SLOS263R - AUGUST 1999 - REVISED APRIL 2005

- 2.7-V and 5-V Performance
- –40°C to 125°C Operation
- Low-Power Shutdown Mode (LMV324S)
- No Crossover Distortion
- Low Supply Current
 - LMV321 . . . 130 μ A Typ
 - LMV358 . . . 210 μA Typ
 - LMV324 . . . 410 μA Typ
 - LMV324S . . . 410 μA Typ
- Rail-to-Rail Output Swing
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

The LMV321, LMV358, and LMV324/LMV324S are single, dual, and quad low-voltage (2.7 V to 5.5 V), operational amplifiers with rail-to-rail output swing. The LMV324S, which is a variation of the standard LMV324, includes a power-saving shutdown feature that reduces supply current to a maximum of 5 μ A per channel when the amplifiers are not needed. Channels 1 and 2 together are put in shutdown, as are channels 3 and 4. While in shutdown, the outputs actively are pulled low.

The LMV321, LMV358, LMV324, and LMV324S are the most cost-effective solutions for applications where low-voltage operation, space saving, and low cost are needed. These amplifiers were designed specifically for low-voltage (2.7 V to 5 V) operation, with performance specifications meeting or exceeding the LM358 and LM324 devices that operate from 5 V to 30 V. Additional features of the LMV3xx devices are a common-mode input voltage range that includes ground, 1-MHz unity-gain bandwidth, and 1-V/μs slew rate.

The LMV321 is available in the ultra-small DCK (SC-70) package, which is approximately one-half the size of the DBV (SOT-23) package. This package saves space on printed circuit boards and enables the design of small portable electronic devices. It also allows the designer to place the device closer to the signal source to reduce noise pickup and increase signal integrity.

LMV324 . . . D (SOIC) OR PW (TSSOP) PACKAGE (TOP VIEW)

LMV324S...D (SOIC) OR PW (TSSOP) PACKAGE (TOP VIEW)

LMV358...D (SOIC), DDU (VSSOP), DGK (MSOP), OR PW (TSSOP PACKAGE (TOP VIEW)

LMV321 . . . DBV (SOT-23) OR DCK (SC-70) PACKAGE (TOP VIEW)

SLOS263R - AUGUST 1999 - REVISED APRIL 2005

ORDERING INFORMATION

TA		PACKAG	ΕŤ	ORDERABLE PART NUMBER	TOP-SIDE MARKING‡
		00 70 (DOM)	Reel of 3000	LMV321IDCKR	
	O're alle	SC-70 (DCK)	Reel of 250	LMV321IDCKT	R3_
	Single	00T00 5 (DD) ()	Reel of 3000	LMV321IDBVR	DO4
		SOT23-5 (DBV)	Reel of 250	LMV321IDBVT	RC1_
		MCODA/CCOD (DCIA)	Reel of 2500	LMV358IDGKR	R5_
		MSOP/VSSOP (DGK)	Reel of 250	LMV358IDGKT	PREVIEW
		0010 (D)	Tube of 75	LMV358ID	M/0501
	Dual	SOIC (D)	Reel of 2500	LMV358IDR	MV358I
-40°C to 85°C		TOOOD (DW)	Tube of 150	LMV358IPW	141/050L
		TSSOP (PW)	Reel of 2000	LMV358IPWR	MV358I
		VSSOP (DDU)	Reel of 3000	LMV358IDDUR	RA56
	Quad	SOIC (D)	Tube of 50	LMV324ID	1.843/2041
			Reel of 2500	LMV324IDR	LMV324I
			Tube of 40	LMV324SID	1.843/00401
			Reel of 2500	LMV324SIDR	LMV324SI
		TSSOP (PW)	Reel of 2000	LMV324IPWR	MV324I
		1330F (FW)	Reel of 2000	LMV324SIPWR	MV324SI
			Reel of 2500	LMV358QDGKR	5
		MSOP/VSSOP (DGK)	Reel of 250	LMV358QDGKT	RH_
		0010 (P)	Tube of 75	LMV358QD	141/0500
	Dual	SOIC (D)	Reel of 2500	LMV358QDR	MV358Q
		T000D (D)40	Tube of 150	LMV358QPW	141/0500
–40°C to 125°C		TSSOP (PW)	Reel of 2000	LMV358QPWR	MV358Q
		VSSOP (DDU)	DDU) Reel of 3000 LMV358QDDUR		RAH_
		COIC (D)	Tube of 50	LMV324QD	1.00/2240
	Quad	SOIC (D)	Reel of 2500	LMV324QDR	LMV324Q
	Quau	TSSOP (PW)	Tube of 90	LMV324QPW	MV324Q
		13308 (844)	Reel of 2000	LMV324QPWR	IVI V 324Q

T Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

symbol (each amplifier)

[‡] DBV/DCK/DGK: The actual top-side marking has one additional character that designates the assembly/test site.

SLOS263R - AUGUST 1999 - REVISED APRIL 2005

LMV324 simplified schematic

SLOS263R - AUGUST 1999 - REVISED APRIL 2005

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Differential input voltage, V _{ID} (see Note 2)	0 to 5.5 V
, ,	
, ,	: D (8-pin) package 97°C/W
	D (14-pin) package
	D (16-pin) package
	DBV (5-pin) package 206°C/W
	DCK (5-pin) package 252°C/W
	DDU (8-pin) package TBD°C/W
	DGK (8-pin) package 172°C/W
	PW (8-pin) package 149°C/W
	PW (14-pin) package 113°C/W
	PW (16-pin) package 108°C/W
Operating virtual junction temperature, T _J	
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values (except differential voltages and V_{CC} specified for the measurement of I_{OS}) are with respect to the network GND.
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.
 - 4. Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_J(max) T_A)/θ_{JA}. Selecting the maximum of 150°C can affect reliability.
 - 5. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 6)

			MIN	MAX	UNIT
Vcc	Supply voltage (single-supply operation)		2.7	5.5	V
.,	V _{CC} = 2.		1.7		.,
VIH	Amplifier turnon voltage level (LMV324S)‡	V _{CC} = 5 V	3.5		V
	V _{CC} =			0.7	.,
V_{IL}	Amplifier turnoff voltage level (LMV324S)	V _C C = 5 V		1.5	V
_	Occasion for a sintense control	I-Temp	-40	85	00
TA	Operating free-air temperature		-40	125	°C

[‡]VIH should not be allowed to exceed VCC.

NOTE 6: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SLOS263R - AUGUST 1999 - REVISED APRIL 2005

electrical characteristics at T_A = 25°C and V_{CC+} = 2.7 V (unless otherwise noted)

PARAMETER		TEST COND	MIN	TYP	MAX	UNIT	
V _{IO}	Input offset voltage				1.7	7	mV
$\alpha_{V_{IO}}$	Average temperature coefficient of input offset voltage				5		μV/°C
I _{IB}	Input bias current				11	250	nA
liO	Input offset current				5	50	nA
CMRR	Common-mode rejection ratio	V _{CM} = 0 to 1.7 V		50	63		dB
ksvr	Supply-voltage rejection ratio	$V_{CC} = 2.7 \text{ V to 5 V},$	V _O = 1 V	50	60		dB
VICR	Common-mode input voltage range	CMRR ≥ 50 dB		0 to 1.7	-0.2 to 1.9		V
	Output suites	D 40104-405V	High level	V _{CC} - 100	V _{CC} - 10		\/
	Output swing	$R_L = 10 \text{ k}\Omega \text{ to } 1.35 \text{ V}$	Low level		60	180	mV
		LMV321I			80	170	
ICC	Supply current	LMV358I (both amplifiers		140	340	μΑ	
		LMV324I/LMV324SI (all	LMV324I/LMV324SI (all four amplifiers)			680	
B ₁	Unity-gain bandwidth	C _L = 200 pF			1		MHz
Φ_{m}	Phase margin				60		deg
G _m	Gain margin				10		dB
٧n	Equivalent input noise voltage	f = 1 kHz			46		nV/√ Hz
In	Equivalent input noise current	f = 1 kHz			0.17		pA/√ Hz

shutdown characteristics (LMV324S) at T_A = 25°C and V_{CC+} = 2.7 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ICC(SHDN)	Supply current in shutdown mode (per channel)	SHDN ≤ 0.6 V			5	μΑ
t(on)	Amplifier turnon time	A _V = 1, R _L = Open (measured at 50% point)		2		μS
t(off)	Amplifier turnoff time	A _V = 1, R _L = Open (measured at 50% point)		40	·	ns

SLOS263R - AUGUST 1999 - REVISED APRIL 2005

electrical characteristics at specified free-air temperature range, $V_{CC+} = 5 \text{ V}$ (unless otherwise noted)

PARAMETER TEST COI		TEST CONDIT	IONS	T_{A}^{\dagger}	MIN	TYP	MAX	UNIT
.,				25°C		1.7	7	.,
VIO	Input offset voltage			Full range			9	mV
$\alpha_{V_{IO}}$	Average temperature coefficient of input offset voltage			25°C		5		μV/°C
1	lanut biog grouped			25°C		15	250	^
IB	Input bias current			Full range			500	nA
	lanut effect summer			25°C		5	50	^
IIO	Input offset current			Full range			150	nA
CMRR	Common-mode rejection ratio	$V_{CM} = 0 \text{ to } 4 \text{ V}$		25°C	50	65		dB
ksvr	Supply-voltage rejection ratio	V _{CC} = 2.7 V to 5 V, V V _{CM} = 1 V	O = 1 V,	25°C	50	60		dB
VICR	Common-mode input voltage range	CMMR ≥ 50 dB		25°C	0 to 4	-0.2 to 4.2		٧
			LP ob Level	25°C	V _{CC} – 300	V _{CC} – 40		
		D 0101-051/	High level	Full range	V _{CC} - 400			
		$R_L = 2 \text{ k}\Omega \text{ to } 2.5 \text{ V}$	Low level	25°C		120	300	1
	Output autien			Full range			400	>/
	Output swing		LP als lavest	25°C	V _{CC} - 100	V _{CC} - 10		mV
		D: 40 to 40 0 5 V	High level	Full range	V _{CC} – 200			
		$R_L = 10 \text{ k}\Omega \text{ to } 2.5 \text{ V}$	Low level	25°C		65	180	
			Low level	Full range			280	
۸. ه	Large-signal differential	R _L = 2 kΩ		25°C	15	100		V/mV
AVD	voltage gain	K[= 2 K22		Full range	10			V/IIIV
loo	Output short-circuit current	Sourcing, $V_O = 0 V$		25°C	5	60		mA
los	Output Short-circuit current	Sinking, $V_0 = 5 \text{ V}$		25 C	10	160		IIIA
		LMV321I		25°C		130	250	
		LIVIV 32 II		Full range			350	
Icc	Supply current	LMV358I (both ampli	fiare)	25°C		210	440	μΑ
100	Supply culton	LIVIV 3301 (BOTH ATTIPIL		Full range			615	μΑ
		LMV324I/LMV324SI		25°C		410	830	
		(all four amplifiers)		Full range			1160	
В1	Unity-gain bandwidth	C _L = 200 pF		25°C		1		MHz
Φ_{m}	Phase margin			25°C		60		deg
G _m	Gain margin			25°C		10		dB
Vn	Equivalent input noise voltage	f = 1 kHz		25°C		39		nV/√Hz
In	Equivalent input noise current	f = 1 kHz		25°C		0.21		pA/√Hz
SR	Slew rate			25°C		1		V/μs

[†] Full range: -40°C to 85°C for I-temp, -40°C to 125°C for Q-temp.

SLOS263R - AUGUST 1999 - REVISED APRIL 2005

shutdown characteristics (LMV324S) at T_A = 25°C and V_{CC+} = 5 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
ICC(SHDN)	Supply current in shutdown mode (per channel)	SHDN ≤ 0.6 V	-40°C to 85°C			5	μΑ
t(on)	Amplifier turnon time	A _V = 1, R _L = Open (measured at 50% point)			2		μs
t(off)	Amplifier turnoff time	A _V = 1, R _L = Open (measured a		40		ns	

