VEŽBE IZ MATEMATIČKE ANALIZE I

Novi Sad, 2020.

Sadržaj

1	Vežbe II.2			;
	1.1	Diferencijalni račun		
		1.1.1	Izvod inverzne funkcije	
		1.1.2	Izvodi funkcije zadate u parametarskom obliku	
		1.1.3	Izvod funkcije zadate implicitno	
	1.2	Lopitalovo pravilo		

1. Vežbe II.2

1.1. Diferencijalni račun

1.1.1. Izvod inverzne funkcije

Neka je f(x) neprekidna strogo monotona funkcija definisana nad intervalom (a,b), a $f^{-1}(x)$ njena inverzna funkcija. Ako funkcija f(x) ima izvod f'(x) u tački $x \in (a,b)$, pri čemu je $f'(x) \neq 0$, tada funkcija $f^{-1}(x)$ ima izvod u tački y = f(x) i važi

(1.1)
$$(f^{-1})'(y) = \frac{1}{f'(x)}, \text{ tj. } y'_x = \frac{1}{x'_y}.$$

U nastavku koristićemo Lajbnicovu oznaku za izvod $f'(x) = \frac{dy}{dx}$, gde je dy diferencijal funkcije i dx diferencijal nezavisne promenljive. Drugi izvod inverzne funkcije

$$(1.2) \quad y_x'' = \frac{dy_x'}{dx} = \frac{d}{dx} \left(\frac{1}{x_y'}\right) = \frac{d}{dy} \left(\frac{1}{x_y'}\right) \cdot \underbrace{\frac{dy}{dx}}_{y_x' = \frac{1}{x_y'}} = -\frac{x_y''}{(x_y')^2} \cdot \frac{1}{x_y'} = -\frac{x_y''}{(x_y')^3},$$

Treći izvod inverzne funkcije

$$\begin{split} y_x''' &= \frac{dy_x''}{dx} = \frac{d}{dx}(-\frac{x_y''}{(x_y')^3}) = \frac{d}{dy}(-\frac{x_y''}{(x_y')^3}) \cdot \frac{dy}{dx} \\ &= -\frac{x_y'''(x_y')^3 - x_y'' \cdot 3(x_y')^2 x_y''}{(x_y')^6} \cdot \frac{1}{x_y'} \\ &= \frac{3(x_y'')^2 - x_y''' \cdot x_y'}{(x_y')^5}. \end{split}$$

Izvodi reda većeg od tri izvode se na sličan način.

Zadatak 1.1. Naći y'' za $y = \operatorname{tg}(x + y)$.

Rešenje. Iz izraza $y=\operatorname{tg}\left(x+y\right)$ možemo x izraziti na sledeći način

$$\operatorname{arctg} y = x + y \Rightarrow x = \operatorname{arctg} y - y$$

Izračunaćemo prvo x_y' i y_x'

$$\begin{split} x_y' &= \frac{1}{1+y^2} - 1 = -\frac{y^2}{1+y^2}; \\ y_x' &= \frac{1}{x_y'} = -\frac{1+y^2}{y^2} = -\frac{1}{y^2} - 1. \end{split}$$

Dakle, primenom (1.2) dobijamo da je

$$y_x'' = (y_x')_y' \cdot y_x' = \left(-\frac{1}{y^2} - 1\right)_y' \cdot \left(-\frac{1}{y^2} - 1\right) = \frac{2}{y^3} \left(-\frac{1}{y^2} - 1\right) = -\frac{2}{y^5} - \frac{2}{y^3}.$$

1.1.2. Izvodi funkcije zadate u parametarskom obliku

Neka su nad intervalom $I \subset \mathbb{R}$ definisane dve realne funkcije $x = \varphi(t)$ i $y = \psi(t), t \in I$ i neka za funkciju $\varphi(t)$ postoji inverzna funkcija $t = \varphi^{-1}(x)$. Tada je složena funkcija $y = \psi(\varphi^{-1}(x)) = f(x)$, definisana nad skupom vrednosti $\{ \varphi(t) : t \in I \}$ funkcije $\varphi(t)$. Kažemo da je sa $x = x(t), y = y(t), t \in I$, funkcija f(x) zadata u parametarskom obliku pri čemu ćemo pomoćnu promenljivu t nazvati parametrom.

