Homework #4

Exercise 1

a) Provide sequence plots for all three predictors and the response, and comment on any patterns observed.

The response, total labor hours, seems to bounce around a mean with some high and low outliers throughout the year.

The number of cases shipped is fairly constant except for some larger weeks towards the end of the year.

The indirect costs of labor hours as a percentage looks like it might have a linear correlation over the course of a year. There is some variability however.

Holiday vs time should show where the holiday weeks lie. 1 if a holiday, 0 otherwise.

b) Provide a scatterplot matrix and correlation matrix for all three predictors and the response, and comment on what these suggest.

The x1 variable may have some positive correlation with the y response, but linearity is not readily apparent. X2 does not appear to have a strong correlation with y. x3 looks as though it does have some positive correlation with y.

Pearson Correlation Coefficients, N = 52 Prob > r under H0: Rho=0									
	Y	X1	X2	X 3					
Y	1.00000	0.20766 0.1396	0.06003 0.6725	0.81058 <.0001					
X1	0.20766 0.1396	1.00000	0.08490 0.5496	0.04566 0.7479					
X2	0.06003 0.6725	0.08490 0.5496	1.00000	0.11337 0.4236					
X 3	0.81058 <.0001	0.04566 0.7479	0.11337 0.4236	1.00000					

The x3 variable has much higher correlation with y than the other predictor variables. It is the only values with p-value < alpha = 0.05 as well.

Exercise 2

a) Fit the multiple regression and report the estimated regression function. Provide an interpretation of each of the estimated regression coefficients.

$$Y = 4149.887 + 0.00078708X_1 - 13.16602X_2 + 623.55448X_3 + \varepsilon$$

 B_1 is very small and there does not appear to be a strong correlation between it and the response variable.

 B_2 is negative and may have some negative correlation with the response variable.

 B_3 is large and positive and seems to have the strongest correlation of the predictors with the response variable.

b) Report graphical (histogram, normal prob. plot, sequence plot, residual plot) and numerical checks (Brown-Forsythe and correlation test of normality) of model assumptions, and comment briefly on what these suggest.

For the graphical diagnostics, the residuals appear to show normality. Notice, the histogram looks fairly gaussian distributed and residuals do not show any trends in residual plots. The p-value for test of constant variance is above threshold so fail to reject that there is constant variance. As for test of normality of residuals, the expect norm value is above the related table value, so fail to reject normality.

Exercise 3

Text problem 6.13. (Report both Bonferroni and Scheffe intervals and indicate which is more efficient).

Simultaneous 90% intervals of individual prediction at three x-profiles, using Scheffe and Bonferroni

Obs	X1	X2	X 3	Yhat	S_lower	S_upper	B_lower	B_upper
53	230000	7.5	0	4232.17	3853.64	4610.70	3909.45	4554.89
54	250000	7.3	0	4250.55	3875.18	4625.91	3930.52	4570.57
55	280000	7.1	0	4276.79	3903.80	4649.78	3958.79	4594.79
56	340000	6.9	0	4326.65	3951.61	4701.69	4006.91	4646.39

The Bonferrroni prediction intervals are more efficient for the test values.

Exercise 4

a)

Parameter Estimates										
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Type I SS	Squared Partial Corr Type I			
Intercept	1	4149.88721	195.56541	21.22	<.0001	989877440				
X1	1	0.00078708	0.00036455	2.16	0.0359	136366	0.04312			
X 3	1	623.55448	62.64095	9.95	<.0001	2033565	0.67208			
X2	1	-13.16602	23.09173	-0.57	0.5712	6674.58809	0.00673			

$$SSR(X1) = 136,366$$

$$SSR(X_3|X_1) = SSE(X_1) - SSE(X_1, X_3)$$

$$SSR(X_3|X_1) = 2,033,565$$

$$SSR(X_2|X_1,X_3) = SSE(X_1,X_3) - SSE(X_1,X_2,X_3)$$

$$SSR(X_2|X_1,X_3) = 6,674$$

Subset F-test, automatically								
The REG Procedure Model: MODEL1								
Test subsetcheck Results for Dependent Variable Y								
Source DF Square F Value Pr > F								
Source	DF	Square	F Value	Pr > F				
Source Numerator	DF 1	Square 6674.58809	F Value 0.33	Pr > F 0.5712				

For the F-test with $\beta_2 = 0$, the F-value is equal to 0.33, which is small. This leads to a large p-value. This means fail to reject null hypothesis which is that $\beta_2 = 0$. Meaning that predictor is likely to not be affecting the model.

c)

				he REG Model: penden	MODE	L1				
		No	Number of Observations Read							
		No	Number of Observations Used				d 52			
			Aı	nalysis	of Vari	ance				
	So	urce	DF	Sum Square		Mean quare	F Va	lue	Pr > F	
	Mo	odel	2	1420	92	71046	1	.15 0.3242		
	Er	ror	49	30200	44	14 61634				
	Co	rrected Tota	51	31621	36					
		Root MSE		248.2	26104	R-Se	quare	0.04	149	
		Dependent	t Mean	4363.0	3846	Adj	R-Sq	0.00	160	
		Coeff Var		5.0	59010					
			Pa	ramete	r Estin	ates				
Variable	DF	Parameter Estimate		andard Error	t Val	ue P	r > t	Ту	pe I SS	Squared Partial Corr Type I
Intercept	-1	3995.47867	337	.76602	11.	83 <	.0001	989	877440	
X2	- 1	12.12052	39	.76555	0.	30 0	.7618		11395	0.00360
X1	- 1	0.00091916	0.000	63120	1.	46 0	.1517		130697	0.04148

SSR(X1)+SSR(X2|X1)=SSR(X2)+SSR(X1|X2)? This statement is true and should be true every time. The order does not matter as long as both are considered. This could be considered a cumulative property.

Check of statement, 136,366 + 5,725 = 11,395 + 130,697

Exercise 5

Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation			
Intercept	1	4149.88721	195.56541	21.22	<.0001	0			
X1	1	0.00078708	0.00036455	2.16	0.0359	1.00860			
X2	1	-13.16602	23.09173	-0.57	0.5712	1.01960			
X3	1	623.55448	62.64095	9.95	<.0001	1.01436			

Collinearity Diagnostics									
		Condition	Proportion of Variation						
Number	Eigenvalue	Index	Intercept	X1	X2	X3			
1	3.13677	1.00000	0.00102	0.00308	0.00133	0.02004			
2	0.83411	1.93923	0.00032068	0.00091374	0.00035401	0.97010			
3	0.02283	11.72211	0.03448	0.88968	0.16309	0.00033831			
4	0.00629	22.32696	0.96418	0.10632	0.83523	0.00953			

The variance inflation numbers for each parameter are low and near 1. This indicates that maybe no multicollinearity is taking place. As for the condition indexes, all are less than 30, this also indicates that probably no multicollinearity taking place.

Appendix SAS code

See attached pdf of SAS code to homework submission