Método da Bissecção Estimativa do nº de iterações K: 1 xx-5 \ \ \(\begin{array}{c} \begin{ar Li proximo natural.

Solução Mumbrica de Equações

Profa. Gilülenl PosMAC-UNESP Metodo da Iteração Simples (da Iteração Loinlar) (do Ponto Fixo) Theorem 1.2 (Brouwer's Fixed Point Theorem) Suppose that g is a real-valued function, defined and continuous on a bounded closed interval [a,b] of the real line, and let $g(x) \in [a,b]$ for all $x \in [a,b]$. Then, there exists ξ in [a,b] such that $\xi = g(\xi)$; the real number ξ is called a fixed point of the function g.

Demonstração: Sign f(x) = x - g(x). Observe que: (i) g(a) E [a,b] => 9(2)>0 $(ii) a(b) \in [a_1b] \Rightarrow a(b) \leq [a_1b] \Rightarrow a(b) = [a_1b] \Rightarrow a(b) =$

Então, $f(a) = \alpha - g(a) \leq 0$ per (i)f(b) = b - g(b) > 0 per(iii)Jennes entag que $f(a).f(b) \le 0$ e que f d'entirme = \Rightarrow Pelo Teo I. I, $\exists 5 \in [a_1b]: 0 = f(5) = 5 - g(5)$

Exemple 1.1:

$$f(x) = e^{x} - 2x - 1 ; x \in [1,2]$$

$$obs: f(1) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(2) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3 < 0 ; \text{fort.}$$

$$f(3) = e^{x} - 3$$

$$g(1) = e^{2} - 1$$
; $x \in [1, 2]$
 $g(1) = e - 1 \approx 0.85 \Rightarrow g(1) \notin [1, 2]$
 $g(2) = e^{2} - 1 \approx 3.19 \Rightarrow g(2) \notin [1, 2]$
 $g(2) = e^{2} - 1 \approx 3.19 \Rightarrow g(2) \notin [1, 2]$

Jenifique 9/21=1/2]. $9(1) = lm(3) \approx 1.09 > 1$ $g(z) = \ln(5) \approx 1.6 \angle 2$ Como g e monotônica curunte entao $g(x) \in [g(x), g(z)] \subset [1,2]$.

Para $g(x)=\ln(2x+1)$ $x \in [1,2]$ pade-se aplitar ATIO1.2.3 3 E[1,2]; 9(5)=5. Note que: 3/31 = 3 2/31 = 3 2/31 = 3 2/31 = 3 2/31 = 3 2/31 = 3 2/31 = 3 2/31 = 3 2/31 = 3 2/31 = 3 2/31 = 3 2/31 = 323-15-0 7(5) =0

Teorema 1.3 (da contração)

- $g:[a,b] \to \mathbb{R}$ continua
- $g(x) \in [a, b], \forall x \in [a, b]$
- g é uma contração em [a, b]

ENTÃO,

- g possui um único ponto fixo $\xi \in [a, b]$
- $x_k \to \xi$, $k \to \infty$, para qualquer valor inicial $x_0 \in [a, b]$

 $(\{x_k\}$ é a sequencia gerada pela iteração $x_{k+1} = g(x_k))$

Demonstrações: Existència: Pelo Jeo 1.2., 35E[a₁b]: 2(5)=5. Unicidade: seja $\eta \in [a_1b]:g\eta=\eta$. $|s-\eta| = |g(s)-g(\eta)| \leqslant L. |s-\eta| \cdot 0 \leqslant L \leqslant 1$. (1-L). $|3-\eta| \le 0$. Comp 1-L>0entao $|3-\eta| = 0 => \gamma = 3$.

$$|x_{K}-3| = |g(x_{K-1})-g(3)| \le$$

$$\le L \cdot |x_{K-1}-3|, K > 1$$

$$e para algum $0 < L < 1 :$

$$k=1 : |x_{1}-5| \le L \cdot |x_{0}-5|$$

$$k=2 : |x_{0}-5| \le L \cdot |x_{1}-5| \le L^{2} |x_{0}-5|$$

$$|x_{K}-5| \le L^{K} \cdot |x_{0}-5| ; K > 1; 0 < L < 1$$$$

Como OLL <1 =; L >0, K >0. Enta0, Rx-5-0; K-00. lim CK = 5 independente K++00 da molha de roe [ab].

