•数字化图象:

黑白(单色0,1)图象

m x m像素阵列

存储空间m²

灰度图象(0~255灰度值)

8xmxm像素阵列

存储空间8m²

颜色数为28 = 256种

			1	1			
		1	1	1	1		
	1	1	1	1	1	1	
1	1	1	1	1	1	1	1
	1	1	1	1	1	1	
		1	1	1	1		
			1	1			
			1	1			

彩色图象:

一幅彩色图像的每个像素用R,G, B三个分量表示,若每个分量用8位, 那末一个像素共用24位表示。

颜色数为224 = 16 777 216种

存储空间24m²

用RGB 5:5:5表示 的彩色图像

颜色数为215 = 32K

存储空间15m²

减少存储空间,采用变长模式,不同像素用不同位数来存储。

像素 值	0,1	2,3	4 ,5,6 ,7	8~15	16~ 31	32~ 63	64~ 127	128~ 255
所需 位数	1	2	3	4	5	6	7	8

使用变长模式的步骤:

1. 图象线性化: mxm→1xm²

10	9	12	40
12	15	35	50
8	10	9	15
240	160	130	11

使用变长模式的步骤:

2. 分段, 分段规则:

每段中的像素位数相同;

每个段是相邻像素的集合;

每个段最多含**256**个像素,若相邻的相同位数的像素超过**256**个,则用**2**个以上的段表示。

使用变长模式的步骤:

3. 创建文件, 创建3个文件:

SegmentLength: 包含步骤2中所建的段的长度(减1), 文件中各项均为8位长。

BitsPerPixels:包括各段中每个像素的存储位数(减1),

文件中各项均为3位长。

Pixels: 以变长格式存储的像素的二进制串。

4 压缩文件,压缩步骤3所建立的文件,以节约空间。

10	9	12	40
12	15	35	50
8	10	9	15
240	160	130	11

例子: 图中4x4图象

灰度值:

{10,9,12,40,50,35,15,12,8,10,9,15,11,130,160,240}

所需位数:

{ 4,4,4, 6,6,6, 4,4,4,4,4,4, 8,8,8 }

分段:

[10,9,12], [40,50,35], [15,12,8,10,9,15,11],

[130,160,240]

像素 值	0,1	2,3	4,5,6 ,7	8~15	16~ 31	32~ 63	64~ 127	128~ 255
所需 位数	1	2	3	4	5	6	7	8

$$4*3+2*8+6*5 + 3*3 + 3*8 = 91$$

$$l[i](1 \le l[i] \le 255)$$

m个段

记录所建的每个段的长度,各项为8位长

记录各段中每个像素的存储位数,各项3位长

用来记录段长 度的8位+用来 记录像素存储 位数的3位

将像素分成连续的m段 $S_1,S_2,...,S_m$,使每段中的像素存储位数相同。第 $i(1 \le i \le m)$ 个像素段 S_i 中有I[i]个像素,且该段中每个像素都只用b[i]位表示。

$$\sum_{i=1}^{m} l[i] * b[i] + 1 1m$$

要求找到一个最优分段, 使存储空间最少。

例1:

$$P = \{10, 9, 12, 40, 50, 35, 15, 12, 8, 10, 9, 15, 11, 130, 160, 240\}$$

$$S_1$$

 S_2

$$S_3$$

$$S_4$$

$$l[1] = 3$$

$$l[2] = 3$$

$$l[3] = 7$$

$$l[4] = 3$$

$$b[1] = 4$$

$$b[2] = 6$$

$$b[3] = 4$$

$$b[4] = 8$$

$$3 \times 4 + 3 \times 6 + 7 \times 4 + 3 \times 8 + 11 \times 4 = 126$$

定长: 16×8=128

1 27 77 1	0,1	2,3	4,5,6	8~15	16~	32~	64~	128~
値			,7		31	63	127	255
所需 位数	1	2	3	4	5	6	7	8

