

APR 13, 2023

OPEN ACCESS

יוסם

dx.doi.org/10.17504/protocol s.io.yxmvm25xng3p/v1

Protocol Citation: Jonathan W Brenton, Carlo Sala Frigerio, Mina Ryten, Regina H Reynolds, e.gustavsson, Kylie Montgomery 2023. Nuclear Isolation of Post-Mortem Brain Tissue for snRNAseq.

protocols.io

https://dx.doi.org/10.17504/p rotocols.io.yxmvm25xng3p/v 1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Jan 30, 2023

Last Modified: Apr 13, 2023

PROTOCOL integer ID: 76084

Keywords: ASAPCRN

Nuclear Isolation of Post-Mortem Brain Tissue for snRNAseq

Jonathan W Brenton^{1,2}, Carlo Sala Frigerio, Mina Ryten^{1,2}, Regina H Reynolds^{1,2}, e.gustavsson^{1,2}, Kylie Montgomery¹

¹Genetics & Genomic Medicine Dept, UCL GOS Institute of Child Health, 30 Guilford St, London WC1N 1EH;

²Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20 815, USA

Jonathan W Brenton: jonathan.brenton.14@ucl.ac.uk;

Carlo Sala Frigerio: csalafrigerio@gmail.com

Mina Ryten: mina.ryten@ucl.ac.uk

Regina H Reynolds: regina.reynolds.16@ucl.ac.uk

e.gustavsson: e.gustavsson@ucl.ac.uk

Kylie Montgomery: kylie.montgomery@ucl.ac.uk

Ryten Laboratory

Jonathan W Brenton

ABSTRACT

This protocol is used to isolate nuclei from frozen brain tissue for single nuclear RNA sequencing using 10x Genomics GEM isolation using the Chromium accessory and Single Cell 3' Reagent Kits.

It is adapted from a protocol designed by Carlo Sala Frigerio.

The nuclei are homogenised by hand, run through a density gradient, resuspended, counted and diluted to an appropriate concentration to run in the Chromium.

This protocol is designed to be continued with the Chromium Single Cell 3' Reagent Kits User Guide (v3.1 Chemistry Dual Index) to isolate nuclei in GEMs.

MATERIALS

Equipment

А	В	С	D	E
Manufa cturer	Instruments	code	notes	website

protocols.io |

А	В	С	D	E
Beckm an coulter	Optima XPN-90			
Beckm an coulter	SW41Ti rotor		swing-out, 6 slots	
10X Genomi cs	Chromium		Firmware 4.00 at least	
Logos bio	Luna-FL dual fluorescence cell counter			https://logosbio.com/aut omated-cell- counters/fluorescence/lu na-fl
Biorad	C1000 Touch with 96- Deep Well Reaction Module	18511 97		https://www.bio- rad.com/en- uk/product/c1000-touch- thermal-cycler? ID=LGTW9415
Any	Scale measuring to 0.01g or 0.001g			

List of Items

A	В	С
Item	Code	Manufacturer
Tissue grinders, Potter- Elvehjem type, glass vessel, 2 mL	432-0200	VWR
Tissue grinders, Potter- Elvehjem type, plain plunger, 2 mL	432-0206	VWR
Tube, Thinwall, Ultra-Clear™, 13.2 mL, 14 x 89 mm (qty. 50)	344059	Beckman Coulter
Eppendorf PCR Tubes, 0.2 mL, PCR clean, 8-tube strips, 120 pcs. (960 tubes)	00301243 59	Eppendorf
DNA LoBind Tube Microcentrifuge Tube, 0.5 mL	00301080 35	Eppendorf
DNA LoBind Tube Microcentrifuge Tube, 1.5 mL	00301080 51	Eppendorf
DNA LoBind Tube Microcentrifuge Tube, 2.0 mL	00301080 78	Eppendorf
Reagent reservoir, white PS, 50 mL, sterile	613-1184	VWR
Falcon® 5 mL Round Bottom Polystyrene Test Tube, with Cell Strainer Snap Cap	352235	Corning
Protein LoBind Tubes 2mL	00301081 32	Eppendorf
Protein LoBind Tubes 1.5mL	00301081 16	Eppendorf

