TITLE HERE

In Partial Fulfillment of the Requirements for the Degree of degree ${\it degree}$

1st Semester A.Y. 2025-2026

by

Nmae

Abstract

Contents

\mathbf{A}	bstra	ct	2					
1	Introduction							
	1.1	Background of the Study	4					
	1.2	Statement of the Problem	4					
	1.3	Objective of the Study	4					
	1.4	Study Hypothesis	4					
	1.5	Significance of the Study	4					
	1.6	Scope and Limitation	4					
	1.7	Definition of Terms	4					
2	Bac	kground	4					
3	Met	chodology	4					
	3.1	Nonrank-based method	4					
	3.2	Parametric bootstrap	6					
Re	efere	nces	6					
\mathbf{A}_1	Appendices							

Introduction 1

- Background of the Study 1.1
- 1.2 Statement of the Problem
- 1.3 Objective of the Study
- 1.4 Study Hypothesis
- 1.5 Significance of the Study
- 1.6 Scope and Limitation
- **Definition of Terms** 1.7
- **Background** 2
- 3 Methodology

3.1 Nonrank-based method

Algorithm 1 Computation of Joint Confidence Region via Nonrank-based Method

Let the data consist of $\hat{\theta}_1, \dots, \hat{\theta}_K$ and suppose Σ is known

1: **for**
$$b = 1, 2, ..., B$$
 do

2: Generate
$$\hat{\boldsymbol{\theta}}_b^* \sim N_K \left(\hat{\boldsymbol{\theta}}, \boldsymbol{\Sigma} \right)$$
 and write $\hat{\boldsymbol{\theta}}_b^* = \left(\hat{\theta}_{b1}^*, \hat{\theta}_{b2}^*, \dots, \hat{\theta}_{bK}^* \right)'$

3: Compute
$$t_b^* = \max_{1 \le j \le K} \left| \frac{\hat{\theta}_{bj}^* - \hat{\theta}_j^*}{\sigma_j} \right|$$

4: end for

5: Compute the $(1 - \alpha)$ -sample quantile of $t_1^*, t_2^*, \dots, t_B^*$, call this \hat{t} .

6: The joint confidence region of
$$\theta_1, \theta_2, \dots, \theta_K$$
 is given by
$$\mathfrak{R} = \left[\hat{\theta}_1 \pm \hat{t} \times \sigma_1\right] \times \left[\hat{\theta}_2 \pm \hat{t} \times \sigma_2\right] \times \dots \times \left[\hat{\theta}_K \pm \hat{t} \times \sigma_K\right]$$

As shown in Algorithm 1, the nonrank-based method...

Algorithm 2 Computation of Coverage Probability for Nonrank-based Method

For given values of $\theta_1, \theta_2, \dots, \theta_K$ and Σ

- 1: for replications = $1, 2, \dots, 5000$ do
- 2: Generate $\hat{\boldsymbol{\theta}} \sim N_K(\boldsymbol{\theta}, \boldsymbol{\Sigma})$
- 3: Compute the rectangular confidence region \Re using Algorithm 1.
- 4: Check if $(\theta_1, \theta_2, \dots, \theta_K) \in \mathfrak{R}$ and compute $T = \prod_{k=1}^K |\Lambda_{Ok}|$.
- 5: end for
- 6: Compute the proportion of times that the condition in step 4 is satisfied and the average of ${\cal T}$

Algorithm 3 Computation of Joint Confidence Region via Parametric Bootstrap

- 1: **for** $b = 1, 2, \dots, B$ **do**
- 2: Generate $\hat{\theta}_{bi}^* \sim N(\hat{\theta}_i, \sigma_i^2)$, i = 1, 2, ..., K and let $\hat{\theta}_{b(1)}, \hat{\theta}_{b(2)}, ..., \hat{\theta}_{b(K)}$ be the corresponding ordered values

	k = 1	k=2		k = K				
b=1	$\hat{ heta}_{1(1)}^*$	$\hat{ heta}_{1(2)}^*$		$\hat{ heta}_{1(K)}^*$				
b=2	$\hat{ heta}_{2(1)}^*$	$\hat{ heta}_{2(2)}^*$		$\hat{ heta}_{2(K)}^*$				
:	•	•		:				
b = B	$\hat{\theta}_{B(1)}^*$	$\hat{\theta}_{B(2)}^*$		$\hat{\theta}_{B(K)}^*$				

3: Compute

$$\hat{\sigma}_{b(k)}^* = \sqrt{\text{kth ordered value among } \{\hat{\theta}_{b1}^{*2} + \sigma_1^2, \hat{\theta}_{b2}^{*2} + \sigma_2^2, \dots, \hat{\theta}_{bK}^{*2} + \sigma_K^2\} - \hat{\theta}_{(k)}^{*2}}$$

4: Compute
$$t_b^* = \max_{1 \le k \le K} \left| \frac{\hat{\theta}_{b(k)}^* - \hat{\theta}_k^*}{\sigma_{b(k)}^*} \right|$$

- 5: end for
- 6: Compute the (1α) -sample quantile of $t_1^*, t_2^*, \dots, t_B^*$, call this \hat{t} .
- 7: The joint confidence region of $\theta_{(1)}, \theta_{(2)}, \dots, \theta_{(K)}$ is given by

$$\mathfrak{R} = \left[\hat{\theta}_{(1)} \pm \hat{t} \times \hat{\sigma}_{(1)}\right] \times \left[\hat{\theta}_{(2)} \pm \hat{t} \times \hat{\sigma}_{(2)}\right] \times \cdots \times \left[\hat{\theta}_{(K)} \pm \hat{t} \times \hat{\sigma}_{(K)}\right]$$

where $\hat{\sigma}_{(k)}$ is computed as

$$\hat{\sigma}_{(k)} = \sqrt{\text{kth ordered value among } \left\{\hat{\theta}_1^2 + \sigma_1^2, \hat{\theta}_2^2 + \sigma_2^2, \dots, \hat{\theta}_K^2 + \sigma_K^2\right\} - \hat{\theta}_{(k)}^2}$$

Algorithm 4 Computation of Coverage Probability for Parametric Bootstrap

For given values of $\theta_1, \theta_2, \dots, \theta_K$ and thus $\theta_{(1)}, \theta_{(2)}, \dots, \theta_{(K)}$

- 1: for replications = $1, 2, \dots, 5000$ do
- 2: Generate $\hat{\theta}_i \sim N(\theta_i, \sigma_i^2)$, for i = 1, 2, ..., K
- 3: Compute the rectangular confidence region \mathfrak{R} using Algorithm 3.
- 4: Check if $(\theta_{(1)}, \theta_{(2)}, \dots, \theta_{(K)}) \in \mathfrak{R}$ and compute $T = \prod_{k=1}^{K} |\Lambda_{Ok}|$.
- 5: end for
- 6: Compute the proportion of times that the condition in step 4 is satisfied and the average of T

3.2 Parametric bootstrap

THIS IS Rizzo (2008) and Klein et al. (2020)

References

Klein, M., Wright, T., & Wieczorek, J. (2020). A joint confidence region for an overall ranking of populations.

Rizzo, M. (2008). Statistical computing with r.

Appendices