Lecture 03: Sufficient, Ancillary, and Complete Statistics

Mathematical Statistics II, MATH 60062/70062

Thursday January 27, 2022

Reference: Casella & Berger, 6.2.3-6.2.4

Recap

Suppose X_1, \ldots, X_n is an iid sample from $f_X(x \mid \theta)$, where $\theta \in \Theta$.

- A statistic, $T = T(X) = T(X_1, ..., X_n)$, is a function of the sample $X = (X_1, ..., X_n)$. T cannot depend on θ .
- A statistic $T=T(\boldsymbol{X})$ is a **sufficient statistic** for θ if the conditional distribution of \boldsymbol{X} given T does not depend on θ ; i.e., the ratio

$$f_{\boldsymbol{X}\mid T}(\boldsymbol{x}\mid t) = \frac{f_{\boldsymbol{X}}(\boldsymbol{x}\mid \theta)}{f_{T}(t\mid \theta)}$$

is free of θ , for all $x \in \mathcal{X}$.

• A statistic $T = T(\boldsymbol{X})$ is a **minimal sufficient statistic** for θ if, for any other sufficient statistic $T^*(\boldsymbol{X})$, $T(\boldsymbol{x})$ is a function of $T^*(\boldsymbol{x})$.

Ancillary statistics

A statistic S(X) whose distribution does not depend on the parameter θ is called an **ancillary statistic**.

A sufficient statistic T(X) contain *all* the information about θ and the distribution of an ancillary statistic S(X) is free of θ .

- Are T(X) and S(X) independent?
- Can S(X) be useful for inferences about θ ?

Normal ancillary statistic

Suppose X_1, \ldots, X_n are iid $\mathcal{N}(0, \sigma^2)$, where $\sigma^2 > 0$.

- The sample mean $\bar{X} \sim \mathcal{N}(0, \sigma^2/n)$ is *not* ancillary, as its distribution depends on σ^2 .
- The statistic

$$S(\boldsymbol{X}) = \frac{\bar{X}}{S/\sqrt{n}} \sim t_{n-1}$$

is ancillary, because its distribution, t_{n-1} , does not depend on σ^2 .

Location-invariant statistic

A statistic $S(\boldsymbol{X})$ is called a **location-invariant statistic** if for any $c \in \mathbb{R}$,

$$S(x_1+c,\ldots,x_n+c)=S(x_1,\ldots,x_n)$$

for all $x \in \mathcal{X}$.

Each of the following is a location-invariant statistic:

- $S(X) = X_{(n)} X_{(1)}$
- $S(X) = \sum_{i=1}^{n} |X_i \bar{X}|/n$
- $S(X) = S^2$

Ancillary statistic for location family

Suppose X_1,\ldots,X_n are iid from a **location family** with standard PDF f_Z and location parameter $-\infty<\mu<\infty$,

$$f_X(x \mid \mu) = f_Z(x - \mu).$$

If S(X) is **location invariant**, then it is **ancillary**.

Ancillary statistic for location family

Suppose X_1,\ldots,X_n are iid from a **location family** with standard PDF f_Z and location parameter $-\infty < \mu < \infty$,

$$f_X(x \mid \mu) = f_Z(x - \mu).$$

If S(X) is location invariant, then it is ancillary.

Let $W_i = X_i - \mu$, for i = 1, ..., n. The distribution of $\boldsymbol{W} = (W_1, ..., W_n)$ is given by

$$f_{\mathbf{W}}(\mathbf{w}) = f_{\mathbf{X}}(w_1 + \mu, \dots, w_n + \mu)$$

$$= \prod_{i=1}^n f_X(w_i + \mu)$$

$$= \prod_{i=1}^n f_Z(w_i + \mu - \mu) = \prod_{i=1}^n f_Z(w_i),$$

which does depends on μ .

Because S(X) is location invariant,

$$S(\mathbf{X}) = S(X_1, \dots, X_n)$$

$$= S(W_1 + \mu, \dots, W_n + \mu)$$

$$= S(W_1, \dots, W_n)$$

$$= S(\mathbf{W}).$$

The distribution of W does not depend on μ , so S(X) = S(W) does not depend on μ either. Therefore, S(X) is ancillary.

Scale-invariant and ancillary statistic

A statistic $S(\boldsymbol{X})$ is called a **scale-invariant statistic** if for any c>0,

$$S(cx_1,\ldots,cx_n)=S(x_1,\ldots,x_n)$$

for all $x \in \mathcal{X}$.

