Normal Probability Density Function

The normal (Gaussian) probability densify function for several mean and standard deviation values is shown below.

In general, the equation for the normal probability density function is given by:

$$f(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

where μ is the expected value (mean) and σ is the standard deviation (hence σ^2 is the variance).

- 1. Create a vector x of 100 equally spaced values starting at -10 and going up to 10.
- 2. Assuming $\sigma=2$, create the fraction $\frac{1}{\sqrt{2\pi\sigma^2}}$ as frac. (Remember, π is built into MATLAB as the variable pi.)
- 3. Assuming $\sigma = 2$ and $\mu = 1$, create a vector for the exponent $-\frac{(x-\mu)^2}{2\sigma^2}$ using the vector x as powr.
- 4. Finally, create a vector named \mathbf{f} representing $f(x|\mu,\sigma)$ at the values in \mathbf{x} using your frac and powr variables and the MATLAB function \mathbf{exp} .

Script @

Previous Assessment: All Tests Passed

MATLAB Documentation

- Is the vector x correct?
- Is the fraction value correct?
- Is the exponent vector correct?
- Is the pdf vector correct?

Output

