Algèbre 1 Corps

Question 1/14

Propriété de
$$\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$$

Réponse 1/14

 \mathbb{F}_p est un corps si et seulement si p est premier

Question 2/14

Groupe

Réponse 2/14

Muni d'une loi de composition interne, de l'associativité, d'un élément neutre et de symétriques

Question 3/14

Si K est un corps de caractéristique nulle Propriété pour les éléments de K

Réponse 3/14

$$\forall (n, x) \in \mathbb{Z} \times K, \ n \times x = 0_K \Leftrightarrow (x = 0_K \land n = 0)$$

Question 4/14

Image directe et réciproque de sous-corps par un homomorphisme

Réponse 4/14

Si K et L sont deux corps, et $f:K\to L$ un morphisme de corps, K' et L' deux sous-corps respectivement de K et L f(K') est un sous-corps de L $f^{-1}(L')$ est un sous-corps de K

Question 5/14

Si $(K, +, \times)$ est un groupe et $L \subset K$ Caractérisation des sous-corps

Réponse 5/14

$$1_K \in L \quad \forall (x,y) \in L, \ x-y \in L$$

 $\forall (x,y) \in L, \ y \neq 0 \Rightarrow xy^{-1} \in L$

Question 6/14

Anneau

Réponse 6/14

Muni de deux lois de composition internes (généralement notées + et \times) (A, +) est un groupe abélien (A, \times) est un monoïde

 \times est distributive sur +

Question 7/14

Si
$$(K, +, \times)$$
 est un corps
Un sous-ensemble L de K est un sous-corps de
 K

Réponse 7/14

L est stable pour les lois + et \times $1_K \in L$

Les lois induites sur L définissent sur L une structure de corps

Question 8/14

Si K est un corps, d'élément neutre $1_K \neq 0_K$, $H = \{n \times 1_K, n \in \mathbb{Z}\}$ le sous-groupe monogène de (K, +) engendré par 1_K Caractéristique d'un corps

Réponse 8/14

Si H est infini, K est de caractéristique nulle Si H est fini de cardinal p, K est de caractéristique p

Question 9/14

Soient
$$\left(A, +, \times \atop A, A\right)$$
 et $\left(B, +, \times \atop B, B\right)$ deux anneaux $f: A \to B$ est un homomorphisme d'anneaux

Réponse 9/14

$$\forall (x,y) \in A^2, \ f\left(x + y\right) = f(x) + f(y)$$

$$\forall (x,y) \in A^2, \ f\left(x \times y\right) = f(x) \times f(y)$$

$$f(1_A) = 1_B$$

Question 10/14

Propriété de la caractéristique d'un corps

Réponse 10/14

Si K est un corps de caractéristique p non nulle, p est premier

Question 11/14

Soient
$$\left(K, +, \times\right)$$
 et $\left(L, +, \times\right)$ deux corps $f: K \to L$ est un homomorphisme de corps

Réponse 11/14

f est un homomorphisme des anneaux de K et

Question 12/14

Propriété des homomorphismes de corps

Réponse 12/14

Un homomorphisme de corps est injectif

Question 13/14

Corps

Réponse 13/14

Muni de deux lois de composition internes (généralement notées + et \times) $(K, +, \times)$ est un anneau commutatif (K^*, \times) est un groupe

Question 14/14

Si K est un corps de caractéristique finie pPropriété pour les éléments de K

Réponse 14/14

$$\forall x \in K, \ px = 0_K$$