

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Logic Minimization, K-Maps - 1

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Logic Minimization, K-Maps - 1

Reetinder Sidhu

Department of Computer Science and Engineering

Course Outline

- Digital Design
 - Combinational logic design
 - ★ Logic Minimization, K-Maps 1
 - Sequential logic design
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)

Concepts covered

- Boolean Formula Terminology
- Sum of Products and Product of Sums standard forms
- Truth Table to Boolean Formula / Logic Circuit
- Logic Minimization using Boolean Identities

From Truth Table to Boolean Formula and its Minimization

- Given a combinational logic circuit or Boolean formula, we have learnt to construct its truth table
- But, given a truth table, how to construct a Boolean formula (or combinational logic circuit) for it?
- Also, as there are multiple Boolean formulas / logic circuits for each truth table, how to pick the minimal one?
- Above problem is called logic minimization
 - many metrics: smallest, fastest, least power cosumption
 - our metric: smallest two level Sum of Products formula
 - may be more than one solution

• **Literal** Boolean variable or its complement (ex: \overline{c})

- **Literal** Boolean variable or its complement (ex: \overline{c})
- Product (or implicant) AND of two or more literals (ex: ab\(\overline{c}\))

- Literal Boolean variable or its complement (ex: \overline{c})
- **Product (or implicant)** AND of two or more literals (ex: $ab\overline{c}$)
- Minterm Product involving all inputs to Boolean function

PES UNIVERSITY ONLINE

- Literal Boolean variable or its complement (ex: \overline{c})
- **Product (or implicant)** AND of two or more literals (ex: $ab\overline{c}$)
- Minterm Product involving all inputs to Boolean function

а	Ь	С	minterm	name
0	0	0	$\overline{a}\overline{b}\overline{c}$	m_0
0	0	1	$\overline{a}\overline{b}c$	m_1
0	1	0	āb c	m_2
0	1	1	ābc	<i>m</i> ₃
1	0	0	$a\overline{b}\overline{c}$	m_4
1	0	1	$a\overline{b}c$	m_5
1	1	0	ab ¯	m_6
1	1	1	abc	m_7

Minterms for three inputs a, b and c

Boolean Formula Terminology

- Literal Boolean variable or its complement (ex: \overline{c})
- **Product (or implicant)** AND of two or more literals (ex: $ab\overline{c}$)
- Minterm Product involving all inputs to Boolean function

а	b	С	minterm	name
0	0	0	$\overline{a}\overline{b}\overline{c}$	m_0
0	0	1	$\overline{a}\overline{b}c$	m_1
0	1	0	āb c	m_2
0	1	1	ābc	<i>m</i> ₃
1	0	0	$a\overline{b}\overline{c}$	m_4
1	0	1	$a\overline{b}c$	m_5
1	1	0	ab ¯	m_6
1	1	1	abc	m_7

Minterms for three inputs a, b and c

• **Sum** OR of two or more literals

Boolean Formula Terminology

- Literal Boolean variable or its complement (ex: \overline{c})
- **Product (or implicant)** AND of two or more literals (ex: $ab\overline{c}$)
- Minterm Product involving all inputs to Boolean function

а	b	С	minterm	name
0	0	0	$\overline{a}\overline{b}\overline{c}$	m_0
0	0	1	$\overline{a}\overline{b}c$	m_1
0	1	0	āb c	m_2
0	1	1	ābc	<i>m</i> ₃
1	0	0	$a\overline{b}\overline{c}$	m_4
1	0	1	$a\overline{b}c$	m_5
1	1	0	ab ¯	m_6
1	1	1	abc	m_7

Minterms for three inputs a, b and c

- Sum OR of two or more literals
- Maxterm Sum involving all inputs to Boolean function

Boolean Formula Terminology

- Literal Boolean variable or its complement (ex: \overline{c})
- Product (or implicant) AND of two or more literals (ex: ab\(\overline{c}\))
- Minterm Product involving all inputs to Boolean function

а	b	С	minterm	name
0	0	0	$\overline{a}\overline{b}\overline{c}$	m_0
0	0	1	$\overline{a}\overline{b}c$	m_1
0	1	0	āb c	m_2
0	1	1	ābc	<i>m</i> ₃
1	0	0	$a\overline{b}\overline{c}$	m_4
1	0	1	$a\overline{b}c$	m_5
1	1	0	ab ¯	m_6
1	1	1	abc	m_7

