

Redes neurais

• Bibliografia:

- Redes Neurais Artificiais. Teoria e Aplicações. Antônio de Pádua Braga. André Ponce de Leon F. de Carvalho. Teresa Bernarda Ludemir. Editora: LTC. 2007
- Machine Learning. An Algorithmic Perspective. Stephen Marsland. CRC Press. 2009.
- Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Rumelhart & McClelland. Cambridge MIT Press.
 1986

História das redes neurais

- O neurônio de McCulloch-Pitts (1943)
- O perceptron de Rosemblatt (1957)

- Marvin Minski e o desfio da ou-exclusiva (1969)
- Os anos de silencio (Amari, Grossberg...)
- O livro PDP (1985)

Parallel Distributed Processing (1985) Explorations in Parallel Distributed Procesing (1989)

https://web.stanford.edu/group/pdplab/pdphandbook/handbook.pdf

Aplicações das redes neurais em empresa petrolífera

• Previsão de vendas.

• Interpretação do eco de explosão controlada para identificação de bolsões de petróleo

• Controle de processos (destilação

fraccionada).

...dados, dados: não posso fazer tijolos sem barro.

Sherlock Holmes (filme, 2009)

Manutenção preventiva de máquinas ATM

• **PELÁEZ, F. J. R.**; AGUIAR, M. A.; DESTRO, R. C.; KOVÁCS, Z. L.; SIMÕES, M. G. . Predictive Maintenance Oriented Neural Network System(PREMON). In: IECON 2001, 2001, Denver (Colorado). Proceedings of the IECON 2001.

O neurônio de McCulloch-Pitts

"Um neurônio pode realizar qualquer função aritmética ou lógica"

i_1	\mathbf{i}_2	net	f(net-1)
0	0	0	0
0	1	1	1
1	0	1	1
1	1	2	1

O neurônio de McCulloch-Pitts

"Um neurônio pode realizar qualquer função aritmética ou lógica"

Ajustando o deslocamento da função degrau no neurônio de McCulloch

p	\mathbf{i}_1	$ \mathbf{i}_2 $	t (target)	net	S	o=f(net-s)	erro	Δs
1	0	0	0	0	0			
2	0	1	0					
3	1	0	0					
4	1	1	1					

p	\mathbf{i}_1	$ \mathbf{i}_2 $	t (target)	net	S	o=f(net-s)	erro	Δs
1	0	0	0	0	0	1	-1	1
2	0	1	0					
3	1	0	0					
4	1	1	1					

p	\mathbf{i}_1	$ \mathbf{i}_2 $	t (target)	net	S	o=f(net-s)	erro	Δs
1	0	0	0	0	0	1	-1	1
2	0	1	0	1	1			
3	1	0	0					
4	1	1	1					

p	\mathbf{i}_1	$ \mathbf{i}_2 $	t (target)	net	S	o=f(net-s)	erro	Δs
1	0	0	0	0	0	1	-1	1
2	0	1	0	1	1	1	-1	1
3	1	0	0					
4	1	1	1					

p	\mathbf{i}_1	\mathbf{i}_2	t (target)	net	S	o=f(net-s)	erro	Δs
1	0	0	0	0	0	1	-1	1
2	0	1	0	1	1	1	-1	1
3	1	0	0	1	2			
4	1	1	1					

p	\mathbf{i}_1	$ i_2 $	t (target)	net	S	o=f(net-s)	erro	Δs
1	0	0	0	0	0	1	-1	1
2	0	1	0	1	1	1	-1	1
3	1	0	0	1	2	0	0	0
4	1	1	1					

p	\mathbf{i}_1	\mathbf{i}_2	t (target)	net	S	o=f(net-s)	erro	Δs
1	0	0	0	0	0	1	-1	1
2	0	1	0	1	1	1	-1	1
3	1	0	0	1	2	0	0	0
4	1	1	1	2	2	1	0	0

Em cada w_{ii}, o primeiro índice, i, significa o neurônio do qual falamos.

Ex: w13 significa o peso da entrada que vai ao neurônio 1 vinda do neurônio 3 Em ocasiões é possível omitir o primeiro índice

O output do neurônio i, O_i , é calculado aplicando a Inet_i uma função não linear f() como a do desenho, O_i =f(Inet_i)

Inet_i

Se o w for uma componente principal teríamos a projeção sobre a componente principal

O output do neurônio i, O_i , é calculado aplicando a Inet_i uma função não linear f() como a do desenho, O_i =f(Inet_i).

