Soluções OMpD 2022 N2 Fase 1

Samuel de Araújo Brandão

5 de Setembro de 2025

Uma coleção de soluções para a **OMpD 2022 Nível 2 Fase 1**, inspirada no estilo de Evan Chen. Pode-se encontrar todos os problemas **aqui** e as respostas oficiais **aqui**.

Todas as soluções foram inteiramente escritas por mim, enquanto me preparava para a International Mathematical Olympiad (IMO).

Caso encontre algum erro ou tiver sugestões ou comentários, sinta-se a vontade para entrar em contato!

Conteúdos

1	Prob	olemas																		
2	Solu	ıções																		
	2.1	Problema 1	1										 		 					
	2.2	Problema 2	2										 		 					
	2.3	Problema 3	3										 		 					
	2.4	Problema 4	1										 		 					
	2.5	Problema 5	5										 		 					
	2.6	Problema 6	3										 		 					
	2.7	Problema 7	7										 		 					
	2.8	Problema 8	3										 		 					
	2.9	Problema 9	9										 		 					
	2.10	Problema 1	10										 		 					
	2.11	Problema 1	11										 		 					
	2.12	Problema 1	12										 		 					
	2.13	Problema 1	13										 		 					
	2.14	Problema 1	14										 		 					
	2.15	Problema 1	15										 		 					
	2.16	Problema 1	16										 		 					
	2.17	Problema 1	17										 		 					
	2.18	Problema 1	18							 			 		 					
	2.19	Problema 1	19							 			 		 					
	2.20	Problema 2	20	 •		•			•		•	•	 			•		•		•
3	Refe	erências																		

1 Problemas

- **1.** Qual o valor de $(-1)^{1^1} + (-1)^{2^2} + (-1)^{3^3} + \dots + (-1)^{2022^{2022}}$? (A) 2022 (B) 1 (C) -1 (D) -2022 (E) 0
- **2.** Ana pensou em um número de dois dígitos N, onde o último dígito de N é 7. Ela somou os dígitos de 4N e obteve soma 13. Qual o primeiro dígito de N?
 - (A) 3 (B) 6 (C) 7 (D) 8 (E) 9
- **3.** Temos 33 chocolates e colocamos cada um deles em uma dentre 7 caixas (algumas caixas podem ficar vazias). É possível afirmar que:
 - (A) Existe uma caixa com pelo menos 6 chocolates
 - (B) Existe uma caixa com no máximo 3 chocolates
 - (C) Existe uma caixa com um número par de chocolates
 - (D) Existe uma caixa com um número ímpar de chocolates
 - (E) Existem duas caixas com o mesmo número de chocolates
- 4. Sabendo que ABCD é um retângulo e que $E,\ F$ são os pontos médios de \overline{AB} e \overline{CD} , respectivamente, qual a porcentagem da área do retângulo corresponde à área hachurada?

- (A) 5% (B) 10% (C) 15% (D) 20% (E) 25%
- **5.** Na figura abaixo, os polígonos ABCD e ACEF são quadrados. Se AB=1, quanto é a medida do segmento BE?