A	В	С
Nuclease-Free Water (Ambion)	AM9937	Thermo Fisher
10% Tween-20	166-2404	Bio-Rad
Low TE Buffer (10 mM Tris- HCl pH 8.0, 0.1 mM EDTA)	12090-015	Thermo Fisher
Glycerol 50%	G5516- 500ML	Sigma-Aldrich
Reagent, SPRIselect, 60 mL	B23318	Beckman Coulter
Ethanol, Pure (200 Proof, anhydrous)	459836-1L	Sigma-Aldrich
Buffer EB	19086	Qiagen
Sucrose, BioUltra, for Molecular Biology	84097- 1KG	Sigma-Aldrich
Calcium Chloride	C5670- 100G	Sigma-Aldrich
Magnesium acetate tetrahydrate	M5661- 50G	Sigma-Aldrich
Ethylenediaminetetraacetic acid solution	03690- 100ML	Sigma-Aldrich
Phenylmethanesulfonyl fluoride	78830-5G	Sigma-Aldrich
2-Mercaptoethanol	63689- 25ML-F	Sigma-Aldrich
Magnesium chloride hexahydrate	M2670- 500G	Sigma-Aldrich
Potassium chloride	P9333- 500G	Sigma-Aldrich
Digitonin 5%	BN2006	Thermo Fisher/Invi
Nonidet P40 substitute Bioxtra	74385-1L	Sigma-Aldrich
Trizma HCl solution	T2194-1L	Sigma-Aldrich
OptiPrep™ Density Gradient Medium	D1556- 250ML	Sigma-Aldrich
phosphate-buffere saline 1X w/o Ca and Mg	21-040-CV	Corning Cellgro
RNasin Plus Rnase Inhibitor, 10,000 units	N2615	Promega
MACS BSA stock solution	130-091- 376	Miltenyi Biotec GmbH
High Sensitivity D5000 Ladder	5067-5594	Agilent
High Sensitivity D5000 ScreenTape	5067-5592	Agilent

A	В	С
High Sensitivity D5000 Reagents	5067-5593	Agilent
High Sensitivity D1000 Ladder	5067-5587	Agilent
High Sensitivity D1000 Sample Buffer	5067-5603	Agilent
High Sensitivity D1000 ScreenTape	5067-5584	Agilent
High Sensitivity D1000 Reagents	5067-5585	Agilent
LightCycler® 480 Multiwell Plate 384, white	47297490 01	Roche Lifescience
KAPA library quantification kit for Roche Lightcycler LC480 (KK4854)	79602980 01	Roche Lifescience
Falcon tubes, 50 mL		
Falcon tubes, 15 mL		
Foreceps		
70% ethanol		

Stock Tables

A	В	С	D	E	F
	g	stock (M)	FW (g/mo l)	Volume (L)	
sucrose	85.57 5	0.5	342.3	0.5	
CaCl2	8.400	0.5	110.9 8	0.1513786 27	
Mg Acetate*4H2O	26.80 6	0.5	214.4 5	0.25	
PMSF	0.120	0.1	174.1 9	0.0068890 29	in 2-propanol, store at 4C

Everything filter using 0.2 um filters

Beta-Mercaptoethanol

A	В	С
	Dilution	Final Concentration (M)

A	В	С
2- Mercaptoethanol	175 uL in 50 mL	0.05

Glycerol

mix 1:1 99% Glycerol and water, filter with 0.2um filter. Can be aliquoted and stored at -20C (equilibrate to room temperature before use). Or store in a 50mL falcon at room temperature.

