Time Series Graphics Chapter 2

Pramod Duvvuri

4/20/2020

```
## Load all required packages
library("pacman")
p_load("forecast", "fpp2", "GGally") # Equivalent of library("package-name")

## Using autoplot for plotting a time-series data
autoplot(melsyd[, "Economy.Class"]) +
   ggtitle("Economy class passengers: Melbourne-Sydney") +
   xlab("Year") +
   ylab("Thousands")
```

Economy class passengers: Melbourne-Sydney


```
## Plot showing a Trend
autoplot(a10) +
   ggtitle("Antidiabetic drug sales") +
   ylab("$ million") +
   xlab("Year")
```

Antidiabetic drug sales


```
## Seasonal Plot
ggseasonplot(a10, year.labels = TRUE, year.labels.left = TRUE) +
ylab("$ million") +
ggtitle("Seasonal Plot: Antidiabetic Drug Sales")
```

Seasonal Plot: Antidiabetic Drug Sales


```
## Polar Seasonal Plot
ggseasonplot(a10, polar = TRUE) +
ylab("$ million") +
ggtitle("Polar Seasonal Plot: Antidiabetic Drug Sales")
```



```
ggsubseriesplot(a10) +
  ylab("$ million") +
  ggtitle("Seasonal Subseries Plot: Antidiabetic Drug Sales")
```

Seasonal Subseries Plot: Antidiabetic Drug Sales


```
## Scatterplots
autoplot(elecdemand[, c("Demand", "Temperature")], facets = TRUE) +
    xlab("Year: 2014") + ylab("") +
    ggtitle("Half-hourly electricity demand: Victoria, Australia")
```

Half-hourly electricity demand: Victoria, Australia


```
qplot(Temperature, Demand, data = as.data.frame(elecdemand)) +
ylab("Demand (GW)") + xlab("Temperature (Celsius)")
```


GGally::ggpairs(as.data.frame(visnights[, 1:5]))

ACF Plot: Correlogram


```
aelec <- window(elec, start = 1980)
autoplot(aelec) + xlab("Year") + ylab("GWh")</pre>
```


ggAcf(aelec, lag = 48)


```
## White Noise
set.seed(32)
y <- ts(rnorm(50))
autoplot(y) +
   ggtitle("White Noise")</pre>
```


