

## 2-(4-Fluorophenyl)quinoxaline

Cui-Ping Wang, Saiyong Ma, Jiang-Long Yu, Jing-Bo Yan  
and Zhi-Qiang Zhang\*

School of Chemical Engineering, University of Science and Technology Liaoning,  
Anshan 114051, People's Republic of China  
Correspondence e-mail: zhangzhiqiang@ustl.edu.cn

Received 31 March 2012; accepted 21 April 2012

Key indicators: single-crystal X-ray study;  $T = 113\text{ K}$ ; mean  $\sigma(\text{C}-\text{C}) = 0.002\text{ \AA}$ ;  
 $R$  factor = 0.036;  $wR$  factor = 0.109; data-to-parameter ratio = 15.9.

In the title compound,  $\text{C}_{14}\text{H}_9\text{FN}_2$ , the dihedral angle between the benzene ring and the quinoxaline ring system is  $22.2(3)^\circ$ . Any aromatic  $\pi-\pi$  stacking in the crystal must be very weak, with a minimum centroid–centroid separation of  $3.995(2)\text{ \AA}$ .

### Related literature

For background to the applications of quinoxaline derivatives, see: Lindsley *et al.* (2005); Dailey *et al.* (2001).



### Experimental

#### Crystal data

$\text{C}_{14}\text{H}_9\text{FN}_2$   
 $M_r = 224.23$   
Monoclinic,  $C2/c$

$a = 24.249(13)\text{ \AA}$   
 $b = 3.7925(19)\text{ \AA}$   
 $c = 22.609(13)\text{ \AA}$

$\beta = 91.866(9)^\circ$   
 $V = 2078.2(19)\text{ \AA}^3$   
 $Z = 8$   
Mo  $K\alpha$  radiation

$\mu = 0.10\text{ mm}^{-1}$   
 $T = 113\text{ K}$   
 $0.20 \times 0.18 \times 0.10\text{ mm}$

#### Data collection

Rigaku Saturn724 CCD  
diffractometer  
Absorption correction: multi-scan  
(*CrystalClear*; Rigaku, 2008)  
 $T_{\min} = 0.981$ ,  $T_{\max} = 0.990$

9711 measured reflections  
2454 independent reflections  
1797 reflections with  $I > 2\sigma(I)$   
 $R_{\text{int}} = 0.032$

#### Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$   
 $wR(F^2) = 0.109$   
 $S = 1.01$   
2454 reflections

154 parameters  
H-atom parameters constrained  
 $\Delta\rho_{\max} = 0.25\text{ e \AA}^{-3}$   
 $\Delta\rho_{\min} = -0.22\text{ e \AA}^{-3}$

Data collection: *CrystalClear* (Rigaku, 2008); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Open Fund of the Functional Material Laboratory–Key Laboratory of Liaoning Education Department (USTLKL-2011–10). The authors are indebted to Beijing Amber Tech Co. Ltd for the offer of some reagents.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6725).

### References

- Dailey, S., Feast, J. W., Peace, R. J., Sage, I. C., Till, S. & Wood, E. L. (2001). *J. Mater. Chem.* **11**, 2238–2243.
- Lindsley, C. W., Zhao, Z., Leister, W. H., Robinson, R. G., Barnett, S. F., Defeo-Jones, D., Jones, R. E., Hartman, G. D., Hu, J. R., Huber, H. E. & Duggan, M. E. (2005). *Bioorg. Med. Chem. Lett.* **15**, 761–764.
- Rigaku (2008). *CrystalClear*. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). *Acta Cryst. A* **64**, 112–122.

# supplementary materials

*Acta Cryst.* (2012). E68, o1779 [doi:10.1107/S1600536812017771]

## 2-(4-Fluorophenyl)quinoxaline

**Cui-Ping Wang, Saiyong Ma, Jiang-Long Yu, Jing-Bo Yan and Zhi-Qiang Zhang**

### Comment

Quinoxaline and its derivatives are an important class of nitrogen-containing heterocycles displaying both biological activities (Lindsley *et al.*, 2005) and technological applications (Dailey *et al.*, 2001). Here, we report the synthesis and crystal structure of the title compound (Fig. 1).

