8. Morley rank

Let \overline{M} be an \mathscr{L} -structure and $\varphi(\overline{v})$ a formula of \mathscr{L}_M . We define $RM(\overline{M}, \varphi, \alpha) \in \{0, 1\}$ for every ordinal α by recursion on α .

- $RM(\overline{M}, \varphi, 0) = 1$ iff $\varphi(\overline{M})$ is nonempty.
- For α limit, $RM(\overline{M}, \varphi, \alpha) = 1$ iff $RM(\overline{M}, \varphi, \beta) = 1$ for all $\beta < \alpha$.
- RM($\overline{M}, \varphi, \alpha+1$) = 1 iff there exist formulas $\psi_0(\overline{v}), \psi_1(\overline{v}), \ldots$ such that $\psi_0(\overline{M}), \psi_1(\overline{M}), \ldots$ are pairwise disjoint subsets of $\varphi(\overline{M})$ and RM($\overline{M}, \psi_i, \alpha$) = 1 for every $i \in \omega$.

Proposition 8.1. If $\overline{M} \models \varphi \rightarrow \psi$ and $RM(\overline{M}, \varphi, \alpha) = 1$, then $RM(\overline{M}, \psi, \alpha) = 1$.

Proof. Induction on
$$\alpha$$
.

Proposition 8.2. If $RM(\overline{M}, \varphi, \alpha) = 0$, then $RM(\overline{M}, \varphi, \beta) = 0$ for all $\beta \geq \alpha$.

Proof. Induction on
$$\beta$$
.

Now we define the *Morley rank* $\mathrm{RM}^{\overline{M}}(\varphi)$ of φ in \overline{M} as follows. If $\varphi(\overline{M}) = \emptyset$, then $\mathrm{RM}^{\overline{M}}(\varphi) = -1$. If α is minimum such that $\mathrm{RM}(\overline{M}, \varphi, \alpha) = 1$ and $\mathrm{RM}(\overline{M}, \varphi, \alpha + 1) = 0$, then $\mathrm{RM}^{\overline{M}}(\varphi) = \alpha$. If $\mathrm{RM}(\overline{M}, \varphi, \alpha) = 1$ for all α , then $\mathrm{RM}^{\overline{M}}(\varphi) = \infty$.

We will also define the Morley rank of structures below.

Proposition 8.3. $RM(\overline{M}, \varphi, \alpha) = 1$ iff $RM^{\overline{M}}(\varphi) \ge \alpha$.

Proof. Suppose that $RM^{\overline{M}}(\varphi) = \beta < \alpha$. Then $RM(\overline{M}, \varphi, \beta + 1) = 0$, and so by Proposition 8.2, $RM(\overline{M}, \varphi, \alpha) = 0$.

Suppose that $RM^{\overline{M}}(\varphi) = \beta \geq \alpha$. Then $RM(\overline{M}, \varphi, \beta) = 1$, and so by Proposition 8.2, also $RM(\overline{M}, \varphi, \alpha) = 1$.

By Proposition 8.3, the definition of Morley rank can be reformulated as follows.

- $RM^{\overline{M}}(\varphi) = -1 \text{ if } \varphi(\overline{M}) = \emptyset.$
- $\operatorname{RM}^{\overline{M}}(\varphi) \ge 0 \text{ if } \varphi(\overline{M}) \ne \emptyset.$
- For α limit, $RM^{\overline{M}}(\varphi) \ge \alpha$ iff $RM^{\overline{M}}(\varphi) \ge \beta$ for every $\beta < \alpha$.
- $\operatorname{RM}^{\overline{M}}(\varphi) \geq \alpha + 1$ iff there exist formulas $\psi_0(\overline{v}), \psi_1(\overline{v}), \ldots$ such that $\psi_0(\overline{M}), \psi_1(\overline{M}), \ldots$ are pairwise disjoint subsets of $\varphi(\overline{M})$ and $\operatorname{RM}^{\overline{M}}(\psi_i) \geq \alpha$ for every $i \in \omega$.

Proposition 8.4. Suppose that \overline{M} is ω -saturated, $\varphi(\overline{v}, \overline{w})$ is a formula, $\overline{a}, \overline{b} \in M$, and $\operatorname{tp}^{\overline{M}}(\overline{a}) = \operatorname{tp}^{\overline{M}}(\overline{b})$. Then $\operatorname{RM}^{\overline{M}}(\varphi(\overline{v}, \overline{a})) = \operatorname{RM}^{\overline{M}}(\varphi(\overline{v}, \overline{b}))$.

Proof. We prove by induction on α that if $\varphi(\overline{v}, \overline{w})$ is any formula, $\overline{a}, \overline{b} \in M$, and $\operatorname{tp}^{\overline{M}}(\overline{a}) = \operatorname{tp}^{\overline{M}}(\overline{b})$, then $\operatorname{RM}^{\overline{M}}(\varphi(\overline{v}, \overline{a})) \geq \alpha$ iff $\operatorname{RM}^{\overline{M}}(\varphi(\overline{v}, \overline{b})) \geq \alpha$. To begin with,

$$\mathrm{RM}^{\overline{M}}(\varphi(\overline{v},\overline{a})) \geq 0 \quad \text{iff} \quad \varphi(\overline{M},\overline{a}) \neq \emptyset$$
 iff there is a \overline{c} such that $\overline{M} \models \varphi[\overline{c},\overline{a}]$

iff
$$\exists \overline{v}\varphi(\overline{v}, \overline{w}) \in \operatorname{tp}^{\overline{M}}(\overline{a})$$

iff $\exists \overline{v}\varphi(\overline{v}, \overline{w}) \in \operatorname{tp}^{\overline{M}}(\overline{b})$
iff $\varphi(\overline{M}, \overline{b}) \neq \emptyset$
iff $\operatorname{RM}^{\overline{M}}(\varphi(\overline{v}, \overline{b})) \geq 0.$

