PENERAPAN METODE SIMPLE MULTI ATTRIBUTE RATING TECHNIQUE MENENTUKAN JENIS BIBIT BUDIDAYA IKAN AIR TAWAR

(Studi Kasus: Dinas Perikanan dan Kelautan Karawang)

SKRIPSI

Diajukan Untuk Memenuhi Salah Satu Syarat Kelulusan Program Pendidikan Sarjana

Diajukan Oleh:

Nama : Amelia Putri (43E57027175003)

PROGRAM STUDI SISTEM INFORMASI SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER (STMIK) HORIZON KARAWANG 2021

BAB I PENDAHULUAN

1. 1 Latar Belakang Masalah

Bibit ikan merupakan anak ikan yang diperoleh dari bentuk telur kuning yang sudah diawetkan didalam suatu wadah tertentu. Telur diawetkan atau didiamkan selama beberapa hari, kemudian telur tersebut ditetaskan secara khusus sehingga akan didapat bibitnya (Mudjiman, 2018). Ikan air tawar adalah salah satu ikan yang menjadi makanan pokok penghasil protein yang lengkap (Soebroto & Hartati, 2018). Dari sekian banyak jenis ikan air tawar, terdapat 5 jenis ikan air tawar konsumsi yang umumnya sering disukai masyarakat sebagai menu hidangan, yaitu ikan Mas, Nila, Lele, Patin dan Gurami (Fitrony dkk., 2019). Perkembangan terhadap pembesaran maupun pembibitan ikan air tawar terus mengalami peningkatan yang sangat pesat sehingga banyak masyarakat ingin mencoba usaha pembesaran maupun pembibitan ikan air tawar (Ubaidillah, 2018). Menurut Laporan Badan Pangan PBB, pada tahun 2021 potensi usaha ikan air tawar semakin menggiurkan, pada tahun 2011 konsumsi ikan perkapita penduduk dunia akan mencapai 19,6 kg per tahunnya (Mashur dkk., 2010). Dalam menentukan jenis bibit ikan air tawar bukan hal yang mudah, banyak kriteria menjadi bahan pertimbangan, sehingga diperlukannya proses pembuatan keputusan agar memberikan hasil terbaik sesuai dengan nilai dari masing-masing kriteria tersebut (Kosasi dkk., 2015). Untuk itu maka dibutuhkan suatu penerapan teknologi informasi pada saat pengambilan keputusan, dimana keputusan tersebut merupakan suatu kegiatan memilih dalam memilih strategi atau sebuah tindakan dalam pemecahan masalah (Zaen dkk., 2014). Sistem pendukung keputusan yang merupakan sistem yang dirancang dalam membantu pengambilan keputusan pada saat situasi dan kondisi yang semi terstruktur serta situasi atau kondisi yang tidak terstruktur (Turban dkk., 2005). Pada proses pengambilan keputusan sangat dibutuhkan metode yang tepat yang bisa digunakan terutama untuk kasus seperti menentukan bibit budidaya ikan air tawar ini (Lumetut & Hartati, 2015). Terdapat beberapa metode yang dapat digunakan dalam sistem pendukung keputusan salah satunya adalah Simple Multi Attribute Rating (SMART) adalah model komprehensif pembuat keputusan untuk menjelaskan hal-hal yang kualitatif dan kuantitatif. SMART juga memungkinkan untuk membuat struktur sistem dan lingkungan menjadi komponen yang saling berinteraksi satu sama lain dan kemudian menyatukannya dengan mengukur dan mengatur efek elemen-elemen kesalahan sistem (Risawandi dan Rahim, 2016).

Akan tetapi masih banyak ditemukan para pembudidaya ikan yang kurang tepat dalam memilih bibit ikan air tawar karena kurang memperhatikan faktor lingkungan seperti suhu, pH air, ketinggian lokasi, oksigen terlarut, lama ideal pembesaran ikan, luas kolam, sehingga hasil budidaya yang diperoleh kurang maksimal dan seringkali terjadinya kegagalan panen (Ashari dkk., 2017). Maka dari itu pemilihan jenis bibit ikan tawar yang tepat untuk di budidaya merupakan hal yang sangat penting untuk meningkatkan hasil panen dan menghindari terjadinya kegagalan dalam pembesarannya (Syam dkk., 2018). Pada penelitian sebelumnya telah dilakukan mengenai pemilihan bibit ikan, yang menghasilkan keputusan berdasarkan 8 alternatif dengan 7 kriteria.

Hasil penelitian tersebut jenis ikan Nila yang memiliki ranking tertinggi dengan nilai 0,870069921 sehingga bibit ikan nila yang paling tepat (Kosasi dkk., 2015). Penelitian lain mengenai bibit ikan air tawar berdasarkan 6 alternatif dan 8 kriteria, mengasilkan keputusan bibit ikan lele sebagai alternatif terbaik dengan nilai -0,1009 (Ashari dkk., 207). Penelitian selanjutnya mengenai pemilihan jenis sapi potong dengan metode SMART, yang dimana menggunakan 6 alternatif dengan 5 kriteria penilaian yang digunakann. Hasil dari penelitian tersebut menyebutkan bahwa jenis Sapi Lemosin yaitu Alternatuf Ke-1 menjadi rekomendasi pertama dengan nilai akhir 1 dan jenis sapi bali yaitu Alternatif Ke-3 sebagai rekomendasi kedua dengan nilai akhir 0,702543 (Pangaribuan dkk., 2019).

Berdasarkan masalah dan uraian dari penelitian–penelitian sebelumnya, maka penulis akan melakukan penelitian tentang sistem pendukung keputusan untuk menentukan jenis bibit budiaya ikan air tawar dengan menggunakan metode SMART, terdapat 8 kriteria yang digunakan sebagai tolak ukur yaitu suhu air, luas kolam, pH air, ketinggian dataran, oksigen terlarut, harga bibit, lama ideal pembesaran dan harga jual ikan dengan 15 alternatif jenis bibit ikan yaitu Bibit Ikan Gurame Soang, Ikan Gurame Jepang/Jepun, Ikan Lele Mutiara, Ikan Lele Sangkuriang, Ikan Lele Dumbo, Ikan Lele Lokal, Ikan Mas Merah, Ikan Mas Majalaya, Ikan Mas Lokal, Ikan Patin Jambal, Ikan Patin Muncung, Ikan Patin Lawang, Ikan Nila Srikandi, Ikan Nila Merah, Ikan Nila Hitam, yang diharapkan dengan dibangunnya sistem pendukung keputusan ini dapat membuat para calon peternak yang akan memulai budiaya ikan tawar tidak kesulitan menentukan jenis bibit budidaya ikan tawar apa yang tepat. Sistem yang akan dikembangkan dengan menggunakan System Development Life Cycle (SDLC) Waterfall (Satzinger dkk., 2010), serta dengan pendekatan Object Oriented Approach (OOA) dan dibangun dengan menggunakan bahasa pemrograman PHP Processor (PHP) dikombinasikan dengan bahasa pemrograman Cascading Style Sheet (CSS) serta My Structured Query Language (MySQL) sebagai Database Management System (DBMS) atau media penyimpanan data. Maka penulis menuangkannya dalam skripsi yang berjudul "Penerapan Metode *Simple Multi Attribute Rating Technique* Menentukan Bibit Budidaya Ikan Air Tawar".

1. 2 Identifikasi Masalah

Berdasarkan latar belakang masalah yang telah diungkapkan maka identifikasi masalah dibagi sebagai berikut :

- 1. Bagaimana cara menentukan jenis bibit ikan air tawar yang tepat untuk budidaya menurut sistem ini ?
- 2. Bagaimana menghitung nilai tertinggi serta perankigan pada sistem ini?
- 3. Bagaimana membangun sistem pendukung keputusan dengan menggunakan metode pengembangan SDLC ?

1. 3 Batasan Masalah

Agar penelitian ini dapat dilakukan dengan terarah dan terfokuskan maka penulis membatasi materi penelitian yang jauh dari pembahasan, maka batasan masalah hanya difokuskan kepada :

- 1. Sistem pendukung keputusan ini dirancang berdasarkan 15 alternatif dengan 8 kriteria yang sudah ditentukan.
- 2. Sistem pendukung keputusan ini menggunakan metode SMART

3. Pengembangan sistem ini dibangun berbasis *web* dengan menggunakan metode pengembangan SDLC *Waterfall* dan OOA. Bahasa pemrograman yang digunakan adalah PHP versi 7.2.1 dan menggunakan pengelolaan database MySQL.

1. 4 Tujuan Penelitian

Adapun tujuan dari penelitian ini adalah membuat aplikasi sistem pendukung keputusan dengan menggunakan metode SMART untuk menentukan jenis bibit budidaya ikan air tawar yang tepat bagi para calon peternak yang ingin memulai budidaya ikan air tawar .

1. 5 Manfaat Penelitian

Dari hasil penelitian yang dilakukan dalam penelitian mengenai sistem pendukung keputusan dalam menentukan jenis bibit ikan air tawar ini manfaatnya sebagai berikut :

- 1. Bidang Disiplin Sistem Informasi Mampu menerapkan metode SMART dalam menentukan jenis bibit ikan air tawar yang tepat dengan menggunakan model SDLC *Waterfall*.
- 2. Masyarakat Membantu masyarakat khususnya calon peternak ikan air tawar dalam menentukan jenis bibit ikan air tawar untuk dibudidayakan.
- 3. STMIK Horizon Karawang
 Dapat membantu STMIK Horizon Karawang dalam menjalankan salah satu tridarma perguruan tinggi yaitu pengabdian masyarakat.
- 4. Bidang Pendidikan Memberikan referensi terhadap ilmu pengetahuan yang diharapkan dapat dijadikan suatu pembelajaran yang dapat dikembangkan lagi pada penelitian selanjutnya.
- 5. Penulis
 Melatih penulis merancang serta membuat aplikasi sistem pendukung keputusan dan dapat mengimplementasikannya.

1. 6 Rencana Jadwal Penelitian

Lokasi : Dinas Perikanan Karawang

Alamat : Jl. Ir Suratin No.1, Nagasari, Kec. Karawang Bar., Kabupaten

Karawang, Jawa Barat 41314

Kegiatan : Februari 2021 s/d Juni 2021

Waktu : ±4 (empat) Bulan.

Gambar 1.1. Perencanaan Jadwal Penelitian

1. 7 Sistematika Penulisan

Penulisan skripsi ini terbagi atas 5 bab, masing-masing bab saling berhubungan dalam hal permasalahan yang akan dibahas. Selain itu disertai juga lampiran sebagai bahan pendukung dari pembahasan masalah. Adapun pembahasan dalam tiap-tiap bab sebagai berikut:

BAB I PENDAHULUAN

Menjelaskan tentang latar belakang masalah yang akan diteliti, identifikasi masalah yang muncul dari penelitian sebelumnya, batasan masalah sebagai fokus penelitian, tujuan penelitian, manfaat penelitian untuk berbagai bidang, waktu dan lokasi penelitian dan sistematika penulisan.

BAB II TINJAUAN PUSTAKA

Menjelaskan tentang landasan teori dan konsep-konsep pengertian yang berhubungan dengan sistem pendukung keputusan, bibit ikan air tawar, Metode SMART, SDLC Waterfall, Object Oriented Analysis (OOA), Unified Modelling Language (UML), Software Testing.

BAB III METODE PENELITIAN

Menjelaskan tentang tahapan dalam penelitian dengan bahan penelitian, alat penelitian, metode pengembangan sistem SDLC *Waterfall*.

BAB IV HASIL DAN PEMBAHASAN

Menjelaskan tentang hasil analisis pengimplementasian metode SMART dalam mendukung sistem pendukung keputusan menentukan jenis bibit ikan air tawar.

BAB V KESIMPULAN DAN SARAN

Menjelaskan tentang kesimpulan hasil terbaik perhitungan dari algoritma metode SMART serta saran dari kekurangan aplikasi yang sudah dibuat.

BAB II TINJAUAN PUSTAKA

2. 1 Bibit Ikan

Bibit ikan adalah anak ikan yang diperoleh dari bentuk telur kuning yang sudah diawetkan dalam kaleng atau suatu wadah tertentu. Setelah telur diawetkan selama beberapa hari, kemudian telur ditetaskan secara khusus sehingga akan didapat bibitnya. Anaknya yang baru menetas (nauplius) nantinya yang akan menjadi bibit untuk penebaran (Mudjiman, 2018). Berikut contoh dari jenis bibit ikan air tawar .

1. Bibit Ikan Gurami Soang

Gambar 2.1 Bibit Ikan Gurami Soang (qdmaqri.com)

2. Bibit Ikan Lele Mutiara

Gambar 2.2 Bibit Ikan Lele Mutiara (bibitikan.net)

3. Bibit Ikan Mas Merah

Gambar 2.3 Bibit Ikan Mas Merah (maulafarm.com)

4. Bibit Ikan Mas Majalaya

Gambar 2.4 Bibit Ikan Mas Majalaya (direktoriukm.com)

5. Bibit Ikan Patin Muncung

Gambar 2.5 Bibit Ikan Patin Muncung (bibitikan.blogspot.com)

6. Bibit Ikan Nila Merah

Gambar 2.6 Bibit Ikan Nila Merah (bibitikan.net)

7. Bibit Ikan Nila Hitam

Gambar 2.7 Bibit Ikan Nila Hitam (qdmagri.com)

2. 2 Budidaya Ikan Air Tawar

Menurut Rukmini (2012) secara umum budidaya ikan dibagi menjadi beberapa jenis, hal tersebut bergantung pada tempat atau potensi lokasi untuk budidaya ikan. Budidaya yang telah diterapkan oleh masyarakat adalah budidaya di kolam, keramba, fish pen (sistem budidaya yang memanfaatkan bagian-bagian tertentu misalnya cekungan diperairan), sawah, jaring apung dan budidaya di tambak (Kusmiran, 2014).

