NAME: SOLUTION

PROBLEM 1: Draw the S-V-A-J diagrams for a cam with the following characteristics.

REGION

I a. Rise ³/₄ in. with constant acceleration in 90°.

II b. Rise ³/₄ in. with constant deceleration in 90°.

c. Dwell 30°.

IH d. Fall ³/₄ in with constant acceleration in 60°.

e. Fall ¾ in with constant deceleration in 60°.

f. Dwell 30°.

REGION I: B= T, Oz = O

BOUNDARY CONDITIONS

S(空)=0.75in

THE PROBLEM STATEMENT FOR THIS REGION RESTRICTS THE ACCELEMENTER BE CONSTANT, THUS RESTALCTING THE FORM OF THE FUNCTION TO

$$S = C_0 + C_1 \cdot \left(\frac{\Theta_{\mathfrak{x}}}{\beta_{\mathfrak{x}}}\right) + C_2 \cdot \left(\frac{\Theta_{\mathfrak{x}}}{\beta_{\mathfrak{x}}}\right)^2 = C_0 + C_1 \cdot \frac{2}{\pi} \cdot \Theta_{\mathfrak{x}} + C_2 \cdot \frac{4}{\pi^2} \cdot \Theta_{\mathfrak{x}}^2$$

Imposing THE BOONDARY CONDITION SCO)=0

$$S(0) = O_{1h} = C_0 + C_1 \cdot \frac{2}{11} \cdot (0) + C_2 \left(\frac{4}{11^2}\right) (0)^2 = C_0 = 0$$

$$S(\Theta) = C_1 \cdot \frac{2}{n} \cdot \Theta_1 + C_2 \cdot \frac{4}{n^2} \cdot \Theta_1^2$$

$$V(\Theta) = C_1 \cdot \frac{2}{97} + C_2 \cdot \frac{8}{97^2} \cdot \Theta_1$$

Imposing the Boundary condition

$$V(0) = 0 \frac{10}{600} = C_1 \cdot \frac{2}{6} + C_2 \cdot \frac{8}{62} \cdot (0) = C_1 = 0$$

IMPOSING THE FINAL BOUNDARY CONDITION, $S(\frac{\pi}{2}) = 0.75$ in

$$S(\frac{\pi}{2}) = 0.7S_{1N} = C_2 \cdot \frac{4}{\pi^2} \cdot \frac{\pi^2}{4} \implies \underline{C_2} = 0.7S_{1N}$$

$$S(\Theta_1) = 0.7S_{1N} \cdot \frac{4}{\pi^2} \cdot \Theta_1^2 = \frac{3.0}{\pi^2} \frac{1}{100} \Theta_1^2 \quad S(0) = 0 \qquad S(\frac{\pi}{2}) = 0.7S_{1N}$$

$$V(\Theta_1) = \frac{6.0}{\pi^2} \frac{10}{R_{ND}^2} \cdot \Theta_1 \qquad V(0) = 0 \qquad V(\frac{\pi}{2}) = \frac{3.0}{\pi^2} \frac{10}{R_{ND}^2}$$

$$S(e) = 0.75 \times \frac{4}{712} \cdot \Theta_{L}^{2} = \frac{3.0}{712} \times \Theta_{L}^{2}$$

$$V(\Theta_z) = \frac{6.0}{91^2} \frac{\text{in}}{\text{Rap}^2} \cdot \Theta_I$$

V(0) = 0 $V(\frac{T}{2}) = \frac{3.0}{97} \frac{D}{FAD}$

 $\Omega(\Theta_{\rm I}) = \frac{6.0}{40^2} \frac{\rm fn}{\rm per}/2$

REGION II: Br = II, On = O-B

BOUNDARY CONDITIONS -
$$S(0) = 0.75 \text{ in}$$
 $V(0) = \frac{3.0}{11} \frac{\text{In}}{\text{In}} J$ $S(\frac{\pi}{2}) = 1.5 \text{ in}$ $V(\frac{\pi}{2}) = 0$

THE PAOBLEM STATEMENT FOR THIS REGION RESTAICTS THE DECELERATION TO BE CONSTANT, THUS RESTRICTING THE FUNCTION TO THE FORM

$$S(\Theta_{\mathbf{I}}) = C_0 + C_1 \left(\frac{\Theta_{\mathbf{I}}}{(S_{\mathbf{I}})}\right) + C_2 \left(\frac{\Theta_{\mathbf{I}}}{(S_{\mathbf{I}})}\right)^2 = C_0 + C_1 \cdot \frac{2}{n} \cdot \Theta_{\mathbf{I}} + C_2 \cdot \frac{4}{n^2} \cdot \Theta_{\mathbf{I}}$$

