MOUNTING STRUCTURE OF WIRING BOARD

Patent Number:

JP2001077527

Publication date:

2001-03-23

Inventor(s):

AZUMA MASAHIKO; KAWAI SHINYA; TOKUMITSU YOSHITERU

Applicant(s):

KYOCERA CORP

Requested Patent:

I JP2001077527

Application Number: JP19990245352 19990831

Priority Number(s):

IPC Classification:

H05K3/34; H01L23/12; H05K1/18; H05K3/28

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide the connection structure of a wiring board which can firmly maintain stable connection condition of the wiring board to an external circuit boar and decides extending over a long period and also maintain heat radiation of the wiring board and external circuit board.

SOLUTION: For this connection structure, a wiring board (package for storage of a semiconductor element, where a metallized layer 2 is made on the surface or inside a quadrangular ceramic insulating substrate 1 and also a first connection pad 3 is made on the rear, and an external circuit board C where a second connection pad 6 is made on the surface are mounted by brazing the first connection pad 3 and the second connection pad 6 via a plurality of connection terminals 4 consisting of solder, and the peripheral surface of the connecting terminal 4a positioned at the corner at least from among plural connection terminals 4 is covered with a nonconductive resin 12 layer 10 -150 &mu m of cover thickness.

Data supplied from the esp@cenet database - 12

		•
·		
	·	

€ 聯 ধ 盐 华 噩 ধ (12) (19) 日本国格群庁 (JP)

特開2001-77527 (11)特許出顧公開番号

(P2001-77527A)

				(43)公開日	平成13年3月23日(2001.	(1 2001 11321A) 平成13年3月23日(2001.3.23)
(51) Int CL.		4000000	. IA			デーマコート"(多略)
HO5K 3	/34	511	H05K		5 1 1	5E314
HO1L 23	/12			1/18	1	5E319
H05K 1	1/18	•		3/28	E	5E336
ĸ	82/		H01L		íz,	

金7頁) 0 審査請求 未請求 請求項の数2

(21)出觀器号	特原 平11-245352	EE3900000 YIMH(11)	00000633
			京セラ株式会社
(22) 出版日	平成11年8月31日(1999.8.31)		京都府京都市伏見区竹田島羽殿町6番地
		(72) 発明者	東昌彦
			鹿児島県国分市山下町1番4号 京セラ株
			式会社總合研究所內
		(72) 発明者	川井 信也
			旗児鳥県国分市山下町1番4号 京セラ株
			式会社総合研究所内
		(72) 発明者	高速 及形
			題児島県国分市山下町1番4号 京セラ株
			式会社総合研究所内
			最終頁行統《

配線基板の実装構造 34) [報股の名称]

配模基板および外部回路基板の放熱性を維持できる配線 【課題】配線基板を外部回路基板に対して、強固に且つ 長期にわたり安定した接続状態を維持できるとともに、 基板の接続構造を提供する。

収納用バッケージ)Bと、表面に第二の接続パッド6が ち、少なくとも角部に位置する接続端子4gの外周表面 形成された外部回路基板 Cとを第一の接続パッド3と第 二の接続パッド 6 とを半田からなる複数の接続端子4 を を被覆厚み10~150μmの非導電性樹脂12層にて 【解決手段】四角形状のセラミック絶縁基板 1の表面ま 一の接続パッド3を形成してなる配線基板(半導体素子 たは内部にメタライズ配線層 2 を形成し、かつ裏面に第 **介してロウ付して実装し、かつ複数の接続端子4の3**

【特許讃状の範囲】

内部にメタライズ配織層を形成し、かつ裏面に第一の接 パッドが形成された外部回路基板と、を前配第一の接続 バッドと前記第二の接続バッドとを半田からなる複数の 接続端子を介してロウ付して実装せしめる実装構造にお いて、前記複数の接続端子のうち、少なくとも角部に位 宜する接続端子の外剤表面を被覆厚みが10~200μ mの非導電性樹脂にて被覆したことを特徴とする配線基 【耐求項1】四角形状の絶縁基板の表面および/または 続パッドを形成してなる配線基板と、表面に第二の接続 板の実装構造。

