Real Analysis Homework 13

Francisco Jose Castillo Carrasco

November 20, 2017

1 Problem 6.4.1

1. Let I be a bounded interval and Z a Banach space. Let (f_n) be a sequence of differentiable functions $f_n: I \to Z$ such that $\sum_{n=1}^{\infty} f_n(x^o)$ converges in Z for some $x^o \in I$ and there exists a sequence of positive numbers (M_n) such that $||f'_n(x)|| \le M_n$ for all $n \in \mathbb{N}$ and $x \in I$ and $\sum_{n=1}^{\infty} M_n$ converges in \mathbb{R} . Show that $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly for $x \in I$ and provides a differentiable function $f: I \to Z$ such that $f'(x) = \sum_{n=1}^{\infty} f'_n(x)$, with the convergence of the latter series being also uniform for $x \in I$.

Solution:

Proof. Let $(s_k(x))$ be a sequence of partial sums where $s_k: I \to Z$ is defined by

$$s_k(x) = \sum_{n=1}^k f_n(x) .$$

Therefore (s_k) is a sequence of differentiable functions since each element of the sequence is a sum of differentiable functions $f_n(x)$. Since $\sum_{n=1}^{\infty} f_n(x^o)$ converges in Z for some x^o in I, then $(s_k(x^o))$ converges in Z as $k \to \infty$ for some $x^o \in I$.

Now let $(s'_k(x))$ be a sequence of partial sums where $s'_k: I \to Z$ is defined by

$$s'_k(x) = \sum_{n=1}^k f'_n(x)$$
.

Since there exists a sequence of positive numbers (M_n) such that $\sum_{n=1}^{\infty} M_n$ converges and $||f'_n(x)|| \le M_n$ for all $x \in I$ and $n \in \mathbb{N}$, by the Weierstraß Test, the series $\sum_{n=1}^{\infty} f'_n(x)$ converges uniformly for all $x \in I$, therefore $(s'_k(x))$ converges as $k \to \infty$ uniformly for all $x \in I$ and provides a bounded function $f': I \to Z$, i.e. $s'_k(x) \to f'(x)$.

Next, by Theorem 6.16, $(s_k(x))$ converges as $k \to \infty$ uniformly in $x \in I$ to a differentiable function $f: I \to Z$,

$$f(x) = \lim_{k \to \infty} s_k(x)$$
$$= \lim_{k \to \infty} \sum_{n=1}^k f_n(x)$$
$$= \sum_{n=1}^\infty f_n(x) ,$$

for all $x \in I$ and

$$f'(x) = \lim_{k \to \infty} s'_k(x)$$

$$= \lim_{k \to \infty} \sum_{n=1}^k f'_n(x)$$

$$= \sum_{n=1}^\infty f'_n(x) ,$$

also for all $x \in I$. Note that the uniform convergence of the latter, for all $x \in I$, is proven by the Weierstraß Test.

2 Problem 6.4.2

1. Show that $\sum_{n=1}^{\infty} \sin(2^{-n}t)$ converges uniformly in $t \in [a,a]$ for every a > 0 and provides a continuously differentiable function on \mathbb{R} . (A function is continuously differentiable if it is differentiable and its derivative is continuous.)

Solution:

Proof. Let $f_n = \sin(2^{-n}t)$ for all $n \in \mathbb{N}$ so that (f_n) is a sequence of differentiable functions $f_n : I \to \mathbb{R}$, with I = [-a, a], for all $a \in \mathbb{R}$ with a > 0. Let $t_0 = 0$ $(t_0 \in I$ for all a > 0) such that

$$\sum_{n=1}^{\infty} f_n(t_0) = \sum_{n=1}^{\infty} 0 = 0 .$$

Therefore, $\sum_{n=1}^{\infty} f_n(t_0)$ converges in \mathbb{R} . Next, define the sequence of positive numbers $M_n = \left(\frac{1}{2}\right)^n$ such that

$$||f'_n(t)|| = ||2^{-n}\cos(2^{-n}t)|| \le ||2^{-n}|| = 2^{-n} = M_n \ \forall n \in \mathbb{N}.$$

Observe that $\sum_{n=1}^{\infty} M_n$ converges in \mathbb{R} since it is a geometric series $\sum_{n=1}^{\infty} q^n$ with |q| < 1. Thus, by the *Problem 6.4.1* solved above, $\sum_{n=1}^{\infty} \sin(2^{-n}t)$ converges uniformly in $t \in I$ and provides a differentiable function $f: I \to \mathbb{R}$ such that $f'(t) = \sum_{n=1}^{\infty} 2^{-n} \cos(2^{-n}t)$. Note that f'(t) is continuous since it a sum of continuous functions (cosines), thus f is continuously differentiable.

