Advanced Statistical Computing Lecture 2

Optimization & Solving Nonlinear Equation (II)

Dr. Ke Deng Center for statistical Science Tsinghua University, Beijing

邓 柯 清华大学统计学研究中心

kdeng@tsinghua.edu.cn

From Univariate to Multivariate

Multivariate optimization

- Seek the optimum of a real-valued function of a *p*-dimensional vector
- Many principles for the univariate case also apply for multivariate case
 - Algorithms are still iterative
 - Many algorithms take steps based on a local linearization of g' derived from a Taylor series or secant approximation
 - Convergence criteria are similar in spirit despite slight changes in form

Distance Measure & Convergence Criteria

- Distance measure for p-dimensional vectors: $D(\mathbf{u}, \mathbf{v})$
 - Two obvious choice:

$$D(\mathbf{u},\mathbf{v}) = \sum_{i=1}^{p} |u_i - v_i|$$

$$D(\mathbf{u}, \mathbf{v}) = \sqrt{\sum_{i=1}^{p} (u_i - v_i)^2}$$

- Convergence Criteria:
 - ➤ Absolute convergence criteria:

$$D(\mathbf{x}^{(t+1)}, \mathbf{x}^{(t)}) < \epsilon$$

> Relative convergence criteria:

$$\frac{D(\mathbf{x}^{(t+1)}, \mathbf{x}^{(t)})}{D(\mathbf{x}^{(t)}, \mathbf{0})} < \epsilon \quad \text{or} \quad \frac{D(\mathbf{x}^{(t+1)}, \mathbf{x}^{(t)})}{D(\mathbf{x}^{(t)}, \mathbf{0}) + \epsilon} < \epsilon$$

M₁: Newton's Method (for univariate case)

The motivating example:

Score equation with no analytic solution

Target function to maximize:
$$g(x) = \frac{\log x}{1+x}$$
 \Rightarrow $g'(x) = \frac{1+1/x - \log x}{(1+x)^2} = 0$

- The key idea:
 - Approximated nonlinear score equation with a linear equation nearby $x^{(t)}$:

$$0 = g'(x^*) \approx g'(x^{(t)}) + (x^* - x^{(t)})g''(x^{(t)})$$

- Get solution: $x^* = x^{(t)} \frac{g'(x^{(t)})}{g''(x^{(t)})}$
- Updating equation:

$$x^{(t+1)} = x^{(t)} - \frac{g'(x^{(t)})}{g''(x^{(t)})} = x^{(t)} + h^{(t)}$$

- Technical conditions:
 - \triangleright g' is continuously differentiable
 - $\geqslant g''(x^*) \neq 0$

$$h^{(t)} = \frac{(x^{(t)} + 1)(1 + 1/x^{(t)} - \log x^{(t)})}{3 + 4/x^{(t)} + 1/(x^{(t)})^2 - 2\log x^{(t)}}$$
 for the motivating example

M₁: Newton's Method (for univariate case)

***** The motivating example:

Target function to maximize: $g(x) = \frac{\log x}{1+x}$ \Rightarrow $g'(x) = \frac{1+1/x - \log x}{(1+x)^2} = 0$

• The key idea:

Approximated nonlinear score equation with a linear equation nearby $x^{(t)}$:

$$0 = g'(x^*) \approx g'(x^{(t)}) + (x^* - x^{(t)})g''(x^{(t)})$$

- ► Get solution: $x^* = x^{(t)} \frac{g'(x^{(t)})}{g''(x^{(t)})}$
- Updating equation:

$$x^{(t+1)} = x^{(t)} - \frac{g'(x^{(t)})}{g''(x^{(t)})} = x^{(t)} + h^{(t)}$$

- Technical conditions:
 - \triangleright g' is continuously differentiable
 - $> g''(x^*) \neq 0$

