Calcul intégral

Pr. Latrach Abdelkbir

Activité @:

Soit f la fonction numérique d'une variable réelle définie par $f(x) = 3x^2 - 1$.

- 1. Déterminer deux primitives F et G de la fonction f
- **2.** Calculer F(2) F(0), G(2) G(0). Que remarquez-vous?

Le nombre F(b) - F(a) ne dépend pas du choix d'une primitive de la fonction f.

Le nombre F(b) - F(a) s'appelle intégrale de la

fonction f de a à b elle est notée $\int_a^b f(x)dx$.

Application O:

Calculer les intégrales suivantes :

- $I_1 = \int_0^2 (x+4) dx$
- $I_2 = \int_1^e \frac{1}{x} dx$
- $I_3 = \int_{e^2}^{e^4} \frac{\ln(x)}{x} dx$ $I_4 = \int_0^1 \frac{e^x}{e^x + 1} dx$
- $\bullet \quad I_5 = \int_0^{\frac{\hbar}{4}} \cos(2x) dx$
- $5 = \int_{-2}^{-1} x 2^{-x^2} dx$

O Exercice 0:

Calculer les intégrales suivantes :

- $I_1 = \int_{-1}^{1} (2x^3 5x^2 + 2) dx$
- $I_2 = \int_1^2 \left(\frac{1}{x^2} \frac{2}{x^3}\right) dx$
- $I_3 = \int_0^1 \left(1 \frac{1}{x+1}\right) dx$
- $I_4 = \int_0^4 x \sqrt{1 + x^2} dx$
- $\bullet \quad I_5 = \int_0^{\ln 3} e^x \sqrt{e^x + 1} dx$
- $I_6 = \int_0^{\frac{\pi}{6}} \cos x \cdot \sin^5 x \, dx$
- $I_7 = \int_1^2 \frac{x-1}{x^2 2x + 2} dx$
- $I_8 = \int_0^1 (1-x)e^{x^2-2x+3} dx$
- $\bullet \quad I_9 = \int_1^{e^2} \frac{1}{x\sqrt{1 + lnx}} dx$

Application 2:

Calculer les intégrales suivantes :

- $I_1 = \int_{-1}^{1} \frac{2|x|}{x^2 + 1} dx$
- $I_2 = \int_{-1}^5 |x^2 4x| dx$
- $I_3 = \int_0^2 |e^{-x+1} 1| dx$

■ Application 3:

On considère les intégrales $I = \int_0^{\frac{\pi}{4}} \cos(3x) \cos(x) dx$ et

 $J = \int_0^{\frac{\pi}{4}} \sin(3x) \sin(x) dx.$

- **1.** Vérifier, pour tout $x \in \mathbb{R}$, que cos(3x)cos(x) + sin(3x)sin(x) = cos(2x)
- **2.** Vérifier, pour tout $x \in \mathbb{R}$, que cos(3x)cos(x) - sin(3x)sin(x) = cos(4x).
- **3.** Calculer I + J et I J puis en déduire I et J.

O Exercice @:

On pose : $K = \int_0^{\ln{(2)}} \frac{e^t - 1}{e^t + 1} dt$ et $L = \int_0^{\ln{(2)}} \frac{1}{e^t + 1} dt$ Calculer K + L et K + 2L puis en déduire les valeurs de K et L.

■ Application ②:

- **1.** Montrer que : $\int_{1}^{2} ln(x^{2} + 1) dx \ge 0$.
- **2.** Montrer que : $-\frac{1}{2} \le \int_{1}^{2} \frac{\sin(x)}{x^{2}} dx \le \frac{1}{2}$.

Calculer la valeur moyenne de la fonction $x \mapsto \frac{\ln^2(x) + x}{x}$ sur l'intervalle [1, e].

Application ©:

- 1. Calculer les intégrales suivantes :
 - $\bullet \quad I = \int_2^e \frac{1}{x(\ln(x) + 1)} dx$

 - $K = \int_0^{\frac{\pi}{3}} \tan(x) dx$ $L = \int_0^1 \frac{2x+2}{(x^2+2x+1)^2} dx$.
- **2.** *a* Vérifier que : $(\forall x \in \mathbb{R})$ $\frac{e^{2x}-1}{e^{2x}+1} = \frac{e^x-e^{-x}}{e^x+e^{-x}}$
 - **b-** En déduire la valeur de l'intégrale $\int_0^1 \frac{e^{2x}-1}{e^{2x}+1} dx$.

