Villamosságtan feladatok

Összeállította: Jusztin Zsuzsanna

1. Elektrosztatika

- 1. Mekkora erővel vonzza a hidrogén atommagja a körülötte 10^{-10} m sugarú pályán keringő elektront? Mekkora az elektron helyén a mag által létesített elektromos térerősség és az eltolódási vektor? Mekkora sebességgel kell az elektronnak a mag körül keringenie, hogy a centrifugális erő a vonzóerővel egyensúlyt tartson? [2,3·10⁻⁸ N, 1,44·10¹¹ N/C, 1,27 C/m², 1,59·10⁶ m/s]
- 2. Egymástól 30 m távolságban rögzítjük az 5 μ C és 25 μ C nagyságú töltéseket. Hová helyezzük a 12 μ C nagyságú töltést, hogy egyensúlyban legyen? [9,27 m]
- 3. Egymástól 130 cm távolságban rögzítjük az 5 μ C és 10 μ C nagyságú töltéseket. Hol lesz a térerősség nulla? [0,54 m]
- 4. Egyenlő oldalú háromszög csúcsaiba 1 μ C nagyságú töltéseket helyezünk. Mekkora legyen a háromszög oldala, hogy mindegyik töltésre ható erő $5\cdot10^{-3}$ N legyen? [1,77 m]
- 5. Egyenlő oldalú háromszög csúcsaiban azonos előjelű és nagyságú Q töltés van. Mekkora és milyen előjelű töltés van a háromszög középpontjában, ha mind a négy töltés egyensúlyban van? $[-Q/\sqrt{3}]$
- 6. A 10^{-8} C és az $1,5\cdot10^{-8}$ C ponttöltés 25 cm-re van egymástól. Hol lesz a térerősség zérus? [az első töltéstől 11,2 cm-re]
- 7. Derékszögű háromszög csúcsaiba 10⁻⁹ C nagyságú pontszerű töltések vannak. A háromszög befogói 40 cm és 30 cm hosszúak. Mekkora az elektromos térerősség az átfogóhoz tartozó magasság talppontjában? [245 N/C]
- 8. Egy 5·10⁻⁸ C nagyságú ponttöltés vízszintes irányban15 cm távolságban van egy ismeretlen nagyságú töltéstől. Mekkora az ismeretlen töltés, ha az ismert alatt 8 cm távolságban lévő 3·10⁻⁸ C nagyságú töltésre ható erő irány vízszintes? [4,77·10⁻⁷ C]
- 9. Két, rögzített, egyenlő méretű, pontszerűnek tekinthető testnek azonos nagyságú pozitív töltése van. Közöttük 10⁻⁵ N erő hat. Egy harmadik, töltetlen azonos méretű testet érintünk előbb a bal oldali, utána a jobb oldali töltött testhez, majd ezek után rögzítjük az eredeti testek által meghatározott szakasz felezőpontjában. Mekkora és milyen irányú erő hat a középső testre? [7,5·10⁻⁶ N]
- 10. Két egyenlő nagyságú, pontszerű, pozitív töltést rögzítünk az A és B pontban, egymástól 0,5 m távolságra. A közöttük fellépő elektrosztatikus erőhatás nagysága 0,036 N. Mekkora és milyen irányú az elektromos térerősség a töltések által meghatározott egyenes mentén a B ponttól 1,5 m távolságban? [6250 N/C]
- 11. Egyenlő oldalú háromszög három csúcsában rendre a következő három pontszerű, pozitív töltést helyezzük el: 10⁻⁷ C, 2·10⁻⁷ C, 3·10⁻⁷ C. A háromszög oldalainak hossza 0,6 m. Mekkora és milyen irányú az elektromos térerősség a 3·10⁻⁷ C töltéssel szemközti oldal felező pontjában? [1,4·10⁴ N/C, az oldallal 45°-os szöget zár be]
- 12. A 4·10⁻⁵ C, rögzített töltés körül hol helyezkednek el azok a pontok, amelyekben a térerősség 10⁶ NC⁻¹? [60 cm sugarú gömbön]

- 13. Három, azonos l hosszúságú és tömegű fonálingát egy pontban felfüggesztünk. Ezután a fonálon függő s egymással érintkező golyókat elektromosan feltöltjük. Ennek hatására egymástól eltávolodnak, és egy vízszintes helyzetű, a=0,1 m oldalú, szabályos háromszög csúcsaiban helyezkednek el. Mekkora a golyók töltése, ha l=0,5 m, m=10 g? [8,6·10⁻³ C]
- 14. Adott egy 2·10⁻⁴ C pozitív, pontszerű töltés. Milyen előjelű és mekkora töltést kell elhelyezni tőle 1 m távolságban, hogy a két töltést összekötő egyenes mentén, a megadott töltéstől 25 cm távolságban a térerősség zérus legyen? [-5·10⁻³ C]
- 15. Ha a térerősség nagyságát az erővonalak sűrűségével jellemzzük, akkor hány erővonal metszi az 5·10⁻⁵ C nagyságú, pontszerű töltéstől 1 m-re lévő, az erővonalakra merőlegesen elhelyezett 1 cm² felületet? [45]
- 16. Homogén elektromos mezőbe a térerősségre merőlegesen elektron repül be. A térerősségvektor függőlegesen felfele irányul. Mekkora a térerősség nagysága, ha az elektron 0,01 s alatt 8 cm-t süllyed a mező hatására és a gravitációs hatástól eltekintünk? [9·10⁻⁹ N/C]
- 17. Egy 0,1 g tömegű, 2·10⁻³ C töltésű részecske 100 ms⁻² gyorsulással mozog a homogén elektromos mezőben, az erővonalakkal párhuzamosan. Mekkora a térerősség, ha iránya megegyezik a gravitációs mező irányával? Mekkora lenne a gyorsulása ebben a mezőben megegyező tömegű, azonos nagyságú, de ellentétes előjelű töltésnek? [4,5 N/C, 80 m/s²]
- 18. Két , 50 g tömegű, 10⁻⁵ C, illetve -10⁻⁵ C töltésű, pontszerű test egymás fölött, egymástól 1 m-re rögzítve van. Mekkora és milyen irányú gyorsulással indulnak el, ha a rögzítést megszüntetjük? [8 m/s², 28 m/s²]
- 19. Hányszor nagyobb az egymástól r távolságra lévő elektronok között fellépő elektromos erőhatás a gravitációs erőnél? $[4,17\cdot10^{42}]$
- 20. Egy 2·10⁻⁶ C nagyságú, rögzített, pozitív töltéstől 1 m távolságban egy -2·10⁻⁶ C nagyságú, negatív töltésű és 1 g tömegű fémgolyót helyezünk el. A fémgolyó a vízszintes síklapon súrlódás nélkül mozoghat. Mekkora nagyságú és irányú kezdősebességet kell adni a fémgolyónak ahhoz, hogy a rögzített töltés körül 1m sugarú körpályán egyenletesen mozogjon? [6m/s]
- 21. Mekkora az elektromos térerősség levegőben, egy nagy méretű sík lemez felületén, ha a töltéssűrűsége 1,2·10⁻⁹ C/m²? [135,4 N/C]
- 22. Egy 1 cm sugarú gömbön elhelyezett 10^{-6} C töltést $\varepsilon_{\rm r}=10\,{\rm relatív}$ dielektromos állandójú szigetelő anyag vesz körül. Mekkora átütési szilárdságúnak kell lennie a közegnek, hogy a gömbön lévő töltés ne távozzon el? [9· 10^6 N/C]
- 23. Vékony, szigetelő, 80 cm hosszú rúdra felfűzünk egy $3\cdot10^{-4}$ C töltésű kicsi gömböt, amely szabadon csúszhat a két végére rögzített $2\cdot10^{-4}$ C és $18\cdot10^{-4}$ C pontszerű töltések között. Milyen előjelűeknek kell lenni az egyes töltéseknek, hogy a szabadon mozgó gömb egyensúlyban legyen valamelyik közbülső pontban. Mikor lesz az egyensúlyi helyzet stabil? [0,6 m, azonos töltések esetén]

