11 Geometry of Rectilinear Figures

11A Angles in intersecting lines and polygons

11A.1 HKCEE MA 1980(1/1*/3) -I -1

Find the value of x in the figure.

11A.2 HKCEE MA 1980(1*)-I-15

In $\triangle ABC$ (see the figure), $BD = \frac{1}{4}AB$, $CE = \frac{1}{3}AC$, BE intersects CD at P. x = y. Prove that

- (a) $\triangle EMC$ and $\triangle ADC$ are similar and $EM = \frac{1}{4}AB$,
- (b) $\triangle BDP$ and $\triangle EMP$ are congruent,
- (c) PM = CM,
- (d) area of triangle BDP is half the area of triangle PEC.

11A.3 HKCEE MA 1981(2)-I-14

In the figure, AX//BY. AP and BP bisect $\angle XAB$ and $\angle YBA$ respectively, and they meet at P. A straight line passing through P meets AX and BY at C and D respectively. Prove that

- (a) $\angle APB = 90^{\circ}$,
- (b) CP = DP.
- (c) AC+BD=AB.

11A.4 HKCEE MA 1988-I-8(a)

P is a point inside a square ABCD such that PBC is an equilateral triangle. AP is produced to meet CD at Q.

- Draw a diagram to represent the above information.
- (ii) Calculate \(\angle PAB\) and \(\angle PQC\).

11A.5 HKCEE MA 1993(I) - I - 1(c)

In the figure, find x.

11. GEOMETRY OF RECTILINEAR FIGURES

11A.6 HKCEE MA 1995 - I - 1(c)

Find the size of an interior angle of a regular octagon (8-sided polygon).

11A.7 HKCEE MA 1995-I-1(d)

In the figure, ABCD is a rectangle. Find BD.

11A.8 HKCEE MA 1996 - I - 10

In the figure, AB = CD and AE = BC.

- (a) Find x.
- (b) Which two triangles in the figure are congruent?
- (c) Find θ , y and z.

11A.9 HKCEE MA 1998 - I - 2

In the figure, CDE is a straight line. Find x and y.

11A.10 HKCEE MA 1999-1-14

In the figure, ABCD is a parallelogram. EBDF is a straight line and EB = DF.

- (a) Prove that $\angle ABE = \angle CDF$.
- (b) Prove that EA//CF.

11A.11 HKCEE MA 2000 I 13

In the figure, ABCDE is a regular pentagon and CDFG is a square. BG produced meets AE at P.

(a) Find∠BCG, ∠ABP and ∠APB.

11A.12 HKCEE MA 2002-I-10

In the figure, ABC is a triangle in which $\angle BAC = 20^{\circ}$ and AB = AC. D, E are points on AB and F is a point on AC such that BC = CE = EF = FD.

- (a) Find ∠CEF.
- (b) Prove that AD = DF.

11A.13 HKCEE MA 2004 I-12

In the figure, AEC, AFB, BCD and DEF are straight lines. AB = AC, CD = CE and $\angle CDE = 36^{\circ}$.

- (a) Find
 - (i) ZAEF,
 - (ii) \(\angle BAC.\)
- (b) Suppose AF = FB.
 - (i) Prove that $\angle AEB$ is a right angle.
 - (ii) If AE = 10 cm, find the area of $\triangle ABC$.

11A.14 HKCEE MA 2005 - I - 8

In the figure, ABCDEF is a regular six-sided polygon. AC and BF intersect at G. Find x, y and z.

11A.15 HKCEE MA 2006 I 5

In the figure, ABCD is a parallelogram. E is a point lying on AD such that AE = AB. It is given that $\angle EBC = 70^{\circ}$. Find $\angle ABE$ and $\angle BCD$.

11. GEOMETRY OF RECTILINEAR FIGURES

11A.16 HKCEE MA 2007 - I - 8

In the figure, ABC and DEF are straight lines. It is given that AC//DF, BC = CF, $\angle EBF = 90^{\circ}$ and $\angle BED = 110^{\circ}$. Find x, y and z.

11A.17 HKCEE MA 2008 I-9

In the figure, AB//CD. E is a point lying on AD such that AE = AC. Find x, y and z.

11A.18 HKDSE MA 2020 - I - 8

In Figure 1, B and D are points lying on AC and AE respectively. BE and CD intersect at the point F. It is given that AB = BE, BD//CE, $\angle CAE = 30^{\circ}$ and $\angle ADB = 42^{\circ}$.

- a) Find ∠BEC .
- (b) Let $\angle BDC = \theta$. Express $\angle CFE$ in terms of θ .

(5 marks)

11B Congruent and similar triangles

11B.1 HKCEE MA 1982(2) I-13

In the figure, $\triangle ADB$ and $\triangle ACE$ are equilateral triangles. DC and BE intersect at F.

