Beschreibung

Konfiguration zum Ersatzschalten von räumlich getrennten Vermittlungssystemen

5

Zeitgemäße Vermittlungssysteme (Switch) verfügen durch redundantes Bereitstellen wichtiger interner Komponenten über ein hohes Maß an interner Betriebssicherheit. Damit wird im Normalbetrieb (d.h. störungsfreier Betrieb, also keine äuße-10 ren Einwirkungen, kein langandauernder Stromausfall, usw.) eine sehr hohe Verfügbarkeit der vermittlungstechnischen Funktionen erreicht. Treten jedoch massive äußere Einwirkungen auf (z.B. Feuer, Naturkatastrophen, Terroranschläge, kriegerische Einwirkungen etc.), so nutzen die getroffenen 15 Vorkehrungen zur Erhöhung der Betriebssicherheit in der Regel wenig, weil Original- und Ersatzkomponenten des Vermittlungssystems sich am gleichen Ort befinden und damit in einem solchen Katastrophenfall mit hoher Wahrscheinlichkeit beide Komponenten zerstört bzw. funktionsunfähig geworden sind.

20

Die Folge ist ein lang anhaltender Totalausfall, wie dies auch am 11. September 2001 in New York der Fall war. Hinzu kommen dann noch erhebliche logistische und technische Aufwendungen sowie in erheblichem Masse Expertenwissen, um in einem solchen Fall die ausgefallene Kommunikationsfunktion wieder bereitzustellen. Dies bedeutet in der Praxis, dass der tatsächliche Ausfall erheblich länger dauern kann, als dies technisch notwendig gewesen wäre. Als Folge können finanzielle Verluste in enormer Größenordnung bis zur Lähmung der Wirtschaftsaktivitäten oder annäherndem Zusammenbruch der Infrastruktur gerade im Falle kleinerer Länder entstehen.

Diese Abhängigkeit/ Verwundbarkeit einer Organisation/ Gesellschaft von einer funktionierenden Kommunikation könnte Vermittlungssysteme zu einem attraktiven Ziel für terroristische Anschläge oder auch kriegerische Angriffe machen.

Als Lösung wird beim Stand der Technik eine geographische Redundanz vorgeschlagen, wonach ein redundantes Vermittlungssystem im Netz für eine Mehrzahl von Vermittlungssystemen
vorzusehen ist (1:n Redundanz). Damit existiert aus Sicht der
Hardware ein komplettes, redundantes Vermittlungssystem, das
sich im Normalfall im Zustand "offline" befindet und eine
leere Datenbasis beinhaltet. Es ist so ausgelegt, dass es mit
seiner Hardwarekonfiguration ein ausgefallenes Vermittlungssystem ersetzen kann. Weist also eines der n Vermittlungssysteme einen Totalausfall auf, so wird auf die jüngste Sicherung seiner Datenbasis zurückgegriffen, und das redundante
Vermittlungssystem wird mit dieser Datenbasis in Betrieb genommen. Nach erfolgreichem Hochfahren kann dieses die Funktion des ausgefallenen Vermittlungssystems übernehmen.

15

20

Zwar wird mit diesem Vorschlag lediglich ein einziges redundantes Vermittlungssystem für weitere n Vermittlungssysteme benötigt, womit ein vergleichsweise geringer Aufwand des Netzbetreibers für die Bereitstellung einer geographischen Redundanz erforderlich ist. Dieser Vorteil ist aber mit einer Reihe gravierender Nachteile verbunden:

So ist es zwingend erforderlich, dass die jüngste Sicherung der Datenbasis des ausgefallenen Vermittlungssystems unversehrt zum Standort des redundanten Vermittlungssystems transferiert worden ist. Um dies zu erreichen, müssen im Normalbetrieb in kurzen zeitlichen Abständen (z.B. jede Woche) Abzüge der Datenbasen aller theoretisch zu ersetzenden Vermittlungssysteme zu dem redundanten Vermittlungssystem transferiert werden oder schnell dorthin transferierbar sein. Dies bedeutet, wie auch immer es technisch gelöst wird, einen erheblichen Aufwand und damit erhebliche, regelmäßig anfallende Kosten.

