# Statistical Inference Course Project

## Part 1: Simulation Excercise

It is good practice to set a defined seed on an experiment to improve reproducibility.

```
set.seed(240598)
```

We then assign the data given to us for this experiment

```
lambda <- 0.2
n <- 40
nsim <- 1000
```

Then the experiment is made through the replicate function and the mean of the exponentials is calculated

```
sim <- replicate(nsim, rexp(n, lambda))
eMean <- apply(sim,2,mean)</pre>
```

#### Comparison of the Means

The first question of the first part is to compare the sample mean and the theoretical mean. We start by calculating both:

```
sMean <- mean(eMean)
sMean

## [1] 5.016071

tMean <- 1/lambda
tMean
## [1] 5</pre>
```

The histogram is then plotted. Both means are also plotted as lines to do the comparison

```
hist(eMean, breaks = 50, main = "Histogram of the simulated data")
abline(v = sMean, col = "red")
abline(v = tMean, col = "blue")
```

# Histogram of the simulated data



clearly see that both means almost overlap eachother, since both are very close to 5.

### Comparison of the Variances

As we did before, we calculate both variances:

```
sSd <- sd(eMean)
sVar <- sSd^2
sVar

## [1] 0.6599058

tSd <- (1/lambda)/sqrt(n)
tVar <- tSd^2
tVar</pre>
```

## [1] 0.625

We therefore proved that both variances are very close to each other

#### Distribution

The Central Limit Theorem states that the simulation should follow a normal distribution

```
hist(eMean, breaks = 50, main = "Histogram of the simulated data")
xfit <- seq(min(eMean), max(eMean), length = 50)
yfit <- dnorm(xfit, mean = tMean, sd = tSd)
lines(xfit, yfit * 100, lty = 1)</pre>
```

# Histogram of the simulated data



figure proves that the distribution of means of the sampled exponential distributions follow a normal distribution.

This