Method of Moments and Finite Element Methods

Donald R. Wilton

Dept. of Electrical and Computer Engineeering

University of Houston

Houston, TX 77096 USA

wilton@uh.edu

Linear Operator Equations

A linear operator equation is represented symbolically as

$$\mathcal{L}u = f \tag{1}$$

where \mathcal{L} is a *linear operator*,

$$u = u(\mathbf{r})$$
 = unknown field or current, $\mathbf{r} \in \mathcal{D}$
 $f = f(\mathbf{r})$ = known source, incident field or other
forcing function, $\mathbf{r} \in \mathcal{D}$

Operator L is linear if it satisfies

$$\mathcal{L}(au_1 + bu_2) = a\mathcal{L}u_1 + b\mathcal{L}u_2$$

• \mathcal{L} is generally a differential, integral, or integro - differential operator on \mathcal{D} relating sources f to fields u in \mathcal{D} or on its boundary, $\partial \mathcal{D}$. Matrices are also linear operators.

Linear Operator Examples

$$\bullet \quad \mathcal{L}V = \frac{d^2V}{dx^2} + k_0^2V + BC's$$

•
$$\mathcal{L} q_S = \int_{\mathcal{S}} \frac{q_S(\mathbf{r}')}{4\pi\varepsilon |\mathbf{r} - \mathbf{r}'|} d\mathcal{S}'$$

•
$$\mathcal{L}\mathbf{J} = j\omega\mu\int_{\mathcal{S}} G(\mathbf{r},\mathbf{r}')\mathbf{J}(\mathbf{r}')d\mathcal{S}' - \frac{\nabla}{j\omega\varepsilon}\int_{\mathcal{S}} G(\mathbf{r},\mathbf{r}')\nabla'\cdot\mathbf{J}(\mathbf{r}')d\mathcal{S}' + \mathsf{BC's}$$

•
$$\mathcal{L}\mathbf{J} = \frac{\mathbf{J}(\mathbf{r})}{2} - \hat{\mathbf{n}} \times \int_{\mathcal{S}} \nabla G(\mathbf{r}, \mathbf{r}') \times \mathbf{J}(\mathbf{r}') d\mathcal{S}'$$

•
$$\mathcal{L}\Phi = \nabla^2 \Phi + k_0^2 \varepsilon_r \Phi + BC's$$

•
$$\mathcal{L}\mathbf{E} = \nabla \times \mu_r^{-1} \nabla \times \mathbf{E} - k_0^2 \varepsilon_r \mathbf{E} + \mathbf{BC's}$$

$$\bullet \quad \mathcal{L}\left[x_{m}\right] = \left[L_{mn}\right]\left[x_{m}\right]$$

In statics:

$$G(\mathbf{r}, \mathbf{r}') = \frac{1}{4\pi R}, \qquad R = |\mathbf{r} - \mathbf{r}'|, \text{ (3D)}$$
$$= -\frac{1}{2\pi} \ln D, D = |\mathbf{\rho} - \mathbf{\rho}'|, \text{ (2D)}$$

In dynamics:

$$G(\mathbf{r},\mathbf{r}') = \frac{e^{-jkR}}{4\pi R},$$
 (3D)

$$= -\frac{H_0^{(2)}(kD)}{4j},$$
 (2D)

Inner Products

- Numerical solution methods are projection or moment methods involving inner products.
- Inner (dot) product between pairs of N component vectors,

$$u = (u_1, u_2, \dots, u_N), v = (v_1, v_2, \dots, v_N)$$
:

$$u \cdot v = \langle u, v \rangle = \sum_{n=1}^{N} u_n v_n = [u_n]^t [v_n]$$
 (3)

Inner product between two scalar functions u and v:

$$\langle u, v \rangle = \int_{\mathcal{D}} uv \, d\mathcal{D}, \, \mathcal{D} = \mathcal{C}, \, \mathcal{S}, \, \text{or } \mathcal{V},$$
Projection of " u on v " or " v on u ."

(4)

 \mathcal{D} = line or curve \mathcal{C} (one - dimension), surface \mathcal{S} (two dimensions), or volume \mathcal{V} (three - dimensions) (Note : Often v appears conjugated in inner product definitions!)

