kd education academy (9582701166

Time: 10 Hour STD 11 Maths Total Marks: 110

kd90+ ch- 5 linear inequalities

*	Choose the right answ	ver from the given op	otions. [1 Marks Each]	[40]	
1.	Ordered pair that satisfy the equation $x + y + 1 < 0$ is:				
	(A) (0, -1)	(B) (-2,0)	(C) (2, -4)	(D) Both (B) and (C)	
2.	If the cube roots of $(x-1)3+8=0$, are: (A) $-1,1+2\omega,1+2\omega^2$ (C) $-1,-1,-1$	unity are $1,\omega$ and	ω^2 , then the roots of (B) $-1,1+2\omega,1-2\omega^2$ (D) $-1,-1+2\omega-1-2\omega$		
3.	If α and β are the rooto: (A) -2	ts of the equation \mathbf{x}^2	-x+1=0, then a 2009		
1		,		(D) Z	
4.	The value of x for white (A) 0	cn $ x+1 + \sqrt{(x-1)} = 0$ (B) 1	(C) -1	(D) No value of x	
5.	The longest side of a triangle is 2 times the shortest side and the third side is 4cm shorter than the longest side. If the perimeter of the triangle is at least 61cm, find the minimum length of the shortest side.				
	(A) 7	(B) 9	(C) 11	(D) 13	
6.	If $(1 - p)$ is a root of c	quadratic equation x^2	+ px + (1-p) = 0, then its	roots are:	
	(A) 0, 1	(B) – 1, 1		(D) – 1, 2	
7.	The solution of the in	equality $\frac{3(x-2)}{5} \geq \frac{5(2-x)}{2}$	is:		
	(A) $\mathrm{x} \in (2,\infty)$		(C) $\mathrm{x} \in \left[\infty,2 ight)$	(D) $\mathrm{x} \in ig[2,\infty)$	
8.	If $ \mathbf{x}+3 \geq 10$, then: (A) $\mathbf{x}\in \left(-13,7\right]$ (C) $\mathbf{x}\in \left(-\infty,-13\right]\cup \left[3,13\right]$	$(7,\infty)$	(B) $\mathrm{x} \in \left(-13,7\right)$ (D) $\mathrm{x} \in \left(-\infty,-13\right) \cup \left[-13,7\right]$	$(7,\infty)$	
9.	If x is a natural numb	er and $20\mathrm{x} \leq 100$ then	find solution set of x.		
	(A) {0, 1, 2, 3, 4, 5}	(B) {1, 2, 3, 4, 5}	(C) {1, 2, 3, 4}	(D) {0, 1, 2, 3, 4}	
10.	If $ x-1 \times -1 > 5$, then	n:			
	(A) $\mathrm{x}\in(-4,6)$		(B) $\mathbf{x} \in [-4, 6]$		
	(C) $\mathrm{x} \in (-\infty, -4) \cup (6, \infty)$	∞)	(D) $\mathrm{x} \in (-\infty, -4) \cup [6, \infty]$	0)	
11.	If $4x + 3 < 6x + 7$, then	$\mathbf{x} \in$			

(A) $\left(2,\infty\right)$ (B) $\left(-2,\infty\right)$ (C) $\left(-\infty,2\right)$

