DATA-51100: Statistical Programming Programming Assignment 7 – Aggregating ACS PUMS Data

Introduction

For this assignment, you will work again with the same ACS PUMS dataset as for assignment 6 to produce several tables which aggregate the data.

Note: For this assignment, you are free to program **in any programming language of your choice**; Python, R, Matlab, C++, Java,..etc. Please <u>indicate</u> the programming language you will use.

Requirements

You are to create a program in Python that performs the following using the pandas packages:

- 1. Loads the ss13hil.csv file that contains the PUMS dataset (assume it's in the current directory) and create a DataFrame object from it if you use Python.
- 2. Create 3 tables:

TABLE 1: Statistics of HINCP - Household income (past 12 months), grouped by HHT - Household/family type

- Table should use the HHT types (text descriptions) as the index
- Columns should be: mean, std, count, min, max
- Rows should be sorted by the mean column value in descending order

TABLE 2: HHL - Household language vs. ACCESS - Access to the Internet (Frequency Table)

- Table should use the HHL types (text descriptions) as the index
- Columns should be the text descriptions of ACCESS values
- Each table entry is the sum of WGTP column for the given HHL/ACCESS combination, divided by the sum of WGTP values in the data. Entries need to be formatted as percentages.
- Any rows containing NA values in HHL, ACCESS, or WGTP columns should be excluded.

TABLE 3: Quantile Analysis of HINCP - Household income (past 12 months)

- Rows should correspond to different quantiles of HINCP: low (0-1/3), medium (1/3-2/3), high (2/3-1)
- Columns displayed should be: min, max, mean, household_count
- The household_count column contains entries with the sum of WGTP values for the corresponding range of HINCP values (low, medium, or high)
- 3. Display the tables to the screen as shown in the sample output on the last page.
- 4. **Note:** For this assignment, you are free to program in **any programming language of your choice**; Python, R, Matlab, C++, Java,..etc. Please indicate the programming language you will use.

Additional Requirements

- 1. The name of your source code file should be tables.py for Python (or tables.m (for Matlab), tables.java (For Java, or tables.r (For R),..etc). All your code should be within a single file.
- 2. You need to use the pandas DataFrame object for storing and manipulating data (if you use Python).
- 3. Your code should follow good coding practices, including good use of whitespace and use of both inline and block comments
- 4. You need to use meaningful identifier names that conform to standard naming conventions.
- 5. At the top of each file, you need to put in a block comment with the following information: your name, date, course name, semester, and assignment name.
- 6. The output should **exactly** match the sample output shown on the last page.

What to Turn In

You will need to turn in the single tables.py (or tables.m (for Matlab), or tables.java (For Java), or tables.r (For R),..etc) file as well as a screen shot of the created tables using BlackBoard.

HINTS

- To get the right output, use the following functions to set pandas display parameters in Python: pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000)
- To display entries as percentages, use the applymap method, giving it a string conversion function as input. The string conversion function should take a float value v as an input and output a string representing v as a percentage. To do this, you can use the format() method

DATA-51100, [semester] [year]
NAME: [put your name here]
PROGRAMMING ASSIGNMENT #7

*** Table 1 - Descriptive Statistics of HINCP, grouped by HHT ***

	mean	Sta	count	mın	max
HHT - Household/family type					
Married couple household	106790.565562	100888.917804	25495	-5100	1425000
Nonfamily household:Male householder:Not living alone	79659.567376	74734.380152	1410	0	625000
Nonfamily household:Female householder:Not living alone	69055.725901	63871.751863	1193	0	645000
Other family household:Male householder, no wife present	64023.122122	59398.970193	1998	0	610000
Other family household: Female householder, no husband present	49638.428821	48004.399101	5718	-5100	609000
Nonfamily household:Male householder:Living alone	48545.356298	60659.516163	5835	-5100	681000
Nonfamily household: Female householder: Living alone	37282.245015	44385.091076	8024	-11200	676000

*** Table 2 - HHL vs. ACCESS - Frequency Table ***

sum WGTP

ACCESS	Yes w/ Subsrc. Yes	s, wo/ Subsrc.	No	All
HHL - Household language				
English only	58.71%	2.93%	16.87%	78.51%
Spanish	7.83%	0.52%	2.60%	10.95%
Other Indo-European languages	5.11%	0.18%	1.19%	6.48%
Asian and Pacific Island languages	2.73%	0.06%	0.28%	3.08%
Other language	0.80%	0.03%	0.14%	0.97%
All	75.19%	3.73%	21.08%	100.00%

*** Table 3 - Quantile Analysis of HINCP - Household income (past 12 months) ***
min max mean household_count

HINCP
low -11200 37200 19599.486904 1629499
medium 37210 81500 57613.846298 1575481
high 81530 1425000 159047.588900 1578445