

What is claimed:

1

2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

3

y	موس
P	M
	•

1.	A method for manufactu	uring a semicondu	actor device having a trench element
isolation regi	on including a trench and	a trench insulating	g layer that fills the trench, the
method comp	orising the steps of:		

- (A) forming a polishing stopper layer over a substrate, the polishing stopper layer having a predetermined pattern for a chemical-mechanical polishing;
- (B) removing a part of the substrate using a mask layer including at least the polishing stopper layer as a mask to form a trench;
 - (C) forming a trench oxide film over a surface of the substrate that forms the trench:
- (D) forming an insulating layer that fills the trench over an entire surface of the substrate;
 - (E) polishing the insulating layer by a chemical-mechanical polishing;
 - (F) removing the polishing stopper layer; and
 - (G) etching a part of the insulating layer to form a trench insulating layer,

wherein the method further includes the step (a) of forming an etching stopper layer for the trench oxide film over at least a portion of the trench oxide film, and wherein, in the step (G) the etching stopper layer is more resistant to the etching than insulating layer.

- A method for manufacturing a semiconductor device according to claim 1, 2. 1 wherein, in the step (G), a selective etching ratio of the insulating layer with respect to the 2 etching stopper layer is 10 or greater.
- 3. A method for manufacturing a semiconductor device according to claim 1, 1 wherein the etching stopper layer Is formed to cover a side surface of the trench oxide film.

Sub IBI A method for manufacturing a semiconductor device according to claim 1, wherein the etching stopper layer is a slicon nitride layer.

1

2

3

4

1

2

1

2

3 4

- 1 5. A method for manufacturing a semiconductor device according claim 4, wherein the silicon nitride layer has a thickness of 10 50 nm.
- 6. A method for manufacturing a semiconductor device according to claim 1, wherein the etching stopper layer is a non-monocrystal silicon layer.
 - 7. A method for manufacturing a semiconductor device according claim 6, wherein the non-monocrystal silicon layer is selected from the group consisting of a polycrystal silicon layer, an amorphous silicon layer or a multiple layer having a polycrystal silicon layer and an amorphous silicon layer.
 - 8. A method for manufacturing a semiconductor device according claim 6, wherein the non-monocrystal silicon layer has a thickness of 20 50 nm.
 - 9. A method for manufacturing a semiconductor device according to claim 6, further comprising, after the step (G), the step (b) of thermally oxidizing a portion of the non-monocrystal layer that protrudes from the surface of the substrate in an element forming region to form a silicon oxide film.
- 1 10. A method for manufacturing a semiconductor device according claim 9, 2 wherein the silicon oxide film is removed at the same time as the step (G).
- 1 11. A semiconductor device comprising trench element isolation regions,
- wherein at least one of the trench element isolation regions includes a trench oxide film
- 3 formed on a surface of a substrate that forms a trench, and a trench insulating layer formed
- 4 in the trench, wherein an etching stopper layer is formed such that a surface of the trench
- 5 oxide film on a side wherein the trench insulating layer is formed is not exposed.

1

2

- 1 12. A semiconductor device comprising trench element isolation regions,
 2 wherein at least one of the trench element isolation regions comprises:
 3 a trench oxide film formed on a surface of a substrate that forms a trench,
 4 a trench insulating layer formed in the trench, and
 5 an etching stopper layer formed between the trench oxide film and the trench
 6 insulating layer.
- 1 13. A semiconductor device according to claim 12, wherein the etching stopper 2 layer is formed from a material laying a selective etching ratio of the insulating layer to the 3 etching stopper layer of at least ter (10) when an etchant including hydrofluoric acid is used.
 - 14. A semiconductor device according to claim 12, wherein the etching stopper layer is formed on a surface of the trench oxide film.
- 1 15. A semiconductor device according to claim 12, wherein the etching stopper 2 layer comprises a silicon nitride layer.
- 1 16. A semiconductor device according to claim 12, wherein the etching stopper 2 layer is a silicon nitride layer having a thickness of 10 50 nm.
- 1 17. A semiconductor device according to claim 12, wherein the etching stopper 2 layer comprises a non-monocrystal silicon layer.
- 18. A semiconductor device according to claim 12, wherein the etching stopper layer is a non-monocrystal silicon layer having a thickness of 20 50 nm.

1

2

3

2

1	19. A semiconductor device according to claim 18, wherein the non-monocryst	tal
2	silicon layer is selected from the group consisting of a polycrystal silicon layer, an	
3	amorphous silicon layer or a multiple layer having a polycrystal silicon layer and an	
4	amorphous silicon layer.	

- 20. A semiconductor device according to claim 11, wherein the etching stopper layer is formed from a material having a selective etching ratio of the insulating layer to the etching stopper layer of at least ten (10) when an etchant including hydrofluoric acid is used.
- 1 21. A semiconductor device according to claim 11, wherein the etching stopper 2 layer comprises a silicon nitride layer.
- 1 22. A semiconductor device according to claim 11, wherein the etching stopper 2 layer is a silicon nitride layer having a thickness of 10 50 nm.
- 1 23. A semiconductor device according to claim 11, wherein the etching stopper 2 layer comprises a non-monocrystal silicon layer.
- 1 24. A semiconductor device according to claim 11, wherein the etching stopper 2 layer is a non-monocrystal silicon layer having a thickness of 20 50 nm.
 - 25. A semiconductor device according to claim 24, wherein the non-monocrystal silicon layer is selected from the group consisting of a polycrystal silicon layer, an amorphous silicon layer or a multiple layer having a polycrystal silicon layer and an amorphous silicon layer.

1	26. A method for manufacturing a semiconductor device, comprising:
2	forming a trench comprising a lower surface and two side surfaces in a substrate
3	comprising silicon;
4	forming a trench oxide layer on the lower surface and side surfaces;
5	forming an etch stop layer in direct contact with the trench oxide layer on the lower
6	surface and side surfaces;
7	filling the trench with an insulating layer directly contacting the etch stop layer,
8	wherein the insulating layer overfills the trench and extends above the trench as defined by
9	the two side surfaces; and
0	etching the insulating layer using an etchant that selectively etches the etch stop layer
1	at a rate that is slower than that of the insulating layer.