BÀI 4. AN TOÀN AN NINH TRÊN HẠ TẦNG TRUYỀN DẪN

Nguyễn Đức Toàn, Viện Công nghệ thông tin và Truyền thông, Đại học Bách khoa Hà Nội

1

1

1. AN TOÀN BẢO MẬT TẦNG VẬT LÝ VÀ TẦNG LIÊN KẾT DỮ LIỆU

Nguyễn Đức Toàn, Viện Công nghệ thông tin và Truyền thông, Đại học Bách khoa Hà Nội

2

Các nguy cơ tấn công

- · Nghe lén:
 - Với các mạng quảng bá (WiFi, mạng hình trục, mạng sao dùng hub): dễ dàng chặn bắt các gói tin
 - >Với các mạng điểm-điểm:
 - √ Đoạt quyền điều khiển các nút mạng
 - √ Chèn các nút mạng một cách trái phép vào hệ thống
 - ➤ Công cụ phân tích: tcpdump, Wireshark, thư viện winpcap, thư viện lập trình Socket
- Giả mạo thông tin: tấn công vào giao thức ARP, VLAN, cơ chế tự học MAC của hoạt động chuyển mạch
- Phá hoại liên kết: chèn tín hiệu giả, chèn tín hiệu nhiễu, chèn các thông điệp lỗi...
- Thông thường tấn công vào mạng LAN do kẻ tấn công bên trong gây ra.

3

3

Tấn công nghe lén trên tầng vật lý

Nghe trộm tín hiệu trên cáp đồng

Faulty Amplifier

TO TO LIBORITATION OF THE STATE OF THE STATE

Wire Tap

4

AN TOÀN BẢO MẬT MẠNG WLAN

Nguyễn Đức Toàn, Viện Công nghệ thông tin và Truyền thông, Đại học Bách khoa Hà Nội

6

Giới thiệu chung

- WLAN (Wireless Local Area Network) là mạng máy tính liên kết
 2 hay nhiều thiết bị sử dụng môi trường truyền dẫn vô tuyến
- Chuẩn IEEE 802.11 gốc chính thức được ban hành năm 1997
- IEEE 802.11x (chuẩn WiFi) biểu thị một tập hợp các chuẩn WLAN được phát triển bởi ủy ban chuẩn hóa IEEE LAN/MAN (IEEE 802.11)
 - → IEEE802.11a, IEEE802.11b, IEEE802.11g, IEEE802.11n các chuẩn quy định hạ tầng và công nghệ truyền dẫn
 - ≻IEEE802.11i: chuẩn quy định về các giao thức bảo mật trong WLAN
- IEEE802.1X: điều khiển truy cập cho WLAN

7

Cấu trúc của WLAN

 Một WLAN thông thường gồm có 2 phần: các thiết bị truy nhập không dây (Mobile Station-MS), các điểm truy nhập (Access Points – AP).

Các mô hình triển khai

Ad-học
• Không cần AP
• Kết nối ngang hàng
hàng

Ad-học
• Mở rộng bằng cách kết nối các BSS

Vấn đề ATBM trên mạng không dây

- Sử dụng sóng vô tuyến để truyền dẫn dữ liệu
- →dễ dàng có thể thu bắt sóng và phân tích để lấy dữ liệu
- →dễ dàng kết nối và truy cập
- →dễ dàng can nhiễu
- →dễ dàng để tấn công man-in-the-middle

11

Các nguy cơ các trong mạng WLAN

- Chèn sóng (jamming): Cố tình gây nhiễu bằng cách phát ra tín hiệu cùng tần số với công suất lớn hơn
- · Mục đích:
 - >Giả mạo máy trạm
 - > Giả mạo AP(Rogue AP)
 - >DoS: phá kết nối giữa máy trạm và AP

