

AMERICAN INTERNATIONAL UNIVERSITY-BANGLADESH (AIUB)

Faculty of Engineering
Department of Electrical and Electronic Engineering
Undergraduate Program

PART A

1. Course No/Course Code

2. Course Title

3. Course Type

4. Year/Level/Semester/Term

5. Academic Session

6. Course Teachers/Instructors

7. Pre-requisite (If any)

8. Credit Value

9. Contact Hours

10. Total Marks

11. Mission of EEE Department

EEE 2103

Electronic Devices

Core Course

Second year (4th Semester)

Summer 2021-22

Dr. Md. Kabiruzzaman, Dr. M. Tanseer Ali, Dr. Md. Rifat Hazari, Mr.

Rabiul Islam, Ms. Tahmida Islam, Ms. Bismoy Jahan

EEE 1201: Electrical Circuits 1 (DC)

3 credit hours

3 hours of theory per week

100

- Educate young leaders for academia, industry, entrepreneurship, and public and private organization through theory and practical knowledge to solve engineering problems individually and in teams
- Create knowledge through innovative research and collaboration with multiple disciplines and societies.
- Serve the communities at national, regional, and global levels with ethical and professional responsibilities.
- 12. Vision of EEE Department

To become a front runner in preparing Electrical and Electronics Engineering graduates to be nationally and globally competitive and thereby contribute value for the knowledge-based economy and welfare for the people of the world.

13. Rationale of the Course (Course Description)

14. Course Objectives

This core course of Electrical and Electronic Engineering program explores principles, analysis and applications of different types of semiconductor devices such as diodes, BJTs and FETs. The knowledge and understanding of this course can be used in many advanced courses like analog electronics, VLSI circuits, micro-electronic devices etc.

The course is designed to provide students with:

- Electronic Devices Semiconductors: electron and holes in an intrinsic semiconductor, donor and acceptor impurities.
 Introduction to solid state electronics: Energy band structure in solids, insulators, semiconductors and metals, Conductance and semiconductors, electrons and holes, Diodes: open circuit p-n junction, diode characteristics, small signal model of diode, and circuit applications of diode, rectifiers and Zener diode.
- Bipolar junction transistors: characteristics, different configuration of transistor amplifiers, voltage and current amplifiers small signal low frequency h parameter model analysis of transistor amplifier using h parameters, high input resistance transistor circuits, transistor biasing and thermal stabilization.
- MOSFET: Introduction- PMOS, NMOS and CMOS transistors and their switching characteristics, depletion and enhancement MOSFET.

15. Course Outcomes (CO)/Course Learning Outcomes (CLOs):

COs/CLOs	Details	K	P	A	Assessed Program Outcome Indicator	BNQF Indicator	Assessment Techniques
1	Apply and analyze the semiconductor diode principles in the practical application having different electronic arrangements	1			P.b.1.C4	N/A	OBE Assignment
2	Apply information and concepts of mathematics used to solve basic electronic circuits e.g., series, parallel, clipper, clamper, and Zener diode circuits, DC biasing of BJT circuits	2			P.a.2.C3	N/A	Quiz/Term EXAM
3	AC analysis of BJT circuits with information and concepts of mathematics	2			P.b.2.C4	N/A	Quiz/Term EXAM
4	DC and AC analysis of FET circuits with information and concepts of mathematics.	2			P.b.2.C4	N/A	Quiz/Term EXAM

16. Mapping with Course Learning Outcomes (CLOs) with Program Learning Outcomes (PLOs)

CLOs	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9	PLO 10	PLO 11	PLO 12
1		X										
2	X											
3		X										
4		X										