(a) Prove that DC = BE. [Hint: Consider $\triangle ADC$ and $\triangle ABE$.]

11B.2 HKCEE MA 2001 - I - 11

As shown in the figure, a piece of square paper ABCD of side 12 cm is folded along a line segment PQ so that the vertex A coincides with the mid-point of the side BC. Let the new positions of A and D be A' and D' respectively, and denote by R the intersection of A'D' and CD.

- (a) Let the length of AP be x cm. By considering the triangle PBA', find x
- (b) Prove that the triangles PBA' and A'CR are similar.
- (c) Find the length of A'R.

11B.3 HKCEE MA 2003 - I - 8

The figure shows a parallelogram ABCD. The diagonals AC and BD cut at E.

- (a) Prove that the triangles ABC and CDA are congruent.
- (b) Write down all other pairs of congruent triangles.

11B.4 HKCEE MA 2009-I-11

In the figure, C is a pointlying on DE. AE and BC intersect at F. It is given that AC = AD, BC = DE and $\angle BCE = \angle CAD$.

- (a) Prove that △ABC ≅ △AED.
- (b) If AD//BC,
 - (i) prove that $\triangle ABF \sim \triangle DEA$;
 - (ii) write down two other triangles which are similar to △ABF.

11B.5 HKCEE MA 2010-I-9

In the figure, AB = CD, AE//CD, $\angle BAE = 108^{\circ}$ and $\angle BCD = 126^{\circ}$.

- (a) Find ∠ABC.
- (b) Prove that $\triangle ABC \cong \triangle DCB$.

11. GEOMETRY OF RECTILINEAR FIGURES

11B.6 HKCEE MA 2011 - I - 9

In the figure, AD is the angle bisector of $\angle BAC$. It is given that $\angle ABD = \angle ACD$.

- (a) Prove that $\triangle ABD \cong \triangle ACD$.
- (b) If $\angle BAD = 31^{\circ}$ and $\angle ACD = 17^{\circ}$, find $\angle CBD$.

11B.7 HKDSE MA 2013 - I - 7

In the figure, ABCD is a quadrilateral. The diagonals AC and BD intersect at E. It is given that BE = CE and $\angle BAC = \angle BDC$.

- (a) Prove that $\triangle ABC \cong \triangle DCB$.
- (b) Consider the triangles in the figure.
 - (i) How many pairs of congruent triangles are there?
 - (ii) How many pairs of similar triangles are there?

11B.8 HKDSE MA 2014-I-9

In the figure, D is a point lying on AC such that $\angle BAC = \angle CBD$.

- (a) Prove that $\triangle ABC \sim \triangle BDC$.
- (b) Suppose that AC = 25 cm, BC = 20 cm and BD = 12 cm. Is △BCD a right angled triangle? Explain your answer.

11B.9 HKDSE MA 2015 - I - 13

In the figure, ABCD is a square. E and F are points lying on BC and CD respectively such that AE = BF. AE and BF intersect at G.

- (a) Prove that $\triangle ABE \cong \triangle BCF$.
- (b) Is $\triangle BGE$ a right-angled triangle? Explain your answer.
- (c) If CF = 15 cm and EG = 9 cm, find BG.

11B.10 HKDSE MA 2016 I 13

In the figure, ABC is a triangle. D, E and M are points lying on BC such that BD = CE, $\angle ADC = \angle AEB$ and DM = EM.

- (a) Prove that $\triangle ACD \cong \triangle ABE$.
- (b) Suppose that AD = 15 cm, BD = 7 cm and DE = 18 cm.
 - (i) Find AM.
 - (ii) Is △ABE a right-angled triangle? Explain your answer.

11B.11 HKDSE MA 2017-I-10

(To continue as 12A.31.)

In the figure, OPQR is a quadrilateral such that OP = OQ = OR. OQ and PR intersect at the point S. S is the mid-point of PR.

(a) Prove that $\triangle OPS \cong \triangle ORS$.

11B.12 HKDSE MA 2018 I 13

In the figure, ABCD is a trapezium with $\angle ABC = 90^{\circ}$ and AB//DC. E is a point lying on BC such that $\angle AED = 90^{\circ}$.

- (a) Prove that $\triangle ABE \sim \triangle ECD$.
- (b) It is given that $AB = 15 \,\mathrm{cm}$, $AE = 25 \,\mathrm{cm}$ and $CE = 36 \,\mathrm{cm}$.
 - (i) Find the length of CD.
 - (ii) Find the area of $\triangle ADE$.
 - (iii) Is there a point F lying on AD such that the distance between Eand F is less than 23 cm? Explain your answer.

