Informatics Rugby and Introduction to Logic

Generated by LectureMate

February 22, 2025

1 Informatics Rugby Team

We are recruitment secretaries for the Informatics Rugby team, a casual intramural rugby team created last year. Our aim is to provide information about our activities and hopefully recruit new members.

1.1 Training and Matches

We play games most Wednesdays at Peppermill and train most Sundays in the Meadows, just behind the library. Training includes a mix of contact, fitness, and skill level building, preparing us for matches against other subjects.

1.2 Equipment and Socials

To participate in contact training, you will need rugby boots and a gum guard. We also have socials every Wednesday and Sunday after our activities, and we encourage everyone to join us.

1.3 Other Sports

For those not interested in rugby, we have links to various other sports available on our Instagram page.

2 Introduction to Logic

In the context of our course, we began discussing binary information and the concept of bits. We utilize decision trees and yes/no questions to assign binary codes, focusing on true and false values.

2.1 Propositions

A proposition is a statement that can be either true or false. Examples include:

- The moon is round.
- It is raining here and now.
- That book is yellow.

The complexity of language can lead to ambiguity in these statements, which is why logic is essential for clear reasoning.

2.2 Logical Operators

We will explore several logical operators:

- Conjunction (AND): $P \wedge Q$ is true if both P and Q are true.
- Disjunction (OR): $P \vee Q$ is true if at least one of P or Q is true.
- Negation (NOT): $\neg P$ is true if P is false.
- Implication (IF...THEN): $P \implies Q$ is true unless P is true and Q is false.

2.3 Truth Tables

Truth tables are used to define the truth values of these operators:

• For conjunction:

P	Q	$P \wedge Q$
F	F	F
F	T	F
T	F	F
T	T	T

• For disjunction:

P	Q	$P \lor Q$
F	F	F
F	T	T
T	F	T
T	T	T

• For negation:

P	$\neg P$
F	T
T	F

• For implication:

P	Q	$P \implies Q$
F	F	T
F	T	T
T	F	F
T	T	T

2.4 Venn Diagrams

Logic can also be represented using Venn diagrams:

- $P \wedge Q$ corresponds to the intersection of sets.
- $P \vee Q$ corresponds to the union of sets.
- $\neg P$ corresponds to the complement of set P.

2.5 Predicates

A predicate is a statement that can be true or false depending on the values of its variables. For example, the predicate "is round" can be applied to different objects:

- P(x): "x is round."
- L(x,y): "x likes y."

2.6 First Order Logic

First order logic allows for more complex statements involving quantifiers:

- $\forall x P(x)$: "For all x, P is true."
- $\exists x P(x)$: "There exists an x such that P is true."

3 Conclusion

This lecture covered the basics of logic, including propositions, logical operators, truth tables, and predicates. Understanding these concepts is crucial for clear reasoning in computer science and mathematics.