Estatística Computacional

Patrícia de Siqueira Ramos

PPGEAB UNIFAL-MG

21 de Março de 2018

Conteúdo programático

- Introdução ao R
- Geração de variáveis aleatórias uniformes
- Geração de variáveis aleatórias não uniformes
- Geração de variáveis aleatórias multidimensionais
- Algoritmos para médias, variâncias e covariâncias
- Aproximação de distribuições
- Métodos de reamostragem (bootstrap, jackknife)

Bibliografia

DALGAARD, P. Introductory Statistics with R. Springer, 2002.

R CORE TEAM. **R**: A Language and Environment for Statistical Computing. Vienna, Austria, 2018. Disponível em: http://www.R-project.org/.

JAMES, G. W.; HASTIE T.; TIBSHIRANI R. **An introduction to statistical learning**: with applications in R: Springer-Verlag New York, 2013.

VENABLES, W. N.; RIPLEY, B. D. **Modern Applied Statistics with S-Plus**. Springer Science & Business Media, 2013.

Avaliação

- Listas
- Trabalho prático
- Avaliação?

Estatística Computacional

- O uso de computadores em Matemática e Estatística possibilitou o estudo de técnicas para resolver problemas antes "intratáveis"
- Estatística Computacional e Computação Estatística duas áreas na Estatística que podem ser descritas como abordagens computacionais, gráficas e numéricas para resolver problemas estatísticos
- Ambas envolvem diretamente ou indiretamente a aleatoriedade e simulação

Estatística Computacional

- Muitas vezes, as propriedades de um modelo estocástico podem ser obtidas experimentalmente, por meio do uso de um computador que simule muitas réplicas do modelo e da análise do resultado obtido
- Esses métodos são denominados "métodos de Monte Carlo" e é um dos principais tópicos em Estatística Computacional
- Além disso, em muitos problemas, as aproximações assintóticas são insatisfatórias ou intratáveis

1 Introdução ao R

1.1 Apresentação do R

Por que usar R?

- código aberto e livre
- qualidade comercial (escolhido por estatísticos e não estatísticos)
- popularidade crescente
- poderoso
- possibilidade de criação de pacotes
- novidades frequentes (alguns métodos estatísticos são disponibilizados primeiro no R)

Como usar o R

- Linguagem interpretada e não compilada

- Editores:
 - editor próprio do R
 - RStudio (ótima opção)
 - outros editores (como o Tinn-R)

 Link com dicas para baixar o R e o RStudio: http://www.analisededadosempython.org/r.html

Uso do R

- Console: é por onde nos comunicamos com o R e o prompt é o sinal >
- Podemos escrever os comandos diretamente no console ou usar um script e ir executando os comandos com CTRL R ou CTRL ENTER
- O R é bom em aritmética. Exemplos:

```
265 + 343
123 * 45
375 / 12
73 ^ (1 / 3)
```

- Se você pedir ajuda, os resultados aparecerão na janela de informações. Exemplo:
 - > ?mean

Uso do R

- Atribuição: pode-se utilizar o sinal de '=' ou '<-' (vamos utilizar o '=' para facilitar a conversão para outras linguagens)
- Vários comandos em uma mesma linha: separar usando ;
- Limpar console: CTRL L
- Comentários: usar #
- Variáveis:

```
produto = 15.3 * 23.4 # salva resultado na variável produto # mostra variável x = 45; y = 5; z = x / y z # outra opção (z = x / y) # armazena e já mostra o valor de z
```

Dicas

- O R é case-sensitive (diferencia maiúsculas e minúsculas)
- O RStudio te ajuda na edição dos comandos, já fechando parêntese, chave etc. que você abriu. Ele também cuida da indentação
- O uso de TAB pode agilizar! O RStudio vai mostrar uma lista de opções para completar o comando. Pressione TAB para escolher sua opção
- Se aparecer + no lugar de > significa que o R está esperando algo (ou você se esqueceu de fechar um parêntese ou cometeu algum erro de sintaxe). Pressione ESC para retornar tudo ao normal