35 Aber auch wenn die jüngste Sicherung der Datenbasis unversehrt eingespielt worden ist, wird dies in der Regel nie das hundertprozentige Abbild der Datenbasis des ausgefallenen

Vermittlungssystems sein. So können in der Zwischenzeit seit der letzten Sicherung administrative/ konfigurative Veränderungen oder Teilnehmerselbsteingaben in die Datenbasis eingegeben worden sein, die jetzt fehlen. Gleiches gilt für die für den Netzbetreiber wichtigen Gebühreninformationen. Besonders problematisch hieran ist, dass das Delta zwischen der beim Ausfall aktuellen Datenbasis und der Datenbasis der jüngsten Sicherung i.a. unbekannt ist und damit auch eine völlige Restaurierung nicht möglich ist. Damit besteht die Gefahr, dass die gesicherte (alte) Datenbasis inkonsistent zu den Datenbasen der Partner Vermittlungssysteme sein kann, was gegebenenfalls zu einer vermittlungstechnischen Nichtbedienbarkeit von Teilnehmern und Trunks führt. Das erfolgreiche Hochfahren eines redundanten Vermittlungssystems stellt also noch lange nicht seinen störungsfreien Betrieb bis auf Teilnehmer/ Leitungsebene sicher.

Zusätzlich kommt noch hinzu, dass das redundante Vermittlungssystem bei allen Erweiterungs- und Umbaumaßnahmen der
anderen Vermittlungssysteme mitbetrachtet werden muss. Es
muß so aus- und aufgebaut sein, dass die Datenbasis der übrigen Vermittlungssysteme dort ohne Einschränkung oder Manipulation zugreifbar wird. Auch die Performanzanforderungen müssen durch das redundante Vermittlungssystem in gleicher Weise
oder besser abgedeckt werden. Dies alles bedeutet, dass der
Netzbetreiber mit zusätzlicher Komplexität in der Netzplanung
und im Engineering der Switches des Netzes konfrontiert ist,
wobei er darüber hinaus noch an den gleichen Hersteller im
Bereich der Redundanz-Einheit gebunden ist.

30

20

25

Der Erfindung liegt daher die Aufgabe zugrunde, eine Netzstruktur anzugeben, wie eine geographische Redundanz von Vermittlungssystemen weiterzubilden ist, um im Fehlerfall das effiziente Umschalten eines ausgefallenen Vermittlungssystems auf einen Redundanzpartner sicherstellen zu können.

Diese Aufgabe wird ausgehend von den im Oberbegriff von Patentanspruch 1 angegebenen Merkmalen durch die im kennzeichnenden Teil beanspruchten Merkmale gelöst.

- Ein wesentlicher Vorteil der Erfindung ist darin zu sehen, dass die Umschaltung schnell, sicher und automatisch geschieht, wobei es keine Rolle spielt, ob das ersatzzuschaltende Vermittlungssystem paketbasierte und/ oder TDM-basierte Schnittstellen aufweist. Dies wird dadurch erreicht, indem 10 jedem zu schützenden Vermittlungssystem ein identischer Klon als Redundanzpartner mit identischer Hardware, Software und Datenbasis zugeordnet ist. Der Klon befindet sich im hochgefahrenen Zustand, ist aber trotzdem vermittlungstechnisch nicht aktiv. Damit ist eine hochverfügbare, über mehrere Lo-15 kationen verteilte 1:1 Redundanz von Vermittlungssystemen definiert. Das aktive Vermittlungssystem und sein Redundanzpartner werden über das Paketnetz von einem abgesetzten, übergeordneten realzeitfähigen (d. h. im Sekundenbereich) Monitor gesteuert. Dieser kann aus Hardware und/oder Software 20 bestehen. Die Voraussetzung für eine möglichst sichere Lösung besteht hierbei in einer deutlichen räumlichen Trennung von aktivem Vermittlungssystem und seinem Redundanzpartner, des Managementsystems und des Monitors.
- Ferner wird im Rahmen der Ersatzschaltung eine den Kommunikationspartnern sichtbare Adressänderung bedarfsweise vermieden. Dadurch entsteht eine nur kurze Nichtverfügbarkeit aus Sicht der Teilnehmer und Verbindungsleitungen, womit die Voraussetzung für das Retten stabiler Verbindungen im Rahmen der Ersatzschaltung geschaffen sind. Schließlich gehen nach Möglichkeit keine Gebührendaten und Teilnehmerselbsteingaben verloren, bzw. entstehen keine falsche Gebühren.

