Fundamentals

Algebra

· Properties of logs:

$$\begin{array}{l} \circ \ \ln(\prod) = \sum\limits_{\ln x} \ln \ \mathrm{but} \prod \ln \neq \ln \sum \\ \circ \ \log_b x = \frac{\ln x}{\ln b} \end{array}$$

Be careful! $rac{\ln x}{\ln y}
eq \ln rac{x}{y} = \ln x - \ln y$

• Completing the square:

$$\circ \; p(x) = ax^2 + bx + c \implies p(x) = a(x + rac{b}{2a})^2 + -rac{1}{2}\Big(rac{b^2 - 4ac}{2a}\Big)$$

• Pascal's Triangle:

n	Sequence
3	1, 2, 1
4	1, 3, 3, 1
5	1, 4, 6, 4, 1
6	1, 5, 10, 10, 5, 1
7	1, 6, 15, 20, 15, 16, 1
8	1, 7, 21, 35, 35, 21, 7, 1

Obtain new entries by adding in γ pattern (e.g. 7 = 1+6, 12 = 6 + 15, etc).

Note that $\binom{n}{i}$ is given by the entry in the n-th row, i- column.

Table of Small Factorials

n	n!
2	2
3	6
4	24
5	120
6	720
7	5040
8	40320
9	362880
10	3628800

 $\pi pprox 3.1415926535 \ e pprox 2.71828 \ \sqrt{2} pprox 1.4142135$

Primes Under 100:

Checking Divisibility by Small Primes

p	$p\mid n\iff$
2	$p \mod 10 = 2,4$
3	$\sum ext{digits} \mid 3$
5	$p \mod 5 = 0, 5$
7	
11	
13	
17	
23	
27	

Geometry

• Generic Conic Sections

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$
 $rac{(x - x_0)^2}{w_0} \pm rac{(y - y_0)^2}{h_0} = c$

· Circles:

$$Ax^2 + By^2 + C = 0$$
 $(x - x_0)^2 + (y - y_0)^2 = r^2$

- o Defining trait: locus of points at a constant distance from the center
- \circ Center at (x_0, y_0)
- Parabolas:

$$Ax^2 + Bx + Cy + D = 0 y = ax^2$$

- Defining Trait:
 - Locus of points equidistant from the focus (a point) and the directrix (a line)
 - #todo add image
- \circ Focus at $(0,\frac{1}{4a})$
- \circ **Directrix** at the line $y=-rac{1}{4a}$
 - lacktriangle For an arbitrary quadratic: complete the square to write in the form $y=a(x-w_0)^2+h_0$, and translate points of interest by by $(x+w_0,y+h_0)$
- · Ellipses:

$$rac{x^2}{w^2} + rac{y^2}{h^2} = 1$$

- o Defining trait:
 - The locus of points where the *sum* of distances to two **focii** are constant.
- Center at (0,0) (can translate easily)
- \circ Vertices at $(\pm w,0)$ and $(0,\pm h)$
- \circ Focii at $F_1 = (\sqrt{w^2 h^2}, 0), F_2 = (-\sqrt{w^2 h^2}, 0)$
- Another useful shortcut form:
- Hyperbolas:

$$\frac{x^2}{w^2} - \frac{y^2}{h^2} = 1$$

- Defining trait:
 - Locus of points where the difference between the distances to two focii are constant.
- \circ Vertices at $(0,\pm h)$ and $(\pm w,0)$
- \circ Focii at $F_1 = (\sqrt{w^2 + h^2}, 0), F_2 = (-\sqrt{w^2 + h^2}, 0)$
- Summary of Traits:
 - One point *p*:
 - lacktriangle Distance to p is constant: circle
 - \circ Two points a, b:
 - lacktriangle Distance to a equal to distance to b equals a constant: a line bisecting the midpoint of the line connecting them
 - Difference of distances constant: ellipse
 - Sum of differences constant: hyperbola
 - \circ Point p and a line l:
 - Distance to p equals distance to l equals a constant: parabola
- · Areas of certain figures:

Shape	Area / Volume
Circle	πr^2
Annulus	$\pi(r_0-r_1)^2$
Cylinder	$2\pi r h$
Ellipse	$rac{1}{2}wh$
Trapezoid:	$rac{a+b}{2}h$
Any Triangle:	$rac{1}{2}bh$
Parallelograms:	bh
Cones:	?

- ullet Polar coordinates: $(x,y)\mapsto (\sqrt{x^2+y^2}, an^{-1}(rac{y}{x}))$
- Spherical Coordinates: $[
 ho,\phi,\theta]$ where

$$x^{2} + y^{2} + z^{1} = \rho^{2}$$
$$x = \rho \sin \phi \cos \theta$$
$$y = \rho \sin \phi \sin \theta$$

Trigonometry

- Trig Values
 - Useful note: $\frac{1}{2} < \frac{\sqrt{2}}{2} < \frac{\sqrt{3}}{2}$

	\sin	cos	tan
0	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{4}}{2}$	0
$\frac{\pi}{6}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{3}}{1}$
$\frac{\pi}{2}$	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{0}}{2}$	∞

Identities

- $\circ \sin^2 x + \cos^2 x = 1$ (from Pythagorean theorem)
 - Divide through by $\cos^2 x$ or $\sin^2 x$ to obtain:

 - $-1 + \cot^2 x = \csc^2 x$
 - Just listing what conclusions you can pull out of these permutations:

$$\sin^2 x = 1 - \cos^2 x$$
 $\cos^2 x = 1 - \sin^2 x$
 $\tan^2 x = \sec^2 - 1$
 $\csc^2 x = 1 + \cot^2 x$
 $\sec^2 x = 1 + \tan^2 x$
 $\cot^2 x = \csc^2 - 1$

$$1 + \cos^2 x = \text{nothing!}$$

 $1 + \sin^2 x = \text{nothing!}$
 $1 - \tan^2 x = \text{nothing!}$
 $1 - \cot^2 x = \text{nothing!}$
 $\tan^2 x - 1 = \text{nothing!}$
 $\cot^2 x - 1 = \text{nothing!}$

A derivation with multiple payoffs:

$$\begin{aligned} \cos(a+b) + i\sin(a+b) &= e^{i(a-b)} \\ &= (\cos a + i\sin a)(\cos b - i\sin b) \\ &= (\cos a\cos b + \sin a\sin b) + i(\sin a\cos b + \cos a\sin b) \end{aligned}$$

- $\sin(a+b) = \sin a \cos b + \cos a \sin b$
- $\cos(a+b) = \cos a \cos b \sin a \sin b$
- $a = b \implies \sin(2a) = 2\sin a \cos a$
- $a = b \implies \cos(2a) = \cos^2 a \sin^2 a$
- $\sin^2 x = \frac{1}{2}(1 \cos 2x)$ $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$
- $\circ \sin 2x = 2\sin x \cos x$
- \circ Less useful: $an(a+b)=rac{ an a+ an b}{1- an a an b}$

· Law of Cosines

$$a^2 = b^2 + c^2 - 2bc\cos\theta_A$$

- Totally symmetric under any swap of two symbols
- \circ Derivation: pick the vertex corresponding to A, label the vectors to the other two vertices \mathbf{x}, \mathbf{y} , then

$$|\mathbf{x} - \mathbf{y}|^2 = \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle$$

$$= |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2\langle \mathbf{x}, \mathbf{y} \rangle$$

$$= |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2|\mathbf{x}||\mathbf{y}|\cos\theta$$

Polynomials

ullet Vieta's Formulas: Write $p(x) = \sum a_k x^k = \prod (x_k - r_k)$ and expand the product to obtain

$$p(x) = a_n x^n - (\sum_k r_k) x^{n-1} + (\sum_{i < j} r_i r_j) x^{n-1} + \dots = \sum_{k=1}^n (-1)^k \sigma_{n-k} (\{r_i\}_{i=1}^n) x^k$$

where σ_i is the i-th elementary symmetric sum.

• Example:

$$p(x) = x^2 + bx + c = x^2 - (r_1 + r_2)x + (r_1r_2)$$

o Example:

$$p(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$$
 $= a_3 x^3 - a_3 (r_1 + r_2 + r_3) x^2 + a_3 (r_1 r_2 + r_1 r_3 + r_2 r_3) x - a_3 (r_1 r_2 r_3)$
 $\implies -\frac{a_2}{a_3} = r_1 + r_2 + r_3$
 $\implies \frac{a_1}{a_3} = r_1 r_2 + r_1 r_3 + r_2 r_3$
 $\implies \frac{a_0}{a_3} = r_1 r_2 r_3$

- · Quick conclusions:
 - ullet Sum of roots of a monic polynomial is the **negative** coefficient of x^{n-1}
 - Product of roots of a monic polynomial is the constant coefficient.
- · Common enough to memorize:

$$a^{2} + b^{2} + 2ab$$
 $a^{2} + b^{2} - 2ab$
 $(a + b)^{2} + 2ab$
 $(a + b)(a - b)$
 $a^{3} + b^{3} + 3(a^{2}b + ab^{2})$
 $a^{3} - b^{3} + 3(-a^{2}b + ab^{2})$
 $(a + b)(a^{2} + b^{2} - ab)$
 $(a - b)(a^{2} + b^{2} + ab)$
 $a + b + 2\sqrt{ab}$
 $a + b - 2\sqrt{ab}$
 $a^{2} - b$
 $a^{2} + b$
 $a^{2} + b^{2}$

- Polynomial long division
- · Rational roots theorem
- Synthetic Division: #todo

General Techniques:

- Gather everything and interpret as a polynomial in some variable
 - \circ Example: given $\sinh(x) = rac{1}{2}e^x e^{-x}$, find $\sinh^{-1}x$
 - Let $u=e^x$, and note that u>0 and $x=\ln u$.

$$x = \frac{1}{2}u + u^{-1} \Longrightarrow$$
 $u - u^{-1} = 2x \Longrightarrow$
 $u - u^{-1} - 2x = 0 \Longrightarrow$
 $\mathbf{u}^2 - 2x\mathbf{u} - 1 = 0 \Longrightarrow$
 $u = \frac{1}{2}(2x \pm \sqrt{4x^2 + 4})$

$$so sinh^{-1} x = ln(x + \sqrt{x^2 + 1})$$

 \circ Example: you don't always need the quadratic formula. Given $\cosh x = e^x + e^{-x}$, find $\tanh^{-1}(x)$.

$$x = \frac{u - u^{-1}}{u + u^{-1}} \Longrightarrow$$

$$x(u + u^{-1}) - (u - u^{-1}) = 0 \Longrightarrow$$

$$x(u^2 + 1) - (u^2 - 1) = 0 \Longrightarrow$$

$$\mathbf{u}^2(x - 1) + (x + 1) = 0 \Longrightarrow$$

$$u^2 = \frac{1 + x}{1 - x}$$

- If you see x^2+y^2 , try adding 2xy to reduce to $(x+y)^2$
- Finding the minimal polynomial of a number a+b: #todo

Single Variable Calculus

Big Theorems / Tools:

• The Fundamental Theorem of Calculus:

$$egin{aligned} rac{\partial}{\partial x} \int_a^x f(t) dt &= f(x) \ rac{\partial}{\partial x} \int_{a(x)}^{b(x)} g(t) dt &= g(b(x)) b'(x) - g(a(x)) a'(x) \end{aligned}$$

