1. Classification motivation

Classification

2. Logistic regression

(yes) 1 threshold 0.7 malignant? (no) 0

(diameter in cm)

Want outputs between 0 and 1

logistic function

outputs between 0 and 1

$$g(z) = \frac{1}{1 + e^{-z}}$$
 $0 < g(z) < 1$

Want outputs between 0 and 1

logistic function

outputs between 0 and 1
$$g(z) = \frac{1}{1+e^{-z}} \quad 0 < g(z) < 1$$

 $f_{\overrightarrow{\mathbf{w}}, \mathbf{b}}(\overrightarrow{\mathbf{x}})$ $z = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$ g(z) =

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = g(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$$

"logistic regression"

Interpretation of logistic regression output

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$$

"probability" that class is 1

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = P(\mathbf{y} = \mathbf{1} | \overrightarrow{\mathbf{x}}; \overrightarrow{\mathbf{w}},b)$$

Probability that y is 1, given input \vec{x} , parameters \vec{w} , b

Example:

$$f_{\overline{\mathbf{w}}, \mathbf{b}}(\overline{\mathbf{x}}) = 0.7$$

70% chance that \mathbf{y} is 1

$$P(y = 0) + P(y = 1) = 1$$

3. Decision boundary

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = g(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$$

$$= P(y = 1 | x; \overrightarrow{\mathbf{w}}, b) \quad 0.7 \quad 0.3$$

$$0 \text{ or } 1? \quad \text{threshold}$$

$$\text{Is } f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) \ge 0.5?$$

$$\text{Yes: } \widehat{y} = 1 \qquad \text{No: } \widehat{y} = 0$$

$$\text{When is } f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) \ge 0.5?$$

$$g(z) \ge 0.5$$

$$z \ge 0$$

$$\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b \ge 0 \qquad \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b < 0$$

$$\widehat{y} = 1 \qquad \widehat{y} = 0$$

Decision boundary

$$f_{\vec{w},b}(\vec{x}) = g(z) = g(w_1x_1 + w_2x_2 + b)$$

Decision boundary
$$z = \vec{w} \cdot \vec{x} + b = 0$$

 $z = x_1 + x_2 - 3 = 0$
 $x_1 + x_2 = 3$
 x_2
 x_3
 x_4
 x_4
 x_5
 x_5

Non-linear decision boundaries

Non-linear decision boundaries

$$\begin{array}{c}
x_2 \\
\downarrow = 0 \\
\downarrow \downarrow = 1
\end{array}$$
ellipse

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = g(z) = g(w_1x_1 + w_2x_2 + w_3x_1^2 + w_4x_1x_2 + w_5x_2^2 + w_6x_1^3 + \dots + b)$$

Let's say you are creating a tumor detection algorithm. Your algorithm will be used to flag potential tumors for future inspection by a specialist. What value should you use for a threshold?

- High, say a threshold of 0.9?
- Low, say a threshold of 0.2?

✓ Correct

Correct: You would not want to miss a potential tumor, so you will want a low threshold. A specialist will review the output of the algorithm which reduces the possibility of a 'false positive'. The key point of this question is to note that the threshold value does not need to be 0.5.

4. Practice quiz 1

- 1. Which is an example of a classification task?
 - Based on the size of each tumor, determine if each tumor is malignant (cancerous) or not.
 - Based on a patient's blood pressure, determine how much blood pressure medication (a dosage measured in milligrams) the patient should be prescribed.
 - O Based on a patient's age and blood pressure, determine how much blood pressure medication (measured in milligrams) the patient should be prescribed.

✓ Correct

This task predicts one of two classes, malignant or not malignant.

2. Recall the sigmoid function is $g(z)=rac{1}{1+e^{-z}}$

sigmoid function

If z is a large positive number, then:

- $\bigcirc \ g(z)$ will be near 0.5
- $\bigcirc \ g(z)$ is near negative one (-1)
- $\bigcirc \ g(z)$ will be near zero (0)
- - \bigcirc Correct Say z = +100. So e^{-z} is then e^{-100} , a really small positive number. So, $g(z)=\frac{1}{1+{\rm a\ small\ positive\ number}}$ which is close to 1

3.

A cat photo classification model predicts 1 if it's a cat, and 0 if it's not a cat. For a particular photograph, the logistic regression model outputs g(z) (a number between 0 and 1). Which of these would be a reasonable criteria to decide whether to predict if it's a cat?

- O Predict it is a cat if g(z) < 0.5
- O Predict it is a cat if g(z) = 0.5
- \bigcirc Predict it is a cat if g(z) >= 0.5
- Predict it is a cat if g(z) < 0.7
- ✓ Correct

Think of g(z) as the probability that the photo is of a cat. When this number is at or above the threshold of 0.5, predict that it is a cat.

