Question			
Number	Answer		Mark
2(a)(i)	Substitution using $T = \frac{2\pi}{\omega}$	(1)	
	Clear algebra leading to relationship	(1)	2
	Example of derivation		
	$T = \frac{2\pi}{\omega} \implies \omega = \frac{2\pi}{T} \implies \omega^2 = \frac{4\pi^2}{T^2}$		
	$Mg = mx\omega^2 = mx\frac{4\pi^2}{T^2}$		
	$\therefore T^2 = \frac{4\pi^2 mx}{Mg}$		
2(a)(ii)	1 Use a timing marker (to mark the start and end of a rotation)	(1)	
	2 Start timing after a few rotations	(1)	
	3 Time a number of rotations and divide by the number of rotations Or		
	Repeat the measurement of <i>T</i> and calculate a mean	(1)	
	4 (Vary M to) obtain at least 5 sets of measurements	(1)	
	5 Keep x constant (for each value of M)	(1)	
	6 Plot a graph of T^2 against $\frac{1}{M}$ to check it is a straight line Or		
	Plot a graph of T^2 against $\frac{1}{M}$ to check the gradient is constant	(1)	6
	Accept alternative graphs: T against $\sqrt{\frac{1}{M}}$ or $\log T$ against $\log M$ or		
	variations with correct use of constants		
2(b)	Any TWO from		
	The video recording will help to judge when a rotation is complete	(1)	
	The video recording can be used to view the motion more slowly	(1)	
	The time for a rotation will be long so any improvement will be small	(1)	2
	Total for question 2		10