UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CAMPUS CHAPECÓ CURSO DE CIÊNCIA DA COMPUTAÇÃO

LUAN BORTOLI YURI LUIS MALINSKI LANZINI

JOGO DE BATALHA NAVAL

CHAPECÓ 2022

LUAN BORTOLI - 2121101061 YURI LUIS MALINSKI LANZINI - 2121101029

JOGO DE BATALHA NAVAL

Trabalho apresentado ao Curso de Ciência da Computação da Universidade Federal da Fronteira Sul (UFFS) como requisito parcial para aprovação na disciplina de Circuitos Digitais.

Professores: Me. Adriano Sanick Padilha

Dr. Luciano Lores Caimi

1. Apresentação

O trabalho proposto simula o jogo de batalha naval. O "mar" é formado por uma matriz de 4x4 posições e o dono deste mar territorial deve colocar 2 navios no mesmo. Para posicionar os navios o dono utiliza 2 conjuntos com 4 chaves onde, de forma codificada, é informada a posição dos navios no mar (cada posição da matriz possui um código associado).

O adversário terá um conjunto de 4 chaves à sua disposição para informar a posição do alvo e uma entrada para solicitar disparo em direção aos navios. As chaves do adversário não possuem codificação associada e informam diretamente a posição (linha, coluna) onde o disparo é realizado.

Foram utilizados os programas: Logisim e Tinkercad . O Logisim foi utilizado para gerar o circuito de codificação e a aplicação do circuito completo. Já o Tinkercad, como simulação da montagem das protoboards com a codificação utilizada.

2. Descrição da Solução

Para descrever a solução do projeto serão utilizadas explicações que estão em cada subitem do tópico 2.

2.1. Estratégia aplicada

Foram utilizadas portas XNOR's que fazem a comparação entre as saídas do barco codificado e o alvo(DIP), e a saídas das XNOR's são direcionadas para uma porta AND que só terá resultado "1" caso a entrada do jogador estiver de acordo com algum dos barcos e o botão de disparo estiver pressionado.

2.2. Codificação dos campos

A Tabela Não Codificada representa as entradas comuns de uma tabela-verdade, e a Tabela Codificada foi fornecida pelo professor para que fossem as saídas da Tabela Não Codificada, e que posteriormente gerou as expressões booleanas.

Tabela Não Codificada				Tabela Codificada					
L/C	00	01	10	11	L/C	00	01	10	11
00	0000	0001	0010	0011	00	0111	0101	0001	1010
01	0100	0101	0110	0111	01	1111	0110	0100	1001
10	1000	1001	1010	1011	10	0011	0000	0010	1101
11	1100	1101	1110	1111	11	1011	1000	1110	1100

2.3. Tabela-verdade

As entradas não codificadas são as entradas informadas para cada barco, e as entradas codificadas são as saídas de cada barco, e também as entradas que devem ser inseridas nas entradas do alvo para que seja atingido o barco.

Entradas Não Codificada					Entradas Codificadas				
А	В	С	D		S1	S2	S3	S4	
0	0	0	0		0	1	1	1	
0	0	0	1		0	1	0	1	
0	0	1	0		0	0	0	1	
0	0	1	1		1	0	1	0	
0	1	0	0		1	1	1	1	
0	1	0	1		0	1	1	0	
0	1	1	0		0	1	0	0	
0	1	1	1		1	0	0	1	
1	0	0	0		0	0	1	1	
1	0	0	1		0	0	0	0	
1	0	1	0		0	0	1	0	
1	0	1	1		1	1	0	1	
1	1	0	0		1	0	1	1	
1	1	0	1		1	0	0	0	
1	1	1	0		1	1	1	0	
1	1	1	1		1	1	0	0	

2.4. Simplificações

As simplificações foram geradas através da inserção da tabela-verdade no Logisim e dos conhecimentos adquiridos em sala de aula com a técnica utilizada de Mapa de Karnaugh, que essa técnica pode ser observada logo em seguida das expressões de codificação de cada saída.

 $S1 = C \cdot D + B \cdot \sim C \cdot \sim D + A \cdot B$ $S2 = \sim A \cdot \sim C + B \cdot C \cdot \sim D + A \cdot C \cdot D$ $S3 = \sim C \cdot \sim D + \sim A \cdot \sim B \cdot C \cdot D + \sim A \cdot B \cdot \sim C + A \cdot \sim D$ $S4 = \sim A \cdot \sim B \cdot \sim C + \sim A \cdot \sim B \cdot \sim D + \sim C \cdot \sim D + \sim A \cdot B \cdot C \cdot D + A \cdot \sim B \cdot C \cdot D$

2.5. Circuito completo usando portas lógicas utilizando o Logisim

No circuito implementado no Logisim, as entradas para o Barco 1 são A1, B1, C1 e D1, e as entradas para o Barco 2 são A2, B2, C2 e D2, para confirmar a codificação de cada barco foram inseridas os códigos de saída de cada barco codificado, sendo para o Barco 1, S11, S12, S13, S14 e para o Barco 2, S21, S22, S23, S24.

Para que seja atingido um barco foi implementado as entradas do alvo, que será utilizada para colocar o código correspondente de cada barco, as entradas do alvo são ALVOA, ALVOB, ALVOC e ALVOD, após configurar as entradas para verificar se o alvo foi atingido ou não será necessária clicar no botão "Disparar", onde que ao pressionar ele irá acender a saída "SF_ACERTOU" quando for atingido o alvo, e "SF_ERROU" quando nenhum barco foi atingido, para que seja possível observar isso é necessário que o botão seja mantido pressionado. Para que a saída de "SF_ERROU" fosse igual "1" e mostrasse que ocorreu aquele estado foi necessário, utilizar uma porta NOR antes da porta AND, senão o resultado sempre seria "0", e não mostraria que o jogador errou.

2.6. Circuito completo usando Cls (74XX) usando o TinkerCad

Para que fosse possível implementar o circuito no Tinkercad, foi necessário que tivéssemos o circuito no Logisim completo e funcionando. No projeto temos 3 DIPs, usados para configurar a codificação dos barcos (2 DIPs), e do alvo (1 DIP).

As protoboards maiores representam os barcos, já a protoboard menor representa o alvo. Quando um dos barcos for atingido, os leds da protoboard do alvo e a protoboard do barco ficarão acesos, caso nenhum barco for atingido nenhum led será ligado.

Para acesso ao projeto no tinkercad será necessário acessar o link: https://www.tinkercad.com/things/jRsVsnpIIIf?sharecode=3qhjc_X9jUDUlu2sTI4OX0 a53jmQaKsbstnCnKF6BkY

2.7. Montagem de um bit da saída do circuito de codificação com a identificação das entradas e saídas

3. Conclusão

O desenvolvimento do projeto foi de extrema importância para que aplicássemos todos os conhecimentos adquiridos em sala de aula e nas atividades práticas, demonstrando que saímos da abstração para algo real e funcional, o que incentiva o estudante a continuar aprofundando o conhecimento e construindo novos projetos nesta área.

O uso do Logisim foi de extrema importância, pois facilitou a construção do projeto, visto que colocamos as saídas do circuito, e ele nos gerou automaticamente todo o circuito inicial do projeto, sendo necessário posteriormente algumas adaptações para que o projeto ficasse com todas as funcionalidades solicitadas. Já o Tinkercad foi essencial, pois simplificou o modo de construir o circuito, visto que para desenvolver o projeto na prática com componentes reais demandaria de muitos materiais e altos custos para o seu desenvolvimento.

Link do Vídeo: https://youtu.be/K2SExSKmyn8