Programs as Relations COMP SCI 2LC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada

Consider the well-known procedure factorial, written in a small subset of Maple:

```
factorial := proc(n::posint)
local i, fac
    i:=1;
    fac:=1;
    while i < n do
    begin
        i:=i+1
        fac:=fac*i;
    end;
end proc;</pre>
```

Since n does not change its value in the above program we may consider it as a constant, so we may assume the above program has two integer variables i and fac.

• Define $D=\mathbb{Z}\times\mathbb{Z}$, where \mathbb{Z} is the set of integers, and denote the elements of D as (i,fac). Each assignment statement can be modeled by a function $F_i:D\to D,\ i=1,2,4,5$, in the following manner:

```
"i:=1" corresponds to F_1(i, fac) = (1, fac),

"fac:=1" corresponds to F_2(i, fac) = (i, 1),

"i:=i+1" corresponds to F_4(i, fac) = (i + 1, fac), and

"fac:=fac*i" maps to F_5(i, fac) = (i, fac \cdot i).
```

• The test "i<n" can be modeled by two partial identity functions, $I_3, \bar{I}_3: D \leadsto D$, where I_3 models "i<n", and \bar{I}_3 models its complement, i.e. "i \geq n". More precisely,

"i<n" corresponds to $I_3(i, fac)$, and "i \ge n" corresponds to $\bar{I}_3(i, fac)$, where (\bot denotes undefined)

$$I_3(i,\mathit{fac}) = egin{cases} (i,\mathit{fac}) & \mathsf{if}\ i < n \ & \ egin{cases} \bot & \mathsf{otherwise} \end{cases}$$

$$ar{l}_3(i,\mathit{fac}) = egin{cases} (i,\mathit{fac}) & \mathsf{if} \ i \geq n \ ot & \mathsf{otherwise} \end{cases}$$

- Let R, R_1, R_2 be relations (each function is a relation!) that model the program statements S, S1, S2, respectively.
- ullet Let T be a test modeled by partial identities I_T and $ar{I}_T$, and
- let the symbols "o" and "*" denote the composition of relations, and transitive and reflexive closure of relations (Kleene star), respectively.

Formally, if $R, R_1, R_2 \subseteq X \times X$, then

- $x(R_1 \circ R_2)y \iff \exists (z|z \in X : xR_1z \land zR_2y)$
- $R^* = \bigcup_{i=0}^{\infty} R^i = \bigcup (i|i=0,\ldots,\infty:R^i)$, where $R^0 = \textit{Identity}$
- Alternative definition of R^* :

$$xR^*y \iff \exists (i|0 \le i < \infty : xR^iy)$$

We can now model the basic programming constructs as follows

- "S1;S2" is modeled by $R_1 \circ R_2$,
- "if T then S1 else S2" is modeled by $(I_T \circ R_1) \cup (\bar{I}_T \circ R_2)$, and
- "while T do S" is modeled by $(I_T \circ R)^* \circ \overline{I_T}$.

Using this scheme one can easily model the above program by writing the following (symbolic) relational expression:

$$F = F_1 \circ F_2 \circ (I_3 \circ F_4 \circ F_5)^* \circ \bar{I}_3,$$

or

$$F = \underbrace{F_1}_{i:=1} \circ \underbrace{F_2}_{fac:=1} \circ \underbrace{\begin{pmatrix} i < n \\ J_3 \end{pmatrix} \circ F_4 \circ F_5 \\ \text{while } i < n \text{ do } i := i+1; fac := fac * i \text{ od} \\ \text{while } i < n \text{ do } i := i+1; fac := fac * i \text{ od} \\ \end{pmatrix}^* \circ \underbrace{\bar{I}_3}_{i:=1} \circ \underbrace{\bar{I}_3}$$

- If R_1 and R_2 are (possibly partial) functions, calculating $R = R_1 \circ R_2$ is easy: $R(x_1, ..., x_n) = R_2(R_1(x_1, ..., x_n))$.
- If at least one of R_1 , R_2 is not a function, in general, we have to use the rule:

$$(x_1,...,x_n)R_1 \circ R_2(z_1,...,z_n) \iff \exists (y_1,...,y_n) : (x_1,...,x_n)R_1(y_1,...,y_n) \land (y_1,...,y_n)R_2(z_1,...,z_n)).$$

- Nevertheless, it might happen that $R_1 \circ R_2$ is a function even if both R_1 and R_2 are not.
- In general $R_1 \cup R_2$ is not a function, even if both R_1 and R_2 are functions.
- Similarly, $R^* = \bigcup_{i=0}^{\infty} R^i = \bigcup (i|0 \le i < \infty : R^i)$ is almost never a function, even if R is a function, since if R is a function, then $(x_1,...,x_n)R^*(y_1,...,y_n) \iff \exists (i|i \ge 0 : (y_1,...,y_n) = R^i(x_1,...,x_n)),$ and this may happen for many, even infinite number of i's.

