

Introduction to Syntax Analysis

The CSC318 Team [2022]

Lecture Outline

- Introduction
- Syntax Analysers
- Context-Free Grammars
 - Derivations
 - Parse Tree
- Types of Parsers
- Top-Down Parsers
 - Ambiguity
 - Left Recursion
 - Left Factoring

- Classification of Top-Down Parsers
 - Recursive Decent Parser
 - Predictive Parsers
- LL Parsers
 - Using Parse Tables
 - Computation of First and Follow Sets
 - Construction of Parse Tables
- Limitations of Syntax Analysers

- Introduction
- Syntax Analysers
- Context-Free Grammars
 - Derivations
 - Parse Tree
- Types of Parsers
- Top-Down Parsers
 - Ambiguity
 - Left Recursion
 - Left Factoring

- Classification of Top-Down Parsers
 - Recursive Decent Parser
 - Predictive Parsers
- LL Parsers
 - Using Parse Tables
 - Computation of First and Follow Sets
 - Construction of Parse Tables
- Limitations of Syntax Analysers

Introduction

- Lexical Analysers can identify tokens with the help of Regular Expressions and pattern rules.
 - **Lexical Analyser** cannot check the **Syntax** of a given sentence due to the limitations of the **Regular Expressions**.
 - RegExps cannot check balancing tokens, such as parenthesis.

Introduction

- Most Languages are not regular, and are more complicated than what a RegExps can describe.
 - E.g. its difficult to express "for every opening parenthesis there must be a closing parenthesis" using a **RegExps**.
- RegExps are used to describe the tokens of a language.
 - Recall:
 - Identifiers in the language match the regex [a-zA-Z_][a-zA-Z0-9_]*
 - Numbers match the regex [0-9]*
 - How those tokens fit together to form a complete program is then described in a Grammar

- Introduction
- Syntax Analysers
- Context-Free Grammars
 - Derivations
 - Parse Tree
- Types of Parsers
- Top-Down Parsers
 - Ambiguity
 - Left Recursion
 - Left Factoring

- Classification of Top-Down Parsers
 - Recursive Decent Parser
 - Predictive Parsers
- LL Parsers
 - Using Parse Tables
 - Computation of First and Follow Sets
 - Construction of Parse Tables
- Limitations of Syntax Analysers

Syntax Analysers

- A Syntax Analyser (or parser) takes the input from a Lexical Analyser in the form of <u>Token Streams</u>.
 - The parser analyses the source code (token stream) based on the <u>Production Rules</u> to detect any error in the code.
 - The output of this phase is a **Parse Tree**.
 - Therefore, the parser accomplishes the following:
 - Looking for <u>Errors (Syntax Errors)</u>
 - Generating a <u>Parse Tree</u>
 - Parsers parses the whole code even if there are errors in the code

Syntax Analysers

- The syntax of a language describes which programs are structurally valid or not – Syntactic Validity
 - Recall:
 - A Language is a set of sentences formed by the set of basic symbols.
 - A Grammar is the set of rules that govern how to ascertain that these sentences are part of the language or not.
 - However, a syntactically correct sentence may make no actual sense
- Therefore, Semantic analysis are usually handled separately
 - Such as type checking errors and runtime errors

- Introduction
- Syntax Analysers
- Context-Free Grammars
 - Derivations
 - Parse Tree
- Types of Parsers
- Top-Down Parsers
 - Ambiguity
 - Left Recursion
 - Left Factoring

- Classification of Top-Down Parsers
 - Recursive Decent Parser
 - Predictive Parsers
- LL Parsers
 - Using Parse Tables
 - Computation of First and Follow Sets
 - Construction of Parse Tables
- Limitations of Syntax Analysers

Context-Free Grammar (CFG)

- The Syntax Analyzer (Parsers) use a class of Grammar called
 Context-Free Grammar (CFG)
 - Recognized by <u>Push-down Automata</u>.
 - Recall: Chomsky Hierarchy of Grammars
- CFG are well-suited to programming languages
 - They restrict the manner in which programming construct can be used
 - They simplify the process of analysing its use in a program.
 - They are called *Context-free* because
 - Non-terminals are parsed independent of the other symbols surrounding it (i.e., without respect to context)

Graphical Depiction

Context-Free Grammar (CFG)

- CFG is a <u>superset</u> of Regular
 Grammar
 - Every Regular Grammar is CFG
 - Already mentioned
 - CFG is a helpful tool in describing the syntax of programming languages.