4.

True/False? No matter what features you use (including if you use polynomial features), the decision boundary learned by logistic regression will be a linear decision boundary.

- False
- True

The decision boundary can also be non-linear, as described in the lectures.

5. Cost function for logistic regression

Training set

	tumor size (cm)	 patient's age	malignant?	i = 1,, mstraining examples
	Xa	Xn	У	j=1,,n features
i=1	10	52	1	target ax is 0 or 1
:	2	73	0	target y is 0 or 1
	5	55	0	$f \rightarrow c(\vec{\mathbf{y}}) \equiv \frac{1}{1}$
	12	49	1	$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$
i=m				

How to choose $\vec{w} = [w_1 \ w_2 \ \cdots \ w_n]$ and b?

Squared error cost

$$J(\vec{\mathbf{w}}, b) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (f_{\vec{\mathbf{w}}, b}(\vec{\mathbf{x}}^{(i)}) - \mathbf{y}^{(i)})^{2}$$

$$\log L(f_{\vec{\mathbf{w}}, b}(\vec{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)})$$

linear regression

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

Logistic loss function

$$L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) = \begin{cases} -\log(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = \mathbf{1} \\ -\log(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 0 \end{cases}$$

Logistic loss function

Loss is lowest when $f_{\vec{w},b}(\vec{x}^{(i)})$ predicts close to true label $y^{(i)}$.

 $-\log(1-f)$

The further prediction $f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})$ is from target $y^{(i)}$, the higher the loss.

Cost

$$J(\vec{w},b) = \frac{1}{m} \sum_{i=1}^{m} L(f_{\vec{w},b}(\vec{x}^{(i)}), y^{(i)})$$

$$= \begin{cases} -\log(f_{\vec{w},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 1 \\ -\log(1 - f_{\vec{w},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

$$= \begin{cases} \log(1 - f_{\vec{w},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

$$= \begin{cases} -\log(1 - f_{\vec{w},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

Why is the squared error cost not used in logistic regression?

- The non-linear nature of the model results in a "wiggly", non-convex cost function with many potential local minima.
- The mean squared error is used for logistic regression.
 - ✓ Correct

If using the mean squared error for logistic regression, the cost function is "non-convex", so it's more difficult for gradient descent to find an optimal value for the parameters w and b.

6. Simplified cost function for logistic regression

Simplified loss function

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = \begin{cases} -\log(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})) & \text{if } y^{(i)} = 1\\ -\log(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = -y^{(i)}\log(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})) - (1 - y^{(i)})\log(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}))$$

$$\text{if } y^{(i)} = 1:$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = -1\log(f(\overrightarrow{x}))$$

$$\text{if } y^{(i)} = 0:$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = -1\log(f(\overrightarrow{x}))$$

Simplified cost function

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = \frac{1}{m} y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \frac{1}{m} \left(1 - y^{(i)} \right) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right)$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$

For the simplified loss function:

$$L(f_{\mathbf{w},b}(\mathbf{x}^{(i)}), y^{(i)}) = -y^{(i)}log(f_{\mathbf{w},b}(\mathbf{x}^{(i)})) - (1 - y^{(i)})log(1 - f_{\mathbf{w},b}(\mathbf{x}^{(i)}))$$

if the target $y^{(i)} = 1$, then what does this expression simplify to?

$$\bigcirc -log(1 - f_{\vec{\mathbf{w}},b}(\mathbf{x}^{(i)}))$$

$$\bigcirc$$
 $-log(f_{\vec{w},b}(\mathbf{x}^{(i)})$

✓ Correct

The second term of the expression is reduced to zero when the target equals 1.

7. Practice quiz 2

1.

$$\overbrace{J(\overrightarrow{\mathbf{w}}, b)} = \frac{1}{m} \sum_{i=1}^{m} \underbrace{L(f_{\overrightarrow{\mathbf{w}}, b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)})}_{?}$$

In this lecture series, "cost" and "loss" have distinct meanings. Which one applies to a single training example?

✓ Loss

✓ Correct

In these lectures, loss is calculated on a single training example. It is worth noting that this definition is not universal. Other lecture series may have a different definition.

