POLITECNICO DI MILANO

FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Prof. Fredy O. Ruiz-Palacios

Anno Accademico 2021/22 Appello del 16/02/2022

COGNOME
NOME
CODICE PERSONA
CODICE PERSONA
FIRMA

- Consegnare esclusivamente il presente fascicolo.
- Utilizzare, per la minuta, i fogli bianchi forniti in aggiunta a questo fascicolo.
- Non si possono consultare libri, appunti, dispense, ecc.
- Si raccomandano chiarezza, precisione e concisione nelle risposte.

Si consideri il sistema dinamico descritto dalle seguenti equazioni

$$x_1(k+1) = x_1(k) (1 - x_2(k)) + u(k)$$
$$x_2(k+1) = x_2(k) (1 + x_1(k)) - u(k)$$
$$y(k) = x_1(k) + x_2(k)$$

dove $x_1(k) \in R$, $x_2(k) \in R$

1. Classificare il sistema.

2. Determinare il valore di ingresso $u(k)=\bar{u}$ richiesto per ottenere come stati di equilibrio $\bar{x}_1=1$ e $\bar{x}_2=5$.

3. Scrivere le equazioni del sistema linearizzato attorno allo stato di equilibrio trovato nel punto precedente.

4. Studiare la stabilità del sistema linearizzato ricavato al punto 3 e, se possibile, la stabilità del movimento di equilibrio del sistema non lineare di partenza.

ESERCIZIO 2

In figura sono rappresentati i diagrammi di Bode del modulo e della fase della risposta in frequenza associata alla funzione di trasferimento G(s) di un sistema lineare tempo invariante senza autovalori nascosti.

1. Determinare ordine, tipo, poli, zeri e guadagno (statico o generalizzato) di G(s) e studiare la stabilità del sistema con funzione di trasferimento G(s).

- 2. Si dica, approssimativamente, quanto vale a regime l'uscita y(t) del sistema a fronte di un ingresso u(t) pari a:
 - 1) $u(t) = 5\operatorname{sca}(t)$
 - 2) $u(t) = -3\sin(0.4t)$
 - 3) $u(t) = 4\sin(20t)$.

Si consideri la seguente funzione di trasferimento

$$G(s) = \frac{1}{s(s+5)}$$

di un sistema lineare tempo invariante senza poli nascosti. Si supponga che il sistema venga retroazionato come in figura.

Figura 1: Esercizio 3 - Sistema di controllo

Per ognuno dei seguenti regolatori:

$$R_1(s) = 5;$$
 $R_2(s) = 500 \frac{s+5}{s+50}$

Rispondere:

1. Determinare la funzione di anello L(s) e calcolare guadagno, tipo, poli e zeri di L(s).

2. Tracciare i diagrammi di Bode di modulo e fase della risposta in frequenza associata alla funzione di trasferimento L(s). Usare la carta semilogaritmica fornita.

3. Verificare che il sistema in anello chiuso sia asintoticamente stabile e determinare il margine di fase e di guadagno.

4. Determinare quanto	vale l'ampiezza di 1	regime dell'uscita	$y(t)$ quando $y^{o}(t) =$	$= 10 + 3\sin(3t) + \sin(20t)$.

5. Quale, tra i due regolatori considerati, offre delle prestazioni migliori in termini di Stabilità robusta, errore statico di fronte a ingressi di riferimento tipo scalino, errore di regime di fronte a ingressi di riferimento tipo sinusoide? Giustificare le risposte.

Si consideri il seguente schema

1. Determinare la funzione di trasferimento da U(s) a Y(s).

2. Posto $G_1(s) = 1/(1+s)$, $G_2(s) = 1/(s^2+s-2)$, $G_3(s) = 2/(s+1)$, $G_4(s) = k$ valutare la funzione di trasferimento da U(s) a Y(s) e studiare la stabilità del sistema al variare di $k \in \mathcal{R}$.

3. È possibile affermare che, per $G_2(s)$ e $G_4(s)$ asintoticamente stabili, il sistema equivalente sarà sempre asintoticamente stabile? giustificare la risposta.

Si consideri il sistema dinamico descritto dalle seguenti equazioni

$$\begin{cases} \dot{x}_1(t) = -3x_1(t) + 2x_2(t) + u(t) \\ \dot{x}_2(t) = -\alpha x_2(t) \\ y(t) = x_2(t) + u(t) \end{cases}$$

1. Scrivere il sistema in forma matriciale e classificare il sistema.

2. Determinare per quali valori del parametro α il sistema risulta asintoticamente stabile.

3. Posto ora $\alpha = 1$ calcolare il movimento forzato dello stato e dell'uscita per u(t) = 2sca(t).