处理机调度典型算法比较

进程名	Α	В	С	D	E	平均时间
到达时间	0	1	2	3	4	
服务时间	4	3	5	2	4	
短作业优先						
完成时间	4	9	18	6	13	
周转时间	4	8	16	3	9	8.00
带权周转时间	1	2.67	3.20	1.50	2.25	2.12
先来先服务						
完成时间	4	7	12	14	18	
周转时间	4	6	10	11	14	9
带权周转时间	1	2	2	5.5	3.50	2.8
最高相应比						
完成时间	4	7	14	9	18	
周转时间	4	6	12	6	14	8.4
带权周转时间	1	2	2.4	3	3.5	2.38

从表格中,我们不难看出,短作业优先的性能是非常优秀的,但是对于某些长作业,可能导致等待时间过长,这对单一的长作业是难以忍受的;先来先服务算法,他的各项指标都不算乐观,但是他的运行方式非常简单;而最高相应比则介于前面俩者之间,但是他对所有的进程都给了一定的优先度,很好的解决了短作业优先对于长作业的不合理性,综合新能优异;不过对于用什么算法也要具体情况具体分析;