Author - AYUSH CHHOKER

DATA SCIENCE AND BUSINESS ANALYTICS INTERN

Task 3: Exploratory Data Analysis - Retail

Problem Statement: Perform 'Exploratory Data Analysis' on dataset 'SampleSuperstore' This task is about Exploratory Data Analysis - Retail where the task focuses on a business manager who will try to find out weak areas where he can work to make more profit.

Importing Libraries

In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
%matplotlib inline
```

In [6]:

```
df = pd.read_csv('D:\samstore.csv') #loading dataset
```

In [5]:

```
df.head() #display top 5 rows
```

Out[5]:

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category
0	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Bookcases
1	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Chairs
2	Second Class	Corporate	United States	Los Angeles	California	90036	West	Office Supplies	Labels
3	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Furniture	Tables
4	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Office Supplies	Storage
4									+

In [4]:

df.tail() #bottom 5 rows

Out[4]:

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Cate
9989	Second Class	Consumer	United States	Miami	Florida	33180	South	Furniture	Furnis
9990	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Furniture	Furnis
9991	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Technology	Pl
9992	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Office Supplies	1
9993	Second Class	Consumer	United States	Westminster	California	92683	West	Office Supplies	Applia
4									•

In [7]:

df.shape

Out[7]:

(9994, 13)

In [8]:

df.describe() #display summary

Out[8]:

	Postal Code	Sales	Quantity	Discount	Profit
count	9994.000000	9994.000000	9994.000000	9994.000000	9994.000000
mean	55190.379428	229.858001	3.789574	0.156203	28.656896
std	32063.693350	623.245101	2.225110	0.206452	234.260108
min	1040.000000	0.444000	1.000000	0.000000	-6599.978000
25%	23223.000000	17.280000	2.000000	0.000000	1.728750
50%	56430.500000	54.490000	3.000000	0.200000	8.666500
75%	90008.000000	209.940000	5.000000	0.200000	29.364000
max	99301.000000	22638.480000	14.000000	0.800000	8399.976000

```
In [9]:
```

```
df.isnull().sum()
                         #checking null values
Out[9]:
Ship Mode
                0
Segment
                0
Country
                0
City
                0
State
                0
Postal Code
                0
Region
                0
Category
                0
Sub-Category
                0
Sales
                0
Quantity
                0
Discount
                0
Profit
                0
dtype: int64
In [10]:
df.info()
                    #information about dataset
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9994 entries, 0 to 9993
Data columns (total 13 columns):
     Column
                   Non-Null Count Dtype
#
    Ship Mode
                   9994 non-null
                                    object
 0
 1
     Segment
                   9994 non-null
                                    object
                   9994 non-null
 2
    Country
                                    object
 3
    City
                   9994 non-null
                                    object
 4
    State
                   9994 non-null
                                    object
 5
    Postal Code
                   9994 non-null
                                    int64
 6
    Region
                   9994 non-null
                                    object
    Category
 7
                   9994 non-null
                                    object
    Sub-Category 9994 non-null
                                    object
 8
 9
                   9994 non-null
                                    float64
     Sales
 10 Quantity
                   9994 non-null
                                    int64
                   9994 non-null
                                    float64
 11 Discount
 12 Profit
                   9994 non-null
                                    float64
dtypes: float64(3), int64(2), object(8)
memory usage: 1015.1+ KB
In [11]:
df.columns
Out[11]:
Index(['Ship Mode', 'Segment', 'Country', 'City', 'State', 'Postal Code',
       'Region', 'Category', 'Sub-Category', 'Sales', 'Quantity', 'Discoun
t',
       'Profit'],
      dtype='object')
```

