Network Security - Encryption CME451 Tutorial 5

Hao Zhang (Graduate Teaching Fellow)

Department of Electrical & Computer Engineering University of Saskatchewan

Feb 3, 2017

*Most contents are from William Stallings, Data and Computer Communications, 8th edition, 2007 Pearson Education Inc.

Review-Socket Web Server and Client

Review-IP Header and Fragmentation

- ▶ Related component: IDENTIFICATION, FLAGS, FRAGMENTATION OFFSET.
- ► Must change: FLAGS, FRAGMENTATION OFFSET, TOTAL LENGTH, HEADER CHECKSUM.

- We want to pass this datagram through an Ethernet network. Divide the datagram into necessary fragments and change the values of the IP header fields.
- 2. The second fragmented datagram from previous part needs to be sent through an X.25 network. Repeat the fragmentation task.
- 3. Design a defragment algorithm in order to generate the complete original datagram.

Algorithm 1 Pseudocode for IP fragmentation

```
1: mtu_d = mtu - 20, frag_num = 0
 2: while data_length > 0 do
       frag\_offset = mut\_d \times frag\_num \div 8
 3:
       data\_length = data\_length - mtu\_d
 4:
       if data_length > 0 then
 5:
 6:
          flaq = 001
 7:
          frag_total_length = mtu_d + header_length \times 4
 8:
          frag_data_length = mtu_d
 9:
       else
10:
          flaq = 000
          frag\_total\_length = mtu\_d + data\_length + header\_length \times 4
11:
12:
          frag_data_length = mtu_d + data_length
13:
       end if
14:
       frag_num = frag_num + 1
15: end while
```

Algorithm 2 Pseudocode for IP defragmentation

```
1: frag_list.append()
 2: frag_id = frag_ist[0]['ID']
 3: for frag in frag_list do
     if frag[ID]! = frag_id then
 5:
          del fraa
 6:
     end if
 7: end for
 8: frag_list.sort(key = offset)
 9: defrag_pkt[total_length] = 20, defrag_pkt[data_length] = 0
10: for frag in frag_list do
11:
       defrag_pkt[total_length] + = frag[data_length]
12: end for
13: defrag_pkt[data_length] = defrag_pkt[total_length] - 20
```

Importance

- Network security is important:
 - Data are transmitted through networks.
 - Protect the privacy.
 - Avoid data to be stolen or copied.
 - Protect the data from being modified.
 - Verify we receive the data from the correct source.

Requirements

- Network security requirements:
 - Confidentiality: the data can only be accessed by the authorized parties. This type of access includes printing, displaying, and other forms of disclosure, including simple revealing the existence of an object.
 - ▶ **Integrity:** only the authorized parties can modify data. Modification includes writing, changing, changing status, deleting, and creating.
 - Availability: data are available to authorized parties.
 - ▶ **Authenticity:** a host or a service should be able to verify the identity of users.

Network Attacks

- Passive attacks:
 - Eavesdropping on or monitoring of transmission.
 - ▶ Release of message contents: phone conversion, email content, file content, ...
 - ▶ Traffic analysis: guessing the nature of the communication, ...
 - Hard to detect: no alteration of data.
 - Solution: encryption.

Network Attacks

- Active attacks:
 - Modify data stream or create a false stream.
 - Masquerade: one entity pretends to be a different entity.
 - Replay: capture and retransmit of a data.
 - Modification of Message: data is altered, delayed or reordered.
 - ▶ Denial of service: prevents or inhibits the normal use or management.
 - Solution: authentication.

Symmetric Encryption

- Five ingredients:
 - Plaintext: the original message or data.
 - ► **Encryption algorithm:** the algorithms perform substitutions or transmissions on the plaintext.
 - Secret key: the encryption depends on the secret keys.
 - Ciphertext: the scrambled/encrypted message.
 - Decryption algorithm: algorithm to decrypt the scrambled message.

Symmetric Encryption

- ▶ Two requirements:
 - A strong encryption algorithm: an opponent who knows the algorithm and has access to several ciphertexts would be unable to decipher the text or figure out the key.
 - Sender and receiver must obtain the secret key in a secure fashion and keep the key secure.

Symmetric Encryption Algorithms

- DES: Data Encryption Standard
 - DES uses 56-bit key.
 - ➤ 3DES: repeat DES three times, using two or three unique keys for a key size of 112-bit or 168-bit.
 - Use only 64-bit block size: a larger block size is desirable.
- AES: Advanced Encryption Standard
 - Block length of 128-bit.
 - Key length of 128-bit, 192-bit, or 256-bit.
 - Improved efficiency and security strength.

Symmetric Encryption - Key Distribution

- ▶ Deliver a key to two parties (A and B) without allowing others to see the key.
 - 1. A key could be selected by ${\tt A}$ and physically delivered to ${\tt B}$.
 - 2. A third party could select the key and physically delivered to ${\tt A}$ and ${\tt B}$.
 - 3. If A and B have previously used a key, one party could transmit the new key to the other, encrypted using the old key.
 - 4. If A and B each have an encrypted connection to a third party C, C could deliver a key on the encrypted links to A and B.

Symmetric Encryption - Key Distribution

Detailed process of option 4:

Asymmetric Encryption

- Asymmetric encryption, also called public-key encryption, involving two separate keys.
 - Plaintext: the original message or data.
 - ► **Encryption algorithm:** the algorithms perform substitutions or transmissions on the plaintext.
 - Public and private key: a pair of keys, one for encryption and one for decryption.
 - ► Ciphertext: the scrambled/encrypted message.
 - **Decryption algorithm:** algorithm to decrypt the scrambled message.

Asymmetric Encryption

Asymmetric encryption algorithm:

Asymmetric Encryption - Characteristics

- A pair of keys: public key and private key
 - ▶ Public key is made for others to use, all participants have access to it.
 - Private key is known only to its owner, need never be distributed.
 - One for encryption and the other for decryption.
- Infeasible to determine the decryption key given the knowledge of cryptographic algorithm and the encryption key.
- ▶ A want to send message to B:
 - ▶ A encrypt the message using B's public key.
 - Only B can decrypt using own private key.

Asymmetric Encryption Algorithms

RSA

- Developed in 1977 by Ron Rivest, Adi Shamir, and Len Adleman.
- ► For plaintext block *M* and ciphertext block *C*:

$$C = M^e \mod n$$

 $M = C^d \mod n = (M^e)^d \mod n = M^{ed} \mod n$ (1)

- ▶ Both sender and receiver must know n and e, and only the receiver knows d. Public key $PU = \{e, n\}$ and private key $PR = \{d, n\}$.
- ▶ Infeasible to determine *d* given *e* and *n* for large values of *e* and *n*.

Asymmetric Encryption for Key Management

- ► Asymmetric encryption can help the key management of symmetric encryption.
 - \triangleright A encrypts a message using symmetric encryption with symmetric key k_s .
 - ightharpoonup A encrypts the k_s using public-key encryption with B's public key.
 - ▶ Attached the encrypted k_s to the message and send to B.
 - ▶ Then only B is able to decrypt the k_s and thus to recover the original message.

Summary

- Network Encryption:
 - Symmetric Encryption
 - Asymmetric encryption/Public-Key encryption
- Encryption protects against passive attack.
- ▶ To protect against active attack: message authentication.
- ▶ Pycrypto can be used to implemented encryption and authentication.