# Analysis I Skript

Rene Brandel, Rudolf Biczok, Cedric Jeah, Corvin Paul, Arbnore Salihi und Konstantin Zangerle

13. Dezember 2013

# Inhaltsverzeichnis

| 1 | Gru | ndlagen |                                             | 7  |
|---|-----|---------|---------------------------------------------|----|
|   | 1.1 | Menge   | n                                           | 7  |
|   |     | 1.1.1   | Syntax                                      | 7  |
|   |     | 1.1.2   | Satz 1: "Naiver" Mengenbegriff nach Cantor  | 8  |
|   |     | 1.1.3   | Potenzmenge von M                           | 8  |
|   |     | 1.1.4   | Satz 2: Funktionen                          | 8  |
|   |     | 1.1.5   | Satz 3: Graph                               | 8  |
|   |     | 1.1.6   | Funktionsraum                               | 8  |
|   |     | 1.1.7   | Bild                                        | 8  |
|   |     | 1.1.8   | Urbild                                      | 9  |
|   |     | 1.1.9   | Eigenschaften von Funktionen                | 9  |
|   |     |         | Umkehrabbildung / Umkehrfunktion            | 9  |
|   |     | 1.1.11  | Komposition                                 | 9  |
|   |     | 1.1.12  | Identität                                   | 10 |
|   |     | 1.1.13  | Restriktion und Fortsetzung                 | 10 |
|   | 1.2 | Indukt  | ion                                         | 10 |
|   |     | 1.2.1   | Satz 4: Prinzip der vollständigen Induktion | 11 |
|   |     | 1.2.2   | Satz 5: Beweis durch vollständige Induktion | 11 |
|   |     | 1.2.3   |                                             | 13 |
|   |     | 1.2.4   | Quantoren                                   | 14 |
|   | 1.3 | Wohlo   | rdnungsprinzip für $\mathbb N$              | 14 |
|   |     | 1.3.1   | Satz 6                                      | 14 |
|   |     | 1.3.2   | Satz 7                                      | 15 |
|   |     | 1.3.3   | Satz 8                                      | 15 |
|   | 1.4 | Körpe   |                                             | 15 |
|   |     | 1.4.1   |                                             | 16 |
|   |     | 1.4.2   | Satz 14                                     | 17 |
|   |     | 1.4.3   |                                             | 18 |
|   |     | 1.4.4   |                                             | 18 |
|   |     | 1.4.5   | Min- und Max-Funktion                       | 18 |
|   |     | 1.4.6   | Folgerungen                                 | 18 |
|   |     | 1.4.7   | Satz 15: Dreiecksungleichung                | 18 |
|   |     | 1.4.8   | Satz 16: Abstandsungleichung                | 19 |
|   | 1.5 | Obere   | und untere Schranken, Supremum und Infimum  | 19 |
|   |     | 1.5.1   | Obere und Untere Schranken                  | 19 |
|   |     | 152     | Maximum und Minimum                         | 20 |

#### In halts verzeichn is

|   |      | 1.5.3   | Definition 18: Supremum, Infimum                   |
|---|------|---------|----------------------------------------------------|
|   |      | 1.5.4   | Lemma 19                                           |
|   |      | 1.5.5   | Definition 20: Vollständigkeitsaxiom               |
|   |      | 1.5.6   | Die Menge $\bar{\mathbb{R}}$                       |
|   |      | 1.5.7   | Intervalle                                         |
|   |      | 1.5.8   | Supremum und Infimum der leeren Menge              |
|   | 1.6  | Definit | tion von $\mathbb N$ als Teilmenge von $\mathbb R$ |
|   |      | 1.6.1   | Definition 21                                      |
|   |      | 1.6.2   | Satz 21: Induktionsprinzip                         |
|   |      | 1.6.3   | Satz 22                                            |
|   |      | 1.6.4   | Satz 23                                            |
|   | 1.7  | Ganze   | und rationale Zahlen                               |
|   |      | 1.7.1   | Satz 24                                            |
|   |      | 1.7.2   | Korollar 26                                        |
|   | 1.8  | Endlic  | che und abzählbare Mengen                          |
|   |      | 1.8.1   | Definition 27 (Cantor)                             |
|   |      | 1.8.2   | Definition 28                                      |
|   |      | 1.8.3   | Satz 29                                            |
|   |      | 1.8.4   | Satz 31                                            |
|   |      | 1.8.5   | Korollar 32                                        |
|   |      | 1.8.6   | Satz 33                                            |
|   |      | 1.8.7   | Lemma 34 (Cantor)                                  |
|   |      | 1.8.8   | Korollar 36                                        |
|   | 1.9  | Einfac  | he Folgerung aus Induktion                         |
|   |      | 1.9.1   | Satz 37 (Bernoulli)                                |
|   |      | 1.9.2   | Definition 38                                      |
|   |      | 1.9.3   | Lemma 39                                           |
|   |      | 1.9.4   | Binomischer Lehrsatz                               |
| 2 | Folg | gen und | l Konvergenz 31                                    |
|   | 2.1  | Definit | tion 1                                             |
|   | 2.2  | Definit | tion 2: Konvergenz:                                |
|   |      | 2.2.1   | Satz 3                                             |
|   |      | 2.2.2   | Lemma 4                                            |
|   |      | 2.2.3   | Satz 5: Rechenregeln für Limes                     |
|   |      | 2.2.4   | Satz 6                                             |
|   |      | 2.2.5   | Satz 7: Sandwich Theorem                           |
|   | 2.3  | Diverg  | gente Folge                                        |
|   |      | 2.3.1   | Definition 8                                       |
|   |      | 2.3.2   | Rechenregeln                                       |
|   | 2.4  | Monot   | tone Folgen                                        |
|   |      | 2.4.1   | Definition 9                                       |
|   |      | 2.4.2   | Satz 10 (Monotone Konvergenz)                      |
|   |      | 9.49    | Koreller 11                                        |

|   |      | 2.4.4   | Korollar 12 (Rekursive Berechnung von $\sqrt{a}$              |      |
|---|------|---------|---------------------------------------------------------------|------|
|   |      | 2.4.5   | Korollar 13                                                   | . 40 |
|   | 2.5  | Teilfol | lgen und Häufungswerte                                        | . 41 |
|   |      | 2.5.1   | Definition 14: (Teilfolgen, Umordnung)                        | . 41 |
|   |      | 2.5.2   | Lemma 15                                                      | . 41 |
|   |      | 2.5.3   | Definition 16 Häufungswert                                    |      |
|   |      | 2.5.4   | Satz 17 (Bolzano - Weierstraß für Folgen)                     | . 42 |
|   |      | 2.5.5   | Lemma 18                                                      | . 42 |
|   |      | 2.5.6   | Korollar 9: Balzano-Weierstraß für Folgen II                  | . 43 |
|   | 2.6  | Asym    | ptotisches Verhalten von reellen Folgen (lim sup und lim inf) | . 44 |
|   |      | 2.6.1   | Definition 20                                                 | . 45 |
|   |      | 2.6.2   | Satz 21                                                       | . 45 |
|   | 2.7  | Das C   | Cauchy-Kriterium für Konvergenz                               | . 47 |
|   |      | 2.7.1   | Satz 23: Cauchy Kriterium                                     | . 47 |
|   |      | 2.7.2   | Lemma 24                                                      |      |
|   |      | 2.7.3   | Lemma 25: Jede Chauchyfolge ist beschränkt                    | . 49 |
|   | 2.8  | Einsch  | nub Komplexe Zahlen                                           | . 49 |
|   |      | 2.8.1   | Summe:                                                        |      |
|   |      | 2.8.2   | Produkt:                                                      | . 50 |
|   |      | 2.8.3   | Definition von Komplexe Zahlen                                | . 50 |
|   |      | 2.8.4   | Spezielle Komplexe Zahlen                                     |      |
|   |      | 2.8.5   | Komplex Konjugieren                                           |      |
|   |      | 2.8.6   | Komplexwertige Folge                                          |      |
|   |      | 2.8.7   | Satz                                                          | . 52 |
|   |      | 2.8.8   | Korollar                                                      |      |
|   |      | 2.8.9   | Korollar                                                      | . 53 |
|   |      |         |                                                               |      |
| 3 | Reil |         |                                                               | 55   |
|   | 3.1  | Defini  | tion und elementare Eigenschaften                             |      |
|   |      | 3.1.1   | Definition 1                                                  | . 55 |
|   |      | 3.1.2   | Cauchy-Kriterium                                              | . 56 |
|   |      | 3.1.3   | Satz 2: Cauchy-Kriterium für Konvergenz von Reihen            |      |
|   |      | 3.1.4   | Korollar 3                                                    |      |
|   |      | 3.1.5   | Korollar 4: Die harmonische Reihe ist divergent               | . 58 |
|   |      | 3.1.6   | Satz 5                                                        | . 58 |
|   |      | 3.1.7   | Satz 6                                                        | . 60 |
|   |      | 3.1.8   | Korollar 7                                                    | . 60 |
|   | 3.2  | Altern  | nierende Reihen                                               | . 60 |
|   |      | 3.2.1   | Satz 8: Leibniz-Konvergenzkriterium                           | . 61 |
|   |      | 3.2.2   | Ultimative Version von Leibniz                                | . 62 |
|   |      | 3.2.3   | Satz 9 (Ultimativer Leibniz)                                  | . 62 |
|   | 3.3  | Monot   | tone Reihen                                                   |      |
|   |      | 3.3.1   | Satz 10                                                       |      |
|   |      | 3.3.2   | Korollar 11                                                   | . 63 |
|   |      |         |                                                               |      |

#### In halts verzeichn is

|     |      | 3.3.3   | Satz 12                                              | 34 |
|-----|------|---------|------------------------------------------------------|----|
|     |      | 3.3.4   | Satz 13: Cauchyscher Verdichtungssatz 6              | 64 |
|     |      | 3.3.5   | Anwendungen des Cauchyschen Verdichtungskriteriums 6 | 55 |
|     | 3.4  | Absolu  | ıt konvergente Reihen                                | 55 |
|     |      | 3.4.1   | Def 14                                               | 35 |
|     |      | 3.4.2   | Satz 15                                              | 55 |
|     |      | 3.4.3   | Def 16                                               | 55 |
|     |      | 3.4.4   | Satz 17 Majorantenkriterium                          | 66 |
|     |      | 3.4.5   | Satz 18 Wurzelkriterium                              | 66 |
|     |      | 3.4.6   | Satz 19 Quotientenkriterium                          | 66 |
|     | 3.5  | Dezim   | aldarstellung reeller Zahlen                         | 57 |
|     | 3.6  | Umore   | lnung von Reihen                                     | 8  |
|     |      | 3.6.1   | Definition 20                                        | 8  |
|     |      | 3.6.2   | Satz 21 (Dirchlet 1837)                              | 69 |
|     |      | 3.6.3   | Satz 22: Rieman                                      | 72 |
|     | 3.7  | Produ   | kt von Reihen                                        | 72 |
|     |      | 3.7.1   | Satz 23                                              | 72 |
|     |      | 3.7.2   | Lemma 24                                             | 74 |
|     |      | 3.7.3   | Satz 25                                              | 74 |
| 3.8 |      | Def 33  | k                                                    | 7  |
|     | 3.9  | Satz 3  | 4 Eigenschaften von exp                              | 78 |
| 4   | Stet | ige Fui | nktionen 7                                           | 9  |
|     | 4.1  |         |                                                      | 79 |
|     |      | 4.1.1   | Def 1: Abschluss in einer Menge                      | 79 |
|     |      | 4.1.2   | Def 2: Grenzwert einer Funktion                      | 79 |

# 1 Grundlagen

# 1.1 Mengen

Angaben von Mengen durch Aufzählungen  $M = \{a, b, c\}$  oder  $M = \{Kirche, Dorf\}$  bekannte Mengen:

- $\bullet~\emptyset$ leere Menge
- $\mathbb{N} = \{1, 2, 3, \ldots\}$  natürliche Zahlen
- $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$  ganze Zahlen
- $\mathbb{Q} = \left\{ \frac{m}{n} | m \in \mathbb{Z}, n \in \mathbb{N} \right\}$  Rationale Zahlen

Achtung:  $\{\emptyset\}$  hat ein Element (nämlich die leere Menge)!

# 1.1.1 Syntax

- $x \in M$  x ist Element von M
- $x \notin M$  x ist nicht Element von M
- $M \subset N$  M ist Teilmenge von N d.h. für alle  $x \in M$  ist auch  $x \in N$  Achtung: Bei  $M \subset N$  ist auch M = N möglich Immer:  $\emptyset \subset M$ ,in jeder Menge
- $\bullet \ \ M=N:M\subset N\wedge N\subset N$
- Vereinigungsmenge:  $M \cup N := \{x | x \in M \land x \in N\}$
- Disjunktion: M und N sind disjunkt wenn  $M \cap N = \emptyset$
- Schnittmenge:  $M \cap N := \{x | x \in M \lor x \in N\}$
- Differenz:  $M \setminus N := \{x | x \in M \land x \notin N\}$
- Produktmenge:  $M \times N := \{(x,y) | x \in M, y \in N \}$  $M_1 \times M_2 \times \ldots \times M_n := \{\underbrace{(x_1,x_2,\ldots,x_n)}_{\text{n-Tupel}} : x_j \in M_j, j = 1,\ldots,n \}$

## 1.1.2 Satz 1: "Naiver" Mengenbegriff nach Cantor

"Unter einer 'Menge' verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die 'Elemente' von M genannt werden) zu einem Ganzen."

## 1.1.3 Potenzmenge von M

$$2^{M} = \mathcal{P}(M) := \{A | A \subset M\}$$
  
immer:  $M \in \mathcal{P}(M), \emptyset \in \mathcal{P}(M)$   
Beispiel  $\mathcal{P}(\emptyset) = \{\emptyset\}$ 

#### 1.1.4 Satz 2: Funktionen

Eine Funktion oder Abbildung  $f: x \to y$  besteht aus einem Definitionsbereich X und einer Abbildungsvorschrift, die jedem  $x \in X$  genau ein Element  $y \in Y$  zuordnet.

**Notation** 
$$y = f(x)$$
, erfordert auf  $x \mapsto f(x)$ 

$$f: X \to Y$$
  
 $x \mapsto f(x)$ 

#### Beispiel

$$f: \mathbb{N} \to \mathbb{N}$$
$$x \mapsto f(x) = 2x$$

#### 1.1.5 Satz 3: Graph

```
Sei f: X \to Y eine Funktion Graph(f) = G(f) = \{(x, f(x)) : x \in X\} G(f) \subset X \times Y Zwei Funktionen f_1: X \to Y, f_2: X \to Y sind gleich, wenn G(f_1) = G(f_2). D.h. falls f_1(x) = f_2(x) für alle x \in X.
```

#### 1.1.6 Funktionsraum

$$Y^X = Abb(X, Y) =$$
 Menge aller Funktionen  $f: X \to Y$ 

#### 1.1.7 Bild

```
Wenn A \subset X: f(A) := \{y \in Y : \text{ Es gibt ein } x \in A : y = f(x)\} = \{f(x) : x \in A\} Bild von A (unter f)
```

## 1.1.8 Urbild

Wenn 
$$B \subset Y$$
  
 $f^{-1}(B) := \{x \in X : f(x) \in B\}$   
Urbild von  $B$  (unter  $f$ )

# 1.1.9 Eigenschaften von Funktionen

$$f(X)$$
 ist das Bild von  $f$   
 $f: X \to Y$  ist:

**injektiv:** falls aus 
$$x_1, x_2 \in X$$
 und  $f(x_1) = f(x_2) \implies x_1 = x_2$ .

surjektiv: falls 
$$f(X) = Y$$
.

bijektiv: falls surjektiv und injektiv zugleich.

# 1.1.10 Umkehrabbildung / Umkehrfunktion

Ist  $f: X \to Y$  bijektiv, so existiert zu jedem  $y \in Y$  genau ein  $x \in X$  mit y = f(x). Die Inverse zu f ist die Funktion:

$$f^{-1}: Y \to X$$
  
 $y \mapsto \text{ Urbild von } Y \text{ unter } f$ 

#### Beispiel

$$f: \mathbb{N} \to \mathbb{N}$$
$$x \mapsto 2x$$

$$f^{-1}(\{3\}) = \emptyset$$
  
 $\rightarrow$  ist nicht bijektiv

 $P: N \to \text{gerade natürliche Zahlen}$ 

$$f: P(\mathbb{N}) \to P(\mathbb{N})$$
$$x \mapsto 2x$$

 $\rightarrow$  ist bijektiv

$$f^{-1}(y)=\frac{y}{2}\in\mathbb{N},y=$$
gerade natürliche Zahl.

#### 1.1.11 Komposition

Sei 
$$f:X\to Y,g:W\to Z$$
 mit  $f(X)\subset W$   $h:=g\circ f$  ( $g$  ist verknüpft mit  $f$ )  $h(x):=(g\circ f)(x):=g(f(x))$ 

## 1 Grundlagen

#### 1.1.12 Identität

$$id_M: M \to M$$
  
 $x \mapsto x$ 

Sei:  $f: M \to N$  bijektiv, dann gilt:

- 1.  $f^{-1}: N \to M$  existiert
- $2. f^{-1} \circ f = id_M$
- 3.  $f \circ f^{-1} = id_N$

# 1.1.13 Restriktion und Fortsetzung

Seien  $f:X\to Y$  und  $g:X\to A$  Funktionen und  $A\subset X$   $g=f|_A$  heißt Restriktion (oder Einschränkung) von f auf A:

$$g := f|_A : A \to Y$$
$$x \mapsto f(x)$$

 $f|_A := g$  heißt Fortsetzung von g auf X:

$$f|_A := g : X \to Y$$
  
 $x \mapsto g(x)$ 

Beispiel

$$g:[0,\infty)\to[0,\infty)$$
  
 $x\mapsto x^2$ 

$$f: (-\infty, \infty) \to [0, \infty)$$
  
 $x \mapsto x^2$ 

# 1.2 Induktion

Sei 
$$\mathbb{N} = \{1, 2, 3, \ldots\} \ \mathbb{N}_0 = \mathbb{N} \cup \{0\}$$

## 1.2.1 Satz 4: Prinzip der vollständigen Induktion

Eine Teilmenge  $M \subset \mathbb{N}$  erfülle:

- a) (IA: Induktionsanfang)  $1 \in M$ .
- b) (IS: Induktionsschritt/Induktionsschritt) Falls  $k \in M$  ist, demnach ist auch  $k+1 \in M$

dann ist  $M = \mathbb{N}$ .

**Beispiel** Aussage: Für alle  $n \in \mathbb{N}$ 

$$A(n) = 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$$

$$M:=\{n\in\mathbb{N}:A(n)\text{ ist wahr }\}\subset\mathbb{N}$$

Wissen:  $1 \in M$ , da A(1) wahr ist

Annahme:

$$k \in M \Longrightarrow A(k)$$
 ist wahr

$$A(k+1): 1+2+\ldots+k+(k+1) = \frac{(k+1)(k+2)}{2}$$

$$\underbrace{1+2+\ldots+k}_{\frac{k(k+1)}{2}}+(k+1)=\frac{k(k+1)}{2}+(k+1)=\frac{(k+1)(k+2)}{2}$$

 $\implies k+1 \in M$  falls  $k \in M$  ist! also wegen Satz 4:  $M = \mathbb{N}!$ 

#### 1.2.2 Satz 5: Beweis durch vollständige Induktion

Für alle  $n \in \mathbb{N}$  seien Aussagen A(n) gegeben. Ferner sei:

- (IA) A(1) ist wahr.
- (IS) Unter der Annahme, dass für ein  $k \in \mathbb{N}$  die Aussage A(k) wahr ist, ist dann auch A(k+1) wahr
- (IS) Aus A(n) wahr für n=k folgt A(n) wahr für n=k+1Dann ist A(n) wahr f+r alle  $n \in \mathbb{N}$

#### Beweis

Setze man 
$$M:=\{n\in\mathbb{N}:A(n) \text{ wahr }\}$$
  $M\subset\mathbb{N}$ 

1. Wegen (IA)  $1 \in M$ 

2. Wegen (IS) sei  $k \in M$ , also A(k) wahr, also A(k+1) wahr, also  $k+1 \in M$ 

Wegen Satz 4 fertig!

