Homework 1

Kai Wang 2018/1/24

1 Perceptron Algorithm and Convergence Analysis

1

(a) The boolean function is $y = f(x_1, x_2) = \mathbb{I}_{x_1 + x_2 - 1 > 0}$.

(b) The boolean function is $y = f(x_1, x_2) = \mathbb{I}_{x_1 + x_2 = 1}$. Such a boolean function cannot be represented by a perceptron.

(c) The boolean function is $y = f(x_1, x_2) = \mathbb{I}_{x_1 + x_2 + x_3 > 2}$. Note that (1,1,1) is the only positive point.

 $\mathbf{2}$

Let z be a random point on the decision boundary. We have $f(z) = \beta_0 + \beta^T z = 0$. So we have $\beta^T z = -\beta_0$. We know that the distance of a point to a vector equals to the product of those two vectors.

$$\begin{aligned} distance &= \frac{|\overrightarrow{\beta}(\overrightarrow{x} - \overrightarrow{z})|}{||\beta||_2} \\ &= \frac{|\overrightarrow{\beta}\overrightarrow{x} + \beta_0|}{||\beta||_2} \\ &= \frac{|f(x)|}{||\beta||_2} \\ &= \frac{1}{||\beta||_2} y f(x) \end{aligned}$$

Because y and f(x) have the same sign, yf(x) = |f(x)|.

3

$$w^{(T)} \cdot w^{(sep)} - w^{(T-1)} \cdot w^{(sep)} = y_i x_i w^{(sep)} \ge 1$$
$$(w^{(T)} - w^{(0)}) \cdot w^{(sep)} = \sum_{t=1}^{T} ((w^{(T)} - w^{(T-1)}) \cdot w^{(sep)}) \ge T$$

Hence,

$$T \le (w^{(T)} - w^{(0)}) \cdot w^{(sep)} \le ||w^{(T)} - w^{(0)}||_2 ||w^{(sep)}||_2 \le ||w^{(T)} - w^{(0)}||_2$$

Since we have T > 1 and $T \le ||w^{(T)} - w^{(0)}||_2$, we have $T \le ||w^{(T)} - w^{(0)}||_2^2$.

When the perceptron algorithm converges to a separating plane, we have $T \leq ||w^{(sep)} - w^{(0)}||_2^2$, which is equivalent to $T \leq ||w^{(0)} - w^{(sep)}||_2^2$

2 Programming Assignment

1

INFO [2018-01-25 01:32:10] MNIST data set already available, nothing left to do.

[1] TRUE

The accuracy does not seem too good and convergence has not achieved. We could increase the epoch. By increasing epoch, I found that accuracy increased until about epoch = 500. The final training accuracy is aroun .80.

b

The test accuracy is much higher than training accuracy and it converges quicker. The test accuracy is around .95 after converging.

 \mathbf{c}

	Positive	Negative
Predicted Positive	857	0
Predicted Negative	125	1009

The accuracy is $\frac{857+1009}{857+0+125+1009} = 0.9372$.

 \mathbf{d}

From the ROC curve, we can see running algorithm until convergence has a slightly better performance, which means it has a better decision boundary.

 \mathbf{e}

[1] 0.9866415

[1] 0.9844665

The AUC of w^* is greater than the AUC of w'.

 $\mathbf{2}$

The test accuracy is $\frac{TP+TN}{TP+TN+FN+FP} = \frac{789+1009}{789+193+0+1009} = 0.9031$

Predicted Positive

Predicted Negative

789

193

0

1009

\mathbf{b}

Based on my experiments, $\eta=0.1$ seems to be the best and $\eta=0.5$ also performs very close. The best way to decide which value to use for η is create a range of η and calculate some sort of loss function and find a value to optimize the loss function.