

SOC 121D: People Analytics

Austin van Loon

Machine Learning 1

## Overview for this week

- Today Machine learning 1
  - What is machine learning?
  - Machine learning basics and terminology
  - Introduce three families of algorithms
- Thursday Machine Learning 2
  - Sources of bias in machine learning
  - Conceptualizing/Measuring Fairness
  - Predictive algorithms and inequality
  - In-class exercise (hopefully)
- Methods Module 1
  - Available now on Canvas
  - Provides more technical walk-through of methods and hands-on examples
  - Coding requirements are minimal (mostly copy and pasting)
  - Turn in before start of class next Tuesday, 7/5











What is machine learning (ML)?

# Why the rise of machine learning?

- Increased computational resources (Moore's Law)
- Prevalence of specialized knowledge (CS departments, YouTube)
- Strong economic incentives
- Highly legitimate (maybe too legitimate...)





# Philosophy of ML

- Correlation is the empirical tendency for two or more variables to "move together" in a specific way
- Causation is the relationship between two variables that changing one will change the other.
- **Prediction** is the ability to reliably estimate the value of one variable from another (better than chance).



Correlation example



Correlation example



Correlation example



Prediction example

## Statistical Modeling: The Two Cultures

**Leo Breiman** 

What we observe



## Statistical Modeling: The Two Cultures

#### Leo Breiman

#### What we observe



#### Data modeling culture



## Statistical Modeling: The Two Cultures

#### Leo Breiman

#### What we observe



#### Data modeling culture



## Algorithmic modeling culture



- Observation a record or datum (e.g., a single employee)
- Dataset A collection of observations
- Feature(s) the characteristic(s) of observations used to predict something
- Outcome(s) the characteristic(s) of observations we want to predict

| Name     | Pay    | Married? | Job             | Age |
|----------|--------|----------|-----------------|-----|
| Rachel   | \$32k  | No       | Server          | 24  |
| Ross     | \$140k | No       | Professor       | 26  |
| Joey     | \$350k | No       | Actor           | 25  |
| Monica   | \$70k  | Yes      | Chef            | 24  |
| Chandler | \$120k | Yes      | Data Specialist | 26  |
| Phoebe   | \$400k | No       | Songwriter      | 26  |

## Dataset

| Name     | Pay    | Married? | Job             | Age |
|----------|--------|----------|-----------------|-----|
| Rachel   | \$32k  | No       | Server          | 24  |
| Ross     | \$140k | No       | Professor       | 26  |
| Joey     | \$350k | No       | Actor           | 25  |
| Monica   | \$70k  | Yes      | Chef            | 24  |
| Chandler | \$120k | Yes      | Data Specialist | 26  |
| Phoebe   | \$400k | No       | Songwriter      | 26  |

| Name     | Pay    | Married? | Job             | Age |
|----------|--------|----------|-----------------|-----|
| Rachel   | \$32k  | No       | Server          | 24  |
| Ross     | \$140k | No       | Professor       | 26  |
| Joey     | \$350k | No       | Actor           | 25  |
| Monica   | \$70k  | Yes      | Chef            | 24  |
| Chandler | \$120k | Yes      | Data Specialist | 26  |
| Phoebe   | \$400k | No       | Songwriter      | 26  |



# Some ML vocabulary Outcome

**Features** 

| Name     | Pay    | Married? | Job             | Age |
|----------|--------|----------|-----------------|-----|
| Rachel   | \$32k  | No       | Server          | 24  |
| Ross     | \$140k | No       | Professor       | 26  |
| Joey     | \$350k | No       | Actor           | 25  |
| Monica   | \$70k  | Yes      | Chef            | 24  |
| Chandler | \$120k | Yes      | Data Specialist | 26  |
| Phoebe   | \$400k | No       | Songwriter      | 26  |

**Features** 

## Outcome

| Name     | Pay    | Married? | Job             | Age |
|----------|--------|----------|-----------------|-----|
| Rachel   | \$32k  | No       | Server          | 24  |
| Ross     | \$140k | No       | Professor       | 26  |
| Joey     | \$350k | No       | Actor           | 25  |
| Monica   | \$70k  | Yes      | Chef            | 24  |
| Chandler | \$120k | Yes      | Data Specialist | 26  |
| Phoebe   | \$400k | No       | Songwriter      | 26  |













= "test set"
= "training set"





