Constante do produto de solubilidade

$$AgCI(s) \longrightarrow Ag^{+}(aq) + CI^{-}(aq)$$

$$K_{ps} = [Ag^+][CI^-]$$

 $K_{ps} = [Ag^+][Cl^-]$ K_{ps} é a constante do produto de solubilidade

$$MgF_2(s) \longrightarrow Mg^{2+}(aq) + 2F^{-}(aq)$$

$$K_{ps} = [Mg^{2+}][F^{-}]^{2}$$

$$Ag_2CO_3(s) \rightleftharpoons 2Ag^+(aq) + CO_3^{2-}(aq)$$
 $K_{ps} = [Ag^+]^2[CO_3^{2-}]$

$$K_{ps} = [Ag^+]^2[CO_3^{2-}]$$

$$Ca_3(PO_4)_2(s) \longrightarrow 3Ca^{2+}(aq) + 2PO_4^{3-}(aq) K_{ps} = [Ca^{2+}]^3[PO_3^{3-}]^2$$

Dissolução de um sólido iónico em solução aquosa:

 $Q < K_{sp}$ solução não saturada

Não precipita

$$Q = K_{sp}$$
 solução saturada

 $Q > K_{so}$ solução supersaturada

Formação de precipitado

Calcium hydroxide [Ca(OH)₂]

Calcium phosphate [Ca₃(PO₄)₂]

Equilíbrio de solubilidade

Constante do produto de solubilidade K_{ps}

Solubility Products of Some Slightly Soluble Ionic Compounds at 25°C					
Compound	K_{sp}	Compound	K _{sp}		
Aluminum hydroxide [Al(OH) ₃]	1.8×10^{-33}	Lead(II) chromate (PbCrO ₄)	2.0×10^{-14}		
Barium carbonate (BaCO ₃)	8.1×10^{-9}	Lead(II) fluoride (PbF ₂)	4.1×10^{-8}		
Barium fluoride (BaF ₂)	1.7×10^{-6}	Lead(II) iodide (PbI ₂)	1.4×10^{-8}		
Barium sulfate (BaSO ₄)	1.1×10^{-10}	Lead(II) sulfide (PbS)	3.4×10^{-28}		
Bismuth sulfide (Bi ₂ S ₃)	1.6×10^{-72}	Magnesium carbonate (MgCO ₃)	4.0×10^{-5}		
Cadmium sulfide (CdS)	8.0×10^{-28}	Magnesium hydroxide [Mg(OH) ₂]	1.2×10^{-11}		
Calcium carbonate (CaCO ₃)	8.7×10^{-9}	Manganese(II) sulfide (MnS)	3.0×10^{-14}		
Calcium fluoride (CaF ₂)	4.0×10^{-11}	Mercury(I) chloride (Hg ₂ Cl ₂)	3.5×10^{-18}		

Mercury(II) sulfide (HgS)

Nickel(II) sulfide (NiS)

 1.4×10^{-24}

 8.0×10^{-6}

 1.2×10^{-26}

Solubilidade

Solubilidade molar (mol/L) é o nº de moles de soluto dissolvidos em 1 L de uma solução saturada.

Solubilidade (g/L) é o nº de gramas de soluto dissolvidos em 1 L de uma solução saturada.

Solubilidade

Qual é a solubilidade do cloreto de prata em g/L?

AgCl (s)
$$\longrightarrow$$
 Ag⁺ (aq) + Cl⁻ (aq) $K_{sp} = 1.6 \times 10^{-10}$
Inicial (M) 0.00 0.00 $K_{sp} = [Ag^+][Cl^-]$
Mudança (M) +s +s $K_{sp} = s^2$
Equilíbrio (M) s $s = \sqrt{K_{sp}}$
 $[Ag^+] = 1.3 \times 10^{-5} M$ [Cl⁻] = 1.3 x 10⁻⁵ M

$$Solubilidade AgCl = \frac{1.3 \times 10^{-5} \text{ mol AgCl}}{1 \text{ L soln}} \times \frac{143.35 \text{ g AgCl}}{1 \text{ mol AgCl}} = 1.9 \times 10^{-3} \text{ g/L}$$

