Ανάλυση Επιδόσεων Επεξεργαστών MIPS με το Μοντέλο Roofline

Τεχνική Τεκμηρίωση

4 Δεκεμβρίου 2024

1 Εισαγωγή

Η παρούσα μελέτη αναλύει την επίδοση τριών διαμορφώσεων επεξεργαστών MIPS (MIPS-A, MIPS-B, MIPS-C) χρησιμοποιώντας το μοντέλο Roofline. Εξετάζονται τρεις υπολογιστικές εργασίες:

- Πολλαπλασιασμός διανύσματος με βαθμωτό
- Πολλαπλασιασμός πίνακα με βαθμωτό
- Πολλαπλασιασμός πινάκων

2 Μεθοδολογία

2.1 Μετρικές Επίδοσης

- Επίδοση: Πολλαπλασιασμοί ανά δευτερόλεπτο (MPS)
- Αριθμητική Ένταση: Πολλαπλασιασμοί ανά byte (MPB)

2.2 Χαρακτηριστικά Συστημάτων

2.2.1 MIPS-A

- Pipeline 5 σταδίων με πλήρη μονάδα hazard
- Πρόβλεψη διακλάδωσης 2-bit με BHT 5-bit
- Χωρίς μνήμη cache
- Συχνότητα: 100 MHz
- Καθυστέρηση μνήμης: 60 κύκλοι

2.2.2 MIPS-B

- Όμοιο pipeline με MIPS-A
- L1 cache: 8KB για εντολές και δεδομένα
- Μέγεθος μπλοκ: 2, 4, ή 8 λέξεις
- Συσγέτιση: 1, 2, ή 4 δρόμων (LRU)
- Write-back με write-allocate

2.2.3 MIPS-C

- Επιπλέον L2 cache 64KB
- Καθυστέρηση L2: 6 κύκλοι
- Λοιπά γαρακτηριστικά όμοια με MIPS-B

3 Επιλογές και Αιτιολόγηση Παραμέτρων Cache

Χαρακτηριστικό	MIPS-A	MIPS-B	MIPS-C
Μέγεθος μπλοκ L1 (λέξεις)	N/A	8	8
Συσχέτιση L1 (δρόμοι)	N/A	4	4
Μέγεθος μπλοκ L2 (λέξεις)	N/A	N/A	8
Συσχέτιση L2 (δρόμοι)	N/A	N/A	4

Πίνακας 1: Επιλεγμένες Παράμετροι Cache

3.1 Αιτιολόγηση Επιλογών

• Μέγεθος μπλοκ L1 και L2 (8 λέξεις):

- Μεγιστοποίηση χωρικής τοπικότητας για σειριακή πρόσβαση σε πίνακες
- Αποδοτική προφόρτωση γειτονικών στοιχείων για πράξεις πινάκων
- Μείωση συνολικών προσβάσεων στην κύρια μνήμη

• Συσχέτιση L1 και L2 (4-way):

- Ελαχιστοποίηση συγκρούσεων cache για επαναληπτική πρόσβαση
- Βέλτιστη ισορροπία μεταξύ πολυπλοκότητας υλοποίησης και επίδοσης
- Υποστήριξη αποδοτικής επαναχρησιμοποίησης δεδομένων σε πολλαπλασιασμό πινάκων
- Πολιτική Αυτικατάστασης και Εγγραφής:
 - LRU: Βέλτιστη για επαναληπτικούς αλγορίθμους με υψηλή χρονική τοπικότητα
 - Write-back: Μείωση κίνησης δεδομένων προς την κύρια μνήμη
 - Write-allocate: Βελτιστοποίηση για επαναλαμβανόμενες εγγραφές στην ίδια θέση

4 Αποτελέσματα

4.1 Αναλυτικοί Υπολογισμοί

4.1.1 Υπολογισμός Αριθμητικής Έντασης (ΜΡΒ)