Neka je data funkcija y = f(x) u parametarskom obliku $x = \varphi(t), y = \psi(t), t \in (a, b)$. Ako neprekidne funkcije $\varphi(t)$ i $\psi(t)$ imaju izvode u tački $t \in (a, b)$, i ukoliko je $\varphi'(t) \neq 0$, tada funkcija y = f(x) ima izvod u tački t i važi

(1.3)
$$f'(x) = \frac{\psi'(t)}{\varphi'(t)}, \quad \text{tj.} \quad y'_x = \frac{y'_t}{x'_t}.$$

Drugi izvod funkcije zadate u parametarskom obliku

(1.4)
$$y_x'' = \frac{dy_x'}{dx} = \frac{dy_x'}{dt} \cdot \frac{dt}{dx} = (y_x')_t' \cdot t_x' = \frac{(y_x')_t'}{x_t'}.$$

$$\left(y_x'' = \frac{dy_x'}{dx} = \frac{d}{dx}\left(\frac{y_t'}{x_t'}\right) = \frac{d}{dt}\left(\frac{y_t'}{x_t'}\right) \cdot \frac{dt}{dx} = \frac{y_t'' \cdot x_t' - y_t' \cdot x_t''}{(x_t')^2} \cdot \frac{1}{x_t'} = \frac{y_t'' \cdot x_t' - y_t' \cdot x_t''}{(x_t')^3}\right)$$

Treći izvod funkcije zadate u parametarskom obliku

(1.5)
$$y_x''' = \frac{dy_x''}{dx} = \frac{dy_x''}{dt} \cdot \frac{dt}{dx} = (y_x'')_t' \cdot t_x' = \frac{(y_x'')_t'}{x_t'}.$$

Izvodi reda većeg od tri izvode se na sličan način.

Zadatak 1.2. Naći y'' za $x = \ln t$ i $y = t + \frac{1}{t}$. Rešenje. Funkcija je zadata u parametarskom obliku.

$$y'_t = 1 - \frac{1}{t^2} = \frac{t^2 - 1}{t^2};$$

 $x'_t = \frac{1}{t}.$

Sada primenimo (1.3) dobijamo da je

$$y'_x = \frac{y'_t}{x'_t} = \frac{\frac{t^2 - 1}{t^2}}{\frac{1}{t}} = \frac{t^2 - 1}{t} = t - \frac{1}{t}.$$

Traženi drugi izvod funkcije dobijamo primenom (1.4)

$$\begin{split} (y_x')_t' &= 1 + \frac{1}{t^2} = \frac{t^2 + 1}{t^2} \\ y_x'' &= \frac{(y_x')_t'}{x_4'} = \frac{\frac{t^2 + 1}{t^2}}{\frac{1}{t}} = \frac{t^2 + 1}{t} = t + \frac{1}{t}. \end{split}$$

1.1.3. Izvod funkcije zadate implicitno

Ako je funkcija y = f(x) zadata implicitno sa F(x,y) = 0, prvo se odredi izvod leve i desne strane jednakosti po x, vodeći računa da je y funkcija koja zavisi od x. Dakle, izvod y' kada se izračuna je takođe u implicitnom obliku. Drugi izvod funkcije se prema tome izračunava kao izvod implicitno zadate funkcije.

Zadatak 1.3. Naći y'' za arctg $\frac{y}{x}=\ln\sqrt{x^2+y^2}$. Rešenje. Izračunaćemo izvod leve i desne strane jednakosti.

$$\arctan \frac{y}{x} = \ln \sqrt{x^2 + y^2} / \frac{1}{1 + \frac{y^2}{x^2}} \cdot \frac{y'x - y}{x^2} = \frac{1}{\sqrt{x^2 + y^2}} \cdot \frac{1}{2 \cdot \sqrt{x^2 + y^2}} \cdot (2x + 2yy')$$

