

Politechnika Wrocławska

Wydział Informatyki i Telekomunikacji

Kierunek: Informatyczne Systemy Automatyki

Analiza odpowiedzi układów dynamicznych

Michał Wróblewski 272488

Termin zajęć: wtorek 15:15 - 17:00

Spis treści

T	Wp	rowadzenie	2	
2	Odr	powiedź na pobudzenie	2	
	2.1	Analityczna odpowiedź	2	
	2.2	Symulacyjna odpowiedź	2	
	2.3	Wykres odpowiedzi	3	
3	Odp	powiedź impulsowa	3	
	3.1	Analityczna odpowiedź	3	
	3.2	Symulacyjna odpowiedź	4	
	3.3	Wykres odpowiedzi	4	
4	Odpowiedź skokowa			
	4.1	Analityczna odpowiedź	5	
	4.2	Symulacyjna odpowiedź	5	
	4.3	Wykres odpowiedzi	5	
5	Wn	ioski	9	
\mathbf{S}	nis	rysunków		
~	_			
	1	Odpowiedź na pobudzenie sinusoidalne		
	2	Odpowiedź impulsowa	4	
	3	Odpowiedź skokowa (Analitycznie)	6	
	4	Odpowiedź skokowa (Analitycznie)	7	
	5	Odpowiedź skokowa (Analitycznie)	8	
	6	Odpowiedź skokowa (Analitycznie)	9	

1 Wprowadzenie

Celem tego sprawozdania jest analiza odpowiedzi układów dynamicznych na różne rodzaje pobudzeń: pobudzenie sinusoidalne, odpowiedź impulsową oraz odpowiedź skokową.

2 Odpowiedź na pobudzenie

Przeprowadzono analizę odpowiedzi układu na pobudzenie sinusoidalne $u[n] = (1/2)^n$.

2.1 Analityczna odpowiedź

Odpowiedź układu została wyznaczona analitycznie.

```
import numpy as np
import matplotlib.pyplot as plt
# Parametry
N = 100
t = np.arange(N)
delta = np.zeros(N)
delta[0] = 1
a = 6
b = 5
c = 1/2
d = -4/5
# Analitycznie
y1 = np.zeros(N)
for n in range(N):
    if n == 0:
        y1[n] = 0
    else:
        y1[n] = (5/13)*((1/2)**(n-1)) + (-272/65)*((-4/5)**(n-1)) + 6*delta[n]
```

2.2 Symulacyjna odpowiedź

Odpowiedź układu została wyznaczona symulacyjnie.

```
# Symulacja
y2 = np.zeros(N)
for n in range(N):
    if n == 0:
        y2[n] = a*(d)**n
    else:
        y2[n] = a*(d)**n + b*(d)**(n-1) - c*y2[n-1]
```

2.3 Wykres odpowiedzi

Wykres porównujący odpowiedzi analityczną i symulacyjną został przedstawiony na rysunku 1.

Rysunek 1: Odpowiedź na pobudzenie sinusoidalne

3 Odpowiedź impulsowa

Przeprowadzono analizę odpowiedzi impulsowej układu.

3.1 Analityczna odpowiedź

Odpowiedź układu została wyznaczona analitycznie.

```
# Analitycznie
y3 = np.zeros(N)
for n in range(N):
    if n == 0:
        y3[n] = 0
    else:
        y3[n] = (-34/5)*((-4/5)**(n-1)) + 6*delta[n]
```

3.2 Symulacyjna odpowiedź

Odpowiedź układu została wyznaczona symulacyjnie.

```
# Symulacyjnie
y4 = np.zeros(N)
for n in range(N):
    if n == 0:
        y4[n] = a*delta[n]
    else:
        y4[n] = a*delta[n] + b*delta[n-1] - c*y4[n-1]
```

3.3 Wykres odpowiedzi

Wykres porównujący odpowiedzi analityczną i symulacyjną został przedstawiony na rysunku 2.

Rysunek 2: Odpowiedź impulsowa

4 Odpowiedź skokowa

Przeprowadzono analizę odpowiedzi skokowej układu dla różnych wartości y[-1].

4.1 Analityczna odpowiedź

Odpowiedź układu została wyznaczona analitycznie.

```
# Analitycznie
y_minus_1 = [0, 1, 2, 3, 4]
for i in range(len(y_minus_1)):
    plt.figure(f"For y[-1] = {i}")
    plt.title(f"Odpowiedź skokowa dla y[-1]={i}")
    y5 = np.zeros(N)
    for n in range(N):
        if n == 0:
            y5[n] = 0
        else:
            y5[n] = 20/(9*(y_minus_1[i] + 1)) + (16/9 - (24/5)*(y_minus_1[i] + 1))*((-4/5)*(y_minus_1[i] + 1))**(n-1)) + 6*delta[n]
    plt.scatter(t, y5, label=f"OS Analitycznie{i}", marker='o', s=10)
```

4.2 Symulacyjna odpowiedź

Odpowiedź układu została wyznaczona symulacyjnie.

```
# Symulacyjnie
for i in range(len(y_minus_1)):
    y6 = np.zeros(N)
    u = np.ones(N)
    for n in range(N):
        if n == 0:
            y6[n] = a * u[n] + y_minus_1[i]
        else:
            y6[n] = a * u[n] + b * u[n-1] - c * y6[n-1]
    plt.scatter(t, y6, label=f"OS Symulacyjnie{i}", marker='o', s=10)
    plt.grid()
    plt.legend()
    plt.xlabel('t')
    plt.ylabel('y')
    plt.show()
```

4.3 Wykres odpowiedzi

Wykresy porównujące odpowiedzi analityczne i symulacyjne dla różnych wartości y[-1] zostały przedstawione poniżej.

Rysunek 3: Odpowiedź skokowa (Analitycznie)

Rysunek 4: Odpowiedź skokowa (Analitycznie)

Rysunek 5: Odpowiedź skokowa (Analitycznie)

Rysunek 6: Odpowiedź skokowa (Analitycznie)

5 Wnioski

Wnioski z przeprowadzonych analiz: Odpowiedzi analityczne i symulacyjne są zgodne dla różnych typów pobudzeń, co potwierdza poprawność modelu matematycznego i implementacji symulacji.