

امتحان مادة الفيزياء للصف الحادي عشر (تدريبي)

للعام الدراسي: ٤٤٤ه - ٢٠٢٣/٢٠٢٢م الدور: الأول - الفصل الدراسي: الثاني

* عدد صفحات الأسئلة: ١١ صفحة.	* زمن الامتحان: ساعتان ونصف
* تُكتب الإجابة بالقلم الأزرق أو الأسود.	* الإجابة في دفتر الأسئلة نفسه.
, , , ,	71 T 1
الـصـف:	اسم الطالب:

اسم المُراجع	اسم المصحح	الدرجة	المفردة	رقم الصفحة
			7-1	١
			٤-٣	۲
			0	٣
			٦	٤
			٨_٧	٥
			1 9	٦
			11	٧
			17	٨
			-17°	٩
			_10 1V	١.
			١٨	11
راجَع الجمع:	جمَعه:		موع	المج
درجة/درجات فقط.			الحروف	المجموع ب

أجب عن جميع الأسئلة الآتية

() كرة كتلتها (g g (59 g)،وتتحرك بسرعة مقدار ها(ms^{-1})، فإن كمية تحركها بوحدة ($Kg.ms^{-1}$): ظلل الاجابة الصحيحة: [1] ()

124 ☐ 118 ☐ 29.5 ☐ 0.118 ☐

٢) الشكل (١-١) يوضح تصادماً مرناً لجسمين (M=2 kg وM=1 kg).

- بيّن حسابياً أن السرعة النسبية للجسمين متساوية.

()[Y]____

	عدول (٣-١) بين التصادم المرن كلياً والتص التحد الله حالة قبالحدكة بكتابة (محفظة	
عیر محفوطه) [۱] () تصادم غیر مرن	التحرك وطاقة الحركة بكتابة (محفوظة التحرك وطاقة الحركة بكتابة المحفوظة التحري	ال حارل حمیه
		كمية التحرك
		طاقة الحركة
	الجدول (۱-۱) ته (1200 Kg)، يندفع منه كمية من الغاز (200). 200). كيف يطبق مبدأ حفظ كمية التحرك أثناء اند	سرعة (ms ⁻¹
()[Y]	عة الصاروخ.	ب) احسب سر
()[7]		

٥) في الشكل (٥-١) متجهات كمية التحرك لجسيمين متماثلين (1 و2) قبل التصادم وبعده. وكان الجسيم 2 ساكناً قبل التصادم.

أ) جد مركبة كمية التحرك للجسيمين (1 و2) على المحور السيني فقط، قبل وبعد التصادم.

()[٤]

ب) بين أن كمية التحرك محفوظة لهذا التصادم على المحور السيني.

)[7]

 $(30~ms^{-1})$ نسير بسرعة ((A) كتلتها ((A) كتلتها ((A) تسير بسرعة ((A) نسير بسرعة ((A)بأخرى ساكنة (B) كتلتها (45 Kg) وكان زمن التصادم (B). فتحركت الكتلة (B) أبسرعة $(20\ imes 1^{-1})$ بعد التصادم.

- احسب القوة المحصلة المؤثرة على الجسم (B).

القوة المحصلة = N [٣] ()

(7) يتحرك راكب دراجة في مسار دائري، فيقطع نصف المسار الدائري خلال (8). فإن سرعته المنجهة الزاوية بوحدة ($^{-1}$ rad $^{-1}$): ظلل الإجابة الصحيحة : [1] ()

 $0.628 \, \square$

 $0.314 \square$

 $6.28\,\square$

 $3.14 \square$

 $(^{ } \wedge)$ الشكل ($^{ } \wedge -)$ يوضح سدادة مربوطة في نهاية خيط تتحرك بسرعة متجهة خطية (2 ms-1) في مسار دائري فقطعت (θ) ازاحة قدرها

أ) أوجد الإزاحة الزاوية (θ) بالدرجات.

