Approximate Degree of Boolean Functions and Applications in Quantum Query Complexity Undergraduate Project - 2017-18/II

Sagnik Bhattacharya Advisor: Prof Rajat Mittal Co-advisor: Prof Ketan Rajawat

April 18, 2017

Outline

Introduction

Boolean Functions and Approximate Degree In this talk...

Approximate Degree and Quantum Query Complexity

Hardness of Functions Quantum Query Complexity

Approximating OR

Key Ideas
The Hard Case
Chebyshev Polynomials
Reducing to the Hard Case
Approximating polynomial for NOR

Surjectivity

Outline

Introduction

Boolean Functions and Approximate Degree In this talk...

Approximate Degree and Quantum Query Complexity

Quantum Query Complexity

Approximating OR

Key Ideas
The Hard Case

Reducing to the Hard Case

Approximating polynomial for NO

Surjectivity

Boolean Functions

▶ In the {0,1} basis, can be represented as:

$$f: \{0,1\}^n \to \{0,1\}$$

▶ In the Fourier $\{-1,1\}$ basis, can be represented as:

$$f: \{-1,1\}^n \to \{-1,1\}$$

► Examples: OR, AND

Representing Boolean Functions as Polynomials

- We can represent each such function exactly by polynomial in n variables.
- Consider only multinlinear polynomials.
- Natural to talk about polynomials while discussing Boolean functions.

Approximate Degree of Boolean Functions

A real polynomial p is said to be an ϵ -approximation to a Boolean function f if the following holds:

$$|p(x) - f(x)| < \epsilon \ \forall x \in \{-1, 1\}^n$$

- ► The minimum degree required to approximate a given function *f* is called the approximate degree of the function.
- ▶ Note that the upper bound on the approximate degree is *n*.
- Question: Can we do better?

Quantum Algorithms

In this talk...

- ▶ Why should we care about approximate degree? We will look at its relation with quantum query complexity.
- ► How to find upper bounds on the approximate degree? Use quantum algorithms (follows from answer to previous point) or provide an explicit construction.

Outline

Introduction

Boolean Functions and Approximate Degree In this talk...

Approximate Degree and Quantum Query Complexity

Hardness of Functions
Quantum Query Complexity

Approximating OR

Key Ideas

The Hard Case

Chebyshev Polynomials

Reducing to the Hard Case

Approximating polynomial for NOR

Surjectivity

Hardness of Functions

We can have several measure of how hard it is to compute a given boolean function. These measures include:

- Decision tree complexity/query complexity
- Block sensitivity
- Quantum query complexity

Nisan and Szegedy (1994) showed that the **approximate degree** of a polynomial is polynomially related to the first two hardness measures.

Quantum Query Complexity

Beals et al (1998, 2001) proved the following result.

Theorem

Let $\mathcal A$ be a quantum algorithm that makes $\mathcal T$ queries to to a black-box $\mathcal X$. Let $\mathcal B$ be a subset of basis states. Then there exists a real valued multilinear polynomial p of degree at most $2\mathcal T$ which equals the probability that observing the final state of the algorithm yields a state from $\mathcal B$.

We will now prove this more general theorem that implies the result we are looking for.

Proof

Relating Approximate Degree and Quantum Query algorithms

Using the previous theorem, we have the following result [Beals et al 1998]

Theorem

Let a quantum algorithm A compute a Boolean function f using T queries with bounded error. Let deg(f) be the approximate degree of the associated polynomial. Then,

$$T \geq \frac{\widetilde{deg}(f)}{2}$$

Outline

Introduction

Boolean Functions and Approximate Degree In this talk...

Approximate Degree and Quantum Query Complexity

Quantum Query Complexity

Approximating OR

Key Ideas The Hard Case Chebyshev Polyr

Reducing to the Hard Case

Approximating polynomial for NOR

Surjectivity

Approximating OR

Kothari, Bun and Thaler (2017): Key ideas

- ▶ Isolate the 'hard' cases, solve them and reduce the general case to the hard case by some other computation.
- ► Give an explicit polynomial that approximates NOR on the hard cases.
- Think of polynomials as algorithms

Approximating OR

Symmetric functions

Symmetric functions

- ► Functions whose value remains the same for every permutation of a given input string.
- Can be treated as a function of the Hamming weight of the input only.
- ► Example OR, AND

Approximating NOR

What is the hard case?