Lemma (1)

- For any test T, if R_1 and R_2 are functions then $(I_T \circ R_1) \cup (\bar{I}_T \circ R_2)$ is always a function.
- ② For any test T, if R is a function, then $(I_T \circ R)^* \circ \bar{I}_T$ is either a function or the empty relation.
- **3** For any test T, if R is a function and $(I_T \circ R)^* \circ \overline{I}_T \neq \emptyset$, then

$$((I_T \circ R)^* \circ \bar{I}_T)(x) = R^{k(x)}(x)$$

where k(x) is the smallest j such that $\bar{I}_T(R^j(x_1,...,x_n))(x) \neq \bot$.

• Recall
$$F = \underbrace{F_1}_{i:=1} \circ \underbrace{F_2}_{fac:=1} \circ \underbrace{I_3}_{while} \circ \underbrace{F_4}_{i:=i+1} \circ \underbrace{F_5}_{fac:=fac*i})^* \circ \underbrace{I_3}_{j:=i+1;fac:=fac*i} \circ d$$

• Define $G = I_3 \circ F_4 \circ F_5$ and $H = G^* \circ \overline{I}_3$, so $F = F_1 \circ F_2 \circ H$. First note that $(F_1 \circ F_2)(i, fac) = F_2(F_1(i, fac)) = (1, 1)$, so $F(i, fac) = H(F_2(F_1(i, fac))) = H(1, 1).$

• For the function **G** we have:

$$G(i, fac) = (I_3 \circ F_4 \circ F_5)(i, fac) = F_5(F_4(I_3(i, fac))) = \begin{cases} (i+1, fac \cdot (i+1)) & \text{if } i < n \\ \bot & \text{if } i \ge n \end{cases}$$

Similarly:

$$G^2(i, fac) = G(G(i, fac)) =$$

$$\begin{cases} (i+2, fac \cdot (i+1) \cdot (i+2)) & \text{if } i+1 < n \\ \bot & \text{if } i+1 \ge n \end{cases}$$

Hence:

$$G^{j}(i, fac) =$$

$$\begin{cases} (i+j, fac \cdot (i+1) \cdot (i+2) \cdot \ldots \cdot (i+j)) & \text{if } i+j-1 < n \\ \bot & \text{if } i+j-1 \ge n \end{cases}$$

• Recall
$$F = F_1 \circ F_2 \circ \overbrace{I_3 \circ F_4 \circ F_5}^{i < n \text{ i} := i+1 \text{ } fac := fac * i \text{ } i \ge n} \circ \overbrace{I_3}^{i \ge n} \circ \overbrace{I_3}^{$$

• For the function **G** we have:

$$G(i, fac) = (I_3 \circ F_4 \circ F_5)(i, fac) = F_5(F_4(I_3(i, fac))) = \begin{cases} (i+1, fac \cdot (i+1)) & \text{if } i < n \\ \bot & \text{if } i \ge n \end{cases}$$

Similarly:

$$G^{2}(i, fac) = G(G(i, fac)) = \begin{cases} (i+2, fac \cdot (i+1) \cdot (i+2)) & \text{if } i+1 < n \\ \bot & \text{if } i+1 \ge n \end{cases}$$

Hence:

$$G^{j}(i, fac) = \begin{cases} (i+j, fac \cdot (i+1) \cdot (i+2) \cdot \dots \cdot (i+j)) & \text{if } i+j-1 < n \\ \bot & \text{if } i+j-1 \ge n \end{cases}$$

Notice that this last step requires a small amount of human ingenuity to "see" the pattern (although it can be automated in some cases).

