PROJETO 1: Reconhecimento de Faces

Disciplina: TI0097 - Introdução ao Reconhecimento de Padrões

Gabriel Fruet gabrielfruet@alu.ufc.br

4 de Agosto de 2025

Resumo

Este relatório apresenta os resultados obtidos no primeiro projeto da disciplina de Introdução ao Reconhecimento de Padrões. O objetivo do projeto é avaliar o desempenho de diferentes classificadores de padrões em um problema de reconhecimento de faces, utilizando a base de dados Yale A. As análises incluem a comparação de classificadores com e sem o uso da Análise de Componentes Principais (PCA) para pré-processamento e redução de dimensionalidade.

1 Introdução

O reconhecimento de faces é uma área de estudo proeminente em visão computacional e reconhecimento de padrões, com aplicações que vão desde sistemas de segurança e controle de acesso até a organização de fotos pessoais. Este projeto visa aplicar e comparar técnicas de classificação estudadas em sala de aula para resolver um problema prático de identificação de indivíduos a partir de imagens de suas faces.

2 Classificação Sem Aplicação de PCA

Nesta seção, os classificadores foram treinados e testados utilizando os vetores de atributos extraídos diretamente das imagens redimensionadas, sem a aplicação da Análise de Componentes Principais (PCA). Foi utilizada uma proporção de 80% dos dados para treinamento e 50 repetições independentes foram executadas para garantir a robustez estatística dos resultados.

Tabela 1: Resultados de desempenho dos classificadores sem PCA.

Classificador	Média	Mínimo	Máximo	Mediana	Desvio Padrão	Tempo total (s)
Quadrático	5.6970	0.0000	15.1515	6.0606	3.6685	252.2501
Variante 1	80.7879	66.6667	93.9394	80.3030	5.5417	127.3319
Variante 2	3.3939	0.0000	15.1515	3.0303	3.9575	131.7177
Variante 3	3.0303	0.0000	9.0909	3.0303	2.9691	136.7711
Variante 4	17.3333	3.0303	27.2727	18.1818	6.9112	215.7832
DMC	77.3333	63.6364	87.8788	78.7879	5.8522	0.1118
1NN	79.7576	63.6364	90.9091	81.8182	6.1937	0.6537
Máxima Correlação	77.2727	54.5455	87.8788	78.7879	6.3057	0.0171

Análise dos Resultados (Questões 1, 2 e 3)

Questão 1: O que se pode concluir sobre os desempenhos dos classificadores avaliados?

Os classificadores baseados em distância euclidiana como DMC, 1-NN e MaxCorr tiveram uma performance muito boa e um *runtime* extremamento baixo quando comparado com os baseados em distância de mahalanobis. Para compararmos, o runtime do MaxCorr foi mais de 10 mil vezes mais rapido que o Quadrático.

Questão 2: Qual deles teve o melhor desempenho em relação à taxa de acerto? E em relação ao tempo?

Em relação a taxa de acerto, o que teve melhores resultados foi a Variante 1 (Thikonov) do Quadrático. Um classificador que se aproximou bastante foi o 1-NN, que teve uma taxa de acerto levemente pior e um desvio padrão levemente pior também. Vale ressaltar que apesar de pequena diferença, o 1-NN foi 200 vezes mais rápido que a Variante 1.

Sobre tempo de execução, a variante de MaxCorr foi a mais rápida, sendo 2 vezes mais rápida que a segunda mais rápida e mais de 10 mil vezes mais rápida que a mais lenta. Apesar da velocidade, sua performance foi muito boa quando comparado com os classificadores baseados em distância de Mahalanobis.

Questão 3: Houve problemas de inversão das matrizes de covariância? Se sim, para quais classificadores? Este problema foi contornado por alguma das variantes avaliadas? Se sim, descreva sucintamente o mecanismo usado para resolvê-lo.

Sim, houveram problemas na inversão da matriz de covariância especialmente para o Quadrático, por isso o runtime dele foi tão mais alto que as outras variantes. Já que, a heurística que usei para inversão foi a seguinte: Tenta inverter, se falhar, use a pseudo-inversa. Apesar dos outros não terem problemas de erro na inversão da matriz de covariância, todos tiveram um posto extremamente baixo, exceto a Variante 1, que aplicou regularização de Thikonov, que diminui a colinearidade das features..

3 Classificação com PCA (Sem Redução de Dimensionalidade)

Aqui, o PCA foi aplicado aos dados com o objetivo de descorrelacionar os atributos, mas mantendo a dimensionalidade original. O processo de treino e teste foi repetido nas mesmas condições da seção anterior.

Tabela 2:	Resultados	com aplicaçã	io de PCA	sem reduc	:ão de c	${ m dimensionalidade}$	e(a=900)

Classificador	Média	Mínimo	Máximo	Mediana	Desvio Padrão	Tempo (s)
Quadrático	6.4848	0.0000	18.1818	6.0606	4.2429	230.1835
Variante 1	81.0909	63.6364	93.9394	81.8182	6.2268	123.0351
Variante 2	6.9091	0.0000	15.1515	6.0606	3.7380	234.7739
Variante 3	6.8485	0.0000	15.1515	6.0606	3.9654	233.9609
Variante 4	6.1818	0.0000	12.1212	6.0606	3.0279	610.1199
DMC	78.7273	63.6364	93.9394	78.7879	6.7349	0.0362
1NN	77.9394	66.6667	96.9697	78.7879	6.2703	0.4945
Máxima Correlação	78.5455	63.6364	93.9394	78.7879	6.3806	0.0161

Análise dos Resultados (Questão 4)

Questão 4: (i) O que se pode concluir sobre os desempenhos dos classificadores avaliados? Houve alguma mudança (melhora ou piora) nos desempenhos em relação à tabela anterior? (ii) Note que, com a aplicação de PCA, a matriz de covariância dos dados transformados é diagonal. Isso faz com que o classificador quadrático e a Variante 4 sejam teoricamente equivalentes. Estes classificadores tiveram de fato desempenho equivalente?

