neutra

$$\mathbf{x}_{ii} := \frac{-\alpha \mathbf{e} \cdot \mathbf{A}\mathbf{s}_{f} + \sqrt{\left(\mathbf{A}\mathbf{s}_{f} \cdot \alpha \mathbf{e}\right)^{2} + 2 \cdot b\mathbf{w} \cdot \alpha \mathbf{e} \cdot d \cdot \mathbf{A}\mathbf{s}_{f}}}{b\mathbf{w}} = 3,5796 \text{ cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii})^{2} = 8845,7666 \text{ cm}^{4}$$

Variação maxima de tensão

$$\Delta\sigma S_{_{S}} := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - X_{_{\dot{1}\dot{1}}}\right)}{I_{_{\dot{1}\dot{1}}}}\right) = 188,8041 \; \mathrm{MPa}$$

if
$$\Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Okay"}$$

$$m := \text{"Okay"}$$
else
$$m := \text{"Não Okay"}$$

Verificação e Formação de Fissura

$$\alpha := 1,5 \qquad Yt := \frac{Hlaje}{2} = 10 \text{ cm} \qquad F_{ct} := 0,7 \cdot \left(0,3 \cdot \left(\sqrt[3]{fck^2}\right)\right) \quad \frac{1,7955}{10} = 0,1795$$

$$Ic := \frac{bw \cdot Hlaje}{12} = 66666,6667 \text{ cm}^4$$

Momento fissuração para lajes

$$\mathit{Mr} := \frac{\alpha \cdot \mathit{F}_{\mathit{ct}} \cdot \mathit{Ic}}{\mathit{Yt}}$$

Mr := 2027,528 kN cm

Momento fletor maximo meio do vão

$$Md_{rara} := Mxmg + Mxmq = 1886 \text{ kN cm}$$

if
$$Mr < Md_{rara}$$

m:="Ocorre fissuras e a peça trabalha no estádio 2"
else

m := "não ocorre fissuras"

m = "não ocorre fissuras"

Verificação de Abertura de Fissuras

barras nervuradas

$$Md_{freq} := Mxmg + 0, 5 \cdot Mxmq = 9,72 \text{ kN m} \qquad \alpha e := 15 \qquad \eta_1 := 2,25$$

$$bitola = 10 \text{ mm} \qquad d' = 5 \text{ cm} \qquad Esi := 210 \text{ GPa}$$

$$fct_{m} := 0, 3 \cdot \left(\frac{2}{3}\right) = 28964, 6815$$

$$fct_{m} := 0, 28964 \frac{kN}{2}$$

$$A_{cri} := bw \cdot (d' + 8 \cdot bitola) = 1300 \text{ cm}^2$$

$$\rho_{cri} := \frac{As_f}{A_{cri}} = 0,4315 \%$$

O cálculo no estádio II (que admite comportamento linear dos materiais e despreza a resistência à tração do concreto) pode ser feito considerando a relação α_{e} entre os módulos de elasticidade do aço e do concreto igual a 15.

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 4,2529 \text{ cm}$$

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot \left(d - x_{ii}\right)^{2} = 12283,4115 \text{ cm}^{4}$$

$$\sigma_{si} := \alpha e \cdot \left(\frac{Md_{freq} \cdot (d - x_{ii})}{I_{ii}} \right) = 12,7564 \cdot \frac{kN}{2}$$

Not for commercial use

logo

O valor caracterítico da abertura de fissuras (w_k) , determinado para cada parte da região de envolvimento, é o menor obtido pelas expressões a seguir.

$$w_k = \frac{\phi_i}{12.5\eta_1} \frac{\sigma_{Si}}{E_{Si}} \frac{3\sigma_{Si}}{f_{ct,m}} \tag{8.161}$$

$$w_k = \frac{\phi_i}{12.5\,\eta_I} \frac{\sigma_{Si}}{E_{Si}} \left(\frac{4}{\rho_{ri}} + 45 \right) \tag{8.162}$$

$$Wk1 := \left(\frac{bitola}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{si}}{Esi}\right) \cdot \left(\frac{3 \cdot \sigma_{si}}{fct_m}\right) = 0,0285 \text{ mm}$$

$$\textit{Wk2} := \left(\frac{\textit{bitola}}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{\textit{si}}}{\textit{Esi}}\right) \cdot \left(\frac{4}{\rho_{\textit{cri}}} + 45\right) = 0,2099 \; \text{mm}$$

if Wk1 < Wk2

Wk := Wk1

else

Wk := Wk2

Abertura da fissura

$$Wk = 0,0285 \text{ mm}$$

else

"não okay"

⊡—Armaduras Engaste ——

$$Mxmq := 59,33 \cdot (kN m) Mxmg := 0,59 \cdot (kN m)$$

Cálculo do momento de desing

$$Mxmqd := Mxmq \cdot 1, 5 = 88,995 (kN m)$$
 $Mxmgd := 1,35 \cdot Mxmg = 0,7965 kN m$

Mxmd := Mxmqd + Mxmgd = 89,7915 kN m

Cálculo da área de aço:

$$bw := 100 \text{ cm}$$
 $d' := 5 \text{ cm}$

$$d := Hlaje - d' = 15 \text{ cm}$$

$$Mxmd = 89,7915 \text{ kN m}$$

$$fck := 30 \text{ MPa} = 3 \frac{\text{kN}}{\text{cm}^2}$$
 $fyk := 500 \text{ MPa} = 50 \frac{\text{kN}}{\text{cm}^2}$

$$fcd := \frac{fck}{1,4}$$

$$fyk := 500 \text{ MPa} = 50 \frac{\text{kN}}{\text{cm}^2}$$

$$fyd := \frac{fyk}{1,15}$$

Cálculo da ductilidade ξ da seção transversal

$$a := 0, 4$$

$$b := -1$$

$$c := \frac{Mxmd}{\left(0, 68 \cdot bw \cdot d^2 \cdot fcd\right)} = 0,2739$$

$$delta := b^2 - 4 \cdot a \cdot c = 0,5618$$
if $delta < 0 = \text{"Ok"}$
"Seção Inválida"
else
"Ok"
$$raiz_1 := \frac{\left(-b + \sqrt{delta'}\right)}{\left(2 \cdot a\right)} = 2,1869$$

$$raiz_2 := \frac{(-b - \sqrt{delta'})}{(2 \cdot a)} = 0,3131$$

$$epslon := \min \left(\left[\begin{array}{cc} raiz_1 & raiz_2 \\ \end{array} \right] \right) = 0,3131$$

Verificação de necessidade de armadura dupla

```
if epslon ≤ 0,45 = "okay"
  "okay"
else
  "não okay"
```

Posição da Linha Neutra:

```
x := epslon \cdot d = 4,6962 \text{ cm}

y := 0,8 \cdot x = 3,757 \text{ cm}
```

Definição dos Domínios:

```
Dominio := ""
if epslon < 0
                                                    = "Dominio 3a"
  "Dominio 1"
  if (((0 < epslon)) \land (epslon \leq 0, 259))
    "Dominio 2"
  else
    if ((0,259 < epslon)) \land (epslon \leq 0,450)
       "Dominio 3a"
    else
       if (((0,450 < epslon)) \land (epslon \leq 0,628))
         "Dominio 3b"
       else
         if ((0,628 < epslon)) \land (epslon \leq 1)
            "Dominio 4"
         else
            "Dominio 5"
```

Área de Aço:

bitola:=16 mm

$$A_{s} := \frac{\textit{Mxmd}}{\left(\textit{fyd} \cdot \left(\textit{d} - 0, 4 \cdot x\right)\right)} = 15,74 \text{ cm}^{2}$$

$$taxa_armadura := \frac{0,208}{100} = 0,0021$$

$$A_{s,min} := taxa_armadura \cdot bw \cdot (d + d') = 4,16 cm^2$$

$$area_bitola := \pi \cdot \frac{\left(bitola^{2}\right)}{4} = 0,0002 \text{ m}^{2}$$

$$num_bitolas := \frac{A_{s}}{area_bitola} = 7,83$$

$$num_bitolas := \frac{A_s}{area_bitola} = 7,83$$

casas decimais := $mod(num \ bitolas; 1) = 0,828$

if $casas_decimais \le 0,5$

 $Num_bitolasadotadas := num_bitolas + (1 - casas_decimais)$

Num bitolasadotadas := round (num bitolas; 0)

Num bitolasadotadas = 8

Espaçamento

Comprimento := L1X

Num espaçamento := Num bitolasadotadas -1 = 7

Espaçamento:= Num espaçamento · Comprimento = 175 m

$$\textit{EspaçmentoReal} := \frac{\textit{Comprimento}}{\textit{Espaçamento}} \cdot 100 = 14,29$$

Espaçamento máximo

if
$$Hlaje \cdot 2 > 20$$
 cm

Smax := 20 cm

else

 $Smax := Hlaje \cdot 2$

Smax = 20 cm

if Espaçamentoadotado > Smax Espaçamentoadotado:= Smax

Espaçamentoadotado = 14 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 179$$

COMPRIMENTO DE ANCORAGEM(virada)

6118 - 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ϕ ;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 ϕ ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 ϕ .

Logo

Comprimentoancoragem := $8 \cdot bitola = 12,8 \text{ cm}$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

$$\label{eq:mminq} \begin{aligned} \mathit{Mminq} &:= \mathit{Mxmq} \cdot \mathsf{0} \quad \mathit{Mming} := \mathit{Mxmg} \quad \mathit{Mmaxq} := \mathit{Mxmq} \cdot \mathsf{0}, \mathsf{8} \quad \mathit{Mmaxg} := \mathit{Mxmg} \\ & \mathit{Mxmin}_{freq} := \mathit{Mminq} + \mathit{Mming} = \mathsf{0}, \mathsf{59} \; \mathrm{kN} \; \mathrm{m} \\ & \Delta \mathit{M}_{freq} := \mathit{Mxmax}_{freq} - \mathit{Mxmin}_{freq} = \mathsf{47}, \mathsf{464} \; \mathrm{kN} \; \mathrm{m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 7,1429 \qquad area_bitola = 0,0002 \text{ m}^2$$

$$\alpha e := 10$$

$$As_f := NB \cdot area_bitola = 14,3616 \text{ cm}^2 \qquad \text{por metro}$$

posição da linha neutra

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 5,283 \text{ cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}}{3} + \alpha e \cdot As_f \cdot (d - x_{ii})^2 = 18475, 1705 \text{ cm}^4$$

Variação maxima de tensão

$$\Delta \sigma S_{_{S}} := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - x_{_{\dot{1}\dot{1}}} \right)}{I_{_{\dot{1}\dot{1}}}} \right) = 249,6362 \text{ MPa}$$

if
$$\Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Não Okay"}$$
 $m := \text{"Okay"}$

else

 $m := \text{"Não Okay"}$

Num_bitolasadotadas:= 11

Espaçamento

Espaçamento:= Num espaçamento · Comprimento = 250 m

$$\textit{EspaçmentoReal} := \frac{\textit{Comprimento}}{\textit{Espaçamento}} \cdot 100 = 10$$

Espaçamentoadotado:=10 cm

Espaçamento máximo

Smax = 20 cm

if Espaçamentoadotado > Smax
 Espaçamentoadotado := Smax

Espaçamentoadotado = 10 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 250$$

COMPRIMENTO DE ANCORAGEM(virada)

6118 - 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ϕ ;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 $\phi;$
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 $\phi.$

Logo

Comprimentoancoragem := $8 \cdot bitola = 12,8 \text{ cm}$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

$$\label{eq:mminq} \begin{aligned} \textit{Mminq} &:= \textit{Mxmq} \cdot 0 \quad \textit{Mming} := \textit{Mxmg} \quad \textit{Mmaxq} := \textit{Mxmq} \cdot 0,8 \quad \textit{Mmaxg} := \textit{Mxmg} \\ \textit{Mxmin}_{freq} &:= \textit{Mminq} + \textit{Mming} = 0,59 \text{ kN m} \qquad \textit{Mxmax}_{freq} := \textit{Mmaxq} + \textit{Mmaxg} = 48,054 \text{ kN m} \\ &\Delta \textit{M}_{freq} := \textit{Mxmax}_{freq} - \textit{Mxmin}_{freq} = 47,464 \text{ kN m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 10 \qquad area_bitola = 0,0002 \text{ m}^2$$

$$\alpha e := 10$$

$$As_f := NB \cdot area_bitola = 20,1062 \text{ cm}^2$$
 por metro

Created using a free version of SMath Studio

posição da linha neutra

$$\mathbf{x}_{\underline{i}\underline{i}} := \frac{-\alpha \mathbf{e} \cdot \mathbf{A} \mathbf{s}_{\underline{f}} + \sqrt{\left(\mathbf{A} \mathbf{s}_{\underline{f}} \cdot \alpha \mathbf{e}\right)^2 + 2 \cdot b \mathbf{w} \cdot \alpha \mathbf{e} \cdot d \cdot \mathbf{A} \mathbf{s}_{\underline{f}}}}{b \mathbf{w}} = \mathbf{6,0119 \ cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot \left(d - x_{ii}^{3}\right)^{2} = 23485,9023 \text{ cm}^{4}$$

Variação maxima de tensão

$$\Delta \sigma S_S := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - x_{ii} \right)}{I_{ii}} \right) = 181,6452 \text{ MPa}$$

if
$$\Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Okay"}$$
 $m := \text{"Okay"}$

else

 $m := \text{"Não Okay"}$

Verificação e Formação de Fissura

$$\alpha := 1,5 \qquad \text{Yt} := \frac{\text{Hlaje}}{2} = 10 \text{ cm} \qquad F_{ct} := 0,7 \cdot \left(0,3 \cdot \left(\sqrt[3]{\text{fck}^2}\right)\right) \quad \frac{1,7955}{10} = 0,1795$$

$$Ic := \frac{bw \cdot \text{Hlaje}}{12} = 66666,6667 \text{ cm}^4$$

Momento fissuração para lajes

$$\mathit{Mr} := \frac{\alpha \cdot \mathit{F}_{\mathit{ct}} \cdot \mathit{Ic}}{\mathit{Yt}}$$

Mr := 2027,528 kN cm

Momento fletor maximo meio do vão

$$Md_{rara} := Mxmg + Mxmq = 5992 \text{ kN cm}$$
 if $Mr < Md_{rara}$ $m := "Ocorre fissuras e a peça trabalha no estádio 2" else $m := "n\~ao ocorre fissuras"$$

m = "Ocorre fissuras e a peça trabalha no estádio 2"

Verificação de Abertura de Fissuras

$$Md_{freq} := Mxmg + 0, 5 \cdot Mxmq = 30,255 \text{ kN m} \qquad \alpha e := 15 \qquad \eta_1 := 2,25$$

$$bitola = 16 \text{ mm} \qquad d' = 5 \text{ cm} \qquad Esi := 210 \text{ GPa}$$

$$fct_{m} := 0, 3 \cdot \left(fck^{\frac{2}{3}}\right)$$

$$fct_{m} := 0, 22104 \cdot \frac{kN}{cm^{2}}$$

Not for commercial use

$$A_{cri} := bw \cdot (d' + 8 \cdot bitola) = 1780 \text{ cm}^2$$

$$\rho_{cri} := \frac{As_f}{A_{cri}} = 1,1296 \%$$

O cálculo no estádio II (que admite comportamento linear dos materiais e despreza a resistência à tração do concreto) pode ser feito considerando a relação α_{e} entre os módulos de elasticidade do aço e do concreto igual a 15.

$$\mathbf{x}_{ii} := \frac{-\alpha e \cdot \mathbf{A}s_f + \sqrt{\left(\mathbf{A}s_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot \mathbf{A}s_f}}{bw} = 6,9627 \text{ cm}$$

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii})^{2} = 30733,891 \text{ cm}^{4}$$

$$\sigma_{si} := \alpha e \cdot \left(\frac{Md_{freq} \cdot \left(d - x_{ii} \right)}{I_{ii}} \right) = 11,868 \cdot \frac{kN}{cm}$$

logo

O valor caracterítico da abertura de fissuras (w_k) , determinado para cada parte da região de envolvimento, é o menor obtido pelas expressões a seguir.

$$w_k = \frac{\phi_i}{12.5\eta_1} \frac{\sigma_{Si}}{E_{Si}} \frac{3\sigma_{Si}}{f_{ct,m}}$$
(8.161)

$$w_k = \frac{\phi_i}{12.5\eta_1} \frac{\sigma_{Si}}{E_{Si}} \left(\frac{4}{\rho_{ri}} + 45 \right) \tag{8.162}$$

$$Wk1 := \left(\frac{bitola}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{si}}{Esi}\right) \cdot \left(\frac{3 \cdot \sigma_{si}}{fct_m}\right) = 0,0518 \text{ mm}$$

$$Wk2 := \left(\frac{bitola}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{si}}{Esi}\right) \cdot \left(\frac{4}{\rho_{cri}} + 45\right) = 0,1283 \text{ mm}$$

if
$$Wk1 < Wk2$$

$$Wk := Wk1$$

else

$$Wk := Wk2$$

Abertura da fissura

$$Wk = 0,0518 \text{ mm}$$

if
$$Wk < 0,3 \text{ mm} = \text{"okay"}$$
"okay"

else

"não okay"

lx/a	t/a				Para todos os valores		Resultados:
	0,125	0,250	0,5	1,0	de t/a		
	L	L	L	L	р	p'	Tabela Utilizada:93
0,5	0,25	0,19	0,12	0,05	0,0	0,05	Caroas Móvels: Mt.=0,40 Mp=0,00 Mp=0,33 M _{b==} -50,76 kN.m/m ko=0,58 kN.m/m M _{b=} =0,68 kN.m/m
1,0	0,32	0,26	0,18	0,09	0,0	0,1	
1,5	0,47	0,43	0,35	0,23	0,0	0,35	
2,0	0,64	0,61	0,54	0,398	0,0	0,8	
2,5	0,76	0,74	0,69	0,55	0,01	1,45	
3,0	0,87	0,85	0,81	0,71	0,05	2,1	
4,0	1,05	1,05	1,01	0,97	0,1	3,4	
5,0	1,21	1,21	1,18	1,15	0,33	4,7	
6,0	1,34	1,34	1,31	1,28	0,8	7,0	
7,0	1,44	1,44	1,42	1,39	1,4	10,3	
8,0	1,52	1,52	1,5	1,47	2,1	15,0	
9,0	1,57	1,57	1,56	1,53	3,0	20,4	
10,0	1,59	1,59	1,58	1,56	3,74	25,9	

∃—Armaduras Principal -

$$Mxmq := 20,34 \cdot (kN m)$$
 $Mxmg := 0,34 \cdot (kN m)$

Cálculo do momento de desing

$$Mxmqd := Mxmq \cdot 1, 5 = 30, 51 (kN m)$$

$$Mxmgd := 1,35 \cdot Mxmg = 0,459 \text{ kN m}$$

$$Mxmd := Mxmqd + Mxmgd = 30,969 \text{ kN m}$$

Cálculo da área de aço:

$$bw := 100 \text{ cm}$$
 $d' := 5 \text{ cm}$

$$fck := 30 \text{ MPa} = 3 \frac{\text{kN}}{2}$$

$$bw := 100 \text{ cm}$$
 $d' := 5 \text{ cm}$ $fck := 30 \text{ MPa} = 3 \frac{kN}{cm}$ $fyk := 500 \text{ MPa} = 50 \frac{kN}{cm}$

d := Hlaje - d' = 15 cm

$$fcd := \frac{fck}{1.4}$$

$$fyd := \frac{fyk}{1.15}$$

Mxmd = 30,969 kN m

Cálculo da ductilidade ξ da seção transversal

$$a := 0, 4$$

$$b := -1$$

$$c := \frac{\textit{Mxmd}}{\left(0,68 \cdot \textit{bw} \cdot \textit{d}^2 \cdot \textit{fcd}\right)} = 0,0945$$

$$delta := b^2 - 4 \cdot a \cdot c = 0,8489$$

if
$$delta < 0$$
 = "Ok"

"Seção Inválida"

else

"Ok"

$$raiz_1 := \frac{(-b + \sqrt{delta})}{(2 \cdot a)} = 2,4017$$

$$raiz_2 := \frac{\left(-b - \sqrt{delta'}\right)}{\left(2 \cdot a\right)} = 0,0983$$

$$epslon := \min \left(\left[\begin{array}{cc} raiz_1 & raiz_2 \\ \end{array} \right] \right) = 0,0983$$

Verificação de necessidade de armadura dupla

if
$$epslon \le 0,45 = "okay"$$
"okay"

"não okay"

Posição da Linha Neutra:

$$x := epslon \cdot d = 1,4749 \text{ cm}$$

$$y := 0, 8 \cdot x = 1,1799$$
 cm

Definição dos Domínios:

```
Created using a free version of SMath Studio
  if epslon < 0
     "Dominio 1"
  else
     if (((0 < epslon)) \land (epslon \leq 0, 259))
        "Dominio 2"
     else
        if (((0,259 < epslon)) \land (epslon \leq 0,450))
          "Dominio 3a"
        else
          if ((0,450 < epslon)) \land (epslon \leq 0,628))
             "Dominio 3b"
             if ((0,628 < epslon)) \land (epslon \leq 1)
                "Dominio 4"
             else
                "Dominio 5"
   Área de Aço:
  bitola := 12,5 \text{ mm}
  A_s := \frac{Mxmd}{(fyd \cdot (d-0, 4 \cdot x))} = 4,94 \text{ cm}^2
  taxa_armadura := \frac{0,208}{100} = 0,0021
  A_{s.min} := taxa\_armadura \cdot bw \cdot (d + d') = 4,16 cm^2
  area\_bitola := \pi \cdot \frac{\left(bitola^{2}\right)}{4} = 0,0001 \text{ m}^{2}
num\_bitolas := \frac{A_{s}}{area\_bitola} = 4,03
   casas decimais = mod(num \ bitolas; 1) = 0,0279
  if casas decimais \leq 0,5
     Num bitolasadotadas := num bitolas +(1-casas decimais)
  else
     Num_bitolasadotadas := round (num_bitolas; 0)
                          Num bitolasadotadas = 5
Espaçamento
Comprimento := L2X
                                  Num\ espaçamento:=Num\ bitolasadotadas-1=4
Espaçamento:= Num espaçamento · Comprimento = 100 m
 \textit{EspaçmentoReal} := \frac{\textit{Comprimento}}{\textit{Espaçamento}} \cdot 100 = 25
                                                          Espaçamentoadotado := 20 cm
```

Espaçamento máximo

if Hlaje · 2 > 20 cm
 Smax := 20 cm
else
 Smax := Hlaje · 2

Smax = 20 cm

if Espaçamentoadotado > Smax
 Espaçamentoadotado := Smax

Espaçamentoadotado = 20 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 125$$

COMPRIMENTO DE ANCORAGEM(virada)

6118 - 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ϕ ;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a $4\ \phi$;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 ϕ .

