

QUAD/DUAL N-CHANNEL MATCHED PAIR MOSFET ARRAY

GENERAL DESCRIPTION

The ALD1106/ALD1116 are monolithic quad/dual N-channel enhancement mode matched MOSFET transistor arrays intended for a broad range of precision analog applications. The ALD1106/ALD1116 offer high input impedance and negative current temperature coefficient. The transistor pairs are matched for minimum offset voltage and differential thermal response, and they are designed for precision analog switching and amplifying applications in +2V to +12V systems where low input bias current, low input capacitance and fast switching speed are desired. These MOSFET devices feature very large (almost infinite) current gain in a low frequency, or near DC, operating environment. The ALD1106/ALD1116 are building blocks for differential amplifier input stages, transmission gates, and multiplexer applications, current sources and many precision analog circuits.

FEATURES

- · Low threshold voltage of 0.7V
- Low input capacitance
- Low Vos 2mV typical
- High input impedance -- 10¹⁴Ω typical
- Negative current (IDS) temperature coefficient
- Enhancement-mode (normally off)
- DC current gain 109
- Low input and output leakage currents
- · RoHS compliant

ORDERING INFORMATION ("L" suffix denotes lead-free (RoHS))

Operating Temperature Range*					
0°C to +70°C	0°C to +70°C	-55°C to +125°C			
8-Pin SOIC Package	8-Pin Plastic Dip Package	8-Pin CERDIP Package			
ALD1116SAL	ALD1116PAL	ALD1116DA			
14-Pin SOIC Package	14-Pin Plastic Dip Package	14-Pin CERDIP Package			
ALD1106SBL	ALD1106PBL	ALD1106DB			

^{*} Contact factory for leaded (non-RoHS) or high temperature versions.

BLOCK DIAGRAM

APPLICATIONS

- Precision current mirrors
- Precision current sources
- Voltage choppers
- Differential amplifier input stage
- Voltage comparator
- Data converters
- Sample and Hold
- Analog signal processing

PIN CONFIGURATION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Drain-source voltage, V _{DS}		10.6\
Gate-source voltage, VGS		10.6\
Power dissipation		500mW
Operating temperature range	SAL, PAL, SBL, PBL packages	0°C to +70°C
	DA, DB packages	55°C to +125°C
Storage temperature range		65°C to +150°C
Lead temperature, 10 seconds		+260°C
CAUTION: ESD Sensitive Dev	ice. Use static control procedures in ESD controlled environment.	

OPERATING ELECTRICAL CHARACTERISTICS

T_A = 25°C unless otherwise specified

			ALD1106			ALD1116			Test
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Conditions
Gate Threshold Voltage	V _T	0.4	0.7	1.0	0.4	0.7	1.0	V	$I_{DS} = 1.0 \mu A V_{GS} = V_{DS}$
Offset Voltage VGS1-VGS2	Vos		2	10		2	10	mV	$I_{DS} = 10\mu A V_{GS} = V_{DS}$
Gate Threshold Temperature Drift ²	TC _{VT}		-1.2			-1.2		mV/°C	
On Drain Current	IDS (ON	3.0	4.8		3.0	4.8		mA	$V_{GS} = V_{DS} = 5V$
Transconductance	GIS	1.0	1.8		1.0	1.8		mmho	V _{DS} = 5V I _{DS} = 10mA
Mismatch	ΔG _{fs}		0.5			0.5		%	
Output Conductance	GOS		200			200		μmho	V _{DS} = 5V I _{DS} = 10mA
Drain Source On Resistance	R _{DS (ON)}		350	500		350	500	Ω	V _{DS} = 0.1V V _{GS} = 5V
Drain Source On Resistence Mismatch	$\Delta_{ extsf{DS}}$ (ON)		0.5			0.5		%	V _{DS} = 0.1V V _{GS} = 5V
Drain Source Breakdown Voltage	BV _{DSS}	12			12			V	I _{DS} = 1.0μA V _{GS} = 0V
Off Drain Current ¹	I _{DS (OFF)}		10	400 4		10	400 4	pA nA	V _{DS} =12V V _{GS} = 0V T _A = 125°C
Gate Leakage Current	I _{GSS}		0.1	10 1		0.1	10 1	pA nA	V _{DS} = 0V V _{GS} = 12V T _A = 125°C
Input Capacitance ²	C _{ISS}		1	3		1	3	pF	

Notes: ¹ Consists of junction leakage currents ² Sample tested parameters

TYPICAL PERFORMANCE CHARACTERISITCS

OUTPUT CHARACTERISTICS

FORWARD TRANSCONDUCTANCE vs. DRAIN SOURCE VOLTAGE

FORWARD TRANSCONDUCTANCE

DRAIN SOURCE ON RESISTANCE

DRAIN SOURCE ON RESISTANCE

OFF DRAIN CURRENT vs. AMBIENT TEMPERATURE

TYPICAL APPLICATIONS

CURRENT SOURCE MIRROR

V+ = +5V ALD1102, 1/2 ALD1107, or ALD1117 V+ = +5V RSET ISET | I SOURCE | ¦ Q₁ I SOURCE = ISET = <u>v+ -vt</u> ALD1101, RSET 1/2 ALD1106, 4 or ALD1116 RSET Q₁, Q₂: N - Channel MOSFET Q₃, Q₄: P - Channel MOSFET

CURRENT SOURCE WITH GATE CONTROL

DIFFERENTIAL AMPLIFIER

VIN+ O VIN- OT ALD1107, or ALD1107, or ALD1107, or ALD1107, or ALD1107, or ALD1101, OT ALD1101, OT ALD1106, or ALD1116

Q₁, Q₂: N - Channel MOSFET Q₃, Q₄: P - Channel MOSFET

CURRENT SOURCE MULTIPLICATION

Q_{SET}, Q₁..Q_N: ALD1101, ALD1106, or ALD1116 N - Channel MOSFET

TYPICAL APPLICATIONS (cont.)

