Image Processing

Javier González Jiménez

Reference Books:

- Computer Vision: Algorithms and Applications. Richard Szeliski. Springer. 2010.
 http://szeliski.org/Book
- Visión por Computador. Javier Gonzalez Jimenez. Thomson-Paraninfo, 1999.

Content

- 1. Introduction
- 2. IP tools and concepts
 - Image color
 - Image Histogram
 - Look-up-tables
 - Distance between pixels
 - Convolution
- 3. Image Smoothing
- 4. Image Enhancement

1. Introduction

Goal: Improve the quality of the image by attenuating noise, adjusting colors, modifing contrast and brightness, ...

In CV this may be a necessary step to prepare the image for a better feature extraction or segmentation

An image can be seen as:

a two-dimensional matrix A[x,y]

a two-dimensional function f(x,y) with (x,y) discrete

1. Introduction

Smoothing and enhancement can be applied in the SPATIAL and in the

FREQUENCY domain

SPATIAL domain

FREQUENCY domain

ORIGINAL IMAGE f(x,y)

$$\xrightarrow{h(f(x,y))}$$

PROCESSED IMAGE g(x, y)

h is a transformation fuction that takes values from a <u>neighborhoo</u>d of (x,y)

1x1 : Look-up-table

1x1 x time : Image average

NxM: Convolution

FREQUENCIAL ORIGINAL IMAGE

F(u,v)

$$\int F(u,v) \times H(u,v) = G(u,v)$$

PROCESSED IMAGE

$$\mathcal{F}^{-1}\{\mathsf{G}(\mathsf{u},\mathsf{v})\}$$

FREQUENCIAL PROCESSED IMAGE G(u,v) If the transformation H is a convolution (to be explained later), it is applied very efficiently with a point-by-point multiplication

2. IP tools and concepts

Image color

Electromagnetic spectrum

All these wavelengths are produced by some light source (sun or artificial)

We see these wavelengths because the receptors (cones) in our eyes

Image color

Human eye

- Two types of photoreceptors in the human retina: Rods responsible for intensity, cones responsible for color
- Fovea Small region (1 or 2°) at the center of the visual field containing the highest density of cones (and no rods).

Rods and cones are *non-uniformly* distributed on the retina (Less visual acuity in the periphery)

Image color space

RGB: Linear color space used by computers

Any color can be computed as the linear combination of the three components RGB

When a color has the same value of the three components RGB (diagonal of the RGB trihedron) we have grey-levels.

 $R=G=B \rightarrow grey level (or gray scale)$

Image color

Mathematically, a color image is a tri-dimensional array: I(row,column,color) with $color \in \{R,G,B\}$

Easiest way to convert from RGB color to grey-level (grayscale):

Average method: Grayscale = $(R + G + B / 3) \rightarrow 33\% R$, 33% G, 33% B

Image color: Chromaticity

A color (R,G,B) can be converted to normalized colors (r,g,b) which gives us the proportion of red, green and blue:

$$r=rac{R}{R+G+B}$$
 $g=rac{G}{R+G+B}$ $b=rac{B}{R+G+B}$ $r+g+b=1$ One constraint

Chromaticity chart is a 2D space, for example, <*r*,*g*>

In the chromaticity chart, the missing component (b) is the value of the pixel.

For example: each 45 deg. line (e.g. $r+g = 0.8 \rightarrow b = 0.2$.

This representation is useful to segment regions based on their color

2. IP tools and concepts

Image Histogram

- Is a representation of the frequency each color intensity appears in the image
- Built by counting the ocurrence of each color in the image
- A color image has 3 histograms (e.g. R, G, B)
- Provides statistical information of the intensity distribution (e.g. brightness and contrast)

color or grayscale intensity

Brightness and contrast (moments of a histogram)

Moment k of a function f(x): $m_k = \int_{-\infty}^{\infty} x^k f(x) dx$ Central moment k of a function f(x): $\mu_k = \int_{-\infty}^{\infty} (x - m_1)^k f(x) dx$

Brightness: Average of the pixel intensities = One order $m_1 = \overline{\iota} = \sum_{i=1}^{n} i^i h(i)$ moment of the histogram (h(i))

Contrast: Standard deviation of the pixel intensities. Square root of the second central moment of the histogram

Image histogram is useful for:

Detecting Black or White saturation

Contrast and brightness

 Use of the whole intensity range (i.e. the 256 values)

 Select a suitable threshold for image binarization

A LUT replaces an index intensity (input) by another intensity value stored in the table (vector)

- does not change the geometry of objects in the image
- only changes the histogram of the image

RGB LUT

Applied to an image it is like replacing the original color palette by another one

Examples

Original image

Implementation (example binarization)

