

UNIVERSIDAD NACIONAL DE SAN AGUSTIN FACULTAD DE INGENIERÍA DE PRODUCCIÓN Y SERVICIOS ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMA

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 1

INFORME DE LABORATORIO

(formato estudiante)

INFORMACIÓN BÁSICA					
ASIGNATURA:	LABORATORIO B - FÍSICA COMPUTACIONAL				
TÍTULO DE LA PRÁCTICA:	Leyes de Newton - Problema de cuerpos				
NÚMERO DE PRÁCTICA:	02	AÑO LECTIVO:	2025 – A	NRO. SEMESTRE:	VII
FECHA DE PRESENTACIÓN	23/05/2025	HORA DE PRESENTACIÓN	23:59		
INTEGRANTE (s): - Huanaco Hallasi, Diego Edgardo				NOTA:	

DOCENTE(s):

• LLAMOCA REQUENA, EDWIN AGAPITO

SOLUCIÓN Y RESULTADOS

I. SOLUCIÓN DE EJERCICIOS/PROBLEMAS

- 1. Graficar una circunferencia con radio r=3 cuyo centro esta en el origen (8 puntos)
- 2. Cuando la trayectoria llegue a $r=\sqrt{x^2+y^2}<=3$ que no grafique pero debe continuar la simulación (4 puntos)
- 3. grafique en un misma ventana, dos parábolas, dos elipses y dos hiperbolas (4 puntos)
- 4. Repita el paso anterior para $v_x > 0$. Debe notarse claramente el efecto de v_x (4 puntos)

SOLUCIÓN:

```
Unset clear; clf; hold off; 
n = 0; 
h = 0.01;
```


UNIVERSIDAD NACIONAL DE SAN AGUSTIN FACULTAD DE INGENIERÍA DE PRODUCCIÓN Y SERVICIOS ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMA

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 2

```
k = 0.05;
tfin = 80;
ax = @(x, y) - x / (sqrt(x^2 + y^2))^3;
ay = @(x, y) - y / (sqrt(x^2 + y^2))^3;
theta = linspace(0, 2*pi, 100);
r = 3;
x\_circ = r * cos(theta);
y\_circ = r * sin(theta);
plot(x_circ, y_circ, 'b');
axis equal;
grid on;
hold on;
for vx = 0.4:k:0.7
    vy = 0; y = 4; x = 0; n = 0;
    px(1) = x; py(1) = y;
    for t = 0:h:tfin
       n = n + 1;
        x = x + vx * h;
        y = y + vy * h;
        vx = vx + ax(x, y) * h;
        vy = vy + ay(x, y) * h;
        px(n+1) = x;
        py(n+1) = y;
        if sqrt(x^2 + y^2) \le 3
           break;
        end
    end
    plot(px, py);
    hold on;
end
hold off;
```


UNIVERSIDAD NACIONAL DE SAN AGUSTIN FACULTAD DE INGENIERÍA DE PRODUCCIÓN Y SERVICIOS ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMA

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 3

REFERENCIAS Y BIBLIOGRAFÍA

[1] E. A. Llamoca Requena. "Introducción a la Física Computacional con Matlab". Repositorio Institucional Universidad Nacional de San Agustín de Arequipa. Accedido el 18 de mayo de 2025. [En línea]. Disponible: https://repositorio.unsa.edu.pe/items/756be956-0d8d-4dd2-aba4-21a15cd0109a