```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   %matplotlib inline
   import seaborn as sns
```

## Import the data into a Data Frame

In [3]: df.head()

## Out[3]:

|   |   | ld | MSSubClass | MSZoning | LotFrontage | LotArea | Street | Alley | LotShape | LandContour | Util |
|---|---|----|------------|----------|-------------|---------|--------|-------|----------|-------------|------|
| - | 0 | 1  | 60         | RL       | 65.0        | 8450    | Pave   | NaN   | Reg      | Lvl         | Al   |
|   | 1 | 2  | 20         | RL       | 80.0        | 9600    | Pave   | NaN   | Reg      | Lvl         | Al   |
|   | 2 | 3  | 60         | RL       | 68.0        | 11250   | Pave   | NaN   | IR1      | Lvl         | Al   |
|   | 3 | 4  | 70         | RL       | 60.0        | 9550    | Pave   | NaN   | IR1      | Lvl         | Al   |
|   | 4 | 5  | 60         | RL       | 84.0        | 14260   | Pave   | NaN   | IR1      | Lvl         | Al   |

5 rows × 81 columns

In [4]: train.shape

Out[4]: (1460, 81)

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):

| #  | Column       | Non-Null Count | Dtype     |
|----|--------------|----------------|-----------|
| 0  | Id           | 1460 non-null  | <br>int64 |
| 1  | MSSubClass   | 1460 non-null  | int64     |
| 2  | MSZoning     | 1460 non-null  | object    |
| 3  | LotFrontage  | 1201 non-null  | float64   |
| 4  | LotArea      | 1460 non-null  | int64     |
| 5  |              | 1460 non-null  | object    |
|    | Street       |                | _         |
| 6  | Alley        | 91 non-null    | object    |
| 7  | LotShape     | 1460 non-null  | object    |
| 8  | LandContour  | 1460 non-null  | object    |
| 9  | Utilities    | 1460 non-null  | object    |
| 10 | LotConfig    | 1460 non-null  | object    |
| 11 | LandSlope    | 1460 non-null  | object    |
| 12 | Neighborhood | 1460 non-null  | object    |
| 13 | Condition1   | 1460 non-null  | object    |
| 14 | Condition2   | 1460 non-null  | object    |
| 15 | BldgType     | 1460 non-null  | object    |
| 16 | HouseStyle   | 1460 non-null  | object    |
| 17 | OverallQual  | 1460 non-null  | int64     |
| 18 | OverallCond  | 1460 non-null  | int64     |
| 19 | YearBuilt    | 1460 non-null  | int64     |
| 20 | YearRemodAdd | 1460 non-null  | int64     |
| 21 | RoofStyle    | 1460 non-null  | object    |
| 22 | RoofMatl     | 1460 non-null  | object    |
| 23 | Exterior1st  | 1460 non-null  | object    |
| 24 | Exterior2nd  | 1460 non-null  | object    |
| 25 | MasVnrType   | 1452 non-null  | object    |
| 26 | MasVnrArea   | 1452 non-null  | float64   |
| 27 | ExterQual    | 1460 non-null  | object    |
| 28 | ExterCond    | 1460 non-null  | object    |
| 29 | Foundation   | 1460 non-null  | object    |
| 30 | BsmtQual     | 1423 non-null  | object    |
| 31 | BsmtCond     | 1423 non-null  | object    |
| 32 | BsmtExposure | 1422 non-null  | object    |
| 33 | BsmtFinType1 | 1423 non-null  | object    |
| 34 | BsmtFinSF1   | 1460 non-null  | int64     |
| 35 | BsmtFinType2 | 1422 non-null  | object    |
| 36 | BsmtFinSF2   | 1460 non-null  | int64     |
|    |              | 1460 non-null  |           |
| 37 | BsmtUnfSF    |                | int64     |
| 38 | TotalBsmtSF  | 1460 non-null  | int64     |
| 39 | Heating      | 1460 non-null  | object    |
| 40 | HeatingQC    | 1460 non-null  | object    |
| 41 | CentralAir   | 1460 non-null  | object    |
| 42 | Electrical   | 1459 non-null  | object    |
| 43 | 1stFlrSF     | 1460 non-null  | int64     |
| 44 | 2ndFlrSF     | 1460 non-null  | int64     |
| 45 | LowQualFinSF | 1460 non-null  | int64     |
| 46 | GrLivArea    | 1460 non-null  | int64     |
| 47 | BsmtFullBath | 1460 non-null  | int64     |
| 48 | BsmtHalfBath | 1460 non-null  | int64     |
| 49 | FullBath     | 1460 non-null  | int64     |
| 50 | HalfBath     | 1460 non-null  | int64     |
| 51 | BedroomAbvGr | 1460 non-null  | int64     |
|    |              |                |           |

