Лабораторная работа 1.3

Изучение рассеяния медленных электронов на атомах (эффект Рамзауэра)

Батарин Егор Владиславович Студент 3 курса РТ

(Московский физико-технический институт) (Dated: 20 октября 2021 г.)

Исследуется энергетическая зависимость вероятности рассеяния электронов атомами ксенона, определяются энергии электронов, при которых наблюдается "просветление" ксенона, и оценивается размер его внешней электронной оболочки.

Оборудование: Тиратрон ТГ3-01/1.3Б, осциллограф, стабилизированный БНС.

I. Теоретическая часть.

Вводится понятие эффективного сечения реакции $\sigma = \frac{N}{nv}$, характеризующая вероятность перехода системы из двух сталкивающихся частич в определенное состояние, в результате их рассеяния. Знаменатель равен плотности потока всех рассеиваемых частиц, числитель - число таких переходов. К. Рамзауэр исследовал зависимость поперечных сечений упрогого рассеяния электронов (с энергией до 10 ЭВ) на атомах аргона. В результате этих исследований было обнаружено явление, получившее название эффекта Рамзауэра.

С точки зрения квантовой теории атом по отношению к электронной волне ведет себя как преломляющая среда с относительным показателем преломления

$$n = \frac{\lambda}{\lambda'} = \sqrt{1 - \frac{U}{E}},$$

где U, E — соответственно потенциальная и полная энергии электрона внутри атома.

Будем считать, что электрон рассеивается на одномерной прямоугольной потенциальной яме конечной глубины. Такая модель является хорошим приближением для атомов тяжелых инертных газов, отличающихся наиболее компактной структурой и резкой внешней границей. Решение задачи о прохождении частицы с энергией E над потенциальной ямой шириной l и глубиной U_0 не составит труда найти из уравнения Шредингера:

$$\psi'' + k^2 \psi = 0, \ \text{где} \ k^2 = \begin{cases} 2mE/\hbar^2 & x < 0, x > l \\ (2mE + U_0)/\hbar^2 & 0 < x < l \end{cases}.$$

Коэффициент прохождения равен отношению квадратов амплитуд прошедшей и падающей волн и определяется выражением:

$$\frac{1}{D} = 1 + \frac{U_0^2}{4E(E+U_0)}\sin^2(k_2l).$$

Минимум последнего выражения отвечает квантовому аналогу просветления оптики, так как при выпол-

нении условия

$$\sqrt{\frac{2m(E+U_0)}{\hbar^2}}l = \pi n, \ n \in \mathbb{N}, \tag{*}$$

коэффициент прохождения частицы над ямой становится равным единице, то есть достигает своего максимального значения. Отметим, что условие (\star) легко получить, рассматривая интерференцию электронов волн де Бройля в атоме:

 Условие первого интерференционного максимума:

$$2l = \frac{h}{\sqrt{2m(E_1 + U_0)}}. (1)$$

 Условие первого интерференционного минимума:

$$2l = \frac{3}{2} \frac{h}{\sqrt{2m(E_1 + U_0)}}. (2)$$

Решая совместно уравнения (1, 2) можно получить:

$$l = \frac{h\sqrt{5}}{\sqrt{32m(E_2 - E_1)}}. (3)$$

Понятно, что энергии E_1 и E_2 соответствуют энергиям электронов, прошедших разность потенциалов V_1 и V_2 , то есть $E_1=eV_1$ и $E_2=eV_2$.

По измеренным величинам E_1 и E_2 , используя формулы (1,2), можно рассчитать эффективную глубину потенциальной ямы атома:

$$U_0 = \frac{4}{5}E_2 - \frac{9}{5}E_1 \tag{4}$$

Согласно квантовой механике зависимость вероятности рассеяния электрона от его энергии можно определить из соотношения:

$$w(U) = -\frac{1}{C} \ln \frac{I(U)}{I_0},\tag{5}$$

где I_0 – ток катода, а C – некторая постоянная.

II. Методика измерений

В эксперименте будем исследовать ВАХ двумя методами: статическими и динамическим. В статическом методе будем снимать показания напряжения с вольтметра и амперметра при различных значениях напряжения анода, в динамическом методе сразу используем картину на осциллографе.

III. Основные результаты и их обсуждение.

Имеем 2 таблицы основным результатов.

По данным стоятся вольт-амперные характеристики для синего $U_{\rm H}=2.63~{\rm B}$ и красного $U_{\rm H}=2.89$ и зависимость вероятности рассеивания от напряжения.

IV. Заключение.

Были доказаны доказаны квантовые свойства света на эффекте Рамзауэра, простроены ВАХ и зависимость вероятности рассеивания от напряжения. Выводы хорошо согласуются с теорией.