☐ Cost

■ Both Loss and Cost

■ Neither Loss nor Cost

Simplified loss function

$$L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}),\mathbf{y}^{(i)}) = \begin{cases} -\log(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 1\\ -\log(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 0 \end{cases}$$

$$L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}),\mathbf{y}^{(i)}) = -\mathbf{y}^{(i)}\log(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) - (1 - \mathbf{y}^{(i)})\log(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}))$$

For the simplified loss function, if the label $y^{(i)}=0$, then what does this expression simplify to?

$$\bigcirc$$
 $-\log(1-f_{\vec{\mathbf{w}},b}(\mathbf{x}^{(i)}))$

$$\bigcirc \log(1 - f_{\vec{\mathbf{w}},b}(\mathbf{x}^{(i)})) + \log(1 - f_{\vec{\mathbf{w}},b}(\mathbf{x}^{(i)}))$$

$$\bigcirc \ -\log(1-f_{\vec{\mathbf{w}},b}(\mathbf{x}^{(i)})) - log(1-f_{\vec{\mathbf{w}},b}(\mathbf{x}^{(i)}))$$

$$\bigcirc \log(f_{\vec{w},b}(\mathbf{x}^{(i)}))$$

8. Gradient descent implementation

Training logistic regression

Find
$$\vec{w}$$
, b

Given new
$$\vec{x}$$
, output $f_{\vec{w},b}(\vec{x}) = \frac{1}{1+e^{-(\vec{w}\cdot\vec{x}+b)}}$
$$P(y=1|\vec{x};\vec{w},b)$$

Gradient descent

$$J(\overrightarrow{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$
repeat {
$$\frac{\partial}{\partial w_j} J(\overrightarrow{w},b) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w},b)$$

$$\frac{\partial}{\partial b} J(\overrightarrow{w},b) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)}$$
} simultaneous updates

Gradient descent for logistic regression

repeat {
$$w_j = w_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)}) x_j^{(i)} \right]$$

$$b = b - \alpha \left[\frac{1}{m} \sum_{i=1}^m (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)}) \right]$$
 Same 6. More

} simultaneous updates

Same concepts:

- Monitor gradient descent (learning curve)
- · Vectorized implementation
- Feature scaling

Linear regression

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

Logistic regression

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$$

9. The problem of overfitting

Regression example

underfit

 Does not fit the training set well

high bias

Fits training set pretty well

generalization

 Fits the training set extremely well

high variance

Classification

Our goal when creating a model is to be able to use the model to predict outcomes correctly for new examples. A model which does this is said to generalize well.

When a model fits the training data well but does not work well with new examples that are not in the training set, this is an example of:

- A model that generalizes well (neither high variance nor high bias)
- O Underfitting (high bias)
- Overfitting (high variance)
- O None of the above

This is when the model does not generalize well to new examples.

10. Addressing overfitting

Collect more training examples

Select features to include/exclude

Regularization

Addressing overfitting

Options

- 1. Collect more data
- 2. Select features
 - Feature selection in course 2
- 3. Reduce size of parameters
 - "Regularization" next videos

11. Cost function with regularization

Intuition

$$w_1x + w_2x^2 + w_3x^3 + w_4x^4 + b$$

make w_3 , w_4 really small (≈ 0)

$$\min_{\vec{\mathbf{w}},b} \frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}^{(i)}) - y^{(i)})^2 + 1000 \underbrace{0.001}_{0.002} + 1000 \underbrace{0.002}_{0.002}$$

Regularization

small values w_1, w_2, \dots, w_n, b

simpler model $W_3 \stackrel{>}{\sim} O$ less likely to overfit $W_4 \stackrel{>}{\sim} O$

mean squared error term Regularization $\min_{\vec{w}, b} J(\vec{w}, b) = \min_{\vec{w}, b} \left| \frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{w}, b}(\vec{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{i=1}^{n} w_i^2 \right|$ A balances both goals choose $\lambda = 10^{10}$ $f_{\overrightarrow{\mathbf{W}},b}(\overrightarrow{\mathbf{x}}) = \underbrace{\mathbf{w}_{1}x}_{1} + \underbrace{\mathbf{w}_{2}x^{2}}_{2} + \underbrace{\mathbf{w}_{3}x^{3}}_{3} + \underbrace{\mathbf{w}_{4}x^{4}}_{4} + \underbrace{\mathbf{b}}_{3}$ f(x) = pChoose X

For a model that includes the regularization parameter λ (lambda), increasing λ will tend to...

- \bigcirc Increase the size of parameter b.
- O Decrease the size of the parameter b.
- O Decrease the size of parameters $w_1, w_2, ... w_n$.
- \bigcirc Increases the size of the parameters $w_1, w_2, ... w_n$

 $Increasing the regularization\ parameter\ lambda\ reduces\ over fitting\ by\ reducing\ the\ size\ of\ the\ parameters.\ For\ some\ parameters\ that\ are\ near\ zero,\ this\ parameters\ that\ parameters\ that\$ reduces the effect of the associated features.

