(61) Tutumetianal Datant Classification 7.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ':	
C07D 307/54, A61K 31/335, 31/38	,
31/275, C07D 213/57, 333/24, 409/	12,
C07C 255/29, C07D 231/18, 513/0	4,
409/04, 233/84, A61P 3/14 // (C07)	D
513/04, 277:00)	

(11) International Publication Number:

WO 00/49007

(43) International Publication Date:

24 August 2000 (24.08.00)

(21) International Application Number:

PCT/GB00/00532

A1

(22) International Filing Date:

16 February 2000 (16.02.00)

(30) Priority Data:

9903857.2 9916098.8 20 February 1999 (20.02.99) GB

GB 10 July 1999 (10.07.99)

(71) Applicant (for all designated States except US): AS-TRAZENECA AB [SE/SE]; S-151 85 Södertälje (SE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): TUCKER, Howard [GB/GB]; Alderley Park, Macclesfield, Cheshire SK10 4TG (GB). LARGE, Michael, Stewart [GB/GB]; Alderley Park, Macclesfield, Cheshire SK10 4TG (GB). OLDFIELD, John [GB/GB]; Alderley Park, Macclesfield, Cheshire SK10 4TG (GB). JOHNSTONE, Craig [GB/GB]; Alderley Park, Macclesfield, Cheshire SK10 4TG (GB). EDWARDS, Philip, Neil [GB/GB]; Alderley Park, Macclesfield, Cheshire SK10 4TG (GB).

(74) Agent: TIERNEY, Francis, John; AstraZeneca, Global Intellectual Property, P.O.Box 272, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4GR (GB).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, BK, BT, CA, CH, CN, CK, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SI, SZ, TZ, LIG, ZW). Experience patent (AM, SD, SI, SZ, TZ, LIG, ZW). Experience patent (AM, SD, SI, SZ, TZ, LIG, ZW). Experience patent (AM, SD, SI, SZ, TZ, LIG, ZW). LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: ACETAMIDO ACETONITRILE DERIVATIVES AS INHIBITORS OF CATHEPSIN L AND/OR CATHEPSIN S

(57) Abstract

A compound of formula (I) wherein Ar, R1, R2, R³, R⁴ and R⁵ are defined; a composition comprising a compound of formula (I) and a carrier or diluent; a compound of formula (I) for use as a medicament, the use of a compound of formula (I) in the manufacture of a medicament for use in the inhibition of a cysteine protease in a warn blooded animal; the use of a compound of formula (I) in the manufacture of a

$$Ar \xrightarrow{R^1} \xrightarrow{R^2} \xrightarrow{R^3} \xrightarrow{R^5} CN$$
 (1)

medicament for use in the treatment of chronic obstructive pulmonary disease in a warm blooded animal; and a method of treating a Cathepsin L or Cathepsin S mediated disease state in mammals which comprises administering to a mammal in need of such treatment an effective amount of a compound of formula (I).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

					_		
AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	sk	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Treland	MN	Mongolia	UA	Ukraine
BR	Brazil	1L	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	iT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE .	Estonia	LR	Liberia	SG	Singapore		

10

15

20

25

30

ACETAMIDO ACETONITRILE DERIVATIVES AS INHIBITORS OF CATHEPSIN L AND/OR CATHEPSIN S

The present invention relates to compounds that are cysteine protease inhibitors and in particular compounds that are Cathepsin L inhibitors and or Cathepsin S inhibitors especially Cathepsin S inhibitors. The invention further relates to processes for their preparation, to intermediates useful in their preparation, to their use as therapeutic agents, to pharmaceutical compositions containing them and to a method of treating a Cathepsin L or Cathepsin S mediated disease state.

Cysteine proteases are enzymes important in normal cell physiology, but they are also associated with several disease states including inflammation, metastasis, tissue damage following myocardial infarction, bone resorption and muscle wasting in dystrophic diseases.

Cathepsins B, H, K, L, N and S are cysteinyl proteases involved in normal protein degradation and are normally located in the lysosomes of cells. However, when these enzymes are found outside the lysosomes they have been implicated as playing a causative role in a number of disease states including bone resorption disease such as osteoporosis.

The number of people living to an old age has increased dramatically in recent years. This has been marked by an increase in the number of people having osteoporosis and other diseases associated with old age. Osteoporosis is accompanied by a high incidence of bone fracture resulting in many aged patients being confined to their beds. There is therefore a great need for a pharmaceutical composition to treat or prevent this disease.

Living bone is continuously being remodelled and replenished by the process of resorption and deposition of the protein matrix and calcium minerals. These events are facilitated by the osteoclast, which has the ability to degrade and demineralise the bone, and the osteoblast which is responsible for new bone generation. In normal situations these processes are intimately linked resulting in little alteration of bone mass. However, pathological conditions exist in which there is an imbalance between their activities resulting in increased degradation and demineralisation of bone and the development of fragile and/or brittle bone structure, as seen during osteoporosis. While the exact mechanism for this resorption is not known, increased osteoclast activity, as realised by increased proteolytic activity, is a contributing factor, and selective inhibition of proteolytic action may result in the arrest or reversal of bone loss. The lysosomal cysteine proteinases, Cathepsins B, H, K, L, N

and S have been postulated as the proteinases that are responsible for osteoclast bone resorption, because of their ability to degrade insoluble type I collagens at low pH.

Cathepsins B, H, K, L, N and S have been further implicated as playing a causative role in other diseases such as rheumatoid arthritis, osteoarthritis, tumour metastasis, pneumocystitis, Crithidia fusiculata, malaria, trypanosoma brucei brucei, schistosomiasis, periodontal disease, metachromatic leukodystrophy and muscular dystrophy. Cathepsins B, H, K, L, N and S, either alone or together, have also been implicated as playing a causative role in chronic obstructive pulmonary disease (COPD).

In recent years a number of synthetic inhibitors of cysteine proteases have been disclosed. US 5,055,451 discloses a series of peptidyl methyl ketones as thiol protease inhibitors; WO 95/15749 discloses peptidyl ketones with heterocyclic leaving groups as cysteine protease inhibitors; the *in vivo* inhibition of Cathepsin B by peptidyl (acyloxy) methyl ketones was discussed in *J. Med. Chem.* 1994, 37, 1833-40 and these types of compounds as inhibitors of cysteine protease inhibitors were also discussed in *J. Am. Chem. Soc.*, 1988, 110, 4429-4431; peptidyl diazomethyl ketones as specific inactivators of thiol proteinases was discussed in *J. Biol. Chem.*, 1981, 256, 4, 1923-8 and in *Methods in Enzymology*, 1981, 80, 820-5; the inhibiting activities of 1-peptidyl-2-haloacetyl hydrazines towards Cathepsin B and calpains was discussed in *Eur. J. Med. Chem.*, 1993, 28 297-311 and peptidyl fluoromethyl ketones as inhibitors of Cathepsin B and the implication for treatment of Rheumatoid arthritis was discussed in *Biochemical Pharmacology*, 1992, 44, 6, 1201-7. Thus, there is a great need for a specific cysteine protease inhibitor especially a Cathepsin L inhibitor or a Cathepsin S inhibitor.

The present invention discloses compounds with inhibitory activity of cysteine proteases and in particular of Cathepsin L and or Cathepsin S. The compounds of the invention are also useful in the treatment of chronic obstructive pulmonary disease (COPD).

Accordingly the present invention provides a compound of formula (I):

$$Ar \xrightarrow{X} \xrightarrow{Q} \xrightarrow{R^4} \xrightarrow{R^5} CN$$
(I)

wherein

5

10

15

20

25

Ar is optionally substituted phenyl, optionally substituted naphthyl, Het, C₃₋₁₂ cycloalkyl, or an optionally substituted 5 or 6 membered heteroaryl ring, said optional substituents being chosen from one or more of halo, C₁₋₆alkoxy, C₁₋₆alkyl, nitro, C₁₋₆alkanoylamino, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, carboxy, carbamoyl, 5 N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, sulphamoyl, $N-(C_{1-6}alkyl)$ sulphamoyl, $N,N-(C_{1-6}alkyl)_2$ sulphamoyl, amino $C_{1-6}alkyl$, N-(C₁₋₆alkyl)aminoC₁₋₆alkyl, N,N-(C₁₋₆alkyl)₂aminoC₁₋₆alkyl, R⁶S-, R⁶C(O)- and R⁶CH₂wherein \mathbf{R}^6 is phenyl which is optionally substituted by one or more groups chosen from 10 C₁₋₆alkyl, halo, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C_{1-6} alkanoyloxy, amino, C_{1-6} alkylamino, $N,N-(C_{1-6}$ alkyl)₂amino, C_{1-6} alkanoylamino, nitro, carboxy, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, sulphamoyl,

15 N-(C₁₋₆alkyl)sulphamoyl and N,N-(C₁₋₆alkyl)₂sulphamoyl; with the proviso that when Ar is a nitrogen linked Het, X is not $-N(R^7)$ - or -O-;

X is -N(R⁷)-, -S(O)_n-, -O-, -SO₂N(R⁷)- wherein n = 0-2, R⁷ is H, C₁₋₆alkyl (optionally substituted with one or more of cyano, Het and R¹⁰) or R⁷ is C₂₋₆alkenyl (optionally substituted with R¹⁰), formyl and R¹⁰ is an optionally substituted five or six membered heteroaryl ring, optionally substituted phenyl or optionally substituted naphthyl said optionally substituents being chosen from one or more of halo, nitro, trifluoromethyl, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, C₁₋₆alkanoylamino, carboxy, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, sulphamoyl, N-(C₁₋₆alkyl)₂sulphamoyl and phenylC₁₋₆alkoxy;

R¹ is H, C₁₋₆alkyl (optionally substituted with R⁸), C1-6 alkylsulphanyl (optionally substituted with R⁸), C₂₋₆alkenyl, R⁸, R⁸S- wherein R⁸ is phenyl, C₃₋₁₂ cycloalkyl, Het or a 5- or 6- membered heteroaryl ring, all of which are optionally substituted by one or more groups chosen from C₁₋₆alkyl, halo, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, nitro, carboxy, carbamoyl, N-(C₁₋₆alkyl)carbamoyl,

5.

4

 $N,N-(C_{1-6}alkyl)_2$ carbamoyl, $C_{1-6}alkoxycarbonyl$, mercapto, $C_{1-6}alkyl$ sulphanyl, $C_{1-6}alkyl$ sulphinyl, $C_{1-6}alkyl$ sulphamoyl, $N-(C_{1-6}alkyl)$ sulphamoyl, $N,N-(C_{1-6}alkyl)_2$ sulphamoyl and benzyloxy, with the proviso that if R^1 is C_{1-6} alkylsulphanyl (optionally substituted with R^8) or R^8S - then X is $-SO_2N(R^7)$ -;

R² is H or C₁₋₆alkyl;

 \mathbb{R}^3 is H or C_{1-6} alkyl;

R⁴ is H, C₁₋₆alkyl (optionally substituted with one or more of hydroxy, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, R⁹, R⁹C₁₋₆alkylsulphanyl, R⁹C₁₋₆alkylsulphinyl and R⁹C₁₋₆alkylsulphonyl), or R⁴ is C₁₋₆alkoxy (optionally substituted with one or more of C₂₋₆alkenyl, C₂₋₆alkynyl, R⁹, R⁹C₂₋₆alkenyl, R⁹C₂₋₆alkynyl, Het and 10 trifluoromethyl), or R⁴ is C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxycarbonyl, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, R⁹-, R⁹S-, R⁹C₁₋₆alkylsulphanyl N-(R⁹C₁₋₆alkyl)carbamoyl, N-(HetC₁₋₆alkyl)carbamoyl, C₁₋₆alkanoylamino, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl wherein R⁹ is optionally substituted 15 phenyl, or an optionally substituted 5 or 6 membered heteroaryl ring said optional substituents being chosen from one or more of C₁₋₆alkyl, halo, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, nitro, carboxy, carbamoyl. N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, 20 C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, sulphamoyl,

R⁵ is H or C₁₋₆alkyl; Het is a fully saturated monocyclic 5 - 8 membered heterocyclic ring, with up to 4 ring heteroatoms;

 $N-(C_{1-6}alkyl)$ sulphamoyl and $N,N-(C_{1-6}alkyl)_2$ sulphamoyl; and

provided that: when R¹ is H or C₁₋₆ alkyl, X is O or S, and R² and R³ are both

hydrogen, then Ar is not pyrimid-4-yl; when R¹ and R² are both hydrogen, R³ is C₁₋₆ alkyl, X

is O, R⁴ is hydrogen, C₁₋₆ alkyl, phenyl or benzyl, and R⁵ is hydrogen or C₁₋₄ alkyl, then Ar is

not halophenyl; when R¹ and R³ are both hydrogen, R² and R⁵ are, independently, hydrogen or

methyl, R⁴ is unsubstituted pyrrolyl, thienyl or furyl, and X is O, then Ar is not 3-methyl-2,4
dichlorophenyl; when R¹ is hydrogen or C₁₋₄ alkyl, R² is hydrogen or C₁₋₄ alkyl, R³ is

hydrogen, R⁴ is hydrogen, C₁₋₆ alkyl or phenyl, and X is O, S, NH or N(C₁₋₄ alkyl), then Ar is

not phenyl optionally substituted with: halo, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, CO₂H, CO₂(C₁₋₄

alkyl), CONH₂, NO₂, CN, CH₂N(CH₃)₂, S(C₁₋₄ alkyl) or mono- or di-chlorobenzyl; when R¹.

10

15

20

25

30

 R^2 , R^3 and R^5 are all hydrogen, R^4 is $SO_2CH_2CH_3$, and X is SO_2 , then Ar is not phenyl; and, when R^1 , R^2 , R^3 , R^4 and R^5 are all hydrogen, and X is SO_2NH , then Ar is not 4-methylphenyl; or a pharmaceutically acceptable salt thereof.

In this specification the term 'alkyl' includes straight chained and branched structures and ring systems. For example, C₁₋₆alkyl includes propyl, isopropyl, t-butyl, cyclopropyl and cyclohexyl. However, references to individual alkyl groups such as 'propyl' are specific for the straight chained version only, references to individual branched chain alkyl groups such as 'isopropyl' are specific for the branched chain version only and references to individual cycloalkyl groups such as cyclohexyl are specific to the cyclic groups only.

A similar convention applies to other radicals, for example "amino C_{1-6} alkyl" includes 1-aminoethyl and 2-aminoethyl.

The term "halo" refers to fluoro, chloro, bromo and iodo.

"Het" means, unless otherwise further specified, a fully saturated monocyclic 5 - 8 membered heterocyclic ring, with up to 4 ring heteroatoms. Examples of heteroatoms include nitrogen, oxygen and sulphur. Examples of "Het" include pyrrolidinyl, imidazolidinyl, pyrazolidinyl, piperidyl, piperazinyl and morpholinyl. Further examples of "Het" include pyrrolidinyl, imidazolidinyl, pyrazolidinyl, piperidyl, piperazinyl, thiomorpholino and morpholino. Preferably "Het" is morpholino.

"5- or 6- membered heteroaryl ring" means, unless otherwise further specified, a 5- or 6- membered ring that contains some degree of unsaturation, with up to four ring heteroatoms selected from nitrogen, oxygen and sulphur. Examples of "5- or 6- membered heteroaryl ring" include thienyl, furyl, imidazolyl, thiazolyl, pyrimidinyl, pyridinyl, pyrrolyl and pyrazolyl. Examples of "5- membered heteroaryl ring" include thienyl, furyl, imidazolyl, thiazolyl and pyrrolyl.

Examples of "C₁₋₆alkanoyloxy" are acetoxy and propionyloxy. Examples of "C₁₋₆alkoxycarbonyl" include methoxycarbonyl, ethoxycarbonyl, *n*- and *t*-butoxycarbonyl. Examples of "C₁₋₆alkoxy" include methoxy, ethoxy and propoxy. Examples of "C₁₋₆alkanoylamino" include formamido, acetamido and propionylamino. Examples of "C₁₋₆alkylsulphanyl" include methylthio and ethylthio. Examples of "C₁₋₆alkylsulphinyl" include methylsulphinyl. Examples of "C₁₋₆alkylsulphonyl" include mesyl and ethylsulphonyl. Examples of "C₁₋₆alkanoyl" include acetyl and propionyl. Examples of "C₁₋₆alkylamino" include methylamino and ethylamino. Examples of "N,N-(C₁₋₆alkyl)₂amino"

2-N-methylaminoethyl and 3-N-ethylaminopropyl. Examples of

10

15

20

25

30

and cyclohexyl.

include N,N-dimethylamino, N,N-diethylamino and N-ethyl-N-methylamino. Examples of " C_{2-6} alkenyl" are vinyl, allyl and 1-propenyl. Examples of " C_{2-6} alkynyl" are ethynyl, 1-propynyl and 2-propynyl. Examples of "N-(C_{1-6} alkyl)amino C_{1-6} alkyl" are

6

"N,N-(C₁₋₆alkyl)₂aminoC₁₋₆alkyl" are 2-(N,N-dimethylamino)ethyl and 3-(N,N-diethylamino)propyl. Examples of "N-(C₁₋₆alkyl)carbamoyl" are methylaminocarbonyl and ethylaminocarbonyl. Examples of "N,N-(C₁₋₆alkyl)₂carbamoyl" are dimethylaminocarbonyl and methylethylaminocarbonyl. Examples of "N-(C₁₋₆alkyl)sulphamoyl" are N-methylsulphamoyl and N-ethylsulphamoyl. Examples of

"N,N-(C₁₋₆alkyl)₂sulphamoyl" are N,N-dimethylsulphamoyl and N,N-diethylsulphamoyl. Examples of "R⁹C₁₋₆alkylsulphanyl" include R⁹methylthio and R⁹ethylthio. Examples of "R⁹C₁₋₆alkylsulphinyl" include R⁹methylsulphinyl and R⁹ethylsulphinyl. Examples of "R⁹C₁₋₆alkylsulphonyl" include R⁹mesyl and R⁹ethylsulphonyl. Examples of R⁹C₂₋₆alkenyl are R⁹vinyl and R⁹allyl. Examples of "C₂₋₆alkynyl" are R⁹ethynyl and R⁹propyn-1-yl. Examples of "N-(R⁹C₁₋₆alkyl)carbamoyl" are R⁹methylaminocarbonyl and R⁹ethylaminocarbonyl. Examples of "N-(HetC₁₋₆alkyl)carbamoyl" are morpholinomethylaminocarbonyl and 2-(piperidinoethyl)aminocarbonyl. Examples of "C₃₋₁₂cycloalkyl" are cyclopropyl, cyclopentyl

Where optional substituents are chosen from "one or more" groups it is to be understood that this definition includes all substituents being chosen from one of the specified groups or the substituents being chosen from two or more of the specified groups. For example where optional substituents are chosen from one or more halo, C_{1-6} alkoxy and C_{1-6} alkyl, examples of possible combinations of substituents include 1) a bromo group, 2) two chloro groups, 3) a methoxy, ethoxy and propoxy substitutent, 4) a fluoro and a methoxy group, 5) a methoxy, a methyl and an ethyl group, and 6) a chloro, a methoxy and an ethyl group.

