1/85

Figure 1

CGAGAGACGACAGAAGGTTACGGCTGCGAGAAGACGACAGAAGGGTCCAGAAAAA GGAAAGTGCTGGAGGGGAGTGGGGACAAAAGCAGCGACCAAGTGAATGTCACTTC AGTGACTGAGGCCAGGCAAAACGCGCGGGAAGGATTTTGTGTAGCTTGGGACCCTT TCATAGACACTGATGACACGTTTACGCAAAATAGAAATTTGAGGAGAAACGCCTGG GCCTTCGGAAAGGAGTGATTGATTAGTACTTGCAAGTTTAGGTGACTTTAAGGAGAA CTAACTAATGTATACTATTGAGGGAGGAGGAAGAGCATTACAGAGTTTCCAGCAGC AGCAGGAAAGCTTTGGTTAATTTGGAAATGGATGATAGCATTAAAAATAACAGAAGC GCCTCCAGGTCTCTGAAGCTTCAGTCCCCCAGCTGAAAGCCAGAAAAGACTAAGCC TCTCCTCAGAAGATTTCCTGTCTCTGCCTATGTTACAAGAGGAATCAAAACCAAGAC AGAAGAGCTCAGGATGCAGGTGAGAGGCAGGGAAGTCAGCGGCTTGTTGATCTCCC TCACTGCTGTCTGCCTGGTGGTCACCCCTGGGAGCAGGCCTGTCCTCGCCGCTGTG CCTGCTATGTGCCCACAGAGGTGCACTGTACATTTCGGTACCTGACCTCCATCCCAG ATGGCATCCGGCCAATGTGGAACGAATAAATTTAGGATATAACAGCCTTACTAGAT TGACAGAAAACGACTTTGATGGCCTGAGCAAACTGGAGTTACTCATGCTGCACAGT AATGGCATTCACAGAGTCAGTGACAAGACCTTCTCGGGCTTGCAGTCCTTGCAGGTC TTAAAAATGAGCTATAACAAAGTCCAAATCATTCGGAAGGATACTTTCTACGGACTC GGGAGCTTGGTCCGGTTGCACCTGGATCACAACAACATTGAATTCATCAACCCTGAG GCCTTTTATGGACTTACCTCGCTCCGCTTGGTACATTTAGAAGGAAACCGGCTCACA AAGCTCCATCCAGACACATTTGTCTCATTAAGCTATCTCCAGATATTTAAAACCTCTT TCATTAAGTACCTGTTCTTGTCTGATAACTTCCTGACCTCCCCAAAAGAAATGGT CTCCTACATGCCAAACCTAGAAAGCCTGTATTTGCATGGAAACCCATGGACCTGTGA CTGCCATTTAAAGTGGTTGTCTGAGTGGATGCAGGGAAACCCAGATATAATAAAAT GCAAGAAGACAGAAGCTCTTCCAGTCCTCAGCAATGTCCCCTTTGCATGAACCCCA GGATCTCTAAAGGCAGACCCTTTGCTATGGTACCATCTGGAGCTTTCCTATGTACAA AGCCAACCATTGATCCATCACTGAAGTCAAAGAGCCTGGTTACTCAGGAGGACAAT GGATCTGCCTCCACCTCAAGATTTCATAGAACCCTTTGGCTCCTTGTCTTTGA ACATGACANANNTNTCTGGAAATAAGGCCGACATGGTCTGTAGTATCCAAAAGCCA TCAAGGACATCACCAACTGCATTCACTGAAGAAAATGACTACATCATGCTAAATGC GCAACTTCTGGCTTTATACAGTGACTCTCCTCTGATACTAGAAAGGAAGCCCCAGCT TACCGAGACTCCTTCACTGTCTTCTAGATATAAACAGGTGGCTCTTAGGCCTGAAGA CATTTTTACCAGCATAGAGGCTGATGTCAGAGCAGACCCTTTTTGGTTCCAACAAGA AAAAATTGTCTTGCAGCTGAACAGAACTGCCACCACACTTAGCACATTACAGATCCA GTTTTCCACTGATGCTCAAATCGCTTTACCAAGGGCGGAGATGAGAGCGGAGAGAC TCAAATGGACCATGATCCTGATGAACAATCCCAAACTGGAACGCACTGTCCTGG TTGGCGGCACTATTGCCCTGAGCTGTCCAGGCAAAGGCGACCCTTCACCTCACTTGG AATGGCTTCTAGCTGATGGGAGTAAAGTGAGAGCCCCTTACGTTAGCGAGGATGGG

CGAATCCTAATAGACAAAAATGGGAAGTTGGAACTGCAGATGGCTGACAGCTTTGA TGCAGGTCTTTACCACTGCATAAGCACCAATGATGCAGATGCGGATGTTCTCACATA CAGGATAACTGTGGTAGAGCCCTATGGAGAAAGCACACATGACAGTGGAGTCCAGC ACACAGTGGTTACGGGTGAGACGCTCGACCTTCCATGCCTTTCCACGGGTGTTCCAG ATGCTTCTATTAGCTGGATTCTTCCAGGGAACACTGTGTTCTCTCAGCCATCAAGAG ACAGGCAAATTCTTAACAATGGGACCTTAAGAATATTACAGGTTACGCCAAAAGAT CAAGGTCATTACCAATGTGTGGCTGCCAACCCATCAGGGGCCGACTTTTCCAGTTTT AAAGTTTCAGTTCAAAAGAAAGGCCAAAGGATGGTTGAGCATGACAGGGAGGCAG TGAAACTCTCTGCATCAGCTTTGACAGGGTCAGAGGCTGGAAAACAAGTCTCCGGTG TACATAGGAAGAACAAACATAGAGACTTAATACATCGGCGGCGTGGGGATTCCACG CCGCAACGCTGGGCAGCACTTCTAGAAAAAGCCAAAAAGAATTCTGTGCCAAAAAA GCAAGAAAATACCACAGTAAAGCCAGTGCCACTGGCTGTTCCCCTCGTGGAACTCA CTGACGAGGAAAAGGATGCCTCTGGCATGATTCCTCCAGATGAAGAATTCATGGTTC TGAAAACTAAGGCTTCTGGTGTCCCAGGAAGGTCACCAACTGCTGACTCTGGACCAG TAAATCATGGTTTTATGACGAGTATAGCTTCTGGCACAGAAGTCTCAACTGTGAATC CACAAACACTACAATCTGAGCACCTTCCTGATTTCAAATTATTTAGTGTAACAAACG ACCAACCAAAACCAATCATTATCTTTCCATCAGTAGCTGAAATTCGAGATTCTGCT CAGGCAGGAAGAGCATCTTCCCAAAGTGCACACCCTGTAACAGGGGGAAACATGGC TACCTATGGCCATACCAACACATATAGTAGCTTTACCAGCAAAGCCAGTACAGTCTT GCAGCCAATAAATCCAACAGAAAGTTATGGACCTCAGATACCTATTACAGGAGTCA GCAGACCTAGCAGTAGTGACATCTCTTCTCACACTACTGCAGACCCTAGCTTCTCCA GTCACCCTTCAGGTTCACACACCCCTGCCTCGTCTTTATTTCACATTCCTAGAAACAA GCAGAGGGAGAGTTAAAAACCCACATAGAACCCCAGTTCTCCGACGGCATAGACAC AGGACTGTGAGGCCAGCAATCAAGGGACCTGCTAACAAAAATGTGAGCCAAGTTCC AGCCACAGAGTACCCTGGGATGTGCCACACATGTCCTTCCGCAGAGGGGCTCACAG TGGCTACTGCAGCACTGTCAGTTCCAAGTTCATCCCACAGTGCCCTCCCCAAAACTA ATAATGTTGGGGTCATAGCAGAAGAGTCTACCACTGTGGTCAAGAAACCACTGTTAC TATTTAAGGACAAACAAATGTAGATATTGAGATAATAACAACCACTACAAAATAT AACATCTGTATCCCTGGGGAAATCTCCTGTAGACAATAGTGGTCACCTGAGCATGCC TGGGACCATCCAAACTGGGAAAGATTCAGTGGAAACAACACCACTTCCCAGCCCCC TCAGCACCCTCAATACCAACAAGCACAAAATTCTCAAAGAGGAAAACTCCCTTG CACCAGATCTTTGTAAATAACCAGAAGAAGGAGGGGGATGTTAAAGAATCCATATCA ATTCGGTTTACAAAAGAACCCAGCCGCAAAGCTTCCCAAAATAGCTCCTCTTTTACC CACAGGTCAGAGTTCCCCCTCAGATTCTACAACTCTCTTGACAAGTCCGCCACCAGC TCTGTCTACAACAATGGCTGCCACTCAGAACAAGGGCACTGAAGTAGTATCAGGTG

CCAGAAGTCTCTCAGCAGGGAAGAAGCAGCCCTTCACCAACTCCTCTCCAGTGCTTC CTAGCACCATAAGCAAGAGATCTAATACATTAAACTTCTTGTCAACGGAAACCCCCA CAGTGACAAGTCCTACTGCTACTGCATCTGTCATTATGTCTGAAACCCAACGAACAA GATCCAAAGAAGCAAAAGACCAAATAAAGGGGCCTCGGAAGAACAGAAACAACGC AAACACCACCCCAGGCAGGTTTCTGGCTATAGTGCATACTCAGCTCTAACAACAGC TGATACCCCCTTGGCTTTCAGTCATTCCCCACGACAAGATGATGGTGGAAATGTAAG TGCAGTTGCTTATCACTCAACAACCTCTCTTCTGGCCATAACTGAACTGTTTGAGAA GTACACCCAGACTTTGGGAAATACAACAGCTTTGGAAACAACGTTGTTGAGCAAAT CACAGGAGAGTACCACAGTGAAAAGAGCCTCAGACACCACCACCACCACTCCTCAGC AGTGGGCCCCCAGTGCCCACTCCTTCCCCACCTCTTTTACTAAGGGTGTGGTT ACAGACAGCAAAGTCACATCAGCTTTCCAGATGACGTCAAATAGAGTGGTCACCAT ATATGAATCTTCAAGGCACAATACAGATCTGCAGCAACCCTCAGCAGAGGCTAGCC TTCTGTGCCAGCACTAAGGGTAGATAAACCACAGAATTCTAAATGGAAGCCCTCTCC CTGGCCAGAACACAAATATCAGCTCAAGTCATACTCCGAAACCATTGAGAAGGGCA AAAGGCCAGCAGTAAGCATGTCCCCCCACCTCAGCCTTCCAGAGGCCAGCACTCAT GCCTCACACTGGAATACACAGAAGCATGCAGAAAAGAGTGTTTTTGATAAGAAACC TGGTCAAAACCCAACTTCCAAACATCTGCCTTACGTCTCTCTACCTAAGACTCTATTG AAAAAGCCAAGAATAATTGGAGGAAAGGCTGCAAGCTTTACAGTTCCAGCTAATTC AGACGTTTTTCTTCCTTGTGAGGCTGTTGGAGACCCACTGCCCATCATCCACTGGACC AGAGTTTCATCAGGANTTGAAATATCCCAAGGGACACAGAAAAGCCGGTTCCACGT GCTTCCCAATGGCACCTTGTCCATCCAGAGGGTCAGTATTCAGGACCGTGGACAGTA CCTGTGCTCTGCATTTAATCCACTGGGCGTAGACCATTTTCATGTCTCTTTGTCTGTG GTTTTTTACCCGGCAAGGATTTTGGACAGACATGTCAAGGAGATCACAGTTCACTTT GGAAGTACTGTGGAACTAAAGTGCAGAGTGGAGGGTATGCCGAGGCCTACGGTTTC CTGGATACTTGCAAACCAAACGGTGGTCTCAGAAACGGCCAAGGGAAGCAGAAAGG TCTGGGTAACACCTGATGGAACATTGATCATCTATAATCTGAGTCTTTATGATCGTG GTTTTTACAAGTGTGTGGCCAGCAACCCATCTGGCCAGGATTCACTGTTGGTTAAGA TACAAGTCATCACAGCTCCCCCTGTCATTATAGAGCAAAAGAGGCAAGCCATCGTTG GGGTTTTAGGTGGAAGTTTGAAACTGCCCTGCACTGCAAAAGGAACTCCCCAGCCTA GTGTTCACTGGGTCCTTTATGATGGGACTGAACTAAAACCATTGCAGTTGACTCATT CCAGATTTTCTTGTATCCAAATGGAACTCTGTATATAAGAAGCATCGCTCCTTCAGT GAGGGGCACTTATGAGTGCATTGCCACCAGCTCCTCAGGCTCAGAGAGAAGGGTAG TGATTCTTACTGTGGAAGAGGGAGAGACAATCCCCAGGATAGAAACTGCCTCTCAG AAATGGACTGAGGTGAATTTGGGTGAGAAATTACTACTGAACTGCTCAGCTACTGG GGATCCAAAGCCTAGAATAATCTGGAGGCTGCCATCCAAGGCTGTCATCGACCAGT GGCACAGAATGGGCAGCCGAATCCACGTCTACCCAAATGGATCCTTGGTGGTTGGG TCAGTGACGGAAAAAGACGCTGGTGACTACTTATGTGTGGCAAGAAACAAAATGGG AGATGACCTAGTCCTGATGCATGTCCGCCTGAGATTGACACCTGCCAAAATTGAACA GAAGCAGTATTTTAAGAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTTGACTGCA

AGGCCTCTGGCTCCCCTGTGCCTGAGGTATCCTGGAGTTTGCCTGATGGGACAGTGC TCAACAATGTAGCCCAAGCTGATGACAGTGGCTATAGGACCAAGAGGTACACCCTT TCTAACAGCCATCCCACGGATAAGGCAAAGCTACAAGACCACCATGAGGCTCAGGG CTGGAGAACAGCTGTCCTTGACTGCGAGGTCACTGGGGAACCGAAGCCCAATGTA TTTTGGTTGCTGCCTTCCAACAATGTCATTTCATTCTCCAATGACAGGTTCACATTTC ATGCCAATAGAACTTTGTCCATCCATAAAGTGAAACCACTTGACTCTGGGGACTATG TGTGCGTAGCTCAGAATCCTAGTGGGGATGACACTAAGACATACAAACTGGACATT GTCTCTAAACCTCCATTAATCAATGGCCTGTATGCAAACAAGACTGTTATTAAAGCC ACAGCCATTCGGCACTCCAAAAAATACTTTGACTGCAGAGCAGATGGGATCCCATCT TCCCAGGTCACGTGGATTATGCCAGGCAATATTTTCCTCCCAGCTCCATACTTTGGA AGCAGAGTCACGGTCCATCCAAATGGAACCTTGGAGATGAGGAACATCCGGCTTTC AGTGCAGTTAGAAGTCCTAGAAATGCTGAGAAGACCAACATTCAGAAACCCATTCA ACGAAAAAGTCATCGCCCAAGCTGGCAAGCCCGTAGCACTGAACTGCTCTGTGGAT GGGAACCCCCACCTGAAATTACCTGGATCTTACCTGACGGCACACAGTTTGCTAAC AGACCACACAATTCCCCGTATCTGATGGCAGGCAATGGCTCTCTCATCCTTTACAAA GCAACTCGGAACAAGTCAGGGAAGTATCGCTGTGCAGCCAGGAATAAGGTTGGCTA CATCGAGAAACTCATCCTGTTAGAGATTGGGCAGAAGCCAGTCATTCTGACATACGA ACCAGGGATGGTGAAGAGCGTCAGTGGGGAACCGTTATCACTGCATTGTGTCTCTG ATGGGATCCCCAAGCCAAATGTCAAGTGGACTACACCGGGTGGCCATGTAATCGAC AGGCCTCAAGTGGATGGAAAATACATACTGCATGAAAATGGCACGCTGGTCATCAA AGCAACAACAGCTCACGACCAAGGAAATTATATCTGTAGGGCTCAAAACAGTGTTG GCCAGGCAGTTATTAGCGTGTCAGTGATGGTTGTGGCCTACCCTCCCCGAATCATAA ACTACCTACCCAGGACATGCTCAGGAGGACAGGGGAAGCCATGCAGCTCCACTGT GTGGCCTTGGGAATCCCCAAGCCAAAAGTCACCTGGGAGACGCCAAGACACTCCCT GCTCTCAAAAGCAACAGCAAGAAAACCCCATAGAAGTGAGATGCTTCACCCACAAG GTACGCTGGTCATTCAGAATCTCCAAACCTCGGATTCCGGAGTCTATAAGTGCAGAG CTCAGAACCTACTTGGGACTGATTACGCAACAACTTACATCCAGGTACTCTGACAGG AAGGGGGAGACTAAAATTCAACAGAAGTCCACATCCACAGGGTTTATTTTTGGAA GAAGTTTAATCAAAGGCAGCCATAGGCATGTAAATGAGTCTGAATACATTTACAGT ATTAAATTTACAATGGACATGCGATGAGACTTGTAAATGAAAGCATTGTGAACTGA AACCGAGTCTCTGTGGATCTCAAAGCAAACTCTTAACTTAAGGCACTTTGATTTTGC CAACAAATAATAACAAACATTAAGAGAAAAAAATGATCCACTACGAAATAACAAAC GGCTAATGCACCTGAATTCTCAGTAAAAAGACCTTTCTCTCGCTAACAGTTGCCAGC TGCCTCGTGTCTGCTACCAATGTCACAAACATCGCACACAGGGTGAATGGAGT CAACGGGAAAGATTAAGTTTGCGGTCTGTGTAAATCTCAATGTACAAATATTCTGTC AAAA (SEQ ID NO: 1)

5/85

Figure 2

MQVRGREVSGLLISLTAVCLVVTPGSRACPRRCACYVPTEVHCTFRYLTSIPDGIPANVE RINLGYNSLTRLTENDFDGLSKLELLMLHSNGIHRVSDKTFSGLQSLQVLKMSYNKVQII RKDTFYGLGSLVRLHLDHNNIEFINPEAFYGLTSLRLVHLEGNRLTKLHPDTFVSLSYLQI FKTSFIKYLFLSDNFLTSLPKEMVSYMPNLESLYLHGNPWTCDCHLKWLSEWMQGNPDI IKCKKDRSSSSPQQCPLCMNPRISKGRPFAMVPSGAFLCTKPTIDPSLKSKSLVTQEDNGS ASTSPODFIEPFGSLSLNMTXXSGNKADMVCSIQKPSRTSPTAFTEENDYIMLNASFSTNL VCSVDYNHIQPVWQLLALYSDSPLILERKPQLTETPSLSSRYKQVALRPEDIFTSIEADVR ADPFWFOOEKIVLOLNRTATTLSTLOIOFSTDAOIALPRAEMRAERLKWTMILMMNNPK LERTVLVGGTIALSCPGKGDPSPHLEWLLADGSKVRAPYVSEDGRILIDKNGKLELQMA DSFDAGLYHCISTNDADADVLTYRITVVEPYGESTHDSGVOHTVVTGETLDLPCLSTGV PDASISWILPGNTVFSQPSRDRQILNNGTLRILQVTPKDQGHYQCVAANPSGADFSSFKV SVOKKGORMVEHDREAGGSGLGEPNSSVSLKOPASLKLSASALTGSEAGKOVSGVHRK NKHRDLIHRRRGDSTLRRFREHRRQLPLSARRIDPQRWAALLEKAKKNSVPKKQENTTV KPVPLAVPLVELTDEEKDASGMIPPDEEFMVLKTKASGVPGRSPTADSGPVNHGFMTSI ASGTEVSTVNPQTLQSEHLPDFKLFSVTNGTAVTKSMNPSIASKIEDTTNQNPIIIFPSVAE IRDSAQAGRASSQSAHPVTGGNMATYGHTNTYSSFTSKASTVLQPINPTESYGPQIPITGV SRPSSSDISSHTTADPSFSSHPSGSHTTASSLFHIPRNNNTGNFPLSRHLGRERTIWSRGRV KNPHRTPVLRRHRHRTVRPAIKGPANKNVSQVPATEYPGMCHTCPSAEGLTVATAALS VPSSSHSALPKTNNVGVIAEESTTVVKKPLLLFKDKQNVDIEIITTTTKYSGGESNHVIPTE ASMTSAPTSVSLGKSPVDNSGHLSMPGTIOTGKDSVETTPLPSPLSTPSIPTSTKFSKRKTP LHQIFVNNQKKEGMLKNPYQFGLQKNPAAKLPKIAPLLPTGQSSPSDSTTLLTSPPPALST TMAATQNKGTEVVSGARSLSAGKKQPFTNSSPVLPSTISKRSNTLNFLSTETPTVTSPTAT ASVIMSETQRTRSKEAKDQIKGPRKNRNNANTTPRQVSGYSAYSALTTADTPLAFSHSP RQDDGGNVSAVAYHSTTSLLAITELFEKYTQTLGNTTALETTLLSKSQESTTVKRASDTP PPLLSSGAPPVPTPSPPPFTKGVVTDSKVTSAFQMTSNRVVTIYESSRHNTDLQQPSAEAS PNPEIITGTTDSPSNLFPSTSVPALRVDKPQNSKWKPSPWPEHKYQLKSYSETIEKGKRPA VSMSPHLSLPEASTHASHWNTQKHAEKSVFDKKPGQNPTSKHLPYVSLPKTLLKKPRIIG GKAASFTVPANSDVFLPCEAVGDPLPIIHWTRVSSGXEISQGTQKSRFHVLPNGTLSIQRV SIQDRGQYLCSAFNPLGVDHFHVSLSVVFYPARILDRHVKEITVHFGSTVELKCRVEGMP RPTVSWILANQTVVSETAKGSRKVWVTPDGTLIIYNLSLYDRGFYKCVASNPSGQDSLL VKIQVITAPPVIIEQKRQAIVGVLGGSLKLPCTAKGTPQPSVHWVLYDGTELKPLQLTHS RFFLYPNGTLYIRSIAPSVRGTYECIATSSSGSERRVVILTVEEGETIPRIETASQKWTEVN LGEKLLLNCSATGDPKPRIIWRLPSKAVIDQWHRMGSRIHVYPNGSLVVGSVTEKDAGD YLCVARNKMGDDLVLMHVRLRLTPAKIEQKQYFKKQVLHGKDFQVDCKASGSPVPEV SWSLPDGTVLNNVAQADDSGYRTKRYTLFHNGTLYFNNVGMAEEGDYICSAQNTLGK DEMKVHLTVLTAIPRIRQSYKTTMRLRAGETAVLDCEVTGEPKPNVFWLLPSNNVISFS NDRFTFHANRTLSIHKVKPLDSGDYVCVAONPSGDDTKTYKLDIVSKPPLINGLYANKT VIKATAIRHSKKYFDCRADGIPSSQVTWIMPGNIFLPAPYFGSRVTVHPNGTLEMRNIRLS

DSADFTCVVRSEGGESVLVVQLEVLEMLRRPTFRNPFNEKVIAQAGKPVALNCSVDGNP PPEITWILPDGTQFANRPHNSPYLMAGNGSLILYKATRNKSGKYRCAARNKVGYIEKLIL LEIGQKPVILTYEPGMVKSVSGEPLSLHCVSDGIPKPNVKWTTPGGHVIDRPQVDGKYIL HENGTLVIKATTAHDQGNYICRAQNSVGQAVISVSVMVVAYPPRIINYLPRNMLRRTGE AMQLHCVALGIPKPKVTWETPRHSLLSKATARKPHRSEMLHPQGTLVIQNLQTSDSGVY KCRAQNLLGTDYATTYIQVL (SEQ ID NO: 2)

8/85

Figure 4

Figure 5

Figure 6

Nuc 1

TTTGGAACCAGCCAGATGCCCCTCAACAGAGAAATGGGCCAGAAAATGTGGTCCATTTA
TCCAATGGAATACTACTCAACTTATTAAAAACAACGACTTTCATAAAATTTTTAGGCAAAT
GNATGGTCTGNAGGATCTTGAGTGAGGTAACCCCAATCACAAAGAACACTCATGGTATGC
ACTCACTGATAAGTGGCTATTTGTCTATGGAGTGATTTAAAAGGGAAGAAGACACATAGC
TTTTTGTGTGTATAATATTAAGATGGAAATTTGCCAGTGCTGTTTGGCTTATGAGTGAATCT
TGTTTCAGTGGATTACCGGAAGAAAATAATAAGTGAACTGTAGGAAGAAGTAGTTAATCA

GGATTCATATTAACTCCAGTTCCCCATGTGCAGCTCTGAGACTTTGGCAGATCAGACACTT AACTTCACCAGCTTCCTACACAGAGCAGTTACTATCCTTGCACTTCACACATGGAGTGTGA <u>CCATTAAGCTGCACTGAAACATGAGTCTGACTTGTTAATAATCTTAAAATACAAATTGTGT</u> TGTAAAGTATGTGACCAAAGAGCATGGTCATGCTATTAACCTTTGATGTTCTATGGACTCT <u>TAATTTTATGGTAGAAATGTCAACAAGCTTGTGGAGGCTGGAAGATACAAGGCTTAAGAG</u> GATGGCCTTTCAGTTTTGAAAGTAATTCAGTATGTGTTCTGGCATCCCTTTTCCTAAAGCA **ATTTAACCCCCCAAGTAGGCATAATTTTAATGCTTACTTCATCAGAATATGTCTAATTGAC** TCTTCTAAAAAGACTTTGGTATGCATAGGATCTAAATGTAAATGTGATTTACTGACATAAT **AAATAGGAGAAACTGAGCTAGAATAGGTATAAAATATGTGCTGGCTTTCTAATAGGTCTT** ATAGGITATATAAGAGGTGGGAAAGGAATATTTGAAACATCTAGAAGTAAAATGATCCTG AGTAGCGATCCTGGGAAAATACGTACTCTAACACACTGCAATCATCTCTCTGTGGTTTGCT GGAGCTGAGGTCTGGAAGGCTCGACCTTGGTTAGAAATAACCTACCGAATACAGAGCTAT GACGITAGTCTGGAAGGAGCTTTGGAAGAATGACAAGCTGTAGCTGCCCAGAACATACTA GATGCCATATTTCCAAGGCAAGTGTCCACATGCGGACATCTTAAGAATATGGTTGTCTCTG CAGTGCTAAGGACCTTGTTCGTGCCACACAGGTCTCCAGGGTTAGTGCTAACTCTGACTGC TTGACTCTTTAATTCTACCTTGATCATTAATGACTAGAAATCACTTGGTGATTAGCAACTG GATATGGAATATTACTAATTTGTACCCAAGCCAGCCCCACCTCAGCTTTGGCAGCTCCATTC ATTCTGTGGAGCCCAGTCACGTGGGTTTGAATCAACTGTACTGTTTCTACTTACAAGACGC **ATTACCTGAGATGAGTCATTTTTCTTCACAAGTCTTTTTAGAAGAGTCAATTAGACATATT** CTGATGAAGTAAGCATATAAAGTGAGAGCAGCATGAATGTGTTCCATGTATGCTCATGGA **GAGTAAATCTTCCATAAATATCATCTGCATTTATAAATTATTTTCATAATCCATCAATTAA** AAACCITTAGAAATITIGTTAACACAAAGATCCCTAGGCCCCTGCCCTAGGATGGTCTGTA TGGTGGGCCTGAGAGATGGAGCTTAAGAACTTACTTGCTCCAGGAGCACATCTTCAGAAC ACAGGGATTAAACAGTCATTTTAGTCACATTTCTCAAACGGTGGAAGCCTGCTAGAGGAA CAGGATGTATCAGGATAACATCCAACCTTACAAAAGGATGTCATAACCCTCACCACAACA AACAACAACGACAACAAACCCATAAAAATTATCACGGCAAATGAACTAAGCCATATGCA GAAAAAGTATTATATGTTCTCATTGTGGGGTGTTTTTCCTTAATAGTCAAATATGCAGAAT ATAGACAAAGATGGTTTATGCAAGTGGGGATGGCGAAGGATACTTGTAGATTAGAGGACA CAAAGCAACAACTACAGAGTGAAGTAATCCAGAGACTTAATGTATAATATGAGGACTGTA ATAGAGAGAATAAAGTGATAGATACGTTTGTTTTATCTTCATGTAGCTGATAATTTCATAT TGTACACCTCAAACATAGATAACCAACAAAGAGGAAGAGGATAGGTGCCTCTCCCAGGGC GGAAGAGTACATTCGAAAGTCAGACACCATTGTGTAQATGTACCACATGGAGGAGCTAGA **GAAAGTAGCCAAGGAGCTAAAGGGATCTGCAACCCTATAGGTGGAACAACATTATGAGCT** CCATCACTGGAAAGAGAGGCCCATTGGACTTGCAAACTTTATATGCCCCAGTACAGGGGA GGACITITIGGTATAGCATTGGAAATGTAAATGAGTTAAATACCTAATAAAAAATGGAAAA Nuc 2817

♦ Nuc 3114

▼Exon 1 (Nuc 3661)

Nuc 4203

TGTTAAATACAGTTTGAGGCTTAAGTGTACGGGAACTCATGTGGTATTCATTTACGGCTCT CTTCTCTTATAACTAACTCTTAAGGTGCATATAGTCTCTTCTGTTTCCCAGCTACCTTGTAC CATCITTGITTATCTAATAATAGCAAGCICATCTGCTTTTTAATCATCACGCAGAGAGTATT <u>CAAAAATATTCAGTGATGTAACAGTGACAGTGTAGGCATAGAAGTAATCATTAGTAAATC</u> CACGTGCGGGTTAAAGATATTTTCTAACAAGAGAAGCAGAATTCTTCCTTGGCCATGCTCC CCATCACTGTGTCAGTAAGCAGAGGGGTGTTTCCAAGCAGAGAAAGAGCAGACAGTGTTA
TGCCTGCAAAGTCAGAGACTCAGCCCTCCCAGCTGGTCAGTTTACTGTCCTCCCGGTCATT AGTTGGCTCTGAAAAGGCCCCATGTGTCCTTATTGGCAAGGACTTGCAGACATGCTAGAAA <u>GAAATTTGACCTTTTTTCTAGTGGGTTATTACAGCTGTAAAAGTATTTTGGAAGGTTAAG</u> <u>CCAAATAAATAAAACACATATTAAATAATACAATGTTACAAAAATTGATCATATAAAGAA</u> <u>GTACATTCATAAATGCAATGTGAAAAATATATATAATTTTTTATCTATTTACTGGTGCAAAG</u> TTTTCTAAATTGCACATGTACTATTTTATATTTATAAAAATATTTTTAAAATGTATATAAA AGTGTAAAAGGCTCTTGGTCAAACAAGAGAGTTAAATTTACAAACTTTAATTGTCCCGAT <u>AACATTATTATGATCTCTAATGACAGGGATCCTGCTTTTCATTGGGAAATGAGAAGCTATG</u> <u>AAGATATGTTTACAATAATAAGCCCATTTAGTGATAAAGTCCAATGGGAAGCTAGCACAC</u> <u>ACTGGTTTATAAAGAGAACAGTTTCCTGAGTCTATGCAAGTTTACACTCTAGGGAATAAG</u> AGTTCCTCTTCTCCAGATTTCACTAGCATTTGTTGTCATCATTTATCTTCTTGATGATGAG CATTATAAGTGGAATAAGATAGGATCTCAAAGGAATGTCAATTTGGATGCCCTGAACA <u>CTTTCAGGTCTTTCTTTCAGTTCACTAGTCTATTCATTTATTGGATAATTGGGGGATAGTGT</u> <u>ACCTCTGAAACTAGAACTACCAATOCATTACTGGGTATGTAACAAAGAGAAATCTGCACA</u> <u>GAATTTATTGCTACATTGTTCATTATTCACGACAGCCAAGAATGTGGAACCAACTTACGTA</u> **GCCGTCAAAATATGAACGGATAAAGAAAATGTGGAAATGTGTACAACAGAGTCCCATGTG** <u>GCCATAAAAGAGTGAAATCATGACATATGCAGGAAATGGATGCAACTGGAAATCAATTG</u> **GGCTAATCAAAACAAGACAGACTCAAAAAGGAAACACCGTGTAGCTTCTCTGACAAACA** TGGGTAGGAGAAAGCAATGAGAGGAGTTAATAAGAACGAAGCATAGTAACATAGGTG AACCAGGGTGAAATCCCAGCACAGAGAAGGGGAAGTAGACACAAAGTTTCGCCACTAAC <u>CAAGAAGCCATTTGCAGTTGCTGCCTGCTGGGAGGGGCGTTCCAGTTTTCTCCAGTCTGAC</u> TTICATITITITICITACIGITITIGITGITGIGGIGGITGITGIGGIGGIGGCTGTGGITTTC

