Modul 3

Generalization, Underfitting, Overfitting

Data Science Program

Outline

- What is Generalization?
- What are Overfitting and Underfitting?
- Model Complexity vs Performance
- Illustration of Generalization, Overfitting and Underfitting:
 - KNN
 - Decision Tree
- Generalization in Linear Model

What is Generalization?

- In supervised learning, we build model on a dataset (seen data) and then be able to make accurate predictions on new data (unseen data)
- Thus, we need to divide data into two set, training set and test set
- Training set is used to fit the model and from test set we can infer the ML algorithm performance
- When building any model, test data can't get involved at all
- If a model is able to make accurate predictions on the unseen data, we say it is able
 to generalize from the training set to the test set

Why is Generalization?

- We are interested in the accuracy of the prediction that we obtain when we apply our method to new unseen data
- In practice, We might try several different method
- No one method dominates all others over all possible data set
- We want to build an ML that is able to generalize as accurately as possible

Illustration: Predicting Customer Who will buy a boat

Age	Number of cars owned	Owns house	Number of children	Marital status	Owns a dog	Bought a boat
66	1	yes	2	widowed	no	yes
52	2	yes	3	married	no	yes
22	0	no	0	married	yes	no
25	1	no	1	single	no	no
44	0	no	2	divorced	yes	no
39	1	yes	2	married	yes	no
26	1	no	2	single	no	no
40	3	yes	1	married	yes	no
53	2	yes	2	divorced	no	yes
64	2	yes	3	divorced	no	no
58	2	yes	2	married	yes	yes
33	1	no	1	single	no	no

Goal:

 send promotional email to people who are likely to actually make a purchase

Let's build some rule:

- if the customer is older than 45, has less than 3 children and is not in divorce, then they want to buy a boat. (this result 100% accurate)
- and still so many rules you can find by looking at this dataset
- Which rule could generalize new unseen data?

What are Underfitting and Overfitting?

Age	Number of cars owned	Owns house	Number of children	Marital status	Owns a dog	Bought a boat
66	1	yes	2	widowed	no	yes
52	2	yes	3	married	no	yes
22	0	no	0	married	yes	no
25	1	no	1	single	no	no
44	0	no	2	divorced	yes	no
39	1	yes	2	married	yes	no
26	1	no	2	single	no	no
40	3	yes	1	married	yes	no
53	2	yes	2	divorced	no	yes
64	2	yes	3	divorced	no	no
58	2	yes	2	married	yes	yes
33	1	no	1	single	no	no

Underfitting:

- too simple
- "Everybody who owns a house buys a boat"

Overfitting:

- too complex
- "the customer older than 45, has less than 3 children and is not n divorce, then they want to buy a boat"

Capturing Underlying Data Trends

Which one is your preference?

Underfitting Model: y = a + bx

Just Right: $y = a + bx + cx^2$

Overfitting Model: lowess regression

Capturing Underlying Data Trends

Underfitting Model

Just Right

Overfitting Model

Model Complexity vs Model Performance

- High Training Set Error and High Validation Set Error ->
 - High Bias (Underfitting)
- Low Training Set Error and High Validation Set Error ->
 - High Variance (Overfitting)
- There is a sweet spot in between that will yield the best generalization performance. This is the model we want to find.
- Data has strong relation to model complexity: If more data means more variation, More variation in data allow you to train more complex model without overfitting

Overfitting and Underfitting in Deep Learning

Overfitting and Underfitting Recap

OVERFITTING

- Too complex
- Fits the training data too well
- Good performance in training set but bad at test set
- High variance, low bias

Solutions:

- Reduce number of features
- ✓ Increase training samples

UNDERFITTING

- Too Simple
- Doesn't capture underlying data trend
- Bad performance both at training set and test set
- High bias, low variance

Solutions:

- Train more complex model
- Obtain more features

A good model has slightly lower training error than test error

Underfitting and Overfitting in KNN

Analyze data bankloan.csv

- Apply KNN Classifier
 - target : default
 - features : employ, debtinc, creddebt, othdebt
- Using different k (1,3,5,...100): Apply scaling and Validate the model using accuracy in 20% testing data and 80% training data
- compare accuracies obtained from training data and testing data

Model Complexity in Decision Tree

Analyze data bankloan.csv

- Apply Decision Tree Classifier
 - target : default
 - features : employ, debtinc, creddebt, othdebt
- Using different maximum depth of the tree (1,2,3,...25): Validate the model using accuracy in 20% testing data and 80% training data
- compare accuracies obtained from training data and testing data
- you may try another hyperparameter such as minimum samples split, minimum samples leaf, etc.

Generalization in Linear Model

- Too many feature used in linear models makes model more complex and may leads to overfitting
- We can either use :
 - reduce the effect/magnitude of certain features (Ridge)
 - make zero effect/magnitude for certain features (Lasso)
- Ridge or Lasso can be used as a solution to multicollinearity
- Which one to use?
 - as the simplest way, you can directly check the performance on test data

Ridge (L2 Regularization)

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \varepsilon$$

Reduce the magnitude close to zero

Hyperparameter Properties

- 1. Alpha: typically used {....1000,100,10,1,0.1,0.01,0.0001,...}
- 2. Increasing alpha
 - a. forces coefficients to move more toward zero but never zero
 - b. reduce model complexity

Formula:

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

Lasso (L1 Regularization)

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k + \varepsilon$$

Reduce some of the magnitude to zero

Formula:

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

Hyperparameter Properties

- 1. Alpha: typically used {....1000,100,10,1,0.1,0.01,0.0001,...}
- 2. increasing alpha
 - a. less feature used because of zero magnitude
 - b. reduce model complexity
 - c. getting easier to interpret

Model Complexity in Ridge

Analyze data boston dataset from sklearn

- Apply Decision Tree Classifier
 - target : target (house price)
 - features: CRIM, ZN, INDUS, CHAS, NOX, RM, AGE, DIS, RAD, TAX, PTRATIO, B, LSTAT, MEDV
- compare mse obtained from training data and testing data

Model Complexity in Lasso

Analyze data boston dataset from sklearn

- Apply Decision Tree Classifier
 - target : target (house price)
 - features: CRIM, ZN, INDUS, CHAS, NOX, RM, AGE, DIS, RAD, TAX, PTRATIO, B, LSTAT, MEDV
- compare mse obtained from training data and testing data

References

Andreas C. Müller & Sarah Guido

Springer Texts in Statistics

Gareth James Daniela Witten Trevor Hastie Robert Tibshirani

An Introduction to Statistical Learning

with Applications in R

References

https://www.the-modeling-agency.com/crisp-dm.pdf

https://scikit-learn.org/stable/

