Затем следует ввести в рассмотрение третью станцию и т.д.

Исследование не позволяет получить однозначного решения, но этого и не требуется. Достаточно получить рекомендации о возможных ограничениях на интенсивности потоков сообщений станций в сети.

Результаты моделирования будут представлены в виде номограмм, исходя из которых возможно определить допустимые значения интенсивностей потоков тех станций, которые предполагается ввести в сеть. При этом соблюдается условие, что время доставки сообщений не превысит определенную величину.

УДК 621.51

Н.Е. Сергеев, С.В. Добровольский

АСУ ТП БОЛЬШОЙ ИНФОРМАЦИОННОЙ МОЩНОСТИ ОТ ПРОЕКТИРОВАНИЯ ДО ПРОМЫШЛЕННОЙ ЭКСПЛУАТАЦИИ

При построении автоматизированных систем управления большой условной информационной мощности необходимо уделять внимание оптимальному разбиению всей работы на этапы, а также применению современных технологий на каждом этапе. Ошибочные решения на одном из этапов могут привести к увеличению времени и затрат на разработку.

На первом этапе в процессе формирования технического задания исполнители знакомятся с предметной областью и объектами управления, определяются и формализуются потребности заказчика, исходя из особенностей объектов управления и технологических процессов, описываются количественные и качественные характеристики контролируемых параметров, функции, возлагаемые на систему. Следующим важным этапом при проектировании является построение информационной модели системы [1]. Адекватные решения на этом этапе позволяют оптимальным образом выбрать структуру и топологию системы, а также распределить функции между компонентами системы и определить функции оператора и технолога. На этапе построения математического обеспечения формируются алгоритмы сбора данных и управления объектами. Полезно также построить алгоритмы поведения объектов управления системы для тестирования системы в лабораторных условиях на программно-аппаратных имитаторах. По результатам потребностей алгоритмов управления выбираются аппаратные и системные программные средства для реализации системы. В настоящее время на рынке представлен широкий спектр аппаратуры для автоматизации как зарубежного, так и отечественного производства. Верхний уровень систем с большими объемами обрабатываемой информации строится на основе сети, состоящей из серверов сбора данных, файловых серверов, серверов баз данных, и рабочих станций диспетчеров, на которых осуществляется мониторинг технологического процесса. Для построения нижних уровней используются РС и PLC- контроллеры, производительность которых выбирается в зависимости от возлагаемых на них функций и объемов данных. Базовое программное обеспечение включает в себя: операционную систему, систему хранения информации, средства формирования отчетных документов, средства разработки различных компонентов системы. На выбор компонентов влияют следующие факторы: необходимость работы в реальном времени, объемы обрабатываемой и хранимой информации, необходимость обеспечения многопользовательского режима, возможность интеграции в существующую сеть предприятия заказчика, сложность и время разработки.

Результатом проектирования системы является технический проект автоматизированной системы управления, содержащий в себе техническое задание, описание информационного обеспечения, описание математического обеспечения, описание аппаратных и программных средств, описание организационного обеспечения. При реализации системы необходимо ориентироваться на использование современных технологий и стандартов, обеспечивающих ее открытость и возможность интеграции с другими продуктами.

Особое внимание при создании элементов верхнего уровня уделяется снижению требований к квалификации обслуживающего персонала. Этому способствует построение удобного человеко-машинного интерфейса: мнемосхемы технологического процесса, отображение объектов автоматизации на карте местности, мультимедийное сопровождение аварийных ситуаций, защита от неквалифицированных действий пользователя, наличие контекстно-зависимой справочной системы, максимальная автоматизация операций установки, настройки и администрирования. Необходимо также предусмотреть возможность масштабирования системы, т.е. изменение состава и параметров оборудования без изменения программного обеспечения [2].

При проектировании программного обеспечения нижнего уровня с возможностью автоматического управления в непрерывном режиме необходимо обеспечить максимальную надежность и контроль выполняемых действий. Для этого служат самотестирование, проверка сохранности конфигурационных и накапливаемых данных, аппаратная защита от «зависания», ведение журналов изменения параметров, отключений питания, возникающих ошибок в работе.