▼Exon 2 (Nuc 6559)

Nuc 6755 GGACCTTGCCTGATCTCCTCTCAGAGAGGGACCACTGATTTTCCTGGTACTTTGCCCCCC AAACACCTGTGATTACTTTTAATAGTTTTCTTCTAAAATGGGTTCATACAAACCTTATATTG TGGAGACAATGAACATTTTATCCCAATAGTCTTTACTAGAACTTGAAGCCCCTCTTAGTT ACAGTTTCTGTTAACAATCATTATGATACCAAGGAAGAGGAATTGTCATTGAATATTTTAA CCTTACTAAATCTGACAAATTATGGTGATATTTTGAAGGTTTATGAAAATTTGTTTATGTGT ATAAATGCACAAGAAATGGGATATGCCATCACCTATGTGCCATTAGTGAGCATGTACAGT ATGCCAAACACTATTGTTCACGTTTGGAGGAAGTAATGGGGGTGGGGGAGCAACAAGGGT TATAACCGTATACCCAGTGCCTTGGAAGCGATTGCAAACAGTAAAGACTGACATTGTGTT CTCCCTATGAGGGAGGGGCCTTGGGCTGAGCACTTTGCAATGAGCATT<u>TG</u>CTCATTGTGCT GAGAACATGCCTGAAGAAGATCAGATTATAGGCAGGCCTGTGGGGCATTTTCTTAATTAG TGATTCATGGGGCAGGGCCCAGTCCATTGTTCGTGGTACCATTTCTCAGGCACTATTAAAA AAAAAAAAACAGGCTGAGCAAGTGTCAAGGAGCAAGTCAGTGAGCAGCAGCCCTAATGA TCTCTGCATCAGCTCCTGCCTCCAGGTTCCTACCCTATTTGAGTTCCTGTCCTAGCTCCCTA TTGGTCATGATGTTTCATCACAGTGATAATAGTCCTCATGAAGATGCTGGTGTTTATAACA CCTTTGGACTAAATTCTGTTATCTATAGCTGAGGAAAATGGAGCATAGAAAGTCTCCAGA CTACACCAGAGTGTAATCTGGGCCTGAGCTTAGAATCACACCCACGTGCACTCCACTGCC

Exon 3 (Nuc 8089)

TGTGGACTITAATTGACGATTCATCTGAAGCTGAAAATGATTTTTTTCCAGGTATAACAGC
CTCACTAGATTGACAGAAAATGACTTTTCTGGCCTGAGCAGACTGGAGTTACTCATGCTGCACA
GCAATGGCATTCACAGAGTCAGTGACAAGACCTTCTCGGGCTTGCAGTCCTTGCAG

Ntc 8218 ♣
GTGAGATAGGTAGAGGGTGATGGAGGGTGAGAAGAGAGGTGCAACTGTGGGTTATACCC AAAAGCTGCTGATTCCCGTGGGAGACATTCTATAAGCATTCTATAAACTAGAGGCAGATA TCAAGGAAGGATTTCAATTGTAATGCAATTTTATGAGAAAATTTGAATATTAAGAAAATG CTGGGGAAAATGCTTACACAATTGCGAGGACCTAATTTAGGATCTCCAATAGCCACATAA AAAGCACAGCATGGCGGCAGACACCTGCAATTCCTGTCCCTGGAAGCACCTGTTCAGAAT CCCAGAGACTCATTGGCCAAACACTCTATTCAATCAATGAAGTCCATATTCAGTGACAAA ACTTGACTCAGAAACTAATGTGGAAAGCATCAGGAAGACAGCCAACATCTGGTCTCTACT GGAGAAAGAAGAAAAAAAAAAAAAAATTTTCAGGGATTATTACACCTTTAAA TTTTATCCATAAAAGGTCATTTCCACCTGTTTGTCTGGAAGTAGAGTGGGATCCCTTATAT AAGGGCAGTCTTTAACATAGTAGCATTTTATAAACCATTACAAATTTTGAGTTTTCTCTAC TTTTTATCCTCTACCATCTTCAAACTGAAACTACAATTATTCCCACAAATGAAGAAAATGC TGTAAGAGTTTTCACACACCGAAGTGGGAAACTTAAGGATTAGACAAGTCTAACAATGAG AATGGGGAGAACAAAAAGAGACTGCACAGGGAGCCCTTTCTCTGCTTATAATCTTGACAC TTGAGAAGCTAATTGACGCTGCATGACTACTCAACTCTTTAAGCAAACAATGCTGTTGTTC ATAATAGCAATCAAAGCAATAACACCCACTGTTCACAGAGACTTTAAACATGAAACTGGA GCATGAAATTCTCCACCTATGTTTATTCTCTTAGCCAGGTTTTTCTCTGATGGAGAAACATT GGGTTTGAGGTTTACTCCCAGGTAACATTTAGGGAAAAGCTGTCTATGTTCTCAGTTTGG CTTTTATTTATGAGGGATGTTGGTATTCCAGAAAATTCTCTTTTGAAGAGATTACAATTTA GGTCAAAACAGAAAAATATGTAAAAAGTTATTGTTTTTATTAGTATTTCATGTTCTTTTCTT TTTTAAAAATGGTATGCTTAGAACTAATTAAGATTAGATTAGATTAGAAAAATAATC AGAGAGGGATTTGATGAATGCTAAAGCATCATGAAAAATTCAAAATTTTTTGCTTCTAATT CAGAATCAATTAAATTCATATTACTATAAAAGACAGCACGCCAGATGTGTGCCAGCTGAG GAGTGGATAAACTGTGTAACGTGAGTGCTATGTAGAAACAGAAAGGAGTGAAGGGTTGA

TGTGCGCTGCAACATCTTGAAAACATTCGGCTACATGATGGAAGCCAGGCACAAAAAGCC **ACATATTGCATGGITATGTTTATATGAAATGTTTAAAATACATGGATTCTTAGCAAACAGA ATCTTAATTTGGGGAAAAGACAATTTCCTAAGACGAAATAGTTGAGGTAGATATAGTTAT** ATCCCTGTGGATATTGTAATAAACCAGCATGCTGTGCTCTGAGAAGGGCCTAATGAAGGG GCAGGAGGAAGTGAAATGAGATGGTAGAAAGGAAAGTCATATACCATGGCTTCTCGTG AAAACCAACAGGAGTGAGGGAGACAATAGGAACCAATGAGAGGCAAAGTTCATGGTCAA TAAAAACAAAACATTTTTGCACAAGAATTATTATTATTCAATAAAGATGTTTAAATGGGG GAAGTTGAAGTTCATTGATAGTCTCATAAATCTTAAATGTATTTAAACTGCTTTTTACGTTT TTTATTATTAATTACTCTTGCTGTCATTATTATCATCATCATTATCGTCATCATCATCACTA ATGCTTTTCACCATACACAAATGTAGGCAGAAGAGTGTAATCCACTTAGTGAGGCAATCTT GOAGAGGAAAGCAGATGCGGGGCAGAGGCACACAGGAGGACAGTGAGAGGAGAAA ATGAACAAGAAAAATGTGGACACATGCACAAAAATTCCATAGTCCACTACATTACTTTG TATTCTAATATTAAGAAAATAATAAACCCATTTCTGTGCACTTATCACCCAGGCTCAACAG TTATCTTGGCCACAGATCCTGTCTCACTGCATCCTGTCCACCTGAGTCCACTTAGCGTTCTG AATCCAATCCAGGGCATGATGCTTACTCCTACACAGAACTAAAGATTAAAGAGAGTTTAA AAGTAACCATGACATCTCTCTGTTCCTTTAGCGATAAGTTCTTAATATTTATGGCTGCTTGT TGGAGTTAAGGTCCCATAGGATTAATCTCAACATATTTCTATATTTATAAACTTTTCTCTCT Exon 4 ? (Nuc 11286) \(\psi \)

Nuc 11967 ♠

(SEQ ID NO:3)

14/85

Figure 8

Exon/Intron	Exon	Exon	Exon	Intron
No.	start	end	length	length
1	1	542	542	2356
2	2898	3094	197	1334
3	4428	4557	130	3068
4	7625	8019	394	

Figure 9

cDNA_rat genomic_hu	1	ogagagacgacagaaggttacggctgcgagaagacgacagaagggtccag
cDNA_rat genomic_hu	51 1	aaaaaggaaagtgctggaggggagtggggacaaaagcagcgaccaagtga
cDNA_rat genomic_hu	101 1	atgtcacttcagtgactgaggccaggcaaaacgcgcgggaaggattttgt
cDNA_rat genomic_hu	151 1	gtagcttgggaccctttcatagacactgatgacacgtttacgcaaaatag
cONA_rat genomic_hu	201 1	aaatttgaggagaaacgcctgggccttcggaaaggagtgattgat
cDNA_rat genomic_hu	251 1	cttgcaagtttaggtgactttaaggagaactaactaatgtatactattga
cDNA_rat genomic_hu	301 1	gggaggaggaagagcattacagagtttccagcagcagcaggaaagctttg
cDNA_rat genomic_hu	351 1	gttaatttggaaatggatgatagcattaaaataacagaagcgcctccagg
cDNA_zat genomic_hu	401 1	tototgaagottoagtcccocagotgaaagocagaaaagaotaagoccao
dDNA_rat genomic_hu	451 1	taagccttttgatccctttggaagcaaagaactttccttcc
cDNA_rat genomic_hu	501 1	agactetecteagaagattteetgtetetgeetatgttacaagaggaate
cDNA_rat genomic_hu	551 1	aaaaccaagacagaagctcaggatgcaggtgagaggcagggaagtcag
cDNA_rat genomic_hu	601 1	cggcttgttgatotccotoactgctgtctgcctggtggtcacccctggga
cDNA_rat genomic_hu	651 1	gcagggcotgtoctogccgctgtgcctgctatgtgcccacagaggtgcac
cDNA_rat genomic_hu	701 1	tgtacatttoggtacctgacctccatcccagatggcatcccggccaatgt
cDNA_rat genomic_bu	751 1	ggaacgaataaatttaggatataacagcottactagattgacagaaaacg
cDNA_rat genomic_hu	801 1	actttgatggcctgagcaaactggagttactcatgctgcacagtaatggc
cDNA_rat genomic_hu	851 1	attcacagagtcagtgacaagaccttctcgggcttgcagtccttgcaggt
cDNA_rat genomic_hu	901 1	ottaaaaatgagotataacaaagtocaaatcattoggaaggatactttct

cDNA_rat genomic_hu	951 1	acggactcgggagcttggtccggttgcacctggatcacaacaacattgaa
cDNA_rat genomic_hu	1001	ttcatcaaccctgaggccttttatggacttacctcgctccgcttggtaca
cDNA_rat genomic_hu	1051 1	tttagaaggaaaccggctcacaaagetccatccagacacatttgtotcat
cDNA_rat genomic_hu	1101 1	taagotatctccagatatttaaaacetetttcattaagtacetgttcttg
cDNA_rat genomic_hu	1151 1	tetgataaetteetgaeeteeeteeeaaaagaaatggteteetaeatgee
cDNA_rat genomic_hu	1201 1	aaacctagaaagcctgtatttgcatggaaacccatggacctgtgactgcc
cDNA_rat genomic_hu	1251 1	atttaaagtggttgtctgagtggatgcagggaaacccagatataataaaa
cDNA_rat genomic_hu	1301 _.	tgcaagaaagacagaagotcttocagtcotcagcaatgtcccctttgcat
cDNA_rat genomic_hu	1351 1	gaaccccaggatctctaaaggcagaccctttgctatggtaccatctggag
cDNA_rat genomic_hu	1401	ctttcctatgtacaaagccaaccattgatccatcactgaagtcaaagagc
cDNA_rat genomic_hu	1451 1	ctggttactcaggaggacaatggatctgcctcacctcac
cDNA_rat genomic_hu	1501 1	catagaaccotttggctccttgtctttgaacatgacananntntctggaa
cDNA_rat genomic_hu	1551 1	ataaggccgacatggtctgtagtatccaaaagccatcaaggacatcacca
cDNA_rat genomic_hu	1601 1	actgcattcactgaagaaaatgactacatcatgotaaatgcgtcattttc
cDNA_rat genomic_hu	1651 1	cacaaatcttgtgtgcagtgtagattataatcacatccagccag
cDNA_rat genomic_hu	1701 1	aacttctggctttatacagtgactctcctctgatactagaaaggaagccc
cDNA_rat genomic_hu	1751 1	Cagottaccgagactcottcactgtottctagatataaacaggtggctot
cDNA_rat genomic_hu	1801 1	taggcctgaagacatttttaccagcatagaggctgatgtcagagcagacc
cDNA_rat genomic_hu	1851 1	ctttttggttccaacaagaaaaattgtcttgcagctgaacagaactgcc
cDNA_rat genomic_hu	1901 1	accacacttagcacattacagatccagttttccactgatgctcaaatcgc
cDNA_rat genomic_hu	1951 1	tttaccaagggcggagatgagagcggagagactcaaatggaccatgatcc

cDNA_rat genomic_hu	2001	tgatgatgaacaatcocaaactggaacgcactgtcctggttggcggcact
cDNA_rat genomic_hu	2051 1	attgccctgagctgtccaggcaaaggcgacccttcacctcacttggaatg
cDNA_rat genomic_hu	2101 1	gottotagotgatgggagtaaagtgagagccccttacgttagcgaggatg
oDNA_rat genomic_hu	2151 1	ggcgaatcctaatagacaaaaatgggaagttggaactgcagatggctgac
cDNA_rat genomic_hu	2201 1	agctttgatgcaggtotttaccactgcataagcaccaatgatgcagatgc
cDNA_rat genomic_hu	2251 1	ggatgttotcacatacaggataactgtggtagagccotatggagaaagca
cDNA_rat	2301 1	cacatgacagtggagtccagcacagtggttacgggtgagacgctcgac
cDNA_rat genomic_hu	2351 1	cttocatgcctttccacgggtgttccagatgcttotattagctggattct
cDNA_rat genomic_hu	2401 1	tocagggaacactgtgttctctctagccatcaagagacaggcaaattctta
cONA_rat genomic_hu	2451 1	acaatgggaccttasgaatattacaggttacgccaaaagatcaaggtcat
cDNA_rat genowic_bu	2501 1	taccaatgtgtggctgccaacooatoaggggccgacttttccagttttaa
cDNA_rat genomic_hu	2551 1	agtttcagttcassaggaaaggccaaaggatggttgagcatgacagggagg
cDNA_rat genomic_hu	2601 1	caggtggatctggacttggagaacccaactccagtgtttcccttaagcag
cDNA_rat genomic_hu	2651 1	ccagcatctttgaaactctctgcatcagctttgacagggtcagaggctgg
cDNA_rat genomic_hu	2701 1	aaaacaagtctccggtgtacataggaagaacaaacatagagacttaatac
cDNA_rat genomic_hu	2751 1	ateggeggegtggggattccacgetecggegattcagggagcataggagg
denomic_hu	2801 1	cageteceteteteteteggagaattgaceegcaacgetgggcagcact
cDNA_ret genomic_hu	2851 1	totagaaaaagccaaaaagaattotgtgccaaaaaagcaagaaaatacca
cDMA_ret. genomic_hu	2901 1	cagtaaagccagtgccactggctgttcccctcgtggaactcactgacgag
cDNA_rat genomic_bu	2951 1	gaaaaggatgcctctggcatgattcctccagatgaagaattcatggttct

cDNA_rat genomic_hu	3001 1	gaaaactaaggcttctggtgtcocaggaaggtcaccaactgctgactctg
cDNA_rat genomic_hu	3051 1	gaccagtaaatcatggttttatgacgagtatagcttctggcacagaagtc
cDNA_rat genomic_hu	3101 1	tcaactgtgaatccacaaacactacaatctgagcaccttcctgatttcaa
cDNA_rat genomic_hu	3151 1	attatttagtgtaacaaacggtacagctgtgacaaagagtatgaacccat
cDNA_rat genomic_hu	3201 1	coatagcaagcaaaatagaagatacaaccaaccaaacccaatcattatc
cDNA_rat genomic_hu	3251 1	tttccatcagtagctgaaattcgagattctgctcaggcagg
cDNA_rat genomic_hu	3301 1	ttcccanagtgcacaccctgtaacagggggaaacatggctacctatggco
· cDNA_rat genomic_hu	3351 1	ataccaacacatatagtagctttaccagcaaagccagtacagtcttgcag
cDNA_ret genomic_hu	3401 1	ccaataaatccaacagaaagttatggacctcagatacctattacaggagt
cDNA_rat genomic_hu	3451 1	cagcagacctagcagtagtgacatctcttctcacactactgcagacccta
cDNA_rat genomic_hu	3501 1	getteteoagtoaccetteaggtteacacaccactgcotogtotttattt
cDNA_ret genomic_hu	3551 1	cacattoctagaaacaacaatacaggtaacttocccttgtccaggcactt
oDNA_rat genomic_hu	3601 1	gggaagagagagacaatttggagcagagggagagttaaaaacccacata
cDNA_rat genomic_hu	3651 1	gaaccccagttotocgacggcatagacacaggactgtgaggccagcaatc
cDNA_rat genomic_hu	3701 1	aagggacotgctaacaaaaatgtgagccaagttccagccacagagtacco
cDNA_rat genomic_hu	3751 1	tgggatgtgccacacatgtccttccgcagaggggctcacagtggctactg
cDNA_rat genomic_hu	3801 1	cagcactgtoagttocaagttoatcccaqagtgccctccccaaaactaat
cDNA_rat genomic_hu	3851 1	aatgttggggtoatagcagaagagtctaccactgtggtcaagaaaccact
cDNA_rat genomic_hu	3901 1	gttactatttaaggacaaacaaatgtagatattgagataataacaacca
cDMA_rat genomic_hu	3951 1	ctacaaaatattooggagggaaagtaaccaogtgattoctacggaagca
cDNA_ret genomic_bu	4001	agcatgacttetgetccaacatetgtatccetggggaaatctectgtaga
cDNA_rat genomic_hu	4051 1	castagtggtcacctgagcatgcotgggaccatccaaactgggaaagatt
cDNA_ret genomic_hu	4101	cagtggaaacaacacttcccagcccctcagcacaccctcaatacca

cDNA_rat genomic_hu	4151 1	acaagcacaaaattotcasagaggaaaactccottgcaccagatctttot
cDNA_rat genomic_hu	4201 1	aaataaccagaaggaggggatgttaaagaatccatatcaattcggtt
oDNA_rat genomic_hu	4251 1	tacaaaagaacccagccgcaaagcttcccaaaatagctcctcttttaccc
cDNA_ret genomic_hu	4301 1	acaggtcagagttccccctcagattctacaactctcttgacaagtccgcc
cDNA_rat genomic_hu	4351 1	accagetetgtetacaacaatggetgecacteagaacaagggeactgaag
cDNA_rat genomic_hu	4401	tagtatoaggtgccagaagtctctcagcagggaagaagcagcccttcacc
cDNA_rat genomic_hu	4451 1	aactoototocagtgottootageaccataagoaagagatotaatacatt
cDNA_rat genomic_hu	4501 1	aaacttettgteaacggaaacccccacagtgacaagtcctactgctactg
cDNA_rat genomic_hu	4551 1	catctgtcattatgtctgaaacccaacgaacaagatccaaagaagcaaaa
cDNA_rat genomic_hu	4601 1	gaccaaataaaggggcctcggaagaacagcaacaacgcaaacaccacccc
cDNA_rat genomic_hu	4651 1	caggoaggtttctggctatagtgcatactcagctctaacaacagctgata
cDNA_rat genomic_hu	4701 1	coccottggctttcagtcattccccacgacaagatgatggtggaaatgta
cDNA_rat genomic_hu	4751 1	agtgcagttgcttatcactcaacaacctctcttctggccataactgaact
cDNA_rat genomic_hu	4801 1	gtttgagaagtacacccagactttgggaaatacaacagctttggaaacaa
cDNA_rat genomic_hu	4851 1	cgttgttgagcaaatcacaggagagtaccacagtgaaaagagcctcagac
cDNA_rat genomic_hu	4901 1	acaccaccactectcagcagtgggggcccccagtgcccactccttc
cDNA_rat genomic_hu	4951 1	cccacctccttttactaagggtgtggttacagacagcaaagtcacatcag
cDNA_rat genomic_hu	5001	ctttccagatgacgtcaaatagagtggtcaccatatatgaatcttcaagg
cDNA_rat genomic_hu	5051 1	cacaatacagatctgcagcaaccctcagcagaggctagccccaatcctga
cDNA_ret genomic_hu	5101 1	gatcataactggaaccactgactotocctctaatctgtttccatccactt
cDNA_rat genomic_hu	5151 1	ctgtgccagcactaagggtagataaaccacagaattctaaatggaagccc
cDNA_rat genomic_hu	5201 1	totccctggccagaacacaaatatcagctcaagtcatactccgaaaccat

. 10.000		
cDNA_rat genomic_hu	5251 1	tgagaagggcaaaaggccagcagtaagcatgtccccccacctcagccttc
cDNA_rat genomic_hu	5301 1	cagaggocagcactcatgcctcacactggaatacacagaagcatgcagaa
cDNA_rat -genomic_hu	5351 1	aagagtgtttttgataagaaacctggtcaaaacccaacttccaaacatct
cDNA_ret genomic_hu	5401 1	gccttacgtctctctacctaagactotattgaaaaagccaagaataattg
cDNA_rat	5451 1	gaggaaaggotgcaagctttacagttccagctaattcagacgtttttctt
coma_rat	5501 1	ccttgtgaggctgttggagacccactgcccatcatccactggaccagagt
cDNA_rat genomic_hu	5551 1	ttcatcagganttgaaatatcccaagggacacagaaaagccggttccacg
cDNA_rat genomic_hu	5601 1	tgottcccaatggcaccttgtccatccagagggtcagtattcaggaccgt
cDNA_rat genomic_hu	5651 1	ggacagtacctgtgctctgcatttaatccactgggcgtagaccattttca
oDNA_rat genomic_hu	5701 1	tgtctctttgtctgtggttttttacccggcaaggattttggacagaca
cDNA_rat genomic_hu	5751 1	tcaaggagarcacagttcactttggaagtactgtggaactaaagtgcaga
cDNA_rat genomic_hu	5801 1	gtggagggtatgccgaggcctacggtttcctggatacttgcaaaccaaac
cDNA_ret genomic_hu	5851 1	ggtggtctcagaaacggccaagggaagcagaaaggtctgggtaacacctg
cDNA_rat genomic_hu	5901 1	atggaacattgatcatctataatctgagtctttatgatcgtggtttttac
cDNA_rat genomic_hu	5951 1	asgtgtgtgggccagcaacccatctggccaggattcactgttggttaagat
cDNA_ret genomic_hu	6001	acaagtcatcacagctccccctgtcattatagagcaaaagaggcaagcca
oDNA_rat genomic_hu	6051 1	tcgttggggttttaggtggaagtttgaaactgccctgcactgcaaaagga
cDNA_rat genomic_bu	6101 1	actccccagcctagtgttcactgggtcctttatgatgggactgaactaaa
cDNA_rat genomic_hu	6151 1	accattgcagttgactcattccagatttttcttgtatccaaatggaactc
cDNA_rat genomic_hu	6201 1	tgtatataagaagcatcgctccttcagtgaggggcacttatgagtgcatt
oDNA_rat genomic_hu	6251 1	gccaccagetectcaggetcagagagaagggtagtgattettactgtgga

et .c_hu	7351 890	Ctttggaagcagagtcacggtccatccaaatggaaccttggaagtgagga Ctatggaagcagaatcacagtccataaaaatggaaccttggaaattagga
.c_hu	7401 940	acatccegctttcteactctecegacttcaccteteteteggagcgag atgtgaggctttcagattcagccgactttatctgtgtggcccgaaatgaa
:at .c_hu	7451 990	ggaggagagagtgttggtagtecagttagaagtcctagaaatgctgag ggtggagagagcgtgttggtagtacagttagaagtactggaaatgctgag
:et .c_hu	7501 1040	AAGACCAACATTCAGAAACCCATTCAACGAAAAagtcatcgcccaagctg AAGACCGACATTTAGAAATCCATTTAATGAAAAaatagttgcccagctgg
at .o_hu	7551 1090	gcaagcccgtagcactgaactgctctgtggatgggaaccccccacctgaa gaaagtccacagcattgaattgctctgttgatggtaacccaccacctgaa
:at .o_hu	7601 1140	attacctggatcttacctgacggcacacagtttgctaacagacacacac
at .c_hu	7651 1190	ttccccgtatctgatggcagcaatggctctctcatcctttacaaagcaa ttatcagtatctgatagcaagcaatggttcttttatcatttctaaaacaa
at	7701 1240	otcqqaacaaqtCAGGGAAGTATCGCTGTGCAGCCAGGAATAAGGTTGGC ctcqqqatqCAGGAAAATATCGCTGTGCAGCTAGGAATAAAGTTGGC
.c_hu	1240	CCCygyayya cychagannai a i o o o i o o o o o o o o o o o o o
:at .c_hu	7751 1290	TAcatcgagaaactcatcctgttagagATTGGCCAGAAGCCAGTCATTCT TAtattgagaaattagtcatattagaaATTGGCCAGAAGCCAGTTATTCT
:at .o_hu	7801 1340	GACATACEAACCAGGGAtggtgaagagcqTCAGTGGGGAACCGTTATCAC TACCTATGCACCAGGGAcagtaaaaggoaTCAGTGGAGAATCTCTATCAC
.c_hu	7851 1390	TGCATTGTGTGTCTGATGGQATCCCCAAGCCAAATGTCAAGTGGACTACA TGCATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGGACTATG
at .e hu	7901 1440	CCGGGTGGccatgtaatcgacaggcctcaagtggatggaaatacatac
ic_hu	7951 1490	GCATGAAAATGGCACGCTGGTCATCAAAGCAACAACAGCtcacgaccaAG GCATGACAATGGCACCTTAGTCATTAAAGAAGCAACAGCttatgacagAG
:at .c_hu	8001 1540	GAAATTATATCTGTAGGGCTCAAAACAGTGTTGGCCAggcagttattagc GAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCAtacaotgattact
at .o_hu	8051 1590	gtgtcAgtgAtggttgtggcctAccctccccgAAtcAtaAActacctAcc gttcCAgtaAtgAttgtAgcCtAccctccccgAAttAcAAAtogtccAcc
:at .c_hu	8101 1640	CAGGAACATGCTCAGGAGGACAGGGGAAGCCatgCAGCTCCACTGTGTGG CAGGAGTATTGTCACCAGGACAGGGGCAGCCtttCAGCTCCACTGTGTGG
 -	8151	CCTTGGGAATCCCCAAGCCAAAGTCACCTGGGAGACGCCAAGACACTCC
.c_hu	1690	CCTTGGGAGTTCCCAAGCCAgAAATCACATGGGAGATGCCTGACCACTCC
:at	8201	CTGCTCTCAAaagcaacagcaagaaaacccCATAGAAGTGAGATGCTTCA
.c_hu	1740	CTTCTCTCAAcggcaagtaaagagaggacaCATGGAAGTGAGCAGCTTCA
at	8251	CCCACAAGGTACGCTgGTCATTCAGAATCTCCAAACCTCGGATTCCGGag
.c_hu	1790	CTTACAAGGTACCCTaGTCATTCAGAATCCCCAAACCTCCGATTCTGGga
:at .c_hu	8301 1840	totataagtgcagagctcagaacctacttgggactgattacgcaacaact tatacaaatgcacagcaaagaacccacttggtagtgattatgcagcaacg
_		#\$ #\$ ################################
:at .o_hu	8351 1890	TACATCCAGGTACTCTGACAGGAAgggggagactaaaattcaacagaagt TATATTCAAGTAATCTGACATGAAataataaagtcaacaacatctgggca

cDNA_rat genomic_hu	8401 1940	ccacatccacagggTTTATTTTTTGGAAGAAGTTTAATCAAAGGCAGCCA gaaTTTATTTTTTGGAAGAAGTTTAATCAAAGGCAGCCA
cDNA_rat genomic_hu	8451 1979	TAGGCATGTAAATGAgtcTGAATACATTTACAGTATTAAATTTACAATGG TAGGCATGTAAATGAattTGAATACATTTACAGTATTAAATTTACAATGA
cDNA_rat genomic_hu	8501 2029	ACATGCgatgaGACTTGTAAATGAAAGCATTGTGAACTGAaaccg ACATGCaaaataaaagGACTTGTAAATAAATGCATTATGAACTGAtgata
cDNA_ret genomic_hu	8546 2079	agtctctgTGGATCTCAAAGCAAACTCTTAACTTAAGGCACTTTg ctgatttatttaaTGGATCTCAAAACAAACTTTTAACTTAAGGCACTTTt
cDMA_rat genomic_hu	8591 2129	ATTTTGCCAACAAATAATAACAAACAttaagagaaaaaaatgatcCACTA ATTTTGCCAACAAATAACAATAAACAaacattgaaacggttCACTA
cDNA_rat genomic_hu	8641 2175	CGAAATAACAAACGGCTAATGCACCTGAATTctcagtaaaaagacctttc TAAAATAACAAATGGCTAATGTACCTGAATTtttcagtaaaaaatgaac
cDNA_rat genomic_hu	8691 2225	tctcgctaacagttgCCAGCTGCCTCGTGTCTGTTTCCTACCAATGTCAC ttctaataCCAGTTGCCTAGTGTCCACCTCCTATCAATGTTAC
cDNA_rat genomic_hu	8741 2268	AAACAtogcacacagggtGAATGGAGTCAACGGGAAAGATTAAGTTTGCG AAGCAtggcactcaCAACAGAGACAATGGAAAATATTAAATCTGCA
cDNA_rat genomic_hu	8791 2314	GTCtgtgtaaatctcaATGTACAAATATTCTGtcncTG ATCtttatgatgtaaatttaccatcctgATGTATAAATATTTTGTG
exon1 (23	42-23	
oDNA_zat	8791	GTCtgtgtaastctcaATGTACAAATATTCTGtcncTG
genomic_hu	2314	ATCtttatgatgtazatttaccatoctgATGTATAAATATTTTGTG
cDNA_rat	8829 2360	GTTTATAAACATTTTGATAAAACCGAAAAAAAAAAAAAaaaaaaaaaa

(Genomic human OCP: SEQ ID NO:4) (cDNA rat: SEQ ID NO:5)

24/85

Figure 11

Exon/Intron	Exon	Exon	Exon	Intron	Remarks
No.	start	end	length	length	
1	1	208	208	69	No valid splice site found upstream
					this exon
2	277	429	153	18	
3	447	485	39	1561	
4	2046	2244	199	1351	
5	3595	3724	130	3254	
6	6978	7359	382	4123	
7	11482	14903	3422	38	
8	14941	15307	367	51	
9	15358	15825	468	1039	
10	16864	~17760	~897	?	Last exon might be complete
11	?(1)	2317	~231	25	Exon is not complete and start site is
			7		not known
12	2342	2397	56	-	

Fig 12.