Para conseguir uma função não linear como a da figura 1 acima partiremos de uma função sigmóide típica.

Para transformar a sigmóide numa sigmóide como a da fig .1 comprimimos a função multiplicando o x por um coeficiente maior que 1 (por exemplo, 25) obtendo a fig. 2.

Um coeficiente muito alto faria a função sigmoide parecer com uma função degrau.

Finalmente deslocamos a curva 0.5 unidades para a direita (Fig. 3) subtraendo do x o valor do deslocamento, shift= 0.5, e obtemos uma curva parecida à da Fig.1.

$$y = \frac{1}{1 + e^{-25*(x - 0.5)}}$$

$$I_{1} \qquad \qquad \mathbf{W_{ii}} \qquad \qquad \mathbf{O_{i}}$$

$$I_{i} \qquad \qquad \mathbf{W_{iii}} \qquad \qquad \mathbf{I_{net}_{i}}$$

$$Inet_i = \sum_{j=1}^{j=n} w_{ij} I_j$$

$$O_i = \frac{1}{1 + e^{-25*(w_{i1}I_1 + w_{i2}I_2 + \dots + w_{in}I_n - s)}}$$

$$O_{i} = \frac{1}{1 + e^{-25*(w_{i1}I_{1} + w_{i2}I_{2} + ... + w_{in}I_{n} - s)}} 1$$

$$Inet_{i} = \sum_{j=1}^{j=n} w_{ij} I_{j} - s = \sum_{j=1}^{j=n} w_{ij} I_{j} + s(-1) =$$

$$= \left[\sum_{j=1}^{j=n} w_{ij} I_{j}\right] + w_{i(n+1)}I_{n+1} = \sum_{j=1}^{j=n+1} w_{ij} I_{j} \quad Onde \ w_{i(n+1)} = s \\ e \ I_{n+1} = -1 \quad O_{i} = \frac{1}{1 + e^{-25*(\sum_{i=1}^{n+1} w_{i1}I_{1} + s)}}$$

$$O_{i} = \frac{1}{1 + e^{-25*(\sum_{i=1}^{n+1} w_{i1}I_{1} + s)}}$$

$$O_{i} = \frac{1}{1 + e^{-25*(\sum_{i=1}^{n+1} w_{i1}I_{1} + s)}}$$

Aprendizado de Hebb

 "Quando um axónio de uma célula A está perto suficiente de una célula B, como para excita-la, e participa repetida o persistentemente no seu disparo, acontece algum processo de crescimento ou mudança metabólica, em uma o em ambas células, de tal modo que a eficiência de A disparando sobre B aumenta..."

Fator de aprendizado

$$\Delta w_{ij} = \varepsilon O_i I_j$$

	$\mathbf{\Omega}$	1
$\boldsymbol{\mathcal{C}}$	 ()	
$\boldsymbol{\mathcal{C}}$	U	, 1

W _{ij}	I_j	O _i	Δw_{ij}
0	1	1	

Fator de aprendizado

$$\Delta w_{ij} = \varepsilon O_i I_j$$

_		$\mathbf{\Omega}$	1
\mathcal{L}	=	()	- 1
$\boldsymbol{\mathcal{O}}$		\mathbf{O}_{i}	, _

W _{ij}	$\overline{I_j}$	O_{i}	Δw_{ij}
0	1	1	0,1
0,1			

Fator de aprendizado

$$\Delta w_{ij} = \varepsilon O_i I_j$$

_		$\mathbf{\Omega}$	1
\mathcal{L}	=	()	- 1
$\boldsymbol{\mathcal{O}}$		\mathbf{O}_{i}	, _

