Asymmetric Laplace and GAL Distributions

Antonio Aguirre

2025-03-06

Introduction

This vignette introduces the **Asymmetric Laplace (AL) distribution** and its generalization, the **GAL (GAL) distribution**. These distributions are useful for modeling **skewed data** and play an important role in **quantile regression**, **risk analysis**, **and Bayesian statistics**.

Asymmetric Laplace (AL) Distribution

The Asymmetric Laplace (AL) distribution is defined by a parameter p such that $p \in (0,1)$.

Probability Density Function (PDF)

The AL density function for a standard case ($\mu = 0$, $\sigma = 1$) is:

$$f_{\rm AL}(y \mid p, 0, 1) = p(1 - p) \times \begin{cases} \exp(-py), & y \ge 0 \\ \exp((1 - p)y), & y < 0 \end{cases}$$

```
# Generate x values
x \leftarrow seq(-10, 10, length = 5000)
# Compute AL densities for different pO values
df <- data.frame(</pre>
 x = rep(x, 3),
 y = c(sapply(x, function(x) dexal(x, p0 = 0.5)),
        sapply(x, function(x) dexal(x, p0 = 0.05)),
        sapply(x, function(x) dexal(x, p0 = 0.7))),
  p0 = factor(rep(c("p0 = 0.5", "p0 = 0.05", "p0 = 0.7"), each = length(x)))
# Create the plot with a professional style
ggplot(df, aes(x = x, y = y, color = p0)) +
  geom_line(size = 1.2) +
  scale color manual(values = c("#1f78b4", "#33a02c", "#e31a1c")) + # Professional color palette
  labs(title = "Asymmetric Laplace Density for Different p0 Values",
       x = "x"
       y = "Density",
       color = "Quantile Level | ") +
  theme_minimal(base_size = 14) +
```

```
theme(
  legend.position = "top",
  plot.title = element_text(hjust = 0.5, face = "bold"),
  axis.title = element_text(face = "bold"),
  axis.text = element_text(color = "black"),
  legend.text = element_text(size = 12)
)
```

Asymmetric Laplace Density for Different p0 Values

Cumulative Distribution Function (CDF)

The CDF is given by:

$$F_{\text{AL}}(y \mid p, 0, 1) = \begin{cases} p \exp((1 - p)y), & y < 0 \\ 1 - (1 - p) \exp(-py), & y \ge 0 \end{cases}$$

```
# Generate x values
x <- seq(-10, 10, length = 5000)

# Compute AL CDFs for different p_0 values
df <- data.frame(
    x = rep(x, 3),
    y = c(sapply(x, function(x) pexal(x, p0 = 0.5)),
        sapply(x, function(x) pexal(x, p0 = 0.05)),
        sapply(x, function(x) pexal(x, p0 = 0.05)),
        sapply(x, function(x) pexal(x, p0 = 0.7))),
p0 = factor(rep(c("p0 = 0.5", "p0 = 0.05", "p0 = 0.7"), each = length(x)))</pre>
```

Asymmetric Laplace CDF for Different p0 Values

Quantile Level | - p0 = 0.05 - p0 = 0.5 - p0 = 0.7

GAL (GAL) Distribution

The GAL (GAL) distribution extends the Asymmetric Laplace (AL) distribution by incorporating an additional half-normal distributed component. This generalization introduces an extra skewness parameter, denoted as γ , which governs the asymmetry and spread of the distribution.

X

The GAL distribution possesses **infinite mixture representations**, which offer different perspectives on its structure and highlight its connections to **normal**, **exponential**, **and asymmetric Laplace distributions**.

