

Lecture 2: Kinship testing

Thore Egeland
Norwegian University of Life Sciences &
Department of Forensic Medicine, Norway

Motivating examples

Kinship testing

- Close (paternity) or distant (second cousins)
- Disaster victim identification (DVI)
- Pedigree reconstruction
- **–** ...

We distinguish between

- kinship testing, current topic, where a specific set of alternatives are compared, and
- relatedness inference aiming to find the most probable relationship without restrictions

Genetics terminology

- Locus
- Allele
- Genotype
- Genetic markers
 - SNPs
 - microsatellites

Locus, allele, genotype

- **LOCUS** = a specific place in the genome
- **ALLELE** = any of the alternative forms of a locus
- **GENOTYPE** = the set (usually: pair) of alleles carried at a given locus

Genetic markers

- Small parts of the genome which ...
 - have known position
 - vary in the population
 - are easy to genotype

- two alleles = minor allele frequency
- usual requirement: MAF > 1%
- very common in the genome (millions!)
- used in medical genetics +++
- STRs (short tandem repeats)
 - consecutive repeats of typically 2-5 bases
 - multiallelic: typically 5 50 alleles
 - allele names: # repeats
 - used in forensics


```
...CCGTTATATGGGC...
...CCGTTAGATGGGC...
...CCGTTATATGGGC...
...CCGTTATATGGGC...
```

```
...ACG TTAG TTAG TTAG AAC..
...ACG TTAG TTAG AAC..
...ACG TTAG TTAG TTAG TTAG AAC..
```

Pedigree likelihoods

Many applications involve probabilities of the following form

• Often referred to as a *pedigree likelihood*:

$$L$$
(pedigree | data) = P (data | pedigree, Θ)

Software for pedigree likelihoods

Familias

- GUI for forensic applications
- Elston-Stewart
- mutations, theta correction, ++

MERLIN

- command line program
- Lander-Green
- gold standard for cases with dense SNP markers (but not too large pedigrees)
- used by FamLink & pedsuite to handle linked markers
- not mutations, not theta correction

R/pedsuite

- Elston-Stewart
- mutations, theta correction, ++

Exclusion power

• The exclusion power (EP) of a kinship test is the probability that H_1 ('claim') can be excluded, given that H_2 is true

EP =
$$P$$
(data incompatible with $H_1 \mid H_2$)
= P (CH does not have a $\mid H_2$)
= $(1 - p_a)^2 = (1 - 0.1)^2 = 0.81$

Exclusion power with the pedsuite

- The general function is
 - exclusionPower(claimPed, truePed, ids)
- If H_2 (true) is 'unrelated', we can use the simpler
 - randomPersonEP(claimPed, id)

```
> afr = c(a = 0.1, b = 0.9)
> nuclearPed(fa = "AF", child = "CH") |>
    addMarker(AF = "a/a", afreq = afr) |>
    randomPersonEP("CH")
```

```
Potential mismatches: 1 (1)
Expected mismatches: 0.81
P(at least 1 mismatch): 0.81
```

The Likelihood Ratio (LR)

- H_1 : The individuals are related according to some pedigree \mathcal{P}_1 .
- H_2 : The individuals are related according to a different pedigree \mathcal{P}_2 .

$$LR = \frac{P(\text{data} \mid H_1, \Theta)}{P(\text{data} \mid H_2, \Theta)}.$$

- data: available genotypes
- Θ : fixed model parameters, common to both hypotheses
- Interpretation:
 - The LR measures how well H₁ explains the data compared to H₂
- Default assumptions:
 - ✓ Hardy Weinberg Equilibrium
 - ✓ No mutations
 - ✓ No artefacts (drop out, drop in, genotyping error)
 - ✓ Independence between markers

Example 1: Paternity case

$$LR_1 = \frac{P(AF = a/a, CH = a/a \mid H_1)}{P(AF = a/a, CH = a/a \mid H_2)} = \frac{p_a^2 \cdot p_a}{p_a^2 \cdot p_a^2} = \frac{1}{p_a}.$$

Mother genotyped

$$LR_2 = \frac{P(AF = a/b, MO = b/b, CH = a/b \mid H_1)}{P(AF = a/b, MO = b/b, CH = a/b \mid H_2)} = \frac{2p_a p_b \cdot p_b^2 \cdot \frac{1}{2}}{2p_a p_b \cdot p_b^2 \cdot p_a} = \frac{1}{2p_a}.$$

Observe

✓ LR < 1 if p_a > 0.5 in right panel! Why?

Combined LR

• Assume $p_a = 0.05$ for both markers:

$$- LR_1 = \frac{1}{p_a} = 20$$

$$-LR_2 = \frac{1}{2p_a} = 10$$

Assuming independence:

$$-LR = LR_1 \cdot LR_2 = 20 \cdot 10 = 200$$

• Interpretation:

The data is 200 times more likely if we assume H_1 to be true rather than H_2

Kinship testing in R with the pedsuite

- Create pedigrees representing the hypotheses.
- Attach the given genotype data to one of the pedigrees.
- Invoke the function kinshipLR() to calculate LRs.

