Quotient Groups

then

forms a group.

- Question: What if G isn't abelian?

Worksheet 29: Quotient Groups

Math 335

Reporter:

Recorder:

Equity Manager:

1. As in the worksheet from last class, let

$$G = \langle g \rangle = \{1, g, g^2, g^3, \dots, g^{14}\}$$

 $H = \langle g^5 \rangle = \{1, g^5, g^{10}\} \subseteq G,$

where $\operatorname{ord}(g) = 15$.

(a) List all the elements of the group G/H. (You can look back at the notes from last class to do this.)

$$G_{1}/H = \{1H, gH, g^{2}H, g^{3}H, g^{4}H\}$$

(b) Make a table that shows how to multiply any element of G/H by any other to get a new element of G/H.

Look	s like	the
	e for	the
grou		3 41
{I,	કુ, ટ ું, ટુ	3.94)
wher	۲_	
2	3=1	
	×	ممرسد

	1H	12 H	g ² H	23H	g4H
14	1H	gH	92H	g ³ H	g4H
g H)	gН	g ² H	3 ₃ H	g ⁴ H	14
g2H	g ² H	93H	g*H	1H	gH
23H	33 H	g ⁴ H	1H	дН	92 H
g+H	94H	14	gH	g2H	g ³ H

2. Now let's look at a case where G is not abelian, to see how the definition of G/H can go wrong. Let $G = S_3$, and let

$$H = \{e, (1,2)\} \subseteq G,$$

where e stands for the identity permutation.

(a) Calculate all the elements of each of the following left cosets

$$eH = \left\{ e, (1,2) \right\}$$

$$(1,3)H = \left\{ (1,3)e, (1,3) - (1,2) \right\} = \left\{ (1,3), (1,23) \right\}$$

(b) What is another way to write eH? Write it as aH for some $a \neq e$.

$$eH = (1,2)H$$

 $(Check: (1,2)H: \{(1,2)-e,(1,2)\}=\{(1,2),(1,2)\}$

(c) For the a you found above, what is the coset $(a \circ (1,3))H$? Write down all of its elements.

$$((1,2)\circ(1,3))H = (1,3,2)H$$

$$= \{(1,3,2), (1,3,2)\circ(1,2)\}$$

$$= \{(1,3,2), (2,3)\}$$

(d) Confirm that

What does this show?
$$\left\{ (1,3), (1,2,3) \right\}$$

$$\left\{ (1,3), (1,2,3) \right\}$$

$$\left\{ (1,3,2), (2,3) \right\}$$

This shows the operation on cosets isn't well-defined:

$$eH \circ (1,3)H = (e \circ (1,3))H \leftarrow different!$$

$$(1,2)H \circ (1,3)H = ((1,2) \circ (1,3))H$$