

### Adaptive RED Queue Discipline

### Mohit P. Tahiliani

**Assistant Professor** 

Department of Computer Science and Engineering National Institute of Technology Karnataka, Surathkal, India tahiliani@nitk.edu.in

## Motivation: Adaptive RED



Instead of increasing the  $P_d$  linearly, it might be better if  $P_d$  is increased slowly when it is near to  $\min_{th}$  and increased sharply when it is near to  $\max_{th}$ .

One of the solutions: Adapt max<sub>p</sub>

## Main contributions in Adaptive RED paper

- Automatic setting of minimum threshold (min<sub>th</sub>)
  - It is set as a function of the link capacity (C) and target queue delay
- Automatic setting of maximum threshold (max<sub>th</sub>)
  - It is set depending on the value of min<sub>th</sub>
- Automatic setting of w<sub>q</sub>
  - It is set as a function of the link capacity (C)
- Adaptive setting of max<sub>p</sub>
  - It is adapted according to the current average queue length

## Adaptive RED vs Self Configuring RED

- max<sub>p</sub> is adapted not just to keep the average queue size between min<sub>th</sub> and max<sub>th</sub>, but to keep the average queue size within a 'target range' halfway between min<sub>th</sub> and max<sub>th</sub>. Example: if min<sub>th</sub> = 5 packets and max<sub>th</sub> = 15 packets, then:
   target range = [min<sub>th</sub> + 0.4 x (max<sub>th</sub> min<sub>th</sub>), min<sub>th</sub> + 0.6 x (max<sub>th</sub> min<sub>th</sub>)]
   Hence, target range = [5 + 0.4 (15 5), 5 + 0.6 (15 5)] = [9, 11]
- ullet max $_{
  m p}$  is adapted slowly, over time scales greater than a typical round-trip time, and in small steps
- $\max_{p}$  is constrained to remain within the range [0.01, 0.5] (i.e., 1% to 50%)
- AIMD policy is used to adapt  $\max_{p}$ , unlike MIMD policy which is used in Self Configuring RED

# Automatic setting of minimum threshold (min<sub>th</sub>)

- What happens if the min<sub>th</sub> is set to a low value?
  - Degradation of throughput
- What happens if the min<sub>th</sub> is set to a high value?
  - Queue delay increases
- What is the best approach to estimate a suitable value for the min<sub>th</sub>?
  - Set the min<sub>th</sub> to be a function of the link capacity (C). Why?
    - If the link is slow, incorrect setting of min<sub>th</sub> can lead to high queuing delays
    - If the link is fast, incorrect setting of min<sub>th</sub> can lead to loss of throughput
  - Decide upon a suitable 'target queue delay' (i.e., acceptable queue delay)
    - Set the min<sub>th</sub> to be a function of the target queue delay

## Automatic setting of minimum threshold (min<sub>th</sub>)

min<sub>th</sub> is calculated as:

```
min_{th} = (target_queue_delay x C) ÷ 2 // Question: Why divide by 2? where,
```

C = capacity of the link in packets (can be obtained by: Bandwidth ÷ packet size) target\_queue\_delay is 5ms (is a user configurable parameter)

• Sally Floyd's recommendation to set the min<sub>th</sub> automatically is:

$$min_{th} = max [5, (target_queue_delay x C) \div 2]$$

- omin<sub>th</sub> of 5 packets was found to work well for low and moderate link capacity
  - So min<sub>th</sub> of at least 5 packets is recommended to ensure that the throughput is not affected.

## Automatic setting of maximum threshold (max<sub>th</sub>)

max<sub>th</sub> is calculated as:

$$max_{th} = 3 \times min_{th}$$

- This ensures that the 'target range' for average queue size is 2 x min<sub>th</sub>
- Example: if  $min_{th} = 5$  packets and  $max_{th} = 15$  packets, then:

```
target range = [min_{th} + 0.4 \times (max_{th} - min_{th}), min_{th} + 0.6 \times (max_{th} - min_{th})]
```

Hence, target range = [5 + 0.4 (15 - 5), 5 + 0.6 (15 - 5)] = [9, 11] // this is 2 x min<sub>th</sub>

