Week 6

Operations on Forms

6.1 Compact Support and Consequences

5/2: • Plan:

- Brouwer's fixed point theorem.
 - The classic fixed point theorem.
 - Several proofs.
- Compactly supported forms.
- The Poincaré lemma.
 - Allows us to define the degree of a function $F: U \to V$, where $U, V \subset \mathbb{R}^n$ open.
 - The degree will turn out to be an integer.
 - \blacksquare We will need F to be proper.
 - We'll eventually use the degree to give a proof of the Brouwer's fixed point theorem.
- Theorem (Brouwer's fixed point theorem): Let $B^n = \{x \in \mathbb{R}^n : |x| \le 1\}$ be the closed unit ball in \mathbb{R}^n , and let $F: B^n \to B^n$ be continuous. Then there exists $x_0 \in B^n$ such that $F(x_0) = x_0$ (i.e., F has a fixed point).
 - This is a generalized form of what we proved last quarter that a map from $[0,1] \rightarrow [0,1]$ has a fixed point (IVT and an auxiliary function).
 - Think back to Sharkovsky's theorem last quarter.
 - Another interpretation of Brouwer in \mathbb{R}^2 : Take a piece of paper, crumple it up, project it down onto where it was, and some point lies exactly above where it was.
- Support (of ω): The following set, where $\omega \in \Omega^k(\mathbb{R}^n)$. Denoted by supp(ω). Given by

$$\operatorname{supp}(\omega) = \{ p \in \mathbb{R}^n \mid \omega_p \neq 0 \}$$

- Example:
 - The support of a bump function on \mathbb{R}^1 is the region of the line on which it is not zero.
- Compactly supported (form): A form ω for which supp (ω) is compact.
- Compactly supported (form ω on U): A compactly supported form such that $\operatorname{supp}(\omega) \subset U$.
 - The idea is that we can have some crazy form, but it "dies down" when we get close to the boundary of U.
- $\Omega_c^k(U)$: The vector space of all compactly supported k-forms on U.

- Thus, the scalar multiple of a compactly supported form on U is still compactly supported, as is the sum of two compactly supported forms on U.
- To get a handle on the degree, we're gonna focus on the top-dimensional space $\Omega_c^n(U)$ of compactly supported forms.
- **Proper** (function): A function $F: U \to V$, where $U, V \in \mathbb{R}^n$ open, for which $F^{-1}(K)$ is compact for any F compact in V.
 - We know that the image of a compact set is compact under a continuous function, but we haven't said anything about the inverse image up to this point.
- Example: Sine and cosine are continuous but not proper.
 - Consider $\sin^{-1}(\{0\}) = \{\dots, -\pi, 0, \pi, \dots\}$, which is not bounded and hence not compact (by Heine-Borel).
- The pullback, when restricted to compactly supported forms, maps compactly supported forms to compactly supported forms. Symbolically,

$$F^*[\Omega_c^n(V)] \subset \Omega_c^n(U)$$

- Similarly, $d: \Omega_c^{n-1}(X) \to \Omega_c^n(X)$.
- n^{th} compactly supported de Rahm cohomology group: The top-dimensional space of forms modulo the image of the (n-1)-dimensional space of forms under the exterior derivative. Denoted by $H_c^n(X)$. Given by

$$H_c^n(X) = \frac{\Omega_c^n(X)}{\mathrm{d}(\Omega_c^{n-1}(X))}$$

- The top is analogous to the kernel of the appropriate d because there's no n+1 form so everything just gets mapped to the kernel.
- Since the pullback commutes with the exterior derivative, F will induce a map from $H_c^n(V) \to H_c^n(U)$.
 - Today, we will show that $H_c^n(X) \cong \mathbb{R}$, where the isomorphism is integration.
 - On this function, we're gonna map 1 and that will give us deg(F).
 - This is something topological: If we move/jiggle F a bit, the degree won't change. The degree is **invariant** under jiggling it around; this is the basis of topology.
 - In fact: For all $\omega \in \Omega_c^n(V)$, we have that

$$\int_{U} F^* \omega = \deg(F) \int_{V} \omega$$

– Another thing that should be familiar from vector calculus is that this is a generalization of a classic change of coordinates integration formula. Specifically, if $F: U \to V$ is a **diffeomorphism** (smooth, bijective, smooth inverse) and $\varphi: V \to \mathbb{R}$, then

$$\int_{V} \varphi(y) \, \mathrm{d}y = \int_{U} (\varphi \circ F)(x) |\det DF(x)| \, \mathrm{d}x$$

- Assume U, V are some bounded open subsets in \mathbb{R}^n , though we can get around the boundedness with a more advanced derivation.
- This formula is just the previous formula in coordinates plus the fact that the degree of a diffeomorphism is ± 1 depending on whether or not it preserves orientation.
- We'll use this formula over and over again to simplify the domain over which we need to integrate; it's kind of a good old *u*-substitution type thing.

• Integral (of $\omega \in \Omega_c^n(U)$): If $\omega = f \, \mathrm{d} x_1 \wedge \cdots \wedge \mathrm{d} x_n$ is a top-dimensional form, then the integral of ω over U is given as follows. Denoted by $\int_U \omega$. Given by

$$\int_{U} \omega = \int_{\mathbb{R}^n} f \, \mathrm{d}x_1 \cdots \mathrm{d}x_n$$

