

Session 04: Statistische Tests

Dominic Schmitz & Janina Esser

Verein für Diversität in der Linguistik

Statistische Tests

- Einfachster Teil der inferentiellen Statistik:
 wir nehmen unsere Daten und leiten etwa aus ihnen ab
- Geschieht meist anhand des "Null-Hypothesis Significance Testing"
- Resultat ist oftmals die berühmte p-value (probability value)

Statistische Tests

- 1. Shapiro-Wilk Test
- 2. t-Test
- 3. Chi-Quadrat-Test
- 4. Wilcoxon-Mann-Whitney Test
- 5. ANOVA
- 6. ANCOVA
- 7. Korrelation

etc.

1. Shapiro-Wilk Test

- mit einem Shapiro-Wilk Test kann man feststellen, ob eine Stichprobe normalverteilt ist
- diese Info ist wichtig, da verschiedene andere Tests nur dann funktionieren, wenn Daten (annähernd) normalverteilt sind
- als Beispiel nutzen wir das "Vowel Shortening in German" Datenset aus dem SfL Package

1. Shapiro-Wilk Test

• Sind die Vokaldauern von /a/, /e/ und /i/ normalverteilt?

1. Shapiro-Wilk Test

- Sind die Vokaldauern von /a/, /e/ und /i/ normalverteilt?
- Der Shapiro-Wilk Test kommt zu folgenden Ergebnissen:

	p-Wert
/a/	p < 0.001
/e/	p < 0.001
/i/	p < 0.001

• Da die p-Werte kleiner 0.05 sind, sind die Daten nicht normalverteilt

Statistische Tests

- 1. Shapiro-Wilk Test ✓
- 2. t-Test
- 3. Chi-Quadrat-Test
- 4. Wilcoxon-Mann-Whitney Test
- 5. ANOVA
- 6. ANCOVA
- 7. Korrelation

etc.

2. t-Test

- Es gibt **verschiedene Arten** des t-Tests
- Wichtig dabei:
 Stammen meine Daten aus dem gleichen Sample?
- Ja z.B. falls zwei Experimente mit gleichen TN durchgeführt werden
 - → dependent samples t-test
- Nein z.B. falls zwei Experimente mit verschiedenen TN durchgeführt werden
 - → independent samples t-test

- ein Versuch wird *n*-mal durchgeführt
- ein Parameter wird geändert
- der Versuch wird mit den gleichen TN und dem geänderten Parameter erneut durchgeführt
- dann werden die Messergebnisse verglichen

unsere gemessene Variable sei in

Durchführung A: x

Durchführung B: y

- x und y wurden n-mal gemessen $x_1, ..., x_n$ und $y_1, ..., y_n$
- der t-Test geht davon aus, dass x und y (annähernd) **normalverteilt** sind (wichtig!)
- Frage: Sind die Werte von x und y verschieden oder sind sie nur zufällig verschieden?

• Schritt 1: Durchschnitt von z berechnen

$$\bar{y} - \bar{x} = \bar{z}$$

Schritt 2: Standardabweichung von z berechnen

$$s \coloneqq + \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (z_i - \bar{z})^2}$$

Schritt 3: t-Wert berechnen

$$t = \frac{\overline{Z}}{S} * \sqrt{n}$$

- mithilfe des t-Wertes und der Freiheitsgrade kann nun in einer Tabelle die t-Verteilung nachgeschlagen werden
- die Freiheitsgrade sind df = n 1

f	90%	95%	97.5%	99%	99.5%	99.9%
1	3.078	6.314	12.706	31.821	63.657	318.309
2	1.886	2.920	4.303	6.965	9.925	22.327
3	1.638	2.353	3.182	4.541	5.841	10.215
4	1.533	2.132	2.776	3.747	4.604	7.173
5	1.476	2.015	2.571	3.365	4.032	5.893
6	1.440	1.943	2.447	3.143	3.707	5.208
7	1.415	1.895	2.365	2.998	3.499	4.785
8	1.397	1.860	2.306	2.896	3.355	4.501
9	1.383	1.833	2.262	2.821	3.250	4.297
10	1.372	1.812	2.228	2.764	3.169	4.144
11	1.363	1.796	2.201	2.718	3.106	4.025
12	1.356	1.782	2.179	2.681	3.055	3.930
13	1.350	1.771	2.160	2.650	3.012	3.852
14	1.345	1.761	2.145	2.624	2.977	3.787
15	1.341	1.753	2.131	2.602	2.947	3.733
16	1.337	1.746	2.120	2.583	2.921	3.686
17	1.333	1.740	2.110	2.567	2.898	3.646
18	1.330	1.734	2.101	2.552	2.878	3.610
19	1.328	1.729	2.093	2.539	2.861	3.579
20	1.325	1.725	2.086	2.528	2.845	3.552
21	1.323	1.721	2.080	2.518	2.831	3.527
22	1.321	1.717	2.074	2.508	2.819	3.505
∞	1.282	1.645	1.960	2.326	2.576	3.090