像素 值	0,1	2,3	4,5,6 ,7	8~15	16~ 31	32~ 63	64~ 127	128~ 255
所需 位数	1	2	3	4	5	6	7	8

例1:

$$P = \{10, 9, 12, 40, 50, 35, 15, 12, 8, 10, 9, 15, 11, 130, 160, 240\}$$

 S_1

 S_2

 S_3

 S_4

$$l[1] = 3 \qquad l[2]$$

$$l[2] = 3$$

$$l[3] = 7$$

l[4] = 3

$$b[1] = 4$$

$$b[2] = 6$$

$$b[3] = 4$$

$$b[4] = 8$$

$$3 \times 4 + 3 \times 6 + 7 \times 4 + 3 \times 8 + 11 \times 4 = 126$$

$$P = \{10, 9, 12, 40, 50, 35, 15, 12, 8, 10, 9, 15, 11, 130, 160, 240\}$$

6

7

3

6

$$6 \times 6 + 7 \times 4 + 3 \times 8 + 11 \times 3 = 121$$

图像压缩-最优子结构性质

设 $l[i], b[i], 1 \le i \le m$ 是 $\{p_1, p_2, \dots, p_n\}$ 的一个最优分段。

l[1],b[1]是 $\{p_1,\cdots,p_{l[1]}\}$

的一个最优分段。

 $l[i],b[i],2 \le i \le m$ 是

$$\{p_{l[1]+1},\cdots,p_n\}$$

的一个最优分段。

图像压缩-递归计算最优值

设 $s[i](1 \le i \le n)$ 是像素序列 $\{p_1, p_2, \dots, p_i\}$ 的最优 分段所需的存储位数。

$$s[0] = 0$$

$$i = 1$$
 p_1 $s[1] = s[0] + b[1] + 11$

$$i = 2$$
 p_1 p_2 $s[2] = \min \begin{cases} s[0] + 2 \times \max\{b[1], b[2]\} + 11 \\ s[1] + b[2] + 11 \end{cases}$

 $S[2]+2*max\{b[1],b[2]\}+2*11-1*11$

l[2] = 3b[2] = 6

$$i = 3 \quad p_1 \quad p_2 \quad p_3 \quad s[3] = \min \begin{cases} s[0] + 3 \times \max \{b[1], b[2], b[3]\} + 11 \\ s[1] + 2 \times \max \{b[2], b[3]\} + 11 \end{cases}$$

$$= \min_{1 \le k \le 3} \{s[i - k] + k \times b \max(i - k + 1, i)\} + 11$$

$$b \max(i, j) = \left[\log(\max_{i \le k \le j} \{p_k\} + 1)\right]$$

$$S[0] + 3 \times \max\{b[1], b[2], b[3]\} + 3 \times 11 - 2 \times 11$$

$$S[1] + 2 \times \max\{b[2], b[3]\} + 3 \times 11 - 2 \times 11$$

$$S[1] + 2 \times \max\{b[2], b[3]\} + 3 \times 11 - 2 \times 11$$

$$S[2] + b[3] + 11$$

$$[i] = \min_{1 \le k \le \min\{i, 256\}} \{s[i - k] + k \times b \max(i - k + 1, i)\} + 11$$

$$s[i] = \min_{1 \le k \le \min\{i, 256\}} \{s[i-k] + k \times b \max(i-k+1,i)\} + 11 \quad 3.7 \quad \text{§ } \text{f}$$

图像压缩-练习

求像素序列4,6,5,7,129,138,1的最优分段。

解:
$$s[0] = 0$$

$$s[1] = 3 + 11 = 14 \qquad l[1] = 1 \qquad b[1] = 3$$

$$s[2] = \min \begin{cases} s[0] + 2 \times 3 + 11 \\ s[1] + 3 + 11 \end{cases} = \min \{17, 28\} = 17 \qquad l[2] = 2 \qquad b[2] = 3 \end{cases}$$

$$s[3] = \min \begin{cases} s[0] + 3 \times 3 + 11 \\ s[1] + 2 \times 3 + 11 = \min \{20, 31, 31\} = 20 \qquad l[3] = 3 \qquad b[3] = 3 \end{cases}$$

$$s[2] + 3 + 11 \qquad \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} + (b \times 1)^{2}} = \frac{(a \times 1)^{2} + (b \times 1)^{2}}{(a \times 1)^{2} +$$

$$s[5] = \min\{51,57,52,47,42\} = 42$$
 $l[5] = 1$ $b[5] = 8$

$$s[6] = \min\{59,65,60,55,50,61\} = 50$$
 $l[6] = 2$ $b[6] = 8$

$$s[7] = \min\{67,73,68,63,58,69,62\} = 58$$
 $l[7] = 3$ $b[7] = 8$

$$l = [1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3]$$

实现及复杂性分析

最优值的填充方向如下:

算法实现

图像压缩最优分段问题的动态规划算法如书: P71所示。

计算复杂性

由于算法compress中对k的循环次数不超这256,故对每一个确定的i,可在时间O(1)内完成最优分段的计算。因此整个算法所需的计算时间为O(n)。

目标:设计一种算法,使得在产生 n 个段之后,能对相邻段进行合并,以便产生一个具有最小空间需求的新的段集合。

令:Sq为前q个段的最优合并所需要的空间(位数);

1i表示第i段的段长;

bi表示该段每个像素的长度。

定义: $S_0 = 0$

假设在最优合并C中,第i段与i-1, i-2, ...i-r+1段合并, 而不包括第i-r段。合并C所需要的空间消耗等于:

第1段到第i-r段所需要的空间+lsum(i-r+1, i)*bmax(i-r+1, i)+11

其中: $1 \text{sum}(a, b) = \sum l_j$, j = a...b $b \max(a, b) = \max\{b_a, \ldots, b_b\}$ 图像压缩 补充部分

1最优子结构

设S[i], $1 \le i \le n$, 是像素序列 $\{p1, ..., pn\}$ 的最优分段所需的存储位数。

S_i=S_{i-r}+1sum(i-r+1, i)*bmax(i-r+1, i)+11 其中: r=1,...i; lsum<256 寻找r,产生最小的空间需求。 令kay;存储取得最小值时k的值。最优子结构如下:

$$s[i] = \min_{\substack{1 \le k \le i \\ lsum(i-k+1,i) \le 256}} \{s[i-k] + \}$$

$$lsum(i-k+1,i)*bmax(i-k+1,i)}+11$$

例子: 一副图象的像素组分为5段, 长度为 [6,3,10,2,3] 像素位数为[1,2,3,2,1]

$$S_0=0 \\ S_1=S_0+l_1*b_1+11=0+6*1+11=17 \\ S_2=\min\{S_1+l_2*b_2,S_0+(l_1+l_2)*\max\{b_1,b_1\}\}+11 \\ =\min\{17+6,0+9*2\}+11=29 \\ kay_2=2$$

.

$$S[1:5]=[17, 29, 67, 73, 82]$$

kay $[1:5]=[1, 2, 2, 3, 4]$

2 迭代计算最优值

```
public static void compress(int[]], int[]]b, int[]] s,int[]] kay)
       int n=b.length-1;
       s[0] = 0;
       for (int i=1; i \le n; i++)
          int lsum=l[i], bmax=b[i]; //k=1时计算最小值
          s[i]=s[i-1]+lsum*bmax;
          kay[i]=1;
          //lmax=256,对其余的 k 计算最小值并更新
          for (int k=2; k \le i \&\& lsum+l[i-k+1] \le lmax; k++ ) {
              lsum+=1[i-k+1];
              if( bmax < b[i-k+1] ) bmax = b[i-k+1];
              if(s[i]>s[i-k]+lsum*bmax) {
                   s[i]=s[i-k]+lsum*bmax;
                  kay[i]=k;
              s[i]+=header; //header=11
```

2 迭代计算最优值

例子:一副图象的像素组分为5段, 长度为[6,3,10,2,3],像素位数为[1,2,3,2,1]

			l[i]							
i	0	1	2	3	4	5				
	0	6	3	10	2	3				
b[i]										
i	0	1	2	3	2	1				
			s[i]							
i	0	1	2	3	4	5				
	0	0	0	0	0	0				
	kay[i]									
	0	0	0	0	0	0				

2 迭代计算最优值

例子: 长度为[6, 3, 10, 2, 3], 像素位数为[1, 2, 3, 2, 1] s[i]

i	0	1	2	3	4	5				
	0	17	29	67	73	82				
kay[i]										
	0	1	2	2	3	4				

s[i]

i	0	1	2	3	4	5
	0	17	29	67	73	82

kay[i]

	0	1	2	2	3	4
	_	_		7)	_

$$k=1$$

$$k=2$$

$$k=3$$

$$s[3]=s[0]+lsum*bmax+11=0+(10+3+6)*3+11=68 \times$$

s[i]

i	0	1	2	3	4	5
	0	17	29	67	73	82

kay[i]

