

EnsembleSTDP: Distributed in-situ Spike Timing Dependent Plasticity Learning in Spiking Neural Networks

Author: Yuga Hanyu* and Khanh N. Dang†

School of Computer Science and Engineering University of Aizu, Fukushima, Japan E-mail: {*s1290224, †khanh}@u-aizu.ac.jp

Date: December 18, 2024

Outline

- Introduction
- Proposed Method
- Evaluation & Result
- Conclusion

Outline

Introduction

- Proposed Method
- Evaluation & Result
- Conclusion

Spiking Neural Network [2]

- Spiking Neural Networks (SNNs) use spikes to communicate information
- Compared to traditional ANNs, SNNs are energy efficient

Fig. 1 Structure of an SNN

Spike Timing Dependent Plasticity [3]

STDP is a learning method based on spike timings

- lightweight computation
- great energy efficiency
- suitable for on-chip learning

Ensemble Learning

Split a dataset, train sub-models, and merge into one model

Fig. 3 Overview of Ensemble Learning

Motivations

Several challenges in lightweight on-chip learning with STDP

- Distributed Datasets: Training SNN sub-models on different local datasets leads to the varying performance
- Model Redundancy: Merging SNN sub-models with similar neuron characteristics leads to overall redundancy
- No pure STDP learning: Existing methods are not fully STDP-based, limiting efficient on-chip learning

Our contributions

 EnsembleSTDP: Efficient Ensemble Learning with STDP that allows characteristic differences of the learners

 Efficient Model Compression: Removing redundancy from the concatenated model

Outline

- Introduction
- Proposed Method
 - **1** STDP Learning
 - 2 Concatenation
 - **3** Similarity generation
 - 4 Neuron removal
- Evaluation & Result
- Conclusion

Proposed Distributed In-situ Learning Model

Fig. 4 Steps of Distributed Learning Model

Key steps:

- In-situ STDP learning
- 2 Concatenation of the trained SNN models
- Generate pairs of similar neurons
- Remove an arbitrary number of neurons from the pairs

1 In-situ STDP learning

Fig. 5 Flow of the spikes

1 In-situ STDP learning (cnt.)

Output Spike

Input Spike

Fig. 6 Three cases of weight updating

2 Concatenation of trained SNNs

Fig. 7 Concatenation of sub-models

- Concatenation:
 Gathering the learned weights
- Better accuracy from concatenated model

Model	sub- model #1	sub- model #2	Merged Model
No. of neurons	64	64	128
Accuracy	75.38%	75.54%	77.60%

Table 1 Result of concatenating 2 sub-models

3 Generate pairs of similar neurons

```
Algorithm 1 Generate pairs with similarity values.
                                                                              Neuron pairs with
 1: Input: n
                                                                               similarity values
 2: Output: pairs
 3: pairs \leftarrow \{\}
 4: for i \leftarrow 0 to n-1 do
       for j \leftarrow i + 1 to n do
                                                                             Calculate & Assign
         similarity \leftarrow calculate_similarity(i, j)
 6:
                                                                               similarity value
         pairs.append((i, j, similarity))
       end for
 9: end for
```

n: number of neurons in the concatenated model

3 Generate pairs of similar neurons (cnt.)

Similarity is measured by comparing weight values of two neurons

- Mean Squared Error
- Manhattan Distance
- Cosine Similarity
- Correlation Coefficient

Weight 1

0.1	0.2
0.3	0.4

Weight 2

0.2	0.3
0.1	0.4

Similarity value:

$$|0.1 - 0.2| + |0.2 - 0.3| + |0.3 - 0.1| + |0.4 - 0.4| = 0.4$$

Example calculation (Manhattan Dist.)

