3 – Minimization of DFA

3.1 Minimization of Finite Automata:

- How to test two descriptors of two regular languages define the same language (equivalent)?
- We can any DFA and find an equivalent DFA that has minimum number of states. In fact this DFA is unique.
- Given any two minimum-state DFA's that are equivalent, we can rename the states so that the two DFA's become the same.

3.1.1 Testing equivalence of states:

- When two different states 'p' and 'q' be replaced by a single state that behaves like both 'p' and 'q'.
- We say states 'p' and 'q' are equivalent if
 - For all input strings 'w', both $\hat{\delta}(p, w)$ and $\hat{\delta}(q, w)$ are accepting states or both are non -accepting states.
 - If two states are not equivalent then they are *distinguishable*.

3.1.2 Table Filling Algorithm:

This algorithm is a recursive discovery of distinguishable pairs in a DFA.

Basis:

If 'p' is an accepting state and 'q' is non accepting then the pair {p, q} is distinguishable.

Induction:

- Let 'p' and 'q' be some states.
- Let for some input symbol 'a' $r = \delta$ (p, a) and $s = \delta$ (q, a).
- Suppose the states 'r' and 's' are *distinguishable* then {p, q} is a pair of *distinguishable* states.

The Method:

- 1. Draw a table for all pairs of states {p, q}.
- 2. Mark all pairs $\{p, q\}$ where $p \in F$ and $q \notin F$. (distinguishable)
- 3. If there are any unmarked pairs $\{p, q\}$ such that $[\delta (p, a), \delta (q, a)]$ is marked then mark [p, q], where 'a' is an input symbol. REPEAT THIS STEP NO MORE PAIRS OF STATES CAN BE MARKED.

Example: Execute table filling algorithm on the DFA of Figure 3.1.

Fig 3.1

- 1. Initially there are no x's in the table.
- 2. For the *basis* since C is the only accepting state, place x's in each pair that involves C, i.e., the pairs {C, A}, {C, B}, {C, D}, {C, E}, {C, F}, {C, G}, {C, H} are marked as *distinguishable* pairs.

3. For the *induction*, now that we know some *distinguishable* pairs, we can discover others.

Consider the unmarked pairs.

{A, B}	
$\delta(A, 0)=B$ The pair $\{B, G\}$	$\delta(A, 1)=F$ The pair $\{F, C\}$
$\delta(B, 0)=G$ is unmarked	$\delta(B, 1) = C$ is marked.
Leave the pair {A, B} unmarked.	Mark the pair {A, B}
{A, D}	
δ(A, 0)= B	Transition on 1 not required as the
$\delta(D, 0) = C$ is marked	symbol 0 distinguishes the states
Mark the pair {A, D}	{A, D}.
{A, E}	
δ(A, 0)= B γ The pair {B, H}	δ(A, 1)= F ן The pair {F, F}
$\delta(E, 0)=H$ is unmarked	$\delta(E, 1) = F$ is equivalent.
Leave the pair {A, D} unmarked.	Leave the pair {A, D} unmarked.
{A, F}	
δ(A, 0)= B γ The pair {B, C}	Transition on 1 not required as the
$\delta(F, 0) = C$ is marked	symbol 0 distinguishes the states
Mark the pair {A, F}.	{A, F}.
{A, G}	
$\delta(A, 0)=B$ The pair $\{B, G\}$	δ(A, 1)= F
$\delta(G, 0)=G$ is unmarked	δ(G, 1)=E is unmarked
Leave the pair {A, G} unmarked.	Leave the pair {A, G} unmarked.
{A, H}	
δ(A, 0)= B γ The pair {B, G}	δ(A, 1)= F ן The pair {F, C}
$\delta(H, 0) = G$ is unmarked	δ(H, 1)= C ∫ is marked
Leave the pair {A, H} unmarked.	Mark the pair {A, H}.

В	Х						
С	Х	Х					
D	Х		Х				
Е			Х				
F	Х		Х				
G			Х				
Н	Х		Х				
	Α	В	С	D	Е	F	G

{B, D}	
$\delta(B, 0)=G$ The pair $\{G, C\}$	Transition on 1 not required as the
$\delta(D, 0) = C$ is marked	symbol 0 distinguishes the states
Mark the pair {B, D}.	{B, D}.
{B, E}	
δ(B, 0)= G ן The pair {G, H}	δ(B, 1)= C ן The pair {C, F}
$\delta(E, 0)=H$ is unmarked	δ(E, 1)= F is marked
Leave the pair {B, E} unmarked.	Mark the pair {B, E}
{B, F}	
$\delta(B, 0)=G$ The pair $\{G, C\}$	Transition on 1 not required as the
$\delta(F, 0) = C \int$ is marked.	symbol 0 distinguishes the states
Mark the pair {B, F}.	{B, F}.
{B, G}	
δ(B, 0)= G ן The pair {G, G}	δ(B, 1)= C ן The pair {C, E}
$\delta(G, 0) = G$ is equivalent.	$\delta(G, 1) = E$ is Marked.
Leave the pair {B, G} unmarked.	Mark the pair {B, G}.
{B, H}	
δ(B, 0)= G γ The pair {G, G}	δ(B, 1)= C γ The pair {C, C}
$\delta(H, 0) = G$ is equivalent.	$\delta(H, 1) = C$ is equivalent.
Leave the pair {B, H} unmarked.	Leave the pair {B, H} unmarked.

