Math 230A: Homework 1

Lance Remigio

September 5, 2024

- 1. Mark each statement True or False.
 - 1-1) If x and y are elements of an ordered field, then either $x \leq y$ or y < x. True.
 - 1-2) Every ordered field has the least upper bound property. False.
 - 1-3) If $E \subseteq \mathbb{R}$ is bounded above and $\alpha = \sup E$, then $\alpha \in E$. False.
 - 1-4) If $E \subseteq \mathbb{R}$ and $\alpha \geq x$, for all $x \in E$, then $\alpha = \sup E$. False.
 - 1-5) If $E \subseteq \mathbb{R}$ and $\alpha \geq x$, for all $x \in E$, and $\alpha \in E$, then $\alpha = \sup E$. **True.**
 - 1-6) If $E \subseteq \mathbb{R}$ and $\alpha \geq x$, for all $x \in E$, and $\alpha \notin E$, then $\alpha \neq \sup(E)$. False.
- 2. Prove the following: Suppose α is an upper bound for $E \subset \mathbb{R}$. Then $\alpha = \sup E$ if and only if for all $\varepsilon > 0$, there exists $x_0 \in E$ such that $x_0 > \alpha \varepsilon$.

Proof. Suppose α is an upper bound for $E \subseteq \mathbb{R}$. For the forwards direction, suppose $\alpha = \sup E$ and let $\varepsilon > 0$. Note that $\alpha - \varepsilon < \alpha$ implies that $\alpha - \varepsilon$ is NOT an upper bound of E. By definition, there must exist an element $x_0 \in E$ such that $x_0 > \alpha - \varepsilon$. Thus, $\alpha < x_0 + \varepsilon$.

For the backwards direction, let $\varepsilon > 0$ and let α be an upper bound of E. We need to show $\alpha = \sup E$; that is, we need to show that α is an upper bound of E and that any $\gamma < \alpha$ implies γ is NOT an upper bound of E. Notice that the first property is satisfied by our assumption. Thus, all that is left to show is the second property.

Suppose $\gamma < \alpha$. Thus, we have $\alpha - \gamma > 0$. Choose $\varepsilon = \alpha - \gamma$. Our goal is to find some element $x \in E$ such that $x > \alpha - \varepsilon$. Choose $\varepsilon = \alpha - \gamma$. By assumption, there exists an element $x_0 \in E$ such that

$$x_0 > \alpha - \varepsilon = \alpha - (\alpha - \gamma) = \gamma.$$

Thus, $x_0 > \gamma$ for some $x_0 \in E$. Therefore, γ is NOT an upper bound of E and so we conclude that

$$\alpha = \sup E$$
.

3. Let $E = \{n/n + 1 : n \in \mathbb{N}\}$. Prove that $\sup E = 1$.

Proof. To show that 1 is the supremum of E, we need to show that 1 is an upper bound for E and that it satisfies the lemma found in Problem 2. First, we will show that 1 is an upper bound of E. Observe that for any $n \in \mathbb{N}$, we have

$$\frac{n}{n+1} < \frac{n}{n} = 1.$$

Thus, E is bounded above by 1.

Let $\varepsilon > 0$. By the Archimedean Property, there exists an $n \in \mathbb{N}$ such that

$$\frac{1}{n+1} < \varepsilon$$
.

Then observe that

$$\frac{1}{n+1} = \frac{(n+1)-n}{n+1} = 1 - \frac{n}{n+1}.$$

Thus,

$$1 - \frac{n}{n+1} < \varepsilon \Longleftrightarrow \frac{n}{n+1} > 1 - \varepsilon.$$

But note that $\frac{n}{n+1} \in E$. By Problem 2, we conclude that $\sup E = 1$.

4. State the analogue of the Very Useful Theorem for infimums.

Solution. Suppose β is a lower bound for $E \subseteq \mathbb{R}$. Then $\beta = \inf E$ if and only if for all $\varepsilon > 0$, there exists $y_0 \in E$ such that $y_0 < \beta + \varepsilon$.

5. Suppose $a, b \in \mathbb{R}$ and $a \leq b + \varepsilon$ for every $\varepsilon > 0$. Prove $a \leq b$.

Proof. Suppose $a, b \in \mathbb{R}$ and $a \leq b + \varepsilon$ for all $\varepsilon > 0$. Suppose for sake of contradiction that a > b. Note that a - b > 0. Pick $\varepsilon = \frac{a - b}{2}$. Then

$$b+\varepsilon=b+\frac{a-b}{2}=\frac{2b+a-b}{2}=\frac{a+b}{2}$$

$$<\frac{a+a}{2}$$

$$=\frac{2a}{2}$$

$$=a.$$

But this means that $a > b + \varepsilon$ which is a contradiction of our assumption that $a \le b + \varepsilon$. Thus, it must be the case that $a \le b$.