• Recall: $H = G^* \circ \overline{I}_3$, F(i, fac) = H(1, 1) and

$$G^{j}(i, fac) = egin{cases} (i+j, fac \cdot (i+1) \cdot (i+2) \cdot \ldots \cdot (i+j)) & ext{if } i+j-1 < n \ & ext{if } i+j-1 \geq n \end{cases}$$

- From Lemma 1(3) it follows $H(i, fac) = G^k(i, fac)$ where k = k(i, fac) is the smallest j such that $\bar{l}_3(G^j(i, fac)) \neq \bot$.
- In this case we can easily show that there is only one such k and that k(i, fac) = n i.
- Denote $fac' = fac \cdot (i+1) \cdot (i+2) \cdot \ldots \cdot (i+j)$.
- First note that $\bar{l}_3(G^j(i, fac)) \neq \bot$ implies $G^j(i, fac) \neq \bot$, i.e. $G^j(i, fac) = (i + j, fac')$ and i + j 1 < n.
- Furthermore $\bar{l}_3(i+j, fac') \neq \bot$ implies $i+j \ge n$.
- From i+j-1 < n and $i+j \ge n$ we immediately get i+j=n, or j=n-i.
- Hence k(i, fac) = n i, i.e.

$$H(i, fac) = G^{n-i}(i, fac) = (n, fac \cdot (i+1) \cdot (i+2) \cdot \ldots \cdot n).$$

• We have proved that k(i, fac) = n - i, i.e.

$$H(i, fac) = G^{n-i}(i, fac) = (n, fac \cdot (i+1) \cdot (i+2) \cdot \ldots \cdot n).$$

This means

$$F(i, fac) = H(1, 1) = (n, n!),$$

SO

$$\forall (n|n \in \mathbb{N} : \mathtt{factorial}(n) = n!).$$

 So we are done. In many cases, but not all, the entire calculation can be mechanized, which is a big advantage!

Hoare Logic Again

```
\{P\} do B \longrightarrow S od or while B do S od \{R\}
```

Checklist for proving loop correct

- (a) P is true before execution of the loop
- (b) P is a loop invariant: $\{P \land B\} S \{P\}$
- (c) Execution of the loop terminates
- (d) R holds upon termination: $P \land \neg B \implies R$

Hoare Logic Again

```
\{P\} do B \longrightarrow S od or while B do S od \{R\}
```

Checklist for proving loop correct

- (a) P is true before execution of the loop
- (b) P is a loop invariant: $\{P \land B\} S \{P\}$
- (c) Execution of the loop terminates
- (d) R holds upon termination: $P \land \neg B \implies R$

Factorial and Hoare Logic

Example (Factorial)

Consider the following program

```
Pr: i := 1; factorial := 1;
while i < n do
begin i := i + 1; factorial := factorial * i end
od.
```

- Consider the Hoare triple $\{P\}Pr\{R\}$.
- The obvious choice for P and R is P = (n > 0) and R = (factorial = n!).
- Consider $\{n > 0\}$ i := 1; factorial := 1; $\{P'\}$
- Clearly $P' = (i = 1 \land factorial = 1 \land n > 0)$ and P' is true before execution of the loop.
- Hence (a) of the checklist is satisfied.

Now we have a case:

```
\{P' = (i = 1 \land factorial = 1 \land n > 0)\}
while i < n do
begin i := i + 1; factorial := factorial * i end
od
\{R = (factorial = n!)\}
```

- We will show that $Q = (factorial = i! \land i \le n)$ is a loop invariant. Assume B = (i < n).
- To show that Q is a loop invariant, we have to prove that $\{Q \land B\}$ $i:=i+1; \ \textit{factorial}:=\textit{factorial}*i$ $\{Q\},$
 - or, in detail,

```
 \{ (factorial = i! \land i \le n) \land i < n \} 
 i := i + 1; \ factorial := factorial * i \} 
 \{ factorial = i! \land i \le n \}
```


Let solve:

```
\{Q'\}

i := i + 1; factorial := factorial * i

\{Q = (factorial = i! \land i \le n)\}
```

• From the definition of sequential composition of two assignment statements we have:

```
\{(factorial = i! \land i \le n)[factorial := factorial * i][i := i + 1]\}

i := i + 1; factorial := factorial * i

\{factorial = i! \land i \le n\}.
```

Hence:

```
(factorial = i! \land i \le n)[factorial := factorial * i][i := i + 1] \iff (factorial * i = i! \land i \le n)[i := i + 1] \iff factorial * (i + 1) = (i + 1)! \land i + 1 \le n \iff factorial * (i + 1) = i! * (i + 1) \land i < n \iff factorial = i! \land i < n \iff (factorial = i! \land i \le n) \land i < n.
```

- Which means $Q' = (factorial = i! \land i \leq n) \land i < n) = Q \land B$.
- Hence (b) holds, so Q is a loop invariant.

