Functions_For_HarrixClass_DataOfHarrixOptimizationTesting -

HarrixClass_DataOfHarrixOptimizationTesting v.1.26

А. Б. Сергиенко

23 февраля 2015 г.

Аннотация

Kласс HarrixClass_DataOfHarrixOptimizationTesting для считывания информации формата данных Harrix Optimization Testing на C++ для Qt. Рассматривается Functions_For_HarrixClass_DataOfHarrixOptimizationTesting.cpp.

Оглавление

1	Введение		3
2	Список функций		
3	Функции		6
	3.1 Блок	функций проверки равенства переменных нескольких исследований	6
	3.1.1	HCDOHOT_CompareOfDataByWilcoxonW	6
	3.1.2	HCDOHOT_CompareOfDataForAuthor	7
	3.1.3	HCDOHOT_CompareOfDataForCheckAllCombinations	7
	3.1.4	HCDOHOT_CompareOfDataForDate	8
	3.1.5	HCDOHOT_CompareOfDataForDimensionTestFunction	9
	3.1.6	HCDOHOT_CompareOfDataForEmail	9
	3.1.7	HCDOHOT_CompareOfDataForFormat	10
	3.1.8	HCDOHOT_CompareOfDataForFullNameAlgorithm	11
	3.1.9	HCDOHOT_CompareOfDataForFullNameTestFunction	11
	3.1.10	HCDOHOT_CompareOfDataForLink	12
	3.1.1	HCDOHOT_CompareOfDataForMaxCountOfFitness	13
	3.1.12	2 HCDOHOT_CompareOfDataForNameAlgorithm	13

	3.1.13	HCDOHOT_CompareOfDataForNameTestFunction	14
	3.1.14	HCDOHOT_CompareOfDataForNumberOfExperiments	15
	3.1.15	HCDOHOT_CompareOfDataForNumberOfMeasuring	15
	3.1.16	HCDOHOT_CompareOfDataForNumberOfParameters	16
	3.1.17	HCDOHOT_CompareOfDataForNumberOfRuns	17
	3.1.18	HCDOHOT_CompareOfDataForVersion	17
3.2	Генера	ация отчетов	18
	3.2.1	HCDOHOT_GeneratedAnalysisReportFromFile	18
	3.2.2	HCDOHOT_GeneratedReportAboutAlgorithmFromDir	19
	3.2.3	HCDOHOT_GeneratedSimpleReportFromFile	19
3.3	Функ	ции по работе с классом	20
	3.3.1	HCDOHOT_NumberFilesInDir	20
	3.3.2	HCDOHOT_ReadFilesInDir	20
	3.3.3	HCDOHOT_ReadFilesOnlyDataInDir	21

1 Введение

Kласс HarrixClass_DataOfHarrixOptimizationTesting для считывания информации формата данных Harrix Optimization Testing на C++ для Qt.

Последнюю версию документа можно найти по адресу:

https://github.com/Harrix/HarrixClass_DataOfHarrixOptimizationTesting

Об установке библиотеки можно прочитать тут:

http://blog.harrix.org/?p=992

С автором можно связаться по адресу sergienkoanton@mail.ru или http://vk.com/harrix.

Сайт автора, где публикуются последние новости: http://blog.harrix.org/, а проекты располагаются по адресу http://harrix.org/.