| 52    | KitchenAbvGr    | 1460 non-null     | int64   |
|-------|-----------------|-------------------|---------|
| 53    | KitchenQual     | 1460 non-null     | object  |
| 54    | TotRmsAbvGrd    | 1460 non-null     | int64   |
| 55    | Functional      | 1460 non-null     | object  |
| 56    | Fireplaces      | 1460 non-null     | int64   |
| 57    | FireplaceQu     | 770 non-null      | object  |
| 58    | GarageType      | 1379 non-null     | object  |
| 59    | GarageYrBlt     | 1379 non-null     | float64 |
| 60    | GarageFinish    | 1379 non-null     | object  |
| 61    | GarageCars      | 1460 non-null     | int64   |
| 62    | GarageArea      | 1460 non-null     | int64   |
| 63    | GarageQual      | 1379 non-null     | object  |
| 64    | GarageCond      | 1379 non-null     | object  |
| 65    | PavedDrive      | 1460 non-null     | object  |
| 66    | WoodDeckSF      | 1460 non-null     | int64   |
| 67    | OpenPorchSF     | 1460 non-null     | int64   |
| 68    | EnclosedPorch   | 1460 non-null     | int64   |
| 69    | 3SsnPorch       | 1460 non-null     | int64   |
| 70    | ScreenPorch     | 1460 non-null     | int64   |
| 71    | PoolArea        | 1460 non-null     | int64   |
| 72    | PoolQC          | 7 non-null        | object  |
| 73    | Fence           | 281 non-null      | object  |
| 74    | MiscFeature     | 54 non-null       | object  |
| 75    | MiscVal         | 1460 non-null     | int64   |
| 76    | MoSold          | 1460 non-null     | int64   |
| 77    | YrSold          | 1460 non-null     | int64   |
| 78    | SaleType        | 1460 non-null     | object  |
| 79    | SaleCondition   | 1460 non-null     | object  |
| 80    | SalePrice       | 1460 non-null     | int64   |
| dtype | es: float64(3), | int64(35), object | ct(43)  |
|       | 004.0           | . I/D             |         |

memory usage: 924.0+ KB

```
In [6]: corr = train.corr()
    corr.style.background_gradient()
```

|               | ld        | MSSubClass | LotFrontage | LotArea   | OverallQual | OverallCond | Yearl   |
|---------------|-----------|------------|-------------|-----------|-------------|-------------|---------|
| ld            | 1.000000  | 0.011156   | -0.010601   | -0.033226 | -0.028365   | 0.012609    | -0.012  |
| MSSubClass    | 0.011156  | 1.000000   | -0.386347   | -0.139781 | 0.032628    | -0.059316   | 0.027   |
| LotFrontage   | -0.010601 | -0.386347  | 1.000000    | 0.426095  | 0.251646    | -0.059213   | 0.123   |
| LotArea       | -0.033226 | -0.139781  | 0.426095    | 1.000000  | 0.105806    | -0.005636   | 0.014   |
| OverallQual   | -0.028365 | 0.032628   | 0.251646    | 0.105806  | 1.000000    | -0.091932   | 0.572   |
| OverallCond   | 0.012609  | -0.059316  | -0.059213   | -0.005636 | -0.091932   | 1.000000    | -0.375  |
| YearBuilt     | -0.012713 | 0.027850   | 0.123349    | 0.014228  | 0.572323    | -0.375983   | 1.000   |
| YearRemodAdd  | -0.021998 | 0.040581   | 0.088866    | 0.013788  | 0.550684    | 0.073741    | 0.592   |
| MasVnrArea    | -0.050298 | 0.022936   | 0.193458    | 0.104160  | 0.411876    | -0.128101   | 0.315   |
| BsmtFinSF1    | -0.005024 | -0.069836  | 0.233633    | 0.214103  | 0.239666    | -0.046231   | 0.249   |
| BsmtFinSF2    | -0.005968 | -0.065649  | 0.049900    | 0.111170  | -0.059119   | 0.040229    | -0.04\$ |
| BsmtUnfSF     | -0.007940 | -0.140759  | 0.132644    | -0.002618 | 0.308159    | -0.136841   | 0.149   |
| TotalBsmtSF   | -0.015415 | -0.238518  | 0.392075    | 0.260833  | 0.537808    | -0.171098   | 0.391   |
| 1stFlrSF      | 0.010496  | -0.251758  | 0.457181    | 0.299475  | 0.476224    | -0.144203   | 0.281   |
| 2ndFlrSF      | 0.005590  | 0.307886   | 0.080177    | 0.050986  | 0.295493    | 0.028942    | 0.010   |
| LowQualFinSF  | -0.044230 | 0.046474   | 0.038469    | 0.004779  | -0.030429   | 0.025494    | -0.183  |
| GrLivArea     | 0.008273  | 0.074853   | 0.402797    | 0.263116  | 0.593007    | -0.079686   | 0.19§   |
| BsmtFullBath  | 0.002289  | 0.003491   | 0.100949    | 0.158155  | 0.111098    | -0.054942   | 0.187   |
| BsmtHalfBath  | -0.020155 | -0.002333  | -0.007234   | 0.048046  | -0.040150   | 0.117821    | -0.038  |
| FullBath      | 0.005587  | 0.131608   | 0.198769    | 0.126031  | 0.550600    | -0.194149   | 0.468   |
| HalfBath      | 0.006784  | 0.177354   | 0.053532    | 0.014259  | 0.273458    | -0.060769   | 0.242   |
| BedroomAbvGr  | 0.037719  | -0.023438  | 0.263170    | 0.119690  | 0.101676    | 0.012980    | -0.070  |
| KitchenAbvGr  | 0.002951  | 0.281721   | -0.006069   | -0.017784 | -0.183882   | -0.087001   | -0.174  |
| TotRmsAbvGrd  | 0.027239  | 0.040380   | 0.352096    | 0.190015  | 0.427452    | -0.057583   | 0.095   |
| Fireplaces    | -0.019772 | -0.045569  | 0.266639    | 0.271364  | 0.396765    | -0.023820   | 0.147   |
| GarageYrBlt   | 0.000072  | 0.085072   | 0.070250    | -0.024947 | 0.547766    | -0.324297   | 0.825   |
| GarageCars    | 0.016570  | -0.040110  | 0.285691    | 0.154871  | 0.600671    | -0.185758   | 0.537   |
| GarageArea    | 0.017634  | -0.098672  | 0.344997    | 0.180403  | 0.562022    | -0.151521   | 0.478   |
| WoodDeckSF    | -0.029643 | -0.012579  | 0.088521    | 0.171698  | 0.238923    | -0.003334   | 0.224   |
| OpenPorchSF   | -0.000477 | -0.006100  | 0.151972    | 0.084774  | 0.308819    | -0.032589   | 0.188   |
| EnclosedPorch | 0.002889  | -0.012037  | 0.010700    | -0.018340 | -0.113937   | 0.070356    | -0.387  |
| 3SsnPorch     | -0.046635 | -0.043825  | 0.070029    | 0.020423  | 0.030371    | 0.025504    | 0.031   |
| ScreenPorch   | 0.001330  | -0.026030  | 0.041383    | 0.043160  | 0.064886    | 0.054811    | -0.050  |
| PoolArea      | 0.057044  | 0.008283   | 0.206167    | 0.077672  | 0.065166    | -0.001985   | 0.004   |
| MiscVal       | -0.006242 | -0.007683  | 0.003368    | 0.038068  | -0.031406   | 0.068777    | -0.034  |

```
Id MSSubClass LotFrontage
                                                    LotArea OverallQual OverallCond Yearl
       MoSold
                0.021172
                                                    0.001205
                                                                                       0.012
                             -0.013585
                                          0.011200
                                                                0.070815
                                                                            -0.003511
        YrSold
                0.000712
                             -0.021407
                                          0.007450
                                                   -0.014261
                                                               -0.027347
                                                                             0.043950
                                                                                      -0.013
      SalePrice -0.021917
                             -0.084284
                                          0.351799
                                                    0.263843
                                                                0.790982
                                                                            -0.077856
                                                                                       0.522
def find_missing_percent(data):
    Returns dataframe containing the total missing values and percentage of to
tal
```

```
In [8]: miss_df = find_missing_percent(df2)
    '''Displays columns with missing values'''
    display(miss_df[miss_df['PercentMissing']>0.0])
    print("\n")

    print("Number of columns with missing values:"+(str(miss_df[miss_df['PercentMissing']>0.0].shape[0])))
```

