Quantum Error Correction: A Tutorial

Navin Kashyap

Department of Electrical Communication Engineering
Indian Institute of Science

Outline

Background and Motivation

Quantum Error Correction Basics
The 3-Qubit Bit-Flip and Phase-Flip Correcting Codes
Shor's Code

Quantum Stabilizer Codes

References

Background and Motivation

NISQ-Era and Beyond

John Preskill, Quantum Computing in the NISQ era and beyond, Quantum, vol. 2, p. 79, 2018. [Online] arXiv:1801.00862v3

- Noisy Intermediate-Scale Quantum (NISQ) technology
 - up to a few hundred qubits
 - faulty gates
- 5-10 year horizon
 - thousands of qubits and beyond
 - fault-tolerant, based on quantum error correction.

The IBM Quantum Computing Roadmap

Quantum Computing Technologies

Various quantum computing technologies are in development:

- ► Superconducting qubits IBM, Google, IQM, Rigetti etc.
- Photonics / bosonic computing —
 Xanadu, ORCA Computing, PsiQuantum etc.
- ► Trapped ions IonQ, Oxford Ionics, Quantinuum etc.
- Neutral atoms Pasqal, QuEra, planqc etc.

Many other efforts at universities and start-ups around the world.

Quantum Error Correction Basics

Logical and Physical Qubits

▶ A qubit is the state of a two-state quantum system. Formally, it is a quantum state living in a 2-dimensional state space, H:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
, where $\alpha, \beta \in \mathbb{C}$, with $|\alpha|^2 + |\beta^2| = 1$.

Logical and Physical Qubits

▶ A qubit is the state of a two-state quantum system. Formally, it is a quantum state living in a 2-dimensional state space, H:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
, where $\alpha, \beta \in \mathbb{C}$, with $|\alpha|^2 + |\beta^2| = 1$.

Physical Qubits. These are the physical objects that behave as two-state quantum systems.

Physical qubits are highly error-prone due to decoherence, i.e., loss of information to the environment.

► Logical Qubits. These are the abstract qubits upon which a quantum algorithm is executed.

Logical and Physical Qubits

▶ A qubit is the state of a two-state quantum system. Formally, it is a quantum state living in a 2-dimensional state space, H:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
, where $\alpha, \beta \in \mathbb{C}$, with $|\alpha|^2 + |\beta^2| = 1$.

Physical Qubits. These are the physical objects that behave as two-state quantum systems.

Physical qubits are highly error-prone due to decoherence, i.e., loss of information to the environment.

- ► Logical Qubits. These are the abstract qubits upon which a quantum algorithm is executed.
- ▶ Dozens of physical qubits are typically required to sustain a single logical qubit for the purposes of computation.

Bit-Flip and Phase-Flip Errors

A bit-flip error on a physical qubit is an X gate acting on that qubit: $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Bit-Flip and Phase-Flip Errors

A bit-flip error on a physical qubit is an X gate acting on that qubit: $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

A phase-flip error on a physical qubit is a Z gate acting on that qubit: $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

$$Z\ket{0}=\ket{0}$$
 and $Z\ket{1}=-\ket{1}$ $\alpha\ket{0}+\beta\ket{1}$ \longrightarrow Z \longrightarrow $\alpha\ket{0}-\beta\ket{1}$

The No-Cloning Theorem

Theorem

There is no unitary gate *U* that operates as shown:

$$\begin{array}{c|c} \textit{input} & |\psi\rangle & \hline & U \\ \textit{ancilla} & |0\rangle & \hline & U \\ \end{array}$$

In other words, there is no quantum gate that can create an exact replica of an input qubit in an arbitrary (unknown) state.

The 3-Qubit Single-Bit-Flip-Correcting Code

- One logical qubit is encoded within three physical qubits
- ► Can correct a bit-flip (X) error in at most one of the three physical qubits

Encoder

$$\begin{vmatrix} \psi \rangle & & \\ |0\rangle & & & \\ |0\rangle & & & \\ \end{vmatrix} \begin{vmatrix} \psi_L \rangle \\ \end{vmatrix}$$

$$\begin{array}{ccc} |0\rangle & \longmapsto & |000\rangle =: |0_L\rangle \\ |1\rangle & \longmapsto & |111\rangle =: |1_L\rangle \\ \\ \underline{\alpha \, |0\rangle + \beta \, |1\rangle} & \longmapsto & \underline{\alpha \, |000\rangle + \beta \, |111\rangle} \\ \underline{\psi_L\rangle} \end{array}$$

Error

\mathcal{E}	$\mathcal{E}\ket{\psi_{L}}$	description	
$I\otimes I\otimes I$	$\mid \alpha \mid$ 000 $ angle + eta \mid$ 111 $ angle \mid \mid$ no error		
$X \otimes I \otimes I$	$\alpha 100 \rangle + \beta 011 \rangle$	bit-flip on 1st qubit	
$I \otimes X \otimes I$	$\alpha 010\rangle + \beta 101\rangle$	bit-flip on 2nd qubit	
$I \otimes I \otimes X$	$\alpha 001\rangle + \beta 110\rangle$	bit-flip on 3rd qubit	

Syndrome Qubits

\mathcal{E}	$\mathcal{E}\ket{\psi_L}$	Syndrome $ \mathbf{s}\rangle$	
$I \otimes I \otimes I$	$\alpha 000\rangle + \beta 111\rangle$	00⟩	
$X \otimes I \otimes I$	$\alpha 100 \rangle + \beta 011 \rangle$	$ 10\rangle$	
$I \otimes X \otimes I$	$\alpha 010\rangle + \beta 101\rangle$	01⟩	
$I \otimes I \otimes X$	$\alpha 001\rangle + \beta 110\rangle$	$ 11\rangle$	

Syndrome Measurement and Recovery

\mathcal{E}	$\mathcal{E}\ket{\psi_{L}}$	S	\mathcal{R}
$I \otimes I \otimes I$	$\alpha 000\rangle + \beta 111\rangle$	00	$I \otimes I \otimes I$
$X \otimes I \otimes I$	$\alpha \left \frac{1}{0} \right\rangle + \beta \left \frac{0}{0} \right\rangle$	10	$X \otimes I \otimes I$
$I \otimes X \otimes I$	$\alpha 010\rangle + \beta 101\rangle$	01	$I \otimes X \otimes I$
1 ⊗ 1 ⊗ X	$\alpha 001\rangle + \beta 110\rangle$	11	$I \otimes I \otimes X$

The 3-Qubit Single-Phase-Flip-Correcting Code

- One logical qubit is encoded within three physical qubits
- ► Can correct a phase-flip (*Z*) error in at most one of the three physical qubits

Converting *Z*-Errors to *X*-Errors

\mathcal{E}	\mathcal{E}'	
$I \otimes I \otimes I$	$I \otimes I \otimes I$	
$Z \otimes I \otimes I$	$X \otimes I \otimes I$	
$I \otimes Z \otimes I$	$I \otimes X \otimes I$	
$I \otimes I \otimes Z$	$I \otimes I \otimes X$	

