```
mes 6
```

```
I. 6) Algorithmal SIMPLEX (al Surpaina to finition successive) ptr. resolvance (PPL) 3
```

Fig. (30) $x_1, 30, \frac{1}{4} = \frac{1}{100}$ case newfice and. (X) $\begin{cases} w < u \end{cases}$ $\begin{cases} (30) & (40) &$

Conform Is in Ic countage (in down) in among a:

Is: " X & SAB (=> X ste pund extrem (vact) al meltimi SA"

und. (BC)? case admige often finit (m <100):

- Determinant toate orbitish se bose (cu metoda di Gauss) ale mistemalii (25) (sunt al mult (m);
- @ Elininam dintre a costa pe cell madminibile (core nu vonifica conditire de nenegatividate (376) in dotinem malfinea SAB;
- 3 Calculan Aclama fundici obischir, f., in toate almondel lui Sto. Soluția aprima Xo va fi acea S.B.A. Xx CSAB unde fundice ica valoarea minima (= m)

Obs: Dare existe mai mulk S.B.A. in care "f" are according website minima" """,
atunci (PR) o va avea o infinident de soluții optime, de terminate de comb.
liviar convexă a acordore, adire: (Xprime) Xxx+(N)Xx; xetaro vi XxxxeSe

Der, proadure de mai sus are dono "defecte" mari:

One poate l'aplicate cand (PPL) are option "infinite (ni our ptim noi dinainte doction finit son me!!);

O numeral foreste more de S.B de nist. les. (25) com apar in problèmele reale economice.

Ex Ste pp. 20 niste mal livier (25) one:

(a) [m=10 (conspi / restricti e conomice)

(n=40 (necurescute inifiale + de componenc) (=X) al mult (20 =847.660, 528 - soluti de

(n=40) (necurescute inifiale + de componenc) (=X) al mult (20 =847.660, 528 - soluti de

(n=30)

b) (m=80) => (3) all must Coo = 29. 342.339.821.610.941.823.963.760 (111)-websti de borse

numand are 26 de afra (!!)

Torreme care fundamentears algorithmal SIMPLEX

Aplicand netoda hi Gauss pentra acrosha net. lin. (2g), non presupure ca an destroint (1?) o enlife de loss admissibile britishe (S.B.A.i) a (PPL) , notato en XESAB, adira:

ar: {2[=b! >0 ! (A) !@ I got {115" m) M3/1 - a combonante preser (deconquer)

Conf. mitrica A of middle anequestation unider Baber principale ?; it must de fapt rechonistate cononice din R", adice:

Bc= { Pi, Pig -- Ping & RM

ion ceilably vector 3, ged on comparable in accord have " " adica:

(82) Pj=(daj) daj) --- , daj T= xj Pi+ daj Piz+ --- + daj Pia Valorena function direction of a on colletia de bosto adminimiles inipiales gatite (X) este espale (cf (16)+(8,1)) ou:

Fie contidopile 3, j= hu definite outfel:

(er) 59 = x11. 409 + x11. 459 + - + x1 4 mil (mg 5! = 2 c8.3?)

Not: i) $e_8 = \begin{pmatrix} e_i \\ e_k \end{pmatrix}$ - coeficienti funcției doiestiuntu (i) $f_0 = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$ - valonte variati (lestrus din Portie (prince)) din coninque (principale) din soluție X

iii)

Pi= (4)

ij=1,77 - vectorii P., B., -, Bu cont aport Cur solution \times garita.

a (17L):

Tecrema 1 (aiterial de optim finit)

Fix XESAB o mel de bogo adminibile a mist. (25). Dava toak diferentele 35-55 &0, j=1, m correspondo toare a ante soluti, atunci X este alufic optima a GPL) o, adira:

(6.5) X∈S_{kg} an =j-3 ≤0, j=Tim <=> X∈So

0,28:

i) (4) XESAB, intotalama 2:-Ci =0, ie I= {i,i,i,-ind} {diferented 2:-ci =0 ptr. Pi & Bc} }
ii) Pentra i & J = {1,2,-, n} / I (diferentale consequentations vectorilar 3: & Bc) peter avec a citarfii:

(a) 25-x3 < 0 ; 36] => X sote solution of limits / in mice;

(b) 59-69 (a) 59-69=0 => X of volutio obtine (ting) you are originizate of

Testema & (actival de optim infinit)

i) evident a in east car 5.8.4: X un ste ochetic optima; (PDL) un are solutii optime.

is) dace (PPL) on we option fruit => (PPL) (wipleto un one option finit (in plus max) f = +00) is)(!!!) d.p.d.v. economic adata vituatie are abaranta of me poate fi intallità in practica (me poti avea abelimiali cara ocad space "-00" rom profit cara cregbe la "+00"); deca se gin la accorde viduatie de un model maternatic al unei problème reale economica => makeled makematic acts graph proof feart in todaine corocated!!!

