AUTOMATES

Exemples introductifs.

Modélisation d'une télé classique

Description

- la télé a 3 boutons :
 - * Marche / Arrêt → M/A
 - * première chaîne → C1
 - * deuxième chaîne → C2
- situation dans laquelle se trouve la télé:
 - * Éteinte sur la chaîne 1 → E1
 - * Éteinte sur la chaîne 2 → E2
 - * en Marche sur chaîne1 → M1
 - * en Marche sur chaîne2 → M2
- action sur la télé ≡ appuyer sur un bouton

Digicode

- -Porte munie d'un clavier numérique
- Porte s'ouvre lorsqu'on tape le code 914
- pas de limitation sur le nombre d'essais (Soit c un chiffre de {0, 1, ..., 9})

B : suite se terminant par 9

C : suite se terminant par 91

D: « « « E.CHABBAR SMI (2008 -2009

- M
 - Automates finis déterministes (AFD) (AFD ou DFA).
 - **Définition** Un automate fini déterministe (AFD) est un quintuplet $M = (Q, \Sigma, \delta, q_o, F)$ où
 - Q est un ensemble fini d'états,
 - $-\Sigma$ est un ensemble fini de symboles, *l'alphabet (d'entrée)*,
 - $-\delta: Q \times \Sigma \to Q$ est la fonction (totale) de transition,
 - $-q_o \in Q$ est l'état initial (ou de départ),
 - $-F \subseteq Q$ est un sous-ensemble de Q, les *états* accepteurs (ou *finaux*).

- M
 - **Définition (Fonction de transition sur les mots)** Étant donné un AFD (Q, Σ , δ , q_o , F), on étend la fonction de transition δ en une fonction de transition
 - δ': $Q \times \Sigma^* \rightarrow Q$ sur les mots définie par : $\delta'(q, \varepsilon) \triangleq q$ $\delta'(q, wa) \triangleq \delta(\delta'(q, w), a) \forall w ∈ \Sigma^*, \forall a ∈ Σ$
 - Définition (Langage accepté par un automate)
 - Soit $M = (Q, \Sigma, \delta, q_o, F)$ un AFD.
 - 1. M *accepte* le mot $w \in \Sigma^*$ ssi $\delta'(q_o, w) \in F$. Dans le cas contraire on dit que M *rejette* w.
 - 2. Le *langage accepté par M* est défini par : $L(M) \triangleq \{w \in \Sigma^* \mid \delta'(q_0, w) \in F\}$
 - Remarque. On identifie (souvent) δ à δ ' en écrivant $\delta(q,\alpha)$ où α lettre ou mot.

$$\begin{split} [\delta(\mathsf{q},\mathsf{wa}) &= \delta(\delta(\mathsf{q},\mathsf{w}),\mathsf{a})] \\ \delta(\mathsf{1},\mathsf{aba}) &= \delta(\delta(\mathsf{1},\mathsf{ab}),\mathsf{a}) \\ &= \delta(\delta(\delta(\mathsf{1},\mathsf{a}),\mathsf{b}),\mathsf{a}) \\ &= \delta(\delta(\mathsf{2},\mathsf{b}),\mathsf{a}) \\ &= \delta(\mathsf{1},\mathsf{a}) = 2 \\ \mathsf{Ou} \ [\delta(\mathsf{q},\mathsf{aw}) &= \delta(\delta(\mathsf{q},\mathsf{a}),\mathsf{w})] \\ \delta(\mathsf{1},\mathsf{aba}) &= \delta(\delta(\mathsf{1},\mathsf{a}),\mathsf{ba}) \\ &= \delta(\mathsf{2},\mathsf{ba}) \\ &= \delta(\mathsf{2},\mathsf{ba}) \\ &= \delta(\mathsf{3},\mathsf{2},\mathsf{ba}) \\ &= \delta(\mathsf{3},\mathsf{2},\mathsf{ba}) \\ &= \delta(\mathsf{3},\mathsf{3},\mathsf{3},\mathsf{3}) = 2 \\ \mathsf{Le} \ \mathsf{mot} \ \mathsf{aba} \ \mathsf{est} \ \mathsf{accept\'e} \ \mathsf{ou} \\ \mathsf{reconnu} \ \mathsf{par} \ \mathsf{l'aut}. \end{split}$$

Exemple

Algorithme de reconnaissance d'un mot Données :

```
. A = (Q, \Sigma, \delta, q_0, F) un AFD
. u = u_1 u_2 ... u_m ( u_i est la i-ème lettre de u)
Début
 q \leftarrow q_0
   i ← 1
   <u>tantque</u> (i \le m) <u>faire</u>
         q \leftarrow \delta(q, u_i)
       i \leftarrow i + 1
   fait
si q ∈ F alors le mot u est accepté
 sinon le mot u est rejeté
Fin
```


Implémentation

- Si card(Q) = n on prend Q = {0, 1, ...,n}
 et q₀ = 0 (par exemple)
- Si card(Σ) = m on code les lettres de Σ par les entiers 0, 1, ..., m
- ▶ δ sera représentée par une matrice n x m $M[q,\ell] = \delta(q, \ell)$, $0 \le q \le n$, $0 \le \ell \le m$
- l'ensemble des états finaux F peut être représenté par un tableau de booléen :

$$F[q] = 1$$
 si $q \in F$ et 0 sinon

Exemples d'automates déterministes

- Σ = {a, b}
 Automate reconnaissant tous les mots de Σ*
- $\Sigma = \{a, b\}$ $L_1 = \{u \in \Sigma^* / |u|_a \text{ impair}\}$
- $\Sigma = \{a, b\}$ $L_2 = \{u \in \Sigma^* / |u|_a \text{ pair et } |u|_b \text{ impar}\}$

AFD

■ États utiles

Soit A = $(Q, \Sigma, \delta, q_o, F)$ un AFD et soit $q \in Q$.