BASIC CURRENT SOURCES

N- CHANNEL CURRENT SOURCE

Q₁, Q₂: N - Channel MOSFET

P- CHANNEL CURRENT SOURCE

Q₃, Q₄: P - Channel MOSFET

CASCODE CURRENT SOURCES

Q₁, Q₂, Q₃, Q₄: N - Channel MOSFET (ALD1101 or ALD1103)

$$I_{SOURCE} = I_{SET} = \frac{V + - 2Vt}{R_{SET}} \cong \frac{3}{R_{SET}}$$

Q1, Q2, Q3, Q4: P - Channel MOSFET (ALD1102 or ALD1103)

SOIC-8 PACKAGE DRAWING

8 Pin Plastic SOIC Package

	Millimeters		Inc	hes
Dim	Min	Max	Min	Max
Α	1.35	1.75	0.053	0.069
A ₁	0.10	0.25	0.004	0.010
b	0.35	0.45	0.014	0.018
С	0.18	0.25	0.007	0.010
D-8	4.69	5.00	0.185	0.196
Е	3.50	4.05	0.140	0.160
е	1.27	BSC	0.050 BS	
н	5.70	6.30	0.224	0.248
L	0.60	0.937	0.024	0.037
Ø	0°	8°	0°	8°
S	0.25	0.50	0.010	0.020

PDIP-8 PACKAGE DRAWING

8 Pin Plastic DIP Package

	Millimeters		Inc	hes
Dim	Min	Max	Min	Max
Α	3.81	5.08	0.105	0.200
A ₁	0.38	1.27	0.015	0.050
A ₂	1.27	2.03	0.050	0.080
b	0.89	1.65	0.035	0.065
b ₁	0.38	0.51	0.015	0.020
С	0.20	0.30	0.008	0.012
D-8	9.40	11.68	0.370	0.460
E	5.59	7.11	0.220	0.280
E ₁	7.62	8.26	0.300	0.325
е	2.29	2.79	0.090	0.110
e ₁	7.37	7.87	0.290	0.310
L	2.79	3.81	0.110	0.150
S-8	1.02	2.03	0.040	0.080
Ø	0°	15°	0°	15°

CERDIP-8 PACKAGE DRAWING

8 Pin CERDIP Package

	Millimeters		Inc	hes
Dim	Min	Max	Min	Max
Α	3.55	5.08	0.140	0.200
A ₁	1.27	2.16	0.050	0.085
b	0.97	1.65	0.038	0.065
b ₁	0.36	0.58	0.014	0.023
С	0.20	0.38	0.008	0.015
D-8		10.29		0.405
E	5.59	7.87	0.220	0.310
E ₁	7.73	8.26	0.290	0.325
е	2.54 BSC		0.100 BSC	
e ₁	7.62 l	BSC	0.300 BSC	
L	3.81	5.08	0.150	0.200
L ₁	3.18		0.125	
L ₂	0.38	1.78	0.015	0.070
S		2.49		0.098
Ø	0°	15°	0°	15°

SOIC-14 PACKAGE DRAWING

14 Pin Plastic SOIC Package

	Millimeters		Inc	hes
Dim	Min	Max	Min	Max
Α	1.35	1.75	0.053	0.069
A ₁	0.10	0.25	0.004	0.010
b	0.35	0.45	0.014	0.018
С	0.18	0.25	0.007	0.010
D-14	8.55	8.75	0.336	0.345
E	3.50	4.05	0.140	0.160
е	1.27 BSC		0.050 BSC	
Н	5.70	6.30	0.224	0.248
L	0.60	0.937	0.024	0.037
Ø	0°	8°	0°	8°
S	0.25	0.50	0.010	0.020

PDIP-14 PACKAGE DRAWING

14 Pin Plastic DIP Package

	Millimeters		Inc	hes
Dim	Min	Max	Min	Max
Α	3.81	5.08	0.105	0.200
A ₁	0.38	1.27	0.015	0.050
A ₂	1.27	2.03	0.050	0.080
b	0.89	1.65	0.035	0.065
b ₁	0.38	0.51	0.015	0.020
С	0.20	0.30	0.008	0.012
D-14	17.27	19.30	0.680	0.760
E	5.59	7.11	0.220	0.280
E ₁	7.62	8.26	0.300	0.325
е	2.29	2.79	0.090	0.110
e ₁	7.37	7.87	0.290	0.310
L	2.79	3.81	0.110	0.150
S-14	1.02	2.03	0.040	0.080
ø	0°	15°	0°	15°

CERDIP-14 PACKAGE DRAWING

14 Pin CERDIP Package

	Millimeters		Inc	hes
Dim	Min	Max	Min	Max
Α	3.55	5.08	0.140	0.200
A ₁	1.27	2.16	0.050	0.085
b	0.97	1.65	0.038	0.065
b ₁	0.36	0.58	0.014	0.023
С	0.20	0.38	0.008	0.015
D-14		19.94		0.785
E	5.59	7.87	0.220	0.310
E ₁	7.73	8.26	0.290	0.325
е	2.54 E	BSC	0.100	BSC
e ₁	7.62 E	BSC	0.300	BSC
L	3.81	5.08	0.150	0.200
L ₁	3.18		0.125	
L ₂	0.38	1.78	0.015	0.070
S		2.49		0.098
Ø	0°	15°	0°	15°