Análisis de Correspondencias

José A. Perusquía Cortés

Análisis Multivariado Semestre 2024-l

¿De qué va?

- Una técnica multivariada para analizar las asociaciones entre un conjunto de variables categóricas de forma gráfica (reducción de la dimensión).
- Es una técnica meramente descriptiva conocida desde Hirschfeld (1935) y redescubierta e impulsada por Jean-Paul Benzécri en Francia en los años 60's.
- Técnica similar a PCA pero para datos categóricos.

- Punto en un espacio multidimensional
- Un peso (o masa) asignado a cada punto
- Un centroide
- Una función de distancia entre puntos: chi-squared distance
 - Para dos renglones i,i'

$$d(i, i') = \sqrt{\sum_{j=1}^{p} \left(\frac{f_{ij}}{f_{i\cdot}} - \frac{f_{i'j}}{f_{i'\cdot}}\right)^2 \cdot \frac{1}{f_{\cdot j}}}$$

- Para dos columnas j, j'

$$d(j,j') = \sqrt{\sum_{i=1}^{n} \left(\frac{f_{ij}}{f_{\cdot j}} - \frac{f_{ij'}}{f_{\cdot j'}}\right)^2 \cdot \frac{1}{f_{i\cdot j'}}}$$

Estado de salud por grupo de edades

Grupo\Salud	Muy Bueno	Bueno	Regular	Malo	Muy Malo	Totales Ren.
16-24	243	789	167	18	6	1223
25-34	220	809	164	35	6	1234
35-44	147	658	181	41	8	1035
45-54	90	469	236	50	16	861
55-64	53	414	306	106	30	909
65-74	44	267	284	98	20	713
75+	20	136	157	66	17	396
Totales Col.	817	3542	1495	414	103	6371

Tabla de frecuencias por renglón

Grupo\Salud	Muy Bueno	Bueno	Regular	Malo	Muy Malo	Peso Renglón
16-24	0.199	0.645	0.137	0.015	0.005	0.192
25-34	0.178	0.656	0.133	0.028	0.005	0.194
35-44	0.142	0.636	0.175	0.040	0.008	0.162
45-54	0.105	0.545	0.274	0.058	0.019	0.135
55-64	0.058	0.455	0.337	0.117	0.033	0.143
65-74	0.062	0.374	0.398	0.137	0.028	0.112
75+	0.051	0.343	0.396	0.167	0.043	0.062
Peso Columna	0.128	0.556	0.235	0.065	0.016	1.000

Puntos en un espacio multidimensional: perfiles por renglón

Grupo\Salud	Muy Bueno	Bueno	Regular	Malo	Muy Malo	Peso Renglón
16-24	0.199	0.645	0.137	0.015	0.005	0.192
25-34	0.178	0.656	0.133	0.028	0.005	0.194
35-44	0.142	0.636	0.175	0.040	0.008	0.162
45-54	0.105	0.545	0.274	0.058	0.019	0.135
55-64	0.058	0.455	0.337	0.117	0.033	0.143
65-74	0.062	0.374	0.398	0.137	0.028	0.112
75+	0.051	0.343	0.396	0.167	0.043	0.062
Peso Columna	0.128	0.556	0.235	0.065	0.016	1.000

Pesos (masas) de cada perfil: peso renglón

Grupo\Salud	Muy Bueno	Bueno	Regular	Malo	Muy Malo	Peso Renglón
16-24	0.199	0.645	0.137	0.015	0.005	0.192
25-34	0.178	0.656	0.133	0.028	0.005	0.194
35-44	0.142	0.636	0.175	0.040	0.008	0.162
45-54	0.105	0.545	0.274	0.058	0.019	0.135
55-64	0.058	0.455	0.337	0.117	0.033	0.143
65-74	0.062	0.374	0.398	0.137	0.028	0.112
75+	0.051	0.343	0.396	0.167	0.043	0.062
Peso Columna	0.128	0.556	0.235	0.065	0.016	1.000

El centroide: peso columna

Grupo\Salud	Muy Bueno	Bueno	Regular	Malo	Muy Malo	Peso Renglón
16-24	0.199	0.645	0.137	0.015	0.005	0.192
25-34	0.178	0.656	0.133	0.028	0.005	0.194
35-44	0.142	0.636	0.175	0.040	0.008	0.162
45-54	0.105	0.545	0.274	0.058	0.019	0.135
55-64	0.058	0.455	0.337	0.117	0.033	0.143
65-74	0.062	0.374	0.398	0.137	0.028	0.112
75+	0.051	0.343	0.396	0.167	0.043	0.062
Peso Columna	0.128	0.556	0.235	0.065	0.016	1.000