Funções muito usadas no R

descrição	R	
raiz quadrada	sqrt	
logaritmo natural	log	
exponecial <i>e^x</i>	exp	
fatorial	factorial	
números aleatórios uniformes	runif	
números aleatórios normais	rnorm	
distribuição normal	pnorm, dnorm, qnorm	
ordenar	sort	
variância, covariância	var, cov	
desvio padrão	sd	
correlação	cor	
tabelas de frequência	table	
valores faltantes	NA, is.na	

Tipos de objetos

- vetor: estrutura de uma dimensão (um só tipo de dados)
- matriz: estrutura de duas dimensões (um só tipo de dados)
- array: estrutura de três dimensões (várias matrizes)
- lista: uma coleção ordenada de objetos que podem ser de diferentes tipos, são mais gerais que os data frames
- data frame: n\u00e3o \u00e9 uma matriz, mas pode ser representada por uma tabela e pode conter diferentes tipos de dados

Obs.: como o R é uma linguagem vetorial é capaz de operar vetores e matrizes sem necessidade de *loops* (*for, while, repeat*)

Vetores

Vetores são o tipo básico e mais simples de objeto para armazenar dados no R:

```
(x = c(2, 3, 4, 5.1, 3.2))
1 / x # operações diretas com vetores
range(x)
length(x)
(y = 1:6)
x1 = seq(from = 1, to = 10, by = 0.5)
\# ou seq(1,10,0.5)
rep(x, each=5) # repete cada elemento 5 vezes
x5 = rep(x, times=5) # repete o vetor x 5 vezes
x5[1] # acessa primeiro elemento de x5
x5[4] = 9 # alterar o valor de um elemento do vetor
x5
seq(length=19, from=1, by=0.5) #tamanho, v.inicial, passo
seq(length=19, from=1, by=-0.5)
```

Exemplos de sintaxe para vetores e matrizes no R

descrição	R	exemplo
vetor de zeros	numeric(n)	x = numeric(n)
	integer(n)	x = integer(n)
	rep(0, n)	x = rep(0, n)
matriz de zeros	<pre>matrix(0, n, p)</pre>	x = matrix(0, n, p)
elem. i de um vetor ${f a}$	a[i]	a[i] = 0
col. j de uma matriz $oldsymbol{A}$	A[,j]	sum(A[,j])
elem. <i>ij</i> da matriz A	A[i,j]	x = A[i,j]

Vetores

```
w = c(TRUE, TRUE, TRUE, FALSE, TRUE, FALSE) # vetor lógico
# ou w = c(T, T, T, F, T, F) # vetor lógico
(x = c(1, 3, 5, 8, 9))
v = x > 5
V
z = !y # z é a negação de y
7.
w = x[x > 2] # vetor com elementos de x > 2
W
w1 = (x + 1)[x >= 3] # soma 1 aos elementos de x >= 3
พ1
which(x > 4) # retorna posições dos elementos que satisfazem
x[-2] # retira elementos dos índices com -
sample(1:100, 10, replace=T) # função sample
sample(c(2, 6, 5, 9, 3, 1, 7), 3, replace=T)
```

Matrizes

Matrizes: arranjos de duas dimensões (linhas e colunas):

- A * B: multiplicação elemento a elemento
- A % * % B: multiplicação matricial
- t(A): transposta
- diag(n): matriz identidade de dimensão n
- solve(A): inversa de A
- solve(A, b): solução de $\mathbf{A}\mathbf{x} = \mathbf{b}$
- rowMeans(A): devolve o vetor das médias por linha
- rowSums(A): devolve o vetor das somas por linha
- colMeans(A): devolve o vetor das médias por coluna
- colSums(A): devolve o vetor das somas por coluna

Exemplos com matrizes

```
(A = matrix(0, 3, 2)) # valor, n. linhas, n. colunas
(B = matrix(c(1, 2, 3, 4), 2, 2)) # por coluna
(C = matrix(c(1, 2, 3, 4), 2, 2, byrow=T)) # por linha
Operações e funções com matrizes:
B * C # multiplica elemento a elemento
A %*% B # efetua a multiplicação de matrizes
ncol(A); nrow(A) # retorna n. linhas e n. colunas, resp.
V = diag(A) # retorna a diagonal de A
A1 = solve(A) # inversa de A
# sistemas de equações
A = matrix(c(2,3,4,-2), 2, 2)
y = c(10, 5)
x = solve(A, y)
X
```

