0.0.1 Кратное интегрирование по областям с параметризуемой границей

Пусть Q — область, по которой ведётся интегрирование, причём она имеет параметризуемую границу; f — функция под интегралом. Область можно разбить на сетку, например, следующим классическим способом (Рис. ??, для простоты Q — круг).

Рис. 1: Разбиение области на сетку классическим способом

В таком случае по определению кратного интеграла

$$\int_{Q} f(x,y)dxdy = \lim_{\text{diam}g_k \to 0} \sum_{k} S(g_k) f(\xi_k, \eta_k),$$

где g_k — обозначение k-й ячейки ($Q = \bigcup_k g_k$), diam g_k — её диаметр, $S(g_k)$ — площадь, $f(\xi_k, \eta_k)$ — значение f в любой точке внутри ячейки. Указанное равенство справедливо независимо от того, как именно область Q разбивается на ячейки, поэтому, имея задание границы области в виде $\mathbf{r} = \mathbf{r}(t,r), t \in [t_0,t_{\max}]$, область легко можно разбить на k вложенных друг в друга колец¹, ограниченных кривыми $\mathbf{r}(t,r_i),\mathbf{r}(t,r_{i+1}), i=1,\ldots,k$, а каждое кольцо разбить на ячейки в соответствии с изменением параметра t (Рис.??).

Тогда

$$\int_{Q} f(x,y) dx dy = \lim_{\tau_{x}, \tau_{y} \to 0} \sum_{k} \sum_{j} S(g_{kj}) f(\mathbf{r}(t_{j+\frac{1}{2}\tau_{x}}, r_{k+\frac{1}{2}\tau_{y}})),$$

где τ_y — "радиус" колец (соответственно шаг по радиусу области, определяющий количество колец), τ_x — шаг "по кольцу" (по параметру t), $S(g_{kj})$ — площадь ячейки j из k-го кольца, $f(\mathbf{r}(t_{j+\frac{1}{2}\tau_x},r_{k+\frac{1}{2}\tau_y}))$

 $^{^{1}{}m B}$ многомерном случае правильнее будет называть их слоями.

Рис. 2: Разбиение области на сетку в соответствии с параметризацией границы

— значение функции в точке примерно в середине ячейки j k-го кольца. Сразу отметим, что не обязательно брать одни и те же параметры τ_x, τ_y для всех колец, вдобавок ясно, что $S(g_{kj}) \to \tau_x \tau_y, \tau_x, \tau_y \to 0$.

Таким образом, получено разбиение области Q на кольца, которое удобно выполнить, зная задание границы Q в виде $\mathbf{r}=(t,r), t\in[t_0,t_{\max}]$. Тогда интеграл по Q приближённо равен сумме интегралов по всем кольцам, причём приближённо, потому что в центре области остаётся вырожденное кольцо, интеграл по которому будем считать неизвестным; вместо интеграла по вырожденному кольцу можно взять произведение площади этого кольца и точки в центре, если известна площадь; ясно, что при уменьшении радиуса τ_y кольца вклад интеграла по вырожденному кольцу будет уменьшаться. Следовательно, задача интегрирования по области свелась к задаче интегрирования по кольцу.

Разобьём кольцо на n секторов, как показано на Рис. $\ref{Puc. 27}$. Отрезки, разделяющие секторы, имеют концы $\mathbf{r}(t_j,r_i),\mathbf{r}(t_j,r_{i+1}),i=1,\ldots,k,j=1,\ldots,n,t_j=t_0+\tau_x j,r_i=\tau_y i$. Очевидно, что при $\tau_x,\tau_y\to 0$ площадь каждого сектора стремится к $\tau_x\tau_y$ (независимо от формы кривой), а интеграл от функции f по этому сектору – к $\tau_x\tau_y f(t_j+\frac{1}{2}\tau_x,r_i+\frac{1}{2}\tau_y)=\tau_x\tau_y f(t_0+(j+\frac{1}{2})\tau_x,(i+\frac{1}{2})\tau_y),$ если, конечно, f не имеет особенностей в центре сектора. Запишем полученную формулу в виде:

$$\int_{q_{ij}} f(x,y) dx dy \approx \tau_x \tau_y f\left(t_0 + \left(j + \frac{1}{2}\right) \tau_x, \left(i + \frac{1}{2}\right) \tau_y\right) = \frac{\tau_x \tau_y}{\tau_y} \tau_y f\left(t_0 + \left(j + \frac{1}{2}\right) \tau_x, \left(i + \frac{1}{2}\right) \tau_y\right).$$

