Introduction

J.C. Schoeman

Maties Machine Learning

2 November 2018

UNIVERSITEIT · STELLENBOSCH · UNIVERSITY jou kennisvennoot · your knowledge partner

Outline

- Introduction
- 2 Existing Approaches to Planning
- Probabilistic Graphical Models
- 4 Planning using PGMs
- 5 Experiments
- 6 Conclusions

Outline

Introduction

- Introduction
 - Autonomous Navigation
 - Autonav System Configuration
 - Planning for Autonomous Robots
- Existing Approaches to Planning
- 3 Probabilistic Graphical Models
- 4 Planning using PGMs
- Experiments
- 6 Conclusions

•00

000

Applications

self-driving cars

Introduction

Applications

- self-driving cars
- planetary exploration

Applications

- self-driving cars
- planetary exploration
- surveillance systems

Introduction

Applications

- self-driving cars
- planetary exploration
- surveillance systems

Challenges

uncertain environments

Applications

- self-driving cars
- planetary exploration
- surveillance systems

Challenges

- uncertain environments
- continuous states

Introduction

Planning for Autonomous Robots

Introduction

000

Research Aim: Develop algorithm to solve general robotic planning problems

Planning for Autonomous Robots

Research Aim: Develop algorithm to solve general robotic planning problems

Research Objectives

accommodate environments with significant uncertainty

Introduction

Planning for Autonomous Robots

Research Aim: Develop algorithm to solve general robotic planning problems

Research Objectives

- accommodate environments with significant uncertainty
- plan for robots with continuous states

Outline

- 1 Introduction
- 2 Existing Approaches to Planning
 - Motion Planning
 - Partially Observable Markov Decision Processes
 - Reinforcement Learning
- 3 Probabilistic Graphical Models
- 4 Planning using PGMs
- Experiments
- 6 Conclusions

Motion Planning

Motion Planning

Uncertain Environments	Continuous States
X	

Partially Observable Markov Decision Processes

Partially Observable Markov Decision Processes

Model-free RL Model-based RL

Model-free RL	Model-based RL
learn value functions	learn system dynamics model

Model-free RL	Model-based RL
learn value functions	learn system dynamics model
compute policy from value function	plan policy using model

Model-free RL	Model-based RL
learn value functions	learn system dynamics model
compute policy from value function	plan policy using model
higher computational efficiency	higher data efficiency

Model-free RL	Model-based RL
learn value functions	learn system dynamics model
compute policy from value function	plan policy using model
higher computational efficiency	higher data efficiency

For a practical robotic system

• trial-and-error consequences could be disastrous

Model-free RL	Model-based RL
learn value functions	learn system dynamics model
compute policy from value function	plan policy using model
higher computational efficiency	higher data efficiency

For a practical robotic system

- trial-and-error consequences could be disastrous
- experience rate cannot be accelerated

Introduction

Model-free RL	Model-based RL
learn value functions	learn system dynamics model
compute policy from value function	plan policy using model
higher computational efficiency	higher data efficiency

For a practical robotic system

- trial-and-error consequences could be disastrous
- experience rate cannot be accelerated
- models are typically already available

Outline

- Introduction
- Existing Approaches to Planning
- 3 Probabilistic Graphical Models
 - Inference
 - Decision Theory
- 4 Planning using PGMs
- Experiments
- 6 Conclusions

Inference

Inference

p(a)p(b)p(c)а p(f|b,c)p(d|a)p(e|a)p(g|e,f)

$$p(a, b, c, d, e, f, g, h) = p(a) p(b) p(c) p(d|a) p(e|a) p(f|b, c) p(g|e, f) p(h|f)$$

Planning using PGMs

p(a)p(b)p(c)а p(d|a)p(f|b,c)p(e|a)p(g|e,f)

$$p(a, b, c, d, e, f, g, h) = p(a) p(b) p(c) p(d|a) p(e|a) p(f|b, c) p(g|e, f) p(h|f)$$

Model problem

$$p(a, b, c, d, e, f, g, h) = p(a) p(b) p(c) p(d|a) p(e|a) p(f|b, c) p(g|e, f) p(h|f)$$

- Model problem
- Observe subset of variables

Planning using PGMs

Introduction

$$p(a, b, c, d, e, f, g, h) = p(a) p(b) p(c) p(d|a) p(e|a) p(f|b, c) p(g|e, f) p(h|f)$$

- Model problem
- Observe subset of variables
- Infer distribution over unobserved variables

$$\mathbb{E}\left[c_{\mathcal{T}}|\sigma\right] = \sum_{i} \mathbb{E}\left[c_{i}|\sigma\right]$$

$$\mathbb{E}\left[c_{T}|\sigma\right] = \sum_{i} \mathbb{E}\left[c_{i}|\sigma\right]$$

