

概率论笔记◎

本书为应律的个人学习笔记, 以杨振明老师的《概率论 (第二版)》为蓝本, 记录了相关重点知识与解题技巧。

概率论筆記

田欣洋1

2021年9月12日

目录

第一章	随机事件与概率	1
1.1	基本概念	2
	1.1.1 随机现象与样本空间	2
	1.1.2 事件及其运算	2
	1.1.3 频率与概率	3
1.2	古典概型	4
	1.2.1 古典模型的定义	4
	1.2.2 计数原理	4
1.3	几何概型	5
	1.3.1 定义	5
1.4	概率空间	5
	1.4.1 事件 σ-代数	5
	1.4.2 概率与概率空间	6
1.5	条件概率	7
	1.5.1 定义与乘法定理	7
	1.5.2 全概率公式与贝叶斯公式	7
1.6	事件的独立性	8
** - +		_
第二章	随机变量	9
2.1	随机变量及其分布	10
	2.1.1 定义与条件	10
	2.1.2 分布与分布函数	10
2.2	伯努利概型及其分布	11
	2.2.1 伯努利试验	11
	2.2.2 二项分布	11
	2.2.3 几何分布 Forever-Young	11
	2.2.4 Pascal 分布	12
	2.2.5 Poisson 分布	12
2.3	连续型分布	13
	2.3.1 正态分布	13
	2.3.2 Γ 分布	15

	2.3.3 指数分布	15
2.4		15
2.4		$\frac{15}{15}$
		15 15
		16
		16
		16
		16
2.5		16
2.0		16 16
		$\frac{10}{17}$
2.6		17
2.0		17
		11 18
	2.0.2 二年迁终至	10
第三章	数字特征与特征函数	19
3.1	数学期望	19
3.2	其它数字特征	19
3.3	母函数	19
3.4	特征函数	19
3.5	* 多元正态分布	19
第四章	极限定理	20
4.1		21
4.0	V-7-1-	21
4.2		21
4.3	中心极限定理	21
第五章	数理统计部分	22
5.1	总体与样本	22
5.2	回归分析与方差分析	24
5.3	统计决策与贝叶斯统计	24

第一章 随机事件与概率

1.1 基本概念

1.1.1 随机现象与样本空间

随机试验 , 把对自然现象的一次观察称为试验, 其特点如下

试验: E

特点

- 1. 相同条件下可重复进行
- 2. 每次结果不可预知
- 3. 所有可能结果已知

易错例子: 在纸上随意写三个数字 (结果可知, 但不可重复,)

样本点 随机试验的每一个可能结果称为一个样本点、记为 ω

样本空间 全体样本点构成的集合,记为 Ω

1.1.2 事件及其运算

随机事件 : 代表试验的每一个可能结果 (即 Ω 中的部分样本点组成的结果),是不可再分的事件 (基本事件),如若某个事件每次试验都发生则称之为**必然事件**记作 Ω ,同理每次都不发生的事件称为**不可能事件**,记作 \varnothing 。

事件的关系: 事件间的关系就是集合之间的关系。一些基本关系如下:

 $\overline{ABC} \neq \overline{A}\overline{B}\overline{C}$ $1 - \overline{A}\overline{B}\overline{C} = A + B + C$

- 2. 交: $A \cap B$; $A \times B$, $\bigcap_{i=1}^{\infty} A_i$ 表示 A_1, A_2, \cdots 全部都发生。
- 3. 逆: \bar{A} (A 不发生), $A \cdot \bar{A} = \emptyset, A + \bar{A} = \Omega$
- 4. 差: A-B (A 发生且 B 不发生)
- 5. 包含 $A \in B$, 相等 A = B
- 6. 互不相容事件: A 与 B 不同时发生
- 7. 对立事件: A 与 B 不同时发生,且 $A \cup B = \Omega$,显而易见前者更宽松,范围更大。 充分条件前推后,必

充分条件前推后,必 要条件后推前。

图 1.1: 事件运算 Veen 图

事件间的运算规律 设 A, B, C 为事件,则有以下规律:

- 1. 交換律: $A \cup B = B \cup A$ AB = BA
- 2. 结合律: $(A \cup B) \cup C = A \cup (B \cup C)$ (AB)C = A(BC)
- 3. 分配律: $A \cap (B C) = AB AC$ $A \cap (B \cup C) = AB \cup AC$
- 4. 对偶律: $\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cdot B} = \overline{A} + \overline{B}$

1.1.3 频率与概率

频率 在相同条件下进行了 n 次试验,若事件 A 在 n 次试验中发生了 m 次,则称事件 A 在这 n 此试验中发生的频率为

$$F_n(A) = \frac{m}{n}$$

性质

1. 非负性: $0 \le F_n(A) \le 1$

2. 规范性: $F_n(\Omega) = 1$

3. 有限可加性: $F_n(A \cup B) = F_n(A) + F_n(B)$

4. 稳定性: 随着 n 的增大, 随机事件的频率趋于稳定

Cardano

概率 随机试验的次数充分大时,事件 A 发生的频率稳定在某数 P 附近摆动,则称 p 为事件 A 发生的统计概率,记为 P(A)=P

性质

1. 非负性: $0 \le P(A) \le 1$

2. 规范性: $P(\Omega) = 1$

3. 有限可加性: $P(A \cup B) = P(A) + P(B)$

掷骰子

1.2.1 古典模型的定义

对于某一个随机试验,如果它的全体基本事件是**有限个**,而且具有**等可能性**,则称之为古典概型。则对于任意事件 A,对应的概率 (古典概率)为:

古典概型

1.2

$$P(A) = \frac{\text{\P} \text{H} \text{ Λ} \text{ 0} \text{\varnothing} \text{h} \text{k}}{\text{4} \text{4} \text{4} \text{4} \text{4}}$$

1.2.2 计数原理

基本计数原理

加法原理 设完成一件事有 m 种方式,每种方式分别有 n_1, n_2, \dots, n_m 种方法,则完成这件事总共有 $n_1 + n_2 + \dots + n_m$ 种方法

乘法原理 设完成一件事有 m 个步骤,每个步骤分别有 n_1, n_2, \cdots, n_m 种方法,则完成这件事总共有 $n_1 \times n_2 \times \cdots \times n_m$ 种方法

排列组合问题

排列 考虑顺序,从 n 个元素中取出 k 个元素的排列数量为: $A_n^k = \frac{n!}{(n-k)!}$ 重复排列: 从 n 个元素中有放回地取出 k 个元素 (可重复)的排列数量为: $n \cdots n = n^k$

k=n 时,称为**全排列**

组合 不考虑顺序,从 n 个元素中取出 k 个元素的组合数量为: $C_n^k = \binom{n}{k} = \frac{P_n^k}{k!} = \frac{n!}{k!(n-k)!}$ 组合数又称为二项式系数 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$

经典问题模型

- 1. 抽样问题
- 2. 分房问题
- 3. 配对问题
- 4. 随机取数

杨辉三角

5. 结绳问题 将 n 个绳的两头两两相接求事件 $A = \{ \text{恰结成 } n \text{ 个圈} \}$ 的概率。

组合的性质

- 1. $\binom{n}{r} = \binom{n}{n-r}$
- 2. $\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$ 解释:从 n 个元素中取 r 个,记特殊元素 a_1 ,即包含与不包含 a_1 两种情况,已知包含时: $\binom{n-1}{r-1}$,不包含时: $\binom{n-1}{r}$
- 3. $\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n} = 2^n$ 解释:两系数为 1 的二项式
- 4. $\binom{n}{1} + 2\binom{n}{2} + \dots + n\binom{n}{n} = n2^{n-1}$
- 5. $\sum_{i=0}^{k} \binom{n}{i} \binom{m}{k-i} = \binom{n+m}{k}$
- 6. $\binom{n}{0}^2 + \binom{n}{1}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n}$

1.3 几何概型

1.3.1 定义

设 Ω 为 n 维欧氏空间中确定的集合,满足条件 $0 < m(\Omega) < +\infty$ 。对 Ω 中的任何可测 子集 A, 称 $P(A) = \frac{m(A)}{m(\Omega)}$ 为事件 A 的几何概率。

性质

- 1. 非负性: $P(A) \ge 0$
- 2. 规范性: P(Ω) = 1
- 3. 可列可加性: $P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n)$
- 1. 蒲松投针
- 2. Bertrand 奇论

1.4 概率空间

1.4.1 事件 σ -代数

定义: 设样本空间为 Ω , \mathscr{F} 是由 Ω 的一些子集构成的集合族, 如果 \mathscr{F} 满足以下条件:

- (i) $\Omega \subset \mathscr{F}$;
- (ii) 若 $A \in \mathcal{F}$, 则 $\bar{A} \in \mathcal{F}$;

(iii) 若
$$A_i \in \mathscr{F}, i = 1, 2, \dots, n$$
,则 $\bigcup_{i=1}^{\infty} A_i \in \mathscr{F}$;

罗 称为**体**,也叫代数

则称 \mathscr{F} 为 Ω 上的事件 σ -代数, 其性质如下:

性质

- 1. 若 \mathscr{F} , \mathscr{G} 都是 Ω 上的 σ -代数, 则 \mathscr{F} $\cap \mathscr{G}$ 仍为 σ -代数
- 2. Ω 上任意多个 σ -代数的交仍为 σ -代数
- 3. (Borel 集)设 $\Omega = \mathbf{R}$,取全体半直线组成的类 $H = (-\infty, x) : -\infty < x < +\infty$,则 $\mathcal{B} = \sigma(H)$ 称为 Borel 集类。

花体艺术

ヘザとのさ チG米 リ

タ米よMNOP2Я

1.4.2 概率与概率空间

概率 设 \mathscr{F} 为样本空间 Ω 上的事件 σ -代数, 若 \mathscr{F} 上的实值函数 P(A) 满足以下三个条件

1. 非负性: $P(A) \ge 0$

2. 规范性: $P(\Omega) = 1$

3. 可列可加性: 对于任一两两互斥事件 A_1, A_2, \cdots, A_n 有 $P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$

则称 P 为 (ω, \mathscr{F}) 上的概率, P(A) 称为事件 A 的概率。

概率空间 设 Ω 为一样本空间,设 $\mathscr S$ 为样本空间 Ω 上的事件 σ -代数,P为 $\mathscr S$ 上的概率,称 $(\Omega,\mathscr F,P)$ 为概率空间。