	temperature in degree Celsius (C) if the $\frac{\text{Celsius}}{\text{Fabrenbeit}}$ (F) conversion formula is given				
	by $\mathrm{F}=rac{9}{5c}+32^\circ$	ran	remen	_	
	00	(B) $\left[20^{\circ},25^{\circ} ight]$	(C) $\left[25^{\circ},30^{\circ} ight]$	(D) $\left[30^\circ, 35^\circ ight]$	
13.	3. Solution of $ 3x+2 < 1$ is:				
	(A) $\left[-1, \frac{-1}{3}\right]$	(B) $(\frac{-1}{3}, -1)$	(C) $\left(-1, \frac{-1}{3}\right)$	(D) None of these	
14.	The quadratic equations x^2 - 6x + a = 0 and x^2 - cx + 6 = 0 have one root in common. The other roots of the first and second equations are integers in the ratio 4 : 3.Then, the common root is:				
	(A) 2	(B) 1	(C) 4	(D) 3	
15.	If x is a whole number and $10x \le 50$ then find solution set of x.				
	(A) {0,1, 2, 3, 4, 5}	(B) {1, 2, 3, 4, 5}	(C) {1, 2, 3, 4}	(D) {0, 1, 2, 3, 4}	
16.	The length of a recta of the rectangle is 160	=	e breadth.If the minim	um perimeter	
	(A) breadth > 20cm	(B) length < 20cm	(C) breadth x ≥ 20cm	(D) length ≤ 20cm	
17. Write the solution of inequality $\frac{1}{5}\left(\frac{3x}{5}+4\right) \geq \frac{1}{3}(x-6)$.					
	(A) $x \leq \frac{105}{8}$	(B) $x \ge \frac{105}{8}$	(C) $x \ge 120$	(D) $x \le 120$	
18.	The cost and revenue functions of a product are given by $C(x) = 20x + 4000$ and $R(x) = 60x + 2000$, respectively, where x is the number of items produced and sold. How many items must be sold to realise some profit?				
	Total individual sections		o some promer		
	(A) Less than 40	(B) More than 50	(C) Less than 50	(D) Exactly 50	
19.	(A) Less than 40 The sum of four num	(B) More than 50 bers in AP is 20.The nu	·	ne ratio of the	
19.	(A) Less than 40 The sum of four num product of first and	(B) More than 50 bers in AP is 20.The nu	(C) Less than 50 imbers are such that tl	ne ratio of the	
	(A) Less than 40 The sum of four num product of first and greatest number is: (A) 8 Rahul obtained 20 and	(B) More than 50 bers in AP is 20.The nufourth is to the production (B) 7 and 25 marks in first two	(C) Less than 50 Imbers are such that the lict of second and thir	he ratio of the d as 2 : 3.The (D) 4 num marks he	
	(A) Less than 40 The sum of four num product of first and greatest number is: (A) 8 Rahul obtained 20 and	(B) More than 50 bers in AP is 20.The nufourth is to the production (B) 7 and 25 marks in first two	(C) Less than 50 Imbers are such that the condition of second and thire (C) 14 To tests.Find the minim	he ratio of the d as 2 : 3.The (D) 4 num marks he	
20.	(A) Less than 40 The sum of four num product of first and greatest number is: (A) 8 Rahul obtained 20 an should get in the third	(B) More than 50 bers in AP is 20.The nufourth is to the product (B) 7 and 25 marks in first two ditest to have an avera (B) 35	(C) Less than 50 Imbers are such that the condition of second and thire (C) 14 To tests.Find the minimum of at least 30 marks	he ratio of the d as 2 : 3.The (D) 4 num marks he	
20.	(A) Less than 40 The sum of four numproduct of first and greatest number is: (A) 8 Rahul obtained 20 and should get in the third (A) 60 If $7x + 3 < 5x + 9$ then	(B) More than 50 bers in AP is 20.The numbers in AP is 20.The numbers of the production (B) 7 and 25 marks in first two distances to have an averation (B) 35 $\mathbf{x} \in$	(C) Less than 50 Imbers are such that the condition of second and thire (C) 14 To tests.Find the minimum of at least 30 marks	he ratio of the d as 2 : 3.The (D) 4 num marks he (D) 45	
20.	(A) Less than 40 The sum of four numproduct of first and greatest number is: (A) 8 Rahul obtained 20 and should get in the third (A) 60 If $7x + 3 < 5x + 9$ then (A) $(-\infty,3]$ If Ram has x rupees a	(B) More than 50 bers in AP is 20. The numbers in AP is 20. The number of the production of the produ	(C) Less than 50 Imbers are such that the condition of second and third (C) 14 To tests.Find the minimum of at least 30 marks (C) 180	the ratio of the d as 2 : 3.The (D) 4 (D) 4 (D) 45 (D) $($	
20.	(A) Less than 40 The sum of four numproduct of first and greatest number is: (A) 8 Rahul obtained 20 and should get in the third (A) 60 If $7x + 3 < 5x + 9$ then (A) $(-\infty,3]$ If Ram has x rupees a	(B) More than 50 bers in AP is 20. The numbers in AP is 20. The number of the production of the produ	(C) Less than 50 mbers are such that the condition of second and third (C) 14 to tests. Find the minimage of at least 30 marks (C) $(-\infty,3)$ o shopkeeper then find	the ratio of the d as 2 : 3.The (D) 4 (D) 4 (D) 45 (D) $($	