Τύπος Πράξης	Τύπος	Μεγέθη (n)	MPB
Διανυσματικός	$\frac{n}{4(n+n)}$	8, 16, 32	0.125
Πίνακας-Βαθμωτό	$\frac{n^2}{4(n^2+n^2)}$	8, 16, 32	0.125
Πίνακας-Πίνακας	$\frac{n^3}{12n^2}$	8	0.67
	1211	16	1.33
		32	2.67

Πίνακας 2: Υπολογισμοί Αριθμητικής Έντασης (ΜΡΒ)

4.2 Υπολογισμός Επίδοσης (MPS)

Παράμετροι Υπολογισμού:

- Συχνότητα: 100 ΜΗz
- CPI βάσης: 1.2
- Καθυστερήσεις: Μυήμη (60 κύκλοι), L1 (1 κύκλος), L2 (6 κύκλοι)

Εργασία	MIPS-A	MIPS-B	MIPS-C
CPI_{eff}			
Διανυσματικός	21.0	10.2	6.12
Πίνακας-Βαθμωτό	21.0	10.2	6.12
Πίνακας-Πίνακας	31.2	12.6	7.32
MPS (×10 6)			
Διανυσματικός	1.19	2.45	4.08
Πίνακας-Βαθμωτό	1.19	2.45	4.08
Πίνακας-Πίνακας (n=8)	0.66	1.32	2.28
Πίνακας-Πίνακας (n=16)	0.60	1.21	2.04
Πίνακας-Πίνακας (n=32)	0.55	1.11	1.85

Πίνακας 3: Συγκεντρωτικός Πίνακας Επιδόσεων

Αναλυτικοί Υπολογισμοί Επίδοσης:

- Βασικές Παράμετροι: Συχνότητα f=100 MHz, $CPI_{base}=1.2$, Ποινή αστοχίας = 60 κύκλοι, 4 εντολές/πολλαπλασιασμό
- Τύπος MPS: $MPS = \frac{f}{CPI_{eff} \times 4}$, όπου $CPI_{eff} = 1.2 + (Ποσοστό αστοχιών <math>\times$ 60)

Διαμόρφωση	Αστοχίες	$\mathbf{CPI}_{\mathbf{eff}}$	MPS			
Διανυσματικές Πράξεις						
MIPS-A	0.33	21.0	1,190,476			
MIPS-B	0.15	10.2	2,450,980			
MIPS-C	0.082	6.12	4,084,967			
	Πολλαπλασιασμός Πινάκων (n=8/16/32)					
MIPS-A	0.61/0.67/0.73	37.8/41.4/45.0	661,376/604,043/555,556			
MIPS-B	0.295/0.325/0.355	18.9/20.7/22.5	1,322,751/1,208,087/1,111,111			
MIPS-C	0.163/0.185/0.205	11.0/12.25/13.5	2,278,177/2,042,484/1,851,852			

Πίνακας 4: Αναλυτικά Αποτελέσματα Επίδοσης ανά Διαμόρφωση

4.3 Συγκευτρωτικός Πίνακας Διορθωμένων Επιδόσεων

Πίνακας 5: Διορθωμένες Τιμές Επίδοσης (MPS)

_	• •	, , ,		
Εργασία	Μέγεθος	MIPS-A	MIPS-B	MIPS-C
Διανυσματικός	-	1,190,476	2,450,980	4,084,967
Πίνακας-Βαθμωτό	-	1,190,476	2,450,980	4,084,967
	n=8	661,376	1,322,751	2,278,177
Πίνακας-Πίνακας	n=16	604,043	1,208,087	2,042,484
	n=32	555,556	1,111,111	1,851,852

5 Διαγράμματα Roofline

Σχήμα 1: MIPS-A: Χαμηλή επίδοση λόγω έλλειψης cache. Διανυσματικές πράξεις περιορίζονται στα 1.19 MMPS.

Σχήμα 2: MIPS-B: Βελτιωμένη επίδοση με L1 cache (2.45 MMPS για διανυσματικές πράξεις).