Relação entre K_{ps} e Solubilidade molar

1.							
16	Relationship bet	Relationship between $K_{\rm sp}$ and Molar Solubility (s)					
٣	Compound	K _{sp} Expression	Cation	Anion	Relation between $K_{\rm sp}$ and s		
AB	AgCl	$[Ag^+][Cl^-]$	s	S	$K_{\rm sp} = s^2; s = (K_{\rm sp})^{\frac{1}{2}}$		
F	BaSO ₄	$[Ba^{2+}][SO_4^{2-}]$	S	S	$K_{\rm sp} = s^2; s = (K_{\rm sp})^{\frac{1}{2}}$		
	Ag ₂ CO ₃	$[Ag^{+}]^{2}[CO_{3}^{2-}]$	2s	S	$K_{\rm sp} = 4s^3; s = \left(\frac{K_{\rm sp}}{4}\right)^{\frac{1}{3}}$		
	PbF ₂	$[Pb^{2+}][F^{-}]^{2}$	s	2s	$K_{\rm sp} = 4s^3; s = \left(\frac{K_{\rm sp}}{4}\right)^{\frac{1}{3}}$		
	Al(OH) ₃	[Al ³⁺][OH ⁻] ³	s	3s	$K_{\rm sp} = 27s^4; s = \left(\frac{K_{\rm sp}}{27}\right)^{\frac{1}{4}}$		
	Ca ₃ (PO ₄) ₂	$[Ca^{2+}]^3[PO_4^{3-}]^2$	3s	2s	$K_{\rm sp} = 108s^5; s = \left(\frac{K_{\rm sp}}{108}\right)^{\frac{1}{5}}$		

Solubilidade e precipitação

Se 2.00 mL de NaOH 0.200 *M* forem adicionados a 1.00 L de CaCl₂ 0.100 *M*, haverá formação de precipitado ?

Os iões presentes em solução são Na⁺, OH⁻, Ca²⁺, Cl⁻.

O único precipitado possível é Ca(OH)₂ (regras de solubilidade).

Será $Q > K_{ps}$ para o Ca(OH)₂?

$$[Ca^{2+}]_0 = 0.100 M$$
 $[OH^-]_0 = 4.0 \times 10^{-4} M$

$$Q = [Ca^{2+}]_0[OH^{-}]_0^2 = 0.10 \times (4.0 \times 10^{-4})^2 = 1.6 \times 10^{-8}$$

$$K_{ps} = [Ca^{2+}][OH^{-}]^{2} = 8.0 \times 10^{-6}$$

$$Q < K_{sp}$$
 Não há formação de precipitado

Solubilidade e precipitação

Qual a concentração de Ag necessária para precipitar UNICAMENTE AgBr de uma solução contendo Br e Cl numa concentração de 0.02 *M* ?

AgBr (s)
$$\longrightarrow$$
 Ag⁺ (aq) + Br⁻ (aq) $K_{ps} = 7.7 \times 10^{-13}$
 $K_{ps} = [Ag^+][Br^-]$

[Ag⁺] =
$$\frac{K_{sp}}{[Br^-]} = \frac{7.7 \times 10^{-13}}{0.020} = 3.9 \times 10^{-11} M$$

AgCl (s)
$$\longrightarrow$$
 Ag⁺ (aq) + Cl⁻ (aq) $K_{ps} = 1.6 \times 10^{-10}$
 $K_{ps} = [Ag^+][Cl^-]$

[Ag⁺] =
$$\frac{K_{ps}}{[Cl^-]}$$
 = $\frac{1.6 \times 10^{-10}}{0.020}$ = 8.0 x 10⁻⁹ M

$$3.9 \times 10^{-11} M < [Ag^+] < 8.0 \times 10^{-9} M$$

Efeito de ião comum e solubilidade

A presença de um ião comum diminui a solubilidade de um sal

Qual é a solubilidade molar do AgBr em (a) água pura e (b) NaBr 0.0010 *M* ?