## The practice: Quantifying prediction

#### Binary outcomes

- Accuracy
- AUC scores

#### Continuous outcomes

- Mean absolute error
- Pearson correlation

## The practice: Quantifying prediction

#### Binary outcomes

- Accuracy
- AUC scores

#### Continuous outcomes

- Mean absolute error and mean squared error
- Pearson correlation

**Predicted Positive** 

**Predicted Negative** 

**Predicted Positive** True positive False positive

**Predicted Negative** False negative True negative

**Predicted Positive** 

True positive

False positive

**Predicted Negative** 

False negative

**True negative** 

$$Accuracy = \frac{True\ positive + True\ negative}{Number\ of\ observations}$$

## <u>Actually Positive</u> <u>Actually Negative</u>

Predicted Positive 200 50

Predicted Negative 50 200

## **Actually Positive**

**Actually Negative** 

**Predicted Positive** 

200

50

**Predicted Negative** 

50

200

$$Accuracy = \frac{TP + TN}{N} = \frac{200 + 200}{200 + 50 + 50 + 200} = \frac{400}{500} = \mathbf{0.8}$$

**Predicted Positive** 0

Predicted Negative 100 400

**Predicted Positive** 

0

0

**Predicted Negative** 

100

400

$$Accuracy = \frac{TP + TN}{N} = \frac{400 + 0}{400 + 100} = \frac{400}{500} = \mathbf{0.8}$$

## When Accuracy seems inaccurate

- If one outcome is very common, accuracy is easy to achieve
- This can be manually examined or tested
- Other metrics (F1 score, precision or recall, chi-square) can be more useful in these situations
- Alternatively, you can compare to a "baseline model"

## The practice: Quantifying prediction

#### Binary outcomes

- Accuracy
- AUC

#### Continuous outcomes

- Mean absolute error
- Pearson correlation

## Motivating AUC

- 1. Predicting who will fail the class (and ask them to come to office hours)
- 2. Predicting who will get COVID (and asking them to stay home from class)

#### Motivating AUC

- Predicting who will fail the class (and ask them to come to office hours)
- 2. Predicting who will get COVID (and asking them to stay home from class)



How sure are we that Y = 1?

#### Motivating AUC

- 1. Predicting who will fail the class (and ask them to come to office hours)
- 2. Predicting who will get COVID (and asking them to stay home from class)



How sure are we that Y = 1?

#### Motivating AUC





AUC

#### The practice: Quantifying prediction

#### Binary outcomes

- Accuracy
- AUC

#### Continuous outcomes

- Mean absolute error
- Pearson correlation

| Pay    | Age | Tenure (yrs) | Bachelors'? | Predicted Pay |
|--------|-----|--------------|-------------|---------------|
| \$60k  | 35  | 2            | Yes         | \$58k         |
| \$80k  | 45  | 27           | No          | \$100k        |
| \$40k  | 19  | 1            | No          | \$30k         |
| \$100k | 53  | 20           | No          | \$100k        |
| \$180k | 52  | 3            | Yes         | \$200k        |

| Pay    | Age | Tenure (yrs) | Bachelors'? | Predicted Pay | Error  |
|--------|-----|--------------|-------------|---------------|--------|
| \$60k  | 35  | 2            | Yes         | \$80k         | \$20k  |
| \$80k  | 45  | 27           | No          | \$50k         | -\$30k |
| \$40k  | 19  | 1            | No          | \$30k         | -\$10k |
| \$100k | 53  | 20           | No          | \$100k        | \$0    |
| \$180k | 52  | 3            | Yes         | \$200k        | \$20k  |

# Average error = 0?

| Pay    | Age | Tenure (yrs) | Bachelors'? | Predicted Pay | Error  |
|--------|-----|--------------|-------------|---------------|--------|
| \$60k  | 35  | 2            | Yes         | \$80k         | \$20k  |
| \$80k  | 45  | 27           | No          | \$50k         | -\$30k |
| \$40k  | 19  | 1            | No          | \$30k         | -\$10k |
| \$100k | 53  | 20           | No          | \$100k        | \$0    |
| \$180k | 52  | 3            | Yes         | \$200k        | \$20k  |

| Pay    | Age | Tenure (yrs) | Bachelors'? | Predicted Pay | Error  | Abs(Error) |
|--------|-----|--------------|-------------|---------------|--------|------------|
| \$60k  | 35  | 2            | Yes         | \$80k         | \$20k  | \$20k      |
| \$80k  | 45  | 27           | No          | \$50k         | -\$30k | \$30k      |
| \$40k  | 19  | 1            | No          | \$30k         | -\$10k | \$10k      |
| \$100k | 53  | 20           | No          | \$100k        | \$0    | 0          |
| \$180k | 52  | 3            | Yes         | \$200k        | \$20k  | \$20k      |