Logo

Comprimentoancoragem $:= 8 \cdot bitola = 10 \text{ cm}$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

$$\label{eq:mminq} \begin{aligned} \textit{Mminq} &:= \textit{Mxmq} \cdot 0 \quad \textit{Mming} := \textit{Mxmg} \quad \textit{Mmaxq} := \textit{Mxmq} \cdot 0 \text{, 8} \quad \textit{Mmaxg} := \textit{Mxmg} \\ \textit{Mxmin}_{freq} &:= \textit{Mminq} + \textit{Mming} = 0 \text{, 34 kN m} \quad \textit{Mxmax}_{freq} := \textit{Mmaxq} + \textit{Mmaxg} = 16 \text{, 612 kN m} \\ \Delta \textit{M}_{freq} &:= \textit{Mxmax}_{freq} - \textit{Mxmin}_{freq} = 16 \text{, 272 kN m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$As_f := NB \cdot area_bitola = 6,1359 \text{ cm}^2$$
 por metro

posição da linha neutra

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 3,7205 \text{ cm}$$

Not for commercial use

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}}{3} + \alpha e \cdot As_f \cdot \left(d - x_{ii}\right)^2 = 9523,2119 \text{ cm}^4$$

Variação maxima de tensão

$$\Delta \sigma S_{_{S}} := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - x_{_{i\,i}} \right)}{I_{_{i\,i}}} \right) = 192,7293 \text{ MPa}$$

```
if \Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Não Okay"}

m := \text{"Okay"}

else

m := \text{"Não Okay"}
```

Num_bitolasadotadas:=7

Espaçamento

Comprimento := L2X

 $Num_espaçamento := Num_bitolasadotadas - 1 = 6$

 $\textit{Espaçamento} := \textit{Num_espaçamento} \cdot \textit{Comprimento} = 150 \text{ m}$

EspaçmentoReal :=
$$\frac{Comprimento}{Espaçamento} \cdot 100 = 16,67$$

Espaçamentoadotado:=16 cm

Espaçamento máximo

Smax = 20 cm

if Espaçamentoadotado > Smax
 Espaçamentoadotado := Smax

Espaçamentoadotado = 16 cm

Numero de bitolas totais

$$NumbitolasT := rac{Comprimento}{Espaçamentoadotado} = 156$$

COMPRIMENTO DE ANCORAGEM(virada) 6118 – 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ¢;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 φ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 ϕ .

Logo

 $Comprimentoancoragem := 8 \cdot bitola = 10 cm$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

$$\label{eq:mminq} \begin{aligned} \textit{Mminq} &:= \textit{Mxmq} \cdot 0 \quad \textit{Mming} := \textit{Mxmg} \quad \textit{Mmaxq} := \textit{Mxmq} \cdot 0,8 \quad \textit{Mmaxg} := \textit{Mxmg} \\ \textit{Mxmin}_{freq} &:= \textit{Mminq} + \textit{Mming} = 0,34 \text{ kN m} \quad \textit{Mxmax}_{freq} := \textit{Mmaxq} + \textit{Mmaxg} = 16,612 \text{ kN m} \\ \Delta \textit{M}_{freq} &:= \textit{Mxmax}_{freq} - \textit{Mxmin}_{freq} = 16,272 \text{ kN m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 6,25 \qquad area_bitola = 0,0001 \text{ m}^2$$

$$\alpha e := 10$$

$$As_f := NB \cdot area_bitola = 7,6699 \text{ cm}^2 \qquad \text{por metro}$$

posição da linha neutra

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 4,0908 \text{ cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}}{3} + \alpha e \cdot As_f \cdot (d - x_{ii})^2 = 11409,9383 \text{ cm}^4$$

Variação maxima de tensão

$$\Delta \sigma S_{_{S}} := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - X_{_{\dot{1}\dot{1}}} \right)}{I_{_{\dot{1}\dot{1}}}} \right) = 155,5791 \text{ MPa}$$

if
$$\Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Okay"}$$

$$m := \text{"Okay"}$$
else
$$m := \text{"Não Okay"}$$

Verificação e Formação de Fissura

$$Yt := \frac{Hlaje}{2} = 10 \text{ cm}$$
 $F_{ct} := 0, 7 \cdot \left(0, 3 \cdot \left(\sqrt[3]{fck^2}\right)\right) \frac{1,7955}{10} = 0,1795$

$$\alpha := 1, 5$$

$$Ic := \frac{bw \cdot Hlaje^3}{12} = 66666,6667 \text{ cm}^4$$

Momento fissuração para lajes

$$\mathit{Mr} := \frac{\alpha \cdot \mathit{F}_{\mathit{ct}} \cdot \mathit{Ic}}{\mathit{Yt}}$$

Mr := 2027,528 kN cm

Momento fletor maximo meio do vão

$$Md_{rara} := Mxmg + Mxmq = 2068 kN cm$$

if $Mr < Md_{rara}$

m := "Ocorre fissuras e a peça trabalha no estádio 2" else

m := "não ocorre fissuras"

m = "Ocorre fissuras e a peça trabalha no estádio 2"

Verificação de Abertura de Fissuras

barras nervuradas

$$\mathit{Md}_{\mathit{freq}} := \mathit{Mxmg} + 0, 5 \cdot \mathit{Mxmq} = 10, 51 \text{ kN m}$$
 $\alpha e := 15$ $\eta_1 := 2, 25$ $\mathit{bitola} = 12, 5 \text{ mm}$ $\mathit{d'} = 5 \text{ cm}$ $\mathit{Esi} := 210 \text{ GPa}$

$$fct_m := 0, 3 \cdot \left(\frac{2}{3}\right)$$

$$fct_{m} := 0,28964 \frac{kN}{2}$$

$$A_{cri} := bw \cdot (d' + 8 \cdot bitola) = 1500 \text{ cm}^2$$

$$\rho_{cri} := \frac{As_f}{A_{cri}} = 0,5113 \,\%$$

O cálculo no estádio II (que admite comportamento linear dos materiais e despreza a resistência à tração do concreto) pode ser feito considerando a relação α_{e} entre os módulos de elasticidade do aço e do concreto igual a 15.

$$\mathbf{x}_{ii} := \frac{-\alpha \mathbf{e} \cdot \mathbf{A} \mathbf{s}_f + \sqrt{\left(\mathbf{A} \mathbf{s}_f \cdot \alpha \mathbf{e}\right)^2 + 2 \cdot b \mathbf{w} \cdot \alpha \mathbf{e} \cdot d \cdot \mathbf{A} \mathbf{s}_f}}{b \mathbf{w}} = 4,836 \text{ cm}$$

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii})^{2} = 15655,2772 \text{ cm}^{4}$$

$$\sigma_{si} := \alpha e \cdot \left(\frac{Md_{freq} \cdot (d - x_{ii})}{I_{ii}} \right) = 10,2352 \cdot \frac{kN}{cm}$$

logo

O valor caracterítico da abertura de fissuras (w_k) , determinado para cada parte da região de envolvimento, é o menor obtido pelas expressões a seguir.

$$w_k = \frac{\phi_i}{12.5\eta_1} \frac{\sigma_{Si}}{E_{Si}} \frac{3\sigma_{Si}}{f_{ct,m}} \tag{8.161}$$

$$w_k = \frac{\phi_i}{12.5 \, \eta_I} \frac{\sigma_{Si}}{E_{Si}} \left(\frac{4}{\rho_{ri}} + 45 \right) \tag{8.162}$$

$$Wk1 := \left(\frac{bitola}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{si}}{Esi}\right) \cdot \left(\frac{3 \cdot \sigma_{si}}{fct_m}\right) = 0,023 \text{ mm}$$

$$Wk2 := \left(\frac{\textit{bitola}}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{\textit{si}}}{\textit{Esi}}\right) \cdot \left(\frac{4}{\rho_{\textit{cri}}} + 45\right) = 0,1792 \text{ mm}$$

 $\begin{array}{c} \text{if} \quad \textit{W}k1 < \textit{W}k2 \\ \quad \textit{W}k := \textit{W}k1 \\ \\ \text{else} \end{array}$

Wk := Wk2

Abertura da fissura

$$Wk = 0,023 \text{ mm}$$

⊡—Armaduras Secundária —

$$Mxmq := 15,79 \cdot (kN m) Mxmg := 0,06 \cdot (kN m)$$

Cálculo do momento de desing

$$Mxmqd := Mxmq \cdot 1, 5 = 23,685 \text{ (kN m)}$$
 $Mxmgd := 1,35 \cdot Mxmg = 0,081 \text{ kN m}$

Mxmd := Mxmqd + Mxmgd = 23,766 kN m

Cálculo da área de aço:

Mxmd = 23,766 kN m

$$bw := 100 \text{ cm}$$
 $d' := 5 \text{ cm}$ $fck := 30 \text{ MPa} = 3 \frac{kN}{cm^2}$ $fyk := 500 \text{ MPa} = 50 \frac{kN}{cm^2}$ $d := Hlaje - d' = 15 \text{ cm}$ $fcd := \frac{fck}{1.4}$ $fyd := \frac{fyk}{1.15}$

Cálculo da ductilidade ξ da seção transversal

$$a := 0, 4$$
 $b := -1$
 $c := \frac{Mxmd}{\left(0,68 \cdot bw \cdot d^2 \cdot fcd\right)} = 0,0725$
 $delta := b^2 - 4 \cdot a \cdot c = 0,884$

if $delta < 0 = "Ok"$

"Seção Inválida"
else
"Ok"

 $raiz_1 := \frac{\left(-b + \sqrt{delta}\right)}{\left(2 \cdot a\right)} = 2,4253$

$$raiz_2 := \frac{(-b - \sqrt{delta'})}{(2 \cdot a)} = 0,0747$$

$$epslon := \min \left(\left[\begin{array}{cc} raiz_1 & raiz_2 \end{array} \right] \right) = 0,0747$$

Verificação de necessidade de armadura dupla

```
if epslon ≤ 0,45 = "okay"
  "okay"
else
  "não okay"
```

Posição da Linha Neutra:

```
x := epslon \cdot d = 1,1208 \text{ cm}
y := 0,8 \cdot x = 0,8967 \text{ cm}
```

Definição dos Domínios:

Área de Aço:

bitola := 10 mm

$$A_s := \frac{Mxmd}{(fyd \cdot (d-0, 4 \cdot x))} = 3,76 \text{ cm}^2$$

$$taxa_armadura := \frac{0,208}{100} = 0,0021$$

$$A_{s,min} := taxa_armadura \cdot bw \cdot (d + d') = 4,16 cm^2$$

$$area_bitola := \pi \cdot \frac{\left(bitola^{2}\right)}{4} = 7,854 \cdot 10^{-5} \text{ m}^{2}$$

$$num_bitolas := \frac{A_s}{area_bitola} = 4,78$$

casas decimais := $mod(num \ bitolas; 1) = 0,7828$

if casas decimais $\leq 0,5$

 $Num_bitolasadotadas := num_bitolas + (1 - casas_decimais)$ else

Num bitolasadotadas := round (num bitolas; 0)

Num bitolasadotadas = 5

Espaçamento

Comprimento := L2Y

 $Num\ espaçamento := Num\ bitolasadotadas - 1 = 4$

Espaçamento := Num espaçamento · Comprimento = 11,68 m

$$\textit{EspaçmentoReal} := \frac{\textit{Comprimento}}{\textit{Espaçamento}} \cdot 100 = 25$$

Espaçamentoadotado:=20 cm

Espaçamento máximo

if
$$Hlaje \cdot 2 > 20 \text{ cm}$$

 $Smax := 20 \text{ cm}$

else

 $Smax := Hlaje \cdot 2$

Smax = 20 cm

if Espaçamentoadotado > Smax
 Espaçamentoadotado := Smax

Espaçamentoadotado = 20 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 15$$

6118 - 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ¢;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 ϕ ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 ф.

Logo

 $Comprimentoancoragem := 8 \cdot bitola = 8 cm$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

$$\label{eq:mminq} \begin{aligned} \textit{Mminq} &:= \textit{Mxmq} \cdot 0 \quad \textit{Mming} := \textit{Mxmg} \quad \textit{Mmaxq} := \textit{Mxmq} \cdot 0,8 \quad \textit{Mmaxg} := \textit{Mxmg} \\ \textit{Mxmin}_{freq} &:= \textit{Mminq} + \textit{Mming} = 0,06 \text{ kN m} \quad \textit{Mxmax}_{freq} := \textit{Mmaxq} + \textit{Mmaxg} = 12,692 \text{ kN m} \\ \Delta \textit{M}_{freq} &:= \textit{Mxmax}_{freq} - \textit{Mxmin}_{freq} = 12,632 \text{ kN m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 5 \qquad area_bitola = 7,854 \cdot 10^{-5} \text{ m}^2$$

$$\alpha e := 10$$

$$As_f := NB \cdot area_bitola = 3,927 \text{ cm}^2 \qquad \text{por metro}$$

posição da linha neutra

$$\mathbf{x}_{ii} := \frac{-\alpha e \cdot \mathbf{A}\mathbf{s}_{f} + \sqrt{\left(\mathbf{A}\mathbf{s}_{f} \cdot \alpha e\right)^{2} + 2 \cdot b\mathbf{w} \cdot \alpha e \cdot d \cdot \mathbf{A}\mathbf{s}_{f}}}{b\mathbf{w}} = 3,062 \text{ cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii})^{2} = 6553,5453 \text{ cm}^{4}$$

Variação maxima de tensão

$$\Delta \sigma S_s := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - x_{ii} \right)}{I_{ii}} \right) = 230,105 \text{ MPa}$$

if
$$\Delta \sigma S_s \le 190 \text{ MPa} = \text{"Não Okay"}$$

 $m := \text{"Okay"}$
else
 $m := \text{"Não Okay"}$

Num bitolasadotadas:= 8

Espaçamento

Comprimento := L2Y

 $Num_espaçamento := Num_bitolasadotadas - 1 = 7$

Espaçamento:= Num espaçamento · Comprimento = 20,44 m

EspaçmentoReal :=
$$\frac{Comprimento}{Espaçamento} \cdot 100 = 14,29$$
 Espaçamentoadotado := 14 cm

Espaçamento máximo

if Espaçamentoadotado > Smax
 Espaçamentoadotado := Smax

Espaçamentoadotado = 14 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 21$$

COMPRIMENTO DE ANCORAGEM(virada)

6118 - 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 $\boldsymbol{\phi};$
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 $\phi;$
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 $\ensuremath{\varphi}\xspace$

Logo

 $Comprimentoancoragem := 8 \cdot bitola = 8 cm$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

$$\label{eq:mminq} \begin{aligned} \textit{Mminq} &:= \textit{Mxmq} \cdot 0 \quad \textit{Mming} := \textit{Mxmg} \quad \textit{Mmaxq} := \textit{Mxmq} \cdot 0,8 \quad \textit{Mmaxg} := \textit{Mxmg} \\ \textit{Mxmin}_{freq} &:= \textit{Mminq} + \textit{Mming} = 0,06 \text{ kN m} \quad \textit{Mxmax}_{freq} := \textit{Mmaxq} + \textit{Mmaxg} = 12,692 \text{ kN m} \\ &\Delta \textit{M}_{freq} := \textit{Mxmax}_{freq} - \textit{Mxmin}_{freq} = 12,632 \text{ kN m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$-10$$

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 7,1429 \qquad area_bitola = 7,854 \cdot 10^{-5} \text{ m}^2$$

$$As_f := NB \cdot area_bitola = 5,61 \text{ cm}^2$$
 por metro

posição da linha neutra

$$\mathbf{x}_{\underline{i}\underline{i}} := \frac{-\alpha \mathbf{e} \cdot \mathbf{A}\mathbf{s}_{\underline{f}} + \sqrt{\left(\mathbf{A}\mathbf{s}_{\underline{f}} \cdot \alpha \mathbf{e}\right)^2 + 2 \cdot b\mathbf{w} \cdot \alpha \mathbf{e} \cdot d \cdot \mathbf{A}\mathbf{s}_{\underline{f}}}}{b\mathbf{w}} = 3,5796 \text{ cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}}{3} + \alpha e \cdot As_f \cdot (d - x_{ii})^2 = 8845,7666 \text{ cm}^4$$

Variação maxima de tensão

$$\Delta \sigma S_S := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - x_{ii} \right)}{I_{ii}} \right) = 163,0863 \text{ MPa}$$

if
$$\Delta \sigma S_s \le 190 \text{ MPa} = \text{"Okay"}$$
 $m := \text{"Okay"}$

else

 $m := \text{"Não Okay"}$

Verificação e Formação de Fissura

$$\alpha := 1,5 \qquad Yt := \frac{Hlaje}{2} = 10 \text{ cm} \qquad F_{ct} := 0,7 \cdot \left(0,3 \cdot \left(\sqrt[3]{fck}^2\right)\right) \quad \frac{1,7955}{10} = 0,1795$$

$$Ic := \frac{bw \cdot Hlaje}{12} = 66666,6667 \text{ cm}^4$$

Momento fissuração para lajes

$$\mathit{Mr} := \frac{\alpha \cdot \mathit{F}_{\mathit{ct}} \cdot \mathit{Ic}}{\mathit{Yt}}$$

Mr := 2027,528 kN cm

Momento fletor maximo meio do vão

$$Md_{rara} := Mxmg + Mxmq = 1585 \ kN \ cm$$
 if $Mr < Md_{rara}$ $m :=$ "Ocorre fissuras e a peça trabalha no estádio 2" else $m :=$ "não ocorre fissuras"

Verificação de Abertura de Fissuras

m = "não ocorre fissuras"

barras nervuradas

$$Md_{freq} := Mxmg + 0, 5 \cdot Mxmq = 7,955 \text{ kN m} \qquad \alpha e := 15 \qquad \eta_1 := 2,25$$

$$bitola = 10 \text{ mm} \qquad d' = 5 \text{ cm} \qquad Esi := 210 \text{ GPa}$$

$$fct_m := 0, 3 \cdot \left(\frac{2}{3} \right) = 28964, 6815$$

$$fct_m := 0,28964 \frac{kN}{cm^2}$$

$$\mathbf{A}_{\mathrm{cri}} := b\mathbf{w} \cdot (\mathbf{d'} + 8 \cdot bitola) = 1300 \text{ cm}^2$$

$$\rho_{cri} := \frac{As_f}{A_{cri}} = 0,4315 \%$$

O cálculo no estádio II (que admite comportamento linear dos materiais e despreza a resistência à tração do concreto) pode ser feito considerando a relação α_{e} entre os módulos de elasticidade do aço e do concreto igual a 15.

