SBML Model Report

Model name: "Clarke2006_Smad_signalling"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following two authors: Harish Dharuri¹ and Katja Wegner² at November 29th 2006 at 11:35 a. m. and last time modified at October 29th 2010 at 1:55 p. m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	10
events	0	constraints	0
reactions	8	function definitions	0
global parameters	4	unit definitions	5
rules	4	initial assignments	0

Model Notes

The model reproduces the temporal evolution of four variables depicted in Fig 2a. The solution is generated for median parameter values as given in Table 3. Result shown was generated by MathSBML.

This model originates from BioModels Database: A Database of Annotated Published Models. It is copyright (c) 2005-2010 The BioModels.net Team.

¹California Institute of Technology, hdharuri@cds.caltech.edu

²University of Hertfordshire, k.wegner@herts.ac.uk

For more information see the terms of use.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of eight unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit time

Name minutes

Definition 60 s

2.2 Unit substance

Definition item

2.3 Unit min_inv

Name min_inv

Definition $(60 \text{ s})^{-1}$

2.4 Unit items_per_min

Name items per min

Definition item $\cdot (60 \text{ s})^{-1}$

2.5 Unit per_item_min

Name per item per min

Definition item⁻¹ \cdot (60 s)⁻¹

2.6 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.7 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.8 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cytoplasm	cytoplasm		3	1	litre	\square	
nucleus	nucleus		3	1	litre		cytoplasm

3.1 Compartment cytoplasm

This is a three dimensional compartment with a constant size of one litre.

Name cytoplasm

3.2 Compartment nucleus

This is a three dimensional compartment with a constant size of one litre, which is surrounded by cytoplasm (cytoplasm).

Name nucleus

4 Species

This model contains ten species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
receptor	receptors	cytoplasm	item		
$R_{ extsf{smad}_{ extsf{cyt}}}$	R-Smad_cyt	${ t cytoplasm}$	item	\Box	
$R_smad_P_cyt$	R-Smad-P_cyt	${ t cytoplasm}$	item	\Box	
${ t smad4_cyt}$	Smad4_cyt	${ t cytoplasm}$	item	\Box	
$R_smad_P_smad4_cyt$	R-Smad-P-Smad4_cyt	${ t cytoplasm}$	item	\Box	
R_smad_P_smad4_nuc	R-Smad-P-Smad4_nuc	nucleus	item	\Box	
R_smad_nuc	R-Smad_nuc	nucleus	item	\Box	
R_smad_P_nuc	R-Smad-P_nuc	nucleus	item		
${\tt smad4_nuc}$	Smad4_nuc	nucleus	item		
Pi	Pi	nucleus	item	\Box	

5 Parameters

This model contains four global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
sum_R_smad-	sum_R_smad_cyt		0.0		
_cyt					
sum_R_smad-	sum_R_smad_nuc		0.0		\Box
_nuc					
sum_smad4-	sum_Smad4_cyt		0.0		
_cyt					
sum_smad4-	sum_Smad4_nuc		0.0		
_nuc					

6 Rules

This is an overview of four rules.

6.1 Rule sum_R_smad_nuc

Rule sum_R_smad_nuc is an assignment rule for parameter sum_R_smad_nuc:

$$sum_R_smad_nuc = R_smad_nuc + R_smad_P_nuc + R_smad_P_smad4_nuc$$
 (1)

Derived unit item

6.2 Rule sum_smad4_nuc

Rule sum_smad4_nuc is an assignment rule for parameter sum_smad4_nuc:

$$sum_smad4_nuc = smad4_nuc + R_smad_P_smad4_nuc$$
 (2)

Derived unit item

6.3 Rule sum_R_smad_cyt

Rule sum_R_smad_cyt is an assignment rule for parameter sum_R_smad_cyt:

$$sum_R_smad_cyt = R_smad_cyt + R_smad_P_cyt + R_smad_P_smad4_cyt$$
 (3)

Derived unit item

6.4 Rule sum_smad4_cyt

Rule sum_smad4_cyt is an assignment rule for parameter sum_smad4_cyt :

$$sum_smad4_cyt = smad4_cyt + R_smad_P_smad4_cyt$$
 (4)

Derived unit item

7 Reactions

This model contains eight reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

Nº	Id	Name	Reaction Equation	SBO	
1	reaction_1	Phosphorylation	$R_smad_cyt \xrightarrow{receptor} R_smad_P_cyt$		
2	reaction_5	R-Smad translocation	R_smad_nuc = R_smad_cyt		
3	${\tt reaction_4}$	Smad4 translocation	smad4_nuc \improx smad4_cyt		
4	$reaction_2$	Complex formation	$R_smad_P_cyt + smad4_cyt \Longrightarrow R_smad_P_smad4_cyt$		
5	$reaction_3$	Complex translocation	$R_smad_P_smad4_cyt \longrightarrow R_smad_P_smad4_nuc$		
6	${\tt reaction_6}$	Complex in nucleus	$R_smad_P_smad_nuc \Longrightarrow smad_nuc +$		
		-	R_smad_P_nuc		
7	${\tt reaction_7}$	Dephosphorylation	$R_smad_P_nuc \longrightarrow R_smad_nuc + Pi$		
8	${\tt reaction_0}$	Receptor degradation	receptor $\longrightarrow \emptyset$		

7.1 Reaction reaction_1

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Phosphorylation

Reaction equation

$$R_smad_cyt \xrightarrow{receptor} R_smad_P_cyt$$
 (5)

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
R_smad_cyt	R-Smad_cyt	

Modifier

Table 7: Properties of each modifier.

