/home/nicole/Jupyter/JG3/Data/0.5/G/10

```
;ls
In [4]:
        Correlation.G5.G.C.txt
        Correlation.G5.G.J.txt
        Correlation.G5.G.JC.txt
        Correlation.G5.G.N.txt
        G0.Genotype.ID
        G0.ID
        G0.noGenotype.ID
        G1.Genotype.ID
        G1.ID
        G1.noGenotype.ID
        G2.Genotype.ID
        G2.ID
        G2.noGenotype.ID
        G3.Genotype.ID
        G3.ID
        G3.noGenotype.ID
        G4.Genotype.ID
        G4.ID
        G4.noGenotype.ID
        G5.Genotype.ID
        G5.ID
        G5.noGenotype.ID
        GenNF.txt
        PedAll.txt
        Phe.txt
        PheAll.txt
        Regression.G5.G.C.txt
        Regression.G5.G.J.txt
        Regression.G5.G.JC.txt
        Regression.G5.G.N.txt
        all.ID
        alphaEstimates
        genotype.ID
        meanOfSNPGAll
        meanOfSNPGG0
        meanOfSNPGG1
        meanOfSNPGG2
        meanOfSNPGG3
        meanOfSNPGG4
        meanOfSNPGG5
        noGenotype.ID
        sim.bv
        sim.phenotype
In [5]: ;awk '{print $1}' PedAll.txt | sort -b > all.ID
        ;awk '{print $1}' GenNF.txt | sort -b > genotype.ID
In [6]:
        ;join -v1 all.ID genotype.ID > noGenotype.ID
        ;awk '{print $1,$2}' Phe.txt > sim.phenotype
In [8]:
```

```
In [9]: ;awk '{print $1,$3}' PheAll.txt > sim.bv
In [10]: ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
In [11]: ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
In [12]: ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
In [13]: ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [14]: ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
In [15]: ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [16]: ;join GO.ID genotype.ID > GO.Genotype.ID
In [17]: | ;join G1.ID genotype.ID > G1.Genotype.ID
In [18]: ;join G2.ID genotype.ID > G2.Genotype.ID
In [19]: ;join G3.ID genotype.ID > G3.Genotype.ID
In [20]: ;join G4.ID genotype.ID > G4.Genotype.ID
In [21]: ; join G5.ID genotype.ID > G5.Genotype.ID
In [22]: |;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [23]: | ;join -v1 G1.ID genotype.ID > G1.noGenotype.ID
In [24]: ;join -v1 G2.ID genotype.ID > G2.noGenotype.ID
In [25]: | ;join -v1 G3.ID genotype.ID > G3.noGenotype.ID
In [26]: |;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [27]: |;join -v1 G5.ID genotype.ID > G5.noGenotype.ID
In [28]: ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc G
          200
               200 1200 GO.Genotype.ID
               200 1200 G1.Genotype.ID
          200
               200 1200 G2.Genotype.ID
          200
          200
               200 1200 G3.Genotype.ID
              200 1200 G4.Genotype.ID
          200
          8000 8000 48000 G5.Genotype.ID
```

```
In [29]:
         ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype
          7800 7800 46800 G0.noGenotype.ID
          7800 7800 46800 Gl.noGenotype.ID
          7800 7800 46800 G2.noGenotype.ID
          7800 7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
In [30]: ped, A Mats, numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreedin
         nothing
         y Vecs = make_yVecs("sim.phenotype",ped,numSSBayes)
         Z_Mats = make_ZMats(ped,y_Vecs,numSSBayes)
         nothing
In [31]: vRes
                = 0.583
                = 0.583
         νG
         aHat3=SSBR.PBLUP(y_Vecs,Z_Mats,A_Mats,numSSBayes,vRes,vG);
In [32]: using DataFrames
In [33]: | df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',head
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [34]: | IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat3[posAi])[1,1]
         reg1 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with e
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n",
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.889
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.993
Out[34]: 0.8894286427966482
In [35]: TBV = a[posAi]
         mean(TBV)
Out[35]: 9.817296166666667
In [36]: EBV = aHat3[posAi]
         mean(EBV)
Out[36]: 1.2936662935245997
```

```
In [37]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header=
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat3[posAi])[1,1]
         reg2 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # w
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3f
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.573
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 1.032
Out[37]: 0.5731395404790167
In [38]: TBV = a[posAi]
         mean(TBV)
Out[38]: 10.99899311111111
In [39]: EBV = aHat3[posAi]
         mean(EBV)
Out[39]: 2.466262805771759
In [40]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',heade
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat3[posAi])[1,1]
         reg3 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 ) #
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6.