P aであることを特徴とする請求項1の配線基板の実装 【請求項2】前記非導電性樹脂のヤング率が1~30G

[発明の詳細な説明]

板とメタライズ配線層により構成され、かつ接続端子を 【発明の属する技術分野】本発明は、例えばセラミック やガラスセラミックあるいは有機樹脂を含有する絶縁基 を、例えばブリント基板等の外部回路基板の表面に実装 具備する半導体素子収納用パッケージなどの配線基板 した配線基板の実装構造に関するものである。゛

[0002]

基板としてアルミナに代表されるセラミックあるいはガ 板の上面中央部には、半導体繋子が配設され、有機樹脂 【従来技術】配線基板はセラミック、ガラスセラミック スまたは有機樹脂系の絶縁基板の表面あるいは内部、あ るいはその双方にメタライズ配線層が配設された構造か らなり、代表例として、半導体案子、特にLSI等の半 単体素子を収容するための半導体素子収納用バッケージ が挙げられる。 半導体素子収納用パッケージは、絶縁 る。例えば、アルミナを用いた半導体繋子収納用バッケ ージは、例えば、その表面および内部にWやM 0 等のメ タライズ配線層が散けられ、さらに底面には、外部回路 基板との接続パッドが形成される。さらに、その絶縁基 からなるアンダーフィル層によってパッケージBに接着 ラスセラミック、さらには有機樹脂等が用いられてい

導体素子の接続パッドとパッケージの接続パッドとをワ 【0003】あるいは、絶縁基板の上面中央部に、半導 体発子を戴置し収容するためのキャビティを形成し、こ のキャピティ内に半導体紫子を戴置し、有機樹脂によっ て固定した後、蓋体によって気密封止するとともに、半 イヤ等によって接続した構成も好適に用いられる。 焼した構成からなる。

基板表面の接続パッドとを接続端子を介して電気的に接

固定されてるとともに、半導体案子の接続バッドと絶縁

基板との接続用端子電極数も増大する。ところが、電極 それに形成される電極数も増大するが、これに伴い、こ [0004]一般に半導体繋子の集積度が商まるほど、

枚を増大させるとパッケージの大型化を招くため、パッ **ァージの小型化への要求と相まって、バッケージの接続** 日端子紅極の形成密度を高くする必要がある。 [0005] かかる市場要求において、パッケーシの下

A)やボール状の半田からなる接続端子を用いた、いわ ソの4つの側面に導出されたメタライズ配線層にガルウ チップ実装したチップサイズバッケージ(CSP)、さ らに絶縁基板の下面にクリーム半田からなる接続端子を **かるボールグリッドアレイ(BGA)等があり、これら** 国にコパールなどの金属とンを接続したとングリッドア イング状(L字状)の金属ピンが接続されたタイプのク フッドコラットバッケージ (OFP)、 バッケージの4 **しの側面に電極パッドを備え、リードピンがないリード** レスチップキャリア (LCC)、Siチップをフリップ b数配置した、いわゆるランドグリッドアレイ(LG ノイ(P G A) が製品化されているが、最近、パッケ

[0006] このボールグリッドアレイ (BGA) によ れば、接続用電極に半田などのロウ材からなる接続端子 をロウ付けし、この接続端子を外部回路基板の配線導体 00℃で加熱溶腫し、接続端子を配線導体に接合させる ことによって外部回路基板上に実装している。かかる実 被構造により、半導体案子収納用バッケーシの内部に収 **写されている半導体素子はその各型極かメタライズ配線** 上に戴置当接させ、しかる後、上記端子を約250~4 **對および接続用電極を介して外部回路に低気的に接続さ** の中でもBGAが最も高密度化が可能である。

[0000]

