Name: Tasneem Mansour Mansour Farag ID: 19015538 Professor: Dr. Ahmed Abbas Elserougi Subject Name: HVDC Subject Code: EEP 424 Assignment (2) | Bipolar Point-To-Point HVDC-Link | MATLAB Model

Contents

I. System Description:	3
II. Six-Pulse Model:	3
Question (A):	3
Question (B):	5
Model Screenshot:	5
Case (1): 1600MW: Power flow from (A) to (B): Net(A) is rectifier and Net(B) is inverter:	5
Case (2): 1200MW: Power flow from (B) to (A): Net(B) is rectifier (+10%) and Net(A) is inverter (-10%):	8
Case (3): 1600MW: Power flow from (A) to (B): Net(A) is rectifier (2.5% voltage swell) and Net(B) is inverter:	11
III. Twelve-Pulse Model:	14
Question (C):	14
Model Screenshot:	14
Case (1): 1600MW: Power flow from (A) to (B): Net(A) is rectifier and Net(B) is inverter:	14
Case (2): 1200MW: Power flow from (B) to (A): Net(B) is rectifier (+10%) and Net(A) is inverter (-10%):	18
Case (3): 1600MW: Power flow from (A) to (B): Net(A) is rectifier (2.5% voltage swell) and Net(B) is inverter:	21
IV. Comparison:	24
Question (D):	24
V. Attachments:	25

I. System Description:

- A 1600MW 6-pulse bipolar point-to-point HVDC-link shown below. The link interconnects between two AC networks, (network (A): 22kV/50Hz, network (B):20kV/60Hz), through overhead transmission line with a resistance of $10~\Omega$. The range of firing angle at the rectifier side is (5deg-25deg), while the inverter is operated under minimum γ of 20deg. 1:10 Y-Y ideal transformers with zero leakage inductances are employed. Proper smoothing reactors (L_{sr}) are employed as shown.

II. Six-Pulse Model:

Question (A):

Transferring a power of 1600 MW from side (A) to side (B) during normal operating conditions. Find analytically the suitable firing angle at the rectifier side, and the corresponding dc current.

$$Vdoi = \frac{3\sqrt{2} * 200}{\pi} \cos 20 = 253.81 KV$$

$$800 = Vdor * Idc$$

$$Idc = \frac{Vdor - 253.81}{10}$$

$$3000 = Vdor^2 - 253.81 * Vdor$$

$$\therefore Vdor = 282.16KV$$

$$Vdor = \frac{3\sqrt{2} * 220}{\pi} \cos \alpha = 282.16KV$$

$$\alpha = 18.25^{\circ}$$

$$\therefore Idc = \frac{282.16 - 253.81}{10} = 2.835KA$$

Transferring a power of 1200 MW from side (B) to side (A) during normal operating conditions. Find analytically the suitable firing angle at the rectifier side, and the corresponding dc current. (Assume -10% tapping at inverter side, and +10% tapping rectifier side).

$$Vdoi = \frac{3\sqrt{2} * 220 * 0.9}{\pi} \cos 20 = 251.27KV$$

$$600 = Vdor * Idc$$

$$Idc = \frac{Vdor - 251.27}{10}$$

$$\therefore 6000 = Vdor^2 - 251.27 * Vdor$$

$$\therefore Vdor = 273.23KV$$

$$Vdor = \frac{3\sqrt{2} * 200 * 1.1}{\pi} \cos \alpha = 273.23KV$$

$$\therefore \alpha = 23.13^{\circ}$$

$$\therefore Idc = \frac{273.23 - 251.27}{10} = 2.196KA$$

Transferring a power of 1600MW from side (A) to side (B) during 2.5% voltage swell at network (A).

at network (A).

$$Vdoi = \frac{3\sqrt{2} * 200}{\pi} \cos 20 = 253.81KV$$

$$800 = Vdor * Idc$$

$$Idc = \frac{Vdor - 253.81}{10}$$

$$\therefore 8000 = Vdor^2 - 253.81 * Vdor$$

$$\therefore Vdor = 282.16KV$$

$$Vdor = \frac{3\sqrt{2} * 220 * 1.025}{\pi} \cos \alpha = 282.16KV$$

$$\therefore \alpha = 22.099^{\circ}$$

$$\therefore Idc = \frac{282.16 - 253.81}{10} = 2.835KA$$

Question (B):

Model Screenshot:

Case (1): 1600MW: Power flow from (A) to (B): Net(A) is rectifier and Net(B) is inverter:

AC voltage at rectifier side:

V_{dor}: DC voltage at rectifier side:

Grid current at rectifier side:

AC voltage at inverter side:

V_{doi} : DC voltage at inverter side:

Grid current at inverter side:

DC current (L=0.1 Henry):

Case (2): 1200MW: Power flow from (B) to (A): Net(B) is rectifier (+10%) and Net(A) is inverter (-10%):

AC voltage at rectifier side:

V_{dor} : DC voltage at rectifier side:

Grid current at rectifier side:

AC voltage at inverter side:

V_{doi} : DC voltage at inverter side:

Grid current at inverter side:

DC current (L=0.1 Henry):

Case (3): 1600MW: Power flow from (A) to (B): Net(A) is rectifier (2.5% voltage swell) and Net(B) is inverter:

AC voltage at rectifier side:

V_{dor} : DC voltage at rectifier side:

Grid current at rectifier side:

AC voltage at inverter side:

V_{doi} : DC voltage at inverter side:

Grid current at inverter side:

-**▶** (DClinkCurrent)

DCcurrent

III. Twelve-Pulse Model:

Question (C):

Model Screenshot:

Case (1): 1600MW: Power flow from (A) to (B): Net(A) is rectifier and Net(B) is inverter:

Analytical Calculations:

$$Vdoi = \frac{2 * 3\sqrt{2} * 100}{\pi} \cos 20 = 253.81 KV$$

$$800 = Vdor * Idc$$

$$Idc = \frac{Vdor - 253.81}{10}$$

$$\therefore 8000 = Vdor^2 - 253.81 * Vdor$$

$$\therefore Vdor = 282.16KV$$

$$Vdor = \frac{3\sqrt{2} * 220}{\pi} \cos \alpha = 282.16KV$$

$$\alpha = 18.25^{\circ}$$

$$\therefore Idc = \frac{282.16 - 253.81}{10} = 2.835KA$$

AC voltage at rectifier side:

V_{dor} : DC voltage at rectifier side:

Grid current at rectifier side:

AC voltage at inverter side:

V_{doi} : DC voltage at inverter side:

Grid current at inverter side:

Case (2): 1200MW: Power flow from (B) to (A): Net(B) is rectifier (+10%) and Net(A) is inverter (-10%):

Analytical Calculations:

$$Vdoi = \frac{2 * 3\sqrt{2} * 110 * 0.9}{\pi} \cos 20 = 251.27KV$$

$$600 = Vdor * Idc$$

$$Idc = \frac{Vdor - 251.27}{10}$$

$$\therefore 6000 = Vdor^2 - 251.27 * Vdor$$

$$Vdor = 273.23KV$$

$$Vdor = \frac{2 * 3\sqrt{2} * 100 * 1.1}{\pi} \cos \alpha = 273.23KV$$

$$\alpha = 23.13^{\circ}$$

$$\therefore Idc = \frac{273.23 - 251.27}{10} = 2.196KA$$

AC voltage at rectifier side:

V_{dor} : DC voltage at rectifier side:

Grid current at rectifier side:

AC voltage at inverter side:

V_{doi} : DC voltage at inverter side:

Grid current at inverter side:

DC current (L=0.1 Henry):

Case (3): 1600MW: Power flow from (A) to (B): Net(A) is rectifier (2.5% voltage swell) and Net(B) is inverter:

Analytical Calculations:

$$Vdoi = \frac{2 * 3\sqrt{2} * 100}{\pi} \cos 20 = 253.81 KV$$

$$800 = Vdor * Idc$$

$$Idc = \frac{Vdor - 253.81}{10}$$

$$3000 = Vdor^2 - 253.81 * Vdor$$

$$Vdor = 282.16KV$$

$$Vdor = \frac{2 * 3\sqrt{2} * 110 * 1.025}{\pi} \cos \alpha = 282.16KV$$

$$\alpha = 22.099^{\circ}$$

$$\therefore Idc = \frac{282.16 - 253.81}{10} = 2.835KA$$

AC voltage at rectifier side:

V_{dor}: DC voltage at rectifier side:

Grid current at rectifier side:

AC voltage at inverter side:

V_{doi} : DC voltage at inverter side:

Grid current at inverter side:

DC current (L=0.1 Henry):

IV. Comparison:

Question (D):

Compare the performance of 6-pulse and 12-pulse converters. Comment.

- 12-pulse instead of 6-pulse are obtained due to the 30 degrees shift between star and delta windings and therefore a smoother ripple-less voltage is obtained. This results in smaller filters and lower cost.

- It is also observed that the grid currents at both sides (rectifier and inverter) are enhanced, now curves are closer to the sine wave in a 10-pulse shape as shown below. (sample curves from 12-pulse case (2)).

V. Attachments:

- GitHub repo.