Comportement asymptotique

- Le temps d'exécution $T_A(n)$ d'un algorithme A, où n est la taille du problème, est une fonction $f: \mathbb{N} \to \mathbb{R}^+ = [0; +\infty[$
- Il existe cinq « familles » de fonctions :

Famille	Concept intuitif	Appellation
0	≤	Grand-O
Θ	=	Theta
Ω	≥	Grand-Omega
o	<	Petit-o
ω	>	Petit-omega

ullet Ces familles permettent d'avoir une idée du **comportement asymptotique** du temps d'exécution, c'est-à-dire pour de « grandes » valeurs de n.

Définitions formelles

- $O(g(n)) = \begin{cases} f(n) : \text{il existe des constantes strictement positives } c \text{ et } n_0 \text{ telles que} \\ 0 \le f(n) \le cg(n) \text{ pour tout } n \ge n_0 \end{cases}$
- $\Omega(g(n)) = \begin{cases} f(n) : \text{il existe des constantes strictement positives } c \text{ et } n_0 \text{ telles que} \\ 0 \le cg(n) \le f(n) \text{ pour tout } n \ge n_0 \end{cases}$
- $\bullet \ \Theta(g(n)) = \left\{ \begin{aligned} f(n): & \text{il existe des constantes strictement positives } c_1, c_2 \text{ et } n_0 \text{ telles que} \\ c_1g(n) \leq f(n) \leq c_2g(n) \text{ pour tout } n \geq n_0 \end{aligned} \right\}$
- $o(g(n)) = \begin{cases} f(n) : \text{pour toute constante strictement positive } c, \text{il existe } n_0 > 0 \text{ telle que} \\ 0 \le f(n) < cg(n) \text{ pour tout } n \ge n_0 \end{cases}$
- $\omega(g(n)) = \begin{cases} f(n) : \text{ pour toute constante strictement positive } c, \text{ il existe } n_0 > 0 \text{ telle que} \\ 0 \le cg(n) < f(n) \text{ pour tout } n \ge n_0 \end{cases}$

Notations et interprétations

- f(n) = O(g(n)) (ou $f(n) \in O(g(n))$) : f croît au même rythme ou moins vite que g.
- $f(n) = o(g(n)) (ou f(n) \in o(g(n))) : f$ croît strictement moins vite que g.
- $f(n) = \Omega(g(n))$ (ou $f(n) \in \Omega\left(g(n)\right)$) : f croît au même rythme ou plus vite que g.
- $f(n) = \omega(g(n)) \left(\text{ou } f(n) \in \omega(g(n)) \right)$: f croît strictement plus vite que g.
- $f(n) = \Theta(g(n)) \left(\text{ou } f(n) \in \Theta \left(g(n) \right) \right)$: f et g croissent au même rythme.

Illustration : O(g(n))

Illustration : $\Omega(g(n))$

Illustration : $\Theta(g(n))$

Diagramme de Venn

Limites

Si
$$\lim_{n \to +\infty} \frac{f(n)}{g(n)} = c \in [0; +\infty[$$
, alors $f(n) = O(g(n))$.

Si
$$\lim_{n \to +\infty} \frac{f(n)}{g(n)} = c \in]0; +\infty[$$
, alors $f(n) = \Theta(g(n))$.

Si
$$\lim_{n \to +\infty} \frac{f(n)}{g(n)} = 0$$
, alors $f(n) = o(g(n))$ et $f(n) \notin \Theta(g(n))$.

Si
$$\lim_{n \to +\infty} \frac{f(n)}{g(n)} = +\infty$$
, alors $f(n) = \omega(g(n))$ et $f(n) \notin \Theta(g(n))$.

Mise en garde I

Les réciproques des énoncés précédents ne sont pas toutes vraies.

Par exemple:

$$f(n) = (\sin(n) + 2)n = \Theta(n),$$

mais

$$\lim_{n \to +\infty} \frac{f(n)}{n} = \text{n'existe pas,}$$

car (sin(n) + 2) oscille entre 1 et 3.

Mise en garde II

Quand on compare la complexité de deux algorithmes, il faut parfois faire attention aux « constantes ».

Exemples:

- + $f(n)=10^6n=o(n\sqrt{n})$, mais $10^6n< n\sqrt{n}$ seulement à partir de $n_0=10^{12}$!!
- $f(n)=n^3=o\left(n^{\ln(\ln(n))}\right)$, mais $n^3 < n^{\ln(\ln(n))}$ seulement à partir de $n_0=528491312$!!

Règle de l'Hospital pour les indéterminations $\frac{+\infty}{+\infty}$

<u>Hypothèses</u>: Soient f(x) et g(x) deux fonctions dérivables sur un intervalle $[a; +\infty[$. On suppose que les deux conditions suivantes sont vérifiées :

•
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = +\infty$$

• $g'(x) \neq 0$ pour tout $x \in [a; +\infty[$

Conclusion:

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$$

si cette dernière limite existe ou si elle est infinie.

