

A P STAND INSTITUTED OF THE CENT (Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

DEPARTMENT OF COMPUTER ENGINEERING [NBA ACCREDITED]

1 Consider the following data frame given below

Subject	Class	Marks
1	1	56
2	2	75
3	1	48
4	2	69
5	1	84
6	2	53

 Create a subset of subjects less than 4 by using subset() function and demonstrate the output.

```
# Create a sample data frame with the given marks values data <- data.frame(
subject = c(1, 2, 3, 4, 5, 6),
class = c(1, 2, 1, 2, 1, 2),
marks = c(56, 75, 48, 69, 84, 53)
)

# Display the original data frame
print("Original Data Frame:")
print(data)

# Create a subset where subject is less than 4
subset_data <- subset(data, subject < 4)

# Display the subset data frame
print("Subset Data Frame (subject < 4):")
print(subset_data)
```

ii. Create a subset where the subject column is less than 3 and the class equals to 2 by using[] brackets and demonstrate the output.

```
# Create a sample data frame with the given marks values data <- data.frame(
subject = c(1, 2, 3, 4, 5, 6),
class = c(1, 2, 1, 2, 1, 2),
marks = c(56, 75, 48, 69, 84, 53)
)

# Display the original data frame
print("Original Data Frame:")
print(data)
```


DEPARTMENT OF COMPUTER ENGINEERING [NBA ACCREDITED]

```
# Create a subset where subject is less than 3 and class equals to 2
subset_data <- data[data$subject < 3 & data$class == 2, ]

# Display the subset data frame
print("Subset Data Frame (subject < 3 and class == 2):")
print(subset_data)</pre>
```

The data analyst of Argon technology Mr. John needs to enter the salaries of 10 employees in R. The Salaries of the employees are given in the following table: [Dec 2024, 10 marks]

Sr. No	Name Of Employee	Salaries
1	Vivek	21000
2	Karan	55000
3	James	67000
4	Soham	50000
5	Renu	54000
6	Farah	40000
7	Hetal	30000
8	Mary	70000
9	Ganesh	20000
10	Krish2	15000

i. Which R commands will Mr. John use to enter these values? Demonstrate the output. # Create a data frame with the given records employee_data <- data.frame(sr_number = 1:10, name = c("Vivek", "Karan", "James", "Soham", "Renu", "Farah", "Hetal", "Mary", "Ganesh", "Krish"))</p>
print("Employee Dataset:") print(employee_data)
salary <- c(21000, 55000, 67000, 50000, 54000, 40000, 30000, 70000, 20000, 15000)</p>
employee_data\$salary <- salary</p>
Display the dataset print("Employee Dataset:") print(employee_data)

(Religious Jain Minority)

DEPARTMENT OF COMPUTER ENGINEERING [NBA ACCREDITED]

ii. Now Mr. John wants to add the salaries of 5 new employees in the existing table, which commands he will use to join datasets with new values in R. Demonstrate the output.

```
# Create a data frame with the salaries of 5 new employees new_employees <- data.frame(
    sr_number = 11:15,
    name = c("Amit", "Neha", "Rahul", "Sara", "Rohit"),
    salary = c(60000, 45000, 58000, 52000, 48000)
)

# Join the new salaries with the existing dataset
combined_data <- rbind(employee_data, new_employees)

# Display the combined dataset
print("Combined Employee Dataset:")
print(combined_data)
```

- i. Write the script to sort the values contained in the following vector in ascending order and descending order: (23, 45, 10, 34, 89, 20, 67, 99). Demonstrate the output.
 - ii. Name and explain the operators used to form data subsets in R.

```
# Define the vector
vector <- c(23, 45, 10, 34, 89, 20, 67, 99)

# Sort in ascending order
ascending_order <- sort(vector)

# Sort in descending order
descending_order <- sort(vector, decreasing = TRUE)

# Display the results
ascending_order
descending_order
descending_order
```

ii) Name and explain the operators used to form data subsets in R

subset() function used to filter data frames or matrices based on conditions.

Example: subset(dataframe, column_name > 10)
Above code will filter rows where the column_name is greater than 10.

