

Claims

1. A process for the preparation of a narrow molecular weight distributed hydroxy-vinyl aromatic oligomer, cooligomer, polymer or copolymer with a polydispersity M_w/M_n between 1 and 2, which process comprises the steps reacting a composition of at least one monomer of formula I

wherein

R₁ is H or CH₃;

R₂ and R₃ are independently hydrogen, C₁-C₈alkyl, C₁-C₈alkoxy, C₁-C₈alkoxycarbonyl, C₁-C₈alkylthio, C₁-C₈dialkylamino, trihalogenmethyl;

R₄ is C₁-C₁₂alkyl or benzyl which is unsubstituted or substituted with one or two C₁-C₈alkyl, C₁-C₈alkoxy, C₁-C₈alkoxycarbonyl, C₁-C₈alkylthio, C₁-C₈dialkylamino, trihalogenmethyl, halogen; or R₄ is a group phenyl(methyl)CH-, (phenyl)₂CH-, C₁-C₁₂alkyl-O-C(O)-, phenyl-CH₂-O-C(O)- or (phenyl)₂CH-O-C(O)-;

a1) in the presence of at least one nitroxylether having the structural element

that the free radical X• derived from X is capable of initiating polymerization of ethylenically unsaturated monomers; or

a2) in the presence of at least one stable free nitroxyl radical $\text{N}-\text{O}^\bullet$ and a free radical initiator; or

a3) in the presence of a compound of formula (III) $\left[\begin{array}{c} \text{In} \\ | \\ \text{---} \\ | \\ \text{Hal} \end{array} \right]_{p+q}$ (III) and a catalytically

effective amount

of an oxidizable transition metal complex catalyst, wherein

p represents a number greater than zero and defines the number of initiator fragments;
q represents a number greater than zero;

[In] represents a radically transferable atom or group capable of initiating polymerization and

-[Hal] represents a leaving group; or

a4) in an anionic polymerization reaction in the presence of a metal or organo metal catalyst;

and optionally simultaneously or in a subsequent step with one or more ethylenically unsaturated monomers different from those of formula (I);

and

b) isolating the resulting polymer and subjecting it to a reaction with a halosilane giving a polymer with repeating units of formula II

and with a degree of OH-groups of between 10 mol % and 100 mol %, based on the molar amount of protected hydroxy-vinyl aromatic monomer of formula I.

2. A process according to claim 1 wherein halosilane is iodosilane.

3. A process according to claim 1 wherein the polymerization is carried out according to steps a1) or a2).

4. A process according to claim 1 wherein in formula I

R_1 is H;

R_2 and R_3 are H;

OR₄ is in the 4-position and

R_4 is C₁-C₄alkyl, benzyl, C₁-C₄alkoxycarbonyl or benzyloxycarbonyl.

5. A process according to claim 1, wherein the nitroxylether in step a1) is of formula A, B or O,

wherein

m is 1,

R is hydrogen, C₁-C₁₈alkyl which is uninterrupted or interrupted by one or more oxygen atoms, cyanoethyl, benzoyl, glycidyl, a monovalent radical of an aliphatic carboxylic acid having 2 to 18 carbon atoms, of a cycloaliphatic carboxylic acid having 7 to 15 carbon atoms, or an α,β -unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms;

p is 1;

R_{101} is C₁-C₁₂alkyl, C₅-C₇cycloalkyl, C₇-C₈aralkyl, C₂-C₁₈alkanoyl, C₃-C₅alkenoyl or benzoyl;

R_{102} is C_1 - C_{18} alkyl, C_5 - C_7 cycloalkyl, C_2 - C_8 alkenyl unsubstituted or substituted by a cyano, carbonyl or carbamide group, or is glycidyl, a group of the formula $-CH_2CH(OH)-Z$ or of the formula $-CO-Z$ or $-CONH-Z$ wherein Z is hydrogen, methyl or phenyl;

G_6 is hydrogen and G_5 is hydrogen or C_1 - C_4 alkyl,

G_1 and G_3 are methyl and G_2 and G_4 are ethyl or propyl or G_1 and G_2 are methyl and G_3 and G_4 are ethyl or propyl; and

