Non-Monotone GLS Simulation

Caleb Leedy

29 January 2024

Introduction

The goal of this report is to have a good idea about the effectiveness of using GLS estimation to combine nonmonotone missing data. This document defines the GLS estimators compares them to other estimators in several simulation studies.

Note to Dr. Kim (January 29, 2024)

This work does **not** reflect the updates from **note2.tex** in the Overleaf document. It mostly focuses on what I have been working on up to this point.

Non-Monotone Missingness and GLS Estimation

Non-Monotone Missingness

Let $Z = (X, Y_1, Y_2)'$. We want to estimate the parameter $\theta = E[g(Z)]$ for some integrable function g where we may not always observe Y_1 and Y_2 . Define segments that contain observations in which the same variables are observed as in Table 1.

Table 1: This table identifies which variables are observed in each segment. Since X is always observed, the subscript for each segment identifies which of variables Y_1 and Y_2 are in the segment based on the position of a 1.

Segment	Variables Observed
A_{00}	X
A_{10}	X, Y_1

Segment	Variables Observed
A_{01}	X,Y_2
A_{11}	X,Y_1,Y_2

We can also define a nested segment structure defined in Table 2.

Table 2: This table identifies which variables are observed in each segment. Since X is always observed, the subscript for each segment identifies which of variables Y_1 and Y_2 are in the segment based on the position of a 1.

Segment	Variables Observed
$\overline{A_{++}}$	X
A_{1+}	X, Y_1
A_{+1}	X,Y_2
A_{11}	X,Y_1,Y_2

The difference between these segments is the way in which they are nested. In Table 1, $A_{00} \perp A_{10} \perp A_{01} \perp A_{11}$ because each observation can only be in one of these segments. In Table 2, we have $A_{11} \subseteq A_{1+} \subseteq A_{++}$ and $A_{11} \subseteq A_{+1} \subseteq A_{++}$. If we define the entire dataset to be A then we have $A = A_{00} \cup A_{10} \cup A_{01} \cup A_{11}$ from Table 1 and $A = A_{++}$ from Table 2.

GLS Estimation

To conduct GLS estimation we define two estimators, $\hat{\theta}_1$ and $\hat{\theta}_2$. Let δ define the inclusion indicator into a particular segment and π be the probability of observing $\delta=1$. We assume that the selection probabilities π are known and iid for each observation. Then[^We follow the idea from Dr. Kim's note ``Efficient estimation under non-monotone missing data with planned missingness''], define $\theta_0=E[g_0(X)], \, \theta_1=E[g_1(X,Y_1)], \, \text{and} \, \theta_1=E[g_2(X,Y_2)].$ Let n be the number of observations and define the first GLS estimator $\hat{\theta}_1$ in Equation 1.

$$\hat{\theta}_{1} = \begin{bmatrix} n^{-1} \sum_{i=1}^{n} g_{0}(x_{i}) \\ n^{-1} \sum_{i=1}^{n} \frac{\delta_{10} + \delta_{11}}{\pi_{10} + \pi_{11}} g_{0}(x_{i}) \\ n^{-1} \sum_{i=1}^{n} \frac{\delta_{10} + \delta_{11}}{\pi_{10} + \pi_{11}} g_{1}(x_{i}, y_{1i}) \\ n^{-1} \sum_{i=1}^{n} \frac{\delta_{01} + \delta_{11}}{\pi_{01} + \pi_{11}} g_{0}(x_{i}) \\ n^{-1} \sum_{i=1}^{n} \frac{\delta_{01} + \delta_{11}}{\pi_{01} + \pi_{11}} g_{1}(x_{i}, y_{2i}) \\ n^{-1} \sum_{i=1}^{n} \frac{\delta_{11}}{\pi_{01}} g_{0}(x_{i}) \\ n^{-1} \sum_{i=1}^{n} \frac{\delta_{11}}{\pi_{11}} g_{1}(x_{i}, y_{1i}) \\ n^{-1} \sum_{i=1}^{n} \frac{\delta_{11}}{\pi_{11}} g_{2}(x_{i}, y_{2i}) \\ n^{-1} \sum_{i=1}^{n} \frac{\delta_{11}}{\pi_{11}} g(x_{i}, y_{1i}, y_{2i}) \end{bmatrix}.$$

$$(1)$$

This makes sense as a GLS estimator because we can express this as solving Equation 2.

$$\hat{\theta}_1 = 1_9 \tilde{\theta} + e_1 \tag{2}$$

In this case we have,

$$\tilde{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ E[g(Z)] \end{bmatrix} \text{ and } E[e_1] = 0.$$

To compute the GLS estimator we just need to compute $Var(e_1)$.

Likewise, we can construct a different GLS estimator which is a weighted average of components from Equation 3.

$$\hat{\theta}_{2} = \begin{bmatrix} n^{-1} \sum_{i=1}^{n} \frac{\delta_{00}}{\pi_{00}} g_{0}(x_{i}) \\ n^{-1} \sum_{i=1}^{n} \frac{\delta_{10}}{\pi_{10}} g_{0}(x_{i}) \\ n^{-1} \sum_{i=1}^{n} \frac{\delta_{10}}{\pi_{10}} g_{1}(x_{i}, y_{1i}) \\ n^{-1} \sum_{i=1}^{n} \frac{\delta_{01}}{\pi_{01}} g_{0}(x_{i}) \\ n^{-1} \sum_{i=1}^{n} \frac{\delta_{01}}{\pi_{01}} g_{1}(x_{i}, y_{2i}) \\ n^{-1} \sum_{i=1}^{n} \frac{\delta_{11}}{\pi_{11}} g_{0}(x_{i}) \\ n^{-1} \sum_{i=1}^{n} \frac{\delta_{11}}{\pi_{11}} g_{1}(x_{i}, y_{1i}) \\ n^{-1} \sum_{i=1}^{n} \frac{\delta_{11}}{\pi_{11}} g_{2}(x_{i}, y_{2i}) \\ n^{-1} \sum_{i=1}^{n} \frac{\delta_{11}}{\pi_{11}} g(x_{i}, y_{1i}, y_{2i}) \end{bmatrix}.$$

$$(3)$$

This is the approach that Dr. Fuller and I have been taking. Then,

$$\hat{\theta}_2 = 1_9 \theta + e_2 \text{ where } E[e_2] = 0.$$

We still need to compute the covariance matrix, $\operatorname{Var}(e_2)$. See Appendix A for the proof of the covariance matrices. Due to the strong non-independence of the $\hat{\theta}_1$, V_1 is very difficult to display. There are some examples of what specific values of the covariance matrix is in Appendix A.

