Fitting smiles with SABR

Derek Huang

NYU Stern School of Business

April 30, 2020

Overview

1. Option pricing

- Background
- Black's formula
- Practical problems

2. The SABR model

- Fitting implied vol
- Modeling results
- Shortcomings

3. Conclusions

Background

• Define S_t as time t stock price. A European call option on S_t , with maturity date T and strike price K, has payoff at T

$$\max\{S_T-K,0\}$$

At time T, gain $S_T - K$ in value if $S_T > K$, else get nothing.

• "Ramp" payoff = **no downside**. What's the "right" (unique) price?

Background

• Martingale pricing. Allows us to write option time t value V_t as

$$V_t = B_t \mathbb{E}\left[B_T^{-1} \max\{S_T - K, 0\} \,\middle|\, \mathcal{F}_t\right] \tag{1}$$

- B_t is a numeraire, in this case the bank account, where given r_t , the time t risk-free short rate, $B_t \triangleq e^{\int_0^t r_\tau d\tau}$. \mathcal{F}_t is time t "information".
- Interpretation: The option value V_t is a **conditional expectation** of the **discounted payoff** under *risk-neutral probability measure* \mathbb{Q} .
 - Informally, if \mathbb{P} gives "real-world" probabilities, \mathbb{Q} gives probabilities from a world adjusted for risk; i.e. all **traded** assets earn r_t .
- We discuss T'-maturity forward prices $F_{t,T'}$, and modify (1) into

$$V_t = Z_{t,T} \widetilde{\mathbb{E}} \left[\max \{ F_{T,T'} - K, 0 \} \, \middle| \, \mathcal{F}_t \right]$$
 (2)

Numeraire is $Z_{t,T}$, T-maturity zero coupon bond, where $Z_{T,T} \triangleq 1$.

Black's formula

Variation of Black-Scholes formula for futures and forward¹ prices.

$$V_{t} = Z_{t,T} \left[F\Phi(d_{1}) - K\Phi(d_{2}) \right]$$

$$d_{1,2} \triangleq \frac{\log(F/K) \pm \frac{1}{2}\sigma^{2}(T-t)}{\sigma\sqrt{T-t}}$$
(3)

 $F \triangleq F_{t,T}$, Φ is standard normal cdf, $\sigma > 0$ is volatility parameter.

• Black's model essentially assumes that $F_{t,T'}$ follows

$$dF_{t,T'} = \sigma F_{t,T'} dW_t \tag{4}$$

 W_t is Wiener process under forward measure $\mathbb{Q}^{T'}$.

• Interpretation: **Lognormal**, **martingale** forward under $\mathbb{Q}^{T'}$.

• I.e.
$$F_{t,T'} = \mathbb{E}[F_{T,T'} \mid \mathcal{F}_t], \forall T \in (t,T'].$$

¹Application to forwards is more recent and based on (2).

Practical problems

- Simple, intuitive, easy to use model. But empirically wrong.
- Backing out σ over varying strikes K and maturities T gives a **non-flat** surface = **different** Black-Scholes σ at each K, T pair!
 - Surface would be **flat** if Black-Scholes is ≈ correct.
- Define $\hat{\sigma}(K, T)$ as implied volatility for strike K, maturity T.
 - Black-Scholes σ implied by option price for K, T.

Figure 1: E-Mini S&P 500 futures options surface for $\hat{\sigma}(K, T)$ dated 08/13/2019.

Fitting implied vol

Account for negative return skew and investor risk aversion. Then,

$$dF_{t,T'} = \sigma F_{t,T'}^{\beta} dW_t \tag{5}$$

The constant elasticity of variance, or CEV, forward. $\beta \geq 0$.

• What if σ is **stochastic** α_t ? Simple **two-factor** model, where

$$dF_{t,T'} = \alpha_t F_{t,T'}^{\beta} dW_t$$

$$d\alpha_t = \nu \alpha_t d\hat{W}_t$$

$$\rho dt = \mathbb{E}[dW_t d\hat{W}_t]$$
(6)

Stochastic α, β, ρ , or SABR, model. $\alpha_0 \triangleq \alpha > 0$, $\rho \in [0, 1)$.

• Interpretation: α is initial vol level, β controls forward skew, ρ is **correlation** between $F_{t,T}$ and α_t volatility process.

