

Патогенные варианты и механизмы их действия

Скоблов Михаил Юрьевич

заведующий лабораторией функциональной геномики ФГБНУ "Медико-генетический научный центр"

Летняя школа MGNGS School'21

Классификация мутаций

Точковые мутации

Хромосомные мутации

Геномные мутации

- Замена
 - Синонимичная
 - Миссенс
 - Нонсенс
- Делеция
- Инсерция
- Амлификация тринуклеотидных повторов

- Транслокация
- Делеция
- Инверсия
- Дупликация

- Моносомия
- Трисомия

Наследственные заболевания будут «всегда»

 Каждый человек является носителем 8-10 и более мутаций для генов с аутосомнорецессивными заболеваниями

• Каждый человек получает от 40 до 100 новых мутаций, которых нет у его родителей

Наследственных заболеваний много и они разные

Number of Entries in OMIM (Updated June 18th, 2021):

MIM Number Prefix	Autosomal	X Linked	Y Linked	Mitochondrial	Totals
Phenotype description, molecular basis known #	5,716	356	5	34	6,111
Phenotype description or locus, molecular basis unknown %	1,411	112	4	0	1,527
Other, mainly phenotypes with suspected mendelian basis	1,651	102	3	0	1,756

Механизмов патогенеза наследственных заболеваний тоже очень много и они разные

Distribution of Phenotypes across Genes (Updated June 18th, 2021):

Number of genes with 1 phenotype	3,114
Number of genes with 2 phenotypes	812
Number of genes with 3 phenotypes	300
Number of genes with 4+ phenotypes	239

Где могут быть патогенные варианты?

Механизм – это главное

ENCODE: Encyclopedia of DNA Elements

Родословная семьи больного

Родословная семьи больного

Figure 7-2 Symbols commonly used in pedigree charts. Although there is no uniform system of pedigree notation, the symbols used here are according to recent recommendations made by professionals in the field of genetic counseling.

Аутосомно-рецессивный тип наследования

Аутосомно-рецессивный тип наследования

Аутосомно-доминантный тип наследования

Аутосомно-доминантный тип наследования

Х-сцепленное рец. наследование

Х-сцепленное дом. наследование

Х-сцепленное дом. наследование

Молекулярные эффекты различных SNV

Теория Мёллера

- **аморфные (loss-of-function) -** мутация выглядит, как полная потеря функции гена
- **гиперморфные (gain-of-function аллели)** приводят к увеличению активности продукта гена
- **антиморфные (dominant negative)** мутантный признак изменяется, на противоположный
- **неоморфные** аллели, функция которых изменилась кардинально
- гипоморфные (reduction-of-function) измененные аллели с пониженной экспрессией или функцией
- изоморфные аллели продукт гена с мутантного аллеля имеет ту же активность, что и с дикого типа.

Механизмов патогенеза наследственных заболеваний очень много и они разные

- аморфные (loss-of-function) мутация выглядит, как полная потеря функции гена
- гиперморфные (gain-of-function аллели)
 приводят к увеличению активности продукта гена
- антиморфные (dominant negative) мутантный признак изменяется, на противоположный
- **неоморфные** аллели, функция которых изменилась кардинально
- гипоморфные (reduction-of-function) измененные аллели с пониженной экспрессией или функцией
- **изоморфные аллели** продукт гена с мутантного аллеля имеет ту же активность, что и с дикого типа.

Loss-of-function variants

Loss-of-function variants

- Nonsense
- Splicing variants
- Frame-shifting indels
- Gross deletions

Преждевременный стоп-кодон

Nonsense-mediated decay

Loss-of-function variants

Loss-of-function variants

• Missense — если затрагивает активный центр белка, приводит к нарушению сплайсинга;

• Synonymous (silent) — если приводит к нарушению сплайсинга, нарушает фолдинг белка.

Последствия LoF вариантов

- Варианты с потерей функции в основном рецессивны, так как второй здоровой копии гена обычно хватает для выполнения нормальной функции
- Классический пример муковисцидоз

Исключения — гаплонедостаточность

• «одной копии не достаточно!»