4 Remove neurons from the pairs

4-**1** Sort the pairs in order of high similarity

Similarity: 0.9

Similarity: 0.8

Similarity: 0.7

4 Remove neurons from the pairs (cnt.)

4-2 Remove a neuron from higher similarity pairs (repeat for a number of times)

Similarity: 0.9

Similarity: 0.8

Similarity: 0.7

End Result

Concatenating & Compressing two models

Outline

Introduction

Proposed Method

Evaluation & Result

Conclusion

Evaluation & Result

• Setup:

• Machine: core i7-13700K, Nvidia RTX4070

Model:

- Learning Model: pre-and-post-synaptic STDP
- Programming and Library: Python, BindsNet [2]
- 5 sub-models, 100 neurons each, merged into a 300 model
- 2 sub-models, 250 neurons each, merged into a 300 model

• Criterion:

- Classification Accuracy
- Processing Speed
- Trade-off between compression/accuracy/speed

Compression vs Accuracy

Train a 300-neuron model on 30K images and compress

- No major differences until 50 neurons
- MSE performed best
- Performance retention

Execution time

- Correlation Coef. takes significantly longer time
- Correlation Coef. needs multiple data iterations
- > 99% of merging time is generating & sorting pairs

Single 300-neuron model vs Our (5x100-200)

Train 5 sub-models (100 neurons/model), merge and compress to 300 neurons.

Model	Baseline [3]	Our
#neurons	300	300 (5x100-200)
Training Time (minutes)	53.13	10.58
Classification Accuracy	88.87%	85.42%

^{5.02}x speed up in training with trade-off of 3.45% accuracy.

Single 300-neuron model vs Our (2x250-200)

Train 2 sub-models (250 neurons/model), merge and compress to 300 neurons.

Model	Baseline [3]	Our
#neurons	300	300 (2x250-200)
Training Time (minutes)	53.13	26.8
Classification Accuracy	88.87%	89.28%

^{1.98}x speed up in training and 0.41% accuracy gain.

Outline

Introduction

Proposed Method

Evaluation & Result

Conclusion

Conclusion

- Fully STDP based Ensemble Learning is implemented.
- The system allows different individual model performances & removes redundancy based on neuron similarity.
- Proposed method achieved 1.98x training process acceleration while gaining 0.41% of classification accuracy.
- Future work: Communication between sub-models during training & Genetic Algorithm to further optimize the final model.

Reference

[1] Z.-H. Zhou, Ensemble methods: foundations and algorithms. CRC press, 2012.

[2] P. U. Diehl and M. Cook, "Unsupervised learning of digit recognition using spike-timing-dependent plasticity," Frontiers in computational neuroscience, vol. 9, p. 99, 2015.

[3] Q. Fu and H. Dong, "An ensemble unsupervised spiking neural network for objective recognition," Neurocomputing, vol. 419, pp. 47–58, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231220313072

Thank you for your attention!

Proposed Merging Method

Similarity Measurements

Mean Squared Error -> Average squared difference of weight metrices

Manhattan Dist. -> Sum of absolute differences of weight metrices

Cosine Similarity -> Cosine angle between weight metrices

Correlation Coef. -> How much two weight matrices move with each other

Similarity Measurements (1)

Mean Squared Error

$$\frac{1}{n} \sum_{i=1}^{n} (A_i - B_i)^2$$

n: number of weights

A_i: i_th weight in weight matrix *A*

 B_i : i_th weight in weight matrix B

Sensitive to larger differences

Similarity Measurements (2)

Manhattan Distance

$$\sum_{i=1}^{n} |A_i - B_i|$$

Simple, less sensitive to larger differences

Similarity Measurements (3)

Cosine Similarity (Range: -1 to 1)

$$\frac{A \cdot B}{|A| \cdot |B|}$$

|A|: magnitude of weight matrix A

 $A \cdot B$: dot product of A and B

 $|A| \cdot |B|$: multiplication between the magnitudes

Measures similarity of patterns

-1 (Complete opposite), 0 (No similarity), 1 (Same)

Similarity Measurements (4)

Correlation Coefficient (Range: -1 to 1)

$$\frac{\frac{1}{n}\sum_{i=1}^{n}(A_{i}-\bar{A})(B_{i}-\bar{B})}{\sqrt{\frac{1}{n}\sum_{i=1}^{n}(A_{i}-\bar{A})^{2}\cdot\sqrt{\frac{1}{n}\sum_{i=1}^{n}(B_{i}-\bar{B})^{2}}}$$

Measures how well each pattern correlates -1 (Complete opposite), 0 (No similarity), 1 (Same)

Input

Spike

 t_2

Else if $t_1 > t_2$: Increase weight

Else if $t_2 > t_1$: Reduce weight

Model	sub- model #1	sub- model #2	Merged Model	Manually Compressed Model
No. of neurons	64	64	128	100
Accuracy	75.38%	75.54%	77.60%	76.84%