

Algorithmen 1

Listen und binäre Suche

Wiederholung: Zwei Arten der Datenablage

Felder (Arrays)

Menge aufeinanderfolgender Speicherzellen

■ Zugriff mit Adresse bzw. Index an beliebiger Stelle in $\Theta(1)$

Adresse: 30 31 32 33 34 35 36 37 38 39 40 41

Daten: 4 48 89 1 0 9 13 7 32 76 17 5

sehr nah an der Hardware

letztes Mal: Komfort-Funktionen für dynamisches Wachstum

Wiederholung: Zwei Arten der Datenablage

Felder (Arrays)

- Menge aufeinanderfolgender Speicherzellen
- Zugriff mit Adresse bzw. Index an beliebiger Stelle in $\Theta(1)$
- sehr nah an der Hardware
- letztes Mal: Komfort-Funktionen für dynamisches Wachstum

Verzeigerte Strukturen

- viele kleine Stückchen Speicher (Knoten)
- ein Knoten speichert:
 - Daten, die uns tatsächlich interessieren
 - Speicheradressen anderer Knoten (Zeiger)
- Zugriff durch Navigation entlang Zeiger
- abstrahiert stärker von der Hardware
- heute: Listen als einfaches Beispiel

Ziele

- speichere eine Folge von Zahlen (4, 48, 89, 1)
- flexible Einfüge- und Löschoperationen

Repräsentation und Effiziente Umsetzung

(abstraktes Objekt, **Mathe**) (Funktionalität, **Softwaretechnik**) (**Algorithmik**)

Ziele

- speichere eine Folge von Zahlen (4, 48, 89, 1)
- flexible Einfüge- und Löschoperationen

Repräsentation und Effiziente Umsetzung

- jeder Knoten der Datenstruktur speichert:
 - eine der Zahlen der Folge value
 - Zeiger zum nächsten Knoten next
 - Zeiger zum vorherigen Knoten prev

(abstraktes Objekt, Mathe)

(Funktionalität, Softwaretechnik)

(Algorithmik)

Ziele

- speichere eine Folge von Zahlen (4, 48, 89, 1)
- flexible Einfüge- und Löschoperationen

Repräsentation und Effiziente Umsetzung

- jeder Knoten der Datenstruktur speichert:
 - eine der Zahlen der Folge value
 - Zeiger zum nächsten Knoten next
 - Zeiger zum vorherigen Knoten prev
- Einstiegspunkte: head, end

(abstraktes Objekt, Mathe)

(Funktionalität, Softwaretechnik)

(Algorithmik)

Ziele

- speichere eine Folge von Zahlen (4, 48, 89, 1)
- flexible Einfüge- und Löschoperationen

Repräsentation und Effiziente Umsetzung

- jeder Knoten der Datenstruktur speichert:
 - eine der Zahlen der Folge value
 - Zeiger zum nächsten Knoten next
 - Zeiger zum vorherigen Knoten prev
- Einstiegspunkte: head, end
- Einfüge- und Löschoperationen
 - Änderungen sind nur lokal
 - konstant viele Zeiger umhängen
 - \rightarrow konstante Laufzeit ($\Theta(1)$)

(abstraktes Objekt, Mathe)

(Funktionalität, Softwaretechnik)

(Algorithmik)

Beispiel: (4, 48, 89, 1)

Wo stehen wir?

Gerade gesehen

- grundlegende Funktionsweise einer Liste
- High-Level Verständnis, warum flexibles Einfügen und Löschen effizient geht
- → hohes Abstraktionslevel

Wo stehen wir?

Gerade gesehen

- grundlegende Funktionsweise einer Liste
- High-Level Verständnis, warum flexibles Einfügen und Löschen effizient geht
- → hohes Abstraktionslevel

Offene Detailfragen

- Gibt es Sonderfälle zu beachten?
- Wie gehe ich mit den ⊥-Pointern um?
- Ziel: Elegante Implementierung, die Sonderfälle reduziert
- Welche nützlichen Operationen gehen sonst noch?

Beispiel: (4, 48, 89, 1)

Dummy Knoten ⊥ für den Kopf

- keine Null-Pointer mehr für erstes und letztes Listenelement
- einfacher, dank Reduktion von Sonderfällen

Dummy Knoten ⊥ für den Kopf

- keine Null-Pointer mehr für erstes und letztes Listenelement
- einfacher, dank Reduktion von Sonderfällen

insertAfter(Node a, Node x)

// insert node x after node a

Dummy Knoten ⊥ für den Kopf

- keine Null-Pointer mehr für erstes und letztes Listenelement
- einfacher, dank Reduktion von Sonderfällen

insertAfter(Node a, Node x)

// insert node x after node a

b := a.**next**

Dummy Knoten ⊥ für den Kopf

- keine Null-Pointer mehr für erstes und letztes Listenelement
- einfacher, dank Reduktion von Sonderfällen

insertAfter(Node a, Node x)

```
// insert node x after node a
b := a.next
x.prev := a
x.next := b
a.next := x
b.prev := x
```


Dummy Knoten ⊥ für den Kopf

- keine Null-Pointer mehr für erstes und letztes Listenelement
- einfacher, dank Reduktion von Sonderfällen

insertAfter(Node a, Node x)

// insert node x after node a

 $b.\mathsf{prev} \coloneqq x$

Beachte: funktioniert auch dann, wenn a = 1 oder a.**next** = 1

Operation: Splice (verbinden, zusammenfügen)

• gegeben: zwei Listen L_1 und L_2 mit Knoten $a, b \in L_1$ und $c \in L_2$

Operation: Splice (verbinden, zusammenfügen)

- gegeben: zwei Listen L_1 und L_2 mit Knoten $a, b \in L_1$ und $c \in L_2$
- Ziel: verschiebe $\langle a, \ldots, b \rangle$ von L_1 nach L_2 hinter c

Operation: Splice (verbinden, zusammenfügen)

- gegeben: zwei Listen L_1 und L_2 mit Knoten $a, b \in L_1$ und $c \in L_2$
- Ziel: verschiebe $\langle a, \ldots, b \rangle$ von L_1 nach L_2 hinter c

Ergebnis:

Operation: Splice (verbinden, zusammenfügen)

- gegeben: zwei Listen L_1 und L_2 mit Knoten $a, b \in L_1$ und $c \in L_2$
- Ziel: verschiebe $\langle a, \ldots, b \rangle$ von L_1 nach L_2 hinter c

splice(a, b, c)