O Exercice 3: BAC 2002

- **1.** Calculer l'integrale $\int_{\underline{\pi}}^{\frac{n}{3}} \left(\frac{1}{\cos^2(x)} 4\cos(2x) \right) dx$.
- **2.** Montrer que $\left(\frac{x}{x^2+1}\right)' = \frac{1-x^2}{(x^2+1)^2}$ pour tout réel x puis calculer $\int_{1}^{\sqrt{3}} \frac{1-x^2}{(x^2+1)^2} dx$.

Application \mathcal{O} :

Soit f la fonction définie sur $\mathbb{R}\setminus\{1\}$ par :

$$f(x) = \frac{x^2 - 6x + 4}{x - 1}.$$

- 1. Déterminer les nombres réels a, b, et c pour que l'on ait pour tout x de $\mathbb{R}\setminus\{1\}$: $f(x) = ax + b + \frac{c}{x-1}$
- **2.** En déduire la valeur de l'intégrale : $\int_2^3 f(x) dx$.

Application 8:

Linéariser le polynôme trigonométrique $\cos^3 x$ puis calculer $\int_0^{\frac{\kappa}{4}} \cos^3 x \, dx$.

○ Exercice ④ : BAC 2003

- 1. Vérifier, pour tout réel x, que : $\sin^2 x \cdot \cos^3 x = \cos x \cdot \sin^2 x - \cos x \cdot \sin^4 x.$
- **2.** Calculer l'integrale $I = \int_0^{\frac{n}{2}} \sin^2 x \cdot \cos^3 x \, dx$.

En utilisant la formule d'intégration par parties, Calculer les intégrales suivantes :

- $I_1 = \int_1^e x^2 lnx dx$
- $I_2 = \int_{\frac{1}{2}}^{1} (2x 1)e^{-\frac{x}{2}} dx$
- $I_3 = \int_2^{\overline{e}} \ln(x+2) dx$
- $\bullet \quad I_4 = \int_0^{\pi} x^2 \cos x dx \ .$

🔿 Exercice 👨 : BAC 2001

1. Vérifier, pour tout $x \in [0; 1]$, que :

$$\frac{x^3 + x}{x + 1} = x^2 - x + 2 - \frac{2}{x + 1}.$$

2. En utilisant la formule d'intégration par parties, Calculer l'integrale $I = \int_0^1 (3x^2 + 1) \ln(x + 1) dx$.

En utilisant la formule d'intégration par parties, Calculer les integrales suivantes :

- $I_1 = \int_1^{e^2} x (\ln x)^2 dx$
- $I_2 = \int_1^2 x \sqrt{3 x} dx$
- $I_3 = \int_{\sqrt{e}}^{e} \frac{x \ln x}{(x^2+1)^2} dx$ $I_4 = \int_{1}^{2} \frac{\ln(1+t)}{t^2} dt$
- $\bullet \quad I_5 = \int_0^{\frac{\pi}{4}} \frac{x}{\cos x^2} dx$
- $I_6 = \int_1^2 x 2^x dx$
- $I_7 = \int_0^1 l \, n \left(\frac{x+1}{x+2} \right) dx$
- $\bullet \quad I_8 = \int_0^1 x^2 e^x dx$
- $I_9 = \int_{\frac{\pi}{2}}^{\pi} sinxe^x dx$

Activité @:

On considéra la fonction définie par : f(x) = -x + 2 et (C_f) la courbe représentative de f dans le plan rapporté à un repère orthonormé $(0, \vec{i}, \vec{j})$ unité (1cm)

- **1.** Tracer (C_f) et colorier le domaine délimité par l'axe des abscisses, la courbe et les droites d'équations x = -1 et x = 3, puis donner une valeur de son aire en unités d'aires.
- **2.** Calculer $\int_{-1}^{3} |f(x)| dx \times ||\vec{i}|| \times ||\vec{j}||$. Qu'est-ce qu'on peut déduire ?

$m{\varkappa}$ Application $m{arphi}m{arphi}$:

Le plan est apporté à un repère orthonormé $(0, \vec{i}, \vec{j})$ avec $\|\vec{i}\| = 1cm \text{ et } \|\vec{j}\| = \sqrt{2}cm$ Soit f la fonction définie par : $f(x) = \sin(x)$ Calculer l'aire du domaine délimité par la courbe de f et les droites d'équations : $x = \frac{\pi}{2}$ et $x = -\frac{\pi}{2}$.

