

CURSO DE ENGENHARIA

Disciplina: Limite e Derivada de uma Variável Real

Limite de uma função

Anápolis

CURSO DE ENGENHARIAS

Disciplina: Limite e Derivada de uma Variável Real

Limite de uma função

OBJETIVOS:

- Conceituar limites de uma função.
- •Resolver limites por aproximações numéricas e gráficas.

CURSO DE ENGENHARIAS

Disciplina: Limite e Derivada de uma Variável Real

Limite de uma função

REFERÊNCIAS:

FLEMMING, D. M.; GONÇALVES, M. B. **Cálculo A: Funções, Limite, Derivação e Integração**. 6. ed. São Paulo: Pearson, 2006

Definição

Seja f(x) definida num intervalo aberto contendo **a**, podendo não estar definida em **a**, temos:

$$\lim_{x\to a} f(x) = L \text{, se para todo } \varepsilon > 0 \text{, existe um } \delta > 0 \text{ tal que}$$

$$|f(x) - L| < \varepsilon \text{ sempre que } 0 < |x - a| < \delta$$

Propriedades dos limites

Propriedade da multiplicação por constante

$$\lim_{x \to a} c \cdot f(x) = c \cdot \lim_{x \to a} f(x)$$

"O limite da função multiplicada por uma constante é igual a constante multiplicada pelo limite"

Exemplo:

$$\lim_{x \to 5} [2 \cdot \log_2 x] = 2 \cdot \lim_{x \to 5} \log_2 x$$

Propriedade do Produto

$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

"O limite do produto é o produto dos limites"

Exemplos:

$$\lim_{x \to 0} [e^{2x} \cdot \cos x^2] = \lim_{x \to 0} e^{2x} \cdot \lim_{x \to 0} \cos x^2$$

Propriedades dos limites

Propriedade do Quociente $\left(\lim_{x\to a} g(x) \neq 0\right)$

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

"O limite do quociente é o quociente dos limites"

Exemplo:

$$\lim_{x \to 1} \left[\frac{x^3 + \sqrt[4]{x}}{e^x} \right] = \frac{\lim_{x \to 1} (x^3 + \sqrt[4]{x})}{\lim_{x \to 1} e^x}$$

Propriedade da Potência

$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n \quad (n \in \mathbb{R})$$

"O limite da potência é a potência do limite"

Exemplo:

$$\lim_{x \to -1} [2x+1]^{10} = \left[\lim_{x \to -1} (2x+1) \right]^{10}$$

Como motivação para o estudo de limites infinitos, considere a função

$$f(x) = \frac{1}{(x-2)^2}$$

Pergunta: Quando x tende a 2, o que acontece com f(x)?

Como motivação para o estudo de limites infinitos, considere a função

$$f(x) = \frac{1}{(x-2)^2}$$

Pergunta: Quando x tende a 2, o que acontece com f(x)?

Para responder esta pergunta, vamos considerar alguns valores de \boldsymbol{x} próximos de $\boldsymbol{2}$.

Como motivação para o estudo de limites infinitos, considere a função

$$f(x) = \frac{1}{(x-2)^2}$$

Pergunta: Quando x tende a 2, o que acontece com f(x)?

Para responder esta pergunta, vamos considerar alguns valores de \boldsymbol{x} próximos de $\boldsymbol{2}$.

x	f(x)
1,9	100
1,99	10.000
1,999	1.000.000
1,9999	100.000.000

X	f(x)
2,1	100
2,01	10.000
2,001	1.000.000
2,0001	100.000.000

Como motivação para o estudo de limites infinitos, considere a função

$$f(x) = \frac{1}{(x-2)^2}$$

Pergunta: Quando x tende a 2, o que acontece com f(x)?

Para responder esta pergunta, vamos considerar alguns valores de \boldsymbol{x} próximos de $\boldsymbol{2}$.

x	f(x)
1,9	100
1,99	10.000
1,999	1.000.000
1,9999	100.000.000

X	f(x)
2,1	100
2,01	10.000
2,001	1.000.000
2,0001	100.000.000

Resposta: Ao aproximarmos x de 2, os valores de f(x) se tornam cada vez maiores, ou seja, tendem a infinito.

Matematicamente, se representa o comportamento da função

$$\lim_{x \to 2^{-}} \frac{1}{(x-2)^2} = +\infty$$

Se lê: o limite de f quando x tende a 2 pela esquerda é igual a mais infinito.

$$\lim_{x \to 2^+} \frac{1}{(x-2)^2} = +\infty$$

Se lê: o limite de f quando x tende a 2 pela direita é igual a mais infinito.