- t-Tests können einseitig oder zweiseitig sein
- es sind μ_1 und μ_2 die unbekannten wahren Erwartungswerte der beiden Stichproben
- bei zweiseitigen t-Tests ist die Nullhypothese von der Form

$$H_0 = \{\mu_1 \neq \mu_2\}$$

bei einseitigen t-Tests ist die Nullhypothese von der Form

$$H_0 = \{\mu_1 > \mu_2\}$$

bei zweiseitigen t-Tests ist die Nullhypothese von der Form

$$H_0 = \{\mu_1 \neq \mu_2\}$$

- bei **zweiseitigen** t-Tests wissen wir nicht, ob x oder y im Durchschnitt größer ist; der Test ist **ungerichtet**
- bei einseitigen t-Tests ist die Nullhypothese von der Form

$$H_0 = \{\mu_1 > \mu_2\} \text{ oder } H_0 = \{\mu_1 < \mu_2\}$$

bei einseitigen t-Tests wissen wir bereits, dass x größer/kleiner y ist;
 der Test ist gerichtet

- das **Signifikanzniveau** sei $\alpha = 0.05$
- mit t-Wert, Freiheitsgraden und Signifikanzniveau können wir nun berechnen
- für **zweiseitige** t-Tests: $t_{n-1,1-\frac{\alpha}{2}}$
- für einseitige t-Tests: $t_{n-1,1-\alpha}$ bzw. $-t_{n-1,1-\alpha}$

Beispiel: Blutdruck

-1

Blutdruck	1	2	3	4	5	6	7	8	9	10
Placebo x	168	184	172	173	150	155	163	164	151	146
Medikament y	176	145	150	163	136	168	164	139	145	112
Differenz z	8	-39	-22	-10	-14	13	1	-25	-6	-34

•
$$\bar{z} = -12.8$$

•
$$s = 17.36$$

•
$$t = -2.332$$

• für **einseitige** t-Tests:

$$t_{n-1,1-\alpha}$$
 bzw. $-t_{n-1,1-\alpha}$

die Nullhypothese wird abgelehnt, wenn

$$t < -t_{n-1,1-\alpha}$$

für unser Blutdruckbeispiel:

$$-t_{n-1,1-\alpha} = -t_{9,0.95}$$

$-t_{9,0.95}$

f	90%	95%	97.5%	99%	99.5%	99.9%
1	3.078	6.314	12.706	31.821	63.657	318.309
2	1.886	2.920	4.303	6.965	9.925	22.327
3	1.638	2.353	3.182	4.541	5.841	10.215
4	1.533	2.132	2.776	3.747	4.604	7.173
5	1.476	2.015	2.571	3.365	4.032	5.893
6	1.440	1.943	2.447	3.143	3.707	5.208
7	1.415	1.895	2.365	2.998	3.499	4.785
8	1.397	1.860	2.306	2.896	3.355	4.501
9	1.383	1.833	2.262	2.821	3.250	4.297
10	1.372	1.812	2.228	2.764	3.169	4.144
11	1.363	1.796	2.201	2.718	3.106	4.025
12	1.356	1.782	2.179	2.681	3.055	3.930
13	1.350	1.771	2.160	2.650	3.012	3.852
14	1.345	1.761	2.145	2.624	2.977	3.787
15	1.341	1.753	2.131	2.602	2.947	3.733
16	1.337	1.746	2.120	2.583	2.921	3.686
17	1.333	1.740	2.110	2.567	2.898	3.646
18	1.330	1.734	2.101	2.552	2.878	3.610
19	1.328	1.729	2.093	2.539	2.861	3.579
20	1.325	1.725	2.086	2.528	2.845	3.552
21	1.323	1.721	2.080	2.518	2.831	3.527
22	1.321	1.717	2.074	2.508	2.819	3.505
∞	1.282	1.645	1.960	2.326	2.576	3.090

f | 000/ | 0E0/ | 07 E0/ | 000/ | 00 E0/ | 00 00/

also, stimmt es nun, dass

$$t < -t_{n-1,1-\alpha}$$

ist?