Ein weiterer Vorteil der Erfindung ist in der Einführung eines neuen "hot standby" Zustandes für Vermittlungssysteme zu sehen. Dieser ist durch das Vorhandensein einer aktuellen Datenbasis, aktive Applikationen, insbesondere vermittlungstechnische Prozesse, sowie durch das Blockieren aller vermittlungstechnischer Interfaces des Klons nach aussen geprägt. Dies bedeutet, die volle Aktivität aller Komponenten bis auf die paketbasierten Interfaces (und eventuell die Bearbeitung vermittlungstechnischer Anreize).

Grundsätzlich ist mit einer derartigen Lösung die Erfindung auch auf einen reinen Softswitch, einen reinen TDM Switch wie auch die ganze Spanne der Misch-Konfigurationen (Hybrid Switche) anwendbar.

Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben.

Die Erfindung wird im folgenden anhand eines figürlich dargestellten Ausführungsbeispiels näher erläutert.

20 Es zeigen:

10

- Figur 1 die Netzkonfiguration gemäss der Erfindung im Falle eines lokal redundanten Monitors
- 25 Figur 2 die Netzkonfiguration gemäss der Erfindung im Falle eines geographisch und lokal redundanten Monitors

In Fig. 1 ist eine Konfiguration gemäss der Erfindung aufgezeigt. Demgemäss ist vorgesehen, jedem zu schützenden Ver30 mittlungssystem (z. B. S₁) einen identischen Klon als Redundanzpartner (z. B. S_{1b}) mit identischer Hardware, Software und Datenbasis zuzuordnen. Der Klon befindet sich im hochgefahrenen Zustand, ist aber trotzdem vermittlungstechnisch nicht aktiv (Betriebszustand "hot standby"). Damit ist eine hochverfügbare, über mehrere Lokationen verteilte 1:1 Redundanz von Vermittlungssystemen definiert.

Falls die Vermittlungssysteme S_1 , S_{1b} TDM Anteile aufweisen, ist zusätzlich mindestens eine Crossconnect-Vorrichtung CC erforderlich, die den gesamten TDM Verkehr zwischen Vermittlungssystem S_{1b} umschaltungssystem S_{1b} und redundantem Vermittlungssystems S_{1b} umschalten kann. Die TDM Strecken des Vermittlungssystems S_{1b} treten im Normalbetrieb am Punkt CC_{1b} der Crossconnect-Vorrichtung CC ein bzw. aus und am Punkt CC_{1b} wieder aus bzw. ein. Die TDM Strecken des Vermittlungssystems S_{1b} treten am Punkt CC_{1b} in die Crossconnect-Vorrichtung CC ein bzw. haben dort in Rückrichtung ihren Ursprung. Eine Durchschaltung erfolgt jedoch nicht.

Beide Vermittlungssysteme (Vermittlungssystem S₁ und der Klon oder Redundanzpartner S_{1b}) werden gemäss Fig. 1 von demselben

15 Netzwerkmanagementsystem NM gesteuert. Die Steuerung erfolgt derart, dass der aktuelle Stand von Datenbasis und Software beider Vermittlungssysteme S₁, S_{1b} identisch gehalten wird. Dies wird erreicht, indem jedes betriebstechnische Kommando, jedes Konfigurationskommando und jedes Software-Update inklusive Patches identisch an beide Partner ausgebracht wird. Damit wird ein räumlich abgesetzter, identischen Klon zu einem in Betrieb befindlichen Switch mit identischer Datenbasis und identischem Softwarestand definiert.

