РАБОТА № 3.

Построение эффективных кодов по методам Шеннона-Фано и Хаффмана

1. Цель работы

Цель работы – изучить возможности эффективного кодирования информации по методам Шеннона-Фано и Хаффмана.

2. Основные теоретические сведения

Кодирование, при котором обеспечивается минимальная средняя длина кодовых слов, называется **эффективным** (оптимальным). В эффективном коде символу, встречающемся чаще всего, присваивается наиболее короткая кодовая комбинация.

Задачи эффективного кодирования заключаются в следующем:

- 1) Запоминание максимального количества информации в ограниченной памяти.
- 2) Обеспечение максимальной пропускной способности канала связи.

Эффективное кодирование базируется на теореме Шеннона о кодировании при отсутствии помех, согласно которой минимальная средняя длина кодовых слов определяется соотношением

$$\overline{L}_{\min} = \frac{H}{\log_2 K};$$

где H – энтропия источника сообщений, K – основание кода.

Для двоичного кода, очевидно, что $\overline{L}_{\min}=H$.

 ${\it Эффективностью}$ кода χ называется отношение \overline{L}_{\min} к реально достигнутой в данном коде средней длине кодовых слов \overline{L}

$$\chi = \frac{\overline{L}_{\min}}{\overline{L}} = \frac{H}{\overline{L} \log_2 K}.$$

Средняя длина кодовых комбинаций может быть найдена следующим образом

$$\overline{L} = \sum_{i=1}^{m} p(s_i) L_i;$$

где L_i — длина кодовой комбинации, соответствующей символу s_i из алфавита размером m.

Для случая отсутствия статистической взаимосвязи между символами метод построения эффективных кодов впервые был предложен Шенноном и Фано.

Для двоичного кода метод Шеннона-Фано сводится к следующему:

- 1). Буквы алфавита располагаются в порядке убывания вероятностей.
- 2). Алфавит букв разбивается на две группы таким образом, чтобы суммарные вероятности букв обеих групп были по возможности равны. Первой группе присваивается символ 1, второй символ -0.
- 3) Каждую из образованных групп вновь делят на две части с приблизительно равными суммарными вероятностями и присваивают им 1 и 0. Таким образом, получают вторые цифры кода.
- 4). Процесс повторяется до тех пор, пока в каждой подгруппе не останется по одной букве.

Рассмотрим пример построения кода Шеннона-Фано для алфавита из шести символов (табл. 1). Кодовое дерево, соответствующее полученному коду Шеннона-Фано, представлено на рис. 1.

Рис. 1. Кодовое дерево для кода Шеннона-Фано

Таблица 1. Получение эффективного кода по методу Шеннона-Фано

Символы		Разде	еление симв	Кодовые		
исходного алфавита	$p(s_i)$	1	2	3	4	слова
s_1	0,25	$\left. \begin{array}{c} \\ \end{array} \right\} I - 1 \left. \begin{array}{c} \\ \end{array} \right.$	I – 1			11
s_2	0,25		II - 0			10
<i>S</i> ₃	0,25	$\left.\begin{array}{c} \\ \\ \end{array}\right\} \text{II} - 0$	III - 1			01
S_4	0,125		$\Bigg\} IV - 0$	IV – 1		001
S_5	0,0625			$\left. \begin{cases} V-0 \end{cases} \right.$	V-1	0001
<i>s</i> ₆	0,0625				VI – 0	0000

Метод Шеннона-Фано не всегда приводит к однозначному построению кода. От указанного недостатка свободен метод Хаффмана.

Для двоичного кода метод Хаффмана сводится к следующему:

- 1). Буквы алфавита выписываются в столбец в порядке убывания вероятностей.
- 2). Две последние буквы объединяются в одну вспомогательную букву, которой приписывается суммарная вероятность.
- 3). Вероятности букв, участвующих в объединении и полученная суммарная вероятность вновь располагаются в порядке убывания вероятностей в дополнительном столбце, а две последние буквы объединяются.
- 4). Процесс продолжается до тех пор, пока не будет получена единственная вспомогательная буква с суммарной вероятностью, равной 1.

Для получения кодовой комбинации, соответствующей данной букве необходимо проследить путь перехода по строкам и столбцам таблицы.

Рассмотрим пример построения кода Хаффмана для алфавита из восьми символов (табл. 2). Результат показан на рис. 2 в виде кодового дерева соответствующего коду Хаффмана.

