Hardware Locality (hwloc)
1.4.1

Generated by Doxygen 1.7.6.1

Mon Feb 27 2012 22:07:11

Contents

1	Hard	lware Locality	1
	1.1	Introduction	1
	1.2	Installation	2
	1.3	CLI Examples	3
	1.4	Programming Interface	9
		1.4.1 Portability	10
		1.4.2 API Example	13
	1.5	Questions and Bugs	16
	1.6	History / Credits	16
	1.7	Further Reading	17
2	Term	ns and Definitions	19
3	Com	mand-Line Tools	23
	3.1	Istopo	23
	3.2	hwloc-bind	23
	3.3	hwloc-calc	23
	3.4	hwloc-distrib	24
	3.5	hwloc-ps	24
	3.6	hwloc-gather-topology	24
	3.7	hwloc-distances	24
	3.8	hwloc-assembler	24
	3.9	hwloc-assembler-remote	25
4	Envi	ronment Variables	27
5	CPU	and Memory Binding Overview	31

ii	CONTENTS
	• • • • • • • • • • • • • • • • • • • •

6	I/O D	Pevices	33
	6.1	Enabling and requirements	33
	6.2	I/O object hierarchy	33
	6.3	Software devices	34
	6.4	Consulting I/O devices and binding	34
	6.5	Examples	35
7	Mult	i-node Topologies	37
	7.1	Multi-node Objects Specifities	37
	7.2	Assembling topologies with command-line tools	38
	7.3	Assembling topologies with the programming interface	38
	7.4	Example of assembly with the programming interface	39
8	Impo	orting and exporting topologies from/to XML files	41
	8.1	libxml2 and minimalistic XML backends	41
	8.2	XML import error management	42
9	Inter	operability With Other Software	43
10	Thre	ad Safety	45
11	Emb	edding hwloc in Other Software	47
	11.1	Using hwloc's M4 Embedding Capabilities	47
	11.2	Example Embedding hwloc	49
12	Freq	uently Asked Questions	51
	12.1	I do not want hwloc to rediscover my enormous machine topology every time I rerun a process	51
	12.2	Does hwloc require privileged access?	51
	12.3	hwloc only has a one-dimensional view of the architecture, it ignores distances	52
	12.4	How may I ignore symmetric multithreading, hyper-threading, ?	52
	12.5	What happens if my topology is asymmetric?	53
	12.6	How do I annotate the topology with private notes?	54
	12.7	Why does Valgrind complain about hwloc memory leaks?	54
	400	How do I handle API upgrades?	5/

CONTENTS iii

13	Mod	ule Inde	ex	57
	13.1	Module	es	57
14	Data	Structu	ure Index	59
	14.1	Data S	Structures	59
15	Mod	ule Doc	cumentation	61
	15.1	API vei	rsion	61
		15.1.1	Define Documentation	61
			15.1.1.1 HWLOC_API_VERSION	61
		15.1.2	Function Documentation	61
			15.1.2.1 hwloc_get_api_version	61
	15.2	Topolog	gy context	62
		15.2.1	Typedef Documentation	62
			15.2.1.1 hwloc_topology_t	62
	15.3	Object	sets (hwloc_cpuset_t and hwloc_nodeset_t)	63
		15.3.1	Detailed Description	63
		15.3.2	Typedef Documentation	63
			15.3.2.1 hwloc_const_cpuset_t	63
			15.3.2.2 hwloc_const_nodeset_t	63
			15.3.2.3 hwloc_cpuset_t	63
			15.3.2.4 hwloc_nodeset_t	63
	15.4	Topolog	gy Object Types	65
		15.4.1	Typedef Documentation	65
			15.4.1.1 hwloc_obj_bridge_type_t	65
			15.4.1.2 hwloc_obj_osdev_type_t	65
		15.4.2	Enumeration Type Documentation	65
			15.4.2.1 hwloc_compare_types_e	65
			15.4.2.2 hwloc_obj_bridge_type_e	66
			15.4.2.3 hwloc_obj_osdev_type_e	66
			15.4.2.4 hwloc_obj_type_t	66
		15.4.3	Function Documentation	67
			15.4.3.1 hwloc_compare_types	67
	15.5	Topolog	gy Objects	69
		15.5.1	Typedef Documentation	69

iv CONTENTS

	15.5.1.1	$hwloc_obj_t \dots \dots \dots \dots \dots \dots \dots \dots \dots$	69
15.6 Create	and Destr	oy Topologies	70
15.6.1	Function	Documentation	70
	15.6.1.1	hwloc_topology_check	70
	15.6.1.2	hwloc_topology_destroy	70
	15.6.1.3	hwloc_topology_init	70
	15.6.1.4	hwloc_topology_load	71
15.7 Config	ure Topolo	gy Detection	72
15.7.1	Detailed	Description	73
15.7.2	Enumera	tion Type Documentation	73
	15.7.2.1	hwloc_topology_flags_e	73
15.7.3	Function	Documentation	74
	15.7.3.1	hwloc_topology_get_support	74
	15.7.3.2	hwloc_topology_ignore_all_keep_structure	74
	15.7.3.3	hwloc_topology_ignore_type	74
	15.7.3.4	hwloc_topology_ignore_type_keep_structure	74
	15.7.3.5	hwloc_topology_set_custom	74
	15.7.3.6	hwloc_topology_set_distance_matrix	75
	15.7.3.7	hwloc_topology_set_flags	75
	15.7.3.8	hwloc_topology_set_fsroot	75
	15.7.3.9	hwloc_topology_set_pid	76
	15.7.3.10	hwloc_topology_set_synthetic	76
	15.7.3.11	hwloc_topology_set_xml	77
	15.7.3.12	hwloc_topology_set_xmlbuffer	77
15.8 Tinker	With Topo	logies	78
15.8.1	Enumera	tion Type Documentation	78
	15.8.1.1	hwloc_restrict_flags_e	78
15.8.2	Function	Documentation	78
	15.8.2.1	hwloc_free_xmlbuffer	79
	15.8.2.2	hwloc_topology_export_xml	79
	15.8.2.3	hwloc_topology_export_xmlbuffer	79
	15.8.2.4	hwloc_topology_insert_misc_object_by_cpuset	79
	15.8.2.5	hwloc_topology_insert_misc_object_by_parent	80
	15.8.2.6	hwloc_topology_restrict	80

CONTENTS v

15.9 Get So	me Topology Information
15.9.1	Detailed Description
15.9.2	Enumeration Type Documentation 81
	15.9.2.1 hwloc_get_type_depth_e
15.9.3	Function Documentation
	15.9.3.1 hwloc_get_depth_type
	15.9.3.2 hwloc_get_nbobjs_by_depth 82
	15.9.3.3 hwloc_get_nbobjs_by_type 82
	15.9.3.4 hwloc_get_type_depth
	15.9.3.5 hwloc_topology_get_depth 82
	15.9.3.6 hwloc_topology_is_thissystem 83
15.10Retriev	re Objects
15.10.1	Detailed Description
15.10.2	2 Function Documentation
	15.10.2.1 hwloc_get_obj_by_depth
	15.10.2.2 hwloc_get_obj_by_type
15.11 Object/	String Conversion
15.11.1	Function Documentation
	15.11.1.1 hwloc_obj_add_info
	15.11.1.2 hwloc_obj_attr_snprintf
	15.11.1.3 hwloc_obj_cpuset_snprintf
	15.11.1.4 hwloc_obj_get_info_by_name
	15.11.1.5 hwloc_obj_snprintf
	15.11.1.6 hwloc_obj_type_of_string
	15.11.1.7 hwloc_obj_type_snprintf
	15.11.1.8 hwloc_obj_type_string
15.12CPU b	inding
15.12.1	Detailed Description
15.12.2	2 Enumeration Type Documentation
	15.12.2.1 hwloc_cpubind_flags_t
15.12.3	3 Function Documentation
	15.12.3.1 hwloc_get_cpubind
	15.12.3.2 hwloc_get_last_cpu_location 90
	15.12.3.3 hwloc_get_proc_cpubind

vi CONTENTS

15.12.3.4 hwloc_get_proc_last_cpu_location		91
15.12.3.5 hwloc_get_thread_cpubind		91
15.12.3.6 hwloc_set_cpubind		91
15.12.3.7 hwloc_set_proc_cpubind		91
15.12.3.8 hwloc_set_thread_cpubind		92
15.13Memory binding		93
15.13.1 Detailed Description		94
15.13.2 Enumeration Type Documentation		95
15.13.2.1 hwloc_membind_flags_t		95
15.13.2.2 hwloc_membind_policy_t		95
15.13.3 Function Documentation		96
15.13.3.1 hwloc_alloc		96
15.13.3.2 hwloc_alloc_membind		97
15.13.3.3 hwloc_alloc_membind_nodeset		97
15.13.3.4 hwloc_free		97
15.13.3.5 hwloc_get_area_membind		97
15.13.3.6 hwloc_get_area_membind_nodeset		98
15.13.3.7 hwloc_get_membind		98
15.13.3.8 hwloc_get_membind_nodeset		99
15.13.3.9 hwloc_get_proc_membind		100
15.13.3.10hwloc_get_proc_membind_nodeset		100
15.13.3.11hwloc_set_area_membind		101
15.13.3.12hwloc_set_area_membind_nodeset		101
15.13.3.13hwloc_set_membind		102
15.13.3.14hwloc_set_membind_nodeset		102
15.13.3.15hwloc_set_proc_membind		102
15.13.3.16hwloc_set_proc_membind_nodeset		103
15.14Building Custom Topologies		104
15.14.1 Detailed Description		104
15.14.2 Function Documentation		104
15.14.2.1 hwloc_custom_insert_group_object_by_parent		104
15.14.2.2 hwloc_custom_insert_topology		104
15.15Object Type Helpers		106
15.15.1 Detailed Description		106

CONTENTS vii

15.15.2 Function Documentation
15.15.2.1 hwloc_get_type_or_above_depth 106
15.15.2.2 hwloc_get_type_or_below_depth 106
15.16Basic Traversal Helpers
15.16.1 Detailed Description
15.16.2 Function Documentation
15.16.2.1 hwloc_get_ancestor_obj_by_depth 107
15.16.2.2 hwloc_get_ancestor_obj_by_type 107
15.16.2.3 hwloc_get_common_ancestor_obj 108
15.16.2.4 hwloc_get_next_child
15.16.2.5 hwloc_get_next_obj_by_depth
15.16.2.6 hwloc_get_next_obj_by_type
15.16.2.7 hwloc_get_pu_obj_by_os_index
15.16.2.8 hwloc_get_root_obj
15.16.2.9 hwloc_obj_is_in_subtree
15.17Finding Objects Inside a CPU set
15.17.1 Function Documentation
15.17.1.1 hwloc_get_first_largest_obj_inside_cpuset 110
15.17.1.2 hwloc_get_largest_objs_inside_cpuset
15.17.1.3 hwloc_get_nbobjs_inside_cpuset_by_depth 111
15.17.1.4 hwloc_get_nbobjs_inside_cpuset_by_type 111
15.17.1.5 hwloc_get_next_obj_inside_cpuset_by_depth 112
15.17.1.6 hwloc_get_next_obj_inside_cpuset_by_type 112
15.17.1.7 hwloc_get_obj_index_inside_cpuset
15.17.1.8 hwloc_get_obj_inside_cpuset_by_depth 112
15.17.1.9 hwloc_get_obj_inside_cpuset_by_type 113
15.18Finding a single Object covering at least CPU set
15.18.1 Function Documentation
15.18.1.1 hwloc_get_child_covering_cpuset
15.18.1.2 hwloc_get_obj_covering_cpuset
15.19Finding a set of similar Objects covering at least a CPU set
15.19.1 Function Documentation
15.19.1.1 hwloc_get_next_obj_covering_cpuset_by_depth 115
15.19.1.2 hwloc_get_next_obj_covering_cpuset_by_type 115
15.19.1.2 hwloc_get_next_obj_covering_cpuset_by_type 115

viii CONTENTS

15.20 Cache-specific Finding Helpers
15.20.1 Function Documentation
15.20.1.1 hwloc_get_cache_covering_cpuset
15.20.1.2 hwloc_get_shared_cache_covering_obj 116
15.21 Advanced Traversal Helpers
15.21.1 Detailed Description
15.21.2 Function Documentation
15.21.2.1 hwloc_get_closest_objs
15.21.2.2 hwloc_get_obj_below_array_by_type
15.21.2.3 hwloc_get_obj_below_by_type
15.22Binding Helpers
15.22.1 Function Documentation
15.22.1.1 hwloc_alloc_membind_policy
15.22.1.2 hwloc_alloc_membind_policy_nodeset 119
15.22.1.3 hwloc_distribute
15.22.1.4 hwloc_distributev
15.23Cpuset Helpers
15.23.1 Function Documentation
15.23.1.1 hwloc_topology_get_allowed_cpuset 121
15.23.1.2 hwloc_topology_get_complete_cpuset121
15.23.1.3 hwloc_topology_get_online_cpuset 122
15.23.1.4 hwloc_topology_get_topology_cpuset 122
15.24Nodeset Helpers
15.24.1 Function Documentation
15.24.1.1 hwloc_topology_get_allowed_nodeset123
15.24.1.2 hwloc_topology_get_complete_nodeset 123
15.24.1.3 hwloc_topology_get_topology_nodeset 124
15.25Conversion between cpuset and nodeset
15.25.1 Detailed Description
15.25.2 Function Documentation
15.25.2.1 hwloc_cpuset_from_nodeset
15.25.2.2 hwloc_cpuset_from_nodeset_strict 125
15.25.2.3 hwloc_cpuset_to_nodeset
15.25.2.4 hwloc_cpuset_to_nodeset_strict

CONTENTS ix

15.26 Distances	27
15.26.1 Function Documentation	27
15.26.1.1 hwloc_get_distance_matrix_covering_obj_by_depth . 12	27
15.26.1.2 hwloc_get_latency	27
15.26.1.3 hwloc_get_whole_distance_matrix_by_depth 12	28
15.26.1.4 hwloc_get_whole_distance_matrix_by_type 12	28
15.27 Advanced I/O object traversal helpers	30
15.27.1 Function Documentation	30
15.27.1.1 hwloc_bridge_covers_pcibus	30
15.27.1.2 hwloc_get_hostbridge_by_pcibus	30
15.27.1.3 hwloc_get_next_bridge	30
15.27.1.4 hwloc_get_next_osdev	30
15.27.1.5 hwloc_get_next_pcidev	31
15.27.1.6 hwloc_get_non_io_ancestor_obj	31
15.27.1.7 hwloc_get_pcidev_by_busid	31
15.27.1.8 hwloc_get_pcidev_by_busidstring	31
15.28The bitmap API	32
15.28.1 Detailed Description	34
15.28.2 Define Documentation	34
15.28.2.1 hwloc_bitmap_foreach_begin	34
15.28.2.2 hwloc_bitmap_foreach_end	34
15.28.3 Typedef Documentation	34
15.28.3.1 hwloc_bitmap_t	35
15.28.3.2 hwloc_const_bitmap_t	35
15.28.4 Function Documentation	35
15.28.4.1 hwloc_bitmap_allbut	35
15.28.4.2 hwloc_bitmap_alloc	35
15.28.4.3 hwloc_bitmap_alloc_full	35
15.28.4.4 hwloc_bitmap_and	35
15.28.4.5 hwloc_bitmap_andnot	35
15.28.4.6 hwloc_bitmap_asprintf	35
15.28.4.7 hwloc_bitmap_clr	36
15.28.4.8 hwloc_bitmap_clr_range	36
15.28.4.9 hwloc_bitmap_compare	36

X CONTENTS

15.28.4.10hwloc_bitmap_compare_first
15.28.4.11hwloc_bitmap_copy
15.28.4.12hwloc_bitmap_dup
15.28.4.13hwloc_bitmap_fill
15.28.4.14hwloc_bitmap_first
15.28.4.15hwloc_bitmap_free
15.28.4.16hwloc_bitmap_from_ith_ulong
15.28.4.17hwloc_bitmap_from_ulong
15.28.4.18hwloc_bitmap_intersects
15.28.4.19hwloc_bitmap_isequal
15.28.4.20hwloc_bitmap_isfull
15.28.4.21hwloc_bitmap_isincluded
15.28.4.22hwloc_bitmap_isset
15.28.4.23hwloc_bitmap_iszero
15.28.4.24hwloc_bitmap_last
15.28.4.25hwloc_bitmap_list_asprintf
15.28.4.26hwloc_bitmap_list_snprintf
15.28.4.27hwloc_bitmap_list_sscanf
15.28.4.28hwloc_bitmap_next
15.28.4.29hwloc_bitmap_not
15.28.4.30hwloc_bitmap_only
15.28.4.31hwloc_bitmap_or
15.28.4.32hwloc_bitmap_set
15.28.4.33hwloc_bitmap_set_ith_ulong
15.28.4.34hwloc_bitmap_set_range
15.28.4.35hwloc_bitmap_singlify
15.28.4.36hwloc_bitmap_snprintf
15.28.4.37hwloc_bitmap_sscanf
15.28.4.38hwloc_bitmap_taskset_asprintf
15.28.4.39hwloc_bitmap_taskset_snprintf
15.28.4.40hwloc_bitmap_taskset_sscanf
15.28.4.41hwloc_bitmap_to_ith_ulong
15.28.4.42hwloc_bitmap_to_ulong
15.28.4.43hwloc_bitmap_weight

CONTENTS xi

15.28.4.44hwloc_bitmap_xor
15.28.4.45hwloc_bitmap_zero
15.29Helpers for manipulating glibc sched affinity
15.29.1 Function Documentation
15.29.1.1 hwloc_cpuset_from_glibc_sched_affinity 142
15.29.1.2 hwloc_cpuset_to_glibc_sched_affinity
15.30Linux-only helpers
15.30.1 Detailed Description
15.30.2 Function Documentation
15.30.2.1 hwloc_linux_get_tid_cpubind
15.30.2.2 hwloc_linux_parse_cpumap_file
15.30.2.3 hwloc_linux_set_tid_cpubind
15.31 Helpers for manipulating Linux libnuma unsigned long masks 144
15.31.1 Function Documentation
15.31.1.1 hwloc_cpuset_from_linux_libnuma_ulongs 144
15.31.1.2 hwloc_cpuset_to_linux_libnuma_ulongs 144
15.31.1.3 hwloc_nodeset_from_linux_libnuma_ulongs 145
15.31.1.4 hwloc_nodeset_to_linux_libnuma_ulongs 145
15.32Helpers for manipulating Linux libnuma bitmask
15.32.1 Function Documentation
15.32.1.1 hwloc_cpuset_from_linux_libnuma_bitmask 146
15.32.1.2 hwloc_cpuset_to_linux_libnuma_bitmask 146
15.32.1.3 hwloc_nodeset_from_linux_libnuma_bitmask 146
15.32.1.4 hwloc_nodeset_to_linux_libnuma_bitmask 147
15.33Helpers for manipulating Linux libnuma nodemask_t
15.33.1 Detailed Description
15.33.2 Function Documentation
15.33.2.1 hwloc_cpuset_from_linux_libnuma_nodemask 148
15.33.2.2 hwloc_cpuset_to_linux_libnuma_nodemask 148
15.33.2.3 hwloc_nodeset_from_linux_libnuma_nodemask 148
15.33.2.4 hwloc_nodeset_to_linux_libnuma_nodemask 149
15.34CUDA Driver API Specific Functions
15.34.1 Function Documentation
15.34.1.1 hwloc_cuda_get_device_cpuset

xii CONTENTS

			15.34.1.2 hwloc_c	cuda_get_device_pci_ids	150
			15.34.1.3 hwloc_c	cuda_get_device_pcidev	150
	15.35	5CUDA	Runtime API Specif	fic Functions	151
		15.35.1	Function Documen	ntation	151
			15.35.1.1 hwloc_c	cudart_get_device_cpuset	151
			15.35.1.2 hwloc_c	cudart_get_device_pci_ids	151
			15.35.1.3 hwloc_c	cudart_get_device_pcidev	151
	15.36	6OpenFa	brics-Specific Fund	ctions	152
		15.36.1	Function Documen	ntation	152
			15.36.1.1 hwloc_ib	ov_get_device_cpuset	152
	15.37	7Myrine	Express-Specific F	Functions	153
		15.37.1	Function Documen	ntation	153
			15.37.1.1 hwloc_m	nx_board_get_device_cpuset	153
			15.37.1.2 hwloc_m	nx_endpoint_get_device_cpuset	153
40	Data	Ctorret	D	_	455
10			re Documentation		155
	16.1			oridge_attr_s Struct Reference	
			•	on	
		16.1.2		on	
				eam	
				eam_type	
			•		
			•		
				ary_bus	
				nate_bus	
				m	
				m_type	
	16.2			cache_attr_s Struct Reference	
		16.2.1	Detailed Description	on	156
		16.2.2		on	
			16.2.2.1 associat	tivity	156
			16.2.2.2 depth.		157

CONTENTS xiii

	16.2.2.3 linesize	7
	16.2.2.4 size	7
16.3 hwloc_c	listances_s Struct Reference	7
16.3.1	Detailed Description	7
16.3.2	Field Documentation	8
	16.3.2.1 latency	8
	16.3.2.2 latency_base	8
	16.3.2.3 latency_max	8
	16.3.2.4 nbobjs	8
	16.3.2.5 relative_depth	8
16.4 hwloc_c	bj_attr_u::hwloc_group_attr_s Struct Reference	8
16.4.1	Detailed Description	8
16.4.2	Field Documentation	9
	16.4.2.1 depth	9
16.5 hwloc_c	bj Struct Reference	9
16.5.1	Detailed Description	0
16.5.2	Field Documentation	0
	16.5.2.1 allowed_cpuset	0
	16.5.2.2 allowed_nodeset	0
	16.5.2.3 arity	0
	16.5.2.4 attr	0
	16.5.2.5 children	0
	16.5.2.6 complete_cpuset	1
	16.5.2.7 complete_nodeset	1
	16.5.2.8 cpuset	1
	16.5.2.9 depth	2
	16.5.2.10 distances	2
	16.5.2.11 distances_count	2
	16.5.2.12 first_child	2
	16.5.2.13 infos	2
	16.5.2.14 infos_count	2
	16.5.2.15 last_child	2
	16.5.2.16 logical_index	2
	16.5.2.17 memory	2

xiv CONTENTS

	16.5.2.18 name	162
	16.5.2.19 next_cousin	163
	16.5.2.20 next_sibling	163
	16.5.2.21 nodeset	163
	16.5.2.22 online_cpuset	163
	16.5.2.23 os_index	163
	16.5.2.24 os_level	163
	16.5.2.25 parent	164
	16.5.2.26 prev_cousin	164
	16.5.2.27 prev_sibling	164
	16.5.2.28 sibling_rank	164
	16.5.2.29 symmetric_subtree	164
	16.5.2.30 type	164
	16.5.2.31 userdata	164
16.6 hwloc_c	obj_attr_u Union Reference	164
16.6.1	Detailed Description	165
16.6.2	Field Documentation	165
	16.6.2.1 bridge	165
	16.6.2.2 cache	165
	16.6.2.3 group	165
	16.6.2.4 osdev	165
	16.6.2.5 pcidev	165
16.7 hwloc_c	obj_info_s Struct Reference	165
16.7.1	Detailed Description	166
16.7.2	Field Documentation	166
	16.7.2.1 name	166
	16.7.2.2 value	166
	obj_memory_s::hwloc_obj_memory_page_type_s Structure	
16.8.1	Detailed Description	166
16.8.2	Field Documentation	166
	16.8.2.1 count	166
	16.8.2.2 size	167
16.9 hwloc_c	obj_memory_s Struct Reference	167

CONTENTS xv

16.9.1 Detailed Description
16.9.2 Field Documentation
16.9.2.1 local_memory
16.9.2.2 page_types
16.9.2.3 page_types_len
16.9.2.4 total_memory
16.10hwloc_obj_attr_u::hwloc_osdev_attr_s Struct Reference 168
16.10.1 Detailed Description
16.10.2 Field Documentation
16.10.2.1 type
16.11hwloc_obj_attr_u::hwloc_pcidev_attr_s Struct Reference
16.11.1 Detailed Description
16.11.2 Field Documentation
16.11.2.1 bus
16.11.2.2 class_id
16.11.2.3 dev
16.11.2.4 device_id
16.11.2.5 domain
16.11.2.6 func
16.11.2.7 linkspeed
16.11.2.8 revision
16.11.2.9 subdevice_id
16.11.2.10subvendor_id
16.11.2.11vendor_id
16.12hwloc_topology_cpubind_support Struct Reference
16.12.1 Detailed Description
16.12.2 Field Documentation
16.12.2.1 get_proc_cpubind
16.12.2.2 get_proc_last_cpu_location
16.12.2.3 get_thisproc_cpubind
16.12.2.4 get_thisproc_last_cpu_location
16.12.2.5 get_thisthread_cpubind
16.12.2.6 get_thisthread_last_cpu_location
16.12.2.7 get_thread_cpubind

xvi CONTENTS

16.12.2.8 set_proc_cpubind
16.12.2.9 set_thisproc_cpubind
16.12.2.10set_thisthread_cpubind
16.12.2.11set_thread_cpubind
16.13hwloc_topology_discovery_support Struct Reference
16.13.1 Detailed Description
16.13.2 Field Documentation
16.13.2.1 pu
16.14hwloc_topology_membind_support Struct Reference
16.14.1 Detailed Description
16.14.2 Field Documentation
16.14.2.1 alloc_membind
16.14.2.2 bind_membind
16.14.2.3 firsttouch_membind
16.14.2.4 get_area_membind
16.14.2.5 get_proc_membind
16.14.2.6 get_thisproc_membind
16.14.2.7 get_thisthread_membind
16.14.2.8 interleave_membind
16.14.2.9 migrate_membind
16.14.2.10nexttouch_membind
16.14.2.11replicate_membind
16.14.2.12set_area_membind
16.14.2.13set_proc_membind
16.14.2.14set_thisproc_membind
16.14.2.15set_thisthread_membind
16.15hwloc_topology_support Struct Reference
16.15.1 Detailed Description
16.15.2 Field Documentation
16.15.2.1 cpubind
16.15.2.2 discovery
16.15.2.3 membind

Chapter 1

Hardware Locality

Portable abstraction of hierarchical architectures for high-performance computing

1.1 Introduction

hwloc provides command line tools and a C API to obtain the hierarchical map of key computing elements, such as: NUMA memory nodes, shared caches, processor sockets, processor cores, processing units (logical processors or "threads") and even I/O devices. hwloc also gathers various attributes such as cache and memory information, and is portable across a variety of different operating systems and platforms. - Additionally it may assemble the topologies of multiple machines into a single one so as to let applications consult the topology of an entire fabric or cluster at once.

hwloc primarily aims at helping high-performance computing (HPC) applications, but is also applicable to any project seeking to exploit code and/or data locality on modern computing platforms.

Note that the hwloc project represents the merger of the libtopology project from inria and the Portable Linux Processor Affinity (PLPA) sub-project from Open MPI. Both of these prior projects are now deprecated. The first hwloc release was essentially a "rebranding" of the libtopology code base, but with both a few genuinely new features and a few PLPA-like features added in. Prior releases of hwloc included documentation about switching from PLPA to hwloc; this documentation has been dropped on the assumption that everyone who was using PLPA has already switched to hwloc.

hwloc supports the following operating systems:

- Linux (including old kernels not having sysfs topology information, with knowledge of cpusets, offline CPUs, ScaleMP vSMP, and Kerrighed support)
- Solaris
- AIX

- Darwin / OS X
- · FreeBSD and its variants, such as kFreeBSD/GNU
- OSF/1 (a.k.a., Tru64)
- HP-UX
- · Microsoft Windows

Since it uses standard Operating System information, hwloc's support is mostly independant from the processor type (x86, powerpc, ...) and just relies on the Operating System support. The only exception to this is kFreeBSD, which does not support topology information, and hwloc thus uses an x86-only CPUID-based backend (which could be used for other OSes too).

To check whether hwloc works on a particular machine, just try to build it and run lstopo. If some things do not look right (e.g. bogus or missing cache information), see Questions and Bugs below.

hwloc only reports the number of processors on unsupported operating systems; no topology information is available.

For development and debugging purposes, hwloc also offers the ability to work on "fake" topologies:

- Symmetrical tree of resources generated from a list of level arities
- · Remote machine simulation through the gathering of Linux sysfs topology files

hwloc can display the topology in a human-readable format, either in graphical mode (X11), or by exporting in one of several different formats, including: plain text, PDF, P-NG, and FIG (see CLI Examples below). Note that some of the export formats require additional support libraries.

hwloc offers a programming interface for manipulating topologies and objects. It also brings a powerful CPU bitmap API that is used to describe topology objects location on physical/logical processors. See the Programming Interface below. It may also be used to binding applications onto certain cores or memory nodes. Several utility programs are also provided to ease command-line manipulation of topology objects, binding of processes, and so on.

Perl bindings are available from Bernd Kallies on CPAN:

Python bindings are available from Guy Streeter:

- Fedora RPM and tarball.
- git tree (html).

1.2 Installation

hwloc (http://www.open-mpi.org/projects/hwloc/) is available under the BSD license. It is hosted as a sub-project of the overall Open MPI project (http-://www.open-mpi.org/). Note that hwloc does not require any functionality from

Open MPI -- it is a wholly separate (and much smaller!) project and code base. It just happens to be hosted as part of the overall Open MPI project.

Nightly development snapshots are available on the web site. Additionally, the code can be directly checked out of Subversion:

```
shell$ svn checkout http://svn.open-mpi.org/svn/hwloc/trunk hwloc-trunk
shell$ cd hwloc-trunk
shell$ ./autogen.sh
```

Note that GNU Autoconf >=2.63, Automake >=1.10 and Libtool >=2.2.6 are required when building from a Subversion checkout.

Installation by itself is the fairly common GNU-based process:

```
shell$ ./configure --prefix=...
shell$ make
shell$ make install
```

The hwloc command-line tool "Istopo" produces human-readable topology maps, as mentioned above. It can also export maps to the "fig" file format. Support for PDF, Postscript, and PNG exporting is provided if the "Cairo" development package can be found when hwloc is configured and build.

The hwloc core may also benefit from the following development packages:

- · pciutils (libpci) for I/O discovery.
- libnuma for memory binding and migration support on Linux.
- libxml2 for full XML import/export support (otherwise, the internal minimalistic parser will only be able to import XML files that were exported by the same hwloc release). See Importing and exporting topologies from/to XML files for details.

1.3 CLI Examples

On a 4-socket 2-core machine with hyperthreading, the lstopo tool may show the following graphical output:

Here's the equivalent output in textual form:

```
Machine (16GB)
 Socket L#0 + L3 L#0 (4096KB)
   L2 L#0 (1024KB) + L1 L#0 (16KB) + Core L#0
     PU L#0 (P#0)
     PU L#1 (P#8)
   L2 L#1 (1024KB) + L1 L#1 (16KB) + Core L#1
     PU L#2 (P#4)
      PU L#3 (P#12)
  Socket L#1 + L3 L#1 (4096KB)
   L2 L#2 (1024KB) + L1 L#2 (16KB) + Core L#2
      PU L#4 (P#1)
      PU L#5 (P#9)
   L2 L#3 (1024KB) + L1 L#3 (16KB) + Core L#3
      PU L#6 (P#5)
      PU L#7 (P#13)
  Socket L#2 + L3 L#2 (4096KB)
   L2 L#4 (1024KB) + L1 L#4 (16KB) + Core L#4
     PU L#8 (P#2)
      PU L#9 (P#10)
   L2 L#5 (1024KB) + L1 L#5 (16KB) + Core L#5
      PU L#10 (P#6)
      PU L#11 (P#14)
  Socket L#3 + L3 L#3 (4096KB)
   L2 L#6 (1024KB) + L1 L#6 (16KB) + Core L#6
      PU L#12 (P#3)
```

```
PU L#13 (P#11)
L2 L#7 (1024KB) + L1 L#7 (16KB) + Core L#7
PU L#14 (P#7)
PU L#15 (P#15)
```

Finally, here's the equivalent output in XML. Long lines were artificially broken for document clarity (in the real output, each XML tag is on a single line), and only socket #0 is shown for brevity:

```
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE topology SYSTEM "hwloc.dtd">
<topology>
  <object type="Machine" os_level="-1" os_index="0" cpuset="0x0000fffff"</pre>
      complete_cpuset="0x0000ffff" online_cpuset="0x0000ffff"
      allowed_cpuset="0x0000ffff"
      dmi_board_vendor="Dell Computer Corporation" dmi_board_name="0RD318"
      local_memory="16648183808">
    <page_type size="4096" count="4064498"/>
    <page_type size="2097152" count="0"/>
    <object type="Socket" os_level="-1" os_index="0" cpuset="0x00001111"</pre>
        complete_cpuset="0x00001111" online_cpuset="0x00001111"
        allowed_cpuset="0x00001111">
      <object type="Cache" os_level="-1" cpuset="0x00001111"</pre>
          complete_cpuset="0x00001111" online_cpuset="0x00001111"
          allowed_cpuset="0x00001111" cache_size="4194304" depth="3"
          cache_linesize="64">
        <object type="Cache" os_level="-1" cpuset="0x00000101"</pre>
            complete_cpuset="0x00000101" online_cpuset="0x00000101"
            allowed_cpuset="0x00000101" cache_size="1048576" depth="2"
            cache_linesize="64">
          <object type="Cache" os_level="-1" cpuset="0x00000101"</pre>
              complete_cpuset="0x00000101" online_cpuset="0x00000101"
              allowed_cpuset="0x00000101" cache_size="16384" depth="1"
              cache_linesize="64">
            <object type="Core" os_level="-1" os_index="0" cpuset="0x00000101"</pre>
                complete_cpuset="0x00000101" online_cpuset="0x00000101"
                allowed_cpuset="0x00000101">
              <object type="PU" os_level="-1" os_index="0" cpuset="0x00000001"</pre>
                  complete_cpuset="0x00000001" online_cpuset="0x00000001"
                  allowed_cpuset="0x00000001"/>
              <object type="PU" os_level="-1" os_index="8" cpuset="0x00000100"</pre>
                  complete_cpuset="0x00000100" online_cpuset="0x00000100"
                  allowed_cpuset="0x00000100"/>
            </object>
          </object>
        </object>
        <object type="Cache" os_level="-1" cpuset="0x00001010"</pre>
            complete_cpuset="0x00001010" online_cpuset="0x00001010"
            allowed_cpuset="0x00001010" cache_size="1048576" depth="2"
            cache_linesize="64">
          <object type="Cache" os_level="-1" cpuset="0x00001010"</pre>
              complete_cpuset="0x00001010" online_cpuset="0x00001010"
              allowed_cpuset="0x00001010" cache_size="16384" depth="1"
              cache_linesize="64">
            <object type="Core" os_level="-1" os_index="1" cpuset="0x00001010"</pre>
                complete_cpuset="0x00001010" online_cpuset="0x00001010"
                allowed_cpuset="0x00001010">
              <object type="PU" os_level="-1" os_index="4" cpuset="0x00000010"</pre>
                  complete_cpuset="0x00000010" online_cpuset="0x00000010"
                  allowed_cpuset="0x00000010"/>
              <object type="PU" os_level="-1" os_index="12" cpuset="0x00001000"</pre>
```

On a 4-socket 2-core Opteron NUMA machine, the lstopo tool may show the following graphical output:

Figure 1.1: width=

Here's the equivalent output in textual form:

```
Machine (32GB)

NUMANode L#0 (P#0 8190MB) + Socket L#0

L2 L#0 (1024KB) + L1 L#0 (64KB) + Core L#0 + PU L#0 (P#0)

L2 L#1 (1024KB) + L1 L#1 (64KB) + Core L#1 + PU L#1 (P#1)

NUMANode L#1 (P#1 8192MB) + Socket L#1

L2 L#2 (1024KB) + L1 L#2 (64KB) + Core L#2 + PU L#2 (P#2)

L2 L#3 (1024KB) + L1 L#3 (64KB) + Core L#3 + PU L#3 (P#3)

NUMANode L#2 (P#2 8192MB) + Socket L#2
```

```
L2 L#4 (1024KB) + L1 L#4 (64KB) + Core L#4 + PU L#4 (P#4)
L2 L#5 (1024KB) + L1 L#5 (64KB) + Core L#5 + PU L#5 (P#5)

NUMANode L#3 (P#3 8192MB) + Socket L#3

L2 L#6 (1024KB) + L1 L#6 (64KB) + Core L#6 + PU L#6 (P#6)
L2 L#7 (1024KB) + L1 L#7 (64KB) + Core L#7 + PU L#7 (P#7)
```

And here's the equivalent output in XML. Similar to above, line breaks were added and only PU #0 is shown for brevity:

```
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE topology SYSTEM "hwloc.dtd">
<topology>
  <object type="Machine" os_level="-1" os_index="0" cpuset="0x0000000ff"</pre>
      complete_cpuset="0x000000ff" online_cpuset="0x000000ff"
      allowed_cpuset="0x000000ff" nodeset="0x000000ff"
      complete_nodeset="0x000000ff" allowed_nodeset="0x000000ff"
      dmi_board_vendor="TYAN Computer Corp" dmi_board_name="S4881 ">
    <page_type size="4096" count="0"/>
    <page_type size="2097152" count="0"/>
    <object type="NUMANode" os_level="-1" os_index="0" cpuset="0x00000003"</pre>
        complete_cpuset="0x00000003" online_cpuset="0x00000003"
        allowed_cpuset="0x00000003" nodeset="0x00000001"
        complete_nodeset="0x00000001" allowed_nodeset="0x00000001"
        local memory="7514177536">
      <page_type size="4096" count="1834516"/>
      <page_type size="2097152" count="0"/>
      <object type="Socket" os_level="-1" os_index="0" cpuset="0x00000003"</pre>
          complete_cpuset="0x00000003" online_cpuset="0x00000003"
          allowed_cpuset="0x00000003" nodeset="0x00000001"
          complete_nodeset="0x00000001" allowed_nodeset="0x00000001">
        <object type="Cache" os_level="-1" cpuset="0x00000001"</pre>
            complete_cpuset="0x00000001" online_cpuset="0x00000001"
            allowed_cpuset="0x00000001" nodeset="0x00000001"
            complete_nodeset="0x00000001" allowed_nodeset="0x00000001"
            cache_size="1048576" depth="2" cache_linesize="64">
          <object type="Cache" os_level="-1" cpuset="0x00000001"</pre>
              complete_cpuset="0x00000001" online_cpuset="0x00000001"
              allowed_cpuset="0x00000001" nodeset="0x00000001"
              complete_nodeset="0x00000001" allowed_nodeset="0x00000001"
              cache_size="65536" depth="1" cache_linesize="64">
            <object type="Core" os_level="-1" os_index="0"</pre>
                cpuset="0x00000001" complete_cpuset="0x00000001"
                online_cpuset="0x00000001" allowed_cpuset="0x00000001"
                nodeset="0x00000001" complete_nodeset="0x00000001"
                allowed_nodeset="0x00000001">
              <object type="PU" os_level="-1" os_index="0" cpuset="0x00000001"</pre>
                   complete_cpuset="0x00000001" online_cpuset="0x00000001"
                  allowed_cpuset="0x00000001" nodeset="0x00000001"
                  complete_nodeset="0x00000001" allowed_nodeset="0x00000001"/>
            </object>
          </object>
        </object>
  <!-- ...more objects listed here ... -->
</topology>
```

On a 2-socket quad-core Xeon (pre-Nehalem, with 2 dual-core dies into each socket):

Here's the same output in textual form:

```
Machine (16GB)

Socket L#0

L2 L#0 (4096KB)

L1 L#0 (32KB) + Core L#0 + PU L#0 (P#0)

L1 L#1 (32KB) + Core L#1 + PU L#1 (P#4)

L2 L#1 (4096KB)

L1 L#2 (32KB) + Core L#2 + PU L#2 (P#2)

L1 L#3 (32KB) + Core L#3 + PU L#3 (P#6)

Socket L#1

L2 L#2 (4096KB)

L1 L#4 (32KB) + Core L#4 + PU L#4 (P#1)

L1 L#5 (32KB) + Core L#5 + PU L#5 (P#5)

L2 L#3 (4096KB)

L1 L#6 (32KB) + Core L#6 + PU L#6 (P#3)

L1 L#6 (32KB) + Core L#6 + PU L#6 (P#3)

L1 L#7 (32KB) + Core L#7 + PU L#7 (P#7)
```

And the same output in XML (line breaks added, only PU #0 shown):

```
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE topology SYSTEM "hwloc.dtd">
<topology>
  <object type="Machine" os_level="-1" os_index="0" cpuset="0x000000ff"</pre>
      \verb|complete_cpuset="0x000000ff"| on line_cpuset="0x000000ff"|
      allowed_cpuset="0x000000ff" dmi_board_vendor="Dell Inc."
      dmi_board_name="0NR282" local_memory="16865292288">
    <page_type size="4096" count="4117503"/>
    <page_type size="2097152" count="0"/>
    <object type="Socket" os_level="-1" os_index="0" cpuset="0x00000055"</pre>
        complete_cpuset="0x00000055" online_cpuset="0x00000055"
        allowed_cpuset="0x00000055">
      <object type="Cache" os_level="-1" cpuset="0x00000011"</pre>
          complete_cpuset="0x00000011" online_cpuset="0x00000011"
          allowed_cpuset="0x00000011" cache_size="4194304" depth="2"
          cache_linesize="64">
        <object type="Cache" os_level="-1" cpuset="0x00000001"</pre>
            complete_cpuset="0x00000001" online_cpuset="0x00000001"
            allowed_cpuset="0x00000001" cache_size="32768" depth="1"
```

```
cache_linesize="64">
          <object type="Core" os_level="-1" os_index="0" cpuset="0x00000001"</pre>
              complete_cpuset="0x00000001" online_cpuset="0x00000001"
              allowed cpuset="0x00000001">
            <object type="PU" os_level="-1" os_index="0" cpuset="0x00000001"</pre>
                complete_cpuset="0x00000001" online_cpuset="0x00000001"
                allowed_cpuset="0x00000001"/>
          </object>
        </object>
        <object type="Cache" os_level="-1" cpuset="0x00000010"</pre>
            complete_cpuset="0x00000010" online_cpuset="0x00000010"
            allowed_cpuset="0x00000010" cache_size="32768" depth="1"
            cache_linesize="64">
          <object type="Core" os_level="-1" os_index="1" cpuset="0x00000010"</pre>
              complete_cpuset="0x00000010" online_cpuset="0x00000010"
              allowed_cpuset="0x00000010">
            <object type="PU" os_level="-1" os_index="4" cpuset="0x00000010"</pre>
                complete_cpuset="0x00000010" online_cpuset="0x00000010"
                allowed_cpuset="0x00000010"/>
          </object>
        </object>
      </object>
 <!-- ...more objects listed here ... -->
</topology>
```

1.4 Programming Interface

The basic interface is available in hwloc.h. It essentially offers low-level routines for advanced programmers that want to manually manipulate objects and follow links between them. Documentation for everything in hwloc.h are provided later in this document. Developers should also look at hwloc/helper.h (and also in this document, which provides good higher-level topology traversal examples).

