

План лекций

- Типы данных (data types)
- Функции и переменные (function and variables)
 scanf("%d", &x);
- struct, union
- if, логические операции (logical operations)
- ◆ циклы (loops)
- массивы и указатели (arrays and pointers) работа с динамической памятью (memory allocation)
- строки (strings)
- ◆ сортировки + qsort
- структуры данных: списки, очереди, деревья, графы
- динамическое программирование

Стандарты

- ◆ C89
- ◆ C99
- ◆ C11
- C18 (bugfix)
- диалекты и расширения
 - gcc
 - clang
 - intel
- Кто прав? Только стандарт.

Hello, world

#include <stdio.h>

Включение информации о стандартной библиотеке вводавывода (без этой строки printf не работает)

```
int main ( )
{
```

С фунции **main** начинается выполнение программы

```
printf ("Hello, world!\n");
```

Печать строки

return 0;

Возвращаем целое число (обычно код ошибки, 0 - Success)

Escape sequence

```
printf ("Hello, \"Titanic\"!\n");
```

- Специальные символы
- ♦ \n newline (курсор в начало новой строки)
- ♦ \r return (курсор в начало текущей строки)
- ♦ \t ТАВ (табуляция, курсор на позицию кратную 8 символам)
- ♦ \b − backspace (курсор назад)
- ♦ \" кавычки "
- \' одинарная кавычка '
- **◆** \
- ◆ \a − alarm (звуковой сигнал)

От текста к бинарному коду

текст программы hello.c

текст программы после работы препроцессора hello.c

объектный модуль hello.obj

исполняемый модуль hello.exe

Препроцессор Find & Replace

Компилятор (compiler)

библиотеки math.lib

Редактор связей linker

•Основы С

Компиляция и запуск программы

- В командной строке
- компиляцияgcc –Wall –o hello.exe hello.c
- запуск программы ./hello.exe
- с исполняемым модулем по умолчанию (a.out или a.exe)
 gcc –Wall -Wextra hello.c
 ./a.out
- man 3 printf

Печать десятичного числа

#include <stdio.h>

Печать значения переменной в виде *десятичного* числа

```
int main ( )
{
```

Можно написать декларацию с явной инициализацией int x = 2;

```
int x;

x = 2;

printf ("Decimal is %d \n", x);
```

return 0;

d - десятичное decimal

о - восьмеричное octal

х - шестнадцатеричное hex

Переменные

- Переменная именованная область памяти,
 в которой хранится значение
- A и а различаются case sensitive
- Имена переменных (идентификаторы)
 - a-z A-Z 0-9 _
 - не может начинаться с цифры
- что не идентификатор?
 - x12 X12 12X _12
 - **x**_12 _x12 _12 _
- ◆ Почему идентификатор не может начинаться с цифры? 12L, 3f, 3e8

Оператор присваивания (assignment)

- x = 7; // ok
- 7 = x; // Error
- Значение выражение справа rvalue
- Область памяти для хранения (переменная) Ivalue
- res = x + y;
 - взять значения x и y (load)
 - вычислить х + у (evaluate)
 - результат записать (save) в res

Печать двух переменных

```
#include <stdio.h>
```

return 0;

10 plus -7 is 3

```
•Основы С
```

Печать многих переменных

```
#include <stdio.h>
int main ( ) {
  int x, y, res;
  x = 10;
  y = -7;
   res = x + y;
```

```
printf ("%d plus %d is %d\n", x, y, res);
```

return 0;

10 plus -7 is 3

Арифметические операторы

- + сложение
- - вычитание
- * умножение
- / деление
- % деление по модулю (остаток от деления)9%5 даст 4

$$(1 + 2) * 3$$

1 + 2 * 3

- Приоритет операций, скобки
- Слева направо или справа налево?

Краткая форма

- ◆ Сочетание = и операций *= -= /= ...
- x = x + 2;

◆ x += 2;

x = x + 1;x + = 1;

Прочитать десятичное число

```
#include <stdio.h>
int main ()
{

int x, y;
scanf ("%d". &
```

```
Подключена стандартная библиотека ввода-вывода (без этой строки scanf и printf не работают)
```

Считать десятичное число в переменную х

```
scanf ("%d", &x );
scanf ("%d", &y );
printf ("Div is %d \n", x/y);
```

return 0;

d - десятичное decimal

о - восьмеричное octal

х - шестнадцатеричное hex

Целочисленные типы данных

- char самый короткий [-128..+127]
- short int [-32768 .. +32767]
- int
- long int
- long long int
- спецификаторы
 - unsigned, signed
- С плавающей точкой 3.14
 - float
 - double

Преобразование типа (cast)

- неявное преобразование implicit cast (warning) int x = 5.0;
- явное преобразование (explicit)(type)

```
x = (int) 5.0;

x = (int) (y + z);

x = y + (int) z;
```

