Armature Reaction

- Armature reaction is the mmf produced by the armature current in the field system.
- Due to the effect of armature reaction, voltage induced in the winding is affected.
- □ Armature reaction depends on the power factor of the load that is connected to the alternator

Armature Reaction with UPF Load

 $F-Main\ field, \qquad A-Armature\ reaction\ mmf, \qquad R-Resultant\ field$

Armature Reaction at ZPF lag

 $F-Main\ field, \qquad A-Armature\ reaction\ mmf, \qquad R-Resultant\ field$

Armature Reaction at ZPF Lead

 $F-Main\ field, \qquad A-Armature\ reaction\ mmf, \qquad R-Resultant\ field$

Equivalent Circuit and Phasor Diagram

R – Armature resistance

 X_1 – Leakage reactance

 $X_{\rm a}$ – Reactance due to armature reaction

 $X_{\rm S}$ – Synchronous reactance

V – Terminal voltage

E – Induced voltage

 E_0 – No load voltage

Expression for No-load Voltage (Lagging PF)

$$E_0 = \sqrt{\left(V\cos\phi + IR_a\right)^2 + \left(V\sin\phi + IX_s\right)^2}$$

Percentage regulation =
$$\frac{E_0 - V}{V} \times 100$$

where V is the terminal voltage on load and E_0 is the no load voltage.

Expression for No-load Voltage (Leading PF)

$$E_0 = \sqrt{\left(V\cos\phi + IR_a\right)^2 + \left(IX_s - V\sin\phi\right)^2}$$

$$E_0 = \sqrt{\left(V\cos\phi + IR_a\right)^2 + \left(V\sin\phi - IX_s\right)^2}$$

Voltage regulation under different PF

Example 1.7

A 10 MW three phase alternator has a load of 0.85 pf lag at 11 kV terminal voltage. The armature resistance is 0.1 ohm per phase and the synchronous reactance is 0.66 ohm per phase. Calculate the no-load emf (line to line).

Per phase voltage,
$$V_{\rm ph} = \frac{V_{\rm L}}{\sqrt{3}} = \frac{11000}{\sqrt{3}} = 6351 \text{ volts}$$
 $\phi = \cos^{-1}(0.85) = 31.8^{\circ}$
Line current, $I_{\rm a} = \frac{10 \times 10^6}{\sqrt{3} \times 11000 \times 0.85} = 617.5 \text{ A}$ $\sin \phi = 0.527$

No-load voltage,
$$E_0 = \sqrt{(V\cos\phi + I_a R)^2 + (V\sin\phi + I_a X_s)^2}$$

= $\sqrt{(6351 \times 0.85 + 617.5 \times 0.1)^2 + (6351 \times 0.527 + 617.5 \times 0.66)^2}$
= 6623 volts

Line voltage,
$$V_L = \sqrt{3} V_{ph} = \sqrt{3} \times 6623 = 11471 \text{ volts}$$