

Cotangent space

In <u>differential geometry</u>, the **cotangent space** is a <u>vector space</u> associated with a point \boldsymbol{x} on a <u>smooth (or differentiable) manifold</u> $\boldsymbol{\mathcal{M}}$; one can define a cotangent space for every point on a smooth manifold. Typically, the cotangent space, $T_x^*\boldsymbol{\mathcal{M}}$ is defined as the <u>dual space</u> of the <u>tangent space</u> at \boldsymbol{x} , $T_x\boldsymbol{\mathcal{M}}$, although there are more direct definitions (see below). The elements of the cotangent space are called **cotangent vectors** or **tangent covectors**.

Properties

All cotangent spaces at points on a connected manifold have the same <u>dimension</u>, equal to the dimension of the manifold. All the cotangent spaces of a manifold can be "glued together" (i.e. unioned and endowed with a topology) to form a new differentiable manifold of twice the dimension, the <u>cotangent bundle</u> of the manifold.

The tangent space and the cotangent space at a point are both real vector spaces of the same dimension and therefore <u>isomorphic</u> to each other via many possible isomorphisms. The introduction of a <u>Riemannian metric</u> or a <u>symplectic form</u> gives rise to a <u>natural isomorphism</u> between the tangent space and the cotangent space at a point, associating to any tangent covector a canonical tangent vector.

Formal definitions

Definition as linear functionals

Let \mathcal{M} be a smooth manifold and let x be a point in \mathcal{M} . Let $T_x\mathcal{M}$ be the <u>tangent space</u> at x. Then the cotangent space at x is defined as the dual space of $T_x\mathcal{M}$:

$$T_x^*\mathcal{M}=(T_x\mathcal{M})^*$$

Concretely, elements of the cotangent space are <u>linear functionals</u> on $T_x\mathcal{M}$. That is, every element $\alpha\in T_x^*\mathcal{M}$ is a linear map

$$lpha:T_x\mathcal{M} o F$$

where F is the underlying <u>field</u> of the vector space being considered, for example, the field of <u>real</u> numbers. The elements of $T_x^*\mathcal{M}$ are called cotangent vectors.

Alternative definition

In some cases, one might like to have a direct definition of the cotangent space without reference to the tangent space. Such a definition can be formulated in terms of <u>equivalence classes</u> of smooth functions on \mathcal{M} . Informally, we will say that two smooth functions f and g are equivalent at a point x if they have the

same first-order behavior near \boldsymbol{x} , analogous to their linear Taylor polynomials; two functions f and g have the same first order behavior near \boldsymbol{x} if and only if the derivative of the function f - g vanishes at \boldsymbol{x} . The cotangent space will then consist of all the possible first-order behaviors of a function near \boldsymbol{x} .

Let \mathcal{M} be a smooth manifold and let x be a point in \mathcal{M} . Let I_x be the <u>ideal</u> of all functions in $C^{\infty}(\mathcal{M})$ vanishing at x, and let I_x^2 be the set of functions of the form $\sum_i f_i g_i$, where $f_i, g_i \in I_x$. Then I_x and I_x^2 are both real vector spaces and the cotangent space can be defined as the <u>quotient space</u> $T_x^*\mathcal{M} = I_x/I_x^2$ by showing that the two spaces are <u>isomorphic</u> to each other.

This formulation is analogous to the construction of the cotangent space to define the <u>Zariski tangent space</u> in algebraic geometry. The construction also generalizes to locally ringed spaces.

The differential of a function

Let M be a smooth manifold and let $f \in C^{\infty}(M)$ be a <u>smooth function</u>. The differential of f at a point x is the map

$$\mathrm{d}f_x(X_x) = X_x(f)$$

where X_x is a <u>tangent vector</u> at x, thought of as a derivation. That is $X(f) = \mathcal{L}_X f$ is the <u>Lie derivative</u> of f in the direction X, and one has df(X) = X(f). Equivalently, we can think of tangent vectors as tangents to curves, and write

$$\mathrm{d} f_x(\gamma'(0)) = (f \circ \gamma)'(0)$$

In either case, $\mathbf{d}f_x$ is a linear map on T_xM and hence it is a tangent covector at x.

