DEPARTAMENTO DE INGENIERÍA DE SISTEMAS Y COMPUTACIÓN

LABORATORIO #1: INTRODUCCIÓN A REDES DE DATOS

ISIS3204 – INFRAESTRUCTURA DE COMUNICACIONES

PROFESOR

CARLOS LOZANO

GRUPO 6

MARÍA LUCÍA BENAVIDES DOMÍNGUEZ – 202313423

DANIEL CAMILO QUIMBAY VELÁSQUEZ - 202313861

NIKOL RODRIGUEZ ORTIZ – 202317538

2025-20

TABLA DE CONTENIDOS

Laboratorio 2 – Análisis de Protocolos con Wireshark

1. Objetivo

Describir brevemente que el objetivo es analizar el tráfico de red para diferentes protocolos de capa de aplicación (DNS, HTTP/HTTPS, FTP, VoIP, RTMP) usando Wireshark, tal como exige el laboratorio.

2. Capturas y Análisis Wireshark

2.1 Prueba de Conectividad (Ping)

2.1.1 Prueba para Ping_DNS_IP

```
| Total | No. | No
```

Figura 2.1.1.1 Wireshark llamadas DNS filtrando por ICMP con source, destination e info

```
** Observed II. Soci. Classification in National Conference in Nation (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1
```

Figura 2.1.1.2 Imágenes de información de mensajes de request y response

En las imagenes se puede apreciar de manera clara la forma de las peticiones cuando se inspeccionan a profundidad y con la información de estas, llegamos a la siguiente tabla

Campo	Request	Reply
IP origen	10.65.19.143	10.65.19.50
IP destino	10.65.19.50	10.65.19.143
MAC cliente	10:6f:d9:3a:32:cb	10:6f:d9:3a:32:cb
MAC servidor	00:0c:29:a1:69:e9	10:6f:d9:3a:32:cb

2.1.2 Prueba para Ping_FTP_IP

No.	Time	Source	Destination	Protocol	Length Destination		Source Address	Destination Address	Type		
	1 0.000000	10.65.19.143	10.65.19.52		74 AzureWaveTec 93:45:08	CloudNetwork 3a:32:cb	10.65.19.143	10.65.19.52		8 Echo (ping) requ	est id:
	2 0.000009	10.65.19.143	10.65.19.52	ICMP	74 AzureWaveTec 93:45:08	CloudNetwork 3a:32:cb	10.65.19.143	10.65.19.52		8 Echo (ping) requ	est id-
	3 0.184973	10.65.19.52	10.65.19.143	ICMP	74 CloudNetwork_3a:32:cb	AzureMaveTec_93:45:08	10.65.19.52	10.65.19.143		0 Echo (ping) repl	
	7 1.008586	10.65.19.143	10.65.19.52	ICMP	74 AzureWaveTec_93:45:88	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.52		8 Echo (ping) requ	
	8 1.008597	10.65.19.143	10.65.19.52	ICMP	74 AzurekaveTec_93:45:08	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.52		8 Echo (ping) requ	est id:
	9 1.051709	10.65.19.52	10.65.19.143	ICHP	74 CloudNetwork_3a:32:cb	AzureWaveTec_93:45:08	10.65.19.52	10.65.19.143		0 Echo (ping) repl	y id:
	10 2.027656	10.65.19.143	10.65.19.52	ICMP	74 AzureWaveTec_93:45:08	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.52		8 Echo (ping) requ	est id:
	11 2.027662	10.65.19.143	10.65.19.52	ICHP	74 AzureWaveTec_93:45:08	CloudNetwork_Ba:32:cb	10.65.19.143	10.65.19.52		8 Echo (ping) requ	est id-
	12 2.048664	10.65.19.52	10.65.19.143	ICHP	74 CloudNetwork_3a:32:cb	AzureWaveTec_93:45:08	10.65.19.52	10.65.19.143		0 Echo (ping) repl	y id:
	13 3.053138	10.65.19.143	10.65.19.52	ICHP	74 AzureWaveTec_93:45:08	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.52		8 Echo (ping) requ	est id:
	14 3.053149	10.65.19.143	10.65.19.52	ICHP	74 AzureWaveTec_93:45:08	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.52		8 Echo (ping) requ	est id:
	15 3.159527	10.65.19.52	10.65.19.143	ICHP	74 CloudNetwork_3a:32:cb	AzureMaveTec_93:45:08	10.65.19.52	10.65.19.143		0 Echo (ping) repl	y ida

Figura 2.1.2.1 Wireshark llamadas FTP filtrando por ICMP con source, destination e info

```
From 1 % bytes on wine (CT2 lists), 7% bytes optioned (CT2 lis
```

Figura 2.1.1.2 Imágenes de información de mensajes de request y response

En las imagenes se puede apreciar de manera clara la forma de las peticiones cuando se inspeccionan a profundidad y con la información de estas, llegamos a la siguiente tabla

Campo	Request	Reply
IP origen	10.65.19.143	10.65.19.52
IP destino	10.65.19.52	10.65.19.143
MAC cliente	10:6f:d9:3a:32:cb	1c:ce:51:93:45:08
MAC servidor	1c:ce:51:93:45:08	10:6f:d9:3a:32:cb