- Defines integration pictorially as slicing up the plane, taking a point in each region, and multiplying it's value by the area of the region, and then taking finer and finer partitions.
- Theorem (Poincaré lemma final form): Let $\omega_1, \omega_2 \in \Omega_c^n(U)$. Then $\omega_1 \sim \omega_2$ if $\omega_1 \omega_2 = d\mu$ for some $\mu \in \Omega_c^n(U)$ (i.e., $[\omega_1] = [\omega_2]$ in $H_c^n(U)$, where we are representing equivalence classes). Let $\omega_0 \in \Omega_c^n(U)$ with $\int \omega_0 = 1$ (ω_0 is a bump function). Then $\omega \sim c\omega_0$ where c a scalar is given by $c = \int \omega$.
 - We're gonna start small by proving the Poincaré lemma for rectangles.
 - Then we'll have the lemma for general, open, connected subsets of \mathbb{R}^n .
 - Then we'll prove the final form above.
- To prove the Poincaré lemma, we need two steps.
 - 1. Poincaré lemma for rectangles: $\int \omega = 0$ iff $\omega = d\mu$.
 - The backwards implication is easy.
 - The forwards implication is tricky and requires induction on dimension.
 - 2. Generalize from rectangles to general regions U.
- Theorem (Poincaré lemma for rectangles): Let $Q = [a_1, b_1] \times \cdots \times [a_n, b_n] \subset \mathbb{R}^n$. Take $\omega \in \Omega^n_c(Q)$. Then TFAE.
 - 1. $\int_{\mathcal{O}} \omega = 0$.
 - 2. $\omega = d\mu$ with $\mu \in \Omega_c^{n-1}(U)$.

$$\begin{aligned} \operatorname{Proof}\left(2\Rightarrow1\right). \text{ Let } \mu &= \sum_{i=1}^{n} f_{i} \operatorname{d}x_{1} \wedge \cdots \wedge \widehat{\operatorname{d}x_{i}} \wedge \cdots \wedge \operatorname{d}x_{n}^{[1]}. \text{ Then} \\ \operatorname{d}\mu &= \sum_{i=1}^{n} \operatorname{d}f_{i} \wedge \operatorname{d}x_{1} \wedge \cdots \wedge \widehat{\operatorname{d}x_{i}} \wedge \cdots \wedge \operatorname{d}x_{n} \\ &= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}} \operatorname{d}x_{j}\right) \wedge \operatorname{d}x_{1} \wedge \cdots \wedge \widehat{\operatorname{d}x_{i}} \wedge \cdots \wedge \operatorname{d}x_{n} \\ &= \sum_{i=1}^{n} \frac{\partial f_{i}}{\partial x_{i}} \operatorname{d}x_{i} \wedge \operatorname{d}x_{1} \wedge \cdots \wedge \widehat{\operatorname{d}x_{i}} \wedge \cdots \wedge \operatorname{d}x_{n} \end{aligned}$$

 $= \sum_{i=1}^{n} (-1)^{i+1} \frac{\partial f_i}{\partial x_i} dx_1 \wedge \dots \wedge dx_n$

Now to show that $\int d\mu = 0$, it suffices to check that $\int \frac{\partial f_i}{\partial x_i} dx_1 \wedge \cdots \wedge dx_n = 0$ for all i by the distributive property of integration over sums. The conclusion follows from the FTC and the fact that each f_i is supported in Q (i.e., each f_i is zero on the boundary of the rectangle, so the integral will look something like $f_i(b) - f_i(a) = 0 - 0 = 0$).

Proof $(1 \Rightarrow 2)$. If $1 \Rightarrow 2$ on some $U \subset \mathbb{R}^n$, then $1 \Rightarrow 2$ in $U \times [a_n, b_n] \subset \mathbb{R}^{n+1}$. This inductive step gets us what we need. We'll prove it next time.

• Motivation/warm up for $1 \Rightarrow 2$.

¹Note that the carrot to delete something is universal to all fields of math, not just differential geometry.

- Let n = 1. Then the theorem says $f : \mathbb{R} \to \mathbb{R}$ with supp $(f) \subset [a, b]$ implies TFAE.
 - 1. $\int_{a}^{b} f = 0$.
 - 2. f = dg/dx for some $g \in \Omega_c^0([a, b])$.
- $-2 \Rightarrow 1$: We just did this.
- $-1 \Rightarrow 2$: We let $g(x) = \int_a^x f(t) dt$. We can check that dg/dx = f, and that $\operatorname{supp}(g) \subset [a, b]$ (since $\int_a^a f(t) dt = 0$ and $\int_a^b f(t) dt = 0$; values smaller and larger are zero by definition).
- (1 \Rightarrow 2): We know that f starts at zero and ends at zero. We know that the integral (g) of f starts at zero and ends at zero. But then it must be that this integral is a compactly supported function whose derivative is f. Indeed, regardless of how f moves, we know that it must come back to zero, and any positive areas under the curve must be cancelled by negative areas under the curve.
- (2 \Rightarrow 1): We know that f starts at zero and ends at zero. We know that f is the derivative of a function g that starts at zero and ends at zero. But then the integral of f will just be the ending point of g minus the starting point of g, which are both equally zero, making the integral zero. Indeed, regardless of how g moves, any positive slopes must be cancelled by negative slopes. But these slopes really are one and the same as the areas inspected by the integral, as per the FTC!
- An example of two functions that illustrate the point here are $f(x) = \sin(x)$ and $g(x) = 1 \cos(x)$ on $[0, 2\pi]$.

Figure 6.1: Poincaré lemma in one dimension.

6.2 The Pullback

- Homework 3 now due Monday (the stuff will be on the exam though).
 - Office hours today from 5:00-6:00.
 - Exam Friday.
 - Next week will be Chapter 3.
 - Integration of top-dimensional forms, i.e., if we're in 2D space, we'll integrate 2-forms; in 3D space, we'll integrate 3-forms; etc.
 - \bullet Pullbacks of k-forms.
 - Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$.
 - Let $F: U \to V$ be smooth.
 - This induces $F^*: \Omega^k(V) \to \Omega^k(U)$.
 - We have $dF_p: T_p\mathbb{R}^n \to T_{F(p)}\mathbb{R}^m$, which also induces $dF_p^*: \Lambda^k(T_{F(p)}^*\mathbb{R}^m) \to \Lambda^k(T_p^*\mathbb{R}^n)$.
 - Note that F^* maps $\omega \mapsto F^*\omega$ where $F^*\omega_p = \mathrm{d}F_p^*\omega_{F(p)}$.