Minterms for three inputs a, b and c

- Sum OR of two or more literals
- Maxterm Sum involving all inputs to Boolean function

ı	а	Ь	С	maxterm	name
	0	0	0	a+b+c	M_0
	0	0	1	$a+b+\overline{c}$	\mathcal{M}_1
	0	1	0	$a + \overline{b} + c$	M_2
	0	1	1	$a + \overline{b} + \overline{c}$	M_3
	1	0	0	$\overline{a} + b + c$	M_4
	1	0	1	$\overline{a} + b + \overline{c}$	M_5
	1	1	0	$\overline{a} + \overline{b} + c$	M_6
	1	1	1	$\overline{a} + \overline{b} + \overline{c}$	M_7

Maxterms for three inputs a, b and c

SOP Form

Sum of all minterms corresponding to a 1 output

SOP Form

Sum of all minterms corresponding to a 1 output

SOP Example

Truth table:

а	Ь	С	y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

SOP Form

Sum of all minterms corresponding to a 1 output

SOP Example

Truth table:

а	b	С	y	minterm	name
0	0	0	0	$\overline{a}\overline{b}\overline{c}$	m_0
0	0	1	0	$\overline{a}\overline{b}c$	m_1
0	1	0	0	āb c	m_2
0	1	1	1	ābc	<i>m</i> ₃
1	0	0	1	$a\overline{b}\overline{c}$	m_4
1	0	1	0	$a\overline{b}c$	m_5
1	1	0	1	ab ¯ c	m_6
1	1	1	1	abc	m_7

SOP Form

Sum of all minterms corresponding to a 1 output

SOP Example

Truth table:

а	Ь	С	y	minterm	name
0	0	0	0	$\overline{a}\overline{b}\overline{c}$	m_0
0	0	1	0	$\overline{a}\overline{b}c$	m_1
0	1	0	0	āb c	m_2
0	1	1	1	ābc	<i>m</i> ₃
1	0	0	1	$a\overline{b}\overline{c}$	m_4
1	0	1	0	$a\overline{b}c$	m_5
1	1	0	1	ab c	m_6
1	1	1	1	abc	m_7

SOP form Boolean formula:

$$y = \overline{a}bc + a\overline{b}\overline{c} + ab\overline{c} + abc$$

 $y = m_3 + m_4 + m_6 + m_7$

PES UNIVERSITY

Boolean Formula using Sum of Products (SOP)

SOP Form

Sum of all minterms corresponding to a 1 output

SOP Example

Truth table:

а	Ь	С	y	minterm	name
0	0	0	0	$\overline{a}\overline{b}\overline{c}$	m_0
0	0	1	0	$\overline{a}\overline{b}c$	m_1
0	1	0	0	<u>ab</u> c	m_2
0	1	1	1	ābc	<i>m</i> ₃
1	0	0	1	$a\overline{b}\overline{c}$	m_4
1	0	1	0	$a\overline{b}c$	m_5
1	1	0	1	ab ¯	m_6
1	1	1	1	abc	m_7

SOP form Boolean formula:

$$y = \overline{a}bc + a\overline{b}\overline{c} + ab\overline{c} + abc$$

 $y = m_3 + m_4 + m_6 + m_7$

Sigma (Σ) notation:

$$y = \Sigma(m_3, m_4, m_6, m_7)$$

 $v = \Sigma(3, 4, 6, 7)$

Boolean Formula using Sum of Products (SOP)

SOP Form

Sum of all minterms corresponding to a 1 output

SOP Example

Truth table:

а	Ь	С	y	minterm	name
0	0	0	0	$\overline{a}\overline{b}\overline{c}$	m_0
0	0	1	0	$\overline{a}\overline{b}c$	m_1
0	1	0	0	<u>ab</u> c	m_2
0	1	1	1	ābc	<i>m</i> ₃
1	0	0	1	$a\overline{b}\overline{c}$	m_4
1	0	1	0	$a\overline{b}c$	m_5
1	1	0	1	ab ¯	m_6
1	1	1	1	abc	m_7

