Tem

Sure! Here's the full English translation of the content you provided:

Models Used in Evaluation

Function	Default Model	Parameter Count	Remarks
ASR	Distil-Whisper	实现率 36	Run Whisper model locally to extract audio transcripts
VLM *3676 2025 #04 #30 E1 06 %	MiniCPM-V-2_6-int4	· 1930日 00000	Load MiniCPM model locally (.bin weights included in the project)
LLM - Reasoning	Qwen2.5_VL_7 B	7B	Default uses OpenAI API; can be switched to local inference via Ollama
LLM - Query	qwen2.5_0.5B	0.5B	_
Text Embedding	inf-retriever- v1-1.5b	1.5B	— 20E 06:48
Visual Embedding	ImageBind	完成系 36 ————————————————————————————————————	Run locally to generate clip- level embeddings

Video Workflow

VideoRAG technology combines RAG and LVLM techniques. Its process is divided into two main steps:

1. Video Retrieval

Goal: Retrieve a set of relevant videos V = {V₁, V₂, ..., V } from a large video corpus C based on a user query q.

Method:

- Encode each video (frames + transcripts) and the query q using a LVLM to get embeddings fvideo and fquery.
- Use a similarity function (e.g., cosine similarity) to measure similarity between fvideo and fquery.
- Select the top-k most relevant videos based on similarity scores.

2. Video-Augmented Response Generation

Steps:

- a. Concatenate each video's frames and text info into pairs: $[V_1, t_1], [V_2, t_2], \ldots, [V_1, t_1]$.
- b. Add the user query q to the input: $[V_1, t_1, \ldots, V_n, t_n]$.
- c. Feed the multimodal input into the LVLM for processing and response generation.
- Goal: Leverage both visual and textual information from the videos to enhance answer accuracy, richness, and contextual understanding.

Current Research Status

Currently, there are **no open-source**, **end-to-end large models** for VideoRAG. Research uses a **modular approach**, combining:

- Retriever: CLIP, InternVideo, BLIP-2, Faiss/HNSWlib
- Generator: Video-LLaVA, GPT-4, MiniCPM-V, LLaMA, ChatGLM

Evaluation Methods

1. Win-Rate Comparison (uses OpenAl API)

Compare the win rates of responses from VideoRAG with other RAG-based baselines.

2. Quantitative Comparison (uses OpenAl API)

Enhance win-rate comparison by assigning a **5-point score** for long-context video understanding. Use NaiveRAG's answer as a baseline for scoring.

Scoring Prompt Format:

- Q: [User Question]
- Retrieved Video(s): [Subtitle snippets or screenshots]

Answer: [Generated Answer]

Rate the answer quality from 1 to 10 based on:

- Relevance to the question
- Specificity and detail (does it actually use the video context?)
- Factual correctness

Then briefly explain your rating.

3. Module-level Evaluation

- Retrieval Metrics: Recall@K, Precision@K, MRR
- Answer Metrics: ROUGE-L, BLEU, METEOR, BERTScore
 - Require ground truth Video/Answers, which can come from public datasets or be selfcreated using structured query generation.

Example Workflow for Query/Answer Dataset Construction:

- Sample from 500 videos
- Use GPT-4 + video transcripts to generate open-ended, video-relevant questions
 (e.g., "How do you test if a solar panel is working?")
- Produce 1000 queries for retrieval and QA tasks

4. Custom Evaluation Metrics

- Relevancy Score (RS)
- Correctness Score (CS)

(From paper: https://huggingface.co/papers/2501.03995)

Datasets

Name	Size	Link	Summary
LongerVideos	160+ videos, 600+ QA queries	GitHub - HKUDS/ VideoRAG	Public videos (lectures, documentaries), long-context, open-ended QA
TVQA	_	TVQA Corpus	_
Howto100M	18.4M	HuggingFace	Large-scale instructional video dataset
Cinepile	_	HuggingFace	Movie-related multimodal QA dataset

Paper Summary

Phase 1: Indexing

This phase performs 3 tasks using Distil-Whisper and MiniCPM-V:

1. Text Embedding

Using text chunks with text-embedding-3-small

2. Multimodal Embedding

Using video clips with ImageBind

3. Knowledge Graph Construction

Use text chunks to extract entities and update descriptions with **GPT-4o-mini**

$$\mathcal{G} = (\mathcal{N}, \mathcal{E}) = \bigcup_{\mathcal{H} \in \{\mathcal{V}_1^t, \dots, \mathcal{V}_n^t\}} (\mathcal{N}_{\mathcal{H}}, \mathcal{E}_{\mathcal{H}}),$$

Phase 2: Retrieval

Two paths for retrieval:

1. Knowledge Graph-Based

 Query Reformulation (GPT-4o-mini) → Entity Matching → Chunk Selection → Clip Extraction

2. Query Reformulation-Based

Scene Info Extraction from Query (GPT-4o-mini) → Query Embedding (VLM) → Similarity
 → Chunk → Clip

Both are followed by:

LLMs-based Video Clip Filtering

$$\{\hat{\mathcal{S}} \mid (\hat{\mathcal{S}} \in \{\mathcal{S}\}_q^t \cap \{\mathcal{S}\}_q^v) \land \text{LLMs-Judge}(\mathcal{V}_{\hat{\mathcal{S}}}^t) = 1\},\$$

Phase 3: Answering

Use LLM to generate a response, based on:

- 1. Extracted key terms
- 2. Relevant text embeddings (from similar chunks)
- 3. Selected video clips with frames → captions and transcripts (from Phase 1 again)