Encoder

$$\begin{array}{ccc} |0\rangle &\longmapsto & |+++\rangle =: |0_L\rangle \\ |1\rangle &\longmapsto & |---\rangle =: |1_L\rangle \\ \\ \underline{\alpha \, |0\rangle + \beta \, |1\rangle} &\longmapsto & \underline{\alpha \, |+++\rangle \, + \, \beta \, |---\rangle} \\ \underline{\psi_L\rangle} \end{array}$$

Shor's Code Shor (1995)

- Obtained by concatenating the 3-qubit phase-flip code with the 3-qubit bit-flip code.
- Outer code: 3-qubit phase-flip code

$$|0
angle \;\longmapsto\; |+++
angle \;\; \mbox{and} \;\;\; |1
angle \;\;\longmapsto\; |---
angle$$

▶ Inner code: 3-qubit bit-flip code — each $|+\rangle$ or $|-\rangle$ of the outer code is further encoded as

$$\begin{aligned} |+\rangle &= \frac{|0\rangle + |1\rangle}{\sqrt{2}} &\longmapsto \frac{|000\rangle + |111\rangle}{\sqrt{2}} \\ |-\rangle &= \frac{|0\rangle - |1\rangle}{\sqrt{2}} &\longmapsto \frac{|000\rangle - |111\rangle}{\sqrt{2}} \end{aligned}$$

Shor's Code

Shor (1995)

► The resulting code encodes one logical qubit into 3 × 3 = 9 physical qubits:

$$|0\rangle \longmapsto |0_L\rangle := \left(\frac{|000\rangle + |111\rangle}{\sqrt{2}}\right)^{\otimes 3}$$

$$|1\rangle \longmapsto |1_L\rangle := \left(\frac{|000\rangle - |111\rangle}{\sqrt{2}}\right)^{\otimes 3}$$

$$\underbrace{\alpha |0\rangle + \beta |1\rangle}_{|\psi\rangle} \longmapsto \underbrace{\alpha |0_L\rangle + \beta |1_L\rangle}_{|\psi_L\rangle}$$

Shor's Code Shor (1995)

► The resulting code encodes one logical qubit into 3 × 3 = 9 physical qubits:

$$\begin{array}{ccc} |0\rangle &\longmapsto &|0_L\rangle := \left(\frac{|000\rangle + |111\rangle}{\sqrt{2}}\right)^{\otimes 3} \\ \\ |1\rangle &\longmapsto &|1_L\rangle := \left(\frac{|000\rangle - |111\rangle}{\sqrt{2}}\right)^{\otimes 3} \\ \\ \underline{\alpha \, |0\rangle + \beta \, |1\rangle} &\longmapsto &\underline{\alpha \, |0_L\rangle + \beta \, |1_L\rangle} \\ \underline{\psi_L\rangle} \end{array}$$

► This code is capable of correcting an *arbitrary* unitary error on any one of the 9 physical qubits.

Encoder

Bit-flip and Phase-flip Errors

▶ Encoded $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$:

$$\begin{split} &\alpha\bigg(\frac{|000\rangle+|111\rangle}{\sqrt{2}}\bigg)\otimes\bigg(\frac{|000\rangle+|111\rangle}{\sqrt{2}}\bigg)\otimes\bigg(\frac{|000\rangle+|111\rangle}{\sqrt{2}}\bigg)\\ &+\beta\bigg(\frac{|000\rangle-|111\rangle}{\sqrt{2}}\bigg)\otimes\bigg(\frac{|000\rangle-|111\rangle}{\sqrt{2}}\bigg)\otimes\bigg(\frac{|000\rangle-|111\rangle}{\sqrt{2}}\bigg) \end{split}$$

▶ Bit-flip error in 5th qubit:

$$\begin{split} &\alpha\bigg(\frac{|000\rangle+|111\rangle}{\sqrt{2}}\bigg)\otimes\bigg(\frac{|010\rangle+|101\rangle}{\sqrt{2}}\bigg)\otimes\bigg(\frac{|000\rangle+|111\rangle}{\sqrt{2}}\bigg)\\ &+\beta\bigg(\frac{|000\rangle-|111\rangle}{\sqrt{2}}\bigg)\otimes\bigg(\frac{|010\rangle-|101\rangle}{\sqrt{2}}\bigg)\otimes\bigg(\frac{|000\rangle-|111\rangle}{\sqrt{2}}\bigg) \end{split}$$

Bit-flip and Phase-flip Errors

▶ Encoded $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$:

$$\begin{split} &\alpha\bigg(\frac{|000\rangle+|111\rangle}{\sqrt{2}}\bigg)\otimes\bigg(\frac{|000\rangle+|111\rangle}{\sqrt{2}}\bigg)\otimes\bigg(\frac{|000\rangle+|111\rangle}{\sqrt{2}}\bigg)\\ &+\beta\bigg(\frac{|000\rangle-|111\rangle}{\sqrt{2}}\bigg)\otimes\bigg(\frac{|000\rangle-|111\rangle}{\sqrt{2}}\bigg)\otimes\bigg(\frac{|000\rangle-|111\rangle}{\sqrt{2}}\bigg) \end{split}$$

Bit-flip error in 5th qubit:

$$\begin{split} &\alpha\bigg(\frac{|000\rangle+|111\rangle}{\sqrt{2}}\bigg)\otimes\bigg(\frac{|010\rangle+|101\rangle}{\sqrt{2}}\bigg)\otimes\bigg(\frac{|000\rangle+|111\rangle}{\sqrt{2}}\bigg)\\ &+\beta\bigg(\frac{|000\rangle-|111\rangle}{\sqrt{2}}\bigg)\otimes\bigg(\frac{|010\rangle-|101\rangle}{\sqrt{2}}\bigg)\otimes\bigg(\frac{|000\rangle-|111\rangle}{\sqrt{2}}\bigg) \end{split}$$

Phase-flip error in 7th qubit:

$$\alpha \left(\frac{|000\rangle + |111\rangle}{\sqrt{2}}\right) \otimes \left(\frac{|000\rangle + |111\rangle}{\sqrt{2}}\right) \otimes \left(\frac{|000\rangle - |111\rangle}{\sqrt{2}}\right) + \beta \left(\frac{|000\rangle - |111\rangle}{\sqrt{2}}\right) \otimes \left(\frac{|000\rangle - |111\rangle}{\sqrt{2}}\right) \otimes \left(\frac{|000\rangle + |111\rangle}{\sqrt{2}}\right)$$

Syndrome Qubits for Bit-Flip Error Correction

Syndrome Qubits for Phase-Flip Error Correction

Syndrome Qubits for Phase-Flip Error Correction

- ► Thus, a total number of eight syndrome qubits are used:
 - ▶ 6 for bit-flip errors
 - 2 for phase-flip errors

Shor's Code: Error Correction

Shor's code is capable of correcting the following types of errors:

- a single bit-flip (X) error in each of the three blocks of 3 physical qubits
- ▶ a single phase-flip (Z) error affecting exactly one of the three blocks of 3 physical qubits
- ▶ an XZ-error, i.e., a bit-flip followed by a phase-flip on the same physical qubit

Shor's Code: Error Correction

Shor's code is capable of correcting the following types of errors:

- a single bit-flip (X) error in each of the three blocks of 3 physical qubits
- ▶ a single phase-flip (Z) error affecting exactly one of the three blocks of 3 physical qubits
- ➤ an XZ-error, i.e., a bit-flip followed by a phase-flip on the same physical qubit
- ► an *arbitrary* unitary error operator acting on any one of the 9 physical qubits!