• The generalized Fundamental Theorem of Calculus

$$egin{aligned} rac{\partial}{\partial x} \int_{a(x)}^{b(x)} f(x,t) dt - \int_{a(x)}^{b(x)} rac{\partial}{\partial x} f(x,t) dt &= f(x,\cdot) rac{\partial}{\partial x} (\cdot) \Big|_{a(x)}^{b(x)} \ &= f(x,b(x)) \ b'(x) - f(x,a(x)) \ a'(x) \end{aligned}$$

- \circ Recover FTC by taking a(x)=c, b(x)=x, f(x,t)=f(t).
 - Note that if f(x,t)=f(t) alone, then $rac{\partial}{\partial x}f(t)=0$ and the second integral vanishes
- Extreme Value Theorem
- · Involving the Derivative:
 - Mean Value Theorem:

$$f \in C^0(I) \implies \exists p \in I : f(b) - f(a) = f'(p)(b-a)$$

Useful variant for integrals and average value:

$$f\in C^0(I) \implies \exists p\in I: \int_a^b f(x)\ dx = f(p)(b-a)$$

- Rolle's Theorem
- · L'Hopital's Rule: If
 - $\circ \ f(x), g(x)$ differentiable on $I \{ \mathrm{pt} \}$
 - $\circ \ \lim_{x o pt} f(x) = \lim_{x o \{ ext{pt}\}} g(x) \in \{0, \pm \infty\}$
 - $\circ \ \forall x \in I, g'(x) \neq 0$
 - $\circ \lim_{x \to \{\text{pt}\}} \frac{f'(x)}{g'(x)}$ exists

$$\implies \lim_{x o \{ ext{pt}\}} rac{f(x)}{g(x)} = \lim_{x o \{ ext{pt}\}} rac{f'(x)}{g'(x)}$$

• Taylor Expansions:

$$T(a,x) = \sum_{n=0}^{\infty} rac{f^{(n)}(a)}{n!} (x-a)^n$$

$$= f(a) + f'(a)(x-a) + rac{1}{2}f''(a)(x-a)^2 + rac{1}{6}f'''(a)(x-a)^3 + rac{1}{24}f^{(4)}(a)(x-a)^4 + \cdots$$

Bounded error: $|f(x) - T_k(a,x)| < \left| \frac{1}{(k+1)!} f^{(k+1)}(a) \right|$ where $T_k(a,x)$ is the Taylor series truncated up to and including the x^k term.

Differential

Limits

- ullet Tools for finding $\lim_{x o a} f(x)$, in order of difficulty:
 - \circ Plug in: equal to f(a) if continuous
 - \circ L'Hopital's Rule (only for indeterminate forms $\frac{0}{0},\frac{\infty}{\infty}$)
 - ullet For $\lim f(x)^{g(x)}=1^\infty,\infty^0,0^0$, let $L=\lim f^g\implies \ln L=\lim g\ln f$
 - o Algebraic rules
 - Squeeze theorem
 - \circ Expand in Taylor series at a
 - Monotonic + bounded
- ullet One-sided limits: $\lim_{x o a^-} f(x) = \lim_{arepsilon o 0} f(a-arepsilon)$
- · Limits at zero or infinity:

$$\lim_{x o\infty}f(x)=\lim_{rac{1}{x} o0}f(rac{1}{x}) ext{ and } \lim_{x o0}f(x)=\lim_{x o\infty}f(1/x)$$

· Also useful:

$$\lim_{x o\infty}rac{p(x)}{q(x)}=egin{cases} 0 & \deg p<\deg q \ \infty & \deg p>\deg q \ rac{p_n}{q_n} & \deg p=\deg q \end{cases}$$

- Be careful: limits may not exist!!
 - $\circ \; \operatorname{Example} : \lim_{x \to 0} \frac{1}{x} \neq 0$
- · Asymptotes:
 - \circ Vertical asymptotes: at values x=p where $\lim_{x o p}=\pm\infty$
 - \circ Horizontal asymptotes: given by points y=L where $L\lim_{x o\pm\infty}f(x)<\infty$
 - o Oblique asymptotes: for rational functions, divide terms without denominators yield equation of asymptote (i.e. look at the asymptotic order or "limiting behavior").
 - $lacksquare Concretely: f(x) = rac{p(x)}{g(x)} = r(x) + rac{s(x)}{t(x)} \sim r(x)$
- ullet Limit of a recurrence: $x_n=f(x_{n-1},x_{n-2},\cdots)$
 - \circ If the limit exists, it is a solution to x=f(x)

Derivatives

- Chain rule: $\frac{\partial}{\partial x}(f\circ g)(x)=f'(g(x))g'(x)$ Product rule: $\frac{\partial}{\partial x}f(x)g(x)=f'g+g'f$
- - Note for all rules: always prime the first thing!
- Quotient rule: $\frac{\partial}{\partial x} \frac{f(x)}{g(x)} = \frac{f'g g'f}{g^2}$
- Implicit differentiation: $(f(x))' = f'(x) \; dx, (f(y))' = f'(y) \; dy$
 - Often able to solve for $\frac{\partial y}{\partial x}$ this way.
- ullet Obtaining derivatives of inverse functions: if $y=f^{-1}(x)$ then write f(y)=x and implicitly differentiate.
- Approximating change: $\Delta y \approx f'(x) \Delta x$

Related Rates

General series of steps: want to know some unknown rate y_t

Lay out known relation that involves y

- ullet Take derivative implicitly (say w.r.t t) to obtain a relation between y_t and other stuff.
- Isolate $y_t = \text{known stuff}$
- Example: ladder sliding down wall
 - $\circ~$ Setup: l,x_t and x(t) are known for a given t , want y_t .
 - $\circ \; x(t)^2 + y(t)^2 = l^2 \implies 2xx_t + 2yy_t = 2ll_t = 0$ (noting that l is constant)
 - \circ So $y_t = -rac{x(t)}{y(t)}x_t$
 - $\circ \ x(t)$ is known, so obtain $y(t) = \sqrt{l^2 x(t)^2}$ and solve.

Integral

· Average values:

$$f_{ ext{avg}}(x) = rac{1}{b-a} \int_a^b f(t) dt$$

- \circ Proof: apply MVT to F(x).
- Area Between Curves
 - Area in polar coordinates:

$$A=\int_{r_1}^{r_2}rac{1}{2}r^2(heta)\;d heta$$

· Solids of Revolution

 \circ Disks: $A=\int \pi r(t)^2 \; dt$

 \circ Cylinders: $A=\int 2\pi r(t)h(t)\;dt$

Arc lengths

$$egin{align} ds &= \sqrt{dx^2 + dy^2} & L = \int \ ds \ &= \int_{x_0}^{x_1} \sqrt{1 + rac{\partial y}{\partial x}} \ dx \ &= \int_{y_0}^{y_1} \sqrt{rac{\partial x}{\partial y} + 1} \ dy \ \end{pmatrix}$$

$$\circ SA = \int 2\pi r(x) ds$$

Big List of Integration Techniques

Given f(x), we want to find an antiderivative $F(x)=\int f$ satisfying $rac{\partial}{\partial x}F(x)=f(x)$

- Guess and check: look for a function that differentiates to f.
- u- substitution
- Integration by Parts:
 - The standard form:

$$\int u dv = uv - \int v du$$

 \circ A more general form for repeated applications: let $v^{-1}=\int v$, $v^{-2}=\int \int v$, etc.

$$\int_{a}^{b} uv = uv^{-1} \Big|_{a}^{b} - \int_{a}^{b} u^{1}v^{-1}$$

$$= uv^{-1} - u^{1}v^{-2} \Big|_{a}^{b} + \int_{a}^{b} u^{2}v^{-2}$$

$$= uv^{-1} - u^{1}v^{-2} + u^{2}v^{-3} \Big|_{a}^{b} - \int_{a}^{b} u^{3}v^{-3}$$

$$\vdots$$

$$\Rightarrow \int_{a}^{b} uv = (-1)^{n} \int_{a}^{b} u^{n}v^{-n} + \sum_{k=1}^{n} (-1)^{k}u^{k-1}v^{-k} \Big|_{a}^{b}$$

- \circ Generally useful when one term's nth derivative is a constant.
- Shoelace method:
- \circ Note: you can choose u or v equal to 1! Useful if you know the derivative of the integrand.
- · Differentiating under the integral

$$egin{aligned} rac{\partial}{\partial x} \int_{a(x)}^{b(x)} f(x,t) dt - \int_{a(x)}^{b(x)} rac{\partial}{\partial x} f(x,t) dt &= f(x,\cdot) rac{\partial}{\partial x} (\cdot) \Big|_{a(x)}^{b(x)} \ &= f(x,b(x)) \ b'(x) - f(x,a(x)) \ a'(x) \end{aligned}$$

- \circ Proof: let F(x) be an antiderivative and compute F'(x) using the chain rule.
- \circ #todo for constants, this should allow differentiating under the integral when f,f_x are "jointly continuous"

Derivatives	Integrals	Signs	Result
u	v	NA	NA
u'	$\int v$	+	$u \int v$
u''	$\int \int v$	_	$-u'\int\int v$
:	:	:	:

Fill out until one column is zero (alternate signs). Get the result column by multiplying diagonally, then sum down the column.

Trigonometric Substitution

$$\sqrt{a^2 - x^2} \qquad \Rightarrow \qquad x = a\sin(\theta) \qquad dx = a\cos(\theta) d\theta
\sqrt{a^2 + x^2} \qquad \Rightarrow \qquad x = a\tan(\theta) \qquad dx = a\sec^2(\theta) d\theta
\sqrt{x^2 - a^2} \qquad \Rightarrow \qquad x = a\sec(\theta) \qquad dx = a\sec(\theta)\tan(\theta) d\theta$$

- Partial Fractions
- Completing the Square #todo
- Trig Formulas
 - Double angle formulas:

$$\sin^2(x) = \frac{1}{2}(1 - 2\cos x)$$

$$=$$

$$=$$

$$=$$

$$=$$

$$=$$

- Products of trig functions
 - \circ Setup: $\int \sin^a(x) \cos^b(x) \ dx$
 - Both a, b even: $\sin(x)\cos(x) = \frac{1}{2}\sin(x)$ a odd: $\sin^2 = 1 \cos^2$, $u = \cos(x)$ b odd: $\cos^2 = 1 \sin^2$, $u = \sin(x)$

 - Setup: $\int \tan^a(x) \sec^b(x) dx$ $a \text{ odd: } \tan^2 = \sec^2 -1, \ u = \sec(x)$ $b \text{ even: } \sec^2 = \tan^2 -1, u = \tan(x)$

Big Derivative / Integral Table

f

 $\Rightarrow \int f dx$

Other small but useful facts:

$$\int_0^{2\pi} \sin\theta \ d\theta = \int_0^{2\pi} \cos\theta \ d\theta = 0$$

Optimization

- Critical points: boundary points and wherever f'(x) = 0
- Second derivative test:
 - $\circ f''(p) > 0 \implies p$ is a min
 - $\circ f''(p) < 0 \implies p$ is a max

Multivariable Calculus

Notation

$$egin{aligned} \phi:\mathbb{R}^n &
ightarrow \mathbb{R}, \quad \phi(x_1,x_2,\cdots) = \cdots \ \mathbf{F}:\mathbb{R}^n &
ightarrow \mathbb{R}^n, \; \mathbf{F}(x_1,x_2,\cdots) = [\mathbf{F}_1(x_1,x_2,\cdots),\mathbf{F}_2(x_1,x_2,\cdots),\cdots,\mathbf{F}_n(x_1,x_2,\cdots)] \ ec{v} &= [v_1,v_2,\cdots] \end{aligned}$$

Partial Derivatives

• Chain Rule: Write out tree of dependent variables:

Then sum each possible path, e.g.

$$\begin{split} \left(\frac{\partial z}{\partial x}\right)_{y} &= \left(\frac{\partial z}{\partial x}\right)_{u,y,v} \\ &+ \left(\frac{\partial z}{\partial v}\right)_{x,y,u} \left(\frac{\partial v}{\partial x}\right)_{y} \\ &+ \left(\frac{\partial z}{\partial u}\right)_{x,y,v} \left(\frac{\partial u}{\partial x}\right)_{v,y} \\ &+ \left(\frac{\partial z}{\partial u}\right)_{x,y,v} \left(\frac{\partial u}{\partial v}\right)_{x,y} \left(\frac{\partial v}{\partial x}\right)_{y} \end{split}$$

Where the subscripts denote which variables are held constant.