Fitting implied vol

- Due to [2] and [1], both CEV and SABR models have interpolation formulas to directly fit implied volatilities at a particular T.
- Then, send model implied volatilities to Black's model to get prices.
- CEV interpolation formula for T maturity implied volatilities is

$$\sigma_{B}(F,K) = \frac{\sigma}{F_{av}^{1-\beta}} \left\{ 1 + \frac{(1-\beta)(2+\beta)}{24} \left(\frac{F-K}{F_{av}} \right)^{2} + \frac{(1-\beta)^{2}}{24} \frac{\sigma^{2}}{F_{av}^{2-2\beta}} (T-t) + \dots \right\}$$
(7)

Here $F_{av} \triangleq (F + K)/2$, midpoint of F, K.

SABR interpolation formula much more complicated.

Fitting implied vol

$$\sigma_{B}(F,K) = \frac{\alpha}{(FK)^{\frac{1-\beta}{2}} \left\{ 1 + \frac{(1-\beta)^{2}}{24} \log(F/K)^{2} + \frac{(1-\beta)^{2}}{1920} \log(F/K)^{4} + \ldots \right\}} \cdot \left(\frac{z}{\chi(z)} \right) \left\{ 1 + \left[\frac{(1-\beta)^{2}}{24} \frac{\alpha^{2}}{(FK)^{1-\beta}} + \frac{1}{4} \frac{\rho \beta \nu \alpha}{(FK)^{(1-\beta)/2}} + \frac{2-3\rho^{2}}{24} \nu^{2} \right] (T-t) + \ldots \right\}$$

$$z = \frac{\nu}{\alpha} (FK)^{(1-\beta)/2} \log(F/K)$$
(8)
(9)

$$\chi(z) = \log \left\{ \frac{\sqrt{1 - 2\rho z + z^2} + z - \rho}{1 - \rho} \right\}$$
 (10)

Figure 2: CEV fit for Henry Hub natural gas options expiring in 104 days.

Figure 3: CEV fit for E-Mini S&P 500 futures options expiring in 171 days.

$$\alpha = 454.353$$
, $\beta = 0$, $\rho = -0.748$, $v = 1.042$

Figure 4: SABR fit for E-Mini S&P 500 futures options expiring in 171 days.

$$\alpha = 0.158$$
, $\beta = 1$, $\rho = -0.786$, $v = 1.485$

Figure 5: SABR fit for E-Mini S&P 500 futures options expiring in 108 days.

Shortcomings

• Possibility of extremely poor fits for $\beta = 0$

$$\alpha = 43.908$$
, $\beta = 0$, $\rho = -0.82$, $v = 73.083$

Figure 6: Terrible SABR fit to S&P E-Mini 500 futures options expiring in 79 days.

Shortcomings

ullet Sensitivity to initial parameter guesses for eta < 1

$$\alpha = 8.618$$
, $\beta = 0.5$, $\rho = -0.816$, $v = 1.734$

Figure 7: SABR fit to same data with initial guesses $\rho^* = 0.5$, $\nu^* = 0.9$

$$\alpha = 3.201$$
, $\beta = 0.5$, $\rho = -1$, $v = 0$

Figure 8: SABR fit to same data with initial guesses $\rho^* = \nu^* = 0.5$

Shortcomings

Unable to closely fit noticeably concave skews

$$\alpha = 0.148$$
, $\beta = 1$, $\rho = -0.702$, $v = 2.204$

Figure 9: SABR fit to E-Mini S&P 500 futures options expiring in 43 days.

Figure 10: Weighted SABR fit to the same data, unable to fit the concave skew.

Conclusions

- More flexible and "realistic" fits compared to one-factor CEV model
- Interpolation formula = fast implied volatility calibration in real-time
- Complicated formula not perfect and may give poor fits

References

- Hagan, P. S., Kumar, D., Lesniewski, A. S., & Woodward, D.E. (2002). Managing smile risk. *Wilmott*, 2002(1), 84-108. http://web.math.ku.dk/~rolf/SABR.pdf
- Hagan, P. S., & Woodward, D. E. (1999). Equivalent black volatilities. *Applied Mathematical Finance*, 6(3), 147-157.