Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření

PROTOKOL O MĚŘENÍ

Název úlohy Číslo úlohy

Měření operačního zesilovače

1

Zadání

- 1. Změřte a nakreslete závislost v invertujícím zapojení při stejnosměrném vstupu:
 - a) Změřte a nakreslete závislost výstupního napětí U_2 invertujícího zesilovače s OZ ne zpětnovazebním odporu R_2 při stejnosměrném vstupním napětí U_1 = 4 V a vstupním odporu R_1 = 20 k Ω .
 - b) Pro předchozí měření vypočítejte teoretické hodnoty výstupního napětí U₂. Naměřené a vypočítané hodnoty srovnejte a vypočítejte jejich absolutní odchylku.
- 2. Měření operačního zesilovače v invertujícím zapojení při střídavém vstupu:
 - a) Měřením ověřte činnost OZ pracujícího jako invertující zesilovač harmonického vstupního napětí $U_{1,PP}$ = 4 V, $U_{1,AVG}$ = 2 V, f = 100 Hz, při zpětnovazebním odporu R_2 = 80 k Ω .
 - b) Pro vstupní harmonické napětí (z bodu 2a) a napěťový přenos zesilovače a_U = 6 dB změřte a zakreslete časové průběhy vstupního a výstupního napětí zesilovače.

Poř. č.	Příjmení a jméno			Třída	Skupina	Školní rok		
7	Askold Horčička			3.B	1.	2021/22		
Datum měření 8.3.		Datum odevzdání	Počet listů	příprava	Klasif měření	ikace protokol	obhajoba	
Protokol o měření obsahuje:			Teoretický úvod Schéma		Tabulky naměřených a vypočtených hodnot Vzor výpočtu			
			Tabulka použitých přístrojů Postup měření		Grafy Závěr			

1. Teoretický úvod

Operační zesilovač (OZ) je univerzální zesilovací analogový elektronický obvod, který je základním prvkem analogových elektronických systémů. Operační zesilovač je často v praxi pro výpočty nahrazován ideálním operačním zesilovačem. Vlastnosti ideálního operačního zesilovače jsou nekonečně velké zesílení, nekonečně velký vstupní odpor, nulový výstupní odpor, nekonečně široké zesilované kmitočtové pásmo a nulový vlastní šum a zkreslení. Základní OZ má následující vývody \rightarrow kladný (neinvertující) vstup, záporný (invertující) vstup, výstup a dva napájecí vývody (ty se často ve schématech nekreslí, já je tam mám).

2. Měření OZ v invertujícím zapojení při stejnosměrném vstupu

a) Schéma zapojení

Schéma č. 1

b) Tabulka použitých přístrojů – Tab. č. 1

Označení v zapojení	Přístroj	Тур	Inventární číslo	Poznámka
V	Voltmetr	MY64	0655	-
R_1	Odporová dekáda	RLC-D1000	10-1370/11	-
R ₂	Odporová dekáda	RLC-D1000	10-1370/05	-
OZ	Operační zesilovač	MAA741	20-0049/01	-
Z	Zdroj U ₁	-	stůl 7	-

c) Postup měření

- 1. Sestavíme zapojení podle schématu.
- 2. Nastavíme zdroje napětí ve stole na požadované hodnoty.
- 3. Nastavíme odporové dekády na požadované hodnoty.
- 4. Změříme napětí na výstupu OZ.
- 5. Nastavíme odporovou dekádu R₂ na následující hodnotu.
- 6. Opakujeme body 4 a 5 dokud nezměříme hodnoty U₂ pro všechny požadované hodnoty odporové dekády R₂

d) Vzorce pro výpočty hodnot

- 1. Napěťový přenos pro invertující OZ $\rightarrow A_U = -(\frac{R_2}{R_1})$
- 2. Očekávané výstupní napětí $\rightarrow U_{2O\check{C}EK\acute{A}VAN\acute{E}} = A_u * U_1$
- 3. Absolutní odchylka $\rightarrow \Delta U_2 = U_{2MĚŘENÉ} U_{2OČEKÁVANÉ}$

e) Tabulka naměřených a očekávaných hodnot – Tab. č. 2

U _{cc} [V]	± 15						
R_1 [k Ω]	20						
$R_2 [k\Omega]$	5	10	20	40	60	80	100
U ₁ [V]	4						
U _{2,MĚŘENÉ}	-1,08	-2,08	-4,12	-8,21	-12,28	-14,49	-14,50
U _{2,OČEKÁVANÉ}	-1	-2	-4	-8	-12	-16	-20
∆ U ₂ [V]	0,08	0,08	0,12	0,21	0,28	1,51	5,5

f) Graf závislosti měřeného výstupního napětí U2 na zpětnovazebném odporu