2. 3 Sistem Pendukung Keputusan

Sistem pendukung keputusan pertama kali diperkenalkan pada awal 1970-an oleh Michael S. Scoott Morton dengan istilah *Management Decision System*. SPK merupakan suatu sistem interaktif yang membantu pengambilan keputusan melalui penggunaan data dan model-model keputusan untuk memecahkan masalah yang sifatnya semi terstruktur (Turban dkk., 2005). Tahapan proses pengambilan keputusan meliputi tiga fase utama yaitu intelegensi, desain dan kriteria. Kemudian menambahkan fase keempat yakni implementasi (Turban dkk., 2005).

2.3.1 Fase Intelegensi

Intelegensi dalam pengambilan keputusan meliputi scanning (pemindaian) lingkungan, baik secara intermiten ataupun terus-menerus. Intelegensi mencakup berbagai aktivitas yang menekankan identifikasi situasi atau peluang-peluang masalah. Tahapan dalam fase intelegensi antara lain identifikasi masalah (peluang), klasifikasi masalah, dan kepemilikan masalah. Berikut adalah tahapan-tahapan fase intelegensi:

- a) Sasaran organisasi adalah sasaran yang diinginkan dan hendak dicapai pada saat pengambilan keputusan.
- b) Pengumpulan data adalah teknik pengambilan data pada fase intelegensi yang penggunaanya harus dapat memberikan keuntungan.
- c) Identifikasi masalah adalah mengidentifikasi terhadap tujuan dan sasaran organisasional yang berkaitan dengan isu yang diperhatikan.
- d) Kepemilikan masalah adalah menentukan kepemilikan masalah jika seseorang atau beberapa kelompok mengambil tanggung jawab untuk mengatasinya dan jika organisasi punya kemampuan untuk memecahkannya.

- e) Klasifikasi masalah adalah konseptualisasi terhadap satu masalah dalam rangka menempatkannya dalam suatu kategori yang dapat didefinisikan, barangkali mengarah kepada suatu pendekatan solusi standar.
- f) Pernyataan masalah adalah kaliamat permasalahan yang dinyatakan secara formal didapat setelah fase intelegensi selesai dilakukan.

2.3.2 Fase Desain

Fase desain meliputi penemuan atau mengembangkan dan menganalisis tindakan yang mungkin untuk dilakukan. Hal ini meliputi pemahaman terhadap masalah dan menguji solusi yang layak. Tahapan fase intelegensi antar lain memilih sebuah prinsip pilihan, mengembangkan (menghasilkan) alternatif-alternatif, dan mengukur hasil akhir. Berikut adalah tahapan-tahapan pada fase desain:

- a) Formulasi sebuah model adalah merumuskan sebuah model yang akan digunakan saat pengambilan keputusan
- b) Menentukan kriteria-kriteria yang dipilih untuk dijadikan parameter dalam pengambilan keputusan.
- c) Mencari alternatif-alternatif yang dianggap akan memenuhi suatu sasaran spesifik pada pengambilan keputusan.
- d) Memprediksi dan mengukur hasil akhir adalah nilai dari sebuah alternatif dievaluasi dalam hal mencapai tujuan, biasanya suatu hasil dinyatakan secara langsung dalam istilah tujuan.

2.3.3 Fase Pilihan

Pilihan merupakan tindakan pengambilan keputusan yang kritis. Fase pilihan adalah fase dimana dibuat suatu keputusan yang nyata dan diambil suatu komitmen untuk mengikuti suatu tindakan tertentu. Batas antara fase pilihan dan desain sering tidak jelas karena aktivitas tertentu dapat dilakukan selama kedua fase tersebut dan karena orang dapat sering kembali dari aktivitas pilihan ke aktivitas desain. Sebagai contoh, ada seseorang dapat menghasilkan alternatif baru selagi mengevaluasi alternatif yang ada. Fase pilihan meliputi pencarian, evaluasi, dan rekomendasi terhadap suatu solusi yang tepat untuk model. Sebuah solusi untuk sebuah model adalah sekumpulan nilai spesifik untuk variable-variabel keputusan dalam suatu alternatif yang telah dipilih. Berikut adalah tahapn-tahapan pada fase pilihan:

- a) Solusi untuk model adalah sekumpulan nilai spesifik untuk variablevariabel keputusan dalam suatu alternatif yang telah dipilih. Solusi untuk model menghasilkan sebuah solusi yang direkomendasikan untuk masalah.
- b) Analisis sensitivitas adalah analisis yang digunakan untuk menentukan ketangguhan sembarang alternatif yang diberikan dan apabila ada sedikit perubahan dalam parameter idealnya mendorong ke sedikit atau tidak ada perubahan dalam alternatif yang dipilih. Analisis sensitivitas mencoba menilai dampak suatu perubahan pada data input atau parameter pada solusi yang diusulkan (variabel hasil).
- c) Memilih alternatif terbaik yaitu menentukan nilai-nilai variabel keputusan untuk mengevaluasi pengaruh solusi-solusi yang diusulkan.
- d) Rencana implementasi adalah rencana penerapan keputusan apabila solusi yang direkomendasikan dianggap sukses.

2.3.4 Fase Implementasi

Pada hakikatnya implementasi suatu solusi yang diusulkan untuk suatu masalah adalah inisiasi terhadap hal baru, atau pengenalan terhadap perubahan. Definisi implementasi sedikit rumit karena implementasi merupakan sebuah proses yang panjang dan melibatkan batasan-batasan yang tidak jelas. Pendek kata, implementasi berarti membuat suatu solusi yang direkomendasikan bisa bekerja, tidak memerlukan implementasi suatu sistem komputer. Hasil implementasi yang berhasil adalah terpecahkannya permasalahan yang ada. Sedangkan hasil implementasi yang gagal membuat harus kembali ke fase sebelumnya.

Gambar 2.8 Tahapan sistem pendukung keputusan (Turban dkk., 2005)

2. 4 Simple Multi-Attribute Rating Technique (SMART)

SMART adalah model komprehensif pembuat keputusan untuk menjelaskan hal-hal yang kualitatif dan kuantitatif. Dalam model pengambilan keputusan dengan SMART berusaha untuk menutupi kekurangan dari model sebelumnya tanpa komputerisasi. SMART juga memungkinkan untuk membuat struktur sistem dan lingkungan menjadi komponen yang saling berinteraksi satu sama lain dan kemudian menyatukannya dengan mengukur dan mengatur efek elemen-elemen kesalahan sistem (Risawandi dan Rahim, 2016). Adapun Rumusnya sebagai berikut:

$$W_i = \sum_{i=1}^K W_i U_{ij}$$

Dimana:

- *W*_i adalah nilai pembobotan kriteria ke − j
- 2. U_{ij} adalah nilai utility alternatif I pada kriteria j.
- 3. Pemilihan keputusan adalah mengidentifikasi mana dari n alternatif yang memiliki nilai fungsi terbesar.
- Nilai fungsi juga dapat digunakan untuk meranking n alternatif.

Urutan dalam penggunaan metode SMART (Goodwin dan Wright, 2004) adalah sebagai berikut:

- 1. Menentukan banyaknya kriteria yang digunakan
- 2. Menentukan bobot kriteria pada masing-masing kriteria menggunakan interval 1 s.d. 100 untuk masing-masing kriteria dengan prioritas terpenting.
- Menghitung normalisasi dari setiap kriteria dengan membandingkan nilai bobot kriteria dengan jumlah bobot kriteria.

$$Normalisasi = \frac{bobot}{\sum bobot}$$

- Memberikan nilai parameter kriteria pada setiap kriteria untuk setiap alternatif
- Menentukan nilai utility dengan mengkonversikan nilai kriteria pada setiap masing-masing kriteria menjadi nilai kriteria data baku pembobotan nilai parameter yang digunakan adalah 1 s.d 3.
 - a. Kriteria Biaya (Cost Criteria)

$$U_i(a_i) = \frac{Cmax - Cout}{Cmax - Cmin}$$

b. Kriteria Keuntungan (Benefit Kriteria)
$$U_i(a_i) = \frac{Cout - Cmin}{Cmax - Cmin}$$

Menentukan nilai akhir dari masing-masing kriteria dengan mengalihkan nilai yang dapat dinormalisasikan kriteria data baku dengan nilai normalisasi bobot.

$$U(a_i) = \sum_{i=1}^n n(i) * u(i)$$

Contoh perhitungan SMART:

Dari penelitian Risawandi dan Rahim (2016), didapatkan data-data sebagai berikut:

Tabel 2.1 Data Penelitian Risawandi dan Rahim (2016)

raber 2:1 Bata i enertitati itisa wanar dan itanimi (2010)				
Alternative	Criteria			
	Stock (C1)	Price (C2)	Quality (C3)	Size (C4)
A1	± 600Kg	Rp. 49500	Enough	Mid
A2	± 800Kg	Rp. 67500	Enough	Mid
A3	± 400Kg	Rp. 11000	Not Good	Large
A4	± 600Kg	Rp. 18500	Good	Very Large

Lalu menentukan bobot dari masing-masing kriteria dengan rentang nilai 0-100:

Tabel 2.2 Data Kriteria (Risawandi dan Rahim, 2016)

No	Criteria	Weight	
	(C)	(Wj)	
1	C1	50	
2	C2	30	
3	C3	10	
4	C4	10	
	Sum	100	

Selanjutnya adalah menghitung nilai normalisasi dari masing-masing bobot kriteria

Tabel 2.3 Hasil Normalisasi (Risawandi dan Rahim, 2016)

1406	Tabel 2.5 Hasii Normansasi (Risawanui dan Ramin, 2010)						
No	Criteria	Weight	Normalisasi				
	(C)	(Wj)	Wj				
			ΣWj				
1	C1	50	50/100 = 0.5				
2	C2	30	30/100 = 0.3				
3	C3	10	10/100 = 0.1				
4	C4	10	10/100 = 0.1				

Selanjutnya adalah memberikan parameter bagi setiap kriteria, nilai dari parameter akan dibagi ke dalam beberapa kelompok seperti dibawah ini :

Tabel 2.4 Parameter Kriteria (Risawandi dan Rahim, 2016)

Group	Parameter Value
Low	1
Mid	2
High	3
Very High	4

Penjelasan tabel di atas dapat menyimpulkan tentang klasifikasi yang digunakan. Mengelompokkan kriteria yang dijelaskan dalam tabel berikut.

Tabel 2.5 Nilai Sub Kriteria (Risawandi dan Rahim, 2016)

	Tuber 210 Timar bub Terretra (Tuba wanar dan Taninin, 2010)					
No	Criteria(C)	Stock	Value			
1	C1	> 600Kg	4			
		400Kg - 600Kg	3			
		200Kg - 399Kg	2			
		< 200Kg	1			
2	C2	> 5000	4			
		30000 - 50000	3			

No	Criteria(C)	Stock	Value
		10000 - 29000	2
		< 10000	1
3	C3	Very Good	4
		Good	3
		Enough	2
		Low	1
4	C4	Very Large	4
		Large	3
		Mid	2
		Low	1

Selanjutnya adalah menentukan nilai *utility*, karena tipe bobot yang digunakan adalah *benefit* maka menggunakan rumus berikut :

$$U_i(a_i) = \frac{Cout - Cmin}{Cmax - Cmin}$$

Berikut ini adalah contoh nilai utility A1C1:

$$U_i(a_i) = \frac{Cout - Cmin}{Cmax - Cmin} = \frac{4 - 1}{4 - 1} = 1$$

Lalu yang terakhir menentukan nilai akhir dengan menggunakan rumus sebagai berikut :

$$U(a_i) = \sum_{i=1}^n n(i) * u(i)$$

Tabel 2.6 Hasil Akhir (Risawandi dan Rahim 2016)

No	Alternative	Criteria	Value Utility	Weight of normalization	Score
		C1	0.66	0.5	
1	A1	C2	0.66	0.3	0.56
_	111	C3	0.33	0.1	0.50
		C4	0	0.1	
		C1	1	0.5	
2	A2	C2	1	0.3	0.83
		C3	0.33	0.1	3.32
		C4	0	0.1	
		C1	0.66	0.5	
3	A3	C2	0.33	0.3	0.46
		C3	0	0.1	
		C4	0.33	0.1	
		C1	0.66	0.5	

No	Alternative	Criteria	Value Utility	Weight of normalization	Score
		C2	0.33	0.3	0.6
4	A4	C3	1	0.1	0.6
		C4	0.66	0.1	

Dari perhitungan nilai akhir yang telah dilakukan diperoleh nilai tertinggi berdasarkan urutan ranking yaitu A2 dengan nilai 0.83.

2. 5 Metode Pengembangan SDLC Waterfall

Metode pengembangan sistem adalah alur teknis pembangunan atau pengembangan yang dilakukan dalam sebuah perencanaan sistem. Metdoe pengembangan sistem dengan metode *waterfall* meliputi beberapa tahapantahapan antara lain perencanaan, analisis, desain, implementasi dan pengujian dan pemeliharaan (Satzinger dkk., 2010)

Gambar 2.9 Tahap pengembangan sistem (SDLC) Waterfall (Satzinger dkk., 2010)

2.5.1 Project Planning Phase

Tujuan utama dari fase *project planning* adalah untuk mengidentifikasi ruang lingkup dari sistem baru dan memastikan bahwa proyek ini layak untuk diimplementasikan serta membuat jadwal, menentukan sumber daya dan anggaran biaya yang akan digunakan pada proyek ini. Dalam *project planning phase* ada lima kegiatan dalam membangun aplikasi yaitu sebagai berikut:

- a) Identifikasi masalah
- b) Pembuatan jadwal
- c) Konfirmasi kelayakan proyek
- d) Staf provek
- e) Peluncuran Proyek

Aktifitas yang paling penting dalam *project planning phase* adalah ketika mendefinisikan permasalahan yang terjadi dalam sebuah proses bisnis dan cakupan dari solusi yang dibutuhkan.