Рис. 3: Разбиение кольца на сетку в соответствии с параметризацией границы

Просуммировав по всем секторам g_{ij} , получим интеграл по кольцу g_i :

$$\sum_{i} \frac{\tau_x \tau_y}{\tau_y} \tau_y f\left(t_0 + \left(j + \frac{1}{2}\right) \tau_x, \left(i + \frac{1}{2}\right) \tau_y\right) \approx \int_{g_i} f(x, y) dx dy,$$

который есть ничто иное как:

$$\int_{g_i} f(x,y) dx dy = \frac{S(g_i)}{t_{\text{max}} - t_0} \int_{t_0}^{t_{\text{max}}} f\left(\mathbf{r}\left(t, \left(i + \frac{1}{2}\right)\tau_y\right)\right) dt = \frac{S(g_i)}{l} \int_{l} f(x,y) dl,$$

то есть интеграл по кольцу может быть выражен через произведение площади кольца и криволинейного интеграла по подобной границам кривой, проходящей по середине кольца (Рис. ??).

Таким образом, получено выражение кратного интеграла через сумму определённых:

$$\int_{Q} f(x, y) dx dy \approx \sum_{i} \frac{S_{i}}{t_{\text{max}} - t_{0}} \int_{t_{0}}^{t_{\text{max}}} f\left(\mathbf{r}\left(t, \left(i + \frac{1}{2}\right)\tau_{y}\right)\right) dt.$$

Замечания:

- 1. На самом деле при интегрировании можно брать любой контур внутри кольца, но при специальном задании границ кольца в виде $\mathbf{r}(t,r)$ (на что рассчитывает метод) удобнее брать именно подобную кривую.
- 2. Если нет возможности выразить функцию площади кольца $S_i = S(\tau_y, (i+0.5)\tau_y)$, в качестве площади при достаточно малых τ_y можно взять $S_i = \pi((i+1)\tau_y)^2 \pi(i\tau_y)^2 = \pi\tau_y^2(2i+1)$
- 3. Как правило, при параметризации $t_0=0$, но $t_{\rm max}$ зависит от радиуса кривой $r=(i+0.5)\tau_y$, поэтому $\frac{1}{t_{\rm max}-t_0}$ не всегда является константным выражением и может быть вынесено за знак суммирования.

Рис. 4: Кривая посередине кольца, по которой вычисляется криволинейный интеграл

- 4. Для возможности равномерного интегрирования указанных криволинейных интегралов следует использовать естественную параметризацию.
- 5. Для круговой области вычислять кратный интеграл можно и классическими способами, однако если область имеет более сложную форму, классические методы будет чрезвычайно тяжело использовать.

Тесты. На следующих рисунках (рисунки ??-??) показаны результаты использования описанного метода интегрирования для разных областей и разных подинтегральных функций. Области и функции взяты простыми, так как для сложных областей и функций трудно аналитически найти интеграл, с которым требуется провести сравнение. Замечено два типа поведения погрешности в зависимости от числа колец в интеграле: логарифмическое убывание и малое приближённо константное значение (на самом деле очень медленное логарифмическое убывание); при этом произведение погрешность интегрирования вычислений в первом случае логарифмически убывает, во втором — логарифмически растёт. Требуется также отметить, что графики рисовались в логарифмической шкале, поэтому точки с погрешностью не больше машинного нуля либо временем вычисления меньше машинного минимума — не изображались.

