Montages de base à AOP

Objectifs:

• Se familiariser avec les montages AOP les plus classiques.

• Être capable de calculer les fonctions de transfert correspondant à ces montages et de caractériser leur impédance d'entrée.

Préparation: Obligatoire.

Compte rendu : À remettre à la fin de la séance de TP.

1 Préparation (4 points)

Pour l'étude des montages proposés, les AOP seront considérés comme idéaux.

1.1 Amplificateur non-inverseur

- 1. En quel régime est l'AOP?
- 2. Quelle relation peut on exprimer entre v_+ et v_- ?
- 3. Déterminer le gain du montage.
- 4. Que vaut la résistance d'entrée R_e du montage?

1.2 Montage suiveur

- 1. En quel régime est l'AOP?
- 2. Quelle relation peut on exprimer entre v_+ et v_- ?
- 3. Déterminer le gain du montage.
- 4. Que vaut la résistance d'entrée R_e du montage? En déduire l'utilité du circuit.

1.3 Amplificateur inverseur

- 1. En quel régime est l'AOP?
- 2. Quelle relation peut on exprimer entre v_+ et v_- ?
- 3. Déterminer le gain du montage.
- 4. Que vaut la résistance d'entrée R_e du montage?

1.4 Amplificateur différentiel

- 1. En quel régime est l'AOP?
- 2. Quelle relation peut on exprimer entre v_+ et v_- ?
- 3. Exprimer v_+ en fonction de V_{in2} .
- 4. Exprimer v_{-} en fonction de V_{in1} et V_{out} .
- 5. En utilisant les deux questions précédentes, exprimer V_{out} en fonction de V_{in1} et V_{in2} .

2 Manipulations (16 points)

Les AOP seront alimentés en -12 V et 12 V.

Pour les montage 1.1 (amplificateur non-inverseur) et 1.4 (amplificateur différentiel) on fixe $R_1=R_2=R$ avec R comprise entre $1 \text{ k}\Omega$ et $10 \text{ k}\Omega$.

Pour le montage 1.3 (amplificateur inverseur) on fixe $R_1 = 4.7 \text{ k}\Omega$ et $R_2 = 10 \text{ k}\Omega$.

Il est recommandé de câbler tous les montages ensemble afin de ne pas perdre de temps.

2.1 Étude des montages 1.1, 1.2 et 1.3

- 1. Relever sur la même feuille de papier millimétré les caractéristiques de transfert statique $V_{out} = f(V_{in})$ des montages 1.1, 1.2 et 1.3, la tension V_{in} variant de -10 V à 10 V.
- 2. Indiquer les zones de fonctionnement en régime linéaire et les zones de fonctionnement en saturation.
- 3. Mesurer sur ces caractéristiques les amplifications des montages et comparer avec les résultats obtenus en préparation théorique.
- 4. Mesurer également les valeurs des tensions de saturations.
- 5. Mesurer la résistance d'entrée du montage 1.3 (indiquer la méthode de mesure).
- 6. Appliquer une tension sinusoïdale de 2 V d'amplitude et de fréquence égale à 1 kHz en entrée des montages 1.1, 1.2 et 1.3. Relever en concordance des temps les chronogrammes des tensions v_{in} et v_{out} pour les trois montages. Retrouver à partir de ces relevés les amplifications des trois montages.

2.2 Étude de l'amplificateur différentiel

Prendre $R_1 = R_2 = R_A = R_B = R$ avec R comprise entre 1 k Ω et 10 k Ω .

- 1. v_{in1} est une tension sinusoïdale de 2 V d'amplitude et de fréquence égale à 1 kHz. V_{in2} est une tension continue égale à 5 V. Relever en concordance des temps les chronogrammes des tensions v_{in1} , V_{in2} et v_{out} .
- 2. Retrouver à partir de ces relevés le fonctionnement du montage.

Annexe: Brochage des TL081, TL082 et TL084

TL081:

PIN CONNECTIONS (top view)

TL082:

PIN CONNECTIONS (top view)

TL084:

PIN CONNECTIONS (top view)

