Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет: компьютерных систем и сетей

Кафедра: электронных вычислительных машин

Дисциплина: схемотехника

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовому проекту на тему

Микропроцессорное устройство контроля параметров велосипеда

БГУИР КП 1-40 02 01 105 ПЗ

Студент: гр. 150501 Гиль Н. А.

Руководитель: Селезнев И. Л.

СОДЕРЖАНИЕ

введение	4
1 ОБЗОР ЛИТЕРАТУРЫ	5
1.1 Требования к проектируемому устройству	5
1.2 Микроконтроллеры	5
1.3 Сенсор температуры	7
1.4 Сенсоры скорости	8
1.5 Сенсоры GPS	9
1.6 Часы реального времени	10
1.7 Устройство воспроизведения звука	11
1.8 Устройство отображения информации	11
2 РАЗРАБОТКА СТРУКТУРЫ МИКРОПРОЦЕССОРНОГО УСТРОЙСТВА ПАРАМЕТРОВ ВЕЛОСИПЕДА	13
2.1 Компоненты проектируемого устройства	13
2.2 Описание взаимодействующих модулей	13
2.3 Структурная схема устройства	13
З ОБОСНОВАНИЕ ВЫБОРА УЗЛОВ, ЭЛЕМЕНТОВ ФУНКЦИОНАЛЬНОЙ СХЕМЫ МИКРОПРОЦЕССОРНОГО УСТРОЙСТВА ПАРАМЕТРОВ ВЕЛОСИПЕДА	14
3.1 Обоснование выбора микроконтроллера	14
3.2 Обоснование выбора сенсора температуры	15
3.3 Обоснование выбора сенсора скорости	15
3.4 Обоснование выбора сенсора GPS	16
3.5 Обоснование выбора часов реального времени	
3.6 Обоснование выбора устройства воспроизведения звука	17
3.7 Обоснование выбора устройства отображения информации	17
3.8 Источник питания	18
3.9 Разработка функциональной схемы	19
4 РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ ЭЛЕКТРИЧЕСКОЙ СХЕМЫ МИКРОПРОЦЕССОРНОГО УСТРОЙСТВА ПАРАМЕТРОВ ВЕЛОСИПЕДА	20
4.1 Расчет нагрузки светодиодов	20
4.2 Описание подключения модулей проектируемого устройства	
5 РАЗРАБОТКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ	
5.1 Требования к программе	22
5.2 Схема программы	
5.3 Программа	
5.4 Описание исходного кода программы	
ЗАКЛЮЧЕНИЕ	
ЛИТЕРАТУРА	
ПРИЛОЖЕНИЕ А	
ПРИЛОЖЕНИЕ Б	

ПРИЛОЖЕНИЕ В	31
ПРИЛОЖЕНИЕ Г	32
ПРИЛОЖЕНИЕ Д	
ПРИЛОЖЕНИЕ Е	
ПРИЛОЖЕНИЕ Ж	
THE POTOMETIME AT	

ВВЕДЕНИЕ

Велосипеды популярны по нескольким причинам: удобное и экологически чистое средство передвижения, помогают поддерживать здоровье и физическую форму, велосипеды доступны по цене и не требуют больших затрат на техническое обслуживание. Кроме того, велосипеды могут использоваться как для повседневных поездок, так и для активного отдыха и туризма.

В связи с этим целью проекта является создание устройства, которое бы контролировало параметры велосипеда и обеспечивало комфорт и безопасность использования данного транспортного средства. Для достижения цели устройство должно выполнять следующие задачи:

- измерять скорость движения и сигнализировать о превышении;
- измерять температуру воздуха;
- определять направление движения;
- определять текущее время и время поездки;
- предоставлять пользователю всю информацию в понятном для него виде;
 - иметь органы управления.

Для успешного выполнения перечисленных задач в устройстве должны присутствовать следующие модули:

- модуль измерения скорости;
- модуль оповещения;
- модуль измерения температуры;
- модуль определения местоположения;
- модуль часов реального времени;
- модуль отображения информации;
- модуль управления.

1 ОБЗОР ЛИТЕРАТУРЫ

1.1 Требования к проектируемому устройству

Микропроцессорное устройство контроля параметров велосипеда должно определять температуру воздуха, текущее время и время поездки, направление движения и скорость, а также сигнализировать о превышении скоростного режима. Для выполнения поставленных задач требуются:

- 1. Микроконтроллер;
- 2. Сенсор температуры;
- 3. Сенсор скорости;
- 4. Ceнcop GPS;
- 5. Часы реального времени;
- 6. Устройство воспроизведения звука;
- 7. Устройство отображения информации.

1.2 Микроконтроллеры

Микроконтроллеры используются для выполнения задач, связанных с сбором, обработкой и передачей данных, управлением механизмами и электронными устройствами, а также для реализации различных функций, например, контроля температуры, освещения, скорости вращения колеса и других. Они являются незаменимыми элементами в современной электронике и широко используются во многих отраслях промышленности и быта.

На рынке существует большое количество различных микроконтроллеров. Для рассмотрения был выбран ATmega328 и наиболее популярные аналоги других производителей – MK20DX256 и ESP8266.

АТтеда328 — это один из наиболее популярных микроконтроллеров из семейства AVR, который обладает высокой производительностью и низким энергопотреблением. Он является 8-битным микроконтроллером с 32 килобайтами встроенной флэш-памяти для хранения программ и 2 килобайтами оперативной памяти. АТтеда328 имеет 23 программно-настраиваемых входа/выхода, которые можно использовать для подключения различных периферийных устройств. Кроме того, он имеет встроенные модули USART, SPI и I2C, что обеспечивает возможность подключения к различным интерфейсам связи.

МК20DX256VLK10 — это микроконтроллер из семейства Kinetis K20, разработанный компанией NXP Semiconductors. Он является 32-битным микроконтроллером с ядром ARM Cortex-M4, который обеспечивает высокую производительность и эффективное управление энергопотреблением. МК20DX256VLK10 имеет 256 килобайт встроенной флэш-памяти для хранения программ и 64 килобайт оперативной памяти. Он также имеет 85 программно-настраиваемых входов/выходов, которые можно использовать для подключения различных периферийных устройств.