In one aspect the present invention provides a compound of formula (I), wherein Ar is optionally substituted phenyl, optionally substituted naphthyl, Het, C₃₋₁₂cycloalkyl, or an optionally substituted 5 or 6 membered heteroaryl ring, said optional substituents being chosen from one or more of halo, C₁₋₆alkoxy, C₁₋₆alkyl, nitro, C₁₋₆alkanoylamino, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, carboxy, carbamoyl, N-(C₁₋₆alkyl)carbamoyl,

WO 00/49007

7

N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, sulphamoyl, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, aminoC₁₋₆alkyl, N-(C₁₋₆alkyl)aminoC₁₋₆alkyl, N,N-(C₁₋₆alkyl)₂aminoC₁₋₆alkyl, R⁶S-, R⁶C(O)- and R⁶CH₂- wherein R⁶ is phenyl which is optionally substituted by one or more groups chosen from C₁₋₆alkyl, halo, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, nitro, carboxy, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphonyl, sulphamoyl,

- N-(C₁₋₆alkyl)sulphamoyl and N,N-(C₁₋₆alkyl)₂sulphamoyl with the proviso that when Ar is a nitrogen linked Het, X cannot be -N(R⁷)- or -O-; X is -N(R⁷)-, -S(O)_n-, -O-, -SO₂N(R⁷)- wherein n = 0-2, R⁷ is H, C₁₋₆alkyl (optionally substituted with one or more of cyano, Het and R¹⁰) or R⁷ is C₂₋₆alkenyl (optionally substituted with R¹⁰), formyl and R¹⁰ is an optionally substituted five or six membered heteroaryl ring, optionally substituted phenyl or optionally substituted naphthyl said optionally substituents being chosen from one or more of halo, nitro, trifluoromethyl, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, C₁₋₆alkanoylamino, carboxy, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphonyl, sulphamoyl,
- N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl and phenylC₁₋₆alkoxy; R¹ is H, C₁₋₆alkyl (optionally substituted with R⁸), C₁₋₆alkylsulphanyl (optionally substituted with R⁸), C₂₋₆alkenyl, R⁸, R⁸S- wherein R⁸ is phenyl, C₃₋₁₂cycloalkyl, Het or an optionally substituted five or six membered heteroaryl ring which is optionally substituted by one or more groups chosen from C₁₋₆alkyl, halo, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy,
- C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, nitro, carboxy, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, sulphamoyl, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl and benzyloxy with the proviso that if R¹ is C₁₋₆alkylsulphanyl
 (optionally substituted with R⁸) or R⁸S- then X must be -SO₂N(R⁷)-; R² is H or C₁₋₆alkyl; R³ is H or C₁₋₆alkyl; R⁴ is an optionally substituted 5 or 6 membered heteroaryl ring said optional

substituents being chosen from one or more of C₁₋₆alkyl, halo, trifluoromethyl, hydroxy.

WO 00/49007

10

trifluoromethoxy, cyano, C_{1-6} alkoxy, C_{1-6} alkanoyl, C_{1-6} alkanoyloxy, amino, C_{1-6} alkylamino, $N,N-(C_{1-6}$ alkyl)₂amino, C_{1-6} alkanoylamino, nitro, carboxy, carbamoyl, $N-(C_{1-6}$ alkyl)₂carbamoyl, $N-(C_{1-6}$ alkyl)₂carbamoyl, $N-(C_{1-6}$ alkyl)₂carbamoyl, $N-(C_{1-6}$ alkylsulphanyl, $N-(C_{1-6}$ alkylsulp

N-(C_{1-6} alkyl)sulphamoyl and N,N-(C_{1-6} alkyl)₂sulphamoyl; and \mathbb{R}^5 is H or C_{1-6} alkyl; or a pharmaceutically acceptable salt thereof.

In a further aspect the present invention provides a compound of formula (I), wherein Ar is optionally substituted phenyl, optionally substituted naphthyl or an optionally substituted 5 or 6 membered heteroaryl ring, said optional substituents being chosen from one or more of halo, C₁₋₆alkoxy, C₁₋₆alkyl, nitro, C₁₋₆alkanoylamino, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, carboxy, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphonyl, sulphamoyl, N-(C₁₋₆alkyl)sulphamoyl, N-(C₁₋₆alkylsulphamoyl, N-(C₁₋₆alkylsulphamoyl,

- N,N-(C₁₋₆alkyl)₂sulphamoyl, aminoC₁₋₆alkyl, N-(C₁₋₆alkyl)aminoC₁₋₆alkyl,
 N,N-(C₁₋₆alkyl)₂aminoC₁₋₆alkyl, R⁶S-, R⁶C(O)- and R⁶CH₂- wherein R⁶ is phenyl which is optionally substituted by one or more groups chosen from C₁₋₆alkyl, halo, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, nitro, carboxy, carbamoyl.
- $N-(C_{1-6}alkyl)carbamoyl, N,N-(C_{1-6}alkyl)_2carbamoyl, C_{1-6}alkoxycarbonyl, mercapto, \\ C_{1-6}alkylsulphanyl, C_{1-6}alkylsulphinyl, C_{1-6}alkylsulphonyl, sulphamoyl, \\ N-(C_{1-6}alkyl)sulphamoyl and N,N-(C_{1-6}alkyl)_2sulphamoyl;$

X is -N(R⁷)-, -S(O)_n-, -O-, -SO₂N(R⁷)- wherein **n** = 0-2, **R**⁷ is H, C₁₋₆alkyl (optionally substituted with one or more of cyano, Het and R¹⁰) or R⁷ is C₂₋₆alkenyl (optionally substituted with R¹⁰), formyl and **R¹⁰** is an optionally substituted five or six membered heteroaryl ring, optionally substituted phenyl or optionally substituted naphthyl said optionally substituents being chosen from one or more of halo, nitro, trifluoromethyl, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, C₁₋₆alkanoylamino, carboxy, carbamoyl, N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto,

N-(C_{1-6} alkyl)carbamoyl, N, N-(C_{1-6} alkyl)₂carbamoyl, C_{1-6} alkoxycarbonyl, mercapto, C_{1-6} alkylsulphanyl, C_{1-6} alkylsulphonyl, sulphamoyl, N-(C_{1-6} alkyl)sulphamoyl, N-(C_{1-6} alkyl)₂sulphamoyl and phenyl C_{1-6} alkoxy;

R¹ is H, C₁₋₆alkyl (optionally substituted with R⁸), C₂₋₆alkenyl, R⁸S- wherein R⁸ is phenyl which is optionally substituted by one or more groups chosen from C₁₋₆alkyl, halo, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, nitro, carboxy, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphonyl, sulphamoyl, N-(C₁₋₆alkylsulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl and benzyloxy;

 \mathbb{R}^2 is H or \mathbb{C}_{1-6} alkyl;

 \mathbb{R}^3 is H or C_{1-6} alkyl;

R⁴ is H, C₁₋₆alkyl (optionally substituted with one or more of hydroxy, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, R⁹, R⁹C₁₋₆alkylsulphanyl, R⁹C₁₋₆alkylsulphinyl and R⁹C₁₋₆alkylsulphonyl), or R⁴ is C₁₋₆alkoxy (optionally substituted with one or more of C₂₋₆alkenyl, C₂₋₆alkynyl, R⁹, R⁹C₂₋₆alkenyl, R⁹C₂₋₆alkynyl, Het and trifluoromethyl), or R⁴ is C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxycarbonyl, carbamoyl,

N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, R⁹-, R⁹S-, R⁹C₁₋₆alkylsulphanyl, N-(R⁹C₁₋₆alkyl)carbamoyl, N-(HetC₁₋₆alkyl)carbamoyl, C₁₋₆alkanoylamino, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl wherein R⁹ is optionally substituted phenyl, or an optionally substituted 5 or 6 membered heteroaryl ring said optional substituents being chosen from one or more of C₁₋₆alkyl, halo, trifluoromethyl, hydroxy, trifluoromethoxy,

20 cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, nitro, carboxy, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto,

 C_{1-6} alkylsulphanyl, C_{1-6} alkylsulphinyl, C_{1-6} alkylsulphonyl, sulphamoyl,

 $N-(C_{1-6}alkyl)$ sulphamoyl and $N,N-(C_{1-6}alkyl)_2$ sulphamoyl; and

25 \mathbb{R}^5 is H or C_{1-6} alkyl;

30

or a pharmaceutically acceptable salt thereof.

According to a further feature of the present invention there is provided a compound of formula (I) wherein:

Ar is optionally substituted phenyl, optionally substituted naphthyl, or an optionally substituted 5 or 6 membered heteroaryl ring, said optional substituents being chosen from one or more of halo, C₁₋₆alkoxy, C₁₋₆alkyl, nitro, C₁₋₆alkanoylamino, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino.

 $N,N-(C_{1-6}alkyl)_2$ amino, carboxy, carbamoyl, $N-(C_{1-6}alkyl)$ carbamoyl, $N,N-(C_{1-6}alkyl)_2$ carbamoyl, $C_{1-6}alkyl$ sulphanyl, mercapto, $C_{1-6}alkyl$ sulphanyl, $C_{1-6}alkyl$ sulphanyl, sulphamoyl, $N-(C_{1-6}alkyl)$ sulphamoyl, $N,N-(C_{1-6}alkyl)_2$ sulphamoyl, amino $C_{1-6}alkyl$, $N-(C_{1-6}alkyl)_2$ sulphamoyl, amino $C_{1-6}alkyl$, $N-(C_{1-6}alkyl)_3$

- N,N-(C₁₋₆alkyl)₂aminoC₁₋₆alkyl, R⁶S-, R⁶C(O)- and R⁶CH₂- wherein R⁶ is phenyl which is optionally substituted by one or more groups chosen from C₁₋₆alkyl, halo, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, nitro, carboxy, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto,
- 10 C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, sulphamoyl, *N*-(C₁₋₆alkyl)sulphamoyl and *N*,*N*-(C₁₋₆alkyl)sulphamoyl:

X is -N(R⁷)-, -S(O)_n-, -O-, -SO₂N(R⁷)- wherein **n** = 0-2, **R**⁷ is H, C₁₋₆alkyl (optionally substituted with one or more of cyano, Het and R¹⁰) or R⁷ is C₂₋₆alkenyl (optionally substituted with R¹⁰), formyl and **R¹⁰** is an optionally substituted five or six membered heteroaryl ring, optionally substituted phenyl or optionally substituted naphthyl said optionally substituents being chosen from one or more of halo, nitro, trifluoromethyl, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, C₁₋₆alkanoylamino, carboxy, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto,

C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, sulphamoyl, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl and phenylC₁₋₆alkoxy;

R¹ is H, C₁₋₆alkyl (optionally substituted with R⁸), C₂₋₆alkenyl, R⁸S- wherein R⁸ is phenyl which is optionally substituted by one or more groups chosen from C₁₋₆alkyl, halo, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, nitro, carboxy, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, sulphamoyl, N-(C₁₋₆alkyl)₂sulphamoyl and benzyloxy;

R² is H or C₁₋₆alkyl;

30 \mathbb{R}^3 is H or C_{1-6} alkyl;

R⁴ is H, C₁₋₆alkyl (optionally substituted with one or more of hydroxy, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphanyl,

WO 00/49007 PCT/GB00/00532

11

 R^9C_{1-6} alkylsulphinyl and R^9C_{1-6} alkylsulphonyl), or R^4 is C_{1-6} alkoxy (optionally substituted with one or more of C_{2-6} alkenyl, C_{2-6} alkynyl, R^9 , R^9C_{2-6} alkenyl, R^9C_{2-6} alkynyl, Het and trifluoromethyl), or R^4 is C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxycarbonyl, carbamoyl, $N-(C_{1-6}$ alkyl)2carbamoyl, R^9- , R^9C- 0, R^9- 1, R^9- 1, R^9- 2, R^9- 2, R^9- 2, R^9- 3, R^9- 3, R^9- 3, R^9- 4, R^9- 4, R^9- 5, R^9-

- N-(R⁹C₁₋₆alkyl)carbamoyl, N-(HetC₁₋₆alkyl)carbamoyl, C₁₋₆alkanoylamino, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl wherein R⁹ is optionally substituted phenyl, or an optionally substituted 5 or 6 membered heteroaryl ring said optional substituents being chosen from one or more of C₁₋₆alkyl, halo, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino,
- N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, nitro, carboxy, carbamoyl,
 N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto,
 C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, sulphamoyl,
 N-(C₁₋₆alkyl)sulphamoyl and N,N-(C₁₋₆alkyl)₂sulphamoyl; and
 R⁵ is H or C₁₋₆alkyl;

or a pharmaceutically acceptable salt thereof.

isothiazolyl. The 5-membered ring is suitably thienyl.

20

25

Preferred values for Ar, X, R¹, R², R³, R⁴ and R⁵ are as follows.

Preferably Ar is an optionally substituted phenyl, optionally substituted naphthyl or an optionally substituted 5 membered heteroaryl ring, said optional substituents being chosen from one or more of halo, C_{1-6} alkoxy, C_{1-6} alkyl, nitro, C_{1-6} alkanoylamino, trifluoromethyl, $N,N-(C_{1-6}$ alkyl)₂amino and $N,N-(C_{1-6}$ alkyl)₂amino C_{1-6} alkyl.

In another aspect of the invention preferably Ar is an optionally substituted phenyl, optionally substituted naphthyl, morpholino or an optionally substituted 5 membered heteroaryl ring, said optional substituents being chosen from one or more of halo, C_{1-6} alkoxy, C_{1-6} alkyl, nitro, C_{1-6} alkanoylamino, trifluoromethyl, $N,N-(C_{1-6}$ alkyl)₂amino and $N,N-(C_{1-6}$ alkyl)₂amino C_{1-6} alkyl with the proviso that when Ar is morpholino X cannot be $-N(R^7)$ - or -O-. The 5-membered heteroaryl ring is, for example, thienyl, furyl, pyrrolyl, pyrazolyl, thiazolyl, imidazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, oxazolyl, isoxazolyl or

More preferably Ar is an optionally substituted phenyl, optionally substituted naphthyl and optionally substituted thienyl said optional substituents being chosen from one or more fluoro, chloro, bromo, methoxy, methyl, nitro, acetylamino, trifluoromethyl, *N,N*-dimethylamino or *N,N*-dimethylaminomethyl.

10

15

20

25

30

In another aspect of the invention more preferably Ar is an optionally substituted phenyl, optionally substituted naphthyl, morpholino and optionally substituted thienyl said optional substituents being chosen from one or more fluoro, chloro, bromo, methoxy, methyl, nitro, acetylamino, trifluoromethyl, N,N-dimethylamino or N,N-dimethylaminomethyl with the proviso that when Ar is morpholino X cannot be $-N(R^7)$ - or -O-.

Particularly Ar is phenyl which is optionally substituted with 1 to 3 fluoro, chloro or bromo.

In another aspect of the invention particularly Ar is morpholino or phenyl which is optionally substituted with 1 to 3 fluoro, chloro or bromo with the proviso that when Ar is morpholino X cannot be $-N(R^7)$ - or -O-.

More particularly Ar is phenyl, 2-fluorophenyl, 2,6-difluorophenyl, 2-chlorophenyl, 2,4-dichlorophenyl, 2,6-dibromophenyl and 2,4,6-trichlorophenyl.

In another aspect of the invention more particularly Ar is morpholino, phenyl, 2-fluorophenyl, 2,6-difluorophenyl, 2-chlorophenyl, 2,4-dichlorophenyl, 2,6-dichlorophenyl, 2,6-dibromophenyl and 2,4,6-trichlorophenyl with the proviso that when Ar is morpholino X cannot be $-N(R^7)$ - or -O-.

