Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° semestre 2020

Ayudantía 11

28 de Abril

MAT1106 - Introducción al Cálculo

1) Sean $\{x_n\}_{n\in\mathbb{N}}$, $\{y_n\}_{n\in\mathbb{N}}$ sucesiones acotadas. Muestre que $\{(xy)_n\}_{n\in\mathbb{N}}$ también es acotada.

Demostración. Como $\{x_n\}_{n\in\mathbb{N}}$ es acotada, existe M_1 tales que para todo n se cumple $|x_n| \leq M_1$. Análogamente, existe M_2 tenemos que $|y_n| \leq M_2$ para todo n. Como ambas desigualdades son no-negativas, tenemos que $|(xy)_n| = |x_n \cdot y_n| = |x_n| \cdot |y_n| \leq M_1 \cdot M_2$.

Luego, tenemos que $|(xy)_n|$ está acotada por $M_1 \cdot M_2$, por lo que $\{(xy)_n\}_{n \in \mathbb{N}}$ es acotada, concluyendo lo pedido.

2) Demuestre que $x_n = \sqrt{n}$ no está acotada.

Solución 1. Consideremos la subsucesión $x_{n_k} = \sqrt{k^2} = k$. Como esta subsucesión no está acotada por arriba (por ser los naturales), entonces la sucesión original no puede ser acotada por arriba, y por lo tanto no es acotada, que es lo que buscábamos.

Solución 2. Supongamos que \sqrt{n} es acotada. Usando el problema 1), esto implica que $\sqrt{n}\cdot\sqrt{n}=n$ está acotada, $\rightarrow\leftarrow$.

Por lo tanto, tenemos lo pedido.

3) Sea $x_1 = 2020$, $x_n = \sqrt{3x_{n-1} + 4}$. ¿Es x_n acotada? En caso de que lo sea, encuentre cotas superiores e inferiores.

Demostración. Notar que x_n está bien definida (por una ayudantía anterior). Además, como $2020 \ge 0$ y las raíces son no-negativas, 0 es cota

inferior de la sucesión.

Probaremos que x_n es decreciente. Notar que

$$x_n \ge x_{n+1} \iff x_n \ge \sqrt{3x_n + 4}$$

 $\iff \sqrt{3x_{n-1} + 4} \ge \sqrt{3x_n + 4} \iff x_{n-1} \ge x_n$

Nota: Desde la primera equivalencia también se puede ver que $x_n \geq 4$ para todo n para demostrar que x_n es monótona.

Desde las equivalencias se tiene el paso inductivo, por lo que nos basta revisar que $x_1 \ge x_2$ para probar que x_n es decreciente. Tenemos que $x_2 = \sqrt{3 \cdot 2020 + 4} = \sqrt{6064} < \sqrt{10000} = 100 < 2020$, por lo que se cumple.

Como x_n es decreciente, está acotada superiormente por $x_1 = 2020$. Como habíamos mostrado antes que 0 es cota inferior, tenemos que x_n es acotada, que es lo que queríamos demostrar.

4) Muestre que $x_n = \frac{n!}{2^n}$ no está acotada.

Demostración. Notemos que a partir de n=3 se cumple que

$$x_n = x_{n-1} \cdot \frac{n}{2} \ge x_{n-1} \cdot \frac{3}{2}$$

Inductivamente, tenemos que para todo n > 3, se cumple

$$x_n \ge x_3 \cdot \left(\frac{3}{2}\right)^{n-3} \ge \frac{3}{4} \cdot \left(1 + \frac{1}{2}\right)^{n-3} \ge \frac{3}{4} \cdot \left(1 + \frac{n-3}{2}\right)$$

Esto implica que

$$x_n \ge \frac{3}{4} \cdot \left(1 + \frac{n-3}{2}\right)$$

Como el lado derecho no está acotado superiormente (pasa por todos los múltiplos de 3), x_n (a partir de n=3) tampoco está acotado superiormente, por lo que no es acotado.

- 5) Muestre que las siguientes propiedades son equivalentes:
 - a) Para todo x real, existe n natural tal que x < n.
 - b) Para todo $\varepsilon > 0$, existe *n* natural tal que $\frac{1}{n} < \varepsilon$.
 - c) Para todos κ, ε reales con $\varepsilon > 0$, existe un n natural tal que $\kappa < n\varepsilon$.

Demostraci'on. Mostraremos a) \Rightarrow b) \Rightarrow c) \Rightarrow a).

 $a \to b$ Como $\varepsilon > 0$, entonces $\frac{1}{\varepsilon} > 0$. Usando $x = \frac{1}{\varepsilon}$ en a) tenemos que existe un n natural tal que

$$\frac{1}{\varepsilon} < n \Rightarrow \frac{1}{n} < \varepsilon,$$

que es lo que queríamos.

 $b \Rightarrow c$ Si κ no es positivo, n=1 funciona. Si $\kappa>0$, entonces podemos tomar $\varepsilon'=\frac{\varepsilon}{\kappa}>0$ en la parte b), por lo que existe un n tal que

$$\frac{1}{n} < \frac{\varepsilon}{\kappa} \Rightarrow \kappa < n\varepsilon,$$

que es lo que queríamos.

c) \Rightarrow a) Basta tomar $\kappa = x, \varepsilon = 1$ en la parte c).

Como tenemos la cadena de implicancias, las tres proposiciones son equivalentes entre si.

6) Considere los intervalos $I_n = \left[2, 2 + \frac{1}{n}\right]$ con $n \in \mathbb{N}$. Use la pregunta anterior para probar que $\bigcap_{n \in \mathbb{N}} I_n = \{2\}$.

Demostración. Claramente 2 está en la intersección y todos los elementos menores a 2 no pueden estar (ya que no pertenecen a I_1 . Supongamos que hay un elemento x mayor a 2 en la intersección. Luego, $x=2+\varepsilon$, con $\varepsilon>0$. Usando b) de la pregunta anterior, tenemos que existe un n_0 natural tal que $\frac{1}{n_0}<\varepsilon$. Esto implica que $2+\frac{1}{n_0}<2+\varepsilon=x$, por lo que x no está en I_{n_0} (y por lo tanto no está en la intersección).

Uniendo todo, tenemos que la intersección de los conjuntos es $\{2\}$, que es lo que queríamos probar.