If α is limit and we know the result for all $\beta < \alpha$, then

$$\operatorname{RM}^{\overline{M}}(\varphi(\overline{v}, \overline{a})) \geq \alpha \quad \text{iff} \quad \text{for all } \beta < \alpha, \operatorname{RM}^{\overline{M}}(\varphi(\overline{v}, \overline{a})) \geq \beta$$
$$\quad \text{iff} \quad \text{for all } \beta < \alpha, \operatorname{RM}^{\overline{M}}(\varphi(\overline{v}, \overline{b})) \geq \beta$$
$$\quad \text{iff} \quad \operatorname{RM}^{\overline{M}}(\varphi(\overline{v}, \overline{b})) \geq \alpha.$$

Now suppose that the equivalence is true for α , and $\mathrm{RM}^{\overline{M}}(\varphi(\overline{v},\overline{a})) \geq \alpha + 1$; we prove that $\mathrm{RM}^{\overline{M}}(\varphi(\overline{v},\overline{b})) \geq \alpha + 1$. By symmetry this is all that is required. Now there are \mathscr{L}_M -formulas ψ_0, ψ_1, \ldots such that $\langle \psi_i(\overline{M}) : i < \omega \rangle$ is a system of pairwise disjoint subsets of $\varphi(\overline{M},\overline{a})$ and $\mathrm{RM}(\psi_i) \geq \alpha$ for all $i < \omega$. For each $i < \omega$ there is a sequence \overline{c}_i of elements of M such that ψ_i is $\psi_i(\overline{v},\overline{c}_i)$. We now define $\overline{d}_0,\overline{d}_1,\ldots$ Suppose that $\overline{d}_0,\ldots,\overline{d}_m$ have been defined so that

(*)
$$\operatorname{tp}^{\overline{M}}(\overline{a}, \overline{c}_0, \dots, \overline{c}_m) = \operatorname{tp}^{\overline{M}}(\overline{b}, \overline{d}_0, \dots, \overline{d}_m).$$

Let

$$\Delta = \{ \chi(\overline{b}, \overline{d}_0, \dots, \overline{d}_m, \overline{w}) : \overline{M} \models \chi(\overline{a}, \overline{c}_0, \dots, \overline{c}_{m+1}) \}.$$

Suppose that Δ' is a finite subset of Δ . Then

$$\overline{M} \models \bigwedge \{ \chi(\overline{a}, \overline{c}_0, \dots, \overline{c}_{m+1}) : \chi(\overline{b}, \overline{d}_0, \dots, \overline{d}_m, \overline{w}) \in \Delta' \},$$

SO

$$\overline{M} \models \exists \overline{w} \bigwedge \{ \chi(\overline{a}, \overline{c}_0, \dots, \overline{c}_m, \overline{w}) : \chi(\overline{b}, \overline{d}_0, \dots, \overline{d}_m, \overline{w}) \in \Delta' \}.$$

It follows that the formula

$$\exists \overline{w} \bigwedge \{ \chi(\overline{v}, \overline{u}_0, \dots, \overline{u}_m, \overline{w}) : \chi(\overline{b}, \overline{d}_0, \dots, \overline{d}_m, \overline{w}) \in \Delta' \}$$

is in $\operatorname{tp}^{\overline{M}}(\overline{a}, \overline{c}_0, \dots, \overline{c}_m)$, and hence by (*) it is in $\operatorname{tp}^{\overline{M}}(\overline{b}, \overline{d}_0, \dots, \overline{d}_m)$. Thus $\overline{M} \models \exists \overline{w} \wedge \Delta'$. Now since \overline{M} is ω -saturated, there is a \overline{d}_{m+1} in M such that $\overline{M} \models \chi(\overline{b}, \overline{d}_0, \dots, \overline{d}_{m+1})$ for each formula $\chi(\overline{b}, \overline{d}_0, \dots, \overline{d}_m, \overline{w})$ in Δ . It follows that

$$\operatorname{tp}^{\overline{M}}(\overline{a}, \overline{c}_0, \dots, \overline{c}_{m+1}) = \operatorname{tp}^{\overline{M}}(\overline{b}, \overline{d}_0, \dots, \overline{d}_{m+1}).$$

This finishes the definition of $\overline{d}_0, \overline{d}_1, \ldots$ So we have

$$\operatorname{tp}^{\overline{M}}(\overline{a},\overline{c}_0,\overline{c}_1,\ldots) = \operatorname{tp}^{\overline{M}}(\overline{b},\overline{d}_0,\overline{d}_1,\ldots).$$

Now for $i \neq j$ we have $\psi_i(\overline{M}, \overline{c}_i) \cap \psi_i(\overline{M}, \overline{c}_j) = \emptyset$. Hence

$$\neg \exists \overline{v} [\psi_i(\overline{v}, \overline{w}_i) \land \psi_j(\overline{v}, \overline{w}_j)] \in \operatorname{tp}^{\overline{M}}(\overline{a}, \overline{c}_0, \overline{c}_1, \ldots),$$

and hence

$$\neg \exists \overline{v} [\psi_i(\overline{v}, \overline{w}_i) \land \psi_j(\overline{v}, \overline{w}_j)] \in \operatorname{tp}^{\overline{M}}(\overline{b}, \overline{d}_0, \overline{d}_1, \ldots),$$

which means that $\psi_i(\overline{M}, \overline{d}_i) \cap \psi_j(\overline{M}, \overline{d}_j) = \emptyset$. Also, $\psi_i(\overline{M}, \overline{c}_i) \subseteq \varphi(\overline{M}, \overline{a})$, so