6. Complete the following proof.

Theorem (Greatest-lower-bound property of \mathbb{R}). Every nonempty subset of A of \mathbb{R} that is bounded below has a greatest lower bound. In other words, inf A exists and is a real number.

Proof. Continuation of the proof presented in homework. Set $\beta = -\alpha$ where $\alpha = \sup(-A)$. Thus, there exists $a \in A$ such that $-\gamma < -a$. Multiplying by a negative on both sides of this inequality, we get $\gamma > a$ for some $a \in A$. If γ was a lower bound of A, then $\gamma \leq a$ for all $a \in A$. However, we have the negation of this, so we must have that γ is NOT a lower bound of A, which satisfies part (ii). Since $\beta \leq \alpha$ for all $a \in A$ and $\beta < \gamma$ implies γ is not a lower bound for A, we conclude that β must be the infimum of A.

7. (i) Let $A \subseteq \mathbb{R}$ be a nonempty set, which is bounded from above. Show that if $\sup A \notin A$, then for all $\varepsilon > 0$ the open interval $(\sup A - \varepsilon, \sup A)$ contains infinitely many elements of A.

Proof. Let $\varepsilon > 0$. Our goal is to show that $(\sup A - \varepsilon, \sup A)$ has infinitely many points. Note that as a consequence of the result found in Problem 2, there exists

 $x_0 \in A$ such that

$$\sup A - \varepsilon < x_0 \le \sup A.$$

By assumption, we have that $\sup A \notin A$. Thus, we have

$$\sup A - \varepsilon < x_0 < \sup A$$

for some $x_0 \in A$. So, $(\sup A - \varepsilon, \sup A) \cap A$ is nonempty.

Now, we will show, that for all $\varepsilon > 0$ such that $(\sup A - \varepsilon, \sup A) \cap A$ contains infinitely many elements. Thus, suppose for sake of contradiction that there exists an $\varepsilon > 0$ such that $(\sup A - \varepsilon, \sup A) \cap A$ contains FINITELY many elements. Let us denote these elements by a_i for $1 \le i \le n$; that is,

$$(\sup A - \varepsilon, \sup A) \cap A = \{a_1, \dots, a_n : 1 \le i \le n\}.$$

For all $1 \le k \le n$, let the distance between each a_k and $\sup A$ by

$$d_k = |\sup A - a_k|.$$

Since $a_k \in A$ and $\sup A \notin A$, we must have $|\sup A - a_k| > 0$. Let

$$d = \frac{\min\{d_1, \dots, d_n\}}{2}.$$

But this implies that none of the a_1, \ldots, a_n lies inside the interval (sup A - d, sup A). That is,

$$A \cap (\sup A - d, \sup A) = \emptyset,$$

which is a contradiction. Thus, $(\sup A - \varepsilon, \sup A) \cap A$ must contain infinitely many elements of A.

(ii) Let $B \subseteq \mathbb{R}$ be a nonempty set, which is bounded from below. Show that if $\inf B \notin B$, then for all $\varepsilon > 0$ the open interval ($\inf B, \inf B + \varepsilon$) contains infinitely many elements of B.

Proof. Our goal is to show that for all $\varepsilon > 0$, (inf B, inf $B + \varepsilon$) contain infinitely many elements of B. Note that as a consequence of Problem 3, there exists an $\beta \in B$ such that

$$\inf B \leq \beta < \inf B + \varepsilon.$$

Since $\inf B \notin B$, we must have

$$\inf B < \beta < \inf B + \varepsilon.$$

Thus, the set $(\inf B, \inf B + \varepsilon) \cap B$ is nonempty.