Imposence THE BOUNDARY CONDITION SCO) = 0.75in

$$S(O) = 0.75 \text{ in} = C_0 + C_1 \cdot \frac{2}{11} \cdot O + C_2 \cdot \frac{4}{12} \cdot (O)^2 \Rightarrow C_0 = 0.75 \text{ in}$$

$$S(O_{II}) = 0.75 \text{ in} + C_1 \cdot \frac{2}{11} \cdot O_{II} + C_2 \cdot \frac{4}{12} \cdot O_{II}$$

$$V(O_{II}) = C_1 \cdot \frac{2}{11} + C_2 \cdot \frac{8}{12} \cdot O_{II}$$

IMPOSING THE BOOWDARY CONDITION V(O) = 300 IM

$$\mathcal{V}(O) = \frac{3.0}{97} \cdot \frac{10}{120} = C_1 \cdot \frac{2}{97} \cdot \frac{1}{920} + C_2 \cdot \frac{9}{92} \cdot \frac{1}{120} \cdot (C) \implies C_1 = 1.5 \text{ in}$$

$$S(\Theta_E) = 0.75_{1N} + \frac{3.0}{97} \cdot \frac{10}{120} \cdot \Theta_E + C_2 \cdot \frac{1}{92} \cdot \Theta_E^2$$

$$\mathcal{V}(\Theta_E) = \frac{3.0}{97} \cdot \frac{10}{120} + C_2 \cdot \frac{9}{92} \cdot \Theta_E$$

Imposing THE BOUNDARY CONDITIONS 5 (= 151) = 151

NG THE BOUNDARY CONDITIONS
$$S(\frac{\pi}{2}) = 1.5 \text{ in}$$

$$S(\frac{\pi}{2}) = 1.5 \text{ in} = 0.75 \text{ in} + \frac{3.0}{97} \frac{17}{180} \cdot (\frac{\pi}{2}) + C_2 \cdot (\frac{\pi}{4}^2) \cdot (\frac{\pi}{4}) \implies \underline{C_2 = -0.75 \text{ in}}$$

$$S(\Theta_{\text{II}}) = 0.75 \text{ in} + \frac{3.0}{97} \cdot \frac{17}{180} \cdot \Theta_{\text{II}} - \frac{3.0}{47^2} \frac{17}{180^2} \cdot \Theta_{\text{II}}^2 \qquad S(0) = 0.75 \text{ in} \qquad S(\frac{\pi}{2}) = 1.5 \text{ in}$$

$$S(\Theta_{\rm II}) = 0.75 \, \text{in} + \frac{3.0 \, \text{in}}{97} \cdot \Theta_{\rm II} - \frac{3.0 \, \text{in}}{972} \cdot \Theta_{\rm II}$$

$$S(O) = 0.75 \, \text{in}$$

$$S(O) = 0.75 \, \text{i$$

NOTE THAT EVEN THOOGH THE BOUNDARY CONDITION U(\$\frac{1}{2}) =0 WAS NEVER IMPOSED, IT IS STELL SHIBLFIED. THE REQUIREMENT OF CONSTANT DECELENATION POES NOT ALLOW THIS BOUNDANY CONDITION TO BE CONSIDERED.