11B.13 HKDSE MA 2019 I 14

In the figure, ABCD is a square. It is given that E is a point lying on AD. BD and CE intersect at the point F. Let G be a point such that BG//EC and CG//DB.

- (a) Prove that
 - (i) $\triangle BCG \cong \triangle CBF$,
 - (ii) $\triangle BCF \sim \triangle DEF$.
- (b) Suppose that $\angle BCF = \angle BGC$.
 - (i) Let $BC = \ell$. Express DF in terms of ℓ .
 - (ii) Someone claims that AE > DF. Do you agree? Explain your answer.

11B.14 HKDSE MA 2020 I 18

In Figure 2, U, V and W are points lying on a circle. Denote the circle by C. TU is the tangent to C at U such that TVW is a straight line.

- Prove that $\Delta UTV \sim \Delta WTU$.

(2 marks)

- It is given that VW is a diameter of C. Suppose that TU = 780 cm and TV = 325 cm.
 - Express the circumference of C in terms of π .
 - Someone claims that the perimeter of \$\Delta UVW\$ exceeds 35 m . Do you agree? Explain your answer.

(5 marks)

11 Geometry of Rectilinear Figures

11.1 HKCEE MA 1980(1/1*/3) - I - 1

$$x^{\circ} + 3x^{\circ} = (2x + 40)^{\circ}$$
 (ext. \angle of \triangle)
 $x = 20$

11.2 HKCEE MA 1980(1*) - I - 15

(a) In △EMC and ▲ADC.

$$x = y \qquad \text{(given)}$$

$$\angle ECM = \angle ACD \qquad \text{(common)}$$

$$\angle MEC = \angle DAC \qquad \text{(} \angle Sum \text{ of } \triangle \text{)}$$

$$\therefore \triangle EMC \sim \triangle ADC \qquad \text{(} \triangle AA)$$
Hence,
$$\frac{EM}{AD} = \frac{EC}{AC} = \frac{1}{3} \qquad \text{(corr. sides, } \sim \triangle s)$$

$$EM = \frac{1}{3}AD$$

$$= \frac{1}{3}\left(\frac{3}{4}AB\right) = \frac{1}{2}AB$$

(b) x = y (given)

.. AB//EM (corr. \(\s equal \)

In $\triangle BDP$ and $\triangle EMP$,

$$\Delta BDF$$
 and ΔEMF ,
 $\Delta BPD = \angle EPM$ (vert. opp. $\angle S$)
 $\Delta PBD = \angle PEM$ (alt. $\angle S$, $AB//EM$)
 $BD = EM = \frac{1}{4}AB$ (proved)

$$\triangle BDP \cong \triangle EMP \qquad (AAS)$$

(c)
$$PD = PM$$
 (corr. sides, $\cong \triangle s$)
 $\frac{CM}{CD} = \frac{EC}{AC} = \frac{1}{3}$ (corr. sides, $\sim \triangle s$)
 $\Rightarrow DM = \frac{2}{3}CD = 2CM$

$$\Rightarrow DM = \frac{2}{3}CD = 2CM$$

$$\therefore PM = CM (= PD)$$

(d)
$$PM = CM$$
 (proved)

- ... Area of $\triangle EMP = \text{Area of } \triangle EMC$
- $\triangle BDP \cong \triangle EMP$ (proved)
- ... Area of $\triangle BDP = \text{Area of } \triangle EMP$

Hence, Area of $\triangle BDP = \frac{1}{2}$ Area of $\triangle PEC$

11.3 HKCEE MA 1981(2) - I - 14

 $=90^{\circ}$

- (a) $\angle XAB + \angle YBA = 180^{\circ}$ (int. $\angle s$, XA//YB) $2\angle PAB + 2\angle PBA = 180^{\circ}$ (given) $\angle PAB + \angle PBA = 90^{\circ}$ ∴ In *△ABP*. $\angle APB = 180^{\circ} - (\angle PAB + \angle PBA)$ (\angle sum of \triangle) $= 180^{\circ} - 90^{\circ}$ (proved)
- (b) Let Q be on AB such that $\angle APQ = \angle APC$.

 $=\angle QPB$

Let
$$\mathcal{Q}$$
 be on ABQ , $APQ = APC$.

