KeyStone C66x Multicore **SoC Overview**

Multicore Applications Team

KeyStone Overview

KeyStone Architecture

- CorePac & Memory Subsystem
- Internal Communications and Transport
- External Interfaces
- Coprocessors and Accelerators
- Debug
- Miscellaneous
- Application- and Device-specific

Enhanced DSP Core

Performance improvement

C66x ISA

100% upward object code compatible

4x performance improvement for multiply operation

32 16-bit MACs

Improved support for complex arithmetic and matrix computation

C67x+

C67x

Native instructions for IEEE 754, SP&DP

Advanced VLIW architecture

2x registers

Enhanced floatingpoint add capabilities

C674x

100% upward object code compatible with C64x, C64x+, C67x and c67x+

Best of fixed-point and floating-point architecture for better system performance and faster time-to-market.

C64x+

SPLOOP and 16-bit instructions for smaller code size

Flexible level one memory architecture

iDMA for rapid data transfers between local memories

C64x

Advanced fixedpoint instructions

Four 16-bit or eight 8-bit MACs

Two-level cache

FLOATING-POINT VALUE

FIXED-POINT VALUE

KeyStone Device Architecture

CorePac

- 1 to 8 C66x CorePac DSP Cores operating at up to 1.25 GHz
 - Fixed- and floating-point operations
 - Code compatible with other
 C64x+ and C67x+ devices
- L1 Memory
 - Can be partitioned as cache and/or RAM
 - 32KB L1P per core
 - 32KB L1D per core
 - Error detection for L1P
 - Memory protection
- Dedicated L2 Memory
 - Can be partitioned as cache and/or RAM
 - 512 KB to 1 MB Local L2 per core
 - Error detection and correction for all L2 memory
- Direct connection to memory subsystem

Memory Subsystem

- Multicore Shared Memory (MSM SRAM)
 - 1 to 4 MB
 - Available to all cores
 - Can contain program and data
 - All devices except C6654
- Multicore Shared Memory Controller (MSMC)
 - Arbitrates access of CorePac and SoC masters to shared memory
 - Provides a connection to the DDR3 EMIF
 - Provides CorePac access to coprocessors and IO peripherals
 - Provides error detection and correction for all shared memory
 - Memory protection and address extension to 64 GB (36 bits)
 - Provides multi-stream pre-fetching capability
- DDR3 External Memory Interface (EMIF)
 - Support for 16-bit, 32-bit, and (for C667x devices) 64-bit modes
 - Specified at up to 1600 MT/s
 - Supports power down of unused pins when using 16-bit or 32-bit width
 - Support for 8 GB memory address
 - Error detection and correction

Multicore Navigator

- Provides seamless inter-core communications (messages and data exchanges) between cores, IP, and peripherals.
 "Fire and forget"
- Low-overhead processing and routing of packet traffic to and from peripherals and cores
- Supports dynamic load optimization
- Data transfer architecture designed to minimize host interaction while maximizing memory and bus efficiency
- Consists of a Queue Manager Subsystem (QMSS) and multiple, dedicated Packet DMA engines

Multicore Navigator Architecture

Network Coprocessor (C667x)

- Provides hardware accelerators to perform L2, L3, and L4 processing and encryption that was previously done in software
- Packet Accelerator (PA)
 - 8K multiple-in, multiple-out HW queues
 - Single IP address option
 - UDP (and TCP) checksum and selected CRCs
 - L2/L3/L4 support
 - Quality of Service (QoS)
 - Multicast to multiple queues
 - Timestamps
- Security Accelerator (SA)
 - Hardware encryption, decryption, and authentication
 - Supports IPsec ESP, IPsec AH, SRTP, and 3GPP protocols

TEXAS INSTRUMENTS

Multicore Training

External Interfaces

- 2x SGMII ports support 10/100/1000 Ethernet
- 4x high-bandwidth
 Serial RapidIO (SRIO) lanes for inter-DSP applications
- SPI for boot operations
- UART for development/testing
- 2x PCle at 5 Gbps
- I2C for EPROM at 400 Kbps
- GPIO
- Device-specific Interfaces
 - Wireless Applications
 - General PurposeApplications