SOP form Boolean formula:

$$y = \overline{a}bc + a\overline{b}\overline{c} + ab\overline{c} + abc$$

 $y = m_3 + m_4 + m_6 + m_7$

Sigma (Σ) notation:

$$y=\Sigma(m_3,m_4,m_6,m_7)$$

$$y = \Sigma(3, 4, 6, 7)$$

If the Boolean function is called f:

$$y = f(a, b, c)$$

LOGIC MINIMIZATION, K-MAPS - 1 Boolean Formula using Products of Sum (POS)

POS Form

Product of all maxterms corresponding to a 0 output

LOGIC MINIMIZATION, K-MAPS - 1 Boolean Formula using Products of Sum (POS)

POS Form

Product of all maxterms corresponding to a 0 output

POS Example

Truth table:

а	Ь	С	y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

LOGIC MINIMIZATION, K-MAPS - 1 Boolean Formula using Products of Sum (POS)

POS Form

Product of all maxterms corresponding to a 0 output

POS Example

Truth table:

а	Ь	С	У	maxterm	name
0	0	0	0	a+b+c	M_0
0	0	1	0	$a+b+\overline{c}$	\mathcal{M}_1
0	1	0	0	$a + \overline{b} + c$	M_2
0	1	1	1	$a + \overline{b} + \overline{c}$	M_3
1	0	0	1	$\overline{a} + b + c$	M_4
1	0	1	0	$\overline{a} + b + \overline{c}$	M_5
1	1	0	1	$\overline{a} + \overline{b} + c$	M_6
1	1	1	1	$\overline{a} + \overline{b} + \overline{c}$	M_7

Boolean Formula using Products of Sum (POS)

POS Form

Product of all maxterms corresponding to a 0 output

POS Example

Truth table:

а	Ь	С	У	maxterm	name
0	0	0	0	a+b+c	M_0
0	0	1	0	$a+b+\overline{c}$	M_1
0	1	0	0	$a + \overline{b} + c$	M_2
0	1	1	1	$a + \overline{b} + \overline{c}$	M_3
1	0	0	1	$\overline{a} + b + c$	M_4
1	0	1	0	$\overline{a} + b + \overline{c}$	M_5
1	1	0	1	$\overline{a} + \overline{b} + c$	M_6
1	1	1	1	$\overline{a} + \overline{b} + \overline{c}$	M_7

SOP form Boolean formula:

$$y = (a+b+c)(a+b+\overline{c})(a+\overline{b}+c)(\overline{a}+b+\overline{c})$$
$$y = M_0M_1M_2M_5$$

Boolean Formula using Products of Sum (POS)

POS Form

Product of all maxterms corresponding to a 0 output

POS Example

Truth table:

а	Ь	С	У	maxterm	name
0	0	0	0	a+b+c	M_0
0	0	1	0	$a+b+\overline{c}$	M_1
0	1	0	0	$a + \overline{b} + c$	M_2
0	1	1	1	$a + \overline{b} + \overline{c}$	M_3
1	0	0	1	$\overline{a} + b + c$	M_4
1	0	1	0	$\overline{a} + b + \overline{c}$	M_5
1	1	0	1	$\overline{a} + \overline{b} + c$	M_6
1	1	1	1	$\overline{a} + \overline{b} + \overline{c}$	M_7

SOP form Boolean formula:

$$y = (a+b+c)(a+b+\overline{c})(a+\overline{b}+c)(\overline{a}+b+\overline{c})$$
$$y = M_0M_1M_2M_5$$

Pi (Π) notation:

$$y = \Pi(M_0, M_1, M_2, M_5)$$

$$y = \Pi(0, 1, 2, 5)$$

Boolean Formula using Products of Sum (POS)

POS Form

Product of all maxterms corresponding to a 0 output

POS Example

Truth table:

а	Ь	С	У	maxterm	name
0	0	0	0	a+b+c	M_0
0	0	1	0	$a+b+\overline{c}$	M_1
0	1	0	0	$a + \overline{b} + c$	M_2
0	1	1	1	$a + \overline{b} + \overline{c}$	M_3
1	0	0	1	$\overline{a} + b + c$	M_4
1	0	1	0	$\overline{a} + b + \overline{c}$	M_5
1	1	0	1	$\overline{a} + \overline{b} + c$	M_6
1	1	1	1	$\overline{a} + \overline{b} + \overline{c}$	M_7