Mixture Representations of the GAL Distribution

The GAL distribution can be understood as a **hierarchical model**, obtained through the following **three equivalent mixture representations**:

1) AL as a Normal-Exponential Mixture

The Asymmetric Laplace (AL) distribution itself can be written as a normal-exponential mixture:

$$f_{\mathrm{AL}}(y \mid p, 0, 1) = \int_{0}^{\infty} N(y \mid \lambda \tau, \tau) Exp(\tau \mid 1) d\tau$$

where the latent variable τ follows an **exponential(1) distribution**, and:

$$\lambda = \frac{1 - 2p}{p(1 - p)}.$$

2) GAL as an AL-Half-Normal Mixture

The **GAL** distribution generalizes the AL by introducing an additional half-normal component $s \sim N^+(0,1)$:

$$f_{\text{GAL}}(y \mid p, \alpha, 0, 1) = \int_{0}^{\infty} f_{\text{AL}}(y - \alpha s \mid p, 0, 1) N^{+}(s|0, 1) ds.$$

This representation shows that the GAL distribution introduces variability through a half-normal component, controlling the spread asymmetrically via α .

3) GAL as a Normal-Exponential-Half-Normal Mixture

By combining the **Normal-Exponential Mixture** (from AL) with the **Half-Normal Mixture**, the GAL distribution can also be written as a **double mixture**:

$$f_{\text{GAL}}(y \mid p, \alpha, 0, 1) = \int_{0}^{\infty} \int_{0}^{\infty} N(y \mid \alpha s + \lambda \tau, \tau) e^{-\tau} Exp(\tau \mid 1) N^{+}(s \mid 0, 1) d\tau ds.$$

This shows that the GAL can be thought of as a **three-component hierarchical model**, with: - An **exponential** latent variable τ , - A **half-normal** latent variable s, - A **normal** component $N(y \mid \alpha s + \lambda \tau, \tau)$.

Reparameterization: Defining the GAL in Terms of gamma and p0

Instead of working directly with (p, α) , the GAL distribution can also be expressed in terms of: - $p_0 \in (0, 1)$: The quantile level that controls the asymmetry of the distribution. - γ : A skewness parameter that determines the spread and tilt of the distribution.

The transformation from (p_0, γ) to (p, α) is given by:

$$p = \mathbf{1}(\gamma < 0) + \frac{p_0 - \mathbf{1}(\gamma < 0)}{g(\gamma)}$$
$$\alpha = \frac{|\gamma|}{\mathbf{1}(\gamma > 0) - p}$$

where:

$$g(\gamma) = 2\Phi(-|\gamma|)e^{\gamma^2/2}.$$

The parameter γ is **restricted to the interval** (L,U), where L and U are the respective negative and positive solutions to:

$$g(x) - (1 - p_0) = 0$$
, $g(x) - p_0 = 0$.

ensuring that L < 0 < U.

```
# Generate x values
x \leftarrow seq(-10, 10, length = 5000)
# Compute GAL densities for different p_0 and gamma values
df <- data.frame(</pre>
  x = rep(x, 3),
  y = c(sapply(x, function(x) dexal(x, p0 = 0.6, gamma = 0.5)),
        sapply(x, function(x) dexal(x, p0 = 0.6, gamma = -0.5)),
        sapply(x, function(x) dexal(x, p0 = 0.6, gamma = 0.1))),
  gamma = factor(rep(c("gamma = 0.5", "gamma = -0.5", "gamma = 0.1"), each = length(x)))
)
# Create the plot with a professional style
ggplot(df, aes(x = x, y = y, color = gamma)) +
  geom_line(size = 1.2) +
  scale_color_manual(values = c("#1f78b4", "#33a02c", "#e31a1c")) + # Professional color palette
  labs(title = "GAL Density for Different gamma Values at quantile level p0 = 0.6",
       x = "x"
       y = "Density",
       color = "gamma Values | ") +
  theme_minimal(base_size = 14) +
  theme(
   legend.position = "top",
   plot.title = element_text(hjust = 0.5, face = "bold"),
    axis.title = element_text(face = "bold"),
   axis.text = element_text(color = "black"),
    legend.text = element text(size = 12)
 )
```

3AL Density for Different gamma Values at quantile level p

Closed-Form Probability Density Function (PDF) of the GAL Distribution

Using the relationship between (p, α) and (p_0, γ) , the GAL density function can be expressed in terms of gamma and p0.

