401 project notes

Rough explanation of the paper

Introduction

The setting: solving 2-D Laplace problems using rational function approximations, plus numerical experiments and examples. It turns out using rational function approximations with exponentially clustered points near singularities gets root-exponential convergence.

Their problem:

$$\Delta u(z) = \nabla^2 u(z) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) u(z) = 0, \ z \in \Omega$$
$$u(z) = h(z), \ z \in \Gamma$$

in a domain Ω bounded piece-wise smoothly (with corners) by Γ , with specified boundary data h. This sort of problem comes up a lot in physics: electrostatics, fluid dynamics, heat conduction...

The approach:

$$u(z) \approx \text{Re}[r(z)]$$

 $r(z) = \sum_{j=1}^{N_1} \frac{a_j}{z - z_j} + \sum_{j=0}^{N_2} b_j (z - z_*)^j$

with poles z_j . The crux of the method is using exponentially clustered sample points on the boundary with h near corners, along with exponentially clustered poles outside the boundary near the corners.

The structure of the paper consists of: theorems establishing root-exponential convergence with rational approximations, then an algorithm using linear least-squares fitting on the boundary to find coefficients a_j and b_j .

Two Theorems

The theorems involve an analytic function f, while the applications involve a harmonic function u. However, and harmonic function u can be the real part of an analytic function, i.e. f = u + iv.

(***pictures, define A_{θ})

(1) Let f be a bounded analytic function in the slit disk A_{π} that satisfies $f(z) = O(|z|^{\delta})$ as $z \to 0$ for some $\delta > 0$, and let $\theta \in (0, \pi/2)$ be fixed. Then for some $0 < \rho < 1$ depending on θ but not on f, there exist type (n-1,n) rational functions $\{r_n\}$, $1 \le n < \infty$, such that

$$||f - r_n||_{\Omega} = O(e^{-C\sqrt{n}})$$

as $n \to \infty$ for some C > 0, where $\Omega = \rho A_{\theta}$. Moreover, each r_n can be taken to have simple poles only at

$$\beta_j = -e^{-\sigma j/\sqrt{n}}, \ 0 \le j \le n - 1,$$

where $\sigma > 0$ is arbitrary.

(2) Let Ω be a convex polygon with corners w_1, \ldots, w_m , and let f be an analytic function in Ω that is analytic on the interior of each side segment and can be analytically continued to a disk near each w_k with a slit along the exterior bisector there. Assume f satisfies $f(z) - f(w_k) = O(|z - w_k|^{\delta})$ as $z \to w_k$ for each k for some $\delta > 0$. There exist degree n rational functions $\{r_n\}$, $1 \le n < \infty$ such that

$$||f - r_n||_{\Omega} = O(e^{-C\sqrt{n}})$$

as $n \to \infty$ for some C > 0. Moreover, each r_n can be taken to have finite poles only at points exponentially clustered along the exterior bisectors at the corners, with arbitrary clustering parameter σ , as long as the number of poles near each w_k grows at least in proportion to n as $n \to \infty$.

Some extensions: These same results hold for Ω bounded by analytic arcs meeting at corners. Additionally, the authors believe these results are valid also for non-convex domains and $\theta < \pi/2$. Experiments show that placing poles along exterior bisector is also not necessary.

Algorithm and Examples

Probably examples and pictures first.