Relational Algebra

Dr Paolo Guagliardo

Fall 2020 (v20.2.0)

Data model

- ► A **relation** is a set of **records**over the same set of (distinct) attribute names
- ► A record is a total function from attribute names to values

Schema

- Set of relation names
- Set of distinct attributes for each table
 Note that columns are not ordered

Instance

Actual data (that is, the records in each relation)

Relational algebra

Procedural query language

A relational algebra expression

- takes as input one or more relations
- applies a sequence of operations
- returns a relation as output

Operations:

Projection (π) Union (\cup) Selection (σ) Intersection (\cap) Product (\times) Difference (-) Renaming (ρ)

The application of each operation results in a new (virtual) relation that can be used as input to other operations

Projection

- Vertical operation: choose some of the columns
- Syntax: $\pi_{\text{set of attributes}}(\text{relation})$
- igwedge $\pi_{A_1,\dots,A_n}(R)$ takes only the values of attributes A_1,\dots,A_n for each tuple in R

Customer

CustID	Name	City	Address	
cust1	Renton		2 Wellington Pl	
cust2	Watson		221B Baker St	
cust3	Holmes		221B Baker St	

$\pi_{\mathsf{Name},\mathsf{City}}(\mathsf{Customer})$

Name	City		
Renton	Edinburgh		
Watson	London		
Holmes	London		

Selection

- ► Horizontal operation: choose rows satisfying some condition
- **Syntax**: $\sigma_{\text{condition}}(\text{relation})$
- lacksquare $\sigma_{ heta}(R)$ takes only the tuples in R for which heta is satisfied

```
\begin{split} \text{term} := \text{attribute} \mid \text{constant} \\ \theta := \text{term op term with op} \in \{=, \neq, >, <, \geqslant, \leqslant\} \\ \mid \theta \wedge \theta \mid \theta \vee \theta \mid \neg \theta \end{split}
```

Example of selection

Customer

CustID	Name	City	Age
cust1	Renton	Edinburgh	24
cust2	Watson	London	32
cust3	Holmes	London	35

$\sigma_{\mathsf{City} \neq \mathsf{`Edinburgh'} \, \land \, \mathsf{Age} < 33}(\mathsf{Customer})$

CustID	Name	City	Age
cust2	Watson	London	32

Efficiency (1)

Consecutive selections can be combined into a single one:

$$\sigma_{\theta_1}\big(\sigma_{\theta_2}(R)\big) \equiv \sigma_{\theta_1 \wedge \theta_2}(R)$$
 is equivalent to: two queries Q_1 and Q_2 are equivalent if Q_1 returns the same answers as Q_2 on every database

Example

$$Q_1 = \sigma_{\mathsf{City} \neq \mathsf{`Edinburgh'}} (\sigma_{\mathsf{Age} < 33}(\mathsf{Customer}))$$

$$Q_2 = \sigma_{\mathsf{City} \neq \mathsf{`Edinburgh'} \, \land \, \mathsf{Age} < 33}(\mathsf{Customer})$$

$$Q_1 \equiv Q_2$$
 but Q_2 faster than Q_1 in general

Efficiency (2)

Projection can be pulled in front of selection

$$\sigma_{\theta}(\pi_{\alpha}(R)) \equiv \pi_{\alpha}(\sigma_{\theta}(R))$$

only if all attributes mentioned in θ appear in α

Example

$$Q_1 = \pi_{\mathsf{Name},\mathsf{City},\mathsf{Age}} \big(\sigma_{\mathsf{City} \neq \mathsf{`Edinburgh'} \, \land \, \mathsf{Age} < 33}(\mathsf{Customer}) \big)$$

$$Q_2 = \sigma_{\mathsf{City} \neq \mathsf{`Edinburgh'} \land \mathsf{Age} < 33} \big(\pi_{\mathsf{Name}, \mathsf{City}, \mathsf{Age}} (\mathsf{Customer}) \big)$$

Question: Which one is more efficient?

Cartesian product

 $R \times S$ concatenates each tuple of R with all the tuples of S Note: the relations must have **disjoint** sets of attributes

Example

R	Α	В	×	S	C	D	=	$R \times S$	Α	В	C	D
	1		-		1	a			1	2	1	а
	3	4			2	b			1	2	2	b
					3	С			1	2	3	С
					ı				3	4	1	а
									3		2	
									3	4	3	С

Expensive operation:

- $ightharpoonup \operatorname{card}(R \times S) = \operatorname{card}(R) \times \operatorname{card}(S)$
- ightharpoonup arity $(R \times S) = \operatorname{arity}(R) + \operatorname{arity}(S)$

Joining relations

Combining Cartesian product and selection

Customer: ID, Name, City, Address

Account: Number, Branch, CustID, Balance

We can join customers with the accounts they own as follows

$$\sigma_{\mathsf{ID} = \mathsf{CustID}}(\mathsf{Customer} \times \mathsf{Account})$$

