IFT2105-A19: Devoir 2

À remettre le mardi 8 octobre à 9h30, soit sur StudiUM, soit en main propre. Vous pouvez travailler seuls ou en équipes de deux.

Problème 1

(20 points)

Soient Σ et Γ deux alphabets, et soit $f:\Sigma\to\Gamma^*$ une fonction quelconque de Σ vers les mots sur Γ . Pour tout mot $w=l_1\ldots l_n$ sur alphabet Σ , on peut définir f(w) comme $f(w)=f(l_1)\ldots f(l_n)$, et pour tout langage L sur Σ ,

$$L_f = \{f(w) \mid w \in L\}.$$

Montrez que si L est régulier, alors L_f est régulier.

Problème 2

(20 points)

Montrez que $L=\{w\in \{{\tt a},\dots,{\tt z},\sqcup\}^*\mid w$ contient un nombre pair de mots $\}$ est régulier. (\sqcup représente un espace.)

Problème 3

(20 points)

Montrez que $L = \{w \in \{0\}^* \mid |w| \text{ est un nombre de Fibonacci} \}$ n'est pas régulier.

Problème 4

(20 points)

Montrez que $L = \{w \in \{0,1\}^* \mid |w| \text{ est divisible par 3} \}$ ne peut pas être reconnu par un AFD à deux états ou moins.

Problème 5

(20 points)

Montrez que $L=\{w\in\{\mathtt{0},\ldots,\mathtt{9}\}^*\mid w>A(10,10)\}$ est régulier. Ici, $A(\cdot,\cdot)$ dénote la fonction d'Ackermann, et on interprète w comme un nombre entier.