Modeling and Implementation of Wave Digital Filters

Sound Analysis, Synthesis and Processing Module 2 - Sound Synthesis and Spatial Processing

Oliviero Massi, Alberto Bernardini, Davide Albertini

M.Sci. on Music and Acoustic Engineering
Politecnico di Milano

May 9, 2025

Outline

Introduction

Definition of Wave Variables

Modeling the Elements

Modeling the Topology

Connection Tree Structures

Example of Application

Outline

Introduction

Definition of Wave Variables

Modeling the Elements

Modeling the Topology

Connection Tree Structures

Example of Application

Circuit Theory

- In its long history and evolution, Circuit Theory has had a formidable impact in nearly all fields of engineering
- Various lumped linear and nonlinear systems can be represented using equivalent electrical networks
- The model of an electrical circuit is made of
 - Equations describing the network topology called:
 - Kirchhoff Voltage Laws (KVL)
 - Kirchhoff Current Laws (KCL)
 - Constitutive equations of circuit elements such as:
 - One-port elements (e.g., sources, resistors, capacitors, inductors, diodes)
 - *Multi-port elements* (e.g., opamps, transformers, gyrators, transistors, vacuum tubes)

Circuit Simulation in the Kirchhoff Domain

- Kirchhoff descriptions of circuits are characterized by multivariate systems of Ordinary Differential Equations (ODEs)
- In order to numerically simulate a circuit, suitable discretization methods are needed for approximating time derivatives in the discrete-time domain
- Computability problem: when implicit discretization methods are used, the resulting system of discrete-time equations is implicit
 - o Constitutive equations and topological information are merged

Circuit Simulation in the Kirchhoff Domain

- Widely Adopted Solution: using multivariate iterative solvers, such as Newton-Raphson solvers, whose dimensionality roughly equals the number of nodes (or loops) in the circuit
- Such a solution is *adopted in all the mainstream simulation methods* formulated in the Kirchhoff domain, such as:
 - Modified Nodal Analysis (MNA) method (SPICE-like software)
 - Sparse-Tableau method
 - State-Space methods
 - o Port-Hamiltonian methods

Wave Digital Filters and Circuit Emulation

- Wave Digital Filter (WDF) theory developed by A. Fettweis during the 70s was originally conceived as a methodology for modeling digital filters by discretizing reference analog circuits
- WDF theory poses the basis for completely new methods for emulating linear and nonlinear circuits in the Wave Digital (WD) domain

Figure: Photo of Alfred Fettweis.

General Considerations on WDFs

- A WDF is derived discretizing a reference analog circuit
- Circuit elements and circuit topology are modeled separately
- One-port circuit elements are modeled as input-output blocks characterized by scattering relations
- Topological interconnections of elements are modeled using multi-input-multi-output junctions characterized by scattering matrices
- Elements and junctions are modeled in a port-wise fashion
- Each port of an element or junction is characterized by a pair of port variables called wave variables
- One introduced free parameter per port

Outline

Introduction

Definition of Wave Variables

Modeling the Elements

Modeling the Topology

Connection Tree Structures

Example of Application

Definition of Voltage Waves

- Kirchhoff variables at port n (of a generic port element or junction) are
 - \circ the port voltage v_n
 - \circ the port current i_n
- Wave variables (voltage waves) are defined as [1]

$$a_n = v_n + Z_n i_n \qquad b_n = v_n - Z_n i_n \tag{1}$$

- \circ a_n is the incident wave
- \circ b_n is the reflected wave
- $\circ Z_n \neq 0$ is a scalar free parameter called *reference port resistance*
- Inverse mapping

$$v_n = \frac{a_n + b_n}{2} \qquad i_n = \frac{a_n - b_n}{2Z_n} \tag{2}$$

Definition of Wave Variables in Vector Form

Kirchhoff-to-Wave linear transformation

$$\begin{bmatrix} a_n \\ b_n \end{bmatrix} = \begin{bmatrix} 1 & Z_n \\ 1 & -Z_n \end{bmatrix} \begin{bmatrix} v_n \\ i_n \end{bmatrix} \tag{3}$$