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 4,2529 \text{ cm}$$

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot \left(d - x_{ii}^{3}\right)^{2} = 12283,4115 \text{ cm}^{4}$$

$$\sigma_{si} := \alpha e \cdot \left(\frac{Md_{freq} \cdot \left(d - x_{ii} \right)}{I_{ii}} \right) = 10,4401 \cdot \frac{kN}{cm}$$

logo

O valor caracterítico da abertura de fissuras (w_k) , determinado para cada parte da região de envolvimento, é o menor obtido pelas expressões a seguir.

$$w_k = \frac{\phi_i}{12.5\eta_1} \frac{\sigma_{Si}}{E_{Si}} \frac{3\sigma_{Si}}{f_{ct,m}}$$
(8.161)

$$w_k = \frac{\phi_i}{12.5 \, \eta_I} \frac{\sigma_{Si}}{E_{Si}} \left(\frac{4}{\rho_{ri}} + 45 \right) \tag{8.162}$$

$$Wk1 := \left(\frac{bitola}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{si}}{Esi}\right) \cdot \left(\frac{3 \cdot \sigma_{si}}{fct_m}\right) = 0,0191 \text{ mm}$$

$$Wk2 := \left(\frac{bitola}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{si}}{Esi}\right) \cdot \left(\frac{4}{\rho_{cri}} + 45\right) = 0,1718 \text{ mm}$$

if
$$Wk1 < Wk2$$

 $Wk := Wk1$

else

Wk := Wk2

Abertura da fissura

$$Wk = 0,0191 \text{ mm}$$

if
$$Wk < 0$$
, 3 mm = "okay" "okay"

else

"não okay"

☐─Armaduras Engaste -

$$Mxmq := 50,76 \cdot (kN m) \quad Mxmg := 0,68 \cdot (kN m)$$

Cálculo do momento de desing

$$Mxmqd := Mxmq \cdot 1, 5 = 76, 14 (kN m)$$

$$Mxmgd := 1,35 \cdot Mxmg = 0,918 \text{ kN m}$$

$$Mxmd := Mxmqd + Mxmgd = 77,058 \text{ kN m}$$

Cálculo da área de aço:

$$bw := 100 \text{ cm}$$
 $d' := 5 \text{ cm}$

$$fck := 30 \text{ MPa} = 3 \frac{kN}{cm^2}$$
 $fyk := 500 \text{ MPa} = 50 \frac{kN}{cm}$

$$fyk := 500 \text{ MPa} = 50 \frac{\text{kN}}{\text{cm}^2}$$

$$d := Hlaje - d' = 15 \text{ cm}$$

$$fcd := \frac{fck}{1}$$

$$fyd := \frac{fyk}{1,15}$$

Mxmd = 77,058 kN m

Cálculo da ductilidade ξ da seção transversal

$$a := 0, 4$$

$$b := -1$$

$$c := \frac{Mxmd}{\left(0,68 \cdot bw \cdot d^2 \cdot fcd\right)} = 0,235$$

$$delta := b^2 - 4 \cdot a \cdot c = 0.6239$$

if
$$delta < 0$$
 = "Ok"

"Seção Inválida"

else

"Ok"

$$raiz_1 := \frac{\left(-b + \sqrt{delta'}\right)}{\left(2 \cdot a\right)} = 2,2374$$

$$raiz_2 := \frac{\left(-b - \sqrt{delta'}\right)}{\left(2 \cdot a\right)} = 0,2626$$

$$epslon := \min \left(\left[\begin{array}{cc} raiz_1 & raiz_2 \end{array} \right] \right) = 0,2626$$

Verificação de necessidade de armadura dupla

if
$$epslon \le 0,45 = "okay"$$
"okay"

"não okay"

Posição da Linha Neutra:

$$x := epslon \cdot d = 3,9394$$
 cm

$$y := 0, 8 \cdot x = 3,1515$$
 cm

```
Definição dos Domínios:
 Dominio := ""
 if epslon < 0
                                                          = "Dominio 3a"
   "Dominio 1"
   if (((0 < epslon)) \land (epslon \leq 0, 259))
      "Dominio 2"
      if ((0,259 < epslon)) \land (epslon \leq 0,450)
         "Dominio 3a"
      else
        if ((0,450 < epslon)) \land (epslon \leq 0,628))
           "Dominio 3b"
        else
           if ((0,628 < epslon)) \land (epslon \le 1)
             "Dominio 4"
           else
              "Dominio 5"
 Área de Aço:
 bitola := 16 mm
A_s := \frac{Mxmd}{(fyd \cdot (d-0, 4 \cdot x))} = 13,2 \text{ cm}^2
 taxa_armadura := \frac{0,208}{100} = 0,0021
```

$$A_{s,min} := taxa_armadura \cdot bw \cdot (d + d') = 4,16 \text{ cm}^2$$

$$area_bitola := \pi \cdot \frac{\left(bitola^{2}\right)}{4} = 0,0002 \text{ m}^{2}$$

$$num_bitolas := \frac{A_{s}}{area_bitola} = 6,57$$

$$num_bitolas := \frac{A_s}{area_bitola} = 6,57$$

casas decimais $= mod(num \ bitolas; 1) = 0,5664$

if casas decimais $\leq 0,5$

 $Num_bitolasadotadas := num_bitolas + (1 - casas_decimais)$ else

Num bitolasadotadas := round (num bitolas; 0)

Num bitolasadotadas = 7

Espaçamento

Comprimento := L2XNum espaçamento := Num bitolasadotadas -1=6

Espaçamento:= Num espaçamento · Comprimento = 150 m

Espaçamento máximo

if Hlaje · 2 > 20 cm
 Smax := 20 cm
else
 Smax := Hlaje · 2

Smax = 20 cm

if Espaçamentoadotado > Smax
 Espaçamentoadotado := Smax

Espaçamentoadotado = 16 cm

Numero de bitolas totais

$$extit{NumbitolasT} \coloneqq rac{ extit{Comprimento}}{ extit{Espaçamentoadotado}} = 156$$

COMPRIMENTO DE ANCORAGEM(virada)

6118 - 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ¢;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 ϕ ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 φ.

Logo

Comprimentoancoragem := $8 \cdot bitola = 12,8 \text{ cm}$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

$$\begin{aligned} \textit{Mminq} &:= \textit{Mxmq} \cdot 0 \quad \textit{Mming} := \textit{Mxmg} \quad \textit{Mmaxq} := \textit{Mxmq} \cdot 0,8 \quad \textit{Mmaxg} := \textit{Mxmg} \\ \textit{Mxmin}_{freq} &:= \textit{Mminq} + \textit{Mming} = 0,68 \text{ kN m} \quad \textit{Mxmax}_{freq} := \textit{Mmaxq} + \textit{Mmaxg} = 41,288 \text{ kN m} \\ \Delta \textit{M}_{freq} &:= \textit{Mxmax}_{freq} - \textit{Mxmin}_{freq} = 40,608 \text{ kN m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 6,25$$
 area_bitola = 0,0002 m²

$$\alpha e := 10$$

$$\mathsf{As}_f := \mathit{NB} \cdot \mathit{area_bitola} = 12,5664 \; \mathsf{cm}^2 \qquad \mathsf{por} \; \mathsf{metro}$$

posição da linha neutra

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 5,0106 \text{ cm}$$

Not for commercial use

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}}{3} + \alpha e \cdot As_f \cdot (d - x_{ii})^2 = 16732,9669 \text{ cm}^4$$

Variação maxima de tensão

$$\Delta \sigma S_{s} := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - x_{ii} \right)}{I_{ii}} \right) = 242,4254 \text{ MPa}$$

```
if \Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Não Okay"}

m := \text{"Okay"}

else

m := \text{"Não Okay"}
```

Num bitolasadotadas:=10

Espaçamento

Comprimento := L2X

 $Num_espaçamento := Num_bitolasadotadas - 1 = 9$

Espaçamento:= Num espaçamento · Comprimento = 225 m

$$\textit{EspaçmentoReal} := \frac{\textit{Comprimento}}{\textit{Espaçamento}} \cdot 100 = 11,11$$

Espaçamentoadotado:=11 cm

Espaçamento máximo

Smax = 20 cm

if Espaçamentoadotado > Smax
 Espaçamentoadotado := Smax

Espaçamentoadotado = 11 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 227$$

COMPRIMENTO DE ANCORAGEM(virada) 6118 – 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 d;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 φ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 \(\phi \).

Logo

Comprimentoancoragem := $8 \cdot bitola = 12.8 \text{ cm}$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

 $\begin{aligned} \textit{Mminq} &:= \textit{Mxmq} \cdot 0 \quad \textit{Mming} := \textit{Mxmg} \quad \textit{Mmaxq} := \textit{Mxmq} \cdot 0,8 \quad \textit{Mmaxg} := \textit{Mxmg} \\ \textit{Mxmin}_{freq} &:= \textit{Mminq} + \textit{Mming} = 0,68 \text{ kN m} \qquad \textit{Mxmax}_{freq} := \textit{Mmaxq} + \textit{Mmaxg} = 41,288 \text{ kN m} \\ \Delta \textit{M}_{freq} &:= \textit{Mxmax}_{freq} - \textit{Mxmin}_{freq} = 40,608 \text{ kN m} \end{aligned}$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 9,0909 \qquad area_bitola = 0,0002 \text{ m}^2$$

$$\alpha e := 10$$

$$As_f := NB \cdot area_bitola = 18,2784 \text{ cm}^2 \qquad \text{por metro}$$

posição da linha neutra

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 5,7995 \text{ cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii})^{2} = 21974,5347 \text{ cm}^{4}$$

Variação maxima de tensão

$$\Delta \sigma S_{_{S}} := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - x_{_{i\,i}} \right)}{I_{_{i\,i}}} \right) = 170,0215 \text{ MPa}$$

if
$$\Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Okay"}$$
 $m := \text{"Okay"}$
else
 $m := \text{"Não Okay"}$

Verificação e Formação de Fissura

$$\alpha := 1,5 \qquad \text{Yt} := \frac{\text{Hlaje}}{2} = 10 \text{ cm} \qquad F_{ct} := 0,7 \cdot \left(0,3 \cdot \left(\sqrt[3]{\text{fck}^2}\right)\right) \quad \frac{1,7955}{10} = 0,1795$$

$$Ic := \frac{bw \cdot \text{Hlaje}}{12} = 66666,6667 \text{ cm}^4$$

$$\mathit{Mr} := \frac{\alpha \cdot \mathit{F}_{\mathit{ct}} \cdot \mathit{Ic}}{\mathit{Yt}}$$

Mr := 2027,528 kN cm

Momento fletor maximo meio do vão

 $Md_{rara} := Mxmg + Mxmq = 5144 kN cm$

if $Mr < Md_{rara}$

m := "Ocorre fissuras e a peça trabalha no estádio 2" else

m := "não ocorre fissuras"

m = "Ocorre fissuras e a peça trabalha no estádio 2"

Verificação de Abertura de Fissuras

barras nervuradas

$$\mathit{Md}_{\mathit{freq}} := \mathit{Mxmg} + 0,5 \cdot \mathit{Mxmq} = 26,06 \text{ kN m} \qquad \alpha e := 15 \qquad \eta_1 := 2,25$$

bitola = 16 mm d' = 5 cm Esi := 210 GPa

$$fct_m := 0, 3 \cdot \left(\frac{2}{3}\right)$$

$$fct_m := 0,22104 \frac{kN}{cm^2}$$

$$A_{cri} := bw \cdot (d' + 8 \cdot bitola) = 1780 cm^2$$

$$\rho_{cri} := \frac{As_f}{A_{cri}} = 1,0269 \,\%$$

O cálculo no estádio II (que admite comportamento linear dos materiais e despreza a resistência à tração do concreto) pode ser feito considerando a relação α_{e} entre os módulos de elasticidade do aço e do concreto igual a 15.

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 6,7329 \text{ cm}$$

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii})^{2} = 28912,3469 \text{ cm}^{4}$$

$$\sigma_{si} := \alpha e \cdot \left(\frac{\textit{Md}_{\textit{freq}} \cdot \left(d - x_{\textit{ii}} \right)}{\textit{I}_{\textit{ii}}} \right) = 11,1772 \; \frac{\text{kN}}{\text{cm}}$$

logo

O valor caracterítico da abertura de fissuras (w_k) , determinado para cada parte da região de envolvimento, é o menor obtido pelas expressões a seguir.

$$w_k = \frac{\phi_i}{12.5\eta_1} \frac{\sigma_{Si}}{E_{Si}} \frac{3\sigma_{Si}}{f_{ct,m}}$$
(8.161)

$$w_k = \frac{\phi_i}{12.5\,\eta_I} \frac{\sigma_{Si}}{E_{Si}} \left(\frac{4}{\rho_{ri}} + 45 \right) \tag{8.162}$$

$$Wk1 := \left(\frac{bitola}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{si}}{Esi}\right) \cdot \left(\frac{3 \cdot \sigma_{si}}{fct_m}\right) = 0,0459 \text{ mm}$$

$$Wk2 := \left(\frac{bitola}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{si}}{Esi}\right) \cdot \left(\frac{4}{\rho_{cri}} + 45\right) = 0,1316 \text{ mm}$$

if Wk1 < Wk2

Wk := Wk1

else

Wk := Wk2

Abertura da fissura

$$Wk = 0,0459 \text{ mm}$$

if
$$Wk < 0$$
,3 mm = "okay"

"okay"

else

"não okay"

⊡—Laje3 —

$$L3X = 25 \text{ m}$$
 $L3Y = 2,92 \text{ m}$

⊡—tabelas -

lx/a		t,	a		Para todos os valores de t/a		Resultados:
	0,125	0,250	0,5	1,0			
	L	L	L	L	р	p'	Tabela Utilizada:93
0,5	0,095	0,054	0,032	0,005	0,0	0,0	Cargas Móveis: ML=0,13 Mp=0,00 Mp'=0,02 Mym=15,79 kN,m/m
1,0	0,148	0,092	0,058	0,02	0,0	0,0	
1,5	0,203	0,147	0,081	0,045	0,0	0,02	
2,0	0,257	0,206	0,116	0,079	0,0	0,05	
2,5	0,296	0,248	0,156	0,118	0,0	0,11	
3,0	0,331	0,284	0,2	0,166	0,02	0,22	
4,0	0,401	0,352	0,287	0,254	0,08	0,45	Cargas Permanentes: kym=0,01 Mym=0,06 kN.m/m
5,0	0,46	0,416	0,367	0,333	0,18	0,74	
6,0	0,52	0,482	0,44	0,411	0,32	1,17	
7,0	0,58	0,54	0,51	0,475	0,54	1,78	
8,0	0,64	0,6	0,57	0,53	0,8	2,37	
9,0	0,68	0,65	0,62	0,58	1,04	3,13	
10,0	0,73	0,7	0,65	0,62	1,28	3,96	

lx/a		t)	a		Para todos os valores de t/a		Resultados:
	0,125	0,250	0,5	1,0			
	L	L	L	L	р	p'	Tabela Utilizada:93
0,5	0,25	0,19	0,12	0,05	0,0	0,05	Cargas Móveis: ML=0,40 Mp=0,00
1,0	0,32	0,26	0,18	0,09	0,0	0,1	
1,5	0,47	0,43	0,35	0,23	0,0	0,35	
2,0	0,64	0,61	0,54	0,398	0,0	0,8	Mp'=0,33
2,5	0,76	0,74	0,69	0,55	0,01	1,45	Mxe=-50,76 kN.m/m
3,0	0,87	0,85	0,81	0,71	0,05	2,1	
4,0	1,05	1,05	1,01	0,97	0,1	3,4	Cargas Permanentes: kxe=0,08 Mxe=0,68 kN.m/m
5,0	1,21	1,21	1,18	1,15	0,33	4,7	
6,0	1,34	1,34	1,31	1,28	0,8	7,0	
7,0	1,44	1,44	1,42	1,39	1,4	10,3	
8,0	1,52	1,52	1,5	1,47	2,1	15,0	
9,0	1,57	1,57	1,56	1,53	3,0	20,4	
10,0	1,59	1,59	1,58	1,56	3,74	25,9	

⊡—Armaduras Principal —

 $Mxmq := 20,34 \cdot (kN m) Mxmg := 0,34 \cdot (kN m)$

Cálculo do momento de desing

 $Mxmqd := Mxmq \cdot 1, 5 = 30, 51 (kN m)$ $Mxmgd := 1, 35 \cdot Mxmg = 0, 459 kN m$

Mxmd := Mxmqd + Mxmgd = 30,969 kN m

Cálculo da área de aço:

$$bw := 100 \text{ cm}$$
 $d' := 5 \text{ cm}$ $fck := 30 \text{ MPa} = 3 \frac{\text{kN}}{\text{cm}^2}$ $fyk := 500 \text{ MPa} = 50 \frac{\text{kN}}{\text{cm}^2}$

d := Hlaje - d' = 15 cm

 $fcd := \frac{fck}{1,4} \qquad fyd := \frac{fyk}{1,15}$

Mxmd = 30,969 kN m

Cálculo da ductilidade ξ da seção transversal

$$a := 0, 4$$

$$b := -1$$

$$c := \frac{Mxmd}{\left(0,68 \cdot bw \cdot d^2 \cdot fcd\right)} = 0,0945$$

$$delta := b^2 - 4 \cdot a \cdot c = 0,8489$$
if $delta < 0 = \text{"Ok"}$
"Seção Inválida"
else
"Ok"
$$raiz_1 := \frac{\left(-b + \sqrt{delta'}\right)}{\left(2 \cdot a\right)} = 2,4017$$

$$raiz_2 := \frac{(-b - \sqrt{delta'})}{(2 \cdot a)} = 0,0983$$

$$\textit{epslon} := \min \left(\left[\begin{array}{cc} \textit{raiz}_1 & \textit{raiz}_2 \end{array} \right] \right) = 0,0983$$

Verificação de necessidade de armadura dupla

```
if epslon ≤ 0,45 = "okay"
  "okay"
else
  "não okay"
```

Posição da Linha Neutra:

```
x := epslon \cdot d = 1,4749 \text{ cm}

y := 0,8 \cdot x = 1,1799 \text{ cm}
```

Definição dos Domínios:

Área de Aço:

bitola := 12,5 mm

$$A_s := \frac{Mxmd}{(fyd \cdot (d-0, 4 \cdot x))} = 4,94 \text{ cm}^2$$

$$taxa_armadura := \frac{0,208}{100} = 0,0021$$

$$A_{s,min} := taxa_armadura \cdot bw \cdot (d + d') = 4,16 cm^2$$

$$area_bitola := \pi \cdot \frac{\left(bitola^{2}\right)}{4} = 0,0001 \text{ m}^{2}$$

$$num_bitolas := \frac{A_{s}}{area_bitola} = 4,03$$

$$num_bitolas := \frac{A_s}{area_bitola} = 4,03$$

 $casas_decimais := mod(num bitolas; 1) = 0,0279$

if $casas_decimais \le 0,5$

 $Num_bitolasadotadas := num_bitolas + (1 - casas_decimais)$ else

Num bitolasadotadas := round (num bitolas; 0)

Num bitolasadotadas =
$$5$$

Espaçamento

Comprimento := L3X

 $Num\ espaçamento:=Num\ bitolasadotadas-1=4$

 $\textit{Espaçamento} := \textit{Num_espaçamento} \cdot \textit{Comprimento} = \texttt{100 m}$

$$\textit{EspaçmentoReal} := \frac{\textit{Comprimento}}{\textit{Espaçamento}} \cdot 100 = 25$$

Espaçamentoadotado := 20 cm

Espaçamento máximo

if
$$Hlaje \cdot 2 > 20$$
 cm

$$Smax := 20 \text{ cm}$$

else

$$Smax := Hlaje \cdot 2$$

Smax = 20 cm

if Espaçamentoadotado > Smax Espaçamentoadotado := Smax

Espaçamentoadotado = 20 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 125$$

COMPRIMENTO DE ANCORAGEM(virada) 6118 – 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ϕ ;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 φ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 ф.

