Swarm Firmware AVR

Generated by Doxygen 1.9.1

1 License	1
2 Data Structure Index	3
2.1 Data Structures	3
3 File Index	5
3.1 File List	5
4 Data Structure Documentation	7
4.1 _i_pos Struct Reference	7
4.1.1 Detailed Description	7
4.2 _omega Struct Reference	7
4.2.1 Detailed Description	8
4.3 _theta Struct Reference	8
4.3.1 Detailed Description	8
4.4 mat2 Struct Reference	8
4.4.1 Detailed Description	8
4.5 PID_DATA Struct Reference	9
4.5.1 Detailed Description	9
4.6 point Struct Reference	9
4.6.1 Detailed Description	10
4.6.2 Field Documentation	10
4.6.2.1 x	10
4.6.2.2 y	10
4.7 pos Struct Reference	10
4.7.1 Detailed Description	11
4.7.2 Field Documentation	11
4.7.2.1 th	11
4.7.2.2 x	11
4.7.2.3 y	11
4.8 pos_dot Struct Reference	11
4.8.1 Detailed Description	12
4.8.2 Field Documentation	12
4.8.2.1 th_dot	12
4.8.2.2 x_dot	12
4.8.2.3 y_dot	12
5 File Documentation	13
5.1 src/ adc .h File Reference	13
5.1.1 Detailed Description	13
5.1.2 Function Documentation	14
5.1.2.1 _adc_init()	14
5.1.2.2 _adc_read()	14
5.2 src/_dc_controlh File Reference	14

5.2.1 Detailed Description	 . 15
5.2.2 Function Documentation	 . 15
5.2.2.1 _break_motor()	 . 15
5.2.2.2 _command()	 . 16
5.2.2.3 _dc_controller_loop()	 . 16
5.2.2.4 _init_dc_control()	 . 16
5.2.2.5 _ref()	 . 16
5.2.2.6 _sens()	 . 17
5.2.2.7 _set_speed()	 . 17
5.2.2.8 _update_controller()	 . 18
5.3 src/formath File Reference	 . 18
5.3.1 Detailed Description	 . 18
5.3.2 Function Documentation	 . 19
5.3.2.1 _float_to_printable()	 . 19
5.4 src/INT_0_1h File Reference	 . 19
5.4.1 Detailed Description	 . 19
5.4.2 Function Documentation	 . 20
5.4.2.1 _interrupt0_enable()	 . 20
5.5 src/_kinematicsh File Reference	 . 20
5.5.1 Detailed Description	 . 21
5.5.2 Function Documentation	 . 21
5.5.2.1 _dead_reckon()	 . 21
5.5.2.2 _inertial_to_pos_dot()	 . 22
5.5.2.3 _omega_to_intertial()	 . 22
5.5.2.4 _thetaLR_to_pos()	 . 22
5.5.2.5 _update_omega()	 . 23
5.5.2.6 _update_thetaLR()	 . 23
5.6 src/odometryh File Reference	 . 23
5.6.1 Detailed Description	 . 24
5.6.2 Function Documentation	 . 24
5.6.2.1 _insertion_sort()	 . 24
5.6.2.2 _omega_comp_A()	 . 25
5.6.2.3 _omega_comp_B()	 . 25
5.6.2.4 _omega_from_encA()	 . 25
5.6.2.5 _omega_from_encB()	 . 25
5.6.2.6 _omega_from_PMA()	 . 25
5.6.2.7 _omega_from_PMB()	 . 26
5.6.2.8 _thetaA()	 . 26
5.6.2.9 _thetaB()	 . 26
5.6.2.10 _ticksA()	 . 26
5.6.2.11 _ticksB()	 . 26
5.7 src/_pwmh File Reference	 . 26