至り、配舗基板やパッケーシをプリント基板に長期にわ たり安定に電気的接続させることができないという問題 び停止の繰り返しによって、熱応力が絶縁基板と外部回 【発明が解決しようとする課題】しかしながら、上記配 **県基板の実装構造では、半導体案子作動時に発する熟が** 8段基板とブリント基板の両方に繰り返し印加され、こ 5大きな敷応力が発生する。特に、端子数が300を超 えるバッケージや、大型のバッケージでは、その熱応力 の影響が大きくなり、そのため、半導体繋子の作動およ 路基板との間の半田からなる接続端子に作用し、その結 **果、接続端子、および接続端子と絶縁基板との界面、接 党端子と外部回路基板との界面にクラックや剥離が発生** して虹気的接続が損なわれたり、場合によっては破壊に れにより絶縁基板とプリント基板との熟膨張豊に起因す

【0008】特に、これらのバッケージに使用される絶 镀係数は約4~7ppm/℃程度であるのに対して、パ のセラミックあるいはガラスセラミック絶縁基板の熱膨 録基板として、セラミックあるいはガラスセラミックを 用いた場合には、強度や気密封止性、あるいはメタライ **≙に打く高い価額性が得られているが、しかし、いれら**

が形成されたもの)の熱膨張係数は11~18ppm/ るプリント基板(ガラスーエポキシ絶縁層にCu配線層 や剥離が発生し、配線基板やバッケージをプリント基板 でと非常に大きいため、双方間の大きな熱膨暖係数差に ッケージに実装される外部回路基板として多用されてい に長期にわたり安定に電気的に接続させることができな よって、大きな熟応力が発生する結果、上述のクラック

リコン系の半導体案子(熟膨張係数2~3 p p m/℃程 ても、絶縁基板とバッケージとの熟膨張係数は小さいも ジと外部回路基板との間に応力集中が発生して、バッケ 度)であり、半導体漿子とバッケージとの熱膨張係数差 のの、バッケージ表面に実装される半導体累子、特にシ 一ジが外部回路基板から剝離する恐れがあった。 【0009】また、有機樹脂を含有する絶縁基板におい に起因してバッケージが半導体素子側に反り、バッケー

路基板との熱膨張蓋に起因するクラックや割離を防止す 続界面での接続を強固にでき、上述の絶縁基板と外部回 われ、配線基板に搭載された半導体素子等の温度が上昇 によってバッケージから外部回路基板への放熱性が損な ることはできるものの、低熱伝導性のアンダーフィル層 た、いわゆるアンダーフィル層を設けることも検討され 接続端子を除く全ての領域に非導電性の樹脂を充填し して誤作動するという問題があった。 ているが、この方法によれば、接続端子部およびその接 【0010】そこで、絶縁基板と外部回路基板との間の

強化すると、樹脂を設けない部分に応力集中が生じ、こ は、バッケージにおける絶録基板と接続端子との接合面 の部分でクラックや剥離が発生してしまう恐れがあっ ものの、接続増子の一部のみに樹脂を設けて接続状態を つ配線基板の放熟性を維持できることが関示されている **端子との界面に発生するクラックや剝離を防止でき、か** 近傍のみに非導電性樹脂層を形成して、絶縁基板と接続 【0011】また、特妻平5-508736号公報で

接続、実装する配線基板の実装構造において、強固に且 等の外部回路基板上に、半田からなる接続端子を介して 有機樹脂系などの絶縁基板の表面および/または内部に する配線基板の実装構造を提供することを目的とする。 に、配線基板の高い放熟性を維持できる高い信頼性を有 つ長期にわたり安定した接続状態を維持できるととも メタライズ配線層を被着形成した配線基板をプリント核 【0012】したがって、本発明は、セラミックまたは [0013]

いて検討した結果、前記接続端子のうち、少なくとも角 基板表面に半田からなる接続端子を介して実装構造につ 子収納用バッケーシ等の四角形状の配線基板を外部回路 披覆することにより、配線基板と外部回路基板とを接続 部に位置するものの外周表面を非導電性樹脂層によって 【課題を解決するための手段】本発明者らは、半導体素