Exemples

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = \lim_{\substack{+\infty \\ \frac{+\infty}{x} \to +\infty}} \frac{\frac{1}{x}}{1} = \lim_{x \to +\infty} \frac{1}{x} = 0$$

Donc: $\ln(n) = o(n)$ et $\ln(n) \notin \Theta(n)$.

$$\lim_{\substack{x\to +\infty}} \frac{e^x}{x^2} \underset{\stackrel{\leftarrow}{+\infty}}{=} \lim_{\substack{x\to +\infty}} \frac{e^x}{2x} \underset{\stackrel{\leftarrow}{+\infty}}{=} \lim_{\substack{x\to +\infty}} \frac{e^x}{2} = +\infty$$

Donc: $e^n = \omega(n^2)$ et $e^n \notin \Theta(n^2)$.

Transitivité

•
$$f(n) = \Theta(g(n))$$
 et $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$

•
$$f(n) = o(g(n))$$
 et $g(n) = o(h(n)) \Rightarrow f(n) = o(h(n))$

•
$$f(n) = O(g(n))$$
 et $g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$

•
$$f(n) = \omega(g(n))$$
 et $g(n) = \omega(h(n)) \Rightarrow f(n) = \omega(h(n))$

•
$$f(n) = \Omega(g(n))$$
 et $g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$

Règle du maximum

• Principe :

$$O(f(n) + g(n)) = O(\max(f(n), g(n)))$$

• Formulation rigoureuse :

S'il existe $n_0 \in \mathbb{N}$, tel que $g(n) \le f(n)$ pour tout $n \ge n_0$, alors O(f(n) + g(n)) = O(f(n)).

• Exemples :

- $O(n^2 + n) = O(n^2)$, car $n \le n^2$ pour tout $n \ge 0$.
- $O(n + 4\ln(n)) = O(n)$, car $4\ln(n) \le n$ pour tout $n \ge 9$.

Théorème

- Si $f(n) = \sum_{i=0}^d a_i n^i = a_d n^d + a_{d-1} n^{d-1} + \dots + a_1 n + a_0$ est un polynôme de degré d, alors :
 - $f(n) = \Theta(n^d)$
 - $f(n) = o(n^k)$ pour tout entier k > d
 - $f(n) = \omega(n^k)$ pour tout entier $0 \le k < d$
- Exemple : $f(n) = 3n^5 2n^2 + 3n + 5$
 - $f(n) = \Theta(n^5)$
 - $f(n) = o(n^7)$
 - $f(n) = \omega(n^3)$

Autres propriétés

• Reflexivité

- $f(n) = \Theta(f(n))$
- f(n) = O(f(n))
- $f(n) = \Omega(f(n))$

Symétrie

•
$$f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$$

Symétrie transposée

- $f(n) = \Omega(g(n)) \Leftrightarrow g(n) = O(f(n))$
- $f(n) = \omega(g(n)) \Leftrightarrow g(n) = o(f(n))$

Polynômes

- <u>Définition</u> : Soit un entier $d \ge 0$, un polynôme en n de degré d est une fonction p(n) de la forme $p(n) = \sum_{i=0}^{d} a_i n^i = a_d n^d + a_{d-1} n^{d-1} + \dots + a_1 n + a_0$, où les constantes $a_0, a_1, \dots, a_{d-1}, a_d$ sont les coefficients du polynôme et $a_d \neq 0$.
- Exemples:
 - $f(n) = 3n^3 2n^2 + 5$ degré 3 $f(n) = n^5 n$ degré 5

 - $f(n) = n^{18}$ degré 18

• Contre-exemples :

- $f(n) = \sqrt{n}$
- $f(n) = 2n^2 + 3\ln(n)n$

$$f(n) = 2n^2 = O(n^2)$$

· Preuve avec la définition :

On doit trouver c>0 et $n_0\in\mathbb{N}$ tels que :

$$f(n) = 2n^2 \le cn^2$$
 pour tout entier $n \ge n_0$.

L'affirmation est vérifiée pour c = 2 et $n_0 = 0$.

• Preuve avec la limite :
$$\lim_{n \to +\infty} \frac{f(n)}{n^2} = \lim_{n \to +\infty} \frac{2n^2}{n^2} = \lim_{n \to +\infty} 2 = 2 \in [0; +\infty[$$

Donc
$$f(n) = O(n^2)$$

$f(n) = 2n^2$ n'est pas dans O(n)

• Preuve avec la définition :

On doit montrer qu'il n'existe pas c > 0 et $n_0 \in \mathbb{N}$ tels que :

$$f(n) = 2n^2 \le cn$$
 pour tout entier $n \ge n_0$.

