Test di Calcolo Numerico

Ingegneria Informatica 12/06/2017

COGNOME		NOME				
MATRICOLA						
Risposte						
1)						
2)						
3)						
4)						
5)						

 $\mathbf{N.B.}$ Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 12/06/2017

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y,z) = \frac{x+y}{z} .$$

 $\mathbf{2}$) Calcolare la fattorizazione LR della matrice

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ -1 & 2 & 2 \\ -1 & -6 & -2 \end{array}\right) .$$

3) Determinare il numero di radici reali della equazione

$$e^x + 2x^2 - x - 5 = 0$$

indicando per ciascuna di esse un intervallo di separazione.

4) Determinare la retta di equazione y = a + bx che approssima nel senso dei minimi quadrati la funzione f(x) di cui si conoscono i valori

5) Per approssimare l'integrale $I(f) = \int_{-1}^{1} f(x) dx$ si utilizza la formula di quadratura

$$J_1(f) = a_0 f(-1/2) + 3f(x_0)$$
.

Calcolare il peso a_0 ed il nodo x_0 che individuano la formula con grado di precisione massimo. Indicare il grado di precisione ottenuto.

SOLUZIONE

1) Seguendo l'algoritmo $r_1 = x + y$, $r_2 = r_1/z$ si ottiene

$$\epsilon_f = \epsilon_1 + \epsilon_2 + \frac{x}{x+y} \epsilon_x + \frac{y}{x+y} \epsilon_y - \epsilon_z.$$

2) La fattorizzazione richiesta è data da

$$L = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix} , \quad R = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix} .$$

3) L'equazione data ha due soluzioni. Possibili intervalli di separazione sono

$$\alpha_1 \in [-1.5, -1], \quad \alpha_2 \in [1.1.5].$$

4) I coefficienti a e b si determinano risolvendo il sistema $A^TAc = A^Tb$ con

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 0 \\ 1 & 3 \end{pmatrix}, \quad b = \begin{pmatrix} 2 \\ -2 \\ 4 \\ 1 \end{pmatrix}, \quad c = \begin{pmatrix} a \\ b \end{pmatrix}.$$

La soluzione è $c=\frac{1}{35}(58,-19)^T$ per cui la retta cercata ha equazione $y=\frac{58}{35}-\frac{19}{35}x$.

5) Imponendo che la formula sia esatta per f(x) = 1, x si ottiene il peso $a_0 = -1$ e il nodo $x_0 = -\frac{1}{6}$. La formula ottenuta non risulta esatta per $f(x) = x^2$ per cui il grado di precisione è m = 1.