

First-class Object Hierarchies

Georges Gonthier
Inria Saclay

Support for mathematical abstraction

- Modern mathematics master complexity by combining abstract/generic concepts and objects.
- Mathematicians intuitively find the appropriate specialization for such generics.
- Computer mathematics can (partly) imitate this by leveraging object hierarchies.

The mathematical component thesis

The mathematical component thesis

The Math Notation Challenge

$$G / ker_G \phi \approx \phi(G)$$

 $G/K / H/K \approx G / H$
 $HK / K \approx H / H \cap K$

$$\sum_{\sigma \in S_n} (-1)^{\sigma} \prod_i A_{i,i\sigma}$$

$$\bigwedge_{i=1}^{n}_{GCD} Q_{i}(X)$$

$$\sum_{i} V_{i}$$
 is direct

$$D_{2^n} \approx Grp(x, y : x^{2^{n-1}}, y^2, x^y = x^{-1})$$

Tool review

- Data (inductive) types / propositions
- Computational reflection
 - compute values, types, and propositions
- Dependent types
 - first-class Structures
- Type / value inference
 - controlled by Coercion / Canonical Structure
- User notation

Implementing notation

```
Definition mxtrace (R : ringType) n (A : 'M[R]_n) :=
    \sum_i A i i

@bigop _ _ 0 +%R (index_enum _) (fun i => A i i)

@bigop R 'I_n 0 +%R (index_enum _)
    (fun i : 'I_n => fun_of_matrix A i i)
```


Algebra interfaces

Inferring notation

```
Definition mxtrace (R : ringType) n (A : 'M[R]_n) :=
    @bigop R 'I_n 0 (@Gring.add (Ring.ZmodType R))
        (index_enum _)
        (fun i : 'I_n => fun_of_matrix A i i)
```


Basic interfaces and objects

Ad hoc inference

```
Definition mxtrace (R : ringType) n (A : 'M[R]_n) :=
    @bigop R 'I_n 0 (@Gring.add (Ring.ZmodType R))
        (index_enum (ordinal_finType n))
        (fun i : 'I_n => fun_of_matrix A i i)
```


Little math

The maths of pencil and paper

Combinatorics, linguistics, arithmetic, ...

Instrumental to taming formalization size

... and making sense of informal statements

Makes for better math, better notation

Interfacing big operators

Linear operator interface : a function class

Encapsulate $f(\lambda v) = \lambda(f v)$

```
Module Linear.
Section ClassDef.
Variables (R : ringType) (U V : lmodType R).
Definition mixin of (f : U -> V) :=
   forall a, {morph f : u / a *: u}.
Record class of f : Prop :=
   Class {base : additive f; mixin : mixin_of f}.
Structure map :=
   Pack {apply :> U -> V; class : class_of apply}.
Structure additive cT := Additive (base (class cT)).
End Linear.
```


Generic Lemmas

Pull, split, reindex, exchange ...

```
Lemma bigD1 : forall (I : finType) (j : I) P F,
  P j -> \big[*%M/1] (i | P i) F i
    = F j * \big[*%M/1] (i | P i && (i != j)) F i.
Lemma big split : forall I (r : list I) P F1 F2,
  \left(\frac{*}{M}\right) (i <- r | P i) (F1 i * F2 i) =
    \left(\frac{*}{M}\right) (i <- r | P i) F1 i * \left(\frac{*}{M}\right) (i <- r | P i) F2 i.
Lemma reindex : forall (I J : finType) (h : J -> I) P F,
  {on P, bijective h} ->
  big[*%M/1] (i | P i) F i = big[*%M/1] (j | P (h j)) F (h j).
Lemma bigA distr bigA : forall (I J : finType) F,
  big[*%M/1] (i : I) big[+%M/0] (j : J) F i j
    = \bigcup_{i=1}^{n} (f : \{ffun I \rightarrow J\}) \bigcup_{i=1}^{n} (i) F i (f i).
```


Class structures

Algebraic subsets

z \in Cnat alpha \in algInt p \is monic phi \is a character

Value classes

```
Structure tuple n T := Tuple {tval :> seq T; _ : size tval == n}.

Notation "n .-tuple" := (tuple n) : type_scope.

Definition tuple of n T t of phantom (@tval n T t) := t.

Notation "[ 'tuple' 'of' s ]" := (tuple_of (Phantom s)).

Let half rot3 t := [tuple of map half (rot 3 t)].
```