What about termination of

```
while i < n do begin i := i + 1; factorial := factorial * i end od?
```

- Initially i=1 and n>0. The loop contains i:=i+1', so after n steps we get i=n, which implies $\neg B$, so the loop terminates.
- Hence (c) is also satisfied.
- Upon termination we have $(Q \land \neg B) = (factorial = i! \land i \le n) \land i \ge n) \Rightarrow (factorial = i!) = R.$
- This means (d) is also satisfied.
- Hence we have proved: $\{n > 0\}Pr\{factorial = n!\}$

Another Example

 Consider the following program that already has been analysed using Hoare Logic:

$$q, r := 0, b;$$

 $\operatorname{do} r \ge c \longrightarrow q, r := q + 1, r - c \operatorname{od}$

• Define $D = \mathbb{Z} \times \mathbb{Z}$ and denote the elements of D as (q,r). Each parallel assignment statement can be modelled by a function $F_i : D \to D$, in the following manner:

"
$$q, r := 0, b$$
" corresponds to $F_1(q, r) = (0, b)$, and " $q, r := q + 1, r - c$ " corresponds to $F_2(q, r) = (q + 1, r - c)$.

• The test $r \geq c$ can be modelled by two partial identity functions, $I_3, \bar{I}_3: D \leadsto D$, where I_3 models $r \geq c$, and \bar{I}_3 models its complement, i.e. r < c. More precisely,

" $r \geq c$ " corresponds to $I_3(q,r)$, and "r < c" corresponds to $\bar{I_3}(q,r)$, where (\perp denotes *undefined*)

$$I_3(q,r) = egin{cases} (q,r) & ext{if } r \geq c \ & ot & ext{otherwise} \end{cases} \quad ar{I}_3(q,r) = egin{cases} (q,r) & ext{if } r < c \ & ot & ext{otherwise} \end{cases}$$

We can now model the basic programming constructs as follows

- "S1;S2" is modeled by $R_1 \circ R_2$,
- "if T then S1 else S2" is modeled by $(I_T \circ R_1) \cup (\bar{I}_T \circ R_2)$, and
- "while T do S" is modeled by $(I_T \circ R)^* \circ \overline{I}_T$.

Using this scheme one can easily model the above program by writing the following (symbolic) relational expression:

$$F = F_1 \circ (I_3 \circ F_2)^* \circ \bar{I}_3,$$

or

$$F = \underbrace{F_1}_{q,r:=0,b} \circ \underbrace{\overbrace{I_3}^{r \geq c} \circ \overbrace{F_2}^{q,r:=q+1,r-c}}_{\text{do } r > c \rightarrow q,r:=q+1,r-c \text{ od}})^* \circ \overbrace{\bar{I}_3}^{r < c}$$

• Recall
$$F = \underbrace{F_1}_{q,r:=0,b} \circ \underbrace{\underbrace{I_3}_{q,r:=q+1,r-c}}_{q,r:=q+1,r-c} \underbrace{I_3}_{q,r:=q+1,r-c} \circ \underbrace{I_3}_{q,r:=q+1,r-c}$$

- Define $G = I_3 \circ F_2$ and $H = G^* \circ \bar{I}_3$, so $F = F_1 \circ H$. First note that $F_1(q,r) = (0,b)$, so $F(q,r) = H((F_1(q,r)) = H(0,b)$.
- For the function **G** we have:

$$G(q,r) = (I_3 \circ F_2)(q,r) = F_2(I_3(q,r)) = \begin{cases} (q+1,r-c) & \text{if } r \geq c \\ \bot & \text{if } r < c \end{cases}$$

Similarly:

$$G^{2}(q,r) = G(G(q,r)) = \begin{cases} (q+2,r-2\cdot c) & \text{if } r-c \geq c \equiv r \geq 2\cdot c \\ \bot & \text{if } r-c < c \equiv r < 2\cdot c \end{cases}$$

Hence:

$$G^{i}(q,r) = \begin{cases} (q+i,r-i\cdot c) & \text{if } r \geq i\cdot c \\ \bot & \text{if } r < i\cdot c \end{cases}$$

Notice that this last step requires a small amount of human ingenuity to "see" the pattern (although it can be automated in some cases).

• Recall: $H = G^* \circ \overline{I}_3$, F(q,r) = H(0,b) and

$$G^{i}(q,r) = \begin{cases} (q+i,r-i\cdot c) & \text{if } r \geq i\cdot c \\ \bot & \text{if } r < i\cdot c \end{cases}$$

- From Lemma 1(3) it follows $H(q,r) = G^k(q,r)$ where k = k(q,r) is the smallest j such that $\bar{l}_3(G^j(q,r)) \neq \bot$.
- In this case we can easily show that there is only one such k and k = k(q, r) is the biggest i such that $r \ge i \cdot c$.
- Let $(q_F, r_F) = H(0, b) = G^k(0, b)$. Then k is the biggest i such that $b \ge i \cdot c$, $q_F = k$, $r_F = b k \cdot c$.
- Hence q_F is the quotient of integer division, i.e. $q_F = b \div c$, and r_F is the reminder of $b \div c$, i.e. $r_F = b q_F \cdot c$.