Die Datenbasis beinhaltet grundsätzlich alle semipermanenten und permanenten Daten. Hierbei werden unter permanenten Daten die Daten verstanden, die als Code in Tabellen abgelegt sind und die sich nur per Patch oder Software-Update ändern lassen. Unter semipermanenten Daten werden die Daten verstanden, die z. B. über die Bedienerschnittstelle in das System gelangen und die für längere Zeit dort in der Form der Eingabe gespeichert sind. Mit Ausnahme der Konfigurationszustände des Systems werden diese Daten i.a. vom System nicht selbst verändert. Nicht in der Datenbasis enthalten sind die einen Ruf begleitenden transienten Daten, die das Vermittlungssystem nur kurzzeitig speichert und die über die Dauer eines Calls hinaus i.a. keine Bedeutung haben oder Zustandsinformationen,

WO 2005/057949

die transiente Überlagerungen/ Ergänzungen von konfigurativ vorgegebenen Grundzuständen sind (So könnte ein Port zwar im Grundzustand aktiv sein, aber wegen einer transienten (vorübergehenden) Störung momentan nicht zugreifbar sein).

5

10

15

20

25

30

35

Im weiteren verfügen die Vermittlungssysteme S1, S1b beide über mindestens ein aktives, paketorientiertes Interface zum gemeinsamen Netzwerkmanagementsystem NM. Dies sollen gemäss Fig. 1 die beiden Interfaces IF1 sein. Die beiden Interfaces IF₁ nehmen dabei einen aktiven Betriebzustand ("act") ein. Während aber beim Vermittlungssystem S1 auch alle verbleibenden paketorientierten Interfaces IF2...IFn aktiv sind, sind beim Vermittlungssystem S1b hingegen die verbleibenden Interfaces im Betriebzustand "idle". Der Zustand "idle" bedeutet, dass die Interfaces keinen vermittlungstechnischen Nachrichtenaustausch erlauben, aber von außen, d.h. durch eine außerhalb von Vermittlungssystem S1 und Vermittlungssystem S1b gelegenen, übergeordneten realzeitfähigen Monitor aktiviert werden können. Der Monitor kann in Hardware und/oder Software realisiert sein, und schaltet im Fehlerfall in Realzeit auf den Klon um. Realzeit bedeutet hier eine Zeitspanne von wenigen Sekunden. Abhängig von der Qualität des Netzes kann auch eine höhere Umschalteerkennungszeitspanne definiert werden. Gemäss Fig. 1 ist der Monitor als Steuereinrichtung SC und aus Sicherheitsgründen gedoppelt (lokale Redundanz).

Die Interfaces I_n sind paketbasiert und stellen somit Kommunikationsschnittstellen zu paketbasierten Peripherieeinrichtungen (wie z. B. IAD, SIP Proxy-Einrichtungen), fernen paketbasierte Switches (S_x) , paketbasierten Media Servern (MG) dar. Wie Fig. 1 entnommen werden kann, werden sie mittelbar von der Steuereinrichtung SC (Switch Controller, SC) gesteuert. Dies bedeutet, dass die Steuereinrichtung SC die Interfaces IF_n aktivieren und deaktivieren, und somit beliebig zwischen den Betriebszuständen "act" und "idle" hin- und herschalten kann.

Die Konfiguration gemäss Fig. 1 soll die Default Konfiguration darstellen. Dies bedeutet, dass Vermittlungssystem S_1 vermittlungstechnisch aktiv ist, während sich Vermittlungssystem S_{1b} sich in einem Betriebszustand "hot standby" befindet.