Four components of Context-Free Grammar

- A Set Of Non-terminals (V)
 - Non-terminals are syntactic variables that denote sets of strings. The non-terminals define sets of strings that help define the language generated by the grammar.
- A set of tokens (Σ) (i.e. Terminal symbols)
 - Terminals are the basic symbols from which strings are formed.
- A set of productions (P)
 - The productions of a grammar specify the manner in which the terminals and non-terminals can be combined to form strings.
 - Each production consists of a non-terminal called the left side of the production, an arrow, and a sequence of tokens and/or on-terminals, called the right side of the production.
- One of the non-terminals is designated as the start symbol (S)- from where the production begins.
 - The strings are derived from the start symbol by repeatedly replacing a non-terminal (initially the start symbol) by the right side of a production, for that non-terminal

Context-Free Grammar

$$G = (V, \Sigma, P, S)$$

- Introduction
- Syntax Analysers
- Context-Free Grammars
 - Derivations
 - Parse Tree
- Types of Parsers
- Top-Down Parsers
 - Ambiguity
 - Left Recursion
 - Left Factoring

- Classification of Top-Down Parsers
 - Recursive Decent Parser
 - Predictive Parsers
- LL Parsers
 - Using Parse Tables
 - Computation of First and Follow Sets
 - Construction of Parse Tables
- Limitations of Syntax Analysers

Derivation

- Derivation is a sequence of production rules;
 - Involved in generating the input string.
- For a sentential form of inputs two decisions are taken during parsing
 - Deciding the Non-terminal which is to be replaced.
 - Deciding the Production Rule, by which, the non-terminal will be replaced.

Derivation Options

- Non-terminals can be replaced with production rules, based on either of the following:
 - Left-Most Derivation
 - Input is scanned and replaced from Left to Right
 - The sentential form derived is called the left-sentential form.
 - Right-Most Derivation
 - Input is scanned and replaced from Right to Left
 - The sentential form derived is called the right-sentential form.

Example

• Given the Production rules:

```
F \rightarrow F + F

F \rightarrow F * F

F \rightarrow id
```

- Given the Input string: *id + id * id*
 - Show the Left-most and Right-most Derivation

Derivations

The Right-Most Derivation is

$$F \rightarrow F + F$$

$$F \rightarrow F + F * F$$

$$F \rightarrow F + F * id$$

$$F \rightarrow F + id * id$$

$$F \rightarrow id + id * id$$

The left-Most derivation is

$$F \rightarrow F * F$$

$$F \rightarrow F + F * F$$

$$F \rightarrow id + F * F$$

$$F \rightarrow id + id * F$$

$$F \rightarrow id + id * id$$

Notice that the sides that is always processed first.

- Introduction
- Syntax Analysers
- Context-Free Grammars
 - Derivations
 - Parse Tree
- Types of Parsers
- Top-Down Parsers
 - Ambiguity
 - Left Recursion
 - Left Factoring

- Classification of Top-Down Parsers
 - Recursive Decent Parser
 - Predictive Parsers
- LL Parsers
 - Using Parse Tables
 - Computation of First and Follow Sets
 - Construction of Parse Tables
- Limitations of Syntax Analysers

Parse Tree

- A parse tree is a Graphical Depiction of a derivation.
 - It is convenient to see how strings are derived from the start symbol.
 - The <u>Start Symbol</u> of the derivation becomes the root of the parse tree.

Parse Tree

- In a parse tree:
 - All leaf nodes are terminals.
 - All interior nodes are non-terminals.
 - In-order traversal gives original input string.
- A parse tree depicts <u>Associativity</u> and <u>Precedence</u> of operators.
 - The deepest sub-tree is traversed first,
 - Therefore the operator in that sub-tree gets precedence over the operator which is in the parent nodes.

- Introduction
- Syntax Analysers
- Context-Free Grammars
 - Derivations
 - Parse Tree
- Types of Parsers
- Top-Down Parsers
 - Ambiguity
 - Left Recursion
 - Left Factoring

- Classification of Top-Down Parsers
 - Recursive Decent Parser
 - Predictive Parsers
- LL Parsers
 - Using Parse Tables
 - Computation of First and Follow Sets
 - Construction of Parse Tables
- Limitations of Syntax Analysers

Types of Parsers

- Parsers can be Top-down or Bottom-up:
 - Top-down parsers
 - Build the parse-tree starting from the **root** until all the tokens are associated with a leaf on the parse tree.
 - Bottom-up parsers
 - Build the parse-tree starting from the leaves, assembling the tree fragments until the parse tree is complete.

