

- Restate the claim you are trying to prove
- Base case: Prove the claim holds for the "first" value of n
 - Prove $P(n_0)$ is true
- Inductive Step: Prove that $P(k) \rightarrow P(k+1)$ for an arbitrary integer k in the desired range.
 - Let k be an arbitrary integer with $k \ge n_0$
 - Assume P(k)
 - Show that P(k + 1) holds

Equivalently: Show $P(k-1) \rightarrow P(k)$

• Conclusion: explain that you've proven the desired claim.

Induction Proof: Another Equality

• Claim: $\frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \dots + \frac{2}{3^n} = 1 - \frac{1}{3^n}$ $\forall n \ge 1$

Inductive Step: Consider an arbitrary integer $k \ge 1$.

Assume **P(k)**:
$$\frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \dots + \frac{2}{3^k} = 1 - \frac{1}{3^k}$$

Want to show **P(k+1)**: $\frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \cdots + \frac{2}{2k} + \frac{2}{2k+1} = 1 - \frac{1}{2k+1}$

$$\frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \dots + \frac{2}{3^k} + \frac{2}{3^{k+1}} = 1 - \frac{1}{3^k} + \frac{2}{3^{k+1}}$$

$$= 1 - \frac{3}{3} \cdot \frac{1}{3^k} + \frac{2}{3^{k+1}}$$

$$= 1 - \frac{3}{3^{k+1}} + \frac{2}{3^{k+1}}$$

$$= 1 - \frac{1}{3^{k+1}}$$

Base Case: P(1): $\frac{2}{3^1} = 1 - \frac{1}{3^1}$ $\frac{2}{3^1} = \frac{2}{3} = 1 - \frac{1}{3} = 1 - \frac{1}{3^1}$

By mathematical induction, the claim holds for all $n \ge 1$.

10

Warning: Always work in **One Direction**

Summary: To prove LHS = RHS (or LHS < RHS, etc.)

Correct approach:

- 1. Start with one side
- 2. Work your way in one direction until you get the other side

In your own words, why shouldn't we start with LHS = RHS (our desired conclusion) and work both sides of that equation until we get the same expression on both sides?

Answers will vary. Some possible answers:

- Logically, do this is equivalent to saying "if q, then true", which does not prove that q
- Not every mathematical operation is reversible
- Doing so can lead to incorrect "proofs", e.g., 1024 = -57 because I can multiply both sides by 0 to get 0 = 0.

Induction Proof: An Inequality

• Claim: $2n + 3 \le 2^n$ $\forall n \geq 4$

Inductive Step: Assume P(k) for some $k \ge 4$. That is, assume: $2k + 3 \le 2^k$

Want to show
$$P(k+1)$$
: $2(k+1) + 3 \le 2^{k+1}$

$$2(k+1) + 3 = 2k + 2 + 3$$

= $2k + 3 + 2$

$$\leq 2^k + 2$$

(by I.H., i.e., apply
$$P(k)$$
)

$$< 2^k + 2^k$$

(because
$$2 < 2^k \quad \forall k > 1$$
)

14

$$= 2 \cdot 2^k$$

$$a^{k+1}$$

$$= 2^{k+1}$$

Base Case: P(4): $2(4) + 3 \le 2^4$

$$2(4) + 3 = 11 \le 16 = 2^4$$

By mathematical induction, $2n + 3 \le 2^n$ holds for all $n \ge 4$.

Tiling a Checkerboard

- Inductive Hypothesis: For an arbitrary positive integer k, a $2^k \times 2^k$ checkerboard with any one square removed can be tiled using right triominos.

- Thus, ... (conclusion)

