§4. Вычисление двойного интеграла в прямоугольных координатах

В §2 рассмотрено тело, названное цилиндрическим брусом. ограничено плоскостью Оху, цилиндрической поверхностью с образующими параллельными оси Oz и сверху поверхностью (S): z = f(x, y) (рис. 4.1). Пусть основание тела есть область D, ограниченная прямыми x = a, x = b и кривыми с уравнениями $y = \varphi_1(x)$, $y = \varphi_2(x)$, $x \in [a,b]$, $\varphi_1(x) \le \varphi_2(x)$, a < b(область 1-го типа, рис. 4.2а). Объём данного тела определяется равенством (2.1).

Рассечём рассматриваемое тело плоскостями, параллельными плоскости Oyz, a и b – абсциссы крайних сечений. Площадь сечения ABCE тела

плоскостью P, проведённой расстоянии x от Oyz (рис. 4.1), зависит от х. Обозначим её через S(x). Для объёма V данного тела имеем:

$$V = \int_{a}^{b} S(x)dx. \tag{4.1}$$

Найдём выражение для функции S(x) – площади фигуры ABCE. Она равна площади трапеции А'В'С'Е'проекции АВСЕ на плоскость Оуг A'B'C'E'(рис. 4.1). Трапеция ограничена кривой $z = f(x, y) = \psi(y)$, прямыми $y_1 = \varphi_1(x)$, $y_2 = \varphi_2(x)$ и осью *Oy* (x фиксировано для выбранного

Рис. 4.1. К вычислению двойного интеграла в прямоугольных координатах

сечения). Но тогда $S_{A'B'C'E'} = S(x) = \int\limits_{y_1}^{y_2} \psi(y) dy = \int\limits_{\phi_1(x)}^{\phi_2(x)} f(x,y) dy$ и в силу (4.1): $V = \int\limits_a^b \left(\int\limits_{\phi_1(x)}^{\phi_2(x)} f(x,y) dy \right) dx = \int\limits_a^b dx \int\limits_{\phi_1(x)}^{\phi_2(x)} f(x,y) dy \, .$

$$V = \int_{a}^{b} \left(\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) dy \right) dx = \int_{a}^{b} dx \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) dy.$$
 (4.2)

Итак, для объёма данного тела получено выражение в виде повторного интеграла, в котором интегрирование выполняется сначала по у (при фиксированном x), а затем полученный результат интегрируется по x. Сравнение (2.1) и (4.2) для области D (области 1-го типа, рис. 4.2a) приводит к равенству:

$$\iint_{D} f(x, y) dxdy = \int_{a}^{b} dx \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) dy.$$
 (4.3)

Б) область 2-го типа

Рис. 4.2. Типы стандартных областей

Можно доказать, что формула (4.3) остаётся справедливой и в общем случае, когда значения функции f(x, y) могут иметь любой знак в области D.

Замечание 4.1. Если в предыдущих рассуждениях поменять роли переменных *x* и *y*, то для области *D*, определяемой неравенствами $c \le y \le d$, $\psi_1(y) \le x \le \psi_2(y)$ (область 2-го типа, рис. 4.2б), получим формулу

$$\iint\limits_{D} f(x,y) dx dy = \int\limits_{c}^{d} dy \int\limits_{\psi_{1}(y)}^{\psi_{2}(y)} f(x,y) dx. \tag{4.4}$$
 Пример 4.1. Вычислить интеграл $\iint\limits_{D} (2y-x) dx dy$, где D – область,

ограниченная линиями y = x, $y = x^2$.

 \blacktriangleright Область D (рис. 4.3), определяемая неравенствами: $0 \le x \le 1$, $x^2 \le y \le x$, является областью 1-го типа, следовательно, по формуле (4.3) имеем:

$$\iint_{D} (2y - x) dx dy = \int_{0}^{1} dx \int_{x^{2}}^{x} (2y - x) dy = \int_{0}^{1} (y^{2} - xy) \Big|_{y=x^{2}}^{y=x} dx =$$

$$= \int_{0}^{1} (x^{2} - x^{3}) dx = \left(\frac{x^{3}}{3} - \frac{x^{4}}{4}\right) \Big|_{0}^{1} = \frac{1}{12}. \blacktriangleleft$$

Замечание 4.2. Если область будет более сложного рассмотренные выше, то её следует разбить на такие части, по которым функция f(x, y) может быть проинтегрирована при помощи полученных выше формул, а затем воспользоваться аддитивностью двойного интеграла по отношению к области интегрирования. Например, для вычисления $\iint f(x,y)dS$ в случае об-

Рис. 4.3. К примеру 4.1

Рис. 4.4. Разбиение произвольной области на области 1-го типа

области D, изображенной на рис. 4.4, достаточно область D разбить на три

части D_1 , D_2 , и D_3 , вычислить $\iint\limits_{D_1} f(x,y) dS$, $\iint\limits_{D_2} f(x,y) dS$ и $\iint\limits_{D_3} f(x,y) dS$ по формуле (4.3) и полученные результаты сложить:

$$\iint_{D} f(x, y) dS = \iint_{D_{1}} f(x, y) dS + \iint_{D_{2}} f(x, y) dS + \iint_{D_{3}} f(x, y) dS.$$

Пример 4.2. Изменить порядок интегрирования в следующем выражении:

$$I = \int_{0}^{1} dx \int_{0}^{x} f(x, y) dy + \int_{1}^{2} dx \int_{0}^{(x-2)^{2}} f(x, y) dy.$$

▶ Данное выражение есть сумма двух повторных интегралов: $I=I_1+I_2$. Первый из них взят по области D_1 : $0 \le x \le 1$, $0 \le y \le x$; второй — по области D_2 : $1 \le x \le 2$, $0 \le y \le (x-2)^2$ (рис. 4.5).

Рис. 4.5. К примеру 4.2

Рассмотрим область $D=D_1\cup D_2$, ордината любой её точки заключена в пределах от 0 до 1 (рис. 4.5). Чтобы найти пределы по координате x, из уравнения параболы $y=(x-2)^2$ найдём x как функцию y: $x=2\pm\sqrt{y}$, уравнение $x=2-\sqrt{y}$ задаёт левую ветвь параболы, а уравнение $x=2+\sqrt{y}$ её правую ветвь. Для координат точек области D имеем неравенства:

$$0 \le y \le 1, \ y \le x \le 2 - \sqrt{y}$$
. Из формулы (4.4) следует: $I = \int_0^1 dy \int_y^{2 - \sqrt{y}} f(x, y) dx$. \blacktriangleleft