Si l'affirmation est vérifiée, en simplifiant par $n \ge 1$, on obtient :

 $2n \le c$ pour tout entier $n \ge \max(n_0, 1)$, ce qui ne peut pas être vrai, puisque c est une constante.

• Preuve avec la limite:
$$\lim_{n\to +\infty} \frac{f(n)}{n} = \lim_{n\to +\infty} \frac{2n^2}{n} = \lim_{n\to +\infty} 2n = +\infty$$
 Donc $f(n) = \omega(n)$ et donc $f(n)$ n'est pas dans $O(n)$.

$$f(n) = 2n^2 = \Omega(n)$$

• Preuve avec la définition :

On doit trouver c > 0 et $n_0 \in \mathbb{N}$ tels que :

 $f(n) = 2n^2 \ge cn$ pour tout entier $n \ge n_0$.

L'affirmation est vérifiée pour c=2 et $n_0=0$.

$$\begin{array}{l} \bullet \ \underline{\text{Preuve avec la limite}}: \\ \lim_{n \to +\infty} \frac{f(n)}{n} = \lim_{n \to +\infty} \frac{2n^2}{n} = \lim_{n \to +\infty} 2n = +\infty \\ \operatorname{Donc} f(n) = \omega(n) \ \text{et donc} \ f(n) = \Omega(n). \end{array}$$

• Remarque : Il est équivalent de démontrer que $n = O(2n^2)$.

$$f(n) = 2n^2 + 5n + 15 = O(n^2)$$

• Preuve avec la définition :

On doit trouver c>0 et $n_0\in\mathbb{N}$ tels que :

 $f(n) = 2n^2 + 5n + 15 \le cn^2$ pour tout entier $n \ge n_0$. On a en fait : $2n^2 + 5n + 15 \le 2n^2 + 5n^2 + 15n^2$ pour tout entier $n \ge 1$. L'affirmation est donc vérifiée pour c=22 et $n_0=1$.

$$\lim_{n \to +\infty} \frac{f(n)}{n^2} = \lim_{n \to +\infty} \frac{2n^2 + 5n + 15}{n^2} = \lim_{n \to +\infty} \left(2 + \frac{5}{n} + \frac{15}{n^2}\right) = 2 \in [0; +\infty[$$

$$\operatorname{Donc} f(n) = O(n^2).$$

$$f(n) = 2n^2 = O(n^3)$$

• Preuve avec la définition :

On doit trouver c>0 et $n_0\in\mathbb{N}$ tels que :

 $f(n) = 2n^2 \le cn^3$ pour tout entier $n \ge n_0$.

L'affirmation est vérifiée pour c=2 et $n_0=0$.

• Preuve avec la limite:
$$\lim_{n \to +\infty} \frac{f(n)}{n^3} = \lim_{n \to +\infty} \frac{2n^2}{n^3} = \lim_{n \to +\infty} \frac{2}{n} = 0 \in [0; +\infty[$$
Population of $f(n) = o(n^3)$ at the sum of $f(n) = o(n^3)$

$$f(n) = 2n^2 = \Omega(n^2)$$

• Preuve avec la définition :

On doit trouver c>0 et $n_0\in\mathbb{N}$ tels que :

 $f(n) = 2n^2 \ge cn^2$ pour tout entier $n \ge n_0$.

L'affirmation est vérifiée pour c=2 et $n_0=0$.

• Preuve avec la limite :

$$\lim_{n \to +\infty} \frac{f(n)}{n^2} = \lim_{n \to +\infty} \frac{2n^2}{n^2} = \lim_{n \to +\infty} 2 = 2 \in]0; +\infty[$$

Donc $f(n) = \Theta(n^2)$ et donc $f(n) = \Omega(n^2)$.

$$f_1(n) = O(g_1(n)) \text{ et } f_2(n) = O(g_2(n))$$

 $\Rightarrow f_1(n) + f_2(n) = O(g_1(n) + g_2(n))$

<u>Preuve</u>: Il existe $c_1>0, c_2>0$ et $n_1, n_2\in\mathbb{N}$ tels que:

- $f_1(n) \le c_1 g_1(n)$ pour tout entier $n \ge n_1$
- $f_2(n) \le c_2 g_2(n)$ pour tout entier $n \ge n_2$

On a donc pour tout $n \ge N$:

Si on pose $N = \max(n_1, n_2)$ et $C = \max(c_1, c_2) > 0$, on a alors :

- $f_1(n) \le c_1 g_1(n) \le C g_1(n)$ pour tout entier $n \ge N \ge n_1$
- $f_2(n) \le c_2 g_2(n) \le C g_2(n)$ pour tout entier $n \ge N \ge n_2$

$$f_1(n) + f_2(n) \le Cg_1(n) + Cg_2(n) = C(g_1(n) + g_2(n))$$

et donc $f_1(n) + f_2(n) = O(g_1(n) + g_2(n))$.

