

CONCEITOS BÁSICOS DE MACHINE LEARNING II

DIEGO RODRIGUES DSC

INFNET

MODEL LIFECYCLE: CONCEITOS BÁSICOS DE MACHINE LEARNING II

PARTE 1 : TEORIA

- BUSINESS UNDERSTANDING
- DATA UNDERSTANDING
 - COLETA DE DADOS
 - ANÁLISE EXPLORATÓRIA
- DATA PREPARATION
- MODELING
 - SELEÇÃO DE ATRIBUTOS
 - SELEÇÃO DO MODELO
 - CLASSIFICAÇÃO
 - REGRESSÃO
- EVALUATION

Produzir Ação

CICLO DE VIDA DO MODELO

Baseado em Dados

1) Requerimentos e Análise de Negócio

Entendimento do problema decisório, dados relacionados & revisão bibliográfica.

2) Preparação dos Dados

Entendimento das fontes de dados, dos tipos e elaboração da representação.

3) Modelagem

Análise Exploratória, Seleção de atributos e treinamento.

4) Avaliação

Seleção do melhor modelo.

5) Liberação

Liberação do modelo no ambiente de produção.

BUSINESS UNDERSTANDING

CRISP-DM

Cross Industry Standard Process for Data Mining - IBM

1) Requerimentos e Análise de Negócio

Entendimento do problema decisório, dados relacionados & revisão bibliográfica.

2) Preparação dos Dados

Entendimento das fontes de dados, dos tipos, análise exploratória e representação.

3) Modelagem

Seleção, extração de atributos e treinamento do modelo.

4) Avaliação

Seleção do melhor modelo.

5) Liberação

Liberação do modelo no ambiente de produção.

Big Data, Business Intelligence, Analytics, Data Science...

Camada de inteligência é Maturidade no Inteligência baseada no uso de modelos para (ML) uso de dados tomar decisões automáticas. Estamos aqui! Camada de conhecimento é Conhecimento baseada no uso de modelos (Estatística / ML) para **apoiar a decisão**. Camada de informação é responsável Informação (BI) por adicionar contexto aos dados: sistemas de BI tradicionais. Camada de dados é responsável pelo armazenamento & consulta em grandes Dados (SQL) volumes.

Dado, Informação, Conhecimento, Automação

Dado: 4.300

Informação: Peso em gramas de um neném do sexo feminino com 2 meses de idade.

Conhecimento: Modelo Percentil relacionando milhares de nenéns por idade / Peso.

Automação: Modelo de Previsão de Peso para o próximo mês & se o neném deve suplementar.

FRAMEWORK PARA A ETAPA DE BUSINESS UNDERSTANDING

<Alguém> toma uma decisão que envolve um determinado Risco> utilizando um conjunto de Dados> numa determinada Frequência>.

Descrição do Problema de Negócio

 Um Parágrafo descrevendo a necessidade do usuário, a decisão a ser tomada e os dados disponíveis.

Persona & Usuário

 Quem utilizará o sistema / modelo para tomada de decisão?

Riscos envolvidos na decisão

 Quais riscos envolvidos e quais figuras de mérito para medir o desempenho?

Dados disponíveis

 Listagem dos dados utilizados na tomada de decisão pelo usuário

Frequência da Decisão

Horária, diária, semanal, etc.

EXEMPLO (1) OTIMIZADOR DE PICKING EM ARMAZÉM

Descrição do Problema de Negócio

 Distribuir por hora, de forma otimizada, a demanda de separação de caixas dos próximos 5 dias, considerando a complexidade da carga, número de separadores escalados, com seus respectivos potenciais produtivos e capacidade de estoque.

Persona & Usuário

• Gestor de Equipe

Riscos envolvidos na decisão

Atraso nas entregas para os clientes

Dados disponíveis

 Demanda D+5 e produtividade histórica dos separadores.

Frequência da Decisão

• Diária.