X is selected from the group consisting of

$-CH_2$ -phenyl, CH_3CH -phenyl, $(CH_3)_2C$ -phenyl, $(C_5$ - C_6 cycloalkyl) $_2CCN$, $(CH_3)_2CCN$,

phenyl, $(C_1$ - $C_4)$ alkyl- $CR_{20}-C(O)-(C_1$ - $C_4)$ alkoxy, $(C_1$ - $C_4)$ alkyl- $CR_{20}-C(O)-(C_1$ - $C_4)$ alkyl, $(C_1$ - $C_4)$ alkyl- $CR_{20}-C(O)-N-di(C_1$ - $C_4)$ alkyl, $(C_1$ - $C_4)$ alkyl- $CR_{20}-C(O)-NH(C_1$ - $C_4)$ alkyl, $(C_1$ - $C_4)$ alkyl- $CR_{20}-C(O)-NH_2$, wherein

R_{20} is hydrogen or $(C_1$ - $C_4)$ alkyl.

6. A process according to claim 1, wherein the nitroxylether of step a1) is of formula (Ic), (Id), (Ie), (If), (Ig) or (Ih)

wherein R_{201} , R_{202} , R_{203} and R_{204} independently of each other are C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl, C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl which are substituted by OH, halogen or a group $-O-C(O)-R_{205}$, C_2 - C_{18} alkyl which is interrupted by at least one O atom and/or NR_{205}

group, C_3 - C_{12} cycloalkyl or C_6 - C_{10} aryl or R_{201} and R_{202} and/or R_{203} and R_{204} together with the linking carbon atom form a C_3 - C_{12} cycloalkyl radical;

R_{205} , R_{206} and R_{207} independently are hydrogen, C_1 - C_{18} alkyl or C_6 - C_{10} aryl;

R_{208} is hydrogen, OH, C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl, C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl which are substituted by one or more OH, halogen or a group $-O-C(O)-R_{205}$, C_2 - C_{18} alkyl which is interrupted by at least one O atom and/or NR_{205} group, C_3 - C_{12} cycloalkyl or C_6 - C_{10} aryl, C_7 - C_9 phenylalkyl, C_5 - C_{10} heteroaryl, $-C(O)-C_1-C_{18}$ alkyl, $-O-C_1-C_{18}$ alkyl or $-COOC_1-C_{18}$ alkyl;

R_{209} , R_{210} , R_{211} and R_{212} are independently hydrogen, phenyl or C_1 - C_{18} alkyl; and

X is selected from the group consisting of $-CH_2$ -phenyl, CH_3CH -phenyl, $(CH_3)_2C$ -phenyl, $(C_5$ -

$CH=CH_2$ (C_1 - C_4 alkyl) $CR_{20}-C(O)$ -phenyl, $(C_1$ - C_4)alkyl- $CR_{20}-C(O)-(C_1$ - $C_4)$ alkoxy, $(C_1$ - C_4)alkyl- $CR_{20}-C(O)-(C_1$ - $C_4)$ alkyl, $(C_1$ - C_4)alkyl- $CR_{20}-C(O)-N-di(C_1$ - $C_4)$ alkyl, $(C_1$ - C_4)alkyl- $CR_{20}-C(O)-NH(C_1$ - $C_4)$ alkyl, $(C_1$ - C_4)alkyl- $CR_{20}-C(O)-NH_2$, wherein

R_{20} is hydrogen or $(C_1$ - $C_4)$ alkyl.

7. A process according to claim 1, wherein the nitroxyl radical of step a2) is of formula A', B' or O',

wherein

m is 1,

R is hydrogen, C_1 - C_{18} alkyl which is uninterrupted or interrupted by one or more oxygen atoms, cyanoethyl, benzoyl, glycidyl, a monovalent radical of an aliphatic carboxylic acid having 2 to 18 carbon atoms, of a cycloaliphatic carboxylic acid having 7 to 15 carbon atoms, or an α,β -unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms;

p is 1;

R_{101} is C_1 - C_{12} alkyl, C_5 - C_7 cycloalkyl, C_7 - C_8 aralkyl, C_2 - C_{18} alkanoyl, C_3 - C_5 alkenoyl or benzoyl;

R_{102} is C_1 - C_{18} alkyl, C_5 - C_7 cycloalkyl, C_2 - C_8 alkenyl unsubstituted or substituted by a cyano, carbonyl or carbamide group, or is glycidyl, a group of the formula $-CH_2CH(OH)-Z$ or of the formula $-CO-Z$ or $-CONH-Z$ wherein Z is hydrogen, methyl or phenyl;

G_6 is hydrogen and G_5 is hydrogen or C_1 - C_4 alkyl, and

G_1 and G_3 are methyl and G_2 and G_4 are ethyl or propyl or G_1 and G_2 are methyl and G_3 and G_4 are ethyl or propyl.