Some group theory notions

subgroup H ≤ G {1} $\cup H^2 = H \subset G$

normaliser $N_G(H)$ $\{x \in G \mid Hx = xH \text{ (or } H^x = H)\}$

normal subgroup $H \subseteq G$ $H \subseteq G \subseteq N_G(H)$

factor group G / H $\{Hx \mid x \in N_G(H)\}$

morphism ϕ : $G \rightarrow H$ $\phi(xy) = (\phi x)(\phi y)$ if $x, y \in G$

action $\alpha : S \to G \to S$ $a(xy)_{\alpha} = ax_{\alpha} y_{\alpha} \text{ if } x, y \in G$

+ group set A AB,1, A-1 pointwise

+ group type xy,1, x⁻¹

Groups are sets

```
Need x \in G \& x \in H \rightarrow groups are not types
Group theory is really subgroup theory.
In Coq:
Variable gT : finGroupType.
Definition group set (G : {set gT}) :=
     (1 \in G) \&\& (G*G \subset G).
Need G: {set gT} and gG: group set G
but gG can be inferred from G.
```


Subgroup theory

group H

normaliser N (H)

normal subgroup H ≤ G

factor group G / H

morphism $\phi: G \to H$

action $\alpha: S \to G \to S$

 $\{1\} \cup H^2 = H^{-1}$

 ${x \in G \mid Hx = xH \text{ (or } H^x = H)}$

 $H \leq G \leq N - (H)$

 $\{Hx \mid x \in N_G(H)\}$

 $\varphi(xy) = (\varphi x)(\varphi y) \text{ if } x, y \in G$

 $a(xy)_{\alpha} = ax_{\alpha} y_{\alpha} \text{ if } x, y \in G$

+ group set A AB,1, A-1 pointwise

+ group type xy,1, x⁻¹

Groups as objects

```
Definition Gset gT := {set gT}.
Structure group gT := Group {
   gval :> Gset gT;
   _ : group_set gval
}.

Identity Coercion Gset_elt : Gset >-> FinGroup.sort.
Identity Coercion Gset_set : Gset >-> set_type.
```


Interfacing groups

Cosets and quotients

```
Notation H := \langle\langle A \rangle\rangle.
Definition coset range := [pred B in rcosets H 'N(A)].
Record coset of := Coset {
  set of coset :> Gset gT;
   : coset range set of coset }.
                               G/H \stackrel{\text{def}}{=} N_G(H)\langle H \rangle / \langle H \rangle !!
Definition coset x : coset of := insubd (1 : coset of) (H :* x).
Lemma coset morphM :
    \{in 'N(A) \&, \{morph coset : x y / x * y\}\}.
Canonical coset morphism := Morphism coset morphM.
Definition quotient Q : {set coset of} := coset @* Q.
```


Let *p* be a prime and G is a group.

Definition: P is a Sylow p-subgroup of G if $P \subseteq G$, |P| is a power of p and p does not divide |G:P|.

Write $Syl_p(G)$ for the set of Sylow p-subgroups of G.

Theorem (Sylow):

