

Grundlagen der Medieninformatik 2

T04 - 15.06.2021 3D Vektorrechnung

Kahoot!

Das 3D Koordinatensystem

- (Schulmathematik) besteht aus den 3-Achsen:
 - X
 - Y
 - Z

 Und den Ursprungspunkt (oft durch O gekennzeichnet)

Vektoren

- Wir werden 2 Arten von Vektoren betrachten:
 - Richtungsvektoren: Generelle Vektoren mit einer Richtung und variabler Länge (durch Skalarproduktion)
 - Ortsvektoren: Positionsvektoren, absolut in ihrer Richtung und Länge
- Wir unterscheiden zwischen den Beiden arten mit der 4. Koordinate des Vektors (Ortsvektor = 1, Richtungsvektor = 0)

Richtungsvektoren

- Ein Richtungsvektor verfügt über eine Länge und eine Richtung (x,y,z)
- 3D-Vektoren werden als Tripel dargestellt, dabei gibt es zwei Darstellungsarten:
 - $\vec{v} = (x, y, z)$ (von mir verwendet)
- $\vec{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ (was ihr verwenden werdet)
 - Die Werte x,y,z bestimmen dabei die Richtung und auch indirekt die Länge des Vektors.

Richtungsvektoren (2)

• Ein Vektor wird bennant basierend auf der Richtung in welche er zeigt:

• Angenommen: Punkte O = (0,0,0), P = (1,2,3)
Dann ist
$$\overrightarrow{OP} = (1,2,3)$$
 und $\overrightarrow{PO} = (-1,-2,-3)$
(Die Richtung des Vektors unterscheidet sich)

•
$$\vec{v} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

• Wobei
$$P_2 = (x_2, y_2, z_2), P_1 = (x_1, y_1, z_1)$$

und $\overrightarrow{v} = \overrightarrow{P_1 P_2}$

Richtungsvektoren (3)

- Die Länge des Vektors $|\overrightarrow{v}|$ kann berechnet werden mit
 - $|\vec{v}| = \sqrt{(x^2 + y^2 + z^2)}$
- Dieses entspricht im wesentlichen nichts anderem als der Distanz zwischen zwei Punkten, da

$$\vec{v} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

und (d - Distanz zwischen zwei Punkten)

$$d = \sqrt{((x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2)}$$

Richtungsvektoren (4)

Vektoren können mit Skalaren multipliziert werden.
 Dadurch verändert sich lediglich ihre Länge, aber nicht ihre Richtung!

• Z.B. gegeben:
$$\vec{v} = (x, y, z)$$
, dann $2 * \vec{v} = (2x, 2y, 2z)$

 Vektoren können auch addiert werden. Hierdurch verändert sich ihre Länge und ihre Richtung (nächste Folie)

Richtungsvektoren (5)

 Vektoren können auch addiert und subtrahiert werden. Hierdurch verändert sich ihre Länge und Richtung

• Sei gegeben: $\vec{a} = (x, y, z)$, $\vec{b} = (w, v, u)$ dann ist $\vec{c} = \vec{a} + \vec{b} = (x + w, y + v, z + u)$

Richtungsvektoren (6)

- Existiert ein Punkt auf einem Vektor (oder auf seiner Verlängerung durch Skalarproduktion)?
 - z.B. beliebiger Punkt (a,b,c)?
- Angenommen Vektor \overrightarrow{v} 'startet' am Punkt (1,2,3)
- Gegeben $\overrightarrow{v} = (1,2,3) + \lambda(x, y, z) (\lambda skalar)$
- Der Punkt (a,b,c) liegt auf dem Vektor, genau dann wenn:
 - $1 + \lambda x = a$ und
 - $2 + \lambda y = b \text{ und}$
 - $3 + \lambda z = c$
- In anderen Worten: ein Punkt P liegt genau dann auf einem Vektor \overrightarrow{v} , welcher an einem Punkt O beginnt, wenn es eine Skalarproduktion λ gibt, mit welcher gilt:

Richtungsvektoren (7)

Der Skalar darf dabei auch eine Komma-Zahl sein, e.g. $0.5 * \overrightarrow{OP} = \overrightarrow{ON}$

• Vektor $\vec{v} = (0,0,0) + \lambda(1,2,3)$, punkt (3,6,9):

•
$$\overrightarrow{ON} = (1-0, 2-0, 3-0) = (1, 2, 3)$$

•
$$\overrightarrow{OP} = (3-0, 6-0, 9-0) = (3, 6, 9) = 3*(1, 2, 3) + (0,0,0)$$

Richtungsvektoren (7)

- Zwei Vektoren \vec{v} und \vec{u} stehen sich parallel gegenüber, wenn sie beide die gleiche Steigung haben, e.g. wenn es eine relle Zahl c gibt mit \vec{v} = $c*\vec{u}$:
 - $\vec{v} = (1,2,3)$ und
- $\vec{\mathbf{u}} = (2,4,6)$ sind parallel

• Zwei Vektoren \vec{v} und \vec{u} stehen sich senkrecht, wenn ihr gemeinsames Skalarprodukt 0 ergibt, e.g.:

•
$$\vec{v} = (3,4,0), \vec{u} = (-8,6,0)$$

$$\langle \vec{v} * \vec{u} \rangle = (3,4,0) * (-8,6,0) = 3*-8 + 4*6 + 0*0 = 0$$

Arbeitsblatt!

