Niveau : Licence Mathématiques, 2ème année Année: 2014-2015, Semestre 3

Matière: Algèbre 3

Examen final

Jeudi 22 Janvier 2015 - Durée: 1h30

Questions de Cours : (05 pts)

Soient A et B deux matrices carrées d'ordre n, k un scalaire.

- 1. Que signifie, A et B sont semblables.
- 2. Soit χ_A et χ_B les polynômes caractéristiques de A et B (respectivement). Montrer que : Si A et B sont semblables, alors : $\chi_A = \chi_B$.
- 3. Démontrer que : $det(kA) = k^n det(A)$.
- 4. Montrer que, si $det(A) \neq 0$ alors on a : $det(A^{-1}) = \frac{1}{det(A)}$.

Exercice 1: (05 pts)

On considère la permutation

- 1. Décomposer σ en produit de cycles disjoints.
- 2. Décomposer σ en produit de transpositions.
- 3. Écrire les inversions de σ .
- 4. Calculer la signature de σ et déterminer sa parité.
- 5. Sachant que $\sigma^{12} = \sigma_0$ (avec σ_0 est la permutation identique), calculer σ^{147} .

Exercice 2: (05 pts)

Calculer les déterminants suivants :

1)
$$\Delta_1 = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ b+c & a+c & a+b \end{vmatrix}$$
;

2)
$$\Delta_2 = \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix}$$
;

Calculer les déterminants suivants :

1)
$$\Delta_1 = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ b+c & a+c & a+b \end{vmatrix}$$
;

2) $\Delta_2 = \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix}$;

3) $\Delta_n = \begin{vmatrix} a_1 + x & x & x & \dots & x \\ x & a_2 + x & x & \dots & x \\ x & x & a_3 + x & \dots & x \\ \vdots & \ddots & \ddots & \vdots \\ x & x & \dots & x & a_n + x \end{vmatrix}$; où a_1, a_2, \dots, a_n, x sont des réels.

Exercice 3: (05 pts)

Soit la matrice suivante :

$$A = \begin{pmatrix} .7 & 3 & -9 \\ -2 & -1 & 2 \\ 2 & -1 & -4 \end{pmatrix}$$

- 1. Calculer detA.
- 2. la matrice A est elle inversible?
- 3. Trouver les valeurs propres et les vecteurs propres de A.
- 4. La matrice A est-elle diagonalisable?
- 5. Calculer la matrice inverse de A.