In $\triangle APC$ and $\triangle APQ$, $(common)$
 $\angle CAP = \angle QAP$ (given)

 $\angle APC = \angle APQ$ (by construction)

 $\therefore \triangle APC \cong \angle APQ$ (AAS)

 $\therefore CP = PQ$ (corr. sides, $\cong \triangle \triangle$)

Besides,

 $\angle QPB = 90^{\circ} - \angle APQ = 90^{\circ} \angle APC$ (corr. $\angle S$, $\cong \triangle S$)

 $\Rightarrow \angle DPB = 180^{\circ} - 90^{\circ} \angle APC$ (adj. $\angle S$ on st. line)

 $= 90^{\circ} - \angle APC$

∴ In
$$\triangle BPD$$
 and $\triangle BPQ$,
 $PB = PB$ (common)
 $\angle PBD = \angle QBP$ (given)
 $\angle DPB = \angle QPB$ (proved)
∴ $\triangle BPD \cong \triangle BPQ$ (AAS)
 $PD PQ$ (corr. sides, $\cong \triangle s$)
∴ $CP = DP$ ($= PQ$)

(c) : AC = AQ (corr. sides, $\cong \Delta s$) X -BD = BQ (corr. sides, $\cong \triangle s$) AC + BD = AQ + BQ = AB

11.4 HKCEE MA 1988 - I - 8(a)

(ii) $\angle ABC = 90^{\circ}$ (property of square) $\angle PBC = 60^{\circ}$ (property of equil \triangle) $\Rightarrow \angle ABP = 90^{\circ} - 60^{\circ} = 30^{\circ}$ AB = BC (property of square) = BP (property of equi 1\(\triangle\) $\Rightarrow \angle PAB = \angle APB$ (base $\angle s$, isos. \triangle) = $(180^{\circ} - 30^{\circ}) \div 2 = 75^{\circ}$ (\angle sum of \triangle) $\angle PQC = 180^{\circ} - \angle PAB = 105^{\circ}$ (int. $\angle s$, AB//DC)

11.5 HKCEE MA 1993(I) - I - 1(c)

$$\frac{x}{7} = \frac{3}{5}$$
 (intercept thm) $\Rightarrow x = \frac{21}{5}$

11.6 HKCEE MA 1995 - I - 1(c)

Required $\angle = (8-2)180^{\circ} \div 8 = 135^{\circ}$ (\angle sum of polygon)

11.7 HKCEE MA 1995 - I - 1(d)

AB = DC = 5 and $\angle A = 90^{\circ}$ (property of rectangle) $BD = \sqrt{AB^2 + AD^2} = 13$ (Pyth, thm)

11.8 HKCEE MA 1996 - I - 10

- (a) $x = 360^{\circ} 80^{\circ} 60^{\circ} 80^{\circ} 75^{\circ} = 65^{\circ}$ (sum of ext. ∠s of polygon)
- (b) $\triangle ABE$ and $\triangle CDB$ (SAS)
- (c) In $\triangle ABE$, $y + z = 80^{\circ}$ (ext. \angle of \triangle)
- $\triangle ABE \cong \triangle CDB$ $\angle CDB = y \quad (corr. \angle s, \cong \triangle s)$

BD = BE (corr. sides, $\cong \triangle s$)

 $\angle BDE = \angle BED$ (base $\angle s$, isos. \triangle)

= $180^{\circ} - z$ (65°) (adj. \angle s on st. line)

 $= 115^{\circ} - z$

 $\angle CDB + \angle BDE + 75^{\circ} = 180^{\circ}$ (adj. \angle s on st. line) $y + (115^{\circ} - z) + 75^{\circ} = 180^{\circ}$

 $z y = 10^{\circ}$

 $\begin{cases} z - y = 10^{\circ} \\ y + z = 80^{\circ} \end{cases} \Rightarrow \begin{cases} y = 35^{\circ} \\ z = 45^{\circ} \end{cases}$ In $\triangle BDE$, $\theta = 180^{\circ}$ $2\angle BED$

 $(\angle sum of \triangle)$ $= 180^{\circ} \quad 2(115^{\circ} \quad z) = 40^{\circ}$

11.9 HKCEE MA 1998 - I - 2

$$x = 180$$
 $120 = 60$ (adj. \angle s on st. line)
 $y = (4-2)180 - 80 - 140 - x$ (\angle sum of polygon)
 $= 80$

11.10 HKCEE MA 1999 - I - 14

- (a) ∠ABE 180° ∠ABD (adj. ∠s on st. line) $180^{\circ} - \angle CDB$ (alt. $\angle s$, AB//DC) ∠CDF (adj. ∠s on st. line)
- (b) In $\triangle ABE$ and $\triangle CDF$.

$$AB = CD$$
 (property of //gram)
 $EB = FC$ (given)

- $\angle ABE = \angle CDF$ (proved) $\triangle ABE \cong \triangle CDF$ (SAS)
- $\Rightarrow \angle E = \angle F \quad (corr. \angle s, \cong \triangle s)$

$\Rightarrow EA//CF$ (alt. \angle s equal)

11.11 HKCEE MA 2000 - I - 13

(a)
$$\angle A = \angle ABC = \angle BCD$$
 (given)
= $(5 2)180^{\circ} \div 5$ (\angle sum of polygon)
= 108°