> する接続端子部付近の接続強度を高めて、上述した応力 基板の放熟性を維持できることを見いだした。 集中によるクラックや影雕の発生を防止でき、かり配縛

を形成してなる配線基板と、表面に第二の接続バッドが は、四角形状の絶縁基板の表面および/または内部にメ 記複数の接続端子のうち、少なくとも角部に位置する接 前記第二の接続パッドとを半田からなる複数の接続端子 形成された外部回路基板と、を前記第一の接続バッドと タライズ配線層を形成し、かつ裏面に第一の接続パッド 続増子の外周表面を被覆厚みが10~200μmの非導 を介してロウ付して実装せしめる実装構造において、前 $\sim 30G$ paであることが望ましい。 【0015】ここで、前記非導電性樹脂のヤング率が 電柱樹脂層にて被覆したことを特徴とするものである。 【0014】すなわち、本発明の配線基板の実袋構造

[0016]

は、それぞれ半田からなる接続端子4が取着されてい バッド3が配設され、さらに第一の接続バッド3表面に され、また、バッケージBの裏面には複数の第一の接続 メタライズ配線層 (以下、配線層と略す。)2 が配線 基板(以下、絶縁基板と略す。)1の表面および内部に す。図1によれば、半導体素子収納用パッケージ(以 造について、その代表的な例である半導体素子収納用ノ゙ セラミックスまたは有機樹脂を含有する四角形状の絶縁 ッケージの実装構造の一例についての概略断面図を示 【発明の実施の形態】図 1 に本発明の配線基板の実装権 . バッケージと略す。) Bは、セラミックス、ガラス

増子4がクリーム半田からなる、いわゆるランドグリッ ある、いわゆるボールグリッドアレイ(BGA)型のバ ッケージを用いた場合の実装構造を示しているが、接続 て、Aは半導体素子、Cは外部回路基板である。 ドアレイ (LGA) であってもよい。また、図1 におい 【0017】なお、図1では、接続端子4が球状端子で

甚を小さくするために、セラミックスやガラス等のフィ 属を含む導体からなり、また、絶縁基板との熱膨張係数 **商融点半田を含むことによって接続端子の密度を向上さ** n系半田のうちの少なくとも1種からなり、ボール状の 华田、Sn-Ag系华田、Sn-Cu系半田、Sn-Z Pb-Sn系の共晶半田、Sn成分の割合が多い高融点 ラーを添加することが望ましい。また、接続端子4は、 1、Ni、Pb-Snから選ばれた少なくとも1種の金 【0018】第一の接続パッド3は、Cu、Au、A

り、その接続部周りは通常、ビスフェノール型エポキシ と半田からなる接続端子8により電気的に接続されてお れており、バッケーシBの表面のメタライズ配線層11 樹脂、ノボラック型エボキシ樹脂などの熱硬化性樹脂な 導体衆子Aは、その底面に複数の接続パッド7が散けら 【0019】また、バッケージBの表面に実装される半

> なお、このバッケージBに実装された半導体素子Aは、 らなるアンダーフィル層 9 を形成して補強されている。 ることによりその内部に気密に封止される(図示せ 止されるか、または蓋体をバッケージBの表面に接合す 熟硬化性樹脂によってバッケージB表面において樹脂封

形成されたものである。なお、表面をAuやAu-Ni などの有機樹脂を含む材料等からなる絶縁基体5の表面 み、さらにはフィラー成分としてガラスなどを含む、ガ 樹脂から選ばれる少なくとも1種の熟硬化性樹脂を含 毎のメッキ層によった被覆したもよい。 少なくとも 1種の金属を含む第二の接続パッド 6 が被着 に、Cu、Au、Al、Ni、Pb-Snから選ばれた ラスーエポキシ樹脂、ガラスーポリイミド樹脂複合材料 樹脂、アラミド樹脂、ポリイミド樹脂、ポリオレフィン ト基板などの有機樹脂としてエポキシ樹脂、フェノール

3 と、外部回路基板Cの第二の接続パッド 6 とを、パッ することにより、バッケージBが外部回路基板C表面に ケージBに取着された接続端子 4 を介して電気的に接続