8. A process according to claim 1, wherein the nitroxyl radical of step a2) is of formula (Ic'), (Id'), (Ie'), (If'), (Ig') or (Ih')

(I'h),

wherein R_{201} , R_{202} , R_{203} and R_{204} independently of each other are C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl, C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl which are substituted by OH, halogen or a group $-O-C(O)-R_{205}$, C_2 - C_{18} alkyl which is interrupted by at least one O atom and/or NR_{205} group, C_3 - C_{12} cycloalkyl or C_6 - C_{10} aryl or R_{201} and R_{202} and/or R_{203} and R_{204} together with the linking carbon atom form a C_3 - C_{12} cycloalkyl radical;

R_{205} , R_{206} and R_{207} independently are hydrogen, C_1 - C_{18} alkyl or C_6 - C_{10} aryl;

R_{208} is hydrogen, OH, C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl, C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{18} alkinyl which are substituted by one or more OH, halogen or a group $-O-C(O)-R_{205}$, C_2 - C_{18} alkyl which is interrupted by at least one O atom and/or NR_{205} group, C_3 - C_{12} cycloalkyl or C_6 - C_{10} aryl, C_7 - C_9 phenylalkyl, C_5 - C_{10} heteroaryl, $-C(O)-C_1-C_{18}$ alkyl, $-O-C_1-C_{18}$ alkyl or $-COOC_1-C_{18}$ alkyl; and

R_{209} , R_{210} , R_{211} and R_{212} are independently hydrogen, phenyl or C_1 - C_{18} alkyl.

9. A process according to claim 1, wherein in step a3)

[In] represents the polymerization initiator fragment of a polymerization initiator of formula (III) capable of initiating polymerization of monomers or oligomers which polymerization initiator is selected from the group consisting of C_1 - C_8 -alkyl halides, C_6 - C_{15} -aralkylhalides, C_2 - C_8 -haloalkyl esters, arene sulfonyl chlorides, haloalkanenitriles, α -haloacrylates and halolactones,

p and q represent one and the other components are as defined in claim 1.

10. A process according to claim 1, wherein in step a3) the oxidizable transition metal in the transition metal complex salt is present as a transition metal complex ion in the lower oxidation state of a redox system.

11. A process according to claim 10, wherein the transition metal complex ion is a $Cu(I)$ complex ion in the $Cu(I)/Cu(II)$ system.

12. A process according to claim 1 wherein the nitroxyl ether of formula

is used in the polymerization step a1).

13. A process according to claim 1 wherein the optionally used additional ethylenically unsaturated monomer is selected from the group consisting of an acrylic acid ester, acrylamide, acrylnitrile, methacrylic acid ester, methacrylamide, methacrylnitrile and styrene.

14. A process according to claim 1 wherein the polymerization temperature in the steps a1), a2) or a3) is between 90° C and 150° C.

15. A process according to claim 1 wherein the hydroxy-vinyl aromatic oligomer, cooligomer, polymer or copolymer has a weight molecular weight average from 2000 to 30 000 Daltons.

16. A process according to claim 1 wherein the iodosilane reagent of step b) is $R_{13}R_{14}R_{15}SiI$, wherein R_{13} , R_{14} and R_{15} are independently C_1-C_8 alkyl, chloromethyl, vinyl or phenyl.

17. A process according to claim 1 wherein the reaction with a halosilane reagent is carried out using a chlorosilane reagent from $R_{13}R_{14}R_{15}SiCl$ wherein R_{13} , R_{14} and R_{15} are independently C_1-C_8 alkyl, chloromethyl, vinyl or phenyl in the presence of a halide salt and/or thiol, wherein the halide salt is selected from the group consisting of alkaline metal halide, alkaline-earth metal halide, ammonium halide or phosphonium halide.

18. A formulated photoresist prepared from a polymer obtainable by a process according to claim 1.