THIRD SUPPLEMENTAL DECLARATION

EXHIBIT E

PUBLICATIONS (3)

PROCEEDINGS OF THE BIOCHEMICAL SOCIETY

Studies on the Average Content of Nucleic Acids in Human Marrow Cells. By J. N. DAVIDSON, I. LESLIE and J. C. WHITE. (From the Department of Biochemistry, University of Glasgow, and the Department of Pathology, Postgraduate Medical School of London)

In extension of previously reported analyses of the deoxyribonucleic acid phosphorus (DNAP) and ribonucleic acid phosphorus (RNAP) content of aspirated human bone marrow (Davidson, Leslie & White, 1947, 1948), we now report a modification involving enumeration of the nucleated cell content of the samples analysed. Results are expressed in terms of DNAP and RNAP per cell (Table 1), and are average values for the growing and adult cell populations of the analysed samples. The recent results of Vendrely & Vendrely (1948, 1949) and of Mirsky & Ris (1949) suggest a striking constancy in the DNAP content of normal cell nuclei from the tissues of any given species, and our figures for DNAP are of the same order as those quoted by the Vendrelys for human liver nuclei.

There is no significant difference between the means for the normal and the leukaemic series, either as a whole, or considering only acute leukaemia prior

A small series of 6 cases of iron-deficiency anaemia has not shown significant variation of the mean DNAP and RNAP per cell from normal.

Results obtained from cases of pernicious and

other megaloblastic anaemias are shown in Tables 2 and 3.

It must be noted clearly that the group under

therapy cannot be considered as returned to normal, either as regards blood picture, marrow cytology or adequacy of therapy. The significant fall in RNAP from that in the group prior to therapy parallels the general increase in maturity of the marrow under therapy. Cases fully treated and returned to normal are under investigation.

Table 1 Normal human marrow

Values of Nucleic Acid Phosphorus (NAP) in $\mu g. \times 10^{-7}$ per cell

	DNAP 18 obs. on 16 individuals	RNAP 20 obs. on 18 individuals	Ratio RNAP/ DNAP
Mean	8·54	6·33	0·75
s.r. of obs.	2·89	3·03	0·326
Observed range	4·0–15·0	2·1-13·5	0·43–1·9

Marrow from cases of leukaemia of various types, before and during therapy

	28 obs. on 15 cases	24 obs. on 12 cases	
Mean	8·75	7·59	0·90
8.E. of obe.	3·05	3·72	0·30
Observed range	3·9–17·4	2·6-17·4	0·3–1·8

Table 2. Cases of pernicious anaemia and other megaloblastic anaemias

			- B	******
	N	AP in $\mu g. \times 10^{-7}$ per cell		
Group as a whole	Mean s.e. Observed range	DNAP 28 obs. on 12 cases 12·6 4·56 6·6–22·8	RNAP 10·9 5·03 2·3–25·1	Ratio DNAP/RNAP 28 obs. on 13 cases 0.87 0.27 0.35-1.5
Group prior to therapy	Mean s.e. Observed range	12 obs. on 12 cases 12.57 4.17 6.1-22.8	11 obs. on 11 cases 13·38 5·19 7·5–25·1	12 obs. on 12 cases 1-06 0-249 0-69-1-5
Group during the course of therapy	Mean s.z. Observed range	17 obs. on 8 cases 12:63 4:36 6:6-18:8	15 obs. on 8 cases 9·09 4·21 2·3–17·6	16 obs. on 9 cases 0.73 0.198 0.35-1.0

Table 3. t test of significance between means

= 35.5 v. v est of significance between means				
Megaloblastic series as a whole compared with normal series Megaloblastic series before therapy compared with normal	P Degrees of freedom P Degrees of freedom	DNAP <0-001 44 Highly significant 0-01-0-001 28 Highly significant	<0.001	0.01-0.001
Megaloblastic series during therapy compared with normal	P Degrees of freedom	0-01-0-001 33 Highly significant	0-05-0-02 33 Significant	0·8-0·7 34 Not significant
Megaloblastic series before and during therapy compared	P Degrees of freedom	0·7-0·6 27 Not significant	0-050-02 24 Significant	<0.001 26 Highly significant

REFERENCES

Davidson, J. N., Leslie, I. & White, J. C. (1947). Biochem. J. 41, xxvi.