To precisely define the vocabulary used by hwloc, a Terms and Definitions section is available and should probably be read first.

Each hwloc object contains a cpuset describing the list of processing units that it contains. These bitmaps may be used for CPU binding and Memory binding. hwloc offers an extensive bitmap manipulation interface in hwloc/bitmap.h.

Moreover, hwloc also comes with additional helpers for interoperability with several commonly used environments. See the Interoperability With Other Software section for details.

The complete API documentation is available in a full set of HTML pages, man pages, and self-contained PDF files (formatted for both both US letter and A4 formats) in the source tarball in doc/doxygen-doc/.

NOTE: If you are building the documentation from a Subversion checkout, you will need to have Doxygen and pdflatex installed -- the documentation will be built during the normal "make" process. The documentation is installed during "make install" to \$pre-fix/share/doc/hwloc/ and your systems default man page tree (under \$prefix, of course).

1.4.1 Portability

As shown in CLI Examples, hwloc can obtain information on a wide variety of hardware topologies. However, some platforms and/or operating system versions will only report a subset of this information. For example, on an PPC64-based system with 32 cores (each with 2 hardware threads) running a default 2.6.18-based kernel from RHEL 5.4, hwloc is only able to glean information about NUMA nodes and processor units (PUs). No information about caches, sockets, or cores is available.

Similarly, Operating System have varying support for CPU and memory binding, e.g. while some Operating Systems provide interfaces for all kinds of CPU and memory bindings, some others provide only interfaces for a limited number of kinds of CPU and memory binding, and some do not provide any binding interface at all. Hwloc's binding functions would then simply return the ENOSYS error (Function not implemented), meaning that the underlying Operating System does not provide any interface for them. CPU binding and Memory binding provide more information on which hwloc binding functions should be preferred because interfaces for them are usually available on the supported Operating Systems.

Here's the graphical output from Istopo on this platform when Simultaneous Multi-Threading (SMT) is enabled:

And here's the graphical output from Istopo on this platform when SMT is disabled:

Notice that hwloc only sees half the PUs when SMT is disabled. PU #15, for example, seems to change location from NUMA node #0 to #1. In reality, no PUs "moved" -- they were simply re-numbered when hwloc only saw half as many. Hence, PU #15 in the SMT-disabled picture probably corresponds to PU #30 in the SMT-enabled picture.

This same "PUs have disappeared" effect can be seen on other platforms -- even platforms / OSs that provide much more information than the above PPC64 system. This is an unfortunate side-effect of how operating systems report information to hwloc.

Note that upgrading the Linux kernel on the same PPC64 system mentioned above to 2.6.34, hwloc is able to discover all the topology information. The following picture shows the entire topology layout when SMT is enabled:

Developers using the hwloc API or XML output for portable applications should therefore be extremely careful to not make any assumptions about the structure of data that is returned. For example, per the above reported PPC topology, it is not safe to assume that PUs will always be descendants of cores.

Additionally, future hardware may insert new topology elements that are not available in

this version of hwloc. Long-lived applications that are meant to span multiple different hardware platforms should also be careful about making structure assumptions. For example, there may someday be an element "lower" than a PU, or perhaps a new element may exist between a core and a PU.

1.4.2 API Example

The following small C example (named "hwloc-hello.c") prints the topology of the machine and bring the process to the first logical processor of the second core of the machine.

```
/* Example hwloc API program.
 * Copyright © 2009-2010 inria. All rights reserved. * Copyright © 2009-2011 Université Bordeaux 1
 * Copyright © 2009-2010 Cisco Systems, Inc. All rights reserved.
 \star See COPYING in top-level directory.
 * hwloc-hello.c
#include <hwloc.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>
static void print_children(hwloc_topology_t topology, hwloc_obj_t obj,
                                int depth)
    char string[128];
    unsigned i;
    hwloc_obj_snprintf(string, sizeof(string), topology, obj, "#", 0);
printf("%*s%s\n", 2*depth, "", string);
for (i = 0; i < obj->arity; i++) {
         print_children(topology, obj->children[i], depth + 1);
int main (void)
     int depth;
    unsigned i, n;
    unsigned long size;
    int levels;
    char string[128];
     int topodepth;
    hwloc_topology_t topology;
    hwloc_cpuset_t cpuset;
    hwloc_obj_t obj;
     /* Allocate and initialize topology object. */
    hwloc_topology_init(&topology);
     /\star ... Optionally, put detection configuration here to ignore
        some objects types, define a synthetic topology, etc....
        The default is to detect all the objects of the machine that the caller is allowed to access. See Configure Topology
        Detection. */
     /* Perform the topology detection. */
    hwloc_topology_load(topology);
     /\star Optionally, get some additional topology information in case we need the topology depth later. \star/
    topodepth = hwloc_topology_get_depth(topology);
```

```
* First example:
 \star Walk the topology with an array style, from level 0 (always
 \star the system level) to the lowest level (always the proc level).
for (depth = 0; depth < topodepth; depth++) {</pre>
   printf("*** Objects at level %d\n", depth);
    for (i = 0; i < hwloc_get_nbobjs_by_depth(topology, depth);</pre>
        i++) {
       hwloc_obj_snprintf(string, sizeof(string), topology,
                  hwloc_get_obj_by_depth(topology, depth, i),
"#", 0);
       printf("Index %u: %s\n", i, string);
   }
/********************
 * Second example:
 \star Walk the topology with a tree style.
printf("*** Printing overall tree\n");
print_children(topology, hwloc_get_root_obj(topology), 0);
/*********************
* Third example:
 * Print the number of sockets.
depth = hwloc_get_type_depth(topology, HWLOC_OBJ_SOCKET);
if (depth == HWLOC_TYPE_DEPTH_UNKNOWN) {
   printf("*** The number of sockets is unknown\n");
   printf("*** %u socket(s)\n",
          hwloc_get_nbobjs_by_depth(topology, depth));
/********************
* Fourth example:
 * Compute the amount of cache that the first logical processor
 * has above it.
 *******************
levels = 0;
size = 0;
for (obj = hwloc_get_obj_by_type(topology, HWLOC_OBJ_PU, 0);
    obj;
    obj = obj->parent)
  if (obj->type == HWLOC_OBJ_CACHE) {
   levels++;
   size += obj->attr->cache.size;
printf("*** Logical processor 0 has %d caches totaling %luKB\n",
      levels, size / 1024);
/********************
 * Fifth example:
 \star Bind to only one thread of the last core of the machine.
* First find out where cores are, or else smaller sets of CPUs if
 \star the OS doesn't have the notion of a "core".
depth = hwloc_get_type_or_below_depth(topology, HWLOC_OBJ_CORE);
/* Get last core. */
obj = hwloc_get_obj_by_depth(topology, depth,
             hwloc_get_nbobjs_by_depth(topology, depth) - 1);
if (obj) {
    /\star Get a copy of its cpuset that we may modify. \star/
   cpuset = hwloc_bitmap_dup(obj->cpuset);
    /\star Get only one logical processor (in case the core is
      SMT/hyperthreaded).
   hwloc_bitmap_singlify(cpuset);
   /\star And try to bind ourself there. \star/
```

```
if (hwloc_set_cpubind(topology, cpuset, 0)) {
       char *str;
       hwloc_bitmap_asprintf(&str, obj->cpuset);
       printf("Couldn't bind to cpuset %s: %s\n", str, strerror(error));
       free(str);
    /* Free our cpuset copy */
   hwloc_bitmap_free(cpuset);
/******************
 * Sixth example:
 \star Allocate some memory on the last NUMA node, bind some existing
 * memory to the last NUMA node.
 *************************
/* Get last node. */
n = hwloc_get_nbobjs_by_type(topology, HWLOC_OBJ_NODE);
if (n) {
   void *m;
   size = 1024*1024;
   obj = hwloc\_get\_obj\_by\_type(topology, HWLOC\_OBJ\_NODE, n - 1);
   hwloc_free(topology, m, size);
   m = malloc(size);
   hwloc_set_area_membind_nodeset(topology, m, size, obj->nodeset,
          HWLOC_MEMBIND_DEFAULT, 0);
   free (m);
}
/* Destroy topology object. */
hwloc_topology_destroy(topology);
return 0:
```

hwloc provides a pkg-config executable to obtain relevant compiler and linker flags. For example, it can be used thusly to compile applications that utilize the hwloc library (assuming GNU Make):

```
CFLAGS += $(pkg-config --cflags hwloc)
LDLIBS += $(pkg-config --libs hwloc)
cc hwloc-hello.c $(CFLAGS) -o hwloc-hello $(LDLIBS)
```

On a machine with 4GB of RAM and 2 processor sockets -- each socket of which has two processing cores -- the output from running hwloc-hello could be something like the following:

```
shell$ ./hwloc-hello
*** Objects at level 0
Index 0: Machine(3938MB)
*** Objects at level 1
Index 0: Socket#0
Index 1: Socket#1
*** Objects at level 2
Index 0: Core#0
Index 1: Core#1
Index 2: Core#3
Index 3: Core#2
*** Objects at level 3
Index 0: PU#0
```

```
Index 1: PU#1
Index 2: PU#2
Index 3: PU#3
*** Printing overall tree
Machine (3938MB)
  Socket#0
    Core#0
      PU#0
    Core#1
      PII#1
  Socket#1
    Core#3
      PU#2
    Core#2
      PU#3
*** 2 socket(s)
shell$
```

1.5 Questions and Bugs

Questions should be sent to the devel mailing list (http://www.open-mpi.-org/community/lists/hwloc.php). Bug reports should be reported in the tracker (https://svn.open-mpi.org/trac/hwloc/).

If hwloc discovers an incorrect topology for your machine, the very first thing you should check is to ensure that you have the most recent updates installed for your operating system. Indeed, most of hwloc topology discovery relies on hardware information retrieved through the operation system (e.g., via the /sys virtual filesystem of the Linux kernel). If upgrading your OS or Linux kernel does not solve your problem, you may also want to ensure that you are running the most recent version of the BIOS for your machine.

If those things fail, contact us on the mailing list for additional help. Please attach the output of Istopo after having given the --enable-debug option to ./configure and rebuilt completely, to get debugging output. Also attach the /proc + /sys tarball generated by the installed script hwloc-gather-topology.sh when submitting problems about Linux, or send the output of kstat cpu_info in the Solaris case, or the output of sysctl hw in the Darwin or BSD cases.

1.6 History / Credits

hwloc is the evolution and merger of the libtopology (http://runtime.-bordeaux.inria.fr/libtopology/) project and the Portable Linux Processor Affinity (PLPA) (http://www.open-mpi.org/projects/plpa/) project. -Because of functional and ideological overlap, these two code bases and ideas were merged and released under the name "hwloc" as an Open MPI sub-project.

libtopology was initially developed by the inria Runtime Team-Project (http-://runtime.bordeaux.inria.fr/) (headed by Raymond Namyst (http-://dept-info.labri.fr/~namyst/). PLPA was initially developed by the Open MPI development team as a sub-project. Both are now deprecated in favor of

hwloc, which is distributed as an Open MPI sub-project.

1.7 Further Reading

The documentation chapters include

- Terms and Definitions
- Command-Line Tools
- Environment Variables
- CPU and Memory Binding Overview
- I/O Devices
- Multi-node Topologies
- Importing and exporting topologies from/to XML files
- Interoperability With Other Software
- Thread Safety
- Embedding hwloc in Other Software
- Frequently Asked Questions

Make sure to have had a look at those too!

Terms and Definitions

Object Interesting kind of part of the system, such as a Core, a Cache, a Memory node, etc. The different types detected by hwloc are detailed in the hwloc_obj_type t enumeration.

They are topologically sorted by CPU set into a tree.

CPU set The set of logical processors (or processing units) logically included in an object (if it makes sense). They are always expressed using physical logical processor numbers (as announced by the OS). They are implemented as the hwloc_bitmap_t opaque structure. hwloc CPU sets are just masks, they do not have any relation with an operating system actual binding notion like Linux' cpusets.

Node set The set of NUMA memory nodes logically included in an object (if it makes sense). They are always expressed using physical node numbers (as announced by the OS). They are implemented with the hww.numbers/ (if it makes sense). They are implemented with the hww.numbers/ (as announced by the OS). They are implemented with the hww.numbers/ (as announced by the OS). They are implemented with the hww.numbers/ (as announced by the OS). They are implemented with the hww.numbers/ (as announced by the OS). They are implemented with the hww.numbers/ (as announced by the OS). They are implemented with the hww.numbers/ (as announced by the OS). They are implemented with the hww.numbers/ (as announced by the OS). They are implemented with the hww.numbers/ (as announced by the OS). They are implemented with the hww.numbers/ (as announced by the OS). They are implemented with the hww.numbers/ (as announced by the object of t

Bitmap A possibly-infinite set of bits used for describing sets of objects such as CP-Us (CPU sets) or memory nodes (Node sets). They are implemented with the <a href="https://hww.nuber.nube

Parent object The object logically containing the current object, for example because its CPU set includes the CPU set of the current object.

Ancestor object The parent object, or its own parent object, and so on.

Children object(s) The object (or objects) contained in the current object because their CPU set is included in the CPU set of the current object.

Arity The number of children of an object.

Sibling objects Objects which have the same parent. They usually have the same type (and hence are cousins, as well), but they may not if the topology is asymmetric.

Sibling rank Index to uniquely identify objects which have the same parent, and is always in the range [0, parent arity).

Cousin objects Objects of the same type (and depth) as the current object, even if they do not have the same parent.

Level Set of objects of the same type and depth. All these objects are cousins.

Depth Nesting level in the object tree, starting from the root object. If the topology is symmetric, the depth of a child is equal to the parent depth plus one, and an object depth is also equal to the number of parent/child links between the root object and the given object. If the topology is asymmetric, the difference between some parent and child depths may be larger than one when some intermediate levels (for instance caches) are missing in only some parts of the machine.

OS or physical index The index that the operating system (OS) uses to identify the object. This may be completely arbitrary, non-unique, non-contiguous, not representative of logical proximity, and may depend on the BIOS configuration. That is why hwloc almost never uses them, only in the default Istopo output ($\mathbb{P}: \mathbb{R}$) and cpuset masks.

Logical index Index to uniquely identify objects of the same type and depth, automatically computed by hwloc according to the topology. It expresses logical proximity in a generic way, i.e. objects which have adjacent logical indexes are adjacent in the topology. That is why hwloc almost always uses it in its API, since it expresses logical proximity. They can be shown (as L::x) by lstopo thanks to the -l option. This index is always linear and in the range [0, num_objs_same_type_same_level-1]. Think of it as "cousin rank." The ordering is based on topology first, and then on OS CPU numbers, so it is stable across everything except firmware CPU renumbering. "Logical index" should not be confused with "Logical processor". A "Logical processor" (which in hwloc we rather call "processing unit" to avoid the confusion) has both a physical index (as chosen arbitrarily by BIOS/OS) and a logical index (as computed according to logical proximity by hwloc).

Logical processor

Processing unit The smallest processing element that can be represented by a hwloc object. It may be a single-core processor, a core of a multicore processor, or a single thread in SMT processor. "Logical processor" should not be confused with "Logical index of a processor". "Logical processor" is only one of the names which can be found in various documentations to designate a processing unit.

The following diagram can help to understand the vocabulary of the relationships by showing the example of a machine with two dual core sockets (with no hardware threads); thus, a topology with 4 levels. Each box with rounded corner corresponds to one hwloc_obj_t, containing the values of the different integer fields (depth, logical_index, etc.), and arrows show to which other hwloc_obj_t pointers point to (first_child, parent, etc.). The L2 cache of the last core is intentionally missing to show how asymmetric topologies are handled.

Figure 2.1: width=

It should be noted that for PU objects, the logical index -- as computed linearly by hwloc -- is not the same as the OS index.

See also What happens if my topology is asymmetric? for more details.

Command-Line Tools

hwloc comes with an extensive C programming interface and several command line utilities. Each of them is fully documented in its own manual page; the following is a summary of the available command line tools.

3.1 Istopo

Istopo (also known as hwloc-info and hwloc-ls) displays the hierarchical topology map of the current system. The output may be graphical or textual, and can also be exported to numerous file formats such as PDF, PNG, XML, and others.

This command can also display the processes currently bound to a part of the machine (via the --ps option).

Note that Istopo can read XML files and/or alternate chroot filesystems and display topological maps representing those systems (e.g., use Istopo to output an XML file on one system, and then use Istopo to read in that XML file and display it on a different system).

3.2 hwloc-bind

hwloc-bind binds processes to specific hardware objects through a flexible syntax. A simple example is binding an executable to specific cores (or sockets or bitmaps or ...). The hwloc-bind(1) man page provides much more detail on what is possible.

hwloc-bind can also be used to retrieve the current process' binding.

3.3 hwloc-calc

hwloc-calc is generally used to create bitmap strings to pass to hwloc-bind. Although hwloc-bind accepts many forms of object specification (i.e., bitmap strings are one of

many forms that hwloc-bind understands), they can be useful, compact representations in shell scripts, for example.

hwloc-calc generates bitmap strings from given hardware objects with the ability to aggregate them, intersect them, and more. hwloc-calc generally uses the same syntax than hwloc-bind, but multiple instances may be composed to generate complex combinations.

Note that hwloc-calc can also generate lists of logical processors or NUMA nodes that are convenient to pass to some external tools such as taskset or numactl.

3.4 hwloc-distrib

hwloc-distrib generates a set of bitmap strings that are uniformly distributed across the machine for the given number of processes. These strings may be used with hwloc-bind to run processes to maximize their memory bandwidth by properly distributing them across the machine.

3.5 hwloc-ps

hwloc-ps is a tool to display the bindings of processes that are currently running on the local machine. By default, hwloc-ps only lists processes that are bound; unbound process (and Linux kernel threads) are not displayed.

3.6 hwloc-gather-topology

hwloc-gather-topology is a Linux-specific tool that saves the relevant topology files of the current machine into a tarball (and the corresponding Istopo output). These files may be used later (possibly offline) for simulating or debugging a machine without actually running on it.

3.7 hwloc-distances

hwloc-distances displays all distance matrices attached to the topology. Note that Istopo may also display distance matrices in its verbose textual output. However Istopo only prints matrices that cover the entire topology while hwloc-distances also displays matrices that ignore part of the topology.

3.8 hwloc-assembler

hwloc-assembler combines several XML topology files into a single multi-node XML topology. It may then be used later as input with hwloc_topology_set_xml() or with the

HWLOC_XMLFILE environment variable. See Multi-node Topologies for details.

3.9 hwloc-assembler-remote

hwloc-assembler-remote is a frontend to hwloc-assembler. It takes care of contacting the given list of remote hosts (through ssh) and retrieving their topologies as XML before assembling them with hwloc-assembler.

Environment Variables

The behavior of the hwloc library and tools may be tuned thanks to the following environment variables.

HWLOC_XMLFILE=/path/to/file.xml enforces the discovery from the given XML file as if hwloc_topology_set_xml() had been called. This file may have been generated earlier with Istopo file.xml. For convenience, this backend provides empty binding hooks which just return success. To have hwloc still actually call OS-specific hooks, HWLOC_THISSYSTEM should be set 1 in the environment too, to assert that the loaded file is really the underlying system. See also Importing and exporting topologies from/to XML files.

HWLOC XML VERBOSE=1

- HWLOC_SYNTHETIC_VERBOSE=1 enable verbose messages in the XML or synthetic topology backends. hwloc XML backends (see Importing and exporting topologies from/to XML files) can emit some error messages to the error output stream. Enabling these verbose messages within hwloc can be useful for understanding failures to parse input XML topologies. Similarly, enabling verbose messages in the synthetic topology backend can help understand why the description string is invalid.
- HWLOC_FSROOT=/path/to/linux/filesystem-root/ switches to reading the topology from the specified Linux filesystem root instead of the main file-system root, as if hwloc_topology_set_fsroot() had been called. Not using the main file-system root causes hwloc_topology_is_thissystem() to return 0. For convenience, this backend provides empty binding hooks which just return success. To have hwloc still actually call OS-specific hooks, HWLOC_THISSYSTEM should be set 1 in the environment too, to assert that the loaded file is really the underlying system.
- HWLOC_THISSYSTEM=1 enforces the return value of hwloc_topology_is_-thissystem(). It means that it makes hwloc assume that the selected backend provides the topology for the system on which we are running, even if it is not the OS-specific backend but the XML backend for instance. This means making the binding functions actually call the OS-specific system calls and really do binding, while the XML backend would otherwise provide empty hooks just returning

success. This can be used for efficiency reasons to first detect the topology once, save it to an XML file, and quickly reload it later through the XML backend, but still having binding functions actually do bind.

- HWLOC_HIDE_ERRORS=0 enables or disables verbose reporting of errors. The hwloc library may issue warnings to the standard error stream when it detects a problem during topology discovery, for instance if the operating system (or user) gives contradictory topology information. Setting this environment variable to 1 removes the actual displaying of these error messages.
- HWLOC_GROUPING=1 enables or disables objects grouping based on distances. By default, hwloc uses distance matrices between objects (either read from the OS or given by the user) to find groups of close objects. These groups are described by adding intermediate Group objects in the topology. Setting this environment variable to 0 will disable this grouping. This variable supersedes the obsolete HWLOC IGNORE DISTANCES variable.
- HWLOC_GROUPING_ACCURACY=0.05 relaxes distance comparison during grouping. By default, objects may be grouped if their distances form a minimal distance graph. When setting this variable to 0.02, these distances do not have to be strictly equal anymore, they may just be equal with a 2% error. If set to try instead of a numerical value, hwloc will try to group with perfect accuracy (0, the default), then with 0.01, 0.02, 0.05 and finally 0.1.
- **HWLOC_GROUPING_VERBOSE=0** enables or disables some verbose messages during grouping. If this variable is set to 1, some debug messages will be displayed during distance-based grouping of objects even if debug was not specific at configure time. This is useful when trying to find an interesting distance grouping accuracy.

HWLOC_<type>_DISTANCES=index,...:X*Y

HWLOC_<type>_DISTANCES=begin-end:X*Y*Z

HWLOC_<type>_DISTANCES=index,...:distance,... sets a distance matrix for objects of the given type and physical indexes. The type should be given as its case-sensitive stringified value (e.g. NUMANode, Socket, Cache, Core, PU). If another distance matrix already exists for the given type, either because the user specified it or because the OS offers it, it will be replaced by the given one.

If the variable value is none, the existing distance matrix for the given type is removed. Otherwise, the variable value first consists in a list of physical indexes that may be specified as a comma-separated list (e.g. 0, 2, 4, 1, 3, 5) or as a range of consecutive indexes (0-5). It is followed by a colon and the corresponding distances:

- If X*Y is given, X groups of Y close objects are specified.
- If X*Y*Z is given, X groups of Y groups of Z close objects are specified.
- Otherwise, the comma-separated list of distances should be given. If N objects are considered, the i*N+j-th value gives the distance from the i-th object to the j-th object.

Note that distances are ignored in multi-node topologies.

HWLOC_PCI_<domain>_<bus>_LOCALCPUS=<cpuset> changes the locality of I/O devices behind the specified PCI hostbridge. If no I/O locality information is available or if the BIOS reports incorrect information, it is possible to move a I/O device tree (the entire set of objects behind a host bridge) near a custom set of processors. domain and bus are the PCI domain and primary bus of the corresponding host bridge.

CPU and Memory Binding Overview

Some operating systems do not systematically provide separate functions for CPU and memory binding. This means that CPU binding functions may have have effects on the memory binding policy. Likewise, changing the memory binding policy may change the CPU binding of the current thread. This is often not a problem for applications, so by default hwloc will make use of these functions when they provide better binding support.

If the application does not want the CPU binding to change when changing the memory policy, it needs to use the HWLOC_MEMBIND_NOCPUBIND flag to prevent hwloc from using OS functions which would change the CPU binding. Additionally, HWLOC_CP-UBIND_NOMEMBIND can be passed to CPU binding function to prevent hwloc from using OS functions would change the memory binding policy. Of course, using these flags will reduce hwloc's overall support for binding, so their use is discouraged.

One can avoid using these flags but still closely control both memory and CPU binding by allocating memory, touching each page in the allocated memory, and then changing the CPU binding. The already-really-allocated memory will then be "locked" to physical memory and will not be migrated. Thus, even if the memory binding policy gets changed by the CPU binding order, the already-allocated memory will not change with it. When binding and allocating further memory, the CPU binding should be performed again in case the memory binding altered the previously-selected CPU binding.

Not all operating systems support the notion of a "current" memory binding policy for the current process, but such operating systems often still provide a way to allocate data on a given node set. Conversely, some operating systems support the notion of a "current" memory binding policy and do not permit allocating data on a specific node set without changing the current policy and allocate the data. To provide the most powerful coverage of these facilities, hwloc provides:

- functions that set/get the current memory binding policies (if supported): hwloc_-set/get_membind_*() and hwloc_set/get_proc_membind()
- functions that allocate memory bound to specific node set without changing the current memory binding policy (if supported): hwloc_alloc_membind() and hwloc_alloc_membind_nodeset().
- · helpers which, if needed, change the current memory binding policy of the pro-

cess in order to obtain memory binding: hwloc_alloc_membind_policy() and hwloc_alloc_membind_policy_nodeset()

An application can thus use the two first sets of functions if it wants to manage separately the global process binding policy and directed allocation, or use the third set of functions if it does not care about the process memory binding policy.

See CPU binding and Memory binding for hwloc's API functions regarding CPU and memory binding, respectively.

I/O Devices

hwloc usually manipulates processing units and memory but it can actually discover - I/O devices and report their locality as well. This is useful for placing I/O intensive applications on cores near the I/O devices they use.

6.1 Enabling and requirements

I/O discovery is disabled by default (except in Istopo) so as not to break legacy application by adding unexpected I/O objects to the topology. It can be enabled by passing flags such as HWLOC_TOPOLOGY_FLAG_IO_DEVICES to hwloc_topology_set_flags() before loading the topology.

Note that I/O discovery requires significant help from the operating system. The pciutils library is needed to detect PCI devices and bridges, and the actual locality of these devices is only currently detected on Linux. Also, some operating systems require privileges for probing PCI devices, see Does hwloc require privileged access? for details.

6.2 I/O object hierarchy

When I/O discovery is enabled and supported, some additional objects (types HWLOC_OBJ_BRIDGE, HWLOC_OBJ_PCI_DEVICE and HWLOC_OBJ_OS_DEVICE) are added to the topology as a child of the object they are close to. For instance, if a I/O Hub is connected to a socket, the corresponding hwloc bridge object (and its PCI bridges and devices children) is inserted as a child of the corresponding hwloc socket object.

These new objects have neither CPU sets nor node sets (NULL pointers) because they are not directly usable by the user applications. Moreover I/O hierarchies may be highly complex (asymmetric trees of bridges). So I/O objects are placed in specific levels with custom depths. Their lists may still be traversed with regular helpers such as hwlocget_next_obj_by_type(). However, hwloc offers some dedicated helpers such as hwlocget_next_pcidev() and hwloc get_next_osdev() for convenience (see Advanced I/O

34 I/O Devices

object traversal helpers).

An I/O hierarchy is organized as follows: A hostbridge object (<code>HWLOC_OBJ_BRIDGE</code> object with upstream type *Host* and downstream type *PCI*) is attached below a regular object (usually the entire machine or a NUMA node). There may be multiple hostbridges in the machine, attached to different places, but all I/O devices are below one of them. Each hostbridge contains one or several children, either other bridges (usually PCI to PCI) or PCI devices (<code>HWLOC_OBJ_PCI_DEVICE</code>). The number of bridges between the hostbridge and a PCI device depends on the machine and on the topology flags.

6.3 Software devices

Although each PCI device is uniquely identified by its bus ID (e.g. 0000:01:02.3), the application can hardly find out which PCI device is actually used when manipulating software handle (such as the *eth0* network interface or the *mlx4_0* OpenFabrics HC-A). Therefore hwloc tries to add software devices (HWLOC_OBJ_OS_DEVICE) below their PCI objects. These objects can be identified by their usual operating system-wide names, e.g. *eth0* or *mlx4_0*. However, this ability is currently only available on Linux for some classes of devices. It should especially be noted that proprietary graphics driver currently do not create any interesting software device for GPUs, they should therefore be manipulated as PCI device objects. On the contrary some PCI devices may contain multiple software device (see the example below).

See also Interoperability With Other Software for managing these devices without considering them as hwloc objects.

6.4 Consulting I/O devices and binding

I/O devices may be consulted by traversing the topology manually (with usual routines such as hwloc_get_obj_by_type()) or by using dedicated helpers (such as hwloc_get_pcidev by busid(), see Advanced I/O object traversal helpers).

I/O objects do not actually contain any locality information because their CPU sets and node sets are NULL. Their locality must be retrieved by walking up the object tree (through the parent link) until an non-I/O object is found (see <a href="https://hww.non-null.com/null-cpu-sets-null-cpu-sets

Command-line tools are also aware of I/O devices. Istopo displays the interesting ones by default (passing --no-io disables it).

hwloc-calc and hwloc-bind may manipulate I/O devices specified by PCI bus ID or by OS device name. For instance, pci=0000:02:03.0 (respectively os=eth0) is replaced by the set of CPUs that are close to this PCI device (respectively software device). This enables easy binding of I/O-intensive applications near the device they use.

6.5 Examples 35

6.5 Examples

The following picture shows a dual-socket dual-core host whose PCI bus is connected to the first socket and NUMA node.

Six interesting PCI devices were discovered. However hwloc found some corresponding software devices (*eth0*, *eth1*, *sda*, *mlx4_0*, *ib0*, and *ib1*) for only four of these physical devices. The other ones (*PCI 102b:0532* and *PCI 8086:3a20*) are an unused IDE controller (no disk attached) and a graphic card (no corresponding software device reported to the user by the operating system).

On the contrary, it should be noted three different software devices were found for the last PCI device (*PCI 15b3:634a*). Indeed this OpenFabrics HCA PCI device object contains one one OpenFabrics software device (*mlx4_0*) and two virtual network interface software devices (*ib0* and *ib1*).

PCI link speed is also reported for some bridges and devices because Istopo was privileged when it discovered the topology.

Here is the corresponding textual output:

```
Machine (24GB)

NUMANode L#0 (P#0 12GB)

Socket L#0 + L3 L#0 (8192KB)

L2 L#0 (256KB) + L1 L#0 (32KB) + Core L#0 + PU L#0 (P#0)

L2 L#1 (256KB) + L1 L#1 (32KB) + Core L#1 + PU L#1 (P#2)

HostBridge

PCIBridge
```

36 I/O Devices

```
PCI 14e4:163b
    Net "eth0"

PCI 14e4:163b
    Net "eth1"

PCIBridge

PCI 1000:0060
    Block "sda"

PCIBridge

PCI 102b:0532

PCI 8086:3a20

PCI 15b3:634a
    Net "ib0"
    Net "ib1"
    Net "mlx4_0"

NUMANode L#1 (P#1 12GB) + Socket L#1 + L3 L#1 (8192KB)

L2 L#2 (256KB) + L1 L#2 (32KB) + Core L#2 + PU L#2 (P#1)

L2 L#3 (256KB) + L1 L#3 (32KB) + Core L#3 + PU L#3 (P#3)
```

Multi-node Topologies

hwloc is usually used for consulting and manipulating single machine topologies. This includes large systems as long as a single instance of the operating system manages the entire system. However it is sometimes desirable to have multiple independent hosts inside the same topology, for instance when applying algorithms to an entire cluster topology. hwloc therefore offers the ability to agregate multiple host topologies into a single global one.

7.1 Multi-node Objects Specifities

A multi-node topology contains several single-node topologies. Those are assembled by making their own root objects (usually Machine object) children of higher objects. These higher objects include at least the root of the global topology (usually a System object). Some intermediate objects may also exists, for instance to represent switches in a large fabric.

There are actually three possible types of objects that have different properties with respect to cpusets, nodesets and binding. Indeed those cpusets and nodesets were designed for execution and memory binding within a single operating system. Binding on another system or across several different systems would be meaningless.

- **Local objects** Any object that corresponds to the local machine may be manipulated as usual. Obviously, if the multi-node topology does not contain the local machine topology, no such local object exists.
- **Objects from other nodes** Any object that comes from inside another node is represented as usual but its cpusets and nodesets should not be used for binding since binding on another system makes no sense.
- **Objects above single nodes** Any object above single-node topologies does not have any cpuset or nodeset pointer because binding across multiple systems makes no sense. This includes the glocal root object of a multi-node topology and possibly some intermediate objects between this global root and the local root of single-node topologies.

It is important to keep this in mind before binding using multi-node topologies. To make sure binding on an object is possible, one should first check that its cpuset or nodeset pointer is not NULL. Then, one should check whether the object is indeed local.

To find out which machine a given object correspond too, one may look at the info attributes of the parent Machine object. The <code>HostName</code> info is usually available in Machine objects, it may be retrieved with the following code:

```
hwloc_obj_t machine_obj;
obj = hwloc_get_ancestor_obj_by_type(topology, HWLOC_OBJ_MACHINE, obj);
if (machine_obj)
  return hwloc_obj_get_info_by_name(machine_obj, "HostName");
else
  return NULL;
```

The hwloc assembler scripts (see below) also add AssemblerName and - AssemblerIndex info attributes to the Machine objects to identify the corresponding host name and index during assembly.

