

Torsional pendulum

Li Bin

NJUPT

Experimental Purposes:

- 1. Determination of the **torsional constant** K of spiral spring using torsion pendulum;
- 2. Determination of the **rotational inertia** of different objects with a torsion pendulum, and compared with the theoretical value;
- 3. Verification of the parallel axis theorem.

Principles

1. Rotational inertia: I

2. Torsional pendulum

When the object is turned in a horizontal plane at a certain angle θ , the spring restoring moment M:

 $M = -K^* \theta$ K is the torsional constant.

And we also know that : $M = I * \beta$, where $\beta = d^2 \theta / dt^2 = -K^* \theta / I = -\omega^{2*} \theta$, the vibration period $T = 2 \pi / \omega = 2 \pi (I/K)^{1/2}$

3. Parallel axis theorem

$$I_c = I_0 + mx^2$$

Adjustment and use:

- 1. Horizontal adjustment using airbubble level;
- 2. Baffle rod can cover the infrared emitting and receiving hole of the photoelectric detector.

3. Swing angle should be between 40 - 90 degrees.

Steps:

1. Determine the vibration periods (10T) of the loading plate and with cylindrical, calculate the torsion constant K;

2. Determine the vibration periods (10T) of the hollow metal cylinder and the mental rod.

3. Verification of the parallel axis theorem;

4. Other measurements: Electronic balance----mass, Tape----length of the mental rod, Vernier caliper----Inside and outside diameters.

Post-processing:

1.Calculate K;

- 2. Calculate the experimental and theoretical rotational inertia I_{exp} and I_{theo} ,
- 3.Calculate the percentage error 1:

$$\eta = |\mathbf{I}_{exp} - \mathbf{I}_{theo}|/\mathbf{I}_{theo} *100\%$$

Rotational inertia: $k=4\pi^2\frac{I_1'}{\bar{T}_1^2-\bar{T}_0^2}=$ ____kg · m² · s⁻²

Mass of small metal cylinder: $m = \underline{\hspace{1cm}} g$

Geometry of small metal cylinder:

$$D_{
m o} =$$
 _____mm, $D_{
m i} =$ _____mm, Height $L_1 =$ ____mm $_{
m o}$

Table I. Rotational inertia

Object	Mass/kg	Geometry	Period	$I_{theo}/(kg \cdot m^2)$	$I_{\rm exp}/({\rm kg\cdot m^2})$	Percenta error
Plate	4 1/2 1 1 NA III		$10T/s$ T_0/s		$\left(I_0 = \frac{I_1' \vec{T}_0^2}{T_1^2 - T_0^2}\right)$. 100 st. 100
Plastic cylinder	· 1 使:	D_1/mm $ar{D}_1/\mathrm{mm}$	$10T/_{ m S}$ $\bar{T}_1/_{ m S}$	$\left(I_1' = \frac{1}{8}mD_1^2\right)$	$\left(I_1 = \frac{K\bar{T}_1^2}{4\pi^2} - I_0\right)$. 證據
Hollow cylinder	它相談	$D_{ ext{put}}/ ext{mm}$	$10T_2/\mathrm{s}$	2000年98日安全5000 2000年98日安全500		以,从 身 财务大路
	Persi ne	D /mm	$ar{T}_2/\mathrm{s}$	$\left[I_2'=rac{1}{8}m(ar{D}_{ ext{out}}^2+ar{D}_{ ext{in}}^2) ight]$	$\left(I_2 = \frac{A I_2}{4\pi^2} - I_0\right)$.a 3
Metal rod	mm lij Princer	5. 15. 5. 5.	10T ₄ /s	$\left(I_4'=rac{1}{12}mL^2 ight)$	$\left(I_4 = \frac{K}{4\pi^2} \bar{T}_4^2\right)$	9129 2 3487.0

Table II. Verification of the parallel axis theorem

Position $x/10^{-2}$ m	5.00	10.00	15.00	20.00	25.00
******* * * * ************************	A. W. &C.	F & 6	GT D	Literature (7
10 periods 10T/s	Adv. 1.75	F8155	15 P 415	. 400	15 , 150
625 L. F. O. W. W. T.					-
Period \hat{T}/s	Legion and	0.00	- N. 4413 16-1	- 40.7	200
Exp. value/kg·m²	时, 30%	1770	XI. 6.30	190	VI - (\$126). I
$I = \frac{k}{4\pi^2} \bar{T}^2$					1727727 97
Theo. value/kg·m²	APPLICATION	- 50%	16. 7 3	次展。2017年 1	1143 0
$I' = I_4' + 2mx^2 + I_5'$	or and other transport	100 100 100	A TO STORY	12/12/12/12/12	The Section of
percentage error				-	

$$I_5' = 2\left[\frac{1}{16}m(D_0^2 + D_1^2) + \frac{1}{12}mL_1^2\right]$$

