Sample size

Example 1.17

We plan to conduct a study to compare the means of two equally sized treatment groups using a two-sample z-test.

- a) Assuming a two-sided test, how many patients are required to detect a difference of 1 unit if the standard deviation is 2, using $\alpha = 0.05$ and $\beta = 0.2$?
- b) What is the sample size for a one-sided test with the sample significance level, standard deviation, power and difference?

Factors that affect the power of a test

The effect of α on $1 - \beta$

Factors that affect the power of a test

Sample size calculations

We can determine the sample size for a given α and β .

Consider testing H_0 : $\mu = \mu_0$ against H_a : $\mu > \mu_0$. Given α and β , we want to find the sample size n, for a usual z-test.

We will show that the sample size for this one-sided alternative hypothesis is

$$n = \frac{\left(Z_{\alpha} + z_{\beta}\right)^2 \sigma^2}{(\mu_{\alpha} - \mu_0)^2},$$

where β is evaluated when $\mu = \mu_a$ and $\mu_a > \mu_0$.

Sample size calculations (proof)

$$d = P(Type I error)$$

$$= P(reject Hollho true)$$

$$= P(Y > c | \mu = \mu_0)$$

$$= P(\frac{Y - \mu_0}{f_0} > \frac{c - \mu_0}{f_0} | \mu = \mu_0)$$

$$= P(Z > \frac{c - \mu_0}{f_0}) \text{ where } Z \sim N(0,1)$$

$$= P(Z > Z\alpha)$$

Therefore, we have

$$Z_d = \frac{C - \mu_0}{5\pi}$$
 and $-Z_p = \frac{C - \mu_0}{5\pi}$

Let μ_a = true population mean Ma> No under Ha B = P(Type I error) = P(T < c | M = Ha) $= P(\frac{Y - \mu_0}{5} \leq \frac{C - \mu_0}{5} \mid \mu = \mu_0)$ = $P(Z^* \leq \frac{c - Aa}{\frac{c}{2}})$ where $= \mathcal{P}(Z^{2} > -\frac{c-\mu_{0}}{2})^{Z^{2}} \sim \mathcal{N}(0,1)$ $= \mathcal{P}(z^* > Z_{\beta})$

We have two equations in two unknowns (candn). We proceed by eliminating c first.

Sample size calculations (proof)

$$Z_{d} = \frac{C - \mu_{0}}{\frac{1}{16}}$$

$$Z_{d} = C - \mu_{0}$$

$$C = \mu_{0} + Z_{0} = \frac{1}{16}$$

and
$$-2\beta = \frac{C - \mu_{\alpha}}{\frac{5}{150}}$$
$$-2\beta = C - \mu_{\alpha}$$
$$C = \mu_{\alpha} - 2\beta = C$$

Equating them:
$$\mu_0 + Z_{\alpha} \frac{\sigma}{\ln} = \mu_{\alpha} - Z_{\beta} \frac{\sigma}{\ln}$$

$$Z_{\alpha} \frac{\sigma}{\ln} + Z_{\beta} \frac{\sigma}{\ln} = \mu_{\alpha} - \mu_{\alpha}$$

$$(2\alpha + 2\beta) \frac{\sigma}{\ln} = \mu_{\alpha} - \mu_{\alpha}$$

$$\frac{\sigma}{\ln} = \frac{\mu_{\alpha} - \mu_{\alpha}}{Z_{\alpha} + Z_{\beta}}$$

$$\sqrt{n} = \frac{(Z_{\alpha} + Z_{\beta})\sigma}{\mu_{\alpha} - \mu_{\alpha}}$$

$$\Lambda = \frac{\sigma^2 (Z_{\alpha} + Z_{\beta})^2}{(\mu_{\alpha} - \mu_{\alpha})^2}$$

Some remarks:

- 1) same expression for the lower one-sided test
- 2 For the two-sided test, replace Za with Z=