We can compute $V_2 = Var(e_2)$ as,

$$V_2 = \begin{bmatrix} V_{2,1} & 0 & 0 & 0 \\ 0 & V_{2,2} & 0 & 0 \\ 0 & 0 & V_{2,3} & 0 \\ 0 & 0 & 0 & V_{2,4} \end{bmatrix} - E[g]^2 \mathbf{1}_4 \mathbf{1}_4'$$

where

$$V_{2,1} = \left(\frac{1}{\pi_{00}}\right) E[E[g \mid X]^2],$$

$$V_{2,2} = \left(\frac{1}{\pi_{10}}\right) \begin{bmatrix} E[E[g\mid X]^2] & E[E[g\mid X]^2] \\ E[E[g\mid X]^2] & E[E[g\mid X,Y_1]^2] \end{bmatrix},$$

$$V_{3,2} = \left(\frac{1}{\pi_{01}}\right) \begin{bmatrix} E[E[g \mid X]^2] & E[E[g \mid X]^2] \\ E[E[g \mid X]^2] & E[E[g \mid X, Y_2]^2] \end{bmatrix},$$

and

$$V_{4,2} = \left(\frac{1}{\pi_{11}}\right) \begin{bmatrix} E[E[g \mid X]^2] & E[E[g \mid X]^2] & E[E[g \mid X]^2] & E[E[g \mid X]^2] \\ E[E[g \mid X]^2] & E[E[g \mid X, Y_1]^2] & E[E[g \mid X, Y_1] E[g \mid X, Y_1] E[g \mid X, Y_1]^2] \\ E[E[g \mid X]^2] & E[E[g \mid X, Y_1] E[g \mid X, Y_2]] & E[E[g \mid X, Y_2]^2] & E[E[g \mid X, Y_2]^2] \\ E[E[g \mid X]^2] & E[E[g \mid X, Y_1]^2] & E[E[g \mid X, Y_2]^2] & E[g^2] \end{bmatrix}.$$

Then the GLS estimators are $\hat{\theta}_{1,GLS} = (1_9'V_1^{-1}1_9)^{-1}1_9'V_1^{-1}\hat{\theta}_1$ and $\hat{\theta}_{2,GLS} = (1_9'V_2^{-2}1_9)^{-1}1_9'V_2^{-1}\hat{\theta}_2$.

Simulation Studies

We use the following simulation setup

$$\begin{bmatrix} x \\ e_1 \\ e_2 \end{bmatrix} \stackrel{ind}{\sim} N \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \rho \\ 0 & \rho & 1 \end{bmatrix} \end{pmatrix}$$
$$y_1 = x + e_1$$
$$y_2 = \mu + x + e_2$$

This yields outcome variables Y_1 and Y_2 that are correlated both with X and additionally with each other. To generate the missingness pattern, we draw from a categorical distribution with selection probabilities $(\pi_{00}, \pi_{10}, \pi_{01}, \pi_{11})$. Each selection probability, π_{j_1, j_2} indicates the probability that an observation is selected into a segment A_{j_1, j_2} where A_{00} indicates that only X is observed, A_{10} means that X and Y_1 are observed, A_{01} has only X and Y_2 observed, and A_{11} observes X, Y_1 , and Y_2 .

In addition to varying the values of the parameters μ and ρ , there are two main factors of the simulation that change: the distribution of the categories and the parameter of interest, θ . In a **balanced** distribution, we have the following selection probabilities: $\pi_{00} = 0.2$, $\pi_{10} = 0.2$, $\pi_{01} = 0.2$, and $\pi_{11} = 0.4$. In the **unbalanced** distribution we have $\pi_{00} = 0.3$, $\pi_{10} = 0.4$,

 $\pi_{01}=0.1$, and $\pi_{11}=0.2$. The two types of θ values that we consider are a linear estimate, $\theta=E[g(Z)]=E[Y_2]$ and a non-linear estimate, $\theta=E[g(Z)]=E[Y_1^2Y_2]$.

There are several algorithms for comparison which are defined as the following:

$$Oracle = n^{-1} \sum_{i=1}^{n} g(Z_i)$$

$$CC = \frac{\sum_{i=1}^{n} \delta_{11} g(Z_i)}{\sum_{i=1}^{n} \delta_{11}}$$

$$IPW = \sum_{i=1}^{n} \frac{\delta_{11}}{\pi_{11}} g(Z_i)$$

Furthermore, we include four existing estimators that we have already proposed in the past: WLS, Prop, PropInd, and SemiDelta.

The estimator WLS is a a weight least square estimator derived in the following manner. We now consider a normal model:

$$\begin{pmatrix} x_i \\ e_{1i} \\ e_{2i} \end{pmatrix} \overset{ind}{\sim} N \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & \sigma_{11} & \sigma_{12} \\ 0 & \sigma_{12} & \sigma_{22} \end{bmatrix},$$

and define $y_{1i} = x_i + e_{1i}$ and $y_{2i} = \mu + x_i e_{2i}$. Then $b_1 = b_2 = 1$. We define $\bar{z}_k^{(ij)}$ as the mean of y_k in segment A_{ij} . This means that we have means $\bar{z}_1^{(11)}$, $\bar{z}_2^{(11)}$, $\bar{z}_1^{(10)}$, and $\bar{z}_2^{(01)}$. Let $W = [\bar{z}_1^{(11)}, \bar{z}_2^{(11)}, \bar{z}_2^{(10)}, \bar{z}_2^{(01)}]'$, then for $n_{ij} = |A_{ij}|$, we have

$$Z-M\mu \sim N(\vec{0},V)$$

where

$$M = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } V = \begin{bmatrix} \frac{\sigma_{11}}{n_{11}} & \frac{\sigma_{12}}{n_{11}} & 0 & 0 \\ \frac{\sigma_{12}}{n_{11}} & \frac{\sigma_{22}}{n_{11}} & 0 & 0 \\ 0 & 0 & \frac{\sigma_{11}}{n_{10}} & 0 \\ 0 & 0 & 0 & \frac{\sigma_{22}}{n_{01}} \end{bmatrix}.$$

Thus, the BLUE for $\mu = [\mu_1, \mu_2]'$ is

$$\hat{\mu} = (M'V^{-1}M)^{-1}M'V^{-1}W.$$

Hence, WLS is μ_2 as $g(X, Y_1, Y_2) = Y_2$.

