

Artificial Intelligence

Prítí Srínívas Sajja Professor

Department of Computer Science Sardar Patel University

Visit **pritisajja.info** for details

Introduction

Intelligence

Testing & Applications

Production
System & Search

Knowledge Based Systems

Knowledge Acquisition

Knowledge Representation

KBS Development Model

Acknowledgement

- Name: Dr. Priti Srinivas Sajja
- Communication:
 - Email: priti@pritisajja.info
 - Mobile: +91 9824926020
 - URL:http://pritisajja.info

- Thesis title: Knowledge-Based Systems for Socio-
- Economic Rural Development (2000)
- Subject area of specialization : Artificial Intelligence
- Publications: 216 in Books, Book Chapters, Journals and in Proceedings of International and National Conferences

Introduction

Intelligence

Testing & Applications

Production
System & Search

Knowledge Based Systems

Knowledge Acquisition

Knowledge Representation

KBS Development Model

Acknowledgement

MSC IT II Semester

COURSE Code: PS02CINT33

Course Title: Artificial Intelligence

Unit 1: Artificial Intelligence (AI) and Knowledge Based Systems (KBS)

- Natural and Artificial Intelligence
- Testing Intelligence with Turing Test, and Chinese Room Experiment, Application Areas of Artificial Intelligence, Data pyramid
- Production systems and AI Based Searches like Hill Climbing and Heuristic Search
- KBS Structure, Components of KBS, Categories of KBS,
 Knowledge-Based Shell, Advantages, Limitations and Applications of KBS
- Knowledge Acquisition, Knowledge Update
- Factual and Procedural Knowledge Representations
- Knowledge Based Systems Development Model

Intelligence

Testing & Applications

Production
System & Search

Knowledge Based Systems

Knowledge Acquisition

Knowledge Representation

KBS Development Model

Acknowledgement

Natural Intelligence

- Responds to situations flexibly.
- Makes sense of ambiguous or erroneous messages.
- Assigns relative importance to elements of a situation.
- Finds similarities even though the situations might be different.
- Draws distinctions between situations even though there may be many similarities between them.

Intelligence

Testing & Applications

Production
System & Search

Knowledge Based Systems

Knowledge Acquisition

Knowledge Representation

KBS Development Model

Acknowledgement

"Artificial Intelligence(AI) is the study of how to make **computers do things** at which, at the moment, **people are better**"

Elaine Rich, Artificial Intelligence,
 McGraw Hill Publications, 1986

Introduction

Intelligence

Testing & Applications

Production
System & Search

Knowledge Based Systems

Knowledge Acquisition

Knowledge Representation

KBS Development Model

Acknowledgement

Artificial Intelligence

Introduction

Intelligence

Testing & Applications

Production
System & Search

Knowledge Based Systems

Knowledge Acquisition

Knowledge Representation

KBS Development Model

Acknowledgement

Artificial Intelligence

Acceptable solution in acceptable time

Extreme solution, either best or worst taking ∞ (infinite) time

time

Nature of AI solutions

Introduction

Intelligence

Turing Test

Production System & Search

Knowledge **Based Systems**

Knowledge **Acquisition**

Knowledge Representation

KBS Development Model

Acknowledgement

The Boss could not judge who was replying, thus the machine is as intelligent as the secretary.

Turing test Will fail to test for intelligence in two circumstances;

- 1. A machine may well be intelligent without being able to chat exactly like a human; and;
- 2. The test fails to capture the general properties of intelligence, such as the ability to solve difficult problems or come up with original insights. If a machine can **solve a** difficult problem that no person could solve, it would, in principle, fail the test.

The Turing test

Introduction

Intelligence

Chinese Room Test

Production
System & Search

Knowledge Based Systems

Knowledge Acquisition

Knowledge Representation

KBS Development Model

Acknowledgement

Chinese Room Test

- The Chinese room argument holds that a digital computer executing a program **Cannot** be shown to **have a "mind"**, "understanding" or "consciousness", regardless of how intelligently or human-like the program may make the computer behave. (Even if the prog passes the Turing test!)
- The argument was first presented by philosopher John Searle in his paper, "Minds, Brains, and Programs", published in Behavioral and Brain Sciences in 1980.

Introduction

Intelligence

Chinese Room

Test

Production
System & Search

Knowledge Based Systems

Knowledge Acquisition

Knowledge Representation

KBS Development Model

Acknowledgement

If you see this shape,

"什麼"

followed by this shape,

"帶來"

followed by this shape,

"快樂"

then produce this shape,

"為天"

followed by this shape,

"下式".

https://mind.ilstu.edu/

Introduction

Intelligence

Applications

Production
System & Search

Knowledge
Based Systems

Knowledge Acquisition

Knowledge Representation

KBS Development Model

Acknowledgement

Rich & Knight (1991) classified and described the different areas that Artificial Intelligence techniques have been applied to as follows:

- Natural language understanding, generation, and translation
- Commonsense reasoning
- Robot control

Expert Tasks

- Engineering design, fault finding, manufacturing planning, etc.
- Scientific analysis
- Medical diagnosis
- Financial analysis

Formal Tasks

- Games chess, backgammon, checkers, etc.
- Mathematics- geometry, logic, integral calculus, theorem proving, etc.

Introduction

Intelligence

Testing & Applications

Data Pyramid

Knowledge Based Systems

Knowledge Acquisition

Knowledge Representation

KBS Development Model

Acknowledgement

Data Pyramid

Introduction

Intelligence

Testing & Applications

Production System

Knowledge Based Systems

Knowledge Acquisition

Knowledge Representation

KBS Development Model

Acknowledgement

Water Jug Problem in Artificial Intelligence

- Consider two jugs: one having the capacity to hold **3 gallons** of water and the other has the capacity to hold **4 gallons** of water.
- There is **no other measuring equipment** available and the jugs also do not have any kind of marking on them.
- The task is to fill the 4-gallon jug with 2
 gallons of water by using only these two jugs and no other material.
- Initially, both our jugs are empty.

