The Atmospheric General Circulation

September 9, 2019

Solar Insolation of the Earth

Solar Insolation of the Earth

Meridional Circulation

Meridional Circulation Hadley Cell (HC) 60 -30 Eq 30

Latitude

General Circulation

General Circulation

Conservation of Angular Momentum

Angular Momentum, M:

$$M = (u + \Omega a \sin \phi) a \sin \phi$$

Angular momentum conserving wind, u_M :

$$u_M = \frac{\Omega \, a^2 sin^2 \phi}{a \, cos \phi}$$

Radius of the earth: a = 6371 km

Angular velocity of the earth: $\Omega = 7.29(10^{-5})$ rad s⁻¹

This explains the existence of the subtropical jets at the poleward edge of the Hadley Cell!

Coriolis Force

Coriolis acceleration:

$$a_c = -2\overrightarrow{\Omega} \times \overrightarrow{U}$$

Coriolis parameter (f-plane approximation):

$$f = 2\Omega \sin \phi$$
 $a_c = \frac{\partial \vec{U}}{\partial t} = -f\hat{z} \times \vec{U}$

x-direction:
$$\frac{\partial u}{\partial t} = fv$$
 y-direction: $\frac{\partial v}{\partial t} = -fu$

This explains the latitudinal pattern of zonal surface winds!

Latitude

General Circulation

Latitude

Hydrological Pattern

Hydrological Pattern

Fig. 3. The long-term 1979–2001 annual mean E-P computed from monthly means of the vertically integrated atmospheric moisture budget using ERA-40 reanalyses every 6 h.