Beschreibe für beide Roboter die Position der Füße und des Kopfes, die Blockrichtung und die Richtung beider Arme als 4-D Vektoren in dem gezeigten Koordinatensystem.

Arbeitsblatt - Lösung!

	/-1.5	/-1		$\sqrt{-3}$
P. rechter		nker 0.3	3 \ P.	0
Fuß	\ 0.4 /' Fu	ıß		1.5
	\ 1 /	\ 1		\1/
/	1\	$/ 0.3 \setminus$		/1
Blick-	0 R. rechter	$\left(-0.2 \right)$	R. linker	1 1
Blick- richtung	0 / Arm	-1	Arm	0
\	0/	$\setminus 0$		\setminus_0

P. rechter
$$\begin{pmatrix} 2.3 \\ 0.3 \\ 0 \\ 1 \end{pmatrix}$$
, P. linker $\begin{pmatrix} 2.3 \\ -0.3 \\ 0 \\ 1 \end{pmatrix}$, R. rechter $\begin{pmatrix} 2.3 \\ 0 \\ 1 \end{pmatrix}$, R. rechter $\begin{pmatrix} -0.2 \\ 0 \\ -1 \\ 0 \end{pmatrix}$, R. linker $\begin{pmatrix} -0.2 \\ 0 \\ -1 \\ 0 \end{pmatrix}$, Arm $\begin{pmatrix} -0.2 \\ 0 \\ -1 \\ 0 \end{pmatrix}$

Bouncer!

```
helper ▼
  // Draws a checkerBoard with n*n tiles in the xy-plane
  // with center at the origin, where each tile (square)
  // is tileLength*tileLength. n must be even
  void drawCheckerboard(int n, float tileLength) {
   for (int i= -n/2: i < n/2: i++) {
     for (int j = -n/2; j < n/2; j++) {
                                                        Aus Vorlesung 10b
      float c = isOdd(i) == isOdd(j) ? 0 : 255;
      noStroke();
      fill(c):
      ambient(c);
      specular(255);
      beginShape(POLYGON): // Draw one checker square
      //vertex(new PVector(_____));
      //vertex(new PVector(_____));
                                                        Unter Seafile:
      //vertex(new PVector(_____);
      //vertex(new PVector(_____);
      endShape():
                                                     public/material/bounceredit.zip
  float cbWH = 50;
                    // width and height of the whole checkerboard
24 PVector ball:
                    // ball position
25 PVector ballV;
                    // ball velocity
  float ballR = 1; // ball radius
  PVector g ; // = new PVector( ); // gravitation
  void newBall() {
    //ball = ____;
    //ballV = ____;
34 void updateBall() {
   // Der Ball fliegt und fällt
   float deltaT = 1 / frameRate:
   // _____;
   // Der Ball springt und verschwindet hinter der Platte
  // if (_____ &&
  // 8.8.
       //--- CODE BELOW NOT TO BE EDITED -----//
```


Blatt E3 - Compositing

Abgabe bis zum <u>12.7</u>, <u>20:00</u> auf StudIP!

Übung E3: 3D Compositing

Einzelaufgabe, 11 Punkte, Abgabe 12,07,21, 20:00 in Stud, IP

Montiere das animierte Insekt aus ÜZ E2 in die vorgegebene Realweltszene.

- » Verwende die Realweltszene uebungElbis3-realweltclip.mp4.
- » Tracke die Kamerabewegung.
- » Passe Pose, Skalierung und Animation des Insektes so an, dass es in die Szene passt.
- » Ein Teil der realen Szene soll das Insekt verdecken.
- » Stelle die reale Lichtsituation sinnvoll realistisch nach.

Universität Bremen: Grundlagen der Medieninformatik 2

Übungsblätter

Abgabe Vorlage beachten!

- Erlaubte Dateien für Doku: PDF (KEIN DOC/DOCX!)
- Namen, Tutorium, Bearbeitungszeit angeben!
- Bennenungsschema Beachten:
 mi2_uebung#_nachname1_nachname2_nachname3
 .PDF/.ZIP
- Wenn von Hand geschrieben, sauber schreiben, gute Belichtung und vernünftiges Foto, <u>Druckschrift</u>!

Film!

Abgabe bis zum **28.6**, **20:00** auf StudIP!

Übung G3: Film

Gruppenaufgabe, 22 Punkte + 4 Punkte für Zwischenstand im Tutorium, Abgabe 28.06.21, 20:00 in Stud.IP

- » Produziert Euren Film nach Eurem Drehbuch und Storyboard
- » Der Film darf inkl. allem nichtlänger als 4:00 Minutensein und muss öffentlich zeigbar sein, d.h.urheberrechtlich einwandfrei und den allgemeinen Regeln des Anstands entsprechend.
- » Der Film muss einen sichtbaren Titel und einen Abspann mit Beteiligten haben.
- » Dies beinhalt insbesondere die Namensnennung von verwendeten CC-BY Medien im Abspann.

Das wars erstmal!

Bis nächste Woche!