- Отбрасываем дробную часть
 - **■** 12.56 → 12
 - $-12.56 \rightarrow -12$

Преобразование типов

порядок выполнения типы операндов тип результата

7/3

double x = 7 / 3; int int $2.0 \leftarrow \text{int } 2$

double x = 7 / 3.0; // 3. 3f double x = 7 / (double) 3;

Преобразование типов

- от простого к сложному: int + double
- ◆ от signed к unsigned: s + u = u
- ◆ от короткого к длинному int + long
- int x = 12;
 long int y = -4;
 unsigned int a = 3;
 float k = 1.5;
- x + k // int + float = float
- x + y // int + long = long
- x + a // signed unsigned int
- y + a // unsigned long

Константы

- ◆ 12, 12L, 12u, 3.14, 3.14f, 1e9, 'z'
 - "Hello"
 - 012, 0x12 octal and hex

Форматы printf и scanf

- %width.precision length format
- Format:
 d dec, o octal, x hex
 u unsigned dec
 f, g, e double

%02d:%02d hh:mm

- %6d печатать в 6 позиций
- № %.2f печатать 2 знака после запятой
- %06.2f печатать 2 знака после запятой в поле на 6 позиций с ведущими нулями
- I или II модификаторы long и long long
 %IId %Iu %If (double для scanf)
- h или hh short и char %hf

Позиционные системы счисления

$$lack$$
 Десятичная $615_{10} = 6*10^2 + 1*10^1 + 5*10^0$
 10^3 10^2 10^1 10^0

0 6 1 5

$$\bullet$$
 Двоичная $1101_2 = 1*2^3 + 1*2^2 + 0*2^1 + 1*2^0$

2³ 8 2² 4 2¹ 2 2⁰ 1

1 1 0 1

-Основы C Диапазон положительных чисел

Представление отрицательных чисел

- ◆ x + (-x) = 0 в побитовом сложении
- знаковый бит (signed bit)
- Прямой код (старший бит 1)
 - 3: 0011
 - -3: **1**011
- Обратный код (~x)
 - 3: 0011
 - -3: **1**100
- ◆ Дополнительный код: x + (-x) = 0
 - 3: 0011
 - -3: 1101 (обратный +1)
 - Σ: 10000

Диапазон знаковых чисел

Представление дробных чисел

- fixed-point number (в С нет)
 - считаем деньги
 (тут запятая всегда фиксирована)
 - SQL
 - обработка сигналов (звук и изображение) часто в fixed-point
 - точные вычисления

Floating-point number bin to dec

(-1)sign · 2exponent - exponent_bias · 1.mantissa

$$(-1)^{0} \cdot 2^{124 - 127} \cdot 1.25$$

$$= 2^{-3} : 1.25$$

 $= 0.15625$

bit
$$22 = 0.5$$

bit
$$21 = 0.25$$

bit
$$20 = 0.125$$

bit
$$19 = 0.0625$$

bit 0 = 0.00000011920928955078125

Задача bin to dec

41c8 0000₁₆

(-1)sign · 2exponent - exponent_bias · 1.mantissa

bit 23 = 1 (неявно задан)

bit 22 = 0.5

bit 21 = 0.25

bit 20 = 0.125

bit 19 = 0.0625

bit 0 = 0.00000011920928955078125

Решение

- Sign bit: 0
- Exponent: $1000 \ 0011_2 = 83_{16} = 131_{10}$ 131 - 127 = 4
- \bullet Significant (с дописаным неявным битом): 1100 1000 0000 0000 0000 0000 $_2$ = c80000 $_{16}$ = 1 + $\frac{1}{2}$ + 1/16 = 1+0.5+0.0625=1.5625
- $(-1)^{0.2}$ 131-127 $(1 + \frac{1}{2} + \frac{1}{16}) = 2^{4} + 2^{3} + 2^{0} = 25$

•Основы С

```
12.357 dec to bin
```

- \bullet 12.357 = 12 + 0.357 = 1100₂ + (.011)₂
 - 0.357 * 2 = 0.750 = 0 + 0.750 0.750 * 2 = 1.5 = 1 + 0.5 0.5 * 2 = 1.0 = 1 + 0
- $(12.357)_{10} = (1100.011)_2 = (1.100011)_2 * 2^3 = (1.100011)_2 * 2^{130-127}$
- Sign bit: 0
- \blacksquare Exponent: $1000\ 0010_2 = 82_{16} = 130_{10}$
- Significand: 1100 0110 0000 0000 0000 0000₂

Периодическая дробь 0.1

$$\bullet$$
 0.1 * 2 = 0.2 = 0 + 0.2

$$0.2 * 2 = 0.4 = 0 + 0.4$$

 $0.4 * 2 = 0.8 = 0 + 0.8$
 $0.8 * 2 = 1.6 = 1 + 0.6$
 $0.6 * 2 = 1.2 = 1 + 0.2$

$$0.2 * 2 = 0.4 = 0 + 0.4$$

 $0.4 * 2 = 0.8 = 0 + 0.8$
 $0.8 * 2 = 1.6 = 1 + 0.6$
 $0.6 * 2 = 1.2 = 1 + 0.2$