Символни низове - увод

Тествайте задачите от тази тема в judge: https://judge.softuni.bg/Contests/2637/Символни-низове-увод и https://judge.softuni.bg/Contests/2664

1. Кой е пощенския сървър

Създайте **метод**, който получава **низ**, съдържащ **валиден email** и връща **низ**, съдържащ в кой **пощенски сървър** е регистриран този email.

Вход

• На един ред поучавате валиден email

Изход

• На един ред извеждате неговия пощенски сървър

Упътване

Пощенският сървър е частта от email-а след знака '@'.

Примери

Вход	Изход
pesho@gmail.com	gmail.com
maria@abv.bg	abv.bg
mi1234@hotmail.com	hotmail.com

2. Разтълкуване на email адрес

Създайте **метод**, който получава **низ**, съдържащ **валиден email** и връща **низ**, обясняващ кой е **потребителя** и **пощенския сървър**, в който е регистриран този email.

Вход

• На един ред поучавате валиден email

Изход

• На един ред извеждате кой е потребителя и пощенския сървър

Упътване

Пощенският сървър е частта от email-а след знака '@'.

Вход	Изход
pesho@gmail.com	Това е потребител pesho в сървър gmail.com
maria@abv.bg	Това е потребител maria в сървър abv.bg
mi1234@hotmail.com	Това е потребител mi1234 в сървър hotmail.com

3. Два домейна от един TLD

Създайте **метод**, който получава **два низа**, съдържащи **валидни домейн имена** и връща **True**, ако те са от един и същ **Top Level Domain** (накратко <u>TLD</u>) и **False**, ако не са.

Вход

• На два реда поучавате двата домейна

Изход

• На един ред извеждате дали те са от един **TLD**

Упътване

TLD е частта от домейн името след последната точка до края.

Примери

Вход	Изход
gmail.com mail.bg	False
abv.bg mail.bg	True
hotmail.com microsoft.com	True

4. Проста проверка за валиден email адрес

Създайте **метод**, който получава **низ**, съдържащ **може би email** и връща **True**, ако въведеното спазва формата за email адрес (user@domain.tld) и **False** в противен случай.

Уточнение

В случая се изисква само опростена проверка - дали присъстват знаците @ и . (точка), дали са в правилния ред и дали някой от компонентите на името (user, domain и tld) не е празен низ. По-подробна проверка - дали низа съдържа валидни символи и т.н. ще направим в урока за регулярни изрази.

Вход

• На един ред поучавате текст, който ще проверяваме дали е валиден email

Изход

На един ред извеждате True, ако въведеното изглежда като email адрес и False в противен случай.

Вход	Изход	Коментар
pesho@gmail.com	True	Това е валиден email
maria@abv.bg	True	Това е валиден email
pesho@hotmail	False	Липсва . и TLD частта от домейн името
gosho_mail.ru	False	Липсва @
ivan	False	Лиспват домейна и знаците @ и .
ana.abv@bg	False	. и @ са с разменени места
ivan.petrov@abv.bg	True	Това е валиден email

ivan@.bg	False	Липсва домейн името
ivan@abv.	False	Липсва TLD частта от домейна
@mail.bg	False	Липсва кой е потребителя
@.	False	Липсва цялата информация
	False	Нищо не е въведено

5. Обръщане на низ

Създайте метод, който получава низ и връща низ, получен от същите символи, но в обратен ред.

Вход

• На един ред поучавате символен низ

Изход

• На един ред извеждате обърнатия низ

Ограничения

Символният низ да се състои от една дума, т.е. да няма интервали и да не се ползва метода Reverse

Упътване

Може да решите тази задача по няколко начина:

- 1. да отпечатате всички символи на низа, като го обходите отзад напред
- 2. да конструирате нов низ, в който да прехвърлите символите на първия, в обратен ред
- 3. да прехвърлите низа в масив от символи и да размените първия с последния, втория с предпоследния и т.н.

Примери

Вход	Изход
а	а
aba	aba
alenafanela	alenafanela
alibaba	ababila
baba	abab

6. Палиндром

Създайте **метод**, който получава низ и връща **True** или **False** в зависимост от това дали думата е палиндром или не

Вход

• На един ред поучавате символен низ

Изход

• На един ред извеждате **True**, ако низа е палиндром или **False**, ако не е.