Preferably X is $-N(R^7)$ -, $-S(O)_n$ -, -O- and $-SO_2N(R^7)$ - wherein n=0-2, R^7 is H, $C_{1\text{-}6}$ alkyl (optionally substituted with cyano, Het or R^{10}) or R^7 is $C_{2\text{-}6}$ alkenyl (optionally substituted with R^{10}), and R^{10} is an optionally substituted five or six membered heteroaryl ring or optionally substituted phenyl said optionally substituents being chosen from one or more of halo, nitro, trifluoromethyl, N, N-($C_{1\text{-}6}$ alkyl) $_2$ amino, $C_{1\text{-}6}$ alkyl and $C_{1\text{-}6}$ alkoxy. Het is as defined above (that is it is: a fully saturated monocyclic 5 - 8 membered heterocyclic ring, with up to 4 ring heteroatoms; for example pyrrolidinyl, imidazolidinyl, pyrazolidinyl, piperidyl, piperazinyl or morpholinyl). When X is $-SO_2N(R^7)$ - the nitrogen atom is attached to the CR^1R^2 group and the sulphur is attached to the Ar group.

More preferably X is -N(Me)-, -S-, -SO-, -SO₂-, -O- and -SO₂N(\mathbb{R}^7)- wherein \mathbb{R}^7 is hydrogen, methyl, ethyl, propyl, isobutyl, cyanoethyl, morpholinoethyl, furylmethyl, thienylmethyl, pyridylmethyl, phenylallyl or benzyl, where said phenylallyl or benzyl is optionally substituted with methoxy, nitro, chloro, trifluoromethyl, methyl or N,N-dimethylamino.

10

15

20

Particularly X is -O-, -SO₂- and -SO₂N(\mathbb{R}^7)- wherein \mathbb{R}^7 is hydrogen, furylmethyl, thienylmethyl, pyridylmethyl, phenylallyl or benzyl, where said benzyl is optionally substituted with methoxy, nitro, chloro, trifluoromethyl, methyl or N,N-dimethylamino.

More particularly X is -O-, -SO₂- and -SO₂N(\mathbb{R}^7)- wherein \mathbb{R}^7 is hydrogen, fur-2-ylmethyl, thien-2-ylmethyl, pyrid-2-ylmethyl, pyrid-3-ylmethyl, pyrid-4-ylmethyl, phenylallyl or benzyl, where said benzyl is optionally substituted with methoxy, nitro, chloro, trifluoromethyl, methyl or N,N-dimethylamino.

In another aspect of the invention when X is $-SO_2N(R^7)$ - preferably R^7 is not hydrogen.

In another aspect of the invention when X is $-SO_2N(R^7)$ - preferably R^7 is optionally substituted benzyl wherein said optional substituents are as defined for R^{10} above.

Preferably R^1 is hydrogen, $C_{2\text{-6}}$ alkenyl and $C_{1\text{-6}}$ alkyl which is optionally substituted with phenyl where said phenyl is optionally substituted by one or more groups chosen from halo, cyano, $C_{1\text{-6}}$ alkoxy, nitro, $C_{1\text{-6}}$ alkylsulphonyl and benzyloxy.

More preferably R¹ is hydrogen, methyl, ethyl, propyl, isobutyl, 2-methylbut-2-ene and benzyl where said phenyl is optionally substituted with one group chosen from fluoro, chloro, methoxy, benzyloxy, mesyl, nitro and cyano.

Particularly R^1 is hydrogen and benzyl where said phenyl is optionally substituted with methoxy, fluoro, chloro, mesyl, nitro or cyano.

More particularly R¹ is hydrogen, benzyl, 2-fluorobenzyl, 3-methoxybenzyl, 3-chlorobenzyl, 3-nitrobenzyl, 4-mesylbenzyl and 4-cyanobenzyl.

In another aspect of the invention preferably R¹ is hydrogen.

Preferably R² is hydrogen.

Preferably R³ is hydrogen.

Preferably R⁴ is hydrogen, C₁₋₆alkyl (optionally substituted with C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl and C₁₋₆alkylsulphonyl), C₁₋₆alkoxy (optionally substituted with C₂₋₆alkynyl), C₁₋₆alkoxycarbonyl, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N-(HetC₁₋₆alkyl)carbamoyl, C₁₋₆alkylsulphanyl, R⁹- and N-(R⁹C₁₋₆alkyl)carbamoyl wherein R⁹ is phenyl or an optionally substituted 5 or 6 membered heteroaryl ring said optional substituents being chosen from one or more of C₁₋₆alkyl and halo. Het is as defined above (that is it is: a fully saturated monocyclic 5 - 8 membered heterocyclic ring, with up to 4 ring

PCT/GB00/00532 WO 00/49007

heteroatoms; for example pyrrolidinyl, imidazolidinyl, pyrazolidinyl, piperidyl, piperazinyl or morpholinyl).

14

More preferably R⁴ is hydrogen, methyl, methoxy, methoxycarbonyl, ethoxycarbonyl, methylthio, ethylthio, isopropylthio, methylthiomethyl, methylthioethyl, ethynyloxy,

propynyloxy, carbamoyl, methylaminocarbonyl, ethylaminocarbonyl, n-propylaminocarbonyl, isobutylaminocarbonyl, furyl (optionally substituted with methyl), pyridyl, thienyl (optionally substituted with bromo or methyl), N-methylpyrrolyl, benzylaminocarbonyl, pyridylmethylaminocarbonyl and morpholinoethylaminocarbonyl.

Particularly R⁴ is methoxy, isopropylthio, propynyloxy, furyl (optionally substituted with methyl) and thienyl.

More particularly R⁴ is methoxy, isopropylthio, propyn-1-yloxy, fur-2-yl, 5-methylfur-2-yl and thien-2-yl.

In another aspect of the invention preferably R⁴ is an optionally substituted 5 or 6 membered heteroaryl ring said optional substituents being chosen from one or more of C₁₋₆alkyl and halo.

More preferably R⁴ is optionally substituted thienyl or furyl said optional substituents being chosen from one or more of C₁₋₆alkyl and halo.

Particularly R⁴ is thienyl.

5

10

15

20

25

30

More particularly R⁴ is thien-2-yl.

Preferably R⁵ is hydrogen or methyl.

More preferably R⁵ is hydrogen.

According to another aspect of the present invention there is provided a compound of the formula (I) wherein:

Ar is an optionally substituted phenyl, optionally substituted naphthyl or an optionally substituted 5 membered heteroaryl ring, said optional substituents being chosen from one or more of halo, C₁₋₆alkoxy, C₁₋₆alkyl, nitro, C₁₋₆alkanoylamino, trifluoromethyl, $N,N-(C_{1-6}alkyl)_2$ amino and $N,N-(C_{1-6}alkyl)_2$ amino $C_{1-6}alkyl;$

X is $-N(R^7)$, $-S(O)_n$, -O or $-SO_2N(R^7)$ - wherein n = 0-2, R^7 is H, C_{1-6} alkyl (optionally substituted with cyano, Het and R¹⁰) or C₂₋₅alkenyl (optionally substituted with R¹⁰), and R¹⁰ is an optionally substituted five or six membered heteroaryl ring or optionally substituted phenyl said optionally substituents being chosen from one or more of halo, nitro, trifluoromethyl, N, N-(C₁₋₆alkyl)₂amino, C₁₋₆alkyl or C₁₋₆alkoxy;

 R^1 is hydrogen, C_{2-6} alkenyl or C_{1-6} alkyl which is optionally substituted with phenyl where said phenyl is optionally substituted by one or more groups chosen from halo, cyano, C_{1-6} alkoxy, nitro, C_{1-6} alkylsulphonyl and benzyloxy;

R² is hydrogen;

5 R³ is hydrogen;

10

15

 R^4 is hydrogen, C_{1-6} alkyl (optionally substituted with C_{1-6} alkylsulphanyl, C_{1-6} alkylsulphinyl and C_{1-6} alkylsulphonyl), C_{1-6} alkoxy (optionally substituted with C_{2-6} alkynyl), C_{1-6} alkoxycarbonyl, carbamoyl, N-(C_{1-6} alkyl)carbamoyl, N-(Het C_{1-6} alkyl)carbamoyl, C_{1-6} alkylsulphanyl, R^9 - or N-(R^9C_{1-6} alkyl)carbamoyl wherein R^9 is phenyl or an optionally substituted 5 or 6 membered heteroaryl ring said optional substituents being chosen from one or more of C_{1-6} alkyl or halo; and

R⁵ is hydrogen or methyl; or a pharmaceutically acceptable salt thereof.

A further preferred class of compounds is that of formula (I) wherein:

Ar is phenyl which is optionally substituted with 1 to 3 fluoro, chloro or bromo; X is -O-, -SO₂- or -SO₂N(\mathbb{R}^7)- wherein \mathbb{R}^7 is hydrogen, furylmethyl, thienylmethyl,

pyridylmethyl, phenylallyl or benzyl, where said benzyl is optionally substituted with methoxy, nitro, chloro, trifluoromethyl, methyl or *N,N*-dimethylamino;

R¹ is hydrogen or benzyl where said phenyl is optionally substituted with methoxy, fluoro, chloro, mesyl, nitro or cyano;

R² is hydrogen;

R³ is hydrogen;

R⁴ is methoxy, isopropylthio, propynyloxy, furyl (optionally substituted with methyl) and thienyl; and

25 R⁵ is hydrogen;

or a pharmaceutically acceptable salt thereof.

Preferred compounds are those of Examples 156-158 or a pharmaceutically acceptable salt thereof.

Especially preferred compounds are those of Examples 5, 19, 20, 27, 31, 38, 42, 43, 45, 46, 50, 51, 91, 92, 93, 94, 97, 98, 100, 101, 102, 104, 106, 108, 109, 111, 112, 114, 115, 116, 117, 120, 122, 126, 141, 143 or 146 or a pharmaceutically acceptable salt thereof.

10

15

20

Suitable pharmaceutically acceptable salts include acid addition salts such as the methanesulphonate, fumarate, hydrochloride, hydrobromide, citrate and maleate salts and salts formed with phosphoric and sulphuric acid. In another aspect suitable salts are base salts such as an alkali metal salt for example a sodium salt, an alkaline earth metal salt for example a calcium or a magnesium salt, an organic amine salt for example a salt with triethylamine, morpholine, N-methylpiperidine, N-ethylpiperidine, procaine, dibenzylamine, N,N-dibenzylethylamine or an amino acid for example a lysine salt. There may be more than one cation or anion depending on the number of charged functions and the valency of the cations or anions. A preferred pharmaceutically acceptable salt is a sodium salt.

Some compounds of formula (I) may possess chiral centres. It is to be understood that the invention encompasses all such optical isomers and diasteroisomers of compounds of formula (I) which possess cysteine protease inhibitory activity.

The invention further relates to all tautomeric forms of the compounds of formula (I).

It is also to be understood that certain compounds of the formula (I) can exist in solvated as well as unsolvated forms such as, for example, hydrated forms. It is to be understood that the invention encompasses all such solvated forms.

Another aspect of the present invention provides a process for preparing a compound of formula (I) or a pharmaceutically acceptable salt thereof. According to this aspect of the invention there is provided a process (in which variable groups are as defined for formula (I) unless otherwise stated) which comprises:

a) reacting an acid of formula (II):

$$Ar \xrightarrow{X} OH$$
(II)

or a reactive derivative thereof; with an amine of formula (III):

$$H \xrightarrow{R^4} R^5$$

$$R^3$$
(III)

10

15

20

25

A suitable reactive derivative of an acid of the formula (II) is, for example, an acyl halide, for example an acyl chloride formed by the reaction of the acid and an inorganic acid chloride, for example thionyl chloride; a mixed anhydride, for example an anhydride formed by the reaction of the acid and a chloroformate such as isobutyl chloroformate; an active ester, for example an ester formed by the reaction of the acid and a phenol such as pentafluorophenol, an ester such as pentafluorophenyl trifluoroacetate, an alcohol such as 1-hydroxybenzotriazole or a uronium salt such as 2-(1-benzotriazolyl)-1,1,3,3-tetramethyluronium hexafluorophosphate(V); an acyl azide, for example an azide formed by the reaction of the acid and an azide such as diphenylphosphoryl azide; an acyl cyanide, for example a cyanide formed by the reaction of an acid and a cyanide such as diethylphosphoryl cyanide; or the product of the reaction of the acid and a carbodiimide such as N,N-dicyclohexylcarbodiimide or 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide.

The reaction is preferably carried out in the presence of a suitable base such as, for example, an alkali or alkaline earth metal carbonate, alkoxide or hydroxide, for example sodium carbonate or potassium carbonate, or, for example, an organic amine base such as, for example, pyridine, 2,6-lutidine, collidine, 4-dimethylaminopyridine, triethylamine, morpholine or diazabicyclo-[5.4.0]undec-7-ene. The reaction is also preferably carried out in a suitable inert solvent or diluent, for example methylene chloride, acetonitrile, tetrahydrofuran, 1,2-dimethoxyethane, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidin-2-one or dimethylsulphoxide, and at a temperature in the range, for example, -78° to 150°C, conveniently at or near ambient temperature.

b) reaction of a compound of formula (IV):

with a compound of formula (V):

$$\begin{array}{c|c}
C & R^4 & R^5 \\
R^1 & R^2 & R^3 & N
\end{array}$$
(V)

wherein L is a displaceable group.

A suitable displaceable group L is, for example, a halogeno or sulphonyloxy group, for example a chloro, bromo, methanesulphonyloxy or toluene-4-sulphonyloxy group.

The reaction is preferably carried out in the presence of a suitable base as defined hereinbefore such as potassium carbonate. The reaction is also preferably carried out in a suitable inert solvent or diluent as defined hereinbefore such as N,N-dimethylformamide and at a temperature in the range of -0 to 100°C conveniently 25°C to 100°C.

c) dehydration of a compound of formula (VI):

$$Ar \xrightarrow{X} \begin{array}{c} O \\ R^4 \\ R^2 \\ R^3 \end{array} \begin{array}{c} R^5 \\ CONH_2 \end{array}$$
(VI)

10

15

20

under standard conditions.

For example such a dehydration reaction may conventionally be carried out by reaction with a reagent such as trifluoroacetic anhydride. The reaction can conveniently be conducted in the presence of a suitable base as defined hereinbefore such as, for example, triethylamine. The reaction is also preferably carried out in a suitable inert solvent or diluent, as defined hereinbefore such as dichloromethane and at a temperature in the range, for example, -10°C to reflux conveniently 10°C to reflux.

d) for compounds of formula (I) where X is $-SO_2N(R^7)$ -; reacting a compound of formula (VII):

$$\begin{array}{c|c}
R^7 & O & R^4 & R^5 \\
HN & N & CN \\
R^1 & R^2 & R^3
\end{array}$$
(VII)

with a compound of formula (VIII):

25

(VIII)

where L is a displaceable group as defined above;

The reaction is conveniently performed in the presence of a base as defined hereinbefore, such as triethylamine. The reaction is also preferably carried out in a suitable inert solvent or diluent as defined hereinbefore such as tetrahydrofuran and at a temperature in the range -20 to 100°C preferably 0 to 20°C.

5

15

20

25

e) For the preparation of compounds of formula (I) where X is $-SO_2N(R^7)$ - the reaction of a compound of formula (IX):

$$\begin{array}{c|c}
Ar & H & O & R^4 & R^5 \\
O & N & R^2 & R^3 & N
\end{array}$$
(IX)

10 with a compound of formula (X):

(X)

wherein L is a suitable displaceable group as defined above.

The reaction can conveniently be conducted in the presence of a suitable base as defined hereinbefore such as potassium carbonate, in a suitable inert solvent or diluent as defined hereinbefore such as acetonitrile and at a temperature in the range of 25°C to reflux, conveniently 50°C to reflux.

If not commercially available, the necessary starting materials for the procedures described above may be made by procedures which are selected from standard organic chemical techniques, techniques which are analogous to the synthesis of known, structurally similar compounds, by techniques which are analogous to the above described procedures or by techniques which are analogous to the procedures described in the examples.

For example, it will be appreciated that certain of the optional substituents on a phenyl or naphthyl or a heteroaryl ring in the compounds of the present invention may be introduced by standard aromatic substitution reactions or generated by conventional functional group modifications either prior to or immediately following the processes mentioned above, and as such are included in the process aspect of the invention. Such reactions and modifications include, for example, introduction of a substituent by means of an aromatic substitution reaction, reduction of substituents, alkylation of substituents and oxidation of substituents.

WO 00/49007 PCT/GB00/00532

20

The reagents and reaction conditions for such procedures are well known in the chemical art. Particular examples of aromatic substitution reactions include the introduction of a nitro group using concentrated nitric acid, the introduction of an acyl group using, for example, an acyl halide and a Lewis acid (such as aluminium trichloride) under Friedel Crafts conditions; the introduction of an alkyl group using an alkyl halide and Lewis acid (such as aluminium trichloride) under Friedel Crafts conditions; and the introduction of a halogeno group. Particular examples of modifications include the reduction of a nitro group to an amino group by, for example, catalytic hydrogenation with a nickel catalyst or treatment with iron in the presence of hydrochloric acid with heating; oxidation of alkylthio to alkylsulphinyl or alkylsulphonyl.

5

10

15

20

25

30

It will also be appreciated that in some of the reactions mentioned herein it may be necessary/desirable to protect any sensitive groups in the compounds. The instances where protection is necessary or desirable and suitable methods for protection are known to those skilled in the art. Thus, if reactants include groups such as amino, carboxy or hydroxy it may be desirable to protect the group in some of the reactions mentioned herein.

