Particular Integrals

So far we've always had 0 in the RHS of the differential equation. What if we have some function in terms of x?

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$$

When the RHS is not 0, we have a **non-homogeneous** second order differential equation.

Solve $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = \mathbf{0}$ first to obtain what is known as the **complementary function**. (C.F.)

Then solve $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$ which can be found using appropriate substitution and comparing coefficients. Solution known as particular integral. (P.I.)

Forms of PI's to use

Form of $f(x)$	Form of particular integral	
k	λ	
ax + b	$\lambda + \mu x$	
$ax^2 + bx + c$	$\lambda + \mu x + \nu x^2$	
ke ^{px}	λe^{px}	
$m\cos\omega x$	$\lambda \cos \omega x + \mu \sin \omega x$	
$m \sin \omega x$	$\lambda \cos \omega x + \mu \sin \omega x$	
$m\cos\omega x + n\sin\omega x$	$\lambda \cos \omega x + \mu \sin \omega x$	

$$=5e^{3x}$$

WARNING!

The particular integral must not contain any term in the complementary function. If it does, you'll need to add an x and possibly even an x² in front of your usual PI form

Find the **particular integral** of the differential equation
$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 3$$

P. T. Try
$$y = \lambda$$

$$0 - 5 \times 0 + 6\lambda = 3$$

$$6\lambda = 3$$

$$4y = 0$$

$$\frac{d^2y}{dx^2} = 0$$
 P.I. is $y = \frac{1}{2}$

Hence find the **general solution** of the differential equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 3$

Find the C.F.

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$$

A.E. $m^2 - 5m + 6 = 0$
 $(m-3)(m-1) = 0$
 $m=3 \ m=2$

C.F. $y = Ae^{3x} + Be^{2x}$

G.S.
$$y = CF + PI$$

 $y = Ae^{3x} + Be^{2x} + \frac{1}{2}$

Form of $f(x)$	Form of particular integral	
k	λ	
ax + b	$\lambda + \mu x$	
$ax^2 + bx + c$	$\lambda + \mu x + \nu x^2$	
ke ^{px}	λe^{px}	
$m\cos\omega x$	$\lambda \cos \omega x + \mu \sin \omega x$	
$m \sin \omega x$	$\lambda \cos \omega x + \mu \sin \omega x$	
$m\cos\omega x + n\sin\omega x$	$\lambda \cos \omega x + \mu \sin \omega x$	

Find the **general solution** of the differential equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 2x$

$$m^{2} - 5m + 6 = 0$$

 $(m - 2)(m - 3) = 0$
 $m = 2, m = 3$

CF is
$$y = Ae^{2x} + Be^{3x}$$

P. I. Try
$$y = \lambda x + \mu$$

$$\frac{dy}{dx} = \lambda$$

$$0-5\lambda+6\lambda x+6\mu=2x$$

$$6\lambda = 2$$

$$\lambda = \frac{1}{3}$$

const:
$$-5\lambda + 6\mu = 0$$

 $-\frac{5}{3} + 6\mu = 0$
 $6\mu = \frac{5}{3}$
 $M = \frac{5}{18}$

Find the **general solution** of the differential equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 3x^2$

$$m^{2} - 5m + 6 = 0$$

 $(m - 2)(m - 3) = 0$
 $m = 2, m = 3$

CF is
$$y = Ae^{2x} + Be^{3x}$$

P.I.
$$y = ax^2 + bx + c$$

$$\frac{dy}{dx} = 2ax + b$$

$$\frac{d^2y}{dx^2} = 2a$$

Subin
$$2a - 10ax - 5b + 6ax^2 + 6bx + 6c = 3x^2$$

compare x^2 : $6a = 3$
 $a = \frac{1}{2}$

$$x: -10a + 6b = 0$$

$$-5 + 6b = 0$$

$$6 = \frac{5}{6}$$

con:
$$2a - 5b + 6c = 0$$

 $1 - \frac{25}{6} + 6c = 0$
 $6c = \frac{19}{6}$
 $c = \frac{19}{36}$

Form of
$$f(x)$$

$$k$$

$$ax + ax^2 + bx$$

$$ke^{px}$$

$$m \cos a$$

$$m \sin a$$

6.5.
$$y = Ae^{2x} + Be^{3x} + \frac{1}{2}x^2 + \frac{5}{6}x + \frac{19}{36}$$

Find the **general solution** of the differential equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = e^x$

$$m^{2} - 5m + 6 = 0$$

 $(m - 2)(m - 3) = 0$
 $m = 2, m = 3$

CF is
$$y = Ae^{2x} + Be^{3x}$$

Try
$$y = \lambda e^{x}$$

$$\frac{dy}{dx^{2}} = \lambda e^{x}$$

$$\lambda e^{x} - 5\lambda e^{x} + 6\lambda e^{x} = e^{x}$$

$$2\lambda = 1$$

$$\lambda = \frac{1}{2}$$

$$6.5. \quad y = Ae^{2x} + Be^{3x} + \frac{1}{2}e^{x}$$

Form of
$$f(x)$$
 k
 $ax + b$
 $\lambda + \mu x$
 $ax^2 + bx + c$
 ke^{px}
 $m\cos \omega x$
 ke^{px}
 ke^{px

