

IV Congreso Iberoamericano Sobre Tecnologías de Apoyo a la Discapacidad

IV Congresso Ibero-Americano Sobre Tecnologias de Apoio a Portadores de Deficiência

Volume II

Organização:

Interface de Comunicação para Deficientes

Henrique. P. Rossi¹ e Maria Claudia F. Castro²

Centro Universitário da FEI, Depto. Engenharia Elétrica Av. Humberto A. C. Branco, 3972 - São Bernardo do Campo - SP - CEP09850-901 licarique onlac Quol.com.bi, ²melandia Qfei.edu.br

Resumo

Existem lesões no sistema nervoso que podem limitar severamente as formas de comunicação possíveis do indivíduo com o meio externo. O presente trabalho propõe um caminho alternativo, simples e relativamente barato, para viabilizar a comunicação desses indivíduos. Foi desenvolvido um painel com letras, números e frases representando estados físicos e /ou psicológicos. A seleção de cada item do painel é automática e seqüencial, como em um mecanismo de varredura e a ativação da seleção é feita por meio de um único botão de comando. O sistema de controle se comunica então com o microcomputador e, através de um software sintetizador de voz, reproduz a frase selecionada e/ou digitada através desse teclado virtual.

1. Introdução

alternativa que uma pessoa comprometimento tanto motor quanto da fala teria para se comunicar? Existem lesões no sistema nervoso central derivadas de um Acidente Vascular Cerebral (AVC), Trauma crânio-encefálico, ou Paralisia Cerebral que podem atingir tanto os centros de controle motor quanto os da fala. Apesar da extensão do comprometimento, esses indivíduos podem reter a sua capacidade intelectual. Não estão em estado vegetativo (sem consciência), mas estão enclausurados, presos na sua intimidade e desprovidos de qualquer forma de comunicação, além de respostas do tipo sim ou não através de um discreto movimento de cabeça ou o piscar dos olhos. Como então podem dar expressão as suas necessidades, sentimentos e pensamentos?

Para esses casos as soluções implementadas são restritas ainda, nada existindo no mercado nacional. Uma alternativa encontrada foi o sistema Fernão de Magalhães [1] baseada na emulação do teclado e do mouse na tela do computador, permitindo a sua utilização a partir de um único botão. Outra alternativa é o sistema Quiek Glance [2] baseado no movimento dos olhos como substituição do mouse; o cursor é posicionado para o local visualizado. Essas soluções são muito sofisticadas e, portanto, de altíssimo custo, o que muitas vezes inviabiliza o seu uso prático.

A motivação para esse trabalho surgiu de um e-mail descrevendo o caso de uma jovem de 36 anos acometida por um AVC no dia de sua defesa de dissertação na USP e da inexistência de um sistema comercial nacional que atendesse suas necessidades.

O presente projeto vem de encontro a este problema, na tentativa de propor um caminho alternativo, simples e relativamente barato, para que esses indivíduos saiam desse isolamento.

2. Materiais e Métodos

A idéia surgiu a partir do sistema Fernão de Magalhães [1] (sistema importado) e de uma prancheta de comunicação – VoxTable [3] (sistema nacional). O VoxTable é um sistema de reprodução de frases, armazenadas digitalmente no equipamento, o qual é acionado através do toque em um teclado, com figuras ilustrando as funções que serão faladas.

Foi desenvolvido um painel (ou prancheta) cuja função é emular um teclado de computador. Para facilitar a comunicação acrescentou-se às letras e números existentes, figuras e frases pré-programadas representando estados físicos e /ou psicológicos do tipo: estou com sede, estou com fome, estou com frio, estou com calor, estou triste, estou sentindo dor, etc.

Cada figura (letra ou frase) está associada a um led que se acende toda vez que a figura correspondente estiver selecionada. A seleção é automática e seqüencial, como em um mecanismo de varredura [4].

