Optimal Operations of Advanced Reactors:

How Do We Get There?

Rachel Slaybaugh June 14, 2021 MCD Roundtable

Nuclear Reactors Can't Compete on Ops and Maintenance

We've lost **7** reactors in the last 5 years

14 more scheduled to close by 2025

LCOE and Fixed O&M

The Future We Are Trying to Create

DIGITAL SIMULATORS

+

Low-Staff Maintenance

Enable

New regulatory paradigms

Design improvements

Operating cost reduction

Take Inspiration From Aerospace Success

Design

Digital design accelerated the 777 development process

Boeing 777: First new Boeing aircraft in 10 years:

- First jetliner 100% digitally designed
- Pre-assembly done digitally, eliminating need for costly pre-production mock-ups
- Five years from project launch to production, and eight years from launch to commercial flight

Operational Simulation

Simulators support design of new aircraft + pilot training

Based on flight equations and matches with physical data, simulators:

- Teach pilots especially in advanced aircraft

 how to assimilate data from new / unique
 systems (e.g. F22 Raptor)
- Offer "Extended envelope" training; teaches pilots, regulators how systems perform in extreme conditions
- Provide developers with insights into aircraft design trade-offs

Digital Twins

Digital Twin:

"A 'digital twin' is a physicsbased, or data science-based, model of an asset that exists in real life. It should mirror digitally the exact characteristics and operating performance of the real device, so that operators can understand the...asset"

Digital Twin Developmental Workflow

6

Cyber-Physical Systems

Cyber-physical system:

- "integrations of computation, networking, and physical processes...with feedback loops where physical processes affect computations and vice versa...
- CPS integrates the dynamics of the physical processes with those of the software and networking..."

Cyber Physical System Example: Hyper

Technical Challenges to AR Modeling

- We can make very pretty pictures, but a lot of the software has not been fully validated: can have large uncertainties
- DOE codes need supercomputers not desktops = problem
- Do not have dynamic resolution
- DOE and NRC codes have been developed for different purposes
 - DOE: normal operation, very high detail
 - NRC: accident scenarios, peak power regions
- Some (vital) data are non-existent
 - Molten salt thermophysical properties
 - High temperature material behavior

Leverage New Ideas and Sort it out NOW

- Lots of industries are developing better controls, better models, better data, better algorithms
- Focus on autonomy and machine learning (ML) is getting many questions answered
- Answer those questions specific for nuclear and prove out ideas in our systems and with our software; aid in code validation
- Have tools the industry and the regulator can use