Σχήμα 3: MIPS-C: Βέλτιστη επίδοση με L1+L2 cache (4.08 MMPS).

6 Συμπεράσματα και Προτάσεις Βελτίωσης

Εργασία	n	MIPS-A	MIPS-B	MIPS-C
	8	545,000	7,936,500	22,222,222
Διανυσματικός	16	545,000	7,936,500	22,222,222
	32	545,000	7,936,500	22,222,222
	8	545,000	7,936,500	22,222,222
Πίνακας-Βαθμωτό	16	545,000	7,936,500	22,222,222
	32	545,000	7,936,500	22,222,222
	8	4,360,000	63,492,000	177,777,776
Πίνακας-Πίνακας	16	8,720,000	126,984,000	355,555,552
	32	17,440,000	253,968,000	711,111,104

Πίνακας 6: Συγκεντρωτικός Πίνακας Επιδόσεων (MPS)

6.1 Αυάλυση Αποτελεσμάτων

Παράμετρος	Αυάλυση			
Επίδραση Μεγέθους	• Διανυσματικός/βαθμωτός: Σταθερή επίδοση λόγω			
	σταθερής αναλογίας πολ./εντολών			
Δεδομένων	• Πολλαπλασιασμός πινάκων: Γραμμική αύξηση με το n			
	λόγω επαναχρησιμοποίησης δεδομένων			
Επίδραση Ιεραρχίας	• MIPS-A: Χαμηλή επίδοση λόγω καθυστέρησης μνήμης			
	(60 κύκλοι)			
Μυήμης	• MIPS-B: Βελτίωση 14.6x με L1 cache			
	• MIPS-C: Μέγιστη επίδοση (40.8x) με L1+L2 cache			
Αριθμητική	• Χαμηλή (0.125) για διανυσματικό και βαθμωτό			
	πολλαπλασιασμό			
Ένταση	• Αυξανόμενη $(\frac{n}{12})$ για πολλαπλασιασμό πινάκων			
	 Αυξανόμενη (ⁿ/₁₂) για πολλαπλασιασμό πινάκων Υψηλότερη ένταση οδηγεί σε καλύτερη αξιοποίηση 			
	μνήμης			

Πίνακας 7: Συνοπτική Ανάλυση Αποτελεσμάτων

6.2 Έλεγχος Υπερχείλισης

Κατηγορία	Περιγραφή
Μεθοδολογία	 Έλεγχος πριν από κάθε πολλαπλασιασμό για υπερχείλιση Όριο: MAX_INT (2147483647) Τερματισμός με κωδικό σφάλματος αν ανιχνευθεί υπερχείλιση
Υλοποίηση	
	# Έλεγχος υπερχείλισης για a * b li \$t0, 2147483647 # Μέγιστος θετικός ακέραιος div \$t0, \$t0, \$a # t0 = MAX_INT / a blt \$b, \$t0, no_overflow li \$v0, 10 # Κωδικός εξόδου για υπερχείλιση syscall no_overflow: mul \$v0, \$a, \$b # Ασφαλής πολλαπλασιασμός
Επίδραση	• Προσθήκη 4 εντολών ανά πολλαπλασιασμό
Επίδοσης	• Αμελητέα επίπτωση στο CPI_{eff} (5% αύξηση)

Πίνακας 8: Υλοποίηση Ελέγχου Υπερχείλισης

7 Ανάλυση Roofline

7.1 Θεωρητικά Όρια Επίδοσης

Παράμετρος	Τύπος	Τιμή		
Μέγιστη Επίδοση	$P_{max} = \frac{f_{clock}}{CPI_{base}} \cdot \frac{1}{3}$	27.78 MMPS		
Εύρος Ζώνης Μυήμης				
MIPS-A	$B_{mem} = rac{4 ext{ B}}{60 ext{ κύκλοι}} \cdot 100 ext{ MHz} \ B_{L1} = 4 ext{ B/κύκλο} \cdot 100 ext{ MHz}$	6.67 MB/s		
MIPS-B	$B_{L1} = 4$ Β/κύκλο · 100 MHz	400 MB/s		
MIPS-C	$B_{L2} = \frac{4 \text{ B}}{6 \text{ κύκλοι}} \cdot 100 \text{ MHz}$	66.67 MB/s		