An alternative perspective

Score equation with no analytic solution

Approximated target function g with a quadratic Taylor expansion nearby $x^{(t)}$:

$$g(x^{(t)}) + (x^* - x^{(t)})g'(x^{(t)}) + (x^* - x^{(t)})^2 g''(x^{(t)})/2$$

➤ Maximize the quadratic function:

$$x^* = x^{(t)} - \frac{g'(x^{(t)})}{g''(x^{(t)})}$$

M₁: Newton's Method (for multivariate case)

- Similar idea as in the univariate case:
 - \triangleright Approximate target function g with a quadratic Taylor expansion nearby $x^{(t)}$:

$$g(\mathbf{x}^*) \approx g(\mathbf{x}^{(t)}) + (\mathbf{x}^* - \mathbf{x}^{(t)})^{\mathrm{T}} \mathbf{g}'(\mathbf{x}^{(t)}) + \frac{1}{2} (\mathbf{x}^* - \mathbf{x}^{(t)})^{\mathrm{T}} \mathbf{g}''(\mathbf{x}^{(t)}) (\mathbf{x}^* - \mathbf{x}^{(t)})$$

Maximize the above quadratic function with respect to x^* to find the next iterate

Set the gradient of the right-hand side to zero: $\mathbf{g}'(\mathbf{x}^{(t)}) + \mathbf{g}''(\mathbf{x}^{(t)})(\mathbf{x}^* - \mathbf{x}^{(t)}) = 0$

Get updating function:

ting function:
$$\mathbf{h}^{(t)} = -\mathbf{g}''(\mathbf{x}^{(t)})^{-1}\mathbf{g}'(\mathbf{x}^{(t)})$$

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \mathbf{g}''(\mathbf{x}^{(t)})^{-1}\mathbf{g}'(\mathbf{x}^{(t)}) = \mathbf{x}^{(t)} + \mathbf{h}^{(t)}$$

 M'_1 : Fisher Scoring for finding MLE in multivariate case:

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \mathbf{I}(\boldsymbol{\theta}^{(t)})^{-1} \mathbf{I}'(\boldsymbol{\theta}^{(t)})$$

Replace the observed information $-g''(\theta^{(t)})$ with the expected Fisher information $I(\theta^{(t)})$ 6

Bivariate Optimization via M_1 An Example

Observations

- Two starting points are tried:
 - ✓ one converges to the true maximum
 - ✓ one converges to a local maximum
- Some steps are downhill
- Some steps have a large step length

Impression

- Even a small change of starting point may lead to very different results
- Large step length may overshoot the portion of the ridge

Fig. 2.7 Newton's method with different starting points

M_1 and M'_1 in Logistic Regression

Key assumptions of Logistic Regression:

$$Y_i | \mathbf{z}_i \sim \text{Bernoulli}(\pi_i) \text{ independently for } i = 1, ..., n$$

$$\theta_i = \log\{\pi_i/(1 - \pi_i)\}$$

$$\theta_i = \mathbf{z}_i^{\mathrm{T}} \boldsymbol{\beta} \qquad \mathbf{z}_i = (1, z_i)^{\mathrm{T}} \qquad \boldsymbol{\beta} = (\beta_0, \beta_1)^{\mathrm{T}}$$

• Log-likelihood:

$$l(\boldsymbol{\beta}) = \mathbf{y}^{\mathrm{T}} \mathbf{Z} \boldsymbol{\beta} - \mathbf{b}^{\mathrm{T}} \mathbf{1}$$

 $\mathbf{y} = (y_1 \dots y_n)^{\mathrm{T}} \quad \mathbf{b} = (b(\theta_1) \dots b(\theta_n))^{\mathrm{T}}$

$$b(\theta_i) = \log\{1 + \exp\{\theta_i\}\} = \log\{1 + \exp\{\mathbf{z}_i^{\mathrm{T}}\boldsymbol{\beta}\}\} = -\log\{1 - \pi_i\}$$