608 Human translated nucleotide sequence (ORF)

ATGAAGGTAAAAGGCAGAGGAATCACCTGCTTGCTGGTCTCCTTTGCTGT GATCTGCCTGGTCGCCACCCCTGGGGGCAAGGCCTGTCCTCGCCGCTGTG CCTGTTATATGCCTACGGAGGTACACTGCACATTTCGGTACCTGACTTCCA TCCCAGACAGCATCCCGCCCAATGTGGAACGCATCAATTTAGGATACAAC AGCTTGGTTAGATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGA GTTACTCATGCTTCACAGCAATGGCATTCACACAATCCCTGACAAGACCTT CTCAGATTTGCAGGCCTTGCAGGTCTTAAAAATGAGCTATAATAAAGTCC GAAAACTTCAGAAAGATACTTTTTATGGCCTCAGGAGCTTGACACGATTG CACATGGACCACAACAATATTGAGTTTATAAACCCAGAGGTTTTTTATGG GCTCAACTTTCTCCGCCTGGTGCACTTGGAAGGAAATCAGCTCACTAAGCT CCACCCAGATACATTTGTCTCTTTGAGCTACCTCCAGATATTTAAAATCTC GAGATGGTCTCCTATATGCCTGACCTAGACAGCCTTTACCTGCATGGAAA CCCATGGACCTGTGATTGCCATTTAAAGTGGTTGTCTGACTGGATACAGCC AGATGTAATAAAATGCAAAAAAGATAGAAGTCCCTCTAGTGCTCAGCAGT GTCCACTTTGCATGAACCCTAGGACTTCTAAAGGCAAGCCGTTAGCTATG GTCTCAGCTGCAGCTTTCCAGTGTGCCAAGCCAACCATTGACTCATCCCTG AAATCAAAGAGCCTGACTATTCTGGAAGACAGTAGTTCTGCTTTCATCTCT CCCCAAGGTTTCATGGCACCCTTTGGCTCCCTCACTTTGAATATGACAGAT CAGTCTGGAAATGAAGCTAACATGGTCTGCAGTATTCAAAAGCCCTCAAG GACATCACCCATTGCATTCACTGAAGAAAATGACTACATCGTGCTAAATA CTTCATTTTCAACATTTTTGGTGTGCAACATAGATTACGGTCACATTCAGC CAGTGTGGCAAATTTTGGCTTTGTACAGTGATTCTCCTCTGATACTAGAAA GGAGCCACTTGCTTAGTGAAACACCGCAGCTCTATTACAAATATAAACAG GTGGCTCCTAAGCCTGAAGACATTTTTACCAACATAGAGGCAGATCTCAG AGCAGATCCCTCTTGGTTAATGCAAGACCAAATTTCCTTGCAGCTGAACA GAACTGCCACCACATTCAGTACATTACAGATCCAGTACTCCAGTGATGCT CAAATCACTTTACCAAGAGCAGAGATGAGGCCAGTGAAACACAAATGGA CTATGATTTCAAGGGATAACAATACTAAGCTGGAACATACTGTCTTGGTA GGTGGAACCGTTGGCCTGAACTGCCCAGGCCAAGGAGACCCCACCCCACA CGTGGATTGGCTTCTAGCTGATGGAAGTAAAGTGAGAGCCCCTTATGTCA GTGAGGATGGACGGATCCTAATAGACAAAAGTGGAAAATTGGAACTCCA GATGGCTGATAGTTTTGACACAGGCGTATATCACTGTATAAGCAGCAATT ATGATGATGCAGATATTCTCACCTATAGGATAACTGTGGTAGAACCTTTGG TCGAAGCCTATCAGGAAAATGGGATTCATCACACAGTTTTCATTGGTGAA ACACTTGATCTTCCATGCCATTCTACTGGTATCCCAGATGCCTCTATTAGC TGGGTTATTCCAGGAAACAATGTGCTCTATCAGTCATCAAGAGACAAGAA AGTTCTAAACAATGGCACATTAAGAATATTACAGGTCACCCCGAAAGACC AAGGTTATTATCGCTGTGTGGCAGCCAACCCATCAGGGGTTGATTTTTTGA TTTTCCAAGTTTCAGTCAAGATGAAAGGACAAAGGCCCTTGGAGCATGAT GGAGAAACAGAGGGATCTGGACTTGATGAGTCCAATCCTATTGCTCATCT TAAGGAGCCACCAGGTGCACAACTCCGTACATCTGCTCTGATGGAGGCTG AGGTTGGAAAACACACCTCAAGCACAAGTAAGAGGCACAACTATCGGGA ATTAACACTCCAGCGACGTGGAGATTCAACACATCGACGTTTTAGGGAGA ATAGGAGGCATTTCCCTCCCTCTGCTAGGAGAATTGACCCACAACATTGG GCGGCACTGTTGGAGAAAGCTAAAAAGAATGCTATGCCAGACAAGCGAG AAAATACCACAGTGAGCCCACCCCCAGTGGTCACCCAACTCCCAAACATA CCTGGTGAAGAAGACGATTCCTCAGGCATGCTCGCTCTACATGAGGAATT

TATGGTCCCGGCCACTAAAGCTTTGAACCTTCCAGCAAGGACAGTGACTG CTGACTCCAGAACAATATCTGATAGTCCTATGACAAACATAAATTATGGC ACAGAATTCTCTCCTGTTGTGAATTCACAAATACTACCACCTGAAGAACCC ACAGATTTCAAACTGTCTACTGCTATTAAAACTACAGCCATGTCAAAGAA TATAAACCCAACCATGTCAAGCCAAATACAAGGCACAACCAATCAACATT CATCCACTGTCTTTCCACTGCTACTTGGAGCAACTGAATTTCAGGACTCTG ACCAGATGGGAAGAGGAAGAGCATTTCCAAAGTAGACCCCCAATAAC AGTAAGGACTATGATCAAAGATGTCAATGTCAAAATGCTTAGTAGCACCA CCAACAACTATTATTAGAGTCAGTAAATACCACAAATAGTCATCAGACA TCTGTAAGAGAAGTGAGTGAACCCAGGCACAATCACTTCTATTCTCACAC TCATTCTCAGTTTCCGATCCCTAGAAATAGTACAGTTAACATCCCGCTGTT AGCCCATATAGAACTCCAGTTCTGCGACGGCATAGATACAGCATTTTCAG GTCAACAACCAGAGGTTCTTCTGAAAAAAGCACTACTGCATTCTCAGCCA CAGTGCTCAATGTGACATGTCTGTCCTGTCTTCCCAGGGAGAGGCTCACCA CTGCCACAGCAGCATTGTCTTTTCCAAGTGCTGCTCCCATCACCTTCCCCA AAGCTGACATTGCTAGAGTCCCATCAGAAGAGTCTACAACTCTAGTCCAG AATCCACTATTACTACTTGAGAACAAACCCAGTGTAGAGAAAACAACACC CACAATAAAATATTTCAGGACTGAAATTTCCCAAGTGACTCCAACTGGTG CAGTCATGACATATGCTCCAACATCCATACCCATGGAAAAAACTCACAAA GTAAACGCCAGTTACCCACGTGTGTCTAGCACCAATGAAGCTAAAAGAGA TTCAGTGATTACATCGTCACTTTCAGGTGCTATCACCAAGCCACCAATGAC TATTATAGCCATTACAAGGTTTTCAAGAAGGAAAATTCCCTGGCAACAGA ACTTTGTAAATAACCATAACCCAAAAGGCAGATTAAGGAATCAACATAAA GTTAGTTTACAAAAAGCACAGCTGTGATGCTTCCTAAAACATCTCCTGCT TTACCACAGAGACAAAGTTCCCCTTTCCATTTCACCACACTTTCAACAAGT GTGATGCAAATTCCATCTAATACCTTGACTACCGCTCACCACACTACGACC AAAACACACAATCCTGGAAGTCTTCCAACAAAGAAGAAGGAGCTTCCCTTCCC ACCCCTTAACCCTATGCTTCCTAGTATTATAAGCAAAGACTCAAGTACAA AAAGCATCATATCAACGCAAACAGCAATACCAGCAACAACTCCTACCTTC CCTGCATCTGTCATCACTTATGAAACCCAAACAGAGAGATCTAGAGCACA AACAATACAAAGAGAACAGGAGCCTCAAAAGAAGAACAGGACTGACCCA AACATCTCTCCAGACCAGAGTTCTGGCTTCACTACACCCACTGCTATGACA CCTCCTGCTCTGGCATTCACTCATTCCCCACCAGAAAACACAACTGGGATT TCAAGCACAATCAGTTTTCATTCAAGAACTCTTAATCTGACAGATGTGATT GAAGAACTAGCCCAAGCAAGTACTCAGACTTTGAAGAGCACAATTGCTTC TGAAACAACTTTGTCCAGCAAATCACACCAGAGTACCACAACTAGGAAAG CATCATTAGACACTCCCATACCACCATTCTTGAGCAGCAGTGCTACTCTAA TGCCAGTTCCCATCTCCCTTCCCTTTACTCAGAGAGCAGTTACTGACACAC GTGGCGACTCCCATTTCCGGCTTATGACAAATACAGTGGTCAAGCTGCAC GAATCCTCAAGGCACAATCTCCAAATGCCAAGTTCACAATTGGAACCACT CACTTCATCTACCTCTAATCTGTTACATTCTACTCCCATGCCAGCACTAAC AACAGTTAAATCACAGAATTCCAAATTAACTCCATCTCCCTGGGCAGAAT ACCAATTTTGGCACAAACCATACTCAGACATTGCTGAAAAAGGCAAAAAG CCAGAAGTAAGCATGTTGGCTACTACAGGCCTGTCCGAGGCCACCACTCT TGTTTCAGATTGGGATGGACAGAAGAACACAAAGAAGAGTGACTTTGATA AGAAACCAGTTCAAGAAGCAACAACTTCCAAACTCCTTCCCTTTGACTCTT TGTCTAGGTATATTTGAAAAGCCCAGGATAGTTGGAGGAAAAGCTGCA AGTTTTACTATTCCAGCTAACTCAGATGCCTTTCTTCCCTGTGAAGCTGTT

GGAAATCCCCTGCCCACCATTCATTGGACCAGAGTTTCAGGACTTGATTTA TCTAGAGGAAACCAGAATAGCAGGGTCCAGGTTCTCCCCAATGGTACCCT GTCCATCCAGAGGGTGGAAATTCAGGACCGCGGACAGTACTTGTGTTCCG CATCCAATCTGTTTGGCACAGACCACCTTCATGTCACCTTGTCTGTGGTTT CCTATCCTCCCAGGATCCTGGAGAGACGTACCAAAGAGATCACAGTTCAT TCCGGAAGCACTGTGGAACTGAAGTGCAGAGCAGAAGGTAGGCCAAGCC CTACAGTTACCTGGATTCTTGCAAACCAAACAGTTGTCTCAGAATCATCCC AGGGAAGTAGGCAGGCTGTGGTGACGGTTGACGGAACATTGGTCCTCCAC AATCTCAGTATTTATGACCGTGGCTTTTACAAATGTGTGGCCAGCAACCCA GGTGGCCAGGATTCACTGCTGGTTAAAATACAAGTCATTGCAGCACCACC TGTTATTCTAGAGCAAAGGAGGCAAGTCATTGTAGGCACTTGGGGTGAAA GTTTAAAACTGCCCTGTACTGCAAAAGGAACTCCTCAGCCCAGCGTTTACT GGGTCCTCTCTGATGGCACTGAAGTGAAACCATTACAGTTTACCAATTCCA AGTTGTTCTTATTTTCAAATGGGACTTTGTATATAAGAAACCTAGCCTCTT CAGACAGGGGCACTTATGAATGCATTGCTACCAGTTCCACTGGTTCGGAG CGAAGAGTAGTAATGCTTACAATGGAAGAGCGAGTGACCAGCCCCAGGA TAGAAGCTGCATCCCAGAAAAGGACTGAAGTGAATTTTGGGGACAAATTA CTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGTGGAG GTTACCATCCAAGGCTGTGGTCGACCAGTGGAGCTGGATCCACGTCTACC CTAATGGATCCCTGTTTATTGGATCAGTAACAGAAAAAGACAGTGGTGTC TACTTGTGTGGCAAGAAACAAAATGGGGGATGATCTGATACTGATGCA TGTTAGCCTAAGACTGAAACCTGCCAAAATTGACCACAAGCAGTATTTTA GAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTAGATTGCAAAGCTTCC GGCTCCCCAGTGCCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGAT CAACAATGCAATGCAAGCCGATGACAGTGGCCACAGGACTAGGAGATAT ACCCTTTTCAACAATGGAACTTTATACTTCAACAAAGTTGGGGTAGCGGA GGAAGGAGATTATACTTGCTATGCCCAGAACACCCTAGGGAAAGATGAA ATGAAGGTCCACTTAACAGTTATAACAGCTGCTCCCCGGATAAGGCAGAG TAACAAAACCAACAAGAGAATCAAAGCTGGAGACACAGCTGTCCTTGACT GTGAGGTCACTGGGGATCCCAAACCAAAAATATTTTGGTTGCTGCCTTCC AATGACATGATTTCCTTCTCCATTGATAGGTACACATTTCATGCCAATGGG TCTTTGACCATCAACAAGTGAAACTGCTCGATTCTGGAGAGTACGTATG TGTAGCCCGAAATCCCAGTGGGGATGACACCAAAATGTACAAACTGGATG TGGTCTCTAAACCTCCATTAATCAATGGTCTGTATACAAACAGAACTGTTA TTAAAGCCACAGCTGTGAGACATTCCAAAAAACACTTTGACTGCAGAGCT GAAGGGACACCATCTCCTGAAGTCATGTGGATCATGCCAGACAATATTTT CCTCACAGCCCCATACTATGGAAGCAGAATCACAGTCCATAAAAATGGAA CCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTATCTGTG TGGCCCGAAATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTA CTGGAAATGCTGAGAAGACCGACATTTAGAAATCCATTTAATGAAAAAAT AGTTGCCCAGCTGGGAAAGTCCACAGCATTGAATTGCTCTGTTGATGGTA ACCCACCACCTGAAATAATCTGGATTTTACCAAATGGCACACGATTTTCCA ATGGACCACAAAGTTATCAGTATCTGATAGCAAGCAATGGTTCTTTTATCA TTTCTAAAACAACTCGGGAGGATGCAGGAAAATATCGCTGTGCAGCTAGG AATAAAGTTGGCTATATTGAGAAATTAGTCATATTAGAAATTGGCCAGAA GCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGAG AATCTCTATCACTGCATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCA AATGGACTATGCCAAGTGGTTATGTAGTAGACAGGCCTCAAATTAATGGG AAATACATATTGCATGACAATGGCACCTTAGTCATTAAAGAAGCAACAGC TTATGACAGAGGAAACTATATCTGTAAGGCTCAAAATAGTGTTGGTCATA

CACTGATTACTGTTCCAGTAATGATTGTAGCCTACCCTCCCCGAATTACAA ATCGTCCACCCAGGAGTATTGTCACCAGGACAGGGCAGCCTTTCAGCTC CACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCACATGGGAGATGCC TGACCACTCCCTTCTCCAACGGCAAGTAAAGAGAGGACACATGGAAGTG AGCAGCTTCACTTACAAGGTACCCTAGTCATTCAGAATCCCCAAACCTCC GATTCTGGGATATACAAATGCACAGCAAAGAACCCACTTGGTAGTGATTA TGCAGCAACGTATATTCAAGTAATCTGA

29/85

Figure 13

,	١
Ł	
-	◂

	Region					
General	Rat	Human	Region Length	% identity	% positives	% gaps
1-655	1-655	1-653	655	76	86	0
656-726	656-726	654-724	71	46	62	0
727-779	727-779	725-777	53	77	86	0
780-1634	780-1617	778-1612	655	38	53	4
1635-end	1618-end	1613-end	980	74	85	0
	Total	Alignment	2614	62	74	1

В

Region					
Rat	Mouse	Length	% identity	% positives	% gaps
1-238	1-238	238	91	92	1

C

	Region			
General	Rat	Human	Region Length	% identity
1-1965	1-1965	1-1965	1965	83
1966-2178	1966-2178	1966-2178	213	86
2179-2337	2179-2337	2179-2337	159	86
2338-4893	2338-4893	2338-4863	2565	63
4894-7833	4852-7791	4864-7761	2940	80
	Total	Alignment	7842	80

D

	Region			
General	Rat	Mouse	Region Length	% identity
1-720	1-718	1-720	720	93

rat_cDNA human_5+3_corrected	CGAGAGACGACAGAAGGTTACGGCTGCGAGAAGACGACAGAAGGGTCCAGAAAAAGGAAA
mus_cDNA_5	
rat_cDNA human_5+3_corrected mus_cDNA_5	GTGCTGGAGGGGAGTGGGGACAAAAGCAGCGACCAAGTGAATGTCACTTCAGTGACTGAG
	CTACTGGAGGGGAGTTGGGACAAAAGCAGCGACCAAGGGAACATCGCTTCAGTGACTGAA
rat_cDNA human_5+3_corrected	GCCAGGCAAAACGCGCGGGAAGGATTTTGTCTAGCTTGGGACCCTTTCATAGACACTGAT
mus_cDNA_5	GCCAGGCAAAAGGAGCGGGAAGGATTATATGTAGCCTGGGACGCTTTCATAAACACTGAT
rat_cDNA human_5+3_corrected	GACACGTTTACGCAAAATA-GAAATTTGAGGAGAAACGCCTGGGCCTTCGGAAAGGA
mus_cDNA_5	GACGTGTTTGTGCAAAGCAAGCAATTTGAGGAGAAACGCCTGGGACGTCGGAAAGAAGGA
rat_cDNA human_5+3 corrected	GTGATTGATTAGTACTTGCAAGTTTAGGTGACTTAAGGAGAACTAACT
mus_cDNA_5	GTGATCGATTAGTACTTGTAAGTTTAGGTCAGTTTGAGAACTAACTAACCTATACTA
rat_cDNA human 5+3 corrected	TTGAGGGAGGAAGAGCATTACAGAGTTTCCAGCAGCAGGAAAGCTTTGGTTAAT
mus_cDNA_5	TTGAGGGAGAAGGAAGGCATTCCAGCAGCAGCAGGAAAGCTTTGGTTAGT
rat_cDNA human 5+3 corrected	TTGGAAATGGATGATAGCATTAAAATAACAGAAGCGCCTCCAGGTCTCTGAAGCTTCAGT
mus_cDNA_5	TTGGAAATGTATGATACCATTAAAATAACAGAAGCGCCTCCAGTTCTCTGAAGAGTCAGT
rat_cDNA human_5+3_corrected	CCCCCAGCTGAAAGCCAGAAAAGACTAAGCCCACTAAGCCTTTTGATCCCTTTGGAAGCA
mus_cDNA_5	CCCCCAGCTA-GTGTAAGCCTACTAAGCCTTTTGCTCCCGTTGGAAGCA
rat_cDNA human_5+3 corrected	AAGAACTTTCCTTCCCTGGGGTGAAGACTCTCCTCAGAAGATTTCCTGTCTCTGCCTATG
mus_cDNA_5	AAGAACGTTCCTTCAATCAGGTGAAGGCTCTCCTCAGAAGATTTCCTGTCTCTGCTTATG
rat_cDNA human_5+3_corrected mus_cDNA_5	TTACAAGAGGAATCAAAACCAAGACAGAAGAGCTCAGGATGCAGGTGAGAGGCAGGGAAG
	TIACAAGAGGATTCAAAAGCAAGACAGAAGAGGCTCAGGATGCAGAAGAGAGGCAGGGAAG ***
rat_cDNA human_5+3_corrected mus_cDNA_5	TCAGCGGCTTGTTGATCTCCCTCACTGCTGTTGTCTGCTTGGTCACCCCTGGGAGCAGGG TCACCTGCTTGCTGGTCTCCTTTGCTGTGATCTGCCTGGTCGCCACCCCTGGGGGCAAGG TCAGCTGCTTGCTGATCTCCCTCACTGCCATCTGCCTGGTGGTCACCCCTGGGAGCAGGG *** * **** ** **** * **** * ***
rat_cDNA human_5+3_corrected mus_cDNA_5	CCTGTCCTCGCCGCTGTGCCTGCTATGTGCCCACAGAGGTGCACTGTACATTTCGGTACC CCTGTCCTCGCCGCTGTGCCTGTTATATGCCTACGGAGGTACACTGCACATTTCGGTACC TCTGTCCTCGCCGATGTGCCTGCTATGTGCCCACAGAGGTGCACTGTACATTTCGGGACC ********************************
rat_cDNA human_5+3_corrected mus_cDNA_5	TGACCTCCATCCCAGATGG-CATCCCGGCCAATGTGGAACGAATAAATTTAGGATATAAC TGACTTCCATCCCAGACAG-CATCCCGCCCAATGTGGAACGCATCAATTTAGGATACAAC TGACCTCCATCCCAGACGGCCATCCCAGCCAATGTGGAACGAGTCAATTTAGGGTATAAC *********************************

human 5+3 corrected

mus_cDNA_5

ACCCTTACTAGATTCACAGAAAACCACTTTGATGGCCTGAGCAAACTGGAGTTACTCATG rat cDNA AGCTTGGTTAGATTGATGGAAACAGATTTTTCTGGCCTGACCAAACTGGAGTTACTCATG human 5+3 corrected AGCCTCACTAGATTGACAGAAAATGACTTTTCTGGCCTGAGCAGACTGGAGTTACTCATG mus_cDNA_5 ******* ** *** **** CTGCACAGTAATGGCATTCACAGAGTCAGTGACAAGACCTTCTCGGGCTTGCAGTCCTTG rat cDNA CITCACAGCAATGGCATTCACACAATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTG human 5+3 corrected CTGCACAGCAATGGCATTCACAGAGTCAGTGACAAGACCTTCTCGGGCTTGCAGTCCTTG mus_cDNA_5 ******** CAGGTOTTAAAAATGAGCTATAACAAAGTCCAAATCATTOGGAAGGATACTTTCTACGGA rat cDNA CAGGTCTTAAAAATGAGCTATAATAAAGTCCGAAAACTTCAGAAAGATACTTTTTATGGC human 5+3 corrected Caggtcttaaaaatgagctataacaaagtccaaataattgagaaggatactttgtatgga mus_cDNA_5 CTCGGGAGCTTGGTCCGGTTGCACCTGGATCACAACAACATTGAATTCATCAACCCTGAG rat cDNA CTCAGGAGCTTGACACGATTGCACATGGACCACAACAATATTGAGTTTATAAACCCAGAG human 5+3 corrected mus cDNA 5 CTCAGGAGCTTGACCCGGTTGCACCTGGATCACAACAATTGAGTTTATCAACCCCGAG ** ***** *** **** **** **** *** ** rat_cDNA GCCTTTTATGGACTTACCTCGCTCCGCTTGGTACATTTAGAAGGAAACCGGCTCACAAAG human 5+3 corrected GCGTTTTACGGACTCACCTTGCTCCGCTTGGTACATCTAGAAGGAAACCGGCTGACAAAG mus cDNA 5 CTCCATCCAGACACATTTGTCTCATTAAGCTATCTCCAGATATTTAAAACCTCTTTCATT rat cDNA CTCCACCCAGATACATTTGTCTCTTTGAGCTACCTCCAGATATTTAAAATCTCTTTCATT human 5+3 corrected CTCCATCCAGACACATTTGTCTCTTTGAGCTATCTCCAGATATTTAAAACCTCCTTCATT mus cDNA 5 土土业业体 化中化中心 大生大大大大大大大大大 大水 大土大大大 实实重点表示最大大大大大大大大大 声大子 大大工工工工 AAGTACCTGTTCTTGTCTGATAACTTCCT-GACCTCCCTCCCAAAAGAAATGGTCTCCTA rat cDNA AAGTTCCTATACTTGTCTGATAACTTCCT-GACCTCCCTCCAAGAGATGGTCTCCTA human 5+3 corrected AAGNACCTGTACTTGTATGATAACTTCATTGACCTCCCCAAAAGAAATGGTCTCCTC mus cDNA 5 CATGOCANACCTAGAAAGCCTGTATTTGCATGGAACCCATGGACCTGTGACTGCCATTT rat cDNA TATGCCTGACCTAGACAGCCTTTACCTGCATGGAAACCCATGGACCTGTGATTGCCATTT human 5+3 corrected TATGCCAAACCTAGAAAGCCTTTACTTGCATGGAAACCCATGGACCTGTGACTGCCATTT mus_cDNA 5 rat_cDNA AAAGTGGTTGTCTGACTGGATACAGGNNNNNCCAGATGTAATAAAATGCAAAAAAGATAG human 5+3 corrected Anactogttotccgagtggatgcacggaaacccaggta-actatcttot----ttotttg mus cDNA_5 ***** **** **** AAGCTCTTCCRGTCCTCAGCAATGTCCCCT-TTGCATGAACCCCRGGATCTCTAAAGGCA rat_cDNA AAGTCCCTCTAGTGCTCAGCAGTGTCCACT-TTGCATGAACCCTAGGACTTCTAAAGGCA human 5+3 corrected tttcttttttttatarkacgtattttcctcaatttcatttagaatgatatcccaaaagtcmus_cDNA_5 * * * * *** * ** *** * GACCCTTTGCTATGGTACCATCTGGAGCTTTCCTATGTACAAAGCCAACCATTGATCCAT rat_cDNA AGCCGTTAGCTATGGTCTCAGCTGCAGCTTTCCAGTGTGCCAAGCCAACCATTGACTCAT human 5+3 corrected -ccocataacctcccccca-----cttccctacctacccattc--ccattttttggc mus cDNA 5 *** ** CACTGAACTCAAAGAGCCTGGTTACTCAGGAGACAATGGATCTGCCTCCACCTCACCTC rat cDNA human 5+3 corrected COCTGARATCARAGAGCCTGACTATTCTGGARGACAGTAGTTCTGCTTTCATCTCTCCCC mus cDNA 5 CCTGGCATTCCCC---* * ** AAGATTTCATAGAACOCTTTGGCTCCTTGTCTTTGAACATGACANANNTNTCTGGAAATA rat cDNA AAGGTTTCATGGCACCCTTTGGCTCCCTCACTTTGAATATGACAGATCAGTCTGGAAATG human 5+3 corrected mus cDNA 5 AGGCCGACATGGTCTGTAGTATCCAAAAGCCATCAAGGACATCACCAACTGCATTCACTG rat cDNA