性质

- 1. $P(\varnothing) = 0$
- 2. $P(\bar{A}) = 1 P(A)$
- 3. 若 $A \supset B$, 则 P(A B) = P(A) P(B), 且 $P(B) \le P(A)$
- 4. 次可加性 $P\left(\bigcup_{i=1}^{n} A_i\right) \leq \sum_{i=1}^{n} P(A_i)$
- 5. $P(\Omega) = 1 = P(A \cup \bar{A}) = P(A) + P(\bar{A})$
- 6. **多除少补原理** $P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i) + \dots + (-1)^{n-1} P(A_1 A_2 \dots A_n)$
- 7. **下连续性** 设 $A_1 \subset A_2 \subset \cdots$,且 $\bigcap_{n=1}^{\infty} A_n = \emptyset$,则 $P(\bigcup_{n=1}^{\infty} A_n) = \lim_n P(A_n)$
- 8. 上连续性 设 $A_1 \supset A_2 \supset \cdots$,且 $\bigcap_{n=1}^{\infty} A_n = A$,则 $P\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_n P(A_n)$

1.5 条件概率

1.5.1 定义与乘法定理

设 (Ω, \mathcal{F}, P) 为一概率空间, $B \in \mathcal{F}, P(B) > 0$, 则对于任何事件 $A \in \mathcal{F}$, 记:

$$P(A|B) = \frac{P(AB)}{P(B)} \tag{1.1}$$

乘法定理 设 (Ω, \mathscr{F}, P) 为一概率空间, $A_k \in \mathscr{F}, k = 1, 2, \dots n$,如果 $P(A_1 \dots A_{n-1}) > 0$,则有:

$$P(A_1 A_2 \cdots A_n) = P(A_1) P(A_2 | A_1) P(A_3 | A_1 A_2) \cdots P(A_n | A_1 A_2 \cdots A_{n-1})$$
 (1.2)

1.5.2 全概率公式与贝叶斯公式

全概率公式 设 (Ω, \mathscr{F}, P) 为一概率空间,而 $\{B_n\}$ 为 Ω 的一个分割,则对于一切 $A \in \mathscr{F}$ 有:

$$P(A) = \sum_{n} P(B_n)P(A|B_n)$$
(1.3)

复杂简单化

对全集的一个分

条件全概率公式

$$P(B|D) = \sum_{i} P(A_i|D)P(B|A_i \cap D)$$
(1.4)

贝叶斯公式 设 (Ω, \mathscr{F}, P) 为一概率空间,而 $\{B_n\}$ 为 Ω 的一个分割,则对于 \mathscr{F} 中一切有正概率的事件 A 及任意 n 有:

$$P(B_n|A) = \frac{P(B_n)P(A|B_n)}{\sum_{i} P(B_i)P(A|B_i)}, \qquad i = 1, 2, \dots, n,$$
(1.5)

1.6 事件的独立性

两个事件独立 设 (Ω, \mathscr{F}, P) 为一概率空间,若事件 A,B 满足: $P(A \cap B) = P(A)P(B)$ 则 称事件 A 与 B 相互独立。

n 个事件独立 →

n 个事件两两独立

n 个事件独立 设 (Ω, \mathscr{F}, P) 概率空间中的 n 个事件若 $P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1)P(A_2) \cdots P(A_n)$,则称 n 个事件相互独立。

第二章 随机变量

2.1 随机变量及其分布

2.1.1 定义与条件

定义 设 (Ω, \mathcal{F}, P) 为一概率空间, $\xi = \xi(\omega)$ 是 Ω 上的实值函数, 如果有:

$$\{\omega : \xi(\omega) < x \in \mathscr{F}\} \ \forall x \in \mathbb{R} \xleftarrow{\text{find} \oplus \mathbb{R}} \xi^{-1}(B) \in \mathscr{F}, \ \forall B \in \mathscr{F}$$

则称 $\xi(\omega)$ 为随机变量,下面有几个定理:

1. 逆变换

$$1^{\circ} \xi^{-1}(\mathbb{R}) = \Omega$$

$$2^{\circ}$$
 若 $B \subset C$,则 $\xi^{-1}(B) \subset \xi^{-1}(C)$

$$3^{\circ} \ \xi^{-1}(\bar{B}) = \overline{[\xi^{-1}(B)]}$$

$$4^{\circ} \xi^{-1}(\bigcup_{n} B_{n}) = \bigcup_{n} \xi^{-1}(B_{n})$$

- 2. Borel 集 随机变量的 Borel 函数仍为随机变量。
- 3. **随机变量序列** *ξ* 为随机变量的充要条件是存在简单随机变量序列

$$\{\xi_n, n > 1\}$$
 $\notin \lim_{n \to \infty} \xi_n(\omega) = \xi(\omega), \quad \forall \omega \in \Omega$

2.1.2 分布与分布函数

 $\xi^{-1}(B)$ 为随机事件,它的相应概率为:

$$\mathbf{F}(B) = P\{\xi^{-1}(B)\} = P\{\xi \in B\}, \quad \forall B \in \mathcal{B}$$