M_1 and M'_1 in Logistic Regression

Newton's method:

$$\mathbf{l}'(\boldsymbol{\beta}) = \mathbf{Z}^{\mathrm{T}}(\mathbf{y} - \boldsymbol{\pi})$$

$$\mathbf{W} \text{ is a diagonal matrix with } i\text{th diagonal entry equal to } \pi_i(1 - \pi_i)$$

$$\mathbf{l}''(\boldsymbol{\beta}) = \frac{d}{d\boldsymbol{\beta}}(\mathbf{Z}^{\mathrm{T}}(\mathbf{y} - \boldsymbol{\pi})) = -\left(\frac{d\boldsymbol{\pi}}{d\boldsymbol{\beta}}\right)^{\mathrm{T}}\mathbf{Z} = -\mathbf{Z}^{\mathrm{T}}\mathbf{W}\mathbf{Z} \qquad \text{does not depend on } \mathbf{y}$$

$$\boldsymbol{\beta}^{(t+1)} = \boldsymbol{\beta}^{(t)} - \mathbf{l}''(\boldsymbol{\beta}^{(t)})^{-1}\mathbf{l}'(\boldsymbol{\beta}^{(t)})$$

$$= \boldsymbol{\beta}^{(t)} + \left(\mathbf{Z}^{\mathrm{T}}\mathbf{W}^{(t)}\mathbf{Z}\right)^{-1}\left(\mathbf{Z}^{\mathrm{T}}(\mathbf{y} - \boldsymbol{\pi}^{(t)})\right)$$

Notes

- The Hessian does not depend on y in this example
- ➤ Therefore, Fisher's information matrix is equal to the observed information:

$$I(\beta) = E\{-\boldsymbol{l}''(\beta)\} = E\{\boldsymbol{Z}^T \boldsymbol{W} \boldsymbol{Z}\} = -\boldsymbol{l}''(\beta).$$

- \triangleright Fisher scoring approach M_2' = Newton's method M_2 in this example.
- \triangleright $M_1 = M_1' = iteratively reweighted least squares (IRLS)$

Example: Human Face Recognition

• Problem:

logistic regression model to some data related to testing a human face recognition algorithm

• Original data:

Pairs of images of 1072 faces

• Response:

 $y_i = 1$: a successful match

 $y_i = 0$: a match to another person

• Predictor variable:

absolute difference in mean standardized eye region pixel intensity between the probe image and its corresponding target

TABLE 2.1 Parameter estimates and corresponding variance— covariance matrix estimates are shown for each Newton's method iteration for fitting a logistic regression model to the face recognition data described in Example 2.5.

Iteration, t	$\boldsymbol{\beta}^{(t)}$	$-\mathbf{l}''(\boldsymbol{\beta}^{(t)})^{-1}$
0	$\begin{pmatrix} 0.95913 \\ 0.00000 \end{pmatrix}$	$\begin{pmatrix} 0.01067 & -0.11412 \\ -0.11412 & 2.16701 \end{pmatrix}$
1	$\begin{pmatrix} 1.70694 \\ -14.20059 \end{pmatrix}$	$\begin{pmatrix} 0.13312 & -0.14010 \\ -0.14010 & 2.36367 \end{pmatrix}$
2	$\begin{pmatrix} 1.73725 \\ -13.56988 \end{pmatrix}$	$\begin{pmatrix} 0.01347 & -0.13941 \\ -0.13941 & 2.32090 \end{pmatrix}$
3	$\begin{pmatrix} 1.73874 \\ -13.58839 \end{pmatrix}$	$\begin{pmatrix} 0.01349 & -0.13952 \\ -0.13952 & 2.32241 \end{pmatrix}$
4	$\begin{pmatrix} 1.73874 \\ -13.58840 \end{pmatrix}$	$\begin{pmatrix} 0.01349 & -0.13952 \\ -0.13952 & 2.32241 \end{pmatrix}$