W _{ij}	$\overline{I_j}$	O_{i}	Δw_{ij}
0	1	1	0,1
0,1	1	0,5	

$$\Delta w_{ij} = \varepsilon O_i I_j$$

0		$\mathbf{\Omega}$	1
<u> </u>			
0	_	V	
			,

W _{ij}	I_j	O _i	Δw_{ij}
0	1	1	0,1
0,1	1	0,5	0,05
0,15			

$$\Delta w_{ij} = \varepsilon O_i I_j$$

$\varepsilon =$	0,1
-----------------	-----

W _{ij}	I_{j}	O_{i}	Δw_{ij}
0	1	1	0,1
0,1	1	0,5	0,05
0,15	0,1	0,5	

$$\Delta w_{ij} = \varepsilon O_i I_j$$

\mathcal{E}	=	0,	,1
		•	

W _{ij}	I_j	O _i	Δw_{ij}
0	1	1	0,1
0,1	1	0,5	0,05
0,15	0,1	0,5	0,005
0,155			

$$\Delta w_{ij} = \varepsilon O_i I_j$$

C		$\mathbf{\Omega}$	1
E	_	U	,1

W _{ij}	I_j	O _i	Δw_{ij}
0	1	1	0,1
0,1	1	0,5	0,05
0,15	0,1	0,5	0,005
0,155	1	1	

Modelos artificiais de plasticidade sináptica

1. Modelo de Hebb

$$\Delta w_{ij} = \varepsilon O_i I_j$$

$$\varepsilon = 0,1$$

W _{ij}	I_j	O_{i}	Δw_{ij}
0	1	1	0,1
0,1	1	0,5	0,05
0,15	0,1	0,5	0,005
0,155	1	1	0,1
0,255			

Neste exemplo colocam-se valores arbitrários de I_j e Oi em cada instante

Redes neurais

- Redes supervisionadas
 - Perceptron de Rosemblatt
 - Metodos de descida de gradiente.
 - Perceptron multicamada (método de back-propagation)
- Redes não-supervisionadas
 - -Rede SOM (Self Organizing Feature Map)

$$o_{i,p} = f(net_{i,p} - s_i) = f\left(\sum_{j=1}^{j=n} w_{ij}i_{jp} - s_i\right)$$

$$\Delta s_{ip} = -\xi \cdot erro_{ip}$$

$$\Delta w_{ij,p} = \xi \cdot erro_{ip} \cdot i_{j,p}$$

$$o_{i,p} = f(net_{i,p} - s_i) = f\left(\sum_{j=1}^{j=n} w_{ij}i_{jp} - s_i\right)$$

$$\Delta s_{ip} = -\xi \cdot erro_{ip} =$$

$$= \xi \cdot erro_{ip} (-1)$$

$$= \xi \cdot erro_{ip} \cdot i_{n+1,p}$$

$$\Delta w_{ij,p} = \xi \cdot erro_{ip} \cdot i_{j,p}$$

$$o_{i,p} = f(net_{i,p} - s_i) = f\left(\sum_{j=1}^{j=n} w_{ij}i_{jp} + w_{i(n+1)}(-1)\right)$$

$$\Delta s_{ip} = -\xi \cdot erro_{ip} =$$

$$= \xi \cdot erro_{ip} (-1)$$

$$= \xi \cdot erro_{ip} \cdot i_{n+1,p}$$

$$\Delta w_{ij,p} = \xi \cdot erro_{ip} \cdot i_{j,p}$$

$$o_{i,p} = f(net_{i,p}) = f\left(\sum_{j=1}^{j=n+1} w_{ij} \cdot i_{jp}\right)$$

$$\Delta w_{ij,p} = \xi \cdot erro_{ip} \cdot i_{j,p}$$

Marvin Minsky e o desafío do "ou exclusivo"

Função EX-OR

i_1	\mathbf{i}_2	О
0	0	0
0	1	1
1	0	1
1	1	0

O neurônio como discriminador linear (I)

$$i_2 \ge -\frac{w_1}{w_2}i_1 \cdot + \frac{s}{w_2}$$

O neurônio como discriminador linear (II)

O neurônio como discriminador linear (II)

Exercicio: Deixando w₂ fixo, w₂=1, quais seriam os possíveis valores de s e w_i para ter um discriminador linear que implemente a função AND Mostrar num sistema de coordenadas w e s os valores possíveis e as regiões de erro

Marvin Minsky e o desafío do "ou exclusivo"

Função EX-OR

i_1	\mathbf{i}_2	О
0	0	0
0	1	1
1	0	1
1	1	0

Exclusive-or (1º método de resolução)

 Utilizando uma função de ativação tipo gaussiana.

Exclusive-or (2º método de resolução)

• Utilizando uma novo input que é uma função dos dois anteriores: $i_3=i_1&i_2$.

i_1	i_2	i_3	О
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$i_1 \cdot w_1 + i_2 \cdot w_2 + i_3 \cdot w_3 \ge s$$

Exclusive-or (2º método de resolução)

• Utilizando uma novo input que é uma função dos dois anteriores: ex: i₃=i₁&i₂.