Find the **general solution** of the differential equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 13 \sin 3x$

$$m^{2} - 5m + 6 = 0$$

 $(m - 2)(m - 3) = 0$
 $m = 2, m = 3$

CF is
$$y = Ae^{2x} + Be^{3x}$$

P. I. Try
$$y = a \sin 3x + b \cos 3x$$

$$\frac{dy}{dx} = 3a \cos 3x - 3b \sin 3x$$

$$\frac{d^2y}{dx^2} = -9a \sin 3x - 9b \cos 3x$$

comp.
$$-9a + 15b + 6a = 13$$

 $-3a + 15b = 13$
 $-9b - 15a + 6b = 0$
 $-15a - 3b = 6$
 $a = -\frac{1}{6}$ $b = \frac{5}{6}$.

Form of $f(x)$	Form of particular integral
k	λ
ax + b	$\lambda + \mu x$
$ax^2 + bx + c$	$\lambda + \mu x + \nu x^2$
ke ^{px}	λe ^{px}
$m\cos\omega x$	$\lambda \cos \omega x + \mu \sin \omega x$
$m \sin \omega x$	$\lambda \cos \omega x + \mu \sin \omega x$
$m\cos\omega x + n\sin\omega x$	$\lambda \cos \omega x + \mu \sin \omega x$

Obderd

$$y = \lambda x e^{2x}$$

$$dy = 2\lambda x e^{2x} + \lambda e^{2x}$$

$$dx = 4\lambda x e^{2x} + 2\lambda e^{2x} + 2\lambda e^{2x}$$

$$dx = 4\lambda x e^{2x} + 4\lambda e^{2x}$$

$$4\lambda x e^{2x} + 4\lambda e^{2x} - 10\lambda x e^{2x} - 5\lambda e^{2x} + 6\lambda x e^{2x} = e^{2x}$$

$$-\lambda e^{2x} = e^{2x}$$

$$\lambda = -1$$

$$6.5. \quad y = Ae^{2x} + Be^{3x} - xe^{2x}$$

Find the **general solution** of the differential equation $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} = 3$

$$m^2 - 2m = 0$$

 $m = 0$
 $m = 2$

$$M = 0$$
 $M = 0$
 $M =$

P.I. Try y= ax

$$y = ax$$

 $\frac{dy}{dx} = a$ $a = -\frac{3}{2}$ $\frac{dy}{dx} = 0$

$$a=-\frac{3}{2}$$

G.S. $y = A + Be^{2\pi} - \frac{3}{2}\pi$

$$y = (A + B\pi)e^{3x}$$
 $\frac{d^{2}y}{dx^{2}}$ $\frac{dy}{dx} + y = e^{3x}$ $(ny)e^{3x}$ $(ny)e^{3x}$

(a) Find the value of λ for which $y = \lambda x \sin 5x$ is a particular integral of the differential equation (4 marks)

$$\frac{d^2y}{dx^2} + 25y = 3\cos 5x$$

(b) Using your answer to part (a), find the general solution of the differential equation (3 marks)

$$\frac{d^2y}{dx^2} + 25y = 3\cos 5x$$

8(a)	Differentiate twice and obtaining $\frac{dy}{dx} = \lambda \sin 5x + 5\lambda x \cos 5x \text{ and } \frac{d^2y}{dx^2} = 10\lambda \cos 5x - 25\lambda x \sin 5x$	M1 A1
	Substitute to give $\lambda = \frac{3}{10}$	M1 A1
(b)	Complementary function is $y = A\cos 5x + B\sin 5x$ or $Pe^{5ix} + Qe^{-5ix}$	M1 A1
	So general solution is $y = A\cos 5x + B\sin 5x + \frac{3}{10}x\sin 5x$ or in exponential form	A1ft

June 2012 Q4

Find the general solution of the differential equation

Be warned: x is being used here as y was previous used.

$$\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 6x = 2\cos t - \sin t$$

$$A \in \mathbb{R}^2 + 5m + 6 = 0$$

$$M = -2, m = -3$$

$$CF \cdot \frac{dx}{dt} = -a \sin t + b \cos t$$

$$\frac{d^2x}{dt} = -a \cos t - b \sin t$$

$$\frac{d^2x}{dt} = -a \cos t - b \sin t$$

$$-a \cos t - b \sin t - 5a \sin t + 5b \cos t + b a \cos t + 6b \sin t = 2 \cos t - 5 \sin t$$

$$-a + 5b + 6a = 2$$

$$5a + 5b = 2$$

Exercise 7C First column of 1, then rest of the questions