Id	Name	SBO
receptor	receptors	

Product

Table 8: Properties of each product.

Id	Name	SBO
R_smad_P_cyt	R-Smad-P_cyt	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{item}$

$$v_1 = \frac{\text{KCAT} \cdot \text{receptor} \cdot \text{R_smad_cyt}}{\text{K1} + \text{R_smad_cyt}}$$
 (6)

Table 9: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
KCAT			3.51	$(60 \text{ s})^{-1}$	$ \mathbf{Z} $
K1			289000.00	item	\square

7.2 Reaction reaction_5

This is a reversible reaction of one reactant forming one product.

Name R-Smad translocation

Reaction equation

$$R_smad_nuc \rightleftharpoons R_smad_cyt$$
 (7)

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
R_smad_nuc	R-Smad_nuc	

Product

Table 11: Properties of each product.

Id	Name	SBO
R_{smad_cyt}	R-Smad_cyt	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{item}$

$$v_2 = k5nc \cdot R_smad_nuc - k5cn \cdot R_smad_cyt$$
 (8)

Table 12: Properties of each parameter.

Id	Name	SBO Value Unit	t Constant
k5nc		5.630 (60	s) ⁻¹
k5cn		0.563 (60)	$\mathbf{s})^{-1}$

7.3 Reaction reaction_4

This is a reversible reaction of one reactant forming one product.

Name Smad4 translocation

Reaction equation

$$smad4_nuc \Longrightarrow smad4_cyt$$
 (9)

Reactant

Table 13: Properties of each reactant.

Id	Name	SBO
smad4_nuc	Smad4_nuc	

Product

Table 14: Properties of each product.

Id	Name	SBO
${ t smad4_cyt}$	Smad4_cyt	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{item}$

$$v_3 = \text{k4nc} \cdot \text{smad4_nuc} - \text{k4cn} \cdot \text{smad4_cyt}$$
 (10)

Table 15: Properties of each parameter.

Id	Name	SBO Valu	ie Unit	Constant
k4nc k4cn			$\begin{array}{ccc} 3 & (60 \text{ s})^{-1} \\ 05 & (60 \text{ s})^{-1} \end{array}$	

7.4 Reaction reaction_2

This is a reversible reaction of two reactants forming one product.

Name Complex formation

Reaction equation

$$R_smad_P_cyt + smad4_cyt \Longrightarrow R_smad_P_smad4_cyt$$
 (11)

Reactants

Table 16: Properties of each reactant.

Id	Name	SBO		
R_smad_P_cyt smad4_cyt	R-Smad-P_cyt Smad4_cyt			

Product

Table 17: Properties of each product.

Id	Name	SBO
R_smad_P_smad4_cyt	R-Smad-P-Smad4_cyt	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{item}$

$$v_4 = k2a \cdot R_smad_P_cyt \cdot smad_cyt - k2d \cdot R_smad_P_smad_cyt$$
 (12)

Table 18: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k2a			$6.5\cdot10^{-5}$	$item^{-1} \cdot (60 \text{ s})^{-1}$	
k2d			0.040	$(60 \text{ s})^{-1}$	

7.5 Reaction reaction_3

This is an irreversible reaction of one reactant forming one product.

Name Complex translocation

Reaction equation

$$R_smad_P_smad4_cyt \longrightarrow R_smad_P_smad4_nuc$$
 (13)

Reactant

Table 19: Properties of each reactant.

Id	Name	SBO
$R_smad_P_smad4_cyt$	R-Smad-P-Smad4_cyt	

Product

Table 20: Properties of each product.

Id	Name	SBO
R_smad_P_smad4_nuc	R-Smad-P-Smad4_nuc	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{item}$

$$v_5 = k3 \cdot R_s - 2 \cdot R_s$$

Table 21: Properties of each parameter.

Id	Name	SBO V	/alue	Unit	Constant
k3		1	16.6	$(60 \text{ s})^{-1}$	Ø

7.6 Reaction reaction_6

This is a reversible reaction of one reactant forming two products.

Name Complex in nucleus

Reaction equation

$$R_smad_P_smad4_nuc \rightleftharpoons smad4_nuc + R_smad_P_nuc$$
 (15)

Reactant

Table 22: Properties of each reactant.

