AdaBoost

Pascal Fua IC-CVLab

Reminder: Logistic Regression

$$y(\mathbf{x}; \mathbf{w}, w_0) = \sigma(\mathbf{w}^T \mathbf{x} + w_0)$$

 $\approx p(t = 1, \mathbf{x})$

Given the training set $\{(x_n, t_n)_{1 \leq n \leq N}\}$, choose a **w** that minimizes

$$E(\mathbf{w}, w_0) = -\sum_{n} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\} \approx -\ln(p(\mathbf{t}|\mathbf{w}, w_0)).$$

Non Linearly Separable Data

- One approach is to combine multiple linear classifiers.
- We will see other ones in the next classes.

Boosting Methods

Combining Linear Classifiers

- Use the linear classifiers as "weak" classifiers, that is, classifiers operating only slightly better than chance.
- Write a strong classifier as a weighted sum of weak ones.

Ada Boost

Iteratively building a weighted sum of weak classifiers:

$$y(\mathbf{x}) = \alpha_1 y_1(\mathbf{x}) + \alpha_2 y_2(\mathbf{x}) + \alpha_3 y_3(\mathbf{x}) + \dots$$
 Weak classifier Strong classifier Weight

Each data point has a class label:

$$y_t = \begin{cases} +1 & \bullet \\ -1 & \bullet \end{cases}$$

and a weight:

$$w_t = 1$$

Classifier is now slightly better than chance. It becomes y₁.

le asignamos un peso mayor a los datos mal clasificados por y1, y volvemos a clasificar (y2) Each data point is given a new class label and a new weight $\mathbf{W_t}$

w_t is chosen so that the classifier operates at chance again.

Each data point is given a new class label

$$y_t = \begin{cases} +1 & \bullet \\ -1 & \bullet \end{cases}$$

and a new weight

 $\mathbf{W_t}$

Find a new classifier y₂ and reset the weights again.

Find a new classifier y₃ and reset the weights again.

Adaboost Algorithm

For a training set $\chi = \{\mathbf{x}_n, t_n\}$ where $t_n \in \{-1,1\}$ for $1 \le n \le N$:

- 1. Initialize data weights: $\forall n, w_n^1 = 1/N$.
- 2. For t = [1, ..., T]:
 - (a) Find classifier $y_t : \chi \to \{-1, 1\}$ that minimizes weighted error $\sum_{t_n \neq y_t(\mathbf{x}_n)} w_n^t$.
 - (b) Evaluate

average error
$$\epsilon_t = \frac{\sum_{t_n \neq y_t(\mathbf{x}_n)} w_n^t}{\sum_{n=1}^N w_n^t}$$

$$\alpha_t = -\log(\frac{1-\epsilon_t}{\epsilon_t})$$

Inferior to 0.5 if y_t operates at better than chance.

Positive if y_t operates at better than chance.

(c) Update weights

$$w_n^{t+1} = w_n^t \exp(\alpha_t I(t_n \neq y_t(\mathbf{x}_n)))$$

The weight of misclassified samples is increased.

 \rightarrow Final classifier: $Y(\mathbf{x}) = \operatorname{sign}(\sum_{t=1}^{T} \alpha_t y_t(\mathbf{x}))$

Optional: Proof Sketch (1)

At iteration t:

$$f_t(\mathbf{x}) = \frac{1}{2} \sum_{s=1}^t \alpha_s y_s(\mathbf{x}) \; ,$$

$$= f_{t-1}(\mathbf{x}) + \frac{1}{2} \alpha_t y_t(\mathbf{x}) \; .$$
 Computed at previous iteration. To be estimated.

To estimate the unknowns, we seek to minimize

$$E_t = \sum_{n=1}^{N} \exp(-t_n f_t(\mathbf{x}_n)), \quad \text{Exponential loss.}$$

with respect to α_t and y_t .

Optional: Proof Sketch (2)

At iteration t, given y_1, \ldots, y_{t-1} and $\alpha_1, \ldots, \alpha_{t-1}$, minimize

$$E_t = \sum_{n=1}^{N} \exp(-t_n(f_{t-1}(\mathbf{x}_n) + \frac{1}{2}\alpha_t y_t(\mathbf{x}_n))))$$

$$= \sum_{n=1}^{N} w_n^t \exp(-\frac{\alpha_t}{2} t_n y_t(\mathbf{x}_n))$$

with respect to y_t and α_t .