The remaining three estimators are drived from the following expression where the values for β are provided in Table 3. These are good estimators to compare to because Prop is the original proposed estimator. PropInd has the same form as Prop except the values for β is different. PropInd shares the same values of β as all of the new models with constraints. SemiDelta is useful because it is the best estimator in general so far.

$$\hat{\theta} = \frac{\delta_{11}}{\pi_{11}} g(Z) + \beta_0(\delta, c_0) E[g(Z) \mid X] + \beta_1(\delta, c_1) E[g(Z) \mid X, Y_1] + \beta_2(\delta, c_2) E[g(Z) \mid X, Y_2].$$

Table 3: This table displays the values of β for different estimator types.

Estimator	$\beta_0(\delta,c_0)$	$\beta_1(\delta,c_1)$
Prop	$\left(1 - \frac{(\delta_{10} + \delta_{11})}{(\pi_{10} + \pi_{11})} - \frac{(\delta_{01} + \delta_{11})}{(\pi_{01} + \pi_{11})} + \frac{\delta_{11}}{\pi_{11}}\right)$	$\left(rac{\delta_{10} + \delta_{11}}{\pi_{10} + \pi_{11}} - rac{\delta_{11}}{\pi_{11}} ight)$
${\bf PropInd}$	$\left(1 - \frac{(\delta_{10})}{(\pi_{10})} - \frac{(\delta_{01})}{(\pi_{01})} + \frac{\delta_{11}}{\pi_{11}}\right)$	$\left(rac{\delta_{10}}{\pi_{10}}-rac{\delta_{11}}{\pi_{11}} ight)$
SemiDelta	$c_0 \left(rac{\delta_{11}}{\pi_{11}} - rac{\delta_{00}}{\pi_{00}} ight)$	$c_1 \left(rac{\delta_{11}}{\pi_{11}} - rac{\delta_{10}}{\pi_{10}} ight)$

The different estimators are evaluated on 1000 Monte Carlo runs. We test the estimators for bias and observe their standard deviation.

Table 4: Results from the balanced linear simulation. True values: $\theta = 5, \rho = 0.5$. The test conducted for the T-statistic and P-value is a two sample test to see if the estimator is unbiased. This simulation uses $Y_1 = x + \varepsilon_1$, $Y_2 = \mu + x + \varepsilon_2$ where $X \sim N(0,1)$ and $(\varepsilon_1, \varepsilon_2)$ come from a mean zero bivariate normal distribution with unit variance and covariance ρ . The segments are unbalanced with: $\pi_{11} = 0.4, \pi_{10} = 0.2, \pi_{01} = 0.2, \pi_{01} = 0.2, \pi_{01} = 0.2$

Algorithm	Bias	SD	Tstat	Pval
Oracle	-0.002	0.045	-1.669	0.048
CC	0.000	0.058	-0.208	0.417
IPW	0.011	0.212	1.687	0.046
WLS	-0.001	0.040	-0.743	0.229

Algorithm	Bias	SD	Tstat	Pval
Prop	-0.002	0.052	-1.179	0.119
PropOpt	-0.002	0.052	-1.149	0.125
SemiDelta	-0.002	0.052	-1.162	0.123
GLS1	-0.001	0.052	-0.848	0.198
GLS2	-0.001	0.052	-0.848	0.198

Table 5: Results from the balanced non-linear simulation. True values: $\theta=10, \rho=0.5$. The test conducted for the T-statistic and P-value is a two sample test to see if the estimator is unbiased. This simulation uses $Y_1=x+\varepsilon_1, Y_2=\mu+x+\varepsilon_2$ where $X\sim N(0,1)$ and $(\varepsilon_1,\varepsilon_2)$ come from a mean zero bivariate normal distribution with unit variance and covariance ρ . The segments are unbalanced with: $\pi_{11}=0.4, \pi_{10}=0.2, \pi_{01}=0.2, \pi_{01}=0.2$, and $\pi_{00}=0.2$.

Algorithm	Bias	SD	Tstat	Pval
Oracle	-0.037	0.528	-2.214	0.014
CC	-0.005	0.814	-0.196	0.422
IPW	0.018	0.912	0.626	0.266
Prop	-0.036	0.634	-1.808	0.035
PropOpt	-0.034	0.631	-1.704	0.044
SemiDelta	-0.037	0.637	-1.856	0.032
GLS1	-0.004	0.274	-0.513	0.304
GLS2	-0.004	0.273	-0.486	0.314

Table 6: Results from the unbalanced linear simulation. True values: $\theta = 5, \rho = 0.5$. The test conducted for the T-statistic and P-value is a two sample test to see if the estimator is unbiased. This simulation uses $Y_1 = x + \varepsilon_1$, $Y_2 = \mu + x + \varepsilon_2$ where $X \sim N(0,1)$ and $(\varepsilon_1, \varepsilon_2)$ come from a mean zero bivariate normal distribution with unit variance and covariance ρ . The segments are unbalanced with: $\pi_{11} = 0.2, \pi_{10} = 0.4, \pi_{01} = 0.1$, and $\pi_{00} = 0.3$.