Intelligence

Testing & Applications

Production

System

Knowledge Based Systems

Knowledge Acquisition

Knowledge

Representation

KBS Development Model

Acknowledgement

Water Jug problem in Artificial Intelligence

Introduction

Intelligence

Testing & Applications

Production System

Knowledge Based Systems

Knowledge Acquisition

Knowledge Representation

KBS Development Model

Acknowledgement

Water Jug problem in Artificial Intelligence

```
(X, Y) if X < 4 \rightarrow (4, Y)
                                                  Fill the 4-gallon jug
      (X, Y) if Y < 3 \rightarrow (X, 3)
                                                  Fill the 3-gallon jug
     (X, Y) if X = d \& d > 0 \rightarrow (X-d, Y)
                                                  Pour some water out of the 4-gallon jug
     (X, Y) if Y = d \& d > 0 \rightarrow (X, Y - d)
                                                  Pour some water out of 3-gallon jug
     (X, Y) if X > 0 \rightarrow (0, Y)
                                                  Empty the 4-gallon jug on the ground
     (X, Y) if Y > 0 \rightarrow (X, 0)
                                                  Empty the 3-gallon jug on the ground
      (X, Y) if X + Y \le 4 and
                                                  Pour water from the 3-gallon jug into the
                                                 4-gallon jug until the gallon jug is full.
      Y > 0 \rightarrow 4, (Y - (4 - X))
                                                  Pour water from the 4-gallon jug into the
     (X, Y) if X + Y \ge 3 and
      X > 0 \rightarrow (X - (3 - Y), 3))
                                                  3-gallon jug until the 3-gallon jug is full.
      (X, Y) if X + Y \le 4 and
                                                  Pour all the water from the 3-gallon jug
      Y > 0 \rightarrow (X + Y, 0)
                                                 into the 4-gallon jug
10.
     (X, Y) if X + Y \le 3 and
                                                  Pour all the water from the 4-gallon jug
      X > 0 \rightarrow (0, X + Y)
                                                 into the 3-gallon jug
                                                  Pour the 2-gallons water from 3-gallon
      (0,2) \rightarrow (2,0)
11.
                                                 jug into the 4;gallon jug
12.
     (2, Y) \rightarrow (0, Y)
                                                  Empty the 2-gallons in the 4-gallon jug on
                                                  the ground.
```

Fig. 2.3. Production rules (operators) for the water jug problem.

Intelligence

Testing & Applications

Production

System

Knowledge Based Systems

Knowledge Acquisition

Knowledge Representation

KBS Development Model

Acknowledgement

A **production system** (or production rule system) is a computer program which consists of a

- Problem definition
- Set of rules
- Starting and ending situations
- Working memory

Intelligence

Testing & Applications

Search

Knowledge Based Systems

Knowledge Acquisition

Knowledge Representation

KBS Development Model

Acknowledgement

Breadth First Search

Depth First Search

Introduction

Intelligence

Testing & Applications

Hill Climbing

Knowledge Based Systems

Knowledge Acquisition

Knowledge Representation

KBS Development Model

Acknowledgement

Hill Climbing Search

- Hill climbing is an Al based local search algorithm.
 Also known as weak search, instead of blind search.
- Control continuously moves in the direction of increasing elevation/value to find the peak of the mountain or best solution to the problem. It is heuristic based search.
- It terminates when it reaches a peak value where no neighbor has a higher value.
- It is also called greedy local search as it only looks to its good immediate neighbor state and not beyond that.

Introduction

Intelligence

Testing & Applications

Hill Climbing

Knowledge Based Systems

Knowledge Acquisition

Knowledge Representation

KBS Development Model

Acknowledgement

Hill Climbing Search

https://www.cs.iusb.edu/

Introduction

Intelligence

Testing & Applications

Hill Climbing

Knowledge Based Systems

Knowledge Acquisition

Knowledge Representation

KBS Development Model

Acknowledgement

Algorithm for Simple Hill Climbing:

Step 1: Evaluate the initial state, if it is goal state then return success and Stop.

Step 2: Loop Until a solution is found or there is no new operator left to apply.

Step 3: Select and apply an operator to the current state.

Step 4: Check new state:

If it is goal state, then return success and quit.

Else if it is **better** than the current state then assign new state as a current state.

Else if **not better than** the current state, then return to step2.

Step 5: Exit.

Introduction

Intelligence

Testing & Applications

Production
System & Search

Knowledge Based Systems

Knowledge Acquisition

Knowledge Representation

KBS Development Model

Acknowledgement

References

- IlustrationsOf.com, biocomp.unibo.it
- www.gadgetcage.com,
- Prersentermedia.com
- Presentationmagazine.com
- Clikr.com, Engadget.com
- scenicreflections.com
- lih.univ-lehavre.fr, business2press.com
- globalswarminghoneybees.blogspot.com
- https://machinelearningmastery.com
- https://www.analyticsvidhya.com
- <u>Knowledge-based systems</u>, Akerkar RA and Priti Srinivas Sajja, Jones & Bartlett Publishers, Sudbury, MA, USA (2009)
- Akerkar R.A. and Sajja, P.S. "Intelligent techniques for data science", Springer International Publishing, Switzerland (Oct'16)
- Sajja, P.S. "Illustrated computational intelligence: Examples and applications", Springer International Publishing, Singapore (Dec'20) https://www.springer.com/gp/book/9789811595882