• In formulas, if

$$\omega = \sum_{I} \varphi_I \, \mathrm{d} x_I$$

then

$$F^*\omega = \sum_I F^*\varphi_I \, \mathrm{d}F_I$$

- $-\varphi_I \in V^*$.
- Recall that $F^*\varphi_I = \varphi_I \circ F : U \to \mathbb{R}$.
- If $I = (i_1, \ldots, i_k)$, then $dF_I = dF_{i_1} \wedge \cdots \wedge dF_{i_k}$.
- $-F_{i_j}: U \to \mathbb{R}$ sends $p \mapsto x_{i_j} \circ F(p)$, where x_{i_j} (as the i_j^{th} component function) isolates the i_j^{th} component of F(x).
- There is a derivation that gets you from the above abstract definition of the pullback to the below concrete form.
- We can prove that $F^*\omega$ has the above form using properties 1-4 below.
- \bullet Note that $\mathrm{d}F_p$ is the kind of thing we worked on last quarter?
- Properties of the pullback (let $U \xrightarrow{F} V \xrightarrow{G} W$).
 - 1. F^* is linear.
 - 2. $F^*(\omega_1 \wedge \omega_2) = F^*\omega_1 \wedge F^*\omega_2$.
 - 3. $(F \circ G)^* = G^* \circ F^*$.
 - $4. \ \mathbf{d} \circ F^* = F^* \circ \mathbf{d}.$

Figure 6.2: Commutative diagram.

- Properties 1-3 follow from our Chapter 1 pointwise properties.
 - They also yield the explicit formula for $F^*\omega$ given above.
- Proving property 4.
 - Lemma 1: Figure 6.2 is true, i.e., property 4 holds for zero-forms.
 - Lemma 2: $dF_I = F^* dx_I$, where $I = (i_1, \dots, i_k)$.

Proof. We have that

$$\begin{aligned} \mathrm{d}F_I &= \mathrm{d}F_{i_1} \wedge \dots \wedge \mathrm{d}F_{i_k} \\ &= \mathrm{d}(x_{i_1} \circ F) \wedge \dots \wedge \mathrm{d}(x_{i_1} \circ F) \\ &= \mathrm{d}(F^*x_{i_1}) \wedge \dots \wedge \mathrm{d}(F^*x_{i_k}) \\ &= F^* \, \mathrm{d}(x_{i_1}) \wedge \dots \wedge F^* \, \mathrm{d}(x_{i_k}) \end{aligned} \qquad \text{Lemma 1} \\ &= F^* \, \mathrm{d}x_{i_1} \wedge \dots \wedge F^* \, \mathrm{d}x_{i_k} \\ &= F^* (\mathrm{d}x_{i_1} \wedge \dots \wedge \mathrm{d}x_{i_k}) \qquad \text{Property 2} \\ &= F^* \, \mathrm{d}x_I \end{aligned}$$

as desired.

– Let $\omega = \sum_{I} \varphi_{I} dx_{I}$. Then

$$d(F^*\omega) = d\left(\sum_{I} F^*\varphi_I dF_I\right)$$

$$= \sum_{I} d(F^*\varphi_I \wedge dF_I)$$

$$= \sum_{I} d(F^*\varphi_I) \wedge dF_I$$

$$= \sum_{I} F^* d\varphi_I \wedge F^* dx_I \qquad \text{Lemma 2}$$

$$= \sum_{I} F^* (d\varphi_I \wedge dx_I)$$

$$= F^* \left(\sum_{I} d\varphi_I \wedge dx_I\right)$$

$$= F^* d\left(\sum_{I} d\varphi_I dx_I\right)$$

$$= F^* d\omega$$

- $d^2 = 0$ generalizes curl and all of those identities.
- Two other operations.
- Interior product: Given v a vector field on U, we have $\iota_v : \Omega^k(U) \to \Omega^{k-1}(U)$ that sends $\omega \mapsto \iota_v \omega$.
- Its properties follow from the properties of the pointwise stuff.
 - 1. $\iota_{\boldsymbol{v}}(\omega_1 + \omega_2) = \iota_{\boldsymbol{v}}\omega_1 + \iota_{\boldsymbol{v}}\omega_2$.
 - 2. $\iota_{\mathbf{v}}(\omega \wedge \mu) = \iota_{\mathbf{v}}\omega \wedge \mu + (-1)^k \omega \wedge \iota_{\mathbf{v}}\mu$.
 - 3. $\iota_{\boldsymbol{v}} \circ \iota_{\boldsymbol{w}} = -\iota_{\boldsymbol{w}} \circ \iota_{\boldsymbol{v}}$.
- Lie derivative: If v is a vector field on U, then $L_v : \Omega^k(U) \to \Omega^k(U)$ sends $\omega \mapsto d\iota_v \omega + \iota_v d\omega$.
 - Note that we use ι to drop the index and d to raise it back up, and then vice versa.
- Check: Agrees with previous definition for Ω^0 .
- Cartan's magic formula is what we're taking to be the definition of the Lie derivative.
- Properties.
 - 1. $L_{\boldsymbol{v}} \circ d = d \circ L_{\boldsymbol{v}}$.
 - 2. $L_{\boldsymbol{v}}(\omega \wedge \eta) = L_{\boldsymbol{v}}\omega \wedge \eta + \omega \wedge L_{\boldsymbol{v}}\eta$. - Proof:

$$d(\iota_{\boldsymbol{v}}d + d\iota_{\boldsymbol{v}}) = d\iota_{\boldsymbol{v}}d$$
$$= \iota_{\boldsymbol{v}}(\iota_{\boldsymbol{v}}d + d\iota_{\boldsymbol{v}})$$

- We should find an explicit formula for the Lie derivative.
 - Your vector field will be of the form

$$\mathbf{v} = \sum f_i \, \partial / \partial x_i$$

- Your form will be of the form

$$\omega = \sum \varphi_I \, \mathrm{d} x_I$$

6.3 Connections with Vector Calculus

From Klug (2022).