# Average error = \$16k

| Pay    | Age | Tenure (yrs) | Bachelors'? | Predicted Pay | Error  | Abs(Error) |
|--------|-----|--------------|-------------|---------------|--------|------------|
| \$60k  | 35  | 2            | Yes         | \$80k         | \$20k  | \$20k      |
| \$80k  | 45  | 27           | No          | \$50k         | -\$30k | \$30k      |
| \$40k  | 19  | 1            | No          | \$30k         | -\$10k | \$10k      |
| \$100k | 53  | 20           | No          | \$100k        | \$0    | 0          |
| \$180k | 52  | 3            | Yes         | \$200k        | \$20k  | \$20k      |



imgflip.com

sum(prediction-actual)/N

sum(abs(prediction-actual))/N

#### The practice: Quantifying prediction

#### Binary outcomes

- Accuracy
- AUC

#### Continuous outcomes

- Mean absolute error
- Pearson correlation

| Evaluation | Lines of code | Days late | Pred. evaluation |
|------------|---------------|-----------|------------------|
| -1         | 80            | 8         | -0.8             |
| 1.3        | 105           | 3         | 1.5              |
| 0.1        | 95            | 4         | 0                |
| -2         | 30            | 12        | -2.1             |
|            |               |           |                  |
| 0.5        | 100           | 1         | 0.7              |

| Evaluation | Lines of code | Days late | Pred. evaluation |
|------------|---------------|-----------|------------------|
| -1         | 80            | 8         | -0.8             |
| 1.3        | 105           | 3         | 1.5              |
| 0.1        | 95            | 4         | 0                |
| -2         | 30            | 12        | -2.1             |
|            |               | •••       |                  |
| 0.5        | 100           | 1         | 0.7              |



| Evaluation | Lines of code | Days late | Pred. evaluation |
|------------|---------------|-----------|------------------|
| -1         | 80            | 8         | -0.8             |
| 1.3        | 105           | 3         | 1.5              |
| 0.1        | 95            | 4         | 0                |
| -2         | 30            | 12        | -2.1             |
| •••        |               |           |                  |
| 0.5        | 100           | 1         | 0.7              |



$$r = \frac{\sum_{i=1}^{N} ([x_i - \bar{x}] * [y_i - \bar{y}])}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2 * \sum_{i=1}^{N} (y_i - \bar{y})^2}}$$

| Evaluation | Lines of code | Days late | Pred. evaluation |
|------------|---------------|-----------|------------------|
| -1         | 80            | 8         | -0.8             |
| 1.3        | 105           | 3         | 1.5              |
| 0.1        | 95            | 4         | 0                |
| -2         | 30            | 12        | -2.1             |
| •••        |               |           |                  |
| 0.5        | 100           | 1         | 0.7              |





| Evaluation | Lines of code | Days late | Pred. evaluation |
|------------|---------------|-----------|------------------|
| -1         | 80            | 8         | -0.8             |
| 1.3        | 105           | 3         | 1.5              |
| 0.1        | 95            | 4         | 0                |
| -2         | 30            | 12        | -2.1             |
|            |               |           |                  |
| 0.5        | 100           | 1         | 0.7              |











## Meet the Algorithms







LINEAR REGRESSION

TREE-BASED METHODS

**DEEP LEARNING** 













$$SS_{\alpha,\beta} = \sum_{i=1}^{N} (y_i - [\alpha + \beta x_i])^2$$









$$SS_{lpha,eta} = \sum_{i=1}^{N} (y_i - [\alpha + \beta x_i])^2$$

How off the line is





#### Going further: Multiple regression

$$SS_{\alpha,\beta} = \sum_{i=1}^{N} \left( y_i - \left[ \alpha + \sum_{k=1}^{K} \beta_k x_{ik} \right] \right)^2$$

## Going further: Penalized regression (LASSO)

$$SS_{\alpha,\beta} = \sum_{i=1}^{N} \left( y_i - [\alpha + \sum_{k=1}^{K} \beta_k x_{ik}] \right)^2 + \lambda \sum_{k=1}^{K} |\beta_k|$$