Now, we will show that $(\inf B, \inf B + \varepsilon) \cap B$ contains infinitely many points. Thus, suppose for sake of contradiction that there exists an $\varepsilon > 0$ such that $(\inf B, \inf B + \varepsilon) \cap B$ contains FINITELY many points. Denote these points by b_i for $1 \le i \le n$; that is

$$(\inf B, \inf B + \varepsilon) \cap B = \{b_i : 1 \le i \le n\}$$

For all $1 \le k \le n$, let $d_k = |\inf B - b_k|$. Since $b_k \in B$ and $\inf B \notin B$, we must

have $|\inf B - b_k| > 0$. Let

$$d = \frac{\min\{d_1, d_2, \dots, d_n\}}{2}.$$

But this implies that none of the b_i for $1 \leq i \leq n$ lies within the open interval $(\inf B, \inf B + d)$. That is, the set

$$(\inf B, \inf B + d) \cap B = \emptyset$$

which is a contradiction. Thus, the open interval (inf B, inf $B + \varepsilon$) must have

8. Suppose the construction of \mathbb{R} and the proof of the least-upper-bound property for \mathbb{R} can be completed without directly using the well-ordering principle for \mathbb{N} . (Of course, statements equivalent to the well-ordering principle might have been used, but we are assuming that the nontrivial fact of their equivalence to the well-ordering principle was not utilized in the construction of \mathbb{R} or in proving its Dedekind completeness.) Use the greatest-lower-bound property of \mathbb{R} and the result of the previous exercises to prove the well-ordering principle for \mathbb{N} ; that is, prove that every nonempty subset of \mathbb{N} has a minimum.

Proof. By the greatest-lower-bound property of \mathbb{R} , we know that inf E exists. Let $\varepsilon = \frac{1}{5}$. To show that E contains a minimum, we suppose for contradiction that inf $E \notin E$. By Part 2 of Problem 7, the open interval (inf E, inf $E + \frac{1}{5}$) intersects E at infinitely many points (these points being natural numbers). Suppose we choose an $m \in \mathbb{N}$ such that $m \in (\inf E, \inf E + \frac{1}{5})$. Note that m also lies interval (m-1, m+1). Thus, $(\inf E, \inf E + \varepsilon) \subseteq (m-1, m+1)$. However, note that $(\inf E, \inf E + \frac{1}{5})$ contains infinitely many natural numbers which cannot happen within the open interval (m-1, m+1) since this interval contains at most one element, namely m. Thus, this is a contradiction. Thus, it must be the case that $\inf E \in E$.

9. Let $A, B \subseteq \mathbb{R}$ be nonempty, bounded sets and let $c \in \mathbb{R}$. Define the following sets:

$$A + B = \{a + b : a \in A, b \in B\}$$

$$A - B = \{a - b : a \in A, b \in B\}$$

$$A \cdot B = \{ab : a \in A, b \in B\}$$

$$cA = \{ca : a \in A\}.$$

Prove that

9-1) $\inf(A + B) = \inf(A) + \inf(B)$.

Proof. In order to show that $\inf(A+B)=\inf A+\inf B$, we need to show that (i) The set A+B is bounded below by $\inf(A)+\inf(B)$. (ii) For every $\varepsilon>0$, there exists $\varphi\in A+B$ such that

$$\varphi < \inf(A) + \inf(B) + \varepsilon.$$

Note that $A + B \neq \emptyset$ since $a + b \in A + B$ and A and B are nonempty sets. Since A and B are also bounded below, we can see that $a \geq \inf A$ and $b \geq \inf B$ for all $b \in B$ implies

$$a + b \ge \inf(A) + \inf(B)$$
 for all $a + b \in A + B$,

which shows (i). Now, let $\varepsilon > 0$. Using the lemma found in Problem 3, there

exists an $\alpha \in A$ and $\beta \in \beta$ such that

$$\alpha < \inf(A) + \frac{\varepsilon}{2}$$

and

$$\beta < \inf(B) + \frac{\varepsilon}{2}$$

respectively. Adding these two inequalities, we get

$$\varphi = \alpha + \beta < \inf(A) + \inf(B) + \varepsilon$$
 for some $\varphi \in A + B$.

Thus, we conclude that $\inf(A+B) = \inf(A) + \inf(B)$.

9-2) $\sup(A + B) = \sup(A) + \sup(B)$

Proof. In order to show that $\sup(A+B) = \sup(A) + \sup(B)$, we need to show that

- (i) A + B is bounded above and
- (ii) For every $\varepsilon > 0$, there exists a $\lambda > \sup(A) + \sup(B) \varepsilon$.

Note that $A+B\neq\emptyset$ since A and B is nonempty. Since A and B are bounded above, we have that $a\leq\sup(A)$ for all $a\in A$ and $b\leq\sup(B)$ for all $b\in B$ implies that

$$a + b \le \sup(A) + \sup(B)$$

for all $a+b \in A+B$, which proves (i). Let $\varepsilon > 0$. Since $\sup(A)$ and $\sup(B)$ exists, we see that there exists $\alpha \in A$ and $\beta \in B$ such that

$$\alpha > \sup(A) - \frac{\varepsilon}{2}$$

and

$$\beta > \sup(B) - \frac{\varepsilon}{2}$$

by the lemma found in Problem 2. Adding these two inequalities results in

$$\lambda = \alpha + \beta > \sup(A) + \sup(B) - \varepsilon.$$

Thus, $\sup(A+B) = \sup(A) + \sup(B)$ by the lemma found in Problem 2.

