

CNN's - bildeklassifisering

SOK-3023 (ML for økonomer), 5 ECTS

Markus J. Aase

markus.j.aase@uit.no, kontor 02.411 Universitetslektor i matematikk og statistikk

Handelshøgskolen, UiT
Master i samfunnsøkonomi med datavitenskap

Til nå

- Maskinlæring
 - Lineær algebra, statistikk og kalkulus
 - Prediksjon vs inferens
 - Regresjon vs klassifikasjon
 - Bias variance trade-off
 - Nødvendighet av god data
 - Reducible og irreducible error
 - Tensorer
 - Veiledet læring
 - Overfitting/underfitting
 - Trenings-, validerings- og testsett
 - Evalueringsmetrikker accuracy, sensitivitet, precision osv.
 - Arkitektur i nevrale nettverk
 - Aktiveringsfunksjoner, loss/kost-funksjon
 - «Læring» = minimering av loss-funksjon
 - Epoch, batch, batch_size
 - Gradient descent

Kilde: 3b1b

Bildeklassifisering

- I starten av kurset så vi på bilder, og brukte MLP til bildeklassifisering av håndskrevne tall.
- Da gjorde vi om 28x28-bilder til en lang vektor med 784 komponenter.

Kilde:zitaoshen.rbind.io/

Convolutional Neural Networks

- En type dyplæring som passer særs godt til bildegjenkjenning og finne underliggende mønstre (eng: pattern recognition).
- Består av flere lag (filter)
 - Konvolusjonslag
 - Pooling-lag
 - Fully-connected lag
 - Aktiveringsfunksjoner

Dette kan vi allerede ©

Kilde: ingoampt.com

Viktig konsept - pikselverdier

Pixel values

Kilde: esa.int

CNN's- input

- Input
 - Husker du rank-3 tensor?
 - Fargebilde = 3 kanaler
 - Verdier 0 255
- Rank-2 tensor
 - Sort-hvitt bilde

Kilde: mnist

Kilde: medium.com

Viktig konsept - pikselverdier

Red	Green	Blue	Hexadecimal code
0	0	0	#000000
255	255	255	#FFFFFF
255	0	0	#FF0000
0	255	0	# <mark>00FF00</mark>
0	0	255	#0000FF
255	128	0	#FF8000
255	255	0	#FFFF00
128	128	128	#808080

Kilde: tuhh.de

CNN's - Konvolusjonslag

- Konvolusjon
 - En matematisk operasjon på to funksjoner (f og g), som gir en tredje funksjon som output (f * g).
- Implementeres som
 - Kernel
 - Filter

Samme ting

- Feature detector
- Dette lager en ny matrise, vi kaller et *feature map* av inputlaget.
 - Her brukes det aktiveringsfunksjoner, for å kapre ikke-lineære sammenhenger.

Kilde: medium.com

original

convolved

CNN's - Pooling

- Pooling-lag
 - Down-sampler feature map ved å bare beholde det nødvendige, og forkaste resten.
- Max-pooling
 - Down-sampler basert på maksimalverdi i en viss matrisestørrelse – dette gir et nytt, mindre feature map.
- Hvorfor?
 - Reduserer størrelse, fanger mønstre

Kilde: researchgate.net

En gang til

Kilde: opendatascience.com

Prøv selv!

https://adamharley.com/nn_vis/cnn/2d.html

Vi prøver sammen!

CIFAR-10 datasett

Kilde: cs.toronto.edu

Sjekk ut!

• https://www.youtube.com/watch?v=QzY57FaENXg