Newton-Like Methods

• Newton method: Hessian matrix $\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \mathbf{g}''(\mathbf{x}^{(t)})^{-1}\mathbf{g}'(\mathbf{x}^{(t)})$

• Newton-like method: a $p \times p$ matrix approximating the Hessian $g''(x^{(t)})$

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - (\mathbf{M}^{(t)})^{-1}\mathbf{g}'(\mathbf{x}^{(t)})$$

- Reasons to replace the Hessian by some simpler approximation:
 - Computationally cheaper
 - A suitable $M^{(t)}$ can guarantee ascent, which may be violated in Newton's method, i.e., $g(\mathbf{x}^{(t+1)}) > g(\mathbf{x}^{(t)})$
- Examples of Newton-like methods:
 - \triangleright M'_1 : Fisher scoring
 - \triangleright M_1'' : Ascent algorithms
 - \triangleright M_1''' : Discrete Newton and Fixed-point methods
 - \triangleright M_1'''' :Quasi-Newton methods

M_1'' : Ascent Algorithms

Newton-like method: a $p \times p$ matrix approximating the Hessian $g''(x^{(t)})$

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - (\mathbf{M}^{(t)})^{-1} \mathbf{g}'(\mathbf{x}^{(t)})$$

Key idea of M_1'' :

design a Newton-like method that guarantees uphill in every step

Updating function of M_1'' :

a negative definite matrix to approximate the Hessian

a negative definite matrix to approx
$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} + \mathbf{h}^{(t)} \longrightarrow \mathbf{h}^{(t)} = -\mathbf{\alpha}^{(t)} \left[\mathbf{M}^{(t)} \right]^{-1} \mathbf{g}'(\mathbf{x}^{(t)})$$

a contraction or step length parameter $\alpha^{(t)} > 0$ whose value can shrink to ensure ascent at each step

Steepest Ascent as a special case:

$$\mathbf{M}^{(t)} = -\mathbf{I} \implies \mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} + \alpha^{(t)} \mathbf{g}'(\mathbf{x}^{(t)})$$

Why M_1'' Works?

Analysis of the error:

$$g(\mathbf{x}^{(t+1)}) - g(\mathbf{x}^{(t)}) = g(\mathbf{x}^{(t)} + \mathbf{h}^{(t)}) - g(\mathbf{x}^{(t)}) \quad \text{negligible when } \alpha^{(t)} \text{ is close to zero}$$
Linear Taylor expansion of $g \rightarrow = -\alpha^{(t)} \mathbf{g}'(\mathbf{x}^{(t)})^{\mathrm{T}} (\mathbf{M}^{(t)})^{-1} \mathbf{g}'(\mathbf{x}^{(t)}) + \mathcal{O}(\alpha^{(t)})$

$$> 0 \text{ if } \mathbf{M}^{(t)} \text{ is negative define}$$

- Theoretical properties of M_1'' :
 - A small enough step length will guarantee uphill in the framework of $M_2^{\prime\prime}$
- Tune $\alpha^{(t)}$ by *Step Halving*:
 - > start each step with $\alpha^{(t)} = 1$.
 - \triangleright If the original step turns out to be downhill, $\alpha^{(t)}$ can be halved.
 - For If the step is still downhill, $\alpha^{(t)}$ is halved again until a sufficiently small step is found to be uphill.

