PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10302696 A

(43) Date of publication of application: 13 . 11 . 98

(51) Int. CI

H01J 37/153

G03F 7/20

G21K 5/04

H01J 37/141

H01J 37/305

H01L 21/027

(21) Application number: 09105790

(22) Date of filing: 23 . 04 . 97

(71) Applicant:

NIKON CORP

(72) Inventor:

NAKASUJI MAMORU SHIMIZU HIROYASU

(54) ELECTRON BEAM PROJECTION LENS

(57) Abstract:

PROBLEM TO BE SOLVED: To prevent the deterioration of the natural aberration characteristic of a projection lens by controlling a magnetic field on a mask and/or a sample surface to reduce the imaging aberration, and forming a crossover in a point where the electron beam incident on a first projection lens internally divides the distance between the mask and the sample in a prescribed ratio.

SOLUTION: A magnetic field on a mask and/or a sample surface is controlled by a projection lens system for contracting and transferring the pattern of the mask to the sample surface in 1/N by use of two stages of projection lenses, or a first lens 3 and a second lens 4 to reduce the imaging aberration. A crossover is formed in a point where the distance between the mask and the sample is internally divided in N:1 by the electron beam incident on the first lens 3. Even when the main plane of the projection lens is moved by an additional magnetic field, for example, the magnetic field by the third lens 1 and the fourth lens 7, the crossover is formed in a prescribed position on the basis of the moving quantity, whereby the aberration can be reduced.

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-302696

(43)公開日 平成10年(1998)11月13日

(51) Int.Cl. ⁶	識別記号	FI
H01J 37/15	33	H 0 1 J 37/153 Z
G03F 7/20	504	G03F 7/20 504
G21K 5/04		G 2 1 K 5/04 M
H01J 37/14		H01J 37/141 Z
37/30		37/305 B
31700	,,,	審査請求 未請求 請求項の数10 OL (全 6 頁) 最終頁に続く
		(TAX) ((FFE) 000004110
(21)出願番号	特顧平9-105790	(71)出顧人 000004112
		株式会社ニコン
(22)出顧日	平成9年(1997)4月23日	
		(72)発明者 中筋 護
		東京都千代田区丸の内3丁目2番3号 株
		式会社ニコン内
		(72)発明者 清水 弘泰
		東京都千代田区丸の内3丁目2番3号 株
		式会社ニコン内

(54) 【発明の名称】 電子線投影レンズ

(57)【要約】

収差が少ない電子線の投影レンズを用い、 【課題】 更に試料と/又はマスク面上の磁場を制御する事によ り、より収差の少ないレンズ系を得ようとすると、レン ズの満たすべき磁場条件が変化し、収差が増してしま う。本発明は、試料やマスク面上の磁場を制御する事に よりレンズの磁場条件が変化しても、収差が少なく、よ り良い特性が得られる電子線投影レンズ系を提供する事 にある。

【解決手段】 所定の位置にクロスオーバを形成するよ うに、マスクを発散光で照射する。また、軸外の副視野 の像を作る場合にはマスクや試料に電子線の主光線が垂 直に入射するようにし、更に複数の偏向器を設け、これ らを最適に動作させ、収差を低減した。

【特許請求の範囲】

【請求項1】 マスクのパターンを2段の投影レンズー -第1の投影レンズと第2の投影レンズー-を用いて試 料面に1/Nに縮小転写する投影レンズ系であって、マ スク及び/又は試料面での磁場を制御することにより結 **像収差を低減し、且つ、第1の投影レンズに入射する電** 子線が上記マスクと試料間をN:1に内分する点でクロ スオーバを形成するようにすることを特徴とする電子線 投影レンズ。

1

【請求項2】 第3のレンズをマスクの前段に配して第 10 1の投影レンズと同一方向の軸上磁場を発生させ、第4 のレンズを試料面の後段に配して第2の投影レンズと同 一方向且つ第1、第3のレンズとは逆方向の軸上磁場分 布を発生させ、これによりマスク又は試料面での磁場を 制御することを特徴とする請求項1記載の電子線投影レ ンズ