2.5.2 Analysis Phase

Tujuan dari fase analsis adalah untuk memahami dan mendokumentasikan kebutuhan bisnis dan persyaratan pemrosesan dari sistem yang baru. Analisis pada dasarnya adalah penemuan proses. Kegiatan dalam *analyis phase* antara lain:

- a) Pengumpulan informasi
- b) Mengidentifikasi kebutuhan sistem
- c) Membangun prototipe
- d) Memprioritaskan persyaratan

- e) Menghasilkan dan mengevaluasi altematif
- f) Rekomendasi riview dengan manajemen

Mengumpulkan informasi merupakan bagian yang paling mendasar dalam aktifitas *analysis*. Untuk mengumpulkan informasi dapat dilakukan beberapa cara dimulai dari observasi kepada *user* yang meakukan pekerjaannya, dengan melakukan wawancara, membaca dokumen – dokumen yang sudah ada mengenai prosedur, aturan – aturan bisnis serta mengidentifikasi *job description*, serta dengan meninjau *automated system* yang sedang berjalan.

2.5.3 Design Phase

Dalam tahap ini dimodelkan informasi link dari setiap halaman, jika dalam sistem tersebut terdapat database maka digunakan tahap *development* dan database desain. Tujuh kegiatan utama *desiqn phase* yaitu :

- a) Desain Basisdata
- b) Desain antarmuka
- c) Desain Proses
- d) Prototype untuk desain
- e) Merancang kontrol sistem

2.5.4 Implementation Phase

Tahap *implementasi* merupakan tahap dimana sistem siap untuk dioperasikan. Tahap ini merupakan kelanjutan dari tahap analisis dan tahap desain sistem, dengan tujuan untuk menguji coba sistem yang telah dibuat apakah sudah sesuai dengan tujuan yang diharapkan, sehingga pengguna dapat memberikan masukan untuk penembangan sistem selanjutnya, tahap implementasi meliputi:

- 1. Membangun perangkat lunak
- 2. Verifikasi dan uji sistem menggunakan White Box dan Black Box
- 3. Mengonversi data
- 4. Mendokumentasikan sistem
- 5. Install system

2.5.5 Support Phase

Tahapan terakhir yaitu mengoperasikan sistem yang telah selesai dibangun, dan masih dalam proses penyesuaian. Dengan berjalannya proses taransmisi, tim pun akan melakukan perbaikan dan peningktan sistem secara berkala.

- a) Memelihara sistem
- b) Meningkatkan sistem
- Mendukung pengguna yang ada

2. 6 Object Oriented Approach

Object Oriented Approach atau Metodologi berorientasi objek adalah suatu pembangunan perangkat lunak yang mengorganisasikan perangkat lunak sebagai kumpulan objek ynag berisi data dan operasi yang diberlakukan terhadapnya. Metodologi berorientasi objek didasarkan pada penerapan prinsip-prinsip pengelolaan kompleksitas (Satzinger dkk., 2010).

Dalam pembangunan metode ini terdapat empat diagram yang harus dibuat yaitu :

A. Use Case Diagram

Use case diagram merupakan diagram yang menunjukan beberapa peran pengguna dan bagaimana cara pengguna tersebut berinteraksi dengan sistem (Satzinger dkk., 2010). Adapun contoh *use case diagram* dapat dilihat pada gambar di bawah ini.

Gambar 2.10 Contoh *Use Case Diagram* (Satzinger dkk., 2010)

B. Activity Diagram

Diartikan sebagai sebuah tipe diagram yang mendeskripsikan aktivitas pengguna dan alur sebab akibat (Satzinger dkk., 2010). Contoh *activity diagram* dapat dilihat pada gambar berikut ini.

Gambar 2.11 Contoh Activity Diagram (Satzinger dkk., 2010)

C. Squence Diagram

Sequence diagram merupakan diagram yang menunjukan urutan pesan antara aktor eksternal dan sistem berdasarkan use case atau scenario. Sequence diagram terdiri dari System sequence diagram yang digunakan dalam hubungan dengan perincian deskripsi atau dengan diagram aktifitas untuk menunjukan langkah proses dan interaksi antara sistem dengan aktor (Satzinger dkk., 2010).

Gambar 2.12 Contoh Sequence Diagram (Satzinger dkk., 2010)

D. Class Diagram

Class adalah sebuah spesifikasi yang jika diintansiasi akan menghasilkan sebuah objek dan merupakan inti dari pengembangan dan desain berorientasi objek. Class menggambarkan keadaan (atribut/properti) suatu sistem, sekaligus menawarkan layanan untuk memanipulasi keadaan tersebut (metoda/fungsi). Class diagram menggambarkan struktur dan deskripsi class, package dan objek beserta hubungan satu sama lain seperti containment, pewarisan, asosiasi, dan lain-lain.

Class memiliki tiga area pokok:

- 1. Nama
- 2. Atribut
- 3. Metoda

Atribut dan metoda dapat memiliki salah satu sifat berikut:

- 1. *Private*, tidak dapat dipanggil dari luar *class* yang bersangkutan
- 2. *Protected*, hanya dapat dipanggil oleh *class* yang bersangkutan dan yang mewarisinya.
- 3. *Public*, dapat dipanggil oleh siapa saja.

Hubungan antar *class* di dalam *class diagram* adalah:

- Asosiasi, yaitu hubungan statis antar *class*. Umumnya menggambarkan *class* yang memiliki atribut berupa *class* lain, atau *class* yang harus mengetahui eksistensi *class* lain. Panah *navigability* menunjukan arah *query* antar *class*.
- 2. Agregasi, yaitu hubungan yang menyatakan bagian ("terdiri atas..").
- 3. Pewarisan, yaitu hubungan hirarkis antar *class*. *Class* dapat diturunkan dari *class* lain dan mewarisi semua atribut dan metoda *class* asalnya dan menambahkan fungsionalitas baru, sehingga ia disebut anak dari *class* yang diwarisinya. Kebalikan dari pewarisan adalah generalisasi.

4. Hubungan dinamis, yaitu rangkaian pesan (message) yang di-passing dari satu class kepada class lain. Hubungan dinamis dapat digambarkan dengan menggunakan sequence diagram yang akan dijelaskan kemudian.

Gambar 2.13 Contoh Class Diagram (Satzinger dkk., 2010)

2. 7 Aplikasi Pemrograman WEB

PHP adalah bahasa pemrograman script sederhana yang digunakan untuk pemrosesan HTML *Form* di dalam halaman web. Strukturnya sangat sederhana sehingga PHP dapat dengan mudah dipelajari programmer pemula bahkan orang tanpa latar belakang teknologi Sistem Informasi. Hal inilah yang menyebabkan PHP sangat cepat popular di kalangan pengembang aplikasi web. Membuat program dengan PHP itu mudah, cukup sediakan saja sebuah program *text editor* sederhana untuk menuliskan programnya seperti Notepad+ + atau Dreamweaver. Ekstensi file PHP yang umum digunakan adalah .php (selain .php3 dan .phtml) (Hastianti dkk., 2015). Untuk media penyimpanan yang digunakan yaitu MySOL adalah suatu perangkat lunak *database* relasi (Relational Database Management System atau DBMS), seperti halnya ORACLE, POSTGRESQL, MSSQL dan sebagainya. SQL merupakan singkatan dari Structure Query Language, didefinisikan sebagai suatu sintaks perintah-perintah tertentu atau bahasa program yang digunakan untuk mengelola suatu database. Jadi MySQL adalah software-nya dan SQL adalah bahasa perintahnya (Anisya, 2013). Basis data adalah koleksi terpadu dari data yang tersimpan yang dikelola secara terpusat dan dikendalikan. Basis data biasanya menyimpan Sistem Informasi tentang puluhan atau ratusan jenis entitas atau kelas. Sistem Informasi yang disimpan meliputi entitas atau kelas atribut (misalnya, nama, harga dan saldo rekening) serta hubungan antara entitas atau kelas. Basis data juga menyimpan Sistem Informasi deskriptif tentangf data, seperti nama *field*, pembatasan nilai yang diperbolehkan, dan kontrol akses ke *item* data sensitif. Sebuah DBMS adalah komponen perangkat lunak sistem yang umumnya dibeli dan diinstal secara terpisah dari yang lain komponen perangkat lunak sistem (misalnya, sistem operasi) (Satzinger dkk., 2010).

2. 8 Software Testing

Software testing merupakan sebuah alat yang menjamin kualitas perangkat lunak yang diterapkan untuk mengontrol kualitas produk perangkat

lunak sebelum penyerahan atau instalasi di tempat pengguna. Konsep pengujian yaitu *Blacbox* (fungsional) *testing* dan *Whitebox* (strukural) *testing* (Galin, 2004).

a) Blackbox Testing

Blackbox testing merupakan pengujian yang mengabaikan mekanisme internal sistem atau komponen dan hanya fokus pada output yang dihasilkan yang merupakan respon dari input yang diberikan. Blackbox testing mengidentifikasi bug sesuai dengan kesalahan software seperti terdapat dalam output error. Ketika output yang dihasilkan benar, blackbox testing mengabaikan jalur perhitungan internal dan pengolahan yang dilakukan (Galin, 2004).

b) Whitebox Testing

Whitebox testing merupakan pengujian yang memperhitungkan mekanisme internal sistem atau komponen. Whitebox testing menguji jalur perhitungan internal untuk mengidentifikasi bug dengan menyelidiki kebenaran struktur kode (Galin, 2004).

1) Correctness Test and Line Coverage

Line Coverage merupakan pengujian yang memungkinkan untuk melakukan tes terhadap semua baris program, dimana cakupannya diukur berdasarkan persentase baris program yang tercakup. Untuk lebih memudahkan pengujian dibuatlah sebuah *flowgraph*.

a. *Pseucode* Pengujian *White Box* Contoh:

```
//inisialisasi waktu awal
1. $waktuAwal = microtime(true);
   //NORMALISASI BOBOT
   //ambil kode dan tipe dari kriteria
2. $dataKriteria = $this->getAllData($table =
   'kriteria');
   //hitung total bobot kriteria
3. $totalBobot=
  $this→db→select sum('bobot')→get('kriteria')-
  >row_array();
4. foreach($dataKriteria->result_array() as $ktr){
5. $bobot=$this→getDataById($table='kriteria',
  $where=['kode'=>
                                     $ktr['kode']]);
6. $nilaiNormalisasi[$ktr['kode']]['nilai']=(float)
                                                          2
  $bobot['bobot']/
   (float)$totalBobot['bobot'];
7. $nilaiNormalisasi[$ktr['kode']]['kode'] =
  $ktr['kode'];
9. $value['normalisasi'] = $nilaiNormalisasi;
   //AKHIR MENGHITUNG NORMALISASI
   //MENGHITUNG NILAI VEKTOR S
   //mengambil data alternatif
        $dataAlternatif = $this->getAllData($table =
        'alternatif');
11.
        foreach ($dataAlternatif->result_array() as
        $alt) {
12.
        wadah = 1;
13.
        foreach($dataKriteria->result_array() as $k){
        $data = $this->getDataById('penilaian', [
        'kd_alt' => $alt['kode'],
         'kd ktr' => $k['kode']
        ]);
```

```
19
15.
        if ($k['tipe'] == 'benefit') {
        $wadah *= (float)$data['nilai'] **
16.
        $nilaiNormalisasi[$k['kode']]
        ['nilai'];
        } else {
        $wadah *= (float)$data['nilai']
17.
        $nilaiNormalisasi[$k['kode']]
        ['nilai'];
18.
        }.
19.
        }.
20.
        $vektorS[$alt['kode']]['nilai'] = $wadah;
        $vektorS[$alt['kode']]['kode'] = $alt['kode'];
21.
22.
        $value['vektor S'] = $vektorS;
23.
  //AKHIR MENGHITUNG NILAI VEKTOR S
  //MENGHITUNG VEKTOR V
  //hitung nilai total vektor S
24.
        totalVektorS = 0;
25.
        foreach ($dataAlternatif->result_array() as
        $a) {
                                                        5
        $totalVektorS += $vektorS[$a['kode']]
26.
         ['nilai'];
27.
28.
        foreach ($dataAlternatif->result_array() as
        $alternatif) {
29.
        $vektorV[$alternatif['kode']]
         ['nilai']=$vektorS[$alternatif['kode']]
        ['nilai']/
30.
        $totalVektorS;
        $vektorV[$alternatif['kode']]['kode'] =
31.
        $alternatif['kode'];
        $value['vektor V'] = $vektorV;
  //AKHIR MENGHITUNG VEKTOR V
  //inisialisasi waktu akhir
33.
        $waktuAkhir = microtime(true);
  //waktu eksekusi script
34.
        $waktuTempuh = $waktuAkhir - $waktuAwal;
35.
        $value['waktu'] = $waktuTempuh;
        return $value;
```

b. Flowgraph

Gambar 2.14 Contoh Flowgraph (Fikry dkk., 2020)

2) Cyclomatic Complexity

Cyclomatic Complexity dikembangkan oleh (McCabe, 1976) yang digunakan untuk mengukur kompleksitas program atau modul dalam waktu yang sama dengan menentukan maksimum independent path yang bisa dilakukan untuk mencakup semua baris program. Pengukuran berdasarkan teori graph dan dihitung berdasarkan karakteristik program yang diuji dalam bentuk flowgraph. Untuk mencari metrik cyclomatic complexity (V(G)) dapat dilakukan dengan menggunakan tiga cara yang berbeda berdasarkan flowgraph.

