Analízis 3. (B és C szakirány)

Szükséges ismeretek a 9. gyakorlathoz

Jelen dokumentum ekkor lett frissítve: 2019/04/05 21:18

További kidolgozások elérhetőek ide kattintva. A gyakorlatok anyaga ide kattintva érhető el.

Forrás(ok): Dr. Szili László - Definíciók és tételek az előadásokon

1. Fogalmazza meg a Lagrange-féle középértéktételt.

Legyen $f \in \mathbb{R}^n \to \mathbb{R} (n \in \mathbb{N}^+)$ és $a \in int\mathcal{D}_f$. Tegyük fel, hogy $\exists K(a) \subset \mathcal{D}_f$, hogy $f \in D(K(a))$. Legyen $h \in \mathbb{R}^n$ olyan vektor, amelyre $a + h \in K(a)$. Ekkor

$$\exists \nu \in (0,1)$$
 úgy, hogy $f(a+h) - f(a) = f'(a+\nu h) \cdot h = \langle f'(a+\nu h), h \rangle$.

2. Mit jelent az, hogy egy függvény kétszer deriválható egy pontban?

Az $f \in \mathbb{R}^n \to \mathbb{R}$ $(2 \le n \in \mathbb{N})$ függvény kétszer deriválható az $a \in int\mathcal{D}_f$ pontban (jelben: $f \in D^2\{a\}$), ha

- 1. $\exists K(a) \subset \mathcal{D}_f$, hogy $f \in D\{x\}$ minden $x \in K(a)$ pontban, és
- 2. $\forall i = 1, 2, \dots, n \text{ index } ext{re} \ \partial_i f \in D\{a\}.$

3. Definiálja a Hesse-féle mátrixot.

Ha az $f \in \mathbb{R}^n \to \mathbb{R}$ $(2 \le n \in \mathbb{N})$ függvény kétszer deriválható az $a \in int\mathcal{D}_f$ pontban, akkor az

$$f''(a) = \begin{bmatrix} \partial_{11}f(a) & \partial_{12}f(a) & \dots & \partial_{1n}f(a) \\ \partial_{21}f(a) & \partial_{22}f(a) & \dots & \partial_{2n}f(a) \\ \vdots & \vdots & \vdots & \vdots \\ \partial_{n1}f(a) & \partial_{n2}f(a) & \dots & \partial_{nn}f(a) \end{bmatrix} \in \mathbb{R}^{n \times n}$$

szimmetrikus mátrixot az f függvény a pontbeli Hesse-féle mátrixának nevezzük.

4. Fogalmazza meg a Young-tételt.

Ha $f \in \mathbb{R}^n \to \mathbb{R}$ $(2 \le n \in \mathbb{N})$ és $f \in D^2\{a\}$, akkor

$$\partial_{ij} f(a) = \partial_{ji} f(a) \quad \forall i, j = 1, \dots, n \text{ indexre.}$$

5. Mit jelent az, hogy egy függvény s-szer deriválható egy pontban?

Az $f \in \mathbb{R}^n \to \mathbb{R}$ (2 $\leq n \in \mathbb{N}$) függvény s-szer (2 $\leq s \in \mathbb{N}$) deriválható az $a \in int\mathcal{D}_f$ pontban (jelben: $f \in D^s\{a\}$), ha

- 1. $\exists K(a) \subset \mathcal{D}_f$, hogy $f \in D^{s-1}(K(a))$ és
- 2. minden (s-1)-edrendű

$$\partial_{i_1}\partial_{i_2}\dots\partial_{i_{s-1}}f$$
 $(1 \le i_1, i_2, \dots, i_{s-1} \le n)$

parciális deriváltfüggvény deriválható az a pontban.

6. Adja meg a Taylor-polinom definícióját.

Legyen $f \in \mathbb{R}^n \to \mathbb{R}$ $(n \in N^+)$ és $a \in int\mathcal{D}_f$. Tegyük fel, hogy egy $m \in \mathbb{N}$ számra $f \in D^m\{a\}$. Az f függvény a ponthoz tartozó m-edfokú, n-változós Taylor-polinomját így értelmezzük:

$$(T_{a,m}f)(a+h) := f(a) + \sum_{k=1}^{m} \left(\sum_{|i|=k} \frac{\partial^{i} f(a)}{i!} h^{i} \right) \quad (h \in \mathbb{R}^{n}).$$

1

Ha m = 0, akkor $T_{a,0}f \equiv f(a)$, továbbá $(T_{a,m}f)(a) = f(a)$.

7. Fogalmazza meg a Taylor-formulát a Lagrange-féle maradéktaggal.

Legyen $f \in \mathbb{R}^n \to \mathbb{R}$ $(n \in \mathbb{N}^+)$ és $a \in int\mathcal{D}_f$. Tegyük fel, hogy egy $m \in \mathbb{N}$ számmal $f \in D^{m+1}(K(a))$ teljesül. Ekkor $\forall h \in \mathbb{R}^n$ $(a + h \in K(a))$ vektorhoz $\exists \nu \in (0, 1)$, amelyre

$$f(a+h) = (T_{a,m}f)(a+h) + \sum_{|i|=m+1} \frac{\partial^i f(a+\nu h)}{i!} h^i.$$

8. Fogalmazza meg a Taylor-formulát Peano-féle maradéktaggal.

Tegyük fel, hogy az $f \in \mathbb{R}^n \to \mathbb{R}$ $(n \in \mathbb{N}^+)$ függvényre az $a \in int\mathcal{D}_f$ pontban egy $m \in \mathbb{N}^+$ számmal $f \in D^m\{a\}$ teljesül. Ekkor: $\exists \varepsilon \in \mathbb{R}^n \to \mathbb{R}$, a $\lim_{n \to \infty} \varepsilon = 0$ feltételnek eleget tevő függvény, amelyre

$$f(a+h) = (T_{a,m}f)(a+h) + \varepsilon(h) \cdot ||h||^m \quad (h \in \mathbb{R}^n, a+h \in \mathcal{D}_f)$$

ahol $\|.\|$ tetszőleges norma $\mathbb{R}^n\text{-en}.$