Beispiel Summen und Produkte

Seien  $a_1, \ldots, a_n$  Zahlen

**Definition:** Teilsumme

$$S_k$$
 durch  $S_1 := a_1$ 

$$f \ddot{\mathbf{u}} \mathbf{r} \ k \in \mathbb{N} : S_{k+1} := S_k + a_{k+1}$$

Setze 
$$a_1 + \ldots + a_n = \sum_{i=1}^n a_i := S_n$$

 $\rightarrow$  Beispiel für eine rekursive Definition

**Definition:** Produkte

$$p_1 := a_1$$

$$p_{k+1} := p_k \cdot a_{k+1}$$

$$a_1 \cdot \ldots \cdot a_n = \prod_{j=1}^n a_j := p_n$$

$$a^n = \underbrace{a \cdot \dots \cdot}_{\text{n-mal}} := \prod_{j=1}^n a$$

Setzen:

$$\sum_{j=1}^{0} a_j := 0 \qquad \prod_{j=1}^{0} a_j := 1 \qquad a^0 = 1$$

Beispiel Geometrische Summe

Sei 
$$a \neq 1, n \in \mathbb{N}_0$$

$$\Longrightarrow \sum_{j=0}^{n} a^j = \frac{a^{n+1} - 1}{a - 1}$$

Beweis 1: Induktion

(IA) hier 
$$n=0$$

$$\sum_{i=0}^{0} a^{0} = 1 = \frac{a^{1} - 1}{a - 1}$$

(IS) Wir nehmen an, dass für  $k \in \mathbb{N}$  die Formel für n = k wahr ist.

$$\sum_{j=0}^{k} a^j = \frac{a^{k+1} - 1}{a - 1}$$

IS auf n=k+1

$$\sum_{j=0}^{k+1} a^j = \sum_{j=0}^k a^j + a^{k+1}$$

In duktions annahme

$$= \frac{a^{k+1} - 1}{a - 1} + a^{k+1} = \frac{a^{k+1} - 1 + (a - 1)a^{k+1}}{a - 1}$$
$$= \frac{a^{k+2} - 1}{a - 1}$$

Beweis 2: Ohne Induktion

$$S_n := \sum_{j=0}^n a^j$$

$$\implies a \cdot S_n = a \cdot \sum_{j=0}^n a^j = \sum_{j=0}^n a \cdot a^j = \sum_{j=0}^n a^{j+1} = \sum_{j=1}^{n+1} a^j$$

$$\implies a \cdot S_n - S_n = \sum_{j=1}^{n+1} a^j - \sum_{j=0}^{n+1} a^j = a^{n+1} - a^0 = a^{n+1} + 1$$

$$\Longrightarrow (a-1)S_n = a^{n+1} + 1 \Longrightarrow S_n = \frac{a^{n+1} + 1}{a-1}$$

1.2.3 Notation: Aussagen

Seien A, B, C, D mathematische Aussagen **Syntax** 

•  $\neg A$ : nicht A

•  $A \wedge B$ : A und B

•  $A \vee B$ : A oder B

•  $A \Longrightarrow B$ : A impliziert B, aus A folgt B

 $\bullet$   $A \iff$ : A äquivalent zu B, A genau dann, wenn B

### 1 Grundlagen

#### Beispiel

- $(A \Longleftrightarrow B) \Longleftrightarrow ((A \Longrightarrow B) \land (B \Longrightarrow A))$
- $(A \Longrightarrow B) \Longleftrightarrow (\neg B \Longrightarrow \neg A)$

#### 1.2.4 Quantoren

Oft enthalten Aussagen eine freie Variable **Beispiel** 

- A(x): x ist eine Primzahl
- $A(n): \sum_{j=1}^{n} j = \frac{n(n+1)}{2}$

Dann gehört eine Grundmenge U, sodass A(x) eine mathematische Aussage ist von  $x \in U$ Syntax:

- $\exists$  es gibt
- $\bullet \ \forall$  für alle
- $\exists x \in U : A(x) : \text{es gibt ein Element } x \in U, \text{ sodass } A(x) \text{ wahr ist.}$
- $\forall x \in U : A(x) : A(x)$  ist wahr für alle x.

# 1.3 Wohlordnungsprinzip für N

Wir wollen beweisen  $\forall n \in \mathbb{N} : A(x)$  wahr ist **Negation:** 

$$\neg(\forall n \in \mathbb{N} : A(x)) = \exists n \in \mathbb{N} : \neg A(x)$$

$$\neg(\exists n \in \mathbb{N} : \neg A(x)) = \forall n \in \mathbb{N} : \neg(\neg A(x)) = A(x)$$

**Also:**  $G = \{n \in \mathbb{N} : \neg A(n)\}$  müssen zeigen, dass  $G = \emptyset$ 

#### 1.3.1 Satz 6

Sei  $A \subset \mathbb{N}, A \neq \emptyset$ , dann hat A ein kleinstes Element! D.h.  $\exists n_0 \in A$  mit  $\forall k \in A : k \geq n_0$ 

#### 1.3.2 Satz 7

 $\sqrt{2}$  ist nicht rational.

**Angenommen:**  $\sqrt{2}$  ist rational  $\Longrightarrow \exists m \in \mathbb{Z}, n \in \mathbb{N}, \sqrt{2} = \frac{m}{n}$ 

 $G := \left\{ n \in \mathbb{N} : \exists m \in \mathbb{Z} : \sqrt{2} = \frac{m}{n} \right\} \subset \mathbb{N}$ 

Wollen:  $G = \subset$ 

**Angenommen:**  $G \neq \emptyset \Longrightarrow G$  hat ein kleinstes Element (Satz 6)

 $\sqrt{2} = \frac{m}{n_0}$ : dann sist  $m - n_0 = (\sqrt{2} - 1)n_0 \Longrightarrow 0 < m - n_0 < n_0$  also  $m - n_0 \in \mathbb{N}$ 

 $\implies \sqrt{2} = \frac{m}{n_0} = \frac{m(m - n_0)}{n_0(m - n_0)} = \frac{m^2 - m \cdot n_0}{n_0(m - n_0)} = \frac{2n_0^2 - m \cdot n_0}{n_0(m - n_0)} = \frac{2n_0 - m}{m - n_0}$ Also hat G kein kleinstes Element  $\implies G = \emptyset$ 

#### 1.3.3 Satz 8

 $K \in \mathbb{N}$ , damit  $\sqrt{k} \subset \mathbb{N}$  oder irrational

Beweis

**Negation:**  $\sqrt{k} \notin \mathbb{N}$  und  $\sqrt{k}$  ist rational

Annahme:  $\sqrt{k} \in G \backslash \mathbb{N}$ 

$$G:=\left\{n\in\mathbb{N}:\exists m\in\mathbb{Z}:\sqrt{k}=\tfrac{m}{n}\right\}\subset\mathbb{N}$$

Wollen:  $G = \emptyset!$ 

**Angenommen** 
$$G \neq \emptyset$$
. Sei  $n_0$  kleinstes Element in  $G$ 

$$\sqrt{k} = \frac{m}{n_0} = \frac{m(m-n_0)}{n_0(m-n_0)} = \frac{m^2 - m \cdot n_0}{n_0(m-n_0)} = \frac{k \cdot n_0^2 - m \cdot n_0}{n_0(m-n_0)} = \frac{k \cdot n_0 - m}{m-n_0}$$

$$\implies k > 1$$

Für Widerspruch brauchen wir:

$$0 < m - n_0 < n_0$$

$$m - n_0 = \sqrt{k} \cdot n_0 - n_0 = (\sqrt{k} - 1)n_0 > 0, \sqrt{k} > 1$$

$$m - n_0 = (\sqrt{k} - 1)n_0 < n_0$$

D.h. 
$$\sqrt{k} - 1 < 1 \Longrightarrow \sqrt{k} < 2 \Longrightarrow k < 4$$

$$k \leq 3 \Longrightarrow (\text{Bullshit})$$

Versuchen mal 
$$m-l\cdot n_0, l\in\mathbb{N}$$
 geeignet  $\sqrt{k}=\frac{m}{n_0}=\frac{m(m-l\cdot n_0)}{n(m-l\cdot n_0)}=\frac{k\cdot n_0-l\cdot n_0}{n(m-l\cdot n_0)}, k\cdot n_0-l\in\mathbb{Z}$ 

**Brauchen:**  $0 < m - l \cdot n_0 < n_0 \iff 0 < (\sqrt{k} - l)n_0 < n_0$ 

**Brauchen:**  $0 < \sqrt{k} - l < 1$ , wähle  $l \in \mathbb{Z}$ , sodass  $l < \sqrt{k} < l + 1$ 

sollte möglich sein, falls  $\sqrt{k} \notin \mathbb{N}$ 

# 1.4 Körper- und Anordnungsaxiomen

Beispiel 0 ist eindeutig! Sei 0' auch neutrales Element der Addition

$$\implies 0 = 0' = 0$$
  
 $0 = 0 + 0' = 0' + 0 = 0'$   
 $0' + 0 = 0'$ 

### 1 Grundlagen

**Beispiel** a + x = b hat eine eindeutige Lösung x = b + (-a) = b - a

Sei 
$$a + x = b \Longrightarrow (-a) + (a + x) = (-a) + b$$
  
 $\Longrightarrow ((-a) + a) + x = b + (-a)$   
 $\Longrightarrow 0 + x = b + (-a)$ 

Wenn x = b + (-a)

$$\implies a + x = a + (b + (-a)) = b + ((-a) + a)$$
  
=  $b + (a + (-a))$   
=  $b + 0 = b$ 

In jedem Körper gilt:

$$\frac{a}{c} + \frac{b}{d} = \frac{ad + bc}{cd}$$

$$\frac{a}{c} \cdot \frac{b}{d} = \frac{ab}{cd}$$

$$\frac{\frac{a}{c}}{\frac{b}{d}} = \frac{ad}{bc}$$

#### 1.4.1 Satz 13

Sei  $\mathbb{K}$  ein angeordneter Körper,  $a,b,c,d,x,y\in\mathbb{K}$  Dann gilt:

1. 
$$a > b \iff a - b > 0$$

2. 
$$a > b \land c > b \Longrightarrow a + c > b + a$$

3. 
$$a > 0 \land x > y \Longrightarrow ax > ay$$

$$4. \ a > 0 \Longleftrightarrow -a < 0$$

5. Vorzeichenregeln:

a) 
$$x > 0; y < 0 \Longrightarrow xy < 0$$

b) 
$$a < 0; x > y \Longrightarrow ax < ay$$

#### Beweis

1. Sei 
$$a > b \Longrightarrow a - b = a + (-b) > b + (-b) = 0$$
  
Sei  $a - b > 0 \stackrel{(O4)}{\Longrightarrow} a = b + (a - b) > b$ 

2. Sei 
$$a > b, c > d \xrightarrow{(O4)} a + c > b + d$$
 und  $b + c > b + d \xrightarrow{(O1)} a + c > b + d$ 

3. Sei 
$$a > 0, x > y \stackrel{\text{(1.)}}{\Longrightarrow} x - y > 0 \stackrel{\text{(05)}}{\Longrightarrow} a(x - y) > 0$$

$$\Longrightarrow ax - ay > 0 \Longrightarrow ax > ay$$

4. Aus 
$$a > 0 \stackrel{(O4)}{\Longrightarrow} (-a) = (-a) + 0 < (-a) + a = 0$$
  
Aus  $a < 0 \stackrel{(O4)}{\Longrightarrow} (-a) + a < 0 + a = a$ 

5. Folgt aus (4) und (O5)

 $\Longrightarrow$  fertig.

#### 1.4.2 Satz 14

Sei  $(\mathbb{K}, +, \cdot)$  ein angeordneter Körper  $\Longrightarrow$ 

1. 
$$a \neq 0 \Longrightarrow a^2 > 0$$
 insbesondere  $1 > 0$ 

2. 
$$a > 0 \Longrightarrow \frac{1}{a} > 0$$

3. 
$$a > b > 0 \Longrightarrow \frac{1}{a} < \frac{1}{b}$$
 und  $\frac{a}{b} > 1$ 

#### **Beweis**

1. 
$$a^2 = a \cdot a$$
  
aus  $a > 0 \xrightarrow{(O5)} a^2 = a \cdot a > 0$   
aus  $a < 0 \xrightarrow{(S15(5))} a \cdot a > 0$ 

2. Sei 
$$a \neq 0 \Longrightarrow a \cdot \frac{1}{a} = 1 > 0 \stackrel{(S1(5))}{\Longrightarrow} a > 0 \land \frac{1}{a} > 0$$
 oder  $a < 0 \land \frac{1}{a} > 0$ 

3. Sei 
$$a > b > 0 \Longrightarrow \frac{1}{a} > 0; \frac{1}{b} > 0; a \cdot b > 0; a - b > 0(S13(1))$$
$$\Longrightarrow \frac{1}{b} - \frac{1}{a} = \frac{1}{b}(a - b)\frac{1}{a} = (a - b)\frac{1}{b} \cdot \frac{1}{a} > 0$$

Vorliegende Definition: Die  $\mathbb{R}$  sind ein geordneter Körper (da fehlt noch was)

#### 1.4.3 Absolutbetrag

$$|x| = \begin{cases} x, & \text{falls } x > 0\\ 0, & \text{falls } x = 0\\ -x, & \text{falls } x < 0 \end{cases}$$

# 1.4.4 Signumfunktion / Vorzeichenfunktion

$$sign(x) = \begin{cases} 1, & \text{falls } x > 0 \\ 0, & \text{falls } x = 0 \\ -1, & \text{falls } x < 0 \end{cases}$$

#### 1.4.5 Min- und Max-Funktion

$$max(x,y) = \begin{cases} x, & \text{falls } x > y \\ y, & \text{falls } y \ge x \end{cases}$$
$$min(x,y) = \begin{cases} x, & \text{falls } x < y \\ y, & \text{falls } y \le x \end{cases}$$

#### 1.4.6 Folgerungen

1. 
$$\forall x \in \mathbb{R}; x = |x| sgn(x)$$
  
 $|-x| = |x|; x \le |x|$ 

2. 
$$\forall x \neq 0 : |x| > 0$$

3. 
$$\forall x, y \in \mathbb{R} : |x \cdot y| = |x| \cdot |y|$$
  
 $sgn(x \cdot y) = sgn(x) \cdot sgn(y)$ 

4. 
$$\forall x \in \mathbb{R}, \forall e > 0$$
  
hat  $|x - a| < e \iff a - e < x < a + e$   
insbesondere  $|x| < e \iff -e < x < e$ 

5. TODO: Stimmt das so? 
$$|x| = max(x, -x)$$
  
Beweis: einfach

#### 1.4.7 Satz 15: Dreiecksungleichung

$$\forall a, b \in \mathbb{R} : |a+b| \le |a|+|b|$$
$$||a|-|b|| \le |a-b|$$

**Beweis** 

Falls 
$$a + b \ge 0 \Longrightarrow |a + b| = a + b \le |a| + b \le |a| + |b|$$

Falls 
$$a + b < 0 \Longrightarrow -(a + b) > 0 \Longrightarrow |a + b| = -(a + b)$$
  
=  $(-a) + (-b) \le |-a| + (-b) \le |-a| + |-b| = |a| + |b|$   
 $|a| = |(a - b) + b| \le |a - b| + |b| \Longrightarrow |a| - |b| \le |a - b|$ 

Vertausche a und b

$$|b| - |a| \le |b - a| = |-(a - b)| = |a - b| = -(|a| - |b|)$$
  
 $\implies ||a| - |b|| = max(|a| - |b|, -(|a| - |b|) \le |a - b|$ 

fertig

# 1.4.8 Satz 16: Abstandsungleichung

 $\forall a, b, c \in \mathbb{R} : d(a, c) \le d(a, b) + d(b, c)$ Beweis

$$d(a,c) = |a - c| = |(a - b) + (b - c)| \le |a - b| + |b - c|$$
$$= d(a,b) + d(b,c)$$

fertig

# 1.5 Obere und untere Schranken, Supremum und Infimum

#### 1.5.1 Obere und Untere Schranken

Sei  $A \subset \mathbb{K}$ ,  $\mathbb{K}$  ein geordneter Körper.

A heißt nach oben beschränkt falls  $\exists \alpha \in \mathbb{K}, \forall a \in A : a \leq \alpha$ .

**Schreiben**  $A \leq \alpha$ .  $\alpha$  heißt obere Schranke von A.

A heißt nach unten beschränkt falls  $\exists \beta \in \mathbb{K}, \forall a \in A : \beta \leq a$ 

Schreiben  $\beta \leq A$ .  $\beta$  heißt untere Schranke von A

#### 1.5.2 Maximum und Minimum

Aheißt maximales Element (oder Maximum) von A<br/>, falls  $\alpha$ obere Schranke für Aist und <br/>  $\alpha \in A$ 

Aheißt minimales Element (oder Minimum) von A<br/>, falls  $\beta$ untere Schranke für Aist und<br/>  $\beta \in A$ 

Beweis Falls Maximum existiert, dann ist es eindeutig. Genauso für das Minimum.

B. H.A

$$A = \{x \in \mathbb{R}, x > 0\}, \inf(A) = 0$$

A hat kein Minimum, da  $0 \notin A$ 

$$B = \{x : x < 0\}, \sup(B) = 0$$

# 1.5.3 Definition 18: Supremum, Infimum

 $A \subset \mathbb{R}, A \neq \emptyset$ 

 $\sup(A) = \sup A := \text{kleinste obere Schranke von } A$ 

 $\inf(A) = \inf A := \text{größte untere Schranke von } A$ 

#### 1.5.4 Lemma 19

Sei  $\alpha$  eine obere Schranke für  $A \neq \emptyset$ . Dann gilt

$$\alpha = \sup(A) \iff \forall \epsilon > 0 \exists a_{\epsilon} \in A : \alpha - \epsilon < a_{\epsilon} \pmod{\alpha - \epsilon} \leq a_{\epsilon}$$

#### **Beweis**

Sei  $\alpha = \sup(A)$  und  $\epsilon > 0 \Longrightarrow \alpha - \epsilon$  ist keine obere Schranke für A.

Also 
$$\exists a_{\epsilon} \in A : \alpha - \epsilon < a_e \sqrt{\phantom{a_e}}$$

"←" Beweis durch Kontraposition.

N.B.: 
$$(E \Longrightarrow F) \Longleftrightarrow (\neg F \Longrightarrow \neg E)$$

$$\neg(\alpha = \sup(A)) = \alpha > \sup(A)$$

$$\neg(\forall \epsilon > 0 \exists a_{\epsilon} \in A : \alpha - \epsilon < a_{\epsilon})$$

$$\exists \epsilon > 0 \ \forall a_{\epsilon} \in A : \alpha - \epsilon \ge a_{\epsilon}$$

Annahme:  $\alpha > \sup(A)$ 

Wählen:  $\epsilon := \alpha - \sup(A)$ 

**Damit gilt:**  $\forall a \in A : a \leq \sup(A) = \alpha - \epsilon$ 

# 1.5.5 Definition 20: Vollständigkeitsaxiom

Die reellen Zahlen  $\mathbb{R}$  sind der angeordnete Körper in dem jede nicht leere Menge die nach oben beschränkt ist ein Supremum hat.

Oder:  $\mathbb{R}$  ist der ordnungsvollständige Körper.

## Beispiel

$$\sup(\{x\in\mathbb{R},x<0\})=0$$

$$\sup(\{x \in \mathbb{R}, x^2 < 2\})$$
 hat ein Suprenum (später: das Suprenum ist  $\sqrt{2}$ )

# 1.5.6 Die Menge $\bar{\mathbb{R}}$

Die Menge $\bar{\mathbb{R}}:=\mathbb{R}\cup\{\infty\}\cup\{-\infty\}$ erweitert die Zahlengerade

Es gilt:  $-\infty < x < \infty \forall x \in \mathbb{R}$ 

Regeln:

$$\bullet \ \infty + x := \infty$$

$$\bullet$$
  $-\infty + x := -\infty$ 

• 
$$\infty \cdot x := \infty, \quad x > 0$$

• 
$$\infty \cdot x := -\infty, \quad x < 0$$

• 
$$\frac{x}{\infty} := 0 = \frac{x}{-\infty}$$

• 
$$\infty + \infty := \infty$$

$$\bullet \ -\infty -\infty := -\infty$$

$$\bullet \ \infty \cdot \infty := \infty$$

• 
$$\infty \cdot (-\infty) := -\infty$$

#### Nicht definiert:

$$\bullet \infty - \infty$$

• 
$$0 \cdot \infty$$

#### 1.5.7 Intervalle

- $a \le b$   $[a, b] := \{x \in \mathbb{R} : a \le x \le b\}$  abgeschlossenes Intervall
- $a \le b$   $(a, b) := \{x \in \mathbb{R} : a < x < b\}$  offenes Intervall
- $[a,b) := \{x \in \mathbb{R} : a \le x < b\}$  rechts halboffenes Intervall
- $(a,b] := \{x \in \mathbb{R} : a < x \le b\}$  links halboffenes Intervall
- $(-\infty, a] := \{x \in \mathbb{R} : x \le a\}$
- $\bullet \ (-\infty, a) := \{ x \in \mathbb{R} : x < a \}$
- $[a, \infty) := \{x \in \mathbb{R} : x \ge a\}$
- $(a, \infty) := \{x \in \mathbb{R} : x > a\}$

**Beweis**  $\sup([a,b]) = \sup([a,b)) = b$ , falls a < bWenn eine Menge A ein Maximum hat  $\Longrightarrow$  Supremum ist gleich dem Maximum

# 1.5.8 Supremum und Infimum der leeren Menge

Setzen:

$$\sup(\emptyset) := -\infty$$
$$\inf(\emptyset) := +\infty$$

# 1.6 Definition von $\mathbb N$ als Teilmenge von $\mathbb R$

#### 1.6.1 Definition 21

Eine Menge  $A \subset \mathbb{R}$  heißt induktiv falls:

- 1.  $1 \in A$
- 2. Falls  $k \in A$ , dann ist  $k + 1 \in A$

#### Beispiel

 $A = [1, \infty)$  ist induktiv.