Teorema 3 (cuterile de intrave lientre din bass)

Fie X eSas o solitie a siedomilia (25) care me este aptima (4) 35-300 je vectorio BAZ coresponsatori acestora an macar o componento di >0). Facand urmadoarea solvin bare de bata (subarin redord ?; &Bc a redord ?; &Bc):

E) va cutra in basic vectoral B. & Be coverquisador diferenta:

(c.t) 5?-c? = max {55-cr>0}

il) va top din boso vectoral P. EBC corresponde for raportulai:

(8) 0: = min { 0 > 0} = min { \frac{\pi_{\text{K}}}{\pi_{\text{K}}} > 0} (\frac{\pi_{\text{K}}}{\pi_{\text{K}}}) (\frac{\pi_{\text{K}}}{\pi_{\text{K}}}) \ \left(\frac{\pi_{\text{K}}}{\pi_{\text{K}}} \right) \ \left(\frac{\pi_{\te

vom obline o nova solutie X'ESAB a. ? \$(X') & f(X) (adict nova & B. A. X' va fi mai "buvie" de côt vedbra Sidh: X decarese valoanes functies etriscoir a noua sollell este mai mice aleast in vaclues soluția (=) valoarea funției dischir scade

i) reletia {(E, E) se numera criterial de introve in baza;

ii) cf. emuntului To aplicanca a autor oribrii se face sutotdeauna in ordina (2) crit de injue decarece pentru a afla a vector " - Pi , porresente basa, trebenie sa gim mai intai ce vector " 3.6, intro in base (ptr. a pulsa reduced responsible Q !!!)

iii) dacă oribenile (6.1) san (6.8) sunt satisfacute de mai multi vectori. Fin respectiv. Fin se alge la intâmplare unul dinte ei (usual, al mai din stanga "] ", respecti cel mai de sus " ? a din tabalul Simplex adapat)

iv) acuste 3 tecreme fundamenteato etapole alg. Sinplex (colorles or fac in tabeled armator numb tabeled simplex)

Etapole algoritmului in tabalul Sintrex atapat unai PPL)s

Atazām acerbei weleti wemādorul tabel (munit tabelul Bimplex):

CP	Po	R _k	Ce Ci	OK - Pot
£1,	p.	× _{UA}	√12 (D) √1, √1,	6,= B1/daj
Liz	82	des	K22 0 0 de	u Oz-Belden
<i>c</i> :	В.	! K.	70	1
	1,-	1	3	6:= N/4:3>
Lim	77	1		
V- CAN	\$0%)		e,-c, 0 0 2.	in 82 - 63
Lin	3	$Z_{i,i}^{i}$	x12 0 0 x1	
Liz	B2	21	4/22 0 0 0 0	" ⊖ ⁷
1	1			1
¿j	Bi	d'i	di 0 0 0	ν Θ;
1	1	1		1
1	1	į		O'm
Rive	fin		2.00000	
	El Line Commenter Line Commenter Com	400 Air Pin Air	P. 20 20 20 20 20 20 20 20 20 20 20 20 20	Lin Pr. din din din 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- 1 Se aduce (PPL) la forma standard (PPL) (aducam/scadem variabile de compensore)
- @ Se determina o 5.8. s. i : Xo followind for metoda bui Gauss (inficiento in cominirale)
- f matode after data fare 1 De construiente primal tabal SIMPLEX (correspondator soluției acipiale ganite X)
 - Obs: pe altina linie a tabelerda simplex, volonde da foro) je defende 25-5: 15=1711
 - (a) \$(X0) = \(\int_{e1}^{\infty}(C_{B}, P_{0})\) (p) 3:-0:= = (co.3)-0.
- 1 se aplica Chiterial de optimis la fierano etapo (tabel) al alz. Simplex pitem intalla, : i plantin 4 storate amou who and
- a) {5:-2:=0 : (A) B: EB |=> volution de septe (Le coloure Lo) este atime in anice : (24)
 - b) {3;-9: ≥0; (4) B; & B (0) B; & B on 8: 4; oo) | > whether graits (per about 30) ste optime)

 | 3;-9: ≥0; (4) B; & B (0) B; & B on 8: 4; oo) | > whether graits (per about 30) ste optime)
 - e) (3) } & B a.s. (12; -6; >0

 [ii) B; are toate componented of i; or optime, (M) are aptime infinit (minters)

 [may one
 - d) (3) 3 &B at (1) & -9 >0 |2) rolific gasita (pe adama 30) musto optima
 - Obs: i) in accoste nitualie taborie no facem o solvinbore de base (en lema autostituliai)
 pentre a de tormina o nouve solulie X mai "barno" de cât valles solutie X Meso.
- ii) de coassile 40), 46) of 40) algorithmed simplex no opposte (!!). Coasel 4d) ate micel case in some algorithmed antime (of evident at all mai day intolnit).
- © ne aplica "Criterial de inpare in pare": la frecone exper a aff. , ra input in pase reconal

 Bi €B correspondente diferente 30-0:>0 in maxima + 31-0:= max former >0 > =>(8:4) }
- O re aplica " (interial de serine din bore": la fecare etape a aly, va ion din bore vectoral PieB consequence for respondular 0: >0 in minim (0: = min 10x203 => " + 3: " (0 = 10)
- (se construire vous solutie XxII, x30 fécard o adminhor de bare a lema substituției (se construire un nou tabel simplex)

 (se repete chapele 40 7) până se ajunge la unul din connile 40, 44, 44,

0 Flizer - Colorus (Xoz (0,0,0,0,0,6,4,60)) QR.18, 5x, =(0,0,5,0,1,10,0) 1 4 1 0 0 1/2 1,46)

relatia X, ote soluție opină dar m ste unico (194) are o infinite de S.O. (Pinite)

$$\begin{array}{lll}
\overline{X}_{i} = \overline{X}_{optim} &= (0,0,5,0,1,19,0) \in \mathbb{R}^{\frac{1}{2}} \\
\overline{X}_{optim} &= (0,0,5,0) \in \mathbb{R}^{\frac{1}{2}} \\
\overline{X}_{optim} &= (0,0,0) \in \mathbb{R}^{\frac{1}{2}} \\
\overline{X}_{optim} &= (0,0,0) \in \mathbb{R}^{\frac{1}{2}} \\
\overline{X}_{optim} &= (0,0,0) \in \mathbb{R}^{\frac{1}{2}} \\$$

de sol oftine (Sinich)