- a) The Sylow *p*-subgroups of G are its maximal *p*-subgroups.
- b) G acts transitively by conjugation on Syl_p(G).
- c) $|Syl_p(G)| = |N_G(P)|$
- d) $|\operatorname{Syl}_p(G)| \equiv 1 \pmod{p}$


```
Definition pSylow p A B :=
    [&& B \subset A, p.-nat #|B| & p^'.-nat #|A : B|].
Definition Syl p A := [set P : {group gT} | pHall p A P].
Theorem Sylow's theorem :
    [/\ forall P, [max P | p.-subgroup(G) P] = p.-Sylow(G) P,
        [transitive (G | 'JG) on 'Syl_p(G)],
        forall P, p.-Sylow(G) P -> #|'Syl_p(G)| = #|G : 'N_G(P)|
        & prime p -> #|'Syl_p(G)| %% p = 1%N ].
```



```
Theorem Sylow's theorem:
  [/\ forall P, [max P | p.-subgroup(G) P] = p.-Sylow(G) P,
      [transitive (G | 'JG) of have{defCS} oG mod: {in S &, forall P Q, \# | oG P | \%\% p = (Q \in oG P) \%\% p}.
     forall P, p.-Sylow(G) P
                               move \Rightarrow P Q S P S Q; have [sQG pQ] := S pG S Q.
  & prime p \rightarrow \#|Syl p(G)|
                               Proof.
                               have: [acts (0 | 'JG) on
                                                           move=> pr p; rewrite -(atransP trS P S P) (oG mod P P) //.
pose maxp A P := [max P | p.-
                                  apply/actsP=> x; move/(
                                                            by rewrite orbit refl modn small ?prime gt1.
pose oG := orbit 'JG%act G.
                                 exact: mem imset.
                                                          have oSiN: forall Q, Q \in S -> \#|S| = \#|G : 'N G(Q)|.
have actS: [acts (G | 'JG) on
                               move/pgroup fix mod=> ->
                                                            by move=> Q S Q; rewrite -(atransP trS Q S Q) card orbit
                                                               conjG aštabí.
  apply/subsetP=> x Gx; rewri
                               rewrite (cardsD1 Q) setDE
  exact: max pgroupJ.
                                                         have sylP: p.-Sylow(G) P.
                               by rewrite inE set11 andb
have S pG: forall P, P \in S
                                                            rewrite pHallE; case: (S pG P) => // -> /= pP.
                              have [P S P]: exists P, P \
  by move=> P; rewrite inE; c
                                                            case p pr: (prime p); last first.
                               have: p.-subgroup(G) 1 by
have SmaxN: forall P O, O \in
                                by case/(@maxgroup exists
                                                              rewrite p part lognE p pr /=.
  move=> P Q; rewrite inE; ca
                                                              by case/pgroup_1Vpr: pP p_pr => [-> _ | [-> //]]; rewrite cards1.
                             have trS: [transitive (G |
 apply/maxgroupP; rewrite /p
                                                            rewrite -(LaGrangeI G 'N(P)) /= mulnC partn mul ?cardG gt0 //
                                apply/imsetP; exists P =>
  by split=> // R; rewrite su
                                                               part p'nat.
                                rewrite eqEsubset andbC a
                                                              by rewrite mul1n (card Hall (sylS P S P)).
have nrmG: forall P, P \subse
                               have:= S P; rewrite inE;
                                                            by rewrite p'natE // -indexgI -oSiN // /dvdn oS1.
  by move=> P sPG; rewrite /n
                                case/pgroup 1Vpr=> [|[p p
                                                          have eqS: forall Q, maxp G Q = p.-Sylow(G) Q.
have svlS: forall P, P \in S
                                 move/group inj=> -> max
                                                            move=> Q; apply/idP/idP=> [S Q|]; last exact: Hall max.
  move=> P S P; have [sPG pP
                                 by rewrite (group inj (
                                                            have{S Q} S Q: Q \in S by rewrite inE.
  by rewrite normal max pgrou
                               have:= oG mod S P S P
                                                            rewrite pHallE -(card Hall sylP); case: (S pG Q) => // -> /=.
have{SmaxN} defCS: forall P,
                               by case: {+}(Q \in ) =>
                                                            by case: (atransP2 trS S_P S_Q) => x _ ->; rewrite cardJg.
  move=> P S P; apply/setP=>
                                                          have ->: 'Syl p(G) = S by apply/setP=> Q; rewrite 2!inE.
  apply/andP/set1P=> [[S Q nQ
                                                          by split=> // Q sylQ; rewrite -oSiN ?inE ?eqS.
  apply: val inj; symmetry; case: (S pG Q) => //= sQG .
  by apply: uniq_normal_Hall (SmaxN Q _ _ _) => //=; rewr
                                                          Oed.
```



```
pose maxp A P := [max P | p.-subgroup(A) P]; pose S := [set P | maxp G P].
pose oG := orbit 'JG%act G.
have actS: [acts (G | 'JG) on S].
  apply/subsetP=> x Gx; rewrite inE; apply/subsetP=> P; rewrite 3!inE.
  exact: max pgroupJ.
have S pG: forall P, P \in S -> P \subset G /\ p.-group P.
  by move=> P; rewrite inE; case/maxgroupP; case/andP.
have SmaxN: forall P Q, Q \in S -> Q \subset 'N(P) -> maxp 'N G(P) Q.
  move=> P Q; rewrite inE; case/maxgroupP; case/andP=> sQG pQ maxQ nPQ.
  apply/maxgroupP; rewrite /psubgroup subsetI sQG nPQ.
  by split=> // R; rewrite subsetI -andbA andbCA; case/andP=> ; exact: maxQ.
have nrmG: forall P, P \subset G -> P \langle 'N G(P).
  by move=> P sPG; rewrite /normal subsetIr subsetI sPG normG.
have syls: forall P, P \in S -> p.-Sylow('N G(P)) P.
  move=> P S P; have [sPG pP] := S pG P S P.
  by rewrite normal max pgroup Hall ?nrmG //; apply: SmaxN; rewrite ?normG.
have\{SmaxN\}\ defCS: forall P, P \in S -> C S(P \mid JG) = [set P].
  move=> P S P; apply/setP=> Q; rewrite {1}in setI {1}conjG fix.
  apply/andP/set1P=> [[S_Q nQP]|->{Q}]; last by rewrite normG.
  apply: val inj; symmetry; case: (S pG Q) => //= sQG .
  by apply: uniq normal Hall (SmaxN Q ) => //=; rewrite ?sylS ?nrmG.
```


