TP FINAL INTEGRADOR

Autor : Axel Tomás Resnik Legajo : 190168

Startup usados:

```
Datos Startup:

chown www-data:www-data /usr/lib/cgi-bin/datos.pl
chmod 750 /usr/lib/cgi-bin/datos.pl
sed -i 's/\KeepAlive On/KeepAlive Off/' /etc/apache2/apache2.conf
a2enmod cgid

# IP de la interfaz
ip a a 12.12.0.12/24 dev eth0

# Levanto las Interfaces
ip link set dev eth0 up

# tabla de ruteo
ip route a default via 12.12.0.1

# inicio apache
service apache2 start
```

DNS startup

chmod 755 /etc
chmod 755 /etc/bind

ip interfaces
ip a a 8.8.8.8/28 dev eth0

levanto las interfaces
ip link set dev eth0 up

rutas
ip route a default via 8.8.8.1

inicio servicio bind
service bind start

PCUSUARIO startup

```
source /root/.bashrc
# IP interfaces
ip addr add 10.10.0.10/24 dev eth0
# levantar Interfaces
ip link set eth0 up
# rutas
```

```
ip route add 8.8.8.8 via 10.10.0.100
# Configurar DNS
echo "nameserver 8.8.8.8" > /etc/resolv.conf
# él export http_proxy="http://10.10.0.1:3128" lo hice en la consola una
vez ejecutado él entorno
PROXY startup:
echo "visible hostname proxy.tpfinal-tyr.com" >> /etc/squid/squid.conf
sed -i 's/\#http access allow localnet/http access allow all/'
/etc/squid/squid.conf
#rm -r /var/spool/squid/*
#squid -z
# IP interfaces
ip a a 10.10.0.1/24 dev eth0
# levanto las interfaces
ip link set dev eth0 up
# rutas
ip route a default via 10.10.0.100
# configuro el resolver
echo "nameserver 8.8.8.8" > /etc/resolv.conf
# inicio squid
service squid start
ROUTER1 startup:
# IP interfaces
ip a a 190.7.231.40/24 dev eth0
ip a a 10.10.0.100/24 dev eth1
# levanto las interfaces
ip link set dev eth0 up
ip link set dev eth1 up
# rutas
ip route a 8.8.8.0/28 via 190.7.231.30
ip route a 12.12.0.0/24 via 190.7.231.20
ROUTER2 startup:
```

IP interfaces

ip a a 190.7.231.30/24 dev eth0

ip a a 8.8.8.1/28 dev eth1

```
# levanto las interfaces
ip link set dev eth0 up
ip link set dev eth1 up
# rutas
ip route a 10.10.0.0/24 via 190.7.231.40
ip route a 12.12.0.0/24 via 190.7.231.20
ROUTER3 startup:
# IP interfaces
ip a a 190.7.231.20/24 dev eth0
ip a a 12.12.0.1/24 dev eth1
# levanto las interfaces
ip link set dev eth0 up
ip link set dev eth1 up
# rutas
ip route a 8.8.8.0/28 via 190.7.231.30
ip route a 10.10.0.0/24 via 190.7.231.40
WWW startup:
sed -i 's/\KeepAlive On/KeepAlive Off/' /etc/apache2/apache2.conf
# IP interfaces
ip a a 12.12.0.11/24 dev eth0
# levanto las interfaces
ip link set dev eth0 up
# rutas
ip route a default via 12.12.0.1
```

Ejercicio 1.

En el excel está todas las pdu ordenadas

ejecuto el servicio apache

service apache2 start

Ejercicio 2.

,						
PROTOCOLO	CAPA	CANTIDAD DE PDU	EXPLICACION			
НТТР	APLICACIÓN (5)	12	Se encarga de intercambiar información entre el cliente y el servidor, es capa aplicación por que no se preocupa como llegan los datos al otro extremo e interactua directamente con el usuario			
DNS	APLICACIÓN (5)	18	Traduce nombre a direcciones ip, es un protocolo que interactua directamente con el usuario			
UDP	TRANSPORTE(4)	18				
ТСР	TRANSPORTE(4)	125	Proporciona una conexión confiable de extremo a extremo controlando errores, flujo, orden y congestion, interactua directamente con la interfaz del destinatario sin importarle como llegaron los segmentos			
IPv4	RED(3)	161	Se encarga de conmutar los paquetes por la red para que llegen al destino, trata de enviar los paquetes sin controlar errores ni el orden. Es capa red por que contiene toda la logica para poder enrutar los paquetes por la redes			
ICMP	RED(3)	6	Se encarga de realizar control en la capa de red como enviar errores (ttl expirado) o hacer ping entre 2 host			
ARP	ENLACE(2)	14	Traduce direcciones ip a direcciones MAC a nivel local (red local), Es capa enlace por que funciona a nivel local,osea, a nivel enlace			
ETHERNET	ENLACE(2)	169	Define cómo se empaquetan y envían los datos entre nodos directamente conectados. Trabaja a nivel local y controla el acceso al medio			

Ejercicio 3.