Alternative Ways to Tune Step Length

• Step halving:

Halve the step length at each time

Backtracking

• Line search methods:

Search along the step direction (by any method) to find a proper step length

Practical Notes

- Backtracking with a positive definite replacement for the negative Hessian is not sufficient to ensure convergence of the algorithm, even when *g* is bounded above with a unique maximum
- It is also necessary to ensure the following two conditions:
 - > steps make a sufficient ascent, i.e., $g(x^{(t)}) g(x^{(t-1)})$ does not decrease too quickly as t increases
 - \triangleright step directions are not nearly orthogonal to the gradient, i.e., avoid following a level contour of g

M_1''' : Discrete Newton & **Fixed-Point Methods**

Newton-like method: a $p \times p$ matrix approximating the Hessian $g''(x^{(t)})$

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - (\mathbf{M}^{(t)})^{-1}\mathbf{g}'(\mathbf{x}^{(t)})$$

Multivariate discrete Newton method

$$\mathbf{M}_{ij}^{(t)} = \frac{g_i'(\mathbf{x}^{(t)} + h_{ij}^{(t)}\mathbf{e}_j) - g_i'(\mathbf{x}^{(t)})}{h_{ij}^{(t)}}$$
computational burden is still heavy: at each step, $\mathbf{M}^{(t)}$ is wholly updated by calculating a new discrete difference for

- > avoid calculating the Hessian precisely by resorting to a secant-like method
- calculating a new discrete difference for each element

Multivariate fixed-point method

$$\mathbf{M}^{(t)} = \mathbf{M}$$

- > avoid calculating the Hessian by relying on an initial approximation
- \triangleright a reasonable choice for M is $g''(x^{(0)})$
- > computationally cheap
- > If M is diagonal, equivalent to running univariate scaled fixed-point algorithm separately to each component of g

M_1'''' : Quasi-Newton Methods

 M_1''' : Multivariate discrete Newton method

a $p \times p$ matrix approximating the Hessian $\mathbf{g}''(\mathbf{x}^{(t)})$

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - (\mathbf{M}^{(t)})^{-1} \mathbf{g}'(\mathbf{x}^{(t)})$$

$$\mathbf{M}_{ij}^{(t)} = \frac{g_i'(\mathbf{x}^{(t)} + h_{ij}^{(t)}\mathbf{e}_j) - g_i'(\mathbf{x}^{(t)})}{h_{ij}^{(t)}}$$
 by resorting to a secant-like method computational burden is still heavy

- > avoid calculating the Hessian precisely by resorting to a secant-like method

- The key idea of Quasi-Newton methods M_1'''' :
 - \triangleright abandon the component-wise discrete-difference approximation to \mathbf{g}''
 - approximate g" by secant condition based on differences

$$\mathbf{g}'(\mathbf{x}^{(t+1)}) - \mathbf{g}'(\mathbf{x}^{(t)}) = \mathbf{M}^{(t+1)}(\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)})$$

- A equation about $M^{(t+1)}$: # of constraints = p, # of parameters = p^2
- Has unique solution when p = 1, i.e., the Ascent Method

Approximate $M^{(t+1)}$ based on $M^{(t)}$

Unique symmetric rank-one method

$$\mathbf{M}^{(t+1)} = \mathbf{M}^{(t)} + c^{(t)}\mathbf{v}^{(t)}(\mathbf{v}^{(t)})^{\mathrm{T}}$$

$$\mathbf{z}^{(t)} = \mathbf{x}^{(t+1)} - \mathbf{x}^{(t)}$$

$$\mathbf{v}^{(t)} = \mathbf{y}^{(t)} - \mathbf{M}^{(t)}\mathbf{z}^{(t)}$$

$$c^{(t)} = 1/[(\mathbf{v}^{(t)})^{\mathrm{T}}\mathbf{z}^{(t)}]$$

Broyden class rank-two methods

$$\mathbf{M}^{(t+1)} = \mathbf{M}^{(t)} - \frac{\mathbf{M}^{(t)}\mathbf{z}^{(t)}(\mathbf{M}^{(t)}\mathbf{z}^{(t)})^{\mathrm{T}}}{(\mathbf{z}^{(t)})^{\mathrm{T}}\mathbf{M}^{(t)}\mathbf{z}^{(t)}} + \frac{\mathbf{y}^{(t)}(\mathbf{y}^{(t)})^{\mathrm{T}}}{(\mathbf{z}^{(t)})^{\mathrm{T}}\mathbf{y}^{(t)}}$$

