

Minimal pole method for spectral functions

Lei Zhang

University of Michigan Izphy@umich.edu

J. Chem. Phys. 162, 214111 (2025), L. Zhang et al.

Introduction — Spectral function

Spectral function (measured by ARPES):

$$A(\omega) = \sum_l A_l^{\rm (real)} \delta(\omega - \xi_l^{\rm (real)}) \text{ with } A_l \text{ (fermion) or } \mathrm{sgn}(\omega) A_l \text{ (boson) being positive}$$

Finite system: a finite number of delta peaks

Infinite system: infinite delta peaks with infinitesimal weights -> broadened peaks

Connect with imaginary axis:

$$G^{\mathrm{Mat}}(i\omega_n) = \int_{-\infty}^{+\infty} d\omega \frac{A(\omega)}{i\omega_n - \omega} \text{ and } G(\tau) = \frac{1}{\beta} \sum_{n = -\infty}^{+\infty} e^{-i\omega_n \tau} G(i\omega_n)$$

Connect with real axis:

$$\operatorname{Im}[G^{\operatorname{Ret}}(\omega)] = -\pi A(\omega), \ \operatorname{Re}[G^{\operatorname{Ret}}(\omega)] = -\mathcal{H}[\operatorname{Im}[G^{\operatorname{Ret}}(\omega)]] \ \text{ and } \ G^{\operatorname{Ret}}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dt e^{-i\omega t} G^{\operatorname{Ret}}(\omega)$$

BCF:
$$C(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\omega e^{-i\omega t} A(\omega) \left[\coth\left(\frac{\beta\omega}{2}\right) + 1 \right]$$

Introduction — Complex pole representation

Ansatz:

$$A(z) = \sum_{l=1}^{M} \left(\frac{A_l^{(\mathrm{dn})}}{z - \xi_l^{(\mathrm{dn})}} + \frac{A_l^{(\mathrm{up})}}{z - \xi_l^{(\mathrm{up})}} \right) \text{ with } \xi_l^{(\mathrm{up})} = (\xi_l^{(\mathrm{dn})})^* \text{ and } A_l^{(\mathrm{up})} = (A_l^{(\mathrm{dn})})^*$$

With
$$z \in \mathbb{C}$$
 and $A(z = \omega) \approx A_{\text{exact}}(\omega)$

Applications:

1. Imaginary axis:
$$G(z) = -2\pi i \sum_{l=1}^{M} \frac{A_l^{(\mathrm{dn})}}{z - \xi_l^{(\mathrm{dn})}}, \quad \mathrm{Im} z > 0$$

Hilbert transform; recover GF in the upper-half plane, e.g., $G(z=i\omega_n)=G^{\rm Mat}(i\omega_n)$

2. Real-time simulations, e.g., HEOM:

$$A(\omega) = J(\omega) \left[\coth \left(\frac{\beta \omega}{2} \right) + 1 \right] \rightarrow C(t) = \sum_{l=1}^{M} \eta_l e^{-\gamma_l t} \text{ with } \eta_l = -i A_l^{(\text{dn})} \text{ and } \gamma_l = i \xi_l^{(\text{dn})}$$

Introduction — Prony-like methods

Input: $\{f(t_k), t_k\}$ on a uniform grid

Ansatz:
$$f(t) \approx \sum_{i=1}^{M} R_i e^{s_i t}$$
 discretize $f(t_k) \approx \sum_{i=1}^{M} R_i z_i^k$

Goal: estimate $M \in \mathbb{Z}$, $R_i \in \mathbb{C}$ and $z_i \in \mathbb{C}$

Solution: ESPRIT,

IEEE Trans. Acoust. Speech, Signal Process. 37, 984 (1989) Matrix Pencil,

IEEE Trans. Acoustics, Speech, Signal Process. 38, 814 (1990) Prony approximation...

Appl. Comput. Harmonic Anal. 19, 17 (2005)

ESPRIT:

- 1. Construct $(N-L) \times (L+1)$ Hankel matrix $H_{ij} = f(t_{i+j})$, with $\frac{N}{3} \le L \le \frac{N}{2}$
- 2. Perform SVD: $H = U\Sigma W$
- 3. Obtain M from $\sigma_{M+1} < \varepsilon$
- 4. Obtain z_i from eigenvalues of $(W(1:M, 1:L)^T)^+W(1:M, 2:L+1)^T$
- 5. Obtain R_i from least-square fits

Robust to noise; use a minimal number of complex exponentials to fit the data to the given precision arepsilon

Minimal Complex Pole Method (MPM)

$$\begin{cases} u = f(z) = \frac{z + i\omega_p}{z - i\omega_p} \\ z = f^{-1}(u) = i\omega_p \frac{u + 1}{u - 1} \end{cases}$$

Mapping 2 (M2):

$$\begin{cases} u = f(z) = z_{\rm s} + \sqrt{z_{\rm s}^2 - 1} \text{ with } z_{\rm s} = \frac{z - \omega_{\rm m}}{\Delta \omega_{\rm h}} \\ z = f^{-1}(u) = \frac{\Delta \omega_{\rm h}}{2} (u + \frac{1}{u}) + \omega_{\rm m} \end{cases}$$