$$S(\Theta_{\overline{m}}) = 1.5 \text{in}$$

$$V(\Theta_{\overline{m}}) = 0 \frac{\text{in}}{\text{rad}}$$

$$Q(\Theta_{\overline{m}}) = 0 \frac{\text{in}}{\text{rad}}^2$$

$$J(\Theta_{\overline{m}}) = 0 \frac{\text{in}}{\text{rad}}^3$$

REGION IV By = 7/3, OI+ = O-BEBU-BU

BOUNDARY CONDITIONS S(0) = 1.5 in V(0) = 0 S(7/3) = 0.75 in

THE PROBLEM STATEMENT POR THIS REGION RESTAIRTS THE SELENATION TO BE CONSTANT, THUS RESTAIRTING THE FUNCTION TO THE FORM

$$\mathsf{C}(\Theta^{\mathtt{IA}}) \; = \; \mathsf{C}^{\diamond} \; + \; \mathsf{C}^{\mathtt{I}} \Big(\frac{\mathsf{Q}^{\mathtt{SA}}}{\Theta^{\mathtt{IA}}} \Big) \; + \; \mathsf{C}^{\mathtt{S}} \cdot \Big(\frac{\mathsf{Q}^{\mathtt{IA}}}{\Theta^{\mathtt{IA}}} \Big)^{\mathtt{S}} \; = \; \mathsf{C}^{\diamond} \; + \; \mathsf{C}^{\mathtt{I}} \cdot \frac{\mathsf{U}}{3} \cdot \Theta^{\mathtt{IA}} \; + \; \mathsf{C}^{\mathtt{F}} \cdot \frac{\mathsf{U}}{3} \, \cdot \; \Theta^{\mathtt{IA}}$$

IMPOSING THE BOUNDARY CONDITION S(0) = 1.5m

$$S(0) = 1.S_{1n} = C_{0} + C_{1} \cdot \frac{3}{4}(0) + C_{2} \cdot \frac{9}{8}^{2} \cdot (0)^{2} \implies \underline{C_{0}} = 1.S_{1n}$$

$$S(\Theta_{24}) = 1.S_{1n} + C_{1} \cdot \frac{3}{4}(\Theta_{24}) + C_{2} \cdot \frac{9}{4}^{2} \cdot \Theta_{24}^{2}$$

$$V(\Theta_{24}) = C_{1} \cdot \frac{3}{8} + C_{2} \cdot \frac{13}{4}^{2} \cdot \Theta_{24}$$

Imposing the Boundary condition v(0)=0

$$V(0) = 0 \xrightarrow{\text{in}}_{\text{rad}} = C_{1} \xrightarrow{\text{in}}_{\text{rad}} + C_{2} \cdot \frac{18}{\text{fi}^{2}} (0) \implies \underline{C_{1} = 0}$$

$$S(\Theta_{xy}) = 1.5_{10} + C_{2} \cdot \frac{9}{\text{fi}^{2}} \cdot \Theta_{xy}^{2}$$

$$V(\Theta_{xy}) = C_{2} \cdot \frac{18}{\text{fi}^{2}} \cdot \Theta_{xy}^{2}$$

Imposing the Boundary condition $S(\frac{\pi}{3}) = 0.75$ in

$$S(\Theta_{IV}) = 1.5_{\text{m}} - \frac{6.75}{97^2} \frac{1}{760} 2 \cdot \Theta_{EV}^2$$

$$S(0) = 1.5_{\text{m}} \quad S(\frac{\pi}{3}) = 0.75_{\text{m}}$$

$$V(\Theta_{IV}) = -\frac{13.5}{97^2} \frac{10}{760} 2 \cdot \Theta_{EV}$$

$$V(0) = 0 \frac{10}{760} \quad V(\frac{\pi}{3}) = -\frac{4.5}{97^2} \frac{10}{760} 2$$

$$Q(\Theta_{IV}) = -\frac{13.5}{97^2} \frac{10}{760} 2$$

REGION # B= 93 OV = O-BI-BI-BIE

BOUNDARY CONDITIONS

$$S(0) = 0.75_{10}$$
 $V(0) = -\frac{4.5}{47} \frac{10}{120}$
 $S(\frac{10}{3}) = 0$ $V(\frac{10}{3}) = 0$

THE PROBLEM STOTEMENT POR THIS REGION RESTRICTS THE DECELERATION TO BE CONSIGNT, THUS RESTRECTENG THE FUNCTION TO THE FORM

$$S(\Theta_{\forall}) = C_0 + C_1 \cdot \left(\frac{\Theta_{\forall}}{\Theta_{\forall}}\right) + C_2 \cdot \left(\frac{\Theta_{\forall}}{\Theta_{\forall}}\right)^2 = C_0 + C_1 \cdot \frac{3}{8} \cdot \Theta_{\forall} + C_2 \cdot \frac{9}{8}^2 \cdot \Theta_{\forall}^2$$

