5. K-Nearest Neighborhood

ESC Spring 2018 - Data Mining and Analysis

SeoHyeong Jeong

Yonsei University

Textbook:

An Introduction to Statistical Learning

Lecture Slides:

Stanford Stats 202: Data Mining and Analysis

Spring 17' ESC Statistical Data Analysis

Reading:

An Introduction to Statistical Learning

chapter 2.2.3 The Classification Setting

Table of Contents

- 1. Introduction
- 2. The Bayes Classifier
- 3. K-Nearest Neighborhood (KNN)

Classification Problems

- Suppose we seek to estimate f on the basis of training observations $\{(x_1, y_1), \dots, (x_n, y_n)\}$, where y_1, \dots, y_n are qualitative.
- Classification task is to build a function C(X) that takes input explanatory variable(s) X and predicts value for Y.
- Our main goals:
 - Building a classifier C(X)
 - Assessing the uncertainty

- Classification techniques, or *classifiers*, are used to predict a qualitative response. Most widely used classifiers are:
 - The Bayes Classifier (not widely used but it's the basic)
 - KNN
 - logistic regression
 - linear discriminant analysis

Training Error Rate and Test Error Rate

• The most common approach for quantifying the accuracy of our estimate \hat{f} is the *training error rate*:

$$\frac{1}{n}\sum_{i=1}^{n}I(y_i\neq\hat{y}_i).$$

where $I(y_i \neq \hat{y}_i)$ is an *indicator variable* that equals 1 if $y_i \neq \hat{y}_i$ and 0 if $y_i = \hat{y}_i$

Training error rate computes the fraction of incorrect classifications.

- The training error rate is computed based on the data that was used to train the classifier.
- The test error rate associated with a set of test observations of the form (x_0, y_0) is given by

Ave
$$(I(y_0 \neq \hat{y}_0))$$
,

where \hat{y}_0 is the predicted class label that results from applying the classifier to the test observation with predictor x_0 .

A good classifier is one for which the test error is smallest.

The Bayes Classifier

Suppose $P(Y \mid X)$ is known. Then, given an input x_0 , we predict the response

$$\hat{y}_0 = \operatorname{argmax}_y P(Y = y \mid X = x_0).$$

This Bayes classifier minimizes the expected 0-1 loss:

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\mathbf{1}(\hat{y}_i \neq y_i)\right]$$

The minimum expected 0-1 loss (the best we can hope for) is the Bayes error rate $1 - E[\operatorname{argmax}_y P(Y = y|X)]$. It is the analogon of the irreducible error in regression.

- Suppose there are only two possible response values, say class 1 or class 2.
- The Bayes classifier corresponds to predicting class 1 if

$$Pr(Y = 1|X = x_0) > 0.5$$

and class 2 otherwise.

• The Bayes error rate

$$1 - E\left(\max_{j} \Pr(Y = j|X)\right)$$

where the expectation averages the probability over all possible values of X.

K-Nearest Neighborhood

- For real data, we do not know the conditional distribution of Y given X, and so computing the Bayes classifier is impossible.
- Given a positive integer K and a test observation x_0 , the KNN classifier
 - 1. Identifies the K points in the training data closest to x_0 , represented by \mathcal{N}_0
 - 2. Estimates

$$\Pr(Y = j | X = x_0) = \frac{1}{K} \sum_{i \in \mathcal{N}_0} I(y_i = j).$$

3. Applies Bayes rule and classifies the test observation x_0 to the class with the largest probability.

FIGURE 2.14. The KNN approach, using K=3, is illustrated in a simple situation with six blue observations and six orange observations. Left: a test observation at which a predicted class label is desired is shown as a black cross. The three closest points to the test observation are identified, and it is predicted that the test observation belongs to the most commonly-occurring class, in this case blue. Right: The KNN decision boundary for this example is shown in black. The blue grid indicates the region in which a test observation will be assigned to the blue class, and the orange grid indicates the region in which it will be assigned to the orange class.

FIGURE 2.15. The black curve indicates the KNN decision boundary on the data from Figure 2.13, using K = 10. The Bayes decision boundary is shown as a purple dashed line. The KNN and Bayes decision boundaries are very similar.

FIGURE 2.16. A comparison of the KNN decision boundaries (solid black curves) obtained using K = 1 and K = 100 on the data from Figure 2.13. With K = 1, the decision boundary is overly flexible, while with K = 100 it is not sufficiently flexible. The Bayes decision boundary is shown as a purple dashed line.

The black horizontal dotted line implies the Bayes error rate.

- As K grows, it becomes less flexible and a decision boundary gets closer to linear.
- As K grows, it becomes a lowvariance but high-bias classifier.
 Why?
- The bias-variance tradeoff:
 U-shape in the test error