7.2 Assembling topologies with command-line tools

One way to manipulate multinode topologies is to retrieve other nodes' topologies as XML files and combine them as a global XML topology. It may then be loaded with hwloc_topology_set_xml() or with the HWLOC_XMLFILE environment variable.

The hwloc-assembler and hwloc-assembler-remote utilities offer the ability to combine XML topologies or remote nodes' topologies (see Command-Line Tools).

7.3 Assembling topologies with the programming interface

The hwloc programming interface offers the ability to build multinode topologies using the *custom* interface. A new multinode topology has to be initialized with hwloc_topology_init() and then set to custom with hwloc_topology_set_custom(). Topologies and objects mat then be assembled. Later, the custom topology is finalized as usual with hwloc_topology_load().

A custom topology starts with a single root object of type System. It may be modified by inserting a new child object with hwloc_custom_insert_group_object_by_parent() or by duplicating another topology with hwloc_custom_insert_topology(). Both of these operations require to specify the parent object in the custom topology where the insertion will take place. This parent may be either the root (returned by hwloc_get_root_obj()) or an already-inserted object (returned by hwloc_custom_insert_group_object_by_parent()).

Ideally, any existing object in the custom topology could be the parent. However, special care should be taken when traversing the topology to find such an object because most links between objects (children, siblings, cousins) are not setup until <a href="https://hww.ncbetween.com

7.4 Example of assembly with the programming interface

If the topologies of two hosts have been previously gathered in XML files host1.xml and host2.xml, the global topology may be assembled with the following code.

```
hwloc_topology_t host1, host2, global;
/* initialize global topology */
hwloc_topology_init(&global);
hwloc_topology_set_custom(global);
/\star insert host1 entire topology below the global topology root \star/
hwloc_topology_init(&host1);
hwloc_topology_load(host1);
hwloc_custom_insert_topology(global, hwloc_get_root_obj(global),
                             host1, NULL);
hwloc_topology_destroy(host1);
/\star insert host2 entire topology below the global topology root \star/
hwloc_topology_init(&host2);
hwloc_topology_load(host2);
hwloc_custom_insert_topology(global, hwloc_get_root_obj(global),
                              host2, NULL);
hwloc_topology_destroy(host2);
/* load and play with the global topology */
hwloc_topology_load(global);
```

If a intermediate object such as a switch should be inserted above one of the host topologies:

Importing and exporting topologies from/to XML files

hwloc offers the ability to export topologies to XML files and reload them later. This is for instance useful for loading topologies faster (see I do not want hwloc to rediscover my enormous machine topology every time I rerun a process), manipulating other nodes' topology, or avoiding the need for privileged processes (see Does hwloc require privileged access?).

Topologies may be exported to XML files thanks to hwloc_topology_export_xml(), or to a XML memory buffer with hwloc_topology_export_xmlbuffer(). The Istopo program can also serve as a XML topology export tool.

XML topologies may then be reloaded later with hwloc_topology_set_xml() and hwloc_topology_set_xmlbuffer(). The XMLFILE environment variable also tells hwloc to load the topology from the given XML file.

8.1 libxml2 and minimalistic XML backends

hwloc offers two backends for importing/exporting XML.

First, it can use the libxml2 library for importing/exporting XML files. It features full XML support, for instance when those files have to be manipulated by non-hwloc software (e.g. a XSLT parser). The libxml2 backend is enabled by default if libxml2 development headers are available.

If libxml2 is not available at configure time, or if <code>--disable-libxml2</code> is passed, hwloc falls back to a custom backend. Contrary to the aforementioned full XML backend with libxml2, this minimalistic XML backend cannot be guaranteed to work with external programs. It should only be assumed to be compatible with the same hwloc release (even if using the libxml2 backend). Its advantage is however to always be available without requiring any external dependency.

8.2 XML import error management

Importing XML files can fail at least because of file access errors, invalid XML syntax or non-hwloc-valid XML contents.

Both backend cannot detect all these errors when the input XML file or buffer is selected (when hwloc_topology_set_xml() or hwloc_topology_set_xmlbuffer() is called). Some errors such non-hwloc-valid contents can only be detected later when loading the topology with hwloc_topology_load().

It is therefore strongly recommended to check the return value of both hwloc_topology_set_xml() (or hwloc_topology_set_xmlbuffer()) and hwloc_topology_load() to handle all these errors.

Interoperability With Other Software

Although hwloc offers its own portable interface, it still may have to interoperate with specific or non-portable libraries that manipulate similar kinds of objects. hwloc therefore offers several specific "helpers" to assist converting between those specific interfaces and hwloc.

Some external libraries may be specific to a particular OS; others may not always be available. The hwloc core therefore generally does not explicitly depend on these types of libraries. However, when a custom application uses or otherwise depends on such a library, it may optionally include the corresponding hwloc helper to extend the hwloc interface with dedicated helpers.

- **Linux specific features** hwloc/linux.h offers Linux-specific helpers that utilize some non-portable features of the Linux system, such as binding threads through their thread ID ("tid") or parsing kernel CPU mask files.
- **Linux libnuma** hwloc/linux-libnuma.h provides conversion helpers between hwloc C-PU sets and libnuma-specific types, such as nodemasks and bitmasks. It helps you use libnuma memory-binding functions with hwloc CPU sets.
- **Glibc** hwloc/glibc-sched.h offers conversion routines between Glibc and hwloc CPU sets in order to use hwloc with functions such as sched_setaffinity().
- **OpenFabrics Verbs** hwloc/openfabrics-verbs.h helps interoperability with the Open-Fabrics Verbs interface. For example, it can return a list of processors near an OpenFabrics device. Note that if I/O device discovery is enabled, such devices may also appear as PCI objects and as OS objects in the topology.
- **Myrinet Express** hwloc/myriexpress.h offers interoperability with the Myrinet Express interface. It can return the list of processors near a Myrinet board managed by the MX driver. Note that if I/O device discovery is enabled, such boards may also appear as PCI objects in the topology.
- **NVIDIA CUDA** hwloc/cuda.h and hwloc/cudart.h enable interoperability with NVIDIA CUDA Driver and Runtime interfaces. For instance, it may return the list of processors near NVIDIA GPUs. Note that if I/O device discovery is enabled, GPUs may also appear as PCI objects in the topology.

Taskset command-line tool The taskset command-line tool is widely used for binding processes. It manipulates CPU set strings in a format that is slightly different from hwloc's one (it does not divide the string in fixed-size subsets and separates them with commas). To ease interoperability, hwloc offers routines to convert hwloc - CPU sets from/to taskset-specific string format. Most hwloc command-line tools also support the --taskset option to manipulate taskset-specific strings.

Thread Safety

Like most libraries that mainly fill data structures, hwloc is not thread safe but rather reentrant: all state is held in a hwloc_topology_t instance without mutex protection. That means, for example, that two threads can safely operate on and modify two different hwloc_topology_t instances, but they should not simultaneously invoke functions that modify the *same* instance. Similarly, one thread should not modify a hwloc_topology_t instance while another thread is reading or traversing it. However, two threads can safely read or traverse the same hwloc_topology_t instance concurrently.

When running in multiprocessor environments, be aware that proper thread synchronization and/or memory coherency protection is needed to pass hwloc data (such as hwloc_topology_t pointers) from one processor to another (e.g., a mutex, semaphore, or a memory barrier). Note that this is not a hwloc-specific requirement, but it is worth mentioning.

For reference, hwloc_topology_t modification operations include (but may not be limited to):

Creation and destruction hwloc_topology_init(), hwloc_topology_destroy() (see Create and Destroy - Topologies) imply major modifications of the structure, including freeing some objects. No other thread cannot access the topology or any of its objects at the same time.

Also references to objects inside the topology are not valid anymore after these functions return.

Runtime topology modifications hwloc_topology_insert_misc_object-_by_* (see Tinker With Topologies.) may modify the topology significantly by adding objects inside the tree, changing the topology depth, etc. hwloc-_topology_restrict modifies the topology even more dramatically by removing some objects.

Although references to former objects *may* still be valid after insertion or restriction, it is strongly advised to not rely on any such guarantee and always re-consult the topology to reacquire new instances of objects.

Locating topologies hwloc_topology_ignore*, hwloc_topology_set*

46 Thread Safety

(see Configure Topology Detection) do not modify the topology directly, but they do modify internal structures describing the behavior of the next invocation of $\label{eq:hwloc_topology_load()} \text{hwloc_topology_load()}.$ Hence, all of these functions should not be used concurrently.

Note that these functions do not modify the current topology until it is actually reloaded; it is possible to use them while other threads are only read the current topology.

Embedding hwloc in Other Software

It can be desirable to include hwloc in a larger software package (be sure to check out the LICENSE file) so that users don't have to separately download and install it before installing your software. This can be advantageous to ensure that your software uses a known-tested/good version of hwloc, or for use on systems that do not have hwloc pre-installed.

When used in "embedded" mode, hwloc will:

- · not install any header files
- · not build any documentation files
- · not build or install any executables or tests
- not build libhwloc.* -- instead, it will build libhwloc_embedded.*

There are two ways to put hwloc into "embedded" mode. The first is directly from the configure command line:

```
shell\$ ./configure --enable-embedded-mode ...
```

The second requires that your software project uses the GNU Autoconf / Automake / Libtool tool chain to build your software. If you do this, you can directly integrate hwloc's m4 configure macro into your configure script. You can then invoke hwloc's configuration tests and build setup by calling an m4 macro (see below).

11.1 Using hwloc's M4 Embedding Capabilities

Every project is different, and there are many different ways of integrating hwloc into yours. What follows is *one* example of how to do it.

If your project uses recent versions Autoconf, Automake, and Libtool to build, you can use hwloc's embedded m4 capabilities. We have tested the embedded m4 with projects

that use Autoconf 2.65, Automake 1.11.1, and Libtool 2.2.6b. Slightly earlier versions of may also work but are untested. Autoconf versions prior to 2.65 are almost certain to not work.

You can either copy all the config/hwloc*m4 files from the hwloc source tree to the directory where your project's m4 files reside, or you can tell aclocal to find more m4 files in the embedded hwloc's "config" subdirectory (e.g., add "-- lpath/to/embedded/hwloc/config" to your Makefile.am's ACLOCAL_AMFLAGS).

The following macros can then be used from your configure script (only HWLOC_SET-UP CORE *must* be invoked if using the m4 macros):

• HWLOC_SETUP_CORE(config-dir-prefix, action-upon-success, action-upon-failure, print_banner_or_not): Invoke the hwloc configuration tests and setup the hwloc tree to build. The first argument is the prefix to use for AC_OUTPUT files -- it's where the hwloc tree is located relative to \$top_srcdir. Hence, if your embedded hwloc is located in the source tree at contrib/hwloc, you should pass [contrib/hwloc] as the first argument. If HWLOC_SETUP_CORE and the rest of configure completes successfully, then "make" traversals of the hwloc tree with standard Automake targets (all, clean, install, etc.) should behave as expected. For example, it is safe to list the hwloc directory in the SUBDIRS of a higher-level Makefile.am. The last argument, if not empty, will cause the macro to display an announcement banner that it is starting the hwloc core configuration tests.

HWLOC_SETUP_CORE will set the following environment variables and AC_SUBST them: HWLOC_EMBEDDED_CFLAGS, HWLOC_EMBEDDED_CPPFLAGS, and HWLOC_EMBEDDED_LIBS. These flags are filled with the values discovered in the hwloc-specific m4 tests, and can be used in your build process as relevant. The _CFLAGS, _C-PPFLAGS, and _LIBS variables are necessary to build libhwloc (or libhwloc_embedded) itself.

HWLOC_SETUP_CORE also sets HWLOC_EMBEDDED_LDADD environment variable (and AC_SUBSTs it) to contain the location of the libhwloc_embedded.la convenience Libtool archive. It can be used in your build process to link an application or other library against the embedded hwloc library.

NOTE: If the HWLOC_SET_SYMBOL_PREFIX macro is used, it must be invoked before HWLOC_SETUP_CORE.

- HWLOC_BUILD_STANDALONE: HWLOC_SETUP_CORE defaults to building hwloc in an "embedded" mode (described above). If HWLOC_BUILD_STAND-ALONE is invoked *before* HWLOC_SETUP_CORE, the embedded definitions will not apply (e.g., libhwloc.la will be built, not libhwloc embedded.la).
- HWLOC_SET_SYMBOL_PREFIX(foo_): Tells the hwloc to prefix all of hwloc's types and public symbols with "foo_"; meaning that function hwloc_init() becomes foo_hwloc_init(). Enum values are prefixed with an upper-case translation if the prefix supplied; HWLOC_OBJ_SYSTEM becomes FOO_HWLOC_OBJ_SYSTEM. This is recommended behavior if you are including hwloc in middleware -- it is possible that your software will be combined with other software that links

to another copy of hwloc. If both uses of hwloc utilize different symbol prefixes, there will be no type/symbol clashes, and everything will compile, link, and run successfully. If you both embed hwloc without changing the symbol prefix and also link against an external hwloc, you may get multiple symbol definitions when linking your final library or application.

- HWLOC_SETUP_DOCS, HWLOC_SETUP_UTILS, HWLOC_SETUP_TESTS: These three macros only apply when hwloc is built in "standalone" mode (i.e.,
 they should NOT be invoked unless HWLOC_BUILD_STANDALONE has already
 been invoked).
- HWLOC_DO_AM_CONDITIONALS: If you embed hwloc in a larger project and build it conditionally with Automake (e.g., if HWLOC_SETUP_CORE is invoked conditionally), you must unconditionally invoke HWLOC_DO_AM_CONDITIONALS to avoid warnings from Automake (for the cases where hwloc is not selected to be built). This macro is necessary because hwloc uses some AM_CONDITIONALS to build itself, and AM_CONDITIONALS cannot be defined conditionally. Note that it is safe (but unnecessary) to call HWLOC_DO_AM_CONDITIONALS even if HWLOC_SETUP_CORE is invoked unconditionally. If you are not using Automake to build hwloc, this macro is unnecessary (and will actually cause errors because it invoked AM * macros that will be undefined).

NOTE: When using the HWLOC_SETUP_CORE m4 macro, it may be necessary to explicitly invoke AC_CANONICAL_TARGET (which requires config.sub and config.guess) and/or AC_USE_SYSTEM_EXTENSIONS macros early in the configure script (e.g., after AC_INIT but before AM_INIT_AUTOMAKE). See the Autoconf documentation for further information.

Also note that hwloc's top-level configure.ac script uses exactly the macros described above to build hwloc in a standalone mode (by default). You may want to examine it for one example of how these macros are used.

11.2 Example Embedding hwloc

Here's an example of integrating with a larger project named sandbox that already uses Autoconf. Automake, and Libtool to build itself:

```
shell$ cd sandbox
shell$ cp -r /somewhere/else/hwloc-<version> my-embedded-hwloc
shell$ edit Makefile.am
   1. Add "-Imy-embedded-hwloc/config" to ACLOCAL_AMFLAGS
   2. Add "my-embedded-hwloc" to SUBDIRS
   3. Add "$(HWLOC_EMBEDDED_LDADD)" and "$(HWLOC_EMBEDDED_LIBS)" to
        sandbox's executable's LDADD line. The former is the name of the
        Libtool convenience library that hwloc will generate. The latter
        is any dependent support libraries that may be needed by
        $(HWLOC_EMBEDDED_LDADD).
4. Add "$(HWLOC_EMBEDDED_CFLAGS)" to AM_CFLAGS
5. Add "$(HWLOC_EMBEDDED_CPPFLAGS)" to AM_CPPFLAGS
shell$ edit configure.ac
```

```
1. Add "HWLOC_SET_SYMBOL_PREFIX(sandbox_hwloc_)" line
2. Add "HWLOC_SETUP_CORE([my-embedded-hwloc], [happy=yes], [happy=no])" line
3. Add error checking for happy=no case
shell$ edit sandbox.c
1. Add #include <hwloc.h>
2. Add calls to sandbox_hwloc_init() and other hwloc API functions
```

Now you can bootstrap, configure, build, and run the sandbox as normal -- all calls to "sandbox_hwloc_*" will use the embedded hwloc rather than any system-provided copy of hwloc.

Frequently Asked Questions

12.1 I do not want hwloc to rediscover my enormous machine topology every time I rerun a process

Although the topology discovery is not expensive on common machines, its overhead may become significant when multiple processes repeat the discovery on large machines (for instance when starting one process per core in a parallel application). The machine topology usually does not vary much, except if some cores are stopped/restarted or if the administrator restrictions are modified. Thus rediscovering the whole topology again and again may look useless.

For this purpose, hwloc offers XML import/export features. It lets you save the discovered topology to a file (for instance with the Istopo program) and reload it later by setting the HWLOC_XMLFILE environment variable. Loading a XML topology is usually much faster than querying multiple files or calling multiple functions of the operating system. It is also possible to manipulate such XML files with the C programming interface, and the import/export may also be directed to memory buffer (that may for instance be transmitted between applications through a socket). See also Importing and exporting topologies from/to XML files.

12.2 Does hwloc require privileged access?

hwloc discovers the topology by querying the operating system. Some minor features may require privileged access to the operation system. For instance PCI link speed discovery on Linux is reserved to root, and the entire PCI discovery on FreeBSD requires access to the /dev/pci special file.

To workaround this limitation, it is recommended to export the topology as a XML file generated by the administrator (with the Istopo program) and make it available to all users (see Importing and exporting topologies from/to XML files). It will offer all discovery information to any application without requiring any privileged access anymore. Only the necessary hardware characteristics will be exported, no sensitive information

will be disclosed through this XML export.

This XML-based model also has the advantage of speeding up the discovery because reading a XML topology is usually much faster than querying the operating system again.

12.3 hwloc only has a one-dimensional view of the architecture, it ignores distances

hwloc places all objects in a tree. Each level is a one-dimensional view of a set of similar objects. All children of the same object (siblings) are assumed to be equally interconnected (same distance between any of them), while the distance between children of different objects (cousins) is supposed to be larger.

Modern machines exhibit complex hardware interconnects, so this tree may miss some information about the actual physical distances between objects. The hwloc topology may therefore be annotated with distance information that may be used to build a more realistic representation (multi-dimensional) of each level. For instance, the root object may contain a distance matrix that represents the latencies between any pairs of NUMA nodes if the BIOS and/or operating system reports them.

12.4 How may I ignore symmetric multithreading, hyper-threading, ... ?

hwloc creates one PU (processing unit) object per hardware thread. If your machine supports symmetric multithreading, for instance Hyper-Threading, each Core object may contain multiple PU objects.

```
$ lstopo -
...
Core L#1
PU L#2 (P#1)
PU L#3 (P#3)
```

If you need to ignore symmetric multithreading, you should likely manipulate hwloc Core objects directly:

Whenever you want to bind a process or thread to a core, make sure you singlify its cpuset first, so that the task is actually bound to a single thread within this core (to avoid useless migrations).

```
/* bind on the second core */
```

```
hwloc_obj_t core = hwloc_get_obj_by_type(topology, HWLOC_OBJ_CORE, 1);
hwloc_cpuset_t set = hwloc_bitmap_dup(core->cpuset);
hwloc_bitmap_singlify(set);
hwloc_set_cpubind(topology, set, 0);
hwloc_bitmap_free(set);
```

With hwloc-calc or hwloc-bind command-line tools, you may specify that you only want a single-thread within each core by asking for their first PU object:

```
$ hwloc-calc core:4-7
0x0000ff00
$ hwloc-calc core:4-7.pu:0
0x00005500
```

When binding a process on the command-line, you may either specify the exact thread that you want to use, or ask hwloc-bind to singlify the cpuset before binding

```
$ hwloc-bind core:3.pu:0 -- echo "hello from first thread on core #3"
hello from first thread on core #3
...
$ hwloc-bind core:3 --single -- echo "hello from a single thread on core #3"
hello from a single thread on core #3
```

12.5 What happens if my topology is asymmetric?

hwloc supports asymmetric topologies even if most platforms are usually symmetric. For example, there may be different types of processors in a single machine, each with different numbers of cores, symmetric multithreading, or levels of caches.

To understand how hwloc manages such cases, one should first remember the meaning of levels and cousin objects. All objects of the same type are gathered as horizontal levels with a given depth. They are also connected through the cousin pointers of the hwloc_obj structure. Some types, such as Caches or Groups, are usually annotated with a depth or level attribute (for instance L2 cache). In this case, this attribute is also taken in account when gathering objects as horizontal levels. To be clear: there will be one level for L1 caches, another level for L2 caches, etc.

If the topology is asymmetric (e.g., if a cache is missing in one of the processors), a given horizontal level will still exist if there exist any objects of that type. However, some branches of the overall tree may not have an object located in that horizontal level. Note that this specific hole within one horizontal level does not imply anything for other levels. All objects of the same type are gathered in horizontal levels even if their parents or children have different depths and types.

Moreover, it is important to understand that a same parent object may have children of different types (and therefore, different depths). These children are therefore siblings (because they have the same parent), but they are *not* cousins (because they do not belong to the same horizontal levels).

12.6 How do I annotate the topology with private notes?

Each hwloc object contains a userdata field that may be used by applications to store private pointers. This field is kept intact as long as the object is valid, which means as long as topology objects are not modified by reloading or restricting the topology.

Each object may also contain some *info* attributes (key name and value) that are setup by hwloc and may be extended by the user with hwloc_obj_add_info(). - Contrary to the userdata field which is unique, multiple info attributes may exist for each object, even with the same name. These attributes are also exported to XML together with the topology. However only character strings may be used as key names and values.

It is also possible to insert Misc objects with custom names anywhere in the topology (hwloc_topology_insert_misc_object_by_cpuset()) or as a leaf of the topology (hwloc_topology_insert_misc_object_by_parent()).

12.7 Why does Valgrind complain about hwloc memory leaks?

If you are debugging your application with Valgrind, you want to avoid memory leak reports that are caused by hwloc and not by your program.

hwloc itself is often checked with Valgrind to make sure it does not leak memory. - However some global variables in hwloc dependencies are never freed. For instance libz allocates its global state once at startup and never frees it so that it may be reused later. Some libxml2 global state is also never freed because hwloc does not know whether it can safely ask libxml2 to free it (the application may also be using libxml2 outside of hwloc).

These unfreed variables cause leak reports in Valgrind. hwloc installs a Valgrind *sup-pressions* file to hide them. You should pass the following command-line option to - Valgrind to use it:

--suppressions=/path/to/hwloc-valgrind.supp

12.8 How do I handle API upgrades?

The hwloc interface is extended with every new major release. Any application using the hwloc API should be prepared to check at compile-time whether some features are available in the currently installed hwloc distribution.

To check whether hwloc is at least 1.2, you should use:

One of the major changes in hwloc 1.1 was the addition of the bitmap API. It supersedes the now deprecated cpuset API which will be removed in a future hwloc release. It is strongly recommended to switch existing codes to the bitmap API. Keeping support

for older hwloc versions is easy. For instance, if your code uses $\verb|hwloc_cpuset_-alloc|, you should use \verb|hwloc_bitmap_alloc| instead and add the following code to one of your common headers:$

#define hwloc_bitmap_alloc

Similarly, the hwloc 1.0 interface may be detected by comparing $\texttt{HWLOC_API_VERS-ION}$ with $0 \times 0 0 0 1 0 0 0 0$.

hwloc 0.9 did not define any ${\tt HWLOC_API_VERSION}$ but this very old release probably does not deserve support from your application anymore.

Chapter 13

Module Index

13.1 Modules

Here	is a	list	ก† ลแ	mod	lules

API Version
Topology context
Object sets (hwloc_cpuset_t and hwloc_nodeset_t) 63
Topology Object Types
Topology Objects
Create and Destroy Topologies
Configure Topology Detection
Tinker With Topologies
Get Some Topology Information
Retrieve Objects
Object/String Conversion
CPU binding
Memory binding
Building Custom Topologies
Object Type Helpers
Basic Traversal Helpers
Finding Objects Inside a CPU set
Finding a single Object covering at least CPU set
Finding a set of similar Objects covering at least a CPU set
Cache-specific Finding Helpers
Advanced Traversal Helpers
Binding Helpers
Cpuset Helpers
Nodeset Helpers
Conversion between cpuset and nodeset
Distances
Advanced I/O object traversal helpers
The bitmap API
Helpers for manipulating glibc sched affinity

Linux-only helpers					143
Helpers for manipulating Linux libnuma unsigned long masks					144
Helpers for manipulating Linux libnuma bitmask					146
Helpers for manipulating Linux libnuma nodemask_t					148
CUDA Driver API Specific Functions					150
CUDA Runtime API Specific Functions					151
OpenFabrics-Specific Functions					152
Myrinet Express-Specific Functions					153

Chapter 14

Data Structure Index

14.1 Data Structures

Here are the data structures with brief descriptions:

hwloc_obj_attr_u::hwloc_bridge_attr_s	
Bridge specific Object Attribues	5
hwloc_obj_attr_u::hwloc_cache_attr_s	
Cache-specific Object Attributes	6
hwloc_distances_s	
Distances between objects	7
hwloc_obj_attr_u::hwloc_group_attr_s	
Group-specific Object Attributes	8
hwloc_obj	
Structure of a topology object	9
hwloc_obj_attr_u	
Object type-specific Attributes	4
hwloc_obj_info_s	
Object info	5
hwloc_obj_memory_s::hwloc_obj_memory_page_type_s	
Array of local memory page types, NULL if no local memory and	
page_types is 0	6
hwloc_obj_memory_s	
Object memory	i 7
hwloc_obj_attr_u::hwloc_osdev_attr_s	
OS Device specific Object Attributes	8
hwloc_obj_attr_u::hwloc_pcidev_attr_s	
PCI Device specific Object Attributes	8
hwloc_topology_cpubind_support	
Flags describing actual PU binding support for this topology 16	19
hwloc_topology_discovery_support	
Flags describing actual discovery support for this topology 17	1
hwloc_topology_membind_support	
Flags describing actual memory binding support for this topology 17	2

hwloc_topology_support					
Set of flags describing actual support for this topology	 			. 1	74

Generated on Mon Feb 27 2012 22:07:11 for Hardware Locality (hwloc) by Doxygen

Chapter 15

Module Documentation

15.1 API version

Defines

• #define HWLOC_API_VERSION 0x00010400

Functions

• HWLOC_DECLSPEC unsigned hwloc_get_api_version (void)

15.1.1 Define Documentation

15.1.1.1 #define HWLOC_API_VERSION 0x00010400

Indicate at build time which hwloc API version is being used.

15.1.2 Function Documentation

15.1.2.1 HWLOC_DECLSPEC unsigned hwloc_get_api_version (void)

Indicate at runtime which hwloc API version was used at build time.

15.2 Topology context

Typedefs

• typedef struct hwloc_topology * hwloc_topology_t

15.2.1 Typedef Documentation

15.2.1.1 typedef struct hwloc_topology* hwloc_topology_t

Topology context.

To be initialized with hwloc_topology_init() and built with hwloc_topology_load().

15.3 Object sets (hwloc_cpuset_t and hwloc_nodeset_t)

Typedefs

- · typedef hwloc bitmap t hwloc cpuset t
- typedef hwloc const bitmap t hwloc const cpuset t
- typedef hwloc_bitmap_t hwloc_nodeset_t
- typedef hwloc_const_bitmap_t hwloc_const_nodeset_t

15.3.1 Detailed Description

Hwloc uses bitmaps to represent two distinct kinds of object sets: CPU sets (hwloc_cpuset_t) and NUMA node sets (hwloc_nodeset_t). These types are both typedefs to a common back end type (hwloc_bitmap_t), and therefore all the hwloc bitmap functions are applicable to both hwloc_cpuset_t and hwloc_nodeset_t (see The bitmap API).

The rationale for having two different types is that even though the actions one wants to perform on these types are the same (e.g., enable and disable individual items in the set/mask), they're used in very different contexts: one for specifying which processors to use and one for specifying which NUMA nodes to use. Hence, the name difference is really just to reflect the intent of where the type is used.

15.3.2 Typedef Documentation

15.3.2.1 typedef hwloc_const_bitmap_t hwloc_const_cpuset_t

A non-modifiable hwloc cpuset t.

15.3.2.2 typedef hwloc_const_bitmap_t hwloc_const_nodeset_t

A non-modifiable hwloc_nodeset_t.

15.3.2.3 typedef hwloc_bitmap_t hwloc_cpuset_t

A CPU set is a bitmap whose bits are set according to CPU physical OS indexes.

It may be consulted and modified with the bitmap API as any hwloc_bitmap_t (see hwloc/bitmap.h).

15.3.2.4 typedef hwloc_bitmap_t hwloc_nodeset_t

A node set is a bitmap whose bits are set according to NUMA memory node physical OS indexes.

It may be consulted and modified with the bitmap API as any hwloc_bitmap_t (see hwloc/bitmap.h).

When binding memory on a system without any NUMA node (when the whole memory is considered as a single memory bank), the nodeset may be either empty (no memory selected) or full (whole system memory selected).

See also Conversion between cpuset and nodeset.

15.4 Topology Object Types

Typedefs

- typedef enum hwloc obj bridge type e hwloc obj bridge type t
- typedef enum hwloc_obj_osdev_type_e hwloc_obj_osdev_type_t

Enumerations

- enum hwloc_obj_type_t { HWLOC_OBJ_SYSTEM, HWLOC_OBJ_MACHINE, HWLOC_OBJ_NODE, HWLOC_OBJ_SOCKET, HWLOC_OBJ_CACHE, HWLOC_OBJ_CORE, HWLOC_OBJ_PU, HWLOC_OBJ_GROUP, HWLOC_OBJ_MISC, HWLOC_OBJ_BRIDGE, HWLOC_OBJ_PCI_DEVICE, HWLOC_OBJ_OS_DEVICE, HWLOC_OBJ_TYPE_MAX }
- enum hwloc_obj_bridge_type_e { HWLOC_OBJ_BRIDGE_HOST, HWLOC_OB-J BRIDGE PCI }
- enum hwloc_obj_osdev_type_e { HWLOC_OBJ_OSDEV_BLOCK, HWLOC_OBJ_OSDEV_NETWORK, HWLOC_OBJ_OSDEV-OPENFABRICS, HWLOC_OBJ_OSDEV_DMA }
- enum hwloc_compare_types_e { HWLOC_TYPE_UNORDERED }

Functions

HWLOC_DECLSPEC int hwloc_compare_types (hwloc_obj_type_t type1, hwloc_obj_type_t type2) __hwloc_attribute_const

15.4.1 Typedef Documentation

15.4.1.1 typedef enum hwloc obj bridge type e hwloc obj bridge type t

Type of one side (upstream or downstream) of an I/O bridge.

15.4.1.2 typedef enum hwloc_obj_osdev_type_e hwloc_obj_osdev_type_t

Type of a OS device.

15.4.2 Enumeration Type Documentation

15.4.2.1 enum hwloc_compare_types_e

Enumerator:

HWLOC_TYPE_UNORDERED Value returned by hwloc_compare_types when types can not be compared.

15.4.2.2 enum hwloc_obj_bridge_type_e

Type of one side (upstream or downstream) of an I/O bridge.

Enumerator:

HWLOC_OBJ_BRIDGE_HOST Host-side of a bridge, only possible upstream. **HWLOC_OBJ_BRIDGE_PCI** PCI-side of a bridge.

15.4.2.3 enum hwloc_obj_osdev_type_e

Type of a OS device.

Enumerator:

HWLOC_OBJ_OSDEV_BLOCK Operating system block device. For instance "sda" on Linux.

HWLOC_OBJ_OSDEV_GPU Operating system GPU device. For instance the "card0" DRM device on Linux.

HWLOC_OBJ_OSDEV_NETWORK Operating system network device. For instance the "eth0" interface on Linux.

HWLOC_OBJ_OSDEV_OPENFABRICS Operating system openfabrics device. For instance the "mlx4_0" InfiniBand HCA device on Linux.

HWLOC_OBJ_OSDEV_DMA Operating system dma engine device. For instance the "dma0chan0" DMA channel on Linux.

15.4.2.4 enum hwloc_obj_type_t

Type of topology object.

Note

Enumerator:

HWLOC_OBJ_SYSTEM Whole system (may be a cluster of machines). The whole system that is accessible to hwloc. That may comprise several machines in SSI systems like Kerrighed.

HWLOC_OBJ_MACHINE Machine. The typical root object type. A set of processors and memory with cache coherency.

HWLOC_OBJ_NODE NUMA node. A set of processors around memory which the processors can directly access.

- **HWLOC_OBJ_SOCKET** Socket, physical package, or chip. In the physical meaning, i.e. that you can add or remove physically.
- HWLOC_OBJ_CACHE Data cache. Can be L1, L2, L3, ...
- **HWLOC_OBJ_CORE** Core. A computation unit (may be shared by several logical processors).
- HWLOC_OBJ_PU Processing Unit, or (Logical) Processor. An execution unit (may share a core with some other logical processors, e.g. in the case of an SMT core). Objects of this kind are always reported and can thus be used as fallback when others are not.
- HWLOC_OBJ_GROUP Group objects. Objects which do not fit in the above but are detected by hwloc and are useful to take into account for affinity. For instance, some operating systems expose their arbitrary processors aggregation this way. And hwloc may insert such objects to group NUMA nodes according to their distances. These objects are ignored when they do not bring any structure.
- **HWLOC_OBJ_MISC** Miscellaneous objects. Objects without particular meaning, that can e.g. be added by the application for its own use.
- HWLOC_OBJ_BRIDGE Bridge. Any bridge that connects the host or an I/O bus, to another I/O bus. Bridge objects have neither CPU sets nor node sets. They are not added to the topology unless I/O discovery is enabled with hwloc_topology_set_flags().
- HWLOC_OBJ_PCI_DEVICE PCI device. These objects have neither CPU sets nor node sets. They are not added to the topology unless I/O discovery is enabled with hwloc_topology_set_flags().
- HWLOC_OBJ_OS_DEVICE Operating system device. These objects have neither CPU sets nor node sets. They are not added to the topology unless I/O discovery is enabled with hwloc_topology_set_flags().
- HWLOC_OBJ_TYPE_MAX Sentinel value

15.4.3 Function Documentation

15.4.3.1 HWLOC_DECLSPEC int hwloc_compare_types (hwloc_obj_type_t type1, hwloc_obj_type_t type2) const

Compare the depth of two object types.

Types shouldn't be compared as they are, since newer ones may be added in the future. This function returns less than, equal to, or greater than zero respectively if type1 objects usually include type2 objects, are the same as type2 objects, or are included in type2 objects. If the types can not be compared (because neither is usually contained in the other), HWLOC_TYPE_UNORDERED is returned. Object types containing CP-Us can always be compared (usually, a system contains machines which contain nodes which contain sockets which contain caches, which contain cores, which contain processors).

Note

HWLOC_OBJ_PU will always be the deepest.

This does not mean that the actual topology will respect that order: e.g. as of today cores may also contain caches, and sockets may also contain nodes. This is thus just to be seen as a fallback comparison method.

15.5 Topology Objects

Data Structures

- struct hwloc_obj_memory_s
 Object memory.
- struct hwloc_obj

Structure of a topology object.

• union hwloc_obj_attr_u

Object type-specific Attributes.

• struct hwloc_distances_s

Distances between objects.

• struct hwloc_obj_info_s

Object info.

Typedefs

• typedef struct hwloc_obj_t

15.5.1 Typedef Documentation

15.5.1.1 typedef struct hwloc_obj* hwloc_obj_t

Convenience typedef; a pointer to a struct hwloc_obj.

15.6 Create and Destroy Topologies

Functions

- HWLOC_DECLSPEC int hwloc_topology_init (hwloc_topology_t *topologyp)
- HWLOC_DECLSPEC int hwloc_topology_load (hwloc_topology_t topology)
- HWLOC_DECLSPEC void hwloc_topology_destroy (hwloc_topology_t topology)
- HWLOC_DECLSPEC void hwloc_topology_check (hwloc_topology_t topology)

15.6.1 Function Documentation

15.6.1.1 HWLOC_DECLSPEC void hwloc_topology_check (hwloc_topology_t topology)

Run internal checks on a topology structure.

The program aborts if an inconsistency is detected in the given topology.

Parameters

topology is the topology to be checked	
--	--

Note

This routine is only useful to developers.

The input topology should have been previously loaded with hwloc_topology_load().

15.6.1.2 HWLOC_DECLSPEC void hwloc_topology_destroy (hwloc_topology_t topology)

Terminate and free a topology context.

Parameters

topology	is the topology to be freed

15.6.1.3 HWLOC_DECLSPEC int hwloc_topology_init (hwloc_topology_t * topologyp)

Allocate a topology context.

Parameters

out	topologyp	is assigned a pointer to the new allocated context.
		•

Returns

0 on success, -1 on error.

15.6.1.4 HWLOC_DECLSPEC int hwloc_topology_load (hwloc_topology_t topology)

Build the actual topology.

Build the actual topology once initialized with hwloc_topology_init() and tuned with - Configure Topology Detection routines. No other routine may be called earlier using this topology context.

Parameters

topology is the topology to be loaded with objects.

Returns

0 on success, -1 on error.

See also

Configure Topology Detection

15.7 Configure Topology Detection

Data Structures

- · struct hwloc topology discovery support
 - Flags describing actual discovery support for this topology.
- struct hwloc_topology_cpubind_support
 - Flags describing actual PU binding support for this topology.
- · struct hwloc topology membind support
 - Flags describing actual memory binding support for this topology.
- · struct hwloc topology support
 - Set of flags describing actual support for this topology.

