COMPASS LE OWC Root Exclusion: Porewater Nutrients

Apr-May 2024 Samples

2025-10-30

Contents

0.1	Run Information	2
0.2	Plot standard curves	:
0.3	Check NOx Reduction Efficiency	Ć
0.4	Analyze the Check Standards	10
0.5	Analyze Blanks	11
0.6	Check to see if samples run match metadata & merge info	12
0.7	Visualize data	13

0.1 Run Information

```
#set the run date & user name
  run_date <- "08/20/2025"
  sample_year <- "2024"</pre>
  sample month <- "Apr-May"</pre>
  user <- "Roberta Peixoto"
  QAQC_by <- "Zoe Read"
#identify the files you want to read in
  #read in as a list to accommodate multiple runs in a month
  data files <- c("Raw Data/Seal COMPASS LE OWC RootExclusion NUTR Apr-May2024.csv")
# Define the file path for QAQC log file - NO Need to change just check year
 file_path <- "Raw Data/SEAL_COMPASS_LE_OWC_RootExclusion_QAQC_Log_2025.csv"
  final_path <- "Processed Data/COMPASS_LE_OWC_RootExclusion_Nutrients_2024_Apr-May2024.csv"
#record any notes about the run or anything other info here:
  run_notes <- "The last CCV check std for Phosphate is very high.
  All other check standards are too low. " #Add notes from QAQC
#Set up file path for metadata
  #downloaded metadata csv - downloaded from Google drive as csv for this year
 Raw_Metadata = "Raw Data/COMPASS_OWC_Root_Exclusion_Nutrient_SampleLog.csv"
 cat(run_notes)
## The last CCV check std for Phosphate is very high.
     All other check standards are too low.
##Setup
##Read in metadata and create similar sample IDs for matching to samples
```

##Import Data & Clean ##Assessing standard Curves

0.2 Plot standard curves

'geom_smooth()' using formula = 'y ~ x'

NOx Standard Curve

'geom_smooth()' using formula = 'y ~ x'

NH3 Standard Curve

'geom_smooth()' using formula = 'y ~ x'

PO4 Standard Curve

SO4 Standard Curve

'geom_smooth()' using formula = 'y ~ x'

NO2 Standard Curve

- ## [1] "NOx Curve r2 GOOD PROCEED"
- ## [1] "NH3 Curve r2 GOOD PROCEED"
- ## [1] "PO4 Curve r2 GOOD PROCEED"
- ## [1] "S04 Curve r2 G00D PROCEED"
- ## [1] "NO2 Curve r2 GOOD PROCEED"
- ## [1] "QAQC log file exists and has been read into the code."
- ## 'geom_line()': Each group consists of only one observation.
- ## i Do you need to adjust the group aesthetic?

Slope Drift Assessment

Table 1: Average Slope by Analyte

Test	avg_slope
NH3	18.657
NO2	437.467
NOx	1.252
PO4	2.616
SO4	1.570

 $\#\#\mathrm{Dilution}$ Corrections - ensure the latest dilution is kept

No duplicated samples.

0.3 Check NOx Reduction Efficiency

[1] "Mean NOx Reduction Efficiency >95% - PROCEED"

[1] 100.045

0.4 Analyze the Check Standards

- ## [1] "NOx Check Standard RSD within Range PROCEED"
- ## [1] "NH3 Check Standard RSD within Range PROCEED"
- ## [1] "PO4 CHECK STANDARD RSD TOO HIGH REASSESS"
- ## [1] "SO4 Check Standard RSD within Range PROCEED"
- ## [1] "NO2 Check Standard RSD within Range PROCEED"

[1] "<60% of NOx Check Standards are within range of expected concentration - REASSESS"
[1] "<60% of NH3 Check Standards are within range of expected concentration - REASSESS"
[1] "<60% of PO4 Check Standards are within range of expected concentration - REASSESS"
[1] "<60% of SO4 Check Standards are within range of expected concentration - REASSESS"
[1] "<60% of NO2 Check Standards are within range of expected concentration - REASSESS"</pre>

0.5 Analyze Blanks

[1] ">60% of NOx Blanks are below the lower 25% quartile of samples or 1/2 detection limit - PROCEED

[1] ">60% of NH3 Blanks are below the lower 25% quartile of samples - PROCEED"

[1] ">60% of PO4 Blanks are below the lower 25% quartile of samples- PROCEED"

[1] ">60% of SO4 Blanks $% \mathbb{R}$ are below the lower 25% quartile of samples- PROCEED"

[1] ">60% of NO2 Blanks are below the lower 25% quartile of samples- PROCEED"

Table 2: Mean Concentration of Blanks

Test	$Blank_Mean_Conc$
NOx	-0.0029
NH3	-0.0037
PO4	0.0022
SO4	0.0433
NO2	-0.5667

```
##Sample Flagging - Within range of standard curve ##Pull out sample id information
```

0.6 Check to see if samples run match metadata & merge info

Check Sample IDs with Metadata

All sample IDs are present in metadata.

0.7 Visualize data

Visualize Data

Porewater NO2

##Export Processed Data

#end