5.7.1 Detailed Description	. 27
5.7.2 Function Documentation	. 27
5.7.2.1 _set_pwm_0A()	. 27
5.7.2.2 _set_pwm_0B()	. 27
5.7.2.3 _set_pwm_1A()	. 28
5.7.2.4 _set_pwm_1B()	. 28
5.8 src/swarm_woldh File Reference	. 28
5.8.1 Detailed Description	. 29
5.9 src/timer0h File Reference	. 29
5.9.1 Detailed Description	. 30
5.9.2 Function Documentation	. 30
5.9.2.1 _micros0()	. 30
5.9.2.2 _millis0()	. 31
5.9.2.3 _timer0_init()	. 31
5.9.2.4 _timer0_init_prescaler()	. 31
5.10 src/timer1h File Reference	. 31
5.10.1 Detailed Description	. 32
5.10.2 Function Documentation	. 32
5.10.2.1 _timer1_init()	. 32
5.11 src/timer2h File Reference	. 32
5.11.1 Detailed Description	. 33
5.11.2 Function Documentation	. 33
5.11.2.1 _timer2_init()	. 33
5.12 src/usarth File Reference	. 33
5.12.1 Detailed Description	. 34
5.12.2 Function Documentation	. 34
5.12.2.1 usart_init()	. 34
5.13 src/_pidc File Reference	. 35
5.13.1 Detailed Description	. 35
5.13.2 Function Documentation	. 36
5.13.2.1 pid_Controller()	. 36
5.13.2.2 pid_Init()	. 36
5.13.2.3 pid_Reset_Integrator()	. 36
5.14 src/_pidh File Reference	. 37
5.14.1 Detailed Description	. 38
5.14.2 Macro Definition Documentation	. 38
5.14.2.1 MAX_INT	. 38
5.14.3 Typedef Documentation	. 38
5.14.3.1 pidData_t	. 38
5.14.4 Function Documentation	. 39
5.14.4.1 pid_Controller()	. 39
5.14.4.2 pid_Init()	. 39

	5.14.4.3 pid_Reset_Integrator()	39
5.15	src/asf.h File Reference	40
	5.15.1 Detailed Description	40
Index		41

Chapter 1

License

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. The name of Atmel may not be used to endorse or promote products derived from this software without specific prior written permission.
- 4. This software may only be redistributed and used in connection with an Atmel microcontroller product.

THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

\asf license stop

2 License

Chapter 2

Data Structure Index

2.1 Data Structures

Here are the data structures with brief descriptions:

_omega	 . 7
_theta	 . 8
mat2	 . 8
PID_DATA	
PID Status .	 . 9
point	 . 9
pos	 . 10
pos dot	 . 11

4 Data Structure Index

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

src/adch	
Header file for adc .c	. 13
src/dc_controlh	
Header file for dc_control.c	. 14
src/formath	
Header file for format .c	. 18
src/INT_0_1h	
Header file for INT_0_1.c	. 19
src/kinematicsh	
Header file for kimenatics.c	. 20
src/odometryh	
Header file for odometry .c	. 23
src/pin_map.h	. ??
src/pwmh	
Header file for pwm .c	. 26
src/swarm_woldh	
Header file for dummy purposes	. 28
src/timer0h	
Header file for timer0 .c	. 29
src/timer1h	
Header file for timer1.c	. 31
src/timer2h	
Header file for timer2.c	. 32
src/_usarth	
Header file for pid.c	. 33
src/_pidc	
General PID implementation for AVR	. 35
src/_pidh	
Header file for pid.c	. 37
src/asf.h	
Autogenerated API include file for the Atmel Software Framework (ASF)	. 40

6 File Index

Chapter 4

Data Structure Documentation

4.1 _i_pos Struct Reference

```
#include <__kinematics__.h>
```

Data Fields

float v

linear velocity V

float w

rotational velocity W

4.1.1 Detailed Description

Inertial pos vector V and W

The documentation for this struct was generated from the following file:

```
• src/__kinematics__.h
```

4.2 _omega Struct Reference

```
#include <__kinematics__.h>
```

Data Fields

float wl

left motor

float wr

right motor

4.2.1 Detailed Description

Struct to hold wheels' velocity rad/s

The documentation for this struct was generated from the following file:

```
• src/__kinematics__.h
```

4.3 _theta Struct Reference

```
#include <__kinematics__.h>
```

Data Fields

```
    float left
        left motor
    float right
        right motor
```

4.3.1 Detailed Description

struct to hold wheel absolute rotation

The documentation for this struct was generated from the following file:

```
• src/__kinematics__.h
```

4.4 mat2 Struct Reference

```
#include <__kinematics__.h>
```

Data Fields

```
    float a

        11

            float b
            12

    float c
        21

            float d
```

4.4.1 Detailed Description

```
square matrix struct [
```

22

Parameters

The documentation for this struct was generated from the following file:

• src/__kinematics__.h

4.5 PID_DATA Struct Reference

PID Status.

```
#include <_pid_.h>
```

Data Fields

• int16_t lastProcessValue

Last process value, used to find derivative of process value.

int32_t sumError

Summation of errors, used for integrate calculations.

int16_t P_Factor

The Proportional tuning constant, multiplied with SCALING_FACTOR.