2. Kondenzátorok

- 1. Egy kondenzátor lemezei között a távolság 8 cm. A lemezek között lévő homogén elektromos mező térerősségének értéke 2·10⁴ NC⁻¹. A lemezeket 6 cm-re közelítjük egymáshoz. Mennyivel változott meg a lemezek közötti feszültség? Hogyan és miért változik a kondenzátor lemezei között a mező energiája? [400 V]
- 2. Egy kondenzátor lemezei egymástól 5 cm távolságra vannak, a két lemez közötti feszültség 200 V, a lemezek felülete egyenként 200 cm². Hány erővonal indul ki a pozitív lemez felületéről? [80 Vm]
- 3. Mekkora kapacitású kondenzátorban lehet felhasználni $2\cdot 10^{-2}$ C töltést, ha a fegyverzetekre 1 kV feszültséget kapcsolunk? [0,2 μ F]
- 4. Egy 2 dm² felületű síkkondenzátor lemezeinek távolsága 0,2 mm. Hány V feszültségre van feltöltve, ha 10⁶ erővonal halad át a lemezek között? [10⁴ V]
- 5. Síkkondenzátort feltöltünk 100 V feszültségre, utána a lemezeket eltávolítjuk eredeti távolságuk 10-szeresére. Mekkora feszültség mérhető most a kondenzátoron? [1000 V]
- 6. Kondenzátor lemezei közötti feszültség 2000 V. A lemezek távolsága 1mm. Milyen távolságra vannak egymástól azok az ekvipotenciális felületek, amelyek közötti potenciálkülönbség 10 V? [5·10⁻⁶ m]
- 7. Egy kondenzátor lemezeinek távolsága 1 cm. A rákapcsolt feszültség 10⁶ V. A közöttük lévő légüres térben levő olajcseppre a tér 1,6·10⁻¹⁰ N erővel hat. Mekkora az olajcsepp töltése? [1,6·10⁻¹⁸ C]
- 8. Hány erővonal halad át a kondenzátor lemezei között, ha azt 2000 V feszültségre kapcsoljuk? A lemezek távolsága 1 mm. [2·10⁴ Vm]
- 9. Egy 50 kV feszültségre töltött kondenzátor lemezei közé 10⁻⁸ C töltést helyezünk. A töltésre ható erő 1,96·10⁻³ N. Milyen távol vannak a lemezek egymástól és mekkora a kondenzátor kapacitása? [25,5 cm, 2·10⁻¹³F]
- 10. Mekkora kapacitású kondenzátor tud 100 V feszültségre töltve 1 J energiát tárolni? [2·10⁻⁴ F]
- 11. Mekkora töltésű a kondenzátor, ha lemezei között olaj van, a térerősség 500 V/cm? A szemben lévő felületek nagysága 800 mm². ($\varepsilon_r = 2.5$) [8.8·10⁻¹⁰ C]
- 12. Kondenzátor lemezeinek a távolsága 3 mm. A lemezek közé helyezett 10⁻⁹ C nagyságú töltésre 4,9·10⁻⁴ N nagyságú erő hat. Mekkora a rákapcsolt feszültség? [1470 V]
- 13. Mennyi idő alatt tudunk feltölteni 1000 V-ra egy 7 nF-os kondenzátort, ha a közepes töltőáram 2 μ A ? [3,5 s]
- 14. Egy 8 cm széles alufólia szalagból készítsünk kondenzátort! A fegyverzetek közé olajjal átitatott papírt teszünk ($\varepsilon_r = 4$). Milyen hosszú fólia kell, hogy 20 μ F legyen a kapacitás? [283 m]

- 15. Síkkondenzátort felületei 1 dm²-esek, távolságuk 1 mm. Feltöltjük a kondenzátort 100 V feszültségre, utána a lemezeket 1cm-re távolítjuk egymástól.
 - a) Mekkora lesz így a feszültsége?
 - b) Mekkora munkavégzés történt?
 - c) Mekkora átlagos erővel lehet a lemezeket így széthúzni? [1000 V, 3,9·10⁻⁶ J, 4,33 N]
- 16. Egyik kondenzátort 80 V-ra töltjük, a másikat, amelynek kapacitása 20 μF, 40 V feszültségre töltjük. Ezután a két kondenzátort párhuzamosan kötjük. Ekkor 60 V feszültséget mérhetünk rajtuk. Mekkora az első kondenzátor kapacitása? [20 μF]
- 17. Hány db 300 V feszültségű és 0,5 μFkapacitású kondenzátor felhasználásával, és milyen elrendezéssel tudunk létrehozni 1800 V feszültségű és 1,5 μFkapacitású rendszert? [108]
- 18. Sorosan kapcsolunk egy 3,5 μ F-os és egy 2,8 μ F-os kondenzátort. Az egyik szabad végét leföldeljük, a másikra $4\cdot10^{-6}$ C töltést viszünk, Mekkora a szabd vég és a föld közötti potenciálkülönbség? [2,54 V]
- 19. Egy 0,5 μF kapacitású kondenzátort 200 V feszültségre töltünk, a 2,5 μF kapacitásút pedig 100 V feszültségre. Mekkora lesz a közös feszültségük, ha párhuzamosan kapcsoljuk őket úgy, hogy az azonos töltésű lemezeket kötjük össze? Mekkora lenne a közös feszültség, ha az ellentétes lemezeket kötnénk össze? [116,7 V, 50 V]
- 20. Egy síkkondenzátor elektródáinak felülete 400 cm², távolságuk 4 mm. A szigetelőanyag relatív dielektromos állandója 6. Mekkora erő hat a lemezekre, ha kondenzátor feszültsége 4 kV. Mekkora a kondenzátor kapacitása, energiája? [1,063 N, 5,31·10⁻¹⁰ F, 4,25·10⁻³ J]
- 21. Egy légszigetelésű síkkondenzátor elektródáinak felülete 25 dm², távolságuk 20 cm. Határozzuk meg a lemezek közti erőhatást 30 kV feszültség esetén! Mekkora lesz az erőhatás, ha változatlan feszültség mellett a lemezek távolsága felére csökken? Mindkét esetben számoljuk ki a kondenzátor energiáját! [25 mN, 100 mN, 4,98 mJ, 9,97 mJ]
- 22. Mekkora energia tárolható egy 1 μ F-os és egy 1,2 μ F-os kondenzátor soros és párhuzamos kapcsolása esetén? Az első kondenzátorra 400 V, a másodikra 250 V feszültség kapcsolható maximum! [82,5 mJ, 68,8 mJ]
- 23. Határozzuk meg az ábrán látható elrendezésben az egyes kondenzátorok feszültségét és töltését! $C_1=2~\mu F$, $C_2=0.5~\mu F$, $C_3=2.5~\mu F$, U=500~V. [600 μC , 100 μC , 500 μC , 300 V, 200 V, 200 V]

24. Mekkora az eredő kapacitása a következő elrendezésnek?

$$C_1 = 120 \ \mu\text{F}, C_2 = 200 \ \mu\text{F}, C_3 = 100 \ \mu\text{F}, C_4 = 50 \ \mu\text{F},$$

$$C_5 = 300 \ \mu\text{F}, C_6 = 140 \ \mu\text{F}. [140,2 \ \mu\text{F}]$$

25. Számítsuk ki, hogy a következő kapcsolásban mekkora feszültségre töltődik fel C_4 kondenzátor! U=100 V, $C_1=C_2=C_3=C_4=1$ μF .

3. Feszültség

- Elektromos mező A pontjában 8 V, B pontjában 12 V a potenciál a földhöz viszonyítva. Mennyi munkát végez a mező, ha a egy 2·10⁻⁴ C pozitív töltést a B pontból az A pontba mozgat? [8·10⁻⁴ J]
- 2. Homogén elektromos mezőben egy 4 C nagyságú töltést egyenletesen mozgatjuk 20 cm-es úton az erővonalakkal párhuzamosan, 100 N nagyságú, állandó külső erővel. Mekkora a mozgás kezdő és végpontja között a feszültség? [50 V]
- 3. Az $5\cdot10^6$ N/C térerősségű homogén elektromos mező a térerősség vonalakkal párhuzamosan elmozdítja a 10^4 C nagyságú töltést. Mekkora utat tesz meg a töltés, ha az elektromos mező munkája 15 J? [3 cm]