$$\forall \overline{v}[\psi_i(\overline{v},\overline{w}) \to \varphi(\overline{M},\overline{x})] \in \operatorname{tp}^{\overline{M}}(\overline{a},\overline{c}_0,\overline{c}_1,\ldots),$$

and so

$$\forall \overline{v}[\psi_i(\overline{v}, \overline{w}) \to \varphi(\overline{M}, \overline{x})] \in \operatorname{tp}^{\overline{M}}(\overline{b}, \overline{d}_0, \overline{d}_1, \ldots),$$

from which it follows that $\psi_i(\overline{M}, \overline{d}_i) \subseteq \varphi(\overline{M}, \overline{b})$. From (**) the inductive hypothesis gives $RM(\psi_i(\overline{v}, \overline{d}_i)) \ge \alpha$. So $RM^{\overline{M}}(\varphi(\overline{v}, \overline{b})) \ge \alpha + 1$.

Proposition 8.5. Suppose that \overline{M} and \overline{N} are ω -saturated models of T and $\overline{M} \preceq \overline{N}$. Then $RM^{\overline{M}}(\varphi) = RM^{\overline{N}}(\varphi)$ for any \mathscr{L}_M -formula φ .

Proof. We prove by induction on α that $RM^{\overline{M}}(\varphi) \geq \alpha$ iff $RM^{\overline{N}}(\varphi) \geq \alpha$. For $\alpha = 0$,

$$\operatorname{RM}^{\overline{M}}(\varphi) \geq 0 \quad \text{iff} \quad \varphi(\overline{M}) \neq \emptyset$$

$$\operatorname{iff} \quad \overline{M} \models \exists \overline{v} \varphi(\overline{v})$$

$$\operatorname{iff} \quad \overline{N} \models \exists \overline{v} \varphi(\overline{v})$$

$$\operatorname{iff} \quad \varphi(\overline{N}) \neq \emptyset$$

$$\operatorname{iff} \quad \operatorname{RM}^{\overline{N}}(\varphi) \geq 0.$$

For α limit, assuming the equivalence for all $\beta < \alpha$,

$$\begin{split} \mathrm{RM}^{\overline{M}}(\varphi) \geq \alpha \quad \mathrm{iff} \quad & \text{for all } \beta < \alpha [\mathrm{RM}^{\overline{M}}(\varphi) \geq \beta] \\ & \quad \mathrm{iff} \quad & \text{for all } \beta < \alpha [\mathrm{RM}^{\overline{N}}(\varphi) \geq \beta] \\ & \quad \mathrm{iff} \quad & \mathrm{RM}^{\overline{N}}(\varphi) \geq \alpha. \end{split}$$

Now assume the equivalence for α . Suppose that $\mathrm{RM}^{\overline{M}}(\varphi) \geq \alpha+1$. Then there are formulas $\psi_0(\overline{v}), \psi_1(\overline{v}), \ldots$ of \mathscr{L}_M such that $\psi_0(\overline{M}), \psi_1(\overline{M}), \ldots$ are pairwise disjoint subsets of $\varphi(\overline{M})$ and $\mathrm{RM}^{\overline{M}}(\psi_i) \geq \alpha$ for all i < m. By the inductive hypothesis, $\mathrm{RM}^{\overline{N}}(\psi_i) \geq \alpha$ for all i < m. For distinct $i, j < \omega$ we have $\overline{M} \models \neg \exists \overline{v}(\psi_i(\overline{v}) \land \psi_j(\overline{v}))$, and hence $\overline{N} \models \neg \exists \overline{v}(\psi_i(\overline{v}) \land \psi_j(\overline{v}))$. So $\psi_0(\overline{N}), \psi_1(\overline{N}), \ldots$ are pairwise disjoint. Also, $\overline{M} \models \forall \overline{v}[\psi_i(\overline{v}) \to \varphi(\overline{v})]$ for each $i < \omega$, so $\overline{N} \models \forall \overline{v}[\psi_i(\overline{v}) \to \varphi(\overline{v})]$. Hence each $\psi_i(\overline{N})$ is a subset of $\varphi(\overline{N})$. It follows that $\mathrm{RM}^{\overline{N}}(\varphi) \geq \alpha + 1$.

Suppose now that $RM^{\overline{N}}(\varphi) \geq \alpha + 1$. Then there are formulas $\psi_0(\overline{v}), \psi_1(\overline{v}), \ldots$ of \mathscr{L}_N such that $\psi_0(\overline{N}), \psi_1(\overline{N}), \ldots$ are pairwise disjoint subsets of $\varphi(\overline{N})$ and $RM^{\overline{N}}(\psi_i) \geq \alpha$ for

all i < m. Write $\varphi(\overline{v}) = \varphi(\overline{v}, \overline{a})$ with $\overline{a} \in M$ and $\psi_i(\overline{v}) = \psi_i(\overline{v}, \overline{b}_i)$ with $\overline{b}_i \in N$. We now define \overline{c}_i in M for $i < \omega$ so that

(*)
$$\operatorname{tp}^{\overline{M}}(\overline{a}, \overline{c}_0, \dots, \overline{c}_{m-1}) = \operatorname{tp}^{\overline{N}}(\overline{a}, \overline{b}_0, \dots, \overline{b}_{m-1})$$

for every $m \in \omega$. Note that (*) holds for m = 0 since $\overline{M} \leq \overline{N}$. Suppose now that (*) holds for m. Let

$$\Delta = \{ \chi(\overline{a}, \overline{c}_0, \dots, \overline{c}_{m-1}, \overline{w}) : \overline{N} \models \chi(\overline{a}, \overline{b}_0, \dots, \overline{b}_m) \}.$$