Dieser Zustand ist durch eine aktuelle Datenbasis und volle Aktivität aller Komponenten bis auf die paketbasierten Interfaces (und eventuell die Bearbeitung vermittlungstechnischer Anreize) geprägt. Das (geographisch redundante) Vermittlungssystem S_{1b} kann somit von der Steuereinrichtung SC durch Aktivierung der Interfaces $IF_{2...n}$ schnell in den vermittlungs-

technisch aktiven Zustand überführt werden.

15

20

25

Falls vom Vermittlungssystem S_1 TDM Informationsströme gesendet/ empfangen werden, ist eine Crossconnect-Vorrichtung CC notwendig. Diese verfügt ebenfalls über (mindestens) ein paketbasiertes (jederzeit aktives) Interface IF $_{\rm cc}$ und ist sowohl mit dem Netzwerkmanagement NM als auch optional mit der Steuereinrichtung SC verbunden. Steuereinrichtung SC und Netzwerkmanagement NM haben jederzeit die Möglichkeit, die Crossconnect-Vorrichtung CC umzuschalten (die Steuereinrichtung SC für den Normalfall, das Netzwerkmanagementsystem NM für Notfälle). Als wesentlicher Aspekt ist anzusehen, dass die beiden geographisch redundanten Vermittlungssysteme S_1 , S_{1b} sowie das Netzwerkmanagement NM und die gedoppelte Steuereinrichtung SC jeweils räumlich deutlich getrennt sein müssen.

Die Steuereinrichtung SC übermittelt dem Netzwerkmanagement NM regelmäßig oder bedarfsweise auf Anforderung den aktuellen Betriebszustand der Vermittlungssysteme S₁ und S_{1b} (act/standby, Zustand der Interfaces) sowie den eigenen Betriebszustand. Die Funktionen der Steuereinrichtung SC können optional teilweise oder auch komplett vom Netzwerkmanagement NM durchgeführt werden. Aus Sicherheitsgründen sollte das Netzwerkmanagement NM die Funktion haben, die oben beschriebenen Umschaltungen auch manuell herbeiführen zu können. Optional

kann die automatische Umschaltung blockiert werden, so dass die Umschaltung nur manuell durchgeführt werden kann.

Die Vermittlungssysteme S₁ und S_{1b} können regelmäßig auch selbst überprüfen, ob ihre paketbasierten Interfaces aktiv sind. Ist dies für die Interfaces IF_{2..n} nicht der Fall, kann man indirekt auf den Zustand "hot standby" schließen und gezielt gewisse Alarme, die sich aus der Nicht-Verfügbarkeit der Interfaces IF_{2..n} ergeben, blockieren. Weiterhin kann auf diese Weise auch der Übergang eines Switches von "hot standby" auf "aktiv" erkannt werden. Dies ermöglicht, gegebenenfalls gezielte Maßnahmen beim Start des Vermittlungsverkehrs zu ergreifen.

Um das Umschalten von Vermittlungssystem S₁ auf Vermittlungssystem S_{1b} möglichst sicher und genau dann durchzuführen, wenn ein schwerwiegender Ausfall von Vermittlungssystem S₁ vorliegt, wird empfohlen, dass die paketbasierten Interfaces des Switches von selbst in den Zustand "idle" gehen, wenn sie den Kontakt zu ihrer Zentral-Einheit (falls vorhanden) verloren haben.

Die Paket-Adressen (IP Adressen) der Interfaces I2..n des Vermittlungssystems S1 und ihrer jeweiligen Partner Interfaces 25 von Vermittlungssystem S_{1b} können identisch sein, müssen es aber nicht. Wenn sie identisch sind, wird das Umschalten nur von vorgeschalteten Routern bemerkt. Für die Partner-Applikation im Netz ist es dagegen völlig transparent. Man spricht in diesem Zusammenhang auch von der IP Failover Funk-30 tion. Falls das Protokoll, das ein Interface bedient, ein Umschalten des Kommunikationspartners auf eine andere Paket-Adresse erlaubt, wie dies z.B. beim H.248 Protokoll der Fall ist (ein Media Gateway kann selbständig eine neue Verbindung zu einem anderen Media Gateway Controller mit anderer IP Ad-35 resse herstellen), können die IP Adressen auch unterschiedlich sein.

