CS/ECE 374 Fall 2018 Homework 8 Problem 2 Anqi Yao (anqiyao2@illinois.edu) Zhe Zhang (zzhan157@illinois.edu) Ray Ying (xinruiy2@illinois.edu)

- 2. Let G = (V, E) be a directed graph with edge lengths that can be negative. Let $\ell(e)$ denote the length of edge $e \in E$ and assume it is an integer. Assume you have a shortest path tree T rooted at a source node s that contains all the nodes in V. You also have the distance values d(s, u) for each $u \in V$ in an array (thus, you can access the distance from s to u in O(1) time). Note that the existence of T implies that G does not have a negative length cycle.
 - Let e = (p, q) be an edge of G that is *not* in T. Show how to compute in O(1) time the smallest integer amount by which we can decrease $\ell(e)$ before T is not a valid shortest path tree in G. Briefly justify the correctness of your solution.
 - Let e = (p,q) be an edge in the tree T. Show how to compute in O(m+n) time the smallest integer amount by which we can increase $\ell(e)$ such that T is no longer a valid shortest path tree. Your algorithm should output ∞ if no amount of increase will change the shortest path tree. Briefly justify the correctness of your solution.

Solution:

• Let e = (p, q) be an edge of G that is *not* in T. To find the smallest decrease of $\ell(e)$ that will make the shortest path tree T invalid, the main idea is to find the smallest decrease in $\ell(e)$ where taking this edge (with such weight decreased) from p to q will result a smaller distance between s and q, compared to the original distance.

The smallest integer to return is $\ell(e) - (d(s,q) - d(s,p)) + 1$.

Justification:

First, d(s,q)-d(s,p) is the current shortest distance from p to q via T, and can be evaluated with O(1).

Second, $\ell(e)$ is the length of edge e and can be obtained with O(1).

Thus by decrease $\ell(e) - (d(s,q) - d(s,p))$, e will now have the length same to the shortest distance from p to q via T.

Then we decrease $\ell(e)$ further by 1, $\ell(e)$ is now smaller than the shortest distance from p to q via T, and thus is a shorter path from p to q. In this case, T is violated.

Therefore, the smallest integer to return is $\ell(e) - (d(s,q) - d(s,p)) + 1$.

Running Time:

Since d(s,u) and $\ell(e)$ take linear time, the algorithm will take O(1) time.

• Let e = (p, q) be an edge of G that is in T. The main idea is to increase $\ell(p, q)$ by x such that continuing taking the original path will result a larger distance from s to q and q's descendants than taking another path.

The smallest integer to return is $x = MIN\{\ell(u,v) - (d(s,v) - d(s,u)) + 1\}$, where (u,v) are all edges in G such that v is a descendant of q in T but u is not. If no such edges exist, return ∞ .

Justification:

 $MIN\{\ell(u,v)-(d(s,v)-d(s,u))+1\}$ will give the shortest path from any other non-descendant of q to descendants of q plus 1. Increase $\ell(e)$ by such value will promise $\nu(descendant of q)$ to have the largest distance from p among from any $\nu(descendant of q)$. Thus this value is correct if such edges (u,v) exist. If no such edge exist, it means that any increase in $\ell(p,q)$ will not affect T and thus we output ∞ .

Running Time:

The worst case is to compute O(n) descendants of q and then to look through all edges, O(m). Thus in total, this algorithm takes O(m+n) time complexity.