In the title compound,  $C_{14}H_9FN_2$ , the dihedral angle between the benzene ring and the quinoxaline ring is  $22.2(3)^\circ$ .

### Experimental

A solution of benzene-1,2-diamine (1.5 mmol) and 2-(4-fluorophenyl)-2-oxoacetaldehyde monohydrate (1.5 mmol) in EtOH (10 ml) was stirred at room temperature for 0.5 h. After completion of the reaction (monitored by TLC or HPLC), the precipitated solid was collected by filtration and dried to afford the pure product. Or after completion of the reaction, water was added to the reaction mixture and filtered to afford the product. When necessary, the product was recrystallized from ethanol/water. Colourless prisms were grown by slow evaporation of a solution in chloroform/ethanol (1:1).

### Refinement

H atoms were placed in calculated positions ( $C—H = 0.95\text{ \AA}$ ) and refined as riding with  $U_{iso}(H) = 1.2U_{eq}(C)$ .

### Computing details

Data collection: *CrystalClear* (Rigaku, 2008); cell refinement: *CrystalClear* (Rigaku, 2008); data reduction: *CrystalClear* (Rigaku, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

**Figure 1**

The molecular structure of the title compound, showing 30% probability displacement ellipsoids for the non-hydrogen atoms.

### 2-(4-Fluorophenyl)quinoxaline

#### Crystal data

$C_{14}H_9FN_2$   
 $M_r = 224.23$   
Monoclinic,  $C2/c$   
 $a = 24.249 (13)$  Å  
 $b = 3.7925 (19)$  Å  
 $c = 22.609 (13)$  Å  
 $\beta = 91.866 (9)$ °  
 $V = 2078.2 (19)$  Å<sup>3</sup>  
 $Z = 8$

$F(000) = 928$   
 $D_x = 1.433$  Mg m<sup>-3</sup>  
Mo  $K\alpha$  radiation,  $\lambda = 0.71073$  Å  
Cell parameters from 3509 reflections  
 $\theta = 1.7\text{--}27.9$ °  
 $\mu = 0.10$  mm<sup>-1</sup>  
 $T = 113$  K  
Prism, colorless  
 $0.20 \times 0.18 \times 0.10$  mm

#### Data collection

Rigaku Saturn724 CCD  
diffractometer  
Radiation source: rotating anode  
Multilayer monochromator  
Detector resolution: 14.22 pixels mm<sup>-1</sup>  
 $\omega$  and  $\varphi$  scans  
Absorption correction: multi-scan  
(*CrystalClear*; Rigaku, 2008)  
 $T_{\min} = 0.981$ ,  $T_{\max} = 0.990$

9711 measured reflections  
2454 independent reflections  
1797 reflections with  $I > 2\sigma(I)$   
 $R_{\text{int}} = 0.032$   
 $\theta_{\max} = 27.9$ °,  $\theta_{\min} = 1.7$ °  
 $h = -31 \rightarrow 31$   
 $k = -4 \rightarrow 4$   
 $l = -29 \rightarrow 29$

#### Refinement

Refinement on  $F^2$   
Least-squares matrix: full  
 $R[F^2 > 2\sigma(F^2)] = 0.036$   
 $wR(F^2) = 0.109$   
 $S = 1.01$   
2454 reflections  
154 parameters  
0 restraints  
Primary atom site location: structure-invariant  
direct methods

Secondary atom site location: difference Fourier  
map  
Hydrogen site location: inferred from  
neighbouring sites  
H-atom parameters constrained  
 $w = 1/[\sigma^2(F_o^2) + (0.0692P)^2]$   
where  $P = (F_o^2 + 2F_c^2)/3$   
 $(\Delta/\sigma)_{\max} = 0.001$   
 $\Delta\rho_{\max} = 0.25$  e Å<sup>-3</sup>  
 $\Delta\rho_{\min} = -0.22$  e Å<sup>-3</sup>

*Special details*

**Geometry.** All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement.** Refinement of  $F^2$  against ALL reflections. The weighted  $R$ -factor  $wR$  and goodness of fit  $S$  are based on  $F^2$ , conventional  $R$ -factors  $R$  are based on  $F$ , with  $F$  set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating  $R$ -factors(gt) etc. and is not relevant to the choice of reflections for refinement.  $R$ -factors based on  $F^2$  are statistically about twice as large as those based on  $F$ , and  $R$ -factors based on ALL data will be even larger.

*Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\text{\AA}^2$ )*

|     | <i>x</i>    | <i>y</i>     | <i>z</i>    | $U_{\text{iso}}^*/U_{\text{eq}}$ |
|-----|-------------|--------------|-------------|----------------------------------|
| F1  | 0.46580 (3) | 0.67692 (19) | 1.18737 (3) | 0.0321 (2)                       |
| N1  | 0.39311 (3) | 0.1470 (2)   | 0.93164 (4) | 0.0184 (2)                       |
| N2  | 0.28374 (3) | -0.1127 (2)  | 0.93193 (4) | 0.0213 (2)                       |
| C1  | 0.36818 (4) | 0.0119 (3)   | 0.88147 (4) | 0.0182 (2)                       |
| C2  | 0.39774 (4) | -0.0011 (3)  | 0.82863 (5) | 0.0216 (3)                       |
| H2  | 0.4347      | 0.0813       | 0.8283      | 0.026*                           |
| C3  | 0.37306 (5) | -0.1322 (3)  | 0.77801 (5) | 0.0238 (3)                       |
| H3  | 0.3931      | -0.1408      | 0.7426      | 0.029*                           |
| C4  | 0.31805 (5) | -0.2552 (3)  | 0.77785 (5) | 0.0246 (3)                       |
| H4  | 0.3013      | -0.3434      | 0.7423      | 0.030*                           |
| C5  | 0.28877 (4) | -0.2481 (3)  | 0.82842 (5) | 0.0226 (3)                       |
| H5  | 0.2519      | -0.3332      | 0.8280      | 0.027*                           |
| C6  | 0.31319 (4) | -0.1147 (3)  | 0.88123 (5) | 0.0189 (2)                       |
| C7  | 0.30886 (4) | 0.0153 (3)   | 0.97928 (5) | 0.0205 (2)                       |
| H7  | 0.2895      | 0.0180       | 1.0152      | 0.025*                           |
| C8  | 0.36398 (4) | 0.1514 (3)   | 0.97994 (5) | 0.0175 (2)                       |
| C9  | 0.38994 (4) | 0.2927 (3)   | 1.03511 (4) | 0.0173 (2)                       |
| C10 | 0.35866 (4) | 0.4178 (3)   | 1.08148 (5) | 0.0204 (3)                       |
| H10 | 0.3195      | 0.4132       | 1.0779      | 0.025*                           |
| C11 | 0.38416 (5) | 0.5485 (3)   | 1.13269 (5) | 0.0217 (3)                       |
| H11 | 0.3630      | 0.6352       | 1.1642      | 0.026*                           |
| C12 | 0.44101 (5) | 0.5499 (3)   | 1.13683 (5) | 0.0217 (3)                       |
| C13 | 0.47352 (4) | 0.4309 (3)   | 1.09221 (5) | 0.0220 (3)                       |
| H13 | 0.5126      | 0.4356       | 1.0963      | 0.026*                           |
| C14 | 0.44741 (4) | 0.3042 (3)   | 1.04120 (5) | 0.0193 (2)                       |
| H14 | 0.4690      | 0.2235       | 1.0096      | 0.023*                           |