2 Список функций

Блок функций проверки равенства переменных нескольких исследований

- 1. **HCDOHOT_CompareOfDataByWilcoxonW** Проверяет по критерию Вилкосона два исследования алгоритмов.
- 2. **HCDOHOT_CompareOfDataForAuthor** Проверяет равенство авторов исследований.
- 3. **HCDOHOT_CompareOfDataForCheckAllCombinations** Проверяет равенство переменной, которая говорит все ли рассмотрены функции в исследованиях.
- 4. **HCDOHOT_CompareOfDataForDate** Проверяет равенство дат исследований.
- 5. **HCDOHOT_CompareOfDataForDimensionTestFunction** Проверяет равенство размерностей тестовой задачи (длина хромосомы решения) в исследованиях.
- 6. **HCDOHOT_CompareOfDataForEmail** Проверяет равенство email авторов исследований.
- 7. **HCDOHOT_CompareOfDataForFormat** Проверяет равенство форматов файлов в исследованиях.
- 8. **HCDOHOT_CompareOfDataForFullNameAlgorithm** Проверяет равенство полных названий алгоритмов в исследованиях.
- 9. **HCDOHOT_CompareOfDataForFullNameTestFunction** Проверяет равенство полных названий тестовых функций в исследованиях.
- 10. **HCDOHOT_CompareOfDataForLink** Проверяет равенство ссылок на описание версий формата файла в исследованиях.
- 11. **HCDOHOT_CompareOfDataForMaxCountOfFitness** Проверяет равенство максимальных допустимых чисел вычислений целевой функции для алгоритма в исследованиях.
- 12. **HCDOHOT_CompareOfDataForNameAlgorithm** Проверяет равенство идентификаторов алгоритмов оптимизации: в данных содержится один и тот же алгоритм или же нет.
- 13. **HCDOHOT_CompareOfDataForNameTestFunction** Проверяет равенство идентификаторов тестовых функций в исследованиях.
- 14. **HCDOHOT_CompareOfDataForNumberOfExperiments** Проверяет равенство количества комбинаций вариантов настроек в исследованиях.

- 15. **HCDOHOT_CompareOfDataForNumberOfMeasuring** Проверяет равенство количества экспериментов для каждого набора параметров алгоритма в исследованиях.
- 16. **HCDOHOT_CompareOfDataForNumberOfParameters** Проверяет равенство количества проверяемых параметров алгоритма оптимизации в исследованиях.
- 17. **HCDOHOT_CompareOfDataForNumberOfRuns** Проверяет равенство количества прогонов, по которому делается усреднение для эксперимента в исследованиях.
- 18. **HCDOHOT_CompareOfDataForVersion** Проверяет равенство версий формата файла в исследованиях.

Генерация отчетов

- 1. **HCDOHOT_GeneratedAnalysisReportFromFile** Генерирует отчет-анализ Latex по алгоритму по файлу *.hdata.
- 2. **HCDOHOT_GeneratedReportAboutAlgorithmFromDir** Генерирует отчет Latex по алгоритму по файлам *.hdata алгоритма, просматривая все файлы в папке. То, чтобы в папке были файлы только одного алгоритма, вы берете на себя.
- 3. **HCDOHOT_GeneratedSimpleReportFromFile** Генерирует простой отчет Latex по алгоритму по файлу *.hdata.

Функции по работе с классом

- 1. HCDOHOT_NumberFilesInDir Подсчитывает число HarrixClass_DataOfHarrixOptimizationTesting файлов в папке.
- 2. **HCDOHOT_ReadFilesInDir** Заполняет массив SeveralData данными из всех файлов *.hdata из папки.
- 3. **HCDOHOT_ReadFilesOnlyDataInDir** Заполняет массив SeveralData данными (только исследования) из всех файлов *.hdata из папки.

3 Функции

3.1 Блок функций проверки равенства переменных нескольких исследований

3.1.1 HCDOHOT_CompareOfDataByWilcoxonW

Проверяет по критерию Вилкосона два исследования алгоритмов.

```
Kog 1. Синтаксис

int HCDOHOT_CompareOfDataByWilcoxonW (
    HarrixClass_OnlyDataOfHarrixOptimizationTesting *Data1,
    HarrixClass_OnlyDataOfHarrixOptimizationTesting *Data2, double Q);
```

Входные параметры:

```
Data1 — первое исследование;
```

Data2 — второе исследование;

Q — уровень значимости. Может принимать значения:

- -0.002;
- -0.01;
- -0.02;
- -0.05;
- -0.1;
- **-** 0.2.

Возвращаемое значение:

- -2 уровень значимости выбран неправильно (не из допустимого множества);
- -1 объемы выборок не позволяют провести проверку при данном уровне значимости (или они не положительные);
 - 0 выборки не однородны при данном уровне значимости;
 - 1 выборки однородны при данном уровне значимости;

3.1.2 HCDOHOT_CompareOfDataForAuthor

Проверяет равенство авторов исследований.

```
Kod 2. Синтаксис
bool HCDOHOT_CompareOfDataForAuthor (HarrixClass_DataOfHarrixOptimizationTesting *
    Data1, HarrixClass_DataOfHarrixOptimizationTesting *Data2);
bool HCDOHOT_CompareOfDataForAuthor (HarrixClass_DataOfHarrixOptimizationTesting *
    SeveralData, int N);
bool HCDOHOT_CompareOfDataForAuthor (
    HarrixClass_OnlyDataOfHarrixOptimizationTesting *SeveralData, int N);
```

Входные параметры:

```
Data1 — первое исследование;Data2 — второе исследование.
```

Входные параметры в функциях перегрузках:

```
SeveralData — массив исследований;
```

N — количество исследований в массиве.