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.874
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.985
Out[40]: 0.8743091919044534
In [41]: TBV = a[posAi]
         mean(TBV)
Out[41]: 9.544596871794871
In [42]: EBV = aHat3[posAi]
         mean(EBV)
Out[42]: 1.0230670983906398
```

```
In [43]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat3[posAi])[1,1]
         reg4 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with ep
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.679
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.816
Out[43]: 0.6788080155962495
In [44]: TBV = a[posAi]
         mean(TBV)
Out[44]: 8.537600375
In [45]: EBV = aHat3[posAi]
         mean(EBV)
Out[45]: -0.001899501667626823
In [46]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat3[posAi])[1,1]
         reg4 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with ep
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation = 0.769
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 0.969
Out[46]: 0.7689947124010899
In [47]: TBV = a[posAi]
         mean(TBV)
Out[47]: 9.044070624999998
In [48]: EBV = aHat3[posAi]
         mean(EBV)
```

Out[48]: 0.5483683709510622

```
In [49]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat3[posAi])[1,1]
         reg5 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with ep
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.759
         SSBRJC from Gibbs - G2.ID: regression of TBV on GEBV = 1.004
Out[49]: 0.7592064624988186
In [50]: TBV = a[posAi]
         mean(TBV)
Out[50]: 9.610254000000001
In [51]: EBV = aHat3[posAi]
         mean(EBV)
Out[51]: 1.087050487630855
In [52]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat3[posAi])[1,1]
         reg6 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with ep
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.770
         SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = 1.048
Out[52]: 0.7696959468368674
In [53]: TBV = a[posAi]
         mean(TBV)
Out[53]: 10.094816125000001
In [54]: EBV = aHat3[posAi]
         mean(EBV)
```

Out[54]: 1.5745966221371754

```
In [55]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat3[posAi])[1,1]
         reg7 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with ep
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation = 0.744
         SSBRJC from Gibbs - G4.ID: regression of TBV on GEBV = 1.039
Out[55]: 0.7437708495789795
In [56]: TBV = a[posAi]
         mean(TBV)
Out[56]: 10.564574125
In [57]: EBV = aHat3[posAi]
         mean(EBV)
Out[57]: 2.036946040928878
In [58]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat3[posAi])[1,1]
         reg8 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with ep
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.421
         SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = 1.024
Out[58]: 0.4205978950699461
In [59]: TBV = a[posAi]
         mean(TBV)
Out[59]: 11.052461749999999
In [60]: EBV = aHat3[posAi]
         mean(EBV)
```

Out[60]: 2.5169357411672535

```
In [61]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat3[posAi])[1,1]
         reg9 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6.
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.905
         SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = 0.976
Out[61]: 0.9054657406484298
In [62]: TBV = a[posAi]
         mean(TBV)
Out[62]: 9.537889999999999
In [63]: EBV = aHat3[posAi]
         mean(EBV)
Out[63]: 1.1175629284733881
In [64]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat3[posAi])[1,1]
         reg9 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6.