- 4. Mennyi munkát végez az elektromos mező, miközben a $3\cdot10^{-8}$ C töltés a 8 V potenciálú helyről a 4 V potenciálú helyre kerül? [1,2·10⁻⁷ J]
- 5. Homogén elektromos mezőben egy pozitív töltés mozog a térerősség irányában. Mekkora a töltés nagysága, ha a térerősség nagysága 10^3 NC^{-1} és a mező 5 J munkát végzett a töltésen 50 cm úton? [0,01 C]
- 6. Síkkondenzátor fegyverzeteinek távolsága 1 cm, feszültsége 1000 V. A fegyverzetek közötti légüres térben töltött olajcsepp lebeg, a lemezektől egyenlő távolságban. A feszültség hirtelen 995 V-ra csökken. Mennyi idő múlva jut az olajcsepp az alsó lemezre? [0,447 s]
- 7. Egy diódában az anódra érkező elektron sebessége 2,5·10⁶ ms⁻¹. Q A Mekkora a feszültség a katód és anód között? [17,77 V]
- 8. Határozza meg az ábrán látható $10^{\text{-}6}$ C pontszerű töltés terében az U_{AB} , U_{AC} , U_{BC} feszültségeket! [44,93 kV, 58,09 kV, 13,15 kV]
- 9. Mekkora feszültséget hoz létre az egymástól 1 m távolságban lévő 10^{-5} C és a 10^{-6} C töltés az A, B és C pontok között? A töltéseket vákuum veszi körül. $\overline{AB} = \overline{BC} = 0,5$ m. $[U_{AB} = U_{BC} = 47430 \text{ V}, U_{AC} = 0]$

11. Mekkora sebességre gyorsul fel az elektroncsőben az elektron 300 V anódfeszültség hatására? Mekkora anódfeszültség esetén gyorsulhat a fénysebesség harmad részére?[1,027·10⁷ m/s, 28437,5 V]

4. Eredő ellenállás számolása

18. Számítsuk ki a következő ábrákon adott elrendezések erdő ellenállását a megadott pontpárra!

a)

 $\begin{array}{lll} R_1 = 13 & \Omega \,, & R_2 = 21 \,\,\Omega \,, & R_3 = 15 \,\,\Omega \,, \\ R_4 = 72 \,\,\Omega \,, & R_5 = 31 \,\,\Omega \,, & R_6 = 24 \,\Omega \,. \\ \left[41,\!64 \,\,\Omega \,\right] & \end{array}$

 $R_1 = 2.5 \Omega$, $R_2 = 2 \Omega$, $R_3 = 3 \Omega$, $R_4 = 6 \Omega$, $R_5 = 4 \Omega$. [3.5 Ω]

 $R_1 = 2.5 \Omega$, $R_2 = 2 \Omega$, $R_3 = 3 \Omega$, $R_4 = 6 \Omega$, $R_5 = 4 \Omega$. [3.5 Ω]

$$R = 4 \Omega \cdot [1,6 \Omega]$$

f)

$$\begin{split} R_1 &= 40 \ \Omega \,,\, R_2 = 60 \ \Omega \,,\, R_3 = 16 \ \Omega \,, \\ R_4 &= 60 \ \Omega \,,\, R_5 = 6 \ \Omega \,,\, R_6 = 30 \ \Omega \,.\, [15 \ \Omega \,] \end{split}$$

 $R_1 = 8 \ \Omega, \ R_2 = 40 \ \Omega, \ R_3 = 2 \ \Omega, \ R_4 = 12 \ \Omega,$ $R_5 = 20 \ \Omega, \ R_6 = 5 \ \Omega, \ R_7 = 10 \ \Omega. \quad \left\lceil \frac{179}{15} \Omega \right\rceil$

 $\begin{array}{lll} R_1 = 8 \;\; \Omega \,, \; R_2 = 7 \;\; \Omega \,, \; R_3 = 5 \;\; \Omega \,, \; R_4 = 10 \;\; \Omega \,. \\ [4,51 \;\; \Omega \,] \end{array}$

$$\begin{split} R_0 &= 6 \ \Omega \,, \ R_1 = 1 \ \Omega \,, \ R_2 = 2 \ \Omega \,, \ R_3 = 10 \ \Omega \,, \\ R_4 &= 5 \ \Omega \,, \ R_5 = 3 \ \Omega \,. \ [10 \ \Omega \,] \end{split}$$

$$\begin{split} R_1 &= 20 \ \Omega \,,\, R_2 = 30 \ \Omega \,,\, R_3 = 50 \ \Omega \,,\, R_4 = 50 \ \Omega \,,\\ R_5 &= 37.5 \ \Omega \,,\, R_6 = 25 \ \Omega \,.\, [21.74 \ \Omega \,] \end{split}$$

Az ellenállások értéke 100 Ω . [45,5 Ω]

n)

p)

k)
A
B
B

Az ellenállások értéke R. $\left[\frac{5}{11}R\right]$

1)

$$\begin{split} R_1 &= 20 \; k \, \Omega \, , \, R_2 = 10 \; k \, \Omega \, , \, R_3 = 40 \; k \, \Omega \, , \\ R_4 &= 10 \; k \; \Omega \, . \, [\; 6,96 \; k \, \Omega \; \;] \end{split}$$

 $\begin{array}{l} R_1 = 20 \ \Omega \,,\, R_2 = 8 \ \Omega \,,\, R_3 = 2 \ \Omega \,,\, R_4 = 15 \ \Omega \,,\\ R_5 = 50 \ \Omega \,,\, R_6 = 40 \ \Omega \,,\, R_7 = 6 \ \Omega \,,\, R_8 = 60 \ \Omega \,.\, [10 \ \Omega \,] \end{array}$

$$\begin{split} R_1 &= R_2 = 1 \ k \, \Omega \,, \, R_3 = R_4 = 2{,}5 \ k \, \Omega \,, \\ R_5 &= R_7 = 5 \ k \, \Omega \,, \, R_6 = R_8 = R_9 = 10 \ k \ \Omega \,. \\ &[1{,}3 \ k \, \Omega \,] \end{split}$$

Minden ellenállás értéke 100 Ω . [100 Ω]

Minden ellenállásértéke 600 Ω . [100 Ω]

 $\begin{array}{lll} R_1 = 4 \ \Omega \, , \ R_2 = 4 \ \Omega \, , \ R_3 = 6 \ \Omega \, , \ R_4 = 3 \ \Omega \, . \\ R_{AB} = ? \ [4 \ \Omega \,] \end{array}$

$$\begin{split} R_1 &= 2 \ \Omega \,, \ R_2 = 3 \ \Omega \,, \ R_3 = 2 \ \Omega \,, \ R_4 = 4 \ \Omega \,. \\ R_{AB} &= ?, \, R_{AC} = ?, \, R_{BC} = ? \\ [4 \ \Omega \,, \, 1,56 \ \Omega \,, \, 4,22 \ \Omega \,] \end{split}$$

$$\begin{split} R_1 &= 6 \ \Omega \,, \ R_2 &= 4 \ \Omega \,, \ R_3 = 1 \ \Omega \,, \ R_4 = 3 \ \Omega \,, \\ R_5 &= 3 \ \Omega \,. \ R_{AB} = ? \ [3 \ \Omega \,] \end{split}$$

 $\begin{array}{l} R_1 = 4 \ \Omega \,, \ R_2 = 4 \ \Omega \,, \ R_3 = 5 \ \Omega \,, \ R_4 = 3 \ \Omega \,, \\ R_5 = 1 \ \Omega \,. \ R_{AB} = ? \\ [3,5 \ \Omega \,] \end{array}$

$$\begin{split} R_1 &= 2 \ \Omega \ , \ R_2 = 6 \ \Omega \ , \ R_3 = 4 \ \Omega \ . \ R_{AB} = ? \\ R_{CD} &= ? \ R_{AC} = ? \ R_{BC} = ? \ R_{BD} = ? \\ [3 \ \Omega \ , \ 1,67 \ \Omega \ , \ 1,67 \ \Omega \ , \ 2,67 \ \Omega \ , \ 3 \ \Omega \] \end{split}$$

$$\begin{split} R_1 &= 2 \ \Omega \,, \, R_2 = 4 \ \Omega \,, \, R_3 = 12 \ \Omega \,, \\ R_4 &= 5 \ \Omega \,, \, R_5 = 6 \ \Omega \,, \, R_6 = 3 \ \Omega \,. \, R_{AB} = ? \\ [3,6 \ \Omega] \end{split}$$

$$\begin{split} R_1 &= 6 \ \Omega \,, \ R_2 &= 3 \ \Omega \,, \ R_3 = 2 \ \Omega \,, \ R_4 = 4 \ \Omega \,, \\ R_5 &= 5 \ \Omega \,, \ R_6 = 1 \ \Omega \,. \ R_{AB} = ? \ R_{AC} = ? \ R_{BC} = ? \ [1,11 \ \Omega \,, \, 1,49 \ \Omega \,, \, 0,59 \ \Omega \,] \end{split}$$