A suitable protecting group for an amino or alkylamino group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an alkoxycarbonyl group, for example a methoxycarbonyl, ethoxycarbonyl or *t*-butoxycarbonyl group, an arylmethoxycarbonyl group, for example benzoyl, or an aroyl group, for example benzoyl. The deprotection conditions for the above protecting groups necessarily vary with the choice of protecting group. Thus, for example, an acyl group such as an alkanoyl or alkoxycarbonyl group or an aroyl group may be removed for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide. Alternatively an acyl group such as a *t*-butoxycarbonyl group may be removed, for example, by treatment with a suitable acid as hydrochloric, sulphuric or phosphoric acid or trifluoroacetic acid and an arylmethoxycarbonyl group such as a benzyloxycarbonyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon, or by treatment with a Lewis acid for example boron tris(trifluoroacetate). A suitable alternative protecting group for a primary amino group is, for example, a phthaloyl group which may be removed by treatment with an alkylamine, for example dimethylaminopropylamine, or with hydrazine.

A suitable protecting group for a hydroxy group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an aroyl group, for example benzoyl, or an

10

15

20

25

30

arylmethyl group, for example benzyl. The deprotection conditions for the above protecting groups will necessarily vary with the choice of protecting group. Thus, for example, an acyl group such as an alkanoyl or an aroyl group may be removed, for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide. Alternatively an arylmethyl group such as a benzyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.

A suitable protecting group for a carboxy group is, for example, an esterifying group, for example a methyl or an ethyl group which may be removed, for example, by hydrolysis with a base such as sodium hydroxide, or for example a *t*-butyl group which may be removed, for example, by treatment with an acid, for example an organic acid such as trifluoroacetic acid, or for example a benzyl group which may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.

The protecting groups may be removed at any convenient stage in the synthesis using conventional techniques well known in the chemical art.

Many of the intermediates defined herein are novel, for example, those of the formula (VI) and these are provided as a further feature of the invention.

According to a further feature of the invention there is provided a compound of the formula (I), or a pharmaceutically acceptable salt thereof, for use in a method of treatment of the human or animal body by therapy.

In order to use a compound of the formula (I) or a pharmaceutically acceptable salt thereof for the therapeutic treatment of mammals including humans, in particular in the inhibition of a cysteine protease, it is normally formulated in accordance with standard pharmaceutical practice as a pharmaceutical composition.

In another aspect the present invention provides a pharmaceutical composition comprising a compound of formula (I), or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable diluent or carrier.

In a further aspect the present invention provides a compound of formula (I), or a pharmaceutically acceptable salt thereof, for use as a medicament.

In a still further aspect the present invention provides the use of a compound of formula (I), or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for use in the inhibition of a cysteine protease in a warm blooded animal, such as man.

WO 00/49007

5

10

15

20

25

30

In a still further aspect the present invention provides the use of a compound of formula (I), or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for use in the treatment of chronic obstructive pulmonary disease in a warm blooded animal, such as man.

22

PCT/GB00/00532

A method of treating a Cathepsin L or Cathepsin S mediated disease state in mammals which comprises administering to a mammal in need of such treatment an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt thereof.

According to a further feature of the present invention there is provided a method for producing inhibition of a cysteine protease in a warm blooded animal, such as man, in need of such treatment, which comprises administering to said animal an effective amount of a compound of the present invention, or a pharmaceutically acceptable salt thereof.

In particular the invention provides the use of a compound of the formula (I) of the present invention, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for use in the inhibition of Cathepsin S in a warm blooded animal, such as man.

In order to use a compound of the formula (I) or a pharmaceutically acceptable salt thereof for the therapeutic treatment of mammals including humans, in particular in the inhibition of a cysteine protease, it is normally formulated in accordance with standard pharmaceutical practice as a pharmaceutical composition.

In order to use a compound of the formula (I) or a pharmaceutically acceptable salt thereof for the therapeutic treatment of mammals including humans, in particular in the inhibition of a cysteine protease, it is normally formulated in accordance with standard pharmaceutical practice as a pharmaceutical composition.

The pharmaceutical compositions of this invention may be administered in standard manner for the disease condition that it is desired to treat, for example by oral, rectal or parenteral administration. For these purposes the compounds of this invention may be formulated by means known in the art into the form of, for example, tablets, capsules, aqueous or oily solutions or suspensions, (lipid) emulsions, dispersible powders, suppositories, ointments, creams, drops and sterile injectable aqueous or oily solutions or suspensions.

A suitable pharmaceutical composition of this invention is one suitable for oral administration in unit dosage form, for example a tablet or capsule which contains between 100 mg and 1 g of the compound of this invention.

In another aspect a pharmaceutical composition of the invention is one suitable for intravenous, subcutaneous or intramuscular injection.

Each patient may receive, for example, an intravenous, subcutaneous or intramuscular dose of 1 mgkg⁻¹ to 100 mgkg⁻¹ of the compound, preferably in the range of 5 mgkg⁻¹ to 20 mgkg⁻¹ of this invention, the composition being administered 1 to 4 times per day. The intravenous, subcutaneous and intramuscular dose may be given by means of a bolus injection. Alternatively the intravenous dose may be given by continuous infusion over a period of time. Alternatively each patient will receive a daily oral dose which is approximately equivalent to the daily parenteral dose, the composition being administered 1 to 4 times per day.

The following illustrate representative pharmaceutical dosage forms containing the compound of formula (I), or a pharmaceutically-acceptable salt thereof (hereafter compound X), for therapeutic or prophylactic use in humans:

(a)

5

10

Tablet I	mg/tablet	
Compound X.	100	
Lactose Ph.Eur.	179	
Croscarmellose sodium	12.0	
Polyvinylpyrrolidone	6	
Magnesium stearate	3.0	

(b)

15

Tablet II	mg/tablet	
Compound X	50	
Lactose Ph.Eur.	229	
Croscarmellose sodium	12.0	
Polyvinylpyrrolidone	6	
Magnesium stearate	3.0	

(c)

Tablet III	mg/tablet
Compound X	1.0
Lactose Ph.Eur.	92
Croscarmellose sodium	4.0
Polyvinylpyrrolidone	2.0
Magnesium stearate	1.0

(d)

Capsule	mg/capsule	
Compound X	10	
Lactose Ph.Eur.	389	
Croscarmellose sodium	100	
Magnesium stearate	1.	

5 (e)

Injection I	(<u>50 mg/ml</u>)
Compound X	5.0% w/v
Isotonic aqueous solution	to 100%

Buffers, pharmaceutically-acceptable cosolvents such as polyethylene glycol, polypropylene glycol, glycerol or ethanol or complexing agents such as hydroxy-propyl β cyclodextrin may be used to aid formulation.

10 <u>Note</u>

The above formulations may be obtained by conventional procedures well known in the pharmaceutical art. The tablets (a)-(c) may be enteric coated by conventional means, for example to provide a coating of cellulose acetate phthalate.

WO 00/49007 PCT/GB00/00532

Inhibition of Cathepsin L and S.

The pharmaceutically-acceptable compounds of the present invention are useful in the inhibition of Cathepsin L and Cathepsin S, having a good activity *in vitro* against human Cathepsin L, human Cathepsin S and rabbit Cathepsin L.

25

5

10

15

20

25

30

Cathepsin L Assay

Recombinant human Cathepsin L was cloned and expressed in E Coli and purified using the method as described by Zeneca Limited, GB 2 306 961 A (published 14.05.1997).

Rabbit Cathepsin L was purified from rabbit liver as described by Maciewicz R. A. and Etherington D. J. (Biochem. J. (1988) 256, 433-440) except the liver homogenate supernatant was concentrated by fractionation with (NH₄)₂SO₄ (20-80% saturation), and the pellet taken up and dialysed against 20mM NaAcetate pH 5.5, 1mM ethylenediaminetetraacetic acid (EDTA). The supernatant was then applied to a CM Sepharose ion exchange column and Cathepsin L eluted by gradient elution (0.25-0.75M NaCl). Fraction activity was determined using the synthetic substrate NCBz-Phe-Arg-NHMec as described. Cathepsin L fractions were pooled and desalted on a Sephacryl S100 column. Active fractions were pooled, adjusted to 20% saturation (NH₄)₂SO₄ and concentrated on a phenyl sepharose column. The remaining purification steps were as described.

Cathepsin L activity was measured based on the method of Barrett and Kirschke (1981 Methods in Enzymology, 80, 535-561), using the fluorogenic substrates NCBz-Phe-Arg-NHMec. Inhibitors were identified by their ability to decrease the generation of the fluorescent leaving group (NHMec). Briefly the assay was as follows:

rHuman Cathepsin L or rabbit Cathepsin L (0.025 pmoles) was pre-incubated with or without test compound in 0.1M sodium acetate buffer pH4.5, 10mM cysteine, 0.1% BRIJTM 35 at 25°C for 15 minutes in a solid black 96 well plate. Synthetic substrate, 20μM NCBz-Phe-Arg-NHMec, was added and the mixture incubated at 37°C for 30 minutes. The reaction was stopped by the addition of 0.1M sodium chloroacetate pH 4.3. Fluorescence was determined using a Fluoroskan II plate reader; excitation 355nm, emission 460nm. Compound potency was determined from the raw fluorescence data by calculating the IC₅₀ against each enzyme using a PC graph drawing software package.

PCT/GB00/00532 WO 00/49007

26

Cathepsin S assay.

Cloning and Expression of human Cathepsin S.

Recombinant human Cathepsin S was cloned and expressed in Baculovirus, by the following method. The cDNA sequence for human Cathepsin S is available in the EMBL database Accession Number M90696. This database sequence was used to prepare, by PCR on mRNA from human tissues, a recombinant plasmid carrying an insert with a DNA sequence identical to that of Cathepsin S in the EMBL database (Acc. no. M90696). The techniques for mRNA isolation, PCR and cloning are standard techniques known by those skilled in the art. Sequence determination of the recombinant insert was carried out using established DNA sequencing techniques.

The PCR was done so as to introduce an EcoRI cloning site 5' of the 'ATG' of Cathepsin S and an XbaI cloning site 3' of the 'Stop' codon. The PCR product was cloned between the EcoRI and XbaI sites of the baculovirus transfer vector pFASTBAC-1 (Bac-to-Bac™ Expression System commercially available from Gibco BRL –Life Technologies (cat. no. 10359-016)). This recombinant construct was used to generate, by standard techniques, a recombinant baculovirus capable of expressing preprocathepsin S.

Expression of recombinant Cathepsin S was tested for the baculoviral constructs by infection of two insect cell lines: Sf9 cells (ATCC no. CRL-1711) and T.ni cells (Invitrogen, cat. no. B855-02).

20

25

5

10

15

Purification of Cathensin S

Method 1.

Procathepsin S was found in the insect cell medium and acid activated. The medium was mixed with an equal volume of 100mM Sodium Acetate buffer pH 4.5, 5mM dithiothreitol (DTT) and 5mM EDTA and incubated for one hour at 37°C method of Maubach et al (Eur. J. Biochem., 250, 745-750, 1997).

Method 2.

The pH of insect cell medium (10ml) containing procathepsin S was adjusted to 4.5 30 with glacial acetic acid and DTT and EDTA added to 5mM. The sample was then incubated at 37°C for 150min to enable conversion to the active enzyme. Ammonium sulphate was then added to 80% saturation and a pellet obtained by centrifugation. This pellet was redissolved in 2ml buffer A (100mM Tris, 500mM NaCl, 1mM EDTA, pH7.5) and mixed in a batchwise fashion with 100µl thiopropyl-Sepharose for 15min at 4°C. The non bound fraction was removed by a brief centrifugation and the gel washed with 2x1ml buffer A. Cathepsin S was then eluted by batch mixing with 0.4ml 20mM DTT in buffer A for 15min at 4°C.

5

10

15

20

25

Measurement of Cathepsin S Activity.

Cathepsin S activity was measured based on the method of Maubach et al (Eur. J. Biochem., 250, 745-750, 1997), using the fluorogenic substrate Z-Val-Val-Arg-NHMec. Inhibitors were identified by their ability to decrease the generation of the fluorescent leaving group (NHMec). Briefly the assay was as follows:

rHuman Cathepsin S (1.5 nmoles) was pre-incubated with or without compounds in 50mM Potassium phosphate buffer pH 6.0-6.2, 20mM Na₂EDTA, 0.1% BRIJTM at 25°C for 5 minutes in a solid black 96 well plate. Synthetic substrate, 20μM Z-Val-Val-Arg-NHMec, was added and the mixture incubated at 30°C for 20 minutes. The reaction was stopped by the addition of 0.1M sodium chloroacetate pH 4.3. Fluorescence was determined using a Fluoroskan II plate reader; excitation 355nm, emission 460nm. Compound potency was determined from the raw fluorescence data by calculating the IC₅₀ against Cathepsin S using a PC graph drawing software package.

The following results were obtained on a standard *in-vitro* test system for the inhibition of Cathepsin L. The activity is described in terms of IC₅₀.

When tested in the above *in-vitro* tests the compounds of this invention give IC₅₀s in the range 1-10,000 nM.

Example	IC ₅₀ (Human)	IC ₅₀ (Rabbit)	
5		581.38	
105	499	499.18	
120	756		

- The invention will now be illustrated by the following non-limiting examples in which, unless stated otherwise:
- (i) temperatures are given in degrees Celsius (°C); operations were carried out at room or

ambient temperature, that is, at a temperature in the range of 18-25°C;

- (ii) organic solutions were dried over anhydrous magnesium sulphate; evaporation of solvent was carried out using a rotary evaporator under reduced pressure (600-4000 Pascals; 4.5-30 mm Hg) with a bath temperature of up to 60°C:
- 5 (iii) chromatography means flash chromatography on silica gel; thin layer chromatography (TLC) was carried out on silica gel plates;
 - (iv) in general, the course of reactions was followed by TLC and reaction times are given for illustration only;
 - (v) final products had satisfactory proton nuclear magnetic resonance (NMR) spectra;
- (vi) yields are given for illustration only and are not necessarily those which can be obtained by diligent process development; preparations were repeated if more material was required; (vii) when given, NMR data is in the form of delta values for major diagnostic protons, given in parts per million (ppm) relative to tetramethylsilane (TMS) as an internal standard,

determined at 300 MHz using perdeuterio dimethyl sulphoxide (DMSO-δ₆) as the solvent

- 15 unless otherwise stated:
 - (viii) chemical symbols have their usual meanings; SI units and symbols are used;
 - (ix) solvent ratios are given in percentage by volume;
 - (x) mass spectra (MS) were run with an electron energy of 70 electron volts in the chemical ionisation (CI) mode using a direct exposure probe; where indicated ionisation was effected by electron impact (EI) or fast atom bombardment (FAB); where values for m/z are given, generally only ions which indicate the parent mass are reported; and
 - (xi) melting points are uncorrected and (dec) indicates decomposition; the melting points given are those obtained for the materials prepared as described; polymorphism may result in isolation of materials with different melting points in some preparations.

25

30

20

Example 1

2-[2-(2,3-Dichlorophenoxy)acetamido]-2-(fur-2-yl)acetonitrile

Oxalyl chloride (0.39 g) was added to a suspension of 2,3-dichlorophenoxyacetic acid (0.69 g) in dichloromethane (20 ml). One drop of N,N-dimethylformamide was added and the mixture was allowed to stir at ambient temperature for 14 hours. The solvent was removed under vacuum and the residue was dissolved in dichloromethane (10 ml). This solution of acid chloride was added to a mixture of 2-(2-furyl)-aminoacetonitrile (0.5 g) and triethylamine

(0.63 g) in dichloromethane (10 ml) and was cooled in an ice bath. The reaction mixture was allowed to warm to ambient temperature and the solvent was removed under reduced pressure. The residue was subjected to column chromatography (silica) eluted with dichloromethane to give 2-[2-(2,3-dichlorophenoxy)acetamido]-2-(fur-2-yl)acetonitrile (the title compound) 0.65 g. Mp 112°C; NMR: 4.82 (s, 2H), 6.33 (d, 1H), 6.55 (m, 2H), 7.0 (dd, 1H), 7.29 (m, 2H), 7.77 (m, 1H), 9.48 (d, 1H).