- a. V(G) = R
- b. V(G) = E N + 2
- c. V(G) = P + 1

Dimana:

V(G) : Nilai dari kompleksitas siklus sebuah grap (*cyclomatic*

complexity graph)

R : Jumlah region di dalam flowgraph

E : Jumlah *edge* N : Jumlah node

P : Jumlah keputusan di dalam flowgraph

Dengan menerapkan contoh di atas, kita dapat memperoleh nilai parameter dari atas, kita menemukan bahwa $R=7,\,E=40,\,N=2$ dan P=6. Dengan mensubstitusikan nilai-nilai ini ke dalam metrik formula yang kita dapatkan:

a.
$$V(G) = R$$

= 7
b. $V(G) = E - N + 2$
= 40 - 35 + 2
= 7
c. $V(G) = P + 1$
= 6 + 1
= 7

Dimana E (edge (sisi)):

Tabel 2.7 Jumlah Edge

			7 Junian Lage		
No	Path	Edge (sisi)	No	Path	Edge (sisi)
1	1-2	1	21	19-20	1
2	2-3	1	22	20-21	1
3	3-4	1	23	21-11	1
4	4-5	1	24	11-22	1
5	5-6	1	25	22-23	1
6	6-7	1	26	23-24	1
7	7-4	1	27	24-25	1
8	4-8	1	28	25-26	1
9	8-9	1	29	26-25	1
10	9-10	1	3	25-27	1
11	10-11	1	31	27-28	1
12	11-12	1	32	28-29	1
13	12-13	1	33	29-30	1
14	13-14	1	34	30-28	1
15	14-15	1	35	28-31	1
16	15-16;15-17	2	36	31-32	1
17	16-18	1	37	32-33	1
18	17-18	1	38	33-34	1
19	18-13	1	39	34-35	1
20	13-19	1	Total E	(edge (sisi))	40

Dimana P:

Tabel 2.8 Tabel Path

No	Node (Simpul)	Jumlah Node
1	1-2-3-4-5-6-7-4-8-9-10-11-12-13-14-15-16-18-13-19-20-21-11-22-	39
	23-24-25-26-25-27-28-29-30-28-31-32-33-34-35	
2	1-2-3-4-5-6-7-4-8-9-10-11-12-13-14-15-17-18-13-19-20-21-11-22-	39
	23-24-25-26-25-27-28-29-30-28-31-32-33-34-35	
3	1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-18-13-19-20-21-11-22-	38
	23-24-25-26-25-27-28-29-30-28-31-32-33-34-35	
4	1-2-3-4-5-6-7-4-8-9-10-11-12-13-14-15-17-18-13-19-20-21-11-22-	39
	23-24-25-26-25-27-28-29-30-28-31-32-33-34-35	
5	1-2-3-4-5-6-7-4-8-9-10-11-12-13-19-20-21-11-22-23-24-25-26-25-	34
	27-28-29-30-28-31-32-33-34-35	
6	1-2-3-4-5-6-7-4-8-9-10-11-12-13-14-15-16-18-13-19-20-21-11-22-	39
	23-24-25-26-25-27-28-29-30-28-31-32-33-34-35	
7	1-2-3-4-5-6-7-4-8-9-10-11-12-13-14-15-16-18-13-19-20-21-11-22-	37
	23-24-25-27-28-29-30-28-31-32-33-34-35	

BAB III METODE PENELITIAN

3. 1 Bahan Penelitian

Bahan penelitian sebagai salah satu acuan referensi yang diambil dari studi literatur berupa *ebook*, jurnal sistem pendukung keputusan mengenai metode SMART, buku-buku mengenai sistem Informasi, jurnal atau buku tentang ikan air tawar serta wawancara pada tempat penelitian.

3. 2 Alat Penelitian

Alat penelitian yang digunakan dalam penelitian meliputi kebutuhan perangkat keras dan perangkat lunak seperti berikut:

A. Kebutuhan perangkat keras

Mulai tahap penelitian sampai dengan tahap implementasi dalam sebuah rancangan program sistem pendukung keputusan menentukan jenis bibit ikan air tawar menggunakan perangkat sebagai berikut:

Tabel 3.1. Perangkat keras yang dibutuhkan

No	Perangkat Keras	Spesifikasi dan Fungsi
1	Laptop	Suatu alat yang terdiri atas satu perangkat yang memiliki papan tombol (<i>keyboard</i>), layar tampilan <i>microprocessor</i> dengan spesifikasi <i>processor</i> AMD
2	Printer	E1-2500 APU with Radeom(TM) HD Graphics Alat yang digunakan untuk mencetak tampilan monitor ke kertas dan informasi yang dicetak depan berupa

B. Kebutuhan perangkat lunak

Untuk membangun sistem pendukung keputusan ini diperlukan beberapa perangkat lunak. Perangkat lunak yang akan digunakan dalam penelitian kali ini adalah:

Tabel 3.2. Perangkat lunak yang dibutuhkan

No	Perangkat Lunak	Deskripsi
1	Ubuntu 18	Sistem operasi yang ter-install pada laptop
2	Geany	Text editor untuk menampilkan kode program yang digunakan dalam penelitian
3	Ganttchart	Software yang digunakan untuk membuat jadwal perencanaan penelitian
4	Libre Office	Software yang digunakan untuk membuat dan mempresentasikan laporan penelitan
6	PHP	Bahas pemrograman yang dipakai
7	MySQL	Software sistem manajemen basis data SQL yang digunakan untuk pemeliharaan
8	Mozilla Firefox	Browser yang digunakan untuk menguji program web
9	Dia Diagram	Software yang digunakan untuk menggambarkan pemodelan sistem.

3. 3 Metode Pengembangan SDLC Waterfall

Metode SDLC terstruktur adalah metode pengembangan sistem dengan membuat tahapan-tahapan dimana setelah selesai satu tahapan baru masuk ke tahapan selanjutnya. Metode ini juga sering dikenal dengan metode *Waterfall* dikarenakan proses pembangunan sistem dilakukan secara bertahap dan tidak diperkenankan untuk kembali ke tahapan yang sudah dilakukan. Pada metode ini tahapan analisis, desain dan implementasi dilaksanakan secara sekuensial yang ditunjukan pada gambar di bawah ini:

Gambar 3.1. Tahap pengembangan sistem (SDLC) Waterfall (Satzinger dkk., 2010)

A. Project Planning Phase

Ruang lingkup terhadap penelitian ini bertempat di Dinas Perikanan Karawang dengan data sebagai berikut:

Tabel 3.3. Tahapan Project Planning Phase

No	Tahapan	Deskripsi
1	Identifikasi masalah	a. Bagaimana cara menentukan jenis bibit ikan air tawar yang tepat untuk budidaya menurut sistem ini ?
		b. Bagaimana menghitung nilai tertinggi serta perankingan pada sistem ini ?
		c. Bagaimana membangun sistem pendukung keputusan dengan menggunakan pengembanganSDLC ?
2	Menghasilkan jadwal proyek	Membuat jadwal proyek yang dijadwalkan untuk penyelesaian
3	Konfirmasi kelayakan proyek	pembuatan sistem Studi kelayakan dalam membangun aplikasi ini harus diperhitungkan sesuai kebutuhan yang ada.
4	Tim proyek	Menentukan tim proyek yang terkait pembuatan sistem
5	Peluncuran proyek	Merupakan jadwal yang telah ditentukan untuk peluncuran sistem yang sudah dibuat

B. Analysis Phase

Di dalam tahapan analisis ini akan menjelaskan teknik yang dilakukan dari setiap tahapan yaitu:

1. Analisis teori

Pada analisis teori ini adalah tahapan untuk menentukan bidang jenis usaha menggunakan metode SMART ke dalam sebuah sistem pendukung keputusan.

Gambar 3.2. Tahapan proses sistem pendukung keputusan (Turban dkk., 2015)

Untuk penjelasan lebih lanjut mengenai tahapan proses sistem pendukung keputusan (SPK) dapat dilihat pada tabel di bawah ini:

Tabel 3.4. Deskripsi tahapan pengambilan keputusan

No	Tal	hapan	Deskrij	ipsi
1	Fas	se intelegensi	Pada	tahapan intelegensi dalam
				nbilan keputusan meliputi scanning
			lingkun	ngan, baik secara intermiten ataupun
			terus	menerus. Intelegensi mencakup
			U	ai aktivitas yang menekankan
			identifi	ikasi situasi atau peluang-peluang
			masalal	h
	a.	Sasaran Organisasional		n organisasional adalah tujuan yang
				diraih pada penelitian untuk
				tukan jenis bibit ikan air tawar.
	b.	Pengumpulan data		pengumpulan data untuk menentukan
				ibit ikan air tawar sebagai berikut:
			a.	Observasi yaitu mengamati tempat
				penelitian terhadap masalah yang
				ada.

	Tahapan	Deskripsi
	•	b. Wawancara yaitu melakukan sesi
		tanya-jawab untuk mendapatkan data dan Sistem Informasi
	c. Identifikasi masalah	Mengidentifikasi permasalahan yang ada
	c. racinimasi masaran	saat pendukung keputusan untuk
		menentukan jenis bibit ikan air tawar.
	d. Kepemilikan masalah	Menentukan pemilik masalah dari penelitian
	e. Klarifikasi masalah	dalam menentukan jenis bibit ikan air tawar.
	e. Klarifikasi masalah	Menentukan permasalahan yang ada pada penelitian dalam menentukan jenis bibit
		ikan air tawar
	f. Pernyataan masalah	Menentukan kalimat permasalahan yang ada
		saat pendukung keputusan dalam
2	Fase desain	menentukan jenis bibit ikan air tawar
2	rase desaili	Pada tahapan desain meliputi penemuan atau mengembangkan dan menganalisis tindakan
		yang mungkin untuk dilakukan
	Formulasi sebuah model	Menentukan model yang digunakan untuk
	N	menentuka jenis bibit ikan air tawar
	Menentukan kriteria untuk	Menentukan kriteria yang dipilih untuk
	dipilih Mencari alternatif	menentukan jenis bibit ikan air tawar Menentukan alternatif yang dipilih untuk
	Wencari arternatii	menentukan jenis bibit ikan air tawar
	Memprediksi dan	Memprediksi dan mengukur hasil akhir pada
	mengukur hasil akhir	sistem pendukung keputusan untuk
3	Fase pilihan	meentukan jenis bibit ikan air tawar Pada tahapan pilihan adalah dibuatnya suatu
3	rase piinian	keputusan yang nyata dan diambil suatu
		komitmen untuk mengikuti suatu tindakan
		tertentu.
	a. Solusi untuk model	Solusi yang dilakukan untuk menentukan
	b. Analisis sensitifitas	jenis bibit ikan air tawar Menganalisis kemungkinan-kemungkinan
	o. Thansis sensitificas	yang dapat terjadi pada saat menentukan
		jenis bibit ikan air tawar
	c. Memilih alternatif terbaik	Memilih alternatif untuk menentukan jenis
		bibit ikan air tawar menggunakan metode yang diusulkan
	d. Perhitungan metode	Perhitungan metode yang diusulkan untuk
	SMART	memilih alternatif terbaik pada menentukan
		jenis bibit ikan air tawar yang tepat adalah
		metode SMART. Adapun tahapan
		perhitungan SMART , yaitu sebagai berikut :
		1. Menghitung Nilai Normalisasi
		2. Menghitung Nilai <i>Utility</i>
	. P	3. Menghitung Nilai Akhir
	e. Rencana implementasi	Menentukan rencana implementasi setelah perhitungan SMART untuk menentukan
		jenis bibit ikan air tawar
4	Fase implementasi	Penerapan terhadapan rancangan sistem
		yang telah dibuat pada tahap perencanaan
		serta pelaksanaan alternatif tindakan yang
	a. Sukses	telah dipilih pada tahap pemilihan. Apabila hasil akhir dari keputusan untuk
	u. Junaca	menentukan jenis bibit ikan air tawar
		dianggap berhasil maka akan dilanjutkan
	b. Gagal	pada proses selanjutnya Apabila hasil akhir dari keputusan untuk

No	Tahapan	Deskripsi
		dianggap gagal maka akan kembali pada
		proses sebelumnya yaitu kembali pada
		perhitungan metode yang diusulkan

2. Analisis sistem

Adapun tahapan dari analisis yang diperoleh yaitu:

Tabel 3.5. Tahapan analysis phase

No	Tahapan	Deskripsi
1	Mengumpulkan ilmu Sistem Informasi / pengumpulan data	Pengumpulan ilmu Sistem Informasi dalam penelitian ini dilakukan dengan du acara yaitu: a. Wawancara b. Observasi
2	Menentukan persyaratan	Menentukan perangkat lunak dan perangkat keras yang sesuai dengan kebutuhan sistem.
3	Membangun prototype	Berikut ini adalah tahapan analisis sistem ajuan sebagai berikut:
		a. System Activities (use case description and actor, scenario use case, use case diagram)b. Class Diagram (class definition and class
		relation)
		C. Object Interaction (sequence diagram)d. Object Behavior (activity diagram)
4	Memprioritaskan	Yaitu kebutuhan sistem pendukung keputusan
	kebutuhan	dalam menentukan jenis bibit ikan air tawar
5	Menghasilkan dan	Perangkat lunak yang digunakan untuk
	mengevaluasi alternatif	membangun aplikasi ini menggunakan perangkat
		lunak open source yang didapatkan secara gratis
		namun ada juga yang berlisensi.
6	Rekomendasi dengan manajemen	Rekomendasi alternatif yang akan dipilih harus melibatkan manajemen terhadap hasil yang akan dipilih.

C. Design Phase

Tahap desain akan menerjemahkan syarat kebutuhan ke sebuah perancangan sistem. Adapun tahapan-tahapannya adalah sebagai berikut:

Tabel 3.6. Tahapan *design phase*

No	Tahapan	Deskripsi
1	Desain basis data	Rancangan <i>database</i> yang akan digunakan
		dalam pembuatan sistem sebagai tempat
		penyimpanan data
2	Desain Kode	Rancangan kode yang digunakan pada basisdata
3	Desain proses	Rancangan tampilan proses-proses dari alur
	-	yang ada pada sistem
4	Desain antarmuka	Rancangan tampilan masukan dan keluaran
		yang akan dioperasikan oleh pengguna.

D. Implementation Phase

Tahap implementasi sistem merupakan tahap dimana sistem siap untuk dioperasikan. Tahap ini terdiri dari empat tahapan yaitu:

Tabel 3.7. Tahapan implementation phase

No	Tahapan	Deskripsi
1	Spesifikasi kebutuhan	Pada tahap ini dimulai dengan menyiapkan
	implementasi sistem	spesifikasi yang dibutuhkan saat implementasi

- T	m 1	
No	Tahapan	Deskripsi
		sistem yang sudah jadi
2	Instalasi perangkat keras dan	Pada tahap ini yaitu menginstalasi perangkat
	perangkat lunak	yang dibutuhkan, perangkat itu terdiri dari
	1 0	perangkat keras dan perangkat lunak.
3	Pelatiha prosedural	Pada tahap ini dilakukan pelatihan terhadap
_	penggunaan sistem	pengguna yang akan menggunakan sistem
	F 90	yang sudah dibuat.
4	Pengujian terhadap sistem	Pada pengujian terhadap sistem dibagi
•	r engajian ternadap sistem	menjadi 2 yaitu:
		5 5
		a. Pengujian Blackbox Testing
		Suatu pendekatan untuk menguji
		apakah setiap fungsi di dalam
		program dapat berjalan dengan
		henar.
		b. Pengujian Whitebox Testing
		83
		Pengujian ini dilakukan pada
		pemantauan perancangan sistem,
		mengetahui cara kerja sistem secara
		internal agar operasi-operasi internal
		pada sistem sesuai dengan spesifikasi
		yang telah ditetapkan.
		yang teran unterapkan.

