Домашнее задание №4: «просто-типизированное лямбда исчисление»

1. Сформулируйте аксиомы для просто типизированного исчисления по Чёрчу. Указание: аксиомы должны быть согласованы с типами аргументов лямбдаабстракций.

Решение.

(a)
$$\overline{\Gamma, x : \tau \vdash x : \tau}$$

(b)
$$\frac{\Gamma \vdash A : \sigma \to \tau \qquad \Gamma \vdash B : \sigma}{\Gamma \vdash A \; B : \tau}$$

(c)
$$\frac{\Gamma, x : \tau \vdash A : \sigma}{\Gamma \vdash \lambda x^{\tau}.A : \tau \to \sigma}$$

2. Рассмотрим типизацию по Чёрчу. Определим стирающее преобразование | · | : $\Lambda \to \Lambda_{\mathbf{u}}$:

$$|A| = \begin{cases} \alpha, & A = \alpha \\ |P||Q|, & A = PQ \\ \lambda x.|P|, & A = \lambda x^{\tau}.P \end{cases}$$

Верно ли следующее: если $P \to_{\beta} Q$ и |P'| = P, |Q'| = Q, то $P' \to_{\beta} Q'$.

Решение. Кажется, преобразование $|\cdot|:\Lambda\to\Lambda$.

Нет. Пусть $Q' = \lambda x^{\tau}.x$, $P' = \lambda x^{\sigma}.(\lambda x^{\sigma}.x)$ x. $|Q'| \equiv \lambda x.x$, $|P'| \equiv \lambda x.(\lambda x.x)$ x, тогда $|P'| \rightarrow_{\beta} \lambda x.x \equiv |Q'|$. Но $P' \not\rightarrow_{\beta} Q'$, т.к. единственный возможный шаг это $P' \to_{\beta} \lambda x^{\sigma}.x \neq_{\alpha} \lambda x^{\tau}.x$

Иначе переберём как было сделано $P \rightarrow_{\beta} Q$:

- (a) $P \equiv A \ B, Q = C \ D$ и либо $A \to_{\beta} C$ и $B =_{\alpha} D$ либо $A =_{\alpha} C$ и $B \to_{\beta} D$. Тогда индукция даёт $P' \equiv A' B'$
- 3. Покажите, что если $A =_{\alpha} B$ и $\Gamma \vdash A : \tau$, то $\Gamma \vdash B : \tau$ (или, иными словами, доказательство не зависит от выбора пред-лямбда-терма).

Решение.

(a) $A \equiv x, B \equiv x$. Тогда искомое очевидно.

- (b) $A \equiv P\ Q, B \equiv R\ S, P =_{\alpha} R, Q =_{\alpha} S$ индукция:
 - $\Gamma \vdash P \ Q : \tau$, тогда $\Gamma \vdash P : \sigma \to \tau, \Gamma \vdash Q : \sigma$. По индукционному предположению будет $\Gamma \vdash R : \sigma \to \tau, \Gamma \vdash S : \sigma$ и следовательно по второму правилу вывода искомое верно.
- (c) $A \equiv \lambda x.P, B \equiv \lambda y.Q$ и существует t новая переменная, такая что $P[x \coloneqq t] =_{\alpha} Q[y \coloneqq t]$ опять индукция:

 $\Gamma \vdash \lambda x.P: \tau \to \sigma$, тогда $\Gamma, x: \tau \vdash P: \sigma$, но тогда и $\Gamma, t: \tau \vdash P[x\coloneqq t]: \sigma$, т.к. это просто переименование и следовательно $\Gamma, t: \tau \vdash Q[y\coloneqq t]: \sigma$ по индукционному предположению. Опять же $\Gamma, y: \tau \vdash Q: \sigma$ и тогда по правилу вывода $\Gamma \vdash \lambda y.Q: \tau \to \sigma$.

M3*37y2019 5.10.2021