14010 22:110p		
Id	Name	SBO
R_smad_P_smad4_nuc	R-Smad-P-Smad4_nuc	

Products

Table 23: Properties of each product.

Id	Name	SBO
smad4_nuc R_smad_P_nuc	Smad4_nuc R-Smad-P_nuc	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{item}$

$$v_6 = k6d \cdot R_smad_P_smad4_nuc - k6a \cdot smad4_nuc \cdot R_smad_P_nuc$$
 (16)

Table 24: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k6d			0.049	$(60 \text{ s})^{-1}$	
k6a			$1.44 \cdot 10^{-4}$	$item^{-1} \cdot (60 \text{ s})^{-1}$	

7.7 Reaction reaction_7

This is an irreversible reaction of one reactant forming two products.

Name Dephosphorylation

Reaction equation

$$R_smad_P_nuc \longrightarrow R_smad_nuc + Pi$$
 (17)

Reactant

Table 25: Properties of each reactant.

Id	Name	SBO
R_smad_P_nuc	R-Smad-P_nuc	

Products

Table 26: Properties of each product.

Id	Name	SBO
R_smad_nuc Pi	R-Smad_nuc Pi	

Kinetic Law

Derived unit $item \cdot (60 \text{ s})^{-1}$

$$v_7 = \frac{Vmax7 \cdot R_smad_P_nuc}{K7 + R_smad_P_nuc}$$
 (18)

Table 27: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmax7 K7			17100.0 8950.0	$ item \cdot (60 \text{ s})^{-1} \\ item $	1

7.8 Reaction reaction_0

This is an irreversible reaction of one reactant forming no product.

Name Receptor degradation

Reaction equation

$$receptor \longrightarrow \emptyset \tag{19}$$

Reactant

Table 28: Properties of each reactant.

Id	Name	SBO
receptor	receptors	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = 100 \cdot \exp\left(\frac{\text{time}}{90}\right) \tag{20}$$

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

8.1 Species receptor

Name receptors

Initial amount 10000 item

This species takes part in two reactions (as a reactant in reaction_0 and as a modifier in reaction_1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{receptor} = -\nu_8 \tag{21}$$

8.2 Species R_smad_cyt

Name R-Smad_cyt

Initial amount 162000 item

This species takes part in two reactions (as a reactant in reaction_1 and as a product in reaction_5).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{R_smad_cyt} = v_2 - v_1 \tag{22}$$

8.3 Species R_smad_P_cyt

Name R-Smad-P_cyt

Initial amount 0 item

This species takes part in two reactions (as a reactant in reaction_2 and as a product in reaction_1).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{R}_{-} \mathbf{smad}_{-} \mathbf{P}_{-} \mathbf{cyt} = v_1 - v_4 \tag{23}$$

8.4 Species smad4_cyt

Name Smad4_cyt

Initial amount 120000 item

This species takes part in two reactions (as a reactant in reaction_2 and as a product in reaction_4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{smad4_cyt} = v_3 - v_4 \tag{24}$$

8.5 Species R_smad_P_smad4_cyt

Name R-Smad-P-Smad4_cyt

Initial amount 0 item

This species takes part in two reactions (as a reactant in reaction_3 and as a product in reaction_2).

$$\frac{\mathrm{d}}{\mathrm{d}t} R_{\mathrm{smad}} P_{\mathrm{smad}} 4_{\mathrm{cyt}} = v_4 - v_5 \tag{25}$$

8.6 Species R_smad_P_smad4_nuc

Name R-Smad-P-Smad4_nuc

Initial amount 0 item

This species takes part in two reactions (as a reactant in reaction_6 and as a product in reaction_3).

$$\frac{\mathrm{d}}{\mathrm{d}t} R_{-\mathrm{smad}} P_{-\mathrm{smad}} 4_{-\mathrm{nuc}} = v_5 - v_6 \tag{26}$$

8.7 Species R_smad_nuc

Name R-Smad_nuc

Initial amount 18000 item

This species takes part in two reactions (as a reactant in reaction_5 and as a product in reaction_7).

$$\frac{\mathrm{d}}{\mathrm{d}t} R_{-\mathrm{smad_nuc}} = v_7 - v_2 \tag{27}$$

8.8 Species R_smad_P_nuc

Name R-Smad-P_nuc

Initial amount 0 item

This species takes part in two reactions (as a reactant in reaction_7 and as a product in reaction_6).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{R}_{-}\mathbf{smad}_{-}\mathbf{P}_{-}\mathbf{nuc} = v_6 - v_7 \tag{28}$$

8.9 Species smad4_nuc

Name Smad4_nuc

Initial amount 30000 item

This species takes part in two reactions (as a reactant in reaction_4 and as a product in reaction_6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{smad4_nuc} = v_6 - v_3 \tag{29}$$

8.10 Species Pi

Name Pi

Initial amount 0 item

This species takes part in one reaction (as a product in reaction_7).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Pi} = v_7 \tag{30}$$

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

 $[^]d$ EML Research gGmbH, Heidelberg, Germany