

MDPs: modeling

Dice game

Example: dice game-

For each round $r = 1, 2, \ldots$

- You choose stay or quit.
- If quit, you get \$10 and we end the game.
- If stay, you get \$4 and then I roll a 6-sided dice.
 - If the dice results in 1 or 2, we end the game.
 - Otherwise, continue to the next round.

Rewards

If follow policy "stay":

Expected utility:

$$\frac{1}{3}(4) + \frac{2}{3} \cdot \frac{1}{3}(8) + \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3}(12) + \dots = 12$$

Rewards

If follow policy "quit":

Expected utility:

CS221

$$1(10) = 10$$

MDP for dice game

Example: dice game-

For each round $r = 1, 2, \dots$

- You choose stay or quit.
- If quit, you get \$10 and we end the game.
- If stay, you get \$4 and then I roll a 6-sided dice.
 - If the dice results in 1 or 2, we end the game.
 - Otherwise, continue to the next round.

Markov decision process

Definition: Markov decision process-

States: the set of states

 $s_{\mathsf{start}} \in \mathsf{States}$: starting state

Actions(s): possible actions from state s

T(s, a, s'): probability of s' if take action a in state s

Reward(s, a, s'): reward for the transition (s, a, s')

 $\mathsf{IsEnd}(s)$: whether at end of game

 $0 \le \gamma \le 1$: discount factor (default: 1)

10

Search problems

Definition: search problem-

States: the set of states

 $s_{\mathsf{start}} \in \mathsf{States}$: starting state

Actions(s): possible actions from state s

Succ(s, a): where we end up if take action a in state s

Cost(s, a): cost for taking action a in state s

IsEnd(s): whether at end

- $Succ(s, a) \Rightarrow T(s, a, s')$
- $Cost(s, a) \Rightarrow Reward(s, a, s')$

Transitions

Definition: transition probabilities-

The **transition probabilities** T(s, a, s') specify the probability of ending up in state s' if taken action a in state s.

Probabilities sum to one

For each state s and action a:

$$\sum_{s' \in \mathsf{States}} T(s, a, s') = 1$$

Successors: s' such that T(s, a, s') > 0

Transportation example

Example: transportation-

Street with blocks numbered 1 to n.

Walking from s to s+1 takes 1 minute.

Taking a magic tram from s to 2s takes 2 minutes.

How to travel from 1 to n in the least time?

Tram fails with probability 0.5.

[semi-live solution]

CS221

What is a solution?

Search problem: path (sequence of actions)

MDP:

Definition: policy-

A **policy** π is a mapping from each state $s \in \mathsf{States}$ to an action $a \in \mathsf{Actions}(s)$.

20