AgBr (s)
$$\longrightarrow$$
 Ag⁺ (aq) + Br⁻ (aq)

 $K_{ps} = 7.7 \times 10^{-13}$
 $S^{2} = K_{ps}$
 $S = 8.8 \times 10^{-7}$

[Br] = 0.0010 M

AgBr (s) \longrightarrow Ag⁺ (aq) + Br⁻ (aq)

AgBr (s) \longrightarrow Ag⁺ (aq) + Br⁻ (aq)

 $AgBr (s) \longrightarrow$ Ag⁺ (aq) + Br⁻ (aq)

pH e solubilidade

- A presença de um ião comum **diminui** a solubilidade.
- Bases insolúveis dissolvem-se em soluções ácidas.
- Ácidos insolúveis dissolvem-se em soluções básicas

addictionar $Mg(OH)_2(s) \longrightarrow Mg^{2+}(aq) + 2OH^{-}(aq)$ $K_{sp} = [Mg^{2+}][OH^{-}]^{2} = 1.2 \times 10^{-11}$ $K_{SD} = (s)(2s)^2 = 4s^3$ $4s^3 = 1.2 \times 10^{-11}$ $s = 1.4 \times 10^{-4} M$ $[OH^{-}] = 2s = 2.8 \times 10^{-4} M$ pOH = 3.55 pH = 10.45

Equilíbrio de complexação e solubilidade

Um ião complexo é um ião que contem um catião central ligado a uma ou mais moléculas ou iões.

$$Co^{2+}(aq) + 4Cl^{-}(aq) \longrightarrow CoCl_4^{2-}(aq)$$

A constante de formação ou de estabilidade (K_f) é a constante de equilíbrio para a formação do ião complexo.

$$Co(H_2O)_6^{2+}$$
 $CoCl_4^{2-}$

$$K_f = \frac{[\text{CoCl}_4^{2-}]}{[\text{Co}^{2+}][\text{Cl}^{-}]^4}$$

$$K_f$$
 estabilidade do complexo

Formation Constants of Selected Complex Ions in Water at 25°C

Complex Ion	Equilibrium Expression	Formation Constant (K_f)
$Ag(NH_3)_2^+$	$Ag^+ + 2NH_3 \implies Ag(NH_3)_2^+$	1.5×10^{7}
$Ag(CN)_2^-$	$Ag^+ + 2CN^- \Longrightarrow Ag(CN)_2^-$	1.0×10^{21}
$Cu(CN)_4^{2-}$	$Cu^{2+} + 4CN^{-} \Longrightarrow Cu(CN)_4^{2-}$	1.0×10^{25}
$Cu(NH_3)_4^{2+}$	$Cu^{2+} + 4NH_3 \rightleftharpoons Cu(NH_3)_4^{2+}$	5.0×10^{13}
$Cd(CN)_4^{2-}$	$Cd^{2+} + 4CN^{-} \Longrightarrow Cd(CN)_4^{2-}$	7.1×10^{16}
CdI_4^{2-}	$Cd^{2+} + 4I^- \Longrightarrow CdI_4^{2-}$	2.0×10^{6}
HgCl ₄ ²⁻	$Hg^{2+} + 4Cl^{-} \Longrightarrow HgCl_4^{2-}$	1.7×10^{16}
HgI_4^{2-}	$Hg^{2+} + 4I^{-} \Longrightarrow HgI_4^{2-}$	2.0×10^{30}
$Hg(CN)_4^{2-}$	$Hg^{2+} + 4CN^{-} \Longrightarrow Hg(CN)_4^{2-}$	2.5×10^{41}
$Co(NH_3)_6^{3+}$	$Co^{3+} + 6NH_3 \rightleftharpoons Co(NH_3)_6^{3+}$	5.0×10^{31}
$Zn(NH_3)_4^{2+}$	$Zn^{2+} + 4NH_3 \Longrightarrow Zn(NH_3)_4^{2+}$	2.9×10^{9}

