

Основы электротехники

Отчет по лабораторной работе N = 1

Исследование характеристик источника электрической энергии постоянного тока

Группа Р3332

Вариант 71

Выполнил: Чмурова Мария Владиславовна

Дата сдачи отчета:

Дата защиты: 09.10.2024

Контрольный срок защиты: 09.10.2024

Количество баллов:

Оглавление

Цель работы	2
Схема эксперимента	3
Заполненная таблица	4
Пример расчёта для одной произвольной строки таблицы	5
Расчётная внешняя характеристика источника	7
Графики зависимости Pn(In) и η(In)	7
Выводы по работе	8

Цель работы

Исследование режимов работы и экспериментальное определение параметров схемы замещения источника электрической энергии.

Схема эксперимента

Рисунок 1. Схема эксперимента

Заполненная таблица

Таблица 1.1

k	Измерения		Расчёт			
K			r = 160 [Om], E = 24 [B], Isc = 0.15 [mA]			
0	Rn [Ом]	Un [B]	In [MA]	Pn [BT]	η	r [Ом]
1	$r = \infty$	$U_0 = 24$	0	0	1	
2	1440	21,6	15	0,324	0,9	160
3	640	19,2	30	0,576	0,8	160,035
4	373	16,795	45,028	0,756	0,7	159,965
5	240	14,4	60	0,864	0,6	160
6	160	12	75	0,9	0,5	160,005
7	107	9,618	89,887	0,865	0,401	160,062
8	69	7,231	104,8	0,758	0,301	159,934
9	40	4,8	120	0,576	0,2	159,992
10	18	2,427	134,832	0.327	0,101	160,008
11	0	0	150	0	0	

Оценка внутреннего сопротивления источника r в виде среднего квадратического значения:

$$r = \sqrt{\sum_{k=2}^{10} \frac{r_k^2}{9}} = \sqrt{\frac{160^2 + 160,035^2 + 159,965^2 + 160^2 + 160,005^2 + 160,062^2 + 159,934^2 + 159,992^2 + 160,008^2}{9}} = 160 \text{ [OM]}$$

Пример расчёта для одной произвольной строки таблицы

Для примера будет описан расчёт для строки при k = 2

В приложении LTspice на резисторе выставляется значение R = 1440:

Рисунок 2. Изменения значения резистора

После этого программа запускается и снимается значение напряжения с провода. По графику находится соответствующее значение для напряжение и заносится в таблицу. Для примера получится U = 21,6B:

Рисунок 3. Значения напряжения для R = 1440

После этого по формулам рассчитываются оставшиеся строки таблицы последовательно.

• Ток в нагрузке:

$$In_k = \frac{Un_k}{Rn_k} = \frac{21.6}{1440} = 0.015 \text{ [A]} = 15 \text{ [mA]}$$

• Мощность, рассеиваемая в нагрузке:

$$Pn_k = \frac{Un_k^2}{Rn_k} = \frac{21.6^2}{1440} = 0.324 \text{ [BT]}$$

• Внутреннее сопротивление источника:

$$r_k = \frac{Un_k - Un_{k+1}}{In_{k+1} - In_k} = \frac{21,6 - 19,2}{30 - 15} = 160$$
[Ом]

• Коэффициент полезного действия:

$$\eta = \frac{Rn_k}{r + Rn_k} = \frac{1440}{160 + 1440} = 0.9$$

Полученные значения заносятся в таблицу 1.1

Расчётная внешняя характеристика источника

Рисунок 4. Расчётная внешняя характеристика источника

Графики зависимости Pn(In) и η(In)

Рисунок 5. Графики зависимости Pn(In) и $\eta(In)$

Выводы по работе

В ходе данной лабораторной работы были исследованы такие режимы работы источника, как: холостой ход (при бесконечном сопротивлении, разрыв цепи), короткое замыкание (отсутствие внешней нагрузки и сопротивление близкое к нулю) и согласованный режим (максимальная отдаваемая мощность источника).

Экспериментально было определено значение напряжения Un при различных значениях сопротивления. В режиме холостого хода напряжение U0 соответствует заданному значению ЭДС E=24 [B]. Была подтверждена линейная зависимость напряжения от сопротивления. Кроме того, было рассчитано значение мощности Pn и максимум мощности наблюдался в согласованном режиме при Rn=r. Определение среднеквадратичного значения внутреннего сопротивления дало результат, совпадающий с заданным значением r=160 [Ом].

Расчетная внешняя характеристика Un от In имеет линейный характер. При увеличении тока напряжение на нагрузке уменьшается, что соответствует уменьшению сопротивления нагрузке. При максимальном токе напряжение на нагрузке равно нулю, а при холостом ходе — ЭДС.

График зависимости мощности от тока имеет параболический характер. Мощность сначала возрастает, достигая максимума в согласованном режиме, затем начинает снижаться по мере дальнейшего увеличения тока. Зависимость КПД от тока демонстрирует линейную зависимость – КПД уменьшается при увеличении тока, что соответствует теоретическим зависимостям. Пик мощности достигается при КПД = 50%, что подтверждает согласованный режим.