Optional: Proof (2)

$$E_t = \sum_n w_n \exp(-\frac{\alpha_t}{2} t_n y_t(\mathbf{x}_n))$$

$$= \exp(-\alpha_t/2) \sum_{t_n = y_t(\mathbf{x}_n)} w_n + \exp(\alpha_t/2) \sum_{t_n \neq y_t(\mathbf{x}_n)} w_n$$

$$= (\exp(\alpha_t/2) - \exp(-\alpha_t/2)) \sum_{n=1}^N I(t_n \neq y_t(\mathbf{x}_n)) w_m^t + \exp(-\alpha_t/2) \sum_{n=1}^N w_n^t$$
Greater than 0 Must be minimized Independent of y_t

Therefore, for E_t to be minimized, y_t must minimize $\sum_{t_n \neq y_t(\mathbf{x}_n)} w_n^t$.

Optional: Proof (3)

$$E_t = \sum_n w_n \exp(-\frac{\alpha_t}{2} t_n y_t(\mathbf{x}_n))$$

$$\Rightarrow 2\frac{\delta E_t}{\delta \alpha_t} = -\exp(-\alpha_t/2) \sum_{t_n = y_t(\mathbf{x}_n)} w_n + \exp(\alpha_t/2) \sum_{t_n \neq y_t(\mathbf{x}_n)} w_n$$

Therefore:

$$\frac{\delta E_t}{\delta \alpha_t} = 0 \Rightarrow \alpha_t = \log \left[\frac{\sum_{t_n = y_t(\mathbf{x}_n)} w_n}{\sum_{t_n \neq y_t(\mathbf{x}_n)} w_n} \right]$$

$$= \log(\frac{1 - \epsilon_t}{\epsilon_t}) \quad \text{with} \quad \epsilon_t = \frac{\sum_{y_t(\mathbf{x}_n) \neq t_n} w_n}{\sum_{t_n = 1}^{N} w_n}$$

Optional: Proof (4)

At the following iteration:

$$w_n^{t+1} = \exp(-t_n f_t(\mathbf{x}_n))$$

$$= \exp(-t_n f_{t-1}(\mathbf{x}_n) - \frac{1}{2} \alpha_t t_n y_t(\mathbf{x}_n))$$

$$= w_n \exp(-\frac{1}{2} \alpha_t t_n y_t(\mathbf{x}_n))$$

$$t_n y_t(\mathbf{x}_n) = 1 - 2I(y_t(\mathbf{x}_n) \neq t_n)$$

$$\Rightarrow w_n^{t+1} = w_n^t \exp(-\alpha_t / 2) \exp(\alpha_t I(t_n \neq y_t(\mathbf{x}_n)))$$

$$\propto w_n^t \exp(\alpha_t I(t_n \neq y_t(\mathbf{x}_n)))$$

Optional: Proof Sketch (5)

Minimizing $\sum_{n=1}^{N} w_n^t \exp(-\frac{\alpha_t}{2} t_n y_t(\mathbf{x}_n))$ w.r.t. to y_t and α_t yields:

$$y_t \quad \text{must minimize} \quad \sum_{t_n \neq y_t(\mathbf{x}_n)} w_n^t$$

$$\alpha_t = \log(\frac{1 - \epsilon_t}{\epsilon_t}) \text{ with } \epsilon_t = \frac{\sum_{t_n \neq y_t(\mathbf{x}_n)} w_n^t}{\sum_{n=1}^N w_n^t}$$

$$w_n^{t+1} = w_n^t \exp(\alpha_t I(t_n \neq y_t(\mathbf{x}_n)))$$

—> Adaboost performs a form of gradient descent on the exponential loss.

Adaboost Algorithm

For a training set $\chi = \{\mathbf{x}_n, t_n\}$ where $t_n \in \{-1,1\}$ for $1 \le n \le N$:

- 1. Initialize data weights: $\forall n, w_n^1 = 1/N$.
- 2. For t = [1, ..., T]:
 - (a) Find classifier $y_t : \chi \to \{-1, 1\}$ that minimizes weighted error $\sum_{t_n \neq y_t(\mathbf{x}_n)} w_n^t$.
 - (b) Evaluate

$$\epsilon_t = \frac{\sum_{t_n \neq y_t(\mathbf{x}_n)} w_n^t}{\sum_{n=1}^N w_n^t}$$