• int16_t I_Factor

The Integral tuning constant, multiplied with SCALING_FACTOR.

int16_t D_Factor

The Derivative tuning constant, multiplied with SCALING_FACTOR.

int16_t maxError

Maximum allowed error, avoid overflow.

int32_t maxSumError

Maximum allowed sumerror, avoid overflow.

4.5.1 Detailed Description

PID Status.

Setpoints and data used by the PID control algorithm

The documentation for this struct was generated from the following file:

• src/_pid_.h

4.6 point Struct Reference

#include <__kinematics__.h>

Data Fields

- float x
- float y

4.6.1 Detailed Description

point struct (x and y card. coordinates

4.6.2 Field Documentation

4.6.2.1 x

float x

Parameters

4.6.2.2 y

float y

Parameters

The documentation for this struct was generated from the following file:

• src/__kinematics__.h

4.7 pos Struct Reference

#include <__kinematics__.h>

Data Fields

- float x
- float y
- · float th

4.7.1 Detailed Description

position struct to hold robot's pos vector

4.7.2 Field Documentation

4.7.2.1 th

float th

Parameters

Theta	(\theta)
-------	----------

4.7.2.2 x

float x

Parameters

X

4.7.2.3 y

float y

Parameters

The documentation for this struct was generated from the following file:

• src/__kinematics__.h

4.8 pos_dot Struct Reference

#include <__kinematics__.h>

Data Fields

- float x_dot
- float y_dot
- float th_dot

4.8.1 Detailed Description

position derivative vector struct (\frac{d pos}{dt})

4.8.2 Field Documentation

4.8.2.1 th_dot

float th_dot

Parameters

4.8.2.2 x_dot

float x_dot

Parameters

4.8.2.3 y_dot

float y_dot

Parameters

The documentation for this struct was generated from the following file:

• src/__kinematics__.h

Chapter 5

File Documentation

5.1 src/_adc__.h File Reference

```
Header file for adc.c.
```

```
#include <__swarm_wold__.h>
```

Functions

- void <u>adc_init</u> (void)
- int _adc_read (uint8_t channel)

5.1.1 Detailed Description

Header file for adc.c.

• File: adc.h

· Compiler: GCC-AVR

· Supported devices: Tested on 328p

· AppNote: ADC module driver

Author

Swarm robot graduation project workgroub Mechatronics Program for the Distinguished \$Name\$

Revision

1

\$RCSfile\$

Date

/19/2021 9:30:13 AM

5.1.2 Function Documentation

```
5.1.2.1 _adc_init()
```

Initialize the ADC module

5.1.2.2 _adc_read()

Reads from

Parameters

channel

Parameters

in channel adc channel fro	m PortC.
----------------------------	----------

5.2 src/__dc_control__.h File Reference

Header file for dc_control.c.

```
#include <__swarm_wold__.h>
```

Macros

- #define MA 1
- #define MB 2
- #define **DEBUG_CONTROLLER** 0
- #define **K_P** 4.0
- #define K_I 0.3
- #define K_D 0.5

Functions

```
int16_t _ref (uint8_t motor)
void _command (uint8_t motor, int16_t inputValue)
float _sens (uint8_t motor)
int _set_speed (uint8_t motor, int value)
void _break_motor (uint8_t motor)
void _init_dc_control (void)
int16_t _update_controller (uint8_t motor)
int16_t _dc_controller_loop (void)
```

5.2.1 Detailed Description

Header file for dc_control.c.

```
• File: dc_control.h
```

Compiler: GCC-AVR

• Supported devices: Tested on 328p

• AppNote: PID for DC motor control

Author

Swarm robot graduation project workgroub Mechatronics Program for the Distinguished \$Name\$

Revision

1

\$RCSfile\$

Date

/26/2021 9:18:13 PM

5.2.2 Function Documentation

5.2.2.1 _break_motor()

breaks the

Parameters

motor

Parameters

5.2.2.2 _command()

Output command module for

Parameters

motor	of value
inputValue	

Parameters

in	motor	motor MA or MB.
in	inputValue	input value

5.2.2.3 _dc_controller_loop()

PID DC controller loop

5.2.2.4 _init_dc_control()

Initialize the DC PID control module

5.2.2.5 _ref()

Reference for

Parameters

motor

Parameters

5.2.2.6 _sens()

sensor module for

Parameters

motor

Parameters

in <i>motor</i>	motor MA or MB.
-----------------	-----------------

5.2.2.7 _set_speed()

```
int _set_speed (
          uint8_t motor,
          int value )
```

L298 driver module using PWM signals and motor orientation

Parameters

can be negative or positive for direction	value
---	-------

Parameters

in	motor	motor MA or MB.
in	value	speed value

5.2.2.8 _update_controller()

Update a control iteration for a discrete PID controller for the DC motor

Parameters

5.3 src/__format__.h File Reference

Header file for format.c.

```
#include <__swarm_wold__.h>
```

Functions

• char * _float_to_printable (float input)

5.3.1 Detailed Description

Header file for format.c.