- ▶ q est accessible $\Leftrightarrow \exists u \in \Sigma^* / \delta(q_0,u) = q$
- ▶ q est co-accessible $\Leftrightarrow \exists u \in \Sigma^* / \delta(q,u) \in F$
- q est <u>utile</u> s'il est à la fois accessible et co-accessible
- un état qui n'est pas co-accessible est appelé état puit ou poubelle
- un automate est dit émondé s'il ne contient que des états utiles
- ▶ un automate est complet si δ est totale i.e. $\delta(q, a)$ est définie $\forall q \in Q$ et $\forall a \in \Sigma$

×

Langages des états d'un AFD

■ Définition Soit A = (Q, Σ , δ , q₀, F) un AFD. Pour tout état q ∈ Q, on définit le langage L_q par : L_q \triangleq L((Q, Σ , δ , q, F) \triangleq {u ∈ Σ * / δ (q, u) ∈ F}

Lemme Soit A = (Q, Σ , δ , q₀, F) un AFD. Alors, pour tout q \in Q: $L_q = (\sqcup_{a \in \Sigma} \{a\} . L_{\delta(q,a)}) \cup \{\epsilon / q \in F\}$ (LIN)

Lemme d'Arden Soit Σ un alphabet. Soient X, A et B des langages sur Σ satisfaisant l'équation X = A X + B avec ε ∉ A.

Alors X = A* B est une solution unique de cette équation.

Expression régulière définissant un AFD

- Conversion d'un AFD A en Exp.Rég.
- 1. Établir un système de card(Q) équations linéaires (format (LIN)) qui définissent les inconnus L_q , pour tout $q \in Q$.
- 2. Résoudre ce système par élimination successive des L_q (sauf L_{q0}) en utilisant le lemme d'Arden.
- 3. L'expression α de L_{q0} correspond à l'AFD A. i.e. L(A) = L_{a0} = α

Exemple.

$$L_0 = b L_0 + a L_1$$

$$L_1 = b L_0 + a L_2 + \varepsilon$$

$$L_2 = a L_2 + b L_2$$

Ce système est équivalent à:

$$L_0 = b L_0 + a L_1$$

$$L_1 = b L_0 + a L_2 + \varepsilon$$

$$L_2 = (a + b) L_2 + \emptyset$$

Par lemme d'Arden on :

$$L_2 = (a + b)^*$$
. $\emptyset = \emptyset$

Le système devient :

$$L_0 = b L_0 + a L_1$$
 (1)

$$L_1 = b L_0 + \varepsilon \tag{2}$$

$$L_2 = \emptyset$$

En remplaçant L₁ dans (1):

$$L_0 = b L_0 + a (b L_0 + \varepsilon)$$

$$L_0 = (b + ab) L_0 + a$$

Par le lemme d'Arden on a:

$$L_0 = (b + ab)^* a$$

- Configuration d'un automate fini
- Une configuration est un couple $(q,w) \in Q \times \Sigma^*$
- configuration initial (q₀,w) (où w est le mot à tester)
- configuration final (q,ϵ) $(q \in F \Rightarrow w \text{ est accepté})$
- Changement de configuration soit ⊢ la relation binaire sur l'ensemble des configurations (⊢ ⊆ (Q x Σ*) x (Q x Σ*)) définie par: (q, aw) ⊢ (q', w) Ssi δ(q, a) = q' (a ∈ Σ, w ∈ Σ*)
- ⊢* est la fermeture réflexive transitive de ⊢
- Langage reconnu par un automate fini A
 L(A) = {w ∈ Σ* / ∃ q ∈ F : (q₀, w) ⊢* (q, ε) }

Deux automates A et A' sont équivalents si et seulement si ils reconnaissent le même langage. i.e.

A est équivalent à A' \Leftrightarrow L(A) = L(A')

Automate Fini Non déterministe (AFN)

- Exemple
- Le AFN accepte l'ensemble des mots sur l'alphabet {0, 1} qui se terminent par 01.
- δ(q,a) peut être un ens.d'états au lieu d'un seul
- Pour un même mot il peut exister plusieurs chemins

Un Automate Fini Non déterministe est défini formellement par un quintuplet

$$A_n = \{Q_n, \Sigma, \delta_n, Q_0, F_n\}$$
 où :

- Q_n est un ensemble fini d'états
- Σ est un alphabet
- $\delta_n : Q_n \times \Sigma \to \wp(Q_n)$ est la fonction de transition (ou $\delta_n \subseteq (Q_n \times \Sigma \times Q_n)$)
- Q₀ ⊆ Q_n est l'ensemble des états initiaux
- $\bullet F_n \subseteq Q_n$ est l'ensemble des états accepteurs.
- Langage reconnu par un automate fini A_n

$$L(A_n) = \{ w \in \Sigma^* / \exists q_0 \in Q_0, \exists q \in F : (q_0, w) \vdash^* (q, \varepsilon) \}$$

100

Extension de la fonction de transition δ aux mots

On définit pour un ensemble d'états S :

$$\delta(S,a) = \bigcup_{g \in S} \delta(g,a) \quad (\forall a \in \Sigma)$$

Extension de δ pour les AFN $(\delta_n : Q_n \times \Sigma \to 2^{Qn})$ $\delta_n^*(q, \epsilon) = \{q\} \ (\forall \ q \in Q_n)$ $\delta_n^*(q, wa) = \delta_n(\delta_n^*(q, w), a) \ (\forall a \in \Sigma, \ \forall \ w \in \Sigma^*)$

• Et on a :
$$\delta_n^*(q,a) = \delta_n(\delta_n^*(q,\epsilon),a)$$

= $\delta_n(\{q\},a)$
= $\delta_n(q,a)$

• Langage reconnu par un AFN A_n $L(A_n) = \{ w \in \Sigma^* / \delta_n^* (q_0, w) \cap F \neq \emptyset \}$

Exemple.

$$\delta_{n}^{*}(q_{0},01)$$

$$= \delta_{n}(\delta_{n}^{*}(q_{0},0),1)$$

$$= \delta_{n}(\delta_{n}(q_{0},0),1)$$

$$= \delta_n(\{q_0,q_1\},1)$$

$$= \delta_{n}(q_{0},1) \cup \delta_{n}(q_{1},1)$$

$$= \{q_0\} \cup \{q_2\}$$

$$= \{q_0, q_2\}$$

Le mot 01 est accepté car $\{q_2\} \cap \{q_0,q_2\} \neq \emptyset$

Automate Fini Non déterministe à transitions libres (AFNε)

Un AFNε est un AFN auquel on ajoute des transitions étiquetées par ε

Exemple:

Le AFNs accepte
l'ensemble des mots sur
l'alphabet {0, 1, 2} qui
correspond à l'expression
régulière 0*1*2*.

