Задание по курсу "ВвЧМ 24/25": Приближение функций

Павел Васильев, 213 группа

Декабрь 2024

1 Постановка задачи

Интерполяция - это способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений.

Перечисленные ниже методы предназначены для создания ряда с более высокой частотой наблюдений на основе ряда с низкой частотой. Например, вычислить ряд с квартальной динамикой на основе ряда годовых данных.

Многие задачи машинного обучения можно сформулировать через интерполяцию "неизвестной" функции [1, 2]

Различные методы численного приближения и их теоретические обоснования можно найти в [3]

1.1 Условия задачи

Построить полином Лагранжа для следующих функций $f_i(x)$ на отрезке $x \in [-2,0]$:

1.
$$f_1(x) = T_5(x)$$
, где $T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$, $T_1(x) = x$, $T_0(x) = 1$

2.
$$f_2(x) = |\cos(5x)|e^{-x/2}$$

В качестве узлов интерполяции выбрать узлы равномерной на [-2,0] сетки для количества узлов n=3,5,9,17. Исследовать сходимость интерполяции. Найти максимальное отклонение $\max |P_n(x)-f_i(x)|$ на равномерной сетке из 1001 узла. Построить графики исходных функций и их интерполянтов.

Подобрать более эффективный метод приближения функции для второй задачи.

2 Используемые численные методы

В решении были использованы методы приближения многочленами Лагранжа и кубическими сплайнами.

Приближение многочленами Лагранжа. В [3] представлено теоретическое обоснование данного метода, в частности, доказана теорема о приближении функции $f \in C^{(n+1)}[a,b]$.

Теорема 1 Пусть $f \in C^{(n+1)}[a,b]$. Тогда

$$f(x) - L_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \,\omega(x), \quad \omega(x) = \prod_{k=0}^n (x - x_k), \tag{1}$$

e

$$\min\{x, x_0, \dots, x_n\} < \xi(x) < \max\{x, x_0, \dots, x_n\}. \tag{2}$$

Как будет видно, требование, чтобы функция была дифференцируемой, здесь существенно, потому что иначе она может и вовсе не приближаться полиномом.

Если полиномы $l_0(x), \dots, l_n(x)$ удовлетворяют условиям:

$$l_j(x) = \{1, i = j0, i \neq j\}$$
 (3)

то

$$L_n(x) = \sum_{j=0}^n f(x_j)l_j(x)$$
(4)

А многочлены $l_j(x)$ задаются единственным образом (через решение системы линейных алгебраических уравнений определённого вида, имеющих невырожденную матрицу коэффициентов) и являются элементарными полиномами Лагранжа. Тогда легко видеть:

$$l_j(x) = \prod_{k=0, k \neq j}^{n} \frac{x - x_k}{x_j - x_k} \tag{5}$$

Таким образом и вычисляется интерполяционный полином Лагранжа в реализации. Сначала мы вычисляем значения $y_j = l_j(x)$ в точке, а после вычисляем $L_n(x) = \sum_{j=0}^n f(x_j) y_j$.

Приближение кубическими сплайнами. В [3] также представлен метод приближение сплайнами. Сплайн представляет собой гладкий кусочно заданный полином.

Определение 2.1 (Естественный сплайн) *Кубический сплайн, обладающий* следующим свойством

$$S''(x_0) = S''(x_n) = 0, (6)$$

называется естественным сплайном.

Теорема 2 Естественный сплайн существует и единственен.

Обозначим

$$h_k = x_k - x_{k-1} \tag{7}$$

Теорема 3 Пусть $1 \le j \le 4$ и $f \in C^{j}[a,b]$. Тогда

$$||f - S_n||_{C[a,b]} = O(h^j), \quad h \equiv \max_k h_k.$$
 (8)

Пусть f(x) является сплайном, а $f_i(x)$ элементарным полиномом (deg $f_i(x)$ = 3) на сегменте $[x_{i-1}, x_i]$. Пусть у нас имеется сетка из n+1 узлов: x_0, \ldots, x_n .

Наложим ограничения на сплайн в точках смыкания.

$$f(x_i) = y_i \tag{9}$$

$$f'(x_i - 0) = f'(x_i + 0) \tag{10}$$

$$f''(x_i - 0) = f''(x_i + 0) \tag{11}$$

$$i = 1, \dots, n \tag{12}$$

Будем искать элементарный полином вида:

$$f_i(x) = a_i + b_i(x - x_{i-1}) + c_i(x - x_{i-1})^2 + d_i(x - x_{i-1})^3, x_{i-1} < x < x_i$$
 (13)

Если расписать $f_i'(x)$ и $f_i''(x)$ в виде (13) и поставить ограничения (10) и (11), то у нас получится 2n+2(n-1)=4n-2 уравнений относительно 4n неизвестных $a_i,b_i,c_i,d_i,i=1,\ldots,n$. Добавив условия $c_1=0$ и $c_n+3d_nh_n$ (или, что аналогично, $c_{n+1}=0$) получим полную систему.