MK20DX256VLK10 также имеет встроенные модули USB, Ethernet, CAN и UART, что обеспечивает возможность подключения к различным интерфейсам связи. Кроме того, он имеет встроенный аналого-цифровой преобразователь, который позволяет измерять аналоговые сигналы с разрешением до 16 бит.

ESP8266 – это микроконтроллер, который объединяет в себе процессор, Wi-Fi модуль и память. Он был разработан компанией Espressif Systems и стал очень популярным благодаря своей низкой стоимости, малому размеру и возможности подключения к Интернету. ESP8266 имеет множество различных моделей, которые отличаются по количеству входов/выходов, объему памяти и другим параметрам. Наиболее распространенной является модель ESP8266-12E, которая имеет 11 GPIO входов/выходов, 4 МБ флэшпамяти и поддерживает Wi-Fi 802.11. С помощью ESP8266 можно создавать различные устройства, например, умный дом, систему мониторинга и управления, датчики и другие.

Ниже приведена таблица 1.1 с параметрами микроконтроллеров. Для составления таблицы использовались источники [1, 2, 3].

Таблица 1.1 – Параметры микроконтроллеров

Параметр	ATmega328	MK20DX256	ESP8266
Архитектура	AVR	ARM Cortex-M4	RISC
Количество			
регистров общего	32	16	16
назначения			
Тактовая частота	16 МГц	24 МГц	24 МГц
Разрядность	8 битов	32 бита	32 бита
Flash-память	32 КБ	256 КБ	4 МБ
SRAM-память	2 КБ	64 КБ	80 КБ
EEPROM-память	1 КБ	2 КБ	-
Количество			
циклов перезаписи	10 тысяч	10 тысяч	10 тысяч
Flash-памяти			
Количество			
циклов перезаписи	100 тысяч	100 тысяч	-
EEPROM -памяти			
Таймер/счетчик 8	2		
битный	<u> </u>	-	-
Таймер/счетчик 16	1	1	1
битный	1	1	1
Счетчик реального	1	1	1
времени	1	1	1
Количество	6	8	4
каналов ШИМ			'1
Количество АЦП	8	2	1

Продолжение таблицы 1.1

_ 1 73	,		
Разрядность АЦП	10	16	6
Количество ЦАП	-	1	-
Разрядность ЦАП	-	12	-
Поддержка USART	Да	Да	Да
Поддержка SPI	Да	Да	Да
Поддержка I2C	Да	Да	Да
Поддержка Wi-Fi 802.11	Нет	Нет	Да
Входное напряжение	1,8-5,5 B	1,71-3,6 B	2,5-3,6 B
Максимальный потребляемый ток	200 мА	100 мА	80 мА
Рабочий диапазон температур	-40 °C 105 °C	-40 °C 105 °C	-40 °C 125 °C

1.3 Сенсор температуры

Устройство должно определять температуру, для этого необходимо оснастить его сенсором температуры. Для рассмотрения возьмем следующие сенсоры АНТ21, HM2500 и ОВЕН ПВТ100.

АНТ21 – является новым поколением датчиков температуры, устанавливает новый стандарт с точки зрения размера и производительности. Датчик выдает калиброванные цифровые сигналы в стандарте I2C. АНТ21 оснащен недавно разработанным специализированным чипом ASIC. И его характеристики были значительно улучшены или даже превысили уровень надежности датчиков предыдущего поколения. Каждый датчик калибруется и тестируется, а номер партии продукта напечатан на поверхности продукта. Благодаря усовершенствованиям и миниатюризации датчика он становится более экономичным, и в конечном итоге все устройства получат преимущества от новейших энергосберегающих режимов работы.

HTM2500 представляет собой специальный преобразователь температуры, предназначенный для ОЕМ-приложений, где необходимы надежные и точные измерения.

ОВЕН ПВТ100 состоит из электронного блока и измерительного зонда. Электронный блок прибора выполнен в пластмассовом влагозащищенном корпусе. Зонд состоит из защитного цилиндрического корпуса и чувствительного элемента (высокостабильного однокристального цифрового сенсора температуры). В зависимости от исполнения прибора зонд крепится к электронному блоку напрямую или с помощью удлинительного кабеля.

Прибор масштабирует измеренные значения влажности и температуры, преобразовывает их в унифицированный аналоговый сигнал 4 – 20 мА и передает по интерфейсу RS-485.

Для рассмотрения параметров сенсоров температуры представлена таблица 1.2. При составлении таблицы данные были взяты из источников [4, 5, 6].

Таблица 1.2 – Параметры сенсоров температуры

		1 21	
Параметр	AHT21	HM2500	ОВЕН ПВТ100
Тип интерфейса	I ² C	I ² C	RS-485
Входное	3,3-5 B	2-5,5 B	24B
напряжение	3,3-3 D	2-3,3 D	240
Максимальный			
потребляемый	1,5 мА	2,1 мА	20 мА
ток			
Диапазон			
измерения	-40 °C 85 °C	-40 °C 85 °C °	-40 °C 80 °C °
температуры			
Точность			
измерения	\pm 0,3 °C	± 0,3 °C	± 0,5 °C
температуры			
Размеры	$3 \text{ mm} \times 3 \text{ mm}$	$3 \text{ MM} \times 3 \text{ MM}$	$102 \text{ mm} \times 80 \text{ mm}$

1.4 Сенсоры скорости

Устройство должно предоставлять пользователю текущую скорость движения. Для ее измерения нужен сенсор скорости. Для рассмотрения возьмем сенсоры HC-020K, KY-021, TCRT5000L.

HC-020K — это инфракрасный сенсор скорости, который может использоваться для измерения скорости вращения объекта. Он состоит из инфракрасного передатчика и приемника, которые располагаются на противоположных сторонах вращающегося объекта. Когда объект вращается, передатчик посылает инфракрасный сигнал на приемник, который затем обрабатывается микроконтроллером для определения скорости вращения объекта.

KY-021 — модуль на основе геркона, является датчиком магнитного поля. При попадании в магнитное поле геркона, расположенного в стеклянной колбе, замыкает цепь. Таким образом, зная время прохождения 1 оборота колеса и расстояние, пройденное точкой на колесе за оборот, можно рассчитать скорость движения.