	0	1	2	3
q_0	$\{ \mathbf{q}_0 \}$	Ø	Ø	$\{q_1\}$
\mathbf{q}_1	Ø	$\{q_1\}$	Ø	{ q ₂ }
q_2	Ø	Ø	{ q ₂ }	Ø

Reconnaissance de 022

Un Automate AFNε est défini formellement par un quintuplet

$$A_{\varepsilon} = \{Q_{\varepsilon}, \Sigma \cup \{\varepsilon\}, \delta_{\varepsilon}, s_{0}, F_{\varepsilon}\} \text{ où }:$$

- Q_e est un ensemble fini d'états
- Σ est un alphabet
- $\delta_{\epsilon}: Q_{\epsilon} \times (\Sigma \cup \{\epsilon\}) \rightarrow \wp(Q_{\epsilon})$ est la fonction de transition (ou $\delta_{\epsilon} \subseteq (Q_{\epsilon} \times (\Sigma \cup \{\epsilon\}) \times Q_{\epsilon})$)
- s₀ ∈ Q_ε est l'état initial
- ullet $F_{\epsilon} \subseteq Q_{\epsilon}$ est l'ensemble des états accepteurs.
- Langage reconnu par un automate fini A_ε
 L(A_ε) = {w ∈ Σ* / ∃ q ∈ F_ε : (s₀, w) ⊢* (q, ε) }

Extension de la fonction de transition, aux mots

Extension de δ pour les AFN ϵ

$$(\delta_{\varepsilon}: Q_{\varepsilon} \times (\Sigma \cup {\varepsilon})) \rightarrow \wp(Q_{\varepsilon}))$$

Définition: (ε- clôture)

La clôture d'un état $q \in Q$ par ϵ , notée $C_{\epsilon}(q)$, est l'ensemble des états accessibles de q uniquement par des transitions vides.

- $C_{\epsilon}(q) = \bigcup_{i \geq 0} \operatorname{close}^{i}(q)$ où :
 - $\circ close^0(q) = \{q\}$
 - closeⁱ⁺¹(q) = δ_{ϵ} (closeⁱ(q), ϵ)
- $C_{\varepsilon}(S) = \bigcup_{q \in S} C_{\varepsilon}(q)$
- $C_{\varepsilon}(\emptyset) = \emptyset$

Exemple.

État q	q_0	q_1	q_2
C _ε (q)	{q ₀ ,q ₁ ,q ₂ }	{q ₁ ,q ₂ }	{q ₂ }

Extension de δ pour les AFN ϵ

$$(\delta_{\varepsilon}: Q_{\varepsilon} \times (\Sigma \cup {\varepsilon})) \rightarrow \wp(Q_{\varepsilon}))$$

$$\begin{split} \cdot \, \delta_{\epsilon}^{\, *}(\mathsf{q}, \, \epsilon) &= C_{\epsilon}(\mathsf{q}) \\ \cdot \, \delta_{\epsilon}^{\, *}(\mathsf{q}, \mathsf{ua}) &= C_{\epsilon} \, (\delta_{\epsilon}(\delta_{\epsilon}^{\, *}(\mathsf{q}, \mathsf{u}), \mathsf{a}) \\ \text{Et on a :} \\ \delta_{\epsilon}^{\, *}(\mathsf{q}, \mathsf{ua}) &= C_{\epsilon}(\delta_{\epsilon}(\delta_{\epsilon}^{\, *}(\mathsf{q}, \epsilon), \mathsf{a}) \\ &= C_{\epsilon}(\delta_{\epsilon}(\delta_{\epsilon}^{\, *}(\mathsf{q}, \epsilon), \mathsf{a}) \\ &= C_{\epsilon}(\delta_{\epsilon}(\delta_{\epsilon}^{\, *}(\mathsf{q}, \epsilon), \mathsf{a})) \end{split}$$

Exp:

$$\begin{split} \delta_{\epsilon}^*(q_0, &01) = C_{\epsilon}(\delta_{\epsilon}(\delta_{\epsilon}^*(q_0, 0), 1) \\ \delta_{\epsilon}^*(q_0, 0) = C_{\epsilon}(\delta_{\epsilon}(C_{\epsilon}(q_0), 0) = C_{\epsilon}(\delta_{\epsilon}(\{q_0, q_1, q_2\}, 0)) \\ &= C_{\epsilon}(\delta_{\epsilon}(q_0, 0) \cup \delta_{\epsilon}(q_1, 0) \cup \delta_{\epsilon}(q_2, 0)) \\ &= C_{\epsilon}(\{q_0\} \cup \varnothing \cup \varnothing) \\ &= \{q_0, q_1, q_2\} \\ \delta_{\epsilon}^*(q_0, 01) = C_{\epsilon}(\delta_{\epsilon}(\{q_0, q_1, q_2\}, 1)) = C_{\epsilon}(\delta_{\epsilon}(q_0, 1) \cup \delta_{\epsilon}(q_1, 1) \cup \delta_{\epsilon}(q_2, 1)) \\ &= C_{\epsilon}(\varnothing \cup \{q1\} \cup \varnothing) \\ &= \{q1, q2\} \end{split}$$

• $L(A_{\epsilon}) = \{ w \in \Sigma^* / \delta_{\epsilon}(q_0, w) \cap F_{\epsilon} \neq \emptyset \}$ (le mot 01 est donc accepté)

×

Équivalence entre automates finis (FA) et langages réguliers

On note par $Rec_{\Sigma}(FA)$ la classe des langages reconnaissables par le type d'automate FA sur un alphabet Σ .

On montre que les 3 formalismes AFD, AFN et AFN définissent la même classe de langages: les langages réguliers.

$$(Rec_{\Sigma}(AFD) = Rec_{\Sigma}(AFN) = Rec_{\Sigma}(AFN) = Reg(\Sigma))$$

M.

