

Miara Giniego

- Gini(S) = 1 $\sum_{i=1...n} (|S_i|/|S|)^2$, gdzie:
 - $S = S_1 \cup ... \cup S_n$ jest zbiorem obiektów, a
- Gini przyjmuje wartości z przedziału [0, 1).
- Gini(S) = 0 implikuje, że wszystkie obiekty w zbiorze S należą do tej samej klasy decyzyjnej.

Miara Giniego po podziale zbioru obiektów

• Po podziale (*rozszczepieniu*, ang. *split*) zbioru obiektów S na wzajemnie rozłączne podzbiory S_i , $i=1\dots n$, takie, że $S=S_1\cup\dots\cup S_n$, miara Gini dla zbioru S (oznaczana jako Gini, jest wyznaczana następująco:

$$Gini_r(S) = \sum_{i=1...n} (|S_i|/|S|) \times Gini(S_i).$$

SPRINT: Tworzenie drzewa decyzyjnego...

SPRINT:

- Tworzy binarne drzewo decyzyjne;
- Używa miary Giniego;
- Stosuje warunki dwóch rodzajów:
- Dla atrybutu ciągłego c: c < v, v ∈ V_c;
- Dla atrybutu nominalnego c: $c \in X$, $X \subseteq V_c$.

SPRINT: Tworzenie drzewa decyzyjnego...

 Niech D będzie zbiorem obiektów (tablicą decyzyjną) o atrybucie Id zawierającym identyfikatory obiektów, n atrybutach warunkowych i atrybucie decyzyjnym d.

Inicjalizacja:

 Dla każdego atrybutu warunkowego c, na podstawie tablicy decyzyjnej D jest tworzona jej podtablica decyzyjna D^c o trzech atrybutach:

(Id, c, d)

SPRINT: Tworzenie drzewa decyzyjnego...

- Dla każdego atrybutu warunkowego niezależnie jest znajdowany najlepszy warunek podziału obiektów w oparciu o podtablicę decyzyjną D^c.
- Spośród tych warunków wybierany jest (globalnie) najlepszy
 warunek podziału (NWP), czyli skutkujący minimalną wartością
 Gini_s. NWP jest używany do tworzenia nowego węzła wewnętrznego
 drzewa dec.
- Ostatnie 2 kroki powtarzane są rekurencyjnie dla:
 - podzbioru D_{tak} obiektów w D^w, spełniających warunek NWP;
 - podzbioru D_{nie} obiektów w D^w, niespełniających warunku NWP; gdzie w oznacza atrybut występujacy w warunku NWP.

SPRINT: Atributy ciągłe...

- Inicjalizacja: D^c jest sortowany względem atrybutu c.
- Rozważane warunki podziału obiektów są tworzone w oparciu o wartości atrybutu c w D^c.
- Wyznaczenie najlepszego warunku podziału ze względu na atrybut c wymaga jednokrotnego odczytania D^c.

Lasy losowe: Tworzenie drzew

Tworzenie DecTree_i na podstawie D_i:

- Dla każdego tworzonego węzła wewnętrznego niezależnie losuj mały podzbiór A pełnego zbioru atrybutów warunkowych AT (zwykle |A| = √|AT|).
- Twórz warunki podziału wyłącznie ze względu na atrybuty w A.
- W aktualnie tworzonym węźle zapisz najlepszy z tych warunków.

Klasyfikacja z użyciem k najbliższych sąsiadów (kNN)

- Niech T będzie klasyfikowanym obiektem. Jego klasyfikacja z użyciem kNN polega na:
 - wyszukaniu k najbliższych sąsiadów obiektu T w tablicy decyzyinei.
 - przypisaniu obiektu T do klasy decyzyjnej reprezentowanej najliczniej wśród znalezionych k najbliższych sąsiadów.

Współczynnik podobieństwa Gowera...

