Mineralogy Inspires Physics

Michael Norman

Materials Science Division – Argonne National Lab

Rev. Mod. Phys. 88, 041002 J. Magn. Magn. Matls. 452, 507 Phys. Rev. B 98, 054421

Tulane – Oct. 22, 2018

Introduction to Frustrated Magnetism and Kagome Physics

Ryu et al., PRB (2007)

Near neighbor Heisenberg model on a kagome lattice Certain rotations of spins cost no energy

Exact diagonalization studies of NN Heisenberg model indicate a very different eigenvalue spectrum for the kagome case

Topology and Fractionalization in Spin Liquids Spinons and Visons

Free spinon (yellow arrow)

Ground state degeneracy & topological sectors

Vison pair at a and b

Balents, Nature (2000) Misguich & Lhuillier, arXiv (2012) He, Sheng, Chen, PRB (2014) DMRG studies from 2011 are consistent with a gapped Z2 spin liquid that appears to be a melted version of a diamond valence bond solid but other studies claim either a U(1) Dirac or a chiral spin liquid

Fig. 4. Spin triplet (solid symbols) and singlet (hollow symbols) gaps for various cylinders with circumferences *c*. The type of cylinder (*15*) is indicated in the key (inset).

Yan, White, Huse, Science (2011) Hwang, Huh, Kim, PRB (2015)

Herbertsmithite rare mineral first identified from a mine in Chile (hydrothermal synthesis by Dan Nocera's group ~ 180 C)

Herbertsmithite

(photo courtesy of Bruce Kelley)

Shores et al, JACS (2005)

Herbertsmithite - ZnCu₃(OH)₆Cl₂ with copper on a kagome lattice

 $Cu_4 \rightarrow ZnCu_3$ Canted AF \rightarrow spin liquid

Shores *et al*, JACS (2005) Lee *et al*, Nature Matls (2007) Mendels & Bert, JPSJ (2010)

Specific heat indicates gapless behavior with quasi-linear T behavior

But, there is a large spin defect concentration Estimate is that roughly 1 in 6 Zn atoms are replaced by a Cu

NMR indicates a decreasing χ below 50 K for the kagome spins, despite the diverging behavior of the bulk χ due to impurity interlayer spins

INS data indicate a divergent response below 1 meV with quantum critical scaling as also observed in heavy fermions

Helton et al., PRL (2010)

INS data on single crystals indicate a continuum of spin excitations, with a dynamic structure factor consistent with near neighbor dimers and of the form $S(\mathbf{q},\omega) = f(\mathbf{q}) f(\omega)$

But INS data below 1 meV indicate AF interactions between defect copper spins sitting on the Zn intersites

Han et al., PRB (2016)

INS data are a sum of impurity and kagome spin contributions (with the kagome spins having a spin gap)

Specific heat can be fit assuming a relaxational form for impurity $\chi(\omega)$

Can one "dope" herbertsmithite by replacing Zn²⁺ by 1⁺ or 3⁺ ions? Prediction of Dirac points (electron doping), flat bands (hole doping), and f-wave pairing

Mazin *et al.*, Nature Comm. (2014) Guterding *et al*, Sci. Rep. (2016)

Lithium intercalated Herbertsmithite Insulating, but with indications for a Cu non-integer valence

Herbertsmithite has a much larger gap than a cuprate

Puphal et al., J Mater Chem C (2017) Pustogow et al., Phys Rev B (2017)

There are many relatives of herbertsmithite Several of these are polymorphs

Name	Formula	Group	Lattice	Order
Botallackite	Cu ₄ (OH) ₆ Cl ₂	$P2_1/m$	T	AF (7.2 K)
Atacamite	$Cu_4(OH)_6Cl_2$	Pnma	P	AF (9 K)
Clinoatacamite	$Cu_4(OH)_6Cl_2$	$P2_1/n$	P	AF (6.5 K)
Claringbullite	$Cu_4(OH)_6CIF$	$P6_3/mmc$	P	AF (17 K)
Barlowite	$Cu_4(OH)_6BrF$	$P6_3/mmc$	P	AF (15 K)
Bobkingite	$Cu_5(OH)_8Cl_2W_2$	C2/m	P	?
Herbertsmithite	$ZnCu_3(OH)_6Cl_2$	$R\bar{3}m$	K	$AF(\cdots)$
Tondiite	$MgCu_3(OH)_6Cl_2$	$R\bar{3}m$	K	$AF(\cdots)$
Kapellasite	$ZnCu_3(OH)_6Cl_2$	$P\bar{3}m1$	K	$F(\cdots)$
Haydeeite	$MgCu_3(OH)_6Cl_2$	$P\bar{3}m1$	K	F (4.2 K)
Zn-brochantite	$ZnCu_3(OH)_6SO_4$	$P2_1/a$	\mathbf{K}^*	AF (···)