E. Support Phase

Tahapan terakhir yaitu mengoperasikan sistem yang telah rampung, tahapan ini bertujuan untuk menyempurnakan sistem jika terdapat beberapa kekurangan serta perubahan yang diinginkan pengguna.

BAB IV HASIL DA PEMBAHASAN

4.1 Project Planning Phase

Pada tahap ini dihasilkan rincian dari setiap aktivitas yang dilakukan, mulai dari identifikasi masalah, menghasilkan jadwal proyek, konfirmasi kelayakan proyek, tim proyek, dan peluncuran proyek.

Tabel 4.1 Hasil Project Planni	inq	Phase
--------------------------------	-----	-------

	Tabel 4.1 Hasil Project Planning Phase			
No	Tahapan	Hasil		
1	Identifikasi masalah	 a. Menentukan bibit untuk budidaya ikan air tawar dengan cara mengetahui suhu air, luas kolam, pH air, ketinggian dataran, oksigen terlarut, harga bibit, lama ideal pembesaran dan harga ikan. 		
		b. Dengan adanya sistem pendukung keputusan menentukan bibit untuk budidaya ikan air tawar menggunakan metode SMART diharapkan dapat membantu mengetahui jenis bibit ikan untuk budidaya yang tepat.		
		c. Dengan menggunakan SDLC <i>Waterfall</i> dalam membangun sistem ini dilakukan dengan tahapan dimulai dari <i>project</i> planning phase, analysis phase, design phase, implementation phase dan support phase.		
2	Menghasilkan jadwal proyek	Waktu yang digunakan dalam penelitian ini yaitu dari bulan februari sampai bulan juni, perkiraan waktu yang dibutuhkan dalam membangun aplikasi ini sekitar 4 bulan.		
3	Konfirmasi kelayakan proyek	Ditinjau dari kebutuhan yang ada, maka pembuatan sistem pendukung keputusan ini layak untuk dibuat, karena belum ada sistem yang menentukan jenis bibit ikan untuk budidaya ikan air tawar dengan kriteria yang sudah ditentukan.		
4	Tim proyek	Adapun jumlah anggota dalam tim proyek ini adalah satu orang sebagai <i>programmer</i> sekaligus analis.		
5	Peluncuran proyek	Untuk peluncuran proyek ini, setelah melalui tahapan-tahapan dalam pembuatan sistem ini dijadwalkan pada akhir bulan Mei atau pertengahan bulan Juni.		

4.2 Hasil Analysis Phase

Didalam tahapan analisis ini meliputi analisis teori metode pengambilan keputusan dan analisis menentukan jenis bibit budidaya ikan air tawar yang tepat berdasarkan analisis sistem.

4.2.1. Analisis Teori

Hasil dari analisis teori untk menentukan sistem pendukung keputusan menentukan jenis bibit budidaya ikan air tawar yang tepat menggunakan metode SMART berdasarkan tahapan-tahapan yang ada pada proses pengambilan keputusan, yaitu terdiri dari fase intelegensi, fase desain, fase

pilihan dan fase implementasi, hasil implementasi yang berhasil adalah terpecahkannya masalah dan apabila gagal maka harus kembali ke fase sebelumnya.

1. Fase Intelegensi

Pada fase intelegensi untuk menentukan jenis bibit budidaya ikan air tawar.

	Tabel 4	1.2 Tahapan Fase Intelegensi
No	Tahapan	Hasil
1	Sasaran Organisasi	Sasaran organisasi pada penelitian ini yaitu Dinas Perikanan dan Kelautan Karawang.
2	Pengumpulan Data	Data yang diperoleh yaitu 8 kriteria serta 15 alternatif dalam menentukan jenis bibit budidaya ikan air tawar
3	Identifikasi Masalah	1) Bagaimana cara menentukan jenis bibit ikan air tawar yang tepat untuk budidaya menurut sistem ini ?
		2) Bagaimana menghitung nilai tertinggi serta perankingan pada sistem ini ?
		3) Bagaimana membangun sistem pendukung keputusan dengan menggunakan pengembanganSDLC?
4	Kepemilikan Masalah	Pemilik dari masalah ini adalah masyarakat awam yang ingin memulai beternak atau budidaya ikan air tawar yang masih belum mengerti tentang pemilihan jenis bibit ikan tawar mana yang akan di ternakan.
5	Klasifikasi Masalah	Klasifikasi masalah pada penelitian ini yaitu masalah dalam menentukan jenis bibit ikan air tawar mana yang tepat sesuai dengan kriteria.
6	Pernyataan Masalah	Pemilihan jenis bibit ikan untuk budidaya ikan air tawar yang bisa mencakup kriteria-kriteria yang sesuai dengan kebutuhan.

2. Fase Desain

Pada fase desain untuk menentukan desain sebuah sistem yang akan dibuat pada tempat penelitian.

Tabel 4.3 Tahapan Fase Desain

No	Tahapan	Hasil
1	Formulasi Sebuah Model	Model yang digunakan untuk menentukan jenis bibit ikan air tawar yang tepat untuk dibudidaya yaitu dengan memasukan nilai-
		nilai numerik untuk data dari setiap alternatif dan bobot.
2	Menentukan Kriteria	Kriteria yang didapat adalah :
		1. Suhu air;
		2. Luas kolam;
		3. pH air;
		4. Ketinggian dataran;
		5. Oksigen terlarut;
		6. Harga Bibit;
		7. Lama ideal pembesaran;
		8. Harga jual ikan.
3	Mencari Alternatif	Alternatifnya sebagai berikut :
		1. Bibit Ikan Gurame Soang
		2. Bibit Ikan Gurame Jepang/Jepun

No	Tahapan	Hasil					
		3. Bibit Ikan Lele Mutiara					
		4. Bibit Ikan Lele Sangkuriang					
		5. Bibit Ikan Lele Dumbo					
		6. Bibit Ikan Lele Lokal					
		7. Bibit Ikan Mas Merah					
		8. Bibit Ikan Mas Majalaya					
		9. Bibit Ikan Mas Lokal					
		10. Bibit Ikan Patin Jambal					
		11. Bibit Ikan Patin Muncung					
		12. Bibit Ikan Patin Lawang					
		13. Bibit Ikan Nila Srikandi					
		14. Bibit Ikan Nila Merah					
		15. Bibit Ikan Nila Hitam					
4	Memprediksi Hasil Akhir	Hasil akhir yang didapat yaitu perankingan					
		dimana nilai tertinggi adalah yang dijadikan					
		alternatif terbaik berdasarkan nilai bobo					
		kriteria yang diinginkan.					

3. Fase Pilihan

Pada fase pilihan terdiri dari solusi untuk model, analisis sensitivitas, memilih alternatif terbaik yaitu dengan memasukan perhitungan SMART untuk menentukan alternatif terbaik. Adapun tahapan-tahapannya yaitu:

Tabel 4.4 Tahapan Fase Pilihan

	Tuber ii	· Turiupuri Tuse Tirriuri						
No	Tahapan	Hasil						
1	Solusi Untuk Model	Sasaran organisasi pada penelitian ini yaitu di						
		Dinas Peikanan dan Kelautan Karawang.						
2	Analisis Sensitivitas	Adanya faktor-faktor diluar kriteria yang						
		sudah ditentukan.						
3	Memilih Alternatif Terbaik	Memilih 1 dari 15 alternatif yang telah						
		ditentukan.						
4	Rencana Implementasi	Menentukan rencana implementasi setelah						
	•	perhitungan metode SMART.						

Dari hasil penelitian yang dilakukan di Dinas Perikanan dan Kelautan Karawang, didapat data-data sebagai berikut :

a) Identifikasi Alternatif

Berikut ini adalah alternatif dari jenis bibit ikan air tawar yaitu :

Tabel 4.5 Nama Alertanif Bibit Ikan Air Tawar

No	Index	Alternatif
1	A01	Bibit Ikan Gurami Soang
2	A02	Bibit Ikan Gurami Jepang/Jepun
3	A03	Bibit Ikan Lele Mutiara
4	A04	Bibit Ikan Lele Sangkuriang
5	A05	Bibit Ikan Lele Dumbo
6	A06	Bibit Ikan Lele Lokal
7	A07	Bibit Ikan Mas Merah
8	A08	Bibit Ikan Mas Majalaya
9	A09	Bibit Ikan Mas Lokal
10	A10	Bibit Ikan Patin Jambal
11	A11	Bibit Ikan Patin Muncung
12	A12	Bibit Ikan Patin Lawang
13	A13	Bibit Ikan Nila Srikandi
14	A14	Bibit Ikan Nila Merah
15	A15	Bibit Ikan Nila Hitam

b) Identifikasi Kriteria Pembobotan

Pemberian pembobotan nilai ditentukan oleh pihak ditempat penelitian berdasarkan pemberian pembobotan pada metode SMART sebagai acuan.

Tabel 4.6 Kriteria dan Pembobotan Nilai

No	Index	Kriteria Penilaian	Bobot	Tipe
1	K01	Suhu Air (°C)	90	benefit
2	K02	Luas Kolam (m²)	80	benefit
3	K03	PH Air	90	benefit
4	K04	Ketinggian Dataran (mdpl)	70	benefit
5	K05	Oksigen Terlarut	80	benefit
6	K06	Harga Bibit (Ekor)	70	cost
7	K07	Lama Ideal Pembesaran (Bulan)	80	cost
8	K08	Harga Jual Ikan (kg)	80	benefit
Total	Bobot	, ,	640	•

Tabel 4.7 Data Nilai Alternatif

	Alternatif					Kriteria			
Index	Jenis Bibit	C1	C2	C3	C4	C5	C6	C7	C8
		Suhu Air (°C)	Luas Kolam (m²)	pH Air	Ketinggian Dataran (mdpl)	Oksigen Terlarut	Harga Ekor (/Bibit)	Lama Ideal Pembesaran (Bulan)	Harga Jual Ikan (Kg)
A01	Bibit Ikan Gurami Soang	30	400	7	360	5.5	3500	10	55000
A02	Bibit Ikan Gurami Jepang/Jepun	30	400	7	360	5.5	3000	10	45000
A03	Bibit Ikan Lele Mutiara	29	500	7	600	5.5	500	2	25000
A04	Bibit Ikan Lele Sangkuriang	29	500	7	600	5.5	520	2	23000
A05	Bibit Ikan Lele Dumbo	29	500	7	600	5.5	550	2	24000
A06	Bibit Ikan Lele Lokal	29	500	7	600	5.5	450	2	21000
A07	Bibit Ikan Mas Merah	28.5	300	6.5	350	5.5	650	3	30000
A08	Bibit Ikan Mas Majalaya	28.5	300	6.5	350	5.5	630	3	27000
A09	Bibit Ikan Mas Lokal	28.5	300	6.5	350	5.5	600	3	26000
A10	Bibit Ikan Patin Jambal	28	350	6.7	550	5	750	3	32000
A11	Bibit Ikan Patin Muncung	28	350	6.7	550	5	720	3	30000
A12	Bibit Ikan Patin Lawang	28	350	6.7	550	5	700	3	29000
A13	Bibit Ikan Nila Srikandi	28	300	7	430	5	300	3	28000
A14	Bibit Ikan Nila Merah	28	300	7	430	5	325	3	25000
A15	Bibit Ikan Nila Hitam	28	300	7	430	5	300	3	24000

3.1 Perhitungan Metode SMART

a. Menghitung Normalisasi Bobot

Berdasarkan data-data nilai pembobotan kriteria pada tabel 4.6, maka akan diperbaiki dengan cara :

$$Normalisasi = \frac{bobot}{\sum bobot}$$

Dari persamaan tersebut diperoleh hasil sebagai berikut :

Tabel 4.8 Hasil Normalisasi Bobot SMART

Index	Tabel 4.8 Hasil N		
	Kriteria	Bobot	Normalisasi
K01	Suhu Air (°C)	90	$\frac{90}{610}$ = 0.140625
K02	Luas Kolam (m²)	80	$\frac{80}{610}$ = 0.125
K03	pH Air	90	$\frac{90}{610}$ = 0.140625
K04	Ketinggian Dataran (mdpl)	70	$\frac{70}{610}$ = 0.109375
K05	Oksigen Terlarut	80	$\frac{80}{610}$ = 0.125
K06	Harga Bibit (Ekor)	70	$\frac{70}{610}$ = 0.109375
K07	Lama Ideal Pembesaran (Bulan)	80	$\frac{80}{610}$ = 0.125
K08	Harga Jual Ikan (kg)	80	$\frac{80}{610}$ =0.125

b. Menghitung Nilai *Utility*

Karena tipe kriteria pada penelitian ini ada yang bersifat *benefit* dan *cost*, maka persamaan nya adalah sebagai berikut :

1) Menghitung nilai *utility* untuk tipe kriteria *benefit*, adapun rumusnya sebagai berikut :

$$u_i(ai) = \frac{(C_{out} - C_{min})}{(C_{max} - C_{min})}$$

Keterangan

ui(ai) = nilai *utility* kriteria ke-i untuk alteratif ke-i

Cmax = nilai kriteria maksimal*Cmin* = nilai kriteria minimal*Cout* = nilai kriteria alternatif ke-i

Sebagai contoh untuk tipe kriteria *benefit* dibawah ini , adalah perhitungan nilai *utility* unutk kriteria Suhu Air (K01) dan untuk alternatif Bibit Ikan Gurami Soang (A01), data yang di dapatkan dari tabel 4.7 adalah sebagai berikut :

