Recommender System

Xanh Ho
University of Science – Ho Chi Minh

Why Recommender System?

Introduction to Recommender System

facebook amazon

Terminology Explanation

- User
- Item: movies, books, songs, ...

- n_u : number of users
- n_m : number of items
- => Rating matrix/Utility matrix: $(n_u \times n_m)$
- Rating information
 - Implicit feedback: number of times website visited, read a book, view a book, heard a song, ...
 - Explicit feedback: user rating for a movie

Problem Formulation

	I1	12	13	14
U1	4	?	3	,
U2	?	3	?	5
U3	5	?	?	2
U4		1	?	5
U5	?	?	4	5

Item descriptions

	I1	12	13	14
U1	4	2	3	5
U2	3	3	2	4
U3	5	1	5	2
U4	1	1	3	2
U5	4	3	4	5

Recommender System Approaches

- Content-based
- Collaborative Filtering
- Hybrid methods

Content-based

 Main idea: "Recommend items that are similar to those the user liked in the past"

Content-based

Make Predictions

Item Profiles

- List of features
 - Movies: actor, title, director, genre, ...
 - Songs: singer, year release, musician, ...
 - Books: Title, author, genre, ...
- Text features
 - List of important words
 - Use TF-IDF

User Profiles and Making Predictions

User Profiles:

- User has rated items with profiles $x_1, ..., x_n$
- Simple: average of rated item profiles

Making Predictions:

- Item profiles: $x_1, ..., x_k$
- User profile: u_1
- Prediction: Cosine similarity $cos(x_q, u_1), q \in [1, k]$

Learning a User Model

- Regression/Classification task
- Training data: item profile and ratings

	I1	12	13	14	
U1	4	?	3		
U2	?	3	?	5	
U3	5			2	
U4		1		?	
U5		٠.	4	5	

	x1	x2
I1	0.9	0.1
12	0.4	0.6
13	0.5	0.5
14	0.3	0.7

Learning a User Model

- r(i,j) = 1 if user i rated movie j (0 otherwise)
- $y^{(i,j)}$ = rating by user i on movie j
- $w^{(i)}$: parameter vector for user i
- $x^{(j)}$: feature vector for movie j
- For user i, movie j, predicted rating: $(w^{(i)})^T x^{(j)}$
- n: number of features in movie

• To learn $w^{(i)}$ parameter for user i:

$$\min_{w^{(i)}} \frac{1}{2} \sum_{j:r(i,j)=1} ((w^{(i)})^T x^{(j)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=1}^n (w_k^{(i)})^2$$

Comments

Advantages:

- No need data of other users
- Able to recommend new and unpopular items
- Explanations for recommended items

Disadvantages:

- Never recommends items outside user's content profile
- Unable to exploit quality judgments of other users
- Cold-start problem for new users

Collaborative Filtering

Main idea: "Recommend items that similar users liked"

Collaborative Filtering

- Neighborhood-based
 - User-user collaborative filtering
 - Item-item collaborative filtering
- Matrix Factorization

Step 1: Normalized data

	U1	U2	U3	U4	U5	U6	U7			U1	U2	U3	U4	U5	U6	U7
I1	5	5	2	0	1				I1	1.75	2.25	-0.5	-1.3	-1.5	0	0
12	4	?	?	0		2			12	0.75	0	0	-1.3	0	1.5	0
13	?	4	1		?	1	1		13	0	1.25	-1.5	0	0	-0.5	-2.3
14	2	2	3	4	4	?	4		14	-1.2	-0.7	0.5	2.67	1.5	Ş	0.67
15	2	0	4				5		15	-1.2	-2.7	1.5	0	0	0	1.67
	Normalized rating matrix									ix						
	3.25	2.75	2.5	1.33	2.5	1.5	3.33									

Mean user ratings

Step 2: Calculate user similarity: cosine similarity

	u_0	u_1	u_2	u_3	u_4	u_5	u_6
u_0	1	0.83	-0.58	-0.79	-0.82	0.2	-0.38
u_1	0.83	1	-0.87	-0.40	-0.55	-0.23	-0.71
u_2	-0.58	-0.87	1	0.27	0.32	0.47	0.96
u_3	-0.79	-0.40	0.27	1	0.87	-0.29	0.18
u_4	-0.82	-0.55	0.32	0.87	1	0	0.16
u_5	0.2	-0.23	0.47	-0.29	0	1	0.56
u_6	-0.38	-0.71	0.96	0.18	0.16	0.56	1

