

BY ENG. MOHAMED J.

DIY LAB www.diylab.io

DATA TYPES

Integers	-2, -1, 0, 1, 2, 3, 4, 5
Floats	-1.25, -1.0,0.5, 0.0, 0.5, 1.0, 1.25
Strings	'a', 'aa', 'aaa', 'Hello!', '11 cats'

MATH OPERATORS

**	Exponent	2 ** 3 = 8
%	Remainder	22 % 8 = 6
//	Integer division	22 // 8 = 2
/	Division	22 / 8 = 2.75
*	Multiplication	3 * 3 = 9
_	Subtraction	5 - 2 = 3
+	Addition	2 + 2 = 4

COMPARASION OPTERATORS

<	less than	a < b
>	greater than	a > b
<=	less than or equal	a <= b
=>	greater than or equal	a => b
==	equal to	a == b
!=	not equal to	a != b
in	Exists in iterator?	a in ['a', 'b']
not in Not Exists in iterator?		a not in ['a', 'b']

LOGICAL OPERATORS

and	evaluates if both sides are true
or	evaluates if at least one side is true
not	inverse a boolean type

ASSIGNMENT OPTERATORS

ASSIGNMENT OF TERATORS		
=	x = 2	
+=	x += 2	(x = x + 2)
-=	x -= 2	(x = x - 2)
*=	x *= 2	(x = x * 2)
/=	x /= 2	(x = x / 2)
%=	x %= 2	(x = x % 2)
a, b, c = 1	, 2, 3	a=1 b=2 c=3
a, b = b, a	a	swap values

PYTHON BUILT IN FUNCTIONS

PYTHON BU	ILT IN FUNCTIONS	
abs()	Returns the absolute value of a number	abs(-20) >> 20
any()	if any item in an iterable object is true	any([0, 1, 0]) >> True
dict()	Returns a dictionary (Array)	x = dict(name = "ALi", age = 30) >> {"name" : "Ali", "Age" : 30}
format()	Formats a specified value	"Ali is {} years old".format(30) >> Ali is 30 years old
input()	Allowing user input	name = input('What is your name?') >> Ali
int()	Returns an integer number	x = int(3.5) >> 3
len()	Returns the length of an object	len('hello') >> 5
list()	Returns a list	x = list(('apple', 'banana', 'cherry')) >> ['apple', banana', 'cherry']
max()	Returns the largest item in an iterable	x = max(1,3, 44, 5, 10) >> 44
min()	Returns the smallest item in an iterable	x = min(1,3, 44, 5, 10) >> 1
pow()	Returns the value of x to the power of y	x = pow(4, 3) >> 64
print()	Prints to the standard output device	print("Hello World") >> Hello World
range()	Returns a sequence of numbers	for n in range(4): >> 0 >> 1 print(n) >> 2 >> 3
round()	Rounds a numbers	x = round(5.76543, 2) >> 5.77
set()	Returns a new set object	x = set(("apple", "banana", "cherry")) >> {'cherry', 'apple', 'banana'}
sorted()	Returns a sorted list	a = ("b", "g", "a", "d", "f", "c", "h", "e") x = sorted(a) >> ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
str()	Returns a string object	a = str(3.5) >> '3.5'
sum()	Sums the items of an iterator	a = (1, 2, 3, 4, 5) x = sum(a) >> 15
tuple()	Returns a tuple	x = tuple(("apple", "banana", "cherry")) >> ('banana', 'cherry', 'apple')
type()	Returns the type of an object	<pre>a = ('apple', 'banana', 'cherry') b = "Hello World" c = 33 print(type(a)) print(type(b)) print(type(c)) >> tuple >> str >> int</pre>