AAGCTAACATGGTCTGCAGTATTCAAAAGCCCTCAAGGACATCACCCATTGCATTCACTG

rat_cDNA human_5+3_corrected mus_cDNA_5	AAGAAAATGACTACATCATGCTAAATGCGTCATTTTCCACAAATCTTGTGTGCAGTGTAG AAGAAAATGACTACATCGTGCTAAATACTTCATTTTCAACATTTTTGGTGTGCAACATAG
rat_cDNA human_5+3_corrected mus_cDNA_5	ATTATAATCACATCCAGCCAGTGTGGCAACTTCTGGCTTTATACAGTGACTCTCCTCTGA ATTACGGTCACATTCAGCCAGTGTGGCAAATTTTGGCTTTGTACAGTGATTCTCCTCTGA
ret_cDNA human_5+3_corrected mus_cDNA_5	TACTAGAAAGGAAGCCCCAGCTTACCGAGACTCCTTCACTGTCTTCTAGATATAAACAGG TACTAGAAAGGAGCCACTTGCTTAGTGAAACACCGCAGCTCTATTACAAATATAAACAGG
rat_cDNA human_5+3_corrected mus_cDNA_5	Tegetettaegoctgaagacattittaecaecatagaggctgatgteagagcagaecctt Tegetectaagoctgaagacattittaecaacatagaggcagatetcagagcagatecct
rat_cDNA human_5+3_corrected mus_cDNA_5	TTTGGTTCCAACAAGAAAAATTGTCTTGCAGCTGAACAGAACTGCCACCACACTTAGCA CTTGGTTAATGCAAGACCAAATTTCCTTGCAGCTGAACAGAACTGCCACCACACTCAGTA
rat_cDNA human_5+3_corrected mus_cDNA_5	CATTACAGATCCAGTTTTCCACTGATGCTCAAATCGCTTTACCAAGGGCGGAGATGAGAG CATTACAGATCCAGTACTCCAGTGATGCTCAAATCACTTTACCAAGAGCAGAGATGAGGC
rat_cDNA human_5+3_corrected mus_cDNA_5	CGGAGAGACICAATGGACCATGATCCTGATGATGAACAATCCCAAACTGGAACGCACTG CAGTGAAACACAAATGGACTATGATTTCAAGGGATAACAATACTAAGCTGGAACATACTG
rat_cDNA human_5+3_corrected mus_cDNA_5	TCCTGGTTGGCGCACTATTGCCCTGAGCTGTCCAGGCAAAGGCGACCCTTCACCTCACT TCTTGGTAGGTGGAACCGTTGGCCTGAACTGCCCAGGCCAAGGAGACCCCACCCCACACG
rat_cDNA human_5+3_corrected mus_cDNA_5	TGGAATGGCTTCTAGCTGATGGGAGTAAAGTGAGAGCCCCTTACGTTAGCGAGGATGGGC TGGATTGGCTTCTAGCTGATGGAAGTAAAGTGAGAGCCCCTTATGTCAGTGAGGATGGAC
rat_cDNA human_5+3_corrected mus_cDNA_5	GAATCOTAATAGACAAAAATGGGAAGTTGGAACTGCAGATGGCTGACAGCTTTGATGCAG GGATCOTAATAGACAAAAGTGGAAAATTGGAACTCCAGATGGCTGATAGTTTTGACACAG
rat_cDNA human_5+3_corrected mus_cDNA_5	GTCTTTACCACTGCATAAGCACCAATGATGCAGATGCGGATGTTCTCACATACAGGATAA GCGTATATCACTGTATAAGCAGCAATTATGATGATGCAGATATTCTCACCTATAGGATAA
rat_cDNA human_5+3_corrected mus_cDNA_5	CTGTGGTAGAGCCCTATGGAGAAAGCACACATGACAGTGGAGTCCAGCACAGTGGTTA CTGTGGTAGAACCTTTGGTCGAAGCCTATCAGGAAAATGGGATTCATCACACAGTTTTCA
rat_cDNA human_5+3_corrected mus_cDNA_5	CGGGTGAGACCCTCGACCTTCCATGCCTTTCCACGGGTGTTCCAGATGCTTCTATTAGCT TTGGTGAAACACTTGATCTTCCATGCCATTCTACTGGTATCCCAGATGCCTCTATTAGCT
rat_cDNA human_5+3_corrected mus_cDNA_5	GGATTCTTCCAGGGAACACTGTGTTCTCTCAGCCATCAAGACACAGGCAAATTCTTAACA GGGTTATTCCAGGAAACAATGTGCTCTATCAGTCATCAAGAAGAAAGTTCTAAACA

rat_cDNA human_5+3_corrected mus_cDNA_5	ATGGGACCTTAAGAATATTACAGGTTACGCCAAAAGATCAAGGTCATTACCAATGTGTGG ATGGCACATTAAGAATATTACAGGTCACCCCGAAAGACCAAGGTTATTATCGCTGTGTGG
rat_cDNA human_5+3_corrected mus_cDNA_5	CTGCCAACCCATCAGGGGCCGACTTTTCCAGTTTTAAAGTTTCAGTTCAAAAGAAAG
rat_cDNA human_5+3_corrected . mus_cDNA_5	ARAGGATGGTTGAGCATGACAGGGAGGCAGGTGGATCTGGACTTGGAGAACCCAACTCCA ARAGGCCCTTGGAGCATGATGGAGARACAGAGGGATCTGGACTTGATGAGTCCAATCCTA
rat_cDNA human_5+3_corrected mus_cDNA_5	etgtttccttaagcagccagcatctttgaaactctgcatcagctttgacagggtcag ttgctcatcttaaggagccaccaggtgcacaactccgtacatctgctctgatggaggctg
rat_cDNA human_5+3_corrected mus_cDNA_5	AGGCTGGAAAACAAGTCTCCGGTGTACATAGGAAGAACAAACA
rat_cDNA human_5+3_corrected mus_cDNA_5	GGCGGCGTGGGGATTCCACGCTCCGGCGATTCAGGGAGCATAGGAGGCAGCTCCCTCTCT AGCGACGTGGAGATTCAACACATCGACGTTTTAGGGAGAATAGGAGGCATTTCCCTCCC
rat_cDNA human_5+3_corrected mus_cDNA_5	CTGCTCGGAGAATTGACCCGCAACGCTGGGCAGCACTTCTAGAAAAAGCCAAAAAGAATT CTGCTAGGAGAATTGACCCACAACATTGGGCGGCACTGTTGGAGAAAGCTAAAAAGAATG
rat_cDNA human_5+3_corrected mus_cDNA_5	CTGTGCCAAAAAAGCAAGAAAATACCACAGTAAAGCCAGTGCCACTGGCTGTTCCCCTCG CTATGCCAGACAAGCGAGAAAATACCACAGTGAGCCCACCCCAGTGGTCACCCAACTCC
rat_cONA human_5+3_corrected mus_cDNA_5	TGGAACTCACTGACGAGGAAAAGGATGCCTCTGGCATGATTCCTCCAGATGAAGAATTCA CAAACATACCTGGTGAAGAAGACGATTCCTCAGGCATGCTCGCTC
rat_cDNA human_5+3_corrected mus_cDNA_5	TGGTTCTGAAAACTAAGGCTTCTGGTGTCCCAGGAAGGTCACCAACTGCTGACTCTGGAC TGGTCCCGGCCACTAAAGCTTTGAACCTTCCAGCAAGGACAGTGACTGCTGACTCCAGAA
rat_oDNA human_5+3_corrected mus_cDNA_5	CAGTAAATCATGGTTTTATGACGAGTATAGCTTCTGGCACAGAAGTCTCAACTGTGAATC CAATATCTGATAGTCCTATGACAAACATAAATTATGGCACAGAACTCTCCGTTGTGAATT
rat_cDNA human_5+3_corrected mus_cDNA_5	CACAAACACTACAATCTGAGCACCTTCCTGATTTCAAATTATTTAGTGTAACAAACGGTA CACAAATACTACCACCTGAAGAACCCCACAGATTCAAACTGTCTACTGCTATTAAAACTA
rat_cDNA human_5+3_corrected mus_cDNA_5	CAGCTGTGACAAAGAGTATGAACCCATCCATAGCAAGCAA
rat_cDNA human_5+3_corrected mus_cDNA_5	AAAACCCAATCATTATCTTTCCATCAGTAGCTGAAATTCGAGATTCTG-CT AACATTCATCCACTGTCTTTCCACTGCTACTTGGAGCAACTGAATTTCAGGACTCTGACA

rat_cDNA human_5+3_corrected mus_cDNA_5	· CAGGCA——GGAACAGCATCTTCCCAAAGTGCACACCCTGTAACAGGGGGAAACATGGCT GAGGGAAGAGGAAGAGAGCATTTCC—AGTA—ACCCCCAATAACAGTAAGGACTATGATC
rat_cDNA human_5+3_corrected mus_cDNA_5	ACCTATGGCCATACCAACACATA—TAGTAGCTTACCAGCAAAGCCAGTACAGTCTTGC AAAGATGNTCAATGTCAAANATGCTTAGTAGCACCACCAACAA—CTATTA———TTAG
rat_cDNA human_5+3_corrected mus_cDNA_5	AGCCARTANATCCARCAGAARGTTATGGACCTCAGATACCTATTACAGGAGTCAGCAGAC AGTCAGTANATACCACANATAGTCATCAGACATCTGTAAGAGAAGTGAGTGAAC
rat_cDNA human_5+3_corrected mus_cDNA_5	CTAGCAGTAGTGACATCTCTCTCACACTACTGCAGACCCTAGCTTCTCCAGTCACCCTT CCAGGCACAATCACTTCTATTCTCACACTACTCAAATACTTAGCACCTCCACGTTCCCTT
rat_cDNA human_5+3_corrected mus_cDNA_5	CAGGTTCACACACCACTGCCTCGTCTTTATTTCACATTCCTAGAAACAACAATACAGGTA CAGATCCACACACAGCTGCTCATTCTCAGTTTCCGATCCCTAGANNNAATAGTACAGTTA
rat_cDNA human_5+3_corrected mus_cDNA_5	ACTTCCCCTTGTCCAGGCACTTGGGAAGAGAGACAATTTGGAGCAGAGGGAGAGTTA ACATCCCGCTGTTCAGACGCTTTGGGAGGCAGAGGAAAATTGGCGGAAGGGGGGGG
rat_cDNA human_5+3_corrected mus_cDNA_5	AAAACCCACATAGAACCCCAGTTCTCCGACGGCATAGACACAGGACTGTGAGGCCAGCAA TCAGCCCATATAGAACTCCAGTTCTGCGACGGCATAGATACAGCATTTTCAGGTCAACAA
rat_cDNA human_5+3_corrected mus_cDNA_5	TCAAGGGACCTGCTAACAAAATGTGAGCCAAGTTCCAGCCACAGAGTACCCTGGGATGT CCAGAGGTTCTTCTGAAAAAAGCACTACTGCATTCTCAGCCACAGTGCTCAATGTGACAT
rat_cDNA human_5+3_corrected mus_cDNA_5	GCCACACATGTCCTTCCGCAGAGGGGCTCACAGTGGCTACTGCAGCACTGTCAGTTCCAA GTCTGTCCTGTC
rat_cDNA human_5+3_corrected mus_cDNA_5	GTTCATCCCACAGTGCCCTCCCCAAAACTAATAATGTTGGGGTCATAGCAGAAGAGTCTA GTGCTGCTCCCATCACCTTCCCCAAAGCTGACATTGCTAGAGTCCCATCAGAAGAGTCTA
rat_cDNA human_5+3_corrected mus_cDNA_5	CCACTGTGGTCAAGAAACCACTGTTACTATTTAAGGACAAACAA
rat_cDNA human_5+3_corrected mus_cDNA_5	Taataacaaccactacaaatattccggagggaaagtaaccacgtgattcctaccgaag nnacaacaccacaataaaatattcaggactngaaatttcccaagtgactccaactggtg
rat_cDNA human_5+3_corrected mus_cDNA_5	CAAGCATGACTTOTECTCCAACATCTGTATCOCTGGGGAAATCTCCTGTAGACAATAGTG CAGTCATGACATATGCTOCAACATCCATACCCATGGAAAAAACTCACAAAGTAAACGCCA
rat_cDNA human_5+3_corrected mus_cDNA_5	CTCACCTGACCATCCCACCATCCAAACTGGGAAAGATTCAGTGGAAACAACACCAC GTTACCCACGTGTGTCTAGCACCAATGAAGCTAAAAGAGATTCAGTGATTACATCGTCAC

rat_cDNA human_5+3_corrected mus_cDNA_5	TTCCCAGCCCCCTCAGCACACCCTCAATACCAACAAGCACAAAATTCTCAAAGA TTTCAGGTGCTATCACCAAGCCACCAATGACTATTATAGCCATTACAAGGTTTTCAAGAA
rat_cDNA human_5+3_corrected mus_cDNA_5	GGANAACTCCCTTGCACCAGATCTTTGTAAATAACCAGAAGAAGGAGGATGTTAAAGA GGANAATTCCCTGGCAACAGAACTTTGTAAATAACCATAACCCAAAAGGCAGATTAAGGA
rat_cDNA human_5+3_corrected mus_cDNA_5	ATCCATATCAATTOGGTTTACAAAAAACCCCAGCCGCAAAGCTTCCCAAAATAGCTCCTC ATCAACATAAAGTTAGTTTACAAAAAAGCACAGGCTGTGATGCTTCCTAAAACATCTCCTG
rat_cDNA human_5+3_corrected mus_cDNA_5	TTTTACCCACAG-GTCAGAGTTCCCCCTCAGATTCTACAACTCTCTTGACAAGTCCGCCA CTTTACC-ACAGAGACAAAGTTCCCCTTTCCATTTCACCACACTTTCAACAAGTGTGATG
rat_cDNA human_5+3_corrected mus_cDNA_5	CCAGCTCTGTCTACAACAATGGCTGCCACTCAGAACAAGGGCACTGAAGTAGTATCAGGT CAAATTCCATCTAATACCTTGACTACCGCTCACCACTACGACCAAA——ACACACAA—T
rat_cDNA human_5+3_corrected mus_cDNA_5	GCCAGAAGTCTCTCAGCAGGGAAGAAGCAGCCCCTTCACCAACTCCTCCAG-TGCTTCC CCTGGAAGTCTTCCAACAAAGAAGGAGCTTCCCTTC-CCACCCCTTAACCCTATGCTTCC
ret_cDNA human_5+3_corrected mus_cDNA_5	TAGCROCATAAGCAAGATCTAATACATTAAACTTCTTGTCAACGGAAACCCCCACAGT TAGTATTATAAGCAAAGACTCAAGTACAAAAAGCATCATATCAACGCAAACAGCAACCGC
rat_cDNA human_5+3_corrected mus_cDNA_5	Gacaagtoctactgotactgcatotgtoattatgtotgaaacccaacgaacaagatocaa Aacaactoctacottocctgcatotgtoatcacttatgaaacccaaacagagatotag
rat_cDNA human_5+3_corrected mus_cDNA_5	AGARGCARÁ AGACCARATARAGGGGCCTCGGARGRACAGARACAACGCARACACAC AGCACARACARTACARAGAGAAGGACOTCARAAGAAGAACAGGACTGACCCARACATCTC
rat_cDNA human_5+3_corrected mus_cDNA_5	CCCCAGGCAGGTTTCTGGCTATAGTGCATACTCAGCTCTAACAACAGCTGATACCCCCTT TCCAGACCAGA
rat_cDNA human_5+3_corrected mus_cDNA_5	GECTTTCAGTCATTCCCCACGACAAGATGATGGTGGAAAATGTAAGTGCAGTTGCTTATCA NGCATTCACTCATTCCCCACCAGAAAACACAACTGGGAATTCAAGCACAATCAGTTTTCA
rat_cDNA human_5+3_corrected mus_cDNA_5	CTCAACAACCTCTCTTCTGGCCATAACTGAACTGTTTGAG-AAGTACACCCAGAC TTCAAGAACTCTTAATCTGACAGATGTGATTGAAGAACTAGCCCAAGCAAG
ret_cDNA human_5+3_corrected mus_cDNA_5	TTTGGGAAATACAACATTTGGAAACAACTTGTTGAGCAAATCACAGGAGAGTACCAC TTTGAAGAGCACAATTGCTTCTGAAACAACTTTGTCCAGCAAATCACACCAGAGTACCAC
rat_cDNA human_5+3_corrected mus_cDNA_5	ASTGANAAGAGOOTCAGACACACCACCACTOCTCAGCAGTGGGGGGCCCCCC AACTAGGAAAGCATCATTAGACACTCAACCACCACTATTCTTGAGCAGCAGTGCTACTOT

rat_cDNA human_5+3_corrected mus_cDNA_5	AGTGCCCACTCCTTCCCCACCTCCTTTTACTAAGGGTGTGGTTACAGACAG
rat_oDNA human_5+3_corrected mus_cDNA_5	ATCAGCTTTCCAGATGACGTCAAATAGAGTGGTCACCATATATGAATCTTCAAGGCACAA TCCCATTTCCGGGCTTATGACAAATACAGTGGTCAAGCTGCACGAATCCTCAAGGCACAA
rat_cDNA human_5+3_corrected mus_cDNA_5	TACAGATCTGCAGCAACCCTCAGCAGAGGCTAGCCCCAATCCTGAGATCATAACTGGAAC TOCHNHNNNNCAAATGCCAAGTTCACNNAATTGNGAACCHNNNACTCHNNN
rat_cDNA human_5+3_corrected mus_cDNA_5	CACTGACTCTCCCTCTAATCTGTTTCCATCCACTTCTGTGCCAGCACTAAGGGTAGATAA NACTTCATCTACNTCTAATCTGTTACATTCTACTCCCATGCCAGCACTAACAACAGTTAA
rat_cDNA human_5+3_corrected mus_cDNA_5	ACCACAGAATTCTAAATGGAAGCCCTCTCCCTGGCCAGAACACAAATATCAGCTCAAGTC ATCACAGAATTCCAAATTAACTCCATCTCCCTGGGCAGAATACCAATTTTGGCACAAACC
rat_cDNA human_5+3_corrected mus_cDNA_5	ATACTCCGAAACCATTGAGAAGGGCAAAAGGCCAGCAGTAAGCATGTCCCCCACCTCAG ATACTCAGACATTGCTGAAAAAAGGCAAAAAGCCAGAAGTAAGCATGTTGGCT-ACTACAG
rat_cDNA human_5+3_corrected mus_cDNA_5	-CCTTCCAGAGGCCAGCACTCATGCCTCACACTGGAATACACAGAAGCATGCAGAAAAGA GCCTGTCCGAGGCCACCACTCTTGTTTCAGATTGGGATGGACAGAAGAACACAAAGAAGA
rat_CDNA human_5+3_corrected mus_cDNA_5	GTGTTTTTGATAAGAAACCTGGTCAA-AACCCAACTTCCAAACATCTGCCTTACGTCT GTGACTTTGATAAGAAACCAGTTCAAGAAGCAACAACTTCCAAACTCCTTCCCTTTGACT
rat_cDNA human_5+3_corrected mus_cDNA_5	CTCTACCTAAGACTOTATTGAAAAAGCCAAGATAATTGGAGGAAAAGCTGCAAGCTTTA CTTTGTCTAGGTATATATTTGAAAAGCCCAGGATAGTTGGAGGAAAAGCTGCAAGTTTTA
rat_cDNA human_5+3_corrected mus_cDNA_5	CAGTTCCAGCTAATTCAGACGTTTTTCTTCCTTGTGAGGCTGTTGGAGACCCACTGCCCA CTATTCCAGCTAACTCAGATGCCTTTCTTCCCTGTGAAGCTGTTGGAAATCCCCTGCCCA
rat_cDNA human_5+3_corrected mus_cDNA_5	TCATCCACTGGACCAGAGTTTCATCAGGANTTGAAATATCCCAAGGGACACAGAAAAAGCC CCATTCATTGGACCAGAGTUNNITCAGGACTTGATTTATCTAAGAGGAAACAGAATAGCA
rat_cDNA human_5+3_corrected mus_cDNA_5	GOTTCCACGTGCTTCCCAATGGCACCTTGTCCATCCAGAGGGTCAGTATTCAGGACCGTG
rat_cDNA human_5+3_corrected mus_cDNA_5	GACAGIACCIGIGCICTGCATTIAATCCACIGGCGIAGACCATITICAIGICICITIGI GACAGIACITGIGITCCGCATCCAATCIGITTGGCACAGACCACCITCAIGICACCITGI
rat_cDNA human_5+3 corrected mus_cDNA_5	CTGTGGTTTTTTACCOGGCAAGGATTTTGGACAGACATGTCAAGGAGATCACAGTTCACT CTGTGGTTTCCTATCCTCCCAGGATCCTGGAGAGACGTACCAAAGAGATCACAGTTCATT

rat_cDNA human_5+3_corrected mus_cDNA_5	TTGGAAGTACTGTGGAACTAAAGTGCAGAGTGGAGGGTATGCCGAGGCCTACGGTTTCCT CCGGAAGCACTGTGGAACTGAAGTGCAGAGGAAGGTAGGCCAAGCCCTACAGTTACCT
rat_cDNA human_5+3_corrected mus_cDNA_5	GGATACTTGCAAACCAAACGGTGGTCTCAGAAACGGCCAAGGGAAGGAA
rat_cDNA human_5+3_corrected mus_cDNA_5	TAACACCTGATGGAACATTGATCATCTATAATCTGAGTCTTTATGATCGTGGTTTTTACA TGACGGTTGACGGAACATTGGTCCTCCACAATCTCAGTATTTATGACCGTGGCTTTTACA
rat_cDNA human_5+3_corrected mus_cDNA_5	AGTGTGTGGCCAGCAACCCATCTGGCCAGGATTCACTGTTGGTTAAGATACAAGTCATCA AATGTGTGGCCAGCAACCCCAGGTGGCCCAGGATTCACTGCTGGTTAAAATACAAGTCATTG
rat_cDNA human_5+3_corrected mus_cDNA_5.	CAGCTCCCCTGTCATTATAGAGCAAAAGAGGCAAGCCATCGTTGGGGTTTTAGGTGGAA CAGCACCACCTGTTATTCTAGAGCAAAGGAGGCAAGTCATTGTAGGCACTTGGGGTGAAA
rat_cDNA human_5+3_corrected mus_cDNA_5	GTTTGAAACTGCCCTGCACTGCAAAAGGAACTCCCCAGCCTAGTGTTCACTGGGTCCTTT GTTTAAAACTGCCCTGTACTGCAAAAGGAACTCCTCAGCCCAGCGTTTACTGGGTCCTCT
rat_cDNA human_5+3_corrected mus_cDNA_5	ATGATGGGACTGAACTAAAACCATTGCAGTTGACTCATTCCAGATTTTTCTTGTATCCAA CTGATGGCACTGAAGTGAAACCATTACAGTTTACCAAGTTGTTCTTATTTTCAA
rat_cDNA human_5+3_corrected mus_cDNA_5	ATGGAACTCTGTATATAAGAAGCATCGCTCCTTCAGTGAGGGCACTTAYGAGTGCATTG ATGGGACTTTGTATATAAGAAACCTAGCCTCTTCAGACAGGGGCACTTATGAATGCATTG
rat_cDNA human_5+3_corrected mus_cDNA_5	CCACCAGCTCCTCAGGCTCAGAGAGAGAGGGTAGTGATTCTTACTGTGGAAGAGGGAGAGA CTACCAGTTCCACTGGTTCGGAGCGAAGAGTAGTAATGCTTACAATGGAAGAGCGAGTGA
rat_cDNA human_5+3_corrected mus_cDNA_5	CAATCCCCAGGATAGAAACTGCCTCTCAGAAATGGACTGAGTGAATTTGGGTGAGAAAT CCAGCCCCAGGATAGAAGCTGCATCCCAGAAAAGGACTGAAGTGAATTTTGGGGACAAAT
rat_cDNA human_5+3_corrected mus_cDNA_5	TACTACTGAACTGCTCAGCTACTGGGGATCCAAAGCCTAGAATAATCTGGAGGCTGCCAT TACTACTGAACTGCTCAGCCACTGGGGAGCCCAAACCCCAAATAATGTGGAGGTTACCAT
rat_cDNA human_5+3_corrected mus_cDNA_5	CCAAGGCTGTCATCGACCAGTGGCCACAGAATGGGCAGCCGAATCCACGTCTACCCAAATG CCAAGGCTGTGGTCGACCAGTGG
rat_cDNA human_5+3_corrected mus_cDNA_5	GATCCTTGCTGGTTGGGTCAGTGACGGAAAAAGACGCTGGTGACTACTTATGTGTGGCAA GATCCCTGTTTATTGGATCAGTAACAGAAAAAGACAGTGGTGTCTACTTGTGTGTG
rat_cDNA human_5+3_corrected mus_cDNA_5	Grancaratgeggagatgacctratcctgatgcatgtcccctgagattgacacctgcca Grancaratgegggatgatctgatgcatgctgatgcctragactgaracctgcca

rat_cDNA human_5+3_corrected mus_cDNA_5	NATTGACAGAAGCAGTATTTTAGAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTTG AAATTGACCACAAGCAGTATTTTAGAAAGCAAGTGCTCCATGGGAAAGATTTCCAAGTAG
rat_cDNA human_5+3_corrected mus_cDNA_5	ACTGCAAGGCCTCTGGCTCCCCTGTGCCTGAGGTATCCTGGAGTTTGCCTGATGGGACAG ATTGCAAAGCTTCCGGCTCCCCAGTGCCAGAGATATCTTGGAGTTTGCCTGATGGAACCA
rat_cDNA human_5+3_corrected mus_cDNA_5	Toctcaacaatgtagcccaagctgacagtggctataggaccaagaggtacacccttt Tgatcaacaatgcaatgcaagccgatgacagtggccacaggactaggagatatacccttt
rat_cDNA human_5+3_corrected mus_cDNA_5	TCCACAATGGAACCTTGTATTTCAACAACGTTGGGATGGCAGAGGAAGGA
rat_cDNA human_5+3_corrected_ mus_cDNA_5	GCTCTGCCCAGAACACCTTAGGGAAAGATGAGATGAAAAGTCCACCTAACAGTTCTAACAG GCTATGCCCAGAACACCCTAGGGAAAGATGAAATGAA
rat_cDNA human_5+3_corrected mus_cDNA_5	CCATCCCACGGATAAGGCAAAGCTACAAGACCACCATGAGGCTCAGGGCTGGAGAAACAG CTGCTCCCCGGATAAGGCAGAGTAACAAAACCAACAAGAGAATCAAAAGCTGGAGACACAG
rat_cDNA human_5+3_corrected mus_cDNA_5	CTGTCCTTGACTGCGAGGTCACTGGGGAACCGAAGCCCAAFGTATTTTGGTTGCTGCCTT CTGTCCTTGACTGTGAGGTCACTGGGGATCCCAAACCAAAATATTTTGGTTGCTGCCTT
rat_cDNA human_5+3_corrected mus_cDNA_5	CCAACAATGTCATTTCATTCTCCAATGACAGGTTCACATTTCATGCCAATAGAACTTTGT CCAATGACATGATTTCCTTCTCCATGATAGGTACACATTTCATGCCAATGGGTCTTGA
rat_cDNA human_5+3_corrected mus_cDNA_5	CCATCCATAAAGTGAAACCACTTGACTCTGGGGACTATGTGTGCGTAGCTCAGAATCCTA CCATCAACAAAGTGAAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCCGAAATCCCA
rat_cDNA human_5+3_corrected mus_cDNA_5	GTGGGGATGACACTAAGACATACAAACTGGACATTGTCTCTAAACCTCCATTAATCAATG GTGGGGATGACACCAAAATGTACAAACTGGATGTGGTCTCTAAACCTCCATTAATCAATG
rat_cDNA human_5+3_corrected mus_cDNA_5	GCCTGTATGCRAACAAGACTGTTATTRAAGCCACAGCCATTCGGCACTCCRAAAAATACT GTCTGTATACAAACAGAACTGTTATTRAAGCCACAGCTGTGAGACATTCCAAAAAACACT
rat_cDNA human_5+3_corrected mus_cDNA_5	TTGACTGCAGAGCAGATGGGATCCCATCTTCCCAGGTCACGTGGATTATGCCAGGCAATA TTGACTGCAGAGCTGAAGGGACACCATCTCCTGAAGTCATGTGGATCATGCCAGACAATA
rat_cDNA human_5+3_corrected mus_cDNA_5	TTTTCCTCCCAGCTCCATACTTTGGAAGCAGAGTCACGGTCCATCCA
rat_cDNA human_5+3_corrected mus_cDNA_5	Agatgaggaacatccggctttctgactctgcggacttcacctgtgtgggcgaggaattaggatgtgggactgaatgaa

rat_cDNA human_5+3_corrected mus_cDNA_5	GAGGAGAGAGTGTGGTAGTGCAGTTAGAAGTCCTAGAAATGCTGAGAAGACCAACAT GTGGAGAGAGCGTGTTGGTAGIACAGTTAGAAGTACTGGAAATGCTGAGAAGACCGACAT
rat_CDNA human_5+3_corrected mus_cDNA_5	TCAGAAACCCATTCAACGAAAAAGTCATCGCCCAAGCTGGCAAGCCCGTAGCACTGAACT TTAGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGAAAGTCCACAGCATTGAATT
rat_cDNA human_5+3_corrected mus_cDNA_5	GCTCTGTGGATGGGAACCCCCCACCTGAAATTACCTGGATCTTACCTGACGGCACACAGT GCTCTGTTGATGGTAACCCACCACCTGAAATAATCTGGATTTTACCAAATGGCACACGAT
rat_cDNA human_5+3_corrected mus_cDNA_5	TTGCTAACAGACCACACATTCCCCGTATCTGATGGCAGGCA
rat_cDNA human_5+3_corrected mus_cDNA_5	ACAMAGCAACTCGGAACMAGTCAGGGAACTATCGCTGTGCAGCCAGGAATAAGGTTGGCT CTAMAACAACTCGGGAGGATGCAGGAAMATATCGCTGTGCAGCTAGGAATAAAGTTGGCT
rat_cDNA human_5+3_corrected mus_cDNA_5	ACATCGAGAAACTCATCCTGTTAGAGATTGGGCAGAAGCCAGTCATTCTGACATACGAAC ATATTGAGAAATTAGTCATATTAGAAATTGGCCAGAAGCCAGTTATTCTTACCTATGCAC
rat_cDNA human_5+3_corrected mus_cDNA_5	Cagggatgetgragagcgtcagtggggaaccgttatcactgcattgtgtgtg
rat_cDNA human_5+3_corrected mus_cDNA_5	TCCCCAAGCCAAATGTCAAGTGGACTACACCGGGTGGCCATGTAATCGACAGGCCTCAAG TCCCTAAGCCAAATATCAAATGGACTATGCCAAGTGGTTATGTAGTAGACAGGCCTCAAA
rat_cDNA human_5+3_corrected mus_cDNA_5	TGGATGGAAATACATACTGCATGAAAATGGCACGCTGGTCATCAAAGCAACAACAGCTC TTAATGGGAAATACATATTGCATGACAATGGCACCTTAGTCATTAAAGAAGCAACAGCTT
rat_cDNA human_5+3_corrected mus_cDNA_5	Aceaccaaggaaattatatctetaeggctcaaaataetetteeccaegcaettattaece Atgacagaggaaactatatctetaagectcaaaataetetteetcatacacteattacte
rat_cDNA human_5+3_corrected mus_cDNA_5	TGTCAGTGATGGTTGTGGCCTACCCTCCCGGAATCATAAACTACCTAC
rat_cDNA human_5+3_corrected mus_cDNA_5	TCAGGAGGACAGGGGAAGCCATGCAGCTCCACTGTGTGGCCTTGGGAATCCCCAAGCCAA TCACCAGGACAGGGGCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAG
rat_cDNA human_5+3_corrected mus_cDNA_5	AAGTCACCTGGGAGACGCCAAGACACTCCCTGCTCTCAAAAGCAACAGCAAGAAAACCCC AAATCACATGGGAGATGCCTGACCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGACAC
rat_cDNA human_5+3_corrected mus_cDNA_5	ATAGAAGTGACATGCTTCACCCACAAGGTACGCTGGTCATTCAGAATCTCCAAACCTCGG ATGGAAGTGAGCAGCTTCACTTACAAGGTACCCTAGTCATTCAGAATCCCCAAACCTCCG

	rat_cDNA human_5+3_corrected mus_cDNA_5	ATTCCGGAGTCTATAAGTGCAGAGCTCAGAACCTACTTGGGACTGATTACGCAACAACTT ATTCTGGGATATACAAATGCACAGCAAAGAACCCACTTGGTAGTGATTATGCAGCAACGT
	rat_oDNA human_5+3_corrected mus_cDNA_5	ACATCCAGGTACTCTGACAGGAAGGGGGAGACTAAAATTCAACAGAAGTCCACATCCACA ATATTCAAGTAATCTGACATGAAATAATAAAGT-CAACAACATCTGGGCA
	rat_cmNA human_5+3_corrected mus_cDNA_5	GGGTTTATTTTTTGGAAGAAGTTTAATCAAAGGCAGCCATAGGCATGTAAATGAGTCTGA GAATTTATTTTTTGGAAGAAGTTTAATCAAAGGCAGCCATAGGCATGTAAATGAATTTGA
	rat_cDNA human_5+3_corrected mus_cDNA_5	Atacattragtatraattraatgaacatgogatgagacttgtaaatgaaa Atacattraggtattraattraatgaacatgoaaaataaaaggacttgtaaatraat
The true and the true	rat_cDNA human_5+3_corrected mus_cDNA_5	GCATTGTGAACTGAAACCGAGTCTCTGTGGATCTCAAAGCAAACTCTTAACTTAA
	rat_cDNA human_5+3_corrected mus_cDNA_5	GGCACTTTGATTTTGCCAACAATAATAACAAACATTAAGAGAAAAAAATGATCCACTAC GGCACTTTTATTTTGCCAACAAATAACAATAACAAACATTGAAACGGTTCACTAT
I. I. I. I.	rat_cDNA human_5+3_corrected mus_cDNA_5	Garatracraroggctratgcacctgrattct-crgtraragrcctttctctctctctaac Aratracrartggctratgtrcctgratttttcrgtrararatgractt-ctart
	rat_cDNA human_5+3_corrected mus_cDNA_5	AGTTGCCAGCTGCCTCGTGTCTGTTTCCTACCAATGTCACAACATCGCACACAGGGTGA ACCAGTTGCCTAGTGTCCACCTCCTATCAATGTTACAAGCATGGCACTCAGA
	rat_cDNA human_5+3_corrected mus_cDNA_5	ATGGAGTCAACGGGAAAGATTAAGTTTGCGGTCTGTGTAAATCTCAATGTACAAATATTC ACAGAGACAATGGAAAATATTAAATCTGCAATCTATGTATAAATATTT
	rat_cDNA human_5+3_corrected mus_cDNA_5	TGTCNCTGGTTTATAAACATTTT-GATAAAACCGAAAAAAAAAAA
	rat_cDNA human_5+3_corrected mus_cDNA_5	(rat_cDNA: SEQ ID NO:7) (human_5+3 corrected: SEQ ID NO:8) (mus_cDNA_5: SEQ ID NO:9)

or arms, arms means, are comes, are constructed and arms, are constructed as a supplementary of a supplementary and a supplementary arms, and a supplementary arms, are constructed as a supplementary and a supplementary arms, and a supplementary arms, are constructed as a supplementary and a supplementary arms, and a supplementary arms, are constructed as a supplementary arms, and a supplementary arms, are constructed as a supplementary arms, and a supplementary arms, are constructed as a supplementary arms, and a supplementary arms, are constructed as a supplementary arms, and a supplementary arms, and a supplementary arms, and a supplementary arms, and a supplementary arms, are constructed as a supplementary arms, and a supplementary a