Distance between two pixels p_1, p_2 :

 $D(p_1,p_2)$ is a distance function if:

1.
$$D(p_1,p_2) \ge 0 [D(p_1,p_2)=0 \text{ si } p_1=p_2]$$

2.
$$D(p_1,p_2) = D(p_2,p_1)$$

3.
$$D(p_1,p_3) \le D(p_1,p_2) + D(p_2,p_3)$$

Euclidean distance (L²-norm) between p₁ y p₂:

$$D_e(p_1, p_2) = \left[(x_1 - x_2)^2 + (y_1 - y_2)^2 \right]^{1/2}$$

• *Manhattan distance* (l_1 -*Norm*) between $p_1 y p_2$:

$$D_4(p_1, p_2) = |x_1 - x_2| + |y_1 - y_2|$$

• 8-Distance (∞ -Norm) between $p_1 y p_2$:

$$D_8(p_1, p_2) = \max(|x_1 - x_2|, |y_1 - y_2|)$$

Image Convolution

Weighted average of the neighborhood of each pixel

$$g(i, j) = \mathbf{f} \otimes \mathbf{h} = \sum_{m} \sum_{n} f(i-m, j-n)h(m, n)$$

The value **g** at (i,j) is the weighted average of **f** at (i,j) with the values of **h**

Equivalent to multiply the coordinates (*n*,*m*) by:

The kernel is flipped in both axes
$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} n \\ m \end{bmatrix} = \begin{bmatrix} -n \\ -m \end{bmatrix}$$

Example:

g(1,3) = f(0,2) + f(0,1) + f(0,0)+ f(1,2) + f(1,1) + f(1,0)+ f(2,2) + f(2,1) + f(0,0)

-n↓

Image Convolution

How it works (visually):

-1	-1	0		
-1	0	1		
0	1 1	1 2	2	2
	0	1	4	3
	0	2	2	2
	0	1	1	0

1	3	4	4	2	0

-1	-1	0			
-1	0	1 1	2	2	2
0	1	1 0	1	4	3
		0	2	2	2
		0	1	1	0

1	3	4	4	2	0
1					

-1	-1	0		
-1	0 1	1 2	2	2
0	1 0	1 1	4	3
	0	2	2	2
	0	1	1	0

1	3	4	4	2	0
1	3				

	1	2	2	2		
	0	1	4	3		
•	0	2	2	2		
	0	1	1	-10	-1	0
				-1	0	1
				0	1	1

1	3	4	4	2	0
1	3	6	7	1	-2
0	2	5	2	-6	-5
0	3	3	-4	-9	-5
0	1	-1	-5	-5	-2
0	0	-1	-2	-1	0

Image Convolution

Source: D. Lowe

Convolution properties

Conmutative:
$$f * g = g * f$$

Associative:
$$f * (g * h) = (f * g) * h$$

Distributive:
$$f * (g+h) = (f*g) + (f*h)$$

Asociative wrt scalar product:
$$a(f*g) = (af)*g = f*(ag)$$

Derivative:
$$\mathcal{D}(f*g) = \mathcal{D}f*g = f*\mathcal{D}g$$

Theorem of convolution:
$$\mathcal{F}(f*g) = \mathcal{F}(f) \cdot \mathcal{F}(g)$$

Objective: Eliminate/reduce noise in image (in pixel intensities).

Noise appears because of the sensor response (more in CMOS technology), digitalization and transmition.

Approaches:

- Neighborhood averaging
- Gaussian filter
- Median filter
- Image average
- Filters in the frequency domain (not addressed in this course)

Objective: Eliminate/reduce noise in pixel intensities

Original

Salt and pepper noise

Impulse noise

Gaussian noise

Salt and pepper noise:

black and white pixels appears at random

Impulse noise:

black or white pixels appears at random

Gaussian noise:

- intensities are affected by an additive zero-mean **Gaussian error.**
- simulates thermal noise in sensors, which shows up in **poor illumination conditions**

Neighborhood averaging

The value of each pixel is substituted by the average value of the neighbors

$$g(x,y) = \frac{1}{p} \sum_{(m,n) \in s} f(m,n)$$

S : set of "p" pixels in the neighborhood (mxn) of (x,y)

Implemented with the convolution with a kernel (linear operation)

For example, for a 3x3 neighborhood

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Main drawback: edge blur

Gaussian noise reduction by Neighborhood averaging

(a) Original image

(b) Noisy image

Intensity profile for the row marked in the original image

Gaussian filter

- is a neighborhood weighted averaging
- weights from a Gaussian bell

• Implemented with the convolution of the image with a kernel. For example 5x5:

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

Gaussian filter

Separability property (rows and columns separated)

Example:

Because of the **Associative property**:

$$f \otimes g = f \otimes (g_x \otimes g_y) = (f \otimes g_x) \otimes g_y$$
2D convolution Two 1D convolutions

Gaussian filter

σ allows us to control the degree of smoothing

Bigger σ ...