IMPOSING THE BOUNDARY CONDITION 500)=0.75in

Imposing the Boundary condition $v(0) = \frac{4.5}{4.2} \cdot \frac{10}{1200}$

$$\mathcal{V}(0) = -\frac{4.5}{\sqrt{1}} \cdot \frac{120}{\sqrt{1}} = C_1 \cdot \frac{3}{\sqrt{1}} \cdot \frac{1}{\sqrt{12}} + C_2 \cdot \frac{18}{\sqrt{12}} \cdot (0)^2 \implies \underline{C_1} = -1.5 \text{ in}$$

$$V(\Theta \psi) = -\frac{4.5}{91} + C_2 \cdot \frac{18}{82} \cdot \Theta \psi$$

Imposing the Boundary condition 5(%)=0

$$S(\frac{\pi}{3}) = 0 \text{ in } = 0.75 \text{ in } -\frac{4.5}{91} \cdot (\frac{\pi}{3}) + C_2 \cdot \frac{9}{91} \cdot (\frac{\pi}{3})^2 \implies \underline{C_2 = 0.75 \text{ in}}$$

$$S(\Theta_{y}) = 0.75_{10} - \frac{9.5}{6} \cdot \Theta_{y} + \frac{6.75}{6} \cdot \Theta_{z}^{2}$$

$$S(\Theta_{V}) = 0.75_{IN} - \frac{4.5}{11} \cdot \Theta_{V} + \frac{6.75}{11} \cdot \Theta_{V}^{2} \qquad S(O) = 0.75_{IN} \qquad S(\frac{\pi}{3}) = O_{IN}$$

$$V(\Theta_{V}) = -\frac{4.5}{11} \frac{IN}{140} + \frac{13.5}{11} \frac{IN}{120} \cdot \Theta_{V} \qquad V(O) = -\frac{4.5}{11} \frac{IN}{IN} \qquad V(\frac{\pi}{3}) = O_{IN}^{IN}$$

$$C(\Theta_{V}) = \frac{13.5}{11} \frac{IN}{120} \cdot \Theta_{V} \qquad = -1.4324 \frac{IN}{120}$$

REGION YI By = 9% Our = O-BI-BI-BII-BIN -BY

PROBLEM 2: An automate packaging facility has a station that requires a box to be carries from the upright position on top of a pedestal (position 1), through an intermediate position (position 2), to a resting position on its side on a lower pedestal (position 3).

2a. Design a four bar linkage that will carry the package through the prescribed motion. Print a copy of your programs results and insert it after this page.

PROBLEM 2: An automate packaging facility has a station that requires a box to be carries from the upright position on top of a pedestal (position 1), through an intermediate position (position 2), to a resting position on its side on a lower pedestal (position 3).

Exam III

2a. Design a four bar linkage that will carry the package through the prescribed motion. Print a copy of your programs results and insert it after this page.

$P_{21} = \sqrt{(184 \text{mm})^2 + (17 \text{mm})^2} = 184.78 \text{mm}$	CHOICES:
$P_{31} = \sqrt{(250 \text{mm})^2 + (145 \text{mm})^2} = 289.01 \text{mm}$	(32 = 290°
δ_{z} : $T_{4}n^{-1}\left(\frac{-12}{184}\right) = 354.7^{\circ}$	B3 = 240°
$\delta_3 = T_{AN}^{-1} \left(\frac{-145}{250} \right) = 329.9^\circ$	V -10°
dz = 45°-90° = -45° = 315°	Y ₂ = 288°
d3 = 0° - 90° = -90° = 270°	83 = 530°

THREE POSITION ANALYTICAL MOTION SYNTHESIS

$$\vec{W}_2 + \vec{Z}_2 = \vec{W}_1 + \vec{Z}_1 + \vec{P}_{21}; \quad \vec{W}_3 + \vec{Z}_3 = \vec{W}_1 + \vec{Z}_1 + \vec{P}_{31}$$

$$|\vec{W}_1| = |\vec{W}_2| = |\vec{W}_3| = w; \quad |\vec{Z}_1| = |\vec{Z}_2| = |\vec{Z}_3| = z$$

$$\vec{W}_{1} = \mathbf{w} \cdot \left[\cos \left(\frac{\boldsymbol{\theta}}{\boldsymbol{\theta}} \right) \hat{i} + \sin \left(\frac{\boldsymbol{\theta}}{\boldsymbol{\theta}} \right) \hat{j} \right]$$

$$\vec{W}_2 = w \cdot \left[\cos \left(\theta + \beta_2 \right) \hat{i} + \sin \left(\theta + \beta_2 \right) \hat{j} \right]$$

$$\vec{W}_3 = w \cdot \left[\cos \left(\theta + \beta_3 \right) \hat{i} + \sin \left(\theta + \beta_3 \right) \hat{j} \right]$$