Возвращаемое значение:

```
true — если исследуемый параметр алгоритмов одинаков. false — если разные.
```

3.1.3 HCDOHOT_CompareOfDataForCheckAllCombinations

Проверяет равенство переменной, которая говорит все ли рассмотрены функции в исследованиях.

```
Kod 3. Cuhtakcuc
bool HCDOHOT_CompareOfDataForCheckAllCombinations (
    HarrixClass_DataOfHarrixOptimizationTesting *Data1,
    HarrixClass_DataOfHarrixOptimizationTesting *Data2);
bool HCDOHOT_CompareOfDataForCheckAllCombinations (
    HarrixClass_DataOfHarrixOptimizationTesting *SeveralData, int N);
bool HCDOHOT_CompareOfDataForCheckAllCombinations (
    HarrixClass_OnlyDataOfHarrixOptimizationTesting *SeveralData, int N);
```

Data1 — первое исследование;

Data2 — второе исследование.

Входные параметры в функциях перегрузках:

SeveralData — массив исследований;

N — количество исследований в массиве.

Возвращаемое значение:

true — если исследуемый параметр алгоритмов одинаков.

false — если разные.

${\bf 3.1.4} \quad HCDOHOT_CompareOfDataForDate$

Проверяет равенство дат исследований.

Кол 4 Синтаксис

```
bool HCDOHOT_CompareOfDataForDate (HarrixClass_DataOfHarrixOptimizationTesting *
    Data1, HarrixClass_DataOfHarrixOptimizationTesting *Data2);
```

bool HCDOHOT_CompareOfDataForDate (HarrixClass_DataOfHarrixOptimizationTesting *
 SeveralData, int N);

Входные параметры:

Data1 — первое исследование;

Data2 — второе исследование.

Входные параметры в функциях перегрузках:

SeveralData — массив исследований;

N — количество исследований в массиве.

Возвращаемое значение:

true — если исследуемый параметр алгоритмов одинаков.

3.1.5 HCDOHOT_CompareOfDataForDimensionTestFunction

Проверяет равенство размерностей тестовой задачи (длина хромосомы решения) в исследованиях.

```
Koд 5. Синтаксис
bool HCDOHOT_CompareOfDataForDimensionTestFunction (
    HarrixClass_DataOfHarrixOptimizationTesting *Data1,
    HarrixClass_DataOfHarrixOptimizationTesting *Data2);
bool HCDOHOT_CompareOfDataForDimensionTestFunction (
    HarrixClass_DataOfHarrixOptimizationTesting *SeveralData, int N);
bool HCDOHOT_CompareOfDataForDimensionTestFunction (
    HarrixClass_OnlyDataOfHarrixOptimizationTesting *SeveralData, int N);
```

Входные параметры:

```
Data1 — первое исследование;
```

Data2 — второе исследование.

Входные параметры в функциях перегрузках:

```
SeveralData — массив исследований;
```

N — количество исследований в массиве.

Возвращаемое значение:

```
true — если исследуемый параметр алгоритмов одинаков.
```

false — если разные.

3.1.6 HCDOHOT_CompareOfDataForEmail

Проверяет равенство email авторов исследований.

```
Koд 6. Синтаксис
bool HCDOHOT_CompareOfDataForEmail (HarrixClass_DataOfHarrixOptimizationTesting *
    Data1, HarrixClass_DataOfHarrixOptimizationTesting *Data2);
bool HCDOHOT_CompareOfDataForEmail (HarrixClass_DataOfHarrixOptimizationTesting *
    SeveralData, int N);
bool HCDOHOT_CompareOfDataForEmail (
    HarrixClass_OnlyDataOfHarrixOptimizationTesting *SeveralData, int N);
```

```
Data1 — первое исследование;
```

Входные параметры в функциях перегрузках:

```
SeveralData — массив исследований;
```

N — количество исследований в массиве.

Возвращаемое значение:

```
true — если исследуемый параметр алгоритмов одинаков.
```

false — если разные.