EXEMPLO (2) CONSUMO INTELIGENTE DE COMBUSTÍVEL DE NAVIO

Descrição do Problema de Negócio

 Modelo de gestão inteligente de consumo de combustível, utilizando dados meteorológicos para traçar rotas com menor consumo estimado

Persona & Usuário

1° Oficial de Náutica

Riscos envolvidos na decisão

Consumo excessivo de combustível.

Dados disponíveis

Telemetria do navio e dados meteorológicos

Frequência da Decisão

Semanal.

REVISÃO BIBLIOGRÁFICA

DATA UNDERSTANDING

CRISP-DM

Cross Industry Standard Process for Data Mining - IBM

1) Requerimentos e Análise de Negócio

Entendimento do problema decisório, dados relacionados & revisão bibliográfica.

2) Preparação dos Dados

Entendimento das fontes de dados, dos tipos, análise exploratória e representação.

3) Modelagem

Seleção, extração de atributos e treinamento do modelo.

4) Avaliação

Seleção do melhor modelo.

5) Liberação

Liberação do modelo no ambiente de produção.

DATA UNDERSTANDING

Coleta de Dados

- Obter os dados de arquivos, queries, scrapping ou consulta a API.
- Tratar os dados brutos, combinando diferentes fontes e agregando para a granularidade desejada.

Análise Exploratória

- Tratar cada coluna do problema como uma variável aleatória e avaliar sua distribuição.
- Expurgar variáveis irrelevantes.
- Expurgar outliers (observações problemáticas).
- Avaliar a distribuição conjunta de múltiplas variáveis e eliminar variáveis redundantes.

COLETA DE DADOS

COLETA DE DADOS

COLETA DE DADOS

 ${json}$

UTF8
Separador de coluna
Separador de Decimal

Mais seguro salvar como CSV UTF8 ao invés de usar XLSX Estrutura de "Dicionário" Python

