## Analysis 1 für Informatikstudien

7. Übungsblatt

- 1. Berechnen Sie den Konvergenzradius der folgenden Potenzreihen.
  - (a)  $\sum_{k=1}^{\infty} \frac{x^k}{k}$ .
  - (b)  $\sum_{k=0}^{\infty} \frac{(k+4)x^k}{2^k}$ .
  - (c)  $\sum_{k=0}^{\infty} \frac{2^k x^k}{k!}.$ (d)  $\sum_{k=0}^{\infty} x^k.$

Welche Funktionen werden durch die Potenzreihen in Teilaufgabe (c) bzw. (d) dargestellt?

- 2. Skizzieren Sie für jede der folgenden Funktionen den Funktionsgraph, für x in einem sinnvoll gewählten Bereich. Erklären Sie jeweils wie die Skizze zustande gekommen ist.
  - (a)  $f(x) = e^{-x}$ .
  - (b)  $f(x) = e^{x+1}$ .
  - (c)  $f(x) = e^{|x|}$ .
  - (d)  $f(x) = \ln(\max(1, x))$ .
- 3. Skizzieren Sie für jede der folgenden Funktionen den Funktionsgraph, für x in einem sinnvoll gewählten Bereich. Erklären Sie jeweils wie die Skizze zustande gekommen ist.
  - (a)  $f(x) = \sin(2x)$ .
  - (b)  $f(x) = x \cos(x)$ .
  - (c)  $f(x) = \cos(x+1)$ .
  - (d)  $f(x) = \sin(x^2)$ .
- 4. Verwenden Sie  $\cos x = \frac{e^{ix} + e^{-ix}}{2}$  und  $\sin x = \frac{e^{ix} e^{-ix}}{2i}$ , um nachzuweisen dass

$$\cos(x+y) = \cos(x) \cdot \cos(y) - \sin(x) \cdot \sin(y)$$

und

$$\sin(x+y) = \sin(x) \cdot \cos(y) + \cos(x) \cdot \sin(y)$$

für alle  $x, y \in \mathbb{R}$ .

5. Verwenden Sie die Rechenregeln für Logarithmen, sowie die Tatsache dass  $\ln 2 \approx 0.69$ und  $\ln 3 \approx 1.10$ , um folgende Werte der Logarithmusfunktion annäherungsweise (ohne Taschenrechner) zu berechnen:

1

- (a) ln 8.
- (b) ln 36.
- (c)  $\ln \frac{3}{16}$ .

Stellen Sie außerdem (ohne Taschenrechner) mithilfe der Logarithmen fest welche Zahl größer ist:  $2^{10}$  oder  $3^7$ .

1. Berechnen Sie den Konvergenzradius der folgenden Potenzreihen.

(a) 
$$\sum_{k=1}^{\infty} \frac{x^k}{k}$$
.

(b) 
$$\sum_{k=0}^{\infty} \frac{(k+4)x^k}{2^k}$$
.  
(c)  $\sum_{k=0}^{\infty} \frac{2^k x^k}{k!}$ .  
(d)  $\sum_{k=0}^{\infty} x^k$ .

(c) 
$$\sum_{k=0}^{\infty} \frac{2^k x^k}{k!}$$

(d) 
$$\sum_{k=0}^{\infty} x^k$$

Welche Funktionen werden durch die Potenzreihen in Teilaufgabe (c) bzw. (d) dargestellt?

$$R = \lim_{n \to \infty} \sqrt{|a_n|} \quad \text{von} \quad \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

$$a) \sum_{k=1}^{\infty} \frac{1}{k} = \lim_{k \to \infty} \frac{1}{k} (x - 0)^k = 7 \quad R = \lim_{k \to \infty} \frac{1}{\sqrt{|a_k|}} = \lim_{k \to \infty} \sqrt{|b|}$$

$$\lim_{k \to \infty} \frac{1}{\sqrt{|a_k|}} = 1$$

$$= \lim_{h \to \infty} \frac{\sqrt[4]{k!}}{2} = \lim_{h \to \infty} \frac{(k!)^{\frac{1}{2}}}{2} = \infty$$

$$d) \sum_{k=0}^{\infty} x^{k} = \sum_{k=0}^{\infty} 1(x-0)^{k} = 7 R = \lim_{k \to \infty} \frac{1}{\sqrt{1+1}} = \lim_{k \to \infty} \frac{1}{1} = 1$$





(a) 
$$f(x) = e^{-x}$$
.

(b) 
$$f(x) = e^{x+1}$$
.

(c) 
$$f(x) = e^{|x|}$$
.

(d) 
$$f(x) = \ln(\max(1, x))$$
.



3. Skizzieren Sie für jede der folgenden Funktionen den Funktionsgraph, für x in einem sinnvoll gewählten Bereich. Erklären Sie jeweils wie die Skizze zustande gekommen ist.

(a) 
$$f(x) = \sin(2x).$$

(b) 
$$f(x) = x \cos(x)$$
.

(c) 
$$f(x) = \cos(x+1)$$
.

(d) 
$$f(x) = \sin(x^2)$$
.



4. Verwenden Sie  $\cos x = \frac{e^{ix} + e^{-ix}}{2}$  und  $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$ , um nachzuweisen dass

$$\cos(x+y) = \cos(x) \cdot \cos(y) - \sin(x) \cdot \sin(y)$$

und

$$\sin(x+y) = \sin(x) \cdot \cos(y) + \cos(x) \cdot \sin(y)$$

für alle  $x, y \in \mathbb{R}$ .

$$cos(x+y) = \frac{e^{ix+iy} + e^{-ix-iy}}{2} \\
cos(x) \cdot cos(y) - sin(x) \cdot sin(y) \\
= \frac{e^{x} + e^{-ix}}{2} \cdot \frac{e^{y} + e^{iy}}{2} \cdot \frac{e^{x} - e^{ix}}{2} \cdot \frac{e^{y} - e^{-iy}}{2} \\
= \frac{e^{x} + e^{-ix}}{2} \cdot \frac{e^{y} + e^{iy}}{2} + e^{-ix-iy} \cdot \frac{e^{x} + e^{x} - e^{x}}{2} \cdot \frac{e^{x} - e^{x}}{2} \cdot$$



- (a) ln 8.
- (b) ln 36.
- (c)  $\ln \frac{3}{16}$ .

Stellen Sie außerdem (ohne Taschenrechner) mithilfe der Logarithmen fest welche Zahl größer ist:  $2^{10}$  oder  $3^7$ .

größer ist: 
$$2^{10}$$
 oder  $3^{2}$ .

a)  $\ln(8) = \ln(2^{4}) \approx 4 \cdot 0.69 \approx 2.76$ 

b)  $\ln(36) = \ln(3 \cdot 3 \cdot 2 \cdot 2) = \ln(3^{2} \cdot 2^{2}) = \ln(3^{2}) + \ln(2^{2})$ 

$$\approx 2 \cdot 1.10 + 2 \cdot 0.69 = 2.20 + 1.38 = 3.58$$

c)  $\ln(\frac{3}{16}) = \ln(3 \cdot 16^{1}) = \ln(3 \cdot 2^{4}) = \ln(3) + \ln(2^{4})$ 

$$\approx 1.10 + (-4) \cdot 0.69 = 1.10 - 2.76 = -1.66$$

$$10 \cdot 2 \cdot 3$$

$$6,3 < 7,7 = 12^{10} < 3^{7}$$