1. Покажите, что если $\Gamma \vdash \alpha$, то $\Gamma \vDash \alpha$.

Вспомним доказательство этой теоремы без Γ , которое было на лекции. Мы фиксировали оценку и рассматривали доказательство α . По индукции мы доказывали, что каждый шаг доказательства $[\![\delta_n]\!]=$ И, и в частности последний шаг, т.е. α тоже истиннен в данной подстановке. С добавлением Γ у нас в индукционном переходе добавился случай $\delta_n \in \Gamma$. Но т.к. мы фиксируем оценку такую, что $\forall \gamma \in \Gamma$ $[\![\gamma]\!]=$ И, индукционный переход работает.

- 2. Покажите, что если $\Gamma \vDash \alpha$, то $\Gamma \vdash \alpha$.
 - (a) $[\gamma_1 \to \gamma_2 \to \dots \gamma_n \to \alpha] = M$.
 - (b) $\vDash \gamma_1 \to \gamma_2 \to \dots \gamma_n \to \alpha$
 - (c) $\vdash \gamma_1 \rightarrow \gamma_2 \rightarrow \dots \gamma_n \rightarrow \alpha$ по теореме о полноте
 - (d) $\Gamma \vdash \alpha$ по теореме о дедукции
- 3. *О законе исключённого третьего*. Покажите, что в интуиционистском исчислении высказываний доказуемо следующее:

(a)
$$((A \rightarrow B) \rightarrow A) \rightarrow A \vdash \neg \neg A \rightarrow A$$

(b)
$$A \vee \neg A \vdash \neg \neg A \rightarrow A$$

Докажем $A \vee \neg A \neg \neg A \vdash A$:

1.	$(A \to A) \to (\neg A \to A) \to (A \lor \neg A \to A)$	(акс. 8)
2.	$(A \to A)$	(было ранее)
3.	$\neg A \to \neg \neg A \to A$	(акс. 10)
4.	$\neg\neg A \to (\neg A \to \neg\neg A)$	(акс. 1)
5.	$\neg \neg A$	$(\in \Gamma)$
6.	$\neg A \rightarrow \neg \neg A$	(M.P. 4,5)
7.	$(\neg A \to \neg \neg A) \to (\neg A \to \neg \neg A \to A) \to (\neg A \to A)$	(акс. 2)
8.	$(\neg A \to \neg \neg A \to A) \to (\neg A \to A)$	(M.P. 6,7)
9.	$\neg A \to A$	(M.P. 3.8)
10.	$(\neg A \to A) \to (A \vee \neg A \to A)$	(M.P. 1,2)
11.	$A \vee \neg A \to A$	(M.P. 9, 10)

4. Предложите топологические пространства и оценку для пропозициональных переменных, опровергающие следующие высказывания:

(a)
$$\neg A \lor \neg \neg A$$

$$A = (0, +\infty) \quad \neg A = (-\infty, 0) \quad \neg \neg A = (0, +\infty) \quad \neg A \vee \neg \neg A = \mathbb{R} \setminus \{0\}$$

M3*37y2019 25.2.2021

(b)
$$(((A \rightarrow B) \rightarrow A) \rightarrow A)$$

$$A = (1,2) \cup (2,3)$$
 $B = (3,4)$

(c)
$$\neg \neg A \rightarrow A$$

$$A = \mathbb{R} \setminus \{0\}$$

(d)
$$(A \rightarrow (B \lor \neg B)) \lor (\neg A \rightarrow (B \lor \neg B))$$

$$X = (0, 10)$$
 $A = (1, 2) \cup (2, 3)$ $B = X \setminus \mathbb{Z}$

(e)
$$(A \rightarrow B) \lor (B \rightarrow C) \lor (C \rightarrow A)$$

- 5. Можно ли, имея $(A \to B) \lor (B \to C) \lor (C \to A)$, доказать закон исключённого третьего в интуиционистской логике?
- 6. Известно, что в классической логике любая связка может быть выражена как композиция конъюнкций и отрицаний: существует схема высказываний, использующая только конъюнкции и отрицания, задающая высказывание, логически эквивалентное исходной связке. Например, для импликации можно взять $\neg(\alpha \& \neg \beta)$, ведь $\alpha \to \beta \vdash \neg(\alpha \& \neg \beta)$ и $\neg(\alpha \& \neg \beta) \vdash \alpha \to \beta$. Возможно ли в интуиционистской логике выразить через остальные связки:
 - (а) конъюнкцию?
 - (b) дизъюнкцию?
 - (с) импликацию?
 - (d) отрицание?

Если да, предложите формулу и два вывода. Если нет — докажите это.

- 7. Назовём теорию *противоречивой*, если в ней найдётся такое α , что $\vdash \alpha$ и $\vdash \neg \alpha$. Покажите, что исчисления высказываний (классическое и интуиционистское) противоречивы тогда и только тогда, когда в них доказуема любая формула.
- 8. *Теорема Гливенко*. Обозначим доказуемость высказывания α в классической логике как $\vdash_{\kappa} \alpha$, а в интуиционистской как $\vdash_{\mathfrak{u}} \alpha$. Оказывается возможным показать, что какое бы ни было α , если $\vdash_{\kappa} \alpha$, то $\vdash_{\mathfrak{u}} \neg \neg \alpha$. А именно, покажите, что:
 - (a) Если α аксиома, полученная из схем 1–9 исчисления высказываний, то $\vdash_{\mathbf{u}} \neg \neg \alpha$.
 - (b) $\vdash_{\mathbf{w}} \neg \neg (\neg \neg \alpha \to \alpha)$
 - (c) $\neg \neg \alpha, \neg \neg (\alpha \rightarrow \beta) \vdash_{\mathbf{n}} \neg \neg \beta$
 - (d) Докажите утверждение теоремы ($\vdash_{\kappa} \alpha$ влечёт $\vdash_{\mathsf{u}} \neg \neg \alpha$), опираясь на предыдущие пункты, и покажите, что классическое исчисление высказываний противоречиво тогда и только тогда, когда противоречиво интуиционистское.

M3*37y2019 25.2.2021