Fundamental Algorithmic Techniques I

September 26, 2025

Outline

Definition and Importance of Algorithms

Omnipresence and examples of Algorithms

Algorithms Analysis

Name and Definition

Definition

Explicit, precise and unambiguous instructions describing mechanically executable sequence to achieve specific purpose.

Algorithms are omnipresent in modern world! In our understanding of the world!

Confused Name!

- Muhammad ibn Musa al-Khwarizmi, c.780–c.850 Algebra/Null, born in/near Kazakhstan

Al-Khwarizmi \longrightarrow "Algorism" in medieval Italy

→ **Algorithm** by "correction/confusion"

Algorithms Description

- 1 What? Specify the Problem
- 2 How? Describe Algorithm (Pseudocode and english)
- 3 Why? Proof (induction, ...)
- 4 Performance? Analysis (time and space complexity, ...)

"Thinking and solving Algorithms":

- Healthy, powerful Basis for thinking!
- Basis and support for Communication (1. & 4.)!

Importance of Algorithms for Developer

For oneself:

- Solve Problems!
- Toolbox for cleaner, better, faster designs
- Better communication/confidence
- Know/intuit what is a good/bad/solvable/unsolvable problem
- Helpful working with AI

Industry:

- Way to screen candidates
- Performance/costs awareness or optimisation
- Communication is key!

Omnipresence of Algorithms

Commercial, Fin., Tech., Industry, Economy, AI:

Tree Of Thoughts/ Tree based Experimentation for Al Researcher/ RAG

Left: PageRank, Right: Yandex

Introductory Examples

Left Rhind Papyrus, Right, Fibonacci Lattice

- Multiplication Algorithms:
 - Peasant Multiplication (~ 2000 BC, Rhind Papyrus)
 - Fibonacci Lattice ~ 1600
- Real World Example: naive N^2 sorting taking days!

Algorithmic Performance Model

Random Access Machine RAM model:

- ≈ computer independant
- lacksquare each operation take pprox same compute
- \blacksquare operation input size \approx independant
- input

Operations:

- 1 +, -, *, /, ...
- 2 return and comparisons $==,>,<,\geq,\leq,\%,...$
- 3 variables access, allocation or change
- !!!Subroutines or iterations are not considered operations!!!

This is an approximation!!!

Full Analysis: Insertion sort

Left: schema, Right: code

Full Analysis:

$$\#(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{i=2}^n t_i + (c_6 + c_7) \sum_{i=2}^n (t_i - 1) + c_8 (n-1)$$

$$= (c_5 + c_6 + c_7)/2n^2 + (c_1 + c_2 + c_4 + c_5 - c_6 - c_7 + c_8)n$$

$$-(c_2 + c_4 + c_5 + c_8), \quad \text{with } \sum_{i=2}^n t_i = \frac{n(n+1)}{2} - 1, \sum_{i=2}^n (t_i - 1) = \frac{n(n-1)}{2}$$

... Tedious to analyse like this...

Approximating Performance

- Time Complexity: Best, Worst, and Average-case Complexity
- Space Complexity: total memory an algorithm requires to solve a problem

Both quantities vary a lot for some algorithms:

 \Rightarrow simplify with assymptotic $\mathcal O$ notations.

\mathcal{O} , Θ , Ω asymptotic Notations

Ideas:

- 1 Routines like functions scaling with the problem size N: f(N)
- 2 At N large, $N \ll N \log(N) \ll N^2 \ll ... \ll \exp(N)$ \Rightarrow For approximation, just scale matters!
- O: Big O notation
- Θ: upper bound
- Ω: lower bound

Examples:

1
$$\#_1(n) = n$$
, $\#_2(n) = 3n + 6$, $\#_3(n) = 15n$: $\Theta(n)$, $\mathcal{O}(n)$, $\Omega(n)$.

$$2 \#(n) = 7n^3 + 100n^2 + 20n \text{ is } \Theta(n^3), \mathcal{O}(n^3), \Omega(n^2)$$

3
$$\#(x) = (13 + 2 + 7 + 1111)n^{45}$$
 is $\Theta(n^{45}), \mathcal{O}(n^{45}), \Omega(n^{45})$

Usage of \mathcal{O} notations

Most of the time, we are interested in $\mathcal O$ and use it for:

- Algorithm Analysis
- Algorithm Comparisons

 $\mathcal{O}(N) = N^2 \text{ vs } N \log N \text{ vs } N \text{ as } N \text{ increases}$

When/Why $\mathcal{O}(n) \approx log_2(n)$

Consider, as for peasant multiplication:

$$T(n) \approx n/2$$

For a given n the algorithms decomposition takes m steps:

$$n=2^{m}$$

$$\Rightarrow \log_2(n) = m$$