Population structure and why it matters

Day 3, Open Institute workshop, Kilifi, August 7th 2024 Assoc. Prof. Rasmus Heller, UCPH

Is there a single hippo population?

Why should we care about population structure?

- Tells us how many minimal evolutionary "units" there are.
- Reveals the evolutionary history of the species.
- Reveals where there are natural (or unnatural) barriers to gene flow.
- Shows where we could/should maintain or restore migration.
- Influences how selection is affecting the species.
- Shows how far a species is on the road to evolving into new species.

Translocations- where from, where to?

Translocations- where from, where to?

Masai giraffe – Maasai Mara

Reticulated giraffe - Samburu

Translocations- where from, where to?

Translocationswhere from, where to?

Principal Component Analysis (PCA)

A phylogenetic tree

How many populations are there?

Population structure is often hierarchical

What happens when populations diverge?

Diverged populations are what ultimately becomes different species

Gene flow and barriers

Genetic differentiation

Wright's F_{ST} quantifies the amount of genetic differentiation between two or more populations.

$$0 \le F_{ST} \le 1$$

where:

 F_{ST} = 0: **no** differentiation

 F_{ST} = 1: **maximum** differentiation

$F_{\rm ST}$ can be defined in many ways

Can be defined by Hardy Weinberg expectations:

$$F_{ST} = (H_{E(total)} - H_{O(total)}) / H_{E(total)}$$

Can be defined by within (W) and between (B) population differences:

$$F_{ST} = 1 - \frac{H_W}{H_B}$$

Wright's island model

Larger populations, lower F_{ST}

Gene flow and drift

$$F_{ST} = \frac{1}{1 + 4Nm}$$

Number of migrants (*N*×*m*) determines differentiation between populations.

The One-Migrant-per-Generation Rule in Conservation and Management

L. SCOTT MILLS* AND FRED W. ALLENDORF[†]

^{*}Wildlife Biology Program, School of Forestry, University of Montana, Missoula, MT 59812, U.S.A., email smills@selway.umt.edu

[†]Division of Biological Sciences, University of Montana, Missoula, MT 59812, U.S.A.

1. Clustered

Tre skarpt adskilte grupper

2. Scattered

Nogen grad af geografisk gruppering, men glidende overgange

3. Continuous

F_{ST} across Africa

$$F_{ST} = 0.17$$

 $F_{ST} = 0.71$

 $F_{ST} = 0.03!!$