Ограничения

Символният низ да се състои от една дума, т.е. да няма интервали

Упътване

Един низ е палиндром, ако прочетен отзад напред е същия, какъвто е и когато го четем отпред назад. Може да проверите това по няколко начина:

- 1. да проверите дали низа е равен на обърнатия низ (вижте в предната задача как да го обърнете)
- 2. да сравните в цикъл първия с последния символ, втория с предпоследния и т.н. до средата на низа. Ако някои от сравняваните символи са различни, извеждаме, че не е палиндром и приключваме програмата с **return**. Ако цикълът приключи и всички символи са еднакви, извеждаме, че е палиндром.

Примери

Вход	Изход
а	True
aba	True
alenafanela	True
alibaba	False
baba	False

7. Сбор на големи числа

Входните данни са два реда — въвеждат се две числа, които може да са големи (от 0 до 10^{50}). Трябва да изведете сбора на тези числа.

Забележка: не използвайте BigInteger или BigDecimal класове за решаването на този проблем.

Примери

Вход	Изход		Вход	Изход
23	46		9999	10000
23			1	

Вход	Изход
923847238931983192462832102 934572893617836459843471846187346	934573817465075391826664309019448

8. Умножаване на големи числа

Входните данни са два реда — на първия се въвежда голямо число (от 0 до 10^{50}). На втория - едноцифрено число (0-9). Трябва да се изведе произведението на тези числа. Забележка: не използвайте класовете BigInteger или BigDecimal за решаването на този проблем.

Вход	Изход	E	Вход	Изход	Вход	Изход
23 2	46	9	999	89991	923847238931983192462832102 4	93457381746507539182666430 9019448

9. Преобразуване от 10-ична в N-ична ПБС

Напишете програма, която получава число в 10-ична бройна система и го преобразува в число в N-ична бройна система, където 2 < = N < = 10. Входът се състои от 1 ред, съдържащ две числа, разделени с един интервал. Първото число е основа N, към която трябва да преобразувате. Вторият е число в 10-ична бройна система. Не използвайте никакви вградени функционалности за преобразуване на числа, опитайте се да напишете свой собствен алгоритъм.

Упътване

За алгоритъм (от 10-ична в 2-ична) можете да прочетете тази статия.

Алгоритъмът за преобразуване на число от 10-ична в 2-ична бройна система е подобен: вместо "% $\mathbf{2}$ ", ползвайте "% \mathbf{N} ".

Вход

• На един ред въвеждате основа на бройната система и число в 10-ична бройна система

Изход

• На един ред извеждате **числото в N-ична бройна система**

Примери

Вход	Изход
7 10	13
3 154	12201
5 123	443
4 1000	33220
9 3487	4704

10. Преобразуване от N-ична в 10-ична ПБС

Напишете програма, която взема N-ично число и го преобразува 10-ично число (0 до 1050), където от 2 < = N < = 10. Входът се състои от 1 ред, съдържащ две числа, разделени с един интервал. Първото число е основата N, към която трябва да преобразувате. Второто е числото N, което трябва да се преобразува. Не използвайте никакви вградена функционалности за преобразуване, опитайте се да напишете свой собствен алгоритъм

Вход

• На един ред въвеждате основа на бройната система и число в N-ична бройна система

Изход

• На един ред извеждате числото в 10-ична бройна система

Упътване

Вижте тази картина за повече яснота за преобразуване от 2-ична в 10-ична БС. Отново, алгоритъмът за преобразуване от N-ична БС е подобен.

Вход	Изход
אסאם	7.57.02

7 13	10
3 12201	154
5 443	123
4 33220	1000
9 4704	3487

11. Unicode символи

Напишете програма, която преобразува символен низ в последователност от Unicode символни кодове.

Вход

• На един ред въвеждате символен низ

Изход

• На един ред извеждате Unicode на всеки символ

Примери

Вход	Изход	
Hi!	\u0048\u0069\u0021	
What?!?	\0057\0068\0061\0074\003f\0021\003f	

12. Умножаване на символни кодове

Създайте **метод**, който получава два низа като аргументи и връща сбора от техните произведения от символни кодове на съответни позиции (умножете str1.charAt (0) с str2.charAt (0) и ги добавете към сбора). След това продължете със следващите два знака. Ако един от низовете е по-дълъг от другия, добавете останалите символни кодове към сбора без умножение.