// cut out $\langle a, \ldots, b \rangle$

a' := a.prev

b' := b.**next**

a'.**next** := b'

 $b'.\mathsf{prev} := a'$

Operation: Splice (verbinden, zusammenfügen)

- gegeben: zwei Listen L_1 und L_2 mit Knoten $a, b \in L_1$ und $c \in L_2$
- Ziel: verschiebe $\langle a, \ldots, b \rangle$ von L_1 nach L_2 hinter c

splice(a, b, c)

// cut out $\langle a, \ldots, b \rangle$

a' := a.prev

b' := b.**next**

a'.**next** := b'

 $b'.\mathsf{prev} := a'$

// insert after c

c' := c.**next**

 $a.\mathsf{prev} \coloneqq c$

 $b.\mathsf{next} \coloneqq c'$

c.**next** := a

 $c'.\mathsf{prev} := b$

Operation: Splice (verbinden, zusammenfügen)

- gegeben: zwei Listen L_1 und L_2 mit Knoten $a, b \in L_1$ und $c \in L_2$
- Ziel: verschiebe $\langle a, \ldots, b \rangle$ von L_1 nach L_2 hinter c

Laufzeit: $\Theta(1)$

splice(a, b, c)

// cut out $\langle a, \ldots, b \rangle$

a' := a.prev

b' := b.**next**

a'.**next** := b'

 $b'.\mathsf{prev} \coloneqq a'$

// insert after c

c' := c.**next**

a.prev := c

 $b.\mathsf{next} \coloneqq c'$

c.**next** := a

c'.prev := b

Welche Datenstruktur ist besser für welche Anwendung?

Stärken der Liste: flexibel modifizierbar in $\Theta(1)$

■ Einfügen, Löschen, Verschieben

Stärken der Liste: flexibel modifizierbar in $\Theta(1)$

- $\langle 4, 48, 1, 0, 9 \rangle$ $\langle 4, 48, 89, 1, 0, 9 \rangle$ $\langle 4, 89, 1, 0, 9 \rangle$ Einfügen, Löschen, Verschieben
- $\langle 4, 48, 89, 1 \rangle + \langle 0, 9, 13 \rangle \rightarrow \langle 4, 48, 89, 1, 0, 9, 13 \rangle$ Konkatenation zweier Listen

Stärken der Liste: flexibel modifizierbar in $\Theta(1)$

- Einfügen, Löschen, Verschieben
- Konkatenation zweier Listen
- Verschieben ganzer Bereiche

| Zierbar in
$$\Theta(1)$$
 | 89 | $\langle 4, 48, 1, 0, 9 \rangle$ | $\langle 4, 48, 89, 1, 0, 9 \rangle$ | $\langle 4, 48, 89, 1 \rangle + \langle 0, 9, 13 \rangle \rightarrow \langle 4, 48, 89, 1, 0, 9, 13 \rangle$

 $\langle 4, 48, 89, 1, 0, 9, 13, 7 \rangle$ $\langle 32, 76, 17, 5 \rangle$

Stärken der Liste: flexibel modifizierbar in $\Theta(1)$

- Einfügen, Löschen, Verschieben
- Konkatenation zweier Listen
- Verschieben ganzer Bereiche
- Löschen ganzer Bereiche

$$\langle 4, 48, 89, 1 \rangle + \langle 0, 9, 13 \rangle \rightarrow \langle 4, 48, 89, 1, 0, 9, 13 \rangle$$

 $\langle 4, 48, 89, 1, 0, 9, 13, 7 \rangle$ $\langle 32, 76, 17, 5 \rangle$

⟨4, 48, 1, 0, 9⟩ ⟨4, 48, 89, 1, 0, 9⟩ ⟨4, 89,

 $\langle 4, 48, 89, 1, 0, 9, 13, 7, 32, 76, 17, 5 \rangle$

Stärken der Liste: flexibel modifizierbar in $\Theta(1)$

- Einfügen, Löschen, Verschieben
- Konkatenation zweier Listen
- Verschieben ganzer Bereiche
- Löschen ganzer Bereiche

$$\langle 4, 48, 1, 0, 9 \rangle$$
 $\langle 4, 48, 89, 1, 0, 9 \rangle$ $\langle 4, 89, 1 \rangle$ $\langle 4, 48, 89, 1 \rangle + \langle 0, 9, 13 \rangle \rightarrow \langle 4, 48, 89, 1, 0, 9, 13 \rangle$

$$\langle 4, 48, 89, 1, 0, 9, 13, 7 \rangle$$
 $\langle 32, 76, 17, 5 \rangle$

 $\langle 4, 48, 89, 1, 0, 9, 13, 7, 32, 76, 17, 5 \rangle$

Nebenbemerkung

- Θ(1) für das Löschen eines Bereichs ist ggf. eine etwas blauäugige Sichtweise
- Was passiert mit dem reservierten Speicher?
- Geben wir den frei? Wer bezahlt das?
- Oder nehmen wir ein memory leak in Kauf?

Stärken der Liste: flexibel modifizierbar in $\Theta(1)$

- Einfügen, Löschen, Verschieben
- Konkatenation zweier Listen
- Verschieben ganzer Bereiche
- Löschen ganzer Bereiche

$$\langle 4, 48, 1, 0, 9 \rangle$$
 $\langle 4, 48, 89, 1, 0, 9 \rangle$ $\langle 4, 89, 1, 0, 9 \rangle$

- $\langle 4, 48, 89, 1 \rangle + \langle 0, 9, 13 \rangle \rightarrow \langle 4, 48, 89, 1, 0, 9, 13 \rangle$
 - $\langle 4, 48, 89, 1, 0, 9, 13, 7 \rangle$ $\langle 32, 76, 17, 5 \rangle$
- $\langle 4, 48, 89, 1, 0, 9, 13, 7, 32, 76, 17, 5 \rangle$

Schwächen der Liste

- kein wahlfreier Zugriff (random access)
- man muss die relevanten Knoten immer schon in der Hand haben

Nebenbemerkung

- Θ(1) für das Löschen eines Bereichs ist ggf. eine etwas blauäugige Sichtweise
- Was passiert mit dem reservierten Speicher?
- Geben wir den frei? Wer bezahlt das?
- Oder nehmen wir ein memory leak in Kauf?