 $C_{max(K01)}$ = {30;30;29;29;29;29;28.5;28.5;28.5;28;28;28;28;28} = 30 $C_{min(K01)}$ = {30;30;29;29;29;29;28.5;28.5;28.5;28;28;28;28;28;28} = 28

Karena suhu air merupakan benefit kriteria, sehingga:

$$u \atop K01(a1) = \frac{(C_{out} - C_{min})}{(C_{max} - C_{min})} = \frac{(30 - 28)}{(30 - 28)} = 1$$

2) Menghitung nilai *utility* untuk tipe kriteria *cost*, adapun rumusnya sebagai berikut :

$$u_i(ai) = \frac{(C_{max} - C_{out})}{(C_{max} - C_{min})}$$

Keterangan

ui(ai) = nilai utility kriteria ke-i untuk alteratif ke-i

Cmax = nilai kriteria maksimalCmin = nilai kriteria minimalCout = nilai kriteria alternatif ke-i

Sebagai contoh untuk tipe kriteria cost dibawah ini adalahperhitungan nilai utility kriteria Harga Bibit (K06) untuk Alternatif Bibit Ikan Gurami Soang (A1), data didapatkan pada tabel 4.7 adalah sebagai berikut :

 $C_{max(K06)} =$

{3500;3000;500;520;550;450;650;630;600;750;720;700;300;325;300}

= 3500

 $C_{min(K06)} =$

{3500;3000;500;520;550;450;650;630;600;750;720;700;300;325;300}

Karena harga bibit merupakan cost kriteria, sehingga:

$$u \atop K06(a1) = \frac{(C_{\max} - C_{\text{out}})}{(C_{\max} - C_{\min})} = \frac{(3500 - 3500)}{(3500 - 300)} = 0$$

Sehingga menghasilkan nilai *utility* seluruh kriteria dan alternatif sebagai berikut :

Tabel 4.9 Hasil Nilai Utility

				Tube	.1 7.5 11	uom m	ui Ctility		
	Alternatif						Kriteria		
Index	Jenis Bibit	K01	K02	K03	K04	K05	K06	K07	K08
A01	BibitIkan Gurami Soang	1	0.5	1	0.04	1	0	0	1
A02	Bibit IkanGurami Jepang/Jepun	1	0.5	1	0.04	1	0.15625	0	0.705882352941176
A03	Bibit Ikan Lele Mutiara	0.5	1	1	1	1	0.9375	1	0.117647058823529
A04	Bibit Ikan Lele Sangkuriang	0.5	1	1	1	1	0.93125	1	0.058823529411765
A05	Bibit Ikan Lele Dumbo	0.5	1	1	1	1	0.921875	1	0.088235294117647
A06	Bibit Ikan Lele Lokal	0.5	1	1	1	1	0.953125	1	0

	Alternatif						Kriteria		
Index	Jenis Bibit	K01	K02	K03	K04	K05	K06	K07	K08
A07	Bibit Ikan Mas Merah	0.25	0	0	0	1	0.890625	0.875	0.264705882352941
A08	Bibit Ikan Mas Majalaya	0.25	0	0	0	1	0.896875	0.875	0.176470588235294
A09	Bibit Ikan Mas Lokal	0.25	0	0	0	1	0.90625	0.875	0.147058823529412
A10	Bibit Ikan Patin Jambal	0	0.25	0.4	8.0	0	0.859375	0.875	0.323529411764706
A11	Bibit Ikan Patin Muncung	0	0.25	0.4	8.0	0	0.86875	0.875	0.264705882352941
A12	Bibit Ikan Patin Lawang	0	0.25	0.4	8.0	0	0.875	0.875	0.235294117647059
A13	Bibit Ikan Nila Srikandi	0	0	1	0.32	0	1	0.875	0.205882352941176
A14	Bibit Ikan Nila Merah	0	0	1	0.32	0	0.9921875	0.875	0.117647058823529
A15	Bibit Ikan Nila Hitam	0	0	1	0.32	0	1	0.875	0.088235294117647

c. Menghitung Nilai Akhir

Menentukan nilai akhir dari masing-masing alternatif dengan mengalikan nilai yang didapat dari normalisasi nilai kriteria data baku dengan nlai normalisasi bobot kriteria. Kemudian jumlahkan nilai dari perkalian tersebut.

$$u(a_i) = \sum_{j=1}^m u_j(a_i) * w_j$$

Keterangan:

 $u(a_i)$ = nilai total untuk alternatif ke-i

 $uj(a_i)$ = nilai *utility* kriteria ke-j untuk alternatif ke-i

wj = nilai bobot kriteria ke-j yang sudah ternormalisasi

Sehingga didapatkan nilai akhir setiap alternatif sebagai berikut :

- 1) Nilai Akhir Alternatif A1 (Bibit Ikan Gurame Soang) =(0.140625*30)+(0.125*400)+(0.140625*7)+(0.109375*360)+(0.125* 5.5)+(0.109375*3500)+(0.125*10)+(0.125*55000) = 0.598125
- 2) Nilai Akhir Alternatif A2 (Bibit Ikan Gurame Jepang/Jepun) = (0.140625*30)+(0.125*400)+(0.140625*7)+(0.109375*360)+(0.125*5.5)+(0.109375*3000)+(0.125*10)+(0.125*45000) = 0.578450137867647
- 3) Nilai Akhir Alternatif A3 (Bibit Ikan Lele Mutiara) =(0.140625*29)+(0.125*500)+(0.140625*7)+(0.109375*600)+(0.125*5.5)+(0.109375*500)+(0.125*2)+(0.125*25000) = 0.812557444852941

- 4) Nilai Akhir Alternatif A4 (Bibit Ikan Lele Sangkuriang) =(0.140625*29)+(0.125*500)+(0.140625*7)+(0.109375*600)+(0.125*5.5)+(0.109375*520)+(0.125*2)+(0.125*23000) = 0.804520909926471
- 5) Nilai Akhir Alternatif A5 (Bibit Ikan Lele Dumbo) =(0.140625*29)+(0.125*500)+(0.140625*7)+(0.109375*600)+(0.125* 5.5)+(0.109375*550)+(0.125*2)+(0.125*24000) = 0.807171989889706
- 6) Nilai Akhir Alternatif A6 (Bibit Ikan Lele Lokal) =(0.140625*29)+(0.125*500)+(0.140625*7)+(0.109375*600)+(0.125*5.5)+(0.109375*450)+(0.125*2)+(0.125*21000) = 0.799560546875
- 7) Nilai Akhir Alternatif A7 (Bibit Ikan Mas Punten) =(0.140625*28.5)+(0.125*300)+(0.140625*6.5)+(0.109375*350)+(0.1 25*5.5)+(0.109375*650)+(0.125*3)+(0.125*30000) = 0.400031594669118
- 8) Nilai Akhir Alternatif A8 (Bibit Ikan Mas Majalaya) =(0.140625*28.5)+(0.125*300)+(0.140625*6.5)+(0.109375*350)+(0.1 25*5.5)+(0.109375*630)+(0.125*3)+(0.125*27000) = 0.389685776654412
- 9) Nilai Akhir Alternatif A9 (Bibit Ikan Mas Lokal) =(0.140625*28.5)+(0.125*300)+(0.140625*6.5)+(0.109375*350)+(0.1 25*5.5)+(0.109375*600)+(0.125*3)+(0.125*26000) = 0.387034696691176
- 10) Nilai Akhir Alternatif A10 (Bibit Ikan Patin Jambal) =(0.140625*28)+(0.125*350)+(0.140625*6.7)+(0.109375*550)+(0.125*5)+(0.109375*750)+(0.125*3)+(0.125*32000) = 0.418810317095588
- 11) Nilai Akhir Alternatif A11 (Bibit Ikan Patin Muncung) =(0.140625*28)+(0.125*350)+(0.140625*6.7)+(0.109375*550)+(0.125*5)+(0.109375*720)+(0.125*3)+(0.125*30000) = 0.412482766544118
- 12) Nilai Akhir Alternatif A12 (Bibit Ikan Patin Lawang) =(0.140625*28)+(0.125*350)+(0.140625*6.7)+(0.109375*550)+(0.125*5)+(0.109375*700)+(0.125*3)+(0.125*29000) = 0.409489889705882
- 13) Nilai Akhir Alternatif A13 (Bibit Ikan Nila Srikandi) =(0.140625*28)+(0.125*300)+(0.140625*7)+(0.109375*430)+(0.125* 5)+(0.109375*300)+(0.125*3)+(0.125*28000) = 0.420110294117647

- 14) Nilai Akhir Alternatif A14 (Bibit Ikan Nila Merah)
 - =(0.140625*28)+(0.125*300)+(0.140625*7)+(0.109375*430)+(0.125*5)+(0.109375*325)+(0.125*3)+(0.125*25000)
 - = 0.408226390165441
- 15) Nilai Akhir Alternatif A15 (Bibit Ikan Nila Hitam)
 - =(0.140625*28)+(0.125*300)+(0.140625*7)+(0.109375*430)+(0.125*5)+(0.109375*300)+(0.125*3)+(0.125*24000)
 - = 0.405404411764706

Tabel 4.10 Hasil Nilai Akhir Perhitungan Metode SMART

Index	Alternatif	Nilai Akhir
A01	Bibit Ikan Gurami Soang	0.598125
A02	Bibit Ikan Gurami Jepang/Jepun	0.578450137867647
A03	Bibit Ikan Lele Mutiara	0.812557444852941
A04	Bibit Ikan Lele Sangkuriang	0.804520909926471
A05	Bibit Ikan Lele Dumbo	0.807171989889706
A06	Bibit Ikan Lele Lokal	0.799560546875
A07	Bibit Ikan Mas Merah	0.400031594669118
A08	Bibit Ikan Mas Majalaya	0.389685776654412
A09	Bibit Ikan Mas Lokal	0.387034696691176
A10	Bibit Ikan Patin Jambal	0.418810317095588
A11	Bibit Ikan Patin Muncung	0.412482766544118
A12	Bibit Ikan Patin Lawang	0.409489889705882
A13	Bibit Ikan Nila Srikandi	0.420110294117647
A14	Bibit Ikan Nila Merah	0.408226390165441
A15	Bibit Ikan Nila Hitam	0.405404411764706

d. Perangkingan

Berdasarkan hasil perhitungan nilai akhir diatas, dengan mengurutkan nilai data dari yang terbesar hingga yang terkecil diperoleh hasil sebagau berikut :

Tabel 4.11 Hasil Perangkingan Nilai Akhir metode SMART

Rangking	Index	Alternatif	Nilai Akhir
1	A03	Bibit Ikan Lele Mutiara	0.812557444852941
2	A05	Bibit Ikan Lele Dumbo	0.807171989889706
3	A04	Bibit Ikan Lele Sangkurian	0.804520909926471
4	A06	Bibit Ikan Lele Lokal	0.799560546875
5	A01	Bibit Ikan Gurame Soang	0.598125
6	A02	BibitIkan Gurame Jepang/Jepun	0.578450137867647
7	A013	Bibit Ikan Nila Srikandi	0.420110294117647
8	A010	Bibit Ikan Patin Jambal	0.418810317095588
9	A011	Bibit Ikan Patin Muncung	0.412482766544118
10	A012	Bibit Ikan Patin Lawang	0.409489889705882
11	A014	Bibit Ikan Nila Merah	0.408226390165441
12	A015	Bibit Ikan Nila Hitam	0.405404411764706
13	A07	Bibit Ikan Mas Merah	0.400031594669118
14	A08	Bibit Ikan Mas Majalaya	0.389685776654412
15	A09	Bibit Ikan Mas Lokal	0.387034696691176

Dari data pada tabel 4.11, berdasarkan metode perhitungan SMART maka dapat diputuskan bahwa alternatif jenis bibit ikan Lele Mutiara (A03) merupakan alternatif jenis bibit ikan air tawar yang dapat direkomendasikan untuk dibudidaya dengan nilai akhir 0.812557444852941.

4. Fase Implementasi

Pada fase ini adalah fase dimana untuk membuat keputusan itu terjadi dengan hasil yang diperoleh dari nilai yang dijadikan alaternatif terbaik sehingga dapat dipertimbangkan apakah ahsil dari keputusan itu dianggap sukses atau dianggap gagal.

4.2.2. Analisis Sistem

Tahap ini merupakan tahapan yang akan dilakukan untuk mendukung proses pengambilan keputusan melalui sistem terkomputerisasi.

1. Mengumpulkan Informasi

Informasi yang dilakukan selama penelitian yaitu dengan cara wawancara, observasi dan studi literatur dengan memperolah 8 kriteria dan 15 alternatif sebagai data pokok.

2. Menentukan Persyaratan

Persyaratan yang dibutuhkan dalam pembuatan sistem pendukung keputusan ini yaitu instalasi perangkat lunak (web server, mysql sebagai basis data).

3. Membangun Prototipe

1) System Activities (Use Case Description and actor, Scenario and Use Case Diagram)

a. Deskripsi Aktor

Di bawah ini adala aktor beserta deskripsinya yang ada pada sistem ini

Tabel 4.12 Deskripsi Aktor

No. Aktor

Deskripsi

Admin

Orang yang menggunakan sistem pendukung keputusan ini dan mempunyai hak akse penuh terhadap sistem

Pengguna

Orang yang menggunakan sistem pendukung keputusan ini

b. Deskripsi *Use Case*

Di bawah ini adalah deskripsi *use case* yang terdapat pada sistem ini.

Tabel 4.13 Deskripsi Use Case No. Use Case Deskripsi Proses untuk masuk kedalam sistem dengan Login 1. memasukkan username dan password untuk mendapatkan hak akses 2. Daftar Proses membuat akun untuk masuk kedalam sistem 3. Proses untuk keluar dari sistem Logout 4. Kelola Pengguna Proses untuk menambahkan, mengubah atau menghapus data pengguna sistem 5. Kelola Bibit Proses untuk menambahkan, mengubah atau menghapus dara jenis bibit ikan 6. Kelola Kriteria Prosesdata untuk memberikan atau mengubah nilai bobot pada setiap kriteria 7. Kelola Nilai Alternatif Proses untuk menambahkan, mengubah atau menghapus data nilai kecocokan antara alternatif dan kriteria melakukan 8. Keputusan keputusan Proses untuk berdasarkan nilai yang sudah diberikan pada setiap alternatif dengan nilai bobot kriteria yang telah ditentukan, kemudian dihitung dengan menggunakan metode SMART

c. Use Case Diagram

Berikut ini adalah gambaran dari *use case* diagram pada sistem yang akan dibangun.

