Lab 8: The RC Filter

Philip Kim

April 7, 2021

Table 1: High-Pass Filter								
f_{gen}	f_{osc}	C	R	V_{RC}	V_R	V/DIV for V_R	$ H_{exp} $	$ H_{the} $
10kHz		$0.22\mu F$	100Ω					
5kHz		$0.22\mu F$	100Ω					
2kHz		$0.22\mu F$	100Ω					
1kHz		$0.22\mu F$	100Ω					
15kHz		$0.22\mu F$	100Ω					
20kHz		$0.22\mu F$	100Ω					
30kHz		$0.22\mu F$	100Ω					
40kHz		$0.22\mu F$	100Ω					

Table 2: Low-Pass Filter								
f_{gen}	f_{osc}	C	R	V_{RC}	V_C	V/DIV for V_C	$ H_{exp} $	$ H_{the} $
$10 \mathrm{kHz}$		$0.22\mu F$	100Ω					
$5 \mathrm{kHz}$		$0.22\mu F$	100Ω					
2kHz		$0.22\mu F$	100Ω					
1kHz		$0.22\mu F$	100Ω					
15kHz		$0.22\mu F$	100Ω					
20kHz		$0.22\mu F$	100Ω					
30kHz		$0.22\mu F$	100Ω					
40kHz		$0.22\mu F$	100Ω					

Setup

1.	Compare the theoretically obtained curves with the experimentally determined curves and quantify any difference
	What do you think this difference is due to?