 $A := \{1\} \cup [1+1,\infty)$  ist induktiv

 $\mathbb{N} :=$  kleinste induktive Teilmenge von  $\mathbb{R}$ 

$$:= \bigcap_{A \text{ist induktiv}} A \qquad \qquad \text{A ist induktiv}$$

#### 1.6.2 Satz 21: Induktionsprinzip

Ist  $M \subset \mathbb{N}$ , mit

- $1.\ 1\in M$
- 2. Aus  $k \in M$  folgt  $k+1 \in M$

$$\iff M = N$$

## 1.6.3 Satz 22

- 1)  $\forall n \in \mathbb{N} : n \ge 1$  oder  $n \le 1 + 1$  und n = 1 oder  $n 1 \in \mathbb{N}$
- 2)  $\forall n, m \in \mathbb{N} : n + m \in \mathbb{N} \text{ und } n \cdot m \in \mathbb{N}$
- 3)  $\forall n, m \in \mathbb{N} n \ge m \implies n m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$
- 4) Sei  $n \in \mathbb{N}$  Dann existiert kein  $m \in \mathbb{N}$  mit n < m < n + 1
- 5) Sei  $A \subset \mathbb{N} : A \neq \emptyset \implies A$  hat ein kleinstes Element

**Beweis** Sei  $\tilde{A}=\{1\}\cup[2,\infty)$  ist induktiv  $\implies \mathbb{N}\subset B \implies n=1$  oder  $n\geq 2$ 

- $a_1$ )  $1 \in A : klar$
- $a_2$ )  $1+1 \in A : klar$
- $b ) \text{ Sei } k \in A, k \neq 1 \implies 1 \leq k-1 \in \mathbb{N}$   $\text{folgt } 1+1 \leq (k-1)+1=k \in \mathbb{N}$   $\text{und } (k+1)-1=k \geq 1+1 \geq 1 \implies k+1 \in A$   $\implies A \subset \mathbb{N} \text{ ist induktiv } \implies A=\mathbb{N} \implies 1)$

 $B:=\{n\in\mathbb{N}: \text{für } m\in\mathbb{N} \text{ mit } m\leq n \implies n-m\in\mathbb{N}_0$ 

- a )  $1\in B,$  da  $m\in \mathbb{N}$  und  $m\leq 1\underbrace{\Longrightarrow}_{1)}m=1\implies n-m=1-1=0$
- b) Sei  $k \in B$  und  $m \in \mathbb{N}$  mit  $m \le k+1$

Falls 
$$m = 1 \implies (k+1) - 1 = k \in \mathbb{N} \implies k+1 \in B$$

Falls 
$$1 < m \in \mathbb{N} \implies m - 1 \in \mathbb{N} \text{ (da } A = \mathbb{N})$$

$$\implies \mathbb{N}_0 \ni k - (m-1) = (k+1) - m \implies k+1 \in B$$

- $\implies B \text{ ist induktiv } \implies B = \mathbb{N} \implies 3)$
- 2) Gegeben:  $m \in \mathbb{N} : C := \{n \in \mathbb{N} | n + m \in \mathbb{N}\}$

Zeige C ist induktiv!

Für  $m \cdot n$  analog

4) Aus  $n, m \in \mathbb{N}$  und n < m < n + 1  $\longrightarrow 0 < m - n < 1 (4 \text{ gu } 1)$ 

$$\implies 0 < \underbrace{m-n}_{\in \mathbb{N} \text{ nach 3}} < 1 \ (\mbox{$\frac{\ell}{4}$ zu 1$}))$$

- **5)** Sei  $M \subset \mathbb{N}$ , ohne ein kleinstes Element
  - $\implies$  1 ist kleinste Element von  $\mathbb{N}$   $\implies$  1  $\notin$  M

 $D := \{n \in \mathbb{N} : n < M\} = \{n \in \mathbb{N} : \forall m \in M : n < m\}$  Wissen:

- **a)**  $1 \in D$
- **b)** Sei  $k \in D$  d.h.  $k < m \forall m \in M$

$$\implies D \text{ ist induktiv} \implies D = \mathbb{N} \implies M \subset \mathbb{N} \setminus D = \mathbb{N} \setminus M = \emptyset \text{ (q.ed)}$$

1.6.4 Satz 23

 $\mathbb{R}$  ist Archimedisch angeordnet  $\mathbb{N} \subset \mathbb{R}$  ist <u>nicht</u> nach oben beschränkt insbesondere  $\forall a>0, b\in \mathbb{R} \exists n\in \mathbb{N}: n\cdot a>b$ 

**Beweis** 

Angenommen  $\mathbb{N}$  ist nach oben beschränkt  $\underset{vollst.Axiom}{\Longrightarrow} a = Sup\mathbb{N} \in \mathbb{R}$ 

$$\implies \alpha - 1$$
 ist keine obere Schranke für  $\mathbb{N}$ 

$$\implies \exists n \in \mathbb{N}, n > \alpha - 1 \iff \underbrace{n + 1}_{\in \mathbb{N}} > \alpha \not$$

Wähle 
$$x = \frac{b}{a} \in \mathbb{R} \implies \exists n \in \mathbb{N} : n > x = \frac{b}{a} \underbrace{\Longrightarrow}_{a>0} n \cdot a > b \text{ (q.ed)}$$

# 1.7 Ganze und rationale Zahlen

$$\mathbb{Z} := \mathbb{N}_0 \cup (-\mathbb{N}), -\mathbb{N} := \{-n, n \in \mathbb{N}\}$$

$$\mathbb{Q} := \{\frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N}\}$$

#### 1.7.1 Satz 24

 $(\mathbb{Z},+,\cdot)$  ist ein kommutativer Ring mit Eins, d.h. alle Körperaxiome sind erfüllt. Aber es gibt kein inverses Element der Multiplikation.  $(\mathbb{Q},+,\cdot)$  ist ein angeordneter Körper.

Beweis Nachrechnen

#### Notation

$$\mathbb{Z}_p := \{ m \in \mathbb{Z} : m \ge p \}$$
$$p \in \mathbb{Z} := p + \mathbb{N}_0$$

#### Alle

 $k \mapsto k + p - 1$  bildet  $\mathbb{N}$  bijektiv auf  $\mathbb{Z}_p$  ab.

- $\Rightarrow$  Alle Eigenschaften von  $\mathbb{N}$  gelten auch für  $\mathbb{Z}_p \forall p \in \mathbb{Z}$
- $\Rightarrow$  Lemma 25: Jede nach unten bzw. oben beschränkte Teilmenge  $\neq \emptyset$  von  $\mathbb Z$  besitzt ein Minumum bzw. ein Maximum

#### 1.7.2 Korollar 26

- 1) Seien  $x, y \in \mathbb{R}, y \cdot x > 1$  $\implies m \in \mathbb{Z}, x < m < y$
- 2) ( $\mathbb{Q}$  ist dicht in  $\mathbb{R}$ ) Seien  $x, y \in \mathbb{R}, x < y \implies \exists r \in \mathbb{Q} : x < r < y$

#### **Beweis**

- 1) Sei y x > 1,  $A := \{m \in \mathbb{Z} : m > y\} \neq \emptyset$   $\implies$  Sei  $n_0 = min(A)$  existiert  $\in \mathbb{Z}$   $\implies n_0 \in A : n_0 \ge y \text{ und } n_0 - 1 < y$   $m := n_0 - 1 \in \mathbb{Z} \text{ und } m + 1 \ge y, n < y$  $\implies m > y - 1 > x \implies x < m < y$
- 2) Sei  $x, y \in \mathbb{R} : x < y \iff a : -y x > 0$ S.23  $\implies \exists n \in \mathbb{N} : n \cdot a > 1 \iff n \cdot x - n \cdot y > 1$  $\implies \exists m \in \mathbb{Z} : n \cdot x < m < n \cdot y \iff x < \frac{m}{n} < y$

# 1.8 Endliche und abzählbare Mengen

#### 1.8.1 Definition 27 (Cantor)

A, B Mengen heißen gleichmächtig (oder äquivalent)  $A \sim B$ , falls es eine Bijektion  $f:A \to B$  gibt.

B heißt mächtiger als A,  $|A| \leq |B|$ , falls es eine Injektion  $f: A \to B$  gibt.

#### Bemerkung

- 1)  $A \sim B$  ist eine Äquivalenzrelation, d.h. reflexiv  $(A \sim A)$ , symmetrisch  $(A \sim B) \implies B \sim A$  und transitiv  $(A \sim B, B \sim C) \implies A \sim C$
- 2)  $A \leq \mathbb{R} \iff \exists \text{ Surjektion } h: B \to B$

3) (Cantor) Bernsten-Schröder-Theorie  $|A| \leq |B|$  und  $|B| \leq |A| \iff A \sim B$ 

#### 1.8.2 Definition 28

Sei 
$$n \in \mathbb{N}_0[0] := \emptyset$$
 und rekursiv  $[n+1] = [n] \cup [n+1]$  ( $\implies ([n] := \{k \in \mathbb{N} : 1 \le k \le n\})$ 

#### **Endlich**

Eine Menge A heißt endlich, falls  $\exists n \in \mathbb{N}_0 \text{ mit } A \sim [n]$ , sage A hat n Elemente card(A) := n (Kardinalität)

 $card\emptyset = 0$  Eine Menge A ist unendlich, falls sie nicht endlich ist.

A heißt abzählbar (abzählbar unendlich), falls  $A \sim \mathbb{N}$ 

A ist höchstens abzählbar, falls A endlich ist oder abzählbar ist, ansonsten heißt sie überabzählbar.

#### **Bemerkung**

- 1) A höchstens abzählbar  $\iff \exists$  Surjektion  $f: \mathbb{N} \to A$
- 2) Unendliche Mengen sind schwierig

$$G = \{n \in \mathbb{N} : \text{n ist gerade}\} = \{2 \cdot n : n \in \mathbb{N}\}$$
  
 $f : \mathbb{N} \to G, n \mapsto 2n \text{ ist bijektiv, d.h. } \mathbb{N} \sim G$ 

- 3) Hilberts Hotel
- 4)  $[0,1] \sim [0,1)$

Beweis Konstruieren 
$$f:[0,1] \to [0,1)$$
  
Für  $x \in [0,1] \setminus (\bigcup_{n \in \mathbb{N}} \{\frac{1}{n}\}) : f(x) = x$   
 $n \in \mathbb{N} : f(\frac{1}{n}) := \frac{1}{n+1}$  Rechne nach f ist bijektiv!

#### 1.8.3 Satz 29

- 1)  $A \sim [n], A \sim [m] \implies n = m$  (d.h. Kardinalität ist eindeutig)
- 2) ist  $A \in B, B$  endlich  $\implies A$  endlich
- 3) A, B endlich und disjunkt  $\implies card(A \cup B) = (cardA + cardB)$

#### **Beweis**

1) 
$$\Longrightarrow$$
  $[n] \sim [m]$  durch Induktion  $\Longrightarrow$   $n=m$   
Fall  $n=1$  (CHECK!)  
 $n \to n+1$ : IA  $\tilde{\phi}:[n] \to [m]$   
bijektiv  $\Longrightarrow$   $n=m$ 

- 2) Sei  $\phi: [n+1] \to [m+1]$  Bijektion: Durch Vertauschen von 2 Elementen kann man erreichen, dass  $\phi(n+1) = m+1 \implies \phi|_{[n]}: [n] \to [n]$  bijektiv  $\implies n = m \implies m+1 = m$  (WTF?) (q.ed)
- 3) Beweis der Induktion: einfach.
- 4) Sei  $A \sim [n], b \sim [m] \implies B \sim m + [n] := \{k \in \mathbb{N} : n+1 \le k \ leq m + n\} \implies A \cup B \sim [n] \cup (m+[n]) = [n+m]$

#### Lemma 30

Jede endliche Teilmenge von  $\mathbb R$  hat ein Minimum und ein Maximum

Beweis 
$$A = \{a_1\}$$

Ist 
$$A = \{a_1, a_{n+1}\}$$
 und  $C := min\{a_1, a_n\} \implies minA = min(C, a_{n+1})$ 

# 1.8.4 Satz 31

- 1) Ist A < B, B höchstens abzählbar  $\implies A$  höchstens abzählbar
- 2) Jede unendliche Menge besitzt eine abzählbare Teilmenge
- 3) A, B abzählbar  $\implies A \times B$  abzählbar insbesondere  $\mathbb{N} \times \mathbb{N}$  abzählbar
- 4) Sei  $\{A_k\}$  eine höchstens abzählbare Menge von Menge  $A_3, A_2$  höchstens abzählbar  $\implies \bigcap_k A_k$  ist höchstens abzählbar

#### Beweis

- 1) O.B.d.A  $B = \mathbb{N}$ , also  $A \subset \mathbb{N}$   $\implies A$  hat ein kleinstes Element  $a_1$   $\implies A\{a_1\}$  hat ein kleinstes Element  $a_2$ usw... ist  $A_n = \emptyset \implies A$  ist endlich, ansonsten  $A = \{a_1, a_2, a_3, \ldots\}$ Bijektion  $f : \mathbb{N} \to A, n \mapsto a_n \implies A$  ist abzählbar
- 2) ist A unendlich  $\Longrightarrow$  wähle  $a_1 \in A$   $a_2 \in A \setminus \{a_1\} =: A_1$  induktiv  $a_{n+1} \in A_n := A_{n+1} \setminus \{a_n\}$  $\Longrightarrow \{a_1, a_2, \ldots\}$  abzählbar
- 3) Da  $A\sim \mathbb{N}, B\sim \mathbb{N} \implies$  reicht zu zeigen  $\mathbb{N}\times \mathbb{N}$  ist abzählbar, da  $\mathbb{N}\times \mathbb{N}$  unendlich ist  $\implies$  zu zeigen  $\mathbb{N}\times \mathbb{N}$
- 4) ist höchstens abzählbar

$$\phi(m,n) = 2^m \cdot 3^n$$

 $\phi: \mathbb{N} \times \mathbb{N} \implies \mathbb{N}$  ist injektiv

In der Tat: Sei  $\phi(m,n) = \phi(p,q)$ 

#### 1 Grundlagen

d.h. 
$$2^m \cdot 3^n = 2^p \cdot 3^q$$
  
o.B.d.A  $p \ge m$   
 $\implies 3^n = 2^{p-m} \cdot 3^q$   
 $\implies p = m$   
 $\implies n = q$ 

5) Schreiben 
$$A_k = \{a_{kn} : \underbrace{1 \leq n \leq P_k}_{endlich}, P_k \in \mathbb{N} \text{ oder } \underbrace{1 \leq n \in \mathbb{N}}_{unendlich}\}$$

Falls  $A_k$  paarweise disjunkt sind. Dann erzeugt diese Nummerierung von  $A_k$  eine Injektion.

$$a_{kn}\mapsto (kn)$$
von  $A=\bigcup_{k\in I}A_k\to \mathbb{N}\times \mathbb{N}\leftarrow \mathbf{abz\ddot{a}hlbar}$ 

sind  $A_k, k \in I$  nicht paarweise disjunkt:

$$B_1 = A_1, B_2 = A_2 \backslash A_1,$$

$$B_{n+1} = A_{n+1} \setminus \{A_1 \cup A_2 \cup \ldots \cup A_n\}$$

 $\implies B_k$ sind paarweise disjunkt und höchstens abzählbar

 $\implies \bigcup_k A_k$  ist höchstens abzählbar

#### 1.8.5 Korollar 32

G ist abzählbar

Beweis 
$$\mathbb{G} = \{\frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N}\}$$
 ,C"  $\{(m,n), m \in \mathbb{Z}, n \in \mathbb{N}\}$ 

#### Bemerkung

Es gibt eine explizite Abbildung von  $\mathbb Q$  mittels eines Baumes. Literatur: Neil Calkin, Herbert Will: Recounting the Rationals

#### 1.8.6 Satz 33

A enthalte mindestens 2 Elemente  $\implies A^{\mathbb{N}} = \{f : \mathbb{N} \to A\}$  überabzählbar

# 1.8.7 Lemma 34 (Cantor)

Sei A eine Menge  $\implies$  Es existiert <u>keine</u> surjektive Abbildung  $f:A\to P(A)$  **Beweis** Sei  $f:A\to P(A)$  d.h.  $\forall x\in A:2(x)\subset A$   $B:=\{x\in A:x\notin f(x)\}\subset A$  wäre f surjektiv

$$\implies \exists x \in A, f(x) = B$$

1. Fall: 
$$x \in B = f(x) \implies x \notin f(x) \notin$$

2. Fall: 
$$x \notin B = f(x) \implies x \in B = f(x) \notin$$
  
  $\implies$  f ist nicht surjektiv!

#### 1.8.8 Korollar 36

Sei 
$$I := [a, b]$$
, oder  $(a, b) \subset \mathbb{R}$   $a < b \implies I$  ist überabzählbar   
Beweis Skalieren  $\implies$  o.B.d.A.  $a = 0, b = 1$  zu  $f \in \{0, 1\}^{\mathbb{N}}$ 

#### Dezimalbruchentwicklung:

$$x_f := \sum_{n=1}^{\infty} f(n) \cdot 10^{-n} \in [0, 1]$$

beachte:  $f_1 + f_2 \implies xf_1 + xf_2$ 

# 1.9 Einfache Folgerung aus Induktion

## 1.9.1 Satz 37 (Bernoulli)

 $\forall x \in \mathbb{N}, x > -1 \mid (1+x)^n \geq 1 + nx$  und Ungleichung ist strikt (d.h. > gilt, falls  $n \ge 2, x \ne 0$ 

**Beweis** IA 
$$n = 0 \mid (1+x)^0 = 1 + 0x$$

Im Ange. gilt: 
$$(1+x)^k > 1+kx$$

Beweis IA 
$$n = 0 \mid (1+x)^0 = 1 + 0x$$
  
Im Ange. gilt:  $(1+x)^k \ge 1 + kx$   
 $implies(1+x)^{k+1} = (1+x)^k \cdot \underbrace{(1+x)}_{>0} \ge (1+kx)(1+x)$ 

$$= 1 + (k+1)x = 1 + (k+1)x + kx^{2} \ge 1 + (k+1)x$$

#### 1.9.2 Definition 38

$$\begin{array}{l} 0!=1\\ n\in\mathbb{N}_0|(n+1)!:=n!(n+1)\\ \text{d.h. } n!=1\cdot2\cdot3\ldots n)\\ 0\leq k\leq n|\binom{n}{k}:=\frac{k!}{k!(n-k)!} \text{ Binominialkoeffizient} \end{array}$$

#### 1.9.3 Lemma 39

$$1 \le k \le n$$

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

**Beweis** 

$$\binom{n}{k-1} + \binom{n}{k} = \frac{(k-1)!}{(k-1)!(n-k-1)!} + \frac{k!}{k!(n-k)!}$$
$$= \frac{kn! + (n-1-k)n!}{k!(n+1-k)!} = \binom{n+1}{k}$$

#### 1.9.4 Binomischer Lehrsatz

 $\forall a, b \in \mathbb{R} \text{ oder } a, b \in \mathbb{K} \text{ (K\"{o}rper) } \forall n \in \mathbb{N}_0$ 

$$(a+b)^n = \sum_{l=0}^n \binom{n}{l} a^{n-l} b^l$$
  
=  $a^n + \binom{n}{1} a^{n-1} b^1 + \binom{n}{2} a^{n-2} b^2 + \dots + \binom{n}{n-1} a b^{n-1} + b^n$ 

**Beweis** a = 0 klar,  $a \neq 0, a + b)^n = a^n (1 + \frac{b}{a})^n$   $\implies$  zu Zeigen:

$$(1+x)^n = \sum_{l=0}^n \binom{n}{l} x^l$$

a) n = 0

$$(1+x)^0 = 1 = \sum_{l=0}^{0} {0 \choose l} x^l$$

b) Induktionsannahme für n = k gilt:

$$(1+x)^{k+1} = \sum_{l=0}^{k} {k \choose l} x^{l} + \underbrace{\sum_{l=0}^{k} {k \choose l} x^{l+1}}_{\sum_{l=1}^{k+1} {k \choose l-1} x^{l}}$$

$$\binom{k}{0} + \sum_{l=1}^{k} \binom{k}{l} x^{l} + \sum_{l=1}^{k} \binom{k}{l-1} x^{l} + x^{k+1}$$

$$1 + \sum_{l=1}^{k} \underbrace{\left(\binom{k}{l} + \binom{k}{l-1}\right)}_{=\binom{k+1}{l}} x^{l} + x^{l+1}$$

# 2 Folgen und Konvergenz

 $(a_1, a_2 \dots a_n) \ a_n$  Zahlen

# 2.1 Definition 1

Eine (reelle) Folge ist eine Funktion  $f: \mathbb{N} \to \mathbb{R}, n \mapsto f(n) =: a_n$ 

#### **Notation:**

$$a_n = f(n), (a_n)_{n \in \mathbb{N}}, (a_n)_n$$

#### Bemerkung:

$$(a_n)_n$$
 ist nicht  $\{a_1, a_2, \ldots\}$  z.B.  $a_n = 1 \implies \{a_1, a_2, \ldots\} = \{1\}$ 

# 2.2 Definition 2: Konvergenz:

Sei  $(a_n)_n$  eine Folge reellen Zahlen  $(a_n)_n$  konvergiert gegen  $L \in \mathbb{R}$ Genau dann, wenn:  $\forall \epsilon > 0 \exists k_{\epsilon} \in \mathbb{N} : \forall n \geq k_{\epsilon} : |a_n - L| < \epsilon$ Schreiben

$$a_n \to L, n \to \infty$$
, oder  $a_n \to L$ 

$$\lim_{n \to \infty} a_n = L, \lim a_n = L$$

 $(a_n)_n$  ist divergent, wenn sie nicht konvergiert.

#### Alternative Definitionen

$$(\forall \epsilon > 0 \exists k_{\epsilon} \in \mathbb{N} : \forall n \geq k_{\epsilon} : |a_{n} - L| < \epsilon)$$

$$\iff (\forall \epsilon > 0 \exists k_{\epsilon} \in \mathbb{N} : \forall n \geq k_{\epsilon} : |a_{n} - L| \leq \epsilon)$$

$$\iff \left( \forall l \in \mathbb{N} \exists k_{\epsilon} \in \mathbb{N} : \forall n \geq k_{\epsilon} : |a_{n} - L| < \frac{1}{l} \right)$$

$$\iff \left( \forall l \in \mathbb{N} \exists k_{\epsilon} \in \mathbb{N} : \forall n \geq k_{\epsilon} : |a_{n} - L| \leq \frac{1}{l} \right)$$

#### Beispiel

#### 2 Folgen und Konvergenz

1. Konstante Folge 
$$a_n = a$$

$$\forall n \quad a_n \to a$$

Sei 
$$\epsilon \geq 0$$

setze 
$$k_{\epsilon} = 1 \implies |a_n - a| = |a - a| = 0 < \epsilon$$

$$\forall n \geq 1$$

2. 
$$\lim_{n\to\infty}\frac{1}{x}=0$$
 Da $\mathbb{N}\subset\mathbb{R}$ unbeschränkt sind (Satz 1,23)

$$\implies$$
 Für  $\epsilon > 0 \exists k_{\epsilon} \in \mathbb{N}, k_{\epsilon} > \frac{1}{\epsilon}$ 

$$\implies$$
 Für  $n \ge k_{\epsilon} : |\frac{1}{n} - 0| = \frac{1}{n} \le \frac{1}{k_{\epsilon}} < \epsilon$ 

3. 
$$(a_n)_n$$
,  $(a_n) = (-1)^n$  divergent.