- First question what is a hard case?
- ► We are looking for two inputs which are 'close' but for which the function value differs.
- ▶ In the case of NOR, consider the all-zero input and an input with just one 1.
- for the NOR function, we generalize this we regard inputs with Hamming weight $\leq T$ to be hard, where T is a parameter which will be chosen later.

 $\mathcal{P} = \mathcal{H}^n_{\leq T} = \mathsf{set}$ of all strings with Hamming weight less than T

Chebyshev Polynomial of degree d

- ▶ $T_d(x) \in [-1,1]$ for all $x \in [-1,1]$
- $T_d(1+\mu) \geq \frac{1}{2} exp(d\sqrt{\mu})$ for all $\mu \in (0,1)$
- ▶ For any polynomial $p: \mathbb{R} \to \mathbb{R}$ of degree d with $|p(x)| \le 1$ for all x in [-1,1] we have

$$|p(x)| \le T_d(x) \le (2|x|)^d$$
 for all $|x| > 1$

The approximating polynomial on the hard cases

Suppose we have a promise that the only inputs are from the hard set. We claim that the following polynomial approximates $_{\mathrm{OR}}$ in this case.

$$V_{\mathcal{T},\epsilon}(x) = \left(1 - rac{1}{M}
ight) - rac{1}{M} \cdot T_d \left(1 + rac{1 - |x|}{\mathcal{T}}
ight)$$

We have
$$d = O\left(\sqrt{T}log\left(rac{1}{\epsilon}
ight)
ight)$$
 and $M = T_d(1+rac{1}{T})+1$

The approximating polynomial on the hard cases - continued

We can show that this polynomial satisifies the following properties.

- $ightharpoonup V_{\mathcal{T},\epsilon} \in [0,\epsilon]$ for the zero vector
- ullet $V_{T,\epsilon} \in [1-\epsilon,1]$ all inputs with Hamming weight $\leq T$
- $V_{T,\epsilon} \in [-a,a]$ for all other inputs

Therefore, it approximates OR on the hard inputs and has degree $\tilde{O}\left(\sqrt{T}\right)$. Using the properties of the Chebyshev Polynomials, we can also show that $a=\exp\left(O\left(\sqrt{T}logn\right)\right)$

Reducing to the Hard case

- \triangleright We claim that a polynomial \tilde{q} exists that can distinguish the cases |x| = 0 and $x \notin \mathcal{P}$, and that such a polynomial has degree $O\left(\sqrt{\frac{N}{T}}\right)$.
- ► This polynomial can be explicitly constructed or its existence can be proven using the Quantum Counting algorithm [Brassard et al, 1998]
- More explicitly, \tilde{q} satisfies the following:
 - $\tilde{q} \in \left[\frac{9}{10}, 1\right] \text{ for } |x| = 0$
 - $\tilde{q} \in [0, 1] \text{ for } |x| \le T$ $\tilde{q} \in [0, \frac{1}{10}] \text{ for } |x| \ge T$

Reducing to the Hard case - continued

- Using \tilde{q} we can construct another polynomial q with the following properties
 - $\tilde{q} \in \left[1 \frac{1}{3a}, 1\right]$ for |x| = 0
 - $\tilde{q} \in [0,1]$ for $|x| \leq T$
 - $\tilde{q} \in \left[0, \frac{1}{3a}\right]$ for $|x| \ge T$
- ▶ The degree of q is equal to $deg(\tilde{q}) \cdot O(log(3a))$
- ▶ Therefore, $deg(q) = \tilde{O}(\sqrt{n})$.

Polynomial that approximates NOR

Claim: The polynomial $p \cdot q$ approximates NOR

Proof by picture.

Outline

Introduction

Boolean Functions and Approximate Degree In this talk...

Approximate Degree and Quantum Query Complexity

Quantum Query Complexity

Approximating OR

Key Ideas
The Hard Case
Chebyshev Polynomials
Reducing to the Hard Case
Approximating polynomial for NOR

Surjectivity

Approximating NOR Key ideas

- ▶ Isolate the 'hard' cases, solve them and reduce the general case to the hard case by some other computation.
- ► Give an explicit polynomial that approximates NOR on the hard cases.
- ► Think of polynomials as algorithms

The SURJECTIVITY Function

- ▶ What is the SURJECTIVITY function?
- What are the hard cases?
- ► Representation in terms of AND and OR on a restricted set of inputs
- Reduction to the hard case

Summary

- Approximate degree and relation with hardness measures
- Quantum query complexity and approximate degree
- Algorithms as polynomials
- ► Explicit approximation polynomial for OR
- ▶ Sketch of how to extend to SURJECTIVITY