An Introduction to Reinforcement Learning

Prof. Mingkui Tan

SCUT Machine Intelligence Laboratory (SMIL)

Reinforcement Learning Applications

AlphaGo, DeepMind

王者荣耀觉悟AI、腾讯

Dota 2 AI, OpenAI

自动化机器学习平台, Google

OpenAI Five vs OG (TI8 Champion)

AI Learns to Park

Multi-Agent Hide and Seek

AI Taught Itself to Walk

Contents

- 1 What is Reinforcement Learning?
- 2 Markov Decision Process for Reinforcement Learning
 - Markov Process
 - Markov Reward Process
 - Markov Decision Process
- Policy Gradient Methods for Reinforcement Learning
- 4 Reinforcement Learning Example: AlphaGo
- 5 Summary

Contents

- What is Reinforcement Learning?
- 2 Markov Decision Process for Reinforcement Learning
 - Markov Process
 - Markov Reward Process
 - Markov Decision Process
- Policy Gradient Methods for Reinforcement Learning
- 4 Reinforcement Learning Example: AlphaGo
- 5 Summary

Reinforcement Learning

• What is Reinforcement Learning?

Learning to solve sequential decision making problems

• How it works?

Trial and error in a world that provides occasional rewards

SMIL内部资料 请勿外泄

Characteristics of Reinforcement Learning

What makes reinforcement learning different from other machine learning paradigms?

- There is no supervisor, only a *reward* signal
- Feedback is delayed, not instantaneous
- \blacksquare Time really matters (sequential, non *i.i.d.* data)
- Agent's actions affect the subsequent data it receives

Agent and Environment

- At each step *t* the agent:
 - Executes action A_t
 - Receives observation $O_t(S_t)$
 - Receives scalar reward R_t
- The environment:
 - Receives action A_t
 - \bullet Emits scalar reward R_t
 - Emits observation $O_{t+1}(S_{t+1})$

Reward

- A reward R_t is a scalar feedback signal at step t
- The agent's job is to maximise cumulative reward

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{k} R_{t+k+1} + \dots$$
$$= \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$$

observation

Make a humanoid robot walk

- positive R_t (+1) for moving forward
- negative R_t (-1) for falling down

Super Mario

positive reward R_t (+1) for getting a gold coin

Sequential Decision Making

Objective: Let an agent select a series of actions to maximise total future rewards via some policy:

$$\pi(a \mid s) = P \left[a_t = a \mid s_t = s \right]$$

s: the current state

a: possible actions given current state: e.g., move UP or DOWN

Sequential Decision Making

The trajectory is the sequence of observations, actions, rewards,

$$\tau = \langle S_0, A_0, R_1, S_1, A_1, R_2, \dots, S_{t-1}, A_{t-1}, R_t \rangle$$

State S_t is determined by previous trajectory:

$$P(S_t) = P(S_t|S_0, A_0, R_1, S_1, A_1, R_2, \dots, S_{t-1}, A_{t-1}, R_t)$$

The computation of the probability is much more complex!

Hypothesis: we introduce Markov Property to alleviate this issue!

Contents

- 1 What is Reinforcement Learning?
- 2 Markov Decision Process for Reinforcement Learning
 - Markov Process
 - Markov Reward Process
 - Markov Decision Process
- Policy Gradient Methods for Reinforcement Learning
- 4 Reinforcement Learning Example: AlphaGo
- 5 Summary

Markov Process

Given a sequence of random states $\langle s_0, s_1, ..., s_T \rangle$, it satisfies

Markov Property if and only if:

$$P(s_t|s_{t-1}) = P(s_t|s_0, \dots, s_{t-2}, s_{t-1})$$

$$S_0$$

$$S_1$$

$$S_2$$

$$S_3$$

$$S_4$$

- Once the state is known, the history can be thrown away
- The state is a sufficient statistic of the future