|    | ColumnName   | TotalMissingVals | PercentMissing |
|----|--------------|------------------|----------------|
| 3  | LotFrontage  | 259.0            | 17.74          |
| 6  | Alley        | 1369.0           | 93.77          |
| 25 | MasVnrType   | 8.0              | 0.55           |
| 26 | MasVnrArea   | 8.0              | 0.55           |
| 30 | BsmtQual     | 37.0             | 2.53           |
| 31 | BsmtCond     | 37.0             | 2.53           |
| 32 | BsmtExposure | 38.0             | 2.60           |
| 33 | BsmtFinType1 | 37.0             | 2.53           |
| 35 | BsmtFinType2 | 38.0             | 2.60           |
| 42 | Electrical   | 1.0              | 0.07           |
| 57 | FireplaceQu  | 690.0            | 47.26          |
| 58 | GarageType   | 81.0             | 5.55           |
| 59 | GarageYrBlt  | 81.0             | 5.55           |
| 60 | GarageFinish | 81.0             | 5.55           |
| 63 | GarageQual   | 81.0             | 5.55           |
| 64 | GarageCond   | 81.0             | 5.55           |
| 72 | PoolQC       | 1453.0           | 99.52          |
| 73 | Fence        | 1179.0           | 80.75          |
| 74 | MiscFeature  | 1406.0           | 96.30          |

Number of columns with missing values:19

```
In [9]: drop_cols = miss_df[miss_df['PercentMissing'] >70.0].ColumnName.tolist()
    print("Number of columns with more than 70%:"+ str(len(drop_cols)))
    train = train.drop(drop_cols,axis=1)
    #test = test.drop(drop_cols,axis =1)

miss_df = miss_df[miss_df['ColumnName'].isin(train.columns)]
    '''Columns to Impute'''
    impute_cols = miss_df[miss_df['TotalMissingVals']>0.0].ColumnName.tolist()
    miss_df[miss_df['TotalMissingVals']>0.0]
```