For $\alpha > 0$:

$$f_{\mathrm{GAL}}(y\mid p,\alpha,0,1) = 2p(1-p)\left[\Phi\left(\frac{y}{\alpha} - p\alpha\right) - \Phi(-p\alpha)\right]e^{-py + \frac{1}{2}(p\alpha)^2} + \Phi\left((p-1)\alpha - \frac{y}{\alpha}\right)e^{-(p-1)y + \frac{1}{2}((p-1)\alpha)^2}$$

Notice that α and p are functions of γ and p_0 .

For $\alpha < 0$, the density can be derived using the symmetry property:

$$f_{\text{GAL}}(y \mid p, \alpha, 0, 1) = f_{\text{GAL}}(-y \mid 1 - p, |\alpha|, 0, 1).$$

Closed-Form cumulative distribution function (CDF) of the GAL

For
$$\alpha > 0$$
:
$$F_{\text{GAL}}(y \mid p, \alpha, 0, 1) = 2pe^{\frac{1}{2}((p-1)\alpha)^2 + (1-p)y} \Phi\left(-(1-p)\alpha - \frac{y}{\alpha}\mathbf{1}(\frac{y}{\alpha} > 0)\right)$$

$$+ \left[2(1-p)e^{\frac{1}{2}(p\alpha)^2 - py} \left(\Phi(-p\alpha) - \Phi\left(\frac{y}{\alpha} - p\alpha\right) \right) + 2\Phi\left(\frac{y}{\alpha}\right) - 1 \right] \mathbf{1}(\frac{y}{\alpha} > 0).$$

For $\alpha < 0$, the symmetry property follows:

$$F_{\text{GAL}}(y \mid p, \alpha) = 1 - F_{\text{GAL}}(-y \mid 1 - p, |\alpha|).$$

```
# Generate x values
x \leftarrow seq(-10, 10, length = 5000)
# Compute GAL CDFs for different p_0 and gamma values
df <- data.frame(</pre>
 x = rep(x, 3),
 y = c(sapply(x, function(x) pexal(x, p0 = 0.6, gamma = 0.5)),
        sapply(x, function(x) pexal(x, p0 = 0.6, gamma = -0.5)),
        sapply(x, function(x) pexal(x, p0 = 0.6, gamma = 0.1))),
  gamma = factor(rep(c("gamma = 0.5", "gamma = -0.5", "gamma = 0.1"), each = length(x)))
# Create the plot with a professional style
ggplot(df, aes(x = x, y = y, color = gamma)) +
  geom_line(size = 1.2) +
  scale_color_manual(values = c("#1f78b4", "#33a02c", "#e31a1c")) + # Professional color palette
  labs(title = "GAL CDF for Different gamma Values at Quantile Level p0 = 0.6",
       x = "x"
       y = "Cumulative Probability",
       color = "gamma Values | ") +
  theme_minimal(base_size = 14) +
  theme(
   legend.position = "top",
   plot.title = element_text(hjust = 0.5, face = "bold"),
   axis.title = element text(face = "bold"),
   axis.text = element_text(color = "black"),
   legend.text = element_text(size = 12)
```

GAL CDF for Different gamma Values at Quantile Level p0

Introducing Location and Scale Parameters in the GAL Distribution

Like the Asymmetric Laplace (AL) distribution, the GAL distribution belongs to the location-scale family, meaning that location (μ) and scale (σ) parameters can be introduced via affine transformations.

1. Location-Scale Transformation

Let $Y \sim \mathbf{GAL}(p, \alpha, 0, 1)$, i.e., a standard GAL variable with location $\mu = 0$ and scale $\sigma = 1$. We introduce a new variable X by applying the transformation:

$$X = \mu + \sigma Y$$
.

Then, X follows the general location-scale GAL distribution:

$$X \sim \text{GAL}(p, \alpha, \mu, \sigma).$$

2. Probability Density Function (PDF) of the General GAL Distribution

By applying the location-scale transformation to the standard GAL density:

