

Reflection Separation using a Pair of Unpolarized and Polarized Images

Youwei Lyu* Zhaopeng Cui* Si Li Marc Pollefeys Boxin Shi

Goal & Contributions

Goal: To separate the reflection and transmission layers using polarization information.

Contributions:

- A simpler and light-efficient setup for reflection separation using a pair of unpolarized and polarized images.
- A new formulation based on semi-reflector orientation estimation, which induces a well-posed physical image formation model to be reliably learned for layer separation.
- An end-to-end deep neural network with gradient loss to solve the separation problem.

Our Setup

Images with & without polarizer in front of the camera

$$I_{unpol}(x) = I_r(x) \cdot \frac{\xi(x)}{2} + I_t(x) \cdot \frac{2 - \xi(x)}{2}, \ I_{pol}(x) = I_r(x) \cdot \frac{\zeta(x)}{2} + I_t(x) \cdot \frac{1 - \zeta(x)}{2},$$

$$\xi(x) = R_{\perp}(\theta(x)) + R_{\parallel}(\theta(x)),$$

$$\zeta(x) = R_{\perp}(\theta(x))\cos^2(\phi - \phi_{\perp}(x)) + R_{\parallel}(\theta(x))\sin^2(\phi - \phi_{\perp}(x)),$$

where $\theta(x)$ is the angle of incidence, $\phi_{\perp}(x)$ is the orientation of the polarizer for the best transmission of the component perpendicular to the Pol, R_{\perp} and R_{\parallel} are the relative strength of light components.

Physical Image Formation Model

Reflection

Normal of glass: $n_{glass} = [\tan \alpha - \sin \beta \cos \beta]^{\top}$, where α and β are the rotation angles around y-axis and x-axis respectively.

Ray direction for an image pixel $x = [u, v]^T$:

$$\mathbf{X} = \lambda [\mathbf{u} - \mathbf{p}_{x} \quad \mathbf{v} - \mathbf{p}_{y} \quad f]^{\top}, \qquad \overline{\mathbf{X}} = \mathbf{X}/\|\mathbf{X}\|$$

$$\boldsymbol{\phi}(x) = \arccos(|\mathbf{n}_{glass} \cdot \overline{\mathbf{X}}|)$$

$$\boldsymbol{\phi}_{\perp}(x) = \arctan\frac{y_{PoI}}{x_{PoI}}, \text{ where } [x_{PoI}, y_{PoI}, z_{PoI}]^{\top} = \mathbf{n}_{glass} \times \overline{\mathbf{X}}$$

Quantitative Results

		Ours	Ours- Initial	ReflectNet- Finetuned	Ours- 2% noise	Ours- 8% noise	Ours- 16% noise
Transmission	SSIM	0.9708	0.8324	0.9627	0.9691	0.9668	0.9619
	PSNR	28.23	21.61	27.52	28.08	27.31	27.17
Reflection	SSIM	0.8953	0.6253	0.8303	0.8785	0.8418	0.8022
	PSNR	20.92	13.90	18.50	20.53	19.18	18.26

References

- [1] Wieschollek et al. Separating reflection and transmission images in the wild. In Proc. ECCV, 2018.
- [2] Wan et al. CRRN: Multi-scale guided concurrent reflection removal network. In Proc. CVPR, 2018.
- [3] Zhang et al. Single image reflection separation with perceptual losses. In Proc. CVPR, 2018.

Reflection Separation Network

Qualitative Results

