Lattice Gas models including water-surface interactions

Cesar L. Pastrana

1 Model

We study the interaction of water and surfaces using Monte Carlo simulations in the grand cannonical (GC) ensemble. The lattice-gas is a simplified model where water is reppresented as two-dimensional lattice with a spacing given by the average distance between water molecules, l. Each lattice site can be either occupied or empty. The GC Hamiltonian in the presence of surfaces is given by:

$$H = -\epsilon \sum_{\langle i,j \rangle} c_i c_j - b_s \sum_{i \in \mathcal{S}} c_i - \mu \sum_i c_i \tag{1}$$

where c_i is the occupancy state of lattice site i (c=1 for a occupied site and c=0 for empty site) and ϵ is the attractive energy between water molecules. The chemical potential is given by μ and b_s is the interaction energy between water and surfaces, where $b_s > 0$ for hydrophylic surfaces and $b_s < 0$ for hydrophobic surfaces. The chemical potential is given by $\mu = \mu_c + k_B T \log s$ where s is the water saturation (relative humidty) and the critical chemical potential is a known value.

After appropriate algebraic manipulation, Equation 1 can be modified to map with the Ising model, where the spins are in states ± 1 , resulting in

$$H = -\epsilon \sum_{\langle i,j \rangle} s_i s_j + \frac{2\epsilon + \mu}{2} \sum_i s_i - \frac{b}{2} \sum_{i \in \mathcal{S}} (1 - s_i), \tag{2}$$

where ϵ is analogous to the coupling constant and the term $\frac{2\epsilon + \mu}{2}$ is analogous to the magnetic field. In that form, $s_i = -1$ indicates an occupied lattice site and $s_i = 1$ is an empty site.

We use periodic boundary conditions and a von Neumann neighborhood for the interaction between water-water and water-surface. Minimisation proceeds by randomly selecting lattice locations and comparing the energy change following the Metropolis criterion.

Parameter	Value
General parameters	
Temperature, T	$298 \mathrm{~K}$
Water-water, ϵ	3
AFM tip simulations	
Number lattice sites horizontal, w	100
Number lattice sites vertical, h	100
Tip radius R	10 nm
Tip surface distance y_0	0 - 5l
Relative humidity, s	0.30 0.65
Icosahedral virus simulations	
Virus radius, R	50 nm
Virus shell thickness, t	3 nm

Table 1: Simulation parameters.

General and simulation specific parameters

2 Meniscus between surface and AFM tips

We consider the AFM tip as the values above the parabola given by $y(x) = ax^2 + y_0$, where y_0 is the distance to the surface and $a = \frac{1}{2R}$, with R the desired radius of the tip.

Figure 1: Water meniscus depe
pending on the distance to surface Retraction from $y_0=0$ to $y_0=5$
in steps of l ($y_0=0,l,2l,3l,4l,5l$). The blue areas corresponds to regions with a probability of occupancy n>0.75 obtained from 2000 Monte Carlo steps equilibration. Saturation s=0.30.

Figure 2: Water meniscus depe
pending on the distance to surface Retraction from $y_0=0$ to $y_0=5$
in steps of l ($y_0=0,l,2l,3l,4l,5l$). The blue areas corresponds to regions with a probability of occupancy n>0.75 obtained from 2000 Monte Carlo steps equilibration. Saturation s=0.50.

Figure 3: Water meniscus depepending on the distance to surface Retraction from $y_0=0$ to $y_0=5$ in steps of l ($y_0=0,l,2l,3l,4l,5l$). The blue areas corresponds to regions with a probability of occupancy n>0.75 obtained from 2000 Monte Carlo steps equilibration. Saturation s=0.65. Note the artifact on the upper part due to the limited sie of the mesh in the horiontal direction.

3 Icsaohedral viruses

We draw the icosahedrum from the polar function

$$r = R(1 + A\sin 6\theta),\tag{3}$$

where R is the radius of the icosahedron, A is a shape parameter set to A=0.06 and θ spans a range between θ_0 and 2π . A virus with a cavity can be draw by considering $\theta_0>0$. Viruses with multiple cavities can be constructed by restricting the domain of θ . References