Algorithm	Bias	SD	Tstat	Pval
Oracle	-0.002	0.045	-1.669	0.048
CC	0.001	0.083	0.263	0.396
IPW	0.010	0.357	0.872	0.192
WLS	0.000	0.054	-0.065	0.474
Prop	-0.002	0.063	-0.768	0.221
PropOpt	-0.001	0.063	-0.727	0.234
SemiDelta	-0.001	0.064	-0.342	0.366
GLS1	-0.001	0.064	-0.346	0.365
GLS2	-0.001	0.064	-0.346	0.365

Table 7: Results from the unbalanced non-linear simulation. True values: $\theta=10, \rho=0.5$. The test conducted for the T-statistic and P-value is a two sample test to see if the estimator is unbiased. This simulation uses $Y_1=x+\varepsilon_1, \ Y_2=\mu+x+\varepsilon_2$ where $X\sim N(0,1)$ and $(\varepsilon_1,\varepsilon_2)$ come from a mean zero bivariate normal distribution with unit variance and covariance ρ . The segments are unbalanced with: $\pi_{11}=0.2,$ $\pi_{10}=0.4,$ $\pi_{01}=0.1,$ and $\pi_{00}=0.3.$

Algorithm	Bias	SD	Tstat	Pval
Oracle	-0.037	0.528	-2.214	0.014
CC	0.007	1.196	0.179	0.429
IPW	0.023	1.405	0.520	0.302
Prop	-0.044	0.691	-2.027	0.021
PropOpt	-0.038	0.669	-1.784	0.037
SemiDelta	-0.032	0.674	-1.521	0.064
GLS1	-0.003	0.289	-0.322	0.374

Algorithm	Bias	SD	Tstat	Pval
GLS2	-0.003	0.288	-0.301	0.382

Appendix A: Computing the Covariance Matrices

Understanding the covariance matrices V_1 and V_2 require quite a few individual calculations. Here we demonstrate the covariance matrix by solving a general form and demonstrating what this means for a couple examples. Consider the estimators $\hat{\theta}_a$ and $\hat{\theta}_b$ where

$$\hat{\theta}_a = n^{-1} \sum_{i=1}^n f_a(\delta_{ai}, \pi_a) E[g \mid G_a(Z_i)] \text{ and } \hat{\theta}_b = n^{-1} \sum_{i=1}^n f_b(\delta_{bi}, \pi_b) E[g \mid G_b(Z_i)]$$

such that the coefficients f_a and f_b satisfy

$$E[f_a(\delta_{ai}, \pi_a) \mid Z] = 0 \text{ and } E[f_b(\delta_{bi}, \pi_b) \mid Z] = 0.$$

Let $f_{ab}=f_a(\delta_a,\pi_a)f_b(\delta_b,\pi_b)$. We consider two cases: Case 1 is when $G_a(Z)\subseteq G_b(Z)$ and Case 2 occurs when neither $G_a(Z)\not\subseteq G_b(Z)$ nor $G_b(Z)\not\subseteq G_a(Z)$. In Case 1, we have

$$\begin{split} &\operatorname{Cov}(\hat{\theta}_{a}, \hat{\theta}_{b}) \\ &= n^{-2} \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}(f_{a}(\delta_{ai}, \pi_{a}) E[g \mid G_{a}(Z_{i})], f_{b}(\delta_{bj}, \pi_{b}) E[g \mid G_{b}(Z_{j})]) \\ &= n^{-2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left\{ E[f_{a}(\delta_{ai}, \pi_{a}) E[g \mid G_{a}(Z_{i})] f_{b}(\delta_{bj}, \pi_{b}) E[g \mid G_{b}(Z_{j})]] \right\} \\ &= n^{-2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left\{ E[f_{a}(\delta_{ai}, \pi_{a}) E[g \mid G_{a}(Z_{i})] f_{b}(\delta_{bj}, \pi_{b}) E[g \mid G_{b}(Z_{j})]] \right\} \\ &= n^{-2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left\{ E[f_{a}(\delta_{ai}, \pi_{a}) E[g \mid G_{a}(Z_{i})] f_{b}(\delta_{bj}, \pi_{b}) E[g \mid G_{b}(Z_{j})]] - E[E[f_{a}(\delta_{ai}, \pi_{a}) E[g \mid G_{a}(Z_{i})] f_{b}(\delta_{bj}, \pi_{b}) E[g \mid G_{b}(Z_{j})]] - E[E[g \mid G_{a}(Z_{i})] f_{b}(E_{bj}, \pi_{b}) E[g \mid G_{b}(Z_{j})]] - E[E[g \mid G_{a}(Z_{i})] f_{b}(E_{bj}, \pi_{b}) E[g \mid G_{b}(Z_{j})]] - E[E[g \mid G_{a}(Z_{i})] f_{b}(E_{bj}, \pi_{b}) E[g \mid G_{b}(Z_{j})]] - E[g]^{2} \\ &= n^{-2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left\{ E[f_{a}(\delta_{ai}, \pi_{a}) E[g \mid G_{a}(Z_{i})] f_{b}(\delta_{bj}, \pi_{b}) E[g \mid G_{b}(Z_{j})]] - E[g]^{2} \right\} \\ &= n^{-2} \sum_{i=1}^{n} \left\{ E[f_{a}(\delta_{ai}, \pi_{a}) E[g \mid G_{a}(Z_{i})] f_{b}(\delta_{bj}, \pi_{b}) E[g \mid G_{b}(Z_{j})]] - E[g]^{2} \right\} \\ &= n^{-2} \sum_{i=1}^{n} \left\{ E[f_{a}(\delta_{ai}, \pi_{a}) E[g \mid G_{a}(Z_{i})] f_{b}(\delta_{bj}, \pi_{b}) E[g \mid G_{b}(Z_{i})]] \right\} \\ &+ \sum_{j=1,j\neq i}^{n} \left\{ E[f_{a}(\delta_{ai}, \pi_{a}) E[g \mid G_{a}(Z_{i})] f_{b}(\delta_{bj}, \pi_{b}) E[g \mid G_{b}(Z_{i})]] \right\} - E[g]^{2} \right\} \\ &= n^{-2} \sum_{i=1}^{n} \left\{ E[f_{a}(\delta_{ai}, \pi_{a}) E[g \mid G_{a}(Z_{i})] f_{b}(\delta_{bj}, \pi_{b}) E[g \mid G_{b}(Z_{i})]] \right\} - E[g]^{2} \\ &= n^{-2} \sum_{i=1}^{n} \left\{ E[f_{a}(\delta_{ai}, \pi_{a}) E[g \mid G_{a}(Z_{i})] f_{b}(\delta_{bi}, \pi_{b}) E[g \mid G_{b}(Z_{i})]] \right\} - E[g]^{2} \\ &= n^{-2} \sum_{i=1}^{n} \left\{ E[f_{a}(\delta_{ai}, \pi_{a}) E[g \mid G_{a}(Z_{i})] f_{b}(\delta_{bi}, \pi_{b}) E[g \mid G_{b}(Z_{i})]] \right\} - E[g]^{2} \\ &= n^{-2} \sum_{i=1}^{n} \left\{ E[f_{a}(\delta_{ai}, \pi_{a}) E[g \mid G_{a}(Z_{i})] E[g \mid G_{b}(Z_{i})] \right\} - E[g]^{2} \right\} - E[g]^{2} \\ &= n^{-2} \sum_{i=1}^{n} \left\{ E[f_{a}(\delta_{ai}, \pi_{a}) E[g \mid G_{a}(Z_{i})] E[g \mid G_{b}(Z_{i})] \right\} - E[g]^{2} \right\} - E[g]^{2} \\ &= n^{-2} \sum_{i=1}^{n} \left\{ E[f_{a}(\delta_{ai}, \pi_{a}) E[g \mid G_{a}(Z_{i})] E[g \mid G_{b}(Z_{i})] +$$