Number of columns with more than 70%:4

## Out[9]:

|    | ColumnName   | TotalMissingVals | PercentMissing |
|----|--------------|------------------|----------------|
| 3  | LotFrontage  | 259.0            | 17.74          |
| 25 | MasVnrType   | 8.0              | 0.55           |
| 26 | MasVnrArea   | 8.0              | 0.55           |
| 30 | BsmtQual     | 37.0             | 2.53           |
| 31 | BsmtCond     | 37.0             | 2.53           |
| 32 | BsmtExposure | 38.0             | 2.60           |
| 33 | BsmtFinType1 | 37.0             | 2.53           |
| 35 | BsmtFinType2 | 38.0             | 2.60           |
| 42 | Electrical   | 1.0              | 0.07           |
| 57 | FireplaceQu  | 690.0            | 47.26          |
| 58 | GarageType   | 81.0             | 5.55           |
| 59 | GarageYrBlt  | 81.0             | 5.55           |
| 60 | GarageFinish | 81.0             | 5.55           |
| 63 | GarageQual   | 81.0             | 5.55           |
| 64 | GarageCond   | 81.0             | 5.55           |

```
In [10]: train.shape
```

Out[10]: (1460, 77)

```
In [11]: train.Neighborhood.value_counts()
Out[11]: NAmes
                     225
         CollgCr
                     150
         OldTown
                     113
          Edwards
                     100
          Somerst
                      86
                      79
          Gilbert
         NridgHt
                      77
          Sawyer
                      74
                      73
         NWAmes
                      59
          SawyerW
          BrkSide
                      58
                      51
         Crawfor
         Mitchel
                      49
         NoRidge
                      41
                      38
         Timber
                      37
         IDOTRR
                      28
         ClearCr
                      25
          StoneBr
          SWISU
                      25
                      17
         MeadowV
         Blmngtn
                      17
         BrDale
                      16
                      11
         Veenker
         NPkVill
                       9
```

2

Name: Neighborhood, dtype: int64

Blueste

In [12]: train.describe().transpose()

|               | count  | mean         | std         | min    | 25%     | 50%    | 75%      |   |
|---------------|--------|--------------|-------------|--------|---------|--------|----------|---|
| ld            | 1460.0 | 730.500000   | 421.610009  | 1.0    | 365.75  | 730.5  | 1095.25  |   |
| MSSubClass    | 1460.0 | 56.897260    | 42.300571   | 20.0   | 20.00   | 50.0   | 70.00    |   |
| LotFrontage   | 1201.0 | 70.049958    | 24.284752   | 21.0   | 59.00   | 69.0   | 80.00    |   |
| LotArea       | 1460.0 | 10516.828082 | 9981.264932 | 1300.0 | 7553.50 | 9478.5 | 11601.50 | 2 |
| OverallQual   | 1460.0 | 6.099315     | 1.382997    | 1.0    | 5.00    | 6.0    | 7.00     |   |
| OverallCond   | 1460.0 | 5.575342     | 1.112799    | 1.0    | 5.00    | 5.0    | 6.00     |   |
| YearBuilt     | 1460.0 | 1971.267808  | 30.202904   | 1872.0 | 1954.00 | 1973.0 | 2000.00  |   |
| YearRemodAdd  | 1460.0 | 1984.865753  | 20.645407   | 1950.0 | 1967.00 | 1994.0 | 2004.00  |   |
| MasVnrArea    | 1452.0 | 103.685262   | 181.066207  | 0.0    | 0.00    | 0.0    | 166.00   |   |
| BsmtFinSF1    | 1460.0 | 443.639726   | 456.098091  | 0.0    | 0.00    | 383.5  | 712.25   |   |
| BsmtFinSF2    | 1460.0 | 46.549315    | 161.319273  | 0.0    | 0.00    | 0.0    | 0.00     |   |
| BsmtUnfSF     | 1460.0 | 567.240411   | 441.866955  | 0.0    | 223.00  | 477.5  | 808.00   |   |
| TotalBsmtSF   | 1460.0 | 1057.429452  | 438.705324  | 0.0    | 795.75  | 991.5  | 1298.25  |   |
| 1stFlrSF      | 1460.0 | 1162.626712  | 386.587738  | 334.0  | 882.00  | 1087.0 | 1391.25  |   |
| 2ndFlrSF      | 1460.0 | 346.992466   | 436.528436  | 0.0    | 0.00    | 0.0    | 728.00   |   |
| LowQualFinSF  | 1460.0 | 5.844521     | 48.623081   | 0.0    | 0.00    | 0.0    | 0.00     |   |
| GrLivArea     | 1460.0 | 1515.463699  | 525.480383  | 334.0  | 1129.50 | 1464.0 | 1776.75  |   |
| BsmtFullBath  | 1460.0 | 0.425342     | 0.518911    | 0.0    | 0.00    | 0.0    | 1.00     |   |
| BsmtHalfBath  | 1460.0 | 0.057534     | 0.238753    | 0.0    | 0.00    | 0.0    | 0.00     |   |
| FullBath      | 1460.0 | 1.565068     | 0.550916    | 0.0    | 1.00    | 2.0    | 2.00     |   |
| HalfBath      | 1460.0 | 0.382877     | 0.502885    | 0.0    | 0.00    | 0.0    | 1.00     |   |
| BedroomAbvGr  | 1460.0 | 2.866438     | 0.815778    | 0.0    | 2.00    | 3.0    | 3.00     |   |
| KitchenAbvGr  | 1460.0 | 1.046575     | 0.220338    | 0.0    | 1.00    | 1.0    | 1.00     |   |
| TotRmsAbvGrd  | 1460.0 | 6.517808     | 1.625393    | 2.0    | 5.00    | 6.0    | 7.00     |   |
| Fireplaces    | 1460.0 | 0.613014     | 0.644666    | 0.0    | 0.00    | 1.0    | 1.00     |   |
| GarageYrBlt   | 1379.0 | 1978.506164  | 24.689725   | 1900.0 | 1961.00 | 1980.0 | 2002.00  |   |
| GarageCars    | 1460.0 | 1.767123     | 0.747315    | 0.0    | 1.00    | 2.0    | 2.00     |   |
| GarageArea    | 1460.0 | 472.980137   | 213.804841  | 0.0    | 334.50  | 480.0  | 576.00   |   |
| WoodDeckSF    | 1460.0 | 94.244521    | 125.338794  | 0.0    | 0.00    | 0.0    | 168.00   |   |
| OpenPorchSF   | 1460.0 | 46.660274    | 66.256028   | 0.0    | 0.00    | 25.0   | 68.00    |   |
| EnclosedPorch | 1460.0 | 21.954110    | 61.119149   | 0.0    | 0.00    | 0.0    | 0.00     |   |
| 3SsnPorch     | 1460.0 | 3.409589     | 29.317331   | 0.0    | 0.00    | 0.0    | 0.00     |   |
| ScreenPorch   | 1460.0 | 15.060959    | 55.757415   | 0.0    | 0.00    | 0.0    | 0.00     |   |
| PoolArea      | 1460.0 | 2.758904     | 40.177307   | 0.0    | 0.00    | 0.0    | 0.00     |   |
| MiscVal       | 1460.0 | 43.489041    | 496.123024  | 0.0    | 0.00    | 0.0    | 0.00     |   |