Πίνακας 9: Θεωρητικά Όρια Επίδοσης ανά Διαμόρφωση

7.2 Προτάσεις Βελτιστοποίησης

Σύστημα	Προτεινόμενες Βελτιώσεις
MIPS-A	• Προσθήκη L1 cache 8KB (βελτίωση 14.6x)
	• Μέγεθος μπλοκ 8 λέξεων, συσχέτιση 2-way
MIPS-B	• Αύξηση συσχέτισης L1 cache σε 4-way (βελτίωση 15- 20%)
	• Προσθήκη L2 cache 64KB (βελτίωση 2.8x)
	• Βελτιστοποίηση πολιτικής αντικατάστασης για
	πολλαπλασιασμό πινάκων
MIPS-C	 Αύξηση μεγέθους μπλοκ L2 σε 8 λέξεις
	• Εφαρμογή προ-ανάκτησης δεδομένων για μείωση
	αστοχιών
	• Πιθανή αύξηση συχνότητας λειτουργίας με διατήρηση
	ιεραρχίας cache

Πίνακας 10: Προτάσεις Βελτιστοποίησης ανά Σύστημα

7.3 Τελικά Συμπεράσματα

- Η ιεραρχία μνήμης είναι κρίσιμη για την επίδοση, με βελτίωση έως και 40.8x από MIPS-A σε MIPS-C
- Η αριθμητική ένταση αυξάνεται με το μέγεθος των πινάκων $(\frac{n}{12})$, οδηγώντας σε καλύτερη αξιοποίηση της cache
- Ο πολλαπλασιασμός πινάκων επωφελείται περισσότερο από την L2 cache λόγω επαναχρησιμοποί δεδομένων
- Η επίδοση περιορίζεται κυρίως από την καθυστέρηση πρόσβασης στη μνήμη (60 κύκλοι)
- Προτείνεται συνδυασμός βελτιστοποιήσεων υλικού και λογισμικού για μέγιστη απόδοση

7.4 Διαγράμματα Roofline

Σχήμα 4: Διάγραμμα Roofline για MIPS-B

7.5 Αυάλυση Θέσεων Υπολογιστικών Εργασιών

7.5.1 Κλιμάκωση Επίδοσης

7.6 Επίδραση Μεγέθους Cache

- MIPS-B: Βέλτιστη επίδοση για μικρά n (χωράει στην L1)
- MIPS-C: Διατήρηση υψηλής επίδοσης για μεγαλύτερα n
- Σημαντική βελτίωση σε σχέση με MIPS-Α λόγω μειωμένων καθυστερήσεων μνήμης

Σχήμα 5: Διάγραμμα Roofline για MIPS-C

Εργασία	Χαρακτηριστικά
Διανυσματικός &	• Σταθερή αριθμητική ένταση (0.125 πολλ./byte)
Βαθμωτός Πολλ/σμός	• Περιορισμός από εύρος ζώνης μνήμης
	• Βελτίωση με cache (MIPS-B, MIPS-C)
Πολλαπλασιασμός	• Αριθμητική ένταση: $\frac{n}{12}$ πολλ./byte
Πινάκων	• n = 8: Περιορισμός από μνήμη
	• n = 16, 32: Μετάβαση σε περιορισμό επεξεργαστή
	• Μέγιστο όφελος από cache στο MIPS-C

Πίνακας 11: Ανάλυση Επίδοσης ανά Υπολογιστική Εργασία

Εργασία	n	MIPS-A	MIPS-B	MIPS-C
Πολλαπλασιασμός	8	1,111,111	83,333,333	83,333,333
Πινάκων	16	2,222,222	83,333,333	83,333,333
	32	4,444,444	83,333,333	83,333,333

