Références / page pub

- Introduction au Machine Learning, Chloé-Agathe Azencott, Dunod InfoSup Version électronique (PDF) sans exercices disponible gratuitement sur http://cazencott.info [lien cliquable] (nouvelle édition en préparation)
- Le Machine Learning avec scikit-learn, Aurélien Géron, Dunod InfoSup
- Textes et vidéos sur OpenClassrooms :
 Textes accessibles librement ; vidéos accessibles avec un compte gratuit.
 - Parcours Ingénieur Machine Learning [lien cliquable]
 - Objectif IA (grand public) [lien cliquable]

Ressources complémentaires

- Sources de jeux de données
 - Kaggle [lien cliquable]
 - Le module datasets de scikit-learn [lien cliquable]
 - Le UCI Machine Learning Repository [lien cliquable]
- MOOC scikit-learn [lien cliquable]

Cours 4 – Méthodes à noyaux

1. Noyaux

1.1 Produit scalaire

$$-\langle \vec{x}, \vec{x}' \rangle = \sum_{i=1}^p x_i x_i'$$
 $\vec{x}, \vec{x}' \in \mathbb{R}^p$

- $\langle \vec{x}, \vec{x}' \rangle = ||\vec{x}||_2 ||\vec{x}'||_2 \cos \theta \qquad ||\vec{x}||_2^2 = \langle \vec{x}, \vec{x} \rangle$
- Interprétable comme mesure de similarité $\Rightarrow \theta = \frac{\pi}{2}$, $\cos \theta = 0$, we clear = 1
- Forme définie positive bilinéaire :
 - $\langle \vec{x}, \vec{x}' \rangle = \langle \vec{x}', \vec{x} \rangle$ pour tout $\vec{x}, \vec{x}' \in \mathcal{X}$

- $-\langle \vec{x}+\vec{z},\vec{x}'\rangle=\langle \vec{x},\vec{x}'\rangle+\langle \vec{z},\vec{x}'\rangle$ pour tout $\vec{x},\vec{x}',\vec{z}\in\mathcal{X}$
- $-\langle a\vec{x}, \vec{x}' \rangle = a\langle \vec{x}, \vec{x}' \rangle$ pour tout $a \in \mathbb{R}$
- $-\langle \vec{x}, \vec{x} \rangle \ge 0$ et $\langle \vec{x}, \vec{x} \rangle = 0$ ssi $\vec{x} = 0$
- Apparaît dans de nombreux algorithmes d'apprentissage.

1.2 Noyau

- **Généralisation** du produit scalaire : $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$
 - sémantiquement une similarité
 - mathématiquement une forme définie positive
- Aronszajn: Si k est semi-définie positive¹, il existe un espace de Hilbert \mathcal{H} et une application $\varphi: \mathcal{X} \to \mathcal{H}$ telle que $k(\vec{x}, \vec{x}') = \langle \varphi(\vec{x}), \varphi(\vec{x}') \rangle_{\mathcal{H}}$ pour tout $\vec{x}, \vec{x}', \vec{z} \in \mathcal{X}$ (on the Connait ps heast-intent φ).

Ex regression quadrahque $\varphi:(x_1,...,x_p)\mapsto(x_1,...,x_p,x_1^2,x_1,...,x_p^2)$

¹Pour tout $m \in \mathbb{N}^*$, pour tout $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m\} \in \mathcal{X}$, la matrice $K \in \mathbb{R}^{m \times m}$ telle que $K_{il} = k(\vec{x}_i, \vec{x}_l)$ est semi-définie positive

1.3 Astuce du noyau

Des que je vois
$$\langle \vec{x}, \vec{x}' \rangle$$
 je peux le remplacer per $k(\vec{x}, \vec{z}')$

$$k(\vec{x}, \vec{x}') = \langle \varphi(\vec{x}), \varphi(\vec{x}') \rangle_{\mathcal{H}}$$

- Si un algorithme ne fait intervenir les éléments de $\mathcal X$ que dans des produits scalaires, **remplacer ces produits scalaires** par k est équivalent à appliquer l'algorithme dans $\mathcal H$ après avoir appliqué φ
- Utile si k est plus simple à calculer que φ

1.3 Astuce du noyau

$$k(\vec{x}, \vec{x}') = \langle \varphi(\vec{x}), \varphi(\vec{x}') \rangle_{\mathcal{H}}$$

- Si un algorithme ne fait intervenir les éléments de \mathcal{X} que dans des produits scalaires, remplacer ces produits scalaires par k est équivalent à appliquer l'algorithme dans \mathcal{H} après avoir appliqué φ
- Utile si k est plus simple à calculer que φ
- Exemple : noyau quadratique $k:(\vec{x},\vec{x}')\mapsto (1+\langle\vec{x},\vec{x}'\rangle)^2$
- Équivaut à $\varphi: (x_1, x_2, \dots, x_p) \mapsto = \langle \varphi(x), \varphi(x), \varphi(x) \rangle$ $(1, x_1, \dots, x_p, x_1^2, x_2^2, \dots, x_p^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_{p-1}x_p).$ > a qu'an a while φ pour faire des regressions polynomiales calculer $\varphi \Rightarrow p_1 p_2^2 \rangle$ voriables de degré d=2.

