Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №3 по дисциплине

«Методы машинного обучения» на тему

«Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных»

Выполнил: студент группы ИУ5-21М Исмаил Ахмад

1. Цель лабораторной работы

Изучить способы предварительной обработки данных для дальнейшего формирования моделей

2. Задание

Требуется [1]:

- 1. Выбрать набор данных (датасет), содержащий категориальные признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных.
- 2. Для выбранного датасета (датасетов) на основе материалов лекции решить следующие задачи:
- обработку пропусков в данных;
- кодирование категориальных признаков;
- масштабирование данных.

3. Ход выполнения работы

Подключим все необходимые библиотеки и настроим отображение графиков [2,3]:

```
In [1]: import numpy as np
        import pandas as pd
         import seaborn as sns
         import sklearn.impute
         import sklearn.preprocessing
        /usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testin
        g is deprecated. Use the functions in the public API at pandas.testing instead.
         import pandas.util.testing as tm
        # Enable inline plots
In [0]: %matplotlib inline
        # Set plot style
In [0]: sns.set(style="ticks")
In [0]: from IPython.display import set_matplotlib_formats
         set matplotlib formats("retina")
        тобы в дальнейшем текст в отчёте влезал на А4 [4]:
In [0]: pd.set option("display.width", 70)
        Для выполнения данной лабораторной работы возьмём набор данных по приложениям в US counties COVID 19 dataset
In [0]: data = pd.read_csv("/content/sample_data/us-counties.csv")
```

```
In [7]: data.head()
```

Out[7]:

	date	county	state	fips	cases	deaths	
0	2020-01-21	Snohomish	Washington	53061.0	1	0	
1	2020-01-22	Snohomish	Washington	53061.0	1	0	
2	2020-01-23	Snohomish	Washington	53061.0	1	0	
3	2020-01-24	Cook	Illinois	17031.0	1	0	
4	2020-01-24 Snohomish		Washington	53061.0	1	0	

```
In [8]: data.dtypes
```

Out[8]: date object county object state object fips float64 cases int64 deaths int64 dtype: object

In [9]: data.shape

Out[9]: (64707, 6)

Обработка пропусков в данных

```
In [10]: data.isnull().sum()
```

In [11]: sns.distplot(data["fips"].fillna(0));

2

```
In [12]: mean_imp = sklearn.impute.SimpleImputer(strategy="mean")
    mean_rat = mean_imp.fit_transform(data[["fips"]])
    sns.distplot(mean_rat);
```



```
In [13]: med_imp = sklearn.impute.SimpleImputer(strategy="median")
    med_rat = med_imp.fit_transform(data[["fips"]])
    sns.distplot(med_rat);
```



```
In [14]: freq_imp = sklearn.impute.SimpleImputer(strategy="most_frequent")
    freq_rat = freq_imp.fit_transform(data[["fips"]])
    sns.distplot(freq_rat);
```


Кодирование категориальных признаков

```
In [15]: types = data["state"].dropna().astype(str)
    types.value_counts()
```

Out[15]:	Texas	3877
	Georgia	3814
	Virginia	2706
	Indiana	2236
	North Carolina	2226
	Tennessee	2175
	Mississippi	2080
	Kentucky	2058
	Ohio	2052
	California	1990
	Florida	1896
	Missouri	1895
	Illinois	1869
	Michigan	1860
	New York	1780
	Pennsylvania	1724
	Iowa	1711
	Louisiana	1696
	Arkansas	1626
	Alabama	1597
	Minnesota	1590
	Colorado	1531
	Wisconsin	1516
	Oklahoma	1361
	Washington	1287
	South Carolina	
		1266
	Kansas	1258
	Oregon	850
	West Virginia	840
	Nebraska	839
	South Dakota	814
	New Jersey	763
	Idaho	723
	Maryland	718
	Montana	627
	North Dakota	613
	Utah	593
	New Mexico	591
	Massachusetts	559
	Arizona	490
	Wyoming	474
	Maine	420
	Vermont New Hampshire	403 316
	Nevada	283
	Connecticut	278
	Alaska Hawaii	242
	Rhode Island	165 162
	Delaware	104
	District of Columbia	41
	Puerto Rico Virgin Islands	35 34
	Guam	33
	Northern Mariana Islands	20
	Name: state, dtype: int64	

In [17]: type_oh = pd.get_dummies(types)
 type_oh.head()

Out[17]:

	Alabama	Alaska	Arizona	Arkansas	California	Colorado	Connecticut	Delaware	District of Columbia		Georgia	Guam	ı
0	0	0	0	0	0	0	0	0	0	0	0	0	(
1	0	0	0	0	0	0	0	0	0	0	0	0	(
2	0	0	0	0	0	0	0	0	0	0	0	0	(
3	0	0	0	0	0	0	0	0	0	0	0	0	(
4	0	0	0	0	0	0	0	0	0	0	0	0	(

In [18]: type_oh[type_oh["Arizona"] == 1].head()

Out[18]:

	Alabama	Alaska	Arizona	Arkansas	California	Colorado	Connecticut		District of Columbia	Florida	Georgia	Guam
8	0	0	1	0	0	0	0	0	0	0	0	0
13	0	0	1	0	0	0	0	0	0	0	0	0
18	0	0	1	0	0	0	0	0	0	0	0	0
23	0	0	1	0	0	0	0	0	0	0	0	0
28	0	0	1	0	0	0	0	0	0	0	0	0

>

Масштабирование данных

```
In [19]: mm = sklearn.preprocessing.MinMaxScaler()
sns.distplot(mm.fit_transform(data[["fips"]]));
```


In [20]: ss = sklearn.preprocessing.StandardScaler()
 sns.distplot(ss.fit_transform(data[["fips"]]));

Список литературы

- [1] Гапанюк Ю. Е. Лабораторная работа «Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных» [Электронный ресурс] // GitHub. 2019. Режим доступа: https://github.com/ugapanyuk/ml_ course/wiki/LAB_MISSING (дата обращения: 05.04.2019).
- [2] Team The IPython Development. IPython 7.3.0 Documentation [Electronic resource] // Read the Docs. 2019. Access mode: https://ipython.readthedocs.io/en/ stable/ (online; accessed: 20.02.2019).
- [3] Waskom M. seaborn 0.9.0 documentation [Electronic resource] // PyData. 2018. Access mode: https://seaborn.pydata.org/ (online; accessed: 20.02.2019).
- [4] pandas 0.24.1 documentation [Electronic resource] // PyData. 2019. Access mode: http://pandas.pydata.org/pandas-docs/stable/ (online; accessed: 20.02.2019).
- [5] Gupta L. Google Play Store Apps [Electronic resource] // Kaggle. 2019. Access mode: https://www.kaggle.com/lava18/google-play-store-apps (online; accessed: 05.04.2019)