• File: format.h

· Compiler: GCC-AVR

· Supported devices: Tested on 328p

• AppNote: string formatter

Author

Swarm robot graduation project workgroub Mechatronics Program for the Distinguished \$Name\$

Revision

1

\$RCSfile\$

Date

/5/2021 12:34:35 AM

5.3.2 Function Documentation

5.3.2.1 _float_to_printable()

Convert a float variable to string

Parameters

in	input	input value of float to convert to string
----	-------	---

5.4 src/_INT_0_1__.h File Reference

Header file for **INT_0_1**.c.

```
#include <__swarm_wold__.h>
```

Macros

- #define _INT_LOW_LEVEL 0
- #define _INT_CHANGE_LEVEL 1
- #define _INT_FALLING_EDGE 2
- #define _INT_RISING_EDGE 3

Functions

• void <u>_interrupt0_enable</u> (uint8_t trigger)

5.4.1 Detailed Description

Header file for **INT_0_1**.c.

- File: **INT_0_1**.h
- · Compiler: GCC-AVR
- Supported devices: Tested on 328p
- · AppNote: external interrupt driver

Author

Swarm robot graduation project workgroub Mechatronics Program for the Distinguished \$Name\$

Revision

1

\$RCSfile\$

Date

/11/2021 9:18:06 AM

5.4.2 Function Documentation

5.4.2.1 _interrupt0_enable()

Enable interrupt of pin INT0 (see _pin_map.h)

Parameters

	in	trigger	trigger mode, see file	_INT_0_1h	1
--	----	---------	------------------------	-----------	---

5.5 src/_kinematics__.h File Reference

Header file for **kimenatics**.c.

```
#include <__swarm_wold__.h>
```

Data Structures

- struct point
- struct pos
- struct pos_dot
- struct _i_pos
- struct mat2
- struct _omega
- struct _theta

Macros

- #define L 0.06
- #define r 0.02
- #define **R_over_L** 0.333
- #define **R_over_2** 0.01

Functions

```
• struct _i_pos _omega_to_intertial (struct _omega *input)
```

- struct pos_dot _inertial_to_pos_dot (struct _i_pos *inertial, struct pos *_pos)
- uint16 t dead reckon (struct pos * pos, struct pos dot * pos dot)
- struct pos _thetaLR_to_pos (struct _theta *th)
- void _update_thetaLR (struct _theta *input)
- void _update_omega (struct _omega *input)

5.5.1 Detailed Description

Header file for kimenatics.c.

- File: kimenatics.h
- · Compiler: GCC-AVR
- Supported devices: Tested on 328p
- · AppNote: Kinematics calculations for the mobile robot

Author

Swarm robot graduation project workgroub Mechatronics Program for the Distinguished \$Name\$

Revision

1

\$RCSfile\$

Date

5/29/2021 8:04:54 PM

5.5.2 Function Documentation

5.5.2.1 _dead_reckon()

a dead-reckoner for spatial pos estimation, returns debug info

Parameters

in	_pos	pos
in	_pos_dot	derivative of pos

5.5.2.2 _inertial_to_pos_dot()

A function to convert inertial velocities to pos_dot

Parameters

in	inertial	struct of inertial pos
in	_pos	struct of current pos for \theta

5.5.2.3 _omega_to_intertial()

A function to convert wheels rotation velocity to inertial velocities

Parameters

in	input	struct of wheels velocity
	_omega	

5.5.2.4 _thetaLR_to_pos()

A function to convert wheels' absolute rotation angles to pos (not proper)

Parameters

in	th	wheels' absolute rotation

5.5.2.5 update omega()

A function to update the wheels' rotation velocity or each wheel from hardware modules

Parameters

in input wheel's rotational velocity		in	input	wheel's rotational velocity
--	--	----	-------	-----------------------------

5.5.2.6 _update_thetaLR()

A function to update the absolute rotation angle of each wheel from hardware modules

Parameters

in	input	wheels' absolute rotation
----	-------	---------------------------

5.6 src/__odometry__.h File Reference

Header file for **odometry**.c.

```
#include <__swarm_wold__.h>
```

Macros

- #define __ENC_TICK_THETA_FOR_OMEGA 190399
- #define __ENC_TICK_THETA 0.1904
- #define __PM_lower_bound 200
- #define __PM_upper_bound 800
- #define __PM_SAMPLE_COUNT 5
- #define __PM_SLOPE 1
- #define FORWARD 1
- #define BACKWARD -1

