Lec-15

- Operational Amplifier
- Decibel & Bode Plot

1

Basic Op-Amp

Operational amplifier or op-amp, is a very high gain differential amplifier with a high input impedance (typically a few meg-Ohms) and low output impedance (less than $100~\Omega$).

Note the op-amp has two inputs and one output.

2

Amplifier and Bode Plot

Amplifier Model (VCVS)

Frequency Response

 \boldsymbol{G}_{vm} is maximum overall gain across load with respect to applied signal.

3

Bode Plots and Decibel

The voltage transfer function of a two-port network is usually expressed in Bel: (and/or the ratio of output to input:

Number of Bels =
$$\log_{10}\left(\frac{P_o}{P_i}\right)$$
 or Number of Bels = $2\log_{10}\left|\frac{V_o}{V_i}\right|$ because $P \propto V^2$

Bel is a large unit and decibel (dB) is usually used:

Number of decibels =
$$20 \log_{10} \left| \frac{V_o}{V_i} \right|$$
 or $\left| \frac{V_o}{V_i} \right|_{dB} = 20 \log_{10} \left| \frac{V_o}{V_i} \right|$

using dB definition, 3 dB difference between maximum gain and gain at the cut-off frequency:

$$20 \log |H(j\omega_c)| - 20 \log |H(j\omega)|_{max} = 20 \log \left[\frac{|H(j\omega_c)|}{|H(j\omega)|_{max}} \right] = 20 \log \left(\frac{1}{\sqrt{2}} \right) \approx -3 \text{ dB}$$

Op-Amp Gain

Op-Amps have a very high gain. They can be connected open-loop or closed-loop.

- Open-loop: gain can exceed 10,000.
- Closed-loop configuration reduces the gain.
- This feedback is a negative feedback. A negative feedback reduces the gain and improves many characteristics of the op-amp.

5

5

Basic Block Diagram with Negative Feedback used in Amplifiers

Assume:

- Voltage gain A is without feedback and A_f is with feedback.
- β is known as feedback ratio.

Let:

$$E = V_{in} - \beta V_{out}$$

 $V_{out} = AE = A(V_{in} - \beta Vout)$

Figure 1 Basic block diagram explaining feedback

$$A_f = \frac{v_{out}}{v_{in}} = \frac{A}{1 + A\beta}$$

With Negative Feedback gain reduced as $(1+A\beta)>1$

Inverting Op-Amp

- The signal input is applied to the inverting (-) input
- The non-inverting input (+) is grounded
- The resistor R_f is the feedback resistor. It is connected from the output to the negative (inverting) input. This is negative feedback.

7

7

Inverting Op-Amp Gain

Gain can be determined from external resistors: $\boldsymbol{R}_{\!f}$ and $\boldsymbol{R}_{\!1}$

$$A_v = \frac{V_o}{V_i} = -\frac{R_f}{R_1}$$

Unity gain—voltage gain is 1

$$R_f = R_1$$

$$A_{v} = \frac{-R_{f}}{R_{1}} = -1$$

The negative sign denotes a 180° phase shift between input and output.

Constant Gain—R_f is a multiple of R₁

8

Virtual Ground

An understanding of the concept of virtual ground provides a better understanding of how an op-amp operates.

The *non-inverting* input pin is at ground. The inverting input pin is also at 0 V for an AC signal.

The op-amp has such high input impedance that even with a high gain there is no current from inverting input pin, therefore there is no voltage from inverting pin to ground—all of the current is through $R_{\rm f}$.

9

9

Ideal OpAmp Rule

- 1. No current ever flows into either input terminal. (current can flow at the output terminal).
- 2. there is no voltage difference between the 2 input terminals.

Note: This is valid for negative feedback case only.

Practical Op-Amp Circuits

Inverting amplifier
Noninverting amplifier
Unity follower
Summing amplifier
Integrator
Differentiator

11

11

Inverting/Noninverting Op-Amps

Inverting Amplifier

Noninverting Amplifier

$$V_0 = \frac{-R_f}{R_1} V_1$$

12

Integrator

The output is the integral of the input. Integration is the operation of summing the area under a waveform or curve over a period of time. This circuit is useful in low-pass filter circuits and sensor conditioning circuits.

$$\mathbf{v_0}(t) = -\frac{1}{RC} \int \mathbf{v_1}(t) dt$$

15

15

Differentiator

The differentiator takes the derivative of the input. This circuit is useful in high-pass filter circuits.

