

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01	
IČO:	47813121	
Projekt:	OP VK 1.5	
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost	
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20 vzdělávacích materiálů)	
Název sady vzdělávacích materiálů:	STT II	
Popis sady vzdělávacích materiálů:	Strojírenská technologie II, 2. ročník	
Sada číslo:	F—18	
Pořadové číslo vzdělávacího materiálu:	14	
Označení vzdělávacího materiálu: (pro záznam v třídní knize)	VY_32_INOVACE_F-18-14	
Název vzdělávacího materiálu:	Pájení	
Zhotoveno ve školním roce:	2011/2012	
Jméno zhotovitele:	Ing. Palát Hynek	

Pájení

Je nerozebíratelné metalurgické spojení kovových součástí roztavenou pájkou, přičemž pájené plochy nejsou nataveny, ale **smáčeny** roztavenou pájkou, která má nižší teplotu tavení, než základní materiál. Ke spojení dojde vlivem **difuze** a **rozpustnosti** pájky v základním materiálu.

Pájky

Jako pájky se používají většinou slitiny neželezných kovů.

Dodávají se ve formě bloků, fólií, tyčí, drátů, tvarovaných tělísek, prášku, nebo pasty. Velmi důležitou vlastností pájky je **smáčivost**.

Struktura spoje po pájení - vytvoření slitin pájka - kov

struktura spoje (výbrus)

Druhy pájení

Pájení	Teplota tavení pájky	Pevnost spoje	Pájka	Tavidlo
Měkké S tavidlem	Do 500°C	20 – 80 MPa	Cínové Cínovoolověná Bezolovnaté BIOpájky	Kalafuna- organické tavidlo
Tvrdé S tavidlem ve vakuu nebo v ochranné atmosféře	Nad 500°C	až 500 MPa	Cu, Al, Ag, Au	Borax, kyselina boritá
Vysokoteplotní Ve vakuu nebo ochranné atmosféře	Nad 900°C			

Tavidlo

- Tavidlo odstraňuje z pájených ploch nečistoty, zabraňuje oxidaci, zvyšuje **smáčivost** základního materiálu pájkou a chrání pájku před vypařováním.
- Teplota tavení tavidla je nižší, než teplota tavení pájky.
- Dodává se ve formě pájecí vody nebo pasty, zbytky pájky se odstraňují.

Pájení	Tavidlo
Měkké	 Kapalina s obsahem kyseliny solné nebo fosforečné (pro nerez oceli). Pryskyřice (kalafuna) – rozrušuje tenké vrstvy oxidů. Tavidlo může být součástí "trubičkové" pájky.
Tvrdé	 Pasta, kapalina, prášek(někdy obal na tyčince, drátu pájky). Pro tzv. kapilární pájení ve vakuu nebo redukční atmosféře (vodíku) nejsou zapotřebí tavidla. Borax, kyselina boritá, směs boraxu a kyseliny borité.

Techniky pájení

Ohřev	Charakteristika
Plamenem	Plynový hořák, autogen.
Elektricky	Odporový, indukční ohřev.
V peci	V ochranné atmosféře, pájka = fólie.
Pájení roztavenou pájkou	Ponořením, přelitím nebo vlnou.
Ultrazvukem	Pájení hliníku Sn-Pb pájka se roztírá hrotem vibrátoru.
Laserem	Lokální ohřev pájených míst.

Nánosové (reakční) – roztavená pájka je nanášena na spojované plochy.

Kapilární – součásti jsou vhodně zajištěny proti vzájemnému posunutí a do mezery je vložená pájka (např. ve formě zrn), po vložení do pece se pájka roztaví a dojde ke spojení.

Pájení plamenem

Správné parametry pájení

Spáry pro pájku nesmí být velké

Transformátorová páječka

- Elektrické páječky jsou osazeny vyměnitelným pájecím hrotem z vodivého kovu (Cu), pokrytý odolnější vrstvou niklu.
- Hrot je ohříván topným tělískem

 nejčastěji elektricky, přímým
 průchodem elektrického proudu
 u tzv. transformátorové páječky,
 nebo nepřímo elektrickým
 topným tělesem.

Pájení plošných spojů

- Vlnou tekuté pájky desky plošných spojů projíždějí vlnou tekuté pájky.
- Pájení přetavením na DPS se přes šablonu z bronzové folie nanesou tečky pastovité lepivé pájky. Při průjezdu desky přetavovací pecí se pájka roztaví a vytvoří pájený spoj.

Pájení plamenem

- Plamen ohřívá pájené předměty a pájku proudem horkého plynu nebo plamenem.
- Pro měkké pájení plamen zemního plynu se vzduchem.
- Pro tvrdé pájení plamenem kyslíko– acetylenovým nebo kyslíko–vodíkovým.

Pájení v peci

- Používá se pro větší pájené plochy.
- Pájka se dodává jako fólie.
- Součásti musíme pevně spojit, zajistit.
- V peci v ochranné atmosféře se pájka roztaví a difunduje, zateče do materiálu.
- V ochlazovací části pájka zchladne.

Pájení MIG, WIG a plazmou

K ohřevu můžeme použít i netradiční způsoby používané u svařování. Používáme je u tvrdého pájení s měděnou pájkou.

Úkoly:

- Jaké vlastnosti musí mít pájka?
- Vyjmenujte techniky pájení.
- Vysvětlete rozdíl mezi měkkým a tvrdým pájením.
- Jakou funkci má tavidlo u pájení?

Seznam použité literatury

- Hluchý, M., Kolouch, J., Paňák, R. Strojírenská technologie 2 1.díl, 2. vyd. Praha:
 Scientia, 2001. ISBN 80-7183-244-8.
- Dillinger, J. a kol. Moderní strojírenství pro školu a praxi, Praha: Europa –
 Sobotáles, 2007. ISBN 978-80-86706-19-1.
- http://de.wikipedia.org/w/index.php?title=Datei:Weichlot.jpg&filetimestamp=20
 110710012055
- http://upload.wikimedia.org/wikipedia/de/6/6a/Schematische_Darstellung_Plas
 ma-L%C3%B6ten.jpg
- http://de.wikipedia.org/w/index.php?title=Datei:Schematische_Darstellung_WIG
 -L%C3%B6ten.jpg&filetimestamp=20070130105214
- http://de.wikipedia.org/w/index.php?title=Datei:Schematische_Darstellung_MS
 G-L%C3%B6ten.jpg&filetimestamp=20070130104508