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation = 0.861
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 0.947
Out[64]: 0.8609832880429119
In [65]: TBV = a[posAi]
         mean(TBV)
Out[65]: 10.16994
In [66]: EBV = aHat3[posAi]
         mean(EBV)
Out[66]: 1.6241137786094937
```

```
In [67]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat3[posAi])[1,1]
         reg10 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10 )
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6.
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.900
         SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = 1.088
Out[67]: 0.8999993650532498
In [68]: TBV = a[posAi]
         mean(TBV)
Out[68]: 10.58867
In [69]: EBV = aHat3[posAi]
         mean(EBV)
Out[69]: 2.064114649039866
In [70]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat3[posAi])[1,1]
         reg11 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11 )
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6.
         JCAll = corl1
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.883
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 1.033
Out[70]: 0.8831881301484668
In [71]: TBV = a[posAi]
         mean(TBV)
Out[71]: 11.03682
In [72]: EBV = aHat3[posAi]
         mean(EBV)
Out[72]: 2.4971344615418034
```

```
In [73]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat3[posAi])[1,1]
         reg12 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12 )
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6.
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.521
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 1.042
Out[73]: 0.5206038669110643
In [74]: TBV = a[posAi]
         mean(TBV)
Out[74]: 11.5229
In [75]: EBV = aHat3[posAi]
         mean(EBV)
Out[75]: 3.0014707953744537
In [76]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat3[posAi])[1,1]
         reg13 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13 )
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6.
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.421
         SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = 1.024
Out[76]: 0.4205978950699461
In [77]: | writedlm("Correlation.G5.G.PBLUP.txt",cor13)
In [78]: | writedlm("Regression.G5.G.PBLUP.txt",reg13)
In [79]: TBV = a[posAi]
         mean(TBV)
Out[79]: 11.052461749999999
In [80]: | EBV = aHat3[posAi]
         mean(EBV)
Out[80]: 2.5169357411672535
```

```
In [81]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat3[posAi])[1,1]
         reg14 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", cor14
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = %
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.656
         SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = 0.806
Out[81]: 0.6563593376095247
In [82]: TBV = a[posAi]
         mean(TBV)
Out[82]: 8.511951923076923
In [83]: EBV = aHat3[posAi]
         mean(EBV)
Out[83]: -0.030603666543037464
In [84]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat3[posAi])[1,1]
         reg14 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", cor14
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = %
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.750
         SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = 0.962
Out[84]: 0.7497908573555194
In [85]: TBV = a[posAi]
         mean(TBV)
Out[85]: 9.01520217948718
In [86]: EBV = aHat3[posAi]
         mean(EBV)
Out[86]: 0.5207851553700767
```

```
In [87]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat3[posAi])[1,1]
         reg15 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor15
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = %
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.742
         SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = 1.003
Out[87]: 0.7417326601675827
In [88]: TBV = a[posAi]
         mean(TBV)
Out[88]: 9.585166410256411
In [89]: EBV = aHat3[posAi]
         mean(EBV)
Out[89]: 1.0619975604152394
In [90]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat3[posAi])[1,1]
         reg16 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor16
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = %
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.755
         SSBRJC from Gibbs - G3.noGenotype.ID: regression of TBV on GEBV = 1.050
Out[90]: 0.7554637786097405
In [91]: TBV = a[posAi]
         mean(TBV)
Out[91]: 10.07066217948718
In [92]: EBV = aHat3[posAi]
         mean(EBV)
Out[92]: 1.550941805742185
```

```
In [93]: | IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat3[posAi])[1,1]
         reg17 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor17
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = %
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.731
         SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = 1.044
Out[93]: 0.7310333464869863
In [94]: TBV = a[posAi]
         mean(TBV)
Out[94]: 10.540001666666667
In [95]: EBV = aHat3[posAi]
         mean(EBV)
Out[95]: 2.012214636968735
In [96]: numSSBayes
Out[96]: SSBR.NumSSBayes(54932,45932,9000,40000,39000,1000,0)
```