Wave-to-Kirchhoff linear transformation

$$\begin{bmatrix} v_n \\ i_n \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1/Z_n & -1/Z_n \end{bmatrix} \begin{bmatrix} a_n \\ b_n \end{bmatrix} \tag{4}$$

Outline

Introduction

Definition of Wave Variables

Modeling the Elements

Modeling the Topology

Connection Tree Structures

Example of Application

Constitutive Equations of One-Port Elements

• In the continuous-time domain (t is the time variable)

$$h\left(v(t), i(t)\right) = 0\tag{5}$$

- $\circ v(t)$ is the port voltage and i(t) is the port current
- \circ h is a (linear or nonlinear) dynamic or instantaneous function
- In the discrete-time domain

$$\widetilde{h}\left(v[k], i[k]\right) = 0 \tag{6}$$

- $v[k]=v(kT_{
 m s})$ and $v[k]=v(kT_{
 m s})$, where k is the sampling index and $F_{
 m s}=1/T_{
 m s}$ is the sampling frequency
- \circ if the element is memoryless we have that h(x,y)=h(x,y) otherwise $\widetilde{h}(x,y)\neq h(x,y)$

Linear One-Port Elements

 The majority of linear one-port elements in the discrete-time domain is characterized by a constitutive equation in the form

$$v[k] = R_{\mathsf{e}}[k]i[k] + V_{\mathsf{e}}[k] \tag{7}$$

- $\circ R_{e}[k]$ is a resistance parameter
- $\circ V_{e}[k]$ is a voltage bias parameter

Linear Resistor

• In the continuous-time domain the constitutive equation of a linear resistor with resistance R is

$$v(t) = Ri(t) \tag{8}$$

In the discrete-time domain we get

$$v[k] = Ri[k] \tag{9}$$

- Eq. (9) is a special case of eq. (7) in which:
 - $\circ R_{\mathbf{e}}[k] = R$
 - $V_{e}[k] = 0$

Linear Resistive Voltage Generator

• In the continuous-time domain the constitutive equation of a linear resistive voltage source with source signal $V_{\rm g}(t)$ and internal series resistance $R_{\rm g}$ is

$$v(t) = R_{\mathsf{g}}i(t) + V_{\mathsf{g}}(t) \tag{10}$$

In the discrete-time domain we get

$$v[k] = R_{\mathsf{g}}i[k] + V_{\mathsf{g}}[k] \tag{11}$$

- Eq. (11) is a special case of eq. (7) in which:
 - $\circ R_{\mathsf{e}}[k] = R_{\mathsf{g}}$

$$\circ V_{\mathsf{e}}[k] = V_{\mathsf{g}}[k] = V_{\mathsf{g}}(kT_{\mathsf{s}})$$

Linear Dynamic Elements

 In the continuous-time domain the constitutive equation of a linear dynamic element (capacitor or inductor) is

$$y(t) = \mu \frac{\mathrm{d}x(t)}{\mathrm{d}t} \tag{12}$$

- $\circ x(t)$ is a port voltage or port current
- $\circ y(t)$ is a port current or port voltage
- \circ μ is a (capacitative or inductive) real coefficient
- In the Laplace domain, where s is the complex frequency variable, (12) is written as

$$Y(s) = s\mu X(s) \tag{13}$$

Possible Time Derivative Approximations

Mappings from the Laplace domain with complex frequency variable s to the Z-domain with complex variable $z=e^{sT_s}$

Backward Euler Method

$$s \leftarrow \frac{1 - z^{-1}}{T_{\mathsf{s}}} \tag{14}$$

• Trapezoidal Rule (a.k.a. bilinear transform or Tustin's method)

$$s \leftarrow \frac{2}{T_{\rm s}} \frac{1 - z^{-1}}{1 + z^{-1}} \tag{15}$$

 Many other discretization methods are usable (e.g., finite difference methods, Runge-Kutta methods, etc. ...)