Approximation and Optimization

- Linear Approximation:
 - $\circ \ z = f(x,y):$ use Tangent plane formulation to obtain

$$f(x,y)pprox f(x_0,y_0)+f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)$$

- Optimization
 - $\circ~$ Critical points of $f(\vec{x})$ given by points \vec{p}_0 such that $\nabla f\mid_{\vec{p_0}}=0$

- \circ Second derivative test: compute $H_f(p_0) \coloneqq egin{bmatrix} f_{xx} & f_{xy} \ f_{yx} & f_{yy} \end{bmatrix} (ec{p}_0).$
- By cases:
 - $H(\mathbf{p}_0) = 0$: No conclusion
 - $H(\mathbf{p}_0) < 0$: Saddle point
 - $H(\mathbf{p}_0) > 0$:
 - $f_{xx}(\mathbf{p}_0)>0 \implies$ local min
 - $f_{xx}(\mathbf{p}_0) < 0 \implies$ local max
- \circ Mnemonic: make matrix with ∇f as the columns, and then differentiate variables left to right.
- Constrained by domain:
 - Extrema occur on boundaries, so parametrize each boundary to obtain a function in one less variable and apply standard optimization techniques to yield critical points. Test all critical points to find extrema.
- Constrained by an equation:
 - If possible, use constraint to just reduce equation to one dimension and optimze like singlevariable case. Otherwise,
 - Lagrange Multipliers. The setup:

Optimize
$$f(\mathbf{x})$$

subject to $g(\mathbf{x}) = c$
 $\implies \nabla f = \lambda \nabla g$

- 1. Use this formula to obtain a system of equations in the components of x and the parameter λ .
- 2. Use λ to obtain a relation involving only components of ${\bf x}$.
- 3. Substitute relations back into constraint to obtain a collection of critical points.
- 4. Evaluate f at critical points to find max/min.

Geometry in \mathbb{R}^3

Plane Geometry

· Useful to know: rotation matrices

$$\mathbf{R}_{ heta} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix} \implies \mathbf{R}_{rac{\pi}{2}} = egin{bmatrix} 0 & -1 \ 1 & 0 \end{bmatrix} \implies \mathbf{R}_{rac{\pi}{2}} egin{bmatrix} x \ y \end{bmatrix} = egin{bmatrix} -y \ x \end{bmatrix}$$

- Example use: given \mathbf{v} , $\mathbf{R}_{\frac{\pi}{2}}\mathbf{v} \perp \mathbf{v}$, so useful to obtain normals or other perpendicular vectors in the plane.
- Useful trick: given $\mathbf{v}=[a,b,c]$, one perpendicular vector is $\mathbf{v}^\perp=[c,c,-(a+b)]$ as long as $\mathbf{v}\neq[-1,-1,0]$ in this case, choose $\mathbf{v}^\perp=[-(b+c),a,a]$.
- Slope of a line in \mathbb{R}^2 :

$$\mathbf{v} = [x,y] \in \mathbb{R}^2 \implies m = rac{y}{x}$$

• Normal to a line in \mathbb{R}^2 :

$$m^\perp = rac{-1}{m} \implies \mathbf{v}^\perp = [-y,x]$$

Lines

$$Ax + By + C = 0$$
 $\mathbf{x} = \mathbf{p} + t\mathbf{v}$
 $\mathbf{x} \in L \iff \langle \mathbf{x}, \mathbf{n} \rangle = 0$?

- Determined by a point ${f p}$ and a vector ${f v}$ on the line.
 - $\circ~$ Also determined by two points ${f p}_0,{f p}_1$ by taking ${f v}={f p}_1-{f p}_0$
- Symmetric Equation (sometimes useful)
 - \circ Obtained by isolating t in each component and setting results equal:

$$(x,y,z)\in L\iff rac{x-p_x}{v_x}=rac{y-p_y}{v_y}=rac{z-p_z}{v_z}$$

(Note that the denominators are just the coefficients of t in the parametric equation.)

Planes

$$Ax + By + Cz + D = 0$$
 $ax + by + cz = d$ $\mathbf{x}(t, s) = \mathbf{p} + t\mathbf{v}_1 + s\mathbf{v}_2$ $\mathbf{x} \in P \iff \langle \mathbf{n}, \mathbf{x} - \mathbf{p}_0 \rangle = 0$

- Determined by a point \boldsymbol{p}_0 and a normal vector \boldsymbol{n}
 - $\circ~$ Also determined by two points ${f p}_0,{f p}_1$ using ${f n}={f p}_0 imes{f p}_1$
- Normal vector to a plane
 - \circ Can read normal off of equation: $\mathbf{n} = [a,b,c]$
- Other Facts

$$d=\langle \mathbf{n},\mathbf{p}_0
angle=n_1p_1+n_2p_2+n_3p_3$$

• Useful trick: once you compute \mathbf{n} , you can compute $d = \langle \mathbf{n}, \mathbf{p} \rangle$ for *any* point in the plane (don't necessarily need to use the one you started with, so pick any point that's convenient to calculate)

Surfaces

$$S = \{(x, y, z) \mid f(x, y, z) = 0\}$$
 $z = f(x, y)$

- Tangent plane to a surface:
 - \circ Need a point ${f p}$ and a normal ${f n}$. By cases:
 - $\circ f(x,y,z)=0$
 - ∇f is a normal vector.
 - \blacksquare Write the tangent plane equation $\langle \mathbf{n},\mathbf{x}-\mathbf{p}_0\rangle$, done.
 - $\circ z = q(x,y)$:
 - Let f(x,y,z)=g(x,y)-z, then $\mathbf{p}\in S\iff \mathbf{p}$ is in a level set of f.
 - lacksquare abla f is normal to level sets (and thus the surface), so compute $abla f = [g_x,g_y,-1]$
 - Proceed as in previous case
- Surfaces of revolution:
 - \circ Given $f(x_1, x_2) = 0$, can be revolved around either the x_1 or x_2 axis.
 - f(x,y) around the x axis yields $f(x,\pm\sqrt{y^2+z^2})=0$
 - f(x,y) around the y axis yields $f(\pm \sqrt{x^2+z^2},y)=0$
 - Remaining cases proceed similarly leave the axis variable alone, replace other variable with square root involving missing axis.

- Equations of lines tangent to an intersection of surfaces f(x,y,z)=g(x,y,z):
 - \circ Find two normal vectors and take their cross product, e.g. $n = \nabla f \times \nabla g$, then

$$L = \{ \mathbf{x} \mid \mathbf{x} = \mathbf{p} + t\mathbf{n} \}$$

- · Level curves:
 - \circ Given a surface f(x,y,z)=0, the level curves are obtained by looking at e.g. f(x,y,c)=0.

Curves

$$\mathbf{r}(t) = [x(t), y(t), z(t)]$$

- Tangent line to a curve
 - \circ Use the fact that $\mathbf{r}'(t)$ is a tangent vector to $\mathbf{r}(t)$

$$\mathbf{T}(t) = \mathbf{r}(t_0) + t\mathbf{r}'(t)$$

- Normal line to a curve
 - \circ Use the fact that $\mathbf{r}''(t) \perp \mathbf{r}'(t)$

$$\mathbf{N}(t) = \mathbf{r}(t_0) + t\mathbf{r}''(t)$$

- \circ Special case: Planar Curves and Lines: y = f(x),
 - Let g(x,y) = f(x) y, then

$$abla g = [f_x(x), -1] \implies m = -rac{1}{f_x(x)}$$

Tangent Lines / Planes

• Key insight: just need a point and a normal vector, and the gradient is normal to level sets. The Tangent Plane Equation: for any locus $f(\mathbf{x}) = 0$, we have

$$\mathbf{x} \in T_f(\mathbf{p}_0) \implies \langle \nabla f(\mathbf{p}_0), \mathbf{x} - \mathbf{p}_0 \rangle = 0$$

Normal Lines

Key insight: the gradient is normal.

To find a normal line, you just need a single point \mathbf{p} and a normal vector \mathbf{n} ; then

$$L = \{ \mathbf{x} \mid \mathbf{x} = \mathbf{p} + t\mathbf{v} \}$$

Minimal Distances

Fix a point **p**. Key idea: find a subspace and project onto it.

Key equations: projection and orthogonal projection of b onto a:

$$\mathrm{proj}_{\mathbf{a}}(\mathbf{b}) = \langle \mathbf{b}, \mathbf{a} \rangle \mathbf{\hat{a}}$$
 $\mathrm{proj}_{\mathbf{a}}^{\perp}(\mathbf{b}) = \mathbf{b} - \mathrm{proj}_{\mathbf{a}}(\mathbf{b})$

- Point to plane:
 - \circ Given a plane $S=\{\mathbf{x}\in\mathbb{R}^3\mid n_0x+n_1y+n_2z=d\}$, project onto S^\perp using

$$d = \|\operatorname{proj}_{\mathbf{n}}(\mathbf{p})\|$$

 \circ Given just two vectors \mathbf{u}, \mathbf{v} : manufacture a normal vector $\mathbf{n} = \mathbf{u} \times \mathbf{v}$ and continue as above.

• Point to line:

• Given a line $L: \mathbf{x}(t) = t\mathbf{v}$ for some fixed \mathbf{v} , use

$$d = \|\operatorname{proj}_{\mathbf{v}}^{\perp}(\mathbf{p})\|$$

 \circ Given a line $L: \mathbf{x}(t) = \mathbf{w}_0 + t\mathbf{w}$, let $\mathbf{v} = \mathbf{x}(1) - \mathbf{x}(0)$ and proceed as above.

