Section 4-8: Change of Variables

For problems 1-3 compute the Jacobian of each transformation.

1.
$$x = 4u - 3v^2$$
 $y = u^2 - 6v$

2.
$$x = u^2 v^3$$
 $y = 4 - 2\sqrt{u}$

3.
$$x = \frac{v}{u}$$
 $y = u^2 - 4v^2$

- 4. If *R* is the region inside $\frac{x^2}{4} + \frac{y^2}{36} = 1$ determine the region we would get applying the transformation x = 2u, y = 6v to *R*.
- 5. If *R* is the parallelogram with vertices (1,0), (4,3), (1,6) and (-2,3) determine the region we would get applying the transformation $x = \frac{1}{2}(v-u)$, $y = \frac{1}{2}(v+u)$ to *R*.
- 6. If *R* is the region bounded by xy=1, xy=3, y=2 and y=6 determine the region we would get applying the transformation $x=\frac{v}{6u}$, y=2u to *R*.
- 7. Evaluate $\iint_R xy^3 dA$ where R is the region bounded by xy=1, xy=3, y=2 and y=6 using the transformation $x=\frac{v}{6u}$, y=2u.
- 8. Evaluate $\iint_R 6x 3y \, dA$ where R is the parallelogram with vertices (2,0), (5,3), (6,7) and (3,4) using the transformation $x = \frac{1}{3}(v u)$, $y = \frac{1}{3}(4v u)$ to R.
- 9. Evaluate $\iint_R x + 2y \, dA$ where R is the triangle with vertices (0,3), (4,1) and (2,6) using the transformation $x = \frac{1}{2}(u-v)$, $y = \frac{1}{4}(3u+v+12)$ to R.