9-3) $\sup(-A) = -\inf(A)$

Proof. To show that $\sup(-A) = -\inf(A)$, we need to show that

- (i) For all $-a \in -A$, we have $-a \le -\inf(A)$ and
- (ii) For all $\varepsilon > 0$, there exists $-\alpha \in -A$ such that

$$-\alpha < -\inf(A) - \varepsilon.$$

Since A is bounded below and nonempty, we know that $a \ge \inf(A)$ for all $a \in A$. Multiplying this inequality by a negative, we get that

$$-a < -\inf(A)$$
 for all $-a \in -A$.

Thus, -A is bounded above by $-\inf(A)$.

Let $\varepsilon > 0$. Since $\inf(A)$ exists, there exists $\gamma \in A$ such that

$$\gamma < \inf(A) + \varepsilon$$
.

By multiplying by a negative on this inequality, we must have that

$$-\gamma > -\inf(A) - \varepsilon$$

for some $-\gamma \in -A$. Thus, we must have that $\sup(-A) = -\inf(A)$.

9-4) $\inf(-A) = -\sup(A)$.

Proof. Using 9-3), we see that

$$-\sup(A) = -\sup(-(-A)) = -(-\inf(-A)) = \inf(-A).$$

9-5) $\sup(A - B) = \sup(A) - \inf(B)$.

Proof. Observe that

$$sup(A - B) = sup(A + (-B)) = sup(A) + sup(-B)
= sup(A) - inf(B)$$
(9-2))
(9-3))

$$= \sup(A) - \inf(B) \tag{9-3}$$

9-6) $\inf(A - B) = \inf(A) - \sup(B)$.

Proof. Observe that

$$\inf(A - B) = \inf(A + (-B)) = \inf(A) + \inf(-B)$$
 (9-1))
= $\inf(A) - \sup(A)$. (9-4))

$$= \inf(A) - \sup(A). \tag{9-4}$$

9-7) $\sup(cA) = c \sup(A) \text{ if } c > 0.$

Proof. Let c > 0. We will show that $\sup(cA) = c \sup(A)$. Note that cA is nonempty because $ca \in cA$. First, we show that cA is bounded above by $c \sup(A)$. Since $\sup(A)$ exists, we know that

$$a \leq \sup(A)$$
 for all $a \in A$.

Multiplying by c, we must have

$$ca < c \sup(A)$$
 for all $ca \in cA$.

Now, let $\varepsilon > 0$. Since $\sup(A)$ exists, there exists $\alpha \in A$ such that

$$\alpha > \sup(A) - \frac{\varepsilon}{c}$$
.

Multiplying by c > 0, we must have

$$c\alpha > c \sup(A) - \varepsilon$$
 for some $c\alpha \in cA$.

Thus, $c \sup(A) = \sup(cA)$ by the lemma found in Problem 2.

9-8) $\inf(cA) = c \inf(A)$ if c > 0.

Proof. Let c > 0. To show that $\inf(cA) = c \inf(A)$, we need to show that

- (i) $c\inf(A)$ is a lower bound and
- (ii) for all $\varepsilon > 0$, there exists a $\gamma \in cA$ such that

$$\gamma < c\inf(A) + \varepsilon$$
.

Since $\inf(A)$ exists (because $A \neq \emptyset$ and A is bounded below), we have that $a \geq \inf(A)$ for all $a \in A$. Multiplying by c > 0, we have $ca \geq c\inf(A)$ for all $ca \in cA$. Thus, cA is bounded below by $c\inf(A)$. This proves (i).

Note the fact that $\inf(A)$ exists implies that there exists an $\alpha \in A$ such that

$$\alpha < \inf(A) + \frac{\varepsilon}{c}$$

by the lemma found in Problem 2. Multiplying by c > 0, we have

$$c\alpha < c\inf(A) + \varepsilon$$

for some $c\alpha \in cA$. Thus, we can set $\gamma = c\alpha$ and conclude that

$$\inf(cA) = c\inf(A)$$

by Problem 2.

9-9) $\sup(cA) = c \inf(A)$ if c < 0.

Proof. Let c < 0. Observe that

$$c\inf(A) = c\inf(-(-A))$$

= $-c(\sup(-A))$ (9-4))
= $\sup((-c)(-A))$ (-c > 0 and 9-7))
= $\sup(cA)$.