Since $G_a(Z) \subseteq G_b(Z)$,

$$\begin{split} &= n^{-2} \sum_{i=1}^n \left\{ E[f_{ab} \mid Z_i] E[E[E[g \mid G_a(Z_i)] E[g \mid G_b(Z_i)] \mid G_a(Z_i)]] + (n-1) E[g]^2 \right\} - E[g]^2 \\ &= n^{-2} \sum_{i=1}^n \left\{ E[f_{ab} \mid Z_i] E[E[g \mid G_a(Z_i)]^2] + (n-1) E[g]^2 \right\} - E[g]^2 \\ &= n^{-1} \left\{ E[f_{ab} \mid Z] E[E[g \mid G_a(Z)]^2] + (n-1) E[g]^2 \right\} - E[g]^2 \\ &= n^{-1} \left\{ E[f_{ab} \mid Z] E[E[g \mid G_a(Z)]^2] - E[g]^2 \right\} \end{split}$$

Case 2 is almost identical to Case 1, except that we do not gain anything from conditioning on the coarser variables. For this case, we have,

$$\begin{split} &\operatorname{Cov}(\hat{\theta}_a, \hat{\theta}_b) \\ &= n^{-2} \sum_{i=1}^n \sum_{j=1} \operatorname{Cov}(f_a(\delta_{ai}, \pi_a) E[g \mid G_a(Z_i)], f_b(\delta_{bj}, \pi_b) E[g \mid G_b(Z_j)]) \end{split}$$

Using the same logic as Case 1,

$$= n^{-2} \sum_{i=1}^n \left\{ E[f_{ab} \mid Z_i] E[E[g \mid G_a(Z_i)] E[g \mid G_b(Z_i)]] + (n-1) E[g]^2 \right\} - E[g]^2$$

Since $G_a(Z) \not\subseteq G_b(Z)$ and $G_b(Z) \not\subseteq G_a(Z)$,

$$= n^{-1} \left\{ E[f_{ab} \mid Z] E[E[g \mid G_a(Z)] E[g \mid G_b(Z)]] - E[g]^2 \right\}$$

As examples, this results in the following:

$$\begin{split} &\operatorname{Cov}\left(n^{-1}\sum_{i=1}^{n}\left(\frac{\delta_{10i}+\delta_{11i}}{\pi_{10}\pi_{11}}\right)E[g\mid x_{i}], \sum_{j=1}^{n}\left(\frac{\delta_{10j}+\delta_{11j}}{\pi_{10}\pi_{11}}\right)E[g\mid x_{j},y_{1j}], \right) \\ &= n^{-1}\left(\left(\frac{1}{\pi_{10}+\pi_{11}}\right)E[E[g\mid X]^{2}]-E[g]^{2}\right). \end{split}$$

and

$$\begin{split} &\operatorname{Cov}\{n^{-1}\sum_{i=1}^{n}\left(\frac{\delta_{01i}+\delta_{11i}}{\pi_{10}\pi_{11}}\right)E[g\mid x_{i},y_{2i}], \sum_{j=1}^{n}\left(\frac{\delta_{10j}+\delta_{11j}}{\pi_{10}\pi_{11}}\right)E[g\mid x_{j},y_{1j}], \} \\ &= n^{-1}\left(\left(\frac{\pi_{11}}{(\pi_{10}+\pi_{11})(\pi_{01}+\pi_{11})}\right)E[E[g\mid X,Y_{1}]E[g\mid X,Y_{2}]] - E[g]^{2}\right). \end{split}$$