A ativação da seleção é feita por meio de um único botão de comando, fixo ao encosto da cadeira de rodas, de maneira a permitir o seu acionamento através de um pequeno deslocamento lateral da cabeça. O acionamento do referido botão tem por função travar o sistema de varredura na posição correspondente à figura desejada. Este por si só já viabilizaria uma comunicação, mas iria requerer a atenção contínua do interlocutor que necessariamente teria que olhar para o painel.

Com o intuito de melhorar essa interface, o sistema de controle, implementado a partir de lógica digital programável [5], se comunica com o microcomputador que, através de um software sintetizador de voz [6], reproduz a frase selecionada e/ou digitada através desse teclado virtual (painel com figuras, números e letras). A maioria dos sintetizadores de voz existentes no mercado reproduz as palavras escritas na forma de texto, ou seja, ele converte o texto em voz sintetizada. O sistema de controle implementado se comunica com o software sintetizador de voz por meio de um programa de computador desenvolvido em linguagem Visual Basic.

O diagrama em blocos do sistema está representado na figura 1. O mecanismo de varredura é controlado automaticamente pelo sistema de lógica programável,

que também reconhece a figura que foi escolhida, e envia o código correspondente. Se o elemento selecionado no painel for uma figura ou uma frase préprogramada, logo em seguida este é reproduzido em forma de som pelos altofalantes do computador. Caso o usuário queira formar uma frase que não esteja disponível no painel, o mesmo, através do comando Iniciar Frase (presente no painel), comunicará o computador de que uma frase será criada. A frase é construída por meio do acionamento do botão nas devidas letras e/ou números, com a possibilidade de acentuação das letras e espaçamento entre as palavras. Ao longo desse processo o programa desenvolvido está gerando um arquivo de texto contendo a frase que está sendo criada. Para encerrar esse processo basta enviar o comando Terminar Frase ao computador. Logo em seguida o software sintetizador de voz acessa o arquivo de texto gerado pelo programa e, após aproximadamente 10 segundos que a frase foi encerrada, esta é reproduzida sonoramente pelo computador.

Fig. 1 - Diagrama em blocos do sistema.

A transmissão dos códigos gerados pelo sistema de lógica programável ao computador é efetuada via rádio freqüência. Esses dados são gerados serialmente no padrão RS-232, porém com níveis de tensão no padrão TTL. Após os dados serem codificados, segundo o padrão Manchester, são injetados na entrada do transmissor TXA. A recepção desses dados é realizada pelo circuito receptor RXA e a decodificação dos mesmos é procedida pelo circuito integrado

ATF22V10BQL-25PC, que é um Dispositivo Lógico Programável (PLD), onde foi gravado um algoritimo decodificador. O sinal decodificador receberá os níveis de tensão de acordo com o padrão RS-232 para que o mesmo possa ser introduzido na porta serial do computador onde está instalado o programa desenvolvido em linguagem Visual Basic e o software sintetizador de voz.

A implementação foi feita com a utilização de um kit didático de lógica digital programável da Altera, um microcomputador (com placa de som) e um software sintetizador de voz.

3. Resultados

A figura 2 mostra o painel e o sistema de varredura, codificação e transmissão (módulo à esquerda da figura) e o sistema de recepção e decodificação (módulo à direita)

Fig. 2 - Sistema desenvolvido.

Ao iniciarmos o sistema, o primeiro led a acender é o correspondente ao primeiro elemento do painel, que é uma figura. Os led's seguintes serão acesos, um por vez, a uma freqüência estabelecida por uma chave seletora (ou 1 Hz ou 0,5 Hz).