由上式定义的 罗 成为随机变量的概率分布简称分布或分布律。

分布函数 设 ξ 为概率空间 (Ω, \mathcal{F}, P) 上的随机变量, 称:

$$F(x) = \mathbf{F}\{(-\infty, x)\} = P\{\xi < x\}, \qquad x \in \mathbb{R}$$

为随机变量 ξ 的分布函数。

分布函数的性质

- 1. 单调连续性 任 $x_1 < x_2$ 有 $F(x_1) < F(x_2)$
- 2. 左连续性 任 $x_0 \in \mathbb{R}$ 有 $\lim_{x \to x_0 = 0} F(x) = F(x_0)$

3. 有界性
$$F(-\infty) = \lim_{x \to -\infty} F(x) = 0$$
 $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$

一般可以简写作 ξ 简 单 随 机 变 量:示 性 函 数 的 线 性 组 合 $\Sigma_{i=1}^n a_i \mathbf{1}_{A_i}(\omega)$

离散型 & 连续型

1. 离散型: 如果存在数列 $\{x_k\}$ 及 $\{p_k\}$, 满足: $p_k \ge 0$; $\sum_k p_k = 1$, 使得

$$P\{\xi = x_k\} = p_k, \quad k = 1, 2, \cdots,$$

则称其为离散型,由两个数列组成的矩阵称为 ξ 的密度阵

2. 连续型: 如果存在函数 p(x), 满足 $p(x) \ge 0$; $\int_{-\infty}^{+\infty} p(x)dx = 1$, 使得

$$\mathbf{F}(x) = \int_{-\infty}^{x} p(t)dt, \qquad x \in \mathbb{R}$$

则称其为连续型, 称 p(x) 为 ξ 的密度函数

2.2 伯努利概型及其分布

2.2.1 伯努利试验

定义 只有两种可能结果的试验叫做伯努利试验,其事件 σ-代数取为 $\mathscr{F} = \{\varnothing, A, \bar{A}, \Omega\}$, 通常把结果 A 叫做 "成功",而把结果 \bar{A} 叫做 "失败",再定义概率:

$$p = P(A)$$
 $q = P(\bar{A})$ $(p, q > 0$ \exists $p + q = 1)$

这样就定义了一重伯努利试验的概率空间 (Ω, \mathcal{F}, P)

2.2.2 二项分布

即 n 重伯努利试验,记作 B(n,p)

$$\mathbf{b}(\mathbf{k}; \mathbf{n}, \mathbf{p}) = P\{\xi = k\} = C_n^k p^k q^{n-k}, \qquad k = 0, 1, 2, ..., n$$

$$\frac{b(k;n,p)}{b(k-1;n,p)} = \frac{(n-k+1)p}{kq} = 1 + \frac{(\mathbf{n}+\mathbf{1})\mathbf{p} - k}{kq}$$

2.2.3 几何分布 Forever-Young

定义 考虑可列重伯努利试验中首次成功的等待次数 ξ 。它则取值自然数 k 当且仅当前 k-1 次实验全失败,同时第 k 次成功。给定参数 p(0 ,令

$$g(k;p) = q^{k-1}p > 0, \qquad k = 1, 2, \cdots$$

$$\sum_{k=1}^{\infty} g(k; p) = \sum_{k=1}^{\infty} q^{k-1} p = \frac{p}{q-1} = 1$$

于是 g(k;p) 可以作为离散型分布的密度,称它为几何分布,记作 G(p)

一个纯跳跃型函数

不只以上两种,随机 变量有很多种,分布 函数可以分解为三个 函数:纯跳跃函数;绝 对连续函数;奇异函 数的和

(即 Lwbesgue 分解)

(n+1)p(不是正整数 时) 即为 n 重伯努 利试验的最可能成 功次数, 否则有两 个最值: (n+1)p 与 (n+1)p-1

二项分布

几何分布的性质

无记忆性 取值与自然数的随机变量 ξ 有几何分布当且仅当 ξ 有无记忆性。

$$P\{\xi > m + n | \xi > m\} = P\{\xi > n\}, \quad \forall m, n > 1$$

2.2.4 Pascal 分布

定义 考虑可列重伯努利试验中首次成功的等待次数 ξ 。它表示第 \mathbf{r} 次成功所需要的实验次数, ξ 的可能取值为 $k, k+1, \cdots$ 且

 $P\{\xi_r=k\}=P\{$ 前 k-1 次试验恰好有 r-1 次成功且第 k 次成功 $\}=b(r-1;k-1,p)\cdot p=C_{k-1}^{r-1}p^rq^{k-r}$

$$f(k; r, p) = C_{k-1}^{r-1} p^r q^{k-r}$$
 $k = r, r+1, \cdots$

于是称以 f(k;r,p) 为密度的离散型分布为 Pascal 分布或负二项分布,记作 G(p)

Banach 火柴问题

试验总次数: s=n+1+n-r=2n+1-r,

$$P=2P(E)=2f(2n+1-r;n+1,\frac{1}{2})=\binom{2n-r}{r}2^{r-2n}$$

分赌注问题

2.2.5 Poisson 分布

泊松定理 设有一二项分布 $\{b(k; n, P_n)\}$,参数列 $\{P_n\}$ 满足 $\lim_n nP_n = \lambda > 0$ 则对于任何 非负整数 k 有