Enemple 1.2: fix=ex-2x-1 g(x) = ln(2x+1), $x \in [1, 2,]$. Pelo Jeo 1.2: q:[1,2] -> [1,2] continua entos ordinite SE[1,2]: g(S)=5.

James verificar se ge Juna contração para construismes à met numérica pela iteração simple convergente) ogé continua em [1,2] T.V.M ogé derivairel em (1,2) dados x, y E [1,2], eniste n entre ruy, e portanto, n E (1,2),

 $\alpha(x) - \alpha(y) = \alpha(\eta)$ $f(y) \leq \frac{2}{3}$ (DB)

Freinamos mostrar que g'(x) = 2 g'(x) = -4 $(2x+1)^2$ Como $g^{(1)}(x)$ (0) $\forall x \in [1,2]$ entaro $g^{(1)}$ d decresseente em [1,2].

Semos que: $1 < \eta < 2$ entaio: g(1) >, g(1) >, g(2)

 $(\eta) \in \left[\frac{2}{5}, \frac{2}{3} \right]$

Sendo o suma contragão em [1,2], entaro a $2 \times 1 = 1 \times 2 \times 1$ K=0,1,2,000 voiente 7 xo E[1,2].

Teorema 1.5

- $g:[a,b] \to \mathbb{R}$ continua
- $g(x) \in [a, b], \forall x \in [a, b]$
- g é de classe C^1 em alguma V_{ξ} $(V_{\xi}: vizinhança de <math>\xi; \xi ponto fixo de g.)$
- $|g'(\xi)| < 1$

ENTÃO,

• $x_k \to \xi$, $k \to \infty$, SE x_0 está suficientemente próximo de ξ .

 $(\{x_k\}$ é a sequencia gerada pela iteração $x_{k+1} = g(x_k))$

Demonstração: 2003 é de clarre C'em 1/3. => | g)(re) < L; 0 < L < 1,

+ x ∈ Is < Vs.

g e continua em $\sqrt{3}$,

tendo $\sqrt{5} = [5-h, 5+h]$.

para algum h>0. $\sqrt{5} = [5-h, 5+h]$. Contain, dado $\varepsilon = \frac{1}{2}(1-|g|(\xi)) > 0$ 35>0 ° g/x-g(3) < \frac{1}{2}(1-|g|3)| sempte
que x \in [3-5,5+8].

$$|g'(x)| = |g'(x) - g'(s) + g'(s)| \le$$

$$|g'(x) - g'(s)| + |g'(s)| =$$

$$|g'(x) - g'(s)| + |g'(s)| + |g'(s)| =$$

$$|f'(x) - g'(s)| + |g'(s)| =$$

$$|f'(x) - g'$$

Jeja $\alpha \in IS$. $|\alpha| = |\beta| |\alpha| = |\beta| |\alpha| = |\alpha|$ = 10/2/1. 7CK-5 porto N/2 entre 2Ke3. => 7k também esta em Is, logo |2'(7k) | LL j.LL L1.

Entaro,

[RK+1-3 & L. RK-3] com 04L41. o que nos diz que $x_{K+1} \in I_S$. $K=0: |x_1-5| \le L|x_0-5| : x_0, x_1 \in I_8$ $K=1: |x_2-5| \le L|x_1-5| \le L.L|x_0-5| = L^2.|x_0-5|$ 124-3 < L. 120-5;

Como 0 < L < 1, L > 0. 20 Ky+00, Semple que 200 E JS. Lo estrer suficientemente proximo de 5).