

Workshop Program

16:00 Beijing / 09:00 CET | Introduction to the Workshop

16:05 Beijing / 09:05 CET | Introduction to the Test Facility

& Measurement Data

16:50 Beijing / 09:50 CET | Summary of Participants' CFD Results

17:30 Beijing/10:30 CET | Coffee Break

17:45 Beijing/10:45 CET | Participant Presentations

19:10 Beijing/12:10 CET Open Discussions

19:30 Beijing/12:30 CET | Presentation data set: Beihang University

19:50 Beijing/12:50 CET | Presentation data set: ETH

20:10 Beijing / 13:10 CET | Wrap-up and outlook

Mingmin Zhu Shanghai Jiaotong University

Chuanxiang Yan Tsinghua University

Ziwei Wang CARDC

Qingzhe Gao Beihang University

Haowei Zhou Beihang University

Qinglin Zhou Northwestern Polytechnical University

Dongming Cao Northwestern Polytechnical University

Boqian Wang Northwestern Polytechnical University

Technical University of Darmstadt

Institute of Gas Turbines and Aerospace Propulsion

Institute of

Gas Turbines and Aerospace Propulsion

- » Department of Mechanical Engineering
- » Chair: Prof. Dr. H.-P. Schiffer
- 3 18 researcher & in-house mechanical workshop
- » ~25 student research assistants per year
- » ~25 Bachelor & ~15 Master thesis students per year

- » Rolls-Royce University Technology Center
- » research with application focus, both numerically and experimentally
- » Test facilities
 - 2 transonic axial compressor rigs
 - » 2 scaled axial turbine rigs
 - Turbo charger laboratory
 - » Measurement design, calibration & validation

Research Partners and Funding

European Union
Research and Innovation

CONTENT

Facility Introduction

Measurement Techniques

Test Procedures, Data Acquisition and Dataset

Conclusion

Technology Readiness Level Classification

TRL 1
Basic
Principles
Observed and
Reported

TRL 2
Potential
Application
Validated

TRL 3
Proof-ofConcept
Demonstrated

TRL 4 - 5

Component Test Facilities & Validation

- Good accessibility for instrumentation
- » Isolated investigation
- » Industrially relevant environment
- Focus on understanding the underlying phenomena

TRL 6 - 7
System
Prototype
Demonstration
in Operation
Environment

TRL 8 - 9 System Test, Launch & Operations

Transonic Compressor Rig

Facility Design

Single-stage or 1.5-stage axial compressor setups (representative for a HPC front stage)

Capacity	
In /out flow	axial-axial
Electr. Power	800 kW
Max. Torque	350 Nm
Max. speed	20 500 rpm
Max. rotor diameter	0.38 m
Hub to tip ratio	~ 0.5
Rel. Ma-Number @ tip	~ 1.4

Research Focus

Performance, Aerodynamics, Aeroelasticity

Performance Measurements

- Analyzing global effects
- Influencing parameters

Unsteady Aerodynamics

- Stall inception mechanisms
- Pre-stall disturbances

Aeroelasticity

- Non-synchronous vibration
- Forced response

Interaction & fluid-structure coupling mechanisms

Countermeasures / influences

Darmstadt Transonic Compressor

Rotor 11 BLISKs commissioned

- Varying
 - 3D design
 - Blade count
 - Fw/bw Sweep
 - » Materials
 - » Instrumentation

Stator

- 6 stators commissioned in several stage setups
- Varying
 - » 3D design
 - » Vane count
 - » Variable stagger during operation
 - » Materials
 - » Instrumentation

Casing Segments

- Multiple variations
- » Varying
 - » Tip clearance
 - Eccentricity
 - » Casing treatments
 - » Abradable liner
 - » Instrumentation

Darmstadt Transonic Compressor Stage Design **OPEN TEST CASE**

TUDa-GLR-OpenStage

Geometry

Rotor 1

Designed by MTU Aero Engines

- First run 1994
- Broad availability of literature
- open test case

Stator opt. (7)

CFD optimized Stator

- Design and optimization conjointly realized by *DLR* and *GLR* (see *Bakhtiari*, 2015)
- Suppression of flow separation
- Manufacturing within EU funded H2020 Project ARIAS