3.1.7 HCDOHOT_CompareOfDataForFormat

Проверяет равенство форматов файлов в исследованиях.

Код 7. Синтаксис

```
bool HCDOHOT_CompareOfDataForFormat (HarrixClass_DataOfHarrixOptimizationTesting *
    Data1, HarrixClass_DataOfHarrixOptimizationTesting *Data2);
bool HCDOHOT_CompareOfDataForFormat (HarrixClass_DataOfHarrixOptimizationTesting *
    SeveralData, int N);
bool HCDOHOT_CompareOfDataForFormat (
    HarrixClass_OnlyDataOfHarrixOptimizationTesting *SeveralData, int N);
```

Входные параметры:

```
Data1 — первое исследование;
```

Data2 — второе исследование.

Входные параметры в функциях перегрузках:

SeveralData — массив исследований;

N — количество исследований в массиве.

Возвращаемое значение:

```
true — если исследуемый параметр алгоритмов одинаков.
```

3.1.8 HCDOHOT CompareOfDataForFullNameAlgorithm

Проверяет равенство полных названий алгоритмов в исследованиях.

```
Kod 8. Cuhtakcuc
bool HCDOHOT_CompareOfDataForFullNameAlgorithm (
    HarrixClass_DataOfHarrixOptimizationTesting *Data1,
    HarrixClass_DataOfHarrixOptimizationTesting *Data2);
bool HCDOHOT_CompareOfDataForFullNameAlgorithm (
    HarrixClass_DataOfHarrixOptimizationTesting *SeveralData, int N);
bool HCDOHOT_CompareOfDataForFullNameAlgorithm (
    HarrixClass_OnlyDataOfHarrixOptimizationTesting *SeveralData, int N);
```

Входные параметры:

```
Data1 — первое исследование;
```

Data2 — второе исследование.

Входные параметры в функциях перегрузках:

SeveralData — массив исследований;

N — количество исследований в массиве.

Возвращаемое значение:

```
true — если исследуемый параметр алгоритмов одинаков.
```

false — если разные.

3.1.9 HCDOHOT_CompareOfDataForFullNameTestFunction

Проверяет равенство полных названий тестовых функций в исследованиях.

```
Kog 9. Cuhtakcuc

bool HCDOHOT_CompareOfDataForFullNameTestFunction (
    HarrixClass_DataOfHarrixOptimizationTesting *Data1,
    HarrixClass_DataOfHarrixOptimizationTesting *Data2);

bool HCDOHOT_CompareOfDataForFullNameTestFunction (
    HarrixClass_DataOfHarrixOptimizationTesting *SeveralData, int N);

bool HCDOHOT_CompareOfDataForFullNameTestFunction (
    HarrixClass_OnlyDataOfHarrixOptimizationTesting *SeveralData, int N);
```

Входные параметры:

Data1 — первое исследование;

Входные параметры в функциях перегрузках:

SeveralData — массив исследований;

N — количество исследований в массиве.

Возвращаемое значение:

true — если исследуемый параметр алгоритмов одинаков.

false — если разные.

3.1.10 HCDOHOT_CompareOfDataForLink

Проверяет равенство ссылок на описание версий формата файла в исследованиях.

Код 10. Синтаксис

```
bool HCDOHOT_CompareOfDataForLink (HarrixClass_DataOfHarrixOptimizationTesting *
    Data1, HarrixClass_DataOfHarrixOptimizationTesting *Data2);
```

bool HCDOHOT_CompareOfDataForLink (HarrixClass_DataOfHarrixOptimizationTesting *
 SeveralData, int N);

Входные параметры:

Data1 — первое исследование;

Data2 — второе исследование.

Входные параметры в функциях перегрузках:

SeveralData — массив исследований;

N — количество исследований в массиве.

Возвращаемое значение:

true — если исследуемый параметр алгоритмов одинаков.

3.1.11 HCDOHOT_CompareOfDataForMaxCountOfFitness

Проверяет равенство максимальных допустимых чисел вычислений целевой функции для алгоритма в исследованиях.

```
Koд 11. Синтаксис
bool HCDOHOT_CompareOfDataForMaxCountOfFitness (
    HarrixClass_DataOfHarrixOptimizationTesting *Data1,
    HarrixClass_DataOfHarrixOptimizationTesting *Data2);
bool HCDOHOT_CompareOfDataForMaxCountOfFitness (
    HarrixClass_DataOfHarrixOptimizationTesting *SeveralData, int N);
bool HCDOHOT_CompareOfDataForMaxCountOfFitness (
    HarrixClass_OnlyDataOfHarrixOptimizationTesting *SeveralData, int N);
```

Входные параметры:

```
Data1 — первое исследование;
```

Data2 — второе исследование.