Stärken der Liste: flexibel modifizierbar in $\Theta(1)$

- Einfügen, Löschen, Verschieben
- Konkatenation zweier Listen
- Verschieben ganzer Bereiche
- Löschen ganzer Bereiche

$$\langle 4, 48, 1, 0, 9 \rangle$$
 $\langle 4, 48, 89, 1, 0, 9 \rangle$ $\langle 4, 89, 1, 0, 9 \rangle$

- $\langle 4, 48, 89, 1 \rangle + \langle 0, 9, 13 \rangle \rightarrow \langle 4, 48, 89, 1, 0, 9, 13 \rangle$
 - $\langle 4, 48, 89, 1, 0, 9, 13, 7 \rangle$ $\langle 32, 76, 17, 5 \rangle$
- (4, 48, 89, 1, 0, 9, 13, 7, 32, 76, 17, 5)

Schwächen der Liste

- kein wahlfreier Zugriff (random access)
- man muss die relevanten Knoten immer schon in der Hand haben
- in der Praxis: schlechtere konstante Faktoren (Speicheroverhead, Cache-Effekte)

Nebenbemerkung

- Θ(1) für das Löschen eines Bereichs ist ggf. eine etwas blauäugige Sichtweise
- Was passiert mit dem reservierten Speicher?
- Geben wir den frei? Wer bezahlt das?
- Oder nehmen wir ein memory leak in Kauf?

Listenvarianten

Mehr als nur eine Liste

- Liste ist eher ein Konzept als eine einzelne Datenstruktur
- unterschiedliche Anwendungen erfordern im Detail unterschiedliche Implementierungen

Listenvarianten

Mehr als nur eine Liste

- Liste ist eher ein Konzept als eine einzelne Datenstruktur
- unterschiedliche Anwendungen erfordern im Detail unterschiedliche Implementierungen

Beispiel 1: Listengröße

- nützliche Information: Größe der Liste (Anzahl Knoten)
- Lösung: speichere diese Info und aktualisiere sie bei Änderungen
- Problem: splice wird teurer, weil wir die verschobenen Elemente zählen müssen

Listenvarianten

Mehr als nur eine Liste

- Liste ist eher ein Konzept als eine einzelne Datenstruktur
- unterschiedliche Anwendungen erfordern im Detail unterschiedliche Implementierungen

Beispiel 1: Listengröße

- nützliche Information: Größe der Liste (Anzahl Knoten)
- Lösung: speichere diese Info und aktualisiere sie bei Änderungen
- Problem: splice wird teurer, weil wir die verschobenen Elemente zählen müssen

Beispiel 2: Einfach verkettete Liste

- speichere nur next aber nicht prev
- weniger Speicherplatz, oft schneller
- aber: weniger flexibel, merkwürdige Benutzerschnittstelle (z.B. removeAfter)

Listen in der Wildnis

C++

https://en.cppreference.com/w/cpp/container/list

std::list

std::list is a container that supports constant time insertion and removal of elements from anywhere in the container. Fast random access is not supported. It is usually implemented as a doubly-linked list. Compared to std::forward_list this container provides bidirectional iteration capability while being less space efficient.

front	access the first element (public member function)	std::list <t,allocator>::Splice Transfers elements from one list to another. No elements are copied or moved, only the internal pointers of the list nodes are re-pointed. Complexity 1-2) Constant. 3) Constant if other refers to the same object as *this, otherwise linear in std::distance(first, last). std::list<t,allocator>::erase Erases the specified elements from the container. 1) Removes the element at pos. 2) Removes the elements in the range [first, last).</t,allocator></t,allocator>	
back	access the last element (public member function)		
size	returns the number of elements (public member function)		
insert	inserts elements (public member function)		
erase	erases elements (public member function)		
merge	merges two sorted lists (public member function)		
splice	moves elements from another list (public member function)	1) Constant.	
		2) Linear in the dist	ance between first and last.

Listen in der Wildnis

Java

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/LinkedList.html

Class LinkedList<E>

Doubly-linked list implementation of the List and Deque interfaces. Implements all optional list operations, and permits all elements (including null).

All of the operations perform as could be expected for a doubly-linked list. Operations that index into the list will traverse the list from the beginning or the end, whichever is closer to the specified index.

Modifier and Type Method	Description
ListIterator <e> listIterator(int i</e>	dex) Returns a list-iterator of the elements in this list (in proper sequence), starting at the specified position in the list.

Listen in der Wildnis

Java

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/LinkedList.html

Class LinkedList<E>

Doubly-linked list implementation of the List and Deque interfaces. Implements all optional list operations, and permits all elements (including null).

All of the operations perform as could be expected for a doubly-linked list. Operations that index into the list will traverse the list from the beginning or the end, whichever is closer to the specified index.

Interface ListIterator<E>

Modifier and Type	Method	Description
void	add(E e)	Inserts the specified element into the list (optional operation).
Е	next()	Returns the next element in the list and advances the cursor position.
E	previous()	Returns the previous element in the list and moves the cursor position backwards.
void	remove()	Removes from the list the last element that was returned by next() or previous() (optional operation).

Stapel und Warteschlangen

Stack

- Operationen: pushBack, popBack
- Implementierung: z.B. mittels Array
- LIFO: Last In First Out

Queue

- Operationen: pushBack, popFront
- Implementierung: z.B. mittels Liste
- FIFO: First In First Out

Deque – Double-ended Queue

- Operationen: pushBack, popBack, pushFront, popFront
- Implementierung: z.B. mittels Liste

Suchen

Problemstellung

- gegeben: Folge von *n* Zahlen *A* (als Array oder Liste) und eine Zahl *x*
- Ziel: finde x in der Folge A (z.B. erstes/jedes Auftreten)

$$\stackrel{?}{\in} \langle 4, 48, 89, 1, 0, 9, 13, 7, 32, 76, 17, 5, 37, 28, 82, 63 \rangle$$

Suchen

Problemstellung

- gegeben: Folge von *n* Zahlen *A* (als Array oder Liste) und eine Zahl *x*
- Ziel: finde x in der Folge A (z.B. erstes/jedes Auftreten)

$$\stackrel{?}{\in} \langle 4, 48, 89, 1, 0, 9, 13, 7, 32, 76, 17, 5, 37, 28, 82, 63 \rangle$$

Lineare Suche

- schaue jedes Element aus A an
- lineare Laufzeit: $\Theta(n)$

Suchen

Problemstellung

- gegeben: Folge von *n* Zahlen *A* (als Array oder Liste) und eine Zahl *x*
- Ziel: finde x in der Folge A (z.B. erstes/jedes Auftreten)

$$\stackrel{?}{\in} \langle 4, 48, 89, 1, 0, 9, 13, 7, 32, 76, 17, 5, 37, 28, 82, 63 \rangle$$

Lineare Suche

- schaue jedes Element aus A an
- lineare Laufzeit: $\Theta(n)$

Geht es besser?