5/26: • 2-dimensional analogues of class content.

- Let $U \subset \mathbb{R}^2$ and let $\mathfrak{X}(U)$ be the vector space of vector fields on U.
- 1-forms on U are of the form

$$f dx + g dy$$

- We have an isomorphism of vector spaces $\sharp:\Omega^1(U)\to\mathfrak{X}(U)$ defined by

$$f dx + g dy \mapsto f \frac{\partial}{\partial x} + g \frac{\partial}{\partial y}$$

- The inverse of \sharp is denoted \flat .
- As such, these functions are referred to as the **musical operators**.
- The exterior derivative of a function on \mathbb{R}^2 is

$$\mathrm{d}f = \frac{\partial f}{\partial x} \, \mathrm{d}x + \frac{\partial f}{\partial y} \, \mathrm{d}y$$

- This is the **gradient**.
- The exterior derivative of a one-form on \mathbb{R}^2 is

$$d(f dx + g dy) = \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) dx \wedge dy$$

- This is related to **Green's theorem**.
- The expression is called the **2-dimensional curl** (of a vector field), where here we are freely identifying 1-forms and vector fields via #.
- If we (1) make this precise and (2) prove that the intuitive definition of curl agrees with the above formula, we should gain some geometric intuition for d in this particular (co)dimension.
- The fact that gradient vector fields are curl free, i.e., $\operatorname{curl} \circ \operatorname{grad} = 0$, reflects the fact that $d^2 = 0$.
- 2-dimensional curl (of $v \in \mathfrak{X}(U)$): The function from $U \to \mathbb{R}$ describing the way that a ball centered at $p \in U$ would rotate (or "curl") when left in v. Denoted by $\operatorname{curl}(v)$.
- 3-dimensional analogues of class content.
 - Gradient of the zero-form $f: U \to \mathbb{R}$ where $U \subset \mathbb{R}^3$.

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$$

- We have that $\sharp \circ d^0$ gives the gradient, exactly as in two dimensions.
- Curl of the one-form f dx + g dy + h dz.

$$d(f dx + g dy + h dz) = \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) dx \wedge dy + \left(\frac{\partial h}{\partial y} - \frac{\partial g}{\partial z}\right) dy \wedge dz + \left(\frac{\partial h}{\partial x} - \frac{\partial f}{\partial z}\right) dx \wedge dz$$

- \blacksquare curl(v) is again a vector field, just with the direction at a point being the axis of rotation of a small ball placed at that point.
- Once again, we can identify $\Omega^1(U)$, $\Omega^2(U)$ with $\mathfrak{X}(U)$ to learn that d is curl and gradient fields are curl free as a result of $d^2 = 0$.
- Divergence of the two-form $f dx \wedge dy + g dy \wedge dz + h dx \wedge dz$.

$$d(f dx \wedge dy + g dy \wedge dz + h dx \wedge dz) = \left(\frac{\partial f}{\partial z} + \frac{\partial g}{\partial x} - \frac{\partial h}{\partial y}\right) dx \wedge dy \wedge dz$$

- Modulo a sign, this is the **divergence** of a vector field in three dimensions.
- We can identify $\Omega^2(U)$ and $\Omega^3(U)$ with $\mathfrak{X}(U)$ and $\Omega^0(U)$, respectively, to learn that d is div and the fact that div \circ curl = 0 follows from $d^2 = 0$.
- **Divergence** (of $v \in \mathfrak{X}(U)$): The function from $U \to \mathbb{R}$ which geometrically represents the compression/stretching of objects placed in the vector field. *Denoted by* $\operatorname{div}(v)$.
- Take away: The exterior derivative packages the three operations of vector calculus, and $d^2 = 0$ generalizes several simple formulas from vector calculus.

6.4 Chapter 2: Differential Forms

From Guillemin and Haine (2018).

5/5:

5/26:

• Interior product (of v with ω): The (k-1)-form on U defined as follows, where $U \subset \mathbb{R}^n$ open, v a vector field on U, and $\omega \in \Omega^k(U)$. Denoted by $\iota_{\boldsymbol{v}}\omega$. Given by

$$p \mapsto \iota_{\boldsymbol{v}(p)}\omega_p$$

- By definition, $\iota_{\boldsymbol{v}(p)}\omega_p \in \Lambda^{k-1}(T_p^*\mathbb{R}^n)$.
- Properties 2.5.3: The following are properties of the interior product defined above, where $U \subset \mathbb{R}^n$ open, $\boldsymbol{v}, \boldsymbol{w}$ are vector fields on $U, \omega_1, \omega_2, \omega \in \Omega^k(U)$, and $\mu \in \Omega^\ell(U)$.
 - 1. Linearity in the form: We have

$$\iota_{\boldsymbol{v}}(\omega_1 + \omega_2) = \iota_{\boldsymbol{v}}\omega_1 + \iota_{\boldsymbol{v}}\omega_2$$

2. Linearity in the vector field: We have

$$\iota_{\boldsymbol{v}+\boldsymbol{w}}\omega = \iota_{\boldsymbol{v}}\omega + \iota_{\boldsymbol{w}}\omega$$

3. Derivation property: We have

$$\iota_{\mathbf{v}}(\omega \wedge \mu) = \iota_{\mathbf{v}}\omega \wedge \mu + (-1)^k \omega \wedge \iota_{\mathbf{v}}\mu$$

4. The identity

$$\iota_{\boldsymbol{v}}(\iota_{\boldsymbol{w}}\omega) = -\iota_{\boldsymbol{w}}(\iota_{\boldsymbol{v}}\omega)$$