PART B

17. Course plan:

By the end of this course, students should be able to –

Time Frame (Week)	Topics	Teaching Learning Strategy	Assessment Strategy	Corresponding COs /CLOs	Evidence
Week 1	Mission & Vision of AIUB, Dept. of EEE; Objective of Engineering Ethics course; Semiconductor Materials, Energy Levels, Extrinsic Materials (n- and p-type), Biasing p-n junctions Semiconductor Diode Zener Region, Resistance Levels Diode equivalent circuits	Lecture Tutorial	*Calculation- based question: test/project/ mid-term exam *Theoretical- based question: test/project/ mid-term exam		

EEE 2103: Electronic Device Page 2 of 16

Week 2	Load-Line Analysis, Diode- Approximations, Series Diode Configurations with DC Inputs, Parallel and Series-Parallel Diode Configurations Half-Wave Rectification, Full-Wave Rectification	Lecture Tutorial		1	OBE Assignment
Week 3	Clipper and clamper circuits Zener diodes (Network Analysis)	Lecture Tutorial		1	
Week 4	BJT: Construction, Operation, Structure Characteristics of Common- Base (CB) Configuration, Common-Emitter (CE) and Common-Collector Configuration.	Lecture Tutorial		2	Quiz/ Assignment/T erm Exam
Week 5	BJT DC biasing, Operating Point, Fixed-Bias Circuit, Emitter-Stabilized Bias Circuit, Voltage-Divider Bias Circuit	Lecture Tutorial		2	Quiz/ Assignment/T
Week 6	DC Bias with Voltage Feedback, Bias Stabilization Revision	Lecture Tutorial		2	erm Exam
Week 7		MID-7	TERM EXAM WI	EEK	
Week 8	BJT Small Signal Low Frequency AC Response: BJT Transistor Modeling Two-port System Parameters, re Transistor Model; CB and CE configurations, CE Fixed Bias, Voltage-Divider Bias, Emitter-Bias, Emitter- Follower, CB amplifier Effects of RS and RL Cascaded Systems	Lecture Tutorial	*Calculation- based	3	Quiz/ Assignment/T erm Exam
Week 9	JFET; Construction, Characteristics and Transfer Characteristics Depletion- and Enhancement-Type MOSFET; Construction, Operation and Characteristics	Lecture Tutorial	question: test/project/ final exam *Theoretical- based question: test/project/ final exam	4	Cini Exam
Week 10	JFET DC Biasing: Fixed- Bias Configuration, Self- Bias Configuration; Voltage-Divider Biasing	Lecture Tutorial		4	Quiz/ Assignment/T
Week 11	MOSFET DC Biasing: Fixed Bias Configuration, Self-Bias Configuration,	Lecture Tutorial		4	erm Exam

	Configuration for both Depletion Type MOSFET and Enhancement type MOSFET								
Week 12	FET Biasing: Fixed bias, Self-bias and Voltage divider bias for JFET and D-MOSFET Feedback bias and voltage divider bias for E- MOSFET	Lecture Tutorial		5					
Week 13	Common Gate configuration for JFET Small signal ac biasing of FET Revision	Lecture Tutorial		5	Quiz/ Assignment/T erm Exam				
Week 14	FINAL-TERM EXAM WEEK								

^{*} The faculty reserves the right to change, amend, add or delete any of the contents.

PART C

18. Assessment and Evaluation

1. Assessment Strategy:

COs/CLOs Assessment Tools for Mid-Term

Assessment Tools	6	CO/CLO 1 Marks	Marks Marks					
Attendance + Performance		N/A	N/A	20				
Quiz	Count Best 1 out of 2	N/A	N/A	20				
OBE Assignment		10	N/A	10				
Non-OBE Assignment		N/A	N/A	10				
Mid-Term Exam		N/A	N/A	40				
Total				100				

EEE 2103: Electronic Device Page 4 of 16

COs/CLOs Assessment System for Final-Term

Assessment Tools	3	CO/CLO 4 Marks	CO/CLO 5 Marks	Marks for Grading
Attendance + Performance		N/A	N/A	20
Quiz	Count Best 1 out of 2	N/A	N/A	20
Assignment		N/A	N/A	20
Final Exam		N/A	N/A	40
Total				100

