Informed (Heuristic) Search Strategies

- ightharpoonup Evaluation function f(n)
- ▶ Heuristic function h(n)

Informed (Heuristic) Search Strategies

Straight Line Distances

	Arad	366	Mehadia	241
	Bucharest	0	Neamt	234
	Craiova	160	Oradea	380
	Drobeta	242	Pitesti	100
	Eforie	161	Rimnicu Vilcea	193
	Fagaras	176	Sibiu	253
	Giurgiu	77	Timisoara	329
	Hirsova	151	Urziceni	80
	Iasi	226	Vaslui	199
	Lugoj	244	Zerind	374
Figure 3.22	Values of har	straight-	line distances to Buchare	est

Greedy Best-first Search

▶ Evaluation function f(n) = h(n)

Greedy Best-first Search

▶ Evaluation function f(n) = h(n)

$$R(B) = 0$$

Greedy Best-first Search

- ► Tree search
- ► Graph search ←

Greedy Best-first *Tree* Search

Figure 3.23 Stages in a greedy best-first tree search for Bucharest with the straight-line distance heuristic h_{SLD} . Nodes are labeled with their h-values.

Greedy Best-first Tree Search

- Greedy Best-first Tree search for finite state space
 - ► Completeness?
 - Optimality?

- Greedy Best-first Tree search for finite state space
 - ► Completeness?
 - Optimality?
 - ► Time complexity?

- Greedy Best-first Tree search for finite state space
 - ► Completeness?
 - Optimality?
 - ► Time complexity? May not terminate.

- Greedy Best-first Tree search for finite state space
 - ► Completeness?
 - Optimality?
 - ► Time complexity? May not terminate.
 - Space complexity?

- Greedy Best-first Tree search for finite state space
 - ► Completeness?
 - Optimality?
 - ► Time complexity? May not terminate.
 - ► Space complexity? Linear in depth of the search tree.

- Greedy Best-first Tree search for finite state space
 - ► Completeness?
 - Optimality?
 - Time complexity? May not terminate.
 - ► Space complexity? Linear in depth of the search tree.
- Greedy Best-first Graph search for finite state space
 - Completeness?
 - Optimality?

- Greedy Best-first Tree search for finite state space
 - ► Completeness?
 - Optimality?
 - ► Time complexity? May not terminate.
 - ► Space complexity? Linear in depth of the search tree.
- Greedy Best-first Graph search for finite state space
 - Completeness?
 - Optimality?
 - Time complexity?

- ► Greedy Best-first Tree search for finite state space
 - ► Completeness?
 - ► Optimality?
 - ► Time complexity? May not terminate.
 - ▶ Space complexity? Linear in depth of the search tree.
- ► Greedy Best-first Graph search for finite state space
 - Completeness?
 - Optimality?
 - ▶ Time complexity? = $O(b^m)$ ←
 - ► Space complexity? = $O(b^m)$

M

A* search

$$f(n) = g(n) + h(n)$$

A* tree search

(a) The initial state

(b) After expanding Arad

Sibiu 393=140+253

Arad 366=0+366

> Zerind Timisoara 447=118+329 449=75+374

(c) After expanding Sibiu

Sibiu Arad Fagaras Oradea

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea

Arad

Arad

Timisoara

447=118+329

Zerind

449=75+374

A* tree search

Uniform cost search vs. A* graph search

g(n) g(n)+h(n)

g(G)

Essentially, we have replaced the path function g(n) in Uniform cost search with the evaluation function f(n).

Uniform cost search vs. A* graph search

- Essentially, we have replaced the path function g(n) in Uniform cost search with the evaluation function f(n).
- Can we be sure that when the goal state is popped out of the priority queue in A^* graph search the function f(n) will be minimized?

$$f(God) = \frac{g(God)}{f(God)}$$

$$= g(God)$$

Conditions for non-decreasing f(n) in A^* search

Consistent heuristic:

$$h(n) \leq c(n, a, n') + h(n')$$