 $R_5 = 5.6 \ \Omega$, $R_6 = 1.5 \ \Omega$, $R_7 = 3.3 \ \Omega$, $R_{AB} = ?$ [4,26 Ω]

z)

$$\begin{split} &R_1 = 5 \ \Omega \,, \ R_2 = 4 \ \Omega \,, \ R_3 = 3 \ \Omega \,, \ R_4 = 1 \ \Omega \,, \\ &R_5 = 6 \ \Omega \,, \ R_6 = 2 \ \Omega \,, \ R = 7 \ \Omega \,, \ R_{AB} = ? \ R_{AC} \\ &= ? \ R_{BC} = ? \ [0.66 \ \Omega \,, \ 7 \ \Omega \,, \ 7.66 \ \Omega \,] \end{split}$$

$$\begin{split} R_1 &= 1 \ \Omega \,, & R_2 &= 4,7 \ \Omega \,, \\ R_4 &= 5,6 \ \Omega \,, & R_5 &= 1 \ \Omega \,, \\ R_7 &= 1,5 \ \Omega \,, & R_{AB} &= ? \ [2,32 \ \Omega \,] \end{split} \qquad \begin{array}{ll} R_3 &= 2,2 \ \Omega \,, \\ R_6 &= 5,6 \ \Omega \,, \end{array}$$

*) Tizenkét darab 1 Ω -os ellenállásból, mint élből kockát állítunk össze. Mennyi ellenállást mérhetünk egy testátló, egy lapátló és egy él két végpontja között? [5/6 Ω , 3/4 Ω , 7/12 Ω]

 $R_1 = 1 \Omega$, $R_2 = 4.7 \Omega$, $R_3 = 2.2 \Omega$, $R_4 = 5.6 \Omega$,

5. Egyszerű áramkör

1. Mekkora az R_4 ellenállás értéke az ábrán látható hálózatban? I=2,25 A, U=20 V, $R_1=10$ Ω , $R_2=4$ Ω , $R_3=16$ Ω . [6 Ω]

2. Mekkora az ábrán látható elrendezés esetén R_3 értéke, ha I=9 A, $I_2=3$ A, $R_1=6$ Ω , $R_2=4$ Ω ? [3 Ω]

3. Egy feszültségforrásra ismeretlen R ellenállást kapcsolunk. Az ellenállás sarkain egy 1000 Ω belső ellenállású feszültségmérővel $U_V=12,8$ V-ot mérünk. A körbe kapcsolt árammérő $I_A=0,4$ A áramot mutat. Mekkora az ismeretlen ellenállás értéke? [33,05 Ω]

4. Mekkora ellenállást kell az izzólámpa elé kapcsolni, ha a hálózati feszültség 110 V, az izzólámpa pedig 40 V feszültségen 5 A áramot vehet fel? [14 Ω]

5. Az ábrán látható áramkörben a kapcsoló zárásakor az áramerősség 0,5 A-ről, 0,6 A-re növekedik. Mekkora az R_3 ellenállás, ha $R_1=R_2=30~\Omega$? [$60~\Omega$]

6. Határozzuk meg az ábrán látható kapcsolásban az R_3 ellenálláson folyó áramot! $U=220~V,\,R_1=15~\Omega\,,\,R_2=25~\Omega\,,\,R_3=30~\Omega\,.\,[$ 3,5 A]

7. Egy áramkör tápláló feszültsége 500 V. Ha 25 Ω -mal megnöveljük a kör ellenállását, az áram 1 A-rel csökken. Mekkora az eredeti ellenállás és áramerősség? [5 A, 100 Ω]

8. Mekkora áram folyik az ábrán látható kapcsolásban a feszültségforráson? $U=10 \text{ V}, R_1=2 \text{ }\Omega\text{ }, R_2=4 \text{ }\Omega\text{ }, R_3=8 \text{ }\Omega\text{ }, \\ R_4=2 \text{ }\Omega\text{ }, R_5=3 \text{ }\Omega\text{ }, R_6=6 \text{ }\Omega\text{ }, R_7=6 \text{ }\Omega\text{ }, \\ R_8=9 \text{ }\Omega\text{ }.\text{ }[\text{ }1,16\text{ }A\text{ }]$

9. Az ábrán látható elrendezésben mekkora értéket mutat a feszültség- és árammérő műszer a kapcsoló A, B és C állása esetén? U = 1,8 V, R = 5,5 Ω , R_b = 0,5 Ω , R_V = ∞ , R_A = 0. [0 A, 1,8 V, 3,6 A, 0 V, 0,3 A, 1,65 V]

10. Az ábrán látható kapcsolásban mekkora a kondenzátor töltése a kapcsoló nyitott és zárt állása esetén? R = 2 k Ω , U = 100 V. [400 μ C, 320 μ C]

11. Mekkora az ábra szerinti elrendezésben a kondenzátor töltése? U = 1,8 V, R_b = 1 Ω , C = 2 μ F, R_1 = 4 Ω , R_2 = 8 Ω . [2,215 μ C,]

12. Az ábrán látható kapcsolásban mekkora a kondenzátorok töltése? U = 40 V, R_1 = 200 Ω , R_2 = 400 Ω , R_3 = 200 Ω , C_1 = 5 μ F, C_2 = 5 μ F. [150 μ C, 50 μ C]

13. Az ábrán látható kapcsolásban mekkora a kondenzátorokra eső feszültség? $U_1=40~V,~U_2=100~V,~R_1=680~\Omega,~R_2=1,5~k~\Omega,~R_3=2,2~k~\Omega,~C_1=10~\mu~F,~C_2=22~\mu~F,~C_3=47~\mu~F,~C_4=680~\mu~F.~[~69,9~V,~34,5~V,~16,2~V,~50,7~V~]$

14. Számoljuk ki az ábrán látható elrendezés esetén a kondenzátorok energiáját a kapcsoló minkét állása esetén! R_1 = 150 Ω , R_2 = 100 Ω , R_3 = 50 Ω , C_1 = 100 nF, C_2 = 0,3 μ F, U_1 = 200 V. [nyitott: 2 mJ, 0 J, zárt: 1,125 mJ, 0,375 mJ,]

6. Feszültségosztás, áramosztás

- 1. Határozzuk meg az ábrán látható hálózatban az R_4 ellenállásra eső feszültséget! $U=50~V,\,R_1=2~\Omega\,,\,R_2=3~\Omega\,,\,R_3=5~\Omega\,,\,R_4=1~\Omega\,.$ [25/6 V]
- 2. Határozzuk meg az ábrán látható hálózatban az R_4 ellenálláson folyó áramot! I=2 A, $R_1=2$ Ω , $R_2=3$ Ω , $R_3=5$ Ω , $R_4=1$ Ω . []

- 3. Számítsuk ki az ábrán látható hálózat U_{AB} feszültségét! U=10 V, $R_1=3$ Ω , $R_2=3$ Ω , $R_3=2$ Ω , $R_4=4$ Ω , $R_5=5$ Ω . [6 1/3 V]
- 4. 220 V feszültséget sorosan kötött 50 Ω -os és 70 Ω -os ellenállással osztunk. Mekkorák az osztott feszültségek? [550/6 V, 770/6 V]

5. Számoljuk ki az R_4 ellenállásra jutó feszültséget! U=10~V, $R_1=2~\Omega$, $R_2=3~\Omega$, $R_3=1~\Omega$, $R_4=5~\Omega$, $R_5=2~\Omega$, $R_6=4~\Omega$. [1,12 V]

6. Az ábrán látható kapcsolás esetén határozzuk meg az R_5 ellenálláson folyó áram erősségét! I=8 A, $R_1=2$ Ω , $R_2=3$ Ω , $R_3=4$ Ω , $R_4=1$ Ω , $R_5=6$ Ω , $R_6=5$ Ω . [4/15 A]

7. Mekkora az R_2 ellenálláson lévő feszültség? U=4 V, $R_1=2~\Omega$, $R_2=R_3=R_4=4~\Omega$. [2 V]

8. Az ábrán látható kapcsolásban mekkora az izzókra eső feszültség? U = 4 V, R_i = 12 Ω , R_1 = R_2 = R_3 = R_4 = 0,5 Ω . [3,45 V, 3,18 V]