23

23

Các nguy cơ khác trong mạng WLAN

- Disassociation: gửi disassociation frame tới máy trạm hoặc AP để ngắt kết nối đã được thiết lập
- Deauthentication attack: gửi deauthentication frame tới máy trạm để yêu cầu xác thực lại
- → Mục đích: kết hợp 2 loại tấn công
 - ⊳Bắt, phân tích tải để tìm SSID ẩn
 - Đánh lừa máy trạm khi thực hiện kết nối lại sẽ kết nối với AP giả mạo
- Giả mạo AP (Rogue AP):
 - >Thu thập thông tin xác thực giữa AP và máy trạm
 - >Nghe lén chủ động
 - ≻Tấn công man-in-the-middle
 - Phòng chống: sử dụng các công cụ quản trị mạng để phát hiện sự có mặt của thiết bị lạ

NGUY CƠ AN TOÀN BẢO MẬT TRONG MANG LAN

Nguyễn Đức Toàn, Viện Công nghệ thông tin và Truyền thông, Đại học Bách khoa Hà Nội

25

25

Tấn công cơ chế tự học MAC (chuyển mạch)

- Tấn công MAC flooding: gửi hàng loạt các gói tin với địa chỉ MAC nguồn là giả → bảng MAC bị tràn → Các gói tin thực sự bắt buộc phải chuyển tiếp theo kiểu quảng bá:
 - ➤ Gây bão quảng bá → chiếm dụng băng thông đường truyền, tài nguyên của các nút mạng khác
 - >Nghe trộm thông tin
- · Giả mạo địa chỉ MAC
- Phòng chống: Port Security

Tấn công giao thức ARP

- Address Resolution Protocol: tìm địa chỉ MAC tương ứng với địa chỉ IP
- · Sử dụng phương thức quảng bá ARP Request:
 - ≻Không cần thiết lập liên kết
- Không có cơ chế xác thực ARP Response
- Tấn công:
 - >Giả mạo: ARP Spoofing
 - > DoS
- Phòng chống: Dynamic ARP Inspection

27

27

Tấn công dịch vụ DHCP

- Dynamic Host Configuration Protocol
- Cấp phát các cấu hình IP tự động cho máy trạm:
 - ≻Địa chỉ IP
 - >Địa chỉ gateway router
 - >Địa chỉ DNS server
- Sử dụng UDP, cổng 67(server) và 68(client)

29

29

Các nguy cơ tấn công DHCP

- Lỗ hổng: Bất kỳ máy trạm nào yêu cầu cũng được cấp phát địa chỉ IP
 - ⊳Nguy cơ: Tấn công DoS làm cạn kho địa chỉ(DHCP Starvation)
- Lỗ hổng: Không xác thực cho các thông tin cấp phát từ DHCP server → DHCP Spoofing
 - >Nguy cơ: Thay địa chỉ DNS server tin cậy bằng địa chỉ DNS của kẻ tấn công.
 - ▶Nguy cơ: Thay địa chỉ default router, cho phép kẻ tấn công:
 - √ Chặn bắt, do thám thông tin
 - √ Tấn công phát lại
 - √ Tấn công man-in-the-middle
 - > Phòng chống: DHCP Snooping

31

31

Tấn công trên VLAN

- VLAN: miền quảng bá logic trên các switch → phân tách các lưu lượng mạng ở tầng 2
- Các cơ chế ATBM có thể triển khai trên VLAN: điều khiển truy cập (access control), cách ly tài nguyên quan trọng
- Các VLAN được gán các dải địa chỉ IP khác nhau
- Các khung tin Ethernet được gắn thêm VLAN tag (802.1Q hoặc ISL)
- Chuyển mạch chỉ thực hiện trong 1 VLAN
- Trao đổi dữ liệu giữa các VLAN: định tuyến (inter VLAN routing)

Tấn công: VLAN hopping

- Mục đích: truy cập vào các VLAN khác từ Native VLAN
- Lỗ hổng: các dữ liệu chuyển trong Native VLAN không cần gắn tag
- Đánh lừa switch chuyển tiếp các gói tin vào VLAN
- Double-tag attack trên giao thức IEEE 802.1Q

Phòng chống?

