

Table of contents

Opening

Background and purpose about this project

Forecasting

Model implementation to data

Conclusion

Summary about this project

Purpose

To compare between the use of SARIMA and SARIMAX model in weather forecasting using Python.

Data Overview

Weather data have 2913 rows and time from 2015 to 2022 *red blocked are the selected variables						
NAME	Station Name	WDSP	Windspeed (m/s)			
Latitude	Latitude of Station	PRCP	Precipitation (Inch)			
Longitude	Longitude of station	DEWP	Dewpoint (Farenheit)			
DATE	Date the data recorded	SNDP	Snowdepth			
SLP	Slope	VISIB	Visibility			
TEMP	Temperature (Farenheit)	Etc.	Many more			

Data source: https://www.ncei.noaa.gov/

Data Preprocessing

Time Series

The precipitation is **high at the beginning and final of year**, but **low at the middle of the year**. The
season is 12 months, so **s = 12**.

The correation between precipitation and temperature is high but negative (-0.51). That makes the relation between them is inverse. So, if the **precipitation is high, then the temperature is low**, vice versa. These 2 variables selected because they have high correlation.

Need to Differentiate?

Time series chart beside is showed data after first and second differencing, but **the differencing don't need to be done** because the data is already stationer (p-value < 0.05)

ADF Statistic: -6.549938 p-value: 0.000000 Critical Values:

> 1%: -3.505 5%: -2.894 10%: -2.584

Parameter?

From ACF (Autocorrelation) and PACF (Partial Autocorrelation) Chart, selected:

- p = 1 or 2
- q = 1 or 2
- d = 0 (not differentiate)
- s = 12

I use SARIMAX (1,0,1)x(1,0,1,12) then, because this is the best model after tried many models.

Parameter?

After that, I train the data and I select:

- p = 1
- q = 1

Because the model have the lowest p-value and AIC value.

SARIMAX Results								
Dep. Variable:	prcp No. Observations: 84							
Model:	SARIMAX(1, 0, 1)	x(1, 0, 1,	12)	Log	Likelihood	-384.588	
Date:	Tue, 11 Ap	r 2023				AIC	779.177	
Time:	00:04:31					BIC	791.331	
Sample:	01-01-2015	5				HQIC	784.062	
	- 12-01-202	21						
Covariance Type: opg								
coef	std err	z	P> z	0.02	25	0.975]		
ar.L1 0.7935	0.080	9.888	0.000 0	636	C).951		
ma.L1 -0.1159	0.150	-0.77!	0.438 -	.409) (0.177		
ar.S.L12 0.9989	0.050	19.90	2 0.000 C	901	1	1.097		
ma.S.L12 -0.9523	3 1.082	-0.880	0.379 -	.072	2 1	1.168		
sigma2 422.09	39 425.396	0.992	0.321 -	11.6	566 1	1255.854		
Ljung-Box (L1) (Q): 0.20 Jarque-Bera (JB): 2.89								
Prob(Q):	0.65	P	rob(JB):	0).24			
Heteroskedastici	ty (H): 0.95		Skew:	-(0.03			
Prob(H) (two-si	ded): 0.88	K	urtosis:	3	3.91			

Without exogenuos variable (temperature) (SARIMA)

With exogenuos variable (temperature) (SARIMAX)

Forecasting

Forecasting with SARIMA & SARIMAX models

Validation

	Root Mean Error (RMSE)	Mean Absolute Error (MAE)	Mean Absolute Percent Error (MAPE)
SARIMA	17.85	14.58	23.18
SARIMAX	14.60	12.80	22.37

Thanks

Link to this code: https://github.com/ahyaramdha/precip-forecast