- Introduction
- Syntax Analysers
- Context-Free Grammars
 - Derivations
 - Parse Tree
- Types of Parsers
- Top-Down Parsers
 - Ambiguity
 - Left Recursion
 - Left Factoring

- Classification of Top-Down Parsers
 - Recursive Decent Parser
 - Predictive Parsers
- LL Parsers
 - Using Parse Tables
 - Computation of First and Follow Sets
 - Construction of Parse Tables
- Limitations of Syntax Analysers

Top-Down Parsing

- Top-Down Parsers constructs from the Grammar
 - Which is free from Ambiguity and Left Recursion.
 - It allows a grammar which is **Left Factored**.
- Top Down Parsers uses Leftmost Derivation to construct a parse tree.

- Introduction
- Syntax Analysers
- Context-Free Grammars
 - Derivations
 - Parse Tree
- Types of Parsers
- Top-Down Parsers
 - Ambiguity
 - Left Recursion
 - Left Factoring

- Classification of Top-Down Parsers
 - Recursive Decent Parser
 - Predictive Parsers
- LL Parsers
 - Using Parse Tables
 - Computation of First and Follow Sets
 - Construction of Parse Tables
- Limitations of Syntax Analysers

Ambiguity (1 of 3)

- CFG is broken into
 - Ambiguous Grammar
 - Unambiguous grammars
- A grammar G is said to be ambiguous if it has more than one parse tree (left or right derivation) for at least one string.
 - For Example

$$E \rightarrow E + E$$

 $E \rightarrow E - E$
 $E \rightarrow id$

Ambiguity (2 of 3)

■ For the string id + id − id, the above grammar generates two parse trees:

Ambiguity (3 of 3)

- The language generated by an ambiguous grammar is **Inherently Ambiguous**.
 - Ambiguity in grammar is not good for a compiler construction.
 - 2 or more parse trees structures for the same code implies two different executable programs.
 - Implies no unique structure for all its programs
- No automated method can <u>Detect</u> and <u>Remove</u> ambiguity, except by:
 - **1. Re-writing** the whole grammar without ambiguity
 - 2. Setting and following **Associativity** and **Precedence** constraints.

Reducing Ambiguity

- These methods decrease the chances of ambiguity in a language or its grammar.
 - Associativity
 - Precedence

Associativity

- Given an operand with operators on both sides;
 - the effective operator on the operand is decided by the associativity of those operators.
 - If the operation is **Left-associative**, then the left operator will act on the operand
 - If the operation is <u>Right-associative</u>, the right operator will act on the operand.

Associativity: An Example

- **Given** the expression
 - id op id op id, where op can be +,-,/,* and \wedge
- Left-associative Operators
 - Addition, Multiplication, Subtraction, and Division operations
 - The expression will be evaluated as (id + id) + id
- Right-associative Operators
 - Exponentiation
 - The expression will be evaluated as id ^ (id ^ id)

Precedence

- Given that two operators share a common operand,
 - the <u>Precedence</u> of operators decides which will take the operand.
 - For Example <u>2+3*4</u> can have two different parse trees, <u>(2+3)*4</u> and <u>2+(3*4)</u>.
 - The problem can be solved by precedence among operators.
 - Mathematically <u>Multiplication</u> has precedence over <u>Addition</u>, so the expression <u>2+3*4</u> will always be interpreted as: <u>2 + (3 * 4)</u>

Operator Precedence

- C has 15 levels of precedence,
 - making its expression grammar more complex than that of most other languages
 - See: https://en.cppreference.com/w/c/language/operator_precedence

- Introduction
- Syntax Analysers
- Context-Free Grammars
 - Derivations
 - Parse Tree
- Types of Parsers
- Top-Down Parsers
 - Ambiguity
 - Left Recursion
 - Left Factoring

- Classification of Top-Down Parsers
 - Recursive Decent Parser
 - Predictive Parsers
- LL Parsers
 - Using Parse Tables
 - Computation of First and Follow Sets
 - Construction of Parse Tables
- Limitations of Syntax Analysers

Left Recursion

- A grammar is left-recursive if it has any non-terminal 'A' whose derivation contains 'A' itself as the left-most symbol.
 - $S := A\alpha \mid \beta$
 - A := Sd
- On encountering the same non-terminal in its derivation, the parser finds it hard to decide to when to stop parsing the left non-terminal and it might go into an Infinite loop
- Removed by Transforming the grammar to a *right-recursive one*
 - A => βdA¹
 - $A' = \alpha dA' \mid \epsilon$