TCRT5000L — это оптический датчик, который может использоваться для измерения скорости движущихся объектов. Он состоит из инфракрасного излучателя и фототранзистора, которые расположены напротив друг друга. При прохождении объекта между ними, световой поток прерывается, что приводит к изменению выходного сигнала датчика.

Параметры сенсоров скорости представлены в таблице 1.3. При составлении таблицы использовались источники [7, 8, 9].

Таблица 1.3 – Параметры сенсоров скорости

Параметр	HC-020K	KY-021	TCRT5000L
Входное напряжение	4,5-5 B	3,3-5 B	5 B
Максимальный потребляемый ток	20 мА	0,5 мА	25 мА
Частота измерений	100 КГц	1 Гц	38 КГц
Тип интерфейса	цифровой	цифровой	цифровой
Рабочая температура	0 °C 85 °C	-40 °C 90 °C	-25 °C 85 °C
Технология	инфракрасный	геркон	оптический
Размеры	$4 \text{ MM} \times 4 \text{ MM}$	28 mm × 23 mm	$10.2 \text{ mm} \times 5.8 \text{ mm}$

1.5 Сенсоры GPS

Так как одной из задач является определение направления движения, то для этой задачи необходим сенсор GPS. Сенсоры GPS очень популярны, в следствии на рынке присутствует много аналогов. Для рассмотрения взяты GY-NEO6MV2, Beitian BN-220 и VK2828U7G5LF.

GY-NEO6MV2 — это модуль GPS приемника, основанный на NEO-6M чипсете. Он позволяет получать данные о географическом положении, скорости, времени и других параметрах с использованием сигнала GPS. Модуль NEO6MV2 оснащен компактной антенной и интерфейсами для подключения к микроконтроллерам или другим электронным устройствам. Он широко используется в проектах, связанных с геолокацией, навигацией, картографией и системами отслеживания.

Beitian BN-220 — это GPS-модуль с высокой точностью и быстрой скоростью обновления, который может использоваться для навигации и отслеживания движения объектов. Он имеет компактный размер и легко устанавливается на объект.

VK2828U7G5LF — это компактный модуль GPS/GLONASS приемника, предоставляющий информацию о географическом положении и времени на основе сигналов GPS и ГЛОНАСС. Модуль VK2828U7G5LF обладает высокой чувствительностью приема, быстрым временем первого фиксирования и низким энергопотреблением. Он имеет компактный размер и интерфейсы для подключения к другим устройствам, что делает его удобным для встроенных систем, автомобильной навигации, дронов и других проектов, требующих надежного определения местоположения

Параметры сенсоров GPS представлены в таблице 1.4. Для заполнения таблицы использовались источники [10, 11, 12].

Таблица 1.4 – Параметры GPS сенсоров

Параметр	NEO6MV2	Beitian BN-220	VK2828U7G5LF
Входное	3-5 B	3-5,5 B	3-5 B
напряжение	3-3 D	3-3,3 D	J-J D
Максимальный			
потребляемый	45 мА	50 мА	35 мА
ток			
Максимальная			
частота	5 Гц	18 Гц	10 Гц
обновления			
Рабочая	-20 °C 85 °C	-40 °C 85 °C	-40 °C 85 °C
температура	-20 C 83 C	-40 C 83 C	-40 C 65 C
Точность			
позиционирован	До 2,5 метров	До 2,5 метров	До 1,5 метра
ВИ			
Тип интерфейса	UART	UART	UART
Светодиодный			
индикатор	Есть	Есть	Есть
сигнала			
EEPROM	Есть	Отсутствует	Отсутствует
Размеры	12 mm × 12 mm	22 mm × 20 mm	25 mm × 25 mm

1.6 Часы реального времени

Для определения текущего времени и времени поездки необходимы часы реального времени. Наиболее распространёнными моделями часов реального времени являются DS1302, DS1307, DS3231. Их параметры представлены в таблице 1.5. Для составления таблицы использовался источник [13].

Часы реального времени — это устройство, которое отображает текущее время в соответствии с глобальным стандартом времени. Они используются во многих приборах и системах, таких как компьютеры, автомобили, телефоны и другие устройства, которые требуют точной синхронизации времени.

Таблица 1.5 – Параметры часов реального времени

Параметр	DS1302	DS1307	DS3231
Рабочее	2-5 B	5 B	3,3-5 B
напряжение	2 3 D	3 B	3,3 3 D
Максимальный			
потребляемый	300 мА	1,5 мА	0,3 мА
ток			
Количество	5	1	1
выводов	3	4	4

Продолжение таблицы 1.5

Максимальная	32768 КГц	100 КГц	32768 КГц
частота	32700 КГ Ц	100 К1 Ц	32700 КГЦ
Память	32 байта	56 байт	4000 байт
Точность	5 сек/сутки	2,5 сек/сутки	2-3,5 сек/сутки
Часовые режимы	12, 24	12, 24	12, 24
Поддерживаемые	IOC CDI	IOC	I2C
интерфейсы	I2C, SPI	I2C	12C

1.7 Устройство воспроизведения звука

В качестве устройства воспроизведения, оповещающего о превышении скорости, удобно использовать пьезодинамик. Для сравнения были выбраны активный и пассивный пьезодинамики. В таблице 1.6 приведены сравнительные характеристики данных моделей датчиков. Информация взята из источников [14] и [15].

Пассивный пьезодинамик – это динамик, который не имеет встроенного усилителя. Он требует подключения к внешнему усилителю для работы.

Активный пьезодинамик — это динамик, который имеет встроенный усилитель. Он может быть подключен непосредственно к источнику звука, такому как компьютер или мобильный телефон, без необходимости использования внешнего усилителя.