TeraNet Switch Fabric

- A non-blocking switch fabric that enables fast and contention-free internal data movement
- Provides a configured way –
 within hardware to manage
 traffic queues and ensure
 priority jobs are getting
 accomplished while minimizing
 the involvement of the CorePac
 cores
- Facilitates high-bandwidth communications between CorePac cores, subsystems, peripherals, and memory

TeraNet Data Connections

Diagnostic Enhancements

- Embedded Trace Buffers (ETB) enhance the diagnostic capabilities of the CorePac.
- CP Monitor enables diagnostic capabilities on data traffic through the TeraNet switch fabric.
- Automatic statistics collection and exporting (non-intrusive)
- Monitor individual events for better debugging
- Monitor transactions to both memory end point and Memory-Mapped Registers (MMR)
- Configurable monitor filtering capability based on address and transaction type

HyperLink Bus

- Provides the capability to expand the device to include hardware acceleration or other auxiliary processors
- Supports four lanes with up to 12.5 Gbaud per lane

Miscellaneous Elements

- Boot ROM
- Semaphore module provides atomic access to shared chiplevel resources.
- Power Management
- Three on-chip PLLs:
 - PLL1 for CorePacs, except
 - PLL2 for DDR3
 - PLL3 for Packet Acceleration
- Three EDMA controllers
- Eight 64-bit timers
- Inter-Processor Communication (IPC) Registers

Device-Specific: C6670 for Wireless Apps

Device-specific Coprocessors:

- 2x FFT Coprocessor (FFTC)
- Turbo Decoder/Encoder Coprocessor (TCP3d/3e)
- 4x Viterbi Coprocessor (VCP2)
- Bit-rate Coprocessor (BCP)
- 2x Rake Search Accelerator (RSA)

Device-specific Interfaces:

6x Antenna Interface 2 (AIF2)

Device-Specific: C667x General Purpose

Device-specific Interfaces:

- 2x Telecommunications Serial Port (TSIP)
- Asynchronous Memory Interface (EMIF16):
 - Connects memory up to 256 MB
 - Three modes:
 - Synchronized SRAM
 - NAND flash
 - NOR flash

Device-Specific: C665x General Purpose

TEXAS INSTRUMENTS

Device-specific Coprocessors:

- Turbo Decoder Coprocessor (TCP3d)
- 2x Viterbi Coprocessor (VCP2)

Device-specific Interfaces:

- Asynchronous Memory Interface (EMIF16)
- Universal Parallel Port (UPP)
- 2x Multichannel Buffered Serial Ports (McBSP)

Device-specific Memory:

- 1 MB Multicore Shared Memory (MSM SRAM)
- 32-bit DDR3 Interface

Device-Specific: C665x Power Optimized

Device-specific Interfaces:

- Asynchronous Memory Interface (EMIF16)
- Universal Parallel Port (UPP)
- 2x Multichannel Buffered Serial Ports (McBSP)

Device-specific Memory:

• 32-bit DDR3 Interface

KeyStone C665x: Key HW Variations

HW Feature	C6654	C6655	C6657
CorePac Frequency (GHz)	0.85	1 @ 1.0, 1.25	2 @ 0.85, 1.0, 1.25
Multicore Shared Memory (MSM)	No	1024KB SRAM	
DDR3 Maximum Data Rate	1066	1333	
Serial Rapid I/O Lanes	No	4x	
HyperLink	No	Yes	
Viterbi Coprocessor (VCP)	No	2x	
Turbo Coprocessor Decoder (TCP3d)	No	Yes	
Network Coprocessor (NETCP)	No	No	

For More Information

- For more information, refer to the <u>C66x Getting Started</u> page to locate the data manual for your KeyStone device.
- View the complete <u>C66x Multicore SOC Online</u> <u>Training for KeyStone Devices</u>, including details on the individual modules.
- For questions regarding topics covered in this training, visit the support forums at the TI E2E Community website.