Contents

In	trod	uction	1
I	The	eory and Background	3
1	Cor	re Aspects of Tonal Compositions	5
	1.1	Structured Tonal Motion	5
	1.2	Polyphony	5
	1.3	Musical Time	5
	1.4	Repetition	5
2	Met	ta-languages for Abstraction and Structure	7
	2.1	Description, Instantiation, and Interpretation	7
	2.2	Grammar and Syntax	7
		2.2.1 Grammar of Natural Languages	7
		2.2.2 Grammar-Based Music Theory	7
	2.3	Combinatory Categorial Grammar	7
	2.4	Constructive Logic and Type Theory	7
3	Con	nstructive Logic and Type theory	9
	3.1	Curry-Howard Correspondence	9
	3.2	Composable and Verifiable Derivations	9
	3.3	Abstract Context-Free Grammar as Dependent Type	9
	3.4	Modular Constructions beyond context-free Languages	9
	3.5	Generic Programming	9
4	Out	tlook	11
	4.1	Towards a Wholistic Model of Tonal Music	11
		4.1.1 Modular Theories that Work Together	11
		4.1.2 Relating General Principles to Style Specific Constraints	11
	4.2	Thesis Outline	11

Contents

II	ΑI	Process Algebra For Metered Polyphony	13
5	Ton	al Motion as Hierarchical Processes	15
	5.1	Difficulties in the Assignment of Dependency Relations Among Entities	15
	5.2	Applicability and Inspiration From Existing Process Calculi	15
		5.2.1 Algebra of Communicating Processes	15
		5.2.2 Communicating Sequential Processes	15
		5.2.3 Calculus of Communicating Systems	15
	5.3	Stationary and Transitory Processes	15
	5.4	Temporal Abstractions	15
	5.5	Spatial Abstractions	15
	5.6	Connection with Existing Theories	15
6	Tim	ely Processes	17
	6.1	Difficulties in Combining Tonal Structure and Metrical Structure	17
		6.1.1 Coordinating the metrical structure with pitch structure	17
		6.1.2 Temporal Proportions: Phrasal expansion and contraction	17
	6.2	Temporal relations of processes	17
		6.2.1 Perceived vs Interpreted Simultaneity	17
		6.2.2 A Non-Linear Topology of Musical Time	17
		6.2.3 Modeling Meter as Nested Proportions	17
		6.2.4 Modeling Syncopation as Attending the Non-Present	17
	6.3	Connection with Existing Theories	17
Ш	· · ·	on and Structural Panatition	19
111		eneral Structural Repetition Various Types of Structural Repetition	21
	0.4	6.4.1 Exact Repetition	21
		6.4.2 Surface Variation	21
		6.4.3 Reinterpretation	21
		6.4.4 Transference	21
	6.5	Existing Formalism of Repetition	21
	0.5	6.5.1 Without Syntactical Constraints	21
		6.5.2 With Syntactical Constraints	21
	6.6	A Formal Model of Structural Repetition	21
	0.0	6.6.1 Typed Holes and Arrows: A Functional Interpretation of Templates	21
		6.6.2 Repetition structure as Higher-Order Templates	21
		6.6.3 Repetition-Syntax-Material Decomposition	21
		6.6.4 Cross-Domain Analogies of Repetition Structure	21
		0.0.4 Gross-Domain mialogics of repetition structure	41
IV	Co	omputational Experiments	23
	6.7	Encoding and Generating Instances of Galant Schemata	25
		Sampling Metered Polyphony with Repetition Constraint	25

						Coı	ıteı	ıts
6.9	Compression by Exploiting Structural Repetition	ı.	 	 	 	 		25

Introduction

A non-numbered chapter...

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Theory and Background Part I

1 Core Aspects of Tonal Compositions

- 1.1 Structured Tonal Motion
- 1.2 Polyphony
- 1.3 Musical Time
- 1.4 Repetition

2 Meta-languages for Abstraction and Structure

- 2.1 Description, Instantiation, and Interpretation
- 2.2 Grammar and Syntax
- 2.2.1 Grammar of Natural Languages
- 2.2.2 Grammar-Based Music Theory
- 2.3 Combinatory Categorial Grammar
- 2.4 Constructive Logic and Type Theory

3 Constructive Logic and Type theory

- 3.1 Curry-Howard Correspondence
- 3.2 Composable and Verifiable Derivations
- 3.3 Abstract Context-Free Grammar as Dependent Type
- 3.4 Modular Constructions beyond context-free Languages
- 3.5 Generic Programming

4 Outlook

- 4.1 Towards a Wholistic Model of Tonal Music
- 4.1.1 Modular Theories that Work Together
- **4.1.2** Relating General Principles to Style Specific Constraints
- 4.2 Thesis Outline

A Process Algebra For Metered Part II Polyphony

5 Tonal Motion as Hierarchical Processes

- 5.1 Difficulties in the Assignment of Dependency Relations Among Entities
- 5.2 Applicability and Inspiration From Existing Process Calculi
- 5.2.1 Algebra of Communicating Processes
- **5.2.2** Communicating Sequential Processes
- **5.2.3** Calculus of Communicating Systems
- **5.3** Stationary and Transitory Processes
- 5.4 Temporal Abstractions
- 5.5 Spatial Abstractions
- 5.6 Connection with Existing Theories

6 Timely Processes

6.1	Difficulties in	Combining	Tonal Structure	and Metrical Structur
-----	-----------------	-----------	------------------------	-----------------------

6.1.1 Coordinating the metrical structure with pitch structure

Passing Note in a Triple Meter

Accented Passing Note

Suspensions

Interruptions

- 6.1.2 Temporal Proportions: Phrasal expansion and contraction
- 6.2 Temporal relations of processes
- 6.2.1 Perceived vs Interpreted Simultaneity
- 6.2.2 A Non-Linear Topology of Musical Time
- **6.2.3** Modeling Meter as Nested Proportions
- 6.2.4 Modeling Syncopation as Attending the Non-Present
- 6.3 Connection with Existing Theories

General Structural Repetition Part III

6.4 Various Types of Structural Repetition

- **6.4.1** Exact Repetition
- **6.4.2** Surface Variation
- 6.4.3 Reinterpretation
- **6.4.4** Transference

6.5 Existing Formalism of Repetition

- 6.5.1 Without Syntactical Constraints
- **6.5.2** With Syntactical Constraints

6.6 A Formal Model of Structural Repetition

- 6.6.1 Typed Holes and Arrows: A Functional Interpretation of Templates
- 6.6.2 Repetition structure as Higher-Order Templates
- 6.6.3 Repetition-Syntax-Material Decomposition
- 6.6.4 Cross-Domain Analogies of Repetition Structure

Computational Experiments Part IV

- 6.7 Encoding and Generating Instances of Galant Schemata
- **6.8** Sampling Metered Polyphony with Repetition Constraint
- **6.9 Compression by Exploiting Structural Repetition**