

Trabajo Final

82.05 - Análisis Predictivo

Ian Dalton - 62345

Caso de negocio

Introducción y caso de negocio

Predecir si un hongo es comestible o no.

Un hongo puede ser tanto:

- → Venenoso
 - Muerte
 - Alucinogenos
 - ◆ Dolor de panza
- → Comestible

Modelo de Predicción

Objetivo: Predecir si un hongo es **comestible** a partir de las características brindadas por el usuario

Unidad observacional: Características del hongo

Variable Target: "class"

Variables predictoras:

'cap-shape', 'cap-surface', 'cap-color', 'bruises', 'odor', 'gill-attachment', 'gill-spacing', 'gill-size', 'gill-color', 'stalk-shape', 'stalk-root',

'stalk-surface-above-ring', 'stalk-surface-below-ring', 'stalk-color-above-ring',

'stalk-color-below-ring', 'veil-type', 'veil-color', 'ring-number', 'ring-type', 'spore-print-color', 'population', 'habitat'

Modelo: Clasificación.

Dataset

Información del Dataset

Contiene información de las **características** de hongos, que pueden ser **dimensiones** o **descripciones**.

Cuenta con 8.124 registros y 22 variables.

Limpieza de la base

Todas las columnas son categoricas

Frecuencia de actualización: No hay

Análisis exploratorio

Tipos de hongos

Factores geograficos

Colores del tallo

Detalles del tallo

Colores

Colores

cap.color

Clustering

Se realizó con el objetivo de comparar y evaluar diferencias entre las diferentes características que puedan ayudar a identificar si el hongo es comestible o no.

Medimos el valor del **estadístico de Hopkins** para evaluar si es conveniente la clusterización, obteniendo un valor cercano al **81,4**%.

Clustering - Agrupaciones

Número óptimo de clusters: 13

Visualización de Clusters

Análisis de clusters

Cluster 2:

- Comestibles
- Se encuentran agrupados
- Tallo liso

Cluster 8:

- Venenosos
- Cabeza lisa
- No se encuentra en grupos

MCA

Evaluación

Partición de datos

Modelo Baseline

¿Qué modelo use como baseline?

Features:

- Colores
- > Forma de la cabeza

Modelo utilizado: LogisticRegression

Rendimiento alcanzado: 0.673

Selección de modelos

Modelos evaluados

- → Arboles
 - ♦ XGBoost
 - Decision Tree Classifier
 - Random Forest
- → Support Vector Classifier
- → KNN
- → Logistic Regression

Tratamiento de variables categóricas

- → One hot encoding
 - Se eliminó la primer columna
- → Flags de diferencia en colores

Feature importance

Modelo Final

Modelo Final

XGBoost

Score: 1.0

Hiper Parámetros

- → Booster Type: 'gbtree'
- → Learning Rate: 0.3
- → n_estimators: 100
- → max_depth: 6
- → min_child_weight: 1

Limitaciones y posibles mejoras

Limitaciones

- → Inexperiencia en modelos predictivos
- → Dataset limitado

Posibles mejoras

→ Aumentar el tamaño del dataset para encontrar edge cases

Conclusiones

Conclusiones

Objetivo: Predecir si un hongo es comestible o no.

→ EDA

- Es muy fácil confundir hongos ya que comparten muchas características.
- Los comestibles no suelen tener olores.
- La forma que tienen los hongos de producir esporas impacta bastante en si es comestible o no.

Conclusiones

- → Modelo predictivo
 - Herramientas utilizadas
 - OneHotEncoder
 - Flags en variables importantes
 - Modelo final:
 - El **olor** es una variable relevante.

- → Metricas evaluadas
 - Score
 - Matriz de confusión

Gracias!