2. Table of Specification (TOS)

Mid-Term Exam

	Level of Bloom's Taxonomy																						
					Ren	nem	ber	Und	lerst	tand		Apply	V	A	nalyz	e	Ev	alu	ate	Cr	ea	te	
Topics	CO No.	No. of Days	No. of Items	No. of COs	Item No.	Test Type	Marks	Item No.	Test Type	Marks	Item No.	Test Type	Marks	Item No.	Test Type	Marks	Item No.	Test Type	Marks	Item No.	Test Type	Marks	POI
Diode	CO2										1	PS	8										P.a.2.C3
fundamentals,											2	PS	8										- 1011-11-11-11
applications-		4	1																				
rectifiers, clippers																							
Diode	CO2										3	PS	8										P.a.2.C3
applications- clampers, Zener		4	1								4	PS	8										
diodes																							
DETELL	CO2	١,									5	PS	8								_		P.a.2.C3
BJT biasing		4	1								6	PS	8				-						
Total		12	3										48										

Final Exam

Level of Bloom's Taxonomy																							
					Ren	nem	ber	Unc	lerst	and		App	ly		Analy	ze	Ev	alua	ate	Cı	rea	te	
Topics	CO No.	No. of Days	No. of Items	No. of COs	Item No.	Test Type	Marks	POI															
AC analysis of	201													1	PS	8							P.b.2.C4
ВJŤ	CO3	4	1											2	PS	8							
FET biasing	CO4	4	1											3	PS	8							P.b.2.C4
														5	PS PS	8							D1 0 C4
AC analysis of	CO4	4	1											6	PS	8		H					P.b.2.C4
FET		'																					
Total		12	2													48							

Test Type Legend: AS: Assignment; BQ: Broad question; SQ: Short question; D: Derivation; ES: Essay; EX: Exercise; GE: Group Exercise; ID: Identification; MC: Multiple Choice; MT: Matching Type; OB: Observation; PS: Problem Solving; SA: Short Answer; TF: True or False; VV: Viva Voce; Other please specify:

3. Marks Distribution:

The evaluation system will be strictly followed as par the AIUB grading policy. The following grading system will be strictly followed in this class.

Assessment Type	Marking system For Theory Classes (Midterm	and Final term)
Continuous	Attendance	10%
Continuous	Performance	10%
Continuous	Quiz	20%
Continuous	Assignment	20%
Summative	Midterm/Final Exam	40%
	Total	100%
	Final Grade/ Grand Total	
Grand Total	Midterm:	40%
	Final Term:	60%

4. Grading Policy

Letter	Grade Point	Numerical %
A+	4.00	90-100
A	3.75	85-<90
B+	3.50	80-<85
В	3.25	75-<80
C+	3.00	70-<75
С	2.75	65-<70
D+	2.50	60-<65
D	2.25	50-<60
F	0.00	<50(Failed)

5. Makeup Procedure:

Students who fail to maintain the requirements and deadlines needed to contact faculty with reasoning. Continuous assessments will be taken with agreement with the student and faculty. For the make up of Summative assessments students need to apply for SET – B exam according to the AIUB policy.

PART D

EEE 2103: Electronic Device Page 6 of 16

19. Learning Materials

Formal lectures will provide the theoretical base for the subject as well as covering its practical application. A set of lecture notes, tutorial examples, with subsequent discussion and explanation, together with suggested reading will support and direct the students in their own personal study.

Maximum topics will be covered from the textbook. For the rest of the topics, reference books will be followed. Some Class notes will be uploaded on the web. White board will be used for most of the time.

For some cases, multimedia projector will be used for the convenience of the students.

Students must study up to the last lecture before coming to the class and it is suggested that they should go through the relevant chapter before coming to the class. Just being present in the class is not enough- students must participate in classroom discussions.

Few assignments will be given to the students based on that class to test their class performance.