Enumerations

 enum hwloc_topology_flags_e { HWLOC_TOPOLOGY_FLAG_WHOLE_SYS-TEM, HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM, HWLOC_TOPOLOGY_-FLAG_IO_DEVICES = (1<<2), HWLOC_TOPOLOGY_FLAG_IO_BRIDGES = (1<<3), HWLOC_TOPOLOGY_FLAG_WHOLE_IO = (1<<4) }

Functions

- HWLOC_DECLSPEC int hwloc_topology_ignore_type (hwloc_topology_t topology, hwloc_obj type t type)
- HWLOC_DECLSPEC int hwloc_topology_ignore_type_keep_structure (hwloc_topology_t topology, hwloc_obj_type_t type)
- HWLOC_DECLSPEC int hwloc_topology_ignore_all_keep_structure (hwloc_topology_t topology)
- HWLOC_DECLSPEC int hwloc_topology_set_flags (hwloc_topology_t topology, unsigned long flags)
- HWLOC_DECLSPEC int hwloc_topology_set_pid (hwloc_topology_t __hwloc_restrict topology, hwloc_pid_t pid)
- HWLOC_DECLSPEC int hwloc_topology_set_fsroot (hwloc_topology_t __hwloc-restrict topology, const char * hwloc restrict fsroot path)
- HWLOC_DECLSPEC int hwloc_topology_set_synthetic (hwloc_topology_t __hwloc_restrict topology, const char *__hwloc_restrict description)
- HWLOC_DECLSPEC int hwloc_topology_set_xml (hwloc_topology_t __hwloc_restrict topology, const char *__hwloc_restrict xmlpath)
- HWLOC_DECLSPEC int hwloc_topology_set_xmlbuffer (hwloc_topology_t __hwloc_restrict topology, const char *_ hwloc_restrict buffer, int size)
- HWLOC_DECLSPEC int hwloc_topology_set_custom (hwloc_topology_t topology)
- HWLOC_DECLSPEC int hwloc_topology_set_distance_matrix (hwloc_topology_t _hwloc_restrict topology, hwloc_obj_type_t type, unsigned nbobjs, unsigned *os_index, float *distances)
- HWLOC_DECLSPEC struct hwloc_topology_support * hwloc_topology_get_support (hwloc_topology_t __hwloc_restrict topology)

15.7.1 Detailed Description

These functions can optionally be called between hwloc_topology_init() and hwloc_topology_load() to configure how the detection should be performed, e.g. to ignore some objects types, define a synthetic topology, etc.

If none of them is called, the default is to detect all the objects of the machine that the caller is allowed to access.

This default behavior may also be modified through environment variables if the application did not modify it already. Setting HWLOC_XMLFILE in the environment enforces the discovery from a XML file as if hwloc_topology_set_xml() had been called. HWLOC_FSROOT switches to reading the topology from the specified Linux filesystem root as if hwloc_topology_set_fsroot() had been called. Finally, HWLOC_THISSYSTEM enforces the return value of hwloc_topology_is_thissystem().

15.7.2 Enumeration Type Documentation

15.7.2.1 enum hwloc_topology_flags_e

Flags to be set onto a topology context before load.

Flags should be given to hwloc_topology_set_flags().

Enumerator:

HWLOC_TOPOLOGY_FLAG_WHOLE_SYSTEM Detect the whole system, ignore reservations and offline settings. Gather all resources, even if some were disabled by the administrator. For instance, ignore Linux Cpusets and gather all processors and memory nodes, and ignore the fact that some resources may be offline.

HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM Assume that the selected backend provides the topology for the system on which we are running. This forces hwloc_topology_is_thissystem to return 1, i.e. makes hwloc assume that the selected backend provides the topology for the system on which we are running, even if it is not the OS-specific backend but the XML backend for instance. This means making the binding functions actually call the OS-specific system calls and really do binding, while the XML backend would otherwise provide empty hooks just returning success.

Setting the environment variable HWLOC_THISSYSTEM may also result in the same behavior.

This can be used for efficiency reasons to first detect the topology once, save it to an XML file, and quickly reload it later through the XML backend, but still having binding functions actually do bind.

HWLOC_TOPOLOGY_FLAG_IO_DEVICES
HWLOC_TOPOLOGY_FLAG_IO_BRIDGES
HWLOC_TOPOLOGY_FLAG_WHOLE_IO

15.7.3 Function Documentation

15.7.3.1 HWLOC_DECLSPEC struct hwloc_topology_support*
hwloc_topology_get_support(hwloc_topology_t __hwloc_restrict topology)

[read]

Retrieve the topology support.

15.7.3.2 HWLOC_DECLSPEC int hwloc_topology_ignore_all_keep_structure (hwloc_topology_t topology_)

Ignore all objects that do not bring any structure.

Ignore all objects that do not bring any structure: Each ignored object should have a single children or be the only child of its parent. I/O objects may not be ignored, topology flags should be used to configure their discovery instead.

15.7.3.3 HWLOC_DECLSPEC int hwloc_topology_ignore_type (hwloc_topology_t topology, hwloc_obj_type_t type)

Ignore an object type.

Ignore all objects from the given type. The bottom-level type HWLOC_OBJ_PU may not be ignored. The top-level object of the hierarchy will never be ignored, even if this function succeeds. I/O objects may not be ignored, topology flags should be used to configure their discovery instead.

15.7.3.4 HWLOC_DECLSPEC int hwloc_topology_ignore_type_keep_structure (hwloc_topology_t topology, hwloc_obj_type_t type_)

Ignore an object type if it does not bring any structure.

Ignore all objects from the given type as long as they do not bring any structure: - Each ignored object should have a single children or be the only child of its parent. The bottom-level type HWLOC_OBJ_PU may not be ignored. I/O objects may not be ignored, topology flags should be used to configure their discovery instead.

15.7.3.5 HWLOC_DECLSPEC int hwloc_topology_set_custom (hwloc_topology_t topology)

Prepare the topology for custom assembly.

The topology then contains a single root object. It may then be built by inserting other topologies with hwloc_custom_insert_topology() or single objects with hwloc_topology_load() must be called to finalize the new topology as usual.

15.7.3.6 HWLOC_DECLSPEC int hwloc_topology_set_distance_matrix (
 hwloc_topology_t _hwloc_restrict topology, hwloc_obj_type_t type, unsigned
 nbobjs, unsigned * os_index, float * distances)

Provide a distance matrix.

Provide the matrix of distances between a set of objects of the given type. The set may or may not contain all the existing objects of this type. The objects are specified by their OS/physical index in the os_index array. The distances matrix follows the same order. The distance from object i to object j in the i*nbobjs+j.

A single latency matrix may be defined for each type. If another distance matrix already exists for the given type, either because the user specified it or because the OS offers it, it will be replaced by the given one. If nbobjs is 0, os_index is NULL and distances is NULL, the existing distance matrix for the given type is removed.

Note

Distance matrices are ignored in multi-node topologies.

15.7.3.7 HWLOC_DECLSPEC int hwloc_topology_set_flags (hwloc_topology_t topology, unsigned long flags)

Set OR'ed flags to non-yet-loaded topology.

Set a OR'ed set of hwloc_topology_flags_e onto a topology that was not yet loaded.

15.7.3.8 HWLOC_DECLSPEC int hwloc_topology_set_fsroot (hwloc_topology_t __hwloc_restrict topology, const char *_hwloc_restrict fsroot_path)

Change the file-system root path when building the topology from sysfs/procfs.

On Linux system, use sysfs and procfs files as if they were mounted on the given fsroot_path instead of the main file-system root. Setting the environment variable HWLOC_FSROOT may also result in this behavior. Not using the main file-system root causes hwloc_topology_is_thissystem() to return 0.

Note that this function does not actually load topology information; it just tells hwloc where to load it from. You'll still need to invoke hwloc_topology_load() to actually load the topology information.

Returns

- -1 with errno set to ENOSYS on non-Linux and on Linux systems that do not support it.
- -1 with the appropriate errno if fsroot_path cannot be used.

Note

For convenience, this backend provides empty binding hooks which just return success. To have hwloc still actually call OS-specific hooks, the HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM has to be set to assert that the loaded file is really the underlying system.

The existing topology is cleared even on failure.

15.7.3.9 HWLOC_DECLSPEC int hwloc_topology_set_pid (hwloc_topology_t __hwloc_restrict topology, hwloc_pid_t pid)

Change which pid the topology is viewed from.

On some systems, processes may have different views of the machine, for instance the set of allowed CPUs. By default, hwloc exposes the view from the current process. Calling hwloc_topology_set_pid() permits to make it expose the topology of the machine from the point of view of another process.

Note

 $hwloc_pid_t$ is pid_t on Unix platforms, and HANDLE on native Windows platforms.

-1 is returned and errno is set to ENOSYS on platforms that do not support this feature

15.7.3.10 HWLOC_DECLSPEC int hwloc_topology_set_synthetic (hwloc_topology_t __hwloc_restrict topology, const char *_hwloc_restrict description)

Enable synthetic topology.

Gather topology information from the given <code>description</code>, a space-separated string of numbers describing the arity of each level. Each number may be prefixed with a type and a colon to enforce the type of a level. If only some level types are enforced, hwloc will try to choose the other types according to usual topologies, but it may fail and you may have to specify more level types manually.

If description was properly parsed and describes a valid topology configuration, this function returns 0. Otherwise -1 is returned and errno is set to EINVAL.

Note that this function does not actually load topology information; it just tells hwloc where to load it from. You'll still need to invoke hwloc_topology_load() to actually load the topology information.

Note

For convenience, this backend provides empty binding hooks which just return success.

The existing topology is cleared even on failure.

15.7.3.11 HWLOC_DECLSPEC int hwloc_topology_set_xml (hwloc_topology_t __hwloc_restrict topology, const char *_hwloc_restrict xmlpath)

Enable XML-file based topology.

Gather topology information from the XML file given at xmlpath. Setting the environment variable HWLOC_XMLFILE may also result in this behavior. This file may have been generated earlier with hwloc_topology_export_xml() or Istopo file.xml.

Note that this function does not actually load topology information; it just tells hwloc where to load it from. You'll still need to invoke hwloc_topology_load() to actually load the topology information.

Returns

-1 with errno set to EINVAL on failure to read the XML file.

Note

For convenience, this backend provides empty binding hooks which just return success. To have hwloc still actually call OS-specific hooks, the HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM has to be set to assert that the loaded file is really the underlying system.

The existing topology is cleared even on failure.

15.7.3.12 HWLOC_DECLSPEC int hwloc_topology_set_xmlbuffer (hwloc_topology_t __hwloc_restrict topology, const char *_hwloc_restrict buffer, int size)

Enable XML based topology using a memory buffer (instead of a file, as with hwloc_topology_set_xml()).

Gather topology information from the XML memory buffer given at buffer and of length size. This buffer may have been filled earlier with hwloc_topology_export_xmlbuffer().

Note that this function does not actually load topology information; it just tells hwloc where to load it from. You'll still need to invoke hwloc_topology_load() to actually load the topology information.

Returns

-1 with errno set to EINVAL on failure to read the XML buffer.

Note

For convenience, this backend provides empty binding hooks which just return success. To have hwloc still actually call OS-specific hooks, the HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM has to be set to assert that the loaded file is really the underlying system.

The existing topology is cleared even on failure.

15.8 Tinker With Topologies.

Enumerations

 enum hwloc_restrict_flags_e { HWLOC_RESTRICT_FLAG_ADAPT_DISTANC-ES, HWLOC_RESTRICT_FLAG_ADAPT_MISC, HWLOC_RESTRICT_FLAG_-ADAPT_IO }

Functions

- HWLOC_DECLSPEC int hwloc_topology_export_xml (hwloc_topology_t topology, const char *xmlpath)
- HWLOC_DECLSPEC int hwloc_topology_export_xmlbuffer (hwloc_topology_t topology, char **xmlbuffer, int *buflen)
- HWLOC_DECLSPEC void hwloc_free_xmlbuffer (hwloc_topology_t topology, char *xmlbuffer)
- HWLOC_DECLSPEC hwloc_obj_t hwloc_topology_insert_misc_object_by_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t cpuset, const char *name)
- HWLOC_DECLSPEC hwloc_obj_t hwloc_topology_insert_misc_object_by_parent (hwloc_topology_t topology, hwloc_obj_t parent, const char *name)
- HWLOC_DECLSPEC int hwloc_topology_restrict (hwloc_topology_t __hwloc_restrict topology, hwloc_const_cpuset_t cpuset, unsigned long flags)

15.8.1 Enumeration Type Documentation

15.8.1.1 enum hwloc restrict flags e

Flags to be given to hwloc_topology_restrict().

Enumerator:

- HWLOC_RESTRICT_FLAG_ADAPT_DISTANCES Adapt distance matrices according to objects being removed during restriction. If this flag is not set, distance matrices are removed.
- HWLOC_RESTRICT_FLAG_ADAPT_MISC Move Misc objects to ancestors if their parents are removed during restriction. If this flag is not set, Misc objects are removed when their parents are removed.
- **HWLOC_RESTRICT_FLAG_ADAPT_IO** Move I/O objects to ancestors if their parents are removed during restriction. If this flag is not set, I/O devices and bridges are removed when their parents are removed.

15.8.2 Function Documentation

15.8.2.1 HWLOC_DECLSPEC void hwloc_free_xmlbuffer (hwloc_topology_t topology, char * xmlbuffer)

Free a buffer allocated by hwloc_topology_export_xmlbuffer()

15.8.2.2 HWLOC_DECLSPEC int hwloc_topology_export_xml (hwloc_topology_t topology, const char * xmlpath)

Export the topology into an XML file.

This file may be loaded later through hwloc topology set xml().

Returns

-1 if a failure occured.

```
15.8.2.3 HWLOC_DECLSPEC int hwloc_topology_export_xmlbuffer ( hwloc_topology_t topology, char ** xmlbuffer, int * buflen )
```

Export the topology into a newly-allocated XML memory buffer.

xmlbuffer is allocated by the callee and should be freed with hwloc_free_xmlbuffer() later in the caller.

Returns

-1 if a failure occured.

```
15.8.2.4 HWLOC_DECLSPEC hwloc_obj_t hwloc_topology_insert_misc_object_by_cpuset ( hwloc_topology_t topology, hwloc_const_cpuset_t cpuset, const char * name )
```

Add a MISC object to the topology.

A new MISC object will be created and inserted into the topology at the position given by bitmap <code>cpuset</code>. This offers a way to add new intermediate levels to the topology hierarchy.

cpuset and name will be copied to setup the new object attributes.

Returns

the newly-created object.

NULL if the insertion conflicts with the existing topology tree.

15.8.2.5 HWLOC_DECLSPEC hwloc_obj_t hwloc_topology_insert_misc_object_by_parent (hwloc_topology_t topology, hwloc_obj_t parent, const char * name)

Add a MISC object as a leaf of the topology.

A new MISC object will be created and inserted into the topology at the position given by parent. It is appended to the list of existing children, without ever adding any intermediate hierarchy level. This is useful for annotating the topology without actually changing the hierarchy.

name will be copied to the setup the new object attributes. However, the new leaf object will not have any <code>cpuset</code>.

Returns

the newly-created object

15.8.2.6 HWLOC_DECLSPEC int hwloc_topology_restrict (hwloc_topology_t __hwloc_restrict topology, hwloc_const_cpuset_t cpuset, unsigned long flags)

Restrict the topology to the given CPU set.

Topology topology is modified so as to remove all objects that are not included (or partially included) in the CPU set cpuset. All objects CPU and node sets are restricted accordingly.

flags is a OR'ed set of hwloc restrict flags e.

Note

This call may not be reverted by restricting back to a larger cpuset. Once dropped during restriction, objects may not be brought back, except by reloading the entire topology with hwloc_topology_load().

15.9 Get Some Topology Information

Enumerations

 enum hwloc_get_type_depth_e { HWLOC_TYPE_DEPTH_UNKNOWN, HWLO-C_TYPE_DEPTH_MULTIPLE, HWLOC_TYPE_DEPTH_BRIDGE, HWLOC_TY-PE_DEPTH_PCI_DEVICE, HWLOC_TYPE_DEPTH_OS_DEVICE }

Functions

- HWLOC_DECLSPEC unsigned hwloc_topology_get_depth (hwloc_topology_t _hwloc_restrict topology) __hwloc_attribute_pure
- HWLOC_DECLSPEC int hwloc_get_type_depth (hwloc_topology_t topology, hwloc_obj_type_t type)
- HWLOC_DECLSPEC hwloc_obj_type_t hwloc_get_depth_type (hwloc_-topology_t topology, unsigned depth) __hwloc_attribute_pure
- HWLOC_DECLSPEC unsigned hwloc_get_nbobjs_by_depth (hwloc_topology_t topology, unsigned depth) __hwloc_attribute_pure
- static __hwloc_inline int hwloc_get_nbobjs_by_type (hwloc_topology_t topology, hwloc_obj_type_t type) __hwloc_attribute_pure
- HWLOC_DECLSPEC int hwloc_topology_is_thissystem (hwloc_topology_t __hwloc_restrict topology) __hwloc_attribute_pure

15.9.1 Detailed Description

Be sure to see the figure in Terms and Definitions that shows a complete topology tree, including depths, child/sibling/cousin relationships, and an example of an asymmetric topology where one socket has fewer caches than its peers.

15.9.2 Enumeration Type Documentation

15.9.2.1 enum hwloc_get_type_depth_e

Enumerator:

HWLOC_TYPE_DEPTH_UNKNOWN No object of given type exists in the topology.

HWLOC_TYPE_DEPTH_MULTIPLE Objects of given type exist at different depth in the topology.

HWLOC_TYPE_DEPTH_BRIDGE Virtual depth for bridge object level.

HWLOC_TYPE_DEPTH_PCI_DEVICE Virtual depth for PCI device object level.

HWLOC_TYPE_DEPTH_OS_DEVICE Virtual depth for software device object level.

15.9.3 Function Documentation

```
15.9.3.1 HWLOC_DECLSPEC hwloc_obj_type_t hwloc_get_depth_type (
hwloc_topology_t topology, unsigned depth )
```

Returns the type of objects at depth depth.

Returns

-1 if depth depth does not exist.

```
15.9.3.2 HWLOC_DECLSPEC unsigned hwloc_get_nbobjs_by_depth ( hwloc_topology_t topology, unsigned depth )
```

Returns the width of level at depth depth.

```
15.9.3.3 static __hwloc_inline int hwloc_get_nbobjs_by_type ( hwloc_topology_t topology, hwloc_obj_type t type ) [static]
```

Returns the width of level type type.

If no object for that type exists, 0 is returned. If there are several levels with objects of that type, -1 is returned.

```
15.9.3.4 HWLOC_DECLSPEC int hwloc_get_type_depth ( hwloc_topology_t topology, hwloc_obj_type_t type_)
```

Returns the depth of objects of type type.

If no object of this type is present on the underlying architecture, or if the OS doesn't provide this kind of information, the function returns HWLOC_TYPE_DEPTH_UNKNOWN.

If type is absent but a similar type is acceptable, see also hwloc_get_type_or_below_-depth() and hwloc get type or above depth().

If some objects of the given type exist in different levels, for instance L1 and L2 caches, the function returns HWLOC_TYPE_DEPTH_MULTIPLE.

If an I/O object type is given, the function returns a virtual value because I/O objects are stored in special levels that are not CPU-related. This virtual depth may be passed to other hwloc functions such as hwloc.get_obj_by_depth() but it should not be considered as an actual depth by the application. In particular, it should not be compared with any other object depth or with the entire topology depth.

15.9.3.5 HWLOC_DECLSPEC unsigned hwloc_topology_get_depth (hwloc_topology_t __hwloc_restrict topology)

Get the depth of the hierarchical tree of objects.

This is the depth of HWLOC_OBJ_PU objects plus one.

15.9.3.6 HWLOC_DECLSPEC int hwloc_topology_is_thissystem (hwloc_topology_t __hwloc_restrict topology)

Does the topology context come from this system?

Returns

- 1 if this topology context was built using the system running this program.
- 0 instead (for instance if using another file-system root, a XML topology file, or a synthetic topology).

15.10 Retrieve Objects

Functions

- HWLOC_DECLSPEC hwloc_obj_t hwloc_get_obj_by_depth (hwloc_topology_t topology, unsigned depth, unsigned idx) __hwloc_attribute_pure
- static __hwloc_inline hwloc_obj_t hwloc_get_obj_by_type (hwloc_topology_t topology, hwloc_obj_type_t type, unsigned idx) __hwloc_attribute_pure

15.10.1 Detailed Description

Be sure to see the figure in Terms and Definitions that shows a complete topology tree, including depths, child/sibling/cousin relationships, and an example of an asymmetric topology where one socket has fewer caches than its peers.

15.10.2 Function Documentation

```
15.10.2.1 HWLOC_DECLSPEC hwloc_obj_t hwloc_get_obj_by_depth ( hwloc_topology_t topology, unsigned depth, unsigned idx )
```

Returns the topology object at logical index idx from depth depth.

```
15.10.2.2 static _hwloc_inline hwloc_obj_t hwloc_get_obj_by_type (
    hwloc_topology_t topology, hwloc_obj_type_t type, unsigned idx )
[static]
```

Returns the topology object at logical index idx with type type.

If no object for that type exists, \mathtt{NULL} is returned. If there are several levels with objects of that type, \mathtt{NULL} is returned and ther caller may fallback to $\mathtt{hwloc_get_obj_by_depth}()$.

15.11 Object/String Conversion

Functions

- HWLOC_DECLSPEC const char * hwloc_obj_type_string (hwloc_obj_type_t type) __hwloc_attribute_const
- HWLOC_DECLSPEC hwloc_obj_type_t hwloc_obj_type_of_string (const char *string) __hwloc_attribute_pure
- HWLOC_DECLSPEC int hwloc_obj_type_snprintf (char *__hwloc_restrict string, size_t size, hwloc_obj_t obj, int verbose)
- HWLOC_DECLSPEC int hwloc_obj_attr_snprintf (char *__hwloc_restrict string, size_t size, hwloc_obj_t obj, const char *__hwloc_restrict separator, int verbose)
- HWLOC_DECLSPEC int hwloc_obj_snprintf (char *__hwloc_restrict string, size_t size, hwloc_topology_t topology, hwloc_obj_t obj, const char *__hwloc_restrict indexprefix, int verbose)
- HWLOC_DECLSPEC int hwloc_obj_cpuset_snprintf (char *__hwloc_restrict str, size_t size, size_t nobj, const hwloc_obj_t *__hwloc_restrict objs)
- static __hwloc_inline const char * hwloc_obj_get_info_by_name (hwloc_obj_t obj, const char *name) __hwloc_attribute_pure
- HWLOC_DECLSPEC void hwloc_obj_add_info (hwloc_obj_t obj, const char *name, const char *value)

15.11.1 Function Documentation

15.11.1.1 HWLOC_DECLSPEC void hwloc_obj_add_info (hwloc_obj_t obj, const char * name, const char * value)

Add the given info name and value pair to the given object.

The info is appended to the existing info array even if another key with the same name already exists.

The input strings are copied before being added in the object infos.

15.11.1.2 HWLOC_DECLSPEC int hwloc_obj_attr_snprintf (char *__hwloc_restrict string, size_t size, hwloc_obj_t obj, const char *__hwloc_restrict separator, int verbose)

Stringify the attributes of a given topology object into a human-readable form.

Attribute values are separated by separator.

Only the major attributes are printed in non-verbose mode.

If size is 0, string may safely be NULL.

Returns

the number of character that were actually written if not truncating, or that would have been written (not including the ending $\setminus 0$).

15.11.1.3 HWLOC_DECLSPEC int hwloc_obj_cpuset_snprintf (char *_hwloc_restrict str, size_t size, size_t nobj, const hwloc_obj_t *_hwloc_restrict objs)

Stringify the cpuset containing a set of objects.

If size is 0, string may safely be NULL.

Returns

the number of character that were actually written if not truncating, or that would have been written (not including the ending $\setminus 0$).

```
15.11.1.4 static _hwloc_inline const char * hwloc_obj_get_info_by_name ( hwloc_obj t obj, const char * name ) [static]
```

Search the given key name in object infos and return the corresponding value.

If multiple keys match the given name, only the first one is returned.

Returns

NULL if no such key exists.

15.11.1.5 HWLOC_DECLSPEC int hwloc_obj_snprintf (char *_hwloc_restrict string, size_t size, hwloc_topology_t topology, hwloc_obj_t obj, const char *_hwloc_restrict indexprefix, int verbose)

Stringify a given topology object into a human-readable form.

Note

This function is deprecated in favor of hwloc_obj_type_snprintf() and hwloc_obj_type_snprintf() and <a href="hwloc_obj_type_snp

Fill string string up to size characters with the description of topology object obj in topology topology.

If verbose is set, a longer description is used. Otherwise a short description is used.

 $\verb|indexprefix| is used to prefix the os_index attribute number of the object in the description. If \verb|NULL|, the # character is used. \\$

If size is 0, string may safely be NULL.

Returns

the number of character that were actually written if not truncating, or that would have been written (not including the ending $\setminus 0$).

15.11.1.6 HWLOC_DECLSPEC hwloc_obj_type_t hwloc_obj_type_of_string (const char * string)

Return an object type from the string.

Returns

-1 if unrecognized.

15.11.1.7 HWLOC_DECLSPEC int hwloc_obj_type_snprintf (char *_hwloc_restrict string, size_t size, hwloc_obj_t obj, int verbose)

Stringify the type of a given topology object into a human-readable form.

It differs from hwloc_obj_type_string() because it prints type attributes such as cache depth.

If size is 0, string may safely be NULL.

Returns

the number of character that were actually written if not truncating, or that would have been written (not including the ending $\setminus 0$).

Return a stringified topology object type.

15.12 CPU binding

Enumerations

enum hwloc_cpubind_flags_t { HWLOC_CPUBIND_PROCESS, HWLOC_CPUBIND_THREAD, HWLOC_CPUBIND_STRICT, HWLOC_CPUBIND_NOMEMBIND }

Functions

- HWLOC_DECLSPEC int hwloc_set_cpubind (hwloc_topology_t topology, hwlocconst_cpuset_t set, int flags)
- HWLOC_DECLSPEC int hwloc_get_cpubind (hwloc_topology_t topology, hwloccpuset_t set, int flags)
- HWLOC_DECLSPEC int hwloc_set_proc_cpubind (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_const_cpuset_t set, int flags)
- HWLOC_DECLSPEC int hwloc_get_proc_cpubind (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_cpuset_t set, int flags)
- HWLOC_DECLSPEC int hwloc_set_thread_cpubind (hwloc_topology_t topology, hwloc_thread_t thread, hwloc_const_cpuset_t set, int flags)
- HWLOC_DECLSPEC int hwloc_get_thread_cpubind (hwloc_topology_t topology, hwloc_thread_t thread, hwloc_cpuset_t set, int flags)
- HWLOC_DECLSPEC int hwloc_get_last_cpu_location (hwloc_topology_t topology, hwloc_cpuset_t set, int flags)
- HWLOC_DECLSPEC int hwloc_get_proc_last_cpu_location (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_cpuset_t set, int flags)

15.12.1 Detailed Description

It is often useful to call hwloc_bitmap_singlify() first so that a single CPU remains in the set. This way, the process will not even migrate between different CPUs. Some operating systems also only support that kind of binding.

Note

Some operating systems do not provide all hwloc-supported mechanisms to bind processes, threads, etc. and the corresponding binding functions may fail. -1 is returned and errno is set to ENOSYS when it is not possible to bind the requested kind of object processes/threads. errno is set to EXDEV when the requested cpuset can not be enforced (e.g. some systems only allow one CPU, and some other systems only allow one NUMA node).

The most portable version that should be preferred over the others, whenever possible, is

 ${\tt hwloc_set_cpubind(topology, set, 0),}\\$

as it just binds the current program, assuming it is single-threaded, or

```
hwloc_set_cpubind(topology, set, HWLOC_CPUBIND_THREAD),
```

which binds the current thread of the current program (which may be multithreaded).

Note

To unbind, just call the binding function with either a full cpuset or a cpuset equal to the system cpuset.

On some operating systems, CPU binding may have effects on memory binding, see HWLOC CPUBIND NOMEMBIND

Running Istopo --top can be a very convenient tool to check how binding actually happened.

15.12.2 Enumeration Type Documentation

15.12.2.1 enum hwloc_cpubind_flags_t

Process/Thread binding flags.

These bit flags can be used to refine the binding policy.

The default (0) is to bind the current process, assumed to be single-threaded, in a non-strict way. This is the most portable way to bind as all operating systems usually provide it.

Note

Not all systems support all kinds of binding. See the "Detailed Description" section of CPU binding for a description of errors that can occur.

Enumerator:

HWLOC_CPUBIND_PROCESS Bind all threads of the current (possibly) multi-threaded process.

HWLOC_CPUBIND_THREAD Bind current thread of current process.

HWLOC_CPUBIND_STRICT Request for strict binding from the OS. By default, when the designated CPUs are all busy while other CPUs are idle, operating systems may execute the thread/process on those other CPUs instead of the designated CPUs, to let them progress anyway. Strict binding means that the thread/process will _never_ execute on other cpus than the designated CPUs, even when those are busy with other tasks and other CPUs are idle.
Note

Depending on the operating system, strict binding may not be possible (e.g., the OS does not implement it) or not allowed (e.g., for an administrative reasons), and the function will fail in that case.

When retrieving the binding of a process, this flag checks whether all its threads actually have the same binding. If the flag is not given, the binding of each thread will be accumulated.

Note

This flag is meaningless when retrieving the binding of a thread.

HWLOC_CPUBIND_NOMEMBIND Avoid any effect on memory binding. On some operating systems, some CPU binding function would also bind the memory on the corresponding NUMA node. It is often not a problem for the application, but if it is, setting this flag will make hwloc avoid using OS functions that would also bind memory. This will however reduce the support of CPU bindings, i.e. potentially return -1 with errno set to ENOSYS in some cases.

This flag is only meaningful when used with functions that set the CPU binding. It is ignored when used with functions that get CPU binding information.

15.12.3 Function Documentation

15.12.3.1 HWLOC_DECLSPEC int hwloc_get_cpubind (hwloc_topology_t topology, hwloc_cpuset_t set, int flags)

Get current process or thread binding.

Writes into set the physical cpuset which the process or thread (according to *flags*) was last bound to.

15.12.3.2 HWLOC_DECLSPEC int hwloc_get_last_cpu_location (hwloc_topology_t topology, hwloc_cpuset_t set, int flags)

Get the last physical CPU where the current process or thread ran.

The operating system may move some tasks from one processor to another at any time according to their binding, so this function may return something that is already outdated.

15.12.3.3 HWLOC_DECLSPEC int hwloc_get_proc_cpubind (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_cpuset_t set, int flags)

Get the current physical binding of process pid.

Note

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.

HWLOC CPUBIND THREAD can not be used in flags.

As a special case on Linux, if a tid (thread ID) is supplied instead of a pid (process ID), the binding for that specific thread is returned.

Get the last physical CPU where a process ran.

The operating system may move some tasks from one processor to another at any time according to their binding, so this function may return something that is already outdated.

Note

 $hwloc_pid_t$ is pid_t on Unix platforms, and HANDLE on native Windows platforms.

HWLOC_CPUBIND_THREAD can not be used in flags.

As a special case on Linux, if a tid (thread ID) is supplied instead of a pid (process ID), the binding for that specific thread is returned.

15.12.3.5 HWLOC_DECLSPEC int hwloc_get_thread_cpubind (hwloc_topology_t topology, hwloc_thread_t thread, hwloc_cpuset_t set, int flags)

Get the current physical binding of thread tid.

Note

 $\verb|hwloc_thread_t| is pthread_t| on \ Unix \ platforms, \ and \ \verb|HANDLE| on \ native| \\ Windows \ platforms.$

HWLOC CPUBIND PROCESS can not be used in flags.

15.12.3.6 HWLOC_DECLSPEC int hwloc_set_cpubind (hwloc_topology_t topology, hwloc_const_cpuset_t set, int flags)

Bind current process or thread on cpus given in physical bitmap $\mathtt{set}.$

Returns

- -1 with errno set to ENOSYS if the action is not supported
- -1 with errno set to EXDEV if the binding cannot be enforced

15.12.3.7 HWLOC_DECLSPEC int hwloc_set_proc_cpubind (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_const_cpuset_t set, int flags)

Bind a process pid on cpus given in physical bitmap set.

Note

 $hwloc_pid_t$ is pid_t on Unix platforms, and HANDLE on native Windows platforms.

 $\label{eq:hwloc_cpublnd_three} \textbf{HWLOC_CPUBIND_THREAD} \ \textbf{can not be used in } \texttt{flags}.$

15.12.3.8 HWLOC_DECLSPEC int hwloc_set_thread_cpubind (hwloc_topology_t topology, hwloc_thread_t thread, hwloc_const_cpuset_t set, int flags)

Bind a thread thread on cpus given in physical bitmap set.

Note

 $\verb|hwloc_thread_t| is pthread_t| on Unix platforms, and \verb|HANDLE| on native Windows platforms|.$

 ${\color{blue} \textbf{HWLOC_CPUBIND_PROCESS}} \ can \ not \ be \ used \ in \ \texttt{flags}.$

15.13 Memory binding

Enumerations

- enum hwloc_membind_policy_t { HWLOC_MEMBIND_DEFAULT, HWLOC_MEMBIND_FIRSTTOUCH, HWLOC_MEMBIND_BIND, HWLOC_MEMBIND_INTERLEAVE, HWLOC_MEMBIND_REPLICATE, HWLOC_MEMBIND_NEXTTOUCH, HWLOC_MEMBIND_MIXED }
- enum hwloc_membind_flags_t { HWLOC_MEMBIND_PROCESS, HWLOC_MEMBIND_THREAD, HWLOC_MEMBIND_STRICT, HWLOC_MEMBIND_MIGRATE, HWLOC_MEMBIND_NOCPUBIND }

Functions

- HWLOC_DECLSPEC int hwloc_set_membind_nodeset (hwloc_topology_t topology, hwloc_const_nodeset_t nodeset, hwloc_membind_policy_t policy, int flags)
- HWLOC_DECLSPEC int hwloc_set_membind (hwloc_topology_t topology, hwloc_const_cpuset_t cpuset, hwloc_membind_policy_t policy, int flags)
- HWLOC_DECLSPEC int hwloc_get_membind_nodeset (hwloc_topology_t topology, hwloc_nodeset_t nodeset, hwloc_membind_policy_t *policy, int flags)
- HWLOC_DECLSPEC int hwloc_get_membind (hwloc_topology_t topology, hwloc_cpuset_t cpuset, hwloc_membind_policy_t *policy, int flags)
- HWLOC_DECLSPEC int hwloc_set_proc_membind_nodeset (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_const_nodeset_t nodeset, hwloc_membind_policy t policy, int flags)
- HWLOC_DECLSPEC int hwloc_set_proc_membind (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_const_cpuset_t cpuset, hwloc_membind_policy_t policy, int flags)
- HWLOC_DECLSPEC int hwloc_get_proc_membind_nodeset (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_nodeset_t nodeset, hwloc_membind_policy_t *policy, int flags)
- HWLOC_DECLSPEC int hwloc_get_proc_membind (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_cpuset_t cpuset, hwloc_membind_policy_t *policy, int flags)
- HWLOC_DECLSPEC int hwloc_set_area_membind_nodeset (hwloc_topology_t topology, const void *addr, size_t len, hwloc_const_nodeset_t nodeset, hwloc_membind_policy_t policy, int flags)
- HWLOC_DECLSPEC int hwloc_set_area_membind (hwloc_topology_t topology, const void *addr, size_t len, hwloc_const_cpuset_t cpuset, hwloc_membind_policy_t policy, int flags)
- HWLOC_DECLSPEC int hwloc_get_area_membind_nodeset (hwloc_topology_topology, const void *addr, size_t len, hwloc_nodeset_t nodeset, hwloc_membind_policy_t *policy, int flags)
- HWLOC_DECLSPEC int hwloc_get_area_membind (hwloc_topology_t topology, const void *addr, size_t len, hwloc_cpuset_t cpuset, hwloc_membind_policy_t *policy, int flags)
- HWLOC_DECLSPEC void * hwloc_alloc (hwloc_topology_t topology, size_t len)

- HWLOC_DECLSPEC void * hwloc_alloc_membind_nodeset (hwloc_topology_t topology, size_t len, hwloc_const_nodeset_t nodeset, hwloc_membind_policy_t policy, int flags) __hwloc_attribute_malloc
- HWLOC_DECLSPEC void * hwloc_alloc_membind (hwloc_topology_t topology, size_t len, hwloc_const_cpuset_t cpuset, hwloc_membind_policy_t policy, int flags) hwloc attribute malloc
- HWLOC_DECLSPEC int hwloc_free (hwloc_topology_t topology, void *addr, size t len)

15.13.1 Detailed Description

Note

Not all operating systems support all ways to bind existing allocated memory (e.g., migration), future memory allocation, explicit memory allocation, etc. Using a binding flag or policy that is not supported by the underlying OS will cause hwloc's binding functions to fail and return -1. errno will be set to ENOSYS when the system does support the specified action or policy (e.g., some systems only allow binding memory on a per-thread basis, whereas other systems only allow binding memory for all threads in a process). errno will be set to EXDEV when the requested cpuset can not be enforced (e.g., some systems only allow binding memory to a single NUMA node).

The most portable form that should be preferred over the others whenever possible is as follows:

This will allocate some memory hopefully bound to the specified set. To do so, hwloc will possibly have to change the current memory binding policy in order to actually get the memory bound, if the OS does not provide any other way to simply allocate bound memory without changing the policy for all allocations. That is the difference with hwloc_alloc_membind(), which will never change the current memory binding policy. Note that since HWLOC_MEMBIND_STRICT was not specified, failures to bind will not be reported -- generally, only memory allocation failures will be reported (e.g., even a plain malloc() would have failed with ENOMEM).

Each hwloc memory binding function is available in two forms: one that takes a CPU set argument and another that takes a NUMA memory node set argument (see Object sets (hwloc_cpuset_t and hwloc_nodeset_t) and The bitmap API for a discussion of CPU sets and NUMA memory node sets). The names of the latter form end with _nodeset. It is also possible to convert between CPU set and node set using hwloc_cpuset_to_nodeset() or hwloc_cpuset_from_nodeset().

Note

On some operating systems, memory binding affects the CPU binding; see HWL-OC_MEMBIND_NOCPUBIND

15.13.2 Enumeration Type Documentation

15.13.2.1 enum hwloc membind flags t

Memory binding flags.

These flags can be used to refine the binding policy. All flags can be logically OR'ed together with the exception of HWLOC_MEMBIND_PROCESS and HWLOC_MEMBIND_THREAD; these two flags are mutually exclusive.

Note

Not all systems support all kinds of binding. See the "Detailed Description" section of Memory binding for a description of errors that can occur.