Trapezoidal Rule and Frequency Warping (1/2)

• According to (15), frequencies referred to the discrete-time domain are mapped to frequencies referred to the continuous-time domain by the substitution

$$j\omega \leftarrow \frac{2}{T_{s}} \frac{e^{j\widetilde{\omega}T_{s}} - 1}{e^{j\widetilde{\omega}T_{s}} + 1} \tag{16}$$

where ω satisfies $s=j\omega$ and $\widetilde{\omega}$ satisfies $z=e^{j\widetilde{\omega}T_{\rm s}}$

• After some simplifications (16) can be rewritten as

$$j\omega \leftarrow j\frac{2}{T_{\mathsf{s}}} \mathrm{tan}\left(\widetilde{\omega}\frac{T_{\mathsf{s}}}{2}\right)$$
 (17)

Trapezoidal Rule and Frequency Warping (2/2)

• According to (17), it is possible to express in closed-form the reference "continuous-time frequency" ω as a function of the "discrete-time frequency" $\widetilde{\omega}$ using the warping mapping

$$\omega = \frac{2}{T_{\mathsf{s}}} \tan \left(\widetilde{\omega} \frac{T_{\mathsf{s}}}{2} \right) \tag{18}$$

- ω is really close to $\widetilde{\omega}$ at low frequencies, while they differ more and more at high frequencies
- The higher the sampling frequency $F_{\rm s}=1/T_{\rm s}$, the more the difference between ω and $\widetilde{\omega}$ becomes negligible in the whole frequency range of interest

Linear Capacitor

• In the Laplace domain the constitutive equation of a linear capacitor with capacitance ${\cal C}$ is

$$I(s) = sCV(s) \tag{19}$$

• After applying the bilinear transform (15) to (19), in the discrete-time domain we get

$$v[k] = \frac{T_s}{2C}i[k] + \frac{T_s}{2C}i[k-1] + v[k-1]$$
 (20)

- Eq. (20) is a special case of eq. (7) in which [2]:
 - $R_{e}[k] = T_{s}/(2C)$
 - $V_{e}[k] = T_{s}i[k-1]/(2C) + v[k-1]$

Linear Inductor

• In the Laplace domain the *constitutive equation* of a linear inductor with inductance L is

$$V(s) = sLI(s) \tag{21}$$

• After applying the bilinear transform (15) to (21), in the discrete-time domain we get

$$v[k] = \frac{2L}{T_s}i[k] - \frac{2L}{T_s}i[k-1] - v[k-1]$$
 (22)

- Eq. (22) is a special case of eq. (7) in which [2]:
 - $\circ R_{e}[k] = 2L/T_{s}$

$$V_{e}[k] = -(2Li[k-1])/T_{s} - v[k-1]$$

Linear Wave Digital One-Port Element

• Wave-to-Kirchhoff transformation in the discrete-time domain

$$v[k] = \frac{a[k] + b[k]}{2}$$
, $i[k] = \frac{a[k] - b[k]}{2Z[k]}$ (23)

• Applying the substitution (23) in (7) and solving for b[k], we get the scattering relation of a generic linear one-port element

$$b[k] = \frac{R_{e}[k] - Z[k]}{R_{e}[k] + Z[k]} a[k] + \frac{2Z[k]}{R_{e}[k] + Z[k]} V_{e}[k]$$
 (24)

• Adaptation case (the instantaneous dependency of b[k] from a[k] is eliminated)

$$b[k] = V_e[k]$$
 , with $Z[k] = R_e[k]$ (25)

WD Resistor

$$b[k] = V_e[k] = 0,$$
 Adapation: $Z = R_e[k] = R$

WD Resistive Voltage Source

$$b[k] = V_{\mathsf{e}}[k] = V_{\mathsf{g}}[k],$$
 Adapation: $Z = R_{\mathsf{e}}[k] = R_{\mathsf{g}}$

