Nonstationary Gabor frames

Sevag Hanssian

MUMT 622, Winter 2021

February 25, 2021

Nonstationary Gabor frames

Multiple Gabor systems for analysis of music¹

Nonstationary Gabor frames²

Theory, implementation and applications of nonstationary Gabor frames³

¹Monika Doerfler. "Gabor analysis for a class of signals called music". PhD thesis. Jan. 2002. URL: http://www.mathe.tu-freiberg.de/files/thesis/gamu_1.pdf

²Florent Jaillet, P. Balázs, and M. Dörfler. "Nonstationary Gabor Frames". In: *SAMPTA'09, International Conference on SAMPling Theory and Applications.* 2009. URL: https:

 $^{//\}underline{g} ithub.com/ltfat/ltfat.github.io/blob/master/notes/ltfatnote010.pdf$

³Peter Balazs et al. "Theory, implementation and applications of nonstationary Gabor frames". In: *Journal of computational and applied mathematics* 236 (Oct. 2011), pp. 1481–1496. DOI: 10.1016/j.cam.2011.09.011. URL: https://ltfat.github.io/notes/ltfatnote018.pdf

Nonstationary Gabor frames

The definition of multiple Gabor frames, which is comprehensively treated in [Dörfler 2002], provides Gabor frames with analysis techniques with multiple resolutions.

The nonstationary Gabor frames (see [Jaillet 2009], [Balazs 2011] for their definition and implementation) are a further development; they fully exploit theoretical properties [...] they provide for a class of FFT-based algorithms [...] together with perfect reconstruction formulas⁴

⁴Marco Liuni et al. "Automatic Adaptation of the Time-Frequency Resolution for Sound Analysis and Re-Synthesis". In: *IEEE Transactions on Audio Speech and Language Processing* 21 (May 2013). DOI: 10.1109/TASL.2013.2239989. URL: https://arpi.unipi.it/retrieve/handle/11568/159584/458549/tasl.pdf.

Invertible Constant-Q Transform

Invertible constant-Q transform with nonstationary Gabor frames⁵

Invertible, realtime CQT⁶

Non-stationary Gabor systems, CQT added to LTFAT⁷

CQT/ICQT added to MATLAB Wavelet Toolbox⁸

⁵Gino Angelo Velasco et al. Constructing an invertible constant-Q transform with nonstationary Gabor frames. Sept. 2011. URL:

https://www.univie.ac.at/nonstatgab/pdf_files/dohogrve11_amsart.pdf

⁶Nicki Holighaus et al. "A Framework for Invertible, Real-Time Constant-Q Transforms". In: *IEEE Transactions on Audio, Speech and Language Processing* 21 (Sept. 2012). DOI: 10.1109/TASL.2012.2234114. URL: https://arxiv.org/pdf/1210.0084.pdf

⁷ Itfat/ChangeLog. URL:

https://github.com/ltfat/ltfat/blob/master/ChangeLog#L291-L301

⁸Constant-Q nonstationary Gabor transform - MATLAB cqt. 2018. URL:

https://www.mathworks.com/help/wavelet/ref/cqt.html

Review: Gabor frames

Gabor's 1946 "Theory of Communication"9:

- First introduction of the time-frequency uncertainty principle
- Proposed that any signal can be chopped up and windowed with Gaussian functions to minimize TF uncertainty

$$\sigma_t \sigma_f \geq \frac{1}{4\pi},$$

(b) Change TF tiling by modifying Gaussian

⁹Dennis Gabor. "Theory of Communication". In: *Journal of Institution of Electrical Engineers* 93.3 (1946), pp. 429–457. URL:

Review: fixed TF resolution STFT

MATLAB STFT with gausswin (i.e. Gabor transform)

Figure: Good time resolution versus good frequency resolution

Fixed TF resolution for music

Figure: Two windows for music signal analysis¹⁰

¹⁰Doerfler, 2002.

Stationary Gabor frames

In the standard Gabor analysis, same window function (aka Gabor atom, Gabor function) is shifted in time to cover entire signal 11 :

$$g_{ au,\omega}(t) = g(t- au)e^{2\pi it\omega}$$

We will indicate such a frame as stationary, since the window used for time-frequency shifts does not change and the time-frequency shifts form a lattice of a x h

¹¹Liuni et al., 2013.

