Homework 4

Problem 1

For each of the following, express the set in list or interval notation (whichever is appropriate) or as a union of such sets.

- (a) f[(-1,3)], where $f:\mathbb{R}\to\mathbb{R}$ is defined by $f(x)=x^2$ for all $x\in\mathbb{R}$.
- (b) $g^{-1}[(0,2]]$, where $g:\mathbb{R}\to\mathbb{R}$ is defined by g(x)=|x-1|+|x+1| for all $x\in\mathbb{R}$.
- (c) $h[\mathbb{R} \setminus \mathbb{Z}]$, where $h: \mathbb{R} \to \mathbb{R}$ is defined by $h(x) = x^2$ for all $x \in \mathbb{R}$.
- (d) (Extra practice, not to be submitted) $p^{-1}[\{2,3\}]$, where $p: \mathbb{Z} \to \mathbb{Z}$ is defined by letting p(n) be the remainder of n^2 when divided by 5 (for example, $7^2 = 49 = 9 \times 5 + 4$, so p(7) = 4).

Problem 2

Let $f: X \to Y$ be a function. Suppose that $A, B \subseteq X$ and $C, D \subseteq Y$. Decide (with proof) whether each of the following is true or false. If the statement is false, prove which of the inclusions (\subseteq or \supseteq) must be true and provide a counterexample for the other inclusion.

- (a) $f[A \cap B] = f[A] \cap f[B]$
- (b) $f^{-1}[C \cap D] = f^{-1}[C] \cap f^{-1}[D]$
- (c) (Extra practice, not to be submitted) $f[A \cup B] = f[A] \cup f[B]$
- (d) (Extra practice, not to be submitted) $f^{-1}[C \cup D] = f^{-1}[C] \cup f^{-1}[D]$

Problem 3

Let $f: X \to Y$ and $g: Y \to Z$ be two functions. Suppose that $g \circ f$ is bijective. Decide (with proof) if each of the following must be true, otherwise, provide a counterexample.

- (a) f is injective.
- (b) f is surjective.
- (c) g is injective.
- (d) g is surjective.

Problem 4

Let $f: \mathscr{P}(\mathbb{R}) \times \mathscr{P}(\mathbb{R}) \to \mathscr{P}(\mathbb{R} \times \mathbb{R})$ be defined by

$$f(A, B) = A \times B.$$

Decide (with proof) whether each of the following is true or false.

- (a) f is injective.
- (b) f is surjective.

Problem 5

For each of the following functions, determine whether it is injective, surjective, bijective, or neither injective nor surjective.

- (a) $f:[0,1] \rightarrow [a,b], f(x) = a + x(b-a)$ for all $x \in [0,1]$, where $a,b \in \mathbb{R}$ with a < b.
- (b) $g: \mathbb{R}^2 \to \mathbb{R}^3$, $g(x,y) = (x+y, x-y, x^2-y^2)$ for all $(x,y) \in \mathbb{R}^2$.
- (c) $h: \mathcal{P}(\mathbb{R})^2 \to \mathcal{P}(\mathbb{R}), h(A, B) = A \cup B \text{ for all } (A, B) \in \mathcal{P}(\mathbb{R})^2.$

Problem 6

- (a) Find functions $f: \mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N} \to \mathbb{N}$ such that $f \circ g = \mathrm{id}_{\mathbb{N}}$ but $g \circ f \neq \mathrm{id}_{\mathbb{N}}$.
- (b) Find functions $h: \mathbb{Z} \to \mathbb{Q}$ and $k: \mathbb{Q} \to \mathbb{Z}$ such that $k \circ h = \mathrm{id}_{\mathbb{Z}}$ but $h \circ k \neq \mathrm{id}_{\mathbb{Q}}$.