Laboratório 3:

Projeto e montagem de redes iterativas

Professor: Osamu Saotome

Alunos:

Rodrigo Alves de Almeida

(rodrigoalalmeida@gmail.com)

Eduardo Menezes Moraes

(eduardomenezesm@msn.com)

Comp 22

5.1) Montagem do circuito:

Para obtenção da tabela verdade, foi montado o diagrama esquemático e de temporização:

Α	В	F
0	0	0
1	0	1
0	1	1
1	1	0

 $F = A \oplus B$

5.2) a) Tabela Verdade:

$Y_{1,i}$	$Y_{3,i}$	A_{i}	\boldsymbol{B}_{i}	$Y_{1, i-1}$	$Y_{3, i-1}$
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	0	0
1	0	x	x	1	0
0	1	х	X	0	1

b) Funções Lógicas:

A partir do mapa de Karnaugh são extraídas as seguintes funções lógicas:

$$Y_{1, i-1} = Y_{1, i} + \frac{\overline{Y}_{3, i}}{\overline{Y}_{3, i-1}} \frac{A_i}{A_i} \frac{\overline{B}_i}{B_i}$$

$$Y_{3, i-1} = Y_{3, i} + \overline{Y}_{1, i} \frac{A_i}{A_i} B_i$$

c) Montagem:

d) Montando o circuito no Quartus e simulando:

É importante perceber que a tabela gerada pelo diagrama de temporização é exatamente igual à tabela do item a.

e) Estas variáveis são obtidas a partir do output da célula 1:

$$Y_{1} = \underline{Y}_{1,0} \overline{\underline{Y}_{3,0}}$$

$$Y_{2} = \overline{\underline{Y}_{1,0}} \overline{Y}_{3,0}$$

$$Y_{3} = \overline{Y}_{1,0} \overline{Y}_{3,0}$$

5.3) a) Tabela Verdade:

A_i	B_{i}	E_{i-1}	S_{i}	E_{i}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

b) Funções Lógicas:

A partir do mapa de Karnaugh são extraídas as seguintes funções lógicas:

$$\begin{split} S_i &= A_i \oplus B_i \oplus E_{i-1} \\ E_i &= B_i E_{i-1} + \overline{A_i} (B_i \oplus E_{i-1}) \end{split}$$

c) Para reescrever as funções, partiremos da ideia utilizada no exercício 5.1:

$$B_{i} \oplus E_{i-1} = \overline{B_{i}} \overline{E_{i-1}} \overline{B_{i}} \overline{B_{i}} \overline{E_{i-1}} \overline{E_{i-1}} = X$$

$$S_{i} = \overline{A_{i}} \overline{X} \overline{A_{i}} \overline{A_{i}} \overline{X} \overline{X}$$

$$E_{i} = \overline{B_{i}} \overline{E_{i-1}} \overline{\overline{A_{i}}} \overline{X} = \overline{B_{i}} \overline{E_{i-1}} \overline{\overline{A_{i}}} \overline{A_{i}} \overline{X}$$

d) Montagem do circuito:

e) Montando o diagrama esquemático e o de temporização no Quartus:

Assim, notamos que o diagrama de temporização é exatamente a mesma representação da tabela verdade do item a, ou seja, a implementação com as portas NAND é correta.

5.4) a) Tabela Verdade:

A_i	\boldsymbol{B}_i	C_{i-1}	S_{i}	C_{i}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

b) Funções Lógicas:

A partir do mapa de Karnaugh são extraídas as seguintes funções lógicas:

$$\begin{split} S_i &= A_i \oplus B_i \oplus C_{i-1} \\ C_i &= A_i C_{i-1} + B_i (A_i \oplus C_{i-1}) \end{split}$$

c) Para reescrever as funções, partiremos da ideia utilizada no exercício 5.1:

$$A_{i} \oplus C_{i-1} = \overline{\overline{A_{i}} \ \overline{C_{i-1}} \ A_{i}} \ \overline{\overline{A_{i}} \ \overline{C_{i-1}} \ C_{i-1}} = X$$

$$S_{i} = \overline{\overline{\overline{B_{i}} \ X} \ \overline{B_{i}} \ \overline{\overline{B_{i}} \ X} \ X}$$

$$C_{i} = \overline{\overline{A_{i}} \ \overline{C_{i-1}} \ \overline{B_{i}} \ X} = \overline{\overline{A_{i}} \ \overline{C_{i-1}} \ \overline{B_{i}} \ X}$$

d) Utilizando as portas solicitadas, podemos escrever as expressões do ítem c) novamente:

$$S_i = A_i \oplus B_i \oplus C_{i-1}$$

$$C_i = \overline{\overline{A_i C_{i-1}}} \, \overline{B_i (A_i \oplus C_{i-1})}$$

Implementação na protoboard:

e) Com o intuito de verificar o funcionamento do circuito na protoboard, será colocado uma série de imagens, onde cada uma apresentará uma sequência de chaves diferentes. Vale ressaltar que as chaves são, respectivamente, A, B e C, da esquerda para a direita. Enquanto os LED's são S_i e C_{out} , da esquerda para a direita.