2.2 Servicio DNS

2.2.1 Archivo Ping_WEB_IP

dns								₩ = 3 - +
		Destination	Protocol	Length Destination		Source Address	Destination Address	
23 4.728671	10.65.19.50	91.189.91.139	DNS	128 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.50	91.189.91.139	Standard query 0xc237 /
24 4.728685	10.65.19.50	91.189.91.139	DNS	128 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.50	91.189.91.139	Standard query 0xc237 A
25 5.015812	91.189.91.139	10.65.19.50	DNS	387 CloudNetwork_3a:32:cb	4a:f5:e8:2b:a8:12	91.189.91.139	10.65.19.50	Standard query response
71 13.148987	10.65.19.143	10.65,19,197	DNS	75 48:f5:e8:2b:88:12	CloudNetwork_3a:32:cb	18.65.19.143	10.65.19.197	Standard query 0x87a5 /
72 13.148997	10.65.19.143	10.65.19.197	DNS	75 4a:f5:e8:2b:a8:12	CloudNetwork_Ba:B2:cb	10.65.19.143	10.65.19.197	Standard query 0x87a5 A
74 13.223730	10.65.19.143	10.65.19.197	DNS	75 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	18.65.19.143	18.65.19.197	Standard query 0x87a5 A
75 13.223746	10.65.19.143	10.65.19.197	DNS	75 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197	Standard query 0x87a5 A
76 13.446684	10.65.19.197	10.65.19.143	DNS	91 CloudNetwork_3a:32:cb	4a:f5:e8:2b:a8:12	10.65.19.197	10.65.19.143	Standard query response
77 13.446684	10.65.19.197	10.65.19.143	DNS	91 CloudNetwork 3a:32:cb	4a:f5:e8:2b:a8:12	10.65.19.197	10.65.19.143	Standard query response
139 14.689238	10.65.19.143	10.65.19.197	DNS	96 48:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197	Standard query 0x7a51 A
140 14.689247	10.65.19.143	10.65.19.197	DNS	96 48:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197	Standard query 0x7a51 /
144 14.761445	10.65.19.143	10.65.19.197	DNS	96 4a:f5:e8:2b:a8:12	CloudNetwork 3a:32:cb	10.65.19.143	18.65.19.197	Standard query 0x7a51 A
145 14.761465	10.65.19.143	10.65.19.197	DNS	96 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197	Standard query 0x7a51 A
146 14.957571	10.65.19.197	10.65.19.143	DNS	112 CloudNetwork_3a:32:cb	4a:f5:e8:2b:a8:12	10.65.19.197	10.65.19.143	Standard query response
147 14.957571	10.65.19.197	10.65.19.143	DNS	112 CloudNetwork 3a:32:cb	4a:f5:e8:2b:a8:12	10.65.19.197	10.65.19.143	Standard query response
251 15.385150	10.65.19.143	10.65.19.197	DNS	75 4a:f5:e8:2b:a8:12	CloudNetwork 3a:32:cb	10.65.19.143	10.65.19.197	Standard query 0x866b A
252 15.385173	10.65.19.143	10.65.19.197	DIVS	75 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197	Standard query 0x866b A
266 15.456169	10.65.19.143	10.65.19.197	DNS	75 48:f5:e8:2b:88:12	CloudNetwork 3a:32:cb	10.65.19.143	10.65.19.197	Standard query 0x866b A
267 15.456188	10.65.19.143	10.65.19.197	DNS	75 4a:f5:e8:2b:a8:12	CloudNetwork 3a:32:cb	10.65.19.143	18.65.19.197	Standard query 0x866b A
271 15.537988	10.65.19.197	10.65.19.143	DNS	91 CloudNetwork_3a:32:cb	4a:f5:e8:2b:a8:12	10.65.19.197	18.65.19.143	Standard query response
272 15,538564	10.65,19,197	10,65,19,143	DNS	91 CloudNetwork 3a:32:cb	4a:f5:e8:2b:a8:12	10.65.19.197	10.65.19.143	Standard query response
303 15.656871	10.65.19.143	10.65.19.197	DNS	70 4a:f5:e8:2b:a8:12	CloudNetwork 3a:32:cb	10.65.19.143	10.65.19.197	Standard query exesse A
384 15.656891	10.65.19.143	10.65.19.197	DNS	78 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197	Standard query 0xe960 A
305 15.724530	10.65.19.143	10.65.19.197	DNS	78 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197	Standard query 0xe960 A
306 15,724606	10.65,19,143	10.65.19.197	DNS	70 4a:f5:e8:2b:a8:12	CloudNetwork 3a:32:cb	10.65,19,143	10.65.19.197	Standard query exesse /
325 15.791166	10.65.19.197	10.65.19.143	DNS	86 CloudNetwork 3a:32:cb	4a:f5:e8:2b:a8:12	18,65,19,197	10.65.19.143	Standard query response

Figura 2.2.1.1 Wireshark llamadas DNS filtrando por ICMP con source, destination e info

Dentro de la imagen se puede ver de manera clara las request y los replies que se hicieron con el protocolo DNS con su información más importante. Estos son todos los archivos capturados con DNS.