Suppose that Δ' is a finite subset of Δ . Then

$$\overline{N} \models \bigwedge \{ \chi(\overline{a}, \overline{b}_0, \dots, \overline{b}_m) : \chi(\overline{a}, \overline{c}_0, \dots, \overline{c}_{m-1}, \overline{w}) \in \Delta' \},$$

SO

$$\overline{N} \models \exists \overline{w} \bigwedge \{ \chi(\overline{a}, \overline{b}_0, \dots, \overline{b}_{m-1}, \overline{w}) : \chi(\overline{a}, \overline{c}_0, \dots, \overline{c}_{m-1}, \overline{w}) \in \Delta' \}.$$

Hence by (*) for m we get

$$\overline{M} \models \exists \overline{w} \bigwedge \{ \chi(\overline{a}, \overline{c}_0, \dots, \overline{c}_{m-1}, \overline{w}) : \chi(\overline{a}, \overline{c}_0, \dots, \overline{c}_{m-1}, \overline{w}) \in \Delta' \}.$$

Since \overline{M} is ω -saturated, there is a \overline{c}_m in M such that $\overline{M} \models \chi(\overline{a}, \overline{c}_0, \dots, \overline{c}_{m-1}, \overline{c}_m)$ for each formula $\chi(\overline{a}, \overline{c}_0, \dots, \overline{c}_{m-1}, \overline{w})$ in Δ . It follows that (*) holds for m+1.

Now suppose that $i, j \in \omega$ with $i \neq j$. Then $\overline{N} \models \neg \exists \overline{v} [\psi_i(\overline{v}, \overline{b_i}) \land \psi_j(\overline{v}, \overline{b_j}), \text{ so that } \neg \exists \overline{v} [\psi_i(\overline{v}, \overline{w_i}) \land \psi_j(\overline{v}, \overline{w_j}) \in \operatorname{tp}^{\overline{N}}(\overline{a}, \overline{b_0}, \ldots).$ Hence by $(*), \neg \exists \overline{v} [\psi_i(\overline{v}, \overline{w_i}) \land \psi_j(\overline{v}, \overline{w_j}) \in \operatorname{tp}^{\overline{M}}(\overline{a}, \overline{c_0}, \ldots).$ Hence $\psi_i(\overline{M}, \overline{c_i}) \cap \psi_i(\overline{M}, \overline{c_j}) = \emptyset$. Also, $\overline{N} \models \forall \overline{v} [\psi_i(\overline{v}, \overline{b_i}) \to \varphi(\overline{v}, \overline{a})],$ so $\forall \overline{v} [\psi_i(\overline{v}, \overline{w_i}) \to \varphi(\overline{v}, \overline{a})] \in \operatorname{tp}^{\overline{N}}(\overline{a}, \overline{b_0}, \ldots).$ Hence by $(*), \forall \overline{v} [\psi_i(\overline{v}, \overline{w_i}) \to \varphi(\overline{v}, \overline{a})] \in \operatorname{tp}^{\overline{M}}(\overline{a}, \overline{c_0}, \ldots).$ Hence $\psi_i(\overline{M}, \overline{c_i}) \subseteq \varphi(\overline{M}, \overline{a}).$ Now since $\overline{M} \preceq \overline{N}$, we have

$$\operatorname{tp}^{\overline{M}}(\overline{a},\overline{c}_0,\ldots,\overline{c}_m) = \operatorname{tp}^{\overline{N}}(\overline{a},\overline{c}_0,\ldots,\overline{c}_m)$$

for each $m \in \omega$, and hence by (*), also $\operatorname{tp}^{\overline{N}}(\overline{a}, \overline{c}_0, \dots, \overline{c}_m) = \operatorname{tp}^{\overline{N}}(\overline{a}, \overline{b}_0, \dots, \overline{b}_m)$ for each $m \in \omega$. Hence by Proposition 8.4 we get $\operatorname{RM}^{\overline{N}}(\psi_i(\overline{v}, \overline{c}_i) \geq \alpha$, and so by the inductive hypothesis $\operatorname{RM}^{\overline{N}}(\psi_i(\overline{v}, \overline{c}_i) > \alpha)$ for each $i < \omega$. It follows that $\operatorname{RM}^{\overline{M}}(\varphi) > \alpha + 1$.

Proposition 8.6. (amalgamation) Suppose that \overline{M} , \overline{N}_0 , and \overline{N}_1 are structures, and $f: M \to N_0$ and $g: M \to N_1$ are elementary embeddings. Then there exist a structure \overline{P} and elementary embeddings $h: \overline{N}_0 \to \overline{P}$ and $k: \overline{N}_1 \to \overline{P}$ such that $h \circ f = k \circ g$; so the following diagram commutes:

Proof. Our first goal is to obtain isomorphic copies \overline{N}'_0 and \overline{N}'_1 of \overline{N}_0 and \overline{N}_1 such that $\overline{M} \leq \overline{N}'_0$, $\overline{M} \leq \overline{N}'_1$, and $N'_0 \cap N'_1 = M$.

Let Q_0 and Q_1 be sets such that $Q_0 \cap M = \emptyset = Q_1 \cap M = Q_0 \cap Q_1$, $|Q_0| = |N_0 \setminus f[M]|$, and $|Q_1| = |N_1 \setminus g[M]|$. Let $f': N_0 \setminus f[M] \to Q_0$ and $g': N_1 \setminus g[M] \to Q_1$ be bijections. Let $N_0' = M \cup Q_0$ and $N_1' = M \cup Q_1$. Note that $N_0' \cap N_1' = M$. Define $f'': N_0 \to N_0'$ by setting, for any $a \in N_0$,

$$f''(a) = \begin{cases} f^{-1}(a) & \text{if } a \in f[M], \\ f'(a) & \text{if } a \in N_0 \backslash f[M], \end{cases}$$

and define $g'': N_1 \to N_1'$ by setting, for any $a \in N_1$,

$$g''(a) = \begin{cases} g^{-1}(a) & \text{if } a \in g[M], \\ g'(a) & \text{if } a \in N_1 \backslash g[M]. \end{cases}$$

Clearly f'' and g'' are bijections.