$Rec_{\Sigma}(AFN) \subseteq Rec_{\Sigma}(AFD)$ (flèche 1)

Théorème (Pour tout AFN A_n , il existe un AFD A_d avec $L(A_n) = L(A_d)$)

Preuve:

Soit un AFN $A_n = \{Q_n, \Sigma, \delta_n, Q_0, F_n\}$ définissons (construisons) le AFD $A_d = \{Q_d, \Sigma, \delta_d, q_0^d, F_d\}$

avec

- $Q_d = \{S \mid S \subseteq Q_n\} \text{ (càd } Q_d = \wp(Q_n) \text{)}$
- $F_d = \{S \subseteq Q_n \mid S \cap F_n \neq \emptyset\}$
- $q_0^d = Q_0$
- Pour tout $S \subseteq Q_n$ et $a \in \Sigma$,

$$\delta_d(S, a) = \delta_n(S, a) (= \bigcup_{q \in S} \delta_n(q, a))$$

Notons que $|Q_d| = 2^{|Q_n|}$ (bien qu'en général, beaucoup d'états soient inutiles car inaccessibles)

40 × 40 × 42 × 42 × 2 990

Théorème (Pour tout AFN A_n , il existe un AFD A_d avec $L(A_n) = L(A_d)$)

Preuve (suite):

On va montrer que $L(A_d) = L(A_n)$ Il suffit de montrer par induction que :

$$\delta_d^*(\mathbf{Q}_0, w) = \delta_n^*(\mathbf{Q}_0, w)$$

- Base : $(w = \varepsilon)$: OK par définition des δ^*
- Induction : (w = ua)

$$\delta_{d}^{*}(Q_{0}, ua) =_{def} \delta_{d}(\delta_{d}^{*}(Q_{0}, u), a)$$

$$=_{hi} \delta_{d}(\delta_{n}^{*}(Q_{0}, u), a)$$

$$=_{cst} \delta_{n}(\delta_{n}^{*}(Q_{0}, u), a)$$

$$=_{def} \delta_{n}^{*}(Q_{0}, ua)$$

Algorithme de détermination d'un AFN

(Conversion d'un AFN en un AFD équivalent)

Principe : considérer des ensembles d'états successeurs de $\{q_0\}$.

- 1. Partir de l'état initial $E_0 = \{q_0\}$
- Construire E_1 l'ensemble des états obtenus à partir de E_0 par la transition a: $E_1 = \delta_n(E_0, a)$
- 3. Recommencer 2. pour toutes les transitions possibles et pour chaque nouvel ensemble E_i
- Tous les ensembles E_i contenant au moins un état final deviennent terminaux
- 5. Renuméroter les ensembles E_i par de simples états

Exemple1.

	а	b
$E_0 = \{q_0\}$	${q_0,q_1}=E_1$	$\{q_0\}=E_0$
$E_1 = \{q_0, q_1\}$	${q_0,q_1}=E_1$	$\{q_0,q_2\}=E_2$
$E_2 = \{q_0, q_2\}$	$\{q_0,q_1\}=E_1$	$\{q_0\}=E_0$

Exemple3.(AFN ayant n+1 états dont l'AFD équivalent a 2ⁿ états

$Rec_{\Sigma}(AFD) \subseteq Rec_{\Sigma}(AFN)$

(flèche 2)

Théorème (Pour tout AFD A_d , il existe un AFN A_n avec $L(A_d) = L(A_n)$)

Preuve : Soit un AFN
$$A_d = \{Q_d, \Sigma, \delta_d, q_0, F_d\}$$

On prend le AFN $A_n = \{Q_d, \Sigma, \delta_n, \{q_0\}, F_d\}$ où : $\delta_d(q, a) = p \Rightarrow \delta_n(q, a) = \{p\}$

 $Rec_{\Sigma}(AFN\varepsilon) \subseteq Rec_{\Sigma}(AFD)$ Flèche 3

Théorème (Pour tout AFN $_{\varepsilon}$ A_{ε} , il existe un AFD A_{d} avec $L(A_{\varepsilon}) = L(A_{d})$)

Preuve:

Soit un AFNε
$$A_{\epsilon} = \{Q_{\epsilon}, \Sigma \cup \{\epsilon\}, \delta_{\epsilon}, q_{0}^{\epsilon}, F_{\epsilon}\}$$

définissons (construisons) le AFD $A_d = \{Q_d, \Sigma, \delta_d, \{q_0^d\}, F_d\}$ Avec :

- $Q_d = \{ C_{\epsilon}(S) / S \subseteq Q \}$
- $q_0^d = C_{\varepsilon}(q_0^{\varepsilon})$
- $F_d = \{S \in Q_d / S \cap F_\epsilon \neq \emptyset \}$
- Pour tout $S \in Q_d$ et $a \in \Sigma$, $\delta_d(S,a) = C_{\epsilon}(\delta_{\epsilon}(S,a))$

Théorème (Pour tout AFN ϵ A_{e} il existe un AFD A_{d} avec $L(A_{\epsilon}) = L(A_{d})$)

Preuve (suite)

On va montrer que $L(A_d) = L(A_{\varepsilon})$. Il suffit de montrer par induction que : $\delta_{\varepsilon}^*(\{q_0^{\varepsilon}\}, w) = \delta_{d}^*(q_0^{d}, w)$

• Base :
$$(w = \varepsilon)$$
 :
$$\delta_{\varepsilon}^*(\{q_0^{\varepsilon}\}, \ \varepsilon) = C_{\varepsilon}(q_0^{\varepsilon}) = q_0^{\ d} = \delta_{\mathsf{d}}^{\ *}(q_0^{\ d}, \ \varepsilon)$$

• induction : (w = ua) $\delta_{\varepsilon}^{*}(\{q_{0}^{\varepsilon}\}, ua) =_{def. \delta \varepsilon^{*}} C_{\varepsilon}(\delta_{\varepsilon}(\delta_{\varepsilon}^{*}(\{q_{0}^{\varepsilon}\}, u), a))$ $=_{hi} C_{\varepsilon}(\delta_{\varepsilon}(\delta_{d}^{*}(q_{0}^{d}, u), a))$ $=_{cst} \delta_{d}(\delta_{d}^{*}(q_{0}^{d}, u), a)$ $=_{def. \delta d^{*}} \delta_{d}^{*}(q_{0}^{d}, w)$

Algorithme de détermination d'un AFNε

(Conversion d'un AFNε en un AFD équivalent)

Principe : considérer des ensembles d'états successeurs de $C_{\epsilon}(\{q_0\})$.