12. Regularized linear regression

Regularized linear regression

$$\min_{\vec{w},b} J(\vec{w},b) = \min_{\vec{w},b} \left(\frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2 \right)$$

Gradient descent

repeat {
$$w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(\overrightarrow{w}, b)$$

$$= \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w}, b}(\overrightarrow{x}^{(i)}) - y^{(i)}) x_{j}^{(i)} + \frac{\lambda}{m} w_{j}^{(i)}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w}, b)$$

$$= \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w}, b}(\overrightarrow{x}^{(i)}) - y^{(i)})$$

How we get the derivative term (optional)

$$\frac{\partial}{\partial w_{j}}J(\vec{w},b) = \frac{\partial}{\partial w_{j}} \left(\frac{1}{2^{m}}\sum_{i=1}^{m} \left(f(\vec{x}^{(i)}) - y^{(i)}\right)^{2} + \frac{\lambda}{2^{m}}\sum_{j=1}^{n} w_{j}^{2}\right)$$

$$= \frac{1}{2^{m}}\sum_{i=1}^{m} \left(\vec{w} \cdot \vec{x}^{(i)} + b - y^{(i)}\right) \chi_{j}^{(i)} + \frac{\lambda}{2^{m}} \chi_{j}^{2^{m}}$$

$$= \frac{1}{m}\sum_{i=1}^{m} \left[\left(\vec{w} \cdot \vec{x}^{(i)} + b - y^{(i)}\right) \chi_{j}^{(i)} + \frac{\lambda}{m} w_{j}\right]$$

$$= \frac{1}{m}\sum_{i=1}^{m} \left[\left(f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}\right) \chi_{j}^{(i)} + \frac{\lambda}{m} w_{j}\right]$$

Implementing gradient descent

repeat {
$$w_{j} = w_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} \left[\left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_{j}^{(i)} \right] + \frac{\lambda}{m} w_{j} \right]$$

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right)$$
} simultaneous update $j = loon$

$$w_{j} = 1 w_{j} - \alpha \frac{\lambda}{m} w_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(f_{w,b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_{j}^{(i)}$$

$$w_{j} \left(1 - \alpha \frac{\lambda}{m} \right) \quad \text{usual update}$$

$$w_{j} \left(1 - \alpha \frac{\lambda}{m} \right) \quad \text{usual update}$$

13. Regularized logistic regression

Regularized logistic regression

$$z = w_1 x_1 + w_2 x_2 + w_4 x_1^2 x_2^2 + w_5 x_1^2 x_2^3 + \cdots + b$$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \frac{1}{1 + e^{-z}}$$

$$Cost function$$

$$J(\overrightarrow{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right] + \sum_{j=1}^{m} w_j^2$$

Regularized logistic regression

$$J(\vec{w}, b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\vec{w}, b}(\vec{x}^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - f_{\vec{w}, b}(\vec{x}^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2$$

Gradient descent repeat { $= \frac{1}{m} \sum_{i=1}^{m} \left(f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)} \right) x_j^{(i)} + \frac{\lambda}{m} w_j$ $= \frac{1}{m} \sum_{i=1}^{m} \left(f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)} \right)$ $= \frac{1}{m} \sum_{i=1}^{m} \left(f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)} \right)$ $= \frac{1}{m} \sum_{i=1}^{m} \left(f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)} \right)$

14. Practice quiz

- 1. Which of the following can address overfitting?
 - Select a subset of the more relevant features.
 - ✓ Correct

If the model trains on the more relevant features, and not on the less useful features, it may generalize better to new examples.

- Collect more training data
- ✓ Correct If the model trains on more data, it may generalize better to new examples.
- Apply regularization
 - Correct Regularization is used to reduce overfitting.
- Remove a random set of training examples

2. You fit logistic regression with polynomial features to a dataset, and your model looks like this.

What would you conclude? (Pick one)

- The model has high bias (underfit). Thus, adding data is likely to help
- The model has high variance (overfit). Thus, adding data is, by itself, unlikely to help much.
- The model has high variance (overfit). Thus, adding data is likely to help
- The model has high bias (underfit). Thus, adding data is, by itself, unlikely to help much.
 - Correct

The model has high variance (it overfits the training data). Adding data (more training examples) can help.

Regularization

Regularization

mean squared error

min
$$J(\vec{w}, b) = \min_{\vec{w}, b} \frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{w}, b}(\vec{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2$$

Suppose you have a regularized linear regression model. If you increase the regularization parameter λ , what do you expect to happen to the parameters $w_1, w_2, ..., w_n$?

- \bigcirc This will increase the size of the parameters $w_1, w_2, ..., w_n$
- igotimes This will reduce the size of the parameters $w_1, w_2, ..., w_n$
 - Correct

Regularization reduces overfitting by reducing the size of the parameters $w_1, w_2, ... w_n$.