【請求項3】 請求項2において、第4のレンズの代わ りに、強磁性体の板を設けたことを特徴とする電子線投 影レンズ。

【請求項4】 請求項1乃至3の電子線投影レンズであ 20 って、ひとつの視野を複数の副視野に分割し、各副視野 毎に光学系の補正を行いながら転写を行うための電子線 投影レンズにおいて、光軸から離れた副視野を転写する ために2段の少なくともX偏向器をマスクの後段に設け てマスクから垂直方向に射出された主光線がクロスオー バを通るよう補正し、且つ、2段の少なくともX偏向器 を試料の前段に設けて上記クロスオーパを通ってきた主 光線が試料に垂直入射するよう補正を行うことを特徴と する電子線投影レンズ。

【請求項5】 請求項4において、複数個の偏向器をマ 30 スクとクロスオーバ間に設け、更に複数個の偏向器をク ロスオーバと試料間に設け、主光線がマスクから光軸に 平行に出射された副視野の像が試料面で最小の収差とな るよう、上記それぞれ複数個の偏向器の配置、偏向強度 あるいは回転方向の偏向角を最適化することを特徴とする る電子線投影レンズ。

【請求項6】 請求項1乃至5において、クロスオーバ - を中心とした後段のレンズのN倍の相似形は前段のレ ンズとクロスオーパーを中心として点対称になっている 事を特徴とする電子線投影レンズ

【請求項7】 請求項1乃至6において、マスクを発散 性の電子線で照射することを特徴とする電子線投影レン ズ。

【請求項8】 請求項7において、マスクの前段に2段 の少なくともX偏向器を設けて主光線をマスクに垂直に 入射するようにした事を特徴とする電子線投影レンズ。 【請求項9】 マスクのパターンを2段の投影レンズー -第1の投影レンズと第2の投影レンズーーを用いて試 料面に1/Nに縮小転写する投影レンズ系であって、前 記2段のレンズは対称磁気ダブレット条件を満足する対 50 実的であるため、マスクのパターンを結像系の許容収差

称磁気ダブッレット型レンズであり、マスク及び/又は 試料面での磁場を制御することにより結像収差を低減す る電子線投影レンズにおいて、試料面を所定の位置より 離すことで収差を低減する電子線投影レンズ。

【請求項10】 請求項9において、光軸外の副視野像 の試料上での垂直入射条件外れを補正するため、クロス オーバから試料までの間に2段の少なくともX偏向器を 備える電子線投影レンズ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は光ステッパーで形成 できないような微細な線幅を持つ高密度パターンを高ス ループットで形成するリソグラフィ装置に使われる電子 光学系に関するものである。特には、マスクと試料を投 影光学系の磁場内に浸漬する事により高性能結像特性、 ひいては高スループット特性を得ようとする電子線光学 系に関する物である。

【0002】尚、本明細書においては、電子光学系の要 素部品の位置関係の記述として、電子線源(例えば電子 銃)に近い方を前段、試料(例えばウェハ)に近い方を 後段という表現を用いている。また、これらを具体的に 表す為に2座標軸をレンズの機械的な中心軸にとり、2 = 0 の原点を試料面とし、電子線源方向を正の値にとっ た。更に、後述の主視野方向をX軸に、これに垂直な方 向をY軸とした。

[0003]

【従来の技術】従来のこの種の高精細パターンを高スル プットをもって形成する技術としては、対称磁気ダブ レット方式のレンズ(例えば、M.B.Heritage "Electro n-projection microfabrication system" J. Vac. Sci. T echol. Vol. 12, No. 6; 1975 P. 1135) , PREVAIL 方式 (H.C. Pfeiffer "Projection exposure with Vari able Axis Immersion Lenses: A High-Throughput Elec tron Beam Approach to "Suboptical" Lithography", J pn., J. Appl. Phys. Vol. 34, Pt.1, No. 12B 1995; P. 66 85-6662) 等のレンズが公知である。