**Angenommen:** Es konvergiert,  $\implies \exists L \in \mathbb{R}$ 

$$\forall \epsilon > 0 : \exists k_{\epsilon} : |a_n - L| < \epsilon \quad \forall n \ge k_{\epsilon}$$

2 Fälle:  $L \ge 0$  und L < 0.

Fall 
$$L\geq 0$$
: nehme  $\epsilon=\frac{1}{2}$  und  $k_{\frac{1}{2}}\in\mathbb{N}: \forall n\geq k_{\frac{1}{2}}: |a_n-L|<\frac{1}{2}$ 

Ist *n* ungerade und  $\geq k_{\frac{1}{2}}$ 

$$\implies \frac{1}{2} > |a_n - L| = |-1 - L| = 1 + L \ge 1 > \frac{1}{2}$$

Fall 
$$L<0$$
: nehmen  $\epsilon=\frac{1}{2}, k_{\frac{1}{2}}: |a_n-L|<\frac{1}{2} \quad \forall n\geq k_{\frac{1}{2}}$ 

Ist n gerade

$$\implies \frac{1}{2} > |a_n - L| = |1 - L| = 1 - L > 1$$



Abbildung 2.1: Zeichnung zu 2.

4. 
$$a > 0 \implies \lim_{n \to \infty} a^{\frac{1}{n}} = 1$$
 Siehe Übung

5. 
$$\lim_{n\to\infty}n^{\frac{1}{n}}=1$$
 Siehe Übung

6. Sei 
$$q \in \mathbb{R}, |q| < 1$$

$$\implies \lim_{n \to \infty} q^n = 0$$

$$\implies \frac{1}{|q|} > 1 \implies h := \frac{1}{|q|} - 1 > 0$$

Sei  $\epsilon > 0$ : Aus Bernoulli:

$$|q|^{-n} = (1+h)^n \ge 1 + n \cdot h > n \cdot h > \frac{1}{\epsilon}$$

für 
$$n > \frac{1}{\epsilon \cdot h} =: k_{\epsilon}$$

$$\implies |q^n - 0| = |q^n| = |q|^n < \frac{1}{n \cdot h} < \epsilon$$

für alle  $n > \frac{1}{\epsilon \cdot h}$ 

# 7. $\forall q \in \mathbb{R}, |q| < 1, p \in \mathbb{N}$

$$\lim_{n\to\infty} n^p \cdot q^n = 0$$

Beweis O.B.d.A  $a \neq 0$ 

$$h := \frac{1}{|q|} - 1$$

$$\implies |q|^{-n} = (1-h)^n = \sum_{k=0}^n \binom{n}{k} h^k$$

$$\begin{aligned} & \operatorname{Sei}\left[n > 2p\right] > \binom{n}{p+1}h^k \\ & = \frac{n!}{(p+1)!(n-p-1)!}h^{p+1} \end{aligned}$$

$$=\frac{n!}{(p+1)!(n-p-1)!}h^{p+1}$$

$$\underbrace{n \cdot (n-1) \cdot \ldots \cdot (n-p)}_{p+1 \text{ Faktoren}} \cdot \underbrace{\frac{h^{p+1}}{(p+1)!}}$$

$$p+1$$
 rando.  
 $p+1$   $hp+1$ 

$$> \left(\frac{n}{2}\right)^{p+1} \frac{h^{p+1}}{(p+1)!}$$

$$\implies |p|^n < (\frac{2}{h})^{p+1} \frac{(p+1)!}{h^{p+1}}$$

$$\implies n^p |q|^h < \frac{2^{p+1}(p+1)!}{h^{p+1}} \cdot \frac{1}{n}$$

Sei  $\epsilon > 0$  wähle  $k_{\epsilon} \in \mathbb{N}$ ,

$$k_{\epsilon} > \max\left(2p, \tfrac{h^{p+1}}{2^{p+1}(p+1)!} \cdot \tfrac{1}{\epsilon}\right)$$

$$\implies |n^p \cdot q^n - 0| = n^p |q|^n < \epsilon \quad \forall n > k_{\epsilon}$$

Notation Sei  $n \in \mathbb{N}$ , A(n) Aussagen.

Wir sagen A(n) ist wahr für fast alle n, falls  $\exists k \in \mathbb{N} : A(n)$  ist wahr  $\forall n \geq k$ 

(Oder: A(n) ist wahr bis auf endlich viele n)

**Beispiel**  $\lim a_n = L \iff \forall \epsilon > 0 : |a_n - L| < \epsilon$  für fast alle n

 $\iff \forall \epsilon > 0 \text{ sind fast alle } a_n \text{ in einer } \epsilon\text{-Umgebung von } L.$ 

#### 2.2.1 Satz 3

1. Sei  $(a_n)_n$  eine konvergente Folge, dann ist der Grenzwert eindeutig!

**Beweis** 

**Angenommen**  $a_n \to L$  und  $a_n \to R, L \neq R$ 

#### 2 Folgen und Konvergenz



Abbildung 2.2: Zeichnung zum Beweis

$$\begin{split} L < R \quad \epsilon &:= \frac{R-L}{2} > 0 \\ \text{Dann gilt: } \exists k_1 \in \mathbb{N} : |a_n - L| < \epsilon \quad \forall n \geq k_1 \\ \exists k_2 : |a_n - R| < \epsilon \quad \forall n \geq k_2 \\ &\Longrightarrow n \geq \max(k_1, k_2) : a_n - L > \epsilon \text{ und } a_n - R < \epsilon \\ &\Longrightarrow a_n < L + \epsilon = L + \frac{R-L}{2} = \frac{R+L}{2} \\ &= R - \epsilon < a_n \not \xi \end{split}$$

2. Sei  $(a_n)_n$  eine konvergente Folge, dann ist sie beschränkt, d.h.  $\exists M \in [0,\infty): |a_n| \leq M \forall n \in \mathbb{N}$ 

#### **Beweis**

Sei 
$$\epsilon = 1 \implies \exists k_1 \in \mathbb{N} : |a_n - L| < 1 \text{ und } n \ge k_1$$

$$\implies |a_n| = |a_n - L + L| \le |a_n - L| + |L| < |L| + 1$$

$$\implies M := \max(|a_1|, |a_2|, \dots, |a_{k_1}|, |L| + 1)$$

$$\implies |a_n| \le M \quad \forall n \in \mathbb{N}!$$

#### 2.2.2 Lemma 4

Sein 
$$(a_n)_n$$
,  $(b_n)_n$  Folgen  $a_n \to L$ ,  $a_n - b_n \to 0$  (WORT?!?  $a_n - b_n$  ist eine Nullfolge) **Beweis**

Typisches  $\frac{\epsilon}{2}$  Argument

Sei 
$$\epsilon > 0 \implies$$
 existiert  $k_1(\epsilon) : |a_n - L| < \frac{\epsilon}{2} \quad \forall n \ge k_1(\epsilon)$   
und  $k_2(\epsilon) : |a_n - b_n| < \frac{\epsilon}{2} \quad \forall n \ge k_2(\epsilon)$ 

Setze: 
$$k(\epsilon) := max(k_1(\epsilon), k_2(\epsilon))$$
  
 $|b_n - L| = |b_n - a_n + a_n - L|$ 

$$\leq |b_n - a_n| + |a_n - L|$$

 $<\frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ 



Abbildung 2.3: Zeichnung zum Beweis

## 2.2.3 Satz 5: Rechenregeln für Limes

Sei  $a_n \to a, b_n \to b, \lambda$  eine Zahl.

$$1. \lim(a_n + b_n) = a + b$$

$$\lim(\lambda \cdot a_n) = \lambda \cdot a$$

$$\lim(a_n \cdot b_n) = a \cdot b$$

und falls 
$$b \neq 0 \implies b_1 \neq 0$$
 für fast alle  $n$ :  $\lim \frac{a_n}{b_n} = \frac{a}{b}$ 

#### Beweis

 $\frac{\epsilon}{2}$  Angenommen.

Sei 
$$\epsilon > 0$$
  $\exists k_1 : |a_n - a| < \frac{\epsilon}{2} \quad \forall n \ge k_1$   
 $\exists k_2 : |b_n - b| < \frac{\epsilon}{2} \quad \forall n \ge k_2$ 

$$\implies$$
 für  $n \ge k := \max(k_1, k_2)$  gilt

$$|(a_n + b_n) - (a + b)| = |a_n - a + b_n - b|$$

$$\leq |a_n - a| + |b_n - b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

**Produkt:** 
$$a_n \cdot b_n - a \cdot b = (a_n - a)b_n + a(b_n - b)$$

$$= |a_n \cdot b_n - a \cdot b| \le |a_n - a||b_1| + |a||b_n - b|$$

$$b_n \to b \implies |b_n|$$
 ist beschränkt

d.h. 
$$\exists 0 < M < \infty : |b_1| \leq M \quad \forall n$$

Gegeben 
$$\epsilon > 0$$
 Wähle  $k_1 : |a_n - a| < \frac{\epsilon}{2M} \quad \forall n \ge k_1$   
 $k_2 : |b_n - b| < \frac{\epsilon}{2(|a|+1)} \quad \forall n \ge k_2$ 

$$\implies \forall n > \max(k_1, k_2):$$

$$|a_n b_n - a \cdot b| \leq |a_n - a||b_n| + |a||b_n - b|$$
  
$$< \frac{\epsilon}{2M} M + |a| \frac{\epsilon}{2(|a|+1)} \leq \epsilon$$

Quotient 
$$\frac{a_n}{b_n} = a_n \cdot \frac{1}{b_n}$$

d.h. reicht zu zeigen, dass 
$$\frac{1}{b_n} \to \frac{1}{b}$$

$$b_n \neq 0$$
 für fast alle  $n - b \neq 0$ 

2 Folgen und Konvergenz

$$\begin{split} \epsilon &= \frac{|b|}{2} \implies |b_n - b| < \frac{|b|}{2} \text{ für fast alle } n. \\ &\implies |b_n| = -|b + b_n - b| \ge |b| - |b_n - b| \\ &> -|b| - \frac{|b|}{2} = \frac{|b|}{2} > 0 \text{ für fast alle } n \\ &\implies b_n \ne 0 \text{ für fast alle } n. \\ |\frac{1}{b_n} - \frac{1}{b}| &= |\frac{b - b_n}{b \cdot b_n}| = \frac{1}{|b||b_n|} |b - b_n| &\stackrel{\text{für fast alle } n}{\le -|b|^2} |b_n - b| \\ \text{Da } b_n \to b \implies |b_n - b| < \frac{|b|^2}{2} \epsilon \text{ für fast alle } n \\ &\implies |\frac{1}{b_n} - \frac{1}{b}| \le \frac{2}{|n|^2} |b_n - b| < \epsilon \text{ für fast alle } n \end{split}$$

2.  $\lim |a_n| = |a|$ 

**Beweis** Da 
$$||a_n| - |a|| \le |a_n - a|$$
 ist er einfach

3. Aus  $a_n \leq b_n$  für fast alle n folgt  $a \leq b$ 

Insbesondere:  $a_n \ge 0$  für fast alle n

$$\implies a \ge 0$$

#### **Beweis**

Kontraposition  $a_n \to a, b_n \to b$ 

Sei a > b



Abbildung 2.4: Zeichnung zum Beweis

Sei 
$$\epsilon = \frac{a-b}{2} > 0$$

$$\implies [a_n > a - \epsilon = a - \frac{a-b}{2} = \frac{a+b}{2}$$

$$= b + \frac{a+b}{2} = b + \epsilon > b_n]$$

für fast alle  $f^*$ cking n.

#### 2.2.4 Satz 6

1. Ist  $(a_n)_n$  eine Nullfolge, d.h.  $a_n \to 0$  und  $(c_n)_n$  beschränkt  $\implies (a_n \cdot c_n)_n$  eine Nullfolge.

**Beweis** Es gelte  $|c_n| \le C < \infty$ 

$$b_n := a_n c_n \implies |b_n| \le C|a_n|$$
  
d.h. 2)  $\implies$  1)

2. Aus  $a_n \to 0$ ,  $|b_n| \le C|a_n|$  für fast alle n (C ist eine Konstante)  $\implies b_n \to 0$ 

**Beweis** Sei  $\epsilon > 0$  zu  $\epsilon_1 := \frac{\epsilon}{C} \exists k_{\epsilon_1} : |a_n| < \epsilon_1 \forall n \ge k_{\epsilon_1}$  $\implies b_n \to 0$ 

# 2.2.5 Satz 7: Sandwich Theorem

Sei  $(a_n)_n$ ,  $(b_n)_n$  konvergente Funktionen mit  $\lim a_n = \lim b_n = a$ und  $(c_n)_n \cdot a_n \le c_n \le b_n$  für fast alle n $\implies (c_n)_n$  konvergiert und bei  $c_n = a$ 

Beweis Sei  $\epsilon > 0$ 

Beweis Set  $\epsilon > 0$   $\exists k_1 : a_n \le c_n \le b_n \quad \forall n \ge k_1$   $\exists k_2 : |a_n - a| < \epsilon \quad \forall n \ge k_2$   $\exists k_3 : |b_n - a| < \epsilon \quad \forall n \ge k_3$   $\Longrightarrow \forall n \ge \max(k_1, k_2, k_3)$   $a - \epsilon < a_n \le c_n \le b_n < a + \epsilon$ d.h.  $|c_n - a| \le \epsilon$ 

# Beispiel

•  $\forall p \mathbb{N} : \lim_{n \to \infty} (n^p)^{\frac{1}{n}} = 1$ 

Beweis

- p = 1: Übung!
- $p = 2 : \lim_{n \to \infty} (n^2)^{\frac{1}{n}} = \lim_{n \to \infty} (n^{\frac{1}{n}} \cdot n^{\frac{1}{n}})$ =  $\lim_{n \to \infty} n^{\frac{1}{n}} \cdot \lim_{n \to \infty} n^{\frac{1}{n}}$  $1 \cdot 1 = 1$
- $p \ge 2$  Induktionsbeweis

•  $\lim \frac{a \cdot n + b}{c \cdot n + a} = \frac{a}{c}$  falls  $c \neq 0$ 

Beweis  $\frac{a \cdot n + b}{c \cdot n + a} = \frac{a + \frac{b}{n}}{c + \frac{d}{n}} \xrightarrow{\text{Quotientenregel}} \frac{a}{c}$ 

 $\lim_{n\to\infty} \frac{a\cdot n + d}{c\cdot n^2 + d\cdot n + f} \neq 0^{c\neq 0}$ 

Beweis  $\frac{a \cdot n + d}{c \cdot n^2 + d \cdot n + f} = \frac{1}{n} \cdot \frac{a + \frac{d}{n}}{c + \frac{d}{n} + \frac{f}{n^2}} \to 0$ 

# 2.3 Divergente Folge

#### 2.3.1 Definition 8

Eine Folge  $(a_n)_{n\in\mathbb{N}}$  heißt bestimmt divergent gegen  $\infty$  (bzw.  $-\infty$ ), in Zeichen,  $\lim_{n\to\infty} = \infty, a_n \to \infty$  (bzw.  $\lim_{n\to\infty} a_n = -\infty, a_n \to -\infty$ ) falls  $\forall k > 0 \exists N = N(k) : a_n > k \forall n \geq N$  (bzw.  $a_n < -k \forall n \geq N$ ) z.B.  $a_n = n, a_n = n^2$ 

#### 2.3.2 Rechenregeln

Die regeln von S4 gelten sofern die rechten Seiten Definiert sind. z.B.  $a_n=n, b_n=n^2 \implies a_n+b_n\to\infty+\infty=\infty,$  also  $a_n-b_n\to\infty-\infty$  nicht definiert  $n-n^2=(\frac{1}{n}-1)n^2\leq -\frac{1}{2}n^2, n\geq 2\to\infty$  insb gilt:

1) 
$$a_n \to \infty \implies \lambda a_n \to \infty$$
 für  $\lambda > 0, \lambda a_n \to -\infty, \lambda < 0$ 

2) 
$$a_n \to \infty \to \frac{1}{a_n} \to 0$$
 und falls  $a_n > 0$  für fast alle n, dann gilt auch Umkehrung

3) 
$$a_n \to \infty, b_n \to b \in \mathbb{R} \implies a_n + b_n \to \infty$$

4) 
$$a_n \to \infty, b_n \to b > 0 \text{ (oder } b_n \to \infty) \implies a_n \cdot b_n \to \infty$$

#### **Beweis**

• 1) - 3): Scharf hinschauen

• 4)  $b_n \to b > 0 \implies b_n \ge \frac{1}{2}b$  für fast alle n,  $\implies a_n \cdot b_n > \frac{1}{2}b \cdot a_n$  für fast alle n. zu k > 0, wähle  $N(k) : a_n > \frac{2}{b}k \forall n \ge N(k)$   $\implies a_n \cdot b_n > \frac{b}{2} \cdot \frac{2}{b}k = k$  für fast alle n

# 2.4 Monotone Folgen

#### 2.4.1 Definition 9

Eine Folge  $(a_n)_n$  reeller Zahlen heißt

1) wachsend, falls  $a_n \leq a_{n+1} \forall n \in \mathbb{N}$ 

2) fallend, falls  $a_n \ge a_{n+1} \forall n \in \mathbb{N}$ 

3) monoton, falls sie wachsend oder fallend ist.

# 2.4.2 Satz 10 (Monotone Konvergenz)

Jede beschränkte monotone Folge ist konvergen! Insb:

- 1)  $(a_n)_n$  wachsend (beschränkt)  $\implies \lim_{n\to\infty} a_n = \sup_{n\in\mathbb{N}} a_n$
- 2)  $(a_n)_n$  fallend (beschränkt)  $\implies \lim_{n\to\infty} a_n = \inf_{n\in\mathbb{N}} a_n$

#### **Beweis**

- 1) Sei  $a := \sup a_n = \sup \{a_n : n \in \mathbb{N}\} \in \mathbb{R}$  wegen Vollständigkeitsaxiom Sei a > 0. Nach Definition von Supremum  $\exists k_{\epsilon} \in \mathbb{N}$  $\alpha - \epsilon < a_{k_{\epsilon}} \le a_{k-\epsilon+1} \le \dots \le a_n \le \alpha \forall n \le k_{\epsilon}$
- 2) Wende 1) auf  $b_n = -a_n a_n$

### 2.4.3 Korollar 11

Sei 
$$(b_n)_n$$
 Folge mit  $\frac{|bn+1|}{|b_n|} \to x$  für  $0 \le x < 1 \implies \lim b_n = 0$  insb.  $\lim q^n = 0, |q| < 1$ 

Beweis Z.z.  $|b_n| \to 0$  d.h. O.B.d.A.  $b_n > 0$ . Da  $\frac{b_{n+1}}{b_n} \to x$  für  $0 \le x < 1$ 

Wähle 
$$s = 1 - x > 0 \implies \exists N$$

$$\frac{b_{n+1}}{b_n} < x + \epsilon = 1 \forall n \ge N$$

$$\Longrightarrow b_{n+1} < b_n \forall n \ge N$$

$$\implies L = \lim_{n \to \infty} b_n$$
 existiert und  $L \ge 0$ . Wollen  $L = 0$ 

#### Angenommen:

$$L > 0 \Longrightarrow [x = \lim \frac{b_{n+1}}{b_n} \underbrace{=}_{\text{Quotientenmenge}} \frac{\lim b_{n+1}}{\lim b_n} = \frac{L}{L} = 1] \not \text{d.h. } L = 0!$$

# 2.4.4 Korollar 12 (Rekursive Berechnung von $\sqrt{a}$

Sei  $a>0, x_0>0$ . Definiere  $(x_n)_{n\in\mathbb{N}}, x_{n+1}:=\frac{1}{2}(x_n+\frac{a}{x_n})|n\in\mathbb{N}$ . Dann konvergiert  $x_n, \lim x_n=\sqrt{a}, x_n>0 \forall n$ 

**Beweis** Per Induktion zeigt man 
$$x_n > 0 \forall n$$

Fakt 1: 
$$x_n \ge \sqrt{a} \forall n > 1$$
, da  $x_{n+1}^2 - a = \frac{1}{4} (x_n - \frac{a}{x_n})^2 - a$   
 $= \frac{1}{4} (x_n^2 - 2a + \frac{a^2}{x_n^2} 4a)$   
 $= \frac{1}{4} (x_n - \frac{a}{x_n})^2 \ge 0$ 

Fakt 2: Für  $n \ge 1$  ist  $(x_n)_n$  fallend, da

$$x_n - x_{n+1} = x_n - \frac{1}{2}(x_n + \frac{a}{x_n}) = \frac{1}{2}(x_n - \frac{a}{x_n})$$

$$= \underbrace{\frac{1}{2x_n}}_{\geq 0} \underbrace{(x_n^2 - a)}_{\geq 0} \geq 0 \text{ wegen Fakt 1}$$

$$\implies \lim_{n \to \infty} x_n = x \text{ existient } \geq \sqrt{a}$$

$$\implies x = \lim_{n \to \infty} x_{n+1} = \frac{1}{2}\lim_{n \to \infty} (x_n + \frac{a}{x_n}) = \frac{1}{2}(x + \frac{a}{x})$$

$$\implies x^2 = a, \text{ da } x > 0 \implies x = \sqrt{a}$$

**Beweis** 

$$f_n := x_n - \sqrt{a} \implies f_{n+1} = x_{n+1} - \sqrt{a} = \frac{1}{2}(x_n + \frac{a}{x_n}) - \sqrt{a}$$
$$= \frac{1}{2x_n}(x_n^2 - a) - \sqrt{a} = \frac{1}{2x_n}(x_n - \sqrt{a})^2 = \frac{f_n^2}{2x_n} \le \frac{1}{2\sqrt{a}}f_n^2$$