$$\bar{Z}_1 = \mathbf{z} \cdot \left[\cos(\phi) \hat{i} + \sin(\phi) \hat{j} \right]$$

$$\vec{Z}_2 = \mathbf{z} \cdot \left[\cos \left(\mathbf{\phi} + \mathbf{\alpha}_2 \right) \hat{i} + \sin \left(\mathbf{\phi} + \mathbf{\alpha}_2 \right) \hat{j} \right]$$

$$\vec{Z}_3 = \mathbf{z} \cdot \left[\cos \left(\mathbf{\phi} + \mathbf{\alpha}_3 \right) \hat{i} + \sin \left(\mathbf{\phi} + \mathbf{\alpha}_3 \right) \hat{j} \right]$$

$$\vec{P}_{21} = p_{21} \cdot \left[\cos \left(\delta_2 \right) \hat{i} + \sin \left(\delta_2 \right) \hat{j} \right]$$

$$\vec{P}_{31} = p_{31} \cdot \left[\cos \left(\delta_3 \right) \hat{i} + \sin \left(\delta_3 \right) \hat{j} \right]$$

		_	_	_	_	_	_	_
$\bar{U}_2 + S_2 =$	=U. $+$	⊦ S. ⊣	P_{21} :	U_2	$+S_2 =$	=U. $+$	-S. $+$	P_{21}

$$|\vec{U}_1| = |\vec{U}_2| = |\vec{U}_3| = u; \quad |\vec{S}_1| = |\vec{S}_2| = |\vec{S}_3| = s$$

$$\vec{U}_1 = \mathbf{u} \cdot \left[\cos \left(\mathbf{\sigma} \right) \hat{i} + \sin \left(\mathbf{\sigma} \right) \hat{j} \right]$$

$$\vec{U}_2 = \mathbf{u} \cdot \left[\cos \left(\mathbf{\sigma} + \mathbf{\gamma}_2 \right) \hat{i} + \sin \left(\mathbf{\sigma} + \mathbf{\gamma}_2 \right) \hat{j} \right]$$

$$\vec{U}_3 = \mathbf{u} \cdot \left[\cos \left(\mathbf{\sigma} + \mathbf{\gamma}_3 \right) \hat{i} + \sin \left(\mathbf{\sigma} + \mathbf{\gamma}_3 \right) \hat{j} \right]$$

$$\vec{S}_{1} = \mathbf{s} \cdot \left[\cos \left(\mathbf{\psi} \right) \hat{i} + \sin \left(\mathbf{\psi} \right) \hat{j} \right]$$

$$\vec{S}_2 = \mathbf{s} \cdot \left[\cos \left(\mathbf{\psi} + \mathbf{\alpha}_2 \right) \hat{i} + \sin \left(\mathbf{\psi} + \mathbf{\alpha}_2 \right) \hat{j} \right]$$

$$\vec{S}_3 = \mathbf{s} \cdot \left[\cos(\psi + \alpha_3) \hat{i} + \sin(\psi + \alpha_3) \hat{j} \right]$$

$$\vec{P}_{21} = p_{21} \cdot \left[\cos \left(\delta_2 \right) \hat{i} + \sin \left(\delta_2 \right) \hat{j} \right]$$

$$\bar{P}_{31} = p_{31} \cdot \left[\cos \left(\delta_3 \right) \hat{i} + \sin \left(\delta_3 \right) \hat{j} \right]$$

FIRST DYAD

GIVEN:		CHOSEN:		FIND:	
P12	184.78	β2	290.00	w	135.97
P13	289.01	β3	240.00	θ	121.14
δ2	354.70			z	38.05
δ3	329.90			ф	99.47
α2	315.00			W1x	-70.31
α3	270.00			W1y	116.38
				Z1x	-6.26
				Z1y	37.53

	x-coord	y-coord.
O2	76.57	-153.90
A1	6.26	-37.53
A2	161.8795	-48.0299
A3	212.5098	-151.2
P1	0.00	0.00
P2	183.99	-17.07
P3	250.04	-144.94

$$\begin{bmatrix} \cos \beta_2 - 1 & -\sin \beta_2 & \cos \alpha_2 - 1 & -\sin \alpha_2 \\ \sin \beta_2 & \cos \beta_2 - 1 & \sin \alpha_2 & \cos \alpha_2 - 1 \\ \cos \beta_3 - 1 & -\sin \beta_3 & \cos \alpha_3 - 1 & -\sin \alpha_3 \\ \sin \beta_3 & \cos \beta_3 - 1 & \sin \alpha_3 & \cos \alpha_3 - 1 \end{bmatrix} \begin{bmatrix} W_{1x} \\ W_{1y} \\ Z_{1x} \\ Z_{1y} \end{bmatrix} = \begin{bmatrix} p_{21} \cdot \cos \delta_2 \\ p_{21} \cdot \sin \delta_2 \\ p_{31} \cdot \cos \delta_3 \\ p_{31} \cdot \sin \delta_3 \end{bmatrix}$$

