Problem 1. Zygmund p77 exercise 11

Let f be defined on \mathbb{R}^n , and let B(x) denote the open ball $\{y: |x-y| < r\}$ with center x and fixed radius r. Show that the function $g(x) = \sup\{f(y): y \in B(x)\}$ is lsc (lower semi-continuous), and that the function $h(x) = \inf\{f(y): y \in B(x)\}$ is usc (upper semi-continuous) on \mathbb{R}^n . Is the same true for the closed ball $\{y: |x-y| \le r\}$?

(a)

lsc

(b)

1150

Problem 2. Zygmund p77 exercise 12

If f(x), $x \in \mathbb{R}^1$, is continuous at almost every point of an interval [a, b], show that f is measurable on [a, b].

Generalize this to functions defined in \mathbb{R}^n .

For a constructive proof, use the subintervals of a sequence of partitions to define a sequence of simple measurable functions converging to f a.e. in [a, b]. Use Theorem 4.12. See also the proof of Theorem 5.54.

Assume f(x) is continuous at almost every point of [a,b]. Let $E=\{x\in [a,b]: f$ is continuous at $x\}$. Let $Z=[a,b]\setminus E$. Then |Z|=0. Note that Z is measurable, and $E=[a,b]\setminus Z$ is measurable too. For any finite α , we have $\{x\in [a,b]: f(x)>\alpha\}=\{x\in E: f(x)>\alpha\}\cup \{x\in Z: f(x)>\alpha\}$. Note that $\{x\in E: f(x)>\alpha\}$ is measurable since f is continuous, thus measurable on E. Since $\{x\in Z: f(x)>\alpha\}\subset Z$, thus $|\{x\in Z: f(x)>\alpha\}|=0$. Hence $\{x\in Z: f(x)>\alpha\}$ is also measurable. Thus $\{x\in [a,b]: f(x)>\alpha\}$ is measurable. This means f is measurable on [a,b].

Problem 3. Zygmund p78 exercise 15

Let $\{f_k\}$ be a sequence of measurable functions defined on a measurable set E with $|E| < +\infty$. If $|f_k(x)| \le M_x < +\infty$ for all k for each $x \in E$, show that given $\varepsilon > 0$, there is a closed set $F \subset E$ and a finite M such that $|E - F| < \varepsilon$ and $|f_k(x)| \le M$ for all k and all $x \in F$.

Let $\epsilon > 0$. For each $n \in \mathbb{N}$, define

$$E_n := \{x \in E : |f_k(x)| \le n \text{ for all } k\} = \bigcap_{k=1}^{\infty} \{x \in E : |f_k(x)| \le n\}.$$

Note that each E_n is measurable since each f_k is measurable. Since each $M_x < \infty$, we have that $E_n \subseteq E$. By the Monotone Convergence Theorem for measure, $\lim_{n\to\infty} |E_n| = |E| < \infty$. Thus, there exists N such that

$$|E| - |E_M| = |E \setminus E_M| < \epsilon/2.$$

Let F be a closed set contained in E_M such that $|E_M \setminus F| < \epsilon/2$. Then $|E \setminus F| = |E \setminus E_M| + |E_M \setminus F| < \epsilon$, and $|f_k(x)| \le N$ for all k and all $x \in F$.