1. Definir matrices diagonales \mathbf{D}_r y \mathbf{D}_c con las masas por renglón y columna.

2. Obtener la descomposición GSVD de ${f R}-{f 1c}^T$, i.e.,

$$\mathbf{R} - \mathbf{1}\mathbf{c} = \mathbf{N}\Lambda\mathbf{M}^T \qquad \mathbf{N}^T\mathbf{D}_r\mathbf{N} = \mathbf{M}^T\mathbf{D}_c^{-1}\mathbf{M} = \mathbf{I}$$

- R es la matriz de perfiles por renglón
- $\mathbf{c} = \mathbf{D}_c \mathbf{1}$ es el centroide

3. Las primeras dos coordenadas se encuentran con $N_{(2)}\Lambda_{(2)}$

Las matrices diagonales son:

$$\mathbf{D}_r = \text{diag}(.192,.194,.162,.135,.143,.112,.062)$$
 $\mathbf{D}_c =$

 $\mathbf{D}_c = \text{diag}(.128,.556,.235,.065,.016)$

El centroide es:

$$\mathbf{c} = (.128,.556,.235,.065,.016)^T$$

La matriz $\mathbf{R} - \mathbf{1c}^T$ está dada por:

0.071	0.089	-0.098	-0.050	-0.011
0.050	0.100	-0.102	-0.037	-0.011
0.014	0.080	-0.065	-0.025	-0.008
-0.023	-0.011	0.039	-0.007	0.003
-0.070	-0.101	0.102	0.052	0.017
-0.066	-0.182	0.163	0.072	0.012
-0.077	-0.213	0.161	0.102	0.027

La proyección en la primera coordenada

Usamos la transpuesta de la tabla de contingencia y repetimos.

Graficamos las dos variables al mismo tiempo

1. Calcular la matriz de correspondencia
$$\mathbf{P} = \frac{\mathbf{N}}{n}$$

- 2. Definir matrices diagonales \mathbf{D}_r y \mathbf{D}_c con las sumas por renglón y columna.
- 3. Obtener la descomposición SVD de

$$\mathbf{D}_r^{-\frac{1}{2}} \left(\mathbf{P} - \mathbf{r} \mathbf{c}^T \right) \mathbf{D}_c^{-\frac{1}{2}} = \mathbf{U} \Lambda \mathbf{V}^T$$

5. Obtener las coordenadas estándar

$$\mathbf{X} = \mathbf{D}_r^{-\frac{1}{2}} \mathbf{U} \qquad \qquad \mathbf{Y} = \mathbf{D}_c^{-\frac{1}{2}} \mathbf{V}$$

6. Obtener las coordenadas principales

$$\mathbf{F} = \mathbf{X}\Lambda$$
 $\mathbf{G} = \mathbf{Y}\Lambda$

Encuesta a trabajadores de una empresa sobre sus hábitos de fumar

Staff\Nivel	None	Light	Medium	Heavy	Totales Ren.
Sr Managers	4	2	3	2	11
Jr Managers	4	3	7	4	18
Sr Employees	25	10	12	4	51
Jr Employees	18	24	33	13	88
Secretaries	10	6	7	2	25
Totales Col.	61	45	62	25	193

Como PCA se busca explicar la mayor cantidad de varianza definida como:

Inercia =
$$\sum_{i,j} \frac{\left(p_{ij} - r_i c_j\right)^2}{(r_i c_j)}$$

• Equivalentemente, Inercia $=\frac{\chi^2}{n}$, donde χ^2 es el estadístico de Pearson y n el total de observaciones

Los valores singulares al cuadrado $\lambda_1^2, \lambda_2^2, \dots$ son las inercias principales y explican la inercia total.

La inercia total:

Inercia =
$$0.08518986$$

Las inercias principales:

$$\lambda_1^2 = 0.07475911;$$
 $\lambda_2^2 = 0.01001718;$ $\lambda_3^2 = 0.0004135741$

Porcentaje explicado acumulado:

ullet Las coordenadas de los renglones ${f F}$ y la de las columnas ${f G}$ están relacionadas

$$\mathbf{F} = \mathbf{R}\mathbf{G}\Lambda^{-1} \qquad \qquad \mathbf{G} = \mathbf{C}\mathbf{F}\Lambda^{-1}$$