• Line to line:

- $\circ~$ Given ${f r}_1(t)={f p}_1+t{f v}_2$ and ${f r}_2(t)={f p}_2+t{f v}_2$:
 - Let $\mathbf{n} = \mathbf{v}_1 \times \mathbf{v}_2$, which is normal to both lines.
 - Then project the vector between any two points onto this normal:

$$d = \|\operatorname{proj}_{\mathbf{n}}(\mathbf{p}_2 - \mathbf{p}_1)\|$$

Vector Calculus

Notation

R is a region, S is a surface, V is a solid.

$$\oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} = \oint_{\partial S} [\mathbf{F}_1, \mathbf{F}_2, \mathbf{F}_3] \cdot [dx, dy, dz] = \oint_{\partial S} \mathbf{F}_1 dx + \mathbf{F}_2 dy + \mathbf{F}_3 dz$$

Big Theorems:

· Green's Theorem:

$$\oint_{\partial R} (L \; dx + M \; dy) = \iint_R \left(rac{\partial M}{\partial x} - rac{\partial L}{\partial y}
ight) dx dy$$

• Divergence Theorem:

$$\iint_{\partial V} \mathbf{F} \cdot d\mathbf{S} = \iiint_{V} (\nabla \cdot \mathbf{F}) \ dV$$

· Stokes' Theorem:

$$\oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} = \iint_S (
abla imes \mathbf{F}) \cdot d\mathbf{S}$$

- Equals zero if S is a closed surface $(\partial S = \emptyset)$
- Computing Areas with Green's Theorem:

$$A(R) = \oint_{\partial R} x \ dy = -\oint_{\partial R} y \ dx = rac{1}{2} \oint_{\partial R} -y \ dx + x \ dy$$

•
$$\nabla \times (\nabla \phi) = 0$$

•
$$\nabla \cdot (\nabla \times \mathbf{F}) = 0$$

Definitions

$$\mathbf{a} \cdot \mathbf{b} = \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i = x_1 y_1 + x_2 y_2 + \cdots \qquad \text{inner/dot product}$$

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \sqrt{\sum_{i=1}^{n} x_i^2} = \sqrt{x_1^2 + x_2^2 + \cdots} \qquad \text{norm}$$

$$\mathbf{a} \times \mathbf{b} = \hat{\mathbf{n}} \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta_{\mathbf{a}, \mathbf{b}} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \qquad \text{cross product}$$

$$\nabla := \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \mathbf{e}_i = \left[\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \cdots, \frac{\partial}{\partial x_n} \right] \qquad \text{del operator}$$

$$\nabla \phi := \sum_{i=1}^{n} \frac{\partial \phi}{\partial x_i} \mathbf{e}_i = \left[\frac{\partial \phi}{\partial x_1}, \frac{\partial \phi}{\partial x_2}, \cdots, \frac{\partial \phi}{\partial x_n} \right] \qquad \text{gradient}$$

$$D_{\mathbf{u}}(\phi) = \nabla \phi \cdot \hat{\mathbf{u}} \qquad \text{directional derivative}$$

$$\nabla \cdot \mathbf{F} := \sum_{i=1}^{n} \frac{\partial \mathbf{F}_i}{\partial x_i} = \frac{\partial \mathbf{F}_1}{\partial x_1} + \frac{\partial \mathbf{F}_2}{\partial x_2} + \cdots + \frac{\partial \mathbf{F}_n}{\partial x_n} \qquad \text{divergence}$$

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix} = \left[\mathbf{F}_{3y} - \mathbf{F}_{2z}, \mathbf{F}_{1z} - \mathbf{F}_{3x}, \mathbf{F}_{2x} - \mathbf{F}_{1y} \right] \qquad \text{curl}$$

- Note that the directional derivative uses a normalized direction vector!
- Function Types

$$abla : (\mathbb{R}^n o \mathbb{R}) o (\mathbb{R}^n o \mathbb{R}^n)
onumber \ \phi \mapsto
abla \phi := \sum_{i=1}^n rac{\partial \phi}{\partial x_i} \ \mathbf{e}_i$$

$$\operatorname{div}(\mathbf{F}): (\mathbb{R}^n o \mathbb{R}^n) o (\mathbb{R}^n o \mathbb{R})$$

$$\mathbf{F} \mapsto \nabla \cdot \mathbf{F} := \sum_{i=1}^n \frac{\partial \mathbf{F}_i}{\partial x_i}$$

$$\operatorname{curl}(\mathbf{F}): (\mathbb{R}^3 o \mathbb{R}^3) o (\mathbb{R}^3 o \mathbb{R}^3)$$

$$\mathbf{F} \mapsto \nabla \times \mathbf{F}$$

• Some terminology:

$$\begin{array}{ll} \text{Scalar Field} & \phi: X \to \mathbb{R} \\ \text{Vector Field} & \mathbf{F}: X \to \mathbb{R}^n \\ \text{Gradient Field} & \mathbf{F}: X \to \mathbb{R}^n \mid \exists \phi: X \to \mathbb{R} \mid \nabla \phi = F \end{array}$$

- ullet The Gradient: lifts scalar fields on \mathbb{R}^n to vector fields on \mathbb{R}^n
- Divergence: drops vector fields on \mathbb{R}^n to scalar fields on \mathbb{R}^n
- ullet Curl: takes vector fields on \mathbb{R}^3 to vector fields on \mathbb{R}^3
- · Spherical Coordinates:

$$x = r \cos \theta = \rho \sin \phi \cos \theta$$

 $y = r \sin \theta = \rho \sin \phi \sin \theta$

Computations

Line Integrals Of Curves

 \circ Parametrize the path C as $\{\mathbf{r}(t):t\in[a,b]\}$, then

$$egin{aligned} \int_C f \ ds &\coloneqq \int_a^b (f \circ \mathbf{r})(t) \parallel &\mathbf{r}'(t) \parallel dt \ &= \int_a^b f(x(t),y(t),z(t)) \sqrt{\overline{x_t^2 + y_t^2 + z_t^2}} \ dt \end{aligned}$$

• Line Integrals of Vector Fields

If exact:

$$rac{\partial}{\partial y}\mathbf{F}_1 = rac{\partial}{\partial x}\mathbf{F}_2 \implies \int \mathbf{F}_1 \; dx + \mathbf{F}_2 \; dy = \phi(\mathbf{p}_1) - \phi(\mathbf{p}_0)$$

The function ϕ can be found using the same method from ODEs.

 \circ Parametrize the path C as $\{{f r}(t):t\in[a,b]\}$, then

$$egin{aligned} \int_C \mathbf{F} \cdot d\mathbf{r} &:= \int_a^b (\mathbf{F} \circ \mathbf{r})(t) \cdot \mathbf{r}'(t) \ dt \ &= \int_a^b [\mathbf{F}_1(x(t), y(t), \cdots), \mathbf{F}_2(x(t), y(t), \cdots)] \cdot [x_t, y_t, \cdots] \ dt \ &\int_a^b \mathbf{F}_1(x(t), y(t) \cdots) x_t + \mathbf{F}_2(x(t), y(t), \cdots) y_t + \cdots \ dt \end{aligned}$$

Equivalently written:

$$\int_a^b \mathbf{F}_1 \ dx + \mathbf{F}_2 \ dy + \cdots \coloneqq \int_C \mathbf{F} \cdot d\mathbf{r}$$

in which case $[dx, dy, \cdots] \coloneqq [x_t, y_t, \cdots] = \mathbf{r}'(t)$.

- Remember to substitute dx back into the integrand!!
- Flux Integrals:

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} \mathbf{F} \cdot \hat{\mathbf{n}} \ dS$$

- Computing Areas with Green's Theorem
 - $\circ \;$ Given R and f(x,y)=0
 - Compute

$$\begin{split} \oint_{\partial R} x \; dy &= -\oint_{\partial R} y \; dx \\ &= \frac{1}{2} \oint_{\partial R} -y \; dx + x \; dy = \frac{1}{2} \iint_{R} 1 - (-1) \; dA = \iint_{R} 1 \; dA \end{split}$$

- Steps:
 - Parametrize C

Other Results

- $\nabla \cdot \mathbf{F} = 0 \implies \exists G : \mathbf{F} = \nabla \times G$
 - Counterexample

$$egin{align} \mathbf{F}(x,y,z) &= rac{1}{\sqrt{x^2 + y^2 + z^2}}[x,y,z] \;, \quad S = S^2 \subset \mathbb{R}^3 \ &\Longrightarrow \;
abla \mathbf{F} = 0 \; \mathrm{but} \; \iint_{S^2} \mathbf{F} \cdot d\mathbf{S} = 4\pi
eq 0 \ \end{aligned}$$

Where by Stokes' theorem,

$$\mathbf{F} =
abla imes \mathbf{G} \implies \iint_{S^2} \mathbf{F} = \iint_{S^2}
abla imes \mathbf{G} \overset{ ext{Stokes}}{=} \oint_{\partial S^2} \mathbf{G} \ d\mathbf{r} = 0$$

since $\partial S^2=\emptyset$.

 \circ Sufficient condition: ${f F}$ is everywhere C^1

$$\exists \mathbf{G}: \ \mathbf{F} =
abla imes \mathbf{G} \iff orall \operatorname{closed} S, \iint_S \mathbf{F} \cdot d\mathbf{S} = 0$$

• Recovering Green's Theorem from Stokes' Theorem:

$$\circ~$$
 Let ${f F}=[L,M,0]$, then $abla imes{f F}=[0,0,rac{\partial M}{\partial x}-rac{\partial L}{\partial y}]$

Ordinary Differential Equations

Techniques Overview

$$p(y)y'=q(x)$$
 separable $y'+p(x)y=q(x)$ integrating factor $y'=f(x,y), f(tx,ty)=f(x,y)$ $y=xV(x)$ COV reduces to separable $y'+p(x)y=q(x)y^n$ Bernoulli, divide by y^n and COV $u=y^{1-n}$ $M(x,y)dx+N(x,y)dy=0$ $M_y=N_x:\phi(x,y)=c(\phi_x=M,\phi_y=N)$ $P(D)y=f(x,y)$

Where e^{zx} yields $e^{ax}\cos bx$, $e^{ax}\sin bx$

Ordinary Differential Equations

• Separable equations:

$$p(y) rac{dy}{dx} - q(x) = 0 \implies \int p(y) dy = \int q(x) dx + C$$

$$\frac{dy}{dx} = f(x)g(y) \implies \int \frac{1}{g(y)}dy = \int f(x)dx + C$$

Population growth:

$$\frac{dP}{dt} = kP \implies P = P_0 e^{kt}$$

- · Logistic growth:
 - ullet General form: $rac{dP}{dt}=(B(t)-D(t))P(t)$
 - Assume birth rate is constant $B(t)=B_0$ and death rate is proportional to instantaneous population $D(t)=D_0P(t)$. Then let $r=B_0, C=B_0/D_0$ be the *carrying capacity*:

$$rac{dP}{dt} = r\left(1 - rac{P}{C}
ight)P \implies P(t) = rac{P_0}{rac{P_0}{C} + e^{-rt}\left(1 - rac{P_0}{C}
ight)}$$

• First order linear:

$$rac{dy}{dx} + p(x)y = q(x) \implies I(x) = e^{\int p(x)dx}, \qquad y(x) = rac{1}{I(x)}igg(\int q(x)I(x)dx + Cigg)$$

- Exact:
 - $egin{aligned} \circ \ M(x,y)dx + N(x,y)dy &= 0 ext{ is exact } \iff \exists \phi: rac{\partial \phi}{\partial x} = M(x,y), \ rac{\partial \phi}{\partial y} &= N(x,y) \ \iff rac{\partial M}{\partial y} &= rac{\partial N}{x} \end{aligned}$
 - General solution:

$$\phi(x,y) = \int^x M(s,y) ds + \int^y N(x,t) dt - \int^y rac{\partial}{\partial t} igg(\int^x M(s,t) ds igg) dt$$

(where $\int_{-\infty}^{\infty} f(t)dt$ means take the antiderivative of f and consider it a function of x)

- Cauchy Euler: #todo
- Bernoulli: \$todo

Linear Homogeneous

General form:

$$y^{(n)} + c_{n-1}y^{(n-1)} + \dots + c_2y'' + cy' + cy = 0$$

$$p(D)y = \prod (D - r_i)^{m_i}y = 0$$

where p is a polynomial in the differential operator D with roots r_i :

ullet Real roots: contribute m_i solutions of the form

$$e^{rx}, xe^{rx}, \cdots, x^{m_i-1}e^{rx}$$

ullet Complex conjugate roots: for r=a+bi, contribute $2m_i$ solutions of the form

$$e^{(a\pm bi)x}, xe^{(a\pm bi)x}, \; \cdots, \; x^{m_i-1}e^{(a\pm bi)x} \ = e^{ax}\cos(bx), e^{ax}\sin(bx), \; xe^{ax}\cos(bx), xe^{ax}\sin(bx), \; \cdots,$$

Example: by cases, second order equation of the form

$$ay'' + by' + cy = 0$$

- ullet Two distinct roots: $c_1 e^{r_1 x} + c_2 e^{r_2 x}$
- One real root: $c_1 e^{rx} + c_2 x e^{rx}$

ullet Complex conjugates $lpha \pm ieta$: $e^{lpha x}(c_1\coseta x + c_2\sineta x)$

Linear Inhomogeneous

General form:

$$y^{(n)} + c_{n-1}y^{(n-1)} + \dots + c_2y'' + cy' + cy = F(x) \ p(D)y = \prod (D-r_i)^{m_i}y = 0$$

Then solutions are of the form y_c+y_p , where y_c is the solution to the associated homogeneous system and y_p is a particular solution.