Functions

```
float _thetaA (void)
float _thetaB (void)
float _omega_from_encA (void)
float _omega_from_encB (void)
float _omega_from_PMA (void)
float _omega_from_PMB (void)
float _omega_comp_A (void)
float _omega_comp_B (void)
int32_t _ticksA ()
void _insertion_sort (uint16_t arr[], int n)
```

5.6.1 Detailed Description

Header file for odometry.c.

```
File: __odometry__hCompiler: GCC-AVR
```

· Supported devices: Tested on 328p

· AppNote: Odometry calculations for the mobile robot

Author

Swarm robot graduation project workgroub Mechatronics Program for the Distinguished \$Name\$

Revision

1

\$RCSfile\$

Date

/19/2021 9:43:59 AM

5.6.2 Function Documentation

5.6.2.1 _insertion_sort()

```
void _insertion_sort (
          uint16_t arr[],
          int n )
```

Insertion sort algorithm (fastest for small array sizes)

Parameters

in	arr	pointer to start of sorting
in	n	offset from
	arr[]	

5.6.2.2 _omega_comp_A()

```
float \_omega\_comp\_A ( void )
```

Complementary filter for wheel A angular velocity (encoder ticks and internal potentiometer)

5.6.2.3 _omega_comp_B()

```
float _omega_comp_B (
     void )
```

Complementary filter for wheel B angular velocity (encoder ticks and internal potentiometer)

5.6.2.4 _omega_from_encA()

Returns the A wheel's angular velocity from encoder readings by measuring he time between consecutive encoder ticks

5.6.2.5 _omega_from_encB()

Returns the B wheel's angular velocity from encoder readings by measuring he time between consecutive encoder ticks

5.6.2.6 _omega_from_PMA()

```
float \_omega\_from\_PMA ( void )
```

Returns the A wheel's angular velocity using the potentiometer readings

5.6.2.7 _omega_from_PMB()

```
float \_omega\_from\_PMB ( void )
```

Returns the B wheel's angular velocity using the potentiometer readings

5.6.2.8 _thetaA()

Returns the absolute rotation angle of motor A

5.6.2.9 _thetaB()

```
float _thetaB (
     void )
```

Returns the absolute rotation angle of motor B

5.6.2.10 _ticksA()

```
int32_t _ticksA ( )
```

returns the number of ticks happened since boot to wheel A

5.6.2.11 _ticksB()

```
int32_t _ticksB ( )
```

returns the number of ticks happened since boot to wheel B

5.7 src/__pwm__.h File Reference

Header file for pwm.c.

```
#include <__swarm_wold__.h>
```

Functions

```
• void <u>set_pwm_0A</u> (int input)
```

- void _set_pwm_0B (int input)
- void _set_pwm_1A (int input)
- void <u>set_pwm_1B</u> (int input)

5.7.1 Detailed Description

Header file for **pwm**.c.

• File: pwm.h

· Compiler: GCC-AVR

• Supported devices: Tested on 328p

· AppNote: PWM driver

Author

Swarm robot graduation project workgroub Mechatronics Program for the Distinguished \$Name\$

Revision

1

\$RCSfile\$

Date

/19/2021 9:30:13 AM

5.7.2 Function Documentation

5.7.2.1 _set_pwm_0A()

sets the PWM output of OCR0A (Motor A rear)

Parameters

in	input	
	input	a number (0> 255)

5.7.2.2 _set_pwm_0B()

```
void _set_pwm_0B (
```

```
int input )
```

sets the PWM output of OCR0B (Motor B rear)

Parameters

in	input	
	input	a number (0> 255)

5.7.2.3 _set_pwm_1A()

sets the PWM output of OCR1A (Motor A front)

Parameters

	in	input	
Ī		input	a number (0> 255)

5.7.2.4 _set_pwm_1B()

```
void _set_pwm_1B (
          int input )
```

sets the PWM output of OCR1B (Motor B front)

Parameters

in	input	
	input	a number (0> 255)

5.8 src/_swarm_wold__.h File Reference

Header file for dummy purposes.

```
#include <stdio.h>
#include <asf.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <board.h>
#include <conf_board.h>
```

```
#include <util/delay.h>
#include "stdint.h"

#include <__adc__.h>
#include <__INT_0_1__.h>
#include <__pin_map.h>
#include <__timer0__.h>
#include <__timer1__.h>
#include <__timer2_.h>
#include <__toontrol__.h>
#include <__dc_control__.h>
#include <__odometry__.h>
#include <__pwm__.h>
#include <_pid_.h>
#include <_pid_.h>
#include <__format__.h>
```

Macros

• #define **F_CPU** 16000000

5.8.1 Detailed Description

Header file for dummy purposes.