Exemplos de funções com matrizes

```
(m1 = matrix(1:6, nc=3))
# linhas
margin.table(m1, margin=1)
apply(m1, 1, sum)
rowSums(m1)
rowMeans(m1)
# columas
margin.table(m1, margin=2)
apply(m1, 2, sum)
colSums(m1)
colMeans(m1)
# solução de sistema
mat = matrix(c(1, 5, 2, 3, -2, 1, -1, 1, -1), nc=3)
vec = c(10, 15, 7)
solve(mat, vec)
# inversa
solve(mat)
```

Data frames

- Vetores e matrizes forçam todos os elementos a serem do mesmo tipo (numérico, caracter)
- O data frame é uma estrutura semelhante à matriz, porém, com cada coluna sendo tratada separadamente (mas, dentro de uma mesma coluna, todos os elementos ainda serão forçados a serem do mesmo tipo)

Data frames

```
# acesso aos elementos
# a) matriz
d1[2,2]
d1[,2]
d1[3,]
# b) lista
d1$X
d1$Y
# c) attach() - melhor não usar
attach(d1)
detach(d1)
```

Exercícios

- 1. Mostrar comandos que podem ser usados para criar os objetos ou executar as instruções a seguir:
- a) o vetor: [4 8 2]
- b) selecionar o primeiro e terceiro elemento do vetor acima
- c) o vetor com a sequência de valores: [-3 -2 -1 0 1 2 3]
- d) o vetor com a sequência de valores:
- [2.4 3.4 4.4 5.4 6.4 7.4 8.4 9.4 10.4]
- e) o vetor:
- [1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39]
- f) o vetor: [1 3 5 7 9 11 14 17 20]
- g) o vetor de sequência repetida: [1 1 1 2 2 2 3 3 3 4 4 4]
- h) o vetor de sequência repetida: [4 4 4 3 3 3 2 2 2 1 1 1]
- i) o vetor de elementos repetidos: [1 2 3 1 2 3 1 2 3 1 2 3]

Exercícios (cont.)

- j) a sequência de valores: [1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99]
- k) o vetor: [11 10 9 8 7 6 5 4 3 2 1]
- I) o vetor alfanumérico: ["Parana" "Sao Paulo" "Minas Gerais"]

2. Construa um dataframe com três colunas: x, x^2 e exp(x), com x variando de 0 a 50.

Exercícios (cont.)

3. A função sum(x) retorna a soma dos elementos do vetor x. A expressão z = rep(x, 10) faz o vetor z igual a uma sequência de 10 vetores x. Use estas e outras funções para calcular a soma dos 100 primeiros termos das séries:

a)
$$1 + 1/2 + 1/3 + 1/4 + \dots$$

b)
$$1 + 1/22 + 1/42 + 1/62 + 1/82 + \dots$$

c)
$$1/(1+1/1!)2 + 1/(1+1/2!)2 + 1/(1+1/3!)2 + \dots$$

Obs.: a função '!' no R é a factorial

Exercícios (cont.)

4. Crie o seguinte data frame no R:

```
nome idade altura peso
1
      Alex
               25
                      177
                             57
2
   Liliane
               31
                      163
                             69
3
               23
                            83
    Marcos
                      190
4
    Olivia
               52
                      179
                            75
5
     Marta
               76
                      163
                            70
6
     Lucas
               49
                      183
                             83
 Caroline
               26
                      164
                             53
```

- a) Usando a função row.names faça com que os nomes sejam os rótulos das linhas.
- b) Inclua a coluna "sexo" no data frame: "M", "F", "M", "F", "F", "M", "F".
- c) Inclua também a coluna "trabalho": "S", "N", "N", "S", "S", "S".
- d) Quantas linhas e colunas tem o novo conjunto de dados? Use a função apropriada para isso.
- e) Qual o tipo de dados de cada coluna (variável)? Use a função str.