We can then define the differential map $\mathbf{d}: C^{\infty}(M) \to T_x^*(M)$ at a point x as the map which sends f to $\mathbf{d}f_x$. Properties of the differential map include:

- 1. d is a linear map: d(af + bg) = adf + bdg for constants a and b,
- 2. $d(fg)_x = f(x)dg_x + g(x)df_x$

The differential map provides the link between the two alternate definitions of the cotangent space given above. Since for all $f \in I_x^2$ there exist $g_i, h_i \in I_x$ such that $f = \sum_i g_i h_i$, we have, $\mathrm{d} f_x = \sum_i \mathrm{d} (g_i h_i)_x = \sum_i (g_i(x) \mathrm{d} (h_i)_x + \mathrm{d} (g_i)_x h_i(x)) = \sum_i (0 \mathrm{d} (h_i)_x + \mathrm{d} (g_i)_x 0) = 0$ i.e. All function in I_x^2 have differential zero, it follows that for every two functions $f \in I_x^2$, $g \in I_x$, we have $\mathrm{d} (f+g) = \mathrm{d} (g)$. We can now construct an isomorphism between $T_x^*\mathcal{M}$ and I_x/I_x^2 by sending linear maps α to the corresponding cosets $\alpha + I_x^2$. Since there is a unique linear map for a given kernel and slope, this is an isomorphism, establishing the equivalence of the two definitions.

The pullback of a smooth map

Just as every differentiable map $f:M\to N$ between manifolds induces a linear map (called the *pushforward* or *derivative*) between the tangent spaces

$$f_*\!:\!T_xM o T_{f(x)}N$$

every such map induces a linear map (called the *pullback*) between the cotangent spaces, only this time in the reverse direction:

$$f^*\colon T^*_{f(x)}N o T^*_xM.$$

The pullback is naturally defined as the dual (or transpose) of the <u>pushforward</u>. Unraveling the definition, this means the following:

$$(f^*\theta)(X_x) = \theta(f_*X_x),$$

where $heta \in T^*_{f(x)}N$ and $X_x \in T_xM$. Note carefully where everything lives.

If we define tangent covectors in terms of equivalence classes of smooth maps vanishing at a point then the definition of the pullback is even more straightforward. Let g be a smooth function on N vanishing at f(x). Then the pullback of the covector determined by g (denoted dg) is given by

$$f^*\mathrm{d} g=\mathrm{d}(g\circ f).$$

That is, it is the equivalence class of functions on M vanishing at x determined by $g \circ f$.

Exterior powers

The k-th <u>exterior power</u> of the cotangent space, denoted $\Lambda^k(T_x^*\mathcal{M})$, is another important object in differential geometry. Vectors in the k-th exterior power, or more precisely sections of the k-th exterior power of the <u>cotangent bundle</u>, are called <u>differential k-forms</u>. They can be thought of as alternating, <u>multilinear maps</u> on k tangent vectors. For this reason, tangent covectors are frequently called <u>one-forms</u>.

References

- Abraham, Ralph H.; Marsden, Jerrold E. (1978), Foundations of mechanics, London: Benjamin-Cummings, ISBN 978-0-8053-0102-1
- Jost, Jürgen (2005), *Riemannian Geometry and Geometric Analysis* (4th ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-25907-7
- Lee, John M. (2003), *Introduction to smooth manifolds*, Springer Graduate Texts in Mathematics, vol. 218, Berlin, New York: Springer-Verlag, ISBN 978-0-387-95448-6
- Misner, Charles W.; Thorne, Kip; Wheeler, John Archibald (1973), *Gravitation*, W. H. Freeman, ISBN 978-0-7167-0344-0

Retrieved from "https://en.wikipedia.org/w/index.php?title=Cotangent space&oldid=1181864787"

•