SMART INDIA HACKATHON 2024 CropCureAI

- Problem Statement ID 1638
- Problem Statement Title- Al-Driven Crop
 Disease prediction and management System
- Theme- Agriculture, Foodtech & Rural
 Developement
- PS Category- Software
- Team ID- 28
- Team Name Sleepless Coders

CropCureAI

Proposed Solution:

• <u>Detailed explanation of the proposed solution</u>: CropCareAl is an Al-driven platform providing crop recommendations, fertilizer suggestions, and disease detection through a mobile and webbased app. It uses machine learning to analyze soil data, environmental conditions, and crop images for actionable insights.

How it addresses the problem:

- Early Disease Detection: Identifies plant diseases from leaf images, helping to prevent crop loss.
- Informed Recommendations: Suggests optimal crops and fertilizers based on soil and climate data.
- User-Friendly Access: Accessible on multiple platforms, ensuring ease of use for farmers.

Innovation and uniqueness of the solution:

- Comprehensive Integration: Combines crop, fertilizer, and disease management in one tool.
- Real-Time Analysis: Utilizes real-time data for accurate, location-specific recommendations.
- Scalable and Adaptable: Can expand to include more crops and conditions, tailored to local needs.

TECHNICAL APPROACH

TECHNOLOGIES:

- Python (Flask) is used for backend development, with machine learning models built using scikit-learn and PyTorch.
- The frontend is created using HTML, CSS (with Bootstrap for styling), and JavaScript.
- Machine learning models like Random Forest, SVM, and XGBoost provide crop and fertilizer recommendations.
- A deep learning model using PyTorch detects plant diseases, with CSV files handling data input and Flask managing user interactions.

METHODOLOGIES:

- Data Handling: Collect and prepare soil, crop data, and plant images, storing them in CSV files for processing.
- **Model Training:** Train machine learning models (Random Forest, SVM, XGBoost) for recommendations and a PyTorch deep learning model for disease detection.
- Backend Integration: Use Flask to integrate models, manage user requests, and coordinate interactions between the frontend and backend.
- Frontend Development: Build a user-friendly interface with HTML, CSS (Bootstrap), and JavaScript to facilitate interaction and display recommendations and disease detection results.

FEASIBILITY AND VIABILITY

Analysis of the feasibility of Potential challenges and the idea

- Technical: Uses established ML models and real-time data APIs.
- Operational: User-friendly on web platforms.
- Economic: Cost-effective development with potential revenue from premium features.

risks

- Data Quality: Inaccurate or inconsistent user data.
- Adoption: Limited access internet techor savviness among farmers.
- Model Accuracy: Need for continuous updates and training for high accuracy.

Strategies for overcoming these <u>challenges</u>

- Data Improvement: Clear data guidelines entry and partnerships for better data quality.
- Training and Support: Educate via workshops and farmers develop offline features.
- Updates: Regular Model updates with new data and feedback loops for accuracy improvement.

IMPACT AND BENEFITS

<u>IMPACT:</u>

- Informed Decision-Making: Farmers will be empowered to make data-driven choices, reducing guesswork and increasing productivity.
- Increased Yield: Optimized crop and fertilizer recommendations can lead to better harvests and improved food security.
- Cost Savings: Efficient use of resources, such as fertilizers and soil, helps farmers reduce unnecessary expenses.
- Accessible Technology: Al-powered tools provide advanced solutions to even small-scale farmers, making tech-driven farming accessible to all.

BENIFITS:

- Social: It enhances the livelihood of farmers by improving productivity, contributing to better living standards in farming communities.
- **Economic**: Increased yields and optimized resource use lead to higher profits and reduced costs for farmers.
- Environmental: Sustainable farming practices minimize environmental degradation by promoting precise fertilizer use and reducing waste.
- Food Security: Improved agricultural practices can contribute to feeding growing populations with healthier and more abundant crops.

RESEARCH AND REFERENCES

- 1. https://youtu.be/mB28V5sVCYA?si=3yYg3Uy0soZeJqnj
- 2. https://youtu.be/XJc5wqj06DY?si=sgWgXImU0TOfKEna
- 3. https://youtu.be/dpVyIFjT-Cw?si=wwPIpr9A2VLLVj_c
- 4. https://youtu.be/9LsazMZwndU?si=M3KXTEQEYKh8JETm