We now define structures on N'_0 and N'_1 . If R is an m-ary relation symbol, then

$$R^{\overline{N}'_0} = \{ a \in {}^{m}N'_0 : (f'')^{-1} \circ a \in R^{\overline{N}_0} \};$$

$$R^{\overline{N}'_1} = \{ a \in {}^{m}N'_1 : (g'')^{-1} \circ a \in R^{\overline{N}_1} \}.$$

If F is an m-ary function symbol, then

$$F^{\overline{N}'_0}(a) = f''(F^{\overline{N}_0}((f'')^{-1} \circ a)) \quad \text{for any } a \in {}^m N'_0;$$

$$F^{\overline{N}'_1}(a) = g''(F^{\overline{N}_1}((g'')^{-1} \circ a)) \quad \text{for any } a \in {}^m N'_1.$$

Then it is easy to check that f'' is an isomorphism from \overline{N}_0 onto \overline{N}'_0 and g'' is an isomorphism from \overline{N}_1 onto \overline{N}'_1 . Now take any formula φ and any $a \in {}^{\omega}M$. Then

$$\overline{M} \models \varphi[a] \quad \text{iff} \quad \overline{N}_0 \models \varphi[f \circ a]$$

$$\text{iff} \quad \overline{N}_0' \models \varphi[f'' \circ f \circ a]$$

$$\text{iff} \quad \overline{N}_0' \models \varphi[f^{-1} \circ f \circ a]$$

$$\text{iff} \quad \overline{N}_0' \models \varphi[a].$$

Thus $\overline{M} \preceq \overline{N}'_0$. Similarly $\overline{M} \preceq \overline{N}'_1$.

Now we claim that $\operatorname{Eldiag}(\overline{N}_0') \cup \operatorname{Eldiag}(\overline{N}_1')$ has a model. If not, by the compactness theorem some finite subset fails to have a model. Say Δ_0 is a finite subset of $\operatorname{Eldiag}(\overline{N}_0')$, Δ_1 is a finite subset of $\operatorname{Eldiag}(\overline{N}_1')$, and $\Delta_0 \cup \Delta_1$ does not have a model. Then $\bigwedge \Delta_1$ has the form $\psi(c_{a(0)}, \ldots, c_{a(m-1)}, c_{b(0)}, \ldots, c_{b(n-1)})$ with each $a(i) \in M$ and each $d(i) \in N_1' \setminus M$. Thus

$$\Delta_0 \models \neg \psi(c_{a(0)}, \dots, c_{a(m-1)}, c_{b(0)}, \dots, c_{b(n-1)}).$$

Replacing $c_{b(i)}$ by a variable w_i , we get

$$\Delta_0 \models \forall \overline{u} \neg \psi(c_{a(0)}, \dots, c_{a(m-1)}, \overline{u}).$$

Now $(\overline{N}'_0)_{N'_0}$ is a model of Δ_0 , hence $\overline{N}'_0 \models \forall \overline{u} \neg \psi(a(0), \dots, a(m-1), \overline{u})$, hence $\overline{M} \models \forall \overline{u} \neg \psi(a(0), \dots, a(m-1), \overline{u})$, hence $\overline{N}'_1 \models \forall \overline{u} \neg \psi(a(0), \dots, a(m-1), \overline{u})$. But this is impossible. Hence we have shown that $\operatorname{Eldiag}(\overline{N}'_0) \cup \operatorname{Eldiag}(\overline{N}'_1)$ has a model. Such a model has the form $(\overline{P}, h(s), k(t))_{s \in N'_0, t \in N'_1}$, where h(a) = k(a) for all $a \in M$. By the elementary diagram lemma 6.15, h is an elementary embedding of \overline{N}'_0 into \overline{P} , and k is an elementary embedding of \overline{N}'_1 into \overline{P} .

Hence $h \circ f''$ is an elementary embedding of \overline{N}_0 into \overline{P} , $k \circ g''$ is an elementary embedding of \overline{N}_1 into \overline{P} , and for any $a \in M$,

$$h(f''(f(a)) = h(f^{-1}(f(a))) = h(a) = k(a) = k(g^{-1}(g(a))) = k(g''(g(a))).$$

Corollary 8.7. Suppose that \overline{M} is an \mathcal{L} -structure and \overline{N}_0 and \overline{N}_1 are ω -saturated elementary extensions of \overline{M} . Then for any formula φ of \mathcal{L}_M , $\mathrm{RM}^{\overline{N}_0}(\varphi) = \mathrm{RM}^{\overline{N}_1}(\varphi)$.

Proof. By Proposition 8.6 let \overline{N}_2 be f and g be elementary embeddings of \overline{N}_0 and \overline{N}_1 into a structure \overline{N}_2 . Let \overline{N}_3 be an ω -saturated elementary extension of \overline{N}_2 . Then by Proposition 8.5, $\mathrm{RM}^{\overline{N}_0}(\varphi) = \mathrm{RM}^{\overline{N}_3}(\varphi) = \mathrm{RM}^{\overline{N}_1}(\varphi)$.

Proposition 8.8. If $\varphi(\overline{v})$ and $\psi(\overline{v})$ are formulas of \mathscr{L}_M and $\overline{M} \models \forall \overline{v}[\varphi \rightarrow \psi]$, then $RM(\varphi) \leq RM(\psi)$.