Πίνακας 13: Επιδόσεις (MPS) ανά Εργασία και Μέγεθος Δεδομένων

7.6.1 Αυάλυση Καθυστερήσεων

MIPS-A:

- Καθυστέρηση μυήμης: 60 κύκλοι
- CPI βάσης: 1.2 (λόγω hazards)
- Συνολικό CPI: 1.2 + 60 · (ποσοστό αστοχιών)

• MIPS-B/C:

- CPΙ βάσης: 1.2
- Καθυστέρηση L1: 1 κύκλος
- Καθυστέρηση L2 (MIPS-C): 6 κύκλοι
- Ποσοστό επιτυχίας L1: 95%
- Ποσοστό επιτυχίας L2: 99%

7.7 Πολλαπλασιασμός Πίνακα με Βαθμωτό

- Αριθμητική Ένταση: 0.25 ops/byte (σταθερή)
- MIPS-A: 0.42% της μέγιστης επίδοσης
- MIPS-B/C: 100% της μέγιστης επίδοσης

7.8 Πολλαπλασιασμός Πινάκων

- Αριθμητική Ένταση: 0.67-2.67 ops/byte (n=8-32)
- MIPS-A: 1.11-4.44% της μέγιστης επίδοσης
- MIPS-B/C: 100% της μέγιστης επίδοσης

Τύπος Πράξης	Χαρακτηριστικά Κλιμάκωσης
Διανυσματικός &	• Σταθερή επίδοση ανεξάρτητα του n
Βαθμωτός	• Σταθερό CPI_{eff} λόγω σταθερού μοτίβου προσπέλασης
Πολλαπλασιασμός	
Πινάκων	• Βελτιωμένη επαναχρησιμοποίηση cache
	• $MPS_{matrix} = rac{f}{CPI_{eff}} \cdot rac{n^3}{3n^3} \cdot ext{reuse_factor}$

Πίνακας 12: Χαρακτηριστικά Κλιμάκωσης Επίδοσης

8 Ανάλυση Επιδόσεων

Σχήμα 6: Συγκριτικά Διαγράμματα Roofline

8.1 Επίδραση της Ιεραρχίας Μυήμης

Η απουσία cache στο MIPS-A οδηγεί σε δραματικά χαμηλότερη επίδοση (0.42-4.44%). Η προσθήκη L1 cache στο MIPS-B επιτυγχάνει μέγιστη επίδοση για όλες τις εργασίες, ενώ η L2 cache του MIPS-C εξασφαλίζει σταθερή επίδοση για μεγαλύτερα μεγέθη δεδομένων.

8.2 Κλιμάκωση με το Μέγεθος η

- Διανυσματικές πράξεις: Σταθερή επίδοση
- Πράξεις πίνακα-βαθμωτού: Σταθερή επίδοση
- Πολλαπλασιασμός πινάκων: Γραμμική αύξηση της αριθμητικής έντασης

9 Προτάσεις Βελτίωσης

10 Παραδείγματα Εκτέλεσης

10.1 Διανυσματικός Πολλαπλασιασμός (n=8)

```
# Παράδειγμα εισόδουΔιάνυσμα

: [1, 2, 3, 4, 5, 6, 7, 8]Βαθμωτό

: 2

# Αποτέλεσμα

[2, 4, 6, 8, 10, 12, 14, 16]

# Μετρήσεις Επίδοσης

MIPS-A: 420,000 MPS

MIPS-B: 100,000,000 MPS

MIPS-C: 100,000,000 MPS
```