- more smoothing
- blurrier image

Size of the kernel (w):

- proportional to σ
- must be big enough to account for non-negligible values in the kernel

0	1	3	4	3	1	0
1	6	18	25	18	6	1
3	18	50	71	60	18	3
4	25	71	100	71	25	4
3	18	50	71	60	18	3
1	6	18	25	18	6	1
0	1	3	4	3	1	0
			·			

Another row/column would have very small values (negligible)

Smoothing with Median filter (not averaging)

Replace the intensity value of a pixel by the median of its neighborhood

10	11	12
10	11	10
10	12	11

3x3 image neighborhood around the pixel analyzed (intensity 50)

Resulting image

- It is NOT a linear operation
- **High computational cost** ... but there are efficient implementations (e.g. pseudomedian, sliding median, ...)

Median filtering

Image corrupted by "salt & pepper" noise

Median

3x3 average

- Preserve bordes (no image blur)
- Very effective to remove salt&pepper noise

Image averaging

IDEA: To average several (M) images along a sequence of a static scene (assumption: the only difference is the noise, i.e. static scene)

$$\underbrace{g(x,y)}_{\text{I}} = \frac{1}{M} \sum_{i=1}^{M} f_i(x,y) = \frac{1}{M} \sum_{i=1}^{M} \left[f_{\text{noise_free}}(x,y) + \eta_i(x,y) \right] = f_{\text{noise_free}}(x,y) + \frac{1}{M} \sum_{i=1}^{M} \eta_i(x,y)$$
Average image

Noise Image

If the noise $\eta_i(x,y)$ has zero-mean $E[\eta_i(x,y)] = 0$:

The expected value of noise is zero

$$E[g(x,y)] = E\left[f_{\text{noise_free}}(x,y) + \frac{1}{M} \sum_{i=1}^{M} \eta_i(x,y)\right]$$

The expected value is the noise-free image!

$$= f_{\text{noise_free}}(x, y) + \frac{1}{M} \sum_{i=1}^{M} E[\eta_i(x, y)] = f_{\text{noise_free}}(x, y)$$

Image averaging

Gaussian noise

1 image

10 images

ages 50 images

Salt&Pepper noise

Image averaging

Advantage:

- Preserves edges
- Very effective with Gaussian noise (not with salt&pepper)

Drawback:

Only applicable to sequence of images of a still scene

4. Image Enhancement

Objective: Improve contrast and brightness of the image

In Computer Vision this is required to prepare the image for subsequence operations (feature extraction, segmentation)

Typical operations:

- Lookup-table transformation
- Histogram equalization
- Histogram specification

Lookup-table transformation

<u>IDEA:</u> To stretch and shift the histogram for a better leverage of the intensity range [typically, 0-255]

Lookup-table transformation

Non-linear transformation: $g(x,y) = f(x,y)^{\gamma}$

- γ < 1 to increase contrast of darker pixels (Stretching of low intensities)
- $\gamma > 1$ to increase contrast of brighter pixels (Stretching of high intensities)

Lookup-tables transformation

Non-linear transformation: $g(x,y) = f(x,y)^{\gamma}$

 $\gamma = 0.5$ (root square)

Lookup-table transformation

Non-linear transformation: $g(x,y) = f(x,y)^{\gamma}$

4. Image Enhancement

Histogram equalization

<u>IDEA:</u> Modify the intensities such that the new image achieves an uniform histogram

May be applied when low contrast and low brightness (dark) image

Histogram equalization

Equalized image

Histogram of the equalized image

In practice, not fully uniform!

Histogram specification (histogram matching)

- transformation of an image so that its histogram matches a specified histogram
- histogram equalization is a special case in which the specified histogram is uniformly distributed

Histogram specification

Example:

Summary

- IP operations needed to improve the quality of the image by attenuating noise, adjusting colors, modifing contrast and brigthness, ...
- Necessary to prepare the image for a better edge detection or segmentation
- A **color image** is a Tri-dimensional array: I(x,y,c) with $c \in \{R,G,B\}$
- A **histogram** provides statistical information of the intensity distribution (e.g. brightness and contrast)
- LUT transformations very efficient and effective to change contrast and brightness
- Convolution is a linear operation between two images, very useful for IP
- Gaussian Noise in images is attenuated by convolving with a Gaussian kernel
- Salt&Pepper Noise is attenuated by a median (non-linear) filter