Proof. We prove by induction on α that $RM(\varphi) \geq \alpha$ implies that $RM(\psi) \geq \alpha$. For $\alpha = 0$, if $RM(\varphi) \geq 0$, then $\varphi(\overline{M}) \neq \emptyset$; hence $RM(\psi) \neq \emptyset$ and so $RM(\psi) \geq 0$. Suppose that α is a limit ordinal and we know the implication for all $\beta < \alpha$. Suppose that $RM(\varphi) \geq \alpha$. Then $\forall \beta < \alpha[RM(\varphi) \geq \beta]$, hence $\forall \beta < \alpha[RM(\psi) \geq \beta]$, hence $RM(\psi) \geq \alpha$. Now suppose that we know the implication for α , and $RM(\varphi) \geq \alpha + 1$. Then there are pairwise disjoint subsets $\psi_i(\overline{M})$ of $\varphi(\overline{M})$ such that $RM(\psi_i) \geq \alpha$. Since also $\psi_i(\overline{M}) \subseteq \psi(\overline{M})$, it follows that $RM(\psi) \geq \alpha + 1$.

Proposition 8.9. $RM(\varphi(\overline{v}) \vee \psi(\overline{v})) = max(RM(\varphi(\overline{v})), RM(\psi(\overline{v})).$

Proof. It suffices to show that $RM(\varphi(\overline{v}) \vee \psi(\overline{v})) \geq \alpha$ iff $RM(\varphi(\overline{v})) \geq \alpha$ or $RM(\psi(\overline{v})) \geq \alpha$ for every ordinal α , by induction. For $\alpha = 0$,

$$RM(\varphi(\overline{v}) \vee \psi(\overline{v})) \ge 0 \quad \text{iff} \quad \varphi(\overline{M}) \ne \emptyset \text{ or } \psi(\overline{M}) \ne \emptyset$$
$$\text{iff} \quad RM(\varphi(\overline{v})) \ge 0 \text{ or } RM(\psi(\overline{v})) \ge 0.$$

For α limit, assume the result for any $\beta < \alpha$. Suppose that $RM(\varphi(\overline{v}) \vee \psi(\overline{v})) \geq \alpha$. Then for any $\beta < \alpha$ we have $RM(\varphi(\overline{v}) \vee \psi(\overline{v})) \geq \beta$, and hence by the inductive hypothesis, $RM(\varphi(\overline{v})) \geq \beta$ or $RM(\psi(\overline{v})) \geq \beta$. If $RM(\varphi(\overline{v})) \geq \beta$ for all $\beta < \alpha$, then $RM(\varphi(\overline{v})) \geq \alpha$. If $RM(\varphi(\overline{v})) < \beta$ for some $\beta < \alpha$, then $RM(\psi(\overline{v})) \geq \beta$ for all $\beta < \alpha$ and so $RM(\psi(\overline{v})) \geq \alpha$. Thus $RM(\varphi(\overline{v}) \vee \psi(\overline{v})) \geq \alpha$ implies that $RM(\varphi(\overline{v})) \geq \alpha$ or $RM(\psi(\overline{v})) \geq \alpha$. The converse holds by Proposition 8.8.

Now assume the result for α and suppose that $\mathrm{RM}(\varphi(\overline{v}) \vee \psi(\overline{v})) \geq \alpha + 1$. Choose formulas $\chi_i(\overline{v})$ for $i \in \omega$ such that the sets $\chi_i(\overline{M})$ are pairwise disjoint, contained in $\varphi(\overline{M}) \cup \psi(\overline{M})$, and each of Morley rank $\geq \alpha$. Suppose that $\mathrm{RM}(\varphi(\overline{v})) < \alpha + 1$ and $\mathrm{RM}(\psi(\overline{v})) < \alpha + 1$. Now the sets $\chi_i(\overline{M}) \wedge \varphi(\overline{M})$ are pairwise disjoint and contained in $\varphi(\overline{M})$. It follows that there is an $m \in \omega$ such that $\mathrm{RM}(\chi_i(\overline{v}) \wedge \varphi(\overline{v})) < \alpha$ for all $i \geq m$. Similarly, there is an $n \in \omega$ such that $\mathrm{RM}(\chi_i(\overline{v}) \wedge \psi(\overline{v})) < \alpha$ for all $i \geq n$. Let $p = \max(m, n)$. Then by the inductive hypothesis, $\mathrm{RM}(\chi_p(\overline{v}) < \alpha$, contradiction. This shows that $\mathrm{RM}(\varphi(\overline{v}) \vee \psi(\overline{v})) \geq \alpha + 1$ implies that $\mathrm{RM}(\varphi(\overline{v})) \geq \alpha + 1$ or $\mathrm{RM}(\psi(\overline{v})) \geq \alpha + 1$. The converse holds by Proposition 8.8.

Proposition 8.10. If $\varphi(\overline{M}) \neq \emptyset$, then $RM(\varphi(\overline{v}) = 0 \text{ iff } \varphi(\overline{M}) \text{ is finite.}$

Proof. \Rightarrow : suppose that $\varphi(\overline{M})$ is infinite, and choose distinct $\overline{a}_i \in M$ such that $\overline{M} \models \varphi(\overline{a}_i)$ for all $i \in \omega$. Then let ψ_i be the formula $\overline{v} = \overline{a}_i$ for each $i \in \omega$. Then the sets $\psi_i(\overline{M})$ are pairwise disjoint, nonempty, and are subsets of $\varphi(\overline{M})$. Since $RM(\psi_i(\overline{v})) \geq 0$ for each $i \in \omega$, it follows that $RM(\varphi(\overline{v})) \geq 1$.