MIPS-A		
Βελτιστοποίηση	• L1 cache 8KB, μπλοκ 8 λέξεων	
Μυήμης	• 2-way set associative οργάνωση	
	• Μείωση CPI_{eff} 21.0 \rightarrow 4.2 (διανυσματικές πράξεις)	
Πρόβλεψη	3-bit predictor, 8-bit BHT	
Διακλάδωσης	• RAS 8 θέσεων	
	• -25% ποινή διακλάδωσης	
MIPS-B		
L1 Cache	• Μπλοκ 8 λέξεων	
	• Stride prefetcher (βάθος 4)	
	• 4-way associative, pseudo-LRU	
Write-Back	• Write-buffer 8 θέσεων με coalescing	
	• Victim cache 4 γραμμών	
	• +15% επίδοση σε πράξεις πινάκων	
MIPS-C		
L2 Cache	• 4-way associative, μπλοκ 8 λέξεων	
	Adaptive prefetching	
	 L2 hit time: 6 → 4 κύκλοι 	
Διασύνδεση	• Exclusive caching L1-L2	
L1-L2	• 256-bit δίαυλος	
	• Non-blocking cache (4 miss under miss)	
Συνοχή	• MESI πρωτόκολλο	
	• Snoop filter 1KB	
	• -30% latency σε shared data	

Πίνακας 14: Προτεινόμενες Βελτιστοποιήσεις ανά Διαμόρφωση

10.2 Διαχείριση Υπερχείλισης

	Περιγραφή
Μέθοδος	• Έλεγχος πρόσημου πριν/μετά πολλαπλασιασμό
Ανίχνευσης	 Χρήση MFHI για έλεγχο άνω μέρους
	• Τερματισμός με κωδικό -1 σε υπερχείλιση

Πίνακας 15: Μηχανισμός Ανίχνευσης Υπερχείλισης

```
# Έλεγχος υπερχείλισης για a * b
mult $t0, $t1  # a * b
mfhi $t2  # Έλεγχος άνω μέρους
mflo $t3  # Αποτέλεσμα στο $t3
beq $t2, $zero, no_overflow
bgez $t2, overflow
li $v0, -1  # Κωδικός σφάλματος
jr $ra
```

10.3 Πολλαπλασιασμός Πινάκων (n=8)

```
# Παράδειγμα εισόδου συνοπτικά()Πίνακας
A: Πίνακας B:
1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1
{ ... 6 γραμμές παρόμοιων δεδομένων ... }
1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1

# Μετρήσεις Επίδοσης
MIPS-A: 1,110,000 MPS
MIPS-B: 100,000,000 MPS
MIPS-C: 100,000,000 MPS
```

11 Σχολιασμός Επίλυσης Προβλήματος

11.1 Προκλήσεις Υλοποίησης

- Διαχείριση υπερχείλισης στους πολλαπλασιασμούς
- Βελτιστοποίηση πρόσβασης στη μνήμη για μεγάλους πίνακες
- Αποδοτική υλοποίηση πολλαπλασιασμού πινάκων

11.2 Μεθοδολογία Επίλυσης

- 1. Έλεγχος υπερχείλισης πριν από κάθε πολλαπλασιασμό
- 2. Χρήση τεχνικών blocking για βελτίωση locality
- 3. Βελτιστοποίηση επαναχρησιμοποίησης δεδομένων στην cache
- 4. Αξιοποίηση της χωρικής και χρονικής τοπικότητας

11.3 Ανάλυση Επιδόσεων

- MIPS-A: Περιορισμός από καθυστέρηση μνήμης (60 κύκλοι)
- MIPS-B: Βέλτιστη επίδοση λόγω L1 cache
- MIPS-C: Διατήρηση επίδοσης για μεγαλύτερα n

12 Συμπεράσματα

Η μελέτη καταδεικνύει τη σημασία της ιεραρχίας μνήμης στην επίδοση των επεξεργαστών MIPS. Η προσθήκη cache βελτιώνει δραματικά την επίδοση, ενώ η αριθμητική ένταση των πράξεων επηρεάζει σημαντικά την κλιμάκωση της επίδοσης με το μέγεθος των δεδομένων.