Methods of obtaining particular solutions

Undetermined Coefficients

- Find an operator p(D) the annihilates F(x) (so q(D)F=0)
- Find solution of q(D)p(D)=0, subtract of known solutions from homogeneous part to obtain the form of the trial solution $A_0f(x)$, where A_0 is the undetermined coefficient
- Substitute trial solution into original equation to determine ${\cal A}_0$

Useful Annihilators:

$$\begin{split} F(x) &= p(x): & D^{\deg(p)+1} \\ F(x) &= p(x)e^{ax}: & (D-a)^{\deg(p)+1} \\ F(x) &= \cos(ax) + \sin(ax): & D^2 + a^2 \\ F(x) &= e^{ax}(a_0\cos(bx) + b_0\sin(bx)): & (D-z)(D-\overline{z}) = D^2 - 2aD + a^2 + b^2 \\ F(x) &= p(x)e^{ax}\cos(bx) + p(x)e^{ax}\cos(bx): & ((D-z)(D-\overline{z}))^{\max(\deg(p),\deg(q))+1} \end{split}$$

Variation of Parameters

#todo

Reduction of Order

#todo

Systems of Differential Equations

General form:

$$\dfrac{\partial \overrightarrow{x(t)}}{\partial t} = A\overrightarrow{x(t)} + \overrightarrow{b(t)} ext{ or } \mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{b}(t)$$

General solution to homogeneous equation:

$$\overrightarrow{c_1x_1(t)} + \overrightarrow{c_2x_2(t)} + \cdots + \overrightarrow{c_nx_n(t)} = X(t)\overrightarrow{c}$$

If A is a matrix of constants: $\overset{
ightarrow}{x(t)}=e^{\lambda_i t}\ \vec{v}_i$ is a solution for each eigenvalue/eigenvector pair (λ_i,v_i)

• If *A* is defective: #todo generalized eigenvectors...?

Laplace Transforms

Definitions:

$$H_a(t) = egin{cases} 0, & 0 \leq t < a \ 1, & t \geq a \end{cases} \ \delta(t): \int_{\mathbb{R}} \delta(t-a) f(t) \ dt = f(a), & \int_{\mathbb{R}} \delta(t-a) \ dt = 1 \ (f*g)(t) = \int_0^t f(t-s) g(s) \ ds$$

Useful property: for $a \leq b$, $H_a(t) - H_b(t) = \mathbb{1}[a,b]$.

$$t^n, n \in \mathbb{N} \quad \Longleftrightarrow \qquad \qquad n! rac{1}{s^{n+1}}, \quad s > 0 \ t^{-rac{1}{2}} \quad \Longleftrightarrow \qquad \qquad \sqrt{\pi} s^{-rac{1}{2}} \quad s > 0 \ e^{at} \quad \Longleftrightarrow \qquad \qquad rac{1}{s-a}, \quad s > a \ \cos(bt) \quad \Longleftrightarrow \qquad \qquad rac{s}{s^2+b^2}, \quad s > 0 \ \sin(bt) \quad \Longleftrightarrow \qquad \qquad rac{b}{s^2+b^2}, \quad s > 0 \ \delta(t-a) \quad \Longleftrightarrow \qquad \qquad e^{-as} \ H_a(t) \quad \Longleftrightarrow \qquad \qquad e^{-as} \ e^{at}f(t) \quad \Longleftrightarrow \qquad \qquad s^{-1}e^{-as} \ e^{at}f(t) \quad \Longleftrightarrow \qquad \qquad e^{-as}F(s) \ f'(t) \quad \Longleftrightarrow \qquad \qquad e^{-as}F(s) \ f'(t) \quad \Longleftrightarrow \qquad \qquad sL(f)-f(0) \ f''(t) \quad \Longleftrightarrow \qquad s^2L(f)-sf(0)-f'(0) \ f''(t) \quad \Longleftrightarrow \qquad s^nL(f)-\sum_{i=0}^{n-1}s^{n-1-i}f^{(i)}(0) \ f(t)g(t) \quad \Longleftrightarrow \qquad F(s)*G(s)$$

ullet For f periodic with period T, $L(f)=rac{1}{1+e^{-sT}}\int_0^T e^{-st}f(t)\;dt$

Linear Algebra

Assume everywhere that A is an m imes n matrix that represents a linear transformation $T: \mathbb{R}^n o \mathbb{R}^m$

General Notes

- · Rank: number of nonzero rows in RREF
- Trace(A) = $\sum_{i=1}^{m} A_{i,i}$
- Elementary row operations / matrices:
 - Permute rows
 - Multiple a row by a scalar

- · Add any row to another
- $A(m \times n), \ B(n \times p), \ AB = C \implies c_{ij} = \sum_{k=1}^n a_{ik} b_{kj} = \langle \mathbf{a_i^T}, \mathbf{b_j} \rangle$
 - \circ i.e., the c_{ij} entry is just dotting row i of A with column j of B.

Systems of Linear Equations

Notation: $A\vec{x}=\vec{b}$ a linear system, $r=\mathrm{rank}(A)$ and $r'=\mathrm{rank}(A\mid\vec{b})$ an augmented matrix.

- Consistent: A system of linear equations is *consistent* when it has at least one solution.
- Inconsistent: A system of linear equations is *inconsistent* when it has no solutions.
- Tall matrices: more equations than unknowns
- · Wide matrices: more unknowns than equations
- Three possibilities for a system of linear equations:
 - No solutions
 - One unique solution
 - Infinitely many solutions
- Possibilities:
 - r < r': the system is inconsistent.
 - $\circ r = r'$: the system is consistent, and
 - $lacksquare r'=n \implies$ there is a unique solution (square, tall)
 - $r' < n \implies$ there are infinitely many solutions (wide)
- Homogeneous systems are always consistent.

The Determinant

- ullet Properties of the Determinant A:m imes n
 - $\circ \det(AB) = \det(A)\det(B)$
 - Permute two Rows: $\det A' = -\det A$
 - \circ Factor a scalar t out of one row: $\det A' = t \det A$
 - $\bullet \det(tA) = t^m \det(A)$
 - Add one row to another: $\det(A') = \det(A)$
 - $\circ \ \det(L) = \det(U) = \prod_{i=1}^n a_{ii}$ for upper or lower triangular matrices. $\circ \ \det(A^{-1}) = \frac{1}{\det(A)}$

 - $\circ \det A^k = k \det A$
 - $\circ \det A^T = \det A$
 - $\circ \det(\mathbf{a}_1 + \mathbf{a}_2, \cdots) = \det(\mathbf{a}_1, \cdots) + \det(\mathbf{a}_2, \cdots)$
 - If any row of A is all zeros, det(A) = 0.
 - \circ Take $A=egin{pmatrix} ec{a} o \ ec{b} o \ dots$, then in \mathbb{R}^3 , $\det(A)$ is the volume of the parallelepiped spanned by :

The Spaces of a Matrix / Linear Map

- Finding bases for various spaces of A:
 - \circ Rowspace: reduce to RREF, and take nonzero rows of RREF $(\subseteq \mathbb{R}^n)$
 - \circ Colspace: reduce to RREF, and take columns with pivots from original $A \ (\subseteq \mathbb{R}^m)$
 - o Nullspace: reduce to RREF, zero rows are free variables, convert back to equations and pull free variables out as scalar multipliers.

Eigenvalues and Eigenvectors

- Defining equation: $\lambda \in E(A) \iff orall x \in \mathbb{R}^m, A\vec{x} = \lambda \vec{x}$
- Finding: solve $A-I\lambda_i=0$ for each i .
- $\lambda \in E(A) \implies \lambda^2 \in E(A^2)$ (with the same eigenvector).
- Eigenvectors corresponding to distinct eigenvalues are **always** linearly independent
- A has n distinct eigenvalues $\implies A$ has n linearly independent eigenvectors.
- Similar matrices have identical eigenvalues and multiplicities.
- A matrix A is diagonalizable \iff A has n linearly independent eigenvectors.
- Useful Facts
 - $\circ \prod \lambda_i = \det A$
 - $\circ \; \sum \lambda_i = {
 m Tr} \; A$

Misc

- $|\operatorname{rowspace}(A)| = |\operatorname{colspace}(A)|$
- Proof of Cauchy-Schwarz: See Goode page 346.
- ullet Distance from a point p to a line $ec{a}+tec{b}$: let $ec{w}=ec{p}-ec{a}$, then: $\|w-P(w,v)\|$
 - Adistance from line to point
- Computing change of basis matrices: #todo
- Two step vector subspace test:
 - · Ensure it contains the zero vector
 - Ensure it's closed under scalar multiplication and vector addition
- Any set of two vectors $\{\vec{v},\vec{w}\}$ is linearly dependent $\iff \exists \lambda: \ \vec{v} = \lambda \vec{w}.$
- A set of functions $\{f_i\}$ is linearly independent on $I \iff \exists x_0 \in I : W(x_0) \neq 0$ (where W is the Wronskian)
 - \circ NOTE: $W\equiv 0$ on $I
 ightharpoonup \{f_i\}$ is linearly dependent!
 - \circ Counterexample: $\{x,x+x^2,2x-x^2\}$ where $W\equiv 0$ but $x+x^2=3(x)+(2x-x^2)$.
 - \circ Sufficient condition: each f_i is the solution to a linear homogeneous ODE L(y)=0.
- Every square matrix is similar to a matrix in jordan canonical form.
- Projection onto column space of A: given by $P(\vec{x}) = A(A^tA)^{-1}A^T\vec{x}$
- ullet Normal equations: $ec{x}$ is a least squares solution to $Aec{x}=ec{b} \iff A^TAec{x}=A^Tec{b}$

Gram-Schmidt Process

Extending $\{\mathbf{x}_i\}$ to an orthonormal basis

$$\mathbf{v}_{1} = \mathbf{x}_{1}$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - P(\mathbf{x}_{2}, \mathbf{v}_{1})$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - P(\mathbf{x}_{3}, \mathbf{v}_{1}) - P(\mathbf{x}_{3}, \mathbf{v}_{2})$$

$$\cdots$$

$$\mathbf{v}_{i} = \mathbf{x}_{i} - \sum_{k=1}^{i-1} P(\mathbf{x}_{i}, \mathbf{v}_{k}) = \mathbf{x}_{i} - \sum_{k=1}^{i-1} \frac{\langle \mathbf{x}_{i}, \mathbf{v}_{k} \rangle}{\|\mathbf{v}_{k}\|^{2}} \mathbf{v}_{k}$$

