Lecture Module - Data Acquisition

ME3023 - Measurements in Mechanical Systems

Mechanical Engineering
Tennessee Technological University

Module 8 - Data Acquisition

Module 8 - Data Acquisition

- Topic 1 Analog to Digitial Conversion
- Topic 2 DAQ Hardware and Applications
- Topic 3 Sampling and Aliasing

Topic 1 - Analog to Digitial Conversion

- DAQ and Computer Storage
- Number Types
- Analog to Digital Conversion and DAQ
- Activity: ADC Resolution Calculation

DAQ and Computer Storage Number Types Analog to Digital Conversion and DAQ

DAQ and Computer Storage

Types of Signals:

- ______ magnitude is continuous in time
- _____ magnitude at points in time
 - sampling at repeated time intervals
- ______ exists in discrete points in time
 - magnitude is also discrete

Sampling and Aliasing

lumber Types nalog to Digital Conversion and DAQ ctivity: ADC Resolution Calculation

DAQ and Computer Storage

A data acquisition system is the portion of a measurement system that quantifies and stores data. - Theory and Design of Mechanical Measurements

- Integers
 - Binary
 - Decimal
 - Hexadecimal
- Fixed Point
- Floating Point

Dinami	Decimal	Hexadecimal
Binary	Decimai	пехацесітаї
0	0	0
1	1	1
10	2	2
11	3	3
100	4	4
	5	5
	6	6
	7	7
	8	8
	9	9
	10	A
	11	В

Binary	Decimal	Hexadecimal
	12	С
	13	D
	14	Е
	15	F
	16	
	17	
	18	
	19	
	20	
	21	
	22	
	23	

Binary	Decimal	Hex.
0	0	0
1	1	1
10	2	2
11	3	3
100	4	4

Binary		Decimal	Hex.
	0	0	0
	1	1	1
	10	2	2
	11	3	3
	100	4	4

AQ and Computer Storage umber Types nalog to Digital Conversion and DAQ ctivity: ADC Resolution Calculation

Number Types

Standard storage of a floating point value in memory sign exponent (8 bits) fraction (23 bits)

DAQ and Computer Storage lumber Types unalog to Digital Conversion and DAQ uctivity: ADC Resolution Calculation

DAQ and Computer Storage lumber Types snalog to Digital Conversion and DAQ sctivity: ADC Resolution Calculation

<u>Integer</u>	Floating Point	Fixed Point
Pros:	Pros:	Pros:
Cons:	Cons:	Cons:
Examples:	Examples:	Examples:

Analog to Digital Conversion and DAQ

In electronics, an _______ (ADC, A/D, or A-to-D) is a system that converts an analog signal, such as a sound picked up by a microphone or light entering a digital camera, into a digital signal. An ADC may also provide an isolated measurement such as an electronic device that converts an analog input voltage or current to a digital number representing the magnitude of the voltage or current. Typically the digital output is a two's complement binary number that is proportional to the input, but there are other possibilities.

wikipedia, image

DAQ and Computer Storage Number Types Analog to Digital Conversion and DAQ Activity: ADC Resolution Calculation

Analog to Digital Conversion and DAQ

Activity: ADC Resolution Calculation

It is important to realize the potential for data loss resulting in a reduced quality measurement based on the parameters of the analog to digital conversion process. This issue can occur when designing systems around a low-level analog to digital converter as well as when using high-end DAQ equippment.

Activity: ADC Resolution Calculation

Activity: - Consider setting up a data acquisition system to record pressure measurements in a vehicle system. Multiple sensors are available, and the DAQ device has different operating modes. Each sensor and DAQ mode has a different input and output signal ranges and different sampling frequencies.

Signal

Measure Variable: Pressure (psi) in automobile tire

Expected Range: 0-100 psi

Sensor+Transdo	ucer Input Range	(psi) Output Range (volts)	
Α	0-200	0-3.0	
В	0-120	0-0.50	
DAQ Mode I	nput Range (volts)	ADC Resolution	
1	0 to 3.3	10 bit	
2	-10 to 10	12 bit	
3	0 to 10	12 hit	

Activity: ADC Resolution Calculation

Activity (continued):

Choose a sensor+transducer pair and an appropriate DAQ mode to record the signal shown with best (lowest) possible resolution. Support your choices with a resolution calculation for smallest detectable voltage (volts) and smallest detectable pressure (psi)

② Approximate the sensivity of the measurement system in units of $\frac{psi}{volts}$.