Sređivanjem izraza dobijamo

$$\frac{y'x - y}{\frac{x^2 + y^2}{x^2} \cdot x^2} = \frac{x + yy'}{x^2 + y^2}$$

$$y'x - y = x + yy' \Rightarrow y'x - yy' = x + y \Rightarrow y'(x - y) = x + y \Rightarrow y' = \frac{x + y}{x - y}$$

Drugi izvod računamo na sledeći način

$$\begin{split} y'' &= (y')' = \left(\frac{x+y}{x-y}\right)' = \frac{(1+y')(x-y) - (x+y)(1-y')}{(x-y)^2} \\ &= \frac{x-y+xy'-yy'-(x-xy'+y-yy')}{(x-y)^2} \\ &= \frac{2xy'-2y}{(x-y)^2} = \frac{2x \cdot \frac{x+y}{x-y}-2y}{(x-y)^2} = \frac{2x^2+2xy-2xy+2y^2}{(x-y)^3} = \frac{2(x^2+y^2)}{(x-y)^3}. \end{split}$$

1.2. Lopitalovo pravilo

Neodređen izraz oblika " $\frac{0}{0}$ " i " $\frac{\infty}{\infty}$ "

Količnik $\frac{f(x)}{g(x)}$ ima neodređeni oblik " $\frac{0}{0}$ " kada $x \to a$, ako važi da je

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0,$$

odnosno neodređeni oblik " $\frac{\infty}{\infty}$ " ako $f(x) \to \pm \infty$ i $g(x) \to \pm \infty$ kada $x \to a$. Za nalaženje granične vrednosti neodređenog oblika " $\frac{0}{0}$ " i " $\frac{\infty}{\infty}$ " treba proveriti da li granična vrednost $\lim_{x \to a} \frac{f(x)}{g(x)}$ postoji ili ne. Za nalaženje granične vrednosti $\lim_{x \to a} \frac{f(x)}{g(x)}$, često su korisna tzv. Lopitalova pravila.

Neka su funkcije $f:(a,b) \to \mathbb{R}$ i $g:(a,b) \to \mathbb{R}$ diferencijabilne nad otvorenim intervalom (a,b) i pri tom je $g'(x) \neq 0$, $x \in (a,b)$ i neka je:

$$\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{+}} g(x) = 0.$$

Ako postoji $\lim_{x\to a^+} \frac{f'(x)}{g'(x)} = A$ tada postoji i $\lim_{x\to a^+} \frac{f(x)}{g(x)}$ i važi jednakost:

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)} = A.$$

Ako $\frac{f'(x)}{g'(x)}\to\pm\infty,$ kada $x\to a^+,$ tada i $\frac{f(x)}{g(x)}\to\pm\infty,$ kada $x\to a^+.$

Zadatak 1.4. Naći
$$\lim_{x\to 0} \frac{e^{\lg x} - e^{-\lg x} - 2x}{2x^3}$$
.

Rešenje. Ako pustimo da $x\to 0$ dobijamo izraz " $\frac{0}{0}$ " i primenjujemo Lopitalovo pravilo. Lopitalovo pravilo primenjujemo uzastopno 3 puta.

$$\lim_{x \to 0} \frac{e^{\lg x} - e^{-\lg x} - 2x}{2x^3} \stackrel{"\frac{0}{0}"}{\stackrel{=}{=}} \lim_{x \to 0} \frac{e^{\lg x} \cdot \frac{1}{\cos^2 x} - e^{-\lg x} \cdot \left(-\frac{1}{\cos^2 x}\right) - 2}{6x^2}$$

$$= \frac{1}{6} \cdot \lim_{x \to 0} \frac{1}{\cos^2 x} \cdot \lim_{x \to 0} \frac{e^{\lg x} + e^{-\lg x} - 2\cos^2 x}{x^2}$$

$$\stackrel{"\frac{0}{0}"}{\stackrel{=}{=}} \frac{1}{6} \cdot \lim_{x \to 0} \frac{e^{\lg x} \cdot \frac{1}{\cos^2 x} + e^{-\lg x} \left(-\frac{1}{\cos^2 x}\right) - 2 \cdot 2\cos x \left(-\sin x\right)}{2x}$$

