ESALO

Outros modelos de Machine Learning III João F. Serrajordia R. de Mello

Você vai precisar de...

Preparativos

- Abrir o R
- Importar as bibliotecas
- Algo para fazer suas anotações

Revisão Histórico Luiz Rodriguez Ideias básicas Usos

Agenda

CRISP-DM

Fonte: https://www.the-modeling-agency.com/crisp-dm.pdf

Ensemble

Um ensemble é qualquer mistura de modelos já existentes. Os principais tipos são:

Bagging

Boosting

Stacking

Bootstrap – aggregation (bagging)

O bagging com árvores é o famoso Random Forest

• Os métodos de *boosting* são modelos sequenciais que tentam melhorar o erro do modelo anterior

Remove da amostra de treino Classifica o elemento removido inicialmente Desenvolve o modelo com os demais

- Dividimos a base em k sub-amostras
- Para cada sub-amostra:
 - Removemos a sub-amostra como validação
 - Treinamos o modelo com as observações restantes
 - Utilizamos este modelo para classificar a sub-amostra removida
 - Avaliamos a métrica de desempenho do modelo
- Calculamos a média das métricas de desempenho do modelo

Árvores de regressão

São muito semelhantes a árvores de classificação

O que muda é o critério de impureza

$$SQE = \sum_{i=1}^{N} (y_i - \widehat{y}_i)^2$$

Árvores de regressão

Problemas de preditivos e de classificação

Qual a eficácia de uma vacina?

O cliente vai pagar o empréstimo?

Quanto de petróleo tem no poço?

O cliente vai comprar meu produto?

O que a pessoa está fazendo?

Quão ecológico esse veículo é?

Classificação de Famini 005.374.619-81

Classificação dos algoritmos

Supervisionados

- Regressão
- GLM
- GLMM
- Support vector machines
- Naive Bayes
- K-nearest neighbors
- Redes Neurais
- Decision Trees

Não supervisionados

- K-Means
- Métodos hierárquicos
- Mistura Gaussiana
- DBScan
- Mini-Batch-K-Means

Estamos aqui!

Classificação dos algoritmos

Resposta contínua

- Regressão
- GLM
- GLMM
- Support vector machines
- K-nearest neighbors
- Redes Neurais
- Regression Trees

Resposta discreta

- Regressão logística
- Classification trees
- Redes Neurais
- GLM
- GLMM

Estamos aqui!

Classificação dos algoritmos

Métodos Machinelârnicos

- Árvores de decisão
- Bagging
- Boosting
- K-NN
- Redes Neurais
- Support Vector Machines

Métodos Machinelârnicoestatísticos

- Regressão
- GLM
- GLMM
- ANOVA

Estamos aqui!

Metáfora

https://en.wikipedia.org/wiki/Myelin

Exemplo biológico

Rede Neural Humana

• *Homo sapiens*: 100.000.000 de neurônios

Onde vivem?

Redes Neurais Artificiais têm tido muito sucesso em problemas com dados pouco estruturados como imagens, áudios, textos e vídeos.

Neurônio de McCulloch-Pitts

Funções de ativação

Perceptron

OCR – Optical Character Recognition

Vamos pensar em uma versão bem simples do problema. Dígitos de um rádio relógio antigo possuem uma estrutura bem simples.

OCR – Optical Character Recognition

Há 7 regiões básicas, que podem estar ativas ou inativas, e definem um dígito.

Por exemplo, se somente as regiões 1, 3 e 6 estão ativadas, temos o número 7.

Perceptron de Rosenblatt

- O Perceptron de Rosenblatt (~1950-1960) tem essa ideia, só que com propósito mais geral
- foi construído para fazer OCR (optical character recognition)
- Para isso, mapeia regiões de uma imagem "ativadas" e "não ativadas"
- Cada unidade é um neurônio de McCullogh-Pitt

Perceptron Linear

 Possui a mesma estrutura de uma regressão linear com a função de ativação indicada.

Limitações do perceptron linear

 O perceptron linear só captura padrões lineares

Perceptron multi-camada

- Possui camadas "escondidas" intermediárias
- Captura padrões não lineares
- Pode se aproveitar do processamento paralelo de GPUs
- Não é "interpretável" como a regressão

Funções de perda

Variáveis Contínuas SQE

$$SQE = \sum_{i=1}^{N} (y_i - \widehat{y}_i)^2$$

Variáveis binárias Cross-Entropy

$$L = y_i log(\widehat{y}_i) + (1 - y_i) log(1 - \widehat{y}_i)$$

Redes Neurais Artificiais

Deep learning with R - Abhijit Ghatak, ed. Springer, 2019

Fig. 2.3 A representation of a neural network with four input features, two hidden layers with three nodes each, and an output layer

MBAUSP ESALO

Tratamento inicial dos dados

Rede Neural MNIST

Com apenas uma camada já temos 784 x 10 = 7.840 parâmetros!

3blue1brown - https://www.youtube.com/watch?v=aircAruvnKk

Gradiente descendente

É o algoritmo mais popular para se treinar redes neurais artificiais por apresentar algumas características:

- Pode alterar as estimativas com pequenos subconjuntos de pontos a cada iteração (no limite 1 único ponto)
- Não depende de inverter matriz
- Funciona com uma base de dados bem grande
- Pode ser processado em paralelo com GPU
- Permite interromper o algoritmo a certo ponto e continuar mais tarde ou em outro problema semelhante (transfer learning)

Redes Gradiente Descendente

Deep learning with python – François Chollet

Gradiente descedente

1.8 Gradient Descent

Fig. 1.4 Gradient descent: Rolling down to the minima by updating the weights by the gradient of the loss function

Fig. 1.5 A contour plot showing the cost contours of a sigmoid activation neural network and the cost minimization steps using the gradient descent optimization function

Previsão de consumo de veículo

- Tamanho do motor
- Combustível
- Número de cilindros
- Marca
- Potência
- Tração

Processadores

- Distância entre transístores: 14 nm
- Fiode cabelo humano: 80.000 nm
- Diâmetro do átomo de ouro: 0,3 nm

Processamento com GPU

Regularização L2

Variáveis Contínuas SQE

$$SQE = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 + \lambda \sum_{i=1}^{N} \beta_i^2$$

Variáveis binárias Cross-Entropy

$$L = \sum y_i log(\widehat{y}_i) + \lambda \sum \beta_i^2$$

Reconhecimento de atividade humana com smartphone

Conclusões

- Redes Neurais são a introdução ao Deep Learning (que é um ramo muito promissor)
- São poderosas e flexíveis
- Requerem poder computacional especial (GPU / TPU)
- São famosas em dados menos estruturados (ex: imagens, áudio)

Por hoje é só ;)

linkedin.com/in/joao-serrajordia