Lecture Outline | Progress

- Introduction
- Syntax Analysers
- Context-Free Grammars
 - Derivations
 - Parse Tree
- Types of Parsers
- Top-Down Parsers
 - Ambiguity
 - Left Recursion
 - Left Factoring

- Classification of Top-Down Parsers
 - Recursive Decent Parser
 - Predictive Parsers
- LL Parsers
 - Using Parse Tables
 - Computation of First and Follow Sets
 - Construction of Parse Tables
- Limitations of Syntax Analysers

Left Factoring

- It is possible that more than one grammar production rules has a common prefix string,
 - $A \Rightarrow \alpha\beta \mid \alpha\gamma \mid ...$
- Top-down parser cannot make a choice as to which of the production it should take to parse the string in hand
- In Left Refactoring one production for each common prefixes is obtained, while the rest of the derivation is added by new productions.
 - $A \Longrightarrow \alpha A'$
 - $A' \Rightarrow \beta | \gamma | ...$

Transforming a Grammar for Predictive Parsing by Left Factoring

- Sometimes, we can transform a grammar to have this property:
 - For each non-terminal A find the longest prefix α common to two or more of its alternatives.
 - if $\alpha \neq \epsilon$ then replace all of the A productions $A \to \alpha \beta 1 \mid \alpha \beta 2 \mid ... \mid \alpha \beta n$ with $A \to \alpha \ A'$
 - $A' \rightarrow \beta 1 \mid \beta 2 \mid ... \mid \beta n$ where **A'** is fresh
 - Repeat until no two alternatives for a single non-terminal have a common prefix.

Transforming a Grammar for Predictive Parsing by Left Factoring

- Given the Grammar
 - $\bullet \quad E \to T + E \mid T$
 - $T \rightarrow int \mid int * T \mid (E)$
- Hard to predict because
 - For "T" two productions start with "int"
 - Also for "E" it is not clear how to predict

Performing Left-Factoring

- For the Grammar
 - $\bullet \quad E \to T + E \mid T$
 - $T \rightarrow int \mid int * T \mid (E)$
- Factor out common prefixes of productions
 - $\bullet \quad E \to T X$
 - $X \rightarrow + E \mid \varepsilon$
 - $T \rightarrow (E) \mid int Y$
 - Y → * T | ε

Lecture Outline | Progress

- Introduction
- Syntax Analysers
- Context-Free Grammars
 - Derivations
 - Parse Tree
- Types of Parsers
- Top-Down Parsers
 - Ambiguity
 - Left Recursion
 - Left Factoring

- Classification of Top-Down Parsers
 - Recursive Decent Parser
 - Predictive Parsers
- LL Parsers
 - Using Parse Tables
 - Computation of First and Follow Sets
 - Construction of Parse Tables
- Limitations of Syntax Analysers

Classification of Top-Down Parsing

Lecture Outline | Progress

- Introduction
- Syntax Analysers
- Context-Free Grammars
 - Derivations
 - Parse Tree
- Types of Parsers
- Top-Down Parsers
 - Ambiguity
 - Left Recursion
 - Left Factoring

- Classification of Top-Down Parsers
 - Recursive Decent Parser
 - Predictive Parsers
- LL Parsers
 - Using Parse Tables
 - Computation of First and Follow Sets
 - Construction of Parse Tables
- Limitations of Syntax Analysers

Recursive Descent Parsing

- Recursive descent is a top-down parsing technique that constructs the parse tree from the <u>top</u> and the input is read from <u>left to right</u>.
 - It uses **procedures (Routines)** for every terminal and non-terminal entity.
- This parsing technique Recursively Parses the input to make a parse tree, which may or may not require backtracking.
 - But the grammar associated with it (if not left factored) cannot avoid back-tracking.

Recursive Descent Parsing

- However, a form of recursive-descent parsing that does not require any back-tracking is known as Predictive Parsing.
 - This parsing technique is regarded recursive as it uses
 Context-Free Grammar which is recursive in nature.