$$= \frac{1}{12} \cdot \lim_{x \to 0} \frac{e^{\lg x} - e^{-\lg x} + 4\sin x \cdot \cos^3 x}{x \cdot \cos^2 x}$$

$$= \frac{1}{12} \cdot \lim_{x \to 0} \frac{e^{\lg x} - e^{-\lg x} + 4\sin x \cdot \cos^3 x}{x}$$

$$\stackrel{"\frac{0}{0}"}{\stackrel{=}{=}} \frac{1}{12} \cdot \lim_{x \to 0} \frac{e^{\lg x} \cdot \frac{1}{\cos^2 x} - e^{-\lg x} \cdot \left(-\frac{1}{\cos^2 x}\right) + 4\cos^4 x - 12\sin^2 x \cdot \cos^2 x}{1}$$

$$= \frac{1}{12} \cdot \lim_{x \to 0} \left(\frac{e^{\lg x}}{\cos^2 x} + \frac{e^{-\lg x}}{\cos^2 x} + 4\cos^4 x - 12\sin^2 x \cdot \cos^2 x\right)$$

$$= \frac{1}{12} (1 + 1 + 4) = \frac{6}{12} = \frac{1}{2}.$$

Zadatak 1.5. Naći $\lim_{x\to\infty}\frac{x^n}{e^{ax}}$, a>0, n>0.

Rešenje. Ako pustimo da $x \to \infty$ dobijamo izraz " $\frac{\infty}{\infty}$ " i primenjujemo Lopitalovo pravilo. Lopitalovo pravilo primenjujemo uzastopno n puta.

$$\lim_{x \to \infty} \frac{x^n}{e^{ax}} \stackrel{" \stackrel{\infty}{=} "}{\stackrel{\infty}{=}} \lim_{x \to \infty} \frac{n \cdot x^{n-1}}{a \cdot e^{ax}} = \frac{n}{a} \cdot \lim_{x \to \infty} \frac{x^{n-1}}{e^{ax}} \stackrel{" \stackrel{\infty}{=} "}{\stackrel{\infty}{=}} \frac{n}{a} \cdot \lim_{x \to \infty} \frac{(n-1)x^{n-2}}{a \cdot e^{ax}}$$
$$= \frac{n(n-1)}{a^2} \cdot \lim_{x \to \infty} \frac{x^{n-2}}{e^{ax}} \stackrel{" \stackrel{\infty}{=} "}{\stackrel{\infty}{=}} \cdots \stackrel{" \stackrel{\infty}{=} "}{\stackrel{\infty}{=}} \frac{n!}{a^n} \cdot \lim_{x \to \infty} \frac{1}{e^{ax}} = 0.$$

Zadatak 1.6. Naći $\lim_{x\to 0} \frac{e^{-\frac{1}{x^2}}}{x^{100}}$.

Rešenje.

$$\begin{split} \lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x^{100}} &= \lim_{x \to 0} \frac{x^{-100}}{e^{\frac{1}{x^2}}} \overset{'' \xrightarrow{\cong} ''}{\overset{\cong}{=}} \lim_{x \to 0} \frac{-100 \cdot x^{-101}}{e^{\frac{1}{x^2}} \cdot \left(-\frac{2}{x^3}\right)} \\ &= 50 \cdot \lim_{x \to 0} \frac{x^{-98}}{e^{\frac{1}{x^2}}} \overset{'' \xrightarrow{\cong} ''}{\overset{\cong}{=}} 50 \cdot \lim_{x \to 0} \frac{-98 \cdot x^{-99}}{e^{\frac{1}{x^2}} \cdot \left(-\frac{2}{x^3}\right)} \\ &= 50 \cdot 49 \cdot \lim_{x \to 0} \frac{x^{-96}}{e^{\frac{1}{x^2}}} = \cdots \overset{'' \xrightarrow{\cong} ''}{\overset{\cong}{=}} 50! \cdot \lim_{x \to 0} \frac{x^{-2}}{e^{\frac{1}{x^2}}} \\ \overset{'' \xrightarrow{\cong} ''}{\overset{\cong}{=}} 50! \cdot \lim_{x \to 0} \frac{-\frac{2}{x^3}}{e^{\frac{1}{x^2}} \cdot \left(-\frac{2}{x^2}\right)} = 50! \cdot \lim_{x \to 0} e^{-\frac{1}{x^2}} = 0. \end{split}$$

Zadatak 1.7. Naći $\lim_{x\to a^+} \frac{\cos x \cdot \ln(x-a)}{\ln(e^x - e^a)}$.