0	1	2	2	3	4
				/	

k=1

$$s[4]=s[3]+lsum*bmax+11=67+2*2+11=82 \times$$

$$kay[4]=1$$

$$k=2$$

$$s[4]=s[2]+lsum*bmax+11=29+(2+10)*3+11=76 \times$$

$$kay[4]=2$$

$$k=3$$

$$s[4]=s[1]+lsum*bmax+11=17+(2+10+3)*3+11=73$$

$$kay[4]=3$$

$$k=4$$

$$s[4]=s[0]+lsum*bmax+11=0+(2+10+3+6)*3+11=74 \times$$

s[i]

i	0	1	2	3	4	5
	0	17	29	67	73	82

kay[i]

|--|

在一块电路板的上、下2端分别有n个接线柱。根据电路设计,要求用导线(i, π (i))将上端接线柱与下端接线柱相连,如图所示。其中 π (i)是{1,2,...,n}的一个排列。导线(i, π (i))称为该电路板上的第i条连线。对于任何1 \leq i<j \leq n,第i条连线和第j条连线相交的充分且必要的条件是 π (i) $>\pi$ (j)。

电路布线问题要确定将哪些连线安排在第一层上,使得该层上有尽可能多的连线。换句话说,该问题要求确定导线集 Nets={(i,π(i)),1≤i≤n}的最大不相交子集。

目的:

电路布线问题要确定将哪些连线安排在最优层上,使得该层上有尽可能多的连线。即该问题要求确定导线集 $Nets=\{(i,\pi(i)),1\leq i\leq n\}$ 的最大不相交子集 MNS(Maximum Noncrossing Subset)。

例子: (1,8)和(2,7)交叉,不能布在同一层中;

(1,8), (7,9)和(9,10)未交叉,可以布在同一层中; 但还不是MNS。

{ (4,2), (5,5),(7,9)和(9,10) } 是一个含4个连线的 MNS。

MNS(10,10) size(10,10)=4

令MNS(i, j)表示一个MNS,其中所有的(t,π(t))满足 t≤i, $\pi(t) \leq j_{\circ}$ 令size(i, j)表示一个MNS(i, j)的大小(即连线数目)。 则MNS(n, n)对应给定输入的MNS, size(n, n)为其 大小。 例: MNS (7, 6) {(3,4),(5,5)} size(7,6)=210

1 最优子结构性质

记 N(i,j)={ t |(t, π(t))∈Nets, t ≤ i, π(t) ≤j }
N(i,j)的最大不相交子集为MNS(i,j)
size(i,j)=|MNS(i,j)|

3.8 电路布线

(1)当i=1时,

$$MNS(1, j) = N(1, j) = \begin{cases} \emptyset & j < \pi(1) \\ \{(1, \pi(1))\} & j \ge \pi(1) \end{cases}$$

(2)当i>1时,

```
• j<π(i): (i, π(i) )∉N(i,j),故 N(i,j) = N(i-1,j)
从而 size(i,j) = size(i-1,j)
```


- (2)当i>1时,
- j≥π(i):
 - (i,π(i))∈MNS(i,j)
 对任意(t,π(t))∈MNS(i,j) 有 t<i 且π(t)<π(i)。故
 MNS(i,j)-{(i,π(i))} 是 N(i-1,π(i)-1)的最大不相交子集。

(2)当i>1时,

- j≥π(i):
 - (i, π(i))∉ MNS(i,j)
 对任意 (t,π(t)) ∈ MNS(i,j) 有 t<i。从而
 MNS(i,j)⊆N(i-1,j).因此,size(i,j)≤size(i-1,j)。
 同时

MNS(i-1,j)⊆N(i-1,j),故又有size(i,j)≥size(i-1,j), 从而 size(i,j) = size(i-1,j)。

(2)当i>1时,

- j≥π(i):
 - (i, π(i)) ≠ MNS(i,j)
 对任意 (t,π(t)) ∈ MNS(i,j) 有 t<i。从而
 MNS(i,j)⊆N(i-1,j).因此,size(i,j)≤size(i-1,j)。

同时

MNS(i-1,j)⊆N(i-1,j),故又有size(i,j)≥size(i-1,j), 从而 size(i,j) = size(i-1,j)。

2 递归计算最优值

(1)当i=1时
$$Size(1, j) = \begin{cases} 0 & j < \pi(1) \\ 1 & j \ge \pi(1) \end{cases}$$

