Problem 1. Exercise 5.6

Proof. 1. For any nonzero $x \in X$, let $Y = \{kx : k \in \mathbb{R}\}$. Then Y is a linear subspace of X.

We define a functional $\psi: Y \mapsto \mathbb{R}$ by $\psi(kx) = k||x||$.

It is linear since $\psi(kx + lx) = (k + l)||x|| = \psi(kx) + \psi(lx)$.

It is bounded and $\|\psi\|=1$.

By Hahn-Banach theorem, there exist a bounded linear function $\phi: X \mapsto \mathbb{R}$ such that $\|\phi\| = \|\psi\| = 1$. Moreover, since $x \in Y$, $\phi(x) = \psi(1 \cdot x) = \|x\|$.

For $x=0\in X$, we pick any ψ_y with nonzero y defined as above. The corresponding $\phi_y(0)=\|0\|=0$ with $\|\phi_y\|=1$.

2. Assume $x \neq y$, let z = x - y and z is nonzero. We define $Z = \{kz : k \in \mathbb{R}\}$ and a bounded linear functional $\psi : Z \mapsto \mathbb{R}$ by $\psi(kz) = k\|z\|$. It can be extended to a bounded linear functional $\phi : X \mapsto \mathbb{R}$ such that $\phi(z) = \phi(x - y) = \|x - y\| > 0$, however $\phi(x - y) = \phi(x) - \phi(y) = 0$. Contradiction!

Problem 2. Lower semi-continuity of weak convergence.

Proof. From Problem 1, we know that there exists a bounded linear functional $\phi \in X^*$ such that $\phi(x) = ||x||$ and $||\phi|| = 1$.

 $x_n \stackrel{\cdot \cdot \cdot \cdot \cdot \cdot}{\rightharpoonup} x$ implies that $\phi(x_n) \rightarrow \phi(x)$. Thus

 $||x|| = \phi(x) = |\phi(x)| = \lim_{n \to \infty} |\phi(x_n)| \le \liminf_{n \to \infty} ||\phi|| ||x_n|| = \liminf_{n \to \infty} ||x_n||.$

Problem 3. Isometric embedding of a separable Banach space in ℓ^{∞} .

Proof. Let X denote the separable Banach space and Y denote its countable dense subset. For any $x \in X$, let (x_n) denote the sequence in Y that converges to x. By Exercise 5.6, there exists a sequence (ϕ_n) in X^* such that $\|\phi_n\| = 1$ and $\phi_n(x_n) = \|x_n\|$. Now we define the isometric embedding $J: X \mapsto \ell^{\infty}$ by

$$J(x) = (\phi_1(x), \phi_2(x), \cdots, \phi_n(x), \cdots)$$

J is well-defined since $|\phi_k(x)| \leq ||\phi_k|| ||x|| = ||x||$ for all k.

J is linear and we will prove $||J(x)||_{\infty} = ||x||$ to show it is an isometry. Especially we prove that $||J(x)||_{\infty} \ge ||x||$. By the continuity of norm and continuity of linear functional ϕ_n , we have

$$||x|| = \lim_{n \to \infty} ||x_n|| = \lim_{n \to \infty} \phi_n(x_n) = \lim_{n \to \infty} \phi_n(x_n - x) + \phi_n(x)$$

$$\leq \lim_{n \to \infty} ||\phi_n|| ||x_n - x|| + \sup_n \phi_n(x) = ||J(x)||_{\infty}.$$

Remark: Thanks Matthew Corbelli for pointing this out. I think the assumption of completeness is not necessary in this proof. It might suggest that there is an isometric isomorphism between any separable Banach space with a closed linear subspace of ℓ^{∞} . However, we just need an embedding in this problem.

