In the claims:

Claims 1-21 (cancelled).

22. (currently amended) A method for the antimicrobial treatment of a surface of a plastic, which method comprises contacting said surface of a plastic with a surface coating composition containing an antimicrobially effective amount of a 2,4-bis(alkylamino)pyrimidine of formula

(1)
$$R_{5} \stackrel{R_{1}}{\underset{R_{6}}{\bigvee}} N \stackrel{R_{4}}{\underset{R_{3}}{\bigvee}}$$

wherein

 R_1 is C_1 - C_{12} alkyl or C_6 - C_{10} aryl;

 R_2 is hydrogen or C_1 - C_{12} alkyl;

R₃ and R₅ are each independently of the other hydrogen or C₁-C₈alkyl;

 R_4 is C_1 - C_{20} alkyl, C_6 - C_{10} aryl- C_1 - C_6 alkyl, hydroxy- C_1 - C_6 alkyl,

di- C_1 - C_6 alkylamino- C_1 - C_6 alkyl, mono- C_1 - C_6 alkylamino- C_1 - C_6 alkyl, -(CH_2)₂-(O-(CH_2)₂)₁₋₄-OH or -(CH_2)₂-(O-(CH_2)₂)₁₋₄-OH2;

 R_6 is C_1 - C_{20} alkyl, C_6 - C_{10} aryl- C_1 - C_6 alkyl, hydroxy- C_1 - C_6 alkyl, di- C_1 - C_6 alkylamino- C_1 - C_6 alkyl, mono- C_1 - C_6 alkyl, -(CH_2)₂-(O-(CH_2)₂)₁₋₄-OH or -(CH_2)₂-(O-(CH_2)₂)₁₋₄-OH₂; or

 R_3 and R_4 and/or R_5 and R_6 together form a pyrrolidine, piperidine, hexamethyleneimine or morpholine ring.

- 23. (previously presented) A method according to claim 22, wherein
- R_1 is C_1 - C_8 alkyl or phenyl.
- 24. (previously presented) A method according to claim 22, wherein
- R₂ is hydrogen or C₃-C₈alkyl.
- 25. (withdrawn) A method according to claim 22, wherein

R₃ and R₅ are each independently of the other hydrogen or C₁-C₈alkyl.

26. (withdrawn) A method according to claim 22, wherein

 R_4 is C_1 - C_{12} alkyl, unsubstituted phenyl, C_6 - C_{10} aryl- C_1 - C_6 alkyl, hydroxy- C_2 - C_6 alkyl, di- C_1 - C_4 alkylamino- C_1 - C_4 alkyl, mono- C_1 - C_4 alkylamino- C_1 - C_4 alkyl, -(CH_2)₂-(O-(CH_2)₂)_{1,2}-O-OH or -(CH_2)₂-O-(CH_2)₂)_{1,2}-O-NH₂; and

 R_6 is C_1-C_{12} alkyl, C_6-C_{10} aryl, C_6-C_{10} aryl- C_1-C_6 alkyl, hydroxy- C_2-C_6 alkyl, di- C_1-C_4 alkylamino- C_1-C_4 alkyl, -(CH_2)₂-($O-(CH_2$)₂)_{1,2}-OH or -(CH_2)₂-($O-(CH_2$)₂)_{1,2}-NH₂.

27. (withdrawn) A method according to claim 22, wherein

 R_1 is C_1 - C_8 alkyl or phenyl;

R₂ is hydrogen or hexyl; and

R₃ and R₅ are each independently of the other hydrogen or C₁-C₈alkyl;

 R_4 is C_1 - C_{12} alkyl, unsubstituted phenyl, C_6 - C_{10} aryl- C_1 - C_6 alkyl, hydroxy- C_2 - C_6 alkyl, di- C_1 - C_4 alkylamino- C_1 - C_1 - C_2 - C_1 - $C_$

 R_6 is C_1 - C_{12} alkyl, C_6 - C_{10} aryl, C_6 - C_{10} aryl- C_1 - C_6 alkyl, hydroxy- C_2 - C_6 alkyl, di- C_1 - C_4 alkylamino- C_1 - C_4 alkyl, -(CH_2)₂-(O-(CH_2)₂)_{1,2}-OH or -(CH_2)₂-(O-(CH_2)₂)_{1,2}- NH_2 ; or R_3 and R_4 and/or R_5 and R_6 together form a pyrrolidine, piperidine, hexamethyleneimine or morpholine ring.

28. (cancelled)

29. (previously presented) A method according to claim 22, wherein

 R_1 is C_1 - C_4 alkyl or phenyl;

R₂ is hydrogen or hexyl

R₃ and R₅ are each independently of the other hydrogen or C₁-C₈alkyl;

 R_4 is C_1 - C_{12} alkyl, C_6 - C_{10} aryl- C_1 - C_6 alkyl, hydroxy- C_2 - C_6 alkyl,

di- C_1 - C_4 alkylamino- C_1 - C_4 alkyl, mono- C_1 - C_4 alkylamino- C_1 - C_4 alkyl, - $(CH_2)_2$ - $(O-(CH_2)_2)_{1,2}$ -OH or - $(CH_2)_2$ - $(O-(CH_2)_2)_{1,2}$ -NH₂; and

 R_6 is C_1-C_{12} alkyl, C_6-C_{10} aryl- C_1-C_6 alkyl, hydroxy- C_2-C_6 alkyl, di- C_1-C_4 alkylamino- C_1-C_4 alkyl, mono- C_1 - C_4 alkyl, -(CH_2)₂-(C_1 - C_2 - C_3 -(C_1 - C_4 alkyl, -(CH_2)₂-(C_1 - C_2 - C_3 - C_4 - C_5 - C_5 - C_5 - C_6 - C_7 - $C_$

 R_3 and R_4 together, and R_5 and R_6 together, form a pyrrolidine, piperidine, hexamethyleneimine or morpholine ring.

- 30. (withdrawn) A method according to claim 22, wherein R_3 and R_5 , and R_4 and R_6 , have the same meanings.
- 31. **(previously presented)** A method according to claim 22, wherein the 2,4-bis(alkylamino)pyrimidine is of the formula

32-42. (cancelled)

10/565,545

...

 v_{ij}