Examples 2 - 19

5

10

The following analogues were prepared according to the method of Example 1 using the appropriate acids and substituted aminoacetonitriles:

$$R^{11}$$
 O H CN Q R^4

 R^{11} R⁴ Example Mp (°C) 2 2-Cl 2-furyl 78 3 4-MeO 2-furyl 105 4 2,4-diCl 60-61 Me 5 2,6 di-Cl 59-61 Me 6 2-Cl 79-81 Me 2,3 di-Cl 74-76 Me 8 2-Me 73-75 Me 2-NO₂ 85-86 Me

10	4-CH₃CONH-	√ ^O Me	136	
11	2,6 di-Me	Me Me	88-89	
12	2-F	2-furyl	59-60	·
13	2-Br	2-furyl	72-73	
14	2,4 di-Cl	2-(2-pyridyl)	149	-
15	2,4 di-Cl	2-(3-pyridyl)	136	
16	2,4 di-Cl	2-(4-pyridyl)	157	
17	2,4 di-Cl	3-furyl	74	
18	2,4 di-Cl	2-thienyl	134	
19	2,6 di-Br	2-furyl	93-94	
20	2,4,6-trichloro	2-furyl	105-6	

Example 21 - 59

5

The following analogues were prepared according to the method of Example 1 using the appropriate sulphur containing acids and substituted aminoacetonitriles:

$$R^{12} \xrightarrow{\begin{array}{c} O \\ S \end{array}} \xrightarrow{\begin{array}{c} O \\ S \end{array}} O \xrightarrow{\begin{array}{c} O \\ N \end{array}} \xrightarrow{\begin{array}{c} R^4 \\ N \end{array}}$$

Example	R ¹²	R ²	R ⁴	Mp (°C)	MH ⁺
21	Н	Н	L _o)	135-6	
22	4-Cl	Н		90-95	
23	2,4-diCl	Н	√ _O Me		387

24	3-CI	Н		125.5-127	
25	2-Me	Н			319
26	2-MeO	Н	10 N	41-2.	
27	2-Cl	Н	10 N	112-114	
28	2-F	Н	10 N	95-6	
29	3-F	Н	(a)	139-40	
30	3-Cl	Ме	(o)	118-20	
31	2,4-diCl	Н	\mathcal{L}_{s}	115	
32	2-Cl	Н	\mathcal{L}_{s}	103-4	
33	4-Me	Н		120-1	
34	2-Br	H		105-6	
35	4- [(Me) ₂ NCH ₂]	Н	L 0		362
36	2-Cl				407

37	4-MeO	Н		1.	1005
		П	∠ _o)		335
38	2-Cl		\mathcal{L}_{s}	143-4	
39	4-MeO	H	\mathbb{Z}_{s}	84-5	
40	2-Cl	F.		153-4	
41	2-Cl	o Me		116-7	
42	2-Cl	0. Me	\mathcal{A}_{s}	155-156	
43	2-Cl	F	\mathcal{L}_{s}	107-8	
44	2-Cl			56-7	
45	Н		\mathcal{L}_{s}	175-6	
46	2-Cl	CI	\mathcal{L}_{s}	109-10	
47	Н	O. Me	\mathbb{Z}_{s}	174-5	

48	2-Cl	Me O	\mathbb{Z}_{s}	57-8	
49	2-Cl		\mathcal{A}_{s}	42-3	
50	Н	, o , s : o		158-9	
51	Н	O = N		156-8	
52	Н			170-1	

$$R^{13}$$
 X O R^4 N N

Example	X	R ¹³	R ⁴	Mp (°C)	MH ⁺
53	S	4-Cl	10 No.	91	
54	S(O) ₂	2,4-diCl		147	
55	S(O) ₂	2,4-diCl	N		383

56	S(O) ₂	2,4-diCl	109	
57	S(O) ₂	2-Cl	132-3	
58	S(O) ₂	2-Me	102-3	
59	S(O) ₂	2-Cl	105-6	

Examples 60 - 131 and 159-167

5

Examples 60-131 were prepared according to the method of Example 1 using the appropriate sulphonamide containing acids and substituted aminoacetonitriles. Examples 159-167 were prepared by adapting a suitable method disclosed herein.

$$R^{15} \xrightarrow{Ar} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} R^{4}$$

Example	Ar	R ¹⁵	R ¹⁴	R ²	R ⁴	Mp (°C)	MH ⁺
60	Ph	2,6-diCl	Н	Н	L _o L _{Me}		402
61	Ph	4-Cl		H		135	
62	Ph	2,4-diCl	Me	Н	10 No.		403
63	Ph	4-Cl	Н	Н	10 N		354

64	Ph	2,4-diCl	T T	Н	1 . 🗀	121	T
		2,4-0101		"		121	
65	Ph	4-Cl	Ме	Н		153	
66	Ph	4-Cl	~	Н		100	
67	Ph	4-Cl	Me	Н		170	
68	Ph	4-Cl	Ме	Н		159	
69	Ph	2-Cl	Ме	Н	(o)		368
70	Ph	2-Cl	Me	Н	(°)		368
71	Ph	2-Cl	Ме	Н	N		379
72	Ph	2-Cl	Ме	Н			384
73	Ph	2-Cl		Н	(a)	112	
74	Ph	2-Cl		Н		115	
75	Ph	2-Cl		Н	N N N N N N N N N N N N N N N N N N N		455

	·					· · · · · · · · · · · · · · · · · · ·	
76	Ph	2-Cl		Н	\mathcal{L}_{s}	105	
77	Ph	2-Cl	Y	Н	(a)	110	
78	Ph	2-Cl	Y	Н		134	
79	Ph .	2-Br		Н	(a)	110	
80	Ph .	2-Br		Н	\mathcal{L}_{s}	115	
81	Ph	2-Br .		Н	(a)	132	
82	Ph	2-Br	Y	Н		155	
83	Ph	2-NO ₂		Н		108	
84	Ph	2-NO ₂		Н .		117	
85	Ph	2-CF ₃		Н	\mathcal{L}_{s}	129	
86	Ph	2-F		Н	(a)	109	·

	Т		,			, .	
87	Ph	2-F		Н	\mathcal{L}_{s}	88	
88	Ph	2,4-diCl		Н	√S Br		574
89	Ph	2-Cl	CN	Н	\mathcal{L}_{s}		423
90	Ph	2,4-diF		Н	\mathcal{L}_{s}	112	
91	Ph	2,4-diF		Н	\mathcal{L}_{s}	113	
92	Ph	2-F		Н	\mathcal{L}_{s}	110	
93	Ph	2-F		Н	\sqrt{s}	160	
94	Ph	Н		Н	\mathcal{L}_{s}	125	
95	Ph	2-F		н		186	

	1		т	γ	· ·		
96	Ph	2-F		Н	\sqrt{s}	138	
97	Ph	2-F	N	Н	\mathcal{L}_{s}	125	
98	Ph	2-F	N	Н	\mathcal{L}_{s}	130	
99	Ph	2-F	Et	Н	\mathcal{I}_{s}	78	
100	Ph	2-F		Н	\mathcal{L}_{s}	106	
101	Ph	Н		Н	\sqrt{s}	108	·
102	Ph	Н	s	Н	\mathcal{L}_{s}	88	
103	Ph	Н		Н	\mathcal{L}_{s}	138	
104	Ph	Н		Н		81	

	T = -	r	r		·	, 	
105	Ph	Н	Н		\mathcal{L}_{s}	178	
106	Ph	Н	0//N			16	
107	Ph	Н		Н		115	
108	Ph	Н		Н	$\mathcal{L}_{\mathbf{s}}$	75	
109	Ph '	Н		Н	\mathcal{L}_{s}	114	
110	Ph	Н	N	Н		150	
111	Ph	Н	N	Н		110	

			,		r -		
112	Ph	H	₩ C	Н	\mathcal{L}_{s}	112	
113	Ph	Н		Н	∠ _s \	144	
114	Ph	Н		Н	\mathcal{L}_{s}	99	
115	Ph	Н		Н		136	
116	Ph	Н .	$\bigvee_{F} F$	Н	\mathcal{L}_{s}	72	
117	Ph	Н		Н	\mathcal{L}_{s}	135	
118	Ph	Н		Н	\mathcal{L}_{s}	119	

119	Napth-3-	Н	1 1	T 7 7	Т.	T	
119	4	l n		Н		137	
	yl				s		
1							
120	Napth-1-	Н	 	77	 	<u> </u>	
120		п		Н		157	
	yl				$\sim_{\rm s}$		
121	Napth-1-	5-		Н		0.6	<u> </u>
121	1			П		86	
	yl	(CH ₃) ₂ N			s		
122	Ph	Н		H			450
122	1 11	11			// \\		469
			N.		s ⁻		
				<u></u>			
123	Ph	Н		Н	EtOC(O)	107	
					_		
					ļ		
124	Ph	Н	L _	Н	7	126	
1							
				ĺ	O NH		
			Ĭ				
125	Ph	Н	1	Н	C N	160	
					0 ≥ NH		
					1		
126	Ph	**	TT				
120	l Pn	Н	Н			89	
				L	$\sim_{\rm s}$		
159	Ph	u	U	ion Description	0.41: 1	160 165	
160	Ph	H H	H H	iso-Propyl (3-	2-thienyl 2-thienyl	162-165	165
		**	**	indolyl)-	2-unenyi		465
				CH ₂			
161	Ph	H	Н	benzyl	2-thienyl		412
162	Ph	H	Н	(CH ₂) ₄ N(2-thienyl		435
				H)CHO			
163	Ph	H	Н	CH₂cycloh	2-thienyl		432
164	DI	T.Y.		exyl			
164	Ph	H	H	t-Butyl	2-thienyl		·
165	Ph	H	Н	n-Butyl	2-thienyl		

166	Ph	H	H	Ph(CH ₂) ₂	2-thienyl	440
167	Ph	Н	H	D-2-	2-thienyl	392
]				methyl-n-		
L				Propyl		

Example	Ar	Y	Mp (°C)
127	CI S	0	127
128	CI_S	S	88
129	Cl	S	146
130	CI S CI	S	153
131	· Ls	S	130

5

The following analogue was prepared according to the method of Example 1 using the appropriate (substituted phenyl)-N-methylglycines and substituted aminoacetonitriles:

Example	R ¹⁶	MH ⁺
132	2,4 di-Cl	338

Examples 133 - 139

The following analogues were prepared according to the method of Example 1 using the appropriate starting materials:

ArX
$$R^4$$
 R^5 CN

Example	Ar	X	R ⁴	R ⁵	Mp (°C)	MH ⁺
133	2,4,6-trichlorophenyl	0	Н	Н	116-118	293
134	2,4-dichlorophenyl	0	Н	Н		259
135	2,4,5-trichlorophenyl	0	Н	Н		293
136	pentachlorophenyl	0	Н	Н	154-157	361
137	2,4,6-trichlorophenyl	0	Me	Me	109-110	321
138	2,4-dichlorophenyl	0	MeOC(O)-	H		317
139	2-naphthyl	S	Н	Н		257

Examples 140 - 144

5

10

The following analogues were prepared according to the method of Example 1 using the appropriate starting materials:

Example	(R ¹⁸) _n	R ¹⁷	Mp (°C)
140	2,4-diCl	EtO-	119-20
141	2-CI	EtO-	100-1
142	2,4-diCl	ⁿ PrNH-	161-2
143	2,4-diCl	ⁱ BuNH-	162-3
144	2,4-diCl	PhCH ₂ NH-	194-5

5

15

20

2-[2-(2-Naphthylsulphonyl)acetamido]-acetonitrile

A mixture of 2-[2-(2-naphthylthio)acetamido]-acetonitrile (130 mg), methanol (2 ml), tetrahydrofuran (2 ml), oxone (500 mg) and water (1 ml) was stirred at room temperature for 24 hours. The mixture was made up to a volume of 20 ml by diluting with water and the precipitate was collected, dried and recrystallised from ethyl acetate to give 2-[2-(2-naphthylsulphonyl)acetamido]-acetonitrile (130 mg). M/z 289 (MH⁺); ¹H NMR 4.15 (d, 2H), 4.45 (s, 2H), 7.75 (m, 2H), 7.85 (dd, 1H), 8.1 (d, 1H), 8.2 (m, 2H), 8.55 (s, 1H), 8.95 (m, 1H). Example 146

10 <u>2-[2-(2,4,6-Trichlorophenoxy)acetamido]-2-methoxyacetonitrile</u>

Trifluoroacetic anhydride (0.12 ml) was added dropwise to a stirred mixture of 2-[2-(2,4,6-trichlorophenoxy)acetamido]-2-methoxyacetamide (98 mg) in pyridine (3 ml) at -15°C. The mixture was allowed to warm to ambient temperature then poured into ice-water and extracted with ether. The organic phase was washed with brine, dried and evaporated to dryness under reduced pressure to give 2-[2-(2,4,6-trichlorophenoxy)acetamido]-2-methoxyacetonitrile (70 mg). Mp 123-124°C; m/z 323 (MH⁺); ¹H NMR 3.35 (s, 3H), 4.55 (s, 2H), 6.02 (d, 1H), 7.72 (s, 2H), 9.90 (d, 1H).

Examples 147 - 150

The following analogues were prepared according to the method of Example 146 using the appropriate starting materials:

$$ArO \underbrace{\hspace{1cm} \bigcap_{\substack{N \\ H}}^{\ \ \ } CN}_{\ \ \ \ \ }^{R^5}$$

Example	Ar	R ⁵	Mp (°C)	MH⁺
147	2,4-dichlorophenyl	methoxy	130-132	228M+
148	2,4,6-trichlorophenyl	isopropylthio	58-59	367
149	2,4-dichlorophenyl	isopropylthio	94-95	333
150	2,4-dichlorophenyl	methylthioethyl	-	333

5

10

15

20

25

30

2-[2-(2,4-Dichlorophenoxy)acetamido]-2-prop-2-ynyloxy acetonitrile

N-bromosuccinimide (42 mg) was added to a stirred solution of 2-[2-(2,4-dichlorophenoxy)acetamido]-2-isopropylthio acetonitrile (52 mg) in propargyl alcohol (1.5 ml). The mixture was allowed to warm to room temperature and evaporated to dryness under reduced pressure and the residue was partitoned between ethyl acetate and water. The organic phase was separated, dried and evaporated to dryness under reduced pressure. The residue was purified by medium pressure liquid chromatography on silica using increasingly polar mixtures of ether and hexane as eluent to give 2-[2-(2,4-dichlorophenoxy)acetamido]-2-prop-2-ynyloxy acetonitrile (24 mg). Mp 74-75°C; m/z 312 (M⁺); ¹H NMR (CDCl₃) 3.4 (t, 1H), 4.3 (d, 2H), 4.8 (s, 2H), 6.15 (d, 1H), 7.05 (d, 1H), 7.4 (dd, 1H), 7.6 (d, 1H), 9.85 (d, 1H). Example 152

N-(4-Morpholino)ethyl-2-cyano-2-[2-(2,4-dichlorophenoxy)acetamido]acetamide

A mixture of methyl-2-(2,4-dichlorophenoxy)acetamido-2-cyano acetate (100 mg), acetonitrile (0.5 ml) and 4-aminoethylmorpholine was stirred at ambient temperature for 2 hours. The mixture was evaporated to dryness under reduced pressure and the residue was purified by medium pressure liquid chromatography on silica using increasingly polar mixtures of ethyl acetate and chloroform as eluent followed by trituration with ether/hexane to give *N*-(4-morpholino)ethyl-2-cyano-2-[2-(2,4-dichlorophenoxy)acetamido]acetamide (70 mg). M/z 415 (MH⁺); ¹H NMR (CDCl₃,ppm) 2.4-2.65 (m, 6H), 3.45 (m, 2H), 3.75 (m, 4H), 4.6 (m, 2H), 5.4(d, 1H), 6.85 (m, 2H), 7.25 (m, 1H), 7.8 (d, 1H).

Example 153

4-Chlorophenylsulphinylacetyl-2(2-furyl)-acetonitrile

Sodium metaperiodate (0.33 g) in water (5 ml) was added to a solution of 4-chlorophenylthioacetyl-2(2-furyl)-acetonitrile (0.4 g) in methanol (30 ml) and the mixture was stirred at ambient temperature for 14 hours. The reaction mixture was diluted with water (100 ml) and extracted with diethyl ether (3 x 50 ml) and dried. The residue obtained on removal of the solvent was subjected to chromatography, eluting with a mixture of ethyl acetate and dichloromethane (1:20 v/v) to give 4-chlorophenylsulphinylacetyl-2(2-furyl)-acetonitrile, 0.18 g. Mp 124 °C; C₁₄H₁₁ClN₂O₃S requires C, 52.1%; H, 3.4%; N, 8.7%. Found; C, 52.3%; H, 3.4%; N, 8.7%. ¹H NMR 3.91 (m, 2H), 6.28 (dd, 1H), 6.55 (m, 2H), 7.68 (m, 4H), 7.77 (m, 1H), 9.50 (d, 1H).

5

10

46

2-Cyano-2-[2-(2,4-dichlorophenoxy)acetyl]aminoacetamide

A mixture of 2,4-dichlorophenoxyacetic acid (1.12 g), 2-amino-2-cyanoacetamide (0.5 g), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (1.06 g) and hydroxybenzotriazole (0.75 g) in N,N-dimethylformamide (20 ml) was stirred at ambient temperature for 18 hours. The solvent was removed under reduced pressure and the residue was diluted with water and extracted with ethyl acetate (2 x 75 ml). The ethyl acetate extracts were washed with 2M hydrochloric acid, water, saturated aqueous sodium bicarbonate and brine and dried over magnesium sulphate. Removal of the solvent gave a solid which was washed with an acetone-diethyl ether mixture and air dried to give 2-cyano-2-[2-(2,4dichlorophenoxy)acetyl]aminoacetamide, yield 1.1 g. Mp 190-193°C; m/z 302 (MH⁺).

Example 155

2-Cyano-2-[2-(2,6-dichlorophenoxy)acetyl]aminoacetamide was also made by the procedure of Example 154. Mp 207-209°C.

15 **Examples 156-158**

The following analogues were prepared according to the method of Example 1 using the appropriate starting materials:

Ex No.	R ¹⁹	Mp (°C)	MH ⁺
156	H	110	435.5
157	3-CF ₃	gum	503
158	3-NO ₂	gum	480.5

20 **Examples 168-176**

The following Examples were prepared by adapting a suitable method hereinbefore disclosed using appropriate starting materials.