Рис. 5: Точность и отношение точность-время от интегрирования для круга радиуса r=5

Рис. 6: Точность и отношение точность-время от интегрирования для верхнего полукруга радиуса r=2

Качество аппроксимации исходника: 0,000199697816279595(0,00012754252431765) || Lradius = 0,5 Qradius = 0,5

0,0117164297841359

0,0100222832477129

0,00832813671128971

0,00663399017486657

0,00493984363844343

Рис. 7: Один из результатов работы алгоритма

для потенциала

для плотности

для потенциала Рис. 8: Один из результатов работы алгоритма

для плотности

для потенциала

Рис. 9: Один из результатов работы алгоритма

для плотности

для потенциала

Рис. 10: Один из результатов работы алгоритма

для плотности

для потенциала

Рис. 11: Один из результатов работы алгоритма

для плотности

для потенциала

Рис. 12: Один из результатов работы алгоритма

для плотности

для потенциала

Рис. 13: Один из результатов работы алгоритма

для плотности

для потенциала

Рис. 14: Один из результатов работы алгоритма

для плотности

для потенциала

Рис. 15: Один из результатов работы алгоритма

для плотности

Рис. 16: Один из результатов работы алгоритма

для плотности

для потенциала

Рис. 17: Один из результатов работы алгоритма

для плотности

для потенциала

Рис. 18: Один из результатов работы алгоритма

для плотности

для потенциала

Рис. 19: Один из результатов работы алгоритма

для плотности

для потенциала

Рис. 20: Один из результатов работы алгоритма

Приложение А. Пример построения параметризации вложенных кривых

Пусть требуется провести интегрирование по полукругу из верхней полуплоскости (рисунок ??) описанным ранее методом. Для этого требуется задать такую параметризацию полукруга в зависимости от параметра r, чтобы с уменьшением r получались вложенные друг в друга кривые, подобные границе полукруга. В общем случае требуется проделать следующие действия:

Рис. 21: Полукруг радиуса R с центром в $(0, \frac{R}{2})$

- 1. Определить центр области. Под центр области можно взять любую точку внутри области, лишь бы потом было легко задать такую параметризацию, чтобы при уменьшении r происходило сужение в какую-то точку внутри области. В качестве центра можно взять и вообще произвольную точку, но тогда задавать параметризацию будет труднее. В данном случае вполне естественным будет задать центр в точке $(0, \frac{R}{2})$.
- 2. Определение радиуса r (что именно брать за радиус). В данном случае под радиусом r естественно взять радиус полуокружности.
- 3. Определение отрезка параметризации. Отрезок параметризации можно выбрать любым, лишь бы при интегрировании по нему точки, в которых считается интеграл, располагались равномерно; при этом для равномерного расположения точек по области нужно, чтобы длина отрезка параметризации была постоянной (не зависела от радиуса); если же нужно сгущение точек в

каких-то местах, это учитывается на этапе задания отрезка. В нашем случае длина полуокружности равна πR , длина диаметра — 2R. Тогда, если для параметризации полуокружности взять отрезок длины π , для параметризации диаметра придётся взять отрезок длины x такой, что $\frac{\pi R}{2R} = \frac{\pi}{x} \Rightarrow x = 2$.

4. Задание параметризации границы интегрируемой области. В нашем случае можно взять такую параметризацию:

$$\mathbf{r}(t) = \begin{cases} \begin{pmatrix} R\cos(t) \\ R\sin(t) \end{pmatrix}, & t \in [0, \pi] \\ -R + (t - \pi)R \\ 0 \end{pmatrix}, & t \in [\pi, \pi + 2] \end{cases}$$
(1)

.

5. Задание параметризации подобных кривых. Если знать параметризацию границы, для задания параметризации подобных кривых потребуется лишь заменить R на параметр r и учесть смещение координат. В нашем случае внутренние кривые (изображены на рисунке ??) будут иметь параметризацию

$$\mathbf{r}(t,r) = \begin{cases} \begin{pmatrix} r\cos(t) \\ r\sin(t) + \frac{1}{2}(R-r) \end{pmatrix}, & t \in [0,\pi] \\ -r + (t-\pi)r \\ \frac{1}{2}(R-r) \end{pmatrix}, & t \in [\pi,\pi+2] \end{cases}$$
(2)

٠

Рис. 22: Вложенные полукруги. Обратите внимание на приблизительно равномерное расположение точек

6. Определить площадь кольцевого сегмента. Площадь сегмента $S=S(t_x,t_y,r)$, где t_x — шаг по отрезку параметризации, t_y — шаг по радиусу, r — радиус кривой в центре кольца (по которой и ведётся интегрирование), можно вычислить так. Сначала вычисляется площадь всего кольца как разность площадей двух областей (минимальной подобной области, содержащей кольцо, и максимальной подобной области, не содержащей кольцо): $\frac{1}{2}\pi(r+\frac{t_y}{2})^2-\frac{1}{2}\pi(r-\frac{t_y}{2})^2=\pi rt_y$; затем это выражение надо умножить на соотношение $\frac{t_x}{\pi+2}$ (шаг по отрезку параметризации на длину отрезка параметризации). В итоге получаем $S=\frac{t_x\pi rt_y}{\pi+2}$.

