Neuron Selectivity for Efficient Monocular Depth Estimation

Lien Huong Huynh Evgeniia Rumiantseva

Monocular Depth Estimation

Related Works – CNN-based

- Encoder-Decoder CNNs
- Transfer Learning: Pretrained Encoder + Specific Decoder
- For global extraction capabilities require large computational resources

M. Song, S. Lim, and W. Kim, "Monocular depth estimation using laplacian pyramid-based depth residuals," IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 11, pp. 4381–4393, 2021.

I. Alhashim and P. Wonka, "High quality monocular depth estimation via transfer learning," 2018. [Online]. Available: https://arxiv.org/abs/ 1812.11941

Related Works - Visual Transformer

<u>Advantages of ViT:</u> input-adaptive weighting and global processing, which leads to finer-grade predictions with respect to standard CNN

<u>Disadvantages of ViT:</u> too many parameters to run on small devices

<u>Solution:</u> instead of extracting patches straight from the image preprocess & postprocess it with convolutions -> MobileViT -> add skip connections to the decoder -> METER encoder

Related Works - Visual Transformer

<u>Original paper:</u> A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, "An image is worth 16x16 words: Transformers for image recognition at scale," 2020.

<u>MobileVit:</u> S. Mehta and M. Rastegari, "Mobilevit: Light-weight, general-purpose, and mobile-friendly vision transformer," 2021.

<u>METER:</u> Lorenzo Papa, Paolo Russo and Irene Amerini, "METER: a mobile vision transformer architecture for monocular depth estimation," 2021

Related Works – Interpretability of CV DNNs

<u>CNNs interpretability (idea is close!)</u>: Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable convolutional neural networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

<u>Main paper:</u> Zunzhi You, Yi-Hsuan Tsai, Wei-Chen Chiu, Guanbin Li, "Towards Interpretable Deep Networks for Monocular Depth Estimation," 2021

METER Architecture

METER Architecture

METER Architecture

METER

Loss function: Balanced Loss Function

Vertical and horizontal gradient to detect object boundaries

Neuron Selectivity for Interpretability

- Observation: in deep MDE networks, some hidden neurons are selective to specific ranges of depth
- Observation II: ablating neurons with higher selectivity drops quality faster
- Idea: let's make all the neurons even more depth selective!

Idea of Depth Selectivity Calculation

- 1. Computing average response of every separate neuron k in layer l for specific depth range d over the whole dataset: $R_{l,k}^d$
- 2. Compute selectivity index:

$$DS_{l,k} = \frac{|R_{l,k}^{max}| - |\bar{R}_{l,k}^{-max}|}{|R_{l,k}^{max}| + |\bar{R}_{l,k}^{-max}|}$$

Assign each unit a specific depth range & add a corresponding regularizer

Neuron Selectivity Regularization

new loss = balanced loss + a ⋅ selectivity

$$\mathcal{L}_{assign} = -\lambda \sum_{l \in L} \frac{1}{K_l} \sum_{k} \frac{|R_{l,k}^{d_k}| - |\bar{R}_{l,k}^{-d_k}|}{|R_{l,k}^{d_k}| + |\bar{R}_{l,k}^{-d_k}|}$$

Setup 1: Selectivity Loss applied to the 3rd encoder skip-connection

- Setup 1: Selectivity Loss applied to the 3rd encoder skip-connection
- Setup 2: Selectivity Loss applied to 2nd encoder skip-connection + Decoder output

- Setup 1: Selectivity Loss applied to the 3rd encoder skip-connection
- Setup 2: Selectivity Loss applied to 2nd encoder skip-connection + Decoder output
- Setup 3: Selectivity Loss applied to 2nd encoder skip-connection + Decoder output + adjusted alpha hyperparameter

Data

- NYU Depth v2
 - RGB images and corresponding depth maps in several indoor scenarios
 - Initial resolution is 640 × 480 pixels
 - For training we use downsampled images to the resolution of 256 x 192
 - Dataset size
 - Train: 40550, Val: 5068, Test: 5070