3 Problem 6.5.1

1. Let $f: U \to Z$ be differentiable at $x \in U$ in direction $v \in X$. Further assume there exist some $\epsilon > 0$ and $\Lambda > 0$ such that $U_{\epsilon}(x) \subseteq U$ and $||f(y) - f(x)|| \le \Lambda ||y - x||$ for all $y \in U_{\epsilon}(x)$. Show: $||\partial f(x, v)|| \le \Lambda ||v||$.

Solution:

Proof. Let X and Z be normed vector spaces and U an open subset of X. Let $x \in U$ and $v \in X$. Since U is open, there exists some $\epsilon > 0$ such that $U_{\epsilon}(x) \subseteq U$. Set $\delta \in (0, \frac{\epsilon}{1+||v||})$. Then $x + tv \in U$ for all $t \in (-\delta, \delta)$. Starting with *Definition 6.17* of the directional derivative $\partial f(x, v)$ we get

$$||\partial f(x,v)|| = \left| \left| \lim_{t \to 0} \frac{f(x+tv) - f(x)}{t} \right| \right|$$
$$= \lim_{t \to 0} \left| \left| \frac{f(x+tv) - f(x)}{t} \right| \right|$$
$$= \lim_{t \to 0} \frac{||f(x+tv) - f(x)||}{|t|}.$$

According to the problem, there exists some $\epsilon > 0$ (same as the one defined above) and $\Lambda > 0$ such that $U_{\epsilon}(x) \subseteq U$ and

$$\lim_{t \to 0} \frac{||f(x+tv) - f(x)||}{|t|} \le \lim_{t \to 0} \frac{\Lambda ||x+tv - x||}{|t|}$$

$$= \lim_{t \to 0} \frac{\Lambda ||tv||}{|t|}$$

$$= \lim_{t \to 0} \frac{\Lambda ||t|||v||}{|t|}$$

$$= \Lambda ||v||,$$

for all $y = x + tv \in U_{\epsilon}(x)$, which implies that $||x + tv - x|| = ||tv|| < \epsilon$. Thus,

$$||\partial f(x,v)|| \leq \Lambda ||v|| \ \, \forall v \in X \text{ with } ||v|| < \frac{\epsilon}{|t|} \ .$$

4 Problem 6.5.2

1. Let $f: U \to Z$ be Frechet differentiable at $x \in U$. Further assume there exist some $\epsilon > 0$ and $\Lambda > 0$ such that $U_{\epsilon}(x) \subseteq U$ and $||f(y) - f(x)|| \le \Lambda ||y - x||$ for all $y \in U_{\epsilon}(x)$.

Show: The operator norm of Df(x) satisfies $||Df(x)|| \leq \Lambda$.

Solution:

Proof. Let X and Z be normed vector spaces and U an open subset of X. Let $x \in U$ and $v \in X$. Since U is open, there exists some $\epsilon > 0$ such that $U_{\epsilon}(x) \subseteq U$. Set $\delta \in (0, \frac{\epsilon}{1+||v||})$. Then $x + tv \in U$ for all $t \in (-\delta, \delta)$. Lastly, let $\Lambda > 0$.

Since f is Frechet differentiable at $x \in U$, by Theorem 6.23 f is Gateaux differentiable at x and $\partial f(x,v) = Df(x)v$ for all $v \in X$. By the definition of Gateaux differentiable, f is differentiable at x in the direction of every v. By Problem 6.5.1 solved above,

$$||Df(x)v|| = ||\partial f(x,v)|| \le \Lambda ||v|| \ ,$$

which gives us

$$\frac{||Df(x)v||}{||v||} \le \Lambda \ \forall v \ne 0.$$

Therefore Λ constitutes an upper bound of the quotient above. Since Df(x) is a bounded linear operator, by Lemma 5.3

$$||Df(x)|| = \sup \left\{ \frac{||Df(x)v||}{||v||}; \forall v \in X, v \neq 0 \right\}.$$

Then, by the definition of a supremum,

$$||Df(x)|| \leq \Lambda$$
.

Acknowledgements

The proofs in this homework assignment have been worked and written in close collaboration with Camille Moyer.