Math 214 – Multivariable Calculus Taylor Series

George Peschke

Department of Mathematical and Statistical Sciences University of Alberta

Lecture 10

Definition

Taylor series / MacLaurin series

Suppose a function f is infinitely often differentiable at $c\in\mathbb{R}$. The Taylor series of f about c is

$$T(x) := \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n.$$

If c = 0, this is also called the MacLaurin series of f.

Question

Is f(x) = T(x) on some open interval $]c - \varepsilon, c + \varepsilon[?]$

Answer

Yes! - for many important functions f, but not always.

Will concentrate on examples where T(x) = f(x).

Example

Exponential function is given by its MacLaurin series

Show that, for all $x \in \mathbb{R}$, e^x satisfies:

$$e^{x} = \sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$$

Example

cosh is given by its MacLaurin series

Recall: the even part of e^x is

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

Use this to find the Taylor series of cosh about 0.

Example

sin is given by its MacLaurin series

Find the MacLaurin series of $f(x) = \sin x$ and show that it converges to sin everywhere.

Theorem

Derivative / antiderivative of a power series

Suppose

$$f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n$$

has positive radius of convergence R . Then, for all $x \in]c - R, c + R[$:

•

$$f'(x) = \sum_{n=0}^{\infty} na_n(x-c)^{n-1}$$

a

$$\int f(x) dx = \sum_{n=0}^{\infty} \frac{1}{n+1} a_n (x-c)^{n+1} + C$$

Example

cos is given by its MacLaurin series

Find the MacLaurin series of $u(x) = \cos x$ and show that $Tu(x) = \cos x$.

Example

Find the MacLaurin series of f(x) = 1/(1-x) and its antiderivative.

Example

Find an antiderivative for $f(x) = e^{-x^2}$.

Taylor Series

Next slide

Go on to 'n-dimensional space'