Вход

• На един ред въвеждате два низа

Изход

• На един ред извеждате сбора от техните произведения от символни кодове на съответни позиции

Примери

Вход	Изход
Gosho Pesho	53253
123 522	7647

13. Магически променящи се думи

Напишете **метод**, който приема като вход два низа и връща **True** или **False**, ако те са заменяеми, или не. Заменяеми са думи, където символите в първия низ може да бъдат заменени и да се получи втория низ. Пример: "egg" и "add" са заменяеми, но "aabbccbb" и "nnooppzz" не са. (Първото "b" отговаря на "o", но тогава то също така отговаря на"z"). Двете думи може да нямат една и съща дължина, ако случаят е такъв, те са заменяеми, само ако по-дългата няма повече от видовете букви на първата ("Clint" и "Eastwaat" са

заменяеми защото "a" и "t" вече са заменени като "l" и " n " но "Clint" и "Eastwood" не са заменяеми защото 'o' и ,'d' не се съдържат в"Clint").

Примери

Вход	Изход
gosho hapka	true
aabbaa ddeedd	true
foo bar	false
Clint Eastwood	false

14. *Обработка на числа с представки и наставки

Наков обича математиката. Но той също се интересува от английската азбука много. Той е изобретил игра с цифри и букви от английската азбука. Играта е проста. Получавате низ, състоящ се **от число между две букви**. В зависимост от това дали буквата е пред числото или след него ще извършвате различни математически операции с числото за постигане на резултат.

Първо започнете с буквата преди числото.

- Ако тя е главна, делите на позицията на буквата в азбуката.
- Ако тя е малка, умножавате числото по позицията на буквата в азбуката.

После преминаваш към буквата след числото.

- Ако тя е главна изваждате позицията си от полученото число.
- Ако тя е малка добавяте позицията си към полученото число.

Но играта става твърде лесно за Наков и наистина се справя бързо. Той решава да я усложни малко, като правилата са същите, но с **множество** низове, като се иска **общата сума** на всички резултати от стринговете. След като той започна да решава задачата с повече низове и по-големи числа, ставаше доста трудно да смята наум. Така той любезно ви моли да напишете програма, която **изчислява сумата на всички числа, след извършените операции на всяко число.**

Например, Дадена е последователността "A12b s17G": имаме два низа -"A12b" и "s17G". Извършваме операциите на всяко от числата и ги събираме. Започваме с буквата преди числото на първия низ. А е главна и позицията в азбуката е 1. Така че разделяме числото 12 на позиция 1 (12/1 = 12). Тогава минаваме към буквата след числото. b е малка и неговата позиция е 2. Така че ние добавяме 2 към полученото число (12 + 2 = 14). По същия начин за втория низ s е малка и нейната позиция е 19, така че ние умножаваме числото (17 * 19 = 323). Тогава ние имаме главна буква G с позиция 7, така че ние изваждаме от резултата 7 (323 - 7 = 316). И накрая ние събираме 2 резултата и получаваме 14 + 316 = 330.

Вход

Входът е на един ред, съдържащ последователност от символни низове. Низовете са разделени от един или повече интервали.

Входните данни винаги ще бъде валидни и в описания формат. Няма нужда да го проверите изрично.

Изход

Печат на конзолата на едно число: общата сума от всички обработени числа, закръглени до две цифри след десетичния разделител

Ограничения

- The **count** of the strings will be in the range [1 ... 10].
- The numbers between the letters will be integers in range [1 ... 2 147 483 647].
- Time limit: 0.3 sec. Memory limit: 16 MB.
- Броят на низовете ще бъдат в интервала [1... 10].
- Числата между буквите ще бъде цели числа в диапазона [1... 2 147 483 647].
- Време: до 0,3 сек, памет: до 16 MB.

Вход	Изход	Коментари
A12b s17G	330.0 0	12/1=12, 12+2=14, 17*19=323, 323-7=316, 14+316=330
P34562Z q2576f H456z	46015 .13	
a1A	0.00	