- 9. Ha 10 A áramot átvezetünk párhuzamosan kötött 5 Ω -os és 3 Ω -os ellenállásokon, akkor mekkora áram folyik rajtuk külön-külön? [30/8 A, 50/8 A]
- 10. Mekkora áram folyik az R_2 ellenálláson? $U=10~V,~R_1=10~\Omega$, $R_3=40~\Omega$, $R_2=R_4=20~\Omega$. [$0,\!154~A$]

11. Mekkorára kell választani az ábra szerinti elrendezésben a generátor feszültségét, hogy az A-B kimeneten 10 V legyen a feszültség?

$$R_1 = R_2 = R_3 = R_4 = R_5 = 10 \text{ k}\Omega$$
, $R_6 = 5 \text{ k}\Omega$. [170 V]

7. Kirchoff egyenletek

1. Az ábrán látható kapcsolásban mekkora feszültség esik az R_4 ellenállásra? $U_1=24,4$ V, $U_2=24$ V, $U_3=3$ V, $R_1=2$ Ω , $R_2=5$ Ω , $R_3=1$ Ω , $R_4=12$ Ω , $R_5=4$ Ω . [2,52 V]

2. Az ábrán látható kapcsolásban mekkora az R_3 ellenálláson folyó áram erőssége? $U_1=U_2=1,5$ V, $R_{b1}=R_{b2}$ =0,5 Ω , $R_1=2$ Ω , $R_2=1$ Ω , $R_3=3$ Ω , $R_4=2$ Ω . [0,075 A]

3. Számoljuk ki a hídkapcsolásban az R_5 ellenálláson folyó áramot! U=10~V, $R_0=0,5~\Omega$, $R_1=5~\Omega$, $R_2=6~\Omega$, $R_3=3~\Omega$, $R_4=2~\Omega$, $R_5=1~\Omega$. [0, 25 A]

4. Az ábrán látható hálózatban határozzuk meg az ágáramok értékeit! $U_1=10~V,~U_2=20~V,~R_1=5~\Omega~,~R_2=20~\Omega~,~R_3=8~\Omega~,~R_4=10~\Omega~.$ [0,207 A, 0,655 A, 0, 862 A]

5. Az ábrán látható kapcsolásban a főáramkörben szabályozható ellenállás van elhelyezve. Az U_s feszültségű segédáramforrás ellenkapcsolásban van a főáramköri feszültséggenerátorral. Amikor a változtatható ellenállás 40 Ω -ra van beállítva, akkora a segédáramkörben nem folyik áram. Állapítsuk meg a főáramkörben folyó áram erősségét és a szabályozható ellenállás értékét! $U_1=10~V,\,U_s=4~V,\,R_b=6~\Omega$. [0,1 A, 100 Ω]

6. Párhuzamosan kapcsolt generátorok feszültsége U_1 = 120 V és U_2 = 122 V. Mekkora áramot szolgáltatnak az egyes generátorok, ha belső ellenállásuk R_{b1} = R_{b2} =0,05 Ω és I = 100 A? [30 A, 70 A]

7. Két párhuzamosan kapcsolt akkumulátor telep adatai: $U_1=12~V$ és $U_2=12,2~V,~R_{b1}=0,15~\Omega$, $R_{b2}=0,175~\Omega$. Mekkora a kiegyenlítő áram üresjáratban? Hány amper áramot szolgáltat a telep, ha a terhelő ellenállás $20~\Omega$? [0,615~mA,~0,893~mA,~0,291~mA]

- 8. Négy darab egyenként 1,5 V forrásfeszültségű és 2 Ω belső ellenállású galvánelemet sorba, majd párhuzamosan kapcsolunk. Mekkora áram folyik a 2 Ω -os fogyasztón? [0,6 A, 0,6 A]
- 9. Számítsa ki az ábrán látható hálózat ágáramait és a kapocsfeszültséget Kirchhoff egyenletekkel! $U_1=228~V$ és $U_2=225~V$, $R_{b1}=0,1~\Omega$, $R_{b2}=0,1~\Omega$, $R=50~\Omega$. [17,26 A, 12,73 A, 4,52 A, 226,13 V]

10. Számítsa ki az ábrán látható hálózat ágáramait a Kirchhoff egyenletekkel! U_1 = 7 V és U_2 = 10 V, R_{b1} = 5 Ω , R_{b2} = 1 Ω , R = 4 Ω . [5/29 A, 62/29 A, 57/29 A]

11. Határozzuk meg az ábrán látható elrendezés ágáramait Kirchhoff egyenletekkel! $U_1=10$ V, $U_2=20$ V, $U_3=17$ V, $R_1=50$ Ω , $R_2=100$ Ω , $R_3=200$ Ω . [0,077 A, 0,061 A, 0,016 A]

12. Határozzuk meg az ábrán látható hálózat ágáramait Kirchhoff egyenletekkel! $U_1=50~V,~~U_2=10~V,~~R_1=7~\Omega\,,~~R_2=2~\Omega\,,~~R_3=10~\Omega\,.~~[~125/26~A,~165/52~A,~85/52~A~]$

13. Határozzuk meg az ábrán látható hálózat eredő ellenállását Kirchhoff egyenletekkel! I = 1 A, R₁ = 2 Ω , R₂ = 5 Ω , R₃ = 4 Ω , R₄ = 1 Ω , R₅ = 3 Ω . [159/71 Ω]

14. Az ábrán látható feszültségmérők belső ellenállása $R_1=5~k\,\Omega$, $R_2=3~k\,\Omega$. $R_3=R_4=4~k\,\Omega$, U=200~V. Mekkora feszültséget mutatnak a műszerek, ha a kapcsoló nyitva, illetve zárva van? [125 V, 75 V, 112,9 V, 87,1 V]

8. Forrásfeszültség, kapocsfeszültség

- 1. Két különböző forrásfeszültségű galvánelemet egymás után kapcsolunk. A belső ellenállásuk $R_{b1}=0.8~\Omega$, $R_{b2}=0.2~\Omega$. Egy $R=4~\Omega$ -os ellenállással terheljük az áramkört. Ha a különböző sarkaikat kötjük össze a galvánelemeknek, akkor 0,6 A, ha az azonosakat, akkor 0,16 A áram folyik körben. Mekkorák a forrásfeszültségek és a kapocsfeszültségek? [1,9 V, 2,4 V, 1,1 V, 0,64 V]
- 2. Ha egy telepre $10~\Omega$ -os ellenállást kötünk, akkor 2~A erősségű áram folyik a körben. Ha ugyanerre a telepre $5~\Omega$ -os ellenállást kapcsolunk, akkor 3~A lesz az áramerősség a körben. Mekkora a telep forrásfeszültsége és belső ellenállása? [$5~\Omega$, 30~V]

- 3. Egy generátor 24 V-os kapocsfeszültsége esetén az áramkörben 3,2 A erősségű áram folyik. Ha a generátor sarkait rövidre zárjuk, akkor 36 A erősségű áramot mérhetünk. Mekkora a generátor belső ellenállása és forrásfeszültsége, mekkora a terhelő ellenállás? [$0,732\ \Omega, 26,3\ V, 7,5\ \Omega$]
- 4. Mekkora egy akkumulátor kapocsfeszültsége, ha a forrásfeszültsége 50,4 V, belső ellenállása 0,72 Ω , a rákapcsolt fogyasztó ellenállása pedig 20 Ω ? [48,65 V]
- 5. Egy galvánelem kapocsfeszültsége 6 Ω -os terhelés esetén 0,9 V, 4 Ω -os terhelés estén pedig 0,76 V. Mekkora a galvánelem forrásfeszültsége és belső ellenállása? [1,43 V, 3,5 Ω]
- 6. Egy 1,2 V üresjárási feszültségű, 2 Ω belső ellenállású akkumulátorcellára 10 Ω -os ellenállást kapcsolunk. A kapocsfeszültséget 40 Ω belső ellenállású feszültségmérővel mérjük. Mennyivel tér el a műszer által mutatott érték a valóságostól? [4 %]
- 7. Áramforrásunk 5 sorba kapcsolt akkumulátorcellából áll. Egy-egy cella feszültsége 2 V, belső ellenállása 0,1 Ω . A telep áramkörébe 9,5 Ω ellenállású feszültségmérőt kapcsolunk a fogyasztó sarkaira. Mennyivel változik meg a műszer bekapcsolása miatt
 - a. a külső ellenállás,
 - b. a kivett áramerősség,
 - c. a kapocsfeszültség
 - d. a fogyasztó teljesítménye?

