STA302/1001: Quiz #1, 10:20-11:00am, October 1, 2013

Let x_i denote the predictor variable and y_i denote the response variable. The simple linear regression model is given by $y_i = \beta_0 + \beta_1 x_i + e_i$, i = 1, ..., n, where the error e_i is independently and identically (i.i.d.) distributed with mean zero and variance σ^2 .

1. [12 mks] Write down the form of the residual sum of squares (RSS), and derive the ordinary least square (OLS) estimates of β_0 and β_1 .

$$RSS(\beta_0, \beta_1) = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$
, differentiate w.r.t. to β_0 and β_1 ,

$$\frac{\partial RSS(\beta_0, \beta_1)}{\partial \beta_0} = -2\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\frac{\partial RSS(\beta_0, \beta_1)}{\partial \beta_1} = -2\sum_{i=1}^n x_i(y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\Rightarrow \beta_0 n + \beta_1 \sum_i x_i = \sum_i y_i, \quad \beta_0 \sum_i x_i + \beta_1 \sum_i x_i^2 = \sum_i x_i y_i.$$

Solve these equations, denote $\bar{x} = \frac{1}{n} \sum_i x_i$, $\bar{y} = \frac{1}{n} \sum_i y_i$, $SXY = \sum_i (x_i - \overline{x})(y_i - \overline{y}) = \sum_i x_i y_i - n \overline{x} \overline{y}$, $SXX = \sum_i (x_i - \overline{x})^2 = \sum_i x_i^2 - n \overline{x}^2$,

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}, \quad \hat{\beta}_1 = \frac{SXY}{SXX}$$

2. [4 mks] Write down the estimate of σ^2 .

 $\hat{\sigma}^2 = \frac{1}{n-2}RSS$, where RSS is given by plugging in the OLS estimates $\hat{\beta}_0$ and $\hat{\beta}_1$.

3. [10 mks] Show that the OLS estimate $\hat{\beta}_1$ is an unbiased estimate of β_1 .

Denote $c_i = \frac{x_i - \bar{x}}{SXX}$ and $\mathbb{X} = \{x_1, \dots, x_n\}$, then $\hat{\beta}_1 = \frac{SXY}{SXX} = \sum_i (\frac{x_i - \bar{x}}{SXX})y_i = \sum_i c_i y_i$ and

$$E(\hat{\beta}_1 | \mathbb{X}) = E(\sum_i c_i y_i | X = x_i) = \sum_i c_i E(y_i | X = x_i)$$
$$= \sum_i c_i (\beta_0 + \beta_1 x_i) = \beta_0 \sum_i c_i + \beta_1 \sum_i c_i x_i.$$

Since
$$\sum_i c_i = \frac{\sum_i (x_i - \bar{x})}{SXX} = 0$$
, $\sum_i c_i x_i = \frac{\sum_i (x_i - \bar{x})x_i}{SXX} = 1$, we have $E(\hat{\beta}_1 | \mathbb{X}) = \beta_1$

4. [10 mks] Derive the expression of $Var(\hat{\beta}_1|\mathbb{X})$, where $\mathbb{X} = \{x_1, \dots, x_n\}$.

Note y_i 's are assumed independent given x_i 's and $SXX = \sum_{i=1}^n (x_i - \bar{x})^2$,

$$Var(\hat{\beta}_1|\mathbb{X}) = Var(\sum_i c_i y_i|\mathbb{X}) = \sum_i c_i^2 Var(y_i|X = x_i) = \sigma^2 \sum_i c_i^2$$
$$= \sigma^2 \sum_i (x_i - \bar{x})^2 / SXX^2 = \sigma^2 / SXX$$

5. [14 mks] Rewrite the model as $y_i = \beta_0^* + \beta_1^*(x_i - \bar{x}) + e_i$, where $\bar{x} = n^{-1} \sum_{i=1}^n x_i$. What is the relationship between β_0 and β_0^* , β_1 and β_1^* ? Derive the OLS estimates of β_0^* and β_1^* , and the covariance between $\hat{\beta}_0^*$ and $\hat{\beta}_1^*$.

 $y_i = \beta_0 + \beta_1 x_i + e_i = \beta_0 + \beta_1 \bar{x} + \beta_1 (x_i - \bar{x}) + e_i$, thus $\beta_0^* = \beta_0 + \beta_1 \bar{x}$ and $\beta_1^* = \beta_1$. To get the OLS estimates of $\beta_0^a st$ and β_1^* , differentiating the following w.r.t. β_0^* and β_1^* ,

$$RSS(\beta_0^*, \beta_1^*) = \sum_{i=1}^n [y_i - \beta_0^* - \beta_1^*(x_i - \bar{x})]^2$$
, we get

$$\sum_{i} [y_i - \beta_0^* - \beta_1^*(x_i - \bar{x})] = 0 \Rightarrow \hat{\beta}_0^* = \bar{y}, \text{ since } \sum_{i} (x_i - \bar{x}) = 0.$$

$$\sum_{i} [y_{i} - \beta_{0}^{*} - \beta_{1}^{*}(x_{i} - \bar{x})](x_{i} - \bar{x}) = 0 \Rightarrow \hat{\beta}_{1}^{*} = SXY/SXX.$$

Find the covariance between $\hat{\beta}_0^*$ and $\hat{\beta}_1^*$,

$$Cov(\bar{y}, \hat{\beta}_1^* | \mathbb{X}) = Cov(\frac{1}{n} \sum_i y_i, \sum_i c_i y_i | \mathbb{X}) = \frac{1}{n} \sum_i c_i Cov(y_i, y_i | \mathbb{X})$$
$$= \frac{\sigma^2}{n} \sum_i c_i = \frac{\sigma^2}{n} \sum_i (x_i - \bar{x}) = 0$$