Zn-doped Barlowite exists, with ¹⁹F NMR indicating spinons

Bobkingite – a possible Δ chain material

Hawthorne et al, Mineral. Mag. (2002)

Copper Tellurium Oxides, Hydroxides, and Hydroxychlorides

Name	Formula unit	SG	copper lattice	Ref
Bluebellite	$Cu_6IO_3(OH)_{10}Cl$	R3	maple leaf	1
Mojaveite	Cu ₆ TeO ₄ (OH) ₉ Cl	R3	maple leaf	1
Fuettererite	$Pb_3Cu_6TeO_6(OH)_7Cl_5$	$R\overline{3}$	maple leaf	2
Sabelliite	$Cu_2ZnAsO_4(OH)_3$	P3	maple leaf	3
Quetzalcoatlite	$Zn_6Cu_3(TeO_6)_2(OH)_6$	P31m	kagome	4
Leisingite	$MgCu_2TeO_6(H_2O)_6$	P31m	honeycomb	5
Jensenite	$Cu_3TeO_6(H_2O)_2$	$P2_1/n$	honeycomb/dimer	6
Mcalpineite	Cu_3TeO_6	Ia3	hexagons	7
Choloalite	$Pb_3(Cu_5Sb)_{1/3}(TeO_3)_6Cl$	P4 ₁ 32	hyperkagome	8
	PbCuTe ₂ O ₆	P4 ₁ 32	hyperkagome	9
	$CuTeO_4$	$P2_1/n$	square lattice	10
	Sr_2CuTeO_6	I4/m	square lattice	11
	SrCuTe ₂ O ₇	Pbcm	orthorhombic	12
	$Cu_3BiTe_2O_8Cl$	Pcmn	kagome staircase	13

Christy *et al.*, Mineral. Mag. (2016) Norman, J. Magn. Magn. Matls. (2018)

Quetzalcoatlite – a perfect Kagome lattice but with super-superexchange

Burns et al., Amer. Mineral. (2000)

CuTeO₄ - Monoclinic distorted CuO₂ square net CuO₆ quasi-octahedral, Cu-O-Cu bond angles 122.5° & 126.1°

CuTeO₄ - Falck *et al.*, Acta Cryst. B (1978) grown hydrothermally at 650 C but Cu₃TeO₆ more thermodynamically stable

Vondechenite, CaCu₄Cl₂(OH)₈(H₂O)₄ - ortho distorted Cu square net Cu-O-Cu bond angles 114.5° & 115.2°

Schluter et al, J. Min. Geochem. (2018)

Averievite was found in a volcano in Kamchatka It was first synthesized by Wendy Queen by solid state reaction (~ 700 C)

Starova *et al*, Mineral. Mag. (1997) Wendy Queen, thesis (2009)

 $Cu_5O_2(VO_4)_2(CsCI)$

(Wendy Queen, thesis)

Cu₅V₂O₁₀(CsCl), averievite, has a Cu kagome layer and Cu-V honeycomb layers separated by CsO₂ layers (a pyrochlore slab)

Jennifer Zheng (John Mitchell's group) has synthesized it as well Susceptibility data indicate J ~ 200K, as predicted from LDA+U Substitution by Zn leads to behavior similar to herbertsmithite

Specific heat reveals a Neel transition at 24K ($\Theta_{CW}/T_N \sim 8$) No transition is seen in a Cu₄Zn doped version

Substitution of Cu-honeycomb in the parent phase (left) by Zn isolates the kagome planes (middle); Substitution of V⁵⁺ by Ti⁴⁺ dopes it and leads to a large increase in the bandwidth (right)

Summary

- The synthesis of herbertsmithite led to a new era in the study of quantum spin liquids
- Low energy behavior controlled by disorder (orphan spins), as also seen in other spin liquid candidates
- Attempts to dope herbertsmithite leads to insulating behavior (polarons? – recent PRL of Zunger's group)
- Several variants of herbertsmithite have been recently discovered, with others yet to be explored
- Charge transfer behavior and stability could be enhanced by looking for oxides rather than hydroxychlorides
- Averievite is a copper oxide, and a potential spin liquid
- Mineralogy space is vast, so many surprises await us