• (Bi-) linearity of inner product:

$$\langle au_1 + bu_2, v \rangle = a \langle u_1, v \rangle + b \langle u_2, v \rangle,$$

 $\langle u, cv_1 + dv_2 \rangle = c \langle u, v_1 \rangle + d \langle u, v_2 \rangle$ (5)

Inner Products: Examples

• u and v vector functions, $u = \mathbf{u}$ and $v = \mathbf{v}$:

$$\langle u; v \rangle = \int_{\mathcal{D}} u \cdot v \, d\mathcal{D}$$
 (6)

• Scalars u and v convolved with scalar Green's function $G(\mathbf{r}, \mathbf{r}')$ ("kernel" of integral equation):

$$\langle u, G, v \rangle \equiv \langle u, \langle G, v \rangle \rangle \int_{\mathcal{D}} \int_{\mathcal{D}} u(\mathbf{r}) G(\mathbf{r}, \mathbf{r}') v(\mathbf{r}') d\mathcal{D}' d\mathcal{D}$$
 (7)

Vectors u and v convolved with scalar Green's function
 G(r, r'):

$$\langle u; G, v \rangle = \int_{\mathcal{D}} \int_{\mathcal{D}} u(\mathbf{r}) \cdot v(\mathbf{r}') \ G(\mathbf{r}, \mathbf{r}') \ d\mathcal{D}' d\mathcal{D}$$
 (8)

Vectors u and v convolved with dyadic Green's function
 G(r, r'):

$$\langle u; \mathcal{G}; v \rangle = \iint_{\mathcal{D}} u(\mathbf{r}) \cdot \mathcal{G}(\mathbf{r}, \mathbf{r}') \cdot v(\mathbf{r}') \ d\mathcal{D}' d\mathcal{D}$$
 (9)

• In general, $\langle u, v \rangle = \langle v, u \rangle$

Weak and Strong Forms of Operator Equations

Strong form (equality holds at every point in D):

$$\mathcal{L}u = f \tag{10}$$

Weak form (equality holds in a weighted average sense):

$$\langle w, Lu \rangle = \langle w, f \rangle \tag{11}$$

where $\{w\}$ is a set of weighting functions.

Notes:

- For differential operators, integration by parts is often used to transfer differentiability requirements from u to w.
- If continuous, solutions u of (10) and (11) are identical
- If u is infinite dimensional, then so the set of functions w
- In numerical solutions, w's are chosen from a *finite* set of weighting or testing functions $\{w_m^{(N)}\}, m=1,2,...,N$.

Bases and Unknown Representations

Approximate u as

$$u \approx u = \sum_{n=1}^{N} U_n u_n = [U_n]^{t} [u_n]$$
 (12)

where coefficients U_n are unknown and u_n , n = 1, ..., N are known basis functions.

- u_n must be "independent" and capable of approximating u.
- Independence of bases is measured by their projections on one another,

$$\langle u_m, u_n \rangle \equiv \operatorname{Gram} \operatorname{Matrix}$$
 (13)

Independence of Basis Functions

• Ideal are *orthonormal* bases u_n , for which

$$\langle u_{m}, u_{n} \rangle = \int_{\mathcal{D}} u_{m} u_{n} d\mathcal{D} = \delta_{mn} = \begin{cases} 1, m = n, \\ 0, m \neq n, \end{cases}$$
 (14)

 (δ_{mn}) is the "Kronecker delta") but are difficult to discover for arbitrary \mathcal{D}

- Instead, first approximate \mathcal{D} by subdividing into *subdomains* or *elements* (e.g., line segments, triangles, rectangles, tetrahedrons) \mathcal{D}^e , e = 1, 2, ..., E. Then $\mathcal{D} \approx \tilde{\mathcal{D}} = \bigcup_{e=1}^E \mathcal{D}^e$.
- Then *interpolatory polynomial* bases are usually used. They satisfy the property $u_m(\mathbf{r}_j) = \delta_{mj}$ where \mathbf{r}_j , j = 1, 2, ..., N are interpolation points on $\tilde{\mathcal{D}}$. In addition, they also satisfy the following "approximation" to (14):

$$\sum_{j=1}^{N} u_m(\mathbf{r}_j) u_n(\mathbf{r}_j) = \delta_{mn}$$
 (15)

Method of Moments

• Substituting representation for u into operator equation and testing with $\{w = w_m, m = 1, 2, ..., N\}$ yields

$$\sum_{n=1}^{N} \langle w_m, \mathcal{L}u_n \rangle U_n = \langle w_m, f \rangle, \ m = 1, 2, \dots, N$$
 (16)

or in matrix form,

$$[L_{mn}][U_n] = [F_m],$$
 (17)

where $L_{mn} = \langle w_m, \mathcal{L}u_n \rangle$ and $F_m = \langle w_m, f \rangle$.

