

TIME SERIES ANALYSIS AND APPLICATIONS

Prof. Luana Medeiros Marangon Lima, Ph.D.

Let's start with introductions...

- Originally from Brazil
- B.Sc. & MS., Electrical Engineering

 FEDERAL UNIVERSITY OF ITAJUBÁ, Brazil, 2005 & 2007

 Electrical Power Systems

- Joined the Nicholas School in Jan 2018 and the El/NIEES in July 2019
- Recent courses: Time Series Analysis for Energy Data, Environmental Data Analytics,
 Modeling for Energy Systems, Economics of Modern Power Systems
- Research and work experience: Renewable energy development and integration, Co-Optimization of Water & Energy Systems, Power System Economics, Climate Change effect on energy production

Agenda

- Intro to Time Series Analysis
 - Background and motivation
 - TS Definition and Components
 - Examples of TS Models
 - Applications to Energy
- Time Series Decomposition
 - Trend component and seasonal component
 - How to identify/estimate components
 - Case Study
- Forecasting

Intro to Time Series Analysis

Background and Motivation

TS Models

What is a Time Series (TS)?

- Sequence of observations on a variable collected over time
 - Ex: stock prices, interest rate, retail sales, electric power consumption
- Mathematical representation
 - TS is defined by the values $Y_1, Y_2, ...$ of a variable Y at times $t_1, t_2, ...$ Thus,

$$Y = F(t)$$

Causes of Variation in TS data

- Calendar: seasons, holidays, weekends
- Example

Interest

- Trend of usage over time
- Popularity of games
- Weekly cycle of usage

Knowledge

- Usage up on the weekend and down during the week
- Increased usage during holidays
- Summer time: weekdays/weekends blend together

Video game usage over time - daily basis

Causes of Variation in TS data

- Natural calamities: earthquake, epidemic, flood, drought
- Human: Political movements or changes, policies, war
- Example

What is Time Series Analysis (TSA)?

In TSA, we analyze the past behavior of a variable in order to predict its future behavior

- Trend
- Seasonality
- Stationarity Test
- Outliers
- Missing Data

Filtering and Preparation

Estimation

- Auto Correlation Function
- Partial Autocorrelation Function
- Model Parameter estimation

- Forecast
- Model accuracy
- Model Selection

Forecasting

Why Learn Time Series Analysis?

- Critical skill in today's data-driven world
- Widely applicable across various industries and domains

Examples of Time Series Models

- Autoregressive Integrated Moving Average (ARIMA)
 - combines three components: autoregression (AR), differencing (I),
 and moving average (MA)
- Seasonal Autoregressive Integrated Moving Average (SARIMA)
 - extension of ARIMA that incorporates seasonal components
- Exponential Smoothing Models: Exponential
 - Simple Exponential Smoothing (SES), Holt's Linear Exponential Smoothing, and Holt-Winters' Seasonal Exponential Smoothing
- Seasonal Decomposition of Time Series (STL): STL is a method that decomposes a time series into seasonal, trend, and residual components

TSA Applications to Energy

- Energy demand forecasting for resource planning, load balancing, and infrastructure development
- Renewable energy forecasting to facilitate solar and wind power grid integration
- Forecasting energy prices to inform trading strategies and risk management
- Energy storage optimal sizing and dispatch strategies for energy storage systems
- Identifying abnormal energy consumption or production patterns that may indicate equipment malfunction or faults
- Load profiling for dynamic pricing structures and personalized tariffs/rates to incentivize energy efficiency

Time Series Decomposition

Trend Component

Seasonal Component

Time Series Components

A time series may have the following components:

Trend Component

Seasonal Component

Decomposing the Time Series means separating trend/cycle, seasonal and random components.

Cyclical Component

Random Component TSA will find and exploit predictable patterns/components.

Trend Component

- Long-term tendency
 - Increase (upward movement) or
 - Decrease (downward movement)
- Trend can be linear or non-linear

Most of the time we assume a rolling average to simplify the analysis

Linear Trend Component

For a linear trend we can write

$$Y_i = \beta_0 + \beta_1 t_i + \varepsilon_i$$

□ Slope (β_1) and the intercept (β_0) are the unknown parameters, and ε_i is the error term

$$\widehat{Y}_i = \beta_0 + \beta_1 t_i$$

The error term or residual is the distance from point Y_i to the estimate \widehat{Y}_i

$$\varepsilon_i = Y_i - \widehat{Y}_i$$

Non-Linear Trend Estimation: Moving Average

- Smooth out the trend with something like a rolling average
 - A moving average trendline smooth out fluctuations in data to show a pattern or trend more clearly
 - Which order to use for the moving average?
- Looking at the rolling average makes it easier to tell how the trend is moving underneath the noise

Seasonal Component

- Short-term regular wave-like patterns
 - Observed within 1 year monthly or quarterly
 - Equally spaced peaks and troughs

Calendar Related

Peaks in the
Summer months
Jun/Jul/Ago

Decomposition: Trend Component

1. Smooth the trend with a moving average

 \blacksquare Find Y_{trend}

2. De-trend the series

- Additive Model
 - take original series and subtract the smoothed trend

$$Y_{seasonal} = Y - Y_{trend}$$

- Multiplicative model
 - scales the size of the seasonal component as the trend rises or falls
 - take original series and divide the original data by the trend

$$Y_{seasonal} = \frac{Y}{Y_{trend}}$$

Additive vs Multiplicative Model

- In the additive model the magnitude of seasonality does not change in relation to time
- In the multiplicative model the magnitude of the seasonal pattern depends on the magnitude/level of the data.