,  $n \geq 1$  quadratische Konvergenz

#### 2.4.5 Korollar 13

 $e := \lim_{n \to \infty} (1 + \frac{1}{n})^n$  existiert und  $2 + \frac{1}{3} < e \le \frac{6^7}{2n} < 2,78167$ Beweis

$$a_n = (1 + \frac{1}{n})^n \implies a_n \text{ ist wachsend da } n \ge 2$$

$$\frac{a_n}{a_{n-1}} = \frac{(1 + \frac{1}{n})^n}{(1 + \frac{1}{n-1})^{n-1}} = \frac{(\frac{n+1}{n})^n}{(\frac{n}{n-1})^{n-1}}$$

$$= \frac{n}{n-1} \cdot (\frac{(n+1)(n-1)}{n^2})^n = \frac{n}{n-1} (\frac{n^2 - 1}{n^2})^n$$

$$= \frac{n}{n-1} (1 - \frac{1}{n^2})^n \xrightarrow{\text{Bernoulli}} \frac{n}{n-1} (1 - n \cdot \frac{1}{n^2}) = 1$$

Monotone Konvergenz  $\implies a_n$  konvergiert, wenn es nach oben beschränkt ist.

$$a_n = (1 + \frac{1}{n})^n = \sum_{k=0}^n \binom{n}{k} (\frac{1}{n})^k = \sum_{k=0}^n \frac{n!}{k!(n-k)!} \cdot \frac{1}{n^k}$$
$$= \sum_{k=0}^n \frac{1}{k!} \prod_{l=0}^k \frac{n-l}{n} \le \sum_{k=0}^n \frac{1}{k!}$$

Induktion =:  $k! \ge 2^k$  für  $k \ge 4$ 

$$\implies n \ge k : a_n \le 1 + 1 + \frac{1}{2} + \frac{1}{2 \cdot 3} + \sum_{k=4}^{n} (\frac{1}{2})^k$$

$$= \frac{16}{6} + \frac{1}{2^4} \sum_{l=0}^{n-4} (\frac{1}{2})^l = \frac{16}{6} + \frac{1}{2^4} \underbrace{\left(\frac{1 - (\frac{1}{2})^{n-3}}{1 - \frac{1}{2}}\right)}_{\leq 2} \text{ (geometrische Summe)}$$

$$\leq \frac{16}{6} + \frac{1}{8} = \frac{67}{24} \implies e \leq \frac{67}{24}$$

$$e \geq a_n \forall n, n = 3$$

$$= (1 + \frac{1}{2})^k, e \geq a_3 = 2 + \frac{10}{27} > 2 + \frac{1}{3}$$

# 2.5 Teilfolgen und Häufungswerte

# 2.5.1 Definition 14: (Teilfolgen, Umordnung)

$$(a_n)_n$$
 Folge  $a=(a_n)_n: \mathbb{N} \to \mathbb{R}$   
 $\phi: \mathbb{N} \to \mathbb{N}$  bijektiv  
 $\implies b:=a \circ \phi, \text{ d.h. } b=(b_l)_{l\in\mathbb{N}}, b_l:=a_{\phi(l)}$   
b: Umordnung von  $(a_n)_n$ 

Wir nennen  $\sigma : \mathbb{N} \to \mathbb{N}$  eine Verdünnung falls  $\sigma$  strikt monoton steigend ist, d.h.  $\sigma(n) < \sigma(n+1) \forall n$ . Dann ist  $(b_l)_l$  definiert durch  $b_l := a_{\sigma(l)}$  eine Teilfolge von  $(an)_n$ 

#### Bemerkung:

1) Für jede Verdünnung  $\sigma$  gilt  $\sigma(n) \geq n \forall n \in \mathbb{N}$  (Warum?)

2) 
$$(a_n)_n := (\frac{1}{n})_n, (\frac{1}{2n})_n, (\frac{1}{n^2})_n$$
 sind Teilfolgen von  $(a_n)_n$   
 $\sigma(n) = 2n, b_{\sigma(l)} = a_{2l} = \frac{1}{2l}$   
 $\sigma(n) = n^2, b_n = a_{\sigma(n)} = a_n^2 = \frac{1}{n^2}$   
 $(\frac{1}{2}, 1, \frac{1}{4}, \frac{1}{3}, \dots)$  ist eine Umordnung von  $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots)$ 

#### 2.5.2 Lemma 15

Jede Umordnung und jede Teilmenge einer konvergenten Folge konvergiert mit demselben Grenzwert! Und dasselbe gilt, wenn man endlich viele Werte von  $a_n$  abändert.

Beweis Für Umordnung nachrechnen.

Sei 
$$b_n = a_{\sigma(n)}$$
 Teilfolge von  $(a_n)_n$   
 $a_n \to L : \forall \epsilon > 0 : \exists k_\epsilon : |a_n - L| < \epsilon : \forall n \ge k_\epsilon$   
Da  $\sigma(n) \ge n \forall n \in \mathbb{N}$  gilt auch  $\forall n \ge k_\epsilon \implies \sigma(n) \ge k_\epsilon$   
 $|b_n - L| = |a_{\sigma(n)} - L| < \epsilon$ 

# 2.5.3 Definition 16 Häufungswert

Sei  $(a_n)_n$  eine Folge,  $a \in \mathbb{R}$  ist ein Häufungswert von  $(a_n)_n$ , falls  $\forall \epsilon > 0$  gibt unendlich viele  $n \in \mathbb{N}$  mit  $|a_n - a| < \epsilon$ 

#### 2 Folgen und Konvergenz

#### **Beispiel**

- 1.  $a_n = \frac{1}{n}$  hat Häufungswert 0
- 2.  $a_n = (-1)^n$  hat Häufungswert 1 und -1
- 3.  $a_n = (-1)^n + \frac{1}{n}$  hat HW 1 und -1

 $H((a_n)_n) = \text{Menge der HW von } (a_n)_n = \{a \in \mathbb{R}, a \text{ ist HW von } (a_n)_n\}$ 

### Bemerkung

1) Für eine beschränkte Folge  $(a_n)_n$  gilt:

$$a_n \to a \Leftrightarrow H((a_n)_n) = \{a\}$$

2)  $(n)_{n\in\mathbb{N}}$  hat keinen Häufungswert!

# 2.5.4 Satz 17 (Bolzano - Weierstraß für Folgen)

Jede beschränkte Folge hat mindestens einen HW

**Beweis** Sei  $(a_n)_n$  beschränkt, z.B.  $c \le a_n \le d \forall n$   $G := \{x \in \mathbb{R} : a > x \text{ für höchstens endlich vielen}\}$ 

 $= \{x \in \mathbb{R} : a_n \le x \text{ für fast alle n} \}$ 

Fakt 1)  $G \neq \emptyset$ , da  $d \in G$ 

Fakt 2) G ist nach unten beschränkt, denn  $x \notin G$ , falls  $x < c \implies \alpha := \inf G \in \mathbb{R}$ 

#### Behauptung

 $\alpha \in H((a_n)_n)$ 

Dann sei  $\epsilon > 0 \implies$  nach Definition von Infimum

 $\alpha + \epsilon \in G \text{ und } \alpha - \epsilon \notin G$ 

 $\implies$  fast alle  $a_n < \alpha + \epsilon$  und unendlich viele  $a_n > \alpha - \epsilon$ 

 $\implies$  Es gibt unendlich viele  $n: |a_n - \alpha| < \epsilon \implies \alpha$  ist Häufungswert

#### 2.5.5 Lemma 18

(**Erinnerung:** h Häufungswert von  $(a_n)_n$  falls  $\forall \epsilon > 0$ .  $a_n \in B_{\epsilon}(h) := (h - \epsilon, h + \epsilon)$  für unendlich viele  $n \in \mathbb{N}$ )

Sei  $(a_n)_n$  Folge

 $h \in H((a_n)_n) \iff \exists$  Teilfolge von  $(a_n)_n$  die gegen h konvergiert.

**Beweis** 

$$,, \Longleftarrow \text{``}: \text{ ist } (a_{n_j})_j, n_j < n_{j+1} \quad \forall j$$

Teilfolgen  $(a_n)_n$  mit

$$\lim_{j \to \infty} a_{h_j} = h$$

dann sind für  $\epsilon > 0$  fast alle  $a_{n_j} \in B_{\epsilon}(h)$ 

$$\implies \exists$$
 unendlich viele  $n: a_n \in B_{\epsilon}(h)$ 

 $\implies h$  ist Häufungswert  $\sqrt{\phantom{a}}$ 

$$,,\Longrightarrow$$
 ":  $h\in H((a_n)_n)$  d.h.

 $\forall \epsilon > 0 \exists$  unendlich viele  $n : a_n \in B_{\epsilon}(h)$ 

Trick: Wähle 
$$\epsilon = \frac{1}{l}, l \in \mathbb{N}$$

$$\forall l \in \mathbb{N} : \exists$$
 une  
ndlich viele  $n : a_n \in B_{\frac{1}{7}}(h)$ 

rekursive Definition der Teilfolge

$$n_1 := \text{ersten } n \in \mathbb{N} : a_n \in B_1(h)$$
  
 $:= \min \{ n \in \mathbb{N} : a_n \in B_1(h) \}$ 

$$\begin{array}{ll} n_2 &:= \text{ ersten } n \in \mathbb{N}, n > n_1, a_n \in B_{\frac{1}{2}}(h) \\ &:= \min \left\{ n \in \mathbb{N}, n > n_1, a_n \in B_{\frac{1}{2}}(h) \right\} \end{array}$$

$$n_{j+1} := \min \left\{ n \in \mathbb{N}, n > n_j, a_n \in B_{\frac{1}{j+1}}(h) \right\}$$

nachrechnen: 
$$n_l < n_{l+1}$$
  $\forall l$ 

$$a_{n_l} \in B_{\frac{1}{l}}(h) \implies \lim_{l \to \infty} a_{n_l} = h$$

 $(b_l)_l, b_l = a_{n_l}$  ist Teilfolge von  $(a_n)_n$ 

# 2.5.6 Korollar 9: Balzano-Weierstraß für Folgen II

Jede beschränkte Folge hat eine konvergente Teilfolge! (Beweis S.17 + L.18).

# 2.6 Asymptotisches Verhalten von reellen Folgen ( $\limsup$ und $\liminf$ )

Frage: Gibt es unter allen Häufungswerten einen größten bzw. kleinsten?

$$(a_n)_n$$
beschränkt:  $\sup_{n\in\mathbb{N}}a_n\in\mathbb{R}, \inf_{n\in\mathbb{N}}a_n\in\mathbb{R}$ 

$$\Longrightarrow H((a_n)_n) \subset \left[\inf_{n \in \mathbb{N}} a_n, \sup_{n \in \mathbb{N}} a_n\right]$$

# Beispiel

$$a_1 := 10^{10^{10}}$$

$$a_2 := -10^{10^{10}}$$

$$a_n := 0 \quad n \ge 3$$

$$\left[-10^{10^{10}}, 10^{10^{10}}\right] \subset H((a_n)_n) = \{0\}$$

Eigentlich interessiert uns n groß!

$$b_l := \sup_{n \ge l} a_n$$

$$c_l := \inf_{n \ge l} a_n$$

1. 
$$c_l \leq b_l \quad \forall l$$

$$\begin{array}{ll} \text{und} & b_{l+1} \leq b_l \forall \text{ fallend} \\ & c_{l+1} \geq c_l \forall \text{ wachsend} \end{array}$$

ist  $(a_n)_n$  beschränkt  $\implies (b_l)_l, (c_l)_l$  beschränkt

$$\overset{\text{monotone Konvergenz}}{\Longrightarrow} \lim_{l \to \infty} b_l \ge \lim_{l \to \infty} c_l$$

existieren!

2. 
$$\forall \epsilon > 0 \forall l \in \mathbb{N} \text{ sind fast alle } \begin{cases} a_n < b_l + \epsilon \\ a_n > c_l - \epsilon \end{cases}$$

# 2.6.1 Definition 20

Sei  $(a_n)_n$  reelle Folge

$$\limsup_{n \to \infty} a_n := \overline{\lim_{n \to \infty}} a_n := \underbrace{\lim_{l \to \infty} \left(\sup_{n \ge l} a_n\right)}_{\text{l} \to \infty}$$

$$\lim_{n \to \infty} \inf a_n := \lim_{n \to \infty} a_n := \lim_{l \to \infty} \left( \inf_{n \ge l} a_n \right)$$

$$= \lim_{l \to \infty} c_l$$

Falls  $(a_n)_n$  nach oben unbeschränkt ist:

$$\limsup_{n \to \infty} a_n := +\infty$$

Falls  $(a_n)_n$  nach unten unbeschränkt ist:

$$\liminf_{n \to \infty} a_n := -\infty$$

Bemerkung Es gilt

$$\limsup_{n \to \infty} (-a_n) = -\liminf_{n \to \infty} (a_n)$$

$$\liminf_{n \to \infty} (-a_n) = -\limsup_{n \to \infty} (a_n)$$

$$\liminf_{n \to \infty} (a_n) \le \limsup_{n \to \infty} (a_n)$$

#### 2.6.2 Satz 21

Sei  $(a_n)_n$  beschränkte Folge

$$\Longrightarrow \limsup_{n \to \infty} (a_n)$$
 ist der größte Häufungswert von  $(a_n)_n$ 

und

$$\Longrightarrow \liminf_{n\to\infty} (a_n)$$
 ist der kleinste Häufungswert von  $(a_n)_n$ 

#### **Beweis**

Wegen den Bemerkung reicht es das Erste zu zeigen!

$$\alpha := \limsup_{n \to \infty} (a_n) = \sup(H((a_n)_n))$$

#### 2 Folgen und Konvergenz

#### Schritt 1

 $\forall \epsilon > 0$ , gibt es nur endlich viele n mit  $a_n > \alpha + \epsilon$ 

$$\sup_{n \subset \mathbb{N}} a_n = \sup\{a_n : n \in \mathbb{N}\}\$$

#### **Beweis**

Sei 
$$\epsilon > 0$$
,  $b_l := \sup_{n \ge l} a_n$  ist fallend,  $b_l \to \alpha$ 

$$\implies \exists l \in \mathbb{N} : b_l < \alpha + \epsilon$$

$$\iff \sup_{n \ge l} a_n < \alpha + \epsilon$$

 $\iff$  Höchstens die ersten l-1 Glieder von  $(a_n)_n$  sind  $\geq \alpha + \epsilon$ 

#### Schritt 2

 $\forall \epsilon > 0$ , gibt es unendlich viele n mit  $a_n > \alpha - \epsilon$ 

**Beweis** 

Da 
$$b_l := \sup_{n > l} a_n$$
 fallend

$$\implies b_1 \ge b_{l+1} \ge b_{l+2} \ge \ldots \ge b_{l+k} \stackrel{k \to \infty}{\to} \alpha$$

$$\implies b_l \ge \alpha \quad \forall l$$

Sei  $\epsilon > 0$ ,  $l \in \mathbb{N}$ . Aus Definition von Supremum folgt

$$\exists n = n_l \ge l : a_{n_l} > b_l - \epsilon \ge b_{l+1} - \epsilon \ge \dots \ge b_{l+k} - \epsilon \stackrel{k \to \infty}{\to} \alpha - \epsilon$$

$$\implies \exists n = n_l \ge l : a_{n_l} > \alpha - \epsilon$$

 $\implies \exists$  unendlich viele  $n: a_n > \alpha - \epsilon!$ 

# Bemerkung

1. Also gilt

$$H((a_n)_n) \subset [\liminf_{n \to \infty} (a_n), \limsup_{n \to \infty} (a_n)]$$
 und  $(a_n)_n$  konvergent

$$\iff \liminf_{n \to \infty} (a_n) \ge \limsup_{n \to \infty} (a_n)$$

und in diesem Fall gilt

$$\lim_{n \to \infty} (a_n) = \liminf_{n \to \infty} (a_n) = \limsup_{n \to \infty} (a_n)$$

insbesondere  $(c_n)_n$  Nullfolge

$$\iff \limsup_{n \to \infty} |c_n| = 0$$

2. Für 2 Folgen  $(c_n)_n$ ,  $(d_n)_n$  gilt

$$\limsup_{n \to \infty} (c_n + d_n) \le \limsup_{n \to \infty} (c_n) + \limsup_{n \to \infty} (d_n)$$

$$\liminf_{n \to \infty} (c_n + d_n) \ge \liminf_{n \to \infty} (c_n) + \liminf_{n \to \infty} (d_n)$$

Beispiel 
$$c_n = (-1)^n, d_n = -(-1)^n$$

# 2.7 Das Cauchy-Kriterium für Konvergenz

Bemerkung Falls  $(a_n)_n$  konvergiert:

$$\implies \forall \epsilon > 0 \exists N_\epsilon : |a_n - a_m| < \epsilon \quad \forall n, m \ge N_\epsilon$$

$$(\iff \forall \epsilon > 0 \exists N_{\epsilon} : |a_n - a_m| \le \epsilon \quad \forall n, m \ge N_{\epsilon})$$

Deswegen aus  $a_n \to L \quad \forall \epsilon > 0 \exists N_\epsilon : |a_n - L| < \frac{\epsilon}{2} \forall n \ge N_\epsilon$ 

$$\implies |a_n - a_m| \le |a_n - L| + |L - a_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \quad \forall n, m \ge N_{\epsilon}$$

**Definition** Eine Folge  $(a_n)_n$  heißt Cauchy (oder Cauchyfolge) falls gilt:

$$\forall \epsilon > 0 \exists N_{\epsilon} : |a_n - a_m| < \epsilon \quad \forall n, m \ge N_{\epsilon}$$

**Bemerkung** Eine Folge  $(a_n)_n$  ist Cauchy

$$\iff \lim \sup_{n,m \to \infty} |a_n - a_m| = 0$$

wobei 
$$\limsup_{n,m\to\infty} (b_{n,m}) := \lim_{l\to\infty} (\sup_{n,m\geq l} (b_{n,m}))$$

Scharfes Hinsehen

#### 2.7.1 Satz 23: Cauchy Kriterium

Eine Folge  $(a_n)_n$  konvergiert  $\iff$   $(a_n)_n$  ist eine Cauchyfolge **Vorbereitung:** 

#### 2.7.2 Lemma 24

Eine Cauchyfolge  $(a_n)_n$  konvergiert

$$\iff$$
  $(a_n)_n hateine konvergente Teilfolge$   
 $(\iff H((a_n)_n) \neq \emptyset)$ 

#### **Beweis**

"
$$\Longrightarrow$$
": klar  
" $\Longleftarrow$ ": Sei  $(a_{n_l})_l$  konvergente Teilfolge von  $(a_n)_n$   
d.h.:  $n_l < n_{l+1} \quad \forall l \in \mathbb{N}, n \in \mathbb{N}$   
 $L := \lim_{n \to \infty} a_{n_l}$ 

Sei  $\epsilon > 0$  Da  $(a_n)_n$  Cauchyfolge ist

$$\implies \exists N_{\epsilon} : |a_n - a_m| < \epsilon \quad \forall n, m \le N_{\epsilon}$$

$$\implies \forall n \geq N_{\epsilon}: \text{ W\"{a}hle } m=n_{l} \geq l, l \geq N_{\epsilon}$$
 
$$\implies \boxed{|a_{n}-a_{n_{l}}|} < \epsilon \quad \forall l \geq N_{\epsilon}$$

$$\begin{split} |a_n - L| &= \lim_{l \to \infty} |a_n - a_{n_l}| \\ &\leq \limsup_{l \to \infty} \underbrace{|a_n - a_{n_l}|}_{<\epsilon} \underbrace{|a_n - a_{n_l}|}_{n \geq N_\epsilon} \\ &\leq \epsilon \quad \forall n \geq N_\epsilon \end{split}$$

d.h. 
$$a_n \to L!$$

oder etwas anders

$$\begin{split} |a_n - L| &\leq |a_n - a_{n_l}| + |a_{n_l} - L| \\ &\Longrightarrow |a_n - L| = \limsup_{l \to \infty} |a_n - L| \\ &\leq \limsup_{l \to \infty} \left( |a_n - a_{n_l}| + |a_{n_l} - L| \right) \\ &\leq \limsup_{l \to \infty} \underbrace{|a_n - a_{n_l}|}_{<\epsilon} + \limsup_{l \to \infty} |a_{n_l} - L| \\ &\leq \epsilon \quad \forall n \geq N_\epsilon \end{split}$$

# 2.7.3 Lemma 25: Jede Chauchyfolge ist beschränkt

#### Beweis

Sei 
$$\epsilon = 1, \exists N : |a_n - a_m| < 1 \quad \forall n, m \ge N$$

$$\implies \forall n \ge N : |a_n - a_N| < 1$$

$$\implies \forall n \ge N : |a_n| \le |a_n - a_N| + |a_N|$$

$$\le 1 + |a_N|$$

$$M := \max(|a_1|, |a_2|, \dots, |a_N|, 1 + |a_N|)$$

$$\implies \forall n \in \mathbb{N} : |a_n| \le M$$

Beweis von S.23

 $,,\Longrightarrow$  ":  $, \Leftarrow$ ":Sei  $(a_n)_n$ Cauchy  $\underset{\cdot,\cdot}{\overset{L.25}{\rightleftharpoons}}$ ":  $(a_n)_n$ ist beschränkt "  $\xleftarrow{Kor.19}$  " :  $(a_n)_n$ hat eine konvergente Teilfolge  $\implies (a_n)_n$  ist Konvergent

# 2.8 Einschub Komplexe Zahlen

Wiederholen  $x^2 + 1 = 0$  hat keine Lösung in  $\mathbb{R}$  da  $\forall x \in \mathbb{R} : x^2 \ge 0$ 

Möchten Zahl 
$$i$$
,  $i^2 = -1$ ! (imaginäre Zahl)

Informel Schreiben  $z = a + ib$   $a, b \in \mathbb{R}$   $a, b \in \mathbb{R}$   $a, b \in \mathbb{R}$ 

Man nennt x den Realteil von  $z = x + \overline{iy}$ 

Man nennt y den Imaginärteil von z = x + iy

reelle Zahl  $z = x = x + i \cdot 0$ 

Wollen rechnen: D.h. alle Körperaxiome sollen gelten.

