Extraction of Main Dynamics in Platform Metrics

Evelyn Trautmann

Data 2018, Porto

26-28 July, 2018

• dating platform with > 70 million users worldwide

- dating platform with > 70 million users worldwide
- > 1.5 million daily active users, 4.5 million monthly active users

- dating platform with > 70 million users worldwide
- > 1.5 million daily active users, 4.5 million monthly active users
- 420 million chat messages, 4.2 billion match votes per month

- dating platform with > 70 million users worldwide
- ullet > 1.5 million daily active users, 4.5 million monthly active users
- 420 million chat messages, 4.2 billion match votes per month
- $\bullet \approx 3.5 TB$ analysis data per month

metrics might be influenced by several factors

- metrics might be influenced by several factors
- decisions based on incomplete data can be missleading

- metrics might be influenced by several factors
- decisions based on incomplete data can be missleading
- platform monitoring means keeping track of various metrics

- metrics might be influenced by several factors
- decisions based on incomplete data can be missleading
- platform monitoring means keeping track of various metrics
- some effects are visible only in sub-dimensions like single countries, or device types

- metrics might be influenced by several factors
- decisions based on incomplete data can be missleading
- platform monitoring means keeping track of various metrics
- some effects are visible only in sub-dimensions like single countries, or device types
- dimension reduction without losing important details

Clustering

• metrics considered as points in a vector space

Clustering

- metrics considered as points in a vector space
- similarity defines (inverse) distance measure

Clustering

- metrics considered as points in a vector space
- similarity defines (inverse) distance measure
- find clusters of closely related points

Toy Example - Gaming App

metric 0 game a: count of games played by paying users metric 1 game a: count of games played by non paying users metric 2 game b: count of games played by paying users metric 3 game b: count of games played by non paying users

...

• Similarity Function $\phi: \mathbb{R}^n \times \mathbb{R}^n \to [0,1]$

- Similarity Function $\phi: \mathbb{R}^n \times \mathbb{R}^n \to [0,1]$
- radial basis function [PVG+11]

$$\phi(x_i, x_j) = \exp(-\gamma ||x_i - x_j||^2)$$

- Similarity Function $\phi: \mathbb{R}^n \times \mathbb{R}^n \to [0,1]$
- radial basis function [PVG+11]

$$\phi(x_i, x_j) = \exp(-\gamma ||x_i - x_j||^2)$$

correlation based similarity

- Similarity Function $\phi: \mathbb{R}^n \times \mathbb{R}^n \to [0,1]$
- radial basis function [PVG+11]

$$\phi(x_i, x_j) = \exp(-\gamma ||x_i - x_j||^2)$$

- correlation based similarity
- handle negative correlations

Similarity Graph

Figure: Similarity Graph

Matrix Representation

Figure: Matrix Representation

Matrix Representation

Figure: Matrix Representation

• Graph Laplacian with similarities as off-diagonal entries

- Graph Laplacian with similarities as off-diagonal entries
- negative row sums on diagonal

$$L = \begin{cases} I_{ij} \geq 0, \text{ for } i \neq j \\ I_{ii} = -\sum_{k \neq i} I_{ik}, \text{ for } i = j. \end{cases}$$

- Graph Laplacian with similarities as off-diagonal entries
- negative row sums on diagonal

$$L = \begin{cases} I_{ij} \ge 0, \text{ for } i \ne j \\ I_{ii} = -\sum_{k \ne i} I_{ik}, \text{ for } i = j. \end{cases}$$

largest eigenvalue is always 0

- Graph Laplacian with similarities as off-diagonal entries
- negative row sums on diagonal

$$L = \begin{cases} I_{ij} \ge 0, \text{ for } i \ne j \\ I_{ii} = -\sum_{k \ne i} I_{ik}, \text{ for } i = j. \end{cases}$$

- largest eigenvalue is always 0
- and the respective eigenvalue is constant

- Graph Laplacian with similarities as off-diagonal entries
- negative row sums on diagonal

$$L = \begin{cases} I_{ij} \ge 0, \text{ for } i \ne j \\ I_{ii} = -\sum_{k \ne i} I_{ik}, \text{ for } i = j. \end{cases}$$

- largest eigenvalue is always 0
- and the respective eigenvalue is constant
- block matrices have multiple largest eigenvalues and piecewise constant eigenvectors

Spectral Clustering [vL07]

- procedure SpectralClustering(X, k)
- compute similarity matrix with pairwise similarities 2:
- 3: Transform to Graph Laplacian L
- $v_1, ..., v_k = eig(L, k)$ 4:
- $U = V^T$ \triangleright k n-dimensional \rightarrow n k-dimensional vectors 5:
- clusterAssignment = kmeans(U, k)6:
- return clusterAssignment 7:
- 8: end procedure

https://github.com/metterlein/spectral_clustering

Number of Clusters

• with clear block structure eigenvalue gap is obvious

Number of Clusters

- with clear block structure eigenvalue gap is obvious
- if connectivity amongst blocks is too large, determination of cluster count is getting complex

Number of Clusters

- with clear block structure eigenvalue gap is obvious
- if connectivity amongst blocks is too large, determination of cluster count is getting complex
- possible approach:
 - PCA explained variance

Data Description

• metrics representing user activities, payments, etc

Data Description

- metrics representing user activities, payments, etc
- each metric is divided in several dimensions like country, gender, etc

Data Description

- metrics representing user activities, payments, etc
- each metric is divided in several dimensions like country, gender, etc
- combination of metrics and dimensions generates around 300 timeseries in our example.

Data Preparation

aggregation per day

Data Preparation

- aggregation per day
- normalization $X = \frac{1}{\sigma}(X \mu)$, with μ mean value and σ standard deviation

Data Preparation

- aggregation per day
- normalization $X = \frac{1}{\sigma}(X \mu)$, with μ mean value and σ standard deviation
- rolling mean of 7 days to smooth weekly periodicity

Real Data Example [PVG⁺11]

Real Data Example.ipynb

https://github.com/metterlein/spectral_clustering

Conclusion

• clustering metrics reduces dimensionality of observation space

Conclusion

- clustering metrics reduces dimensionality of observation space
- small number of interpretable cluster representatives help keeping track of main platform dynamics

Conclusion

- clustering metrics reduces dimensionality of observation space
- small number of interpretable cluster representatives help keeping track of main platform dynamics
- by cluster assignments can be discovered unexpected relations between several metrics

References I

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Machine Learning Research **12** (2011), 2825–2830.

Ulrike von Luxburg, A tutorial on spectral clustering, CoRR abs/0711.0189 (2007).

Thank You!

Questions?

evelyn.trautmann@lovoo.com https://github.com/metterlein/spectral_clustering

Clustering Methods

[PVG+11]

PCA

PCA

Extract Platform Dynamics by means of Cluster Centers

- compute average timeseries per cluster
- illustrate average cluster timeseries with variance corridor
- visualize metrics types and subdimensions entering respective clusters

Measure Clustering Quality

- compute variance for each timepoint over all cluster members
- optimal clustering minimizes variance for each cluster

Outlook

• investigate cluster assignment change over time

Outlook

- investigate cluster assignment change over time
- hierarchical approach: clustering sub-blocks

Outlook

- investigate cluster assignment change over time
- hierarchical approach: clustering sub-blocks
- add time shifted series to recognize Granger causalities