- lacktriangle nur manche Elemente betrachtet o x kann sich unter den nicht angeschauten verstecken
- wir müssen zumindest die Eingabe einmal komplett lesen $\Rightarrow \Omega(n)$
- \blacksquare also: besser als $\Theta(n)$ geht nicht, außer wir fordern zusätzliche Eigenschaften für A

- gegeben: sortierte Folge von n Zahlen A und eine Zahl x
- Ziel: finde x in der Folge A (z.B. erstes Auftreten oder Vorgänger)

$$\stackrel{?}{\in} \langle 0, 1, 4, 5, 7, 9, 13, 17, 28, 32, 37, 48, 63, 76, 82, 89 \rangle$$

- gegeben: sortierte Folge von *n* Zahlen *A* und eine Zahl *x*
- Ziel: finde x in der Folge A (z.B. erstes Auftreten oder Vorgänger)

$$\stackrel{?}{\in} \langle 0, 1, 4, 5, 7, 9, 13, 17, 28, 32, 37, 48, 63, 76, 82, 89 \rangle$$

- durch einen Vergleich: entscheide ob x in der linken oder rechten Hälfte von A liegt
- suche rekursiv in der relevanten Hälfte von A

- gegeben: sortierte Folge von *n* Zahlen *A* und eine Zahl *x*
- Ziel: finde x in der Folge A (z.B. erstes Auftreten oder Vorgänger)

$$45 \stackrel{?}{\in} \langle 0, 1, 4, 5, 7, 9, 13, 17, 28, 32, 37, 48, 63, 76, 82, 89 \rangle$$

- durch einen Vergleich: entscheide ob x in der linken oder rechten Hälfte von A liegt
- suche rekursiv in der relevanten Hälfte von A

- gegeben: sortierte Folge von *n* Zahlen *A* und eine Zahl *x*
- Ziel: finde x in der Folge A (z.B. erstes Auftreten oder Vorgänger)

$$\stackrel{?}{\in} \langle 0, 1, 4, 5, 7, 9, 13, 17, 28, 32, 37, 48, 63, 76, 82, 89 \rangle$$

- durch einen Vergleich: entscheide ob x in der linken oder rechten Hälfte von A liegt
- suche rekursiv in der relevanten Hälfte von A

Problemstellung

- gegeben: sortierte Folge von n Zahlen A und eine Zahl x
- Ziel: finde x in der Folge A (z.B. erstes Auftreten oder Vorgänger)

$$45 \stackrel{?}{\in} \langle 0, 1, 4, 5, 7, 9, 13, 17, 28, 32, 37, 48, 63, 76, 82, 89 \rangle$$

- durch einen Vergleich: entscheide ob x in der linken oder rechten Hälfte von A liegt
- suche rekursiv in der relevanten Hälfte von A

- gegeben: sortierte Folge von *n* Zahlen *A* und eine Zahl *x*
- Ziel: finde x in der Folge A (z.B. erstes Auftreten oder Vorgänger)

$$\stackrel{?}{\in} \langle 0, 1, 4, 5, 7, 9, 13, 17, 28, 32, 37, 48, 63, 76, 82, 89 \rangle$$

- durch einen Vergleich: entscheide ob x in der linken oder rechten Hälfte von A liegt
- suche rekursiv in der relevanten Hälfte von A

Problemstellung

- gegeben: sortierte Folge von *n* Zahlen *A* und eine Zahl *x*
- Ziel: finde x in der Folge A (z.B. erstes Auftreten oder Vorgänger)

$$\stackrel{?}{\in} \langle 0, 1, 4, 5, 7, 9, 13, 17, 28, 32, 37, 48, 63, 76, 82, 89 \rangle$$

- durch einen Vergleich: entscheide ob x in der linken oder rechten Hälfte von A liegt
- suche rekursiv in der relevanten Hälfte von A

- gegeben: sortierte Folge von *n* Zahlen *A* und eine Zahl *x*
- Ziel: finde x in der Folge A (z.B. erstes Auftreten oder Vorgänger)

$$\stackrel{?}{\in} \langle 0, 1, 4, 5, 7, 9, 13, 17, 28, 32, 37, 48, 63, 76, 82, 89 \rangle$$

- durch einen Vergleich: entscheide ob x in der linken oder rechten Hälfte von A liegt
- suche rekursiv in der relevanten Hälfte von A

Problemstellung

- gegeben: sortierte Folge von n Zahlen A und eine Zahl x
- Ziel: finde x in der Folge A (z.B. erstes Auftreten oder Vorgänger)

$$\stackrel{?}{\in} \langle 0, 1, 4, 5, 7, 9, 13, 17, 28, 32, 37, 48, 63, 76, 82, 89 \rangle$$

- durch einen Vergleich: entscheide ob x in der linken oder rechten Hälfte von A liegt
- suche rekursiv in der relevanten Hälfte von A
- Abbruch: zu durchsuchende Folge ist nur noch konstant groß (hier: 2)

Problemstellung

- gegeben: sortierte Folge von n Zahlen A und eine Zahl x
- Ziel: finde x in der Folge A (z.B. erstes Auftreten oder Vorgänger)

$$\stackrel{?}{\in} \langle 0, 1, 4, 5, 7, 9, 13, 17, 28, 32, 37, 48, 63, 76, 82, 89 \rangle$$

Binäre Suche

- durch einen Vergleich: entscheide ob x in der linken oder rechten Hälfte von A liegt
- suche rekursiv in der relevanten Hälfte von A
- Abbruch: zu durchsuchende Folge ist nur noch konstant groß (hier: 2)

Laufzeit: Wie viele Vergleiche brauchen wir?

Implementierung: Sollten wir A als Liste oder Array repräsentieren?