Assume: analytic expression of $A(\omega)$ is known

Step 1
$$A(z) = \sum_{l=1}^{M} \left(\frac{A_l^{(dn)}}{z - \xi_l^{(dn)}} + \frac{A_l^{(up)}}{z - \xi_l^{(up)}} \right)_{A'(u(z)) = A(z)} A'(u) = \sum_{l=1}^{M} \left(\frac{A_l^{'(dn)}}{u - \xi_l^{'(dn)}} + \frac{A_l^{'(up)}}{u - \xi_l^{'(up)}} \right) + \text{analytic part}$$
 Origin: Numerical analytic continuation

L. Zhang et al., Phys. Rev. B 110, 035154 (2024) . Zhang et al., Phys. Rev. B 110, 235131 (2024)

Step 2 Transformed
$$h_k:=rac{1}{2\pi i}\int_{\partial ar D}du\,A'(u)u^k,\quad k\geq 0,\qquad h_k=\sum_lA'_l\xi_l'^k$$

Imperfect input: utilize AAA, trapezoidal rule...

Step 3 ESPRIT to solve A_l' and ξ_l' and transform back to obtain A_l and ξ_l

Multiple orbitals: matrix-valued ESPRIT L. Zhang et al., Phys. Rev. B 110, 235131 (2024)

Results — spectral functions

- (a) Kondo-like
- (b) Bosonic multi-orbital
- (c) Semicircular

MPM (M1) was used

- Converges exponentially away from singularities
- Convergence slows down near the singularities

Lei Zhang University of Michigan Izphy@umich.edu

Results — recovery of GF's

- (a) Kondo-like
- (b) Bosonic multi-orbital
- (c) Semicircular

MPM (M1) was used

- Converges exponentially away from singularities
- Convergence slows down near the singularities
- Computations based on complex poles are not affected by singularities

Results — BCF (Ohmic bath)

$$T = 300K (\beta \omega_c \approx 0.240)$$

$$J(\omega > 0) = \omega e^{-\omega/\omega_c}$$
 with $J(\omega < 0) = -J(-\omega)$

$$A(\omega) = J(\omega) \left[\coth\left(\frac{\beta\omega}{2}\right) + 1 \right]$$

AAA: logarithmic discretized grid on $\omega \in [-\omega_{\max}, \omega_{\max}]$

ESPRIT: uniform grid on $t \in [0, t_c]$

Gray line: $|\hat{C}^{(L_1)}(t) - \hat{C}^{(L_2)}(t)|/|\hat{C}^{(L_1)}(t)|$ for MPM (M2)

- MPM (M2) has similar performance compared to ESPRIT
- MPM (M1) has better control over the long tail
- MPM converges faster than AAA

Lei Zhang University of Michigan <u>Izphy@umich.edu</u>

Results — BCF (Ohmic bath)

$$J(\omega > 0) = \omega e^{-\omega/\omega_c}$$
 with $J(\omega < 0) = -J(-\omega)$

$$A(\omega) = J(\omega) \left[\coth\left(\frac{\beta\omega}{2}\right) + 1 \right]$$

AAA: logarithmic discretized grid on $\omega \in [-\omega_{\max}, \omega_{\max}]$

ESPRIT: uniform grid on $t \in [0, t_c]$

Similar performance as for T = 300K

Results — BCF (Sub-Ohmic bath)

$$J(\omega > 0) = (\omega_c \omega)^{0.5} e^{-\omega/\omega_c}$$
 with $J(\omega < 0) = -J(-\omega)$

$$A(\omega) = J(\omega) \left[\coth \left(\frac{\beta \omega}{2} \right) + 1 \right]$$

AAA: logarithmic discretized grid on $\omega \in [-\omega_{\text{max}}, \omega_{\text{max}}]$

ESPRIT: uniform grid on $t \in [0, t_c]$

- AAA completely fails
- MPM (M2) has similar performance compared to ESPRIT
- MPM (M1) is the only one that has control over the long tail

Reason: AAA approximates spectral shapes, MPM approximates spectral moments

Results — BCF (Structured spectral function)

data from exciton-phonon couplings in quantum dots

Nano Lett. 21, 8741–8748 (2021) npj Comput. Mater. 9, 145 (2023)

Input: $\{J(\omega_i), \omega_i\}$ on a uniform grid

Preprocessing: perform AAA with $\varepsilon = 10^{-8}$, leading to 704 poles, served as the exact solution

Issues: 1. ESPRIT recovers divergent exponentials

2. AAA recovers some real poles

Results: MPM remains stable and has better performance

Code Thanks!

https://github.com/Green-Phys/MiniPole (also available: pypi, zenodo)

pip install mini_pole

MiniPoleRf: standard real-frequency MPM MiniPoleRfDPR: real-frequency MPM combined with AAA

If get stuck, feel free to ask me for help!

Lei Zhang University of Michigan <u>Izphy@umich.edu</u>