33

33

Tấn công VLAN: DTP và VTP

- Dynamic Trunking Protocol: tự động cấu hình chế độ trunking cho các cổng của VLAN
 - >Tấn công giả mạo các gói tin DTP để lừa 1 switch kết nối vào VLAN của kẻ tấn công
 - Phòng chống: Tắt chế độ dynamic, gán chế độ access cho các cổng của switch
- VLAN Trunking Protocol: tự động chuyển tiếp thông tin cấu hình VLAN từ VTP server tới các VTP client
 - ➤ Tấn công giả mạo các gói tin để xóa 1 VLAN (DoS) hoặc thêm 1 VLAN gồm tất cả các switch (tạo bão quảng bá broadcast storm)
 - ▶ Phòng chống: chỉ định VTP trên các cổng tin cậy, thiết lập cơ chế xác thực cho VTP

Tấn công giao thức STP

- Spanning Tree Protocol: khử loop trên mạng kết nối switch có vòng kín
- Bầu chon root:
 - ➤ Mỗi nút có giá trị priotity(mặc định là 38464)
 - ➤ Các nút trao đổi thông điệp BPDU chứa giá trị priority
 - Nút có priotity nhỏ nhất trở thành root
 - Nếu có nhiều switch cùng priority, switch có cổng địa chỉ MAC nhỏ nhất là root
- Thiết lập cây khung: các nút còn lại
 - Mỗi nút còn lại tìm đường đi ngắn nhất tới nút gốc (giá của liên kết xác định dựa trên băng thông)
 - Giữ cổng gần nút gốc nhất hoạt động, tạm ngắt các cổng "xa" nút gốc hơn
- STP không có cơ chế xác thực

35

35

Tấn công giao thức STP

- Tán công vào STP: đoạt quyền root switch
 - >DoS: black-hole attack, flooding attack
 - ≻Chèn dữ liệu giả mạo vào luồng trao đổi thông tin
 - ≻Tấn công man-in-the-middle
- Tán công DoS: BPDU Flooding
- Phòng chống:
 - >Root guard
 - ≻BPDU guard
 - >BPDU filtering

3. AN TOÀN BẢO MẬT TẦNG LIÊN MẠNG

Nguyễn Đức Toàn, Viện Công nghệ thông tin và Truyền thông, Đại học Bách khoa Hà Nội

37

37

Giao thức IP và ICMP

- Internet Protocol:
 - >Giao thức kết nối liên mạng
 - >Hướng không kết nối (connectionless), không tin cậy
- Internet Control Message Protocol
 - ≻Nằm trên giao thức IP
 - >Hướng không kết nối (connectionless), không tin cậy
 - >Kiểm tra trạng thái hoạt động của các nút mạng khác
- Vấn đề của giao thức IP và ICMP:
 - ≻Không cần thiết lập liên kết: có thể lợi dụng để quét mạng
 - Dễ dàng giả mạo địa chỉ IP nguồn trên các gói tin
 - Có thể gửi liên tục với số lượng lớn các gói tin → tấn công từ chối dịch vụ

AN TOÀN BẢO MẬT CÁC GIAO THỨC ĐỊNH TUYẾN

Nguyễn Đức Toàn, Viện Công nghệ thông tin và Truyền thông, Đại học Bách khoa Hà Nội

39

39

Giới thiệu chung về định tuyến

- Định tuyến: tìm ra đường đi ngắn nhất tới các mạng đích
 Bảng định tuyến: lưu thông tin đường đi
- Định tuyến tĩnh: người dùng định nghĩa nội dung của bảng định tuyến -> an toàn nhưng không cập nhật theo sự thay đổi trạng thái của các liên kết
- Định tuyến động: router tự động xây dựng nội dung bảng định tuyến
- Đặc điểm của định tuyến trong mạng IP:
 - >Mỗi nút chỉ chắc chắn về các thông tin cục bộ
 - ≻Các nút trao đổi thông tin định tuyến theo cơ chế flooding

40

Định tuyến trên mạng Internet

- · Chia thành các vùng tự trị định tuyến AS
 - >Thường được đăng ký và quản lý bởi ISP
- Phân cấp:
 - >Định tuyến nội vùng(IGP): RIP, OSPF, IGRP, EIGRP
 - ⊳Định tuyến ngoại vùng(EGP): BGP

41

41

Hoạt động của BGP(tóm tắt)

- Hỗ trợ định tuyến không phân lớp
- Tìm đường tới các vùng tự trị (AS)
- Trao đổi thông điệp BGP với hàng xóm qua kết nối TCP
- Mỗi router quảng bá thông tin đường đi tới các router khác bằng bản tin UPDATE
 - >Thông tin đường đi: danh sách các AS trên đường đi tới AS đích
- Thực hiện các chính sách trong quá trình chọn đường
 - >Lựa chọn đường ra
 - >Quảng bá đường vào

≽...