La información de la capa de aplicación que se puede obtener de este apartado es:

1. Las peticiones

Time	Source	Destination	Protocol	Length Destination	Source	Source Address	Destination Address
23 4.728671	10.65.19.50	91.189.91.139	DNS	128 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.50	91.189.91.139
24 4.728685	10.65.19.50	91.189.91.139	DNS	128 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.50	91.189.91.139
71 13.148987	10.65.19.143	10.65.19.197	DNS	75 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197
72 13.148997	10.65.19.143	10.65.19.197	DNS	75 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197
74 13.223730	10.65.19.143	10.65.19.197	DNS	75 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197
75 13.223746	10.65.19.143	10.65.19.197	DNS	75 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197
139 14.689230	10.65.19.143	10.65.19.197	DNS	96 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197
140 14.689247	10.65.19.143	10.65.19.197	DNS	96 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197
144 14.761445	10.65.19.143	10.65.19.197	DNS	96 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197
145 14.761465	10.65.19.143	10.65.19.197	DNS	96 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197
251 15.385150	10.65.19.143	10.65.19.197	DNS	75 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197
252 15.385173	10.65.19.143	10.65.19.197	DNS	75 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197
266 15.456169	10.65.19.143	10.65.19.197	DNS	75 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197
267 15.456188	10.65.19.143	10.65.19.197	DNS	75 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197
303 15.656871	10.65.19.143	10.65.19.197	DNS	70 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197
384 15.656891	10.65.19.143	10.65.19.197	DNS	70 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197
305 15.724530	10.65.19.143	10.65.19.197	DNS	70 4a:f5:e8:2b:a8:12	CloudNetwork_3a:32:cb	10.65.19.143	10.65.19.197
306 15.724606	10.65.19.143	10.65.19.197	DNS	70 4a:f5:e8:2b:a8:12	CloudNetwork 3a:32:cb	10.65.19.143	10.65.19.197

Figura 2.2.1.2 Wireshark filtrado para ver solo peticiones

Campo	Request	Reply
IP origen	10.65.19.143	10.65.19.50
IP destino	10.65.19.50	10.65.19.143
MAC cliente	10:6f:d9:3a:32:cb	10:6f:d9:3a:32:cb
MAC servidor	00:0c:29:a1:69:e9	10:6f:d9:3a:32:cb

2. Responses

No.	Time	Source	Destination	Protocol	Length Destination	Source	Source Address	Destination Address
	25 5.015812	91.189.91.139	10.65.19.50	DNS	387 CloudNetwork_3a:32:cb	4a:f5:e8:2b:a8:12	91.189.91.139	10.65.19.50
	76 13.446684	10.65.19.197	10.65.19.143	DNS	91 CloudNetwork_3a:32:cb	4a:f5:e8:2b:a8:12	10.65.19.197	10.65.19.143
	77 13.446684	10.65.19.197	10.65.19.143	DNS	91 CloudNetwork 3a:32:cb	4a:f5:e8:2b:a8:12	10.65.19.197	10.65.19.143
	146 14.957571	10.65.19.197	10.65.19.143	DNS	112 CloudNetwork_3a:32:cb	4a:f5:e8:2b:a8:12	10.65.19.197	10.65.19.143
	147 14.957571	10.65.19.197	10.65.19.143	DNS	112 CloudNetwork_3a:32:cb	4a:f5:e8:2b:a8:12	10.65.19.197	10.65.19.143
	271 15.537988	10.65.19.197	10.65.19.143	DNS	91 CloudNetwork 3a:32:cb	4a:f5:e8:2b:a8:12	10.65.19.197	10.65.19.143
	272 15.538564	10.65.19.197	18.65.19.143	DNS	91 CloudNetwork_3a:32:cb	4a:f5:e8:2b:a8:12	10.65.19.197	10.65.19.143
	325 15.791166	10.65.19.197	10.65.19.143	DNS	86 CloudNetwork_3a:32:cb	4a:f5:e8:2b:a8:12	10.65.19.197	10.65.19.143

Figura 2.2.1.3 Wireshark filtrado para ver solo respuestas

Dentro de las peticiones y respuestas, se pudo obtener información como la siguiente:

Figura 2.2.1.3 Información para capa de aplicación

Dentro de esta imagen, se puede observar la información de la capa de aplicación que aparece en los paquetes capturados que están relacionados con el servicio DNS. Tenemos un id para cada consulta/respuesta, el dominio solicitad (query name), el query type y Answers en donde podemos ver Tipo de registro, Dirección IP devuelta y TTL.

El protocolo de transporte identificado que se genera en las peticiones es UDP, ya que dns necesita ser rápido se usa este protocolo.

```
User Datagram Protocol, Src Port: 59106, Dst Port: 53

Source Port: 59106

Destination Port: 53

Length: 41

Checksum: 0x22a5 [unverified]

[Checksum Status: Unverified]

[Stream index: 3]

[Stream Packet Number: 3]

> [Timestamps]

UDP payload (33 bytes)
```

2.2.1.3 Información para capa de transporte y puerto

Así mismo en la imagen se puede ver que se hace uso del puerto 53, el cual siempre será el Destination Port. En la imagen para la petición escogida el puerto source fue el 59106, este se asigna como un numero aleatorio del cliente.