Appendix B: Code for Simulations

```
gls_est1 <- function(df, gfun = "Y2", theta = NA, mean_x = 0, cov_e1e2 = 0) {
  df <- mutate(df, g_i = eval(rlang::parse_expr(gfun)))</pre>
  df_11 <- filter(df, delta_1 == 1, delta_2 == 1)</pre>
  df_10 <- filter(df, delta_1 == 1, delta_2 == 0)</pre>
  df_01 \leftarrow filter(df, delta_1 == 0, delta_2 == 1)
  df_00 \leftarrow filter(df, delta_1 == 0, delta_2 == 0)
  if (is.na(theta)) {
    theta <- opt_lin_est(df, gfun = "Y2", mean_x = mean_x, cov_y1y2 = cov_e1e2)
  # We use the population functional forms for gamma hat and v gamma
  if (gfun == "Y2") {
    Eg <- theta
    Egx <- theta + df$X
    Egxy1 \leftarrow theta + df$X + cov_e1e2 * (df$Y1 - df$X)
    Egxy2 <- df$Y2
    EEg2 \leftarrow theta^2 + 2
    EEgx2 \leftarrow theta^2 + 1
    EEgxy12 \leftarrow theta^2 + 1 + cov e1e2^2
    EEgxy22 \leftarrow theta^2 + 2
    EEgxy1Egxy2 \leftarrow theta^2 + 1 + cov_e1e2^2
  } else if (gfun == "Y1^2 * Y2") {
    Eg \leftarrow 2 * theta
    Egx <- df$X^3 + theta * df$X^2 + theta + 2 * df$X * cov_e1e2 + df$X
    Egxy1 \leftarrow df\$Y1^2 * (theta + df\$X + cov_e1e2 * (df\$Y1 - df\$X))
```

```
Egxy2 \leftarrow df\$Y2 * (df\$X^2 + 2 * cov_e1e2 * df\$X * (df\$Y2 - df\$X - theta) +
                      1 + cov_e1e2^2 * (df\$Y2 - df\$X - theta)^2 - cov_e1e2^2)
  EEg2 \leftarrow 12 * (theta^2 + 2 * cov_e1e2^2 + 4 * cov_e1e2 + 4)
  EEgx2 \leftarrow 6 * theta^2 + 4 * cov_e1e2^2 + 16 * cov_e1e2 + 22
  EEgxy12 \leftarrow 12 * (theta^2 + 3 * cov_e1e2^2 + 4 * cov_e1e2 + 3)
  EEgxy22 <-
    6 * theta^2 + 4 * theta^2 * cov e1e2^2 + 2 * theta^2 * cov e1e2^4 + 34 +
    32 * cov_e1e2 + 20 * cov_e1e2^2 + 16 * cov_e1e2^3 + 18 * cov_e1e2^4
  EEgxy1Egxy2 <-
    theta^2 * (6 + 4 * cov_e1e2^2 + 2 * cov_e1e2^4) + 22 + 24 * cov_e1e2 +
    26 * cov_e1e2^2 + 20 * cov_e1e2^3 + 18 * cov_e1e2^4 + 4 * cov_e1e2^5 +
    6 * cov_e1e2^6
} else {
  stop("We have only implemented two g-functions.")
}
g_11 \leftarrow mean(Egx)
g_21 <- mean((df$delta_10 + df$delta_11) / (df$prob_10 + df$prob_11) * (Egx))
g 22 <- mean((df$delta_10 + df$delta_11) / (df$prob_10 + df$prob_11) * (Egxy1))
g_31 <- mean((df$delta_01 + df$delta_11) / (df$prob_01 + df$prob_11) * (Egx))
g_33 <- mean((df$delta_01 + df$delta_11) / (df$prob_01 + df$prob_11) * (Egxy2))
g_41 <- mean(df$delta_11 / df$prob_11 * (Egx))</pre>
g_42 <- mean(df$delta_11 / df$prob_11 * (Egxy1))</pre>
g_43 <- mean(df$delta_11 / df$prob_11 * (Egxy2))</pre>
g_44 <- mean(df$delta_11 / df$prob_11 * (df$g_i))</pre>
gam_vec <- c(g_11, g_21, g_22, g_31, g_33, g_41, g_42, g_43, g_44)
v_{gam} \leftarrow matrix(rep(-Eg^2, 81), nrow = 9)
v_{gam}[1, 1] \leftarrow (EEgx2) - Eg^2
v_{gam}[1, 2] \leftarrow (EEgx2) - Eg^2
v_{gam}[1, 3] \leftarrow (EEgx2) - Eg^2
v_{gam}[1, 4] \leftarrow (EEgx2) - Eg^2
v_gam[1, 5] <- (EEgx2) - Eg^2
v_gam[1, 6] <- (EEgx2) - Eg^2
v_{gam}[1, 7] \leftarrow (EEgx2) - Eg^2
v_{gam}[1, 8] \leftarrow (EEgx2) - Eg^2
v_{gam}[1, 9] < (EEgx2) - Eg^2
v_gam[2, 1] <- v_gam[1, 2]
```

```
v_{gam}[3, 1] \leftarrow v_{gam}[1, 3]
v_gam[4, 1] <- v_gam[1, 4]
v_{gam}[5, 1] \leftarrow v_{gam}[1, 5]
v_{gam}[6, 1] \leftarrow v_{gam}[1, 6]
v_{gam}[7, 1] \leftarrow v_{gam}[1, 7]
v_gam[8, 1] <- v_gam[1, 8]
v_gam[9, 1] <- v_gam[1, 9]
v_gam[2, 2] <- 1 / (df$prob_10[1] + df$prob_11[1]) * (EEgx2) - Eg^2
v_gam[2, 3] <- 1 / (df$prob_10[1] + df$prob_11[1]) * (EEgx2) - Eg^2
v_gam[3, 2] <- v_gam[2, 3]
v_gam[3, 3] <- 1 / (df$prob_10[1] + df$prob_11[1]) * (EEgxy12) - Eg^2
v_gam[2, 4] <- df$prob_11[1] / ((df$prob_01[1] + df$prob_11[1]) * (df$prob_10[1] + df$pr
v_gam[2, 5] <- df$prob_11[1] / ((df$prob_01[1] + df$prob_11[1]) * (df$prob_10[1] + df$prob_11[1])