$$f_{\text{GAL}}(x \mid p, \alpha, \mu, \sigma) = \frac{1}{\sigma} f_{\text{GAL}}\left(\frac{x - \mu}{\sigma} \mid p, \alpha, 0, 1\right).$$

```
# Generate x values
x \leftarrow seq(-20, 20, length = 5000)
# Compute GAL densities for different p_0, gamma, mu, and sigma values
df <- data.frame(</pre>
 x = rep(x, 3),
  y = c(sapply(x, function(x) dexal(x, p0 = 0.6, gamma = 0.5, mu = 2, sigma = 1.5)),
        sapply(x, function(x) dexal(x, p0 = 0.6, gamma = -0.5, mu = -3, sigma = 2)),
        sapply(x, function(x) dexal(x, p0 = 0.6, gamma = 0.1, mu = 0, sigma = 1))),
  gamma = factor(rep(c("gamma=0.5, mu=2, sigma=1.5",
                        "gamma=-0.5, mu=-3, sigma=2",
                        "gamma=0.1, mu=0, sigma=1"),
                      each = length(x)))
)
# Create the plot with a professional style
ggplot(df, aes(x = x, y = y, color = gamma)) +
  geom_line(size = 1.2) +
  scale_color_manual(values = c("#1f78b4", "#33a02c", "#e31a1c")) + # Professional color palette
  labs(title = "GAL Density for Different gamma, mu, and sigma Values at p0 = 0.6",
       x = "x"
       y = "Density",
       color = "gamma, mu, sigma Values | ") +
  theme_minimal(base_size = 14) +
  theme(
    legend.position = "top",
    plot.title = element_text(hjust = 0.5, face = "bold"),
    axis.title = element_text(face = "bold"),
    axis.text = element_text(color = "black"),
    legend.text = element_text(size = 12)
```

AL Density for Different gamma, mu, and sigma Values at I

3. Cumulative Distribution Function (CDF) of the General GAL Distribution

Similarly, the CDF transforms as:

$$F_{\text{GAL}}(x \mid p, \alpha, \mu, \sigma) = F_{\text{GAL}}\left(\frac{x - \mu}{\sigma} \mid p, \alpha, 0, 1\right).$$

```
# Generate x values
x \leftarrow seq(-20, 20, length = 5000)
\# Compute GAL CDFs for different p\_0, gamma, mu, and sigma values
df <- data.frame(</pre>
 x = rep(x, 3),
 y = c(sapply(x, function(x) pexal(x, p0 = 0.6, gamma = 0.5, mu = 2, sigma = 1.5)),
        sapply(x, function(x) pexal(x, p0 = 0.6, gamma = -0.5, mu = -3, sigma = 2)),
        sapply(x, function(x) pexal(x, p0 = 0.6, gamma = 0.1, mu = 0, sigma = 1))),
  gamma = factor(rep(c("gamma=0.5, mu= 2, sigma=1.5",
                         "gamma=-0.5, mu=-3, sigma=2",
                        "gamma=0.1, mu=0, sigma=1"),
                       each = length(x)))
)
# Create the plot with a professional style
ggplot(df, aes(x = x, y = y, color = gamma)) +
 geom_line(size = 1.2) +
```

symmetric Laplace CDF for Different gamma, mu, and sign

Gamma Bounds Computation

The GAL parameter γ is constrained by **two bounds**, L and U, which depend on p_0 . These bounds are the solutions to:

$$g(L) = 1 - p_0, \quad g(U) = p_0$$

These bounds define the valid region for γ at a given p_0 . To visualize this, we compute the bounds for several values of p_0 ranging from **0.001 to 0.999** and plot $L(p_0)$ and $U(p_0)$ along with the **shaded region** representing the valid range of γ .

```
## **Gamma Bounds Computation**
# The GAL parameter gamma is constrained by two bounds, L and U, which depend on p_{-}0.
# These bounds define the valid region for gamma at a given p_0.
# Define a sequence of p0 values from 0.001 to 0.999
p0_values \leftarrow seq(0.001, 0.999, length.out = 100)
# Compute gamma bounds (L, U) for each p0
gamma_bounds <- as.data.frame(t(sapply(p0_values, get_gamma_bounds)))</pre>
colnames(gamma bounds) <- c("L", "U")</pre>
gamma_bounds$p0 <- p0_values # Add p0 column for mapping</pre>
# Create the plot with shading
ggplot(gamma bounds, aes(x = p0)) +
  geom_ribbon(aes(ymin = L, ymax = U), fill = "lightblue", alpha = 0.4) + # Shaded region for valid ga
  geom\_line(aes(y = L, color = "L(p0)"), size = 1.2) +
  geom\_line(aes(y = U, color = "U(p0)"), size = 1.2) +
  scale_color_manual(values = c("#1f78b4", "#e31a1c")) + # Professional color palette
  labs(title = "Valid Range of gamma for Different pO Values",
       x = "p0",
       y = "gamma Bounds",
       color = " Bounds ") +
  theme_minimal(base_size = 14) +
  theme(
    legend.position = "top",
    plot.title = element_text(hjust = 0.5, face = "bold"),
    axis.title = element text(face = "bold"),
    axis.text = element_text(color = "black"),
    legend.text = element text(size = 12)
```

