

Data Mining Image Processing – **Unsupervised Learning**

Ts. Dr. Madihah Mohd Saudi

Visiting Fellow UNAIR

Berilmu - Berdisiplin - Bertakwa / Knowledgeable - Disciplined - Devout

Safety Classification at **Construction Site**

- Personal Protective Equipment (PPE)- Hardhat, Vests, Boots
- Incident -Fall, Electric Shock, Scaffold, Heavy Machines, And Cranes

PENJAJARAN PSPSA KEPADA HALA TUJU GLOBAL DAN NASIONAL

Building the Horizontal & Enabling

the Vertical in the Ecosystem

MALAYSIAN SOCIO-ECONOMIC DRIVERS

GENERATION. ENGINEERING &

Each Malaysian Socio-economic Driver should explore how the 10 Science & Technology Drivers will value-add and enhance their global competitiveness

Faster R-CNN

- The strength of Faster R-CNN is based on its ability to reuse the CNN results for the regional proposal process.
- ➤ Hence, only one CNN needs to be trained, and regional proposals can be made almost cost-free computationally.
- This algorithm helps to identify and to assign the safety condition based on PPE and incidents.

Faster R-CNN Design

Methods

Data collectionFrom MIT Database For Training (1129 PPE & 6000 Incident)

Data Preprocessing And Selection

Labelling Dataset Using Labellmg

Data Evaluation Using Tensorflow (70 PPE & 600 **Incident)**

Classification Of PPE & Incidents

Data Analysis by Using Tensorflow

Architecture

TOPBuilder Website Architecture

Drone Detection Architecture

Personal Protective Equipment (PPE) Classification

Before Safety Classification	After Safety Classification
	vest: 98%vest: 99% 100
	unsafe: 87%

Safety Classification Condition

Examples of the Tested Images (PPE)

PPE	Total Detected Images	Total Detected Images
Hard hat	2372	156
Vest	1478	73
Boot	1023	49
Safe	572	53

PPE Experiment Result

Incidents Classification

Safety Classification Condition.

Examples of the Tested Images (Incidents).

Incident Result

Incident	Safe	Dangerous
Crane	No worker near Crane	Had worker near Crane
Heavy Machine	No worker near Heavy Machine	Had worker near Heavy Machine
Electric Shock	No worker near the wire	Had worker near the wire
Scaffold	Worker wore PPE such as harness, glove, vest, boot, and hardhat	The worker did not wear PPE such as harness, glove, vest, boot, and hardhat
Fall	High building with wall	High building with no wall

INCIDENT	TOTAL DETECTED IMAGES	Total Detected Images
Crane	720	200
Heavy Machine	751	236
Scaffold	542	132
Fall	259	96
Electric Shock	95	20
Safe	711	215
Unsafe	731	234

Outcome

- The safety classification PPE (hardhats, vests, boots) and incidents (for fall, electric shock, scaffold, heavy machines, and cranes) at construction site had been successfully developed by using the Faster R-CNN algorithm.
- The PPE and incidents model proposed achieves a 70% rate of accuracy.

Main Page

About

FASTER REGIONAL CONVOLUTIONAL NEURAL NETWORK (INCEPTION V2 COCO)

Faster R-CNN adds a CNN on top of the features of the CNN, generating what is known as the region proposal network. In the Faster RCNN, instead of going through a separate process for region proposal, adding a special-purpose region proposal network for region proposal is a difference from the previous method. Then, these final layers are removed so only the feature extraction is saved when the layers are fed to the bounding box regression and labeling, which is the second stage. The region proposal network works by passing a sliding window over a specific CNN feature. At each window, the region proposal network outputs k potential bounding boxes and scores per anchor for how good each of those boxes is expected to be. Here, a total of 4k box coordinates are outputted from the region proposal network, where k is the number of anchors. For k object candidates, 2k is obtained because the class layer determines whether a suspected object is an object or not. In the regression layer, four coordinate values (X, Y, W, H) are output for each object, therefore, they become 4k coordinates.

Contact Us

 Detection Tab

Image Detection

Video Detection

Webcam Detection

Image Detection of Incident

Video Detection of Incident

 Webcam of Incident

Drone Detection

Drone