Falls das Umschalten von Vermittlungssystem S1 auf Vermittlungssystem S1b durch ein Netzproblem hervorgerufen wurde und Vermittlungssystem S₁ hardwaremäßig in Ordnung ist, ist das Umschalten ebenfalls die korrekte Maßnahme, weil Vermittlungssystem S1 nicht mehr ausreichend erreichbar war und damit vermittlungstechnisch möglicherweise ein wesentlicher Ausfall vorlag. Die Steuereinrichtung SC sollte dabei möglichst so mit dem Netz verbunden sein, dass ein isolierter Ausfall der Verbindung des Vermittlungssystems S1 zur Steuer-10 einrichtung SC faktisch ausgeschlossen werden kann, während das Vermittlungssystem S1 noch vermittlungstechnisch erreichbar ist. Die Umschaltung der Betriebszustände von Vermittlungssystem S₁ und Vermittlungssystem S_{1b} (act -> stb / stb -> act) kann auch durch die Zentralteile (CP) der Switches koor-15 diniert werden.

In einer Ausgestaltung der Erfindung wird vorgesehen, als Steuereinrichtung SC den Zentralrechner eines weiteren Vermittlungssystems zu verwenden. Damit existiert dann eine Steuereinrichtung mit höchster Verfügbarkeit. Ferner kann die Funktionalität der Steuereinrichtung SC auf das reine Erkennen der Notwendigkeit des Ersatzschaltefalles reduziert werden. Damit wird die Initiierung des Umschaltens über das Netzwerkmanagement NM, also auf den Bediener verlagert, womit dann auch vorgelagerte Multiplexer und Crossconnect-Vorrichtungen nicht mehr von der Steuereinrichtung SC gesteuert werden müssen.

In einer Weiterbildung der Erfindung kommt die Etablierung einer unmittelbaren Kommunikationsschnittstelle zwischen Vermittlungssystem S₁ und Vermittlungssystem S_{1b} in Betracht. Diese kann zum Update der Datenbasis z. B. im Hinblick auf SCI -(Subscriber Controlled Input) und Gebühren-Daten genutzt werden sowie auch zum Austausch transienter Daten von einzelnen Verbindungen oder wesentlichen weiteren transienten Daten (z. B. H.248 Association Handle). Damit sind die Störungen des Betriebs aus Teilnehmer- und Betreibersicht minimierbar.

30

geführt werden.

Die semipermanenten und transienten Daten können dann von dem jeweiligen aktiven Vermittlungssystem in das redundante standby Vermittlungssystem in einem zyklischen Zeitraster (Update) oder nach Ausfallende komplett übertragen werden. Das Update der SCI-Daten hat den Vorteil, dass das zyklische

Das Update der SCI-Daten hat den Vorteil, dass das zyklische Restore auf dem standby-System vermieden wird und jederzeit Aktualität bzgl. SCI Daten im standby System herrscht.

Durch das Update Stack-relevanter Daten, wie dem H.248 association handle, kann der Peripherie die Übernahme der Peripherie durch ein Ersatzsystem verborgen werden, und es können die Ausfallzeiten noch stärker reduziert werden.

Das Kontrollprotokoll zwischen Steuereinrichtung SC und
15 Crossconnect-Einrichtung CC kann ein normales OAM Protokoll
sein (z.B. SNMP) und kann dem vom Netzwerkmanagement NM entsprechen.

Im folgenden sei nun von einem schwerwiegender Ausfall des

Vermittlungssystem S₁ ausgegangen. Aufgrund der geographischen Redundanz ist mit hoher Wahrscheinlichkeit der Klon
(Vermittlungssystem S_{1b}) ebenso nicht betroffen wie die Steuereinrichtung SC. Die Steuereinrichtung SC stellt den Ausfall
von Vermittlungssystem S₁ fest, da hinreichend viele Interfaces von Vermittlungssystem S₁ nicht mehr antworten.