Logarithmes

Soit $a, b, x, y, z, n \in \mathbb{R}$, tels que $a > 1, b > 1, x > 0, y > 0, n \neq 0$: <u>Définition</u>: $\log_a(x) = z \Leftrightarrow x = a^z$ (en particulier $\log_a(a) = 1$)

Propriétés:

• $a^{\log_a(x)} = x$ et $\log_a(a^z) = z$

• $\log_a(xy) = \log_a(x) + \log_a(y)$ et $\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)$

• $\log_a(x^n) = n\log_a(x)$ et $\log_a\left(\frac{1}{x}\right) = -\log_a(x)$

• $\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$ et $a^{\log_b(x)} = x^{\log_b(a)}$

Notations: $\log(x) = \log_{10}(x)$, $\lg(x) = \log_2(x)$ et $\ln(x) = \log_e(x)$, où e ≈ 2,71828 ...

Fonctions usuelles

• g: polynôme en n de degré d > 0. Exemple : $3n^3 - 2n^2 + 5$

• h: fonction exponentielle a^n , a > 1. Exemple: 2^n

• f: fonction polylogarithme de degré d > 0: (lg peut être remplacé par \log_a)

$$\sum_{i=0}^d a_i \lg^i(n) = a_d \lg^d(n) + a_{d-1} \lg^{d-1}(n) + \dots + a_1 \lg(n) + a_0, \qquad a_d \neq 0$$

(Notation : $\lg^i(n) = (\lg(n))^i$). Exemple : $3\lg^4(n) + 5\lg^2(n) + 3$ Propriétés :

• f(n) = o(g(n)) et g(n) = o(h(n))

• $n^d = o(n^k)$ si d < k

• $a^n = o(b^n)$ si 1 < a < b

Ordres de grandeur usuels en ordre strictement croissant

Fonction	Nom
1	Constant
$\lg(n)$	Logarithmique
$\lg^2(n)$	Log-carré
n	Linéaire
$n \lg(n)$	
n^2	Carré
n^3	Cubique
$n^d, d > 3$	Polynomial
$a^n, a > 1$	Exponentiel
n!	Factoriel
n^n	

 $\underline{\mathsf{Rappel}}$: factorielle de n :

- 1! = 1

• $n! = \prod_{i=1}^n i$ pour tout $n \in \mathbb{N}^*$

Formule de Stirling : $n! = \Theta\left(\sqrt{2\pi n} \left(\frac{n}{a}\right)^n\right)$

Plafond et plancher

- Plancher (partie entière par défaut) [r]: le plus grand entier $\leq r$
- Exemples :
 - [2,7] = 2
 - $\lfloor \ln(5) \rfloor = 1$
- <u>Plafond</u> (partie entière par excès) [r]: le plus petit entier $\geq r$
- Exemples :
 - [2,7] = 3 • [ln(5)] = 2

 - $\left[-\frac{10}{3} \right] = -3$

Deux séries importantes

 $\underline{\mathsf{S\acute{e}rie}\ \mathsf{g\acute{e}om\acute{e}trique}}: r \in \mathbb{R} \backslash \{1\}\ \mathsf{et}\ a \in \mathbb{R}$

$$\sum_{k=0}^{n} ar^{k} = a + ar + \cdots ar^{n} = a \frac{r^{n+1} - 1}{r - 1}$$

Série arithmétique : $a, b \in \mathbb{R}$

$$\sum_{k=1}^{n} (a+bk) = (a+b) + (a+2b) + \dots + (a+nb) = an + b \frac{n(n+1)}{2}$$

Propriétés pour $a, b, n \in \mathbb{N}^*$

$$\left\lfloor \frac{\left\lfloor \frac{n}{a} \right\rfloor}{b} \right\rfloor = \left\lfloor \frac{n}{ab} \right\rfloor$$

$$\left\lfloor \frac{\left\lfloor \frac{27}{2} \right\rfloor}{3} \right\rfloor = \left\lfloor \frac{27}{6} \right\rfloor = 4$$

$$\left[\frac{\left[\frac{n}{a}\right]}{h}\right] = \left[\frac{n}{ah}\right]$$

$$\left[\frac{\left[\frac{27}{2}\right]}{3}\right] = \left[\frac{27}{6}\right] = 5$$

$$n = \left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{2} \right\rceil$$

$$27 = \left| \frac{27}{2} \right| + \left[\frac{27}{2} \right] = 13 + 14$$

$$\left\lfloor \frac{n}{2} \right\rfloor + 1 \ge \left\lceil \frac{n}{2} \right\rceil$$

$$14 = \left\lfloor \frac{26}{2} \right\rfloor + 1 \ge \left\lceil \frac{26}{2} \right\rceil = 13$$