CONTENT

Facility Introduction

Measurement Techniques

Test Procedures, Data Acquisition and Dataset

Conclusion

Measurement Systems & Instrumentation TECHNISCHE UNIVERSITÄT Overview DARMSTADT max. Power: 800 kW max. Torque: 350 Nm max. Rotor Speed: 20.500 rpm ME03 Settling chamber ME2X Blade tip instrumentation ME15 ME21 ME13 Boundary ME10 Rotor Exit ME BP Inlet Trav Layer ME20 Massflow Torquemeter ME30 (optional) Rake Rotor Inlet determination Stage Exit Shaft

Measurement Techniques

Performance and Stationary Instrumentation

Combined total pressure and temperature rakes

Combined inlet instrumentation

Boundary layer rake

Torque and shaft speed measurements

Traversable five-hole probe

2D flow field (p, v, α, etc.)

Performance

Measurement Systems & Instrumentation Time-resolved Instrumentation

Strain gauges

Blade vibration

Capacitive BTC / BTT system

Only tip clearance

Time-resolved pressure transducer in rotor casing

Unsteady aerodynamics within the rotor tip region

Traversable
unsteady pressure
probes
(virtual multi-hole
probe)

Unsteady 2D flow field within the rotor / stage exit plane

Transonic Compressor Rig Introduction

Instrumentation – Compressor Core (Open Test Case)

Rakes*: Total Temperature and Pressure

5HP*: Mach numbers and flow angles – stationary frame of reference v3HP*: Mach numbers and flow angles – rotating frame of reference

Measurement of static pressure in all sections (casing)

CONTENT

Facility Introduction

Measurement Techniques

Test Procedures, Data Acquisition and Dataset

Conclusion

Steady-state Operating Point

- » Defined by:
 - » Reduced massflow
 - » Reduced speed
- » Measurements:
 - a. Stage exit flow field (exit rakes) at all shared OPs
 - b. Probe measurements at PE and NS conditions
 - C. Unsteady wall pressure measurements
 - d. Blade tip clearance at all shared OP

Measurement Systems & Instrumentation Massflow Determination / Operating Point Definition

Measurement Systems & Instrumentation Massflow Determination / Operating Point Definition

Steady-state Operating Point

- Wait time until all measurement systems related to operating conditions converge (e.g. tip gap, temperatures ...)
- » Afterwards, rig is ready for stationary measurements

(a) Stage exit flow field (exit rakes)

Combined total pressure and temperature rakes

Measurement of:

- » Total pressure
- » Total temperature

Determination of

- » Total pressure/temperature ratio
- isentropic efficiency

(a) Stage exit flow field (exit rakes)

Traversing of stationary parts (15 positions per stator passage)

Stepwise clocking of stator module:

- In between each clocking position waiting for convergence of relevant parameters
- » Measurement time is set, thus number of uncorrelated measurements varies

Waiting time open test case = 20s Measurement time open test case = 6s

(a) Stage exit flow field (exit rakes)

Test Procedure, Data Acquisition & Processing

^{*}considers pressure loss in inlet duct

Test Procedure, Data Acquisition & Processing

*Inlet duct assumed to be adiabatic

Test Procedure, Data Acquisition & Processing

^{*}change of γ due to changing inlet conditions is considered

Test Procedure, Data Acquisition & Processing

^{*}change of γ due to changing inlet conditions is considered

Test Procedure, Data Acquisition & Processing

Traversable five-hole probe

Stationary frame of reference

- » Total pressure
- » Flow angles
- » Local flow velocities

Traversable
unsteady pressure
probes
(virtual multi-hole
probe)

Rotating frame of reference

- Total pressure
- Flow angles
- » Local flow velocities

(b) Probe measurements

Conditions:

- » Operating conditions are set
- » Stator clocking is set

Stepwise radial traversing of probe:

- » In between each clocking position waiting for convergence of relevant values
- » Measurement time is set, thus number of uncorrelated measurements varies

(b) Probe measurements

Conditions:

- » Operating conditions are set
- » Stator clocking is set

Stepwise radial traversing of probe:

- In between each clocking position waiting for convergence of relevant values
- » Measurement for set time, thus number of uncorrelated measurements varys
- » Several stator relative radial profiles are measured

Open test case data considers 4 stator clocking positions for rotor inlet (ME20) and exit (ME21) to consider stator influence (e.g. potential field) and 15 for stage exit (ME30)