Thus, we conclude that $c\inf(A) = \sup(cA)$ for c < 0.

9-10) $\inf(cA) = c \sup(A)$ if c < 0.

Proof. Let c < 0. Observe that

$$\inf(cA) = \inf((-c)(-A)) \qquad (-c > 0)$$

$$= -c\inf(-A) \qquad (9-8)$$

$$= -c(-\sup A) \qquad (9-4)$$

$$= c\sup A.$$

Thus, we conclude that

$$\inf(cA) = c \sup A$$

for c < 0.

9-11) Is it true that $\sup(A \cdot B) = \sup(A) \cdot \sup(B)$.

Proof. This is false. Consider the sets $A = \{1, 2, 4, 8\}$ and $B = \{-5, -2, -3, -1\}$. Then $AB = \{-5, -4, -12, -8\}$. Observe that $\sup(A) \cdot \sup(B) = 8 \cdot -1 = -8$, but $\sup(AB) = -5 \neq -8 = \sup(A) \cdot \sup(B)$.

- 10. Recall that \mathbb{Q} is a field; in particular, \mathbb{Q} is closed under addition and multiplication.
 - 10-1) Prove that if $p \in \mathbb{Q}$ and t is an irrational number, then p + t is an irrational number.

Proof. Suppose $p \in \mathbb{Q}$ and t is an irrational number. Suppose for sake of contradiction that p+t is an rational number. Then there exists $x,y \in \mathbb{Z}$ with $y \neq 0$ such that

$$p+t=\frac{x}{y}$$
.

Subtracting p on both sides, we get

$$t = \frac{x}{y} - p.$$

Since \mathbb{Q} is a field and $\frac{x}{y}, p \in \mathbb{Q}$, we get that $\frac{x}{y} - p \in \mathbb{Q}$. But this tells us that t is a rational number which is a contradiction. Thus, t must be irrational.

10-2) Complete the following proof.

Theorem. Given any two real numbers x < y, there exists an irrational number t satisfying x < t < y.

Proof. It follows from x < y that $x - \sqrt{2} < y - \sqrt{2}$. Since \mathbb{Q} is dense in \mathbb{R} , there exists $p \in \mathbb{Q}$ such that $x - \sqrt{2} . Adding <math>\sqrt{2}$ on both sides gives us

$$x$$

Since $p \in \mathbb{Q}$ and $\sqrt{2}$ is irrational, we get that $t = p + \sqrt{2}$ is irrational from 10-2). Thus, x < t < y for some irrational number t.

11. Prove the following:

Theorem (Nested Interval Property). For each $n \in \mathbb{N}$, assume we are given a closed interval $I_n = [a_n, b_n] = \{x \in \mathbb{R} : a_n \leq x \leq b_n\}$. Assume also that each I_n contains I_{n+1} . Then, the resulting nested sequence of closed intervals

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq I_4 \supseteq \cdots$$

has a nonempty intersection, that is $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Proof. Let $A = \{a_n : n \in \mathbb{N}\}$. Note that $A \neq \emptyset$ because $a_1 \in A$. Since $I_n = [a_n, b_n]$ for all $n \in \mathbb{N}$ and that each I_{n+1} is contained within each I_n , we see that each $a_n \in A$ must be bounded above by b_n for all $n \in \mathbb{N}$. Since $A \neq \emptyset$ and bounded above, there must exists a number x such that $x = \sup(A)$. Since x is an upper bound of A, we have $a_n \leq x \leq b_n$. Thus, $x \in I_n$ for all $n \in \mathbb{N}$ which means that

$$x \in \bigcap_{n=1}^{\infty} I_n,$$

proving that

$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset.$$

12. Complete the following proof:

Prove that $\bigcap_{n=1}^{\infty} (0, \frac{1}{n}) = \emptyset$.

Proof. Suppose for sake of contradiction $\bigcap_{n=1}^{\infty}(0,1/n)\neq\emptyset$. So there exists $x\in\bigcap_{n=1}^{\infty}(0,1/n)$. This implies that x>0 and x<1/n for all $n\in\mathbb{N}$. By the Archimedean Property, there exists an $n_0\in\mathbb{N}$ such that

$$\frac{1}{n_0} < x.$$

But this contradicts our assumption that x<1/n holds for all $n\in\mathbb{N}.$ Thus, the intersection

$$\bigcap_{n=1}^{\infty} \left(0, \frac{1}{n}\right)$$

must be empty.