○ Exercice **②**: BAC 2015

Soit f la fonction définie sur]0; $e[\cup]e; +\infty[$ par: $f(x) = \frac{1}{x(1-lnx)}$ et (C_f) la courbe de la fonction f dans un repère orthonormé $(0; \vec{i}; \vec{j})$ tel que $||\vec{i}|| = 2cm$.

1. Montrer que $\int_{1}^{\sqrt{e}} \frac{1}{x(1-lnx)} dx = ln2.$

(Remarquer que $\frac{1}{x(1-lnx)} = \frac{\frac{1}{x}}{(1-lnx)}$)

2. Calculer, en cm^2 , l'aire du domaine plan délimité par (C_f) , l'axe des abscisses et les droites d'équations: x = 1 et $x = \sqrt{e}$.

Application QQ:

Le plan est rapporté à un repère orthogonal $(0, \vec{i}, \vec{j})$ avec $\|\vec{i}\| = 2cm \text{ et } \|\vec{j}\| = 2cm$ On considère les fonctions f et g définie par : $f(x) = 2x^2 + 1$ et $g(x) = x^2 + x + 1$ Calculer l'aire du domaine délimité par les courbes des fonctions f et g et l'axe des abscisses et les droites d'équations x = 0 et x = 2.

O Exercice @: Session Rattrapage 2017

Soit f la fonction numérique définie sur \mathbb{R} par: f(x) = $x + 1 - (x^2 + 1)e^x$.

Et (C_f) la courbe de la fonction f dans un repère orthonormé $(0; \vec{i}; \vec{j})$ tel que $||\vec{i}|| = 2cm$

- **1.** Montrer que $H: x \mapsto (x-1)e^x$ est une fonction primitive de la fonction $h: x \mapsto xe^x$ sur \mathbb{R} , puis en déduire que: $\int_{-1}^{0} xe^{x} dx = \frac{2}{e} - 1.$
- 2. En utilisant une intégration par parties, Montrer que: $\int_{-1}^{0} (x^2 + 1)e^x dx = 3\left(1 - \frac{2}{e}\right)$.
- 3. 3) Calculer en cm², l'aire du Domaine plan délimité $par(C_f)$, la droite (D) d'équation y = x + 1 et les droites d'équations : x = -1 et x = 0.

Application @@:

Soit g la fonction numérique définie s ur [0,1] par :

$$f(x) = xe^{\frac{1}{2}x}.$$

Calculer Le volume du solide engendré par la rotation de la courbe de la fonction g autour de l'axe des abscisses un tour complet.

Répondre à la même question pour la fonction

$$f(x) = \frac{\sqrt{x}}{\cos(x)}$$
 sur l'intervalle $\left[0, \frac{\pi}{4}\right]$.

Exercice 9: Session normale 2010

Soit f la fonction numérique définie sur \mathbb{R} par:

$$f(x) = (2x - 1)e^{2x} + x + 1$$

Et (C_f) la courbe de la fonction f dans un repère orthonormé $(0; \vec{i}; \vec{j})$ tel que $||\vec{i}|| = 2cm$

1. Montrer, en utilisant une integration par Partie que:

$$\int_0^{\frac{1}{2}} (2x - 1)e^{2x} \, dx = 1 - \frac{e}{2}$$

2. Montrer que l'aire du Domaine plan limite par (C_f) , la droite (T): y = x el les droites d'équations : x =0 et $x = \frac{1}{2}$ est: $(6 - 2e)cm^2$.

Exercice @@: Session normale 2014

Soit f la fonction numérique définie sur $]0; +\infty[par]$ $f(x) = (1 + lnx)^2 + \frac{1}{x^2}$ et (C_f) la courbe de la fonction f dans un repère orthonormé $(0; \vec{i}; \vec{j})$ tel que $||\vec{i}|| = 1cm$ On considère les intégrales I et J définies par:

$$I = \int_{1}^{e} (1 + \ln x) \, dx \, et \, J = \int_{1}^{e} (1 + \ln x)^{2} \, dx$$

- **1.** Montrer que $H: x \mapsto x \ln x$ est une fonction primitive de la fonction $h: x \mapsto 1 + lnx \text{ sur }]0; +\infty[$, puis en déduire que I = e.
- **2.** En utilisant une integration par parties, Montrer que: I = 2e - 1.
- **3.** Calculer en cm^2 , l'aire du Domaine plan limite par (C_f) , L'axe des abscisses et les droites d'équations: x = 1 et x = e.