

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6: C07D 471/10, A61K 51/04	A2	(11) Internationale Veröffentlichungsnummer: WO 95/22544 (43) Internationales Veröffentlichungsdatum: 24. August 1995 (24.08.95)
(21) Internationales Aktenzeichen: PCT/EP95/00513		(81) Bestimmungsstaaten: CA, FI, JP, NO, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) Internationales Anmeldedatum: 13. Februar 1995 (13.02.95)		
(30) Prioritätsdaten: P 44 05 178.6 18. Februar 1994 (18.02.94) DE		Veröffentlicht <i>Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.</i>
(71) Anmelder (für alle Bestimmungsstaaten ausser US): HOECHST AKTIENGESELLSCHAFT [DE/DE]; Brüningstrasse 50, D-65929 Frankfurt am Main (DE).		
(72) Erfinder; und		
(75) Erfinder/Anmelder (nur für US): BRANDAU, Wolfgang [DE/DE]; Platanenweg 7, D-48161 Münster (DE). SAM- NICK, Samuel [DE/DE]; Am Kirchenkamp 25a, D-49078 Osnabrück (DE).		

(54) Title: **SUBSTITUTED 1,3,8-TRIAZA-SPIRO(4,5)-DECAN-4-ONE DERIVATIVES USEFUL AS PRELIMINARY STAGES IN THE PRODUCTION OF PHARMACEUTICALS**

(54) Bezeichnung: **SUBSTITUIERTE 1,3,8-TRIAZA-SPIRO(4,5)-DECAN-4-ON-DERivate ALS VORSTUFEN ZUR HERSTELLUNG VON PHARMAZEUTIKA**

(57) Abstract

Compounds having the general formula (I) are useful as preliminary stages in the production of new pharmaceuticals. Said pharmaceuticals are useful as neuroleptic or analgesic agents or as pharmaceuticals in nuclear medicine.

(57) Zusammenfassung

Die Erfindung betrifft Verbindungen der allgemeinen Formel (I) als Vorstufen zur Herstellung neuer Pharmazeutika. Die genannten Pharmazeutika werden verwendet als Neuroleptika, Analgetika oder als Pharmaka in der Nuklearmedizin.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Oesterreich	GA	Gabon	MR	Maurenien
AU	Australien	GB	Vereinigtes Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NE	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BF	Burkina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarien	HU	Ungarn	NZ	Neuseeland
BJ	Benin	IE	Irland	PL	Polen
BR	Brasiliien	IT	Italien	PT	Portugal
BY	Belarus	JP	Japan	RO	Rumänien
CA	Kanada	KE	Kenya	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	Vereinigte Staaten von Amerika
FI	Finnland	ML	Mali	UZ	Usbekistan
FR	Frankreich	MN	Mongolei	VN	Vietnam

Beschreibung**Substituierte 1,3,8-Triaza-spiro(4,5)-decan-4-on-Derivate als Vorstufen zur Herstellung von Pharmazeutika**

Die Erfindung betrifft in den Positionen 2, 3 und 8 substituierte 1,3,8-Triaza-spiro(4,5)-decan-4-on-Derivate als Vorstufen für die Herstellung von Neuroleptika, Analgetika und radioaktiv markierten Pharmaka, ein Verfahren zu ihrer Herstellung und ihre Verwendung in der Nuklearmedizin.

In der Pharmakotherapie von Psychosen und psychoreaktiven Störungen besitzen Neuroleptika einen hohen Stellenwert. Der Begriff Neurolepsie bezeichnet einen charakteristischen psychophysiologischen Umstimmungsprozess, zu dem bei Erhaltenbleiben der intellektuellen Fähigkeiten eine Dämpfung der emotionellen Erregbarkeit, eine Verminderung des Antrebs, der Spontanbewegungen und der Ausdrucksmotorik gehören. Durch Neuroleptika können Halluzinationen, Wahnsymptomatik und psychomotorische Erregbarkeit beseitigt werden. Neben Phenothiazinen haben vor allem Butyrophenone und Diphenylbutylpiperidine als stark wirksame Neuroleptika Bedeutung erlangt.

Darüberhinaus werden Neuroleptika nicht nur therapeutisch, sondern, nach entsprechender Markierung, zur bildgebenden Diagnostik eingesetzt. Bildgebende Verfahren spielen in der Diagnostik von Krankheitsprozessen häufig eine herausragende Rolle, da hiermit ohne operativen Eingriff Organe, Rezeptorsysteme oder Stoffwechselvorgänge sichtbar gemacht werden können.

Die zur Zeit üblichen Methoden werden in zwei Gruppen eingeteilt. Auf der einen Seite stehen die Verfahren, mit denen raumfordende Prozesse abgebildet werden. Dazu gehören insbesondere Röntgen, Ultraschall und die Computertomographie

(CT). Die auf der Resonanz von Atomkernen im Magnetfeld beruhende NMR-Diagnostik kann hier ebenfalls eingeordnet werden.

Auf der anderen Seite stehen die nuklearmedizinischen Verfahren, bei denen nach Injektion eines mit einem radioaktiven Nuklid markierten Präparates die vom Nuklid ausgehende Strahlung mit einer speziellen Kamera (γ -Kamera) registriert und über eine mathematische Auswertung in ein Bild umgesetzt wird. Da in diesem Fall Präparate appliziert werden, die am Metabolismus des betreffenden Organismusses teilnehmen, spiegelt das erhaltene Bild den physiologischen Zustand wieder. Bei vielen Krankheiten kann dadurch sehr viel früher ein abnormales Verhalten erkannt werden, als dies durch eine Veränderung der morphologischen Struktur sichtbar wäre. Die Verfahren zeichnen sich daher durch die Möglichkeit einer frühzeitigen Diagnosestellung und einer bildlichen Beschreibung des Funktionszustandes der betreffenden Organe aus.

Da in der NMR-Diagnostik mit Kontrastmitteln auf Basis bestimmter Nuklide (bevorzugt Gadolinium) gearbeitet wird, ist man unter gewissen Umständen auch mit dieser Methode in der Lage, physiologische Aussagen machen zu können.

Die in der Nuklearmedizin oder NMR-Diagnostik einsetzbaren Nuklide müssen eng eingrenzbare Kriterien u.a. bezüglich der Art der Strahlung und der physikalischen Halbwertszeit erfüllen. In Abhängigkeit von der jeweiligen Fragestellung werden u.a. die folgenden Nuklide verwendet: ^{11}C , ^{13}N , ^{15}O , ^{18}F , ^{123}I , ^{124}I , ^{125}I , ^{131}I , ^{75}Br , ^{77}Br , $^{99\text{m}}\text{Tc}$, ^{68}Ga , ^{67}Ga , ^{111}In , $^{113\text{m}}\text{In}$, ^{186}Re , ^{188}Re , ^{62}Cu , ^{64}Cu , ^{67}Cu , ^{153}Gd oder andere stabile Gadoliniumisotope.

Herausragende Bedeutung in der Nuklearmedizin besitzen dabei die Isotope Iod-123 und Technetium-99m. Aufgrund ihrer günstigen physikalischen Halbwertszeiten ($^{99\text{m}}\text{Tc}$: 6.02 h, ^{123}I : 13.3 h) und ihrer optimalen γ -Energien ($^{99\text{m}}\text{Tc}$: 140 keV, ^{123}I : 159 keV) haben sie in der Einzelphotonen-Emissions-Tomographie (Single

Photon Emission Tomography, SPECT) die größte Verbreitung gefunden.