SECOND DYAD

GIVEN:		CHOSEN:		FIND:	
P12	184.78	γ2	288.00	u	127.11
P13	289.01	γ3	230.00	σ	104.19
δ2	354.70			s	77.59
δ3	329.90			Ψ	152.85
α2	315.00			U1x	-31.16
α3	270.00			U1y	123.23
				S1x	-69.04
				S1y	35.40

-0.6910	0.9511	-0.2929	0.7071	ſ	U1x)	ſ	183.9900
-0.9511	-0.6910	-0.7071	-0.2929	J	U1y	l _		-17.0682
-1.6428	0.7660	-1.0000	1.0000)	S1x	_	•)	250.0374
-0.7660	-1.6428	-1.0000	-1.0000	l l	S1v	1	1	-144.9416

x-coord

69.04

0.00 183.99 250.04

y-coord.

-35.40 -90.92 -213.98

$$\begin{bmatrix} \cos \gamma_2 - 1 & -\sin \gamma_2 & \cos \alpha_2 - 1 & -\sin \alpha_2 \\ \sin \gamma_2 & \cos \gamma_2 - 1 & \sin \alpha_2 & \cos \alpha_2 - 1 \\ \cos \gamma_3 - 1 & -\sin \gamma_3 & \cos \alpha_3 - 1 & -\sin \alpha_3 \\ \sin \gamma_3 & \cos \gamma_3 - 1 & \sin \alpha_3 & \cos \alpha_3 - 1 \end{bmatrix} \cdot \begin{bmatrix} U_{1x} \\ U_{1y} \\ S_{1x} \\ S_{1y} \end{bmatrix} = \begin{bmatrix} p_{21} \cdot \cos \delta_2 \\ p_{21} \cdot \sin \delta_2 \\ p_{31} \cdot \cos \delta_3 \\ p_{31} \cdot \sin \delta_3 \end{bmatrix}$$

2c. Design a drive mechanism that can be used to make sure the linkage that you designed will cycle 10 times per minute. Print a copy of your program that performs this design and insert it into the exam after this page.

NON-QUICK-RETURN (From Three Position Results)

	X-pos	Y-pos	mag	angle	i	j
04	76.57	-153.90	171.90	-63.5	0.4454	-0.8953
3P-A1	6.26	-37.53	38.05	-80.5	0.1645	-0.9864
3P-A2	161.88	-48.03	168.85	-16.5	0.9587	-0.2844
3P-A3	212.51	-151.20	260.81	-35.4	0.8148	-0.5797

Factors

P	0.5 % dist up Link 4
K	-2.5 Length of Link 3+Link 2 to B1B2
Link 1	354.88
	50.00

Link 2 58.88 Link 3 353.25 Link 4 67.98 Grashof

$\dot{\theta}_2 = \ddot{\theta}_2 =$	1.0470 1/s
$\ddot{\theta}_{_{2}}=$	0.0000 1/s^2
ω3-1	0.1745 1/s
ω3-i	-0.0074 1/s
ω3-2	-0.1745 1/s
ω4-1	0.0000 1/s
ω4-i	0.9019 1/s
ω4-2	0.0000 1/s
α3-1	0.2637 1/s^2
α3-i	0.0261 1/s^2
α3-2	0.3692 1/s^2
α4-1	-1.5822 1/s^2
α4-i	0.0545 1/s^2
α4-2	2.2151 1/s^2