Problemstellung

- gegeben: sortierte Folge von n Zahlen A und eine Zahl x
- Ziel: finde x in der Folge A (z.B. erstes Auftreten oder Vorgänger)

$$\stackrel{?}{\in} \langle 0, 1, 4, 5, 7, 9, 13, 17, 28, 32, 37, 48, 63, 76, 82, 89 \rangle$$

Binäre Suche

- durch einen Vergleich: entscheide ob x in der linken oder rechten Hälfte von A liegt
- suche rekursiv in der relevanten Hälfte von A
- Abbruch: zu durchsuchende Folge ist nur noch konstant groß (hier: 2)

Anzahl Vergleiche

■ pro Vergleich halbiert sich die Größe von $A \rightarrow \text{nur } \Theta(\log n)$ Halbierungen

Problemstellung

- gegeben: sortierte Folge von n Zahlen A und eine Zahl x
- Ziel: finde x in der Folge A (z.B. erstes Auftreten oder Vorgänger)

$$\stackrel{?}{\in} \langle 0, 1, 4, 5, 7, 9, 13, 17, 28, 32, 37, 48, 63, 76, 82, 89 \rangle$$

Binäre Suche

- durch einen Vergleich: entscheide ob x in der linken oder rechten Hälfte von A liegt
- suche rekursiv in der relevanten Hälfte von A
- Abbruch: zu durchsuchende Folge ist nur noch konstant groß (hier: 2)

Anzahl Vergleiche

■ pro Vergleich halbiert sich die Größe von $A \rightarrow \text{nur } \Theta(\log n)$ Halbierungen

Implementierung

- pro Schritt: Zugriff auf mittleres Element im aktuell betrachteten Bereich
- wahlfreier Zugriff → Array bietet sich an

binSearchRec(
$$A$$
, x , beg = 0, end = $n - 1$)
// find x in $\langle A[beg], ..., A[end] \rangle$

		Bereich des aktuellen Aufrufs		
A:	beg		end	


```
binSearchRec(A, x, beg = 0, end = n - 1)

// find x in \langle A[beg], ..., A[end] \rangle

if end - beg = 1 then

// base case: range has size 2

if x = A[beg] then return beg

if x = A[end] then return end

return between beg and end
```

		Bereich des aktuellen Aufrufs		
A:	beg		end	


```
binSearchRec(A, x, beg = 0, end = n - 1)
  // find x in \langle A[beg], \ldots, A[end] \rangle
  if end - beg = 1 then
     // base case: range has size 2
     if x = A[beg] then return beg
     if x = A[end] then return end
     return between beg and end
  // general case: half the range
  mid := \lceil (beg + end)/2 \rceil
  if x < A[mid] then
     return binSearchRec(A, x, beg, mid)
  else
     return binSearchRec(A, x, mid, end)
```

	Bereich des aktuellen Aufrufs							
۱:	beg		mid		end			
•	neue	er Bereich für $x < A[$	mid]					
			neue	er Bereich für $x \geq A[$	mid]			


```
binSearchRec(A, x, beg = 0, end = n-1)
  // find x in \langle A[beg], \ldots, A[end] \rangle
  if end - beg = 1 then
     // base case: range has size 2
     if x = A[beg] then return beg
     if x = A[end] then return end
     return between beg and end
  // general case: half the range
  mid := \lceil (beg + end)/2 \rceil
  if x < A[mid] then
     return binSearchRec(A, x, beg, mid)
  else
     return binSearchRec(A, x, mid, end)
```

Was müssen wir beweisen?

- ausgegebenes Ergebnis ist korrekt
- Terminierung nach Laufzeit $\Theta(\log n)$


```
binSearchRec(A, x, beg = 0, end = n-1)
  // find x in \langle A[beg], \ldots, A[end] \rangle
  if end - beg = 1 then
     // base case: range has size 2
     if x = A[beg] then return beg
     if x = A[end] then return end
     return between beg and end
  // general case: half the range
  mid := \lceil (beg + end)/2 \rceil
  if x < A[mid] then
     return binSearchRec(A, x, beg, mid)
  else
     return binSearchRec(A, x, mid, end)
```

Was müssen wir beweisen?

- ausgegebenes Ergebnis ist korrekt
- Terminierung nach Laufzeit $\Theta(\log n)$

Korrektheitsbeweis mittels Invarianten

■ zeige, dass wir immer im richtigen Teilbereich suchen: $A[beg] \le x \le A[end]$

			Bereich des	aktue	ellen Aufrufs		
A:		beg		mid		end	
	neuer Bereich für $x < A[mid]$						
				neue	er Bereich für $x > A$ [mid]	


```
binSearchRec(A, x, beg = 0, end = n-1)
  // find x in \langle A[beg], \ldots, A[end] \rangle
  if end - beg = 1 then
    // base case: range has size 2
     if x = A[beg] then return beg
     if x = A[end] then return end
     return between beg and end
  // general case: half the range
  mid := \lceil (beg + end)/2 \rceil
  if x < A[mid] then
     return binSearchRec(A, x, beg, mid)
  else
     return binSearchRec(A, x, mid, end)
```

Was müssen wir beweisen?

- ausgegebenes Ergebnis ist korrekt
- Terminierung nach Laufzeit $\Theta(\log n)$

Korrektheitsbeweis mittels Invarianten

■ zeige, dass wir immer im richtigen Teilbereich suchen: $A[beg] \le x \le A[end]$

- wenn $A[beg] \le x \le A[end]$ im aktuellen Aufruf gilt
- dann auch im nächsten

Abstraktionslevel: Idee → Implementierung


```
binSearchRec(A, x, beg = 0, end = n-1)
  // find x in \langle A[beg], \ldots, A[end] \rangle
  if end - beg = 1 then
     // base case: range has size 2
     if x = A[beg] then return beg
     if x = A[end] then return end
     return between beg and end
  // general case: half the range
  mid := \lceil (beg + end)/2 \rceil
  if x < A[mid] then
     return binSearchRec(A, x, beg, mid)
  else
     return binSearchRec(A, x, mid, end)
```

Was müssen wir beweisen?

- ausgegebenes Ergebnis ist korrekt
- Terminierung nach Laufzeit $\Theta(\log n)$

Korrektheitsbeweis mittels Invarianten

■ zeige, dass wir immer im richtigen Teilbereich suchen: $A[beg] \le x \le A[end]$

- wenn $A[beg] \le x \le A[end]$ im aktuellen Aufruf gilt
- dann auch im nächsten

Achtung am Anfang:

 $A[0] \le x \le A[n-1]$ muss nicht gelten!