Die Applikation des aus dem ^{99}Mo / $^{99\text{m}}\text{Tc}$ - Generator zur Verfügung stehenden Technetium-99m, das chemisch als Pertechnetat vorliegt, genügt jedoch nicht allen Anforderungen der nuklearmedizinischen Diagnostik, da nur wenige Organe des Menschen untersucht werden können. Durch Komplexbildung mit einem geeigneten Liganden werden jedoch in der Wirkung vollkommen unterschiedliche Verbindungen erhalten. Auf der Suche nach Radiopharmaka, die organspezifischer wirken, sind in den letzten Jahren eine Reihe von Komplexbildner für radioaktive Nuklide, insbesondere für Technetium-99m, entwickelt worden, die es ermöglichen, Komplexe mit einer genügend hohen In-vivo-Stabilität zu synthetisieren. Nachwievor gibt es aber noch eine Reihe von Fragestellungen, für die noch keine optimalen Präparate verfügbar sind. Hierzu gehört insbesondere die bildliche Darstellung von Stoffwechselvorgängen und Rezeptorsystemen des menschlichen Organismusses mittels Technetium-haltiger Radiopharmaka. Die auf dem Gebiet der Technetiumradiopharmaka erzielten Fortschritte wurden von A. M. Verbruggen zusammengefaßt (Eur. J. Nucl. Med. 17, 346 - 364 (1990)).

Darüberhinaus sind Komplexe mit Ethylencystein aus WO 90/05733, mit Mercaptoacetyltriglycin aus EP-A-0,1250,013, EP-A-0,427,360, EP-A-0,173,424 und US-A-4,883,862, mit Diamidotithiolaten aus EP-A-0,200,492 und EP-A-0,135,160 und mit Bisaminodithiolen aus WO 89/10759, EP-A-0,200,211, WO 89/10758, EP-A-0,279,417, EP-A-0,322,876, EP-A-0,344,724, EP-A-0,163,119 und EP-A-0 381 713 (WO 89/10759) und Diaminomercapto-(thio)ethern aus EP-A-0 542 216 bekannt.

Beim Einsatz von Radiohalogenen für die SPECT kann das Radionuklid, vorzugsweise ^{123}I , direkt durch eine kovalente Bindung in das Radiopharmakon eingeführt werden. Um die In-vivo-Stabilität zu erhöhen, besteht weiterhin die Möglichkeit, das Radionuklid Iod in Form von Iodallyl-, Iodalkyl- bzw. Iodaryl-

Gruppen in eine entsprechende Vorstufe des Radiopharmakons einzuführen. In den letzten Jahren sind eine Reihe von Iodradiopharmaka beschrieben worden, mit denen bestimmte Stoffwechselvorgänge und Rezeptorsysteme des menschlichen Organismus bildlich darstellbar sind. Die auf diesen Gebieten erzielten Fortschritte wurden von M. Diksic und R.C. Reba in: *Radiopharmaceuticals and brain pathology studied with PET and SPECT*, CRC Press Inc., Boca Raton, Florida, 1991, zusammengefaßt.

Über die Möglichkeiten der SPECT hinaus zeigt die Verwendung von Positronenstrahlern in der Positronen Emissions Tomographie (PET) entscheidende Vorteile. Durch die Verwendung von Positronen-emittierender Nuklide körpereigener Elemente, vorzugsweise ^{11}C , ^{13}N , und ^{15}O , bietet sich hier die Möglichkeit, Stoffwechselvorgänge ohne störenden Einfluß eines Fremdnuklides *in vivo* darzustellen. Hierzu zählt auch das Isotop ^{18}F , das zwar kein Strukturelement der organischen Substanzen darstellt, das aber in organischen Verbindungen als ein Wasserstoffsubstituent gilt. Mit der PET-Methode können darüberhinaus Stoffwechselvorgänge sowie die Rezeptordichte oder die Konzentrationsverteilung einer chemischen Substanz ohne Eingriff am lebenden Organismus quantifiziert werden.

Allen bildgebenden Verfahren ist gemeinsam, daß, um die Strahlenbelastung des Patienten gering zu halten, Nuklide mit kurzen physikalischen Halbwertszeiten eingesetzt werden müssen. Diese Halbwertszeiten reichen von Minuten (^{15}O : 2 min) bis Stunden (^{123}I : 13.3 h). Im Gegensatz zu Methoden der klassischen pharmazeutischen Chemie erfordert dies äußerst schnelle Reaktionssequenzen.

Aufgabe der Erfindung war es nun, geeignete Vorstufen zu synthetisieren, die in einfachen, schnellen Reaktionen zum eigentlichen Radiopharmakon oder Pharmakon umgesetzt werden können. Ebenso war es Aufgabe der Erfindung, ein Verfahren

bereitzustellen, mit dem diese Vorstufen in die eigentlichen Radiopharmaka umgesetzt werden.

Die Lösung der Aufgabe besteht in der Bereitstellung von Verbindungen der allgemeinen Formel I, die neben den Substituenten R, R₁ und R₂, in Position 1 eine sekundäre Aminfunktion aufweisen,

Formel I,

wobei

R H, -(CHR₃)_a-CH₂R₃, -(CH₂)_a-C₆H₄-R₃, -(CH₂)_a-C(C₆H₄-R₃)₃, -(CH₂)_b-(CO)-C₆H₄R₃, -(CHR₃)_a-(CO)-R₃, -(CH₂)_b-CH(OH)-C₆H₄R₃, -(CH₂)_b-C(OH)-(C₆H₄-R₃)₂, -(CH₂)_b-C(OCH₂)₂-C₆H₄R₃, -(CH₂)_b-C(SCH₂)₂-C₆H₄R₃, -(CH₂)_a-CH(C₆H₄-R₃)₂, -(CH₂)_b-C(OCH₂)₃-C₆H₄R₃, -(CH₂)_b-C(SCH₂)₃-C₆H₄R₃,

R₁ und R₂ gleich oder verschieden sind und

H, -(CH₂)_a-CH₃, -(CHR₃)_a-CH₂R₃, -(CH₂)_a-C₆H₄R₃ bedeuten, wobei

R₃ H, -(CH₂)_a-CH₃, -CONR'R'', -OR', -SO₃R', -OCOR', -SO₂NR'R'', -CONHCH₂COOH, -SR', -NR'R'', -COR', F, Cl, Br oder I oder einen 5- oder 6-gliedrigen Heterocyclus mit 1 bis 3 Heteroatomen aus der Reihe N, S oder O, bedeuten, wobei

R' und R" gleich oder verschieden sind und H, -(CH₂)_bCH₃, Phenyl, p-Hydroxyphenyl, N-Piperidinyl, N-Piperazinyl oder N-Morpholinyl, und

a und b unabhängig voneinander eine ganze Zahl von 0 bis 20, vorzugsweise von 0 bis 10 bedeuten.

Bevorzugt sind Verbindungen der allgemeinen Formel I, in denen R H, -(CH₂)_a-C₆H₄R₃, -(CH₂)_b-(CO)-C₆H₄R₃, oder -(CH₂)_b-CH(OH)-C₆H₄R₃ bedeutet.

