	TP5 Debit - Gonzalez Grapin	Pt		АВСД			Note
I.	Préparation			Ш			
	Donner puis réaliser le câblage électrique correspondant au schéma TI ci-dessus.	1	Α				1
	Déterminer le sens d'action du régulateur, on fera un raisonnement complet, on pourra s'appuyer sur des mesures.	1	Α				1
	Régler le régulateur avec le sens d'action déterminé.	0,5	Α			Ш	0,5
4	Préciser les éléments suivants :	1	С				0,35
	Comment peut-on perturber la grandeur réglée ?	1	Α				1
•	Relever la caractéristique statique de votre procédé sans perturbation.	1	В				0,75 Vous avez inversé la sortie et l'entrée
7	Même question avec la perturbation.	1	В				0,75 du procédé.
8	Mettre les deux courbes sur le même graphique et expliquer l'influence de la perturbation.	1	D				0,05
II.	Ziegler et Nichols						
:	Procéder à l'identification de Z&N pour un fonctionnement sans perturbation.	1	D				0,05 Je veux voir la courbe.
2	Déterminer les deux caractéristiques du procédé (Ac et Tc).	1	В				0,75
3	Calculer le correcteur PI, proposé par Z&N.	1	Α				1
4	Calculer le correcteur PID, proposé par Z&N.	1	Α				1
III.	Performances vis à vis de la consigne						
	Programmer votre régulateur conformément au correcteur PI déterminé. On donnera les paramètres modifiés ainsi que	1	D				0,05 Vous confondez les méthodes de
-	leur valeur respective.	1	٦				réglage du régulateur.
2	Relever la réponse à un échelon de consigne.	1	В				0,75 Je veux voir les légendes !
	Déduire de cette réponse les performances (temps de réponse à ±5%, erreur statique et premier dépassement) de	1	В				0,75
,	votre régulation.	Τ.	В				0,73
	Programmer votre régulateur conformément au correcteur PID déterminé. On donnera les paramètres modifiés ainsi	1	D				0,05
	que leur valeur respective.	1					0,03
	Relever la réponse à un échelon de consigne.	1	D				0,05
١,	Déduire de cette réponse les performances (temps de réponse à ±5%, erreur statique et premier dépassement) de	1	D				0.05
`	votre régulation.	1					0,03
7	Comparer les performances des deux correcteurs et expliquer les différences si il y a lieu.	1	D	Ш			0,05
IV.	Performances vis à vis de la perturbation						
:	Programmer votre régulateur conformément au correcteur PI déterminé.	1	D				0,05
	Relever la réponse à la perturbation.	1	D				0,05
	Déduire de cette réponse les performances (temps de retour à la consigne et premier dépassement) de votre	1	D	\prod			0,05
	Programmer votre régulateur conformément au correcteur PID déterminé.	1	D	Ш			0,05
į	Relever la réponse à la perturbation.	1		Ш			0
(Deduire de Cette reponse les performances (temps de retour à la consigne et premier depassement) de votre	1		\prod			0
	Comparer les performances des deux correcteurs et expliquer les différences si il y a lieu.	0,5					0
			Note	: 10	,15	/25	

I. Préparation

1)

2)On obsreve que lorsqu'on augmente la commande, la mesure augmente, donc lé régulateur doitêtre en inverse car le procédé est directe.

3)

4)

la grandeur réglée : le débit de sortie

la grandeur réglante: puissance de sortie du régulateur

l'organe deréglage : l'électrovanne

une grandeur perturbatrice: lé débit d'entrée

5) Avec la vanne manuelle en sortie

Caractéristique statique sans perturbation

7)

Caractéristique statique avec perturbation

II. Ziegler et Nichols

```
1)ce procédé est naturellement stable avec un correcteur proportionnel 2)Ac= 50 Tc= 12s 3)PI

A=Ac/2,2
=22,72
Ti=Tc/1,2
=10s
Td=0
```

4)PID A=Ac/1,7

=29,41 Ti=Tc/2

=6s

Td=Tc/8 =1.5s

III. Performances vis à vis de la consigne

1) comme nous avons trouvé une régulation Proportionelle uniquement, on régle Xp à 10% avec le paramètre PB.

erreur statique:de 6%

Tr5%:20s

pas de dépassement

4 5 6 7) on suppose que la régulation PID sera plus efficace car on a un procédé tres stable.

IV. Performances vis à vis de la perturbation

1)Ti=9s

3)pas de dépassement tr5%:52s erreur statique:26%

4)le PID ne change absolument rien aux performances