Davidson, J. N., Leelie, I. & White, J. C. (1948). J. Path. Bact. 50, 1.

Mirsky, A. E. & Ris, H. (1949). Nature, Lond., 163, 666.

Vendrely, R. & Vendrely, C. (1948). Experientia, 4, 434. Vendrely, R. & Vendrely, C. (1949). Experientia, 5, 327.

Fluoroacetate Poisoning and 'Jamming' of the Tricarboxylic Acid Cycle; Mode of Action of an 'Active' Fluoro Compound Synthesized via this Cycle. By P. Buffa, W. D. Lotspeich, R. A. Peters and R. W. Wakelin. (Department of Biochemistry, University of Oxford)

So far no isolated enzyme has been inhibited by fluoroacetate. The hypothesis has been advanced by Liebecq & Peters (1949) (see also Martius, 1949) that the inhibition of citrate oxidation, occurring also in vivo (Buffa & Peters, 1949), is due to the 'jamming' effect of an enzymically synthesized fluorotricarboxylic acid in the Krebs tricarboxylic acid cycle. In support of this hypothesis, Buffa, Peters & Wakelin (1950) have isolated, from guinea-pig kidney homogenates treated with fluoroacetate, a tricarboxylic fraction, which is 'active' in preventing disappearance of added citrate. This active fraction is mainly citrate; it contains no fluoroacetate, but there is present a small amount of a F-compound which is chromatographically inseparable from the tricarboxylic acids.

We have tried to find the exact point of inhibition in the enzymes of the tricarboxylic acid cycle by determining the effect of the 'active' fractions upon aconitase (Johnson, 1939), isocitric dehydrogenase (Adler, Euler, Günther & Plass, 1939) and oxalosuccinic decarboxylase (Ochoa & Weiss-Tabori, 1948), obtained from rat and pig heart tissue. Tables 1, 2 and 3 show that the results were negative, even when amounts of 'active' fraction were used 80 times larger than those inhibiting citrate disappearance in the kidney homogenates.

All the evidence from experiments in vivo and in vitro († mitochondrial homogenates) points to inhibition by the 'active' compound at either the

Table 1. Rat heart aconitase

	Citric acid (µmol.)	
Time (min.) Additions:	0	60
cis-Aconitate (5 µmol.) cis-Aconitate + 'active' fraction Citrate (5 µmol.) Citrate + 'active' fraction	0·21 0·08 4·90 5·27	3·90 3·96 4·34 4·38

Table 2. Pig heart isocitric dehydrogenase

	$E_{ t s40 m \mu}$. (max. value)
DL-isocitrate only Same + 'active' fraction Same + p-chloromerouricbenzoic acid 1.33 × 10 ⁻⁶ m	0·076-0·065 0·07 <i>5</i> 0·004

Table 3. Pig heart exalosuccinic decarboxylase (CO₂ evolution from 10 µmol. exalosuccinate in 30 min. at 13.5° C. Net values)

7	(الم) CO
Enzyme alone	83
Enzyme + 'active' fraction	76
Enzyme + DL-isocitrate (control)	14

aconitase or isocitric dehydrogenase stage. Hence, we are led to the conclusion that the complete system has properties not present in its isolated enzyme components. Whether these be due to factors of organization or to missing components must be decided by further work.

REFERENCES

Adler, E., v. Euler, H., Günther, G. & Plass, M. (1939).
Biochem. J. 83, 1028.

Buffa, P. & Peters, R. A. (1949). J. Physiol. 110, 488.
Buffa, P., Peters, R. A. & Wakelin, R. W. (1950). In course of publication.

 Johnson, W. A. (1939). Biochem. J. 83, 1046.
 Liébecq, C. & Peters, R. A. (1949). Biochim. Biophys. Acta, 8, 215.

Martius, C. (1949). Liebigs Ann. 561, 227. Ochoa, S. & Weiss-Tabori, E. (1948). J. biol. Chem. 174, 123.