• Solving the linear system yields unknowns $[U_n]$ that provide an approximation to u in \mathcal{D} . The result can also be written as

$$u \approx u = [U_n]^t [u_n] = [u_n]^t [U_n],$$
 (18)

where $[u_n]^t$ denotes transpose of $[u_n]$.

Abstract Vector Space Interpretation of the Method of Moments

- The unknown is approximated in the "subspace of basis vectors u_n " as $u \approx \tilde{u} = \sum_n U_n u_n$
- Both $\mathcal{L}\tilde{u} = \sum_{n} U_{n}\mathcal{L}u_{n}$ and f are *projected* onto the "subspace of testing vectors w_{m} "; equating the projections determines $\{U_{n}\}$.
- The projection both minimizes the residual error $f \sum_n U_n \mathcal{L}u_n$ and makes it orthogonal to the testing vector subspace.

Linear Functionals

- A linear functional I [u] is a scalar physical parameter or figure of merit that depends linearly on u (e.g., I [au] = aI [u]).
 Examples:
 - Capacitance where u is surface charge
 - Input admittance where *u* is a surface current
 - Vector component of far field where u is a surface current
 - Value of $u(\mathbf{r})$ at point \mathbf{r} (may be unbounded at edge or corner!)
- Riesz representation theorem: For any bounded linear functional, a function g exists such that I[u] can be represented as an inner product,

$$I[u] = -\langle u, g \rangle \tag{19}$$

• For $u \approx \tilde{u}$,

$$I[u] \approx I[\tilde{u}] = -\langle \tilde{u}, g \rangle = -\sum_{n=1}^{N} U_n \langle u_n, g \rangle = -[U_n]^{t} [\langle u_n, g \rangle]$$
 (20)

Note: Sampled values of the unknown involve unbounded functionals:

$$J(\mathbf{r}') = \int_{\mathcal{S}} J(\mathbf{r}) \, \delta(\mathbf{r} - \mathbf{r}') \, d\mathcal{S} \implies g(\mathbf{r}) = -\delta(\mathbf{r} - \mathbf{r}') \text{ is unbounded}$$

Summary of Method of Moments

- Subdivide \mathcal{D} into E subdomains or elements \mathcal{D}^e ; approximate the solution domain as $\mathcal{D} \approx \tilde{\mathcal{D}} = \bigcup_{e=1}^E \mathcal{D}^e$.
- Choose (usually interpolating) basis functions $\{u_n\}$ and approximate u as

$$u \approx \tilde{u} = \sum_{n} U_n u_n = [U_n]^t [u_n].$$

- Choose weighting (testing) functions $\{w_m\}$. (Galerkin's method: $\{w_m\} \equiv \{u_m\}$)
- Substitute \tilde{u} into operator equation and test with w_m . (For differential or integro differential operators, integrate by parts to reduce differentiability requirements on u_n and incorporate boundary conditions.)

Summary of Method of Moments, Cont'd

Solve the resulting linear matrix system

$$[L_{mn}][U_n] = [F_m]$$

where

$$L_{mn} = \langle w_m, \mathcal{L}u_n \rangle,$$

$$F_m = \langle w_m, f \rangle$$

for unknown coefficients U_n . A direct or iterative solution procedure may be used.

Compute desired figure - of - merit (functional) I[u] as

$$I[u] \approx I[\tilde{u}] = -\langle \tilde{u}, g \rangle = -\sum_{n=1}^{N} U_n \langle u_n, g \rangle = -[U_n]^t [\langle u_n, g \rangle].$$
 (21)

The Variational Approach

- Variational and MoM approaches appear to be quite different, but really are equivalent, as we'll show.
- As a first step, we define an adjoint operator \mathcal{L}^{\dagger} such that

$$\langle w, \mathcal{L}u \rangle = \langle \mathcal{L}^{\dagger} w, u \rangle$$
 (22)

for arbitrary *u* and *w*.

- Adjoints exist and are unique; to find:
 - Differential operators: Successively integrate by parts
 - Integral operators: Interchange source and observation points in the kernel
 - Matrix operator : Simply transpose the original matrix

The Adjoint Problem

• The variational approach to solving $\mathcal{L}u = f$ begins by considering the linear functional

$$I[u] = -\langle u, g \rangle$$

Next define the adjoint problem,

$$\mathcal{L}^{\dagger} w = g. \tag{23}$$

where g plays role of source or forcing function, w is solution of adjoint problem.