$$\mathbf{v_0}(t) = -\mathbf{RC} \frac{\mathbf{dv_1}(t)}{\mathbf{dt}}$$

16

Electrical Characteristics

Characteristic	MIN	TYP	MAX	Unit
$V_{\rm IO}$ Input offset voltage		1	6	mV
I _{IO} Input offset current		20	200	nA
I _{IB} Input bias current		80	500	nA
V _{ICR} Common-mode input voltage range	±12	±13		V
V _{OM} Maximum peak output voltage swing	±12	±14		V
A _{VD} Large-signal differential voltage amplification	20	200		V/mV
r_i Input resistance	0.3	2		$M\Omega$
r_o Output resistance		75		Ω
C _i Input capacitance		1.4		pF
CMRR Common-mode rejection ratio	70	90		dB
I _{CC} Supply current		1.7	2.8	mA
P_D Total power dissipation		50	85	mW

Note: These ratings are for specific circuit conditions, and they often include minimum, maximum and typical values.

17

Ideal Op-AMP Ideal OpAmp Model V_{1N} V_{1N} V_{1N} V_{1N} V_{1N} V_{1N} V₁ V₁ V₁ V₁ V₁ V₁ V₂ V₂ V₃ V₄ V₄ V₅ V₆ V₆ V₇ V₁ V₁ V₁ V₁ V₁ V₂ V₂ V₂ V₃ V₄ V₆ V₆ V₇ V₈ V₈ V₈ V₈ V₈ V₈ V₉ V₁ V₁ V₁ V₁ V₂ V₁ V₂ V₁ V₂ V₁ V₂ V₂ V₃ V₄ V₆ V₇ V₈ V₈

Frequency Response: Cut-off Freq./Break Freq./ 3dB cut-off freq./ Half power freq. Gain x Bandwidth= G.B.P= constant= unity-gain bandwidth product (f_u)

• Freq. dependency due to internal capacitance or total effective capacitance at output node.

	Thanks	
21	Lec-15 OpAMP Cont	

Common Mode Rejection Ratio

Differential Mode Gain: A_{dm} for differential mode input v_{dm}

Common Mode Gain: A_{cm} for common mode input v_{cm}

In general OpAMP Out put Voltage

$$v_o = A_{dm}.v_{dm} + A_{cm}.v_{cm}$$

CMRR= A_{dm}/A_{cm}

CMRR (in dB) = $20 \log_{10}(A_{dm}/A_{cm})$

25

Example 25.3. A differential amplifier has an output of 1V with a differential input of 10 mV and an output of 5 mV with a common-mode input of 10 mV. Find the CMRR in dB.

Example 25.3. A differential amplifier has an output of 1V with a differential input of 10 mV and an output of 5 mV with a common-mode input of 10 mV. Find the CMRR in dB.

Solution. Differential gain,
$$A_{DM} = 1\text{V}/10 \text{ mV} = 100$$

Common-mode gain, $A_{CM} = 5 \text{ mV}/10 \text{ mV} = 0.5$
 $\therefore CMRR_{dB} = 20 \log_{10} (100/0.5) = 46 \text{ dB}$

27

Example 25.4. A differential amplifier has a voltage gain of 150 and a CMRR of 90 dB. The input signals are 50 mV and 100 mV with 1 mV of noise on each input. Find (i) the output signal (ii) the noise on the output.

Example 25.4. A differential amplifier has a voltage gain of 150 and a CMRR of 90 dB. The input signals are 50 mV and 100 mV with 1 mV of noise on each input. Find (i) the output signal (ii) the noise on the output.

Solution.

```
(i) Output signal, v_{out} = A_{DM}(v_1 - v_2) = 150 (100 \text{ mV} - 50 \text{ mV}) = 7.5 \text{ V}
(ii) CMRR_{dB} = 20 \log_{10} (150/A_{CM})
or 90 = 20 \log_{10} (150/A_{CM})
\therefore A_{CM} = 4.7 \times 10^{-3}
Noise on output = A_{CM} \times 1 \text{ mV} = 4.7 \times 10^{-3} \times 1 \text{mV} = 4.7 \times 10^{-6} \text{ V}
```

29

Assignment Problems Types and Discussion

- 1. Mic and Speaker with Amplifier (VCVS) Model
- 2. OPAMP based circuit analysis using ideal Op-Amp properties.
- 3. Design Problem using cascading multiple stage Op-AMP circuits

