CPSC 351 Project: Virtual Memory Manager				
Your name: Lori Cha				
Repository (print): https://github.com/lori33c/virtual_memory.git				
Verify each of the following items and place a checkmark in the correct column. Each item incorrectly marked will incur a 5% penalty on the grade for this assignment				
Finished	Not finished			
\checkmark		Created functions that correctly calculate the offset and page of a given virtual address		
		Created a page table, that contains the frame of a given page, and which will page fault if the desired page is not in memory (this will happen: (A) when the program is first run and physical memory is empty, and (B) if only half as many physical frames as pages in the page table		
✓		Given a given logical address, checks the page table to find the corresponding physical address		
\checkmark		Correctly reads the given physical address for the char value stored there		
\checkmark		Goes to the BACKING_STORE and reads in the corresponding page into a free frame in physical memory. If there are only 128 frames, it must replace a frame to do this.		
K		Implemented a Translation Lookaside Buffer (TLB) to store the most recently read-in page, AND checks the TLB first when decoding a logical address.		
		Do following when reading a logical address that is not in the TLB/Page table: Check TLB → (TLB miss) Check Page Table → (Page table miss) Page fault → read page from BACKING_ STORE → updates physical memory → updates Page table → updates TLB → reads value from physical memory		
\checkmark		Follows this flow diagram when has a TLB hit: Check TLB \rightarrow Gets frame and offset \rightarrow reads value from physical memory		
		Do following when has a TLB miss but a Page table hit → Check TLB → (TLB miss) → Checks Page table → Updates TLB → Gets frame and offset → reads value from physical memory		
\checkmark		Page-fault rate the percentage of address references that resulted in page faults.		

V		TLB hit rate the percentage of address references that were resolved in the TLB
	\triangleright	Now modify your program so that it has only 128 page frames of physical memory (but still has 256 entries in the page table)
	V	Program now keeps track of the free page frames, as well as implementing a page replacement policy using either FIFO or LRU
✓		Project directory pushed to new GitHub repository listed above