Rešenje.

$$\lim_{x \to a^{+}} \frac{\cos x \cdot \ln(x - a)}{\ln(e^{x} - e^{a})} = \cos a \cdot \lim_{x \to a^{+}} \frac{\ln(x - a)}{\ln(e^{x} - e^{a})} \stackrel{" \xrightarrow{\infty}}{=} {}^{"} \cos a \cdot \lim_{x \to a^{+}} \frac{\frac{1}{e^{x} - a}}{\frac{e^{x}}{e^{x} - e^{a}}}$$

$$= \cos a \cdot \lim_{x \to a^{+}} \frac{e^{x} - e^{a}}{e^{x}(x - a)} = \frac{\cos a}{e^{a}} \lim_{x \to a^{+}} \frac{e^{x} - e^{a}}{x - a}$$

$$\stackrel{" \xrightarrow{0}}{=} {}^{"} \frac{\cos a}{e^{a}} \lim_{x \to a^{+}} e^{x} = \frac{\cos a}{e^{a}} \cdot e^{a} = \cos a.$$

Zadatak 1.8. Naći $\lim_{x\to\infty} \frac{x+\sin x}{x}$.

Rešenje. Neka je $f(x) = x + \sin x$, a g(x) = x. Ovde ne možemo da primenimo Lopitalovo pravilo jer $\lim_{x \to \infty} f'(x) = \lim_{x \to \infty} (1 + \cos x)$ ne postoji.

$$\lim_{x \to \infty} \frac{x + \sin x}{x} = \lim_{x \to \infty} \left(1 + \frac{\sin x}{x} \right) = 1$$

jer je $\lim_{x \to \infty} \frac{\sin x}{x} = 0.$

I ostali neodređeni izrazi oblika " $0 \cdot \infty$ ", " $\infty - \infty$ ", " 0^0 ", " ∞^0 " i " 1^∞ " mogu se određivati koristeći Lopitalova pravila (ukoliko su zadovoljeni uslovi za njegovu primenu).

Neodređen izraz " $0 \cdot \infty$ "

Ako je
$$\lim_{x\to a} f(x) = 0$$
 i $g(x) \to \pm \infty$ kada $x \to a$, tada je $\lim_{x\to a} f(x) \cdot g(x) = \lim_{x\to a} \frac{f(x)}{\frac{1}{g(x)}}$, a to je neodređeni izraz oblika " $\frac{0}{0}$ ", ili $\lim_{x\to a} f(x) \cdot g(x) = \lim_{x\to a} \frac{g(x)}{\frac{1}{f(x)}}$, a to je neodređeni izraz oblika " $\frac{\infty}{\infty}$ ".

Zadatak 1.9. Naći $\lim_{x \to 1^+} \ln(x-1) \cdot \ln x$.

Rešenje. Ako pustimo da $x \to 1^+$ dobijamo izraz " $-\infty \cdot 0$ ". Da bismo primenili Lopitalovo pravilo potrebno je da zadatoj funkciji promenimo oblik tako da je sada $f(x) = \frac{\ln(x-1)}{\ln x}$. Ako sada pustimo da $x \to 1^+$ dobijamo neodređen izraz oblika " $\frac{\infty}{\infty}$ " i možemo da primenimo Lopitalovo pravilo.