ВАХ и ω при $U_{\scriptscriptstyle \rm H}=2.63$						
V_i , мВ	V, B	I, MKA	ω	$\delta\omega$		
0	0.32	0	1	0		
0	0.6	0	1	0		
0	0.9	0	1	0		
0	1.2	0	1	0		
0	1.5	0	1	0		
0	1.8	0	1	0		
0	2.2	0	1	0		
0	2.29	0	1	0		
0.53	2.42	5.3	0.992639	0.029633		
1.4	2.51	14	0.765688	0.019382		
4.4	2.6	44	0.498134	0.009944		
10.1	2.71	101	0.303991	0.004888		
17.4	2.79	174	0.176903	0.002395		
19.1	2.82	191	0.155124	0.002033		
26.5	2.91	265	0.078615	0.00091		
33.5	3.02	335	0.023848	0.00025		
37.1	3.11	371	0	0		
39	3.2	390	-0.01167	-0.00011		
29.8	3.3	298	0.051194	0.000564		
33.9	3.33	339	0.021075	0.00022		
33.6	3.61	336	0.023152	0.000242		
32.9	3.92	329	0.028071	0.000296		
32.3	4.22	323	0.032371	0.000345		
30.6	4.52	306	0.045004	0.000491		
29.7	4.8	297	0.051979	0.000574		
29.2	5.11	292	0.055946	0.000622		
29.1	5.41	291	0.056747	0.000632		
27.8	5.73	278	0.067425	0.000765		
26.6	6.01	266	0.077735	0.000898		
25.4	6.31	254	0.088521	0.001042		
23.9	6.65	239	0.102743	0.001239		
22.9	6.9	229	0.112729	0.001381		
21.4	7.21	214	0.128557	0.001616		
19.9	7.51	199	0.145537	0.001879		
18.6	7.84	186	0.161321	0.002134		
17.43	8.13	174.3	0.176501	0.002388		
16.4	8.44	164	0.190733	0.002635		
15.7	8.72	157		0.002817		
16.5	9.01	165	0.189312			
16.8	9.16	168	0.185102	0.002536		
15.9	9.25	159	0.197967	0.002763		
15.7	9.32	157	0.200924	0.002817		
15.6	9.46	156	0.202417	0.002844		
15.4	9.59	154	0.205432	0.002898		
15.3	9.69	153	0.206954	0.002926		
15 14.8	9.88	150 148	0.211581 0.214717	0.003011		
			0.214717	0.003099		
14.7 14.7	10.11	147	0.216301	0.003099		
		147	0.216301			
14.7	10.34	147	0.216301 0.214717	0.003099		
14.8	10.41	148		0.003069		
14.9	10.54	149	0.213144	0.00304		
15 15.15	10.65	150 151.5	0.211581	$\begin{array}{c} 0.003011 \\ 0.002968 \end{array}$		
15.15	10.76	151.5	0.209256			
	10.85	138	0.208486 0.231063	0.002954		
13.8			0.231063	0.003378		
14.1	11.41	141		0.003282		
14.58 15.1	11.7 12.1	145.8 151	0.218216	0.003135		
19.1	12.1	191	0.210029	0.002983		

ВАХ и ω при $U_{\scriptscriptstyle \mathrm{H}}=2.89$					
V_i , мВ	V, B	I, мк A	ω	$\delta\omega$	
0	0.3	0	1	0	
0	0.6	0	1	0	
0	0.9	0	1	0	
0	1.2	0	1	0	
0	1.5	0	1	0	
0	1.8	0	1	0	
0	2.12	0	1	0	
0.1	2.21	1	0.999494	0.029633	
0.7	2.33	7	0.703312	0.019382	
2.5	2.44	25	0.509558	0.009944	
5.8	2.51	58	0.381466	0.004888	
12.7	2.62	127	0.262174	0.002395	
21.6	2.73	216	0.181339	0.002033	
29.2	2.81	292	0.135452	0.00091	
38.8	2.91	388	0.092187	0.00025	
48.3	3.04	483	0.058852	0 00011	
53.6	3.23	536	0.043004	-0.00011	
55.6	3.51	556	0.037428	0.000564	
51.4	3.81	514	0.049383	0.00022	
64.9 65.7	4.02	649 657	0.013887 0.012023	0.000242 0.000296	
66.6	4.1	666	0.012023 0.009952	0.000296	
67.3	4.21	673	0.009932	0.000343	
68.4	4.45	684	0.005893	0.000491 0.000574	
69.1	4.43	691	0.003893	0.000574 0.000622	
69.5	4.71	695	0.003464	0.000632	
69.9	4.71	699	0.003404	0.000765	
70.2	4.93	702	0.002391	0.000703	
70.5	5.01	705	0.001333	0.001042	
71.1	5.11	711	0.00123	0.001042	
70.4	5.22	704	0.001506	0.001233	
70.4	5.33	701	0.00156	0.001616	
70.2	5.4	702	0.001939	0.001879	
70.8	5.53	708	0.000644	0.002134	
69.5	5.75	695	0.003464	0.002388	
69.4	5.84	694	0.003683	0.002635	
69.3	5.92	693	0.003903	0.002817	
45.3	6.13	453	0.068612	0.00261	
63.2	6.52	632	0.017927	0.002536	
61.1	6.81	611	0.023071	0.002763	
58.3	7.11	583	0.030211	0.002817	
55.4	7.44	554	0.037977	0.002844	
52.8	7.72	528	0.045293	0.002898	
49.9	8.03	499	0.053891	0.002926	
47.4	8.32	474	0.061715	0.003011	
45.3	8.61	453	0.068612	0.003069	
43.1	8.91	431	0.076189	0.003099	
43.1	9.22	431	0.076189	0.003099	
40	9.54	400	0.087551	0.003099	
39.4	9.81	394	0.089851	0.003069	
30.9	10.05	309	0.126839	0.00304	
39.1	10.2	391	0.091014	0.003011	
39.4	10.31	394	0.089851	0.002968	
39.6	10.43	396	0.08908	0.002954	
39.9	10.51	399	0.087932	0.003378	
40.9	10.61	409	0.084164	0.003282	
40.9	10.71	409	0.084164	0.003135	
41.2	10.83	412	0.083052	0.002983	
41.4	10.96	414	0.082315	0	
39.4	11.07	394	0.089851	0	
41.4	11.54	414	0.082315	0	