Padrão na comunicação Web

Tensor
Cada frame com 3
canais de cores

ARQUIVO CSV - COMMA SEPARATED VALUES

```
otebooks > data > 📄 players_22.csv > 🛅 data
   1 sofifa id,player url,short name,long name,player positions,overall,potential,value eur,wage eur,age,dob,height cm,weight kg,club team id,club name,league name,league level,club positions
         158023, https://sofifa.com/player/158023/lionel-messi/220002, L. Messi, Lionel Andrés Messi Cuccittini, "RW, ST, CF", 93, 93, 78000000.0, 3200000.0, 34, 1987-06-24, 170, 72, 73.0, Paris Saint-Germain
         188545,https://sofifa.com/player/188545/robert-lewandowski/220002,R. Lewandowski,Robert Lewandowski,ST,92,92,119500000.0,270000.0,32,1988-08-21,185,81,21.0,FC Bayern München,German 1.
         20801, https://sofifa.com/player/20801/c-ronaldo-dos-santos-aveiro/220002, Cristiano Ronaldo dos Santos Aveiro, "ST, LW", 91,91,45000000.0,270000.0,36,1985-02-05,187,83,
         190871,https://sofifa.com/player/190871/neymar-da-silva-santos-jr/220002,Neymar Jr,Neymar da Silva Santos Júnior, "LW, CAM",91,91,129000000.0,270000.0,29,1992-02-05,175,68,73.0,Paris Sa
         192985, https://sofifa.com/player/192985/kevin-de-bruyne/220002, K. De Bruyne, Kevin De Bruyne, "CM, CAM", 91,91,125500000.0,3500000.0,30,1991-06-28,181,70,10.0, Manchester City, English Premi
         231747, https://sofifa.com/player/231747/kylian-mbappe/220002, K. Mbappé, Kylian Mbappé Lottin, "ST, LW", 91, 95, 194000000.0, 230000.0, 22, 1998-12-20, 182, 73, 73.0, Paris Saint-Germain, French Lig
         167495, https://sofifa.com/player/167495/manuel-neuer/220002, M. Neuer, Manuel Peter Neuer, GK, 90, 90, 13500000.0, 86000.0, 35, 1986-03-27, 193, 93, 21.0, FC Bayern München, German 1. Bundesliga, 1, 1
         192448, https://sofifa.com/player/192448/marc-andre-ter-stegen/220002, M. ter Stegen, Marc-André ter Stegen, GK, 90, 92, 99000000.0, 2500000.0, 29, 1992-04-30, 187, 85, 241.0, FC Barcelona, Spain Prim
         202126, https://sofifa.com/player/202126/harry-kane/220002, H. Kane, Harry Kane, ST, 90, 90, 129500000.0, 240000.0, 27, 1993-07-28, 188, 89, 18.0, Tottenham Hotspur, English Premier League, 1, ST, 10, , 2
         215914,https://sofifa.com/player/215914/ngolo-kante/220002,N. Kanté,N'Golo Kanté,"CDM, CM",90,90,100000000.0,230000.0,30,1991-03-29,168,70,5.0,Chelsea,English Premier League,1,RCM,7,,2
         165153,https://sofifa.com/player/165153/karim-benzema/220002,K. Benzema,Karim Benzema, "CF, ST",89,89,66000000.0,350000.0,33,1987-12-19,185,81,243.0,Real Madrid CF,Spain Primera Divisio
         192119, https://sofifa.com/player/192119/thibaut-courtois/220002, T. Courtois, Thibaut Courtois, GK, 89, 91, 85500000.0, 250000.0, 29, 1992-05-11, 199, 96, 243.0, Real Madrid CF, Spain Primera Divisi
         200104,https://sofifa.com/player/200104/heung-min-son/220002,H. Son,손흥민 孙兴慜,"LM, CF, LW",89,89,104000000.0,220000.0,28,1992-07-08,183,78,18.0,Tottenham Hotspur,English Premier Lea
         200145.https://sofifa.com/player/200145/carlos-henrique-venancio-casimiro/220002, Casemiro, Carlos Henrique Venancio Casimiro, CDM, 89,89,8000000.0,310000.0,29,1992-02-23,185,84,243.0, Rea
         203376,https://sofifa.com/player/203376/virgil-van-dijk/220002, van Dijk,Virgil van Dijk,CB,89,89,86000000.0,230000.0,29,1991-07-08,193,92,9.0,Liverpool,English Premier League,1,LCB,
