Mandatory 4

Mathias Balling

May 5, 2025

Exercise 3

```
Code for the exercises can be foind in "mandatory_4/main.cpp" and "utils/".
```

The equation is set up as follows:

```
VecDoub derivs(const Doub t, VecDoub_I &v) {
   VecDoub_0 dvdt(3);
   dvdt[0] = exp(-t) * cos(v[1]) + pow(v[2], 2) - v[0];
   dvdt[1] = cos(pow(v[2], 2)) - v[1];
   dvdt[2] = cos(t) * exp(-pow(v[0], 2)) - v[2];
   return dvdt;
}
```

3.1

```
v'_1(0) = 7.583853163452858

v'_2(0) = -2.911130261884677
```

 $v_3'(0) = -2.6321205588285577$

3.2

3.3

800

For $v(1)$			
l N	A(N)	A(N/2)-A(N)	Rich error
50	0.220363347419	1	1
100	0.229307634504	-0.00894428708586	0.00298142902862
200	0.237820761088	-0.00851312658393	0.00283770886131
400	0.237842813794	-2.20527058855e-05	7.35090196184e-06
l 800	0.236808419411	0.00103439438324	-0.000344798127746
For v(2)			
l N	A(N)	A(N/2) - A(N)	Rich error
50	0.974731402942	I	l I
100	0.97347364931	0.00125775363174	-0.00041925121058
200	0.972203378562	0.00127027074855	-0.000423423582849
400	0.972201534157	1.84440424866e-06	-6.14801416221e-07
800	0.972360228448	-0.000158694290365	5.28980967884e-05
T (0)			
For v(3)	4 (22)	1 (27 (2) 1 (27)	
l N	A(N)	A(N/2)-A(N)	Rich error
50	-0.205817017076		
100	-0.2338168969	0.0279998798236	-0.00933329327454
200	-0.260787727843	0.0269708309435	-0.00899027698116
400	-0.260799772121	1.20442776788e-05	-4.01475922625e-06

The error is calculated using Richardson extrapolation. For N=800 the error for each unknown is calculated as follows:

| -0.00331013741196 | 0.00110337913732

Rich error =
$$\frac{A(800) - A(400)}{2^2 - 1}$$

 2^2 is used since the expected order is 2 and N is doubled for each iteration.

The accuracy for the unknown variables at N=800 is:

-0.257489634709

 $\operatorname{error}(v_1(5)) = -0.000344798127746$ $\operatorname{error}(v_2(5)) = 5.28980967884e - 05$ $\operatorname{error}(v_3(5)) = 0.00110337913732$