Logo

Comprimentoancoragem := 8 ⋅ bitola = 10 cm

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

$$\label{eq:mminq} \begin{aligned} \textit{Mminq} &:= \textit{Mxmq} \cdot 0 \quad \textit{Mming} := \textit{Mxmg} \quad \textit{Mmaxq} := \textit{Mxmq} \cdot 0,8 \quad \textit{Mmaxg} := \textit{Mxmg} \\ \textit{Mxmin}_{freq} &:= \textit{Mminq} + \textit{Mming} = 0,34 \text{ kN m} \quad \textit{Mxmax}_{freq} := \textit{Mmaxq} + \textit{Mmaxg} = 16,612 \text{ kN m} \\ \Delta \textit{M}_{freq} &:= \textit{Mxmax}_{freq} - \textit{Mxmin}_{freq} = 16,272 \text{ kN m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 5 \qquad area_bitola = 0,0001 \text{ m}^2$$

$$\alpha e := 10$$

$$As_f := NB \cdot area_bitola = 6,1359 \text{ cm}^2 \qquad \text{por metro}$$

posição da linha neutra

$$\mathbf{x}_{\underline{i}\underline{i}} := \frac{-\alpha \mathbf{e} \cdot \mathbf{A} \mathbf{s}_{\underline{f}} + \sqrt{\left(\mathbf{A} \mathbf{s}_{\underline{f}} \cdot \alpha \mathbf{e}\right)^2 + 2 \cdot b \mathbf{w} \cdot \alpha \mathbf{e} \cdot d \cdot \mathbf{A} \mathbf{s}_{\underline{f}}}}{b \mathbf{w}} = 3,7205 \text{ cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii})^{2} = 9523,2119 \text{ cm}^{4}$$

Variação maxima de tensão

$$\Delta \sigma S_{_{S}} := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - x_{_{\dot{1}\dot{1}}} \right)}{I_{_{\dot{1}\dot{1}}}} \right) = 192,7293 \text{ MPa}$$

if
$$\Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Não Okay"}$$

 $m := \text{"Okay"}$
else
 $m := \text{"Não Okay"}$

Num bitolasadotadas:=7

Espaçamento

 $\textit{Comprimento} := L3X \qquad \qquad \textit{Num_espaçamer}$

$$Num_espaçamento := Num_bitolasadotadas - 1 = 6$$
 $Rotorouse$
 $48/105$

Espaçamento := Num espaçamento \cdot Comprimento = 150 m

EspaçmentoReal :=
$$\frac{Comprimento}{Espaçamento} \cdot 100 = 16,67$$

Espaçamentoadotado:=16 cm

Espaçamento máximo

Smax = 20 cm

if Espaçamentoadotado > Smax
 Espaçamentoadotado := Smax

Espaçamentoadotado = 16 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 156$$

COMPRIMENTO DE ANCORAGEM(virada)

6118 - 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ϕ ;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 $\phi;$
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 $\boldsymbol{\phi}.$

Logo

 $\textit{Comprimentoancoragem} := 8 \cdot \textit{bitola} = 10 \text{ cm}$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

$$\label{eq:mminq} \begin{aligned} \textit{Mminq} &:= \textit{Mxmq} \cdot 0 \quad \textit{Mming} := \textit{Mxmg} \quad \textit{Mmaxq} := \textit{Mxmq} \cdot 0,8 \quad \textit{Mmaxg} := \textit{Mxmg} \\ \textit{Mxmin}_{freq} &:= \textit{Mminq} + \textit{Mming} = 0,34 \text{ kN m} \quad \textit{Mxmax}_{freq} := \textit{Mmaxq} + \textit{Mmaxg} = 16,612 \text{ kN m} \\ \Delta \textit{M}_{freq} &:= \textit{Mxmax}_{freq} - \textit{Mxmin}_{freq} = 16,272 \text{ kN m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 6,25$$
 area_bitola = 0,0001 m²

$$\alpha e := 10$$

$$As_f := NB \cdot area_bitola = 7,6699 \text{ cm}^2$$
 por metro

posição da linha neutra

$$\mathbf{x}_{\underline{i}\underline{i}} := \frac{-\alpha \mathbf{e} \cdot As_{\underline{f}} + \sqrt{\left(As_{\underline{f}} \cdot \alpha \mathbf{e}\right)^2 + 2 \cdot bw \cdot \alpha \mathbf{e} \cdot d \cdot As_{\underline{f}}}}{bw} = 4,0908 \; \mathrm{cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}^{}}{3} + \alpha e \cdot As_{f} \cdot \left(d - x_{ii}^{}\right)^{2} = 11409,9383 \text{ cm}^{4}$$

Variação maxima de tensão

$$\Delta \sigma S_s := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - x_{ii} \right)}{I_{ii}} \right) = 155,5791 \text{ MPa}$$

if
$$\Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Okay"}$$
 $m := \text{"Okay"}$

else

 $m := \text{"Não Okay"}$

Verificação e Formação de Fissura

$$\alpha := 1,5 \qquad Yt := \frac{Hlaje}{2} = 10 \text{ cm} \qquad F_{ct} := 0,7 \cdot \left(0,3 \cdot \left(\sqrt[3]{fck^2}\right)\right) \quad \frac{1,7955}{10} = 0,1795$$

$$Ic := \frac{bw \cdot Hlaje}{12} = 66666,6667 \text{ cm}^4$$

Momento fissuração para lajes

$$Mr := \frac{\alpha \cdot F_{ct} \cdot Ic}{\gamma_{t}}$$

Mr := 2027,528 kN cm

Momento fletor maximo meio do vão

$$Md_{rara} := Mxmg + Mxmq = 2068 \ kN \ cm$$

if $Mr < Md_{rara}$
 $m := "Ocorre \ fissuras \ e \ a \ peça \ trabalha \ no \ estádio 2"$

else

 $m := "não \ ocorre \ fissuras"$

m = "Ocorre fissuras e a peça trabalha no estádio 2"

Verificação de Abertura de Fissuras

$$\textit{Md}_{freq} := \textit{Mxm} g + 0, 5 \cdot \textit{Mxm} q = 10, 51 \text{ kN m} \qquad \alpha e := 15 \qquad \eta_1 := 2, 25$$

$$\textit{bitola} = 12, 5 \text{ mm} \qquad \textit{d'} = 5 \text{ cm} \qquad \textit{Esi} := 210 \text{ GPa}$$

$$fct_m := 0, 3 \cdot \left(\frac{2}{3}\right)$$

$$fct_m := 0,28964 \frac{kN}{cm^2}$$

$$A_{cri} := bw \cdot (d' + 8 \cdot bitola) = 1500 \text{ cm}^2$$

$$\rho_{cri} := \frac{As_f}{A_{cri}} = 0,5113 \%$$

O cálculo no estádio II (que admite comportamento linear dos materiais e despreza a resistência à tração do concreto) pode ser feito considerando a relação α_{e} entre os módulos de elasticidade do aço e do concreto igual a 15.

$$\mathbf{x}_{ii} := \frac{-\alpha \mathbf{e} \cdot \mathbf{A} \mathbf{s}_f + \sqrt{\left(\mathbf{A} \mathbf{s}_f \cdot \alpha \mathbf{e}\right)^2 + 2 \cdot b \mathbf{w} \cdot \alpha \mathbf{e} \cdot d \cdot \mathbf{A} \mathbf{s}_f}}{b \mathbf{w}} = 4,836 \text{ cm}$$

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot \left(d - x_{ii}\right)^{2} = 15655,2772 \text{ cm}^{4}$$

$$\sigma_{si} := \alpha e \cdot \left(\frac{Md_{freq} \cdot \left(d - x_{ii} \right)}{I_{ii}} \right) = 10,2352 \cdot \frac{kN}{cm}$$

logo

O valor caracterítico da abertura de fissuras (w_k) , determinado para cada parte da região de envolvimento, é o menor obtido pelas expressões a seguir.

$$w_k = \frac{\phi_i}{12.5\eta_1} \frac{\sigma_{Si}}{E_{Si}} \frac{3\sigma_{Si}}{f_{ct,m}}$$
(8.161)

$$w_k = \frac{\phi_i}{12.5 \, \eta_I} \frac{\sigma_{Si}}{E_{Si}} \left(\frac{4}{\rho_{ri}} + 45 \right) \tag{8.162}$$

$$Wk1 := \left(\frac{bitola}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{si}}{Esi}\right) \cdot \left(\frac{3 \cdot \sigma_{si}}{fct_m}\right) = 0,023 \text{ mm}$$

$$Wk2 := \left(\frac{bitola}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{si}}{Esi}\right) \cdot \left(\frac{4}{\rho_{cri}} + 45\right) = 0,1792 \text{ mm}$$

if
$$Wk1 < Wk2$$

 $Wk := Wk1$

else

Wk := Wk2

Abertura da fissura

$$Wk = 0,023 \text{ mm}$$

else

"não okay"

∃-Armaduras Secundária-

$$Mxmq := 15,79 \cdot (kN m) Mxmg := 0,06 \cdot (kN m)$$

Cálculo do momento de desing

$$Mxmqd := Mxmq \cdot 1, 5 = 23,685 \text{ (kN m)}$$
 $Mxmgd := 1,35 \cdot Mxmg = 0,081 \text{ kN m}$

$$Mxmd := Mxmqd + Mxmgd = 23,766 kN m$$

Cálculo da área de aço:

$$bw := 100 \text{ cm}$$
 $d' := 5 \text{ cm}$ $fck := 30 \text{ MPa} = 3 \frac{kN}{cm}$ $fyk := 500 \text{ MPa} = 50 \frac{kN}{cm}$

$$d := Hlaje - d' = 15 \text{ cm}$$

$$fcd := \frac{fck}{1,4}$$

$$fyd := \frac{fyk}{1,15}$$

Mxmd = 23,766 kN m

Cálculo da ductilidade ξ da seção transversal

$$a := 0, 4$$

$$b := -1$$

$$c := \frac{\text{Mxmd}}{\left(0,68 \cdot bw \cdot d^2 \cdot fcd\right)} = 0,0725$$

$$delta := b^2 - 4 \cdot a \cdot c = 0,884$$

else

"Ok"

$$raiz_1 := \frac{(-b + \sqrt{delta})}{(2 \cdot a)} = 2,4253$$

$$raiz_2 := \frac{\left(-b - \sqrt{delta'}\right)}{\left(2 \cdot a\right)} = 0,0747$$

$$epslon := \min \left(\left[\begin{array}{cc} raiz_1 & raiz_2 \\ \end{array} \right] \right) = 0,0747$$

Verificação de necessidade de armadura dupla

if
$$epslon \le 0,45 = "okay"$$
"okay"

"não okay"

Posição da Linha Neutra:

$$x := epslon \cdot d = 1,1208$$
 cm

$$y := 0, 8 \cdot x = 0,8967$$
 cm

Definição dos Domínios:

```
Dominio := ""
if epslon < 0
                                                         = "Dominio 2"
  "Dominio 1"
  if (((0 < epslon)) \land (epslon \leq 0, 259))
     "Dominio 2"
     if ((0,259 < epslon)) \land (epslon \leq 0,450)
        "Dominio 3a"
     else
       if ((0,450 < epslon)) \land (epslon \leq 0,628)
          "Dominio 3b"
       else
          if ((0,628 < epslon)) \land (epslon \le 1)
            "Dominio 4"
          else
             "Dominio 5"
Área de Aço:
bitola := 10 mm
A_s := \frac{Mxmd}{(fyd \cdot (d-0, 4 \cdot x))} = 3,76 \text{ cm}^2
```

$$A_s := \frac{Mxmd}{(f_{sub} (f_{sub} (f_{sub})))} = 3,76 \text{ cm}^2$$

$$taxa_armadura := \frac{0,208}{100} = 0,0021$$

$$A_{s,min} := taxa_armadura \cdot bw \cdot (d + d') = 4,16 cm^2$$

$$area_bitola := \pi \cdot \frac{\left(bitola^{2}\right)}{4} = 7,854 \cdot 10^{-5} \text{ m}^{2}$$

$$num_bitolas := \frac{A_{s}}{area_bitola} = 4,78$$

$$num_bitolas := \frac{A_s}{area_bitola} = 4,78$$

casas decimais $= mod(num \ bitolas; 1) = 0,7828$

if casas decimais $\leq 0,5$

 $Num_bitolasadotadas := num_bitolas + (1 - casas_decimais)$ else

Num bitolasadotadas := round (num bitolas; 0)

Num bitolasadotadas = 5

Espaçamento

Comprimento := L3YNum espaçamento := Num bitolasadotadas -1=4

Espaçamento := Num espaçamento · Comprimento = 11,68 m

$$EspaçmentoReal := \frac{Comprimento}{Espaçamento} \cdot 100 = 25$$

$$Espaçamentoadotado := 20 cm$$

Espaçamento máximo

if $Hlaje \cdot 2 > 20$ cm Smax := 20 cm else $Smax := Hlaje \cdot 2$ Smax = 20 cm

if Espaçamentoadotado > Smax
 Espaçamentoadotado := Smax

Espaçamentoadotado = 20 cm

Numero de bitolas totais

$$extit{NumbitolasT} \coloneqq rac{ extit{Comprimento}}{ extit{Espaçamentoadotado}} = 15$$

COMPRIMENTO DE ANCORAGEM(virada) 6118 – 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ¢;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 ϕ ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 ϕ .

Logo

 $Comprimentoancoragem := 8 \cdot bitola = 8 cm$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

$$\label{eq:mminq} \begin{aligned} \mathit{Mminq} &:= \mathit{Mxmq} \cdot 0 \quad \mathit{Mming} := \mathit{Mxmg} \quad \mathit{Mmaxq} := \mathit{Mxmq} \cdot 0,8 \quad \mathit{Mmaxg} := \mathit{Mxmg} \\ \mathit{Mxmin}_{freq} &:= \mathit{Mminq} + \mathit{Mming} = 0,06 \text{ kN m} \quad \mathit{Mxmax}_{freq} := \mathit{Mmaxq} + \mathit{Mmaxg} = 12,692 \text{ kN m} \\ \Delta \mathit{M}_{freq} &:= \mathit{Mxmax}_{freq} - \mathit{Mxmin}_{freq} = 12,632 \text{ kN m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 5$$
 $area_bitola = 7,854 \cdot 10^{-5} \text{ m}^2$ $\alpha e := 10$ $As_f := NB \cdot area_bitola = 3,927 \text{ cm}^2$ por metro

posição da linha neutra

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 3,062 \text{ cm}$$

$$Not for commercial use}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii})^{2} = 6553,5453 \text{ cm}^{4}$$

Variação maxima de tensão

$$\Delta \sigma S_s := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - x_{ii} \right)}{I_{ii}} \right) = 230,105 \text{ MPa}$$

```
if \Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Não Okay"}
   m := "Okay"
   m := "Não Okay"
```

Num bitolasadotadas:= 8

Espaçamento

Comprimento := L3Y

 $Num_espaçamento := Num_bitolasadotadas - 1 = 7$

Espaçamento := Num espaçamento · Comprimento = 20,44 m

$$\textit{EspaçmentoReal} := \frac{\textit{Comprimento}}{\textit{Espaçamento}} \cdot 100 = 14,29 \qquad \textbf{\textit{Espaçamentoadotado} := 14 cm}$$

Espaçamento máximo

Smax = 20 cm

if Espaçamentoadotado > SmaxEspaçamentoadotado:= Smax

Espaçamentoadotado = 14 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 21$$

COMPRIMENTO DE ANCORAGEM(virada) 6118 - 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ¢;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 φ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 ϕ .

Logo

Comprimentoancoragem := 8 ⋅ bitola = 8 cm

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

 $Mminq := Mxmq \cdot 0$ Mming := Mxmg $Mmaxq := Mxmq \cdot 0, 8$ Mmaxg := Mxmg $Mxmin_{freq} := Mminq + Mming = 0,06 kN m$ $Mxmax_{freq} := Mmaxq + Mmaxg = 12,692 kN m$

$$\Delta \textit{M}_{\textit{freq}} := \textit{Mxmax}_{\textit{freq}} - \textit{Mxmin}_{\textit{freq}} = 12,632 \text{ kN m}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 7,1429 \qquad area_bitola = 7,854 \cdot 10^{-5} \text{ m}^2$$

$$\alpha e := 10$$

$$As_f := NB \cdot area_bitola = 5,61 \text{ cm}^2$$
 por metro

posição da linha neutra

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 3,5796 \text{ cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}}{3} + \alpha e \cdot As_f \cdot (d - x_{ii})^2 = 8845,7666 \text{ cm}^4$$

Variação maxima de tensão

$$\Delta \sigma S_{S} := \alpha e \cdot \left[\frac{\Delta M_{freq} \cdot \left(d - x_{ii} \right)}{I_{ii}} \right] = 163,0863 \text{ MPa}$$

if
$$\Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Okay"}$$
 $m := \text{"Okay"}$
else
 $m := \text{"Não Okay"}$

Verificação e Formação de Fissura

$$\alpha := 1,5 \qquad Yt := \frac{Hlaje}{2} = 10 \text{ cm} \qquad F_{ct} := 0,7 \cdot \left(0,3 \cdot \left(\sqrt[3]{fck}^2\right)\right) \quad \frac{1,7955}{10} = 0,1795$$

$$Ic := \frac{bw \cdot Hlaje}{12} = 66666,6667 \text{ cm}^4$$

Momento fissuração para lajes

$$\mathit{Mr} := \frac{\alpha \cdot \mathit{F}_{\mathit{ct}} \cdot \mathit{Ic}}{\mathit{Yt}}$$

Mr := 2027,528 kN cm

Momento fletor maximo meio do vão

$$Md_{rara} := Mxmg + Mxmq = 1585 \text{ kN cm}$$

 $\quad \text{if } \mathit{Mr} < \mathit{Md}_{\mathit{rara}}$

m := "Ocorre fissuras e a peça trabalha no estádio 2"

else

m := "não ocorre fissuras"

m = "não ocorre fissuras"

Verificação de Abertura de Fissuras

barras nervuradas

$$\begin{aligned} \mathit{Md}_{freq} &:= \mathit{Mxmg} + \mathsf{0.5} \cdot \mathit{Mxmq} = \mathsf{7.955} \text{ kN m} & \alpha e := 15 & \eta_1 := 2.25 \\ & \mathit{bitola} = \mathsf{10 mm} & \mathit{d'} = \mathsf{5 cm} & \mathit{Esi} := 210 \text{ GPa} \end{aligned}$$

$$fct_m := 0, 3 \cdot \left(\frac{2}{3} \right) = 28964, 6815$$

$$fct_m := 0,28964 \frac{kN}{cm}$$

$$A_{cri} := bw \cdot (d' + 8 \cdot bitola) = 1300 \text{ cm}^2$$

$$\rho_{cri} := \frac{As_f}{A_{cri}} = 0,4315 \%$$

O cálculo no estádio II (que admite comportamento linear dos materiais e despreza a resistência à tração do concreto) pode ser feito considerando a relação $\alpha_{\rm e}$ entre os módulos de elasticidade do aço e do concreto igual a 15.

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 4,2529 \text{ cm}$$

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii})^{2} = 12283,4115 \text{ cm}^{4}$$

$$\sigma_{si} := \alpha e \cdot \left(\frac{Md_{freq} \cdot (d - x_{ii})}{I_{ii}} \right) = 10,4401 \cdot \frac{kN}{2}$$

logo

O valor caracterítico da abertura de fissuras (w_k) , determinado para cada parte da região de envolvimento, é o menor obtido pelas expressões a seguir.

$$w_k = \frac{\phi_i}{12.5\eta_1} \frac{\sigma_{Si}}{E_{Si}} \frac{3\sigma_{Si}}{f_{ct,m}}$$
(8.161)

$$w_k = \frac{\phi_i}{12.5 \eta_I} \frac{\sigma_{Si}}{E_{Si}} \left(\frac{4}{\rho_{ri}} + 45 \right) \tag{8.162}$$

$$Wk1 := \left(\frac{bitola}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{si}}{Esi}\right) \cdot \left(\frac{3 \cdot \sigma_{si}}{fct_m}\right) = 0,0191 \text{ mm}$$

$$Wk2 := \left(\frac{\textit{bitola}}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{\textit{si}}}{\textit{Esi}}\right) \cdot \left(\frac{4}{\rho_{\textit{cri}}} + 45\right) = 0,1718 \text{ mm}$$

if Wk1 < Wk2Wk := Wk1else Wk := Wk2

Abertura da fissura

Wk = 0,0191 mm

☐—Armaduras Engaste —

$$Mxmq := 50,76 \cdot (kN m) Mxmg := 0,68 \cdot (kN m)$$

Cálculo do momento de desing

$$Mxmqd := Mxmq \cdot 1, 5 = 76, 14 (kN m)$$

$$Mxmgd := 1,35 \cdot Mxmg = 0,918 \text{ kN m}$$

$$Mxmd := Mxmqd + Mxmgd = 77,058 \text{ kN m}$$

Cálculo da área de aço:

$$bw := 100 \text{ cm}$$
 $d' := 5 \text{ cm}$

$$fck := 30 \text{ MPa} = 3 \frac{m}{2}$$

$$d := Hlaje - d' = 15 \text{ cm}$$

$$fcd := \frac{fck}{1,4}$$

$$Mxmd = 77,058 \text{ kN m}$$

$$fck := 30 \text{ MPa} = 3 \frac{\text{kN}}{2} \qquad fyk := 500 \text{ MPa} = 50 \frac{\text{kN}}{2}$$

$$fyd := \frac{fyk}{1,15}$$

Cálculo da ductilidade ξ da seção transversal

$$a := 0, 4$$

$$b := -1$$

$$c := \frac{Mxmd}{\left(0,68 \cdot bw \cdot d^2 \cdot fcd\right)} = 0,235$$

$$delta := b^2 - 4 \cdot a \cdot c = 0,6239$$

else

"Ok"

$$raiz_1 := \frac{(-b + \sqrt{delta})}{(2 \cdot a)} = 2,2374$$

$$raiz_2 := \frac{(-b - \sqrt{delta'})}{(2 \cdot a)} = 0,2626$$

$$epslon := \min \left(\left[\begin{array}{cc} raiz_1 & raiz_2 \\ \end{array} \right] \right) = 0,2626$$

Verificação de necessidade de armadura dupla

```
if epslon \le 0,45 = "okay"
  "okay"
else
  "não okay"
```

Posição da Linha Neutra:

```
x := epslon \cdot d = 3,9394 cm
y := 0, 8 \cdot x = 3,1515 cm
```

Definição dos Domínios:

```
Dominio := ""
if epslon < 0
                                                    ="Dominio 3a"
  "Dominio 1"
  if ((0 < epslon)) \land (epslon \leq 0, 259)
    "Dominio 2"
  else
    if ((0,259 < epslon)) \land (epslon \leq 0,450)
       "Dominio 3a"
    else
       if (((0,450 < epslon)) \land (epslon \leq 0,628))
         "Dominio 3b"
         if ((0,628 < epslon)) \land (epslon \leq 1)
           "Dominio 4"
         else
            "Dominio 5"
```

Área de Aço:

bitola := 16 mm

$$A_s := \frac{Mxmd}{(fyd \cdot (d-0, 4 \cdot x))} = 13,2 \text{ cm}^2$$

$$taxa_armadura := \frac{0,208}{100} = 0,0021$$

$$A_{s,min} := taxa_armadura \cdot bw \cdot (d + d') = 4,16 cm^2$$

$$area_bitola := \pi \cdot \frac{\left(bitola^{2}\right)}{4} = 0,0002 \text{ m}^{2}$$

$$num_bitolas := \frac{A_{s}}{area_bitola} = 6,57$$

$$num_bitolas := \frac{A_s}{area\ bitola} = 6,57$$

casas decimais := $mod(num \ bitolas; 1) = 0,5664$

Created using a free version of SMath Studio

if $casas_decimais \le 0,5$ $Num_bitolasadotadas := num_bitolas + (1 - casas_decimais)$

Num bitolasadotadas:=round(num bitolas;0)

Num bitolasadotadas = 7

Espaçamento

Comprimento := L3X

 $Num_espaçamento := Num_bitolasadotadas - 1 = 6$

Espaçamento := Num espaçamento \cdot Comprimento = 150 m

EspaçmentoReal := $\frac{Comprimento}{Espaçamento} \cdot 100 = 16,67$

Espaçamentoadotado := 16 cm

Espaçamento máximo

if $Hlaje \cdot 2 > 20 \text{ cm}$

Smax := 20 cm

else

 $Smax := Hlaje \cdot 2$

Smax = 20 cm

if Espaçamentoadotado > Smax
 Espaçamentoadotado := Smax

Espaçamentoadotado = 16 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 156$$

COMPRIMENTO DE ANCORAGEM(virada)

6118 - 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 $\boldsymbol{\varphi};$
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 ϕ ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 ϕ .