R₃ ist bevorzugt H, F, Cl, Br oder I und -OR', wobei R' -C(CH₃)_bCH₃ bedeutet.
a und b sind bevorzugt unabhängig voneinander jeweils eine ganze Zahl von 0 bis 5, vorzugsweise von 0 bis 2.

Ganz bevorzugt sind Verbindungen der allgemeinen Formel I, in denen

R₁ und R₂ gleich sind und Wasserstoff oder -(CH₂)_a-CH₃
R Wasserstoff, -(CH₂)_a-C₆H₄-R₃ oder -(CH₂)_b-(CO)-C₆H₄-R₃ und
R₄ Wasserstoff, -(CH₂)_a-CH₃ oder -(CH₂)_b-(CO)-(C₆H₄-R₃) bedeuten,
wobei

a und b unabhängig voneinander 0 oder 1 und

R₃ Wasserstoff, Fluor, Chlor, Brom oder Iod

bedeuten.

Die erfindungsgemäße Umsetzung der Verbindungen der allgemeinen Formel I mit Elektrophilen X-R₄ führt zu Verbindungen der allgemeinen Formel II

Formel I

Formel II

wobei

X eine nucleophile Abgangsgruppe, insbesondere Chlor, Brom oder Tosylat bedeutet und

R₄ einen für R genannten Rest bedeutet, wobei in diesen Resten eine oder mehrere Kohlenstoffatome durch ¹¹C-Kohlenstoff ersetzt sind oder ein oder mehrere Stickstoffatome durch ¹³N-Stickstoff ersetzt sind oder ein oder mehrere Sauerstoffatome durch ¹⁵O-Sauerstoff ersetzt sind oder ein oder mehrere Halogenatome einer Halogensorte F, Cl, Br oder I durch ein entsprechendes radioaktives Isotop ersetzt sind oder einen Rest der Formel III, der mindestens ein 99m-Tc Isotop chelatisiert, bedeutet,

wobei

W, X, Y und Z unabhängig voneinander N oder S bedeuten,

R₁₀ und R₂₀ zusammen jeweils doppelt gebundenes O oder S bedeuten
und/oder

R₁₀, R₂₀, R₃₀, R₄₀, R₅ und R₆ gleich oder verschieden sind und

H, -(CH₂)_a-CH₃, -COOR', -CONR', -CONR'R'', -OR', -SO₃R',
-OCOR', -SO₂NR'R'', -CONHCH₂COOH, -SR', -NR'R'', -COR',
bedeuten,

wobei

R' und **R''** gleich oder verschieden sind und

H, -(CH₂)_bCH₃, Phenyl, p-Hydroxyphenyl, N-Piperidinyl, N-Piperazinyl oder N-Morpholinyl bedeuten,

v H, -COCH₃, -COC₆H₅, -CH₂NHCOCH₃, -CH₂C₆H₅, -COCH₂OH, -COCH₂COOH oder eine andere geeignete Schwefel-Schutz-gruppe bedeutet und

m, n, o und p jeweils unabhängig voneinander 0, 1 oder 2 und
a und b jeweils unabhängig voneinander eine ganze Zahl von 0 bis 20,
vorzugsweise von 0 bis 10,
bedeuten.

Bevorzugte Chelatbildner der Formel III sind diejenigen, bei denen

Y und Z S,
X und W N ist,
R₁₀ und R₂₀ zusammen einen doppelt gebundenen Sauerstoff bedeutet und/oder
R₁₀, R₂₀, R₃₀, R₄₀, R₅ und R₆ gleich oder verschieden sind und
-H, -(CH₂)_aCH₃, -COOR', -CONR'R'', -NR'R'' oder -OR'
bedeuten,

wobei R' und R'' gleich oder verschieden sind und H, -(CH₂)_bCH₃, Phenyl oder p-Hydroxyphenyl bedeuten,

v -H, -COCH₃, -COC₆H₅ oder -CH₂-C₆H₅ bedeutet,

m, n, o und p identisch sind und 0, 1 oder 2 und
a und b identisch sind und eine ganze Zahl von 0 bis 5 bedeuten.

Ganz besonders bevorzugte Chelatbildner der Formel III sind diejenigen, bei der m,

10

n, o und p identisch sind und 1 oder 2, vorzugsweise 1 sind. In diesem Fall sind R₁₀ und R₂₀ jeweils Wasserstoff oder R₁₀ und R₂₀ bilden zusammen ein doppelt gebundenes O, sofern mit dem benachbarten X oder W eine Carbonylamidostruktur

ausgebildet wird,

R₃₀ zusammen mit R₄₀ -(CH₂)_a-CH₃ bedeutet, wobei a eine ganze Zahl von 0 bis 5 ist und

R₅ und R₆ unabhängig voneinander Wasserstoff oder -(CH₂)_a-CH₃ bedeuten, wobei a eine ganze Zahl von 0 bis 5 ist.

Bevorzugt sind Verbindungen der allgemeinen Formel II, in denen R, R₁ und R₂ entsprechend wie bei den Verbindungen der allgemeinen Formel I gewichtet sind und darüberhinaus

R₄ -(CH₂)_a-CH₃, -(CH₂)_a-C₆H₄-R₃, -(CH₂)_b-(CO)-C₆H₄-R₃, wobei

R₃ H, -CONR'R'', OR', -SO₃R', F, Cl, Br, I oder -NR'R'' ist,

bedeutet, wobei

a und b unabhängig voneinander 0 oder 1 und

R' und R'' gleich oder verschieden sind und H oder -(CH₂)_b-CH₃ bedeuten.

Besonders bevorzugt sind Verbindungen der allgemeinen Formel II, in denen R₄ jeweils nur ein einziges radioaktives Isotop eines der angegebenen Elemente enthält. Insbesondere bevorzugt ist hierbei ¹²³I oder ¹¹C. Sofern R₄ ein Rest der

Formel III bedeutet, ist als radioaktives Isotop ^{99m}Tc bevorzugt. Schließlich ist R_4 besonders bevorzugt ein Rest der Formel III.

Weiterhin betrifft die Erfindung eine Verbindung der Formel II, herstellbar nach einem Verfahren, indem eine Verbindung der Formel I mit R_4X umgesetzt wird.

Schließlich betrifft die Erfindung die Verwendung einer Verbindung der allgemeinen Formel II als Neuroleptikum, als Analgetikum oder allgemein als Pharmakon in der Nuklearmedizin.

Die Erfindung betrifft daneben ein Diagnostikum enthaltend eine Verbindung der allgemeinen Formel II zur Anwendung in der Nuklearmedizin.

Verbindungen der Formel I werden nach den allgemeinen Reaktionsschemata 1 oder 2 synthetisiert.

Schema 1

12

Schema 2

wobei X eine Abgangs-Gruppe darstellt und R die oben definierte Bedeutung hat.

Die Synthese von 8-benzyl-1,3,8-triazaspiro[4,5]decan-4-on (D) geht von allgemein zugänglichem 1-benzyl-4-oxo-piperidine (A) aus. 1,3,8-triazaspiro[4,5]decan-4-on (E) wurde durch Hydrierung mittels Palladiumkohle als Katalysator aus Verbindung D erhalten.