         208722, https://sofifa.com/player/208722/sadio-mane/220002, S. Mané, Sadio Mané, LW, 89, 89, 101000000.0, 270000.0, 29, 1992-04-10, 175, 69, 9.0, Liverpool, English Premier League, 1, LW, 10, , 2016-07-01
         209331, https://sofifa.com/player/209331/mohamed-salah/220002, M. Salah, Mohamed Salah Ghaly, RW, 89, 89, 1010000000.0, 270000.0, 29, 1992-06-15, 175, 71, 9.0, Liverpool, English Premier League, 1, RW, 1
         210257,https://sofifa.com/player/210257/ederson-santana-de-moraes/220002,Ederson,Ederson Santana de Moraes,GK,89,91,94000000.0,200000.0,27,1993-08-17,188,86,10.0,Manchester City,Englis
         212831,https://sofifa.com/player/212831/alisson-ramses-becker/220002,Alisson,Alisson Ramsés Becker,GK,89,90,82000000.0,190000.0,28,1992-10-02,191,91,9.0,Liverpool,English Premier Leagu
         230621,https://sofifa.com/player/230621/gianluigi-donnarumma/220002, 6. Donnarumma, GK, 89,93,119500000.0,110000.0,22,1999-02-25,196,90,73.0,Paris Saint-Germain, Frence Proceedings of the Computation of 
         155862, https://sofifa.com/player/155862/sergio-ramos-garcia/220002, Sergio Ramos, Sergio Ramos García, CB, 88, 88, 24000000.0, 115000.0, 35, 1986-03-30, 184, 82, 73.0, Paris Saint-Germain, French Li
         176580,https://sofifa.com/player/176580/luis-suarez/220002,L. Suárez,Luis Alberto Suárez Díaz,ST,88,88,44500000.0,135000.0,34,1987-01-24,182,83,240.0,Atlético de Madrid,Spain Primera D
         182521,https://sofifa.com/player/182521/toni-kroos/220002,T. Kroos,Toni Kroos,CM,88,88,75000000.0,310000.0,31,1990-01-04,183,76,243.0,Real Madrid CF,Spain Primera Division,1,LCM,8,,201
         192505, https://sofifa.com/player/192505/romelu-lukaku/220002, R. Lukaku, Romelu Lukaku Menama, ST, 88, 88, 93500000.0, 2600000.0, 28, 1993-05-13, 191, 94, 5.0, Chelsea, English Premier League, 1, ST, 9,
         193041,https://sofifa.com/player/193041/keylor-navas/220002,K. Navas,Keylor Navas Gamboa,GK,88,88,15500000.0,130000.0,34,1986-12-15,185,80,73.0,Paris Saint-Germain,French Ligue 1,1,SUB
         202652, https://sofifa.com/player/202652/raheem-sterling/220002, R. Sterling, Raheem Sterling, "LW, RW", 88,89,107500000.0,290000.0,26,1994-12-08,170,69,10.0, Manchester City, English Premier
         212198, https://sofifa.com/player/212198/bruno-miguel-borges-fernandes/220002, Bruno Fernandes, Bruno Miguel Borges Fernandes, CAM, 88, 89, 107500000.0, 25, 1994-09-08, 179, 69, 11.0, Manc
         239085, https://sofifa.com/player/239085/erling-haaland/220002, E. Haaland, Erling Braut Haaland, ST, 88, 93, 137500000.0, 110000.0, 20, 2000-07-21, 194, 94, 22.0, Borussia Dortmund, German 1. Bundes
         153079, https://sofifa.com/player/153079/sergio-aguero/220002, S. Agüero, Sergio Leonel Agüero del Castillo, ST, 87, 87, 51000000.0, 2600000.0, 33, 1988-06-02, 173, 70, 241.0, FC Barcelona, Spain Prim
         167948, https://sofifa.com/player/167948/hugo-lloris/220002, H. Lloris, Hugo Lloris, GK, 87, 87, 13500000.0, 125000.0, 34, 1986-12-26, 188, 82, 18.0, Tottenham Hotspur, English Premier League, 1, GK, 1,
        183898,https://sofifa.com/player/183898/angel-di-maria/220002,Á. Di María,Ángel Fabián Di María Hernández,"RW, LW",87,87,49500000.0,160000.0,33,1988-02-14,180,69,73.0,Paris Saint-Germa
```