	choco. The amount of coffee powder is greater than that of chocolate and each pack weights at least 10g. Which of the following inequalities describe the given condition?			
	(A) x < y	(B) $x + y \ge 10$	(C) $x + y \le 10$	(D) $x > y$
24.		for which one $\cos x + 2$ is twice as large	•	itic equation
	(A) $\frac{2}{3}$	(B) $\frac{-2}{3}$	(C) $\frac{1}{3}$	(D) $\frac{-1}{3}$
25.	10, such that their su			_
		(15, 17), (17, 19)		
		(25, 27), (27, 29)		
26.	The number of pairs $a^2 + b^2 > 1$ is	(a,b) of positive real		$b^4+b^4<1$ and
	(A) 0	(B) 1	(C) 2	(D) More than 2
27.	seats were filled. The an increase of 50% in	charge per person is $ ensuremath{\epsilon}$ owner decided to red the number of spectatuse on the second day w	uce the price by 20% acors on the next day. T	and there was
	(A) 50	(B) 40	(C) 30	(D) 20
28.	liquids X,Y,Z respect order - stir the liquid in J_1 a - stir the liquid in J_2 a - stir the liquid in J_3 a After performing the respectively, in J_1 . The		we mean three steps in J_1 into J_2 J_2 into J_3 J_3 into J_1 . let x,y,z be the amou	the following
	(A) $x > y > z$	(B) $x > z > y$	(C) $y > x > z$	(D) $z > x > y$
29.		f a pyramid with a squ of its square base are in ame, then		_
	(A) 50	(B) 55	(C) 60	(D) 65
30.	The solution set of $ x $	$-1 \le -1$ is		
	(A) (0,2)	(B) $[0,2]$	(C) $(-\infty,-1]\cup[1,\infty)$	(D) Ø
31.	The number of order	ed pairs (x,y) of intege	rs satisfying $x^3+y^3=6$	5 is