 \Leftarrow : If $\varphi(\overline{M})$ is finite, then there do not exist infinitely many pairwise disjoint nonempty subsets of it. So $RM(\varphi(\overline{v})) \leq 0$. Since $\varphi(\overline{M}) \neq \emptyset$, actually $RM(\varphi(\overline{v})) = 0$.

Proposition 8.11. Suppose that \overline{M} is a structure, φ is an \mathscr{L}_M -formula, and $\operatorname{RM}^{\overline{M}}(\varphi)$ = α for some ordinal α . Then there is a positive integer d such that if ψ_1, \ldots, ψ_m are \mathscr{L}_M -formulas such that $\psi_1(\overline{M}), \ldots, \psi_m(\overline{M})$ are pairwise disjoint subsets of $\varphi(\overline{M})$ each of Morley rank α , then $m \leq d$.

Proof. By recursion we construct subsets T_i of ${}^{<\omega}2$ and formulas φ_{σ} for $\sigma \in T_i$. Let $T_0 = \{\emptyset\}$ and $\varphi_{\emptyset} = \varphi$. Suppose T_i has been defined along with the formulas φ_{σ} for $\sigma \in T_i$. Take any $\sigma \in T_i$. If there is a formula ψ in \mathscr{L}_M such that $RM^{\overline{M}}(\varphi_{\sigma} \wedge \psi) = RM^{\overline{M}}(\varphi_{\sigma} \wedge \neg \psi) = \alpha$, we take such a formula ψ , put $\sigma^{\frown}\langle 0 \rangle$ and $\sigma^{\frown}\langle 1 \rangle$ in T_{i+1} , and define $\varphi_{\sigma^{\frown}\langle 0 \rangle} = \varphi_{\sigma} \wedge \psi$ and $\varphi_{\sigma^{\frown}\langle 1 \rangle} = \varphi_{\sigma} \wedge \neg \psi$. If such a formula ψ does not exist, we put σ in T_{i+1} .

By induction we have:

(1) for every $i \in \omega$, $\bigcup_{\sigma \in T_i} \varphi_{\sigma}(\overline{M}) = \varphi(\overline{M})$.

Now let $T = \bigcup_{i \in \omega} T_i$. We claim that T is finite. Suppose not. Then by König's tree lemma, there is an increasing sequence $\langle \sigma_i : i \in \omega \rangle$ of members of T. Let $\chi_i = \varphi_{\sigma_i} \wedge \neg \varphi_{\sigma_{i+1}}$ for all $i \in \omega$. Then $\langle \chi_i(\overline{M}) : i \in \omega \rangle$ is a system of pairwise disjoint subsets of $\varphi(\overline{M})$ and each χ_i has Morley rank α , contradicting $RM(\varphi) = \alpha$.

Since T is finite, there is an $i \in \omega$ such that $T_i = T_j$ for all $j \geq i$. Let $\langle \psi_1, \ldots \psi_d \rangle$ enumerate T_i . By $(1), \langle \psi_i(\overline{M}) : i = 1, \ldots d \rangle$ is a partition of $\varphi(\overline{M})$.

Now suppose that $\theta_1, \ldots, \theta_m$ is a sequence of \mathscr{L}_M -formulas each of rank α such that $\langle \theta_1(\overline{M}), \ldots \theta_m(\overline{M}) : 1 \leq i \leq m \rangle$ is a sequence of pairwise disjoint subsets of $\varphi(\overline{M})$. We claim that $m \leq d$ (as desired). Suppose that m > d. Now for each $i \leq d$ there is at most one $j \leq m$ such that $RM(\psi_i \wedge \theta_j) = \alpha$. Hence there is a $j \leq m$ such that $RM(\psi_i \wedge \theta_j) < \alpha$ for all $i \leq d$. But $\theta_j(\overline{M})$ is a subset of $\varphi(\overline{M})$, and so by (1), $\overline{M} \models \theta_j \leftrightarrow \bigvee_{i \leq d} (\psi_i \wedge \theta_j)$. This contradicts Proposition 8.9.

The smallest d satisfying the conditions of Proposition 8.11 is called the *Morley degree* of φ in \overline{M} , and is denoted by $\deg_{\overline{M}}(\varphi)$.

Corollary 8.12. A formula φ is minimal over \overline{M} iff $RM^{\overline{M}}(\varphi) = \deg_{\overline{M}}(\varphi) = 1$.

Proof. \Rightarrow : Let φ be minimal. Then $\varphi(\overline{M})$ is infinite, hence nonempty, so $\mathrm{RM}^{\overline{M}}(\varphi) \geq 0$; by Proposition 8.10, $\mathrm{RM}^{\overline{M}}(\varphi) \geq 1$. Now $\varphi(\overline{M})$ cannot be partitioned into two infinite definable subsets, so $\mathrm{RM}^{\overline{M}}(\varphi) = \deg_{\overline{M}}(\varphi) = 1$.

 \Leftarrow : Assume that $\mathrm{RM}^{\overline{M}}(\varphi) = \deg_{\overline{M}}(\varphi) = 1$. Then by Proposition 8.10, $\varphi(\overline{M})$ is infinite. Since $\deg_{\overline{M}}(\varphi) = 1$, it cannot be partitioned into two infinite definable subsets. So φ is minimal.

The Morley rank of a theory T is the rank of the formula v = v in any ω -saturated model of T.

The theory T is totally transcendental iff its rank is less than ∞ .

If \overline{M} is ω -saturated, a formula $\varphi(\overline{v}, \overline{w})$ has the *order property* over \overline{M} iff there are sequences $\langle \overline{a}_i : i < \omega \rangle$ and $\langle \overline{b}_i : i < \omega \rangle$ such that for all $i, j \in \omega$, $\overline{M} \models \varphi(\overline{a}_i, \overline{b}_j)$ iff i < j.