Figure 15

rat human_5+3_corrected mouse_5_corrected	MOVRGREVSGLLISLTAVCLYVTPGSPACPRRCACYVPTEVHCTFRYLTSIPDGIPANVE MRVKGRGITCLLYSFAVICTVATPGGRACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVE MOKRGREVSCLLISLTAICLVVTPGSRVCPRRCACYVPTEVHCTFRDLTSIPD—GPANVE
rat human_5+3_corrected mouse_5_corrected	rinlgynsltrltendfdgleklelimlhengihrvedktfeglóslóvlkmeynkvóli rinlgynslvrimetdfegleklelimlhengihtipdktfeblóalóvlkmeynkvrkl rvnlgynsltrltendfeglerleilmlhengihrvedktfeglóslóvlkmeynkvóli
rat human_5+3_corrected mouse_5_corrected	RKDTFYGLGSLVRLHLDHNNIEFINPEAFYGLTSLRLVHLEGNRLTKLHPDTFYSLSYLQ QKDTFYGLRSLTRLHMDHNNIEFINPEVFYGLNFLRLVHLEGNQLTKLHPDTFYSLSYLQ EKDTLYGLRSLTRLHLDHNNIEFINPEAFYGLTILRLVHLEGNRLTKLHPDTFYSLSYLQ
rat human_5+3_corrected mouse_5_corrected	IFKTSFIKYLFLSDNFLTSLPKEMVSYMPNLESLYLHGNPWTCDCHLKWLSEWMQGNPDI IFKTSFIKYLYLYDNF-TSLPKEMVSYMPDLDSLYLHGNPWTCDCHLKWLSEWMQGNP IFKTSFIKXLYLYDNF-TSLPKEMVSSMPNLESLYLHGNPWTCDCHLKWLSEWMQGNP
rat human_5+3_corrected mouse_5_corrected	IKCKKDRSSSSPQQCPLCMNPRISKGRPFAMVPSGAFLCTKPTIDPSLKSKSLVTQEUNG IKCKKDRSPSSAQQCPLCMNPRTSKGKPLAMVSAAAFQCAKPTIDS6LKSKSLTILEOSS
rat human_5+3_corrected mouse_5_corrected	Sastspodfiepfgsleinmtxxsgnkadnvcsiokpsrtsptafteendyiminasfst Safispogfmapfgsltimmtdoggneanmvcsiokpsrtsptafteendyivimtsfst
rat human_5+3_corrected mouse_5_corrected	nlvcsvdynhiqpvwqllalysdsplilerkpqltetpslssrykqvalrpediftsiea flvcnidyghiqpvwqllalysdsplilershllsetpqlyykykqvapkpediftniea
rat human_5+3_corrected mouse_5_corrected	DVRADPFWFQQEKIVLQINRTATTISTIQIQFSTDAQIALPRAEMRAERIKWIMIIMMNN DIRADPSWIMQDQISIQINRTATTFSTIQIQYSSDAQITIPRAEMRPVKHKWIMISRIMN
rat human_5+3_corrected mouse_5_corrected	PKLERTVLVGGTIALSCPGKGDPSPHLENLLADGSKVRAPYVSEDGRILIDKNGKLELOM TKLEHTVLVGGTVGLNCPGQGDPTPEVDWLLADGSKVRAPYVSEDGRILIDKSGKLELOM
rat human_5+3_corrected mouse_5_corrected	Adsfdaglyhcistndadadvltyritvvepygesthdsgvohtvvtgetldlpclstgv Adsfdtgvyhcissnyddadiltyritvveplveayoengiehtvfigetldlpchstgi
rat human_5+3_corrected mouse_5_corrected	PDABISWILPGNTYF9QPSRDRQIINNGTLRILQYTPKDQGHYQCVAANPBGADFSSFKY PDASISWYIPGNNYLYQSSRDKKYLNNGTLRILQYTPKDQGYYRCVAANPSGYDFLIFQY
rat human_5+3_corrected mouse_5_corrected	Svokkgornvehdreaggsglgepnssvslkopaslklsasalitgseagkovsgvhrknk Svkmkgorplehdgetegggldesnpiahlkeppgaolrtsalmeaevgkhtsstskrhn
rat human_5+3_corrected mouse_5_corrected	HRDLIHRRRGDSTLRRFREHRROLPLSARRIDPORWAALLEKAKKNSVPKKOENTTVKPV YRELTLORRGDSTHRRFRENRRHFPPSARRIDPOHWAALLEKAKKNAMPDKRENTTVSPP

rat human_5+3_corrected mouse_5_corrected	Plavplveltdeekdascmippdeefmvlktkasgvpgrsptadsgpvnigfmtsiasgt Pvvtolpnipgeeddsscmlalheefmvpatkalnlpartvtadsrtisdsfmtninygt
rat human_5+3_corrected mouse_5_corrected	EVS-TVNPQTLQSEHLPDFKLFSVTNGTAVTKSMNPSIASKIEDTTNQNPIIIFPSV EFSPVVNSQILPPEEPTDFKLSTAIKTTAMSKNINPTMSSQIQGTTNQHSSTVFPLLLGA
rat human_5+3_corrected mouse_5_corrected	Abirdsaqagras—sqsahpvtggmatyghtntyssftskastvlqpinptesygpqi Tefqdsdqmgrgrehfqgrppitvrimikdvnvkmlssttnkl—llesvnttnsh—qi
rat human_5+3_corrected mouse_5_corrected	PITGVSRPSSSDISSHTTADPSFSSHPSGSHTTASSLFHIPRNNNTCNFPLSRHLGRERT SVREVSEPRHNHFYSHTTQILSTSTFPSDPHTAAHSQFPIPRNS-TVNIPLFRRFGRORK
rat human_5+3_corrected mouse_5_corrected	Iwsrgrvenphrtpvlrrhrhrtvrpaikgpanknvsovpateypgmchtcpsaegltva Iggrgriispyrtpvlrrhrysifrsttrgsseksttafsatvlnvtclsclprerltta
rat human_5+3_corrected mouse_5_corrected	Taalsvpssshsalpktnnvgviagesttvvkkplilfkdkonvdieiittttkyboges Taalsfpsaapitfpkadiarvpseesttlvonplillenkpsvekttptikyfrtei
rat human_5+3_corrected mouse_5_corrected	nhvipteasmisapisvslokspydnschlsmpctiqtckdsvettplpsplstpsip sqytpigavmiyapisipmekthkvnasyprvssineakrdsvitsslsgaiikppmiii
rat human_5+3_corrected mouse_5_corrected	TSTKFSKRKTPLHQIFVNNQKKEGMLKNPYQFGLQKNPAAKLPKIAPLLPTGQSSPSDST Altrfsrrkipwqqnivnnhnpkgrlrnqhkvslqkstavmlprtspalpqrqsspfhft
rat human_5+3_corrected mouse_5_corrected	TLLTSPPPALSTTMAAT(NKGTEVVSGARSLSAGKKQ-PFTNSSPVLPSTIEKRSNTINF TLSTSVMQIPSNTLTTAHHTTTKTHNPG-SLPT-KKELPFPPLNPMLPSIISKDSSTKSI
rat human_5+3_corrected mouse_5_corrected	lstetpt-vtsptatasvimsetortrskeardqikg-p-rmrnnanttprovsgysay Istotaipattptfpasvityetqtersraotioregepokknrtdpnispdossgfttp
rat human_5+3_corrected mouse_5_corrected	Salttadtplafshsproddggnysavayhsttsllaitelfskytotlgnttalett Tamtppalafthsppenttgisstisfhsrtinltdvibelaoastotlkstiasett
rat human_5+3_corrected mouse_5_corrected	Llsksqesttvkras-dtp-ppllssgappvptpspppftkgvvtdskvtsafqmtsnrv Lsskshqstttrkasldtp1ppflsssatimpvp1sppftqravtdtrgdshfrimtntv
rat human_5+3_corrected mouse_5_corrected	VTIYESSRHNTDLQQPSAEASPNPEIITGTTDSPSNLFPSTSVPALRVDKPQNSKWKPSP VKLHESSRHNLQMPSSQLEPLTSSTSNLLHSTPMPALTTVKSQNSKLTPSP
rat human_5+3_corrected mouse_5_corrected	wpehkyolksysetiergkrpavsmsphlslprasthashwntokhabksyfokkpgonp waeyofwhkpysdiaekgkkpevsmlattglseattlysdwdgorntkksdfdkkpyoea

rat human_5+3_corrected mouse_5_corrected	-texhlpyvslpktllkkpriiggkaasetvpansdaflpceavgdplpiihmtrvssgx Ttskllpfdslsryifekprivggkaasetipansdaflpceavgnplptihwtrvs-gl
rat human_5+3_corrected mouse_5_corrected	eisgetoksrfhvlpnetlsigrvsiodregylcsasnlfetdhlhvtlsvvsypprile Dlsrenonsrvovlpnetlsiorveiodregylcsasnlfetdhlhvtlsvvsypprile
rat human_5+3_corrected mouse_5_corrected	RHVKETTVHFGSTVELKCRVEGMPRPTVSWILANQTVVSETAKGSRKVWVTPDGTLIIYN RRTKETTVHSGSTVELKCRAEGRPSPTVTWILANQTVVSESSQGSRQAVVTVDGTLVLHN
rat human_5+3_corrected mouse_5_corrected	LSLYDRGFYKCVASNPSGQDSLLVKIQVITAPPVIIEQKRQAIVGVLGGSLKLPCTAKGT LSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPPVIIEQRRQVIVGTWGESLKLPCTAKGT
rat hwman_5+3_corrected mouse_5_corrected	Popsvhwolydgtelkplolthsrfflypngtlyirsiapsvrgtyeciatsssgserrv Popsvywolsdgtevkploftnsklflesngtlyirnlassdrgtyeciatsstgserrv
rat human_5+3_corrected mouse_5_corrected	VILTVEEGETIPRIETASQXWTEVNLGEKLLLNCSATGDPKPRIIWRLPSKAVIDQWHRM VMLTMEERVTSPRIEAASQXRTEVNFGDKLLLNCSATGEPKPQIMWRLPSKAVVDQ
rat human_5+3_corrected mouse_5_corrected	G9R1HYYPNGSLVVGSVTEKDAGDYLCVARNKMGDDLVLMHYRLRLTPAK1EQKQYFKKQ G8W1HYYPNGSLF1GSVTEKDSGYYLCVARNKMGDDL1LMHVSLRLKPAK1DHKQYFRKQ
rat human_5+3_corrected mouse_5_corrected	VLEGKDFQVDCKASGSPVPEVSWSLPDGTVLNNVAQADDSGYRTKRYTLFHNGTLYFNNV VLHGKDFQVDCKASGSPVPEISWSLPDGTNINNAMQADDSGHRTRRYTLFNNGTLYFNKV
rat human_5+3_corrected mouse_5_corrected	CMAEEGDYICSAQNTIGKDEMKVHLTVLTAIPRIRQSYKTTMALRAGETAVLDCEVTGEP GVAEEGDYTCYAQNTIGKDEMKVHLTVITAAPRIRQSNKTNKRIKAGDTAVLDCEVTGDP
rat human_5+3_corrected mouse_5_corrected	KPNVFWLLPSNNVISFSNDRFTFHANRTLSIHKVKPLDSGDYVCVAONPSGDDTKTYKLD KPKIFWLLPSNDMISFSIDRYTFHANGSLTINKVKLLDSGEYVCVARNPSGDDTKMYKLD
rat human_5+3_corrected mouse_5_corrected	IVSKPPLINGLYANKTVIKATAIRHSKKYFDCRADGIPSSQVTWIMPGNIFLPAPYFGSR VVSKPPLINGLYTNRTVIKATAVRHSKKHFDCRAEGTPSPEVMWIMPDNIFLTAPYYGSR
rat human_5+3_corrected mouse_5_corrected	VTVHPNGTLEMRNIRLSDSADFTCVVRSEGGESVLVVOLEVLEMLRRPTFRNPFNEKVIA ITVHKNGTLEIRNVRLSDSADFICVARNEGGESVLVVOLEVLEMLRRPTFRNPFNEKIVA
rat human_5+3_corrected mouse_5_corrected	Qagrpvalncsvdgnpppeitwilpdgtqfanrphnspylmagngslilykatrnksgky Qlgkstalncsvdgnpppeiiwilpngtrfsngpqsyqyllasngsfiiskttredagky
rat human_5+3_corrected mouse_5_corrected	RCAARNKVGYIEKLILLEIGQKPVILTYEPGMVKSVSGEPLSLHCVSDGIPKPNYKWTTP RCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKWTMP

mouse_5_corrected

GCHVIDRPQADGKYILHENGTLVIKATTAHDQGNYICRAQNSVGQAVIBASAWAYA121K human_5+3_corrected SGYVVDRPQINGKYLLHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAYPPR

mouse_5_corrected

IINYLPRNMLRRTGBANOLHCVALGIPKPKVTWETPRESILSKATARKPHRSEMLHPQGT human_5+3_corrected ITMRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHLQGT

mouse_5_corrected

LVIQNLQTSDSGVYKCRAQNLLGTDYATTYIQV human 5+3 corrected LVIQNPQTSDSGIYKCTAKNPLGSDYAATYIQV

(rat: SEQ ID NO:10)

(human_5+3_corrected: SEQ ID NO:11) (mouse_5_corrected: SEQ ID NO:12)

Figure 16

rat human_5+3_corrected	Movrgrevsgllisltavclvvtpgsracprrcacyvptevhctfryltsipdgipanve Mkvkgrgitcllvsfaviclvatpggkacprrcacyvptevhctfryltsipdsippnve *:*:** :: **:*:::***.***.:********.********
rat human_5+3_corrected	RINLGYNSLTRLTENDFDGLSKLELIMLHSNGIHRVSDKTFSGLQSLQVLKMSYNKVQII RINLGYNSLVRIMETDFSGLTKLELIMLHSNGIHTIPDKTF3DLQALQVLKMSYNKVRKL ************************************
rat human_5+3_corrected	RKDTFYGIGSLVRLHIDHNNIEFINPEAFYGLTSLRIVHLEGNRLTKLHPDTFVSLSYIQ QKDTFYGIRSLTRLHMDHNNIEFINPEVFYGLNFLRIVHLEGNQLYKLHPDTFVSLSYIQ :******
rat human_5+3_corrected	IFKTSFIKYLFLSDNFLTSLPKEMVSYMPNLESLYLHGNPWTCDCHLKWLSBWNQGNPDI IFKISFIKFLYLSDNFLTSLPQEMVSYMPDLDSLYLHGNPWTCDCHLKWLSBWIQPDV
rat human_5+3_corrected	IKCKKDRSSSSPQQCPLCMNPRISKGRPFANVPSGAFICTKPTIDPSLKSKSLVTQEDNG IKCKKDRSPSSAQQCPLCMNPRTSKGKPLANVSAAAFQCAKPTIDSSLKSKSLTILEDSS ***********************************
rat human_5+3_corrected	<pre>sastspodfiepfgslsinmtxxsgnkadmvcslokpsrtsptafteendyIninasfst safispogfmapfgsltinntdosgneanmvcslokpsrtsplafteendyIvintsfst ** ***.*: *****:*** ***:*:*************</pre>
rat human_5+3_corrected	NLVCSYDYNHIOPYWOLLALYSDSPLILERRPOLTETPSLSSRYROVALRPEDIFTSIEA FLVCNIDYGHIOPYWOILALYSDSPLILERSHLLSETPOLYYKYROVAPKPEDIFTNIEA ***.:**.******************************
rat human_5+3_corrected	Dyradpfweggekiviqinrtattistiqiqfstdaqialpraemraerikwimiimmn Diradpswimqdqisiqinrtattfstiqiqyssdaqitipraemrpykhkwimisrimn *:*** *: *:: *********; *****; *********
rat human_5+3_corrected	PKLERTVLVGGTTALSCPGKGDPSPHLEWILADGSKVRAPYVSEDGRILIDKNGKLELOM TKLEHTVLVGGTVGLNCPGQGDPTPHVDWLLADGSKVRAPYVSEDGRILIDKSGKLELOM .***:*******.**********************
rat hmman_5+3_corrected	ADSFDAGLYHCISTNDADADVLTYRITVVEPYGESTHDSGVQHTVVTGETLDLFCLSTGV ADSFDTGVYHCISSNYDDADILTYRITVVEPLVEAYQENGIHHTVFIGETLDLFCHSTGI
rat human_5+3_corrected	PDASISWILPGNTYFSQPSRDRQILNNGTLRILQYTPKDQGHYQCVAANPSGADFSSFKY PDASISWYIPGNNYLYQSSRDKKYLNNGTLRILQYTPKDQGYYRCVAANPSGVDFLIFQV ******::***.*: *.***:::****************
rat human_5+3_corrected	SVOKKGORMVEHDREAGGSGLGEFNSSVSLKOPASLKI.SASALTGSEAGKOVSGVHRKNK SVKMKGORPLEHDGETEGSGLDESNPIAHLKEPPGAOIRTSALMEAEVGKHTSSTSKRHN **: *** : *** : ****
rat human_5+3_corrected	Hrdlihrrrgdstlrrfrehrrolplsarridporwaallekakknsvpkkoenttykpv Yreltlorrgdsthrrfrenrhfppsarridpohwaallekakknampdkenttyspp :*:*
rat human_5+3_corrected	Piavplveltdeekdascmippdeemvlktkascvpgrsptadscpvnegemtsiasct Pvvtolpnipgeeddsscmlalheefmvpatkainipartvtadsrtisdspmtninyct *:*:**.***************************
rat human_5+3_corrected	EVS-TVNPQTLQSEHLPDFKLFSVTNGTAVTKSMNPSIASKIEDTTNQNPIIIFPSV EFSPVVNSQILPPEEPTDFKLSTAIRTTAMSKNINPTMSSQIQGTTNQHSSTVFPLLLGA *.*.* * .***** : : **::*::::::::::::
rat human_5+3_corrected	AEIRDSAQAGRASSQSAHPVTGGNMATYGHTNTYSSFTSKASTVLQPINPTESYGPQI TEFQDSDQMGRGREHFQSRPPITVRTMIKDVNVKMLSSTTNKLILLESVNTTNSHQT :*::** * * * * * * * * * * * * * * * *

rat human_5+3_corrected	nhvipteasmtsaptsvslgkspydnschlsmpctiqtckdsvettplpsplstpsip sqytptgaymtyaptsipmekthkvnasyprysstneakkdsvitsslsgaitkppmtii .:* ** * * ****:: *: *:: :* :: :*** *:.*:.* :*
rat human_5+3_corrected	TSTKFSKRKTPLHQIFVNNQKKEGMLKNPYQFGLQKNPAAKLPKIAPLLPTGQSSPSDST AITRFSRRKIPYQQNFVNNHNPKGRLRNQHKVSLQKSTAVMLPRTSPALPQRQSSPFHFT ; *:**:** * :* ****:; :* *:* ;:*. * :* :* ** *** . *
rat human_5+3_corrected	TLLTSPPFALSTIMAATONKGTEVVSGARGLSAGKKOPFTNSSPVLPSTISKRSNTLNFL TLSTSVMQIPSNTLTTAHHTTTKTHNPG-SLPTKKELPFPPLNPMLPSIISKDSSTKSII ** **
rat human_5+3_corrected	STETPT-VTSPTATASVIMSETQRTRSKEAKDQIKG-P-RKNRNANTTPRQVSGYSAYS STQTAIPATTPTFPASVITYETQTERSRAQTIQREQEPQKKNRTDPNISPDQSSGFTTPT **:*. *:** *** *** **; . * : * ;***.:.* ;* ***;;;;
rat human_5+3_corrected	ALTTADTPLAFSHSPRQDDGGNVSAVAYHSTTSILALTELFEKYTQTLGNTTALETTL AMTPPALAFTHSPPENTTGISSTISFHSRTINLTDVIEELAQASTQTLKSTLASETTL *:****:*** ::
rat human_5+3_corrected	LSKSQESTTVKRAS-DTP-PPLLSSGAPPVPTRSPPPFTKGVVTDSKVTSAFQMTSNRVV SSKSHQSTTTRKASLDTPIPPFLSSSATLMPVPLSPPFTQRAVTDTRGDSHFRLMTNTVV ***::***.;:** *** **;***. : : . * **: : * *: ; : * **:
rat human_5+3_corrected	TIYESSRENTDLQQPSAEASPNPEIITGTTDSPSNLFPSTSVPALRVDKPQNSKWKPSPW KLHESSRENLCMPSSQLEPLTSSTSNLLHSTPMPALTTVKSQNSKLIPSPW .::***** ** **:: .* **.:*** .***** .***** .****
rat human_5+3_corrected	PEHKYQLKSYSETIEKGKRPAVSMSPHLSLPEASTHASHWNTQKHAEKSVFDKKPGQNP- AEYQFWHKPYSDIAEKGKKPEVSMLATTGLSEATTLVSDWDGQKNTKKSDFDKKPVQEAT .*:: *.*: ***:* ***
rat human_5+3_corrected	TSKHLPYVSLPKTLLKKPRIIGGKAASFTVPANSDVFLPCEAVGDPLPIIHWTRVSSGXE TSKLLPFDSLSRYIFEKPRIVGGKAASFTIPANSDAFLPCEAVGNPLPTIHWTRVS-GLD *** **; **,; :::***;********;***********
rat human_5+3_corrected	ISQGTQKSRFHVLPNGTLSIQRVSIQDRGQYLCSAFNPLGVDHFHVSLSVVFYPARILDR LSRGNCNSRVQVLPNGTLSIQRVEIQDRGQYLCSASNLFGTDHLHVTLSVVSYPPRILER :*:*.*:**::***************************
rat human_5+3_corrected	HVKEITVHFGSTVELKCRVEGMPRPTVSWILANGTVVSETAKGSRKVWVTPDGTLIIYNL RTKEITVHSGSTVELKCRAEGRPSPTVTWILANGTVVSESSQGSRQAVVTVDGTLVLHNL :.***** ********* * ***;********;;***:. ** ***:::**
rat human_5+3_corrected	Slydrgfykcvasnpsgodsllykiqvitappviieqkrqaivgvlggslklpctakgtp Siydrgfykcvasnpggodsllykiqviaappvileqrrqvivgtwgeslklpctakgtp +;************************************
rat human_5+3_corrected	QPSVHWYLYDGTELKPLQLTHSRFFLYPNGTLYIRSIAPSVRGTYECIATSSSGSERRVV QPSVYWVLSDGTEVKPLQFTNSKLFLFSNGTLYIRNLASSDRGTYECIATSSTGSERRVV ***;*** ****;***;.**;.*******, **********
rat human_5+3_corrected	<pre>[LTVEEGETIPRIETASQKWTEVNLGEKLLLNCSATGDPKPRIIWRLPSKAVIDQWHRMG MLTMEERVTSPRIEAASQKRTEVNFGDKLLLNCSATGEPKPQIMWRLPSKAVVDQG ;**:**</pre>
	-

- rat iwsrgrvknphrtfylrhenertyrpalkgpanknysgypateypgkcetcpsaegltva human_5+3_corrected iggrgrlfylrhenertysifrsttrgsseksttafsatvlnytclsclpherltta

rat

human 5+3 corrected

lhgkdfqydckasgspypeyswslpdgtylmnyaqaddsgyrtxrytlfhngtlyfnnyg rat lhgkdfoydckasgspypeiswslpdgtminnamoaddsghrtrrytlfnngtlyfnkyg human_5+3_corrected ** MAEEGDYICSAQNTI.GKDEMKVHLTVLTAIPRIRQSYKTIMKLRAGETAVLDCEVTGEPK rat vaeegdytcyaontlgkdemkvhltvitaaprirosnktnkrikaodtavldcevtgdpk human 5+3 corrected PNYFWLLPSNNYISFSNDRFTFHANRTLSIHKVKPLDSGDYYCVAQNPSGDDTKTYKLDI PKIFWLLP9NDMISFSIDRYTFHANGSLTINKVKLLDSGEYVCVARNPSGDDTKMYKLDV human_5+3_corrected vskpplinglyanktvikatairhskkyfdcradgipssovtninpgniflpapyfgsrv vskpplinglytnrtvikatavrhskkhfdcraegtpspevmwimpdnifltapyygsri human 5+3 corrected ±**************** Tyhpngtlemrnirledsadftcyvrseggesvlyvqlevlemlrrptyrnpfnekviaq tvhkngtleirnvrlsdsadficvarneggesvlvvolevlemlrrptfrnpfnektvao human 5+3 corrected *** ************* agrpvalncsvdgnpppeitwilpdgt@fanrphnspylmagngslilykatrnksgkyr rat lgkstalncsvdgnpppeiiwilpngtrpsngpqsyqyliasngsfiiskttredagkyr human_5+3_corrected CAARNKYGYIEKLILLEIGOKPVILTYEPGMVKSVSGEPLSLHCVSDGIPKPNVKWTTPG CAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGESLSLHCVSDGIPKPNIKWTMPS human_5+3_corrected *** GHVIDRPQVDGKYILHENGTLVIKATTAHDQGNYICRAQNSVGQAVISVSVMVVAYPPRI rat human_5+3_corrected GYVVDRPQINGKYLLHDNGTLVIKEATAYDRGNYICKAQNSVGHTLITVPVMIVAYPPRI ±=±=****************** INYLPRNMLRRIGEAMOLHCVALGI PKPKYTWETPRHSLLSKATARKPHRSEMLHPQGTL rat TMRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHSLLSTASKERTHGSEQLHLQGTL human 5+3 corrected VIQNLQTSDSGVYKCRAQNLLGTDYATTYIQVL VIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVI human_5+3_corrected **** ******** *** *****

(human 5+3 corrected: SEQ ID NO:14)

(rat: SEQ ID NO:13)

SRIHVYPNGSLVVGSVTEKDAGDYLCVARNKMGDDLVIMHVRLRLTPAKIEQKQYFKKQV

SWIHVYPNGSLFIGSVTEKDSGVYLCVARNKMGDDLILMHVSLRLKPAKIDHKQYFRKQV

Figure 17

MQKRGREVSCLLISLTAICLVVTPGSRVCPRRCACYVPTEVHCTFRDLTSIPDGPANVER VNLGYNSLTRLTENDFSGLSRLELLMLHSNGIHRVSDKTFSGLQSLQVLKMSYNKVQIIE KDTLYGLRSLTRLHLDHNNIEFINPEAFYGLTLLRLVHLEGNRLTKLHPDTFVSLSYLQIF KTSFIKXLYLYDNFTSLPKEMVSSMPNLESLYLHGNPWTCDCHLKWLSEWMQGNP (SEQ ID NO: 15)