[hiányzik a fogyasztó ellenállása!]

8. Határozzuk meg az $U_g=6$ V feszültségű, $R_b=600~\Omega$ belső ellenállású és $R_t=4,2$ k Ω .os fogyasztóval terhelt feszültséggenerátor, valamint a vele ekvivalens és ugyanakkora fogyasztóval terhelt áramgenerátor hatásfokát! [87,5 %, 12,5 %]

9. Rajzoljuk meg, hogyan változik a generátor kimeneti feszültsége, ha az R_t ellenállást 0-100 k Ω között R_t = 200 Ω ; 500 Ω ; 800 Ω ; 1 k Ω ; 2 k Ω ; 5 k Ω ; 10 k Ω értékekre állítjuk be! R_b = 1 k Ω , U_0 = 12 V.

- 10. Számítsuk ki mekkora a forrásfeszültsége annak a generátornak, amelyet, ha 500 Ω ellenállással terhelünk, akkor a kimenetén 15 V feszültség mérhető! A generátor belső ellenállása 100 Ω . [18 V]
- 11. Egy feszültséggenerátor üresjárási feszültsége 6 V. Ha a kimenetre a $2 \, k\Omega$ érétkű ellenállást teszünk, a feszültség leesik 5,5 V-ra. Számítsuk ki, mekkora a generátor belső ellenállása! [181 Ω]
- 12. Egy feszültséggenerátor terhelő ellenállása 500 Ω 1000 Ω között változtatható. Mekkora a generátor forrásfeszültsége és belső ellenállása, ha a kimeneti feszültség 20 V és 21,8 V között változik a szabályozássorán? [24 V, 98,9 Ω]
- 13. Egy 6,6 V üresjárási feszültségű ólom akkumulátor 3 db azonos forrásfeszültségű és belső ellenállású cella soros kapcsolásából áll. Mekkora az akkumulátor és a cellák belső ellenállása, ha 12 A terhelő áram esetén a kimeneti feszültsége 5,4 V-ra esik vissza? [$100 \,\mathrm{m}\,\Omega$, 33,3 $\mathrm{m}\,\Omega$]
- 14. Mekkora a forrásárama annak a 9 V-os telepnek, amely 6 db azonos üresjárási feszültségű és belső ellenállású elemből áll? Az egyes elemek ellenállása 1,2 Ω. [1,25 A]

- 15. Egy 12 V névleges feszültségű akkumulátor 6 db 2,2 V üresjárási feszültségű és 0,05 Ω belső ellenállású cellából áll. Számítsuk ki, mekkora terhelő áram hatására esik vissza a feszültsége 10,8 V-ra! [8 A]
- 16. Egy feszültségforrás üresjárási feszültsége 31,5 V. Kapcsait 7,2 Ω -os ellenállással lezárva, 72 %-os hatásfokkal dolgozik. Mekkora a belső ellenállása? [2,8 Ω]

9. Mérőműszerek kapcsolása, méréshatárának kiterjesztése

- 1. Egy árammérő műszer belsőellenállása 20 $\,\Omega$, végkitérése 5 mA. Mekkora söntellenállás szükséges a méréshatárának
 - a. 1 A-re,
 - b. 10 A-re való kiterjesztéséhez? [$0,1 \Omega, 0,01 \Omega$]
- 2. Egy 1 Ω belső ellenállású 2 V-os telep sarkaira 7 Ω -os ellenállást kötünk. A kör áramát egy 2 Ω belső ellenállású árammérővel mérjük. Mekkora hibával mérünk? [20 %]
- 3. Az ábrán látható soros ellenállások közül R_2 és R_3 ismeretlen, de a kör teljes ellenállása 9 k Ω . Egy ismeretlen belső ellenállású feszültségmérőnk van. Ezzel az R_1 ellenálláson 30 V-ot, az R_2 ellenálláson 20 V-ot mérünk. U=100 V, $R_b=1$ k Ω , $R_1=4,5$ k Ω . Mekkora a műszer belső ellenállása és az R_2 és R_3 ellenállás? [3375 Ω , 2835,9 Ω , 664,1 Ω]

- 4. Egy árammérő méréshatára 1 mA. Mekkora söntellenállást kell használni, ha 100 mA-t szeretnénk mérni? A műszer belső ellenállása 0,5 Ω . Mekkora a söntölt műszer ellenállása? [5,05·10⁻³ Ω , 5·10⁻³ Ω]
- 5. Feszültségmérő méréshatára 10 V, belső ellenállása 500 Ω . Mekkora előtét ellenállást kell alkalmazni, ha 300 V-ig akarunk vele mérni? Mekkora az előtétes műszer ellenállása? [14500 Ω , 15000 Ω]
- 6. Egy 200 mV végkitérésű, 10 Ω belső ellenállású feszültségmérővel 300, illetve 400 V-ot szeretnénk mérni. Mekkora előtétekre van szükség? Mekkora áram folyhat ár a műszereken? Mekkora lesz az előtétekre jutó feszültség és teljesítmény? [14990 Ω , 19990 Ω , 299,8 V, 399,8 V, 0,02 A, 5, 996 W, 7,996 W]
- 7. Egy feszültségmérő belső ellenállása 7000 Ω , méréshatára 150 V. Mekkora a műszeren eső teljesítmény, ha 110 V-ot mérünk rajta? [1,73 W]
- 8. Egy 2 Ω belső ellenállású műszer 30 mA esetén ad végkitérést. Mekkora legyen az előtét ellenállás, ha 100 V, illetve 500 V feszültséget mérünk vele? [3331,3 Ω , 16664,6 Ω]
- 9. Egy 150 mV végkitérésű 10 Ω belső ellenállású alapműszerrel 300 A erősségű áramot szeretnénk mérni. Mekkora legyen a söntellenállás nagysága, mekkora a rajta fellépő veszteség? [$5\cdot 10^{-4}~\Omega$, 45 W]

- 10. Egy 2,5 A és 5 A méréshatárú áramérő belső ellenállása az első méréshatáron 0,88 Ω , a másodikon 0,22 Ω . Mekkora teljesítmény esik a műszeren a két méréshatáron végkitérés esetén? [5,5 W, 5,5 W]
- 11. Egy feszültségmérő végkitérésben 500 V-ot mutat, ekkor áramfelvétele0,5 mA. Ha 10 kV feszültséget szeretnénk vele mérni, akkor mekkora előtét ellenállást használjunk? [19 MΩ]
- 12. Árammérő belső ellenállása 0,5 Ω . Mekkora söntöt használjunk, ha a műszer méréshatáránál ötször nagyobb áramot akarunk mérni? [0,125 Ω]

10. Méretezett fogyasztók kapcsolása

- 1. Sorba kapcsolunk egy 40 k Ω -os, 4 W teljesítményű és egy 10 k Ω -os 2 W teljesítményű ellenállást. Mekkora feszültség kapcsolható a rendszerre? [500 V]
- 2. Párhuzamosan kapcsolunk egy 2,7 k Ω -os, 3 W teljesítményű és egy 5 k Ω -os, 2 W teljesítményű ellenállást. Mekkora áram folyhat a rendszeren? [0,0513 A]
- 3. Kapcsoljunk sorba egy 1 k Ω -os és egy 750 Ω -os ellenállást. Mindkettő terhelhetősége 4 W. Működethetjük-e 220 V-os egyenfeszültséggel? Mekkora maximális feszültséget kapcsolhatunk rájuk? [nem, 110,68 V]
- 4. Három darab 110 V-os égőnk van. Teljesítményük 50 W, 50 W és 100 W. Milyen kapcsolással köthetjük az izzókat 220 V-os hálózatra úgy, hogy mindegyik teljes fénnyel égjen?
- 5. Egy $U_a=60~V$ forrásfeszültségű, $R_b=0.25~\Omega$ belső ellenállású 120 Ah kapacitású akkumulátortelepet 110 V-os hálózatról töltünk. Mekkora előtét ellenállásra van szükség, ha a megengedett legnagyobb töltőáram 10 A? Mennyi ideig tart a töltés? Mekkora áram folyik a körben, ha az akkumulátort helytelen polaritással kapcsoljuk a hálózatra? (az ellenkező előjelű kapcsokat kötjük össze) [4,75 Ω , 12 h, 34 A]