Campo	Request	Reply
IP origen	10.65.19.139	10.65.19.50
IP destino	10.65.19.50	10.65.19.139
MAC cliente	a:f5:e8:2b:a8:12	10:6f:d9:3a:32:cb
MAC servidor	00:0c:29:a1:69:e9	a:f5:e8:2b:a8:12

2.3 Servicio Web (HTTP/HTTPS)

2.3.1 HTTP

• Identifique la información de la capa de aplicación que aparecen en los paquetes capturados que estén relacionados con el servicio web:

```
Frame 440: 599 bytes on wire (4792 bits), 599 bytes captured (4792 bits) on interface \Device\NPF_{CDIB!}
} thernet II, Src: CloudNetwork_29:e8:eb (ac:50:de:29:e8:eb), Dst: CloudNetwork_29:e8:eb (ac:50:de:29:e8
} Internet Protocol Version 4, Src: 10.87.74.214, Dst: 10.87.74.51
} Transmission Control Protocol, Src Port: 51341, Dst Port: 80, Seg: 1, Ack: 1, Len: 545
} typertext Transfer Protocol
} GIT + HITP/1.11/n
Host: 10.87.74.51\r\n
Connection: keep-alive\r\n
Connection: keep-alive\r\n
Connection: keep-alive\r\n
Upgrade-Insecure-Requests: 1\r\n
Upgrade-Insecure-Requests: 1\r\n
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome//Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=Accept-Lncoding: gzip, deflate\r\n
Accept-Lncoding: gzip, deflate\r\n
Accept-Lnguage: en\r\n
If-Mone-Match: "341-63e784d8dfdb2-gzip"\r\n
If-Modified-Since: Wed, 10 Sep 2025 20:31:18 GMT\r\n
\Response in frame: 444]
[figl. request UBI: http://10.87.74.51/]
```

Para la información de la capa de aplicación es el mismo protocolo HTTP, vemos información como el destino, el tipo de conexión, información del navegador, etc.

- Identifique el protocolo de la capa de transporte generado por las peticiones al servidor web.
 - En la misma captura de pantalla podemos observar que el protocolo de la capa de transporte es TCP
- Identifique los puertos utilizados por el servicio web
 En la misma linea que nos indica el protocolo tcp podemos ver que el servicio web
 usó el puerto 80. Además, el cliente usó el 51341

2.3.2 HTTPS

 Identifique la información de la capa de aplicación que aparecen en los paquetes capturados que estén relacionados con el servicio web:

```
> Frame 1029: 458 bytes on wire (3664 bits), 458 bytes captured (3664 bits) on interface \Device\NPF_{CDIE}
> Ethernet II, Src: 42:02:71:69:78:60 (42:02:71:69:78:60), Dst: CloudNetwork_29:e8:21 (ac:50:de:29:e8:21)
> Internet Protocol Version 4, Src: 34.117.13.33, Dst Port: 63138, Seq: 1, Ack: 4604, Len: 404
▼ Transmission Control Protocol, Src Port: 443, Dst Port: 63138, Seq: 1, Ack: 4604, Len: 404
▼ Transport Layer Security
▼ TLSV1.2 Record Layer: Application Data Protocol: Hypertext Transfer Protocol
Content Type: Application Data (23)
    Version: TLS 1.2 (6x0303)
Length: 399
    Encrypted Application Data [_]: f517709801bd330ac8ee0e33a503aa26c778864c74dd6dc9c4eb732122d30fbcfe
    [Application Data Protocol: Hypertext Transfer Protocol]
```

Para la información de la capa vemos el TLS, ya que al ser HTTPS el contenido del HTTP está cifrado. Podemos ver es la información encriptada del http.

- Identifique el protocolo de la capa de transporte generado por las peticiones al servidor web.
 - En la misma captura de pantalla podemos observar que el protocolo de la capa de transporte es TCP
- Identifique los puertos utilizados por el servicio web En la misma línea que nos indica el protocolo TCP podemos ver que el servicio web usó el puerto 443. Además, el cliente usó el 63168
- Datos principales, puertos 80/443, etc.

2.4 Servicio FTP

3.4.1 Análisis de tráfico FTP – Descarga de archivo

tp					× +
				Length Info	
41 6.941667	192.168.1.56	192.168.1.52	FTP	62 Request: TYPE I	
43 6.950175	192.168.1.52	192.168.1.56	FTP	73 Response: 200 Type set to I	
45 6.950347	192.168.1.56	192.168.1.52	FTP	60 Request: PASV	
47 6.951386	192.168.1.52	192.168.1.56	FTP	184 Response: 227 Entering Passive Mode (192,168,1.52,192,59).	
49 6,951540	192,168,1,56	192,168,1,52	FTP	93 Request: RETR archivo prueba ftp descargar.pdf	
57 6.955612	192.168.1.52	192.168.1.56	FTP	146 Response: 150 Opening BINARY mode data connection for archivo prueba ftp descargar.pdf (53363 bytes)	
175 6.972517	192,168,1,52	192,168,1,56	FTP	77 Response: 226 Transfer complete	

Ilustración 3.4.1 captura de pantalla del archivo FTP download.pcap

Capa de aplicación:

En la captura se observa que el cliente cambia el modo de transferencia a binario mediante el comando TYPE I, lo cual es confirmado por el servidor con el mensaje "200 Type set to I". Luego, el cliente solicita el modo pasivo (PASV) y el servidor responde con "227 Entering Passive Mode (192,168,1,52,192,59)", indicando la IP y el puerto que se usarán para la conexión de datos. Posteriormente, el cliente envía el comando RETR archivo_prueba_ftp_descargar.pdf para descargar el archivo. El servidor confirma la apertura de la conexión con el mensaje "150 Opening BINARY mode data connection... (53363 bytes)" y, finalmente, cierra la operación con "226 Transfer complete", confirmando que la descarga fue exitosa.