Buffer Making for 6 samples (7x made to allow for waste)

1 Prepare buffers from stocks, keep \ \ On ice \ .

1.1 Homogenisation Buffer (HB)

A	В	С	D	E	F
HB (Homogenisation Medium)	V (µI)	Stock conc		Final conc	
Sucrose	17920.0	500	mM	320	mM
CaCl2	140.0	1000	mM	5	mM
Mg Acetate	168.0	500	mM	3	mM
Tris pH 7,4 (Sigma)	280.0	1000	mM	10	mM
EDTA	5.6	500	mM	0.1	mM
NP40	280.0	10	%	0.1	%

A	В	С	D	E	F
Digitonin	56.0	5	%	0.01	%
PMSF	56.0	50	mM	0.1	mM
β-mercaptoethanol	560.0	50	mM	1	mM
Nuclease free water	8534.4				
Total Volume	28000.0	4000	per sample		

Resuspend Digitonin first.

For Digitonin: If a precipitate forms in the 5% Digitonin solution, we performed the recommend steps in the manual. This requires heating the solution at 95 degrees C for 5 mins and vortexing slowly to dissolve the precipitate. Cool to room temperature prior to use. The 5% Digitonin solution stays in solution at room temperature for up to 1 week. Although in practice this tends to precipitate after a day so most likely this will need reheating after a day or two.

1.2 Gradient Medium

A	В	С	D	E	F
GM (Gradient Medium)	V (µI)	Stock conc		Final conc	
CaCl2	105	1000	mM	5	mM
Optiprep	17500	60	%	50	%
MgCl2	63	1000	mM	3	mM
Tris pH 7,4	210	1000	mM	10	mM
PMSF	42	50	mM	0.1	mM
β-mercaptoethanol	420	50	mM	1	mM
Nuclease free water	2660.0				
Total Volume	21000	3000	per sample		

1.3 ODN

A	В	С	D	E	F
ODN	V (μl)	Stock conc		Final conc	
KCI	1342.6875	2000	mM	150	mM
MgCl2	537.075	1000	mM	30	mM
Tris pH 7,4 (Sigma)	1074.15	1000	mM	60	mM
Sucrose	8951.25	500	mM	250	mM
Nuclease free water	5997.3375				
Total Volume	17902.5				

1.4 29% Cushion

A	В	С	D	E	F
29% Cushion	V (µl)	Stock conc		Final conc	
Optiprep	15225	60	%	29	%
ODN	16275				
Total Volume	31500	4500	per sample		

Homogenisation

- 2 Rinse douncers with some HB buffer leave these S on ice too.
- 3 Add $\[\] \]$ 1 mL HB to douncer.
- 4 Put douncer on scale in any support (falcon tube holder was used here), zero the scale and add

sample to douncer. Aim for between 80-150mg tissue. $\sim \pm 100$ mg of tissue works well.

- Homogenise:~20 strokes with pestle A and then~80 strokes with pestle B; try to keep as much as possible. If meninges present following 10 strokes with pestle B remove with forceps as this can add a lot of resistance. Clean forceps in dH20 water, wipe clean and then spray with 70% ethanol and wipe and air dry.
- 6 Keep douncer with homogenised sample on ice for and repeat steps 3-6 for other samples.
- For each sample transfer $\sim 1 \text{ mL}$ homogenate (everything in douncer) to 15mL falcon and add $\frac{1}{4}$ 1650 μ L HB (total V = $\frac{1}{4}$ 2.65 mL). Mix by inverting as well as pipetting. All $\frac{1}{4}$ On ice
- Add and mix \triangle 2.65 mL (\triangle 0.883 mL x 3) Gradient medium to sample (total V = \triangle 5.30 mL). Mix by inverting gently as well as pipetting. All \triangle On ice .