Each of the following is a scale-invariant statistic:

- $S(X) = X_{(n)}/X_{(1)}$
- $S(\boldsymbol{X}) = S/\bar{X}$

Suppose X_1, \ldots, X_n are iid from a **scale family** with standard PDF f_Z and scale parameter $\sigma > 0$,

$$f_X(x \mid \sigma) = \frac{1}{\sigma} f_Z\left(\frac{x}{\sigma}\right).$$

If S(X) is scale invariant, then it is ancillary.

Independence between sufficient and ancillary statistics?

A sufficient statistic and an ancillary statistic are *not* necessarily independent.

Suppose X_1, \ldots, X_n are iid $\mathrm{Unif}(\theta, \theta + 1)$, where $-\infty < \theta < \infty$.

Independence between sufficient and ancillary statistics?

A sufficient statistic and an ancillary statistic are *not* necessarily independent.

Suppose X_1, \ldots, X_n are iid $\operatorname{Unif}(\theta, \theta + 1)$, where $-\infty < \theta < \infty$.

• From Lecture 2, we know $(X_{(n)}-X_{(1)},(X_{(1)}+X_{(n)})/2)$ is a minimal sufficient statistic.

Independence between sufficient and ancillary statistics?

A sufficient statistic and an ancillary statistic are *not* necessarily independent.

Suppose X_1, \ldots, X_n are iid $\mathrm{Unif}(\theta, \theta + 1)$, where $-\infty < \theta < \infty$.

- From Lecture 2, we know $(X_{(n)}-X_{(1)},(X_{(1)}+X_{(n)})/2)$ is a minimal sufficient statistic.
- Unif $(\theta, \theta + 1)$ is a **location family**, and $S(\boldsymbol{X}) = X_{(n)} X_{(1)}$ is location-invariant. Therefore, $S(\boldsymbol{X})$ is an **ancillary** statistic.
- In this case, the ancillary statistic is an important component of the minimal sufficient statistic.

Can ancillary statistics be useful for inferences?

Suppose X_1, \ldots, X_n are iid $\mathcal{N}(\mu, \sigma^2)$, where both μ and σ^2 are unknown. We are interested in inference on μ .

• The sample variance S^2 is ancillary for μ , because

$$(n-1)S^2/\sigma^2 \sim \chi_{n-1}^2$$

does not depend on μ .

- We know \bar{X} and S^2 are independent and $\bar{X} \sim \mathcal{N}(\mu, \sigma^2/n)$.
- The statistic

$$T(\boldsymbol{X}) = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

is used for inference on μ , where the ancillary statistic S^2 plays an essential role.

Complete statistic

Let $\{f_T(t \mid \theta); \theta \in \Theta\}$ be a family of PDFs (or PMFs) for a statistic $T = T(\boldsymbol{X})$. The family is called **complete** if the following condition holds:

$$E_{\theta}(g(T)) = 0, \ \forall \theta \in \Theta \implies P_{\theta}(g(T) = 0) = 1, \ \forall \theta \in \Theta.$$

In other words, g(T)=0 almost surely for all $\theta\in\Theta$. Equivalently, $T(\boldsymbol{X})$ is called a **complete statistic**.

This means, the only function of T that is an unbiased estimator of zero is the function that is zero itself (with probability 1).

Binomial complete sufficient statistic

Suppose X_1, \ldots, X_n are iid $\mathrm{Bern}(\theta)$ with parameter $0 < \theta < 1$. Then $T(\boldsymbol{X}) = X_1 + \cdots + X_n$ is a complete statistic.

Binomial complete sufficient statistic

Suppose X_1, \ldots, X_n are iid $\mathrm{Bern}(\theta)$ with parameter $0 < \theta < 1$. Then $T(\boldsymbol{X}) = X_1 + \cdots + X_n$ is a complete statistic.

We know $T \sim \text{Bin}(n, \theta)$. Suppose $E_{\theta}(g(T)) = 0, \ \forall \theta \in (0, 1)$. It suffices to show that $P_{\theta}(g(T) = 0) = 1$ for all $\theta \in (0, 1)$.

Binomial complete sufficient statistic

Suppose X_1, \ldots, X_n are iid $\mathrm{Bern}(\theta)$ with parameter $0 < \theta < 1$. Then $T(\boldsymbol{X}) = X_1 + \cdots + X_n$ is a complete statistic.