5. The identity, as a special case of (4),

$$\iota_{\boldsymbol{\eta}}(\iota_{\boldsymbol{\eta}}\omega)=0$$

6. If $\omega = \mu_1 \wedge \cdots \wedge \mu_k$ (i.e., if ω is **decomposable**), then

$$\iota_{\boldsymbol{v}}\omega = \sum_{r=1}^{k} (-1)^{r-1} \iota_{\boldsymbol{v}}(\mu_r) \mu_1 \wedge \dots \wedge \widehat{\mu_r} \wedge \dots \wedge \mu_k$$

- The following are two assertions to prove, both of which are special cases of Property 2.5.3(6).
- Example 2.5.4: If $\mathbf{v} = \partial/\partial x_r$ and $\omega = \mathrm{d}x_I$, then

$$\iota_{\boldsymbol{v}}\omega = \sum_{i=1}^{k} (-1)^{i-1} \delta_{i,i_r} \, \mathrm{d}x_{I_r}$$

where

$$\delta_{i,i_r} = \begin{cases} 1 & i = i_r \\ 0 & i \neq i_r \end{cases} \qquad I_r = (i_1, \dots, \widehat{i_r}, \dots, i_k)$$

• Example 2.5.6: If $\mathbf{v} = \sum_{i=1}^n f_i \, \partial/\partial x_i$ and $\omega = \mathrm{d}x_1 \wedge \cdots \wedge \mathrm{d}x_n$, then

$$\iota_{\boldsymbol{v}}\omega = \sum_{r=1}^{n} (-1)^{r-1} f_r \, \mathrm{d}x_1 \wedge \cdots \wedge \widehat{\mathrm{d}x_r} \wedge \cdots \wedge \mathrm{d}x_n$$

• Lie derivative (of ω with respect to \boldsymbol{v}): The k-form defined as follows, where $U \subset \mathbb{R}^n$ is open, \boldsymbol{v} is a vector field on U, and $\omega \in \Omega^k(U)$.

$$L_{\mathbf{v}}\omega = \iota_{\mathbf{v}}(\mathrm{d}\omega) + \mathrm{d}(\iota_{\mathbf{v}}\omega)$$

- Properties 2.5.10: The following are properties of the Lie derivative defined above, where $U \subset \mathbb{R}^n$ open, \mathbf{v} is a vector field on $U, \omega \in \Omega^k(U)$, and $\mu \in \Omega^\ell(U)$.
 - 1. Commutativity with exterior differentiation: We have

$$d(L_{\boldsymbol{v}}\omega) = L_{\boldsymbol{v}}(d\omega)$$

2. Interaction with wedge products: We have

$$L_{\boldsymbol{v}}(\omega \wedge \mu) = L_{\boldsymbol{v}}\omega \wedge \mu + \omega \wedge L_{\boldsymbol{v}}\mu$$

- An explicit formula for $L_{\boldsymbol{v}}\omega$.
 - Let $\omega \in \Omega^k(U)$ be defined by $\omega = \sum_I f_I dx_I$ for $f_I \in C^{\infty}(U)$, and let $\boldsymbol{v} = \sum_{i=1}^n g_i \partial/\partial x_i$ for $g_i \in C^{\infty}(U)$.
 - Then by the above properties,

$$\begin{split} L_{\boldsymbol{v}}\omega &= L_{\boldsymbol{v}}\left(\sum_{I} f_{I} \, \mathrm{d}x_{I}\right) \\ &= \sum_{I} L_{\boldsymbol{v}}(f_{I} \, \mathrm{d}x_{I}) \\ &= \sum_{I} \left[\left(L_{\boldsymbol{v}} f_{I}\right) \, \mathrm{d}x_{I} + f_{I}(L_{\boldsymbol{v}} \, \mathrm{d}x_{I}) \right] \\ &= \sum_{I} \left[\left(\sum_{i=1}^{n} g_{i} \frac{\partial f_{I}}{\partial x_{i}}\right) \, \mathrm{d}x_{I} + f_{I} \left(\sum_{r=1}^{k} \mathrm{d}x_{i_{1}} \wedge \cdots \wedge L_{\boldsymbol{v}} \, \mathrm{d}x_{i_{r}} \wedge \cdots \wedge \mathrm{d}x_{i_{k}}\right) \right] \\ &= \sum_{I} \left[\left(\sum_{i=1}^{n} g_{i} \frac{\partial f_{I}}{\partial x_{i}}\right) \, \mathrm{d}x_{I} + f_{I} \left(\sum_{r=1}^{k} \mathrm{d}x_{i_{1}} \wedge \cdots \wedge \mathrm{d}L_{\boldsymbol{v}}x_{i_{r}} \wedge \cdots \wedge \mathrm{d}x_{i_{k}}\right) \right] \\ &= \sum_{I} \left[\left(\sum_{i=1}^{n} g_{i} \frac{\partial f_{I}}{\partial x_{i}}\right) \, \mathrm{d}x_{I} + f_{I} \left(\sum_{r=1}^{k} \mathrm{d}x_{i_{1}} \wedge \cdots \wedge \mathrm{d}g_{i_{r}} \wedge \cdots \wedge \mathrm{d}x_{i_{k}}\right) \right] \\ &= \sum_{I} \left[\left(\sum_{i=1}^{n} g_{i} \frac{\partial f_{I}}{\partial x_{i}}\right) \, \mathrm{d}x_{I} + f_{I} \left(\sum_{r=1}^{k} \mathrm{d}x_{i_{1}} \wedge \cdots \wedge \left(\sum_{i=1}^{n} \frac{\partial g_{i_{r}}}{\partial x_{i}} \, \mathrm{d}x_{i}\right) \wedge \cdots \wedge \mathrm{d}x_{i_{k}}\right) \right] \\ &= \sum_{I} \left[\left(\sum_{i=1}^{n} g_{i} \frac{\partial f_{I}}{\partial x_{i}}\right) \, \mathrm{d}x_{I} + f_{I} \left(\sum_{r=1}^{k} \sum_{i=1}^{n} \frac{\partial g_{i_{r}}}{\partial x_{i}} \, \mathrm{d}x_{i_{1}} \wedge \cdots \wedge \mathrm{d}x_{i_{r-1}} \wedge \mathrm{d}x_{i} \wedge \mathrm{d}x_{i_{r+1}} \wedge \cdots \wedge \mathrm{d}x_{i_{k}}\right) \right] \\ &= \sum_{I} \left[\left(\sum_{i=1}^{n} g_{i} \frac{\partial f_{I}}{\partial x_{i}}\right) \, \mathrm{d}x_{I} + f_{I} \left(\sum_{r=1}^{k} \sum_{i=1}^{n} \frac{\partial g_{i_{r}}}{\partial x_{i}} \, \mathrm{d}x_{i_{1}} \wedge \cdots \wedge \mathrm{d}x_{i_{r-1}} \wedge \mathrm{d}x_{i} \wedge \mathrm{d}x_{i_{r+1}} \wedge \cdots \wedge \mathrm{d}x_{i_{k}}\right) \right] \end{aligned}$$