function

load an image from a file	cv2.imread(image_path)
Save an image to a file	cv2.imwrite(filename, image)
Display an image in a window	cv2.imshow(window_name, image)
Video capturing from video, image sequences or cameras	cv2.VideoCapture(video_source)
Convert an image color space	cv2.cvtColor(image, color_space (ex. cv2.COLOR_BGR2RGB))
Merge images to multi-channel image.	cv2.merge((image, image, image))
Draw a line on an image	cv2.line(image, (x_start, y_start), (x_end, y_end), color (ex. (0, 255, 0)), thinkness)
Draw a rectangle on an image	cv2.rectangle(image, (x_start, y_start), (x_end, y_end), color (ex. (0, 255, 0)), thinkness)
Draw a circle on an image	cv2.circle(image, (x_center, y_center), radius, color (ex. (0, 255, 0)), thinkness)
Draw a text on an image	cv2.putText(image, text, (x_location, y_location), font (ex. cv2.FONT_HERSHEY_COMPLEX), font_scale, color, thinkness)
Finds edges in an image	cv2.Canny(image, threshold_1 (200), threshold_2 (200))
Apply Gaussian Smoothing (Blur) on image	cv2.GaussianBlur(image, (kernel_size_height (7), kernel_size_width (7)), Kernel standard deviation (Default = 0))
Dilates and image	cv2.dilate(image, kernel, iterations=1)
Erodes an image	cv2.erode(image, kernel, iterations=1)
Image Perspective Transformation	cv2.getPerspectiveTransform(source_points, destination_points)
Warp Perspective for image	cv2.warpPerspective(image, perspective_image, (output_image_width, outhput_image_height))
Haar feature-based cascade classifier (for Object Detection (face, body, eyeetc)	cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
cv2detectMultiScale(imgGray, 1.1, 10)	cv2.detectMultiScale(grayscale_image, scaleFactor (1.1), minNeighbors (3))

CATEGORY: GENERAL PURPOSE

numpy.ndarray.dtype	Return the data-type of the elements of the array. Remember, arrays are homogeneous. https://numpy.org/doc/stable/reference/generated/numpy.ndarray.dtype.html
numpy.ndarray.ndim	Return the number of array-dimensions (rank), e.g., it will return 2 for a 4x3 array. https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ndim.html
numpy.ndarray.shape	Return a tuple representing the array dimensions, e.g., it will return (rows,columns) for a rank 2 array. https://numpy.org/doc/stable/reference/generated/numpy.ndarray.shape.html
numpy.ndarray.size	Return the number of elements present in the array. https://numpy.org/doc/stable/reference/generated/numpy.ndarray.size.html
numpy.save	Save an array to .npy (numpy) format. https://numpy.org/doc/stable/reference/generated/numpy.save.html
numpy.load	Load array from the .npy files. https://numpy.org/doc/stable/reference/generated/numpy.load.html
numpy.random.random	Return random floats values from the interval [0.0, 1.0), in a specified shape. https://numpy.org/doc/stable/reference/random/generated/numpy.random.random.html
numpy.random.randint	Return random integers from the half-open interval [a, b), in a specified shape. https://numpy.org/doc/stable/reference/random/generated/numpy.random.randint.html
numpy.random.normal	Return random samples from a Gaussian (normal) distribution. https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html
numpy.random.permutation	Return a randomly permuted sequence from the given list https://numpy.org/devdocs/reference/random/generated/numpy.random.permutation.html
numpy.reshape numpy.ndarray.reshape	Returns an array containing the same elements with a new shape, without affecting the the original array. https://numpy.org/doc/stable/reference/generated/numpy.reshape.html https://numpy.org/doc/stable/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape

CATEGORY: ARRAY CREATION

numpy.ones	Return a new array of given shape and type, filled with 1s. https://numpy.org/devdocs/reference/generated/numpy.ones.html
numpy.zeros	Return a new array of given shape and type, filled with 0s. https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros
numpy.full	Return a new array of given shape and type, filled with a specific value. https://numpy.org/doc/stable/reference/generated/numpy.full.html#numpy.full
numpy.eye	Return a 2-D array with 1s on the diagonal and 0s elsewhere. https://numpy.org/doc/stable/reference/generated/numpy.eye.html#numpy-eye
numpy.diag	Extract the diagonal elements. https://numpy.org/doc/stable/reference/generated/numpy.diag.html
numpy.unique	Return the sorted unique elements of an array. https://numpy.org/doc/stable/reference/generated/numpy.unique.html
numpy.array	Create an n-dimensional array. https://numpy.org/doc/stable/reference/generated/numpy.array.html
numpy.arange	Return evenly spaced values within a given half-open interval [a, b). https://numpy.org/doc/stable/reference/generated/numpy.arange.html
numpy.linspace	Return evenly spaced numbers over a specified interval [a,b]. https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace
numpy.ndarray.copy	Returns a copy of the array. https://numpy.org/doc/stable/reference/generated/numpy.ndarray.copy.html