Schema 3 zeigt den Reaktionsverlauf, der zu den Verbindungen D und E führt. Die Synthesen selbst sind in Beispiel 1 und in Beispiel 2 beschrieben.

13

Schema 3

- (I) $\text{KCN}/\text{NH}_4\text{Cl}$; (II) H_2SO_4 ; (III) $\text{H}_2\text{SO}_4/\text{H}(\text{CO})\text{NH}_2$; (IV) NaBH_4 ;
 (V) $\text{H}_2/\text{Pd/C}$

Beispiel 1

Synthese von 8-benzyl-1,3,8-triazaspiro[4,5]decan-4-on (D).

Darstellung von 1-benzyl-4-cyano-4-amino-piperidin (B).

Zu einer Lösung aus 8.25 g (0.125 mol) KCN und 6.95 g (0.125 mol) NH₄Cl in 35 mL H₂O wurden 21.79 g (0.115 mol) 1-benzyl-4-oxo-piperidin, gelöst in 15 mL wasserfreiem Ethanol, zugetropft. Nachdem die Reaktionslösung 48 h bei 23 °C gerührt worden war, wurde das Rohprodukt mit Methylenchlorid (3 x 150 mL) extrahiert. Die vereinten organischen Extrakte wurden mit H₂O (2 x 150 mL) gewaschen, über Natriumsulfat getrocknet, filtriert, und im Vakuum zur Trockne eingedampft. Es verblieb ein gelbes Öl, das chromatographisch (Kielselgel, Methylenchlorid / Methanol 9:1) gereinigt wurde.

25.60 g (95%) des Aminonitrils (A) konnten erhalten werden.

IR [cm⁻¹]: 3300 (NH₂), 3090, 3050, 1590 (Ph), 2260 (CN).

¹H-NMR(CD₂Cl₂, ppm): 7.30(m, 5H, ArH), 3.50(s, 2H, CH₂-Ph), 2.8-1.73(m, 8H, CH₂), 1.80(s, 2H, NH₂).

Darstellung von 1-Benzyl-4-carbamoyl-4-amino-piperidin (C).

Zu 150 ml H₂SO₄ (95%) wurden 8.0 g (37.16 mmol) von Verbindung B portionsweise zugegeben und 10 min bei 70 °C gerührt. Man ließ auf Raumtemperatur abkühlen, bevor die Mischung in 500 ml Eiswasser aufgenommen und vorsichtig mit NH₄OH auf pH 10-11 eingestellt wurde. Das Produkt wurde mit CH₂Cl₂ extrahiert, die organische Phase mit gesättigter NaHCO₃-Lösung gewaschen, über Na₂SO₄ getrocknet und im Vakuum eingedampft. Durch Kristallisation des Rückstandes in EtOH konnten 6.70 g (78%) der Verbindung C erhalten werden.

IR [cm⁻¹]: 3300 (NH₂), 3080-3000, 1590 (Ph), 1650 (Amid C=O).

¹H-NMR(CDCl₃, ppm): 7.75 (cl, 1H, Amid H), 7.50(m, 5H, ArH), 6.15 (s, 1H, Amid H), 3.80(s, 2H, CH₂-Ph), 3.0 (m, 2H, CH₂), 2.5 (m, 4H, CH₂), 2.80 (s, 2H, NH₂), 1.75(m, 2H, CH₂).

Darstellung von 8-benzyl-1,3,8-triazaspiro[4,5]decan-4-on (D).

Zu einer Mischung aus 12.0 g (50.0 mmol) von Verbindung C in 53.6 g Formamid wurden 13.5 g Schwefelsäure 97 % zugegeben und 20 h unter Rückfluß gekocht. Nach Abkühlen der Reaktionsmischung wurden 20 ml Wasser zugegeben und mit NH₄OH auf pH 10-11 eingestellt. Das Produkt wurde mit CH₂Cl₂ extrahiert, die organische Phase mit gesättigter NaHCO₃-Lösung gewaschen, über Na₂SO₄ getrocknet und im Vakuum eingedampft. Der Rückstand wurde in MeOH gelöst und mit 3.0 g (10.6 mmol) NaBH₄ 60 min bei 60 °C gerührt. Nach Zugabe von 15 ml H₂O, wurde mit Dichlormethan extrahiert, die organische Phase über Na₂SO₄ getrocknet und im Vakuum eingedampft. Nach der Chromatographie des Rückstandes (Kieselgel, CH₂Cl₂-MeOH 9:1) und Rekristallisation aus Ethylacetat konnten 7.70 g (63%) von Verbindung D isoliert werden.

IR [cm⁻¹]: 3290 (NH₂), 3080-3000, 1590 (Ph), 1630 (Amid C=O).

¹H-NMR(CDCl₃, ppm): 8.50 (s, 1H, Amid H), 7.32(m, 5H, ArH), 6.80 (s, 1H, NH), 4.85 (s, 2H, CH₂), 3.55 (s, 2H, CH₂-Ph), 2.90-2.0 (m, 8H, CH₂).

Beispiel 2

Synthes von 1,3,8-Triazaspiro[4,5]decanon (E).

0.5 g (2.0 mmol) von Verbindung (D) wurden in 20 ml Methanol gelöst. 0.5 g PdO/C (10%) und 1 ml ethanolische HCl (5N) wurden zugegeben, bevor die Mischung 5 h im Laborautoklaven bei 37 °C (p = 10 bar) hydriert wurde. Der Katalysator wurde abfiltriert und das Lösungsmittel am abgezogen. Der Rückstand wurde mit kaltem Methanol gewaschen und das Salz abfiltriert. Man erhielt

insgesamt 0.45 g (82%) Hydrochlorid von Verbindung (E).

IR [cm^{-1}]: 3150, 1950 ($^+\text{NH}_3$), 2900-2810 (CH_2), 1620 (Amid C=O).

$^1\text{H-NMR}$ (CDCl_3 , ppm): 8.47 (s, 1H, Amid H), 4.90 (s, 2H, CH_2), 3.50-2.90 (m, 4H, CH_2), 2.20-1.80 (m, 4H, CH_2), 1.50 (s, 1H, NH), 1.25 (s, 1H, NH).

Schema 4 zeigt exemplarisch den Reaktionsverlauf einer an der Position 2 alkylierten Verbindung der allgemeinen Formel I. Die Synthese ist in Beispiel 3 beschrieben.

Schema 4

Beispiel 3

Synthese von 8-Benzyl-2-methyl-1,3,8-triazaspiro[4,5]-decan-4-on (F).

6.0 g (25.0 mmol) von Verbindung C, 3.0 g (29.0 mmol) Acetanhydrid und 40.0 g wasserfreies Toluol wurden 30 h unter Rückfluß gekocht. Nach Abkühlen auf RT wurden 10 ml H₂O und NH₄OH zugegeben (pH 10-11). Die wäßrige Phase wurde getrennt und noch einmal mit Toluol geschüttelt. Die vereinten organischen Phasen wurden über K₂CO₃ getrocknet und im Vakuum eingedampft. Der Rückstand wurde in 50 ml EtOH gelöst und mit 3.0 g (10.6 mmol) NaBH₄ 60 min bei 70°C gerührt. Die Mischung wurde erneut mit CH₂Cl₂/H₂O ausgeschüttelt und die organische Phase nach Trocknen über Na₂SO₄ im Vakuum abgezogen. Der Rückstand wurde an Kieselgel (CH₂Cl₂/MeOH 9:1) chromatographiert. 3.0 g (46%) 8-Benzyl-2-methyl-1,3,8-triazaspiro[4,5]-decan-4-on (F) wurden isoliert.

