Machine Learning (CSE-475)

Assignment 1: Polynomial Regression and Regularization

Steel expands when the surrounding temperature increases. To calculate how much a length of steel will increase, you need to know two variables including how much the temperature increases and the original length of the steel. Thermal expansion coefficient is a material property that is indicative of the extent to which a material expands upon heating. In current practice, thermal expansion-contraction is assumed to be a linear function of temperature, and a constant thermal coefficient is used. However, the coefficient of thermal expansion of steel is not constant but is a non linear function of temperature up to its melting point.

A list of thermal expansion coefficients of steel is given in the following table according to specific temperature:

Temperature, T Thermal expansion coefficient, $\alpha * E - 06$

Temperature-T	Thermal expansion coefficient $(\alpha * E^{-06})$
80	6.47
60	6.36
40	6.24
20	6.12
0	6
-20	5.86
-40	5.72
-60	5.86
-80	5.43
-100	5.28
-120	5.09
-140	4.91
-160	4.72
-180	4.52
-200	4.30
-220	4.08

-240	3.83
-260	3.58
-280	3.33
-300	3.07
-320	2.76
-340	2.45

Tasks:

- 1. Find the optimum order of polynomial using polynomial regression model.
- 2. Determine the changes in the regression model using Ridge and Lasso regularization models.
- 3. Show the fitting graphs for number 2.