Enumerator:

- **HWLOC_MEMBIND_PROCESS** Set policy for all threads of the specified (possibly multithreaded) process. This flag is mutually exclusive with HWLOC_MEMBIND_THREAD.
- **HWLOC_MEMBIND_THREAD** Set policy for a specific thread of the current process. This flag is mutually exclusive with HWLOC_MEMBIND_PROCESS.
- **HWLOC_MEMBIND_STRICT** Request strict binding from the OS. The function will fail if the binding can not be guaranteed / completely enforced.

This flag has slightly different meanings depending on which function it is used with.

- **HWLOC_MEMBIND_MIGRATE** Migrate existing allocated memory. If the memory cannot be migrated and the HWLOC_MEMBIND_STRICT flag is passed, an error will be returned.
- HWLOC_MEMBIND_NOCPUBIND Avoid any effect on CPU binding. On some operating systems, some underlying memory binding functions also bind the application to the corresponding CPU(s). Using this flag will cause hwloc to avoid using OS functions that could potentially affect CPU bindings. Note, however, that using NOCPUBIND may reduce hwloc's overall memory binding support. Specifically: some of hwloc's memory binding functions may fail with errno set to ENOSYS when used with NOCPUBIND.

15.13.2.2 enum hwloc_membind_policy_t

Memory binding policy.

These constants can be used to choose the binding policy. Only one policy can be used at a time (i.e., the values cannot be OR'ed together).

Note

Not all systems support all kinds of binding. See the "Detailed Description" section of Memory binding for a description of errors that can occur.

Enumerator:

- HWLOC_MEMBIND_DEFAULT Reset the memory allocation policy to the system default.
- HWLOC_MEMBIND_FIRSTTOUCH Allocate memory but do not immediately bind it to a specific locality. Instead, each page in the allocation is bound only when it is first touched. Pages are individually bound to the local NUMA node of the first thread that touches it. If there is not enough memory on the node, allocation may be done in the specified cpuset before allocating on other nodes.
- HWLOC_MEMBIND_BIND Allocate memory on the specified nodes.
- HWLOC_MEMBIND_INTERLEAVE Allocate memory on the given nodes in an interleaved / round-robin manner. The precise layout of the memory across multiple NUMA nodes is OS/system specific. Interleaving can be useful when threads distributed across the specified NUMA nodes will all be accessing the whole memory range concurrently, since the interleave will then balance the memory references.
- HWLOC_MEMBIND_REPLICATE Replicate memory on the given nodes; reads from this memory will attempt to be serviced from the NUMA node local to the reading thread. Replicating can be useful when multiple threads from the specified NUMA nodes will be sharing the same read-only data. This policy can only be used with existing memory allocations (i.e., the hwloc_set_*membind*() functions); it cannot be used with functions that allocate new memory (i.e., the hwloc alloc*() functions).
- HWLOC_MEMBIND_NEXTTOUCH For each page bound with this policy, by next time it is touched (and next time only), it is moved from its current location to the local NUMA node of the thread where the memory reference occurred (if it needs to be moved at all).
- **HWLOC_MEMBIND_MIXED** Returned by hwloc_get_membind*() functions when multiple threads or parts of a memory area have differing memory binding policies.

15.13.3 Function Documentation

15.13.3.1 HWLOC_DECLSPEC void* hwloc_alloc (hwloc_topology_t topology, size_t len)

Allocate some memory.

This is equivalent to malloc(), except that it tries to allocate page-aligned memory from the OS.

Note

The allocated memory should be freed with hwloc_free().

15.13.3.2 HWLOC_DECLSPEC void* hwloc_alloc_membind (hwloc_topology_t topology, size_t len, hwloc_const_cpuset_t cpuset, hwloc_membind_policy_t policy, int flags)

Allocate some memory on memory nodes near the given physical cpuset cpuset.

Returns

NULL with errno set to ENOSYS if the action is not supported and HWLOC_MEM-BIND_STRICT is given

NULL with errno set to EXDEV if the binding cannot be enforced and HWLOC_M-EMBIND STRICT is given

Note

The allocated memory should be freed with hwloc free().

15.13.3.3 HWLOC_DECLSPEC void* hwloc_alloc_membind_nodeset (
 hwloc_topology_t topology, size_t len, hwloc_const_nodeset_t nodeset,
 hwloc_membind_policy_t policy, int flags)

Allocate some memory on the given physical nodeset nodeset.

Returns

NULL with errno set to ENOSYS if the action is not supported and HWLOC_MEM-BIND_STRICT is given

NULL with errno set to EXDEV if the binding cannot be enforced and HWLOC_M-EMBIND_STRICT is given

Note

The allocated memory should be freed with hwloc_free().

15.13.3.4 HWLOC_DECLSPEC int hwloc_free (hwloc_topology_t topology, void * addr, size_t len)

Free memory that was previously allocated by hwloc_alloc() or hwloc_alloc_membind().

15.13.3.5 HWLOC_DECLSPEC int hwloc_get_area_membind (hwloc_topology_t topology, const void * addr, size_t len, hwloc_cpuset_t cpuset, hwloc_membind_policy_t * policy, int flags)

Query the CPUs near the physical NUMA node(s) and binding policy of the memory identified by (addr, len).

This function has two output parameters: <code>cpuset</code> and <code>policy</code>. The values returned in these parameters depend on both the flags passed in and the memory binding policies and nodesets of the pages in the address range.

If HWLOC_MEMBIND_STRICT is specified, the target pages are first checked to see if they all have the same memory binding policy and nodeset. If they do not, -1 is returned and errno is set to EXDEV. If they are identical across all pages, the policy is returned in policy. cpuset is set to the union of CPUs near the NUMA node(s) in the nodeset.

If HWLOC_MEMBIND_STRICT is not specified, the union of all NUMA node(s) containing pages in the address range is calculated. cpuset is then set to the CPUs near the NUMA node(s) in this union. If all pages in the target have the same policy, it is returned in policy. Otherwise, policy is set to HWLOC MEMBIND MIXED.

If any other flags are specified, -1 is returned and errno is set to EINVAL.

15.13.3.6 HWLOC_DECLSPEC int hwloc_get_area_membind_nodeset (
 hwloc_topology_t topology, const void * addr, size_t len, hwloc_nodeset_t
 nodeset, hwloc_membind_policy_t * policy, int flags)

Query the physical NUMA node(s) and binding policy of the memory identified by (addr, len).

This function has two output parameters: nodeset and policy. The values returned in these parameters depend on both the flags passed in and the memory binding policies and nodesets of the pages in the address range.

If HWLOC_MEMBIND_STRICT is specified, the target pages are first checked to see if they all have the same memory binding policy and nodeset. If they do not, -1 is returned and errno is set to EXDEV. If they are identical across all pages, the nodeset and policy are returned in nodeset and policy, respectively.

If HWLOC_MEMBIND_STRICT is not specified, nodeset is set to the union of all N-UMA node(s) containing pages in the address range. If all pages in the target have the same policy, it is returned in policy. Otherwise, policy is set to HWLOC_MEMBIND MIXED.

If any other flags are specified, -1 is returned and errno is set to EINVAL.

15.13.3.7 HWLOC_DECLSPEC int hwloc_get_membind (hwloc_topology_t topology, hwloc_cpuset_t cpuset, hwloc_membind_policy_t * policy, int flags)

Query the default memory binding policy and physical locality of the current process or thread (the locality is returned in cpuset as CPUs near the locality's actual NUMA node(s)).

This function has two output parameters: <code>cpuset</code> and <code>policy</code>. The values returned in these parameters depend on both the flags passed in and the current memory binding policies and nodesets in the queried target.

Passing the HWLOC_MEMBIND_PROCESS flag specifies that the query target is the current policies and nodesets for all the threads in the current process. Passing HWLO-C MEMBIND THREAD specifies that the query target is the current policy and nodeset

for only the thread invoking this function.

If neither of these flags are passed (which is the most portable method), the process is assumed to be single threaded. This allows hwloc to use either process-based OS functions or thread-based OS functions, depending on which are available.

HWLOC_MEMBIND_STRICT is only meaningful when HWLOC_MEMBIND_PROCE-SS is also specified. In this case, hwloc will check the default memory policies and nodesets for all threads in the process. If they are not identical, -1 is returned and errno is set to EXDEV. If they are identical, the policy is returned in policy. cpuset is set to the union of CPUs near the NUMA node(s) in the nodeset.

Otherwise, if HWLOC_MEMBIND_PROCESS is specified (and HWLOC_MEMBIND_STRICT is *not* specified), the default nodeset from each thread is logically OR'ed together. cpuset is set to the union of CPUs near the NUMA node(s) in the resulting nodeset. If all threads' default policies are the same, policy is set to that policy. If they are different, policy is set to HWLOC_MEMBIND_MIXED.

In the HWLOC_MEMBIND_THREAD case (or when neither HWLOC_MEMBIND_PROCESS or HWLOC_MEMBIND_THREAD is specified), there is only one nodeset and policy. The policy is returned in policy; cpuset is set to the union of CPUs near the NUMA node(s) in the nodeset.

If any other flags are specified, -1 is returned and errno is set to EINVAL.

15.13.3.8 HWLOC_DECLSPEC int hwloc_get_membind_nodeset (hwloc_topology_t topology, hwloc_nodeset_t nodeset, hwloc_membind_policy_t * policy, int flags)

Query the default memory binding policy and physical locality of the current process or thread.

This function has two output parameters: nodeset and policy. The values returned in these parameters depend on both the flags passed in and the current memory binding policies and nodesets in the queried target.

Passing the HWLOC_MEMBIND_PROCESS flag specifies that the query target is the current policies and nodesets for all the threads in the current process. Passing HWLO-C_MEMBIND_THREAD specifies that the query target is the current policy and nodeset for only the thread invoking this function.

If neither of these flags are passed (which is the most portable method), the process is assumed to be single threaded. This allows hwloc to use either process-based OS functions or thread-based OS functions, depending on which are available.

HWLOC_MEMBIND_STRICT is only meaningful when HWLOC_MEMBIND_PROCE-SS is also specified. In this case, hwloc will check the default memory policies and nodesets for all threads in the process. If they are not identical, -1 is returned and errno is set to EXDEV. If they are identical, the values are returned in nodeset and policy.

Otherwise, if HWLOC_MEMBIND_PROCESS is specified (and HWLOC_MEMBIND_STRICT is *not* specified), nodeset is set to the logical OR of all threads' default nodeset. If all threads' default policies are the same, policy is set to that policy. If

they are different, policy is set to HWLOC MEMBIND MIXED.

In the HWLOC_MEMBIND_THREAD case (or when neither HWLOC_MEMBIND_PROCESS or HWLOC_MEMBIND_THREAD is specified), there is only one nodeset and policy; they are returned in nodeset and policy, respectively.

If any other flags are specified, -1 is returned and errno is set to EINVAL.

15.13.3.9 HWLOC_DECLSPEC int hwloc_get_proc_membind (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_cpuset_t cpuset, hwloc_membind_policy_t * policy, int flags)

Query the default memory binding policy and physical locality of the specified process (the locality is returned in cpuset as CPUs near the locality's actual NUMA node(s)).

This function has two output parameters: <code>cpuset</code> and <code>policy</code>. The values returned in these parameters depend on both the flags passed in and the current memory binding policies and nodesets in the gueried target.

Passing the HWLOC_MEMBIND_PROCESS flag specifies that the query target is the current policies and nodesets for all the threads in the specified process. If HWLOC_M-EMBIND_PROCESS is not specified (which is the most portable method), the process is assumed to be single threaded. This allows hwloc to use either process-based OS functions or thread-based OS functions, depending on which are available.

Note that it does not make sense to pass HWLOC_MEMBIND_THREAD to this function.

If HWLOC_MEMBIND_STRICT is specified, hwloc will check the default memory policies and nodesets for all threads in the specified process. If they are not identical, -1 is returned and errno is set to EXDEV. If they are identical, the policy is returned in policy. cpuset is set to the union of CPUs near the NUMA node(s) in the nodeset.

Otherwise, the default nodeset from each thread is logically OR'ed together. cpuset is set to the union of CPUs near the NUMA node(s) in the resulting nodeset. If all threads' default policies are the same, policy is set to that policy. If they are different, policy is set to HWLOC_MEMBIND_MIXED.

If any other flags are specified, -1 is returned and errno is set to EINVAL.

Note

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.

Query the default memory binding policy and physical locality of the specified process.

This function has two output parameters: nodeset and policy. The values returned in these parameters depend on both the flags passed in and the current memory binding policies and nodesets in the queried target.

Passing the HWLOC_MEMBIND_PROCESS flag specifies that the query target is the current policies and nodesets for all the threads in the specified process. If HWLOC_M-EMBIND_PROCESS is not specified (which is the most portable method), the process is assumed to be single threaded. This allows hwloc to use either process-based OS functions or thread-based OS functions, depending on which are available.

Note that it does not make sense to pass HWLOC MEMBIND THREAD to this function.

If HWLOC_MEMBIND_STRICT is specified, hwloc will check the default memory policies and nodesets for all threads in the specified process. If they are not identical, -1 is returned and errno is set to EXDEV. If they are identical, the values are returned in nodeset and policy.

Otherwise, nodeset is set to the logical OR of all threads' default nodeset. If all threads' default policies are the same, policy is set to that policy. If they are different, policy is set to HWLOC_MEMBIND_MIXED.

If any other flags are specified, -1 is returned and errno is set to EINVAL.

Note

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.

15.13.3.11 HWLOC_DECLSPEC int hwloc_set_area_membind (hwloc_topology_t topology, const void * addr, size_t len, hwloc_const_cpuset_t cpuset, hwloc_membind_policy_t policy, int flags)

Bind the already-allocated memory identified by (addr, len) to the NUMA node(s) near physical cpuset.

Returns

- -1 with errno set to ENOSYS if the action is not supported
- -1 with errno set to EXDEV if the binding cannot be enforced

15.13.3.12 HWLOC_DECLSPEC int hwloc_set_area_membind_nodeset (hwloc_topology_t topology, const void * addr, size_t len, hwloc_const_nodeset_t nodeset, hwloc_membind_policy_t policy, int flags)

Bind the already-allocated memory identified by (addr, len) to the NUMA node(s) in physical nodeset.

Returns

- -1 with errno set to ENOSYS if the action is not supported
- -1 with errno set to EXDEV if the binding cannot be enforced

15.13.3.13 HWLOC_DECLSPEC int hwloc_set_membind (hwloc_topology_t topology, hwloc_const_cpuset_t cpuset, hwloc_membind_policy_t policy, int flags)

Set the default memory binding policy of the current process or thread to prefer the NUMA node(s) near the specified physical <code>cpuset</code>.

If neither HWLOC_MEMBIND_PROCESS nor HWLOC_MEMBIND_THREAD is specified, the current process is assumed to be single-threaded. This is the most portable form as it permits hwloc to use either process-based OS functions or thread-based OS functions, depending on which are available.

Returns

- -1 with errno set to ENOSYS if the action is not supported
- -1 with errno set to EXDEV if the binding cannot be enforced

15.13.3.14 HWLOC_DECLSPEC int hwloc_set_membind_nodeset (hwloc_topology_t topology, hwloc_const_nodeset_t nodeset, hwloc_membind_policy_t policy, int flags)

Set the default memory binding policy of the current process or thread to prefer the NUMA node(s) specified by physical nodeset.

If neither HWLOC_MEMBIND_PROCESS nor HWLOC_MEMBIND_THREAD is specified, the current process is assumed to be single-threaded. This is the most portable form as it permits hwloc to use either process-based OS functions or thread-based OS functions, depending on which are available.

Returns

- -1 with errno set to ENOSYS if the action is not supported
- -1 with errno set to EXDEV if the binding cannot be enforced

15.13.3.15 HWLOC_DECLSPEC int hwloc_set_proc_membind (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_const_cpuset_t cpuset, hwloc_membind_policy_t policy, int flags)

Set the default memory binding policy of the specified process to prefer the NUMA node(s) near the specified physical cpuset.

Returns

- -1 with errno set to ENOSYS if the action is not supported
- -1 with errno set to EXDEV if the binding cannot be enforced

Note

 $\verb|hwloc_pid_t| is pid_t| on \ Unix| \ platforms, \ and \ \verb|HANDLE| on \ native| \ Windows| platforms.$

Set the default memory binding policy of the specified process to prefer the NUMA node(s) specified by physical nodeset.

Returns

- -1 with errno set to ENOSYS if the action is not supported
- -1 with errno set to EXDEV if the binding cannot be enforced

Note

 $\verb|hwloc_pid_t| is pid_t| on Unix platforms, and \verb|HANDLE| on native Windows| platforms.$

15.14 Building Custom Topologies

Functions

- HWLOC_DECLSPEC int hwloc_custom_insert_topology (hwloc_topology_t new-topology, hwloc_obj_t newparent, hwloc_topology_t oldtopology, hwloc_obj_t oldroot)
- HWLOC_DECLSPEC hwloc_obj_t hwloc_custom_insert_group_object_by_parent (hwloc_topology_t topology, hwloc_obj_t parent, int groupdepth)

15.14.1 Detailed Description

A custom topology may be initialized by calling hwloc_topology_set_custom() after hwloc_topology_init(). It may then be modified by inserting objects or entire topologies. Once done assembling, hwloc_topology_load() should be invoked as usual to finalize the topology.

15.14.2 Function Documentation

```
15.14.2.1 HWLOC_DECLSPEC hwloc_obj_t hwloc_custom_insert_group_object_by_parent ( hwloc_topology_t topology, hwloc_obj_t parent, int groupdepth )
```

Insert a new group object inside a custom topology.

An object with type HWLOC_OBJ_GROUP is inserted as a new child of object parent.

groupdepth is the depth attribute to be given to the new object. It may for instance be 0 for top-level groups, 1 for their children, and so on.

The custom topology newtopology must have been prepared with hwloc_topology_set_custom() and not loaded with hwloc_topology_load() yet.

parent may be either the root of topology or an object that was added earlier through hwloc_custom_insert_group_object_by_parent().

```
15.14.2.2 HWLOC_DECLSPEC int hwloc_custom_insert_topology ( hwloc_topology_t newtopology, hwloc_obj_t newparent, hwloc_topology_t oldtopology, hwloc_obj_t oldroot )
```

Insert an existing topology inside a custom topology.

Duplicate the existing topology oldtopology inside a new custom topology newtopology as a leaf of object newparent.

If oldroot is not \mathtt{NULL} , duplicate oldroot and all its children instead of the entire oldtopology. Passing the root object of oldtopology in oldroot is equivalent to passing \mathtt{NULL} .

The custom topology newtopology must have been prepared with hwloc_topology_set_custom() and not loaded with hwloc_topology_load() yet.

newparent may be either the root of newtopology or an object that was added through hwloc_custom_insert_group_object_by_parent().

15.15 Object Type Helpers

Functions

- static __hwloc_inline int hwloc_get_type_or_below_depth (hwloc_topology_t topology, hwloc_obj_type_t type) __hwloc_attribute_pure
- static __hwloc_inline int hwloc_get_type_or_above_depth (hwloc_topology_t topology, hwloc_obj_type_t type) __hwloc_attribute_pure

15.15.1 Detailed Description

Be sure to see the figure in Terms and Definitions that shows a complete topology tree, including depths, child/sibling/cousin relationships, and an example of an asymmetric topology where one socket has fewer caches than its peers.

15.15.2 Function Documentation

Returns the depth of objects of type type or above.

If no object of this type is present on the underlying architecture, the function returns the depth of the first "present" object typically containing type.

If some objects of the given type exist in different levels, for instance L1 and L2 caches, the function returns HWLOC_TYPE_DEPTH_MULTIPLE.

Returns the depth of objects of type type or below.

If no object of this type is present on the underlying architecture, the function returns the depth of the first "present" object typically found inside type.

If some objects of the given type exist in different levels, for instance L1 and L2 caches, the function returns HWLOC TYPE DEPTH MULTIPLE.

15.16 Basic Traversal Helpers

Functions

- static __hwloc_inline hwloc_obj_t hwloc_get_root_obj (hwloc_topology_t topology) __hwloc_attribute_pure
- static __hwloc_inline hwloc_obj_t hwloc_get_ancestor_obj_by_depth (hwloc_topology_t topology __hwloc_attribute_unused, unsigned depth, hwloc_obj_t obj) __hwloc_attribute_pure
- static __hwloc_inline hwloc_obj_t hwloc_get_ancestor_obj_by_type (hwloc_topology_t topology __hwloc_attribute_unused, hwloc_obj_type_t type, hwloc_obj_t obj) __hwloc_attribute_pure
- static __hwloc_inline hwloc_obj_t hwloc_get_next_obj_by_depth (hwloc_-topology_t topology, unsigned depth, hwloc_obj_t prev)
- static __hwloc_inline hwloc_obj_t hwloc_get_next_obj_by_type (hwloc_topology-_t topology, hwloc_obj_type_t type, hwloc_obj_t prev)
- static __hwloc_inline hwloc_obj_t hwloc_get_pu_obj_by_os_index (hwloc_topology_t topology, unsigned os_index) __hwloc_attribute_pure
- static __hwloc_inline hwloc_obj_t hwloc_get_next_child (hwloc_topology_t topology hwloc attribute unused, hwloc obj t parent, hwloc obj t prev)
- static __hwloc_inline hwloc_obj_t hwloc_get_common_ancestor_obj (hwloc_topology_t topology __hwloc_attribute_unused, hwloc_obj_t obj1, hwloc_obj_t obj2)
 hwloc attribute pure
- static __hwloc_inline int hwloc_obj_is_in_subtree (hwloc_topology_t topology _-_hwloc_attribute_unused, hwloc_obj_t obj, hwloc_obj_t subtree_root) __hwloc_attribute pure

15.16.1 Detailed Description

Be sure to see the figure in Terms and Definitions that shows a complete topology tree, including depths, child/sibling/cousin relationships, and an example of an asymmetric topology where one socket has fewer caches than its peers.

15.16.2 Function Documentation

15.16.2.1 static __hwloc_inline hwloc_obj_t hwloc_get_ancestor_obj_by_depth (hwloc_topology_t topology __hwloc_attribute_unused, unsigned depth, hwloc_obj_t obj_) [static]

Returns the ancestor object of obj at depth depth.

Returns the ancestor object of obj with type type.

```
15.16.2.3 static __hwloc_inline hwloc_obj_t hwloc_get_common_ancestor_obj ( hwloc_topology_t topology __hwloc_attribute_unused, hwloc_obj_t obj1, hwloc_obj_t obj2 ) [static]
```

Returns the common parent object to objects IvI1 and IvI2.

```
15.16.2.4 static _hwloc_inline hwloc_obj_t hwloc_get_next_child ( hwloc_topology_t topology _hwloc_attribute_unused, hwloc_obj_t parent, hwloc_obj_t prev )
[static]
```

Return the next child.

If prev is NULL, return the first child.

Returns the next object at depth depth.

If prev is NULL, return the first object at depth depth.

Returns the next object of type type.

If prev is NULL, return the first object at type type. If there are multiple or no depth for given type, return NULL and let the caller fallback to hwloc_get_next_obj_by_depth().

```
15.16.2.7 static _hwloc_inline hwloc_obj_t hwloc_get_pu_obj_by_os_index ( hwloc_topology_t topology, unsigned os_index ) [static]
```

Returns the object of type HWLOC_OBJ_PU with os_index.

Note

The os_index field of object should most of the times only be used for pretty-printing purpose. Type HWLOC_OBJ_PU is the only case where os_index could actually be useful, when manually binding to processors. However, using CPU sets to hide this complexity should often be preferred.

```
15.16.2.8 static __hwloc_inline hwloc_obj_t hwloc_get_root_obj( hwloc_topology_t topology ) [static]
```

Returns the top-object of the topology-tree.

Its type is typically HWLOC_OBJ_MACHINE but it could be different for complex topologies. This function replaces the old deprecated hwloc_get_system_obj().

```
15.16.2.9 static _hwloc_inline int hwloc_obj_is_in_subtree ( hwloc_topology_t topology _hwloc_attribute_unused, hwloc_obj_t obj, hwloc_obj_t subtree_root ) [static]
```

Returns true if obj is inside the subtree beginning with subtree_root.

Note

This function assumes that both obj and subtree_root have a cpuset.

15.17 Finding Objects Inside a CPU set

Functions

- static __hwloc_inline hwloc_obj_t hwloc_get_first_largest_obj_inside_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set)
- HWLOC_DECLSPEC int hwloc_get_largest_objs_inside_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set, hwloc_obj_t *__hwloc_restrict objs, int max)
- static __hwloc_inline hwloc_obj_t hwloc_get_next_obj_inside_cpuset_by_depth (hwloc_topology_t topology, hwloc_const_cpuset_t set, unsigned depth, hwloc_obj_t prev)
- static __hwloc_inline hwloc_obj_t hwloc_get_next_obj_inside_cpuset_by_type (hwloc_topology_t topology, hwloc_const_cpuset_t set, hwloc_obj_type_t type, hwloc_obj_t prev)
- static __hwloc_inline hwloc_obj_t hwloc_get_obj_inside_cpuset_by_depth (hwloc_topology_t topology, hwloc_const_cpuset_t set, unsigned depth, unsigned idx) __hwloc_attribute_pure
- static __hwloc_inline hwloc_obj_t hwloc_get_obj_inside_cpuset_by_type (hwloc_topology_t topology, hwloc_const_cpuset_t set, hwloc_obj_type_t type, unsigned idx) __hwloc_attribute_pure
- static __hwloc_inline unsigned hwloc_get_nbobjs_inside_cpuset_by_depth (hwloc_topology_t topology, hwloc_const_cpuset_t set, unsigned depth) __hwloc_attribute_pure
- static __hwloc_inline int hwloc_get_nbobjs_inside_cpuset_by_type (hwloc_-topology_t topology, hwloc_const_cpuset_t set, hwloc_obj_type_t type) __hwloc_attribute pure
- static __hwloc_inline int hwloc_get_obj_index_inside_cpuset (hwloc_topology_t topology __hwloc_attribute_unused, hwloc_const_cpuset_t set, hwloc_obj_t obj) __hwloc_attribute_pure

15.17.1 Function Documentation

15.17.1.1 static __hwloc_inline hwloc_obj_t hwloc_get_first_largest_obj_inside_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set)
[static]

Get the first largest object included in the given cpuset set.

Returns

the first object that is included in set and whose parent is not.

This is convenient for iterating over all largest objects within a CPU set by doing a loop getting the first largest object and clearing its CPU set from the remaining CPU set.

Note

This function cannot work if the root object does not have a CPU set, e.g. if the topology is made of different machines.

Get the set of largest objects covering exactly a given cpuset set.

Returns

the number of objects returned in objs.

Note

This function cannot work if the root object does not have a CPU set, e.g. if the topology is made of different machines.

Return the number of objects at depth depth included in CPU set set.

Note

This function cannot work if objects at the given depth do not have CPU sets or if the topology is made of different machines.

Return the number of objects of type type included in CPU set set.

If no object for that type exists inside CPU set set, 0 is returned. If there are several levels with objects of that type inside CPU set set, -1 is returned.

Note

This function cannot work if objects of the given type do not have CPU sets or if the topology is made of different machines.

15.17.1.5 static _hwloc_inline hwloc_obj_t hwloc_get_next_obj_inside_cpuset_by_depth (hwloc_topology_t topology, hwloc_const_cpuset_t set, unsigned depth, hwloc_obj_t prev) [static]

Return the next object at depth depth included in CPU set set.

If prev is NULL, return the first object at depth depth included in set. The next invokation should pass the previous return value in prev so as to obtain the next object in set.

Note

This function cannot work if objects at the given depth do not have CPU sets or if the topology is made of different machines.

```
15.17.1.6 static _hwloc_inline hwloc_obj_t hwloc_get_next_obj_inside_cpuset_-
by_type ( hwloc_topology_t topology, hwloc_const_cpuset_t set,
hwloc_obj_type_t type, hwloc_obj_t prev ) [static]
```

Return the next object of type type included in CPU set set.

If there are multiple or no depth for given type, return \mathtt{NULL} and let the caller fallback to $\mathtt{hwloc_get_next_obj_inside_cpuset_by_depth}()$.

Note

This function cannot work if objects of the given type do not have CPU sets or if the topology is made of different machines.

Return the logical index among the objects included in CPU set $\mathtt{set}.$

Consult all objects in the same level as obj and inside CPU set set in the logical order, and return the index of obj within them. If set covers the entire topology, this is the logical index of obj. Otherwise, this is similar to a logical index within the part of the topology defined by CPU set set.

Return the (logically) idx -th object at depth depth included in CPU set set.

Note

This function cannot work if objects at the given depth do not have CPU sets or if the topology is made of different machines.

Return the idx -th object of type type included in CPU set set.

If there are multiple or no depth for given type, return \mathtt{NULL} and let the caller fallback to $\mathtt{hwloc_get_obj_inside_cpuset_by_depth}().$

Note

This function cannot work if objects of the given type do not have CPU sets or if the topology is made of different machines.

15.18 Finding a single Object covering at least CPU set

Functions

- static __hwloc_inline hwloc_obj_t hwloc_get_child_covering_cpuset (hwloc_topology_t topology __hwloc_attribute_unused, hwloc_const_cpuset_t set, hwloc_obj_t parent) __hwloc_attribute_pure
- static __hwloc_inline hwloc_obj_t hwloc_get_obj_covering_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set) __hwloc_attribute_pure

15.18.1 Function Documentation

Get the child covering at least CPU set set.

Returns

NULL if no child matches or if set is empty.

Note

This function cannot work if parent does not have a CPU set.

Get the lowest object covering at least CPU set set.

Returns

NULL if no object matches or if set is empty.

Note

This function cannot work if the root object does not have a CPU set, e.g. if the topology is made of different machines.

15.19 Finding a set of similar Objects covering at least a CPU set

Functions

- static __hwloc_inline hwloc_obj_t hwloc_get_next_obj_covering_cpuset_by_depth (hwloc_topology_t topology, hwloc_const_cpuset_t set, unsigned depth, hwloc_obj_t prev)
- static __hwloc_inline hwloc_obj_t hwloc_get_next_obj_covering_cpuset_by_type (hwloc_topology_t topology, hwloc_const_cpuset_t set, hwloc_obj_type_t type, hwloc_obj_t prev)

15.19.1 Function Documentation

15.19.1.1 static _hwloc_inline hwloc_obj_t hwloc_get_next_obj_covering_cpuset_by_depth (hwloc_topology_t topology, hwloc_const_cpuset_t set, unsigned depth, hwloc_obj_t prev) [static]

Iterate through same-depth objects covering at least CPU set set.

If object prev is NULL, return the first object at depth depth covering at least part of CPU set set. The next invokation should pass the previous return value in prev so as to obtain the next object covering at least another part of set.

Note

This function cannot work if objects at the given depth do not have CPU sets or if the topology is made of different machines.

```
15.19.1.2 static _hwloc_inline hwloc_obj_t hwloc_get_next_obj_covering_cpuset_-
by_type ( hwloc_topology_t topology, hwloc_const_cpuset_t set,
hwloc_obj_type_t type, hwloc_obj_t prev ) [static]
```

Iterate through same-type objects covering at least CPU set set.

If object <code>prev</code> is <code>NULL</code>, return the first object of type <code>type</code> covering at least part of CPU set <code>set</code>. The next invokation should pass the previous return value in <code>prev</code> so as to obtain the next object of type <code>type</code> covering at least another part of <code>set</code>.

If there are no or multiple depths for type type, NULL is returned. The caller may fallback to $hwloc_get_next_obj_covering_cpuset_by_depth()$ for each depth.

Note

This function cannot work if objects of the given type do not have CPU sets or if the topology is made of different machines.

15.20 Cache-specific Finding Helpers

Functions

- static __hwloc_inline hwloc_obj_t hwloc_get_cache_covering_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set) __hwloc_attribute_pure
- static __hwloc_inline hwloc_obj_t hwloc_get_shared_cache_covering_obj (hwloc_topology_t topology __hwloc_attribute_unused, hwloc_obj_t obj) __hwloc_attribute_pure

15.20.1 Function Documentation

Get the first cache covering a cpuset set.

Returns

NULL if no cache matches.

Note

This function cannot work if the root object does not have a CPU set, e.g. if the topology is made of different machines.

```
15.20.1.2 static __hwloc_inline hwloc_obj_t hwloc_get_shared_cache_covering_obj ( hwloc_topology_t topology __hwloc_attribute_unused, hwloc_obj_t obj ) [static]
```

Get the first cache shared between an object and somebody else.

Returns

 \mathtt{NULL} if no cache matches or if an invalid object is given.

15.21 Advanced Traversal Helpers

Functions

- HWLOC_DECLSPEC unsigned hwloc_get_closest_objs (hwloc_topology_t topology, hwloc_obj_t src, hwloc_obj_t *__hwloc_restrict objs, unsigned max)
- static __hwloc_inline hwloc_obj_t hwloc_get_obj_below_by_type (hwloc_topology_t topology, hwloc_obj_type_t type1, unsigned idx1, hwloc_obj_type_t type2, unsigned idx2) __hwloc_attribute_pure
- static __hwloc_inline hwloc_obj_t hwloc_get_obj_below_array_by_type (hwloc_topology_t topology, int nr, hwloc_obj_type_t *typev, unsigned *idxv) __hwloc_attribute pure

15.21.1 Detailed Description

Be sure to see the figure in Terms and Definitions that shows a complete topology tree, including depths, child/sibling/cousin relationships, and an example of an asymmetric topology where one socket has fewer caches than its peers.

15.21.2 Function Documentation

```
15.21.2.1 HWLOC_DECLSPEC unsigned hwloc_get_closest_objs ( hwloc_topology_t topology, hwloc_obj_t src, hwloc_obj_t *_hwloc_restrict objs, unsigned max )
```

Do a depth-first traversal of the topology to find and sort.

all objects that are at the same depth than src. Report in objs up to max physically closest ones to src.

Returns

```
the number of objects returned in objs. 0 if src is an I/O object.
```

Note

This function requires the src object to have a CPU set.

Find an object below a chain of objects specified by types and indexes.

This is a generalized version of hwloc_get_obj_below_by_type().

Arrays typev and idxv must contain nr types and indexes.

Start from the top system object and walk the arrays typev and idxv. For each type and logical index couple in the arrays, look under the previously found object to find the index-th object of the given type. Indexes are specified within the parent, not withing the entire system.

For instance, if nr is 3, typev contains NODE, SOCKET and CORE, and idxv contains 0, 1 and 2, return the third core object below the second socket below the first NUMA node.

Note

This function requires all these objects and the root object to have a CPU set.

```
15.21.2.3 static _hwloc_inline hwloc_obj_t hwloc_get_obj_below_by_type (
    hwloc_topology_t topology, hwloc_obj_type_t type1, unsigned idx1,
    hwloc_obj_type_t type2, unsigned idx2 ) [static]
```

Find an object below another object, both specified by types and indexes.

Start from the top system object and find object of type type1 and logical index idx1. Then look below this object and find another object of type type2 and logical index idx2. Indexes are specified within the parent, not withing the entire system.

For instance, if type1 is SOCKET, idx1 is 2, type2 is CORE and idx2 is 3, return the fourth core object below the third socket.

Note

This function requires these objects to have a CPU set.

15.22 Binding Helpers

Functions

- static __hwloc_inline void hwloc_distributev (hwloc_topology_t topology, hwloc_obj_t *root, unsigned n_roots, hwloc_cpuset_t *cpuset, unsigned n, unsigned until)
- static __hwloc_inline void hwloc_distribute (hwloc_topology_t topology, hwloc_obj_t root, hwloc_cpuset_t *cpuset, unsigned n, unsigned until)
- static __hwloc_inline void * hwloc_alloc_membind_policy_nodeset (hwloc_topology_t topology, size_t len, hwloc_const_nodeset_t nodeset, hwloc_membind_policy_t policy, int flags)
- static __hwloc_inline void * hwloc_alloc_membind_policy (hwloc_topology_t topology, size_t len, hwloc_const_cpuset_t cpuset, hwloc_membind_policy_t policy, int flags)

15.22.1 Function Documentation

15.22.1.1 static _hwloc_inline void* hwloc_alloc_membind_policy (
 hwloc_topology_t topology, size_t len, hwloc_const_cpuset_t cpuset,
 hwloc_membind_policy_t policy, int flags_) [static]

Allocate some memory on the memory nodes near given cpuset cpuset.

This is similar to hwloc_alloc_membind_policy_nodeset, but for a given cpuset.

Allocate some memory on the given nodeset nodeset.

This is similar to hwloc_alloc_membind except that it is allowed to change the current memory binding policy, thus providing more binding support, at the expense of changing the current state.

- 15.22.1.3 static _hwloc_inline void hwloc_distribute (hwloc_topology_t topology, hwloc_obj_t root, hwloc_cpuset_t * cpuset, unsigned n, unsigned until) [static]
- 15.22.1.4 static _hwloc_inline void hwloc_distributev (hwloc_topology_t topology, hwloc_obj_t * roots, unsigned n_roots, hwloc_cpuset_t * cpuset, unsigned n, unsigned until) [static]

Distribute n items over the topology under root.

Distribute n items over the topology under roots.

Array cpuset will be filled with n cpusets recursively distributed linearly over the topology under root, down to depth until (which can be INT_MAX to distribute down to the finest level).

This is typically useful when an application wants to distribute n threads over a machine, giving each of them as much private cache as possible and keeping them locally in number order.

The caller may typically want to also call hwloc_bitmap_singlify() before binding a thread so that it does not move at all.

Note

This function requires the root object to have a CPU set.

This is the same as hwloc_distribute, but takes an array of roots instead of just one root.

Note

This function requires the roots objects to have a CPU set.

15.23 Cpuset Helpers

Functions

- static __hwloc_inline hwloc_const_cpuset_t hwloc_topology_get_complete_cpuset (hwloc_topology_t topology) __hwloc_attribute_pure
- static __hwloc_inline hwloc_const_cpuset_t hwloc_topology_get_topology_cpuset (hwloc_topology_t topology) __hwloc_attribute_pure
- static __hwloc_inline hwloc_const_cpuset_t hwloc_topology_get_online_cpuset (hwloc_topology_t topology) __hwloc_attribute_pure
- static __hwloc_inline hwloc_const_cpuset_t hwloc_topology_get_allowed_cpuset (hwloc_topology_t topology) hwloc_attribute_pure

15.23.1 Function Documentation

```
15.23.1.1 static _hwloc_inline hwloc_const_cpuset_t hwloc_topology-
_get_allowed_cpuset ( hwloc_topology_t topology )
[static]
```

Get allowed CPU set.