【0004】対称磁気ダブレット方式では、マスクと試 料(一般的にはウェハー)の間に対をなす、特定条件 (対称磁気ダブレット条件として後述する) を満足する 2つのレンズー前段のレンズと後段のレンズーが配備さ れ、系のクロスオーバは縮小率1/Nにより定められる 位置に形成され、前段のレンズの主面はマスクとクロス オーバの中点に、後段のレンズの主面はクロスオーバと 試料の中点に置かれている。この様に設計された対称磁 気ダブレット方式のレンズでは、光軸上の収差はかなり 広い像面視野にわたって小さくなっている。

【0005】一方PREVAIL方式であるが、この方 式での考え方は以下の通りである。メモリの1チップ全 体を許容収差内で投影する事は電子光学結像系では非現

3

範囲の大きさのフィールドに分割し(これを副視野とす る)、この副視野の像をつなぎ合わせて全体像とするも のである。そして、つなぎ合わせに関しては、副視野の 選択が電子線の主として1方向への偏向にて可能な領域 (これを主視野とする) は偏向器によりスキャニング し、主視野間のつなぎ合わせをマクス、ウェハーの機械 的なスキャニングにより行うものである。従ってより良 い装置特性を得る為には、出来るだけ広い副視野、出来 るだけ広い主視野を有する投影光学系が要求される。こ の要求に対し、文献Aでは主視野を広くするする為に、 言い換えれば光軸より離れた軸外の結像特性を改善する ために、軸外の結像に関与する磁場が近軸磁場条件を満 足するように補助的な磁場を発生させる偏向器を設けて いる。即ち、特定条件を満たす補助的な磁場を加える事 により収差の少ない'光軸'を本来の光軸(レンズの機 械的な中心軸)より軸外にシフトさせ、軸外の収差特性 を光軸上と同じ程度の収差になるようにしている。更 に、マスクと試料の双方とも磁場内にイマージョン(浸 漬) する事により近軸結像特性の改善を図っている。こ の電子光学系の実現例が文献AのFig.4 に記されてお り、AXIS SHIFTING YOKEがこの補助的な偏向器である。 【0006】尚、本願発明でいう対称磁気ダブレット条 件(以下、SMD条件と略記する)とは、

- ① 前段のレンズの主平面はマスクとクロスオーバーの中点にあり、後段のレンズの主平面は試料とクロスオーバーの中点にある。
- ② クロスオーバーを中心とした後段のレンズのN倍の相似形は前段のレンズとクロスオーバーを中心として点対称になる。
- ③ 結像場励磁条件として、互いにAT数の絶対値が等 30 しく、電流の向きが互いに逆である、をいう。

【0007】また、主視野、副視野という用語を記載を行っているが、この概念に関しては例えば、本発明人の出願になる特願平07-338372を参照、ただし、座標系は若干異なっている。

[0008]

【発明が解決しようとする課題】しかし、上記対称磁気ダブレット方式のレンズにPREVAIL方式ー即ちレンズの光軸シフト操作及びマスクと試料の磁場へのイマージョンーを適用すると以下の様な問題がある事が判っ 40 た。PREVAIL方式のレンズの軸上磁場分布Bzの乙依存性軸上磁場分布を図1の右側に曲線30でもって示した。Bzは所定のクロスオーバ12近傍の位置では0になっているのに対して、収差を低減の為にマスク位置2及び試料位置5では0でない有限の値ーー前段のレンズのマスク側あるいは後段のレンズの試料側ではレンズ主面とほとんど同じ位の値ーーを持っている。従ってレンズの主面は点線10及び11で示したように、SMD条件満足する主平面8及び9より、マスク側及び試料側にずれる。このずれた主面の乙軸上の値HuとHd 50

は、Bzを所定のクロスオーバの点からHuまで積分した値とHuからマスクまで積分した値が同じになるようにする事によりHuが、またBzを試料からHdまで積分した値とHdから所定のクロスオーバの点まで積分した値とが同じになるようにする事によりHdが求められる。そのズレはあまり大きくないとは言え、副視野の中心が光軸上にある場合、マスクから光軸に平行に射出された電子線はクロスオーバ12を通らず、従って、所定のSMD条件を満たさず、収差も大きいことがわかっ