CATEGORY: OPERATING WITH ELEMENTS AND INDICES

numpy.insert	Insert values along the given axis before the specified indices. https://numpy.org/doc/stable/reference/generated/numpy.insert.html
numpy.delete	Return a new array, after deleting sub-arrays along a specified axis. https://numpy.org/doc/stable/reference/generated/numpy.delete.html
numpy.append	Append values at the end of the specified array. https://numpy.org/doc/stable/reference/generated/numpy.append.html
numpy.hstack	Return a stacked array formed by stacking the given arrays in sequence horizontally (column-wise). https://numpy.org/doc/stable/reference/generated/numpy.hstack.html
numpy.vstack	Return a stacked array formed by stacking the given arrays, will be at least 2-D, in sequence vertically. https://numpy.org/doc/stable/reference/generated/numpy.vstack.html
numpy.sort	Return a sorted copy of an array. https://numpy.org/doc/stable/reference/generated/numpy.sort.html
numpy.ndarray.sort	Sort an array in-place. https://numpy.org/doc/stable/reference/generated/numpy.ndarray.sort.html#numpy-ndarray-sort

CATEGORY: ARITHMETIC AND STATISTICAL OPERATIONS

numpy.add	Element-wise add given arrays https://numpy.org/doc/stable/reference/generated/numpy.add.html
numpy.subtract	Subtract arguments of given arrays, element-wise. https://numpy.org/doc/stable/reference/generated/numpy.subtract.html
numpy.multiply	Multiply arguments of given arrays, element-wise. https://numpy.org/doc/stable/reference/generated/numpy.multiply.html
numpy.divide	Returns a true division of the inputs, element-wise. https://numpy.org/doc/stable/reference/generated/numpy.divide.html
numpy.exp	Calculate the exponential of all elements in the input array. https://numpy.org/doc/stable/reference/generated/numpy.exp.html
numpy.power	First array elements raised to powers from second array, element-wise. https://numpy.org/doc/stable/reference/generated/numpy.power.html
numpy.sqrt	Return the non-negative square-root of an array, element-wise. https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html
numpy.ndarray.min	Return the minimum along the specified axis. https://numpy.org/doc/stable/reference/generated/numpy.ndarray.min.html
numpy.ndarray.max	Return the maximum along a given axis. https://numpy.org/doc/stable/reference/generated/numpy.ndarray.max.html
numpy.mean numpy.ndarray.mean	Compute the arithmetic mean along the specified axis. https://numpy.org/doc/stable/reference/generated/numpy.mean.html
numpy.median	Compute the median along the specified axis. https://numpy.org/doc/stable/reference/generated/numpy.median.html

CATEGORY: SET OPERATIONS

numpy.intersect1d	Find the intersection of two arrays. https://numpy.org/doc/stable/reference/generated/numpy.intersect1d.html#numpy-intersect1d
numpy.setdiff1d	Find the set difference of two arrays. https://numpy.org/doc/stable/reference/generated/numpy.setdiff1d.html#numpy-setdiff1d
numpy.union1d	Return the unique, sorted array of values that are in either of the two input arrays. https://numpy.org/doc/stable/reference/generated/numpy.union1d.html

Python	Python 3 documentation	https://docs.python.org/3/
	Python Tutorial	https://docs.python.org/3/tutorial/
	Python Standard Library	https://docs.python.org/3.6/library/index.html
	Hacker Rank - Python	https://www.hackerrank.com/domains/python
	Code Wars	https://www.codewars.com/users/sign_in
NumPy	NumPy Manual	https://docs.scipy.org/doc/numpy-1.13.0/contents.html
	NumPy User Guide	https://numpy.org/devdocs/user/index.html
	NumPy Reference	https://numpy.org/devdocs/reference/index.html
	Scipy Lectures	http://www.scipy-lectures.org/intro/numpy/index.html
Jupyter Notebook	Github markdown cheatsheet	https://guides.github.com/pdfs/markdown-cheatsheet-online.pdf
	Cheatsheet by Adam Pritchard	https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
	Magic Keywords	https://ipython.readthedocs.io/en/stable/interactive/magics.html
	Notebook Examples	https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/examples_index.html
OpenCV	OpenCV Tutorials	https://docs.opencv.org/3.3.0/d9/df8/tutorial_root.html
	OpenCV Books	https://opencv.org/books/
	Learn OpenCV	https://learnopencv.com/
	pyimagesearch website	https://www.pyimagesearch.com/