- Was ist "+" (Plus, addieren)?
- Was ist "·" (Mal, multiplizieren)?

#### 2.8.1 Summe:

$$z_1 = a_1 + ib_1, z_2 = a_2 + ib_2$$

$$\implies z_1 + z_2 := (a_1 + ib_1) + (a_2 + ib_2)$$

$$(a_1 + ib_1) + (a_2 + ib_2) = (a_1 + a_2) + i(b_1 + b_2)$$

#### 2.8.2 Produkt:

$$z_1 \cdot z_2 = (a_1 + ib_1) \cdot (a_2 \cdot ib_2)$$

$$= a_1(a_2 + ib_2) + ib_2(a_1)$$

$$a_1a_2 + ia_1b_2 + ia_2b_1 + \underbrace{(ib_1)(ib_2)}_{-b_1 \cdot b_2}$$

$$= a_1a_2 - b_1b_2 + i(a_1b_2 + a_2b_1)$$

# 2.8.3 Definition von Komplexe Zahlen

 $\mathbb{C}:=\mathbb{R}\times\mathbb{R}=\mathbb{R}^2=\{\binom{x}{y}:x,y\in\mathbb{R}\}$ Mit den binären Operationen:

• "+" 
$$\mathbb{C} \times \mathbb{C} \to \mathbb{C}$$
  
 $z_1 = {a_1 \choose b_1} z_2 = {a_2 \choose b_2}$   
 $(z_1, z_2) \mapsto z_1 + z_2 {a_1 + a_2 \choose b_1 + b_2}$ 

• "" 
$$\mathbb{C} \times \mathbb{C} \to \mathbb{C}$$
  
 $(z_1, z_2) \mapsto z_1 \cdot z_2 = \begin{pmatrix} a_1 a_2 - b_1 b_2 \\ a_1 b_2 + a_2 b_1 \end{pmatrix}$ 

 $\implies$  ( $\mathbb{C}, +, \cdot$ ) ist ein Körper!

#### 2.8.4 Spezielle Komplexe Zahlen

$$z = \binom{a}{b}a, b \in \mathbb{R}$$

#### **Beispiel**

$$\begin{array}{l} b=0,z=\binom{a}{0}\\ z_1=\binom{a_1}{0},z_2=\binom{a_2}{0}\\ \Longrightarrow z_1+z_2=\binom{a_1+a_2}{0}\\ z_1\cdot z_2=\binom{a_1\cdot a_2}{0} \text{ Verhalten sich wie }\mathbb{R}\\ \Longrightarrow \text{ K\"{o}nnen }\mathbb{R} \text{ als Teilmenge von }\mathbb{C} \text{ auffassen}\\ \mathbb{R} \text{ wird identifiziert mit } \{\binom{a}{0},a\in\mathbb{R}\} \end{array}$$

#### Notation

$$z = \binom{a}{b} = a \cdot \binom{1}{0} + b \cdot \binom{0}{1}$$
$$\binom{0}{1} \cdot \binom{0}{1} = \binom{-1}{0} \simeq -1 \text{ als reelle Zahl}$$

# **Definition**

$$i = \binom{0}{1}, i^2 = -1$$

#### Bild

# Definition: Betrag(Länge)

$$z \in \mathbb{C} : |z| := \sqrt{a^2 + b^2}, z = a + ib$$

# 2.8.5 Komplex Konjugieren

$$\begin{split} z &= a + ib, \ \overline{z} = a - ib \\ \text{Es gilt: } |z|^2 &= z \cdot \overline{z} = \overline{z} \cdot z \text{ nachrechnen} \\ 0 &\neq z = a + ib \\ \Longrightarrow \text{ was ist } \frac{1}{z} &= \frac{1}{a + ib} \\ \frac{1}{z} \cdot \overline{\overline{z}} &= \overline{z} = \overline{z} = \overline{z} = \frac{a - ib}{a^2 + b^2} = \frac{a}{a^2 + b^2} - i \cdot \frac{b}{a^2 + b^2} \end{split}$$

#### **Definition: Abstand**

$$z_1, z_2 \in \mathbb{C}$$
  
 $d(z_1, z_2) := |z_1 - z_2| = \sqrt{(a_1 - a_2)^2 + (b_1 - b_2)^2}$   
 $z_1 = a_1 + ib_1, z_2 = a_2 + ib_2$ 

#### **Beispiel**

$$z = 2 + 3i$$

$$\frac{1}{z} = \frac{1}{2+3i} = \frac{2-3i}{(2+3i)(2-3i)} = \frac{2-3i}{2^2+3^2} = \frac{2}{13} - i\frac{3}{13}$$

#### Polarkoordinaten

$$\begin{split} z &= a + ib \\ &= |z| \big( \frac{a}{|z|} + i \frac{b}{|z|} \big) \\ &= |z| \big( \cos \psi + \sin \psi \big) \end{split}$$

# 2.8.6 Komplexwertige Folge

Eine Folge ist eine Funktion f  $f: \mathbb{N} \to \mathbb{C}, n \mapsto f(n)$ 

#### Notation

$$z_n = f(n), z(n)_n, z(n)_{n \in \mathbb{N}}$$

#### Konvergenz

 $(z_n)_n$  konvergiert in  $\mathbb C$  gegen Grenzwert L:  $\forall \epsilon > 0 \exists k_\epsilon : |z_k - L| < \epsilon \forall n \geq k_\epsilon$  Alle anderen Definitionen, Häufungswert, Cauchyfolge etc analog! Folge  $(z_n)_n$  ist beschränkt, falls  $\exists 0 \leq M < \infty : |z_n| \leq M \forall n$ 

#### 2.8.7 Satz

Eine Folge  $(a_n)_n$  konvergiert genau dann, wenn  $(Re(z_n))_n, (Im(z_n))_n$  konvergieren wobei:  $Re(z) := \frac{1}{2}(z+\overline{z}), Im(z) = \frac{1}{2i}(z-\overline{z})$   $z = a + ib, \overline{z} = a - ib, z + \overline{z} = a + ib + a - ib = 2a = 2Re(z)$   $z - \overline{z} = 2ib = 2Im(z)$ 

#### Beweis

- ,,  $\Longrightarrow$  "  $z_n = x_n + iy_n$ , L = a + ib haben  $L := \lim z_n$  existiert  $\forall \epsilon > 0 : \exists k_\epsilon : |z_n L| < \epsilon \forall n \ge k_\epsilon$   $|x_n Re(L)| = |x_n a| = \sqrt{(x_n a)^2} \le \sqrt{(x_n a)^2 + (y_n b)^2} = |z_n L| < \epsilon \forall n \ge k_\epsilon$   $\Longrightarrow x_n \to Re(L)$  genauso:  $|y_n Im(L)| = |y_n b| \le \sqrt{(x_n a)^2 + (y_n b)^2} = |z_n L|$  (Check!)
- " $\Leftarrow$ " Wissen:  $x_n \to a, y_n \to b$   $\forall \epsilon > 0 : \exists k_{\epsilon}^1 : |x_n - a| < \frac{\epsilon}{\sqrt{2}} \forall n \ge k_{\epsilon}^1$   $\forall \epsilon > 0 : \exists k_{\epsilon}^2 : |y_n - b| < \frac{\epsilon}{\sqrt{2}} \forall n \ge k_{\epsilon}^2$   $\implies k_{\epsilon} := \max(k_2^1, k_2^2) \implies \forall n \ge k_{\epsilon}, i = a + ib$   $|z_n - L| = \sqrt{(x_n - a)^2 + (y_n - b)^2} < \sqrt{\frac{\epsilon^2}{2} + \frac{\epsilon^2}{2}} = \epsilon$  $\lim z_n = L$

#### Definition

Wir nennen Teilmenge  $A \subset \mathbb{C}$  offen, falls  $\forall z \in A : \exists \epsilon > 0 : B_{\epsilon}(z) \subset A, B_{\epsilon}(L) := \{z \in \mathbb{C} : |z - L| < \epsilon\}$ 

A ist abgeschlossen, falls  $A^{\mathbb{C}} = \mathbb{C} \backslash A$  offen ist.

#### 2.8.8 Korollar

Eine Folge  $(z_n)_n$  in  $\mathbb{C}$  konvergiert  $\Leftrightarrow (z_n)_n$  ist Cauchy! **Beweis**  $(z_n)_n$  ist Cauchy  $\Leftrightarrow (Re(z_n))_n$  und  $(Im(z_n))_n$  sind Cauchy  $\Leftrightarrow (Re(z_n))_n$  und  $(Im(z_n))_n$  konvergieren  $\Leftrightarrow (z_n)_n$  konvergiert

# 2.8.9 Korollar

Jede beschränkte Folge  $(z_n)_n$  in  $\mathbb C$  hat mindestens eine konvergente Teilfolge! Beweis  $(z_n)_n$  beschränkt  $\Leftrightarrow \underbrace{(Re(z_n))_n}_{x_n}, \underbrace{(Im(z_n))_n}_{y_n}$  sind beschränkte reelle Teilfolgen  $\Longrightarrow \exists$  Teilfolge  $(x_{n_j})_j$  von  $(x_n)_n$  die konvergiert. d.h.  $x_{n_j} \to a$   $\Longrightarrow \exists$  konvergente Teilfolge  $(y_{n_{j_l}})_l$   $\Longrightarrow (x_{n_{j_l}})_l, (y_{n_{j_l}})_l$  beide konvergernt!  $\Longrightarrow$  Teilfolge  $z_{n_{j_l}} = x_{n_{j_l}} + iy_{n_{j_l}}$  konvergiert

# 3 Reihen

# 3.1 Definition und elementare Eigenschaften

#### 3.1.1 Definition 1

Sei  $(a_n)_{n\geq p}$  eine komplexe Folge. Das Symbol

$$\sum_{n=p}^{\infty} a_n$$

ist definiert durch die Folge zugehöriger Partialsummen

$$(S_n)_{n \ge p}$$
  $S_n := \sum_{j=p}^n a_j = a_p + a_{p+1} + \ldots + a_n$ 

Wir nennen diese Reihe  $\sum_{n=p}^{\infty} a_n$  konvergent, wenn die Folge der Partialsummen konvergiert und in diesem Fall schreiben wir auch:

$$\sum_{n=p}^{\infty} a_n := \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{j=p}^{n} a_j$$

und nenne dieses die Summe (oder den Wert) der Reihe

#### Achtung

Damit hat das Symbol  $\sum_{n=p}^{\infty} a_n$  zwei Bedeutungen:

- 1. Symbol für die Folge der Partialsummen
- 2. Symbol für den Grenzwert  $\lim S_n$  falls diese existiert

#### Beispiel

• Beispiel einer simplen Teleskopreihe

Die Reihe 
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 konvergiert

$$S_n = \sum_{j=1}^n \frac{1}{j(j+1)}, \quad \frac{1}{j(j+1)} = \frac{1}{j} - \frac{1}{j+1}$$

3 Reihen

$$= \sum_{j=1}^{n} \left( \frac{1}{j} - \frac{1}{j+1} \right) = \left( \frac{1}{1} - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \dots \left( \frac{1}{n} - \frac{1}{n+1} \right)$$

$$= 1 - \frac{1}{n+1} \text{ Teleskopreihe!}$$

$$\implies \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left( 1 - \frac{1}{n+1} \right) = 1$$

$$\sum_{j=1}^{n} \left( \frac{1}{j} - \frac{1}{n+1} \right) = \sum_{j=1}^{n} \frac{1}{j} - \sum_{j=1}^{n} \frac{1}{j+1}$$

$$= \frac{1}{1} - \frac{1}{n+1} = 1 - \frac{1}{n+1}$$

#### • Geometrische Reihe

$$\sum_{n=0}^{\infty} x^n \quad \text{konvergiert für } |x| < 1$$
 divergiert für  $|x| \ge 1$ 

**Beweis** 

$$S_n = \sum_{j=0}^n x^j = \frac{1 - x^{n+1}}{1 - x}$$
 geometrische Summe  $x \neq 1$ 

Falls 
$$|x| < 1 \implies \lim_{n \to \infty} x^{n+1} = 0$$

$$\implies \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x}$$

Zur Erinnerung:

$$xS_n = x \sum_{j=0}^n x^j = \sum_{j=0}^n x^{j+1} = \sum_{j=1}^{n+1} x^j$$

$$\implies S_n - xS_n = \sum_{j=0}^n x^j - \sum_{j=1}^{n+1} x^j = 1 - x^{n+1}$$

#### 3.1.2 Cauchy-Kriterium

Eine Folge  $(S_n)_n$  konvergiert

$$\iff \forall \epsilon > 0 \exists k_{\epsilon} : |S_m - S_n| < \epsilon \quad \forall n, m \ge k_{\epsilon}$$

$$m = n + l$$

$$\implies S_m - S_n = S_{n+l} - S_n = \sum_{j=p}^{n+l} a_j - \sum_{j=p}^n a_j = \sum_{j=n+1}^{n+l} a_j$$

# 3.1.3 Satz 2: Cauchy-Kriterium für Konvergenz von Reihen

Eine Reihe 
$$\sum_{n=p}^{\infty} a_n$$
 konvergiert

$$\iff \forall \epsilon > 0 \exists k_{\epsilon} : \forall l \in \mathbb{N}, n \ge k_{\epsilon} : \left| \sum_{j=p}^{n+1} a_j \right| < \epsilon$$

#### **Beweis**

$$\sum_{n=p}^{\infty}a_n$$
konvergiert  $\iff$  die Folge  $(a_n)_{n\geq p}$  der Partialsummen konvergiert

$$\overset{\text{Cauchy-Krit}}{\Longleftrightarrow} \forall \epsilon > 0 \exists k_{\epsilon} : |S_m - S_n| < \epsilon \quad \forall n, m \ge k_{\epsilon}$$

O.B.d.A 
$$m > n$$
 d.h.  $m = n + l, l \in \mathbb{N}$ 

da 
$$S_m - S_n = S_{n+l} - S_n = \sum_{j=n+1}^{n+l} a_j$$
 sind wir fertig

# 3.1.4 Korollar 3

Wenn  $\sum_{n=p}^{\infty} a_n$  konvergiert, dann ist  $(a_n)_{n\geq p}$  eine Nullfolge

$$d.h. \lim_{n \to \infty} a_n = 0$$

Bemerkung Umkehrung gilt NICHT!

z.B. die harmonische Reihe 
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 divergiert

#### Beweis

Wende "  $\implies$  " Richtung auf l=1 an

$$\sum_{n=p}^{\infty} a_n \text{ konvergiert } \implies \forall \epsilon > 0 \exists k_{\epsilon} : \underbrace{\left| \sum_{j=n+1}^{n+1} \right|}_{|a_{n+1}|} < \epsilon$$

d.h. 
$$a_{n+1} \to 0$$

d.h. 
$$a_n \to 0$$

Beweis (Anderer Beweis)

$$S_n = \sum_{j=0}^n a_j, \quad n \ge p$$

$$\lim_{n \to \infty} S_n = L$$

$$a_n = S_n - S_{n-1}$$

$$\implies \lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1})$$
$$= \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1}$$
$$= L - L = 0$$

# 3.1.5 Korollar 4: Die harmonische Reihe ist divergent

$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 divergiert

**Beweis** 

Wen sie konvergent wäre, dann gilt Satz 2

$$a_n = \frac{1}{n}, S_n = \sum_{j=1}^n a_j = \sum_{j=1}^n \frac{1}{j}$$

l = n

$$S_{n+1} - S_n = \sum_{j=n+1}^{n+n} \frac{1}{j} = \sum_{j=n+1}^{2n} \frac{1}{j} = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n} \ge n * \frac{1}{2n} = \frac{1}{2}$$

d.h. Satz 2 ist verletzt  $\implies$  keine Konvergenz

#### 3.1.6 Satz 5

1. (Verschiebung des Summantenanfangs)

Sei 
$$(a_n)_{n>p}$$
 eine Folge,  $b_j = a_{p+j}, j \in \mathbb{N}_0$ 

Die Reihe  $\sum_{n=p}^{\infty} a_n$ ,  $\sum_{j=0}^{\infty} b_j$  und  $\sum_{n=q}^{\infty} a_n$ . Für p < q, haben dasselbe Konvergenzverhalten (d.h. sind gleichzeitig konvergent oder bestimmt divergent oder divergent) und im Falle der Konvergenz gilt:

$$\sum_{j=0}^{\infty} a_{p+j} = \sum_{n=p}^{\infty} a_n = a_p + a_{p+1} + \dots + a_{q-1} + \sum_{n=q}^{\infty} a_n$$

#### **Beweis**

Sei 
$$S_n = a_p + a_{p+1} + \ldots + a_n$$
  
 $t_n = a_q + a_{q+1} + \ldots + a_n, n > p$   
 $U_n = b_0 + b_1 + \ldots + b_n$   
 $A = a_p + \ldots + a_{q-1}$   
 $\implies S_n = A + t_n, n \ge q$   
 $\implies (S_n)_{n \ge p}$  konvergiert  $(t_n)_{n \ge q}$  konvergiert und  $\lim_{n \to \infty} S_n = A + \lim_{n \to \infty} t_n$ 

#### **Beweis**

Wegen 1) reicht es Reihen der Form 
$$\sum_{n=1}^{\infty} a_n$$
 zu betrachten

2. Das Konvergenzverhalten einer Reihe ändert sich nicht, wenn wir endlich viele Terme weglassen oder hinzufügen.

#### **Beweis**

Folgt aus 1)

3. Sei  $(g(k))_{k=1}^q$  die endliche  $(q < \infty)$  oder unendliche  $(q = \infty)$  Indexfolge mit  $1 \le g(1) < g(2) < \ldots < g(k) < g(k+1)$ 

$$g(k) \in \mathbb{N} \text{ und } a_j = 0, \text{ wenn } j \neq g(k) \quad \forall k \in \mathbb{N}$$

(d.h. 
$$a_j \neq 0 \iff \exists k \in \mathbb{N} : j = g(k)$$
)

Dann haben die beiden Reihen  $\sum_{n=1}^{\infty} a_n$  und  $\sum_{k=1}^{\infty} a_{g(k)}$  dasselbe Konvergenzverhalten.

(D.h. in einer Reihe kann man Nullen beliebig weglassen oder hinzufügen)

#### **Beweis**

Sei 
$$S_n = \sum_{l=1}^n q_l, t_n = \sum_{j=1}^n a_{g(j)}$$
  
ist  $q < \infty \implies S_n = t_n \forall n \ge g(q)$   
ist  $q = \infty$  dann ist  $S_n = t_n$  für  $S_n = t_n$  für  $S_n = t_n$  für  $S_n = t_n$  konvergiert und  $S_n = t_n$  konvergiert und  $S_n = t_n$ 

# 3.1.7 Satz 6

Sind 
$$\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$$
 konvergiert, so ist  $\forall \lambda, \mu \in \mathbb{C}$ 

$$\sum_{n=1}^{\infty} (\lambda a_n + \mu b_n) \text{ konvergiert und } \sum_{n=1}^{\infty} (\lambda a_n + \mu b_n) = \lambda \sum_{n=1}^{\infty} a_n + \mu \sum_{n=1}^{\infty} b_n$$

**Beweis** 

$$S_n = \sum_{l=1}^n a_l \to s$$

$$t_n = \sum_{l=1}^n b_l \to t$$

$$\implies \sum_{l=1}^{n} (\lambda a_l + \mu b_l) = \lambda S_n + \mu t_n \to \lambda s + \mu t$$

3.1.8 Korollar 7

Aus der Konvergenz von  $\sum_{n=1}^{\infty} a_2 n, \sum_{n=1}^{\infty} a_{2n+1}$ 

folgt die Konvergenz 
$$\sum_{n=1}^\infty a_n$$
 und  $\sum_{n=1}^\infty a_n = \sum_{n=1}^\infty a_{2n} + \sum_{n=1}^\infty a_{2n+1}$ 

**Beweis** 

Man fülle die Teilreihen  $\sum_{n=1}^{\infty} a_{2n}$  und  $\sum_{n=0}^{\infty} a_{n+1}$ 

mit Nullen auf (vergleich Satz 5 3)) und wende die Additionsregel Satz 6 an

Warnung: Umkehrung gilt NICHT! (Bsp. später)

3.2 Alternierende Reihen

Sei  $(b_n)_n$  eine Nullfolge,  $b_n \geq 0$ . Dann wird

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n$$

Eine alternierende Reihe genannt!

$$S_n = \sum_{j=1}^{\infty} (-1)^{j-1} b_j = b_1 - b_2 + b_3 - b_4 + \dots + (-1)^{n-1} b_n$$

z.B.: 
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$

# 3.2.1 Satz 8: Leibniz-Konvergenzkriterium

Sei  $(b_n)_n$  eine fallende Nullfolge d.h.  $b_n \to 0$  und  $b_n \ge b_{n_1} \quad \forall n \in \mathbb{N}$ dann konvergiert die alternierende Reihe

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + \dots$$

#### **Beweis**

Aus 
$$b_n \geq b_{n+1} \to 0$$

$$\implies b_n \ge 0 \quad \forall n$$

$$S_{2k} := \sum_{n=1}^{2k} (-1)^{n-1} b_n = \underbrace{(b_1 - b_2)}_{\geq 0} + \underbrace{(b_3 - b_4)}_{\geq 0} + \dots + \underbrace{(b_{2k-1} - b_{2k})}_{\geq 0}$$

$$S_{2k+1} := \sum_{n=1}^{2k+1} (-1)^{n-1} b_n = b_1 - \underbrace{(b_2 - b_3)}_{\geq 0} - \underbrace{(b_4 - b_5)}_{\geq 0} - \dots - \underbrace{(b_{2k} - b_{2k+1})}_{\geq 0}$$

