장단기 메모리(Long Short-Term Memory, LSTM)

바닐라 RNN의 한계

바닐라 RNN : 가장 단순한 형태의 RNN을 의미 (RNN : 이전의 계산 결과 (h_{t-1}) 와 현재 입력 (x_t) 이 출력 결과 (h_t) 에 영향을 주는 sequence 모델)

바닐라 RNN의 단점 : 비교적 짧은 시퀀스에 대해서만 효과를 보임. ← 바닐라 RNN의 시점(time step)이 길어질수록 앞의 정보가 뒤로 충분히 전달되지 못함.이를 **장기 의존성 문제(the problem of Long-Term Dependencies)**라고 함

싱글 레이어를 가지고 있는 반복되는 표준 RNN 모듈

LSTM(Long Short-Term Memory)

LSTM: 바닐라 RNN의 장기 의존성 문제를 보완하기 위한 RNN 모델

LSTM에 들어있는 4개의 상호작용하는 레이어가 있는 반복되는 모듈

LSTM의 특징 : **은닉층의 메모리 셀에 input gate, forget gate, output gate**를 추가하여 **불필요한 기억을 지우고, 기억해야할 것들을 정함**

즉, LSTM은 hidden state를 계산하는 식이 더 복잡해졌으며, 셀 상태(cell state)라는 개념이 추가됨

• cell state

cell state는 아래 그림에서 왼쪽에서 오른쪽으로 가는 굵은 선. C_{t-1} 가 C_t 를 계산하기 위한 입력으로 사용됨.

LSTM의 cell state

• 3개의 gate 3개의 gate에는 공통적으로 시그모이드 함수가 존재 \rightarrow 0~1의 값을 가지는데 이 값들을 이용해 cell state와 hidden state를 반환

LSTM의 단계

1. forget gate layer : 기억을 삭제하기 위한 게이트

LSTM의 forget gate layer

 f_t : 현재 시점의 입력인 x_t 와 이전 시점의 hidden state인 h_{t-1} 가 MLP를 거쳐 시그모이드 함수를 지남 \to 0~1의 값을 가짐 \to 0에 가까울수록 정보를 많이 삭제하고 1에 가까울수록 정보를 온전히 기억.

2. input gate layer: 현재 정보를 기억하기 위한 게이트

LSTM의 input gate layer

 i_t : 현재 시점의 입력인 x_t 와 이전 시점의 hidden state인 h_{t-1} 가 MLP를 거쳐 시그모이드 함수를 지남 \to 0~1의 값을 가짐 \to 0에 가까울수록 정보를 많이 삭제하고 1에 가까울수록 정보를 온전히 기억.

 $ilde{C}$: 새로운 cell state의 후보 값 vector. (새로운 cell state로 업데이트 될 vector)

3. cell state (장기 상태): cell state update

LSTM의 cell state 업데이트

우선 이전 state에 f_t 를 곱해서 가장 첫 단계에서 잊어버리기로 정했던 것들을 진짜로 잊어버린다. 그리고나서 $i_t*\tilde{C}_t$ 를 더한다. 이 값은 input gate layer 단계에서 업데이트하기로 한 값을 얼마나 업데이트할 지 정한 만큼 scale한 것.

4. output gate layer와 hidden state(단기 상태): 무엇을 output으로 내보낼지 정함

LSTM의 output gate layer

 o_t : x_t 와 h_{t-1} 가 MLP와 시그모이드 함수를 거쳐 **cell state의 어느 부분을 output으로 내보낼지** 결정

 h_t : C_t 가 tanh를 거쳐 -1~1의 값을 받은 뒤, 이전에 계산된 o_t 와 곱해준다. \to **output으로 보내고 자 하는 부분만 내보낼 수 있게됨**

참조

- https://wikidocs.net/22888
- https://dgkim5360.tistory.com/entry/understanding-long-short-term-memory-lstm-kr