• File: swarm_world.h

· Compiler: GCC-AVR

• Supported devices: Tested on 328p

· AppNote: Discrete PID controller

Author

Swarm robot graduation project workgroub Mechatronics Program for the Distinguished \$Name\$

Revision

1

\$RCSfile\$

Date

/19/2021 9:31:42 AM

5.9 src/__timer0__.h File Reference

Header file for timer0.c.

```
#include <__swarm_wold__.h>
```

Functions

```
    void <u>_timer0_init</u> (void)
```

- void _timer0_init_prescaler (uint16_t prescaler)
- unsigned long <u>_micros0</u> (void)
- unsigned long _millis0 (void)

5.9.1 Detailed Description

Header file for timer0.c.

• File: timer0.h

· Compiler: GCC-AVR

• Supported devices: Tested on 328p

• AppNote: Discrete PID controller

Author

Swarm robot graduation project workgroub Mechatronics Program for the Distinguished \$Name\$

Revision

1

\$RCSfile\$

Date

/19/2021 9:03:51 AM

5.9.2 Function Documentation

5.9.2.1 _micros0()

Returns the microseconds passed since timer initialize

5.9.2.2 _millis0()

Returns the milliseconds passed since timer initialize

5.9.2.3 _timer0_init()

Initialize Timer/Counter 0 with clock prescaler of 1024 (244 Hz overflow at 16 MHz)

5.9.2.4 _timer0_init_prescaler()

Initialize Timer/Counter 0 with costume prescaler (see the datasheet)

Parameters

in	prescaler	prescaler 1,2,4,8,255,1024
----	-----------	----------------------------

5.10 src/_timer1__.h File Reference

Header file for timer1.c.

```
#include <__swarm_wold__.h>
```

Macros

- #define _TICK_US_1 0.0625
- #define _TICK_MS_1 0.0000625
- #define _TICK_US_0 16
- #define _TICK_MS_0 0.016

Functions

- void _timer1_init (void)
- uint64_t _micros1 (void)
- uint64_t _millis1 (void)

Variables

- volatile uint8_t _controler_flag_A
- volatile uint8_t _controler_flag_B

5.10.1 Detailed Description

Header file for timer1.c.

• File: timer1.h

· Compiler: GCC-AVR

• Supported devices: Tested on 328p

· AppNote: Discrete PID controller

Author

Swarm robot graduation project workgroub Mechatronics Program for the Distinguished \$Name\$

Revision

1

\$RCSfile\$

Date

/9/2021 10:17:41 AM

5.10.2 Function Documentation

5.10.2.1 _timer1_init()

```
void _timer1_init (
     void )
```

Initialize Timer/Counter 1 with 1 prescaler (244 MHz overflow frequency at 16 MHz)

5.11 src/__timer2__.h File Reference

Header file for timer2.c.

```
#include <__swarm_wold__.h>
```

Functions

• void _timer2_init (void)

5.11.1 Detailed Description

Header file for timer2.c.

• File: timer2.h

· Compiler: GCC-AVR

• Supported devices: Tested on 328p

• AppNote: Discrete PID controller

Author

Swarm robot graduation project workgroub Mechatronics Program for the Distinguished \$Name\$

Revision

1

\$RCSfile\$

Date

/20/2021 12:04:32 AM

5.11.2 Function Documentation

5.11.2.1 _timer2_init()

```
void _timer2_init (
     void )
```

Initialize Timer/Counter 2 with 1 prescaler (244 Hz overflow frequency at 16 MHz)

5.12 src/_usart__.h File Reference

Header file for pid.c.

```
#include <asf.h>
#include <stdio.h>
#include <board.h>
#include <conf_board.h>
#include <util/delay.h>
```

Macros

- #define **BAUD** 57600
- #define **RX_BUFSIZE** 120
- #define **BRC** ((F_CPU/(16UL*BAUD)) 1)

Functions

void usart_init (void)

5.12.1 Detailed Description

Header file for pid.c.