) [٣]

الشكل (۸-۱)

ب) أوجد التسارع المركزي لحركة السدادة.

ج) صِف كيف ستتحرك السدادة إذا انقطع الخيط.

() [7]

٩) يدور كوكب المشتري حول الشمس دورة واحدة كل (4380) يوم بسرعة ثابتة، ونصف قطر المدار (778x10⁹m).

أ) اشرح المقصود بالسرعة المتجهة الزاوية.

()[']

ب) احسب السرعة المتجهة (\overline{v}) .

()[٤]

١٠) يوضح الشكل (١٠١٠) بندول مخروطي لكرة مربوطة في نهاية خيط كتلتها (0.5 Kg)

تتحرك في مسار دائري.

أ) عرف القوة المركزية.

45°

ب) اوجد القوة المركزية (\overrightarrow{F}) التي تحافظ على حركة الكرة في مسار دائري. الشكل (۱۰۱-۱)

N = Nمقدار القوة المركزبة () [0]

١١) الشكل (١١-١) يمثل تمثيل بياني (الإزاحة - الزمن) لذبذبة صوت إحدى الآلات الموسيقية.

- احسب تردد الحركة الاهتزازية للصوت.

() [۳] _____Hz = التردد

١٢) الشكل (١٢-١) يوضح جسم يهتز بحركة توافقية بسيطة بحيث تتغير ازاحته مع الزمن.

أ) احسب إزاحة الجسم عند زمن قدره (4 s).

إزاحة الجسم = m) [٣]____

ب) اوجد أقصى قيمة لتسارع الجسم.

) [1]

العام الدراسى: ٢٠ ٢٣/٢٠٢م	الفصل الدراسى: الثانى	الدور: الأول	الصف: الحادي عشر	المادة: الفيزياء
1				
، (التعريف ووحدة القياس) [۲] ()	ردد الزا <i>وي من حيث</i>	بين التردد والت	ِل (۱۳-۱) قارن ب	۱۳) في الجدو
التردد الزاوي		التردد		
				التعريف
عيث تتغير ازاحته حسب العلاقة	$x = 0.04 \sin(v + v)$	يتحرك حر (0) $(2\pi 5t)$	سيط كتلته (2 Kg). م الصيغة - x ² السرعة المتجهة (م	أ) باستخدا

)[']_

) [۳] ______ms-1 السرعة المتجهة ms^{-1}

ب) احسب الطاقة الحركية العظمى للبندول.

١٥) يبين الشكل (١-١٠) التمثيل البياني (الازاحة - الزمن) لجسمين مهتزين متماثلين.

أ) ما المقصود بفرق الطور.

)['] ب) احسب فرق الطور بين الاهتزازتين. (اعطِ اجابتك بالراديان) () [°]_____ فرق الطور بين الاهتزازتين = Rad ١٦) أقصى إزاحة للجسم المهتز عن موضع اتزانه. ظلل الإجابة الصحيحة: [١] () 🗌 السعة 👚 الإزاحة 🔝 الطور □ الرنين

٤

١٧) ما سبب حدوث الرنين.

() [']_____

۱۸) الشكل (۱۸-۱) يبين اهتزازات تعرضت للتخميد.

- املأ الفراغ بكتابة نوع التخميد بما يتناسب مع رمز الاهتزازه المخمدة.

