

<u>MÉTODOS NUMÉRICOS</u> <u>GUÍA DE TRABAJOS PRÁCTICOS Nº 5</u>

Interpolación Polinomial

- 1. Realice un algoritmo en MatLab, que interpole un conjunto de N+1 puntos (x_j, y_j) mediante una aproximación por **Polinomios de Lagrange**. El algoritmo debe recibir como parámetros de entrada dos vectores X e Y, conteniendo el conjunto de abscisas y ordenadas de los N+1 puntos a interpolar, respectivamente. Los parámetros de salida deben ser un vector C, que contiene los coeficientes para el polinomio interpolatorio de Lagrange y una matriz L, que contenga los coeficientes de los polinomios de Lagrange, es decir con coeficientes de $L_{N,k}(x)$.
- 2. Para cada una de las siguientes funciones, encuentre el polinomio de quinto grado $P_5(x)$ con una **Aproximación de Lagrange**, que pasa a través de los puntos (0, f(0)), (0.2, f(0.2)), (0.4, f(0.4)), (0.6, f(0.6)), (0.8, f(0.8)) y (1, f(1)). Los 6 coeficientes a calcular del polinomio deben cumplir que $P_5(x) = a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$.

Las funciones f(x) a aproximar son las siguientes:

i.
$$f(x) = e^x$$

ii.
$$f(x) = \sin(x)$$

iii.
$$f(x) = (x+1)^{(x+1)}$$

- 3. Las temperaturas medidas durante un intervalo de 5 horas en un suburbio de los Ángeles el 8 de noviembre, se encuentran tabuladas en la siguiente tabla. Se pide:
 - a) Use el algoritmo desarrollado en el inciso 1, para construir un polinomio interpolador de Lagrange con los datos de la tabla.
 - **b)** Grafique los datos de la tabla y del polinomio de Lagrange en un mismo sistema de coordenadas. Discuta el posible error que puede surgir al usar el polinomio de interpolación de Lagrange al estimar la temperatura media.

Tiempo (pm)	Temperatura (°F)
1	66
2	66
3	65
4	64
5	63
6	63

- 4. Teniendo en cuenta la función $f(x) = 2\sin(\pi x/6)$, donde x está expresada en radianes, se pide:
 - a) Use una aproximación cuadrática de Lagrange basada en los nodos $x_0 = 0$, $x_1 = 1$ y $x_2 = 3$ para aproximar f(2) y f(2.4).
 - **b**) Use una aproximación cúbica de Lagrange basada en los nodos $x_0 = 0$, $x_1 = 1$, $x_2 = 3$ y $x_3 = 5$ para aproximar f(2) y f(2.4).
- 5. Teniendo en cuenta la función f(x) = x + 2/x, se pide:
 - a) Use una aproximación cuadrática de Lagrange basada en los nodos $x_0 = 1$, $x_1 = 2$ y $x_2 = 2.5$ para aproximar f(1.5) y f(1.2).

- **b**) Use una aproximación cúbica de Lagrange basada en los nodos $x_0 = 0.5$, $x_1 = 1$, $x_2 = 2$ y $x_3 = 2.5$ para aproximar f(1.5) y f(1.2).
- 6. Realice un algoritmo en MatLab, que interpole un conjunto de N+1 puntos (x_j, y_j) mediante una aproximación por *Polinomios de Newton*. El algoritmo debe recibir como parámetros de entrada dos vectores X e Y, conteniendo el conjunto de abscisas y ordenadas de los N+1 puntos a interpolar, respectivamente. Los parámetros de salida deben ser un vector C, que contiene los coeficientes para el polinomio interpolatorio de Newton y una matriz D, que contiene la tabla de diferencias divididas.
- 7. Repita el problema 2, pero ahora usando el algoritmo de interpolación de *Newton* desarrollado en el ejercicio anterior.
- 8. Repita el problema 3 (aproximación de temperaturas en un determinado día del año), pero ahora usando el algoritmo de interpolación de Newton desarrollado en el ejercicio 7.
- 9. Teniendo en cuenta la función $f(x) = 2\sin(\pi x/6)$, donde x está expresada en radianes, se pide:
 - a) Use una aproximación cuadrática de Newton basada en los nodos $x_0 = 0$, $x_1 = 1$ y $x_2 = 3$ para aproximar f(4) y f(3.5).
 - **b**) Use una aproximación cúbica de Newton basada en los nodos $x_0 = 0$, $x_1 = 1$, $x_2 = 3$ y $x_3 = 5$ para aproximar f(4) y f(3.5).
- 10. Realice un algoritmo en MatLab, que interpole un conjunto de N+1 puntos (x_j, y_j) mediante una aproximación por *Splines Cúbicas*. El algoritmo debe recibir como parámetros de entrada dos vectores X e Y, conteniendo el conjunto de abscisas y ordenadas de los N+1 puntos a interpolar, respectivamente. El parámetro de salida debe ser una matriz C, que contiene N polinomios de tercer grado centrados en x_k . Esta matriz, se utiliza posteriormente para la aproximación e interpolación del conjunto de puntos dados, con una resolución arbitraria. Se recuerda que la fila k-ésima se la matriz C, representará al k-ésimo polinomio interpolador:

$$S_k(x) = C_{k,3}(x - x_k)^3 + C_{k,2}(x - x_k)^2 + C_{k,1}(x - x_k) + C_{k,0}$$

- 11. Verifique el algoritmo desarrollado anteriormente para los incisos que se indican a continuación. Debe graficar la nube de puntos junto a los polinomios interpoladores. Elija resoluciones acordes a las abscisas dadas, por ejemplo, de 10 a 100 partes entre abscisas adyacentes.
 - a) Encuentre la interpolación cúbica natural que pase por los siguientes pares de puntos: (-3,2), (-2,0), (1,3) y (4,1).
 - **b**) Encuentre la interpolación cúbica natural que pase por los puntos $(x_k, f(x_k))$, siendo f(x) = x + 2/x y usando los nodos $x_0 = 1/2$, $x_1 = 1$, $x_2 = 3/2$ y $x_3 = 2$.
 - c) Encuentre la interpolación cúbica natural que pase por los siguientes pares de puntos: (0,0), (1,4), (2,8), (3,9), (4,9), (5,8) y (6,6).