20 Matrix

一)	20	array					1	h
-)	Recta	n gular	a	numbe	$en\Delta$,	where	lach	number
	. L C	alled	an					
					Colum	(Ver	1, (al)	
in	ma	+ [N] (لاامر					
			- Ro	WS (Honig	ontal		

	O	1	2	2	4
0	0,0	0,1	0,2	0,3	0,4
1	1,0	1, 1	1,2	1,3	1,4
2	2,0	2,1	2,2	2,3	2,4
3	3,0	3,1	3,2	3,3	3,4
9	4,0	9,1	4,2	4,3	4,4

=) mat (s) (s)

nat [M] [M]

	0	1	2	٠	2	(2)	M-2	- M-
O	0,0				Orj			0, M-1
					(, j			
2					2, j			
					:			
i	1,0	1/1	1/2		1,7	, , =	1/M-L	1,m-1
					•			
N-2					N-2, j			
V-1	N-1				N-1, j			N-1,

```
Obs: When iterating in a now

-> Row number is fixed

-> Column number god from 0 to M-1

When iterating in a column

-> Column number is fixed

-> Row number god from 0 to N-1

Ordina 20 Matrix, mat(N)[M].

Print the now-wise sum.
```

$$mat(3)[4] = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 2 & 9 & 10 & 11 & 12 \\ 9 & 10 & 11 & 12 \\ \end{bmatrix} = 26$$

Void Sumfow (int mat(N)[M]) {

int N = mat. Dige()

int M = mat[0]. Dige()

for(i = 0; i < N; i++) {

int Dum = 0;

for(int j = 0; j < m; j++) {

Dum + = mat[i] [j]

print(Dum)

Of Given 20 Matrix, mat(N)[M].
Print the now-wise sum.

$$mat(3)[4] = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 2 & 9 & 10 & 11 & 12 \end{bmatrix}$$
15 18 21 29

void colsun (int mat (N) [m]) {

int N = mat. Dige()

int m = matlo3. Dige()

for (int j=0; jem; j+t) {

int Dum = 0;

for (int i=0; ien; j+t) {

Dum + = matli3 [j]

print (Dum)

How many diagonals in a square matrix? => 2

Diagonal

7 1 5 9

TC: O(N)

SC: 0(1)

(3, 3)

Os Print all anti-diagonals in a non-square matrix?

	0		2	3			
O	_	2	3	4)	۲	
	5	6	7	8	3	6	9
2	9	10	11	12	4	7	10
					8	()	
					12		

Q Given axs matrix. How many right to left diagonals will be there?

$$5 = 3 = 6$$

$$4-1=3= 2$$

$$8$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$2 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$4 = 3$$

$$3 = 3$$

$$3 = 3$$

$$4 = 3$$

$$3 = 3$$

$$3 = 3$$

$$4 = 3$$

$$3 = 3$$

$$3 = 3$$

$$4 = 3$$

$$3 = 3$$

$$4 = 3$$

$$5 = 3$$

$$6 = 3$$

$$6 = 3$$

$$7$$

$$8$$

$$(0,0)$$

 $(0,1) \rightarrow (1,0)$
 $(0,2) \rightarrow (1,1) \rightarrow (2,0)$
 $(0,3) \rightarrow (1,2) \rightarrow (2,1) \rightarrow (3,0)$

```
Void print All Anti Dingonal (int mgt (ND (MD)) }
    A First Row
   for(j=0; j / M; j++) 5
           while ( > < N 14 c > = 0 ) {
             print (mat [n) [c]);
           print ('In')
  # last Cal
              as list now is done
   fon ( i= %; i < N; i++) 5
         为 = i
         c = M-1
         while ( > < N ld c > = 0 ) {
           print (mat [n] [c]),
            97++;
         brind (12) 1;
              (0,0) -) (1,-1)
```


$$(0,0) \rightarrow (1,-1)$$

 $(0,1) \rightarrow (1,0) \rightarrow (2,-1)$
 $(0,2) \rightarrow (1,1) \rightarrow (2,0) \rightarrow (3,-1)$
 $(0,3) \rightarrow (1,2) \rightarrow (2,1) \rightarrow (3,0)$

$$(1,3) \rightarrow (2,2) \rightarrow (3,1)$$

 $(2,3) \rightarrow (3,2)$

Q Given a square 2D natrix mat (N) (N), Find transpose.