 $\implies S_{2k}$  ist wachsend,  $S_{2k+1}$  ist fallend

d.h. 
$$S_{2k} \leq S_{2(k+1)} = S_{2k+2}, S_{2k+1} \geq S_{2(k+1)+1} = S_{2k+3}$$
 und  $0 \leq S_{2k} \leq S_{2k+1} \leq b_1$ 

Monotone

Konvergenz 
$$\Longrightarrow \lim_{k\to\infty} S_{2k}, \lim_{k\to\infty} S_{2k+1}$$
 existieren

Außerdem gilt:  $|S_{2k+1} - S_{2k}| = b_{2k+1} \to 0$ 

Somit ist 
$$\lim_{n\to\infty} S_{2k+1} = \lim_{n\to\infty} S_{2k} = s$$

$$\implies \lim_{n \to \infty} \sum_{n=1}^{\infty} (-1)^{n-1} b_n = s$$

#### 3.2.2 Ultimative Version von Leibniz

Frage  $\sum_{n=0}^{\infty} a_n \cdot b_n$   $b_n > b_{n+1} \to 0$  wann konvergiert das? Antwort: Oszillationen in den  $a_n$  helfen! z.B.  $a_n = (-1)^{n+1} \implies a_1 = 1$   $a_2 = -1 \dots$ 

$$A_n = \sum_{i} = n^n a_i = 1 - 1 + 1 - 1 + 1 - 1 \dots = \begin{cases} 1 \text{ wenn n ungerade} \\ 0 \text{ ansonsten} \end{cases}$$

 $A_n$  ist eine beschränkte Folge

# 3.2.3 Satz 9 (Ultimativer Leibniz)

Sei  $(a_n)_n \in \mathbb{C}(b_n)_n \in \mathbb{R}$  mit  $b_n \geq b_{n+1} \lim_{n \to \infty} b_n = 0$  und  $\sup |\sum_{j=1}^n a_j| < \infty \implies \sum_{n=1}^\infty a_n b_n konvergiert$ 

**Beweis** Zu zeigen(nach Cauchy)  $\forall \epsilon > 0 \quad \exists k_{\epsilon} : \forall l \in \mathbb{N}, n \geq k_{\epsilon} :$ 

$$|\sum_{j=n+1}^{n+l} a_j b_j| < \epsilon$$

$$\begin{split} \text{Setzen } A_n &:= \sum_{j=1}^n a_j, A_0 = 0 \\ & \Longrightarrow a_j = A_j - A_{j-1} \\ & \Longrightarrow \sum_{j=n+1}^{n+l} a_j b_j = \sum_{j=n+1}^{n+l} (A_j - A_{j-1}) b_j \\ & = \sum_{j=n+1}^{n+l} A_j b_j - \sum_{j=n+1}^{n+l} A_{j-1} b_j \\ & = \sum_{j=n+1}^{n+l} A_j b_j - \sum_{j=n+1}^{n+l} A_{j-1} b_j \\ & = A_{n+l} b_{n+l} = A_n b_{n+l} + \sum_{j=n+1}^{n+l-1} A_j (b_j - b_{j-1}) \\ & \Longrightarrow |\sum_{j=n+1}^{n+l} a_j b_j| \leq |A_{n+1}| b_{n+l} + |A_n| b_{n+1} + \sum_{j=n+1}^{n+l-1} |a_j| |b_j - b_{j+1}| \\ & M := sign(Ai) < \infty \leq M(b_{n+l} + b_{n+1}) + M \sum_{j=n+1}^{n+l+11} (b_j - b_{j+1}) \text{ da } b_j > b_{j+1} \\ & \Longrightarrow |\sum_{j=n+1}^{n+l} a_j b_j| \leq M(b_{n+l} + b_{n+1}) + M(b_{n+l} - b_{n+l}) \\ & = 2M(b_{n+1}) \to 0 \\ & \text{unabhängig von } l! \end{split}$$

(3.1)

Bsp:  $z \in \mathbb{C} \quad |z| = 1 \quad z \neq 1$   $b_n$  fallende Nullfolge  $\sum z^{n-1}b_n$  konvergiert

 $A_n := \sum_{j=1}^n z^{j+1} = \sum_{j=0}^{n+1} z^j = \frac{1-z^n}{1-z}$   $|A_n| = \left|\frac{1-z^n}{1-z}\right| = \frac{1}{|1-z|}|1-z^n| \le \frac{1}{|1-z|} \cdot (1+|z|^n) = \frac{z}{|1-z|}$ (3.2)

# 3.3 Monotone Reihen

Sei  $(a_n)_n \in \mathbb{R}, a_n > 0$ 

 $\leadsto s_n = \sum_{j=1}^n a_j$  ist wachsend! also nach Satz von der monotonen Konvergenz Konvergenz  $(s_n)_n \Leftrightarrow s_n$  beschränkt

#### 3.3.1 Satz 10

Eine Reihe 
$$\sum_{n=1}^{\infty} a_n a_n > 0$$
konvergiert  $\Leftrightarrow \exists k < \infty : \sum a_j < k \forall n \in \mathbb{N}$  (3.3)

**Beweis** 

$$s_n \leq s_{n+1} \forall n$$

$$\implies \sum a_n = sups_n = sup \sum_{j=1}^n a_j$$
setzen  $sup_n = -\infty$ falls Folge nicht beschränkt ist
$$(3.4)$$

$$\implies \sum_{n=1}^{\infty} a_n = sups_n a_n \ge 0$$

3.3.2 Korollar 11

Für  $\sum_{n=1}^{\infty} a_n$ ,  $a_n \ge 0$  gilt entweder

- $\sum_{n=1}^{\infty} a_n \le \infty$
- $\sum_{n=1}^{\infty} a_n \ge \infty$

Erstens bed.  $s_n$  konvergent, letztes  $s_n$  divergiert gegen  $\infty$ 

#### 3.3.3 Satz 12

Ist  $o \le a_n \le b_n \forall n \text{ und } \sum_{n=1}^{\infty} b_n \text{ konvergiert}$   $\implies \sum_{n=1}^{\infty} a_n \text{ konvergiert und } \sum a_n \le \sum b_n$ **Beweis** 

$$s_{n} := \sum_{j+1}^{n} a_{j} u n dt_{n} := \sum_{j+1}^{n} b_{j}$$

$$\implies s_{n} \leq s_{n+1} t_{n} \leq t_{n+1}$$

$$s_{n} < t_{n} \forall n \text{Falls} t_{n} \to r \in \mathbb{R} n \to \infty$$

$$\implies r = s u p t_{n}$$

$$\implies s_{n} \leq \underbrace{s u p t_{k}}_{k \in \mathbb{N}} \in \mathbb{R}$$

$$\implies (s_{n})_{n} \text{ ist beschränkt wachsend}$$

$$\implies s_{n} \text{ ist konvergent}$$

$$\implies \sum_{n=1}^{n} a_{n} \text{ ist konvergent}$$

$$\text{und } \lim s_{n} \leq \lim t_{n}$$

$$\implies \sum_{n=1}^{\infty} a_{n} \leq \sum_{n=1}^{\infty} t_{n}$$

# 3.3.4 Satz 13: Cauchyscher Verdichtungssatz

Sei  $(a_n)_n$  fallende Nullfolge

Dann ist 
$$\sum_{n=1}^{\infty} a_n \text{konvergent} \Leftrightarrow \sum_{n=1}^{\infty} 2^n a_{2n} \text{konvergent}$$
 (3.6)

**Beweis** 

$$s_{j} := \sum_{n=1}^{\infty} a_{n} t_{j} := \sum_{n=1}^{\infty} 2^{n} a_{2} n$$

$$lnj \leq 2^{k} \operatorname{gilt}(a_{n} \geq a_{n} + 1) \forall n$$

$$s_{j} = a_{0} + a_{1} + \underbrace{a_{2} + a_{3} + a_{4} + \dots + (a_{2^{k}} + a_{2^{(k+1)}} + \dots + a_{2^{k+1}-1})}_{\leq 2a_{2}}$$

$$\leq a_{0} + a_{1} + 2a_{2} + 4a_{4} + 8a_{8} + \dots + 2^{k} a_{2^{k}}$$

$$= t_{k} \leq t_{k+1} \leq \dots \leq t_{k+l} \forall l \in \mathbb{N}$$

$$\implies s_{j} \leq \sup_{\text{wenn kondensierte Reihe konvergent}} (3.7)$$

 $\implies s_j$  konvergiert

Umkehrung ähnlich zu zeigen.

# 3.3.5 Anwendungen des Cauchyschen Verdichtungskriteriums

- $\sum_{n=1}^{\infty} \frac{1}{n}$  divergient
- $\sum_{n\leq 1}^{\infty} 2^n \frac{1}{2^n} = \sum_{n=1}^{\infty} 1$  divergent
- $\sum_{n=1}^{\infty} \frac{1}{\lambda}$  konvergiert  $\lambda > |1|$  divergiert  $\lambda \leq |1|$

# 3.4 Absolut konvergente Reihen

hier auch  $(a_n)_n \in \mathbb{C}$ 

### 3.4.1 Def 14

Eine Reihe  $\sum_{n=1}^{\infty} a_n$  konvergiert absolut, wenn die Reihe  $\sum_{n=1}^{\infty} |a_n|$  konvergiert.

# 3.4.2 Satz 15

Eine absolut konvergente Reihe  $\sum_{n=1}^{\infty} a_n$  ist

- konvergent
- es gilt:  $\left|\sum_{n=1}^{\infty} a_n\right| \le \sum_{n=1}^{\infty} |a_n|$

Beweis 
$$\left|\sum_{j\geq n+1}^{n+l} |a_j| < \epsilon$$
  
 $\forall \epsilon > 0 \exists k_{\epsilon} : \sum_{j=n+1}^{n+l} |a_j| < \epsilon, \forall l \in \mathbb{N}, n \geq k_{\epsilon}$ 

• es gilt: 
$$|\sum_{n=1}^{\infty} a_n| \le \sum_{n=1}^{\infty} |a_n|$$

Beweis  $|\sum_{j\geq n+1}^{n+l} |a_j| < \epsilon$ 
 $\forall \epsilon > 0 \exists k_{\epsilon} : \sum_{j=n+1}^{n+l} |a_j| < \epsilon, \forall l \in \mathbb{N}, n \ge k_{\epsilon}$ 
 $\implies \sum_{n=1}^{\infty} a_n \text{ ist konvergent und } |\sum_{j=1}^{n} a_j | \le \sum_{j=1}^{n} |a_j| \le \sum_{j=1}^{\infty} |a_j|$ 
 $\leftarrow |\sum_{j=1}^{\infty} a_j|, n \leftarrow \infty$ 

Bemerkung Umkehrung gilt nicht!

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$
 konvergiert, aber  $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$ 

# 3.4.3 Def 16

Eine Reihe  $\sum_{n=1}^{\infty} c_n c_N > 0$  heißt Majorante  $\sum_{n=1}^{\infty} a_n$ , falls ein  $n_0 \in \mathbb{N}$  existiert:

$$|a_n| \le nn > n_0 d.h.$$
 falls  $|a_n| \le c_n \forall n \in \mathbb{N}$ 

# 3.4.4 Satz 17 Majorantenkriterium

1. Hat die Reihe  $\sum_{n=1}^{\infty} a_n$  eine konvergente Majorante so ist sie absolut konvergent und damit konvergent.

2. Ist  $a_n \ge 0$  und dazu  $\sum_{n=1}^{\infty} a_n$  so divergiert auch jede Majorante.

Beweis Teil 2: Selber überlegen

Zu 1) o.B.d.A. 
$$|a_n| \leq a_n, \forall n \in \mathbb{N}, \sum_{n=1}^{\infty} c_n < \infty$$

$$\implies sum_{n-1}^{\infty}|a_n| \leq \sum_{m=1}^{\infty} c_n < \infty$$

Zu 1) o.B.d.A. 
$$|a_n| \le a_n, \forall n \in \mathbb{N}, \sum_{n=1}^{\infty} c_n < \infty$$
  
 $\implies sum_{n=1}^{\infty} |a_n| \le \sum_{n=1}^{\infty} c_n < \infty$   
 $\implies \sum_{n=1}^{\infty} a_n$  absolut konvergent und somit konvergent nach Satz 15.

#### 3.4.5 Satz 18 Wurzelkriterium

Sei  $\sum_{n=1}^{\infty} a_n$ eine Reihe und 0 < q < 1 mit  $\sqrt[n]{|a_n|} = |a_n| \le q$ für fast alle n

$$\implies \sum_{n=1}^{\infty} a_n$$
 ist abs. konvergent

Beweis  $\sqrt[n]{|a_n|} \le q \implies |a_n| \le q^n$  für  $n \ge n_0$   $\implies \sum_{n=1}^{\infty} a_n$  hat die konvergierende Majorante  $\sum_{n=1}^{\infty} a^n$  da q < 1!

Ist  $\sqrt[n]{|a_n|} \ge 1$  für unendlich viele n

 $\implies |a_n| \ge 1 = 1$  für unendlich viele n

 $\implies (a_n)_n$  ist keine Nullfolge  $\implies \sum a_n$  ist nicht konvergent.

#### 3.4.6 Satz 19 Quotientenkriterium

Ist  $a_n \neq 0 \forall n$  und es existiert a, b < q < 1 mit  $\left| \frac{a_{n+1}}{a_n} \right| \leq q$  für fast alle n

$$\implies \sum_{n=1}^{\infty} a_n$$
 ist abs. konvergent

mit  $\left|\frac{a_{n+1}}{a_n}\right| \ge 1$  für fast alle n

$$\sum_{n=1}^{\infty} a_n \text{ist divergent}$$

Beweis Sei 
$$\left|\frac{a_{n+1}}{a_n}\right| \le q, n \ge n_0$$
  
 $l \in \mathbb{N}: \left|\frac{a_{n+1}}{a_n}\right| = \prod_{j=0}^{l-1} \left|\underbrace{\frac{a_{n+1}}{a_n}}\right| \le q^l$ 

$$\implies |a_{n_0+l}| \le |a_{n_0}| a^l = |a_{n_0}| q^{-n_0} * q^{n_0+l}$$

$$\implies \forall n \ge n_0 : |a_n| \le kq^n k = |a_{n_0}|q^{-n_0}$$

$$\Rightarrow \forall n \geq n_0 : |a_n| \leq kq^n k = |a_{n_0}| q^{-n_0}$$

$$\Rightarrow \sum_{n=1}^{\infty} a_n \text{ hat die konvergente Majorante } \sum_{n=1}^{\infty} kq^n!$$
Ist  $\left|\frac{a_{n+1}}{a_n}\right| \geq 1$  für fast alle n

$$\implies \underbrace{|a_{n+1}|} \ge |a_n|, n \ge n_0$$

$$\leq |a_{n+2}| \Longrightarrow |a_n| \geq |a_{n_0}|, \forall n \geq n_0$$

 $\implies (a_n)_n$  ist keine Nullfolge!

#### Bemerkung

- 1) Für Konvergenz reicht nicht  $\sqrt[n]{|a_n|} < 1$  oder  $|\frac{a_{n+1}}{a_n}| < 1$  für fast alle n. Siehe harmonische Reihe
- 2) Andere Formulierung
  - a) Die Reihe  $\sum a_n$  ist absolut konvergent, wenn  $\limsup_{n\to\infty} \sqrt[n]{|a_n|} < 1$ , bzw. divergent, wenn  $\limsup_{n\to\infty} \sqrt[n]{|a_n|} > 1$
  - b) Die Reihe  $\sum_{n=1}^{\infty} a_n$  ist absolut konvergent, wenn  $\limsup_{n\to\infty} |\frac{a_{n+1}}{a_n}| < 1$ , bzw. divergent falls  $\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| > 1$

#### **Beispiel**

```
a_n = \frac{1}{n^2} : \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1, \lim_{n \to \infty} \sqrt[n]{n^2} = 1 \sum_{n=1}^{\infty} n^p x^n \text{ konvergiert absolut } |x| < 1 \text{ nach Wurzelkriterium.} \sum_{n=1}^{\infty} \frac{1}{n^{\gamma}} \text{ machen weder Quotienten noch das Wurzelkriterium eine Aussage.}
```

# 3.5 Dezimaldarstellung reeller Zahlen

```
r \in \mathbb{R} : |r| := \text{ganzzahliger Anzahl}
 r \in \mathbb{R} : |r| := \max\{h \in \mathbb{Z}, n \le r\} (Gaußklammer)
 x := r - |r| \in [0, 1)
 r = |r| + x
 x_1 := [x * 10] \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
R_1 := x - x_1 * 10^{-1} \in [0, 10^{-1})
 x = x_1 * 10^{-1} + R_1
 x_2 := \lfloor R_1 * 10^2 \rfloor \in \{0, 1, \dots, 9\}
 x = x_1 * 10^{-1} + x_2 * 10^{-2} + R_2
induktiv, wenn x = x_1 * 10^{-1} + x_2 * 10^{-2} + \ldots + x_n * 10^{-n} + R_n
 x_j \in \{0, 1, \dots, 9\}, R_n \in [0, 10^{-(n)})
x_{n+1} = \lfloor R_n * 10^{n+1} \rfloor
\implies x = \sum_{j=1}^{n+1} x_j * 10^{-j} + R_{n+1}, R_{n+1} \in [0, 10^{-(n+1)})
 \sum_{n=1}^{\infty} x_n 10^{-n} \text{ ist absolut konvergent und } x = \sum_{n=1}^{\infty} x_n * 1^{-n}
 \implies r = |r| + x = m, x_1, x_2, x_3, \dots
m = \lfloor r \rfloor
r = m + \sum_{n=1}^{\infty} x_n * 10^{-n}
0, \overline{9} = \sum_{n=1}^{\infty} 9 * 10^{-n} = 9 * 10^{-1} * \sum_{k=0}^{\infty} 10^{-k} \text{ (geometrische Reihe)}
0, \overline{9} = 9 * 10^{-1} * \frac{1}{1 - \frac{1}{10}} = 9 * 1 - \frac{1}{10} * \frac{10}{10 - 1} = 1!
0 \forall n > l + 1 \text{ Damit ohne Darstel}
 Falls es ein l \ge 1 gibt mit x_n = 9, \forall n \ge l + 1. Damit ohne Darstellung nicht eindeutig!
 Sei <br/>l die kleinste solche Zahle n\in\mathbb{N}_0
 \implies \sum_{n=l+1}^{\infty} 9*10^{-n} = 9*\sum_{n=l+1}^{\infty} 10^{-n} = 9*10^{-(l+1)} \sum_{n=0}^{\infty} 10^{-n} = 9*10^{-(l+1)} \frac{1}{1-\frac{1}{10}} = 9*10^{-(l+1)} \frac{1}{10} = 9*10^{-(l+1)} \frac{1}{
 10^{-l}
```

$$\Rightarrow x = r - \lfloor r \rfloor = \sum_{n=1}^{\infty} x_n * 10^{-n} = \sum_{n=1}^{l} x_n * 10^{-n} + \underbrace{\sum_{n=l+1}^{\infty} 9 * 10^{-n}}_{=l0^{-l}}$$

$$= \sum_{n=1}^{l-1} x_n * 10^{-n} + \underbrace{x_l 10^{-l} + 10^{-l}}_{=(x_l+1)*10^{-l}}$$

$$\Rightarrow r = \lfloor r \rfloor + \sum_{n=1}^{l} \tilde{x}_1 * 10^{-n}$$

$$\tilde{x} = \begin{cases} x_n, & \text{falls } n \leq l-1 \\ x_l+1, & \text{falls } n=l \\ 0 & \text{falls } n \geq l+1 \end{cases}$$
Vollkommen analog kann man g-adische Darstellung zeigen:  $g \in \mathbb{N}$ 

$$\Rightarrow r = m + \sum_{n=1}^{\infty} y_n g^{-n}$$
  
 $m \in \mathbb{Z}, y_n \in \{0, 1, \dots, g-1\}$   
**Beweis** Analog

Beweis Analog

Angenommen [0,1) ist abzählbar

Idee als n-te Ziffer  $\tilde{x}_n := \left\{ \begin{array}{ll} \tilde{x}_n+1, & \text{falls } x_n^n \leq 8 \\ 1, & \text{falls } x_n^n = 9 \end{array} \right.$  neue reelle Zahl  $\tilde{r}=0,\tilde{x}_1,\tilde{x}_2,\tilde{x}_3,\ldots \in [0,1)$  die nicht in obiger Liste ist.  $\Longrightarrow [0,1)$  nicht abzählbar!

# 3.6 Umordnung von Reihen

**Beobachtung** Bei <u>endlichen</u> Summen hängt der Wer der Summe <u>nicht</u> davon ab, in welcher Reihenfolge die Summanden aufsummiert werden.

$$a_1 + a_2 + \ldots + a_6 = ((((a_1 + a_2) + a_5) + a_4) + a_6) + a_3 = ((((a_1 + a_6) + a_4) + a_3) + a_5) + a_2$$

Warnung Bei unendlichen Reihen ist dies manchmal falsch!

#### 3.6.1 Definition 20

1) Seien  $a_n, b_n \in \mathbb{C}$  Wir nennen  $\sum_{n=1}^{\infty} b_n$  eine Umordnung von  $\sum_{P} n = 1^{\infty} a_n$ , wenn es eine bijektive Abbildung  $\sigma : \mathbb{N} \to \mathbb{N}$  gibt  $b_n = a_{\sigma(n)}$ , d.h.  $(b_n)_n$  ist eine Umordnung von  $(a_n)_n$ 

2) Elen konvergente Reihe  $\sum_{n=1}^{\infty} a_n, a_n \in \mathbb{C}$  heißt unbedingt konvergent, wenn jede Umordnung  $\sum_n \underline{b_n}$  ebenfalls konvergent und dieselbe Summe wie  $\sum_{n=1}^{\infty} a_n$  benutzt. Anderfalls heißt  $\sum_{n} a_n$  bedingt konvergent.

