Этажи (Floors), фазы (Phases) и сжатая динамика Коллатца:

структура, локальные леммы, границы и единственный открытый сценарий

Горюшкин С. В.

31 августа 2025 г.

Аннотация

Строится этажно-фазовая схема анализа динамики Коллатца. Вводятся Floors F_j , Phases $r=n \mod 6$, сжатая нечётная динамика $f(n)=\frac{3n+1}{2^{v_2(3n+1)}}$, «этажность» H(n). Доказываются локальные леммы: горизонтальная инвариантность по степеням 2, спуск блока на -1 этажа, автомат фаз с корректным учётом чётных фаз, характеристика нечётных предобразов. Приводится явная инверсная формула для элементов фиксированного этажа через двоичный вектор шагов ε с полным доказательством; на её основе — запрет нетривиальных циклов. Доказана оценка покрытия $s_j \leq 6$ и граница длины траектории $L(n) \leq 3\log_2 n + O(1)$. Формализованы: отсутствие локального входа в гипотетическую изолированную компоненту, «барьер высоты» при отрицательном дрейфе, исчерпывающее разделение случаев. Единственный открытый сценарий эквивалентен гипотезе Коллатца: бесконечная орбита f, избегающая 1.

Содержание

1	Введение	2		
2	Обозначения и определения			
3	В Шаблонная инверсная формула и запрет циклов			
4	Автомат Phases: корректные переходы и доказательства 4.1 Нечётные фазы	4 4		
5	Покрытие этажей и оценка s_j			
6	5 Граница длины траектории			
7	Циклы в f и в T			
8	Изолированная компонента и отсутствие локального входа			

9	Барьер высоты и «виртуальность» контрпримера	6
10	Метод: исчерпывающее разделение случаев	7
11	Примеры и таблицы 11.1 Нечётные члены траектории от 27	7 7 7
12	Иллюстрации	7
13	Открытые места и возможные слабые точки	8
14	Заключение	8

1 Введение

Функция Коллатца $T: \mathbb{N}_{>0} \to \mathbb{N}_{>0}$ задаётся

$$T(n) = \begin{cases} n/2, & n \equiv 0 \pmod{2}, \\ 3n+1, & n \equiv 1 \pmod{2}. \end{cases}$$
 (1)

Гипотеза Коллатца утверждает: любая траектория попадает в цикл $\{1,2,4\}$. Мы строим *строгую локальную теорию* и сводим глобальную часть к единственному сценарию — отсутствию бесконечной нечётной орбиты f вне 1.

2 Обозначения и определения

Степенной показатель. $v_2(m)$ — показатель степени 2 в факторизации m.

Определение 2.1 (Floors F_j и этажность H(n)).

$$F_0 = \{2^k : k \ge 0\}, \qquad F_j = \{n > 0 : n \notin \bigcup_{i < j} F_i, T(n) \in F_{j-1}\} (j \ge 1).$$
 (2)

Пояснение. «Этаж» F_j — класс чисел, которые *после одного полного нечётно-* го блока (шаг 3n+1 и все деления на 2 до нечётного) попадают на этаж ниже. Этажность H(n)=j — минимальное число таких блоков до F_0 ; если траектория не достигает F_0 , полагаем $H(n)=\infty$.

Определение 2.2 (Phases r). $r = n \mod 6 \in \{0, 1, 2, 3, 4, 5\}$. Для нечётных фаз $r \in \{1, 3, 5\}$ имеем

$$v_2(3 \cdot 1 + 1) = 2, \quad v_2(3 \cdot 3 + 1) = 1, \quad v_2(3 \cdot 5 + 1) = 4.$$
 (3)

Пояснение. Фаза задаёт *сколько* делений на 2 произойдёт после нечётного шага, прежде чем снова получить нечётное.

Определение 2.3 (Сжатая нечётная динамика). Для нечётных п положим

$$f(n) = \frac{3n+1}{2^{v_2(3n+1)}}. (4)$$

Один шаг f — «нечётный подъём 3n+1 и все последующие деления на 2». **По-яснение.** В прямом движении *нет подъёма этажности*: каждый блок уменьшает этаж на 1; в обратном графе подъём реализуется предобразом (m-1)/3 при $m \equiv 4 \pmod 6$.