Figure 18

MKVKGRGITCLLVSFAVICLVATPGGKACPRRCACYMPTEVHCTFRYLTSIPDSIPPNVE RINLGYNSLVRLMETDFSGLTKLELLMLHSNGIHTIPDKTFSDLQALQVLKMSYNKVRK LOKDTFYGLRSLTRLHMDHNNIEFINPEVFYGLNFLRLVHLEGNQLTKLHPDTFVSLSYL QIFKISFIKFLYLSDNFLTSLPQEMSYMPDLDSLLYLHGNPWTCDCHLRWLSDWIQPDVI KCKKDRSPSSAQQCPLCMNPRTSKGKPLAMVSAAAFQCAKPTIDSSLKSKSLTILEDSSS AFISPQGFMAPFGSLTLNMTDQSGNEANMVCSIQKPSRTSPIAFTEENDYIVLNTSFSTFL VCNIDYGHIQPVWQILALYSDSPLILERSHLLSETPQLYYKYKQVAPKPEDIFTNIEADLR ADPSWLMQDQISLQLNRTATTFSTLQIQYSSDAQITLPRAEMRPVKHKWTMISRDNNTK LEHTVLVGGTVGLNCPGQGDPTPHVDWLLADGSKVRAPYVSEDGRILIDKSGKLELQM ADSFDTGVYHCISSNYDDADILTYRITVVEPLVEAYQENGIHHTVFIGETLDLPCHSTGIP DASISWVIPGNNVLYQSSRDKKVLNNGTLRILQVTPKDQGYYRCVAANPSGVDFLIFQV SVKMKGQRPLEHDGETEGSGLDESNPIAHLKEPPGAQLRTSALMEAEVGKHTSSTSKRH NYRELTLORRGDSTHRRFRENRRHFPPSARRIDPQHWAALLEKAKKNAMPDKRENTTV SPPPVVTOLPNIPGEEDDSSGMLALHEEFMVPATKALNLPARTVTADSRTISDSPMTNIN YGTEFSPVVNSQILPPEEPTDFKLSTAILTTAMSKNINPTMSSQIQGTTNQHSSTVFPLLLG ATEFQDSDQMGRGREHFQSRPPITVRTMIKDVNVKMLSSTTNKLLLESVNSHQTSVREV SEPRHNHFYSHTTQILSTSTFPSDPHTAAHSQFPIPRNSTVNIPLFRRFGRQRKIGGRGRIIS PYRTPVLRRHRYSIFRSTTRGSSEKSTTAFSATVLNVTCLSCLPRELTTATAALSFPSAAPI TFPKADIARVPSEESTTLVQNPLLLLENKPSVEKTTPTIKYFRTEISQVTPTGAVMTYAPT SIPMEKTHKVNASYPRVSSTNEAKRDSVITSSLSGAITKPPMTIIAITRFSRRKIPWQQNFV NNHNPKGRLRNQHKVSLQKSTAVMLPKTSPALPQRQSSPFHFRRLSTSVMQIPSNTLTT AHHTTTKTHNPGSLPTKKELPFPPLNPMLPSIISKDSSTKSIISTQTAIPATTPTFPASVITYE TQTERSRAQTIQREQEPQKKNRTDPNISPDQSSGFTTPTAMTPPALAFTHSPPENTTGISST ISFHSRTLNLTDVIEELAQASTQTLKSTIASETTLSSKSHQSTTTRKASLDTPIPPFLSSSAT LMPVPISPPFTORAVTDTRGDSHFRLMTNTVVKLHESSRHNLQMPSSQLEPLTSSTSNLL HSTPMPALTTVKSONSKLTPSPWAEQFWHKPYSDIAEKGKKPEVSMLATTGLSEATTLV SDWDGQKNTKKSDFDKKPVQEATTSKLLPFDSLSRYIFEKPRIVGGKAASFTIPANSDAF LPCEAVGNPLPTIHWTRVSGLDLSRGNQNSRVQVLPNGTLSIQRVEIQDRFQYLCSASNL FGTDHLHVTLSVVSYPPRILERRTKEITVHSGSTVELKCRAEGRPSPTVTWILANQTVVSE SSQGSRQAVVTVDGTLVLHNLSIYDRGFYKCVASNPGGQDSLLVKIQVIAAPPVILEQRR OVIVGTWGESLKLPCTAKGTPOPSVYWVLSDGTEVKPLQFTNSKLFLFSNGTLYIRNLAS

SDRFTYECIATSSTGSERRVVMLTMEERVTSPRIEAASQKRTEVNFGDKLLLNCSATGEP KPQIMRLPSKAVVDQGSWIHYPNGSLFIGVTEKDSGVYLCVARNKMGDDLILMHVSLR LKPAKIDHKQYFRKQVLHGKDFQVDCKASGSPVPEISWSLPDGTMINNAMQADDSGHR TRRYRLFNNGTLYFNKVGVAEEGDYTCYAQNTLGKDEMKVHLTVITAAPRIRQSNKTN KRIKAGDTAAVLDCEVTGDPKPKIFWLLPSNDMISFSIDRYTFHANGSLTINKVKLLDSG EYVCVARNPSGDDTKMYKLDVVSKPPLINGLYTNRTVIKATAVRHSKKHFDCRAEGTP SPEVMWIMPDNIFLTAPYYGSRITVHKNGTLEIRNVRLSADFICVARNEGGESVLVVQLE VLEMLRRPTFRNPRNPFNEKIVAQLGKSTALNCVSVDGNPPPEIIWILPNGTRFSNGPQSY QYLIASNGSFIISKTTREDAGKYRCAARNKVGYIEKLVILEIGQKPVILTYAPGTVKGISGE SLSLHCVSDGIPKPNIKWTMPSGYVVDRPQINGKYILHDNGTLVIKEATAYDRGNYICKA QNSVGHTLITVPVMIVAYPPRITNRPPRSIVTRTGAAFQLHCVALGVPKPEITWEMPDHS LLSTASKERTHGSEQLHLQGTLVIQNPQTSDSGIYKCTAKNPLGSDYAATYIQVI (SEQ ID NO: 16)

Figure 19

Figure 20

Figure 21

Well tim

52/85

Figure 24

Figure 25

53/85

Figure 26

Figure 27

55/85

Figure 28

56/85

Figure 29

57/85

Figure 30

58/85

Figure 31

59/85

Figure 32

60/85

Figure 33

Figure 34

Figure 35

62/85

Figure 36

Figure 37 **x 10 x** 4 pCDNA ROS stable line OCP ROS stable line

Figure 38

Figure 39

64/85

Figure 40

Figure 41

Figure 43

Figure 44

67/85

Figure 45

Figure 47

🕹 (XbaI)

TCTAGAAGTAAAATGATCCTGAGTAGCGATCCTGGGAAAATACGTACTCTAACACACTGC **AATCATCTCTGTGGTTTGCTGGAGCTGAGGTCTGGAAGGCTCGACCTTGGTTAGAAATA** ACCTACCGAATACAGAGCTATGACGTTAGTCTGGAAGGAGCTTTGGAAGAATGACAAGCT GTAGCTGCCCAGAACATACTAGATGCCATATTTCCAAGGCAAGTGTCCACATGCGGACAT CTTAAGAATATGGTTGTCTCTGCAGTGCTAAGGACCTTGTTCGTGCCACACAGGTCTCCAG **GGTTAGTGCTAACTCTGACTGCTTGACTCTTTAATTCTACCTTGATCATTAATGACTAGAA** ATCACTTGGTGATTAGCAACTGGATATGGAATATTACTAATTTGTACCCAAGCCAGGCCAC CTCAGCTTTGGCAGCTCCATTCATTCTGTGGAGCCCAGTCACGTGGGTTTGAATCAACTGT ACTGTTTCTACTTACAAGACGCATTACCTGAGATGAGTCATTTTTCTTCACAAGTCTTTTTA GAAGAGTCAATTAGACATATTCTGATGAAGTAAGCATATAAAGTGAGAGCAGCATGAATG AGCTTATGATACTTGTCACAGAGTAAATCTTCCATAAATATCATCTGCATTTATAAATTAT TTTCATAATCCATCAATTAAAAACCTTTAGAAATTTTGTTAACACAAAGATCCCTAGGCCC AGGAGCACATCTTCAGAACATCTGCCTCAAAACATTTATCCCAAATGCTCATCAAAGGCTC **ACTCACATGTGCTTCAACCACAGGGATTAAACAGTCATTTTAGTCACATTTCTCAAACGGT** GGAAGCCTGCTAGAGGAACAGGATGTATCAGGATAACATCCAACCTTACAAAAGGATGTC ATAACCCTCACCACAACAACAACAACGACAACAACCCATAAAAATTATCACGGCAAAT GAACTAAGCCATATGCAGAAAAAGTATTATATGTTCTCATTGTGGGGTGTTTTTCCTTAAT AGTCAAATATGCAGAATATAGACAAAGATGGTTTATGCAAGTGGGGATGGCGAAGGATA CTTGTAGATTAGAGGACACAAAGCAACAACTACAGAGTGAAGTAATCCAGAGACTTAATG TATAATATGAGGACTGTATTTAATAATTCTATTTAAGATACACAGCAAACGAGTGTATCTT TAGCTGATAATITCATATTGTACACCTCAAACATAGATAACCAACAAAGAGGAAGAGGAT AGGTGCCTCTCCCAGGGCGGAAGAGTACATTCGAAAGTCAGACACCATTGTGTAGATGTA CCACATGOAGGAGCTAGAGAAAGTAGCCAAGGAGCTAAAGGGATCTGCAACCCTATAGG AAAAGATGGCCTAATCGGCCATCACTGGAAAGAGAGGCCCATTGGACTTGCAAACTTTAT GGGGTGGGTGGATATGGGGGACTTTTGGTATAGCATTGGAAATGTAAATGAGTTAAATAC TTCACTGCTATCTCAACTTGCAAACAGAAGGGGAGTCACAAACCCAGGACAAACCACAGT GATTGAAGCGTCTTTGAATGTTATTGCTGTTGTTGTTACCACCATCATTAGCATATATTCAT CTATTTTTATGTCTAGGTTCCCCCTCCCCCTGTTAGGAGATGGGAGAGGTCACGAAAGGAA AGAATTTGTAGCCCCTGAGCCAGCCCGGGCCACAGAGCCTGCCACCAGACAGGAAAAGCC CAGGGCTTACCAGCACAGGAGGAGCAAACTCGCAGGCGAGCCTGGGTTGGCGCTGGTGGT CCCGGGTCGATGGCCCGCCCATTCCCAGAAGCCGAGGCTATAGCTGCGTCACCTGCCCCG CCCTCCTCCCGAGTGAAGACCCCTAGAGGCTGAGCAGACCCCAAAGGCGGTGCAATTCCA TTGGCCCAAGGCAGAGGTGAGCGGCTGCTAATCCCCTCGGGAAGTGAAGGGACCCAGAG

▼ (BamHI)TTAATTGTCCCGATAACATTATTATGATCTCTAATGACAG<u>GGATCC</u>TGCTTTTCATTGGGA AATGAGAAGCTATGAAGATATGTTTACAATAATAAGCCCATTTAGTGATAAAGTCCAATG GGAAGCTAGCACACACTGGTTTATAAAGAGAACAGTTTCCTGAGTCTATGCAAGTTTACA CTCTAGGGAATAAGAGTTCCTCTTTCTCCAGATTTCACTAGCATTTGTTGTCATCATTTATC TTCTTGATGATGAGCATTATAAGTGGAATAAGATAGGATCCAAAGGAATGTCAATTTGG **ATGCCCTGAACAATCTTTCAGGTCTTTCTTTCAGTTCACTAGTCTATTCATTTATTGGATAA** TTGGGGGATGGTGTTAATTTTTTTGCAGTTCTTATGGAATTCCAAAAAACAAAAACAAAAC <u>AAACAAACAAAAACCTCTGAAACTAGAACTACCAATCCATTACTGGGTATGTAACAAAG</u> **AGAAATCTGCACAGAATTTATTGCTACATTGTTCATTATTCACGACAGCCAAGAATGTGGA** ACCAACTTACGTAGCCGTCAAAATATGAACGGATAAAGAAAATGTGGAAATGTGTACAAC AGAGTCCCATGTGGCCATAAAAGAGTGAAATCATGACATATGCAGGAAATGGATGCAACT GGAAATCAATTGGGCTAATCAAAACAAGACAGACTCAAAAAGGAAACACCGTGTAGCTT CTCTGACAAACAGAAGCTAGATTTACACTTGTACGTGCGCATGTGTTTTAGAATTTTATT AGCTAGCTGGGGTGGGTAGGAGAGAAGCAATGAGAGGAGTTAATAAGAACGAAGCATA GGCACACGTTCAAACCAGGGTGAAATCCCAGCACAGAGAAGGGGAAGTAGACACAAAGT TTCGCCACTAACCAAGAAGCCATTTGCAGTTGCTGCTGGGAGGGGCGTTCCAGTTTT **GEOGRAPH OF THE ACTIVITY OF THE PROPERTY OF T** AGCTGGAAACGATCTGGAAGAAGTTGGGGAAAGAGAGAAAATTGTATGGAGCATATTTAA **ACAAACAAACAAACAAACAAAAGGTTCATTTTGCCACAAAAAGGTGTGAATTAAATTAAC** NotI site

(SEQ ID NO:17)

Figure 48

CACAGACCTTCCTCTAACCTCTCTCCCCCATCTTGTTGCTTCATCCCAGACTTCAACAC CAGCAAGCACACTCTGCTAATGCAAGGGCTGCTCCTGTCAGGACAACAAGGAGGCTGAAG GCAGACCCACACGTTTCCAACTGCTCCTGAGAGTCAATCCCCCTAGACTCATCTATAGCAG GAAACCTGCTGTGATCTCCATTTCTTCTCTGACCACATCCCCAAGTTATCACAAGGAGTTT TTCCTCAAACCTTTCCTCTCCAGCAAACCCCTTCAGCTCCTTGGGTACTTTCTCTAGCCCCT TCATTGGGAACCCTGTGCTCCATCCAATGGATGGCTGTGAGCATCCACTTCTGTATAGAAT CTTGGTCAGTGCAGTCTTTTGTATCCTCAAGAACACTGGGTCTGAAAATTTTAACCCAAAG **AACTGTTTTTTGTTATGATTGCTGCAATCTCTTTCAATTCCAATAAAGAGTAAGCATCTCAT** TCCTTTGTCTCCTCCTTTCAGTACCACCCTGCCTTTGCTGCCTTTCTCAAAGAATCAATAAA ACCAAAGTGATATAGATTCATGGCATTCCTCTAACTGCTACATCCACTCCAGTAGTATCTC ACTTGGCAGGTGTAAAAGCCTGGAAGCAGTCACGAGGCAGTTTCACAGAAACTTAGCCTC CTGGAACCTTGGCATTCCCATAGCTAGAATGCCCCAGATTTGTCCCTGAGATATTGTGGTG GGTCTTGCATGCTTTCTTGCAGTATTTTACTGGATAAGAGTTAGAAATCTCAGGGCGAGCT TAGCAAAAGTATACCTAGAATCTTCATGACAGTCAGGTATTGCAAACTACATTGCATATTA GAAGAAAGTTGGTAAATTCTTCTGACAAATGGAGATTCCCTACAGATAACTTAAAAGAAC GCTTTATTCATGATAAGGTCTGCTAGAGCAGAACCCCCTGGTGCTAGCTTTCACAAGGTTC AAAGGTGTAGCATAAATTGTGACTAGAGTGTGAAATCTTTACCTGTCATTAGCTGACTCTA GGCAGAGCTGTTTTATCTTTACTGTAAACATTACCTGGTTCCTGTCAGTCCTTTGAAGGCAT TCCTCTGTTTTGTGACAGATACTTCTATGTACCTCGCCTGCTGTGACACCCTACTCCTTTGT TTTCTGTATTATAAGCCTGGTGTTCCCTTTGTGAAAAATTACATCCAGATACAGCACTC CCTTGTGTCTGTCCTTTTGTCATTTCTGGCCAACTCCATGCCCACCTGCCAGAACCCCTA GTCTTTTCCACAGATTGAGGGAGGCCGACTGAGCCTGGTCCATGGCATCTAACCACTGTCA GCTCACTGTTGGTGACTACCTCAAGGTACAAGCTCCATTACTAATGAAACAAAATTAGAT AAATAAGTTAACCCATCTCTTCCTCGTTTGCTAATATAGCAAATAAACCGAGTTTCTGAGC TGCTGCTGGTGTCTCCATCAGAGGGCAGAGCCAGTCTGATCCTAGCTTTCCTGTATGTG TGTCCATTGTTCTTCAGTTCCTGTTGCCCCATTAGGAAATCCTAAGCCATGAAAGCCATG AATCTGGGAATGACTTTTCTAAGAAATGCCACGTGAACCTTGCGTTTCAACGTTTTGCCTG TAAACAAGATATATGGTGCGCAGTTTATAATCATAATAAGCTTTGAAATAATATATAACTC CATTCTCATTCTGCTTCCACGCTGAGCATCCTGTTTCCCCAGGGACCACAAGAGCATTTGA AAAGTAGTGATTTATGACCTGCTTTGTTCTGTTACTATAAAAGCTTCATGAAAGGGCAGCC TTTGTCTCCAGAATAAATGAGTTTATCAACTTCGAGGAAAAAGTTGTGTGTTTGTATAGCA CGCCCGTGGAGTCCCACCATTCTACTTCCTGTAATCTGTATATGGTAGAAAAAGTTAATTT ATGTGATTCTTCCAACTCCAAATATTTCAAATCTTTTAGCCCCTCAGCCTGGGATTTCTTTG ACTAAGTCTATTGATTTGGAAGATCTCAGTGGTTAGGATTTGCAGTCATGATGTTCATACG TCAGGCTAAGCTGAAAAATATGACAAATGAAATGTCAAATGTCATGTGCCTGGGAATGTG AGTGTTAGGGGGTTTTAAAGAAACAAATACCTACTCTAAATAGTTAATAAGTCCCATGGTT CTATTCTAGTTTTGAATAATGTTCCCTAGTATACAGCAATTTAATTTGAAATGAATAGCTTC TTATCTTGACCAATCTCAGTGACTTCATCCGTCCCAAGTCATGTTTTCATATTCATAAGGAT AGGTCTCATTCAACCACATGTTTATCATTTGGGATCTGCATTTTTCTGATGCAAAATGATTT ATTCTTCCAGAGCACTGGAATTGGGTTGAATCATCTTATAACGGCCAAAACTAAATGCTTC TGTGCTAAACAGAGTTACAAGACCTTTTTATGTGGATGGCAGCATTTTAGTCATCCTTA TGACAGAATGTCAGAGTGGAGCTCCCACTGGGGGAGGGGCTGGTCCTTGGCAGGATTCTC ACTTTTGACTCTTGAACATGAGCTTTTAAAGTACGTTTGGCTGTTCAGACCTTGACTTTGAG GTGAAGGAAAGCTCGCCAACTCCTTTTTATATGTAACACAATATATCAAGATCTAATGTGA GACAGTATGCCAGTCCCAAGATCTGTCAATATGACTGAAGACACATTGCGATGTTATCACT AAGGCAGGAGAAGGCAAGCTACAGTGAAGCCCAGTTCACTATAAAGCTTTATGAGAAATT AGATAAGAAGGGTTTCTAATTTTTAAATTTTTTTTATTAGATATTTTCTTCATTTACATTTC CCATTTCTTGGCCCTGGTTACTTGTGATAGTGGTCATATGATCCACCAAGCTTTACATGCTC ACTATCTGGTCTATTGCAAGAATGGCTGCCGAGCTGATGCAGTCAGATACAGACACCTAC AGCCAAACAGTGGAAGGAACTTGGGGACTCTTATGGAAGAAAAGGAGGAAGGGTTATGG

GCCCCGGATGGGGAAAGGAACTCCACAGGAAGACCAACATACTTGGTCAACTAACCTGG ACCCTTGGGGCTCTCAGAGTCTGAACCACCAACCATAGAACATTCATGGGCTGTACCCAG GCCTCTCCACTCATATGTAACAGATATGTGGCTTGGCCTTCATCTGGGTCCTGAACAACTA GATGGGGGTTAGGGGGATGGGGGTTATCTCAAAAGCTGTTGCCTGTATGTGGGATA **GTAAAGACTTGAAGTTCTGAGGTGTCGGTGGAGGGTATACTCAGGGAGGCCCTCACCTGC** TAGGAAGAGAGAGAGGGGGAAGACTTGGGGGAGGGGGGAGTGAGCAGGTTGGTAAA TACTCTAAAACCATTGCATCCCCCCCCCCAATCATTCAGTGACTACGAATTAAAATCATT GATACTAACAATAGATGTAGGAAACTATTGTTAACTTCTTTGTGACCACGAGTGGTATTTG TAGCTTAATGATGTTCAGTGAATTAAAAATAACAATGAAGAATAAAGACAACTGTATTTT AAGGATTCTTCGTATATATTTAAAAATCTAAGGTGGTCACCTGGAAGAATGTCTTCAGTT TTTCTATATATGTTTACTCTATCGTATGTTAATTAATTATATGCAATAATTCATAAAATCTA CAACATAGTATGTAACTTATAAGAAAGTAAAACATTCATGAAATTGTGAAGGTTACTTTTC CTTACCCTCAGAAACACTGGGTTTGAATAATTCTTATTTTGGTATCAGTGAAGAATTTGAA AGAATGTAATAACCTACTAAGGCAAACATAGAAGTTGAAATTAAAAAGAGTAGACAGGA GAAGTAATAAGGCAAATAATGAATATTTGCTTTAAATAGTTCTTAATGTATCATCTAACTA **GGGTGTGATTCTCCAGACTTGACTCCAAAATATCCAAAATGACTCTAACCACAGTCA** TTGAAACAATGTGTTGAAAATAATAAACATTTCCTACTTGAAAATTCAGATTTCTCCTACT TTGCTTTTATTGCTGTGATAAGCACCATGACCAAAGCAGCTTAT

(SEQ ID NO:18)

72/85

Figure 49

Figure 50

TTTGGAACCAACCCAGATGCCCCTCAACAGAGAAATGGGCCAGAAAATGTGGTCCA TTTATCCAATGGAATACTACTCAACTTATTAAAAAACAACGACTTTCATAAAATTTTTA GGCAAATGNATGGTCTGNAGGATCTTGAGTGAGGTAACCCAATCACAAAAGAACAC TCATGGTATGCACTCACTGATAAGTGGCTATTTGTCTATGGAGTGATTTAAAAGGGA AGAAGACACATAGCTTTTTGTGTGTATAATATTAAGATGGAAATTTGCCAGTGCTGT TTGGCTTATGAGTGAATCTTGTTTCAGTGGATTACCGGAAGAAAATAATAAGTGAAC TGTAGGAAGAAGTAGTTAATCAAGGTGACAAAGTATCCTGACACATTGGGAAAAGA CCACAGTCCAGGAAACTGAGTCTTAAGGATTCATATTAACTCCAGTTCCCCATGTGC AGCTCTGAGACTTTGGCAGATCAGACACTTAACTTCACCAGCTTCCTACACAGAGCA GTTACTATCCTTGCCTTCACACATGGAGTGTGCCATTAAGTGCCTGAACATGAGTCT GACTTGTTAATAATCTTTAAAATCCAATTGTGTGTAAAGTATGTGACCAAAGAGCAT GGTCATGCTATTAACCTTTGATGTTCTATGGACTCTTAATTTTATGGTAGAAATGTCA ACAAGCTTGTGGAGGCTGGAAGATACAAGGCTTAAGAGGATGGCCTTTCAGTTTTG AAAGTAATTCAGTATGTGTTCTGGCATCCCTTTTCCTAAAGCAATTTAACCCCCCAA GTAGGCATAATTTTAATGCTTACTTCATCAGAATATATCTAATTGACTCTTCTAAAAA AGAAACTGAGCTAGAATAGGTATAAAATATGTGCTGGCTTTCTAATAGGTCTTATAG GTTATATAAGAGGTGGGAAAGGAATATTTGAAACATCTAGAAGTAAAATGATCCTG AGTAGCGATCCTGGGAAAATACGTACTCTAACACACTGCAATCATCTCTCTGTGGTT TGCTGGAGCTGAGGTCTGGAAGGCTCGACCTTGGTTAGAAATAACCTACCGAATAC AGAGCTATGACGTTAGTCTGGAAGGAGCTTTGGAAGAATGACAAGCTGTAGCTGCC CAGAACATACTAGATGCCATATTTCCAAGGCAAGTGTCCACATGCGGACATCTTAAG AATATGGTTGTCTCTGCAGTGCTAAGGACCTTGTTCGTGCCACACAGGTCTCCAGGG TTAGTGCTAACTCTGACTGCTTGACTCTTTAATTCTCCCTTGATCATTAATGACTAGA AATCACTTGGTGATTAGCAACTGGATATGGAATATTACTTAATTTGTACCCAAGCCA GGCCACCTCAGCTTTGGCAGCTCCATTCATTCTGTGGAGCCCAGTCACGTGGGTTTG AATCAACTGTACTGTTTCTACTTACAAGACGCATTACCTGAGATGAGTCATTTTTCTT CACAAGTCTTTTTAGAAGAGTCAATTAGACATATTCTGATGAAGTAAGCATATAAAG

TGAGAGCAGCATGAATGTGTTCCATGTATGCTCATGGATGCTATTATAATGTGGAAA TAAACTGACTTTAAAAAAAAAAGCTTATGATACTTGTCACAGAGTAAATCTTCCATA AATATCATCTGCATTTATAAATTATTTTCATAATCCATCAATTAAAAACCTTTAGAAA TTTTGTTAACACAAAGATCCCTAGGCCCCTGCCCTAGGATGGTCTGTATGGTGGGCC TGAGAGATGGAGCTTAAGAACTTACTTGCTCCAGGAGCACATCTTCAGAACATCTGC AGGGATTAAACAGTCATTTTAGTCACATTTCTCAAACGGTGGAAGCCTGCTAGAGGA ACAGGATGTATCAGGATAACATCCAACCTTACAAAAGGATGTCATAACCCTCACCA CAACAACAACAACGACAACAAACCCATAAAAATTATCACGGCAAATGAACTAAGC CATATGCAGAAAAGTATTATATGTTCTCATTGTGGGGTGTTTTTCCTTAATAGTCAA ATATGCAGAATATAGACAAAGATGGTTTATGCAAGTGGGGATGGCGAAGGATACTT GTAGATTAGAGGACAAAAGCAACAACTACAGAGTGAAGTAATCCAGAGACTTAAT GTATAATATGAGGACTGTATTTAATAATTCTATTTAAGATACACAGCAAACGAGTGT ATCTTCATGTAGCTGATAATTTCATATTGTACACCTCAAACATAGATAACCAACAA GAGGAAGAGATAGGTGCCTCTCCCAGGGCGGAAGAGTACATTCGAAAGTCAGACA CCATTGTGTAGATGTACCACATGGAGGAGCTAGAGAAAGTAGCCAAGGAGCTAAAG GGATCTGCAACCCTATAGGTGGAACAACATTATGAGCTAACCAGTACCCCGGAGCT CTTGACTCTAGCTGCATATATATCAAAAGATGGCCTAATCGGCCATCACTGGAAAGA GAGGCCATTGGACTTGCAAACTTTATATGCCCCAGTACAGGGGAATACCAGGGCCA AAAAGGGGGAGTGGGCAGGGGAGTGGGGTGGGTGGATATGGGGGACTTTT GGTATAGCATTGGAAATGTAAATGAGTTAAATACCTAATAAAAAAATGGAAAAAAA AAAAAAAAAAAAAAAGGAAGGTCAGACACCTCACTTCACTGCTATCTCAACTTG CAAACAGAAGGGGAGTCACAAACCCAGGACAAACCACAGTGATTGAAGCGTCTTTG AATGTTATTGCTGTTGTTACCACCATCATTAGCATATATTCATTGTGAAAACTTA CGGGGTCTATGACATGTTTTTTTTTTTCAAGTATATCACATGCTGTCAGCATATTTGGC ACACACACACACACACACACACACACACACACACCTTTACCTTCTCCTGGGCA TCATCTGCTCACCCACCCAAGCTTAATCCTTTTCCTTCCCTGCAATAGTACCTC TCCTATTTTATGTCTAGGTTCCCCCTCCCCTGTTAGGAGATGGGAGAGGTCACGA AAGAAAGGAATTTGTAGCCCTTGAGCCAGCCCGGGCCACAGAGCCTGCCACCAGAC AGGAAAAGCCCAGGGCTTACCAGCACAGGAGGAGCAAACTCGCAGGCGAGCCTGG GTTGGCGCTGGTGGTCCCGGGTCGATGGCCCGCCCATTCCCAGAAGCCGAGGCTATA GCTGCGTCACCTGCCCCGCCCTCCTCCCGAGTGAAGACCCCTAGAGGCTGAGCAGAC ${\tt CCCAAAGGCGGTGCAATTCCATTGGCCCAAGGCAGAGGTGAGCGGCTGCTAATCCC}$ CTCGGGAAGTGAAGGGACCCAGAGAGTCTGGTAGATGTGGGAGCTGGGGTTCAGGG CGAGACAGAGGGTGGGATGGGCAGAAGGGTCCAGGAAAGGAAAGTACTGGAGGGG AGTTGGGACAAAAGCAGCGACCAAGGGAACATCGCTTCAGTGACTGAAGCCAGGCA AAAGGAGCGGAAGGATTATATGTAGCCTGGGACGCTTTCATAAACACTGATGACG TGTTTGTGCAAAGCAAGCAATTTGAGGAGAAACGCCTGGGACGTCGGAAAGAAGGA

TTGAGGGAGAAGGAAGCATTCCAGCAGCAGCAGCAGCAGCAGCAATCAGATAA AGGAAAGCTTTGGTTAGTTTGGAAATGTATGATACCATTAAAATAACAGAAGCGCCT CCAGTTCTCTGAAGAGTCAGTCCCCCAGCTAGTGAAGACTAAGCCTACTAAGCCTTT TGCTCCCGTTGGAAGCAAGAACGTTCCTTCAATCAGGTGAAGGCTCTCCTCAGAAG ATTTCCTGTCTCTGCTTATGTTACAAGAGGATTCAAAAGCAAGACAGAAGAGCTCAG GTATTGCCAACTCTTTTGTTAAATACAGTTTGAGGCTTAAGTGTACGGGAACTCATG TGGTATTCATTTACGGCTCTCTTCTCTTATAACTAACTCTTAAGGTGCATATAGTCTC TTCTGTTTCCCAGCTACCTTGTACCATCTTTGTTTATCTAATAATAGCAAGCTCATCT GCTTTTTAATCACGCAGAGAGTATTCAAAAATATTCAGTGATGTAACAGTGACA CAGCTCCAGGTTGGGAGGGATCACTGAGCCTTCGCCACGTGCGGGTTAAAGATATTT TCTAACAAGAGAAGCAGAATTCTTCCTTGGCCATGCTCCCCATCACTGTGTCAGTAA GCAGAGGGGTGTTTCCAAGCAGAGAAAGAGCAGACAGTGTTATGCCTGCAAAGTCA GAGACTCAGCCCTCCCAGCTGGTCAGTTTACTGTCCTCCCGGTCATTAGTTGGCTCTG GACCTTTTTTCTAGTGGGTTATTACAGCTGTAAAAGTATTTTGGAAGGTTAAGCCA AATAAATAAACACATATTAAATACAATGTTACAAAAATTGATCATAAAAGA AAAGTTTTCTAAATTGCACATGTACTATTTTTATATTTATAAAAATATTTTTAAAAATG TATATAAAAGTGTAAAAGGCTCTTGGTCAAACAAGAGAGTTAAATTTACAAACTTTA ATTGTCCCGATAACATTATTATGATCTCTAATGACAGGGATCCTGCTTTTCATTGGGA AATGAGAAGCTATGAAGATATGTTTACAATAATAAGCCCATTTAGTGATAAAGTCCA ATGGGAAGCTAGCACACTGGTTTATAAAGAGAACAGTTTCCTGAGTCTATGCAA GTTTACACTCTAGGGAATAAGAGTTCCTCTTTCTCCAGATTTCACTAGCATTTGTTGT CATCATTTATCTTCTTGATGATGAGCATTATAAGTGGAATAAGATAGGATCTCAAAG TATTCATTTATTGGATAATTGGGGGGGATGGTGGTAATTTTTTTGCAGTTCTTATGGAA TTCCAAAAAACAAACAACCAACCAACCAAAAACCTCTGAAACTAGAACTACC AATCCATTACTGGGTATGTAACAAAGAGAAATCTGCACAGAATTTATTGCTACATTG TTCATTATTCACGACAGCCAAGAATGTGGAACCAACTTACGTAGCCGTCAAAATATG AACGGATAAAGAAATGTGGAAATGTGTACAACAGAGTCCCATGTGGCCATAAAAG AGTGAAATCATGACATATGCAGGAAATGGATGCAACTGGAAATCAATTGGGCTAAT CAAAACAAGACAGACTCAAAAAGGAAACACCGTGTAGCTTCTCTGACAAACAGAAG GGGTGGGTAGGAGAAAGCAATGAGAGGAGTTAATAAGAACGAAGCATAGTAAC GCACACGTTCAAACCAGGGTGAAATCCCAGCACAGAGAAGGGGGAAGTAGACACAA