Markov Process: The future is independent of the past given the present

A Markov Process (or Markov Chain) is a tuple $\langle S, P \rangle$

- lacksquare \mathcal{S} is a (finite) set of states $\mathcal{S} = \{s_0, s_1, ..., s_T\}$
- \blacksquare \mathcal{P} is a state transition probability matrix,

$$\mathcal{P}_{ss'} = P[s_{t+1} = s' | s_t = s]$$

L内部资料 请勿外泄

State Transition Matrix

State transition matrix \mathcal{P} specifies $P(s_{t+1} = s' | s_t = s)$

$$\mathcal{P} = \begin{pmatrix} P(s_1|s_1) & \cdots & P(s_N|s_1) \\ \vdots & \ddots & \vdots \\ P(s_1|s_N) & \cdots & P(s_N|s_N) \end{pmatrix}$$

$$S = \{s_1, s_2, s_3, s_4\}$$

	s_1	S_2	S_3	S_4
S_1	0.1	0.2	0	0.7
S_2	1	0	0	0
S_3	0	1	0	0
S_4	0	0.3	0.2	0.5

Markov Reward Process

■ Markov Reward Process is a Markov Chain + rewards

Definition of *Markov Reward Process*

A *Markov Reward Process* is a tuple $< S, P, R, \gamma >$

- lacksquare \mathcal{S} is a (finite) set of states
- \blacksquare \mathcal{P} is a state transition probability matrix,

$$\mathcal{P}_{ss'} = P[s_{t+1} = s' | s_t = s]$$

- \blacksquare \mathcal{R} is a reward function, $R(s_t = s) = \mathbb{E}[r_{t+1}|s_t = s]$
- $ightharpoonup \gamma$ is a discount factor, $\gamma \in [0,1]$

Markov Decision Process

Markov Decision Process is a Markov Reward Process + actions

Definition of Markov Decision Process

A *Markov Decision Process* is a tuple < S, \mathcal{A} , \mathcal{P} , \mathcal{R} , $\gamma >$

- \blacksquare S is a finite set of states
- \blacksquare A is a finite set of actions
- \blacksquare \mathcal{P} is a state transition probability matrix,

$$\mathcal{P}_{ss'}^{a} = P[s_{t+1} = s' | s_t = s, a_t = a]$$

- \blacksquare \mathcal{R} is a reward function, $R(s_t = s, a_t = a) = \mathbb{E}[r_{t+1} | s_t = s, a_t = a]$
- $\mid \mathbf{v} \mid \mathbf{y}$ is a discount factor, $\gamma \in [0,1]$

Policy

Definition of *Policy*

A policy π is a distribution over actions given states:

$$\pi(a \mid s) = P \left[a_t = a \mid s_t = s \right]$$

- A policy $\pi(a \mid s)$: the agent's behavior model
- An MDP policy depend on the current state (not the history)
- $\blacksquare \pi(a \mid s)$ can be represented by neural networks

How to learn $\pi(a \mid s)$: maximize total future rewards!

Return

Definition of *Return* (the total future rewards)

The return G_t is the total discounted reward from time-step t

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- $\gamma \in [0,1]$: discount factor for weighting the future rewards
- \blacksquare γ is used to trade off immediate reward and delayed reward
 - γ close to 0 leads to "short-term" evaluation
 - γ close to 1 leads to "long-term" evaluation

Why use discount factor?

- Avoids infinite returns in cyclic Markov processes
- Ensures the convergence when solving an MDP by dynamic programming

State Value Function for MRP

Definition (State-value function)

The state-value function V(s) is the expected return starting from state s:

$$V(s) = \mathbb{E}[G_t \mid s_t = s]$$

Bellman Equation for MRP

The state-value function can be decomposed into immediate reward R_{t+1} and discounted value of successor state $\gamma V(s_{t+1})$

$$V(s) = \mathbb{E}[G_t | s_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots | s_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \cdots) | s_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma G_{t+1} | s_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma V(s_{t+1}) | s_t = s]$$

Bellman equation describes the iterative relations of states

$$V(s) = R(s) + \gamma \sum_{s' \in S} P(s'|s)V(s')$$

The Bellman Equation indicates the value function of the current state can be evaluated by the next state

