

pK_a predictions on top of the RDKit

Marcel Baltruschat @CzodrowskiLab

https://github.com/czodrowskilab/Machine-learning-meets-pKa

https://github.com/czodrowskilab/Multiprotic-pKa-Processing

 Latest published free pK_a predictors can't reach the quality of commercial tools

 Free pK_a predictors lack of features e.g. locating titratable groups

Research Topic

<u>Goal</u> → Development of an opensource interpretable pK_a prediction tool based on machine learning which can predict the pK_a values of all titratable groups of a *drug-like* molecule.

Let's start with monoprotic molecules

Baltruschat M and Czodrowski P. Machine learning meets pKa [version 2; peer review: 2 approved]. F1000Research 2020, 9(Chem Inf Sci):113 (https://doi.org/10.12688/f1000research.22090.2)

Monoprotic Dataset

- Using the curated ChEMBL25 and DataWarrior datasets
- 5994 curated unique monoprotic structures
- No source is specified for the values from DataWarrior
- ChEMBL25 data points are completely taken from literature
- Good correlation of the intersection

Data Curation

- Removal of salts, nitro groups, B, Se, Si
- Lipinski's rule of five (one violation allowed)
- pK_a between 2 and 12
- Tautomer standardization
- Protonation at pH 7.4
- Combination of data points from duplicated structures while removing outliers

Machine Learning

Algorithms

- Random Forest (1000 trees)
- SVR (gamma="auto"/"scale")
- Neural Network (MLP, 3 different architectures)
- XGB

Training data

- 196/200 RDKit descriptors
- FeatureMorgan FP, radius 3, 4096 bits (FCFP6-like)
- Both combined
- Scaling for each of the three above

42 model configurations

Evaluation through 5fold cross validation and two external test sets

Settimo et. al. 123 mols

Novartis 280 mols

Best Results

No.	Model	Train data	MAE (CV)	RMSE (CV)	R ² (CV)
#1	RF (1000 trees)	DESC+MF3 (scaled)	0.682	1.032	0.820
#2		DESC+MF3	0.683	1.032	0.820
#3		MF3	0.708	1.094	0.797
#4		MF3 (scaled)	0.708	1.094	0.797

Best Results

Graph Convolutional Networks (GCN) and QML

With David Bushiri and Prof. Dr. Enrico Tapavicza

PyTorch Geometric module for GCNs

- QML: Kernel-ridge regression based method
- Using 5196 DFT-optimized structures

Best GCN and QML Results

^{*}Pretrained with 900 000 protomers from the ZINC dataset with polar desolvation energy used as target

Let's go multiprotic!

pK_a Predictions of Multiprotic Molecules:

- → The first two problems to solve
- Identify and locate titratable groups without licensed software
 - Must be done for training and every prediction
- Assign the pK_a values from the datasets to the related titratable groups
 - Must be done only for training set

The Idea

- Identify the titratable groups with available tools
- Generate a hardcoded list of SMARTS pattern from the tool results that covers all major groups

#	SMARTS		
1	C#C		
2	C(=O)O		
3	*C(=O)[OH]		
4	C(=O)[F,CI,Br,I]		
5	[#8X1]		
6	[X3]=[!O]		
7	[c]		

Datasets

Source	pK _a Values	Unique Molecules
ChEMBL26	8503	6617
DataWarrior	7911	7463
Hunt et al.	2488	2277
Settimo et al.	612	511
Literature Compilation	1765	1353
SAMPL6	31	24
Novartis	1025	646
Roche	1762	1738
OpenEye	55322	23875
Total (curated)	49349	17538

ChemAxon Marvin

Marvin provides atom ids for titratable groups during pK_a calculation

Extract environment around all atom ids

Group by environment and count

https://git.durrantlab.pitt.edu/jdurrant/dimorphite_dl

Dimorphite-DL

 Calculates all possible microstates of a molecule in a specified pH range

Overview

- For both Marvin and Dimorphite-DL
 - Investigate environment distributions with radius 0 to 6

H₃C N N CH₃ CH₃

 Looking at the saturation curves, how many environments / groups do we really need?

Result → 24 Titratable Fragments

Validation

- Find the locations with the extracted titratable fragments
- Validate for all radii
- Test a hierarchical structure

pK_a Predictions of Multiprotic Molecules:

- → The first two problems to solve
- Identify and locate titratable groups without licensed software
 - Must be done for training and every prediction
- Assign the pK_a values from the datasets to the related titratable groups
 - Must be done only for training set

Assign Values to Groups

- Combine values that apparently belong to the same titratable group
 - Error range of 0.3 p K_a units
- Find the experimental value that comes closest to the corresponding *Marvin* prediction
- Only consider "exact matches" for now

Results

• Cut at max. error = 2

Outlook

- Further investigation of the results and testing with other prediction tools
- Reducing amount of rejects through value assignment
- Replace OpenEye tautomers with RDKit integrated MolVS
- Start with machine learning for multiprotic molecules
- Develop and publish an easy-to-use toolkit

Acknowledgements

CzodrowskiLab

Paul Czodrowski David Bushiri

California State University, USA

Enrico Tapavicza

Bayer AG

Michael E. Beck

Novartis Pharma AG

Richard A. Lewis Stephane Rodde

Roche Pharma AG

Christian Kramer