Model problem

$$\mathbb{E}\left[c_{T}|\sigma\right] = \sum_{i} \mathbb{E}\left[c_{i}|\sigma\right]$$

- Model problem
- Calculate expected cost of strategy

$$\mathbb{E}\left[c_{\mathcal{T}}|\sigma\right] = \sum_{i} \mathbb{E}\left[c_{i}|\sigma\right]$$

- Model problem
- 2 Calculate expected cost of strategy
- Optimise strategy

Outline

- Introduction
- Existing Approaches to Planning
- 3 Probabilistic Graphical Models
- Planning using PGMs
 - Modelling the Planning Problem
 - Calculating the Expected Cost
 - Optimising the Strategy
- Experiments
- 6 Conclusions

Calculating the Expected Cost

Calculating the Expected Cost

Calculating the Expected Cost

$$\mathbb{E}\left[c_T|\sigma\right] = f(\sigma)$$

$$\mathbb{E}\left[c_T|\sigma\right] = f(\sigma)$$

$$\mathbb{E}\left[c_T|\sigma\right] = f(\sigma)$$

$$\sigma_{\sf opt} = \arg\min_{\sigma} f(\sigma)$$

$$\mathbb{E}\left[c_T|\sigma\right] = f(\sigma)$$

$$\sigma_{\sf opt} = \arg\min_{\sigma} f(\sigma)$$

$$\sigma = \{\sigma_k\}_{k=0}^K$$

$$\mathbb{E}\left[c_T|\sigma\right] = f(\sigma)$$

$$\sigma_{\sf opt} = \arg\min_{\sigma} f(\sigma)$$

$$\sigma = \{\sigma_k\}_{k=0}^K$$

$$\mathbb{E}\left[c_T|\sigma\right]=f(\sigma)$$

$$\sigma_{\mathsf{opt}} = \arg\min_{\sigma} f(\sigma)$$

$$\sigma = \{\sigma_k\}_{k=0}^K$$

$$\mathbb{E}\left[c_T|\sigma\right]=f(\sigma)$$

$$\sigma_{\sf opt} = \arg\min_{\sigma} f(\sigma)$$

$$\sigma = \{\sigma_k\}_{k=0}^K$$

$$\mathbb{E}\left[c_T|\sigma\right] = f(\sigma)$$

$$\sigma_{\mathsf{opt}} = \arg\min_{\sigma} f(\sigma)$$

$$\sigma = \{\sigma_k\}_{k=0}^K$$

$$\mathbb{E}\left[c_T|\sigma\right]=f(\sigma)$$

$$\sigma_{\sf opt} = \arg\min_{\sigma} f(\sigma)$$

$$\sigma = \{\sigma_k\}_{k=0}^K$$

$$\mathbb{E}\left[c_T|\sigma\right]=f(\sigma)$$

$$\sigma_{\sf opt} = \arg\min_{\sigma} f(\sigma)$$

$$\sigma = \{\sigma_k\}_{k=0}^K$$

Outline

- Introduction
- Existing Approaches to Planning
- 3 Probabilistic Graphical Models
- 4 Planning using PGMs
- 5 Experiments
 - Light-dark Domain
 - Obstacle Avoidance
- 6 Conclusions

Light-dark Domain

Light-dark Domain

Outline

- Introduction
- Existing Approaches to Planning
- Probabilistic Graphical Models
- 4 Planning using PGMs
- Experiments
- **6** Conclusions

Contribution

• PGM planning algorithm

- PGM planning algorithm
- Applicable to variety of tasks and platforms

- PGM planning algorithm
- Applicable to variety of tasks and platforms
- Can accommodate uncertainty

- PGM planning algorithm
- Applicable to variety of tasks and platforms
- Can accommodate uncertainty
- Avoids discretising continuous states

Conclusions

- PGM planning algorithm
- Applicable to variety of tasks and platforms
- Can accommodate uncertainty
- Avoids discretising continuous states
- Makes use of future information

Introduction

Contribution

- PGM planning algorithm
- Applicable to variety of tasks and platforms
- Can accommodate uncertainty
- Avoids discretising continuous states
- Makes use of future information.

Future Work

• Incorporate environment states

Contribution

- PGM planning algorithm
- Applicable to variety of tasks and platforms
- Can accommodate uncertainty
- Avoids discretising continuous states
- Makes use of future information

Future Work

- Incorporate environment states
- Cooperative, multi-agent planning