Gradient Preparation and Isolation by Centrifugation

- 9 Add 🗸 4 mL of optiprep cushion to an ultracentrifuge tube 🐉 On ice for each sample.
- Layer Δ 5.25 mL sample on top of cushion. To do this slowly add homogenate/gradient medium mixture just above the top of the optiprep cushion and keeping the pipette tip against the wall of the ultracentrifuge tube. One way to do this is to use a P200 first to layer Δ 200 μL Δ 400 μL of sample on top of the cushion and the proceed with a P1000 to layer additional mLs of sample. Keep thumb under plunger of pipette to make sure addition of sample is gradual and is not pushed to the bottom of the gradient. Try and keep the bottom of the tube touching the ice as much as possible to keep the tube cool.
- 11 Check that sample's weight in ultracentrifuge tube is balanced (do in pairs ie samples facing

- 12 Add samples to ultracentrifuge buckets.
- Spin samples in SW41Ti 7700 rpm 00:30:00 4 ° C keep all tube holders in the machine even if empty and keep positions matched, ie holder 1 is in position 1. The ultracentrifuge should be pre-cooled to 4 ° C prior to adding the samples.

30m

During Ultracentrifugation

- Take out 10X beads from \$\circ\$ -80 °C and GEM kit from \$\circ\$ -20 °C. Prepare Template Switch Oligo as per 10x instructions if needed.
- **15** Prepare the resuspension buffer:
- 15.1 RNAseq Resuspension Buffer (for 6 samples + 1 for waste). Prepare and keep on ice.

A	В	С	D	E	F
RNAseq Resuspension Buffer					
	V (uL)	stock		final	
1x PBS (w/o Ca and Mg)	9464				
BSA	1680	10	%	1.5	%
RNase IN (Promega Purple cap)	56	40	u/uL	0.2	u/uL
final volume	11200				

Resuspension and filtering

Gently take away supernatant using plastic Pasteur or P1000, then P200 Gilson. Nuclei will be a white smear at the bottom of the tube, the tube will gain condensation quickly so can wipe it to get a better look at the nuclei at the end and try and hold up the tube to a dark surface to get a look at the nuclei (although not all can be seen). Keep tube steady and try not to mix and shake, which may resuspend the nuclei. Remove as much supernatant as possible by pipetting from the surface of the liquid and following the layer down to the lip of the ultracentrifuge tube. At this point remove as much as possible before nuclei start to come along with supernatant. Usually

Δ 200 μL

remains at the bottom of tube.

When in doubt leave supernatant as not to decrease yield or keep supernatant in a separate tube and filter as a separate sample that could be combined later in case of low yield. However, the vast majority of nuclei will be present at the bottom of the tube and this typically doesn't add many nuclei.

- Add in Ad
- Wash out ultracentrifuge tube with further tube of suspension buffer, pool in the LoBind tube on ice .
- Add a further $\Delta 400 \, \mu L$ of suspension buffer to the LoBind tube δ On ice ($\Delta 800 \, \mu L$ total suspension buffer).
- 20 Mix gently by pipetting and filter through a filter cap Falcon tube and add to a new 1.5 or 2ml LoBind tube (protein or DNA) On ice
- 21 Keep on ice until the other samples have been resuspended and filtered.

5m

- Nuclei can now be seen, after wiping away condensation, as a white smear on the side of the tube in the DNA LoBind tubes or more of a pellet if using protein LoBind tubes. Remove supernatant and resuspend nuclei in 400 µL resuspension buffer by pipetting.
- Filter through a filter-cap Falcon tube.
- Transfer to LoBind Eppendorf On ice and centrifuge 500 rcf for 00:05:00 and at
- Remove supernatant and resuspend nuclei in $\Delta 400 \, \mu L$ ($\Delta 200 \, \mu L$ if nuclei pellet looks small in Lo Bind tube) resuspension buffer by pipetting.
- Filter through a filter-cap Falcon tube. Keep on ice

Nuclei Counting

- Count each aliquot with Luna FL (Δ 18 μ L sample + Δ 2 μ L Acridine Orange/Propidium Iodide). Add Δ 10 μ L to slide. Save images and counts.
- 29 Create a new RNAseq aliquot of 1000 nuclei/uL in \pm 80 μ L by diluting original sample.

- 30 Count diluted sample and record number (save files if needed but adds time for each sample).
- Round count to nearest 100 and use this when loading the chip. le if one sample has concentration of 1100 and another 900 use two different cell concentrations in 10x protocol to load rather than rediluting sample to achieve 1000 cells.