1 Grundbegriffe

- Ein alphabet ist eine endliche, nichtleere Menge Σ von Buchstaben (oder Symbolen).
- Ein Wort über Σ ist eine endliche Folge von Elementen aus Σ .
- \bullet Die länge eines Wortes w
 (bezeichnet mit |w|)ist ide Anzahl der Symbole in w.
- \bullet Das leere Wort ist das eindeutig bestimmte Wort der Länge 0 und wird mit dem grieschichen Buchstaben λ bezeichnet.
- Die Menge aller Wörter über Σ bezeichnen wir mit Σ^* .
- Eine formale Sprache über Σ ist eine jede Teilmenge von Σ^*
- \bullet Die leere Sprache ist die Sprache die keine Wörter enthält, und wird mit \emptyset bezeichnet.
- die Kardinalität einer Sprache L ist die Anzahl der Wörter von L und wirt mit ||L|| bezeichnet.

2 Operationen

- Vereinigung $\{1,2\} \cup \{2,3\} = \{1,2,3\}.$
- Durschnitt $\{1,2\} \cap \{2,3\} = \{2\}.$
- Differenz $A B = \{x \in A \ und \ x \notin B\}.$
- Komplement $\overline{A} = \{x \in \Sigma^* | x \notin B\}.$
- Konkatenation von Wörtern
 - Ist $u = v = \lambda$, so ist $uv = vu = \lambda$.
 - Ist $v = \Lambda$, so ist uv = u.
 - Ist $u = \lambda$ so ist uv = v.
 - Ist $u = u_1 u_2 \dots u_n undv = v_1 v_2 \dots v_m$ mit $u_i, v_i \in \Sigma$, so ist

$$uv = u_1u_2 \dots u_nv_1v_2 \dots \varepsilon_m.$$

- Konkatenation von Sprachen: $AB = \{ab | a \in A \text{ und } b \in B\}.$
- Iteration einer Sprache: $A^0 = \{\lambda\}, \ A^n = AA^{n-1}, \ A^* = \bigcup_{n>0} A^n.$
- Spiegelbildoperation von Wort $sp(u) = u_n \dot{u}_2 u_1$.
- Spiegelbildoperation von Sprache $sp(A) = \{sp(w) | w \in A\}.$
- Teilwortrelation auf Σ^* : $u \supseteq v \leftrightarrow (\exists v_1, v_2 \in \Sigma^*)[v_1 u v_2 = v]$.
- Anfangswort relation auf Σ^* : $u \supseteq_a v \leftrightarrow (\exists w \in \Sigma^*)[uw = v]$.

3 Symbole

- $\bullet~\Sigma$ ein Alphabet von Terminalsymbolen
- N eine Endliche Menge von Nichtterminalen, $\Sigma \cap N = \emptyset$
- S Startsymbol, $S \in N$
- P Produktionsregeln, $P \subseteq (N \cup \Sigma)^+ \times (N \cup \Sigma)^*$

4 Grammatik

 $G = (\Sigma, N, S, P)$

- Typ-0: Ohne Einschränkungen.
- Typ-1: $\forall p \to q \in P : |p| \le |q|$
- Typ-2: $\forall p \rightarrow q \in P : p \in N$
- Typ-3: $\forall p \rightarrow q \in P: |p| \in N \ und \ q \in \Sigma \cup \Sigma N$

 $REG \subseteq CF \subseteq CS \subseteq \mathcal{L}_0$

4.1 Sonderregelung für λ

Typ-i Grammatiken mit $i \in \{1,2,3\}$ sind nichtferkürzend, daher $\lambda \notin L(G)$. Daher folgende Sonderregelung:

- 1. Die Regel $S\to\lambda$ ist als einzige verkürzende Regel für Grammatiken vom Typ 1, 2, 3 zugelassen.
- 2. Tritt die Regel $S \to \lambda$ auf, so darf Sauf keiner rechten Seite einer Regel vorkommen.

Dies kann für alle Fälle mit folgender Umwandlung erreicht werden:

- 1. In allen Regeln der Form $S \to u$ aus P mit $u \in (N \cup \Sigma)^*$ wird jedes Vorkommen von S in u durch ein neues Nichtterminal S' ersetzt.
- 2. Zusätzlich enthält P' alle Regeln aus P, mit S ersetzt durch S'.
- 3. Die Regel $S \to \lambda$ wird hinzugefügt.

5 Reguläre Sprachen

5.1 DFA

5.1.1 Definition

 $M = (\Sigma, Z, \delta, z_o, F)$

- Σ : Alphabet
- Z: endliche Menge von Zustäanden mit $\Sigma \cap Z = \emptyset$
- $\delta: Z \times \Sigma \to Z$ Überführungsfunktion
- $z_0 \in Z$ Startzustand
- $F \subseteq Z$ Endzustände

5.1.2 Beispiel

δ	z_o	z_1	z_2	z_3
0	z_1	z_3	z_2	z_3
1	z_3	z_2	z_2	z_3

5.1.3 $DFA \rightarrow Grammar$

- N = Z,
- $S=z_0$,
- P:
 - Gilt $\delta(z, a) = z'$, so ist $z \to az'$ in P.
 - Ist $z' \in F$, so ist zusätzlich $z \to a$ in P.
 - ist $\lambda \in A$ (d.h., $z_o \in F$), so ist auch $z_0 \to \lambda$ in P, und die bisher konstruierte Grammatik wird gemäß der Sonderregel für λ modifiziert.

5.2 NFA

 $M = (\Sigma, Z, \delta, S, F)$

- Σ : Alphabet
- Z: endliche Menge von Zuständen mit $\Sigma \cap Z = \emptyset$
- $\delta: Z \times \Sigma \to \mathcal{P}(Z)$: Überführungsfunktionen zur Potenzmenge von Z
- $S \subseteq Z$: Menge der Startzustände
- $F \subseteq Z$ Menge der Endzustände

5.2.1 $NFA \rightarrow DFA$ (Rabin und Scott)

NFA $M = (\Sigma, Z, \delta, S, E)$ und DFA $M' = (\Sigma, \mathcal{P}(Z), \delta', z'_0, F)$

- zustandsmenge von M': $\mathcal{P}(Z)$,
- $\delta'(Z', a) = \bigcup_{z'} \delta(z, a) = \hat{\delta}(Z', a)$ für, all $Z' \subseteq Z$ und $a \in \Sigma$,
- $z'_o = S$,
- $F = \{Z' \subseteq Z | Z' \cap E \not \emptyset$