Create pedigrees. H1

```
> library(pedsuite)
> H1 = nuclearPed(fa = "AF", mo = "MO", child = "CH", sex = 2)
> plot(H1, title = "H1")
```


Create pedigrees. H2

Attach genotype data to one of the pedigrees

```
> afr = c(a = 0.05, b = 0.95)
> H1 = addMarker(H1, AF = "a/a", CH = "a/a", afreq = afr)
> H1 = addMarker(H1, AF = "a/b", MO = "b/b", CH = "a/b",
> afreq = afr)
> plot(H1, marker = 1:2, hatched = typedMembers)
```


LR calculations

kinshipLR {forrel} R Documentation

Likelihood ratios for kinship testing

Description

This function computes likelihood ratios (LRs) for a list of pedigrees. One of the pedigrees (the last one, by default) is designated as 'reference', to be used in the denominator in all LR calculations. To ensure that all pedigrees use the same data set, one of the pedigrees may be chosen as 'source', from which data is transferred to all the other pedigrees.

Usage

```
kinshipLR(
    ...,
    ref = NULL,
    source = NULL,
    markers = NULL,
    linkageMap = NULL,
    keepMerlin = NULL,
    verbose = FALSE
)
```

Invoke the function kinshipLR() to calculate LRs

```
> lr = kinshipLR(H1, H2, source = 1)
H1:H2 H2:H2
200 1
```

> lr\$LRperMarker

```
H1:H2 H2:H2
<1> 20 1
<2> 10 1
```

Mutation?

Mutations. Models

- Mutation rates higher in males.
- Short mutations more likely: One step mutation more likely than two steps and so on.
- Mutation rates: http://www.cstl.nist.gov/strbase/mutation.htm

Dealing with mutations

Strategies for handling mutations

- Exclude inconsistent markers from the analysis. Not recommended
- Apply mutation modelling only to inconsistent markers
- Apply mutation modelling to all markers. Recommended

Read data and compute LR

Read data from Familias file, plot and find LR:

```
> filename = "http://familias.name/norbisRelatedness/paternityCase.fam"
> dat = pedFamilias:: readFam(filename)
> plotPedList(dat, hatched = typedMembers)
> lr1 = kinshipLR(dat)
> lr1
H1:H2 H2:H2
0 1
```

Inspect each marker

> lr1\$LRperMarker

```
H1:H2
 D3S1358
           2.466752
 TH01
           1.194605
 D21s11
           1.095934
 D18S51
           2.153261
→ PENTA_E
           0.000000
 D5S818
           1.406127
 D13S317
           4.041611
 D7S820
           1.433570
          8.312297
 D16S539
 CSF1P0
           2.024678
 PENTA D 11.989252
           5.565000
 VWA
 D8S1179
           9.650567
 TPOX
           1.787652
           2.956394
 FGA
          2.183522
 D12S391
 D1s1656
          3.333333
 D2S1338
           3.147060
 D22S1045 26.748152
 D2S441
           1.445948
 D19S433
           3.343766
```

Mutation models

> ?setMutmod

R Documentation

setMutmod {pedtools}

Set a mutation model

Description

This function offers a convenient way to set or modify mutation models to markers attached to a pedigree. It wraps pedmut::mutationModel(), which does the main work of creating the models, but relieves the user from having to loop through the markers in order to supply the correct alleles and frequencies for each marker.

Details

Currently, the following models are supported:

- equal: All mutations equally likely; probability 1 rate of no mutation
- proportional: Mutation probabilities are proportional to the target allele frequencies
- onestep: A simple model for microsatellite markers, in which mutations are only allowed to the nearest neighbours in the allelic ladder. For example, '10' may mutate to either '9' or '11' (unless '10' is the lowest allele, in which case '11' is the only option). Not applicable to loci with nonintegral microvariants.
- stepwise: A common model for microsatellite markers. Mutation rates depend on the step size in the allelic ladder, and also the allelic classes: integral repeats like '16', versus non-integer microvariants like '16.3'.
- custom: Allows any mutation matrix to be provided by the user, in the matrix parameter

Recompute with mutation model

A closer look at the impact of mutation

```
lrMut
        1rNoMut
                        ratio
                 2.4649 1.0007
D3S1358
         2.4668
TH01
         1.1946 1.1944 1.0002
         1.0959 1.0958 1.0001
D21S11
D18S51
         2.1533 2.1519 1.0006
PENTA_E
         0.0000
                 0.0011 0.0000
D5S818
         1.4061
                 1.4055 1.0004
D13S317
         4.0416
                 4.0378 1.0009
D7S820
         1.4336
                 1.4330 1.0004
D16S539 8.3123
                 8.3028 1.0011
CSF1P0
         2.0247
                 2.0233 1.0007
PENTA_D 11.9893 11.9759 1.0011
VWA
         5.5650 5.5593 1.0010
         9.6506 9.6398 1.0011
D8S1179
TPOX
         1.7877 1.7864 1.0007
FGA
         2.9564 2.9541 1.0008
D12S391
         2.1835 2.1822 1.0006
D1S1656
         3.3333
                 3.3307 1.0008
D2S1338
         3.1471
                 3.1446 1.0008
D22S1045 26.7482 26.7126 1.0013
D2S441
         1.4459 1.4453 1.0004
D19S433
         3.3438 3.3408 1.0009
```

A Relationship Riddle. Exercises, next ...

Fig. 6.4 A relationship riddle: Four hypothesised relationships between S1 and S2.

- H_1 : Full brothers
- H_2 : Half-brothers
- H_3 : Uncle and nephew
- *H*₄: Unrelated