Returns

the CPU set of allowed logical processors of the system. If the topology is the result of a combination of several systems, NULL is returned.

Note

The returned cpuset is not newly allocated and should thus not be changed or freed, hwloc_cpuset_dup must be used to obtain a local copy.

```
15.23.1.2 static _hwloc_inline hwloc_const_cpuset_t hwloc_topology-
_get_complete_cpuset ( hwloc_topology_t topology )
[static]
```

Get complete CPU set.

Returns

the complete CPU set of logical processors of the system. If the topology is the result of a combination of several systems, NULL is returned.

Note

The returned cpuset is not newly allocated and should thus not be changed or freed; hwloc_cpuset_dup must be used to obtain a local copy.

Get online CPU set.

Returns

the CPU set of online logical processors of the system. If the topology is the result of a combination of several systems, NULL is returned.

Note

The returned cpuset is not newly allocated and should thus not be changed or freed; hwloc_cpuset_dup must be used to obtain a local copy.

```
15.23.1.4 static _hwloc_inline hwloc_const_cpuset_t hwloc_topology-
_get_topology_cpuset ( hwloc_topology_t topology )
[static]
```

Get topology CPU set.

Returns

the CPU set of logical processors of the system for which hwloc provides topology information. This is equivalent to the cpuset of the system object. If the topology is the result of a combination of several systems, NULL is returned.

Note

The returned cpuset is not newly allocated and should thus not be changed or freed; hwloc_cpuset_dup must be used to obtain a local copy.

15.24 Nodeset Helpers

Functions

- static __hwloc_inline hwloc_const_nodeset_t hwloc_topology_get_complete_nodeset (hwloc_topology_t topology) __hwloc_attribute_pure
- static __hwloc_inline hwloc_const_nodeset_t hwloc_topology_get_topology_nodeset (hwloc_topology_t topology) __hwloc_attribute_pure
- static __hwloc_inline hwloc_const_nodeset_t hwloc_topology_get_allowed_nodeset (hwloc_topology_t topology) __hwloc_attribute_pure

15.24.1 Function Documentation

```
15.24.1.1 static _.hwloc_inline hwloc_const_nodeset_t hwloc_topology-
_get_allowed_nodeset ( hwloc_topology_t topology )
[static]
```

Get allowed node set.

Returns

the node set of allowed memory of the system. If the topology is the result of a combination of several systems, NULL is returned.

Note

The returned nodeset is not newly allocated and should thus not be changed or freed, hwloc_nodeset_dup must be used to obtain a local copy.

```
15.24.1.2 static _hwloc_inline hwloc_const_nodeset_t hwloc_topology-
_get_complete_nodeset ( hwloc_topology_t topology )
[static]
```

Get complete node set.

Returns

the complete node set of memory of the system. If the topology is the result of a combination of several systems, NULL is returned.

Note

The returned nodeset is not newly allocated and should thus not be changed or freed; hwloc_nodeset_dup must be used to obtain a local copy.

```
15.24.1.3 static _hwloc_inline hwloc_const_nodeset_t hwloc_topology-
_get_topology_nodeset ( hwloc_topology_t topology )
[static]
```

Get topology node set.

Returns

the node set of memory of the system for which hwloc provides topology information. This is equivalent to the nodeset of the system object. If the topology is the result of a combination of several systems, NULL is returned.

Note

The returned nodeset is not newly allocated and should thus not be changed or freed; hwloc_nodeset_dup must be used to obtain a local copy.

15.25 Conversion between cpuset and nodeset

Functions

- static __hwloc_inline void hwloc_cpuset_to_nodeset (hwloc_topology_t topology, hwloc const cpuset t cpuset, hwloc nodeset t nodeset)
- static __hwloc_inline void hwloc_cpuset_to_nodeset_strict (struct hwloc_-topology *topology, hwloc_const_cpuset_t cpuset, hwloc_nodeset_t nodeset)
- static __hwloc_inline void hwloc_cpuset_from_nodeset (hwloc_topology_t topology, hwloc_cpuset_t cpuset, hwloc_const_nodeset_t nodeset)
- static __hwloc_inline void hwloc_cpuset_from_nodeset_strict (struct hwloc_topology *topology, hwloc_cpuset_t cpuset, hwloc_const_nodeset_t nodeset)

15.25.1 Detailed Description

There are two semantics for converting cpusets to nodesets depending on how non-N-UMA machines are handled.

When manipulating nodesets for memory binding, non-NUMA machines should be considered as having a single NUMA node. The standard conversion routines below should be used so that marking the first bit of the nodeset means that memory should be bound to a non-NUMA whole machine.

When manipulating nodesets as an actual list of NUMA nodes without any need to handle memory binding on non-NUMA machines, the strict conversion routines may be used instead.

15.25.2 Function Documentation

15.25.2.1 static __hwloc_inline void hwloc_cpuset_from_nodeset (hwloc_topology_t topology, hwloc_cpuset_t cpuset, hwloc_const_nodeset_t nodeset)
[static]

Convert a NUMA node set into a CPU set and handle non-NUMA cases.

If the topology contains no NUMA nodes, the machine is considered as a single memory node, and the following behavior is used: If nodeset is empty, cpuset will be emptied as well. Otherwise cpuset will be entirely filled. This is useful for manipulating memory binding sets.

15.25.2.2 static __hwloc_inline void hwloc_cpuset_from_nodeset_strict (struct hwloc_topology * topology, hwloc_cpuset_t cpuset, hwloc_const_nodeset_t nodeset) [static]

Convert a NUMA node set into a CPU set without handling non-NUMA cases.

This is the strict variant of hwloc_cpuset_from_nodeset. It does not fix non-NUMA cases. If the topology contains some NUMA nodes, behave exactly the same. However, if the topology contains no NUMA nodes, return an empty cpuset.

15.25.2.3 static __hwloc_inline void hwloc_cpuset_to_nodeset (hwloc_topology_t topology, hwloc_const_cpuset_t cpuset, hwloc_nodeset_t nodeset)
[static]

Convert a CPU set into a NUMA node set and handle non-NUMA cases.

If some NUMA nodes have no CPUs at all, this function never sets their indexes in the output node set, even if a full CPU set is given in input.

If the topology contains no NUMA nodes, the machine is considered as a single memory node, and the following behavior is used: If cpuset is empty, nodeset will be emptied as well. Otherwise nodeset will be entirely filled.

15.25.2.4 static __hwloc_inline void hwloc_cpuset_to_nodeset_strict (struct hwloc_topology * topology, hwloc_const_cpuset_t cpuset, hwloc_nodeset_t nodeset) [static]

Convert a CPU set into a NUMA node set without handling non-NUMA cases.

This is the strict variant of hwloc_cpuset_to_nodeset. It does not fix non-NUMA cases. If the topology contains some NUMA nodes, behave exactly the same. However, if the topology contains no NUMA nodes, return an empty nodeset.

15.26 Distances 127

15.26 Distances

Functions

static __hwloc_inline struct hwloc_distances_s * hwloc_get_whole_distance_matrix_by_depth (hwloc_topology_t topology, unsigned depth)

- static __hwloc_inline struct hwloc_distances_s * hwloc_get_whole_distance_matrix_by_type (hwloc_topology_t topology, hwloc_obj_type_t type)
- static __hwloc_inline struct hwloc_distances_s * hwloc_get_distance_matrix_covering_obj_by_depth (hwloc_topology_t topology, hwloc_obj_t obj, unsigned depth, unsigned *firstp)
- static __hwloc_inline int hwloc_get_latency (hwloc_topology_t topology, hwloc_-obj_t obj1, hwloc_obj_t obj2, float *latency, float *reverse_latency)

15.26.1 Function Documentation

15.26.1.1 static _hwloc_inline struct hwloc_distances_s* hwloc_get_distance_matrix-_covering_obj_by_depth (hwloc_topology_t topology, hwloc_obj_t obj, _unsigned depth, unsigned * firstp) [static, read]

Get distances for the given depth and covering some objects.

Return a distance matrix that describes depth depth and covers at least object obj and all its children.

When looking for the distance between some objects, a common ancestor should be passed in obj.

firstp is set to logical index of the first object described by the matrix.

The returned structure belongs to the hwloc library. The caller should not modify or free it.

```
15.26.1.2 static _hwloc_inline int hwloc_get_latency ( hwloc_topology_t topology, hwloc_obj_t obj1, hwloc_obj_t obj2, float * latency, float * reverse_latency ) [static]
```

Get the latency in both directions between two objects.

Look at ancestor objects from the bottom to the top until one of them contains a distance matrix that matches the objects exactly.

latency gets the value from object obj1 to obj2, while reverse_latency gets the reverse-direction value, which may be different on some architectures.

Returns

-1 if no ancestor contains a matching latency matrix.

15.26.1.3 static _hwloc_inline struct hwloc_distances_s* hwloc_get_whole_distance-_matrix_by_depth (hwloc_topology_t topology, unsigned depth) [static, read]

Get the distances between all objects at the given depth.

Returns

a distances structure containing a matrix with all distances between all objects at the given depth.

Slot i+nbobjs*j contains the distance from the object of logical index i the object of logical index j.

Note

This function only returns matrices covering the whole topology, without any unknown distance value. Those matrices are available in top-level object of the hierarchy. Matrices of lower objects are not reported here since they cover only part of the machine.

The returned structure belongs to the hwloc library. The caller should not modify or free it.

Returns

NULL if no such distance matrix exists.

15.26.1.4 static _hwloc_inline struct hwloc_distances_s* hwloc_get_whole_distance-_matrix_by_type(hwloc_topology_t topology, hwloc_obj_type_t type) [static, read]

Get the distances between all objects of a given type.

Returns

a distances structure containing a matrix with all distances between all objects of the given type.

Slot i+nbobjs*j contains the distance from the object of logical index i the object of logical index j.

Note

This function only returns matrices covering the whole topology, without any unknown distance value. Those matrices are available in top-level object of the hierarchy. Matrices of lower objects are not reported here since they cover only part of the machine.

The returned structure belongs to the hwloc library. The caller should not modify or free it.

15.26 Distances 129

Returns

NULL if no such distance matrix exists.

15.27 Advanced I/O object traversal helpers

Functions

- static __hwloc_inline hwloc_obj_t hwloc_get_non_io_ancestor_obj (hwloc_-topology_t topology __hwloc_attribute_unused, hwloc_obj_t ioobj)
- static __hwloc_inline hwloc_obj_t hwloc_get_next_pcidev (hwloc_topology_t topology, hwloc_obj_t prev)
- static __hwloc_inline hwloc_obj_t hwloc_get_pcidev_by_busid (hwloc_topology_topology, unsigned domain, unsigned bus, unsigned dev, unsigned func)
- static __hwloc_inline hwloc_obj_t hwloc_get_pcidev_by_busidstring (hwloc_-topology_t topology, const char *busid)
- static __hwloc_inline hwloc_obj_t hwloc_get_next_osdev (hwloc_topology_t topology, hwloc_obj_t prev)
- static __hwloc_inline hwloc_obj_t hwloc_get_next_bridge (hwloc_topology_t topology, hwloc_obj_t prev)
- static __hwloc_inline int hwloc_bridge_covers_pcibus (hwloc_obj_t bridge, unsigned domain, unsigned bus)
- static __hwloc_inline hwloc_obj_t hwloc_get_hostbridge_by_pcibus (hwloc_topology_t topology, unsigned domain, unsigned bus)

15.27.1 Function Documentation

```
15.27.1.1 static __hwloc_inline int hwloc_bridge_covers_pcibus ( hwloc_obj_t bridge, unsigned domain, unsigned bus ) [static]
```

```
15.27.1.2 static __hwloc_inline hwloc_obj_t hwloc_get_hostbridge_by_pcibus (
    hwloc_topology_t topology, unsigned domain, unsigned bus) [static]
```

Find the hostbridge that covers the given PCI bus.

This is useful for finding the locality of a bus because it is the hostbridge parent cpuset.

Get the next bridge in the system.

Returns

the first bridge if prev is NULL.

```
15.27.1.4 static _hwloc_inline hwloc_obj_t hwloc_get_next_osdev (
    hwloc_topology_t topology, hwloc_obj_t prev ) [static]
```

Get the next OS device in the system.

Returns

the first OS device if prev is NULL.

Get the next PCI device in the system.

Returns

the first PCI device if prev is NULL.

Get the first non-I/O ancestor object.

Given the I/O object ioobj, find the smallest non-I/O ancestor object. This regular object may then be used for binding because its locality is the same as ioobj.

```
15.27.1.7 static _hwloc_inline hwloc_obj_t hwloc_get_pcidev_by_busid (
    hwloc_topology_t topology, unsigned domain, unsigned bus, unsigned dev,
    unsigned func ) [static]
```

Find the PCI device object matching the PCI bus id given domain, bus device and function PCI bus id.

```
15.27.1.8 static _hwloc_inline hwloc_obj_t hwloc_get_pcidev_by_busidstring ( hwloc_topology_t topology, const char * busid ) [static]
```

Find the PCI device object matching the PCI bus id given as a string xxxx:yy:zz.t or yy:zz.t.

15.28 The bitmap API

Defines

- #define hwloc bitmap foreach begin(id, bitmap)
- #define hwloc_bitmap_foreach_end()

Typedefs

- typedef struct hwloc bitmap s * hwloc bitmap t
- typedef struct hwloc_bitmap_s * hwloc_const_bitmap_t

Functions

- HWLOC_DECLSPEC hwloc_bitmap_t hwloc_bitmap_alloc (void) __hwloc_attribute_malloc
- HWLOC_DECLSPEC hwloc_bitmap_t hwloc_bitmap_alloc_full (void) __hwloc_attribute malloc
- HWLOC_DECLSPEC void hwloc_bitmap_free (hwloc_bitmap_t bitmap)
- HWLOC_DECLSPEC hwloc_bitmap_t hwloc_bitmap_dup (hwloc_const_bitmap_t bitmap) __hwloc_attribute_malloc
- HWLOC_DECLSPEC void hwloc_bitmap_copy (hwloc_bitmap_t dst, hwloc_const_bitmap_t src)
- HWLOC_DECLSPEC int hwloc_bitmap_snprintf (char *_hwloc_restrict buf, size_t buflen, hwloc_const_bitmap_t bitmap)
- HWLOC_DECLSPEC int hwloc_bitmap_asprintf (char **strp, hwloc_const_-bitmap_t bitmap)
- HWLOC_DECLSPEC int hwloc_bitmap_sscanf (hwloc_bitmap_t bitmap, const char *_hwloc_restrict string)
- HWLOC_DECLSPEC int hwloc_bitmap_list_snprintf (char *_hwloc_restrict buf, size_t buflen, hwloc_const_bitmap_t bitmap)
- HWLOC_DECLSPEC int hwloc_bitmap_list_asprintf (char **strp, hwloc_const_-bitmap_t bitmap)
- HWLOC_DECLSPEC int hwloc_bitmap_list_sscanf (hwloc_bitmap_t bitmap, const char *_hwloc_restrict string)
- HWLOC_DECLSPEC int hwloc_bitmap_taskset_snprintf (char *__hwloc_restrict buf, size_t buflen, hwloc_const_bitmap_t bitmap)
- HWLOC_DECLSPEC int hwloc_bitmap_taskset_asprintf (char **strp, hwloc_const_bitmap_t bitmap)
- HWLOC_DECLSPEC int hwloc_bitmap_taskset_sscanf (hwloc_bitmap_t bitmap, const char * hwloc restrict string)
- HWLOC_DECLSPEC void hwloc_bitmap_zero (hwloc_bitmap_t bitmap)
- HWLOC_DECLSPEC void hwloc_bitmap_fill (hwloc_bitmap_t bitmap)
- HWLOC_DECLSPEC void hwloc_bitmap_only (hwloc_bitmap_t bitmap, unsigned id)

- HWLOC_DECLSPEC void hwloc_bitmap_allbut (hwloc_bitmap_t bitmap, unsigned id)
- HWLOC_DECLSPEC void hwloc_bitmap_from_ulong (hwloc_bitmap_t bitmap, unsigned long mask)
- HWLOC_DECLSPEC void hwloc_bitmap_t (hwloc_bitmap_t
 bitmap, unsigned i, unsigned long mask)
- HWLOC_DECLSPEC void hwloc_bitmap_set (hwloc_bitmap_t bitmap, unsigned id)
- HWLOC_DECLSPEC void hwloc_bitmap_set_range (hwloc_bitmap_t bitmap, unsigned begin, int end)
- HWLOC_DECLSPEC void hwloc_bitmap_set_ith_ulong (hwloc_bitmap_t bitmap, unsigned i, unsigned long mask)
- HWLOC_DECLSPEC void hwloc_bitmap_clr (hwloc_bitmap_t bitmap, unsigned id)
- HWLOC_DECLSPEC void hwloc_bitmap_clr_range (hwloc_bitmap_t bitmap, unsigned begin, int end)
- HWLOC DECLSPEC void hwloc bitmap singlify (hwloc bitmap t bitmap)
- HWLOC_DECLSPEC unsigned long hwloc_bitmap_to_ulong (hwloc_const_-bitmap_t bitmap) __hwloc_attribute_pure
- HWLOC_DECLSPEC unsigned long hwloc_bitmap_to_ith_ulong (hwloc_const_-bitmap_t bitmap, unsigned i) __hwloc_attribute_pure
- HWLOC_DECLSPEC int hwloc_bitmap_isset (hwloc_const_bitmap_t bitmap, unsigned id) __hwloc_attribute_pure
- HWLOC_DECLSPEC int hwloc_bitmap_iszero (hwloc_const_bitmap_t bitmap) hwloc attribute pure
- HWLOC_DECLSPEC int hwloc_bitmap_isfull (hwloc_const_bitmap_t bitmap) _-_hwloc_attribute_pure
- HWLOC_DECLSPEC int hwloc_bitmap_first (hwloc_const_bitmap_t bitmap) __hwloc_attribute_pure
- HWLOC_DECLSPEC int hwloc_bitmap_next (hwloc_const_bitmap_t bitmap, int prev) __hwloc_attribute_pure
- HWLOC_DECLSPEC int hwloc_bitmap_last (hwloc_const_bitmap_t bitmap) __hwloc attribute pure
- HWLOC_DECLSPEC int hwloc_bitmap_weight (hwloc_const_bitmap_t bitmap) _hwloc_attribute_pure
- HWLOC_DECLSPEC void hwloc_bitmap_or (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap2)
- HWLOC_DECLSPEC void hwloc_bitmap_and (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap2)
- HWLOC_DECLSPEC void hwloc_bitmap_andnot (hwloc_bitmap_t res, hwloc_const bitmap t bitmap1, hwloc const bitmap t bitmap2)
- HWLOC_DECLSPEC void hwloc_bitmap_xor (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap2)
- HWLOC_DECLSPEC void hwloc_bitmap_not (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap)
- HWLOC_DECLSPEC int hwloc_bitmap_intersects (hwloc_const_bitmap_t bitmap1, hwloc const_bitmap t bitmap2) hwloc attribute pure

- HWLOC_DECLSPEC int hwloc_bitmap_isincluded (hwloc_const_bitmap_t sub_bitmap, hwloc_const_bitmap_t super_bitmap) __hwloc_attribute_pure
- HWLOC_DECLSPEC int hwloc_bitmap_isequal (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap2) __hwloc_attribute_pure
- HWLOC_DECLSPEC int hwloc_bitmap_compare_first (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap2) __hwloc_attribute_pure
- HWLOC_DECLSPEC int hwloc_bitmap_compare (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap2) __hwloc_attribute_pure

15.28.1 Detailed Description

The hwloc_bitmap_t type represents a set of objects, typically OS processors -- which may actually be hardware threads (represented by hwloc_cpuset_t, which is a typedef for hwloc_bitmap_t) -- or memory nodes (represented by hwloc_nodeset_t, which is also a typedef for hwloc_bitmap_t).

Both CPU and node sets are always indexed by OS physical number.

Note

CPU sets and nodesets are described in Object sets (hwloc_cpuset_t and hwloc_nodeset_t).

A bitmap may be of infinite size.

15.28.2 Define Documentation

```
15.28.2.1 #define hwloc bitmap foreach begin( id, bitmap )
```

Loop macro iterating on bitmap bitmap.

index is the loop variable; it should be an unsigned int. The first iteration will set index to the lowest index in the bitmap. Successive iterations will iterate through, in order, all remaining indexes that in the bitmap. To be specific: each iteration will return a value for index such that hwloc bitmap isset(bitmap, index) is true.

The assert prevents the loop from being infinite if the bitmap is infinite.

```
15.28.2.2 #define hwloc_bitmap_foreach_end( )
```

Value:

```
} \
} while (0)
```

15.28.3 Typedef Documentation

```
15.28.3.1 typedef struct hwloc_bitmap_s* hwloc_bitmap_t
```

Set of bits represented as an opaque pointer to an internal bitmap.

15.28.3.2 typedef struct hwloc_bitmap_s* hwloc_const_bitmap_t

a non-modifiable hwloc_bitmap_t

15.28.4 Function Documentation

15.28.4.1 HWLOC_DECLSPEC void hwloc_bitmap_allbut (hwloc_bitmap_t bitmap, unsigned id)

Fill the bitmap and clear the index id.

15.28.4.2 HWLOC_DECLSPEC hwloc_bitmap_t hwloc_bitmap_alloc (void)

Allocate a new empty bitmap.

Returns

A valid bitmap or NULL.

The bitmap should be freed by a corresponding call to hwloc_bitmap_free().

15.28.4.3 HWLOC_DECLSPEC hwloc bitmap t hwloc bitmap alloc full (void)

Allocate a new full bitmap.

15.28.4.4 HWLOC_DECLSPEC void hwloc_bitmap_and (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap2)

And bitmaps bitmap1 and bitmap2 and store the result in bitmap res.

15.28.4.5 HWLOC_DECLSPEC void hwloc_bitmap_andnot (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap t bitmap2)

And bitmap bitmap1 and the negation of bitmap2 and store the result in bitmap res.

15.28.4.6 HWLOC_DECLSPEC int hwloc_bitmap_asprintf (char ** strp, hwloc_const_bitmap_t bitmap)

Stringify a bitmap into a newly allocated string.

15.28.4.7 HWLOC_DECLSPEC void hwloc_bitmap_clr (hwloc_bitmap_t bitmap, unsigned id)

Remove index id from bitmap bitmap.

15.28.4.8 HWLOC_DECLSPEC void hwloc_bitmap_clr_range (hwloc_bitmap_t bitmap, unsigned begin, int end)

Remove indexes from begin to end in bitmap bitmap.

If end is -1, the range is infinite.

15.28.4.9 HWLOC_DECLSPEC int hwloc_bitmap_compare (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap1 bitmap2)

Compare bitmaps bitmap1 and bitmap2 using their highest index.

Higher most significant bit is higher. The empty bitmap is considered lower than anything.

15.28.4.10 HWLOC_DECLSPEC int hwloc_bitmap_compare_first (
hwloc_const_bitmap t bitmap1, hwloc_const_bitmap t bitmap2)

Compare bitmaps bitmap1 and bitmap2 using their lowest index.

Smaller least significant bit is smaller. The empty bitmap is considered higher than anything.

15.28.4.11 HWLOC_DECLSPEC void hwloc_bitmap_copy (hwloc_bitmap_t dst, hwloc_const_bitmap_t src)

Copy the contents of bitmap src into the already allocated bitmap dst.

15.28.4.12 HWLOC_DECLSPEC hwloc_bitmap_t hwloc_bitmap_dup (hwloc_const_bitmap_t bitmap_)

Duplicate bitmap bitmap by allocating a new bitmap and copying bitmap contents. If bitmap is NULL, NULL is returned.

15.28.4.13 HWLOC_DECLSPEC void hwloc_bitmap_fill (hwloc_bitmap_t bitmap)

Fill bitmap bitmap with all possible indexes (even if those objects don't exist or are otherwise unavailable)

15.28.4.14 HWLOC_DECLSPEC int hwloc_bitmap_first (hwloc_const_bitmap_t bitmap)

Compute the first index (least significant bit) in bitmap bitmap.

Returns

-1 if no index is set.

15.28.4.15 HWLOC_DECLSPEC void hwloc_bitmap_free (hwloc_bitmap_t bitmap)

Free bitmap bitmap.

If bitmap is NULL, no operation is performed.

15.28.4.16 HWLOC_DECLSPEC void hwloc_bitmap_from_ith_ulong (hwloc_bitmap_t bitmap, unsigned i, unsigned long mask)

Setup bitmap bitmap from unsigned long mask used as i -th subset.

15.28.4.17 HWLOC_DECLSPEC void hwloc_bitmap_from_ulong (hwloc_bitmap_t bitmap, unsigned long mask)

Setup bitmap bitmap from unsigned long mask.

15.28.4.18 HWLOC_DECLSPEC int hwloc_bitmap_intersects (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap2)

Test whether bitmaps bitmap1 and bitmap2 intersects.

15.28.4.19 HWLOC_DECLSPEC int hwloc_bitmap_isequal (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap t bitmap2)

Test whether bitmap bitmap1 is equal to bitmap bitmap2.

15.28.4.20 HWLOC_DECLSPEC int hwloc_bitmap_isfull (hwloc_const_bitmap_t bitmap)

Test whether bitmap bitmap is completely full.

15.28.4.21 HWLOC_DECLSPEC int hwloc_bitmap_isincluded (hwloc_const_bitmap_t sub_bitmap, hwloc_const_bitmap_t super_bitmap)

Test whether bitmap sub_bitmap is part of bitmap super_bitmap.

15.28.4.22 HWLOC_DECLSPEC int hwloc_bitmap_isset (hwloc_const_bitmap_t bitmap, unsigned id)

Test whether index id is part of bitmap bitmap.

15.28.4.23 HWLOC_DECLSPEC int hwloc_bitmap_iszero (hwloc_const_bitmap_t bitmap)

Test whether bitmap bitmap is empty.

15.28.4.24 HWLOC_DECLSPEC int hwloc_bitmap_last (hwloc_const_bitmap_t bitmap)

Compute the last index (most significant bit) in bitmap bitmap.

Returns

-1 if no index is bitmap, or if the index bitmap is infinite.

15.28.4.25 HWLOC_DECLSPEC int hwloc_bitmap_list_asprintf (char ** strp, hwloc_const_bitmap t bitmap)

Stringify a bitmap into a newly allocated list string.

15.28.4.26 HWLOC_DECLSPEC int hwloc_bitmap_list_snprintf (char *_hwloc_restrict buf, size_t buflen, hwloc const bitmap t bitmap)

Stringify a bitmap in the list format.

Lists are comma-separated indexes or ranges. Ranges are dash separated indexes. The last range may not have a ending indexes if the bitmap is infinite.

Up to buflen characters may be written in buffer buf.

If buflen is 0, buf may safely be NULL.

Returns

the number of character that were actually written if not truncating, or that would have been written (not including the ending $\setminus 0$).

15.28.4.27 HWLOC_DECLSPEC int hwloc_bitmap_list_sscanf (hwloc_bitmap_t bitmap, const char *_hwloc_restrict string)

Parse a list string and stores it in bitmap bitmap.

15.28.4.28 HWLOC_DECLSPEC int hwloc_bitmap_next (hwloc_const_bitmap_t bitmap, int prev)

Compute the next index in bitmap bitmap which is after index prev.

If prev is -1, the first index is returned.

Returns

-1 if no index with higher index is bitmap.

15.28.4.29 HWLOC_DECLSPEC void hwloc_bitmap_not (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap)

Negate bitmap bitmap and store the result in bitmap res.

15.28.4.30 HWLOC_DECLSPEC void hwloc_bitmap_only (hwloc_bitmap_t bitmap, unsigned id)

Empty the bitmap bitmap and add bit id.

15.28.4.31 HWLOC_DECLSPEC void hwloc_bitmap_or (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap2)

Or bitmaps bitmap1 and bitmap2 and store the result in bitmap res.

15.28.4.32 HWLOC_DECLSPEC void hwloc_bitmap_set (hwloc_bitmap_t bitmap, unsigned id)

Add index id in bitmap bitmap.

15.28.4.33 HWLOC_DECLSPEC void hwloc_bitmap_set_ith_ulong (hwloc_bitmap_t bitmap, unsigned i, unsigned long mask)

Replace i -th subset of bitmap bitmap with unsigned long mask.

15.28.4.34 HWLOC_DECLSPEC void hwloc_bitmap_set_range (hwloc_bitmap_t bitmap, unsigned begin, int end)

Add indexes from begin to end in bitmap bitmap.

If end is -1, the range is infinite.

15.28.4.35 HWLOC_DECLSPEC void hwloc bitmap singlify (hwloc bitmap t bitmap)

Keep a single index among those set in bitmap bitmap.

May be useful before binding so that the process does not have a chance of migrating between multiple logical CPUs in the original mask.

15.28.4.36 HWLOC_DECLSPEC int hwloc_bitmap_snprintf (char *_hwloc_restrict buf, size_t buflen, hwloc_const_bitmap_t bitmap)

Stringify a bitmap.

Up to buflen characters may be written in buffer buf.

If buflen is 0, buf may safely be NULL.

Returns

the number of character that were actually written if not truncating, or that would have been written (not including the ending $\setminus 0$).

15.28.4.37 HWLOC_DECLSPEC int hwloc_bitmap_sscanf (hwloc_bitmap_t bitmap, const char *_hwloc_restrict string)

Parse a bitmap string and stores it in bitmap bitmap.

15.28.4.38 HWLOC_DECLSPEC int hwloc_bitmap_taskset_asprintf (char ** strp, hwloc_const_bitmap_t bitmap)

Stringify a bitmap into a newly allocated taskset-specific string.

15.28.4.39 HWLOC_DECLSPEC int hwloc_bitmap_taskset_snprintf (char *_hwloc_restrict buf, size_t buflen, hwloc_const_bitmap_t bitmap_t

Stringify a bitmap in the taskset-specific format.

The taskset command manipulates bitmap strings that contain a single (possible very long) hexadecimal number starting with 0x.

Up to buflen characters may be written in buffer buf.

If buflen is 0, buf may safely be NULL.

Returns

the number of character that were actually written if not truncating, or that would have been written (not including the ending $\setminus 0$).

15.28.4.40 HWLOC_DECLSPEC int hwloc_bitmap_taskset_sscanf (hwloc_bitmap_t bitmap, const char *_hwloc_restrict string)

Parse a taskset-specific bitmap string and stores it in bitmap bitmap.

15.28.4.41 HWLOC_DECLSPEC unsigned long hwloc_bitmap_to_ith_ulong (hwloc_const_bitmap_t bitmap, unsigned i)

Convert the i -th subset of bitmap bitmap into unsigned long mask.

15.28.4.42 HWLOC_DECLSPEC unsigned long hwloc_bitmap_to_ulong (hwloc_const_bitmap_t bitmap)

Convert the beginning part of bitmap bitmap into unsigned long mask.

15.28.4.43 HWLOC_DECLSPEC int hwloc_bitmap_weight (hwloc_const_bitmap_t bitmap)

Compute the "weight" of bitmap bitmap (i.e., number of indexes that are in the bitmap).

Returns

the number of indexes that are in the bitmap.

15.28.4.44 HWLOC_DECLSPEC void hwloc_bitmap_xor (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap2)

Xor bitmaps bitmap1 and bitmap2 and store the result in bitmap res.

15.28.4.45 HWLOC_DECLSPEC void hwloc_bitmap_zero (hwloc_bitmap_t bitmap)

Empty the bitmap bitmap.

15.29 Helpers for manipulating glibc sched affinity

Functions

- static __hwloc_inline int hwloc_cpuset_to_glibc_sched_affinity (hwloc_topology_topology_hwloc_attribute_unused, hwloc_const_cpuset_t hwlocset, cpu_set_t *schedset, size_t schedsetsize)
- static __hwloc_inline int hwloc_cpuset_from_glibc_sched_affinity (hwloc_topology_t topology __hwloc_attribute_unused, hwloc_cpuset_t hwlocset, const cpu_set_t *schedset, size_t schedsetsize)

15.29.1 Function Documentation

Convert glibc sched affinity CPU set schedset into hwloc CPU set.

This function may be used before calling sched_setaffinity or any other function that takes a cpu_set_t as input parameter.

 $\verb|schedsetsize| should be size of (cpu_set_t) unless \verb|schedset| was dynamically allocated with CPU_ALLOC|$

Convert hwloc CPU set toposet into glibc sched affinity CPU set schedset.

This function may be used before calling sched_setaffinity or any other function that takes a cpu set t as input parameter.

 $\verb|schedsetsize| should be size of (cpu_set_t) unless \verb|schedset| was dynamically allocated with CPU_ALLOC|$

15.30 Linux-only helpers

Functions

- HWLOC_DECLSPEC int hwloc_linux_parse_cpumap_file (FILE *file, hwloc_cpuset_t set)
- HWLOC_DECLSPEC int hwloc_linux_set_tid_cpubind (hwloc_topology_t topology, pid_t tid, hwloc_const_cpuset_t set)
- HWLOC_DECLSPEC int hwloc_linux_get_tid_cpubind (hwloc_topology_t topology, pid_t tid, hwloc_cpuset_t set)

15.30.1 Detailed Description

This includes helpers for manipulating linux kernel cpumap files, and hwloc equivalents of the Linux sched_setaffinity and sched_getaffinity system calls.

15.30.2 Function Documentation

15.30.2.1 HWLOC_DECLSPEC int hwloc_linux_get_tid_cpubind (hwloc_topology_t topology, pid_t tid, hwloc_cpuset t set)

Get the current binding of thread tid.

The behavior is exactly the same as the Linux sched_getaffinity system call, but uses a hwloc cpuset.

```
15.30.2.2 HWLOC_DECLSPEC int hwloc_linux_parse_cpumap_file ( FILE * file, hwloc cpuset t set )
```

Convert a linux kernel cpumap file file into hwloc CPU set.

Might be used when reading CPU set from sysfs attributes such as topology and caches for processors, or local_cpus for devices.

15.30.2.3 HWLOC_DECLSPEC int hwloc_linux_set_tid_cpubind (hwloc_topology_t topology, pid_t tid, hwloc_const_cpuset_t set)

Bind a thread tid on cpus given in cpuset set.

The behavior is exactly the same as the Linux sched_setaffinity system call, but uses a hwloc cpuset.

15.31 Helpers for manipulating Linux libnuma unsigned long masks

Functions

- static __hwloc_inline int hwloc_cpuset_to_linux_libnuma_ulongs (hwloc_topology_t topology, hwloc_const_cpuset_t cpuset, unsigned long *mask, unsigned long *maxnode)
- static __hwloc_inline int hwloc_nodeset_to_linux_libnuma_ulongs (hwloc_topology_t topology, hwloc_const_nodeset_t nodeset, unsigned long *mask, unsigned long *maxnode)
- static __hwloc_inline int hwloc_cpuset_from_linux_libnuma_ulongs (hwloc_topology_t topology, hwloc_cpuset_t cpuset, const unsigned long *mask, unsigned long maxnode)
- static __hwloc_inline int hwloc_nodeset_from_linux_libnuma_ulongs (hwloc_topology_t topology, hwloc_nodeset_t nodeset, const unsigned long *mask, unsigned long maxnode)

15.31.1 Function Documentation

Convert the array of unsigned long mask into hwloc CPU set.

 ${\tt mask}$ is a array of unsigned long that will be read. ${\tt maxnode}$ contains the maximal node number that may be read in ${\tt mask}$.

This function may be used after calling get_mempolicy or any other function that takes an array of unsigned long as output parameter (and possibly a maximal node number as input parameter).

15.31.1.2 static __hwloc_inline int hwloc_cpuset_to_linux_libnuma_ulongs (
 hwloc_topology_t topology, hwloc_const_cpuset_t cpuset, unsigned long *
 mask, unsigned long * maxnode) [static]

Convert hwloc CPU set cpuset into the array of unsigned long mask.

mask is the array of unsigned long that will be filled. maxnode contains the maximal node number that may be stored in mask. maxnode will be set to the maximal node number that was found, plus one.

This function may be used before calling set_mempolicy, mbind, migrate_pages or any other function that takes an array of unsigned long and a maximal node number as input parameter.

Convert the array of unsigned long mask into hwloc NUMA node set.

mask is a array of unsigned long that will be read. maxnode contains the maximal node number that may be read in mask.

This function may be used after calling get_mempolicy or any other function that takes an array of unsigned long as output parameter (and possibly a maximal node number as input parameter).

15.31.1.4 static _hwloc_inline int hwloc_nodeset_to_linux_libnuma_ulongs (
 hwloc_topology_t topology, hwloc_const_nodeset_t nodeset, unsigned long
 * mask, unsigned long * maxnode) [static]

Convert hwloc NUMA node set nodeset into the array of unsigned long mask.

mask is the array of unsigned long that will be filled. maxnode contains the maximal node number that may be stored in mask. maxnode will be set to the maximal node number that was found, plus one.

This function may be used before calling set_mempolicy, mbind, migrate_pages or any other function that takes an array of unsigned long and a maximal node number as input parameter.

15.32 Helpers for manipulating Linux libnuma bitmask

Functions

- static __hwloc_inline struct bitmask * hwloc_cpuset_to_linux_libnuma_bitmask (hwloc_topology_t topology, hwloc_const_cpuset_t cpuset) __hwloc_attribute_malloc
- static __hwloc_inline struct bitmask * hwloc_nodeset_to_linux_libnuma_bitmask (hwloc_topology_t topology, hwloc_const_nodeset_t nodeset) __hwloc_attribute_malloc
- static __hwloc_inline int hwloc_cpuset_from_linux_libnuma_bitmask (hwloc_topology_t topology, hwloc_cpuset_t cpuset, const struct bitmask *bitmask)
- static __hwloc_inline int hwloc_nodeset_from_linux_libnuma_bitmask (hwloc_-topology_t topology, hwloc_nodeset_t nodeset, const struct bitmask *bitmask)

15.32.1 Function Documentation

Convert libnuma bitmask bitmask into hwloc CPU set cpuset.