$$+ \delta^{(t)} \left((\mathbf{z}^{(t)})^{\mathrm{T}}\mathbf{M}^{(t)}\mathbf{z}^{(t)} \right) \mathbf{d}^{(t)}(\mathbf{d}^{(t)})^{\mathrm{T}}$$

$$\mathbf{d}^{(t)} = \frac{\mathbf{y}^{(t)}}{(\mathbf{z}^{(t)})^{\mathrm{T}}\mathbf{y}^{(t)}} - \frac{\mathbf{M}^{(t)}\mathbf{z}^{(t)}}{(\mathbf{z}^{(t)})^{\mathrm{T}}\mathbf{M}^{(t)}\mathbf{z}^{(t)}}$$

$$\delta^{(t)} = 1$$

Note:

- ➤ The order of convergence of quasi-Newton is usually between linear and quadratic.
- ➤ It's fast and powerful, and widely used in popular software packages.
- ➤ It rely on the notion that the root-finding problem can be solved efficiently even using poor approximations to the Hessian.

Steepest Ascent vs Quasi-Newton

: Steepest Ascent

--: Quasi-Newton with BFGS update

Observations

- Both methods find the optimum
- Both methods guarantee uphill
- Steepest Ascent takes more steps
- Quasi-Newton seems have a better global view

Enhance the Performance & Stability of Quasi-Newton

- Choose a good starting matrix $M^{(0)}$
 - The easiest choice is the negative identity matrix, i.e., $\mathbf{M}^{(0)} = -\mathbf{I}$ (but this is often inadequate if the scales of the components of $\mathbf{x}(t)$ differ greatly)
 - In MLE problems, setting $M^{(0)} = -I(\theta^{(0)})$ is a much better choice
- Rescale the problem for a better performance
 - Rescale the problem so that the elements of \mathbf{x} are on comparable scales
 - Fail to do so may lead in bad or unpredictable performance of the method

Improve the Estimation of Hessian

Motivation

- ➤ In the context of MLE and statistical inference, the Hessian is critical because it provides estimates of standard error and covariance
- Why improvement is needed?
 - > The raw approximation of Hessian from Quasi-Newton may be quite bad
 - Quasi-Newton does not rely on a precise approximation of Hessian
 - If stopped at iteration t, the most recent Hessian approximation $\mathbf{M}^{(t-1)}$ is out of date and mislocated at $\theta^{(t-1)}$ instead of at $\theta^{(t)}$
- Key idea
 - > compute a more precise approximation after iterations have stopped.
- An approach based on the central difference approximation:

$$\widehat{\mathbf{l}''(\boldsymbol{\theta}^{(t)})} = \frac{l'_i(\boldsymbol{\theta}^{(t)} + h_{ij}\mathbf{e}_j) - l'_i(\boldsymbol{\theta}^{(t)} - h_{ij}\mathbf{e}_j)}{2h_{ij}}$$

Discrete approximation with respect to the latest guess of optimum $\theta^{(t)}$

M₂: Gauss-Newton Method

Problem setting: optimizing a special case of functions of the form

$$g(\boldsymbol{\theta}) = -\sum_{i=1}^{n} (y_i - f(\mathbf{z}_i, \boldsymbol{\theta}))^2 - \cdots$$
 An important problem in regression
$$Y_i = f(\mathbf{z}_i, \boldsymbol{\theta}) + \epsilon_i$$

$$Y_i = f(\mathbf{z}_i, \boldsymbol{\theta}) + \epsilon_i$$

- Key idea of M_2 :
 - \triangleright approximate f instead of g linearly by Taylor expansion at $\theta^{(t)}$

$$Y_i \approx f(\mathbf{z}_i, \boldsymbol{\theta}^{(t)}) + (\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})^{\mathrm{T}} \mathbf{f}'(\mathbf{z}_i, \boldsymbol{\theta}^{(t)}) + \epsilon_i = \tilde{f}(\mathbf{z}_i, \boldsymbol{\theta}^{(t)}, \boldsymbol{\theta}) + \epsilon_i$$