Współczynnik podobieństwa Gowera dla obiektów p i q:

$$G(p,q) = \frac{\sum_{d=1}^{m} w(p_{d},q_{d}) \times s(p_{d},q_{d})}{\sum_{d=1}^{m} w(p_{d},q_{d})}$$
, gdzie

- m jest liczbą atrybutów;
- $s(p_d, q_d)$ jest podobieństwem obiektów p i q ze względu na atrybut d;
- $w(p_d,q_d)$ jest wagq atrybutu d dla obiektów p i q. Jeżeli p i q są nieporównywalne ze względu na atrybut d (np. p_d lub q_d jest nieznane), to $w(p_d,q_d)=0$. Wpp., zazwyczaj $w(p_d,q_d)$ przyjmuje się za równe 1.

Współczynnik podobieństwa Gowera

- Dla atrybutów numerycznych: $s(p_d,q_d)$ = 1 $-\frac{|p_d-q_d|}{range_d}$.
- Dla atrybutów nominalnych: $s(p_d,q_d)$ = 1, jeśli $p_d=q_d$; $s(p_d,q_d)$ = 0, wpp.
- Dla atrybutów binarych (dychotomicznych) :
- Jeśli $p_d = 1$ i $q_d = 1$, to $s(p_d, q_d) = 1$ i $w(p_d, q_d) = 1$.
- Jeśli $p_d = 1$ i $q_d = 0$, to $s(p_d, q_d) = 0$ i $w(p_d, q_d) = 1$.
- Jeśli $p_d=0$ i $q_d=1$, to $s(p_d,q_d)=0$ i $w(p_d,q_d)=1$.
- Jeśli $p_d=0$ i $q_d=0$, to $s(p_d,q_d)=0$ i $w(p_d,q_d)=0$.

Metoda wydzielania

 Szacowana dokładność = stosunek liczby poprawnie sklasyfikowanych obiektów ze zbioru testowego do liczności tego zbioru.

Losowe próbkowanie (ang. random subsampling)

- Losowe próbkowanie polega na k-krotnym wykonaniu metody wydzielania.
- Oszacowanie dokładności klasyfikatora jest wyznaczane jako średnia z oszacowań dokładności uzyskanych w każdej iteracji.

k-krotna walidacja krzyżowa

- Zbiór danych D jest losowo dzielony na k (często stosowane k=10 lub k=5) wzajemnie rozłącznych podzbiorów (części): $D_1...D_k$.
- W iteracji *i* (*i* = 1...*k*):
 - $D \setminus D_i$ pełni rolę zbioru uczącego,
 - D_i pełni rolę zbioru testowego.
- Szacowana dokładność = stosunek sumarycznej liczby poprawnych klasyfikacji z k iteracji do |D|.

Walidacja krzyżowa "Leave-One-Out"

• "Leave-one-out" jest k-krotną walidacją krzyżową, gdzie:

k = |D|.

Walidacja lasu losowego

 Szacowana dokładność = stosunek sumarycznej liczby poprawnych klasyfikacji obiektów z D do liczności D, z tym, że decyzja o zaklasyfikowaniu każdego pojedynczego obiektu z D jest podejmowana wyłącznie z użyciem drzew, w których budowie ten obiekt nie brał udziału.

Dodatkowe miary oceny dla klasyfikatora z 2 wartościami decyzyjnymi

- czułość = zwrot = #poprawnie sklasyfikowanych w klasie Poz liczność klasy Poz
- $specyficzność = \frac{\text{# poprawnie sklasyfikowanych w klasie Neg}}{\text{liczność klasy Neg}}$
- precyzja = # poprawnie sklasyfikowanych w klasie Poz # zaklasyfikowanych (poprawnie lub nie) do klasy Poz
- *F-miara* = $\frac{2 \times \text{precyzja} \times \text{zwrot}}{\text{precyzja} + \text{zwrot}}$

Krzywa ROC (Receiver Operating Characteristic)

- czułość = # poprawnie sklasyfikowanych w klasie Poz liczność klasy Poz
- specyficzność = # poprawnie sklasyfikowanych w klasie Neg liczność klasy Neg
- Krzywa ROC wykres tworzony na podstawie dwuwymiarowych punktów (1-specyficzność, czułość).