This function may be used after calling many numa_functions that use a struct bitmask as an output parameter.

```
15.32.1.2 static _hwloc_inline struct bitmask * hwloc_cpuset_to_linux_libnuma_-
bitmask ( hwloc_topology_t topology, hwloc_const_cpuset_t cpuset )
[static, read]
```

Convert hwloc CPU set cpuset into the returned libnuma bitmask.

The returned bitmask should later be freed with numa_bitmask_free.

This function may be used before calling many numa_ functions that use a struct bit-mask as an input parameter.

Returns

newly allocated struct bitmask.

Convert libnuma bitmask bitmask into hwloc NUMA node set nodeset.

This function may be used after calling many numa_functions that use a struct bitmask as an output parameter.

15.32.1.4 static _hwloc_inline struct bitmask * hwloc_nodeset_to_linux_libnuma_bitmask (hwloc_topology_t topology, hwloc_const_nodeset_t nodeset) [static, read]

Convert hwloc NUMA node set nodeset into the returned libnuma bitmask.

The returned bitmask should later be freed with numa_bitmask_free.

This function may be used before calling many numa_ functions that use a struct bit-mask as an input parameter.

Returns

newly allocated struct bitmask.

15.33 Helpers for manipulating Linux libnuma nodemask_t

Functions

- static __hwloc_inline int hwloc_cpuset_to_linux_libnuma_nodemask (hwloc_topology_t topology, hwloc_const_cpuset_t cpuset, nodemask_t *nodemask)
- static __hwloc_inline int hwloc_nodeset_to_linux_libnuma_nodemask (hwloc_topology_t topology, hwloc_const_nodeset_t nodeset, nodemask_t *nodemask)
- static __hwloc_inline int hwloc_cpuset_from_linux_libnuma_nodemask (hwloc_topology_t topology, hwloc_cpuset_t cpuset, const nodemask_t *nodemask)
- static __hwloc_inline int hwloc_nodeset_from_linux_libnuma_nodemask (hwloc_topology_t topology, hwloc_nodeset_t nodeset, const nodemask_t *nodemask)

15.33.1 Detailed Description

Note

The Linux libnuma nodemask_t interface is deprecated and its implementation is at least incorrect with respect to sparse NUMA node ids. It is strongly advised to use struct bitmask instead of nodemask_t, or even to use hwloc directly.

15.33.2 Function Documentation

15.33.2.1 static _hwloc_inline int hwloc_cpuset_from_linux_libnuma_nodemask (hwloc_topology_t topology, hwloc_cpuset_t cpuset, const nodemask_t * nodemask) [static]

Convert libnuma nodemask nodemask into hwloc CPU set cpuset.

This function may be used before calling some old libnuma functions that use a nodemask_t as an output parameter.

```
15.33.2.2 static _hwloc_inline int hwloc_cpuset_to_linux_libnuma_nodemask (
    hwloc_topology_t topology, hwloc_const_cpuset_t cpuset, nodemask_t *
    nodemask ) [static]
```

Convert hwloc CPU set cpuset into libnuma nodemask nodemask.

This function may be used before calling some old libnuma functions that use a nodemask_t as an input parameter.

15.33.2.3 static _hwloc_inline int hwloc_nodeset_from_linux_libnuma_nodemask (hwloc_topology_t topology, hwloc_nodeset_t nodeset, const nodemask_t * nodemask) [static]

Convert libnuma nodemask nodemask into hwloc NUMA node set nodeset.

This function may be used before calling some old libnuma functions that use a nodemask_t as an output parameter.

Convert hwloc NUMA node set nodeset into libnuma nodemask nodemask.

This function may be used before calling some old libnuma functions that use a nodemask_t as an input parameter.

15.34 CUDA Driver API Specific Functions

Functions

- static __hwloc_inline int hwloc_cuda_get_device_pci_ids (hwloc_topology_t topology __hwloc_attribute_unused, CUdevice cudevice, int *domain, int *bus, int *dev)
- static __hwloc_inline int hwloc_cuda_get_device_cpuset (hwloc_topology_t topology __hwloc_attribute_unused, CUdevice cudevice, hwloc_cpuset_t set)
- static __hwloc_inline hwloc_obj_t hwloc_cuda_get_device_pcidev (hwloc_-topology_t topology, CUdevice cudevice)

15.34.1 Function Documentation

15.34.1.1 static __hwloc_inline int hwloc_cuda_get_device_cpuset (hwloc_topology_t topology __hwloc_attribute_unused, CUdevice cudevice, hwloc_cpuset_t set)
[static]

Get the CPU set of logical processors that are physically close to device cudevice.

For the given CUDA Driver API device <code>cudevice</code>, read the corresponding kernel-provided cpumap file and return the corresponding CPU set. This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

```
15.34.1.2 static __hwloc_inline int hwloc_cuda_get_device_pci_ids (
    hwloc_topology_t topology __hwloc_attribute_unused, CUdevice cudevice, int *
    domain, int * bus, int * dev ) [static]
```

Return the domain, bus and device IDs of device cudevice.

```
15.34.1.3 static __hwloc_inline hwloc_obj_t hwloc_cuda_get_device_pcidev ( hwloc_topology_t topology, CUdevice cudevice ) [static]
```

Get the hwloc object for the PCI device corresponding to device cudevice.

For the given CUDA Runtime API device <code>cudevice</code>, return the hwloc PCI object containing the device. Returns NULL if there is none.

15.35 CUDA Runtime API Specific Functions

Functions

- static __hwloc_inline int hwloc_cudart_get_device_pci_ids (hwloc_topology_t topology __hwloc_attribute_unused, int device, int *domain, int *bus, int *dev)
- static __hwloc_inline int hwloc_cudart_get_device_cpuset (hwloc_topology_t topology __hwloc_attribute_unused, int device, hwloc_cpuset_t set)
- static __hwloc_inline hwloc_obj_t hwloc_cudart_get_device_pcidev (hwloc_topology_t topology, int device)

15.35.1 Function Documentation

Get the CPU set of logical processors that are physically close to device device.

For the given CUDA Runtime API device device, read the corresponding kernel-provided cpumap file and return the corresponding CPU set. This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

```
15.35.1.2 static __hwloc_inline int hwloc_cudart_get_device_pci_ids (
    hwloc_topology_t topology __hwloc_attribute_unused, int device, int * domain,
    int * bus, int * dev ) [static]
```

Return the domain, bus and device IDs of device device.

```
15.35.1.3 static _hwloc_inline hwloc_obj_t hwloc_cudart_get_device_pcidev ( hwloc_topology_t topology, int device ) [static]
```

Get the hwloc object for the PCI device corresponding to device device.

For the given CUDA Runtime API device device, return the hwloc PCI object containing the device. Returns NULL if there is none.

15.36 OpenFabrics-Specific Functions

Functions

static __hwloc_inline int hwloc_ibv_get_device_cpuset (hwloc_topology_t topology __hwloc_attribute_unused, struct ibv_device *ibdev, hwloc_cpuset_t set)

15.36.1 Function Documentation

15.36.1.1 static __hwloc_inline int hwloc_ibv_get_device_cpuset (hwloc_topology_t topology __hwloc_attribute_unused, struct ibv_device * ibdev, hwloc_cpuset_t set) [static]

Get the CPU set of logical processors that are physically close to device ibdev.

For the given OpenFabrics device <code>ibdev</code>, read the corresponding kernel-provided cpumap file and return the corresponding CPU set. This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

15.37 Myrinet Express-Specific Functions

Functions

- static __hwloc_inline int hwloc_mx_board_get_device_cpuset (hwloc_topology_t topology, unsigned id, hwloc_cpuset_t set)
- static __hwloc_inline int hwloc_mx_endpoint_get_device_cpuset (hwloc_topology_t topology, mx_endpoint_t endpoint, hwloc_cpuset_t set)

15.37.1 Function Documentation

Get the CPU set of logical processors that are physically close the MX board id.

For the given Myrinet Express board index id, read the OS-provided NUMA node and return the corresponding CPU set.

Get the CPU set of logical processors that are physically close to endpoint endpoint.

For the given Myrinet Express endpoint ${\tt endpoint}$, read the OS-provided NUMA node and return the corresponding CPU set.

Chapter 16

Data Structure Documentation

16.1 hwloc_obj_attr_u::hwloc_bridge_attr_s Struct Reference

```
#include <hwloc.h>

Data Fields

• union {
    struct hwloc_pcidev_attr_s pci
    } upstream

• hwloc_obj_bridge_type_t upstream_type
• union {
    struct {
        unsigned short domain
        unsigned char secondary_bus
        unsigned char subordinate_bus
    } pci
    } downstream

• hwloc_obj_bridge_type_t downstream_type
```

16.1.1 Detailed Description

unsigned depth

Bridge specific Object Attribues.

- 16.1.2 Field Documentation
- 16.1.2.1 unsigned hwloc_obj_attr_u::hwloc_bridge_attr_s::depth

```
16.1.2.2 unsigned short hwloc_obj_attr_u::hwloc_bridge_attr_s::domain
16.1.2.3 union { ... } hwloc_obj_attr_u::hwloc_bridge_attr_s::downstream
16.1.2.4 hwloc_obj_bridge_type_t hwloc_obj_attr_u::hwloc_bridge_attr_s::downstream_type
16.1.2.5 struct hwloc_pcidev_attr_s hwloc_obj_attr_u::hwloc_bridge_attr_s::pci
16.1.2.6 struct { ... } hwloc_obj_attr_u::hwloc_bridge_attr_s::secondary_bus
16.1.2.7 unsigned char hwloc_obj_attr_u::hwloc_bridge_attr_s::subordinate_bus
16.1.2.8 unsigned char hwloc_obj_attr_u::hwloc_bridge_attr_s::subordinate_bus
16.1.2.9 union { ... } hwloc_obj_attr_u::hwloc_bridge_attr_s::upstream
```

The documentation for this struct was generated from the following file:

· hwloc.h

16.2 hwloc_obj_attr_u::hwloc_cache_attr_s Struct Reference

16.1.2.10 hwloc_obj_bridge_type_t hwloc_obj_attr_u::hwloc_bridge_attr_s-

```
#include <hwloc.h>
```

::upstream_type

Data Fields

- hwloc_uint64_t size
- unsigned depth
- · unsigned linesize
- · int associativity

16.2.1 Detailed Description

Cache-specific Object Attributes.

16.2.2 Field Documentation

16.2.2.1 int hwloc_obj_attr_u::hwloc_cache_attr_s::associativity

Ways of associativity,.

-1 if fully associative, 0 if unknown

16.2.2.2 unsigned hwloc_obj_attr_u::hwloc_cache_attr_s::depth

Depth of cache (e.g., L1, L2, ...etc.)

16.2.2.3 unsigned hwloc_obj_attr_u::hwloc_cache_attr_s::linesize

Cache-line size in bytes.

16.2.2.4 hwloc_uint64_t hwloc_obj_attr_u::hwloc_cache_attr_s::size

Size of cache in bytes.

The documentation for this struct was generated from the following file:

· hwloc.h

16.3 hwloc_distances_s Struct Reference

#include <hwloc.h>

Data Fields

- · unsigned relative_depth
- unsigned nbobjs
- float * latency
- · float latency_max
- float latency_base

16.3.1 Detailed Description

Distances between objects.

One object may contain a distance structure describing distances between all its descendants at a given relative depth. If the containing object is the root object of the topology, then the distances are available for all objects in the machine.

If the latency pointer is not NULL, the pointed array contains memory latencies (non-zero values), as defined by the ACPI SLIT specification.

In the future, some other types of distances may be considered. In these cases, latency may be $\mathtt{NULL}.$

16.3.2 Field Documentation

16.3.2.1 float* hwloc_distances_s::latency

Matrix of latencies between objects, stored as a one-dimension array. May be NULL if the distances considered here are not latencies. Values are normalized to get 1.0 as the minimal value in the matrix. Latency from i-th to j-th object is stored in slot i*nbobjs+j.

16.3.2.2 float hwloc distances s::latency base

The multiplier that should be applied to latency matrix to retrieve the original OS-provided latencies. Usually 10 on Linux since ACPI SLIT uses 10 for local latency.

16.3.2.3 float hwloc_distances_s::latency_max

The maximal value in the latency matrix.

16.3.2.4 unsigned hwloc distances s::nbobjs

Number of objects considered in the matrix. It is the number of descendant objects at $relative_depth$ below the containing object. It corresponds to the result of hwloc_get_nbobjs_inside_cpuset_by_depth.

16.3.2.5 unsigned hwloc_distances_s::relative_depth

Relative depth of the considered objects below the object containing this distance information.

The documentation for this struct was generated from the following file:

· hwloc.h

16.4 hwloc_obj_attr_u::hwloc_group_attr_s Struct Reference

#include <hwloc.h>

Data Fields

· unsigned depth

16.4.1 Detailed Description

Group-specific Object Attributes.

16.4.2 Field Documentation

16.4.2.1 unsigned hwloc_obj_attr_u::hwloc_group_attr_s::depth

Depth of group object.

The documentation for this struct was generated from the following file:

· hwloc.h

16.5 hwloc_obj Struct Reference

#include <hwloc.h>

Data Fields

- hwloc_obj_type_t type
- · unsigned os index
- char * name
- struct hwloc_obj_memory_s memory
- union hwloc_obj_attr_u * attr
- unsigned depth
- unsigned logical_index
- signed os_level
- struct hwloc_obj * next_cousin
- struct hwloc_obj * prev_cousin
- struct hwloc_obj * parent
- unsigned sibling_rank
- struct hwloc_obj * next_sibling
- struct hwloc_obj * prev_sibling
- unsigned arity
- struct hwloc obj ** children
- struct hwloc_obj * first_child
- struct hwloc_obj * last_child
- void * userdata
- hwloc_cpuset_t cpuset
- hwloc_cpuset_t complete_cpuset
- hwloc_cpuset_t online_cpuset
- hwloc_cpuset_t allowed_cpuset
- hwloc_nodeset_t nodeset
- hwloc_nodeset_t complete_nodeset
- hwloc_nodeset_t allowed_nodeset
- struct hwloc_distances_s ** distances
- unsigned distances_count
- struct hwloc_obj_info_s * infos
- unsigned infos_count
- int symmetric_subtree

16.5.1 Detailed Description

Structure of a topology object.

Applications must not modify any field except hwloc_obj.userdata.

16.5.2 Field Documentation

16.5.2.1 hwloc_cpuset_t hwloc_obj::allowed_cpuset

The CPU set of allowed logical processors.

This includes the CPUs contained in this object which are allowed for binding, i.e. passing them to the hwloc binding functions should not return permission errors. This is usually restricted by administration rules. Some of them may however be offline so binding to them may still not be possible, see online_cpuset.

Note

Its value must not be changed, hwloc_bitmap_dup must be used instead.

16.5.2.2 hwloc_nodeset_t hwloc_obj::allowed_nodeset

The set of allowed NUMA memory nodes.

This includes the NUMA memory nodes contained in this object which are allowed for memory allocation, i.e. passing them to NUMA node-directed memory allocation should not return permission errors. This is usually restricted by administration rules.

If there are no NUMA nodes in the machine, all the memory is close to this object, so allowed_nodeset is full.

Note

Its value must not be changed, hwloc_bitmap_dup must be used instead.

16.5.2.3 unsigned hwloc_obj::arity

Number of children.

16.5.2.4 union hwloc_obj_attr_u* hwloc_obj::attr

Object type-specific Attributes, may be \mathtt{NULL} if no attribute value was found.

16.5.2.5 struct hwloc obj ** hwloc obj::children

Children, children[0 .. arity -1].

16.5.2.6 hwloc cpuset thwloc obj::complete cpuset

The complete CPU set of logical processors of this object,.

This includes not only the same as the cpuset field, but also the CPUs for which topology information is unknown or incomplete, and the CPUs that are ignored when the HWL-OC_TOPOLOGY_FLAG_WHOLE_SYSTEM flag is not set. Thus no corresponding PU object may be found in the topology, because the precise position is undefined. It is however known that it would be somewhere under this object.

Note

Its value must not be changed, hwloc bitmap dup must be used instead.

16.5.2.7 hwloc_nodeset_t hwloc_obj::complete_nodeset

The complete NUMA node set of this object,.

This includes not only the same as the nodeset field, but also the NUMA nodes for which topology information is unknown or incomplete, and the nodes that are ignored when the HWLOC_TOPOLOGY_FLAG_WHOLE_SYSTEM flag is not set. Thus no corresponding NODE object may be found in the topology, because the precise position is undefined. It is however known that it would be somewhere under this object.

If there are no NUMA nodes in the machine, all the memory is close to this object, so complete_nodeset is full.

Note

Its value must not be changed, hwloc_bitmap_dup must be used instead.

16.5.2.8 hwloc_cpuset_t hwloc_obj::cpuset

CPUs covered by this object.

This is the set of CPUs for which there are PU objects in the topology under this object, i.e. which are known to be physically contained in this object and known how (the children path between this object and the PU objects).

If the HWLOC_TOPOLOGY_FLAG_WHOLE_SYSTEM configuration flag is set, some of these CPUs may be offline, or not allowed for binding, see online_cpuset and allowed_cpuset.

Note

Its value must not be changed, hwloc bitmap dup must be used instead.

16.5.2.9 unsigned hwloc_obj::depth

Vertical index in the hierarchy. If the topology is symmetric, this is equal to the parent depth plus one, and also equal to the number of parent/child links from the root object to here.

16.5.2.10 struct hwloc_distances_s** hwloc_obj::distances

Distances between all objects at same depth below this object.

16.5.2.11 unsigned hwloc obj::distances count

16.5.2.12 struct hwloc_obj* hwloc_obj::first_child

First child.

16.5.2.13 struct hwloc_obj_info_s* hwloc_obj::infos

Array of stringified info type=name.

16.5.2.14 unsigned hwloc_obj::infos_count

Size of infos array.

16.5.2.15 struct hwloc_obj* hwloc_obj::last_child

Last child.

16.5.2.16 unsigned hwloc_obj::logical_index

Horizontal index in the whole list of similar objects, could be a "cousin_rank" since it's the rank within the "cousin" list below.

16.5.2.17 struct hwloc_obj_memory_s hwloc_obj::memory

Memory attributes.

16.5.2.18 char* hwloc_obj::name

Object description if any.

16.5.2.19 struct hwloc_obj* hwloc_obj::next_cousin

Next object of same type and depth.

16.5.2.20 struct hwloc_obj* hwloc_obj::next_sibling

Next object below the same parent.

16.5.2.21 hwloc_nodeset_t hwloc_obj::nodeset

NUMA nodes covered by this object or containing this object.

This is the set of NUMA nodes for which there are NODE objects in the topology under or above this object, i.e. which are known to be physically contained in this object or containing it and known how (the children path between this object and the NODE objects).

In the end, these nodes are those that are close to the current object.

If the HWLOC_TOPOLOGY_FLAG_WHOLE_SYSTEM configuration flag is set, some of these nodes may not be allowed for allocation, see allowed_nodeset.

If there are no NUMA nodes in the machine, all the memory is close to this object, so nodeset is full.

Note

Its value must not be changed, hwloc_bitmap_dup must be used instead.

16.5.2.22 hwloc_cpuset_t hwloc_obj::online_cpuset

The CPU set of online logical processors.

This includes the CPUs contained in this object that are online, i.e. draw power and can execute threads. It may however not be allowed to bind to them due to administration rules, see allowed_cpuset.

Note

Its value must not be changed, hwloc_bitmap_dup must be used instead.

16.5.2.23 unsigned hwloc_obj::os_index

OS-provided physical index number.

16.5.2.24 signed hwloc_obj::os_level

OS-provided physical level, -1 if unknown or meaningless.

16.5.2.25 struct hwloc_obj* hwloc_obj::parent

Parent, NULL if root (system object)

16.5.2.26 struct hwloc_obj* hwloc_obj::prev_cousin

Previous object of same type and depth.

16.5.2.27 struct hwloc_obj* hwloc_obj::prev_sibling

Previous object below the same parent.

16.5.2.28 unsigned hwloc_obj::sibling_rank

Index in parent's children[] array.

16.5.2.29 int hwloc_obj::symmetric_subtree

Set if the subtree of objects below this object is symmetric, which means all children and their children have identical subtrees.

16.5.2.30 hwloc_obj_type_t hwloc_obj::type

Type of object.

16.5.2.31 void* hwloc_obj::userdata

Application-given private data pointer, initialized to \mathtt{NULL} , use it as you wish.

The documentation for this struct was generated from the following file:

• hwloc.h

16.6 hwloc_obj_attr_u Union Reference

#include <hwloc.h>

Data Structures

- struct hwloc_bridge_attr_s
 Bridge specific Object Attribues.
- · struct hwloc cache attr s

Cache-specific Object Attributes.

struct hwloc_group_attr_s

Group-specific Object Attributes.

· struct hwloc osdev attr s

OS Device specific Object Attributes.

struct hwloc_pcidev_attr_s

PCI Device specific Object Attributes.

Data Fields

- struct hwloc_obj_attr_u::hwloc_cache_attr_s cache
- struct hwloc obj attr u::hwloc group attr s group
- struct hwloc_obj_attr_u::hwloc_pcidev_attr_s pcidev
- struct hwloc_obj_attr_u::hwloc_bridge_attr_s bridge
- struct hwloc_obj_attr_u::hwloc_osdev_attr_s osdev

16.6.1 Detailed Description

Object type-specific Attributes.

16.6.2 Field Documentation

16.6.2.1 struct hwloc_obj_attr_u::hwloc_bridge_attr_s hwloc_obj_attr_u::bridge

16.6.2.2 struct hwloc_obj_attr_u::hwloc_cache_attr_s hwloc_obj_attr_u::cache

16.6.2.3 struct hwloc_obj_attr_u::hwloc_group_attr_s hwloc_obj_attr_u::group

16.6.2.4 struct hwloc_obj_attr_u::hwloc_osdev_attr_s hwloc_obj_attr_u::osdev

16.6.2.5 struct hwloc obj attr u::hwloc pcidev attr s hwloc obj attr u::pcidev

The documentation for this union was generated from the following file:

hwloc.h

16.7 hwloc_obj_info_s Struct Reference

#include <hwloc.h>

Data Fields

- char * name
- char * value

16.7.1 Detailed Description

Object info.

16.7.2 Field Documentation

16.7.2.1 char* hwloc_obj_info_s::name

Info name.

16.7.2.2 char* hwloc_obj_info_s::value

Info value.

The documentation for this struct was generated from the following file:

· hwloc.h

16.8 hwloc_obj_memory_s::hwloc_obj_memory_page_type_s Struct Reference

#include <hwloc.h>

Data Fields

- hwloc_uint64_t size
- hwloc_uint64_t count

16.8.1 Detailed Description

Array of local memory page types, NULL if no local memory and page_types is 0. The array is sorted by increasing size fields. It contains page_types_len slots.

16.8.2 Field Documentation

16.8.2.1 hwloc_uint64_t hwloc_obj_memory_s::hwloc_obj_memory_page_type_s::count

Number of pages of this size.

16.8.2.2 hwloc_uint64_t hwloc_obj_memory_s::hwloc_obj_memory_page_type_s::size

Size of pages.

The documentation for this struct was generated from the following file:

· hwloc.h

16.9 hwloc_obj_memory_s Struct Reference

```
#include <hwloc.h>
```

Data Structures

• struct hwloc_obj_memory_page_type_s

Array of local memory page types, NULL if no local memory and page_types is 0.

Data Fields

- hwloc_uint64_t total_memory
- hwloc_uint64_t local_memory
- unsigned page_types_len
- struct hwloc_obj_memory_s::hwloc_obj_memory_page_type_s * page_types

16.9.1 Detailed Description

Object memory.

16.9.2 Field Documentation

16.9.2.1 hwloc_uint64_t hwloc_obj_memory_s::local_memory

Local memory (in bytes)

- 16.9.2.2 struct hwloc_obj_memory_s::hwloc_obj_memory_page_type_s * hwloc_obj_memory_s::page_types
- 16.9.2.3 unsigned hwloc_obj_memory_s::page_types_len

Size of array page_types.

16.9.2.4 hwloc_uint64_t hwloc_obj_memory_s::total_memory

Total memory (in bytes) in this object and its children.

The documentation for this struct was generated from the following file:

· hwloc.h

16.10 hwloc_obj_attr_u::hwloc_osdev_attr_s Struct Reference

```
#include <hwloc.h>
```

Data Fields

• hwloc_obj_osdev_type_t type

16.10.1 Detailed Description

OS Device specific Object Attributes.

16.10.2 Field Documentation

16.10.2.1 hwloc_obj_osdev_type_t hwloc_obj_attr_u::hwloc_osdev_attr_s::type

The documentation for this struct was generated from the following file:

· hwloc.h

16.11 hwloc_obj_attr_u::hwloc_pcidev_attr_s Struct Reference

```
#include <hwloc.h>
```

Data Fields

- · unsigned short domain
- unsigned char bus
- · unsigned char dev
- · unsigned char func
- unsigned short class_id
- unsigned short vendor_id
- unsigned short device_id
- · unsigned short subvendor id

- · unsigned short subdevice id
- · unsigned char revision
- · float linkspeed

16.11.1 Detailed Description

PCI Device specific Object Attributes.

16.11.2 Field Documentation

```
16.11.2.1 unsigned char hwloc_obj_attr_u::hwloc_pcidev_attr_s::bus

16.11.2.2 unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::class_id

16.11.2.3 unsigned char hwloc_obj_attr_u::hwloc_pcidev_attr_s::dev

16.11.2.4 unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::device_id

16.11.2.5 unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::domain

16.11.2.6 unsigned char hwloc_obj_attr_u::hwloc_pcidev_attr_s::func

16.11.2.7 float hwloc_obj_attr_u::hwloc_pcidev_attr_s::linkspeed

16.11.2.8 unsigned char hwloc_obj_attr_u::hwloc_pcidev_attr_s::revision

16.11.2.9 unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::subdevice_id

16.11.2.10 unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::subvendor_id

16.11.2.11 unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::vendor_id

The documentation for this struct was generated from the following file:
```

• hwloc.h

16.12 hwloc_topology_cpubind_support Struct Reference

```
#include <hwloc.h>
```

Data Fields

- · unsigned char set thisproc cpubind
- · unsigned char get thisproc cpubind

- · unsigned char set_proc_cpubind
- unsigned char get_proc_cpubind
- unsigned char set_thisthread_cpubind
- · unsigned char get thisthread cpubind
- · unsigned char set_thread_cpubind
- unsigned char get_thread_cpubind
- unsigned char get thisproc last cpu location
- unsigned char get_proc_last_cpu_location
- unsigned char get_thisthread_last_cpu_location

16.12.1 Detailed Description

Flags describing actual PU binding support for this topology.

16.12.2 Field Documentation

16.12.2.1 unsigned char hwloc_topology_cpubind_support::get_proc_cpubind

Getting the binding of a whole given process is supported.

16.12.2.2 unsigned char hwloc_topology_cpubind_support::get_proc_last_cpu_location

Getting the last processors where a whole process ran is supported

16.12.2.3 unsigned char hwloc_topology_cpubind_support::get_thisproc_cpubind

Getting the binding of the whole current process is supported.

16.12.2.4 unsigned char hwloc_topology_cpubind_support::get_thisproc_last_cpu-_location

Getting the last processors where the whole current process ran is supported

16.12.2.5 unsigned char hwloc_topology_cpubind_support::get_thisthread_cpubind

Getting the binding of the current thread only is supported.

16.12.2.6 unsigned char hwloc_topology_cpubind_support::get_thisthread_last_-cpu_location

Getting the last processors where the current thread ran is supported

16.12.2.7 unsigned char hwloc_topology_cpubind_support::get_thread_cpubind

Getting the binding of a given thread only is supported.

16.12.2.8 unsigned char hwloc_topology_cpubind_support::set_proc_cpubind

Binding a whole given process is supported.

16.12.2.9 unsigned char hwloc_topology_cpubind_support::set_thisproc_cpubind

Binding the whole current process is supported.

16.12.2.10 unsigned char hwloc_topology_cpubind_support::set_thisthread_cpubind

Binding the current thread only is supported.

16.12.2.11 unsigned char hwloc_topology_cpubind_support::set_thread_cpubind

Binding a given thread only is supported.

The documentation for this struct was generated from the following file:

· hwloc.h

16.13 hwloc_topology_discovery_support Struct Reference

#include <hwloc.h>

Data Fields

unsigned char pu

16.13.1 Detailed Description

Flags describing actual discovery support for this topology.

16.13.2 Field Documentation

16.13.2.1 unsigned char hwloc_topology_discovery_support::pu

Detecting the number of PU objects is supported.

The documentation for this struct was generated from the following file:

· hwloc.h

16.14 hwloc_topology_membind_support Struct Reference

#include <hwloc.h>

Data Fields

- · unsigned char set_thisproc_membind
- · unsigned char get thisproc membind
- unsigned char set_proc_membind
- unsigned char get_proc_membind
- unsigned char set_thisthread_membind
- · unsigned char get thisthread membind
- unsigned char set_area_membind
- unsigned char get_area_membind
- unsigned char alloc_membind
- unsigned char firsttouch_membind
- unsigned char bind_membind
- · unsigned char bind_membind
- unsigned char interleave_membindunsigned char replicate membind
- unsigned char replicate_membind
- unsigned char migrate membind

16.14.1 Detailed Description

Flags describing actual memory binding support for this topology.

16.14.2 Field Documentation

16.14.2.1 unsigned char hwloc_topology_membind_support::alloc_membind

Allocating a bound memory area is supported.

16.14.2.2 unsigned char hwloc_topology_membind_support::bind_membind

Bind policy is supported.

16.14.2.3 unsigned char hwloc_topology_membind_support::firsttouch_membind

First-touch policy is supported.

- 16.14.2.4 unsigned char hwloc_topology_membind_support::get_area_membind

 Getting the binding of a given memory area is supported.
- 16.14.2.5 unsigned char hwloc_topology_membind_support::get_proc_membind

 Getting the binding of a whole given process is supported.
- 16.14.2.6 unsigned char hwloc_topology_membind_support::get_thisproc_membind

Getting the binding of the whole current process is supported.

16.14.2.7 unsigned char hwloc_topology_membind_support::get_thisthread_membind

Getting the binding of the current thread only is supported.

- 16.14.2.8 unsigned char hwloc_topology_membind_support::interleave_membind Interleave policy is supported.
- 16.14.2.9 unsigned char hwloc_topology_membind_support::migrate_membind

 Migration flags is supported.
- 16.14.2.10 unsigned char hwloc_topology_membind_support::nexttouch_membind

 Next-touch migration policy is supported.
- 16.14.2.11 unsigned char hwloc_topology_membind_support::replicate_membind

 Replication policy is supported.
- 16.14.2.12 unsigned char hwloc_topology_membind_support::set_area_membind

 Binding a given memory area is supported.
- 16.14.2.13 unsigned char hwloc_topology_membind_support::set_proc_membind

 Binding a whole given process is supported.

16.14.2.14 unsigned char hwloc_topology_membind_support::set_thisproc_membind

Binding the whole current process is supported.

16.14.2.15 unsigned char hwloc_topology_membind_support::set_thisthread_membind

Binding the current thread only is supported.

The documentation for this struct was generated from the following file:

· hwloc.h

16.15 hwloc_topology_support Struct Reference

#include <hwloc.h>

Data Fields

- struct hwloc topology discovery support * discovery
- struct hwloc_topology_cpubind_support * cpubind
- struct hwloc_topology_membind_support * membind

16.15.1 Detailed Description

Set of flags describing actual support for this topology.

This is retrieved with hwloc_topology_get_support() and will be valid until the topology object is destroyed. Note: the values are correct only after discovery.

16.15.2 Field Documentation

- 16.15.2.1 struct hwloc_topology_cpubind_support*
 hwloc_topology_support::cpubind
- 16.15.2.2 struct hwloc_topology_discovery_support* hwloc_topology_support::discovery
- 16.15.2.3 struct hwloc_topology_membind_support* hwloc_topology_support::membind

The documentation for this struct was generated from the following file:

· hwloc.h

Index

CPU binding	Memory binding, 96
HWLOC_CPUBIND_NOMEMBIND,	HWLOC_MEMBIND_INTERLEAVE
90	Memory binding, 96
HWLOC_CPUBIND_PROCESS, 89	HWLOC_MEMBIND_MIGRATE
HWLOC_CPUBIND_STRICT, 89	Memory binding, 95
HWLOC_CPUBIND_THREAD, 89	HWLOC_MEMBIND_MIXED
Configure Topology Detection	Memory binding, 96
HWLOC_TOPOLOGY_FLAG_IO_B-	HWLOC_MEMBIND_NEXTTOUCH
RIDGES, 73	Memory binding, 96
HWLOC_TOPOLOGY_FLAG_IO_D-	HWLOC_MEMBIND_NOCPUBIND
EVICES, 73	Memory binding, 95
HWLOC_TOPOLOGY_FLAG_IS_T-	HWLOC_MEMBIND_PROCESS
HISSYSTEM, 73	Memory binding, 95
HWLOC_TOPOLOGY_FLAG_WH-	HWLOC_MEMBIND_REPLICATE
OLE_IO, 73	Memory binding, 96
HWLOC_TOPOLOGY_FLAG_WH-	HWLOC_MEMBIND_STRICT
OLE_SYSTEM, 73	Memory binding, 95
Get Some Topology Information	HWLOC_MEMBIND_THREAD
HWLOC_TYPE_DEPTH_BRIDGE,	Memory binding, 95
81	HWLOC_OBJ_BRIDGE
HWLOC_TYPE_DEPTH_MULTIPL-	Topology Object Types, 67
E, 81	HWLOC_OBJ_BRIDGE_HOST
HWLOC_TYPE_DEPTH_OS_DEVI-	Topology Object Types, 66
CE, 81	HWLOC_OBJ_BRIDGE_PCI
HWLOC_TYPE_DEPTH_PCI_DEVI-	Topology Object Types, 66
CE, 81	HWLOC_OBJ_CACHE
HWLOC_TYPE_DEPTH_UNKNOW-	Topology Object Types, 67
N, 81	HWLOC_OBJ_CORE
HWLOC_CPUBIND_NOMEMBIND	Topology Object Types, 67
CPU binding, 90	HWLOC_OBJ_GROUP
HWLOC_CPUBIND_PROCESS	Topology Object Types, 67
CPU binding, 89	HWLOC_OBJ_MACHINE
HWLOC_CPUBIND_STRICT	Topology Object Types, 66
CPU binding, 89	HWLOC_OBJ_MISC
HWLOC_CPUBIND_THREAD	Topology Object Types, 67
CPU binding, 89	HWLOC_OBJ_NODE
HWLOC_MEMBIND_BIND	Topology Object Types, 66
Memory binding, 96	HWLOC_OBJ_OSDEV_BLOCK
HWLOC_MEMBIND_DEFAULT	Topology Object Types, 66
Memory binding, 96	HWLOC_OBJ_OSDEV_DMA
HWLOC MEMBIND FIRSTTOUCH	Topology Object Types, 66

HWLOC_OBJ_OSDEV_GPU	Get Some Topology Information, 81
Topology Object Types, 66	HWLOC_TYPE_UNORDERED
HWLOC_OBJ_OSDEV_NETWORK	Topology Object Types, 65
Topology Object Types, 66	Memory binding
HWLOC_OBJ_OSDEV_OPENFABRICS	HWLOC_MEMBIND_BIND, 96
Topology Object Types, 66	HWLOC_MEMBIND_DEFAULT, 96
HWLOC_OBJ_OS_DEVICE	HWLOC_MEMBIND_FIRSTTOUCH,
Topology Object Types, 67	96
HWLOC_OBJ_PCI_DEVICE	HWLOC_MEMBIND_INTERLEAVE,
Topology Object Types, 67	96
HWLOC_OBJ_PU	HWLOC_MEMBIND_MIGRATE, 95
Topology Object Types, 67	HWLOC_MEMBIND_MIXED, 96
HWLOC_OBJ_SOCKET	HWLOC_MEMBIND_NEXTTOUCH,
Topology Object Types, 66	96
HWLOC_OBJ_SYSTEM	HWLOC_MEMBIND_NOCPUBIND,
Topology Object Types, 66	95
HWLOC_OBJ_TYPE_MAX	HWLOC_MEMBIND_PROCESS, 95
Topology Object Types, 67	HWLOC_MEMBIND_REPLICATE,
HWLOC_RESTRICT_FLAG_ADAPT_DI-	96
STANCES	HWLOC_MEMBIND_STRICT, 95
Tinker With Topologies., 78	HWLOC_MEMBIND_THREAD, 95
HWLOC_RESTRICT_FLAG_ADAPT_IO	Tinker With Topologies.
Tinker With Topologies., 78	HWLOC_RESTRICT_FLAG_ADAP-
HWLOC_RESTRICT_FLAG_ADAPT_MI-	T_DISTANCES, 78
SC	HWLOC_RESTRICT_FLAG_ADAP-
Tinker With Topologies., 78	T_IO, 78
HWLOC_TOPOLOGY_FLAG_IO_BRID-	HWLOC_RESTRICT_FLAG_ADAP-
GES	T_MISC, 78
Configure Topology Detection, 73	Topology Object Types
HWLOC_TOPOLOGY_FLAG_IO_DEVI-	HWLOC_OBJ_BRIDGE, 67
CES	HWLOC_OBJ_BRIDGE_HOST, 66
Configure Topology Detection, 73	HWLOC_OBJ_BRIDGE_PCI, 66
HWLOC_TOPOLOGY_FLAG_IS_THISS-	HWLOC_OBJ_CACHE, 67
YSTEM	HWLOC_OBJ_CORE, 67
Configure Topology Detection, 73	HWLOC_OBJ_GROUP, 67
HWLOC_TOPOLOGY_FLAG_WHOLE_I-	HWLOC_OBJ_MACHINE, 66
0	HWLOC_OBJ_MISC, 67
Configure Topology Detection, 73	HWLOC_OBJ_NODE, 66
HWLOC_TOPOLOGY_FLAG_WHOLE	HWLOC_OBJ_OSDEV_BLOCK, 66
SYSTEM	HWLOC_OBJ_OSDEV_DMA, 66
Configure Topology Detection, 73	HWLOC_OBJ_OSDEV_GPU, 66
HWLOC_TYPE_DEPTH_BRIDGE	HWLOC_OBJ_OSDEV_NETWORK,
Get Some Topology Information, 81	66
HWLOC_TYPE_DEPTH_MULTIPLE	HWLOC_OBJ_OSDEV_OPENFAB-
Get Some Topology Information, 81	RICS, 66
HWLOC_TYPE_DEPTH_OS_DEVICE	HWLOC_OBJ_OS_DEVICE, 67
Get Some Topology Information, 81	HWLOC_OBJ_PCI_DEVICE, 67
HWLOC_TYPE_DEPTH_PCI_DEVICE	
Cot Como Tanalagy Information 01	HWLOC_OBJ_PU, 67
Get Some Topology Information, 81 HWLOC_TYPE_DEPTH_UNKNOWN	HWLOC_OBJ_PU, 67 HWLOC_OBJ_SOCKET, 66 HWLOC_OBJ_SYSTEM, 66

