Cramer Rao bound for CS

February 3, 2017

1 Introduction

This document is a short derivation of the Cramer Rao bound for the Compressive sensing.

2 Model and Derivation

We capture a deterministic sparse vector $x \in \mathbb{R}^n$ through a sensing matrix $A \in \mathbb{R}^{m \times n}$, giving us compressive measurements $y \in \mathbb{R}^m$.

$$y = Ax (2.0.1)$$

We can model the signal with:

$$p(y \mid x, \sigma^2) = (2\pi\sigma^2)^{-K/2} \exp\left(-\frac{1}{2\sigma^2} ||y - Ax||_2^2\right) \exp\left(-\lambda ||x||_1\right) \quad (2.0.2)$$

Up to a constant we find that":

$$-\log p(y \mid x, \sigma^2) = \frac{1}{2\sigma^2} ||Ax - y||_2^2 + \lambda ||x||_1$$
 (2.0.3)

and we calculate that:

$$\frac{\partial^2}{\partial^2 x} - \log p\left(y \mid x, \sigma^2\right) = \frac{1}{\sigma^2} A^T A \tag{2.0.4}$$

Remark 2.1. The second term in (2) doesn't add anything to this as the first derivative is either λ , $-\lambda$ or 0, depending on the sign of x.

Taking the expectation of (2) we find that:

$$\mathbb{E}\frac{\partial^2}{\partial^2 x} - \log p\left(y \mid x, \sigma^2\right) = \frac{1}{\sigma^2 n} \tag{2.0.5}$$

where we have used:

Theorem 2.2 (Expected Value of Wishart Matrices). Given a matrix $W \in \mathbb{R}^{r \times r}$

$$\mathbb{E}\left(W\right) = rI\tag{2.0.6}$$

So we find that the Cramer Rao bound is:

$$\mathbb{E}||\hat{x} - x|| \ge \frac{\sigma^2}{n} \tag{2.0.7}$$

where \hat{x} is any unbiased estimator of x.