EXERCISE SESSION 2B FOR THE COURSE "GÉOMÉTRIE EUCLIDIENNE, NON EUCLIDIENNE ET PROJECTIVE"

MATTEO TOMMASINI

Homework sheet 3-4

Exercises NOT done during the lecture of March 12, 2014

Exercise 1

Do Exercise 5.5.2 from Lecture Notes Part I.

Let X be any set: we need to prove that the set Bij(X) of bijective maps on X is a group.

- The composition is the usual composition of set maps, hence it is associative;
- the neutral element is the identity $id_X : X \to X$; indeed for any bijective map $f: X \to X$ we have $f \circ id_X = f$ and $id_X \circ f = f$;
- given any bijective map $f: X \to X$, its inverse $f^{-1}: X \to X$ is again bijective (so it belongs to Bij(X)); moreover $f \circ f^{-1} = \mathrm{id}_X$ and $f^{-1} \circ f = \mathrm{id}_X$, so f^{-1} is the inverse of f in the set Bij(X);
- given any pair of bijective maps $f: X \to X$ and $g: X \to X$, their composition $g \circ f: X \to X$ is also a bijective map, hence it belongs to Bij(X).

Exercise 7

Consider the maps

and compute the composition $g \circ f : \mathbb{R}^3 \to \mathbb{R}^2$.

The composition is given as follows:

$$g \circ f(x, y, z) = g(xy, x^2 + z^2) = ((x^2 + z^2)\sin(xy), x^2 + z^2 - 2xy).$$

Exercise 10

Prove the implication $(1) \Rightarrow (2)$ in Proposition 5.3.2 from Lecture Notes Part I.

We recall the statement of this proposition: given any map $T: \mathbb{E}^n \to \mathbb{E}^n$, the following facts are equivalent:

- (1) T is given in some affine coordinate system by $T(X) = A \cdot X + B$, where A is an $n \times n$ matrix and B is a vector in \mathbb{R}^n .
- (2) For any pair of vectors $X, Y \in \mathbb{R}^n$ and for any pair of scalars $\lambda, \mu \in \mathbb{R}$, we have

$$T(\lambda X + \mu Y) - T(0) = \lambda (T(X) - T(0)) + \mu (T(Y) - T(0))$$

(here 0 is the zero vector of \mathbb{R}^n).

(3) For any pair of vectors $X, Y \in \mathbb{R}^n$ and for any $\lambda \in \mathbb{R}$, we have

$$T((1 - \lambda)X + \lambda Y = (1 - \lambda)T(X) + \lambda T(Y).$$

We need to prove the implication $(1) \Rightarrow (2)$. So let us assume that (1) holds and let us fix any pair of vectors $X, Y \in \mathbb{R}^n$ and any pair of scalars $\lambda, \mu \in \mathbb{R}$. Then we have:

$$T(0) = A \cdot 0 + B = B.$$

So,

$$T(\lambda X + \mu Y) - T(0) = A \cdot (\lambda X + \mu Y) + B - B =$$

$$= A \cdot (\lambda X) + A \cdot (\mu Y) = \lambda (A \cdot X) + \mu (A \cdot Y) =$$

$$= \lambda (A \cdot X + B - B) + \mu (A \cdot Y + B - B) =$$

$$= \lambda (T(X) - T(0)) + \mu (T(Y) - T(0)).$$

 $E ext{-}mail\ address: matteo.tommasini20gmail.com, matteo.tommasini0uni.lu}$

Mathematics Research Unit University of Luxembourg 6, Rue Richard Coudenhove-Kalergi L-1359 Luxembourg