Algebra III (Doble grado Informática-Matemáticas)

RELACIÓN 1 (EXTENSIONES FINITAS Y ALGEBRAICAS).

Ejercicio 1. Razonar cuales de los siguientes números complejos son algebraicos o trascendentes sobre \mathbb{Q} (es asumida la trascendencia de π y de e):

$$\sqrt[5]{4}, (1+\sqrt[5]{4})(1-\sqrt[5]{16})^{-1}, \pi^2, e^2-i, i\sqrt{i}+\sqrt{2}, \sqrt{1-\sqrt[3]{2}}, \sqrt{e}, \sqrt{\pi}-i, \sqrt{2}(\sqrt[3]{2}+\sqrt[5]{2})^{-1}.$$

Ejercicio 2. Sea $z \in \mathbb{C}$ un número complejo y $n \geq 1$ un natural. Argumentar que z es algebraico sobre \mathbb{Q} si y solo si $\sqrt[n]{z}$ es algebraico sobre \mathbb{Q} .

Ejercicio 3. E/K es una extensión de cuerpos, $\alpha \in E$ y $\beta = 1 + \alpha^2 + \alpha^5$. Argumentar que α es algebraico sobre K si y solo si β es algebraico sobre \mathbb{Q} .

Ejercicio 4. Calcular $Irr(\alpha, \mathbb{Q})$ en los siguientes casos:

$$\alpha = 3 + \sqrt{2}, \qquad \alpha = \sqrt{3} - \sqrt[4]{3}, \qquad \alpha = \sqrt[3]{2} + \sqrt[3]{4}$$

Ejercicio 5. Calcular $[E:\mathbb{Q}]$ en los siguientes casos:

(1)
$$E = \mathbb{Q}(\sqrt{6}, i)$$
, (2) $E = \mathbb{Q}(\sqrt[3]{5}, \sqrt{-2})$, (3) $E = \mathbb{Q}(\sqrt{18}, \sqrt[4]{2})$,

En cada uno de los casos dar una base de E/\mathbb{Q} .

Ejercicio 6. Calcular $[F : \mathbb{Q}]$ en los siguientes casos:

(1)
$$F = \mathbb{Q}(\sqrt{8}, 3 + \sqrt{50}), \quad (2) F = \mathbb{Q}(\sqrt{3}, \sqrt{-5}, \sqrt{7}).$$

En cada uno de los casos dar una base de F/\mathbb{Q} .

Ejercicio 7. Sea α una raíz del polinomio $x^3 + 3x + 1$ en el cuerpo \mathbb{C} de los complejos.

- (i) Determinar el grado $[\mathbb{Q}(\alpha):\mathbb{Q}]$ y describir una base de la extensión $\mathbb{Q}(\alpha)/\mathbb{Q}$.
- (ii) Expresar en términos de esa base los números $(1+\alpha)(1+\alpha+\alpha^2)$ y $(1+\alpha)(1+\alpha+\alpha^2)^{-1}$.

Ejercicio 8. Describir una base de la extensión $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ y expresar como combinación lineal de estos los números

$$(1) \left(\sqrt[3]{4} + 5\sqrt[3]{2}\right)^{-1}, \qquad (2) \left(1 + \sqrt[3]{2} + \sqrt[3]{4}\right) \left(\sqrt[3]{2} - 1\right)^{-1}.$$

Ejercicio 9. Argumentar que cualquier elemento de $\mathbb{Q}(\sqrt{3},\sqrt{5})$ puede expresarse de forma única como

$$a + b\sqrt{3} + c\sqrt{5} + d\sqrt{15}$$

donde $a, b, c, d \in \mathbb{Q}$. Expresar de tal forma el inverso de $1 + \sqrt{3} + \sqrt{5}$.