Evaluation Metrics

RMSE – for depth estimation quality

$$RMSE = \sqrt{\frac{1}{|n|} \sum_{i \in n} ||y_i - \hat{y}_i||^2}$$

Average Selectivity for Each Layer

$$\frac{1}{K_l} \sum_{k} \frac{|R_{l,k}^{d_k}| - |\bar{R}_{l,k}^{-d_k}|}{|R_{l,k}^{d_k}| + |\bar{R}_{l,k}^{-d_k}|}$$

Experimental Setup

- AdamW optimizer: lr = 1e-4, weight_decay = 1e-2
- Number of Epochs: 20
- Batch Size: 64
- Weight for selectivity regularizer:
 - Default: 0.1 (as in the paper)
 - Adjusted: 0.5

Baseline Evaluation

Example predictions on validation dataset after 20 epochs

Best RMSE: 23.64

Baseline Evaluation

Example neuron depth selectivity distribution for 1st MobileNetV2 block

Mean selectivity value for each layer

enc_0 0.533
enc_1 0.555
enc_2 0.746
enc_3 0.734
enc_4 0.735
enc_5 0.745
enc_6 0.579
enc_7 0.784
enc_8 0.590
enc_9 0.758
enc_10 0.672
enc_output 0.667

Evaluation with Neuron Selectivity Loss

Example predictions on validation dataset after 20 epochs

Best RMSE: 23.02

Evaluation with Neuron Selectivity Loss

Neuron depth selectivity distribution for 1st MobileNetV2 block.

Selectivity enhanced for 3rd encoder MobileNetV2 block and 3rd decoder block.

Mean selectivity value for each layer

enc_0 0.543
enc_1 0.566
enc_2 0.762
enc_3 0.694
enc_4 0.650
enc_5 0.760
enc_6 0.574
enc_7 0.691
enc_8 0.602
enc_9 0.720
enc_10 0.659
enc_output 0.657

dec 0 0.632 dec_1 0.602 dec_2 0.544 dec_3 0.534

Evaluation with Neuron Selectivity Loss

Baseline

enc_0 0.533 enc_1 0.555

enc_2 0.746

enc_3 0.734

enc_4 0.735

enc 5 0.745

enc_6 0.579

enc_7 0.784

enc_8 0.590

enc_9 0.758

enc_10 0.672

enc_output 0.667

dec_0 0.635 dec_1 0.606

dec_2 0.583

dec_3 0.436

AVG selectivity

before: 0.647

With Neuron Selectivity Loss

enc_0 0.543

enc_1 0.566

enc_2 0.762

enc_3 0.694

enc_4 0.650

enc_5 0.760

enc_6 0.574

enc_7 0.691

enc_8 0.602

enc_9 0.720

enc_10 0.659

enc_output 0.657

dec_0 0.632

dec_1 0.602

dec_2 0.544

dec_3 0.534

AVG selectivity

after: 0.636

Evaluation with Neuron Selectivity Loss + new Alpha

Baseline

enc_0 0.533 enc_1 0.555 enc_2 0.746 enc_3 0.734

enc_4 0.735

enc_5 0.745

enc_6 0.579

enc_7 0.784

enc_8 0.590

enc_9 0.758

enc_10 0.672

enc_output 0.667

dec_0 0.635 dec 1 0.606

dec_2 0.583

dec_3 0.436

AVG selectivity

before: 0.647

With Neuron Selectivity Loss

enc_0 0.503 enc_1 0.522

enc_2 0.742

enc_3 0.706

enc_4 0.718

enc_5 0.737

enc_6 0.570

enc_7 0.753

enc_8 0.577

enc_9 0.756

enc_10 0.628

enc_output 0.622

dec_0 0.589

dec_1 0.569

dec_2 0.529 dec_3 0.593

AVG selectivity

before: 0.632

Conclusions and Future Work

- Selectivity Regularisation boosts selectivity for some layers, but the overall selectivity does not improve
- We can see slight improvement of RMSE after training with regularisation component
- Improvement of interpretability requires further thorough hyperparameters tuning (alpha / selected layers)

Conclusions and Future Work

Other setups to be explored:

- Setup 3: apply loss to all skip-connections inputs
- Setup 4: apply loss to all skip-connections inputs + encoder output
- Setup 5: apply loss only to encoder output
- Adjust weight of the Selectivity Loss Component