Valid Range of gamma for Different p0 Values

Quantile Function

The quantile function is computed **numerically** using a root-finding method.

```
# Define test cases
test_cases <- list(
    list(p0 = 0.3, gamma = 0.2, mu = 3),
    list(p0 = 0.5, gamma = 0, mu = -10),
    list(p0 = 0.6, gamma = -0.2, mu = 7)
)

# Define probability values to test

# Create an empty list to store results
results <- list()

# Loop over test cases
for (case in test_cases) {
    p0 <- case$p0
    gamma <- case$gamma
    mu <- case$mu

    p_vals <- seq(0.2, 0.8, length.out = 100)</pre>
```

```
# Define the label for this case
  case_label <- paste0("p0=", p0, ", gamma=", gamma, ", mu=", mu)</pre>
  # Compute quantiles using gexal
  q_vals <- sapply(p_vals, function(p) qexal(p, p0 = p0, gamma = gamma, mu = mu))
  # Apply pexal to check if we retrieve original probabilities
  p_check <- sapply(q_vals, function(q) pexal(q, p0 = p0, gamma = gamma, mu = mu))</pre>
  # Compute absolute error
  error <- abs(p_vals - p_check)
  # Store results in a data frame
  df <- data.frame(</pre>
   p = p_vals,
   q = q_vals,
   p_recovered = p_check,
   error = error,
   case_label = case_label
 results[[case_label]] <- df
}
# Combine all results into one data frame
df_plot <- do.call(rbind, results)</pre>
# Plot each validation separately with fixed x and y limits (0,1)
ggplot(df_plot, aes(x = p, y = p_recovered)) +
  geom_line(size = 1.2, color = "#1f78b4") +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +
 labs(title = "Validation of qexal as the Inverse of pexal",
       subtitle = "Each panel corresponds to a different (p0, gamma, mu) configuration",
       x = "Input Probability p",
       y = "Recovered Probability via pexal") +
  theme_minimal(base_size = 14) +
  facet_wrap(~ case_label, scales = "fixed") + # Keep fixed scales for comparison
  coord_cartesian(xlim = c(0.25, 0.75), ylim = c(0, 1)) + # Set fixed axis limits
  theme(
   plot.title = element_text(hjust = 0.5, face = "bold"),
   plot.subtitle = element_text(hjust = 0.5, face = "italic"),
   axis.title = element_text(face = "bold"),
   axis.text = element_text(color = "black"),
   legend.position = "none"
```