Таблица 1.6 – Параметры пьезодинамиков

Параметр		Активный	Пассивный	
Парамстр		пьезодинамик	пьезодинамик	
Максимальный		30 мА	20 мА	
потребляемый тон	ζ	30 MA	ZU MA	
Напряжение пита	кин	3.3 - 5 B	3 – 12 B	
Рабочая температ	ypa	-20 70 °C	-20 70 °C	
Частота излучения	я	2,5 кГц	2 кГц	
Тип интерфейса		цифровой	цифровой	

1.8 Устройство отображения информации

Для отображения информации для пользователя можно использовать жидкокристаллический или светодиодный дисплеи. Наиболее распространёнными моделями дисплея являются LCD1602, LCD2004 и TM1637. Их параметры представлены в таблице 1.7. В качестве исходных данных использовались источники [16, 17, 18].

LCD1602 — это модуль жидкокристаллического дисплея, который состоит из 2 строк по 16 символов в каждой. Он обеспечивает возможность отображения текстовой информации с помощью жидких кристаллов и

подсветки заднего фона. Используется для вывода текстовых сообщений и данных в малых электронных устройствах, таких как адаптеры интернета вещей, микроконтроллерные системы и прочее.

LCD2004 — это модуль жидкокристаллического дисплея с расширенными характеристиками. Он состоит из 4 строк по 20 символов в каждой, что позволяет отобразить большее количество информации. Благодаря своим возможностям по отображению текста, символов и графики, LCD2004 широко используется в проектах, требующих более объемного вывода данных, например, в промышленном оборудовании, системах мониторинга и встроенных системах.

TM1637 — это драйвер светодиодных индикаторов семисегментного отображения. Он используется для управления семисегментными индикаторами, такими как часы, термометры, вольтметры и другие устройства, где требуется отображение чисел и символов.

Драйвер ТМ1637 имеет встроенный контроллер, который позволяет управлять отображением на индикаторе. Он может отображать числа, буквы и символы, а также имеет возможность настройки яркости светодиодов.

Таблица 1.7 – Параметры жидкокристаллических и светодиодных дисплеев

Параметр	LCD2004	LCD1602	TM1637
Входное напряжение	3-13 B	5 B	3,3-5,5 B
Максимальный потребляемый ток	180 мА	150 мА	80 мА
Рабочая температура	0 50 °C	0 60 °C	-40 80 °C
Количество выводов	4	4	4
Количество символов для отображения	80	32	4
Количество градаций яркости	1	1	8
Тип интерфейса	I2C	I2C	I2C

2 РАЗРАБОТКА СТРУКТУРЫ МИКРОПРОЦЕССОРНОГО УСТРОЙСТВА ПАРАМЕТРОВ ВЕЛОСИПЕДА

2.1 Компоненты проектируемого устройства

Компоненты проектируемого устройства выбираются исходя из задач, определенных в требованиях к проектируемому устройству (пункт 1.1). Проанализировав поставленные задачи, были определены следующие компоненты устройства:

- микроконтроллер (ключевой компонент всей схемы, выдает управляющие сигналы остальным компонентам устройства и выполняет обработку поступающей информации);
 - блок питания (источник питания схемы);
 - модуль управления (ИК модуль для управления устройством);
 - сенсор скорости (определяет скорость движения);
 - сенсор температуры (считывает информацию о температуры воздуха);
 - сенсор GPS (определяет направление движения);
 - часы реального времени (определяют текущее время);
 - модуль индикации (светодиоды);
- модуль отображения информации (LCD-дисплей, на котором выводится необходимая информация в удобном для пользователя виде);
- оповещающее устройство (пьезодинамик, оповещающий о превышении скоростного режима).

2.2 Описание взаимодействующих модулей

При включении устройства, модуль индикации подает световой сигнал, чтобы передать пользователю информацию, о том, что оно находится в рабочем состоянии.

Далее устройство входит в состояние последовательного считывания информации со всех сенсоров, затем считанные данные передаются на контроллер, который их анализирует. Контроллер сравнивает допустимые и полученные значения с сенсоров и, при выходе за пределы допустимых значений срабатывает исполнительное устройство (светодиод и пьезодинамик). Через модуль управления пользователь может установить параметры контроля скорости или вовсе отключить контроль скорости.

Контроллер передает полученную информацию на модуль отображения информации, который, в свою очередь, предоставляет её в удобном для пользователя виде.

Блок питания необходим для питания всех элементов устройства.

2.3 Структурная схема устройства

Структурная схема устройства представлена в приложении А.

З ОБОСНОВАНИЕ ВЫБОРА УЗЛОВ, ЭЛЕМЕНТОВ ФУНКЦИОНАЛЬНОЙ СХЕМЫ МИКРОПРОЦЕССОРНОГО УСТРОЙСТВА ПАРАМЕТРОВ ВЕЛОСИПЕДА

3.1 Обоснование выбора микроконтроллера

Основой проектируемого устройства является микроконтроллер, поэтому важной задачей является выбор совместимого с периферией, а также достаточного по вычислительной мощности микроконтроллера.

В пункте 1.2 были рассмотрены микроконтроллер ATmega328 и наиболее популярные аналоги других производителей – MK20DX256 и ESP8266.

Микроконтроллер ATmega328 является одним из самых распространенных и популярных микроконтроллеров для проектов Arduino. Он имеет достаточно высокую производительность, низкое энергопотребление и доступную цену. Кроме того, он имеет достаточное количество входов/выходов для подключения различных устройств и сенсоров, а также поддерживает различные интерфейсы связи, такие как UART, SPI и I2C. Все это делает ATmega328 идеальным выбором для проектируемого устройства.

Рисунок 3.1 – Изображение платы Arduino Uno

При выборе платы важным аспектом являлось наличие на рынке совместимой периферии, а также обильное наличие библиотек, которые облегчают работу с периферией. Не мало важным фактором играет цена платы. Таким образом была выбрана плата Arduino Uno. Изображение платы представлено на рисунке 3.1, а параметры данной платы представлены в таблице 3.1 (использовался источник [19]).