Was genau wollen wir haben?

- Index i, sodass: A[i] = x (falls $x \in A$) oder A[i-1] < x < A[i] (falls $x \notin A$)

 (Konvention: $A[-1] = -\infty$, $A[n] = \infty$)
- Invariante für diesen Index i: $i \in [beg, end]$

Was genau wollen wir haben?

- Index i, sodass: A[i] = x (falls $x \in A$) // find $i \in [beg, end]$ with this property oder A[i-1] < x < A[i] (falls $x \notin A$) (Konvention: $A[-1] = -\infty$, $A[n] = \infty$)
- Invariante für diesen Index i: $i \in [beg, end]$

Beweis der Invariante

 \blacksquare gilt am Anfang mit beg = 0 und end = n

binSearchRec(A, x, beg = 0, end = n)

Was genau wollen wir haben?

- Index i, sodass: A[i] = x (falls $x \in A$) // find $i \in [beg, end]$ with this property oder A[i-1] < x < A[i] (falls $x \notin A$) (Konvention: $A[-1] = -\infty$, $A[n] = \infty$)
- Invariante für diesen Index i: $i \in [beg, end]$

Beweis der Invariante

 \blacksquare gilt am Anfang mit beg = 0 und end = n

```
binSearchRec(A, x, beg = 0, end = n)
// TODO: special treatment for base case
```


Was genau wollen wir haben?

- Index i, sodass: A[i] = x (falls $x \in A$) oder A[i-1] < x < A[i] (falls $x \notin A$) (Konvention: $A[-1] = -\infty$, $A[n] = \infty$)
- Invariante für diesen Index i: $i \in [beg, end]$

Beweis der Invariante

• gilt am Anfang mit beg = 0 und end = n

```
binSearchRec(A, x, beg = 0, end = n)

// find i \in [beg, end] with this property

// TODO: special treatment for base case

// general case: half the range

mid := \lfloor (beg + end)/2 \rfloor

if x \le A[mid] then

return binSearchRec(A, x, beg, mid)

else

return binSearchRec(A, x, mid + 1, end)
```

Bereich des aktuellen Aufrufs							
beg		mid		end			
neue	er Bereich für $x \leq A[$	neuer Bereich für $x > A$ [mid]				

Was genau wollen wir haben?

- Index i, sodass: A[i] = x (falls $x \in A$) oder A[i-1] < x < A[i] (falls $x \notin A$) (Konvention: $A[-1] = -\infty$, $A[n] = \infty$)
- Invariante für diesen Index i: $i \in [beg, end]$

Beweis der Invariante

- gilt am Anfang mit beg = 0 und end = n
- für den Erhalt der Invariante, prüfe 4 Fälle:
 - Fall 1.1: $x \in A$ und $x \leq A$ [mid]
 - Fall 1.2: $x \in A$ und x > A[mid]
 - Fall 2.1: $x \notin A$ und $x \leq A$ [mid]
 - Fall 2.2: $x \notin A$ und x > A[mid]

```
binSearchRec(A, x, beg = 0, end = n)

// find i \in [beg, end] with this property

// TODO: special treatment for base case

// general case: half the range

mid := \lfloor (beg + end)/2 \rfloor

if x \le A[mid] then
```

return binSearchRec(A, x, beg, mid)
else
return binSearchRec(A, x, mid + 1, end)

_	Bereich des aktuellen Aufrufs								
	beg		mid		end				
	neuer Bereich für $x \le A[r]$		mid]	neuer Bereich für $x > A[$	mid]				

Was genau wollen wir haben?

- Index i, sodass: A[i] = x (falls $x \in A$) oder A[i-1] < x < A[i] (falls $x \notin A$) (Konvention: $A[-1] = -\infty$, $A[n] = \infty$)
- Invariante für diesen Index i: $i \in [beg, end]$

Beweis der Invariante

- gilt am Anfang mit beg = 0 und end = n
- für den Erhalt der Invariante, prüfe 4 Fälle:
 - Fall 1.1: $x \in A$ und $x \leq A$ [mid]
 - Fall 1.2: $x \in A$ und x > A[mid]
 - Fall 2.1: $x \notin A$ und $x \leq A$ [mid]
 - Fall 2.2: $x \notin A$ und x > A[mid]

Basisfall: mit der Invariante sehr einfach

```
binSearchRec(A, x, beg = 0, end = n)

// find i \in [beg, end] with this property

if beg = end then return beg

// general case: half the range

mid := \lfloor (beg + end)/2 \rfloor

if x \leq A[mid] then

return binSearchRec(A, x, beg, mid)

else

return binSearchRec(A, x, mid + 1, end)
```

Bereich des aktuellen Aufrufs							
beg		mid		end			
neuer Bereich für $x \leq A[r]$		mid]	neuer Bereich für $x > A[$	mid]			

Was genau wollen wir haben?

- Index i, sodass: A[i] = x (falls $x \in A$) oder A[i-1] < x < A[i] (falls $x \notin A$) (Konvention: $A[-1] = -\infty$, $A[n] = \infty$)
- Invariante für diesen Index i: $i \in [beg, end]$

Beweis der Laufzeit

- end beg wird mindestens halbiert:
 - Beispiel für ungerade Differenz

Beispiel für gerade Differenz

binSearchRec(A, x, beg = 0, end = n) // find $i \in [beg, end]$ with this property

if beg = end then return beg

// general case: half the range

mid := $\lfloor (beg + end)/2 \rfloor$ if $x \leq A[mid]$ then

return binSearchRec(A, x, beg, mid)

else

return binSearchRec(A, x, mid + 1, end)

Bereich des aktuellen Aufrufs						
beg	mid		end			
neuer Bereich für $x \leq A[mid]$		neuer Bereich für $x > A[$	mid]			

Was genau wollen wir haben?