• Lemma 2.5.13 (the divergence formula): Let $U \subset \mathbb{R}^n$ open, $g_1, \ldots, g_n \in C^{\infty}(U)$, and $\mathbf{v} = \sum_{i=1}^n g_i \, \partial/\partial x_i$. Then

$$L_{\mathbf{v}}(\mathrm{d}x_1 \wedge \dots \wedge \mathrm{d}x_n) = \sum_{i=1}^n \left(\frac{\partial g_i}{\partial x_i}\right) \mathrm{d}x_1 \wedge \dots \wedge \mathrm{d}x_n$$

• **Pullback** (of ω along f): The k-form on U defined as follows, where $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ are open, $f: U \to V$ is a C^{∞} map, ω is a k-form on V, $p \in U$, and q = f(p). Denoted by $f^*\omega$. Given by

$$p\mapsto \mathrm{d}f_p^*\omega_q$$

- Note that it is because df_p is linear that we get an induced pullback $df_p^* = (df_p)^* : \Lambda^k(T_q^*\mathbb{R}^m) \to \Lambda^k(T_p^*\mathbb{R}^n)$.
- Properties 2.6.4: The following are properties of the pullback defined above, where $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ are open and $f: U \to V$ is a C^{∞} map.
 - 1. Let $\phi \in C^{\infty}(V)$ be a zero-form. Since $\Lambda^0(T_p^*) = \Lambda^0(T_q^*) = \mathbb{R}$, we have that $\mathrm{d} f_p^* = \mathrm{id}_{\mathbb{R}}$ when k = 0. Hence for zero forms,

$$(f^*\phi)(p) = (\phi \circ f)(p)$$

for all $p \in U$.

2. Let $\phi \in \Omega^0(U)$, and let $\mu \in \Omega^1(V)$ be the 1-form $\mu = d\phi$. By the chain rule,

$$\mathrm{d}f_p^*\mu_q = (\mathrm{d}f_p)^*\mathrm{d}\phi_q = (\mathrm{d}\phi)_q \circ \mathrm{d}f_p = \mathrm{d}(\phi \circ f)_p$$

Hence, by property (1),

$$f^* d\phi = df^* \phi$$

3. Let $\omega_1, \omega_2 \in \Omega^k(V)$. Then

$$\mathrm{d}f_p^*(\omega_1 + \omega_2)_q = \mathrm{d}f_p^*(\omega_1)_q + \mathrm{d}f_p^*(\omega_2)_q$$

so

$$f^*(\omega_1 + \omega_2) = f^*\omega_1 + f^*\omega_2$$

4. Since $\mathrm{d}f_p^*$ commutes with the wedge product by Proposition 1.8.4(1), if $\omega_1 \in \Omega^k(V)$ and $\omega_2 \in \Omega^\ell(V)$, then

$$\mathrm{d}f_p^*[(\omega_1)_q \wedge (\omega_2)_q] = \mathrm{d}f_p^*(\omega_1)_q \wedge \mathrm{d}f_p^*(\omega_2)_q$$

so

$$f^*(\omega_1 \wedge \omega_2) = f^*\omega_1 \wedge f^*\omega_2$$

5. Let $W \subset \mathbb{R}^k$ be open, $g: V \to W$ be a C^{∞} map, $p \in U$, q = f(p), and w = g(q). Then $(\mathrm{d}g_q \circ \mathrm{d}f_p)^*: \Lambda^k(T_w^*) \to \Lambda^k(T_p^*)$. But since $(\mathrm{d}g_q) \circ (\mathrm{d}f)_p = \mathrm{d}(g \circ f)_p$ by the chain rule, we have that $\mathrm{d}(g \circ f)_p^*: \Lambda^k(T_w^*) \to \Lambda^k(T_p^*)$. Thus, if $\omega \in \Omega^k(W)$, then

$$f^*(g^*\omega) = (g \circ f)^*\omega$$

- An explicit formula for $f^*\omega$.
 - Let $\omega \in \Omega^k(V)$ be given by $\omega = \sum_I \phi_I \, \mathrm{d} x_I$, where the $\phi_I \in C^\infty(V)$. Then,

$$f^*\omega = \sum_{I} f^* \phi_I f^* (\mathrm{d}x_I) \tag{1}$$

$$= \sum_{I} (\phi_{I} \circ f) f^{*}(\mathrm{d}x_{i_{1}}) \wedge \dots \wedge f^{*}(\mathrm{d}x_{i_{k}})$$

$$\tag{4}$$

$$= \sum_{I} (\phi_{I} \circ f) \, \mathrm{d}f^{*} x_{i_{1}} \wedge \dots \wedge \mathrm{d}f^{*} x_{i_{k}} \tag{2}$$

$$= \sum_{I} (\phi_{I} \circ f) d(x_{i_{1}} \circ f) \wedge \cdots \wedge d(x_{i_{k}} \circ f)$$

$$= \sum_{I} (\phi_{I} \circ f) df_{i_{1}} \wedge \cdots \wedge df_{i_{k}}$$

$$= \sum_{I} f^{*} \phi_{I} df_{I}$$
(2)

where the f_{i_j} are the i_j^{th} coordinate functions of the map f.

