Aimes Iowa Housing Price Modeling

General Assembly: DSI-6

By: Dmitriy Pavlov

12/07/18

Overview

- Data Science Problem
- Modeling Procedure
 - Data Cleaning
 - Feature Engineering
 - Modeling
- Findings
- Recommendations

Data Science Problem:

Can we use data to predict housing prices? And if so what are those features and what is their impact?

Modeling Procedure Overview

Data Cleaning

- Cleaning null data
- Removing outliers
- Common sense values test

Feature Engineeing

- Explore and transform numerical features
- Create new features based on data patterns
- Dummy variables from categorical & nominal data
- Polynomial transformation

<u>Modeling</u>

- Model feature selection
- Linear Regression, LASSO, and Ridge
- Model evaluation

Data Cleaning: Goal is to clean our data and make sure we can trust it going forward

		id	pid	ms_subclass	ms_zoning	lot_frontage	lot_area	street	lot_shape	land_contour	utilities	 open_porch_sf	enclosed_porch	3ssn_porch	•
	0	109	533352170	60	RL	NaN	13517	Pave	IR1	Lvl	AllPub	 44	0	0	
	1	544	531379050	60	RL	43.0	11492	Pave	IR1	Lvl	AllPub	 74	0	0	
:	2	153	535304180	20	RL	68.0	7922	Pave	Reg	Lvl	AllPub	 52	0	0	

- Address null data value and possibly drop the features
- Common sense test do our feature values make sense
- Address outliers

Feature Engineering – Created 28 of my own features via transformations, true/false, and setting level thresholds

Check through histograms and scatter plots vs housing prices to create additional features to help normalize the distributions and better separate the data. Going from 75 to 103 total features.

Feature Engineering – Leverage Python libraries' functions to explore more possible features

Modeling – Lasso model was able to eliminate 98.9% of the features, leaving us with only 400

Modeling – We were able to increase model performance when modeling using 'useful' features

Lasso Model a = 0.00198 train r2 = .959 test r2 = .917 c_val = .941

test: +1.5 ppts c_val: +2.7 ppts

Ridge Model **a** = 0.004348 train r2 = .961 test r2 = .912 c_val = .941

test: +1.0 ppts c_val: +2.7 ppts

Modeling – The the errors of our model are normally distributed and there are no patterns throughout the graph

Findings – List of top features with positive influence on the sale price of the house

Feature	Explanation	Occurrences
Gr liv area	Above grade (ground) living area square feet	5
Overall cond	Rates the overall material and finish of the house	3
Lot Area Log	Lot size in square feet – In transformed	3
Year Built	Original construction date	2
Year Remod/add	Remodel date (same as construction date if no remodeling or additions)	2
Functional_Typ	Typical Functionality	2

Findings – List of top features with negative influence on the sale price of the house

Feature	Explanation	Occurrences
Ms Zone C	Commercial zoning classification	3
Garage Cond Fa	Fair garage condition	3
Overall Cond	Rates the overall condition of the home	2
Garage Yr Build	Year garage was built	2