 Physical significance of w may not always be clear, but note it does provide an alternative means to compute the functional:

$$I[u] = -\langle u, g \rangle = -\langle u, \mathcal{L}^{\dagger} w \rangle = -\langle \mathcal{L}u, w \rangle = -\langle f, w \rangle$$
 (24)

In electromagnetics, this dual representation is usually a consequence of *reciprocity*, which also often implies that $\mathcal{L} = \mathcal{L}^{\dagger}$ (\mathcal{L} is *self - adjoint*)

Adjoint Operator Examples

•
$$\mathcal{L}^{\dagger}V = \frac{d^2V}{dx^2} + k_0^2V + \mathbf{BC}^{\dagger}\mathbf{S}$$

•
$$\mathcal{L}^{\dagger}q_{S} = \int_{\mathcal{S}} \frac{q_{S}(\mathbf{r}')}{4\pi\varepsilon |\mathbf{r}-\mathbf{r}'|} d\mathcal{S}'$$

•
$$\mathcal{L}^{\dagger}\mathbf{J} = j\omega\mu\int_{\mathcal{S}}G(\mathbf{r},\mathbf{r}')\mathbf{J}(\mathbf{r}')d\mathcal{S}' - \frac{\nabla}{j\omega\varepsilon}\int_{\mathcal{S}}G(\mathbf{r},\mathbf{r}')\nabla'\cdot\mathbf{J}(\mathbf{r}')d\mathcal{S}' + \mathbf{BC}^{\dagger}\mathbf{s}$$

•
$$\mathcal{L}^{\dagger}\mathbf{J} = \frac{\mathbf{J}(\mathbf{r})}{2} - \hat{\mathbf{n}} \times (\hat{\mathbf{n}} \times \nabla \times \text{PV} \int_{\mathcal{S}} G(\mathbf{r}, \mathbf{r}') \hat{\mathbf{n}}' \times \mathbf{J}(\mathbf{r}') d\mathcal{S}') + \mathbf{BC}^{\dagger}$$
 (see Appendix)

•
$$\mathcal{L}^{\dagger}\Phi = \nabla^2 \Phi + k_0^2 \varepsilon_r \Phi + \mathbf{BC}^{\dagger} \mathbf{S}$$

•
$$\mathcal{L}^{\dagger}\mathbf{E} = \nabla \times \mu_r^{-1}\nabla \times \mathbf{E} - k_0^2 \varepsilon_r \mathbf{E} + \mathbf{BC}^{\dagger}\mathbf{s}$$

$$\bullet \quad \mathcal{L}^{\dagger} \left[x_m \right] = \left[L_{mn} \right]^{\dagger} \left[x_m \right]$$

Most of the above operators are "self - adjoint!"

Bi-Variational Functional

Define the bivariational functional **

$$I[\tilde{u}, \ \tilde{w}] = \langle \mathcal{L}\tilde{u}, \tilde{w} \rangle - \langle \tilde{u}, g \rangle - \langle f, \tilde{w} \rangle \tag{25}$$

Note that
$$I[u, w] = \langle \mathcal{L}u, w \rangle - \langle u, g \rangle - \langle f, w \rangle = I[u]$$
.

We regard \tilde{u} and \tilde{w} as approximate or *trial* solutions to the original and adjoint problems, respectively.

Define solution errors in the original and adjoint problems as

$$\delta u = \tilde{u} - u, \quad \delta w = \tilde{w} - w. \tag{26}$$

Then we can easily show that

$$I[\tilde{u}, \ \tilde{w}] = -\langle u, g \rangle + \langle \mathcal{L} \delta u, \delta w \rangle \tag{27}$$

or $\delta I[u, w] = \langle \mathcal{L} \delta u, \delta w \rangle$ with second order error in δu and δw . (Functional is said to be stationary or to have only a second order variation about the functions u and w.)

Other, less general functionals may actually restrict the form of the resulting linear system, e.g., to Galerkin's method!

Rayleigh-Ritz Procedure

• Approximate u and w in terms of basis sets $\{u_n\}$ and $\{w_m\}$ as

$$\tilde{u} = \sum_{n} U_{n} u_{n} \tag{28}$$

$$\tilde{w} = \sum_{m} W_{m} w_{m} . \tag{29}$$

Substitute above expansions into the bi - variational functional,

$$I[\tilde{u}, \tilde{w}] = \sum_{m} \sum_{n} W_{m} U_{n} < \mathcal{L}u_{n}, w_{m} > -\sum_{n} U_{n} < u_{n}, g > -\sum_{m} W_{m} < f, w_{m} > \text{ (30)}$$
and set $\partial I[\tilde{u}, \tilde{w}] / \partial W_{p} = \partial I[\tilde{u}, \tilde{w}] / \partial U_{p} = 0$ (stationarity condition).