Linear Algebra: An ON Basis of $\mathbb{C}^{2\times 2}$

The matrices

$$\textit{I}_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \textit{X} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \textit{Z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \ \textit{XZ} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

form an orthonormal basis of $\mathbb{C}^{2\times 2}$ with respect to the Hilbert-Schmidt inner product

$$(A,B) := \frac{1}{2}\operatorname{tr}(A^{\dagger}B)$$

Linear Algebra: An ON Basis of $\mathbb{C}^{2\times 2}$

▶ The matrices

$$\textit{I}_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \ \textit{X} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \ \textit{Z} = \begin{bmatrix} \ 1 & 0 \\ 0 & -1 \ \end{bmatrix}, \ \ \textit{XZ} = \begin{bmatrix} \ 0 & -1 \\ 1 & 0 \ \end{bmatrix}$$

form an orthonormal basis of $\mathbb{C}^{2\times 2}$ with respect to the Hilbert-Schmidt inner product

$$(A,B) := \frac{1}{2}\operatorname{tr}(A^{\dagger}B)$$

- ► Thus, any 2 × 2 complex matrix A is (uniquely) expressible as $\alpha_1 I_2 + \alpha_2 X + \alpha_3 Z + \alpha_4 (XZ)$ for some $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in \mathbb{C}$
- ▶ If A is unitary, then $|\alpha_1|^2 + |\alpha_2|^2 + |\alpha_3|^2 + |\alpha_4|^2 = 1$.

Shor's Code: Error Correction

▶ Suppose that $|\psi_L\rangle = \alpha |0_L\rangle + \beta |1_L\rangle$ is affected by a single-qubit error operator

$$\mathcal{E} = I_2 \otimes \cdots \otimes I_2 \otimes U \otimes I_2 \otimes \cdots \otimes I_2,$$

where U is an arbitrary 2×2 unitary operator acting on the ith qubit of $|\psi_L\rangle$.

- ▶ Write $U = \alpha_1 I_2 + \alpha_2 X + \alpha_3 Z + \alpha_4 (XZ)$, with $|\alpha_1|^2 + |\alpha_2|^2 + |\alpha_3|^2 + |\alpha_4|^2 = 1$.
- Then,

$$\mathcal{E} |\psi_L\rangle = \alpha_1 |\psi_L\rangle + \alpha_2 X_i |\psi_L\rangle + \alpha_3 Z_i |\psi_L\rangle + \alpha_4 X_i Z_i |\psi_L\rangle,$$

the subscript i indicating that the operator acts on the ith qubit of $|\psi_L\rangle$.

Shor's Code: Error Correction

▶ After $\mathcal{E} | \psi_L \rangle$ is passed through the syndrome computation circuit, we obtain (by linearity)

$$\alpha_{1} \left| \psi_{L} \right\rangle \left| \mathbf{0} \right\rangle + \alpha_{2} X_{i} \left| \psi_{L} \right\rangle \left| \mathbf{s}_{X_{i}} \right\rangle + \alpha_{3} Z_{i} \left| \psi_{L} \right\rangle \left| \mathbf{s}_{Z_{i}} \right\rangle + \alpha_{4} X_{i} Z_{i} \left| \psi_{L} \right\rangle \left| \mathbf{s}_{X_{i} Z_{i}} \right\rangle$$

Shor's Code: Error Correction

▶ After $\mathcal{E} | \psi_L \rangle$ is passed through the syndrome computation circuit, we obtain (by linearity)

$$\alpha_{1} |\psi_{L}\rangle |\mathbf{0}\rangle + \alpha_{2} X_{i} |\psi_{L}\rangle |\mathbf{s}_{X_{i}}\rangle + \alpha_{3} Z_{i} |\psi_{L}\rangle |\mathbf{s}_{Z_{i}}\rangle + \alpha_{4} X_{i} Z_{i} |\psi_{L}\rangle |\mathbf{s}_{X_{i}Z_{i}}\rangle$$

▶ Measuring the syndrome qubits |s⟩ yields

Outcome	Post-measurement $\mathcal{E}\ket{\psi_{m{L}}}$	Probability
0	$ \psi_{L} angle$	$ \alpha_1 ^2$
\mathbf{s}_{χ_i}	$X_i \ket{\psi_L}$	$ \alpha_2 ^2$
\mathbf{s}_{Z_i}	$Z_i\ket{\psi_L}$	$ \alpha_3 ^2$
$\mathbf{s}_{X_iZ_i}$	$X_i Z_i \ket{\psi_L}$	$ \alpha_4 ^2$

► The measurement outcome identifies the error operator present in the post-measurement state, and its effect can then be reversed.

Discretization of Errors

Shor's code illustrates the principle of discretization of errors:

to correct an arbitrary unitary error operator, it suffices to ensure that the basis errors I_2 , X, Z and XZ can be corrected.

Quantum Stabilizer Codes

The Pauli Matrices

▶ The four Pauli matrices

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \ Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

form an orthonormal basis of $\mathbb{C}^{2\times 2}$ with respect to the inner product $(A,B) := \operatorname{tr}(A^{\dagger}B)$.

- Some useful properties:
 - $Y = iXZ \quad (i = \sqrt{-1})$
 - ightharpoonup tr(X) = tr(Y) = tr(Z) = 0 (traceless property)
 - $X^2 = Y^2 = Z^2 = I$ (involution)
 - ► XY = -YX, XZ = -ZX, YZ = -ZY. (anti-commutativity)
 - ▶ X, Y and Z all have eigenvalues +1, -1.

The Pauli group \mathcal{P}_n

$$\mathcal{P}_{n} \; := \; \left\{ i^{\ell} \cdot M_{1} \otimes \cdots \otimes M_{n} : M_{j} \in \{I,X,Y,Z\}, \, \ell \in \{0,1,2,3\} \right\}$$

▶ \mathcal{P}_n is a subgroup of the multiplicative group, $\mathcal{U}(N)$, consisting of $N \times N$ unitary matrices $(N = 2^n)$.

$$(M_1 \otimes \cdots \otimes M_n)(M'_1 \otimes \cdots \otimes M'_n) = M_1 M'_1 \otimes \cdots \otimes M_n M'_n.$$

- \triangleright \mathcal{P}_n is non-abelian; for example, XZ = -ZX.
- Any two elements of \mathcal{P}_n either commute or anti-commute: either MM' = M'M or MM' = -M'M.

Linear Algebraic Properties of $M_1 \otimes \cdots \otimes M_n$

▶ $M_1 \otimes \cdots \otimes M_n$, with $M_j \in \{I, X, Y, Z\} \forall j$, is Hermitian.

►
$$\operatorname{tr}(M_1 \otimes \cdots \otimes M_n) = \begin{cases} N \ (=2^n) & \text{if } M_j = I \text{ for all } j \\ 0 & \text{otherwise} \end{cases}$$

▶ Other than when $M_j = I$ for all j, the matrix $M_1 \otimes \cdots \otimes M_n$ has N/2 eigenvalues equal to +1 and N/2 eigenvalues equal to -1.

