Классная работа 12 (от 12.05).

ALG 1. Для каждого из указанных ниже отображений пространства всех многочленов степени не выше n из кольца $\mathbb{R}[x]$ в себя установить является ли оно линейным оператором, и в случае положительного ответа найти матрицу оператора в базисе $1, x, \ldots, x^n$.

- (a) A(f(x)) = f(x+2);
- (6) A(f(x)) = f'(x);
- (в) A(f(x)) остаток от деления $f(x^2)$ на x^{n+1} ;
- (г) A(f(x)) остаток от деления $\int_0^x f(t)dt$ на x^{n+1} .

ALG 2. Пусть V — линейное пространство из предыдущей задачи. Найдите образ и ядро следующих отображений:

- (a) оператора дифференцирования D;
- (б) для $h \in \mathbb{R}$ разностного оператора A_h , определяемого равенством $A_h = \frac{1}{h}(f(x+h) f(x))$.

ALG 3.

- (a) Доказать, что оператор дифференцирования над V не обратим.
- (б) Доказать, что оператор дифференцирования над $\langle \sin(x), \cos(x) \rangle$ обратим.

ALG 4. Пусть V — некоторое векторное пространство и $A:V\to V$ — линейное отображение. Будем называть его нельпотентным тогда и только тогда, когда существует $m\in\mathbb{N}$ такое, что $A^m(V)=\{0\}$.

- (a) Докажите, что если U подпространство V то, A(U) = U тогда и только тогда, когда $U = \{0\}$.
- (б) Докажите, что $m \leq \dim(V)$.
- (в) Докажите, что для любого $v \in V$, если $A^{m-1}(v) \neq 0$, то $v, A(v), \ldots, A^{m-1}(v)$ линейно независимы.
- (г) Докажите, что E A обратим.
- (д) Выразите $(E-A)^{-1}$, через E и A.