1. Recommended Readings (Textbook);

[1] Robert. L. Boylestad & Louis Nashelky, "Electronics Devices and Circuit Theory", 11th edition, Prentice Hall.

2. Supplementary Readings (Reference Book);

- [1] Muhammad H. Rashid, "Microelectronic Circuits Analysis and Design", 2nd edition, CL Engineering, 2010
- [2] Adel S. Sedra & Kenneth C. Smith, "Microelectronic Circuit", 5th edition, Oxford University press
- [3] Jimmie J. Cathey, "Schaum's Outline of Electronic Devices and Circuits", 2nd Edition
- [4] Richard S. Muller, Theodore I. Kamins & Mansun Chan, "Device Electronics for Integrated Circuits".
- [5] John Henderson, "Electronic Devices: Concepts and Applications".
- [6] Ali Aminian & Marian Kazimierczuk, "Electronic Devices: A Design Approach".
- [7] Ben. G. Streetman & S.K. Banerjee, "Solid State Electronics", 6th edition, Prentice Hall
- [8] Jacob Millman & Christos C. Halkias, "Integrated Electronics", Tata McGrew-Hill edition
- [9] Paul Horowitz & Winfield Hill, "The Art of Electronics", 2nd Edition, Cambridge University Press

PART E

Appendix A

EEE 2103: Electronic Device Page 8 of 16

Table 1: Knowledge Profile (according to BAETE Manual 2nd Edition)

Verification	n: EEE 2103: Electronic 1	Device								
Prepared by	y:	Checked and certified by:	Approved by:							
Dr. Md. Ka (Course Co	abiruzzaman o-ordinator)	Nafiz Ahmed Chisty Head (UG), Department of EEE, Faculty of Engineering	Prof. Dr. A B M Siddique Hossain Dean, Faculty of Engineering							
Date: 25/0.	5/2022	Date:	Date:							
		Moderated by:	Moderated by:							
		Date:	Date:							
Attribute										
K 1	A systematic, theory-base discipline	sed understanding of the natural scie	nces applicable to the							
K2		hematics, numerical analysis, statistic nation science to support analysis and	-							
К3	A systematic, theory-base engineering discipline	sed formulation of engineering funda	amentals required in the							
K4	Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline									
K5	Knowledge that supports engineering design in a practice area									
К6	Knowledge of engineering practice (technology) in the practice areas in the engineering discipline									
K7	Comprehension of the role of engineering in society and identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of engineering activity; economic, social, cultural, environmental and sustainability									
K 8	Engagement with selected knowledge in the research literature of the discipline									

Table 2: Range of Complex Engineering Problem Solving (according to BAETE Manual 2nd Edition)

Attribute	Complex Engineering Problems have characteristic P1 and some
	or all of P2 to P7:

Depth of knowledge required	P1: Cannot be resolved without in-depth engineering knowledge at the level of one or more of K3, K4, K5, K6 or K8 which allows a fundamentals-based, first principles analytical approach							
Range of conflicting	P2: Involve wide-ranging or conflicting technical, engineering							
requirements	and other issues							
Depth of analysis required	P3: Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models							
Familiarity of issues	P4: Involve infrequently encountered issues							
Extent of applicable codes	P5: Are outside problems encompassed by standards and codes of practice for professional engineering							
Extent of stakeholder	P6: Involve diverse groups of stakeholders with widely varying							
involvement and conflicting	needs							
requirements								
Interdependence	P7: Are high level problems including many component parts or sub-problems							

Table 3: Range of Complex Engineering Activities (according to BAETE Manual 2nd Edition)

