Algorithm 1 Marie Curie Genetic Algorithm Overview

- 1: Let $NUM_GENS = 100$ represent the number of generations to evolve
- 2: Let $POP_SIZE = 100$ represent the size of the total population
- 3: Let NBPG = 50 represent the number of new candidates to breed every generation
- 4: Let S_{min} and S_{max} represent the vectors of servo limits
- 5: Let L_R represent the landmarks in the reference image
- 6: Let $P = \{C_i, i \in \{0, 1, ..., POP_SIZE\}\}$ where each C_i is a candidate expression
- 7: for $i \in \{0, 1, .., POP_SIZE 1\}$ do
- 8: Initialize C_i .chromosome to $\mathcal{U}(S_{min}, S_{max})$
- 9: Score each candidate s.t. $C_i.score = mc_score()$
- 10: end for
- 11: **for** $g \in \{0, 1, ..., NUM_GENS\}$ **do**
- 12: Let $N = \{N_i, i \in \{0, 1, ..., NBPG\}\} = mc_breed_new(NBPG)$ be the set of new candidates for this gen
- 13: Score N s.t. $N_i.score = mc_score(\mathbf{N_i.chromosome}, L_R)$
- 14: Set $C = C \cup N$
- 15: Remove the NBPG elements with the worst score from C
- 16: end for
- 17: **return** $C_{opt} = C_i$ where $i = \underset{i}{\operatorname{argmin}} \{C_i.score\}$

Algorithm 2 MC Score Algorithm (mc_score(X, L'_R))

- 1: Let M=68 be the number of landmarks recognized in an image (constrained by dlib landmark recognition algorithm)
- 2: Let D=2 be the dimensionality of a single landmark
- 3: Let $L \in \mathbb{R}^{D,M}$ represent the raw pixel valued landmarks
- 4: Let L'_R be the reference landmarks to score against
- 5: Let X be the chromosome to score
- 6: Actuate X on the face using the Maestro Controller
- 7: Capture an image, I_C , of the face
- 8: Get the bounding box B of the face
- 9: Detect the center of a rectangular bounding box, $B_C = [x, y]^T \in \mathbb{R}^2$ of the
- 10: Detect raw landmarks for cand. image $L_C = dlib_predictor(I_C).landmarks$
- 11: Calculate new "centered" landmarks $L_C^C = L_C (B_C \otimes \mathbf{1}^T)$
- 12: Calculate the horizontal scaling by $x_s = B_{Right} B_{C,x}$

- 13: Calculate the vertical scaling by $y_s = B_{Bottom} B_{C,y}$ 14: Get normalized landmarks $L'_C = L^C_C \oslash ([x_s, y_s]^T \otimes \mathbf{1}^T)$ 15: Calculate difference in corresponding landmarks between the reference image and the candidate image $L_D = L_C' - L_R'$
- 16: **return** $||L_D||_F = \sqrt{tr(L_D^T L_D)}$ where $L_D^T L_D \in \mathbb{R}^{(M,M)}$ is the Gramian matrix of L_D and the diagonal elements of $L_D^T L_D$ represent the euclidean distance error of each landmark. This can also be expressed as the square root of the sum of the squared errors.

Algorithm 3 MC Breed New (mc_breed_new(N_C , N_{CpP}))

- 1: Let N_C be the number of new candidates to breed
- 2: Let N_{CpP} be the maximum number of candidates to breed for a single set of parents
- 3: Calculate the number of pairs of parents N_{pP}
- 4: Get the mating pool M which is comprised of the best (lowest) scoring $2N_{pP}$ candidates in C
- 5: Create N_{pP} pairs of parents, P_p , by pairing the highest scoring parents together (i.e. $P_p = \{\{M_0, M_1\}, \{M_2, M_3\}, \dots\}$)
- 6: Initialize $N = \emptyset$ where N is the set of all new candidates bred this generation.

```
7: for p \in P_p do
```

- 8: **for** $j \in \{0, 1, \dots, N_{CpP} 1\}$ **do**
- 9: Let C_N represent the new candidate
- 10: Randomize order of p
- 11: Randomly select location i in which to perform crossover of chromosomes
- 12: Set $\mathbf{C_N}$.chromosome = $[p_0[:i]^T, p_1[i:]^T]^T$ representing the concatenation of the two parent chromosomes sliced at index i
- 13: Set C_N .chromosome = $\mathcal{N}(C_N$.chromosome, 50^2) representing a mutation of the inherited chromosome with each gene varying in a normal distribution parameterized by $\mu = C_N$.chromosome and $\sigma^2 = 50^2$ where 50 is the standard deviation in quarter microseconds
- 14: Saturate values in C_N .chromosome to safe limits for servos
- 15: Append C_N to N by $N = N \cup C_N$
- 16: end for
- 17: end for
- 18: $\mathbf{return}\ N$