	CONEXIÓN TCP HOST A PROXY	CONEXIÓN TCP PROXY A WWW	CONEXIÓN TCP HOST A PROXY 2	CONEXIÓN TCP PROXY A DATOS	CONEXIÓN TCP HOST A PROXY 2	CONEXIÓN TCP PROXY A DATOS	
socket Cliente	(10.10.0.10, 58146)	(10.10.0.1, 60866)	(10.10.0.10, 58156)	(10.10.0.1, 35260)	(10.10.0.10, 58158)	(10.10.0.1, 35264)	
socket servidor	(10.10.0.1, 3128)	(12.12.0.11, 80)	(10.10.0.1, 3128)	(12.12.0.12, 80)	(10.10.0.1, 3128)	(12.12.0.12, 80)	
segmentos apertura	3,4,5	30,31,36	73,74,75	86,87,92	128,129,130	133,135,139	
segmento cierre	70,71,72	52,60,61	120,121,127	98,110,111	161,162,163	154,164,168	
finalidad	realizar una solicitud de una pagina al proxy (www.tpfinal-tyr.com)	solictud get de la pagina principal ubicada en la raiz del sitio (/)	realizar una solicitud de una pagina al proxy (datos.tpfinal-tyr.com)	solictud get del archivo index.html	realizar una solicitud get de un archivo datos.pl ubicado en el directorio cgi-bin del servidor datos	Solicitud get del archivo datos.pl pedido por el host	
Parametros intercambiados en apertura	MSS: 1460 Sack Permitted Window scale: 7	MSS: 1460 SACK permitted Window scale: 7	MSS: 1460 SACK permitted Window scale: 7	MSS: 1460 SACK permitted Window scale: 7	MSS: 1460 SACK permitted Window scale: 7	MSS: 1460 SACK permitted Window scale: 7	

Ejercicio 4.

NUMERO PDU	PROTOCOLO	САРА	FINALIDAD
73	ТСР	TRANSPORTE(4)	El host Inicia una solicitud de conexion con el proxy(Bandera SYN activada)
74	ТСР	TRANSPORTE(4)	El proxy confirma la solicitud con la bandera de ack activada y envia su propia solicitud de conexión al host activando tambien la bandera SYN
75	ТСР	TRANSPORTE(4)	El host confirma la solicitud de apertura de conexión del proxy enviando un ACK
76	НТТР	APLICACION(5)	El host realiza una solicitud GET a datos.tpfinal-tyr.com pidiendo el archivo index.html
77	ТСР	TRANSPORTE(4)	El proxy confirma la recepcion del GET enviando un ACK
116	ТСР	TRANSPORTE(4)	El proxy envia los encabezados al host con la bandera PSH y ACK activadas
117	ТСР	TRANSPORTE(4)	El host confirma la recepcion de los datos enviando un ACK
118	НТТР	APLICACION(5)	El proxy envia el 200 OK que le respondio el servidor datos junto al contenido del archivo index.html
119	ТСР	TRANSPORTE(4)	El host confirma la recepcion del contenido del archivo con un ACK
120	ТСР	TRANSPORTE(4)	El host envia una solicitud de cierre de conexión activando la bandera FIN
121	ТСР	TRANSPORTE(4)	El proxy envia la confirmacion de la solicitud de cierre activando la bandera ACK y envia su propia solicitud de cierre activando la bandera FIN tambien
127	ТСР	TRANSPORTE(4)	El host confirma la solicitud de cierre del proxy activando la bandera ACK

Ejercicio 5.

(Esta en el archivo png "Ejercicio 5 diagrama")

Ejercicio 6.

En este caso use cómo ejemplo la transferencia del index.html (2da conexión tcp CLIENTE->PROXY)

Campo	CLIENTE -> PROXY	PROXY -> SERVIDOR DATOS	OBSERVACION		
Solicitud	GET http://datos.tpfinal-tyr.com/index.html HTTP/1.0\r\n	GET /index.html HTTP/1.1	El cliente usa URL completa, el proxy usa relativa		
Version	HTTP 1.0	HTTP 1.1	Usan diferente version de HTTP		
Connection	No tiene	keep-alive	El proxy agrega keep-alive para mantener la conexión TCP abierta y reutilizarla si es necesario.		
Via	No tiene	1.0 proxy.tpfinal-tyr.com (squid/5.7)	El proxy lo agrega para indicar que la solicitud fue reenviada por un proxy		
X-Forwarded-For	No tiene	10.10.0.10	IP del cliente		
Cache-Control	No tiene	No tiene max-age=259200 Agr			

Ejercicio 7. En el excel estan todos éstos cuadros y el cuadro del cálculo de los headers de protocolos de cada pdu, Los resultados son los siguientes:

ETHERNET	ARP	IPv4	ICMP	UDP	TCP	DNS	HTTP	Length total
2618	392	3100	264	144	4404	948	7365	23609
ETHERNET	ARP	IPv4	ICMP	UDP	TCP	DNS	HTTP	
11,09	1,66	13,13	1,12	0,61	18,65	4,02	31,20	
						TOTAL PROTOCOLOS	19235	
						OVERHEAD TOTAL	81,47316701	