|           | count  | mean          | std          | min     | 25%       | 50%      | 75%       |   |
|-----------|--------|---------------|--------------|---------|-----------|----------|-----------|---|
| MoSold    | 1460.0 | 6.321918      | 2.703626     | 1.0     | 5.00      | 6.0      | 8.00      |   |
| YrSold    | 1460.0 | 2007.815753   | 1.328095     | 2006.0  | 2007.00   | 2008.0   | 2009.00   |   |
| SalePrice | 1460.0 | 180921.195890 | 79442.502883 | 34900.0 | 129975.00 | 163000.0 | 214000.00 | 7 |

# Data pre-processing

We will build a pipeline to do some of the following tasks:

- · Missing data
- Feature scaling (important for certain model such as Gradient Descent based models)
- · Categorical feature encoding
- · Outlier removal
- Transformation
- · Custom processing

## BldgType: Type of dwelling

```
1Fam Single-family Detached
2FmCon Two-family Conversion; originally built as one-family dwelling
Duplx Duplex
TwnhsE Townhouse End Unit
TwnhsI Townhouse Inside Unit
```

### HouseStyle: Style of dwelling

```
1Story One story

1.5Fin One and one-half story: 2nd level finished

1.5Unf One and one-half story: 2nd level unfinished

2Story Two story

2.5Fin Two and one-half story: 2nd level finished

2.5Unf Two and one-half story: 2nd level unfinished

SFoyer Split Foyer

SLV1 Split Level
```

```
In [13]:
         def plot histogram(train, col1, col2, cols list, last one =False):
             Plot the histogram for the numerical columns. The bin width
             is calculated by Freedman Diaconis Rule and Sturges rule.
             Freedman-Diaconis Rule:
             Freedman-Diaconis Rule is a rule to find the optimal number of bins.
             Bin width: (2 * IQR)/(N^1/3)
             N - Size of the data
             Number of bins : (Range/ bin-width)
             Disadvantage: The IQR might be zero for certain columns. In
             that case the bin width might be equal to infinity. In that case
             the actual range of the data is returned as bin width.
             Sturges Rule:
             Sturges Rule is a rule to find the optimal number of bins.
             Bin width: (Range/ bin-width)
             N - Size of the data
             Number of bins : ceil(log2(N))+1
             if(col1 in cols list):
                 freq1, bin edges1 = np.histogram(train[col1],bins='sturges')
                 freq1, bin_edges1 = np.histogram(train[col1],bins='fd')
             if(col2 in cols list):
                 freq2, bin_edges2 = np.histogram(train[col2],bins='sturges')
             else:
                 freq2, bin edges2 = np.histogram(train[col2],bins='fd')
             if(last one!=True):
                  plt.figure(figsize=(45,18))
                  ax1 = plt.subplot(1,2,1)
                  ax1.set_title(col1,fontsize=45)
                  ax1.set xlabel(col1,fontsize=40)
                 ax1.set_ylabel('Frequency',fontsize=40)
                 train[col1].hist(bins=bin_edges1,ax = ax1, xlabelsize=30, ylabelsize=3
         0)
             else:
                  plt.figure(figsize=(20,10))
                  ax1 = plt.subplot(1,2,1)
                 ax1.set title(col1,fontsize=25)
                 ax1.set xlabel(col1,fontsize=20)
                  ax1.set_ylabel('Frequency',fontsize=20)
                 train[col1].hist(bins=bin_edges1,ax = ax1, xlabelsize=15, ylabelsize=1
         5)
             if(last one != True):
                 ax2 = plt.subplot(1,2,2)
                 ax2.set title(col2,fontsize=45)
                  ax2.set_xlabel(col2,fontsize=40)
                 ax2.set_ylabel('Frequency',fontsize=40)
                 train[col2].hist(bins=bin edges2, ax = ax2, xlabelsize=30, ylabelsize=
         30)
```



```
In [16]: # Dropping LotArea greater than 50000 to remove outlier
    train = train[train.LotArea <= 50000].copy()
    train.shape</pre>
```