Можем выразить a_i, b_i, d_i через c_i и y_i :

$$a_i = y_i; b_i = \frac{y_i - y_{i-1}}{h_i} - \frac{2c_i + c_{i+1}}{3}h_i; d_i = \frac{c_{i+1} - c_i}{3}; i = 1, \dots, n$$

$$(14)$$

$$h_i c_i + 2(h_i + h_{i+1})c_{i+1} + h_{i+1}c_{i+2} = 3\left(\frac{y_{i+1} - y_i}{h_{i+1}} + \frac{y_i - y_{i-1}}{h_i}\right); i = 1, \dots, n - 1$$
(15)

Мы имеем систему (15) из n-1 уравнений относительно n-1 неизвестных c_2, \ldots, c_n , так как ранее условились, что $c_1 = 0$ и $c_{n+1} = 0$, данную систему можно решить методом прогонки, поскольку матрица коэффициентов системы (15) является имеет специальный вид. Этот метод был реализован в коде.

3 Результаты

3.1 Приближение многочленами Лагранжа

[Рис. 1] Интерполяция функции (1)

[Рис. 4] Интерполяция функции (2)

	$f_1(x)$	$f_2(x)$
n=5	1.86	0.92
n=7	0.00	1.31
n=11	0.00	0.98
n = 17	0.00	5.93

[Таблица 1.] Максимальные отклонения интерполянтов от функций.

3.2 Приближение сплайнами

[Таблица 2.] Максимальные отклонения интерполянтов от функций.

3.3 Комментарии к графикам

В 1 строке представлены изначальные функции $f_i(x)$. В 2 строке представлены их приближения $F_i(x)$. В 3 строке представлена функция $g(x) = |f_i(x) - F_i(x)|$

На графиках параметр рагат означает количество узлов в равномерной сетке, по которой проходила интерполяция. Значение metric показывает максимальное отклонение интерполянта от функции на равномерной сетке из 1000 узлов.

3.4 Наблюдения

Метод интерполяции многочленами Лагранжа позволяет хорошо приближать многочлены, как видим, уже на сетке из 7 узлов, мы полностью вычислили

функцию (1). На рис. 1 видно, что максимальное отклонение на сетке из 5 узлов равно 1.8147, а на сетке из 7 узлов равно 0.00, на рис. 2 на сетках из 11 и 17 узлов максимальное отклонение равно 0.00 и 0.00, соответственно. При этом мы совершенно не можем приблизить функцию (2). Видно, что на рис. 3 на сетке из 5 узлов ошибка составляет 0.9177, а на сетке из 7 узлов уже 1.3098, на рис. 4 на сетке из 11 и 17 узлов 0.9788 и 5.9305, соответственно.

Метод интерполяции сплайнами показывает себя лучше в задаче интерполяции функции (2), чем метод (1), к примеру, на рис. 9 на сетке из 17 узлов ошибка доходит до 0.2069, что улучшает результат метода (1) почти в 25 раз, при этом метод (2) даёт худший результат при интерполяции функции (2), так на рис. 6 видно, что на сетке из 17 узлов ошибка достигает 1.7735.

3.5 Программная реализация

Данные численные методы реализованы на языке Python с использованием NumPy, matplotlib.

Код хранится в репозитории: https://github.com/GoodDay-lab/practicum-numerical-method

4 Выводы

Таким образом, в ходе выполнения задания был реализован метод приближения полиномами Лагранжа и кубическими сплайнами. Было отмечено и теоретически доказано, что полиномы Лагранжа могут эффективно приближать функции $f \in C^n[a,b]$, давая достаточно хорошую оценку. При этом совершенно неопределенно поведение для негладких функций, и как мы видим, их они могут и вовсе не приближать. В таком случае можно использовать приближение сплайнами - кусочно-полиномиальными функциями. В этом случае оценка становится в разы лучше для негладких функций.

5 Библиография

- 1. Хайкин С. "Нейронные сети. Полный курс", стр.82
- 2. (url: https://education.yandex.ru/handbook/ml/article/mashinnoye-obucheniye)
- 3. Тыртышников Е.Е. "Методы численного анализа", гл.12,13,14
- 4. http://www.machinelearning.ru/wiki/
- 5. А.А.Самарский, А.В.Гулин. "Численные методы"