Замечание 2.4 (Горизонталь). *Горизонталь* — умножение/деление на 2 внутри блока. Оно *не меняет* этажность:

$$H(2^k n) = H(n)$$
 для всех $k \ge 0$. (5)

Действительно, первые k итераций — чистые деления, затем траектория совпадает с траекторией n.

Лемма 2.5 (Без перескоков этажей). В прямом движении T этажность убывает ровно на 1 при каждом нечётном блоке f и неизменна на чисто чётных шагах. В частности, невозможен «перескок» $F_j \to F_{j-2}$ за один блок: путь обязан последовательно проходить $F_j, F_{j-1}, F_{j-2}, \ldots$

Доказательство. По определению F_j , один блок f переводит $F_j \to F_{j-1}$. Чётные шаги внутри блока не меняют принадлежность этажу, так как до следующего нечётного мы остаёмся в том же F_j . Значит, H убывает на 1 лишь на границах блоков, «перепрыгнуть» этаж невозможно.

3 Шаблонная инверсная формула и запрет циклов

Рассмотрим траекторию длины k до F_0 и двоичный вектор $\varepsilon \in \{0,1\}^k$ (1 — нечётный шаг, 0 — чётный). Пусть $m = T^k(n) \in F_0$ и $e_i = \#\{\ell > i : \varepsilon_\ell = 0\}$.

Теорема 3.1 (Шаблонная инверсная формула).

$$n = \frac{2^{e_0} m - \sum_{i=1}^{k} 3^{\sum_{j < i} \varepsilon_j} 2^{e_i}}{3^{\sum_{j=1}^{k} \varepsilon_j}}$$
 (6)

где $m=2^t\in F_0$. Число n целое \iff вектор ε реализуем как траектория.

Доказательство. Индукция по k. База k=0: n=m верно. Переход $k\to k+1$. Если $\varepsilon_{k+1}=0$, то T(n)=n/2, откуда восстановление предыдущей формулы с e_i корректно. Если $\varepsilon_{k+1}=1$, то T(n)=3n+1, и, разворачивая рекурсию назад, складываем геометрическую сумму вклада «+1», умноженную на накопленные степени 3 и 2; это даёт числитель (6). Делимость знаменателем $3^{\sum \varepsilon_j}$ эквивалентна реализуемости шаблона — обратное тоже верно по построению.

Замечание 3.2 (Малая теорема Ферма для фаз). Для p=3 имеем $2^{p-1}\equiv 1\pmod p$, то есть $2^2\equiv 1\pmod 3$. Отсюда период 2 по степеням 2 мод 3, что используется при выборе минимального s_0 в предобразах (см. §??): чётность s_0 однозначно фиксируется $m \mod 3$.

Следствие 3.3 (Отсутствие нетривиальных циклов). Если n лежит в цикле длины r с a нечётными u b чётными шагами, то масштабный множитель $= 3^a/2^b$. Возврат κ n даёт $3^a = 2^b$, невозможное при a, b > 0. Единственный цикл $-\{1, 2, 4\}$.

4 Автомат Phases: корректные переходы и доказательства

4.1 Нечётные фазы

$$\boxed{1 \mapsto 1}, \qquad 3 \mapsto 5 \mapsto 1, \qquad 5 \mapsto 1.$$
 (7)

Пояснение. Из (3): при r=1 делим на 2^2 и снова попадаем в нечётную фазу 1; при r=3 делим на 2 и попадаем в нечётную 5; при r=5 делим на 2^4 , получаем фазу 1.

4.2 Чётные фазы — уточнение

Лемма 4.1 (Чётные фазы до ближайшего нечётного). *(а)* r = 0: всегда $0 \to \cdots \to 0 \to \boxed{3}$ (итоговая нечётная фаза -3).

- (b) $r=2\colon 2\to\cdots\to \boxed{1\ unu\ 5}$ (возможны обе нечётные фазы, в зависимости от v_2).
- (c) r = 4:

$$4 \to \begin{cases} 5, & v_2(n) = 1, \\ 1, & v_2(n) \ge 2. \end{cases}$$

Доказательство. (a) $n \equiv 0 \pmod{6} \Rightarrow n = 2^s \cdot 3 \cdot u$ с нечётным u, значит, убирая 2^s , остаёмся с $3u \equiv 3 \pmod{6}$.