$$\alpha_t = \log(\frac{1 - \epsilon_t}{\epsilon_t})$$

(c) Update weights

$$w_n^{t+1} = w_n^t \exp(\alpha_t I(t_n \neq y_t(\mathbf{x}_n)))$$

Adabost in Python

```
def updateWeights(self,weakC):
def fit(self,nit=10):
                                                                        # Compute alpha
    # Initialize weights and list of classifiers
     self.weakCls = []
                                                                        err,_ = self.weakClassError(weakC)
                                                                        alpha = np.log(1.0/max(1e-10,err)-1.0)
     bestAcc = 0.0
                                                                        # Compute numbers of misclassified samples.
     self.datCoeffs = np.ones(self.ns,dtype=np.float)/self.ns
                                                                        nerrs = np.logical_not(weakC.predict(self.xs)==self.ys)
    # Find nit weak classifiers and update weights each time.
                                                                        # Update and normalize weights.
    for m in range(nit):
                                                                        self.datCoeffs *= np.exp(alpha*nerrs)
        weakC=self.getWeakC()
                                                                        self.datCoeffs /= sum (self.datCoeffs)
        self.weakCls.append(weakC)
                                                                        return alpha
        weakC.alpha=self.updateWeights(weakC)
```


Circular Distribution

Training (100 iterations)

Validation (98% accuracy)

Rosenbrock Function

Training (100 iterations)

Validation (98% accuracy)

$$r(x,y) = 100 * (y - x^2)^2 + (1 - x)^2$$
 $f(x,y) = \begin{cases} -1 & \text{if } r(x,y) < T \\ 1 & \text{otherwise} \end{cases}$

Noisy Labels

The incorrect labels have relatively little impact because they are randomly distributed, but they could.

Changing the Weak Learners

Using boxes instead of lines.

Training (100 iterations)

Validation (99% accuracy)

$$y(\mathbf{x}; \mathbf{w}) = \begin{cases} 1 & \text{if } x_0 < \mathbf{x}[1] < x_1 \text{ and } y_0 < \mathbf{x}[2] < y_1, \\ -1 & \text{otherwise.} \end{cases}$$

$$\mathbf{w} = (x_0, y_0, x_1, y_1)$$

Training and Testing Errors

• The training error goes down exponentially fast if the weighted errors ϵ_t of the component classifiers is always strictly inferior to 0.5.

$$\frac{1}{N} \sum_{n} [t_n \neq h(\mathbf{x}_n)] < \prod_{t=1}^{T} \sqrt{\epsilon_t (1 - \epsilon_t)}$$

• The testing error may eventually go up due to

overfitting.

—> Use a validation set.

Failure Mode

Training (100 iterations)

Validation (56% accuracy)

- Individual linear classifiers cannot do better than chance!
- Box classifiers would work though.

Adaboost in Python

```
def fit(self,nit=10):
                                                            def updateWeights(self,weakC):
    # Initialize weights and list of classifiers
                                                                  # Compute alpha
     self.weakCls = []
                                                                  err, = self.weakClassError(weakC)
     bestAcc = 0.0
                                                                  alpha = np.log(1.0/max(1e-10,err)-1.0)
     self.datCoeffs = np.ones(self.ns,dtype=np.float)/self.ns
                                                                  # Compute numbers of misclassified samples.
    # Find nit weak classifiers and update weights each
                                                                  nerrs = np.logical_not(weakC.predict(self.xs)==self.ys)
time.
                                                                  # Update and normalize weights.
    for m in range(nit):
                                                                  self.datCoeffs *= np.exp(alpha*nerrs)
        weakC=self.getWeakC()
                                                                  self.datCoeffs /= sum (self.datCoeffs)
        self.weakCls.append(weakC)
                                                                  return alpha
        weakC.alpha=self.updateWeights(weakC)
```

- A strikingly simple algorithm that works well.
- The weak classifiers do not have to be linear classifiers.

—>Versatile and generic.

Face Detection

Viola & Jones, Rapid Object Detection using a Boosted Cascade of Simple Features, CVPR 2001:

- First reliable, real-time face detection system.
- Used in commercial products, such as digital cameras.

Weak Learners for Images

Value = \sum (pixels in white area) - \sum (pixels in black area)

Haar Wavelets:

- Allow target function over an interval to be represented in terms of an orthonormal basis.
- Fast to compute (4 operations per rectangle).
- 180'000 possibilities for a 24x24 window.

—> Use AdaBoost to choose a good subset.

Feature Selection

Cascade

Reject large portions of the images using only the response of the first few weak classifiers.

—> Large potential speed-up at run-time.

Training Set

- Training Set
 - 5000 faces
 - All frontal, rescaled to 24x24 pixels
 - 300 million non-faces
 - 9500 non-face images
 - Faces are normalized
 - Scale, translation
- Many variations
 - Across individuals
 - Illumination
 - Pose

Detection Results (2001)

Detection Results (2017)