De forma semelhante, se pode concluir que

$$\lim_{x \to 2^{-}} \frac{-1}{(x-2)^2} = -\infty$$

Se lê: o limite de f quando x tende a 2 pela esquerda é igual a menos infinito.

$$\lim_{x \to 2^+} \frac{-1}{(x-2)^2} = -\infty$$

Se lê: o limite de f quando x tende a 2 pela direita é igual a menos infinito.

Os gráficos das funções do exemplo anterior são dados por:

Note que, em ambos os casos, as funções tendem a infinito quando x se aproxima de $\mathbf{2}$.

No geral, tem-se:

 $x \rightarrow a^+$

Expressão	Significado	Se lê
$\lim_{x \to a^{-}} f(x) = +\infty$ ou $\lim_{x \to a^{-}} f(x) = -\infty$	f(x) cresce (ou decresce) infinitamente quando x tende a a pela esquerda.	O limite de $f(x)$ quando x tende a α pela esquerda é igual a mais (ou menos) infinito.
$\lim_{x \to \infty} f(x) = \pm \infty$		O limite de $f(x)$ guando x

ou infinitamente quando
$$\lim_{x \to a^+} f(x) = -\infty$$
 infinitamente quando $\lim_{x \to a} f(x) = +\infty$ infinitamente quando $\lim_{x \to a} f(x) = +\infty$ infinitamente quando igual a mais (ou menos) infinito.

f(x) cresce (ou decresce)

$$f(x)$$
 cresce (ou decresce) O limite de $f(x)$ quando x infinitamente quando tende a a é igual a mais x tende a a . (ou menos) infinito.

Se pelo menos um dos casos abaixo acontece

$$\lim_{x \to a^{-}} f(x) = +\infty \quad \lim_{x \to a^{+}} f(x) = +\infty \quad \lim_{x \to a^{-}} f(x) = -\infty \quad \lim_{x \to a^{+}} f(x) = -\infty$$

então a reta x = a é chamada de assíntota vertical do gráfico de f.

Graficamente, as assíntotas verticais são geralmente representadas por retas verticais tracejadas, como nas figuras abaixo.

Exemplo: Com base no gráfico abaixo, determine:

(a)
$$\lim_{x\to -3^-} f(x)$$

(b)
$$\lim_{x\to -3^+} f(x)$$

(c)
$$\lim_{x\to -3} f(x)$$

$$(d) \lim_{x \to 0^-} f(x)$$

(e)
$$\lim_{x \to 0^+} f(x)$$

(f)
$$\lim_{x\to 0} f(x)$$

(g)
$$\lim_{x\to 3^-} f(x)$$

$$(h) \lim_{x \to 3^+} f(x)$$

(i)
$$\lim_{x\to 3} f(x)$$

Exemplo: Com base no gráfico abaixo, determine:

(a)
$$\lim_{x \to -3^-} f(x) + \infty$$

(b)
$$\lim_{x \to -3^+} f(x)$$
 $-\infty$

(c)
$$\lim_{x \to -3} f(x)$$

$$(d) \lim_{x \to 0^{-}} f(x) + \infty$$

(e)
$$\lim_{x\to 0^+} f(x)$$
 + ∞

$$(f)\lim_{x\to 0}f(x) \qquad +\infty$$

$$(g) \lim_{x \to 3^{-}} f(x) \qquad +\infty$$

$$(h) \lim_{x \to 3^+} f(x) \qquad -\infty$$

$$(i) \lim_{x \to 3} f(x)$$

Exemplo: Considere o gráfico da função

$$y = \frac{1}{\lambda}$$

Determine:

$$(a)\lim_{x\to 0^-}\left(\frac{1}{x}\right)$$

(b)
$$\lim_{x\to 0^+} \left(\frac{1}{x}\right)$$

Sim, uma assíntota vertical em x = 0.

Observação: Lembre que, quando dividimos um número positivo por números positivos próximos de zero, o resultado da divisão será um número muito grande.

Exemplo: Dividindo o número 5 por

(a) 1

(b) 0,1

(c) 0.01

(d) 0.001

temos

b)
$$\frac{3}{0.1} = 50$$

(a) $\frac{5}{1} = 5$ (b) $\frac{5}{0.1} = 50$ (c) $\frac{5}{0.01} = 500$ (d) $\frac{5}{0.001} = 5000$

Note que, quanto mais próximo de zero está o denominador, maior será o resultado da divisão!!

