```
Stats*3510 – Assignment 3
Graham Eckel - 0679576
03
library(fitdistrplus)
library(ggplot2)
library(reshape2)
dir = "E:\\Google Drive\\...\\Assignment 3\\"
file1 = "ONCHLOR.csv"
file2 = "Table3.csv"
dfChlor = read.table(file=paste(dir,file1, sep=""), header=TRUE, sep=',')
dfTable3 = read.table(file=paste(dir,file2, sep=""), header=TRUE, sep=',')
dfTable3 = dfTable3[order(dfTable3$Concentration..mg.Cl..L..), ]
dfTable3$frac = ppoints(dfTable3$Concentration..mg.Cl..L.., 0.5)
fit2 = fitdist(dfTable3$Concentration..mg.Cl..L.., 'lnorm')
summary(fit2)
Summary of fitted model
Fitting of the distribution ' lnorm ' by maximum likelihood
Parameters :
         estimate Std. Error
meanlog 8.3974131 0.1527407
sdlog 0.6109629 0.1080027
Loglikelihood: -149.1781 AIC: 302.3562 BIC: 303.9014
Correlation matrix:
              meanlog
                              sdlog
meanlog 1.000000e+00 -5.860702e-11
sdlog -5.860702e-11 1.000000e+00
hc5 2 = quantile(fit2, probs = 0.05)
hc5_2
HC5
Estimated quantiles for each specified probability (non-censored data)
            p=0.05
estimate 1623.709
fit2_bootp = bootdist(fit2, bootmethod = 'param', niter = 1000)
quantile(fit2 bootp, probs = 0.05)
95% parametric bootstrapped CI
two-sided 95 % CI of each quantile
           p=0.05
2.5 % 1047.845
97.5 % 2682.789
```

- The estimated 95% parametric bootstrapped CI for is (1047.845, 2682.789)
- The estimated HC5 is 163.709
- The short term HC5 identified in the article was 640 mg CI'/L across all species and the long term was 120 mg CI/L. Using the short term number, the Northern riffleshell mussel and then Water flea fell below the HC5.


```
b)
dfChlor$frac = ppoints(dfChlor$Conc,0.5)
fit3 = fitdist(dfChlor$Conc,'lnorm')
summary(fit3)
```

Summary of fitted model

```
Fitting of the distribution ' lnorm ' by maximum likelihood
Parameters
        estimate Std. Error
meanlog 3.308611 0.013431798
sdlog
        1.148085 0.009497683
Loglikelihood: -35548.4
                            AIC: 71100.8
                                             BIC: 71114.59
Correlation matrix:
        meanlog sdlog
meanlog
               1
                     0
sdlog
               0
fit3_bootp = bootdist(fit3, bootmethod = 'param', niter = 1000)
```

95% parametric bootstrapped CI

quantile(fit3_bootp, probs = 0.95)

```
two-sided 95 % CI of each quantile
p=0.95
2.5 % 173.4731
97.5 % 188.5119
```

• The estimated 95% parametric bootstrapped CI for is (173.4731, 188.5119)


```
c)
ggplot(data = dfTable3) +
geom_point(aes(x = Concentration..mg.Cl..L.., y = frac), size = 3) +
geom_point(data = dfChlor, aes(x = Conc, y = frac), size = 2) +
geom_point(aes(x=hc5_2$quantiles[1], y = 0.05), size = 5, col = "red") +
geom_point(aes(x=hc95_3$quantiles[1,1], y = 0.95), size = 5, col = "blue") +
geom_text(aes(x = Concentration..mg.Cl..L.., y = frac, label = Species), hjust = 1.1, size = 2) +
theme_bw() +
scale_x_log10(limits = c(0.0075, 100000)) +
labs(x = expression(paste('Concentration of Chloride [ mg CI/L ]')), y = 'Fraction of vertebrates affected')
```


This plot contains both the species sensitivity data for the vertebrates and environmental exposure data where the x-axis is on the log10 scale and the y-axis the species affected. The red dot is the HC5 and the blue dot is the 95th percentile. We can see that the number of species affected by the 95th percentile to be 0%. That is, approximately 95% of the time no species will be affected.