(2)当i>1时

$$Size(i, j) = \begin{cases} Size(i-1, j) & j < \pi(i) \\ \max\{Size(i-1, j), Size(i-1, \pi(i)-1)+1\} & j \ge \pi(i) \end{cases}$$

```
public static void mnset(int∏ c, int∏∏ size)
                                       (1)当i=1时 Size(1, )
                                                                  j \ge \pi(1)
               int n=c.length-1;
               for(int j=0;j<=c[1];j++) size[1][j] =0; //初始化
               for (int j=c[1]; j \le n; j++) size[1][j] =1; // size[1][*]
               for (int i=2;i<n; i++){ //计算size[i][*], 1<i<n
                   for (int_j=0;j<=c[i]; j++ ) // j < c(i)的情况
                       size[i][j]=size[i-1][j];
                   for (int_j=c[i];j<=n; j++){ // j ≥c(i)的情况
                       if(size[i-1][j]>(size[i-1][c[i]-1]+1))
                           size[i][j]=size[i-1][j];
                       else size[i][j]=size[i-1][c[i]-1]+1;
                if(size[n-1][n]>(size[n-1][c[n]-1]+1)) //计算size[n][n]
                       size[n][n]=size[n-1][n];
                else size[n][n]=size[n-1][c[n]-1]+1;
```

i						, 1						
	0	1	2	3	4	5	6	7	8	9	10	
1	0	0	0	0	0	0	0	0	1	1	1	
2	0	0	0	0	0	0	0	1	1	1	1	
3	0	0	0	1 2 3	4 5	6 7	8 9	10	1	1	1	
4	0	0	1				X		1	1	1	
5	0		Ŋ	1 2 3	4 5	6 7	8 9	10				
1)当i=1时 $Size(1,j) = \begin{cases} 0 & j < \pi(1) \\ 1 & j \ge \pi(1) \end{cases}$												
Size(i, j)	$= \begin{cases} Size(i-1) \\ \max\{Siz\} \end{cases}$	l, j) re(i – 1, j),Si	ze(i – 1, π (i)	<i>j</i> −1)+1} <i>j</i> ;	$<\pi(i)$	1 2	3 4	5	6 7	8 9	10	
10	0								\			

c[1] =8 size[1][0]~ size[1][7]=0 size[1][8]~ size[1][10] =1 c[2] =7
$$0 \le j < 6$$
 size[2] [j]= size[i-1] [j] =0 $7 \le j \le 10$ size[2][j]=max{size[1][j], size[1][6]+1}=1

ſ	i						-	j						
		0	1	2	3	4	5	6	7	8	9	10		
	1	0	0	0	0	0	0	0	0	1	1	1		
	2	0	0	0	0	0	0	0	1	1	1	1		
	3	0	0	0	0	1	1	1	1	1	1	1		
	4	0	0	1	1	1	1	1	1	1	1	1		
	5	0												
	$1)$ 当i=1时 $Size(1,j) = \begin{cases} 0 & j < \pi(1) \\ 1 & j \ge \pi(1) \end{cases}$ 2)当i>1时													
1	Size(i, j)	$= \begin{cases} Size(i-1) \\ \max\{Siz\} \end{cases}$	l, j) ve(i – 1, j),Si	$ze(i-1,\pi(i)$		$<\pi(i)$ $\geq \pi(i)$	1	2 3	4 5	6	7 8	9 10		
	10	0												

i		j												
	0	1	2	3	4	5	6	7	8	9	10			
1	0	0	0	0	0	0	0	0	1	1	1			
2	0	0	0	0	0	0	0	1	1	1	1			
3	0	0	0	0	1	1	1	1	1	1	1			
4	0	0	1	1	1	1	1	1	1	1	1			
5	0	0	1	1	1	2	2	2	2	2	2			
6	0	1	1	1	1	2	2	2	2	2	2			
7	0	(n	$i < \pi(1)$											

(1)当i=1时 Size(1, j) =
$$\begin{cases} 0 & j < \pi(1) \\ 1 & j \ge \pi(1) \end{cases}$$