Validation of qexal as the Inverse of pexal

Each panel corresponds to a different (p0, gamma, mu) configuration


```
# Define test cases
test_cases <- list(</pre>
  list(q = 0.1, p0 = 0.1, gamma = 0.1, mu = -123),
  list(q = 0.1, p0 = 0.1, gamma = 0.0, mu = -123),
  list(q = 0.1, p0 = 0.1, gamma = -0.1, mu = -123),
  list(q = 0.5, p0 = 0.5, gamma = 0.1, mu = -123),
  list(q = 0.5, p0 = 0.5, gamma = 0.0, mu = -123),
  list(q = 0.5, p0 = 0.5, gamma = -0.1, mu = -123),
  list(q = 0.8, p0 = 0.8, gamma = 0.1, mu = -123),
  list(q = 0.8, p0 = 0.8, gamma = 0.0, mu = -123),
  list(q = 0.8, p0 = 0.8, gamma = -0.1, mu = -123)
# Compute quantiles
results <- lapply(test_cases, function(tc) {</pre>
  quantile_value <- qexal(tc$q, p0 = tc$p0, gamma = tc$gamma, mu = tc$mu)
  return(data.frame(
    q = tc$q,
    p0 = tc p0,
    gamma = tc$gamma,
    mu = tc$mu,
    quantile_value = quantile_value
  ))
})
```

```
# Convert results to a single data frame
results_df <- do.call(rbind, results)</pre>
# Print results with comments
print(results_df)
      q p0 gamma mu quantile_value
## 1 0.1 0.1 0.1 -123
                                 -123
## 2 0.1 0.1 0.0 -123
                                 -123
## 3 0.1 0.1 -0.1 -123
                                 -123
## 4 0.5 0.5
             0.1 - 123
                                 -123
## 5 0.5 0.5 0.0 -123
                                 -123
## 6 0.5 0.5 -0.1 -123
                                 -123
## 7 0.8 0.8 0.1 -123
                                 -123
## 8 0.8 0.8
             0.0 -123
                                 -123
## 9 0.8 0.8 -0.1 -123
                                 -123
# Check if mu is equal to qexal(p0)
all(results_df$mu == results_df$quantile_value) # Should return TRUE
## [1] TRUE
```

Random Sampling

The GAL distribution can be used to **generate random samples**, which can then be visualized.

```
set.seed(123)
# Define different parameter sets for GAL distribution
params <- list(</pre>
 list(p0 = 0.12, gamma = 2, mu = 30, sigma = 0.1),
 list(p0 = 0.8, gamma = -1, mu = -10, sigma = 1.5),
 list(p0 = 0.35, gamma = 0, mu = 100, sigma = 2)
)
# Create an empty list to store plots
plot_list <- list()</pre>
# Loop through each parameter set and generate plots
for (i in seq_along(params)) {
  # Extract parameters
 p0 <- params[[i]]$p0</pre>
  gamma <- params[[i]]$gamma</pre>
  mu <- params[[i]]$mu</pre>
  sigma <- params[[i]]$sigma
  # Generate random samples
  samples <- rexal(10000, p0 = p0, gamma = gamma, mu = mu, sigma = sigma)
  # Define x range for density computation
```

```
x_values <- seq(min(samples), max(samples), length.out = 1000)</pre>
  \# Compute GAL density using the same parameters
  density_values <- sapply(x_values, function(x) dexal(x, p0 = p0, gamma = gamma, mu = mu, sigma = sigm
  # Create data frames
  df_density <- data.frame(x = x_values, density = density_values)</pre>
  df samples <- data.frame(samples = samples)</pre>
  # Generate histogram with density overlay
  plot_list[[i]] <- ggplot(df_samples, aes(x = samples)) +</pre>
    geom_histogram(aes(y = after_stat(density)), bins = 100, fill = "lightgray", color = "black", alpha
    geom_line(data = df_density, aes(x = x, y = density, color = "True GAL Density"), size = 1.5) +
    scale_color_manual(values = c("True GAL Density" = "#e31a1c")) + # Professional color
      title = paste0("GAL Random Samples vs True Density\n(p0 = ", p0, ", gamma = ", gamma, ", mu = ", r
      x = "x"
      y = "Density",
      color = "Legend"
    ) +
    theme_minimal(base_size = 14) +
    theme(
      legend.position = "top",
      plot.title = element_text(hjust = 0.5, face = "bold"),
      axis.title = element_text(face = "bold"),
      axis.text = element_text(color = "black"),
      legend.text = element_text(size = 12)
}
# Display plots
plot_list[[1]]
```

GAL Random Samples vs True Density (p0 = 0.12, gamma = 2, mu = 30, sigma = 0.1)

Legend — True GAL Density

plot_list[[2]]

GAL Random Samples vs True Density (p0 = 0.8, gamma = -1, mu = -10, sigma = 1.5)

Legend — True GAL Density

plot_list[[3]]

GAL Random Samples vs True Density (p0 = 0.35, gamma = 0, mu = 100, sigma = 2)