た。次に光軸から離れた位置にある副視野を転写する場合、主視野が10mm×0.5mmになると、主視野の端での入射角が5mrad以上になり、試料面が上下した時のパターン誤差が無視できなくなってくる。即ち、ランディング角が試料に対して垂直ではなく、試料面の高さのズレにより像の面内の位置が変化する、と言った問題である。

【0009】本発明はこのような従来の問題点に鑑みてなされたもので、マスク面や試料面での磁場を制御する事により収差を低減しようとする時、本来の投影レンズの収差特性が劣化する事を防止する方法——即ち、例えば上述のように、レンズ主面がクロスオーバとマスク面あるいは試料面との中間に位置しなくなるような場合の収差及びランディング角を最適にする方法——を提供することを目的とする。

[0010]

【課題を解決する為の手段】上記問題点の解決の為に本発明では、以下に述べる手段を用いた。第1の手段として、マスクのパターンを2段の投影レンズーー第1の投影レンズと第2の投影レンズーーを用いて試料面に1/Nに縮小転写する投影レンズ系であって、マスク及び/又は試料面での磁場を制御することにより結像収差を低減し、且つ第1の投影レンズに入射する電子線が上記マスクと試料間をN:1に内分する点でクロスオーバを形成するようにするようにした。

【0011】第2の手段として、第1の手段において、第3のレンズをマスクの前段に配して第1の投影レンズと同一方向の軸上磁場を発生させ、第4のレンズを試料面の後段に配して第2の投影レンズと同一方向で、且つ第1、第3のレンズとは逆方向の軸上磁場分布を発生させ、これによりマスク又は試料面での磁場を制御するようにした。

【0012】第3の手段として、第2の手段において、第4のレンズの代わりに、強磁性体の板を設けるようにした。第4の手段として、第1の手段乃至第3の手段において、ひとつの視野を複数の副視野に分割し、各副視野毎に光学系の補正を行いながら転写を行うための電子線投影レンズにおいて、光軸から離れた副視野を転写するために2段の少なくともX偏向器をマスクの後段に設け、マスクから垂直方向に射出された主光線がクロスオ50 一バを通るよう補正し、且つ、2段の少なくともX偏向

器を試料の前段に設けて上記クロスオーバを通ってきた 主光線が試料に垂直入射するよう補正を行うこととし た。

【0013】第5の手段として、第4の手段において、 複数個の偏向器をマスクとクロスオーバ間に設け、更に 複数個の偏向器をクロスオーバと試料間に設け、主光線 がマスクから光軸に平行に出射された副視野の像が試料 面で最小の収差となるよう、上記それぞれ複数個の偏向 器の配置、偏向強度あるいは回転方向の偏向角を最適化 した。

【0014】第6の手段として、第1乃至第5の手段に おいて、クロスオーバーを中心とした後段のレンズのN 倍の相似形は前段のレンズとクロスオーバーを中心とし て点対称になっている事を特徴とする電子線投影レンズ 第7の手段として、第1の手段乃至第6の手段におい て、マスクを発散性の電子線で照射するようにした。

【0015】第8の手段として、第7の手段において、 マスクの前段に2段の少なくともX偏向器を設けて主光 線をマスクに垂直に入射するようにした事を特徴とする 電子線投影レンズ。第9の手段として、マスクのパター 20 ンを2段の投影レンズー-第1の投影レンズと第2の投 影レンズーーを用いて試料面に1/Nに縮小転写する投 影レンズ系であって、前記2段のレンズは対称磁気ダブ レット条件を満足する対称磁気ダブッレット型レンズで あり、マスク及び/又は試料面での磁場を制御すること により結像収差を低減しする電子線投影レンズにおい て、試料面を所定の位置より離すことで収差を低減する ようにした。