WD Capacitor

$$b[k] = V_{\mathrm{e}}[k] = \frac{T_{\mathrm{s}}}{2C}i[k-1] + v[k-1], \quad \text{Adapation: } Z = R_{\mathrm{e}}[k] = \frac{T_{\mathrm{s}}}{2C}$$

WD Inductor

$$b[k] = V_{\mathrm{e}}[k] = -\frac{2L}{T_{\mathrm{s}}}i[k-1] - v[k-1], \quad \text{Adapation: } Z = R_{\mathrm{e}}[k] = \frac{2L}{T_{\mathrm{s}}}$$

Implementation of Linear WD One-Ports

Table: Wave mappings of common WD linear one-port elements.

Constitutive Eq.	Wave Mapping	Adaptation Condition
$v(t) = V_{g}(t) + R_{g}i(t)$	$b[k] = V_{g}[k]$	$Z[k]=R_{\sf g}$
v(t) = Ri(t)	b[k] = 0	Z[k] = R
$i(t) = C \frac{dv(t)}{dt}$	b[k] = a[k-1]	$Z[k] = \frac{T_{s}}{2C}$
$v(t) = L \frac{di(t)}{dt}$	b[k] = -a[k-1]	$Z[k] = rac{2L}{T_{s}}$

Nonlinear Diode Model

Shockley diode model for exponential p-n junction diodes

$$i(t) = I_{s} \left(e^{v(t)/(\eta V_{th})} - 1 \right)$$
 (26)

- \circ saturation current $I_{\sf s}$
- \circ thermal voltage $V_{\sf th}$
- \circ ideality factor η
- Eq. (26) is nonlinear and it cannot be put in the form (7)

Nonlinear WD Diode Model

- Substitute (23) into the discrete-time version of eq. (26)
- The result is a transcendental equation in the WD domain
- ullet The following closed-form solution for b[k] can be found [3, 4]

$$b[k] = a[k] + 2Z[k]I_{\mathsf{s}} - 2\eta V_{\mathsf{th}} W \left(\frac{Z[k]I_{\mathsf{s}}}{\eta V_{\mathsf{th}}} e^{\frac{Z[k]I_{\mathsf{s}} + a[k]}{\eta V_{\mathsf{th}}}} \right) \tag{27}$$

 \circ W(x) is the Lambert Function implicitly defined as

$$x = W(x)e^{W(x)}$$

The nonlinear WD diode cannot be adapted!

Outline

Introduction

Definition of Wave Variables

Modeling the Elements

Modeling the Topology

Connection Tree Structures

Example of Application

Topological Junctions or Connection Networks

- A N-port topological junction is an open interconnection network (i.e., without *electrical loads*) characterized by
 - \circ a vector of port voltages $\mathbf{v} = [v_1, \dots, v_N]^T$
 - \circ a vector of port currents $\mathbf{i} = [i_1, \dots, i_N]^T$
- Example:

(a) Reference circuit.

(b) Topological connection network.

Relations between Port Variables

• Found a subset of independent port voltages we have that

$$\mathbf{v} = \mathbf{Q}^T \mathbf{v}_{\mathsf{t}} \tag{28}$$

- \circ $\mathbf{v_t}$ is the vector of size $q \times 1$ collecting independent port voltages
- \circ **Q** is the fundamental cut-set matrix of size $q \times N$
- Found a subset of independent port currents we have that

$$\mathbf{i} = \mathbf{B}^T \mathbf{i}_{\mathsf{I}} \tag{29}$$

- \circ $\mathbf{i_l}$ is the vector of size p imes 1 collecting independent port currents
- \circ **B** is the fundamental loop matrix of size $p \times N$
- $\bullet \ p+q=N$
- Orthogonality property

$$\mathbf{B}\mathbf{Q}^T = \mathbf{0}_{p imes q} \quad , \qquad \mathbf{Q}\mathbf{B}^T = \mathbf{0}_{q imes p}$$

How to find independent port variables?