 \triangleright maximize the surrogate target function below with respect to θ

$$\mathfrak{\tilde{g}}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y_i - \tilde{f}(\mathbf{z}_i, \boldsymbol{\theta}^{(t)}, \boldsymbol{\theta}) \right]^2$$

- \triangleright find LSE θ^* in a linear regression with θ as the parameter
- \triangleright Updating function: $\theta^{(t+1)} = \theta^*$
- Practical notes for M_2 :
 - It does not require computation of the Hessian
 - It is fast when f is nearly linear or when the model fits well
 - It may converge very slowly or not at all if the model fits poorly

*M*₃: Nonlinear Gauss-Seidel Iteration

• Key idea of M_3 :

- > Optimize one dimension at each time
- Similar to Gibbs sampling

Also known as:

- > Backfitting, or
- Cyclic coordinate ascent

Advantages:

- Applying univariate optimization repeatedly
- Easy to automate & program

Fig. 2.14 The first a few steps of M_3

M₄: Bisection Method (for univariate case)

Suppose:

- g' is continuous on $[a_0, b_0]$ intermediate value $[a_0, b_0]$ for which $g'(x^*) = 0$
- $g'(a_0)g'(b_0) \le 0$

- there exists at least one x^* in
 - hence x^* is a local optimum of g

Bisection method constructs a sequence of nested intervals to capture x^* :

$$[a_0, b_0] \supset [a_1, b_1] \supset [a_2, b_2] \supset \cdots$$
 and so forth

Starting value: $x^{(0)} = (a_0 + b_0)/2$

Note: direct application of this method becomes inefficient in multivariate case.

Updating equations:
$$[a_{t+1}, b_{t+1}] = \begin{cases} [a_t, x^{(t)}] & \text{if } g'(a_t)g'(x^{(t)}) \le 0, \\ [x^{(t)}, b_t] & \text{if } g'(a_t)g'(x^{(t)}) > 0 \end{cases}$$

$$x^{(t)} = \frac{1}{2}(a_t + b_t) \iff x^{(t)} = a_t + (b_t - a_t)/2$$
numerically more stable

Note: if g has more than one root in the starting interval, it is easy to see that bisection will find one of them, but will not find the rest.

M₄: Nelder–Mead Algorithm

- An iterative direct search approach
- Tries to nominate a superior point for the next iteration based on a collection of function evaluations at possible solutions while
- A smart version of the Bracketing Method for univariate case

Fig. 2.9 Search for the optimum with a sequence of simplex

Five Types of Moves

Fig. 2.10 Five possible transformation of a simplex

Key Steps of Nelder–Mead

Practical Note

Initialization:

> start from a simplex around an initial guess for the optimum

• Stopping:

- \triangleright a lack of change in \mathbf{x}_{best} alone will not be sufficient to stop
- > x_{best} may remain unchanged for several successive iterations
- > monitor the simplex volume instead

• Performance:

- > may fail sometimes
- > convergence speed is relatively slow

Failure & Redeems

Redeems

- Restart with a different simplex
- Oriented restart: reshape the simplex in a manner targeting steepest ascent

Fig. 2.13 An example for which M'_1 fails to find the optimum

Practical Notes

- \triangleright M'_1 works well for low to moderate dimensions; for high-dimensional problems, its effectiveness is more varied, depending on the nature of the problem
- \triangleright M'_1 is quite robust for a wide range of functions and random noise
- ➤ It can be implemented with great numerical efficiency, and is a very good candidate for many optimization problems

Reference

- Reference: [T1] Chapter 2.2
- Further reading:
 - [R1] Chapter 6: Solution of Nonlinear Equations & Optimization