S.-J. Kimmerle

Practical example: isothermal compression of

an ideal gas

(Source: lernhelfer.de)

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and

Primitive functions

Practical computation of integrals

Practical example: isothermal compression of an ideal gas

Example (Isothermal compression of an ideal gas)

The work W carried out on a closed (but non isolated) system for the isothermal compression of an ideal gas from $V_1 = s_1 A$ to $V_2 = s_2 A$ is

$$W = -\int_{s_1}^{s_2} p A ds.$$
 $(AV = AAS)$

For an ideal gas we have pV = nRT = const. Here V = sA. Thus we may compute:

$$W = -\int_{s_1}^{s_2} p A ds = -\int_{s_1}^{s_2} \frac{nRT}{s} ds = -nRT \left(\underbrace{\ln(s_2) - \ln(s_1)}_{= \ln(s_2)} \right) = nRT \ln\left(\frac{s_1}{s_2}\right).$$

Let $s_2 = 0.9s_1$, R = 8.31 J/mol/K, n = 0.22 mol (5l oxygen) and T = 300 K, then

$$W = 0,22 \cdot 8,31 \cdot 300 \cdot \ln(10/9) \text{ J} \approx 57,8 \text{ J}$$
.

(In general:
$$W = -\int_{V_1}^{V_2} \frac{nRT}{V} dV = -(nRT \ln(V_2) - \ln(V_1)) = RT \ln(\frac{V_1}{V_2})$$
)

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and

Primitive functions

Practical computation of integrals

Analysis 1

S.-J. Kimmerle

a) $\int (2x+1)dx = x^2+x+313$ 1. Compute a primitive for:

a)
$$\int (2x+1) dx$$
, b) $\int \exp(x) dx$, c) $\int \frac{3}{1+x^2} dx = 3 \arctan(x)$

d)
$$\int 2(\cos(x) + ax) dx$$
, e) $\int (3x - 2)^2 dx$, f) $\int (1 + t^2) dx$, g) $\int (11 + \sqrt{17}) \sqrt{x} dx = (11 + \sqrt{17}) \sqrt{x} dx = (11 + \sqrt{17}) \sqrt{x} dx$

g)
$$\int (11 + \sqrt{17}) \sqrt{x} dx = (11 + \sqrt{17}) \frac{2}{3} \times \frac{312}{3}$$
 = $(11 + \sqrt{2}) \times (t \in \mathbb{R})$

$$f \nmid v \quad a) \quad f(t) = 2e^t - \frac{5}{t} + 1, \quad b) \quad f(x) = 3\exp(x) - \cos(x), \quad 3e^x - \sin(x) + \frac{1}{5}\exp(x) +$$

3. Which values have the following definite integrals?

a)
$$\int_{1}^{e} \frac{1}{t} dt$$
, b) $\int_{\pi}^{2} \cos(\psi) d\psi$, c) $\int_{1}^{2} 5x^{1/4} \cancel{\cancel{b}} \cancel{\cancel{b}}$, d) $\int_{0}^{4} (4s^{5} - 6s^{3} + 8x^{2} + 5) ds$.

4. Based on the velocity-time law

Some exercises

$$v(t)=gt+v_0, \quad t\geq 0,$$

compute a time law for the falling path s(t) of a free falling body. Use v(t) = s'(t).

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Integration in 1d

Riemann integral

Integral: definition and

Primitive functions

Practical computation of integrals

Analysis 1

S.-J. Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Summary - outlook and review

Integrand f has to be necessarily bounded on [a, b]

For instance, all continuous functions are (Riemann)

integrable

Example for the set (*):

Analysis 1

S.-J. Kimmerle

Regulated integral:

f bounded, f limit of step functions w.r.t. sup norm

Other constructions of integrals

Riemann integral:

generalizes the regulated integral by considering sequences of uniformly convergent integrands

Partition only of the domain of definition ("vertical stripes")

Lebesgue integral:

- More arbitrary partitions are possible
- Any regulated function is also Lebesgue integrable $\sqrt[4]{3}$ $=\sqrt[4]{1}$ \times \times \times \times \times Any regulated function is also Lebesgue integrable
- Characteristic functions of bounded sets are Lebesgue integrable, other measures as the geometrical length (are, ...) are possible
- Stieltjes, Bochner, and Birkhoff integral ...