Inverting a Matrix

Equivalent formulas for A^{-1} :

- Adjoints: $A^{-1} = rac{ ext{adjugate(A)}}{\det(A)}$
- Gauss Jordan: $[A \mid I] \sim [I \mid A^{-1}]$

ullet Cramer's Rule: $Aec x=ec b \implies x_k=rac{\det(B_k)}{\det(A)}$ where B_k is A where the k-th column is replaced by ec b

Big List of Equivalent Properties

Let A be an $m \times n$ matrix. TFAE:

- A is invertible and has a unique inverse A^{-1}
- A^T is invertible
- $det(A) \neq 0$
- ullet The linear system $Aar{x}=ar{b}$ has a unique solution for every $b_{\parallel}\in\mathbb{R}^{m}$
- ullet The homogeneous system $Aar{x}=0$ has only the trivial solution $ar{x}=0$
- $\operatorname{rank}(A) = m$ (i.e. A is full rank)
- $\operatorname{nullity}(A) := \dim \operatorname{nullspace}(A) = 0$
- $A = \prod_{i=1}^k E_i$ for some finite k, where each E_i is an elementary matrix.
- ullet A is row-equivalent to the identity matrix I_n
- A has exactly n pivots
- The columns of A are a basis for \mathbb{R}^n
 - \circ i.e. $\operatorname{colspace}(A) = \mathbb{R}^n$
- ullet The rows of A are a basis for \mathbb{R}^m
 - \circ i.e. $\operatorname{rowspace}(A) = \mathbb{R}^m$
- $(\operatorname{colspace} A)^{\perp} = (\operatorname{rowspace} A)^{\perp} = \{\vec{0}\}\$
- Zero is not an eigenvalue of A.
- A has n linearly independent eigenvectors
- ullet The rows of A are coplanar.

As a consequence, all of the following negations are equivalent:

- *A* is not invertible/singular
- ullet At least one row of A is a linear combination of the others
- The RREF of A has a row of all zeros.

Reformulated in terms of linear maps T, TFAE:

- ullet $T^{-1}:\mathbb{R}^m o\mathbb{R}^n$ exists
- im $(T) = \mathbb{R}^n$
- $\ker(T) = 0$
- \bullet T is injective
- T is surjective
- \bullet T is an isomorphism
- The system $A\bar{x}=0$ has infinitely many solutions

Complex Analysis

· Properties of modulus:

$$egin{align} \circ & z=a+ib \implies |z|=\sqrt{a^2+b^2} \ & \circ & |z|^2=z\overline{z}=a^2+b^2 \ & \circ & rac{z\overline{z}}{|z|^2}=rac{(a+ib)(a-ib)}{a^2+b^2}=1 \ & ullet & rac{1}{a+ib}=rac{1}{z}=rac{\overline{z}}{|z|^2}=rac{a-ib}{a^2+b^2} \ & = 1 \$$

•
$$\frac{1}{a+ib} = \frac{1}{z} = \frac{\overline{z}}{|z|^2} = \frac{a-ib}{a^2+b^2}$$

 $ullet e^{zx}=e^{(a+ib)x}=e^{ax}(\cos(bx)+i\sin(bx))$

• Complex exponential: $x^z \coloneqq e^{z \ln x}$

• n-th roots: $e^{rac{ki}{2\pi n}}$

ullet For z=a+bi, $(x-z)(x-\overline{z})=x^2-2\mathcal{R}e(z)x+(a^2+b^2)$

Real Analysis

Summary for GRE exam:

- limits,
- · continuity,
- · boundedness,
- · compactness,
- · definitions of topological spaces,
- · Lipschitz continuity
- sequences and series of functions.

Notation used throughout: $f: \mathbb{R} \to \mathbb{R}, \ \mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$, K is a compact set, and "integrable" or $L_R(K)$ denotes "Riemann integrable on K".

Big Theorems / Formulas

Generalized Mean Value Theorem

$$[f,g] = f,g = f,$$

- Recover MVT: #todo
- Bolzano-Weierstrass: every bounded sequence has a convergent subsequence.
- **Heine-Borel**: in \mathbb{R}^n , X is compact $\iff X$ is closed and bounded.

Big Examples

• A function continuous and discontinuous at infinitely many points:

$$f(x) = \left\{egin{array}{ll} 0 & x \in \mathbb{R} - \mathbb{Q} \ rac{1}{q} & x = rac{p}{q} \in \mathbb{Q} \end{array}
ight.$$

- \circ Then f is discontinuous on $\mathbb Q$ and continuous on $\mathbb R-\mathbb Q.$ Proof
- \circ Fix arepsilon, let $x_0 \in \mathbb{R} \mathbb{Q}$, choose $n: rac{1}{n} < arepsilon$ using Archimedean property.
 - lacksquare Define $S = \{x \in \mathbb{Q}: x \in (0,1), x = rac{m}{n'}, n' < n\}$
 - ullet Then $|S| \leq 1 + 2 + \cdots (n-1)$, so choose $\delta = \min_{s \in S} |s x_0|$
 - Then

$$x \in N_\delta(x_0) \implies f(x) < rac{1}{n} < arepsilon$$

#todo, revisit and spell out more

$$\circ~$$
 Let $x_0=rac{p}{q}\in\mathbb{Q}$ and $\{x_n\}=\{x-rac{1}{n\sqrt{2}}\}.$ Then

$$x_n\uparrow x_0 ext{ but } f(x_n)=0 o 0
eq rac{1}{q}=f(x_0)$$

Motivation: Commuting Limit Operations

- ullet Suppose $f_n o f$ (pointwise, not necessarily uniformly)
- ullet Let $F(x)=\int f(t)$ be an antiderivative of f
- Let $f'(x) = \frac{\partial f}{\partial x}(x)$ be the derivative of f.

Then consider the following possible ways to commute various limiting operations:

Does taking the derivative of the integral of a function always return the original function?

$$[rac{\partial}{\partial x}, \int dx]: \qquad \qquad rac{\partial}{\partial x} \int f(x,t) dt =_? \int rac{\partial}{\partial x} f(x,t) dt$$

Answer: Sort of (but possibly not).

Counterexample:

$$f(x) = \left\{ egin{array}{ll} 1 & x > 0 \ -1 & x \leq 0 \end{array}
ight. \implies \int f pprox |x|,$$

which is not differentiable. (This is remedied by the so-called "weak derivative")

Sufficient Condition: If f is continuous, then both are always equal to f(x) by the FTC.

Is the derivative of a continuous function always continuous?

$$[rac{\partial}{\partial x}, \lim_{x_i o x}]: \qquad \qquad \lim_{x_i o x} f'(x_n) =_? f'(\lim_{x_i o x} x)$$

Answer: No.

Counterexample:

$$f(x) = egin{cases} x^2 \sin(1/x) & ext{if } x
eq 0 \ 0 & ext{if } x = 0 \end{cases} \implies f'(x) = egin{cases} 2x \sin\left(rac{1}{x}
ight) - \cos\left(rac{1}{x}
ight) & ext{if } x
eq 0 \ 0 & ext{if } x = 0 \end{cases}$$

which is discontinuous at zero.

Sufficient Condition: There doesn't seem to be a general one (which is perhaps why we study C^k functions).

Is the limit of a sequence of differentiable functions differentiable and the derivative of the limit?

$$[rac{\partial}{\partial x},\lim_{f_n o f}]: \qquad \qquad \lim_{f_n o f}rac{\partial}{\partial x}f_n(x)=_?rac{\partial}{\partial x}\lim_{f_n o f}f_n(x)$$

Answer: *Super* no – even the uniform limit of differentiable functions need not be differentiable!

Counterexample: $f_n(x)=rac{\sin(nx)}{\sqrt{n}}
ightrightarrows f=0$ but $f_n'
ightharpoonup f'=0$

Sufficient Condition: $f_n
ightrightarrows f$ and $f_n \in C^1$.

Is the limit of a sequence of integrable functions integrable and the integral of the limit?

$$[\int dx,\lim_{f_n o f}](f): \qquad \qquad \lim_{f_n o f}\int f_n(x)dx=_?\int\lim_{f_n o f}f_n(x)dx$$

Answer: No.

Counterexample: Order $\mathbb{Q} \cap [0,1]$ as $\{q_i\}_{i\in\mathbb{N}}$, then take

$$f_n(x) = \sum_{i=1}^n \mathbb{1}\left[q_n
ight] o \mathbb{1}\left[\mathbb{Q} igcap [0,1]
ight]$$

where each f_n integrates to zero (only finitely many discontinuities) but f is not Riemann-integrable.

Sufficient Condition: \$

- $f_n
 ightrightarrows f$, or
- ullet f integrable and $\exists M: orall n, |f_n| < M$ (f_n uniformly bounded)

Is the integral of a continuous function also continuous?

$$[\int dx, \lim_{x_i o x}]: \qquad \qquad \lim_{x_i o x} F(x_i) =_? F(\lim_{x_i o x} x_i)$$

Answer: Yes.

Proof: |f(x)| < M on I, so given c pick a sequence $x \to c$. Then

$$|f(x)| < M \implies \left| \int_c^x f(t) dt
ight| < \int_c^x M dt \implies |F(x) - F(c)| < M(b-a) o 0$$

Is the limit of a sequence of continuous functions also continuous?

$$[\lim_{x_i o x},\lim_{f_n o f}]: \qquad \qquad \lim_{f_n o f}\lim_{x_i o x}f(x_i)=_! \lim_{x_i o x}\lim_{f_n o f}f_n(x_i)$$

Answer: No.

Counterexample: $f_n(x) = x^n o \delta(1)$

Sufficient Condition: $f_n
ightrightarrows f$

Does a sum of differentiable functions necessarily converge to a differentiable function?

$$\left[rac{\partial}{\partial x},\sum_{f_n}
ight]: \qquad \qquad rac{\partial}{\partial x}\sum_{k=1}^{\infty}f_k=_?\sum_{k=1}^{\infty}rac{\partial}{\partial x}f_k$$

Answer: No.

Counterexample: $f_n(x)=rac{\sin(nx)}{\sqrt{n}}
ightrightarrows 0 \coloneqq f$, but $f_n'=\sqrt{n}\,\cos(nx)
ightrightarrow 0 = f'$ (at, say, x=0)

Sufficient Condition: When $f_n \in C^1$, $\exists x_0 : f_n(x_0) \to f(x_0)$, and $\sum \|f'_n\|_{\infty} < \infty$ (continuously differentiable, converges at a point, and the derivatives absolutely converge)

Continuity

$$f \operatorname{cts} \iff \lim_{x \to p} f(x) = f(p)$$

Example of a discontinuous function: $\sin(\frac{1}{x})$ at x=0.

Uniiform continuity #todo

Differentiability

$$f'(p) centcolone = rac{\partial f}{\partial x}(p) = \lim_{x o p} rac{f(x) - f(p)}{x - p}$$

- ullet For multivariable functions: existence and continuity of $rac{\partial \mathbf{f}}{\partial x_i} orall i \implies \mathbf{f}$ differentiable
 - Necessity of continuity: example of a continuous functions with all partial and directional derivatives that is not differentiable:

$$f(x,y) = egin{cases} rac{y^3}{x^2+y^2} & (x,y)
eq (0,0) \ 0 & ext{else} \end{cases}$$

Properties, strongest to weakest

$$C^{\infty} \subsetneq C^k \subsetneq ext{ differentiable } \subsetneq C^0 \subset L_R(K)$$

- Example showing $f\in C^0 \not \Longrightarrow f$ is differentiable and f not differentiable $\not \Longrightarrow f\not\in C^0$. • Take f(x)=|x| at x=0.
- Example showing that f differentiable $\implies f \in C^1$:
 - Take

$$f(x) = egin{cases} x^2 \sin(rac{1}{x}) & x
eq 0 \ 0 & x = 0 \end{cases} \implies f'(x) = egin{cases} -\cos(rac{1}{x}) + 2x\sin(rac{1}{x}) & x
eq 0 \ 0 & x = 0 \end{cases}$$

but $\lim_{x\to 0} f'(x)$ does not exist and thus f' is not continuous at zero.

