Sannsynlighetsfordelinger:

Binomisk Fordeling:

- 1. n uavhengige delforsøk
- 2. Suksess eller ikke
- 3. P(A)=p i alle forsøk
- X = Antall ganger A intreffer på n forsøk.
- $X \sim binom(n, p)$
- $f(x) = \binom{n}{x} \cdot p^x \cdot (1-p)^{n-x}, \ x = 0, 1, 2, \dots, n$
- $P(X \le x) = \sum_{k=0}^{x} P(X = k)$
- E(X) = np
- Var(X) = np(1-p)

Hypergeometrisk:

- 1. Populasjon med N elementer.
- 2. k av disse regnes som "Suksess", N-k som fiasko
- 3. Trekker n elementer uten tilbakelegging
- X, antallet suksesser.
- $f(x) = \frac{\binom{k}{x} \cdot \binom{N-k}{n-x}}{\binom{N}{x}}$
- E(X) = np, p = k/N
- $Var(X) = np(1-p)\frac{N-n}{N-1}$

Negativ-Binomisk:

X er antall forsøk en må gjøre for at en hendelse A skal intreffe

- $f(x) = {x-1 \choose k-1} \cdot p^x (1-p)^{x-k}, \ x = k, k+1, k+2, \dots$
- E(X) = k/p
- $Var(x) = k \cdot \frac{1-p}{n^2}$

Geometrisk:

X er antall forsøk en må gjøre for at hendelsen A intreffer første

- E(X) = 1/p

• $Var(X) = \frac{1-p}{p^2}$ Geometrisk fordeling er minneløs!

Poisson:

Antall forekomster av hendelsen A er Poisson-fordelt hvis:

- 1. Antallet av A i disjunkte tidsintervall er uavhengige
- 2. Forventa antall av A er konstant lik λ (raten) per tidsenhet
- 3. Kan ikke få to forekomster samtidig
- X = antall forekomster av A i et tidsrom t
- $f(x) = \frac{(\lambda t)^x \cdot e^{-\lambda t}}{x!}, \ x = 0, 1, 2, \dots$
- $E(X) = \lambda t$
- $Var(X) = \lambda t$
- $P(X \le x) = \sum_{k=0}^{x} P(X = k)$

Normalfordeling:

- $f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- $P(a \le X \le b) = \int_a^b f(x) dx$

Standard normalfordeling:

- Alle normalfordelinger kan skrives som Standard normalfordeling
- $Z = \frac{X \mu}{5}$
- $F(x) = F(X \le x) = P\left(\frac{X-\mu}{\sigma} \le \frac{x-\mu}{\sigma}\right) = P\left(Z \le \frac{x-\mu}{\sigma}\right) =$

Anta at X_1, X_2, \ldots, X_n er uavhengige og normalfordelt. Da er: $Y = \alpha_1 X_1 + \alpha_2 X_2 + \cdots + \alpha_n X_n$ Være normalfordelt med:

- $E(Y) = \sum_{i=1}^{n} \alpha_i \mu_i$
- $Var(Y) = \sum_{i=1}^{n} \alpha_i^2 \sigma_i^2$

Uniform fordeling:

En kontinuerlig uniformt fordelt variabel, har samme sannsynlighet for alle verdier innen et intervall. Generelt har vi tetthets-

funksjonen:
$$f(x) = \begin{cases} \frac{1}{B-A}, & A \le x \le B \\ 0, & \text{ellers} \end{cases}$$

- $E(X) = \frac{A+B}{2}$
- $Var(X) = \frac{(A-B)^2}{12}$

Gammafordeling:

En kontinuerlig variabel X er gammfordelt med parameter $\alpha > 0$ og $\beta > 0$ dersom tetthetsfunksjonen er gitt ved: $f(x; \alpha, \beta) =$ $\int \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-\frac{x}{\beta}}, \ x > 0$

- $E(X) = \alpha \beta$
- $Var(X) = \alpha \beta^2$