Analysis 2B

Luc Veldhuis

4 mei 2017

Herhaling

$$f: \mathbb{R} \to \mathbb{R} \text{ met } [a, b] \subseteq \mathbb{R}$$

f integreerbaar op [a, b] $(f \in R[a, b])$ met $\int_a^b f = I$ dan en slechts dan als sup $L(f, P) = \inf_p U(f, P) = I$ dan en slechts dan als

 $\forall \epsilon > 0, \ \exists \delta > 0$ zodat voor elke partitie P met lengte van deelinterval kleiner dan δ en selectie S voor deze partitie,

$$|R(f,P,S)|<\epsilon$$

Hier geldt
$$L(f,P) = \sum_{i=1}^{k-1} m_k (x_i - x_{i-1})$$
 met

$$P = \{x_0 = a, x_1, \dots, x_k = b\}$$
 een partitie en

$$m_k = \min(f(x)), x \in [x_{i-1}, x_{i+1}]$$

De Riemanssom:

$$R(f, P, S) = \sum f(x_i^*)(x_i - x_{i-1}) \text{ met } x_i^* \in S = \{x_i^* \in [x_{i-1}, x_i]\}$$

Als f continu is op $[a, b]$, dan $f \in R[a, b]$

Eigenschappen van de integraal

- $f,g \in R[a,b] \Rightarrow f+g \in R[a,b]$ en $\int_a^b (f+g) = \int_a^b f + \int_a^b g$
- $f \in R[a, b], c \in \mathbb{R} \Rightarrow cf \in R[a, b] \text{ en } \int_a^b cf = c \int_a^b f$
- R[a, b] heeft de eigenschappen van een vectorruimte.
- $f,g \in R[a,b]$, $f(x) \leq g(x) \ \forall x \in [a,b] \Rightarrow \int_a^b f \leq \int_a^b g$ $f \in R[a,b]$, $c \in [a,b]$ dan geldt $f \in R[a,c]$ en $f \in R[c,b]$ en $\int_a^b f = \int_a^c f + \int_c^b f$ Let op: [a,c] en [c,b] overlappen alleen in c, niet in inwendige punten.
- Substitutie ('transformatiestelling')
- Hoofdstelling van Calculus ('Fundamental theorem of Calculus') $F(x) = \int_a^x f(t)dt \text{ als } f \in R[a,b] \text{ en } x \in [a,b] \text{ dan is } F$ differentieerbaar met F'(x) = f(x)

Oppervlakte

 $f \in R[a, b], f \ge 0$ op [a, b] dan $I = \int_a^b f(x) dx$ = oppervlakte onder de functie Waarbij $Opp_f = \{(x, y) \in \mathbb{R}^2 | x \in [a, b], 0 \le y \le f(x)\}$

Doel 1

Definitie van oppervlakte van een deelgebeid van \mathbb{R}^2 (of, in het algemeen, het volume van een deelgebied van \mathbb{R}^n)

Doel 1: voorbeeld

 $f:\mathbb{R}^2 \to \mathbb{R}$ met $\int_R f = \text{volume in } \mathbb{R}^3$ onder de grafiek van f en boven het gebied R

N-dimentionale rechthoeken

Een generalisatie van intervallen in $\mathbb R$

$$R = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n] \subseteq \mathbb{R}^n$$

n = 1 geeft interval

n=2 geeft oppervlakte

Definitie

$$V(R) = (b_1 - a_1) \dots (b_n - a_n)$$
 is het **volume** van R

Definitie (herhaling)

 $S \subseteq \mathbb{R}^n$ heet begrensd als $\exists R > 0$ zodat $S \subseteq B_R(0)$

Voorbeeld

Zij $A \subseteq \mathbb{R}^n$ een begrensde deelverzameling

Neem n=2. Dan kunnen we rechthoeken die alleen maar in A tekenen, en rechthoeken zodat A precies in deze rechthoeken ligt

Figuur: 2 manieren om rechthoeken te tekenen

Definitie

 $A \subseteq \mathbb{R}^n$ heet **meetbaar** ('contented' in Edwards, als in 'with content') met volume V dan en slechts dan als $\forall \epsilon > 0$, bestaan er:

- $\{Q_1, \ldots, Q_n\}$ niet overlappende n-dimentionale rechthoeken zodanig dat $\bigcup Q_i \subseteq A$ en $\sum V(Q_i) > V \epsilon$
- $\{R_1, \ldots, R_n\}$ niet overlappende n-dimentionale rechthoeken zodanig dat $\bigcup R_i \supseteq A$ en $\sum V(Q_i) < V + \epsilon$

Definitie

A heet nulverzameling ('negligible set' of 'null-set') als A meetbaar is met V(A)=0

Stelling 2.1: De characterisatie van meetbare verzamelingen

Een begrensde verzameling $A\subseteq\mathbb{R}^n$ is meetbaar dan en slechts dan als de rand van A ($=\partial A=\{\text{randpunten van }A\}$) een nulverzameling is.

Corollary

A en B meetbaar $\Rightarrow A \cap B$, $A \cup B$, $A \setminus B$ ook meetbaar

Bewijs doornede

A en B meetbaar, dan zijn ∂A en ∂B nulverzamelingen:

$$\begin{array}{l} V(\partial A) = 0, \ V(\partial B) = 0 \ \text{dus} \\ V(\partial A \cap \partial B) = 0 \\ \partial (A \cap B) \subseteq \partial A \cap \partial B \end{array} \} \Rightarrow V(\partial (A \cap B)) = 0 \Leftrightarrow A \cap B \ \text{meetbaar}$$

Edward's approach

Idee

$$f: \mathbb{R}^n \to \mathbb{R}$$
. Voor $f \ge 0$,
 $Opp_f = \{(x, \dots, x_{n+1}) \in \mathbb{R}^{n+1} | 0 < x_{n+1} \le f(x_1, \dots, x_n) \}$

Definitie

De **drager** van f is $support(f) = \{x \in \mathbb{R}^n | f(x) \neq 0\}$

Definitie

```
f begrensd, met begrensde drager ('support') f^+ = \max\{0, f\} f^- = \max\{0, -f\} f = f^+ - f^-. Dit maakt de oppervlaktes positief Dan heet f integreerbaar als Opp_{f^+} en Opp_{f^-} meetbaar zijn (als deelverzamelingen van \mathbb{R}^{n+1}). In dat geval is \int f = V(Opp_{f^+}) - V(Opp_{f^-})
```

Edward's approach

Definitie

Voor een willekeurige
$$A \subseteq \mathbb{R}^n$$
 begrensd heet:
$$\int\limits_A f = \int f \phi_A \text{ waarbij } \phi_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

mits $f \phi_A$ integreerbaar is, de 'karakteristieke functie van A'

Integreerbaarheid

Stelling 2.2

Als f begrensd is, met een begrensde drager en f is continu behalve op een nulverzameling, dan is f integreerbaar.

Corollary

Als f continu is en A begrensd, dan is f integreerbaar op A.