• File: usart.h

· Compiler: GCC-AVR

• Supported devices: Tested on 328p

• AppNote: USART module driver

Author

Swarm robot graduation project workgroub Mechatronics Program for the Distinguished \$Name\$

Revision

456

\$RCSfile\$

Date

021-5

5.12.2 Function Documentation

5.12.2.1 usart_init()

Initialize the USART module with

Parameters

BAUD

5.13 src/_pid_.c File Reference

General PID implementation for AVR.

```
#include <_pid_.h>
```

Functions

- void pid_Init (int16_t p_factor, int16_t i_factor, int16_t d_factor, struct PID_DATA *pid)

 Initialisation of PID controller parameters.
- int16_t pid_Controller (int16_t setPoint, int16_t processValue, struct PID_DATA *pid_st)

 PID control algorithm.
- void pid_Reset_Integrator (pidData_t *pid_st)
 Resets the integrator.

5.13.1 Detailed Description

General PID implementation for AVR.

Discrete PID controller implementation. Set up by giving P/I/D terms to Init_PID(), and uses a struct PID_DATA to store internal values.

- File: pid.c
- · Compiler: IAR EWAAVR 4.11A
- Supported devices: All AVR devices can be used.
- · AppNote: AVR221 Discrete PID controller

Author

```
Atmel Corporation: http://www.atmel.com
Support email: avr@atmel.com
```

\$Name\$

Revision

456

\$RCSfile\$

Date

2006-02-16 12:46:13 +0100 (to, 16 feb 2006)

5.13.2 Function Documentation

5.13.2.1 pid_Controller()

PID control algorithm.

Calculates output from setpoint, process value and PID status.

Parameters

setPoint	Desired value.
processValue	Measured value.
pid_st	PID status struct.

5.13.2.2 pid_Init()

Initialisation of PID controller parameters.

Initialise the variables used by the PID algorithm.

Parameters

Proportional term.		
Integral term.		
Derivate term.		
Struct with PID status.		

5.13.2.3 pid_Reset_Integrator()

Resets the integrator.

Calling this function will reset the integrator in the PID regulator.

5.14 src/_pid_.h File Reference

```
Header file for pid.c.
```

```
#include "stdint.h"
```

Data Structures

• struct PID_DATA

PID Status.

Macros

- #define SCALING_FACTOR 128
- #define MAX_INT INT16_MAX

Maximum values.

- #define MAX_LONG INT32 MAX
- #define MAX_I_TERM (MAX_LONG / 2)
- #define FALSE 0
- #define TRUE 1

Typedefs

 typedef struct PID_DATA pidData_t PID Status.

Functions

- void pid_Init (int16_t p_factor, int16_t i_factor, int16_t d_factor, struct PID_DATA *pid)

 Initialisation of PID controller parameters.
- int16_t pid_Controller (int16_t setPoint, int16_t processValue, struct PID_DATA *pid_st)

 PID control algorithm.
- void pid_Reset_Integrator (pidData_t *pid_st)
 Resets the integrator.

Variables

volatile uint8_t flag

5.14.1 Detailed Description

Header file for pid.c.

· File: pid.h

· Compiler: GCC-AVR

• Supported devices: Tested on 328p

· AppNote: Discrete PID controller

Author

Swarm robot graduation project workgroub Mechatronics Program for the Distinguished \$Name\$

Revision

456

\$RCSfile\$

Date

021

5.14.2 Macro Definition Documentation

5.14.2.1 MAX_INT

#define MAX_INT INT16_MAX

Maximum values.

Needed to avoid sign/overflow problems

5.14.3 Typedef Documentation

5.14.3.1 pidData_t

typedef struct PID_DATA pidData_t

PID Status.

Setpoints and data used by the PID control algorithm

5.14.4 Function Documentation

5.14.4.1 pid_Controller()

PID control algorithm.

Calculates output from setpoint, process value and PID status.

Parameters

setPoint	Desired value.
processValue	Measured value.
pid_st	PID status struct.

5.14.4.2 pid_Init()

Initialisation of PID controller parameters.

Initialise the variables used by the PID algorithm.

Parameters

p_factor	Proportional term.
i_factor	Integral term.
d_factor	Derivate term.
pid	Struct with PID status.

5.14.4.3 pid_Reset_Integrator()

Resets the integrator.

Calling this function will reset the integrator in the PID regulator.

5.15 src/asf.h File Reference

Autogenerated API include file for the Atmel Software Framework (ASF)

```
#include <user_board.h>
#include <board.h>
#include <interrupt.h>
#include <compiler.h>
#include <status_codes.h>
#include <parts.h>
```

Macros

• #define **F_CPU** 16000000

5.15.1 Detailed Description

Autogenerated API include file for the Atmel Software Framework (ASF)

Copyright (c) 2012 Atmel Corporation. All rights reserved.

