

Prueba de Evaluación Continua 13 de Marzo de 2013

ATENCIÓN:

- Lea atentamente todo el enunciado antes de comenzar a contestar.
- Dispone de 90 minutos para realizar la prueba.
- No se podrán utilizar libros ni apuntes, ni calculadoras de ningún tipo.
- Los teléfonos móviles deberán permanecer desconectados durante la prueba (

apagados, no silenciados). Solamente se corregirán los ejercicios contestados con bolígrafo. Por favor no utilic lápiz.	е
APELLIDOS: NOMBRE: NIA: GRUPO:	
Ejercicio 1: Responda a las siguientes preguntas de teoría (4 puntos)
• [1 punto] Describa en que consiste la técnica Copy-on-Write	
Copy-on-Write es una técnica que retrasa o evita la copia de los datos al hacer el fork Los datos se marcan de manera que si se intentan modificar se realiza una copia para cada proceso (padre e hijo) Ahora fork() sólo copia la tabla de páginas del padre (no las páginas) y cre un nuevo BCP para el hijo	
 [1 punto] Indique de que partes básicas se compone un proceso ligero y que comparte con el resto de los procesos ligeros. 	

Propio de cada hilo Pila Registros

Información compartida Código Datos (variables globales) Ficheros abiertos

Prueba de Evaluación Continua 13 de Marzo de 2013

- [1 punto] ¿Cuáles son las principales funciones de un sistema operativo?
 - a. Gestor de recursos hardware:
 - Gestiona el hardware para repartir los recursos entre los distintos procesos.
 - b. Maquina extendida:
 - Ofrece nuevas servicios a los procesos ampliando los que se obtienen directamente del hardware.
 - c. Interfaz de aplicaciones:
 - Ofrece una interfaz común a las aplicaciones para acceder a los recursos hardware y a los servicios extendidos del sistema operativo, independientemente del computador utilizado.
 - d. Interfaz de usuario:
 - Ofrece una interfaz al usuario para la utilización del computador y la ejecución de programas.
- [1 punto] ¿Que estructura interna del Sistema operativo gestiona los procesos? ¿Que información básica contiene?

La tabla de Procesos que contiene el Bloque de control de Procesos (BCP): Cada entrada de la tabla que mantiene la información sobre un proceso.

- La información básica que contiene un BCP es:
- Información de identificación.
 - o Identificador del proceso.
 - o Identificador del proceso padre.
 - o Información sobre el usuario
- Estado del procesador.
 - o Estado de los registros, etc
- Información de control del proceso.
 - o Estado del proceso.
 - o Evento por el que espera (si bloqueado)
 - o Prioridad del proceso.
 - o Información de planificación.
 - o etc

Prueba de Evaluación Continua 13 de Marzo de 2013

Ejercicio 2 [3 puntos]

Un sistema operativo utiliza un planificador. En un instante determinado no hay ningún trabajo en ejecución y se desean ejecutar trabajos cuyos tiempos de llegada al sistema son los siguientes:

Proceso	Tiempo de llegada al sistema	Tiempo de ejecución
Α	0	2
В	1	5
С	2	6
D	2	2
E	4	4

Se pide rellenar las siguientes tablas en los siguientes casos:

- a) Política de planificación SJF (Shortest Job First)
- b) Política de planificación round-robin con rodaja de 2, donde A, B y C tienen prioridad baja y D y E prioridad alta

Para las dos posibilidades, se pide:

- 1. Determine el tiempo de finalización de cada proceso.
- 2. Determine el tiempo que cada proceso ha estado en el sistema (tiempo de retorno).
- 3. Determine el tiempo de servicio y el tiempo de espera de cada proceso.

Prueba de Evaluación Continua 13 de Marzo de 2013

a) Política de planificación SJF (Shortest Job First) (usando un esquema apropiativo)

Proceso	Tiempo de finalización	Tiempo de retorno	Tiempo de servicio	Tiempo de espera
Α	2	2	2	0
В	13	11	5	6
С	19	17	6	11
D	4	2	2	0
E	8	4	4	0

b) Política de planificación round-robin con rodaja de 2, donde A, B y C tienen prioridad baja y D y E prioridad alta

Proceso	Tiempo de finalización	Tiempo de retorno	Tiempo de servicio	Tiempo de espera
Α	2	2	2	0
В	17	15	5	10
С	19	17	6	11
D	4	2	2	0
Е	8	4	4	0

Prueba de Evaluación Continua 13 de Marzo de 2013

Ejercicio 3 [3 puntos]:

Codifique , usando el lenguaje C, un programa en el que se creen 4 procesos que siguen el siguiente esquema:

- El proceso principal debe crear 3 procesos hijos e inicializar un entero a 0. A continuación suma 1 al valor entero, para después enviarlo a través de una tubería al proceso 1.
- 2. El proceso N envía al proceso (N + 1) módulo 3, el valor entero recibido mas 1.
- 3. Si el proceso que recibe el valor es el proceso 3, este debe imprimir el valor recibido por pantalla.
- 4. Cuando valor sea igual a 1000 los procesos deben terminar y el proceso 0 (proceso padre) debe esperar al resto de los procesos.

En las comunicaciones, se utilizarán tuberías.

Prueba de Evaluación Continua 13 de Marzo de 2013

```
#include <sys/types.h>
#include <sys/wait.h>
#include <signal.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#define MAX 4
#define LIMITE 1000
int main(){
       int tub[MAX][2], valor=0, proc;
       int i,pid,status;
       for (i=0;i<MAX;i++)</pre>
               pipe(tub[i]);
       for (i=1;i<MAX;i++){</pre>
               proc=i;
               if ((pid=fork())==0){
                       break;
               }else{
                       proc = 0;
               }
       }
       if(proc==0)
               write(tub[proc][1],&valor,sizeof(int));
       while(valor < LIMITE){</pre>
               read(tub[(proc+MAX-1)%MAX][0],&valor,sizeof(int));
               valor ++;
               if (proc == (MAX-1)) printf("%d\n",valor);
               write(tub[proc][1],&valor,sizeof(int));
       }
       for (i=0;i<MAX;i++){</pre>
               close(tub[i][0]);
               close(tub[i][1]);
       if (proc == 0)
               for (i=1;i<MAX;i++)
                      wait(&status);
       exit(proc);
```