#### Meet the algorithms: Tree-based learning



#### Meet the algorithms: Tree-based learning

















| Pay | Age | Promoted? | College? | Quit? |
|-----|-----|-----------|----------|-------|
| 30  | 60  | No        | No       | No    |
| 34  | 64  | No        | No       | No    |
| 42  | 21  | Yes       | Yes      | No    |
| 32  | 35  | Yes       | Yes      | Yes   |
| 40  | 50  | No        | Yes      | Yes   |
| 44  | 23  | No        | No       | Yes   |
| 44  | 27  | No        | No       | Yes   |
| 46  | 33  | No        | Yes      | No    |
| 80  | 40  | No        | Yes      | No    |
| 160 | 18  | Yes       | No       | No    |
| 60  | 19  | No        | Yes      | Yes   |
| 120 | 25  | No        | Yes      | Yes   |

| Pay | Age | Promoted? | College | Quit? |
|-----|-----|-----------|---------|-------|
| 30  | 60  | No        | No      | No    |
| 34  | 64  | No        | No      | No    |
| 32  | 35  | Yes       | Yes     | Yes   |
| 40  | 50  | No        | Yes     | Yes   |
| 46  | 33  | No        | Yes     | No    |
| 80  | 40  | No        | Yes     | No    |



| Pay | Age | Promoted? | College | Quit? |
|-----|-----|-----------|---------|-------|
| 42  | 21  | Yes       | Yes     | No    |
| 44  | 23  | No        | No      | Yes   |
| 44  | 27  | No        | No      | Yes   |
| 160 | 18  | Yes       | No      | No    |
| 60  | 19  | No        | Yes     | Yes   |
| 120 | 25  | No        | Yes     | Yes   |

| Pay | Age | Promoted? | College | Quit? |
|-----|-----|-----------|---------|-------|
| 30  | 60  | No        | No      | No    |
| 34  | 64  | No        | No      | No    |
| 32  | 35  | Yes       | Yes     | Yes   |
| 40  | 50  | No        | Yes     | Yes   |
| 46  | 33  | No        | Yes     | No    |
| 80  | 40  | No        | Yes     | No    |





| Pay | Age | Promoted? | College | Quit? |
|-----|-----|-----------|---------|-------|
| 30  | 60  | No        | No      | No    |
| 34  | 64  | No        | No      | No    |
| 32  | 35  | Yes       | Yes     | Yes   |
| 40  | 50  | No        | Yes     | Yes   |

| Pay | Age | Promoted? | College | Quit? |
|-----|-----|-----------|---------|-------|
| 46  | 33  | No        | Yes     | No    |
| 80  | 40  | No        | Yes     | No    |

| Pay | Age | Promoted? | College | Quit? |
|-----|-----|-----------|---------|-------|
| 42  | 21  | Yes       | Yes     | No    |
| 160 | 18  | Yes       | No      | No    |

| Pay | Age | Promoted? | College | Quit? |
|-----|-----|-----------|---------|-------|
| 44  | 23  | No        | No      | Yes   |
| 44  | 27  | No        | No      | Yes   |
| 60  | 19  | No        | Yes     | Yes   |
| 120 | 25  | No        | Yes     | Yes   |



| Pay | Age | Promoted? | College | Quit? |
|-----|-----|-----------|---------|-------|
| 30  | 60  | No        | No      | No    |
| 34  | 64  | No        | No      | No    |
| 32  | 35  | Yes       | Yes     | Yes   |
| 40  | 50  | No        | Yes     | Yes   |

| Pay | Age | Promoted? | College | Quit? |
|-----|-----|-----------|---------|-------|
| 46  | 33  | No        | Yes     | No    |
| 80  | 40  | No        | Yes     | No    |

| Pay | Age | Promoted? | College | Quit? |
|-----|-----|-----------|---------|-------|
| 42  | 21  | Yes       | Yes     | No    |
| 160 | 18  | Yes       | No      | No    |

| Pay | Age | Promoted? | College | Quit? |
|-----|-----|-----------|---------|-------|
| 44  | 23  | No        | No      | Yes   |
| 44  | 27  | No        | No      | Yes   |
| 60  | 19  | No        | Yes     | Yes   |
| 120 | 25  | No        | Yes     | Yes   |



| Pay       | Age       | Promoted? | College       | Quit? |
|-----------|-----------|-----------|---------------|-------|
| 32        | 35        | Yes       | Yes           | Yes   |
| 40        | 50        | No        | Yes           | Yes   |
|           |           |           |               |       |
| Pay       | Age       | Promoted? | College       | Quit? |
| Pay<br>30 | Age<br>60 | Promoted? | College<br>No | Quit? |

.....

