

Unsupervised machine learning (8DC00)
Cian Scannell

Previous lecture

Convolutional neural networks (CNN)

• By now: students can design a (simple) CNN

Image from: https://vinodsblog.com/

Previous lecture

Reducing # of weights

3 weights

Previous lecture

$$\begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \end{bmatrix} = \\ \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix} * \begin{bmatrix} w_{1,1} & w_{1,2} & w_{1,3} \end{bmatrix} \\ & \begin{bmatrix} a_{2,1} & a_{2,2} & a_{2,3} \end{bmatrix} = \\ \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix} * \begin{bmatrix} w_{2,1} & w_{2,2} & w_{2,3} \end{bmatrix}$$

 $\begin{bmatrix} w_{1,1} & w_{1,2} & w_{1,3} \end{bmatrix}$, and $\begin{bmatrix} w_{2,1} & w_{2,2} & w_{2,3} \end{bmatrix}$ are **convolution kernels**. They extract features.

Previous lecture: Kernel size

1 x 1

3 x 3

5 x 5

- More weights → more information
- More computations / memory
- Receptive field

Receptive field

Previous lecture: Max-pooling

- Reduce size of feature space
- Maximum of features
- Typical kernel size = 2 x 2

Addition to last lecture:

Stride = step size of the sliding window

- Typically 1 for convolutions
- Typically equal to kernel size for pooling operations

Error rates ImageNet (top 5 accuracy)

U-Net: Segmentation

Ronneberger et al., MICCAI 2015

Solving machine learning problems

- Type of problem?
- Preprocessing steps?
- What kind of 'labels' do you need?
- What should the output look like?
- What should be the activation function in the final layer?
- What model do you choose?
- How do you evaluate performance?
- Other considerations?

Previous examples required labeled data

learning from labeled data = **supervised training**

Learning outcomes

- Student can describe the difference between supervised and unsupervised learning and name advantages of both methods
- Student can apply K-means to find clusters in data
- Student can explain Principal Component Analysis and motivate dimensionality reduction
- Student can explain the concept of an Autoencoder and motivate why abstract features (latent variables) can be used for a secondary task.

Learning strategies

Supervised

Learning from examples (=training data) that are labeled with their desired outputs. The goal is to learn general rules that maps inputs to outputs.

Unsupervised

Learning from examples without labels. The goals are:

- Learning the entire probability distribution that generated a dataset
- Finding structure in data
- Reducing dimensionality → feature learning

Finding clusters using K-means

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

K-means – evaluate clustering performance

Average squared Euclidean distance between each point and the closest cluster:

$$J(W) = \frac{1}{N} \sum_{i} \left| \left| \min_{k} (W_k - x_i) \right| \right|_2^2$$

x_i are the points, W are the cluster centroids

Repeat step 2:

Update centroid locations

When do we stop?

- When the error J does not decrease anymore
- After n iterations

How do we choose initial centroid locations?

- Random
- Farthest points
- Manual?
 - Supervised
 - Difficult for high-dimensional data

How do we choose K?

K (=number of means) is a hyperparameter

Another example

Questions so far?

Principal Component Analysis (PCA)

Goal: Finding the principal components that describe our data.

= finding the directions in which the data shows most variation

Useful for dimensionality reduction

E.g. find low-dimensional classification boundaries

Results in better generalization!

Principal Component Analysis

Example data set

M-by-2 matrix X containing M points Sampled from 2D Gaussian distribution

$$\mu_1 = 0$$

$$\mu_2 = 0$$

$$\sum_{i=1}^{n} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

Principal Component 1

Principal component are orthogonal to one another

Finding the principal components

Center data by subtracting mean of each variable

$$\widehat{X} = X - \overline{X}$$

Calculate covariance matrix

$$\sum = \frac{1}{M-1} X^T X$$

Singular value decomposition (SVD) to find a matrix U that contains eigenvectors, ordered by largest to smallest variance

→ principal components

lacksquare Multiply \widehat{X} with $oldsymbol{U}$ to obtain $oldsymbol{X_{pca}}$

Dimensionality reduction

Instead of using all eigenvectors from \boldsymbol{U} we can select a set of n principal components.

For example, we can select the eigenvectors that contain 95% of the variance.

More info → PCA demo!

Autoencoder

Goal = reconstruct input x_i, using a restricted number of latent variables h_i

latent space encoder decoder **X**₃ •

latent space

Encoder:

$$h = f(x)$$

Decoder:

$$x^r = g(\mathbf{h})$$

Penalize dissimmilarity

Autoencoder

- Encoder/decoder can be simple or complex
- For example: a deep convolutional neural network

Applications

- Dimension reduction!
- Latent variables can be used for secondary objective, e.g. classification
- Denoising (by adding noise to the input and reconstructing the original)
- Generative models generating new (image) data

'Supervised' learning terminology

Supervised methods

Weakly Supervised

Semisupervised Unsupervised methods

Selfsupervised

Some remarks on semi-supervised learning

- Fewer labeled data needed
- For many medical applications data is still limited,
 e.g. because disease is rare
- Use knowledge from a related task

Humans also learn in a semi-supervised fashion

Summary

- Supervised versus unsupervised
- Finding structures (e.g. K-means)
- Dimension reduction (e.g. PCA, autoencoders)
- Semi-supervised learning