$$()['] \underline{ } = a \bullet$$

$$()['] \underline{ } = b \bullet$$

$$()['] \underline{ } = c \bullet$$

- انتهت الأسئلة -

	. :1 "1		
	القوانين		
	القوانين	الوحدة	م
$\Delta \vec{P} = m \Delta \vec{v}$	$\vec{P} = m\vec{v}$	کمیة	١
$ec{F} = rac{\Delta ec{P}}{\Delta t}$	$ec{P}_{}_{}$ بعد التصادم $ec{P}_{}_{}=ec{P}_{}$ قبل التصادم	التحرك	
$F = \frac{1}{\Delta t}$	$ec{v}_{ ext{aunij}} = ec{v}_2 - ec{v}_1$		
$\vec{F}_{\mathrm{A}} = -\vec{F}_{B}$	$KE = \frac{1}{2}mv^2$		
	$\frac{RL}{2}$		
$a = \omega \ v = \omega^2 r = \frac{v^2}{r}$	$\vec{v} = \omega r$	الحركة	۲
$a = \omega v = \omega^2 r = \frac{1}{r}$	$\omega = rac{\Delta heta}{\Delta t}$	الدائرية	
$F = m\vec{a}$			
	$\omega = \frac{2\pi}{T}$		
	$\omega - \frac{T}{T}$		
$x = x_0 \sin(\omega t)$	$T = \frac{\omega}{2\pi}$ $T = \frac{1}{f}$	الحركة	٣
$v = v \cdot \cos(\omega t)$	2π f	الاهتزازية	
$E_{\circ} = \frac{1}{2} \text{m} \omega^2 x_{\circ}^2$	$v_{\circ} = \omega x_{\circ}$		
2 1100 20	$a_{\circ} = -\omega^2 x_{\circ}$		
	$a = -a \cdot \sin(\omega t)$		
	الثوابت		
	$g=9.81 m s^{-2}$		

المادة: الفيزياء الصف: الحادي عشر الدور: الأول الفصل الدراسي: الثاني العام الدراسي: ٢٣/٢٠٢٢م

المسودة:

نموذج إجابة امتحان الفيزياء (التدريبي) للعام الدراسي: ١٤٤٤هـ - ٢٣/٢٠٢٢م الدور: الأول - الفصل الدراسي: الثاني

*عدد الصفحات: 8 صفحات

*المادة: الفيزياء * الدرجة الكلية: ٦٠ درجة

المستوى المعرفي	المخر ج التعليمي	الصفحة	الدرجة	معلومات إضافية	الإجابة	المفرد ة
A_2	(5-1)	21	1	-	0.118	١
$egin{array}{c} A_2 \ A_2 \ \end{array}$	(5-5)	26	1	درجة لحساب السرعة النسبية قبل التصادم درجة لحساب السرعة النسبية بعد التصادم (لا يحاسب الطالب على الإشارة)	$\Delta v \left($ قبل التصادم $ = v_1 - v_2 $ $ = 12 - 0 = 12 \ ms^{-1} $ $ \Delta v \left($ بعد التصادم $ = v_1 - v_2 $ $ = 8.0 - (-4.0) = 12 \ ms^{-1} $	۲
A_1	(5-6)	24	2	لا تقبل أي إجابة غير العبارتين (محفوظة – غير محفوظة الذا أخطأ في إجابة واحدة أو اجابتين يعطى الطالب درجة واحدة إذا أخطأ في ٣ إجابات يعطى صفرا.	تصادم مرن كلياً تصادم غير مرن كلياً تصادم غير مرن كمية التحرك محفوظة محفوظة غير محفوظة طاقة الحركة محفوظة	4

A_1	(5-4)	29	2	- اقبل أي إجابة تحمل تفس المعنى	رك للنظام = صفر حرك إلى الأعلى فل. فيتحرك العادم الصاروخ، ولكنها	ل الانطلاق كمية التحر عد الانطلاق كمية التح لاق الصاروخ فإنه يت اندفاع العادم إلى الأس ك مساوية لكمية تحرك معاكسة له في الان	وبه عند انط يقابل ذلك	٤
$egin{array}{c} A_2 \ A_2 \end{array}$	(5-4)	29	1	- درجة على التعويض في القانون درجة على الناتج النهائي	1200	$P = -P$ (الصاروخ) $= mv$ ($v = 930 (200)$ $= 155 ms^{-1}$	ب) (للعادم	
A_2	(5-4)	32	2	- درجتان على تحليل المركبة السينية للجسيم ١ قبل وبعد التصادم درجتان على تحليل المركبة السينية للجسيم ٢ قبل وبعد التصادم. (يعطى الطالب الدرجة كاملة في حالة التحليل الصحيح على الرسم)	الجسيم ٢ 0 3.60 cos 60 = 1.8 Kg ms	الجسيم ا 3.60 cos 0 = 3.60 Kg .ms ⁻¹ 3.60 cos 60 = = 1.8 Kg ms ⁻¹	قبل التصادم بعد التصادم	0