需要使用不等式:

$$|a^n - b^n| \le n|a - b|$$

$$\lim_{n} b(k; n, p_{n}) = \binom{n}{k} P_{n}^{k} \cdot (1 - P_{n})^{n-k}$$

$$= \frac{p_{n}^{k}}{k!} P_{n}^{k} \cdot (1 - P_{n})^{n-k}$$

$$= \frac{n!}{(n-k)!k!} P_{n}^{k} \cdot (1 - P_{n})^{n-k}$$

$$= \frac{1}{k!} n \cdot (n-1) \cdots (n-k+1) P_{n}^{k} \cdot (1 - P_{n})^{n-k}$$

$$= \frac{1}{k!} 1 \cdot (1 - \frac{1}{n}) \cdots (1 - \frac{-k+1}{n}) (nP_{n})^{k} \cdot (1 - P_{n})^{n-k}$$

$$\lim_{n \to \infty} P\{\lambda = k\} = \frac{1}{k!} \lim_{n \to \infty} (nP_{n})^{k} (1 - P_{n})^{n-k}$$

$$= \frac{1}{k!} \lim_{n \to \infty} (n \cdot \frac{\lambda}{n})^{k} (1 - \frac{\lambda}{n})^{-k} (1 - \frac{\lambda}{n})^{n} = \frac{\lambda^{k}}{k!} \left[\lim_{n \to \infty} (1 + \frac{-\lambda}{n})^{-\frac{n}{\lambda}}\right]^{-\lambda}$$

$$= \frac{\lambda^{k}}{k!} e^{-\lambda}$$

泊松分布 给定参数 $\lambda > 0$,令 $p(k; \lambda) = \frac{\lambda^k}{k!} e^{-\lambda} k = 0, 1, \cdots$ 且 $\sum_{k=0}^{\infty} p(k; \lambda) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = 1$ 称以 $p(k; \lambda)$ 为密度的离散型分布为 Poisson 分布,记作 $P(\lambda)$

Poisson 分布的性质

- 1. 当 λ 是整数时, $p(k;\lambda)$ 在 $m = \lambda$ 及 $m = \lambda 1$ 时同时取到最大值
- 2. 当 λ 不是整数时, $p(k;\lambda)$ 在 $m=\lambda$ 时取到最大值

Poisson 过程质点流 假定有一个于随机时刻陆续到来的质点流,质点一个一个地到达,但 质点到达的时间间隔都是随机变量。对任何 $t \le 0$,以 ξ_t 代表在 [0,t) 时刻到达的质点个数,每个 ξ_t 都是非负整值随机变量。性质如下:

Poisson 过程满足的条件

- 1. 随机增量性 在不相交时段内到达的质点数目相互独立。
- 2. 平稳性 在长为 t 的时段 [a,a+t) 内到达 k 个质点的概率,至于计时长度 t 有关而与计时起点 a 无关。
- 3. 普通性 在有限的时间区间内,只来有限个质点。

2.3 连续型分布

2.3.1 正态分布

定义 设连续型随机变量 ξ 具有概率密度:

$$\varphi_{\mu,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} - \infty < x < +\infty$$

则称 ξ 服从参数为 a, σ^2 的**正态分布**,记为 $\xi \sim N(\mu, \sigma^2)$ 标准正态分布如下:

$$\varphi_{0,1}(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

大多数现象都近似服 从正态分布

图形关于 x=a 对称

分布函数

$$\Phi_{\mu,\sigma}(x) = \int_{-\infty}^{x} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dt$$

$$\Phi_{0,1}(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{x^2}{2}} dt$$

无法用初等形式表示

图 2.1: 四个不同参数集的概率密度函数 (红色线代表标准正态分布)

图 2.2: 概率密度函数的累积分布函数

性质

1. $P\{\xi < a\} = \Phi(a)$

2. $P\{\xi > a\} = 1 - \Phi(a)$

3. $P\{|\xi| < a\} = 2\Phi(a) - 1$

4. $\Phi(-x) = 1 - \Phi(x)$

5. 标准化: $\xi \sim N(\mu, \sigma^2) \Longrightarrow \eta = \frac{\xi - \mu}{\sigma} \sim N(0, 1)$

6. 3σ 原则: 概率高达 99.74%

2.3.2 Γ 分布

定义 : (Poisson 过程) 实质上是关于质点到达时间的分布,以 η_r 表示第 r 个质点到达时刻,于是对于 t > 0,事件 $\{\eta_r < t\}$ 表示第 r 个质点在时刻 t 以前到来,事件 $\{\eta_r \ge t\}$ 表示到时时刻 t 为止,到来的质点数目不少于 r。分布函数:

$$F(t) = P{\eta_r < t} = P{\eta_t \ge r} = \sum_{k=r}^{\infty} \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

关于 Γ 函数的几个性质:

$$\Gamma(r) = \int_0^{+\infty} x_{r-1} e^{-x} dx; \qquad \Gamma(n+1) = n\Gamma(n) = \dots = n!; \qquad \Gamma(\frac{1}{2}) = \sqrt{\pi}$$

密度函数:对t求导以及简单计算

$$p(t) = \frac{\lambda^r}{(r-1)!} x^{r-1} e^{-\lambda x} = \frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x}, \qquad x > 0$$

2.3.3 指数分布

定义 : 称 $\Gamma(\lambda, 1)$ 分布为指数分布, 其密度函数和分布函数分别为:

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & x \le 0, \end{cases} \qquad F(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0, \\ 0, & x \le 0, \end{cases}$$

指数分布也有无记忆性: $p(\xi > a) = 1 - p(\xi < a) = 1 - F(a) = e^{-\lambda a}$

2.4 多维概率分布

2.4.1 随机向量

定义 : 与一维随机变量的定义类似 $(\xi,\eta) \in (\Omega,\mathcal{F},\rho)$ ··· 一维 Borel 集的 Descartes 乘积

2.4.2 联合分布

设 $(\xi, \eta) \in (\Omega, \mathscr{F}, \rho)$ 称 $F(x, y) = P\{\xi < x, \eta < y\},$ $x, y, \in \mathbf{R}$ 为 (ξ, η) 的联合分布函数。

联合分布函数的性质

- 1. $0 \le F(x,y) \le 1$ $\overrightarrow{\text{m}} \perp \text{L} F(+\infty,+\infty) = 1$ $F(x,-\infty) = f(-\infty,y) = F(-\infty,+\infty) = 0$
- 2. F(x,y) 对于每个自变量都是左连续的。
- 3. F(x,y) 对于每个自变量都是单调非降的。
- 4. $P\{x_1 \le \xi \le x_2, y_1 \le \eta \le y_2\} = F(x_2, y_2) F(x_1, y_2) F(x_2, y_1) + F(x_1, y_1) \text{ if } F(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} p(v, \nu) dv d\nu$

2.4.3 边缘分布

考虑随机变量各自的分布,各变量的边缘分布函数如下:

$$F_{\xi}(x) = \lim_{y \to +\infty} F(x, y) = F(x, +\infty) \qquad x \in \mathbf{R}$$

$$F_{\eta}(y) = \lim_{x \to +\infty} F(x, y) = F(+\infty, y) \qquad y \in \mathbf{R}$$

2.4.4 边缘密度

边缘分布由联合分布完全决定, 但边缘分布不能确定联合分布。

$$p_1(x) = \int_{-\infty}^{+\infty} p(x, y) dy, \qquad x \in \mathbf{R}$$

$$p_1(y) = \int_{-\infty}^{+\infty} p(x, y) dx, \qquad y \in \mathbf{R}$$

2.4.5 二维均匀分布

如果
$$(\xi, \eta)$$
 的联合分布密度函数为: $p(x,y) = \begin{cases} \frac{1}{m_D}, & (x,y) \in \mathbf{D}, \\ 0, & others, \end{cases}$

2.4.6 二维正态分布

略之

2.5 随机变量的独立性

2.5.1 条件分布

分布函数 : 设为一概率空间, $B \in \mathcal{F}, P(B) > 0$,则对于任何事件 $A \in \mathcal{F}$,则此概率空间上的随机变量 ξ 关于 B 的条件分布函数为: $F(x|B) = P\{\xi < x|B\}$,再添加一个变量 η ,则当事件 $B = \{\eta = y\}$ 有正概率时,称下式为 $\eta = y$ 已知时 ξ 的条件分布函数。

$$F(x|\eta = y) = P\{\xi < x|\eta = y\} = \frac{P\{\xi < x, \eta = y\}}{P\{\eta = y\}}$$

密度函数 由条件函数的定义,把上述结果简写成下面形式:

$$P\{\xi = x_i | \eta = y_j\} = \frac{P_{ij}}{p_j}$$
 $P\{\eta = y_j | \xi = x_i\} = \frac{P_{ij}}{p_i}$

根据联合密度函数与边缘分布可以得到密度函数如下:

$$p(x|\eta = y) = \frac{p(x,y)}{p_2(y)}$$

边缘分布律简写:

$$P\{\xi = x_i, \eta = y_j\} =$$

$$P_{ij}$$

$$P\{\xi = x_i\} = P_i$$

$$P\{\eta = y_j\} = P_j$$

$$i, j = 1, 2, \cdots$$

2.5.2 相互独立的随机变量

定义 设 ξ_1, \dots, ξ_n 是概率空间 (Ω, \mathscr{F}, P) 上 n 个随机变量,如果他们的联合分布函数等于他们边缘分布函数的乘积,即:

$$F(x_1, \dots, x_n) = F_1(x_1) \dots F_n(x_n) = \prod_{i=1}^n F_i(x_i)$$

则称 ξ_1, \dots, ξ_n 相互独立。

独立性的定理

- 1. 如果随机变量 ξ_1, \dots, ξ_n 相互独立,则其中任意部分子向量仍独立
- 2. 两向量独立 $\stackrel{\stackrel{\hat{\mathbf{n}}} \oplus \mathbb{R}^{+}}{\longrightarrow} P\{\xi \in \mathbf{B_1}, \eta \in \mathbf{B_2}\} = P\{\xi \in \mathbf{B_1}\}P\{\eta \in \mathbf{B_2}\} \quad \forall \mathbf{B_1}, \mathbf{B_2} \in \mathscr{B}$
- 3. 离散型随机变量相互独立 $\stackrel{\hat{\Lambda} \oplus \hat{\Lambda} \oplus \hat{\Lambda}}{\longleftrightarrow} P_{ij} = P_i P_j \qquad \forall i, j = 1, 2, \cdots$
- 4. 连续型随机变量相互独立 $\stackrel{\land \xi \xi k}{\longleftrightarrow} p(x,y) = p(x) p(y)$ $\forall x,y \in \mathbf{R}$