SOP form Boolean formula:

$$y = (a+b+c)(a+b+\overline{c})(a+\overline{b}+c)(\overline{a}+b+\overline{c})$$
$$y = M_0M_1M_2M_5$$

Pi (Π) notation:

$$y = \Pi(M_0, M_1, M_2, M_5)$$

$$y = \Pi(0, 1, 2, 5)$$

If the Boolean function is called f:

$$y = f(a, b, c)$$

Logic Minimization

Logic Minimization Example

Minimize:

$$y = \overline{a}bc + a\overline{b}\overline{c} + ab\overline{c} + abc$$

Logic Minimization

Logic Minimization Example

- Minimize:
 - $y = \overline{a}bc + a\overline{b}\overline{c} + ab\overline{c} + abc$
- Using distributive law:

$$y = bc(\overline{a} + a) + a\overline{c}(b + \overline{b})$$

Logic Minimization

Logic Minimization Example

- Minimize: $v = \overline{abc} + a\overline{bc} + ab\overline{c} + abc$
- Using distributive law: $y = bc(\overline{a} + a) + a\overline{c}(b + \overline{b})$
- Using complement law: $y = bc(1) + a\overline{c}(1)$

Logic Minimization

Logic Minimization Example

- Minimize: $y = \overline{abc} + a\overline{bc} + ab\overline{c} + abc$
- Using distributive law: $y = bc(\overline{a} + a) + a\overline{c}(b + \overline{b})$
- 3 Using complement law: $y = bc(1) + a\overline{c}(1)$
- Using identity law: $y = bc + a\overline{c}$

Logic Minimization

Logic Minimization Example

- Minimize: $v = \overline{abc} + a\overline{bc} + ab\overline{c} + abc$
- Using distributive law: $y = bc(\overline{a} + a) + a\overline{c}(b + \overline{b})$
- 3 Using complement law: $y = bc(1) + a\overline{c}(1)$
- Using identity law: $v = bc + a\overline{c}$

The three representations below are different ways of specifying the same Boolean function:

Think About It

OPES

Think About It

Logic Circuit Example

• Draw the logic circuit diagram for:

$$y = \overline{a}bc + a\overline{b}\overline{c} + ab\overline{c} + abc$$

Think About It

Logic Circuit Example

• Draw the logic circuit diagram for: $y = \overline{abc} + a\overline{bc} + ab\overline{c} + abc$

Equivalence Example

Prove that:

$$bc + a\overline{c} + ab = bc + a\overline{c}$$

Think About It

Logic Circuit Example

• Draw the logic circuit diagram for: $y = \overline{abc} + a\overline{bc} + ab\overline{c} + abc$

Equivalence Example

Prove that:

$$bc + a\overline{c} + ab = bc + a\overline{c}$$

$$\vdash \text{ Hint: } bc + a\overline{c} + ab(c + \overline{c})$$

OPES

Think About It

Logic Circuit Example

• Draw the logic circuit diagram for: $v = \overline{abc} + a\overline{bc} + ab\overline{c} + abc$

Equivalence Example

Prove that:

$$bc + a\overline{c} + ab = bc + a\overline{c}$$

 $\vdash \mathsf{Hint:} \ bc + a\overline{c} + ab(c + \overline{c})$

Minimization Example

Minimize:

$$y = (a+b+c)(a+b+\overline{c})(a+\overline{b}+c)(\overline{a}+b+\overline{c})$$

OPES

Think About It

Logic Circuit Example

• Draw the logic circuit diagram for: $v = \overline{abc} + a\overline{bc} + ab\overline{c} + abc$

Equivalence Example

Prove that:

$$bc + a\overline{c} + ab = bc + a\overline{c}$$

$$ightharpoonup$$
 Hint: $bc + a\overline{c} + ab(c + \overline{c})$

Minimization Example

Minimize:

$$y = (a+b+c)(a+b+\overline{c})(a+\overline{b}+c)(\overline{a}+b+\overline{c})$$

► Hint:

$$y = (a(a+b+\overline{c}) + b(a+b+\overline{c}) + c(a+b+\overline{c}))(a(\overline{a}+b+\overline{c}) + \overline{b}(\overline{a}+b+\overline{c}) + c(\overline{a}+b+\overline{c}))$$