13. Teljesítmény

- 1. Mekkora az ellenállása annak a fogyasztónak, amely 110 V-os feszültségforrásról működik 1 órán keresztül, miközben 1 kWh energiát fogyaszt? [12,1 Ω]
- 2. Egy 100 W-os izzót 220 V-ra kapcsolunk. Mekkora áramot vesz fel és mekkora az ellen-állása? $[0,45 \text{ A},484 \Omega]$
- 3. Mekkora hőmennyiség keletkezik egy 2 kW-os villamos gépben másodpercenként, ha a hatásfoka 80%? [400 J]
- 4. Egy villamos motor 220 V-os hálózatról üzemel, áramfelvétele 8 A, leadott teljesítménye 1,5 kW. Mekkora a hatásfoka? [85 %]
- 5. Határozzuk meg az ábrán látható hálózat R_3 ellenállásán eső feszültséget és teljesítményt! I=5 A, $R_1=1$ $\Omega\,,~R_2=2$ $\Omega\,,~R_3=10$ $\Omega\,.~[3,85$ V, 1,48 W]

6. Egy 250 Ω ellenállású fogyasztóval ismeretlen ellenállást kapcsolunk sorosan. Az áramkörben 220 V feszültség hatására 0,5 A erősségű áram folyik .Mekkora az ismeretlen ellenállás? Mekkora az ismeretlen ellenállásra és a fogyasztóra jutó feszültség és teljesítmény? Mekkora feszültséget mutatna a 250 Ω ellenállásra kötött 2000 Ω belső ellenállású mérőműszer? [190 Ω , 47,5 W, 62,5 W, 118,6 V]

- 7. Egy 100 W-os 220 V-os izzólámpát 220 V-os hálózatra kötünk. Mekkora az átfolyó áram? Egy óra alatt mennyi töltés áramlik át a lámpán és mennyi az elfogyasztott energia? Mekkora a lámpa ellenállása? [0,455 A, 1636,4 C, 100 Wh, 484 Ω]
- 8. Egy 10 V forrásfeszültségű 2 Ω belső ellenállású áramforrásról 8 Ω ellenállású fogyasztót működtetünk. Mekkora áram folyik a körben? Mekkora az elrendezés hatásfoka? [1 A, 80 %]
- Milyen hosszú 25 Ω/m ellenállású huzal kell egy 220 V-os hálózatról üzemeltetendő 2 kW teljesítményű fűtőtesthez? Milyen hosszú legyen a vezeték 110 V feszültség esetén? [96,8 cm, 24,2 cm]

12. Szuperpozíció

1. Határozzuk meg az ábrán látható hálózat ágáramait a szuperpozíció elvével! $U_1=5~V,~U_2=8~V,~R_1=6~\Omega$, $R_3=10~\Omega$. [0,5 A, 0,8 A, 1,3 A]

2. Határozzuk meg az ábrán látható hálózat ágáramait a szuperpozíció elvével! $U_1=5$ V, $U_2=8$ V, $R_1=7$ Ω , $R_2=2$ Ω , $R_3=10$ Ω . [5/26 A, 43/52 A, 33/52 A]

3. Határozzuk meg az ábrán látható hálózatban az U feszültséget szuperpozíció elvével! $U_1=10~V,~U_2=10,5~V,~R_1=0,1~\Omega$, $R_2=0,15~\Omega$. [10,2~V]

4. Számoljuk ki az ábrán látható áramkör ellenállásaira eső feszültségeket a szuperpozíció elvével! U_1 = 10 V, U_2 = 12 V, R_1 = 1 Ω , R_2 = 2 Ω , R_3 = 5 Ω . [10/17 V, 44/17 V, 160/17 V]

5. Határozzuk meg az ábrán látható hálózat ágáramait a szuperpozíció elvével! I = 2 A, R_1 = 1 Ω , R_2 = 2 Ω , R_3 = 3 Ω , U = 5 V. [2 A, 0,2 A, 1,8 A]

6. Határozzuk meg az ábrán látható hálózat R_4 ellenállásán folyó áramot! $U_1=2~V,~~U_2=3~V,~~R_1=~1~\Omega\,,~~R_2=2~\Omega\,,~~R_3=3~\Omega\,,~~R_4=4~\Omega\,.$ [0,36 A]

13. Notron és Thevenin helyettesítő kép

1. Határozzuk meg az R_4 ellenálláson folyó áramot mindkét helyettesítő kép segítségével! $U=3~V,~R_1=20~\Omega,~R_2=30~\Omega,~R_3=30~\Omega,~R_4=25~\Omega.$ [37,5 mA]

2. Határozzuk meg az R_4 ellenálláson folyó áramot mindkét helyettesítő kép segítségével! I=2 A, $R_1=20$ Ω , $R_2=30$ Ω , $R_3=30$ Ω , $R_4=25$ Ω . [0,343 A]

3. Határozzuk meg az R_5 ellenálláson folyó áramot mindkét helyettesítő kép segítségével! I=5 A, U=10 V, $R_1=1$ Ω , $R_2=2$ Ω , $R_3=6$ Ω , $R_4=2$ Ω , $R_5=5$ Ω . [0,555 A]

4. Számítsuk ki az R_4 ellenálláson folyó áramot a Thevenin helyettesítő kép segítéségével. $U_1=5~V,~U_2=3~V,~U_3=3~V,~R_1=2~\Omega,~R_2=3~\Omega,~R_3=5~\Omega,~R_4=2~\Omega$. [0,146 A]

5. Határozzuk meg az ábrán látható kapcsolás R_3 ellenállásán folyó áramot a Thevenin helyettesítő kapcsolás segítségével! U_1 = 12 V, U_2 = 12,2 V, R_1 = 0,15 Ω , R_2 = 0,175 Ω , R_3 = 20 Ω . [0,602 A]

6. Határozzuk meg a hídkapcsolásban az átkötő ágban folyó áramot Thevenin helyettesítő kép segítségével! $U=13~V,~R_1=1~\Omega,~R_2=2~\Omega,~R_3=1~\Omega,~R_4=2~\Omega,~R_5=1~\Omega$. [13/7 A]

7. Határozzuk meg az ábrán látható kapcsolásban az R_6 ellenálláson folyó áramot mindkét helyettesítő kép segítségével! $U = 100 \text{ V}, R_i = i \Omega$. [6,1 A]

8. Határozzuk meg az ábrán látható elrendezésben az R₄ ellenálláson folyó áramot mindkét helyettesítő kép segítségével! U=80~V, $R_1=20~\Omega$, $R_2=20~\Omega$, $R_3=30~\Omega$, $R_4=10~\Omega$. [0,8 A]

9. Az ábrán láthatóan három generátort kapcsoltunk sorosan. Mekkora lesz a helyettesítő generátor forrásfeszültsége és belső ellenállása, az áramkör adatai a következők: $U_1=1,5~V,~U_2=3~V,~U_3=4,5~V,~R_{b1}=1,1~\Omega~,~R_{b2}=1,5~\Omega~,~R_{b3}=0,4~\Omega~.~[~9~V,~3~\Omega~]$

10. Három generátort kapcsoltunk párhuzamosan egymással. Számítsuk ki a helyettesítő generátor adatait! $U_1 = U_2 = U_3 = 6 \text{ V}$,

$$R_{b1} = R_{b2} = R_{b3} = 3 \Omega . [6V, 1 \Omega]$$

11. Mekkora feszültség esik a generátorok közös terhelő ellenállására az alábbi kapcsolásban? U_1 = 12 V, U_2 = 9 V, R_{b1} = 100 Ω , R_{b2} = 50 Ω , R = 1,5 k Ω . [9,73 V]

12. Az ábrán látható kapcsolással egy 100Ω ellenállású jelfogót működtetünk. Mekkora áram halad át az eszközön? Minden generátor belsőellenállása $1 \Omega \cdot U_1 = 6 V$, $U_2 = U_4 = 3 V$, $U_3 = U_5 = 1,5 V$. Készítsük el az áramkör áramgenerátoros (Norton) helyettesítő képét! [0,1 A]

13. Számítsuk ki az ábrán látható áramkör feszültséggenerátoros (Thevenin) helyettesítő kapcsolásának forrásfeszültségét és belső ellenállását! U = 110 V, R₁ = 5 Ω , R₂ = 3 Ω , R₃ = 6 Ω , R₄ = 8 Ω . [73,3 V, 3,3 Ω]

