Chapter 4

Time-Domain Signal Analysis

2024.09

Prof. Park Kyusik

Contents

- Discrete-time system properties
- System representation difference equation and impulse response
- Convolution
- Discrete cross-correlation

Discrete-Time System Properties

- Discrete-time system
 - Mathematical transform that maps the input signal x[n] into output signal y[n]
 - Transformation $T[\cdot]$

Additivity

• For any signal $x_1[n]$ and $x_2[n]$

$$T[x_1[n] + x_2[n]] = T[x_1[n]] + T[x_2[n]]$$

Homogeneity

• For any constant c and for any signal x[n]

$$T[cx[n]] = cT[x[n]]$$

Linearity

• For any constant c_1 , c_2 and for any signal $x_1[n]$, $x_2[n]$

$$T[c_1x_1[n] + c_2x_2[n]] = c_1T[x_1[n]] + c_2T[x_2[n]]$$

Time-invariance

• compare $y[n - n_0]$ to $T[x[n - n_0]]$ to test for time-invariance. If they are same, then the system is time-invariance

* Ex) Check for the time-invariance

- $y[n] = x^2[n]$
 - The response of the system to $x[n] = x[n-n_0]$ is $y[n] = [x[n]]^2 = x^2[n-n_0]$ On the other hand $y[n-n_0] = x^2[n-n_0]$ Because $y[n] = y[n-n_0]$, the system is time invariant.
- y[n] = x[n] + x[-n]
 - The response of the system to $x'[n] = x[n-n_0]$ is

$$y'[n] = x[n-n_0] + x[-n-n_0]$$

On the other hand, $y[n-n_0] = x[n-n_0] + x[-(n-n_0)] = x[n-n_0] + x[-n+n_0]$ Because $y[n] \neq y[n-n_0]$, the system is time – varying.

- Linear time-invariant (LTI) system
 - Satisfy both linear and time-invariant property
 - If LTI system, then convolution output

- "*" convolution operator
- Impulse response h[n] mathematical model for system

Causality

- If for any n_0 , the response for the system at time n_0 depends only on the input up to $n = n_0$
 - Output cannot depend on the future input
- An LTI system is causal if and only if (iff)

$$h[n] = 0, \qquad for n < 0$$

* Ex) Decide the causality of the system

•
$$y[n] = x[n] + x[n-1]$$
 - causal

•
$$y[n] = x[n] + x[n+1]$$
 - non-causal

- Stability
 - BIBO (Bounded Input Bounded Output)

 If for any input that is bounded, $|x[n]| \le A < \infty$ the output will be bounded $|y[n]| \le B < \infty$

For LTI system, BIBO stability is guaranteed if

$$|y[n]| < \sum_{k=-\infty}^{\infty} |h[k]| x[n-k]| < A \sum_{k=-\infty}^{\infty} |h[k]| \le B < \infty$$

$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty$$

 \Leftrightarrow Ex) Check for the stability $h[n] = a^n u[n]$

$$\sum_{n=-\infty}^{\infty} |h[n] = \sum_{n=-\infty}^{\infty} |a^n| u[n] = \sum_{n=0}^{\infty} |a|^n = \frac{1}{1-|a|}$$

• The system will be stable when |a| < 1

System Representation

Impulse response & Difference equation

Linear difference equation

$$\begin{split} \sum_{k=0}^N a_k y[n-k] &= \sum_{k=0}^M b_k x[n-k] \\ y[n] + a_1 \ y[n-1] + \ldots + a_N y[n-N] &= b_0 x[n] + b_1 \ x[n-1] + \ldots + b_M x[n-M] \end{split}$$

- Recursive system IIR (Infinite Impulse Response)
 - Output depends on both input and output

$$\begin{split} y[n] &= -\sum_{k=1}^{N} a_k y[n-k] + \sum_{k=0}^{M} b_k x[n-k] \\ &= -a_1 \ y[n-1] - \dots - a_N y[n-N] + b_0 x[n] + b_1 \ x[n-1] + \dots + b_M x[n-M] \end{split}$$

- Non-recursive system FIR (Finite Impulse Response)
 - Output only depends on input

$$\begin{split} y[n] &= \sum_{k=0}^{M} b_k x[n-k] \\ &= b_0 x[n] + b_1 \ x[n-1] + \dots + b_M x[n-M] \end{split}$$

- Impulse response
 - **Definition:** Impulse response is defined as a response of a system to the unit impulse function

• Depending on the form of h[n] - FIR or IIR

Ex)) Non-recursive; FIR system

$$y[n] = 0.25(x[n] + x[n-1] + x[n-2] + x[n-3])$$

• Replace by $x[n] = \delta[n]$ and y[n] = h[n]

$$h[n] = 0.25(\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3])$$

Starting with $n = 0$
 $h[0] = 0.25, h[1] = 0.25, h[2] = 0.25, h[3] = 0.25$
 $h[4] = 0, h[5] = 0...$
 $h[n] = \{0.25, 0.25, 0.25, 0.25\}$