2.6 随机变量函数的分布

2.6.1 一维随机变量的分布

已知分布函数求分布密度即

$$P\{\eta < y\} = P\{f(\xi) < y\} = \int_{\{x: f(x) < y\}} dF_{\xi}(x)$$

一维离散型

对于离散型要算出所有可能结果

离散卷积公式 设 ξ 与 η 是相互独立的非负整值随机变量, 各有分布 $\{a_k\}$ 与 $\{b_k\}$, 那么其和的分布为:

$$P\{\xi + \eta = n\} = \sum_{k=0}^{n} P\{\xi = k\} P\{\xi + \eta = n | \xi = k\}$$
$$= \sum_{k=0}^{n} P\{\xi = k\} P\{\eta = n - k\}$$
$$= \sum_{k=0}^{n} a_k b_{n-k}, \qquad n = 0, 1, 2, \dots$$

一维连续型

这个用两种方法求解:

1. 当随机变量 ξ 的密度函数 $p_{\xi}(x)$,在区间内单调连续,而且存在唯一的**反函数** x = h(y), h'(y) 存在且连续,若 $\eta = f(\xi)$,那么 η 的密度函数为:

$$p_{\eta}(y) = p_{\xi}[h(y)]|h'(y)|, \qquad y \in (\alpha, \beta)$$

2. 当随机变量在可分割的区间 (α, β) 内, 每一子区间上都有上述的反函数,而且都连续,那么 $\eta = f(\xi)$ 仍然为连续型变量,起密度函数为:

$$p_{\eta}(y) = \begin{cases} \sum_{i} p_{\xi}[h(y)]|h'(y)|, & \text{反函数存在} \\ 0 & \text{反函数不存在} \end{cases}$$

2.6.2 二维连续型

设二维随机变量 (ξ, η) 的联合密度为 p(x, y),求随机变量 $\zeta = f(\xi, \eta)$ 的概率密度。常用的方法为公式法: 即先求分布函数再求概率密度

$$F_{\zeta}(z) = P\{\zeta < z\} = P\{f(\xi, \eta) < z\} = \iint_{f(x,y) < z} p(x,y) dx dy \xrightarrow{\underline{Z} \text{ obs} \underline{\mathcal{E}} \underline{\underline{\mathrm{ad}}}} P_{\zeta}(z) = \frac{dF_{\zeta}(z)}{dz}$$

和的分布 设二维随机变量 (ξ, η) 的联合分布函数为 F(x, y), 则 $\zeta = \xi + \eta$ 的分布函数为:

$$\begin{split} F_{\zeta}(z) &= P\{\xi + \eta < z\} = \iint_{x+y < z} p(x,y) dx dy \\ &= \int_{-\infty}^{+\infty} \int_{-\infty}^{z-x} p(x,y) dx dy \\ &= \int_{-\infty}^{z} \left[\int_{-\infty}^{+\infty} p(x,u-x) dx \right] du \\ P_{\zeta}(z) &= \int_{-\infty}^{+\infty} P(x,z-x) dx & \stackrel{\text{in Sign}}{\longleftrightarrow} \int_{-\infty}^{+\infty} P_{\xi}(x) P_{\eta}(z-x) dx \end{split}$$

连续卷积公式 称 $\int_{-\infty}^{+\infty} f(u)g(x-u)du$ 为函数 f(x) 与 g(x) 的卷积,记为 f(x)*g(x),所以独立随机变量和的概率密度是各概率密度的卷积

$$P_{\zeta}(z) = P_{\xi}(x) * P_{\eta}(y) = P_{\eta}(y) * P_{\xi}(x) = \int_{-\infty}^{+\infty} P_{\xi}(x) P_{\eta}(z - x) dx$$

商的分布 设二维随机变量 (ξ, η) 的密度函数为 p(x, y) 则 $\zeta = \frac{\xi}{\eta}$ 的概率密度为:

$$\begin{split} F_{\zeta}(z) &= P\{\frac{\xi}{\eta} < z\} = \iint_{\frac{x}{y} < z} p(x,y) dx dy \\ &= \iint_{x < yz, y > 0} p(x,y) dx dy + \iint_{x > yz, y < 0} p(x,y) dx dy \\ P_{\zeta}(z) &= \int_{-\infty}^{+\infty} |y| p(yz,y) dy & \stackrel{\text{In $\underline{\beta}$ in $\underline{\beta}$ in $\underline{\beta}$}}{\longrightarrow} \int_{-\infty}^{+\infty} |y| p_{\zeta}(yz) p_{\eta}(y) dy \end{split}$$