Bellman Equation in Matrix Form

$$V(s) = R(s) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s)V(s')$$

■ The Bellman equation can be expressed concisely using matrices

$$\begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix} = \begin{bmatrix} \mathcal{R}(1) \\ \vdots \\ \mathcal{R}(n) \end{bmatrix} + \gamma \begin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \vdots & \vdots & \vdots \\ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix} \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix}$$

$$v = \mathcal{R} + \gamma \mathcal{P} v$$

$$(I - \gamma \mathcal{P})v = \mathcal{R}$$

$$v = (I - \gamma \mathcal{P})^{-1} \mathcal{R}$$

Solution to MRP

Solving MRP when the model \mathcal{P} is known:

$$v = (I - \gamma \mathcal{P})^{-1} \mathcal{R}$$

- Matrix inverse takes the **complexity** $O(N^3)$ for N states
- Only possible for small MRPs
- ullet The model ${\mathcal P}$ must be known
- Iterative methods for large MRPs:
 - Dynamic Programming
 - Monte-Carlo evaluation
 - Temporal-Difference learning

Contents

- 1 What is Reinforcement Learning?
- 2 Markov Decision Process for Reinforcement Learning
 - Markov Process
 - Markov Reward Process
 - Markov Decision Process
- Policy Gradient Methods for Reinforcement Learning
- 4 Reinforcement Learning Example: AlphaGo
- 5 Summary

Policy of Agent

Policy π can be represented by a network with parameter θ :

$$\pi_{\theta}(a \mid s) = P(a \mid s; \theta)$$

where $\pi_{\theta}(a_t \mid s)$ denotes the probability of taking an action a_t given state s

- **Input**: state *s*
- **Output**: each action α corresponds to a neuron in output layer
- Take the action based on the output probability

How to learn π_{θ} ?

Objective Function

■To measure the quality of a policy π_{θ} , we define the objective function

$$J(\theta) = E_{\tau \sim P(\tau;\theta)}[R(\tau)] = \sum_{\tau} P(\tau;\theta)R(\tau)$$

where $R(\tau)$ is a reward of τ : $R(\tau) = \sum_{t=0}^{T} \gamma^t r_{t+1}$

What is a trajectory τ ?

What is a Trajectory τ ?

 \blacksquare A trajectory τ is the sequence of state, action, and reward

$$\tau = (s_0, a_0, r_1, s_1, a_1, r_2 \dots)$$

Given θ , we can compute the probability of τ for each trajectory

$$P(\tau;\theta) = p(s_0)\pi_{\theta}(a_0 \mid s_0)p(s_1|s_0, a_0) \pi_{\theta}(a_1 \mid s_1)p(s_2|s_1, a_1) \dots$$

= $p(s_0) \prod_{t=0}^{T} \pi_{\theta}(a_t \mid s_t)p(s_{t+1}|s_t, a_t)$

SMIL内部资料 请勿外泄

Policy Gradient

Learn the policy $\pi_{\theta}(a_t|s_t)$ by maximizing total

future rewards:

$$\max_{\theta} J(\theta) = \sum_{\tau} P(\tau; \theta) R(\tau)$$

Policy Gradient algorithm:

Input: random initialized policy π_{θ} , max number of episodes N,

learning rate η

Output: π_{θ}

for i = 1 to N do

How to comput $\nabla_{\theta} J(\theta)$?

Sample a trajectory
$$\tau^{(i)} = \{s_0^{(i)}, a_0^{(i)}, r_1^{(i)}, \dots, s_{T_i}^{(i)}, a_{T_i}^{(i)}, r_{T_i+1}^{(i)}\}$$
 for $t = 0$ to T_i do

 $G = \nabla_{\theta} J(\theta)$ // calculate the gradient

 $\theta \leftarrow \theta + \eta G$ // maximize the objective function by ascending the gradient

end for

end for

How to learn π_{θ} ?