Signal Types and DAQ EMI Considerations EMI Considerations Available Hardware Software Integration

Topic 2 - DAQ Hardware and Applications

- Signal Types and DAQ
- EMI Considerations
- Available Hardware
- Software Integration

Signal Types and DAQ EMI Considerations EMI Considerations Available Hardware Software Integration

Signal Types and DAQ

Most data acquisition devices and systemsanalog voltage signals and possibly additional signal types. may also be a feature on some systems.	and Signal
A voltage signal requires a common reference or	
Signal Sources: Grounded or Ground-Referenced	
 Ungrounded or Floating 	

- Measurement (DAQ) Systems:
 - Common Ground
 - Common Mode Voltage
 - Isolated Ground

NI, Digilent

Text: Theory and Design for Mechanical Measurements

Signal Types and DAQ EMI Considerations EMI Considerations Available Hardware Software Integration

Signal Types and DAQ

Most data acquisition devices and systems measure and record analog voltage signals and possibly additional signal types. Signal generation may also be a feature on some systems.

2	Mai	ior	Conf	ioura	tions
_	ivia	lOI.	COIII	ıgura	LIUIIS

•	Single-Ended	Signals	
	The signal is	measured as a voltage between a	conductor and
	the	which must be carried on a separat	e conductor or wire

Double-Ended (Differential) Signals
 The signal is measured as the difference between ________ voltages
 (double) carried on separate conductors, or wires. Typically a _______ is shared between the two devices requiring a third conductor.

Signal Types and DAQ

Single-Ended Signals	Double-Ended Signals
Pros:	Pros:
Cons:	Cons:
Examples:	Examples:

EMI Considerations

_______, also called radio-frequency interference (RFI) when in the radio frequency spectrum, is a disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electrostatic coupling, or conduction.

A *combination* of naturally occuring and human made sources of interference is always present. The total EMI affecting a system is determined by the local conditions as well as global environmental influences.

Sources of EMI:

- •
- •
- •
- •
- 0

EMI Considerations

In data acquisitior	n, electromagnetic inte	erference (EMI) can cause		_ of
signal quality and	data	in the form of	and or	

Consider the case of an analog signal transmitted from a sensor to a DAQ device. What can be done to avoid issues associated with EMI?

Methods of reducing EMI affects:

- Proximity -
- Differential signal -
- Noise rejection cables/wires -

Available Hardware

- National Instruments
- Measurement Computing
- dSPACE
- Arduino or other

Available Hardware

- National Instruments
- Measurement Computing
- dSPACE
- Arduino or other

Signal Types and DAG EMI Considerations EMI Considerations Available Hardware Software Integration

Available Hardware

Signal Types and DAG EMI Considerations EMI Considerations Available Hardware Software Integration

Software Integration

Signal Types and DAG EMI Considerations EMI Considerations Available Hardware Software Integration

Software Integration

Topic 3 - Sampling and Aliasing

- Sampling
- The Aliasing Phenomenon
- Example by Hand
- MATLAB Example

Sampling

The Aliasing Phenomenon The Aliasing Phenomenon MATLAB Example

Sampling

... A discrete time signal usually results from the _____ of a continuous variable at _____ finite time intervals. ...

Discr	ete time signal
	${y(r\delta t)}$
r	Discrete data
0	0
1	5.9
2	9.5
3	9.5
4	5.9
5	0
6	-5.9
7	-9.5
8	-9.5
9	-5.9
10	0

Text, Figure: Theory and Design for Mechanical Measurements Ch. 7 👝 🔻 🥙 🔞 🔻 😩 🔻 🛫 🗸

Sampling

The Aliasing Phenomenon The Aliasing Phenomenon MATLAB Example

Sampling

The Aliasing Phenomenon

Figure: Theory and Design for Mechanical Measurements Ch. 7

Sampling
The Aliasing Phenomenon
The Aliasing Phenomenon
MATLAB Example

Example by Hand

lmage: T.Hill

Example by Hand

MATLAB Example

```
% ME3023 - Tennessee Technological University
% Tristan Hill - October 10, 2019 - April 14,
    2021
\% Data Acquisition Topic 3 - Sampling and
    Aliasing
clear variables; close all; clc
% simulate a continuous signal
A1=5: f1=3:
w1=2*pi*f1;
dt_sim=0.001; t_stop=6;
t_sim=0:dt_sim:t_stop;
v_sim=A1*sin(w1*t_sim);
```

MATLAB Example

```
% simulate sampling the signal
dt_sam = 0.3;
t_sam=0:dt_sam:t_stop;
y_sam=A1*sin(w1*t_sam);

% show the figure
figure(1); hold on
plot(t_sim,y_sim,'-',t_sam,y_sam,'o')
axis([0 t_stop -1.2*A1 1.2*A1])
grid on
```

MATLAB code: T. Hill