Таблица 3.1 – Параметры платы Arduino UNO

Параметр	Arduino Uno
Микроконтроллер	ATmega328
Входное напряжение	7-12 B

Продолжение таблицы 3.1

Максимальный ток потребления	410 mA
Цифровые входы	14
Аналоговые входы	6
ШИМ	6
Постоянный ток через вход/выход	40 мА
Флеш-память	32 КБ (ATmega328)
ОЗУ	2 КБ (ATmega328)
EEPROM	1 КБ (ATmega328)
Тактовая частота	16 МГц
Поддерживаемые интерфейсы	SPI, I2C, UART, USB

3.2 Обоснование выбора сенсора температуры

Для выбора сенсора температуры воспользуемся пунктом 1.3. Для рассмотрения были представлены сенсоры АНТ21, НМ2500 и ОВЕН ПВТ100. Исходя из таблицы 1.2 с параметрами сенсоров можно сделать вывод, что сенсор АНТ21 имеет лучшие характеристики. Также стоит добавить, что АНТ21 популярен и доступен на рынке, следовательно, выбор пал именно на него. Изображение АНТ21 представлено на рисунке 3.2.

Рисунок 3.2 – Изображение сенсора АТН21

3.3 Обоснование выбора сенсора скорости

Так как устройство должно предоставлять пользователю текущую скорость движения велосипеда, нужен сенсор скорости. Для выбора сенсора скорости обратимся к пункту 1.4. На рассмотрение были взяты сенсоры НС-020K, KY-021, TCRT5000L, их параметры представлены в таблице 1.3.

Сенсор КY-021 отстает по частоте измерений, но выигрывает по температурному диапазону и потребляемому току. Но для выбора сенсора стоит отметить и конструктивные особенности велосипеда. Наиболее удобным в использовании будет сенсор КY-021 на основе геркона. Также сенсор KY-021 является популярным на рынке по доступным ценам. В результате именно сенсор KY-021 был выбран для проектируемого устройства. Изображение KY-021 представлено на рисунке 3.3.

Рисунок 3.3 – Изображение сенсора КҮ-021

3.4 Обоснование выбора сенсора GPS

В качестве сенсора GPS была выбрана модель NEO6MV2. Рассмотрение данного сенсора и его аналогов находится в пункте 1.5, а их параметры в таблице 1.4.

NEO6MV2 имеет схожие параметры с аналогами, однако более популярен на рынке и имеет меньшую стоимость. Сенсор NEO6MV2 входит в состав модуля GPS приемника GY-NEO6MV2.

Модуль GY-NEO6MV2 на основе микросхемы NEO-6M оснащен активной керамической антенной. Для индикации сигнала на модуле GY-NEO6MV2 предусмотрен светодиод. После подачи питания, GPS модуль подает на выход текущие координаты с частотой 5 Гц. Выбранный модуль имеет малые размеры по сравнению с аналогами, что также сказывается на результате выбора. Изображение модуля представлено на рисунке 3.4.

Рисунок 3.4 – Изображение модуля GPS GY-NEO6MV2

3.5 Обоснование выбора часов реального времени

В пункте 1.6 были рассмотрены аналоги модулей часов реального времени DS1302, DS1307, DS3231, их параметры представлены в таблице 1.5.

Часы реального времени DS1302 имеет схожие параметры со своими аналогами, кроме того, что уступает в потребляемом токе. Однако данные часы реального времени являются низкими по цене и доступны на рынке. Модуль часов реального времени DS1302 также имеет простой способ подключения к плате Arduino Uno (3 цифровых выхода). Также явным

преимуществом будет, что DS1302 имеет двойное питание — основное (от платы Arduino Uno) и запасное от батареи. Исходя из вышеперечисленных факторов, выбор пал на DS1302, их изображение представлено на рисунке 3.5.

Рисунок 3.5 – Изображение часов реального времени DS1302

3.6 Обоснование выбора устройства воспроизведения звука

В пункте 1.7 представлено описание активного и пассивного пьезодинамиков, а их параметры представлены в таблице 1.6.

В качестве устройства воспроизведения звук был выбран активный пьезодинамик YL-44. Изображение пьезодинамика YL-44 представлено на рисунке 3.6.

Рисунок 3.6 – Изображение пьезодинамика YL-44

Пассивный пьезодинамик не имеет встроенного усилителя. Он требует подключения к внешнему усилителю для работы. Активный пьезодинамик уже имеет встроенный усилитель. Он может быть подключен непосредственно к источнику звука без необходимости использования внешнего усилителя. Активные пьезодинамики обычно более дорогие и тяжелее, чем пассивные, но они более удобны в использовании и могут предложить более высокое качество звука.

3.7 Обоснование выбора устройства отображения информации

В пункте 1.7 были представлены аналоги устройств отображения информации, а также в таблице 1.7 описаны их параметры.

В ходе изучения параметров, было принято решение использовать жидкокристаллический дисплей LCD2004 для проектируемого устройства (изображение LCD2004 представлено на рисунке 3.7).

Преимущества LCD2004:

- низкая цена;
- четкое отображение символов;
- высокая работоспособность при любых рабочих температурах;
- высокая и регулируемая контрастность.

Рисунок 3.7 – Изображение жидкокристаллического дисплея LCD2004

3.8 Источник питания

У проектируемого устройства будет общий источник питания. Для расчёта необходимой мощности источника требуется провести анализ по отдельным модулям схемы.

Электрические характеристики каждого модуля проектируемого устройства представлены в таблице 3.1.

Таблица 3.1 – Электрические характеристики

Модуль	$oldsymbol{U}_{\scriptscriptstyle \Pi ext{UT}}$	I _{макс}	$P_{\scriptscriptstyle{\Pi} ext{OT}}$
Плата Arduino UNO	7,2 B	0,41 A	2,952 Вт
Сенсор АНТ21	5 B	0,0015 A	0,0075 Вт
Сенсор КҮ-021	5 B	0,0005 A	0,0025 Вт
Сенсор NEO-6M	5 B	0,045 A	0,225 Bt
Часы реального времени DS1302	5 B	0,3 A	1,5 Вт
Активный пьезодинамик	5 B	0,03 A	0,15 Вт
Дисплей LCD2004	5 B	0,18 A	0,9 Вт
Светодиоды (2 штуки)	5 B	0,04 A	0,2 Вт

TIP OF COUNTY TWO TIMES S.T.	
Суммарная мощность	6,087 мВт

В качестве выходного напряжения источника питания выбирается напряжение 7,2 В.