- 1. Partir de l'état initial $E_0 = C_{\epsilon}(\{q_0\})$
- 2. Pour toute transition a, construire E_i l'ensemble des états obtenus à partir de E_{i-1} (à l'étape précédente) par : $E_i = C_{\epsilon}(\delta_{\epsilon}(E_{i-1}, a))$
- 3. Recommencer 2. pour chaque nouvel ensemble obtenu.
- Tous les ensembles E_i contenant au moins un état final deviennent terminaux
- Renuméroter les ensembles E_i par de simples états

Exemple1

État q	État q q ₀		q_2	
$C_{\varepsilon}(q)$	${q_0,q_1,q_2}$	{q ₁ ,q ₂ }	{q ₂ }	

	0	1	2
$E_0 = C_{\varepsilon}(q_0)$ = $\{q_0, q_1, q_2\}$	$C_{\varepsilon}(q_0)=E_0$	$E_1 = C_{\varepsilon}(q_1)$ $= \{q_1, q_2\}$	$E_2 = C_{\varepsilon}(q_2)$ $= \{q_2\}$
$E_1 = \{q_1, q_2\}$	Ø	$E_1=C_{\varepsilon}(q_1)$	$E_2 = C_{\varepsilon}(q_2)$
$E_2 = \{q_2\}$	Ø	Ø	$E_2=C_{\varepsilon}(q_2)$

Automate déterministe équivalent

Exemple2

Théorème : Tout langage reconnaissable par un AFD est défini par une expression régulière.

(Pour le calcul de l'exp. Régulière on peut résoudre un système de card(Q_d) équations et card(Q_d) inconnues (pp. 12-13)

$$\mathsf{REG}(\Sigma) \subseteq \mathsf{Rec}_{\Sigma}(\mathsf{AFN}\epsilon)$$
 Flèche 5

Théorème : Pour toute expression régulière α , il existe un AFN ϵ N $_{\epsilon}$ Tel que L(α)=L(N $_{\epsilon}$)

Preuve : par induction.

• Cas de base : automates pour ε , \emptyset et a (a $\in \Sigma$)

×

• Induction : automate pour α + β

Indiction : automate pour α . β

Induction : automate pour α^*

Conclusion: les 3 formalismes d'automates sont équivalents et définissent la classe des langages réguliers

Automate minimal

• Congruence de Myhill - Nerode

Soit L un langage sur Σ (L $\subseteq \Sigma^*$) et soient u et v deux mots de Σ^* .

On définit une relation d'équivalence $\sim_{\mathsf{L}} (\sim_{\mathsf{L}} \subseteq \Sigma^* \mathsf{x} \Sigma^*)$ par :

$$u \sim_{L} v \Leftrightarrow \forall w \in \Sigma^{*}, (uw \in L \Leftrightarrow vw \in L)$$

- \sim_{L} est une congruence à droite ($u \sim_{L} v \Rightarrow u \alpha \sim_{L} v \alpha$) ($\alpha \in \Sigma^{*}$) ($u \sim_{L} v \Rightarrow \forall \gamma \in \Sigma^{*}$, ($u \gamma \in L \Leftrightarrow v \gamma \in L$) ($u \alpha \sim_{L} v \alpha \Rightarrow \forall \beta \in \Sigma^{*}$, ($u \alpha \beta \in L \Leftrightarrow v \alpha \beta \in L$) (prendre $\gamma = \alpha \beta$)
- Automate quotient dans le cas où ~ est d'index fini

A /
$$\sim_L$$
 = {Q $_\sim$, Σ , δ_\sim , q_0_\sim , F_\sim } où :

- $Q_{\sim} = \{ [u]_{\sim}, u \in \Sigma^* \}$
- q_{0~}= [ε]_~
- F_{\sim} = { $[u]_{\sim}$, $u \in L$ }
- δ_{\sim} : $Q_{\sim} \times \Sigma \rightarrow Q_{\sim}$ définie par : $\delta_{\sim}([u]_{\sim}, a) = [ua]$

• L'automate quotient A / \sim_1 reconnaît les mots de L. (L(A / \sim_1) = L)

En effet:

$$\begin{split} w \in L(A \, / \, \sim_L) &\Leftrightarrow \, \delta_{\sim} \, (q_{0\,\sim} \,, \, w) \, \in F_{\sim} \\ &\Leftrightarrow \, \delta_{\sim} \, ([\epsilon]_{\sim} \,, \, w) \in F_{\sim} \\ &\Leftrightarrow \, [w]_{\sim} \in F_{\sim} \\ &\Leftrightarrow \, w \, \in L \end{split}$$

Exemple: $L = a^* b a^* = \{a^i b a^j, i, j \ge 0\}$

$$\label{eq:continuous_loss} \begin{array}{l} ^{\scriptscriptstyle \square} \; \epsilon \; \not\sim_{\mathsf{L}} \; b \; \left(\; \epsilon \; b \in \mathsf{L} \quad et \quad bb \not\in \mathsf{L} \right) \\ ^{\scriptscriptstyle \square} \; b \; \sim_{\mathsf{L}} \; ba \; \left(ba^j \; \in \mathsf{L} \quad et \quad baa^j \in \mathsf{L} \right) \\ (\text{de même } a^k \; b \; \sim_{\mathsf{L}} \; ba^l \; \sim_{\mathsf{L}} \; a^k \; b \; q^l \; \sim_{\mathsf{L}} \; b \; \forall \; k,l \geq 0) \end{array}$$

$$^{\circ}$$
 b \sim_{L} bb (b \in L et bb \notin L)

$$[bb] = a*ba*b(a+b)*$$

Théorème de Myhill - Nerode

Soit L un langage quelconque sur Σ . (L $\subseteq \Sigma^*$)

L est régulier ⇔ la congruence ~ est d'index fini

.