Quotient and Reminder with Hoare's Logic

Problem

Use the checklist to prove that the annotation in this program is correct.

```
\{Q: b \ge 0 \land c > 0\}
q, r := 0, b;
\{invariant \ P: b = q \cdot c + r \land 0 \le r\}
do \ r \ge c \longrightarrow q, r := q + 1, r - c \text{ od}
\{R: b = q \cdot c + r \land 0 \le r < c\}
```

$$\{Q: b \ge 0 \land c > 0\}$$

$$q,r := 0,b;$$

$$\{\text{invariant } P: b = q \cdot c + r \land 0 \le r\}$$

$$\text{do } r \ge c \longrightarrow q, r := q + 1, r - c \text{ od}$$

$$\{R: b = q \cdot c + r \land 0 \le r < c\}$$

$$\text{(a) We need to prove } Q \Rightarrow P[q,r := 0,b].$$

$$P[q,r := 0,b]$$

- (a) We need to prove $Q \Rightarrow P[q, r := 0, b]$. P[q, r := 0, b] $= \langle \text{ Definition of } P; \text{ textual substitution} \rangle$ $b = 0 \cdot c + b \wedge 0 \leq b$
 - \Leftarrow $\langle \mathsf{Arithmetic}; \ \mathsf{definition} \ \mathsf{of} \ \mathcal{Q} \ \rangle$
- (b) $\{P \land B\}S\{P\}$, hence we have to prove $P \land B \Rightarrow P[q,r:=q+1,r-c]$. P[q,r:=q+1,r-c] = $\langle \mathsf{Definition}$ of P and textual substitution \rangle $b=(q+1)\cdot c+(r-c)\wedge 0 \leq r-c$ = $\langle \mathsf{Arithmetic} \rangle$ $b=q\cdot c+r\wedge r\geq c$ $\Leftrightarrow \langle \mathsf{Definition}$ of P and $B\rangle$ $P \land B$
- (c) Note that each iteration decreases r by c (c>0), so that after a finite number of iterations r< c is achieved.
- (d) $P \wedge \neg B \Rightarrow$ is obvious. So we are done.

Final (Almost) Comment

- The first example (Factorial) is probably easier to mechanize.
- To make this technique feasible for bigger, more realistic programs, we need a tool that would be able to do all those symbolic calculations.
- The reasoning presented above rely heavily on Lemma 1(3) and is rather typical for human beings.
- Many steps and observations are not easy to mechanize.
- Nevertheless, this technique has most likely better prospects to eventually lead to almost automatic theorem provers (at least for some special kind of programs), than Hoare Logic.
- On the other hand, for human beings skillful in finding loop invariant, Hoare Logic is probably more convenient.

Finite Induction

Consider the program:

```
factorial-1000
local i, fac
    i:=1;
    fac:=1;
    while i < 1000 do
    begin
        i:=i+1
        fac:=fac*i;
    end;
end proc;</pre>
```

• It is relatively easy using almost every theorem prover that factorial-1000 = 1000!, or in fact that fectorial-n = n! for any constant n.

• Consider the following program *Pr*:

```
b, c := 73458, 73;

q, r := 0, b;

do r \ge c \longrightarrow q, r := q + 1, r - c \text{ od}
```

- It is relatively easy using almost every theorem prover that for b=73458, c=73, the program Pr calculate proper quotient and reminder, i.e. the program ends with q=1006 and r=20. In fact it can be proved for any constants b and c.
- A proving properties of programs software developed using Maple can deal with both Factorial and quotient/reminder cannot prove correctness of some sorting procedures for a variable *n*, which is the size of the data to be sorted.
- However it can handle all cases when n is fixed, for example n = 6758, etc.
- The same is true for other similar software.

- In science, laws of nature are proved by conducting a finite number of experiments.
- We may say that in science we use finite induction.
- Would you trust a given sorting procedure that was proven correct for several different values n?
- How does it differ from testing?
- Testing: You would test several random sequences and verify
 if they were really sorted correctly. Quite often programs
 works correctly for most of inputs but not for all.
- Verifying by Finite Induction: You have formal proofs that a program is correct for some specific constant parameters.
 From this you conclude that is works correctly for all values of these parameters.
- I believe that verification by finite induction is more trustworthy than testing.