お、本発明における樹脂層12の被覆厚みは、接続端子 止して半導体案子Aの誤作動を防止することができる。 Bおよび外部回路基板Cの放熱を阻害することがなく、 クや駅艦を防止することができるとともに、バッケーシ 続パッド 6 と接続端子 4 との界面付近に発生するクラッ 接続端子4との界面、および外部回路基板Cの第二の接 する接続端子4、バッケージBの第一の接続バッド3と ケージBと外部回路基板Cとの熱度張差に起因して発生 り被覆することが大きな特徴であり、これによってバッ みの非導電性樹脂層(以下、樹脂層と略す。) 10によ くとも角部に位置する接続端子4gの外周表面を特定厚 による接着強度向上の効果が十分でなく、逆に、150 高さの中央部での樹脂層10の厚みの意である。すなた さらには $30\sim80\mu$ mであることが重要である。な 按整件の点に10~150μm、特に20~90μm **膨張差に起因するクラックや剥離を防止する点、およひ** 接続端子 4 付近のバッケージBと外部回路基板Cとの敷 バッケージBに実装される半導体素子Aの温度上昇を防 発生するとともに、配線基板の放熱性が低下する。 【0022】本発明によれば、接続端子4のうち、少な μmを越えると半田が有する低剛性が失われ接続不良が 【0023】ここで、樹脂層10の枝覆厚みは、前述の 樹脂層 12の被覆厚みが10μmより薄いと本発明

置するもの、さらには全ての接続増子4に形成すること が上述のバッケーシB と外部回路基板 C との間に発生す 【0024】なお、複数の接続端子4は、格子状に配影

[0020] 一方、外部回路基板Cは、いわゆるプリン

【0021】そして、バッケーシBの第一の接続バッド

位置する接続端子 4 aのみでなく、望ましくは端部に低 されるが、樹脂層10を形成する接続端子4は、角部に

るクラックや剥離を防止する点で望ましい。

4 間に介在させることにより、接続端子間の短絡を防止 【0025】また、非導電性樹脂層10を接続端子4,

中央部の厚みより厚く形成されることが望ましい。 の厚みが、接続端子4の中央部、すなわち樹脂層10の 子4との界面、および外部回路基板Cの第二の接続バッ 生じやすいバッケージBの第一の接続バッド 3 と接続権 や剝離を防止する点で、樹脂層10は、特に応力集中の ジBと外部回路基板Cとの熱膨張差に起因するクラック ド6と接続端子4との界面、すなわち樹脂層10の端部 【0026】さらに、本発明によれば、前述のバッケー

に、接続端子4が若干たわむことができ、前記応力集中 であることが望ましく、これにより、前述の接続端子4 GPa、特に3~25GPa、さらには5~20GPa 付近のバッケージBと外部回路基板Cとの熱膨張差に起 因するクラックや剥離を防止することができるととも を緩和することができる。 【0027】また、樹脂暦10のヤング率は、1~30

ものではなく、たとえばエポキシ樹脂、フェノール樹 あれば特に限定されない。 モンティセラナイト、ネフェリンなど非導電性のもので タタイト、トリジマイト、スピネル、ウォラスナイト、 良い。そのフィラーとしてはシリカ、アルミナ、エンス に、これらの樹脂の中に非導電性のフィラーを入れても どが用いられてもよい。また、ヤング率を開整するため 脂、メラミン樹脂、ポコイミド樹脂、ツコローン樹脂な 【0028】また、被覆する樹脂としては特に限定する

に望ましくは接続バッド3の形成高さでガラス層を被覆 刷した後、焼成して絶縁基板1表面に第一の接続パッド 第一の接続バッド 3 形成用の導電性ペーストをスクリー バッケージBの絶縁基板 1形成用グリーンシート表面に 半田が溶融する温度に加熱して半田を溶融させることに ロー炉や赤外線炉、あるいはVPSなどによって、前記 別手法あるいはディスペンサー法等により形成し、 スクリーン印刷法あるいはグラビア印刷法などの各種印 して接続バッド3を補強することができる。 3を形成する。また、所望により、接続パッド3形成面 上に予め球状の半田からなる接続端子4を敷置し、 【0029】また、上記実装構造を得るには、例えば、 【0030】そして、第一の接続バッド3表面に半田を /印刷法等の公知の印刷法によって所定のバターンに印