• Cas où L est un langage régulier

Si L est régulier il est reconnaissable par un AFD $\mathbf{A} = (\Sigma, \mathbf{Q}, \delta, \mathbf{q_0}, \mathbf{F})$ Soient p et q deux états quelconque de Q, <u>accessible</u> de $\mathbf{q_0}$. On note par :

Et on écrit:

$$p \approx q \Leftrightarrow \forall w \in \Sigma^* : (\delta(p,w) \in F \Leftrightarrow \delta(q,w) \in F)$$

On a:

A /
$$\sim_1$$
 est isomorphe à A / \approx

Les 2 automates quotients sont identiques: ils ont même nombre d'états et Ils ne diffèrent que par les noms des états Remarque: les langages L_p (resp. L_q) est appelé résiduel de L par rapport à u (res.v) $u^{-1} L = \{w \in \Sigma^* \ / \ uw \in L\}$

(un résiduel par rapport à u est l'ensemble des mots de L dont on efface le préfixe u)

Exemple.

$$11 = a12 + b13$$

$$12 = a14 + b15$$

$$L3 = a L4 + b L6 + \epsilon$$

$$L4 = aL4 + bL5$$

$$15 = a14 + b16 + \epsilon$$

$$L6 = a L4 + b L6$$

On en déduit :

$$L2 = L4 \implies 2 \approx 4$$

$$L3 = L5 \implies 3 \approx 5$$

Ces deux résultats font que L1 = L2

Et donc $1 \approx 2 \approx 4$.

L1
$$\neq$$
 L6 ($\epsilon \in$ L3, b \in L1 mais b \notin L6 car $\epsilon \notin$ L6)

Les classes: {1,2,4}, {6} et {3,5}

Automate minimal équivalent

- $p \approx q \Leftrightarrow \forall w \in \Sigma^* : (\delta(p,w) \in F \Leftrightarrow \delta(q,w) \in F)$
- $\bullet \ p \ \not\approx \ q \qquad \Leftrightarrow \quad \exists \ w \in \Sigma^* : (\delta(p,w) \in F \ \ \text{et} \ \delta(q,w) \not\in F)$ ou $(\delta(p,w) \not\in F \ \ \text{et} \ \delta(q,w) \in F)$

On dit, dans ce cas que, w sépare p et q.

• Pour $n \ge 0$, on note $\Sigma^{\le n} = \Sigma^0 \cup \Sigma^1 \cup ... \cup \Sigma^n$ (est l'ensemble des mots de longueur $\le n$) et on définit l'équivalence \approx_n sur Q par :

$$\mathsf{p} \; \approx_\mathsf{n} \; \mathsf{q} \qquad \Leftrightarrow \quad \forall \; \mathsf{w} \in \Sigma^{\leq \mathsf{n}} \quad (\delta(\mathsf{p},\mathsf{w}) \in \mathsf{F} \; \Leftrightarrow \delta(\mathsf{q},\mathsf{w}) \in \mathsf{F})$$

Remarques:

- ≈₀ a pour classes d'équivalence F et Q \ F .
- $\circ \approx_{n+1}$ est plus fine que \approx_n , (p \approx_{n+1} q \Rightarrow p \approx_n q)
- $\circ \approx = \cap_{n\geq 0} \approx_n$, $(p \approx q \iff \forall n \geq 0, p \approx q)$

On montre que:

- $p \approx_{n+1} q \Leftrightarrow p \approx_n q \text{ et } \forall a \in \Sigma, \delta(p,a) \approx_n \delta(p,a)$
- Si $\approx_{n+1} = \approx_n$ alors $\approx = \approx_n$

On utilise ce principe pour calculer les partitions π_n (relatives à \approx_n) de Q par raffinements successifs en partant de π_0 = { F, Q \ F}.

L'automate minimal est l'automate quotient

$$A /\approx = (\Sigma, Q/\approx, \delta_{\approx}, [q_0]_{\approx}, F_{\approx}) \text{ où}$$

$$Q /\approx = \{ [q]_{\approx}, q \in Q \}$$

$$F \approx = \{ [q]_{\approx}, q \in F \}$$

$$\delta_{\approx} : Q /\approx x \Sigma \rightarrow Q /\approx \text{ définie par :}$$

$$\delta_{\approx} ([q]_{\approx}, a) = [\delta(q, a)]_{\approx}$$

• L'automate quotient A $/\approx = (\Sigma, \mathbb{Q}/\approx, \delta_{\approx}, [q_0]_{\approx}, F_{\approx})$ est équivalent à A Fn effet :

$$\begin{split} w \in L(A/\approx) &\Leftrightarrow \delta_{\approx}([q_0]_{\approx}\,,\,w) \in F_{\approx} \\ &\Leftrightarrow \left[\delta(q_0\,,\,w)\right]_{\approx} \in F_{\approx} \\ &\Leftrightarrow \delta(q_0\,,\,w) \in F \\ &\Leftrightarrow w \in L(A) \end{split}$$

Algorithme1 de minimisation d'un AFD A

- 1- Éliminer de A tous les états non accessibles
- 2- Faire deux classes : une classe pour les terminaux et une autre pour les non terminaux.
- 3- S'il existe une lettre a qui sépare deux états p et q $(\delta(p,a))$ et $\delta(q,a)$ ne sont pas dans la même classe), alors créer une nouvelle classe et séparer p et q. On laisse dans la même classe tous les états qui donnent un état d'arrivée dans la même classe.
- 4- Recommencer en 3 jusqu'à ce qu'il n'y ait plus de classe à séparer.