Example	Ar	R ²⁰	L¹	Mp	M+H
168	1,3-di-Me-5-Cl-pyrazol-4-yl	CH ₂ Ph	CH ₂	155	
169	4-Ph-Ph	CH ₂ Ph	CH ₂	118	
170	6-Cl-imidazo[2,1-b]thiazol-5-yl	Н	CH-cyclohexyl	155	
171	1-Me-4-imidazolyl	Н	CH-cyclohexyl	170	
172	5-(2-Me-thiazol-4-yl)-2-thienyl	CH ₂ Ph	CH ₂	157	
173	5-(5-CF ₃ -1-Me-pyrazol-3-yl)-2- thienyl	CH ₂ Ph	CH ₂	124	
174	5-(2-pyridyl)-2-thienyl	CH ₂ Ph	CH ₂	154	
175	3-CF ₃ -PhCH ₂	CH ₂ Ph	CH ₂		426
176	1,2-di-Me- imidazol-4-yl	CH ₂ Ph	CH ₂	1	362

Preparation of Starting Materials

The starting materials for the Examples above are either commercially available or are readily prepared by standard methods from known materials. For example the following reactions (Methods A-M) are illustrations but not limitations of the preparation of some of the starting materials used in the above reactions.

Method A

5

10

15

2-(2-Furyl)-aminoacetonitrile hydrochloride

Ammonium chloride (25 g) was added to a solution of 2-furfuraldehyde (25 g) in diethyl ether (250 ml). A solution of sodium cyanide (17 g) in water (80 ml) was added over 20 minutes. The reaction mixture was stirred at ambient temperature for 14 hours, the aqueous layer was removed and the organic layer was washed with saturated aqueous sodium hydrogen carbonate solution (2 x 100 ml), dried and evaporated to dryness. The residue was dissolved in diethyl ether (250 ml) and cooled to 0°C. Hydrogen chloride gas was bubbled through the solution keeping the temperature below 10°C. 2-(2-Furyl)-aminoacetonitrile hydrochloride (the title compound) was filtered and dried, yield 33 g. ¹H NMR 6.19 (s, 1H), 6.56 (m, 1H), 6.78 (d, 1H), 7.83 (m, 1H), 9.83 (broad s, 2H).

Methods A1-4

Following the method outlined in Method A and using the appropriate aldehyde there was prepared:

A1 2-[2-(5-methylfuryl)]-aminoacetonitrile hydrochloride;

WO 00/49007 PCT/GB00/00532

48

A2 2-(3-furyl)-aminoacetonitrile hydrochloride;

A3 2-(2-thienyl)-aminoacetonitrile hydrochloride;

A4 2-[2-(4-bromothienyl)]-aminoacetonitrile hydrochloride.

Method B

10

15

20

25

30

5 <u>2-(2-Pyridyl)-aminoacetonitrile hydrobromide</u>

2-Pyridine carboxaldehyde (25 g) was added over 30 minutes to a cooled (0°C) solution of sodium cyanide (12.6 g) in water (75 ml). The mixture was stirred at 0 °C for 10 minutes and acetic acid (15.5 g) was added over 30 minutes. The mixture was stirred at ambient temperature for 14 hours and the solid 2-hydroxy-2-(2-pyridyl)-acetonitrile was filtered and dried. The solid cyanohydrin was added to a cooled (0°C) solution of ammonium chloride (60.9 g) and ammonia (31 ml) in water (170 ml) and the mixture was stirred at ambient temperature for 14 hours. The solid was filtered and washed with water (3 x 100 ml). The combined aqueous extracts were washed with dichloromethane (7 x 100 ml). The dichloromethane extracts were dried and the solvent removed under reduced pressure. The residue was suspended in diethyl ether (200 ml) and HBr in acetic acid was added. The solid 2-(2-pyridyl)-aminoacetonitrile hydrobromide was filtered and washed with diethyl ether (4 x 50 ml) and dried under vacuum, yield 4.7 g.

Methods B1-2

Following the method outlined in Method B and using the appropriate cyanohydrin there was prepared:

B1 2-(3-pyridyl)-aminoacetonitrile hydrochloride, Mp 148 °C;

B2 2-(4-pyridyl)-aminoacetonitrile hydrochloride.

Method C

Pentachlorophenoxy acetic acid

A mixture of pentachlorophenol (5 g), acetone (80 ml), methyl bromoacetate (1.74 ml) and potassium carbonate (7.8 g) was stirred at reflux for 3 hours, cooled, filtered and the filtrate was evaporated to dryness under reduced pressure to give methyl-2-(pentachlorophenoxy)acetate (6.27 g). M/z 336 (M⁺) which was used without further purification.

A mixture of methyl-2-(pentachlorophenoxy)acetate (2 g), tetrahydrofuran (12 ml), methanol (10 ml) and 4M sodium hydroxide (4.6 ml) was stirred at ambient temperature for 3 hours. The solution was concentrated to 5 ml under reduced pressure, diluted with water and

acified with glacial acetic acid. The precipitate was collected, washed with water and dried to give pentachlorophenoxy acetic acid (1.89 g). M/z 322 (M⁺).

Method D

5

10

15

20

25

2-[2-(2,4,6-Trichlorophenoxy)acetamido]-2-methoxyacetamide

A mixture of 2,4,6-trichlorophenol (7.5 g), acetone (150 ml), methyl bromoacetate (3.52 ml) and potassium carbonate (15.72 g) was stirred at reflux for 3 hours, cooled and filtered. The filtrate was evaporated to dryness under reduced pressure to give methyl-2-(2,4,6-trichlorophenoxy)acetate (10.2 g). M/z 268 (M⁺) which was used without further purification.

A mixture of methyl-2-(2,4,6-trichlorophenoxy)acetate (10.1 g), methanol (30 ml) and concentrated aqueous ammonia (50 ml) was stirred at ambient temperature for 16 hours. The insoluble solid was collected washed with water, dried and evaporated to dryness under reduced pressure to give 2-(2,4,6-trichlorophenoxy)acetamide (8.52 g). M/z 254 (MH⁺).

A mixture of glyoxilic acid monohydrate (1.5 g) and dichloroethane (50 ml) was stirred at reflux until the volume had been reduced to 25 ml. 2-(2,4,6-trichlorophenoxy)acetamide (4.1 g) was added and the mixture stirred at reflux for 5 hours, cooled, and the insoluble solid collected to give 2-[2-(2,4,6-trichlorophenoxy)acetamido]-glycolic acid (2.98 g). M/z 328 (MH⁺) which was used without further purification.

Thionyl chloride (4 ml) was added to a stirred solution of 2-[2-(2,4,6-trichlorophenoxy)acetamido]glycolic acid (500 mg) in 1:1 dichloromethane:tetrahydrofuran (10 ml) and the mixture was stirred at ambient temperature under argon for 2.5 hours and then evaporated to dryness under reduced pressure. The residue was dissolved in methanol and the mixture was stirred at ambient temperature under argon for 0.3 hours and then evaporated to dryness under reduced pressure. The residue was treated with concentrated aqueous ammonia (20 ml) and the mixture was stirred at ambient temperature for 18 hours. The insoluble solid was collected and purified by medium pressure liquid chromatography on silica using 2% methanol in dichloromethane as eluent to give 2-[2-(2,4,6-trichlorophenoxy)acetamido]-2-methoxyacetamide (100 mg). M/z 341 (MH⁺).

Method D1

Following the method outlined in Method D and using the appropriate starting materials there was prepared:

D1 2-[2-(2,4,-dichlorophenoxy)acetamido]-2-methoxyacetamide. M/z 306 (MH⁺).

Method E

5

10

15

20

30

2-[2-(2,4,6-Trichlorophenoxy)acetamido]-2-isopropylthio acetamide

Concentrated sulphuric acid (0.5 ml) was added to a stirred, ice cold mixture of 2-[2-(2,4,6-trichlorophenoxy)acetamido]glycolic acid (1 g), glacial acetic acid (5 ml) and 2-propanethiol (1.13 ml) and the mixture was kept at ambient temperature for 16 hours. The mixture was then treated with water and extracted with ethyl acetate. The extract was washed successively with water and brine, dried and evaporated to dryness under reduced pressure to give 2-[2-(2,4,6-trichlorophenoxy)acetamido]-2-isopropylthio acetic acid (1.29 g) which was used without further purification. M/z 386 (MH⁺).

A mixture of 2-[2-(2,4,6-trichlorophenoxy)acetamido]-2-isopropylthio acetic acid (1.14 g), methanol (7 ml) and concentrated sulphuric acid (0.2 ml) was stirred at ambient temperature for 4 hours. The mixture was basified with aqueous sodium bicarbonate and the resulting mixture was extracted with ethyl acetate and the extract was dried and evaporated to dryness under reduced pressure to give methyl-2-[2-(2,4,6-trichlorophenoxy)acetamido]-2-isopropylthio acetate (1.29 g) which was used without further purification. M/z 400 (MH⁺).

A mixture of methyl-2-[2-(2,4,6-trichlorophenoxy)acetamido]-2-isopropylthio acetate (0.99 g) and concentrated aqueous ammonia (20 ml) was stirred at ambient temperature for 18 hours. The insoluble solid was collected and washed with water to give 2-[2-(2,4,6-trichlorophenoxy)acetamido]-2-isopropylthio acetamide (0.79 g). M/z 385 (MH⁺) which was used without further purification.

Method E1

Following the method outlined in Method E and using the appropriate starting materials there was prepared:

E1 2-[2-(2,4-dichlorophenoxy)acetamido]-2-isopropylthio acetamide. M/z 351 (MH⁺).

25 Method F

(2S)-2-[2-(2,4-Dichlorophenoxy)acetamido]-4-methylthiobutyramide

2,4-Dichlorophenoxyacetylchloride (1.2 g) was added dropwise to a stirred, ice cooled mixture of 2-S-methionine amide hydrochloride (0.91 g), N,N-dimethylformamide (10 ml) and 4-methyl morpholine (0.8 ml) was stirred at ambient temperature for 2 hours. Water was added and the mixture was extracted with chloroform. The extract was washed successively with water, 1M hydrochloric acid and brine, dried and evaporated to dryness under reduced

51

pressure. The residue was triturated with ether and the insoluble solid collected to give (2S)-2-[2-(2,4-dichlorophenoxy)acetamido]-4-methylthiobutyramide (1.25 g). M/z 351 (MH⁺).

Method G

5

10

15

20

Ethyl (3-chlorophenylthio)acetate

A mixture of 3-chlorothiophenol (6.0 g) and potassium carbonate (7.45 g) in acetone (50 ml) was stirred at ambient temperature for 30 minutes then ethyl bromoacetate (6.06 ml) was added. The mixture was stirred for 14 hours and filtered. The filtrate was evaporated to dryness and the residue was subjected to chromatography, eluting with a mixture of dichloromethane and isohexane (1:1, v/v) to give ethyl (3-chlorophenylthio)acetate, 9.22 g, as an oil. M/z 231 (MH)⁺.

Method H

Ethyl 3-chlorophenylsulphonylacetate

A solution of ethyl (3-chlorophenylthio)acetate (3.5 g) in dichloromethane (75 ml) was cooled to 0°C in an ice bath and m-chloroperbenzoic acid (3.16 g) was added in portions. The mixture was stirred for 3 hours and a further portion of m-chloroperbenzoic acid (3.16 g) was added. The mixture was stirred for 2 hours and filtered. The filtrate was washed successively with aqueous 5% sodium thiosulphate solution (3 x 50 ml), saturated aqueous sodium bicarbonate (3 x 50 ml) and brine (50 ml) and dried. The oil obtained on removal of the solvent was subjected to chromatography, eluting with a mixture of dichloromethane and isohexane (1:1, v/v) to give ethyl 3-chlorophenylsulphonylacetate, 2.92 g, as an oil. M/z 280 (M+NH₄)⁺.

Method I

3-Chlorophenylsulphonylacetic acid

A mixture of ethyl 3-chlorophenylsulphonylacetate (2.9 g) and aqueous 2M sodium hydroxide solution (28 ml) in a mixture of methanol (20 ml) and tetrahydrofuran (30 ml) was stirred at ambient temperature for 14 hours. The solvent was removed under reduced pressure and water (10 ml) was added to the residue which was acidified to pH 1-2 with concentrated HCl. 3-Chlorophenylsulphonylacetic acid was filtered and dried, yield 2.5 g.

Method J

30 Ethyl 2-(3-chlorobenzyl)-2-(2-chlorophenyl)sulphonyl acetate

Sodium hydride (0.25 g) was added to a solution of ethyl 2-chlorophenylsulphonylacetate (1.50 g) in N,N-dimethylformamide (75 ml) and the mixture

was stirred for 30 minutes. 3-Chlorobenzyl bromide (0.83 ml) was added and the mixture was stirred for 14 hours. The solvent was removed under reduced pressure and the residue was dissolved in ethyl acetate (75 ml) and washed with 2M hydrochloric acid (3x 25 ml) and water (25 ml) then dried. The oil obtained on removal of the solvent was subjected to chromatography, eluting with a mixture of dichloromethane and isohexane (1:1, v/v) to give ethyl 2-(3-chlorobenzyl)-2-(2-chlorophenyl)sulphonyl acetate, 1.74 g. M/z 387 (MH⁺).

Method K

5

10

15

20

N-(N-Morpholinosulphonyl)-N(benzyl)glycine

N-(N-Morpholinosulphonyl)-N(benzyl)glycine methyl ester (Method L) (1.3 g) was dissolved in ethanol (25 ml) and aqueous 2M sodium hydroxide (9.9 ml) was added and the mixture stirred at ambient temperature for 20 hours. The reaction mixture was reduced to small volume, diluted with water (25 ml), acidified with 2M HCl and extracted with dichloromethane (3x25 ml). The combined dichloromethane extracts were dried. The solvent was removed and the residue was triturated with isohexane to give the title compound, 0.9g.

Mp 168 °C; NMR: 7.3 (m, 4H), 4.49 (s, 2H), 3.75 (s, 2H), 3.58 (m, 4H), 3.1 (m, 4H).

Method L

N-(N-Morpholinosulphonyl)-N(benzyl)glycine methyl ester

A mixture of N-(N-morpholinosulphonyl)glycine methyl ester (Method M) (1.4 g), benzyl bromide (1.06 g) and potassium carbonate (0.83 g) in acetonitrile (10 ml) was stirred at ambient temperature for 24 hours. The reaction mixture was filtered and the filtrate was evaporated to dryness and the residue obtained was chromatographed on silica eluting with a mixture of ethyl acetate and isohexane (1/1 v/v) to give the title compound, 1.3g. NMR (CDCl₃): 7.3 (m, 5H), 4.95 (s, 2H), 3.85 (s, 2H), 3.7 (m, 7H), 3.3 (m, 4H).

Following the procedure of Methods K and L and using the appropriate starting materials, the following compounds were prepared:

N-(N-morpholinosulphonyl)-N-(3-trifluoromethylbenzyl)glycine

N-(N-morpholinosulphonyl)-N-(3-nitrobenzyl)glycine.

Method M

30 N-(N-Morpholinosulphonyl)glycine methyl ester

Glycine methyl ester hydrochloride (9.2 g) was added to a 1M solution of sulphuryl chloride in dichloromethane (73 ml) and the mixture was cooled to -78 °C. A solution of

WO 00/49007 PCT/GB00/00532

53

triethylamine (7.3 g) in dichloromethane (100 ml) was added dropwise over 1 hour. The mixture was stirred at -78 °C for 1 hour then morpholine (6.2 g) and triethylamine (7.3 g) were added and the mixture was allowed to warm to ambient temperature. The reaction mixture was washed with water (3x100 ml), dried and the residue obtained on removal of the solvent was triturated with ether to give a solid which was filtered. The filtrate was evaporated to dryness to give the title compound, 4.3 g. NMR (CDCl₃): 5.1 (bs, 1H), 3.85 (d, 2H), 3.75 (s, 3H), 3.65 (m, 4H), 3.2 (m, 4H).