【0016】第10の手段として、第9の手段におい て、光軸外の副視野像の試料上での垂直入射条件外れを 30 補正するため、クロスオーバから試料までの間に2段の 少なくともX偏向器を備えるようにした。

【発明実施の形態】本願発明は付加的な磁場ーー例え

[0017]

ば、第3のレンズ1と第4のレンズ7による磁場--に より投影レンズの主平面が移動しても、その移動量をも とに所定の位置にクロスオーバを形成させる事により収 差を低減出来ること、また、ランディング角についても 偏向器によりクロスオーバ点を所定の位置に保ったまま 試料に主光線が垂直に入射するように出来る事を見いだ 40 した事に基づいている。図1は縮小率が1/2の場合 (N=2) についての実施例の光学系の断面図を示した ものである。前述したように、右側は軸上磁場分布Bz の2依存性を示している。B2はクロスオーバ12の位 置では0になっているのに対して、マスク位置2及び試 料位置5では0でない有限の値を持っている。従ってレ ンズの主面は点線10及び11で示したように、SMD 条件での主面8及び9より、マスク側及び試料側にずれ る。今、転写すべき副視野の中心が光軸上にある場合を 考える。もし、電子線がマスクから光軸に平行に射出さ 50 の位置誤差しか生じない。一方、20mmの主視野端で

れると、電子線は所定のクロスオーバ12を通らず、S MD条件を満たさず、収差も大きいが、しかし、副視野 を照明する条件を、平行ピームではなく、わずかに発散 性ピームにすることによって、クロスオーバ12を通す ようにでき、かつ収差も小さくできた。この場合の副視 野の端での試料への入射角度は0.5mrad以下とな った(副視野寸法が試料上で0.5mm角の場合)。

【0018】次に光軸から離れた位置にある副視野を転 写する場合について述べる。この場合もやはり平行ピー 10 ムではなく、発散性ピームでマスクを照射するとクロス オーバ位置でクロスオーバを形成し、収差は小さいこと がわかった。しかし主視野を10mm×0.5mmとす ると、主視野の端での入射角が5mrad以上になり、 試料面が上下した時のパターン誤差が無視できない。そ こで、このランディング条件を改善するために、発散性 ビームをレンズ1で作り、偏向器13、14で主光線が 光軸に平行になるよう偏向し、偏向器 15、16でクロ スオーバを通るよう偏向する。さらに、クロスオーバを 通ってきた主光線が試料5に垂直に入射するよう偏向器 17、18で偏向した。従って試料への入射角は光軸上 の副視野の場合と同程度に小さくできた。

【0019】また、偏向器15、16に加えて19及び 17、18に加えて20の複数個の偏向器に対して、そ の位置又は偏向強度比、又は偏向方向を最適化すること によって試料面での収差を最小にすることもできた。更 に、主面のずれに対して、試料の位置を2軸方向に調節 すると収差が低減される事を見出し、試料台の調整機構 を設けた。

[0'020]

【実施例】図1は上述の本発明の解決手段の要素部品を まとめて書いたものである。これと図2をもとに、以下 に動作を説明する。マスク2-試料5の間を600mm にした場合、レンズ主面の点線の位置10、11とSM D条件を満たす実線の位置8、9との差はマスク側レン ズと試料側レンズでそれぞれ10mm及び5mmであっ た。但し縮小率は1/2とした。従って、本来2=40 0とZ=100の点に主平面、Z=200の点にクロス オーバが配されるはずであるが、 Z=410、 Z=95 に主平面がずれる。この場合の結像条件を図示したもの を図2に示す。