Capa de transporte:

El protocolo de transporte utilizado es **TCP**, ya que FTP requiere una conexión confiable para el envío y recepción de archivos.

Puertos utilizados:

El puerto **21/TCP** se emplea como canal de control para los comandos y respuestas. Además, en la transferencia de datos se abre un puerto dinámico en modo pasivo. Según la respuesta del servidor, el puerto calculado es **49211/TCP**, que se usó para enviar el archivo al cliente.

3.4.2 Análisis de tráfico FTP – Subida de archivo

Ilustración 3.4.2 captura de pantalla del archivo FTP upload.pcap

Capa de aplicación:

En este caso, el cliente inicia sesión con USER nikol y PASS 1234abcd, logrando autenticarse de manera exitosa con la respuesta "230 User nikol logged in". Luego, cambia al directorio de trabajo con CWD /Desktop, consulta la ubicación actual con PWD, y establece el modo binario con TYPE I. Posteriormente, el cliente solicita el modo pasivo (PASV), y el servidor responde con "227 Entering Passive Mode (192,168,1,52,192,22)". Con esta información, el cliente lista el directorio mediante MLSD, operación que es confirmada por el servidor con "150 Opening BINARY mode data connection for MLSD" y "226 Transfer complete". Más adelante, se vuelve a activar el modo pasivo (PASV), esta vez con la respuesta "227 Entering Passive Mode (192,168,1,52,192,99)". Con este nuevo canal de datos, el cliente inicia la subida del archivo con STOR archivo_prueba_ftp_subir.pdf. El servidor abre la conexión con "150 Opening BINARY mode data connection for archivo prueba ftp subir.pdf" y confirma la finalización con "226 Transfer complete".

Capa de transporte:

El protocolo utilizado es **TCP**, garantizando una comunicación confiable entre cliente y servidor durante toda la transferencia.

Puertos utilizados:

El puerto **21/TCP** se emplea para el canal de control. Para los datos, el servidor asigna puertos dinámicos en modo pasivo: en este caso, el puerto **49214/TCP** se utilizó para el listado de archivos y el puerto **49283/TCP** para la transferencia del archivo cargado.

2.5 Servicio VoIP

Archivo .pcap: VoIP view.pcap

Filtros usados: sip, rtp, udp.port==5060

Dentro de VoIp se hace uso de 2 protocolos, SIP y RTP. Dentro de estos protocolos en capa de aplicación podemos ver lo siguiente en sus paquetes capturados

SIP:

lo. Time		Destination		Length Destination		Source Address	Destination Address	Type	Info
21 1.198470	10.50.0.9	10.50.0.50	SIP	1015 CloudNetwork_3a:32:cb	4e:75:00:df:5c:24	10.50.0.9	10.50.0.50		Request: REGIS
22 1.199630	10.50.0.50	10.50.0.9	SIP	572 4e:75:00:df:5c:24	cloudNetwork_3a:32:cb	10.50.0.50	10.50.0.9		Status: 401 Uni
23 1.199639	10.50.0.50	10.50.0.9	SIP	572 4e:75:00:df:5c:24	cloudNetwork_3a:32:cb	10.50.0.50	10.50.0.9		Status: 401 Uni
24 1.309786	10.50.0.9	10.50.0.50	SIP	1015 CloudNetwork_3a:32:cb	4e:75:00:df:5c:24	10.50.0.9	10.50.0.50		Request: REGIS
25 1.311582	10.50.0.50	10.50.0.9	SIP	538 4e:75:80:df:5c:24	CloudNetwork_3a:32:cb	18.58.8.58	10.50.0.9		Status: 200 OK
26 1.311593	10.50.0.50	10.50.0.9	SIP	538 4e:75:00:df:5c:24	CloudNetwork_3a:32:cb	10.50.0.50	10.50.0.9		Status: 200 OK
73 5.013847	10.50.0.9	10.50.0.50	SIP/SDP	893 CloudNetwork_3a:32:cb	4e:75:00:df:5c:24	10.50.0.9	10.50.0.50		Request: INVIT
74 5.015825	10.50.0.50	10.50.0.9	SIP	558 4e:75:00:df:5c:24	CloudNetwork_3a:32:cb	10.50.0.50	10.50.0.9		Status: 401 Uni
75 5.015843	10.50.0.50	10.50.0.9	SIP	558 4e:75:00:df:5c:24	CloudNetwork_3a:32:cb	10.50.0.50	10.50.0.9		Status: 401 Uni
76 5.021352	10.50.0.9	10.50.0.50	SIP	382 CloudNetwork_3a:32:cb	4e:75:00:df:5c:24	10.50.0.9	10.50.0.50		Request: ACK s:
80 5.123160	10.50.0.9	10.50.0.50	SIP/SDP	1188 CloudNetwork_3a:32:cb	4e:75:00:df:5c:24	10.50.0.9	10.50.0.50		Request: INVIT
81 5.124414	10.50.0.50	10.50.0.9	SIP	366 4e:75:00:df:5c:24	CloudNetwork_3a:32:cb	10.50.0.50	10.50.0.9		Status: 100 Tr
82 5.124424	10.50.0.50	10.50.0.9	SIP	366 4e:75:00:df:5c:24	CloudNetwork_3a:32:cb	10.50.0.50	10.50.0.9		Status: 100 Tr
83 5.126358	10.50.0.50	10.50.0.239	SIP/SDP	1005 12:86:23:1a:b9:3d	CloudNetwork_3a:32:cb	10.50.0.50	10.50.0.239		Request: INVIT
84 5.126373	10.50.0.50	10.50.0.239	SIP/SDP	1005 12:86:23:1a:b9:3d	CloudNetwork_3a:32:cb	10.50.0.50	10.50.0.239		Request: INVIT
85 5.244339	10.50.0.239	10.50.0.50	SIP	373 CloudNetwork_3a:32:cb	12:86:23:1a:b9:3d	10.50.0.239	10.50.0.50		Status: 100 Tr
86 5.344386	10.50.0.239	10.50.0.50	SIP	698 CloudNetwork_3a:32:cb	12:86:23:1a:b9:3d	10.50.0.239	10.50.0.50		Status: 180 Ris
87 5.345729	10.50.0.50	10.50.0.9	SIP	551 4e:75:00:df:5c:24	CloudNetwork_3a:32:cb	18.50.0.50	10.50.0.9		Status: 180 Ri
88 5.345739	10.50.0.50	10.50.0.9	SIP	551 4e:75:00:df:5c:24	CloudNetwork_3a:32:cb	10.50.0.50	10.50.0.9		Status: 180 Ri
383 21.876577	10.50.0.9	10.50.0.50	SIP	675 CloudNetwork_3a:32:cb	4e:75:00:df:5c:24	10.50.0.9	10.50.0.50		Request: CANCE
384 21.878204	10.50.0.50	10.50.0.9	SIP	403 4e:75:00:df:5c:24	CloudNetwork_3a:32:cb	10.50.0.50	10.50.0.9		Status: 200 OK
385 21.878218	10.50.0.50	10.50.0.9	SIP	403 4e:75:00:df:5c:24	CloudNetwork_3a:32:cb	10.50.0.50	10.50.0.9		Status: 200 OK
386 21.878705	10.50.0.50	10.50.0.9	SIP	530 4e:75:00:df:5c:24	CloudNetwork_3a:32:cb	10.50.0.50	10.50.0.9		Status: 487 Rei
387 21.878718	10.50.0.50	10.50.0.9	SIP	530 4e:75:00:df:5c:24	CloudNetwork_3a:32:cb	10.50.0.50	10.50.0.9		Status: 487 Rei
388 21.880941	10.50.0.50	10.50.0.239	SIP	520 12:86:23:1a:b9:3d	CloudNetwork_3a:32:cb	10.50.0.50	10.50.0.239		Request: CANCEL
389 21.880956	10.50.0.50	10.50.0.239	SIP	520 12:86:23:1a:b9:3d	CloudNetwork_3a:32:cb	10.50.0.50	10.50.0.239		Request: CANCEL
390 21.891275	10.50.0.9	10.50.0.50	SIP	383 CloudNetwork_3a:32:cb	4e:75:00:df:5c:24	10.50.0.9	10.50.0.50		Request: ACK s:
393 21.975424	10.50.0.239	10.50.0.50	SIP	453 CloudNetwork_3a:32:cb	12:86:23:1a:b9:3d	10.50.0.239	10.50.0.50		Status: 200 OK
394 21.975424	10.50.0.239	10.50.0.50	SIP	430 CloudNetwork_3a:32:cb	12:86:23:1a:b9:3d	10.50.0.239	10.50.0.50		Status: 487 Rei
395 21.977516	10.50.0.50	10.50.0.239	SIP	502 12:86:23:1a:b9:3d	CloudNetwork_3a:32:cb	10.50.0.50	10.50.0.239		Request: ACK s:
396 21.977540	10.50.0.50	10.50.0.239	SIP	502 12:86:23:1a:b9:3d	CloudNetwork_3a:32:cb	10.50.0.50	10.50.0.239		Request: ACK s:
493 30.496669	10.50.0.239	10.50.0.50	SIP/SDP	902 CloudNetwork_3a:32:cb	12:86:23:1a:b9:3d	10.50.0.239	10.50.0.50		Request: INVIT
494 30.497882	10.50.0.50	10.50.0.239	SIP	562 12:86:23:1a:b9:3d	cloudNetwork_3a:32:cb	10.50.0.50	10.50.0.239		Status: 401 Uni
405 30 403003	10 70 0 70	10 50 0 220	ren	rea animeranianiharad	claudindunal accased	10 70 0 70	10 FO 0 220		renture and the

Figura 2.5.1 Imagen de filtro de SIP en wireshark

Figura 2.5.2 Imagen de capa de aplicación de paquetes con SIP

Dentro de esta imagen podemos ver el request line con OK, las cabeceras con un CALL-ID e información de los usuarios que se estaban conectando con el FROM y el TO. Se pueden ver tambien de manera clara la parte de VIA que tiene el puerto diferente información de envio.