$$\lim_{x \to 1^{+}} \ln(x - 1) \cdot \ln x \stackrel{"-\cong \cdot 0"}{=} \lim_{x \to 1^{+}} \frac{\ln(x - 1)}{\frac{1}{\ln x}}$$

$$\stackrel{"\cong}{=} \lim_{x \to 1^{+}} \frac{\frac{1}{x - 1}}{\frac{1}{\ln^{2} x} \cdot \frac{1}{x}}$$

$$= -\lim_{x \to 1^{+}} \frac{x \cdot \ln^{2} x}{x - 1}$$

$$\stackrel{"0"}{=} -\lim_{x \to 1^{+}} \frac{\ln^{2} x + x \cdot 2 \ln x \cdot \frac{1}{x}}{1}$$

$$= -\lim_{x \to 1^{+}} (\ln^{2} x + 2 \ln x)$$

$$= 0.$$

Neodređen izraz " $\infty - \infty$ "

Neodređen izraz " $\infty-\infty$ " dobijamo ako $f(x)\to\pm\infty$ kada $x\to a$ i $g(x)\to\pm\infty$ kada $x\to a$. Dakle, dobijamo

$$\lim_{x \to a} \left[f(x) - g(x) \right] = \lim_{x \to a} f(x) \cdot \left[1 - \frac{g(x)}{f(x)} \right]$$

- Ako je $\lim_{x\to a} \left[1 \frac{g(x)}{f(x)}\right] = 0$ slučaj se svodi na prethodni.
- Ako je $\lim_{x\to a} \left[1 \frac{g(x)}{f(x)}\right] \neq 0$, to $f(x) g(x) \to \pm \infty$, kada $x \to a$.

Zadatak 1.10. Naći $\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x}\right)$.

Rešenje.

$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right) \stackrel{" \infty = \infty"}{=} \lim_{x \to 0} \frac{1}{x} \cdot \left(\frac{x}{\sin x} - 1 \right)$$

$$\stackrel{" \infty \cdot 0"}{=} \lim_{x \to 0} \frac{\frac{x}{\sin x} - 1}{x}$$

$$\stackrel{" \frac{0}{0}"}{=} \lim_{x \to 0} \frac{\sin x - x \cos x}{\sin^2 x}$$

$$\stackrel{" \frac{0}{0}"}{=} \lim_{x \to 0} \frac{\cos x - \cos x + x \sin x}{2 \sin x \cos x}$$

$$= 0.$$

Neodređen izraz oblika " 1^{∞} ", " 0^{0} " i " ∞^{0} "

Neka je $\phi(x)=f(x)^{g(x)},\,f(x)>0$ (u nekoj okolini tačke a). Ako je $\lim_{x\to a}f(x)^{g(x)}$ neodređen izraz oblika

- "0" $(\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0),$
- " ∞ 0" $(f(x) \to \infty$ kada $x \to a$ i $\lim_{x \to a} g(x) = 0)$ ili
- "1" ($\lim_{x\to a} f(x) = 1$ i $g(x) \to \pm \infty$ kada $x \to a$)

tada je

$$\lim_{x \to a} \ln \phi(x) = \lim_{x \to a} g(x) \ln f(x)$$

neodređen izraz oblika " $0 \cdot \infty$ ".

Zadatak 1.11. Naći
$$\lim_{x\to 0} \left(\frac{(1+x)^{\frac{1}{x}}}{e} \right)^{\frac{1}{x}}$$
.

Rešenje. Primetimo da je f(x)>0 u nekoj okolini tačke 0. Logaritmujemo levu i desnu stranu jednakosti zadate funkcije $\left(\frac{(1+x)^{\frac{1}{x}}}{e}\right)^{\frac{1}{x}}$ i nakon toga računamo graničnu vrednost.

$$y = \left(\frac{(1+x)^{\frac{1}{x}}}{e}\right)^{\frac{1}{x}} / \ln \Rightarrow \ln y = \frac{1}{x} \cdot \ln \frac{(1+x)^{\frac{1}{x}}}{e} = \frac{1}{x} \cdot \left[\frac{1}{x} \cdot \ln(1+x) - 1\right]$$

$$\lim_{x \to 0} \ln y = \lim_{x \to 0} \frac{1}{x} \cdot \left[\frac{1}{x} \cdot \ln(1+x) - 1 \right] = \lim_{x \to 0} \frac{\ln(1+x) - x}{x^2} \stackrel{"\frac{0}{0}"}{=} \lim_{x \to 0} \frac{\frac{1}{1+x} - 1}{2x}$$
$$= \frac{1}{2} \lim_{x \to 0} \frac{\frac{1-1-x}{1+x}}{x} = -\frac{1}{2} \lim_{x \to 0} \frac{x}{x \cdot (1+x)} = -\frac{1}{2} \lim_{x \to 0} \frac{1}{1+x} = -\frac{1}{2}.$$

