Exercise 4

Min Wang

2024-03-05

Load packages and import data

First, load the packages and import the data.

```
library (kableExtra)
library (dplyr)
## 载入程辑包: 'dplyr'
## The following object is masked from 'package:kableExtra':
##
##
      group_rows
## The following objects are masked from 'package:stats':
##
##
      filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library (quanteda) # includes functions to implement Lexicoder
## Warning: 程辑包'quanteda'是用R版本4.3.2 来建造的
## Warning in .recacheSubclasses(def@className, def, env):
## "replValueSp"类别的子类别"ndiMatrix"没有定义;因此没有更新
## Warning in stringi::stri_info(): Your current locale is not in the list of
## available locales. Some functions may not work properly. Refer to
## stri locale list() for more details on known locale specifiers.
## Warning in stringi::stri_info(): Your current locale is not in the list of
## available locales. Some functions may not work properly. Refer to
## stri locale list() for more details on known locale specifiers.
## Package version: 3.3.1
## Unicode version: 13.0
## ICU version: 69.1
```

```
## Parallel computing: 16 of 16 threads used.
```

```
## See https://quanteda.io for tutorials and examples.
```

 $1 ibrary \, (quanted a. \, text models) \, \, \# \, \, for \, \, estimating \, \, similarity \, \, and \, \, complexity \, \, measures$

```
## Warning: 程辑包'quanteda.textmodels'是用R版本4.3.3 来建造的
```

```
library (quanteda.textplots) #for visualizing text modelling results
```

```
## Warning: 程辑包'quanteda.textplots'是用R版本4.3.3 来建造的
```

```
kaneko_dfm <- readRDS(gzcon(url("https://github.com/cjbarrie/CTA-ED/blob/main/data/wordscalin
g/studyl_kaneko.rds?raw=true")))</pre>
```

Estimate wordfish model

Since it is already a document feature matrix, we are able to group and trim the document feature matrix before estimating the wordfish model.

```
table(docvars(kaneko_dfm, "Newspaper"))
```

```
##
##
         Asahi
                     Chugoku
                                 Chunichi
                                              Hokkaido
                                                              Kahoku
                                                                         Mainichi
##
             38
                                       47
                                                     46
                                                                  18
                                                                                26
                                               Yomiuri
##
        Nikkei Nishinippon
                                   Sankei
             13
                          27
                                                     30
##
                                       14
```

```
## prepare the newspaper-level document-feature matrix
# compress the document-feature matrix at the newspaper level
kaneko_dfm_studyl <- dfm_group(kaneko_dfm, groups = Newspaper)
# remove words not used by two or more newspapers
kaneko_dfm_studyl <- dfm_trim(kaneko_dfm_studyl, min_docfreq = 2, docfreq_type = "count")
## size of the document-feature matrix
dim(kaneko_dfm_studyl)</pre>
```

```
## [1] 10 4660
```

Now the Wordfish model can be estimated, using "summary" function to see the results.

```
##
## Call:
## textmodel_wordfish.dfm(x = kaneko_dfm_study1, sparse = TRUE)
## Estimated Document Positions:
##
                  theta
## Asahi
               -1.01534 0.01966
               -0.40012 0.02727
## Chugoku
## Chunichi
               -1.39207 0.01450
## Hokkaido
               -0.46705 0.02093
## Kahoku
               -0.38169 0.03194
## Mainichi
               -0.06059 \ 0.02770
## Nikkei
                1. 26617 0. 04258
## Nishinippon -0.29256 0.02949
## Sankei
                1. 21020 0. 03855
## Yomiuri
                1.53306 0.02417
##
## Estimated Feature Scores:
            安保
                    法制
                            国会
                                    一線
                                            越え 安倍内閣
                                                            新た 安全保障政策
## beta 0.005043 -0.2277 -0.1162 -0.1951 -1.041
                                                 -1.6489 0.1173
                                                                      -0.1650
        3. 655225 3. 3082 3. 6948 -0. 1608 -1. 612
                                                   0.4952 2.1727
                                                                       0.7975
        関連法案
                    閣議
                            決定
                                  提出 安倍首相
                                                    先月
                                                             米
                                                                   議会
                                                                            演説
        -0.2154 -0.3584 -0.3934 0.323 0.06609 -0.6974 0.3167 -0.9097 -0.37893
## beta
          2.\ 3778 \quad 0.\ 7088 \quad 1.\ 2334 \quad 2.\ 491 \quad 2.\ 55716 \quad -0.\ 4438 \quad 2.\ 8074 \quad 0.\ 6683 \quad -0.\ 06753
## psi
                                                    成就
         安全保障
                     戦後 初めて 大改革
                                               夏
                                                            約束
                                                                    通り
##
## beta 0.0001012 -0.4946 -0.1843 -1.041 -0.7545 -1.859 -0.7678 -0.5569 0.2582
## psi 3.0028167 2.0520 0.9314 -1.612 0.7277 -1.983 0.1928 0.4735 1.8620
##
         歴史的
                   転換 集団的自衛権
                                        行使
## beta -0.8812 0.03341
                            -0.02387 -0.1965
## psi -1.7698 1.62121
                             3.74762 3.6801
```

Visualize the results

We can then plot our estimates of the θ s.

```
textplot_scale1d(kaneko_dfm_study1_results)
```


Plotting the "features".

```
textplot_scale1d(kaneko_dfm_study1_results, margin = "features")
```


we can also look at these features.

```
# extract "features" from a data structure("kaneko_dfm_studyl_results") and assigns its content
s to a new variable named "features1"
features1 <- kaneko_dfm_studyl_results[["features"]]

# the same process as "features1"
betas1 <- kaneko_dfm_studyl_results[["beta"]]

# merge "features1" and "betas1" into a new data frame called feat_betas1
feat_betas1 <- as.data.frame(cbind(features1, betas1))

# set the type of "betas1" to numeric
feat_betas1$betas1 <- as.numeric(feat_betas1$betas1)

feat_betas1 %>%
    arrange(desc(betas1)) %>% # sort by the value of "betas1" in descending order
    top_n(20) %>% # select the first 20 rows after sorting
    kbl() %>% # change data frame to a table
    kable_styling(bootstrap_options = "striped") # adds a stripe style that alternates the backgr
ound color of consecutive rows
```

```
## Selecting by betas1
```

features1	betas1
国際平和協力	2.967613
極小	2.633119
世界平和	2.633119
勘案	2.537293
<u>巡</u> る	2.374824
心がけ	2.371728
気がかり	2.371728
乱れ	2.371728
享受	2.371728
中国軍	2.371728
世界秩序	2.371728
取り組め	2.371728
問責決議案	2.371728
引き延ばし	2.344777
農協	2.283231
横行	2.283231
収める	2.283231
除き 	2.283231
合戦	2.050239
合区	2.050239
演出	2.050239
具体策	2.050239
騒動	2.050239
離合集散	2.050239
遅滞	2.050239
变調	2.050239
環太平洋経済連携協定	2.050239

features1	betas1
活性	2.050239
消費税率	2.050239
基礎的財政収支	2.050239
黒字	2.050239
佐藤正久	2.050239