\asf_license_start

Index

INT_0_1h	usart .h
 _interrupt0_enable, 20	usart_init, 34
adc .h	_adc_init
adc_init, 14	adch, 14
_adc_read, 14	_adc_read
_dc_controlh	adch, 14
_break_motor, 15	_break_motor
_command, 16	dc_controlh, 15
_dc_controller_loop, 16	_command
_init_dc_control, 16	dc_controlh, 16
_ref, 16	_dc_controller_loop
_sens, 17	dc_controlh, 16
_set_speed, 17	_dead_reckon
_update_controller, 17	kinematicsh, 21
formath	_float_to_printable
_float_to_printable, 19	formath, 19
kinematicsh	_i_pos, 7
_dead_reckon, 21	_inertial_to_pos_dot
_inertial_to_pos_dot, 22	kinematicsh, 22
_omega_to_intertial, 22	_init_dc_control
_thetaLR_to_pos, 22	dc_controlh, 16
_update_omega, 23	_insertion_sort
_update_thetaLR, 23	odometryh, 24
odometryh	_interrupt0_enable
_insertion_sort, 24	INT_0_1h, 20
_omega_comp_A, 25	_micros0
_omega_comp_B, 25	timer0h, 30
_omega_from_PMA, 25	_millis0
_omega_from_PMB, 25	timer0h, 30
_omega_from_encA, 25	_omega, 7
_omega_from_encB, 25	_omega_comp_A
_thetaA, 26	odometryh, 25
_thetaB, <mark>26</mark>	_omega_comp_B
_ticksA, 26	odometryh, 25
_ticksB, 26	_omega_from_PMA
pwmh	odometryh, 25
_set_pwm_0A, <mark>27</mark>	_omega_from_PMB
_set_pwm_0B, <mark>27</mark>	odometryh, 25
_set_pwm_1A, <mark>28</mark>	_omega_from_encA
_set_pwm_1B, <mark>28</mark>	odometryh, 25
timer0h	_omega_from_encB
_micros0, 30	odometryh, 25
_millis0, 30	_omega_to_intertial
_timer0_init, 31	kinematicsh, 22
_timer0_init_prescaler, 31	_pidc
timer1h	pid_Controller, 36
_timer1_init, 32	pid_Init, 36
timer2h	pid_Reset_Integrator, 36
timer2 init 33	nid h

42 INDEX

MAX_INT, 38	pidData_t
pid_Controller, 39	_pidh, <mark>38</mark>
pid_Init, 39	point, 9
pid_Reset_Integrator, 39	x, 10
pidData_t, 38	y, 10
ref	pos, 10
dc control .h, 16	th, 11
 -	
_sens	x, 11
dc_controlh, 17	y, 11
_set_pwm_0A	pos_dot, 11
pwmh, <mark>27</mark>	th_dot, 12
_set_pwm_0B	x_dot, 12
pwmh, 27	y_dot, 12
_set_pwm_1A	<i>,</i> _ ,
pwmh, 28	src/adch, 13
	src/dc_controlh, 14
_set_pwm_1B	src/formath, 18
pwmh, 28	
_set_speed	src/INT_0_1h, 19
dc_controlh, 17	src/kinematicsh, 20
_theta, 8	src/odometryh, 23
thetaA	src/pwmh, <mark>26</mark>
odometryh, 26	src/swarm_woldh, 28
_thetaB	src/timer0h, 29
odometryh, 26	src/timer1h, 31
	src/timer2h, 32
_thetaLR_to_pos	
kinematicsh, 22	src/usarth, 33
_ticksA	src/_pidc, 35
odometryh, 26	src/_pidh, <mark>37</mark>
_ticksB	src/asf.h, 40
odometryh, 26	
timer0 init	th
timer0h, 31	pos, 11
	th_dot
_timer0_init_prescaler	pos_dot, 12
timer0h, 31	poo_dot, 12
_timer1_init	usart_init
timer1h, 32	
_timer2_init	usarth, 34
timer2h, 33	V
_update_controller	X
dc_controlh, 17	point, 10
update omega	pos, 11
-· - ·	x_dot
kinematicsh, 23	pos_dot, 12
_update_thetaLR	
kinematicsh, 23	у
	point, 10
mat2, 8	pos, 11
MAX_INT	y_dot
_pidh, 38	pos_dot, 12
	ρος_αοι, 12
pid_Controller	
_pidh, 39	
 -	
PID_DATA, 9	
pid_Init	
_pidc, 36	
_pidh, <mark>39</mark>	
pid_Reset_Integrator	
_pidc, 36	
i	
→	