5

CLAIMS

1. A compound of formula (I):

$$Ar \xrightarrow{X} \xrightarrow{Q} \xrightarrow{R^4} \xrightarrow{R^5} \xrightarrow{R^5} \xrightarrow{R^1} \xrightarrow{R^2} \xrightarrow{R^3}$$

(I)

5

10

15

20

25

30

wherein Ar is optionally substituted phenyl, optionally substituted naphthyl, Het, C₃₋₁₂ cycloalkyl, or an optionally substituted 5 or 6 membered heteroaryl ring, said optional substituents being chosen from one or more of halo, C₁₋₆alkoxy, C₁₋₆alkyl, nitro, C₁₋₆alkanoylamino, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkanoyl, C_{1-6} alkanoyloxy, amino, C_{1-6} alkylamino, N_1 - $(C_{1-6}$ alkyl)₂amino, carboxy, carbamoyl, $N-(C_{1-6}alkyl)$ carbamoyl, $N,N-(C_{1-6}alkyl)_2$ carbamoyl, $C_{1-6}alkoxy$ carbonyl, mercapto. C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, sulphamoyl. $N-(C_{1-6}alkyl)$ sulphamoyl, $N_1N-(C_{1-6}alkyl)_2$ sulphamoyl, amino $C_{1-6}alkyl$. N-(C_{1.6}alkyl)aminoC_{1.6}alkyl, N,N-(C_{1.6}alkyl)₂aminoC_{1.6}alkyl, R⁶S-, R⁶C(O)- and R⁶CH₂-; R⁶ is phenyl which is optionally substituted by one or more groups chosen from C₁₋₆alkyl, halo, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, nitro, carboxy, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, sulphamoyl, N-(C₁₋₆alkyl)sulphamoyl and $N,N-(C_{1-6}alkyl)_2$ sulphamoyl; with the proviso that when Ar is a nitrogen linked Het. X is not $-N(R^7)$ - or -O-; X is $-N(R^7)$ -, $-S(O)_0$ -, -O- or $-SO_2N(R^7)$ -; n is 0, 1 or 2; R^7 is H. C₁₋₆alkyl (optionally substituted with one or more of cyano, Het and R¹⁰), C₂₋₆alkenyl (optionally substituted with R^{10}) or formyl; R^{10} is an optionally substituted five or six membered heteroaryl ring, optionally substituted phenyl or optionally substituted naphthyl said optionally substituents being chosen from one or more of halo, nitro, trifluoromethyl, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, C_{1-6} alkanoylamino, carboxy, carbamoyl, $N-(C_{1-6}$ alkyl)carbamoyl,

 N_1N_2 -(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl,

 C_{1-6} alkylsulphinyl, C_{1-6} alkylsulphonyl, sulphamoyl, $N-(C_{1-6}$ alkyl)sulphamoyl, $N.N-(C_{1.6}alkyl)_2$ sulphamoyl and phenyl $C_{1.6}alkoxy$; \mathbb{R}^1 is H, $C_{1.6}alkyl$ (optionally substituted with R⁸), C1-6 alkylsulphanyl (optionally substituted with R⁸), C₂₋₆alkenyl. R⁸ or R⁸S-; R⁸ is phenyl, C₃₋₁₂ cycloalkyl, Het or a 5- or 6- membered heteroaryl ring, 5 all of which are optionally substituted by one or more groups chosen from C_{1.6}alkyl, halo, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, $C_{1.6}$ alkanoyloxy, amino, $C_{1.6}$ alkylamino, N_1N_1 - $(C_{1.6}$ alkyl)₂amino, $C_{1.6}$ alkanoylamino, nitro, carboxy, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, 10 C₁₋₆alkylsulphonyl, sulphamoyl, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)sulphamoyl and benzyloxy, with the proviso that if R^1 is $C_{1.6}$ alkylsulphanyl (optionally substituted with R⁸) or R⁸S- then X is -SO₂N(R⁷)-; R² is H or C_{1.6}alkyl; R³ is H or C_{1.6}alkyl; R⁴ is H. C_{1.6}alkyl (optionally substituted with one or more of hydroxy, C_{1.6}alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, R⁹, R⁹C₁₋₆alkylsulphinyl and R⁹C₁₋₆alkylsulphonyl), C₁₋₆alkoxy (optionally substituted with one or more of 15 C₂₋₆alkenyl, C₂₋₆alkynyl, R⁹, R⁹C₂₋₆alkenyl, R⁹C₂₋₆alkynyl, Het and trifluoromethyl), C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxycarbonyl, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, R⁹-, R⁹S-, R⁹C₁₋₆alkylsulphanyl. N-(R⁹C₁₋₆alkyl)carbamoyl, N-(HetC₁₋₆alkyl)carbamoyl, C₁₋₆alkanoylamino. 20 C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl or C₁₋₆alkylsulphonyl; **R**⁹ is optionally substituted phenyl, or an optionally substituted 5 or 6 membered heteroaryl ring said optional substituents being chosen from one or more of C₁₋₆alkyl, halo, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, 25 nitro, carboxy, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C_{1-6} alkylsulphonyl, sulphamoyl, $N-(C_{1-6}$ alkyl)sulphamoyl and $N,N-(C_{1-6}alkyl)_2$ sulphamoyl; \mathbb{R}^5 is H or $C_{1-6}alkyl$; and, Het is a fully saturated monocyclic 5 - 8 membered heterocyclic ring, with up to 4 ring heteroatoms; provided that: when R¹ is H or C₁₋₆ alkyl, X is O or S, and R² and R³ are both hydrogen, then Ar 30 is not pyrimid-4-yl; when R¹ and R² are both hydrogen, R³ is C₁₋₆ alkyl, X is O, R⁴ is hydrogen, C₁₋₆ alkyl, phenyl or benzyl, and R⁵ is hydrogen or C₁₋₄ alkyl, then Ar is not

WO 00/49007

5

10

15

30

halophenyl; when R¹ and R³ are both hydrogen, R² and R⁵ are, independently, hydrogen or methyl, R⁴ is unsubstituted pyrrolyl, thienyl or furyl, and X is O, then Ar is not 3-methyl-2,4-dichlorophenyl; when R¹ is hydrogen or C₁₋₄ alkyl, R² is hydrogen or C₁₋₄ alkyl, R³ is hydrogen, R⁴ is hydrogen, C₁₋₆ alkyl or phenyl, and X is O, S, NH or N(C₁₋₄ alkyl), then Ar is not phenyl optionally substituted with: halo, C₁₋₄ alkyl, CF₃, C₁₋₄ alkoxy, CO₂H, CO₂(C₁₋₄ alkyl), CONH₂, NO₂, CN, CH₂N(CH₃)₂, S(C₁₋₄ alkyl) or mono- or di-chlorobenzyl; when R¹, R², R³ and R⁵ are all hydrogen, R⁴ is SO₂CH₂CH₃, and X is SO₂, then Ar is not phenyl; and, when R¹, R², R³, R⁴ and R⁵ are all hydrogen, and X is SO₂NH, then Ar is not 4-methylphenyl; or a pharmaceutically acceptable salt thereof.

- 2. A compound as claimed in claim 1 wherein Ar is an optionally substituted phenyl, optionally substituted naphthyl, morpholino or an optionally substituted 5-membered heteroaryl ring, said optional substituents being chosen from one or more of halo, C₁₋₆alkoxy, C₁₋₆alkyl, nitro, C₁₋₆alkanoylamino, trifluoromethyl, N,N-(C₁₋₆alkyl)₂amino and N,N-(C₁₋₆alkyl)₂aminoC₁₋₆alkyl with the proviso that when Ar is morpholino X cannot be -N(R⁷)- or -O-.
- 3. A compound as claimed in claim 1 or 2 wherein X is -N(R⁷)-, -S(O)_n-, -O- or
 -SO₂N(R⁷)-; wherein n = 0-2; R⁷ is H, C₁₋₆alkyl (optionally substituted with cyano, Het
 or R¹⁰) or R⁷ is C₂₋₆alkenyl (optionally substituted with R¹⁰); R¹⁰ is an optionally
 substituted five or six membered heteroaryl ring or optionally substituted phenyl said
 optionally substituents being chosen from one or more of halo, nitro, trifluoromethyl,
 N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkyl and C₁₋₆alkoxy; and Het is a fully saturated
 monocyclic 5 8 membered heterocyclic ring, with up to 4 ring heteroatoms.
 - 4. A compound as claimed in claim 1, 2 or 3 wherein R¹ is hydrogen, C₂₋₆alkenyl or C₁₋₆alkyl which is optionally substituted with phenyl where said phenyl is optionally substituted by one or more groups chosen from halo, cyano, C₁₋₆alkoxy, nitro, C₁₋₆alkylsulphonyl and benzyloxy.
 - 5. A compound as claimed in claim 1, 2, 3 or 4 wherein R² and R³ are both hydrogen.

- 6. A compound as claimed in claim 1, 2, 3, 4 or 5 wherein R⁵ is hydrogen or methyl.
- A compound as claimed in any one of the preceding claims wherein R⁴ is hydrogen,
 C₁₋₆alkyl (optionally substituted with C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl and C₁₋₆alkylsulphonyl), C₁₋₆alkoxy (optionally substituted with C₂₋₆alkynyl),
 C₁₋₆alkoxycarbonyl, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N-(HetC₁₋₆alkyl)carbamoyl,
 C₁₋₆alkylsulphanyl, R⁹- or N-(R⁹C₁₋₆alkyl)carbamoyl; R⁹ is phenyl or an optionally substituted 5 or 6 membered heteroaryl ring said optional substituents being chosen
 from one or more of C₁₋₆alkyl and halo; and Het is a fully saturated monocyclic 5 8 membered heterocyclic ring, with up to 4 ring heteroatoms.
 - 8. A pharmaceutical composition comprising a compound of formula (I) as claimed in claim I and a pharmaceutically acceptable diluent or carrier.

9. A compound of formula (I):

15

$$Ar \xrightarrow{X} \xrightarrow{Q} \xrightarrow{R^4} \xrightarrow{R^5} \xrightarrow{R^5} CN$$
(I)

wherein Ar is optionally substituted phenyl, optionally substituted naphthyl, Het, C₃₋₁₂

cycloalkyl, or an optionally substituted 5 or 6 membered heteroaryl ring, said optional substituents being chosen from one or more of halo, C₁₋₆alkoxy, C₁₋₆alkyl, nitro,

C₁₋₆alkanoylamino, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkanoyl,

C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, carboxy, carbamoyl,

N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto,

C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, sulphamoyl,

N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, aminoC₁₋₆alkyl,

N-(C₁₋₆alkyl)aminoC₁₋₆alkyl, N,N-(C₁₋₆alkyl)₂aminoC₁₋₆alkyl, R⁶S-, R⁶C(O)- and

R⁶CH₂-; R⁶ is phenyl which is optionally substituted by one or more groups chosen from C₁₋₆alkyl, halo, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy,

C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino,

5

10

15

20

25

30

C₁₋₆alkanoylamino, nitro, carboxy, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, $N, N-(C_{1-6}alkyl)_2$ carbamoyl, $C_{1-6}alkoxycarbonyl$, mercapto, $C_{1-6}alkyl$ sulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, sulphamoyl, N-(C₁₋₆alkyl)sulphamoyl and N,N-(C₁₋₆alkyl)₂sulphamoyl; with the proviso that when Ar is a nitrogen linked Het, X is not $-N(R^7)$ - or -O-; **X** is $-N(R^7)$ -, $-S(O)_n$ -, -O- or $-SO_2N(R^7)$ -; **n** is 0, 1 or 2; R^7 is H. C_{1.6}alkyl (optionally substituted with one or more of cyano, Het and R¹⁰), C_{2.6}alkenyl (optionally substituted with R¹⁰) or formyl; R¹⁰ is an optionally substituted five or six membered heteroaryl ring, optionally substituted phenyl or optionally substituted naphthyl said optionally substituents being chosen from one or more of halo, nitro, trifluoromethyl, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, C_{1-6} alkanoylamino, carboxy, carbamoyl, $N-(C_{1-6}$ alkyl)carbamoyl. N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, sulphamoyl, N-(C₁₋₆alkyl)sulphamoyl. N,N-(C₁₋₆alkyl)₂sulphamoyl and phenylC₁₋₆alkoxy; R¹ is H, C₁₋₆alkyl (optionally substituted with R⁸), C1-6 alkylsulphanyl (optionally substituted with R⁸), C₂₋₆alkenyl, R⁸ or R⁸S-; R⁸ is phenyl, C₃₋₁₂ cycloalkyl, Het or a 5- or 6- membered heteroaryl ring, all of which are optionally substituted by one or more groups chosen from C₁₋₆alkyl, halo, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, nitro, carboxy, carbamoyl, N-(C_{1.6}alkyl)carbamoyl, N,N-(C_{1.6}alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C_{1-6} alkylsulphonyl, sulphamoyl, $N-(C_{1-6}$ alkyl)sulphamoyl, $N,N-(C_{1-6}$ alkyl)₂sulphamoyl and benzyloxy, with the proviso that if R¹ is C₁₋₆ alkylsulphanyl (optionally substituted with R⁸) or R⁸S- then X is -SO₂N(R⁷)-; R² is H or C₁₋₆alkyl; R³ is H or C₁₋₆alkyl; R⁴ is H, C₁₋₆alkyl (optionally substituted with one or more of hydroxy, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, R⁹, R⁹C₁₋₆alkylsulphanyl, R⁹C₁₋₆alkylsulphinyl and R⁹C₁₋₆alkylsulphonyl), C₁₋₆alkoxy (optionally substituted with one or more of C₂₋₆alkenyl, C₂₋₆alkynyl, R⁹, R⁹C₂₋₆alkenyl, R⁹C₂₋₆alkynyl, Het and trifluoromethyl), C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxycarbonyl, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, R⁹-, R⁹S-, R⁹C₁₋₆alkylsulphanyl. N-(R⁹C₁₋₆alkyl)carbamoyl, N-(HetC₁₋₆alkyl)carbamoyl, C₁₋₆alkanoylamino.

C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl or C₁₋₆alkylsulphonyl; **R**⁹ is optionally substituted phenyl, or an optionally substituted 5 or 6 membered heteroaryl ring said optional substituents being chosen from one or more of C₁₋₆alkyl, halo, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, *N*,*N*-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, nitro, carboxy, carbamoyl, *N*-(C₁₋₆alkyl)carbamoyl, *N*,*N*-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, sulphamoyl, *N*-(C₁₋₆alkyl)sulphamoyl and *N*,*N*-(C₁₋₆alkyl)₂sulphamoyl; **R**⁵ is H or C₁₋₆alkyl; and, Het is a fully saturated monocyclic 5 - 8 membered heterocyclic ring, with up to 4 ring heteroatoms; provided that: when R¹, R², R³, R⁴ and R⁵ are all hydrogen, and X is NH, then Ar is not phenyl monosubstituted with CO₂H; and that when R², R³, R⁴ and R⁵ are all hydrogen, R¹ is methyl, and X is NH, then Ar is not 4-(CO₂H)-phenyl; or a pharmaceutically acceptable salt thereof; for use as a medicament.

15

10

5

10. The use of a compound of formula (I):

$$Ar \xrightarrow{X} \xrightarrow{Q} \xrightarrow{R^4} \xrightarrow{R^5} CN$$
(I)

wherein Ar is optionally substituted phenyl, optionally substituted naphthyl, Het, C₃₋₁₂

cycloalkyl, or an optionally substituted 5 or 6 membered heteroaryl ring, said optional substituents being chosen from one or more of halo, C₁₋₆alkoxy, C₁₋₆alkyl, nitro, C₁₋₆alkanoylamino, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, carboxy, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, sulphamoyl, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, aminoC₁₋₆alkyl, N-(C₁₋₆alkyl)aminoC₁₋₆alkyl, N-(C₁₋₆alkyl)₂aminoC₁₋₆alkyl, R⁶S-, R⁶C(O)- and R⁶CH₂-; R⁶ is phenyl which is optionally substituted by one or more groups chosen from C₁₋₆alkyl, halo, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino.

5

10

15

20

25

30

C_{1.6}alkanoylamino, nitro, carboxy, carbamoyl, N-(C_{1.6}alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl, C_{1-6} alkylsulphinyl, C_{1-6} alkylsulphonyl, sulphamoyl, N-(C_{1-6} alkyl)sulphamoyl and N,N-(C₁₋₆alkyl)₂sulphamoyl; with the proviso that when Ar is a nitrogen linked Het, X is not $-N(R^7)$ - or -O-; **X** is $-N(R^7)$ -, $-S(O)_n$ -, -O- or $-SO_2N(R^7)$ -; **n** is 0, 1 or 2; R^7 is H. C₁₋₆alkyl (optionally substituted with one or more of cyano, Het and R¹⁰), C₂₋₆alkenyl (optionally substituted with R¹⁰) or formyl; R¹⁰ is an optionally substituted five or six membered heteroaryl ring, optionally substituted phenyl or optionally substituted naphthyl said optionally substituents being chosen from one or more of halo, nitro, trifluoromethyl, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, C₁₋₆alkanoylamino, carboxy, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl, C_{1-6} alkylsulphinyl, C_{1-6} alkylsulphonyl, sulphamoyl, $N-(C_{1-6}$ alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl and phenylC₁₋₆alkoxy; R¹ is H, C₁₋₆alkyl (optionally substituted with R⁸), C1-6 alkylsulphanyl (optionally substituted with R⁸), C₂₋₆alkenyl, R⁸ or R⁸S-; R⁸ is phenyl, C₃₋₁₂ cycloalkyl, Het or a 5- or 6- membered heteroaryl ring, all of which are optionally substituted by one or more groups chosen from C₁₋₆alkyl, halo, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, nitro, carboxy, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl, C₁₋₅alkylsulphinyl, $C_{1.6}$ alkylsulphonyl, sulphamoyl, $N-(C_{1.6}$ alkyl)sulphamoyl, $N,N-(C_{1.6}$ alkyl)₂sulphamoyl and benzyloxy, with the proviso that if R¹ is C₁₋₆ alkylsulphanyl (optionally substituted with R⁸) or R⁸S- then X is -SO₂N(R⁷)-; R² is H or C₁₋₆alkyl; R³ is H or C₁₋₆alkyl; R⁴ is H, C₁₋₆alkyl (optionally substituted with one or more of hydroxy, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, R⁹, R⁹C₁₋₆alkylsulphanyl, R⁹C₁₋₆alkylsulphinyl and R⁹C₁₋₆alkylsulphonyl), C₁₋₆alkoxy (optionally substituted with one or more of C₂₋₆alkenyl, C₂₋₆alkynyl, R⁹, R⁹C₂₋₆alkenyl, R⁹C₂₋₆alkynyl, Het and trifluoromethyl). C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxycarbonyl, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, R⁹-, R⁹S-, R⁹C₁₋₆alkylsulphanyl, N-(R⁹C₁₋₆alkyl)carbamoyl, N-(HetC₁₋₆alkyl)carbamoyl, C₁₋₆alkanoylamino,

WO 00/49007 PCT/GB00/00532

C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl or C₁₋₆alkylsulphonyl; **R**⁹ is optionally substituted phenyl, or an optionally substituted 5 or 6 membered heteroaryl ring said optional substituents being chosen from one or more of C₁₋₆alkyl, halo, trifluoromethyl, hydroxy, trifluoromethoxy, cyano, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, amino, C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, nitro, carboxy, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkoxycarbonyl, mercapto, C₁₋₆alkylsulphanyl, C₁₋₆alkylsulphinyl, C₁₋₆alkylsulphonyl, sulphamoyl, N-(C₁₋₆alkyl)sulphamoyl and N,N-(C₁₋₆alkyl)₂sulphamoyl; **R**⁵ is H or C₁₋₆alkyl; and, Het is a fully saturated monocyclic 5 - 8 membered heterocyclic ring, with up to 4 ring heteroatoms; or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for use in the inhibition of a cysteine protease in a warm blooded animal.

