Due: Friday 11/26/2018

Determine weather the given map ϕ is a homomorphism.

- 13.07 Let $\phi_i: G_i \to G_1 \times G_2 \times \cdots \times G_i \times \cdots \times G_R$ be given by $\phi_i(g_i) = (e_1, e_2, \dots, g_i, \dots, e_R)$, where $g_i \in G_i$ and e_j is the identity element of G_j
- 13.08 Let G be any group and let $\phi: G \to G$ be given by $\phi(g) = g^{-1}$ for $g \in G$
- 13.12 Let M_n be the additive group of all $n \times n$ matrices with real entries, and let \mathbb{R} be the additive group of real numbers. Let $\phi(A) = \det(A)$, the determinant of A, for $A \in M_n$
- 13.13 Let M_n and \mathbb{R} be as in Exercise 12. Let $\phi(A) = \operatorname{tr}(A)$ for $A \in M_n$, where the trace $\operatorname{tr}(A)$ is the sum of the elements on the main diagonal of A, from the upper-left to the lower-right corner.
- 13.14 Let $GL(n,\mathbb{R})$ be the multiplicative group of invertible $n \times n$ matrices, and let \mathbb{R} be the additive group of real numbers. Let $\phi: GL(n,\mathbb{R}) \to \mathbb{R}$ be given by $\phi(A) = \operatorname{tr}(A)$, where $\operatorname{tr}(A)$ is defined in Exercise 13
- 13.30 A homomorphism is a map such that $\phi(xy) = \phi(x)\phi(y)$
- 13.31 Let $\phi: G \to G'$ be a homomorphism of groups. The kernel of ϕ is $\{x \in G | \phi(x) = e'\}$ where e' is the identity in G'
- 13.44 Let $\phi: G \to G'$ be a group homomorphism. Show that if |G| is finite, then, $|\phi[G]|$ is finite and is a divisor of |G|
- 13.45 Let $\phi: G \to G'$ be a group homomorphism. Show that if |G'| is finite, then, $|\phi[G]|$ is finite and is a divisor of |G'|
- 13.48 The sign of an even permutation is +1 and the sign of an odd permutation is -1. Observe that the map $\operatorname{sgn}_n: S_n \to \{1, -1\}$ defined by $\operatorname{sgn}_n(\sigma) = \operatorname{sign}$ of σ is a homomorphism of S_n onto the multiplicative group $\{1, -1\}$ What is the Kernel?
- 13.50 Let $\phi: G \to H$ be a group homomorphism. Show that $\phi[G]$ is abelian if and only if for all $x, y \in G$, we have $xyx^{-1}y^{-1} \in \text{Ker}(\phi)$
- 14.06
- 14.16
- 14.17
- 14.18
- 14.19
- 14.24
- 14.37
- 14.40