Relatório Melhoria Contraste

Daniella Martins Vasconcellos¹ e Miguel Alfredo Nunes¹

¹Departamento de Ciência da Computação – Universidade Estadual de Santa Catarina (UDESC)

daniella.vasconcellos@edu.udesc.br, miguel.nunes@edu.udesc.br

Resumo. Trabalho feito para a disciplina de Processamento de Imagens (PIM0001), ministrada pelo Professor Doutor Gilmário Barbosa dos Santos. O trabalho consistia em estudar sobre caracterização e melhoria de contraste de imagens.

1. Introdução

Figure 1. Marilyn, Outono, Lena

Figure 2. Clara / Escura

2. Fundamentação

Utilizando a biblioteca OpenCV do python, é calculada a quantidade de pixels de um mesmo valor na imagem. Com este resultado, chamado de *intensidade*, é calculada a probabilidade de cada valor de pixel, dividindo quantos pixels possui determinado valor da intensidade pelo tamanho total da imagem.

Tanto a fórmula de variância quanto a fórmula de entropia das imagens foram utilizadas as mesmas da seção 5 do livro [Gonzalez and Woods 2009].

O exercício foi inteiro concluído no arquivo *main.py*, com as funções principais sendo *variancia()*, *entropia()*, *histograma()* e *equalizador*.

As funções *item1()*, *item2()* e *item3()* utilizaram as funções principais para alcançarem seus próprios objetivos como solicitado no PDF disponibilizado pelo professor.

3. Etapa Experimental

Os histogramas retornados pela execução do programa estão no grupo de imagens 3.

Os resultados numéricos solicitados pelo item 1 são:

1. Média de Clara.jpg: 252.06378538951932

2. Variância de Clara.jpg: 17.67375839811726

3. Entropia de Clara.jpg: 2.2203148710276883

1. Média de Escura.jpg: 15.063615870972168

2. Variância de Escura.jpg: 17.62237349557202

3. Entropia de Escura.jpg: 2.2180352827118295

1. Média de Lena.png: 115.02948760986328

2. Variância de Lena.png: 3049.2673189574275

3. Entropia de Lena.png: 7.445526095793026

Após a aplicação da equalização de contraste na imagem "Outono LC.png", como solicitado pelo item 3, o resultado pode ser visto na figura 4. Os respectivos histogramas RGB vs YIQ se encontram na figura 5.

Figure 3. Comparação dos histogramas. De cima para baixo, temos: Histograma Clara, Histograma Escura e Histograma Lena

Figure 4. Outono LC.png pós equalização de contraste

Figure 5. Comparação dos histogramas. A primeira imagem à no canto superior esquerdo é o histograma da imagem RGB antes de qualquer transformação. Na segunda, canto superior direito, encontra-se o histograma da figura pós cores trocadas de RGB para YIQ. A terceira, canto inferior esquerdo, é o histograma da imagem YIQ pré equalização. Na última foto, por fim, encontra-se o histograma pós a troca de YIQ para RGB e pós equalização.

4. Análise dos resultados obtidos

Em comparação aos histogramas do Item 1, foi possível de se observar que tanto a variância quanto a entropia das imagens Clara.jpg e Escura.jpg resultaram em valores

muito próximos. Todavia, a média de Clara.jpg é muito mais alta que a de Escura.jpg, valores que podem ser corroborados pelos valores mostrados em seus respectivos histogramas. Já a imagem Lena.png possui um histograma muito mais presente em todo o corpo do gráfico, e, por conta disso, tanto o seu valor de variância quanto de entropia são maiores que os das outras imagens comparativas.

Já no item 3, a diferença entre as imagens Outono pré e pós equalização são extremamente visíveis: a primeira imagem apresentou uma versão da imagem com cores mais "apagadas", de baixo contraste, dificultando a distinção de objetos presentes na figura. Após a equalização, foi observada grande diferença nas cores, que ficaram mais "fortes", obtendo uma figura com mais destaque. Essa diferença também pode ser analisada nos histogramas: no início, com o RGB puro, era possível analisar a concentração da frequência no centro do histograma. Depois que foi passada para YIQ e analisada de volta para RGB, as cores foram melhores distribuídas por todo o gráfico, consequentemente deixando a imagem mais agradável visualmente para o usuário.

5. Conclusões

A equalização de histogramas é um algoritmo bastante robusto e útil, pois sem esforço adicional é possível equilibrar os níveis de altura de uma imagem, garantindo uma melhor visualização ao aumentar o contraste entre cores.

Agradecimentos

Agradecimentos ao Professor Doutor Gilmário Barbosa dos Santos pela disponibilização dos materiais utilizados como base para o estudo feito nesse trabalho.

References

Gonzalez, R. C. and Woods, R. E. (2009). *Processamento Digital de Imagens*. Pearson, 3rd edition.