SNE3002 Linear Algebra – 2025 Spring

Transpose, Elementary Matrices and Linear Transformations

March 12, 2025

Def. Transpose of a Matrix

Let $A \in \mathbb{R}^{m \times n}$, then the transpose A^{T}

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}, \qquad A^{\top} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

Remark. Properties of the Transpose

Let *A* and *B* are matrices and *r* a scalar.

- 1) $(A^{T})^{T} = A$
- 2) $(A + B)^{\mathsf{T}} = A^{\mathsf{T}} + B^{\mathsf{T}}$
- 3) $(rA)^{\mathsf{T}} = rA^{\mathsf{T}}$
- 4) $(AB)^{T} = B^{T}A^{T}$
- 5) $(A^{-1})^{T} = (A^{T})^{-1}$, if *A* is invertible
- 6) $det(A^{T}) = det(A)$, if A is square

> Q. Show $(A^{-1})^{\top} = (A^{\top})^{-1}$, if *A* is invertible --- (5)

> Q. Show $det(A^{T}) = det(A)$, if A is square --- (6) recall: $det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{in}C_{in}$

- $> v \cdot w = v^{\mathsf{T}} w$
- > A is said to be symmetric if $A^{T} = A$
- > A is said to be antisymmetric (skew symmetric) if $A^{T} = -A$
- > Let $A \in \mathbb{R}^{n \times m}$, then $A^{\mathsf{T}}A$ and AA^{T} are symmetric

> Q. Find a matrix that is both symmetric and antisymmetric

- > Q. Show any square matrix can be represented as a sum of a symmetric and antisymmetric matrix.
- > Q. Show that if A is an invertible square matrix, then so is A^{T}
- > Q. Show that A is invertible and symmetric, then so is A^{-1}

- > Recall elementary row operations
 - Switch two rows
 - Multiply a row by a non-zero number
 - Add a multiple of one row to another row

Def. Elementary Matrices and Row Operations

Let $E \in \mathbb{R}^{n \times n}$, then E is an elementary matrix if it is the result of applying one elementary row operation to the $n \times n$ identity matrix

Ex.

$$E_{switch} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad E_{multiply} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad E_{add} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & k & 1 \end{bmatrix}$$

- > Every elementary matrix is invertible, and its inverse is also an elementary matrix
 - If E is obtained by switching rows i and j, then E^{-1} is also obtained by switching rows i and j
 - If E is obtained by multiplying rows i and j, then E^{-1} is also obtained by switching rows i and j
 - If E is obtained by adding k times row i to row j, then E^{-1} is obtained by subtracting k times row i from row j
- > Ex.

$$E_{switch} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad E_{multiply} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad E_{add} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & k & 1 \end{bmatrix}$$

$$E_{switch}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad E_{multiply}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/k & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad E_{add}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -k & 1 \end{bmatrix}$$

> Let $A \in \mathbb{R}^{m \times n}$ and R be its reduced echelon form. There exists an invertible $U \in \mathbb{R}^{n \times n}$ s.t.

$$R = UA$$

where U can be computed as the produce of elementary matrices

$$U = E_k E_{k-1} \cdots E_1$$

> Let $A \in \mathbb{R}^{m \times n}$, then A is invertible if and only if it can be written as a product of elementary matrices.

Proof. If A is an invertible $n \times n$ -matrix, then its reduced echelon form is the $n \times n$ identity matrix I. By Theorem 4.57, we can write I = UA, where $U = E_k \cdots E_2 E_1$ is a product of elementary matrices. Then

$$A = U^{-1} = E_1^{-1} E_2^{-1} \cdots E_k^{-1}.$$

By Theorem 4.55, if E_i is an elementary matrix, then so is E_i^{-1} . Therefore, A has been written as a product of elementary matrices. Conversely, if A can be written as a product of elementary matrices, then A is clearly invertible, because each elementary matrix is invertible.

> Q.
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$
. Write A as a product of elementary matrices

Def. Linear Function

A function $f: \mathbb{R}^p \to \mathbb{R}^q$ is called linear if

- 1) f(x + y) = f(x) + f(y), for all vectors $\forall x, y \in \mathbb{R}^p$
- 2) f(ax) = af(x), for all scalars $\forall a \in \mathbb{R}$ and all vectors $\forall x \in \mathbb{R}^p$

- > The linear function f is given by $q \times p$ matrix. f(x) = Ax
- > What about f(x) = Ax + b?
 - Ex. f(x) = 2x + 5, is it a linear function?

- > Linear maps can be categorized geometrically,
 - Scaling
 - Rotation
 - Reflection
 - Shear
 - ...

- > Linear maps
 - Origin remains fixed
 - Straight lines remain straight
 - Parallelism is preserved

> Image sitting in \mathbb{R}^2

Translation

$$x' = Ax + b$$

$$\mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Def. Linear Function

A function $f: \mathbb{R}^p \to \mathbb{R}^q$ is called **affine** or **affine linear** if there exists a constant vector $\mathbf{b} \in \mathbb{R}^q$ s.t.

$$f(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$$

- There is a trick to represent the affine map as a linear map in an augmented space
 - Extend the vector $\widetilde{\mathbf{x}} = [\mathbf{x}^{\mathsf{T}}, 1]^{\mathsf{T}}$
 - Augment the transformation matrix $\tilde{A} = \begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix}$
 - New linear map $x' = \widetilde{A}\widetilde{x}$
- > We call this homogeneous coordinates

 \rightarrow Q. Find the reflection matrix A for the line y = x

> Q. Find the reflection matrix A for the line x=4

- > Check
 - <u>Affine Transformations · Arcane Algorithm Archive</u>
 - Quick Understanding of Homogeneous Coordinates for Computer Graphics