 $\angle GCD = 90^{\circ}$ (property of square)

 $\Rightarrow \angle BCG = 108^{\circ} - 90^{\circ} = 18^{\circ}$

BC = CD = CG (given)

 $\angle GBC = \angle BGC$ (base $\angle s$, isos. \triangle)

In $\triangle BCG$, $\angle GBC = (180^{\circ} - \angle BCG) \div 2$ (\angle sum of \triangle) $= 81^{\circ}$

 $\angle ABP = 108^{\circ} 81^{\circ} = 27^{\circ}$ $\angle APB = 180^{\circ} - \angle A - \angle ABP = 45^{\circ} \quad (\angle \text{ sum of } \triangle)$

11.12 HKCEE MA 2002 - I - 10

(a) In
$$\triangle ABC$$
. $\angle B = \angle C$ (base $\angle s$, isos. \triangle)
= $(180^{\circ} - 20^{\circ}) \div 2$ ($\angle sum \text{ of } \triangle$)
= 80°

$$=80^{\circ}$$
 In $\triangle CBE$, $\angle E = \angle B = 80^{\circ}$ (base \angle s, isos. \triangle) $\angle ECB = 180^{\circ} - 2(80^{\circ})$ (\angle sum of \triangle)

 $= 20^{\circ}$ $\angle ECF = 80^{\circ} \quad 20^{\circ} = 60^{\circ}$

Thus, $\triangle CEF$ is equilateral. $\Rightarrow \angle CEF = 60^{\circ}$

(b)
$$\angle EDF = \angle DEF$$
 (base $\angle s$, isos. \triangle)
= $180^{\circ} - \angle CEF - \angle BEC$ (adj. $\angle s$ on st. line)
= 40°

 $\angle DFA = 40^{\circ} - \angle A = 20^{\circ}$ (ext. \angle of \triangle) $\angle DFA = \angle DAF = 20^{\circ}$ (proved)

AD = DF (sides opp. equal \angle s)

11.13 HKCEE MA 2004 - I - 12

(a) (i)
$$\angle AEF = \angle CED$$
 (vert. opp. $\angle s$)
= $\angle CDE$ (base $\angle s$, isos. \triangle)
= 36°

- (ii) $\angle ABC = \angle ACB$ (base $\angle s$, isos, \triangle) $= \angle CDE + \angle CED$ (ext. \angle of \triangle)
 - $\angle BAC = 180^{\circ} \quad 2(72^{\circ}) = 36^{\circ} \quad (\angle \text{ sum of } \triangle)$
- (b) (i) $\angle FAE = \angle AEF = 36^{\circ}$ (proved)
 - AF = FE(sides opp. equal ∠s) AF = FB, FE = FB (given)
 - $\angle EFB = \angle A + \angle AEF = 72^{\circ}$ (ext. \angle of \triangle) $\angle FEB = \angle FBE$ (base $\angle s$, isos. \triangle)

 $= (180^{\circ} - \angle EFB) \div 2 = 54^{\circ}$ Hence, $\angle AEB = \angle AEF + \angle FEB = 36^{\circ} + 54^{\circ} = 90^{\circ}$

(i i)
$$AC = AB = \frac{AE}{\cos \angle A} = \frac{10}{\cos 36^{\circ}}$$

 $BE = AE \tan \angle A = 10 \tan 36^{\circ}$
 \therefore Area of $\triangle ABC = \frac{1}{2}AC \cdot BE = 44.9 \text{ (cm}^2, 3.s.f.)$

11.14 HKCEE MA 2005 - I - 8

(vert. opp. ∠s)

11.15 HKCEE MA 2006 - I - 5

 $r^{\circ} = \angle AGB$

z = 180 - 30 30 = 120 ($\angle sum of \triangle$)

11.16 HKCEE MA 2007 - I - 8

```
x = 180^{\circ} - 110^{\circ} = 70^{\circ} (adj. \angles on st. line)
\angle CBF = z (base \angle s, isos. \triangle)
\angle EBC = 110^{\circ} (alt. \angle s, AC//DF)
z = 110^{\circ} 90^{\circ} = 20^{\circ}
v = 180^{\circ} - 90^{\circ} - x = 20^{\circ} (2 sum of \triangle)
```

11.17 HKCEE MA 2008 - I - 9

$$x = 33^{\circ}$$
 (alt. \angle s, $CD//AB$)
 $y = 43^{\circ} + x = 76^{\circ}$ (ext. \angle of \triangle)
 $\angle ACE = y = 76^{\circ}$ (base \angle s, isos. \triangle)
 $z = 180^{\circ} - \angle ACE - y = 28^{\circ}$ (\angle sum of \triangle)