- Consider the digraph \mathcal{D} of the reference circuit where the edges represent the loads of the connection network (one per port), while the vertices represent the nodes of the circuit [5]
- ullet Apply a tree-cotree decomposition to ${\mathcal D}$
 - $\circ \ \, \text{A tree } \mathcal{T} \ \, \text{of } \mathcal{D} \ \, \text{is defined as } \textit{a connected acyclic subgraph of } \mathcal{D} \\ \textit{containing all vertices}$
 - \circ A cotree $\mathcal C$ of $\mathcal D$ is a subgraph of $\mathcal D$ containing all the edges of $\mathcal D$ that are not in a reference tree $\mathcal T$
- Independent port voltages in v_t are those related to the edges of the tree
- Independent port currents in i
 i are those related to the edges
 of the cotree

Example 1: Series Connection Network

$$\mathbf{i} = \mathbf{B}^T \mathbf{i}_{\mathsf{l}} \quad \rightarrow \quad \begin{vmatrix} i_1 \\ i_2 \\ i_3 \\ i_4 \end{vmatrix} = \begin{vmatrix} 1 \\ 1 \\ 1 \\ 1 \end{vmatrix} i_1$$
 (31)

Example 2: Parallel Connection Network

$$\mathbf{v} = \mathbf{Q}^T \mathbf{v}_{\mathsf{t}} \quad \rightarrow \quad \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} v_4 \tag{32}$$

Example 3: Bridged-Tee Connection Network

$$\mathbf{i} = \mathbf{B}^T \mathbf{i}_{\mathsf{I}} \quad
ightarrow$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & -1 \end{bmatrix}$$

 $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad (33)$

WD Junctions (Adaptors)

- In the WD domain a topological connection network is modeled as a WD scattering junction (also called adaptor)
- Kirchhoff-to-Wave mapping of port variables

$$\mathbf{a} = \mathbf{v} + \mathbf{Z}\mathbf{i}$$
, $\mathbf{b} = \mathbf{v} - \mathbf{Z}\mathbf{i}$ (34)

- $\mathbf{a} = [a_1, \dots, a_N]_{-}^T$ vector of waves incident to the junction
- $\mathbf{b} = [b_1, \dots, b_N]^T$ vector of waves reflected by the junction
- \circ $\mathbf{Z} = \mathrm{diag}[Z_1, \ldots, Z_N]$ is the diagonal matrix of free parameters
- Scattering relation

$$\mathbf{b} = \mathbf{S}\mathbf{a} \tag{35}$$

 \circ **S** is a $N \times N$ scattering matrix

Formation of the Scattering Matrix

• If $q \leq p$ use

$$\mathbf{S} = 2\mathbf{Q}^{T}(\mathbf{Q}\mathbf{Z}^{-1}\mathbf{Q}^{T})^{-1}\mathbf{Q}\mathbf{Z}^{-1} - \mathbf{I}$$
(36)

- \circ **I** is the $N \times N$ identity matrix
- \circ the inversion of the q imes q matrix $\mathbf{Q}\mathbf{Z}^{-1}\mathbf{Q}^T$ is required
- If $q \ge p$

$$\mathbf{S} = \mathbf{I} - 2\mathbf{Z}\mathbf{B}^{T}(\mathbf{B}\mathbf{Z}\mathbf{B}^{T})^{-1}\mathbf{B}$$
(37)

- \circ **I** is the $N \times N$ identity matrix
- \circ the inversion of the $p \times p$ matrix \mathbf{BZB}^T is required

Reflection-Free Ports in WD Junctions

- One port of a topological WD junction can be made reflection-free (we say the port is adapted)
- The nth port of a WD junction is made reflection-free if the nth diagonal entry s_{nn} of ${\bf S}$ is imposed to be zero

$$s_{nn} = 0 (38)$$

- Condition (38) can be satisfied by properly setting the free parameter \mathbb{Z}_n
- Examples
 - \circ The nth port of a N -port series WD junction is made reflection-free by setting $Z_n = \sum_{k \neq n} Z_k$
 - \circ The nth port of a N-port parallel WD junction is made reflection-free by setting $Z_n^{-1} = \sum_{k \neq n} Z_k^{-1}$

Outline

Introduction

Definition of Wave Variables

Modeling the Elements

Modeling the Topology

Connection Tree Structures

Example of Application

Modeling WDFs with One Nonlinearity

- The WDF is modeled as a connection tree
- The nonlinear one-port element is the root
- WD topological junctions are the nodes
 - Ports of WD junctions either connected to other WD junctions or to the nonlinear element are made reflection-free
- Linear WD one-port elements are the leaves
 - Linear WD elements are all adapted
- In case the topology is solely made of series-parallel connections, the WDF can be modeled as a Binary Connection Tree (BCT)
 - In a BCT nodes are 3-port series or parallel WD junctions [6]

Generic Connection Tree with One Node

Example of Binary Connection Tree

• In the BCT structure nodes are 3-port series/parallel adaptors.

Computational Flow in Connection Trees

The following process is repeated at each sampling step.

- Forward scan from the leaves to the root
 - waves reflected by the linear elements (incident to the junctions) are computed
 - waves are propagated through the junctions up to the nonlinear element
- Local nonlinear scattering stage at the root
 - given the incident wave, the wave reflected by the nonlinear element is computed
- Backward scan from the root to the leaves
 - waves are propagated through the junctions up to the linear elements
 - waves incident to the linear elements are computed

Illustration of Computational Flow in a BCT

Outline

Introduction

Definition of Wave Variables

Modeling the Elements

Modeling the Topology

Connection Tree Structures

Example of Application

Envelope Follower Circuit and WDF Realization

Reference circuit

Corresponding WDF with BCT structure

WDF Structure

- The WDFs is composed of:
 - Four linear WD elements (input source V_{in} with series resistance R_{in} , inductor L, capacitor C and output resistance R_{out})
 - Three 3-port WD junctions (two series adaptors, one parallel adaptor)
 - \circ One nonlinear WD element (the exponential diode D)
- Ports of 3-port adaptors are numbered;
 - the adaptor with ports number 4, number 5 and number 6 is a parallel adaptor
 - o the other two are series adaptors

Port Connections between WD Blocks

Examples of port connections

 The port connection between port number 1 of the series adaptor and port number 4 of the parallel adaptor on the right is performed imposing the following constraints

$$a_1[k] = b_4[k]$$
 , $a_4[k] = b_1[k]$, $Z_1 = Z_4$ (39)

 Similarly, connection between port number 2 of the series adaptor and port number 7 of the series adaptor on the left is performed imposing the following constraints

$$a_2[k] = b_7[k]$$
 , $a_7[k] = b_2[k]$, $Z_2 = Z_7$ (40)

Adaptation Conditions

- A WD block with a *T-shaped symbol* at a port is *adapted* at that port (that port is reflection-free)
- For instance, the parallel adaptor is adapted at port number 4 and all one-port WD elements are adapted, except for the diode which cannot be adapted.
- Adaptation conditions set at ports facing linear elements are

$$Z_9 = R_{in}$$
 , $Z_6 = R_{out}$, $Z_5 = T_s/(2C)$, $Z_8 = (2L)/T_s$ (41)

Adaptation conditions set at ports facing other adaptors are

$$Z_1 = Z_4 = \frac{Z_5 Z_6}{Z_5 + Z_6}$$
 , $Z_2 = Z_7 = Z_8 + Z_9$, $Z_3 = Z_1 + Z_2$ (42)

Scattering Relations of the Elements

• Real voltage source V_{in} with series resistance R_{in}

$$a_9[k] = V_{in}[k] \tag{43}$$

• Resistor with resistance R_{out}

$$a_6[k] = 0 \tag{44}$$

Capacitor with capacitance C

$$a_5[k] = b_5[k-1] (45)$$

Inductor with inductance L

$$a_8[k] = -b_8[k-1] (46)$$

• Diode D

$$a_3[k] = b_3[k] + 2Z_3I_s - 2\eta V_{\mathsf{th}} W\left(\frac{Z_3I_s}{\eta V_{\mathsf{th}}} e^{(Z_3I_s + b_3[k])/(\eta V_{\mathsf{th}})}\right) \tag{47}$$

Scattering Relations of WD Junctions

 \bullet Series adaptor with ports 1, 2, 3 and scattering matrix \mathbf{S}_{S1}

$$\begin{bmatrix} b_1[k] \\ b_2[k] \\ b_3[k] \end{bmatrix} = \mathbf{S}_{\mathsf{S}1} \begin{bmatrix} a_1[k] \\ a_2[k] \\ a_3[k] \end{bmatrix}$$
(48)

• Series adaptor with ports 7, 8, 9 and scattering matrix \mathbf{S}_{S2}

$$\begin{bmatrix} b_7[k] \\ b_8[k] \\ b_9[k] \end{bmatrix} = \mathbf{S}_{\mathsf{S2}} \begin{bmatrix} a_7[k] \\ a_8[k] \\ a_9[k] \end{bmatrix} \tag{49}$$

• Parallel adaptor with ports 4, 5, 6 and scattering matrix \mathbf{S}_{P1}

$$\begin{bmatrix} b_4[k] \\ b_5[k] \\ b_6[k] \end{bmatrix} = \mathbf{S}_{P1} \begin{bmatrix} a_4[k] \\ a_5[k] \\ a_6[k] \end{bmatrix}$$
 (50)

Scattering Matrices of WD Junctions

$$\mathbf{S}_{\mathsf{S1}} = \begin{bmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{bmatrix} = \begin{bmatrix} \gamma_{\mathsf{S1}} & (\gamma_{\mathsf{S1}} - 1) & (\gamma_{\mathsf{S1}} - 1) \\ -\gamma_{\mathsf{S1}} & (1 - \gamma_{\mathsf{S1}}) & -\gamma_{\mathsf{S1}} \\ -1 & -1 & 0 \end{bmatrix} \quad ,$$

$$\mathbf{S}_{\mathsf{S2}} = \begin{bmatrix} s_{77} & s_{78} & s_{79} \\ s_{87} & s_{88} & s_{89} \\ s_{97} & s_{98} & s_{99} \end{bmatrix} = \begin{bmatrix} 0 & -1 & -1 \\ -\gamma_{\mathsf{S2}} & (1 - \gamma_{\mathsf{S2}}) & -\gamma_{\mathsf{S2}} \\ (\gamma_{\mathsf{S2}} - 1) & (\gamma_{\mathsf{S2}} - 1) & \gamma_{\mathsf{S2}} \end{bmatrix} ,$$

where $\gamma_{\rm S1}=Z_2/(Z_1+Z_2)$ and $\gamma_{\rm S2}=Z_8/(Z_8+Z_9).$

$$\mathbf{S}_{\text{P1}} = \begin{bmatrix} s_{44} & s_{45} & s_{46} \\ s_{54} & s_{55} & s_{56} \\ s_{64} & s_{65} & s_{66} \end{bmatrix} = \begin{bmatrix} 0 & (1 - \gamma_{\text{P1}}) & \gamma_{\text{P1}} \\ 1 & -\gamma_{\text{P1}} & \gamma_{\text{P1}} \\ 1 & (1 - \gamma_{\text{P1}}) & (\gamma_{\text{P1}} - 1) \end{bmatrix} \quad ,$$

where $\gamma_{P1} = Z_5/(Z_5 + Z_6)$.