- (i) Houve uma melhora significativa para as variantes 2 e 3 do quadrático, com uma média de acerto sendo quase o dobro comparando sem aplicar o PCA. A variante 4 teve uma grande piora, tendo uma performance 4x menor que na sua contraparte sem aplicar o PCA.
- (ii) Não tiveram resultados parecidos, contrariando a teória. A variante 4 ainda teve uma taxa de acerto 3x maior que sua versão sem PCA. Fui analisar o porquê disso e, apesar da aplicação do PCA, por não reduzirmos o número de componentes, algumas componentes ficam "zeradas", trazendo um grande ruído pra matriz de covariância. Já que o número de componentes principais vai ser o mínimo entre o número de amostras e o número de features.

4 Classificação com PCA (Com Redução de Dimensionalidade)

Nesta etapa, o PCA foi utilizado para reduzir a dimensionalidade do espaço de atributos, preservando 98% da variância total dos dados originais.

Análise dos Resultados (Questões 5 e 6)

Questão 5: Qual foi a dimensão de redução q escolhida, de modo a preservar 98% da informação do conjunto de dados original?

Ta	bela 3:	Result	ados	com a	plicaç	ão de	εР	$^{\prime}\mathrm{CA}$	com	reduc	ção d	le ($\operatorname{dimensi}$	onal	idac	de (q = set	ı val	lor)	
----	---------	--------	------	-------	--------	-------	----	------------------------	-----	-------	-------	------	--------------------------	------	------	------	---------	-------	------	--

Classificador	Média	Mínimo	Máximo	Mediana	Desvio Padrão	Tempo (s)
Quadrático	2.8485	0.0000	12.1212	3.0303	2.8690	0.3910
Variante 1	81.5758	63.6364	90.9091	81.8182	5.4153	0.3654
Variante 2	95.9394	84.8485	100.0000	96.9697	3.3531	0.3794
Variante 3	92.2424	81.8182	100.0000	93.9394	4.7008	0.3812
Variante 4	73.8182	63.6364	87.8788	74.2424	6.0836	0.3152
DMC	78.3636	60.6061	90.9091	78.7879	7.5456	0.0093
1NN	80.0606	66.6667	93.9394	78.7879	6.7513	0.0134
Máxima Correlação	76.5455	63.6364	90.9091	75.7576	7.0368	0.0082

Questão 6: O que se pode concluir sobre os desempenhos dos classificadores com a redução de dimensionalidade via PCA? Houve alguma mudança (melhora ou piora) em relação à tabela anterior? Quais classificadores pioraram/melhoraram? Todos os classificadores melhoraram, exceto o quadrático. Vale destacar que o runtime diminuiu em aproximadamente em 50 vezes para os classificadores baseados em QDA.

Figura 1: Scree plot para variância explicada 98%

Os classificadores que mais melhoraram foram as variantes 1 (Thikonov), 2 (Pooled), 3 (Friedman), 4 (Diagonal).

Os classificadores baseados em distância euclidiana não variaram muito em nenhumas das três técnicas aplicadas até agora(sem PCA, com PCA e com PCA com redução de dimensionalidade)

5 Análise com Transformação Box-Cox e PCA

Análise dos Resultados (Questão 7)

Tabela 4: Resultados com aplicação de PCA com redução de dimensionalidade (q = seu valor).

Classificador	Média	Mínimo	Máximo	Mediana	Desvio Padrão	Tempo (s)
Quadrático	2.3636	0.0000	12.1212	3.0303	2.8614	0.4016
Variante 1	89.0909	75.7576	96.9697	87.8788	4.1989	0.3749
Variante 2	97.6364	90.9091	100.0000	96.9697	2.5201	0.3840
Variante 3	96.6667	87.8788	100.0000	96.9697	3.2213	0.3911
Variante 4	69.0303	54.5455	84.8485	69.6970	7.6970	0.3338
DMC	86.1818	75.7576	96.9697	86.3636	5.7547	0.0096
1NN	88.1818	69.6970	96.9697	87.8788	6.1881	0.0140
Máxima Correlação	84.4848	69.6970	96.9697	84.8485	5.9270	0.0082

Questão 7: Houve alguma mudança (melhora ou piora) nos desempenhos dos classificadores em relação aos resultados da Atividade 6? Quais classificadores pioraram/melhoraram de desempenho com a aplicação da transformação BOX-COX juntamente com PCA?

Todos os classificadores melhoraram, em especial a variante 2, que tomou o pódio. O único que perfomou pior foi o quadrático, que teve sua melhor performance usando PCA sem redução de dimensionalidade.

6 Controle de Acesso

Análise dos Resultados (Questão 8)

Questão 8: Calcule os seguintes índices de desempenho para os classificadores implementados: acurácia, taxa de falsos negativos e taxa de falsos positivos, sensibilidade e precisão. Os valores devem ser médios com inclusão de medida de dispersão (e.g., desvio padrão) para 50 rodadas.

7 Conclusão