Em se acionando o botão push-button o código correspondente ao elemento selecionado no painel (representado por um led) é gerado pelo sistema de lógica programável (Kit Altera). Este sinal é configurado para estar de acordo com o padrão RS-232, embora possua níveis de tensão referentes ao padrão TTL. No caso da figura 3 temos um pacote de dados com um start bit (nível lógico baixo), sete bits de dados, nenhum bit de paridade e um stop bit (nível lógico alto). Antes deste sinal ser transmitido via rádio frequência (pelo CI TX3 - Radiometrix) o mesmo passa por um codificador em razão da perda de sincronismo no circuito receptor ao se transmitir continuamente um nível constante de tensão. A codificação escolhida foi a Manchester. Este sistema foi implementado em VHDL e gravado no Kit da Altera.

Fig. 3 - Sinal gerado pela placa da Altera.

O circuito receptor (CI RX3 - Radiometrix), a um raio de distância do circuito gerador de dados, recupera o sinal transmitido e o decodifica. Após a etapa de decodificação, o mesmo sinal passa por um circuito conversor de níveis TTL (0 - 5V) para RS-232 (± 12V), que é simplesmente um circuito comparador. Para que a impedância de entrada da porta serial do microcomputador não influa no sinal que nela está sendo injetado, um circuito Buffer foi inserido entre eles. Dependendo do código transmitido, o software desenvolvido irá se comunicar com o sintetizador de voz, através de um arquivo texto pré-estabelecido, reproduzindo-o, através de uma fala sintetizada. Caso o elemento do painel selecionado seja o comando "Iniciar Frase" o programa desenvolvido inicia um processo de construção de frase. Ao se acionar o push-button quando o led correspondente a uma letra estiver aceso esta será automaticamente concatenada à frase que está sendo criada, o que pode ser acompanhado na tela do computador.

A utilização de frases pré-estabelecidas, que são frases de uso comum no dia a dia, facilita a aplicação do sistema, ao mesmo tempo que torna o processo de reprodução mais rápido. E a possibilidade de formar frases diferentes viabiliza um certo nível de conversação.

A conexão com o microcomputador é feita via porta serial em razão da possibilidade de a comunicação poder ser viabilizada via rádio freqüência, e, portanto, não havendo a necessidade de contato físico entre a placa da Altera (posicionada próxima ao paciente) e o microcomputador no qual o software sintetizador de voz está instalado. Porém, apresenta o inconveniente da necessidade de se converter os códigos para o padrão RS232. No entanto, poderia também ser usada a porta paralela. Neste caso, a comunicação deverá ser obrigatoriamente por cabo, mas não há necessidade de conversão. O padrão gerado pela placa de lógica programável é compatível com o padrão da porta paralela.

4. Conclusões

Este projeto, por apresentar uma solução relativamente barata frente às atuais soluções, e uma flexibilidade quanto ao conteúdo da comunicação, pode ser amplamente utilizado.

O fato de o usuário não precisar necessariamente estar próximo do computador que tem a função de reproduzir em forma de som as frases selecionadas do painel é muito interessante, possibilitando a situação de o paciente estar em um quarto e seus pais, por exemplo, em outro da mesma residência.

Uma evolução desse sistema poderia ser a implementação do painel por software em um palmtop, conferindo assim um caráter portátil ao sistema. A utilização de um notebook ao invés do PC viabilizaria o transporte do sistema para fora dos domínios da residência conferindo assim uma certa mobilidade ao usuário.

Agradecimentos: Os autores agradecem ao Centro Universitário da FEI e à FAPESP pelo apoio.

Referências

- [1] Manual do Fernão de Magalhães Aplicação integrada de teletrabalho Projeto desenvolvido na Universidade de Aveiro (Portugal) http://portal.ua.pt/Fernao/
- [2] Sistema Quick Glance http://www.eyetechds.com
- [3] VOXTABLE prancheta de comunicação Projeto comercial da Terra Ind. Eletrónica Ltda. http://www.terraeletronica.com.br
- [4] R. J. Tocci e N. S. Widmer, Sistemas Digitais 7a ed., LTC. 2000.
- [5] Altera componentes de lógica programável http://www.altera.com
- [6] TEXTO-FALA Software sintetizador de voz da CPqD Telecon & IT Solutions http://www.cpqd.com.br