

Olimpiada Națională de Matematică Etapa Națională, Slobozia, 11 aprilie 2023

CLASA a V-a – soluții și bareme

Problema 1. Numărul natural nenul n este pătrat perfect. Prin împărțirea lui 2023 la n se obține restul $223 - \frac{3}{2} \cdot n$. Aflați câtul împărțirii.

Problema 2. Spunem că un număr natural este *special* dacă toate cifrele sale sunt nenule și oricare două cifre alăturate din scrierea sa zecimală sunt consecutive (nu neapărat ordonate crescător).

- a) Determinați cel mai mare număr special m care are suma cifrelor egală cu 2023.
- b) Determinați cel mai mic număr special n care are suma cifrelor egală cu 2022.

Soluție. a) Cel mai mare număr m va avea cât mai multe cifre, astfel că vom alege cele mai mici cifre posibile. Cum lângă o cifră de 1 nu putem pune decât o cifră de 2, iar $2023 = 3 \cdot 674 + 1$, alegem numărul cu 674 cifre de 2 și 675 cifre de 1. Astfel, cel mai mare număr special cu suma cifrelor egală cu 2023 este $m = \underbrace{12121\dots121}_{}\dots$ 2p

b) Deoarece 8+9=17 și $2022=17\cdot 118+16$, dacă în scrierea numărului n am utiliza cel mult 237 de cifre, atunci suma cifrelor lui n ar fi cel mult egală cu $118\cdot (8+9)+9<2022$, deci nu putem folosi mai puțin de $2\cdot 118+2=238$ cifre.

Pentru a folosi exact 238 de cifre, trebuie să formăm 118 grupe de cifre 8 și 9 și încă două cifre cu suma 16, adică fie 9 și 7, fie 8 și 8. Dacă cele două cifre sunt 7 și 9, vom avea 120 de cifre impare și 118 cifre pare, iar dacă cele două cifre sunt ambele 8, vom avea 120 de cifre pare și 118 cifre impare.

În concluzie, în scrierea numărului n se folosesc cel puțin 239 de cifre. Vom căuta trei cifre consecutive, mai mici decât 8, a căror sumă să fie cel puțin egală cu 16, care să fie primele cifre ale

numărului. Încercăm să alegem o primă cifră cât mai mică posibil. Secvențele 123, 234, 345, 456 nu convin, pentru că suma cifrelor este mai mică decât 16.

Secvența 567 conduce la cel mai mic număr special $n = 56787 \underbrace{8989 \dots 89}_{117 \text{ grupe}}$ 3p

Problema 3. Determinați numerele naturale m și n știind că

$$n \cdot (n+1) = 3^m + s(n) + 1182,$$

unde s(n) reprezintă suma cifrelor numărului natural n.

Notă. Pentru un număr natural a, scris cu o singură cifră, se consideră s(a) = a.

Dacă $n \leq 9$, atunci s(n) = n, iar din (1) rezultă că $n^2 = 1183$, nu convine, deoarece 1183 nu este pătratul unui număr natural.

Problema 4. Spunem că un număr natural $n \ge 2$ are proprietatea (P) dacă în descompunerea sa în factori primi cel puțin unul dintre factori are exponentul egal cu 3.

- a) Determinați cel mai mic număr natural N cu proprietatea că, oricum am alege N numere consecutive, cel puțin unul dintre acestea are proprietatea (P).
- b) Determinați cele mai mici 15 numere naturale consecutive a_1, a_2, \ldots, a_{15} , care nu au proprietatea (P), pentru care suma numerelor $5a_1, 5a_2, \ldots, 5a_{15}$ este un număr cu proprietatea (P).

Soluție. a) Prin împărțirea a 16 numere naturale consecutive la 16 se obțin resturile 0, 1, 2, 3, ..., 15 (nu neapărat începând cu 0). Ca urmare, printre orice 16 numere naturale consecutive există un număr de forma $16k + 8 = 2^3 \cdot (2k + 1)$, deci un număr cu proprietatea (P). 2p

b) Notăm
$$S = 5a_1 + 5a_2 + \ldots + 5a_{15}$$
. Cum $a_2 = a_1 + 1$, $a_3 = a_1 + 2$, ..., $a_{15} = a_1 + 14$, rezultă $S = 5 \cdot (15a_1 + 1 + 2 + \ldots + 14) = 5(15a_1 + 105) = 3 \cdot 5^2 \cdot (a_1 + 7)$ 1p