2019/2020 S1 MID-SEMESTER TEST

SAS code:

MODULE: <u>DIGITAL ELECTRONICS</u>

COURSE/YEAR: DASE/DCEP/DESM/DCPE/ DEEE 1FT

SET BY: Lui SK

MOD. CODE: ET1004

No	SOLUTION				MARKS	TOTAL
						MARKS
	SECTION – A	(10 MCQ, 3 mar	ks each)			
	A1 (b)					
	A2 (c)					
	A3 (d)					
	A4 (d)				2 montre	20 mortes
	A5 (a)				3 marks each	(30 marks)
	A6 (c)					
	A7 (b)					
	A8 (c)					
	A9 (b)					
	A10 (a)					
	A	B C D				
	A1	✓				
	A2	√				
	A3	✓				
	A4	✓				
	A5 ✓					
	A6	√				
	A7	√				
	A8	√				
	A9 10 ✓	√				
	10					
		SINGAPORI	POLYTECHNIC			

NOT TO BE GIVEN TO STUDENTS

NOTE: (1) Solutions which are to be reproduced are to be typed or handwritten in black ball point or black ink.

(2) All solutions for the same module should be stabled together, with the sheet number indicated in running order on the top right hand corner.

/19/20_51 **MST**

2019/2020 S1 MID-SEMESTER TEST

SAS code: MST

MODULE: <u>DIGITAL ELECTRONICS</u>

COURSE/YEAR: <u>DASE/DCEP/DESM/DCPE/ DEEE 1FT</u>

MOD. CODE: <u>ET10</u>04 SET BY: Lui SK

No	SOLUTION	MARKS	TOTAL MARKS
B1 a)	<u>SECTION – B</u> (20 marks each) Add +59 ₁₀ to +33 ₁₀ sign 64 32 16 8 4 2 1		
	+59 = <u>0 0 1 1 1 0 1 1</u> ←	1 mark	
	+33 = 0 0 1 0 0 0 0 1	1 mark	
	+92 = 0 1 0 1 1 1 0 0	2 marks	
	Add -21_{10} to $+67_{10}$		
	sign 64 32 16 8 4 2 1		
	+21 = 0 0 0 1 0 1 0 1	1 mark	
	-21 = 1 1 1 0 1 0 1 1 →	2 marks	
	+67 = 0 1 0 0 0 0 1 1	1 mark	
	$+46 = \frac{1 \cdot 0 0 1 0 1 1 1 0}{$	2 marks	
b)	ADD +27 ₁₀ to +255 ₁₀ in BCD format		
	+ 255 = 0 0 1 0 0 1 0 1 0 1 0 1 	1 mark	
	<u>+ 27</u> =0 0 1 0 0 1 1 1 1 ⁴	1 mark	
	$= 001001111^{1}1100$		
	+1 1 0 <	1 mark	
	+ 282 = 0 0 1 0 1 0 0 0 0 1 0 	2 marks	
	SINGAPORE POLYTECHNIC		15 marks

NOT TO BE GIVEN

NOTE: (1) Solutions which are to be reproduced a sto be type or had wisen in black ball point or black ink.
(2) All solutions for the same module should be stabled together, with the sheet number indicated in running order on the top right hand corner.

/19/20_51 MST

2019/2020 S1 MID-SEMESTER TEST

SAS code:

MODULE: <u>DIGITAL ELECTRONICS</u>

COURSE/YEAR: <u>DASE/DCEP/DESM/DCPE/ DEEE 1FT</u>

SET BY: Lui SK

MOD. CODE: ET1004

No	SOLUTION	MARKS	TOTAL MARKS
B2 (a)	A B Co Cin Sum	3 marks	
(b)	A 4-bit parallel adder is a circuit that is able to add two sets of 4-bit numbers simultaneously to produce a sum result of up to 5 bits.	3 marks	
	If the 4-bit adder is to be constructed using the FA unit, 4 FAs are required	2 marks	
	MSB A3 B3 A2 B2 A1 B1 A0 B0 A B A B A B A B Cout Cin Cout Cin Cout Cin Cout Cin Sum Sum Sum Sum Sum S4 S3 S2 S1 S0 MSB	4 marks	
(c)	Three (3) 74283 ICs are required to build a 12-bit parallel adder	3 marks	15 marks
	SINGAPORE POLYTECHNIC		

NOT TO BE GIVEN TO STUDENTS

NOTE: (1) Solutions which are to be reproduced are to be typed or handwritten in black ball point or black ink.

(2) All solutions for the same module should be stabled together, with the sheet number indicated in running order on the top right hand corner.

/19/20_51 **MST**

SAS code:

2019/2020 S1 MID-SEMESTER TEST

MODULE: <u>DIGITAL ELECTRONICS</u>

MOD. CODE: <u>ET1004</u> SET BY: <u>Lui SK</u>

COURSE/YEAR: DASE/DCEP/DESM/DCPE/ DEEE 1FT

No	SOLUTION		MARKS	TOTAL MARKS
B3				MARKS
(a)	(i) Period = 95 + 35 = 130mS			
	(ii) Duty c	ycle = 35/130 * 100% = 26.92%	2 marks	
	(iii) Freque	ncy = 1/130mS = 7.6923Hz	2 marks	
(b)				
	(i) Dec	cade, Mod-10 or Divide by 10 counters.		
	(ii) Asy	nchronous or ripple counters		
	(iii) Par	allel-in, serial-out shift register		
	(iv) Syr	achronous or Parallel counters		
	(v) Mod	d 2 ^N counter	10 marks	
	2 marks for each correct answer			
		SINGAPORE POLYTECHNIC		(15 marks)
		NOT TO BE GIVEN		

NOTE: (1) Solutions which are to be reproduced are to be typed or handwritten in <u>black ball point or black ink.</u>

TO STUDENTS

(2) All solutions for the same module should be stabled together, with the sheet number indicated in running order on the top right hand corner.

/19/20_51 MST

SINGAPORE POLYTECHNIC **2019/2020 S1 MID-SEMESTER TEST**

SAS code: MST

MODULE: <u>DIGITAL ELECTRONICS</u>

COURSE/YEAR: <u>DASE/DCEP/DESM/DCPE/ DEEE 1FT</u>

MOD. CODE: ET1004 SET BY: Lui SK

No	SOLUTION	MARKS	TOTAL
C1		2 1	MARKS
(a)	Mod 12 counter (Divide by 12) has the highest Mod number	3 marks	
(b)	Given freq at $R = 1$ kHz, Freq at $Q = 1000 *12 = 12$ kHz		
(0)	Freq at P = 12*6 = 72 kHz	3 marks	
	Freq at S = 1kHz / 2 = 500 Hz	3 marks	
	Overall Modulus = 6*12*2 = 144	3 marks	
(c)	CLK i/p — CP0 MR1 MR2	7 marks	
(d)	Marks distribution Use of 4 Flip-flops - 1 mark Correct feedback from O/s to MR1 and MR2 - 3 marks Labelling of MSB and LSB - 1 mark Correct Clk i/p - 1 mark Mod 12 State diagram 0100 0101	3 marks	
(e)	At the end of 122 Clk cycles , the output values will be 0010 + 0010 (2_{10}) = 0100	3 marks	(25 marks)

SINGAPORE POLYTECHNIC

NOT TO BE GIVEN

NOTE: (1) Solutions which are to be reproduced are to be typed or handwritten in black ball point or black ink.

(2) All solutions for the same module should be stabled together, with the sheet number indicated in running order on the top right hand corner.

/19/20_51 MST