V <- c(1,2,3,4,5,6)

DEPARTMENT OF COMPUTER ENGINEERING [NBA ACCREDITED]

```
subset(V, V<4)

Sample Output
[1] 1 2 3

[] brackets can also be used to create subset of the data

Name <- c("N1","N2","N3", "N4")

Marks <- c (50, 40 , 35, 20)

Df= data.frame(Name, Marks)

Df [Df$Marks < 40,]
```

4 Consider the following data frame given below:

Course	Id	Class	Marks
1	11	1	56
2	12	2	75
3	13	1	48
4	14	2	69
5	15	1	84
6	16	2	53

i. Create a subset of course less than 3 by using [] brackets and demonstrate the output.

```
# Creating the data frame with the given information course_data <- data.frame(
    course = c(1, 2, 3, 4, 5, 6),
    id = c(11, 12, 13, 14, 15, 16),
    class = c(1, 2, 1, 2, 1, 2),
    marks = c(56, 75, 48, 69, 84, 53)
)

# Displaying the data frame
    print("Course Data Frame:")
    print(course_data)

# Subset using []
    subset_course_less_than_3 <- course_data [ course_data$course < 3, ]

# Display the subset
    print("Subset of Course less than 3 using [] brackets:")
    print(subset_course_less_than_3)
```


DEPARTMENT OF COMPUTER ENGINEERING [NBA ACCREDITED]

ii. Create a subset where the course column is less than 3 or the class equals to 2 by using subset() function and demonstrate the output.

```
# Subset using subset()
subset_course_class_condition <- subset(course_data, course < 3 | class == 2)
# Display the subset
print("Subset where course < 3 or class == 2 using subset():")
print(subset_course_class_condition)</pre>
```

5 i. The following table shows the number of units of different products sold on different days:

Product	Monday	Tuesday	Wednesday	Thursday	Friday
Bread	12	3	5	11	9
Milk	21	27	18	20	15
Cola Cans	10	1	33	6	12
Chocolate Bars	6	7	4	13	12
Detergent	5	8	12	20	23

Create five sample numeric vectors from this data.

```
# Create a data frame for the given sales data
        sales data <- data.frame(
         product = c("bread", "milk", "cola cans", "chocolate bars", "detergent"),
         monday = c(12, 21, 10, 6, 5),
         tuesday = c(3, 27, 1, 7, 8),
         wednesday = c(5, 18, 33, 4, 12),
         thursday = c(11, 20, 6, 13, 20),
         friday = c(9, 15, 12, 12, 23)
        )
        # Display the sales data table
        print("Sales Data Table:")
        print(sales_data)
        # Create five sample numeric vectors
        sample_vector1 <- sales_data[sample(1:nrow(sales_data)), "monday"]</pre>
        sample_vector2 <- sales_data[sample(1:nrow(sales_data)), "tuesday"]</pre>
        sample_vector3 <- sales_data[sample(1:nrow(sales_data)), "wednesday"]</pre>
        sample_vector4 <- sales_data[sample(1:nrow(sales_data)), "thursday"]</pre>
```


DEPARTMENT OF COMPUTER ENGINEERING [NBA ACCREDITED]

```
sample_vector5 <- sales_data[sample(1:nrow(sales_data)), "friday"]

# Display the sample vectors
print("Sample Numeric Vectors:")
print(sample_vector1)
print(sample_vector2)
print(sample_vector3)
print(sample_vector4)
print(sample_vector5)</pre>
```

i. Create a data frame from the following 4 vectors and demonstrate the output:
 emp_id = c(1:5)
 emp_name = c("Rick", "Dan", "Michelle", "Ryan", "Gary")
 start_date = c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11", "2015-03-27")
 salary = c(60000, 45000, 75000, 84000, 20000)

- ii. Display structure and summary of the above data frame
- iii. Extract the emp_name and salary columns from the above data frame.
- iv. Extract the employee details whose salary is less than or equal to 60000.