Back-tracking Example

- For Example, given the following CFG:
 - \blacksquare S \rightarrow rXd | rZd
 - X → oa | ea
 - $Z \rightarrow ai$
- For an input string: read
 - a top-down parser, will behave like this:

Parsing Visualization

Simple Expression Grammar

Given the Simple Expression grammar

```
<goal>
                        <expr>
   <expr>
              ::=
                        <expr> + <term>
3.
                        <expr> - <term>
                        <term>
                        <term> * <factor>
   <term>
6.
                        <term> / <factor>
                        <factor>
   <factor>
                        num
9.
                        id
```

Consider the input string x - 2 * y

Top-down derivation

1.	<goal></goal>	::=	<expr></expr>
2.	<expr></expr>	::=	<expr> + <term></term></expr>
3.			<expr> - <term></term></expr>
4.			<term></term>
5.	<term></term>	::=	<term> * <factor></factor></term>
6.			<term> / <factor></factor></term>
7.		1	<factor></factor>
8.	<factor></factor>	::=	num
9.		1	id

		1	THE RESERVE	COLUMN TO SERVICE STATE OF THE PARTY OF THE	BE 100		355
Prod'n	Sentential form	Inpu	ut				
_	(goal)	↑x	_	2	*	У	
1	⟨expr⟩	↑x	_	2	*	У	
2	$\langle \expr \rangle + \langle term \rangle$	↑x	_	2	*	У	
4	$\langle \text{term} \rangle + \langle \text{term} \rangle$	↑x	_	2	*	У	
7	$\langle \text{factor} \rangle + \langle \text{term} \rangle$	↑x	_	2	*	У	
9	$id + \langle term \rangle$	↑x	_	2	*	У	
_	$\mathbf{id} + \langle \text{term} \rangle$	x	\uparrow —	2	*	У	
_	(expr)	↑x		2	*	У	
3	$\langle \exp r \rangle - \langle \text{term} \rangle$	↑x	_	2	*	у	
4	$\langle \text{term} \rangle - \langle \text{term} \rangle$	↑x	_	2	*	У	
7	$\langle \text{factor} \rangle - \langle \text{term} \rangle$	↑x	_	2	*	У	
9	$id - \langle term \rangle$	↑x	_	2	*	У	
_	$ id - \langle term \rangle$	x	\uparrow $-$	2	*	У	
_	$id - \langle term \rangle$	х	_	↑2	*	У	
7	$id - \langle factor \rangle$	x	_	†2	*	У	
8	id — num	x	_	†2	*	У	
_	id — num	x	_	2	↑ *	У	
_	$id - \langle term \rangle$	х	_	↑2	*	У	
5	$id - \langle term \rangle * \langle factor \rangle$	x	_	†2	*	у	
7	$id - \langle factor \rangle * \langle factor \rangle$	x	_	↑2	*	У	
8	$id - num * \langle factor \rangle$	x	_	†2	*	у	
_	$id - num * \langle factor \rangle$	x	_	2	↑ *	У	
_	$id - num * \langle factor \rangle$	x	_	2	*	↑́у	
9	id - num * id	x	_	2	*	Ťу	
_	$\mathtt{id}-\mathtt{num}*\mathtt{id}$	x	_	2	*	У	

Summary of Recursive Descent Parsing

- It is a simple and general parsing strategy
- Left-recursion must be eliminated first
 - but that can be done automatically
- Unpopular because of <u>Back-tracking</u>
- Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar

Lecture Outline | Progress

- Introduction
- Syntax Analysers
- Context-Free Grammars
 - Derivations
 - Parse Tree
- Types of Parsers
- Top-Down Parsers
 - Ambiguity
 - Left Recursion
 - Left Factoring

- Classification of Top-Down Parsers
 - Recursive Decent Parser
 - Predictive Parsers
- LL Parsers
 - Using Parse Tables
 - Computation of First and Follow Sets
 - Construction of Parse Tables
- Limitations of Syntax Analysers

Classification of Top-Down Parsing

Predictive Parser

- Predictive parser is a Recursive Descent Parser,
 - It has the capability to **predict** which production is to be used to replace the **Input String**.
- The predictive parser does not suffer from Backtracking.
 - To accomplish its tasks, the predictive parser uses a look-ahead pointer, which points to the next input symbols.
- To make the parser back-tracking free,
 - The **Predictive Parser** puts some constraints on the Grammar;
 - Accepts only a class of grammar known as LL(k) Grammar.

Predictive Parser

- Predictive parsing uses a <u>stack</u> and a <u>parsing table</u> to parse the input and generate a parse tree.
 - Both the **stack** and the **input** contains an end symbol "\$" to denote that the stack is empty and the input is consumed.
 - The parser refers to the **Parsing Table** to take any decision on the input and stack element combination.
- A grammar must be left-factored before use for predictive parsing.

Graphical Depiction

Recursive Descent Vs Predictive Parsing

- In Recursive Descent Parsing with backtracking:
 - The parser may have more than one production to choose from for a single instance of input.