• ja, denn

$$-2.332 < -1.833$$

• damit ist die Wirksamkeit des Medikaments zum Signifikanzniveau lpha=0.05 nachgewiesen

- ein Versuch wird n-mal durchgeführt
- ein Parameter wird geändert
- der Versuch wird mit den anderen TN und dem geänderten Parameter erneut durchgeführt
- da wir verschiedene Probandengruppen haben, kann $n_1 \neq n_2$ zutreffen
- dann werden die Messergebnisse verglichen

unsere gemessene Variable sei in

Durchführung A: *x*

Durchführung B: y

- x und y wurden n-mal gemessen $x_1, ..., x_{n1}$ und $y_1, ..., y_{n2}$
- der t-Test geht davon aus, dass x und y (annähernd) normalverteilt sind (wichtig!)
- Frage: Sind die Werte von x und y verschieden oder sind sie nur zufällig verschieden?

- Schritt 1: Durchschnitt von x und y berechnen
- Schritt 2: Standardabweichung von x und y berechnen
- Schritt 3: Standardabweichung von x + y berechnen

$$s_p = \sqrt{\frac{(n_1 - 1) * s_x^2 + (n_2 - 1) * s_y^2}{n_1 + n_2 - 2}}$$

Schritt 4: t-Wert berechnen

$$t = \frac{\overline{y} - \overline{x}}{s_p} * \sqrt{\frac{n_1 * n_2}{n_1 + n_2}}$$

- das **Signifikanzniveau** sei $\alpha = 0.05$
- mit t-Wert, Freiheitsgraden und Signifikanzniveau können wir nun berechnen
- für **zweiseitige** t-Tests: $t_{n_1+n_2-2,1-\frac{\alpha}{2}}$
- für einseitige t-Tests: $t_{n_1+n_2-2,1-\alpha}$ bzw. $-t_{n_1+n_2-2,1-\alpha}$

Beispiel: f0 bei Männern

f0	1	2	3	4	5	6	7	8	9	10
Gruppe 1 x										
Gruppe 2 y	61	60	62	58	75	63	52	66	59	

•
$$n_1 = 10, n_2 = 9$$

•
$$\bar{x} = 69.00, \bar{y} = 61.78$$

•
$$s_x = 7.972, s_y = 6.280$$

$$s_p = 7.226$$

$$t = -2.175$$

• also, stimmt es nun, dass

$$t < -t_{17,0.95}$$

ist?

• ja, denn

$$-2.175 < -1.740$$

• damit ist die f0 der zweiten Gruppe zum Signifikanzniveau $\alpha=0.05$ nachgewiesen tiefer

Statistische Tests

- 1. Shapiro-Wilk Test ✓
- 2. t-Test ✓
- 3. Chi-Quadrat-Test
- 4. Wilcoxon-Mann-Whitney Test
- 5. ANOVA
- 6. ANCOVA
- 7. Korrelation

etc.

Chi-Quadrat-Test

- mit Chi-Quadrat-Tests k\u00f6nnen wir bestimmen, ob zwei kategorische Variablen zusammenh\u00e4ngen
- als Beispiel nutzen wir das "Age and Looks" Datenset aus dem SfL Package

	blue	brown	green
blonde	3	7	3
brunette	5	15	2
red	1	3	1

Chi-Quadrat-Test

- nun können wir mit einem Chi-Quadrat-Test testen, ob Haar- und Augenfarbe in unserem Sample zusammengehören
- Ergebnis: p = 0.84 > 0.05, d.h. nein, kein Zusammmenhang

	blue	brown	green
blonde	3	7	3
brunette	5	15	2
red	1	3	1

Statistische Tests

- 1. Shapiro-Wilk Test ✓
- 2. t-Test ✓
- 3. Chi-Quadrat-Test ✓
- 4. Wilcoxon-Mann-Whitney Test
- 5. ANOVA
- 6. ANCOVA
- 7. Korrelation

etc.

Wilcoxon-Mann-Whitney Test

- reminder: t-Tests setzen eine (annähernde) Normalverteilung der Daten voraus
- der Wilcoxon-Mann-Whitney Test kann auch mit nicht-normalverteilten Daten umgehen
- als Beispiel nutzen wir das das "Vowel Shortening in German" Datenset aus dem SfL Package

Wilcoxon-Mann-Whitney Test

 die Vokaldauern von /a/, /e/ und /i/ sind nicht normalverteilt (siehe Shapiro-Wilk Test)

Wilcoxon-Mann-Whitney Test

Ergebnis:

ja, die Vokale haben unterschiedliche Dauern

	/a/ vs. /e/	/a/ vs. /i/	/e/ vs. /i/
t-Test	<0.001	<0.001	0.00568
WMW-Test	< 0.001	< 0.001	0.00241

Statistische Tests

- 1. Shapiro-Wilk Test ✓
- 2. t-Test ✓
- 3. Chi-Quadrat-Test ✓
- 4. Wilcoxon-Mann-Whitney Test ✓
- 5. ANOVA
- 6. ANCOVA
- 7. Korrelation

etc.