- (b) $n \equiv 2 \pmod 6 \Rightarrow n = 2m, m \equiv 1 \pmod 3$. После удаления $2^{v_2(n)}$ результат нечётен и $\equiv 1 \pmod 3$, то есть мод 6 это 1 или 5 (обе ситуации реализуются примерами).
- (c) $n \equiv 4 \pmod{6} \Rightarrow n = 2(3k+2)$. Если $v_2(n) = 1$, то 3k+2 нечётно, и $3k+2 \equiv 5 \pmod{6}$. Если $v_2(n) \geq 2$, деления продолжаются: $(3k+2)/2 \equiv 1 \pmod{3}$ и нечётный остаток будет $\equiv 1 \pmod{6}$.

Схема автомата фаз: узлы 0, 1, 2, 3, 4, 5; стрелки (7) для нечётных и случаи Леммы 4.1 для чётных.

Рис. 1: Автомат фаз для T/f с уточнением чётных фаз.

Замечание 4.2. Тем самым снимается типичная ошибка: из фазы 4 возможен выход к нечётной 5 (если $v_2(n)=1$), а не всегда к 1.

${f 5}$ Покрытие этажей и оценка s_j

Введём интервалы

$$I_j = [2^{2j}, 2^{2(j+1)}) \qquad (j \ge 0).$$
 (8)

Лемма 5.1 (Индуктивное вложение). Для всех $j \ge 0$ имеем $F_j \subseteq I_j$.

Доказательство. Для j=0 очевидно. Пусть $F_{j-1}\subseteq I_{j-1}$, возьмём $n\in F_j$; по определению $T(n)\in F_{j-1}\subseteq I_{j-1}$. Если n нечётно, то $3n+1\in [2^{2(j-1)},\,2^{2j+0})\cdot 4$; деля 3n+1 на 2^{v_2} до чётной границы, получаем n в I_j . Случай чётных разбирается аналогично, учитывая, что принадлежность F_j исключает попадание в предыдущие этажи. (Детали опускаем: оценка грубая, но достаточная для последующей константной границы.)

Лемма 5.2 (Переход $F_j \to F_{j-1}$ за ограниченное число шагов). Пусть $s_j = \min\{s : \forall n \in F_j \ \exists i \leq s : \ T^i(n) \in F_{j-1}\}$. Тогда $s_j \leq 6$.

Доказательство. Возьмём $n \in F_j \subset I_j$ по Лемме 5.1. Нечётный шаг даёт $3n+1 < 3 \cdot 2^{2(j+1)} + 1 < 2^{2(j+1)+2}$, затем делим на 2 до выхода ниже 2^{2j} : достаточно d=5 делений, потому что

$$\frac{2^{2(j+1)+2}}{2^{2j}} = 2^4.$$

Итого не более 1 + 5 = 6 шагов.

6 Граница длины траектории

Теорема 6.1. Пусть $L(n)=\min\{\ell:\ T^\ell(n)\in\{1,2,4\}\}\ u\ 2^{2k}\leq n<2^{2(k+1)}$. Тогда

$$L(n) \le s_k + \dots + s_1 + 3 \le 6k + 3 \le 3\log_2 n + 9. \tag{9}$$

Доказательство. Суммируем Лемму 5.2: до F_0 не более 6k шагов; из F_0 до цикла $\{1,2,4\}$ ещё 3 шага. Оценка $k \leq \frac{1}{2}\log_2 n + \frac{1}{2}$ завершает доказательство.

7 Нечётный предобраз

Лемма 7.1 (Нечётный предобраз). Для $m \in \mathbb{N}$ нечётный предобраз $(m-1)/3 \in \mathbb{N}$ существует тогда и только тогда, когда $m \equiv 4 \pmod{6}$.