Table 16.5 Separation of Cations into Groups According to Their Precipitation Reactions with Various Reagents

Group	Cation	Precipitating Reagents	Insoluble Compound	K _{sp}
1	Ag^+	HCl	AgCl	1.6×10^{-10}
	$\mathrm{Hg_2^{2+}}$		Hg_2Cl_2	3.5×10^{-18}
	Pb ²⁺		PbCl ₂	2.4×10^{-4}
2	Bi ³⁺	H ₂ S	Bi₂S₃	1.6×10^{-72}
	Cd^{2+}	in acidic	CdS	8.0×10^{-28}
	Cu ²⁺	solutions	CuS	6.0×10^{-37}
	Sn ²⁺		SnS	1.0×10^{-26}
3	Al^{3+}	H ₂ S	Al(OH) ₃	1.8×10^{-33}
	Co ²⁺	in basic	CoS	4.0×10^{-21}
	Cr ³⁺	solutions	Cr(OH)₃	3.0×10^{-29}
	Fe ²⁺		FeS	6.0×10^{-19}
	Mn^{2^+}		MnS	3.0×10^{-14}
	Ni ²⁺		NiS	1.4×10^{-24}
	Zn^{2+}		ZnS	3.0×10^{-23}
4	Ba ²⁺	Na ₂ CO ₃	BaCO₃	8.1×10^{-9}
	Ca ²⁺		CaCO₃	8.7×10^{-9}
	Sr ²⁺	\downarrow	SrCO ₃	1.6×10^{-9}
5	K^+	No precipitating	None	
	Na^+	reagent	None	
	NH_4^+		None	

Análise qualitativa de catiões

Teste de chama para Catiões

Chemistry In Action: How an Eggshell is Formed

$$Ca^{2+}(aq) + CO_3^{2-}(aq) \rightleftharpoons CaCO_3(s)$$

$$CO_2(g) + H_2O(I) \xrightarrow{\text{carbonic}} H_2CO_3(aq)$$

anhydrase

$$H_2CO_3(aq) \longrightarrow H^+(aq) + HCO_3^-(aq)$$

$$HCO_3^- (aq) \longrightarrow H^+ (aq) + CO_3^{2-} (aq)$$

Solubilidade

Regras de solubilidade para compostos iónicos em H₂O a 25 °C

- 1. Todos os sais compostos de metais alcalinos (grupo IA) são solúveis.
- 2. Todos os sais compostos de amónio (NH₄⁺) são solúveis.
- 3. Todos os sais de compostos contendo nitrato (NO₃²-) clorato (ClO₃-) e perclorato (ClO₄-) são solúveis.
- 4. A maioria dos hidróxidos (HO⁻) são insolúveis. A excepção são os hidróxidos dos metais alcalinos e o hidróxido de bário [Ba(OH)₂]. O hidróxido de cálcio [Ca(OH)₂] é ligeiramente solúvel.
- 5. A maioria dos compostos contendo cloreto (Cl⁻), brometo (Br⁻) ou iodeto (l⁻) são solúveis, as excepções são aqueles sais contendo Ag⁺, Hg₂²⁺ e Pb²⁺.
- 6. Todos os carbonatos (CO_3^{2-}), fosfatos (PO_4^{3-}), cromatos (CrO_4^{2-}) e sulfuretos (S^{2-}) são insolúveis; as exceções são aqueles dos metais alcalinos e os de amónio.
- 7. A maioria dos sulfatos (SO₄²⁻) são solúveis. O sulfato de cálcio (CaSO₄) e o sulfato de prata (AgSO₄) são ligeiramente solúveis. O sulfato de bário (BaSO₄), o sulfato de mercúrio (II) (HgSO₄) e o sulfato de chumbo (PbSO₄) são insolúveis.