Um raciocínio análogo pode ser usado quando consideramos o limite de uma função quociente, quando o numerador tende a uma constante positiva e o denominador tende a zero por valores positivos!!

$$\lim_{x \to a} \frac{f(x)}{g(x)} = +\infty$$

O resultado do limite será igual a mais infinito!

Exemplo: Os limites

O quadro a seguir resume o que acontece com as funções quocientes quando o numerador tende a uma constante e o denominador tende a zero:

Descrição	Representação	Resultado
O numerador tende a uma constante positiva e o denominador tende a zero por valores positivos.	$\lim_{x \to a} \frac{f(x)}{g(x)} \stackrel{C}{\longrightarrow} 0$	+∞
O numerador tende a uma constante positiva e o denominador tende a zero por valores negativos.	lim	-∞
O numerador tende a uma constante negativa e o denominador tende a zero por valores positivos.	$\lim_{x \to a} \frac{f(x)}{g(x)} \stackrel{C}{\longrightarrow} 0^+$	-∞
O numerador tende a uma constante negativa e o denominador tende a zero por valores negativos.	1 100	+∞

Observação: As mesmas regras valem se trocarmos

"
$$x \to a$$
" por " $x \to a^+$ " ou " $x \to a^-$ ".

Exemplo: Calcule os limites:

(a)
$$\lim_{x \to 1^+} \frac{2x+1}{x-1}$$

(b)
$$\lim_{x\to 2^-} \frac{x^2+2}{x-2}$$

(c)
$$\lim_{x\to 0^+} \frac{\cos x - 2}{x}$$

(d)
$$\lim_{x \to -1^-} \frac{-4}{1+x}$$

Exemplo: Calcule os limites:

(a)
$$\lim_{x \to 1^+} \frac{2x+1}{x-1}$$

(c)
$$\lim_{x\to 0^+} \frac{\cos x - 2}{x}$$

(b)
$$\lim_{x \to 2^{-}} \frac{x^2 + 2}{x - 2}$$

(d)
$$\lim_{x \to -1^-} \frac{-4}{1+x}$$

Solução: Note que em todos os casos o numerador tende a uma constante e o denominador tende a zero. Portanto, todos os limites são infinitos.

Para determinar se a resposta é $+\infty$ ou $-\infty$, precisamos analisar o sinal do numerador e do denominador.

(a)
$$\lim_{x \to 1^+} \frac{2x+1}{x+1} = +\infty$$

(c)
$$\lim_{x \to 0^+} \frac{\cos x - 2}{x} = -\infty$$

(b)
$$\lim_{x \to 2^{-}} \frac{x^2 + 2}{x - 2} = -\infty$$

(d)
$$\lim_{x \to -1^{-}} \frac{4}{1+x} = +\infty$$

Descrição	Representação	Resultado
O numerador tende a mais infinito e o denominador tende a uma constante positiva.	$\lim_{x \to a} \frac{f(x)}{g(x)} + \infty$ $C > 0$	+∞
O numerador tende a menos infinito e o denominador tende a uma constante positiva.	$\lim_{x \to a} \frac{f(x)}{g(x)} - \infty$	-∞
O numerador tende a mais infinito e o denominador tende a uma constante negativa.	$\lim_{x \to a} \frac{f(x)}{g(x)} + \infty$	-∞
O numerador tende a menos infinito e o denominador tende a uma constante negativa.	$\lim_{x \to a} \frac{f(x)}{g(x)} - \infty$	+∞

Observação: As mesmas regras valem se trocarmos

"
$$x \rightarrow a$$
" por " $x \rightarrow a$ " ou " $x \rightarrow a$ ".

Exemplo: Calcule os limites:

(a)
$$\lim_{x \to \frac{\pi}{2}} \frac{\tan x}{2x}$$

(b)
$$\lim_{x\to 0^+} \frac{\ln x}{x^2 - 5x + 1}$$

(c)
$$\lim_{x \to \pi^+} \frac{\cot x}{3-x}$$

(a)
$$\lim_{x \to \frac{\pi}{2}} \frac{\tan x}{2x}$$
 (b) $\lim_{x \to 0^+} \frac{\ln x}{x^2 - 5x + 1}$ (c) $\lim_{x \to \pi^+} \frac{\cot x}{3 - x}$ (d) $\lim_{x \to 0^-} \frac{\frac{1}{x}}{\cos x - 2}$