v_gam[2, 6] <- 1 / (df$prob_10[1] + df$prob_11[1]) * (EEgx2) - Eg^2
v_gam[2, 7] <- 1 / (df$prob_10[1] + df$prob_11[1]) * (EEgx2) - Eg^2
v_gam[2, 8] <- 1 / (df$prob_10[1] + df$prob_11[1]) * (EEgx2) - Eg^2
v_gam[2, 9] <- 1 / (df$prob_10[1] + df$prob_11[1]) * (EEgx2) - Eg^2
v_{gam}[4, 2] \leftarrow v_{gam}[2, 4]
v_gam[5, 2] <- v_gam[2, 5]
v_{gam}[6, 2] \leftarrow v_{gam}[2, 6]
v_gam[7, 2] <- v_gam[2, 7]
v_{gam}[8, 2] \leftarrow v_{gam}[2, 8]
v_gam[9, 2] <- v_gam[2, 9]
v_gam[3, 4] <- df$prob_11[1] / ((df$prob_01[1] + df$prob_11[1]) * (df$prob_10[1] + df$pr
v_gam[3, 5] <- df$prob_11[1] / ((df$prob_01[1] + df$prob_11[1]) * (df$prob_10[1] + df$pr
v_gam[3, 6] <- 1 / (df$prob_10[1] + df$prob_11[1]) * (EEgx2) - Eg^2
v_gam[3, 7] <- 1 / (df$prob_10[1] + df$prob_11[1]) * (EEgxy12) - Eg^2
v_gam[3, 8] <- 1 / (df$prob_10[1] + df$prob_11[1]) * (EEgxy1Egxy2) - Eg^2
v_gam[3, 9] <- 1 / (df$prob_10[1] + df$prob_11[1]) * (EEgxy12) - Eg^2</pre>
v_{gam}[4, 3] \leftarrow v_{gam}[3, 4]
v_{gam}[5, 3] \leftarrow v_{gam}[3, 5]
v_{gam}[6, 3] \leftarrow v_{gam}[3, 6]
v_{gam}[7, 3] \leftarrow v_{gam}[3, 7]
v_{gam}[8, 3] \leftarrow v_{gam}[3, 8]
v_{gam}[9, 3] \leftarrow v_{gam}[3, 9]
```

```
v_gam[4, 4] <- 1 / (df$prob_01[1] + df$prob_11[1]) * (EEgx2) - Eg^2
v_gam[4, 5] <- 1 / (df$prob_01[1] + df$prob_11[1]) * (EEgx2) - Eg^2
v_{gam}[5, 4] \leftarrow v_{gam}[4, 5]
v_gam[5, 5] <- 1 / (df$prob_01[1] + df$prob_11[1]) * (EEgxy22) - Eg^2
v_{gam}[4, 6] < 1 / (df prob_01[1] + df prob_11[1]) * (EEgx2) - Eg^2
v_gam[4, 7] <- 1 / (df$prob_01[1] + df$prob_11[1]) * (EEgx2) - Eg^2
v_{gam}[4, 8] \leftarrow 1 / (df prob_01[1] + df prob_11[1]) * (EEgx2) - Eg^2
v_gam[4, 9] <- 1 / (df$prob_01[1] + df$prob_11[1]) * (EEgx2) - Eg^2
v_gam[6, 4] <- v_gam[4, 6]
v_{gam}[7, 4] \leftarrow v_{gam}[4, 7]
v_{gam}[8, 4] \leftarrow v_{gam}[4, 8]
v_{gam}[9, 4] \leftarrow v_{gam}[4, 9]
v_{gam}[5, 6] < 1 / (df prob_01[1] + df prob_11[1]) * (EEgx2) - Eg^2
v_gam[5, 7] <- 1 / (df$prob_01[1] + df$prob_11[1]) * (EEgxy1Egxy2) - Eg^2
v_gam[5, 8] <- 1 / (df$prob_01[1] + df$prob_11[1]) * (EEgxy22) - Eg^2</pre>
v_gam[5, 9] <- 1 / (df$prob_01[1] + df$prob_11[1]) * (EEgxy22) - Eg^2
v_gam[6, 6] <- 1 / df$prob_11[1] * (EEgx2) - Eg^2
v_gam[6, 7] <- 1 / df$prob_11[1] * (EEgx2) - Eg^2
v_{gam}[7, 6] \leftarrow v_{gam}[6, 7]
v_gam[6, 8] <- 1 / df$prob_11[1] * (EEgx2) - Eg^2
v_gam[8, 6] <- v_gam[6, 8]
v_gam[6, 9] <- 1 / df$prob_11[1] * (EEgx2) - Eg^2
v_gam[9, 6] <- v_gam[6, 9]
v_gam[7, 7] <- 1 / df$prob_11[1] * (EEgxy12) - Eg^2
v_gam[7, 8] <- 1 / df$prob_11[1] * (EEgxy1Egxy2) - Eg^2</pre>
v_gam[8, 7] <- v_gam[7, 8]</pre>
v_{gam}[7, 9] \leftarrow 1 / df prob_11[1] * (EEgxy12) - Eg^2
v_{gam}[9, 7] \leftarrow v_{gam}[7, 9]
v_gam[8, 8] <- 1 / df$prob_11[1] * (EEgxy22) - Eg^2
v_{gam}[8, 9] \leftarrow 1 / df prob_11[1] * (EEgxy22) - Eg^2
v_{gam}[9, 8] \leftarrow v_{gam}[8, 9]
v_{gam}[9, 9] \leftarrow 1 / df prob_11[1] * (EEg2) - Eg^2
v_gam <- v_gam / nrow(df)</pre>
one_mat <- matrix(rep(1, length(gam_vec)), ncol = 1)</pre>
```

```
dmat <- (t(one_mat) %*% MASS::ginv(v_gam) %*% one_mat)</pre>
  nmat <- t(one_mat) %*% MASS::ginv(v_gam) %*% gam_vec</pre>
  return(as.numeric(nmat / dmat))
}
gls_est2 <- function(df, gfun = "Y2", theta = NA, mean_x = 0, cov_e1e2 = 0) {
  df <- mutate(df, g_i = eval(rlang::parse_expr(gfun)))</pre>
  df_11 <- filter(df, delta_1 == 1, delta_2 == 1)</pre>
  df_10 <- filter(df, delta_1 == 1, delta_2 == 0)</pre>
  df_01 <- filter(df, delta_1 == 0, delta_2 == 1)</pre>
  df_00 \leftarrow filter(df, delta_1 == 0, delta_2 == 0)
  if (is.na(theta)) {
    theta <- opt_lin_est(df, gfun = "Y2", mean_x = mean_x, cov_y1y2 = cov_e1e2)
