Compressing Neural Networks using the Variational Information Bottleneck

Bin Dai¹; Chen Zhu²; Baining Guo³; David Wipf³

¹Tsinghua University, ²University of Maryland, ³Microsoft Research

Neural Networks are Often Over-Parameterized

(*Denil et al.*, 2013)

Consequences:

- Unnecessarily large model size
- Increased computational cost
- Extra run-time memory footprint

Network Compression Methods

• Design more efficient network structure (Howard et al., 2017; Dong et al., 2017; Iandola et al., 2016)

• Tensor/matrix decomposition

(Jaderberg et al., 2014; Zhang et al., 2016; Yu et al., 2017)

Weight Quantization

(Courbariaux et al., 2016; 2015; Han et al., 2015a; Mellempudi et al., 2017; Rastegari et al., 2016)

Network Compression Methods

• Design more efficient network structure (Howard et al., 2017; Dong et al., 2017; Iandola et al., 2016)

• Tensor/matrix decomposition

(Jadarhara et al. 2014: Thang et al. 2016: Yu et al.

(Jaderberg et al., 2014; Zhang et al., 2016; Yu et al., 2017)

Weight Quantization

(Courbariaux et al., 2016; 2015; Han et al., 2015a; Mellempudi et al., 2017; Rastegari et al., 2016)

• Prune existing network structure ...

• Prune weight connections

(Han et al., 2015b; Guo et al., 2016; LeCun et al., 1990)

- Prune weight groups / activations
 - Group lasso (Liu et al., 2017; Pan et al., 2016; Wen et al., 2016)
 - Bayesian approach (Louizos et al., 2017a; Neklyudov et al., 2017)
 - Smoothed l_0 approach (Louizos et al., 2017b)

Prune weight connections

• Prune weight connections

(Han et al., 2015b; Guo et al., 2016; LeCun et al., 1990)

- Prune weight groups / activations
 - Group lasso (Liu et al., 2017; Pan et al., 2016; Wen et al., 2016)
 - Bayesian approach (Louizos et al., 2017a; Neklyudov et al., 2017)
 - Smoothed l_0 approach (Louizos et al., 2017b)

Prune weight connections

• Prune weight connections
(Han et al., 2015b; Guo et al., 2016; LeCun et al., 1990)

- Prune weight groups / activations
 - Group lasso (Liu et al., 2017; Pan et al., 2016; Wen et al., 2016)
 - Bayesian approach (Louizos et al., 2017a; Neklyudov et al., 2017)
 - Smoothed l_0 approach (Louizos et al., 2017b)

Prune weight connections

Prune weight groups / activations

• Prune weight connections
(Han et al., 2015b; Guo et al., 2016; LeCun et al., 1990)

- Prune weight groups / activations
 - Group lasso (Liu et al., 2017; Pan et al., 2016; Wen et al., 2016)
 - Bayesian approach (Louizos et al., 2017a; Neklyudov et al., 2017)
 - Smoothed l_0 approach (Louizos et al., 2017b)

Prune weight connections

Prune weight groups / activations

Markov Chain Interpretation of Network

Degenerates to a Dirac-delta function if the network is deterministic

We consider non-degenerate distribution in our model

Markov Chain Interpretation of Network

Approximates $p(y|h_L)$ via some tractable alternative $p(\hat{y}|h_L)$

Intuition

• Maximize the mutual information $I(h_i; y)$ between h_i and y

For high-accuracy prediction

• Minimize the mutual information $I(h_i; h_{i-1})$ between h_i and h_{i-1} For compression

Information Bottleneck

Layer-wise Energy

- Minimize the mutual information $I(h_i; h_{i-1})$ between h_i and h_{i-1}
- Maximize the mutual information $I(h_i; y)$ between h_i and y

$$\mathcal{L}_i = \gamma_i I(h_i; h_{i-1}) - I(h_i; y)$$

 γ_i determines the strength of the bottleneck

Upper Bound

```
\mathcal{L}_i = \gamma_i I(h_i; h_{i-1}) - I(h_i; \gamma)
          \gamma_i \mathbb{E}_{\{x,y\} \sim \mathcal{D}, h_{1:i-1} \sim p(h_{1:i-1}|x)} \left[ \mathbb{KL}[p(h_i|h_{i-1})||q(h_i)] \right] \geq \gamma_i I(h_i; h_{i-1})
           -\mathbb{E}_{\{x,y\}\sim\mathcal{D},h\sim p(h|x)}[\log q(y|h_L)] \ge -I(h_i;y)
\tilde{\mathcal{L}}_i = \gamma_i \mathbb{E}_{\{x,y\} \sim \mathcal{D}, h_{1:i-1} \sim p(h_{1:i-1}|x)} \left[ \mathbb{KL}[p(h_i|h_{i-1})||q(h_i)] \right]
          -\mathbb{E}_{\{x,v\}\sim\mathcal{D},h\sim\mathcal{D}(h|x)}[\log q(y|h_L)]
  D: data distribution
                                                 q(h_i): variational approximation of p(h_i)
                                                 q(y|h_L): variational approximation of p(y|h_L)
  h_{1:i}: \{h_j\}_{j=1}^{i}
  h: h_{1:L}
```