Die Steuereinrichtung SC schaltet nun auf das Bemerken des Ausfalls von Vermittlungssystem S_1 hin das geographisch redundante Vermittlungssystem S_{1b} in einen aktiven Betriebszustand und deaktiviert die Reste des ausgefallenen Vermittlungssystems S_1 . Dieses geht nach Reparatur/ recovery in den Betriebszustand "hot standby". Gegebenenfalls sind manuelle Eingriffe nötig, um beim Hochfahren von Vermittlungssystem S_1 die aktuelle Datenbasis von Vermittlungssystem S_{1b} zu laden. Falls beide Steuereinrichtungen SC zerstört sind, kann das Umschalten auch vom Netzwerkmanagement NM aus manuell durch-

Dasselbe Verfahren funktioniert auch in den beiden Spezialfällen "reiner Softswitch" und "reiner TDM Switch". In ersterem Fall muss man sich nur den Crossconnect-Vorrichtung CC

und das zugehörige Handling wegdenken. In letzterem Fall gibt
es nur ein paketbasiertes Interface, nämlich das zum Netzwerkmanagement NM. Entsprechend wird nur dieses Interface von
der Steuereinrichtung SC überwacht und als Umschaltekriterium
hergenommen. Aus Sicherheitsgründen sollte es für diese Anwendung physikalisch gedoppelt werden. Hat man einen reinen
TDM Switch, der über gar kein paketbasiertes Interface verfügt, muss er um ein solches, physikalisch gedoppeltes Interface erweitert werden, das ausschließlich der Überwachung
durch Steuereinrichtung SC dient.

15

20

25

Die erfindungsgemässe Lösung ist auch auf eine gestörte Kommunikation zwischen Vermittlungssystem S_1 und Steuereinrichtung SC anwendbar, solange das Vermittlungssystem S_1 noch als Plattform funktionsfähig ist. Die Steuereinrichtung SC erreicht das Vermittlungssystem S_1 über dieselben Router wie der Vermittlungsverkehr. Dazwischen liegt lediglich das IP core Netz. In diesem Fall hat die Steuereinrichtung SC keinen Kontakt zum Vermittlungssystem S_1 , wohl aber zum Vermittlungssystem S_{1b} . Das Vermittlungssystem S_1 ist aber noch vermittlungstechnisch aktiv und hat Kontakt zu seinen vermittlungstechnischen Netzpartnern. Die Steuereinrichtung SC aktiviert nun nach Bemerken eines (vermeintlichen) Ausfalls von Vermittlungssystem S_1 das redundante Vermittlungssystem S_{1b} , kann aber Vermittlungssystem S_1 nicht deaktivieren.

30

35

Das Vermittlungssystem S_1 hat aktive Interfaces IF und beantwortet die ARP requests der ihm vorgelagerten Router. Vermittlungssystem S_{1b} hat aber auch aktive Interfaces IF and beantwortet die ARP requests seiner vorgelagerten Router. Damit wären u. U. gleiche IP Adressen doppelt vergeben (Split Brain).

In Fig. 2 ist eine Weiterbildung gemäss der Konfiguration nach Fig. 1 aufgezeigt. Demgemäss sind zwei Steuereinrichtungen SC₁, SC₂ vorgesehen. Der Unterschied zu der in Fig. 1 aufgezeigten Konfiguration liegt im Vorsehen zweier Steuereinrichtungen SC₁ und SC₂, die an verschiedenen Orten untergebracht sind. Die Steuereinrichtung SC besteht somit aus zwei Hälften SC₁ und SC₂. Steuereinrichtung SC₁ ist mit Vermittlungssystem S₁, S_{1b} und der redundanten Steuereinrichtung SC₂ verbunden. Steuereinrichtungen SC₂ ist ebenso mit Vermittlungssystem S₁, S_{1b} und der zu ihr redundanten Steuereinrichtung SC₁ verbunden. Die beiden (räumlich getrennten) Steuereinrichtungen SC₁ und SC₂ überwachen sich gegenseitig.