Out[16]: (1449, 77)

```
In [17]: freq1, bin_edges1=np.histogram(train.YearBuilt, bins='fd')

plt.figure(figsize=(45,18))
    ax1 = plt.subplot(1,2,1)
    ax1.set_title('YearBuilt',fontsize=45)
    ax1.set_xlabel('YearBuilt',fontsize=40)
    ax1.set_ylabel('Frequency',fontsize=40)
    train[['YearBuilt']].hist(bins=bin_edges1,ax = ax1, xlabelsize=30, ylabelsize=30)
```



```
In [18]: freq1, bin_edges1=np.histogram(train.FullBath, bins='fd')

plt.figure(figsize=(45,18))
    ax1 = plt.subplot(1,2,1)
    ax1.set_title('FullBath',fontsize=45)
    ax1.set_xlabel('FullBath',fontsize=40)
    ax1.set_ylabel('Frequency',fontsize=40)
    train[['FullBath']].hist(bins=bin_edges1,ax = ax1, xlabelsize=30, ylabelsize=30)
```



```
In [19]: freq1, bin_edges1=np.histogram(train.HalfBath, bins='fd')

plt.figure(figsize=(45,18))
    ax1 = plt.subplot(1,2,1)
    ax1.set_title('HalfBath',fontsize=45)
    ax1.set_xlabel('HalfBath',fontsize=40)
    ax1.set_ylabel('Frequency',fontsize=40)
    train[['HalfBath']].hist(bins=bin_edges1,ax = ax1, xlabelsize=30, ylabelsize=30)
```



```
In [20]: freq1, bin_edges1=np.histogram(train.BedroomAbvGr, bins='fd')

plt.figure(figsize=(45,18))
    ax1 = plt.subplot(1,2,1)
    ax1.set_title('BedroomAbvGr',fontsize=45)
    ax1.set_xlabel('BedroomAbvGr',fontsize=40)
    ax1.set_ylabel('Frequency',fontsize=40)
    train[['BedroomAbvGr']].hist(bins=bin_edges1,ax = ax1, xlabelsize=30, ylabelsize=30)
```



```
In [21]: freq1, bin_edges1=np.histogram(train.SalePrice, bins='fd')

plt.figure(figsize=(45,18))
    ax1 = plt.subplot(1,2,1)
    ax1.set_title('SalePrice',fontsize=45)
    ax1.set_xlabel('SalePrice',fontsize=40)
    ax1.set_ylabel('Frequency',fontsize=40)
    train[['SalePrice']].hist(bins=bin_edges1,ax = ax1, xlabelsize=30, ylabelsize=30)
```



In [22]: df3=train[['LotArea','BldgType','HouseStyle','YearBuilt','FullBath','HalfBath'
,'BedroomAbvGr']].copy()

```
In [23]: df3.describe()
```

## Out[23]:

|       | LotArea      | YearBuilt   | FullBath    | HalfBath    | BedroomAbvGr |
|-------|--------------|-------------|-------------|-------------|--------------|
| count | 1449.000000  | 1449.000000 | 1449.000000 | 1449.000000 | 1449.000000  |
| mean  | 9867.879917  | 1971.242926 | 1.563837    | 0.383023    | 2.868185     |
| std   | 4578.300353  | 30.271932   | 0.548947    | 0.503045    | 0.813314     |
| min   | 1300.000000  | 1872.000000 | 0.000000    | 0.000000    | 0.000000     |
| 25%   | 7500.000000  | 1954.000000 | 1.000000    | 0.000000    | 2.000000     |
| 50%   | 9450.000000  | 1973.000000 | 2.000000    | 0.000000    | 3.000000     |
| 75%   | 11500.000000 | 2000.000000 | 2.000000    | 1.000000    | 3.000000     |
| max   | 46589.000000 | 2010.000000 | 3.000000    | 2.000000    | 8.000000     |

## In [24]: df3.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1449 entries, 0 to 1459
Data columns (total 7 columns):

| # | Column       | Non-Null Count | Dtype  |
|---|--------------|----------------|--------|
|   |              |                |        |
| 0 | LotArea      | 1449 non-null  | int64  |
| 1 | BldgType     | 1449 non-null  | object |
| 2 | HouseStyle   | 1449 non-null  | object |
| 3 | YearBuilt    | 1449 non-null  | int64  |
| 4 | FullBath     | 1449 non-null  | int64  |
| 5 | HalfBath     | 1449 non-null  | int64  |
| 6 | BedroomAbvGr | 1449 non-null  | int64  |
|   |              |                |        |

dtypes: int64(5), object(2)
memory usage: 90.6+ KB

## In [25]: df3.isnull().sum()

# Out[25]: LotArea 0 BldgType 0 HouseStyle 0 YearBuilt 0 FullBath 0 HalfBath 0 BedroomAbvGr 0 dtype: int64

```
In [26]: df3.corr()
```

#### Out[26]:

|              | LotArea  | YearBuilt | FullBath | HalfBath | BedroomAbvGr |
|--------------|----------|-----------|----------|----------|--------------|
| LotArea      | 1.000000 | 0.037304  | 0.199742 | 0.085728 | 0.265837     |
| YearBuilt    | 0.037304 | 1.000000  | 0.469592 | 0.240004 | -0.071460    |
| FullBath     | 0.199742 | 0.469592  | 1.000000 | 0.137725 | 0.358389     |
| HalfBath     | 0.085728 | 0.240004  | 0.137725 | 1.000000 | 0.229830     |
| BedroomAbvGr | 0.265837 | -0.071460 | 0.358389 | 0.229830 | 1.000000     |

In [27]: df3.head()

#### Out[27]:

|   | LotArea | BldgType | HouseStyle | YearBuilt | FullBath | HalfBath | BedroomAbvGr |
|---|---------|----------|------------|-----------|----------|----------|--------------|
| 0 | 8450    | 1Fam     | 2Story     | 2003      | 2        | 1        | 3            |
| 1 | 9600    | 1Fam     | 1Story     | 1976      | 2        | 0        | 3            |
| 2 | 11250   | 1Fam     | 2Story     | 2001      | 2        | 1        | 3            |
| 3 | 9550    | 1Fam     | 2Story     | 1915      | 1        | 0        | 3            |
| 4 | 14260   | 1Fam     | 2Story     | 2000      | 2        | 1        | 4            |

```
In [28]: one_hot_df = pd.get_dummies(df3[['BldgType','HouseStyle']]) #
    df3 = df3.drop(['BldgType','HouseStyle'], axis=1) # Drop column as it is now e
    ncoded
    df3 = df3.join(one_hot_df) # Join the encoded df
    print(df3.columns)
    df3.tail()
    # and encoding happens
```

## Out[28]:

|      | LotArea | YearBuilt | FullBath | HalfBath | BedroomAbvGr | BldgType_1Fam | BldgType_2fmCon |
|------|---------|-----------|----------|----------|--------------|---------------|-----------------|
| 1455 | 7917    | 1999      | 2        | 1        | 3            | 1             | 0               |
| 1456 | 13175   | 1978      | 2        | 0        | 3            | 1             | 0               |
| 1457 | 9042    | 1941      | 2        | 0        | 4            | 1             | 0               |
| 1458 | 9717    | 1950      | 1        | 0        | 2            | 1             | 0               |
| 1459 | 9937    | 1965      | 1        | 1        | 3            | 1             | 0               |
|      |         |           |          |          |              |               |                 |

Out[29]: <seaborn.axisgrid.PairGrid at 0x21cec625340>



```
In [30]: # split data into X and Y dataframes
X = df3.copy() # independent variables
Y = train['SalePrice'].copy() # dependent variable
```

```
In [31]: # Run regression using statsmodels
import statsmodels.api as sm
import math

X = sm.add_constant(X) # required if a value for alpha is expected
est = sm.OLS(Y,X).fit() # fit model
predictions = est.predict() # get predicted values
print(est.summary())
print("\nAverage error: {:.2f}.".format(math.sqrt(est.mse_resid)))
```

