Name:	ID
14411101 111111111111111111111111111111	

Periodic Table

H H																	He L
3 Li	4 Be											5 B	ć	7 N	ő	9 F	10 Ne
Na Na	12 Mg											13 A1	14 Si	15 P	16 S	C1	18 Ax
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cz	25 Mn	26 Fe	27 Co	28 Ni	Cu Cu	30 Zn	Ga Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sz	39 Y	40 Zz	41 Nb	42 Mo	43 Te	Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57-71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 F z	88 Ra	89-103 #	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Uuq	115 Uup	Uuh	117 Uus	Uuo
			57 La	50 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
			89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	Fm.	101 Md	102 No	103 L.r

 (5 points) Complete the Lewis structure for the simple organic molecule whose skeletal structure is shown below. Add multiple bonds and lone pairs as needed BUT NO ADDITIONAL ATOMS. Then survey the sigma, pi and lone pairs. Place the number of each in the blanks supplied.

In this structure there are:

- a. ____ sigma bonds
- b. ____ pi bonds and

C.	lone pairs.
d.	Upload the Complete the Lewis structure here:
	(insert figure here)
2. (5 p	oints) Based on the skeletal structure please answer the following questions.
	F Xe F
	ow many valence electrons are needed in the Lewis diagram of the inorganic compound lose skeletal structure is shown above?
	e-'s
b.	Now complete the Lewis structure here:
	(insert figure here)
C.	With the help of the Lewis structure please answer the following questions:
	Regions Regions with bonds

ond forms between wer. Write yes/No in ionic () overall, this mo	Cl and S? Use a ∆ e. n. canside the () area. polar covalent ()	nonpolar covalent () nonpolar ()
overall, this mo	olecule is: polar ()	nonpolar ()
		·
Explain why:		
•		ng bond angles, hybridizatior
	(insert figure here)	
	oonding orbitals and	oints) Draw a picture of an CCl₄ molecule showi bonding orbitals and lone pairs. (insert figure here) oints) How do you identify covalent bonds in any cor