NOMENCLATURA PARA "OS DADOS"

		time	down	distance	field	score	play
1	1	9	1	10	34	0	2
1	1	42	1	10	47	0	1
1	1	83	2	6	49	0	2
1	1	93	3	6	49	0	2
1	1	119	1	10	58	0	2
1	1	163	2	2	66	0	1
1	1	203	3	1	67	0	1
1	1	239	1	10	69	0	2
1	1	270	2	14	65	0	1
1	1	315	3	13	66	0	2
1	1	364	1	10	80	0	1
1	1	397	2	2	88	0	1
1	1	431	3	5	85	0	2
1	1	476	1	9	91	0	1
1	1	514	2	8	92	0	2
1	1	523	3	8	92	0	2
1	1	529	4	8	92	0	3
1	1	852	1	10	34	3	2
1	1	859	2	10	34	3	1
1	1	891	3	8	36	3	2
1	2	0	1	10	59	3	2
1	2	37	1	10	71	3	2
1	2	46	2	10	71	3	2
1	2	53	3	10	71	3	2
1	2	94	1	14	86	3	1

Cada linha é uma observação.

O que define a unicidade da linha é chamado de id, grão ou chave.

Cada coluna é um atributo ou variável independente.

A planilha inteira é uma amostra.

Processamento rápido de matrizes

- + Algoritmos
- + Dado "Baixo Nível"
- +Open Source
- +Performático
- +Sintaxe para os Pesquisadores

stall Documentation Learn Community About Us News Contribute English 🗸

The fundamental package for scientific computing with Python

LATEST RELEASE: NUMPY 1.26. VIEW ALL RELEASES

NumPy 1.26.0 released 2023-09-16

Powerful N-dimensional arrays

Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today.

Interoperable

NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.

Numerical computing tools

NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more.

Open source

Distributed under a liberal <u>BSD license</u>, NumPy is developed and maintained <u>publicly on GitHub</u> by a vibrant, responsive, and diverse <u>community</u>.

Performant

The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code.

Easy to use

NumPy's high level syntax makes it accessible and productive for programmers from any background or experience level.

libraries

NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array perore of purply is well-optimized Configuration the flexibility of Python with the peed of compiled code.

NumPy's bigb level syntax makes it accessible and productive for programmen from any background or experience level.

NUMPY

ndarray

- + array de qualquer tipo numérico podendo conter vazios
- + criação rápida e manipulação dessas arrays.
 - + Sequência
 - + criar, editar, operações, ordenar, concatenar, indexar, aleatórios, estatísticas
 - + Vetor
 - + Matriz
 - + Tensor

Análise de Séries e Data Frames

+ Compatível com múltiplas fontes

de dados

- + Dado mais "Alto Nível"
- + Estatísticas
- +Sumarizações
- +Visualização
- +Operações de Tabelas

pandas

pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language.

Install pandas now!

- What's new in 2.2.2
- · Release date: Apr 10, 2024
- · Documentation (web)
- · Download source code

Follow us

Recommended books

Getting started

- Install pandas
- · Getting started

Documentation

- User guide
- API reference
- · Contributing to pandas
- · Release notes

Community

- About pandas
- Ask a question
- Ecosystem

With the support of:

TIDELIFT

Chan Zuckerberg Initiative @

bodo.ai

Pandas

pandas.Series

- + ndarray indexada por uma coluna.
- + Métodos para cálculos de estatísticas e séries temporais.
- + "Casca" ao redor do numpy para permitir indexação chave -> valor para um elemento.
- + Facilita a operação com índices

Pandas

pandas.DataFrame

- + tabela de duas dimensões indexada por linha e por coluna, permitindo colunas com tipos de dados múltiplos
- + Métodos para estatísticas, agrupamento, indexação, visualização de dados.
- + É uma "Planilha Excel" com muito mais ferramentas de análise.
- + Possui operações de "Bancos de Dados" para associar tabelas.

I/O DE DADOS COM PANDAS

QUAIS SÃO OS TIPOS MAIS COMUNS DE ATRIBUTOS?

Nominal ou Categórica

- Conjunto de diferentes valores não ordenados.
- Exemplo: Sexo, cor, palavras, tipo de coisas.

Ordinal

- Conjunto ordenado, mas a diferença entre os valores não tem significado.
- Exemplo: scores
 quantitativos como
 "excelente", "bom",
 "regular", "ruim".

Intervalo

- Conjunto ordenado,
 a diferença tem
 significado mas não
 as proporções.
- Exemplo: Datas.

Ratio

- Conjunto ordenado onde diferenças & proporções tem significado.
- Exemplo: Idade,
 peso, altura,
 dinheiro, massa, etc.