- Index i, sodass: A[i] = x (falls $x \in A$) oder A[i-1] < x < A[i] (falls $x \notin A$) (Konvention: $A[-1] = -\infty$, $A[n] = \infty$)
- Invariante für diesen Index i: $i \in [beg, end]$

Beweis der Laufzeit

■ end — beg wird mindestens halbiert:

■ mid – beg =
$$\left\lfloor \frac{\text{beg+end}}{2} \right\rfloor$$
 – beg $\leq \frac{\text{beg+end}}{2}$ – beg = $\frac{\text{end-beg}}{2}$

• end
$$- (mid + 1) = end - \left(\left\lfloor \frac{beg + end}{2} \right\rfloor + 1 \right)$$

 $\leq end - \frac{beg + end}{2}$
 $= \frac{end - beg}{2}$

```
binSearchRec(A, x, beg = 0, end = n)

// find i \in [beg, end] with this property

if beg = end then return beg

// general case: half the range

mid := \lfloor (beg + end)/2 \rfloor

if x \le A[mid] then

return binSearchRec(A, x, beg, mid)

else

return binSearchRec(A, x, mid + 1, end)
```

Bereich des aktuellen Aufrufs							
beg		mid		end			
neuer Bereich für $x \leq A$ [mi		mid]	neuer Bereich für $x > A[$	mid]			

Zusammenfassung: Binäre Suche

Theorem

Sei M eine geordnete Menge (z.B. \mathbb{Z}). Sei A ein sortiertes Array der Länge n mit Werten aus M und sei $x \in M$. Die binäre Suche findet den Index i mit $A[i-1] < x \le A[i]$ in $\Theta(\log n)$ Zeit.

Zusammenfassung: Binäre Suche

Theorem

Sei M eine geordnete Menge (z.B. \mathbb{Z}). Sei A ein sortiertes Array der Länge n mit Werten aus M und sei $x \in M$. Die binäre Suche findet den Index i mit $A[i-1] < x \le A[i]$ in $\Theta(\log n)$ Zeit.

Folgerungen: Bereichsanfragen

- für $a, b \in M$ können wir in $\Theta(\log n)$ herausfinden, wie viele Elemente A aus [a, b] enthält
- A enthält k Elemente aus $[a, b] \rightarrow \text{wir k\"{o}}$ nnen sie in $\Theta(\log n + k)$ aufzählen

Zusammenfassung: Binäre Suche

Theorem

Sei M eine geordnete Menge (z.B. \mathbb{Z}). Sei A ein sortiertes Array der Länge n mit Werten aus M und sei $x \in M$. Die binäre Suche findet den Index i mit $A[i-1] < x \le A[i]$ in $\Theta(\log n)$ Zeit.

Folgerungen: Bereichsanfragen

- für $a, b \in M$ können wir in $\Theta(\log n)$ herausfinden, wie viele Elemente A aus [a, b] enthält
- A enthält k Elemente aus $[a, b] \rightarrow \text{wir k\"onnen sie in } \Theta(\log n + k)$ aufzählen

Einfache Idee, mit Stolperfallen in der Umsetzung

- abstrakte Idee: vergleiche in jedem Schritt mit mittlerem Element → halbiere Suchraum
- Umsetzung: man muss mit Randfällen etwas aufpassen
- hilfreiche Technik: Korrektheitsbeweis mittels Invariante

Theorem

Man kann nicht in $o(\log n)$ suchen.

Theorem

Man kann nicht in $o(\log n)$ suchen.

Sehr verkürzte Darstellung!

Theorem

Man kann nicht in $o(\log n)$ suchen.

Sehr verkürzte Darstellung!

Theorem

Es gibt keine Datenstruktur die für jede geordnete Menge M und jede Teilmenge $M' \subseteq M$ mit n := |M'| berechnet werden kann, die für jedes $x \in M$ in $o(\log n)$ Zeit testet, ob $x \in M'$.

Theorem

Man kann nicht in $o(\log n)$ suchen.

Sehr verkürzte Darstellung!

Theorem

Es gibt keine Datenstruktur die für jede geordnete Menge M und jede Teilmenge $M' \subseteq M$ mit n := |M'| berechnet werden kann, die für jedes $x \in M$ in $o(\log n)$ Zeit testet, ob $x \in M'$.

Warum ist das so umständlich?
Sagt die einfachere Formulierung nicht das gleiche!?!

Bild: Grumpy cat line art / XXspiritwolf2000XX / Creative Commons

Theorem

Man kann nicht in $o(\log n)$ suchen.

Sehr verkürzte Darstellung!

Theorem

Es gibt keine Datenstruktur die für jede geordnete Menge M und jede Teilmenge $M' \subseteq M$ mit n := |M'| berechnet werden kann, die für jedes $x \in M$ in $o(\log n)$ Zeit testet, ob $x \in M'$.

Warum ist das so umständlich? Sagt die einfachere Formulierung nicht das gleiche!?!

- hier wichtig: wir wissen von *M* nur, dass es eine geordnete Menge ist
- das einzige was wir mit Elementen aus M tun können: Ordnungsrelation überprüfen \rightarrow jede Entscheidung basiert auf einem Vergleich
- wir sagen auch: vergleichsbasiertes Suchen geht nicht in $o(\log n)$

Bild: Grumpy cat line art / XXspiritwolf2000XX / Creative Commons

Theorem

Man kann nicht in $o(\log n)$ suchen.

Sehr verkürzte Darstellung!

Theorem

Es gibt keine Datenstruktur die für jede geordnete Menge M und jede Teilmenge $M' \subseteq M$ mit n := |M'| berechnet werden kann, die für jedes $x \in M$ in $o(\log n)$ Zeit testet, ob $x \in M'$.

Warum ist das so umständlich? Sagt die einfachere Formulierung nicht das gleiche!?!

- hier wichtig: wir wissen von *M* nur, dass es eine geordnete Menge ist
- das einzige was wir mit Elementen aus M tun können: Ordnungsrelation überprüfen \rightarrow jede Entscheidung basiert auf einem Vergleich
- wir sagen auch: vergleichsbasiertes Suchen geht nicht in $o(\log n)$
- für manche Mengen *M* kann man tatsächlich in $o(\log n)$ suchen (später auf Übungsblatt)

Bild: Grumpy cat line art / XXspiritwolf2000XX / Creative Commons

Theorem

Es gibt keine Datenstruktur die für jede geordnete Menge M und jede Teilmenge $M' \subseteq M$ mit n := |M'| berechnet werden kann, die für jedes $x \in M$ in $o(\log n)$ Zeit testet, ob $x \in M'$.

