Coursera ML Notes

Stanford: Andrew Ng's "Machine Learning"

Lectures by Andrew Ng Notes by Matthew Low mattchrlw

December 22, 2019

Contents

1	Week 1
	1.1 Introduction
	1.2 Model and cost function
	1.3 Parameter learning
2	Week 2
	2.1 Multivariate linear regression
	2.2 Computing parameters analytically

1 Week 1

1.1 Introduction

Pretty simple stuff. House price example, news classification example etc. etc.

1.2 Model and cost function

Let $x^{(i)}$ denote the "input" variables/features, and $y^{(i)}$ denote the "output" or target variable we wish to predict. A pair $(x^{(i)}, y^{(i)})$ is called a **training example**, and the dataset that we'll be using to learn:

$$(x^{(i)}, y^{(i)}), \quad i = 1, \dots, m,$$

is called a **training set**. Superscript denotes an index into the training set, which isn't too bad notation when you start looking at gradient descent etc. For the purposes of this introductory course, we use X to denote the space of input values and Y to denote the space of output values, and $X = Y = \mathbb{R}$.

In supervised learning, the goal is given a training set to learn a function $h: X \to Y$ such that h(x) is a good predictor for y. h is called a **hypothesis** for historical reasons. Discrete \Longrightarrow classification, continuous \Longrightarrow regression (but it can be more complicated than that.

To measure the accuracy of our hypothesis function (in linear regression), we can use a **cost function**. In the context of linear regression, this cost function is least squares.

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2 \equiv \frac{1}{2} ||Hx - y||^2,$$

where H is some matrix but that isn't important for this since we are using Ng-otation and I just wanted to show it's OLS. The function is called the "squared error function", "mean squared error" or MSE. The mean is halved as a convenience for gradient descent (because the squared carries over to the fraction, useful for the normal equation). Since this function represents the cost, we wish to minimise it.

1.3 Parameter learning

We want to estimate the parameters in the hypothesis function, which is where **gradient** descent comes in. Graphing our hypothesis function as a function of the parameter estimates gives a surface. Gradient descent uses the fact that the gradient is the direction towards the minimum (very roughly speaking) to perform an iterative movement towards the minimum. I would write more detail about gradient descent but I'm literally doing a summer project on optimisation so I don't think there's much point, refer to my optimisation notes for more details. This algorithm gives an iterate

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1),$$

where j = 0, 1 represents the feature index number.

Update the parameters simultaneously, or else gradient descent won't work!

(Note: this fact would be obvious if we employed the gradient operator $\nabla J(\theta_0, \theta_1)$ instead of Ng's notation, but I digress.)

When specially applied to linear regression, we can obtain a new form of gradient descent. Replacing the cost function and hypothesis function, we obtain the following iterate:

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x_i) - y_i)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m ((h_\theta(x_i) - y_i)x_i)$$

These can both be verified with some calculus.

2 Week 2

2.1 Multivariate linear regression

Linear regression with multiple variables is also known as multivariate linear regression. In the more general case, we can have the following:

 $x_j^{(i)}$ value of feature j in the ith training example $x^{(i)}$ the input of the ith ith

the input of the *i*th training example

the number of training examples

the number of features

The multivariate form of this is

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n \equiv h_{\theta}(x) = \theta^{\top} x$$

where
$$\theta = \begin{pmatrix} \theta_0 & \theta_1 & \dots & \theta_n \end{pmatrix}$$
 and $x = \begin{pmatrix} x_0 & x_1 & \dots & x_n \end{pmatrix}^{\top}$.

For gradient descent in the multivariate case using Ng's notation we have the following iterate:

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)} - y^{(i)}) \cdot x_j^{(i)}, \quad \forall j \in \{0, \dots, n\}.$$

We introduce a practical trick for gradient descent called **feature scaling**. The idea is to ensure that features are on a similar scale, making gradient descent faster. We get every feature into approximately a $-1 \le x_i \le 1$ range. You can also perform **mean normalisation**, where we replace x_i with $x_i - \mu_i$ to make features have approximately zero mean, making sure not to apply to $x_0 = 1$ or anything like that. You can also divide by the standard deviation s_i instead of the range.

For gradient descent, we can also use something called the automatic convergence test. Declare convergence if $J(\theta)$ decreases by less than ε in one iteration, where ε is some small value. (It's difficult to choose this threshold value). If α is too small, we have a slow convergence rate, but if α is too large, we may not decrease on every iteration and thus may not converge.

We may also have a situation where we have polynomial regression. We can change the behaviour or curve of our hypothesis function by making it a quadratic, cubic or square root function (or any other form). For example, if our hypothesis function is $h_{\theta}(x) = \theta_0 + \theta_1 x$, we can create additional features based on x_1 to get a quadratic with $\theta_2 x_1^2$ or even a cubic with both $\theta_2 x_1^2$ and $\theta_3 x_1^3$ added.

2.2 Computing parameters analytically

We have been using iterative algorithms so far such as gradient descent, but for some problems we can solve for θ analytically. The **normal equation** formula (the Moore-Penrose pseudoinverse times y for the enlightened) is the solution to the problem

$$\theta = (X^{\top}X)^{-1}X^{\top}y.$$

There is no need to do feature scaling or any other bollocks with the normal equation. However, the normal equation has complexity $\mathcal{O}(n^3)$ and you may need to compute the inverse of $X^\top X$, so it can be really slow for large n.

Gradient Descent	Normal Equation
	No need to choose α
Needs many iterations	No need to iterate
$\mathcal{O}(kn^2)$	$\mathcal{O}(n^3)$ and inverse
Works well when n is large	

But look at the normal equation; we have an inverse. Not every matrix has an inverse. Using pinv in MATLAB gets around this in some fancy ways, but we should still be alarmed if $X^{\top}X$ is noninvertible, as there may be:

- Redundant features, where two features are very closely related (linearly dependent)
- Too many features $(m \le n)$. In this case, delete some features or use "regularisation".