Problem 4. Exercise 5.7

Proof.

$$Kf(x) = \int_0^1 \sin \pi (x - y) f(y) dy$$

$$= \int_0^1 (\sin \pi x \cos \pi y - \cos \pi x \sin \pi y) f(y) dy$$

$$= \sin \pi x \int_0^1 \cos \pi y f(y) dy - \cos \pi x \int_0^1 \sin \pi y f(y) dy$$

$$= a(f) \sin \pi x + b(f) \cos \pi x,$$

where $a(f) = \int_0^1 \cos \pi y f(y) dy$ and $b(f) = -\int_0^1 \sin \pi y f(y) dy$.

Thus the range $ran(K) \subset span \{ sin \pi x, cos \pi x \}$.

On the other hand, since for $f \equiv 1$, $Kf(x) = -\frac{2}{\pi}\cos\pi x$; for $f = \cos\pi x$, $Kf(x) = \frac{1}{2}\sin\pi x$. Thus for $f(x) = 2a\cos\pi x - \frac{b\pi}{2}$, $Kf(x) = a\sin\pi x + b\cos\pi x$, which yields that $\operatorname{ran}(K) = \operatorname{span}\{\sin\pi x, \cos\pi x\}$.

$$Kf(x) = 0 \Longleftrightarrow \begin{cases} \int_0^1 \cos \pi y f(y) dy = 0; \\ \int_0^1 \sin \pi y f(y) dy = 0. \end{cases}$$

$$\ker(\mathbf{K}) = \left\{ f \in C[0,1] : \int_0^1 \cos \pi y f(y) dy = 0 \quad \text{and} \quad \int_0^1 \sin \pi y f(y) dy = 0. \right\}$$

Problem 5. Exercise 5.11

Proof.

$$0 \leqslant |||T_n|| - ||T||| \leqslant ||T_n - T|| \to 0.$$

Problem 6. Weak limit is unique.

Proof. This is the result from Problem 1 question b.

Problem 7. Exercise 5.17

Proof.

• I - K is one-to-one.

For any
$$x \neq y$$
, $(I - K)(x - y) = (x - y) - K(x - y)$.
And $\|K(x - y)\| \leqslant \|K\| \|x - y\| \leqslant \|x - y\|$. Thus
$$\|(I - K)(x - y)\| = \|(x - y) - K(x - y)\| \geqslant |\|x - y\| - \|K(x - y)\|| > 0.$$

• I - K is onto.

For any $y \in X$, we define $x_n = (I + \sum_{i=1}^{n-1} K^i) y$. Now we show that (x_n) is a Cauchy sequence in the Banach space X.

$$||x_n - x_m|| = \left\| \sum_{i=1}^{m-1} K^i y \right\| \leqslant \sum_{i=1}^{m-1} ||K^i|| ||y|| \leqslant \sum_{i=1}^{m-1} ||K^i|| ||y|| \leqslant \frac{||K||^n}{1 - ||K||} ||y|| \leqslant \varepsilon,$$

for large enough N and $m > n \ge N$.

Let $x_n \to x$ with respect to $\|\cdot\|$. By the continuity of I - K, we have

$$(I - K)x = \lim_{n \to \infty} (I - K)x_n = \lim_{n \to \infty} (I - K)(I + \sum_{i=1}^{n-1} K^i)y = \lim_{n \to \infty} (I - K^n)y = y,$$

since $\lim_{n\to\infty} ||K^n y|| = 0$.

In this way, for any $y \in X$, we can find a $x \in X$ such that (I - K)x = y, that is, I - K is onto.

• $(I-K)^{-1}=I+K+K^2+K^3+\cdots$ and the right hand side converges uniformly.

$$\left\| I - (I - K)(I + \sum_{i=1}^{n-1} K^i) \right\| = \|I - (I - K^n)\| = \|K^n\| \leqslant \|K\|^n \to 0,$$

which implies that

$$(I - K)(I + \sum_{i=1}^{n-1} K^i) \to I$$
 with respect to $\|\cdot\|$.

Based on a similar process, one can also show that:

$$(I + \sum_{i=1}^{n-1} K^i)(I - K) \to I$$
 with respect to $\|\cdot\|$.

Therefore, we have $(I - K)^{-1} = I + K + K^2 + K^3 + \cdots$.