Predicting stochastic bacterial population behavior via Bayesian statistical modeling

Topic

- Predictive microbiology
- Population growth and inactivation behavior
- Stochastic modeling

Objective: Modeling for growth and inactivation

Population level to single cell level

Sources of stochastic process

Assumption: Each process is independent.

Sources of stochastic process: Dilution

Assumption:

- Bacteria are randomly distributed in the sample.
- A small portion is obtained from a sufficiently large sample.
- Each sampling procedure is independent of other procedures.

Sources of stochastic process: Single cell death

Assumption:

- Cell inactivation is independent from other events.
- \bigcirc Bacteria have the same inactivation rate, k, which is constant over time.
- Bacteria do not grow during the stochastic bacterial inactivation process.
- \bigcirc The cell state is either survive or death at time t.

Sources of stochastic process: Single cell growth

Assumption:

- Cell division event is independent from other events.
- O Cell division starts after the lag phase which is estimated by the kinetics.
- \bigcirc Single cell growth rate, μ , is the same and remains constant over time.

Stochastic growth or inactivation model

