Applied Machine Learning

Classification - Introduction

Classification - Introduction

- Classifiers
- Binary classification and multi-class classification
- How to measure how good is a classifier

Teaching to read digits

- Show the student a sample of written digits, one at a time
 - Training Set
- Shuffle the images and evaluate the student
- Repeat until the student gets most of them right
- The student tries with a new set
 - Test Set

Binary Classification

- Assign each example to a class
 - it is the digit one
 - it is not the digit one

- Correctly identifies a cases of 1 as ONE
 - True Positive
- Incorrectly identifies a case of 7 as ONE
 - False Positive
- Incorrectly identifies a case of 1 as NOT A ONE
 - False Negative
- Correctly identifies a case of 5 as NOT A ONE
 - True Negative

True Label	Student	identifies	
	ONE	NOT A ONE	
ONE	1, 1	1	
NOT A ONE	7	6, 5, 5, 2, 4, 9	

Overall Accuracy: 8/10

• Error Rate: 2/10

True Label	Student	identifies	Correct	Incorrect	
	abel ONE C		Accuracy	Error rate	
ONE	1, 1	1	2/3	1/3	
NOT A ONE	7	6, 5, 5, 2, 4, 9	6/7	1/7	

True Label	Student	identifies	Correct	Incorrect	
	ONE	NOT A ONE	Accuracy	Error rate	
ONE	1, 1	1	2/3	1/3	
NOT A ONE	7	6, 5, 5, 2, 4, 9	6/7	1/7	

. Sensitivity =
$$\frac{TP}{TP + FN} = \frac{2}{3}$$

. Specificity =
$$\frac{TN}{TN + FP} = \frac{6}{7}$$

UIUC - Applied Machine Learning

Multi-Class Classification

- Assign each example to a class
 - ZERO, ONE, TWO, ..., NINE

Class-Confusion Matrix

True			3	Student identifies						Class	
Label	"0"	"1"	"2"	"3"	"4"	"5"	"6"	"7"	"8"	"9"	Error %
"0"	9									1	10
"1"		7						3			30
"2"		1	8					1			20
"3"				9					1		10
"4"					7					3	30
"5"						10					0
"6"	1						9				10
"7"			1					9			10
"8"									10		0
"9"									1	6	40

Training and Testing

- Collect all the available examples and split them into
 - Training Set
 - Test Set for Evaluation
- Potential issue:
 - Overfitting or Selection Bias

Cross-Validation

- Iteratively
 - generate a new random split, or Fold, of the Training Set and Test Set
 - teach with the Training Set
 - evaluate with the Test Set and record accuracy for current Fold
- Average accuracy over all the Folds

Leave-One-Out Cross-Validation

- A particular case of cross-validation with Sizes as follows:
 - Data set: N
 - Training Set in each Fold: N-1
 - Test Set in each Fold: 1

k-Fold Cross-Validation

- A particular case of cross-validation with Sizes as follows:
 - Data set: N
 - Split into k equal pieces at fixed places
 - | N/K | N/K | ... | N/K |
 - Training Set in each Fold: N-N/K
 - Test Set in each Fold: N/K
 - | Test | N/K | ... | N/K |
 - | N/K | Test | ... | N/K |

Classifiers

- Input: data item
 - set of features in vector X
- Output: label
 - Y
 - Binary
 - Multi-class

Classifiers

- Supervised training
 - Input: Training Set: data items pairs (X, Y)
- Testing
 - Input: Test Set: data items (X)
 - Evaluate performance on Y

Classifiers

- Goal: perform well on Test Set
 - Class-Confussion Matrix
 - Accuracy
 - Error rate
 - Sensitivity
 - Sensibility

Applications

- Medicine
- Wheather
- Entertainment

•

Classification - Introduction

- Classification
- Types of classifiers
- Training and Testing
- Evaluation