 Called Finite Impulse Response (FIR), since IR has finite length ❖ Ex) Recursive – IIR system

$$y[n] - 0.4y[n-1] = x[n] - x[n-1]$$

• Replace by $x[n] = \delta[n]$ and y[n] = h[n]

$$h[n] = 0.4h[n-1] + \delta[n] - \delta[n-1]$$

Starting with n = 0

h[0] =
$$0.4h[-1] + \delta[0] - \delta[-1] = 1, h[1] = -0.6$$

 $h[2] = -0.24, h[3], h[4], \dots$

Infinite impulse response

❖ Ex) Recursive – IIR system

$$y[n] - \alpha y[n-1] = x[n]$$

• Replace by $x[n] = \delta[n]$ and y[n] = h[n]

$$h[n] = \alpha h[n-1] + \delta[n], \quad h[-1] = 0$$

$$h[0] = \alpha h[-1] + \delta[0] = 1, \quad h[1] = \alpha h[0] = \alpha$$

 $h[2] = \alpha h[1] = \alpha^2, h[3] = \alpha h[2] = \alpha^3, \quad h[4], \dots$

$$h[n] = \alpha^n, n \ge 0$$
 or $h[n] = \alpha^n u[n]$

- *Ex) Decide whether the system is FIR or IIR. Determine the stability and causality
 - $h[n] = \{2,1,1,3\}$
 - FIR system, stable, but non- causal
 - $h[n] = (-0.5)^n u[n]$
 - IIR system, stable since $\sum_{k=-\infty} |h[k]| = \sum_{k=0} |-0.5|^k = \frac{1}{1-0.5} = 2 < \infty$ causal
 - How about $h[n] = (1.3)^n u[n]$?

Moving Average (MA) Filter

- Most common and simplest filter
 - Noise reduction, long-term trend prediction
- DE for causal L-point MA filter

$$\begin{split} y[n] &= \ \frac{1}{L} \left\{ x[n] + x[n-1] + \ldots + x[n-(L-1)] \right\} \\ &= \ \frac{1}{L} \sum_{k=0}^{L-1} x[n-k] \end{split}$$

• For L=5
$$y[80] = \frac{x[80] + x[79] + x[78] + x[77] + x[76]}{5}$$

- "periodic signal + random noise"
 - Apply L=10 MA filter, L=50 MA filter

Long-term prediction

- Smooth out short-term fluctuation and highlight longer-term trends
- Blue: L=15 MA, Red: L=50 MA

Echo and Reverberation

❖ Echo – comb filter (FIR)

$$y[n] = x[n] + \alpha x[n-D], \quad \alpha < 1, D = \text{delay}$$

❖ Reverberation – ex) concert hall

$$y[n] = x[n] + \alpha x[n-D] + \alpha^2 x[n-2D] + \alpha^3 x[n-3D] + \dots$$

 $y[n] - \alpha y[n-D] = x[n]$

- Ex) Find out IR of an echo and reverberation system
 - Echo system FIR $y[n] = x[n] + \alpha x[n-D], \alpha < 1$
 - By substituting $x[n] = \delta[n]$ y[n] = h[n] $h[n] = \delta[n] + \alpha \delta[n D]$ and causality h[n] = 0 for n < 0 $h[0] = 1, h[1] = 0, ..., h[D] = \alpha, h[D + 1] = 0, ...$ $h[n] = \{1, 0, ..., 0, \alpha\}$
 - Reverb system IIR
 - By substituting $x[n] = \delta[n]$ y[n] = h[n] $h[n] = \alpha h[n-D] + \delta[n]$ and causality h[n] = 0 for n<0 $h[0] = \alpha h[-D] + \delta[0] = 1, ..., h[D] = \alpha, h[2D] = \alpha^2, ...$

Convolution

For LTI system

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

- Convolution property
 - Commutative

$$x[n]*h[n] = h[n]*x[n]$$

Distributive

$$x[n]^* \{h_1[n] + h_2[n]\} = x[n]^* h_1[n] + x[n]^* h_2[n]$$

Associative

$${x[n]*h_1[n]}*h_2[n] = x[n]*\{h_1[n]*h_2[n]\}$$

Mathematical operation of convolution

- Two different approaches
 - Direct evaluation
 - Graphical approach

Direct evaluation

When the sequences simple or may be described by simple closed-form mathematical expression