Early CQT: musical motivation

Constant-Q transform for music analysis¹², ¹³:

 Harmonics of the fundamental have consistent spacing in the log scale – the constant pattern

Log-frequency spectra, demonstrating the constant pattern for harmonics, would be more useful in musical tasks

¹²J. Brown. "Calculation of a constant Q spectral transform". In: *Journal of the Acoustical Society of America* 89 (1991), pp. 425-434. URL: https://www.ee.columbia.edu/~dpwe/papers/Brown91-cqt.pdf.

¹³ Judith Brown and Miller Puckette. ""An efficient algorithm for the calculation of a constant Q transform"". In: *Journal of the Acoustical Society of America* 92 (Nov. 1992), p. 2698. DOI: 10.1121/1.404385.

Violin: DFT vs. CQT

Figure: Violin playing diatonic scale, $G_3(196\text{Hz}) - G_5(784\text{Hz})^{14}$

¹⁴Brown, 1991.

Constant-Q Transform

"Constant ratio of frequency to frequency resolution": $rac{f}{\delta f}=Q$

	Constant Q	DFT	Frequency (Hz)	Window (Samples)	(ms
			175	6231	195
Frequency	$(2^{1/24})^{k} \cdot f \min$	k ∆f	208	5239	164
	exponential in k	linear in <i>k</i>	247	4406	138
Window	variable = $N[k] = \frac{SR \cdot Q}{f}$	constant = N	294	3705	116
	f_k		349	3115	97
Resolution			415	2619	82
Δf	variable = f_k/Q	constant = SR/N	494	2203	69
$\frac{\Delta f}{f_k}$ $\frac{\Delta f}{\Delta f_k}$	constant = Q	variable = k	587	1852	51
Δf_k			699	1557	49
Cycles in	constant = Q	variable = k	831	1309	4
Window			988	1101	34
			1175	926	25

- (a) Properties of DFT, CQT
- (b) Window sizes for CQT

Computed with windowed DFT where window changes with frequency to maintain Constant- Q^{15} – non-invertible!:

window len
$$N[k] = \frac{f_s}{f_k}Q$$
, $W[k, n] = \alpha + (1 - \alpha)\cos(\frac{2\pi n}{N[k]})$

¹⁵Brown, 1991.

Multiple Gabor systems: musical motivation

In the case of music signals, for example, transients are important for several reasons. They give important cues for onset timing, and they carry information about instrument timbre. As another example, in low-frequency regions, very fine frequency resolution is required, because notes in this region lay the harmonic basis, musically speaking.

In order to achieve a setting adapted to music as discussed above, it will be necessary to use wider windows with good frequency concentration in low-frequency regions, whereas in the high-pass regions, where mainly transients and broadband signals components occur, rather short windows, which don't have to be very localised in frequency, will be of use ¹⁶

¹⁶Doerfler, 2002.

Multi-window Gabor dictionary

Stationary Gabor atom, where a and b are TF shift parameters:

$$g_{m,n}(t) = g(t-na)e^{j2\pi mbt}, \qquad m,n \in \mathbb{Z}$$
 $f(t) = \sum_{m,n \in \mathbb{Z}} c_{m,n} g_{m,n}(t)$

Use R different windows, where a_r and b_r are TF shift parameters for each distinct window:

$$g_{m,n}^r(t) = g(t - na_r)e^{j2\pi mb_r t}, \qquad m, n \in \mathbb{Z}$$
 $f(t) = \sum_{r=0}^{R-1} \sum_{m,n \in \mathbb{Z}} c_{m,n}^r g_{m,n}^r(t)$

Example: multiple STFTs

Figure: Multiple (R = 2) Gabor dictionaries with stationary frames

Nonstationary Gabor frame – resolution changing over time

Stationary Gabor atom, where a and b are TF shift parameters:

$$g_{m,n}(t) = g(t-na)e^{j2\pi mbt}, \qquad m,n \in \mathbb{Z}$$

Nonstationary Gabor atom from a set of functions $\{g_n\}$ and a fixed frequency sampling step b_n^{17} :

$$g_{m,n}(t) = g_n(t)e^{j2\pi mb_n t}, \qquad m, n \in \mathbb{Z}$$

We get back classic nonstationary Gabor frame by setting:

$$g_n(t) = g(t - na)$$
 for a fixed time constant $a, b_n = b \forall n$

¹⁷Balazs et al., 2011.