 La calcule $(\varphi(\vec{x}), \varphi(\vec{x})) \gamma = 0 (p^2)$ opération 89

1.4 Régression ridge à noyau

ERM regularisation

- **Régression ridge**: $\arg\min_{\vec{\beta} \in \mathbb{R}^{p+1}} \frac{1}{n} \left(\vec{y} X \vec{\beta} \right)^{+} \left(\vec{y} X \vec{\beta} \right) + \lambda \left| \left| \vec{\beta} \right| \right|_{2}$
 - Solution: $\vec{\beta}^* = (X^\top X + \lambda I_p)^{-1} X^\top \vec{y}$
 - Modèle : $f: \vec{x} \mapsto \langle \vec{\beta}^*, \vec{x} \rangle$ = ξ ξ ξ
- Reformulation : $f: \vec{x} \mapsto \vec{x} X^{\top} (\lambda I_n + X X^{\top})^{-1} \vec{y}$

1.4 Régression ridge à noyau

- **Régression ridge**: $\arg\min_{\vec{\beta} \in \mathbb{R}^{p+1}} \frac{1}{n} \left(\vec{y} X \vec{\beta} \right)^{\top} \left(\vec{y} X \vec{\beta} \right) + \lambda \left| \left| \vec{\beta} \right| \right|_{2}$
 - Solution: $\vec{\beta}^* = (X^\top X + \lambda I_p)^{-1} X^\top \vec{y}$
 - Modèle : $f: \vec{x} \mapsto \langle \vec{\beta}^*, \vec{x} \rangle$
- Reformulation : $f: \vec{x} \mapsto \vec{x} X^{\top} \left(\lambda I_n + X X^{\top} \right)^{-1} \vec{y}$
 - $-\vec{x}X^{\top} \in \mathbb{R}^{n}$ a pour i-ème entrée : $\langle \vec{x}, \vec{x}_{i} \rangle$ j'en d'apprentique $X^{\top} \in \mathbb{R}^{n \times n}$ a pour entrée $(i, l) : \langle \vec{x}, \vec{x}_{i} \rangle$
 - $XX^{\top} \in \mathbb{R}^{n \times n}$ a pour entrée $(i, l) : \langle \vec{x}_i, \vec{x}_l \rangle$

1.4 Régression ridge à noyau kernel

- Régression ridge: $\arg\min_{\vec{\beta} \in \mathbb{R}^{p+1}} \frac{1}{n} \left(\vec{y} X \vec{\beta} \right)^{\top} \left(\vec{y} X \vec{\beta} \right) + \lambda \left| \left| \vec{\beta} \right| \right|_{2}$ Solution: $\vec{\beta}^* = (X^{\top}X + \lambda I_p)^{-1} X^{\top} \vec{y}$ Modèle: $f: \vec{x} \mapsto (\vec{\beta}^*, \vec{x})$
- Reformulation : $f: \vec{x} \mapsto \vec{x} X^{\top} (\lambda I_n + \underline{X} X^{\top})^{\top} \vec{y}$
 - $-\vec{x}X^{\top} \in \mathbb{R}^n$ a pour i-ème entrée : $\langle \vec{x}, \vec{x}_i \rangle$
 - $\ XX^{ op} \in \mathbb{R}^{n \times n}$ a pour entrée (i,l) : $\langle \vec{x_i}, \vec{x_l}
 angle$
- **Kernelization :** remplacer $\vec{x}X^{\top}$ par $\kappa \in \mathbb{R}^n$ tel que $\kappa_i = k(\vec{x}, \vec{x}_i)$ et XX^{\top} par $K \in \mathbb{R}^{n \times n}$ telle que $K_{il} = k(\vec{x}_i, \vec{x}_l)$

équivaut à transformer les données par φ puis apprendre une régression ridge, **pour environ le même coût algorithmique**

Option 1: Appliquer of puis une regression ridge Option 2: Reinfluer (1) par k -> lep & efficace

- Noyau quadratique $k:(\vec{x},\vec{x}')\mapsto (1+\langle\vec{x},\vec{x}'\rangle)^2$ φ calcule tous les monômes de degré au plus 2 de x_1,x_2,\ldots,x_p