Входные параметры в функциях перегрузках:

```
SeveralData — массив исследований;
```

N — количество исследований в массиве.

Возвращаемое значение:

```
true — если исследуемый параметр алгоритмов одинаков.
```

false — если разные.

3.1.12 HCDOHOT_CompareOfDataForNameAlgorithm

Проверяет равенство идентификаторов алгоритмов оптимизации: в данных содержится один и тот же алгоритм или же нет.

```
Koд 12. Синтаксис
bool HCDOHOT_CompareOfDataForNameAlgorithm (
    HarrixClass_DataOfHarrixOptimizationTesting *Data1,
    HarrixClass_DataOfHarrixOptimizationTesting *Data2);
bool HCDOHOT_CompareOfDataForNameAlgorithm (
    HarrixClass_DataOfHarrixOptimizationTesting *SeveralData, int N);
bool HCDOHOT_CompareOfDataForNameAlgorithm (
    HarrixClass_OnlyDataOfHarrixOptimizationTesting *SeveralData, int N);
```

Входные параметры:

```
Data1 — первое исследование;
```

Data2 — второе исследование.

Входные параметры в функциях перегрузках:

```
SeveralData — массив исследований;
```

N — количество исследований в массиве.

Возвращаемое значение:

```
true — если имена алгоритмов одинаковы.
```

false — если разные.

3.1.13 HCDOHOT_CompareOfDataForNameTestFunction

Проверяет равенство идентификаторов тестовых функций в исследованиях.

```
Kog 13. Синтаксис
bool HCDOHOT_CompareOfDataForNameTestFunction (
    HarrixClass_DataOfHarrixOptimizationTesting *Data1,
    HarrixClass_DataOfHarrixOptimizationTesting *Data2);
bool HCDOHOT_CompareOfDataForNameTestFunction (
    HarrixClass_DataOfHarrixOptimizationTesting *SeveralData, int N);
bool HCDOHOT_CompareOfDataForNameTestFunction (
    HarrixClass_OnlyDataOfHarrixOptimizationTesting *SeveralData, int N);
```

Входные параметры:

```
Data1 — первое исследование;
```

Data2 — второе исследование.

Входные параметры в функциях перегрузках:

SeveralData — массив исследований;

N — количество исследований в массиве.

Возвращаемое значение:

```
true — если исследуемый параметр алгоритмов одинаков.
```

3.1.14 HCDOHOT CompareOfDataForNumberOfExperiments

Проверяет равенство количества комбинаций вариантов настроек в исследованиях.

```
Koд 14. Синтаксис
bool HCDOHOT_CompareOfDataForNumberOfExperiments (
    HarrixClass_DataOfHarrixOptimizationTesting *Data1,
    HarrixClass_DataOfHarrixOptimizationTesting *Data2);
bool HCDOHOT_CompareOfDataForNumberOfExperiments (
    HarrixClass_DataOfHarrixOptimizationTesting *SeveralData, int N);
bool HCDOHOT_CompareOfDataForNumberOfExperiments (
    HarrixClass_OnlyDataOfHarrixOptimizationTesting *SeveralData, int N);
```

Входные параметры:

```
Data1 — первое исследование;
```

Data2 — второе исследование.

Входные параметры в функциях перегрузках:

```
SeveralData — массив исследований;
```

N — количество исследований в массиве.

Возвращаемое значение:

```
true — если исследуемый параметр алгоритмов одинаков.
```

false — если разные.

3.1.15 HCDOHOT_CompareOfDataForNumberOfMeasuring

Проверяет равенство количества экспериментов для каждого набора параметров алгоритма в исследованиях.

```
Koд 15. Синтаксис
bool HCDOHOT_CompareOfDataForNumberOfMeasuring (
    HarrixClass_DataOfHarrixOptimizationTesting *Data1,
    HarrixClass_DataOfHarrixOptimizationTesting *Data2);
bool HCDOHOT_CompareOfDataForNumberOfMeasuring (
    HarrixClass_DataOfHarrixOptimizationTesting *SeveralData, int N);
bool HCDOHOT_CompareOfDataForNumberOfMeasuring (
    HarrixClass_OnlyDataOfHarrixOptimizationTesting *SeveralData, int N);
```

```
Data1 — первое исследование;
```

Входные параметры в функциях перегрузках:

```
SeveralData — массив исследований;
```

N — количество исследований в массиве.