| Pay | Age | Promoted? | College | Quit? |
|-----|-----|-----------|---------|-------|
| 46  | 33  | No        | Yes     | No    |
| 80  | 40  | No        | Yes     | No    |

| Pay | Age | Promoted? | College | Quit? |
|-----|-----|-----------|---------|-------|
| 42  | 21  | Yes       | Yes     | No    |
| 160 | 18  | Yes       | No      | No    |

| Pay | Age | Promoted? | College | Quit? |
|-----|-----|-----------|---------|-------|
| 44  | 23  | No        | No      | Yes   |
| 44  | 27  | No        | No      | Yes   |
| 60  | 19  | No        | Yes     | Yes   |
| 120 | 25  | No        | Yes     | Yes   |



| Pay       | Age       | Promoted? | College       | Quit? |
|-----------|-----------|-----------|---------------|-------|
| 32        | 35        | Yes       | Yes           | Yes   |
| 40        | 50        | No        | Yes           | Yes   |
|           |           |           |               |       |
| Pay       | Age       | Promoted? | College       | Quit? |
| Pay<br>30 | Age<br>60 | Promoted? | College<br>No | Quit? |

.....

| Pay | Age | Promoted? | College | Quit? |
|-----|-----|-----------|---------|-------|
| 46  | 33  | No        | Yes     | No    |
| 80  | 40  | No        | Yes     | No    |

| Pay | Age | Promoted? | College | Quit? |
|-----|-----|-----------|---------|-------|
| 42  | 21  | Yes       | Yes     | No    |
| 160 | 18  | Yes       | No      | No    |

| Pay | Age | Promoted? | College | Quit? |
|-----|-----|-----------|---------|-------|
| 44  | 23  | No        | No      | Yes   |
| 44  | 27  | No        | No      | Yes   |
| 60  | 19  | No        | Yes     | Yes   |
| 120 | 25  | No        | Yes     | Yes   |

































?







| Нарру? | Rich? | Enjoys work? | Has dog? |
|--------|-------|--------------|----------|
| Yes    | No    | Yes          | Yes      |
| No     | No    | No           | No       |
| Yes    | Yes   | No           | Yes      |
| No     | Yes   | Yes          | No       |



| Нарру? | Rich? | Enjoys work? | Has dog? |
|--------|-------|--------------|----------|
| Yes    | No    | Yes          | Yes      |
| No     | No    | No           | No       |
| Yes    | Yes   | No           | Yes      |
| No     | Yes   | Yes          | No       |



| Нарру? | Rich? | Enjoys work? | Has dog? |
|--------|-------|--------------|----------|
| Yes    | No    | Yes          | Yes      |
| No     | No    | No           | No       |
| Yes    | Yes   | No           | Yes      |
| No     | Yes   | Yes          | No       |



| Нарру? | Rich? | Enjoys work? | Has dog? |
|--------|-------|--------------|----------|
| Yes    | No    | Yes          | Yes      |
| No     | No    | No           | No       |
| Yes    | Yes   | No           | Yes      |
| No     | Yes   | Yes          | No       |



| Нарру? | Rich? | Enjoys work? | Has dog? |
|--------|-------|--------------|----------|
| Yes    | No    | Yes          | Yes      |
| No     | No    | No           | No       |
| Yes    | Yes   | No           | Yes      |
| No     | Yes   | Yes          | No       |



| Нарру? | Rich? | Enjoys work? | Has dog? |
|--------|-------|--------------|----------|
| Yes    | No    | Yes          | Yes      |
| No     | No    | No           | No       |
| Yes    | Yes   | No           | Yes      |
| No     | Yes   | Yes          | No       |



| Нарру? | Rich? | Enjoys work? | Has dog? |
|--------|-------|--------------|----------|
| Yes    | No    | Yes          | Yes      |
| No     | No    | No           | No       |
| Yes    | Yes   | No           | Yes      |
| No     | Yes   | Yes          | No       |

| ? | No | No | Yes |
|---|----|----|-----|
|---|----|----|-----|



#### Other important topics

- Cross-validation
- Support vector machines
- Unsupervised ML (K-means, autoencoders)
- Reinforcement learning
- Adversarial learning

#### Reminders

- I've extended the deadline for discussion papers for the organizational theory readings... They are now due this Thursday (6/30) before class.
- Method Module 1 is available on Canvas now. If you want to complete it for credit on your final paper, finish it and turn it in on Canvas before class a week from today (7/5)
- Office hours are tomorrow in my office from 11 AM to noon.

# See everyone Thursday!

If you'd like to take a quick look at the Methods Module, I'm happy to do so now