- Noyau quadratique $k:(\vec{x},\vec{x}')\mapsto (1+\langle\vec{x},\vec{x}'\rangle)^2$ φ calcule tous les monômes de degré au plus 2 de x_1,x_2,\ldots,x_p
- Noyau polynomial $k:(\vec{x},\vec{x}')\mapsto (1+\langle\vec{x},\vec{x}'\rangle)^d$ φ calcule tous les monômes de degré au plus d de x_1,x_2,\ldots,x_p

- Noyau quadratique $k:(\vec{x},\vec{x}')\mapsto (1+\langle\vec{x},\vec{x}'\rangle)^2$ φ calcule tous les monômes de degré au plus 2 de x_1,x_2,\ldots,x_p
- Noyau polynomial $k:(\vec{x},\vec{x}')\mapsto (1+\langle\vec{x},\vec{x}'\rangle)^d$ φ calcule tous les monômes de degré au plus d de x_1,x_2,\ldots,x_p
- Noyau RBF gaussien $k: (\vec{x}, \vec{x}') \mapsto \exp\left(-\frac{||\vec{x}-\vec{x}'||_2^2}{\sigma^2}\right)$ φ calcule tous les monômes de x_1, x_2, \ldots, x_p et $\mathcal H$ est de dimension infinie.

Listor toutes les chaîtes de traille m

AAAAA, AAAAS, , EXEMP, ..., MPLES, ..., 22222 Exemple: [0, 0 ,, 1,, 1,, 0]

- Noyau pour chaîne de caractères $k: (\vec{x}, \vec{x}') \mapsto \sum_{u \in \mathcal{A}^m} \psi_u(\vec{x}) \psi_u(\vec{x}')$
 - $-\mathcal{A}^m$ = l'ensemble des chaînes de m caractères sur l'alphabet \mathcal{A}
 - $\psi_u(\vec{x}) = 1$ si u est une sous-chaîne de \vec{x} et 0 sinon.

- Noyau pour chaîne de caractères $k:(\vec{x},\vec{x}')\mapsto \sum_{u\in\mathcal{A}^m}\psi_u(\vec{x})\psi_u(\vec{x}')$
 - $-\mathcal{A}^m$ = l'ensemble des chaînes de m caractères sur l'alphabet \mathcal{A}
 - $\psi_u(\vec{x}) = 1$ si u est une sous-chaîne de \vec{x} et 0 sinon.
- $k(\vec{x}, \vec{x}')$ est le nombre de chaînes de m caractères communes à \vec{x} et \vec{x}' et peut être calculé en $\mathcal{O}(|\vec{x}|)$ au lieu de $\mathcal{O}(|\mathcal{A}|^m)$.

- Noyau pour chaîne de caractères $k:(\vec{x},\vec{x}')\mapsto \sum_{u\in\mathcal{A}^m}\psi_u(\vec{x})\psi_u(\vec{x}')$
 - $-\mathcal{A}^m$ = l'ensemble des chaînes de m caractères sur l'alphabet \mathcal{A}
 - $-\psi_u(\vec{x})=1$ si u est une sous-chaîne de \vec{x} et 0 sinon.
- $-k(\vec{x},\vec{x}')$ est le nombre de chaînes de m caractères communes à \vec{x} et \vec{x}' et peut être calculé en $\mathcal{O}(|\vec{x}|)$ au lieu de $\mathcal{O}(|\mathcal{A}|^m)$.
- Si m=8, $|\mathcal{A}|=20$ et en moyenne $|\vec{x}|=485$, on compare 25,6 milliards d'opérations à moins de 500.

Méthodes à noyaux: remplacer dans un algo les produits scalaires par des noyaux -> apprendre do modèles non-linéaires efficaunet -> appliquer des modèles linéaires à clas objets dont le représentation en p dinensions n'est pas to hapmy parteste, images, moleculo... $y(x_1, x_2) = (x_1^2, x_2^2) + x_2^2 = -$ Uneaithent se pualité

2. Machines à vecteurs de support SVM (Support Vector Machines)

2.2 Formulation duale

on at passes de chercher p coeffs à chercher n coeffs

$$\underset{\vec{\alpha} \in \mathbb{R}^n}{\operatorname{arg\,max}} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{l=1}^n \alpha_i \alpha_l y_i y_l \langle \vec{\underline{x}}_i, \vec{x}_l \rangle$$

sous les contraintes $\sum_{i=1}^n \alpha_i y_i = 0$ et $0 \le \alpha_i \le C$

- Modèle:
$$f: \vec{x} \mapsto \sum_{i=1}^{n} \alpha_i \vec{y_i} (\vec{x_i}, \vec{x})$$
 e liquelle de $\vec{z_i}$

Quel que soit t, on chercle toujour seulement n coeffs I limite le surapprentissage – Perte ε -insensible :

$$f(\vec{x}) = \langle \vec{\beta}, \vec{\lambda} \rangle + b$$