Полученная мощность $P_{\text{пот}} = 6,087$ Вт. После получения мощности потребления следует взять запас по мощности источника питания приблизительно 20%. Таким образом мощность источника питания должна быть равной $P_{\text{пит}} = 7,304$ Вт.

Теперь нужно посчитать максимальный ток источника питания по формуле (3.1).

$$I_{\text{ист}} = P_{\text{пит}}/U_{\text{пит}} = 7,304 \text{ Bt}/7,2 \text{ B} = 1,02 \text{ A}$$
 (3.1)

Далее делаем запас по току на 20%, тогда $\boldsymbol{I}_{\text{ист}} = \mathbf{1}, \mathbf{22}$ А.

3.9 Разработка функциональной схемы

На основании выбранных платы, сенсоров, часов реального времени и устройства отображения информации можно спроектировать функциональную схему устройства. Функциональная схема проектируемого устройства приведена в приложении Б.

4 РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ ЭЛЕКТРИЧЕСКОЙ СХЕМЫ МИКРОПРОЦЕССОРНОГО УСТРОЙСТВА ПАРАМЕТРОВ ВЕЛОСИПЕДА

4.1 Расчет нагрузки светодиодов

Для индикации работы проектируемого устройства используются 2 светодиода. Так как общее питание будет составлять 5 В, а на светодиоде падает напряжение 2 В, чтобы светодиод не перегорел, необходимо рассчитать сопротивление резистора, подключаемого последовательно к светодиоду.

Формула для расчета сопротивления резистора

$$\mathbf{R} = (\mathbf{U}_{\text{пит}} - \mathbf{U}_{\text{л}}) / \mathbf{I}_{\text{пр}} \tag{4.1}$$

Напряжение питания $\boldsymbol{U}_{\text{пит}}=\mathbf{5}$ В, а падение напряжения на диоде $\boldsymbol{U}_{\text{д}}=\mathbf{2}$ В. Также известно, что прямой ток диода $\boldsymbol{I}_{\text{пр}}=\mathbf{20}$ мА.

Проведя расчет по формуле 4.1, сопротивление резистора получилось 150 Ом. Так как не нашлось резисторов такого сопротивления, следует использовать резисторы с большим номиналом. Для проектируемого устройства будут использоваться резисторы сопротивлением 160 Ом.

4.2 Описание подключения модулей проектируемого устройства

В пункте 3.1 была выбрана плата Arduino Uno, в таблице 3.1 представлены параметры этой платы. Все выбранные модули в пунктах 3.2-3.7 будут подключаться к выбранной плате Arduino Uno.

К цифровым входам D0 (RX) и D1 (TX) подключается модуль GPS GY-NEO6MV2 с которого считываются координаты.

К цифровому входу D2 подключается ИК приемник HX1838 для управления устройством.

К цифровому входу D3 подключается сенсор скорости KY-021 на основе геркона для измерения скорости движения.

К цифровому выходу D4 подключается пьезодинамик YL-44 для оповещения превышения скорости.

К цифровым входам D8 (SCLK), D10 (CE) и D12 (IO) подключаются часы реального времени DS1302 для получения текущего времени.

К цифровым выходам D11 и D13 через резисторы сопротивлением 160 Ом подключаются светодиоды для индикации работы устройства.

Ко входам SDA и SCL подключается сенсор температуры ATH21 для измерения температуры окружающей среды.

К аналоговым входам A4 (SDA) и A5 (SCL) подключается жидкокристаллический дисплей LCD2004 для отображения информации.

Питание 7.2 В подается на вход Power Jack платы Arduino Uno. Для остальных модулей подается питание 5 В. Такое напряжение получается

благодаря линейному стабилизатору ASM1117, который на выходе стабилизирует напряжение 5 В.

Для обозначения контактов на принципиальной схеме платы Arduino Uno составлена таблица 4.1.

Таблица 4.1 – Соответствие контактов платы обозначениям на схеме

таолица 4.1 – Соответстви	IO KOMTOKTOD INICIDI OCOSIL	Обозначение контакта
Обозначение контакта	Номер разъема	на принципиальной
на плате Arduino Uno		схеме
Power Jack	1	100
GND	2	200
GND	2	201
A0		300
A1		301
A2	3	302
A3	3	303
A4 (SDA)		304
A5 (SCL)		305
SDA	4	400
SCL	4	401
D0		500
D1		501
D2		502
D3		503
D4		504
D5	5	505
D6		506
D7		507
D8		508
D9		509
D10		510
D11		511
D12		512
D13		513

Принципиальная схема проектируемого устройства приведена в приложении B, также в приложении Γ представлен перечень элементов.

5 РАЗРАБОТКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

5.1 Требования к программе

Программа, управляющая микропроцессорным устройством контроля параметров велосипеда, должна реализовывать следующий функционал:

- считывание данных с датчиков в заданном интервале;
- обработка данных с датчиков;
- включение светодиодной и звуковой индикации при отклонении допустимых значений;
 - обработка сигналов модуля управления;
- изменение требуемых параметров по соответствующем сигналам управления;
 - сохранение требуемых данных в память;
 - вывод информации на дисплей.

Исполняемый файл программы не должен превышать объём флешпамяти микроконтроллера, равной 32 КБ, и не должен использовать объём оперативной памяти больший, чем 2 КБ.

5.2 Схема программы

Для реализации программной составляющей устройства следует разработать схему программы. Схема программы представлена в приложении Д.

Описание блоков схемы:

- 1 Начало.
- 2 Инициализация переменных и констант, используемых программой.
- 3 Инициализация входных, промежуточных и выходных значений.
- 4 Условный оператор: количество стартовых сигналов меньше 3. Если да, переход на шаг 5, иначе переход на шаг 8.
 - 5 Продержать задержку (для визуальной видимости).
 - 6 Включение индикатора работы устройства (диода).
 - 7 Продержать задержку (для визуальной видимости).
 - 8 Выключение индикатора работы устройства (диода).
- 9 Чтение необходимых данных из памяти (день и месяц последнего запуска, а также расстояние за все время и за день последнего запуска).
- 10 Условный оператор: данные, прочитанные из памяти, не совпадают с текущими. Если да, переход на шаг 11, иначе переход на шаг 12.
- 11 Перезапись данных в память (день и месяц текущего запуска, а также расстояние за день текущего запуска).
- 12 Условный оператор: нажата кнопка управления. Если да, переход на шаг 13, иначе переход на шаг 14.
- 13 Обработка нажатых кнопок управления (каждой кнопке могут быть выбраны соответствующие действия).