# Automatic setting of Wq

- w<sub>q</sub> is set to be a function of the link capacity (C):
  - $w_q = 1 e^{(-1/C)}$  // Verify whether this is same in ns-2/ns-3 implementation where, C is the link capacity in packets/second (i.e., Bandwidth ÷ packet size)
- If the queue size changes from one value (old) to another (new), it takes "-1 / ln (1  $w_q$ )" packet arrivals for the 'average queue size' to reach 63% of the 'new queue size'
- Thus, "-1 /  $\ln (1 w_q)$ " is referred to as a 'time constant' of the estimator for the average queue size (but it is specified in packet arrivals, and not actually in time).
- Example: if  $w_q = 0.002$ , it corresponds to 500 packet arrivals.
  - $\circ$  But suppose if the bandwidth available is 1Gbps, 500 packet arrivals account for a small amount of time. Hence, even smaller values of  $w_{\alpha}$  would be better.

# The Adaptive RED algorithm (adapting max<sub>p</sub>)

```
Every interval seconds:
    if (avg > target \text{ and } max_p \leq 0.5)
        increase max_p:
       max_p \leftarrow max_p + \alpha;
    elseif (avg < target and max_p \ge 0.01)
        decrease max_p:
       max_p \leftarrow max_p * \beta;
Variables:
       average queue size
avq:
Fixed parameters:
interval: time; 0.5 seconds
target: target for avq;
    [min_{th} + 0.4 * (max_{th} - min_{th})]
       min_{th} + 0.6 * (max_{th} - min_{th})].
     increment; min(0.01, max_p/4)
     decrease factor; 0.9
```

#### Important Note!

- In Adaptive RED, α is used to increment the value of max<sub>p</sub>, whereas in Self Configuring RED, it is used to decrement the value of max<sub>p</sub>.
- In Adaptive RED, β is used to decrement the value of max<sub>p</sub>, whereas in Self Configuring RED, it is used to increment the value of max<sub>p</sub>.

## Deriving bounds for $\alpha$ in Adaptive RED

$$p = max_p \times (\frac{avg - min_{th}}{max_{th} - min_{th}})$$
 Eq. (1)

Before adapting  $max_p$ 

$$avg_1 = min_{th} + \frac{p}{max_p} \times (max_{th} - min_{th})$$
 Eq. (2)

and after adapting  $max_p$ 

$$avg_2 = min_{th} + \frac{p}{max_p + \alpha} \times (max_{th} - min_{th})$$
 Eq. (3)

Subtracting

$$avg_1 - avg_2 = \frac{\alpha}{max_p + \alpha} \times \frac{p}{max_p} \times (max_{th} - min_{th})$$
 Eq. (4)

Hence to ensure avg does not exceed above target to below target

## Deriving bounds for $\alpha$ in Adaptive RED

$$\frac{\alpha}{max_p + \alpha} < 0.2$$
 Eq. (5)

$$\alpha < 0.25 \ max_p$$
 Eq. (6)

## Deriving bounds for $\beta$ in Adaptive RED

Similarly for  $\beta$ , before adapting  $max_p$ 

$$avg_1 = min_{th} + \frac{p}{max_p} \times (max_{th} - min_{th})$$
 Eq. (7)

and after adapting  $max_p$ 

$$avg_2 = min_{th} + \frac{p}{max_p \times \beta} \times (max_{th} - min_{th})$$
 Eq. (8)

Subtracting

$$avg_1 - avg_2 = \frac{1-\beta}{\beta} \times \frac{p}{max_p} \times (max_{th} - min_{th})$$
 Eq. (9)

Hence to ensure avg does not exceed below target to above target

## Deriving bounds for **\beta** in Adaptive RED

$$\frac{1-\beta}{\beta} < 0.2$$
 Eq. (10)

### Question 1:

Suppose the target range defined in Adaptive RED is modified as:

target range =  $[min_{th} + 0.48 \times (max_{th} - min_{th}), min_{th} + 0.52 \times (max_{th} - min_{th})]$ 

What will be the new bounds for  $\alpha$  and  $\beta$ ?

### Question 2:

How many knobs are removed in Adaptive RED and how many new knobs are added?

## Recommended Reading

Adaptive RED:

Link: <a href="https://www.icir.org/floyd/papers/adaptiveRed.pdf">https://www.icir.org/floyd/papers/adaptiveRed.pdf</a>