Linear Algebraic Properties of $M_1 \otimes \cdots \otimes M_n$

▶ $M_1 \otimes \cdots \otimes M_n$, with $M_j \in \{I, X, Y, Z\} \forall j$, is Hermitian.

►
$$\operatorname{tr}(M_1 \otimes \cdots \otimes M_n) = \begin{cases} N \ (=2^n) & \text{if } M_j = I \text{ for all } j \\ 0 & \text{otherwise} \end{cases}$$

- ▶ Other than when $M_j = I$ for all j, the matrix $M_1 \otimes \cdots \otimes M_n$ has N/2 eigenvalues equal to +1 and N/2 eigenvalues equal to -1.
- ▶ The 4^n matrices $M_1 \otimes \cdots \otimes M_n$, with $M_j \in \{I, X, Y, Z\} \forall j$, form an ON basis of $\mathbb{C}^{N \times N}$, with respect to the inner product $(A, B) = \operatorname{tr}(A^{\dagger}B)$.

Stabilizers

Daniel Gottesman, PhD Thesis, Caltech, 1997

For S a subgroup of \mathcal{P}_n , define the subspace of \mathbb{C}^N stabilized by S to be the set of all n-qubit states $|\psi\rangle$ that are invariant under every Pauli operator in S:

$$Q_{\mathcal{S}} := \{ |\psi\rangle : M |\psi\rangle = |\psi\rangle \text{ for all } M \in \mathcal{S} \}$$

- ▶ In other words, Q_S is the common +1-eigenspace of all $M \in S$.
- ▶ Any $M \in S$ is called a stabilizer of Q_S .

Stabilizers

Daniel Gottesman, PhD Thesis, Caltech, 1997

For S a subgroup of \mathcal{P}_n , define the subspace of \mathbb{C}^N stabilized by S to be the set of all n-qubit states $|\psi\rangle$ that are invariant under every Pauli operator in S:

$$\mathcal{Q}_{\mathcal{S}} := \{ |\psi\rangle : M |\psi\rangle = |\psi\rangle \text{ for all } M \in \mathcal{S} \}$$

- ▶ In other words, Q_S is the common +1-eigenspace of all $M \in S$.
- ▶ Any $M \in S$ is called a stabilizer of Q_S .
- ► Example: For $S = \langle I \otimes Z \otimes Z, Z \otimes Z \otimes I \rangle = \{I \otimes I \otimes I, I \otimes Z \otimes Z, Z \otimes I \otimes Z, Z \otimes Z \otimes I \},$

$$Q_{\mathcal{S}} = \mathsf{span}(\ket{000}, \ket{111}).$$

Quantum Stabilizer Code

▶ If S is non-abelian or $-I_N \in S$, then $Q_S = \{0\}$.

Quantum Stabilizer Code

▶ If S is non-abelian or $-I_N \in S$, then $Q_S = \{0\}$.

Theorem

Let $\mathcal S$ be an abelian subgroup of $\mathcal P_n$ such that $-I_N \notin \mathcal S$. Then,

$$\dim \mathcal{Q}_{\mathcal{S}} = \frac{2^n}{|\mathcal{S}|}.$$

In particular, dim $Q_S \geq 1$.

▶ A non-trivial Q_S is referred to as a quantum stabilizer code.

Quantum Stabilizer Code

▶ If S is non-abelian or $-I_N \in S$, then $Q_S = \{0\}$.

Theorem

Let S be an abelian subgroup of P_n such that $-I_N \notin S$. Then,

$$\dim \mathcal{Q}_{\mathcal{S}} = \frac{2^n}{|\mathcal{S}|}.$$

In particular, dim $Q_S \geq 1$.

▶ A non-trivial Q_S is referred to as a quantum stabilizer code.

From now onwards, we will use the term "stabilizer group" to mean an abelian subgroup of \mathcal{P}_n that does not contain $-I_N$.

Stabilizer Groups

Let S be a stabilizer group.

▶ The elements in S are all of the form $\pm M_1 \otimes \cdots \otimes M_n$ with $M_j \in \{I, X, Y, Z\}$ for all j.

The sign in front can either be + or -, but not both.

Stabilizer Groups

Let S be a stabilizer group.

▶ The elements in S are all of the form $\pm M_1 \otimes \cdots \otimes M_n$ with $M_j \in \{I, X, Y, Z\}$ for all j.

The sign in front can either be + or -, but not both.

▶ S can be completely specified by a set of independent generators: $S = \langle g_1, g_2, \dots, g_m \rangle$.

This means that each $M \in \mathcal{S}$ is uniquely expressible as a product of the generators g_i :

$$\mathcal{S} \stackrel{ ext{1-1}}{\longleftrightarrow} \left\{ \prod_{j \in J} g_j : J \subseteq [m] \right\}.$$

Consequently, $|S| = 2^m$.

Stabilizer Groups

Let S be a stabilizer group.

▶ The elements in S are all of the form $\pm M_1 \otimes \cdots \otimes M_n$ with $M_j \in \{I, X, Y, Z\}$ for all j.

The sign in front can either be + or -, but not both.

▶ S can be completely specified by a set of independent generators: $S = \langle g_1, g_2, \dots, g_m \rangle$.

This means that each $M \in \mathcal{S}$ is uniquely expressible as a product of the generators g_i :

$$\mathcal{S} \stackrel{ ext{1-1}}{\longleftrightarrow} \left\{ \prod_{j \in J} g_j : J \subseteq [m] \right\}.$$

Consequently, $|S| = 2^m$.

 $\operatorname{dim} \mathcal{Q}_{\mathcal{S}} = 2^{n-m}.$

Symplectic Notation

▶ A Pauli operator of the form $M = M_1 \otimes \cdots \otimes M_n$ has a useful binary vector representation:

$$[\mathbf{a} \mid \mathbf{b}] = [a_1, a_2, \dots, a_n \mid b_1, b_2, \dots, b_n]$$

with

$$(a_j, b_j) = egin{cases} (0,0) & ext{if } M_j = I \ (1,0) & ext{if } M_j = X \ (0,1) & ext{if } M_j = Z \ (1,1) & ext{if } M_j = Y \end{cases}$$

We also write this as

$$M = X(\mathbf{a})Z(\mathbf{b}) = X(a_1a_2 \dots a_n)Z(b_1b_2 \dots b_n).$$

Symplectic Notation

▶ A Pauli operator of the form $M = M_1 \otimes \cdots \otimes M_n$ has a useful binary vector representation:

$$[\mathbf{a} \mid \mathbf{b}] = [a_1, a_2, \dots, a_n \mid b_1, b_2, \dots, b_n]$$

with

$$(a_j, b_j) = egin{cases} (0,0) & ext{if } M_j = I \ (1,0) & ext{if } M_j = X \ (0,1) & ext{if } M_j = Z \ (1,1) & ext{if } M_j = Y \end{cases}$$

