API DRIVEN CLOUD NATIVE SOLUTIONS

ASSIGNMENT 2

GROUP DETAILS

Group No: 12

Group Member Names with Contribution:

Sl. No	BITS ID	Name	Contribution of team member (Qualitative)	Percentage Contribution (Out of 100) Quantitative
1	2023MT03552	Amuthavarsni R	Fluency Feedback, Question Generation and Fine tuning and Integration	25%
2	2023MT03517	Shah Pratik Kiran	Voice to Text and Text to Voice Integration	25%
3	2023MT03577	Pradhan Vaishnavi Mangesh	Application UI, DB Connection and Integration	25%
4	2023MT03586	P Rahul Kumar	Model Fine Tuning Base Design and Report	25%

OVERVIEW

DOMAIN - EDUCATION - AI-BASED INTERVIEW PRACTICE TOOL

This project is focused on the Education domain, with a specific objective of enhancing interview preparation for students and job seekers. The system acts as an intelligent mock interview assistant, offering an automated and interactive environment that mimics real-life interview scenarios. It allows candidates to respond using voice or text, receive dynamic questions, and get instant evaluation and feedback powered by AI.

The solution aims to:

- Improve candidate readiness through repeated practice.
- Provide personalized and constructive feedback.
- Make interview preparation accessible, scalable, and engaging.

To implement this solution, the project combines two AI categories:

- Natural Language Processing (NLP):
 - For tasks like generating questions, evaluating answers, and providing fluency feedback.
- Speech Recognition:
 - For enabling voice-based interaction, converting speech to text and vice versa.

These AI capabilities work together to form a cohesive system that supports the candidate throughout their interview journey—from question delivery to performance evaluation.

Al Functionalities Overview

SELECTED SUB-TASKS

Categories	Sub-Task	Description
NLP	Question Generation	Generate interview questions using OpenAI GPT
NLP	Question Answering	Use fine-tuned DistilBERT to understand and score candidate answers
NLP	Fluency Feedback	GPT model gives natural language feedback on grammar, tone, and completeness
Speech Recognition	Voice to Text	OpenAl Whisper converts candidate's spoken answers to text
Speech Recognition	Text to Voice	gTTS converts generated questions into spoken form for the user

MODELS USED

Sub-Task	Model	Provider
Question Generation	GPT-3.5 (LLM)	OpenAl
Question Answering	DistilBERT (fine-tuned on QA)	Hugging Face

Fluency Feedback	GPT-3.5	OpenAl
Voice to Text	Whisper	OpenAl
Text to Voice	gTTS (Google Text-to- Speech)	Google

API INTEGRATION AND APPLICATION DESIGN

TECHNOLOGIES USED

- The Following are the technologies used in the application implementation:
 - o Flask Web Application Framework
 - o HuggingFace Model hosting and fine-tuning platform
 - o OpenAl API LLM integration (GPT, Whisper)
 - o Langchain Model Orchestration and Integration
 - o gTTS Text to Speech conversion

Software components

MODEL FINE-TUNING

Dataset Used:

 SQuAD (Stanford Question Answering Dataset) – a widely used benchmark dataset for reading comprehension and QA tasks.

Model Fine-Tuned:

- o distilbert-base-uncased
- o Task: Question Answering
- o Platform: HuggingFace, Collab
- Training Details: Fine-tuned on SQuAD v1.1 format where the model learns to predict answer spans from a given context paragraph in response to a question.

Purpose:

 To accurately assess candidate responses by extracting and comparing expected answers from context, improving the feedback and scoring quality during interviews.

SCREENSHOTS AND OUTPUTS

CANDIDATE DASHBOARD

CANDIDATE HOME

CANDIDATE TEST

ADMIN DASHBOARD

ADMIN HOME

ADMIN TESTS

ADMIN EVALUATE

