# CS634 – Data Mining Midterm Project Report

Student Name: Catalin Mocanu

Email: cm788@njit.edu

Course: CS634 - Data Mining

Instructor: Dr. Yasser Abduallah

### 1. Introduction

The objective of this project is to explore association rule mining techniques for market basket analysis. The goal is to identify frequent itemsets and generate association rules showing relationships between products across five datasets (Amazon, BestBuy, Sephora, Target and IKEA). The project compares three algorithms: a custom Brute Force implementation, Apriori, and FP-Growth, all executed via an interactive Python menu.

#### 2. Dataset Creation

#### 2.1 Items

Each dataset contains 20 transactions representing different product categories, such as cosmetics or household goods.

## 2.2 Transactions

Below are the transactions from dataset ikea as an example.

| Transaction ID | Transaction               |
|----------------|---------------------------|
| Trans1         | table,chair,lamp          |
| Trans2         | bed frame,pillow,rug      |
| Trans3         | desk,lamp,bookshelf       |
| Trans4         | lamp,rug,table            |
| Trans5         | bed frame,pillow,lamp     |
| Trans6         | chair,table,rug           |
| Trans7         | desk,bookshelf,chair      |
| Trans8         | bed frame,pillow,lamp,rug |
| Trans9         | table,chair,lamp          |
| Trans10        | rug,lamp,bookshelf        |
| Trans11        | desk,lamp,table           |
| Trans12        | bed frame,pillow,rug      |
| Trans13        | chair,table,bookshelf     |
| Trans14        | desk,bookshelf,lamp       |
| Trans15        | rug,lamp,chair            |
| Trans16        | bed frame,pillow,lamp,rug |
| Trans17        | chair,table,desk          |
| Trans18        | bookshelf,desk,lamp       |
| Trans19        | bed frame,pillow,table    |
| Trans20        | table,chair,rug,lamp      |

Fig. 1 – Ikea dataset transactions

### 2.3 Dataset Notes

Datasets were created manually and stored as CSV files inside a 'data' folder. Each file includes 20 transactions, cleaned and formatted using pandas for analysis.

# 3. Brute Force Algorithm

## 3.1 Method

The brute-force algorithm enumerates all item combinations using itertools, counts their occurrences and filters by minimum support. It then generates rules (A->B) if confidence and lift thresholds are satisfied.

# 3.2 Example for dataset (min support = 0.3 and min conf = 0.5)

## ikea\_frequent\_itemsets

| k | itemset          | support |
|---|------------------|---------|
| 1 | lamp             | 0.65    |
| 1 | rug              | 0.45    |
| 1 | table            | 0.45    |
| 1 | chair            | 0.4     |
| 1 | bed frame        | 0.3     |
| 1 | bookshelf        | 0.3     |
| 1 | desk             | 0.3     |
| 1 | pillow           | 0.3     |
| 2 | bed frame,pillow | 0.3     |
| 2 | chair,table      | 0.3     |
| 2 | lamp,rug         | 0.3     |

Fig. 2 – Brute force frequent itemsets

# ikea\_bruteforce\_rules

| antecedent | consequent | support | confidence         | lift     |
|------------|------------|---------|--------------------|----------|
| bed frame  | pillow     | 0.3     | 1.0                | 3.333333 |
| pillow     | bed frame  | 0.3     | 1.0                | 3.333333 |
| chair      | table      | 0.3     | 0.7500000000000000 | 1.666667 |
| rug        | lamp       | 0.3     | 0.666666666666670  | 1.025641 |
| table      | chair      | 0.3     | 0.666666666666670  | 1.666667 |

Fig. 3 – Brute force rules

# 4. Apriori and FP-Growth

# 4.1 Apriori

The Apriori algorithm was implemented using **mlxtend.frequent\_patterns.apriori.** It produced identical results to the brute-force approach.

ikea\_apriori\_frequent\_itemsets

| support | itemsets                           |
|---------|------------------------------------|
| 0.3     | frozenset({'bed frame'})           |
| 0.3     | frozenset({'bookshelf'})           |
| 0.4     | frozenset({'chair'})               |
| 0.3     | frozenset({'desk'})                |
| 0.65    | frozenset({'lamp'})                |
| 0.3     | frozenset({'pillow'})              |
| 0.45    | frozenset({'rug'})                 |
| 0.45    | frozenset({'table'})               |
| 0.3     | frozenset({'pillow', 'bed frame'}) |
| 0.3     | frozenset({'table', 'chair'})      |
| 0.3     | frozenset({'lamp', 'rug'})         |

Fig. 4 – Apriori frequent itemsets

| antecedents              | consequents              | antecedent support | consequent support | support | confidence         | lift               |
|--------------------------|--------------------------|--------------------|--------------------|---------|--------------------|--------------------|
| frozenset({'pillow'})    | frozenset({'bed frame'}) | 0.3                | 0.3                | 0.3     | 1.0                | 3.3333333333333300 |
| frozenset({'bed frame'}) | frozenset({'pillow'})    | 0.3                | 0.3                | 0.3     | 1.0                | 3.3333333333333300 |
| frozenset({'table'})     | frozenset({'chair'})     | 0.45               | 0.4                | 0.3     | 0.666666666666670  | 1.666666666666700  |
| frozenset({'chair'})     | frozenset({'table'})     | 0.4                | 0.45               | 0.3     | 0.7500000000000000 | 1.666666666666700  |
| frozenset({'rug'})       | frozenset({'lamp'})      | 0.45               | 0.65               | 0.3     | 0.666666666666670  | 1.0256410256410300 |