- In Predictive Parsing:
 - The parser has <u>At Most One</u>
 <u>Production</u> to choose.
 - It is possible that there might be instances where there is no production matches the input string.
 - This makes the parsing procedure to fail.

Lecture Outline | Progress

- Introduction
- Syntax Analysers
- Context-Free Grammars
 - Derivations
 - Parse Tree
- Types of Parsers
- Top-Down Parsers
 - Ambiguity
 - Left Recursion
 - Left Factoring

- Classification of Top-Down Parsers
 - Recursive Decent Parser
 - Predictive Parsers
- LL Parsers
 - Using Parse Tables
 - Computation of First and Follow Sets
 - Construction of Parse Tables
- Limitations of Syntax Analysers

Classification of Top-Down Parsing

LL Parser

- LL parser is denoted as LL(k).
 - First L means it's parsing the input from Left to Right,
 - Second L stands for Left-most Derivation
 - **k** itself represents the number of look aheads
- Generally k = 1, so LL(k) may also be written as LL(1).
- An LL Parser accepts LL grammar.
 - LL grammar is a subset of Context-free Grammar but with some restrictions to get the simplified version.
 - The grammar must be from free from Left Recursion, Common Prefix, and Ambiguity.
- This parser is Non-Recursive.

Definition of a LL(1) Grammar

- A grammar G is LL(1) if $A \rightarrow \alpha \mid \beta$ are two distinct productions of G:
 - for non terminal, both α and β derive strings beginning with A.
 - at most one of α and β can derive empty string.
 - if $\beta \rightarrow t$, then α does not derive any string beginning with a terminal in FOLLOW(A).
- LL grammar can be implemented using Recursive-descent or Table-driven Algorithms

LL Parsers

- Recall:
 - LL grammar can be implemented using Recursive-descent or Table-driven Algo's
- Recursive descent encodes state information in its run- time stack, or call stack.
 - Using recursive procedure calls to implement a stack abstraction may not be particularly efficient.
- This suggests other implementation methods:
 - explicit stack, hand-coded parser
 - stack-based, table-driven parser

Lecture Outline | Progress

- Introduction
- Syntax Analysers
- Context-Free Grammars
 - Derivations
 - Parse Tree
- Types of Parsers
- Top-Down Parsers
 - Ambiguity
 - Left Recursion
 - Left Factoring

- Classification of Top-Down Parsers
 - Recursive Decent Parser
 - Predictive Parsers
- LL Parsers
 - Using Parse Tables
 - Computation of First and Follow Sets
 - Construction of Parse Tables
- Limitations of Syntax Analysers

LL Parsers

A predictive parser looks like:

- Rather than writing code, Tables can be built
 - However, building tables can be automated

Using Parsing Tables

- Method similar to recursive descent, except
 - For each non-terminal S
 - We look at the next token a
 - And chose the production shown at [S, a]
- Use a Stack to keep track of pending non-terminals

- Reject when we encounter an error state
- Accept when we encounter end-of-input
- To construct the Parse Table
 - Compute First and Follow Sets

Lecture Outline | Progress

- Introduction
- Syntax Analysers
- Context-Free Grammars
 - Derivations
 - Parse Tree
- Types of Parsers
- Top-Down Parsers
 - Ambiguity
 - Left Recursion
 - Left Factoring

- Classification of Top-Down Parsers
 - Recursive Decent Parser
 - Predictive Parsers
- LL Parsers
 - Using Parse Tables
 - Computation of First and Follow Sets
 - Construction of Parse Tables
- Limitations of Syntax Analysers

First and Follow Sets

- **First Sets Algorithm:** Look at the definition of **FIRST**(α) set:
 - if α is a **terminal**, then **FIRST**(α) = { α }
 - if α is a non-terminal and $\alpha \rightarrow \varepsilon$ is a production, then FIRST(α) = { ε }.
 - if α is a non-terminal and $\alpha \rightarrow \gamma_1 \gamma_2 \gamma_3 \dots \gamma_n$ and any FIRST(γ) contains t then t is in FIRST(α)

First and Follow Sets

Follow Set Algorithm

- if α is a start symbol, then **FOLLOW**(α) = \$
- if α is a non-terminal and has a production $\alpha \rightarrow AB$, then FIRST(B) is in FOLLOW(A) except ε .
- if α is a non-terminal and has a production $\alpha \to AB$, where $B \mathcal{E}$, then FOLLOW(A) is in $FOLLOW(\alpha)$.
 - Follow set can be seen as: $FOLLOW(\alpha) = \{ t \mid S * \alpha t * \}$

