Gabriel Le Guay Jonas Daverio Microinformatique
Rapport du microprojet

Projet de microinformatique : Mapping

Table des matières

1. Introduction

2. Principe de fonctionnement

- 2.1 Déplacement du robot
 - 2.1.1 itinéraire
 - 2.1.2 Détection des objets
 - 2.1.3 Changement de direction

2.2 cartographie

- 2.2.1 Principe
- 2.2.2 IMU et Calculs
- 2.2.3 Bluetooth

3. Organisation du code

- 3.1 Fonctionnement général
- 3.2 Fonction remarquables
- 3.3 Organisation entre les modules
- 4. Résultats
- 5. Conclusion
- 6. Références

1.Introduction

Dans le cadre du mini projet de semestre du cours de systèmes embarqués et robotique dispensé par le professeur Francesco Mondada, nous avons cherché à simuler un robot qui cartographie la pièce dans laquelle il se déplace. Ce projet utilise un robot E-Puck ainsi que ses capteurs de distance, moteurs pas à pas, accéléromètre (IMU) et sa transmission bluetooth. Le robot E-Puck va donc se déplacer dans la pièce de manière à recouvrir entièrement la surface de celle-ci. En simultané nous relèverons sa position en temps réel afin de cartographier son chemin et la pièce dans laquelle il s'est déplacé.

2. Principe de fonctionnement

2.1 Déplacement du robot

figure 1 : schéma du chemin du robot dans une certaine pièce

2.1.1 itinéraire

Le robot sera initialement déposé dans le coin de la pièce. Il commencera par avancer grâce à ses moteurs à une vitesse de 3 cm/s. Lorsqu'il arrive sur un mur, il tourne à 90 degrés sur la droite, si il n'y a pas de mur devant lui, a

proximité, il avance pendant une seconde et tourne encore de 90 degrés. S'il y a un mur, il tourne directement. Ensuite, il continue d'avancer dans l'autre direction et répète l'opération en tournant à sa gauche.

2.1.2 Détection des objets

Lorsque le robot se trouve à une distance de 10 cm d'un objet sur son chemin (en face de lui), il effectue alors une rotation de 90 degrés. Cette détection se fait à l'aide du capteur de distance situé à l'avant du robot. Nous avons choisi d'utiliser le capteur de distance et non pas les InfraRouges, car ceux-ci sont trop peu précis et détectent une distance trop petite pour laisser le robot s'arrêter et tourner.

2.1.3 Changement de direction

Une fois le mur détecté, le robot commence par une rotation de 90 degrés vers la droite. Il test la distance à laquelle il est du mur en face de lui, si elle est inférieure à 10 cm, il tourne directement de 90 degrés encore à droite (demi tour au final). Si la distance est supérieure, le robot va avancer pendant 1 seconde et ensuite tourner. Il répètera l'opération en tournant cette fois à gauche. Et ainsi de suite, en alternant à droite du robot deux virages puis deux à gauche. On peut bien le voir sur la figure 1.

2.2 cartographie jonas

- 2.2.1 Principe
- 2.2.2 Calculs
- 2.2.3 Bluetooth

3. Organisation du code

3.1 Fonctionnement général

figure 2 : schéma des modules et de leur dépendance mutuelles $A \rightarrow B = A$ dépend de B

3.2 Fonction remarquables

Fonction 'turn':

Elle prend comme input 'angle' pour déterminer de quel angle on veut que le robot tourne et le booléen 'i', pour savoir si on veut que le robot tourne à gauche ou à droite.

Nous utilisons la librairie 'motor.h' et notamment 'motor_get_pos' et 'motor_set_pos'. Nous commençons par mettre sa vitesse et sa position à 0, et tant que la roue (droite ou gauche selon 'i') n'a pas effectué, dans notre cas, un quart de tour (=90 degrés), une roue avance et l'autre recule (ce qui fait tourner le robot). Une fois la rotation terminée, le robot continue d'avancer.

3.3 Organisation entre les modules

- 4.Résultats
- 5. Conclusion
- 6.Référence