Charachertisation of Algebraically closed Fields.

Prop Let F be a Field. Then F is algebraically closed of one of the following holds:

- (1) Any irreducible $f(x) \in F(x)$ has the property that deg(f) = 1.
- (2) I a root in F. For any Poly f(x) < F[x], with deg (f) >1.
- (3) F is the only alsobaic Extension of F.
- Troof. (1) => (2): Let $f(x) \in F(x)$ with $deg(F) = 1 \Rightarrow f(x) = ax + b$ s.t. a, $b \in F$ a to but then (-1). (b). (a) is a root of f(x) in F.

 Here 211 polys of degree 1 have a root in F. Notice that there however are all the irreducible polys in F(x). As F(x) is a UFD, any non-constant poly. will have a root in F
 - (3) \Rightarrow (1): Let $f(x) \in F(x)$ be an ineducible poly \Rightarrow F(x) is a finite algebraich of F. By assumption, des(F) must be 1.
 - (2) \Rightarrow (3): Argue by conto. and assume that $E(\mp F)$ is an algebraic ext. of F.

 Thus \exists algebraic elt $\alpha \in E$ with $f(x) \in F(x)$; $f(\alpha) = 0$.

 By assumption, \exists anot of f in F; say B.

 As F is irreducible + monic, f(x) = x B. But since $f(\alpha) = 0$, we arrive at $f(\alpha) = \alpha \beta = 0$ $\Rightarrow \alpha = \beta \in F$. Here $E = F_B$
 - Ex. The Findorelal than of alsoba State that C is als-closed.

 IR, Q, Zp ore not alsolomically closed. (R, Q CAC)
 - The Every homorphism of a field k into an algebraically closed field $(f: k \rightarrow F)$ (F)

Com be Extended to a homorphism From any algebraic Extension of F. (f.f).

- * V. NIG than Since it settled the Situation of Extending homoghisms into Fields.
- * Pf depends on Zorn's Lemma (P. 166).
- Lemma Every Field K has an algebraic Extension that contains a voot of every non-constact poly- with coefficients in K.
- The Every Field K has an also aic Extension K that is also baically closed. Moreover, K is unique up to K-isomorphism.
- If (Digita of a Field K) is an algebraic Extension K of K, that is algebraically closed.
- As All algebraic closure of K se K-isomorphic > "the" alg. closur of-k
 - Prof Evey K-endomorphism of K is a K-antomorphism.
 - Pf. Let $Q: \overline{K} \to \overline{K}$ be a K-homophism. Then in $Q \cong \overline{K}$ is algebraically closed and \overline{K} is algebraic over Im Q. Hence, $\overline{K} = \overline{I} m Q$ and so Q is a K-automorphism.
 - Prop & KEECK is an abeloanic extension of K, then every

 K-homorphism of E into K extends to a K-automorphism of K.

 S: E -> K
 - Let $f: E \longrightarrow K$ be a K-homorphism. Then by (1), f can be extended to a K-homorphism $g: \overline{K} \longrightarrow \overline{K}$. It Follows that g is a K-automorphism of \overline{K} .

مرهان

Wednesday, August 17, 2022 11:59 AM