Texto

- Sequência de palavras de tamanho finito.
- Exemplo: "Ontem eu fui passear".

string / bool

string / int

datetime

int / float

string

ANÁLISE EXPLORATÓRIA

EXEMPLO (1): ANÁLISE EXPLORATÓRIA DO DATASET IRIS

Características das flores

Largura & comprimento da pétala Largura & comprimento da sépala

Espaço de Atributos com 4 dimensões!

http://archive.ics.uci.edu/ml/datasets/Iris

PORQUE É NECESSÁRIO MANTER O NÚMERO DE ATRIBUTOS O MENOR POSSÍVEL?

1) "Maldição" da Dimensionalidade

Suponha que 10.000 observações são distribuídas aleatoriamente no intervalo [0, 1]. Qual é a distância média entre os pontos? E se as observações são distribuídas no cubo [0, 1]³? Ou em um hipercubo de 100 dimensões?

Esparsidade do espaço de atributos aumenta com o número de dimensões!

2) Multi-colinearidade

Dois atributos com uma relação significativa pode sugerir causalidade entre ambos ou relação com uma variável latente desconhecida. De uma maneira ou outra, o atributo "independente" vai ter mais importância para o modelo, já que está representado por mais de um atributo.

QUAIS ATRIBUTOS UTILIZAR?

Para separar a Iris Setosa (azul)?

Para separar Iris Virginica (Vermelha)?

Para encontrar corretamente 3 grupos de flores?

DATA PREPARATION

CRISP-DM

Cross Industry Standard Process for Data Mining - IBM

1) Requerimentos e Análise de Negócio

Entendimento do problema decisório, dados relacionados & revisão bibliográfica.

2) Preparação dos Dados

Entendimento das fontes de dados, dos tipos, análise exploratória e representação.

3) Modelagem

Seleção, extração de atributos e treinamento do modelo.

4) Avaliação

Seleção do melhor modelo.

5) Liberação

Liberação do modelo no ambiente de produção.

DATA PREPARATION

Quantificação dos Atributos

• Transformar todos os atributos em <u>atributos numéricos</u>.

Escalonamento

 Transformar todos os atributos para a <u>mesma faixa dinâmica</u>, de maneira a assegurar que todos tenham o <u>mesmo "peso numérico"</u> para o treinamento do modelo.

Normalização

 Garantir que os dados tenham uma distribuição de probabilidade gaussiana (Normal).

ATRIBUTOS CATEGÓRICOS

One Hot Encoding

Food Name	Categorical #	Calories	
Apple	1	95	
Chicken	2	231	
Broccoli	3	50	

Componentes da Data

- Ano
- Mês
- Dia
- Dia do Ano
- Dia da Semana
- Hora
- Minuto
- Segundo

Flags

- É final de semana
- É feriado

Diferença entre Datas

- Diferença em Dias
- Diferença em Horas
- Diferença em Meses

Encoding Cíclico

ATRIBUTOS TEXTUAIS

BAG OF WORDS

Variants of term frequency (tf) weight						
weighting scheme	tf weight					
binary	0,1					
raw count	$f_{t,d}$					
term frequency	$\left f_{t,d}\left/\sum_{t'\in d}f_{t',d} ight. ight $					
log normalization	$\log(1+f_{t,d})$					
double normalization 0.5	$0.5 + 0.5 \cdot rac{f_{t,d}}{\max_{\{t' \in d\}} f_{t',d}}$					
double normalization K	$K + (1-K) rac{f_{t,d}}{\max_{\{t' \in d\}} f_{t',d}}$					

TF-IDF

Variants of inverse document frequency (idf) weight							
weighting scheme	idf weight ($n_t = \{d \in D: t \in d\} $)						
unary	1						
inverse document frequency	$\log rac{N}{n_t} = -\log rac{n_t}{N}$						
inverse document frequency smooth	$\log\!\left(\frac{N}{1+n_t}\right)+1$						
inverse document frequency max	$\log\!\left(rac{\max_{\{t'\in d\}}n_{t'}}{1+n_t} ight)$						
probabilistic inverse document frequency	$\log \frac{N - n_t}{n_t}$						