IR [cm⁻¹]: 3300 (NH), 3200, 1690 (Amid NH and Amid C=O), 2900-2810 (CH₂, CH₃).

¹H-NMR(CDCl₃, ppm): 8.47 (s, 1H, Amid H), 7.30 (m, 5H, ArH), 4.20 (s, 2H, CH₂), 3.65 (m, 1H, CH), 3.50-2.90 (m, 4H, CH₂), 2.35 (s, 3H, CH₃), 2.20-1.80 (m, 4H, CH₂), 1.50 (s, 1H, NH).

Schema 5 zeigt den Reaktionsverlauf zur Darstellung von 8-[3-(4-Fluorobenzoyl)-propyl]-1,3,8-triazaspiro[4,5]decan-4-on (J), während Umsetzungsbeispiele von Verbindungen der allgemeinen Formel I zur allgemeinen Formel II dem Schema 6 zu entnehmen sind. Die Synthesen selbst sind in den Beispielen 4, 5, 6 und 7 beschrieben.

Schema 5

(I) $\text{KCN}/\text{NH}_4\text{Cl}$; (II) H_2SO_4 ; (III) $\text{AcOH}/\text{HC}(\text{OC}_2\text{H}_5)_3$, NaBH_4 ; (IV) $\text{H}^+/\text{Na}_2\text{Cr}_2\text{O}_7$

Die direkte Umsetzung einer Verbindung der allgemeinen Formel I mit z.B. $^{11}\text{CH}_3$ liefert eine Positronen emittierende Verbindung für einen eventuellen Einsatz in der Positronen Emission Tomographie (PET). Die Verbindung L ist eine Vorstufe für die Metallkomplexierung wie z.B. ^{99m}Tc , während die Verbindung M ein Brom-Iod-austauschfähiges Molekül für einen eventuellen SPECT-Einsatz darstellt. Eine solche Brom-[^{123}I]Iod-Austauschreaktion wird im Schema 7 dargestellt. Der Reaktionsablauf sowie die trägerfreie Isolierung von 8-Benzyl-1-(4-[^{123}I]iodbenzoyl)-1,3,8-triazaspiro[4.5]dec-4-on (N) sind am Beispiel 8 beschrieben.

Schema 6

j: ICH_3 jj: $\text{Br}-(\text{CH}_2)_2\text{CH}[\text{CH}_2\text{NH}(\text{CH}_2)\text{C}(\text{CH}_3)_2\text{S}]_2$

jjj: 4-Brombenzoic acid

20

Schema 7

Beispiel 4

Synthese von 8-[3-(4-Fluorobenzoyl)-propyl]-1,3,8-triazaspiro[4,5]decan-4-on (J)

Darstellung von Verbindung (H).

zu einer Lösung aus 6.54 g (0.1 mol) KCN, 5.40 g (0.1 mol) NH_4Cl und 4 ml NH_4OH (25%) in 20 ml Wasser wurden 28.40 g (0.092 mol) von Verbindung (G), gelöst in 10 ml EtOH, langsam zugetropft. Nach 48 h bei 23 °C wurde das Rohprodukt mit Methylchlorid extrahiert. Die vereinten organischen Extrakte wurden mit Wasser gewaschen, über Na_2SO_4 getrocknet, filtriert und im Vakuum zur Trockne eingedampft. Nach chromatographischer Reinigung des Rückstandes an Kieselgel ($\text{CH}_2\text{Cl}_2/\text{MeOH}$ 9:1) wurden 24.0 g (71%) von Verbindung H isoliert.

IR [cm⁻¹]: 3300 (NH₂), 3090-3030, 1600 (Ph), 2950-2800 (CH₂), 2256 (CN), 1190-1030 (C-O).

¹H-NMR (CDCl₃, ppm): 7.83 (m, 2H, ArH), 7.0 (m, 2H, ArH), 4.0 (m, 2H, OCH₂), 3.79 (m, 2H, OCH₂), 2.75-2.50 (m, 4H, CH₂), 2.35 (m, 4H, CH₂), 2.05-1.60 (m, 6H, CH₂), 1.95 (s, 2H, NH₂).

Darstellung von Verbindung I.

1.0 g (2.99 mmol) von Verbindung H wurde portionsweise zu 11.0 ml Schwefelsäure (95%) zugegeben und 10 min bei 70 °C gerührt. Nach weiteren 60 min bei RT wurde die Mischung in 50 g Eiswasser aufgenommen und mit NH₄OH auf (pH 10-11) gebracht. Nach Extraktion mit CH₂Cl₂ wurden die vereinten organischen Extrakte mit Wasser gewaschen, über Na₂SO₄ getrocknet, filtriert und im Vakuum zur Trockne eingedampft. Der Rückstand kristallisierte aus Aceton und lieferte 0.79 g (95%) von Verbindung I.

IR [cm⁻¹]: 3391 (NH₂), 3260, 1650 (Amid NH and C=O), 3080-3000, 1590 (Ph), 1170-1030 (C-O).

¹H-NMR(CD₂Cl₂, ppm): 8.0 (m, 2H, ArH), 7.35 (s, 1H, Amid H), 7.10 (m, 2H, ArH), 5.20 (sch, 1H, Amid H), 3.0-1.85 (m, 12H, CH₂), 1.40 (s, 2H, NH₂), 1.30 (m, 2H, CH₂).

Darstellung von 8-[3-(4-Fluorobenzoyl)-propyl]-1,3,8-triazaspiro[4.5]decan- 4-on (J)

1.60 g (5.26 mmol) von Verbindung I, 35.0 g HC(OEt)₃, 24.0 g Toluol und 10.0 g HOAc wurden 40 h bei 135 °C gerührt. Nach Abkühlen auf RT wurde die Reaktionsmischung mittels NH₄OH auf (pH 10-11) gebracht. Die Toluolphase wurde getrennt, mit Wasser gewaschen und im Vakuum zur Trockne eingedampft. Der Rückstand wurde in 30 ml EtOH gelöst und mit 0.75 g (2.60 mmol) NaBH₄ 60 min bei 80 °C gekocht. Das Lösungsmittel wurde abgezogen und der Rückstand mit CH₂Cl₂/Wasser ausgeschüttelt. Die vereinten organischen Extrakte wurden

über Na_2SO_4 getrocknet und eingedampft. 1.0 g eines farblosen Pulvers wurde isoliert. Das Pulver wurde in 10 ml Dimethylsulfoxid (DMSO) gelöst. Nach Zugabe von 0.50 g (1.65 mmol) $\text{Na}_2\text{Cr}_2\text{O}_7 \cdot 2\text{H}_2\text{O}$ und 0.36 g H_2SO_4 (97%) wurde 30 min bei 70 °C gerührt und auf RT gekühlt. 10 g Eiswasser und NH_4OH wurden zugegeben (pH 10-11) und das Rohprodukt mit CH_2Cl_2 extrahiert. Die organischen Extrakte wurden mit gesättigter NaHCO_3 -Lösung gewaschen, über Na_2SO_4 getrocknet, filtriert und im Vakuum zur Trockne eingedampft. Nach chromatographischer Reinigung an Kieselgel ($\text{CH}_2\text{Cl}_2/\text{MeOH}$ 8:2) konnten 0.90 g (56%) von Verbindung J isoliert werden.