Example 1.18

How many samples do we need to determine the mean of a population if, from previous knowledge we know $\sigma = 3.1$ and we want to test the hypothesis H_0 : $\mu = 5$ against H_1 : $\mu = 5.5$? We also want $\alpha = 0.01$ and $\beta = 0.05$.

$$\sigma = 3.1, \quad \mu_0 = 5, \quad \mu_0 = 5.5, \quad d = 0.01, \quad \beta = 0.05$$

$$Z_{cl} = Z_{0.01} \approx 2.33$$

$$Z_{b} = Z_{0.05} \approx 1.645$$

$$\Lambda = \frac{(Z_{cl} + Z_{b})^2 \sigma^2}{(\mu_{cl} + \mu_{0})^2} = \frac{(2.33 + 1.645)^2 3.1^2}{0.5^2} \approx 607.37$$

So n = 608 will provide the desired levels.

Sample size for comparing two means

Consider testing H_0 : $\mu_1 = \mu_2$ against H_a : $\mu_1 \neq \mu_2$. Given α and β , we want to find the sample size n to detect a difference in mean of size δ .

It can be shown that the sample size required (per group) in

this case is

$$n = \frac{2\sigma^2 \left(Z_{\alpha/2} + Z_{\beta}\right)^2}{\delta^2}.$$

Assuming
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$

 $\sigma_1 = \sigma_2 = \pi$

Example 1.17 (Revisit)

We plan to conduct a study to compare the means of two equally sized treatment groups using a two-sample z-test.

- a) Assuming a two-sided test, how many patients are required to detect a difference of 1 unit if the standard deviation is 2, using $\alpha = 0.05$ and $\beta = 0.2$?
- b) What is the sample size for a one-sided test with the sample significance level, standard deviation, power and difference?

Example 1.17 Solution

a)
$$\sigma = 2$$
, $d = 0.05$, $\beta = 0.2$, $\delta = 1$
 $Z_{\frac{3}{2}} = Z_{0.025} = 1.96$
 $Z_{\beta} = Z_{0.2} = 0.84$
 $n = \frac{2(2^2)(1.96 + 0.84)^2}{1^2} = 62.72$

We need 63 patients in each group.

b)
$$Z_{\beta} = Z_{0.2} = 0.84$$

 $Z_{\alpha} = Z_{0.0S} = 1.64$
 $n = \frac{2(2^2)(1.64 + 0.84)^2}{1^2} = 49.2032$
We need 50 patients in each group.

Sample size for comparing proportion(s)

Consider testing H_0 : $p = p_0$ against H_a : $p \neq p_0$. Given α and β , the sample size n to detect a population proportion within $\pm \delta$ margin of error is

$$n = \frac{z_{\alpha/2}^2 \ p(1-p)}{\delta^2}.$$

When testing H_0 : $p_1 = p_2$ against H_a : $p_1 \neq p_2$, the number of samples n required (per group) to detect a difference in p_1 and p_2 , with a given α and β , is

$$n = \frac{(z_{\alpha/2} + z_{\beta})^{2} [p_{1}(1 - p_{1}) + p_{2}(1 - p_{2})]}{(p_{1} - p_{2})^{2}}.$$

For one-sided tests, replace Z with Z in the above expressions.

Example 1.19

A researcher plans to conduct a study on the effectiveness of a new drug treatment compared to a standard behavioural treatment for a particular mental illness. It is known that the standard treatment has a cure rate of 70%. Assume a two-sided test is desired, with significance level of 5% and a power of 90%. How many subjects are required to detect an improvement of 10% in the new drug?

$$P_1 = 0.7$$
, $P_2 = 0.8$
 $Z_{\frac{3}{2}} = Z_{0.025} = 1.96$ and $Z_{p} = Z_{0.1} = 1.28$.

$$N = \frac{\left(0.7 \left(\frac{0.3}{0.3}\right) + 0.8 \left(0.2\right)\right)}{\left(0.7 - 0.8\right)^2} \left(1.96 + 1.28\right)^2 \approx 388.41$$

We need 389 patients per group.