Dakle, dobijamo da je

$$\lim_{x \to 0} \ln y = -\frac{1}{2} \Rightarrow \ln \lim_{x \to 0} y = -\frac{1}{2} \Rightarrow \lim_{x \to 0} y = e^{-\frac{1}{2}}.$$

Zadatak 1.12. Naći $\lim_{x\to 0^+} x^{\frac{3}{4+\ln x}}$.

Rešenje. Ako je $y = x^{\frac{3}{4 + \ln x}}$ onda sledi da je

$$\ln y = \frac{3}{4 + \ln x} \cdot \ln x.$$

U nastavku računamo graničnu vrednost leve i desne strane jednakosti

$$\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} \frac{3 \ln x}{4 + \ln x} \stackrel{\text{"} \cong \text{"}}{\cong} \lim_{x \to 0^+} \frac{3 \cdot \frac{1}{x}}{\frac{1}{x}} = 3$$

$$\lim_{x\to 0^+} \ln y = 3 \Rightarrow \ln \lim_{x\to 0^+} y = 3 \Rightarrow \lim_{x\to 0^+} y = e^3.$$

Zadatak 1.13. Naći $\lim_{x\to 0^+} (\operatorname{ctg} x)^{\frac{1}{\ln x}}$.

Rešenje. Ako je $y = (\operatorname{ctg} x)^{\frac{1}{\ln x}}$ onda sledi da je

$$\ln y = \frac{1}{\ln x} \cdot \ln(\operatorname{ctg} x).$$

U nastavku računamo graničnu vrednost leve i desne strane jednakosti

$$\begin{split} \lim_{x \to 0^+} \ln y &= \lim_{x \to 0^+} \frac{\ln(\operatorname{ctg} x)}{\ln x} \stackrel{'' \xrightarrow{\infty} ''}{\overset{=}{\simeq}} \lim_{x \to 0^+} \frac{\frac{1}{\operatorname{ctg} x} \cdot \left(-\frac{1}{\sin^2 x}\right)}{\frac{1}{x}} \\ &= \lim_{x \to 0^+} \frac{-x}{\frac{\cos x}{\sin x} \cdot \sin^2 x} = \lim_{x \to 0^+} \frac{1}{\cos x} \cdot \lim_{x \to 0^+} \frac{-x}{\sin x} = \lim_{x \to 0^+} \frac{-1}{\frac{\sin x}{x}} = -1 \end{split}$$

Dakle, dobijamo da je

$$\lim_{x\to 0^+} \ln y = -1 \Rightarrow \lim_{x\to 0^+} y = -1 \Rightarrow \lim_{x\to 0^+} y = e^{-1}.$$

Literatura

- [1] Ilija Kovačević, Nebojša Ralević, Biljana Carić, Vojislav Marić, Momčilo Novaković, Slavica Medić. *Matematička analiza 1, Uvodni pojmovi i granični procesi*. FTN Izdavaštvo, Novi Sad 2018.
- [2] Ilija Kovačević, Nebojša Ralević, Biljana Carić, Vojislav Marić, Momčilo Novaković, Slavica Medić. *Matematička analiza 1, Diferencijalni i integralni račun; obične diferencijalne jednačine*. FTN Izdavaštvo, Novi Sad 2018.
- [3] Ilija Kovačević, Biljana Carić, Slavica Medić, Vladimir Ćurić. *Testovi sa ispita iz Matematičke analize 1.* FTN Izdavaštvo, Novi Sad 2018.
- [4] Ilija Kovačević, Biljana Carić, Slavica Medić, Vladimir Ćurić, Momčilo Novaković. Zbirka rešenih zadataka iz Matematičke analize 1. FTN Izdavaštvo, Novi Sad 2018.