CCAGTTTTCTCCAGTCTGACACTGTGTATAACAACCAGTTGACAATACAAAGTTGGC ATGAAATTGGGTGGGTAGGAAGCTGGAAACGATCTGGAAGAAGTTGGGGAAAGAG GCCACAAAAAGGTGTGAATTAAATTAACCAGTTACGACTCTTAAAGAAAATATTCCC AATTATTCCCAGAGTTGCTATGTATGCTGTGCCTAGGACTTTGCTTGAACTGGCCCTA TAACTCTGGTGTGTGTCTTTTCAGGATGCAGAAGAGAGGCAGGGAAGTCAGCTGCT TGCTGATCTCCCTCACTGCCATCTGCCTGGTGGTCACCCCTGGGAGCAGGGTCTGTC CTCGCCGATGTGCCTATGTGCCCACAGAGGTGCACTGTACATTTCGGGACCTGA CCTCCATCCCAGACGGCATCCCAGCCAATGTGGAACGAGTCAATTTAGGGTGTGTG GACCTTGCCTGATCTCCTTCTCAGAGAGGGACCACTGATTTTCCTGGTACTTTGCCCC CCAAACACCTGTGATTACTTTTAATAGTTTTCTTCTAAAATGGGTTCATACAAACCTT ATATTGTGGAGACAATGAACATTTTATCCCAATAGTCTTTTACTAGAACTTGAAGCC AAATGAAAAAGATACAGTTTCTGTTAACAATCATTATGATACCAAGGAAGAGGAAT TGTCATTGAATATTTTAAAAAAGCATTTCTTTTGCAATTTATAAATACCCATTACAAA ATGGCTTACTTAAAATACTTGCCTTACTAAATCTGACAAATTATGGTGATATTTTGAA GGTTTATGAAAATTTGTTTATGTGTATAAATGCACAAGAAATGGGATATGCCATCAC CTATGTGCCATTAGTGAGCATGTACAGTATGCCAAACACTATTGTTCACGTTTGGAG GAAGTAATGGGGGTGGGGGAGCAACAAGGGTTATAACCGTATACCCAGTGCCTTGG GGGCTGAGCACTTTGCAATGAGCATTTGCTCATTGTGCTGGCAGGTTTTATGATAAC TTGACCCAAGCTAGAGTCACTGGAGAGGAAGGAACTTCAACTGAGAACATGCCTGA AGAAGATCAGATTATAGGCAGGCCTGTGGGGCATTTTCTTAATTAGTGATTCATGGG AACAGGCTGAGCAAGTGTCAAGGAGCAGCTCAGTGAGCAGCCCTAATGATCTC TGCATCAGCTCCTGCCTCCAGGTTCCTACCCTATTTGAGTTCCTGTCCTAGCTCCCTA GCTGTTGGTCATGATGTTTCATCACAGTGATAATAGTCCTCATGAAGATGCTGGTGT TTATAACACCTTTGGACTAAATTCTGTTATCTATAGCTGAGGAAAATGGAGCATAGA AAGTCTCCAGACTACACCAGAGTGTAATCTGGGCCTGAGCTTAGAATCACACCCAC GTGCACTCCACTGCCGGGGCTTCTTAACCGGAACACAGTTGTAAAAGGGAATTTTCT GTTTGTTTCCATTTTGACATGTGGACTTTAATTGACGATTCATCTGAAGCTGAAAATG ATTTTTTTCCAGGTATAACAGCCTCACTAGATTGACAGAAAATGACTTTTCTGGCCT GAGCAGACTGGAGTTACTCATGCTGCACAGCAATGGCATTCACAGAGTCAGTGACA AGACCTTCTCGGGCTTGCAGTCCTTGCAGGTGAGATAGGTAGAGGGTGATGGAGGC TGAGAAGAGAGGTGCAACTGTGGGTTATACCCAAAAGCTGCTGATTCCCGTGGGAG AATGCAATTTTATGAGAAAATTTGAATATTAAGAAAATGCTGGGGAAAATGCTTAC

ACAATTGCGAGGACCTAATTTAGGATCTCCAATAGCCACATAAAAAGCACAGCATG GCGCAGACACCTGCAATTCCTGTCCCTGGAAGCACCTGTTCAGAATCCCAGAGACT CATTGGCCAAACACTCTATTCAATCAATGAAGTCCATATTCAGTGACAAAACTTGAC TCAGAAACTAATGTGGAAAGCATCAGGAAGACAGCCAACATCTGGTCTCTACTCAT AGGGAAGGAAAGGAAAGGAAAAAAGAGATGGGGAGGGAAGGAAAG GAAAGGGGGAGAAAGAAGAAGAAAGGAAAATAAATTTTCAGGGATTATT ACACCTTTAAATTTTATCCATAAAAGGTCATTTCCACCTGTTTGTCTGGAAGTAGAGT GGGATCCCTTATATAAGGGCAGTCTTTAACATAGTAGCATTTTATAAACCATTACAA ATTTTGAGTTTTCTCTACTTTTATCCTCTACCATCTTCAAACTGAAACTACAATTATT CCCACAAATGAAGAAAATGCTGTAAGAGTTTTCACACACCGAAGTGGGAAACTTAA GGATTAGACAAGTCTAACAATGAGAATGGGGAGAACAAAAAGAGACTGCACAGGG AGCCCTTCTCTGCTTATAATCTTGACACTTGAGAAGCTAATTGACGCTGCATGACTA CTCAACTCTTTAAGCAAACAATGCTGTTGTTCATGAAAAGCACAATAAAGTACATAT GTCCCATAATATCATCAAAATTTGCATGCAGCACATAATAGCAATCAAAGCAATAA CACCCACTGTTCACAGAGACTTTAAACATGAAACTGGAACTATGTCTAGTGTTTTGA CTTAGGGTACATAGTATGCTGTGTCTGTATGTACCAATGTTGATTTAGGTCATCAGA CAGCATTTGGAACATGTATCTTCAGGAGGAATCATTCATGTATCCTGCATGAAATTC TCCACCTATGTTTATTCTCTTAGCCAGGTTTTTCTCTGATGGAGAAACATTGGGTTTG AGGTTTTACTCCCAGGTAACATTTAGGGAAAAGCTGTCTATGTTCTCAGTTTGGCTTT TATTTATGAGGGATGTTGGTATTCCAGAAAATTCTCTTTTGAAGAGATTACAATTTA GGTCAAAACAGAAAAATATGTAAAAAGTTATTGTTTTTATTAGTATTTCATGTTCTTT TCTTTTTAAAAATGGTATGCTTAGAACTAATTAAGATTAGATTAGATTAGA AAATAATCAGAGAGGGATTTGATGAATGCTAAAGCATCATGAAAAATTCAAAATTT TTTGCTTCTAATTCAGAATCAATTAAATTCATATTACTATAAAAGACAGCACGCCAG ATGTGTGCCAGCTGAGGAGTGGATAAACTGTGTAACGTGAGTGCTATGTAGAAACA GAAAGGAGTGAAGGTTGATGTGCGCTGCAACATCTTGAAAACATTCGGCTACATG ATGGAAGCCAGGCACAAAAAGCCACATATTGCATGGTTATGTTTATATGAAATGTTT AAAATACATGGATTCTTAGCAAACAGAGTAAGATGTTACTTAGGGTCAGGAAAAGA TTAAAAAAAAAAAACTATTGATGTGGAATGATCTTAATTTGGGGAAAAGACAATT TCCTAAGACGAAATAGTTGAGGTAGATATAGTTATATCCCTGTGGATATTGTAATAA ACCAGCATGCTGTGCTCTGAGAAGGGCCTAATGAAGGGGCAGGAGGAAGTGAAATG ATGTTAATATTGACATAAAGGAAGGAATTGTTTAGGGAAGGATCAAAACCAACA GGAGTGAGGGAGACAATAGGAACCAATGAGAGGCAAAGTTCATGGTCAATGTGTGT AAACAAAACATTTTTGCACAAGAATTATTTATTATTCAATAAAGATGTTTAAATGGG GGAAGTTGAAGTTCATTGATAGTCTCATAAATCTTAAATGTATTTAAACTGCTTTTTA CGTTTTTATTATTATTACTCTTGCTGTCATTATTATCATCATCATTATCGTCATCAT

CATCACTAATGCTTTTCACCATACACAAATGTAGGCAGAAGAGTGTAATCCACTTAG TGAGGCAATCTTGGAGAGGGAAAGGAAGCGGATGCGGGCAGAGGCACACAGGAG GACAGTGAGAGGGAAATGAACAAGAAAAATGTGGACACATGCACAAAAATTCCA TAGTCCACTACATTACTTTGTATTCTAATATTAAGAAAATAATAAACCCATTTCTGTG CACTTATCACCCAGGCTCAACAGTTATCTTGGCCACAGATCCTGTCTCACTGCATCCT GTCCACCTGAGTCCACTTAGCGTTCTGAATCCAATCCAGGGCATGATGCTTACTCCT ACACAGAACTAAAGATTAAAGAGAGTTTAAAAGTAACCATGACATCTCTCTGTTCCT TTAGCGATAAGTTCTTAATATTTATGGCTGCTTGTGTATGTTCTAATTTCTCTAATATT GTCACATTTAGTTGGCAACTACTTTGTTTGAATTGAGTTGGAGTTAAGGTCCCATAG GATTAATCTCAACATATTTCTATATTTATAAACTTTTCTCTCTTTGTGAAAGTTCCTTT GAGAAACAAATATGCCCATATCTTTCTTTACAGGTCTTAAAAATGAGCTATAACAA AGTCCAAATAATTGAGAAGGATACTTTGTATGGACTCAGGAGCTTGACCCGGTTGCA CCTGGATCACAACACATTGAGTTTATCAACCCCGAGGCGTTTTACGGACTCACCTT TTGTCTCTTTGAGCTATCTCCAGATATTTAAAACCTCCTTCATTAAGNACCTGTACTT GTATGATAACTTCATTGACCTCCCCAAAAGAAATGGTCTCCTCTATGCCAAACC TAGAAAGCCTTTACTTGCATGGAAACCCATGGACCTGTGACTGCCATTTAAAGTGGT ATARKACGTATTTCCTCAATTTCATTTAGAATGATATCCCAAAAGTCCCCCATAACC TCCCCCCACTTCCCTACCTACCCATTCCCATTTTTTGGCCCTGGCATTCCCCTGTACT GGGGCATATAAAGTTTGCGTGTCCAATGGACCTCTCTTTCCAGTGATGGCCAACTAG GCCATCTTTTGATACATATGCAGCTAGAGTCAAGAGCTCTGGGGTACTGGTTAGTTC ATAATGTTGTTGCACCTACAGGGTTGAA (SEQ ID NO:20)

Figure 51

MPKRAHWGALSVVLILLWGHPRVALACPHPCACYVPSEVHCTFRSLASVPAGIARHVE RINLGFNSIQALSETSFAGLTKLELLMIHGNEIPSIPDGALRDLSSLQVFKFSYNKLRVITG QTLQGLSNLMRLHIDHNKIEFIHPQAFNGLTSLRLLHLEGNLLHQLHPSTFSTFTFLDYFR LSTIRHLYLAENMVRTLPASMLRNMPLLENLYLQGNPWTCDCEMRWFLEWDAKSRGIL KCKKDKAYEGGQLCAMCFSPKKLYKHEIHKLKDMTCLKPSIESPLRQNRSRSIEEEQEQ EEDGGSQLILEKFQLPQWSISLNMTDEHGNMVNLVCDIKKPMDVYKIHLNQTDPPDIDIN ATVALDFECPMTRENYEKLWKLIAYYSEVPVKLHRELMLSKDPRVSYQYRQDADEEAL YYTGVRAQILAEPEWVMQPSIDIQLNRRQSTAKKVLLSYYTQYSQTISTKDTRQARGRS WVMIEPSGAVQRDQTVLEGGPCQLSCNVKASESPSIFWVLPDGSILKAPMDDPDSKFSIL SSGWLRIKSMEPSDSGLYQCIAQVRDEMDRMVYRVLVQSPSTQPAEKDTVTIGKNPGES VTLPCNALAIPEAHLSWILPNRRIINDLANTSHVYMLPNGTLSIPKVOVSDSGYYRCVAV NQQGADHFTVGITVTKKGSGLPSKRGRRPGAKALSRVREDIVEDEGGSGMGDEENTSR RLLHPKDQEVFLKTKDDAINGDKKAKKGRRKLKLWKHSEKEPETNVAEGRRVFESRRR INMANKQINPERWADILAKVRGKNLPKGTEVPPLIKTTSPPSLSLEVTPPFPAVSPPSASP VQTVTSAEESSADVPLLGEEEHVLGTISSASMGLEHNHNGVILVEPEVTSTPLEEVVDDL SEKTEEITSTEGDLKGTAAPTLISEPYEPSPTLHTLDTVYEKPTHEETATEGWSAADVGSS PEPTSSEYEPPLDAVSLAESEPMOYFDPDLETKSOPDEDKMKEDTFAHLTPTPTIWVNDS STSQLFEDSTIGEPGVPGQSHLQGLTDNIHLVKSSLSTQDTLLIKKGMKEMSQTLQGGNM LEGDPTHSRSSESEGQESKSITLPDSTLGIMSSMSPVKKPAETTVGTLLDKDTTTVTTTPR QKVAPSSTMSTHPSRRRPNGRRRLRPNKFRHRHKQTPPTTFAPSETFSTQPTQAPDIKISS QVESSLVPTAWVDNTVNTPKQLEMEKNAEPTSKGTPRRKHGKRPNKHRYTPSTVSSRA SGSKPSPSPENKHRNIVTPSSETILLPRTVSLKTEGPYDSLDYMTTTRKIYSSYPKVQETLP VTYKPTSDGKEIKDDVATNVDKHKSDILVTGESITNAIPTSRSLVSTMGEFKEESSPVGFP GTPTWNPSRTAQPGRLQTDIPVTTSGENLTDPPLLKELEDVDFTSEFLSSLTVSTPFHOEE AGSSTTLSSIKVEVASSQAETTTLDQDHLETTVAILLSETRPONHTPTAARMKEPASSSPS TILMSLGQTTTTKPALPSPRISQASRDSKENVFLNYVGNPETEATPVNNEGTQHMSGPNE LSTPSSDRDAFNLSTKLELEKQVFGSRSLPRGPDSQRQDGRVHASHQLTRVPAKPILPTA TVRLPEMSTQSASRYFVTSQSPRHWTNKPEITTYPSGALPENKQFTTPRLSSTTIPLPLHM SKPSIPSKFTDRRTDQFNGYSKVFGNNNIPEARNPVGKPPSPRIPHYSNGRLPFFTNKTLSF PQLGVTRRPQIPTSPAPVMRERKVIPGSYNRIHSHSTFHLDFGPPAPPLLHTPQTTGSPSTN LQNIPMVSSTQSSISFITSSVQSSGSFHQSSSKFFAGGPPASKFWSLGEKPQILTKSPQTVSV TAETDTVFPCEATGKPKPFVTWTKVSTGALMTPNTRIQRFEVLKNGTLVIRKVQVQDRG QYMCTASNLHGLDRMVVLLSVTVQQPQILASHYQDVTVYLGDTIAMECLAKGTPAPQI SWIFPDRRVWQTVSPVESRITLHENRTLSIKEASFSDRGVYKCVASNAAGADSLAIRLHV AALPPVIHQEKLENISLPPGLSIHIHCTAKAAPLPSVRWVLGDGTQIRPSQFLHGNLFVFP NGTLYIRNLAPKDSGRYECVAANLVGSARRTVOLNVORAAANARITGTSPRRTDVRYG GTLKLDCSASGDPWPRILWRLPSKRMIDALFSFDSRIKVFANGTLVVKSVTDK

DAGDYLCVARNKVGDDYVVLKVDVVMKPAKIEHKEENDHKVFYGGDLKVDCVATGL PNPEISWSLPDGSLVNSFMQSDDSGGRTKRYVVFNNGTLYFNEVGMREEGDYTCFAEN QVGKDEMRVRVKVVTAPATIRNKTYLAVQVPYGDVVTVACEAKGEPMPKVTWLSPTN KVIPTSSEKYQIYQDGTLLIQKAQRSDSGNYTCLVRNSAGEDRKTVWIHVNVQPPKING NPNPITTVREIAAGGSRKLIDCKAEGIPTPRVLWAFPEGVVLPAPYYGNRITVHGNGSLDI RSLRKSDSVQLVCMARNEGGEARLIVQLTVLEPMEKPIFHDPISEKITAMAGHTISLNCS AAGTPTPSLVWVLPNGTDLQSGQQLQRFYHKADGMLHISGLSSVDAGAYRCVARNAA GHTERLVSLKVGLKPEANKQYHNLVSIINGETLKLPCTPPGAGQGRFSWTLPNGMHLEG PQTLGRVSLLDNGTLTVREASVFDRGTYVCRMETEYGPSVTSIPVIVIAYPPRITSEPTPVI YTRPGNTVKLNCMAMGIPKADITWELPDKSHLKAGVQARLYGNRFLHPQGSLTIQHAT QRDAGFYKCMAKNILGSDSKTTYIHVF (SEQ ID NO: 21)

Figure 52

ATGCCCAAGC GCGCGCACTG GGGGGCCCTC TCCGTGGTGC TGATCCTGCT TTGGGGCCAT CCGCGAGTGG CGCTGGCCTG CCCGCATCCT TGTGCCTGCT ACGTCCCCAG CGAGGTCCAC TGCACGTTCC GATCCCTGGC TTCCGTGCCC GCTGGCATTG CTAGACACGT GGAAAGAATC AATTTGGGGT TTAATAGCAT ACAGGCCCTG TCAGAAACCT CATTTGCAGG ACTGACCAAG TTGGAGCTAC TTATGATTCA CGGCAATGAG ATCCCAAGCA TCCCCGATGG AGCTTTAAGA GACCTCAGCT CTCTTCAGGT TTTCAAGTTC AGCTACAACA AGCTGAGAGT GATCACAGGA CAGACCCTCC AGGGTCTCTC TAACTTAATG AGGCTGCACA TTGACCACAA CAAGATCGAG TTTATCCACC CTCAAGCTTT CAACGGCTTA ACGTCTCTGA GGCTACTCCA TTTGGAAGGA AATCTCCTCC ACCAGCTGCA CCCCAGCACC TTCTCCACGT TCACATTTTT GGATTATTTC AGACTCTCCA CCATAAGGCA CCTCTACTTA GCAGAGAACA TGGTTAGAAC TCTTCCTGCC AGCATGCTTC GGAACATGCC GCTTCTGGAG AATCTTTACT TGCAGGGAAA TCCGTGGACC TGCGATTGTG AGATGAGATG GTTTTTGGAA TGGGATGCAA AATCCAGAGG AATTCTGAAG TGTAAAAAGG ACAAAGCTTA TGAAGGCGGT CAGTTGTGTG CAATGTGCTT CAGTCCAAAG AAGTTGTACA AACATGAGAT ACACAAGCTG AAGGACATGA CTTGTCTGAA GCCTTCAATA GAGTCCCCTC TGAGACAGAA CAGGAGCAGG AGTATTGAGG AGGAGCAAGA ACAGGAAGAG GATGGTGGCA GCCAGCTCAT CCTGGAGAAA TTCCAACTGC CCCAGTGGAG CATCTCTTTG AATATGACCG ACGAGCACGG GAACATGGTG AACTTGGTCT GTGACATCAA GAAACCAATG GATGTGTACA AGATTCACTT GAACCAAACG GATCCTCCAG ATATTGACAT AAATGCAACA GTTGCCTTGG ACTTTGAGTG TCCAATGACC CGAGAAAACT ATGAAAAGCT ATGGAAATTG ATAGCATACT ACAGTGAAGT TCCCGTGAAG CTACACAGAG AGCTCATGCT CAGCAAAGAC CCCAGAGTCA GCTACCAGTA CAGGCAGGAT GCTGATGAGG AAGCTCTTTA CTACACAGGT GTGAGAGCCC AGATTCTTGC AGAACCAGAA TGGGTCATGC AGCCATCCAT AGATATCCAG CTGAACCGAC GTCAGAGTAC GGCCAAGAAG GTGCTACTTT CCTACTACAC CCAGTATTCT CAAACAATAT CCACCAAAGA TACAAGGCAG GCTCGGGGCA GAAGCTGGGT AATGATTGAG CCTAGTGGAG CTGTGCAAAG AGATCAGACT GTCCTGGAAG GGGGTCCATG CCAGTTGAGC TGCAACGTGA AAGCTTCTGA GAGTCCATCT ATCTTCTGGG TGCTTCCAGA TGGCTCCATC CTGAAAGCGC CCATGGATGA CCCAGACAGC AAGTTCTCCA. TTCTCAGCAG TGGCTGGCTG AGGATCAAGT CCATGGAGCC ATCTGACTCA GGCTTGTACC AGTGCATTGC TCAAGTGAGG GATGAAATGG ACCGCATGGT ATATAGGGTA CTTGTGCAGT CTCCCTCCAC TCAGCCAGCC GAGAAAGACA CAGTGACAAT TGGCAAGAAC CCAGGGGAGT CGGTGACATT GCCTTGCAAT GCTTTAGCAA TACCCGAAGC CCACCTTAGC TGGATTCTTC CAAACAGAAG GATAATTAAT GATTTGGCTA ACACATCACA TGTATACATG TTGCCAAATG GAACTCTTTC CATCCCAAAG GTCCAAGTCA GTGATAGTGG

TTACTACAGA TGTGTGGCTG TCAACCAGCA AGGGGCAGAC CATTTTACGG TGGGAATCAC AGTGACCAAG AAAGGGTCTG GCTTGCCATC CAAAAGAGGC AGACGCCCAG GTGCAAAGGC TCTTTCCAGA GTCAGAGAAG ACATCGTGGA GGATGAAGGG GGCTCGGGCA TGGGAGATGA AGAGAACACT TCAAGGAGAC TTCTGCATCC AAAGGACCAA GAGGTGTTCC TCAAAACAAA GGATGATGCC ATCAATGGAG ACAAGAAAGC CAAGAAAGGG AGAAGAAAGC TGAAACTCTG GAAGCATTCG GAAAAAGAAC CAGAGACCAA TGTTGCAGAA GGTCGCAGAG TGTTTGAATC TAGACGAAGG ATAAACATGG CAAACAAACA GATTAATCCG GAGCGCTGGG CTGATATTTT AGCCAAAGTC CGTGGGAAAA ATCTCCCTAA GGGCACAGAA GTACCCCCGT TGATTAAAAC CACAAGTCCT CCATCCTTGA GCCTAGAAGT CACACCACCT TTTCCTGCTG TTTCTCCCCC CTCAGCATCT CCTGTGCAGA CAGTAACCAG TGCTGAAGAA TCCTCAGCAG ATGTACCTCT ACTTGGTGAA GAAGAGCACG TTTTGGGTAC CATTTCCTCA GCCAGCATGG GGCTAGAACA CAACCACAAT GGAGTTATTC TTGTTGAACC TGAAGTAACA AGCACACCTC TGGAGGAAGT TGTTGATGAC CTTTCTGAGA AGACTGAGGA GATAACTTCC ACTGAAGGAG ACCTGAAGGG GACAGCAGCC CCTACACTTA TATCTGAGCC TTATGAACCA TCTCCTACTC TGCACACATT AGACACAGTC TATGAAAAGC CCACCCATGA AGAGACGGCA ACAGAGGGTT GGTCTGCAGC AGATGTTGGA TCGTCACCAG AGCCCACATC CAGTGAGTAT GAGCCTCCAT TGGATGCTGT CTCCTTGGCT GAGTCTGAGC CCATGCAATA CTTTGACCCA GATTTGGAGA CTAAGTCACA ACCAGATGAG GATAAGATGA AAGAAGACAC CTTTGCACAC CTTACTCCAA CCCCCACCAT CTGGGTTAAT GACTCCAGTA CATCACAGTT ATTTGAGGAT TCTACTATAG GGGAACCAGG TGTCCCAGGC CAATCACATC TACAAGGACT GACAGACAAC ATCCACCTTG TGAAAAGTAG TCTAAGCACT CAAGACACCT TACTGATTAA AAAGGGTATG AAAGAGATGT CTCAGACACT ACAGGGAGGA AATATGCTAG AGGGAGACCC CACACACTCC AGAAGTTCTG AGAGTGAGGG CCAAGAGAGC AAATCCATCA CTTTGCCTGA CTCCACACTG GGTATAATGA GCAGTATGTC TCCAGTTAAG AAGCCTGCGG AAACCACAGT TGGTACCCTC CTAGACAAAG ACACCACAAC AGTAACAACA ACACCAAGGC AAAAAGTTGC TCCGTCATCC ACCATGAGCA CTCACCCTTC TCGAAGGAGA CCCAACGGGA GAAGGAGATT ACGCCCCAAC AAATTCCGCC ACCGGCACAA GCAAACCCCA CCCACAACTT TTGCCCCATC AGAGACTTTT TCTACTCAAC CAACTCAAGC ACCTGACATT AAGATTTCAA GTCAAGTGGA GAGTTCTCTG GTTCCTACAG CTTGGGTGGA TAACACAGTT AATACCCCCA AACAGTTGGA AATGGAGAAG AATGCAGAAC CCACATCCAA GGGAACACCA CGGAGAAAAC ACGGGAAGAG GCCAAACAAA CATCGATATA CCCCTTCTAC AGTGAGCTCA AGAGCGTCCG GATCCAAGCC CAGCCCTTCT CCAGAAAATA AACATAGAAA CATTGTTACT CCCAGTTCAG AAACTATACT TTTGCCTAGA ACTGTTTCTC TGAAAACTGA GGGCCCTTAT GATTCCTTAG ATTACATGAC AACCACCAGA AAAATATATT CATCTTACCC TAAAGTCCAA GAGACACTTC CAGTCACATA

TAAACCCACA TCAGATGGAA AAGAAATTAA GGATGATGTT GCCACAAATG TTGACAAACA TAAAAGTGAC ATTTTAGTCA CTGGTGAATC AATTACTAAT GCCATACCAA CTTCTCGCTC CTTGGTCTCC ACTATGGGAG AATTTAAGGA AGAATCCTCT CCTGTAGGCT TTCCAGGAAC TCCAACCTGG AATCCCTCAA GGACGCCCA GCCTGGGAGG CTACAGACAG ACATACCTGT TACCACTTCT GGGGAAAATC TTACAGACCC TCCCCTTCTT AAAGAGCTTG AGGATGTGGA TTTCACTTCC GAGTTTTTGT CCTCTTTGAC AGTCTCCACA CCATTTCACC AGGAAGAAGC TGGTTCTTCC ACAACTCTCT CAAGCATAAA AGTGGAGGTG GCTTCAAGTC AGGCAGAAAC CACCACCCTT GATCAAGATC ATCTTGAAAC CACTGTGGCT ATTCTCCTTT CTGAAACTAG ACCACAGAAT CACACCCCTA CTGCTGCCCG GATGAAGGAG CCAGCATCCT CGTCCCCATC CACAATTCTC ATGTCTTTGG GACAAACCAC CACCACTAAG CCAGCACTTC CCAGTCCAAG AATATCTCAA GCATCTAGAG ATTCCAAGGA AAATGTTTTC TTGAATTATG TGGGGAATCC AGAAACAGAA GCAACCCCAG TCAACAATGA AGGAACACAG CATATGTCAG GGCCAAATGA ATTATCAACA CCCTCTTCCG ACCGGGATGC ATTTAACTTG TCTACAAAGC TGGAATTGGA AAAGCAAGTA TTTGGTAGTA GGAGTCTACC ACGTGGCCCA GATAGCCAAC GCCAGGATGG AAGAGTTCAT GCTTCTCATC AACTAACCAG AGTCCCTGCC AAACCCATCC TACCAACAGC AACAGTGAGG CTACCTGAAA TGTCCACACA AAGCGCTTCC AGATACTTTG TAACTTCCCA GTCACCTCGT CACTGGACCA ACAAACCGGA AATAACTACA TATCCTTCTG GGGCTTTGCC AGAGAACAAA CAGTTTACAA CTCCAAGATT ATCAAGTACA ACAATTCCTC TCCCATTGCA CATGTCCAAA CCCAGCATTC CTAGTAAGTT TACTGACCGA AGAACTGACC AATTCAATGG TTACTCCAAA GTGTTTGGAA ATAACAACAT CCCTGAGGCA AGAAACCCAG TTGGAAAGCC TCCCAGTCCA AGAATTCCTC ATTATTCCAA TGGAAGACTC CCTTTCTTTA CCAACAAGAC TCTTTCTTTT CCACAGTTGG GAGTCACCCG GAGACCCCAG ATACCCACTT CTCCTGCCCC AGTAATGAGA GAGAGAAAAG TTATTCCAGG TTCCTACAAC AGGATACATT CCCATAGCAC CTTCCATCTG GACTTTGGCC CTCCGGCACC TCCGTTGTTG CACACTCCGC AGACCACGGG ATCACCCTCA ACTAACTTAC AGAATATCCC TATGGTCTCT TCCACCCAGA GTTCTATCTC CTTTATAACA TCTTCTGTCC AGTCCTCAGG AAGCTTCCAC CAGAGCAGCT CAAAGTTCTT TGCAGGAGGA CCTCCTGCAT CCAAATTCTG GTCTCTTGGG GAAAAGCCCC AAATCCTCAC CAAGTCCCCA CAGACTGTGT CCGTCACCGC TGAGACAGAC ACTGTGTTCC CCTGTGAGGC AACAGGAAAA CCAAAGCCTT TCGTTACTTG GACAAAGGTT TCCACAGGAG CTCTTATGAC TCCGAATACC AGGATACAAC GGTTTGAGGT TCTCAAGAAC GGTACCTTAG TGATACGGAA GGTTCAAGTA CAAGATCGAG GCCAGTATAT GTGCACCGCC AGCAACCTGC ACGGCCTGGA CAGGATGGTG GTCTTGCTTT CGGTCACCGT GCAGCAACCT CAAATCCTAG CCTCCCACTA CCAGGACGTC ACTGTCTACC TGGGAGACAC CATTGCAATG GAGTGTCTGG CCAAAGGGAC CCCAGCCCCC CAAATTTCCT GGATCTTCCC TGACAGGAGG GTGTGGCAAA CTGTGTCCCC