Parameterization of $q(y|h_L)$

$$\tilde{\mathcal{L}}_i = \gamma_i \mathbb{E}_{\{x,y\} \sim \mathcal{D}, h_{1:i-1} \sim p(h_{1:i-1}|x)} \left[\mathbb{KL}[p(h_i|h_{i-1})||q(h_i)] \right]$$
$$-\mathbb{E}_{\{x,y\} \sim \mathcal{D}, h \sim p(h|x)} \left[\log q(y|h_L) \right]$$

 $q(y|h_L)$: multinomial distribution for classification task Gaussian distribution for regression task

Parameterization of $q(h_i)$

$$\tilde{\mathcal{L}}_i = \gamma_i \mathbb{E}_{\{x,y\} \sim \mathcal{D}, h_{1:i-1} \sim p(h_{1:i-1}|x)} \left[\mathbb{KL}[p(h_i|h_{i-1})||q(h_i)] \right]$$
$$-\mathbb{E}_{\{x,y\} \sim \mathcal{D}, h \sim p(h|x)} \left[\log q(y|h_L) \right]$$

$$q(h_i) = \mathcal{N}(h_i; 0, diag[\xi_i])$$

 ξ_i : unknown vector of variances learned from data

(*Tipping 2001*)

Parameterization of $p(h_i|h_{i-1})$

$$\tilde{\mathcal{L}}_i = \gamma_i \mathbb{E}_{\{x,y\} \sim \mathcal{D}, h_{1:i-1} \sim p(h_{1:i-1}|x)} \left[\mathbb{KL}[p(h_i|h_{i-1})||q(h_i)] \right]$$
$$-\mathbb{E}_{\{x,y\} \sim \mathcal{D}, h \sim p(h|x)} \left[\log q(y|h_L) \right]$$

$$p(h_i|h_{i-1}) = \mathcal{N}(h_i; f_i(h_{i-1}) \odot \mu_i, diag[f_i(h_{i-1})^2 \odot \sigma_i^2])$$

Final Objective Function

$$\inf_{\xi_i > 0} 2\mathbb{E}_{\{x,y\} \sim \mathcal{D}, h_{1:i-1} \sim p(h_{1:i-1}|x)} \left[\mathbb{KL}[p(h_i|h_{i-1})||q(h_i)] \right]$$

$$\equiv \sum_{j=1}^{r_i} \left[\log \left(1 + \frac{\mu_{i,j}^2}{\sigma_{i,j}^2} \right) + \psi_{i,j} \right]$$

$$\psi_{i,j} \triangleq \log \mathbb{E}_{h_{i-1} \sim p(h_{i-1})} [f_{i,j}(h_{i-1})^2] - \mathbb{E}_{h_{i-1} \sim p(h_{i-1})} [\log f_{i,j}(h_{i-1})^2]$$

Final Objective Function

$$\tilde{\mathcal{L}} = \sum_{i=1}^{L} \gamma_i \sum_{j=1}^{r_i} \log \left(1 + \frac{\mu_{i,j}^2}{\sigma_{i,j}^2} \right) - L \mathbb{E}_{\{x,y\} \sim \mathcal{D}, h \sim p(h|x)} [\log q(y|h_L)] \quad (*)$$
Regularization term Data-fit term

 r_i : Number of neurons in the *i*-th layer.

Define
$$\alpha_{i,j} = \frac{\mu_{i,j}^2}{\sigma_{i,j}^2}$$
.

Final Objective Function

$$\tilde{\mathcal{L}} = \sum_{i=1}^{L} \gamma_i \sum_{j=1}^{r_i} \log \left(1 + \frac{\mu_{i,j}^2}{\sigma_{i,j}^2} \right) - L \mathbb{E}_{\{x,y\} \sim \mathcal{D}, h \sim p(h|x)} [\log q(y|h_L)] \quad (*)$$
Regularization term

Data-fit term

 r_i : Number of neurons in the *i*-th layer.

Define
$$\alpha_{i,j} = \frac{\mu_{i,j}^2}{\sigma_{i,j}^2}$$
.
$$\tilde{\mathcal{L}} = \sum_{i=1}^L \gamma_i \sum_{j=1}^{r_i} \log(1 + \alpha_{i,j}) - L\mathbb{E}_{\{x,y\} \sim \mathcal{D}, h \sim p(h|x)} [\log q(y|h_L)] \quad (*)$$

Network Structure

Reduce Redundancy via Intrinsic Sparsity

$$\tilde{\mathcal{L}} = \sum_{i=1}^{L} \gamma_i \sum_{j=1}^{r_i} \log(1 + \alpha_{i,j}) - L\mathbb{E}_{\{x,y\} \sim \mathcal{D}, h \sim p(h|x)} [\log q(y|h_L)] \quad (*)$$
Regularization term

