TD 2 : Probabilité conditionnelle, indépendance et fonctions génératrices Une étoile désigne un exercice important.

Probabilité conditionnelle

- Exercice 1. Faux positifs. Une maladie M affecte une personne sur 1000 dans une population donnée. Un test sanguin permet de détecter cette maladie avec une fiabilité de 99% (lorsque cette maladie est effectivement présente). En revanche, pour un individu sain, la probabilité que le test soit positif est de 0,1% (on dit que 0,1% est le taux de faux positifs). Si un test est positif, quelle est la probabilité que l'individu soit réellement malade?
 - Exercice 2. Une secrétaire donne n appels téléphoniques ($n \ge 1$ est fixé). A chacun de ces appels, la probabilité qu'elle parvienne à joindre son correspondant est p ($p \in]0,1[$ est fixé). On suppose que les résultats de tous ces appels sont indépendants. Après cette première série d'essais, elle tente, le lendemain de rappeler les correspondants qu'elle n'a pas réussi à joindre. Les hypothèses sur ses chances de réussite sont les mêmes. On note X le nombre de personnes jointes dès le premier jour et Y le nombre de personnes jointes l'un ou l'autre jour.
 - 1. Quelle est la loi de X?
 - 2. Pour $h \le k \le n$, que vaut $\mathbb{P}(Y = k | X = h)$?
 - 3. En déduire la loi de Y. Retrouver ce résultat par un argument direct.

Indépendance

Exercice 3. Soit X et Y deux v.a. independantes, de loi de Poisson de paramètres respectifs λ_1 et λ_2 . Calculer la loi de X+Y.

Exercice 4. Soit n un entier, et soient X et Y deux variables aléatoires indépendantes de loi uniforme sur $\{1, \ldots, n\}$:

$$\forall k \in \{1, \dots, n\}, \ \mathbb{P}(X = k) = \mathbb{P}(Y = k) = \frac{1}{n}.$$

Calculer $\mathbb{P}(X=Y)$ et $\mathbb{P}(X\geq Y)$. Déterminer la loi de X-Y.

Exercice 5. Montrer qu'une v.a. X est indépendante d'elle-même si et seulement si elle est p.s. constante : a. en la supposant de carré intégrable et en calculant Var(X), b. plus généralement en déterminant sa fonction de répartition.

* Exercice 6. (Indépendance et indépendance deux à deux). On suppose données, sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ deux variables de Bernoulli ε_1 et ε_2 , indépendantes, à valeurs dans $\{-1, +1\}$ avec

$$\mathbb{P}(\varepsilon_i = +1) = \mathbb{P}(\varepsilon_i = -1) = \frac{1}{2}, \ (i = 1, \ 2).$$

- 1. Montrer que la variable aléatoire $\varepsilon_1\varepsilon_2$ est indépendante d'une part de ε_1 , et d'autre part de ε_2 .
- 2. La variable aléatoire $\varepsilon_1 \varepsilon_2$ est-elle indépendante du couple $(\varepsilon_1, \varepsilon_2)$?

Exercice 7. Soient X, Y et Z trois variables aléatoires discrètes. Vrai ou faux? (si vrai le prouver, si faux donner un contre exemple):

- 1. Si X et Y sont indép., et si X et Z sont indép., alors X est indép. de (Y, Z).
- 2. Si (X,Y) et Z sont indép., alors Y est indép. de Z et X est indép. de Z.
- 3. Si X et Y sont indép. et (X,Y) est indép. de Z, alors X est indép. de (Y,Z).
- * Exercice 8. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires indépendantes de même loi de Bernoulli de paramètre $p\in]0,1[$. On pose

$$Y_n := X_n X_{n+1}, \ S_n := X_1 + \dots + X_n, \ V_n := Y_1 + \dots + Y_n.$$

- 1. Calculer $\mathbb{E}(S_n)$, $\mathbb{E}(V_n)$.
- 2. Calculer $Var(S_n)$, $Var(V_n)$ et $Cov(S_n, V_n)$.

Exercice 9. Sur un espace de probabilité Ω on se donne une suite $(X_n)_{n\geq 1}$ de variables aléatoires de Bernoulli de paramètre p, (0 , indépendantes.

- 1. Soit $A_n = \{\omega \in \Omega : X_n(\omega) \neq X_{n-1}(\omega)\}, n \geq 2$. Calculer $\mathbb{P}(A_n \cap A_{n+1})$ pour $n \geq 2$. Donner une condition nécessaire et suffisante pour que les A_n soient indépendants.
- 2. Soit $\nu(\omega) = \inf\{n \geq 2 : \omega \in A_n\}$, avec $\inf \emptyset = +\infty$. Montrer que ν est une variable aléatoire. Quelle est la loi de ν ? Montrer que $\mathbb{P}(\nu = +\infty) = 0$.

Fonctions génératrices

Exercice 10. (Un rappel?) Soient X et Y deux variables aléatoires indépendantes, suivant une loi de Poisson, de paramètres respectifs λ_1 et λ_2 .

- 1. Calculer la fonction génératrice de X.
- 2. Calculer la fonction génératrice de X + Y. Qu'en déduisez-vous?
- * Exercice 11. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et N une variable aléatoire à valeurs entières indépendante de la suite (X_n) . On définit S_N sur Ω par $S_N(\omega) = 0$ si $N(\omega) = 0$ et $S_N(\omega) = \sum_{n=1}^{N(\omega)} X_n(\omega)$ si $N(\omega) \geq 1$.
 - 1. Montrer que S_N est une variable aléatoire.
 - 2. On suppose que les X_n sont à valeurs entières et ont même loi. Déterminer la fonction génératrice de S_N en fonction de celle de N et de X_1 .
 - 3. En déduire l'espérance et la variance de S_N .
 - 4. Trouver la loi de S_N lorsque les X_n suivent une loi de Bernoulli de paramètre $p \in]0,1[$ et que N suit une loi géométrique de paramètre $a \in]0,1[$.

Exercice 12. Soient X et Y deux variables aléatoires indépendantes. X suit une loi de Bernoulli de paramètre p, (0 et <math>Y suit une loi de Poisson de paramètre λ , $\lambda > 0$. Soit Z la variable aléatoire égale à 0 si X = 0 et à Y si X = 1.

- 1. Calculer la loi de Z.
- 2. Quelle est la fonction génératrice de Z, son espérance et sa variance?
- 3. Que vaut la probabilité conditionnelle de X=0, respectivement, X=1, sachant que Z=0?