```
In [12]:
df.duplicated().sum()
Out[12]:
17
In [13]:
df.nunique()
Out[13]:
Ship Mode
                    4
Segment
                    3
Country
                    1
City
                  531
State
                   49
Postal Code
                  631
Region
                    4
                    3
Category
Sub-Category
                   17
Sales
                5825
Quantity
                   14
Discount
                   12
Profit
                7287
dtype: int64
In [14]:
df['Postal Code'] = df['Postal Code'].astype('object')
In [15]:
df.drop_duplicates(subset=None, keep='first', inplace=True)
df.duplicated().sum()
Out[15]:
```

0

In [16]:

```
corr = df.corr()
sns.heatmap(corr,annot=True,cmap='Reds')
```

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c0fb5b7640>

In [17]:

```
df = df.drop(['Postal Code'],axis = 1) #dropping postal code columns
```

In [18]:

```
sns.pairplot(df, hue = 'Ship Mode')
```

Out[18]:

<seaborn.axisgrid.PairGrid at 0x1c0fb581b20>

In [19]:

```
df['Ship Mode'].value_counts()
```

Out[19]:

Standard Class 5955 Second Class 1943 First Class 1537 Same Day 542

Name: Ship Mode, dtype: int64

In [20]:

```
sns.countplot(x=df['Ship Mode'])
```

Out[20]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c0fc1eee50>

In [21]:

df['Segment'].value_counts() #valuecounts for segment

Out[21]:

Consumer 5183 Corporate 3015 Home Office 1779

Name: Segment, dtype: int64

In [22]:

```
sns.pairplot(df,hue = 'Segment') #plotting pair plot
```

Out[22]:

<seaborn.axisgrid.PairGrid at 0x1c0fc1ee2b0>

In [23]:

```
sns.countplot(x = 'Segment',data = df, palette = 'rainbow')
```

Out[23]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c0fc08f9a0>

In [24]:

df['Category'].value_counts()

Out[24]:

Office Supplies 6012 Furniture 2118 Technology 1847

Name: Category, dtype: int64

In [25]:

sns.countplot(x='Category',data=df,palette='tab10')

Out[25]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c0fc0cbe20>

In [26]:

sns.pairplot(df,hue='Category')

Out[26]:

<seaborn.axisgrid.PairGrid at 0x1c0fc0f8f40>

In [27]:

```
df['Sub-Category'].value_counts()
```

Out[27]:

Binders	1522
Paper	1359
Furnishings	956
Phones	889
Storage	846
Art	795
Accessories	775
Chairs	615
Appliances	466
Labels	363
Tables	319
Envelopes	254
Bookcases	228
Fasteners	217
Supplies	190
Machines	115
Copiers	68

Name: Sub-Category, dtype: int64

```
In [28]:
```

```
plt.figure(figsize=(15,12))
df['Sub-Category'].value_counts().plot.pie(autopct='dark')
plt.show()
```


Observation 1

Maximum are from Binders, Paper, furnishings, Phones, storage, art, accessories and minimum from copiers, machines, suppliers

In [29]:

```
df['State'].value_counts()
```

Out[29]:

California	1996
New York	1127
Texas	983
Pennsylvania	586
Washington	502
Illinois	491
Ohio	468
Florida	383
Michigan	254
North Carolina	249
Arizona	224
Virginia	224
Georgia	184
Tennessee	183
Colorado	182
Indiana	149
Kentucky	139
Massachusetts	135
New Jersey	130
Oregon	123
Wisconsin	110
Maryland	105
Delaware	96
Minnesota	89
Connecticut	82
Oklahoma	66
Missouri	66
Alabama	61
Arkansas	60
Rhode Island	56
Utah	53
Mississippi	53
South Carolina	42
Louisiana	42
Nevada	39
Nebraska	38
New Mexico	37
Iowa	30
New Hampshire	27
Kansas	24
Idaho	21
Montana	15
South Dakota	12
Vermont	11
District of Columbia	10
Maine	8
North Dakota	7
West Virginia	4
Wyoming	1
Name: State, dtype: into	_

In [30]:

```
plt.figure(figsize=(15,12))
sns.countplot(x='State',data=df,palette='rocket_r',order=df['State'].value_counts().ind
ex)
plt.xticks(rotation=90)
plt.show()
```


observation 2

Highest number of buyers are from California and New York

In [31]:

```
df.hist(figsize=(10,10),bins=50)
plt.show()
```


observation 3

- 1. Most customers tends to buy quantity of 2 and 3
- 2. Discount give maximum is 0 to 20 percent

In [32]:

```
plt.figure(figsize=(10,8))
df['Region'].value_counts().plot.pie(autopct = '%1.1f%%')
plt.show()
```


profit vs discount

In [33]:

```
fig,ax=plt.subplots(figsize=(20,8))
ax.scatter(df['Sales'],df['Profit'])
ax.set_xlabel('Sales')
ax.set_ylabel('Profit')
plt.show()
```


In [34]:

```
sns.lineplot(x='Discount',y='Profit',label='Profit',data=df)
plt.legend()
plt.show()
```


observation 4

No correlation between profit and discount

Profit vs Quantity

```
In [35]:
```

```
sns.lineplot(x='Quantity',y='Profit',label='Profit',data=df)
plt.legend()
plt.show()
```


In [36]:

```
df.groupby('Segment')[['Profit','Sales']].sum().plot.bar(color=['pink','blue'],figsize=
(8,5))
plt.ylabel('Profit/Loss and sales')
plt.show()
```


observation 5

Profit and sales are maximum in consumer segment and minimum in Home Office segment

In [39]:

```
plt.figure(figsize=(14,10))
plt.title('Segment wise Sales in each Region')
sns.barplot(x='Region',y='Sales',data=df,hue='Segment',order=df['Region'].value_counts
().index,palette='rocket')
plt.xlabel('Region',fontsize=15)
plt.show()
```


observation 6

Segment wise sales are almost same in every region

In [40]:

```
df.groupby('Region')[['Profit','Sales']].sum().plot.bar(color=['blue','red'],figsize=(8
,5))
plt.ylabel('Profit/Loss and sales')
plt.show()
```


Observation 7

Profit and sales are maximum in west region and minimum in south region

In [41]:

```
ps = df.groupby('State')[['Sales','Profit']].sum().sort_values(by='Sales',ascending=False)
ps[:].plot.bar(color=['blue','orange'],figsize=(15,8))
plt.title('Profit/loss & Sales across states')
plt.xlabel('States')
plt.ylabel('Profit/loss & Sales')
plt.show()
```


observation 8

high profit is for california, new york loss is for texas, pennsylvania, Ohio

In [42]:

```
t_states = df['State'].value_counts().nlargest(10)
t_states
```

Out[42]:

California 1996 New York 1127 Texas 983 Pennsylvania 586 Washington 502 Illinois 491 Ohio 468 Florida 383 Michigan 254 North Carolina 249 Name: State, dtype: int64

In [43]:

```
df.groupby('Category')[['Profit','Sales']].sum().plot.bar(color=['yellow','purple'],alp
ha=0.9,figsize=(8,5))
plt.ylabel('Profit/Loss and sales')
plt.show()
```


Observation 9

As a business manager, try to find out the weak areas where you can work to make more profit?

- 1. Technology and Office Supplies have high profit.
- 2. urniture have less profit

In [44]:

```
ps = df.groupby('Sub-Category')[['Sales','Profit']].sum().sort_values(by='Sales',ascend
ing=False)
ps[:].plot.bar(color=['red','lightblue'],figsize=(15,8))
plt.title('Profit/loss & Sales across states')
plt.xlabel('Sub-Category')
plt.ylabel('Profit/loss & Sales')
plt.show()
```


observation 10

- 1. Phones sub-category have high sales.
- 2. chairs have high sales but less profit compared to phones
- 3. Tables and Bookmarks sub-categories facing huge loss

In []: