HW2 Report

Let N=19 denote the number of cells, M=50 denote the number of mobile devices (MSs) per cell, T=300 denote the temperature (in Kelvin), $B=10^7$ denote the channel bandwidth (in Hz), $P_{BS}=10^{0.3}$ denote the power of each BS (in Watt), $P_{MS}=10^{-0.7}$ denote the power of each MS (in Watt), $G_T=10^{1.4}$ denote the transmitter antenna gain, $G_R=10^{1.4}$ denote the receiver antenna gain, $h_{BS}=51.5$ be the height above ground level of each BS (in meter), and $h_{MS}=1.5$ be the height above ground level of each MS (in meter).

Define the BSs by BS_1, BS_2, \ldots, BS_N , where BS_1 is the central BS. For $1 \leq i \leq N$, define the M MSs in the ith cell by $MS_{i,1}, MS_{i,2}, \ldots, MS_{i,M}$.

Let \mathbf{x}_i be the coordinate of BS_i and $\mathbf{y}_{i,j}$ be the coordinate of $MS_{i,j}$ for every $1 \le i \le N, 1 \le j \le M$. Note that $\mathbf{x}_1 = (0,0)$.

Since the height of transmitter and receiver must be h_{BS} and h_{MS} , the path-loss g(d) according to two-ray-ground model is:

$$g(d)=rac{h_{BS}^2h_{MS}^2}{d^4},$$

where d is the distance between the transmitter and the receiver.

Moreover, the thermal noise, denoted by Noise, is given by:

$$Noise = kTB$$

where k is the Boltzmann constant.

For each problem n, there is only one resulting figure consisting of 3 graphs, where the graph for problem n-1 is on the left, n-2 is on the top right, and n-3 is on the bottom left.

Problem 1: Downlink in the Central Cell

1-2

For $1 \leq i \leq M$, the received power (in Watt) of $MS_{1,i}$, denoted by $P_{DL,MS_{1,i}}$, can be calculated by:

$$P_{DL,MS_{1,i}} = P_{BS} \cdot G_T \cdot G_R \cdot g(||\mathbf{y}_{1,i} - \mathbf{x}_1||),$$

which, in dBW, is $10\log_{10}P_{DL,MS_{1,i}}$.

1-3

For $1 \leq i \leq M$, the SINR of $MS_{1,i}$, denoted by $SINR_{DL,MS_{1,i}}$, can be calculated by:

$$SINR_{DL,MS_{1,i}} = rac{P_{BS}G_TG_R \cdot g(||\mathbf{y}_{1,i} - \mathbf{x}_1||)}{Noise + \sum\limits_{1 < j \leq N} P_{BS}G_TG_R \cdot g(||\mathbf{y}_{1,i} - \mathbf{x}_j||)},$$

which, in dB, is $10\log_{10}SINR_{DL,MS_{1,i}}$.

Problem 2: Uplink in the Central Cell

2-2

For $1 \leq i \leq M$, the received power (in Watt) of BS_1 (the central BS) from $MS_{1,i}$, denoted by $P_{UL,MS_{1,i}}$, can be calculated by:

$$P_{UL,MS_{1,i}} = P_{MS} \cdot G_T \cdot G_R \cdot g(||\mathbf{y}_{1,i} - \mathbf{x}_1||),$$

which, in dBW, is $10\log_{10}P_{UL,MS_{1,i}}$.

2-3

For $1 \leq i \leq M$, the SINR of BS_1 from $MS_{1,i}$, denoted by $SINR_{UL,MS_{1,i}}$, can be calculated by:

$$SINR_{UL,MS_{1,i}} = rac{P_{MS}G_TG_R \cdot g(||\mathbf{y}_{1,i} - \mathbf{x}_1||)}{Noise + \sum\limits_{j \in \{1,\ldots,M\} \setminus \{i\}} P_{MS}G_TG_R \cdot g(||\mathbf{y}_{1,j} - \mathbf{x}_1||)},$$

which, in dB, is $10\log_{10}SINR_{UL,MS_{1,i}}$.

B-2

For $1 \leq i \leq N$ and $1 \leq j \leq M$, the received power (in Watt) of BS_i from $MS_{i,j}$, denoted by $P_{UL,MS_{i,j}}$, can be calculated by:

$$P_{UL,MS_{i,j}} = P_{MS} \cdot G_T \cdot G_R \cdot g(||\mathbf{y}_{i,j} - \mathbf{x}_i||),$$

which, in dBW, is $10\log_{10}P_{UL,MS_{i,j}}$.

B-3

For $1 \leq i \leq N$ and $1 \leq j \leq M$, the SINR of BS_i from $MS_{i,j}$, denoted by $SINR'_{UL,MS_{i,j}}$, can be calculated by:

$$SINR'_{UL,MS_{i,j}} = rac{P_{MS}G_TG_R \cdot g(||\mathbf{y}_{i,j} - \mathbf{x}_i||)}{Noise + \sum\limits_{(p,q) \in (\{1,\ldots,N\} imes \{1,\ldots,M\}) \setminus \{(i,j)\}} P_{MS}G_TG_R \cdot g(||\mathbf{y}_{p,q} - \mathbf{x}_i||)},$$

which, in dB, is $10\log_{10}SINR'_{UL,MS_{i,i}}$.