Ajuste dos pesos mediante método de gradiente descendente no perceptron e no perceptron multicamada

$$E = \sum_{p} error_{p} = \sum_{p} \sum_{i} (t_{ip} - o_{ip})^{2} =$$

$$= \sum_{p} \sum_{i} \left(t_{ip} - \sum_{j} w_{ij} i_{j} \right)^{2}$$

$$\Delta w_{ij} = -k \frac{\partial E_p}{\partial w_{ij}} = -k \cdot 2(t_{ip} - o_{ip})(-i_{jp}) =$$

$$= \xi \cdot erro_{ip} \cdot i_{jp} = \xi \cdot \delta_{ip} \cdot i_{jp}$$

Perceptron multicamada (método de back-propagation)

Perceptron multicamada (método de back-propagation)

$$\Delta w_{ij} = \xi \cdot \delta_i \cdot i_j$$

Neurônios última camada

$$\delta_k = (t_k - o_k) f'(net_k)$$
$$\Delta w_{kj} = \xi \cdot \delta_k \cdot o_j$$

Neurônios camadas anteriores

$$\delta_{j} = (\sum_{k} w_{kj} \delta_{k}) f'(net_{j})$$
$$\Delta w_{ii} = \xi \cdot \delta_{i} \cdot o_{i}$$

Back-propagation com momentum

$$i=1$$

$$j=1$$

$$k=2$$

$$j=3$$

$$k=3$$

$$k=4$$

$$k=4$$

$$M = \alpha \Delta w_{ij}(t-1) =$$

$$\alpha (w_{ij}(t) - w_{ij}(t-1))$$

$$\Delta w_{ij} = \xi \cdot \delta_i \cdot i_j + M$$

Neurônios última camada

$$\delta_k = (t_k - o_k) f'(net_k)$$
$$\Delta w_{kj} = \xi \cdot \delta_k \cdot o_j + M$$

Neurônios camadas anteriores

$$\delta_{j} = (\sum_{k} w_{kj} \delta_{k}) f'(net_{j})$$
$$\Delta w_{ii} = \xi \cdot \delta_{i} \cdot o_{i} + M$$

Como ajustar o fator de aprendizado ξ

• Com valores de ξ pequenos <0.01 o aprendizado é mais lento mais converge melhor para um mínimo global.

• Com valores de ξ grandes >0.01 o aprendizado é mais rápido mas converge pior para um mínimo global.

Como organizar o conjunto de padrões de treino

- Do conjunto dos padrões de entrada/saída totais separamos aproximadamente um 50% para treino, 25% para teste (no final) e 25% para validação.
- O grupo de validação é aplicado á rede durante o treino para saber como o treino está indo.
- O conjunto de todos os padrões de treino é chamado de época (a contagem é feita por épocas)

Número de neurônios e camadas

- Normalmente é suficiente colocar uma camada escondida embora mais camadas possam ser necessárias se os dados são altamente não lineares.
- O número de neurônios da camada intermediária normalmente é bem menor do que o número de neurônios da camada de entrada. Se a rede não consegue diminuir suficientemente o rede pode ser necessário repetir o treino com mais neurônios

Exemplo Matlab:

```
p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1]; %Padrões de teino e de teste (em colunas)
```

net=newff(minmax(p),[3,1],{'tansig','purelin'},'traingd'); % Arquitetura rede. %minmax serve para ajustar o range dos dados

```
net.trainParam.show = 50;
net.trainParam.lr = 0.05; %Taxa de aprendizado (learning rate, lr )
net.trainParam.epochs = 300; %Numero de épocas
net.trainParam.goal = 1e-5; %Erro global a ser atingido para parar treino
```

[net,tr]=train(net,p,t); %Instrução para treinar rede

a = sim(net,p) %Depois do treino aplicamos os o padrões de teste na entrada a = -1.0010 -0.9989 1.0018 0.9985 % O resultado é obtido na saída

%Para treino com padrões de validação consultar Help do Matlab

Memorização versus generalização

- Com poucos neurônios na camada intermediária é possível generalizar (e porem interpolar) melhor os dados e eliminar o ruído dos dados.
- Com muitos neurônios pode acontecer um sobretreino indesejado e memorizar mesmo o ruído dos dados.

Redes neurais autoassociativas

- Os pesos dos neurônios da camada intermediaria das redes autoassociativas convergem para os componentes principais (Ver "Principal Component Neural Networks" de Diamantaras & Kung.
- Redes autoassociativas são úteis para extrair resíduos para, por exemplo, aplicação das redes para manutenção de equipamentos

Aplicação a previsão de séries temporais

• Usa-se para predizer o valor de x(t+t) a partir dos valores:

 $x(t), x(t-\tau), x(t-2\tau)....(t-k\tau)$