Logo

Comprimentoancoragem := $8 \cdot bitola = 12,8 \text{ cm}$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

 $\label{eq:mminq} \begin{aligned} &\textit{Mminq} := \textit{Mxmq} \cdot 0 & \textit{Mming} := \textit{Mxmg} & \textit{Mmaxq} := \textit{Mxmq} \cdot 0 \text{, 8} & \textit{Mmaxg} := \textit{Mxmg} \\ &\textit{Mxmin}_{freg} := \textit{Mminq} + \textit{Mming} = 0 \text{, 68 kN m} & \textit{Mxmax}_{freg} := \textit{Mmaxq} + \textit{Mmaxg} = 41 \text{, 288 kN m} \end{aligned}$

$$\Delta \textit{M}_{\textit{freq}} := \textit{Mxmax}_{\textit{freq}} - \textit{Mxmin}_{\textit{freq}} = 40,608 \text{ kN m}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$\alpha e := 10$$

$$As_f := NB \cdot area_bitola = 12,5664 \text{ cm}^2$$
 por metro

posição da linha neutra

$$\mathbf{x}_{ii} := \frac{-\alpha \mathbf{e} \cdot \mathbf{A} \mathbf{s}_f + \sqrt{\left(\mathbf{A} \mathbf{s}_f \cdot \alpha \mathbf{e}\right)^2 + 2 \cdot b \mathbf{w} \cdot \alpha \mathbf{e} \cdot d \cdot \mathbf{A} \mathbf{s}_f}}{b \mathbf{w}} = 5,0106 \text{ cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}}{3} + \alpha e \cdot As_f \cdot (d - x_{ii})^2 = 16732,9669 \text{ cm}^4$$

Variação maxima de tensão

$$\Delta \sigma S_{_{S}} := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - x_{_{i\,i}} \right)}{I_{_{i\,i}}} \right) = 242,4254 \text{ MPa}$$

if
$$\Delta \sigma S_s \leq 190 \text{ MPa} = "\text{Não Okay"}$$
 $m := "\text{Okay"}$

else

 $m := "\text{Não Okay"}$

Num bitolasadotadas:=10

Espaçamento

$$\label{eq:comprimento} \textit{Comprimento} := \textit{L3X} \qquad \qquad \textit{Num_espaçamento} := \textit{Num_bitolasadotadas} - 1 = 9$$

 $\textit{Espaçamento} := \textit{Num_espaçamento} \cdot \textit{Comprimento} = \texttt{225 m}$

EspaçmentoReal :=
$$\frac{Comprimento}{Espaçamento} \cdot 100 = 11,11$$
 Espaçamentoadotado := 11 cm

Espaçamento máximo

Smax = 20 cm

if Espaçamentoadotado > Smax
 Espaçamentoadotado := Smax

Espaçamentoadotado = 11 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 227$$

COMPRIMENTO DE ANCORAGEM(virada)

6118 - 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ¢;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 φ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 ϕ .

Logo

Comprimentoancoragem := $8 \cdot bitola = 12,8 \text{ cm}$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

 $\textit{Mminq} := \textit{Mxmq} \cdot \textit{0} \quad \textit{Mming} := \textit{Mxmg} \quad \textit{Mmaxq} := \textit{Mxmq} \cdot \textit{0,8} \quad \textit{Mmaxg} := \textit{Mxmg}$

$$Mxmin_{freq} := Mminq + Mming = 0,68 \text{ kN m}$$
 $Mxmax_{freq} := Mmaxq + Mmaxg = 41,288 \text{ kN m}$

$$\Delta \rm M_{freq} := \rm Mxmax_{freq} - \rm Mxmin_{freq} = 40,608~kN~m$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 9,0909 \qquad area_bitola = 0,0002 \text{ m}^2$$

$$\alpha e := 10$$

$$As_f := NB \cdot area_bitola = 18,2784 \text{ cm}^2$$
 por metro

posição da linha neutra

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 5,7995 \text{ cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}}{3} + \alpha e \cdot As_f \cdot (d - x_{ii})^2 = 21974,5347 \text{ cm}^4$$

Variação maxima de tensão

$$\Delta \sigma S_{_{S}} := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - x_{_{\dot{1}\dot{1}}} \right)}{I_{_{\dot{1}\dot{1}}}} \right) = 170,0215 \text{ MPa}$$

if
$$\Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Okay"}$$

$$m := \text{"Okay"}$$
else
$$m := \text{"Não Okay"}$$

Verificação e Formação de Fissura

$$\alpha := 1,5 \qquad Yt := \frac{Hlaje}{2} = 10 \text{ cm} \qquad F_{ct} := 0,7 \cdot \left(0,3 \cdot \left(\sqrt[3]{fck}^2\right)\right) \quad \frac{1,7955}{10} = 0,1795$$

$$Ic := \frac{bw \cdot Hlaje}{12} = 66666,6667 \text{ cm}^4$$

Momento fissuração para lajes

$$\mathit{Mr} := \frac{\alpha \cdot \mathit{F}_{\mathit{ct}} \cdot \mathit{Ic}}{\mathit{Yt}}$$

Mr := 2027,528 kN cm

Momento fletor maximo meio do vão

$$Md_{rara} := Mxmg + Mxmq = 5144 \ kN \ cm$$
 if $Mr < Md_{rara}$ $m := "Ocorre fissuras e a peça trabalha no estádio 2" else $m := "n\~ao ocorre fissuras"$$

m = "Ocorre fissuras e a peça trabalha no estádio 2"

Verificação de Abertura de Fissuras

barras nervuradas

 $fct_m := 0,22104 \frac{kN}{2}$

$$\begin{aligned} &\mathit{Md}_{\mathit{freq}} \coloneqq \mathit{Mxmg} + \mathsf{0.5} \cdot \mathit{Mxmq} = \mathsf{26.06 \ kN \ m} & \alpha e \coloneqq \mathsf{15} & \eta_1 \coloneqq \mathsf{2.25} \\ &\mathit{bitola} = \mathsf{16 \ mm} & \mathit{d'} = \mathsf{5 \ cm} & \mathit{Esi} \coloneqq \mathsf{210 \ GPa} \end{aligned}$$

$$\mathit{fct}_m \coloneqq \mathsf{0.3} \cdot \left(\frac{2}{\mathsf{fck}}\right)$$

 $A_{cri} := bw \cdot (d' + 8 \cdot bitola) = 1780 \text{ cm}^2$

$$\rho_{cri} := \frac{As_f}{A_{cri}} = 1,0269 \, \%$$

O cálculo no estádio II (que admite comportamento linear dos materiais e despreza a resistência à tração do concreto) pode ser feito considerando a relação α_{e} entre os módulos de elasticidade do aço e do concreto igual a 15.

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 6,7329 \text{ cm}$$

$$I_{ii} := \frac{bw \cdot x_{ii}}{3} + \alpha e \cdot As_f \cdot \left(d - x_{ii}\right)^2 = 28912,3469 \text{ cm}^4$$
Not for commercial use

$$\sigma_{si} := \alpha e \cdot \left(\frac{Md_{freq} \cdot (d - x_{ii})}{I_{ii}} \right) = 11,1772 \cdot \frac{kN}{cm}$$

logo

O valor caracterítico da abertura de fissuras (w_k) , determinado para cada parte da região de envolvimento, é o menor obtido pelas expressões a seguir.

$$w_k = \frac{\phi_i}{12.5\eta_1} \frac{\sigma_{Si}}{E_{Si}} \frac{3\sigma_{Si}}{f_{ct,m}}$$
 (8.161)

$$w_k = \frac{\phi_i}{12.5\eta_1} \frac{\sigma_{Si}}{E_{Si}} \left(\frac{4}{\rho_{ri}} + 45 \right) \tag{8.162}$$

$$Wk1 := \left(\frac{bitola}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{si}}{Esi}\right) \cdot \left(\frac{3 \cdot \sigma_{si}}{fct_m}\right) = 0,0459 \text{ mm}$$

$$Wk2 := \left(\frac{bitola}{12,5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{si}}{Esi}\right) \cdot \left(\frac{4}{\rho_{cri}} + 45\right) = 0,1316 \text{ mm}$$

if Wk1 < Wk2

Wk := Wk1

else

Wk := Wk2

Abertura da fissura

$$Wk = 0,0459 \text{ mm}$$

if Wk < 0, 3 mm = "okay"

"okay"

else

"não okay"

⊡—Laje4 —

$$L4X = 25 \text{ m}$$
 $L4Y = 2,92 \text{ m}$

-tabelas -

∃—Armaduras Principal -

$$Mxmq := 20,34 \cdot (kN m) Mxmg := 0,34 \cdot (kN m)$$

Cálculo do momento de desing

$$Mxmqd := Mxmq \cdot 1, 5 = 30, 51 (kN m)$$
 $Mxmgd := 1, 35 \cdot Mxmg = 0, 459 kN m$

$$Mxmd := Mxmqd + Mxmgd = 30,969 \text{ kN m}$$

Cálculo da área de aço:

$$bw := 100 \text{ cm}$$
 $d' := 5 \text{ cm}$ $fck := 30 \text{ MPa} = 3 \frac{\text{kN}}{\text{cm}^2}$ $fyk := 500 \text{ MPa} = 50 \frac{\text{kN}}{\text{cm}^2}$

$$d := Hlaje - d' = 15 \text{ cm}$$

$$fcd := \frac{fck}{1,4}$$

$$fyd := \frac{fyk}{1.15}$$

Mxmd = 30,969 kN m

Cálculo da ductilidade ξ da seção transversal

$$a := 0, 4$$

$$b := -1$$

$$c := \frac{\textit{Mxmd}}{\left(0,68 \cdot \textit{bw} \cdot \textit{d}^2 \cdot \textit{fcd}\right)} = 0,0945$$

$$delta := b^2 - 4 \cdot a \cdot c = 0,8489$$

if
$$delta < 0$$
 = "Ok"

"Seção Inválida"

else

"Ok"

$$raiz_1 := \frac{(-b + \sqrt{delta})}{(2 \cdot a)} = 2,4017$$

$$raiz_2 := \frac{\left(-b - \sqrt{delta'}\right)}{\left(2 \cdot a\right)} = 0,0983$$

$$epslon := \min \left(\left[\begin{array}{cc} raiz_1 & raiz_2 \\ \end{array} \right] \right) = 0,0983$$

Verificação de necessidade de armadura dupla

if
$$epslon \le 0,45 = "okay"$$
"okay"

0100

"não okay"

Posição da Linha Neutra:

$$x := epslon \cdot d = 1,4749 \text{ cm}$$

$$y := 0, 8 \cdot x = 1,1799$$
 cm

Definição dos Domínios:

```
Dominio := ""
if epslon < 0
                                                           = "Dominio 2"
  "Dominio 1"
else
  if (((0 < epslon)) \land (epslon \leq 0, 259))
     "Dominio 2"
  else
     if (((0,259 < epslon)) \land (epslon \leq 0,450))
        "Dominio 3a"
        if (((0,450 < epslon)) \land (epslon \leq 0,628))
          "Dominio 3b"
        else
          if ((0,628 < epslon)) \land (epslon \leq 1)
             "Dominio 4"
          else
             "Dominio 5"
Área de Aço:
bitola := 12,5 \text{ mm}
A_s := \frac{Mxmd}{(fyd \cdot (d - 0, 4 \cdot x))} = 4,94 \text{ cm}^2
```

$$taxa_armadura := \frac{0,208}{100} = 0,0021$$

$$A_{s,min} := taxa_armadura \cdot bw \cdot (d + d') = 4,16 cm^2$$

$$area_bitola := \pi \cdot \frac{\left(bitola^{2}\right)}{4} = 0,0001 \text{ m}^{2}$$

$$num_bitolas := \frac{A_{s}}{area_bitola} = 4,03$$

casas decimais := mod(num bitolas; 1) = 0,0279

```
if casas decimais \leq 0,5
  Num bitolasadotadas := num bitolas +(1-casas decimais)
else
  Num bitolasadotadas := round (num bitolas; 0)
```

Num bitolasadotadas = 5

Espaçamento

Comprimento := L4XNum espaçamento := Num bitolasadotadas -1 = 4

Espaçamento:= Num espaçamento · Comprimento = 100 m

$$\textit{EspaçmentoReal} := \frac{\textit{Comprimento}}{\textit{Espaçamento}} \cdot 100 = 25$$

$$\textit{Espaçamentoadotado} := 20 \text{ cm}$$

Espaçamento máximo

if Hlaje · 2 > 20 cm
 Smax := 20 cm
else
 Smax := Hlaje · 2

Smax = 20 cm

if Espaçamentoadotado > Smax
 Espaçamentoadotado := Smax

Espaçamentoadotado = 20 cm

Numero de bitolas totais

$$NumbitolasT \coloneqq rac{Comprimento}{Espaçamentoadotado} = 125$$

COMPRIMENTO DE ANCORAGEM(virada) 6118 – 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ¢;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 $\phi;$
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 $\ensuremath{\varphi}\xspace$

Logo

Comprimentoancoragem := 8 ⋅ bitola = 10 cm

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

$$\label{eq:mminq} \begin{aligned} \mathit{Mminq} &:= \mathit{Mxmq} \cdot 0 \quad \mathit{Mming} := \mathit{Mxmg} \quad \mathit{Mmaxq} := \mathit{Mxmq} \cdot 0,8 \quad \mathit{Mmaxg} := \mathit{Mxmg} \\ \mathit{Mxmin}_{freq} &:= \mathit{Mminq} + \mathit{Mming} = 0,34 \text{ kN m} \quad \mathit{Mxmax}_{freq} := \mathit{Mmaxq} + \mathit{Mmaxg} = 16,612 \text{ kN m} \\ \Delta \mathit{M}_{freq} &:= \mathit{Mxmax}_{freq} - \mathit{Mxmin}_{freq} = 16,272 \text{ kN m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

posição da linha neutra

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 3,7205 \text{ cm}$$

$$Not for commercial use}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot \left(d - x_{ii}^{3}\right)^{2} = 9523,2119 \text{ cm}^{4}$$

Variação maxima de tensão

$$\Delta \sigma S_s := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - x_{ii} \right)}{I_{ii}} \right) = 192,7293 \text{ MPa}$$

```
if \Delta \sigma S_s \leq 190 MPa = "Não Okay"
   m := "Não Okay"
```

Num bitolasadotadas := 7

Espaçamento

Comprimento := L4X

 $Num_espaçamento := Num_bitolasadotadas - 1 = 6$

Espaçamento:= Num espaçamento · Comprimento = 150 m

EspaçmentoReal :=
$$\frac{Comprimento}{Espaçamento} \cdot 100 = 16,67$$
 Espaçamentoadotado := 16 cm

Espaçamento máximo

Smax = 20 cm

if Espaçamentoadotado > SmaxEspaçamentoadotado := Smax

Espaçamentoadotado = 16 cm

Numero de bitolas totais

$$extit{NumbitolasT} \coloneqq rac{ extit{Comprimento}}{ extit{Espaçamentoadotado}} = 156$$

COMPRIMENTO DE ANCORAGEM(virada) 6118 - 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ϕ ;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a $4\ \phi$;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 ϕ .

Logo

Comprimentoancoragem := 8 ⋅ bitola = 10 cm

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

 $\label{eq:mminq} \begin{aligned} \mathit{Mminq} &:= \mathit{Mxmq} \cdot \mathsf{0} \quad \mathit{Mming} := \mathit{Mxmg} \quad \mathit{Mmaxq} := \mathit{Mxmq} \cdot \mathsf{0}, \mathsf{8} \quad \mathit{Mmaxg} := \mathit{Mxmg} \\ & \mathit{Mxmin}_{freq} := \mathit{Mminq} + \mathit{Mming} = \mathsf{0}, \mathsf{34} \; \mathsf{kN} \; \mathsf{m} \qquad \mathit{Mxmax}_{freq} := \mathit{Mmaxq} + \mathit{Mmaxg} = \mathsf{16}, \mathsf{612} \; \mathsf{kN} \; \mathsf{m} \\ & \Delta \mathit{M}_{freq} := \mathit{Mxmax}_{freq} - \mathit{Mxmin}_{freq} = \mathsf{16}, \mathsf{272} \; \mathsf{kN} \; \mathsf{m} \end{aligned}$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_a = 10$$

 $As_f := NB \cdot area_bitola = 7,6699 \text{ cm}^2$ por metro

posição da linha neutra

$$\mathbf{x}_{ii} := \frac{-\alpha \mathbf{e} \cdot \mathbf{A} \mathbf{s}_{f} + \sqrt{\left(\mathbf{A} \mathbf{s}_{f} \cdot \alpha \mathbf{e}\right)^{2} + 2 \cdot b \mathbf{w} \cdot \alpha \mathbf{e} \cdot d \cdot \mathbf{A} \mathbf{s}_{f}}}{b \mathbf{w}} = 4,0908 \text{ cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot \left(d - x_{ii}^{3}\right)^{2} = 11409,9383 \text{ cm}^{4}$$

Variação maxima de tensão

$$\Delta \sigma S_s := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - x_{ii} \right)}{I_{ii}} \right) = 155,5791 \text{ MPa}$$

if
$$\Delta \sigma S_s \le 190 \text{ MPa} = \text{"Okay"}$$
 $m := \text{"Okay"}$
else
 $m := \text{"Não Okay"}$

Verificação e Formação de Fissura

$$\alpha := 1,5 \qquad \text{Yt} := \frac{\text{Hlaje}}{2} = 10 \text{ cm} \qquad F_{ct} := 0,7 \cdot \left(0,3 \cdot \left(\sqrt[3]{fck}^2\right)\right) \quad \frac{1,7955}{10} = 0,1795$$

$$Ic := \frac{bw \cdot \text{Hlaje}}{12} = 66666,6667 \text{ cm}^4$$

Momento fissuração para lajes

$$\mathit{Mr} := \frac{\alpha \cdot \mathit{F}_{\mathit{ct}} \cdot \mathit{Ic}}{\mathit{Yt}}$$

Mr := 2027,528 kN cm

Momento fletor maximo meio do vão

 $Md_{rara} := Mxmg + Mxmq = 2068 \text{ kN cm}$

if $Mr < Md_{rara}$

 $m \coloneqq$ "Ocorre fissuras e a peça trabalha no estádio 2"

else

m := "não ocorre fissuras"

m = "Ocorre fissuras e a peça trabalha no estádio 2"

Verificação de Abertura de Fissuras

barras nervuradas

$$Md_{freq} := Mxmg + 0,5 \cdot Mxmq = 10,51 \text{ kN m}$$
 $\alpha e := 15$ $\eta_1 := 2,25$

$$bitola = 12,5 \text{ mm}$$
 $d' = 5 \text{ cm}$ $Esi := 210 \text{ GPa}$

$$fct_m := 0, 3 \cdot \left(\frac{2}{3}\right)$$

$$fct_m := 0,28964 \frac{kN}{cm^2}$$

$$A_{cri} := bw \cdot (d' + 8 \cdot bitola) = 1500 \text{ cm}^2$$

$$\rho_{cri} := \frac{As_f}{A_{cri}} = 0,5113 \,\%$$

O cálculo no estádio II (que admite comportamento linear dos materiais e despreza a resistência à tração do concreto) pode ser feito considerando a relação α_{e} entre os módulos de elasticidade do aço e do concreto igual a 15.