IR [cm^{-1}]: 3290 (NH), 3080-3000, 1590 (Ph), 2920-2880 (CH_2), 1630

(Amid C=O).

$^1\text{H-NMR}$ (DMSO, ppm): 8.05 (m, 2H, ArH)), 7.85 (s, 1H, Amid H), 7.30 (m, 2H, ArH), 3.30 (s, 1H, NH), 3.10-1.50 (m, 14H, CH_2), 1.20 (m, 2H, CH_2).

Beispiel 5

Synthese von 8-Benzyl-1-methyl-1,3,8-triazaspiro[4,5]decan-4-on (K).

1.10 mg (4.42 mmol) von Verbindung D wurden in 5 ml wasserfreiem THF gelöst. 0.25 mg (0.42 mmol) KOH wurden zugesetzt und 0.60 g (4.42 mmol) ICH_3 unter Kühlung langsam zugetropft. Man rührte 10 min und schüttelt die Mischung mit $\text{CH}_2\text{Cl}_2/\text{H}_2\text{O}$. Die vereinten organischen Phasen wurden mit gesättigter NaHCO_3 -Lösung gewaschen, über Na_2SO_4 getrocknet, filtriert und im Vakuum eingedampft. Das farblose Feststoff wurde mit kaltem EtOAc gewaschen. Man erhielt 1.13 g (99%) der Verbindung K.

IR [cm^{-1}]: 3207, 1701 (NH, C=O von Amid), 3080, 1490 (Aryl), 2940-2880 (CH_3 , CH_2).

$^1\text{H-NMR}$ (CDCl_3 , ppm): 7.30 (m, 5H, ArH)), 6.95 (s, 1H, Amid H), 4.10 (s, 2H, CH_2), 3.55 (s, 2H, CH_2 -Ph), 2.75 (m, 4H, CH_2), 2.35 (s, 3H, CH_3), 1.80 (m, 4H, CH_2).

Beispiel 6

Synthese von 7-[2'-(8-Benzyl-4-oxo-1,3,8-triaza-spiro[4,5]decanoethyl)-3,3,11,11-tetramethyl-1,2-dithia-5,9-diazacycloundecan (L).

0.20 g (0.81 mmol) von Verbindung D und 86 mg (0.16 mmol) 7-(2'-Bromoethyl)-3,3,11,11-tetramethyl-1,2-dithia-5,9-diazacycloundecan hydrobromid¹⁾ in 5 ml MeOH wurden 72 h bei RT gerührt. Das Lösungsmittel wurde im Vakuum abgezogen und nach chromatographischer Reinigung des Rückstandes an Kieselgel (CH_2Cl_2 / MeOH 9:1) erhielt man 245 g (58%) eines gelblichen Öls.

IR [cm^{-1}]: 3330 (Amin), 3200, 1701 (NH, C=O von Amid), 3080, 1590 (Aryl), 2940-2880 (CH_3 , CH_2 , CH).

¹H-NMR (CDCl_3 , ppm): 8.46 (s, 1H, Amid H), 7.30 (m, 5H, ArH)), 4.87 (s, 2H, CH_2), 3.60 (s, 2H, CH_2 -Ph), 3.10 - 2.40 (m, 15H, CH, CH_2), 2.0 (m, 4H, CH_2), 1.70 (m, 2H, CH_2), 1.52 (s, 2H, NH), 1.40 - 1.10 (m, 12H, CH_3).

Beispiel 7

Synthese von 8-Benzyl-1-(4-brombenzoyl)-1,3,8-triaza-spiro[4,5]decan-4-ol (M).

2.40 g (9.20 mmol) von Verbindung D wurden in 5 ml THF gelöst und mit 1.0 g (4.60 mmol) 4-Brombenzoylchlorid in 5 ml THF gelöst, langsam versetzt. Nach 20 h bei RT wurde das Lösungsmittel im Vakuum abgezogen, der Rückstand mit Wasser verdünnt, mit NH_4OH auf pH 10 alkalisch gemacht und mit CH_2Cl_2 extrahiert. Nach Abzug des Lösungsmittels im Vakuum wurde der Rückstand chromatographisch an Kieselgel (CH_2Cl_2 /MeOH 8:2) gereinigt. Man erhielt 1.60 g (80%) der Verbindung M als Öl, das beim Stehenlassen im Kühlschrank fest wurde.
IR [cm^{-1}]: 3220, 1630 (NH, C=O von Amid), 3100-3010, 1590 (Aryl), 2940-2880 (aliph. CH_2), 1740 (C=O).

¹H-NMR (CDCl₃, ppm): 8.50 (s, 1H, Amid H), 7.90 (m, 2H, ArH)), 7.30 (m, 5H, ArH), 6.90 (m, 2H, ArH), 4.70 (s, 2H, CH₂), 3.60 (s, 2H, CH₂-Ph), 2.95 (m, 4H, CH₂), 2.0 (m, 4H, CH₂).

Beispiel 8

Darstellung und trägerfreie Isolierung von 8-Benzyl-1-(4-[¹²³I]iodbenzoyl)-1,3,8-triaza-spiro[4,5]d ecan-4-on (N).

5.0 l wäßriger Na₂S₂O₅-Lösung (4 mg/ml) werden zur Na¹²³I-Lösung (50 - 60 MBq) addiert und das Lösungsmittel im Vakuum eingedampft. Man gibt 5.0 l Cu(II)Cl-Lösung und 100 l einer Lösung aus 0.5 mg (1.17 mol) Verbindung M in 100 l Eisessig zu und erhitzt 15 min auf 180 °C. Das Lösungsmittel wird erneut im Vakuum eingedampft und der Rückstand mit 150 l EtOH (99%) versetzt. Es folgt die Isolierung der iodierten Verbindung N mittels HPLC Säule (Spherisorb A5, PC18, 250 x 4, MeOH/ Phosphatpuffer pH 8, 50:50). 8-Benzyl-1-(4-[¹²³I]iodbenzoyl)-1,3,8-triaza-spiro[4,5] decan-4-on (N) wird trägerfrei nach 9 min isoliert.