Test Procedure, Data Acquisition & Processing

^{*}depending on probe location

Test Procedure, Data Acquisition & Processing

^{*}depending on probe location

Measurement Systems & Instrumentation Test Procedure, Data Acquisition & Processing

(c) Unsteady wall pressure measurements

Time-resolved pressure transducer in rotor casing

- Static pressure rise at rotor tip
- Static pressure field in rotating frame of reference
- » Analysis of unsteady tip flow field

Measurement Systems & Instrumentation

Measurement Systems & Instrumentation

Test Procedure, Data Acquisition & Processing

- » 8 second measurements with kulite system
- * 4 * 10⁶ samples / >1200 rotor revolutions (at nominal speed)
- » Open test case includes static pressure ratio (normalized to settling chamber pressures)

Measurement Systems & Instrumentation Test Procedure, Data Acquisition & Processing

(d) Blade tip clearance (/blade vibration)

Capacitive BTC / BTT system

- In operation tip clearance
- » Blade vibration (synchronous/ non-synchronous vibration)
- » Blade untwist

Measurement Systems & Instrumentation Test Procedure, Data Acquisition & Processing

(d) Blade tip clearance (/blade vibration)

- »Tip clearance, rotor orbiting and center line shift
 - » +/- 50µm, meas. range 2/3 of probe diameter
 - » Absolute values depending on calibrated voltage
 - » Determination of vibration and blade untwist due to several axial measuremet locations

Data Set

CONTENT

Facility Introduction

Measurement Techniques

Test Procedures, Data Acquisition and Dataset

Conclusion

Comparing CFD and Experiment

TECHNISCHE UNIVERSITÄT DARMSTADT

Inconsistencies due to measurement data

- Consider measurement system uncertainty
- » Consider low spatial resolution (use measurement grid points)
- Consider data acquisition procedure
- Consider measured operating conditions

Inconsistencies due to geometry

- » Consider differences between real compressor geometry and model
 - » Different tip gaps at every operating point
 - » Different blade untwist at every operating point
 - Gaps and cavities
 - » Additional objects in flow path (e.g. probes)

Conclusion

TECHNISCHE UNIVERSITÄT DARMSTADT

Initial dataset

- For comparison of steady flow simulations
- Solver validation
- Turbulence model validation
- **>>**

Test Case is WIP and will be extended in the upcoming years

High TRL experiments crucial

- » Validation of unsteady flow phenomena
- » Investigation of aeroelastic phenomena
- » Investigation of aeroacoustic phenomena

GPPS Test Cases: ETH Zurich, Seoul National University, Beihang University https://gpps.global/gpps-data-sets-2021/

CATANA Open test case (EC Lyon)

http://catana.ec-lyon.fr/#OTC

THANK YOU!

Team:

Fabian Klausmann, Daniel Franke, Jonas Foret, Benedikt Schmidt

Contact:

Institute of Gas Turbines and Aerospace Propulsion

64287 Darmstadt, Germany

Phone: +49 (0)6151 16-22118

Mail: compressor@glr.tu-darmstadt.de

Web: www.glr.tu-darmstadt.de

MASCHINENBAUWe engineer future

Compresonic OARMESSONIC

TUDa-GLR-OpenStage Outlook

GPPS 2021 Xi'an

- 1st GPPS CFD Turbomachinery Workshop
- After workshop release of CFD data; submission of workshop summary to GPPS Journal
- After conference release of second part of dataset:
 - Probe data (rotor inlet / exit)
 - Kulite data
 - Blade tip clearance data

GPPS 2022 Chania

- Conclusion of second Open test case measurement campaign (planned for April-June 2022)
- Second GPPS CFD Turbomachinery Workshop (F2F)
- Conference paper regarding rig stability and measurement uncertainty (draft topic)

2023 2024 2025

Establish standard test case with reliable experimental and computational database

TUDa-GLR-OpenStage

TUDa-GLR-OpenStage

Transonic compressor stage geometry

- TU Darmstadt Rotor 1 with StatorOPT, OGV, radial diffusor
- Hub & shroud contour, running tip clearance

Measurement data, exemplary

- Steady state: inlet conditions and 0D, 1D & 2D exit traverses
- Dynamic: unsteady wall pressure at blade tip (steady state & transient operating conditions, e.g. stall inception), unsteady pressure probe at rotor exit

Thank you