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 4,836 \text{ cm}$$

$$I_{ii} := \frac{bw \cdot x_{ii}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii})^{2} = 15655,2772 \text{ cm}^{4}$$

$$\sigma_{si} := \alpha e \cdot \left(\frac{Md_{freq} \cdot (d - x_{ii})}{I_{ii}} \right) = 10,2352 \cdot \frac{kN}{2}$$

logo

O valor caracterítico da abertura de fissuras (w_k) , determinado para cada parte da região de envolvimento, é o menor obtido pelas expressões a seguir.

$$w_k = \frac{\phi_i}{12.5\eta_1} \frac{\sigma_{Si}}{E_{Si}} \frac{3\sigma_{Si}}{f_{ct,m}}$$
(8.161)

$$w_k = \frac{\phi_i}{12.5\eta_1} \frac{\sigma_{Si}}{E_{Si}} \left(\frac{4}{\rho_{ri}} + 45 \right) \tag{8.162}$$

$$Wk1 := \left(\frac{bitola}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{si}}{Esi}\right) \cdot \left(\frac{3 \cdot \sigma_{si}}{fct_m}\right) = 0,023 \text{ mm}$$

$$Wk2 := \left(\frac{bitola}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{si}}{Esi}\right) \cdot \left(\frac{4}{\rho_{cri}} + 45\right) = 0,1792 \text{ mm}$$

if Wk1 < Wk2 Wk := Wk1else Wk := Wk2

Abertura da fissura

Wk = 0,023 mm

∃—Armaduras Secundária ———

$$Mxmq := 15,79 \cdot (kN m) Mxmg := 0,06 \cdot (kN m)$$

Cálculo do momento de desing

$$Mxmqd := Mxmq \cdot 1, 5 = 23,685 (kN m)$$
 $Mxmgd := 1,35 \cdot Mxmg = 0,081 kN m$

Mxmd := Mxmqd + Mxmgd = 23,766 kN m

Cálculo da área de aço:

$$bw := 100 \text{ cm}$$
 $d' := 5 \text{ cm}$ $fck := 30 \text{ MPa} = 3 \frac{kN}{cm^2}$ $fyk := 500 \text{ MPa} = 50 \frac{kN}{cm^2}$ $d := Hlaje - d' = 15 \text{ cm}$ $fcd := \frac{fck}{1, 4}$ $fyd := \frac{fyk}{1, 15}$ $fyd := \frac{fyk}{1, 15}$

Cálculo da ductilidade ξ da seção transversal

$$a := 0, 4$$
 $b := -1$
 $c := \frac{Mxmd}{\left(0,68 \cdot bw \cdot d^2 \cdot fcd\right)} = 0,0725$
 $delta := b^2 - 4 \cdot a \cdot c = 0,884$

if $delta < 0 = "0k"$

"Seção Inválida"
else
"0k"

$$raiz_1 := \frac{(-b + \sqrt{delta})}{(2 \cdot a)} = 2,4253$$

$$raiz_2 := \frac{\left(-b - \sqrt{delta'}\right)}{\left(2 \cdot a\right)} = 0,0747$$

$$epslon := \min \left(\left[\begin{array}{cc} raiz_1 & raiz_2 \end{array} \right] \right) = 0,0747$$

Verificação de necessidade de armadura dupla

```
if epslon \le 0,45 = "okay"
  "okay"
else
  "não okay"
```

Posição da Linha Neutra:

```
x := epslon \cdot d = 1,1208 \text{ cm}
y := 0, 8 \cdot x = 0,8967 cm
```

Definição dos Domínios:

```
Dominio := ""
if epslon < 0
                                                     = "Dominio 2"
  "Dominio 1"
else
  if (((0 < epslon)) \land (epslon \leq 0, 259))
    "Dominio 2"
  else
    if ((0,259 < epslon)) \land (epslon \leq 0,450)
       "Dominio 3a"
       if ((0,450 < epslon)) \land (epslon \leq 0,628)
         "Dominio 3b"
       else
         if (((0,628 < epslon)) \land (epslon \leq 1))
            "Dominio 4"
         else
            "Dominio 5"
```

Área de Aço:

bitola := 10 mm

$$A_s := \frac{Mxmd}{(fyd \cdot (d-0, 4 \cdot x))} = 3,76 \text{ cm}^2$$

$$taxa_armadura := \frac{0,208}{100} = 0,0021$$

$$\mathbf{A}_{s,\min} := \mathsf{taxa_armadura} \cdot \mathsf{bw} \cdot (d+d') = 4,16 \; \mathrm{cm}^2$$

$$area_bitola := \pi \cdot \frac{\left(bitola^{2}\right)}{4} = 7,854 \cdot 10^{-5} \text{ m}^{2}$$

$$num_bitolas := \frac{A_{s}}{area_bitola} = 4,78$$

$$num_bitolas := \frac{A_s}{area_bitola} = 4,78$$

casas decimais := $mod(num \ bitolas; 1) = 0,7828$

Created using a free version of SMath Studio

```
if casas\_decimais \le 0,5

Num\_bitolasadotadas := num\_bitolas + (1 - casas\_decimais)

else

Num\_bitolasadotadas := round(num\_bitolas; 0)
```

Num bitolasadotadas = 5

Espaçamento

Comprimento := L4Y

 $Num\ espaçamento := Num\ bitolasadotadas - 1 = 4$

Espaçamento:= Num espaçamento · Comprimento = 11,68 m

$$\textit{EspaçmentoReal} := \frac{\textit{Comprimento}}{\textit{Espaçamento}} \cdot 100 = 25$$

Espaçamentoadotado:=20 cm

Espaçamento máximo

```
if Hlaje \cdot 2 > 20 cm

Smax := 20 cm

else

Smax := Hlaje \cdot 2

Smax = 20 cm
```

if Espaçamentoadotado > Smax
 Espaçamentoadotado := Smax

Espaçamentoadotado = 20 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 15$$

COMPRIMENTO DE ANCORAGEM(virada)

6118 - 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ϕ ;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a $4\ \phi$;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 ϕ .

Logo

 $Comprimentoancoragem := 8 \cdot bitola = 8 cm$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

 $\textit{Mminq} := \textit{Mxmq} \cdot \textit{0} \quad \textit{Mming} := \textit{Mxmg} \quad \textit{Mmaxq} := \textit{Mxmq} \cdot \textit{0,8} \quad \textit{Mmaxg} := \textit{Mxmg}$

Created using a free version of SMath Studio

$$\begin{aligned} \textit{Mxmin}_{freq} \coloneqq \textit{Mminq} + \textit{Mming} &= \texttt{0,06 kN m} & \textit{Mxmax}_{freq} \coloneqq \textit{Mmaxq} + \textit{Mmaxg} &= \texttt{12,692 kN m} \\ & \Delta \textit{M}_{freq} \coloneqq \textit{Mxmax}_{freq} - \textit{Mxmin}_{freq} &= \texttt{12,632 kN m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 5$$
 $area_bitola = 7,854 \cdot 10^{-5} \text{ m}^2$

$$\alpha e := 10$$

$$As_f := NB \cdot area_bitola = 3,927 \text{ cm}^2$$
 por metro

posição da linha neutra

$$\mathbf{x}_{ii} := \frac{-\alpha e \cdot \mathbf{A} s_f + \sqrt{\left(\mathbf{A} s_f \cdot \alpha e\right)^2 + 2 \cdot b w \cdot \alpha e \cdot d \cdot \mathbf{A} s_f}}{b w} = 3,062 \text{ cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}}{3} + \alpha e \cdot As_f \cdot (d - x_{ii})^2 = 6553,5453 \text{ cm}^4$$

Variação maxima de tensão

$$\Delta \sigma S_s := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - x_{ii} \right)}{I_{ii}} \right) = 230,105 \text{ MPa}$$

if
$$\Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Não Okay"}$$
 $m := \text{"Okay"}$

else

 $m := \text{"Não Okay"}$

Num bitolasadotadas:=8

Espaçamento

$$\label{eq:comprimento} \textit{Comprimento} := \textit{L4Y} \\ \textit{Num_espaçamento} := \textit{Num_bitolasadotadas} - 1 = 7$$

 $\textit{Espaçamento} := \textit{Num_espaçamento} \cdot \textit{Comprimento} = \texttt{20,44m}$

Espaçamento máximo

if
$$Hlaje \cdot 2 > 20$$
 cm
 $Smax := 20$ cm
else
 $Smax := Hlaje \cdot 2$
 $Smax = 20$ cm

if Espaçamentoadotado > Smax
 Espaçamentoadotado := Smax

Espaçamentoadotado = 14 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 21$$

COMPRIMENTO DE ANCORAGEM(virada) 6118 – 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ¢;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 φ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 ф.

Logo

Comprimentoancoragem := $8 \cdot bitola = 8 \text{ cm}$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

$$\textit{Mminq} := \textit{Mxmq} \cdot \textit{0} \quad \textit{Mming} := \textit{Mxmg} \quad \textit{Mmaxq} := \textit{Mxmq} \cdot \textit{0,8} \quad \textit{Mmaxg} := \textit{Mxmg}$$

$$\begin{aligned} \textit{Mxmin}_{freq} \coloneqq \textit{Mminq} + \textit{Mming} &= \texttt{0,06 kN m} & \textit{Mxmax}_{freq} \coloneqq \textit{Mmaxq} + \textit{Mmaxg} &= \texttt{12,692 kN m} \\ & \Delta \textit{M}_{freq} \coloneqq \textit{Mxmax}_{freq} - \textit{Mxmin}_{freq} &= \texttt{12,632 kN m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 7,1429 \qquad area_bitola = 7,854 \cdot 10^{-5} \text{ m}^2$$

$$\alpha e := 10$$

$$As_f := NB \cdot area_bitola = 5,61 \text{ cm}^2$$
 por metro

posição da linha neutra

$$\mathbf{x}_{ii} := \frac{-\alpha \mathbf{e} \cdot \mathbf{A} \mathbf{s}_f + \sqrt{\left(\mathbf{A} \mathbf{s}_f \cdot \alpha \mathbf{e}\right)^2 + 2 \cdot b \mathbf{w} \cdot \alpha \mathbf{e} \cdot d \cdot \mathbf{A} \mathbf{s}_f}}{b \mathbf{w}} = 3,5796 \text{ cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii})^{2} = 8845,7666 \text{ cm}^{4}$$

Variação maxima de tensão

$$\Delta \sigma S_{_{S}} := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - X_{_{\dot{1}\dot{1}}} \right)}{I_{_{\dot{1}\dot{1}}}} \right) = 163,0863 \text{ MPa}$$

if
$$\Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Okay"}$$
 $m := \text{"Okay"}$

else

 $m := \text{"Não Okay"}$

Verificação e Formação de Fissura

$$\alpha := 1,5 \qquad Yt := \frac{H laje}{2} = 10 \text{ cm} \qquad F_{ct} := 0,7 \cdot \left(0,3 \cdot \left(\sqrt[3]{fck}^2\right)\right) \quad \frac{1,7955}{10} = 0,1795$$

$$Ic := \frac{bw \cdot H laje}{12} = 66666,6667 \text{ cm}^4$$

Momento fissuração para lajes

$$\mathit{Mr} := \frac{\alpha \cdot \mathit{F}_{\mathit{ct}} \cdot \mathit{Ic}}{\mathit{Yt}}$$

Mr := 2027,528 kN cm

Momento fletor maximo meio do vão

$$Md_{rara} := Mxmg + Mxmq = 1585 \text{ kN cm}$$

if $Mr < Md_{rara}$
 $m := "Ocorre fissuras e a peça trabalha no estádio 2" else

 $m := "não ocorre fissuras"$$

m = "não ocorre fissuras"

Verificação de Abertura de Fissuras

$\textit{Md}_{\textit{freq}} := \textit{Mxmg} + 0\text{, } 5 \cdot \textit{Mxmq} = 7\text{, } 955 \text{ kN m} \qquad \alpha e := 15 \qquad \eta_{\textit{1}} := 2\text{, } 25$

$$bitola = 10 \text{ mm}$$
 $d' = 5 \text{ cm}$ $Esi := 210 \text{ GPa}$

$$fct_{m} := 0, 3 \cdot \left(\frac{2}{3}\right) = 28964, 6815$$

$$fct_{m} := 0, 28964 \cdot \frac{kN}{2}$$

$$A_{cri} := bw \cdot (d' + 8 \cdot bitola) = 1300 \text{ cm}^2$$

$$\rho_{cri} := \frac{As_f}{A_{cri}} = 0,4315 \%$$

O cálculo no estádio II (que admite comportamento linear dos materiais e despreza a resistência à tração do concreto) pode ser feito considerando a relação α_{e} entre os módulos de elasticidade do aço e do concreto igual a 15.

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 4,2529 \text{ cm}$$

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii})^{2} = 12283,4115 \text{ cm}^{4}$$

$$\sigma_{si} := \alpha e \cdot \left(\frac{Md_{freq} \cdot (d - x_{ii})}{I_{ii}} \right) = 10,4401 \cdot \frac{kN}{cm}$$

logo

O valor caracterítico da abertura de fissuras (w_k) , determinado para cada parte da região de envolvimento, é o menor obtido pelas expressões a seguir.

$$w_{k} = \frac{\phi_{i}}{12.5\eta_{I}} \frac{\sigma_{Si}}{E_{Si}} \frac{3\sigma_{Si}}{f_{ct,m}}$$
(8.161)

$$w_k = \frac{\phi_i}{12.5 \, \eta_I} \frac{\sigma_{Si}}{E_{Si}} \left(\frac{4}{\rho_{ri}} + 45 \right) \tag{8.162}$$

$$\textit{Wk1} := \left(\frac{\textit{bitola}}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{\textit{si}}}{\textit{Esi}}\right) \cdot \left(\frac{3 \cdot \sigma_{\textit{si}}}{\textit{fct}_{\textit{m}}}\right) = 0,0191 \; \text{mm}$$

$$Wk2 := \left(\frac{\textit{bitola}}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{\textit{si}}}{\textit{Esi}}\right) \cdot \left(\frac{4}{\rho_{\textit{cri}}} + 45\right) = 0,1718 \text{ mm}$$

$$\begin{array}{cl} \text{if} & \textit{W}k1 < \textit{W}k2 \\ \textit{W}k := \textit{W}k1 \end{array}$$

else

Wk := Wk2

Abertura da fissura

$$Wk = 0,0191 \text{ mm}$$

"não okay"

☐─Armaduras Engaste —

$$Mxmq := 50,76 \cdot (kN m) \quad Mxmg := 0,68 \cdot (kN m)$$

Cálculo do momento de desing

$$Mxmqd := Mxmq \cdot 1, 5 = 76, 14 (kN m)$$

$$Mxmgd := 1,35 \cdot Mxmg = 0,918 \text{ kN m}$$

$$Mxmd := Mxmqd + Mxmgd = 77,058 \text{ kN m}$$

Cálculo da área de aço:

$$bw := 100 \text{ cm}$$
 $d' := 5 \text{ cm}$

$$fck := 30 \text{ MPa} = 3 \frac{kN}{2}$$

$$fck := 30 \text{ MFa} = 3 \frac{kN}{cm^2}$$
 $fyk := 500 \text{ MPa} = 50 \frac{kN}{cm}$

$$d := Hlaje - d' = 15 \text{ cm}$$

$$fcd := \frac{fck}{1.4}$$

$$fyd := \frac{fyk}{1.15}$$

Mxmd = 77,058 kN m

Cálculo da ductilidade ξ da seção transversal

$$a := 0, 4$$
 $b := -1$
 $c := \frac{Mxmd}{\left(0,68 \cdot bw \cdot d^2 \cdot fcd\right)} = 0,235$

$$delta := b^2 - 4 \cdot a \cdot c = 0,6239$$

$$raiz_1 := \frac{(-b + \sqrt{delta'})}{(2 \cdot a)} = 2,2374$$

$$raiz_2 := \frac{(-b - \sqrt{delta'})}{(2 \cdot a)} = 0,2626$$

$$epslon := min \left(\left[\begin{array}{cc} raiz_1 & raiz_2 \\ \end{array} \right] \right) = 0,2626$$

Verificação de necessidade de armadura dupla

Posição da Linha Neutra:

$$x := epslon \cdot d = 3,9394 \text{ cm}$$

 $y := 0,8 \cdot x = 3,1515 \text{ cm}$

Definição dos Domínios:

```
Dominio := ""
if epslon < 0
                                                           = "Dominio 3a"
  "Dominio 1"
  if (((0 < epslon)) \land (epslon \leq 0, 259))
     "Dominio 2"
     if ((0,259 < epslon)) \land (epslon \leq 0,450)
        "Dominio 3a"
     else
        if ((0,450 < epslon)) \land (epslon \leq 0,628))
           "Dominio 3b"
        else
          if ((0,628 < epslon)) \land (epslon \leq 1)
            "Dominio 4"
          else
             "Dominio 5"
Área de Aço:
bitola := 16 mm
A_s := \frac{Mxmd}{(fyd \cdot (d-0, 4 \cdot x))} = 13,2 \text{ cm}^2
taxa_armadura := \frac{0,208}{100} = 0,0021
A_{s,min} := taxa\_armadura \cdot bw \cdot (d + d') = 4,16 cm^2
```

$$area_bitola := \pi \cdot \frac{\left(bitola^{2}\right)}{4} = 0,0002 \text{ m}^{2}$$

$$num_bitolas := \frac{A_{s}}{area_bitola} = 6,57$$

$$num_bitolas := \frac{A_s}{area_bitola} = 6,57$$

casas decimais $= mod(num \ bitolas; 1) = 0,5664$

if casas decimais $\leq 0,5$

 $Num_bitolasadotadas := num_bitolas + (1 - casas_decimais)$ else

Num bitolasadotadas := round (num bitolas; 0)

Num bitolasadotadas = 7

Espaçamento

Comprimento := L4XNum espaçamento := Num bitolasadotadas -1=6

Espaçamento := Num espaçamento · Comprimento = 150 m

 $\textit{EspaçmentoReal} := \frac{\textit{Comprimento}}{\textit{Espaçamento}} \cdot 100 = 16,67$ Espaçamentoadotado := 16 cm

Espaçamento máximo

if $Hlaje \cdot 2 > 20$ cm Smax := 20 cm else $Smax := Hlaje \cdot 2$ Smax = 20 cm

if Espaçamentoadotado > Smax
 Espaçamentoadotado := Smax

Espaçamentoadotado = 16 cm

Numero de bitolas totais

$$extit{NumbitolasT} \coloneqq rac{ extit{Comprimento}}{ extit{Espaçamentoadotado}} = 156$$

COMPRIMENTO DE ANCORAGEM(virada)

6118 - 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ¢;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 ϕ ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 ф.

Logo

Comprimentoancoragem := $8 \cdot bitola = 12,8 \text{ cm}$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

$$\label{eq:mminq} \begin{aligned} \mathit{Mminq} &:= \mathit{Mxmq} \cdot 0 \quad \mathit{Mming} := \mathit{Mxmg} \quad \mathit{Mmaxq} := \mathit{Mxmq} \cdot 0,8 \quad \mathit{Mmaxg} := \mathit{Mxmg} \\ \mathit{Mxmin}_{freq} &:= \mathit{Mminq} + \mathit{Mming} = 0,68 \text{ kN m} \quad \mathit{Mxmax}_{freq} := \mathit{Mmaxq} + \mathit{Mmaxg} = 41,288 \text{ kN m} \\ \Delta \mathit{M}_{freq} &:= \mathit{Mxmax}_{freq} - \mathit{Mxmin}_{freq} = 40,608 \text{ kN m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$\alpha e := 10$$

$$\mathsf{As}_f \coloneqq \mathit{NB} \cdot \mathit{area_bitola} = \mathsf{12,5664~cm}^2 \qquad \mathsf{por~metro}$$

posição da linha neutra

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 5,0106 \text{ cm}$$

Not for commercial use

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii})^{2} = 16732,9669 \text{ cm}^{4}$$

Variação maxima de tensão

$$\Delta \sigma S_{_{S}} := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - X_{_{\dot{1}\dot{1}}} \right)}{I_{_{\dot{1}\dot{1}}}} \right) = 242,4254 \text{ MPa}$$

```
if \Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Não Okay"}

m := \text{"Okay"}

else

m := \text{"Não Okay"}
```

Num bitolasadotadas := 10

Espaçamento

Comprimento := L4X

 $Num_espaçamento := Num_bitolasadotadas - 1 = 9$

 $\textit{Espaçamento} := \textit{Num_espaçamento} \cdot \textit{Comprimento} = \texttt{225 m}$

$$\textit{EspaçmentoReal} := \frac{\textit{Comprimento}}{\textit{Espaçamento}} \cdot 100 = 11,11$$

Espaçamentoadotado:=11 cm

Espaçamento máximo

Smax = 20 cm

if Espaçamentoadotado > Smax
 Espaçamentoadotado := Smax

Espaçamentoadotado = 11 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 227$$

COMPRIMENTO DE ANCORAGEM(virada) 6118 – 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ¢;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 φ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 ф.

Logo

Comprimentoancoragem := $8 \cdot bitola = 12,8 \text{ cm}$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

$$\label{eq:mminq} \begin{aligned} \mathit{Mminq} &:= \mathit{Mxmq} \cdot 0 \quad \mathit{Mming} := \mathit{Mxmg} \quad \mathit{Mmaxq} := \mathit{Mxmq} \cdot 0,8 \quad \mathit{Mmaxg} := \mathit{Mxmg} \\ \mathit{Mxmin}_{freq} &:= \mathit{Mminq} + \mathit{Mming} = 0,68 \text{ kN m} \quad \mathit{Mxmax}_{freq} := \mathit{Mmaxq} + \mathit{Mmaxg} = 41,288 \text{ kN m} \\ \Delta \mathit{M}_{freq} &:= \mathit{Mxmax}_{freq} - \mathit{Mxmin}_{freq} = 40,608 \text{ kN m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 9,0909 \qquad area_bitola = 0,0002 \text{ m}^2$$

$$\alpha e := 10$$

$$As_f := NB \cdot area_bitola = 18,2784 \text{ cm}^2 \qquad \text{por metro}$$

posição da linha neutra

$$\mathbf{x}_{\underline{i}\underline{i}} := \frac{-\alpha \mathbf{e} \cdot \mathbf{A} \mathbf{s}_{\underline{f}} + \sqrt{\left(\mathbf{A} \mathbf{s}_{\underline{f}} \cdot \alpha \mathbf{e}\right)^2 + 2 \cdot b \mathbf{w} \cdot \alpha \mathbf{e} \cdot d \cdot \mathbf{A} \mathbf{s}_{\underline{f}}}}{b \mathbf{w}} = 5,7995 \text{ cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii})^{2} = 21974,5347 \text{ cm}^{4}$$

Variação maxima de tensão

$$\Delta \sigma S_s := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - x_{ii} \right)}{I_{ii}} \right) = 170,0215 \text{ MPa}$$

if
$$\Delta \sigma S_s \le 190 \text{ MPa} = \text{"Okay"}$$
 $m := \text{"Okay"}$

else

 $m := \text{"Não Okay"}$

Verificação e Formação de Fissura

$$\alpha := 1,5 \qquad Yt := \frac{Hlaje}{2} = 10 \text{ cm} \qquad F_{ct} := 0,7 \cdot \left(0,3 \cdot \left(\sqrt[3]{fck}^2\right)\right) \quad \frac{1,7955}{10} = 0,1795$$

$$Ic := \frac{bw \cdot Hlaje}{12} = 66666,6667 \text{ cm}^4$$

Not for commercial use

Momento fissuração para lajes

$$\mathit{Mr} := \frac{\alpha \cdot \mathit{F}_{\mathit{ct}} \cdot \mathit{Ic}}{\mathit{Yt}}$$

Mr := 2027,528 kN cm

Momento fletor maximo meio do vão

$$Md_{rara} := Mxmg + Mxmq = 5144 \text{ kN cm}$$

if $Mr < Md_{rara}$

m := "Ocorre fissuras e a peça trabalha no estádio 2"

m := "não ocorre fissuras"

m = "Ocorre fissuras e a peça trabalha no estádio 2"

Verificação de Abertura de Fissuras

barras nervuradas

$$\mathit{Md}_{\mathit{freq}} := \mathit{Mxmg} + 0$$
, $5 \cdot \mathit{Mxmq} = 26$, 06 kN m $\alpha e := 15$ $\eta_1 := 2$, 25

bitola = 16 mm d' = 5 cm Esi := 210 GPa

$$fct_m := 0, 3 \cdot \left(\frac{2}{3}\right)$$

$$fct_m := 0,22104 \frac{kN}{cm^2}$$

$$A_{cri} := bw \cdot (d' + 8 \cdot bitola) = 1780 \text{ cm}^2$$

$$\rho_{cri} := \frac{As_f}{A_{cri}} = 1,0269 \%$$

O cálculo no estádio II (que admite comportamento linear dos materiais e despreza a resistência à tração do concreto) pode ser feito considerando a relação $\alpha_{\rm e}$ entre os módulos de elasticidade do aco e do concreto igual a 15.

