Consider the following two-period investment opportunity.

The cost of the investment is I = 400 and the revenues generated in year one are $V_1 = 200$. In year two, the investment will generate revenues of $V_2 = 600$ with probability p and $V_2 = 100$ with probability 1 - p. The investment is irreversible once made, and the value of V_2 is revealed at the start of year two. Assume, for now, that the discount factor δ is equal to one.

Figure 1: Structure of two-period investment opportunity

a. Derive an expression for the Dixit-Pindyck option value in terms of p. Display this graphically and interpret.

$$DPOV = \max\{V^l(1), V^l(0)\} - \max\{V^n(1), V^n(0)\}$$
 where:
$$V^l(1) = V^p(1) = V^n(1) = u_1(1) + \mathbb{E}[u_2(1, 1, \tilde{\theta})]$$

$$= -400 + 200 + 600p + 100(1 - p) = 500p - 100$$

$$V^l(0) = u_1(0) + \mathbb{E}[\max_{x_2 \in 0, 1} (u_2(0, x_2, \tilde{\theta}) - 400x_2)]$$

$$= 0 + (600 - 400)p + (0 - 0)(1 - p) = 200p$$

$$V^n(0) = 0$$

$$\implies DPOV = \max\{500p - 100, 200p\} - \max\{500p - 100, 0\}$$

$$\implies DPOV = \begin{cases} 0 & \text{for } p \ge 1/3 \\ 300 - 500p & (> 0) & \text{for } 0.2$$

Dixit-Pindyck option value DPOV tells us the value of postponing our investment conditional on being able to learn the value of $\tilde{\theta}$ in the later period. A DPOV of zero means the additional information later does not improve upon the value of foregone earlier investment.

In this case, for $p \ge 1/3$, DPOV = 0, otherwise DPOV > 0. Figure 2 shows the value of DPOV for values of p. For $p \ge 1/3$, we gain nothing in postponing our investment, and should invest now, having a decent shot at high payoff branch f. For p < 1/3, the probability of a high outcome in the later period is small enough that it would be optimal to postpone (avoiding negative payoff branch e), observe the value of $\tilde{\theta}$ in period 2, and decide at that point whether our investment will be worthwhile (branch e), branch e0 otherwise).

Figure 2: Variation of Dixit-Pindyck value option with p

2

b. Suppose there is a spread in the distribution of year two revenues. Specifically, $V_2 = 600 + 100u$ with probability p and $V_2 = 100 - 100u$ with probability 1 - p where $0 \le u \le 1$. Derive an expression for the Dixit-Pindyck option value in terms of p and u. How does the option value change as u gets larger? Explain. How does the option value vary across p - u space?

When u=0, this scenario is identical to that in part a. As u increases, the V_2 payoff both increases the value of the p payoff and decreases the value of the (1-p) payoff, so now the expected value of V_2 depends on both p and u. In order to make a period 1 investment optimal, we need to be confident that the probability of the high future payoff is high enough to ensure that $u_1(1) + \mathbb{E}[u_2(1,1,\tilde{\theta})] > \mathbb{E}[\max_{x_2 \in 0,1}(u_2(0,x_2,\tilde{\theta}) - 400x_2)]$.

Figure 3 shows the values of DPOV with respect to both p and u. The red curve indicates the values of p and v at which the DPOV transitions from 0 (invest in period 1, right side of plot) to positive (wait until period 2, observe $\tilde{\theta}$, and then decide whether to invest, left side of plot).

Figure 3: Variation of Dixit-Pindyck value option with p and u

c. Now suppose that $\delta \leq 1$ and u = 0. Derive an expression for the option value in terms of p and δ . How does the Dixit-Pindyck option value change as δ gets larger? Explain. How does the option value vary across $p - \delta$ space?

$$DPOV = \max\{V^l(1), V^l(0)\} - \max\{V^n(1), V^n(0)\}$$
 where:
$$V^l(1) = V^p(1) = V^n(1) = u_1(1) + \delta \mathbb{E}[u_2(1, 1, \tilde{\theta})]$$

$$= -400 + 200 + \delta[600p + 100(1 - p)] = 500p\delta + 100\delta - 200$$

$$V^l(0) = u_1(0) + \delta \mathbb{E}[\max_{x_2 \in 0, 1} (u_2(0, x_2, \tilde{\theta}) - 400x_2)]$$

$$= 0 + \delta(600 - 400)p = 200\delta p$$

$$V^n(0) = 0$$

$$\Rightarrow DPOV = \max\{500p\delta + 100\delta - 200, 200\delta p\} - \max\{500p\delta + 100\delta - 200, 0\}$$
 for $p \ge \frac{2-\delta}{3\delta}$ for $p \ge \frac{2-\delta}{5\delta}$
$$200\delta \qquad \text{for } p \le \frac{2-\delta}{5\delta}$$

$$200 - 500\delta p + 100\delta \quad (> 0) \quad \text{else}$$

As the discount rate increases (assuming $\delta = \frac{1}{1+r}$), or effectively as the time scale between periods 1 and 2 increases, δ decreases, reducing the present value of future investment.

As δ decreases, the p threshold at which a period 1 investment is optimal (i.e. DPOV = 0) shifts according to $p_{period1} = \frac{2-\delta}{3\delta}$, i.e. the probability of the high return must increase to ensure a better result than simply postponing. When $\delta = 0.5$ (i.e. r = 1), p must be 1 to make investment in period 1 optimal, and for any $\delta < 0.5$ (i.e. r > 1 which is a pretty usurious interest rate), then the investment should always be postponed.

As δ increases from 0.5 toward 1, the discounting of future values becomes less severe, and this scenario approaches the scenario in part a.

Figure 4 shows the relationship among DPOV, p, and δ . The upper right corner, above the red line indicating DPOV = 0, indicates the parameter space in which investment in period 1 is optimal.

Figure 4: Variation of Dixit-Pindyck value option with p and δ