2014 TAIWAN

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-1 tasks

wall

Language: en-BOL

Wall

Jian-Jia esta contruyendo un muro (wall) apilando ladrillos del mismo tamaño. Estos muros consiten de n columnas que estan numeradas de 0 a n-1 de izquierda a derecha. Las columnas pueden tener diferentes alturas. La altura de una columna es el numero de ladrillos en ella.

Jian-Jia contruye el muro como sigue: Inicialmente no hay ladrillos en ninguna columna. Luego, Jian-Jia pasa por k fases de *adding* o *removing* ladrillos. El proceso de contruccion completa cuando todas las k fases estan terminadas. En cada fase, Jian-Jia da un rango de columnas consecutivas y una altura k, y realiza el siguiente procedimiento:

- En un adding phase(fase), Jian-Jia añade ladrillos a las columnas del rango dado que tienen menos de h ladrillos, asi ellas tendran exactamente h ladrillos terminada la fase. No se hace nada para columnas que tienen h o mas ladrillos.
- En un removing phase(fase), Jian-Jia elimina ladrillos a las columnas del rango dado que tienen mas de h ladrillos, asi ellas tendran exactamente h ladrillos terminada la fase. No se hace nada para las columnas que tienen h o menos ladrillos.

Tu tarea es determinar la forma final del muro.

Example

Asumiremos que hay 10 columnas de ladrillos y 6 fases de contruccion. Todos los rangos en la siguiente tabla son inclusivos. Los diagramas del muro despues de cada fase son mostrados abajo.

phase	type	rango	altura
0	add	columns 1 to 8	4
1	remove	columns 4 to 9	1
2	remove	columns 3 to 6	5
3	add	columns 0 to 5	3
4	add	column 2	5
5	remove	columns 6 to 7	0

Todas las columnas inicialmente estan vacias, despues de la fase 0 la columna 1 a la columna 8 tendran 4 ladrillos. La columna 0 y 9 se mantendran vacias. Despues de la fase 1, los ladrillos son eliminados desde la columna 4 a la 8 hasta que cada una tenga 1 ladrillo, y la columna 9 aun esta vacia. Las columnas de 0 a 3 las cuales estan fuera del rango no cambian. Despues de la fase 2 no se hara cambios puesto que ninguna tiene mas de 5 ladrillos. Despues de la fase 3 el numero de ladrillos en las columnas 0, 4 y 5 se incrementan en 3. Hay 5 ladrillos en la columna 2 despues de la fase 4. despues de la fase 5 se eliminan todos los ladrillos desde la columna 6 y 7.

Task

Dada la descripcion de k fases, debes calcular el numero de ladrillos en cada columna despues de que todas las fases terminen. Necesitas implemetar la funcion buildWall.

- buildWall(n, k, op, left, right, height, finalHeight)
 - n: Numero de columnas en el muro.
 - k: Numero de fases.
 - op: array de tamaño k; op [i] es el tipo de phase i: 1 para adding phase and 2 para removing phase, para $0 \le i \le k-1$.
 - left y right: arrays de longitud k; el rango de columnas en i inicia con la columna left[i] y termina con la columna right[i] (inclusivo left[i] y right[i]), para $0 \le i \le k-1$. Siempre tendras left[i] \le right[i].
 - lacktriangledown height: array de tamaño k; height[i] es el parametro de la altura de la fase i, para $0 \leq i \leq k-1$.
 - finalHeight: array de tamaño n; tu deberas retornar tus resultados finales del numero de ladrillos en cada columna i en finalHeight[i], for $0 \le i \le n-1$.

Subtasks

For all subtasks the height parameters of all phases are nonnegative integers less or equal to 100,000

subtask	points	$m{n}$	$oldsymbol{k}$	note
1	8	$1 \leq n \leq 10,000$	$1 \leq k \leq 5,000$	no additional limits
2	24	$1 \leq n \leq 100,000$	$1 \leq k \leq 500,000$	all adding phases are before all removing phases
3	29	$1 \leq n \leq 100,000$	$1 \leq k \leq 500,000$	no additional limits
4	39	$1\leq n\leq 2,000,000$	$1 \leq k \leq 500,000$	no additional limits

Implementation details

You have to submit exactly one file, called wall.c, wall.cpp or wall.pas. This file implements the subprogram described above using the following signatures. You also need to include a header file wall.h for C/C++ program.

C/C++ program

```
void buildWall(int n, int k, int op[], int left[], int right[],
int height[], int finalHeight[]);
```

Pascal program

```
procedure buildWall(n, k : longint; op, left, right, height :
array of longint; var finalHeight : array of longint);
```

Sample grader

The sample grader reads the input in the following format:

- line 1: n, k.
- line 2 + i ($0 \le i \le k 1$): op[i], left[i], right[i], height[i].