G. KARCH & M. KRUPSKI & SZ. CYGAN

Proste równania cząstkowe

Zadanie 1. Znajdź rozwiązania ogólne u = u(x, y) następujących równań:

a)
$$u_x = 1$$
,

b)
$$u_{yy} = 6y$$

c)
$$u_x + y = 0$$
.

Zadanie 2. Znajdź funkcję u=u(x,y) spełniającą podane równanie różniczkowe cząstkowe i warunki dodatkowe:

a)
$$u_{xx} = 6x$$
; $u(0, y) = y$, $u(1, y) = y^2 + 1$

a)
$$u_{xx} = 6x$$
; $u(0,y) = y$, $u(1,y) = y^2 + 1$ b) $yu_{yy} + u_y = 0$; $u(x,1) = x^2$, $u(x,e) = 1$.

Zadanie 3. Znaleźć rozwiąznie ogólne równania $3u_y + u_{xy} = 0$ (Wsk. Podstawić $v = u_y$). Czy istnieje jedyne rozwiązanie przy dodatkowych warunkach $u(x,0)=e^{-3x},\ u_y(x,0)=0$?

Równania cząstkowe pierwszego rzędu – metoda charakterystyk

Zadanie 4. Wyznacz rozwiązania ogólne równań różniczkowych cząstkowych pierwszego rzędu:

a)
$$yuu_x - xuu_y = e^u$$
,

b)
$$yu_x + uu_y = \frac{y}{x}$$
.

Zadanie 5. Znajdź rozwiązania równań spełniające dodatkowe warunki:

a)
$$u_x + u_y + 2u_z = 0$$
, $u = yz$ dla $x = 1$

a)
$$u_x + u_y + 2u_z = 0$$
, $u = yz$ dla $x = 1$; c) $xu_x - 2yu_y = x^2 + y^2$, $z = x^2$ dla $y = 1$;

b)
$$y^2u_x + xyu_y = x_1u = y^2 \text{ dla } x = 0;$$

d)
$$xu_x - yu_y = 0$$
, $u = 1$ dla $y = \frac{1}{x}$.

Zadanie 6. Znajdź powierzchnię spełniającą równanie $xu_x + yu_y = 2xy$ i przechodzącą przez krzywą y = x, $u = x^2$.

Zadanie 7. Znajdź ogólną postać rozwiązania równania $u_x - u_y = f(x, y)$.

Zadanie 8. Rozwiąż równanie $au_x + bu_y + cu = 0$, gdzie a, b, c są stałymi.

WSKAZÓWKA: Szukaj rozwiązania w postaci $u(x,y) = v(x,y)e^{\alpha x}$ dla pewnego $\alpha \in \mathbb{R}$.

Zadanie 9. Wyjaśnij dlaczego nie istnieje rozwiązanie równania liniowego $u_x + u_y = u$ przechodzące przez prostą x = t, y = t, u = 1.

Zadanie 10. Pokaż, że jeżeli dane początkowe dla równania

$$a(x, y)u_x + b(x, y)u_y + c(x, y, u) = 0$$

są zadane na charakterystyce, to albo nie istnieje żadne rozwiązanie, albo jest nieskończenie wiele rozwiązań.

Zadanie 11. Udowodnij, że rozwiązanie równania $u_t + a(u)u_x = 0$ z warunkiem początkowym u(x,0) = h(x) w niejawny sposób może być zadane jako u = h(x - a(u)t). Uzasadnij, że jeżeli a(h(s)) nie jest niemalejącą funkcją argumentu s, to u przestaje być dobrze określone dla pewnego t > 0.