	x comp	y comp	mag	angle	i	j
rO4	76.57	-153.90	171.90	-63.5	0.4454	-0.8953
rO43P-A1	-70.31	116.38	135.97	121.1	-0.5171	0.8559
rO43P-A2	85.31	105.87	135.97	51.1	0.6274	0.7787
rO43P-A3	135.94	2.70	135.97	1.1	0.9998	0.0199
rB1	41.41	-95.72	104.29	-66.6	0.3971	-0.9178
rO4B1	-35.16	58.19	67.98	121.1	-0.5171	0.8559
rB2	144.54	-152.55	210.15	-46.5	0.6878	-0.7259
rO4B2	67.97	1.35	67.98	1.1	0.9998	0.0199
rBi	119.22	-100.97	156.23	-40.3	0.7631	-0.6463
rO4Bi	42.65	52.94	67.98	51.1	0.6274	0.7787
rB1B2	103.13	-56.84	117.75	-28.9	0.8758	-0.4827
rO2	-216.40	46.38	221.31	167.9	-0.9778	0.2095
rB102	-257.81	142.09	294.38	151.1	-0.8758	0.4827
rBiO2	-335.62	147.34	366.54	156.3	-0.9156	0.4020
rA1	-267.96	74.79	278.20	164.4	-0.9632	0.2688
rO2A1	-51.56	28.42	58.88	151.1	-0.8758	0.4827
rA2	-164.84	17.96	165.81	173.8	-0.9941	0.1083
rO2A2	51.56	-28.42	58.88	-28.9	0.8758	-0.4827
rAi	-177.56	90.62	199.35	153.0	-0.8907	0.4546
rO2Ai	38.84	44.25	58.88	48.7	0.6597	0.7515
rB1A1	-309.38	170.51	353.25	151.1	-0.8758	0.4827
rBiAi	-296.78	191.59	353.25	147.2	-0.8401	0.5424
rB2A2	-309.38	170.51	353.25	151.1	-0.8758	0.4827
rO4O2	-292.97	200.28	354.88	145.6	-0.8255	0.5644

intermediate

negatives t

Kinematics	Kinematics								
	x comp	y comp	mag	angle	i	j			
r1	292.97	-200.28	354.88	-34.4	0.8255	-0.5644			
r4-1	-35.16	58.19	67.98	121.1	-0.5171	0.8559			
r4-i	42.65	52.94	67.98	51.1	0.6274	0.7787			
r4-2	67.97	1.35	67.98	1.1	0.9998	0.0199			
r2-1	-51.56	28.42	58.88	151.1	-0.8758	0.4827			
r2-i	38.84	44.25	58.88	48.7	0.6597	0.7515			
r2-2	51.56	-28.42	58.88	-28.9	0.8758	-0.4827			
r3-1	309.38	-170.51	353.25	-28.9	0.8758	-0.4827			
r3-i	296.78	-191.59	353.25	-32.8	0.8401	-0.5424			
r3-2	309.38	-170.51	353.25	-28.9	0.8758	-0.4827			
vA-1	-29.75	-53.99	61.64	-118.9	-0.4827	-0.8758			
vA-i	-46.33	40.67	61.64	138.7	-0.7515	0.6597			
vA-2	29.75	53.99	61.64	61.1	0.4827	0.8758			
vB-1	0.00	0.00	0.00	-148.9	-0.8559	-0.5171			
vB-i	-47.74	38.47	61.31	141.1	-0.7787	0.6274			
vB-2	0.00	0.00	0.00	-88.9	0.0199	-0.9998			
aA-1	56.52	-31.15	64.54	-28.9	0.8758	-0.4827			
aA-i	-42.58	-48.50	64.54	-131.3	-0.6597	-0.7515			
aA-2	-56.52	31.15	64.54	151.1	-0.8758	0.4827			
aB-1	92.07	55.62	107.57	31.1	0.8559	0.5171			
aB-i	-37.58	-40.73	55.42	-132.7	-0.6781	-0.7350			
aB-2	-2.99	150.56	150.59	91.1	-0.0199	0.9998			

- 2c. Determine the following kinematic parameters for the four bar linkage that you designed.
 - i. Angular velocities and accelerations for the drive, coupler, and rocker links in all three positions
 - ii. The position, velocity, and acceleration of the designated corner of the box in all three positions.
 - iii. The position, velocity, and acceleration of the joints between the drive and coupler, and the coupler and rocker in all three positions.

Print the results of the program that you used to calculate these values and insert it after this page.