Replace dummy index p by m in first set, p by n in the second.
 The surprising result is that ...

... One Obtains Independent Moment Equations for Both the Original and the Adjoint Problems!

(Moment equations for original problem, which are independent of g)

$$\sum_{n} \langle w_{m}, \mathcal{L}u_{n} \rangle U_{n} = \langle w_{m}, f \rangle, \quad m = 1, 2, \dots, N \implies ([L_{mn}][U_{n}] = [F_{m}])$$
 (31)

• (Moment equations for original problem, which are independent of f)

$$\sum < \mathcal{L}u_n, w_m > W_m = < u_n, g >, \quad n = 1, 2, \dots, N.$$
 (32)

$$(\text{recall } < \mathcal{L}u_n, w_m > = < u_n, \mathcal{L}^{\dagger}w_m >) \Longrightarrow ([L_{mn}]^{\dagger}[W_n] = [G_m])$$
(33)

• Note also the independence of equation sets (31) and (32), and the reversed roles of basis and testing functions in the adjoint problem.

Idea: Why not insert the resulting \tilde{u} , \tilde{w} into the *variational* form possibly yielding more accurate results than substituting into the *non-variational* form of the functional?

Evaluation of Functional

Write bivariational functional as

$$I(\tilde{u}, \tilde{w}) = \langle \mathcal{L}\tilde{u}, \tilde{w} \rangle - \langle f, \tilde{w} \rangle - \langle \tilde{u}, g \rangle$$

= $\langle \mathcal{L}\tilde{u} - f, \tilde{w} \rangle - \langle \tilde{u}, g \rangle$. (34)

The first term on the right hand side vanishes:

Hence

$$I(\tilde{u}, \tilde{w}) = -\langle \tilde{u}, g \rangle = -\sum_{n} U_n \langle u_n, g \rangle$$
 (36)

i.e.,

$$I(\tilde{u}) = I(\tilde{u}, \tilde{w}), \tag{37}$$

so we obtain the same result using either the (bi-)variational or non - variational forms of the functional!

Equivalence of MoM and Variational Approach

- \tilde{u} can be determined from the MoM equations independent of w and g. The solution is same as that obtained by the (bi-)variational approach.
- $I[\tilde{u}] = I[\tilde{u}, \tilde{w}]$ independent of g.
- The variational approach (and adjoint problem) is useful in proving stationarity, but seems otherwise largely superfluous in arriving at a numerical formulation. The moment method yields the same solution but is generally simpler to apply. The variational problem tells us...
 - Moment method solutions are automatically stationary.
 - Error in $I[\tilde{u}, \tilde{w}]$ ($\delta I[u, w] = \langle \mathcal{L}\delta u, \delta w \rangle$) is proportional to that in both u, w; so to reduce error, *choose* w_m *to well.approximate* w, the solution of the adjoint problem.

Appendix: Derivation of MFIE Adjoint Operator

•
$$\mathcal{L}\mathbf{J} = \frac{\mathbf{J}(\mathbf{r})}{2} - \hat{\mathbf{n}} \times \text{PV} \int_{\mathcal{S}} \nabla G(\mathbf{r}, \mathbf{r}') \times \mathbf{J}(\mathbf{r}') d\mathcal{S}' = (\hat{\mathbf{n}} \times \mathbf{H}^{\text{inc}})$$

We first write the MFIE in the non - standard form

$$-\hat{\mathbf{n}} \times \mathcal{L} \mathbf{J} = -\hat{\mathbf{n}} \times \frac{\mathbf{J}(\mathbf{r})}{2} + \hat{\mathbf{n}} \times (\hat{\mathbf{n}} \times \nabla \times \text{PV} \int_{\mathcal{S}} G(\mathbf{r}, \mathbf{r}') \mathbf{J}(\mathbf{r}') d\mathcal{S}') = -\hat{\mathbf{n}} \times (\hat{\mathbf{n}} \times \mathbf{H}^{\text{inc}})$$

$$\hat{\mathbf{n}} \times (\hat{\mathbf{n}} \times \mathbf{H}^{\text{S}^{-}}) = -\mathbf{H}^{\text{S}^{-}}_{\text{tan}} = -\frac{1}{\mu} \lim_{\mathbf{r} \uparrow \mathcal{S}} \nabla \times \mathbf{A}$$

