Q1

$$[p] = MLT^{-1}$$

Q2

ai)
$$t = 7.2 \text{ s}$$

aii)
$$s = 64.8 m$$

bi)
$$t = 3.19 \, s$$

bii)
$$s_x = 63.8 \ m$$

biii)
$$v = 37.14 \, ms^{-1}$$

Q3

a)
$$u = 30 \text{ m s}^{-1}$$

b)
$$v = -2.0 \ m \ s^{-1}$$

ci)

Note: Label Ws and Wt, not just W

cii)
$$T = 124.4 + 30a$$
 _____(1) $a = 1.44 \text{ m s}^{-2}$

$$T = 196.2 - 20a$$
 (2) $T = 196.2 - 20(1.44) = 167.4 N$

ciii)
$$s = 2.88 \, m$$

Q4

a)
$$v_B = 4.43 \ ms^{-1}$$

- b) $W_{Friction} = -2.94 J$ Work done against friction = 2.94J
- c) $\mu_K = 0.499$

Q5

a)

(If u draw Tx and Ty no problem)

b)
$$v = 1.51 \, ms^{-1}$$

<u>Q6</u>

ai)(when it passes the equilibrium position just means when y=0)

$$v_{\rm max} = A \omega$$

$$= 0.15(10\pi)$$

$$= 1.5\pi \ ms^{-1} = 4.71 \ ms^{-1}$$
 aii) $v = 3.51 \ ms^{-1}$

aiii)
$$\sum E = 7.77 \text{ J}$$

aiv)
$$y = 0.15 \sin(10\pi t)$$
 (ecf for ω) where y is in meter and t is in second

bi)
$$\lambda = 1.07 \text{ m}$$

bii)
$$v = f\lambda$$

= 34.22(1.07)
= 36.62 ms⁻¹

biii) Direction of wave propagation is to the left

First overtone

dii)

Second overtone

cii)
$$f_2 = 100 \, Hz$$
 $f_5 = 250 \, Hz$

di)
$$f_a = \left(\frac{v}{v - v_s}\right) f_s$$

$$= \left(\frac{340}{340 - 20}\right) (2000)$$

$$= 2125 Hz$$

$$f_a = \left(\frac{v}{v + v_s}\right) f_s$$

$$= \left(\frac{340}{340 + 20}\right) (2000)$$

$$= 1888.89 \ Hz$$

Q7

a)
$$r_Q = 0.18 \ mm$$
 \therefore Diameter of wire Q is $0.18 \times 2 = 0.36 \ r$

$$0.18 \times 2 = 0.36 \ mm$$

$$\text{bi)} \quad \mathbf{T} = \frac{k_{\scriptscriptstyle S} T_{\scriptscriptstyle C} + k_{\scriptscriptstyle A} T_{\scriptscriptstyle H}}{k_{\scriptscriptstyle A} - k_{\scriptscriptstyle S}}$$

bii) Maximum contraction

$$\Delta L = -0.054 \ m$$

Maximum expansion $\Delta L = 0.027 \ m$

Q8

ai)
$$T_f = 518.4K$$

aii)
$$V_f = 453 m^3$$

bi)
$$\overline{W_{\scriptscriptstyle ABC}} = -10 \times 10^4 J$$

bii)
$$P_f = 20kPa$$