Group characters

Definition:

- χ character: $\chi(g) = \operatorname{tr} X(g)$ for some $X : G \to M_n(\mathbb{C})$
- 1. All characters are class functions, $\varphi(g^x) = \varphi(g)$.
- 2. Characters belong to a euclidean space (norm by average).
- 3. Irrereducible characters χ_i afforded by the $|G^G|$ irreducible representations X_i form an orthonormal basis.
- 4. Characters have positive integer coordinates over the irreducibles. Virtual characters (character differences) have integer coordinates.
- 5. A virtual character ϕ of M with TI-support A extends to an induced virtual character ϕ^G of G with support A^G .
- 6. $\phi \mapsto \phi^G$ is an isometry.
- 7. $\phi \mapsto \phi^G$ extends to some coherent sets of characters.

Formalizing characters

Soft typing?

```
Variable gT : finGroupType.
Definition Cfun := {ffun gT -> algC}.
Definition class fun (G : {set gT}) (phi : Cfun) :=
    {in G &, forall x y, phi (x ^ y) = phi x}.
Definition character G phi :=
    class_fun G phi /\ (forall i, coord (irr G) phi \in Cnat).
Definition cfdot (G : {set gT}) (phi psi : Cfun) :=
    #|G|%:R^-1 * \sum_(x in G) phi x * (psi x)^*.
Notation "'[ phi , psi ]_ G" := (cfdot G phi psi).
```


A better interface

Problem: typing assumptions are ubiquitous.

Non/mixed-class-functions never occur.

Make class_fun G into a type 'CF(G), also encapsulating support restriction.

```
Definition is class fun (B : {set gT}) (f : {ffun gT -> algC}) := [forall x, forall y in B, f (x ^ y) == f x]
   && (support f \subset B).
Record classfun :=
Classfun {cfun val; : is class fun G cfun val}.
```

Dot product, orthogonal predicates don't use G.

Interface encapsulates character are a semiring.

Shallow reflection

```
Let \underline{sumV} := (\sum (i < h) \forall i) %MS.
                   (* This is B & G, Proposition 2.4(a) *)
                   Lemma mxdirect sum eigenspace cycle :
                       (sumV :=: 1%:M) %MS /  mxdirect sumV.
In math:
   S = A + \sum_{i} B_{i} is direct
     iff rank S = rank A + \sum_{i} rank B_{i}
In Coq:
     Lemma mxdirectP n (E : mxsum expr n) :
        reflect (\rank E = mxsum rank E) (mxdirect E).
This is generic in the shape of E
```


More type classes

- Group functors (F. Garillot)
 - Map "characteristic" subgroups Z(G), O_p(G), G⁽¹⁾,... with (mono/epi/iso)morphisms
 - Including (some) composites
 - Precursor to categories
- Lemma overloading (Ziliani, Nanevski, Dreyer)
 - Automatic heap shape matching for spatial Hoare Logic
 - Evolved to Mtac2 (and Lean3)

What else?

- Support for (re)structuring proofs
- Database ← Typeclass ← Unification ← Tactic interoperability
- Open/incomplete proofs (big-O, event spaces)
- Automating the class hierarchy construction (next!)

Questions?