- \star Ex) Given $x[n] = \{3,4,5\}, h[n] = \{2,1\}$
 - By convolution equation

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$y[0] = \sum_{k=-\infty}^{\infty} x[k]h[0-k] = x[0]h[0] = 3 \cdot 2 = 6$$

$$y[1] = \sum_{k=-\infty}^{\infty} x[k]h[1-k] = x[0]h[1] + x[1]h[0] = 3 \cdot 1 + 4 \cdot 2 = 11$$

$$y[2] = \sum_{k=-\infty}^{\infty} x[k]h[2-k] = x[0]h[2] + x[1]h[1] + x[2]h[0] = 3 \cdot 0 + 4 \cdot 1 + 5 \cdot 2 = 14$$

$$y[3] = \sum_{k=-\infty}^{\infty} x[k]h[3-k] = x[0]h[3] + x[1]h[2] + x[2]h[1] + x[3]h[0] = 0 + 0 + 5 \cdot 1 + 0 = 5$$

$$y[4] = \sum_{k=-\infty}^{\infty} x[k]h[4-k] = x[0]h[4] + x[1]h[3] + \dots = 0$$

• Length of output $L_y = L_x + L_h - 1 = 3 + 2 - 1 = 4$

$$L_y = L_x + L_h - 1 = 3 + 2 - 1 = 4$$

Note two end-points of output

⋄Ex)

$$x[n] = (0.5)^n u[n] = \begin{cases} (0.5)^n & n \ge 0\\ 0 & n < 0 \end{cases}, \qquad h[n] = u[n]$$

From the convolution equation

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k] = \sum_{k=-\infty}^{\infty} (0.5)^k u[k] u[n-k]$$

$$y[n] = \sum_{k=0}^{n} (0.5)^k = \frac{1 - (0.5)^{n+1}}{1 - (0.5)}, \quad y[n] = \frac{1 - (0.5)^{n+1}}{1 - (0.5)} u[n]$$

$$\sum_{n=0}^{\infty} a^n \ = \ \frac{1}{1-a} \qquad \text{for} \ |a| < 1; \qquad \sum_{n=0}^{N-1} a^n \ = \ \frac{1-a^N}{1-a} \quad ; \quad \sum_{n=0}^{N-1} n \ = \frac{N(N-1)}{2}$$

Graphical approach

Induced from the calculation procedure of the convolution equation

$$y[n] = x[n]*h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$y[0] = \sum_{k=-\infty}^{\infty} x[k]h[-k], \ y[1] = \sum_{k=-\infty}^{\infty} x[k]h[1-k], \ y[2] = \sum_{k=-\infty}^{\infty} x[k]h[2-k], \dots$$

- To obtain output
 - First time-reverse h[k]
 - Then slide h[-k] by the amount of index n
 - Do the multiplication and sum with input x[k], and repeat

Ex) Do convolution using graphical method

Discrete Cross-Correlation

Cross-correlation

- Measure of similarity of two series as a function of the lag of one relative to the other
- Commonly used for searching a long signal for a shorter, known feature and time-delay analysis

$$r_{xh}[n] = x[n] **h[n] = \sum_{k=-\infty}^{\infty} x[k]h[k-n]$$

"**" – cross correlation notation

$$r_{xh}[n] = x[n]^{**}h[n] \neq 0$$

• Un-correlation – no similarity $r_{xh}[n] = x[n]^{**}h[n] = 0$

Cross-correlation in terms of convolution

$$r_{xh}[n] = x[n]^{**}h[n] = x[n]^*h[-n]$$

Autocorrelation

$$\begin{split} r_{xx}[n] &= x[n]^{**}x[n] = x[n]^*x[-n] \\ & |r_{xx}[n]| \leq r_{xx}[0] \end{split}$$

Radar target ranging

• Estimate target distance with radar signal x[n] and target reflected signal s[n]

$$s[n] = \alpha x[n-D] + p[n], \quad \alpha < 1$$

$$target\ range = d = \frac{1}{2} \frac{c \cdot D}{f_s}$$

c =speed of light, D =round trip time f_s =sampling rate

- Correlation receiver
 - A device that performs the cross-correlation

$$r_{sx}[n] = s[n] * *x[n] = s[n] *x[-n]$$

• In general, one can assume that the noise p[n] is uncorrelate with a radar signal x[n]

$$\begin{split} r_{px}[n] &= p[n]^{**}x[n] = p[n]^{*}x[-n] = 0 \\ r_{sx}[n] &= s[n]^{*}x[-n] = (\alpha x[n-D] + p[n])^{*}x[-n] \\ &= \alpha x[n-D]^{*}x[-n] + p[n]^{*}x[-n] = \alpha x[n-D]^{*}x[-n] \end{split}$$

• Delayed version of autocorrelation $r_{xx}[n]$, peak at D

Target distance

$$d = \frac{0.5 \cdot v \cdot D}{f_s}$$

• sound velocity $v = 3X10^8 m/\sec$, D = round trip delay time f_S sampling rate of the signal x[n]

Ex) Radar targeting

- Radar signal x[n] with length 20 rectangular pulse
- Reflected signal s[n] with an delay of 100 sample
- With no noise condition, p[n]=0

• With p[n] random Gaussian noise

Homework

- Exercise Problems
 - 4.1, 4.2, 4.3, 4.4, 4.5 (a)
 - 4.8
 - 4.13