*Atomic displacement parameters ( $\text{\AA}^2$ )*

|    | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|----|------------|------------|------------|-------------|-------------|-------------|
| F1 | 0.0308 (4) | 0.0440 (5) | 0.0213 (4) | -0.0068 (3) | -0.0033 (3) | -0.0063 (3) |
| N1 | 0.0176 (4) | 0.0186 (5) | 0.0190 (4) | -0.0001 (4) | 0.0009 (3)  | 0.0012 (4)  |
| N2 | 0.0164 (4) | 0.0220 (5) | 0.0256 (5) | -0.0004 (4) | 0.0011 (4)  | 0.0017 (4)  |
| C1 | 0.0184 (5) | 0.0157 (5) | 0.0204 (5) | 0.0005 (4)  | -0.0014 (4) | 0.0015 (4)  |
| C2 | 0.0208 (5) | 0.0212 (6) | 0.0228 (6) | -0.0016 (4) | 0.0017 (4)  | 0.0009 (4)  |
| C3 | 0.0282 (6) | 0.0227 (6) | 0.0206 (5) | 0.0005 (5)  | 0.0023 (4)  | 0.0004 (5)  |
| C4 | 0.0279 (6) | 0.0225 (6) | 0.0229 (6) | 0.0010 (5)  | -0.0066 (4) | -0.0017 (5) |

|     |            |            |            |             |             |             |
|-----|------------|------------|------------|-------------|-------------|-------------|
| C5  | 0.0183 (5) | 0.0208 (6) | 0.0284 (6) | 0.0000 (4)  | -0.0045 (5) | -0.0002 (5) |
| C6  | 0.0180 (5) | 0.0152 (5) | 0.0233 (5) | 0.0018 (4)  | -0.0011 (4) | 0.0023 (4)  |
| C7  | 0.0164 (5) | 0.0225 (6) | 0.0226 (5) | -0.0002 (4) | 0.0021 (4)  | 0.0026 (4)  |
| C8  | 0.0156 (5) | 0.0161 (6) | 0.0207 (5) | 0.0020 (4)  | 0.0002 (4)  | 0.0031 (4)  |
| C9  | 0.0177 (5) | 0.0159 (5) | 0.0182 (5) | -0.0010 (4) | 0.0007 (4)  | 0.0034 (4)  |
| C10 | 0.0163 (5) | 0.0224 (6) | 0.0227 (5) | 0.0008 (4)  | 0.0022 (4)  | 0.0032 (4)  |
| C11 | 0.0245 (5) | 0.0228 (6) | 0.0183 (5) | 0.0011 (5)  | 0.0050 (4)  | 0.0013 (4)  |
| C12 | 0.0260 (5) | 0.0221 (6) | 0.0169 (5) | -0.0035 (4) | -0.0024 (4) | 0.0007 (4)  |
| C13 | 0.0176 (5) | 0.0247 (6) | 0.0235 (5) | -0.0008 (4) | -0.0010 (4) | 0.0018 (5)  |
| C14 | 0.0176 (5) | 0.0196 (6) | 0.0208 (5) | 0.0007 (4)  | 0.0027 (4)  | 0.0012 (4)  |