Exemplo: Calcule os limites:

(a)
$$\lim_{x \to \frac{\pi}{2}} \frac{\tan x}{2x}$$

(b)
$$\lim_{x \to 0^+} \frac{\ln x}{x^2 - 5x + 1}$$

(c)
$$\lim_{x \to \pi^+} \frac{\cot x}{3-x}$$

(a)
$$\lim_{x \to \frac{\pi}{2}} \frac{\tan x}{2x}$$
 (b) $\lim_{x \to 0^+} \frac{\ln x}{x^2 - 5x + 1}$ (c) $\lim_{x \to \pi^+} \frac{\cot x}{3 - x}$ (d) $\lim_{x \to 0^-} \frac{\frac{1}{x}}{\cos x - 2}$

Solução: Note que em todos os casos o numerador tende a infinito e o denominador tende a uma constante. Portanto, todos os limites são infinitos.

Para determinar se a resposta é $+\infty$ ou $-\infty$, precisamos analisar o sinal do numerador e do denominador.

(a)
$$\lim_{x \to \frac{\pi}{2}} \frac{\tan x}{2x} = +\infty$$

$$\pi \ge 0$$

(b)
$$\lim_{x \to 0^+} \frac{\ln x}{x^2 - 5x + 1} = -\infty$$

 $1 \ge 0$

(c)
$$\lim_{x \to \pi^{+}} \frac{\cot x}{3 - x} = -\infty$$
$$3 - \pi \le 0$$

$$(d) \lim_{x \to 0^{-}} \frac{\int_{0}^{1} -\infty}{\cos x = 2} = +\infty$$

$$-1 \le 0$$

Limites no infinito

Como motivação para o estudo de limites no infinito, considere a função

$$f(x) = \frac{1}{x}$$

Pergunta: Quando x tende a $-\infty$ ou $+\infty$, o que acontece com f(x)?

Para responder esta pergunta, vamos considerar alguns valores de x e os valores correspondentes de f(x).

x	f(x)
-10	-0,1
-100	-0,01
-1.000	-0,001
-10.000	-0,0001
-100.000	-0,00001

x	f(x)
10	0,1
100	0,01
1.000	0,001
10.000	0,0001
100.000	0,00001

Resposta: Ao fazermos $x \to -\infty$ ou $x \to +\infty$, aparentemente os valores de f(x) se tornam cada vez mais próximos de 0.

Limites no infinito

O gráfico da função

$$f(x) = \frac{1}{x}$$

está representado ao lado.

Note que:

Se
$$x \to -\infty$$
 então $f(x) \to 0$.

Se
$$x \to +\infty$$
 então $f(x) \to 0$.

Em geral, se escreve:

$$\lim_{x \to -\infty} \frac{1}{x} = 0$$
Se lê: o limite de f
quando x tende a menos
infinito é igual a 0 .

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$
Se lê: o limite de f quando x tende a mais infinito é igual a 0 .

Esta função é chamada de função recíproca.

Limites no infinito

No geral, limites do tipo

$$\lim_{x\to-\infty}f(x)$$

Os valores de x diminuem sem cota, isto é, x tende a menos infinito.

e

$$\lim_{x\to+\infty}f(x)$$

Os valores de x aumentam sem cota, isto é, x tende a mais infinito.

são chamados de limites no infinito.

Assíntotas horizontais

Se os limites no infinito existem, e digamos,

$$\lim_{x \to -\infty} f(x) = a \qquad \qquad \lim_{x \to +\infty} f(x) = b$$

então as retas y=a e y=b são chamadas de assíntotas horizontais do gráfico de f.

Graficamente, as assíntotas horizontais são geralmente representadas por retas horizontais tracejadas, como nas figuras abaixo.

Assíntotas horizontais

Exemplo: Considere o gráfico abaixo.

Como

$$\lim_{x \to -\infty} f(x) = 2 \qquad e \qquad \lim_{x \to +\infty} f(x) = 1$$

então este gráfico possui duas assíntotas horizontais, dadas por y = 1 e y = 2.

Assíntotas horizontais

Exemplo: Considere o gráfico abaixo.

então este gráfico possui uma única assíntota horizontal, dada por y=2.

Limites no infinito e funções quocientes

Teorema: Se r for um número racional positivo, então:

$$\lim_{x \to +\infty} \frac{1}{x^r} = 0 \qquad \text{e} \qquad \lim_{x \to -\infty} \frac{1}{x^r} = 0$$

quando for possível calcular este limite para $x \to -\infty$.