せして载置した後、リフロー炉や赤外線炉、あるいはV せす。) 表面に同様にして、低融点半田を被着形成す PSなどを用いて半田を加熱溶融させて、接続端子4に Cの第二の接続バッド 6 表面に当接するように位置合わ る。そして、バッケージBの接続端子4をプリント基板 より、接続端子4をバッケージBに取着する。 【0031】他方、外部回路基板Cの配線導体層(図示

ノて液状とし、これをノズルを備えた噴霧器内に入れ

【0033】なお、上記と同様にして半導体案子Aを接 **売増子を介してパッケージBに接続して、半導体素子 A** をパッケージB表面に実装することかでき、さらに半導 本素子AとバッケーシBとの間に有機樹脂とセラミック イラーとからなるペーストをディスペンサにて充填し アンダーフィル圏を形成することができる。 00341

実施例】アルミナ92体積%と残部(S i O₁ 、Ca 3、MgO)8体積%での混合比率の原料でもって成形 ハ、メタライズ配稿圏用にはタングステン (W) 材を用 ハてスルーホールを形成し、Wのメタライズからなる接 茂パッドも形成し、そして、1600℃の<u>毀</u>森雰囲気に C回時焼成し、5×4×40mmサイズの楢縁基板(配 **葛基板)を作成した。**

[0036] 一方、外部回路基板Cとしてガラスーエポ 辺の長さは80mm、厚みは1.6mmとした。

うし、その上に前配接続端子を重ね、ピーク温度230 (パッド) 上にペースト状の共晶半田を印刷法により強 、0037】そしてかかるブリント基板の配線導体層

ノてそれぞれ等容量のアセトンを添加、混合した溶液を .0038]また、喪1に示す組成およびヤング率のエ パキシ樹脂にフィラーとしてシリカを混合した樹脂に対 作製した。この溶液を噴霧器中に充填し、噴霧器のノズ

J.て、パッケージBを外部回路基板 C.に実装する。

所定厚みとなるように吹き付ける。これを100~18 【0032】そして、樹脂層10形成用の樹脂をアセト インプロピルアルコール、トルエン等の溶剤を希釈 て、空気、窒素等の気体とともに前記液状の樹脂を噴霧 0℃、1~4時間程度乾燥させることによって樹脂層1 **聞のノズルの先端から霧状にして接続端子4外周表面に**)を形成することができる。

ピッチは1.27mm、端子数は1225個、パッケー |0035||この絶縁基板の40~400℃における熱 量%)からなる直径0.8mmのボール状の接続端子を ペースト状の共晶半田でもって取り付けた。接続端子の プの1 辺の長さは45mm、配線基板の厚みは2mmで こ、この増子に共晶半田(P b 3 7 鼠量% – S n 6 3 重 **夢張係数を測定したところ、7.0ppm/℃であっ** た。そして、前部接続パッドにNiメッキを施した後

キシ基板(40~125℃における熟膨弱係数:13p p m/で) である絶縁体の表面に飼箔からなる配線導体 9形成されたブリント基板を準備した。ブリント基板の

このリフロー炉を使用して硬化接続させた。

v先端から霧状にして前記接続端子の角部4カ所に吹き

[0039]

29	L	L	L	L	L	L	L
第45/ 第45/	'n	01	2	ş	09	8	22
1本4/新四量(重量%)	82	80	90	60	40	20	55
餅脂材質	¥	_	٥	۵		_	o

0を形成した。なお、樹脂層10の厚みは、樹脂を含む 溶液の濃度または噴霧時間を変えることによって制御し れ、吹き付けた溶液を硬化させることによって樹脂圏1 【0040】そして、150℃のオーブン内に2時間入

[0041] 次に、それぞれの試料に対して、数サイク ル試験と機械的衝撃試験を行った。熱サイクル試験は大 気の雰囲気にて-40℃と125℃の各温度に制卸した 恒温槽に試料を30分/30分の保持を1サイクルとし 各試料に1500Gの衝撃を0.5ms間、6方向各5 て最高1000サイクル繰り返した。機械的衝撃試験は 団ずつ与えた。それぞれの結果を表2に示す。