Nucleic Acids

Content and Distribution

Nucleic acids in an average human cell

Coding sequences	~6 pg/cella
Number of genes	3% of genomic DNA
Active genes	$0.51.0 \times 10^{5}$
	1.5 x 104
Total RNA	
rRNAs	~10 50 pg/cellb
tRNAs, snRNAs, and low mol. wt. RNA	80 85% of total RNA
mRNAs	15 20% of total RNA
nuclear RNA	1 5% of total RNA
Ratio of DNA:RNA in nucleus	~14% of total RNA
Number of mRNA moleculesc	~ 2:1
Number of different mRNA species	$0.2 \cdot 1.0 \times 10^6$
Low abundance mRNA (5 15 copies/cell)	$1.0 \ 3.4 \times 10^4$
Intermediate abundance mRNA (200 400 copies/cell)	11,000 different messages
High abundance mRNA (12,000 copies/cell)	500 different messages
bundance of each message for:	<10 different messages
Low abundance mRNA (5 15 copies/cell)	<0.004% of total mRNA
Intermediate abundance mRNA (200 400 copies/cell)	<0.1% of total mRNA
High abundance mRNA (12,000 copies/cell)	3% of total mRNA

a 30 - 60 μg/ml blood for human leukocytes.

RNA content of cells in culture

Type of cell	Total RNA (mRNA (μg/107 cells)	-DNA (1905)
NIH/3T3 cells HeLa cells	75 200	mRNA (μg/107 cells) 1.5 4.0
CHO cells	100 300 200 400	2 6
	200 400	3 6

b $1-5 \mu g/ml$ blood for human leukocytes.

c Average size of mRNA molecule = 1930 bases.

UMRECHNUNGSTABELLEN

· I. Conversiontable

Molecular weight (daltons)	1µg	1nmole
100	10 nmoles or 6 x 10 ¹⁵ molecules	0.1 μg
1,000	1 nmole or 6 x 10 ¹⁴ molecules	1 µg
10,000	100 pmoles or 6 x 10 ¹³ molecules	10 µg
20,000	50 pmoles or 3 x 10 ¹³ molecules	20 µg
30,000	33 pmoles or 2 x 10 ¹³ molecules	30 µg
40,000	25 pmoles or 1.5 x 10 ¹³ molecules	40 µg
50,000	20 pmoles or 1.2 x 10 ¹³ molecules	50 µg
50,000	17 pmoles or 10 ¹³ molecules	60 µg
70,000	14 pmoles or 8.6 x 10 ¹² molecules	70 µg
30,000	12 pmoles or 7.5 x 10 ¹² molecules	80 µg
90,000	11 pmoles or 6.6 x 10 ¹² molecules	90 µg
00,000	10 pmoles or 6 x 10 ¹² molecules	100 µg
20,000	8.3 pmoles or 5 x 10 ¹² molecules	120 µg
40,000	7.1 pmoles or 4.3 x 10 ¹² molecules	140 µg
60,000	6.3 pmoles or 3.8 x 10 ¹² molecules	160 µg
80,000	5.6 pmoles or 3.3 x 10 ¹² molecules	180 µg
00,000	5 pmoles or 3 x 10 ¹² molecules	200 µg

II. Some useful nucleotide dimensions

1 cm of DNA \sim 3 x 10⁶ nucleotides

Organism	Base pairs/ haploid genome	Base pairs/ diploid genome	Length/cell	Mass
1	11			\prec├

Human	3 x 10 ⁹	6 x 10 ⁹	2 meters (diploid)	6 pg
Fly	1.65 x 10 ⁸	3.3 x 10 ⁸	100 cm (diploid)	
Yeast	1.35 x 10 ⁷	2.7×10^{7}	10 cm (dolploid)	0.3 pg
E. coli	4.7 × 10 ⁶	-		0.03 pg
SV40	5 x 10 ³			0.0045 pg
	_!		1.7 nm	0.000006 pg

III. Some useful cell dimensions

Organism	Dimensions	
S. cerevisiae		Volume
S. pombe	5 μm	66 µm ³
	2 x 7 μm	22 μm ³
Mammalian cell	10-20 μm	500-4,000 μm ³
E. coli	1 x 3 μm	2 μm ³
Mammalian mitochondrion	1 µm	
Mammalian nucleus		0.5 μm ³
Plant chloroplast	5-10 μm	66-500 μm ³
	1 x 4 μm	3 µm³
Bacteriophage lambda	50 nm (head only)	6.6 x 10 ⁻⁵ µm ³
Ribosome	30 nm diameter	
Globular monomeric protein		1.4 x 10 ⁻⁵ μm ³
The process	5 nm dlameter	$6.6 \times 10^{-8} \mu m^3$

