实验三 三相交流电路电压、电流的测量

孙振川 PB23081463 课程号 ME2011.04

2025.5.26

摘要

通过平衡负载和非平衡负载实验,掌握三相负载作星形联接、三角形联接的方法,验证线、相电压及线、相电流之间的关系,以及中性线的作用

关键词: 三相负载; 星形联接; 三角形联接; 线电压; 相电压; 线电流; 相电流; 中性线

1 实验目的

- 1. 掌握三相负载作星形联接、三角形联接的方法,验证这两种接法下线、相电压及线、相电流之间的关系。
- 2. 充分理解三相四线供电系统中中线的作用。

2 实验原理

1. 三相负载可接成星形(又称 " Y " 接)或三角形(又称 " \triangle " 接)。当三相对称负载作星形联接时,线电压 U_1 是相电压 U_p 的 $\sqrt{3}$ 倍。线电流 I_1 等于相电流 I_p ,即

$$U_1 = \sqrt{3}U_P$$
, $I_1 = I_p$

在这种情况下,流过中线的电流 I0=0 ,所以可以省去中线。由三相三线制电源供电,无中线的星形联接称为 Y 接法。

当对称三相负载作 \triangle 形联接时,有 $I_1 = \sqrt{3}I_p$, $U_1 = U_p$ 。 2. 不对称三相负载作星形联接时,必须采用三相四线制接法,即 Y_o 接法。而且中线必须牢固联接,以保证三相不对称负载的每相电压维持对称不变。

倘若中线断开,会导致三相负载电压的不对称,致使负载轻的那一相的相电压过高,使负载遭受损坏;负载重的一相相电压又过低,使负载不能正常工作。尤其是对于三相照明负载,无条件地一律采用 Y_0 接法。

3. 当不对称负载作 \triangle 接时, $I_1 \neq \sqrt{3}I_p$,但只要电源的线电压 U_1 对称,加在三相负载上的电压仍是对称的,对各相负载工作没有影响。

3 实验器材

- 1. 交流电压表 0~500V
- 2. 交流电流表 0~5A

- 3. 万用表
- 4. 三相自耦调压器
- 5. 三相灯组负载 220V, 25W 白炽灯
- 6. 电流插座

4 实验内容

4.1 三相负载星形联接(三相四线制供电)

按图 1 线路组接实验电路。即三相灯组负载经三相自耦调压器接通三相对称电源。将三相

调压器的旋柄置于输出为 0 V 的位置(即逆时针旋到底)。经指导教师检查合格后,方可开启实验台电源,然后调节调压器的输出,使输出的三相线电压为 220 V,并按下述内容完成各项实验,分别测量三相负载的线电压、相电压、线电流、相电流、中线电流、电源与负载中点间的电压。将所测得的数据记入表 1 中,并观察各相灯组亮暗的变化程度,特别要注意观察中线的作用。

图 1: 三相负载星形联接实验电路图

量数据	开灯盏数			线电流 (A)			线电压 (V)			10.1				
											相电压 (V)			中点
验内容	A	В	C	IA	I_{B}	1	TT						电流	电压
载情况)	相	相	相		*B	Ic	UAB	URC	Uca	U _{A0}	U _{B0}	Uco	I_0	U _{N0}
~ 衡负载	3	3	3	0.236		0.240	22.1	230.2					(A)	(V)
衡负载	1	2				10	251.6	墨	. ,	132.7	133.9	131.5	18.36	n
以	3	3	3	0.240	0.253	0.246	000	230.2	229.7	134.5	1303	131.7	1	4,24
平衡负载	1	2	3	80.2m	0.224	0.74			229:		134.5	121 <	0.146	110
平衡负载	1	2						10000	230.3				~ 110	\$1.
3 相断开	1		2	80.2N				100	230.0					
相断开	1		3	01.6n		30-31			230.4				1 - 1	120.