Then for a tangential surface testing vector $\mathbf{M}(\mathbf{r})$, we have that

$$<\mathbf{M}, -\hat{\mathbf{n}} \times \frac{\mathbf{J}(\mathbf{r})}{2} + \hat{\mathbf{n}} \times (\hat{\mathbf{n}} \times \nabla \times \text{PV} \int_{\mathcal{S}} G(\mathbf{r}, \mathbf{r}') \mathbf{J}(\mathbf{r}') d\mathcal{S}') >$$

which is of the form $< M, -\lim_{r \uparrow S} H[J] >$ and which can be interpreted as a reaction intgral.

Hence, by the reaction theorem, we have

$$<\mathbf{M}, -\lim_{\mathbf{r}^{\uparrow}\mathcal{S}}\mathbf{H}[\mathbf{J}]> = <\mathbf{J}, \lim_{\mathbf{r}^{\downarrow}\mathcal{S}}\mathbf{E}[\mathbf{M}]> = <\mathbf{J}, \hat{\mathbf{n}}\times\frac{\mathbf{M}(\mathbf{r})}{2} + \hat{\mathbf{n}}\times(\hat{\mathbf{n}}\times\nabla\times\nabla)\int_{\mathcal{S}}G(\mathbf{r},\mathbf{r}')\mathbf{M}(\mathbf{r}')d\mathcal{S}')> \\ -\hat{\mathbf{n}}\times\left(\hat{\mathbf{n}}\times\mathbf{E}^{S^{+}}\right) = \mathbf{E}_{tan}^{S^{+}} = -\frac{1}{\varepsilon}\lim_{\mathbf{r}^{\downarrow}\mathcal{S}}\nabla\times\mathbf{F}$$

Appendix: Derivation of MFIE Adjoint Operator, cont'd

Thus,

$$\boxed{<\mathbf{M}, -\hat{\mathbf{n}}\times\frac{\mathbf{J}(\mathbf{r})}{2} + \hat{\mathbf{n}}\times(\hat{\mathbf{n}}\times\nabla\times\mathsf{PV}\int\limits_{\mathcal{S}}G(\mathbf{r},\mathbf{r}')\mathbf{J}(\mathbf{r}')d\mathcal{S}')> \\ = <\mathbf{J},\hat{\mathbf{n}}\times\frac{\mathbf{M}(\mathbf{r})}{2} + \hat{\mathbf{n}}\times(\hat{\mathbf{n}}\times\nabla\times\mathsf{PV}\int\limits_{\mathcal{S}}G(\mathbf{r},\mathbf{r}')\mathbf{M}(\mathbf{r}')d\mathcal{S}')>}$$

and even though
$$\mathbf{M} \cdot \left(-\hat{\mathbf{n}} \times \frac{\mathbf{J}(\mathbf{r})}{2} \right) = \mathbf{J} \cdot \left(\hat{\mathbf{n}} \times \frac{\mathbf{M}(\mathbf{r})}{2} \right)$$
, the operator $-\hat{\mathbf{n}} \times \mathcal{L}$ is non - self - adjoint.

For the original operator, set $\mathbf{M} = -\hat{\mathbf{n}} \times \mathbf{w}$ and the above becomes

$$\boxed{<\mathbf{w},\frac{\mathbf{J}(\mathbf{r})}{2}-(\hat{\mathbf{n}}\times\nabla\times\operatorname{PV}\int\limits_{\mathcal{S}}G(\mathbf{r},\mathbf{r}')\mathbf{J}(\mathbf{r}')d\mathcal{S}')>} = <\mathbf{J},\frac{\mathbf{w}(\mathbf{r})}{2}-\hat{\mathbf{n}}\times(\hat{\mathbf{n}}\times\nabla\times\operatorname{PV}\int\limits_{\mathcal{S}}G(\mathbf{r},\mathbf{r}')\hat{\mathbf{n}}'\times\mathbf{w}(\mathbf{r})\,d\mathcal{S}')>}$$

and the adjoint operator is

$$\mathcal{L}^{\dagger}\mathbf{w} = \frac{\mathbf{w}(\mathbf{r})}{2} - \hat{\mathbf{n}} \times (\hat{\mathbf{n}} \times \nabla \times \text{PV} \int_{\mathcal{S}} G(\mathbf{r}, \mathbf{r}') \hat{\mathbf{n}}' \times \mathbf{w}(\mathbf{r}) \, d\mathcal{S}')$$