Applied Static Analysis

Interprocedural, Finite, Distributive, Subset Problems (IFDS problems)

Software Technology Group
Department of Computer Science
Technische Universität Darmstadt
Dr. Michael Eichberg

If you find any issues, please directly report them: GitHub

Some of the images on the following slides are inspired by slides created by Eric Bodden.

For background information consult the seminal paper on IFDS by Reps et al. ¹ If you want to implement it, it is also worth reading the paper by Naeem et al. ²

IFDS

- Solves a large class of interprocedural dataflow-analysis problems precisely in polynomial time by transforming them into a special kind of *graph-reachability problem*.
- Restrictions:
 - · the set of dataflow facts must be a finite set
 - the dataflow functions must distribute over the confluence operator (either union or intersection).
- Examples:
 - · reaching definitions
 - available expressions
 - live variables
 - taint flow analysis

Recall: distributive means: $f(a) \cup f(b) = f(a \cup b)$

Graph-reachability problem: reachability along interprocedurally realizable paths. A realizable path mimics the call-return structure of a program's execution, and only paths in which "returns" can be matched with corresponding "calls" are considered.

IFDS - core idea

- use the methods' CFG as a foundation to build one supergraph spanning the entire program; that graph has a unique entry point
- we say: a fact f holds at stmt s ⇔ node (s,f) is reachable

Identity: every fact is reachable if and only if it was reachable before.

Every fact is reachable if and only if it was previously reachable, and g is also reachable if f was reachable before.

$$out(s) = \left\{ egin{array}{ll} in(s) \cup Set(g) & ext{if } f \in in(s) \ in(s) & ext{otherwise} \end{array}
ight.$$

Every fact except g is reachable if and only if it was previously reachable; g is only reachable if f was reachable before.

$$out(s) = \left\{ egin{array}{ll} in(s) \cup Set(g) & ext{if } f \in in(s) \ in(s) ackslash Set(g) & ext{otherwise} \end{array}
ight.$$

Possible application: taint analysis.

$$out(s) = \left\{ egin{array}{ll} in(s) \cup Set(g) & ext{if } f \in in(s) \ in(s) ackslash Set(g) & ext{otherwise} \end{array}
ight.$$

Corresponding code:

$$g = f;$$

g is tainted(reachable) if and only if f was previously tainted.

IFDS - flow functions (killing values)

Even if g was reachable before, it now no longer.

$$out(s) = in(s) \backslash Set(g)$$

IFDS - flow functions (generating values)

0 is the tautological fact; it is always reachable; even if f was unreachable before, it now reachable.

$$out(s) = in(s) \cup Set(f)$$

Corresponding code:

IFDS - illegal flow functions

Not distributive (e.g., full constant propagation); cannot be represented by IFDS:

$$out(s) = \left\{ egin{array}{ll} in(s) \cup Set(h) & ext{if } Set(f,g) \subseteq in(s) \ in(s) & ext{otherwise} \end{array}
ight.$$

Exploded Supergraph

- ullet A program is represented using a directed graph $G^x=(N^x,E^x)$ called a supergraph.
- G consists of a collection of flow graphs G^1, G^2, \ldots (one for each procedure), one of which, G_{main} , represents the program's main procedure.
 - $\circ~$ Each flowgraph G has a unique start node s_P , and a unique exit node e_p .
 - The other nodes of the flowgraph represent the statements and predicates of the procedure in the usual way, except that
 - a procedure call is represented by two nodes, a call node and a return-site node. (This is usually not explicitly implemented.)
- In addition to the ordinary intraprocedural edges that connect the nodes of the individual flowgraphs, for each procedure call, represented by call-node c and return-site node r, G^x has three edges:
 - An intraprocedural call-to-return-site edge from c to n (Most often just the identity function.)
 - \circ An interprocedural call-to-start edge from c to the start node of the called procedure;
 - \circ An interprocedural exit-to-return-site edge from the exit node of the called procedure to r.

Exploded Supergraph - example

```
void main() {
    int x = password();
    int y = 0;

    y = foo(x);

    print(y);
}
int foo(int p) {
    p = 0;
    return p;
}
```

Exploded Supergraph - example cont'd

On-the-fly algorithm

- Pre-computing the entire exploded super-graph is typically too expensive and not required
- Idea: compute only the fragment actually reachable from (0,s0) (Compute this fragment on the fly.)
- Store procedure summaries once they have been computed.

Summary Edges

- ullet This means: in any context in which a holds before the call, it is true that b holds after the call.
- 0 always holds, can be represented implicitly

Exploded Supergraph - example cont'd

The red, dotted flow functions represent our summaries.

Exploded Supergraph - example cont'd

The red, dashed flow functions were never computed.

Limitations

The domain has to be (reasonably) finite.

(Counter) Example: linear constant propagation

r = v+1

... in any context in which v is 0 before the call, it is true that r is 1 after the call.

Though the set of int-typed values is finite, it is far too large to be practical!

References

- 1. Reps, T., Horwitz, S., & Sagiv, M. (1995). Precise interprocedural dataflow analysis via graph reachability. the 22nd ACM SIGPLAN-SIGACT symposium (pp. 49–61). New York, New York, USA: ACM. http://doi.org/10.1145/199448.199462€
- 2. Naeem, N. A., Lhoták, O., & Rodriguez, J. (2010). Practical Extensions to the IFDS Algorithm. In Aliasing in Object-Oriented Programming. Types, Analysis and Verification (Vol. 6011, pp. 124–144). Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-11970-5_8 ←