Patentansprüche

1. Verbindungen der Formel I,

Formel I,

wobei

R H, $-(CH_3)_a-CH_2R_3$, $-(CH_2)_a-C_6H_4-R_3$, $-(CH_2)_a-C(C_6H_4-R_3)_3$, $-(CH_2)_b-(CO)-C_6H_4R_3$, $-(CHR_3)_a-(CO)-R_3$, $-(CH_2)_b-CH(OH)-C_6H_4R_3$, $-(CH_2)_b-C(OH)(C_6H_4-R_3)_2$, $-(CH_2)_b-C(OCH_2)_2-C_6H_4R_3$, $-(CH_2)_b-C(SCH_2)_2-C_6H_4R_3$, $-(CH_2)_a-CH(C_6H_4-R_3)_2$, $-(CH_2)_b-C(OCH_2)_3-C_6H_4R_3$, $-(CH_2)_b-C(SCH_2)_3-C_6H_4R_3$,

R₁ und **R₂** gleich oder verschieden sind und

H, $-(CH_2)_a-CH_3$, $-(CHR_3)_a-CH_2R_3$, $-(CH_2)_a-C_6H_4R_3$ bedeuten,
wobei

R₃ H, $-(CH_2)_a-CH_3$, $-CONR'R''$, $-OR'$, $-SO_3R'$, $-OCOR'$, $-SO_2NR'R''$, $-CONHCH_2COOH$, $-SR'$, $-NR'R''$, $-COR'$, F, Cl, Br oder I oder einen 5- oder 6-gliedrigen Heterocyclus mit 1 bis 3 Heteroatomen aus der Reihe N, S oder O, bedeuten, wobei

R' und R" gleich oder verschieden sind und H, -(CH₂)_bCH₃, Phenyl, p-Hydroxyphenyl, N-Piperidinyl, N-Piperazinyl oder N-Morpholinyl, und

a und b unabhängig voneinander eine ganze Zahl von 0 bis 20 bedeuten.

2. Verbindungen nach Anspruch 1, in denen gemäß Formel I R H, -(CH₂)_a-C₆H₄R₃, -(CH₂)_b-(CO)-C₆H₄R₃ oder -(CH₂)_b-CH(OH)-C₆H₄R₃ und

R₃ H, F, Cl, Br oder I und -OR', wobei R' -C(CH₂)_bCH₃ bedeutet und

a und b unabhängig voneinander sind und jeweils eine ganze Zahl von 0 bis 5 bedeuten.

3. Verbindungen nach den Ansprüchen 1 oder 2, in denen gemäß Formel I

R₁ und R₂ gleich sind und Wasserstoff oder -(CH₂)_a-CH₃

R Wasserstoff, -(CH₂)_a-C₆H₄R₃ oder -(CH₂)_b-(CO)-C₆H₄-R₃ und

R⁴ Wasserstoff, -(CH₂)_a-CH₃ oder -(CH₂)_b-(CO)-(C₆H₄-R₃) bedeuten, wobei

a und b unabhängig voneinander 0 oder 1 und

R³ Wasserstoff, Fluor, Chlor, Brom oder Iod

bedeuten.

4. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel II, dadurch gekennzeichnet, daß Verbindungen der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 3 mit einem Elektrophilen der Formel X-R₄ umgesetzt werden

Formel I

Formel II

wobei

X eine nucleophile Abgangsgruppe, insbesondere Chlor, Brom oder Tosylat bedeutet und

R₄ einen für R gemäß den Ansprüchen 1 bis 3 genannten Rest bedeutet, wobei in diesen Resten eine oder mehrere Kohlenstoffatome durch ¹¹C-Kohlenstoff ersetzt sind oder ein oder mehrere Stickstoffatome durch ¹³N-Stickstoff ersetzt sind oder ein oder mehrere Sauerstoffatome durch ¹⁵O-Sauerstoff ersetzt sind oder ein oder mehrere Halogenatome einer Halogensorte F, Cl, Br oder I durch ein entsprechendes radioaktives Isotop ersetzt sind oder einen Rest der Formel III, der mindestens ein ^{99m}Tc Isotop chelatisiert, bedeutet,

28

wobei

W, X, Y und Z unabhängig voneinander N oder S bedeuten,

R₁₀ und R₂₀ zusammen jeweils doppelt gebundenes O oder S bedeuten und/oder

R₁₀, R₂₀, R₃₀, R₄₀, R₅ und R₆ gleich oder verschieden sind und

H, -(CH₂)_a-CH₃, -COOR', -CONR', -CONR'R'', -OR', -SO₃R', -OCOR', -SO₂NR'R'', -CONHCH₂COOH, -SR', -NR'R'', -COR', bedeuten,

wobei

R' und R'' gleich oder verschieden sind und

H, -(CH₂)_bCH₃, Phenyl, p-Hydroxyphenyl, N-Piperidinyl, N-Piperazinyl oder N-Morpholinyl bedeuten,

V

H, -COCH₃, -COC₆H₅, -CH₂NHCOCH₃, -CH₂C₆H₅, -COCH₂OH, -COCH₂COOH bedeutet und

m, n, o und p

jeweils unabhängig voneinander 0, 1 oder 2 und

a und b

jeweils unabhängig voneinander eine ganze Zahl von 0 bis 20 bedeuten.

5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß im Chelatbildner der Formel III

Y und Z

S,

X und W

N ist,

R₁₀ und R₂₀

zusammen einen doppelt gebundenen Sauerstoff
bedeutet und/oder

R₁₀, R₂₀, R₃₀, R₄₀, R₅ und R₆ gleich oder verschieden sind und
-H, -(CH₂)_aCH₃, -COOR', -CONR'R'', -NR'R'' oder -OR'
bedeuten,

wobei R' und R'' gleich oder verschieden sind und H, -(CH₂)_bCH₃, Phenyl
oder p-Hydroxyphenyl bedeuten,

V

-H, -COCH₃, -COC₆H₅ oder -CH₂-C₆H₅ bedeutet,

m, n, o und p identisch sind und 0, 1 oder 2 und

a und b identisch sind und eine ganze Zahl von 0 bis 5 bedeuten.

6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß im Chelatbildner der Formel III m, n, o und p identisch sind und 0 oder 1 sind, wobei

R_{10} und R_{20} jeweils Wasserstoff oder R_{10} und R_{20} bilden zusammen ein doppelt gebundenes O, sofern mit dem benachbarten X oder W eine Carbonylamidostruktur

ausgebildet wird,

R_{30} zusammen mit $R_{40}-(\text{CH}_2)_a-\text{CH}_3$ bedeutet, wobei a eine ganze Zahl von 0 bis 5 ist und

R_5 und R_6 unabhängig voneinander Wasserstoff oder $-(\text{CH}_2)_a-\text{CH}_3$ bedeuten, wobei a eine ganze Zahl von 0 bis 5 ist.

7. Verfahren nach einem oder mehreren der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß der Chelatbildner der Formel III ein ^{99m}Tc -Isotop chelatisiert enthält.

8. Verbindungen der allgemeinen Formel II herstellbar nach einem Verfahren gemäß einem oder mehreren der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß

R , R_1 und R_2 entsprechend wie bei den Verbindungen der allgemeinen Formel I gewichtet sind und darüberhinaus

$R_4-(\text{CH}_2)_a-\text{CH}_3$, $-(\text{CH}_2)_a-\text{C}_6\text{H}_4-\text{R}_3$, $-(\text{CH}_2)_b-(\text{CO})-\text{C}_6\text{H}_4-\text{R}_3$, wobei

R₃ H, -CONR'R'', OR', -SO₃R', F, Cl, Br, I oder -NR'R'' ist,

bedeutet, wobei

a und b unabhängig voneinander 0 oder 1 und
R' und R'' gleich oder verschieden sind und H oder -(CH₂)_b-CH₃ bedeuten.

