MSSV: **1712919** Họ và tên: **Lê Văn Vũ**

Bài tập	Trang trong bài làm
5, trang 53	1
6, trang 53	1
7, trang 53	2
8, trang 53	2
10, trang 54	3

5. Sử dụng quy nạp toán học, chứng minh rằng: $\forall n \in N$

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1} (*)$$

(Nếu n = 0 thì vế trái của đẳng thức được định nghĩa sẽ là 0)

Giải:

Với n = 0; ta có (*): VT = VP = 0

Bước cơ sở: Cho n₀=1. Rõ ràng (*) đúng vì: VT= $\frac{1}{1.(1+1)}$ = VP = $\frac{1}{(1+1)}$ = $\frac{1}{2}$

Bước quy nạp: Giả thiết quy nạp rằng (*) đúng với giá trị $k \in N$ tùy ý, $k \ge n_0$. Nghĩa là:

$$\sum_{i=1}^{k} \frac{1}{i(i+1)} = \frac{k}{k+1}$$
 (1)

Ta cần chứng minh rằng: $\sum\nolimits_{i=1}^{k+1} \frac{1}{i(i+1)} = \frac{k+1}{k+2}$

Ta có:
$$\sum_{i=1}^{k+1} \frac{1}{i(i+1)} = \frac{1}{(k+1)(k+1+1)} + \sum_{i=1}^{k} \frac{1}{i(i+1)}$$
$$= \frac{1}{(k+1)(k+1+1)} + \frac{k}{k+1} \text{ (theo (1))}$$
$$= \frac{1+k(k+2)}{(k+1)(k+2)} = \frac{(k+1)^2}{(k+1)(k+2)} = \frac{k+1}{k+2}$$

Vậy ta có thể khẳng định rằng: $\sum_{i=1}^n \frac{1}{i(i+1)} = \frac{n}{n+1} \, \forall n \in N$

6. Sử dụng quy nạp toán học, chứng minh rằng: $\forall n \in \mathbb{Z}^+$

$$\sum_{i=1}^{n} \frac{2}{3^{i}} = 1 - \frac{1}{3^{n}} \ (*)$$

Giải:

Bước cơ sở: Cho n₀=1. Rõ ràng (*) đúng vì: VT= $\frac{2}{3^1}$ = VP = $1 - \frac{1}{3^1} = \frac{2}{3}$

Bước quy nạp: Giả thiết quy nạp rằng (*) đúng với giá trị $k \in \mathbb{Z}^+$ tùy ý, $k \ge n_0$. Nghĩa là:

$$\sum_{i=1}^{k} \frac{2}{3^{i}} = 1 - \frac{1}{3^{k}}$$
 (1)

Ta cần chứng minh rằng: $\sum_{i=1}^{k+1} \frac{2}{3^i} = 1 - \frac{1}{3^{k+1}}$

Đi từ vế trái, dựa vào giả thiết (1), ta có:

$$VT = \sum_{i=1}^{k+1} \frac{2}{3^i} = \sum_{i=1}^{k} \frac{2}{3^i} + \frac{2}{3^{k+1}} = 1 - \frac{1}{3^k} + \frac{2}{3^{k+1}} = 1 - \frac{3-2}{3^{k+1}} = 1 - \frac{1}{3^{k+1}} = VP$$

Vậy ta có thể khẳng định rằng: $\sum_{i=1}^n \frac{2}{3^i} = 1 - \frac{1}{3^n} \ \forall n \in \mathbf{Z}^+$

7. Sử dụng quy nạp toán học, chứng minh rằng: $\forall n \in \mathbb{Z}^+$

$$\sum_{i=1}^{n} i. 2^{i} = (n-1).2^{n+1} + 2 (*)$$

Giải:

Bước cơ sở: Cho n₀=1. Rõ ràng (*) đúng vì: VT= 1.2^1 = VP = (1-1). 2^{1+1} + 2 = 2 Bước quy nạp: Giả thiết quy nạp rằng (*) đúng với giá trị k ∈ \mathbb{Z}^+ tùy ý, k ≥ n₀. Nghĩa là:

$$\sum_{i=1}^{k} i. 2^{i} = (k-1). 2^{k+1} + 2 (1)$$

Ta cần chứng minh (*) đúng với giá trị k+1 (k \ge n₀): $\sum_{i=1}^{k+1}$ i. $2^i = (k+1-1). 2^{k+1+1} + 2$ = k. $2^{k+2} + 2$

Đi từ vế trái, dựa vào giả thiết (1), ta có:

$$\sum_{i=1}^{k+1} i \cdot 2^{i} = \sum_{i=1}^{k} i \cdot 2^{i} + (k+1) \cdot 2^{k+1} = (k-1) \cdot 2^{k+1} + 2 + (k+1) \cdot 2^{k+1}$$

$$= k \cdot 2 \cdot 2^{k+1} + 2 = k \cdot 2^{k+2} + 2$$

Vậy ta có thể khẳng định rằng: $\sum_{i=1}^n i. 2^i = (n-1). 2^{n+1} + 2 (\forall n \in Z^+)$

8. Sử dụng quy nạp toán học, chứng minh rằng $2^n > n^3$ khi n là số nguyên lớn hơn 9 (hay $n \ge 10, n \in \mathbb{Z}^+$)

Giải:

Biểu thức: $2^n > n^3$ (*)

Bước cơ sở: Cho $n_0=10$. Rỗ ràng (*) đúng vì: VT= $2^{10} > VP = 10^3$ (1024 > 1000)

Bước quy nạp: Giả thiết quy nạp rằng (*) đúng với giá trị $k \in \mathbb{Z}^+$ tùy ý, $k \ge n_0$. Nghĩa là:

$$2^k > k^3 \leftrightarrow 2.2^k = 2^{k+1} > 2.k^3$$
 (1)

Ta cần chứng minh: $2^{k+1} > (k+1)^3$

Đi từ vế trái, dựa vào giả thiết (1), ta có: $2^{k+1} = 2.2^k > 2.k^3 = k^3 = k^3$

Với
$$k \ge n_0$$
, $k \in Z^+$, ta có: $\frac{3k^2 + 3k + 1}{k^3} = \frac{3}{k} + \frac{3}{k^2} + \frac{1}{k^3} < 3.\frac{3}{k} < \frac{9}{10} < 1$ $\Rightarrow k^3 > 3k^2 + 3k + 1 = (k+1)^3 \cdot k^3$ $\Leftrightarrow 2. k^3 > (k+1)^3$ (2)

Từ (1) và (2), ta suy ra: $2^{k+1} > (k+1)^3$

Vậy ta có thể khẳng định rằng: $2^n > n^3$ khi hay $n \ge 10$, $n \in \mathbb{Z}^+$

10. Chứng minh rằng, *Phát biểu S:* nếu n là một số nguyên dương thì luôn tồn tại số tự nhiên i và số nguyên dương lẻ j sao cho: $n = 2^i \times j$.

Giải:

Biêu thức: $n = 2^i x j$ (*)

- Nếu n là một số nguyên dương lẻ, thì luôn tồn tại cặp số tự nhiên (i, j) = (0, j) $(j = 2k+1 \ v \acute{\sigma} i \ k \in N)$
- để thỏa (*)

 Nếu là một số nguyên dương chẵn, thì $\forall i, j \in N^*$, (*) luôn đúng.

Vậy ta có thể khẳng định phát biểu S trên là đúng.

Thật vậy, vì 2^i chẵn nên 2^i x j chẵn \rightarrow n chẵn.