42

Tấn công các giao thức định tuyến

- RIPv1: không hỗ trợ các cơ chế xác thực thông tin trao đổi giữa các nút → khai thác tấn công thay đổi, giả mạo thông tin
- RIPv2, OSPF, BGP: hỗ trợ cơ chế xác thực sử dụng preshared key
 - >Khóa không ngẫu nhiên, do người dùng lựa chọn
- OSPF: Lợi dụng cơ chế quảng bá thông tin LSA giả để tấn công DoS (black-hole attack)
- BGP: Giả mạo thông tin định tuyến để điều hướng dữ liệu
 → Hậu quả: tấn công từ chối dịch vụ, man-in-the-middle, thư rác...

45

45

Tấn công BGP: Giả mạo thông tin đường đi • Chính sách của E: Không lựa chọn đường đi qua C **Destination Destination** Route Route $G \leftarrow B \leftarrow X \leftarrow M$ Google $\textbf{G} {\leftarrow} \textbf{B} {\leftarrow} \textbf{C}$ Google Google С Đường đi của M không qua C 48

Tấn công BGP: Path hijack

· Lợi dụng cơ chế Longest Matching

49

BGP hijacking - Ví dụ

- Tháng 02/08: chính phủ Pakistan ngăn cản các truy cập vào trang Youtube:
 - ⊳Địa chỉ của Youtube: 208.65.152.0 /22
 - >youtube.com: 208.65.153.238 /22
 - ➤ Pakistan Telecom loan báo một thông tin định tuyến BGP tới mạng 208.65.153.0 /24 → các router trên Internet cập nhật đường đi mới theo quy tắc longest matching → bị đánh lừa youtube.com nằm ở Pakistan → không thể truy cập youtube.com trong 2 giờ
- Tháng 03/2014: dịch vụ DNS của bị Google tấn công với địa chỉ 8.8.8/32
 - ▶Không thể truy cập được từ một số nước ở Nam Mỹ trong 22 phút

BGP hijacking - Ví dụ

- Tháng 2/2013: đường đi từ các AS Guadalajara tới WasingtonDC chuyển hướng qua Belarus trong vài giờ
 - >Đường đi đúng: Alestra (Mexico) → PCCW (Texas) → Qwest (DC)

 Tương tự: tấn công tấn công Dell SecureWorks năm 2014, ISP của Italia vào 6/2015

53

53

Yêu cầu bảo mật với BGP

- Xác minh được "sự sở hữu" không gian địa chỉ: router BGP có thực sự kết nối tới AS sử dụng địa chỉ IP đó không?
- Xác thực giữa các AS
- Xác thực và ủy quyền cho các router trong AS
 - >Quảng bá địa chỉ
 - >Quảng bá đường đi
- Kiểm tra tính toàn vẹn, chính xác và tính đúng thời điểm của toàn bộ lưu lượng BGP

Phòng chống tấn công BGP

- Gửi thông điệp BGP cho hàng xóm với giá trị TTL trên gới tin IP là 255
- Từ chối tất cả các gói tin có TTL < 254
- Hạn chế: chỉ chống lại tấn công bằng giả mạo mà không xuất phát từ router hàng xóm

55

Phòng chống tấn công BGP

Xác thực với MD5 và pre-share-key

 Hai router hàng xóm được cấu hình để chia sẻ một giá trị bí mật

(config-router) # neighbor addr password passphrase

- Các gói tin TCP mang theo thông điệp BGP trường
 Options chứa mã băm MD5(BGP message || passphrase)
 để xác thực
- Chỉ chống lại tấn công giả mạo thông tin định tuyến từ bên ngoài
- Nguy cơ: không chống lại được tấn công giả mạo thông tin định tuyến từ router trong mạng