9. Verbindungen nach Anspruch 8, dadurch gekennzeichnet, daß R⁴ jeweils nur ein einziges radioaktives Isotop eines der angegebenen Elemente enthält.
10. Verbindungen nach den Ansprüche 8 oder 9, dadurch gekennzeichnet, daß das radioactive Element ¹²³I, ¹¹C oder ^{99m}Tc ist.
11. Verwendung der Verbindungen nach einem oder mehreren der Ansprüche 8 bis 10 als Pharmakon in der Nuklearmedizin.
12. Verwendung der Verbindung nach dem oder mehreren der Ansprüche 8 bis 10 als Neuroleptikum und/oder als Analgetikum.
13. Diagnostikum enthaltend eine Verbindung nach einem oder mehreren der Ansprüche 8 bis 10 zur Anwendung in der Nuklearmedizin.

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶ : C07D 471/10, A61K 51/04		A3	(11) Internationale Veröffentlichungsnummer: WO 95/22544 (43) Internationales Veröffentlichungsdatum: 24. August 1995 (24.08.95)
(21) Internationales Aktenzeichen: PCT/EP95/00513			(81) Bestimmungsstaaten: CA, FI, JP, NO, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) Internationales Anmeldedatum: 13. Februar 1995 (13.02.95)			
(30) Prioritätsdaten: P 44 05 178.6 18. Februar 1994 (18.02.94) DE			Veröffentlicht <i>Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.</i>
(71) Anmelder (für alle Bestimmungsstaaten ausser US): HOECHST AKTIENGESELLSCHAFT [DE/DE]; Brüningstrasse 50, D-65929 Frankfurt am Main (DE).			(88) Veröffentlichungsdatum des internationalen Recherchenberichts: 26. September 1996 (26.09.96)
(72) Erfinder; und			
(75) Erfinder/Anmelder (nur für US): BRANDAU, Wolfgang [DE/DE]; Platanenweg 7, D-48161 Münster (DE). SAMNICK, Samuel [DE/DE]; Am Kirchenkamp 25a, D-49078 Osnabrück (DE).			

(54) Title: **SUBSTITUTED 1,3,8-TRIAZA-SPIRO(4,5)-DECAN-4-ONE DERIVATIVES USEFUL AS PRELIMINARY STAGES IN THE PRODUCTION OF PHARMACEUTICALS**

(54) Bezeichnung: **SUBSTITUIERTE 1,3,8-TRIAZA-SPIRO(4,5)-DECAN-4-ON-DERIVATE ALS VORSTUFEN ZUR HERSTELLUNG VON PHARMAZEUTIKA**

(57) Abstract

Compounds having the general formula (I) are useful as preliminary stages in the production of new pharmaceuticals. Said pharmaceuticals are useful as neuroleptic or analgesic agents or as pharmaceuticals in nuclear medicine.

(57) Zusammenfassung

Die Erfindung betrifft Verbindungen der allgemeinen Formel (I) als Vorstufen zur Herstellung neuer Pharmazeutika. Die genannten Pharmazeutika werden verwendet als Neuroleptika, Analgetika oder als Pharmaka in der Nuklearmedizin.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Oesterreich	GA	Gabon	MR	Mauretanien
AU	Australien	GB	Vereinigtes Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NE	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BF	Burkina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarien	HU	Ungarn	NZ	Neuseeland
BJ	Benin	IE	Irland	PL	Polen
BR	Brasilien	IT	Italien	PT	Portugal
BY	Belarus	JP	Japan	RO	Rumänien
CA	Kanada	KE	Kenya	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	Vereinigte Staaten von Amerika
FI	Finnland	ML	Mali	UZ	Usbekistan
FR	Frankreich	MN	Mongolei	VN	Vietnam

INTERNATIONAL SEARCH REPORT

International Application No.

PCT/EP 95/00513

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C07D471/10 A61K51/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US-A-3 155 669 (N. V. RESEARCH LABORATORIES DR. C. JANSSEN) 3 November 1964 see example LVIII ---	1-3
X	JP-A-49 133 380 (SUMITOMO CHEMICAL CO., LTD.) 21 December 1974 * 1,3,8-Triazaspiro(4.5)decan-4-on * --- -/-	1-3

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

- *&* document member of the same patent family

3

Date of the actual completion of the international search

21 July 1995

Date of mailing of the international search report

23.08.95

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentiaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax (+31-70) 340-3016

Authorized officer

Herz, C

INTERNATIONAL SEARCH REPORT

Application No.
PCT/EP 95/00513

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>CHEMICAL ABSTRACTS, vol. 85, no. 13, 27 September 1976 Columbus, Ohio, US; abstract no. 94399s, page 641;</p> <p>8-(4,4-Bis(4-fluorophenyl)-4-hydroxybutyl)- 1,3,8-triaza-spiro(4,5)-decan-4-on see abstract & JP-A-75 160 269 (SUMITOMO CHEMICAL CO., LTD.) 25 December 1975 ---</p>	1-3
X	<p>WO-A-89 10759 (MALLINCKRODT, INC.) 16 November 1989 cited in the application,* * page 14: combination X -----</p>	1-3

INTERNATIONAL SEARCH REPORT

Information on patent family members

Item No. 1 Application No

PCT/EP 95/00513

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US-A-3155669	03-11-64	NONE		
JP-A-49133380	21-12-74	NONE		
WO-A-8910759	16-11-89	AU-A-	3778989	29-11-89
		EP-A-	0381713	16-08-90

INTERNATIONALER RECHERCHENBERICHT

Aktenzeichen

PCT/EP 95/00513

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 6 C07D471/10 A61K51/04

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationsymbole)
IPK 6 C07D A61K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US-A-3 155 669 (N. V. RESEARCH LABORATORIES DR. C. JANSSEN) 3.November 1964 siehe Beispiel LVIII ---	1-3
X	JP-A-49 133 380 (SUMITOMO CHEMICAL CO., LTD.) 21.Dezember 1974 * 1,3,8-Triazaspiro(4.5)decan-4-on * --- -/-	1-3

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

'Besondere Kategorien von angegebenen Veröffentlichungen :

'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

'E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

'T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

'X' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

'Y' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

'&' Veröffentlichung, die Mitglied derselben Patentfamilie ist

3

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

21.Juli 1995

23.08.95

Name und Postanschrift der Internationale Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+ 31-70) 340-3016

Bevollmächtigter Bediensteter

Herz, C

INTERNATIONALER RECHERCHENBERICHT

Name: Aktenzeichen

PCT/EP 95/00513

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	CHEMICAL ABSTRACTS, vol. 85, no. 13, 27.September 1976 Columbus, Ohio, US; abstract no. 94399s, Seite 641; 8-(4,4-Bis(4-fluorphenyl)-4-hydroxybutyl)- 1,3,8-triaza-spiro(4,5)-decan-4-on siehe Zusammenfassung & JP-A-75 160 269 (SUMITOMO CHEMICAL CO., LTD.) 25.Dezember 1975 ---	1-3
X	WO-A-89 10759 (MALLINCKRODT, INC.) 16.November 1989 in der Anmeldung erwähnt * Seite 14: Verbindung X * -----	1-3

INTERNATIONÄLER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Referat: 15 Aktenzeichen

PCT/EP 95/00513

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US-A-3155669	03-11-64	KEINE	
JP-A-49133380	21-12-74	KEINE	
WO-A-8910759	16-11-89	AU-A- 3778989 29-11-89 EP-A- 0381713 16-08-90	