Beweis

Ausführung der Suche hängt nur von Vergleichen zwischen x und Elementen in M' ab

Theorem

Es gibt keine Datenstruktur die für jede geordnete Menge M und jede Teilmenge $M' \subseteq M$ mit n := |M'| berechnet werden kann, die für jedes $x \in M$ in $o(\log n)$ Zeit testet, ob $x \in M'$.

Beweis

Ausführung der Suche hängt nur von Vergleichen zwischen x und Elementen in M' ab

fasse Ausführung als Entscheidungsbaum auf

eine Ausführung: Pfad von Wurzel zu Blatt

→ Pfadlänge = Anzahl Vergleiche

Theorem

Es gibt keine Datenstruktur die für jede geordnete Menge M und jede Teilmenge $M' \subseteq M$ mit n := |M'| berechnet werden kann, die für jedes $x \in M$ in $o(\log n)$ Zeit testet, ob $x \in M'$.

Beweis

Ausführung der Suche hängt nur von Vergleichen zwischen x und Elementen in M' ab

fasse Ausführung als Entscheidungsbaum auf

eine Ausführung: Pfad von Wurzel zu Blatt

→ Pfadlänge = Anzahl Vergleiche

■ bei "=" wird terminiert, da x gefunden

→ grünes Blatt

Theorem

Es gibt keine Datenstruktur die für jede geordnete Menge M und jede Teilmenge $M' \subseteq M$ mit n := |M'| berechnet werden kann, die für jedes $x \in M$ in $o(\log n)$ Zeit testet, ob $x \in M'$.

Beweis

Ausführung der Suche hängt nur von Vergleichen zwischen x und Elementen in M' ab

fasse Ausführung als Entscheidungsbaum auf

eine Ausführung: Pfad von Wurzel zu Blatt

→ Pfadlänge = Anzahl Vergleiche

■ bei "=" wird terminiert, da x gefunden

→ grünes Blatt

• jedes $x \in M'$ findet man an einem andern grünen Blatt

Theorem

Es gibt keine Datenstruktur die für jede geordnete Menge M und jede Teilmenge $M' \subseteq M$ mit n := |M'| berechnet werden kann, die für jedes $x \in M$ in $o(\log n)$ Zeit testet, ob $x \in M'$.

Beweis

Ausführung der Suche hängt nur von Vergleichen zwischen x und Elementen in M' ab

fasse Ausführung als Entscheidungsbaum auf

eine Ausführung: Pfad von Wurzel zu Blatt

→ Pfadlänge = Anzahl Vergleiche

bei "=" wird terminiert, da x gefunden

→ grünes Blatt

höchstens k Vergleiche \Rightarrow höchstens $\sum_{i=0}^{k-1} 2^i = 2^k - 1$ verschiedene grüne Blätter

Theorem

Es gibt keine Datenstruktur die für jede geordnete Menge M und jede Teilmenge $M' \subseteq M$ mit n := |M'| berechnet werden kann, die für jedes $x \in M$ in $o(\log n)$ Zeit testet, ob $x \in M'$.

Beweis

Ausführung der Suche hängt nur von Vergleichen zwischen x und Elementen in M' ab

fasse Ausführung als Entscheidungsbaum auf

eine Ausführung: Pfad von Wurzel zu Blatt

→ Pfadlänge = Anzahl Vergleiche

■ bei "=" wird terminiert, da x gefunden

→ grünes Blatt

- jedes $x \in M'$ findet man an einem andern grünen Blatt
- höchstens k Vergleiche \Rightarrow höchstens $\sum_{i=0}^{k-1} 2^i = 2^k 1$ verschiedene grüne Blätter
- für $k < \log_2 n$ kann nicht für jedes $x \in M'$ das richtige Ergebnis herauskommen

Listen

- verzeigerte Datenstruktur zur Speicherung einer Folge
- flexibel modifizierbar: z.B. schnelles Einfügen, Löschen, Splice
- kein wahlfreier Zugriff mittels Index (kein random access)

Listen

- verzeigerte Datenstruktur zur Speicherung einer Folge
- flexibel modifizierbar: z.B. schnelles Einfügen, Löschen, Splice
- kein wahlfreier Zugriff mittels Index (kein random access)

Binäre Suche

- Voraussetzung: sortierte Folge und wir haben random access
- Vergleich mit mittlerem Element des aktuellen Suchraums
 - \rightarrow halbiert Suchraum $\rightarrow \Theta(\log n)$ Vergleiche
- Korrektheit der Detailumsetzung via Invariante

Listen

- verzeigerte Datenstruktur zur Speicherung einer Folge
- flexibel modifizierbar: z.B. schnelles Einfügen, Löschen, Splice
- kein wahlfreier Zugriff mittels Index (kein random access)

Binäre Suche

Voraussetzung: sortierte Folge und wir haben random access
Abstraktionsebene

■ Vergleich mit mittlerem Element des aktuellen Suchraums hoch \rightarrow halbiert Suchraum $\rightarrow \Theta(\log n)$ Vergleiche (Ideenfindung, Abschätzung der Laufzeit)

Korrektheit der Detailumsetzung via Invariante niedrig (Formalisierung, Weg zur Implementierung)

Listen

- verzeigerte Datenstruktur zur Speicherung einer Folge
- flexibel modifizierbar: z.B. schnelles Einfügen, Löschen, Splice
- kein wahlfreier Zugriff mittels Index (kein random access)

Binäre Suche

Voraussetzung: sortierte Folge und wir haben random access Abstraktionsebene

■ Vergleich mit mittlerem Element des aktuellen Suchraums hoch \rightarrow halbiert Suchraum $\rightarrow \Theta(\log n)$ Vergleiche (Ideenfindung, Abschätzung der Laufzeit)

Korrektheit der Detailumsetzung via Invariante

niedrig

(Formalisierung, Weg zur Implementierung)

Untere Schranke

- besser als $\Theta(\log n)$ geht es nicht
- außer, wenn wir Annahmen darüber machen, auf welcher Art von Daten wir suchen

Umfrage zu Ihrem Studienstart am KIT (2022/23)

Die Beantwortung der Umfrage:

- dauert ca. 5 Minuten
- ist anonym
- hilft den Studienstart am KIT zu verbessern!

https://onlineumfrage.kit.edu/evasys/online.php?p=XYZ2U

Sollten Sie in anderen Lehrveranstaltungen die gleiche Anfrage erhalten, bitte nur einmal an der Umfrage teilnehmen.

Vielen Dank für Ihre Teilnahme!