Получение эффективного кода по методу Хаффмана
--

Сим-	Вероят- Вспомогательные столбцы						
волы	ности	1	2	3	4		
s_1	0,4	0,4	0,4	> 0,6	→ 1		
s_2	0,25	0,25	>0,35 0,25	∐ 0,4			
S_3	0,2	0,2 L	0,25				
s_4	0,1	> 0,15 「					
S_5	0,05						

Рис. 2. Пример кодового дерева для кода Хаффмана

3. Порядок выполнения работы

Данная контрольная работа предполагает выполнение следую щихэтапов:

- 1). Изучить методические указания к практической работе.
- 2). На основе заданного первичного алфавита и вероятностей появления символов этого алфавита (табл. 3) получить в форме таблицы двоичный код Шеннона-Фано.
- 3). Построить кодовое дерево для полученного кода Шеннона-Фано.
- 4). Написать программу построения кодового дерева для кода Шеннона-Фано.
 - 5). Определить эффективность кода, полученного по методу Шеннона-Фано.

4. Варианты заданий

 Таблица 3

 Вероятности появления символов для различных вариантов

Bap.	Символы алфавита источника сообщений											
Dap.	s_1	s_2	s_3	s_4	S_5	s_6	s_7	<i>S</i> ₈	S 9	s_{10}	s_{11}	<i>S</i> ₁₂
1	0,14	0,06	0,05	0,08	0,13	0,04	0,01	0,09	0,15	0,02	0,11	0,12
2	0,11	0,05	0,09	0,10	0,12	0,03	0,02	0,08	0,15	0,07	0,14	0,04
3	0,13	0,07	0,05	0,06	0,15	0,04	0,11	0,02	0,12	0,16	0,08	0,01
4	0,02	0,11	0,12	0,01	0,09	0,15	0,08	0,13	0,04	0,14	0,06	0,05
5	0,07	0,14	0,04	0,02	0,08	0,15	0,10	0,12	0,03	0,11	0,05	0,09
6	0,16	0,08	0,01	0,11	0,02	0,12	0,06	0,15	0,04	0,13	0,07	0,05
7	0,01	0,09	0,15	0,02	0,11	0,12	0,14	0,06	0,05	0,08	0,13	0,04
8	0,02	0,08	0,15	0,07	0,14	0,04	0,13	0,07	0,05	0,06	0,15	0,04
9	0,11	0,02	0,12	0,16	0,08	0,01	0,07	0,05	0,13	0,06	0,15	0,04
10	0,06	0,05	0,14	0,13	0,04	0,08	0,15	0,01	0,09	0,12	0,02	0,11
11	0,09	0,11	0,05	0,03	0,10	0,12	0,15	0,02	0,08	0,14	0,04	0,07
12	0,05	0,13	0,07	0,15	0,04	0,06	0,02	0,12	0,11	0,04	0,07	0,14
13	0,12	0,02	0,11	0,09	0,15	0,01	0,13	0,04	0,08	0,06	0,05	0,14
14	0,14	0,04	0,07	0,15	0,02	0,08	0,03	0,10	0,12	0,09	0,11	0,05
15	0,04	0,07	0,14	0,02	0,12	0,11	0,15	0,04	0,06	0,05	0,13	0,07
16	0,05	0,07	0,13	0,04	0,15	0,06	0,12	0,02	0,11	0,01	0,08	0,16
17	0,1	0,03	0,05	0,09	0,14	0,04	0,01	0,08	0,16	0,04	0,12	0,14
18	0,12	0,07	0,08	0,11	0,16	0,01	0,04	0,06	0,13	0,09	0,1	0,03
19	0,11	0,08	0,07	0,04	0,14	0,05	0,13	0,02	0,1	0,15	0,09	0,02
20	0,03	0,12	0,14	0,02	0,08	0,15	0,1	0,11	0,03	0,12	0,05	0,05
21	0,08	0,13	0,05	0,01	0,06	0,14	0,11	0,13	0,06	0,1	0,04	0,09
22	0,15	0,09	0,02	0,13	0,02	0,1	0,08	0,16	0,01	0,12	0,06	0,06
23	0,03	0,11	0,16	0,05	0,14	0,15	0,09	0,01	0,04	0,07	0,13	0,02
24	0,06	0,01	0,12	0,09	0,16	0,02	0,11	0,03	0,08	0,05	0,15	0,12

5. Контрольные вопросы

- 1. В чем заключается сущность эффективного кодирования?
- 2. Каковы основные задачи эффективного кодирования?
- 3. Как определяется средняя длина кодового слова?
- 4. Чему равна нижняя граница эффективного кодирования?
- 5. Как определяется эффективность кода?
- 6. В каком случае метод Шеннона-Фано гарантированно обеспечивает получение эффективного кода?
- 7. С помощью какой операции в методе Хаффмана обеспечивается получение вспомогательных символов?