56

Yêu cầu bảo mật với BGP

- Xác minh được "sự sở hữu" không gian địa chỉ: router BGP có thực sự kết nối tới AS sử dụng địa chỉ IP đó không?
- Xác thực giữa các AS
- Xác thực và ủy quyền cho các router trong AS
 - >Quảng bá địa chỉ
 - >Quảng bá đường đi
- Kiểm tra tính toàn vẹn, chính xác và tính đúng thời điểm của toàn bộ lưu lượng BGP

57

57

Secure BGP(S-BGP)

- Cấp phát chứng thư số theo mô hình phân cấp:
 - >ICANN cấp phát chứng thư số (certificate) chứng thực quyền sở hữu đia chỉ cho AS
 - >AS cấp phát chứng thư số cho các router của nó
- Tạo chứng thực địa chỉ IP(Address Attestation-AA) và gửi cho các AS:
 - >Ký bởi chứng thư do ICANN phát hành
 - >Thông tin được phân phối ngoài lưu lượng BGP (out-of-band)
- Chứng thực thông tin đường đi(Route Attestation-RA):
 - ▶Loan báo thông tin đường đi bằng các thông điệp BGP Update
 - ➤ Mỗi router ký lên thông điệp BGP Update mà nó phát đi bằng chứng thư do AS cấp phát
- Có thể sử dụng thêm IPSec để bảo mật thông tin

Xử lý Thông điệp S-BGP Update

Giả sử router A(thuộc AS1) gửi thông điệp S-BGP Update để loạn báo thông tin về AS của nó tới router B(thuộc AS2)

- 1. Nhận AA cho địa chỉ IP mà AS sở hữu: Sig(KR_{AS1}, IPprefix)
- Tạo RA₁ với AS2 là next-hop của tuyến đường: Sig(KR₄, AS1→AS2)
- A gửi thông điệp S-BGP Update cho B. Cấu trúc của thông điệp gồm AA || Path vector || RA₁
- B kiểm tra AA và RA bằng khóa công khai tương ứng
- 5. B xác minh nó là next-hop của tuyến đường
- B tạo RA₂ với C(một router trên AS khác) là next-hop và chuyển thông điệp cho C
- Tại sao S-BGP chống lại được các dạng tấn công đã nêu?

59

59

Thông điệp S-BGP Update –Ví dụ AA: Sig(KR_{AS1}, IP_prefix) R4 \rightarrow R9: AA || [path: AS1] || Sig(KR_{R4}, AS1 \rightarrow AS2) R7 \rightarrow R11: AA || [path: AS1, AS2] || Sig(KR_{R4}, AS1 \rightarrow AS2]) || Sig(KR_{R7}, AS1 \rightarrow AS2 \rightarrow AS3]) R1 R2 R3 R4 R10 R11 R12

Khó khăn khi triển khai S-BGP

- Độ phức tạp tính toán của các thuật toán mật mã
- · Chỉ thực sự hiệu quả nếu tất cả các AS cùng cài đặt
- Phức tạp khi mở rộng
- Hiện trạng:
 - >Khoảng 5% số AS hỗ trợ S-BGP trên mạng Internet
 - ▶Đang được vận động để trở thành một chuẩn

61

61

Hoạt động của OSPF(tóm tắt)

- · Router quảng bá thông tin liên kết LSA trên mạng
- Mỗi router thu thập các thông tin LSA → xây dựng topology của mạng → tìm đường đi ngắn nhất

Các cơ chế ATBM trên OSPF

- · Xác thực các bản tin LSA
 - >Trên mỗi liên kết, 2 router chia sẻ một giá trị bí mật
 - >Sử dụng hàm MAC để tạo mã xác thực:

MAC(k, m) = MD5(data || key || pad || length)

 Cơ chế "fight back": nếu router nhận được LSA của chính nó với giá trị timestamp mới hơn, ngay lập tức quảng bá bản tin LSA mới.

63

63

Tấn công giao thức OSPF

- Kẻ tấn công gửi thông tin LSA giả mạo để các router cập nhập đường đi ngắn nhất qua router không có thực
- Ví du

Bài giảng sử dụng một số hình vẽ và ví dụ từ các khóa học:

- Computer and Network Security, Stanford University
- Computer Security, Berkeley University
- Network Security, Illinois University
- Computer and Network Security, University of Maryland

65