KINEMATI	KINEMATIC ANALYSIS - CRITICAL POSITIONS									
	x-coord	y-coord.	mag	angle	i	j				
O2	76.57	-153.90	171.90	-63.5	0.4454	-0.8953				
A1	6.26	-37.53	38.05	-80.5	0.1645	-0.9864				
A2	161.88	-48.03	168.85	-16.5	0.9587	-0.2844				
A3	212.51	-151.20	260.81	-35.4	0.8148	-0.5797				
P1	0.00	0.00	0.00	0.0	1.0000	0.0000				
P2	183.99	-17.07	184.78	-5.3	0.9957	-0.0924				
P3	250.04	-144.94	289.01	-30.1	0.8652	-0.5015				

ω2-1	0.0000 1/s
ω2-2	0.9019 1/s
ω2-3	0.0000 1/s
α2-1	-1.5822 1/s^2
α2-2	0.0545 1/s^2
α2-3	2.2151 1/s^2
ω3-1	0.0000 1/s
ω3-2	0.6555 1/s
ω3-3	0.0000 1/s
ω4-1	0.0000 1/s
ω4-2	0.9949 1/s
ω4-3	0.0000 1/s
α3-1	-1.0217 1/s^2
α3-2	-0.1965 1/s^2
α3-3	2.4552 1/s^2
α4-1	-1.5118 1/s^2
α4-2	-0.0467 1/s^2
α4-3	2.6770 1/s^2

	x comp	y comp	mag	angle	i	j
r1	23.63	-4.73	24.10	-11.3	0.9805	-0.1965
r4-1	-31.16	123.23	127.11	104.2	-0.2451	0.9695
r4-2	107.57	67.72	127.11	32.2	0.8463	0.5327
r4-3	114.43	-55.34	127.11	-25.8	0.9002	-0.4354
r2-1	-70.31	116.38	135.97	121.1	-0.5171	0.8559
r2-2	85.31	105.87	135.97	51.1	0.6274	0.7787
r2-3	135.94	2.70	135.97	1.1	0.9998	0.0199
r3-1	62.78	2.12	62.82	1.9	0.9994	0.0338
r3-2	45.89	-42.89	62.82	-43.1	0.7306	-0.6828
r3-3	2.12	-62.78	62.82	-88.1	0.0338	-0.9994
rAP-1	-6.26	37.53	38.05	99.5	-0.1645	0.9864
rAP-2	22.11	30.96	38.05	54.5	0.5812	0.8138
rAP-3	37.53	6.26	38.05	9.5	0.9864	0.1645
vA-1	0.00	0.00	0.00	-148.9	-0.8559	-0.5171
vA-2	-95.49	76.94	122.63	141.1	-0.7787	0.6274
vA-3	0.00	0.00	0.00	-88.9	0.0199	-0.9998
vB-1	0.00	0.00	0.00	-165.8	-0.9695	-0.2451
vB-2	-67.37	107.02	126.46	122.2	-0.5327	0.8463
vB-3	0.00	0.00	0.00	-115.8	-0.4354	-0.9002
vP-1	0.00	0.00	0.00	-152.1	-0.8840	-0.4675
vP-2	-115.78	91.43	147.53	141.7	-0.7848	0.6198
vP-3	0.00	0.00	0.00	-86.9	0.0542	-0.9985
aA-1	184.13	111.25	215.13	31.1	0.8559	0.5171
aA-2	-75.17	-81.47	110.85	-132.7	-0.6781	-0.7350
aA-3	-5.99	301.13	301.19	91.1	-0.0199	0.9998
aB-1	186.30	47.11	192.17	14.2	0.9695	0.2451
aB-2	-103.31	-72.05	125.96	-145.1	-0.8202	-0.5720
aB-3	148.15	306.34	340.28	64.2	0.4354	0.9002
aP-1	222.48	117.64	251.66	27.9	0.8840	0.4675
aP-2	-78.58	-99.11	126.49	-128.4	-0.6213	-0.7836
aP-3	-21.35	393.26	393.84	93.1	-0.0542	0.9985

KINEMATIC ANALYSIS - CRITICAL POSITIONS									
	x-coord	y-coord.	mag	angle	i	j			
O4	100.20	-158.64	187.63	-57.7	0.5340	-0.8455			
B1	69.04	-35.40	77.59	-27.1	0.8898	-0.4563			
B2	207.77	-90.92	226.80	-23.6	0.9161	-0.4009			
B3	214.63	-213.98	303.08	-44.9	0.7082	-0.7060			
P1	0.00	0.00	0.00	#DIV/0!	#DIV/0!	#DIV/0!			
P2	183.99	-17.07	184.78	-5.3	0.9957	-0.0924			
P3	250.04	-144.94	289.01	-30.1	0.8652	-0.5015			

Three-position analytical synthesis