Exercise Sheet #6

Submit by Friday 26-03-2021

Exercise 1. - Globular clusters vs dwarf galaxies Consider the dwarf spheroidal galaxies (Carina and Boo II) and the ω Centauri globular cluster. Relevant information about these two objects is given in Table 1.

- (a) Calculate our distance from the three objects in kpc and the physical size of their half-light radii in pc. (10 points)
- (b) Under the assumption of isotropy, what is the total velocity dispersion σ_{tot} of the two objects? (10 points)
- (c) Assume the half-light radius to be an estimate for the radius of the objects. Calculate their enclosed mass using the virial theorem. (10 points)
- (d) Calculate the dynamical mass-to-light ratio of all three objects. Briefly comment on your results, also comparing them to the dynamical mass-to-light ratio in the solar vicinity $(M/L \approx 0.7)$ and within the Solar radius $(M(\langle R_{\odot})/L(\langle R_{\odot}) \approx 5)$. (10 points)

Name	r_h [arcmin]	$L_V \left[10^7 L_{\odot} \right]$	m-M	$\sigma_r [\mathrm{km/s}]$
Carina	8.2	0.04	20.11	6.6
ω Cen	4.2	0.1	13.92	16.8
BooII	4.2	0.0001	18.10	10.5

Table 1: Angular half-light radius r_h , V-band luminosity L_V , distance modulus m-M and stellar radial velocity dispersion σ_r for Carina and ω Centauri. The data are taken from Harris (1997), McConnachie (2012), and Sparke & Gallager (2007).

Exercise 2. - Tidal stripping The center of the Sagittarius dwarf spheroidal galaxy is at the moment situated at $\sim 20 \,\mathrm{kpc}$ from the center of the Milky Way.

- (a) Calculate the mass of the Milky Way within this radius, assuming a constant rotation velocity of $v_r = 220 \,\mathrm{km/s}$. (10 points)
- (b) How massive does Sagittarius need to be, in order for stars situated at 5 kpc from its center to remain bound to it? (10 points)
- (c) What would the corresponding mass-to-light ratio be? (Sagittarius has an estimated total luminosity of $L = 8 \cdot 10^7 L_{\odot}$). Compare this value to those you got in Exercise 1. Is the result realistic? If not, what do you expect to happen to Sagittarius? (10 points)