【0021】レンズ3の焦点距離はf=190mmであ り、レンズ4の焦点距離はf=95mmである。クロス オーバを通ってきたビームの結像点は

1/105+1/b=1/95

1/b = 1/95 - 1/105

b = 997.5

0. 5 mm角の副視野端での入射角は

0. $25\sqrt{2/997}$. 5=0. 35 mrad

であり、± 5 μ m の試料面の上下変動は± 1. 7 5 n m

7

の入射角は

10/997.5=10.03mrad となり、±5μmの試料面の上下変動で±50nmの位 置誤差を生じる。

【0022】入射ビームについては次式が成立する。 1/a+1/210=1/190 : a=1995 mm すなわち、Z=1995+410=2405mmの位置 にクロスオーバがあり、そこから発散してくる電子線で マスクを照射すればよい事がわかる。上述の説明では、 簡単のため薄いレンズの公式を用いて説明したが、実際 10 には計算機シミュレーションによって収差が最小になる aの値、bの値を求める。以上は第1、第2、第7の解 決手段を用いた例である。 尚、第3の解決手段を用いる ときは図1の第2のレンズ7に替えて、強磁性体の板6 をもちいる。又、レンズ系はSMD条件を満足するもの を使用している。解決手段6を用いた例である。次に、 光軸から離れた副視野を転写する時は偏向器13、14 によってマスク2に主光線が垂直に入射するように(図 2の主光線21の22の部分) ビームを曲げ、マスクか ら光軸に平行に射出されたビームを偏向器15、16に 20 よって、Z=2405mmから来た方向へ合わせる。試 料面近傍でも偏向器17、18によって主光線が垂直に 入射するように(図2の主光線21の23の部分)調整 する。ここで偏向器を2段にするのは、角度を変更して もマスクや試料面でビーム位置変動を無くすためであ る。当然 θ 方向にも同様の情況になっているので、偏向 器 $13\sim18$ はx、yを持ち、 θ 方向もクロスオーバを 通る条件とマスク、試料面での垂直入射条件を満足させ ている。第4、第8、第10の解決手段を用いた例であ る。また、これらに加えて、偏向器19をマスクとクロ 30 スオーバ間に、偏向器20を試料とクロスオーバに設け て、偏向器15、16、19、及び偏向器20、17、 18の位置又は強さ又は回転方向を計算機シミュレーシ ョンにより最適化して光軸から離れた副視野の像の収差 を最小になるようにした。第5の解決手段を用いた例で

【0023】更に、SMD条件を満足するレンズ系を用 いて、且つ試料面とマスク面を磁場内に置き、試料位置

ある。

を種々変化させて収差をシュミレーション計算した結 果、試料面をガウス面より30μクロスオーバ側へ移動 させた時に最小の収差が得られた。第9の手段を用いた 例である。

[0024]

【発明の効果】 以上説明したように、本発明を用いれ ば、収差の少ない電子線の投影レンズ系を用い、更に試 料及び/又はマスク面の磁場を附加、制御して低収差性 を増す時にも附加した磁場の影響によりもとのレンズの 特性が収差的に低下するのを防ぎ良好な転写特性を有す る電子線投影レンズ系が得られる。

【図面の簡単な説明】

【図1】本発明の実施例の電子線投影レンズの断面図 (中央)と軸上磁場分布(右側)。

【図2】本発明の実施例の電子線投影レンズの結像図。 【主要部分の体長の鉛明】

【土安部分の付号の説明】		
1 ・・・ 第3のレンズ	2	
マスク		
3 ・・・ 第1のレンズ	4 • • •	
第2のレンズ		
5 ・・・ 試料	6	
強磁性体の板		
7 ・・・ 第4のレンズ	8	
所定の主平面		
9 ・・・ 所定の主平面	10	
ずれた主平面		
11 ・・・ ずれた主平面	12	•
所定のクロスオーバ		
13, 14, 15, 16	偏向器	
17、18 ・・・ 偏向器		

19、20 ・・・ 偏向器

21 ・・・ 光軸から離れた位置にある副視野の主光 線の軌道

22 ・・・ 21をマスク面で垂直入射条件を満たす よう偏向した軌道

23 ・・・ 21を試料面上で垂直入射条件を満たす ようにした軌道。

30 ・・・ 軸上磁場分布

【図1】 X

フロントページの続き

(51) Int. Cl. 4

識別記号

(b)

H01L 21/027

FΙ

H 0 1 L 21/30 5 4 1 B