

Application No. 10/612,037
Response to Office Action

Customer No. 01933

Amendments to the Specification:

Please amend the paragraph at page 5, lines 8-13 as follows:

Generally, in a light receiving element of an optical apparatus, a peripheral light intensity loss as conceptually indicated in FIG. 11 occurs. This is so-called ~~cosine biquadratic law~~ cosine-to-the-fourth or lens aperture ~~contact~~ vignetting, that is the phenomenon to decrease the receiving light quantity as the incident angle increases.

Application No. 10/612,037
Response to Office Action

Customer No. 01933

Please amend the paragraph at page 7, lines 6-18 as follows:

To achieve the above-mentioned object, the present invention provides an optical gain correction filter is provided, which has a multilayer film structure formed by stacking a plurality of thin films with different diffractive indexes refractive indices on a light transmitting board, wherein when a light with the wavelength λ enters at the incident angle θ , the transmissivity is assumed to be $T_1(\lambda, \theta)$ ($0 \leq T_1(\lambda, \theta) \leq 1$), and the thickness of each thin film is set to increase the transmissivity $T_1(\lambda, \theta)$ when the incident angle θ increases close to the predetermined maximum incident angle θ_{max} with respect to the incident light with the wavelength λ_0 entering the multilayer structure.

Application No. 10/612,037
Response to Office Action

Customer No. 01933

Please amend the paragraph at page 8, lines 2-14 as follows:

~~Further, the present invention provides In addition,~~ an optical gain correction filter is provided, which has a multilayer film structure formed by stacking a plurality of thin films with different ~~diffractive indexes~~ refractive indices on a light emitting reflecting board, wherein when light with the wavelength λ enters at the incident angle θ , the reflectivity is assumed to be $R_1(\lambda, \theta)$ ($0 \leq R_1(\lambda, \theta) \leq 1$), and the thickness of each thin film of the multilayer film structure is set to increase the reflectivity $R_1(\lambda_0, \theta)$ when the incident angle θ increases close to the predetermined maximum incident angle θ_{max} with respect to the incident light with the wavelength λ_0 entering the multilayer structure.

Application No. 10/612,037
Response to Office Action

Customer No. 01933

Please amend the paragraph at page 22, lines 10-21 as follows:

The optical gain correction filter 20 is formed to be a multilayer film structure formed by stacking a plurality of thin films with different ~~diffractive indexes~~ refractive indices on the reflection surface (board) of the reflector mirror 11, and the thickness of each thin film is set to increase the reflectivity $R_1(\lambda_0, \theta)$ when the incident angle θ increases close to the predetermined maximum incident angle θ_{max} with respect to the incident light with the wavelength λ_0 , assuming that the reflectivity is $R_1(\lambda_0, \theta)$ ($0 \leq R_1(\lambda, \theta) \leq 1$) when the light with the wavelength λ enters at the incident angle θ .

Application No. 10/612,037
Response to Office Action

Customer No. 01933

Please amend the paragraph at page 23, lines 16-26 as follows:

The dielectric multilayer film in the first embodiment is SiO₂ or TiO₂, but is not restricted to these materials. So-called high ~~diffra~~ctive refractive index materials, for example, CeO₂, ZrO₂, Ta₂O₅, ZnS can be used instead of TiO₂. So-called low refractive index materials, for example, MgF₂ can be used instead of SiO₂. It is also possible to use intermediate refractive index materials such as Al₂O₃ and SiO. It is also possible to optimize the ~~diffra~~ctive refractive index by using a material which includes at least one of the above materials.