We also write this as

$$M = X(\mathbf{a})Z(\mathbf{b}) = X(a_1a_2 \dots a_n)Z(b_1b_2 \dots b_n).$$

► Example: $M = Y \otimes Z \otimes I \otimes Y \otimes X$ has the vector representation $[1,0,0,1,1 \mid 1,1,0,1,0]$. We also write this as

$$M = X(10011)Z(11010)$$

Utility of Symplectic Notation

Let
$$M = X(\mathbf{a})Z(\mathbf{b})$$
 and $M' = X(\mathbf{a}')Z(\mathbf{b}')$.

$$MM' = (-1)^{\mathbf{a}' \cdot \mathbf{b}} X(\mathbf{a} \oplus \mathbf{a}') Z(\mathbf{b} \oplus \mathbf{b}')$$

Utility of Symplectic Notation

Let
$$M = X(\mathbf{a})Z(\mathbf{b})$$
 and $M' = X(\mathbf{a}')Z(\mathbf{b}')$.

$$MM' = (-1)^{\mathbf{a}' \cdot \mathbf{b}} X(\mathbf{a} \oplus \mathbf{a}') Z(\mathbf{b} \oplus \mathbf{b}')$$
$$M'M = (-1)^{\mathbf{a} \cdot \mathbf{b}'} X(\mathbf{a} \oplus \mathbf{a}') Z(\mathbf{b} \oplus \mathbf{b}').$$

▶ Thus, $M = X(\mathbf{a})Z(\mathbf{b})$ and $M' = X(\mathbf{a}')Z(\mathbf{b}')$ commute if and only if $(-1)^{\mathbf{a}' \cdot \mathbf{b}} = (-1)^{\mathbf{a} \cdot \mathbf{b}'}$, or equivalently,

$$\mathbf{a}' \cdot \mathbf{b} \equiv \mathbf{a} \cdot \mathbf{b}' \pmod{2}$$

Symplectic Inner Product

▶ The symplectic inner product between $[\mathbf{a} \mid \mathbf{b}]$ and $[\mathbf{a}' \mid \mathbf{b}']$ is defined as

$$\langle [\mathbf{a}|\mathbf{b}] \mid [\mathbf{a}'|\mathbf{b}'] \rangle_{\mathrm{s}} := \mathbf{a}' \cdot \mathbf{b} - \mathbf{a} \cdot \mathbf{b}'$$

- ▶ Thus, $M = X(\mathbf{a})Z(\mathbf{b})$ and $M' = X(\mathbf{a}')Z(\mathbf{b}')$ commute if and only if $\langle [\mathbf{a}|\mathbf{b}] \mid [\mathbf{a}'|\mathbf{b}'] \rangle_s \equiv 0 \pmod{2}$.
- ► Example: $M = Y \otimes Z \otimes I \otimes Y \otimes X = X(10011)Z(11010)$ $M' = Z \otimes I \otimes Y \otimes I \otimes X = X(00101)Z(10100).$

The symplectic inner product between $[10011 \mid 11010]$ and $[00101 \mid 10100]$ is $1 \pmod{2}$, so M and M' anti-commute.

Check Matrix

Let
$$S = \langle g_1, g_2, \dots, g_m \rangle$$
 be a stabilizer group in \mathcal{P}_n .
Let $g_\ell = X(\mathbf{a}^{(\ell)})Z(\mathbf{b}^{(\ell)}), \ \ell = 1, 2, \dots, m$.

- ▶ The check matrix representation of this set of generators is a $m \times 2n$ matrix H whose ℓ -th row is $[\mathbf{a}^{(\ell)} \mid \mathbf{b}^{(\ell)}]$.
- ▶ Example: $S = \langle I \otimes Z \otimes Z, Z \otimes Z \otimes I \rangle$ has the check matrix

$$H = \begin{bmatrix} 0 & 0 & 0 & | & 0 & 1 & 1 \\ 0 & 0 & 0 & | & 1 & 1 & 0 \end{bmatrix}$$

Check Matrix

Let $S = \langle g_1, g_2, \dots, g_m \rangle$ be a stabilizer group in \mathcal{P}_n . Let $g_\ell = X(\mathbf{a}^{(\ell)})Z(\mathbf{b}^{(\ell)}), \ \ell = 1, 2, \dots, m$.

- ▶ The check matrix representation of this set of generators is a $m \times 2n$ matrix H whose ℓ -th row is $[\mathbf{a}^{(\ell)} \mid \mathbf{b}^{(\ell)}]$.
- ▶ Example: $S = \langle I \otimes Z \otimes Z, Z \otimes Z \otimes I \rangle$ has the check matrix

$$H = \begin{bmatrix} 0 & 0 & 0 & | & 0 & 1 & 1 \\ 0 & 0 & 0 & | & 1 & 1 & 0 \end{bmatrix}$$

▶ Generators g_1, g_2, \ldots, g_m are independent if and only if the corresponding check matrix has rank m.

A Prescription for Constructing Quantum Stabilizer Codes

1. Pick *m* linearly independent vectors

$$[\mathbf{a}^{(1)}, \mathbf{b}^{(1)}], [\mathbf{a}^{(2)}, \mathbf{b}^{(2)}], \dots, [\mathbf{a}^{(m)}, \mathbf{b}^{(m)}] \in \{0, 1\}^{2n}$$

such that

$$\langle [\mathbf{a}^{(k)}, \mathbf{b}^{(k)}] \mid [\mathbf{a}^{(\ell)}, \mathbf{b}^{(\ell)}] \rangle_{\mathrm{s}} \equiv 0 \pmod{2}$$
 for all k, ℓ

2. Set up the stabilizer generators $g_j = X(\mathbf{a}^{(j)})Z(\mathbf{b}^{(j)})$, j = 1, 2, ..., m, and the stabilizer group $S = \langle g_1, g_2, ..., g_m \rangle$.

The resulting *n*-qubit subspace Q_S has dimension 2^{n-m} , so it can hold n-m logical qubits.

We call Q_S an $[[n, n-m]]_2$ quantum stabilizer code.

The Calderbank-Shor-Steane (CSS) Construction

Calderbank-Shor (1996), Steane (1996)

- ▶ Pick an $[n, k_1]$ (classical) binary linear code C_1 and an $[n, k_2]$ binary linear code C_2 such that $C_2^{\perp} \subseteq C_1$.
- ▶ Let H_i be an $(n k_i) \times n$ parity-check matrix for C_i . Note that

$$\mathcal{C}_2^\perp \subseteq \mathcal{C}_1 \;\iff\; H_1H_2^T = 0 \pmod{2}$$

Set $m := (n - k_1) + (n - k_2)$ and construct the $m \times 2n$ check matrix

$$H = \begin{bmatrix} H_1 & | & \mathbf{0} \\ - & - & - \\ \mathbf{0} & | & H_2 \end{bmatrix}$$

By construction, the H matrix has rank m.