14. Készítsük el az ábrán látható hálózat áramgenerátoros és feszültséggenerátoros helyettesítő képét! U=100~V,

$$R_1 = R_2 = R_3 = 1.5 \text{ k}\Omega$$
, $R_4 = R_5 = 500 \Omega$. [100 V, 300 Ω 0.33 A]

14. Fajlagos ellenállás, ellenállás hőmérséklet függése, elektromos munka

- 1. Egy 56 Ah-s akkumulátor maximálisan hány coulomb töltést tárolhat? [2,016·10⁵ C]
- 2. Egy tranzisztoros rádiókészüléket 0,1 Ah-s gombakkumulátor táplál. Elvileg mennyi ideig tudja ez a készüléket üzemeltetni, ha a készülék áramfelvétele 5,5 mA? [18,18 h]
- 3. Mekkora az ellenállása annak a 20 °C-os vörösréz huzalnak, amelynek hossza 100 m, keresztmetszete 1 mm²? Mekkora lesz az ellenállása 40 °C-on? [$1.75~\Omega$]
- 4. Minimálisan mekkora átmérőjű vörösrézhuzalt kell használnunk egy 50 Ω -os fogyasztó bekötéséhez, ha a fogyasztó a 230 V-os feszültségforrástól 20 m-re van, és a huzalon megengedett maximális feszültségesés 4 V?
- 5. Egy vasúti sín keresztmetszete 0,45 dm². Mekkora az ellenállása a sín 1 km hosszú szakaszának? Anyagának fajlagos ellenállása 0,12 Ω mm²/m. [0,026 Ω]
- 6. Egy 4400 V-os áramforrásról 5 km-re lévő gépet működtetnek. Az áramot szállító vezetéken 10 % teljesítményveszteség léphet fel, amikor a gép 10 kW teljesítménnyel üzemel. Mekkora az áramerősség és a rézvezeték ellenállása, keresztmetszete? [
- 7. Egy 10 V forrásfeszültségű, 2 Ω belső ellenállású áramforrás 8 Ω ellenállású fogyasztót táplál. Mekkora áram folyik a rendszerben, mekkora a hatásfok? [1 A, 80 %]

- 8. Milyen hosszú 25 Ω /m ellenállású huzal kell egy 230 V-os hálózatról üzemeltetett 2 kW teljesítményű fűtőtesthez? [1,058 m]
- 9. Egy 130 V forrásfeszültségű és 0,5 Ω belső ellenállású generátortól 800 m távolságra 60 Ω ellenállású fogyasztó van. A generátort a fogyasztóval alumínium vezeték köti össze, amelynek átmérője 3,4 mm. Mekkora a generátor és a fogyasztó kapocsfeszültsége? Mekkora a fogyasztó teljesítménye és a rendszer hatásfoka? [129 V, 118,6 V, 234,2 W, 91,17 %]
- 10. Mekkora lesz egy egyenáramú gép gerjesztő tekercsének ellenállása 100 °C-on, ha 20 °C-on 192 Ω volt és a tekercs anyagénak hőfoktényezője 0,00392 1/°C? [252,2 Ω]
- 11. Mekkora annak a krómnikkel fűtőszálnak az ellenállása, amelynek hossza 4,5 m, átmérője 0,35 mm, fajlagos ellenállása $1,1\cdot10^{-6}~\Omega$ m? [51,44 Ω]
- 12. Egy 726 m hosszú, 0,2 mm átmérőjű vezető ellenállása 80 °C-on 500 Ω . Mekkora a fajlagos ellenállása 20 °C-on. A vezető hőmérsékleti együtthatója 0,004 1/°C. [0,0164 Ω mm²/m]
- 13. Elektromos melegítő ellenállása 100 Ω , másodpercenként 133 J hőt termel. Mekkora áram folyik rajta keresztül? [1,16 A]
- 14. Egy 500 Ω -os fogyasztó 220 V feszültségen üzemel. Mennyi energiát fogyaszt 3 óra alatt és mekkora a termelt hőmennyiség? [290,4Wh, 1,045·10⁶ J]

15. Hurokáramok, csomóponti potenciál, csillag delta

1. Határozzuk meg az ábrán látható elrendezés ágáramait a hurokáramok és a csomóponti potenciálok módszerével is. $U=100~V,\,R_1=R_3=1,5~k\,\Omega\,,\,R_4=R_2=500~\Omega\,,\,I=2~A.$

2. Számítsuk ki az ábrán látható hálózatok eredő ellenállását az A-B kapcsokra a csillag-delta átalakítás segítségével.

$$\begin{array}{l} R_1 = 1 \; \Omega \,, \; R_2 = 5 \; \Omega \,, \; R_3 = 7 \; \; \Omega \,, \\ R_4 = 10 \; \Omega \,, \; R_5 = 3 \; \; \Omega \,, \; R_6 = 2 \; \; \Omega \,. \\ \left[\; 4{,}79 \; \; \Omega \; \right] \end{array}$$

3. Határozzuk meg az I_2 ágáramot a hurokáramok módszerével! $U_1=20$ V, $U_2=10$ V, I=2 A, $R_1=1$ Ω , $R_2=5$ Ω , $R_3=7$ Ω , $R_4=10$ Ω , $R_5=3$ Ω , $R_6=2$ Ω . Oldjuk meg a feladatot a csomóponti potenciálok segítéségével is! [2,4 A]

4. Adjuk meg az ábrán látható áramkör eredő ellenállását és az egyes ágakban folyó áramok nagyságát! $R_1 = 20~\Omega$, $R_2 = 30~\Omega$, $R_3 = 50~\Omega$, $R_4 = 60~\Omega$, $R_5 = 50~\Omega$, U = 60~V. Oldjuk meg a feladatot csillag delta átalakítással, a hurokáramok és a csomóponti potenciálok módszerével is! $[I_1 = 52/59~A, I_2 = 38/59~A, I_3 = 50/59A, I_4 = 40/59~A, I_5 = 2/58~A,$

$$[I_1 = 52/59 \text{ A}, I_2 = 38/59 \text{ A}, I_3 = 50/59 \text{A}, I_4 = 40/59 \text{ A}, I_5 = 2/58 \text{ A}, I = 90/59 \text{ A}, R_e = 39 1/3 \Omega$$

5. Határozzuk meg a következő áramkör eredő ellenállását csillag delta átalakítással! R_1 = 2 Ω , R_2 = 5 Ω , R_3 = 4 Ω , R_4 = 1 Ω , R_5 = 3 Ω . [186/71 Ω]

6. Számítsa ki az ágáramokat a hurokáramok módszerével! R_1 = 50 Ω , R_2 = 100 Ω , R_3 = 200 Ω , U_1 = 10 V, U_2 = 20 V, U_3 = 17 V.[0,02 A, 0,11 A, 0,13 A]

7. Számoljuk ki a Wheatstone-híd átkötő ágában folyó áramot a hurokáramok módszerével. Oldjuk meg a feladatot a csomóponti potenciálok módszerével is! $R_1=1~\Omega$, $R_2=2~\Omega$, $R_3=50~\Omega$, $R_4=60~\Omega$, $R_5=5~\Omega$, $R_0=6~\Omega$, U=10~V. [0,0123 A]

8. Adjuk meg az R_1 és az R_2 ellenállásra eső feszültséget a hurokáramok módszerével. $R_1=50~\Omega$, $R_2=20~\Omega$, $R_3=R_4=1~\Omega$, $R_5=2~\Omega$, U=230~V. Oldjuk meg a feladatot a csomóponti potenciálok módszerével is! $[U_1=221,6~V,U_2=216,94~V]$

9. Határozzuk meg a következő áramkör eredő ellenállását a csillag-delta átalakítás segítségével! $R_1=R_3=R_5=10~\Omega$, $R_2=R_4=20~\Omega$. [5,6875 Ω]

10. Mekkora áram folyik az ábrán látható hálózat egyes ágaiban? A faladatot a csomóponti potenciálok elvével és a hurokáramok módszerével is oldja meg! $R_1=R_3=R_5=R_7=10~k~\Omega$, $R_2=R_4=R_6=R_8=20~k~\Omega$, $U_1=U_3=5~V$, $U_2=U_4=10~V$.

$$R_2 = R_4 = R_6 = R_8 = 20 \text{ k}\Omega$$
, $U_1 = U_3 = 5 \text{ V}$, $U_2 = U_4 = 10 \text{ V}$.

