

Program Name: Engineering

Level: Diploma

Branch: Electronics and Communication Engineering

Course / Subject Code: DI03011021

Course / Subject Name: Applied Electronics

w. e. f. Academic Year:	2024-25
Semester:	3 rd
Category of the Course:	PCC

Prerequisite:	-
Rationale:	-

Course Outcome:

After Completion of the Course, Student will able to:

No	Course Outcomes	RBT Level
01	Design and test different types of circuits using operational amplifier IC 741.	R,U,A
02	Choose relevant thyrister for the given application.	R,U,A
03	Design triggering and protection circuits for thyristors	R,U,A
04	Design power converter circuits.	R,U,A
05	Use thyristors in different application	R,U,A

^{*}Revised Bloom's Taxonomy (RBT)

Teaching and Examination Scheme:

	ching Sche in Hours)	A ccecement Pattern and Marks			A ccecement Pattern and Marks			TD ()	
						eory	Tutorial / Practical		Total Marks
L	T	PR	С	ESE (E)	PA(M)	PA(I)	ESE (V)	IVICEI INS	
2	0	2	3	70	30	20	30	150	

Course Content:

Unit No.	Content	No. of Hours	% of Weightage
	Operational Amplifiers (Op Amps):		
	Basic block diagram and working of an operational amplifier. Describe		
1.	IC 741 as an Op-Amp. Pin configuration of IC 741. Op-Amp: open loop	7	20
	and closed loop. Parameters of operational amplifier like, Input and		
	output offset voltage, Input offset current, Input bias current, CMRR,		

Program Name: Engineering

Level: Diploma

Branch: Electronics and Communication Engineering

Course / Subject Code : DI03011021

Course / Subject Name: Applied Electronics

Applications of op	ideal Op.Amp. Equivalent circuit of Op.Amp. erational amplifiers like Inverting and non-inverting amplifier, Comparator, Differentiator, Integrator,		
electronics devices Working of SCR working of Opto-	abol, working, characteristic and applications of like SCR, DIAC, TRIAC, GTO, IGBT, and MCT. using two transistor analogy. Construction and Isolators, Opto-TRIAC, Opto- SCR(LASCR), and st advantages, applications of Opto- Isolators. Solid	6	20
Turn on and Turn Triggering (Turn techniques of SCR	off methods of Thyristor: on) methods of SCR. Commutation(Turn off) . Thyristor protection: Over current protection, Over Snubber circuit, Gate protection.	3	10
4. applications of Poly SCR. Poly phase rectifiers. Inverters working of Chopp Single phase cyclo	ase rectifiers and poly phase rectifiers. Describe the y-phase rectifiers. Single phase control rectifier using rectifiers. Three-phase H.W. & three-phase F.W. Series, Parallel and bridge Inverters. Principle & per circuits. Describe the applications of Chopper. converters. Describe the working of UPS & SMPS pock diagram. List the applications of UPS & SMPS.	7	25
5. Industrial Electro Static switch using AC power control with UJT in trigge LASCR, photo dio RF Heating: Indu construction, work		7	25
	Total	30	100

Suggested Specification Table with Marks (Theory):

Distribution of Theory Marks (in %)							
R Level	U Level	A Level	N Level	E Level	C Level		
25	30	45	-	-	-		

Program Name: Engineering

Level: Diploma

Branch: Electronics and Communication Engineering

Course / Subject Code: DI03011021

Course / Subject Name: Applied Electronics

Where R: Remember; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create (as per Revised Bloom's Taxonomy)

References/Suggested Learning Resources:

(a) Books:

- 1. Op-Amp and linear integrated circuits Ramakant A. Gayakwad, PHI.
- 2. Thyristor Engineering M.S. Berde, Khanna publishers.
- 3. Power electronics devices circuits and application M.H. Rashid, Pearson Education
- 4. Power electronics M.D.Singh, K.B.Khanchandani, Mc Graw Hill.
- 5. Applied electronics, R.S.Sedha, S.Chand

(b) Open source software and website:

- 1. https://nptel.ac.in
- 2. https://www.tutorialpoint.com
- 3. Virtual lab

Suggested Course Practical List: If any

- 1. Build / test inverting amplifier using Op-Amp and observe input, output waveforms on CRO.
- 2. Build non-inverting amplifier using Op-Amp and observe input, output waveforms on CRO.
- 3. Build / test Integrator circuit using IC 741 and observe output, input waveforms on CRO for different values of R and C.
- 4. Build / test differentiator circuit using IC 741 and observe output, input waveforms on CRO for different values of R and C.
- 5. Build / test Op-Amp as a summing amplifier.
- 6. Plot Characteristics of SCR
- 7. Plot Characteristics of diac
- 8. Plot V/I Characteristics of triac
- 9. Perform RC phase shift control of UJT triggered SCR.
- 10. Perform the operation of commutation on SCR.
- 11. Test the operation of Inverter(Series, parallel, Bridge).
- 12. Perform the AC power control using DIAC and TRIAC(Fan regulator).
- 13. Test Light operated Relay/Photo-electric switch.
- 14. Build and test mini project.

Program Name: Engineering

Level: Diploma

Branch: Electronics and Communication Engineering

Course / Subject Code : DI03011021

Course / Subject Name: Applied Electronics

List of Laboratory/Learning Resources Required:

Suggested Project List:

- a) Different application od Op.Amp IC 741like Inverting amplifier, noninverting amplifier, comparater etc.
- b) Fan regulator using TRIAC/DIAC
- c) Light operated Relay-/Street Light Control.
- d) Water Level Controller.
- e) Home Appliances Automation.
- f) Automatic Door control and counting of persons.
- g) Solid State Relay using Diac-Triac
- h) SCR Firing using UJT.
- i) Arm ROBOT using Stepper Motor.
- j) SMPS based on IC7840
- k) Battery charger using SCR

Suggested Activities for Students: If any

Find Specifications and package of SCR, DIAC, TRIAC, IGBT, MCT, Opto-TRIAC, Opto-SCR, Opto-Transistor from datasheet.

Collect specification of commercially used UPS, Inverter, and SMPS, Stepper motor.

* * * * * * *