Exemplo: Calcule os limites:

(a)
$$\lim_{r \to -\infty} \frac{1}{r}$$

(b)
$$\lim_{x \to +\infty} \frac{5}{\sqrt{x}}$$

(c)
$$\lim_{x \to -\infty} \left(\frac{1}{x^5} + 2 \right)$$

(a)
$$\lim_{x \to -\infty} \frac{1}{x}$$
 (b) $\lim_{x \to +\infty} \frac{5}{\sqrt{x}}$ (c) $\lim_{x \to -\infty} \left(\frac{1}{x^5} + 2 \right)$ (d) $\lim_{x \to -\infty} \left(\frac{x^2 - x + 1}{x^2} \right)$

Limites no infinito e funções quocientes

Teorema: Se r for um número racional positivo, então:

$$\lim_{x \to +\infty} \frac{1}{x^r} = 0$$
 e
$$\lim_{x \to -\infty} \frac{1}{x^r} = 0$$
 quando for possível calcular este limite para $x \to -\infty$.

Exemplo: Calcule os limites:

(a)
$$\lim_{x \to -\infty} \frac{1}{x}$$
 (b) $\lim_{x \to +\infty} \frac{5}{\sqrt{x}}$ (c) $\lim_{x \to -\infty} \left(\frac{1}{x^5} + 2 \right)$ (d) $\lim_{x \to -\infty} \left(\frac{x^2 - x + 1}{x^2} \right)$

Solução: (a)
$$\lim_{x \to -\infty} \frac{1}{x} = 0$$
 (b) $\lim_{x \to +\infty} \frac{5}{\sqrt{x}} = 5 \cdot \lim_{x \to +\infty} \frac{1}{\frac{1}{x^2}} = 5 \cdot 0 = 0$

$$(c) \lim_{x \to -\infty} \left(\frac{1}{x^5} + 2 \right) = 2$$

$$\lim_{x \to -\infty} \left(\frac{x^2 - x + 1}{x^2} \right) = \lim_{x \to -\infty} \left(\frac{x^2}{x^2} - \frac{x}{x^2} + \frac{1}{x^2} \right) = \lim_{x \to -\infty} \left(1 - \frac{1}{x} + \frac{1}{x^2} \right) = 1$$

Limites infinitos no infinito

Como motivação para o estudo de **limites infinitos no infinito**, considere a função $f(x) = x^2$

Pergunta: Quando x tende a $-\infty$ ou $+\infty$, o que acontece com f(x)?

Para responder esta pergunta, vamos considerar alguns valores de x e os valores correspondentes de f(x).

x	f(x)		
-10	100		
-100	10.000		
-1.000	1.000.000		
-10.000	100.000.000		

x	f(x)	
10	100	
100	10.000	
1.000	1.000.000	
10.000	100.000.000	

Resposta: Ao fazermos $x \to -\infty$ ou $x \to +\infty$, aparentemente os valores de f(x) se tornam cada vez maiores.

Escreve-se

$$\lim_{x \to -\infty} x^2 = +\infty$$

Limites infinitos no infinito

Matematicamente, se representa o comportamento deste tipo de função como:

$$\lim_{x \to -\infty} f(x) = -\infty$$

$$\lim_{x \to -\infty} f(x) = +\infty$$

$$\lim_{x \to +\infty} f(x) = -\infty$$

$$\lim_{x\to +\infty} f(x) = +\infty$$

Se lê: o limite de f quando x tende a menos infinito é igual a menos infinito.

Se lê: o limite de f quando x tende a menos infinito é igual a mais infinito.

Se lê: o limite de f quando x tende a mais infinito é igual a menos infinito.

Se lê: o limite de f quando x tende a mais infinito é igual a mais infinito.

Estes limites são chamados de limites infinitos no infinito.

Funções polinomiais e funções racionais

Para calcular limites no infinito de funções polinomiais ou funções racionais, basta considerar os monômios de maior grau, que são também chamados de termos dominantes, para calcular o limite.

Exemplo: Calcule os limites:

(a)
$$\lim_{x \to -\infty} x^5 - 100x^4 + 2x^2 - 10.000$$

(b)
$$\lim_{x \to +\infty} \frac{25x^3 - 12x^2 + 80x}{3x^3 + 1}$$

Funções polinomiais e funções racionais

Para calcular limites no infinito de funções polinomiais ou funções racionais, basta considerar os monômios de maior grau, que são também chamados de termos dominantes, para calcular o limite.