Proof that f differentiable $\implies f \in C^0$:

$$f(x)-f(p)=rac{f(x)-f(p)}{x-p}(x-p)\stackrel{ ext{ iny hypothesis}}{=}f'(p)(x-p)\stackrel{x o p}{
ightharpoons}0$$

Giant Table of Relations

Bold are assumed hypothesis, regular text is the strongest conclusion you can reach, strikeout denotes implications that aren't necessarily true.

exists	continuous	K-integrable	exists
continuous	${f differentiable}$	continuous	exists
exists	integrable	continuous	differentiable

 $f \qquad \qquad \therefore f \qquad \qquad F$

Explanation of items in table:

• K-integrable: compactly integrable.

- f integrable $\Longrightarrow F$ differentiable $\Longrightarrow F \in C^0$
- f differentiable and K compact $\implies f$ integrable on K.
 - \circ In general, f differentiable $\Longrightarrow f$ integrable. Necessity of compactness:

$$f(x)=e^x\in C^\infty(\mathbb{R}) ext{ but } \int_\mathbb{R} e^x dx o\infty$$

- f integrable $\Longrightarrow f$ differentiable
 - \circ An integrable function that is not differentiable: f(x) = |x| on $\mathbb R$
- f differentiable $\implies f$ continuous a.e.

Integrability

- Sufficient criteria for integrability:
 - o f continuous, montone, bounded, finitely many discontinuities, or
 - Uniformly continuous, or
 - Finitely many discontinuities
- f integrable \iff bounded and continuous a.e.
 - \circ Prime example of a non-integrable function: $f=\mathbb{1}\left[\mathbb{Q}\right]$
- FTC for the Riemann Integral.
 - \circ If F is a differentiable function on the interval [a,b], and F' is bounded and continuous a.e., then $F' \in L_R([a,b])$ and

$$orall x \in [a,b]: \int_a^x F'(t) \; dt = F(x) - F(a)$$

 \circ Suppose f bounded and continuous a.e. on [a,b], and define $F(x) \coloneqq \int_a^x f(t) \ dt$. Then F is absolutely continuous on [a,b], and for $p \in [a,b]$,

$$f \in C^0(p) \implies F ext{ differentiable at } p, \ F'(p) = f(p), \ ext{and } F' \stackrel{ ext{a.e}}{=} f.$$

List of Free Conclusions:

- f integrable on U:
 - \circ f is bounded
 - $\circ f$ is continuous a.e. (finitely many discontinuities)
 - \circ F is continuous
 - \circ F is differentiable
- f continuous on U:
 - $\circ \ f$ is integrable on compact subsets of U
 - F exists
- *f* differentiable at a point *p*:
 - \circ f is continuous

- ullet f is differentiable in U
 - \circ f is continuous a.e.
- Defining the Riemann integral: #todo

Pointwise convergence

$$f_n o f=\lim_{n o\infty}f_n$$

Summary:

$$\lim_{f_n o f} \lim_{x_i o x} f_n(x_i)
eq \lim_{x_i o x} \lim_{f_n o f} f_n(x_i)$$

$$\lim_{f_n o f} \int_I f_n
eq \int_I \lim_{f_n o f} f_n$$

- Pointwise convergence is strictly weaker than uniform convergence.
 - \circ Example of a function that converges pointwise but not uniformly: $f_n(x)=x^n$ on [0,1]
 - \circ Proof: towards a contradiction let $arepsilon=rac{1}{2}$. Then let $n=N(rac{1}{2})$ and $x=\left(rac{3}{4}
 ight)^{rac{1}{n}}$: then f(x)=0 but $|f_n(x)-f(x)|=x^n=rac{3}{4}>rac{1}{2}$.
- f_n continuous $\Longrightarrow f$ is continuous
 - o i.e. "the pointwise limit of continuous functions is not necessarily continuous"
 - Take

$$f_n(x)=x^n,\quad f_n(x) o \mathbb{1}\left[x=1
ight]$$

- ullet f_n differentiable $\Longrightarrow f_n'$ converges
 - Take

$$f_n(x) = rac{1}{n} \mathrm{sin}(n^2 x)
ightarrow 0, \quad f_n' = n \cos(n^2 x) ext{ does not converge}$$

- f_n integrable $\iff \lim_{f_n o f} \int_I f_n
 eq \int_I \lim_{f_n o f} f_n$
 - May fail to converge to same value, take

$$f_n(x) = rac{2n^2x}{(1+n^2x^2)^2} o 0, \quad \int_0^1 f_n = 1 - rac{1}{n^2+1} o 1$$

0

Uniform Convergence

$$f_n
ightrightarrows f = \lim_{n
ightarrow \infty} f_n ext{ and } \sum_{n=1}^\infty f_n
ightrightarrows S$$

Summary:

$$\lim_{x_i o x}\lim_{f_n o f}f_n(x_i)=\lim_{f_n o f}\lim_{x_i o x}f_n(x_i)=\lim_{f_n o f}f_n(\lim_{x_i o x}x_i)$$

$$\lim_{f_n o f}\int_I f_n = \int_I \lim_{f_n o f} f_n$$

$$\sum_{n=1}^{\infty} \int_I f_n = \int_I \sum_{n=1}^{\infty} f_n$$

"The uniform limit of a(n) x function is x", for $x \in \{\text{continuous}, \text{bounded}\}$

• Equivalent to convergence in the uniform metric on the metric space of bounded functions on X:

$$f_n
ightharpoonup f \iff \sup_{x \in X} |f_n(x) - f(x)| o 0$$

- $\circ \ (B(X,Y),\|\|_{\infty}) \text{ is a metric space and } f_n \rightrightarrows f \iff \|f_n-f\|_{\infty} \to 0$ (where B(X,Y) are bounded functions from X to Y and $\|f\|_{\infty} = \sup_{x \in I} \{f(x)\}$
- ullet $f_n
 ightharpoonup f \Longrightarrow f_n
 ightarrow f$ pointwise
- f_n continuous $\Longrightarrow f$ continuous
 - i.e. "the uniform limit of continuous functions is continuous"
- $f_n\in C^1$, $\exists x_0:f_n(x_0) o f(x_0)$, and $f_n'\rightrightarrows g\implies f$ differentiable and f'=g (i.e. $f_n' o f'$)
 - \circ Necessity of C^1 look at failures of f_n^\prime to be continuous:
 - $lacksquare ag{1}{n^2} + x^2
 ightrightarrows |x|$, not differentiable
 - $lacksquare ext{Take } f_n(x) = n^{-rac{1}{2}} \sin(nx)
 ightrightarrows 0 ext{ but } f_n'
 ightarrows f' = 0 ext{ and } f'
 eq g$
- ullet f_n integrable $\Longrightarrow f$ integrable and $\int f_n o \int f$
- ullet f_n bounded $\Longrightarrow f$ bounded
- $f_n
 ightharpoonup f_n \not \Longrightarrow f_n'$ converges
 - o Says nothing about it general
- $f'_n \Rightarrow f' \not \Longrightarrow f_n \Rightarrow f$
 - \circ Unless f converges at one or more points.

Sequences and Metric Spaces

- Big Theorems:
 - Bolzano-Weierstrass: every bounded sequence has a convergent subsequence.
 - \circ **Heine-Borel**: in \mathbb{R}^n, X is compact $\iff X$ is closed and bounded.
 - Necessity of \mathbb{R}^n : $X=(\mathbb{Z},d(x,y)=1)$ is closed, complete, bounded, but not compact since $\{1,2,\cdots\}$ has no convergent subsequence
 - Converse holds iff bounded is replaced with totally bounded
 - $\circ \; X$ compact $\iff X$ sequentially compact
- $\{x_i\} \to p \implies$ every subsequence also converges to p.
- $\{x_i\} \to p \implies \{x_i\}$ is Cauchy
 - Converse holds in complete metric spaces. Example of a Cauchy sequence that doesn't converge: $x_i = \pi$ truncated to i decimal places in $\mathbb{Q} \subset \mathbb{R}$.
- ullet X complete and $X\subset Y \implies X$ closed in Y
 - Necessity of completeness: $\mathbb{Q} \subset \mathbb{Q}$ is closed but $\mathbb{Q} \subset \mathbb{R}$ is not.
- X compact $\implies X$ complete and bounded.
 - Holds for any metric space, converse generally does not
- ullet X compact and $Y\subset X\Longrightarrow Y$ compact $\iff Y$ closed.

Series

• Define $s_n(x)=\sum_{k=1}^n f_k(x)$ and $S(x)=\lim_{n\to\infty} s_n(x)$, which can converge pointwise or uniformly.

Sequences and Series of Functions

Notation: $\sum_{k\in\mathbb{N}}f_k$ is a "series"

• $\limsup |f_k(x)|
eq 0 \implies$ not convergent- $\limsup |f_k(x)|
eq 0 \implies$ not convergent

Topology

todo

Number Theory

Totient Function

$$\phi(p)=p-1 \ \phi(p^k)=p^{k-1}(p-1) \ n=pq, (p,q)=1 \implies \phi(n)=\phi(p)\phi(q)$$

• With these properties, the following formulas can be derived:

$$egin{aligned} \phi(n) &= \phi(\prod_i p_i^{k_i}) = \prod_i p_i^{k_i-1}(p_i-1) \ &= n\left(rac{\prod_i (p_i-1)}{\prod_i p_i}
ight) \ &= n\prod_i (1-rac{1}{p_i}) \end{aligned}$$

· Fermat's Little Theorem

$$x^n - x = 0 \mod n$$
$$x^{p-1} - 1 = 0 \mod p$$

- The Euclidean Algorithm
- The Jacobi symbol

Abstract Algebra

To Sort

- Fermat's Little Theorem
- The Euclidean Algorithm
- Burnside's Lemma
- The Sylow Theorems
- Galois Theory
- http://mathroughguides.wikidot.com/glossary:abstract-algebra

Big List of Notation

Centralizer	$\subseteq G$	$\{g\in G: gxg^{-1}=x\}$	C(x) =
Conjugacy Class	$\subseteq G$	$\{gxg^{-1}:g\in G\}$	$C_G(x) =$
Orbit	$\subseteq X$	$\{g.x:x\in X\}$	$G_x =$
Stabilizer	$\subseteq G$	$\{g\in G:g.x=x\}$	$x_0 =$
Center	$\subseteq G$	$\{x\in G: \forall g\in G,\ gxg^{-1}=x\}$	Z(G) =
Inner Aut.	$\subseteq \operatorname{Aut}(G)$	$\{\phi_g(x)=gxg^{-1}\}$	$\mathrm{Inn}(G) =$
Outer Aut.	$\hookrightarrow \operatorname{Aut}(G)$	$\operatorname{Aut}(G)/\mathrm{Inn}(G)$	$\mathrm{Out}(G) =$
Normalizer	$\subset G$	$\{q\in G: qHq^{-1}=H\}$	N(H) =

Group Theory

Notation: H < G a subgroup, N < G a normal subgroup, concatenation is a generic group operation.