Возвращаемое значение:

```
true — если исследуемый параметр алгоритмов одинаков.
```

false — если разные.

${\bf 3.1.16}\quad HCDOHOT_CompareOfDataForNumberOfParameters$

Проверяет равенство количества проверяемых параметров алгоритма оптимизации в исследованиях.

Kod 16. Синтаксис bool HCDOHOT_CompareOfDataForNumberOfParameters (HarrixClass_DataOfHarrixOptimizationTesting *Data1, HarrixClass_DataOfHarrixOptimizationTesting *Data2); bool HCDOHOT_CompareOfDataForNumberOfParameters (HarrixClass_DataOfHarrixOptimizationTesting *SeveralData, int N); bool HCDOHOT_CompareOfDataForNumberOfParameters (HarrixClass OnlyDataOfHarrixOptimizationTesting *SeveralData, int N);

Входные параметры:

```
Data1 — первое исследование;
```

Data2 — второе исследование.

Входные параметры в функциях перегрузках:

SeveralData — массив исследований;

N — количество исследований в массиве.

Возвращаемое значение:

```
true — если исследуемый параметр алгоритмов одинаков.
```

3.1.17 HCDOHOT_CompareOfDataForNumberOfRuns

Проверяет равенство количества прогонов, по которому делается усреднение для эксперимента в исследованиях.

```
Kog 17. Синтаксис
bool HCDOHOT_CompareOfDataForNumberOfRuns (
    HarrixClass_DataOfHarrixOptimizationTesting *Data1,
    HarrixClass_DataOfHarrixOptimizationTesting *Data2);
bool HCDOHOT_CompareOfDataForNumberOfRuns (
    HarrixClass_DataOfHarrixOptimizationTesting *SeveralData, int N);
bool HCDOHOT_CompareOfDataForNumberOfRuns (
    HarrixClass_OnlyDataOfHarrixOptimizationTesting *SeveralData, int N);
```

Входные параметры:

```
Data1 — первое исследование;
```

Data2 — второе исследование.

Входные параметры в функциях перегрузках:

```
SeveralData — массив исследований;
```

N — количество исследований в массиве.

Возвращаемое значение:

```
true — если исследуемый параметр алгоритмов одинаков.
```

false — если разные.

3.1.18 HCDOHOT_CompareOfDataForVersion

Проверяет равенство версий формата файла в исследованиях.

```
Kod 18. Синтаксис
bool HCDOHOT_CompareOfDataForVersion (HarrixClass_DataOfHarrixOptimizationTesting
  *Data1, HarrixClass_DataOfHarrixOptimizationTesting *Data2);
bool HCDOHOT_CompareOfDataForVersion (HarrixClass_DataOfHarrixOptimizationTesting
  *SeveralData, int N);
bool HCDOHOT_CompareOfDataForVersion (
   HarrixClass_OnlyDataOfHarrixOptimizationTesting *SeveralData, int N);
```

```
Data1 — первое исследование;
```

Входные параметры в функциях перегрузках:

```
SeveralData — массив исследований;
```

N — количество исследований в массиве.

Возвращаемое значение:

```
true — если исследуемый параметр алгоритмов одинаков.
```

false — если разные.

3.2 Генерация отчетов

3.2.1 HCDOHOT_GeneratedAnalysisReportFromFile

Генерирует отчет-анализ Latex по алгоритму по файлу *.hdata.

```
Koд 19. Синтаксис

void HCDOHOT_GeneratedAnalysisReportFromFile(QString filename, QString pathForSave
, QString pathForTempHtml);

void HCDOHOT_GeneratedAnalysisReportFromFile(QString filename, QString pathForSave
);
```

Входные параметры:

filename — путь к файлу, из которого считываем данные.

pathForSave — путь к папке, куда сохраняем Latex файлы.

pathForTempHtml — путь к папке куда сохраняем во время работы функции отчет в виде temp.html.