11.18 HKDSE MA 2020 - I - 8

8a
$$AB = BE \quad \text{(given)}$$

$$\angle AEB = \angle BAE \quad \text{(base } \angle s, \text{ isos. } \Delta \text{)}$$

$$\angle AEB = 30^{\circ}$$

$$\angle ADB = \angle BED + \angle DBE \quad \text{(ext. } \angle \text{ of } \Delta \text{)}$$

$$42^{\circ} = 30^{\circ} + \angle DBE \quad \text{(ext. } \angle \text{ of } \Delta \text{)}$$

$$42^{\circ} = 30^{\circ} + \angle DBE \quad \text{(ext. } \angle \text{ of } \Delta \text{)}$$

$$42^{\circ} = 10^{\circ}$$

$$\angle BEC = \angle DBE \quad \text{(alt. } \angle s, BD \parallel CE \text{)}$$

$$= 12^{\circ}$$

$$\angle DCE = \angle BDC \quad \text{(alt. } \angle s, BD \parallel CE \text{)}$$

$$= \theta$$

$$\angle CEF + \angle CFE + \angle ECF = 180^{\circ} \quad \text{(} \angle \text{ sum of } \Delta \text{)}$$

$$12^{\circ} + \angle CFE + \theta = 180^{\circ}$$

$$\theta = 168^{\circ} - \theta$$

320

11B Congruent and similar triangles

11B.1 HKCEE MA 1982(2) - I - 13

(a) $\angle DAB = \angle EAC = 60^{\circ}$ (property of equil. \triangle) $\angle DAB + \angle BAC = \angle EAC + \angle BAC$ $\angle DAC = \angle BAE$ In $\triangle ADC$ and $\triangle ABE$, DA = BA (property of equil. \triangle)

 $DA = BA \qquad \text{(property of equil. } \triangle)$ $\angle DAC = \angle BAE \qquad \text{(property of equil. } \triangle)$ $\triangle ADC \cong \triangle ABE \qquad \text{(SAS)}$ $DC = BE \qquad \text{(corr. sides, } \cong \triangle \text{s)}$

118.2 HKCEE MA 2001 - I - 11

(a) PA' = PA = x cm

In $\triangle PBA'$, $x^2 = PB^2 + BA'^2$ (Pyth. thm) $x^2 = (12 - x)^2 + (12 \div 2)^2$ $x^2 = 144 - 24x + x^2 + 36 \implies x = 7.5$ (b) In $\triangle PBA'$ and $\triangle A'CR$,

In $\triangle PBA'$ and $\triangle A'CR$, $\angle B = \angle C = 90^{\circ} \qquad \text{(given)}$ $\angle BPA' = 180^{\circ} \angle B - \angle PA'B \qquad (\angle \text{sum of } \triangle)$ $= 90^{\circ} - \angle PA'B$ $\angle CA'R = 180^{\circ} - \angle PA'R - \angle PA'B \qquad \text{(adj. } \angle \text{s on st. line)}$ $= 90^{\circ} - \angle PA'B$ $\Rightarrow \angle BA'P = \angle CA'R$ $\angle BA'P = \angle CA'R \qquad (\angle \text{sum of } \triangle)$ $\angle \triangle PBA' \sim \triangle A'CR \qquad (AAA)$ $PA' = A'R \qquad \text{(adj. } \angle \text{s on st. line)}$

(c) $\frac{PA'}{PB} = \frac{A'R}{A'C} \quad \text{(corr. sides. } \sim \Delta \text{s)}$ $\frac{7.5}{12 - 7.5} = \frac{A'R}{6} \quad \Rightarrow \quad A'R = 10 \text{ (cm)}$

11B.3 HKCEE MA 2003 -- I - 8

(a) In △ABC and △CDA.

AB = CD (property of //gram) BC = DA (property of //gram) AC = CA (common)

 $\triangle ABC \cong \triangle CDA$ (SSS)

(b) $\triangle ABD \cong \triangle CDB$, $\triangle ABE \cong \triangle CDE$, $\triangle ADE \cong \triangle CBE$

11B.4 HKCEE MA 2009 - I - 11

(a) $\angle ADC = \angle ACE - \angle CAD$ (ext. \angle of \triangle) $= \angle ACE - \angle BCE$ (given) $= \angle ACB$ In $\triangle ABC$ and $\triangle AED$, AC = AD (given)

BC = ED (given) $\angle ACB = \angle ADE$ (proved) $\therefore \triangle ABC \cong \triangle AED$ (SAS)

(b) (i) In $\triangle ABF$ and $\triangle DEA$.

