Bidder Selection Problem in Position Auctions:

A Fast and Simple Algorithm via Poisson Approximation

Nick Gravin
ITCS, Shanghai University of
Finance and Economics

Yixuan Even Xu
IIIS, Tsinghua University

Renfei Zhou
IIIS, Tsinghua University

Bidder Selection Problem

ticket discount

auction scores:

5.1

4.56

1.2

impression context, ad relevance, CTR estimates, bids

n Advertisers

Filter out: k < n

Theoretical Model

k-max problem (single-item auction):

• INPUT: n independent random variables $X_1, ..., X_n$ and k < n

• OUTPUT: find k r.v. $S \subset [n]$ to $\max_{|S|=k} \mathbf{E} \left[\max_{i \in S} X_i \right]$

k-max for position auctions:

- Advertiser II \$2.00 \$10 \$20

 Advertiser II \$4.00 \$4 \$16

 SOLD!

 Advertiser III \$6.00 \$2 \$12

 Advertiser IV \$8.00 \$1 \$8
- generalizes single-item auction
- INPUT: r.v. X_1 , ..., X_n and k < n
- OUTPUT: k r.v. $\max_{|S|=k} \mathbf{E} [Welfare(S)]$

Our Results: Theory

New relaxation of k-max:

$$\max_{\|\boldsymbol{x}\|_1 \le k} f(\boldsymbol{x})$$

1. f(x) – nicely structured concave function \Rightarrow

Easy to find
$$\mathbf{x}^* = \underset{\|\mathbf{x}\|_1 \le k}{\operatorname{argmax}} f(\mathbf{x})$$

2.
$$f(\mathbf{x}^*) \to \max_{|S|=k} \mathbf{E} \left[\max_{i \in S} X_i \right]$$
 as k grows

3. Works for general position auctions.

Position auctions: Implementable PTAS

Our Results: Practice

- Homebrew implementation (python + standard convex libs):
 - Benchmarks: Greedy (Submodular Opt.) + Local Search

Runtime: 1 day

• Instances as large as n = 1000, k = 200.

Runtime: 45 sec.

• Good approximation on all instances.

Approx. to benchmarks: >99%

- Previous 2 EPTAS algorithms on k-max:
 - Unimplementable

Runtime: years $\left(2^{O(1/\varepsilon)^{O(1/\varepsilon)}}\right)$ n=3, k=2, ε =0.2