Возвращаемое значение:

Отсутствует.

В папке сохранения должны быть находиться файлы names.tex, packages.tex, styles.tex из проекта https://github.com/Harrix/HarrixLaTeXDocumentTemplate. Для отчета в виде html берется проект: https://github.com/Harrix/HarrixHtmlForQWebView.

3.2.2 HCDOHOT_GeneratedReportAboutAlgorithmFromDir

Генерирует отчет Latex по алгоритму по файлам *.hdata алгоритма, просматривая все файлы в папке. То, чтобы в папке были файлы только одного алгоритма, вы берете на себя.

Koд 20. Синтаксис void HCDOHOT_GeneratedReportAboutAlgorithmFromDir(QString path, QString pathForSave, QString pathForTempHtml); void HCDOHOT_GeneratedReportAboutAlgorithmFromDir(QString path, QString pathForSave);

Входные параметры:

```
path — путь к папке, из которой считаем файлы.
```

pathForSave — путь к папке, куда сохраняем Latex файлы.

pathForTempHtml — путь к папке куда сохраняем во время работы функции отчет в виде temp.html.

Возвращаемое значение:

Отсутствует.

В папке сохранения должны быть находиться файлы names.tex, packages.tex, styles.tex из проекта https://github.com/Harrix/HarrixLaTeXDocumentTemplate. Для отчета в виде html берется проект: https://github.com/Harrix/HarrixHtmlForQWebView.

3.2.3 HCDOHOT_GeneratedSimpleReportFromFile

Генерирует простой отчет Latex по алгоритму по файлу *.hdata.

```
Код 21. Синтаксис
```

void HCDOHOT_GeneratedSimpleReportFromFile(QString filename, QString pathForSave);

Входные параметры:

filename — путь к файлу, из которого считываем данные.

pathForSave — путь к папке, куда сохраняем Latex файлы.

pathForTempHtml — путь к папке куда сохраняем во время работы функции отчет в виде temp.html.

Возвращаемое значение:

Отсутствует.

В папке сохранения должны быть находиться файлы names.tex, packages.tex, styles.tex из проекта https://github.com/Harrix/HarrixLaTeXDocumentTemplate. Для отчета в виде html берется проект: https://github.com/Harrix/HarrixHtmlForQWebView.

3.3 Функции по работе с классом

3.3.1 HCDOHOT_NumberFilesInDir

Подсчитывает число HarrixClass_DataOfHarrixOptimizationTesting файлов в папке.

Код 22. Синтаксис

int HCDOHOT_NumberFilesInDir(QString path);

Входные параметры:

path — путь к папке, из которой считаем файлы.

Возвращаемое значение:

Число файлов HarrixClass_DataOfHarrixOptimizationTesting файлов в папке.

3.3.2 HCDOHOT ReadFilesInDir

Заполняет массив SeveralData данными из всех файлов *.hdata из папки.

Кол 93 Синтаксис

```
int HCDOHOT_ReadFilesInDir(HarrixClass_DataOfHarrixOptimizationTesting *
    SeveralData, QString path, QString pathForTempHtml);
int HCDOHOT_ReadFilesInDir(HarrixClass_DataOfHarrixOptimizationTesting *
    SeveralData, QString path);
```

Входные параметры:

SeveralData — массив, в который записываем данные.

path — путь к папке, из которой считаем файлы.

pathForTempHtml- путь к папке куда сохраняем во время работы функции отчет в виде temp.html.

Возвращаемое значение:

Число файлов HarrixClass_DataOfHarrixOptimizationTesting файлов в папке.

Примечание:

Подсчитать число файлов в папке до вызова этой функции можно функцией HCDOHOT_NumberFilesInDir.

3.3.3 HCDOHOT_ReadFilesOnlyDataInDir

Заполняет массив SeveralData данными (только исследования) из всех файлов *.hdata из папки.

Код 24. Синтаксис

Входные параметры:

SeveralData — массив, в который записываем данные.

path — путь к папке, из которой считаем файлы.

pathForTempHtml — путь к папке куда сохраняем во время работы функции отчет в виде temp.html.

Возвращаемое значение:

Число файлов HarrixClass_DataOfHarrixOptimizationTesting файлов в папке.

Примечание:

Подсчитать число файлов в папке до вызова этой функции можно функцией HCDOHOT_NumberFilesInDir.