Algebra I

My Mathematics Notes

Phædrus

Linear Algebra

Contents

1 Introduction 2					
	1.1 What is Algebra? & The structure of this note				
	1.2 Several knowledge as preparation	3			
	$1.2.1$ \mathbb{C}	3			
	1.2.2 The field of numbers	3			
	1.2.3 Fundamentals of set theory	3			
	1.2.4 Σ and Π	4			
	1.2.5 Fundamentals of logic	4			
Ι	Linear Algebra	5			
2	2 Vector Space and Matrix				
3	3 Determinant				
4	4 Linear Space and Linear Transformation				
5	5 Bilinear Function and Quadratic Form				
II	Polynomial Theory	10			
II	Tensor Product and Exterior Algebra	11			

Introduction

1.1 What is Algebra? & The structure of this note

Generally speaking, Algebra is a subject about operations. However, to discuss Algebra in a more detailed way, we have to first talk about some history of Algebra.

	815 AD	The first book of Algebra appeared.
Era of Elementary Algebra	1	
Focusing on:		1637: Fermat's Last Theorem
Operations, C, Solving equations, Properties of roots	\downarrow	
	1832	
Era of Modern Algebra	↑	
Focusing on:		1994: Fermat's Last Theorem proved by Wiles
Mathematical Structures and their morphisms	\downarrow	·
•	Now	

To help further understanding, the map of this note is now given.

Part 1: Linear Algebra

Part 2: Theory of Polynomials

 $\mathbb{Z} \longrightarrow \text{Polynomial Ring in One Variable} \longrightarrow \text{Polynomial Ring in Several Variables}$

Part 3: Tensor Product and Exterior Algebra

Finally, how to correctly treat matrix is worth discussing. In peronal view, maxtrix is an important tool but it should not dominant this note. For most of the topic, we should use linear space and linear transformation to understand Algebra.

1.2 Several knowledge as preparation

1.2.1 \mathbb{C}

Please consult the note: <under construction>

1.2.2 The field of numbers

Here we should clarify the object we are going to study for mathematics require rigorness. Therefore, we need the following definition:

Definition 1.2.1 (The Field of Numbers)

Let K be a set and $K \subseteq \mathbb{C}$. If $\exists a \in K \implies a \neq 0, \forall x, y \implies x \pm y, xy \in K$ and $\forall x, y \in K, y \neq 0 \implies x/y \in K$. Then K is a field of numbers.

Several common fields of numbers are \mathbb{C} , \mathbb{R} and \mathbb{Q} . Please note that the set all integers is not a field but since we use it very often, we have a symbol \mathbb{Z} for it.

Also, please aware that there are much more fields of numbers than just \mathbb{C} , \mathbb{R} and \mathbb{Q} . For example:

Lemma 1.2.1 The set of all Gaussian rationals $\mathbb{Q}(i) := \{a+bi \in \mathbb{C} \mid a,b \in \mathbb{Q}\}$ is a field of number.

Proof. $\forall x = a + bi, y = c + di \in \mathbb{Q}(i)$:

- $x \pm y = (a + bi) \pm (c + di) = (a \pm c) + (b \pm d)i \in \mathbb{Q}(i)$
- $xy = (a+bi)(c+di) = (ac-bd) + (ad+bc)i \in \mathbb{Q}(i)$
- $\frac{x}{y} = \frac{a+b\mathbf{i}}{c+d\mathbf{i}} = \frac{ac+bd}{c^2+d^2} + \frac{ac+bd}{c^2+d^2} \,\mathbf{i} \in \mathbb{Q}(\mathbf{i})$

Therefore, the set of all Gaussian rationals $\mathbb{Q}(i) := \{a + bi \in \mathbb{C} \mid a, b \in \mathbb{Q}\}$ is a field of number. \square

Lemma 1.2.2 Let K be any field of numbers, then $\mathbb{Q} \subseteq K$

Proof. We first prove that $\mathbb{N} \subseteq K$, we use induction. In the base case where n=0 and n=1. Since K is a field fo numbers, $\exists a \in K$ and $a \neq 0$. Then $0=a-a \in K$ and $1=a/a \in K$. Now suppose inductively that $n \in K$, then as to n+1, $n+1 \in K$. This closes the induction, and thus for all natural number $n, n \in K$, *i.e.*, $\mathbb{N} \subseteq K$.

We then demonstrate that $\mathbb{Z} \subseteq K$. $\forall x \in \mathbb{Z}, \exists a, b \in \mathbb{N} \implies x = a - b \in K$. Therefore, $\mathbb{Z} \subseteq K$. We finally show that $\mathbb{Q} \subseteq K$. $\forall x \in \mathbb{Q}, \exists a, b \in \mathbb{Z} \implies x = a/b \in K$. Therefore, $\mathbb{Q} \subseteq K$.

1.2.3 Fundamentals of set theory

Please consult the note: Analysis I—Logic, Sets, \mathbb{N} , \mathbb{Z} and \mathbb{Q} .

1.2.4 Σ and Π

In order to reduce the unnecessary writings, we here introduce the following symbols:

Definition 1.2.2 (Σ and Π) $\forall i, j \in \mathbb{N}_+$

$$\sum_{1 \le i \le n} a_i = \sum_{i=1}^n a_i := a_1 + a_2 + \dots + a_n$$

$$\prod_{1 \le i \le n} a_i = \prod_{i=1}^n a_i := a_1 a_2 \cdots a_n$$

Lemma 1.2.3 (Properties of Σ) $\forall \lambda \in \mathbb{C}, \forall i, j \in \mathbb{N}_+$

$$\sum_{i} \lambda a_{i} = \lambda \sum_{i} a_{1}$$

$$\sum_{i} (a_{i} + b_{i}) = \sum_{i} a_{i} + \sum_{i} b_{i}$$

$$\sum_{i} \sum_{i} a_{ij} = \sum_{j} \sum_{i} a_{ij}$$

1.2.5 Fundamentals of logic

Please consult the note: Analysis I—Logic, Sets, \mathbb{N} , \mathbb{Z} and \mathbb{Q} .

Part I Linear Algebra

Vector Space and Matrix

Determinant

Linear Space and Linear Transformation

Bilinear Function and Quadratic Form

Part II Polynomial Theory

Part III

Tensor Product and Exterior Algebra