Attribute	Complex activities means (engineering) activities or projects that have some or all of the following characteristics:
Range of resources	A1: Involve the use of diverse resources (and for this purpose
	resources include people, money, equipment, materials,
	information and technologies)
Level of interaction	A2: Require resolution of significant problems arising from
	interactions between wide-ranging or conflicting technical,
	engineering or other issues
Innovation	A3: Involve creative use of engineering principles and research based
	knowledge in novel ways
Consequences for society	A4: Have significant consequences in a range of contexts,
and the environment	characterized by difficulty of prediction and mitigation
Familiarity	A5: Can extend beyond previous experiences by applying
	principles-based approaches

Table 4: Learning Outcome Domains and Level Descriptors (as per BNQF)

Learning Outcome Domains

Fundamental Skills (FS):

FS.1: demonstrate knowledge and critical understanding of the well-established principles of his/her field of study, and of the way in which those principles have developed;

FS.2: apply underlying concepts and principles outside the context in which they were first studied, including, where appropriate, the application of those principles in an employment context;

FS.3: apply knowledge and skills in addressing issues/solving problems with minimal supervision;

FS.4: evaluate critically the appropriateness of different approaches to solving problems in his/her field of study;

FS.5: support supervision of junior staff via a mentor or a leader/manager; and

FS6: display advanced digital literacy which is adequate to perform complex tasks and bring about solutions.

EEE 2103: Electronic Device Page 10 of 16

Social Skills (SS):

- SS.1: communicate and interact effectively and clearly, ideas, information, problems and solutions as a team to peers, experts and non-experts in Bangla and English;
- SS.2: express her/himself fluently and spontaneously in English and Bangla;
- SS.3: use language flexibly and effectively for social, academic and professional purposes;
- SS.4: produce clear, well structured, detailed text on complex subjects, showing controlled use of organisational patterns, connectors and cohesive devices in advanced proficiency level of Bangla and English;
- SS.5: demonstrate the ability to incorporate entrepreneurial skills in planning daily activities; and
- SS.6: display advanced civic literacy and knowledge, exercising civic rights and obligations at all levels as well as participating in changes for the improvement of Bangladesh society.

Thinking Skills (TS):

- TS.1: exercise very substantial degree of autonomy and often significant responsibility in making judgments/ decisions towards the management of self, others and for the allocation of substantial resources; and
- TS.2: demonstrate professional knowledge and practical skills in both technical and management to lead a team in inexperienced environment.

Personal Skills (PS):

- PS.1: engage in self-direction and self-enterprise skills;
- PS.2: demonstrate social, professional, environmental and ethical practice/ values;
- PS.3: show-case global knowledge and competencies to fulfil employment, entrepreneurial and lifelong learning skills; and
- PS.4: contribute significantly to the society.

Detail Program Outcomes

PO-a/PLO 1: Engineering Knowledge

Apply knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization as specified in K1 to K4 respectively to the solution of complex engineering problems.

Indicators ID BNQF **Indicators Definition** Domain w Course 1 Course 2 Р Assessment Indicator Technique(s) EEE1203: EEE3213: P.a.1.C3 N/A Apply Cognitive K1 Assignment information Level 3 Electrical Electrical and concepts (Applying) Circuits - 1 **Properties** of Material in <u>natural</u> (DC) science with the familiarity of issues. P.a.2.C3 N/A Apply Cognitive 0.1 EEE2209: EEE2213: K2 Assignment information Level 3 Analog Signals and and concepts (Applying) Electronics Linear Systems of mathematics with the familiarity of issues. FS.1 EEE2105: P.a.3.C3 Apply Cognitive 0.4 FFF3101: К3 P1, Assignment Electrical Digital P2, information Level 3 and concepts (Applying) Machines 1 Logic and Circuits in enaineerina **fundamentals** to solve complex engineering problems with a range of conflicting requirements.

P.a.4.C3	N/A	Apply	Cognitive	0.4	EEE3105:	EEE4101:	K4	P1,	Assignment	ı
		information	Level 3		Industrial	Modern		P3,		ı
		and concepts	(Applying)		Electronics	Control		P7		ı
		in <u>specialized</u>			and Drives	Systems				ı
		<u>engineering</u>								ı
		sciences with								ı
		the in-depth								ı
		of analysis of								ı
		a complex								l
		engineering								l
		problem.								ı

PO-b/PLO 2: Problem Analysis

Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions

using first principles of mathematics, natural sciences and engineering sciences. (K1 to K4).