Gambar 4.1 Use case diagram sistem yang akan dibangun

d. Skenario *Use Case*

Dari *use case* diagram yang sudah didefinisikan diatas, maka dibuat skenario *use cse* seperti keterangan dibawah ini :

1. Skenario Login

Tabel 4.14 Skenario Login

Nama Use Case	: 1	Login				
Skenario	: 1	Aktor <i>login</i> untuk masuk ke halaman utama sistem				
Triggering Event	: 1	Aktor masuk kel	halaman <i>I</i>	Login		
Deskripsi Singkat	: 1	Ketika aktor m	nemasukk	an <i>use</i>	ername dan password,	
					halaman utama	
Aktor		Admin				
Kondisi Sebelum	: 1	Aktor telah terda	aftar sebar	gai Adı	min	
Kondisi Setelah		Masuk kehalama	,	_		
Aliran Aktifitas	Akt	ktor Sistem				
	1.	Aktor kedalam F Utama	masuk Halaman	1.1	Menampilkan halaman <i>login</i>	
	2.	Aktor mengisi 2.1 Validasi username da username dan password , jika ben password dan klik maka sistem aka tombol masuk mengarahkan halaman utama				
Kondisi Kesalahan (Exception Condition)	2.1	Jika aktor salah memasukkan <i>username</i> atau				

2. Skenario Daftar

Tabel 4.15 Skenario Daftar Nama Use Case Daftar Skenario Aktor membuat sebuah akun untuk dapat measuk kedalam sistem **Triggering Event** Aktor menekan tombol Daftar pada halaman login Deskripsi Singkat Ketika aktor belum mempunyai sebuah akun untuk masuk kedalam sistem, maka aktor harus membuat akun dahulu dengan cara mendaftar Aktor Admin Kondisi Sebelum Aktor berada pada halaman Registrasi Kondisi Setelah Aktor berada pada halaman login **Aliran Aktifitas** Aktor Sistem 1. Aktor mengisi data diri pada form buat akun 2. Aktor menekan 2.1 Sistem akan tombol Daftar memeriksa data-data yang sudah dimasukkan pada form buat akun 2.2 Akun baru telah berhasil dibuat 2.3 Sistem menyimpan pengguna data kedalam database Kondisi Kesalahan 2.1 Username yang dimasukan oleh pengguna telah

3. Skenario Logout

(Exception

Condition)

Tabel 4.16 Skenario Logout

database

2.3

dipakai oleh pengguna lain

Sistem tidak menyimpan data pengguna kedalam

Nama Use Case		Logout				
	•	Logout				
Skenario	:	Akttor menekan tomol <i>Logout</i> untuk keluar dari				
		sistem				
Triggering Event		515(611)				
Triggering Event	:	Aktor menekan tombol <i>Logout</i> lalu keluar dari				
		sistem dan menampilkan kembali halaman awal				
Deskripsi Singkat	:	Aktor memeilih <i>Logout</i> dari halaman utama sistem				
F - 8		dan akan kembali ke halaman awal				
A1.						
Aktor	:	Admin				
Kondisi Sebelum	:	Aktor berada didalam sistem				
Kondisi Setelah	•	Aktor berhasil keluar dari sistem dan kembali				
rondisi Setelun	•					
		kehalaman awal				
Aliran Aktifitas	Akto	r Sistem				
	1.	Aktor menekan 1.1 Keluar dari sistem lalu				
		tombol <i>Logout</i> kembali kehalaman				
		awal				
		a wai				
Kondisi Kesalahan						
(Exception						
Condition)						

4. Skenario Kelola Pengguna

Tabel 4.17 Skenario Kelola Pengguna

Tabel 4.17 Skenario Kelola Peliggulia						
Nama Use Case : Kelola Pengguna						
Skenario : Aktor mengelola data pengguna						

Nama Use Case	:	Kelola Pengguna				
Triggering Event	:	Aktor memilih Menu Pengguna				
Deskripsi Singkat	:	Ketika aktor memilih Menu Pengguna, sistem akan				
		menampilkan data pengguna, tambah data pengguna				
		ubah data pengguna dan hapus data pengguna				
Aktor	:	Admin				
Kondisi Sebelum	:	Aktor sudah masuk ke	edalam	sistem		
Kondisi Setelah	:	Aktor berhasil m	ienamb	oah, mengubah atau		
		menghapus data peng	guna			
Aliran Aktifitas	Akto	r	Siste	m		
	1.	Memilih Menu	1.1	Menampilkan		
		Pengguna		halaman data		
				pengguna		
	2.	Klik tombol tambah	2.1	Menampilkan form		
		pengguna		tambah pengguna		
	3.	Mengisi data		tumoum pem88ama		
	٥.	pengguna				
	4.	Klik tombol Simpan	4.1	Validasi data		
	••	ram tombor ompan	4.2	Menyimpan data		
				kedalam <i>database</i>		
	5.	Klik tombol Ubah	5.1	Menampilkan <i>form</i>		
	٥.	Tank tombor Coun	5.1	data yang akan diubah		
	6.	Mengisi data yang		data yang akan araban		
	٥.	akan diubah				
	7.	Klik tombol Simpan	7.1	Validasi data		
	<i>,</i> .	Tank tombor ompun	7.2	Menyimpan data yang		
			/ . _	telah diubah kedalam		
				databae		
	8.	Klik tombol Hapus	8.1	Konfirmasi data yang		
	0.	Klik tollibol Hapus	0.1	akan dihapus		
			0.0	-		
			8.2	Menghapus data yang		
				dipilih pada database		
Kondisi Kesalahan	4.1	Jika ada salah satu da	ıta pad	a form yang tidak terisi,		
(Exception		makan akan menampi				
Condition)	5 4	-	•			
•	7.1			a <i>form</i> yang tidak terisi,		
		makan akan menampi	ıkan pe	esan kesalahan		
	8.1	Jika menekan tombol "cancel" pada saat konfirmasi				
		data akan dihapus, ma				
		1 , -		1		

5. Skenario Kelola Bibit

Tabel 4.18 Skenario Kelola Bibit

label 4.18 Skenario Kelola Bibit					
: K	Kelola Bibit				
: Al	ktor mengelola data jeni	is bibit	ikan		
: Al	ktor memilih Menu Bibi	it Ikan			
: Ke	etika aktor memilih M	Ienu B	Bibit Ikan, maka sistem		
	_ ·				
•	1 10111111				
: Al	ktor sudah masuk kedala	am sist	tem		
: Al	Aktor berhasil menambah, mengubah atau menghapus				
	data jenis bibit ikan				
Aktor	Aktor Sistem				
1.	Memilih Menu Bibit	1.1	Menampilkan		
	Ikan		halaman data jenis		
	bibit ikan				
2.	2. Klik tombol tambah 2.1 Menampilkan				
	: Ko : Al : Ko ak iki : Ao : Al : Al Ada Aktor	 : Kelola Bibit : Aktor mengelola data jeni : Aktor memilih Menu Bibi : Ketika aktor memilih Makan menampilkan data ikan, ubah data bibit ikan : Admin : Aktor sudah masuk kedal : Aktor berhasil menamba data jenis bibit ikan Aktor Aktor Memilih Menu Bibit Ikan 	 : Kelola Bibit : Aktor mengelola data jenis bibit : Aktor memilih Menu Bibit Ikan : Ketika aktor memilih Menu Bakan menampilkan data bibit ikan, ubah data bibit ikan dan ha : Admin : Aktor sudah masuk kedalam sis : Aktor berhasil menambah, mendata jenis bibit ikan Aktor Siste 1. Memilih Menu Bibit 1.1 Ikan 		

Nama Use Case	: I	Kelola Bibit		
	3.	bibit ikan Mengisi data jenis bibit ikan		tambah bibit ikan
	4.	Klik tombol Simpan	4.1 4.2	Validasi data Menyimpan data kedalam <i>database</i>
	5.	Klik tombol Ubah	5.1	Menampilkan data yang akan diubah
	6.	Mengisi data yang akan diubah		
	7.	Klik tombol Simpan	7.1 7.2	Validasi data Menyimpan data yang trelah diubah kedalam <i>database</i>
	8.	Klik tombol Hapus	8.1	Konfirmasi hapus data
			8.2	Menghapus data yang dipilih pada <i>database</i>
Kondisi Kesalahan (Exception	4.1	Jika ada salah satu data pada <i>form</i> yang tidak terisi, makan akan menampilkan pesan kesalahan		
Condition)	7.1	Jika ada salah satu data pada <i>form</i> yang tidak terisi, makan akan menampilkan pesan kesalahan		
	8.1	Jika menekan tombol "cancel" pada saat konfirmasi data akan dihapus, maka data tidak akan terhapus		

6. Skenario Kelola Kriteria

Tabel 4.19 Skenario Kelola Kriteria

• Kelola Kriteria

Nama Use Case	<u>: ł</u>	Kelola Kriteria					
Skenario	: 1	Aktor mengelola data kriteria					
Triggering Event	: A	Aktor memilih Menu Kriteria					
Deskripsi Singkat	: I	Ketika aktor memilih Me	enu Kr	iteria, maka sistem akan			
				nbah data kriteria, ubah			
		lata kriteria dan hapus da					
Aktor		Admin					
Kondisi Sebelum	: 1	Aktor sudah masuk kedal	am sis	tem			
Kondisi Setelah	: 1	Aktor berhasil menamba	h, me	ngubah atau menghapus			
		lata kriteria		0 1			
Aliran Aktifitas	Akt	or	Siste	m			
	1.	Memilih Menu	1.1	Menampilkan			
		Kriteria		halaman data kriteria			
	2.	Klik tombol tambah	2.1	Menampilkan <i>form</i>			
		kriteria		tambah kriteria			
	3.	Mengisi data kriteria					
	4.	Klik tombol Simpan	4.1	Validasi data			
			4.2	Menyimpan data			
				kedalam <i>database</i>			
	5.	Klik tombol Ubah	5.1	Menampilkan data			
		_		yang akan diubah			
	6.	Mengisi data yang					
akan diubah							
	7.	Klik tombol Simpan	7.1 7.2	Validasi data			
		Menyimpan data yang					
				trelah diubah kedalam			
	0	IZIII. tambal III.	0.1	database			
	8.	Klik tombol Hapus	8.1	Konfirmasi hapus data			
			8.2	Menghapus data yang			

Nama Use Case	: K	Kelola Kriteria
		dipilih pada <i>database</i>
Kondisi Kesalahan (Exception	4.1	Jika ada salah satu data pada <i>form</i> yang tidak terisi, makan akan menampilkan pesan kesalahan
Condition)	7.1	Jika ada salah satu data pada <i>form</i> yang tidak terisi, makan akan menampilkan pesan kesalahan
	8.1	Jika menekan tombol "cancel" pada saat konfirmasi data akan dihapus, maka data tidak akan terhapus

7. Skenario Kelola Nilai Alternatif

Tabel 4.20	Skopario	Kolola	Nilai	Alternatif
Tabel 4.70	Skenario	Neioia	ıvılar	Апеглані

Nama Use Case	: K	Celola Nilai Alternatif							
Skenario		ktor mengelola nilai alt	ernatif						
Triggering Event		Aktor memilih Menu Keputusan							
Deskripsi Singkat		etika aktor memilih Menu Keputusan, maka sistem							
1 0									
	k	eputusan, ubah data							
		eputusan							
Aktor		dmin							
Kondisi Sebelum	: A	ktor sudah masuk kedal	am sis	tem					
Kondisi Setelah	: A	ktor berhasil menamba	h, me	ngubah atau menghapus					
		ata keputusan	ŕ						
Aliran Aktifitas	Akto	or	Siste	em					
	1.	Memilih Menu	1.1	Menampilkan					
	,	Keputusan	,	halaman list data nilai alternatif					
	2.	Klik isi nilai	2.1	Menampilkan <i>form</i> nilai alternatif					
	3.	Mengisi <i>form</i> nilai alternatif							
	4.	Klik tombol Simpan	4.1	Validasi data					
		1	4.2	Menyimpan data					
				kedalam <i>database</i>					
	5.	Klik tombol Ubah	5.1	Menampilkan data yang akan diubah					
	6.	Mengisi data yang akan diubah		<i>y</i> • <i>8</i> • • • • • •					
	7.	Klik tombol Simpan	7.1	Validasi data					
		1	7.2	Menyimpan data yang trelah diubah kedalam <i>database</i>					
	8.	Klik tombol Hapus	8.1	Konfirmasi hapus data					
	٥.	- IIII tomoor riupuo	8.2	-					
			8.2	Menghapus data yang dipilih pada <i>database</i>					
	4.1	Jika ada salah satu data pada <i>form</i> yang tidak terisi, makan akan menampilkan pesan kesalahan							
	7.1	Jika ada salah satu data pada <i>form</i> yang tidak terisi, makan akan menampilkan pesan kesalahan							
	8.1	Jika menekan tombol data akan dihapus, ma	"canc ika dat	el" pada saat konfirmasi a tidak akan terhapus					

8. Skenario Keputusan

	Ta	ıbel 4.21 Skenario Keputusan			
Nama Use Case	: K	Eeputusan			
Skenario	b	ktor melakukan proses pengambilan keputusan erdasarkan data yang telah didapat dan dihitung engan menggunakan metode SMART			
Triggering Event	: A	ktor memilih Menu Keputusan , lalu menekan tombol mbil keputusan			
Deskripsi Singkat	: K al sa d	etika aktor memilih Menu Keputusan , maka sistem kan menampilkan data-data penilaian yang ada lalu kat menekan tombol ambil keputusan, maka lakukanlah proses pengambilan keputusan oleh sistem erdasarkan metode SMART			
Aktor	: A	dmin, Pengguna			
Kondisi Sebelum		ktor telah masuk kedalam sistem			
Kondisi Setelah	: A	ktor mengetahui hasil keputusan			
Aliran Aktifitas	Akto	r Sistem			
	1.	Memilih Menu 1.1 Menampilkan Keputusan halaman keputusan			
	2.	Klik tombol Ambil 2.1 Melakukan proses Keputusan Metode SMART berdasarkan data-data yang ada menggunakan metode perhitungan SMART 2.2 Menampilkan perangkingan data hasil perhitungan			
Kondisi Kesalahan (Exception Condition)	2.1	Jika ada <i>field</i> data nilai alternatif yang kosong atau tidak terisi, maka tidak dapat melakukan proses pengambilan keputusan			
	3.1	Jika ada <i>field</i> data nilai alternatif yang kosong atau tidak terisi, maka tidak dapat melakukan proses pengambilan keputusan			

2) Class Diagram (Class Relation, Definition Class)

a. Class Diagram

Class diagram menampilkan class-class yang digunakan didalam aplikasi yang sedang dikembangkan, dalam hal ini class diagram memberikan gambaran tentang aplikasi dan relasi yang terjadi didalamnya.