# 3.6.2 Satz 21 (Dirchlet 1837)

 $a_n \in \mathbb{C}, \sum_{n=1}^{\infty} a_n$  ist unbedingt konvergent  $\Leftrightarrow \sum_{n=1}^{\infty} a_n$  ist absolut konvergent! **Beweis** 

Sei  $\sum_{n=1}^{\infty}$  absolut konvergent und  $\sum_{n=1}^{\infty}b_n$  eine Umordnung.  $s_n:=\sum_{j=1}^na_j,t_n:=\sum_{k=1}^nb_k=\sum_{k=1}^na_{\sigma(k)}$   $\sigma:\mathbb{N}\to\mathbb{N}$  Bijektion

Wissen  $s_n \to s$ , müssen zeigen  $t_n \to s$ 

Seien  $\epsilon > 0, \implies \exists m \in \mathbb{N}$ 

$$\sum_{n=m+1}^{m+l} |a_n| < \epsilon, \forall l \in \mathbb{N}(*)$$

$$da \sum a_n absolut konvergiert$$

Bestimme  $N \in \mathbb{N}$  so, dass

$$\begin{cases} \{1,2,3,\ldots,m\} \subset \{\sigma(1),\sigma(2),\ldots,\sigma(N)\} \\ \Longrightarrow \{a_1,a_2,\ldots a_m\} \subset \{a_{\sigma(1)},a_{\sigma(2)},\ldots,a_{\sigma(N)}\} \\ \text{Sei } n \geq N(\geq m) \\ s_n - t_n = \sum_{j=1}^n a_j - \sum_{k=0}^n a_{\sigma(k)} = \sum_{j\geq m+1}^n a_j - \sum_{k=1}^n a_{\sigma(k)}, \sigma(k) \notin \{1,2,\ldots,m\} \\ \Longrightarrow |a_n - t_n| = |\sum_{j\geq m+1}^n a_j - \sum_{k=1,\sigma(k)>m}^n a_{\sigma(k)}| \leq \sum_{j=m+1}^n |a_j| + \sum_{k=1}^n |a_{\sigma(k)}| \leq 2\sum_{j=m+1}^L a_j, L = \max(n,\sigma(k)), k = 1,\ldots,n \\ \Longrightarrow \lim_{n\to\infty} (s_n - t_n) = 0 \text{ und wir wissen } s_n \to s, n \to \infty \\ \Longrightarrow t_n - s = (s_n - s) + (t_n - s_n) \to 0$$

2) "⇒"Beweis durch Kontraposition

 $\implies \lim t_n = s \checkmark$ 

Annahme:  $\sum_n a_n$  ist nicht absolut konvergent Folgen:  $\sum_{n} a_n$  ist nicht unbedingt konvergent. Sei  $a_n = \alpha_n + i\beta_n$ 

#### Schritt 1

Reduktion auf reelle Reihen:

$$\sum_{n} a_n$$
 unbestimmt konvergent

$$a_n = \alpha_n + \beta_n \iff \Re\left(\sum a_n\right), \Im\left(\sum a_n\right)$$
 unbestimmt konvergent  $\iff \sum \alpha_n, \sum \beta_n$  sind unbestimmt konvergent

#### Schritt 2

Ziel Beweis durch Kontraposition:

 $\alpha_n = p_n - q_n, |\alpha_n| > p_n + q_n$ 

Sei 
$$\sum_n \alpha_n$$
 konvergent, aber nicht absolut konvergent  $\implies \sum_a a_n$  ist nicht unbestimmt konvergent Setze  $p_n := \max(a_n, 0), \quad q_n := -\min(\alpha_n, 0)$ 

#### Schritt 3

Sei  $\sum \alpha_n$  konvergent aber nicht absolut konvergent

$$\sum_{n} p_n = +\infty$$

$$\sum_{n} q_n = +\infty$$
!

Da 
$$q_n \ge 0$$
,  $\Longrightarrow \sum q_n$  ist endlich oder  $= +\infty$ 

Angenommen: 
$$\sum_{n=1}^{\infty} q_n < \infty$$

Da 
$$\sum_{n=1}^{\infty} a_n$$
 ist konvergent

$$\implies \sum_{n} (\alpha_n + q_n)$$
 ist konvergent

$$\sum_n (\alpha_n + q_n) = \sum_n p_n \text{ ist konvergent}$$

$$\implies \sum_{n} |\alpha_n| = \sum_{n} (p_m + q_n) = \sum_{n} p_n + \sum_{n} q_n < \infty$$

$$\implies \sum \alpha_n$$
 ist absolut konvergent  $\not$ 

# Schritt 4

Sei  $\sum a_n$  konvergent, nicht absolut konvergent

 $\implies$   $\exists$  Umordnung  $\sum b_n$  so, dass sie gegen  $-\infty$  divergent!

$$\mathrm{Da} \sum p_n = +\infty, \sum q_n = +\infty$$

Wähle 
$$r$$
, sodass  $\sum_{k=1}^{r_1-1} p_k > 1 + q_1$ 

$$\implies$$
 Wähle  $r_2 > r_1 + 1 : \sum_{k=1}^{r_2-2} p_k > 2 + q_1 + q_2$ 

induktiv schreiben: zu  $r_n \in \mathbb{N},$ 

wähle  $r_{n+1} \in \mathbb{N}, r_{n+1} > r_n + n$ 

$$\sum_{k=1}^{r_{n+1}-(n+1)}p_k>n+\sum_{k=1}^{n+1}q_k$$

Umordnung von  $\sum a_n$ :

$$p_1 + p_2 + p_3 + \ldots + p_{r_1-1} - q_1 + p_{r_1} + \ldots + p_{r_2-2} - q_2$$

 $+p_{r_2+1}+\ldots+p_{r_3-3}-q_3+\ldots$  dies divergiert gegen  $+\infty$ 

#### Beobachtung

Wenn  $\sum_{k=1}^{\infty} b_k$  diese Umordnung ist

$$r_n \le L < r_{n+1} \left| \sum_{k=1}^L b_k \ge n \right|$$
 divergent

#### 3.6.3 Satz 22: Rieman

Ist  $\sum a_n$  konvergent aber nicht absolut konvergent  $\Longrightarrow$  Für  $c \in \mathbb{R}$  (oder  $c = +\infty$  oder  $c = +\infty$ ) existieren Umordnungen von  $\sum \alpha_n$  die gegen c konvergieren!

# 3.7 Produkt von Reihen

$$\sum a_n, \sum b_n, \left(\sum a_n\right) \left(\sum b_n\right)$$
$$\left(\sum_{l=0}^n a_l\right) \left(\sum_{m=0}^k b_m\right) = \sum_{l=0}^n \sum_{m=0}^k a_l b_m$$

#### 3.7.1 Satz 23

Sei  $(b_{lm})_{l,m\in\mathbb{N}_0}$ ,  $b_{lm}\geq 0$  und

$$S := \sum_{l=0}^{\infty} \left( \sum_{m=0}^{\infty} b_{lm} \right) \quad (S = +\infty \text{ erlaubt!})$$

Dann ist 
$$S := \sum_{m=0}^{\infty} \left( \sum_{l=0}^{\infty} b_{lm} \right)$$

Ferner ist lm jede Bijektion  $\sigma: \mathbb{N}_0 \to \mathbb{N}_0 \times \mathbb{N}_0$  (d.h. für jede Abzählung von  $\mathbb{N}_0 \times \mathbb{N}_0$ ) auch.

$$S = \sum_{n=0}^{\infty} b_{\sigma(n)}$$

Insbesondere kommt es auf die Reihenfolge der Summation nicht an und z.B. gilt

$$S = \sum_{n=0}^{\infty} * \sum_{l+m=n}^{\infty} b_{lm} = \sum_{n=0}^{\infty} \sum_{l=0}^{n} b_{l,n.l}$$
$$= \lim_{L \to \infty} \sum_{l=0}^{L} b_{lm}$$

#### **Beweis**

$$b_{l,m} \ge 0 \quad \forall l, m$$

Monotone
Konvergenz
$$\Longrightarrow \sum_{l=0}^{\infty} \left( \sum_{m=0}^{\infty} b_{lm} \right)$$

$$= \lim_{n \to \infty} \left( \sum_{l=0}^{n} \left( \sum_{m=0}^{\infty} b_{lm} \right) \right)$$

$$= \lim_{n \to \infty} \left( \sum_{l=0}^{n} \left( \lim_{k \to \infty} \sum_{m=0}^{k} b_{lm} \right) \right)$$

$$= \lim_{n \to \infty} \left( \lim_{k \to \infty} \sum_{l=0}^{n} \sum_{m=0}^{k} b_{lm} \right)$$

$$= \lim_{n \to \infty} \left( \lim_{k \to \infty} \sum_{m=0}^{k} \sum_{l=0}^{n} b_{lm} \right)$$

Monotone

Konvergenz
$$= \sup_{n \in \mathbb{N}_0} \left( \sup_{k \in \mathbb{N}_0} \sum_{m=0}^k \sum_{l=0}^n b_{lm} \right)$$

$$\stackrel{\text{Lemma 24}}{=} \sup_{k \in \mathbb{N}_0} \left( \sup_{n \in \mathbb{N}_0} \sum_{m=0}^k \sum_{l=0}^n b_{lm} \right)$$

Monotone

Konvergenz 
$$\lim_{k \to \infty} \left( \lim_{n \to \infty} \sum_{m=0}^{k} \sum_{l=0}^{n} b_{lm} \right)$$

$$= \ldots = \sum_{m=0}^{\infty} \sum_{l=0}^{\infty} b_{lm} !$$

Sei  $\sigma : \mathbb{N}_0 \times \mathbb{N}_0$  eine Bijektion.

$$S_L = \sum_{n=1}^{\infty} b_{\sigma(n)}$$
 "Partialsumme"

$$\implies S_L \le S_{L+1} \quad \forall L \quad \& \quad \boxed{S_L \le S}$$

Fall  $S < \infty$ 

Monotone

$$\overset{\text{Konvergenz}}{\Longrightarrow} \ \overset{1}{S} := \lim_{L \to \infty} S_L \text{ existiert}$$

$$\implies \sum_{n=0}^{\infty} b_{\sigma(n)}$$

Damit ist  $\sum_{n=0}^{\infty} b_{\sigma(n)}$  absolut konvergent

$$\stackrel{\text{Satz 21}}{\Longrightarrow}$$
 Jede Umordnung von  $\sum_{n=0}^{\infty} b_{\sigma(n)}$  konvergiert gegen  $\tilde{S}$ 

$$\implies \text{Für } \underline{\underline{\text{jede}}} \text{ Bijektion } \sigma: \mathbb{N}_0 \to \mathbb{N}_0 \times \mathbb{N}_0 \text{ ist } \sum_{n=0}^\infty b_{\sigma(n)} = \tilde{S}$$

Behauptung:  $\tilde{S} = S!$ 

Sicherlich ist  $\tilde{S} \leq S$ , da  $\tilde{S} = \lim S_L \leq S$ 

$$\sum_{l=1}^{N_1} \sum_{m=1}^{N_2} b_{lm} \ge S - \epsilon$$

$$\tilde{S} \ge S - \epsilon \quad \forall \epsilon > 0$$

$$\implies \tilde{S} \ge S!$$

# 3.7.2 Lemma 24

Seien X, Y beliebige Mengen  $\neq \emptyset$ 

$$\rho: X \times Y \to \mathbb{R}, \implies \sup_{x \in X} \left( \sup_{y \in Y} f(x, y) \right) = \sup_{y \in Y} \left( \sup_{x \in X} f(x, y) \right)$$

#### **Beweis**

Offensichtlich

$$f(x,y) \le \sup_{x \in X} \left( \sup_{y \in Y} f(x,y) \right)$$

Dann scharf hinschauen!

#### 3.7.3 Satz 25

Sind  $\sum a_n, \sum b_n$ ,  $a_n, \sum b_n \in \mathbb{C}$  absolut konvergente Reihen und setzen nun

$$P := \left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right) \tag{1}$$

$$\implies \left| P := \sum_{j=0}^{\infty} \left( \sum_{k=0}^{\infty} a_j b_k \right) = \sum_{k=0}^{\infty} \left( \sum_{j=0}^{\infty} a_j b_k \right) \right| \quad (2)$$

Ferner ist mit  $d_{lm}=a_lb_m$  und jeder Bijektion: $\sigma:\mathbb{N}_0\to\mathbb{N}_0\times\mathbb{N}_0$  $c_v:=d_{\sigma(v)}$  (d.h. jeder Anordnung der Punkte  $a_lb_m$ ) auch

$$P = \sum_{v=0}^{\infty} c_v$$
 (3)

und die Reihe in (3) ist absolut konvergent.

Insbesondere ist

$$P = \sum_{n=0}^{\infty} * \sum_{l+m=n} a_l b_n \qquad (4)$$

als 
$$P = \sum_{n=0}^{\infty} \sum_{l=0}^{n} a_{l} b_{n-l}$$

(Cauchy Produktfornel!)

#### Bemerkung

Satz ist falsch, falls  $\sum a_n \sum b_n$  nicht absolut konvergent sind.

#### **Beweis**

$$K' = \sum_{n} |a_n|, \quad K'' = \sum_{n} |b_n|$$

$$\implies \sum_{l=0}^{n} \sum_{m=0}^{k} |a_l b_m| = \left(\sum_{l=0}^{n} |a_n|\right) \left(\sum_{m=0}^{k} |b_m|\right) \le K' K'' = K < \infty$$

$$\implies \sum_{l=0}^{\infty} \left(\sum_{m=0}^{\infty} |a_l b_m|\right) \le k < \infty$$

d.h. Satz 23 kann auf  $|d_{lm} = |a_l b_m|$  angewandt werden!

$$\implies$$
 Jede anordnung  $c_v = a_l b_m$  mit  $(l, m) = \sigma(v), \sigma : \mathbb{N}_0 \to \mathbb{N}_0 \times \mathbb{N}_0$ 

ergibt eine absolut konvergente Reihe!

$$\implies \tilde{P} := \sum_{v=0}^{\infty} c_v$$
 existiert und ist unabhängig von  $\sigma!$ 

$$\implies \left[\tilde{P} = \sum_{n=0}^{\infty} * \sum_{l+m=n}\right] !$$

und = 
$$\lim_{n \to \infty} \sum_{l=0}^{n} \sum_{m=0}^{n} a_l b_m$$

3 Reihen

$$= \lim_{n \to \infty} \left( \sum_{l=0}^{n} a_l \right) \left( \sum_{m=0}^{n} b_m \right)$$

$$= \lim_{n \to \infty} \left( \sum_{l=0}^{n} a_l \right) \left( \lim_{n \to \infty} \sum_{m=0}^{n} b_m \right)$$

$$= n * v$$

$$u = \lim_{n \to \infty} u_n = \lim_{n \to \infty} \sum_{l=0}^{n} a_l$$

$$v = \lim_{n \to \infty} v_n = \lim_{n \to \infty} \sum_{m=0}^{n} b_m$$
Da ferner  $n * v = \left( \lim_{n \to \infty} u_n \right) v$ 

$$= \lim_{n \to \infty} \left( u_n * v \right)$$

$$= \lim_{n \to \infty} \left( \sum_{l=0}^{n} a_l \sum_{m=0}^{\infty} b_m \right)$$

$$= \lim_{n \to \infty} \sum_{l=0}^{n} \left( \sum_{m=0}^{\infty} a_l b_m \right)$$

$$= \sum_{l=0}^{\infty} \left( \sum_{m=0}^{\infty} a_l b_m \right)$$
und dasselbe für  $u * v = \lim_{n \to \infty} u * v_n$ 

$$\implies (2) \text{ gilt}$$

$$e = \lim_{n}^{8} (1 + \frac{1}{n})^{n}$$

$$\tilde{e} = \sum_{n=0}^{\infty} \frac{1}{n!}$$

$$(3.9)$$

$$(1 + \frac{1}{n})^{n} = \sum_{k=0}^{n} {n \choose k} \frac{1}{n^{2}} = \sum_{k=0}^{\infty} e^{n} \frac{1}{k!} \prod_{l=0}^{k+1} \frac{n+l}{n}$$

Wir möchten:

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n = \lim_{n \to \infty} \sum_{k=0}^n \frac{1}{k!} \prod_{l=0}^k \frac{n-k}{k}$$

$$= \sum_{k=0}^\infty \frac{1}{k!} \lim_{n \to \infty} \prod_{l=0}^{k+1} \frac{n+l}{n}$$

$$= \sum_{k=0}^\infty \frac{1}{k!}$$
(3.10)

Hier stellt sich die Frage, ob die zweite Zeile erlaubt ist. Bisher können wir sie nicht beweisen. Wir benutzen folgenden Trick: Wählen  $m \in \mathbb{N}$ 

$$n \geq m$$

$$\implies (1 + \frac{1}{n})^n = \sum_k = 0^n \frac{1}{k!} \prod_{l=0}^{k+1} \frac{n+l}{n}$$

$$\geq \sum_l = 0^m \frac{1}{k!} \prod_{l=0}^{k+1} \frac{m+l}{m}$$

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n \geq \lim_{n \to m} \sum_l = 0^m \frac{1}{k!} \prod_{l=0}^{k+1} \frac{n+l}{n}$$

$$= \sum_k = 0^m \frac{1}{k!} \prod_{l=0}^{k+1} \lim_{n \to \infty} n \to m \frac{n+l}{n} = \sum_{k+l}^m \frac{1}{k!}$$

$$\implies e \geq \sum_{k=0}^n \frac{1}{k!} \forall m \in \mathbb{N}$$

$$\implies e \lim_{n \to \infty} \sum_{k=0}^n \frac{1}{k!} = \sum_{k=m}^\infty \frac{1}{k!} = \tilde{e}$$

$$(3.11)$$

# 3.8 Def 33:

Für  $z \in \mathbb{C}setzenwir$ :

$$exp(z) = \sum_{n=0}^{m} = \frac{z^n}{n!}$$

Wegen des Quotientenkriteriums:

$$\left| \frac{\frac{z^{n+1}}{|n+1|!}}{\frac{z^n}{n!}} \right| = \frac{|z|}{n+1} \to 0 \text{ für } n \to \infty$$

Konvergiert absolut  $\forall z \in \mathbb{C}$ 

# 3.9 Satz 34 Eigenschaften von exp

1. 
$$\overline{exp(z)} = exp(\overline{z})$$

2. 
$$exp(a) + exp(b) = exp(a+b) \forall a, b \in \mathbb{C}$$
 und damit

a) 
$$exp(z) \neq 0 \forall z \in \mathbb{C}$$

b) 
$$exp(z)^{-1} = exp(-z)$$

c) 
$$exp(x) > 0 \forall x \in \mathbb{R}$$

d) Sogar

$$exp(x) > 1 \forall x > 0$$

3. Eulersche Formeln

Es gilt: 
$$sin(x), cos(x) \in \mathbb{R} \forall x \in \mathbb{R}$$
  
 $cos(-z) = cos(z)$   
 $sin(-z) = -sin(z)$   $\forall z \in \mathbb{C}$   
Summe der Formeln:

$$exp(iz) = cos(z) + isin(z)$$

$$cos(z) = \frac{1}{2}(exp(iz) + exp(-iz))$$

$$sin(z) = \frac{1}{2e}(exp(iz) - exp(-iz))$$

$$\implies (cos(z))^{2} + (sin(z))^{2} = 1 \forall z \in \mathbb{C}$$

$$Re(exp(ix)) = cos(x)$$

$$Im(exp(ix)) = sin(x)$$

$$|exp(ix) \ge 1|$$

$$|cos(x)|, |sin(x) \le 1$$

# 4 Stetige Funktionen

Im folgen  $D \subset \mathbb{R}$  oder  $D \subset \mathbb{C}$  nicht leer!

# 4.1 Grenzwerte von Funktionen

# 4.1.1 Def 1: Abschluss in einer Menge

Die Menge

$$\overline{D} := \{ z \in \mathbb{C} : \exists (z_n)_n \in D \text{ mit } z_n \to z \text{ für } n \to \infty \}$$

heißt Abschluss in D = Menge der Häufungswerte in D Es gilt immer  $D \subset \overline{D}$ , falls gilt  $D = \overline{D}$  so heißt D abgeschlossen. Beispiele:  $\overline{[0,1)} = [0,1]$ 

 $\overline{\mathbb{R}\ 0} = \mathbb{R}$ 

 $\overline{\mathbb{C}\ \mathbb{R}} = \mathbb{C}$ 

#### 4.1.2 Def 2: Grenzwert einer Funktion

Sei  $D \subset \mathbb{C}$  und  $z_0 \in \overline{D}$  und  $w \in \mathbb{C}$ .

Eine Funktion  $f: D \to \mathbb{C}$  ist konvergent gegen den Grenzwert w für  $z \to z_0$  falls für jede Folge  $z_n \subset D, z_n \to z_0, n \to \infty$  auch  $f(z_n) \to wn \to \infty$  Wir schreiben dann:

1. 
$$w = \lim_{z \to z_0} (f)$$

2. 
$$f(z) \to wz \to z_0$$

Ist  $D \subset Rx_z \in \overline{D}$  so schreiben wir  $w = \lim_{x \to x_o} (f(x))$  oder  $f(x) \to wx \to x_0$ Falls  $D \subset \mathbb{R}$  und man zusätzlich fordert, dass  $x_n < x_0 \forall n \in \mathbb{N}$  (bzw.  $x_n < x_0 \forall n \in \mathbb{N}$ ) so spricht man von einem links bzw. rechtsseitigen Grenzwert und schreibt  $w = \lim_{x \to x_o -} (f(x))$  bzw.  $w = \lim_{x \to x_o +} (f(x))$ 

Bsp:1) 
$$f(x) = x^2 + 3, x \in \mathbb{R}$$

$$\implies \forall x_0 \in Rf(x) \to x_0 + 3 \text{ für } x \to x_0$$

2) Sei 
$$D \subset \mathbb{C}, M \subset D$$

$$Z_M(x) := \left\{ \begin{array}{l} -1, x \in M \\ 0x \in D M \end{array} \right.$$