Forward Scan (from leaves to root of the BCT)

compute waves reflected from linear elements

$$a_9[k] = V_{in}[k] , \qquad (51)$$

$$a_6[k] = 0 , (52)$$

$$a_5[k] = b_5[k-1] , (53)$$

$$a_8[k] = -b_8[k-1] (54)$$

• compute waves reflected from the *first layer of adaptors*

$$b_4[k] = (1 - \gamma_{P1})a_5[k] + \gamma_{P1}a_6[k] ,$$
 (55)

$$b_7[k] = -a_8[k] - a_9[k] (56)$$

compute waves reflected from the second layer of adaptors

$$a_1[k] = b_4[k] , (57)$$

$$a_2[k] = b_7[k] , ag{58}$$

$$b_3[k] = -a_1[k] - a_2[k]$$
 (59)

 $^{55}/_{61}$

Local Nonlinear Scattering Stage

 compute wave reflected by the nonlinear diode (root of the BCT)

$$a_3[k] = b_3[k] + 2Z_3I_s - 2\eta V_{\text{th}} W \left(\frac{Z_3I_s}{\eta V_{\text{th}}} e^{(Z_3I_s + b_3[k])/(\eta V_{\text{th}})} \right)$$
 (60)

Backward Scan (from root to leaves of the BC)

 compute waves reflected from the second layer of adaptors toward linear elements

$$b_1[k] = \gamma_{S1}a_1[k] + (\gamma_{S1} - 1)a_2[k] + (\gamma_{S1} - 1)a_3[k]$$
 ,(61)

$$b_2[k] = -\gamma_{S1}a_1[k] + (1 - \gamma_{S1})a_2[k] + -\gamma_{S1}a_3[k]$$
 (62)

 compute waves reflected from the first layer of adaptors toward linear elements, i.e., waves incident to linear elements,

$$a_4[k] = b_1[k] , ag{63}$$

$$a_7[k] = b_2[k] , ag{64}$$

$$b_5[k] = a_4[k] - \gamma_{P1}a_5[k] + \gamma_{P1}a_6[k] , \qquad (65)$$

$$b_6[k] = a_4[k] + (1 - \gamma_{P1})a_5[k] + (\gamma_{P1} - 1)a_6[k]$$
, (66)

$$b_8[k] = -\gamma_{S2}a_7[k] + (1 - \gamma_{S2})a_8[k] - \gamma_{S2}a_9[k]$$
 , (67)

$$b_9[k] = (\gamma_{S2} - 1)a_7[k] + (\gamma_{S2} - 1)a_8[k] + \gamma_{S2}a_9[k]$$
 (68)

 $\frac{57}{6}$

LTspice Implementation

LTspice Implementation

Comparison WDF vs LTspice

References I

- [1] A. Fettweis. Wave digital filters: Theory and practice. *Proc. IEEE*, 74(2):270–327, Feb. 1986.
- [2] A. Bernardini, P. Maffezzoni, and A. Sarti. Linear multistep discretization methods with variable step-size in nonlinear wave digital structures for virtual analog modeling. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 27(11):1763–1776, Nov. 2019.
- [3] R. C. De Paiva, S. D'Angelo, J. Pakarinen, and V. Välimäki. Emulation of operational amplifiers and diodes in audio distortion circuits. *IEEE Transactions on Circuits and Systems II: Express Briefs*, 59:688–692, Oct. 2012.

References II

- [4] A. Bernardini, K. J. Werner, A. Sarti, and J. O. Smith III. Modeling nonlinear wave digital elements using the Lambert function. *IEEE Transactions on Circuits and Systems I:* Regular Papers, 63(8):1231–1242, Aug. 2016.
- [5] A. Bernardini, K. J. Werner, J. O. Smith III, and A. Sarti. Generalized wave digital filter realizations of arbitrary reciprocal connection networks. *IEEE Transactions on Circuits* and Systems I: Regular Papers, 66(2):694–707, Feb. 2019.
- [6] A. Sarti and G. De Sanctis. Systematic methods for the implementation of nonlinear wave-digital structures. *IEEE Transactions on Circuits and Systems I: Regular Papers*, 56: 460–472, Feb. 2009.