Decomposition: Seasonal Component

Assume the observed detrended series can be represented as

$$Y_{seasonal_t} = \sum_{s=1}^{12} \beta_s D_{s,t} + \epsilon_t$$
 where $E[\epsilon_t] = 0$

$$D_{s,t} = \begin{cases} 1 & \text{if t belongs to season s} \\ 0 & \text{o.w.} \end{cases} \quad \text{for } s = 1, 2, \dots 12$$

4. Estimate the parameters β_1 , β_2 , ... β_{12} by regression

Example: Inflow Data

Amazon River Inflow in m^3/s

Linear Trend visualization

$$Y_{trend_t} = \beta_0 + \beta_1 t$$

Linear Trend regression results

$$Y_{trend_t} = \beta_0 + \beta_1 t$$

Call:

lm(formula = inflow ~ t, data = data)

Residuals:

Min 1Q Median 3Q Max -19337 -11555 -1483 10061 31900

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 21949.403 797.962 27.507 <2e-16 *** t -1.024 1.427 -0.718 0.473

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '1

p-value > 0.05 Coefficient β_1 not significant

Residual standard error: 12400 on 966 degrees of freedom

Multiple R-squared: 0.0005328, Adjusted R-squared: -0.0005018

F-statistic: 0.515 on 1 and 966 DF, p-value: 0.4732

Smooth Trend: MA(6)

$$Y_{trend_t} = average(Y_{t-6} + Y_{t-5} + \dots + Y_t + \dots + Y_{t+5} + Y_{t+6})$$

Detrended Series with Additive Model

$$Y_{detrend_t} = Y_t - Y_{trend_t}$$

Do you still see any patterns?

Seasonal Component Regression Results

$$Y_{seasonal_t} = \sum_{s=1}^{12} \beta_s D_{s,t} + \epsilon_t$$

Call:

lm(formula = detrend_smooth ~ dummies)

Residuals:

Min 1Q Median 3Q Max -9430 -1552 -50 1654 10797

Coefficients:

	Estimate	Std.	Error	t value	Pr(> t)	
(Intercept)	-3545.7		307.4	-11.533	<2e-16	***
dummiesJan	8131.5		434.8	18.702	<2e-16	***
dummiesFeb	15948.6		434.8	36.682	<2e-16	***
dummiesMar	21556.7		436.2	49.424	<2e-16	***
dummiesApr	20984.3		436.2	48.112	<2e-16	***
dummiesMay	12870.3		436.2	29.508	<2e-16	***
dummiesJun	3959.1		436.2	9.077	<2e-16	***
dummiesJul	-3731.7		434.8	-8.583	<2e-16	***
dummiesAug	-8994.6		434.8	-20.688	<2e-16	***
dummiesSep	-11306.9		434.8	-26.006	<2e-16	***
dummiesOct	-10378.9		434.8	-23.872	<2e-16	***
dummiesNov	-6515.4		434.8	-14.986	<2e-16	***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2750 on 944 degrees of freedom

(12 observations deleted due to missingness)

Multiple R-squared: 0.9478, Adjusted R-squared: 0.9472 F-statistic: 1558 on 11 and 944 DF, p-value: < 2.2e-16 Seasonality explains most of the variability

Seasonal Component Visualization

Seasonal + Trend Model of Inflow

More Examples

Electricity Price – STL model

Forecasting and Model Selection

Time Series Forecasting

- Forecast/Projection statement about the future value/probability distribution of a variable of interest
 - Forecasts are often used for weather, demand, and resource availability
 - Important element in making informed decisions
 - uses past values of a time series to estimate future values of the same time series

Two Important Aspects of Forecasts

Expected level

Ex: the level of demand may be a function of some <u>structural variation</u> such as trend or seasonal

variation

□ Accuracy

Related to the potential size of forecast error

Features Common to All Forecasts

- Techniques assume some underlying causal system that existed in the past will persist into the future
- Forecasts are not perfect
 - Probability density function: provide an indication of the extent to which the forecast might deviate from the forecasted value
- Forecasts for groups of items are more accurate than those for individual items
- Forecast accuracy decreases as the forecasting horizon increases

Model Selection

"Unsolved" problem in statistics: there are no magic procedures to get you the "best model" (Kadane and Lazar)

- With a limited number of predictors, it is possible to search all possible models
- But when we have many predictors, it can be difficult to find "best" model (many possibilities)
- □ How do we select models?
 - We need a criteria or benchmark to compare two models
 - We need a search strategy

Model Selection

Which models best explain the observed data?

- Backward-looking assessment
 - Residual Analysis: describes the difference between actual historical data and the fitted values generated by a statistical model
 - Akaike Information Criterion (AIC): balance goodness of fit and the simplicity of the model

Which models give the best predictions of future observations?

- Forward-looking assessment
 - Forecast accuracy is an important forecasting technique selection criterion

$$Error = Actual - Forecast$$

Observed value

- Root Mean Squared Error (RMSE)
- Mean Absolute Percentage Error (MAPE)
- Need to hold-out some observed data to test forecast accuracy

How to choose the best model?

 Build a set of candidate models and use model selection/performance criteria to pick one

To improve forecasting accuracy, combine forecasts derived from models that differ in construction and predictor variables

ENSEMBLE

Additional Resources

- Time Series Analysis for Energy and Environment Applications
 - Spring 2023 Course website: https://env790.github.io

- Environmental Data Analytics
 - Spring 2023 Course website: https://env872.github.io

THANK YOU!

luana.marangon.lima@duke.edu