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 6,7329 \text{ cm}$$

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii})^{2} = 28912,3469 \text{ cm}^{4}$$

$$\sigma_{si} := \alpha e \cdot \left(\frac{Md_{freq} \cdot \left(d - x_{ii} \right)}{I_{ii}} \right) = 11,1772 \cdot \frac{kN}{cm}$$

logo

O valor caracterítico da abertura de fissuras (w_k) , determinado para cada parte da região de envolvimento, é o menor obtido pelas expressões a seguir.

$$w_k = \frac{\phi_i}{12.5\eta_1} \frac{\sigma_{Si}}{E_{Si}} \frac{3\sigma_{Si}}{f_{ct,m}} \tag{8.161}$$

$$w_k = \frac{\phi_i}{12.5\eta_1} \frac{\sigma_{Si}}{E_{Si}} \left(\frac{4}{\rho_{ri}} + 45 \right) \tag{8.162}$$

$$\mathit{Wk1} := \left(\frac{\mathit{bitola}}{\mathit{12,5} \cdot \eta_\mathit{1}}\right) \cdot \left(\frac{\sigma_{\mathit{si}}}{\mathit{Esi}}\right) \cdot \left(\frac{3 \cdot \sigma_{\mathit{si}}}{\mathit{fct}_\mathit{m}}\right) = 0,0459 \; \mathrm{mm}$$

$$Wk2 := \left(\frac{bitola}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{si}}{Esi}\right) \cdot \left(\frac{4}{\rho_{cri}} + 45\right) = 0,1316 \text{ mm}$$

else

Wk := Wk2

Abertura da fissura

$$Wk = 0,0459 \text{ mm}$$

if Wk < 0,3 mm = "okay""okay"

else

"não okay"

⊡—Laje5

$$L5X = 25 \text{ m}$$
 $L5Y = 2,92 \text{ m}$

⊡—tabelas -

 $Mxmq := 30,75 \cdot (kN m) \quad Mxmg := 0,1 \cdot (kN m)$

Cálculo do momento de desing

 $Mxmqd := Mxmq \cdot 1, 5 = 46,125 (kN m)$ $Mxmgd := 1,35 \cdot Mxmg = 0,135 kN m$

Mxmd := Mxmqd + Mxmgd = 46,26 kN m

Cálculo da área de aço:

$$bw := 100 \text{ cm}$$
 $d' := 5 \text{ cm}$ $fck := 30 \text{ MPa} = 3 \frac{\text{kN}}{\text{cm}^2}$ $fyk := 500 \text{ MPa} = 50 \frac{\text{kN}}{\text{cm}^2}$

$$d \coloneqq \textit{Hlaje} - d' = 15 \text{ cm}$$

$$fcd \coloneqq \frac{fck}{1,4} \qquad \qquad fyd \coloneqq \frac{fyk}{1,15}$$

Mxmd = 46,26 kN m

Cálculo da ductilidade ξ da seção transversal

$$a := 0, 4$$
 $b := -1$
 $c := \frac{Mxmd}{\left(0,68 \cdot bw \cdot d^2 \cdot fcd\right)} = 0,1411$
 $delta := b^2 - 4 \cdot a \cdot c = 0,7742$

if $delta < 0 = \text{"Ok"}$

"Seção Inválida"
else
"Ok"

 $raiz_1 := \frac{\left(-b + \sqrt{delta'}\right)}{\left(2 \cdot a\right)} = 2,3499$

$$raiz_2 := \frac{\left(-b - \sqrt{delta'}\right)}{\left(2 \cdot a\right)} = 0,1501$$

$$epslon := \min \left(\left[\begin{array}{cc} raiz_1 & raiz_2 \end{array} \right] \right) = 0,1501$$

Verificação de necessidade de armadura dupla

```
if epslon ≤ 0,45 = "okay"
  "okay"
else
  "não okay"
```

Posição da Linha Neutra:

```
x := epslon \cdot d = 2,2517 \text{ cm}

y := 0,8 \cdot x = 1,8013 \text{ cm}
```

Definição dos Domínios:

```
Dominio := ""
if epslon < 0
                                                     = "Dominio 2"
  "Dominio 1"
  if (((0 < epslon)) \land (epslon \leq 0, 259))
    "Dominio 2"
  else
    if ((0,259 < epslon)) \land (epslon \leq 0,450)
       "Dominio 3a"
    else
       if (((0,450 < epslon)) \land (epslon \leq 0,628))
         "Dominio 3b"
       else
         if (((0,628 < epslon)) \land (epslon \leq 1))
            "Dominio 4"
         else
            "Dominio 5"
```

Área de Aço:

bitola := 12,5 mm

$$A_s := \frac{Mxmd}{(fyd \cdot (d-0, 4 \cdot x))} = 7,55 \text{ cm}^2$$

$$taxa_armadura := \frac{0,208}{100} = 0,0021$$

$$A_{s,min} := taxa_armadura \cdot bw \cdot (d + d') = 4,16 cm^2$$

$$area_bitola := \pi \cdot \frac{\left(bitola^{2}\right)}{4} = 0,0001 \text{ m}^{2}$$

$$num_bitolas := \frac{A_{s}}{area_bitola} = 6,15$$

$$num_bitolas := \frac{A_s}{area_bitola} = 6,15$$

casas decimais := $mod(num \ bitolas; 1) = 0,1493$

if $casas_decimais \le 0,5$

 $Num_bitolasadotadas := num_bitolas + (1 - casas_decimais)$ else

Num bitolasadotadas := round (num bitolas; 0)

Num bitolasadotadas =
$$7$$

Espaçamento

Comprimento := L5Y

 $Num\ espaçamento := Num\ bitolasadotadas - 1 = 6$

 $\textit{Espaçamento} := \textit{Num_espaçamento} \cdot \textit{Comprimento} = 17\text{,} 52\text{ m}$

$$EspaçmentoReal := \frac{Comprimento}{Espaçamento} \cdot 100 = 16,67$$

$$Espaçamentoadotado := 16,5 \text{ cm}$$

Espaçamento máximo

if
$$Hlaje \cdot 2 > 20$$
 cm

$$Smax := 20 \text{ cm}$$

else

 $Smax := Hlaje \cdot 2$

Smax = 20 cm

if Espaçamentoadotado > Smax

Espaçamentoadotado := Smax

Espaçamentoadotado = 16,5 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 18$$

COMPRIMENTO DE ANCORAGEM(virada) 6118 – 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ϕ ;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 φ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 ф.

Logo

Comprimentoancoragem := 8 ⋅ bitola = 10 cm

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

$$\label{eq:mminq} \begin{aligned} \textit{Mminq} &:= \textit{Mxmq} \cdot 0 \quad \textit{Mming} := \textit{Mxmg} \quad \textit{Mmaxq} := \textit{Mxmq} \cdot 0,8 \quad \textit{Mmaxg} := \textit{Mxmg} \\ \textit{Mxmin}_{freq} &:= \textit{Mminq} + \textit{Mming} = 0,1 \text{ kN m} \quad \textit{Mxmax}_{freq} := \textit{Mmaxq} + \textit{Mmaxg} = 24,7 \text{ kN m} \\ &\Delta \textit{M}_{freq} := \textit{Mxmax}_{freq} - \textit{Mxmin}_{freq} = 24,6 \text{ kN m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 6,0606 \qquad area_bitola = 0,0001 \text{ m}^2$$

$$\alpha e := 10$$

$$As_f := NB \cdot area_bitola = 7,4375 \text{ cm}^2 \qquad \text{por metro}$$

posição da linha neutra

$$\mathbf{x}_{\underline{i}\underline{i}} := \frac{-\alpha \mathbf{e} \cdot \mathbf{A} \mathbf{s}_{\underline{f}} + \sqrt{\left(\mathbf{A} \mathbf{s}_{\underline{f}} \cdot \alpha \mathbf{e}\right)^2 + 2 \cdot b \mathbf{w} \cdot \alpha \mathbf{e} \cdot d \cdot \mathbf{A} \mathbf{s}_{\underline{f}}}}{b \mathbf{w}} = 4,0381 \text{ cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii})^{2} = 11131,9968 \text{ cm}^{4}$$

Variação maxima de tensão

$$\Delta\sigma S_{_{S}} := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - x_{_{\dot{1}\dot{1}}}\right)}{I_{_{\dot{1}\dot{1}}}}\right) = 242,2422 \; \mathrm{MPa}$$

if
$$\Delta \sigma S_s \le 190 \text{ MPa} = \text{"Não Okay"}$$
 $m := \text{"Okay"}$

else

 $m := \text{"Não Okay"}$

Num bitolasadotadas:= 9

Espaçamento

Comprimento := L5Y

$$Num_espaçamento := Num_bitolasadotadas - 1 = 8$$

$$Rote = 89/105$$

Espaçamento := Num espaçamento · Comprimento = 23,36 m

$$\textit{EspaçmentoReal} := \frac{\textit{Comprimento}}{\textit{Espaçamento}} \cdot 100 = 12,5$$

$$\boxed{\textit{Espaçamentoadotado} := 12,5 \text{ cm}}$$

Espaçamento máximo

if
$$Hlaje \cdot 2 > 20$$
 cm
 $Smax := 20$ cm
else
 $Smax := Hlaje \cdot 2$

Smax = 20 cm

if Espaçamentoadotado > Smax Espaçamentoadotado := Smax

Espaçamentoadotado = 12,5 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 23$$

COMPRIMENTO DE ANCORAGEM(virada)

6118 - 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ¢;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 ϕ ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 ϕ .

Logo

 $Comprimentoancoragem := 8 \cdot bitola = 10 cm$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

$$\label{eq:mminq} \begin{aligned} \textit{Mminq} &:= \textit{Mxmq} \cdot 0 \quad \textit{Mming} := \textit{Mxmg} \quad \textit{Mmaxq} := \textit{Mxmq} \cdot 0 \text{, 8} \quad \textit{Mmaxg} := \textit{Mxmg} \\ \textit{Mxmin}_{freq} &:= \textit{Mminq} + \textit{Mming} = 0 \text{, 1 kN m} \qquad \textit{Mxmax}_{freq} := \textit{Mmaxq} + \textit{Mmaxg} = 24 \text{, 7 kN m} \\ \Delta \textit{M}_{freq} &:= \textit{Mxmax}_{freq} - \textit{Mxmin}_{freq} = 24 \text{, 6 kN m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$\alpha e := 10$$

$$As_f := NB \cdot area_bitola = 9,8175 \text{ cm}^2$$
 por metro

posição da linha neutra

$$x_{\underline{i}\underline{i}} := \frac{-\alpha e \cdot As_{\underline{f}} + \sqrt{\left(As_{\underline{f}} \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_{\underline{f}}}}{bw} = 4,5333 \; \mathrm{cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot \left(d - x_{ii}\right)^{2} = 13860,6564 \text{ cm}^{4}$$

Variação maxima de tensão

$$\Delta \sigma S_s := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - x_{ii} \right)}{I_{ii}} \right) = 185,763 \text{ MPa}$$

if
$$\Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Okay"}$$

 $m := \text{"Okay"}$
else
 $m := \text{"Não Okay"}$

Verificação e Formação de Fissura

$$\alpha := 1,5$$
 $Yt := \frac{Hlaje}{2} = 10 \text{ cm}$ $F_{ct} := 0,7 \cdot \left(0,3 \cdot \left(\sqrt[3]{fck^2}\right)\right)$ $\frac{1,7955}{10} = 0,1795$

$$Ic := \frac{bw \cdot Hlaje}{12} = 66666,6667 \text{ cm}^4$$

Momento fissuração para lajes

$$\mathit{Mr} := \frac{\alpha \cdot \mathit{F}_{\mathit{ct}} \cdot \mathit{Ic}}{\mathit{Yt}}$$

Mr := 2027,528 kN cm

Momento fletor maximo meio do vão

$$Md_{rara} := Mxmg + Mxmq = 3085 \text{ kN cm}$$

if $Mr < Md_{rara}$
 $m := "Ocorre fissuras e a peça trabalha no estádio 2" else

 $m := "não ocorre fissuras"$$

m = "Ocorre fissuras e a peça trabalha no estádio 2"

Verificação de Abertura de Fissuras

$$\begin{aligned} \mathbf{Md}_{freq} &:= \mathbf{Mxmg} + \mathbf{0.5 \cdot Mxmq} = \mathbf{15.475 \ kN \ m} &\quad \alpha e := \mathbf{15} &\quad \eta_1 := \mathbf{2.25} \\ &\quad bitola = \mathbf{12.5 \ mm} &\quad d' = \mathbf{5 \ cm} &\quad Esi := \mathbf{210 \ GPa} \end{aligned}$$

$$fct_m := 0, 3 \cdot \left(\frac{2}{3}\right)$$

$$fct_m := 0,28964 \frac{kN}{cm}$$

$$A_{cri} := bw \cdot (d' + 8 \cdot bitola) = 1500 \text{ cm}^2$$

$$\rho_{cri} := \frac{As_f}{A_{cri}} = 0,6545 \%$$

O cálculo no estádio II (que admite comportamento linear dos materiais e despreza a resistência à tração do concreto) pode ser feito considerando a relação α_{e} entre os módulos de elasticidade do aço e do concreto igual a 15.

$$\mathbf{x}_{ii} := \frac{-\alpha \mathbf{e} \cdot \mathbf{A} \mathbf{s}_f + \sqrt{\left(\mathbf{A} \mathbf{s}_f \cdot \alpha \mathbf{e}\right)^2 + 2 \cdot b \mathbf{w} \cdot \alpha \mathbf{e} \cdot d \cdot \mathbf{A} \mathbf{s}_f}}{b \mathbf{w}} = 5,3353 \text{ cm}$$

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot \left(d - x_{ii}^{3}\right)^{2} = 18817,6179 \text{ cm}^{4}$$

$$\sigma_{si} := \alpha e \cdot \left(\frac{Md_{freq} \cdot \left(d - x_{ii} \right)}{I_{ii}} \right) = 11,922 \cdot \frac{kN}{2}$$

logo

O valor caracterítico da abertura de fissuras (w_k) , determinado para cada parte da região de envolvimento, é o menor obtido pelas expressões a seguir.

$$w_k = \frac{\phi_i}{12.5\eta_1} \frac{\sigma_{Si}}{E_{Si}} \frac{3\sigma_{Si}}{f_{ct,m}}$$
(8.161)

$$w_k = \frac{\phi_i}{12.5\,\eta_I} \frac{\sigma_{Si}}{E_{Si}} \left(\frac{4}{\rho_{ri}} + 45 \right) \tag{8.162}$$

$$\textit{Wk1} := \left(\frac{\textit{bitola}}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{\textit{si}}}{\textit{Esi}}\right) \cdot \left(\frac{3 \cdot \sigma_{\textit{si}}}{\textit{fct}_{\textit{m}}}\right) = 0,0312 \; \text{mm}$$

$$Wk2 := \left(\frac{\textit{bitola}}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{\textit{si}}}{\textit{Esi}}\right) \cdot \left(\frac{4}{\rho_{\textit{cri}}} + 45\right) = 0,1656 \text{ mm}$$

if
$$Wk1 < Wk2$$

$$Wk := Wk1$$

else

Wk := Wk2

Abertura da fissura

$$Wk = 0,0312 \text{ mm}$$

"não okay"

⊡ — Armaduras Secundária -

$$Mxmq := 18,28 \cdot (kN m)$$
 $Mxmq := 0,58 \cdot (kN m)$

Cálculo do momento de desing

$$Mxmqd := Mxmq \cdot 1, 5 = 27, 42 \text{ (kN m)}$$
 $Mxmgd := 1, 35 \cdot Mxmg = 0,783 \text{ kN m}$

$$Mxmd := Mxmqd + Mxmgd = 28,203 kN m$$

Cálculo da área de aço:

$$bw := 100 \text{ cm}$$
 $d' := 5 \text{ cm}$ $fck := 30 \text{ MPa} = 3 \frac{\text{kN}}{\text{cm}^2}$ $fyk := 500 \text{ MPa} = 50 \frac{\text{kN}}{\text{cm}^2}$ $d := Hlaje - d' = 15 \text{ cm}$ $fcd := \frac{fck}{1, 4}$ $fyd := \frac{fyk}{1, 15}$

Cálculo da ductilidade ξ da seção transversal

$$a := 0, 4$$

$$b := -1$$

$$c := \frac{Mxmd}{\left(0,68 \cdot bw \cdot d^{2} \cdot fcd\right)} = 0,086$$

$$delta := b^{2} - 4 \cdot a \cdot c = 0,8624$$

$$raiz_1 := \frac{(-b + \sqrt{delta})}{(2 \cdot a)} = 2,4108$$

$$raiz_2 := \frac{\left(-b - \sqrt{delta'}\right)}{\left(2 \cdot a\right)} = 0,0892$$

$$epslon := \min \left(\left[\begin{array}{cc} raiz_1 & raiz_2 \\ \end{array} \right] \right) = 0,0892$$

Verificação de necessidade de armadura dupla

Posição da Linha Neutra:

$$x := epslon \cdot d = 1,3381 \text{ cm}$$

 $y := 0,8 \cdot x = 1,0705 \text{ cm}$

Definição dos Domínios:

```
Dominio := ""
if epslon < 0
                                                     = "Dominio 2"
  "Dominio 1"
else
  if (((0 < epslon)) \land (epslon \leq 0, 259))
    "Dominio 2"
  else
    if (((0,259 < epslon)) \land (epslon \leq 0,450))
       "Dominio 3a"
       if (((0,450 < epslon)) \land (epslon \leq 0,628))
         "Dominio 3b"
       else
         if ((0,628 < epslon)) \land (epslon \leq 1)
            "Dominio 4"
         else
            "Dominio 5"
Área de Aço:
bitola := 10 mm
```

$$A_s := \frac{Mxmd}{(fyd \cdot (d-0, 4 \cdot x))} = 4,48 \text{ cm}^2$$

$$taxa_armadura := \frac{0,208}{100} = 0,0021$$

$$A_{s,min} := taxa_armadura \cdot bw \cdot (d + d') = 4,16 cm^2$$

area_bitola :=
$$\pi \cdot \frac{\left(bitola^2\right)}{4} = 7,854 \cdot 10^{-5} \text{ m}^2$$

$$num_bitolas := \frac{A_s}{area_bitola} = 5,71$$

casas decimais := $mod(num \ bitolas; 1) = 0,7098$

if
$$casas_decimais \le 0,5$$

Num bitolasadotadas := num bitolas +(1-casas decimais)else

Num bitolasadotadas := round (num bitolas; 0)

Num bitolasadotadas = 6

Espaçamento

Comprimento := L5XNum espaçamento := Num bitolasadotadas -1 = 5

Espaçamento:= Num espaçamento · Comprimento = 125 m

$$\textit{EspaçmentoReal} := \frac{\textit{Comprimento}}{\textit{Espaçamento}} \cdot 100 = 20 \qquad \qquad \boxed{\textit{Espaçamentoadotado} := 20 \text{ cm}}$$

Espaçamento máximo

if $Hlaje \cdot 2 > 20$ cm Smax := 20 cm else $Smax := Hlaje \cdot 2$ Smax = 20 cm

if Espaçamentoadotado > Smax
 Espaçamentoadotado := Smax

Espaçamentoadotado = 20 cm

Numero de bitolas totais

$$NumbitolasT \coloneqq rac{Comprimento}{Espaçamentoadotado} = 125$$

COMPRIMENTO DE ANCORAGEM(virada) 6118 – 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ¢;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 ϕ ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 ϕ .

