1. Використ	говуючи прави	ла Гунда знай	ти основний терм	и атома, електронна	а конфігурація нез	аповненої підоболонки	1 якого
$n d^2$;	nd^3 ;	$nf^{10};$	nf^4 .				

2. Користуючись правилами Гунда написати основний терм атома, ϵ дина незаповнена підоборонка якого містить третину від можливого числа електронів і $S=1$.	Γ-

3. Скориставшись правилами Гунда, знайти число електронів у єдиній незаповненій підоболонці атома, основний терм якого а) ${}^{3}F_{2}$; б) ${}^{2}P_{3/2}$.

4. Схематично намалювати енергетичні рівні, пов'язані з термами ${}^{1}D_{2}$ та ${}^{1}P_{1}$ за відсутності магнітного поля та при його наявності. Вказати можливі переходи.	

5. Визначити фактор Ланде для наступних термів: а) 5F_2 ; б) 5P_1 .

6. Визначити спіновий механічний момен магнетонам Бора.	т атому в стані D_2 , якщо максі	имальне значення проекції і	магнітного моменту при ць	ому дорівнює чотирьом