The Calderbank-Shor-Steane (CSS) Construction Calderbank-Shor (1996), Steane (1996)

- ▶ It is easy to check that the symplectic inner product between any pair of rows of *H* is equal to 0 (mod 2):
 - $\langle \cdot | \cdot \rangle_s = 0$ for any pair of rows from the top half
 - $\langle \cdot | \cdot \rangle_s = 0$ for any pair of rows from the bottom half
 - ▶ the condition $H_1H_2^T=0$ ensures that $\langle\cdot|\cdot\rangle_s=0$ when one row comes from the top half and the other from the bottom half

The Calderbank-Shor-Steane (CSS) Construction Calderbank-Shor (1996), Steane (1996)

- ▶ It is easy to check that the symplectic inner product between any pair of rows of *H* is equal to 0 (mod 2):
 - $\langle \cdot | \cdot \rangle_s = 0$ for any pair of rows from the top half
 - $\langle \cdot | \cdot \rangle_s = 0$ for any pair of rows from the bottom half
 - ▶ the condition $H_1H_2^T=0$ ensures that $\langle\cdot|\cdot\rangle_s=0$ when one row comes from the top half and the other from the bottom half
- ► The rows of H yield m independent generators of a stabilizer group S.
- ► The associated *n*-qubit subspace Q_S is an $[[n, k_1 + k_2 n]]_2$ quantum stabilizer code, termed a CSS code.

Example: The $[[7,1]]_2$ Steane Code

▶ Take $C_1 = C_2 = [7,4]$ binary Hamming code, with parity-check matrix

It is easily verified that $H_1H_1^T=0 \pmod{2}$.

Applying the CSS construction results in the check matrix

Example: The $[[7,1]]_2$ Steane Code

► The stabilizer generators correponding to the rows of the check matrix are

$$g_{1} = X \otimes X \otimes I \otimes X \otimes X \otimes I \otimes I$$

$$g_{2} = X \otimes I \otimes X \otimes X \otimes I \otimes X \otimes I$$

$$g_{3} = I \otimes X \otimes X \otimes X \otimes I \otimes I \otimes X$$

$$g_{4} = Z \otimes Z \otimes I \otimes Z \otimes Z \otimes I \otimes I$$

$$g_{5} = Z \otimes I \otimes Z \otimes Z \otimes I \otimes Z \otimes I$$

$$g_{6} = I \otimes Z \otimes Z \otimes Z \otimes I \otimes I \otimes Z$$

► The stabilizer group S generated by these gives rise to a [[7,1]]₂ quantum stabilizer code called the Steane code.

Example: Shor's Code

Shor's code is also a CSS code obtained from the following matrices:

$$H_1 = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$H_2 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

The Centralizer of a Stabilizer Group

Let S be a stabilizer group in P_n .

Definition

The centralizer of S in \mathcal{P}_n is the set of <u>all</u> operators in \mathcal{P}_n that commute with every $M \in S$; denoted by $\mathcal{Z}(S)$.

- ▶ Note that $S \subseteq \mathcal{Z}(S)$.
- ▶ It can be shown that $|\mathcal{Z}(S)| = \frac{2^{2n}}{|S|}$.

The Centralizer of a Stabilizer Group

Let S be a stabilizer group in P_n .

Definition

The centralizer of S in \mathcal{P}_n is the set of <u>all</u> operators in \mathcal{P}_n that commute with every $M \in S$; denoted by $\mathcal{Z}(S)$.

- ▶ Note that $S \subseteq \mathcal{Z}(S)$.
- ▶ It can be shown that $|\mathcal{Z}(\mathcal{S})| = \frac{2^{2n}}{|\mathcal{S}|}$.

Example:
$$S = \langle I \otimes Z \otimes Z, Z \otimes Z \otimes I \rangle$$
. $IZZ = X(000)Z(011)$ and $ZZI = X(000)Z(110)$.

The centralizer, $Z(S) = \{X(000)Z(***), X(111)Z(***)\}.$

Error Correction

Let Q be an $[[n, k]]_2$ quantum stabilizer code.

Definition (informal):

A set of unitary error operators $\mathcal{E} \subseteq \mathcal{U}(N)$ is said to be correctable by \mathcal{Q} if there exists a recovery operation \mathcal{R} such that for all $|\psi\rangle \in \mathcal{Q}$ and all $E \in \mathcal{E}$, we can recover $|\psi\rangle$ by applying \mathcal{R} to $E |\psi\rangle$.

$$|\psi\rangle$$
 — \mathcal{E} — $|\psi\rangle$

Error Correction

Let Q be an $[[n, k]]_2$ quantum stabilizer code.

Definition (informal):

A set of unitary error operators $\mathcal{E} \subseteq \mathcal{U}(N)$ is said to be correctable by \mathcal{Q} if there exists a recovery operation \mathcal{R} such that for all $|\psi\rangle \in \mathcal{Q}$ and all $E \in \mathcal{E}$, we can recover $|\psi\rangle$ by applying \mathcal{R} to $E |\psi\rangle$.

- ▶ Recall that the Pauli matrices $M_1 \otimes \cdots \otimes M_n$, with $M_j \in \{I, X, Y, Z\}$ for all j, form a basis of $\mathbb{C}^{N \times N}$.
- ▶ So, the principle of discretization of errors allows us to focus on correcting error operators that come from \mathcal{P}_n .

Error Correction within \mathcal{P}_n

Let S be a stabilizer group within P_n , with Q_S its quantum stabilizer code.

Theorem

A subset $\mathcal{E} \subseteq \mathcal{P}_n$ is correctable by $\mathcal{Q}_{\mathcal{S}}$ if and only if

$$E_1^\dagger E_2 \notin \mathcal{Z}(\mathcal{S}) \setminus \mathcal{S} \quad \textit{for all } E_1, E_2 \in \mathcal{E}.$$

Minimum Distance

► The symplectic weight of a Pauli operator $M = i^{\ell} M_1 \otimes \cdots \otimes M_n$ is defined as

$${
m wt_s}(M) = \#\{j: M_j \neq I\}.$$

▶ For an $[[n, k]]_2$ quantum stabilizer code Q_S with k > 0, we define the minimum distance to be

$$d_{\min}(\mathcal{Q}_{\mathcal{S}}) = \min\{\operatorname{wt}_{\mathrm{s}}(M) : M \in \mathcal{Z}(\mathcal{S}) \setminus \mathcal{S}\}.$$

An $[[n, k, d]]_2$ quantum stabilizer code is a 2^k -dimensional subspace of \mathbb{C}^{2^n} , with $d_{\min} = d$.

Example: $S = \langle I \otimes Z \otimes Z, Z \otimes Z \otimes I \rangle$

For $S = \langle I \otimes Z \otimes Z, Z \otimes Z \otimes I \rangle$, recall that

- $\triangleright \mathcal{Q}_{\mathcal{S}} = \operatorname{span}(|000\rangle, |111\rangle)$, so that $\dim(\mathcal{Q}_{\mathcal{S}}) = 2^1$, i.e., k = 1.
- $> Z(S) = \{X(000)Z(***), X(111)Z(***)\}$

Example:
$$S = \langle I \otimes Z \otimes Z, Z \otimes Z \otimes I \rangle$$

For $S = \langle I \otimes Z \otimes Z, Z \otimes Z \otimes I \rangle$, recall that

- $ightharpoonup \mathcal{Q}_{\mathcal{S}} = \operatorname{span}(|000\rangle, |111\rangle)$, so that $\dim(\mathcal{Q}_{\mathcal{S}}) = 2^1$, i.e., k = 1.
- $Z(S) = \{X(000)Z(***), X(111)Z(***)\}$

Then,

▶
$$d_{\min}(Q_S) = 1$$
, since $I \otimes I \otimes Z \in \mathcal{Z}(S) \setminus S$.