Step i: Create a data frame from the given vectors

```
emp_id <- c(1:5)
emp_name <- c("Rick", "Dan", "Michelle", "Ryan", "Gary")
start_date <- as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11", "2015-03-27"))
salary <- c(60000, 45000, 75000, 84000, 20000)
# Create the data frame
```

Step ii: Display structure and summary of the data frame

employee_data <- data.frame(emp_id, emp_name, start_date, salary)</pre>

```
str(employee_data)
summary(employee_data)
```

```
> # Step ii: Display structure and summary of the data frame
> str(employee_data)
'data.frame': 5 obs. of 4 variables:
$ emp_id : int 1 2 3 4 5
$ emp_name : chr "Rick" "Dan" "Michelle" "Ryan" ...
$ start_date: Date, format: "2012-01-01" "2013-09-23" ...
$ salarv : num 60000 45000 75000 84000 20000
```

Step iii: Extract the emp_name and salary columns

```
employee_data[ , c("emp_name", "salary")]
```


DEPARTMENT OF COMPUTER ENGINEERING [NBA ACCREDITED]

```
> # Step iii: Extract the emp_name and salary columns
> employee_data[, c("emp_name", "salary")]
  emp_name salary
1    Rick 60000
2    Dan 45000
3 Michelle 75000
4    Ryan 84000
5    Gary 20000
```

v. Extract the employee details whose salary is less than or equal to 60000.

Step iv: Extract employee details whose salary is less than or equal to 60000 employee_data[employee_data\$salary <= 60000,]

```
> # Step iv: Extract employee details whose salary is less than or equal to 60000
> employee_data[employee_data$salary <= 60000, ]
  emp_id emp_name start_date salary
1     1     Rick 2012-01-01 60000
2     2     Dan 2013-09-23 45000
5     5     Gary 2015-03-27 20000</pre>
```

7 Suppose you have two datasets A and B, Dataset A has the following data 6 7 8 9 Dataset B has the following data 1 2 4 5

```
# Dataset A
A <- c(6, 7, 8, 9)

# Dataset B
B <- c(1, 2, 4, 5)

# Combine A and B
C <- c(A, B)
print(C)
```

[1] 67891245

Output:

To combine two datasets (vectors, matrices, or data frames) into one in R, you can use functions like c() for vectors or rbind() and cbind() for matrices and data frames.

DEPARTMENT OF COMPUTER ENGINEERING [NBA ACCREDITED]

8

Consider the following data frame given below:

Course	Id	Class	Marks
1	11	1	56
2	12	2	75
3	13	1	48
4	14	2	69
5	15	1	84
6	16	2	53

i. Create a subset of course less than 5 by using [] brackets and demonstrate the output. # Creating the data frame with the given information course_data <- data.frame(course = c(1, 2, 3, 4, 5, 6), id = c(11, 12, 13, 14, 15, 16), class = c(1, 2, 1, 2, 1, 2), marks = c(56, 75, 48, 69, 84, 53))

Displaying the data frame

print("Course Data Frame:")
print(course_data)

Subset using []
subset_course_less_than_5 <- course_data[course_data\$course < 5,]</pre>

Display the subset print("Subset of Course less than 5 using [] brackets:") print(subset_course_less_than_5)

ii. Create a subset where the course column is less than 4 or the class equals to 1 by using subset() function and demonstrate the output.

```
# Subset using subset()
subset_course_class_condition <- subset(course_data, course < 4 | class == 1)
# Display the subset
print("Subset where course < 4 or class == 1 using subset():")
print(subset_course_class_condition)</pre>
```


DEPARTMENT OF COMPUTER ENGINEERING [NBA ACCREDITED]

i. Write a script to create a dataset named data1 in R containing following text.

Text: 2, 3, 4, 5, 6.7, 7, 8.1, 9

Solution

Script to create dataset named data1

View the dataset print(data1)

output

If numeric data is passed, the output will look like

- 9 Write a R Script to create a Employee vector for 10 employee names. Create a salary vector to represent salary of 10 Employees. Create a data frame EMP from these two vectors.
- 10. Write 4 commands to demonstrate Hadoop file system operation.

DEPARTMENT OF COMPUTER ENGINEERING [NBA ACCREDITED]