- 11. The use of a compound of formula (I) as defined in claim 10, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for use in the treatment of chronic obstructive pulmonary disease in a warm blooded animal.
- A method of treating a Cathepsin L or Cathepsin S mediated disease state in mammals which comprises administering to a mammal in need of such treatment an effective amount of a compound of formula (I) as defined in claim 10, or a pharmaceutically acceptable salt thereof.
 - 13. A process for preparing a compound of formula (I) as claimed in claim 1, the process comprising:
- a) reacting an acid of formula (II):

5

10

$$Ar \xrightarrow{X} OH$$

$$(II)$$

or a reactive derivative thereof, with an amine of formula (III):

5

10

15

20

$$H \xrightarrow[R^4]{R^5} N$$

(III)

b) reacting a compound of formula (IV):

Ar-X-H

(IV)

with a compound of formula (V):

$$\begin{array}{c|c}
L & \begin{array}{c}
O & R^4 & R^5 \\
R^1 & R^2 & R^3 & N
\end{array}$$
(V)

wherein L is a displaceable group;

c) dehydrating a compound of formula (VI):

$$Ar \xrightarrow{X} \begin{array}{c} O \\ R^{1} \\ R^{2} \\ R^{3} \end{array} \xrightarrow{R^{5}} \begin{array}{c} CONH_{2} \\ CONH_{2} \end{array}$$
(VI)

under standard conditions;

d) for compounds of formula (I) where X is $-SO_2N(R^7)$ -, reacting a compound of formula (VII):

(VII)

with a compound of formula (VIII):

Ar-SO₂-L

(VIII)

where L is a displaceable group; or,

e) for the preparation of a compound of formula (I) where X is $-SO_2N(R^7)$ -, reacting a compound of formula (IX):

63

$$\begin{array}{c|c}
Ar & H & O & R^4 & R^5 \\
\hline
O & N & R^2 & N & N
\end{array}$$
(IX)

with a compound of formula (X):

R7-L

5

(X)

wherein L is a suitable displaceable group.

14. Intermediate of formula (VI):

$$Ar \xrightarrow{X} \xrightarrow{Q} \xrightarrow{R^4} \xrightarrow{R^5} \xrightarrow{CONH_2}$$

wherein R¹, R², R³, R⁴, R⁵, X and Ar are as defined in claim 1.

Inte: onal Application No PCT/GB 00/00532

	· · · · · · · · · · · · · · · · · · ·		PCI/GB 00	700532
IPC 7	CO7D333/24 CO7D409/12 CO7C	3/14 //(C07	/275 C07D 1/18 C07D D513/04,277	
	SEARCHED	assincation and IPC		
Minimum do	ocumentation searched (classification system followed by clas-	sification symbols)		
IPC 7	CO7D CO7C A61K A61P			
Documentat	tion searched other than minimum documentation to the extent	that such documents are inc	suded in the fields so	earched
Electronic da	ata base consulted during the international search (name of d	ata base and, where practice	al, search terms used)
0.000				
Category *	ENTS CONSIDERED TO BE RELEVANT	**************************************		5 1
Outogoly	Citation of document, with indication, where appropriate, of	rie reievant passages		Relevant to claim No.
х	EP 0 262 393 A (SHELL AGRAR G	M D U AND		•
^	CO. KG., FED. REP. GER.)	.M.B.N. AND		1
	6 April 1988 (1988-04-06)			
	examples 56-60; table II			
A	example 1; table IX			14
	examples 8-10; table V examples 6-8; table VI			
	examples 3,4; table VII			
				,
X	US 4 567 267 A (WEI, PETER H.	L. ET AL)	,	1,8
	28 January 1986 (1986-01-28) column 11; example 21			
	column 13 -column 16; examples	s 26-29		
	<u>-</u>			_
x	EP 0 010 298 A (BASF AG., FI GER.) 30 April 1980 (1980-04-3	ED. REP.		1
-	page 125; example 123	50)		
		-/		
X Furth	her documents are listed in the continuation of box C.	Y Patent family	members are listed	in annex.
	tegories of cited documents :			
	_	"T" later document pu or priority date a	bilshed after the inte	mational filing date the application but
conside	ent defining the general state of the art which is not lered to be of particular relevance	cited to understa invention	nd the principle or the	eory underlying the
"E" earlier d	document but published on or after the international late	"X" document of partic	cular relevance; the c lered novel or cannot	
"L" docume which i	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another	involve an invent	ive step when the do	ournent is taken alone
citation	n or other special reason (as specified) ant referring to an oral disclosure, use, exhibition or		ered to involve an inv	rentive step when the
other n	neans	ments, such com		re other such docu— us to a person skilled
later th	ent published prior to the international filing date but asn the priority date claimed	in the art. "&" document membe	r of the same patent	family
Date of the s	actual completion of the international search	Date of mailing o	f the international sea	urch report
_	luna 2000			
	June 2000	16/06/	2000	
Name and m	nailing address of the ISA	Authorized officer	•	
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk			
	Tel. (+31~70) 340~2040, Tx. 31 651 epo nt, Fax: (+31~70) 340~3016	Paisdo	r, B	

1

Inter onal Application No PCT/GB 00/00532

			1017 00	, 00002
A. CLASSI IPC 7	FICATION OF SUBJECT MATTER 235:00)			
According to	o International Patent Classification (IPC) or to both national classifi	ication and IPC		
B. FIELDS	SEARCHED			
	ocumentation searched (classification system followed by classifica-	, , , , , , , , , , , , , , , , , , ,		
	tion searched other than minimum documentation to the extent that			
	iata base consulted during the International search (name of data b	ase and, where practica	i, search terms used	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the r	elevant passages		Relevant to claim No.
х	PATENT ABSTRACTS OF JAPAN vol. 018, no. 575 (C-1268), 4 November 1994 (1994-11-04) & JP 06 211766 A (MITSUBISHI PET LTD), 2 August 1994 (1994-08-02) page 7 -page 9; examples 93-96,101-104,109-112 abstract			1
X	PATENT ABSTRACTS OF JAPAN vol. 018, no. 075 (C-1163), 8 February 1994 (1994-02-08) & JP 05 286937 A (MITSUBISHI PET LTD), 2 November 1993 (1993-11-0 abstract page 4 -page 6; tables page 10			1
X Furt	ther documents are listed in the continuation of box C.	χ Patent family	members are listed	in annex.
"A" docume consider the consider of the course which citation "O" docume other the course attent the course of the	ent defining the general state of the art which is not leved to be of particular relevance document but published on or after the international late and which may throw doubts on priority ctaim(s) or is cited to establish the publication date of another in or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but han the priority date daimed June 2000	"T" later document put or priority date an cited to understar invention "X" document of partic cannot be considinvolve an inventi "Y" document of partic cannot be consididocument is comments, such comments, auch comm	Ind not in conflict with added to the control of the control of the control of cannot we step when the do ular relevance; the control to red to involve an in bined with one or mo bination being obvior	the application but soory underlying the soory underlying the soory underlying the soory underlying to be considered to comment is taken alone skalmed invention step when the pre other such docuses to a person skilled family
	mailing address of the ISA	Authorized officer		
	European Patent Office, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo ni, Fax: (+31–70) 340–3018	Paisdor		

Into onei Application No PCT/GB 00/00532

0.00		PCT/GB 00/00532
Category •	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	
	omeon or occultorit, with incocaret, within afferdute, or the relevant passages	Relevant to claim No.
X	PATENT ABSTRACTS OF JAPAN vol. 015, no. 500 (C-0895), 18 December 1991 (1991-12-18) & JP 03 218347 A (NIPPON SODA CO LTD), 25 September 1991 (1991-09-25) column 17 -column 21; tables abstract	1
A	WO 98 18766 A (KUMIAI CHEMICAL INDUSTRY CO., LTD., JAPAN;IHARA CHEMICAL INDUSTRY CO.,) 7 May 1998 (1998-05-07) abstract page 8 -page 22; tables	1,14
A	DE 30 01 433 A (COMPAGNIE FRANCAISE DE PRODUITS INDUSTRIELS, FR.) 17 July 1980 (1980-07-17) abstract; claim 1; examples	1,14
A	EP 0 272 671 A (SYNTEX INC) 29 June 1988 (1988-06-29) cited in the application abstract; claims; examples 1,14,23	1,9-12, 14
A	WO 95 15749 A (PROTOTEK INC) 15 June 1995 (1995-06-15) cited in the application abstract; claim 1 page 19; example 3 page 1, line 4 - line 11	1,9-12, 14
A	EP 0 611 756 A (TAKEDA CHEMICAL INDUSTRIES LTD) 24 August 1994 (1994-08-24) abstract; claims	1,9-12
A	SUZUE ET AL: "Hepatic agents. I. Synthesis of aminoacyl (and hydroxyacyl)aminoacetonitriles" CHEMICAL AND PHARMACEUTICAL BULLETIN, JP, TOKYO, vol. 16, no. 8, August 1968 (1968-08), pages 1417-1432, XP002108053 ISSN: 0009-2363 abstract page 1419; table II	1,9-12
A	PICKEN P P ET AL: "Inhibition of bovine cathepsin B by amino acid-derived nitriles" BIOCHEMICAL SOCIETY TRANSACTIONS, GB, COLCHESTER, ESSEX, vol. 18, no. 2, April 1990 (1990-04), page 316 XP002108054 ISSN: 0300-5127 the whole document	1,9-12
	ISSN: 0300-5127	

1

Inter anal Application No PCT/GB 00/00532

· /Pantine	Man DOGULETURA AGUALATERA TO DE TOTAL	FC1/GB 00/00532					
Category *	Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT legory * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.						
Ρ,Α							
,	WO 99 54287 A (AMERICAN CYANAMID COMPANY, USA) 28 October 1999 (1999-10-28) abstract; claims page 53; table 5 page 30 -page 33; table 1	1,8,10, 12,14					
		·					
		,					

1

information on patent family members

Intel onal Application No PCT/GB 00/00532

	t document search report		Publication date		atent family member(s)		Publication date
EP 0	262393	Α	06-04-1988	DE DE	362944		03-03-1988
				AT	370296 8429		11-08-1988 15-01-1993
				AU	61007		16-05-1991
				AU	776678		03-03-1988
				BR	870446		19-04-1988
				CA	131124		08-12-1992
				CN	101948		16-12-1992
				DE	378341		18-02-1993
				DK	45188		01-03-1988
				EG	1857		30-07-1993
				ES Gr	204362 300684		01-01-1994
				HU	300084 1920	5 T 4 A,B	30-06-1993 29-05-1989
				IL	8368		21-06-1992
				ĴP	263286		23-07-1997
				ĴΡ	6313286		04-06-1988
				JP	288449		19-04-1999
				JP	911865	9 A	06-05-1997
				NZ	22159		26-07-1990
				PT		6 A,B	01-09-1987
				ZA	870642		26-04-1989
				KR	961171	<u> </u>	30-08-1996
US 45	67267	A	28-01-1986	AT	2333		15-11-1986
				AU AU	55438		21-08-1986
				CA	841628 116906		23-12-1982 12-06-1984
				DE	327410		11-12-1986
				DK	· 26728		16-12-1982
				EP	006768		22-12-1982
				GB	210026		22-12-1982
				GR	7682	7 A	04-09-1984
				JP	5800096		06-01-1983
				ZA 	820387	8 A	25-01-1984
EP 00	10298	A	30-04-1980	DE	284612		30-04-1980
				AT CA	47 113258	0 T	15-12-1981
				CS	22127		28-09-1982 29-04-1983
				DD	14668		25-02-1981
				DE	296155		04-02-1982
				DK	44437		24-04-1980
				HU	18308	2 B	28-04-1984
				ΙE	4896	9 B	26-06-1985
				IL	5850		29-02-1984
				JP	5505757		28-04-1980
				PL	21908		11-08-1980
				SU Za	105531 790562		15-11-1983 26-11-1980
.]P 06	211766	Α	02-08-1994			- n	
				NONE			
JP 05	286937	A	02-11-1993 	NONE			
JP 03	218347	A	25-09-1991	NONE			
	18766	Α	07-05-1998	AU	472549		22-05-1998

information on patent family members

Inter anal Application No PCT/GB 00/00532

	tent document I in search report	1	Publication date		Patent family member(s)	Publication date
WO	9818766	Α		BR	9712471 A	
				CN	1235598 A	
				EP	0940392 A	08-09-199
DE	3001433	Α	17-07-1980	FR	2446812 A	
				AR	228248 A	
				BE	881166 A	
				BR	8000277 A	
				CA ES	1157877 A 488513 D	
				ES	8103573 A	
		•		GB	2041926 A	i.B 17-09-198
				ĬŤ	1140513 B	
				JP	55113754 A	
				NL	8000264 A	18-07-198
				OA	6436 A	
				PT	70701 A	
				SE	8000367 A	
				ZA 	8000263 A	28-01-198
EP 02	0272671	Α	29-06-1988	US	5055451 A	
				AT	102951 T	
				AU Ca	8287187 A 1329862 A	
				DE	3789371 D	
				DE	3789371 T	
				DK	674387 A	
				ES	2061480 T	16-12-199
				ΙE	62863 B	
				JP	63253061 A	
				NZ Us	223002 A 5158936 A	
				ZA	8709577 A	
WO	9515749	Α	15-06-1995	us	5486623 A	23-01-199
				ĂŬ	1266495 A	
				CA	2177495 A	15-06-199
				EP	0731696 A	
				JP	9506368 T	
				US	5714484 A	
				US US	5663380 A 5925772 A	
Ł٢	0611756	Α	24-08-1994	AU	5496494 A	
				CA CN	2115913 A 1107363 A	
				FI	940788 A	
				НŪ	66219 A	
				JP	2848232 B	
				JP	7101924 A	18-04-199
	•			JP	9208545 A	
				NO	940550 A	
				NZ	250905 A	
				US US	5498728 A 5716980 A	
				US	5955491 A	
				US	5639781 A	

aformation on patent family members

Intex onal Application No
PCT/GB 00/00532

Patent document	1	Publication	P	atent family member(s)	Publication
cited in search rep				date	
WO 9954287	Α ,	28-10-1999	US Au	5942640 A 3382499 A	24-08-1999 08-11-1999
			•		
			•		
•					

CORRECTED VERSION

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 24 August 2000 (24.08.2000)

PCT

(10) International Publication Number WO 00/49007 A1

- (51) International Patent Classification⁷: C07D 307/54, A61K 31/335, 31/38, 31/275, C07D 213/57, 333/24, 409/12, C07C 255/29, C07D 231/18, 513/04, 409/04, 233/84, A61P 3/14 // (C07D 513/04, 277:00, 235:00)
- (21) International Application Number: PCT/GB00/00532
- (22) International Filing Date: 16 February 2000 (16.02.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

- (30) Priority Data: 9903857.2 20 February 1999 (20.02.1999) GB
- (71) Applicant (for all designated States except US): AS-TRAZENECA AB [SE/SE]; S-151 85 Södertälje (SE).

10 July 1999 (10.07.1999)

(72) Inventors; and

9916098.8

(75) Inventors/Applicants (for US only): TUCKER, Howard [GB/GB]; Alderley Park, Macclesfield, Cheshire SK10 4TG (GB). LARGE, Michael, Stewart [GB/GB]; Alderley Park, Macclesfield, Cheshire SK10 4TG (GB). OLDFIELD, John [GB/GB]; Alderley Park, Macclesfield, Cheshire SK10 4TG (GB). JOHNSTONE, Craig [GB/GB]; Alderley Park, Macclesfield, Cheshire SK10 4TG (GB). EDWARDS, Phillip, Neil [GB/GB]; Alderley Park, Macclesfield, Cheshire SK10 4TG (GB).

- (74) Agent: TIERNEY, Francis, John; AstraZeneca, Global Intellectual Property, P.O.Box 272, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4GR (GB).
- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- (48) Date of publication of this corrected version:

15 March 2001

(15) Information about Correction: see PCT Gazette No. 11/2001 of 15 March 2001, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: ACETAMIDO ACETONITRILE DERIVATIVES AS INHIBITORS OF CATHEPSIN L AND/OR CATHEPSIN S

$$Ar \xrightarrow{R^1} \xrightarrow{R^2} \xrightarrow{R^4} \xrightarrow{R^5} CN$$
 (I)

(57) Abstract: A compound of formula (I) wherein Ar, R¹, R², R³, R⁴ and R⁵ are defined; a composition comprising a compound of formula (I) and a carrier or diluent; a compound of formula (I) for use as a medicament, the use of a compound of formula (I) in the manufacture of a medicament for use in the inhibition of a cysteine protease in a warn blooded animal; the use of a compound of formula (I) in the manufacture of a medicament for use in the treatment of chronic obstructive pulmonary disease in a warm blooded animal; and a method of treating a Cathepsin L or Cathepsin S mediated disease state in mammals which comprises administering to a mammal in need of such treatment an effective amount of a compound of formula (I).