III. Some useful concentrations

Detergent soluble protein = $1-2 \text{ mg}/10^7$ Total cell protein concentration mammalian cells or 100-200 mg/ ml for soluble

proteins only

Specific protein concentrations

Nucleus (200 μ m³):

Abundant transcription

factor

Rare transcription

1 nM (100,000 copies/ nucleus) 10 pM (1,000 copies/ nucleus)

factor

<u>Serum</u>

50-100 mg/ ml

IV. Some useful Conversiontables

Molar conversions for protein

100 pmol	ша
10,000 Da protein	1

400.00	
100,000 Da protein	
][10]

Protein/ DNA conversions

1 kb of DNA encodes 333 amino acids \sim /= 3.7 x 10 4 Da

Protein	DNA
10,000 Da	270 dp
30,000 Da	810 dp
100,000 Da	2,7 dp

Nucleic acid content of a typical human cell

DNA per cell	
Total RNA per cell	~ 6 pg
Proportion of total RNA in nucelus	∼ 10-30 pg
	~ 14%
DNA:RNA in nucleus	~2:1
Human genome size (haploid)	
Coding sequences/ genomic DNA	3.3 × 10 ⁹ bp
Number of genes	3%
	$0.5-1 \times 10^5$
Active genes	1.5 x 10 ⁴
nRNA molecules	$2 \times 10^5 - 1 \times 10^6$
Typical mRNA size	
	1900 nt

RNA distribution in a typical mammalian cell

RNA species	Relative amount
RNA (28S, 18S, 5S)	80-85%
RNAs, snRNAs, low MW species	15-20%
mRNAs	1-5%

RNA content in various cells and tissues

Source		Total RNA	mRNA (µg)
Cell cultures (10 ⁷ cells)		30-500	0.3-25
	NIH/3T3	120	1/3
	HeLa	150	3
	COS-7	350	5
Managada			
Mouse-developmental stages (per organism)	Unfertilized egg	0.43 ng	nd
	Oocyte	0.35 ng	nd

11			
	2-cell	0.24 ng	Ind
	8-16-cell	0.69 ng	nd
	32-cell	1.47 ng	~; ` ~~~
	13-day-old- embryo	450	13
Mouse tissue (100 mg)			
(100 mg)	Brain	120	5
	Heart	120	6
	Intestine	150	2
	Kidney	350	9
	Liver	400	14
	Lung	130	6
	Spleen	350	7
			<u> </u>

nd = not determined

Human blood*: cell, DNA, RNA, and protein content

	Leukocyes	Thrombocytes	Enach
Function	Immune response		
Cells per mi	4-7 x 10 ⁶	i Groonig	O ₂ & CO ₂ transpo
	30-60 µg/ ml	3-4 x 10 ⁸	5 x 10 ⁹
DNA content	blood (6 pg/cell)		
RNa content	1-5 µg/ ml blood		
Hemoglobin content			~150 mg/ ml blood
Plasma protein content			(30 pg/cell)

*From a healthy individual. The leukocyte concentration can vary from 2 x 106 per ml in cases of immunosuppression, to 40 x 10^6 during inflammation, to 500 x 10^6 during leukemia. The DNA and RNA content will vary accordingly.

zum Hauptmenü

Bitte melden Sie defekte Linksl Email: <u>Webmaster</u>

Mit Urteil vom 12. Mai 1998 hat das Landgericht Hamburg entschieden, dass man durch die Ausbringung eines Links die Inhalte der gelinkten Seite ggf. mit zu verantworten hat. Dies kann - so das LG - nur dadurch verhindert werden, dass man sich ausdrücklich von diesen Inhalten distanziert. Wir haben auf verschiedenen Seiten dieser Homepage Links zu anderen Seiten im Internet gelegt. Für all haben. Deshalb distanzieren wir uns hiermit ausdrücklich von allen Inhalten der gelinkten Seiten auf der Website Inklusive aller Unterseiten und machen uns ihre Inhalte nicht zu eigen." Diese Erklärung gilt für alle auf der Homepage ausgebrachten Links und für