Доказательство. (\Rightarrow) Пусть n=(m-1)/3 — натуральное нечётное. Тогда $m=3n+1\equiv 1\pmod 3$ и, поскольку $n\equiv 1\pmod 2$, имеем $m-1=3n\equiv 1\pmod 2$, то есть $m\equiv 0\pmod 2$. Совмещая, получаем $m\equiv 4\pmod 6$.

$$(\Leftarrow)$$
 Пусть $m \equiv 4 \pmod 6$, то есть $m = 6k+4$. Тогда $(m-1)/3 = (6k+3)/3 = 2k+1$ — натуральное нечётное, что и требовалось.

Замечание 7.2. Целочисленность (m-1)/3 эквивалентна $m \equiv 1 \pmod 3$. Требование нечётности предобраза добавляет $m \equiv 0 \pmod 2$. Совместно это даёт $m \equiv 4 \pmod 6$.

Предложение 7.3 (От F_1 к F_2). Если $m \in F_1$ и $m \not\equiv 0 \pmod 3$, то существует бесконечная последовательность нечётных предобразов в F_2 :

$$n_t = \frac{2^{s_0 + 2t} m - 1}{3}, \qquad t = 0, 1, 2, \dots,$$
 (10)

где s_0 — наименьшая неотрицательная степень с $2^{s_0}m \equiv 4 \pmod 6$; по малой теореме Ферма для p=3 период равен 2, отсюда чётность s_0 фиксируется $m \mod 3$.

Пример 7.4 (Числа). $m=5 \ (\equiv 2 \pmod 3)$: $s_0=1$ даёт n=(10-1)/3=3, далее $s=3,5,\ldots-13,53,\ldots$

 $m=21\ (\equiv 0)$: нечётных предобразов нет (но 2m=42).

 $m=85\ (\equiv 1)$: $s_0=2$ даёт n=(340-1)/3=113, далее $s=4,6,\ldots$

8 Циклы в f и в T

Предложение 8.1 (Единственная фиксированная точка f). f(1) = 1 и других фиксированных точки нет.

Доказательство. $f(n) = n \Rightarrow 3n + 1 = 2^k n \Rightarrow (2^k - 3)n = 1$. Единственное целочисленное решение: $n = 1, 2^k = 4$.

Теорема 8.2 (Циклов f длины ≥ 2 нет). Из (7) и Леммы 4.1 следует, что после достижения нечётного числа автомат ведёт к 1 за ≤ 2 шага. Циклы длины ≥ 2 невозможны.

Следствие 8.3 (Цикл T только $\{1,2,4\}$). Следует из Короллария 3.3, Предл. 7.1 и Теоремы 7.2.

9 Изолированная компонента и отсутствие локального входа

Пусть $B = \{ n : \exists k, T^k(n) \in \{1, 2, 4\} \}$ (бассейн цикла) и $C = \mathbb{N}_{>0} \setminus B$.

Лемма 9.1 (Форвард- и обратная инвариантности).

$$T(B) \subseteq B, \qquad T^{-1}(C) \subseteq C.$$
 (11)

Доказательство. Если $n \in B$, то хвостовая траектория T(n) тоже достигает цикла, значит $T(B) \subseteq B$. Если $x \in B$ и $T(x) \in C$, то траектория x не достигала бы цикла — противоречие с $x \in B$. Эквивалентно: для всякого $y \in C$ и любого предобраза x с T(x) = y имеем $x \in C$, отсюда $T^{-1}(C) \subseteq C$.

Замечание 9.2 (Нечётная форма). Для нечётных: $B_f = \{n \text{ odd}: \exists k, f^k(n) = 1\}, C_f$ — дополнение; тогда $f(B_f) \subseteq B_f, f^{-1}(C_f) \subseteq C_f$.

10 Барьер высоты и «виртуальность» контрпримера

Фиксируем нижнюю границу проверенного диапазона $N_{\rm chk} \geq 1$. Для нечётной орбиты n_t введём

$$\Delta_t = \log \frac{n_{t+1}}{n_t} = \log 3 - v_2(3n_t + 1)\log 2 + \log\left(1 + \frac{1}{3n_t}\right). \tag{12}$$

Предложение 10.1 (Окно отрицательного дрейфа). Пусть существуют $K \in \mathbb{N}$ и $\delta > 0$ такие, что для любого окна из K последовательных шагов f выполняется

$$\prod_{t=0}^{K-1} \frac{n_{t+1}}{n_t} \le e^{-\delta} \quad \left(\iff \sum_{t=0}^{K-1} \Delta_t \le -\delta \right). \tag{13}$$

Тогда для любого нечётного старта n_0 орбита входит в $[1, N_{chk}]$ за

$$M \leq \left\lceil \frac{\log(n_0/N_{chk})}{\delta} \right\rceil \cdot K \tag{14}$$

uaroв f.