Logo

 $Comprimentoancoragem := 8 \cdot bitola = 8 cm$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

$$\label{eq:mminq} \begin{aligned} \mathit{Mminq} &:= \mathit{Mxmq} \cdot 0 \quad \mathit{Mming} := \mathit{Mxmg} \quad \mathit{Mmaxq} := \mathit{Mxmq} \cdot 0,8 \quad \mathit{Mmaxg} := \mathit{Mxmg} \\ \mathit{Mxmin}_{freq} &:= \mathit{Mminq} + \mathit{Mming} = 0,58 \text{ kN m} \quad \mathit{Mxmax}_{freq} := \mathit{Mmaxq} + \mathit{Mmaxg} = 15,204 \text{ kN m} \\ \Delta \mathit{M}_{freq} &:= \mathit{Mxmax}_{freq} - \mathit{Mxmin}_{freq} = 14,624 \text{ kN m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 5$$
 $area_bitola = 7,854 \cdot 10^{-5} \text{ m}^2$ $\alpha e := 10$ $As_f := NB \cdot area_bitola = 3,927 \text{ cm}^2$ por metro

posição da linha neutra

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 3,062 \text{ cm}$$

$$Not for commercial use}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii}^{3})^{2} = 6553,5453 \text{ cm}^{4}$$

Variação maxima de tensão

$$\Delta \sigma S_s := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - x_{ii} \right)}{I_{ii}} \right) = 266,3914 \text{ MPa}$$

if
$$\Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Não Okay"}$$
 $m := \text{"Okay"}$

else

 $m := \text{"Não Okay"}$

Num bitolasadotadas:= 8

Espaçamento

Comprimento := L5Y

Num espaçamento:= Num bitolasadotadas -1 = 7

Espaçamento:= Num espaçamento · Comprimento = 20,44 m

$$\textit{EspaçmentoReal} := \frac{\textit{Comprimento}}{\textit{Espaçamento}} \cdot 100 = 14,29 \qquad \boxed{\textit{Espaçamentoadotado} := 14 \text{ cm}}$$

Espaçamento máximo

if
$$Hlaje \cdot 2 > 20$$
 cm
 $Smax := 20$ cm
else
 $Smax := Hlaje \cdot 2$
 $Smax = 20$ cm

if Espaçamentoadotado > Smax Espaçamentoadotado:= Smax

Espaçamentoadotado = 14 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 21$$

COMPRIMENTO DE ANCORAGEM(virada) 6118 - 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ¢;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 $\phi;$
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 ф.

Logo

Comprimentoancoragem $:= 8 \cdot bitola = 8 \text{ cm}$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

 $\label{eq:mminq} \begin{aligned} \mathit{Mminq} &:= \mathit{Mxmq} \cdot 0 \quad \mathit{Mming} := \mathit{Mxmg} \quad \mathit{Mmaxq} := \mathit{Mxmq} \cdot 0,8 \quad \mathit{Mmaxg} := \mathit{Mxmg} \\ \mathit{Mxmin}_{freq} &:= \mathit{Mminq} + \mathit{Mming} = 0,58 \text{ kN m} \quad \mathit{Mxmax}_{freq} := \mathit{Mmaxq} + \mathit{Mmaxg} = 15,204 \text{ kN m} \\ \Delta \mathit{M}_{freq} &:= \mathit{Mxmax}_{freq} - \mathit{Mxmin}_{freq} = 14,624 \text{ kN m} \end{aligned}$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 7,1429 \qquad area_bitola = 7,854 \cdot 10^{-5} \text{ m}^2$$

$$\alpha e := 10$$

$$As_f := NB \cdot area_bitola = 5,61 \text{ cm}^2 \qquad \text{por metro}$$

posição da linha neutra

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 3,5796 \text{ cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii})^{2} = 8845,7666 \text{ cm}^{4}$$

Variação maxima de tensão

$$\Delta \sigma S_s := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - X_{ii} \right)}{I_{ii}} \right) = 188,8041 \text{ MPa}$$

if
$$\Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Okay"}$$
 $m := \text{"Okay"}$

else

 $m := \text{"Não Okay"}$

Verificação e Formação de Fissura

$$\alpha := 1,5 \qquad Yt := \frac{Hlaje}{2} = 10 \text{ cm} \qquad F_{ct} := 0,7 \cdot \left(0,3 \cdot \left(\sqrt[3]{fck^2}\right)\right) \quad \frac{1,7955}{10} = 0,1795$$

$$Ic := \frac{bw \cdot Hlaje}{12} = 66666,6667 \text{ cm}^4$$

Momento fissuração para lajes

$$\mathit{Mr} := \frac{\alpha \cdot \mathit{F}_{\mathit{ct}} \cdot \mathit{Ic}}{\mathit{Yt}}$$

Mr := 2027,528 kN cm

Momento fletor maximo meio do vão

 $Md_{rara} := Mxmg + Mxmq = 1886 \text{ kN cm}$

if $Mr < Md_{rara}$

m := "Ocorre fissuras e a peça trabalha no estádio 2" else

m:= "não ocorre fissuras"

m = "não ocorre fissuras"

Verificação de Abertura de Fissuras

barras nervuradas

$$\begin{aligned} \mathit{Md}_{freq} &:= \mathit{Mxmg} + \mathsf{0.5} \cdot \mathit{Mxmq} = \mathsf{9.72 \ kN \ m} & \alpha e := 15 & \eta_1 := 2.25 \\ & \mathit{bitola} &= 10 \ \mathsf{mm} & \mathit{d'} = 5 \ \mathsf{cm} & \mathit{Esi} := 210 \ \mathsf{GPa} \end{aligned}$$

$$fct_m := 0, 3 \cdot \left(\frac{2}{3} \right) = 28964, 6815$$

$$fct_m := 0,28964 \frac{kN}{2}$$

$$A_{cri} := bw \cdot (d' + 8 \cdot bitola) = 1300 \text{ cm}^2$$

$$\rho_{cri} := \frac{As_f}{A_{cri}} = 0,4315 \%$$

O cálculo no estádio II (que admite comportamento linear dos materiais e despreza a resistência à tração do concreto) pode ser feito considerando a relação $\alpha_{\rm e}$ entre os módulos de elasticidade do aço e do concreto igual a 15.

$$\mathbf{x}_{ii} := \frac{-\alpha e \cdot \mathbf{A}s_f + \sqrt{\left(\mathbf{A}s_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot \mathbf{A}s_f}}{bw} = 4,2529 \text{ cm}$$

$$I_{ii} := \frac{bw \cdot x_{ii}}{3} + \alpha e \cdot As_{f} \cdot \left(d - x_{ii}\right)^{2} = 12283,4115 \text{ cm}^{4}$$

$$\sigma_{si} := \alpha e \cdot \left(\frac{Md_{freq} \cdot (d - x_{ii})}{I_{ii}} \right) = 12,7564 \cdot \frac{kN}{2}$$

logo

O valor caracterítico da abertura de fissuras (w_k) , determinado para cada parte da região de envolvimento, é o menor obtido pelas expressões a seguir.

$$w_k = \frac{\phi_i}{12.5\eta_1} \frac{\sigma_{Si}}{E_{Si}} \frac{3\sigma_{Si}}{f_{ct,m}} \tag{8.161}$$

$$w_k = \frac{\phi_i}{12.5\,\eta_I} \frac{\sigma_{Si}}{E_{Si}} \left(\frac{4}{\rho_{ri}} + 45 \right) \tag{8.162}$$

$$\textit{Wk1} := \left(\frac{\textit{bitola}}{\textit{12,5} \cdot \textit{\eta}_{\textit{1}}}\right) \cdot \left(\frac{\sigma_{\textit{si}}}{\textit{Esi}}\right) \cdot \left(\frac{\textit{3} \cdot \sigma_{\textit{si}}}{\textit{fct}_{\textit{m}}}\right) = \textit{0,0285} \; \text{mm}$$

$$Wk2 := \left(\frac{bitola}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{si}}{Esi}\right) \cdot \left(\frac{4}{\rho_{cri}} + 45\right) = 0,2099 \text{ mm}$$

if
$$Wk1 < Wk2$$

 $Wk := Wk1$

else

Wk := Wk2

Abertura da fissura

$$Wk = 0,0285 \text{ mm}$$

if
$$Wk < 0$$
, 3 mm = "okay" "okay"

else

"não okay"

☐—Armaduras Engaste —

$$Mxmq := 59,33 \cdot (kN m) Mxmg := 0,59 \cdot (kN m)$$

Cálculo do momento de desing

$$Mxmqd := Mxmq \cdot 1, 5 = 88,995 (kN m)$$

$$Mxmgd := 1,35 \cdot Mxmg = 0,7965 \text{ kN m}$$

$$Mxmd := Mxmqd + Mxmgd = 89,7915 \text{ kN m}$$

Cálculo da área de aço:

Mxmd = 89,7915 kN m

$$bw := 100 \text{ cm}$$
 $d' := 5 \text{ cm}$

$$bw := 100 \text{ cm} \qquad d' := 5 \text{ cm} \qquad fck :$$

$$d := Hlaje - d' = 15 \text{ cm}$$

$$fcd := \frac{fck}{1.4}$$

$$fck := 30 \text{ MPa} = 3 \frac{\text{kN}}{\text{cm}}$$
 $fyk := 500 \text{ MPa} = 50 \frac{\text{kN}}{\text{cm}}$

$$fyd := \frac{fyk}{1.15}$$

Cálculo da ductilidade ξ da seção transversal

$$a := 0, 4$$

$$b := -1$$

$$c := \frac{Mxmd}{\left(0,68 \cdot bw \cdot d^{2} \cdot fcd\right)} = 0,2739$$

$$delta := b^2 - 4 \cdot a \cdot c = 0,5618$$

else

"Ok"

$$raiz_1 := \frac{(-b + \sqrt{delta'})}{(2 \cdot a)} = 2,1869$$

```
raiz_2 := \frac{\textbf{Created using a free version of SMath Studio}}{(2 \cdot a)} = 0,3131
```

$$epslon := \min \left(\left[raiz_1 raiz_2 \right] \right) = 0,3131$$

Verificação de necessidade de armadura dupla

```
if epslon \le 0,45 = "okay"
  "okay"
else
  "não okay"
```

Posição da Linha Neutra:

```
x := epslon \cdot d = 4,6962 cm
y := 0, 8 \cdot x = 3,757 cm
```

Definição dos Domínios:

```
Dominio := ""
if epslon < 0
                                                     = "Dominio 3a"
  "Dominio 1"
else
  if (((0 < epslon)) \land (epslon \leq 0, 259))
    "Dominio 2"
    if (((0,259 < epslon)) \land (epslon \leq 0,450))
       "Dominio 3a"
    else
       if ((0,450 < epslon)) \land (epslon \leq 0,628)
         "Dominio 3b"
       else
         if ((0,628 < epslon)) \land (epslon \leq 1)
           "Dominio 4"
         else
            "Dominio 5"
```

Área de Aço:

else

bitola := 16 mm

$$A_s := \frac{Mxmd}{(fyd \cdot (d-0, 4 \cdot x))} = 15,74 \text{ cm}^2$$

$$taxa_armadura := \frac{0,208}{100} = 0,0021$$

$$A_{s,min} := taxa_armadura \cdot bw \cdot (d + d') = 4,16 cm^2$$

$$area_bitola := \pi \cdot \frac{\left(bitola^{2}\right)}{4} = 0,0002 \text{ m}^{2}$$

$$num_bitolas := \frac{A_{s}}{area_bitola} = 7,83$$

$$num_bitolas := \frac{A_s}{area_bitola} = 7,83$$

 $casas_decimais := mod(num_bitolas; 1) = 0,828$

if casas decimais $\leq 0,5$ Num bitolasadotadas := num bitolas +(1-casas decimais)

Num_bitolasadotadas := round(num_bitolas; 0)
Not for commercial use

Created using a free version of SMath Studio

Num bitolasadotadas = 8

Espaçamento

$$Comprimento := L5X$$

$$Num\ espaçamento := Num\ bitolasadotadas - 1 = 7$$

 $\textit{Espaçamento} := \textit{Num_espaçamento} \cdot \textit{Comprimento} = 175 \text{ m}$

$$EspaçmentoReal := \frac{Comprimento}{Espaçamento} \cdot 100 = 14,29$$

Espaçamentoadotado := 14 cm

Espaçamento máximo

if
$$Hlaje \cdot 2 > 20$$
 cm

$$Smax := 20 \text{ cm}$$

else

$$Smax := Hlaje \cdot 2$$

$$Smax = 20$$
 cm

Espaçamentoadotado = 14 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 179$$

COMPRIMENTO DE ANCORAGEM(virada)

6118 - 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ϕ ;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4ϕ ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 $\phi.$

Logo

Comprimentoancoragem := $8 \cdot bitola = 12,8 \text{ cm}$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

$$\textit{Mminq} := \textit{Mxmq} \cdot \textit{0} \quad \textit{Mming} := \textit{Mxmg} \quad \textit{Mmaxq} := \textit{Mxmq} \cdot \textit{0,8} \quad \textit{Mmaxg} := \textit{Mxmg}$$

$$\mathit{Mxmin}_{\mathit{freq}} \coloneqq \mathit{Mminq} + \mathit{Mming} = 0,59 \text{ kN m}$$
 $\mathit{Mxmax}_{\mathit{freq}} \coloneqq \mathit{Mmaxq} + \mathit{Mmaxg} = 48,054 \text{ kN m}$

$$\Delta \textit{M}_{\textit{freq}} := \textit{Mxmax}_{\textit{freq}} - \textit{Mxmin}_{\textit{freq}} = 47\,\text{,}\,464~\text{kN m}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

Created using a free version of SMath Studio

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 7,1429$$
 area_bitola = 0,0002 m²

$$\alpha e := 10$$

$$As_f := NB \cdot area_bitola = 14,3616 cm^2$$
 por metro

posição da linha neutra

$$\mathbf{x}_{ii} := \frac{-\alpha \mathbf{e} \cdot \mathbf{A}\mathbf{s}_{f} + \sqrt{\left(\mathbf{A}\mathbf{s}_{f} \cdot \alpha \mathbf{e}\right)^{2} + 2 \cdot b\mathbf{w} \cdot \alpha \mathbf{e} \cdot d \cdot \mathbf{A}\mathbf{s}_{f}}}{b\mathbf{w}} = 5,283 \text{ cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}}{3} + \alpha e \cdot As_f \cdot (d - x_{ii})^2 = 18475, 1705 \text{ cm}^4$$

Variação maxima de tensão

$$\Delta \sigma S_{_{S}} := \alpha e \cdot \left(\frac{\Delta M_{freq} \cdot \left(d - X_{_{i\,i}} \right)}{I_{_{i\,i}}} \right) = 249,6362 \text{ MPa}$$

if
$$\Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Não Okay"}$$
 $m := \text{"Okay"}$

else

 $m := \text{"Não Okay"}$

Num bitolasadotadas := 11

Espaçamento

Comprimento := L5X Num espaçamento := Num bitolasadotadas -1 = 10

Espaçamento:= Num espaçamento · Comprimento = 250 m

$$\textit{EspaçmentoReal} := \frac{\textit{Comprimento}}{\textit{Espaçamento}} \cdot 100 = 10 \qquad \qquad \boxed{\textit{Espaçamentoadotado} := 10 \text{ cm}}$$

Espaçamento máximo

Smax = 20 cm

if Espaçamentoadotado > Smax
 Espaçamentoadotado := Smax

Espaçamentoadotado = 10 cm

Numero de bitolas totais

$$NumbitolasT := \frac{Comprimento}{Espaçamentoadotado} = 250$$

COMPRIMENTO DE ANCORAGEM(virada)

6118 - 2023

9.4.2.3 Ganchos das armaduras de tração

Os ganchos das extremidades das barras da armadura longitudinal de tração podem ser:

- a) semicirculares, com ponta reta de comprimento não inferior a 2 ¢;
- b) em ângulo de 45° (interno), com ponta reta de comprimento não inferior a 4 φ;
- c) em ângulo reto, com ponta reta de comprimento não inferior a 8 φ.

Logo

Comprimentoancoragem := $8 \cdot bitola = 12,8 \text{ cm}$

VERIFICAÇÃO FADIGA DA ARMADURA POSITIVA

 $Mminq := Mxmq \cdot 0$ Mming := Mxmg $Mmaxq := Mxmq \cdot 0,8$ Mmaxg := Mxmg

$$\begin{aligned} \textit{Mxmin}_{freq} \coloneqq \textit{Mminq} + \textit{Mming} &= \texttt{0,59 kN m} & \textit{Mxmax}_{freq} \coloneqq \textit{Mmaxq} + \textit{Mmaxg} &= \texttt{48,054 kN m} \\ & \Delta \textit{M}_{freq} \coloneqq \textit{Mxmax}_{freq} - \textit{Mxmin}_{freq} &= \texttt{47,464 kN m} \end{aligned}$$

Portanto, a razão modular α_e definida pela NBR 6118 (2014)

$$\alpha_e = 10$$

$$NB := \frac{100 \text{ cm}}{Espaçamentoadotado} = 10$$
 $area_bitola = 0,0002 \text{ m}^2$

$$\alpha e := 10$$

$$As_f := NB \cdot area_bitola = 20,1062 \text{ cm}^2$$
 por metro

posição da linha neutra

$$\mathbf{x}_{\underline{i}\underline{i}} := \frac{-\alpha e \cdot \mathbf{A}s_{\underline{f}} + \sqrt{\left(\mathbf{A}s_{\underline{f}} \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot \mathbf{A}s_{\underline{f}}}}{bw} = 6,0119 \text{ cm}$$

Momento de Inercia

$$I_{ii} := \frac{bw \cdot x_{ii}}{3} + \alpha e \cdot As_f \cdot (d - x_{ii})^2 = 23485,9023 \text{ cm}^4$$

Variação maxima de tensão

$$\Delta \sigma S_{_{S}} := \alpha e \cdot \left[\frac{\Delta M_{freq} \cdot \left(d - x_{_{\dot{1}\dot{1}}} \right)}{I_{_{\dot{1}\dot{1}}}} \right] = 181,6452 \text{ MPa}$$

if
$$\Delta \sigma S_s \leq 190 \text{ MPa} = \text{"Okay"}$$
 $m := \text{"Okay"}$

else

 $m := \text{"Não Okay"}$

Verificação e Formação de Fissura

$$\alpha := 1,5 \qquad Yt := \frac{Hlaje}{2} = 10 \text{ cm} \qquad F_{ct} := 0,7 \cdot \left(0,3 \cdot \left(\sqrt[3]{fck}^2\right)\right) \quad \frac{1,7955}{10} = 0,1795$$

$$Ic := \frac{bw \cdot Hlaje}{12} = 66666,6667 \text{ cm}^4$$

Momento fissuração para lajes

$$\mathit{Mr} := \frac{\alpha \cdot \mathit{F}_{\mathit{ct}} \cdot \mathit{Ic}}{\mathit{Yt}}$$

Mr := 2027,528 kN cm

Momento fletor maximo meio do vão

$$Md_{rara} := Mxmg + Mxmq = 5992 \text{ kN cm}$$

if $Mr < Md_{rara}$
 $m := "Ocorre fissuras e a peça trabalha no estádio 2" else

 $m := "não ocorre fissuras"$$

m = "Ocorre fissuras e a peça trabalha no estádio 2"

Verificação de Abertura de Fissuras

barras nervuradas

$$\label{eq:mdfreq} \begin{aligned} \text{Md}_{freq} &:= \text{Mxm} g + \text{0,5} \cdot \text{Mxm} q = \text{30,255 kN m} & \alpha e := \text{15} & \eta_1 := \text{2,25} \\ & bitola = \text{16 mm} & d' = \text{5 cm} & Esi := \text{210 GPa} \end{aligned}$$

$$fct_m := 0, 3 \cdot \left(\frac{2}{3}\right)$$

$$fct_m := 0,22104 \frac{kN}{cm}^2$$

$$A_{cri} := bw \cdot (d' + 8 \cdot bitola) = 1780 \text{ cm}^2$$

$$\rho_{cri} := \frac{As_f}{A_{cri}} = 1,1296 \%$$

O cálculo no estádio II (que admite comportamento linear dos materiais e despreza a resistência à tração do concreto) pode ser feito considerando a relação α_{e} entre os módulos de elasticidade do aço e do concreto igual a 15.

$$x_{ii} := \frac{-\alpha e \cdot As_f + \sqrt{\left(As_f \cdot \alpha e\right)^2 + 2 \cdot bw \cdot \alpha e \cdot d \cdot As_f}}{bw} = 6,9627 \text{ cm}$$

$$I_{ii} := \frac{bw \cdot x_{ii}^{3}}{3} + \alpha e \cdot As_{f} \cdot (d - x_{ii})^{2} = 30733,891 \text{ cm}^{4}$$

$$\sigma_{si} := \alpha e \cdot \left(\frac{Md_{freq} \cdot \left(d - x_{ii} \right)}{I_{ii}} \right) = 11,868 \cdot \frac{kN}{cm}$$

logo

O valor caracterítico da abertura de fissuras (w_k) , determinado para cada parte da região de envolvimento, é o menor obtido pelas expressões a seguir.

$$w_k = \frac{\phi_i}{12.5\eta_1} \frac{\sigma_{Si}}{E_{Si}} \frac{3\sigma_{Si}}{f_{ct,m}}$$
 (8.161)

$$w_k = \frac{\phi_i}{12.5 \, \eta_I} \frac{\sigma_{Si}}{E_{Si}} \left(\frac{4}{\rho_{ri}} + 45 \right) \tag{8.162}$$

$$Wk1 := \left(\frac{bitola}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{si}}{Esi}\right) \cdot \left(\frac{3 \cdot \sigma_{si}}{fct_m}\right) = 0,0518 \text{ mm}$$

$$Wk2 := \left(\frac{bitola}{12, 5 \cdot \eta_1}\right) \cdot \left(\frac{\sigma_{si}}{Esi}\right) \cdot \left(\frac{4}{\rho_{cri}} + 45\right) = 0,1283 \text{ mm}$$

if
$$Wk1 < Wk2$$

 $Wk := Wk1$
else
 $Wk := Wk2$

Abertura da fissura

$$Wk = 0,0518 \text{ mm}$$