Renaming

Gives a new name to some of the attributes of a relation

Syntax: $\rho_{\text{replacements}}(\text{relation}),$ where a replacement has the form $A \to B$

$$ho_{A
ightarrow A', C
ightarrow D} \left(egin{array}{cccc} \mathbf{A} & \mathbf{B} & \mathbf{C} \ \mathbf{a} & \mathbf{b} & \mathbf{c} \ 1 & 2 & 3 \end{array}
ight) \hspace{0.2cm} = \hspace{0.2cm} egin{array}{cccc} \mathbf{A'} & \mathbf{B} & \mathbf{D} \ \mathbf{a} & \mathbf{b} & \mathbf{c} \ 1 & 2 & 3 \end{array}$$

Example

Customer: CustID, Name, City, Address

Account: Number, Branch, CustID, Balance

$$\sigma_{\mathsf{CustID} = \mathsf{CustID}'} \big(\mathsf{Customer} \times \rho_{\mathsf{CustID} \to \mathsf{CustID}'} (\mathsf{Account}) \big)$$

Natural join

Joins two tables on their common attributes

Example

Customer: CustID, Name, City, Address

Account: Number, Branch, CustID, Balance

Customer \bowtie Account \equiv

$$\pi_{X \cup Y} \big(\sigma_{\mathsf{CustID} = \mathsf{CustID}'} \big(\mathsf{Customer} \times \rho_{\mathsf{CustID} \to \mathsf{CustID}'} (\mathsf{Account}) \big) \big)$$

where $X = \{$ all attributes of Customer $\}$ $Y = \{$ all attributes of Account $\}$

From SQL to relational algebra

$$\begin{array}{c} \mathtt{SELECT} \; \mapsto \; \mathsf{projection} \; \pi \\ \\ \mathtt{FROM} \; \mapsto \; \mathsf{Cartesian} \; \mathsf{product} \; \times \\ \\ \mathtt{WHERE} \; \mapsto \; \mathsf{selection} \; \sigma \end{array}$$

$$\begin{array}{lll} \textbf{SELECT} & A_1, \dots, A_m \\ \textbf{FROM} & T_1, \dots, T_n & \mapsto & \pi_{A_1, \dots, A_m} \big(\sigma_{\langle \mathsf{condition} \rangle} (T_1 \times \dots \times T_n) \big) \\ \textbf{WHERE} & \langle \mathsf{condition} \rangle & \end{array}$$

Common attributes in T_1, \ldots, T_n must be renamed

Set operations

Union

Intersection

Difference

The relations must have the same set of attributes

Union and renaming

R	Father	Child	S	Mother	Child
	George	Elizabeth		Elizabeth	Charles
	Philip	Charles		Elizabeth	Andrew
	Charles	William		•	

We want to find the relation parent-child

$$\rho_{\mathsf{Father} \to \mathsf{Parent}}(\mathsf{R}) \cup \rho_{\mathsf{Mother} \to \mathsf{Parent}}(\mathsf{S}) \ = \ \begin{array}{c|c} \mathbf{Parent} & \mathbf{Child} \\ \hline \mathbf{George} & \mathsf{Elizabeth} \\ \mathsf{Philip} & \mathsf{Charles} \\ \mathsf{Charles} & \mathsf{William} \\ \mathsf{Elizabeth} & \mathsf{Charles} \\ \hline \mathsf{Elizabeth} & \mathsf{Andrew} \\ \end{array}$$

Full relational algebra

Primitive operations: π , σ , \times , ρ , \cup , -

Removing any of these results in a loss of expressive power

Derived operations

- \bowtie can be expressed in terms of π , σ , \times , ρ
- ∩ can be expressed in terms difference:

$$R \cap S \equiv R - (R - S)$$

Other derived operations

Theta-join
$$R \bowtie_{\theta} S \equiv \sigma_{\theta}(R \times S)$$

Equijoin
$$\bowtie_{\theta}$$
 where θ is a conjunction of equalities

Semijoin
$$R \ltimes_{\theta} S \equiv \pi_X(R \bowtie_{\theta} S)$$

where X is the set of attributes of R

Antijoin
$$R \ltimes_{\theta} S \equiv R - (R \ltimes_{\theta} S)$$

Why use these operations?

- to write things more succintly
- they can be optimized independently

Division

- R over set of attributes X
- S over set of attributes $Y \subset X$

Let
$$Z = X - Y$$

$$R \div S = \left\{ \begin{array}{l} r \in \pi_Z(R) \mid \text{for every } s \in S, \ rs \in R \end{array} \right\}$$
$$= \left\{ \begin{array}{l} r \in \pi_Z(R) \mid \{r\} \times S \subseteq R \end{array} \right\}$$
$$= \pi_Z(R) - \pi_Z(\pi_Z(R) \times S - R)$$

Division: Example

	Exams	DPT
Student	Course	Course
John	Databases	Databases
John	Networks	Programming
Mary	Programming	
Mary	Math	
Mary	Databases	

 $= \pi_{\mathbf{Student}}(\mathsf{Exams}) - \pi_{\mathbf{Student}}\big(\pi_{\mathbf{Student}}(\mathsf{Exams}) \times \mathsf{DPT} - \mathsf{Exams}\big)$