Indicators ID	BNQF	athematics, natural sc	Domain	w	Course 1	Course 2	К	Р	Α	Assessment
	Indicator									Technique(s)
P.b.1.C4	N/A	Identify first principles of natural sciences and engineering sciences in practical applications.	Cognitive Level 4 (Analyze)	0.1	EEE2101: Electrical Circuits 2 (AC)	EEE2103: Electronic Devices	K1			Assignment
P.b.2.C4	N/A	Formulate solutions, procedures, and methods using first principles of mathematics for engineering sciences.	Cognitive Level 4 (Analyzing)	0.1	EEE3101: Digital Signal Processing	EEE3107: Electromagnetics Fields and Waves	K2			Assignment
P.b.3.C4	FS.3	Analyze solutions for complex engineering problem reaching substantiated conclusion.	Cognitive Level 4 (Analyze)	0.4	EEE3211: Power Systems Analysis	EEE2207: Electrical Machines 2	К3	P1, P3, P7		Assignment
P.b.4.C4	N/A	Research literature and analyze the validity and accuracy of existing solution for complex engineering problems.	Cognitive Level 4 (Analysis)	0.4	EEE2208: Electrical Machines 2 Lab	EEE4209: Telecommunications Engineering	К4	P1, P2, P6		Case Study

PO-c/ PLO 3: Design/ development of solutions

Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations. (K5).

Indicators ID	BNQF	Indicators Definition	Domain	w	Course 1	Course 2	к	Р	Α	Assessment
	Indicator									Technique(s)
P.c.1.C4	N/A	Design solutions for components of an engineering problem considering public health and safety.	Cognitive Level 4 (Analyzing)	0.2	BAE1201: Basic Mechanical Engineering	EEE2211: Electrical Power Transmission & Distribution	K5			Assignment
P.c.2.C6	N/A	Develop process for complex engineering problems considering cultural and societal	Cognitive Level 6 (Create)	0.4	EEE4000: Capstone Project	EEE2102: Electrical Circuits 2 (AC) Lab	K5	P1, P3, P7		Report

EEE 2103: Electronic Device Page 12 of 16

		factors.							
P.c.3.C5	N/A	Evaluate solutions that meet specified needs with appropriate environmental considerations.	Cognitive Level 5 (Evaluate)	0.4	EEE4211: Measurement and Instrumentation	EEE4213: Power Stations and Substations	K5	P1, P2, P6	Assignment

PO-d/ PLO 4: Investigation

Conduct investigations of complex problems using research-based knowledge (K8) and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.

Indicators ID	BNQF	Indicators Definition	Domain	w	Course 1	Course 2	к	Р	Α	Assessment
	Indicator									Technique(s)
P.d.1. C5	N/ A	Investigate the design of experiments for complex engineering problem through appropriate research.	Cognitive Level 5 (Evaluatin g)	0. 4	EEE4103: Microprocess or and Embedded System	EEE3215: Principles of Communicatio n Lab	K 8	P1 , P3 , P7		OEL lab/Project/Assignme nt
P.d.2. C4	N/ A	Analysis and Interpretatio n of collected data to provide valid conclusion acknowledgi ng the limitations.	Cognitive Level 4 (Analyzing)	0. 2	EEE2104: Electronic Devices Lab	EEE3102: Digital Logic and Circuits Lab	K 8			OEL
P.d.3. C5	FS. 2	Investigate solution of complex engineering problem by synthesis of information to provide valid conclusions.	Cognitive Level 5 (Evaluatin g)	0.	EEE2106: Electrical Machines 1 Lab	EEE4102: Modern Control Systems Lab	K 8	P1 , P4 , P5		Project/OEL

PO-e/PLO 5: Modern Tool Usage

Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering problems, with an understanding of the limitations. (K6).