TF-IDF Calculation Example									
Words	Count		Term Frequency (TF)		Inverse Decument Frequency (IDE)	TF * IDF			
	Document 1	Document 2	Document 1	Document 2	Inverse Document Frequency (IDF)	Document 1	Document 2		
read	1	1	0.17	0.17	0	0	0		
svm	1	0	0.17	0	0.3	0.05	0		
algorithm	1	1	0.17	0.17	0	0	0		
article	1	1	0.17	0.17	0	0	0		
dataaspirant	1	1	0.17	0.17	0	0	0		
blog	1	1	0.17	0.17	0	0	0		
randomforest	0	1	0	0.17	0.3	0	0.05		

- Garantir que as variáveis possuam a mesma escala
- Mesmo efeito numérico na otimização independente da escala.

MODELING

CRISP-DM

Cross Industry Standard Process for Data Mining - IBM

1) Requerimentos e Análise de Negócio

Entendimento do problema decisório, dados relacionados & revisão bibliográfica.

2) Preparação dos Dados

Entendimento das fontes de dados, dos tipos, análise exploratória e representação.

3) Modelagem

Seleção, extração de atributos e treinamento do modelo.

4) Avaliação

Seleção do melhor modelo.

5) Liberação

Liberação do modelo no ambiente de produção.

MODELING

Seleção de Atributos

- Quantificar e ordenar os atributos por importância para o problema.
- Eliminar atributos irrelevantes.

Extração de Atributos

 Transformar os atributos do espaço original para um espaço que favoreça a modelagem.

Treinamento

• Encontrar os hiper-parâmetros e parâmetros do modelo, para os dados disponíveis, avaliando a figura de mérito selecionada.

SELEÇÃO DE ATRIBUTOS

TÉCNICAS DE SELEÇÃO DE ATRIBUTOS

Filtragem – mede a relação entre atributos ou atributos e classes, utilizando estatísticas, sem depender do modelo.

- Coeficiente de Correlação de Pearson Estatística que mede a relação linear entre duas variáveis aleatórias.
- Teste T de diferença de médias Informa se a média de um determinado atributo muda de acordo com uma categoria binária.
- ANOVA O mesmo que o teste T, mas serve para múltiplas categoria.
- Informação Mútua Estatística que mede relação não-linear entre duas variáveis aleatórias.

Wrapper – mede a relação entre atributos e classes, utilizando um modelo treinado.

- **Gini –** Estatística que representa a importância de um atributo na divisão da base de dados por uma árvore de decisão.
- Relevância Estatística que representa a variação causada na saída do modelo quando um atributo é substituído por sua média.

SELEÇÃO DO MODELO

CLASSIFICAÇÃO

ALGORITMOS BASEADOS EM INSTÂNCIA VS MODELO

ALGORITMOS BASEADOS EM DENSIDADE

Algoritmos que dependem da função densidade de probabilidade dos dados, ou aproximações locais, para determinar a classe de observações fora da amostra de treino.

- 1) Classificador Bayesiano
- 2) Classificador Bayesiano "Naïve"
- 3) K-Vizinhos mais próximos

Algoritmos baseados em densidade dependem da **DENSIDADE** (!!). Consequentemente, se beneficiam de um **conjunto grande de observações e de baixa esparsidade do espaço de atributos**. O Classificador Bayesiano é considerado o classificador "ótimo", mas é raramente utilizado, dada a dificuldade de estimar a função densidade de probabilidade dos dados. É normalmente utilizado como benchmark para comparação teórica entre os algoritmos de classificação.

MODELOS FUNCIONAIS

Algoritmos que dependem da estimação dos parâmetros de uma função que é utilizada como superfície de separação entre as classes.