Gambar 4.2 Class diagram pada sistem yang akan dibangun

b. Deskripsi Class Diagram

Tabel 4.22 Deskripsi Class Diagram

No.	Nama Kelas	Deskripsi	_
1.			_
2.			
3.			
4.			
5.			
6.			

3) Object Interaction (Sequence Diagram)
Sequence diagram menjelaskan interaksi antar objek yang disusun dalam suatu urutan tertentu. Diagram ini memperlihatkan tahap demi tahap apa yang seharusnya terjadi untuk menghasilkan sesuatu didalam use case.

a. Sequence Diagram Login Gambar 4.3 Sequence Diagram Login

b. Sequence Diagram Daftar Gambar 4.4 Sequence Diagram Daftar

c. Sequence Diagaram Logout

Gambar 4.5 Sequence Diagaram Logout

d. Sequence Diagram Kelola Pengguna

Gambar 4.6 Sequence Diagram Kelola Pengguna

e. Sequence Diagram Kelola Bibit Gambar 4.7 Sequence Diagram Kelola Bibit

f. Sequence Diagram Kelola Kriteria

Gambar 4.8 Sequence Diagram Kelola Kriteria

- g. Sequence Diagram Kelola Nilai Alternatif
 Gambar 4.9 Sequence Diagram Kelola Nilai Alternatif
- h. Sequence Diagram Keputusan Gambar 4.10 Sequence Diagram Keputusan
- 4) *Object Berhaviour (Activity Diagram) Activity diagram* digunakan untuk mendokumentasikan kondisi atau keadaan yang bisa terjadi terhadap sebuah *class* dan kegiatan apa saja yang dapat merubah kondisi tersebut .
- a. Activity Diagram Login Gambar 4.11 Activity Diagram Login
- b. *Activity Diagram* Daftar Gambat 4.12 *Activity Diagram* Daftar

c. Activity Diagram Logout

Gambar 4.13 Activity Diagram Logout

d. Activity Diagram Kelola Pengguna

Gambar 4.14 Activity Diagram Kelola Pengguna

e. Activity Diagram Kelola Bibit

Gambar 4.15 Activity Diagram Kelola Bibit

f. Activity Diagram Kelola Kriteria

Gambar 4.16 Activity Diagram Kelola Kriteria

g. Activity Diagram Kelola Nilai Alternatif

Gambar 4.17 Activity Diagram Kelola Nilai Alternatif

h. *Activity Diagram* Keputusan Gambar 4.18 *Activity Diagram* Keputusan

4.3 Design Phase

Pada tahapan ini akan dijelaskan perancangan desain anatarmuka dan database yang merupakan satu kesatuan yang sangat penting. *Database* berfungsi untuk menyimpan data, data yang ada dalam *database* diolah untuk mendapatkan informasi yang diinginkan. Sedangkan tampilan antarmuka digunakan untuk mempermudah dan mempercantik halaman yang digunakan.

A. Desain Basisdata

1. Rancangan Tabel

Berikut ini adalah rancangan tabel yang akan digunakan untuk menyimpan data dalam pembuatan sistem yang akan dibangun.

Tabel 4.23 Rancangan Tabel

No.	Nama Tabel	Deskripsi
1.	tb_alternatif	Master
2.	tb_kriteria	Master
3.	tb_penilaian	Transaksi
4.	tb_user	Master

2. Tabel Alternatif

DBMS yang diguanakan : MySQL
Nama Basisdata : db_ikan
Nama Tabel : tb_alternatif
Fields Kunci : kode
Indeks Primer : kode
Indeks Sekunder : -

Metode Pengurutan Data : Ascending Tipe Tabel : Master

Tabel 4.24 Tabel Alternatif

No	Nama Fields	Tipe	Ukuran	Deskripsi
1	kode	Varchar	4	Primary Key
2	nama	Text	-	Jenis Alternatif

3. Tabel Kriteria

DBMS yang diguanakan : MySQL
Nama Basisdata : db_ikan
Nama Tabel : tabel_kriteria
Fields Kunci : kode
Indeks Primer : kode
Indeks Sekunder :
Matoda Pangurutan Data : Ascending

Metode Pengurutan Data : Ascending Tipe Tabel : Master

Tabel 4.25 Tabel Kriteria

	Tuber N25 Tuber refrestu					
No	Nama Fields	Tipe	Ukuran	Deskripsi		
1	kode	Varchar	4	Primary Key		
2	nama	Varchar	20	Nama dari kriteria		

No	Nama Fields	Tipe	Ukuran	Deskripsi
3	tipe	Varchar	20	Tipe atau jenis kriteria
4	bobot	Int	3	Nilai bobot per kriteria

4. Tabel Penilaian

DBMS yang diguanakan : MySQL Nama Basisdata : db_ikan Nama Tabel : tb_penilaian

Fields Kunci : kd_alt, kd_ktr, nilai

Indeks Primer : id

Indeks Sekunder : kd_alt, kd_ktr Metode Pengurutan Data : Ascending Tipe Tabel : Transaksi

Tabel 4.26 Tabel Penilaian

No	Nama Fields	Tipe	Ukuran	Deskripsi
1	id	Int	11	Primary Key
2	kd_Alt	Varchar	4	Foreign Key
3	kd_Ktr	Varchar	4	Foreign Key
4	nilai	Float	11	Nilai dari setiap alternatif

5. Tabel *User*

DBMS yang diguanakan : MySQL Nama Basisdata : db_ikan Nama Tabel : tb_user

Fields Kunci : username, role_id

Indeks Primer: usernameIndeks Sekunder: role_idMetode Pengurutan Data: AscendingTipe Tabel: Master

Tabel 4.27 Tabel User

No	Nama Fields	Tipe	Ukuran	Deskripsi
1	id	Int		Auto increment
2	username	Varchar		Primary Key
3	nama	Text		Nama pengguna
4	password	Varchar		Password untuk masuk
	-			kedalam sistem
5	role_id	Int		Foreign Key

B. Desain Kode (Primary Key)

Berikut ini adalah desain kode dari perancangan tabel pada sistem yang akan dibangun :

1. Tabel Alternatif

Kode : A XX Nomor urut Kode untuk alternatif

2. Tabel Kriteria

Kode : K XX

Nomor urut Kode untuk kriteria

C. Desain Antarmuka

Berikut ini adalag beberapa desain antarmuka yang dibuat pada sistem :

1. Desain Tampilan Halaman Admin

1	Logo		Home Peng	guna Alternati:	f Kriteria Ter	ntang Ban	tuan Logout
Keco	cokan Kriteri	a Dengar	ı Alternatif				
No Kode Kriter		ia	Tipe	Bob			
An	nbil Keputusan						
Nama Bibit : Kode : Ubah Hapus Nama Bibit : Kode : Ubah Hapus						Tambah Alternatif ama Bibit : ode : Ubah Hapus	
Krite	ria						Tambah Kriteria
No	Kode	Kriter	ia	Tipe		Bobot	
Peng	guna					1	Tambah Pengguna
No	Username		Nama		Aksi		
					Ubah H	<u>Iapus</u>	
					1		

Gambar

D. Desain ProsesGambar dibawah ini merupakan desain proses kelola data master utama pada sistem.

Gambar 4. Desain Proses Sistem

4.4 Implementation Phase

Didalam tahap ini, dlakukan proses instalasi sistem, pelatihan prosedural pengguanaan sistem dan pengujian sistem pada komputer.

4.4.1. Instalasi Sistem

- 1. Instalasi Geany
- 2. Instalasi
- 3. Instalasi sistem dalam localhost

4.4.2. Pelatihan Prosedural

4.4.3. Pengujian Sistem

Pengujian sistem digunakan untuk menguji apakah sistem yang telah dibuat telah berjalan dengan benar dan sesuai.

- 1. Pengujian *White Box*
- a. Pseudo code
- b. Flowgraph
- c. *Cyclomatic Complexity* V(G)
- d. Independent Path

2. Pengujian *Black Box*

Black box testing adalah pengujian yang dilakuka hanya mengamati hasil eksekusi melalui data uji dan memriksa fungsional dari perangkat lunak. Black box testing hanya menguji fungsionalitas tanpa mengetahui apa sesuangguhnya yang terjadi dalam proses *input* dan *output*. Black box diuji oleh Kepala Bidang Budidaya.

4.5 Support Phase

Support phase pada tahapan ini dilakukan pengecekan dan pemeliharaan terhadap aplikasi untuk menentukan kesalahan dan segala kemungkinan yang akan menimbulkan kesalahan sesuai dengan spesifikasi yang telah ditentukan. Yaitu tampilan atau gambaran sebuah program aplikasi yang nantinya akan digunakan untuk menentukan jenis bibit budidaya ikan air tawar yang tepat. Tahapan dukungan ini melakukan pemeliharaan dengan pengecekan terhadap sistem setiap satu bulan sekali dengan jangka waktu selama satu tahun, dan selanjutnya pemeliharaan sistem dilakukan ketika ada laporan dari pengguna.

DAFTAR PUSTAKA

- Ashari, Muhammad., Arini., Mintarsih, Fitri. 2017. *Aplikasi Pemilihan Ikan Air Tawar dengan Metode MOORA Entropy.* Volume: 01, Number: 02, October 2017 ISSN 2579-5341.
- Fikry, Ibnu Ahsanul., Purba, Arif Budimansyah., Dedih. Penerapan Metode WP dan SMART Dalam Menentukan Varietas Ara (Ficus Carica L.) yang Tepat Berbasis Web [skripsi]. Karawang(ID): STMIK Kharisma Karawang.
- Fitrony, Fachri Ayudi., Marisa, Fitri., Wijaya, Indra Darma. 2019. Sistem Pendukung Keputusan Rekomendasi Budidaya Ikan Air Tawar Menggunakan Metode Topsis Dan Analisis Keuangan Payback Periode. ISSN: 2085 3092.
- Galin, Daniel. 2004. *Software Quality Assurance Pearson education Limited*. ISBN 0201709457
- Goodwin, P., Wright G. 2005. Decision Analysis for Management Judgment 3rd Edition.
- Kosasi, Sandy., Kuway, Susanti M., Yuliani, I Dewa Ayu. 2015. Perancangan Sistem Perangkat Lunak Penunjang Keputusan Memilih Bibit Ikan Air Tawar.
- Kusmiran, Ade Rikayandi. 2014. *Kawasan Budidaya Ikan Air Tawar di Bukit Matok Kabupaten Melawi*. Vol. 2, No. 2.
- Lumetut, H. B., Hartati, S. 2015. *Sistem Pendukung Keputusan untuk Memilih Budidaya Ikan Air Tawar Menggunakan AF-TOPSIS*. Vol.9, No.2, July 2015, pp. 197~206 ISSN: 1978-1520.
- Mashur, Dadang., Azhari F. M., Zahira, P. 2020. *Pemberdayaan Masyarakat Melalui Pengem bangan Budidaya Ikan Air Tawar di Kabupaten Pasaman*. Vol. 13, No. 1 Juni 2020, Hal. 172-179 E-ISSN 2528 7575.
- Mudjiman, Ahmad. Makanan Ikan. Jakarta : *Penebar Swadaya Wisma Hijau*, 2008.
- Pangabiruan, G. R., Windarto, A. P., Mustika, W. P., Wanto, A. 2019. *Pemilihan Jenis Sapi bagi Peternak Sapi Potong dengan Metode SMART*. Volume: 03, Number: 01, April 2019 ISSN 2598-6341.
- Risawandi, & Rahim, R. (2016). Study of the Simple Multi-Attribute RatingTechnique For Decision Support. International Journal of Scientific Research in Science and Technology (IJSRST), 2(6), 491–494.
- Satzinger JW, Jackson RB, Burd SD. 2010. System Analysis And Design in A Changing World, Boston, MA: Course Technology.

- Soebroto, A., Hartati, Sri. 2018. *Penentuan Jenis Ikan Air Tawar Untuk Usaha Pembesaran Menggunakan Multicriteria Decision Making* (MCDM).
- Syam, Vera Arnelis., Permana, Randy., Lusinia, Shary Armonitha. 2018. Perancangan Aplikasi Sistem Pendukung Keputusan Pemilihan Ikan Budidaya Air Tawar Menggunakan Metode Simple Additive Weight (SAW) Berbasis Web. Vol. 5, No. 1, Juni 2018, Hal.130-142 ISSN :2356-0010
- Turban E., Aronson, E. J., Liang, P. T. 2005. *Decision Support System and Intelligent Systems*. Edisi 7 jilid 1. Yogyakarta: Andi.
- Ubaidillah, Rizqi Muh. 2018. *Sistem Informasi Pemasaran Ikan Tawar Menggunakan Metode SAW*. Simki-Techsain Vol. 02 No. 06 Tahun 2018 ISSN: 2599-3011
- Zaen, M. T. Asri., Sunaryo., Wijono. (2014). *Sistem Pendukung Keputusan untuk Investasi Perumahan Area Malang Menggunakan P Algoritma Bayesian*. Jurnal EECCIS, 8(1), 13–18. http://jurnaleeccis.ub.ac.id/index.php/eeccis/article/view/230