

Intelligence Artificielle pour les systèmes autonomes (IAA)

Modular pipeline: Scene parsing

Prof. Yann Thoma - Prof. Marina Zapater

Février 2024

Basé sur le cours du Prof. A. Geiger

Modular Pipeline

Reminder of main blocks

- → Vehicle control
- → Low-level perception : Odometry, SLAM and global localization
- \rightarrow Scene Parsing
- → Path planning

Summary

Today's lesson

- \rightarrow Road and Lane detection
- → Free space estimation
- ightarrow Optical Flow and Scene Flow

Road and lane detection

Representations

- → Navigate without detailed global map by "sensing" drivable areas in the car vicinity
- → Road segmentation:
 - Classify each pixel in the image as road or non-road
- → Driving corridor prediction:
 - Estimate corridor ahead
 - Mark obstacles in green within the corridor
 - Multiple corridors!

Road and lane detection

Representations

- → Lane marking detection
 - Detect lane marking and fit a parametric model
- → Lane detection
 - Group two lane markings into one lane
 - Provide information on the centerline (dashed)
- → Freespace estimation
 - Estimate places that can be reached without collision

Road and Lane detection

2D vs. 3D representation

- → Estimating quantities in the 2D image domain is hard and not very useful
- → Better to map into 3D or Bird's Eye View (BEW) where vehicle is controlled

Road Segmentation

Deep Convolutional Image Segmentation

→ Use convolution, pooling and upsampling layers to predict per-pixel class label

Fig. 2. An illustration of the SegNet architecture. There are no fully connected layers and hence it is only convolutional. A decoder upsamples its input using the transferred pool indices from its encoder to produce a sparse feature map(s). It then performs convolution with a trainable filter bank to densify the feature map. The final decoder output feature maps are fed to a soft-max classifier for pixel-wise classification.

Road Segmentation

Joint Semantic Segmentation and 3D reconstruction

Lane marking detection

Searching for gradients along each image row

- → If depth is available: filter points not on ground plane
- → We will need to map into perspective
- → And then fit pixels into curves

Parametric Lane Marking estimation

Fit Splines into the lines we found

Fig. 7. Spline score computation.

Fig. 8. RANSAC Spline fitting. Left: one of four windows of interest (white) obtained from previous step with detected spline (red). Right: the resulting splines (green) from this step

Algorithm 1 RANSAC Spline Fitting for i = 1 to numIterations do points=getRandomSample() spline=fitSpline(points) score=computeSplineScore(spline) if score > bestScore then bestSpline = spline end if end for

Fig. 10. Post-processing splines. Left: splines before post-processing in blue. Right: splines after post-processing in green. They appear longer and localized on the lanes.

Summary

Today's lesson

- → Road and Lane detection
- → Free space estimation
- → Optical Flow and Scene Flow

Free Space Estimation

Problem definition and approach

- → Given depth map per frame (from stereo reconstruction), provide freespace in Bird's Eye View (BEW)
- → Useful for collision avoidance and path planning (local path planning)
- → Approach:
 - Integrating disparity maps temporally (using Visual Odometry)
 - Convert depth measurements into BEW occupancy map

Image

Cartesian

Free Space Estimation

Translation from cartesian positions to column/disparity maps

Free Space Estimation

Depth-to-occupancy conversion

- \rightarrow Estimate the occupancy likelihood at a location (x,z) in the occupancy map
 - In a polar representation, where x=column, and z=depth
- → We use a kernel estimator that accumulates evidence of nearby observations
 - Optimization solved via dynamic programming
- → Height of obstacles is unknown, we only estimate freespace

V-12.67 m/s, V/N--0.00300 rad/s, ct-0.14 s

(a) Highway.

(b) Freeway.

(c) Downtown.

Moving to the Stixel world

Stixel: superpixel representation

→ Stixel" a stik that approximates an obstacle as a vertical line in the scene

(a) Dense disparity image (SGM result)

(b) Stixel representation

Top: Grayscale input image with stixels superimposed to it, with colour denoting depth (from red denoting closer, to blue denoting farther). Bottom: Dense disparity map, with brighter intensity denoting higher values of disparity (lower depth), darker intensity denoting lower values of disparity (higher depth), and black denoting invalid disparity.

Summary

Today's lesson

- → Road and Lane detection
- → Free space estimation
- $\,\rightarrow\,$ Optical Flow and Scene Flow

Optical Flow

Apparent motion of objects in 2D

- → Optical flow is the apparent motion of objects in a scene caused by the relative motion between observer and scene
- → Knowing past/current motion allows to make predictions on flow
 - Practical use: predict the position of a vehicle 1sec into the future
 - Careful! Predictions are made in image space, not in the 3D space!
 - 2D motion can either be due to observer moving, or to object moving

Optical Flow

And aperture problem

- → The optical flow tells us information on:
 - 3D structure
 - Motion of object
 - Motion of observer
- → A single observation (even coming from two cameras) is not enough to determine optical flow

Translation

Rotation

Translation + Rotation

Deep Learning for Optical Flow Estimation

FlowNet

- → Predicting Flow with CNNs
- → Two networks:
 - FlowNetSimple
 - FlowNetCorr
- → KITTI dataset

Scene Flow Estimation

Optical Flow Estimation in 3D (not in 2D)

- → In practice Optical Flow (2D motion estimation) is not enough
- \rightarrow We need motion in 3D \rightarrow Scene Flow
- → "Scene flow is a dense 3D vector field defined for point of every surface in the scene"

left image at time t

left image at time t + 1

3D Scene Flow

Scene flow is the instantaneous 3D motion of evey point

- → Optical flow is the 2D projection of the scene flow into an image
- → To estimate scene flow, we require at least 4 images (or 2 images with depth)
- → Combining the problem of stereo and optical flow

3D Scene Flow estimation

Using rigid body concepts

→ A recurring idea: exploiting the fact that scene is composed of rigidly moving objects

Figure 4: We detect and estimate rigid motions in three steps: First, depth and optical flow are computed using off-the-shelf networks (M) and camera motion is estimated by epipolar geometry (P) given two frames. Then, rigidity cost maps and rectified scene flow are computed (G) and fed into a two-stream network that produces the segmentation masks of a rigid background and an arbitrary number of rigidly moving instances. Finally, we fit rigid transformations for the background and each rigid instance to update their depth and 3D scene flow.

→ Ranked 1st on KITTI Scene Flow Benchmark http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php

HE VD

REDS
Institut
Reconfigurable
and Embedded
Digital Systems

