

RelatórioCarga e descarga de um condensador

Licenciatura Engenharia Informática 2024/2025

Grupo: 2 Turma: 2DK

1230686 | Henrique Monteiro 1230693 | Vicente Martins 1230688 | José Teixeira 1230665 | Márcio Ferreira

30/10/2024

1. Procedimento experimental e dados experimentais obtidos

No âmbito da disciplina de FSIAP, realizamos uma experiência em laboratório com vários objetivos a alcançar, entre eles:

- Identificação dos regimes de funcionamento de um condensador.
- Regime permanente e transitório.
- Estudo da Carga e da descarga de um condensador em C.C.

Material Utilizado

- 1 multímetro:
- 1 fonte de alimentação;
- 1 placa de montagem;
- · Conjunto de resistências;
- 1 condensador;
- Fios de ligação,
- Um cronometro.

Montagem

O circuito foi implementado de acordo com a figura seguinte (Figura 1).

Figura 1 - Circuito implementado

Procedimento

- 1. Ligamos a fonte de alimentação e medimos a tensão da fonte (E) utilizando o multímetro digital.
- **2.** Medimos a resistência R1 com o multímetro digital, configurado para medir resistências. Antes disso, desconectamos R1 do circuito para realizar a medição adequadamente.
- **3.** Em seguida, medimos o valor da capacitância do condensador C com o multímetro digital, configurado para medir capacidades.

Atenção: Quando desconhecemos a ordem de grandeza do valor a ser medido, utilizamos sempre a maior escala do aparelho, ou seja, a escala menos sensível.

- **4.** Após montar o circuito de acordo com a Figura 5, preparamo-nos para ler a tensão nos terminais do condensador e o tempo que este leva para carregar.
- **5.** Estabelecemos a ligação elétrica entre os pontos A e B. No instante em que conectamos esses pontos, lemos o valor da tensão nos terminais do condensador, indicada pelo voltímetro (V_C).
- **6.** A cada 5 segundos, anotamos o valor da tensão indicada pelo voltímetro, até que o valor se estabilize ($V_C = V_{max}$). A partir deste momento, consideramos o condensador carregado. Registamos os valores em uma tabela equivalente à Tabela 1.
- 7. Para realizar o estudo da descarga do condensador, montamos o circuito conforme a Figura 6.

Atenção: R1 agora está em paralelo com o condensador.

- **8.** Conectamos novamente os pontos A e B e aguardamos até que o voltímetro indique a tensão máxima (V_{max}).
- **9.** Desconectamos a ligação elétrica entre os pontos A e B e, neste instante, lemos o valor indicado pelo voltímetro digital (V_c(t=0)).
- **10.** A cada 5 segundos, anotamos o valor da tensão indicado pelo voltímetro até que o condensador se descarregue completamente ($V_C = 0$), criando assim uma tabela de resultados, equivalente à Tabela 2.
- 11. Alteramos o circuito de descarga do condensador para R1 = $5M\Omega$, utilizando duas resistências de $10M\Omega$ em paralelo. Para esta nova configuração, realizamos novas medições de V_C e registamos os valores em uma nova tabela, equivalente à anterior.

2. Resultados e Representação Gráfica

Tabela 1 - Valores medidos nos pontos 1,2 e 3

Tensão Prevista (V)	Tensão Medida (V)
8	6.000 ± 0.001
Resistência Prevista (Ω)	Resistência Medida (Ω)
10M	9.97M ± 0.01
Capacidade Prevista (F)	Capacidade Medida (F)
4.7µ	4.4µ ± 0.1

Tabela 2 - Valores medidos no ponto 6

Tempo (s)	Tensão (V)
0	0
5	0.7
10	1.3
15	1.8
20	2.2
25	2.6
30	2.8
35	3.0
40	3.2
45	3.4
50	3.5
55	3.6
60	3.6
65	3.7
70	3.8
75	3.8
80	3.9
85	3.9
90	3.9

Tabela 3 - Valores medidos no ponto 10

Tempo (s)	Tensão (V)
0	8.0
5	6.5
10	5.3
15	4.3
20	3.5
25	2.9
30	2.3
35	1.9
40	1.6
45	1.3
50	1.0
55	0.8
60	0.7
65	0.6
70	0.5
75	0.4

Tabela 5 - Valores medidos no ponto 11

Tensão (V)
8.0
6.0
4.4
3.3
2.4
1.8
1.3
1.0
0.7
0.5
0.4

Tabela 4 - Continuação dos valores medidos no ponto 10

Tempo (s)	Tensão (V)
80	0.3
85	0.3
90	0.2
95	0.2
100	0.2
105	0.1
110	0.1
115	0.1
120	0.1
125	0.1
130	0.1
135	0.1
140	0.1
145	0.1
150	0

Tabela 6 - Valores medidos no ponto 11

Tempo (s)	Tensão (V)
55	0.3
60	0.2
65	0.2
70	0.1
75	0.1
80	0.1
85	0.1
90	0.1
95	0.1
100	0

3. Análise de Resultados

Na carga do Condensador:

12. Como é verificável nos dados obtidos, o valor máximo da d.d.p nos terminais do condensador não é os 8V teóricos esperados.

Devido á resistência ser elevada e usando a fórmula da lei de uso da segunda lei de Kirchhoff, a ddp nos terminais dos componentes vai se dividir de forma proporciona à resistência dos componentes do circuito. Assim, como o valor da resistência do condensador e da resistência da figura são iguais é de esperar que a ddp seja dividida de forma igualitária para os dois componentes em causa.

Logo:

$$V_{esperado} = \frac{8,00}{2} = 4,00V$$

13.

14. No ponto 6, é utilizada uma de 9.97 M Ω e um condensador de 4.4 μ F, com isto é possível calcular o valor teórico de τ .

$$\tau_{teo} = R \cdot C = 9.97 \times 10^6 \times 4.4 \times 10^{-6} = 43.868 \,\mathrm{s}$$

Analisando o gráfico da variação da ddp do condensador durante a carga é obtido o valor experimental de τ .

$$\tau_{exp} = 25 \mathrm{s}$$

Com estes valores é possível calcular o erro:

$$E(\tau) = \left(\frac{T_{\text{teo}} - T_{\text{exp}}}{T_{\text{teo}}}\right) \times 100 = \left(\frac{43.868 - 25}{43.868}\right) \times 100 = 43.01\%$$

15. Fazendo uso do valor teórico de τ obtido no ponto anterior, é de esperar que a duração prevista para o carregamento do condensador seja de 5τ .

$$\Delta t_{\text{previsto}} = 5\tau = 5 \times 43.868 = 219.34 \,\text{s}$$

16.

17. Usando o grafico da 1ª descarga linear podemos calcular a constante tempo a partir do inverso do declive. $\tau = 1/0,0399 = 25,06$ s

18. Observando o gráfico, podemos ver que a reta tangente interseta o eixo das abscissas no ponto t= 26s Sendo assim este valor é bastante próximo do nosso obtido na alínea anterior.

19.

20.

A equação linear resultante da transformação logarítmica da expressão de Vc(t) é dada por:

1.
$$Vc(t) = Vm\acute{a}x \cdot e^{-\frac{t}{\tau}}$$

2.
$$\ln(Vc(t)) = \ln(Vm\acute{a}x) - \frac{1}{\tau} \cdot t$$

Sendo assim podemos concluir que o valor da <u>constante de tempo de descarga para este circuito</u> (T) vai corresponder ao inverso do declive da equação da reta resultante da linearização da segunda descarga (apresentada no ponto 19):

1.
$$-\frac{1}{\tau} = -0.0609$$

2.
$$\tau = 16.4204$$

21.

Ao fazer uma análise do gráfico do ddp da segunda descarga podemos chegar á conclusão que pela análise da tangente, esta interceta o eixo dos xx aproximadamente no ponto 17, sendo esse o valor correspondente ao τ .

4. Questões e Resolução

Questão 1 – Qual o valor previsível de queda de tensão nos terminais do condensador quando inicia a descarga? De notar que a resistência de descarga não é apenas R1, mas o paralelo de R1 com Ri, considerando-se assim o efeito de carga do voltímetro.

Resposta: O valor previsível **da** queda de tensão nos terminais do condensador quando inicia a descarga é de 8.00V.

Ao conectar o voltímetro para medir a diferença de potencial nos terminais do condensador, a carga elétrica previamente armazenada começará a ser descarregada, dissipando-se por efeito Joule. Este processo ocorre através de uma resistência equivalente ao paralelo entre a resistência interna do voltímetro e a resistência de 10 M Ω , que por sua vez, está em paralelo com o condensador no circuito.

Questão 2 – Compare os valores das constantes de tempo obtidas na descarga do condensador nas duas situações experimentais quando R1 = $10~\text{M}\Omega$ e R1 = $5~\text{M}\Omega$, obtidas pelas equações das representações e através da leitura nos gráficos construídos. E compare com a situação ideal calculada (os valores teóricos). Comente as diferenças obtidas entre as constantes de tempo das diferentes situações.

Resposta: Podemos comparar os valores das constantes de tempo, quando R1 = 10 M Ω e R1 = 5 M Ω , obtidas pelas equações das representações através do seguinte cálculo:

$$\frac{\tau_{10M\Omega}}{\tau_{5M\Omega}} = \frac{25.06}{16.4204} = 1.526$$

Já a comparação dos valores das constantes de tempo na situação ideal é dada pelas seguintes equações:

$$\tau_{10M\Omega} = 5 \times 10^6 \times 4.4 \times 10^{-6} = 22 \, s$$

$$\tau_{5M\Omega} = 3.33 \times 10^6 \times 4.4 \times 10^{-6} = 14.652 \, s$$

$$\frac{\tau_{10M\Omega}}{\tau_{5M\Omega}} = \frac{22}{14.652} = 1.502$$

Com isto podemos concluir que o efeito do voltímetro no circuito é visível, mas não muito significante.

5. Comentários

A medição do tempo foi realizada utilizando um vídeo, ou seja, a precisão exata dos segundos pode impactar a exatidão dos resultados obtidos. Observa-se ainda que algumas diferenças entre os valores teóricos e experimentais podem ser notadas, provavelmente devido a erros cometidos ao longo da execução do experimento no laboratório.

Outro ponto a destacar é o uso do multímetro para todas as medições, exceto para o tempo, em diferentes escalas, o que pode introduzir erros devido à precisão limitada dos resultados. No entanto, de forma geral, a experiência ocorreu conforme o esperado, sem grandes imprevistos.