Prime Factorization

Tilmann, Olaf, Arka

July 2023

Definition 1 (prime). Let $p \in \mathbb{N}$, $p \geq 2$. p is called prime, if:

$$\forall d \in \mathbf{N} : d|p \implies d = 1 \lor d = p$$

Lemma 1 (prime is fact). Let $p \in \mathbb{N}$ prim.

 $s = \{p\}$ Multiset. Then:

$$p \in s \implies p \text{ prim}$$
 (1)

$$p \in s \implies p \text{ prim}$$
 (1)

$$\prod_{q \in s} q = p$$
 (2)

Lemma 2 (exists factor). Let $n \in \mathbb{N}$, $n \geq 2 \neg n$ prim.

Then exists $p, q \in \mathbf{N}$, such that $n = p * q \land p, q < n \land p, q \neq 1$

Proof. Let $n \in \mathbb{N}$, $n \geq 2 \neg n$ prime

According to negation of definition 1: $\exists d \in \mathbf{N}$ such that $d \mid n \land d \neq 1 \land d \neq n$. Because $d|n \exists c \in \mathbb{N}, c \neq 0$ with: n = d * c. $c \neq 0 \implies c \geq 1 \implies n \geq d$.

$$\begin{array}{l} d \neq n \implies d < n \\ d \neq 1 \implies d > 1 \end{array}$$

Lemma 3 (prod solution). Let $p, q \in \mathbb{N}$, n = p * q. $s_p, s_q \subseteq \mathbb{N}$ are multisets, such that: $\prod_{e \in s_p} e = p$ and $\prod_{e \in s_q} e = q$. $s = s_p + s_q$. Then: $\prod_{e \in s} e = n$

Theorem 1 (prime fact). Let $n \in \mathbb{N}$, $n \geq 2$ then exists Multiset $s \subseteq \mathbb{N}$, such that:

$$\prod_{p \in s} p = n \tag{3}$$

$$p \in s \implies p \text{ prim}$$
 (4)

Proof. Use strong induction in n:

Base Case: n=2 prime $\xrightarrow{Lemma1}$ Multiset $s = \{n\}$ is sufficient for (3) and (4).

Assumption: $\forall \ 2 \leq d \leq n \ \exists \ \text{Multiset} s \subseteq \mathbf{N} \ \text{such that} \ \prod_{p \in s} p = d \ \text{and} \ p \in s \implies$ p prim

$Induction\ Step:$

1st case: n+1 prime

n+1 prime $\xrightarrow{Lemma1}$ Multiset $s = \{n+1\}$ is sufficient for (3) and (4)

2nd case n+1 not prime

$$\xrightarrow{\underline{Lemma2}} \exists \ 2 \leq p, q \leq n, \text{ such that: } n+1=p*q.$$

 $\xrightarrow{Assumption} \exists \text{ Multisets} s_p, s_q \text{ such that: } x \in s_p, s_q \implies x \text{ prime and}$

$$\prod_{x \in s_p} = p$$
 and $\prod_{x \in s_q} = q$

 $\xrightarrow{Lemma3}$ $s = s_q + s_p$ is sufficient for (3) and (4).