Lab #1: Languages

Exercise 1

Given an alphabet Σ , a substring of a string $u \in \Sigma^*$ is a string $w \in \Sigma^*$ such that $\exists x, y \in \Sigma^*$ with u = xwy. If $|\Sigma| = 3$, what is the minimum and maximum number of substrings of a string of length 7?

Exercise 2

Given an alphabet Σ such that $|\Sigma| = n$ and $x \in \Sigma$, calculate:

- 1. the number of strings of length p (p > 0)
- 2. the number of strings of length p (p > 0) with at least one occurrence of x
- 3. the number of strings of length p (p > 0) with exactly one occurrence of x
- 4. the number of strings of length p (p>0) with exactly q occurrences of x (q>0)

Exercise 3

Prove that, for three languages A, B and C over some alphabet Σ , $A.(B \cup C) = A.B \cup A.C$ Find three languages A, B and C over some alphabet Σ such that $A.(B \cap C) \neq A.B \cap A.C$

Exercise 4

Is there any language L over some alphabet such that L^* is finite?

Exercise 5

Prove that, for any language L over some alphabet Σ , L^* and $(\overline{L})^*$ cannot be **both** finite.

Exercise 6

An infinite set is said to be *countable* if it has a bijection with the natural numbers. Given an alphabet Σ , prove that Σ^* is countable (hint: any infinite subset of the natural numbers is countable).

Exercise 7

Given the alphabet $\Sigma = \{0, 1\}$ and $L = \{00, 01, 10, 11\}$ over Σ , prove that $L^* = \{w \in \Sigma^* : |w| \text{ is even}\}.$

Could we find a language X over some alphabet Σ such that X^* is the language of all strings of Σ^* with odd length?