Feasibility studies and optimization of μ -channel cooling for 3D IC

Ujash Shah, Timothy S. Fisher and Subramanian S. Iyer, Samueli School of Engineering, UCLA

Motivation

- 3-Dimensional Stacking is one of the key advanced packaging approaches
 - This work focuses on 3D IC
- Low power 3D stacks for memory applications
 - Successfully deployed in last decade (HBM, HMC, NAND) supported by **TSVs**

HMC stack (Courtesy: Micron/IBM)

- High-power 3D stacks with heterogeneous integration are being developed:
 - High temperatures, thermal gradients and cross-talk lead to reliability issues
 - Internal layers require direct cooling path
- Micro(μ)-channel cooling with water is the primary candidate:
 - Q. What is the minimum μ -channel height (H) and layer height (H_{layer}) needed to support it?

Simplified μ -channel analysis with Jupyter

- Single adiabatic layer: All heat produced within the layer needs to be taken out by the μ -channel
 - Base heat flux: $q'' = 100 \text{ W/cm}^2$

Width, W = H(Aspect ratio, α =1)

Spacing, S = W

Flow considerations

- Fully Developed laminar flow:
 - Caloric limit (sensible heating): $Q_{min} = \frac{q''L^2}{\rho C_p(T_{out} T_{in})}$; $U_m = \frac{Q_{min}}{WH}$
 - Pressure drop: $\Delta P = 2 * (fRe(\alpha)) * \frac{\mu u_m L}{D_b^2} + K(\alpha) * \frac{\rho u_m^2}{2} + 40 \text{ kPa}$
 - Heat Transfer limit: $q''_{max} = \overline{h}A_s(\overline{T_j} \overline{T_m}) * \frac{N}{L^2} > q''$ (100 W/cm²)

Operational considerations

- Operational limits: Temperature, pressure drop and velocity limits
 - **Examples:**
 - 1. Condition 1 (ASHRAE W4[#])
 - 2. Condition 2 (Hypothetical)
- Pump curves: Decides number of pumps and pumping power necessary
 - P1: Centrifugal (Low ΔP , high Q)
 - P2: Positive displacement (High ΔP , low Q)
- Condition 2: If $\Delta P = 1$ MPa, $U_m = 4$ m/s Condition 1: $\Delta P_{max} = 690 \text{ kPa}, U_m = 1.$ 1500 Flow rate (L/min)

*Thermal Guidelines for Data Processing Environments (3rd Edition), Table 3.1

Electrical and packaging co-design constraints

- Fabrication limits:
 - Examples $H < H_{max}$, $\alpha < 10$
- 3D stack constraints:
 - Form factor (<1 mm high)
 - TSV aspect ratio and placement
 - Coupling of μ -channel to pump
 - Reliability and cost

Relative Size of stack 1cmX1cmX1mm 500W *P1: 43x25x18cm3, *P2: 51x 51x38cm²,

*Specs from Gorman-Rupp pumps

Optimization under sample conditions

Operating condition 1 Operating condition 2

• Increasing heat flux at constant chip size (L = 1 cm)

Increasing chip size at constant heat flux $(q''=100 \text{ W/cm}^2)$

Conclusions

- $Micro(\mu)$ -channel cooling for 3D IC presents a formidable challenge when all dies are high-power (>100 W/cm²)
 - Key limitation is the channel height required to sustain high flow rates with practical pressure drops (<1 MPa)
 - Significant temperature gradient within 1 cm die length
- Experimental studies needed for reliability constraints for high-pressure flow within stack
- If the maximum layer height is restricted to 150 μ m:
 - No operating points for heat flux, $q'' > 100 \text{ W/cm}^2$

This research was supported in part by DARPA, SRC, UC-MRPI, and members of the UCLA CHIPS consortium.