Ī			

		long1		longueur2			
long0		а	b	aa	ab	ba	bb
1		2	<u>3</u>	4	<u>5</u>	4	6
2		4	<u>5</u>	4	<u>5</u>	4	6
4		4	<u>5</u>	4	<u>5</u>	4	6
6		4	6				
<u>3</u>		4	6	4	<u>5</u>	4	6
<u>5</u>		4	6	4	<u>5</u>	4	6

Deux états sont séparés si leurs lignes corresp. n'ont pas le même soulignement

 $\begin{array}{l} \pi_0 : \;\; \{1,2,4,6\} \;, \, \{3,5\} \\ \text{b sépare 6 } \; \text{de} \; \{1,2,4\} \end{array}$

 π_1 : {1,2,4}, {6}, {3,5} π_2 : {1,2,4}, {6}, {3,5}

Algorithme 2 pour minimiser un AFD

Début

```
// A(card(Q), card(Q)) matrice booléenne initialisée à faux
 fini ← faux:
 pour tout (p,q) \in Q \times Q faire
   si(p,q) \in F \times F \cup (Q \setminus F) \times (Q \setminus F) \wedge A(p,q) \leftarrow vrai
   sinon A (p,q) \leftarrow faux;
 fait:
 tant que non fini faire
    fini ← vrai;
    pour tout (p,q) \in Q \times Q faire
        si A(p,q) = vrai alors
            pour tout a \in \Sigma faire
               si A(\delta(p,a), \delta(q,a)) = faux alors A(p,q) \leftarrow faux; fini \leftarrow faux fsi;
            fait:
         fsi:
    fait:
 fait;
Fin
```


Propriétés des langages réguliers

Soit L un langage quelconque sur Σ .

- L est-il régulier ?
- Pour quels opérateurs les langages réguliers sont-ils fermés ?
- *W* ∈ *L* ?
- *L* est-il vide, fini, infini?
- $(L_1 \subseteq L_2, L_1 = L_2 ?)$

Pour montrer qu'un langage est régulier, Il faut :

- trouver un automate fini (ou une expression rég.) *M* et
- montrer que L = L(M) càd
 - que $L \subseteq L(M)$ (tout mot de L est accepté par M)
 - que $L(M) \subseteq L$ (tout mot accepté par M est dans L)

Lemme de l'étoile (ou lemme de pompage)

Soit L un langage sur Σ .

Si L est régulier alors

$$\exists$$
 n (entier), \forall w (mot) (w \in L \land |w| \ge n) \Rightarrow

$$(\exists x, y, z \in \Sigma^*,$$

$$(1) w = x y z$$

(2)
$$y \neq \varepsilon \wedge |xy| \leq n$$

$$(3) \forall k \ge 0 \quad x y^k z \in L)$$

Preuve.

Supposons que L est régulier. Il existe un AFD (minimal)

$$A = (\Sigma, Q, \delta, p_0, F)$$
 t.q $L(A) = L$.

On prend n = card(Q). Soit $w = a_1 ... a_i ... a_m$ un mot de L de long. $m \ge n$.

On note par w_i le préfixe de w de longueur i ($w_i = a_1...a_i$)

(il y a (n + 1) préfixes de w de longueur $\leq n$)

Soit $f: \{0,1, ..., n\} \rightarrow Q$ définie par : $f(i) = \delta(p_0, w_i) = p_i$

- f est non injective (card {0,1, ..., n} = n + 1 > card (Q) = n))
- Il existe i, $j \in \{0, 1, ..., n\}$ t.q i $\neq j$ et f(i) = f(j) $(\delta(p_0, w_i) = \delta(p_0, w_i))$

Supposons j > i. On prend:

$$x = w_i = a_1...a_i$$
, $y = a_{i+1}...a_j$ ($w_j = x y$) et $z = a_{j+1}...a_m$ ($w = w_j z$)

Pour ces mots x, y et z on vérifie (facilement) les trois propriétés du lemme.

Remarque: le lemme de l'étoile donne une condition nécessaire pour qu'un langage soit régulier. Il est utilisé pour prouver qu'un langage n'est pas régulier. (par contraposée)

FORMALISONS LE LEMME:

L est régulier
$$\Rightarrow$$
 $\exists n : \forall w \in \Sigma^* :$
 $(w \in L \land |w| \ge n)$
 \Rightarrow
 $(\exists x, y, z \in \Sigma^* :$
 $w = x y z \land$
 $(|xy| \le n \land |y| \ge 1)$
 \land
 $\forall i \ge 0 : x y^i z \in L$

Formalisme du lemme:

L est régulier
$$\Rightarrow$$
 $\exists n : \forall w \in \Sigma^* :$
 $\neg (w \in L \land |w| \ge n)$
 \lor
 $(\exists x, y, z \in \Sigma^* :$
 $w = x y z \land$
 $(|xy| \le n \land |y| \ge 1)$
 \land
 $\forall i \ge 0 : x y^i z \in L)$

Formalisme du lemme:

L est régulier \Rightarrow $\exists \ n: \ \forall \ w \in \Sigma^*:$ $\neg \ (w \in L \ \land \ |w| \ge n)$ \lor $(\exists \ x, \ y, \ z \in \Sigma^*:$ $w = x \ y \ z \ \land$ $(|xy| \le n \ \land \ |y| \ge 1)$ \land $\forall \ i \ge 0: x \ y^i \ z \ \in L)$

CONTRAPOSEE

$$\forall n: \exists w \in \Sigma^*:$$

$$(w \in L \land |w| \ge n)$$

$$^{\land}$$

$$\forall x, y, z \in \Sigma^*:$$

$$^{-}[w = x y z \land$$

$$(|xy| \le n \land |y| \ge 1)]$$

$$^{\checkmark}$$

$$^{-}(\forall i \ge 0: x y^i z \in L)$$

⇒ L est non régulier

CONTRAPOSEE

CONTRAPOSEE

$$\forall n: \exists w \in \Sigma^*:$$

$$(w \in L \land |w| \ge n)$$

$$\forall x, y, z \in \Sigma^*:$$

$$\neg [w = x y z \land (|xy| \le n \land |y| \ge 1)]$$

$$(\exists i \ge 0: x y^i z \notin L)$$

$$\forall n: \exists w \in \Sigma^*:$$

$$(w \in L \land |w| \ge n)$$

$$\land \qquad \qquad \forall x, y, z \in \Sigma^*:$$

$$[w = x y z \land \land \qquad (|xy| \le n \land |y| \ge 1)]$$

$$\Rightarrow \qquad \qquad \qquad (\exists i \ge 0: x y^i z \notin L)$$

⇒ L est non régulier

⇒ L est non régulier

Remarque: On peut faire une démonstration par l'absurde en supposant Que L est régulier et la négation du conséquent du lemme.