(A) $\sqrt{2}$ (B) $\sqrt{3}$ (C) $\sqrt{5}$ (D) $2\sqrt{2}$ (E) $2\sqrt{3}$

- **6.** Qual o resto da divisão de 113333 + 331111 por 7?
 - (A) 0 (B) 1 (C) 3 (D) 5 (E) 6
- 7. Uma loja de computadores teve a seguinte ideia pensando na "Black Friday": no mês de outubro, aumentou o valor dos computadores em (5p)% em relação a setembro, e no mês de novembro, reduziu o valor dos mesmos em (4p)% em relação a outubro. Sabe-se que o preço do computador é o mesmo em setembro e novembro (que novidade...). Qual é o valor de p?
 - (a) 5 (B) 8 (C) 10 (D) 12 (E) 15
- 8. Dizemos que um inteiro positivo é avizinhado se a diferença entre quaisquer dois de seus dígitos consecutivos é sempre igual a 1. Por exemplo, 123456, 987654 e 45656765 são avizinhados. Quantos são os inteiros entre 500.000 e 600.000 que são avizinhados?
 - (A) 8 (B) 10 (C) 31 (D) 32 (E) 64
- **9.** De quantas maneiras podemos colocar 5 garotas em fila, sendo 3 delas Ana, Beatriz e Carla, de modo que Ana fique entre Beatriz e Carla?
 - (A) 6 (B) 20 (C) 30 (D) 40 (E) 60
- 10. Uma cidade euclidiana possui 2 pontos turísticos A e B, ligados por uma linha reta de 420 metros de comprimento. Ana e Beatriz partem, do ponto A, em linha reta, em direção ao ponto B, com velocidades constantes de 5 metros por segundo e 3 metros por segundo, respectivamente. Enquanto isso, Carla parte do ponto B, em linha reta, em direção ao ponto A, com velocidade constante de 3 metros por segundo. Sabendo que as 3 garotas partem simultaneamente, quanto tempo após a partida Carla estará novamente a uma mesma distância de Ana e Beatriz?
 - (A) 30 segundos (B) 40 segundos (C) 50 segundos (D) 60 segundos (E) 70 segundos
- 11. No reticulado a seguir, a distância entre quaisquer dois pontos adjacentes na horizontal ou na vertical é igual a 1 cm. Qual é a área, em cm², da região hachurada?

- (A) 60 (B) 61 (C) 62 (D) 63 (E) 64
- 12. Sabe-se que o número $\underbrace{111\dots11}_{k\ 1\text{'s}}$ é múltiplo de 17, onde k é um inteiro positivo. Qual é o menor valor possível de k?
 - (A) 4 (B) 11 (C) 16 (D) 18 (E) 34

13. De quantos modos podemos pintar as 5 regiões da figura abaixo, usando em cada região uma dentre as cores preto, amarelo, rosa, azul e vermelho, de modo que regiões vizinhas tenham cores diferentes?

Observação: não é obrigatório que todas as 5 cores sejam usadas na pintura.

- (A) 120 (B) 240 (C) 420 (D) 540 (E) 1280
- 14. Numa sala de aula, a quantidade de meninos é o dobro da quantidade de meninas. Certa vez, foi aplicada uma prova de matemática, e nessa prova a média dos meninos foi 7,4 enquanto a média das meninas foi 8,6. Qual foi a média das notas dos alunos da sala?
 - (A) 7,6 (B) 7,8 (C) 8 (D) 8,2 (E) 8,4
- 15. No triângulo ABC, temos AB = 2AC. Sejam D, E pontos em \overline{AB} , \overline{BC} , respectivamente, tais que $\angle BAE = \angle ACD$. Seja F a interseção dos segmentos \overline{AE} e \overline{CD} , e suponha que o triângulo CFE é equilátero. Qual é a medida do ângulo $\angle ACB$?

(A)
$$60^{\circ}$$
 (B) 75° (C) 90° (D) 105° (E) 120°

16. Para cada inteiro positivo n, sejam:

$$\begin{split} T_n &= 1 + 2 + \dots + n \\ P_n &= \left(\frac{T_2}{T_2 - 1}\right) \left(\frac{T_3}{T_3 - 1}\right) \dots \left(\frac{T_n}{T_n - 1}\right) \\ \text{Qual \'e a alternativa mais pr\'oxima do valor num\'erico de } P_{2022}? \end{split}$$

- (A) 2,90 (B) 2,93 (C) 2,96 (D) 2,99 (E) 3,02
- 17. Dizemos que um número inteiro é um "Matemático por Diversão" se ele pode ser escrito como a diferença de 2 quadrados perfeitos não nulos. Por exemplo, 3 é Matemático por Diversão, pois $3 = 2^2 - 1^2$. Quantos são os inteiros positivos, que não excedem 2022, que são Matemáticos por Diversão?
 - (A) 506 (B) 507 (C) 1514 (D) 1516 (E) 2020
- 18. Seja M = 3318084147. Qual dos números abaixo é um quadrado perfeito?
 - (A) M (B) 3M (C) 5M (D) 7M (E) 11M
- 19. Sejam x, y números reais positivos tais que $x^2 + y^2 = 7$ e $x^3 + y^3 = 18$. Quanto vale $x^4 + y^4$?
 - (A) 25 (B) 29 (C) 31 (D) 47 (E) 49

20. Duas circunferências, de raios 3 e 4, se cortam em dois pontos, sendo Q um desses pontos. Traçam-se as tangentes externas comuns às duas circunferências. As duas tangentes se cortam em P e uma dessas tangentes tangencia as circunferências nos pontos A e B, conforme a figura abaixo: Se AB = 6, quanto vale PQ?