Exemplo: Calcule os limites:

(a)
$$\lim_{x \to -\infty} x^5 - 100x^4 + 2x^2 - 10.000$$
 (b) $\lim_{x \to +\infty} \frac{25x^3 - 12x^2 + 80x}{3x^3 + 1}$

Solução:

(a)
$$\lim_{x \to -\infty} x^5 - 100x^4 + 2x^2 - 10.000 = \lim_{x \to -\infty} x^5 = -\infty$$

(b)
$$\lim_{x \to +\infty} \frac{25x^3 - 12x^2 + 80x}{3x^3 + 1} = \lim_{x \to +\infty} \frac{25x^3}{3x^3} = \lim_{x \to +\infty} \frac{25}{3} = \frac{25}{3}$$

Funções contínuas

Definição: Uma função f é contínua em um número x = a se forem satisfeitas as seguintes condições:

1)
$$f(a)$$
 existe:

1)
$$f(a)$$
 existe; 2) Existe o limite $\lim_{x \to a} f(x)$; 3) $\lim_{x \to a} f(x) = f(a)$.

$$3) \lim_{x \to a} f(x) = f(a)$$

Do contrário, se diz que a função f é descontínua em x = a.

Observação: As condições acima dizem que:

1)
$$f(a)$$
 existe.

Quer dizer que o número a pertence ao domínio da função f, ou seja, é possível calcular f(a).

2) Existe o limite
$$\lim_{x \to a} f(x)$$
.

Quer dizer que os limites laterais existem e são iguais entre si.

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$$

$$3) \lim_{x \to a} f(x) = f(a).$$

Quer dizer que valores encontrados em 1) e 2) são iguais entre si.

Funções contínuas

Exemplos: Determine se a função representada pelo gráfico a seguir é contínua em cada número dado. Justifique.

(a)
$$x = -2$$

(d)
$$x = 1$$

(b)
$$x = -1$$
 (e) $x = 2$

(e)
$$x = 2$$

(c)
$$x = 0$$

(f)
$$x = 3$$

Solução:

(a) Como

$$f(-2) = 5$$
 e $\lim_{x \to -2} f(x) = 5$

então f é contínua em x=-2.

(b) Como

$$f(-1) \not\equiv \lim_{x \to -1} f(x) = 3$$

então f é descontínua em x = -1.

Fatoração- alguns exemplos

$$a^2 - b^2 = (a + b) \cdot (a - b)$$
 $a - b = (\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b})$

$$a^2 + 2ab + b^2 = (a + b)^2$$
 (quadrado da soma de dois termos)

$$a^2$$
 - 2ab + b^2 = $(a - b)^2$ (quadrado da diferença de dois termos)

$$x^2 + (a + b)x + ab = (x + a)(x + b)$$

Seno, cosseno e tangente

α	00	30°	45°	60°	90°
Seno	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
Cosseno	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0
Tangente	0	$\frac{\sqrt{3}}{3}$	1.	$\sqrt{3}$	∞

Questões 1

a)
$$\lim_{x\to 3} \frac{x-5}{x^3-7}$$

b)
$$\lim_{x \to -2} \sqrt{x^4 - 4x + 1}$$

c)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

d)
$$\lim_{x\to 0} x^2 |sen(\frac{1}{x})|$$

e)
$$\lim_{x \to \frac{\pi}{2}} [4senx - 2cosx + cotgx]$$

f)
$$\lim_{t\to 2} \frac{t^2-5t+6}{t-2}$$

$$g)\lim_{x\to 0}\frac{x^3}{x^2}$$

h)
$$\lim_{x\to 0} \frac{2x^2}{x^2}$$

$$i) \quad \lim_{x \to \infty} \frac{2x - 5}{x + 8}$$

j)
$$\lim_{x \to -\infty} \frac{2x^3 - 3x + 5}{4x^5 - 2}$$

Questões 2

a)
$$\lim_{x\to 0} (3-7x+5x^2)$$

b)
$$\lim_{x \to -1} [(x+4)^3 (x+2)^{-1}]$$

c)
$$\lim_{x \to 2} \frac{4x-1}{x+2}$$

d)
$$\lim_{x \to -3} \frac{x^2 + 6x + 9}{x + 3}$$

e)
$$\lim_{x \to 3} \frac{\sqrt{x} - \sqrt{3}}{x - 3}$$