Thus, $\mathcal{Q}_{\mathcal{S}}$ is a $[[3,1,1]]_2$ quantum stabilizer code.

Minimum Distance and Error Correction

Let Q_S be an [[n, k, d]] quantum stabilizer code, with k > 0.

Proposition: The set of error operators

$$\mathcal{E} = \{ M \in \mathcal{P}_n : \operatorname{wt}_s(M) < d/2 \}$$

is correctable by Q_S .

Proof:

▶ For any $E_1, E_2 \in \mathcal{E}$, we have

$$\operatorname{wt}_{s}(E_{1}^{\dagger}E_{2}) \leq \underbrace{\operatorname{wt}_{s}(E_{1})}_{< d/2} + \underbrace{\operatorname{wt}_{s}(E_{2})}_{< d/2} < d$$

▶ Since $d = \min\{\operatorname{wt}_{\operatorname{s}}(M) : M \in \mathcal{Z}(\mathcal{S}) \setminus \mathcal{S}\}$, we find that $E_1^{\dagger}E_2 \neq \mathcal{Z}(\mathcal{S}) \setminus \mathcal{S}$.

Minimum Distance of a CSS Code

Let C_1 be an $[n, k_1]$ binary linear code and C_2 an $[n, k_2]$ binary linear code such that $C_2^{\perp} \subseteq C_1$.

Let Q be the resulting $[[n, k_1 + k_2 - n]]_2$ CSS code.

 $ightharpoonup d_{\min}(\mathcal{Q}) = \min\{d_1, d_2\}$, where

$$d_1 = \min\{w(\mathbf{c}) : \mathbf{c} \in \mathcal{C}_1 \setminus \mathcal{C}_2^{\perp}\} \text{ and } d_2 = \min\{w(\mathbf{c}) : \mathbf{c} \in \mathcal{C}_2 \setminus \mathcal{C}_1^{\perp}\}$$

Minimum Distance of a CSS Code

Let C_1 be an $[n, k_1]$ binary linear code and C_2 an $[n, k_2]$ binary linear code such that $C_2^{\perp} \subseteq C_1$.

Let Q be the resulting $[[n, k_1 + k_2 - n]]_2$ CSS code.

• $d_{\min}(\mathcal{Q}) = \min\{d_1, d_2\}$, where

$$d_1 = \min\{w(\mathbf{c}) : \mathbf{c} \in \mathcal{C}_1 \setminus \mathcal{C}_2^{\perp}\} \text{ and } d_2 = \min\{w(\mathbf{c}) : \mathbf{c} \in \mathcal{C}_2 \setminus \mathcal{C}_1^{\perp}\}$$

▶ Example: Recall that the Steane code is the CSS code constructed from $C_1 = C_2 = [7, 4]$ binary Hamming code.

For the Hamming code C, it can be verified that $\min\{w(\mathbf{c}) : \mathbf{c} \in C \setminus C^{\perp}\} = 3$.

Therefore, the Steane code is a $[7, 1, 3]_2$ stabilizer code.

Minimum Distance of a CSS Code

Let C_1 be an $[n, k_1]$ binary linear code and C_2 an $[n, k_2]$ binary linear code such that $C_2^{\perp} \subseteq C_1$.

Let Q be the resulting $[[n, k_1 + k_2 - n]]_2$ CSS code.

• $d_{\min}(\mathcal{Q}) = \min\{d_1, d_2\}$, where

$$d_1 = \min\{w(\mathbf{c}) : \mathbf{c} \in \mathcal{C}_1 \setminus \mathcal{C}_2^{\perp}\} \text{ and } d_2 = \min\{w(\mathbf{c}) : \mathbf{c} \in \mathcal{C}_2 \setminus \mathcal{C}_1^{\perp}\}$$

▶ Example: Recall that the Steane code is the CSS code constructed from $C_1 = C_2 = [7, 4]$ binary Hamming code.

For the Hamming code C, it can be verified that $\min\{w(\mathbf{c}): \mathbf{c} \in C \setminus C^{\perp}\} = 3$.

Therefore, the Steane code is a $[[7,1,3]]_2$ stabilizer code.

It is, thus, single-error-correcting, with a better ratio of logical qubits to physical qubits than the $[[9,1,3]]_2$ Shor code.

 $\mathcal{S} = \langle g_1, g_2, \dots, g_{n-k} \rangle$ with $\mathcal{Q}_{\mathcal{S}}$ an $[[n,k]]_2$ stabilizer code.

 $\mathcal{E} \subset \mathcal{P}_n$ a set of errors s.t. $E_1^\dagger E_2 \notin \mathcal{Z}(\mathcal{S}) \setminus \mathcal{S}$ for all $E_1, E_2 \in \mathcal{E}$.

▶ Suppose that $|\psi\rangle \in \mathcal{Q}_{\mathcal{S}}$ is acted on by $E_1 \in \mathcal{E}$ to become $|\psi'\rangle = E_1 |\psi\rangle$.

$$|\psi\rangle$$
 — E_1 — $|\psi'\rangle$

- $\mathcal{S} = \langle g_1, g_2, \dots, g_{n-k} \rangle$ with $\mathcal{Q}_{\mathcal{S}}$ an $[[n,k]]_2$ stabilizer code.
- $\mathcal{E} \subset \mathcal{P}_n$ a set of errors s.t. $E_1^\dagger E_2 \notin \mathcal{Z}(\mathcal{S}) \setminus \mathcal{S}$ for all $E_1, E_2 \in \mathcal{E}$.
 - Suppose that $|\psi\rangle \in \mathcal{Q}_{\mathcal{S}}$ is acted on by $E_1 \in \mathcal{E}$ to become $|\psi'\rangle = E_1 |\psi\rangle$. $|\psi\rangle E_1 |\psi'\rangle$
 - ▶ Define the syndrome of E_1 to be $\mathbf{s} = [s_1, s_2, \dots, s_{n-k}]$, given by

$$s_\ell \ = \ egin{dcases} 0 & ext{if E_1 commutes with g_ℓ} \ 1 & ext{if E_1 anti-commutes with g_ℓ} \end{cases}$$

for
$$\ell = 1, 2, ..., n - k$$
.

In other words, $E_1g_\ell = (-1)^{s_\ell}g_\ell E_1$.

- \blacktriangleright Assume, for now, that the syndrome ${\bf s}$ can be computed directly from $|\psi'\rangle$ without disturbing it.
- ▶ If the syndrome **s** uniquely identifies $E_1 \in \mathcal{E}$, then we simply apply E_1^{\dagger} to $|\psi'\rangle$:

$$|\psi'\rangle$$
 — E_1^{\dagger} — $|\psi\rangle$

- ▶ On the other hand, suppose there are multiple error operators in \mathcal{E} that have the same syndrome \mathbf{s} .
 - ▶ If E_1, E_2 are two such operators, then $E_2^{\dagger} E_1$ commutes with all stabilizer generators g_{ℓ} :

$$E_{2}^{\dagger} E_{1} g_{\ell} = E_{2}^{\dagger} (-1)^{s_{\ell}} g_{\ell} E_{1}$$

$$= (-1)^{s_{\ell}} E_{2}^{\dagger} g_{\ell} E_{1} = g_{\ell} E_{2}^{\dagger} E_{1}$$

• Hence, $E_2^{\dagger}E_1$ is in $\mathcal{Z}(\mathcal{S})$.

