

БЕЗОПАСНОСТЬ БАЗ ДАННЫХ

ФИО преподавателя: Селин А.А., канд. техн. наук

Безопасность баз данных

ЗАЩИТА ДАННЫХ В СООТВЕСТВИИ С КОНЦЕПЦИЕЙ ПОДСХЕМ ПОЛЬЗОВАТЕЛЕЙ

Учебные вопросы:

- 1. Каналы утечки в СБД
- 2. Механизм защиты данных на основе подсхем пользователей
- 3. Ведение матрицы безопасности в СБД

Перехват паролей — завладение злоумышленником действующим паролем легитимного пользователя для последующего легального входа в систему и получения доступа к данным.

Последствия – подсистема защиты данных скомпрометирована, данные более не защищены!

Перехват полномочий – легальный процесс с низким уровнем благонадежности выдает себя за другой легальный процесс с более высоким уровнем благонадежности.

Последствия — подсистема защиты данных воспринимает прикладной процесс PUBLIC, как доверенный процесс с привилегиями обработки конфиденциальных данных, данные более не защищены!

Хищение файла данных – технически сложный процесс завладения файлом данных с последующим анализом байтовых последовательностей для восстановления конфиденциальных данных. Осуществляется агентурными или техническими методами.

«Прозрачное» шифрование (*Transparent Database Encryption, TDE*) — механизм наложения шифра (суммирование по модулю 2) на записанные в файл данных байты данных колонок таблиц, определенных пользователем, как конфиденциальные, в режиме реального времени с использованием симметричного ключа в момент их записи и моментальное снятие шифра при чтении из файла данных.

Последствия — нарушитель имеет время и неограниченное число попыток восстановить конфиденциальные данные, выполнить реинжиниринг структуры базы данных, обнаружить ранее не известные ему сегменты базы данных (таблицы, индексы, представления, хранимые процедуры), данные более не защищены!

Вскрытие структуры базы данных (реинжиниринг) — восстановление физической и логической структуры базы данных из системного каталога. Для легитимного пользователя полезная процедура, особенно на стадии разработки и внедрения базы данных в информационную систему. Поддерживается системами автоматизированного проектирования (САПР), типа СА Erwin/ERX.

Последствия — нарушитель получает представление о колонках базы данных, предусмотренных псевдонимах, соединениях таблиц, как следствие, понимание, где хранятся конфиденциальные данные, данные, данные под угрозой вскрытия, нарушитель знает, что нужно искать!

Восстановление (понимание) взаимосвязи данных — на основании простых запросов к доступным данным возникает предположение, что в базе данных есть другие колонки и таблицы. «Если есть что-то недоступное, значит надо взломать базу данных и получить доступ к нему — запретный плод всегда сладок».

Последствия – нарушитель получает представление о том, что имеются колонки базы данных, где хранятся конфиденциальные данные,

возникает угроза вскрытия структуры базы данных и доступа нарушителя к конфиденциальным данным!

Ошибка в определении степени конфиденциальности данных – отнесение данных с высокой степенью конфиденциальности к более низкой и, наоборот, отнесение данных с низкой степенью конфиденциальности к более высокой.

Последствия — нарушитель получает доступ к конфиденциальным данным, которые не соответствуют уровню благонадежности пользователя, учетной записью которого он воспользовался, нарушитель получает «бонус», данные более не защищены!

Ошибка в определении уровня благонадежности пользователя — предоставление пользователю полномочий, превышающих его уровень благонадежности относительно конфиденциальных данных, или ограничивающих доступ к требуемым данным.

Последствия — нарушитель получает доступ к данным и функциям, которые позволяют восстановить структуру базы данных, установить наличие недоступных таблиц и сегментов базы данных, появляется возможность взлома!

Схема базы данных (англ. *Database schema*) — её структура, описанная на формальном языке, поддерживаемом СУБД.

Подсхема (схема, schema) пользователя — это объект базы данных, логически объединяющий в изолированную именованную группу некоторую заданную пользователем совокупность объектов базы данных (таблиц, индексов, представлений, хранимых процедур, функций, последовательностей и т.п.).

Подсхема пользователя обладает свойством инкапсулированности.

В ORACLE и MS SQL Server жестко закреплена за пользователем-владельцем, в PostgreSQL – может быть независимой от пользователя и обеспечивать доступ к своим объектам одновременно нескольким пользователям.

Управление подсхемой (схемой) пользователя:

создание схемы

CREATE SCHEMA <имя схемы>;

обращение к таблице из схемы

<имя_схемы>.<имя_таблицы>

перемещение таблицы в существующую схему переименование схемы переопределение владельца схемы

удаление схемы

DROP SCHEMA < uma cxemu> [CASCADE];

проверка последовательности просмотра схем

SHOW search_path;

SQL> SHOW search_path; просмотр начинается со схемы пользователя

search_path

KAHAЛ УТЕЧКИ! Схема public доступна всем!

"&user", public

Подсхема (схема) public – это создаваемая автоматически общедоступная схема, в которую помещаются все вновь создаваемые объекты базы данных, если для них не указано имя схемы.

Концепция защиты базы данных на основании подсхем (схем) пользователей

1. Распределить все объекты базы данных по степеням конфиденциальности – присвоить каждому объекту метку конфиденциальности.