第三章 数字特征与特征函数

- 3.1 数学期望
- 3.2 其它数字特征
 - 3.3 母函数
 - 3.4 特征函数
- 3.5 * 多元正态分布
- 1. 已知 $\mathbf{x} \sim \mathbf{E}(1)$ (参数为一的指数分布) ,求 $\mathbf{E}(\mathbf{x} + e^{-2x})$ 解:由题可得

$$f(x) = \begin{cases} e^{-x}, & x > 0\\ 0, & others \end{cases}$$

$$E(x + e^{-2x}) = E(x) + E(e^{-2x})$$

$$= \int_{-\infty}^{+\infty} x e^{-x} dx + \int_{-\infty}^{+\infty} e^{-2x} e^{x}$$

$$= \int_{0}^{+\infty} x e^{-x} dx + \int_{0}^{+\infty} e^{-2x} e^{x}$$

$$= 1 + \frac{1}{3}$$

$$= \frac{4}{3}$$

2. 母函数

第四章 极限定理

大数定律 : 关于随机变量平均结果的极限定理

中心极限定理 : 标准化

4.1 随机变量列的收敛性

4.1.1 收敛性

依概率收敛 对于 $\forall \varepsilon > 0$

$$\lim_{n \to \infty} P\{|\xi_n(\omega) - \xi(\omega)| \ge \varepsilon\} = 0$$

称 $\{\xi_n\}$ 依概率收敛到 ξ ,记作 $\xi_n \xrightarrow{P} \xi$ 即当 n 充分大时, $\{\xi_n\}$ 与 ξ 两者有充分大差异的 概率任意小。

几乎必然收敛 如果有

$$P\{\omega : \lim_{n \to \infty} \xi_n(\omega) = \xi(\omega)\} = 1$$

称随机变量数列 $\{\xi_n\}$ 几乎必然收敛到 ξ ,记作 $\xi_n \xrightarrow{a.s.} \xi$

4.2 大数定律

4.3 中心极限定理

第五章 数理统计部分

5.1 总体与样本

- **总体与个体** 研究对象的全体称为总体,总体中所包含的个体的个数称为总体的容量。总体中每个成员称为个体。
 - 1. 由于每个个体的出现是随机的,所以相应的数量指标的出现也带有随机性。从而可以把这种数量指标看作一个随机变量 X,因此随机变量 X 的分布就是该数量指标在总体中的分布。
 - 2. 总体就可以用一个随机变量及其分布来描述。因此在理论上可以把总体与概率分布等同起来。统计中,总体这个概念的要旨是:总体就是一个随机变量(向量)或一个概率分布。
- **样本** 总体中抽出若干个体而成的集体,称为样本。样本中所含个体的个数,称为样本容量。
- **抽样** 统计中,采用的抽样方法是随机抽样法,即子样中每个个体是从总体中随意地取出来的。

抽样的分类

- 1. **重复(返回)抽样**: 从总体中抽取个体检查后放回,总体成分不变 (分布不变)。样本 X_1, X_2, \cdots, X_n 相互独立,与总体有相同的分布。
- 2. **非重复**(无返回)抽样: 对有限总体取出样本后改变了总体的成分, 所以 X_1, X_2, \dots, X_n 不相互独立; 对无限总体而言做无返回抽取, 并不改变总体的成分, X_1, X_2, \dots, X_n 相互独立, 与总体有相同的分布。

常用方法 简单随机抽样。

- 1. 代表性 (随机性):。从总体中抽取样本的每一个分量 X_k 是随机的,每一个个体被抽到的可能性相同。
- 2. 独立同分布性: X_1, X_2, \dots, X_n 相互独立, 其中每一个分量 X_k 与所考察的总体有相同的分布。

样本联合分布 若总体的分布函数为 F(x) 、概率密度为 f(x) ,则其简单随机样本的联合分布函数为

$$F_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) = F(1)F(2) \dots F(n)$$
(5.1)

其简单随机样本的联合概率密度函数为

$$f_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) = f(1)f(2) \dots f(n)$$
 (5.2)

样本经验分布函数 在 n 次独立重复实验中,事件 $\{X \leq x\}$ 发生的频率

$$\hat{F}_n(x; X_1, X_2, \cdots, X_n) = \frac{1}{n} \sum_{i=1}^n I(X_i \leqslant x)$$
 (5.3)

具有分布函数的一切性质。是在每个数据点 X_i 上权重相等的均匀分布的分布函数。

性质

- 1. 给定 x, $\hat{F}_n(x)$ 是一个随机变量: $n\hat{F}_n(x)$ 服从二项分布 b(n,F(x))
- 2. $E(\hat{F}_n(x)) = F(x)$
- 3. $D(\hat{F}_n(x)) = \frac{F(x)(1-F(x))}{n} \to 0$
- 4. $\hat{F}_n(x) \xrightarrow{P} F(x)$
- 5. Dvoretzky-Kiefer-Wolfowitz (DKW) 不等式: 如果 $X_1, X_2, \cdots, X_n \sim F$,则对任意 $\epsilon > 0$

$$P\left\{\sup_{x} \left| \hat{F}_n(x) \right| - F(x) \right| > \epsilon \right\} \leqslant 2e^{-2n\epsilon^2}$$
(5.4)

格列汶科定理 当 $n \to \infty$ 时, $\hat{F}_n(x)$ 以概率 1 关于 x 一致收敛于 F(x) , 即

$$P\left\{\lim_{n\to\infty} \sup_{-\infty < x < \infty} \left| \hat{F}_n(x) - F(x) \right| = 0 \right\} = 1$$
 (5.5)

当样本容量 n 足够大时,对所有的 x, $\hat{F}_n(x)$ 与 F(x) 之差的绝对值都很小,这件事发生的概率为 1 。

- 5.2 回归分析与方差分析
- 5.3 统计决策与贝叶斯统计