Only valid
for Equare

mathix.

	D		2
0	1	2	3
	4	5	6
2	7	8	9

	D	1	2				
0	1	4	7				
1	2	>	8				
2	3	6	9				
A~D							

	D	1	2	>	9
0	1	2	3	4	5
1	ь	7	8	1	(0
2	/1	12	13	19	کا
ζ	16	19	18	19	20
9	21	22	23	24	25

	0	1	2	3	4
0		6	11	16	21
ſ	2	7	12	17	22
2	3	8	13	18	23
3	4	9	14	19	29
4	5	10	15	20	25

Brute Force: Create a new matrix and fill each column reflering now given mathix

T(:0(N*N) S(:0(N2)

(an you do in SC: O(1), change the given mainix.

OLD: -) Diagonald an Dani

	D	1	2	>	9
0		22	73	4	5
1	6	7	\$/		70
2	116	12	12	14	کا
ζ	14 🛭	17	185	19/	20
9	216	22	23	24	25

	0	1	2	3	4
O		6	11	16	21
١	2_	7	12	17	22
2	3	8	13	18	2,3
3	4	9	14	19	29
4	<u> </u>	0	15	20	25

-) Considering diagonal as mirrow next of things are swapped

mat(i)(j) => mat(j)(i)

void transpose (matrix (N) [m)) !

for (ind i = 0; i < N; i + t > 5)

for (ind j = 0; j < N; j + t > 5int temp = mod (i) (j)

mod (i) (j) = mod (j) (i)

mod (j) (i) = temp

	0		12
0	1	2	3
ſ	4	5	6
2	7	8	9

_) This dow not works as swapping all cells will undo the first swaps.

Sol: -) Consider only upper triagle or lower triangle

void transpose (matrix (N) [m)) { for(int i = 0; i < N; i+t) } for(int j = i+1; j < N; j+t) } int temp = mat(i)(j) mat(i)(j) = mat(j)(i) mat(j)(i) = temp

TC: O(N2) SC: O()

She Given a matrix [N] [N]. Rotate it to

qo deque clock wise

0 1 2 3 0 7 9 1

1 4 5 6 =) 1 8 5 2

)	2	3	4	5
6	7	В	7	(0
11	12	13	19	کا
16	19	18	19	20
21	22	23	24	25

H

P

0	7	1,1	[]	6)
1	22	בו	12	4	2
2	23	18	13	8	3
3	29	٦	14	٦	4
9	25	20	7	0)	V

Thans for								
	0	1	1/2	3	4			
0		6	11	16	21			
1	2	7	12	17	22			
2	3	8	13	18	23			
3	4	9	14	19	29			
4	5	0	15	20	25			

	Kevers.	l	1
_	Each	=>	7
	Kon		3

D	1	2	>	9
7	41	11	6	1
22	دا	12	7	2
22 23	81	21	8	2
29 25	ت	14	١	4
25	20	7	(O	V

notate (mat (n) (m)) {

mat = transpose (mat);

for (i = 0; i < N; i++) {

reverse (mat [i]);

return matrix

Doults

180 · notations

57	67	57	77	17
50	Ы	&1	ધ	91
51	ы	51	71	17
۱٥	را	ę	t	9
5	Þ	٤	7	l

	0	1	2	3	4
0		6	11	16	21
١	2	7	12	17	22
2	3	8	13	18	23
3	4	9	14	19	29
4	5	0	15	20	25

)	2	3	4	5
/ >	6	7	В	1	(0
	11	12	13	19	کا
	16	19	18	17	20
	21	22	23	24	25

(=) N-1 (=) N-2

L) RIVERD Rach NOW

$$S = \frac{5}{30}$$

$$N = 10^3$$

$$\frac{10^{3} \times 10^{3}}{4} = O(N^{2})$$

$$\approx 10^{5}$$

$$O(N^{2}) \text{ and } O(N)$$