Example 2: For the following circuity let vo= 100 v, and find the total power in the circuit using KVL, KCL.

Solution: We need all voltages and wrents

Apply KCL at node
$$A$$
: $i_A + 2i_A - i_g = 0$

We know $i_A = 4A$

So $4 + 2 \times 4 - i_g = 0$
 \vdots $i_g = 12A$

Redraw and add our own labels for loops and unknown volleges

We know all the currents; have two unknown vortages V12, V4.

KVL around loop 2:
$$-V_4 + 80 + 100 = 0$$

 $\therefore V_4 = 180 \vee$

$$kvL$$
 around $loop 1:$ $80 - V_{12} - 80 + V_{4} = 0$
 $\therefore V_{12} = V_{4} = 190 \text{ v}.$

Now find power (using passive reference convention)

element

12 A

$$P = Vi = V_{12} \times (2 = 2160 \text{ W})$$

1eft 80 v

 $P = -Vi = -80 \times 12 = -960 \text{ W}$

middle 80 v

 $P = Vi = 80 \times 4 = 320 \text{ W}$
 AA
 $P = -Vi = -V4 \times 4 = -720 \text{ W}$

dependent

 $P = -Vi = -100 \times 8 = -800 \text{ W}$
 $O \text{ W} \text{ (energy balance!)}$

RESISTINE CIRCUITS

KVL, KCL, and Ohm's Law give us all the tools we need to begin circuit analysis.

Resistances in series and parallel

Series resistances:

By KVL, we have
$$-V + V_1 + V_2 + V_3 = 0$$

 $-V + iR_1 + iR_2 + iR_3 = 0$
50 $V = i(R_1 + R_2 + R_3)$

Can replace with a single equivalent resistance Req

Resistances in series add

Parallel resistances:

By KCL at node A,
$$i - i_1 - i_2 - i_3 = 0$$

and this Law, $i - \frac{V}{R_1} - \frac{V}{R_2} - \frac{V}{R_3} = 0$
50 $i = V(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}) = V(G_1 + G_2 + G_3)$
Conductances in parallel add

Req =
$$\left(\frac{1}{R_1} + \frac{1}{R_2}\right)^{-1} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$$

= $\frac{R_1 R_2}{R_1 + R_2}$

Example: Find a single equivalent resistance for

Series

Final Reg = 20+20 = 4052