Nonstationary Gabor frame – resolution changing over time

[...] the functions $\{g_n\}$ are well-localized and centered around time-points a_n . This is similar to the standard Gabor scheme [...] with the possibility to vary the window g_n for each position a_n . Thus, sampling of the time-frequency plane is done on a grid which is irregular over time, but regular over frequency at each temporal position.¹⁸

Figure: Irregular TF sampling grid

¹⁸Balazs et al., 2011.

Nonstationary Gabor frame – resolution changing over frequency

Stationary Gabor atom, where a and b are TF shift parameters:

$$g_{m,n}(t) = g(t - na)e^{j2\pi mbt}, \qquad m, n \in \mathbb{Z}$$

Nonstationary Gabor atom from a family of functions $\{h_m\}$ and a fixed time sampling step $a_m^{\ 19}$:

$$h_{m,n}(t) = h_m(t - na_m), \qquad m, n \in \mathbb{Z}$$

We get back classic nonstationary Gabor frame by setting:

$$h_m(t-na_m)=g(t-na)e^{j2\pi mbt}$$
 for a fixed frequency constant $b,a_m=a \forall m$

¹⁹Balazs et al., 2011.

Nonstationary Gabor frame – resolution changing over frequency

In practice we will choose each function h_m as a well-localized band-pass function with center frequency b_n^{20}

Figure: Irregular TF sampling grid

²⁰Balazs et al., 2011.

Nonstationary Gabor frame construction

Construction of painless nonstationary Gabor frames relies on three properties of the windows and time-frequency shift parameters used 21 :

- The signal f of interest is localized at time- (or frequency-) positions n by means of multiplication with a compactly supported (or limited bandwidth, respectively) window function g_n
- The Fourier transform is applied on the localized pieces $f \cdot g_n$. The resulting spectra are sampled densely enough in order to perfectly re-construct $f \cdot g_n$ from these samples
- Adjacent windows overlap to avoid loss of information. At the same time, unnecessary overlap is undesirable. We assume that $0 < A \le \sum_{n \in \mathbb{Z}} |g_n(t)|^2 \le B < \infty$, a.e., for some positive A and B

These requirements lead to invertibility of the frame operator and therefore to perfect reconstruction.

²¹Balazs et al., 2011.

Discrete nonstationary Gabor frame numerical complexity

Discrete nonstationary Gabor frame in discrete time (analogous to continuous time) 22 :

$$g_{m,n}[k] = g_n[k] \cdot e^{\frac{j2\pi mb_n k}{L}} = g_n[k] \cdot W_L^{mb_n k}$$

$$n = 0, ..., N - 1, m = 0, ..., M_n - 1, k = 0, ..., L = 1$$

Nonstationary Gabor coefficients are given by an FFT of length M_n for each window g_n with a signal of length L_n

- Windowing: L_n operations for the nth window
- ② FFT: $O(M_n \cdot \log(M_n))$ for the *n*th window
- **3** Total: $O(N \cdot (M \log(M)))$ for N windows

²²Balazs et al., 2011.

Result of nonstationary Gabor decomposition

Figure: Best of both worlds in a single representation²³ (glockpenspeil signal)

²³ Jaillet, Balázs, and Dörfler, 2009.

Applications of NSGT: invertible CQT

- Original CQT²⁴ is non-invertible and computationally intensive
- Modification²⁵ improves computational efficiency
- ullet Previous approach by Schörkhuber and Klapuri²⁶ has an RMS error of 10^{-3} from approximate reconstruction (used in librosa) The lack of perfect invertibility prevents the convenient modification of CQT coefficients with subsequent resynthesis required in complex music processing tasks such as masking or transposition.
- NSGT CQT is faster and perfectly invertible; adaptive resolution in frequency results in desired constant Q-factor
- Drop-in replacement for STFT in music algorithms

²⁴Brown, 1991.

²⁵Brown and Puckette, 1992.

²⁶C. Schörkhuber and A. Klapuri. *Constant-Q Transform Toolbox for Music Processing*. July 2010. DOI: 10.5281/zenodo.849741. URL: https://doi.org/10.5281/zenodo.849741.