Patentansprüche

- 1. Vorrichtung zum Ersatzschalten eines Vermittlungssystems, dadurch gekennzeichnet,
- dass jedem Vermittlungssystem (S₁) ein redundantes Vermittlungssystem (S_{1b}) als Redundanzpartner zugeordnet ist, die beide Zugriff auf ein Transportnetz haben, dass ein Netzwerkmanagementsystem (NM) und mindestens ein realzeitfähiger Monitor (SC) vorgesehen sind, die in Wirkverbindung miteinander sowie mit jedem der Vermittlungssysteme (S₁), den jeweils redundanten Vermittlungssystemen (S_{1b}) und dem Transportnetz stehen.
 - 2. Vorrichtung nach Anspruch 1,
- 15 dadurch gekennzeichnet, dass das Vermittlungssystem (S_1) sowie das redundante Vermittlungssystem (S_{1b}) einen identischen Aufbau in Hardware und Software aufweisen.
- 3. Vorrichtung nach Anspruch 1, 2, dadurch gekennzeichnet, dass die Datenbasis des Vermittlungssystem (S₁) sowie des redundanten Vermittlungssystem (S_{1b}) im Hinblick auf permanente/ semipermanente Daten zu jedem Zeitpunkt im wesentlichen identisch ist.
 - 4. Vorrichtung nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass die aus Vermittlungssystem (S₁), redundantem Vermittlungssystem (S_{1b}), Netzwerkmanagementsystem (NM) und dem mindestens einen Monitor (SC) ausgebildete Konfiguration über mehrere Lokationen verteilt ist.
- 5. Vorrichtung nach Anspruch 1 bis 4,
 35 dadurch gekennzeichnet,
 dass das Vermittlungssystem (S₁) und das jeweils redundante
 Vermittlungssystem (S_{1b}) paketbasierte Interfaces aufweisen.

- 6. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet,
- dass das redundante Vermittlungssystem (S_{1b}) einen Betriebszustand (hot-standby) einnimmt, der durch das Vorhandensein
 einer im wesentlichen aktuellen Datenbasis, aktive Applikationen sowie durch das Blockieren aller vermittlungstechnisch
 genutzten paketbasierten Interfaces nach aussen geprägt ist.
- 7. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Paket-Adressen (IP-Adressen) der paketbasierten Interfaces des Vermittlungssystems (S₁) und der jeweiligen paketbasierten Partner Interfaces des redundanten Vermittlungssystems (S_{1b}) identisch sind.
 - 8. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Transportnetz mindestens eine durch NM oder SC steuerbare Crossconnect Vorrichtung (CC) zum Durchschalten von TDM Verbindungen aufweist.
 - 9. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet,
- 25 dass das Transportnetz eine unmittelbare Kommunikationsschnittstelle zwischen Vermittlungssystem (S_1) und Vermittlungssystem (S_{1b}) aufweist.
- 10. Monitor zum Überwachen und Schalten von Vermittlungssys-30 temen, der bei Ausfall eines Vermittlungssystems in Realzeit auf ein redundant zugeordnetes Vermittlungssystem umschaltet.
 - 11. Mehrzahl von geographisch redundanten Monitoren nach Anspruch 10, die sich gegenseitig überwachen und koordiniert die Ersatzschaltung eines Vermittlungssystems in Realzeit aus
- die Ersatzschaltung eines Vermittlungssystems in Realzeit auf ein redundant zugeordnetes Vermittlungssystem vornehmen.

12. Mehrzahl von Monitoren gemäß Anspruch 11, die bei gestörter Interkommunikation keine Ersatzschaltung paarweise redundanter Vermittlungssysteme vornehmen.