1 Вспомогательные утверждения

В этом разделе доказываются некоторые утверждения, связанные со свойствами объемного потенциала и условиями однозначной разрешимости ОЗГ, накладываемыми на поверхность S.

1.1 Объёмный потенциал и его свойства

Пусть

$$V_{\rho}(x) \equiv \int_{Q} \rho(y) E(x-y) dy,$$

Q — ограниченная область в $\mathbb{R}^2, x, y \in \mathbb{R}^2, E(x) = -2\pi \ln |x|, \rho \in L_2(Q)$.

 $\forall x \in \mathbb{R}^2$ интеграл $V_{\rho}(x)$ сходится в смысле Лебега. Докажем, что $\forall x \in \mathbb{R}^2$ функция $E(x-*) \in L_2(Q)$. Достаточно доказать, что $\int_Q E^2(x-y) dy < +\infty$.

 $\exists R>0: Q\subset B_R(x)$ – шар радиуса R с началом в x, поскольку Q – ограничена. Рассмотрим интеграл

$$\int_{B_R(x)} E^2(x-y) dy = \int_{B_R(0)} E^2(y) dy = 4\pi^2 \int_0^{2\pi} \int_0^R r \ln^2 r dr d\phi.$$

Он конечен, т. к. функция непрерывна. Т. к.

$$\int_{Q} E^{2}(x-y)dy \le \int_{B_{R}(x)} E^{2}(x-y)dy,$$

то лемма доказана. Значит, $V_{\rho}(x)$ сходится как скалярное произведение (ρ, E) , где $\rho, E \in L_2(Q)$. $V_{\rho} \in C(\mathbb{R}^2)$

Оттолкнёмся от скалярного произведения и будем доказывать непрерывность V_{ρ} в $x_0 \in \mathbb{R}^2$:

$$|V_{\rho}(x) - V_{\rho}(x_0)| \to 0, x \to x_0.$$

Рассмотрим

$$|V_{\rho}(x) - V_{\rho}(x_0)| = \left| \int_{Q} \rho(y) \left(E(x - y) - E(x_0 - y) \right) dy \right| \le (\text{по неравнеству Коши-Буняковского})$$

$$\leq \|\rho\|_{L_2(Q)} \|E(x-*) - E(x_0-*)\|,$$

где $\|\rho\|_{L_2(Q)}$ – ограничена.

Представим E(x) как сумму $E(x)=E_{\varepsilon}^{1}(x)+E_{\varepsilon}^{2}(x),$ где

$$E_{\varepsilon}^{1}(x) = \begin{cases} E(x), & \text{если } |x| \geq \varepsilon \\ \ln \varepsilon, & \text{если } |x| < \varepsilon \end{cases}, E_{\varepsilon}^{2}(x) = \begin{cases} 0, & \text{если } |x| \geq \varepsilon \\ E(x) - \ln \varepsilon, & \text{если } |x| < \varepsilon \end{cases}.$$

По неравенству треугольника для норм:

$$||E(x-*) - E(x_0 - *)|| \le ||E_{\varepsilon}^1(x-*) - E_{\varepsilon}^1(x_0 - *)|| + ||E_{\varepsilon}^2(x-*)|| + ||E_{\varepsilon}^2(x_0 - *)||.$$

Так как E_{ε}^1 непрерывна, первое слагаемое в правой части неравенства стремится к 0 при $x \to x_0, \forall \varepsilon > 0$. Для E_{ε}^2 имеем оценку:

$$\|E_{\varepsilon}^2(x-*)\| \leq \left(\int_{B_{\varepsilon}(0)} E^2(y) dy\right)^2 \to 0, \varepsilon \to 0$$
 как интеграл Лебега.

