Estimating Riparian ET through Remote sensing

By

Zohrab Samani, Salim Bawazir Max Bleiweiss, Rhonda Skaggs Thomas Schmugge

New Mexico State University

Rio Grande River Spring, 2003

Rio Grande Riparian Vegetation

ColorIR Satellite Image of Bosque del Apache NWR

Energy Balance for ET

ET is calculated as a "residual" of the energy balance

Ground ET Measurements

Eddy Covariance

$$H = \rho c_p COV[wT]$$
$$LE = \lambda COV[wq]$$

Why Satellites?

$$ET = K_c \cdot ET_o$$

- Traditional method for ET:
 - ET_o is calculated from weather data (weather station)
 - K_c assume "well-watered" situation (impacts of stress are difficult to quantify)
 - K_c for most riparian vegetation is not available

Net Radiation

Net Surface Radiation = Gains - Losses

$$R_n = (1-\alpha)R_{S\downarrow} + R_{L\downarrow} - R_{L\uparrow} - (1-\epsilon_0)R_{L\downarrow}$$

Albedo, NDVI, LST

How It Works

Parameters from Satellite:

- Albedo
- Vegetation indices (NDVI)
- Surface temperature
- Wind speed (from ground station)

Satellite

- Satellite Images are available from:
 - NASA-Landsat (30 m, every 16 days)
 since 1982. Landsat 7 went dead in May 2003.
 - NOAA-AVHRR (advanced very high resolution radiometer)
 (1 km, daily) since 1980's
 - NASA-MODIS (moderate resolution imaging spectroradiometer), daily, (250 m, for NDVI & ALBEDO, but 1 Km for Temp. - since 1999
 - NASA-ASTER (Terra, Advanced Spaceborne Thermal Emission and Reflection Radiometer)- since 1999

Predicting Net Radiation

Predicting Net Radiation

Estimating Ground Flux, Gn

Sensible Heat is calculate at anchor points

$$ET = Rn - G - H$$

$$H = Rn - ET - G$$

$$H = \frac{\rho . Cp. dT}{rah} + \text{Monin-Obukhov Similarity}$$

Temperature Gradient Versus Surface Temperature

Calculating Evaporative fraction, Ef

$$E_f = \frac{R_n - G - H}{R_n - G}$$

Regional ET, Bosque, 2003