RTP:

No.	Time	Source	Destination	Protocol	Length Destination	Source	Source Address	Destination Address	Туре	Info
	3095 132.652837	10.50.0.239	10.50.0.50	RTP	55 CloudNetwork_3a:32:cb	12:86:23:1a:b9:3d	10.50.0.239	10.50.0.50		PT=Unassigned, SSRC=0x
	3106 132.691868	10.50.0.9	10.50.0.50	RTP	55 CloudNetwork 3a:32:cb	4e:75:00:df:5c:24	10.50.0.9	10.50.0.50		PT=Unassigned, SSRC=0x
	3271 144.895250	10.50.0.239	10.50.0.50	RTP	214 CloudNetwork_3a:32:cb	12:86:23:1a:b9:3d	10.50.0.239	10.50.0.50		PT=ITU-T G.711 PCMU, S:
	3272 144.895780	10.50.0.50	10.50.0.239		242 12:86:23:1a:b9:3d	CloudNetwork_3a:32:cb	10.50.0.50,10.50.0	10.50.0.239,10.50.0.50		3 Destination unreachable
	3273 144,895787	10.50.0.50	10.50.0.239		242 12:86:23:1a:b9:3d	CloudNetwork 3a:32:cb	10.50.0.50.10.50.0	10.50.0.239.10.50.0.50		3 Destination unreachable

Figura 2.5.1 Imagen de filtro de RTP en wireshark

```
Real-Time Transport Protocol
    [Stream setup by SDP (frame 3100)]
    10..... = Version: RFC 1889 Version (2)
    ..0.... = Padding: False
    ..0.... = Extension: False
    ..... 0000 = Contributing source identifiers count: 0
    0..... = Marker: False
    Payload type: Unassigned (95)
    Sequence number: 50781
    [Extended sequence number: 50781]
    Timestamp: 938482926
    [Extended timestamp: 5233450222]
    Synchronization Source identifier: 0xa448db46 (2756238150)
    Payload: 00
```

Figura 2.5.2

Dentro de esta imagen podemos ver información como el Payload Type que es unassigned, el sequence number, timestamp y tambien el SSRI que representa la información más importante de la capa de aplicación.

Por otro lado para la capa de transporte, podemos ver que dentro de la cabecera de una petición SIP y una petición RTP el protocolo es UDP ya que es un protocolo rapido de usar.

```
User Datagram Protocol, Src Port: 5060, Dst Port: 58551
                                                                    Source Port: 5060
Source Port: 52203
                                                                    Destination Port: 58551
Destination Port: 10068
                                                                    Length: 441
Length: 21
                                                                   Checksum: 0x8def [unverified] [Checksum Status: Unverified]
Checksum: 0xdcba [unverified]
[Checksum Status: Unverified]
[Stream index: 358]
                                                                    [Stream index: 2]
[Stream Packet Number: 1]
                                                                    [Stream Packet Number: 54]
 Timestamps]
                                                                    [Timestamps]
   P payload (13 bytes)
                                                                    UDP pavload (433 bytes)
```

Figura 2.5.3 Imagen de capa de transporte en peticiones tanto RTP como SIP respectivamente

Dentro de las imagenes anteriores se puede ver que el puerto de SIP es 5060 y el puerto de RTP es 52203. El puerto SIP es definido, mientras que el puerto RTP esta en un rango dinamico dependiente del softphone.