4.2 负载三角形联接(三相三线制供电)

按图 2 改接线路,经指导教师检查合格后接通三相电源,并调节调压器,使其输出线电压为 220 V,并按 表 3-2 的内容进行测试。

图 2: 负载三角形联接实验电路图

测量数据	开灯盏数			线电压=相电压(V)			线电流(A)			相电流(A)		
负载情况	A-B 相	B-C 相	C-A 相	U _{AB}	UBC	Uca	IA	IB	Ic	I _{AB}	IBC	Ica
三相平衡	3	3	3	230.0	228.5	227.8	0.550	0.557	0.568	0.308	0.333	0.32
三相不平衡	1	2	3	232.5	229.9	228.9	0.389	0.294	0.479	1-50	0.224	0.32

5 实验数据处理

5.1 验证对称三相电路中的 $\sqrt{3}$ 关系

图 3: 验证对称三相电路中的 $\sqrt{3}$ 关系

5.2 三相四线供电系统中中线的作用

三相四线制中线的作用是流过三相负载的不平衡电流,来保持中性点的零点位,使负载电压保持不变。如果中线断了,不平衡的三相负载使得中性点转移,使负载最少的那一相电压最高负载因过电压损坏,而负载多的那一相电压过低无法工作。中线流过三相负载的不平衡电流,来保持中性点的零点位,使负载电压保持不变

5.3 不对称三角形联接的负载,能否正常工作?实验是否能证明这一点?

能,不对称三相负载的三角形连接时,线电压等于相电压,线电流等于 $\sqrt{3}$ 倍的相电流。只要线电压对称,加在三相负载上的电压仍是对称的,对各相负载工作没影响。即使某一相负载开路或短路,其他两相负载仍可正常工作。只要线电压等于负载额定电压就可以正常工作,不需要中线的帮助。

5.4 根据不对称负载三角形联接时的相电流值作相量图,并求出线电流值,然后与实验测得的 线电流作比较,分析之。

$$I_a = I_{ab} - I_{ca}$$

$$I_b = I_{bc} - I_{ab}$$

$$I_c = I_{ca} - I_{bc}$$

图 4: 不对称负载三角形联接的相量图

理论线电流 (A): [0.293 0.482 0.391] 实验线电流 (A): [0.294 0.479 0.389] 理论 - 实验差值: [-0.001 0.003 0.002]

6 预习思考题

6.1 三相负载根据什么条件作星形或三角形连接?

三相负载星形或三角形连接,是根据绕组(如电动机)或用电器的额定电压连接的。或者说三相负载根据 负载设计的额度电压和实际的电源电压决定星形或三角形连接。

由对称三相供电系统对三相星形连接负载供电时,若三相负载相等,即 ZA=ZB=ZC=Z,则每相负载上所加的电压是三相系统线电压的 $1/\sqrt{3}$ 。所以每相额定电压为 220 伏的三相感应电动机,用线电压为 380 伏的三相电源供电时,必须接成星形。

一台每相额定电压为 380 伏的三相感应电动机,只有连接成三角形才能接到线电压为 380 伏的三相电源使用。三角形连接的负载只要三相电源是对称的,三相负载电压也一定是对称的,各相负载电流在电源电压一定时也只与该相的阻抗有关。

例如: 1、负载额定电压 220 V,电源额定电压 380 V,就接成星形连接,这时负载获得 220 V 电压。2、负载额定电压 220 V,电源额定电压 220 V,就接成三角形连接,这时负载获得 220 V 电压。3、负载额定电压 380 V,电源额定电压 380 V,就接成三角形连接,这时负载获得 380 V 电压。

6.2 复习三相交流电路有关内容,试分析三相星形联接不对称负载在无中线情况下,当某相负载开路或短路时会出现什么情况?如果接上中线,情况又如何?

- 1、当某相负载开路时,就相当于另外两组串联在 380~V 电压下使用,那么电阻大的那组,分得的电压高,如超过其额定电压 Q 就会烧毁。
 - 2、如某相负载短路,那么另外两组都处于 380 V 电压下,都将烧毁。
 - 3、如接上中线,可正常使用,中线有电流。。
- 6.3 本次实验中为什么要通过三相调压器将 $380\mathrm{V}$ 的市电线电压降为 $220\mathrm{V}$ 的线电压使用?

为了实验设备(负载)不被损坏

7 总结感悟

本次实验通过对三相负载的星形和三角形连接的实验,深入理解了三相交流电路的基本原理和应用。通过测量线电压、相电压、线电流、相电流等参数,验证了三相电路中线、相电压及线、相电流之间的关系。同时,通过观察中性线的作用,认识到在不对称负载情况下,中性线的重要性。在实验中,星形连接和三角形连接的负载表现出不同的电气特性,特别是在对称和不对称负载情况下的电流分布和电压关系。通过对比理论计算和实验数据,发现实际测量结果与理论值存在一定的误差,这可能是由于实验设备的精度限制以及实际元件的非理想特性所致。

8 参考文献

- 1. 电子电路实验指导书
- 2. 电子电路基础
- 3. 电路原理
- 4. 电路分析