ANOVA

- die analysis of variance, d.h. die Varianzanalyse, kann dann genutzt werden, wenn man die Durchschnitte mehrerer Gruppen in einem Rutsch miteinander vergleichen möchte
- als Beispiel nutzen wir das "Vowel Shortening in German" Datenset aus dem SfL Package
- unsere Gruppen: Silbenstruktur (offen, single, double)

ANOVA

Hypothese: Die Vokaldauern unterscheidet sich je nach Silbenstruktur.

ANOVA

 führen wir nun eine ANOVA durch, müssen wir den Inhalt unserer Hypothese spezifizieren:

die ANOVA gibt dann mit einem p-Wert an, ob eine signifikante
 Abhängigkeit besteht

wir wissen allerdings noch nicht, ob die Unterschiede zwischen allen
 Silbenstrukturen signifikant verschieden sind

ANOVA

- hierzu müssen wir einen Post-Hoc-Test nutzen
- wir nutzen den Tukey-Test, einen der meist genutzten Post-Hoc-Test
- dieser liefert uns folgende Ergebnisse:

	p-Wert
single – open	<0.001
double – open	<0.001
double – single	0.005

• Ergebnis: alle Unterschiede sind signifikant

Statistische Tests

- 1. Shapiro-Wilk Test ✓
- 2. t-Test ✓
- 3. Chi-Quadrat-Test ✓
- 4. Wilcoxon-Mann-Whitney Test ✓
- 5. ANOVA ✓
- 6. ANCOVA
- 7. Korrelation

etc.

14/03/2022

ANCOVA

- die analysis of covariance, d.h. die Kovarianzanalyse, kann dann genutzt werden, wenn man den Durchschnittswert einer Variable in potentieller Abhängigkeit von einer kategorischen Variable und ihrer Levels herausfinden möchte
- als Beispiel nutzen wir das "Age and Looks" Datenset aus dem SfL Package

ANCOVA

• Hypothese: Männer sind größer als Frauen.

ANCOVA

 führen wir nun eine ANCOVA durch, müssen wir den Inhalt unserer Hypothese spezifizieren:

die ANCOVA gibt dann mit einem p-Wert an, ob eine signifikante
 Abhängigkeit besteht

$$p = 0.957$$

- in diesem Fall: die Hypothese wird nicht bestätigt
- bei p < 0.05 muss ein Post-Hoc-Test durchgeführt werden

Statistische Tests

- 1. Shapiro-Wilk Test ✓
- 2. t-Test ✓
- 3. Chi-Quadrat-Test ✓
- 4. Wilcoxon-Mann-Whitney Test ✓
- 5. ANOVA ✓
- 6. ANCOVA ✓
- Korrelation etc.

- die Korrelation beschreibt eine Beziehung zwischen zwei oder mehr Variablen
- Korrelation bedeutet nicht Kausalität:
 - zwei Variablen können korreliert sein
 - ohne dabei in kausaler Verbindung zu stehen

Number of people who drowned by falling into a pool correlates with

Films Nicolas Cage appeared in

tylervigen.com

Per capita cheese consumption

correlates with

Number of people who died by becoming tangled in their bedsheets

tylervigen.com

People who drowned after falling out of a fishing boat

correlates with

Marriage rate in Kentucky

tylervigen.com

- sind die zu vergleichenden Daten normalverteilt und metrisch, nutzen wir Pearson's r
- sind die zu vergleichenden Daten nicht normalverteilt und/oder nicht numerisch, nutzen wir Spearman's rho
- als Beispiel nutzen wir das "Duration of word-final /s/ in English"
 Datenset aus dem SfL Package

Wann sprechen wir von Korrelation?

correla	ation co	efficient	labeling	kind of correlation
0.7	< r ≤	1	very high	positive correlation
0.5	< r ≤	0.7	high	
0.2	< r ≤	0.5	intermediate	
0	< r ≤	0.2	low	
$r \approx 0$		no statistical correlation		
0	> r ≥	-0.2	low	negative correlation
-0.2	> r ≥	-0.5	intermediate	
-0.5	> r ≥	-0.7	high	
-0.7	> r ≥	-1	very high	

• Frage: sind /s/-Dauer und base-Dauer korreliert?

• **Antwort:** ja, da r = 0.47

Statistische Tests

- 1. Shapiro-Wilk Test ✓
- 2. t-Test ✓
- 3. Chi-Quadrat-Test ✓
- 4. Wilcoxon-Mann-Whitney Test ✓
- 5. ANOVA ✓
- 6. ANCOVA ✓
- Korrelation ✓
 etc.