(2)当i>1时

$$Size(i, j) = \begin{cases} Size(i-1, j) & j < \pi(i) \\ \max\{Size(i-1, j), Size(i-1, \pi(i)-1)+1\} & j \ge \pi(i) \end{cases}$$

$$C[5]=5$$
 size[5][5]=max{size[4][5], size[4][4]+1}=2 $C[6]=1$ size[6][1]=max{size[5][1], size[5][0]+1}=1

	i						j							
		0	1	2	3	4	5	6	7	8	9	10		
	1	0	0	0	0	0	0	0	0	1	1	1		
(1)	(1)当i=1时 $Size(1,j) = \begin{cases} 0 & j < \pi(1) \\ 1 & j \ge \pi(1) \end{cases}$ 1 2 3 4 5 6 7 8 9													
(2	(2)当i>1时													
	Size(i, j)	$=\begin{cases} Size(i-1) \\ max \end{cases} Siz$, <i>j</i>)			$<\pi(i)$	1			>	>	1		
	_	[max{Siz	e(i – 1, j),Si _	ze(i – 1,π(i) 	-1)+1} j;	$\geq \pi(i)$	1 2	3 4	5	6 7	8	9 10		
	6	_					1	ı	ı	i				
	0	0	1	1	1	1	2	2	2	2	2	2		
	7	0	1	1	1	1	2	2 2	2	2	3	3		
	7	0	1	1	1	1	2	2	2	2	3	3		

$$C[7]=9$$
 size[7][9]=max{size[6][9], size[6][8]+1}=3
 $C[8]=3$ size[8][3]=max{size[7][3], size[7][2]+1}=2
 $C[9]=10$ size[9][10]=max{size[8][10] size[8][9]+1}=2

 $C[9]=10 \text{ size}[9][10]=\text{max}\{\text{size}[8][10], \text{ size}[8][9]+1\}=4$

i							i					
	0	1	2	3	4	5	$\frac{J}{G}$	7	8	9	10	
1	0	0	0	0	0	0	0	0	1	1	1	
2	0	0	0	0	0	0	0	1	1	1	1	
1)当i=1时 $Size(1,j) = \begin{cases} 0 & j < \pi(1) \\ 1 & j \ge \pi(1) \end{cases}$												
2)当i>1时						-	X			\geq		
Size(i, j	$f(t) = \begin{cases} Size(t) \\ \max\{t\} \end{cases}$	-1, j) Size(i -1, j),	Size(i – 1,π	(i)-1)+1	$j < \pi(i)$ $j \ge \pi(i)$	1	2 3	4 5	6 7	8	9 10	
7	0	1	1	1	1	_ 2	2	2	2	3	3	
			1			12	1	12	2	3	12	
8	0			2	2	2	2	2	2	3	3	
9	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1	1	2 2	2 2	2	2	2	2	3	4	

$$C[10]=6$$
 size[10][6]=max{size[9][6], size[9][5]+1}=3 $C[10]=6$ size[10][10]=max{size[9][10], size[9][9]+1}=4

3 构造最优解

```
size[i][j]和net[i]记录了MNS的信息。
size[i][j]存储了MNS[i][j]的值;
net[0:m-1]存储了所得到的MNS。
public static int traceback(int[] c, int[][] size, int[] net)
    int n=c.length-1, j=n, m=0;
                               说明当前这条线属于最
    for(int i=n; i>1; i--)
                                   大不相交子集
       if (size[i][j]!=size[i-1][j])
           net[m++]=i;
                             j的位置随着已经确定的
即i=1
的那条
           j=c[i]-1;<
                           最大不相交子集的范围而变化
线,必
定可取)
      if(j>=c[1]) net[m++]=1;
                          m = 1
      return m;
                          net[0: m] = 9753
```

i											
	0	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	0	0	1	1	1
2	0	0	0	0	0	0	0	1	1	1	1
3	0	0	0	0	1	1	1	1	1	1	1
4	0	0	1	1	1	1	1	1	1	1	1
5	0	0	1	1	1	2	2	2	2	2	2
б	0	1	1	1	1	2	2	2	2	2	2
7	0	1	1	1	1	2	2	2	2	3	3
8 pub			ck(int[] c,	int[][] size	e, int[] net)		2	2	3	3
9		ngth-1, j= n; i>1; i)		说明		条线属于	B	2	2	3	4
11 最后-	_ (e[i][j]!=siz	ze[i-1][j])		大不相多	之 于果	<u> </u>	3	3	3	4
即 _{j=1} 的那领	条线, net[m++]=i; j的位置随着已经确定的 的那条 线,必定可取) j=c[i]-1; 最大不相交子集的范围而变化 if(j>=c[1]) net[m++]=1; m=1 return m; 1 2 3 4 5 6 7 8 9 1										