SLOS263R - AUGUST 1999 - REVISED APRIL 2005

TYPICAL CHARACTERISTICS

Figure 4

Figure 3

TYPICAL CHARACTERISTICS

Figure 8

Figure 7

SLOS263R - AUGUST 1999 - REVISED APRIL 2005

TYPICAL CHARACTERISTICS

Figure 11

Figure 12

SLOS263R - AUGUST 1999 - REVISED APRIL 2005

OUTPUT VOLTAGE SWING FROM RAILS
vs
SUPPLY VOLTAGE

SLOS263R - AUGUST 1999 - REVISED APRIL 2005

TYPICAL CHARACTERISTICS

NONINVERTING LARGE-SIGNAL PULSE RESPONSE

Figure 27

NONINVERTING LARGE-SIGNAL PULSE RESPONSE

Figure 28

NONINVERTING LARGE-SIGNAL PULSE RESPONSE

Figure 29

SLOS263R - AUGUST 1999 - REVISED APRIL 2005

TYPICAL CHARACTERISTICS

NONINVERTING SMALL-SIGNAL PULSE RESPONSE

Figure 30

NONINVERTING SMALL-SIGNAL PULSE RESPONSE

Figure 31

NONINVERTING SMALL-SIGNAL PULSE RESPONSE

Figure 32

TYPICAL CHARACTERISTICS

INVERTING LARGE-SIGNAL PULSE RESPONSE

Figure 33

INVERTING LARGE-SIGNAL PULSE RESPONSE

Figure 34

INVERTING LARGE-SIGNAL PULSE RESPONSE

Figure 35

SLOS263R - AUGUST 1999 - REVISED APRIL 2005

TYPICAL CHARACTERISTICS

INVERTING SMALL-SIGNAL PULSE RESPONSE

INVERTING SMALL-SIGNAL PULSE RESPONSE

Figure 37

INVERTING SMALL-SIGNAL PULSE RESPONSE

Figure 38

SLOS263R - AUGUST 1999 - REVISED APRIL 2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
LMV321IDBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV321IDBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV321IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV321IDCKRG4	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV321IDCKT	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV324ID	ACTIVE	SOIC	D	14	50	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
LMV324IDR	ACTIVE	SOIC	D	14	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
LMV324IPWG4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV324IPWR	ACTIVE	TSSOP	PW	14	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
LMV324IPWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV324QD	ACTIVE	SOIC	D	14	50	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
LMV324QDR	ACTIVE	SOIC	D	14	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
LMV324QPW	ACTIVE	TSSOP	PW	14	90	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
LMV324QPWE4	ACTIVE	TSSOP	PW	14	90	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
LMV324QPWR	ACTIVE	TSSOP	PW	14	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
LMV324SID	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV324SIDE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV324SIDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV324SIDRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV324SIPWR	ACTIVE	TSSOP	PW	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
LMV324SIPWRE4	ACTIVE	TSSOP	PW	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
LMV358ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV358IDDUR	ACTIVE	VSSOP	DDU	8	3000	Pb-Free (RoHS)	CU NIPDAU	Level-1-260C-UNLIM
LMV358IDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV358IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

om 1-Jul-2005

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp (3)
LMV358IDGKR	ACTIVE	MSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV358IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV358IDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV358IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV358IPW	ACTIVE	TSSOP	PW	8	150	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
LMV358IPWE4	ACTIVE	TSSOP	PW	8	150	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
LMV358IPWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV358IPWR	ACTIVE	TSSOP	PW	8	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
LMV358IPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV358QD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV358QDDUR	ACTIVE	VSSOP	DDU	8	3000	Pb-Free (RoHS)	CU NIPDAU	Level-1-260C-UNLIM
LMV358QDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV358QDGKR	ACTIVE	MSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV358QDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV358QDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LMV358QPW	ACTIVE	TSSOP	PW	8	150	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
LMV358QPWE4	ACTIVE	TSSOP	PW	8	150	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
LMV358QPWR	ACTIVE	TSSOP	PW	8	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
LMV358QPWRE4	ACTIVE	TSSOP	PW	8	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM

 $^{^{(1)}}$ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame

PACKAGE OPTION ADDENDUM

1-Jul-2005

retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- C. Body dimensions do not include mold fla D. Falls within JEDEC MO—178 Variation AA. Body dimensions do not include mold flash or protrusion.

DCK (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion.

D. Falls within JEDEC MO-203

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187 variation AA.

DDU (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187 variation CA.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AB.

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AC.

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AA.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated