Natural Proof Search for Classical Logic

Adam Lassiter Department of Computer Science University of Bath

Willem Heijltjes Department of Computer Science University of Bath

December 2, 2018

Abstract

We investigate a natural algorithm for proof search within classical logic.

1 Classical Logic

Definition 1.1. Formulae

A formula within classical logic is constructed as follows:

$$A, B, C ::= \bot \mid \top \mid a \mid \neg a \mid A \lor B \mid A \land B$$

$$\Gamma, \Delta, \Sigma ::= A_1 \dots A_n$$

where \vee , \wedge are additive linear logic disjunction and conjunction respectively and Γ , Δ , Σ are contexts..

Example.

Definition 1.2. Sequent Proofs

Within classical logic, a sequent proof is constructed from the following rules:

$$\frac{\vdash \Gamma, A}{\vdash \Gamma, A \lor B} \lor \mathbf{R} \qquad \qquad \frac{\vdash \Gamma}{\vdash \Gamma, A} w$$

$$\frac{\vdash \Gamma, A}{\vdash \Gamma, A \lor B} \land \mathbf{R} \qquad \qquad \frac{\vdash \Gamma, A, A}{\vdash \Gamma, A} c$$
 where A, B, C are formulae and Γ, Δ, Σ are sequents. A sequent proof provides, without

context, a proof of its conclusion and each line of the proof represents a tautology.

Example.

Remark 1.3. Within the context of weakening and contraction, additive and multiplicative rules are inter-derivable.

Definition 1.4. Derivations

Given $tops \Gamma_1 \dots \Gamma_n$ for the sequent proof $\vdash \Delta$, a derivation is a tree providing a proof of $\Gamma_1 \dots \Gamma_n \implies \Delta.$

A derivation is written as:

$$\frac{\vdash \Gamma_1 \qquad \dots \qquad \vdash \Gamma_n}{\vdash \Delta} \text{ [label]}$$

where the *label* describes which rules may be used within the derivation.

Corollary 1.5. Derivation Equivalence

A sequent proof is a derivation where all top derivations of the tree are $= \top$, ax. Equivalence of derivations may be weakly defined up to equivalence of leaves and conclusion.

Example.

Definition 1.6. Additive Stratification

A proof tree is said to be additively stratified if $\vdash P$ is structured as follows:

$$\frac{ \overline{ \vdash A_1}}{ \vdash \Gamma_1} \forall x \qquad \qquad \frac{ \overline{ \vdash A_n}}{ \vdash \Gamma_n} \forall x \qquad \qquad \frac{ }{ \vdash \Gamma_n} \forall x \qquad \qquad }{ \vdash \Gamma_n} \wedge, \vee \qquad \qquad \frac{ }{ \vdash \Gamma_n} \wedge, \vee \qquad \qquad$$

That is, the inferences made in an additively stratified proof are strictly ordered by:

- 1. Top/Axiomatic
- 2. Weakening
- 3. Conjunction/Disjunction
- 4. Contraction

Example.

Theorem 1.7. Stratification Equivalence

Given $\vdash A$, there exists an additively stratified proof of A.

Proof. For each instance of a weakening below another inference, there exists an equivalent subproof that is additively stratified:

$$\frac{\frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \lor B} \lor}{\vdash \Gamma, A \lor B, C} \lor \qquad \sim \qquad \frac{\frac{\vdash \Gamma, A, B}{\vdash \Gamma, A, B, C} w}{\vdash \Gamma, A \lor B, C} \lor$$

$$\frac{\vdash \Gamma, A}{\vdash \Gamma, A \land B} \lor \qquad \sim \qquad \frac{\vdash \Gamma, A}{\vdash \Gamma, A, C} w \qquad \frac{\vdash \Gamma, B}{\vdash \Gamma, B, C} \lor \lor$$

$$\frac{\vdash \Gamma, A, A}{\vdash \Gamma, A, A} \lor c \qquad \qquad \vdash \Gamma, A, A \Leftrightarrow C$$

$$\frac{\vdash \Gamma, A, A}{\vdash \Gamma, A, B} \lor w \qquad \sim \qquad \frac{\vdash \Gamma, A, A}{\vdash \Gamma, A, A, B} \lor c$$

Similarly, for each instance of a contraction above another inference, there exists an equivalent subproof that is additively stratified:

$$\frac{ \frac{\vdash \Gamma, A, A, B}{\vdash \Gamma, A, B} c}{\vdash \Gamma, A \lor B} \lor \sim \frac{\frac{\vdash \Gamma, A, A, B}{\vdash \Gamma, A, A, B, B} w}{\vdash \Gamma, A \lor B, A \lor B} \lor \frac{\vdash \Gamma, A \lor B, A \lor B}{\vdash \Gamma, A \lor B} \lor$$

$$\frac{ \frac{\vdash \Gamma, A, A}{\vdash \Gamma, A} c \qquad \vdash \Gamma, B}{\vdash \Gamma, A \land B} \land \qquad \frac{\vdash \Gamma, A, A}{\vdash \Gamma, A, A} \frac{\vdash \Gamma, B}{\vdash \Gamma, A, A \land B} \stackrel{w}{\land} \qquad \frac{\vdash \Gamma, B}{\vdash \Gamma, B, A \land B} \stackrel{w}{\land} \qquad \frac{\vdash \Gamma, B, A \land B}{\vdash \Gamma, A \land B} \stackrel{w}{\land} \qquad \frac{\vdash \Gamma, A \land B, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash \Gamma, A \land B} \stackrel{c}{\land} \qquad \frac{\vdash \Gamma, A \land B}{\vdash$$

By induction from the leaves downwards on a finite height tree, apply the associated rule to each pair of inferences of the form (c above inf). Any given $\vdash P$ may be rewritten:

$$\frac{ \overline{\vdash A_1}}{ \overline{\vdash \Gamma_1}} \uparrow, ax \qquad \qquad \overline{ \overline{\vdash A_n} \atop \overline{\vdash \Gamma_n}} \uparrow, ax
\underline{\vdash \Gamma_n} \land, \lor, w
\underline{\vdash \Gamma_n} c$$

Again, by induction from the root upwards on this partially stratified tree, apply the associated rule to each pair of inferences of the form (w below inf). $\vdash P$ may then be further rewritten:

2 Coalescence

Definition 2.1. Petri Nets

A petri net is ...

Example.

Definition 2.2. Coalescence

The coalescence algorithm is ...

Theorem 2.3. Coalescence Proof Search

The coalescence algorithm is a proof search . . .

Proof. By relation of:

- $c \iff$ dimensionality
- $ax \iff$ 2-D token initialisation
- $w \iff$ n-D extension of tokens

• $\wedge R$, $\vee R \equiv petri net firing$