1.2 О единственности решения ОЗГ

Пусть $V = \{V_{\rho} \in L_2(Q)\}, V \in C(\mathbb{R}^2)$ — множество потенциалов, $V|_{\partial Q} \stackrel{\text{def}}{=} \{V_{\rho}|_{\partial Q} : \rho \in L_2(Q)\}$, $V|_{\Gamma} \stackrel{\text{def}}{=} \{V_{\rho}|_{\Gamma} : \rho \in L_2(Q)\}$ — сужение этих потенциалов на ∂Q и некоторую кривую Γ , и пусть имеется отношение эквивалентности между этими сужениями:

$$a \in V|_{\partial Q} \simeq b \in V|_{\Gamma} : \exists \rho \in L_2(Q) : V|_{\partial Q} = a, V|_{\Gamma} = b.$$

Утверждение:

$$V_{\rho}(x) - \int_{Q} \rho(y) dy E(x) \to 0, x \to \infty.$$

$$V_{\rho}(x) - \int_{Q} \rho(y) dy E(x) = \int_{Q} \rho(y) (E(x-y) - E(x)) dy, \text{ но}$$

$$\sup_{y \in Q} |E(x-y) - E(x)| \le C \max(\ln(|x| + \operatorname{diam} Q) - \ln|x|, \ln|x| - \ln(|x| - \operatorname{diam} Q)) \to 0, x \to \infty$$

Сформулируем следующую теорему.

Единственность решения задачи Дирихле в плоском случае (Олейник): если $\Delta u = 0$ в $\mathbb{R}^2 \backslash \bar{Q}, Q$ — ограниченная в \mathbb{R}^2 область с Ляпуновской границей, u органичена в $\mathbb{R}^2 \backslash Q, u \in C(\mathbb{R}^2 \backslash Q), u|_{\partial Q} = 0$, то u = 0 в $\mathbb{R}^2 \backslash Q$.

Если Q – шар с центром в 0, то $V_1(x) = |Q|E(x)$, поскольку

$$V_1(x) - |Q|E(x) \to 0, x \to \infty \tag{3}$$

как частный случай предыдущей теоремы, где $\Delta u = 0, u$ – ограничена в $\mathbb{R}^2 \backslash Q$, непрерывна, $u|_{\partial Q} = \text{const}$, поэтому u(x) = const, const = 0 из предела (??) в силу симметричности относительно 0.

По аналогии с результатами [?] выводятся следующие утверждения.

Утверждение 1. Ядро отображения $\rho \in L_2(Q) \to V_{\rho}|_{\Gamma}, \rho \in G(Q)$ не более чем одномерно.

Пусть есть две разные функции из ядра: $V_{\rho_1}|_{\Gamma} = V_{\rho_2}|_{\Gamma} = 0$.

Случай А.

$$\rho_1\bot 1 \text{ в } L_2(Q) \Rightarrow V_{\rho_1} \to 0, x \to \infty \Rightarrow V_{\rho_1} = 0 \text{ в } \Gamma^+ \Rightarrow V_{\rho_1} = 0 \text{ в } \mathbb{R}^2 \backslash Q,$$

поскольку V_{ρ_1} аналитическая и тогда все её производные равны 0 на аналитических продолжениях, поэтому из леммы Новикова $\rho_1 \in N(Q)$.

Случай Б.

$$\rho_1 \perp 1, \rho_2 \perp 1 \Rightarrow \exists c \in R : \rho_3 = \rho_1 + c\rho_2 \perp 1$$
 в $L_2(Q) \Rightarrow \rho_3 \in N(Q)$, чего не может быть.

Утверждение 2. Ядро отображения $\rho \in L_2(Q) \cap G(Q) \to V_\rho|_\Gamma \cap z_0, z_0 \in \Gamma^+$ – тривиально. Доказательство следует из усиленного принципа максимума (опираясь на факт, что z_0 не может быть экстремумом).

Следствие. Для двух контуров Γ_1, Γ_2 ядра не совпадают.

Определение. Будем называть Γ регулярным, если ядро отображения $\rho \to V_{\rho}|_{\Gamma}$ тривиально.

Суть этих утверждений в том, что все контуры L, подобные ∂Q , кроме одного, являются регулярными, то есть обеспечивают биективность отображения $\rho \to V_{\rho}|_{\Gamma}$.²

²Специфические названия шагов метода связаны с историей его создания: ультра-гибрид является комбинацией