При отладке программного обеспечения и его сопровождении возникает необходимость тестирования отдельных компонентов и системы в целом в лабораторных условиях. Для этого целесообразно использование программно-аппаратных имитаторов технологических процессов, базирующихся на алгоритмах и математических моделях объектов управления, сформированных на этапе проектирования. Результатом этапа реализации является законченная система, готовая к промышленным испытаниям, а также комплект эксплуатационной документации.

На этапе пусконаладочных работ производятся монтажные работы, настройка отдельных компонентов (статическая отладка) и конфигурирование системы в целом (динамическая отладка), а также производится испытание опытного образца системы.

После проведения пуско-наладочных работ начинается этап авторского сопровождения, который продолжается, как минимум, в течение опытнопромышленной эксплуатации. Результаты авторского сопровождения имеют решающее значение для принятия решения о переводе системы в промышленную эксплуатацию. Именно на этапе авторского сопровождения системы удается учесть детали, которые не попадают в поле зрения ни на этапе формирования технического задания, ни в процессе дальнейшего проектирования и разработки системы.

Кроме устранения замечаний и модификаций системы, в соответствии с дополнительными пожеланиями заказчика, проводится обучение специалистов и консультации по возникающим вопросам. Одним из элементов сопровождения является переход на новые версии используемых системных программных продуктов, что позволяет увеличить производительность системы и её надежность.

Разработанная в ТРТУ автоматизированная система управления технологическим процессом (АСУ ТП) цеха добычи нефти и газа (ЦДНГ) в 2000г принята в промышленную эксплуатацию на одном из нефтедобывающих предприятий России. АСУ ТП ЦДНГ предназначена для контроля и оперативного управления комплексом действующего и вновь вводимого технологического оборудования и сооружений ЦДНГ при кустовой схеме обустройства. Кустовая схема обустройства характеризуется сосредоточением большого числа технологических объектов управления (до 16 скважин) на небольших площадках и разнесением технологических площадок нефтедобычи друг от друга и от пункта управления на значительные расстояния (до 70 километров). Количество объектов автоматизации в системе более 200, с общим количеством измеряемых и контролируемых технологических параметров более 40000. Технологический процесс – непрерывный, с длительным поддержанием режимов, близких к установившимся, и безостановочной подачей сырья и реагентов. Связь между ВУ и НУ осуществляется по радиоканалу. Технологические объекты управления (ТОУ) эксплуатируются в суровых климатических условиях (от минус 60° до плюс 40° С).

На этапе разработки системы основная особенность АСУ ТП ЦДНГ, состоящая в том, что объекты автоматизации (ОА), количество и состав которых изменяется в процессе работы системы, состоят из различных наборов заранее определенных ТОУ, определила подход к построению программного обеспечения. Были реализованы средства для модификации существующего состава оборудования и ввода нового. Пользователь указывает параметры контроллеров, ОА, ТОУ, сигналов с помощью диалога создания оборудования, после чего конфигурируются контроллеры, новые сигналы включаются в опрос данных, новые ОА и ТОУ отображаются на мнемосхемах. Этим обеспечивается простота масштабируемости и конфигурирования системы без модификации программного обеспечения. Для упрощения администрирования системы операции по архивированию данных и конфигурации были автоматизированы. В программном обеспечении как верхнего, так и нижнего уровня были реализованы средства протоколирования действий оператора и различных компонентов системы, а также возможность удаленного доступа к этой информации. Также разработана программа для переносного пульта оператора технолога, позволяющая с помощью расширенного набора команд получить более детальную информацию о работе и состоянии контроллера. Данные средства позволяют получить полную картину поведения системы за необходимый интервал времени.

ЛИТЕРАТУРА

- 1. *Сергеев Н.Е.* Информационная модель многоуровневой АСУ ТП // "Известия ТРТУ". Таганрог: Изд-во ТРТУ, 2000. Вып.1.
- 2. Сергеев Н.Е. Добровольский С.В. Динамическое конфигурирование автоматизированной системы управления в соответствии с требованиями технологического процесса // "Известия ТРТУ". Таганрог: Изд-во ТРТУ, 2000. Вып.2.