Virtual Fixtures

• Obstacle Avoidance

• Trajectory Guidance

• Surface Guidance

• Insertion Guidance

Wrist articulation

Virtual fixture

- Trajectory GUIDANCE
- Surface GUIDANCE

- Distance and angle to reference trajectory/surface
- Time of execution
- Clutch time

Depth perception

Virtual Fixture:

• Insertion GUIDANCE

- Distance error from trajectory
- Distance from camera
- Time of execution
- Clutch time

Visual Interpolation

Virtual Fixture

• Obstacle avoidance

- Distance from obstacles
- Time of execution
- Clutch time

Hand-to-Hand

Virtual Fixture:

• Trajectory guidance

- Distance and angle to reference trajectory
- Number of drops
- Time of execution
- Clutch time

Experimental Phase

- One control group **C**
- One assisted group A
- 1. Both **A** and **C** performs a few repetitions unassisted, to assess that they belong to the same population
- 2. Group **A** goes on with an adaptive assistance-as-needed paradigm, **C** goes on unassisted
- 3. Statistical hypothesis to be verified: **Increase in performance**
 - Multi day trial?
 - How to set baseline performances? Record surgeon's performance?

Experimental Phase: Goals

4 surgical training tasks, 4 tasks simulating real procedures

To demonstrate:

- Better overall performance
- Skill retention after 2 days break
- Skill transfer from training to surgical skills

Adaptive Assistance protocol

The amount of assistance provided to the user:

- Should be low if the user performance is good (and viceversa)
- Should be lower if the user performance is improving (and viceversa)

Assistance =
$$(1 - P^{\alpha}) - \beta \cdot \Delta P$$

- $(1 P^{\alpha})$: Contribution of the current performance
- $-\beta \cdot \Delta P$: Contribution of the performance improvement
- α and β set to tune the contributions