User similarity matrix

Step 3: Rating prediction

$$\hat{y}_{i,u} = rac{\sum_{u_j \in \mathcal{N}(u,i)} ar{y}_{i,u_j} ext{sim}(u,u_j)}{\sum_{u_j \in \mathcal{N}(u,i)} | ext{sim}(u,u_j)|}$$

	U1	U2	U3	U4	U5	U6	U7
I1	1.75	2.25	-0.5	-1.3	-1.5	0.18	-0.63
12	0.75	0.48	-0.17	-1.3	-1.33	1.5	0.05
13	0.91	1.25	-1.5	-1.84	-1.78	-0.5	-2.3
14	-1.2	-0.7	0.5	2.67	1.5	0.59	0.67
15	-1.2	-2.7	1.5	1.57	1.56	01.59	1.67

Step 5: Denormalized

	U1	U2	U3	U4	U5	U6	U7
I1	5	5	2	0	1	1.68	2.70
12	4	3.23	2.33	0	1.67	2	3.38
13	4.15	4	1	-0.5	0.71	1	1
14	2	2	3	4	4	2.10	4
15	2	0	4	2.9	4.06	3.10	5

Matrix Factorization

- n_u : number of users
- n_m : number of items
- $n_u = 7$, $n_m = 5$, K = 3

	U1	U2	U3	U4	U5	U6	U7
11	5	5	2	0	1		
12	4	?	?	0	?	2	?
13		4	1	?	?	1	1
14	2	2	3	4	4	?	4
15	2	0	4		?		5

Rating Matrix

User Matrix

Item Matrix

Matrix Factorization

Content-based, for user i:

$$\min_{w^{(i)}} \frac{1}{2} \sum_{j:r(i,j)=1} ((w^{(i)})^T x^{(j)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=1}^n (w_k^{(i)})^2$$

• For n_u users:

$$\min_{w^{(i)}, \dots, w^{(n_u)}} \frac{1}{2} \sum_{i=1}^{n_u} \sum_{j:r(i,j)=1} ((w^{(i)})^T x^{(j)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_u} \sum_{k=1}^{n_u} (w_k^{(i)})^2$$

Matrix Factorization

For find features vector of items:

$$\min_{x^{(j)},...,x^{(n_m)}} \frac{1}{2} \sum_{j=1}^{n_m} \sum_{i:r(i,j)=1} ((w^{(i)})^T x^{(j)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_m} \sum_{k=1}^{n} (x_k^{(j)})^2$$

For find both features vector of items and users:

$$J(x,w) = \frac{1}{2} \sum_{(i,j):r(i,j)=1} ((w^{(i)})^T x^{(j)} - y^{(i,j)})^2$$

$$+ \frac{\lambda}{2} \sum_{i=1}^{n_u} \sum_{k=1}^{n} (w_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_m} \sum_{k=1}^{n} (x_k^{(j)})^2$$

Comment

Collaborative filtering result > Content-based result

- Issues of Collaborative filtering:
 - Cold-start problems
 - Sparsity problems

=> Hybrid methods: combine both Collaborative filtering and Content-based

Current State-of-the-art Models

Content Information

User-item Interaction --- Train data

Datasets

- Movie
 - Movielens: MovielD, Title, Genre, Rating, Tag
 - Netflix
- Scientific paper
 - CiteULike: Title, abstract, User-item interaction, tag...
 - CiteSeer
- Amazon product data

- 1. https://movielens.org/
- 2. http://www.citeulike.org/

Evaluation

Rating Prediction Task

- Mean Absolute Error (MAE)
- Mean Square Error (MSE)
- Root Mean Square Error (RMSE)

Top-N Recommendation Task

- Precision and Recall
- Mean Average Precision (MAP)
- Mean Reciprocal Rank (MRR)
- Normalized Discounted Cumulative Gain (nDCG)

References

- J. Bobadilla, F. Ortega, A. Hernando, and A. GutiéRrez. Recommender Systems Survey, 2013.
- 2. Ken Lang. NewsWeeder: Learning to Filter Netnews. In Proceedings of the 12th International Machine Learning Conference (ML95), 1995.
- 3. Ruslan Salakhutdinov and Andriy Mnih. Probabilistic Matrix Factorization. In Proceedings of the 20th International Conference on Neural Information Processing Systems (NIPS'07), 2007.
- 4. https://www.coursera.org/learn/machine-learning/lecture/uG59z/content-based-recommendations
- 5. https://machinelearningcoban.com