[0042]さらに、それそれの試料について樹脂層を (0043] (比較例) 実施例の接続端子を取着した配 サにより上記樹脂(樹脂材質:D)を含むペーストを接 模基板に対して、接続端子を上にした状態でディスペン 焼端子の高さより低く形成し、外部回路基板表面に塗布 形成した接続端子部でカットして、断面SEM観察によ した半田部に位置合わせして接続する以外は、実施例と り樹脂層の厚みを測定した。結果は、表2に示した。 司様に実装を行い、同様に評価した(試料N o. 2

 結果は、表2に示した。 00441

【0045】 妻2に示す桔果からも明らかなように、樹 脂層を形成しない試料No. 1および樹脂層の被覆厚み が10 umより海い試料No. 2, 13では、敷サイク ル試験で700サイクル以内に接続不良がみられ、機械 的衝撃試験によって樹脂層形成部との境界部にクラック が発生した。

【0046】また、接続端子の一部のみに樹脂層を形成 した試料No.28では、熱サイクル試験で400サイ クル後に、接続不良がみられ、機械的衝撃試験によって 樹脂層形成師との境界部にクラックが発生した。

【0047】さらに、樹脂層の厚みが2004mを越え る試料N o. 2 0では、接続端子が変形することができ

た、梅蕉の作		2000	いものおおり	[0048]	#		00サイクル	にクラックは		100491	【発明の効果	の母は描述に	19 H H H H H H H H H H H H H H H H H H H	ナの外側数国	タライズ配線	はいせいと		を維持である	放熟性を維持	***	¥ . a. b.	【図画の画図】	[図1] 本部	2	の多り区画語	[図2]図1	「谷中の第四		₩ •
会長で自動に対象	りラック発生	カデル発生	東北	業大軍	東京軍	具花集	具常無	異常無		報養職	具常無	具件無	75・7・発生	業技工	具常無	異常無	# # W	具常無	異常無	クテック発生	東林集	具件無	異常無	具常無	東洋集	異常原	単対策	クデック発生	
耳(回)	₽	200	>1000	>1000	>1000	>1000	>1000	>1000	>1000	× 188	>1000	>1000	700	>1000	>1000	>1000	>1000	>1000	>1000	700	>1000	>1000	800	>1000	>1000	800	8	٦,	工艺学课具
1 (E	٥	2	50	100	150	007	10	30	20	100	150	200	5 .	10	30	20	8	150	200	250 /	10	30	20	100	150	200	S		# A. C.

ず、熱サイクル試験で100サイクルで接続不良がみら 生した。また、絶縁基板の温度上昇が激し ル試験では800サイクル以上、特に10 後でも、機械的衝撃試験によっても接続部 強固にかつ長期にわたり安定した後続状態 とともに、配模基板および外部回路基板の 撃試験によって樹脂層形成部との境界部に これに対して本発明の範囲に基力く試料で よれば、少なくとも角部に位置する接続端 を非導電性樹脂で被覆することにより、メ **閉が配股された絶縁基板を外部電気回路基** することができる高信頼性の実装構造を提 | 以上群述したように、本発明の配線基格 発生せず、優れた耐久性を示した。 な説明】

明の配線基板の接続構造の一例を示す概略

の接続端子付近の要部拡大図である。

外部回路基板(プリント基板) 半導体素子収納用パッケージ セラミック組縁基板 メタライズ配線周 第一の接続バッド 第二の接続パッド 接板端子 的绿基体 2, 11

アンダーフィル面 非導電性樹脂層 接続パッド 接続端子

<u>⊠</u>

フロントベージの続き

F 夕一ム (参考) 58314 AA21 BB11 FF01 GG09 -58319 AA03 AB03 AC01 BB01 CC22 CO45 58336 AA04 BB02 BB05 BB14 BC34 CC34 CC55 8805 GB14 BC34