23. A pack of coffee powder contains a mixture of x gms of coffee and y gms of

	(A) 0	(B) 2	(C) 4	(D) 6	
32.	$\frac{2}{x-1} \leq 0$ then $x \in$				
	(A) $(-\infty,1)$	(B) $(1,\infty)$	(C) (-1,1)	(D) ϕ	
33.	If $ x-2 \geq x-4 $ then	$x\in \dots$			
	(A) [2,4]	(B) $[3,\infty)$	(C) [3,6]	(D) $[-4, -2]$	
34.	$\left x+rac{1}{x} ight \geq 2$ then $x\in$				
	(A) $R - \{0\}$	(B) $R - \{\pm 1\}$	(C) R	(D) 0	
35.	The solution set of $x < (A) (2.5)$		(C) (2 E)	(D) [2 E]	
26	(A) (2,5)	(B) [2,5)	(C) (2,5]	(D) [2,5]	
30.	The solution set of $\frac{x^2}{x^2}$			(=)	
	(A) 0	(B) $(-1,1)$	(C) ϕ	(D) R	
37.	If $ x-2 \ge 8$ then $x \in$		(D) (D) (10)		
	(A) $(-6,10)$		(B) $(-\infty, -6) \cup (10, \infty)$		
20	(C) $(-\infty, -6) \cup (10, \infty)$	< 0 :-	(D) $(-\infty, -6] \cup [10, \infty)$		
56.	The solution set of x^2 (A) $[-3,3]$	≤ 9 IS	(B) (-3,3)		
	(C) $(-\infty, -3) \cup (3, \infty)$		(D) ϕ		
39.	\cdot The solution set of $x^2 \leq 4$ is				
	(A) $[-2,2]$	(B) $(-2,2)$	(C) $(-\infty,-2]\cup[2,\infty)$	(D) Ø	
40.	The number of order	ed pairs (a,b) of posit	· · · · · · · · · · · · · · · · · · ·	$\frac{2a-1}{a}$ and $\frac{2b-1}{a}$	
	The number of ordered pairs (a,b) of positive integers such that $\frac{2a-1}{b}$ and $\frac{2b-1}{a}$ are both integers is				
	(A) 1	(B) 2	(C) 3	(D) more than 3	
*	Given section consists of questions of 2 marks each. [6]				
41.	Solve the inequality $\frac{(2x-1)}{3} \ge \frac{(3x-2)}{4} - \frac{(2-x)}{5}$ for real x.				
	The marks obtained by a student of Class XI in first and second terminal				
	examinations are 62 and 48, respectively. Find the minimum marks he should get				
40		in the annual examination to have an average of at least 60 marks.			
43.	. Find all pairs of consecutive odd natural number, both of which are larger than 10, such that their sum is less than 40.				
	F				
*	Given section consists	of questions of 3 mar	rks eacn.	[36]	

44. A manufacturer has 600 litres of a 12% solution of acid. How many litres of a

30% acid solution must be added to it so that acid content in the resulting

Page 4

mixture will be more than 15% but less than 18%?

- 45. Solve the inequality and show the graph for the solution on number line: 5x 3> 3x - 5
- 46. Solve the inequality and show the graph for the solution on number line: $\frac{x}{2} \ge \frac{(5x-2)}{3} \frac{(7x-3)}{5}$
- 47. Ravi obtained 70 and 75 marks in first two unit tests. Find the minimum marks he should get in the third test to have an average of at least 60 marks.
- 48. To receive Grade 'A', in a course, one must obtain an average of 90 marks or more in five examinations (each of 100 marks). If Sunita's marks in first four examinations are 87, 92, 94. and 95, find minimum marks that Sunita must obtain in fifth examination to get Grade 'A' in the course.
- 49. The longest side of a triangle is 3 times the shortest side and the third side is 2 cm shorter than the longest side. If the perimeter of the triangle is at least 61 cm. Find the minimum length of the shortest side.
- 50. A man wants to cut three lengths from a single piece of board of length 91cm. The second length is to be 3cm longer than the shortest and the third length is to be twice as long as the shortest. What are the possible lengths of the shortest board if the third piece is to be at least 5cm longer than the second? [Hint: If x is the length of the shortest board, then x , (x + 3) and 2x are the lengths of the second and third piece, respectively. Thus, $x + (x + 3) + 2x \le 91$ and $2x \ge (x + 3) + 5$].
- 51. Solve the inequality and represent the solution graphically on number line: 5 (2x -7) -3 (2x +3) ≤ 0 , 2x $+19 \le 6x + 47$.
- 52. A solution is to be kept between 68°F and 77°F. What is the range of temperature in degree Celsius (C) if the Celsius / Fahrenheit (F) convension formula is given by $F=\frac{9}{5}C+32$
- 53. In an experiment, a solution of hydrochloric acid is to be kept between 30° and 35° Celsius. What is the range of temperature in degree Fahrenheit if conversion formula is given by $C = \frac{5}{9}$ (F 32), where C and F represent a temperature in degree Celsius and degree Fahrenheit, respectively.
- 54. A company manufactures cassettes and its cost and revenue functions for a week are $C=300+\frac{3}{2}x$ R = 2x respectively, where x is the number of cassettes produced and sold in a week. How many cassettes must be sold for the company to realize a profit?
- 55. A solution is to be kept between 86° and 95°F. What is the range of temperature in degree Celsius, if the Celsius (C)/ Fahrenheit (F) conversion formula is given by $F = \frac{9}{5}C + 32$.