Note que, conforme o esperado, enquanto somente uma ou três chaves são acionadas, o primeiro LED, que representa o S_i , é aceso, como já era previsto na tabela verdade. Além disso, o C_{out} ou Carry, o qual é representado pelo segundo LED, da esquerda para direita, ficou aceso apenas quando dois ou mais interruptores foram acionados, conforme também era esperado pela tabela verdade.

6.1) a) Primeiramente, montou-se a tabela verdade, de acordo com as condições do enunciado. Para tanto, o raciocínio basicamente foi criar uma função para *complemento* de B, e as detectoras.

Para a função complemento de 2, a lógica foi se utilizar de portas XOR, conforme visto nas aulas de teoria da disciplina. Já quanto às detectoras, foi necessário criar uma tabela verdade à priori com o intuito de desenvolver mapas de Karnaugh. Contudo, devido a certa simplicidade das expressões booleanas, não foi necessário montar o mapa, bastou observar os padrões, os quais foram confirmados na simulação.

S_3	S_2	S ₁	S_o	A_3	E	С	Y ₃	Y_2	Y ₁	Y_{o}
1	1	1	1	0	0	0	0	1	1	0
1	1	1	0	0	0	0	0	1	1	0
1	1	0	1	0	0	0	0	1	1	0
1	1	0	0	0	0	0	0	1	1	0
1	0	1	0	0	0	0	0	1	1	0
1	0	1	0	0	0	0	0	1	1	0
0	0	0	1	1	1	1	1	0	1	0
0	0	1	0	1	1	1	1	0	1	0
0	0	1	1	1	1	1	1	0	1	0
0	1	0	0	1	1	1	1	0	1	0
0	1	0	1	1	1	1	1	0	1	0
0	1	1	0	1	1	1	1	0	1	0
X	Х	X	X	1	1	0	1	0	1	0
Χ	X	Χ	X	0	0	1	0	1	1	0

No caso da saída Y_2 , quando somador atua como adição, por exemplo, é fácil ver que ela só é 1 quando os números são do tipo: 1010, 1011, 1100, 1101, 1111, ou seja, os números maiores que 10, aqueles que irão dar problema. Percebeu-se que isso só ocorre quando o A_3 =1 e $(A_2$ ou A_1) = 1. Utilizando várias vezes essa linha de raciocínio, obteve-se sem a necessidade de Karnaugh, as seguintes expressões booleanas:

$$\begin{aligned} Y_3 &= E \, A_3 (C' + S_3' (S_2 S_1 S_0 + S_2' S_1' S_0')' \\ Y_2 &= E' \, A_3' \, (C + S_3 \, (S_2 + S_1)) \\ Y_1 &= Y_2 + Y_3 \\ Y_0 &= 0 \end{aligned}$$

A partir delas, obteve-se o diagrama esquemático:

b) Conforme pedido, foram realizadas as somas, de tal forma que numa mesma onda foram realizadas as 8 expressões. Para isso, reduziu-se o *grip size* e o *end time*, a fim de que todas expressões coubessem numa mesma figura.

Desse modo, temos para cada micro segundo uma expressão formada por $A_3A_2A_1A_0$ e $B_3B_2B_1B_0$, a qual resulta uma saída S, na mesma ordem pedida no arquivo de instruções para esse relatório.

Observe que da esquerda para direita temos para a saída, conforme o esperado, os seguintes valores: $(9)_d (1)_d (6)_d (3)_d (4)_d (-6)_d (-4)_d (-7)_d$

6.2) a) A partir da equação do enunciado, chega-se em:

$$\begin{split} C_0 &= B_0 \, A_0 \\ M_1 &= B_0 \, A_1 \, \operatorname{mais} \, B_1 \, A_0 \; ; \; M_1 = B_0 \, A_1 \oplus B_1 \, A_0 \; , \; C_{out} = B_0 \, A_1 \, B_1 \, A_0 \\ M_2 &= \; C_{out} \, \operatorname{mais} \, B_1 \, A_1 \; ; \; M_2 \; = \; C_{out} \; \oplus B_1 \, A_1 \\ M_3 &= \; C_{out} \, B_1 \, A_1 \end{split}$$

Assim, basta montar o diagrama esquemático:

b) Obtendo o diagrama de temporização por simulação:

A partir dele, verificamos as seguintes operações:

$$(10)_{b} * (11)_{b} = (0110)_{b}$$
; $(2)_{d} * (3)_{d} = (6)_{d}$

$$(10)_b * (00)_b = (0000)_b$$
; $(2)_d * (0)_d = (0)_d$

$$(01)_b * (01)_b = (0001)_b$$
; $(1)_d * (1)_d = (1)_d$
 $(11)_b * (11)_b = (1001)_b$; $(3)_d * (3)_d = (9)_d$