We know $T \sim \text{Bin}(n, \theta)$. Suppose $E_{\theta}(g(T)) = 0, \ \forall \theta \in (0, 1)$. It suffices to show that $P_{\theta}(g(T) = 0) = 1$ for all $\theta \in (0, 1)$. Write

$$E_{\theta}(g(T)) = \sum_{t=0}^{n} g(t) \binom{n}{t} \theta^{t} (1-\theta)^{n-t} = (1-\theta)^{n} \sum_{t=0}^{n} g(t) \binom{n}{t} r^{t},$$

where $r = \theta/(1-\theta)$. For $E_{\theta}(g(T)) = 0$, it must be that

$$\sum_{t=0}^{n} g(t) \binom{n}{t} r^{t} = 0.$$

Since none of the $\binom{n}{t}$ terms is 0, this implies that g(t)=0, for $t=0,1,\ldots,n$. Therefore, $P_{\theta}(g(T)=0)=1$ for all $\theta\in(0,1)$ and $T(\boldsymbol{X})$ is a complete statistic.

Ancillary, complete and sufficient statistics

- Basu's Theorem. If T = T(X) is a complete and sufficient statistic, then T(X) is independent of every ancillary statistic S.
- If a minimal sufficient statistic exists, then any **complete** statistic is also a **minimal sufficient statistic**.
- The converse is not true a minimal sufficient statistic is not necessarily complete.

E.g., for an iid sample X_1,\ldots,X_n from $\mathrm{Unif}(\theta,\theta+1)$, $T=T(X)=(X_{(1)},X_{(n)})$ is a minimal sufficient statistic. However, T cannot be complete because T and the sample range $X_{(n)}-X_{(1)}$ are not independent, where the latter is an ancillary statistic.

Complete statistics in the Exponential family

Suppose X_1, \ldots, X_n are iid from the **Exponential family**

$$f_X(x \mid \boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp \left(\sum_{j=1}^k w_j(\boldsymbol{\theta})t_j(x) \right),$$

where $\boldsymbol{\theta} = (\theta_1, \dots, \theta_d)$, $d \leq k$. Then

$$T = T(X) = \left(\sum_{i=1}^{n} t_1(X_i), \sum_{i=1}^{n} t_2(X_i), \dots, \sum_{i=1}^{n} t_k(X_i)\right)$$

is sufficient for θ . If the parameter space Θ contains an open set in \mathbb{R}^k , T=T(X) is **complete**. For the most part, this means:

- T(X) is complete if d = k (full Exponential family)
- T(X) is not complete if d < k (curved Exponential family)

Independence between Normal sample mean and variance

Suppose X_1,\ldots,X_n are iid $\mathcal{N}(\mu,\sigma^2)$, where $-\infty<\mu<\infty$ and $\sigma^2>0$. Both parameters are unknown.

An easy way to show the independence between \bar{X} and S^2 with Basu's Theorem:

Consider the $\mathcal{N}(\mu,\sigma_0^2)$ family, where σ_0^2 is fixed and known. The PDF of $X\sim\mathcal{N}(\mu,\sigma_0^2)$ is

$$f_X(x \mid \mu) = \frac{1}{\sqrt{2\pi\sigma_0^2}} e^{-(x-\mu)^2/2\sigma_0^2} I(x \in \mathbb{R})$$

$$= \frac{I(x \in \mathbb{R}) e^{-x^2/2\sigma_0^2}}{\sqrt{2\pi\sigma_0^2}} e^{-\mu^2/2\sigma_0^2} e^{(\mu/\sigma_0^2)x}$$

$$= h(x)c(\mu) \exp\{w_1(\mu)t_1(x)\}.$$

The statistic $T=T(\boldsymbol{X})=\sum_{i=1}^n X_i$ is a sufficient statistic. Because d=k=1, T is complete.

The $\mathcal{N}(\mu, \sigma_0^2)$ family is a location family:

$$f_X(x \mid \mu) = \frac{1}{\sqrt{2\pi\sigma_0^2}} e^{-(x-\mu)^2/2\sigma_0^2} I(x \in \mathbb{R}) = f_Z(x-\mu),$$

where $f_Z(z)$ is the $\mathcal{N}(0,\sigma_0^2)$ PDF. Let $W_i=X_i+c$ for $i=1,\ldots,n$. Clearly, $\bar{W}=\bar{X}+c$ and

$$S(\mathbf{W}) = \frac{1}{n-1} \sum_{i=1}^{n} (W_i - \bar{W})^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 = S(\mathbf{X}).$$

So, $S(\mathbf{X}) = S^2$ is location invariant and hence is ancillary.

Therefore, by Basu's Theorem, \bar{X} and S^2 are independent in the $\mathcal{N}(\mu,\sigma_0^2)$ family. Since we fixed $\sigma^2=\sigma_0^2$ arbitrarily, this same argument holds for all σ_0^2 fixed.

So, this independence result holds for all choices of σ^2 and hence for the full $\mathcal{N}(\mu,\sigma^2)$ family.