Ocena klasyfikatora w przypadku silnie zróżnicowanych liczności klas decyzyjnych

• Zbalansowana dokładność =

$$\frac{1}{l} \sum_{i=1}^{l} \frac{\text{# poprawnie sklasyfikowanych w klasie Di}}{\text{liczność klasy Di}}$$

gdzie $\it l$ jest liczbą klas decyzyjnych.

Literatura...

- Hongjian Fan, Kotagiri Ramamohanarao: Fast Discovery and the Generalization of Strong Jumping Emerging Patterns for Building Compact and Accurate Classifiers. IEEE Trans. Knowl. Data Eng. 18(6): 721-737, 2006
- J. C. Gower, A general coefficient of similarity and some of its properties. Biometrics 27, 857-874 (1971)
- Jiawei Han, Micheline Kamber, Jian Pei: Data Mining: Concept and Techniques, The Morgan Kaufmann Series in Data Management Systems, 2011
- Jacek Koronacki, Jan Ćwik: Statystyczne systemy uczące się, Akademicka Oficyna Wydawnicza EXIT, 2008
- Marzena Kryszkiewicz: Virtual Balancing of Decision Classes. ACIIDS (1) 2017: 673-684

Literatura

- Marzena Kryszkiewicz, Przemyslaw Podsiadly: Explicit Contrast Patterns Versus Minimal Jumping Emerging Patterns for Lazy Classification in High Dimensional Data. IEA/AIE 2016: 80-94
- Jinyan Li, Guozhu Dong, Kotagiri Ramamohanarao: Instance-Based Classification by Emerging Patterns. PKDD 2000: 191-200
- Tadeusz Morzy, Eksploracja danych: Metody i algorytmy, Wydawnictwo Naukowe PWN, 2013
- John C. Shafer, Rakesh Agrawal, Manish Mehta: SPRINT: A Scalable Parallel Classifier for Data Mining VLDB 1996: 544-555
- Pawel Terlecki, Krzysztof Walczak: Efficient Discovery of Top-K Minimal Jumping Emerging Patterns. RSCTC 2008: 438-447

Ćwiczenia...

- Niech Activity będzie atrybutem decyzyjnym w tabeli na slajdzie 26. Postępując zgodnie z algorytmem SPRINT:
 - Wyznacz histogram dla atrybutu Outlook z uwzględnieniem atrybutu decyzyjnego.
 - Wyznacz miarę Gini dla warunku podziału: Outlook ∈ {Outlook}?
 - Wyznacz miarę Gini dla warunku podziału: Outlook ∈ {Rain}?
 - Wyznacz miarę Gini dla warunku podziału: Outlook ∈ {Sunny}?
 - Który z powyższych warunków podziału jest lepszy?

Ćwiczenia...

- Niech Activity będzie atrybutem decyzyjnym w tabeli na slajdzie 26. Obiekt T = {Sunny, Cool, High, True} ma być sklasyfikowany z użyciem minimalnych wzorców kontrastowych na podstawie tej tabeli.
 - Dokonaj redukcji tablicy decyzyjnej ze względu na obiekt T.
 - W oparciu o tę zredukowaną tablicę decyzyjną wyznacz minimalne wzorce kontrastowe dla klas decyzyjnych:
 - Activity = P
 - Activity = N
 - Jaka jest wartość ocenyPrzynależności obiektu T do klasy decyzyjnej Activity = P?
 - Jaka jest wartość ocenyPrzynależności obiektu T do klasy decyzyjnej Activity = N?
- Do której klasy decyzyjnej zostanie zaklasyfikowany obiekt T?

Ćwiczenia

- Niech Risk będzie atrybutem decyzyjnym w tabeli na slajdzie 5.
 Wyznacz klasę decyzyjną dla obiektu T o wartościach (Age = 25, Car_Type = Family) z użyciem k najbliższych sąsiadów dla:
 - k = 1,
 - k = 3.

Do wyznaczenia k najbliższych sąsiadów użyj miary Gowera.

 Niech Risk będzie atrybutem decyzyjnym w tabeli na slajdzie 5. Wyznacz klasę decyzyjną dla obiektu T o wartościach (Age = 25, Car_Type = Family) za pomocą naiwnego klasyfikatora Bayesowskiego.