Gain-of-Function

Метод локальной фиксации потенциала (patch-clamp)

FIGURE 1 | Increased persistent current in *SCN8A***-p.Asn1768Asp mutant channel.** Wildtype and mutant cDNAs were transiently transfected into the neuronal cell line ND7/23. At 100 ms after induction of an action potential, cells expressing the mutant cDNA had 20% persistent current compared with 1% in the wildtype. Cells were held at –120 mV. and a

Gain-of-Function

Functional Effects of the SCNIA Sodium Channel Mutations that Cause GEFS+

	Increased Sodium Channel Activity					
Mutation	Channel	Cell Type	Effects			
D188V	rNa _V 1.2	HEK	↓ Use-dependence, Faster recovery from slow inactivation			
T875M	rNa _V 1.1	Xenopus oocytes	↑ Persistence			
W1204R	rNa _V 1.1	Xenopus oocytes	Negative voltage-dependence			
W1204R	hNa _V 1.1	tsA201	↑ Persistence			
R1648H	rNa _V 1.1	Xenopus oocytes	↓ Use-dependence, Faster recovery			
R1648H	hNa _V 1.1	tsA201	↑ Persistence			
R1648H	hNa _V 1.4	tsA201	Faster recovery			
R1648C	rNa _V 1.1	tsA201	↑ Persistence			
D1866Y	rNa _V 1.1	Xenopus oocytes	↑ Persistence			
	Decreased Sodium Channel Activity					
Mutation	Channel	Cell Type	Effects			
R859C	rNa _V 1.1	Xenopus oocytes	Positive Voltage-dependence, Slower recovery from slow inactivation, \$\psi\$ Current			
T875M	rNa _V 1.1	Xenopus oocytes	↑ Slow inactivation			
T875M	hNa _V 1.4	tsA201	↑ Fast and slow inactivation			
V1353L	hNa _V 1.1	tsA201	No sodium current			
I1656M	hNa _V 1.1	tsA201	Positive voltage-dependence			
R1657C	hNa _V 1.1	tsA201	Positive voltage-dependence, Current			
A1685V	hNa _V 1.1	tsA201	No sodium current			

Gain of function (dominant negative effect)

• Пациентка с миофибриллярной миопатией

Gain of function (dominant negative effect)

Location	Phenotype	Phenotype MIM number	Inheritance	Phenotype mapping key	Gene/Locus	Gene/Locus MIM number
2q35	Myopathy, myofibrillar, 1	601419	AD, AR	3	DES	125660

Десмин — белок промежуточных филаментов

 Общая структура белков промежуточных филаментов и механизм полимеризации

Эффекты мутаций в гене DES

• Нарушение образования сети филаментов -> образование аггрегатов в цитоплазме (->) приобретение токсического эффекта

- нарушение образования вставочных дисков сердечной мышцы
- нарушение распределение митохондрий в мышце
- нарушение сократимости сердца

Functional study

- Immunohistochemistry analysis of explanted myocardial tissue of a non-failing heart (A) and of the index patient IV.1 (B) using antidesmin antibodies (red) and 4',6-Diamidin-2phenylindol (DAPI, blue).
- Cell transfection studies. Wild-type desmin (green) forms typical intermediate filaments, whereas the mutation DES-c.336_344del forms cytoplasmic aggregates of different shape and size. F-actin was labeled with phalloidin conjugated with Texas Red (red) and the nuclei were labelled with DAPI (blue).

Где мы ищем мутации в генах?

5' UTR CDS 3' UTR

Как мы ищем мутации в генах?

(Original)

DNA sequence: AATGCATATGCA

amino acid sequence: Leu -- Arg -- Ile -- Arg

(Mutated)

DNA sequence: AATTCATATGCA

amino acid sequence: Leu -- Ser -- Ile -- Arg

Синонимичные варианты нуклеотидной последовательности

Патогенные синонимичные варианты нуклеотидной последовательности

SMA	UBA1	Exon 1 —//— Exon 14 —//— Exon 24
Болезнь Шарко-Мари- Тут тип 1В	MPZ	Exon 1 —//— Exon 6
Поликистоз почек	PDK2	Exon 1 —//— Exon 15
ТКИД	IL7R	Exon 1 —//— Exon 8
Синдром Барт	TAZ	Exon 1
Дефицит ацил-КоА- дегидрогеназы коротких цепей	ACAD S	Exon 1
Синдром Нагер	SF3B4	Exon 1 // Exon 6

Механизмы патогеннетического действия синонимичных вариантов

- Влияние на сплайсинг
- Влияние на время жизни мРНК
- Влияние на формирование вторичной структуры РНК
- Влияние на функции белка

X-linked hypohidrotic ectodermal dysplasia: clinical and molecular genetic analysis of a large Russian family with a synonymous p.Ser267= (c.801A>G) splice site mutation

Варианты сплайсинга

Важные участки влияющие на прохождения сплайсинга

Мутации сплайсинга выявленные WES

doi:10.1038/nbt.3514

doi: 10.1038/modpathol.2017.21

doi:10.1038/srep29088

Как мутации могут влиять на сплайсинг

Loss-of-function variants

