《数据结构》课程实践报告

院、系		计算机学院	年级专	21 计算机科 学与技术	姓名	赵鹏	学号	2127405037
实验布置 日期		2022.11.28		提交 日期	2022.12.6		成绩	

课程实践实验 11: Graph Connectivity

一、问题描述及要求

Graph Connectivity

Time Limit: 8000MS Memory Limit: 131072K

Case Time Limit: 3000MS

Description

Let us consider an **undirected** graph $G = \langle V, E \rangle$. At first there is no edge in the graph. You are to write a program to calculate the connectivity of two different vertices. Your program should maintain the functions inserting or deleting an edge.

Input

The first line of the input contains an integer numbers N ($2 \le N \le 1000$) -- the number of vertices in G. The second line contains the number of commands Q ($1 \le Q \le 20000$). Then the following Q lines describe each command, and there are three kinds of commands:

I u v: Insert an edge (u, v). And we guarantee that there is no edge between nodes u and v, when you face this command.

D u v: Delete an existed edge (u, v). And we guarantee that there is an edge between nodes u and v, when you face this command.

Q u v: A querying command to ask the connectivity between nodes u and v.

You should notice that the nodes are numbered from 1 to N.

Output

Output one line for each querying command. Print "Y" if two vertices are connected or print "N" otherwise.

Sample Input

3

/

Q 1 2

I 1 2

I 2 3

Q 1 3

D 1 2

Q 1 3

Q 1 1

Sample Output

N Y

N

N

Y

问题分析

本次实验的内容是一个关于图论的实际问题。给定含有 n 个结点的无向不带权图。可以对图进行插入边(u,v),删除边(u,v),以及查询 u,v 的连通性,如果连通则输出 Y 否则输出 N。显然,可以分别考虑三种操作的实现,对于执行操作调用对应方法即可。

输入: 第一行输入无向图的结点数 \mathbb{N} 和询问数 \mathbb{Q} 。接下来 \mathbb{Q} 行每行三个数据,第一个字母表示操作,接下来两个数 \mathbb{Q} , \mathbb{V} 代表两个结点。

输出:对于每次询问Q, 若u,v 连通输出Y, 反之输出N。

二、问题解决

对于图相关的问题,首先需要考虑存图。由于需要频繁进行加边和删边的操作,故可以使用邻接矩阵进行存图,便可以O(1)的时间复杂度进行加边和删边。随后只需要以此实现三种操作即可。

一、加边

在使用邻接矩阵存图时, edge[i][j]即代表量结点 i,j 之间是否存在, 若 edge[i][j]=1 则代表 i,j 结点之间存在边,反之若 edge[i][j]等于 0,则代表 i,j 之间不存在边。由于此题是无向图,因此加边操作在修改邻接矩阵时只需要令 edge[i][i]=edge[i][i]=1 即可。

二、 删边

删边操作与加边操作相对称。同样修改邻接矩阵即可,若需要删除 i,j 之间的边,只需要令 edge[i][i]=edge[j][i]=0 即可。

三、 判断两点间的连通性

对于图中两点之间连通性的判断, 只需要从一点开始进行宽度优先遍历或深度优先遍历即可。在此题中我选择使用宽度优先遍历, 在实现过程中使用 C++模板库中的队列来进行实现宽度优先遍历的过程, 首先将起点 u 入队并标记已经访问过, 随后从起点向外进行扩展, 弹出队头并遍历相邻起点, 若相邻的结点没有访问过则进行入队操作, 并标记此结点访问过。若某一次将终点 v 入队则说明两点之间连通, 返回 true, 循环这个过程直至队列为空。若队列为空循环结束, 则说明从 u 无法遍历到 v, 即两点之间不连通, 返回 false 即可。

代码实现如下:

```
1. bool Graph<DataType>::JudgeConnectivity(int u, int v)
2. {
3. if (u == v)return true;
4. memset(st, 0, sizeof st);
5. std::queue<int>Q;
6. Q.push(u); st[u] = 1;
7. while (Q.size())
8. {
9. auto head = Q.front(); Q.pop();
10. for (int i = 1; i \leftarrow vertexNum; i++)
11. {
12.
     if (edge[head][i] && !st[i])
13.
     if (i == v)return true;
     else
14.
15. {
16.
       Q.push(i);
17.
      st[i] = 1;
18.
       }
19. }
20. }
21. return false;
22.}
```

三、实验结果测试

使用题目中给定的数据进行测试,运行结果为:

```
3
7
Q 1 2
N
I 1 2
I 2 3
Q 1 3
Y
D 1 2
Q 1 3
N
Q 1 1
```

结论: 测试通过

四、小结

通过本次实验,我加深对了图相关的知识的理解,包括图的存储、图的遍历等,并且运用图相关的知识较好的解决了一道算法题目。