Characteritic fr.:

Here integrable means Riemann integrable.

Small differences that are, e.g., important in probability theory

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and

Primitive functions

Practical computation of integrals

Practical computation of integrals

Analytical:

- By the fundamental theorem, tables, calculation rules
- (Directly by Riemann sums)
- By an expansion of the integrand into a power series
- ...

~ Analysis 2

Numerical (so-called quadrature):

- Midpoint rule (like Riemann sum with t_i in the midpoint of the subinterval)
- Simpson's rule (Kepler's barrel rule)
- Romberg method
- Newton-Cotes formulas
- •

or by computer algebra systems (Maple, Matlab Symbolic Toolbox, Mathematica . . .)

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

S.-J. Kimmerle

Since integration and differentiatin are coupled, we consider how differentiation rules transfer to integration rules.

- Introduction
- Basics (sets, mappings, and numbers)
- Proof techniques
- Sequences and series
- **Functions**
- Differentiation in 1d
- Integration in 1d
- Riemann integral Integral: definition and
- properties
 Primitive functions
- Practical computation of integrals
- Summary outlook and review

- Substitution rule (follows from the chain rule)
- Integration by parts (follows from the product rule)

Moreover, we consider

- Integration of rational functions: Partial fraction expansion
- Improper integrals

Theorem (Substitution rule)

Let $I \subseteq \mathbb{R}$ an interval,

 $h: I \to \mathbb{R}$ a continuous function and

 $f:[a,b]\to\mathbb{R}$ a continuously differentiable function with

$$f([a,b]) \subseteq I$$
, symbolically $= df$

then

$$\int_a^b h(f(t))f'(t)\,dt = \int_{f(a)}^{f(b)} h(x)\,dx.$$

Proof: Let $H: I \rightarrow \mathbb{R}$ a primitive of h, i.e. H' = h a)

Define $H \circ f: [a_1b] \rightarrow \mathbb{R}$ By the chain rule of diff. $(H \circ f)/(t) = H'(f(t)) f'(t)$ $= h(f(t)) f'(t) \qquad f(b)$ $\int h(f(t)) f'(t) dt = [H \circ f A] \int_{t=a}^{b} H(h) - H(f(b)) = \int_{t=a}^{(a)} h(x) dx$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Important special cases of the substitution rule Ly H be a principle of h.

Analysis 1

S.-J. Kimmerle

$$\Rightarrow f': [a,b] \rightarrow \mathbb{R}, \lambda \rightarrow C + b = C \qquad \text{cot} \lambda$$

$$\int_{a}^{b} h(\cot d) dt = \frac{1}{c} \int_{a}^{b} h(\cot d) c dt = \frac{1}{c} \int_{ca+d}^{b} h(x) dx$$

$$= \sqrt{(t)}$$

2) h:
$$R \rightarrow R$$
, $x \mapsto x^{h}$ with $H(x) = \frac{1}{n+1} \times^{n+1}$, $n \neq -1$

$$\int (f(x))^{n} f'(t) dt = \frac{1}{n+1} \left[(f(x))^{n+1} \right]_{t=a}^{b}$$

$$\int_{a}^{b} h(f(t)) f'(t) dt = \int_{a}^{b} \frac{f'(t)}{f(t)} dt = \left[\ln |f(t)| \right]_{t=a}^{b}$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

S.-J. Kimmerle

Theorem (Integration by parts)

Let a < b and $f, g : [a, b] \rightarrow \mathbb{R}$ continuously differentiable functions,

then

$$\int_{a}^{b} f(x)g'(x) \, dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f'(x)g(x) \, dx$$

Proof'
$$\int (f(x)g(x))'dx = \int f(x)g'(x)dx + \int f'(x)g(x)dx$$

$$= f(x)g(x) + Conf$$

Example:
$$\int_{a}^{b} x e^{x} dx = \left[x e^{x}\right]_{a}^{b} - \int_{a}^{b} 1 e^{x} = \left[x - 1\right] e^{x}$$

$$\int_{a}^{b} \left[x e^{x} dx\right] = \left[x e^{x}\right]_{a}^{b} - \left[x e^{x}\right]_{a}^{b} = \left[x - 1\right] e^{x}$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