- 14 Условный оператор: было ли срабатывание датчика скорости. Если да, переход на шаг 15, иначе переход на шаг 16.
 - 15 Вычисление скорости и расстояний.
- 16 Условный оператор: прошла секунда с момента записи в память. Если да, то переход на шаг 17, иначе переход на шаг 18.
- 17 Перезапись данных в память (расстояние за все время и за текущий день).
- 18 Условный оператор: порт gps доступен. Если да, переход на шаг 19, иначе переход на шаг 20.
 - 19 Декодирование данных с датчика gps.
- 20 Условный оператор: 2 секунды не было срабатывания датчика скорости. Если да, то переход на шаг 21, иначе переход на шаг 22.
 - 21 Обнуление скорости.
- 22 Условный: прошло 4 секунды с момента считывания с датчика температуры. Если да, то переход на шаг 23, иначе переход на шаг 24.
 - 23 Снятие значений с датчика температуры;
- 24 Условный оператор: скорость превышена. Если да, то переход на шаг 27, иначе переход на шаг 25.
- 25 Условный оператор: индикация превышения скорости включена. Если да, переход на шаг 26, иначе переход на шаг 28.
 - 26 Выключение звуковой и светодиодной индикации
 - 27 Включение звуковой и светодиодной индикации.
- 28 Условный оператор: флаг вывода информации изменен. Если да, то переход на шаг 29, иначе переход на шаг 30.
 - 29 Очистка экрана, запоминание нового значения флага вывода.
 - 30 Вывод на экран данных, соответствующих флагу вывода.

5.3 Программа

Для написания программы используется интегрированная среда разработки Arduino. Данная среда предоставляет удобные средства разработки. При разработке программы используются следующие библиотеки:

- NecDecoder.h (для обработки сигналов с ИК приемника);
- Adafruit_AHTX0.h (для обработки данных с датчика температуры и влажности);
 - LiquidCrystal_I2C.h (для взаимодействия с LCD дисплеем);
 - TinyGPS++.h (для обработки данных с датчика GPS);
 - SoftwareSerial.h (для соединения с датчиком GPS);
 - iarduino_RTC.h (для взаимодействия с часами реального времени);
 - EEPROM.h (для работы с памятью EEPROM).

Данные библиотеки удобны в использовании и, несомненно, облегчают разработку программного обеспечения устройств.

Код программы представлен в приложении Е.

5.4 Описание исходного кода программы

```
Для лучшего понимания работы программы следует пояснить исходный
код:
     строки 6-19: подключение библиотек;
     строки 21-29: константы номеров выводов из платы (блок 1);
     строки 31-32: константы номеров прерываний (блок 1);
     строка 35: константа скорости порта GPS (блок 1);
     строки 37-40: константы количества стартовых сигналов и задержки
между ними (блок 1);
     строки 42-47: константы скорости ограничения, а также ее границ (блок
1);
     строки 49-52: константы размеров колес (блок 1);
     строки 54-57: константы длин окружностей колес (блок 1);
     строки 59-64: константы определенных значений для вывода на экран
необходимых данных (блок 1);
     строка 67: задание окна коллизий (блок 1);
     строки 69-73: константы адресов в ЕЕРКОМ (блок 1);
     строки 75-78: константы необходимых задержек (блок 1);
     строка 81: константа частоты пьезодинамика (блок 1);
     строки 83-85: константы для определения цифр в числе (блок 1);
     строки 87-107: константы номеров кнопок (блок 1);
     строки 109-112: максимальные значения даты (блок 1);
     строки 122-133: параметры изменения даты (блок 1);
     строка 136: флаг выбора параметра изменения даты (блок 1);
     строки 138-143: структура времени (блок 1);
     строки 145-149: объявление переменных для сохранения текущей даты
и времени (блок 2);
     строки 151-171: объявление экземпляров структур необходимых для
работы (блок 2);
     строки 172-211: объявление переменных для использования в программе
(блок 2);
     строки 213-218: функция secondsToTime перевода секунд во время;
     строки 220-397: функция isIsr обработки нажатий кнопок (блок 13);
     строки 399-414: функция speed измерения скорости (блок 15);
     строки 416-430: функция out TempHum вывода температуры и влажности
(блок 30);
     строки 432-461: функция outSpeedDir вывода скорости и направления
(блок 30);
     строки 463-496: функция outSpeedParams вывода параметров скорости
(блок 30);
     строки 499-557: функция outTime вывода времени (блок 30);
     строки 560-584: функция outDistance вывода расстояний (блок 30);
     строки 587-640: функция setup установки начальных значений (блок 2);
```

строка 643: цикл работы программы;

строки 645-656: условный оператор — если прошла 1 секунда с момента записи в память и чтения из порта gps, то перезаписываем информацию в память и проверяем на доступность порт gps (блоки 16 и 17);

строки 652-655: условный оператор — если порт gps доступен, то производим чтение из порта gps (блоки 18 и 19);

строки 659-661: условный оператор – если 2 секунды не было измерения с датчика скорости, то обнулить значение скорости (блоки 20 и 21);

строки 663-669: условный оператор – если прошло 4 секунды с момента считывания данных с датчика температуры, то считываем данные с датчика температуры (блоки 22 и 23);

строки 672-674: условный оператор — если скорость превышена, то открытие реле и запуск звучания (блоки 24 и 27);

строки 675-678: условный оператор — если скорость не превышена, то закрытие реле и остановка звучания (блоки 24, 25 и 26);

строки 681-685: условный оператор – если флаг вывода изменен, то очистить экран и сохранить его значение (блоки 28 и 29);

строки 687-690: условный оператор — если флаг вывода установлен для вывода времени, то вызывается функция outTime (блок 30);

строки 692-695: условный оператор — если флаг вывода для вывода скорости и направления, то вызывается функция outSpeedDir (блок 30);

строки 698-700: условный оператор — если флаг вывода установлен для вывода параметров скорости, то вызывается функция outSpeedParams (блок 30);

строки 703-705: условный оператор — если флаг вывода установлен в вывод расстояния, то вызывается функция outdistance (блок 30);

строки 708-710: условный оператор — если флаг вывода установлен в вывод температуры и влажности, то вызывается функция outTempHum (блок 30).