How to obtain θ^* ?

$$\theta^* = \operatorname{argmax}_{\theta} J(\theta) = \operatorname{argmax}_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau)$$

$$R(\tau) = \sum_{t} \gamma^{t} r(s_{t}, a_{t})$$

$$P(\tau; \theta) = p(s_{0}) \prod_{t=0}^{T} \pi_{\theta}(a_{t}|s_{t}) p(s_{t+1}|s_{t}, a_{t})$$

Policy Gradient

How to compute $\nabla_{\theta} J(\theta)$?

Given policy π_{θ}

$$\tau^1: (s_0^1, a_0^1) \quad R(\tau^1)
(s_1^1, a_1^1) \quad R(\tau^1)$$

$$\tau^2: (s_0^2, a_0^2) \quad R(\tau^2)$$

$$(s_1^2, a_1^2) \quad R(\tau^2)$$

$$\vdots \qquad \vdots$$

$\begin{aligned} \theta &\leftarrow \theta + \eta \nabla_{\theta} J \\ \nabla_{\theta} J(\theta) &= \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{T_i} R(\tau^{(i)}) \nabla_{\theta} log \pi_{\theta} \left(a_t^{(i)} | s_t^{(i)} \right) \end{aligned}$

How to compute the Gradient $\nabla_{\theta} J(\theta)$?

The objective function is: $\max_{\theta} J(\theta) = \sum_{\tau} P(\tau; \theta) R(\tau)$

Taking the gradient w.r.t. θ gives

$$\nabla_{\theta} J(\theta) = \sum_{\tau} \nabla_{\theta} P(\tau; \theta) R(\tau)$$

$$= \sum_{\tau} P(\tau; \theta) \frac{\nabla_{\theta} P(\tau; \theta)}{P(\tau; \theta)} R(\tau)$$

$$= \sum_{\tau}^{\tau} P(\tau; \theta) \nabla_{\theta} log P(\tau; \theta) R(\tau)$$

$$\nabla f(x) = f(x)\nabla log f(x)$$

$$R(\tau) = \sum_{t} \gamma^{t} r(s_{t}, a_{t})$$

$$P(\tau; \theta) = p(s_0) \prod_{t=0}^{T} \pi_{\theta}(a_t | s_t) p(s_{t+1} | s_t, a_t)$$

Approximate the gradient,

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} log P(\tau^{(i)}; \theta) R(\tau^{(i)})$$

How to compute $\nabla_{\theta} log P(\tau^{(i)}; \theta)$?

SMIL内部资料

How to compute $\nabla_{\theta} log P(\tau^{(i)}; \theta)$?

$$P(\tau; \theta) = p(s_0) \prod_{t=0}^{T} \pi_{\theta}(a_t | s_t) p(s_{t+1} | s_t, a_t)$$

$$\begin{split} \nabla_{\theta} log P \left(\tau^{(i)}; \theta \right) &= \nabla_{\theta} \log \left[\prod_{t=0}^{T} \underbrace{p \left(s_{t+1}^{(i)} \left| s_{t}^{(i)}, a_{t}^{(i)} \right.\right)}_{\textbf{dynamics model}} \cdot \underbrace{\pi_{\theta} \left(a_{t}^{(i)} \left| s_{t}^{(i)} \right.\right)}_{\textbf{policy}} \right] \\ &= \nabla_{\theta} \left[\sum_{t=0}^{T} \log p \left(s_{t+1}^{(i)} \left| s_{t}^{(i)}, a_{t}^{(i)} \right.\right) + \sum_{t=0}^{T} log \pi_{\theta} \left(a_{t}^{(i)} \left| s_{t}^{(i)} \right.\right) \right] \\ &= \nabla_{\theta} \sum_{t=0}^{T} log \pi_{\theta} \left(a_{t}^{(i)} \left| s_{t}^{(i)} \right.\right) \\ &= \sum_{t=0}^{T} \underbrace{\nabla_{\theta} log \pi_{\theta} \left(a_{t}^{(i)} \left| s_{t}^{(i)} \right.\right)}_{\textbf{no dynamics model required}} \end{split}$$

Finally, we can obtain $\nabla_{\theta}J(\theta)$: $\nabla_{\theta}J(\theta) \approx \frac{1}{N}\sum_{i=1}^{N}R(\tau^{(i)})\sum_{t=0}^{T_{i}}\nabla_{\theta}\log\pi_{\theta}\left(a_{t}^{(i)}|s_{t}^{(i)}\right)$ SMIL内部资料 请勿外泄

Policy Gradient

$$\max_{\theta} J(\theta) = \sum_{\tau} P(\tau; \theta) R(\tau)$$

Policy Gradient algorithm:

Input: random initialized policy π_{θ} , max number of episodes N, learning rate η

Output: π_{θ}

for
$$i = 1$$
 to N do

Sample a trajectory $\tau^{(i)} = \{s_0^{(i)}, a_0^{(i)}, r_1^{(i)}, \dots, s_{T_i}^{(i)}, a_{T_i}^{(i)}, r_{T_i+1}^{(i)}\}$

for t = 0 to T_i do

$$\nabla_{\theta} J(\theta) = R\left(s_{t}^{(i)}, a_{t}^{(i)}, r_{t+1}^{(i)}, \dots, r_{T_{i}+1}^{(i)}\right) \nabla_{\theta} \log \pi_{\theta}\left(a_{t}^{(i)} | s_{t}^{(i)}\right)$$

$$\theta \leftarrow \theta + \eta \nabla_{\theta} J(\theta)$$

end for

end for

Differences from Gradient Descent

Tip: Add a Baseline

$$\theta \leftarrow \theta + \eta \nabla J_{\theta}$$

It is possible that $R(\tau^i)$ is always positive

$$\nabla_{\theta} J \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{T_i} (R(\tau^i) - b) \nabla log p_{\theta}(a_t^i | s_t^i)$$
 $b \approx E[R(\tau)]$

37

Contents

- 1 What is Reinforcement Learning?
- 2 Markov Decision Process for Reinforcement Learning
 - Markov Process
 - Markov Reward Process
 - Markov Decision Process
- Policy Gradient Methods for Reinforcement Learning
- 4 Reinforcement Learning Example: AlphaGo
- 5 Summary

What is Go?

- An abstract board game for two players
- Played on 19 x 19 board
- Playing pieces are black and white stones
- Stones placed on vacant intersections of board
- Player which surrounds more territory wins

Challenges for AI in Cracking Go

- Impossible to calculate every possible move on board
- Brute-force method used by most AIs clearly fails
 - Search space is **huge**
 - Impossible for computers to evaluate who is winning
- Go requires more intuition and experience than just logic
- Becomes necessary to mimic human mind

AlphaGo

- A computer program that plays Go game
- Developed by Google DeepMind in 2016
- Not a pre-programmed algorithm
- Can actually learn from itself
- Reduce search space
 - Reducing action candidates
 - Board Evaluation

Reducing Action Candidates

■ Imitating expert's moves (supervised learning)

Expert Moves Imitator Model (w/ CNN)

Training:
$$\Delta\sigma \propto \frac{\partial \log p_{\sigma}(a|s)}{\partial \sigma}$$

Reducing Action Candidates

Improving through self-plays (reinforcement learning)

Reward

- \blacksquare The reward function r(s) that is zero for all non-terminal state
- The reward signal is delayed
- The outcome $z_t = \pm r(s_T)$ is the terminal reward at the end of the game from the perspective of the current player at time step t
 - +1 for winning
 - −1 for losing
- Rollout is inefficient

Board Evaluation

- Estimate a value function that predicts the outcome from the position
- Train the value network by regression on state-outcome pairs (s, z)
- Minimize the mean squared error (MSE) between the predicted value $v_{\theta}(s)$, and the corresponding outcome z

$$\Delta\theta \propto \frac{\partial \nu_{\theta}(s)}{\partial \theta}(z - \nu_{\theta}(s))$$

Monte Carlo Tree Search in AlphaGo

- a. Selecting the edge with maximum action value Q
- b. The leaf node may be expanded
- c. At the end of a simulation, the leaf node is evaluated by value network
- d. Action value Q are updated to track the mean value of all evaluations $r(\cdot)$ and $v_{\theta}(\cdot)$ in the subtree below that action

