Determinacy in and out second order arithmetic An introduction to the proof theoretic strength of the determinacy scale

Thibaut Kouptchinsky

Proof Theory Conference
UCLouvain

December 20, 2022

Program

- 1 A tool of descriptive set theory
- 2 The theorem of Wolfe as a warm up
- 3 Determinacy of Π_3^0 Differences

What is determinacy?

Consider a set A and a payoff set $X \subseteq A^{\omega}$.

I:
$$a_0$$
 a_2 a_{2n} \cdots $(a_i)_{i<\omega} \stackrel{?}{\in} X$
II: a_1 a_3 a_{2n+1}

Player I wins if yes. Otherwise player II wins.

Axiom of determinacy (AD): "All these games are determined". (False in ${\sf ZF}+{\sf C.}$)

Theorem (Mycielski-Swierczkowski; Mazur, Banach; Davis)

ZF + AD proves that every set of real numbers is Lebesgue measurable (M1), has the Baire property (M2), and has the perfect set property (M3).

Theorem (Mycielski-Swierczkowski; Mazur, Banach; Davis)

ZF + AD proves that every set of real numbers is Lebesgue measurable (M1), has the Baire property (M2), and has the perfect set property (M3).

■ Study these properties for projective Σ_n^1 sets in ω^{ω} (Blackwell, 1967).

Theorem (Mycielski-Swierczkowski; Mazur, Banach; Davis)

ZF + AD proves that every set of real numbers is Lebesgue measurable (M1), has the Baire property (M2), and has the perfect set property (M3).

- Study these properties for projective Σ_n^1 sets in ω^{ω} (Blackwell, 1967).
- Are Σ_2^1 , Σ_3^1 , etc sets Lebesgue measurable?

Theorem (Mycielski-Swierczkowski; Mazur, Banach; Davis)

ZF + AD proves that every set of real numbers is Lebesgue measurable (M1), has the Baire property (M2), and has the perfect set property (M3).

- Study these properties for projective Σ_n^1 sets in ω^{ω} (Blackwell, 1967).
- Are Σ_2^1 , Σ_3^1 , etc sets Lebesgue measurable?
- Applications in measure theory, descriptive set theory, harmonic analysis, ergodic theory, dynamical systems etc.

■ First best result (1964): $Det(\Sigma_3^0)$ by Davis.

- First best result (1964): $Det(\Sigma_3^0)$ by Davis.
- The proof can be carried out in $ZC^- + \Sigma_1$ Replacement (Martin).

- First best result (1964): $Det(\Sigma_3^0)$ by Davis.
- The proof can be carried out in $ZC^- + \Sigma_1$ Replacement (Martin).
- Friedman (1968): Borel determinacy requires existence of V_{ω_1} .

- First best result (1964): $Det(\Sigma_3^0)$ by Davis.
- The proof can be carried out in $ZC^- + \Sigma_1$ Replacement (Martin).
- Friedman (1968): Borel determinacy requires existence of V_{ω_1} .

Theorem (Martin, ZFC)

All Borel games are determined.

Theorem ($ZC^- + \Sigma_1$ -REPLACEMENT)

All Σ_2^0 games are determined.

Lemma

Let $B \subseteq A \subseteq [T]$ with B being closed. If player I has no winning strategy in the game G(T,A), then there is a strategy τ for II such that every $x \in [\tau]$ has a finite initial segment p verifying

 $[T_p]\cap B=\emptyset$ and I has still no winning strategy in $G(T_p,A)$

Proof of the theorem of Wolfe

Theorem (Montalbán and Shore)

$$\forall n \in \omega \text{, } \Pi^1_{n+2}\text{-}\mathrm{CA}_0 \vdash \mathrm{Det}(n\text{-}\Pi^0_3)$$

Theorem (Montalbán and Shore)

$$\forall n \in \omega \text{, } \Pi^1_{n+2}\text{-}\mathrm{CA}_0 \vdash \mathrm{Det}(n\text{-}\Pi^0_3)$$

However, Π_{n+2}^1 -CA₀ is not the right set of axioms for $Det(n-\Pi_3^0)$.

Theorem (Montalbán and Shore)

$$\forall n \in \omega, \ \Pi^1_{n+2}\text{-}\mathsf{CA}_0 \vdash \mathsf{Det}(n\text{-}\Pi^0_3)$$

However, Π^1_{n+2} -CA $_0$ is not the right set of axioms for ${\rm Det}(n$ - $\Pi^0_3)$.

Theorem (MedSalem and Tanaka)

Borel determinacy does not imply Δ_2^1 -CA₀.

Definition

We define $\Sigma^1_{|s|+2}$ relations $P^s(S)$ by induction on $|s| \leq m$:

- When |s| = 0, $P^{\emptyset}(S)$ iff
 - I (II) has a winning strategy in G(A, S) if l is even (odd).
- \blacksquare For |s| = n + 1 and l is even, $P^s(S)$ iff there is a quasistrategy U for I in S such that

$$[U] \subseteq A \cup A_{l,s(n)}$$
 and $P^{s[n]}(U)$ fails. (2)

 \blacksquare For |s|=n+1 and l is odd, $P^s(S)$ iff there is a quasistrategy U for II in S such that

$$[U]\subseteq ar{A}\cup A_{l,s(n)}$$
 and $P^{s[n]}(U)$ fails. (3)

Definition

A quasistrategy U locally witnesses $P^s(S)$ if |s|=n+1 and U is a quasistrategy for I (II) if l is even (odd) and there is $D\subseteq S$ such that, for every $d\in D$, there is a quasistrategy R^d for II (I) if l is even (odd) in S_d such that the following conditions are satisfied:

- $\forall d \in D \cap U, \ U_d \cap R^d \text{ witnesses } P^s(R^d).$
- $[U] \setminus \bigcup_{d \in D} [R^d] \subseteq A \text{ (resp. } \bar{A}).$
- $\exists \ \forall p \in S \ \exists^{\leq 1} d \in D, \ d \subseteq p \land p \in R^d.$

We observe that "U locally witnesses $P^s(S)$ " is a $\Sigma^1_{|s|+2}$ sentence.

Lemma (1)

If U locally witnesses $P^s(S)$, then U witnesses $P^s(S)$.

Proof of lemma 1

Definition

We say that $P^s(S)$ fails everywhere if $P^s(S_p)$ fails for every $p \in S$. This is a $\Pi^1_{|s|+2}$ sentence.

Lemma (2)

If $P^s(S)$ fails, then there is a quasistrategy W for I (II) if l is odd (even) in S such that $P^s(W)$ fails everywhere.

Proof of lemma 2

Definition

For |s|=n+1, W strongly witnesses $P^s(S)$ if, for all $p\in W$, W_p witnesses $P^s(S_p)$, that is, W witnesses $P^s(S)$ and $P^{s[n]}(W)$ fails everywhere. This is a $\Pi_{|s+1|^1}$ sentence.

Lemma (3)

If $P^s(S)$, then there is a W that strongly witnesses it.

Proof of lemma 3

Lemma (4)

If |s|=n+1, then at least one of $P^s(S)$ and $P^{s[n]}(S)$ holds.

Proof of lemma 4

Proof of the theorem

Thank you for your attention!