м

Exemples:

1) $L_1 = \{ a^m b^m , m \ge 1 \}$ n'est pas régulier.

Fixons n et soit $w = a^n b^n \in L$ (|w| = 2n > n).

• $w = x y z = a^n b^n$ et $|xy| \le n$ impose que le choix, de x et de y, est parmi les 'a'.

$$w = x y z = a^{n-j} a^{j} b^{n} (y = a^{j}) (1 \le j \le n)$$

 $x y^{k} z = a^{n-j} a^{kj} b^{n} = a^{n+(k-1)j} b^{n}$

• Choix de k pour que $x y^k z \notin L$.

Il suffit de prendre k > 1 (par exemple k = 2) pour conclure que le langage L est non régulier.

Autre démonstration par la congruence Myhill - Nerode :

On a: $a^i \nsim_{L1} a^j \forall i \neq j$.

en effet a^i a^k $b^{i+k} \in L_1$ (\forall K) mais a^j a^k $b^{i+k} \notin L_1$ du fait que $j \neq i$, donc il y a une infinité de classes d'équivalence [a^i] ($i \geq 0$).

Le langage L₁ est non régulier (selon le théorème de M - Nerode).

- 2) $L_2 = \{ a^{n^2}, n \ge 1 \}$ est un langage non régulier.
 - Fixons n et choisissons $w = a^{n^2}$ avec $n^2 > n$.

• w = x y z =
$$a^{n^2}$$

= $a^{n^2-j}a^j$ (où y = a^j , $1 \le j \le n$)

• $x y^k z = a^{n^2 + (k-1)j}$

prenons k = 2 et montrons que $x y^2 z \notin L_2$.

 $n^2 < |xy^2z| \le n^2 + n < (n + 1)^2$; $x y^2 z$ ne peut être un carré parfait, donc $x y^2 z \notin L$.

Propriétés de fermeture des langages réguliers

Théorème: Si L et L' sont réguliers alors, sont réguliers:

- union : $L \cup L'$
- produit : L L'
- étoile : L*
- complément : C_{Σ*} L
- intersection : L ∩ L'
- différence : L\L'
- image miroir : L^R
- image par homomorphisme : h(L)
- image par homomorphisme inverse : h⁻¹(L)

Preuve:

- les 3 premières propriétés (union, produit et étoile) sont par définition des langages réguliers.
- le complément d'un régulier est régulier :

L régulier \Rightarrow L est reconnu par un AFD A = (Σ , Q, δ , q₀, F) : L(A) = L L'automate B = (Σ , Q, δ , q₀, Q \ F) reconnaît le complément de L. (Pour complémenter un automate, tout état non final devient final et vice – versa. L'automate (à complémenter) doit être complet).

- Pour l'intersection (comme pour l'union) on fait une construction directe :

Produit de deux automates

$$\begin{aligned} &A_i = (\Sigma,\,Q_i,\,\delta_i,\,q_0{}^i,\,F_i) \ \ i = 1 \ et \ 2 \ sont \ deux \ AFDs \ \ L_1 = L(A_1) \ et \ L_2 = L(A_2). \\ &Le \ produit \ de \ A1 \ et \ A2 \ est \ un \ AFD \ \ A_x = (\Sigma,\,Q_x,\,\delta_x,\,q_0{}^x,\,F_x) \ \ où : \\ &Q_x = Q_1 \ x \ Q_2 \qquad , \qquad q_0{}^x = (q_0{}^1\,,\,q_0{}^2) \\ &\delta_x \ est \ definie \ par : \quad \delta_x((p,q)\,,\,a) = (\,\delta_1(p,a)\,,\,\delta_2(q,a)\,) \end{aligned}$$

Si $F_x = F_1 \times F_2$ alors A_x reconnaît $L_1 \cap L_2$. $(L(A_x) = L_1 \cap L_2)$ Si $F_x = (F_1 \times Q) \cup (Q \times F_2)$ alors A_x reconnaît $L_1 \cup L_2$

- L régulier \Rightarrow L^R est régulier L reconnu par un AFD A = (Σ , Q, δ , q₀, F). On construit un AFN ϵ B = (Σ , Q \cup {p₀}, δ _B, p₀, F_B) où :
 - p_0 est l'état initial ($p_0 \notin Q$)
 - $\delta_{\rm B}$ est obtenue en inversant le sens de tous les arcs de A
 - ajouter $(p_0, \epsilon) = F$
 - $F_{B} = \{q_{0}\}$

et on a
$$L(B) = L^R$$

h : $\Sigma^* \to \Sigma^{*}$ un homomorphisme

- L est régulier sur $\Sigma \Rightarrow h(L)$ est régulier sur Σ' (Preuve par induction structurelle des réguliers)
- L' est régulier sur $\Sigma' \Rightarrow h^{-1}(L)$ est régulier sur Σ A' = $(\Sigma, Q', \delta', q_0', F')$ un AFD reconnaissant L'. On construit $A = (\Sigma, Q', \delta, q_0', F')$ où : $\delta(q', a) = \delta'(q', h(a))$ et on vérifie que $L(A) = h^{-1}(L)$

M

Propriétés décidables des réguliers

L, L_1 et L_2 sont des réguliers sur Σ .

• w est mot de Σ^* .

```
w \in L?: w \in L \Leftrightarrow w \text{ est accept\'e par un AF}
A t.q. L = L(A).
```

- L = Ø?: L≠Ø ⇔∃ un état final est accessible de l'état initial.(L = L(A))
- L fini ou infini ?: L est infini ⇔ ∃ un chemin de l'état initial à un état final passant par un cycle.
- $L_1 \subseteq L_2$? : $L_1 \subseteq L_2 \iff L_1 \cap C_{\Sigma^*}(L_2) = \emptyset$.
- $L_1 = L_2$? : $L_1 \subseteq L_2$ et $L_2 \subseteq L_1$