В	Х						
С	Х	Х					
D	Х	Х	Х				
Ε		Х	Х				
F	Х	Х	Х				
G		Х	Х				
Н	Х		Х				
	Α	В	С	D	Е	F	G

{D, E}	
$\delta(D, 0)=C$ The pair $\{C, H\}$	Transition on 1 not required as the
$\delta(E, 0)=H\int$ is marked.	symbol 0 distinguishes the states
Mark the pair {D, E}.	{D, E}.
{D, F}	
δ(D, 0)= C \rac{1}{2} The pair {C, C}	δ(D, 1)= G The pair {G, G}
$\delta(F, 0) = C$ is equivalent.	δ(F, 1)= G is equivalent.
Leave the pair {D, F} unmarked.	Leave the pair {D, F} unmarked
{D, G}	
δ(D, 0)= C ן The pair {G, C}	Transition on 1 not required as the
$\delta(G, 0) = G$ is marked.	symbol 0 distinguishes the states
Mark the pair {D, G}.	{D, G}.
{D, H}	
$\delta(D, 0)=C$ The pair $\{G, C\}$	Transition on 1 not required as the
$\delta(H, 0) = G \int$ is Marked.	symbol 0 distinguishes the states
Mark the pair {D, H}.	{D, H}.

F	Х	Х	Х				
	Х	Х	Х				
G		^	^				1
							1
1	^	^	^				
F	X	X	X				
_		\ \ \	\ \ \			1	
Ε		Х	X	X			
_					1		
D	х	х	х				
С	Х	Х					
В	Х						
		1					

{E, A}	
δ(E, 0)= H	$\delta(E, 1)=F$ The pair $\{F, F\}$
$\delta(A, 0) = B \int$ is unmarked	δ(A, 1)= F ∫ is equivalent.
Leave the pair {E, A} unmarked.	Leave the pair {E, A} unmarked.
{E, F}	
$\delta(E, 0)=H$ The pair {C, H}	Transition on 1 not required as the
$\delta(F, 0) = C \int$ is marked	symbol 0 distinguishes the states
Mark the pair {E, F}.	{E, F}.
{E, G}	
δ(E, 0)= Η	δ(E, 1)= F
$\delta(G, 0) = G$ is unmarked.	$\delta(G, 1) = E \int$ is marked.
Leave the pair {E, G} unmarked.	Mark the pair {E, G}.
{E, H}	
δ(E, 0)= H	δ(E, 1)= F
$\delta(H, 0) = G \int$ is unmarked.	$\delta(H, 1) = C \int$ is marked.
Leave the pair {E, H} unmarked.	Mark the pair {E, H}.

В	Х						
С	Х	Х					
D	Х	Х	Х				
Ε		Х	Х	Х			
F	Х		Х		Х		
G		Х	Х	Х	Х		
Н	Х		Х	Х	Х		
	Α	В	С	D	Е	F	G

{F, B}	
δ(F, 0)= C	Transition on 1 not required as the
$\delta(B, 0) = G$ is marked	symbol 0 distinguishes the states
Mark the pair {F, B}.	{F, B}.
{F, G}	
δ(F, 0)= C	Transition on 1 not required as the
$\delta(G, 0) = G$ is marked	symbol 0 distinguishes the states
Mark the pair {F, G}.	{F, G}.
{F, H}	
δ(F, 0)= C	Transition on 1 not required as the
$\delta(F, 0) = C$ The pair {C, G} $\delta(H, 0) = G$ is marked.	symbol 0 distinguishes the states
Mark the pair {F, H}.	{F, H}.

{G, A}	
$\delta(G, 0)=G$ The pair {G, B} $\delta(A, 0)=B$ is marked.	Transition on 1 not required as the
$\delta(A, 0) = B$ is marked.	symbol 0 distinguishes the states
Mark the pair {G, A}.	{G, A}.
{G, H}	
$\delta(G, 0) = G$ The pair $\{G, G\}$ $\delta(H, 0) = G$ is equivalent.	$δ(G, 1)= E$ The pair {E, C} $δ(H, 1)= C$ is marked.
$\delta(H, 0) = G$ is equivalent.	δ (H, 1)= C \int is marked.
Leave the pair {H, G} unmarked.	Mark the pair {G, H}.

Try to mark the remaining unmarked pairs {A, E}, {B, H} and {D, F}

{A, E}	
$\delta(A, 0)=B$ The pair {B, H} $\delta(E, 0)=H$ is unmarked.	$δ(A, 1)=F$ The pair {F, F} $δ(E, 1)=F$ is equivalent.
$\delta(E, 0) = H \int$ is unmarked.	$\delta(E, 1)=F$ is equivalent.
Leave the pair {A, E} unmarked.	Leave the pair {A, E} unmarked.
{B, H}	
$\delta(B, 0)=G$ The pair $\{G, G\}$	$\delta(B, 1) = C$ The pair $\{C, C\}$
$\delta(H, 0) = G$ is equivalent.	$\delta(H, 1) = C$ is equivalent.
Leave the pair {B, H} unmarked.	Leave the pair {B, H} unmarked.
{D, F}	
δ(D, 0)= C The pair {C, C}	δ(D, 1)= G
$\delta(F, 0) = C \int$ is equivalent.	$\delta(F, 1) = G$ is equivalent.
Leave the pair {D, F} unmarked.	Leave the pair {D, F} unmarked.

Since NO MORE PAIRS OF STATES CAN BE MARKED STOP.

The pairs $\{A, E\}$, $\{B, H\}$, $\{D, F\}$ are not marked i.e., the states A and E are equivalent, B and H are equivalent also the states D and F are equivalent.

Hence each of these pairs can be merged into one state.

The minimized DFA is

Fig 3.2