Some Example Workings

$$S \rightarrow aABb$$

$$A \rightarrow c \mid \epsilon$$

$$B \rightarrow d \mid \epsilon$$

$$S \rightarrow aBDh$$

$$B \rightarrow cC$$

$$C \rightarrow bC \mid \epsilon$$

$$D \rightarrow EF$$

$$E \rightarrow g \mid \epsilon$$

$$F \rightarrow f \mid \epsilon$$

$$S \rightarrow ACB \mid CbB \mid Ba$$

 $A \rightarrow da \mid BC$
 $B \rightarrow g \mid \epsilon$
 $C \rightarrow h \mid \epsilon$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow id \mid (E)$$

Workings 1

$S \rightarrow$	aABb		
$A \rightarrow$	c e	•	
$\mathbf{B} \rightarrow$	d 8	3	

Production	FIRST	FOLLOW
S	{a}	{\$ }
A	$\{c, \epsilon\}$	$\{d,b\}$
В	$\{\mathrm{d},\epsilon$	{b}

Workings 2

S → ACB CbB Ba	
A →da BC	
$B \rightarrow g \mid \epsilon$	
$C \rightarrow h \mid \epsilon$	

Production	FIRST	FOLLOW		
S	$\{d,g,h,b,a,\epsilon\}$	{ \$ }		
\mathbf{A}	$\{d,g,h,\epsilon\}$	{ h , g , \$ }		
В	$\{g,\epsilon\}$	{ \$, a , h , g }		
C	$\{\mathrm{h},\epsilon\}$	{g,\$,b,h}		

Workings 3

E	→ TE'
E '	\rightarrow +TE' ϵ
T	\rightarrow FT'
T '	\rightarrow *FT' ϵ
F	\rightarrow id (E)

Production	FIRST	FOLLOW
E	{ id , (}	{ \$,) }
E'	$\{+,\epsilon\}$	{ \$,) }
T	{ id , (}	{ + , \$,) }
T'	$\{st,\epsilon\}$	{ + , \$,) }
F	{ id , (}	{*,+,\$,)}

Workings 4

$S \rightarrow$	aBDh		
$\mathrm{B} \rightarrow$	cC		
$C \rightarrow$	bC ε		
$\mathrm{D} \rightarrow$	EF		
$\mathrm{E} \rightarrow$	g ε		
$F \rightarrow$	f ε		

Production	FIRST	FOLLOW		
S	{ a }	{\$ }		
В	{ c }	$\{g,f,h\}$		
C	$\{b, \epsilon\}$	{ g , f , h }		
D	$\{g,f,\epsilon\}$	{h}		
E	$\{g,\epsilon\}$	{ f, h }		
F	$\{f,\epsilon\}$	{h}		

Lecture Outline | Progress

- Introduction
- Syntax Analysers
- Context-Free Grammars
 - Derivations
 - Parse Tree
- Types of Parsers
- Top-Down Parsers
 - Ambiguity
 - Left Recursion
 - Left Factoring

- Classification of Top-Down Parsers
 - Recursive Decent Parser
 - Predictive Parsers
- LL Parsers
 - Using Parse Tables
 - Computation of First and Follow Sets
 - Construction of Parse Tables
- Limitations of Syntax Analysers

- Construct a Parse Table for the Following Grammar:
 - Generate the First Sets
 - Generate the Follow Sets
 - Construct the Parse Table

$$E \rightarrow T X$$

 $X \rightarrow + E \mid \epsilon$
 $T \rightarrow (E) \mid int Y$
 $Y \rightarrow * T \mid \epsilon$

$$E \rightarrow T X$$

$$X \rightarrow + E \mid \epsilon$$

$$T \rightarrow (E) \mid int Y$$

$$Y \rightarrow * T \mid \epsilon$$

First sets

```
First( ( ) = { ( } First( T ) = {int, ( } First( ) ) = { ) } First( E ) = {int, ( } First( int ) = { int } First( X ) = {+, \epsilon } First( + ) = { + } First( Y ) = {*, \epsilon }
```

