Similar Arrays

Input file: standard input
Output file: standard output

Time limit: 2.5 seconds Memory limit: 256 megabytes

You are given two arrays of positive integers a and b, each of length n.

You must choose a sequence of n non-increasing real constants r_1, r_2, \ldots, r_n to multiply with corresponding terms b_1, b_2, \ldots, b_n such that the sum of the squares of their differences with corresponding terms a_1, a_2, \ldots, a_n is minimized.

Formally, choose n real numbers r_1, r_2, \ldots, r_n such that

- $r_1 \ge r_2 \ge \ldots \ge r_n$
- $\sum_{i=1}^{i=n} (a_i r_i \cdot b_i)^2$ is minimized.

Print the minimum value after choosing appropriate constants.

Input

The first line contains t, the number of testcases. Below is the description of each testcase.

The first line of each test case contains a single integer $n \ (2 \le n \le 5 \cdot 10^5)$.

The second line of each test case contains n integers a_1, a_2, \ldots, a_n $(1 \le a_i \le 1000)$.

The third line of each test case contains n integers b_1, b_2, \ldots, b_n $(1 \le b_i \le 1000)$.

The sum of n across all testcases $\leq 5 \cdot 10^5$.

Output

For each testcase print the minimum value of $\sum_{i=1}^{i=n} (a_i - r_i \cdot b_i)^2$.

Your answer is considered correct if its absolute or relative error does not exceed 10^{-9} . Formally, let your answer be a, and the jury's answer be b. Your answer will be accepted if and only if $\frac{|a-b|}{\max(1,|b|)} \le 10^{-9}$.

Scoring

There are 6 subtasks.

Note that N here is the sum of n across all testcases.

Subtask 1 (5 points): t = 1, n = 2

Subtask 2 (11 points): $N \leq 20$

Subtask 3 (13 points): $N \leq 300$

Subtask 4 (14 points): $N \leq 2000$

Subtask 5 (20 points): $N \leq 7000$

Subtask 6 (37 points): No additional constraints.

Example

standard input	standard output
1	0.0
2	
450 188	
900 940	

Note	
In the sample case, choosing $r_1 = 0.5$ and $r_2 = 0.2$ yields the value 0.	