HWLOC_OBJ_TYPE_MAX, 67	hwloc_get_proc_last_cpu_location,
HWLOC_TYPE_UNORDERED, 65	90
API version, 61	hwloc_get_thread_cpubind, 91
hwloc_get_api_version, 61	hwloc_set_cpubind, 91
Advanced I/O object traversal helpers, 130	hwloc_set_proc_cpubind, 91
hwloc_bridge_covers_pcibus, 130	hwloc_set_thread_cpubind, 91
hwloc_get_hostbridge_by_pcibus,	CUDA Driver API Specific Functions, 150
130	hwloc_cuda_get_device_cpuset, 150
hwloc_get_next_bridge, 130	hwloc_cuda_get_device_pci_ids,
hwloc_get_next_osdev, 130	150
hwloc_get_next_pcidev, 131	hwloc_cuda_get_device_pcidev, 150
hwloc_get_non_io_ancestor_obj,	CUDA Runtime API Specific Functions
131	151
hwloc_get_pcidev_by_busid, 131	hwloc_cudart_get_device_cpuset,
hwloc_get_pcidev_by_busidstring,	151
131	hwloc_cudart_get_device_pci_ids,
Advanced Traversal Helpers, 117	151
hwloc get closest objs, 117	hwloc_cudart_get_device_pcidev,
hwloc get obj below array by -	151
type, 117	Cache-specific Finding Helpers, 116
hwloc_get_obj_below_by_type, 118	hwloc_get_cache_covering_cpuset,
Basic Traversal Helpers, 107	116
hwloc_get_ancestor_obj_by_depth,	hwloc_get_shared_cache_covering-
107	_obj, 116
hwloc_get_ancestor_obj_by_type,	Configure Topology Detection, 72
107	hwloc_topology_flags_e, 73
hwloc_get_common_ancestor_obj,	hwloc_topology_get_support, 74
107	hwloc_topology_ignore_all_keep
hwloc_get_next_child, 108	structure, 74
hwloc_get_next_obj_by_depth, 108	hwloc_topology_ignore_type, 74
hwloc_get_next_obj_by_type, 108	hwloc_topology_ignore_type_keep
hwloc_get_pu_obj_by_os_index, 108	structure, 74
hwloc_get_root_obj, 108	hwloc_topology_set_custom, 74
hwloc_obj_is_in_subtree, 109	hwloc_topology_set_distance
Binding Helpers, 119	matrix, 74
hwloc_alloc_membind_policy, 119	hwloc_topology_set_flags, 75
hwloc_alloc_membind_policy, 119	hwloc_topology_set_fsroot, 75
nodeset, 119	hwloc_topology_set_pid, 76
hwloc distribute, 119	hwloc_topology_set_synthetic, 76
hwloc distributev, 119	hwloc_topology_set_xml, 76
-	hwloc_topology_set_xmlbuffer, 77
Building Custom Topologies, 104	Conversion between cpuset and nodeset
hwloc_custom_insert_group_object-	125
_by_parent, 104	hwloc_cpuset_from_nodeset, 125
hwloc_custom_insert_topology, 104	hwloc_cpuset_from_nodeset_strict,
CPU binding, 88	125
hwloc_cpubind_flags_t, 89	hwloc_cpuset_to_nodeset, 125
hwloc_get_cpubind, 90	hwloc_cpuset_to_nodeset_strict,
hwloc_get_last_cpu_location, 90	126
hwloc_get_proc_cpubind, 90	Cpuset Helpers, 121

	hwloc_topology_get_allowed	hwloc_get_obj_covering_cpuset, 114
	cpuset, 121	Get Some Topology Information, 81
	hwloc_topology_get_complete	hwloc_get_depth_type, 82
	cpuset, 121	hwloc_get_nbobjs_by_depth, 82
	hwloc_topology_get_online_cpuset,	hwloc_get_nbobjs_by_type, 82
	121	hwloc_get_type_depth, 82
	hwloc_topology_get_topology	hwloc_get_type_depth_e, 81
	cpuset, 122	hwloc_topology_get_depth, 82
Crea	ate and Destroy Topologies, 70	hwloc_topology_is_thissystem, 83
	hwloc_topology_check, 70	HWLOC_API_VERSION
	hwloc_topology_destroy, 70	API version, 61
	hwloc_topology_init, 70	Helpers for manipulating Linux libnuma bit-
	hwloc_topology_load, 71	mask, 146
Dista	ances, 127	hwloc_cpuset_from_linux_libnuma
	hwloc_get_distance_matrix_covering-	bitmask, 146
	_obj_by_depth, 127	hwloc_cpuset_to_linux_libnuma
	hwloc_get_latency, 127	bitmask, 146
	hwloc_get_whole_distance_matrix	hwloc_nodeset_from_linux_libnuma-
	by_depth, 127	_bitmask, 146
	hwloc_get_whole_distance_matrix	hwloc_nodeset_to_linux_libnuma
	by_type, 128	bitmask, 146
Find	ling Objects Inside a CPU set, 110	Helpers for manipulating Linux libnuma
	hwloc_get_first_largest_obj_inside	nodemask_t, 148
	cpuset, 110	hwloc_cpuset_from_linux_libnuma
	hwloc_get_largest_objs_inside	nodemask, 148
	cpuset, 111	hwloc_cpuset_to_linux_libnuma
	hwloc_get_nbobjs_inside_cpuset	nodemask, 148
	by_depth, 111	hwloc_nodeset_from_linux_libnuma-
	hwloc_get_nbobjs_inside_cpuset	_nodemask, 148
	by_type, 111	hwloc_nodeset_to_linux_libnuma
	hwloc_get_next_obj_inside_cpuset	nodemask, 149
	by_depth, 111	Helpers for manipulating Linux libnuma
	hwloc_get_next_obj_inside_cpuset	unsigned long masks, 144
	by_type, 112	hwloc_cpuset_from_linux_libnuma
	hwloc_get_obj_index_inside_cpuset,	ulongs, 144
	112	hwloc_cpuset_to_linux_libnuma
	hwloc_get_obj_inside_cpuset_by	ulongs, 144
	depth, 112	hwloc_nodeset_from_linux_libnuma-
	hwloc_get_obj_inside_cpuset_by	ulongs, 144
	type, 112	hwloc_nodeset_to_linux_libnuma
Find	ling a set of similar Objects covering at	ulongs, 145
	least a CPU set, 115	Helpers for manipulating glibc sched affin-
	hwloc_get_next_obj_covering	ity, 142
	cpuset_by_depth, 115	hwloc_cpuset_from_glibc_sched
	hwloc_get_next_obj_covering	affinity, 142
	cpuset_by_type, 115	hwloc_cpuset_to_glibc_sched
Find	ling a single Object covering at least	affinity, 142
	CPU set, 114	Linux-only helpers, 143
	hwloc_get_child_covering_cpuset,	hwloc_linux_get_tid_cpubind, 143
	114	hwloc_linux_parse_cpumap_file, 143

	hwloc_linux_set_tid_cpubind, 143	hwloc_obj_cpuset_snprintf, 85
N	Memory binding, 93	hwloc_obj_get_info_by_name, 86
	hwloc_alloc, 96	hwloc_obj_snprintf, 86
	hwloc_alloc_membind, 96	hwloc_obj_type_of_string, 86
	hwloc_alloc_membind_nodeset, 97	hwloc_obj_type_snprintf, 87
	hwloc_free, 97	hwloc_obj_type_string, 87
	hwloc_get_area_membind, 97	OpenFabrics-Specific Functions, 152
	hwloc_get_area_membind_nodeset,	hwloc_ibv_get_device_cpuset, 152
	98	Retrieve Objects, 84
	hwloc_get_membind, 98	hwloc_get_obj_by_depth, 84
	hwloc_get_membind_nodeset, 99	hwloc_get_obj_by_type, 84
	hwloc_get_proc_membind, 100	The bitmap API, 132
	hwloc_get_proc_membind_nodeset,	hwloc_bitmap_allbut, 135
	100	hwloc_bitmap_alloc, 135
	hwloc_membind_flags_t, 95	hwloc_bitmap_alloc_full, 135
	hwloc_membind_policy_t, 95	hwloc_bitmap_and, 135
	hwloc_set_area_membind, 101	hwloc_bitmap_andnot, 135
	hwloc_set_area_membind_nodeset,	hwloc_bitmap_asprintf, 135
	101	hwloc_bitmap_clr, 135
	hwloc_set_membind, 101	hwloc_bitmap_clr_range, 136
	hwloc_set_membind_nodeset, 102	hwloc_bitmap_compare, 136
	hwloc_set_proc_membind, 102	hwloc_bitmap_compare_first, 136
	hwloc_set_proc_membind_nodeset,	hwloc_bitmap_copy, 136
	102	hwloc_bitmap_dup, 136
N	Myrinet Express-Specific Functions, 153	hwloc_bitmap_fill, 136
	hwloc_mx_board_get_device	hwloc_bitmap_first, 136
	cpuset, 153	hwloc_bitmap_foreach_begin, 134
	hwloc_mx_endpoint_get_device	hwloc_bitmap_foreach_end, 134
	cpuset, 153	hwloc_bitmap_free, 137
١	Nodeset Helpers, 123	hwloc_bitmap_from_ith_ulong, 137
	hwloc_topology_get_allowed	hwloc_bitmap_from_ulong, 137
	nodeset, 123	hwloc_bitmap_intersects, 137
	hwloc_topology_get_complete	hwloc_bitmap_isequal, 137
	nodeset, 123	hwloc_bitmap_isfull, 137
	hwloc_topology_get_topology	hwloc_bitmap_isincluded, 137
	nodeset, 123	hwloc_bitmap_isset, 137
(Object Type Helpers, 106	hwloc_bitmap_iszero, 138
	hwloc_get_type_or_above_depth,	hwloc_bitmap_last, 138
	106	hwloc_bitmap_list_asprintf, 138
	hwloc_get_type_or_below_depth,	hwloc_bitmap_list_snprintf, 138
	106	hwloc_bitmap_list_sscanf, 138
(Object sets (hwloc_cpuset_t and hwloc	hwloc_bitmap_next, 138
	nodeset_t), 63	hwloc_bitmap_not, 139
	hwloc_const_cpuset_t, 63	hwloc_bitmap_only, 139
	hwloc_const_nodeset_t, 63	hwloc_bitmap_or, 139
	hwloc_cpuset_t, 63	hwloc_bitmap_set, 139
	hwloc_nodeset_t, 63	hwloc_bitmap_set_ith_ulong, 139
(Object/String Conversion, 85	hwloc_bitmap_set_range, 139
	hwloc_obj_add_info, 85	hwloc_bitmap_singlify, 139
	hwloc_obj_attr_snprintf, 85	hwloc_bitmap_snprintf, 140

hwloc_bitmap_sscanf, 140	bind_membind
hwloc_bitmap_t, 134	hwloc_topology_membind_support,
hwloc bitmap taskset asprintf, 140	172
hwloc_bitmap_taskset_snprintf, 140	bridge
hwloc bitmap taskset sscanf, 140	hwloc_obj_attr_u, 165
hwloc_bitmap_to_ith_ulong, 141	bus
hwloc_bitmap_to_ulong, 141	hwloc_obj_attr_u::hwloc_pcidev
hwloc_bitmap_weight, 141	attr_s, 169
hwloc_bitmap_xor, 141	_ /
hwloc_bitmap_zero, 141	cache
hwloc const bitmap t, 135	hwloc_obj_attr_u, 165
Tinker With Topologies., 78	children
hwloc_free_xmlbuffer, 78	hwloc_obj, 160
hwloc_restrict_flags_e, 78	class id
hwloc_topology_export_xml, 79	_
hwloc_topology_export_xmlbuffer,	hwloc_obj_attr_u::hwloc_pcidev
•	attr_s, 169
79	complete_cpuset
hwloc_topology_insert_misc_object-	hwloc_obj, 160
_by_cpuset, 79	complete_nodeset
hwloc_topology_insert_misc_object-	hwloc_obj, 161
_by_parent, 79	count
hwloc_topology_restrict, 80	hwloc_obj_memory_s::hwloc_obj
Topology Object Types, 65	memory_page_type_s, 166
hwloc_compare_types, 67	cpubind
hwloc_compare_types_e, 65	hwloc_topology_support, 174
hwloc_obj_bridge_type_e, 65	cpuset
hwloc_obj_bridge_type_t, 65	hwloc_obj, 161
hwloc_obj_osdev_type_e, 66	
hwloc_obj_osdev_type_t, 65	depth
hwloc_obj_type_t, 66	hwloc_obj, 161
Topology Objects, 69	hwloc_obj_attr_u::hwloc_bridge_attr
hwloc_obj_t, 69	s, 155
Topology context, 62	hwloc_obj_attr_u::hwloc_cache_attr-
hwloc_topology_t, 62	s, 157
	hwloc_obj_attr_u::hwloc_group_attr-
alloc membind	s, 159
hwloc_topology_membind_support,	dev
172	hwloc_obj_attr_u::hwloc_pcidev
allowed_cpuset	attr_s, 169
hwloc_obj, 160	device_id
allowed_nodeset	hwloc obj attr u::hwloc pcidev -
hwloc_obj, 160	attr_s, 169
arity	discovery
hwloc_obj, 160	hwloc_topology_support, 174
·	
associativity	distances
hwloc_obj_attr_u::hwloc_cache_attr-	hwloc_obj, 162
_s, 156	distances_count
attr	hwloc_obj, 162
hwloc_obj, 160	domain

budes shi shu uubudes baidee shu	and there are anothered
hwloc_obj_attr_u::hwloc_bridge_attr-	get_thread_cpubind
_s, 155	hwloc_topology_cpubind_support, 170
hwloc_obj_attr_u::hwloc_pcidev	
attr_s, 169 downstream	group hwloc_obj_attr_u, 165
hwloc_obj_attr_u::hwloc_bridge_attr-	Tiwioc_obj_atti_u, 105
_s, 156	hwloc_alloc
_s, 130 downstream_type	Memory binding, 96
hwloc_obj_attr_u::hwloc_bridge_attr-	hwloc_alloc_membind
_s, 156	Memory binding, 96
_3, 100	hwloc_alloc_membind_nodeset
first_child	Memory binding, 97
hwloc_obj, 162	hwloc_alloc_membind_policy
firsttouch membind	Binding Helpers, 119
hwloc_topology_membind_support,	hwloc_alloc_membind_policy_nodeset
172	Binding Helpers, 119
func	hwloc_bitmap_allbut
hwloc_obj_attr_u::hwloc_pcidev	The bitmap API, 135
attr_s, 169	hwloc_bitmap_alloc
	The bitmap API, 135
get_area_membind	hwloc_bitmap_alloc_full
hwloc_topology_membind_support,	The bitmap API, 135
172	hwloc_bitmap_and
get_proc_cpubind	The bitmap API, 135
hwloc_topology_cpubind_support,	hwloc_bitmap_andnot
170	The bitmap API, 135
get_proc_last_cpu_location	hwloc_bitmap_asprintf
hwloc_topology_cpubind_support,	The bitmap API, 135
170	hwloc_bitmap_clr
get_proc_membind	The bitmap API, 135
hwloc_topology_membind_support,	hwloc_bitmap_clr_range
173	The bitmap API, 136
get_thisproc_cpubind	hwloc_bitmap_compare
hwloc_topology_cpubind_support, 170	The bitmap API, 136
get_thisproc_last_cpu_location	hwloc_bitmap_compare_first The bitmap API, 136
hwloc_topology_cpubind_support,	hwloc_bitmap_copy
170	The bitmap API, 136
get_thisproc_membind	hwloc_bitmap_dup
hwloc_topology_membind_support,	The bitmap API, 136
173	hwloc_bitmap_fill
get_thisthread_cpubind	The bitmap API, 136
hwloc_topology_cpubind_support,	hwloc_bitmap_first
170	The bitmap API, 136
get_thisthread_last_cpu_location	hwloc_bitmap_foreach_begin
hwloc_topology_cpubind_support,	The bitmap API, 134
170	hwloc_bitmap_foreach_end
get_thisthread_membind	The bitmap API, 134
hwloc_topology_membind_support,	hwloc_bitmap_free
173	The bitmap API, 137

hwloc_bitmap_from_ith_ulong	hwloc_bitmap_taskset_sscanf
The bitmap API, 137	The bitmap API, 140
hwloc_bitmap_from_ulong	hwloc_bitmap_to_ith_ulong
The bitmap API, 137	The bitmap API, 141
hwloc_bitmap_intersects	hwloc_bitmap_to_ulong
The bitmap API, 137	The bitmap API, 141
hwloc_bitmap_isequal	hwloc_bitmap_weight
The bitmap API, 137	The bitmap API, 141
hwloc_bitmap_isfull	hwloc_bitmap_xor
The bitmap API, 137	The bitmap API, 141
hwloc_bitmap_isincluded	hwloc_bitmap_zero
The bitmap API, 137	The bitmap API, 141
hwloc_bitmap_isset	hwloc_bridge_covers_pcibus
The bitmap API, 137	Advanced I/O object traversal
hwloc_bitmap_iszero	helpers, 130
The bitmap API, 138	hwloc_compare_types
hwloc_bitmap_last	Topology Object Types, 67
The bitmap API, 138	
hwloc_bitmap_list_asprintf	hwloc_compare_types_e
The bitmap API, 138	Topology Object Types, 65
hwloc_bitmap_list_snprintf	hwloc_const_bitmap_t
The bitmap API, 138	The bitmap API, 135
hwloc_bitmap_list_sscanf	hwloc_const_cpuset_t
The bitmap API, 138	Object sets (hwloc_cpuset_t and
hwloc_bitmap_next	hwloc_nodeset_t), 63
The bitmap API, 138	hwloc_const_nodeset_t
hwloc_bitmap_not	Object sets (hwloc_cpuset_t and
The bitmap API, 139	hwloc_nodeset_t), 63
hwloc_bitmap_only	hwloc_cpubind_flags_t
The bitmap API, 139	CPU binding, 89
hwloc_bitmap_or	hwloc_cpuset_from_glibc_sched_affinity
The bitmap API, 139	Helpers for manipulating glibc sched
hwloc_bitmap_set	affinity, 142
The bitmap API, 139	hwloc_cpuset_from_linux_libnuma
hwloc_bitmap_set_ith_ulong	bitmask
The bitmap API, 139	Helpers for manipulating Linux lib-
hwloc_bitmap_set_range	numa bitmask, 146
The bitmap API, 139	hwloc_cpuset_from_linux_libnuma
hwloc_bitmap_singlify	nodemask
The bitmap API, 139	Helpers for manipulating Linux lib-
hwloc_bitmap_snprintf	numa nodemask_t, 148
The bitmap API, 140	hwloc_cpuset_from_linux_libnuma
hwloc_bitmap_sscanf	ulongs
The bitmap API, 140	Helpers for manipulating Linux lib-
hwloc_bitmap_t	numa unsigned long masks,
The bitmap API, 134	144
hwloc_bitmap_taskset_asprintf	hwloc_cpuset_from_nodeset
The bitmap API, 140	Conversion between cpuset and
hwloc_bitmap_taskset_snprintf	nodeset, 125
The bitmap API, 140	hwloc_cpuset_from_nodeset_strict

Conversion between cpuset and nodeset, 125	latency_max, 158 nbobjs, 158
hwloc_cpuset_t	relative_depth, 158
Object sets (hwloc_cpuset_t and	hwloc_distribute
hwloc_nodeset_t), 63	Binding Helpers, 119
hwloc_cpuset_to_glibc_sched_affinity	hwloc_distributev
Helpers for manipulating glibc sched	Binding Helpers, 119
affinity, 142	hwloc_free
hwloc_cpuset_to_linux_libnuma_bitmask	Memory binding, 97
Helpers for manipulating Linux lib-	hwloc_free_xmlbuffer Tinker With Topologies., 78
numa bitmask, 146	. •
hwloc_cpuset_to_linux_libnuma_nodemask Helpers for manipulating Linux lib-	Basic Traversal Helpers, 107
numa nodemask_t, 148	hwloc_get_ancestor_obj_by_type
hwloc_cpuset_to_linux_libnuma_ulongs	Basic Traversal Helpers, 107
Helpers for manipulating Linux lib-	hwloc_get_api_version
numa unsigned long masks,	API version, 61
144	hwloc_get_area_membind
hwloc_cpuset_to_nodeset	Memory binding, 97
Conversion between cpuset and	hwloc_get_area_membind_nodeset
nodeset, 125	Memory binding, 98
hwloc_cpuset_to_nodeset_strict	hwloc_get_cache_covering_cpuset
Conversion between cpuset and	Cache-specific Finding Helpers, 116
nodeset, 126	hwloc_get_child_covering_cpuset
hwloc_cuda_get_device_cpuset	Finding a single Object covering at
CUDA Driver API Specific Functions,	least CPU set, 114
150	hwloc_get_closest_objs
hwloc_cuda_get_device_pci_ids	Advanced Traversal Helpers, 117
CUDA Driver API Specific Functions,	hwloc_get_common_ancestor_obj
150	Basic Traversal Helpers, 107
hwloc_cuda_get_device_pcidev	hwloc_get_cpubind
CUDA Driver API Specific Functions,	CPU binding, 90
150	hwloc_get_depth_type
hwloc_cudart_get_device_cpuset	Get Some Topology Information, 82
CUDA Runtime API Specific Func-	hwloc_get_distance_matrix_covering_obj-
tions, 151	_by_depth
hwloc_cudart_get_device_pci_ids	Distances, 127
CUDA Runtime API Specific Func-	hwloc_get_first_largest_obj_inside
tions, 151	cpuset
hwloc_cudart_get_device_pcidev	Finding Objects Inside a CPU set,
CUDA Runtime API Specific Func-	110
tions, 151	hwloc_get_hostbridge_by_pcibus
hwloc_custom_insert_group_object_by	Advanced I/O object traversal
parent	helpers, 130
Building Custom Topologies, 104	hwloc_get_largest_objs_inside_cpuset
hwloc_custom_insert_topology	Finding Objects Inside a CPU set,
Building Custom Topologies, 104	111
hwloc_distances_s, 157	hwloc_get_last_cpu_location
latency, 158	CPU binding, 90
latency_base, 158	hwloc_get_latency

Distances, 127	Advanced I/O object traversal
hwloc_get_membind	helpers, 131
Memory binding, 98	hwloc_get_obj_below_array_by_type
hwloc_get_membind_nodeset	Advanced Traversal Helpers, 117
Memory binding, 99	hwloc_get_obj_below_by_type
hwloc_get_nbobjs_by_depth	Advanced Traversal Helpers, 118
Get Some Topology Information, 82	hwloc_get_obj_by_depth
hwloc_get_nbobjs_by_type	Retrieve Objects, 84
Get Some Topology Information, 82	hwloc_get_obj_by_type
hwloc_get_nbobjs_inside_cpuset_by	Retrieve Objects, 84
depth	hwloc_get_obj_covering_cpuset
Finding Objects Inside a CPU set,	Finding a single Object covering at
111	least CPU set, 114
hwloc_get_nbobjs_inside_cpuset_by	hwloc_get_obj_index_inside_cpuset
type	Finding Objects Inside a CPU set,
Finding Objects Inside a CPU set,	112
111	hwloc_get_obj_inside_cpuset_by_depth
hwloc_get_next_bridge	Finding Objects Inside a CPU set,
Advanced I/O object traversal	112
helpers, 130	hwloc_get_obj_inside_cpuset_by_type
hwloc_get_next_child	Finding Objects Inside a CPU set,
Basic Traversal Helpers, 108	112
	hwloc_get_pcidev_by_busid
hwloc_get_next_obj_by_depth	Advanced I/O object traversal
Basic Traversal Helpers, 108	helpers, 131
hwloc_get_next_obj_by_type	hwloc_get_pcidev_by_busidstring
Basic Traversal Helpers, 108	Advanced I/O object traversal
hwloc_get_next_obj_covering_cpuset_by-	helpers, 131
_depth	hwloc_get_proc_cpubind
Finding a set of similar Objects cov-	CPU binding, 90
ering at least a CPU set, 115	hwloc_get_proc_last_cpu_location
hwloc_get_next_obj_covering_cpuset_by-	CPU binding, 90
_type	hwloc_get_proc_membind
Finding a set of similar Objects cov-	Memory binding, 100
ering at least a CPU set, 115	hwloc_get_proc_membind_nodeset
hwloc_get_next_obj_inside_cpuset_by	Memory binding, 100
depth	hwloc_get_pu_obj_by_os_index
Finding Objects Inside a CPU set,	Basic Traversal Helpers, 108
111	hwloc_get_root_obj
hwloc_get_next_obj_inside_cpuset_by	Basic Traversal Helpers, 108
type	hwloc_get_shared_cache_covering_obj
Finding Objects Inside a CPU set,	Cache-specific Finding Helpers, 116
	hwloc_get_thread_cpubind
hwloc_get_next_osdev	CPU binding, 91
Advanced I/O object traversal	hwloc_get_type_depth
helpers, 130	Get Some Topology Information, 82
hwloc_get_next_pcidev	hwloc_get_type_depth_e
Advanced I/O object traversal	Get Some Topology Information, 81
helpers, 131	hwloc_get_type_or_above_depth
hwloc_get_non_io_ancestor_obj	Object Type Helpers, 106

hwloc_get_type_or_below_depth	hwloc_nodeset_to_linux_libnuma_ulongs
Object Type Helpers, 106	Helpers for manipulating Linux lib
hwloc_get_whole_distance_matrix_by depth	numa unsigned long masks
Distances, 127	hwloc_obj, 159
hwloc_get_whole_distance_matrix_by	allowed_cpuset, 160
type	allowed_nodeset, 160
Distances, 128	arity, 160
hwloc_ibv_get_device_cpuset	attr, 160
OpenFabrics-Specific Functions, 152	children, 160
hwloc_linux_get_tid_cpubind	complete cpuset, 160
Linux-only helpers, 143	complete_nodeset, 161
hwloc_linux_parse_cpumap_file	cpuset, 161
Linux-only helpers, 143	depth, 161
hwloc_linux_set_tid_cpubind	distances, 162
Linux-only helpers, 143	distances_count, 162
hwloc_membind_flags_t	first_child, 162
Memory binding, 95	infos, 162
hwloc_membind_policy_t	infos_count, 162
Memory binding, 95	last_child, 162
hwloc_mx_board_get_device_cpuset	logical_index, 162
Myrinet Express-Specific Functions,	memory, 162
153	name, 162
hwloc_mx_endpoint_get_device_cpuset	next_cousin, 162
Myrinet Express-Specific Functions,	next_sibling, 163
153	nodeset, 163
hwloc_nodeset_from_linux_libnuma	online_cpuset, 163
bitmask	os_index, 163
Helpers for manipulating Linux lib-	os_level, 163
numa bitmask, 146	parent, 163
hwloc_nodeset_from_linux_libnuma	prev_cousin, 164
nodemask	prev_sibling, 164
Helpers for manipulating Linux lib-	sibling_rank, 164
numa nodemask_t, 148	symmetric_subtree, 164
hwloc_nodeset_from_linux_libnuma	type, 164
ulongs	userdata, 164
Helpers for manipulating Linux lib-	hwloc_obj_add_info
numa unsigned long masks,	Object/String Conversion, 85
144	hwloc_obj_attr_snprintf
hwloc_nodeset_t	Object/String Conversion, 85
Object sets (hwloc_cpuset_t and	hwloc_obj_attr_u, 164
hwloc_nodeset_t), 63	bridge, 165
hwloc_nodeset_to_linux_libnuma	cache, 165
bitmask	group, 165
Helpers for manipulating Linux lib-	osdev, 165
numa bitmask, 146	pcidev, 165 hwloc obj attr u::hwloc bridge attr s,
hwloc_nodeset_to_linux_libnuma nodemask	nwioc_obj_attr_u::nwioc_bridge_attr_s, 155
Helpers for manipulating Linux lib-	depth, 155
numa nodemask_t, 149	domain, 155

downstream, 156	hwloc_obj_memory_s::hwloc_obj
downstream_type, 156	memory_page_type_s, 166
pci, 156	count, 166
secondary_bus, 156	size, 166
subordinate_bus, 156	hwloc_obj_osdev_type_e
upstream, 156	Topology Object Types, 66
upstream_type, 156	hwloc_obj_osdev_type_t
hwloc_obj_attr_u::hwloc_cache_attr_s,	Topology Object Types, 65
156	hwloc_obj_snprintf
associativity, 156	Object/String Conversion, 86
depth, 157	hwloc_obj_t
linesize, 157	Topology Objects, 69
size, 157	hwloc_obj_type_of_string
hwloc_obj_attr_u::hwloc_group_attr_s,	Object/String Conversion, 86
158	hwloc_obj_type_snprintf
depth, 159	Object/String Conversion, 87
hwloc_obj_attr_u::hwloc_osdev_attr_s,	hwloc_obj_type_string
168	Object/String Conversion, 87
type, 168	hwloc_obj_type_t
hwloc_obj_attr_u::hwloc_pcidev_attr_s,	Topology Object Types, 66
168	hwloc_restrict_flags_e
bus, 169	Tinker With Topologies., 78
class_id, 169	hwloc_set_area_membind
dev, 169	Memory binding, 101
device_id, 169	hwloc_set_area_membind_nodeset
domain, 169	Memory binding, 101
func, 169	hwloc_set_cpubind
linkspeed, 169	CPU binding, 91
revision, 169	hwloc_set_membind
subdevice_id, 169	Memory binding, 101
subvendor_id, 169	hwloc_set_membind_nodeset
vendor_id, 169	Memory binding, 102
hwloc_obj_bridge_type_e	hwloc_set_proc_cpubind
Topology Object Types, 65	CPU binding, 91
hwloc_obj_bridge_type_t	hwloc_set_proc_membind
Topology Object Types, 65	Memory binding, 102
hwloc_obj_cpuset_snprintf	hwloc_set_proc_membind_nodeset
Object/String Conversion, 85	Memory binding, 102
hwloc_obj_get_info_by_name	hwloc_set_thread_cpubind
Object/String Conversion, 86	CPU binding, 91
hwloc_obj_info_s, 165	hwloc_topology_check
name, 166	Create and Destroy Topologies, 70
value, 166	hwloc_topology_cpubind_support, 169
hwloc_obj_is_in_subtree	get_proc_cpubind, 170
Basic Traversal Helpers, 109	get_proc_last_cpu_location, 170
hwloc_obj_memory_s, 167	get_thisproc_cpubind, 170
local_memory, 167	get_thisproc_last_cpu_location, 170
page_types, 167	get_thisthread_cpubind, 170
page_types_len, 167	get_thisthread_last_cpu_location,
total_memory, 167	170

get_thread_cpubind, 170	Get Some Topology Information, 83
set_proc_cpubind, 171	hwloc_topology_load
set_thisproc_cpubind, 171	Create and Destroy Topologies, 71
set_thisthread_cpubind, 171	hwloc_topology_membind_support, 172
set_thread_cpubind, 171	alloc_membind, 172
hwloc_topology_destroy	bind_membind, 172
Create and Destroy Topologies, 70	firsttouch_membind, 172
hwloc_topology_discovery_support, 171	get_area_membind, 172
pu, 171	get_proc_membind, 173
hwloc_topology_export_xml	get_thisproc_membind, 173
Tinker With Topologies., 79	get_thisthread_membind, 173
hwloc_topology_export_xmlbuffer	interleave_membind, 173
Tinker With Topologies., 79	migrate_membind, 173
hwloc_topology_flags_e	nexttouch_membind, 173
Configure Topology Detection, 73	replicate_membind, 173
hwloc_topology_get_allowed_cpuset	set_area_membind, 173
Cpuset Helpers, 121	set_proc_membind, 173
hwloc_topology_get_allowed_nodeset	set_thisproc_membind, 173
Nodeset Helpers, 123	set_thisthread_membind, 174
hwloc_topology_get_complete_cpuset	hwloc_topology_restrict
Cpuset Helpers, 121	Tinker With Topologies., 80
hwloc_topology_get_complete_nodeset	hwloc_topology_set_custom
Nodeset Helpers, 123	Configure Topology Detection, 74
hwloc_topology_get_depth	hwloc_topology_set_distance_matrix
Get Some Topology Information, 82	Configure Topology Detection, 74
hwloc_topology_get_online_cpuset	hwloc_topology_set_flags
Cpuset Helpers, 121	Configure Topology Detection, 75
hwloc_topology_get_support	hwloc_topology_set_fsroot
Configure Topology Detection, 74	Configure Topology Detection, 75
hwloc_topology_get_topology_cpuset	hwloc_topology_set_pid
Cpuset Helpers, 122	Configure Topology Detection, 76
hwloc_topology_get_topology_nodeset	hwloc_topology_set_synthetic
Nodeset Helpers, 123	Configure Topology Detection, 76
hwloc_topology_ignore_all_keep	hwloc_topology_set_xml
structure	Configure Topology Detection, 76
Configure Topology Detection, 74	hwloc_topology_set_xmlbuffer
hwloc_topology_ignore_type	Configure Topology Detection, 77
Configure Topology Detection, 74	hwloc_topology_support, 174
hwloc_topology_ignore_type_keep	cpubind, 174
structure	discovery, 174
Configure Topology Detection, 74	membind, 174
hwloc_topology_init	hwloc_topology_t
Create and Destroy Topologies, 70	Topology context, 62
hwloc_topology_insert_misc_object_by	repelegy content, c_
cpuset	infos
Tinker With Topologies., 79	hwloc_obj, 162
hwloc_topology_insert_misc_object_by	_ ·
parent Tinker With Topologies., 79	infos_count hwloc_obj, 162
hwloc_topology_is_thissystem	interleave_membind
IIIIIOO_topology_io_triiooyotorii	intendave_membind

hwloc_topology_membind_support,	hwloc_obj, 163
173	osdev
	hwloc_obj_attr_u, 165
last_child	
hwloc_obj, 162	page_types
latency	hwloc_obj_memory_s, 167
hwloc_distances_s, 158	page_types_len
latency_base	hwloc_obj_memory_s, 167
hwloc_distances_s, 158	parent
latency_max	hwloc_obj, 163
hwloc_distances_s, 158	pci
linesize	hwloc_obj_attr_u::hwloc_bridge_attr-
hwloc_obj_attr_u::hwloc_cache_attr-	_s, 156
_s, 157	pcidev
linkspeed	hwloc_obj_attr_u, 165
hwloc_obj_attr_u::hwloc_pcidev	prev_cousin
attr s, 169	hwloc_obj, 164
local memory	prev_sibling
hwloc_obj_memory_s, 167	hwloc obj, 164
logical index	_ *
· –	pu
hwloc_obj, 162	hwloc_topology_discovery_support,
membind	171
	rolativa donth
hwloc_topology_support, 174	relative_depth
memory	hwloc_distances_s, 158
hwloc_obj, 162	replicate_membind
migrate_membind	hwloc_topology_membind_support,
hwloc_topology_membind_support,	173
173	revision
	hwloc_obj_attr_u::hwloc_pcidev
name	attr_s, 169
hwloc_obj, 162	
hwloc_obj_info_s, 166	secondary_bus
nbobjs	hwloc_obj_attr_u::hwloc_bridge_attr-
hwloc_distances_s, 158	_s, 156
next_cousin	set_area_membind
hwloc_obj, 162	hwloc_topology_membind_support,
next_sibling	173
hwloc_obj, 163	set_proc_cpubind
nexttouch_membind	hwloc_topology_cpubind_support,
hwloc_topology_membind_support,	171
173	set_proc_membind
nodeset	hwloc_topology_membind_support,
hwloc_obj, 163	173
	set_thisproc_cpubind
online_cpuset	hwloc_topology_cpubind_support,
hwloc_obj, 163	171
os_index	set_thisproc_membind
hwloc_obj, 163	hwloc_topology_membind_support,
os level	173

```
set_thisthread_cpubind
    hwloc_topology_cpubind_support,
         171
set_thisthread_membind
    hwloc_topology_membind_support,
set_thread_cpubind
    hwloc_topology_cpubind_support,
         171
sibling_rank
    hwloc_obj, 164
size
    hwloc_obj_attr_u::hwloc_cache_attr-
         _s, 157
    hwloc_obj_memory_s::hwloc_obj_-
         memory_page_type_s, 166
subdevice_id
    hwloc_obj_attr_u::hwloc_pcidev_-
         attr_s, 169
subordinate bus
    hwloc_obj_attr_u::hwloc_bridge_attr-
         _s, 156
subvendor_id
    hwloc_obj_attr_u::hwloc_pcidev_-
         attr_s, 169
symmetric_subtree
    hwloc_obj, 164
total_memory
    hwloc obj memory s, 167
type
    hwloc_obj, 164
    hwloc_obj_attr_u::hwloc_osdev_attr-
         _s, 168
upstream
    hwloc_obj_attr_u::hwloc_bridge_attr-
         _s, 156
upstream_type
    hwloc_obj_attr_u::hwloc_bridge_attr-
         _s, 156
userdata
    hwloc_obj, 164
value
    hwloc_obj_info_s, 166
vendor id
    hwloc_obj_attr_u::hwloc_pcidev_-
         attr_s, 169
```