- * Given section consists of questions of 5 marks each.
- 56. A solution of 8% boric acid is to be diluted by adding a 2% boric acid solution to it. The resulting mixture is to be more than 4% but less than 6% boric acid. If we have 640 litres of the 8% solution, how many litres of the 2% solution will have to be added?
- 57. How many litres of water will have to be added to 1125 litres of the 45% solution of acid so that the resulting mixture will contain more than 25% but less than 30% acid content?
- 58. A solution of 9% acid is to be diluted by adding 3% acid solution to it. The resulting mixture is to be more than 5% but less than 7% acid. If there is 460 litres of the 9% solution, how many litres of 3% solution will have to be added?
- 59. The water acidity in a pool is considerd normal when the average pH reading of three daily measurements is between 8.2 and 8.5. If the first two pH readings are 8.48 and 8.35, find the range of pH value for the third reading that will result in the acidity level being normal.

* Case study based questions

[8]

60. Shweta was teaching "method to solve a linear inequality in one variable" to her daughter.

Step I Collect all terms involving the variable (x) on one side and constant terms on other side with the help of above rules and then reduce it in the form ax < bor ax < b or ax > b or ax > b.

Step II Divide this inequality by the coefficient of variable (x). This gives the solution set of given inequality.

Step III Write the solution set.

Based on above information, answer the following questions.

- (i) The solution set of 24x < 100, when x is a natural number is
 - (a) $\{1,2,3,4\}$ (b) (1,4)

- (c) [1,4] (d) None of these
- (ii) The solution set of 24100x <, when x is an integer is
 - (a) $\{\ldots -4, -3, -2, -1, 0, 1, 2, 3, 4\}$ (b) $(-\infty, 4]$ (c) $[4, \infty]$ (d) None of the

- (iii) The solution set of -5x + 25 > 0 is
 - (a) $[5,\infty)$

above

- (b) $(-\infty, 5]$ (c) $(5, \infty)$ (d) $(-\infty, 5)$
- (iv) The solution set of 3x 5 < x + 7 is
 - (a) $(6, \infty)$
- (b) $[6,\infty)$ (c) $(-\infty,6)$ (d) $(-\infty,6]$

- (v) The solution set of $x + \frac{x}{2} + \frac{x}{3} < 11$ is

- (a) $(-\infty,6]$ (b) $(-\infty,6)$ (c) $[6,\infty)$ (d) None of these
- 61. A manufacturing company produces certain goods. The company manager used to make a data record on daily basis about the cost and revenue of these goods separately. The cost and revenue function of a product are given by C(x) = 20x + 4000 and R(x) = 60x + 2000, respectively, where x is the number of goods produced and sold.

Based on above information, answer the following questions.

- (i) How many goods must be sold to realise some profit?
- (a) x < 50
- (b) x > 50
- (c) $x \ge 50$
- (d) $x \le 50$
- (ii) If the cost and revenue functions of a product are given by C(x) = 3x + 400and R(x) = 5x + 20 respectively, where x is the number of items produced by the manufacturer, then how many items must be sold to realise some profit?
- (a) $x \le 190$
- (b) $x \ge 190$
- (c) x < 190
- (d) x > 190
- (iii) Let \mathbf{x} and \mathbf{b} are real numbers. If $\mathbf{b} > \mathbf{0}$ and $\mathbf{x} < \mathbf{b}$, then
- (a) x is always positive
- (b) X is always negative
- (c) x is real number
- (d) None of these
- (iv) The solution set of $\mathbf{3} \mathbf{5} < \mathbf{x} + \mathbf{7}$, when \mathbf{x} is a whole number is given by
- (a) $\{0,1,2,3,4,5\}$
- (b) $(-\infty, 6)$
- (c) [0,5]
- (d) None of these
- (v) Graph of inequality x > 2 on the number line is represented by

(d) None of the above

---- "If you are working on something that you really care about, you don't have to

