CONCLUSION ET PERSPECTIVES

1 Conclusion

Les travaux de cette thèse se sont principalement concentrés dans le développement théorique et numérique du modèle morphodynamique OptiMorph. Ce modèle morphodynamique, fonctionnant par le principe de minimisation, rejoint la vision de Murray (2007) en tant qu'élément essentiel à la modélisation, à savoir, un modèle exploratoire reproduisant certains phénomènes naturels. Il a su faire ses preuves sur les aspects numériques, mais également physiques. En effet, celui-ci produit des résultats physiques très réalistes de manière très rapide, sans nucléation ni hyperparamètres. Ce modèle est particulièrement performant sur les phénomènes de créations de barres sédimentaires, il a pu être validé sur les cas de benchmark de SANDS, COPTER et LIP 1C. Grâce à l'approche mathématique de la dérivée par rapport à la forme au sens d'Hadamard, nous avons pu rendre notre modèle générique et donc, couplable avec n'importe quel modèle de vagues. Ceci rend notre modèle polyvalent et opérationnel, pouvant ainsi être déployé facilement pour résoudre des problèmes d'ingénierie du littoral.

Dans l'état de l'art 0, nous avons retracé les travaux initiés en 2004 par B. MOHAM-MADI, F. BOUCHETTE et P. AZERAD. La description de ces travaux commence par des problématiques d'optimisation de formes ou de position de structures de défense côtière. La finalité de ces travaux concerne la modélisation morphodynamique par optimisation. Ces derniers travaux ont présenté quelques limites. C'est à la suite de cet état de l'art que les travaux de cette thèse ont pu commencer.

Ensuite, le chapitre 1 s'est concentré sur l'approche historique décrivant la morphodynamique côtière par la théorie de l'optimisation. Plus spécifiquement, le modèle fonctionne sur l'hypothèse qu'un profil de plage sableuse évolue afin de minimiser une fonctionnelle liée aux vagues, dont le choix dépend de ce qui est considéré comme la force motrice derrière les processus morphodynamiques côtiers considérés. Des résultats numériques ont été présentés attestant que notre modèle est stable: celui-ci est bien consistant en temps et en espace. Ensuite, les résultats comparant OptiMorph, XBeach et une des données expérimentales se sont révélés très bons. De plus, les temps de calcul de notre modèle sont très faibles en comparaison aux modèles classiques. Le modèle a ensuite été étendu en Multi-1D. Des applications effectuées au large de Montpellier ont donné des résultats semblables à des expériences en bassin (COPTER 2D (Bouchette 2017)).

Puis, le chapitre 2 commence par les équations fondatrices des mouvements fluides pour découler à la théorie linéaire ainsi qu'aux deux grandes familles de modèles hydrodynamiques: les modèles à phase résolue et les modèles spectraux. Nos travaux nécessitant principalement un modèle hydrodynamique produisant une hauteur significative, nous avons choisi les modèles SWAN XBeach, un modèle hydrodynamique que nous avons développés ainsi que le modèle Shallow-Water. En nous basant sur des résultats expérimentaux (LIP 1C (Roelvink et al. 1995)), nous avons montré que les résultats de ces modèles sont relativement bons et que nous pouvons les utiliser dans notre modèle morphodynamique.

Ensuite, le chapitre 3 exhibe une nouvelle approche mathématique. En utilisant la dérivée à la manière d'Hadamard, nous avons réussi à rendre notre modèle générique. Grâce à ces avancées, celui-ci peut être couplé à n'importe quel modèle hydrodynamique. Nous avons utilisé les modèles hydrodynamiques de SWAN, XBeach et Shallow-Water dans notre modèle, et nous avons comparé les résultats morphodynamiques au benchmark hydro-morphodynamique LIP11D ainsi qu'à des simulations en pleine mer. Les résultats sont très encourageants dans la mesure où notre modèle est capable de créer une barre sédimentaire au point de déferlement de la vague: ce qui est très proche des conditions réelles.

Enfin, dans le chapitre 4, nous étendons l'approche du chapitre précédent à la dimension 2D. Nous développons le formalisme en 2D de notre modèle morphodynamique et nous analysons les résultats qu'il produit sur la configuration expérimentale Copter 2D. Cette configuration peut être utilisée dans l'ingénierie côtière. L'utilisation des modèles REF/DIF et Shoaling en multi-1D met en évidence la forte sensibilité au modèle de vague utilisé. Pour obtenir des résultats morphodynamiques cohérents, il est très important de bien choisir le modèle hydrodynamique associé, il doit être choisi en fonction du site d'étude (type de plage, type d'expérience, type de vagues, etc.).

2 Perspectives

Cette thèse s'étant consacrée principalement au développement du modèle OptiMorph, a réussi à restreindre les limitations du modèle évoquées par Cook (2021) dans sa conclusion. Cependant, il reste tout de même un grand nombre de travaux pouvant être effectués afin d'améliorer le modèle.

Un premier point concerne les développements théoriques du modèle. Celui-ci pourra

toujours être amélioré en incorporant toujours plus de physique. Suite aux échecs décrits dans l'annexe B.2, la notion de courant n'a pas été implémentée dans le modèle. Cependant, l'approche du transport décrite dans la section 5.2 du chapitre 3 et en annexe B.3, est un point qui pourrait s'avérer particulièrement intéressant. En effet, en paramétrant une vitesse comme un problème d'optimisation, il doit être possible de gérer un transport vers la côte ou vers le large.

Un second point concerne la validation du modèle. Bien que des travaux aient été effectués sur des cas expérimentaux dans les chapitre 1, 3 et 4. Il est toujours possible de valider le modèle sur des cas différents comme des cas d'accrétion ou bien d'autres cas plus connus comme celui présenté dans l'expérience DynaRev (Blenkinsopp et al. 2021; Schimmels et al. 2020; Martins et al. 2020), mettant une nouvelle fois en évidence le phénomène de création de barre sédimentaire : ce qui est très bien reproduit par notre modèle. Par ailleurs, le modèle a été validé sur des cas expérimentaux de canal / bassin, il pourrait être intéressant de le valider sur des conditions réelles en pleine mer. Cependant, ces données sont souvent très rares.

Un troisième point, serait d'intégrer notre modèle OptiMorph comme un module d'extension aux modèles de vagues actuels pouvant ainsi produire un résultat morphodynamique. Il pourrait également être ajouté aux modèles morphodynamiques actuels : en résolvant, à la fois, la morphodynamique classique et celle d'OptiMorph, ceci pourrait permettre à ces modèles de pallier certaines limites, notamment sur l'aspect de la création de barres sédimentaires.

Un dernier point pourrait être de coupler notre modèle avec un plus grand nombre de modèles de vagues. Ceci pourrait permettre à l'utilisateur de choisir le modèle qu'il souhaite, sans avoir à se plonger dans le code.

Enfin, une perspective numérique pourrait être d'utiliser l'approche Hadamard décrite dans le chapitre 3 afin de l'utiliser sur des problèmes d'optimisation de forme. Cette approche ne se limite pas seulement à la modélisation morphodynamique des plages, elle pourrait être utilisée dans de nombreux autres domaines : l'ingénierie côtière, l'aéronautique, l'acoustique, la thermodynamique, ...