2. Распределить все субъекты обработки данных по уровням благонадежности – присвоить каждой учетной записи метку благонадежности.

Ограничить обычных пользователей личными схемами.

REVOKE ON SCHEMA public FROM PUBLIC;

Удалить схему public из пути поиска по умолчанию для каждого пользователя.

ALTER ROLE <имя_учетной_записи> SET search_path = "\$user";

Пометить каждую учетную запись меткой уровня благонадежности.

3. Определить правило соответствия степеней конфиденциальности данных уровням благонадежности пользователей.

Основное свойство (main property) механизма защиты –

пользователь имеет полный доступ к данным, когда степень их конфиденциальности соответствует или ниже его уровня благонадежности и не имеет никакого доступа к данным со степенью конфиденциальности, превышающей его уровень благонадежности.

4. <u>В соответствие с основным свойством концепции сформировать правила назначения полномочий учетным записям пользователей.</u>

5. Разработать матрицу безопасности. Присвоить учетным записям пользователей полномочия в соответствие с матрицей безопасности.

ВЕДЕНИЕ МАТРИЦЫ БЕЗОПАСНОСТИ В СБД

Привилегия (англ. *privilege*) – право пользователя (пользовательского процесса) на «прикосновение» к данным с указанием, что он может с ними сделать (вставить, удалить, модифицировать, выбрать,..) или выполнение какой-либо работы в базе данных, в том числе подключение к ней. ▲

Роль (англ. *role*) – комплект **привилегий** для типовой работы пользователя в соответствие с его функциональными обязанностями в учреждении (например, кассир билетной кассы, бухгалтер по проводке оплаты труда, оператор склада, специалист по снабжению, руководитель основного подразделения, менеджер торгового зала,...). Комплект привилегий зависит от бизнес-модели (совокупности бизнес-процессов), реализованной в учреждении.

Учётная запись (англ. account) — хранимая в системе баз данных совокупность атрибутов пользователя, необходимая для его опознавания (аутентификации) и предоставления доступа к данным, пользовательским объектам, системным объектам, функциям системы и настройкам.

ВЕДЕНИЕ МАТРИЦЫ БЕЗОПАСНОСТИ В СБД

= Механизм защиты базы данных

Матрица безопасности в явном виде не доступна НИКОМУ, включая и администратора безопасности!

Матрица безопасности физически представляет собой совокупность спецификаций, хранящихся в словаре данных системы баз данных.

Назначая полномочия ролям и учетным записям пользователей администратор безопасности автоматически вставляет, удаляет или обновляет записи в матрице безопасности.

Чтение записей из матрицы безопасности выполняет подсистема защиты базы данных в момент обращения пользователя на подключение.

Джентльменский набор полномочий (ролей в терминах СБД ORACLE Database): CONNECT (LOGIN), RESOURCE

ВЕДЕНИЕ МАТРИЦЫ БЕЗОПАСНОСТИ В СБД

матрица безопасности

$$V_{\text{M6}} = n \times (l \times t \times (m+1) + V_{PK})$$

Меры повышения защищенности системы баз данных:

- 1. Оценка объема матрицы безопасности.
- 2. Аудит матрицы безопасности.
- 3. Модифицированные матрицы безопасности уточнение привилегий пользователей.

Литература:

- 1. **Смирнов, С. Н.** Безопасность систем баз данных [Текст]: учеб. пособие для вузов по специальностям в области информационной безопасности. М.: Гелиос АРВ , 2007. 350 с.
- 2. **Федин, Ф. О.** Информационная безопасность баз данных. Ч. 1 [Электронный ресурс]: учебное пособие / Ф. О. Федин, О. В. Трубиенко, С. В. Чискидов. М.: РТУ МИРЭА, 2020. Электрон. опт. диск (ISO)
- 3. **Терьо, М.** Oracle. Руководство по безопасности [Текст] / М. Терьо, А. Ньюмен; Пер. с англ.. М.: Лори, 2004. 560 с.: ил.
- 4. **Советов, Б. Я.** Базы данных: теория и практика : Учебник для вузов / Б. Я. Советов, В. В. Цехановский, В. Д. Чертовской. М.: Высш. шк., 2005. 464 с.: ил.
- 5. Саймон, А. Безопасность баз данных. // СУБД № 1, 1997 г. с. 78 95.
- 6. **Кузнецов, С. Д.** Основы баз данных: курс лекций: учеб. пособие для студентов вузов, обучающихся по специальностям в обл. ин-форм. технологий / С. Д. Кузнецов. Москва: Интернет-ун-т ин-форм. технологий, 2005. 488 с.
- 7. **Смирнов, С. Н., Задворьев, И. С.** Работаем с ORACLE.: Учебное пособие/2-е изд., испр. и доп. М: Гелиос АРВ, 2002 г. 496 с.
- 8. **Кульба, В.В.** и др. Теоретические основы проектирования оптимальных структур распределенных баз данных. М: СИНТЕГ, 1999 г. 660 с.
- 9. Материалы сервера ORACLE/RE. www.oracle.ru/press/magazine/main.html
- 10. Материалы информационного ресурса WIKIPEDIA. https://ru.wikipedia.org/wiki/Ayrentuфикация; https://ru.wikipedia.org/wiki/Cnoжность пароля.

 https://ru.wikipedia.org/wiki/Cnoжность пароля.