(A) 12 (B) $12\sqrt{3}$ (C) 21 (D) $21\sqrt{3}$ (E) 15

2 Soluções

2.1 Problema 1

Enunciado

Qual o valor de
$$(-1)^{1^1} + (-1)^{2^2} + (-1)^{3^3} + \cdots + (-1)^{2022^{2022}}$$
? (A) 2022 (B) 1 (C) -1 (D) -2022 (E) 0

2.2 Problema 2

Enunciado

Ana pensou em um número de dois dígitos N, onde o último dígito de N é 7. Ela somou os dígitos de 4N e obteve soma 13. Qual o primeiro dígito de N? (A) 3 (B) 6 (C) 7 (D) 8 (E) 9

2.3 Problema 3

Enunciado

Temos 33 chocolates e colocamos cada um deles em uma dentre 7 caixas (algumas caixas podem ficar vazias). É possível afirmar que:

- (A) Existe uma caixa com pelo menos 6 chocolates
- (B) Existe uma caixa com no máximo 3 chocolates
- (C) Existe uma caixa com um número par de chocolates
- (D) Existe uma caixa com um número ímpar de chocolates
- (E) Existem duas caixas com o mesmo número de chocolates

2.4 Problema 4

Enunciado

Sabendo que ABCD é um retângulo e que $E,\ F$ são os pontos médios de \overline{AB} e \overline{CD} , respectivamente, qual a porcentagem da área do retângulo corresponde à área hachurada?

(A) 5% (B) 10% (C) 15% (D) 20% (E) 25%

2.5 Problema 5

Enunciado

Na figura abaixo, os polígonos ABCD e ACEF são quadrados. Se AB=1, quanto é a medida do segmento BE?

(A) $\sqrt{2}$ (B) $\sqrt{3}$ (C) $\sqrt{5}$ (D) $2\sqrt{2}$ (E) $2\sqrt{3}$

2.6 Problema 6

Enunciado

Qual o resto da divisão de 113333 + 331111 por 7? (A) 0 (B) 1 (C) 3 (D) 5 (E) 6

2.7 Problema 7

Enunciado

Uma loja de computadores teve a seguinte ideia pensando na "Black Friday": no mês de outubro, aumentou o valor dos computadores em (5p)% em relação a setembro, e no mês de novembro, reduziu o valor dos mesmos em (4p)% em relação a outubro. Sabe-se que o preço do computador é o mesmo em setembro e novembro (que novidade...). Qual é o valor de p?

(a) 5 (B) 8 (C) 10 (D) 12 (E) 15

2.8 Problema 8

Enunciado

Dizemos que um inteiro positivo é avizinhado se a diferença entre quaisquer dois de seus dígitos consecutivos é sempre igual a 1. Por exemplo, 123456, 987654 e 45656765 são avizinhados. Quantos são os inteiros entre 500.000 e 600.000 que são avizinhados?

(A) 8 (B) 10 (C) 31 (D) 32 (E) 64

2.9 Problema 9

Enunciado

De quantas maneiras podemos colocar 5 garotas em fila, sendo 3 delas Ana, Beatriz e Carla, de modo que Ana fique entre Beatriz e Carla?

(A) 6 (B) 20 (C) 30 (D) 40 (E) 60

2.10 Problema 10

Enunciado

Uma cidade euclidiana possui 2 pontos turísticos A e B, ligados por uma linha reta de 420 metros de comprimento. Ana e Beatriz partem, do ponto A, em linha reta, em direção ao ponto B, com velocidades constantes de 5 metros por segundo e 3 metros por segundo, respectivamente. Enquanto isso, Carla parte do ponto B, em linha reta, em direção ao ponto A, com velocidade constante de 3 metros por segundo. Sabendo que as 3 garotas partem simultaneamente, quanto tempo após a partida Carla estará novamente a uma mesma distância de Ana e Beatriz? (A) 30 segundos (B) 40 segundos (C) 50 segundos (D) 60 segundos (E) 70 segundos

2.11 Problema 11

Enunciado

No reticulado a seguir, a distância entre quaisquer dois pontos adjacentes na horizontal ou na vertical é igual a 1 cm. Qual é a área, em cm², da região hachurada?

