# SPEAKER

# RECOGNITION

via ViT

## Project Repo

https://github.com/onahte/MachineListeningProject



- Automatic Speaker Recognition (ASR)
- Label utterance with speaker ID
- Deep Learning
  - Mel Frequency Cepstral Coefficient
    - Speech Recognition
    - Captures timbre





| Inputs      | CNN                                                                                                              | LSTM          | Hybrid structures                    |
|-------------|------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------|
| Wave        | Others [52, 53].                                                                                                 | -             | CNN-LSTM [54, 55]; CNN-GRU [56, 57]. |
| Spectrogram | ResNet [58, 59, 60, 61]; VGGNet [15, 24]; Inception-resnet-v1 [62, 63].                                          | _             | CNN-GRU [64]                         |
| F-bank      | TDNN [14, 65, 66, 67]; ResNet [68, 69, 70, 71]; VG-GNet [72]; Inception-resnet-v1 [63, 73, 74]; Others [75, 76]. | [77, 78, 79]. | BLSTM-ResNet [80], TDNN-LSTM [81]    |
| MFCC        | TDNN [82, 51, 83, 84, 85, 86, 87, 88, 67, 89, 90, 91];<br>ResNet [92]; Others [93, 94].                          | _             | TDNN-LSTM [95]                       |

- CNN + Transformer = Conformer
  - Speech Recognition







#### AN IMAGE IS WORTH 16x16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy\*,<sup>†</sup>, Lucas Beyer\*, Alexander Kolesnikov\*, Dirk Weissenborn\*, Xiaohua Zhai\*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby\*,<sup>†</sup>

\*equal technical contribution, †equal advising Google Research, Brain Team {adosovitskiy, neilhoulsby}@google.com

- Transformer reimagined for images
- Competitive with SOTA CNNs
- Patching



| Model     | Layers | Hidden size $D$ | MLP size | Heads | Params |
|-----------|--------|-----------------|----------|-------|--------|
| ViT-Base  | 12     | 768             | 3072     | 12    | 86M    |
| ViT-Large | 24     | 1024            | 4096     | 16    | 307M   |
| ViT-Huge  | 32     | 1280            | 5120     | 16    | 632M   |

|                    | Ours-JFT<br>(ViT-H/14) | Ours-JFT<br>(ViT-L/16) | Ours-I21k<br>(ViT-L/16)        | BiT-L<br>(ResNet152x4) | Noisy Student<br>(EfficientNet-L2) |
|--------------------|------------------------|------------------------|--------------------------------|------------------------|------------------------------------|
| ImageNet           | $88.55 \pm 0.04$       | $87.76 \pm 0.03$       | $85.30 \pm 0.02$               | $87.54 \pm 0.02$       | 88.4/88.5*                         |
| ImageNet ReaL      | $90.72 \pm 0.05$       | $90.54 \pm 0.03$       | $88.62 \pm 0.05$               | 90.54                  | 90.55                              |
| CIFAR-10           | $99.50 \pm 0.06$       | $99.42 \pm 0.03$       | $99.15 \pm 0.03$               | $99.37 \pm 0.06$       | _                                  |
| CIFAR-100          | $94.55 \pm 0.04$       | $93.90 \pm 0.05$       | $93.25 \pm 0.05$               | $93.51 \pm 0.08$       | _                                  |
| Oxford-IIIT Pets   | $97.56 \pm 0.03$       | $97.32 \pm 0.11$       | $94.67 \pm 0.15$               | $96.62 \pm 0.23$       |                                    |
| Oxford Flowers 102 | $99.68 \pm 0.02$       | $99.74 \pm 0.00$       | $99.61 \pm 0.02$               | $99.63 \pm 0.03$       | =30                                |
| VTAB (19 tasks)    | $77.63 \pm 0.23$       | $76.28 \pm 0.46$       | $72.72 \pm \scriptstyle{0.21}$ | $76.29 \pm 1.70$       | -                                  |
| TPUv3-core-days    | 2.5k                   | 0.68k                  | 0.23k                          | 9.9k                   | 12.3k                              |

All models were trained on TPUv3 hardware. Report of the number of TPUv3-core-days taken to pre-train each of them: number of TPU v3 cores (2 per chip) used for training multiplied by the training time in days



- No inductive bias
  - CNNs have strong inductive bias
- Global attention
  - CNNs use growing receptive field
- Data hungry
  - CNNs are not so data hungry
- Lighter than Transformer





## Dataset

- VoxCeleb1
  - o 113\_985 clips
  - YouTube audio
  - o 932 classes



## Dataset

#### Mel Spectrogram







Spectrograms patchified





- Batch size: 16
- Encoder layer: 8
- Embedding size: 932
- Attention heads: 4
- Learning rate: 3e-3

Parameter count: 19,423,738



#### Baseline Model: ECAPA-TDNN

- Emphasized Channel Attention, Propagation and Aggregation Time Delay Neural Network
- Hybrid Model
  - CNN block (ResNet)
  - Attentive Statistics Pooling



Metric: Equal Error Rate (EER)

Percentage of FAR=FRR

$$EER = \frac{FAR + FRR}{2}$$

FAR is the false acceptance rate and FRR is false recognition rate and they are defined:

$$FAR = \frac{number of false positives}{number of false positives + number of true negatives} x 100$$

$$FRR = \frac{number of false negatives}{number of false negatives + number of true positives} \times 100$$



| Model      | Parameters | EER    |
|------------|------------|--------|
| ECAPA-TDNN | 20.8M      | 0.82   |
| SR-ViT     | 19.4       | 0.4796 |

EER Score: 0.47967687249183655

### Bibliography

- [1] A. Gulati *et al.*, "Conformer: Convolution-augmented Transformer for Speech Recognition," *arXiv:2005.08100* [cs, eess], May 2020, Available: https://arxiv.org/abs/2005.08100
- [2] R. Jahangir, Y. W. Teh, H. F. Nweke, G. Mujtaba, M. A. Al-Garadi, and I. Ali, "Speaker identification through artificial intelligence techniques: A comprehensive review and research challenges," *Expert Systems with Applications*, vol. 171, p. 114591, Jun. 2021, doi: https://doi.org/10.1016/j.eswa.2021.114591.
- [3] Y. Zhang et al., "MFA-Conformer: Multi-scale Feature Aggregation Conformer for Automatic Speaker Verification," Mar. 2022, doi: https://doi.org/10.48550/arxiv.2203.15249.
- [4] A. Gulati *et al.*, "Conformer: Convolution-augmented Transformer for Speech Recognition," *arXiv:2005.08100* [cs, eess], May 2020, Available: https://arxiv.org/abs/2005.08100
- [5] B. Desplanques, J. Thienpondt, and K. Demuynck, "ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification," *Interspeech* 2020, pp. 3830–3834, Oct. 2020, doi: https://doi.org/10.21437/Interspeech.2020-2650.
- [6] Z. Bai and X.-L. Zhang, "Speaker recognition based on deep learning: An overview," *Neural Networks*, vol. 140, pp. 65–99, Aug. 2021, doi: https://doi.org/10.1016/j.neunet.2021.03.004.
- [7] A. Dosovitskiy *et al.*, "AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE," Jun. 2021. Available: https://arxiv.org/pdf/2010.11929.pdf