\mathbf{A}_1	(5-4)	32	1	- درجة لجمع المركبات السينية للجسيمين قبل التصادم درجة لجمع المركبات السينية للجسيمين بعد التصادم.	(ب P_{1x} = 3.60 Kg ms $^{-1}$ P_{2x} = 0 P_{Total} = 3.60 P_{Total} = 3.60 Kg ms $^{-1}$ (بعد التصادم: p_{1x} = 3.60 cos 60 P_{2x} = 3.60 cos 60 P_{2x} = 3.60 cos 60 P_{xTotal} = 3.60 cos 60 P_{xTotal} = 3.60 Kg ms $^{-1}$ (قبل التصادم) P_{Total} = 3.60 Kg ms $^{-1}$ 3.60 Kg ms $^{-1}$	
$egin{array}{c} A_2 \ A_2 \ \end{array}$	(5-7).	35	1 1 1	- التعويض درجة - التعويض درجة - يعطي الطالب درجة واحدة إذا كتب الناتج النهائي فقط	$\Delta P = P \text{ (بعد)} - P \text{ (قبل)}$ $= (45 \times 20) - 0$ $= 900 \text{ Kg ms}^{-1}$ $\Delta F = \frac{\Delta P}{\Delta t} = \frac{900}{0.4}$ $= 2250 \text{ N}$	٦
A_2	(6-3)	47	1	-	0.314	٧

$egin{array}{c} A_2 \ A_1 \ A_2 \ \end{array}$	(6-1)	48	1 1 1	 درجة على التعويض درجة على التحويل درجة على الناتج النهائي 	$\theta = \frac{\Delta s}{r} = \frac{12}{3} = 4 rad s^{-1}$ $4 x \frac{180}{\pi}$ $= 229.3 ^{\circ}$	٨
$egin{array}{c} A_2 \ A_2 \end{array}$	(6-6)	55	1	 درجة على التعويض درجة على الناتج النهائي 	$a = \frac{v^2}{r} = \frac{(2)^2}{3} \qquad (\because = \frac{4}{3} ms^{-1})$	٨
A_1	(6-4)	52	1	يعطى الطالب الدرجة كاملة إذا رسم ابتعاد السدادة عن المسار الدائري بشكل مماسي مستقيم. وأي إجابة تؤيد المعنى نفسه.	ج) ستطير السدادة وتتحرك على طول المماس للنقطة في المدار لحظة تحريرها.	٨
A_1	(6-1)	50	1	-	أ) الازاحة الزاوية لكل ثانية	
$egin{array}{c} A_2 \ A_2 \ A_2 \ A_2 \end{array}$	(6-3)	51	1 1 1 1	 درجة على التحويل درجة على قيمة السرعة المتجة الزاوية درجة على التعويض درجة على الناتج النهائي 	$T = 4380 \times 24 \times 3600 = 378.432 \times 10^{6} \text{ s} \text{ (} \text{)}$ $\omega = \frac{2\pi}{T} = \frac{2\pi}{378.432 \times 10^{6}}$ $= 1.659 \times 10^{-8} \text{ rad s}^{-1}$ $v = \omega r$ $= 1.659 \times 10^{-8} (778 \times 10^{9})$ $= 12910.75 \text{ ms}^{-1}$	٩