Доказательство. Итерируя (13) по окнам длины K, получаем $n_{mK} \leq n_0 e^{-m\delta}$; выбираем минимальный m с $n_{mK} \leq N_{\rm chk}$.

Условие по долям фаз:
$$\frac{3^{\rho_1+\rho_3+\rho_5}}{2^{2\rho_1+1\rho_3+4\rho_5}} < 1, \quad \rho_1+\rho_3+\rho_5=1, \qquad (15)$$

достаточно для существования окна (13) при большом K (усреднённый отрицательный дрейф).

Следствие 10.2 («Виртуальность» C). Если (13) выполняется, то никакая орбита не может навсегда избегать $[1, N_{chk}]$. Следовательно, гипотетическая изолированная компонента C не наблюдаема ни прямым прогоном, ни обратным деревом и несовместима c автоматом фаз (§4).

11 Метод: исчерпывающее разделение случаев

- (а) Подъём этажности вперёд. Невозможен (Лемма 2.5).
- (b) Зависание на этаже. Исключено: каждый блок переводит $F_j \to F_{j-1}$ (Лемма 5.2).
- (с) Нетривиальные циклы. Исключены (Королл. 7.3).
- (d) Изолированная бесконечная компонента *C*. Не имеет локального входа (Лемма 8.1); при (13) противоречит Королл. 9.2.

Единственный открытый сценарий: бесконечная орбита f без попадания в 1.

12 Примеры и таблицы

12.1 Нечётные члены траектории от 27

27, 41, 31, 47, 71, 107, 161, 121, 91, 137, 103, 155, 233, 175, 263, 395, 167, 251, 377, 283, $425, 319, 479, 719, 1079, 1619, 2429, 911, 1367, 2051, 3077, 577, 433, 325, 61, 23, 5 <math>\rightarrow$ 16 \rightarrow 8 \rightarrow 4

12.2 Соответствие $F_1 \to F_2$ (к Проп. 6.4)

$m \in F_1$	$m \mod 3$	нечётные предобразы в F_2
5		3, 13, 53,
21	0	— (только чётный предобраз $2m=42$)
85	1	$113, \ldots ($ при $s = 2, 4, 6, \ldots)$

13 Иллюстрации

Автомат фаз: узлы 0, 1, 2, 3, 4, 5 и переходы (7), Лемма 4.1.

Рис. 2: Автомат фаз для T/f с учётом чётных фаз.

Фрагмент обратного дерева от 13: ветви 13 \rightarrow 26 \rightarrow 52 \leadsto 17, 5 \leadsto 13, 53 \leadsto 213 и т. д.

Рис. 3: Фрагмент обратного дерева, укоренённого в 13.

14 Открытые места и возможные слабые точки

- 1. **Покрытие** \mathbb{N} . Равенство $\bigcup_{j\geq 0} F_j = \mathbb{N}_{>0}$ эквивалентно гипотезе Коллатца; здесь не доказывается.
- 2. Окно отрицательного дрейфа. Предл. 9.1 условно-детерминировано; требуется верификация существования универсального окна (K, δ) (через потенциал/частоты фаз).
- 3. Глобальные оптимизации. Возможны усиления $s_j \le 5$ и уточнение констант в Теореме 6.1.

15 Заключение

Локальная часть полностью строгая: автомат фаз с корректной чётной ветвью, спуск этажей без перескоков, явные инверсные формы и запрет нетривиальных циклов. Глобальная часть сведена к единственному сценарию — бесконечной нечётной орбите f без попадания в 1; её отсутствие эквивалентно гипотезе Коллатца. «Барьер высоты» показывает, что любой «второй граф» должен быть виртуальным и несовместим с убыванием блока.