(A) 60 (B) 61 (C) 62 (D) 63 (E) 64

2.12 Problema 12

Enunciado

Sabe-se que o número $\underbrace{111\dots11}_{l}$ é múltiplo de 17, onde k é um inteiro positivo.

Qual é o menor valor possível de k?

(A) 4 (B) 11 (C) 16 (D) 18 (E) 34

2.13 Problema 13

Enunciado

De quantos modos podemos pintar as 5 regiões da figura abaixo, usando em cada região uma dentre as cores preto, amarelo, rosa, azul e vermelho, de modo que regiões vizinhas tenham cores diferentes?

Observação: não é obrigatório que todas as 5 cores sejam usadas na pintura.

(A) 120 (B) 240 (C) 420 (D) 540 (E) 1280

2.14 Problema 14

Enunciado

Numa sala de aula, a quantidade de meninos é o dobro da quantidade de meninas. Certa vez, foi aplicada uma prova de matemática, e nessa prova a média dos meninos foi 7, 4 enquanto a média das meninas foi 8, 6. Qual foi a média das notas dos alunos da sala?

(A) 7,6 (B) 7,8 (C) 8 (D) 8,2 (E) 8,4

2.15 Problema 15

Enunciado

No triângulo ABC, temos AB=2AC. Sejam D, E pontos em $\overline{AB}, \overline{BC}$, respectivamente, tais que $\angle BAE=\angle ACD$. Seja F a interseção dos segmentos \overline{AE} e \overline{CD} , e suponha que o triângulo CFE é equilátero. Qual é a medida do ângulo $\angle ACB$? (A) 60° (B) 75° (C) 90° (D) 105° (E) 120°

Problema 16 2.16

Enunciado

Para cada inteiro positivo n, sejam:

$$T_{n} = 1 + 2 + \dots + n$$

$$P_{n} = \left(\frac{T_{2}}{T_{2} - 1}\right) \left(\frac{T_{3}}{T_{3} - 1}\right) \dots \left(\frac{T_{n}}{T_{n} - 1}\right)$$
Qual é a alternativa mais próxima do valor numérico de P_{2022} ?
(A) 2,90 (B) 2,93 (C) 2,96 (D) 2,99 (E) 3,02

2.17 Problema 17

Enunciado

Dizemos que um número inteiro é um "Matemático por Diversão" se ele pode ser escrito como a diferença de 2 quadrados perfeitos não nulos. Por exemplo, 3 é Matemático por Diversão, pois $3=2^2-1^2$. Quantos são os inteiros positivos, que não excedem 2022, que são Matemáticos por Diversão?

(A) 506 (B) 507 (C) 1514 (D) 1516 (E) 2020

2.18 Problema 18

Enunciado

Seja M=3318084147. Qual dos números abaixo é um quadrado perfeito? (A) M (B) 3M (C) 5M (D) 7M (E) 11M

2.19 Problema 19

Enunciado

Sejam x, y números reais positivos tais que $x^2 + y^2 = 7$ e $x^3 + y^3 = 18$. Quanto vale $x^4 + y^4$?

(A) 25 (B) 29 (C) 31 (D) 47 (E) 49

2.20 Problema 20

Enunciado

Duas circunferências, de raios 3 e 4, se cortam em dois pontos, sendo Q um desses pontos. Traçam-se as tangentes externas comuns às duas circunferências. As duas tangentes se cortam em P e uma dessas tangentes tangencia as circunferências nos pontos A e B, conforme a figura abaixo:

Se AB = 6, quanto vale PQ?

(A) 12 (B) $12\sqrt{3}$ (C) 21 (D) $21\sqrt{3}$ (E) 15

3 Referências