A_1	(6-7)	52	1	-	 أ) القوة المحصلة المؤثرة على جسم ما في اتجاه مركز الدائرة عندما يدور الجسم على مسار تلك الدائرة بسرعة ثابتة. 	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	(6-7) (6-8)	58 & 59	1 1 1 1	- درجتين على تحليل القوى المؤثرة على البندول. (*) (حسابياً أو على الرسم) - درجتين للتعويض - درجة على الناتج النهائي	$T\cos\theta = mg$ (*) $T\cos 45 = 0.5(9.81)$ $T = 6.937 N$ $F_c = T\sin\theta$ (*) $= 6.937 \sin 45$ $= 4.905 N$	1.
$egin{array}{c} A_2 \ A_2 \ \end{array}$	(7-3)	78	1 1 1	درجة لايجاد قيمة الزمن الدوري - درجة على التعويض - درجة على الناتج النهائي - درجة على الناتج النهائي	$T = \frac{2.5}{1.25} = 2 s$ $f = \frac{1}{T}$ $= \frac{1}{2} = 0.5 Hz$	11

$egin{array}{c} A_2 \ A_2 \ A_2 \end{array}$	(7-5) (7-6)	80	1 1 1	- درجة على إيجاد قيمة السرعة المتجهة الزاوية - درجة على التعويض - درجة على الناتج النهائي - درجة على الناتج النهائي	$x_o = 6 m (^{\dagger})$ $\omega = \frac{2\pi}{T} = \frac{2\pi}{2} = \pi$ $x = x_o \sin(\omega t) = 6 \sin(4\pi)$ $= 0$	
${\sf A}_2$	(7-6)	81	1	يحاسب الطالب على خطوات الحل لا أقبل بالنتيجة النهائية	$a = -x_o \omega^2 \qquad (-1)$ $= -6 (3.14)^2$ $= -59.158 ms^{-2}$ $= -59.2 ms^{-2}$	17
\mathbf{A}_1	(7-1)	72 & 78	2	إذا أخطأ الطالب في إجابة واحدة يُعطى درجة فقط	التردد الزاوي عدد تردد الاهتزاز الاهتزاز الاهتزازات في الجيبي معبراً الثانية أو عدد عنه بالراديان الموجات التي لكل ثانية تعبر نقطة ما في الثانية	١٣

$\begin{matrix} A_2 \\ A_2 \\ A_2 \end{matrix}$	(7-7)	83	1 1 1	- درجة على إيجاد قيمة الـ س - درجة على التعويض بقيم X ₀ و س - درجة على الناتج النهائي	$x_o = 0.04 m$ († $\omega = 2\pi 5 = 31.4 rad s^{-1}$ $v = 31.4 \sqrt{(0.04)^2 - (0.01)^2}$ =1.295 ms ⁻¹	١٤
A_2	(7-9)	86	1	يحاسب الطالب على خطوات الحل لا أقبل بالنتيجة النهائية	$E = \frac{1}{2} m \omega^2 x_0^2 \qquad (-)$ $= \frac{1}{2} (0.2) (31.4)^2 (0.04)^2$ $= 0.1578 J$	
A_1	(7-1)	73	1	-	أ) الفرق في طوري جسمين مهتزين، مقاساً بالدرجات أو الراديان.	
$egin{array}{c} A_2 \ A_2 \ A_2 \ A_2 \end{array}$	(7-1)	73	2 1 1	- درجتان لإيجاد كلاً من t, T - درجة على التعويض - درجة على التحويل - درجة على الناتج النهائي	t = 2 s	10
A_1	(7-1)	72	1	-	السعة	١٦

A_1	(7-12)	89	1	يقبل أي شرح يعطي نفس المعنى	بسبب تساوي تردد الدافع مع التردد الطبيعي للنظام المهتز حيث يمتص النظام أكبر طاقة ممكنة من الدافع فتصبح له سعة عظمى .	17
A_1			1		a = تخميد ق <i>و ي</i>	
A_1	(7-11)	92	1	_	b = تخمید حرج	14
A_1			1		c = تخمید ضعیف	
			۲۰ درجة	مجموع الدرجات		

نهاية نموذج الإجابة _