Proposition 8.13. If T is totally transcendental and \overline{M} is an ω -saturated model of T, then no formula has the order property over \overline{M} .

Proof. Suppose to the contrary that T is totally transcendental and \overline{M} is an ω -saturated model of T with a formula $\varphi(\overline{v}, \overline{w})$ having the order property over \overline{M} , say with sequences $\langle \overline{a}_i : i < \omega \rangle$ and $\langle \overline{b}_i : i < \omega \rangle$ such that for all $i, j \in \omega$, $\overline{M} \models \varphi(\overline{a}_i, \overline{b}_j)$ iff i < j. Adjoin new individual constants \overline{c}_q and \overline{d}_q for $q \in \mathbb{Q}$ and consider the following set of sentences in the expanded language:

$$\mathrm{Eldiag}(\overline{M}) \cup \{ \varphi(\overline{c}_q, \overline{d}_r) : q < r \} \cup \{ \neg \varphi(\overline{c}_q, \overline{d}_r) : r \leq q \}.$$

Clearly every finite subset of this set has a model, so the whole set has a model. This gives an elementary extension \overline{N} of \overline{M} such that there are systems $\langle \overline{s}_q : q \in \mathbb{Q} \rangle$ and $\langle \overline{t}_q : q \in \mathbb{Q} \rangle$ of elements of N such that for all $q, r \in \mathbb{Q}$, $\overline{N} \models \varphi(\overline{s}_q, \overline{t}_r)$ iff q < r. Let \overline{P} be and ω -saturated elementary extension of \overline{N} . Now for any $r \in \mathbb{Q}$, the set $\{q \in \mathbb{Q} : \overline{P} \models \varphi(\overline{s}_q, \overline{t}_r)\}$ is an infinite convex set. Let $\psi(\overline{v})$ be a formula of smallest Morley rank and degree such that $\{q \in \mathbb{Q} : \overline{P} \models \psi(\overline{s}_q)\}$ is infinite and convex. Choose r in the interior of this set. Let $\psi_0(\overline{v})$ be $\psi(\overline{v}) \wedge \varphi(\overline{v}\overline{t}_r)$ and let $\psi_1(\overline{v})$ be $\psi(\overline{v}) \wedge \neg \varphi(\overline{v}\overline{t}_r)$. Each set $\{q \in \mathbb{Q} : \overline{P} \models \psi_i(\overline{s}_q) \}$ is infinite and closed downwards. By Proposition 8.8, each ψ_i has Morley rank \leq that of ψ ; so $RM^{\overline{P}}(\psi_i) = RM^{\overline{P}}(\psi)$. But clearly both ψ_0 and ψ_1 have degree less than that of ψ , contradiction.

If p is an n-type over $A \subseteq M$ then we define RM(p) to be $\min\{RM(\varphi) : \varphi \in p\}$. We let φ_p be a formula such that $RM(p) = RM(\varphi_p)$ and also with $\deg(\varphi_p)$ minimum among all formulas ψ such that $RM(p) = RM(\psi)$.

Lemma 8.14. If $p, q \in S_n(A)$, RM(p), $RM(q) < \infty$, and $p \neq q$, then $\varphi_p \neq \varphi_q$.

Proof. Let $\psi \in p \setminus q$. Then $\varphi_p \wedge \psi \in p$. So $RM(\varphi_p \wedge \psi) \leq RM(\varphi_p)$, so by the minimality of $RM(\varphi_p)$ we get $RM(\varphi_p \wedge \psi = RM(\varphi_p)$. Similarly, $RM(\varphi_q \wedge \neg \psi = RM(\varphi_q)$. If $\varphi_p = \varphi_q$, then $RM(\varphi_p \wedge \psi) = RM(\varphi_p \wedge \neg \psi) = RM(\varphi_p)$, and so $\deg(\varphi_p \wedge \psi) < \deg(\varphi_p)$, contradiction.

Theorem 8.15. If T is a theory in a countable language, then T is totally transcendental iff T is ω -stable.

- **Proof.** \Rightarrow : Assume that T is totally transcendental. Let \overline{M} be a model of T, and let $A \subseteq M$ be countable. For each $p \in S_n(A)$ we have $\mathrm{RM}^{\overline{M}}(p) < \infty$, so φ_p exists. By Lemma 8.14 there are only countably many possible formulas φ_p , so $|S_n(A)| \leq \omega$.
- \Leftarrow : Suppose that T is ω -stable but T is not totally transcendental. Thus there is an ω -saturated model \overline{M} of T such that $\mathrm{RM}^{\overline{M}}(v=v)=\infty$. Let $\beta=\sup\{\mathrm{RM}(\psi):\psi$ is an \mathscr{L}_M -formula and $\mathrm{RM}(\psi)<\infty\}$. We now define formulas φ_f for $f\in{}^{<\omega}2$. Let φ_\emptyset be v=v. Suppose that φ_f has been defined so that $\mathrm{RM}(\varphi_f)=\infty$. Then there is a formula ψ such that $\mathrm{RM}(\varphi_f\wedge\psi)\geq\beta+1$ and $\mathrm{RM}(\varphi_f\wedge\neg\psi)\geq\beta+1$. Hence $\mathrm{RM}(\varphi_f\wedge\psi)=\infty$ and $\mathrm{RM}(\varphi_f\wedge\psi)=\infty$. let $\varphi_f_{\frown\langle 0\rangle}$ be $\varphi_f\wedge\psi$ and $\varphi_f_{\frown\langle 1\rangle}$ be $\varphi_f\wedge\neg\psi$. This completes the construction, and shows that T is not ω -stable, contradiction.