

Introduction to Audio Content Analysis

module 9.5: tempo detection

alexander lerch

overviewintrooscillator approachfilterbank approachtemplate approachchallengesevalsummar•0000000000

introduction overview

corresponding textbook section

section 9.5

lecture content

- introduction to tempo detection and beat tracking
- overview over basic approaches
- typical challenges

■ learning objectives

- discuss advantages and disadvantages for different approaches to tempo detection and beat tracking
- summarize the typical challenges of beat tracking systems

module 9.5: tempo detection

introduction

overview

corresponding textbook section

section 9.5

lecture content

- introduction to tempo detection and beat tracking
- overview over basic approaches
- typical challenges

learning objectives

- discuss advantages and disadvantages for different approaches to tempo detection and beat tracking
- summarize the typical challenges of beat tracking systems

module 9.5: tempo detection

verview **intro o**scillator approach filterbank approach template approach challenges eval summary ●OO ○○○ ○ ○ ○

tempo detection & beat tracking problem statement

tempo detection

detect speed of regular pulse (foot-tapping rate)

beat tracking

• detect the time instances the tempo pulses occur (beat phase)

verview **intro** oscillator approach filterbank approach template approach challenges eval summary ○●○ ○○○ ○ ○ ○ ○

tempo detection & beat tracking introduction

objectives

- find the tempo from the novelty function/onsets
- 2 find the beat locations

systematic problems:

- 1 distinguish hierarchical levels
 - meter
 - beat
 - ► subbeat/tatum
- 2 detect beats without onsets
- **3** recognize *onsets without* beats

tempo detection & beat tracking typical beat tracking system

Beat tracking with an oscillator¹

- initialize pulse generator (tempo estimate, beat position estimate)
- 2 predict next beat location with pulse
- 3 adapt acc. to distance (predicted vs. real onset position
 - beat period
 - beat phase
- 4 predict with adapted settings
- 5 adapt ...

module 9.5: tempo detection 5 / 12

¹E. W. Large, "Beat Tracking with a Nonlinear Oscillator," in *Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI)*, Montreal, Aug. 1995.

Beat tracking with an oscillator¹

- initialize pulse generator (tempo estimate, beat position estimate)
- 2 predict next beat location with pulse
- 3 adapt acc. to distance (predicted vs. real onset position
 - beat period
 - beat phase
- 4 predict with adapted settings
- 5 adapt ...

module 9.5: tempo detection

¹E. W. Large, "Beat Tracking with a Nonlinear Oscillator," in *Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI)*, Montreal, Aug. 1995.

Beat tracking with an oscillator¹

- initialize pulse generator (tempo estimate, beat position estimate)
- 2 predict next beat location with pulse
- 3 adapt acc. to distance (predicted vs. real onset position)
 - beat period
 - beat phase
- 4 predict with adapted settings

5 adapt ...

module 9.5; tempo detection 5 / 3

¹E. W. Large, "Beat Tracking with a Nonlinear Oscillator," in *Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI)*, Montreal, Aug. 1995.

Beat tracking with an oscillator¹

- initialize pulse generator (tempo estimate, beat position estimate)
- 2 predict next beat location with pulse
- 3 adapt acc. to distance (predicted vs. real onset position)
 - beat period
 - beat phase
- 4 predict with adapted settings
- 5 adapt ...

module 9.5: tempo detection 5 / 3

¹E. W. Large, "Beat Tracking with a Nonlinear Oscillator," in *Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI)*, Montreal, Aug. 1995.

tempo detection & beat tracking oscillator approach: initialization

How to estimate the initial tempo

erview intro **oscillator approach** filterbank approach template approach challenges eval summary ○○○ ○●○ ○ ○ ○ ○

tempo detection & beat tracking oscillator approach: initialization

Georgia Center for Music Tech Market Design

How to estimate the initial tempo

- location of maximum of ACF of novelty function
- maximum of **IOI histogram**

- maximum of **beat spectrum/histogram**
-

1 run multiple beat trackers with different parameters

- initial tempo
- initial beat phase
- adaptation speed
- compute reliability/confidence criteria:
 - match beat and onset times
 - tempo stability
 - majority of different agents
 - . .
- 3 choose most reliable agent (or path between agents)

- 1 run multiple beat trackers with different parameters
 - initial tempo
 - initial beat phase
 - adaptation speed
- **2** compute reliability/**confidence** criteria:
 - match beat and onset times
 - tempo stability
 - majority of different agents
 - ...
- 3 choose most reliable agent (or path between agents)

- 1 run multiple beat trackers with different parameters
 - initial tempo
 - initial beat phase
 - adaptation speed
- **2** compute reliability/**confidence** criteria:
 - match beat and onset times
 - tempo stability
 - majority of different agents
 - ...
- 3 choose most reliable agent (or path between agents)

- 1 run multiple beat trackers with different parameters
 - initial tempo
 - initial beat phase
 - adaptation speed
- **2** compute reliability/**confidence** criteria:
 - match beat and onset times
 - tempo stability
 - majority of different agents
 - ..
- 3 choose most reliable agent (or path between agents)

- 1 run multiple beat trackers with different parameters
 - initial tempo
 - initial beat phase
 - adaptation speed
- **2** compute reliability/**confidence** criteria:
 - match beat and onset times
 - tempo stability
 - majority of different agents
 - ...
- 3 choose most reliable agent (or path between agents)

tempo detection & beat tracking filterbank approach

Georgia Center for Music Tech Technology

- design **filterbank** (e.g. comb resonators spaced 1 beat)
- 2 compute filter output energy
- 3 pick maximum

Source Source
Filterbank
Filterbank
Envelope
Extraction
Output

Noise

Music

plots by Scheirer²

module 9.5: tempo detection 8 / 12

²E. D. Scheirer, "Tempo and beat analysis of acoustic musical signals," *Journal of the Acoustical Society of America (JASA)*, vol. 103, no. 1, pp. 588–601. 1998.

tempo detection & beat tracking filterbank approach

Georgia Center for Music Tech Market Technology

- design **filterbank** (e.g. comb resonators spaced 1 beat)
- 2 compute filter output energy
- 3 pick maximum

plots by Scheirer²

module 9.5: tempo detection 8 / 12

²E. D. Scheirer, "Tempo and beat analysis of acoustic musical signals," *Journal of the Acoustical Society of America (JASA)*, vol. 103, no. 1, pp. 588–601. 1998.

verview intro oscillator approach **filterbank approach** template approach challenges eval summary

tempo detection & beat tracking filterbank approach

Georgia Center for Music Tech Market Technology

- design **filterbank** (e.g. comb resonators spaced 1 beat)
- 2 compute filter output energy
- 3 pick maximum

plots by Scheirer²

module 9.5: tempo detection 8 / 3

²E. D. Scheirer, "Tempo and beat analysis of acoustic musical signals," *Journal of the Acoustical Society of America (JASA)*, vol. 103, no. 1, pp. 588–601. 1998.

verview intro oscillator approach filterbank approach **template approach** challenges eval summary

tempo detection & beat tracking template-based approach

- 1 define set of template pulses in all tempi
- 2 compute CCF between novelty function (or its ACF) and all templates
- 3 choose template with highest correlation as tempo
- 4 choose lag with highest correlation as beat phase

module 9.5; tempo detection 9 / 12

tempo detection & beat tracking typical problems

- **1** tempo: detection of **double/half tempo** (triple, ...)
- 2 phase: detection of off-beats
- **3** tempo & phase: strongly depends on **initialization values**
- tempo & phase: only slow adaptation no sudden tempo changes

example: challenges with adaptation speed

module 9.5: tempo detection

tempo detection & beat tracking

evaluation of constant tempo

- match within tempo range ⇒ classification metrics
- evaluation of beat tracking
 - ground truth can be subjective (double/half tempo, deviations)
 - each beat matched against ground truth
 - ► challenge 1: tolerance window definition (tempo dependent or not?)
 - challenge 2: slightly different tempo might lead to gap between metrics and perceptual severity
- typical errors
 - double/half tempo (sometimes also 3/2 relationships)
 - off-beat
 - problems with abrupt tempo changes

module 9.5: tempo detection 11 / 3

tempo detection & beat tracking

- evaluation of constant tempo
 - ullet match within tempo range \Rightarrow classification metrics
- evaluation of beat tracking
 - ground truth can be subjective (double/half tempo, deviations)
 - each beat matched against ground truth
 - ► challenge 1: tolerance window definition (tempo dependent or not?)
 - challenge 2: slightly different tempo might lead to gap between metrics and perceptual severity
- typical errors
 - double/half tempo (sometimes also 3/2 relationships)
 - off-beat
 - problems with abrupt tempo changes

module 9.5: tempo detection 11 / 3

tempo detection & beat tracking

- evaluation of constant tempo
 - match within tempo range ⇒ classification metrics
- evaluation of beat tracking
 - ground truth can be subjective (double/half tempo, deviations)
 - each beat matched against ground truth
 - ▶ challenge 1: tolerance window definition (tempo dependent or not?)
 - challenge 2: slightly different tempo might lead to gap between metrics and perceptual severity

typical errors

- double/half tempo (sometimes also 3/2 relationships)
- off-beat
- problems with abrupt tempo changes

module 9.5: tempo detection 11 / 3

erview intro oscillator approach filterbank approach template approach challenges eval **summary**

summary lecture content

■ tempo analysis

- similar to pitch detection on a different scale
 - periodicity analysis of novelty function
 - time or spectral domain

typical approaches

- oscillator
- histogram/beat spectrum
- template correlation

■ main challenges

- double/half tempo
- adaptation to sudden tempo changes

module 9.5: tempo detection