Learning Pipeline of AlphaGo

- A fast rollout policy p_{π} and supervised learning (SL) policy network p_{σ} are trained to predict human expert moves in a data set of positions.
- A reinforcement learning (RL) policy p_{σ} is initialized to the SL policy
- Then p_{σ} is improved by policy gradient learning to maximize the outcome (i.e., winning more game) against previous versions of the policy network.
- A new dataset is generated by playing games of self-play with the RL policy network.
- A value network v_{θ} is trained by regression to predict the expected outcome

Playing Go Using Learnt Policy

Performance

- a. Results of a tournament between different Go programs. Each program used approximately 5s computation time per move.
- b. Performance of AlphaGo for different combinations of components.

Contents

- 1 What is Reinforcement Learning?
- 2 Markov Decision Process for Reinforcement Learning
 - Markov Process
 - Markov Reward Process
 - Markov Decision Process
- Policy Gradient Methods for Reinforcement Learning
- 4 Reinforcement Learning Example: AlphaGo
- 5 Summary

Branches of Machine Learning

Categorizing of RL Agents (1)

- Value Based
 - No Policy (Implicit)
 - Value Function
- Policy Based
 - Policy
 - No Value Function
- Actor Critic
 - Policy
 - Value Function

Categorizing of RL Agents (2)

- Model Free
 - Policy and/or Value Function
 - No Model
- Model Based
 - Policy and/or Value Function
 - Model

Taxonomy of RL Algorithms

Types of RL algorithms

Better Sample Efficient

Less Sample Efficient

Model-based (100 time steps)

Off-policy Q-learning (1 M time steps)

Actor-critic

On-policy Policy Gradient (10 M time steps) Evolutionary/ gradient-free (100 M time steps)

Model-based

- Learn the model of the world, then plan using the model
- Update model often
- Re-plan often

Value-based

- Learn the state or state-action value
- Act by choosing best action in state
- Exploration is a necessary add-on

Policy-based

- Learn the stochastic policy function that maps state to action
- Act by sampling policy
- Exploration is baked in

Reference

- [1] Sutton, Richard S., et al. "Policy gradient methods for reinforcement learning with function approximation." NeurIPS. 2000.
- [2] Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." ICML. 2016.
- [3] Schulman, John, et al. "Proximal policy optimization algorithms." arXiv. 2017.
- [4] Schulman, John, et al. "Trust region policy optimization." ICML. 2015.
- [5] Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning." ICLR.2016.
- [6] Fujimoto, Scott, Herke Van Hoof, and David Meger. "Addressing function approximation error in actor-critic methods." ICLR. 2018.
- [7] Haarnoja, Tuomas, et al. "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor." ICML. 2018.
- [8] Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv. 2013.

Reference

- [9] Bellemare, Marc G., et al. "A Distributional Perspective on Reinforcement Learning." ICML. 2017.
- [10] Dabney, Will, et al. "Distributional Reinforcement Learning With Quantile Regression." AAAI. 2018.
- [11] Andrychowicz, Marcin, et al. "Hindsight experience replay." NeurIPS. 2017.
- [12] Ha, David, et al. "World models." NeurIPS. 2018.
- [13] Racani ère, S & astien, et al. "Imagination-augmented agents for deep reinforcement learning." NeurIPS. 2017.
- [14] Bansal, Somil, et al. "Mbmf: Model-based priors for model-free reinforcement learning." arXiv. 2017.
- [15] Feinberg, Vladimir, et al. "Model-Based Value Estimation for Efficient Model-Free Reinforcement Learning." arXiv. 2018.
- [16] Silver, David, et al. "Mastering the game of go without human knowledge." nature. 2017.

Reference

- Silver, D.(2015). UCL Course on RL.
- Levine, S.(2017). CS 294: Deep Reinforcement Learning.
- Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 1998.
- Hung-yi Le. Deep Reinforcement Learning: Scratching the surface, 2016

Q&A