Follow sets

Given the Left-factored Grammar

$$E \rightarrow T X$$

$$X \rightarrow + E \mid \epsilon$$

$$T \rightarrow (E) \mid int Y$$

$$Y \rightarrow * T \mid \epsilon$$

	int	*	+	()	\$
Е	ΤX			ΤX		
X			+ E		3	3
Т	int Y			(E)		
Υ		* T	3		3	3

- Construct a Parse Table for the Following Grammar:
 - Generate the First Sets
 - Generate the Follow Sets
 - Construct the Parse Table

$$S \rightarrow E$$
 $E \rightarrow TE'$
 $E' \rightarrow +E | -E | \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *T | /T | \epsilon$
 $F \rightarrow num | id$

$$S \rightarrow E$$
 $E \rightarrow TE'$
 $E' \rightarrow +E \mid -E \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *T \mid /T \mid \epsilon$
 $F \rightarrow num \mid id$

	id	num	+	_	*	/	\$
S	$S \rightarrow E$		_	_	_	_	_
E	$E \rightarrow TE'$	$E \to TE'$	_	_	_	_	_
E'	_	_	$E' \rightarrow +E$	$E' \rightarrow -E$	_	_	$E' \to \varepsilon$
T	$T \rightarrow FT'$	$T \rightarrow FT'$	_	_	_	_	_
T'	_	_	$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$	$T' \to *T$	$T' \rightarrow /T$	$T' \rightarrow \varepsilon$
F	$F o exttt{id}$	$F o \mathtt{num}$	_	_	_	_	_

	FIRST	FOLLOW
S	$\{\mathtt{num},\mathtt{id}\}$	{\$}
E	$\{\mathtt{num},\mathtt{id}\}$	{\$}
E'	$\{\epsilon,+,-\}$	{\$}
T	$\{\mathtt{num},\mathtt{id}\}$	$\{+, -, \$\}$
T'	$\{\varepsilon,*,/\}$	$\{+,-,\$\}$
F	$\{\mathtt{num},\mathtt{id}\}$	$\{+,-,*,/,\$\}$
id	$\{\mathtt{id}\}$	_
num	$\{\mathtt{num}\}$	_
*	$\{*\}$	_
/	{/}	_
+	$\{+\}$	_
_	{-}	_

- Construct a Parse Table for the Following Grammar:
 - Generate the First Sets
 - Generate the Follow Sets
 - Construct the Parse Table

```
<goal>
                               <expr>
                               <term> <expr'>
      <expr>
      <expr^>
                               + <expr>
                               - <expr>
                               <factor> <term'>
      <term>
      <term'>
                               * <term>
                               / <term>
10.
      <factor>
                               num
11.
                               id
```

Our expression grammar:

```
<goal>
                               <expr>
                               <term> <expr'>
      <expr>
      <expr'>
                               + <expr>
4.
                               - <expr>
5.
                               ε
                               <factor> <term'>
6.
      <term>
      <term'>
                               * <term>
8.
                               / <term>
9.
10.
      <factor>
                               num
11.
                               id
```

Its parse table

	id	num	+	_	*	/	\$†
⟨goal⟩	1	1	_	_	_	_	_
⟨expr⟩	2	2	_	_	_	_	_
⟨expr'⟩	_	_	3	4	_	_	5
(term)	6	6	_	_	_	_	_
⟨term'⟩	_	_	9	9	7	8	9
(factor)	11	10	_	_	_	_	_

[†] we use \$ to represent EOF

Lecture Outline | Progress

- Introduction
- Syntax Analysers
- Context-Free Grammars
 - Derivations
 - Parse Tree
- Types of Parsers
- Top-Down Parsers
 - Ambiguity
 - Left Recursion
 - Left Factoring

- Classification of Top-Down Parsers
 - Recursive Decent Parser
 - Predictive Parsers
- LL Parsers
 - Using Parse Tables
 - Computation of First and Follow Sets
 - Construction of Parse Tables
- Limitations of Syntax Analysers

Limitations of Syntax Analyzers

- **Syntax Analysers** receive their inputs, in the form of tokens, from lexical analysers.
 - Lexical Analysers are responsible for the validity of a token supplied to the syntax analyser.

Limitations of Syntax Analyzers

- Syntax analysers have the following drawbacks:
 - It cannot determine if a token is valid
 - It cannot determine if a token is declared before it is being used
 - It cannot determine if a token is initialized before it is being used
 - It cannot determine if an operation performed on a token type is valid or not.
 - These tasks are accomplished by the <u>Semantic Analyser</u>

Lecture Outline | End

- Introduction
- Syntax Analysers
- Context-Free Grammars
 - Derivations
 - Parse Tree
- Types of Parsers
- Top-Down Parsers
 - Ambiguity
 - Left Recursion
 - Left Factoring

- Classification of Top-Down Parsers
 - Recursive Decent Parser
 - Predictive Parsers
- LL Parsers
 - Using Parse Tables
 - Computation of First and Follow Sets
 - Construction of Parse Tables
- Limitations of Syntax Analysers