Fig. 5 – Apriori rules

### 4.2 FP-Growth

FP-Growth was implemented using **mlxtend.frequent\_patterns.fpgrowth**. It achieved the same frequent itemsets and rules as Apriori but with shorter runtime.

ikea\_fpgrowth\_frequent\_itemsets

| support | itemsets                           |
|---------|------------------------------------|
| 0.65    | frozenset({'lamp'})                |
| 0.45    | frozenset({'table'})               |
| 0.4     | frozenset({'chair'})               |
| 0.45    | frozenset({'rug'})                 |
| 0.3     | frozenset({'pillow'})              |
| 0.3     | frozenset({'bed frame'})           |
| 0.3     | frozenset({'desk'})                |
| 0.3     | frozenset({'bookshelf'})           |
| 0.3     | frozenset({'table', 'chair'})      |
| 0.3     | frozenset({'lamp', 'rug'})         |
| 0.3     | frozenset({'pillow', 'bed frame'}) |

Fig. 5 – FP-Growth frequent itemsets

| antecedents              | consequents              | antecedent support | consequent support | support | confidence         | lift               |
|--------------------------|--------------------------|--------------------|--------------------|---------|--------------------|--------------------|
| frozenset({'table'})     | frozenset({'chair'})     | 0.45               | 0.4                | 0.3     | 0.666666666666670  | 1.666666666666700  |
| frozenset({'chair'})     | frozenset({'table'})     | 0.4                | 0.45               | 0.3     | 0.7500000000000000 | 1.666666666666700  |
| frozenset({'rug'})       | frozenset({'lamp'})      | 0.45               | 0.65               | 0.3     | 0.666666666666670  | 1.0256410256410300 |
| frozenset({'pillow'})    | frozenset({'bed frame'}) | 0.3                | 0.3                | 0.3     | 1.0                | 3.3333333333333300 |
| frozenset({'bed frame'}) | frozenset({'pillow'})    | 0.3                | 0.3                | 0.3     | 1.0                | 3.3333333333333300 |

Fig. 6 – FP-Growth rules

### 5. Results across datasets

Summary of all the datasets :

Results were consistent across all methods. Lower support thresholds produced more frequent itemsets and rules, while higher thresholds reduced them.

=== Summary === Algorithm #Transactions #Frequent Itemsets #Rules Dataset Time (s) 0 IKEA Brute Force 20 11 0.003198 1 Apriori 20 IKEA 5 0.004769 IKEA FP-Growth 5 0.005679 2 20 11

Fig. 7 – Summary of all 3 algorithms

### 6. Discussion

The three algorithms produced identical results for the IKEA dataset, each identifying 11 frequent itemsets and 5 association rules. The execution times were also similar, all under 0.006 seconds, due to the small dataset size.

Even though brute force is conceptually the slowest method, it performed efficiently because the dataset only had 20 transactions. As the dataset size grows, its computational cost increases exponentially since it must evaluate every possible combination of items.

Apriori improves upon Brute Force by pruning infrequent itemsets early, reducing the search space, but it still requires multiple passes through the dataset, which can become costly at scale.

FP-Growth is the most scalable method, using a compact FP-tree structure that eliminates the need for candidate generation. This allows FP-Growth to maintain performance advantages for large datasets, making it the preferred choice in real-world applications.

#### 7. Conclusion

This project demonstrated the implementation and comparison of three association rule mining techniques. For small datasets, all methods performed equally well. FP-Growth is the best choice for scalability in larger datasets.

# 8. Appendix

# 8.1 Project Structure



## 8.2 Required packages

- pandas
- mlxtend
- numpy

## 8.3 How to run the project

GitHub link: <a href="https://github.com/catalinm-24/Mocanu">https://github.com/catalinm-24/Mocanu</a> Catalin midtermproject/tree/main

PS: I added an excel file to the output folder because I couldn't upload it empty to github

## **Option 1 – Run in Jupyter Notebook**

Step 1 – Open the Jupyter Notebook file

Step 2 – Click Run All

Step 3 - You will be asked to say which database you want to run, followed by which Algorithm, and then input the minimum support and confidence. The rules and frequent itemsets are generated in excel files in /output and the program gives a quick summary of each algorithm that was run.

## Option 2 - Run in terminal

Step 1 – Open a terminal window

Step 2 – Navigate to the project folder:

• .../Midterm\_Project\_Association\_Rules

Step 3 – Create and activate a virtual environment:

- python3 -m venv .venv
- source .venv/bin/activate

Step 4 – Run the project

Step 5 – You will be asked to input which database you want to run, followed by which Algorithm, and then input the minimum support and confidence. The rules and frequent itemsets are generated in excel files in /output and the program gives a quick summary of each algorithm that was run.