*Geometric parameters ( $\text{\AA}$ ,  $^\circ$ )*

|          |             |             |             |
|----------|-------------|-------------|-------------|
| F1—C12   | 1.3617 (13) | C5—H5       | 0.9500      |
| N1—C8    | 1.3198 (14) | C7—C8       | 1.4325 (15) |
| N1—C1    | 1.3676 (14) | C7—H7       | 0.9500      |
| N2—C7    | 1.3078 (15) | C8—C9       | 1.4792 (16) |
| N2—C6    | 1.3703 (14) | C9—C14      | 1.3966 (15) |
| C1—C2    | 1.4138 (16) | C9—C10      | 1.3969 (15) |
| C1—C6    | 1.4171 (16) | C10—C11     | 1.3864 (16) |
| C2—C3    | 1.3676 (16) | C10—H10     | 0.9500      |
| C2—H2    | 0.9500      | C11—C12     | 1.3787 (17) |
| C3—C4    | 1.4131 (17) | C11—H11     | 0.9500      |
| C3—H3    | 0.9500      | C12—C13     | 1.3764 (16) |
| C4—C5    | 1.3656 (16) | C13—C14     | 1.3835 (15) |
| C4—H4    | 0.9500      | C13—H13     | 0.9500      |
| C5—C6    | 1.4095 (16) | C14—H14     | 0.9500      |
| <br>     |             |             |             |
| C8—N1—C1 | 117.21 (9)  | C8—C7—H7    | 118.3       |
| C7—N2—C6 | 116.44 (10) | N1—C8—C7    | 120.74 (10) |
| N1—C1—C2 | 119.44 (10) | N1—C8—C9    | 118.54 (10) |
| N1—C1—C6 | 121.36 (10) | C7—C8—C9    | 120.71 (9)  |
| C2—C1—C6 | 119.20 (10) | C14—C9—C10  | 118.67 (10) |
| C3—C2—C1 | 119.98 (11) | C14—C9—C8   | 119.37 (9)  |
| C3—C2—H2 | 120.0       | C10—C9—C8   | 121.96 (10) |
| C1—C2—H2 | 120.0       | C11—C10—C9  | 120.66 (10) |
| C2—C3—C4 | 120.63 (10) | C11—C10—H10 | 119.7       |
| C2—C3—H3 | 119.7       | C9—C10—H10  | 119.7       |
| C4—C3—H3 | 119.7       | C12—C11—C10 | 118.41 (10) |
| C5—C4—C3 | 120.52 (10) | C12—C11—H11 | 120.8       |
| C5—C4—H4 | 119.7       | C10—C11—H11 | 120.8       |
| C3—C4—H4 | 119.7       | F1—C12—C13  | 118.89 (10) |
| C4—C5—C6 | 120.05 (10) | F1—C12—C11  | 118.13 (10) |
| C4—C5—H5 | 120.0       | C13—C12—C11 | 122.98 (10) |
| C6—C5—H5 | 120.0       | C12—C13—C14 | 117.86 (10) |
| N2—C6—C5 | 119.65 (10) | C12—C13—H13 | 121.1       |
| N2—C6—C1 | 120.73 (10) | C14—C13—H13 | 121.1       |
| C5—C6—C1 | 119.61 (10) | C13—C14—C9  | 121.40 (10) |
| N2—C7—C8 | 123.50 (10) | C13—C14—H14 | 119.3       |
| N2—C7—H7 | 118.3       | C9—C14—H14  | 119.3       |

|             |              |                 |              |
|-------------|--------------|-----------------|--------------|
| C8—N1—C1—C2 | −179.57 (9)  | C1—N1—C8—C9     | 179.40 (9)   |
| C8—N1—C1—C6 | 0.65 (15)    | N2—C7—C8—N1     | −1.44 (17)   |
| N1—C1—C2—C3 | −179.32 (10) | N2—C7—C8—C9     | 179.95 (10)  |
| C6—C1—C2—C3 | 0.47 (16)    | N1—C8—C9—C14    | −21.66 (15)  |
| C1—C2—C3—C4 | 0.10 (17)    | C7—C8—C9—C14    | 156.99 (10)  |
| C2—C3—C4—C5 | −0.63 (17)   | N1—C8—C9—C10    | 157.91 (10)  |
| C3—C4—C5—C6 | 0.56 (17)    | C7—C8—C9—C10    | −23.44 (16)  |
| C7—N2—C6—C5 | −179.90 (10) | C14—C9—C10—C11  | −0.46 (16)   |
| C7—N2—C6—C1 | 0.90 (15)    | C8—C9—C10—C11   | 179.97 (10)  |
| C4—C5—C6—N2 | −179.19 (10) | C9—C10—C11—C12  | −0.40 (16)   |
| C4—C5—C6—C1 | 0.02 (16)    | C10—C11—C12—F1  | −179.66 (10) |
| N1—C1—C6—N2 | −1.55 (16)   | C10—C11—C12—C13 | 0.72 (17)    |
| C2—C1—C6—N2 | 178.67 (9)   | F1—C12—C13—C14  | −179.76 (9)  |
| N1—C1—C6—C5 | 179.25 (9)   | C11—C12—C13—C14 | −0.15 (18)   |
| C2—C1—C6—C5 | −0.53 (15)   | C12—C13—C14—C9  | −0.76 (16)   |
| C6—N2—C7—C8 | 0.53 (16)    | C10—C9—C14—C13  | 1.06 (16)    |
| C1—N1—C8—C7 | 0.76 (15)    | C8—C9—C14—C13   | −179.36 (9)  |