- \mathbb{Z}_n the unique cyclic group of order n
- Q the quaternion group
- $G^n = G \times G \times \cdots G$
- Z(G) the center of G
- o(G) the order of a group
- S_n the symmetric group
- A_n the alternating group
- ullet D_n the dihedral group of order 2n
- · Group Axioms
 - \circ Closure: $a,b\in G \implies ab\in G$
 - $\quad \text{o Identity: } \exists e \in G \mid a \in G \implies ae = ea = a$
 - \circ Associativity: $a,b,c\in G \implies (ab)c=a(bc)$
 - \circ Invertibility: $a \in G \implies \exists b \in G \mid ab = ba = e$
- Definitions:
 - Order
 - Of a group: o(G) = |G|, the cardinality of G
 - ullet Of an element: $o(g) = \min\{n \in \mathbb{N} : g^n = e\}$
 - Index
 - Center: the elements that commute with everything
 - o Centralizer: all elements that commute with a given element/subgroup.
 - \circ Group Action: a function f: X imes G o G satisfying
 - $ullet x \in X, g_1, g_2 \in G \implies g_1.\,(g_2.\,x) = (g_1g_2).\,x$
 - \bullet $x \in X \implies e. x = x$
 - Orbits partition any set
 - Transitive Action
 - \circ Conjugacy Class: $C \subset G$ is a conjugacy class \iff
 - $x \in C, g \in G \implies gxg^{-1} \in C$
 - $lack x,y\in C \implies \exists g\in G: gxg^{-1}=y$
 - ullet i.e. subsets that are closed under G acting on itself by conjugation and on which the action is transitive
 - i.e. orbits under the conjugation action
 - lacktriangle The order of any conjugacy class divides the order of G
 - $\circ p$ -group: Any group of order p^n .
 - Simple Group: no nontrivial normal subgroups
 - \circ Normal Series: $0 \leq H_0 \leq H_1 \cdots \leq G$
 - o Composition Series: The successive quotients of the normal series
 - \circ Solvable: G is solvable $\iff G$ has an abelian composition series.
- One step subgroup test:

$$a,b \in H \implies ab^{-1} \in H$$

- Useful isomorphism invariants:
 - $\circ~$ Order profile of elements: n_1 elements of order p_1 , n_2 elements of order p_2 , etc
 - Useful to look at elements of order 2!
 - o Order profile of subgroups
 - $\circ Z(A) \cong Z(B)$
 - Number of generators (generators are sent to generators)
 - Number and size of conjugacy classes
 - Number of Sylow-p subgroups.
 - Commutativity
 - o "Being cyclic"
 - Automorphism Groups
 - Solvability
 - Nilpotency

Big Theorems

· Isomorphism Theorems

$$egin{aligned} \phi: G
ightarrow G' \implies & rac{G}{\ker \phi} \cong \phi(G) \ H
ightharpoonup G, \ K < G \implies & rac{K}{H igcap K} \cong rac{HK}{H} \ H, K
ightharpoonup G, \ K < H \implies & rac{G/K}{H/K} \cong rac{G}{H} \end{aligned}$$

- ullet Lagrange's Theorem: $H < G \implies o(H) \mid o(G)$
 - \circ Converse is false: $o(A_4)=12$ but has no order 6 subgroup.
- ullet The GZ Theorem: G/Z(G) cyclic $\implies G \in \mathbf{Ab}$
- ullet Orbit Stabilizer Theorem: $G/x_0\cong Gx$
- The Class Equation
 - $\circ \ \ {\rm Let} \ G {\curvearrowright} X$ and ${\mathcal O}_i \subseteq X$ be the nontrivial orbits, then

$$|X|=|X_0|+\sum_{[x_i]\in X/G}|Gx|$$

- The right hand side is the number of fixed points, plus a sum over all of the orbits of size greater than 1, where any representative within the orbit is chosen and we look at the index of its stabilizer in G.
- \circ Let $G {\curvearrowright} G$ and for each nontrivial conjugacy class C_G choose a representative $[x_i]=C_G=C_G(x_i)$ to obtain

$$|G| = |Z(G)| + \sum_{[x_i] = C_G(x_i)} [G:[x_i]]$$

- Useful facts:
 - \circ $H < G \in \mathbf{Ab} \implies H \trianglelefteq G$
 - ullet Converse doesn't hold, even if all subgroups are normal. Counterexample: ${f Q}$
 - $\circ \ G/Z(G) \cong \operatorname{Inn}(G)$
 - $\circ \ H, K < G \ ext{with} \ H \cong K
 equiv G/H \cong G/K$
 - lacktriangle Counterexample: $G=\mathbb{Z}_4 imes\mathbb{Z}_2, H=<(0,1)>, K=<(2,0)>$. Then $G/H\cong\mathbb{Z}_4\ncong\mathbb{Z}_2^2\cong G/K$

- $\circ \ G \in \mathbf{Ab} \implies$ for each p dividing o(G), there is an element of order p
- \circ Any surjective homomorphism $\phi:A \twoheadrightarrow B$ where o(A)=o(B) is an isomorphism
- Sylow Subgroups:
 - Todo
- · Big List of Interesting Groups
 - $\circ \mathbb{Z}_4, \mathbb{Z}_2^2$
 - $\circ D_4$
 - $\circ~Q=\langle a,b|a^4=1,a^2=b^2,ab=ba^3
 angle$ the quaternion group
 - $\circ~S^3$, the smallest nonabelian group
- · Chinese Remainder Theorem:

$$\mathbb{Z}_{pq} \cong \mathbb{Z}_p \oplus \mathbb{Z}_q \iff (p,q) = 1$$

- Fundamental Theorem of Finitely Generated Abelian Groups:
 - $\circ G = \mathbb{Z}^n \oplus \bigoplus \mathbb{Z}_{q_i}$
- Finding all of the unique groups of a given order: #todo

Cyclic Groups

- Generated by ?
- For each d dividing o(G), there exists a subgroup H of order d.
 - \circ If G=< a>, then take $H=< a^{rac{n}{d}}>$

The Symmetric Group

- Generated by:
 - Transpositions
 - #todo
- Cycle types: characterized by the number of elements in the cycle.
 - \circ Two elements are in the same conjugacy class \iff they have the same cycle type.
- Inversions: given $au = (p_1 \cdots p_n)$, a pair p_i, p_j is inverted iff i < j but $p_j < p_i$
- Can count inversions $N(\tau)$
 - Equal to minimum number of transpositions to obtain non-decreasing permutation
- Sign of a permutation: $\sigma(\tau) = (-1)^{N(\tau)}$
- Parity of permutations $\cong (\mathbb{Z}, +)$
 - ∘ even ∘ even = even
 - odd odd = even
 - ∘ even o odd = odd

Ring Theory

- Ring Axioms: #todo
 - Examples:
 - Non-Examples:
- Definition of an Ideal
- Definitions of types of rings:
 - Field
 - Unique Factorization Domain (UFD)
 - Principal Ideal Domain (PID)
 - o Euclidean Domain:
 - Integral Domain
 - Division Ring

Counterexamples to inclusions are strict:

- An ED that is not a field:
- A PID that is not an ED: $\mathbb{Q}[\sqrt{19}]$
- A UFD that is not a PID:
- An integral domain that is not a UFD:
 - · Integral Domains
 - Unique Factorization Domains
 - Prime Elements
 - Prime Ideals
 - Field Extensions
 - The Chinese Remainder Theorem for Rings
 - Polynomial Rings
 - o Irreducible Polynomials
 - $lacksquare ext{Over } \mathbb{Z}_2: x, x+1, x^2+x+1, x^3+x+1, x^3+x^2+1$
 - Eisenstein's Criterion
 - Gauss' Lemma
 - When is $\mathbb{Q}[\sqrt{d}\,]$ a field? #todo

Combinatorics

• Choosing: $\binom{n}{k}$

Probability

Summary for GRE:

- · Calculating Mean, standard deviation, and variance from PDF,
- Bernoulli trials.

Numerical Analysis

- · Euler's Method:
 - $\circ~$ To solve $rac{dy}{dx}=f(x,y),y(x_0)=y_0$, choose a step size arepsilon , and let $x_{n+1}=x_0+narepsilon$. Then

$$y_{n+1} = y_n + \varepsilon f(x_n, y_n)$$

- Decompositions of Matrices:
 - \circ LU
 - Cholesky
 - Singular Value

Appendix

Neat Tricks

· Commuting differentials and integrals:

$$rac{d}{dx}\int_{a(x)}^{b(x)}f(x,t)dt=f(x,b(x))rac{d}{dx}b(x)-f(x,a(x))rac{d}{dx}a(x)+\int_{a(x)}^{b(x)}rac{\partial}{\partial x}f(x,t)dt$$

- \circ Need $f, rac{df}{dx}$ to be continuous in both variables. Also need $a(x), b(x) \in C_1$.
- \circ If a,b are constant, boundary terms vanish.
- \circ Recover the fundamental theorem with a(x)=a, b(x)=b, f(x,t)=f(t) .

Useful Series and Sequences

Notation: \uparrow , \downarrow : monotonically converges from below/above.

• Taylor Series:

$$f(x) = \sum_{n=0}^{\infty} rac{f^{(n)}\left(x_0
ight)}{n!} (x-x_0)^n$$

· Cauchy Product:

$$\left(\sum_{k=0}^\infty a_k x^k
ight)\left(\sum_{k=0}^\infty b_i x^n
ight) = \sum_{k=0}^\infty \left(\sum_{i=0}^k a_n b_n
ight) x^k$$

• Differentiation:

$$rac{\partial}{\partial x} \sum_{k=i}^{\infty} a_k x^k = \sum_{k=i+1}^{\infty} k \, a_k x^{k-1}$$

Common Series

Rational Roots Theorem

Partial Fraction Decomposition

Given $R(x)=rac{p(x)}{q(x)}$, factor q(x) into $\prod q_i(x)$.

• Linear factors of the form $q_i(x) = (ax + b)^n$ contribute

$$r_i(x) = \sum_{k=1}^n rac{A_k}{(ax+b)^k} = rac{A_1}{ax+b} + rac{A_2}{(ax+b)^2} + \cdots$$

ullet Irreducible quadratics of the form $q_i(x)=(ax^2+bx+c)^n$ contribute

$$r_i(x) = \sum_{k=1}^n rac{A_k x + B_k}{(ax^2 + bx + c)^k} = rac{A_1 x + B_1}{ax^2 + bx + c} + rac{A_2 x + B_2}{(ax^2 + bx + c)^2} + \cdots$$

- \circ Note: $ax^2 + bx + c$ is irreducible $\iff b^2 < 4ac$
- ullet Write $R(x)=rac{p(x)}{\prod q_i(x)}=\sum r_i(x)$, then solve for the unknown coefficients A_k,B_k .
 - IMPORTANT SHORTCUT: don't try to solve the resulting linear system: for each $q_i(x)$, multiply through by that factor and evaluate at its root to zero out many terms!
 - \circ For linear terms $q_i(x)=(ax+b)^n$, define $P(x)=(ax+b)^nR(x)$; then

$$A_k = rac{1}{(n-k)!} P^{(n-k)}(a), \quad k=1,2,\cdots n \ \implies A_n = P(a), \; A_{n-1} = P'(a), \; \cdots, \; A_1 = rac{1}{(n-1)!} P^{(n-1)}(A)$$

 \circ Note: #todo check, might need to evaluate at -b/a instead, extend to quadratics.