Faster Shortest Path Computation for Traffic Assignment

Boshen Chen Supervised by: Dr. Andrea Raith, Olga Perederieieva

Department of Engineering Science University of Auckland

• transportation network with supply and demand nodes

- transportation network with supply and demand nodes
- minimise travel times

- transportation network with supply and demand nodes
- minimise travel times
- arcs have non-linear travel times for capturing congestion effects

- transportation network with supply and demand nodes
- minimise travel times
- arcs have non-linear travel times for capturing congestion effects

Initialise: load all traffic on shortest path with free flow travel times

- transportation network with supply and demand nodes
- minimise travel times
- arcs have non-linear travel times for capturing congestion effects

- transportation network with supply and demand nodes
- minimise travel times
- arcs have non-linear travel times for capturing congestion effects

- transportation network with supply and demand nodes
- minimise travel times
- arcs have non-linear travel times for capturing congestion effects

- transportation network with supply and demand nodes
- minimise travel times
- arcs have non-linear travel times for capturing congestion effects

The Graph - 93,135 Origin-Destination Pairs

Dijkstra's Algorithm - Priority Queue

- pointer based Heap (C++ boost library)
 - Binomial
 - Pairing
 - Binary
 - Ternary
 - Skew
 - Fibonacci
- (red-black) binary search tree (C++ STL <set>)
- array based Heap (C++ STL <pri>ority_queue>)

Dijkstra's Algorithm - Priority Queue

preprocessing

- preprocessing
 - A* search combined with landmark distances

- preprocessing
 - A* search combined with landmark distances
- use information from previous iteration

- preprocessing
 - A* search combined with landmark distances
- use information from previous iteration
 - Incremental heuristic search Lifelong Planning A*

- preprocessing
 - A* search combined with landmark distances
- use information from previous iteration
 - Incremental heuristic search Lifelong Planning A*
- avoid shortest path calculations if possible

- preprocessing
 - A* search combined with landmark distances
- use information from previous iteration
 - Incremental heuristic search Lifelong Planning A*
- avoid shortest path calculations if possible
 - most of the shortest paths do not change after the first few iterations