 $\angle AFB = \angle DAE$ (alt $\angle s$, AD//BC) $\angle ABF = \angle DEA$ (corr. $\angle s$, $\cong \triangle s$) $\angle BAF = \angle EDA$ ($\angle s$ sum of \triangle) $\therefore \triangle ABF \sim \triangle DEA$ (AAA)

(ii) △CEF, △CBA

11B.5 HKCEE MA 2010 - I - 9

(a) $\angle EAC + \angle ACD = 180^{\circ}$ (int. $\angle s$, AE//CD) In $\triangle ABC$, $\angle ABC + \angle BAC + \angle BCA = 180^{\circ}$ ($\angle sum \text{ of } \triangle$) $\angle ABC + (108^{\circ} - \angle EAC) + (126^{\circ} - \angle ACD) = 180^{\circ}$ $\angle ABC + 234^{\circ} - (180^{\circ}) = 180^{\circ}$ (proved) $\angle ABC = 126^{\circ}$

(b) In $\triangle ABC$ and $\triangle DCB$, AB = DC (given) $\triangle ABC = \angle DCB = 126^{\circ}$ (proved) BC = CB (common) $\triangle ABC \cong \triangle DCB$ (SAS)

11B.6 HKCEE MA 2011-I-9

(a) In $\triangle ABD$ and $\triangle ACD$,

∠BAD ∠CAD (given) AD = AD(common) $\angle ABD = \angle ACD$ (given) $\triangle ABD \cong \triangle ACD$ (ASA) (b) $\angle CAD = \angle BAD = 31^{\circ}$ (given) In $\triangle ACD$. $\angle ADC = 180^{\circ} - 31^{\circ} - 17^{\circ} = 132^{\circ}$ $(\angle sum of \triangle)$ $\angle ADB = \angle ADC = 132^{\circ}$ $(corr, \angle s, \cong \triangle s)$ DB = DC(corr. sides, $\cong \triangle s$) $\angle BDC = 360^{\circ} - 132^{\circ} - 132^{\circ} = 96^{\circ}$ (Zs at a pt)

(base $\angle s$, isos. \triangle)

 $(\angle sum of \triangle)$

11B.7 HKDSE MA 2013 - I - 7

/CBD = /BCD

(a) BE = CE (given) $\angle BCE = \angle CBE$ (base $\angle s$, isos. \triangle) In $\triangle ABC$ and $\triangle DCB$, $\angle BAC = \angle BDC$ (given) $\angle ACB = \angle DCB$ (proved) BC = CB (common) $\triangle ABC \cong \triangle DCB$ ($\triangle AAS$)

 $=(180^{\circ}-96^{\circ})\div 2=42^{\circ}$

(b) (i) $3 (\triangle ABC \cong \triangle DCB, \triangle ABE \cong \triangle DCE, \triangle ABD \cong \triangle DCA)$ (ii) 4 (the 3 in (i) and $\triangle ADE \sim \triangle CBE)$

11B.8 HKDSE MA 2014 - I - 9

(a) In $\triangle ABC$ and $\triangle BDC$, $\angle C = \angle C$

 $\angle C = \angle C \qquad \text{(common)}$ $\angle BAC = \angle DBC \qquad \text{(given)}$ $\angle ABC = \angle BDC \qquad (\angle \text{sum of } \triangle)$ $\triangle ABC \sim \triangle BDC \qquad (AAA)$

(b) $\frac{AC}{BC} = \frac{BC}{DC}$ (corr. sides, $\sim \Delta s$) $\frac{25}{20} = \frac{20}{DC}$ DC = 16 $BC^2 = 20^2 = 400$

 $BD^2 + CD^2 = 12^2 + 16^2 = 400 = BC^2$ $\triangle BCD$ is a right- $\angle ed \triangle$. (converse of Pyth. thm)

11B.9 HKDSE MA 2015 - I - 13

(a) In $\triangle ABE$ and $\triangle BCF$,

AB = BC (property of square) $\angle B = \angle C = 90^{\circ}$ (property of square) AE = BF (given) $\triangle ABE \cong \triangle BCF$ (RHS)

(b) $\angle AEB = \angle BFC$ (corr. sides, $\cong \triangle s$) In $\triangle BEG$.

∠BGE = 180° ∠GBE ∠GEB (∠ sum of △) = 180° − ∠GBE − ∠BFC (proved) = ∠BCF = 90° (∠ sum of △) ∴ YES.