ЗАКЛЮЧЕНИЕ

Цель курсового проекта была выполнена в полном объеме. В результате было разработано микропроцессорное устройство контроля параметров велосипеда, которое обеспечивает комфорт и безопасность использования данного транспортного средства. Устройство способно выполнять следующие задачи:

- измерять скорость движения и сигнализировать о превышении;
- измерять температуру воздуха;
- определять направление движения;
- определять текущее время и время поездки;
- фиксировать пройденное расстояние;
- предоставлять пользователю всю информацию в понятном для него виде;
 - иметь органы управления.

Также можно перечислить главные плюсы разработанного устройства:

- простота разработки;
- дешевизна;
- длительный срок работы;
- удобство использования.

Проект можно доработать, например, добавить автоматическую систему торможения и разработать улучшенный дизайн. Тем самым устройство сможет зарекомендовать себя на рынке.

ЛИТЕРАТУРА

- [1]. Документация ATmega328/P [Электронный ресурс]. Электронные данные. Режим доступа : https://www.rlocman.ru/i/File/2018/03/11/ATmega328P_1.pdf. Дата доступа : 01.10.2023.
- [2]. Документация MK20DX256VLK10 [Электронный ресурс]. Электронные данные. Режим доступа: https://pdf1.alldatasheet.com/datasheet-pdf/view/458157/FREESCALE/MK20DX256VLK10.html. Дата доступа: 01.10.2023.
- [3]. Документация ESP8266 [Электронный ресурс]. Электронные данные. Режим доступа: https://alexgyver.ru/lessons/esp8266/. Дата доступа: 01.10.2023.
- [4]. Документация АНТ21 [Электронный ресурс]. Электронные данные. Режим доступа : http://www.aosong.com/userfiles/files/media/Data%20Sheet%20AHT21.pdf. Дата доступа : 01.10.2023.
- [5]. Документация HM2500 [Электронный ресурс]. Электронные данные. Режим доступа : https://pdf1.alldatasheet.com/datasheet-pdf/view/240199/HUMIREL/HTM2500_02.html. Дата доступа : 01.10.2023.
- [6]. Документация ОВЕН ПВТ100 [Электронный ресурс]. Электронные данные. Режим доступа : https://owen.ru/uploads/269/kr_oven_pvt100_m01__1-ru-101679-1.1_a4.pdf. Дата доступа : 01.10.2023.
- [7]. Документация HC-020K [Электронный ресурс]. Электронные данные. Режим доступа : https://mrelectrobot.com/wp-content/uploads/2021/09/HC-020K.pdf. Дата доступа : 01.10.2023.
- [8]. Документация KY-021 [Электронный ресурс]. Электронные данные. Режим доступа : https://2shemi.ru/datchiki-magnitnyh-polej/. Дата доступа : 01.10.2023.
- [9]. Документация TCRT5000L [Электронный ресурс]. Электронные данные. Режим доступа : https://www.openhacks.com/uploadsproductos/vk2828u7g5lf.pdf. Дата доступа : 01.10.2023.
- [10]. Документация GY-NEO6MV2 [Электронный ресурс]. Электронные данные. Режим доступа : https://www.epitran.it/ebayDrive/datasheet/NEO6MV2.pdf. Дата доступа : 01.10.2023.
- [11]. Документация BN-220 [Электронный ресурс]. Электронные данные. Режим доступа : https://files.banggood.com/2016/11/BN-220%20GPS+Antenna%20datasheet.pdf. Дата доступа : 01.10.2023.
- [12]. Документация VK2828U7G5LF [Электронный ресурс]. Электронные данные. Режим доступа :

- https://www.openhacks.com/uploadsproductos/vk2828u7g5lf.pdf. Дата доступа: 01.10.2023.
- [13]. Сравнение часов реального времени [Электронный ресурс]. Электронные данные. Режим доступа : arduinomaster.ru. Дата доступа : 01.10.2023.
- [14]. Документация пьезодинамика [Электронный ресурс]. Электронные данные. Режим доступа : https://wiki.iarduino.ru/page/metro-zummer-datasheet/. Дата доступа : 01.10.2023.
- [15]. Форум с информацией о пьезодинамиках [Электронный ресурс]. Электронные данные. Режим доступа : https://flymod.net/item/passive buzzer 5v. Дата доступа : 01.10.2023.
- [16]. Документация LCD2004 [Электронный ресурс]. Электронные данные. Режим доступа : https://www.waveshare.com/datasheet/LCD_en_PDF/LCD2004.pdf. Дата доступа : 01.10.2023.
- [17]. Документация LCD1602 [Электронный ресурс]. Электронные данные. Режим доступа : https://www.waveshare.com/datasheet/LCD_en_PDF/LCD1602.pdf. Дата доступа : 01.10.2023.
- [18]. Документация ТМ1637 [Электронный ресурс]. Электронные данные. Режим доступа : https://m5stack.oss-cn-shenzhen.aliyuncs.com/resource/docs/datasheet/unit/digi_clock/TM1637.pdf. Дата доступа : 01.10.2023.
- [19]. Документация Arduino Uno [Электронный ресурс]. Электронные данные. Режим доступа: https://arduino.ru/Hardware/ArduinoBoardUno. Дата доступа: 01.10.2023.

ПРИЛОЖЕНИЕ А (обязательное) Структурная схема устройства

ПРИЛОЖЕНИЕ Б (обязательное) Функциональная схема устройства

ПРИЛОЖЕНИЕ В (обязательное) Принципиальная схема устройства

ПРИЛОЖЕНИЕ Г (обязательное) Перечень элементов

ПРИЛОЖЕНИЕ Д (обязательное) Схема программы

ПРИЛОЖЕНИЕ Е (обязательное) Код программы

ПРИЛОЖЕНИЕ Ж (обязательное) Ведомость документов