## OLS Regression Results

| ======================================= | ========         | =======        |                     |         |           | === |
|-----------------------------------------|------------------|----------------|---------------------|---------|-----------|-----|
| =<br>Dep. Variable:<br>1                | SalePrice        |                | R-squared:          |         | 0.54      |     |
| Model:<br>5                             | OLS              |                | Adj. R-squared:     |         | 0.53      |     |
| Method:                                 | Least Squares    |                | F-statistic:        |         | 105.      |     |
| Date:<br>8                              | Mon, 28 Jun 2021 |                | Prob (F-statistic): |         | 4.06e-22  |     |
| Time: 6.                                | 22:48:45         |                | Log-Likelihood:     |         | -1782     |     |
| No. Observations:                       | 1449             |                | AIC:                |         | 3.569e+0  |     |
| Df Residuals:<br>4                      | 1432             |                | BIC:                |         | 3.578e+0  |     |
| Df Model:<br>Covariance Type:           | ne               | 16<br>onrobust |                     |         |           |     |
| ======================================= | ========         |                |                     | ======= |           | === |
|                                         | coef             | std err        | t                   | P> t    | [0.025    |     |
| 0.975]                                  |                  |                |                     |         |           |     |
|                                         |                  |                |                     |         |           |     |
| const<br>1.06e+06                       | -1.256e+06       | 1e+05          | -12.520             | 0.000   | -1.45e+06 | -   |
| LotArea<br>5.152                        | 4.4416           | 0.362          | 12.267              | 0.000   | 3.731     |     |
| YearBuilt<br>1003.407                   | 867.2988         | 69.385         | 12.500              | 0.000   | 731.191   |     |
| FullBath<br>5.98e+04                    | 5.27e+04         | 3636.254       | 14.492              | 0.000   | 4.56e+04  |     |
| HalfBath<br>3.24e+04                    | 2.459e+04        | 3999.961       | 6.147               | 0.000   | 1.67e+04  |     |
| BedroomAbvGr<br>1474.500                | -2993.4791       | 2277.696       | -1.314              | 0.189   | -7461.458 |     |
| BldgType_1Fam<br>1.88e+05               | -2.282e+05       | 2.05e+04       | -11.148             | 0.000   | -2.68e+05 | -   |
| BldgType_2fmCon<br>2.06e+05             | -2.467e+05       | 2.07e+04       | -11.931             | 0.000   | -2.87e+05 | -   |
| BldgType_Duplex<br>2.42e+05             | -2.825e+05       | 2.07e+04       |                     | 0.000   | -3.23e+05 | -   |
| BldgType_Twnhs<br>-2.2e+05              | -2.638e+05       | 2.21e+04       |                     | 0.000   | -3.07e+05 |     |
| BldgType_TwnhsE<br>1.92e+05             | -2.346e+05       | 2.18e+04       |                     | 0.000   | -2.77e+05 | -   |
| HouseStyle_1.5Fin<br>1.39e+05           |                  | 1.29e+04       |                     | 0.000   | -1.9e+05  | -   |
| HouseStyle_1.5Unf<br>1.24e+05           |                  | 1.82e+04       |                     | 0.000   | -1.95e+05 | -   |
| HouseStyle_1Story<br>1.38e+05           |                  | 1.49e+04       |                     | 0.000   | -1.97e+05 | -   |
| HouseStyle_2.5Fin 6.19e+04              |                  | 1.99e+04       |                     | 0.000   | -1.4e+05  | -   |
| HouseStyle_2.5Unf<br>1.06e+05           | -1.409e+05       | 1.77e+04       | -7.942              | 0.000   | -1.76e+05 | -   |

| HouseStyle_2Story<br>1.45e+05           | -1.726e+05 | 1.39e+04    | -12.393       | 0.000   | -2e+05    | -   |  |
|-----------------------------------------|------------|-------------|---------------|---------|-----------|-----|--|
| HouseStyle_SFoyer<br>1.34e+05           | -1.685e+05 | 1.75e+04    | -9.632        | 0.000   | -2.03e+05 | -   |  |
| HouseStyle_SLvl<br>-1.5e+05             | -1.812e+05 | 1.58e+04    | -11.467       | 0.000   | -2.12e+05 |     |  |
| ======================================= | ========   | =======     | ========      | ======= |           | === |  |
| =                                       |            |             |               |         |           |     |  |
| Omnibus:                                |            | 640.645     | Durbin-Watson | n:      | 1.        | .98 |  |
| 7                                       |            |             |               |         |           |     |  |
| Prob(Omnibus):                          |            | 0.000       | Jarque-Bera ( | [ЈВ):   | 5721      | .20 |  |
| 8                                       |            |             |               |         |           |     |  |
| Skew:                                   |            | 1.831       | Prob(JB):     |         | (         | 0.0 |  |
| 0                                       |            |             |               |         |           |     |  |
| Kurtosis:                               | 12.019     | Cond. No. 2 |               | 2.086   | e+2       |     |  |
| 0                                       |            |             |               |         |           |     |  |
|                                         |            |             |               |         |           |     |  |
| =                                       |            |             |               |         |           |     |  |

#### Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.08e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Average error: 53600.31.

# Conclusion

- 1. 19 columns were identified as having NULL values, out of which 4 columns have more than 70 percent were NULL, which were dropped
- The following attributes were chosen based on our initial correlation analysis; which are some of the common attributest between test datasets LotArea , BldgType, HouseStyle , YearBuilt, FullBath , BedroomAbvGr
- 3. Another correlation analysis was performed among the selected attributes to avoid multicollinearity
- 4. In order to avoid outliers, LotArea greater than 50,000 sq.ft. were eliminated
- 5. Test datasets are gathered from Delaware- Bear, Delaware- Newark, Delaware-Wilmington and the latest data from Iowa- Ames.
- 6. Full Bath, Half Bath, Year Built and lot area are the most significant predictors in the model
- 7. With this prediction model, predicted house price is off by an average of \$53,600
- 8. The R^2 statistic shows how well the model explains SalePrice.
- 9. In this model, since R^2 and Adjusted R^2 are close, model is not overfit.