(c) BE = CF = 15 cm (corr. sides, $\cong \triangle s$) $BG = \sqrt{BE^2 - EG^2} = 12 \text{ cm}$ (Pyth. thm)

11B.10 HKDSE MA 2016-1-13

(a) DE = ED (common) BD + DE = CE + ED (given) BE = CDIn $\triangle ACD$ and $\triangle ABE$,

> BE = CD (proved) ∠ $AEB = \angle ADC$ (given) AE = AD (sides opp. equal ∠s) ∴ △ $ACD \cong \triangle ABE$ (SAS)

(b) (i) $\therefore DM = EM$ (given) $\therefore AM \perp DE$ (property of isos. \triangle) $AM = \sqrt{AD^2 - (DE \div 2)^2} = 12$ (cm) (Pyth. thm)

(ii) $AB = \sqrt{AM^2 + BM^3} = 20 \text{ (cm)}$ (Pyth. thm) $BE^2 = 25^2 = 625$ $AB^2 + AE^2 = AB^2 + AD^2$ (corr. sides, $\cong \Delta s$) $= 20^2 + 15^2 = 625 = BE^2$ \therefore YES. (converse of Pyth. thm)

11B.11 HKDSE MA 2017 - I - 10

(a) \therefore OP = OR and PS = RS (given) \therefore $OS \perp PR$ (property of isos. \triangle) In $\triangle OPS$ and $\triangle ORS$, OP = OR (given) OS = OS (common) $\angle OSP = \angle OSR$ (proved) \therefore $\triangle OPS \cong \triangle ORS$ (RHS)

11B.12 HKDSE MA 2018 - I - 13

(a) $\angle C = 180^{\circ} \angle B = 90^{\circ}$ (int. $\angle s$, AB//DC) $\angle BAE = 180^{\circ} - \angle ABE - \angle AEB$ quad ($\angle sum \text{ of } \triangle$) $= 90^{\circ} \angle AEB$ $\angle CED = 180^{\circ} - \angle AED - \angle AEB$ (adj. $\angle s$ on st. line) $= 90^{\circ} \angle AEB$ $\therefore BAE = \angle CED$ In $\triangle ABE$ and $\triangle ECD$,

 $\angle B = \angle C = 90^{\circ} \quad \text{(proved)}$ $\angle BAE = \angle CED \quad \text{(proved)}$ $\angle BEA = \angle CDE \quad \text{(\angle sum of \triangle)}$ $\therefore \triangle ABE \sim \triangle ECD \quad \text{(AAA)}$

(b) (i) $BE = \sqrt{AE^2 - AB^2} = 20 \text{ cm}$ (Pyth. thm)

 $\frac{AB}{BE} = \frac{EC}{CD}$ (corr. sides, $\sim \Delta$ s) $\frac{15}{20} = \frac{36}{CD}$ CD = 48 cm (ii) $DE = \sqrt{CD^2 + CE^2} = 60 \text{ cm}$ (Pyth. thm) Area of $\triangle ADE = \frac{1}{2}(25)(60) = 750 \text{ (cm}^2)$ (iii) $AD = \sqrt{25^2 + 60^2} = 65 \text{ (cm)}$ (Pyth. thm) Let ℓ cm be the shortest distance from E to AD. $\frac{AD \cdot \ell}{2} = \text{Area of } \triangle ADE$ $\ell = 2 \times 750 \div 65$ = 23.077 > 23• NO.

11B.13 HKDSE MA 2020 - I - 18

15a	∠TUV = ∠TWU (∠ in alt, segment)	
	$\angle UIV = \angle IVIU$ (common \angle)	
	$\angle UVT = \angle R'UT$ (3rd \angle of \triangle)	
	AUTV - AFTU (A A.A.)	
bi	SUTY ~ SPTU (from (n))	
	$\frac{TU}{TW} = \frac{TV}{TU} \text{(corr. sides, $\sim \Delta s$)}$	
	$\frac{IU}{IV + VW} = \frac{IV}{IU}$	
	$\frac{780}{325 + VTV} = \frac{325}{780}$	
	325 + VIV /80 VW = 1547 cm	
	The circumference of $C = \pi(1547)$	
	=1547# cm	
ii	$\Delta UTV - \Delta WTU \text{(from (n))}$	
	1	
	UV TV (corr. sides, -Δu)	
	$\frac{UV}{UV} = \frac{325}{780}$	
	$UV = \frac{5}{12}UR'$	
	∠VUW = 90° (∠ in semi-circle)	
	$UV^2 + UW^2 = VW^2$ (Pyth. Thin.)	
	$\left(\frac{5}{12}UW\right)^2 + UW^2 - 1547^2$	
	<i>UIV</i> = 1428 cm	
	The perimeter of $\triangle UVW = UV + UW + VW$	
	$= \frac{5}{12}UW + UW + VW$	
	$=\frac{5}{12}(1428)+1428+1547$	
	12	
	= 3570 cm	
	= 35.7 m > 35 m	
	Therefore, the perimeter of \(\Delta VW \) exceeds 35 m.	
	The claim is agreed with.	