- Notice that we have showed in the above derivation that

$$f^*(\mathrm{d}x_I) = \mathrm{d}f_I$$

• We now prove that the pullback commutes with exterior differentiation, i.e.,

$$d(f^*\omega) = f^*d\omega$$

- We have that

$$d(f^*\omega) = d\left(\sum_I f^*\phi_I df_I\right)$$

$$= \sum_I d(f^*\phi_I \wedge df_I)$$

$$= \sum_I \left[d(f^*\phi_I) \wedge df_I + (-1)^k f^*\phi_I \wedge d(df_I)\right]$$

$$= \sum_I \left[f^*(d\phi_I) \wedge f^*(dx_I) + (-1)^k f^*\phi_I \wedge 0\right]$$

$$= \sum_I f^*(d\phi_I) \wedge f^*(dx_I)$$

$$= f^* \sum_I d\phi_I \wedge dx_I$$

$$= f^*(d\omega)$$

• A special case of $f^*(dx_I) = df_I$:

$$f^*(\mathrm{d}x_1 \wedge \cdots \wedge \mathrm{d}x_n) = \det \left[\frac{\partial f_i}{\partial x_j}\right] \mathrm{d}x_1 \wedge \cdots \wedge \mathrm{d}x_n$$

– Let $U, V \subset \mathbb{R}^n$ open. Then for all $p \in U$,

$$f^*(\mathrm{d}x_1 \wedge \dots \wedge \mathrm{d}x_n)_p = (\mathrm{d}f_1)_p \wedge \dots \wedge (\mathrm{d}f_n)_p$$

$$= \left[\sum_{j=1}^n \left. \frac{\partial f_1}{\partial x_j} \right|_p (\mathrm{d}x_j)_p \right] \wedge \dots \wedge \left[\sum_{j=1}^n \left. \frac{\partial f_n}{\partial x_j} \right|_p (\mathrm{d}x_j)_p \right]$$

$$= \det \left[\left. \frac{\partial f_i}{\partial x_j} \right|_p \right] (\mathrm{d}x_1 \wedge \dots \wedge \mathrm{d}x_n)_p$$

- See the argument used in Section 1.8 to derive the typical formula for the determinant for details and context on the above.
- **Homotopy** (between f_0 and f_1): A C^{∞} map from $U \times A \to V$ (where $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ are open, $\{0,1\} \subset A \subset \mathbb{R}$ is an open interval, and $f_0, f_1 : U \to V$ are C^{∞} maps) such that

$$(x,0) \mapsto f_0(x)$$

 $(x,1) \mapsto f_1(x)$

Denoted by F.

- Homotopic (maps): Two maps f_0, f_1 to which there corresponds a homotopy F. Denoted by $f_0 \simeq f_1$.
 - "Intuitively, f_0 and f_1 are homotopic if there exists a family of C^{∞} maps $f_t: U \to V$ where $f_t(x) = F(x,t)$ which 'smoothly deform f_0 into f_1 " (Guillemin & Haine, 2018, p. 56).

- Theorem 2.6.15: If $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ open and $f_0, f_1 : U \to V$ homotopic C^{∞} maps, then for every closed form $\omega \in \Omega^k(V)$, the form $f_1^*\omega f_0^*\omega$ is exact.
 - This theorem is closely related to the Poincaré lemma (Lemma 2.4.16) and actually implies a slightly stronger version of it.
- Contractible (open subset $U \subset \mathbb{R}^n$): An open subset $U \subset \mathbb{R}^n$ for which there exists a point $p_0 \in U$ such that $\mathrm{id}_U : U \to U$ is homotopic to the constant map $f_0 : U \to U$ defined by $f_0(p) = p_0$ at p_0 .
 - A contractible set is so named because it can be shrunk to a single point continuously.
- Theorem 2.6.15 implies that the Poincaré lemma holds for contractible open subsets of \mathbb{R}^n . In particular, if U is contractible, then every closed k-form on U of degree k > 0 is exact.

Proof. Let U be contractible, and let $\omega \in \Omega^k(U)$ be closed. Since U is contractible, id_U and f a constant function are homotopic. Thus, by Theorem 2.6.15, $\mathrm{id}_U^* \omega - f^* \omega = \omega$ is exact.

- The three basic operations of 3D vector calculus are gradient, curl, and divergence. These operations are closely related to $d: \Omega^k(\mathbb{R}^3) \to \Omega^{k+1}(\mathbb{R}^3)$ for k = 0, 1, 2, respectively.
 - Gradient and divergence generalize to higher dimensions, with gradient always equal to d^0 and divergence always equal to d^{n-1} .
 - Why we should use differential forms, even in three dimensions: **General covariance**.
 - Translations and rotations of \mathbb{R}^3 preserve div and curl, but d^0, d^1, d^2 admit all diffeomorphisms of \mathbb{R}^3 as symmetries.
- **General covariance**: The desire to formulate the laws of physics in such a way that they admit as large a set of symmetries as possible.
- There are two (natural) ways to convert vector fields into forms.
- Conversion using the *inner* product.
 - Let $B(v, w) = \sum_{n} v_i w_i$ be the inner product on \mathbb{R}^n .
 - By Exercise 1.2.xi, the inner product induces a bijective linear map $L: \mathbb{R}^n \to (\mathbb{R}^n)^*$ such that $L(v) = \ell_v$ iff $\ell_v(w) = B(v, w)$.
 - By identifying $T_p\mathbb{R}^n \cong \mathbb{R}^n$, we may transfer B, L to $T_p\mathbb{R}^n$, providing an inner product B_p on $T_p\mathbb{R}^n$ and a bijective linear map $L_p: T_p\mathbb{R}^n \to T_p^*\mathbb{R}^n$.
 - Note that the only difference between L and L_p (resp. B and B_p) is that L_p eats (p, v) and focuses on v while L eats v directly.
 - The identification $p \mapsto L_p \boldsymbol{v}(p)$ constitutes the 1-form \boldsymbol{v}^{\sharp} .
 - Intuition: \boldsymbol{v} is a vector field. Thus, $v = \boldsymbol{v}(p)$ is the vector in \boldsymbol{v} at point p. What L_p does is take this vector (as part of (p,v)) and return the linear functional $(\ell_v)_p \in T_p^*\mathbb{R}^n$ which sends $(p,w) \mapsto (p,\ell_v(w))$. So essentially, we are identifying with every point p the linear functional that maps every vector w (as part of the ordered pair $(p,w) \in T_p\mathbb{R}^n$) to its inner product with v, B(v,w) (again, as part of the ordered pair $(p,B(v,w)) \in T_p\mathbb{R}^n$).
- $v^{\sharp}(p)$: The cotangent vector