2.6 Servicio RTMP

40 -	B 2 0 9 0 0	日本を開業	9991		
port == 1935					80
	10/00/000	150,000,000,000	THE STATE OF		Ead bear
Time	Source	Destination		Length Info	
1 0.000000	10.50.0.155	10,50.0.227	RTHP	498 Unknown (0x0)	
2 0.000008	10.50.0.155	10.50.0.227	TCP	498 [TCP Rotransmission] 54672 * 1935 [PSH, ACK] Seq=1 Ack=1 Win=254 Len=444	
3 0.000389	10.50.0.227	10.50.0.155	TCP	60 1935 → 54672 [ACK] Seq=1 Ack=445 Win=9941 Len=0	
4 0.000393	10.50.0.227	10.50.0.155	TCP	60 [TCP Dup ACK 3#1] 1935 → 54672 [ACK] Seq=1 Ack=445 Win=9941 Len=0	
5 0.006302	10.50.0.155	10.50.0.227	RTMP	1514 Unknown (θxθ) Unknown (θxθ) Unknown (θxθ)	
6 0.006302	10.50.0.155	10.50.0.227	RTMP	1514 Unknown (0x8) Unknown (0x8) Unknown (0x8) Unknown (0x8) Unknown (0x8)	
7 0.006302	10.50.0.155	10,50.0.227	RTMP	1238 Unknown (8x8) Unknown (8x8) Unknown (8x8) Unknown (8x8)	
			TCP	1514 [TCP Retransmission] 54672 + 1935 [ACK] Seq=445 Ack=1 Win=254 Len=1460	
10 0.006347	10.50.0.155	10.50.0.227	TCP	1238 [TCP Retransmission] S4672 → 1935 [PSH, ACK] Seq=3365 Ack=1 Win=254 Len=1184	
11 0.006375	10.50.0.155	10.50.0.227	RTMP	1514 Unknown (0x0) Unknown (0x0) Unknown (0x0)	
12 0.006375	10.50.0.155	10.50.0.227	RTMP	1514 Unknown (8x8) Unknown (8x8) Unknown (8x8) Unknown (8x8) Unknown (8x8)	
13 0.006375	10.50.0.155	10,50.0.227	RTMP	1231 Unknown (6x6) Unknown (6x6) Unknown (6x6) Unknown (6x6)	
	10.50.0.155	10.50.0.227	TCP	1514 [TCP Retransmission] 54672 * 1935 [ACK] Seq-4549 Ack-1 Min-254 Len-1468	
16 0.006395	10.58.0.155	10:50:0:227	TCP	1231 [TCP Retransmission] 54672 - 1935 [PSH, ACK] Seq=7469 Ack=1 Win=254 Len=1177	
17 0.006413	10.50.0.155	10.50.0.227	RTHP	1514 Unknown (0x0)	
18 0.006413	10.50.0.155	10.50.0.227	RTHP	1514 Unknown (8x0) Unknown (8x0) Unknown (8x0)	
19 0.006413	10.50.0.155	10.50.0.227	RTMP	1231 Unknown (0x8) Unknown (0x8) Unknown (0x0) Unknown (0x8)	
22 9.006429	10.50.0.155	10.50:0.227	TCP	1231 [TCP Retransmission] \$4672 + 1935 [PSH, ACK] Seq=11566 Ack=1 Win=254 Len=1177	
23 0.006444	10.50.0.155	10.50.0.227	RTMP	1514 Unknown (0x0) Unknown (0x0)	
24 0.006444	10.50.0.155	10.50.0.227	RTMP	1514 Unknown (0x0) Unknown (0x0)	
15 0.006444	10.50.0.155	10.50.0.227	RTMP	1231 Unknown (θxθ)	
6 0.086449	10.50.0.155	18,58.0.227	TEP	1514 [TCP Retransmission] 54672 * 1935 [ACK] Seq=12743 Ack+1 Win=254 Len=1460	
8 0.086468	10.50.0.155	10.50.0.227	TCP	1231 [TCP Retransmission] 54672 * 1935 [PSH, ACK] Seq=15663 Ack=1 Win=254 Len=1177	
9 8.086484	10.50.0.155	10.50.0.227	RTMP	1514 Unknown (8x8)	
80 0.006484	10.50.0.155	10.50.0.227	RTMP	1514 Unknown (8x8) Unknown (8x8) Unknown (8x8)	
31 0.006484	10.50.0.155	10.50.0.227	RTNP	1231 Unknown (θxθ) Unknown (θxθ)	
32 0.086488				1514 [TCP Retransmission] 54672 → 1935 [ACK] Seq=16840 Ack=1 Win=254 Len=1460	
33 0.086493					
34 0.006497 35 0.006710	10.50.0.155	10.50.0.227	TCP	1231 [TCP Retransmission] 54672 + 1935 [PSN, ACK] Seq=19760 Ack=1 Win=254 Len=1177 68 1935 + 54672 [ACK] Seq=1 Ack=4549 Win=9927 Len=8	

Ilustración 3.1 captura de pantalla del archivo RTMP view.pcap

Capa de aplicación:

En la captura se observa tráfico identificado como **RTMP**. Sin embargo, no todo el tráfico aparece bajo ese filtro porque Wireshark no siempre reconoce automáticamente este protocolo. Por eso, en lugar de filtrar con rtmp, es más efectivo aplicar el filtro por **puerto**, en este caso tcp.port == 1935, que es el puerto estándar de RTMP. Una vez hecho esto, se puede distinguir el intercambio de paquetes relacionados con la transmisión en vivo.

En cuanto a la información que se aprecia, los paquetes contienen tramas propias de la transmisión de video en tiempo real, donde se observa una gran cantidad de mensajes "Unknown" o sin decodificar por parte de Wireshark. Esto ocurre porque RTMP encapsula datos multimedia (video y audio) que se envían de manera continua en bloques pequeños, por lo cual aparecen cientos o miles de paquetes durante la transmisión.

Capa de transporte:

El protocolo de transporte utilizado es **TCP**, ya que RTMP requiere un canal confiable para garantizar que los fragmentos de video y audio lleguen en orden y sin pérdidas al reproductor del cliente.

Puertos utilizados:

El puerto estándar utilizado para RTMP es el **1935/TCP**, que aparece claramente en la captura. Este es el canal por el cual se transporta la transmisión de video desde el cliente (OBS u otra aplicación emisora) hacia el servidor, y luego se redistribuye al receptor (por ejemplo, VLC).