CGTGGAGAGC CGCATCACCC TGCACGAAAA CCGGACCCTT TCCATCAAGG AGGCGTCCTT CTCAGACAGA GGCGTCTATA AGTGCGTGGC CAGCAATGCA GCCGGGGCGG ACAGCCTGGC CATCCGCCTG CACGTGGCGG CACTGCCCCC CGTTATCCAC CAGGAGAAGC TGGAGAACAT CTCGCTGCCC CCGGGGCTCA GCATTCACAT TCACTGCACT GCCAAGGCTG CGCCCCTGCC CAGCGTGCGC TGGGTGCTCG GGGACGGTAC CCAGATCCGC CCCTCGCAGT TCCTCCACGG GAACTTGTTT GTTTTCCCCA ACGGGACGCT CTACATCCGC AACCTCGCGC CCAAGGACAG CGGCGCTAT GAGTGCGTGG CCGCCAACCT GGTAGGCTCC GCGCGCAGGA CGGTGCAGCT GAACGTGCAG CGTGCAGCAG CCAACGCGCG CATCACGGC ACCTCCCGC GGAGGACGGA CGTCAGGTAC GGAGGAACCC TCAAGCTGGA CTGCAGCGCC TCGGGGGGACC CCTGGCCGCG CATCCTCTGG AGGCTGCCGT CCAAGAGGAT GATCGACGCG CTCTTCAGTT TTGATAGCAG AATCAAGGTG TTTGCCAATG GGACCCTGGT GGTGAAATCA GTGACGGACA AAGATGCCGG AGATTACCTG TGCGTAGCTC GAAATAAGGT TGGTGATGAC TACGTGGTGC TCAAAGTGGA TGTGGTGATG AAACCGGCCA AGATTGAACA CAAGGAGGAG AACGACCACA AAGTCTTCTA CGGGGGTGAC CTGAAAGTGG ACTGTGTGGC CACCGGGCTT CCCAATCCCG AGATCTCCTG GAGCCTCCCA GACGGGAGTC TGGTGAACTC CTTCATGCAG TCGGATGACA GCGGTGGACG CACCAAGCGC TATGTCGTCT TCAACAATGG GACACTCTAC TTTAACGAAG TGGGGATGAG GGAGGAAGGA GACTACACCT GCTTTGCTGA AAATCAGGTC GGGAAGGACG AGATGAGAGT CAGAGTCAAG GTGGTGACAG CGCCCGCCAC CATCCGGAAC AAGACTTACT TGGCGGTTCA GGTGCCCTAT GGAGACGTGG TCACTGTAGC CTGTGAGGCC AAAGGAGAAC CCATGCCCAA GGTGACTTGG TTGTCCCCAA CCAACAAGGT GATCCCCACC TCCTCTGAGA AGTATCAGAT ATACCAAGAT GGCACTCTCC TTATTCAGAA AGCCCAGCGT TCTGACAGCG GCAACTACAC CTGCCTGGTC AGGAACAGCG CGGGAGAGGA TAGGAAGACG GTGTGGATTC ACGTCAACGT CCAGCCACCC AAGATCAACG GTAACCCCAA CCCCATCACC ACCGTGCGGG AGATAGCAGC CGGGGGCAGT CGGAAACTGA TTGACTGCAA AGCTGAAGGC ATCCCCACCC CGAGGGTGTT ATGGGCTTTT CCCGAGGGTG TGGTTCTGCC AGCTCCATAC TATGGAAACC GGATCACTGT CCATGCCAAC GGTTCCCTGG ACATCAGGAG TTTGAGGAAG AGCGACTCCG TCCAGCTGGT ATGCATGGCA CGCAACGAGG GAGGGGAGGC GAGGTTGATC GTGCAGCTCA CTGTCCTGGA GCCCATGGAG AAACCCATCT TCCACGACCC GATCAGCGAG AAGATCACGG CCATGGCGGG CCACACCATC AGCCTCAACT GCTCTGCCGC GGGGACCCCG ACACCCAGCC TGGTGTGGGT CCTTCCCAAT GGCACCGATC TGCAGAGTGG ACAGCAGCTG CAGCGCTTCT ACCACAAGGC TGACGGCATG CTACACATTA GCGGTCTCTC CTCGGTGGAC GCTGGGGCCT ACCGCTGCGT GGCCCGCAAT GCCGCTGGCC ACACGGAGAG GCTGGTCTCC CTGAAGGTGG GACTGAAGCC AGAAGCAAAC AAGCAGTATC ATAACCTGGT CAGCATCATC AATGGTGAGA CCCTGAAGCT CCCCTGCACC CCTCCCGGGG CTGGGCAGGG ACGTTTCTCC TGGACGCTCC CCAATGGCAT GCATCTGGAG

GGCCCCAAA CCCTGGGACG CGTTTCTCTT CTGGACAATG GCACCCTCAC GGTTCGTGAG GCCTCGGTGT TTGACAGGGG TACCTATGTA TGCAGGATGG AGACGGAGTA CGCCCTTCG GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CGAGCCCACC CCGGTCATCT ACACCCGGCC CGGGAACACC GTGAAACTGA ACTGCATGGC TATGGGGATT CCCAAAGCTG ACATCACGTG GGAGTTACCG GATAAGTCGC ATCTGAAGGC AGGGGTTCAG GCTCGTCTGT ATGGAAACAG ATTTCTTCAC CCCCAGGGAT CACTGACCAT CCAGCATGCC ACACAGAGAG ATGCCGGCTT CTACAAGTGC ATGGCAAAAA ACATTCTCGG CAGTGACTCC AAAACAACTT ACATCCACGT CTTCTGAAAT GTGGATTCCA GAATGATTGC TTAGGAACTG ACAACAAAGC GGGGTTTGTA AGGGAAGCCA GGTTGGGGAA TAGGAGCTCT TAAATAATGT GTCACAGTGC ATGGTGGCCT CTGGTGGGTT TCAAGTTGAG GTTGATCTTG ATCTACAATT GTTGGGAAAA GGAAGCAATG CAGACACGAG AAGGAGGCT CAGCCTTGCT GAGACACTTT CTTTTGTGTT TACATCATGC CAGGGGCTTC ATTCAGGGTG TCTGTGCTCT GACTGCAATT TTTCTTCTTT TGCAAATGCC ACTCGACTGC CTTCATAAGC GTCCATAGGA TATCTGAGGA ACATTCATCA AAAATAAGCC ATAGACATGA ACAACACCTC ACTACCCCAT TGAAGACGCA TCACCTAGTT AACCTGCTGC AGTTTTTACA TGATAGACTT TGTTCCAGAT TGACAAGTCA TCTTTCAGTT ATTTCCTCTG TCACTTCAAA ACTCCAGCTT GCCCAATAAG GATTTAGAAC CAGAGTGACT GATATATATA TATATATTTT AATTCAGAGT TACATACATA CAGCTACCAT TTTATATGAA AAAAGAAAAA CATTTCTTCC TGGAACTCAC TTTTTATATA ATGTTTTATA TATATATTTT TTCCTTTCAA ATCAGACGAT GAGACTAGAA GGAGAAATAC TTTCTGTCTT ATTAAAATTA ATAAATTATT GGTCTTTACA AGACTTGGAT ACATTACAGC AGACATGGAA ATATAATTT AAAAAATTTC TCTCCAACCT CCTTCAAATT CAGTCACCAC TGTTATATTA CCTTCTCCAG GAACCCTCCA GTGGGGAAGG CTGCGATATT AGATTTCCTT GTATGCAAAG TTTTTGTTGA AAGCTGTGCT CAGAGGAGGT GAGAGGAGAG GAAGGAGAAA ACTGCATCAT AACTTTACAG AATTGAATCT AGAGTCTTCC CCGAAAAGCC CAGAAACTTC TCTGCAGTAT CTGGCTTGTC CATCTGGTCT AAGGTGGCTG CTTCTTCCCC AGCCATGAGT CAGTTTGTGC CCATGAATAA TACACGACCT GTTATTTCCA TGACTGCTTT ACTGTATTTT TAAGGTCAAT ATACTGTACA TTTGATAATA AAATAATATT CTCCCAAAAA AAAAA

Figure 52 Human OCP: nucleotide sequence of ORF

ATGAAGGTAAAAGGCAGAGGAATCACCTGCTTGCTGGTCTCCTTTGCTGTGATCTGC CTGGTCGCCACCCCTGGGGGCAAGGCCTGTCCTCGCCGCTGTGCCTGTTATATGCCT ACGGAGGTACACTGCACATTTCGGTACCTGACTTCCATCCCAGACAGCATCCCGCCC AATGTGGAACGCATCAATTTAGGATACAACAGCTTGGTTAGATTGATGGAAACAGAT TTTTCTGGCCTGACCAAACTGGAGTTACTCATGCTTCACAGCAATGGCATTCACACA ATCCCTGACAAGACCTTCTCAGATTTGCAGGCCTTGCAGGTCTTAAAAATGAGCTAT AATAAAGTCCGAAAACTTCAGAAAGATACTTTTTTATGGCCTCAGGAGCTTGACACGA TTGCACATGGACCACAACAATATTGAGTTTATAAACCCAGAGGTTTTTTATGGGCTC AACTTTCTCCGCCTGGTGCACTTGGAAGGAAATCAGCTCACTAAGCTCCACCCAGAT ACATTTGTCTCTTTGAGCTACCTCCAGATATTTAAAATCTCTTTCATTAAGTTCCTA TACTTGTCTGATAACTTCCTGACCTCCCTCCCTCAAGAGATGGTCTCCTATATGCCT GACCTAGACAGCCTTTACCTGCATGGAAACCCATGGACCTGTGATTGCCATTTAAAG TGGTTGTCTGACTGGATACAGGAGAAGCCAGATGTAATAAAATGCAAAAAAGATAGA AGTCCCTCTAGTGCTCAGCAGTGTCCACTTTGCATGAACCCTAGGACTTCTAAAGGC AAGCCGTTAGCTATGGTCTCAGCTGCAGCTTTCCAGTGTGCCAAGCCAACCATTGAC TCATCCCTGAAATCAAAGAGCCTGACTATTCTGGAAGACAGTAGTTCTGCTTTCATC TCTCCCCAAGGTTTCATGGCACCCTTTGGCTCCCTCACTTTGAATATGACAGATCAG TCTGGAAATGAAGCTAACATGGTCTGCAGTATTCAAAAGCCCTCAAGGACATCACCC ATTGCATTCACTGAAGAAAATGACTACATCGTGCTAAATACTTCATTTTCAACATTT TTGGTGTGCAACATAGATTACGGTCACATTCAGCCAGTGTGGCAAATTTTGGCTTTG TACAGTGATTCTCCTCTGATACTAGAAAGGAGCCACTTGCTTAGTGAAACACCGCAG CTCTATTACAAATATAAACAGGTGGCTCCTAAGCCTGAAGACATTTTTACCAACATA GAGGCAGATCTCAGAGCAGATCCCTCTTGGTTAATGCAAGACCAAATTTCCTTGCAG CTGAACAGAACTGCCACCACATTCAGTACATTACAGATCCAGTACTCCAGTGATGCT CAAATCACTTTACCAAGAGCAGAGATGAGGCCAGTGAAACACAAATGGACTATGATT TCAAGGGATAACAATACTAAGCTGGAACATACTGTCTTGGTAGGTGGAACCGTTGGC CTGAACTGCCCAGGCCAAGGAGACCCCACCCCACACGTGGATTGGCTTCTAGCTGAT GGAAGTAAAGTGAGAGCCCCTTATGTCAGTGAGGATGGACGGATCCTAATAGACAAA AGTGGAAAATTGGAACTCCAGATGGCTGATAGTTTTGACACAGGCGTATATCACTGT ATAAGCAGCAATTATGATGATGCAGATATTCTCACCTATAGGATAACTGTGGTAGAA CCTTTGGTCGAAGCCTATCAGGAAAATGGGATTCATCACACAGTTTTCATTGGTGAA ACACTTGATCTTCCATGCCATTCTACTGGTATCCCAGATGCCTCTATTAGCTGGGTT ATTCCAGGAAACAATGTGCTCTATCAGTCATCAAGAGACAAGAAAGTTCTAAACAAT GGCACATTAAGAATATTACAGGTCACCCCGAAAGACCAAGGTTATTATCGCTGTGTG GCAGCCAACCCATCAGGGGTTGATTTTTTGATTTTCCAAGTTTCAGTCAAGATGAAA GGACAAAGGCCCTTGGAGCATGATGGAGAAACAGAGGGATCTGGACTTGATGAGTCC AATCCTATTGCTCATCTTAAGGAGCCACCAGGTGCACAACTCCGTACATCTGCTCTG ATGGAGGCTGAGGTTGGAAAACACACCTCAAGCACAAGTAAGAGGCACAACTATCGG GAATTAACACTCCAGCGACGTGGAGATTCAACACATCGACGTTTTAGGGAGAATAGG AGGCATTTCCCTCCCTCTGCTAGGAGAATTGACCCACAACATTGGGCGGCACTGTTG GAGAAAGCTAAAAAGAATGCTATGCCAGACAAGCGAGAAAATACCACAGTGAGCCCA CCCCCAGTGGTCACCCCAACTCCCAAACATACCTGGTGAAGAAGACGATTCCTCAGGC ATGCTCGCTCTACATGAGGAATTTATGGTCCCGGCCACTAAAGCTTTGAACCTTCCA GCAAGGACAGTGACTGCTGACTCCAGAACAATATCTGATAGTCCTATGACAAACATA AATTATGGCACAGAATTCTCTCCTGTTGTGAATTCACAAATACTACCACCTGAAGAA CCCACAGATTTCAAACTGTCTACTGCTATTAAAACTACAGCCATGTCAAAGAATATA AACCCAACCATGTCAAGCCAAATACAAGGCACAACCAATCAACATTCATCCACTGTC TTTCCACTGCTACTTGGAGCAACTGAATTTCAGGACTCTGACCAGATGGGAAGAGGA AGAGAGCATTTCCAAAGTAGACCCCCAATAACAGTAAGGACTATGATCAAAGATGTC AATGTCAAAATGCTTAGTAGCACCACCAACAACTATTATTAGAGTCAGTAAATACC ACAAATAGTCATCAGACATCTGTAAGAGAAGTGAGTGAACCCAGGCACAATCACTTC GCTGCTCATTCTCAGTTTCCGATCCCTAGAAATAGTACAGTTAACATCCCGCTGTTC AGAACTCCAGTTCTGCGACGGCATAGATACAGCATTTTCAGGTCAACAACCAGAGGT TCTTCTGAAAAAGCACTACTGCATTCTCAGCCACAGTGCTCAATGTGACATGTCTG TCCTGTCTTCCCAGGGAGAGGCTCACCACTGCCACAGCAGCATTGTCTTTTCCAAGT GCTGCTCCCATCACCTTCCCCAAAGCTGACATTGCTAGAGTCCCATCAGAAGAGTCT ACAACTCTAGTCCAGAATCCACTATTACTACTTGAGAACAAACCCAGTGTAGAGAAA ACAACACCCACAATAAAATATTTCAGGACTGAAATTTCCCAAGTGACTCCAACTGGT GCAGTCATGACATATGCTCCAACATCCATACCCATGGAAAAAACTCACAAAGTAAAC GCCAGTTACCCACGTGTGTCTAGCACCAATGAAGCTAAAAGAGATTCAGTGATTACA TCGTCACTTTCAGGTGCTATCACCAAGCCACCAATGACTATTATAGCCATTACAAGG TTTTCAAGAAGGAAAATTCCCTGGCAACAGAACTTTGTAAATAACCATAACCCAAAA GGCAGATTAAGGAATCAACATAAAGTTAGTTTACAAAAAAGCACAGCTGTGATGCTT CCTAAAACATCTCCTGCTTTACCACAGAGACAAAGTTCCCCTTTCCATTTCACCACA CTTTCAACAAGTGTGATGCAAATTCCATCTAATACCTTGACTACCGCTCACCACACT ACGACCAAAACACACAATCCTGGAAGTCTTCCAACAAAGAAGGAGCTTCCCTTCCCA CCCCTTAACCCTATGCTTCCTAGTATTATAAGCAAAGACTCAAGTACAAAAAGCATC ATATCAACGCAAACAGCAATACCAGCAACAACTCCTACCTTCCCTGCATCTGTCATC ACTTATGÁAACCCAAACAGAGAGATCTAGAGCACAAACAATACAAAGAGAACAGGAG CCTCAAAAGAAGAACAGGACTGACCCAAACATCTCTCCAGACCAGAGTTCTGGCTTC ACTACACCCACTGCTATGACACCTCCTGCTCTGGCATTCACTCATTCCCCACCAGAA AACACAACTGGGATTTCAAGCACAATCAGTTTTCATTCAAGAACTCTTAATCTGACA GATGTGATTGAAGAACTAGCCCAAGCAAGTACTCAGACTTTGAAGAGCACAATTGCT TCTGAAACAACTTTGTCCAGCAAATCACCACAGAGTACCACAACTAGGAAAGCATCA TTAGACACTCCCATACCACCATTCTTGAGCAGCAGTGCTACTCTAATGCCAGTTCCC ATCTCCCCTCCCTTTACTCAGAGAGCAGTTACTGACACACGTGGCGACTCCCATTTC CGGCTTATGACAAATACAGTGGTCAAGCTGCACGAATCCTCAAGGCACAATCTCCAA ATGCCAAGTTCACAATTGGAACCACTCACTTCATCTACCTCTAATCTGTTACATTCT ACTCCCATGCCAGCACTAACAACAGTTAAATCACAGAATTCCAAATTAACTCCATCT CCCTGGGCAGAATACCAATTTTGGCACAAACCATACTCAGACATTGCTGAAAAAGGC AAAAAGCCAGAAGTAAGCATGTTGGCTACTACAGGCCTGTCCGAGGCCACCACTCTT GTTTCAGATTGGGATGGACAGAAGAACACAAAGAAGAGTGACTTTGATAAGAAACCA GTTCAAGAAGCAACACTTCCAAACTCCTTCCCTTTGACTCTTTGTCTAGGTATATA TTTGAAAAGCCCAGGATAGTTGGAGGAAAAGCTGCAAGTTTTACTATTCCAGCTAAC ACCAGAGTTTCAGGACTTGATTTATCTAGAGGAAACCAGAATAGCAGGGTCCAGGTT CTCCCCAATGGTACCCTGTCCATCCAGAGGGTGGAAATTCAGGACCGCGGACAGTAC TTGTGTTCCGCATCCAATCTGTTTGGCACAGACCACCTTCATGTCACCTTGTCTGTG GTTTCCTATCCTCCCAGGATCCTGGAGAGACGTACCAAAGAGATCACAGTTCATTCC GGAAGCACTGTGGAACTGAAGTGCAGAGCAGAAGGTAGGCCAAGCCCTACAGTTACC GTGGTGACGGTTGACGGAACATTGGTCCTCCACAATCTCAGTATTTATGACCGTGGC TTTTACAAATGTGTGGCCAGCAACCCAGGTGGCCAGGATTCACTGCTGGTTAAAATA CAAGTCATTGCAGCACCACCTGTTATTCTAGAGCAAAGGAGGCAAGTCATTGTAGGC ACTTGGGGTGAAAGTTTAAAACTGCCCTGTACTGCAAAAGGAACTCCTCAGCCCAGC

GTTTACTGGGTCCTCTGATGGCACTGAAGTGAAACCATTACAGTTTACCAATTCC AAGTTGTTCTTATTTTCAAATGGGACTTTGTATATAAGAAACCTAGCCTCTTCAGAC AGGGGCACTTATGAATGCATTGCTACCAGTTCCACTGGTTCGGAGCGAAGAGTAGTA ATGCTTACAATGGAAGAGCGAGTGACCAGCCCCAGGATAGAAGCTGCATCCCAGAAA AGGACTGAAGTGAATTTTGGGGACAAATTACTACTGAACTGCTCAGCCACTGGGGAG CCCAAACCCCAAATAATGTGGAGGTTACCATCCAAGGCTGTGGTCGACCAGTGGAGC TGGATCCACGTCTACCCTAATGGATCCCTGTTTATTGGATCAGTAACAGAAAAAGAC AGTGGTGTCTACTTGTGTGTGGCAAGAAACAAAATGGGGGGATGATCTGATACTGATG CATGTTAGCCTAAGACTGAAACCTGCCAAAATTGACCACAAGCAGTATTTTAGAAAG CAAGTGCTCCATGGGAAAGATTTCCAAGTAGATTGCAAAGCTTCCGGCTCCCCAGTG CCAGAGATATCTTGGAGTTTGCCTGATGGAACCATGATCAACAATGCAATGCAAGCC GATGACAGTGGCCACAGGACTAGGAGATATACCCTTTTCAACAATGGAACTTTATAC TTCAACAAAGTTGGGGTAGCGGAGGAAGGAGATTATACTTGCTATGCCCAGAACACC CTAGGGAAAGATGAAATGAAGGTCCACTTAACAGTTATAACAGCTGCTCCCCGGATA AGGCAGAGTAACAAAACCAACAAGAGAATCAAAGCTGGAGACACAGCTGTCCTTGAC TGTGAGGTCACTGGGGATCCCAAACCAAAAATATTTTGGTTGCTGCCTTCCAATGAC ATGATTTCCTTCTCCATTGATAGGTACACATTTCATGCCAATGGGTCTTTGACCATC AACAAAGTGAAACTGCTCGATTCTGGAGAGTACGTATGTGTAGCCCGAAATCCCAGT GGGGATGACACCAAAATGTACAAACTGGATGTGGTCTCTAAACCTCCATTAATCAAT GGTCTGTATACAAACAGAACTGTTATTAAAGCCACAGCTGTGAGACATTCCAAAAAA CACTTTGACTGCAGAGCTGAAGGGACACCATCTCCTGAAGTCATGTGGATCATGCCA GACAATATTTTCCTCACAGCCCCATACTATGGAAGCAGAATCACAGTCCATAAAAAT GGAACCTTGGAAATTAGGAATGTGAGGCTTTCAGATTCAGCCGACTTTATCTGTGTG GCCCGAAATGAAGGTGGAGAGAGCGTGTTGGTAGTACAGTTAGAAGTACTGGAAATG CTGAGAAGACCGACATTTAGAAATCCATTTAATGAAAAAATAGTTGCCCAGCTGGGA AAGTCCACAGCATTGAATTGCTCTGTTGATGGTAACCCACCACCTGAAATAATCTGG ATTTTACCAAATGGCACACGATTTTCCAATGGACCACAAAGTTATCAGTATCTGATA GCAAGCAATGGTTCTTTTATCATTTCTAAAACAACTCGGGAGGATGCAGGAAAATAT CGCTGTGCAGCTAGGAATAAAGTTGGCTATATTGAGAAATTAGTCATATTAGAAAATT GGCCAGAAGCCAGTTATTCTTACCTATGCACCAGGGACAGTAAAAGGCATCAGTGGA GAATCTCTATCACTGCATTGTGTGTCTGATGGAATCCCTAAGCCAAATATCAAATGG ACTATGCCAAGTGGTTATGTAGTAGACAGGCCTCAAATTAATGGGAAATACATATTG CATGACAATGGCACCTTAGTCATTAAAGAAGCAACAGCTTATGACAGAGGAAACTAT ATCTGTAAGGCTCAAAATAGTGTTGGTCATACACTGATTACTGTTCCAGTAATGATT GTAGCCTACCCTCCCCGAATTACAAATCGTCCACCCAGGAGTATTGTCACCAGGACA GGGGCAGCCTTTCAGCTCCACTGTGTGGCCTTGGGAGTTCCCAAGCCAGAAATCACA TGGGAGATGCCTGACCACTCCCTTCTCTCAACGGCAAGTAAAGAGAGACACATGGA AGTGAGCAGCTTCACTTACAAGGTACCCTAGTCATTCAGAATCCCCAAACCTCCGAT TCTGGGATATACAAATGCACAGCAAAGAACCCACTTGGTAGTGATTATGCAGCAACG TATATTCAAGTAATCTGA

Figure 58 Human OCP: predicted amino acid sequence

MKVKGRGITC	LLVSFAVICL	VATPGGKACP	RRCACYMPTE	VHCTFRYLTS
IPDSIPPNVE	RINLGYNSLV	RLMETDFSGL	TKLELLMLHS	NGIHTIPDKT
FSDLQALQVL	KMSYNKVRKL	QKDTFYGLRS	LTRLHMDHNN	IEFINPEVFY
GLNFLRLVHL	EGNQLTKLHP	DTFVSLSYLQ	IFKISFIKFL	YLSDNFLTSL
PQEMVSYMPD	LDSLYLHGNP	WTCDCHLKWL	SDWIQEKPDV	IKCKKDRSPS
SAQQCPLCMN	PRTSKGKPLA	MVSAAAFQCA	KPTIDSSLKS	KSLTILEDSS
SAFISPQGFM	APFGSLTLNM	TDQSGNEANM	VCSIQKPSRT	SPIAFTEEND
YIVLNTSFST	FLVCNIDYGH	IQPVWQILAL	YSDSPLILER	SHLLSETPQL
YYKYKQVAPK	PEDIFTNIEA	DLRADPSWLM	QDQISLQLNR	TATTFSTLQI
QYSSDAQITL	PRAEMRPVKH	KWTMISRDNN	TKLEHTVLVG	GTVGLNCPGQ
GDPTPHVDWL	LADGSKVRAP	YVSEDGRILI	DKSGKLELQM	ADSFDTGVYH
CISSNYDDAD	ILTYRITVVE	PLVEAYQENG	IHHTVFIGET	LDLPCHSTGI
PDASISWVIP	GNNVLYQSSR	DKKVLNNGTL	RILQVTPKDQ	GYYRCVAANP
SGVDFLIFQV	SVKMKGQRPL	EHDGETEGSG	LDESNPIAHL	KEPPGAQLRT
SALMEAEVGK	HTSSTSKRHN	YRELTLQRRG	DSTHRRFREN	RRHFPPSARR
IDPOHWAALL	EKAKKNAMPD	KRENTTVSPP	PVVTQLPNIP	GEEDDSSGML
ALHEEFMVPA	TKALNLPART	VTADSRTISD	SPMTNINYGT	EFSPVVNSQI
LPPEEPTDFK	LSTAIKTTAM	SKNINPTMSS	QIQGTTNQHS	STVFPLLLGA
TEFQDSDQMG	RGREHFQSRP	PITVRTMIKD	VNVKMLSSTT	NKLLLESVNT
TNSHOTSVRE	VSEPRHNHFY	SHTTQILSTS	TFPSDPHTAA	HSQFPIPRNS
TVNIPLFRRF	GRORKIGGRG	RIISPYRTPV	LRRHRYSIFR	STTRGSSEKS
TTAFSATVLN	VTCLSCLPRE	RLTTATAALS	FPSAAPITFP	KADIARVPSE
ESTTLVQNPL	LLLENKPSVE	KTTPTIKYFR	TEISQVTPTG	AVMTYAPTSI
PMEKTHKVNA	SYPRVSSTNE	AKRDSVITSS	LSGAITKPPM	TIIAITRFSR
RKIPWQQNFV	NNHNPKGRLR	NQHKVSLQKS	TAVMLPKTSP	ALPQRQSSPF
HFTTLSTSVM	QIPSNTLTTA	HHTTTKTHNP	GSLPTKKELP	FPPLNPMLPS
IISKDSSTKS	IISTQTAIPA	TTPTFPASVI	TYETQTERSR	AQTIQREQEP
QKKNRTDPNI	SPDQSSGFTT	PTAMTPPALA	FTHSPPENTT	GISSTISFHS
RTLNLTDVIE	ELAQASTQTL	KSTIASETTL	SSKSHQSTTT	RKASLDTPIP
PFLSSSATLM	PVPISPPFTQ	RAVTDTRGDS	HFRLMTNTVV	KLHESSRHNL
QMPSSQLEPL	TSSTSNLLHS	TPMPALTTVK	SQNSKLTPSP	WAEYQFWHKP
YSDIAEKGKK	PEVSMLATTG	LSEATTLVSD	WDGOKNTKKS	DFDKKPVQEA
TTSKLLPFDS	LSRYIFEKPR	IVGGKAASFT	IPANSDAFLP	CEAVGNPLPT
IHWTRVSGLD	LSRGNQNSRV		QRVEIQDRGQ	YLCSASNLFG
TDHLHVTLSV	VSYPPRILER	RTKEITVHSG	STVELKCRAE	GRPSPTVTWI
LANQTVVSES	SQGSRQAVVT	VDGTLVLHNL	SIYDRGFYKC	VASNPGGQDS
LLVKIQVIAA	PPVILEQRRQ	VIVGTWGESL	KLPCTAKGTP	QPSVYWVLSD
GTEVKPLQFT	NSKLFLFSNG	TLYIRNLASS	DRGTYECIAT	SSTGSERRVV
MLTMEERVTS	PRIEAASQKR	TEVNFGDKLL	LNCSATGEPK	PQIMWRLPSK
AVVDQWSWIH	VYPNGSLFIG	SVTEKDSGVY	LCVARNKMGD	DLILMHVSLR
LKPAKIDHKQ	YFRKOVLHGK	DFQVDCKASG	SPVPEISWSL	PDGTMINNAM
QADDSGHRTR	RYTLFNNGTL	YFNKVGVAEE	GDYTCYAQNT	LGKDEMKVHL
TVITAAPRIR	QSNKTNKRIK		VTGDPKPKIF	WLLPSNDMIS
FSIDRYTFHA	NGSLTINKVK	LLDSGEYVCV		
PLINGLYTNR	TVIKATAVRH	SKKHFDCRAE		MPDNIFLTAP
YYGSRITVHK	NGTLEIRNVR	LSDSADFICV		VVQLEVLEML
RRPTFRNPFN	EKIVAQLGKS	TALNCSVDGN	PPPEIIWILP	NGTRFSNGPQ
SYQYLIASNG	SFIISKTTRE		NKVGYIEKLV	ILEIGQKPVI
PIĞITINƏNG	DETIDUTIUE	DUGILLUCUUL	TATEA OT TRIVITA	THUTOVILL AT

LTYAPGTVKG ISGESLSLHC VSDGIPKPNI KWTMPSGYVV DRPQINGKYI LHDNGTLVIK EATAYDRGNY ICKAQNSVGH TLITVPVMIV AYPPRITNRP PRSIVTRTGA AFQLHCVALG VPKPEITWEM PDHSLLSTAS KERTHGSEQL HLQGTLVIQN PQTSDSGIYK CTAKNPLGSD YAATYIQVI*