- 1) Funções Polinomiais
- 2) Regressão Logística
- 3) Máquina de Vetores Suporte
- 4) Neurônio Sigmoide / Tangente Hiperbólica
- 5) Árvores de Decisão

Algoritmos baseados em funções são mais simples, usualmente tem um número menor de parâmetros e não dependem em armazenar muitos dados para manter uma "memória", como por exemplo K-vizinhos mais próximos.

ALGORITMOS BASEADOS EM ENSEMBLE

Algoritmos que combinam modelos simples, usualmente através de votação ou ponderação, para atingir maiores taxas de classificação.

- 1) Random Forest
- 2) Boosting

Tree 1 Tree 2 Tree 3

0.2 -0.1 0.5

Ensemble Model:

example for regression

Boa capacidade de generalização gerado através de arranjos complexos de múltiplos modelos simples de machine learning.

ALGORITMOS BASEADOS EM ENSEMBLE

Modelos Multiclasse

- Discriminar múltiplos objetos em paralelo.
- Ensembles podem ser utilizados para especializar modelos.
- Alguns modelos são

 naturalmente multiclasse, como
 redes neurais.

ENSEMBLES BÁSICOS

ONE AGAINST ONE

REGRESSÃO

MODELOS DE REGRESSÃO

- 1) Regressão Linear
- 2) K Vizinhos mais Próximos
- 3) Regressão Não-Linear
- 4) Processos Gaussianos
- 5) Máquina de Vetores Suporte
- 6) Redes Neurais

Algoritmos de regressão geralmente são modelados combinando uma parte determinística e uma parte aleatória. Os parâmetros correspondente à parte determinística são encontrados utilizando estimadores como máxima verossimilhança ou máximo a posteriori (MAP).

MODELOS DE REGRESSÃO

$$Y = \alpha^T x + \varepsilon$$

$$Y = X\alpha + \varepsilon$$

$$Y = F(X) + \varepsilon$$

Parte Determinística

Parte Estocástica

$$Y = \frac{1}{1 + e^{\alpha^t x + \varepsilon}}$$

$$Y = \varphi(x) + \varepsilon$$

EVALUATION

CAPACIDADE E GENERALIZAÇÃO

Under-fitting

(too simple to explain the variance)

explain the variance)

Appropriate-fitting

Over-fitting

(forcefitting -- too good to be true)

ESTIMANDO O ERRO DE GENERALIZAÇÃO

SINGLE SPLIT (GRUPO DE CONTROLE)

 Amostra é dividida entre treino e teste, mantendo um percentual das observações como grupo de teste externo ao treinamento.

LEAVE ONE OUT

 Uma única observação é deixada de fora a cada treinamento. N treinamentos são realizados para calcular a estatística de erro.

K FOLDS

 Amostra é dividida em K conjuntos. K treinamentos são realizados, mantendo um conjunto como fora-da-amostra.

BOOTSTRAPPING

O algoritmo itera, amostrando aleatoriamente de la vações, para o quantidade Q desejada de treinamentos

relevant elements false negatives true negatives 0 true positives false positives selected elements How many relevant How many selected items are relevant? items are selected? Recall = -Precision = -

FIGURAS DE MÉRITO CLASSIFICAÇÃO

Acurácia

• (TP+TN)/(P+N)

Taxa de Erro

1-Acurácia

Sensibilidade (Recall)

TP/(TP+FN)

Especificidade

TN/(TN+FP)

Precisão

TP/(TP+FP)

Produto Sp

SQRT[SQRT(R1*R2)

$$*(R1 + R2)/2$$

FIGURAS DE MÉRITO - REGRESSÃO

R QUADRADO

$$R^{2} = 1 - \frac{SS_{RES}}{SS_{TOT}} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}}$$

RESÍDUO NORMAL DE MÉDIA
 ZERO E VARIÂNCIA CONSTANTE

CRIANDO MODELOS SIMPLES DE MACHINE LEARNING I