Nos da una forma de añadir perfiles suplementarios para columnas y renglones

Imaginar que se tiene un promedio nacional de fumadores

Staff\Nivel	None	Light	Medium	Heavy
Sr Managers	4	2	3	2
Jr Managers	4	3	7	4
Sr Employees	25	10	12	4
Jr Employees	18	24	33	13
Secretaries	10	6	7	2
Promedio	42%	29%	20%	9%

Encontramos su representación como:

$$f_{11} * = \frac{(.42* - 0.39330845) + (.29* 0.09945592) + (.2* 0.19632096) + (.09* 0.29377599)}{.2734211} = .258$$

$$f_{12} * = \frac{(.42* - 0.030492071) + (.29* 0.141064289) + (.2* 0.007359109) + (.09* - 0.197765656)}{0.1000859} = .118$$

De forma similar podemos añadir columnas

Staff\Nivel	None	Light	Medium	Heavy	Drinking	Not Drinking
Sr Managers	4	2	3	2	0	11
Jr Managers	4	3	7	4	1	17
Sr Employees	25	10	12	4	5	46
Jr Employees	18	24	33	13	10	78
Secretaries	10	6	7	2	7	18
Promedio	42%	29%	20%	9%		

Observación: Ya no es una tabla de contingencia

Análisis de correspondencias múltiple

• Extensión del análisis de correspondencias simple que permite analizar la relación de K variables categóricas dependientes, cada una con J_k niveles tales que $\sum_k J_k = J$

Es importante que las variables sean "homogéneas", e.g. no mezclar variables de opinión con variables demográficas.

A grandes rasgos se puede ver como un análisis de correspondencias simple en una matriz indicadora.

Las variables pueden ser cuantitativas también, siempre que se agrupen.

ullet El análisis se puede hacer en la matriz indicadora old X o en la matriz de Burt $old X^T old X$ (puede ser computacionalmente más sencillo)

Es necesario re-escalar los eigenvalores, e.g. Greenacre (1993) propuso:

$$\lambda_i^c = \begin{cases} \left[\left(\frac{K}{K-1} \right) \left(\lambda_i - \frac{1}{K} \right) \right]^2 & \text{si } \lambda_i > \frac{1}{K} \\ 0 & \text{si } \lambda_i \leq \frac{1}{K} \end{cases}$$

• El porcentaje de inercia se puede calcular como

$$\frac{\lambda_i^c}{\sum_i \lambda_i^c}$$

Greenacre propuso en su lugar estimarla a través de

$$\frac{\lambda_i^c}{\bar{\mathcal{J}}}$$

Donde

$$\bar{\mathcal{J}} = \frac{K}{K-1} \left(\sum_{i} \lambda_i^2 - \frac{J-K}{K^2} \right)$$

Ejemplo 3: Características de vinos

			Expert 1						Expert 2						Expert 3								
	Oak								r	ed													
Wine	Type	frı	uity	W	00	dy	co	ffee	fr	uit	roa	asted	va	ınil	lin	wo	ody	frı	ıity	bu	tter	WC	ody
W1	1	1	0	0	0	1	0	1	1	0	0	1	0	0	1	0	1	0	1	0	1	0	1
W2	2	0	1	0	1	0	1	0	0	1	1	0	0	1	0	1	0	0	1	1	0	1	0
W3	2	0	1	1	0	0	1	0	0	1	1	0	1	0	0	1	0	0	1	1	0	1	0
W4	2	0	1	1	0	0	1	0	0	1	1	0	1	0	0	1	0	1	0	1	0	1	0
W5	1	1	0	0	0	1	0	1	1	0	0	1	0	0	1	0	1	1	0	0	1	0	1
W6	1	1	0	0	1	0	0	1	1	0	0	1	0	1	0	0	1	1	0	0	1	0	1
W?	?	0	1	0	1	0	.5	.5	1	0	1	0	0	1	0	.5	.5	1	0	.5	.5	0	1

Coordenadas (modificadas)

Añadiendo el vino del que no se conoce el tipo de barrica

Inercias principales

$$\lambda_1^2 = 0.8532;$$
 $\lambda_2^2 = 0.2;$ $\lambda_3^2 = .1151;$ $\lambda_4^2 = 0.0317$

Contribución a la inercia total

Inercias corregidas

$$\lambda_1^2 = 0.7004;$$
 $\lambda_2^2 = 0.0123;$ $\lambda_3^2 = .0003;$ $\lambda_4^2 = 0$

$$\lambda_2^2 = 0.0123;$$

$$\lambda_3^2 = .0003$$

$$\lambda_4^2 = 0$$

Contribución a la inercia total