Data-fit term

 $\log(1+\alpha_{i,j})$: concave non-decreasing function on $[0,\infty)$

- \checkmark Push some $\alpha_{i,j}$ to exactly 0 and leaving others mostly unchanged
- \times Push all $\alpha_{i,j}$ towards smaller values

(*Chen et al., 2017*)

Relationship Between $\alpha_{i,j}$ and $I(h_{i,j}, h_{i-1})$

Proposition 1. At any minimum of (*)

Relationship Between $\alpha_{i,j}$ and $I(h_{i,j}, h_{i-1})$

Proposition 1. At any minimum of (*)...

$$\alpha_{i,2} = 0$$

$$\begin{array}{c} h_{i,1} \\ h_{i,2} \\ h_{i,3} \\ h_{i,4} \\ h_{i-1} \\ h_{i} \end{array}$$

$$I(h_{i,2}, h_{i-1}) < \psi_{i,2}$$

Relationship Between $\alpha_{i,j}$ and $I(h_{i,j}, h_{i-1})$

Proposition 1. At any minimum of (*)

$$\alpha_{i,2} = 0$$

$$\alpha_{i,2} = 0$$

$$h_{i,1}$$

$$h_{i,2}$$

$$h_{i,3}$$

$$h_{i,4}$$

 $I(h_{i,2}, h_{i-1}) = 0$ With added assumptions.

Relationship Between $\alpha_{i,j}$ and $W_{i+1,\cdot j}$

Proposition 2. At any minimum of (*)

 $W_{i+1,2} = 0$

Analysis of Tractable Upper Bound

At any minimum, redundant activations will provably be pruned

Analysis of Tractable Upper Bound

Effective sparsity penalty shape is adaptive relative to the curvature of data fitting terms:

Training and Testing

- Training
 - Bottleneck parameters set with simple heuristic to roughly match accuracy of existing methods
- Pruning
 - Small values of $\alpha_{i,j}$ are set to zero (SGD will not push to exactly zero)
- Testing
 - Use the mean value of $p(h_i|h_{i-1})$ rather than sampling
 - Use multiple samples can further improve the accuracy (at the cost of computation time)

 (Louizos et al., 2017a)
 - If desired, can finetune the pruned model to further boost the accuracy

LeNet300-100 on MNIST

Method	$r_W(\%)$	$r_N(\%)$	Error(%)	Pruned Model
VD (Molchanov et al., 2017)	25.28	58.95	1.8	512-114-72
BC-GNJ (Louizos et al., 2017a)	10.76	32.85	1.8	278-98-13
BC-GHS (Louizos et al., 2017a)	10.55	34.71	1.8	311-86-14
L0 (Louizos et al., 2017b)	26.02	45.02	1.4	219-214-100
L0-sep (Louizos et al., 2017b)	10.01	32.69	1.8	266-88-33
DN (Pan et al., 2016)	23.05	57.94	1.8	542-83-61
VIBNet	3.59	16.98	1.6	97-71-33

$$I(h_1; x)$$
600

Too Regular Net

100

Epoch

$$r_W = \frac{\text{\# params left}}{\text{\# params total}}$$

$$r_N = \frac{\text{Memory footprint of the pruned model}}{\text{Memory footprint of the original model}}$$

VGG16 on CIFAR10

Method	$r_W(\%)$	$r_N(\%)$	Error(%)	FLOP(Mil)
BC-GNJ (Louizos et al., 2017a)	6.57	81.68	8.6	141.5
BC-GHS (Louizos et al., 2017a)	5.40	74.82	9.0	121.9
VIBNet	5.30	49.57	8.8 (8.5)	70.63
PF (<i>Li et al.</i> , 2017b)	35.99	83.97	6.6	206.3
SBP (Neklyudov et al., 2017)	7.01	80.72	7.5	136.0
SBPa (Neklyudov et al., 2017)	5.78	66.46	9.0	99.20
VIBNet	5.45	57.86	6.5 (6.1)	86.82
NS-Single (Liu et al., 2017)	11.50	-	6.2	195.5
NS-Best (<i>Liu et al.</i> , 2017)	8.60	-	5.9	147.0
VIBNet	5.79	59.60	6.2 (5.8)	116.0

Previous works used three different modifications of VGG16 on CIFAR10.

VGG16 on CIFAR100

Method	$r_W(\%)$	$r_N(\%)$	Error(%)	FLOP(Mil)
RNP (Lin et al., 2017)	-	-	38.0	160
VIBNet	22.75	59.80	37.6 (37.4)	133.6
NS-Single (Liu et al., 2017)	24.90	-	26.5	250.5
NS-Best (<i>Liu et al.</i> , 2017)	20.80	-	26.0	214.8
VIBNet	15.08	73.80	25.9 (25.7)	203.1

Conclusion

- We proposed a network compression model inspired by the information bottleneck principle
- Theoretical analysis shows that the objective tends to accumulate useful information in a sparse set of neurons
- The adaptive sparsity penalty that emerges from our model has advantages over traditional fixed sparsity penalties
- Empirical results show that our model can produce better performance than previous compression models

https://github.com/zhuchen03/VIBNet

Poster #128