Aula de **Big Data**

AULA07

TAREFAS

CLASSIFICAÇÃO

REGRESSÃO

Na classificação queremos: descobrir ou

descrever a classe de um fato.

A classe em uma relação está representada em um atributo especial, posicionado como último atributo da relação.

É a tarefa mais comum em mineração de dados

Tem como objetivo utilizar atributos de um objeto para determinar a qual classe ele pertence

Tenta prever à qual classe pertence uma nova instância

ID \$	Comprimento sépala	Largura \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Comprimento pétala	Largura pétala	Especie +			
1	5.1	3.5	1.4	0.2	I. setosa			
2	4.9	3.0	1.4	0.2	I. setosa			
3	4.7	3.2	1.3	0.2	I. setosa			
4	4.6	3.1	1.5	0.2	I. setosa			
5	5.0	3.6	1.4	0.3	I. setosa			
6	5.4	3.9	1.7	0.4	I. setosa			
7	4.6	3.4	1.4	0.3	I. setosa			
8	5.0	3.4	1.5	0.2	I. setosa			
9	4.4	2.9	1.4	0.2	I. setosa			
10	4.9	3.1	1.5	0.1	I. setosa			
11	5.4	3.7	1.5	0.2	I. setosa			
12	4.8	3.4	1.6	0.2	I. setosa			
13	4.8	3.0	1.4	0.1	I. setosa			
14	4.3	3.0	1.1	0.1	I. setosa			
15	5.8	4.0	1.2	0.2	I. setosa			
16	5.7	4.4	1.5	0.4	I. setosa			
17	5.4	3.9	1.3	0.4	I. setosa			
18	5.1	3.5	1.4	0.3	I. setosa			
19	5.7	3.8	1.7	0.3	I. setosa			
20	5.1	3.8	1.5	0.3	I. setosa			

Dados de Iris de Fisher

APRENDIZADO SUPERVISIONADO

São exemplos de algoritmos de classificação: árvores de decisão, classificação Bayesiana, classificação baseada em regras, máquinas de vetores suporte (support vector machines) e redes neurais.

A Matriz de Confusão é calculada pela função de pesquisa Classificação.

Ela exibe a distribuição dos registros em termos de suas classes atuais e de suas classes previstas.

Isso indica a qualidade do modelo atual.

Um modelo pode conter duas ou mais classes previstas.

Valor real Valor previsto	Positivo	Negativo	
Positivo	Verdadeiro Positivo (TP)	Falso Positivo (FP)	
Negativo	Falso Negativo (FN)	Verdadeiro negativo (TN)	

Valor real Valor previsto	Positivo		Negativo
Positivo	Verdadeiro Positivo (TP)		Falso Positivo (FP)
Negativo	Falso Negativo (FN)		Verdadeiro negativo (TN)

- Verdadeiros Positivos (TP) são observações cujo valor real é
 positivo e o valor previsto é positivo, isto é, o modelo acertou
- Verdadeiros Negativos (TN) são observações cujo valor real é negativo e o valor previsto é negativo, isto é, o modelo acertou

Valor real Valor previsto	Positivo	Negativo	
Positivo	Verdadeiro Positivo (TP)	Falso Positivo (FP)	
Negativo	Falso Negativo (FN)	Verdadeiro negativo (TN)	

- Falsos Positivos (FP) são casos em que o resultado correto é negativo entretanto o resultado obtido é positivo, isto é, o modelo errou
- Falsos Negativos (FN) são casos em que o resultado correto é positivo entretanto o resultado obtido é negativo, isto é, o modelo errou

Fase de treinamento: um algoritmo processa um conjunto de dados rotulados, gerando um modelo

REGRESSÃO 2000.

Objetivo:

Aqui, buscamos prever a classe de forma NUMÉRICA

Exemplos: Prever a altura de uma pessoa a partir do peso.

Busca prever um valor numérico contínuo.

A resposta desejada é um valor contínuo, e não um rótulo do tipo "sim/não"

São exemplos de algoritmos de regressão:

- regressão linear simples e múltipla
- regressão não linear simples e múltipla

Modelagem da relação entre variáveis numéricas.

Variável depentente **y** e variáveis explanatórias **x**

X

y

Temperatura, umidade e pressão do ar

Velocidade do vento

Gastos com cartão de crédito,
histórico de pagamentos

Limite de crédito

Idade

Custo plano de saúde

REGRESSÃO LINEAR SIMPLES

Apenas uma variável explanatória x

REGRESSÃO LINER SIMPLES

$$Y = b_0 + b_1 * x_1$$

Relação linear entre os atributos: quanto maior a idade, maior o custo $\mathbf{b_0}$ e $\mathbf{b_1}$ definem a localização da linha.

Qual a diferença entre cada uma

DADOS

Qual será a temperatura amanhã?

Vai fazer frio ou calor amanhã?

Regressão

Classificação