  }
  # We use the population functional forms for gamma_hat and v_gamma
  if (gfun == "Y2") {
    Eg <- theta
    Egx <- theta + df$X
    Egxy1 <- theta + df$X + cov_e1e2 * (df$Y1 - df$X)
    Egxy2 <- df$Y2
    EEg2 \leftarrow theta^2 + 2
    EEgx2 \leftarrow theta^2 + 1
    EEgxy12 \leftarrow theta^2 + 1 + cov_e1e2^2
    EEgxy22 \leftarrow theta^2 + 2
    EEgxy1Egxy2 \leftarrow theta^2 + 1 + cov_e1e2^2
  } else if (gfun == "Y1^2 * Y2") {
    Eg \leftarrow 2 * theta
    Egx \leftarrow dfX^3 + theta * dfX^2 + theta + 2 * dfX * cov_e1e2 + dfX
    Egxy1 \leftarrow df\$Y1^2 * (theta + df\$X + cov_e1e2 * (df\$Y1 - df\$X))
    Egxy2 < -df$Y2 * (df$X^2 + 2 * cov_e1e2 * df$X * (df$Y2 - df$X - theta) +
                        1 + cov_e1e2^2 * (df$Y2 - df$X - theta)^2 - cov_e1e2^2
    EEg2 \leftarrow 12 * (theta^2 + 2 * cov_e1e2^2 + 4 * cov_e1e2 + 4)
    EEgx2 \leftarrow 6 * theta^2 + 4 * cov_e1e2^2 + 16 * cov_e1e2 + 22
    EEgxy12 \leftarrow 12 * (theta^2 + 3 * cov_e1e2^2 + 4 * cov_e1e2 + 3)
```

```
EEgxv22 <-
    6 * theta^2 + 4 * theta^2 * cov_e1e2^2 + 2 * theta^2 * cov_e1e2^4 + 34 +
    32 * cov_e1e2 + 20 * cov_e1e2^2 + 16 * cov_e1e2^3 + 18 * cov_e1e2^4
  EEgxy1Egxy2 <-
    theta^2 * (6 + 4 * cov_e1e2^2 + 2 * cov_e1e2^4) + 22 + 24 * cov_e1e2 +
    26 * cov_e1e2^2 + 20 * cov_e1e2^3 + 18 * cov_e1e2^4 + 4 * cov_e1e2^5 +
    6 * cov_e1e2^6
} else {
  stop("We have only implemented two g-functions.")
g_11 <- mean(df$delta_00 / df$prob_00 * (Egx))</pre>
g_21 <- mean(df$delta_10 / df$prob_10 * (Egx))</pre>
g_22 <- mean(df$delta_10 / df$prob_10 * (Egxy1))</pre>
g_31 <- mean(df$delta_01 / df$prob_01 * (Egx))</pre>
g_33 <- mean(df$delta_01 / df$prob_01 * (Egxy2))</pre>
g_41 <- mean(df$delta_11 / df$prob_11 * (Egx))</pre>
g_42 <- mean(df$delta_11 / df$prob_11 * (Egxy1))</pre>
g_43 <- mean(df$delta_11 / df$prob_11 * (Egxy2))</pre>
g_44 <- mean(df$delta_11 / df$prob_11 * (df$g_i))</pre>
gam_vec \leftarrow c(g_11, g_21, g_22, g_31, g_33, g_41, g_42, g_43, g_44)
v_{gam} \leftarrow matrix(rep(-Eg^2, 81), nrow = 9)
v_{gam}[1, 1] \leftarrow 1 / df prob_00[1] * (EEgx2) - Eg^2
v_gam[2, 2] <- 1 / df$prob_10[1] * (EEgx2) - Eg^2
v_{gam}[2, 3] \leftarrow 1 / df prob_10[1] * (EEgx2) - Eg^2
v_{gam}[3, 2] \leftarrow v_{gam}[2, 3]
v_{gam}[3, 3] \leftarrow 1 / df prob_10[1] * (EEgxy12) - Eg^2
v_{gam}[4, 4] \leftarrow 1 / df prob_01[1] * (EEgx2) - Eg^2
v_{gam}[4, 5] \leftarrow 1 / df prob_01[1] * (EEgx2) - Eg^2
v_{gam}[5, 4] \leftarrow v_{gam}[4, 5]
v_{gam}[5, 5] \leftarrow 1 / df prob_01[1] * (EEgxy22) - Eg^2
v_{gam}[6, 6] \leftarrow 1 / df prob_{11}[1] * (EEgx2) - Eg^{2}
v_{gam}[6, 7] \leftarrow 1 / df prob_11[1] * (EEgx2) - Eg^2
v_{gam}[7, 6] \leftarrow v_{gam}[6, 7]
v_{gam}[6, 8] \leftarrow 1 / df prob_11[1] * (EEgx2) - Eg^2
```

```
v_gam[8, 6] <- v_gam[6, 8]
  v_{gam}[6, 9] \leftarrow 1 / df prob_11[1] * (EEgx2) - Eg^2
  v_gam[9, 6] <- v_gam[6, 9]
  v_gam[7, 7] <- 1 / df$prob_11[1] * (EEgxy12) - Eg^2
  v_gam[7, 8] <- 1 / df$prob_11[1] * (EEgxy1Egxy2) - Eg^2</pre>
  v_{gam}[8, 7] \leftarrow v_{gam}[7, 8]
  v_gam[7, 9] <- 1 / df$prob_11[1] * (EEgxy12) - Eg^2
  v_{gam}[9, 7] \leftarrow v_{gam}[7, 9]
  v_gam[8, 8] <- 1 / df$prob_11[1] * (EEgxy22) - Eg^2
  v_gam[8, 9] <- 1 / df$prob_11[1] * (EEgxy22) - Eg^2
  v_gam[9, 8] <- v_gam[8, 9]
  v_gam[9, 9] <- 1 / df$prob_11[1] * (EEg2) - Eg^2
  v_gam <- v_gam / nrow(df)</pre>
  one_mat <- matrix(rep(1, length(gam_vec)), ncol = 1)</pre>
  dmat <- (t(one_mat) %*% MASS::ginv(v_gam) %*% one_mat)</pre>
  nmat <- t(one_mat) %*% MASS::ginv(v_gam) %*% gam_vec</pre>
  return(as.numeric(nmat / dmat))
}
```