- \blacktriangleright Assume, for now, that the syndrome ${\bf s}$ can be computed directly from $|\psi'\rangle$ without disturbing it.
- ▶ If the syndrome **s** uniquely identifies $E_1 \in \mathcal{E}$, then we simply apply E_1^{\dagger} to $|\psi'\rangle$:

$$|\psi'\rangle$$
 — E_1^{\dagger} — $|\psi\rangle$

- ➤ On the other hand, suppose there are multiple error operators in E that have the same syndrome s.
 - ▶ If E_1 , E_2 are two such operators, then $E_2^{\dagger}E_1$ commutes with all stabilizer generators g_{ℓ} :

$$E_{2}^{\dagger} E_{1} g_{\ell} = E_{2}^{\dagger} (-1)^{s_{\ell}} g_{\ell} E_{1}$$

$$= (-1)^{s_{\ell}} E_{2}^{\dagger} g_{\ell} E_{1} = g_{\ell} E_{2}^{\dagger} E_{1}$$

- ▶ Hence, $E_2^{\dagger}E_1$ is in $\mathcal{Z}(S)$.
- ▶ However, by our assumption on \mathcal{E} , we have $E_2^{\dagger}E_1 \notin \mathcal{Z}(\mathcal{S}) \setminus \mathcal{S}$. Hence, $E_2^{\dagger}E_1 \in \mathcal{S}$.

▶ So, if there are multiple error operators in \mathcal{E} that have the same syndrome \mathbf{s} , pick any one of them, say E_2 , and apply E_2^{\dagger} to $|\psi'\rangle$!

$$|\psi'\rangle$$
 — E_2^{\dagger} — $|\psi\rangle$

The reason this works is that

$$E_2^{\dagger} |\psi'\rangle = \underbrace{E_2^{\dagger} E_1}_{\in \mathcal{S}} |\psi\rangle = |\psi\rangle.$$

Determining the Syndrome from $|\psi'\rangle$

► Key observation:

$$g_{\ell} | \psi' \rangle = g_{\ell} E_1 | \psi \rangle = (-1)^{s_{\ell}} E_1 g_{\ell} | \psi \rangle$$
$$= (-1)^{s_{\ell}} E_1 | \psi \rangle = (-1)^{s_{\ell}} | \psi' \rangle$$

Thus, $|\psi'\rangle$ is in the $(-1)^{s_{\ell}}$ -eigenspace of g_{ℓ} .

Determining the Syndrome from $|\psi'\rangle$

► Key observation:

$$g_{\ell} | \psi' \rangle = g_{\ell} E_1 | \psi \rangle = (-1)^{s_{\ell}} E_1 g_{\ell} | \psi \rangle$$
$$= (-1)^{s_{\ell}} E_1 | \psi \rangle = (-1)^{s_{\ell}} | \psi' \rangle$$

Thus, $|\psi'\rangle$ is in the $(-1)^{s_{\ell}}$ -eigenspace of g_{ℓ} .

- ▶ If we measure $|\psi'\rangle$ using the observable g_{ℓ} , then
 - ▶ the measurement outcome is $(-1)^{s_{\ell}}$, with probability 1;
 - the post-measurement state remains $|\psi'\rangle$.

Thus, the syndrome bit s_{ℓ} can be recovered from the measurement outcome without affecting $|\psi'\rangle$.

Error Correction Via Syndromes: Summary

$$|\psi\rangle$$
 — E_1 — $|\psi'\rangle$

- 1. Determine the syndrome **s** by measuring $|\psi'\rangle$ in each of the observables g_{ℓ} , $\ell=1,2,\ldots,n-k$.
- 2. Identify an error operator, E_2 , that has syndrome equal to **s**.
- 3. Apply E_2^{\dagger} to $|\psi'\rangle$:

$$|\psi'\rangle$$
 — E_2^{\dagger} — $|\psi\rangle$

Quantum Channels

The performance of stabilizer codes, specifically CSS codes, is often evaluated over one of two types of quantum channels:

- Depolarizing noise: Each qubit undergoes an error according to the following probabilities (independent across qubits):
 - (1-p): I (i.e., no error)
 - ▶ *p*/3: *X* error
 - ▶ *p*/3: *Y* error
 - ▶ p/3: Z error
- ▶ Independent X-Z noise: Single-qubit errors occur according to the following probabilities (again, independent across qubits):
 - ▶ $(1-p)^2$: *I* (i.e., no error)
 - \triangleright p(1-p): X error
 - \triangleright p^2 : Y (i.e., XZ) error
 - ▶ p(1-p): Z error

Maximum-Likelihood (ML) Decoding

Let S be a stabilizer subgroup of P_n , with Q_S the corresponding stabilizer code.

$$Q_S \ni |\psi\rangle$$
 — \mathcal{E} — $|\psi'\rangle$

Maximum-Likelihood (ML) Decoding

Let S be a stabilizer subgroup of P_n , with Q_S the corresponding stabilizer code.

$$Q_S \ni |\psi\rangle$$
 — \mathcal{E} — $|\psi'\rangle$

Maximum-Likelihood Decoding:

- Measure $|\psi'\rangle$ to determine the syndrome **s**.
- ▶ The syndrome **s** uniquely identifies the coset, W, of Z(S) within P_n which contains the true error E.
- ▶ Find the coset, \mathcal{T} , of \mathcal{S} with the largest probability that is contained in \mathcal{W} , and pick any $\tilde{E} \in \mathcal{T}$:

$$|\psi'
angle - - \hat{\mathcal{E}}^{\dagger} - - |\hat{\psi}
angle$$

Selected Families of Quantum Codes

- Topological codes
 - ► Toric codes
 - Surface codes
 - Colour codes
- Quantum LDPC codes
 - Hypergraph product codes
 - Lifted product codes
 - Quantum Tanner codes
- Subsystem codes
- Floquet codes
- Entanglement-assisted codes
- Bosonic codes
 - Gottesman-Kitaev-Preskill (GKP) codes
 - Cat codes
 - Fock-state codes

Bibliography

- [1] M.A. Nielsen and I.L. Chuang, *Quantum Computation and Quantum Information*, 10th Anniversary Edition, Cambridge Univ. Press, 2010.
- [2] D.A. Lidar and T.A. Brun (eds.), *Quantum Error Correction*, Cambridge University Press, 2013.
- [3] Daniel Gottesman, Stabilizer Codes and Quantum Error Correction, PhD thesis, Caltech, 1997.
- [4] John Preskill, Lecture notes on quantum error correcting codes, Physics 219 course website, Caltech.
- [5] Dan Browne, Lectures on topological codes and quantum computation, University College London.
- [6] Error Correction Zoo: https://errorcorrectionzoo.org/