$$\boldsymbol{v}^{\sharp}(p) = L_{n}\boldsymbol{v}(p)$$

- Consequences.
 - We have that

$$\boldsymbol{v} = \frac{\partial}{\partial x_i} \quad \Longleftrightarrow \quad \boldsymbol{v}^{\sharp} = \mathrm{d}x_i$$

- More generally,

$$\mathbf{v} = \sum_{i=1}^{n} f_i \frac{\partial}{\partial x_i} \quad \Longleftrightarrow \quad \mathbf{v}^{\sharp} = \sum_{i=1}^{n} f_i \, \mathrm{d}x_i$$

• Gradient (of a function f): The following vector field, as determined by $f \in C^{\infty}(U)$ where $U \subset \mathbb{R}^n$. Denoted by $\operatorname{grad}(f)$. Given by

$$\operatorname{grad}(f) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}$$

- This gets converted by \sharp into the 1-form $\sum_{i=1}^{n} \partial f / \partial x_i \, dx_i = df$.
- Thus, the gradient operation is essentially just the exterior derivative operation d^0 .
- Conversion using the *interior* product.
 - Let $\mathbf{v} = \sum_{i=1}^n f_i \, \partial/\partial x_i$ be a C^{∞} vector field on $U \subset \mathbb{R}^n$ open. Let $\Omega = \mathrm{d} x_1 \wedge \cdots \wedge \mathrm{d} x_n$.
 - Then

$$\iota_{\boldsymbol{v}}\Omega = \sum_{r=1}^{n} (-1)^{r-1} f_r \, \mathrm{d}x_1 \wedge \cdots \wedge \widehat{\mathrm{d}x_r} \wedge \cdots \wedge \mathrm{d}x_n$$

- Since every (n-1)-form can be written uniquely as such a sum, the above equation defines a bijective correspondence between vector fields and (n-1)-forms.
- The d operation as an operation on vector fields.
 - We may define d(v) by

$$\boldsymbol{v}\mapsto \mathrm{d}\iota_{\boldsymbol{v}}\Omega$$

- The expression on the right above can related to the **divergence** as follows.

$$d\iota_{\boldsymbol{v}}\Omega = \iota_{\boldsymbol{v}}(d(dx_1 \wedge \cdots \wedge dx_n)) + d(\iota_{\boldsymbol{v}}\Omega)$$
$$= L_{\boldsymbol{v}}\Omega$$
$$= \operatorname{div}(\boldsymbol{v})\Omega$$

- The first equality follows by $d^2 = 0$.
- The second equality follows by the definition of the Lie derivative of ω with respect to \boldsymbol{v} .
- The third equality follows by Lemma 2.5.13.
- **Divergence** (of a vector field v): The following function from $U \to \mathbb{R}$, where $v = \sum_{i=1}^{n} f_i \partial/\partial x_i$ is a vector field over U. Denoted by $\operatorname{div}(v)$. Given by

$$\operatorname{div}(\boldsymbol{v}) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i}$$

- The above correspondence between (n-1)-forms and vector fields converts d into the divergence operation on vector fields.
- Curl (of a vector field \boldsymbol{v}): The unique vector field \boldsymbol{w} such that $d(\boldsymbol{v}^{\sharp}) = \iota_{\boldsymbol{w}} dx_1 \wedge dx_2 \wedge dx_3$, where $U \subset \mathbb{R}^3$ open and \boldsymbol{v} is a vector field on U. Denoted by $\operatorname{curl}(\boldsymbol{v})$.
- We should confirm that this definition coincides with that from vector calculus. In particular, we should check that if $\mathbf{v} = \sum_{i=1}^{3} f_i \, \partial/\partial x_i$, then

$$\operatorname{curl}(\boldsymbol{v}) = \sum_{i=1}^{3} g_i \frac{\partial}{\partial x_i}$$

where

$$g_1 = \frac{\partial f_2}{\partial x_3} - \frac{\partial f_3}{\partial x_2}$$
$$g_2 = \frac{\partial f_3}{\partial x_1} - \frac{\partial f_1}{\partial x_3}$$
$$g_3 = \frac{\partial f_1}{\partial x_2} - \frac{\partial f_2}{\partial x_1}$$

- Take aways:
 - The gradient, curl, and divergence operations have differential-form analogues (i.e., d⁰, d¹, d²).
 - To define the gradient, we needed the inner product. To define the divergence, we had to equip U with Ω . To define the curl, we needed both.
 - It's these additional structures that explains why diffeomorphisms preserve d^0, d^1, d^2 , but not grad, curl, div.
- Guillemin and Haine (2018) expresses Maxwell's equations in terms of differential forms.
- Guillemin and Haine (2018) introduces symplectic geometry and Hamiltonian mechanics.