Indicators ID	BNQF	Indicators Definition	Domain	w	Course 1	Course 2	к	Р	Α	Assessment
	Indicator									Technique(s)
<u>P.e.1.C6</u>	N/A	Select engineering tools and Apply appropriate techniques to solve complex engineering problems considering the limitations.	Cognitive Level 6 (Create)	0.4	BAE2101: Computer Aided Design and Drafting	EEE2210: Analog Electronics Lab	К6	P1, P4, P5		OEL/project
P.e.2.P4	N/A	Use tools for prediction and modeling of complex engineering problems considering the practice in electrical and electronic engineering discipline.	Psychomotor Level 4 (Articulation)	0.3	EEE4217: VLSI Circuit Design Lab	EEE4208: Electrical Services Design Lab		P1, P4, P5		OEL/project
P.e.3.P5	FS.6	Create relevant resources for complex engineering	Psychomotor Level 5 (Naturalization)	0.3	EEE3101: Digital Signal Processing	EEE4217: VLSI Circuit Design Lab		P1, P3, P7		OEL/project

problems using				
modern				
engineering tools.				

PO-f/ PLO 6: The Engineer and Society

Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems. (K7)

Indicators ID	BNQF	Indicators	Domain	w	Course 1	Course 2	к	Р	Α	Assessment
	Indicator	Definition								Technique(s)
P.f.1.A3	PS.4	Accepts and Recognize the role of engineering in society, health, safety, legal and culture.	Affective Level 3 (Valuing)	0.3	EEE4208: Electrical Services Design Lab	BAE1201: Basic Mechanical Engineering				Project/Assignment
P.f.2.C6	FS.4	Design solution for complex engineering problem in accordance with professional practices	Cognitive Level 6 (Create)	0.7	EEE2215: Engineering Ethics and Environmental Protection	EEE4000: Capstone Project	K7	P1, P3, P7		Assignment/Report

PO-g/PLO 7: Environment and Sustainability

Understand and evaluate the sustainability and impact of professional engineering work in the solution of complex engineering problems in societal and environmental contexts. (K7)

Indicators ID	BNQF	Indicators Definition	Domain	w	Course 1	Course 2	к	Р	Α	Assessment
	Indicator									Technique(s)
P.g.1.C5	N/A	Evaluate sustainability of complex engineering problems considering society and environment.	Cognitive Level 5 (Evaluating)	1.0	EEE4213: Power Stations and Substations	EEE4000: Capstone Project	K7	P1, P2, P6		Report

PO-h/ PLO 8: Ethics

Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice. (K7)

Indicators ID	BNQF	Indicators Definition	Domain	w	Course 1	Course 2	К	Р	Α	Assessment
	Indicator									Technique(s)
P.h.1.C3	PS. 2	Apply professional codes of ethics and standards considering public safety; the impacts of engineering activity; economic, social, cultural, environmental and sustainability.	Cognitive Level 3 (Applying)	0.	EEE2215: Engineering Ethics and Environmenta I Protection	EEE4000: Capston e Project	K 7			Presentation/Repor t
P.h.2.A 4	SS.6	Demonstrates individual responsibilitie s based on norms of engineering practice.	Affective Level 4 (Organization)	0. 7	EEE4001: Internship/ Seminar/ Workshop	EEE4000: Capston e Project				Report/Book

PO-i/ PLO 9: Individual Work and Teamwork

Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.

Indicators ID	BNQF	Indicators Definition	Domain	w	Course 1	Course 2	К	Р	Α	Assessment
---------------	------	-----------------------	--------	---	----------	----------	---	---	---	------------

EEE 2103: Electronic Device Page 14 of 16

	Indicator							Technique(s)
P.i.1.A3	N/A	Function as effective team member in multi- disciplinary problems.	Affective Level 3 (Valuing)	0.5	EEE4000: Capstone Project	EEE4001: Internship/ Seminar/ Workshop		Peer Review Survey with rubrics and supervisor rubrics.
P.i.2.A5	FS.5	Demonstrate individual skills as a leader in solving multi- disciplinary problems.	Affective Level 5 (Characterization)	0.5	EEE4102: Modern Control Systems Lab	EEE3110: Engineering Shop		OEL/Project

PO-j/ PLO 10: Communication

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

Indicators ID	BNQF	Indicators Definition	Domain	w	Course 1	Course 2	к	Р	Α	Assessment
	Indicator									Technique(s)
P.i.1. A2	SS .1	Optimize engineering solution by giving and responding to clear instructions. (Communica te effectively by giving and responding to clear instructions to produce engineering solutions.)	Affective Level 2 (Responding)	0.4	EEE4000: Capstone Project	EEE4211: Measurement and Instrumentation Lab			A1 , A3 , A5	Viva/Presentation
P.i.2. P3	SS .4	Produce written engineering reports by applying principle- based approaches and design documentat ion on complex engineering activities for different stakeholder s.	Psychomotor Level 3 (Precision)	5	EEE4000: Capstone Project	EEE4209: Telecommunicati ons Engineering Lab			A1 , A4	Report
P.i.3. A4	SS .2	Make and deliver effective presentatio n based on complex engineering activities.	Affective Level 4 (Organizing)	0.2 5	BAS 1204: Bangladesh Studies	EEE3110: Engineering Shop			A1 , A2	Presentation
P.i.4. P5	SS .3	use language flexibly and effectively for social, academic and professional purposes	Psychomotor Level 5 (Naturalizatio n)	0.1	EEE2215: Engineering Ethics and Environment al Protection	EEE4000: Capstone Project				Presentation/Rep ort

PO-k/ PLO 11: Project Management and Finance

Demonstrate knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

Indicators ID	BNQF	Indicators Definition	Domain	w	Course 1	Course 2	К	P	Α	Assessment
	Indicator									Technique(s)
P.k.1.P4	TS.1	Apply engineering management principles and economic decision making to solve engineering projects as a team.	Psychomotor Level 4 (Articulation)	0.3	EEE3106: Industrial Electronics and Drives Lab	EEE4000: Capstone Project				Project Report
P.k.2.P4	TS.2	Manage multi- disciplinary components of a project as a member/leader.	Psychomotor Level 4 (Articulation)	0.3	EEE3110: Engineering Shop	EEE4000: Capstone Project				Project Report
P.k.3.A5	SS.5	Demonstrate competency in completing individual engineering project based on relevant management principles and economic models.	Affective Level 5 (Characterization)	0.4	EEE4213: Power Stations and Substations	EEE4000: Capstone Project				Project Report

PO-I/ PLO 12: Lifelong learning

Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Indicators ID	BNQF	Indicators	Domain	w	Course 1	Course 2	К	Р	Α	Assessment
	Indicator	Definition								Technique(s)
P.I.1.A 1	N/ A	Investigate and gather informatio n on a given engineerin g issue beyond classroom learning.	Affective Level 1 (Receiving)	0.	EEE4209: Telecommunicatio ns Engineering	EEE4000: Capstone Project				Assignment/Repo rt
P.I.2.P 5	PS. 1	Seek and use resources in solving engineerin g problems.	Psychomotor Level 5 (Naturalization)	0. 4	EEE4211: Measurement and Instrumentation Lab	EEE4000: Capstone Project				Report
P.I.3.A 5	PS. 3	Recognizin g the need for continuing education and participatio n in profession al societies and meetings.	Affective Level 5 (Characterizatio n)	0.	EEE4000: Capstone Project	EEE4001: Internship / Seminar/ Workshop				Report

EEE 2103: Electronic Device Page 16 of 16