

(Artificial) Neural Networks: From Perceptron to MLP

Prof. Seungchul Lee Industrial AI Lab.

Perceptron: Example

$$egin{aligned} \hat{y} &= g\left(\omega_0 + X^T\omega
ight) \ &= g\left(1 + egin{bmatrix} x_1 \ x_2 \end{bmatrix}^T egin{bmatrix} 3 \ -2 \end{bmatrix}
ight) \ &= g\left(1 + 3x_1 - 2x_2
ight) \end{aligned}$$

Perceptron: Example

$$\hat{y}=g\left(1+3x_{1}-2x_{2}
ight)$$

Perceptron: Example

$$\hat{y} = g \, (1 + 3 imes (-1) - 2 imes 2) = g (-6) = -1$$

Perceptron: Forward Propagation

$$egin{aligned} \hat{y} &= g \left(\omega_0 + X^T \omega
ight) \ &= g \left(\omega_0 + egin{bmatrix} x_1 \ dots \ x_m \end{bmatrix}^T egin{bmatrix} \omega_1 \ dots \ \omega_m \end{bmatrix}
ight) \end{aligned}$$

From Perceptron to MLP

XOR Problem

- Minsky-Papert Controversy on XOR
 - Not linearly separable
 - Limitation of perceptron

x_1	x_2	x_1 XOR x_2
0	0	0
0	1	1
1	0	1
1	1	0

• Single neuron = one linear classification boundary

Artificial Neural Networks: MLP

- Multi-layer Perceptron (MLP) = Artificial Neural Networks (ANN)
 - Multi neurons = multiple linear classification boundaries

Artificial Neural Networks: Activation Function

• Differentiable nonlinear activation function

Artificial Neural Networks

• In a compact representation

Artificial Neural Networks

- A single layer is not enough to be able to represent complex relationship between input and output
 - ⇒ perceptron with many layers and units

- Multi-layer perceptron
 - Features of features
 - Mapping of mappings

Another Perspective: ANN as Kernel Learning

Neuron

• We can represent this "neuron" as follows:

$$f(x) = \sigma(w \cdot x + b)$$

XOR Problem

- The main weakness of linear predictors is their lack of capacity.
- For classification, the populations have to be linearly separable.

"xor"

Nonlinear Mapping

• The XOR example can be solved by pre-processing the data to make the two populations linearly separable.

Nonlinear Mapping

• The XOR example can be solved by pre-processing the data to make the two populations linearly separable.

$$\phi:(x_u,x_v) o (x_u,x_v,x_ux_v)$$

Nonlinear Mapping

• The XOR example can be solved by pre-processing the data to make the two populations linearly separable.

$$\phi:(x_u,x_v) o (x_u,x_v,x_ux_v)$$

Kernel

- Often we want to capture nonlinear patterns in the data
 - nonlinear regression: input and output relationship may not be linear
 - nonlinear classification: classes may note be separable by a linear boundary
- Linear models (e.g. linear regression, linear SVM) are not just rich enough
 - by mapping data to higher dimensions where it exhibits linear patterns
 - apply the linear model in the new input feature space
 - mapping = changing the feature representation
- Kernels: make linear model work in nonlinear settings

Kernel + Neuron

• Nonlinear mapping + neuron

$$\phi:(x_u,x_v) o (x_u,x_v,x_ux_v)$$

Neuron + Neuron

Nonlinear mapping can be represented by another neurons

- Nonlinear Kernel
 - Nonlinear activation functions

Multi Layer Perceptron

- Nonlinear mapping can be represented by another neurons
- We can generalize an MLP

Summary

- Universal function approximator
- Universal function classifier

Parameterized

$$\hat{y} = f_{\omega_1, \cdots, \omega_k}(x) \hspace{1cm} \longrightarrow \hspace{1cm} y$$

Artificial Neural Networks

- Complex/Nonlinear universal function approximator
 - Linearly connected networks
 - Simple nonlinear neurons

Input

Feature learning

Classification

Deep Artificial Neural Networks

- Complex/Nonlinear universal function approximator
 - Linearly connected networks
 - Simple nonlinear neurons

Looking at Parameters

Logistic Regression in a Form of Neural Network

$$y = \sigma \left(\omega_0 + \omega_1 x_1 + \omega_2 x_2
ight)$$

Logistic Regression in a Form of Neural Network

Neural network convention

$$y = \sigma \left(\omega_0 + \omega_1 x_1 + \omega_2 x_2\right)$$

$$y=\sigma\left(b+\omega_{1}x_{1}+\omega_{2}x_{2}
ight)$$

Do not indicate bias units

n_input = 2
n_output = 1

Nonlinearly Distributed Data

- Example to understand network's behavior
 - Include a hidden layer

n_input = 2
n_hidden = 2
n_output = 2

Multi Layers

• z space

Do not include bias units

n_input = 2
n_hidden = 2
n_output = 2

Multi Layers

• *x* space

Do not include bias units

n_input = 2
n_hidden = 2
n_output = 2

(Artificial) Neural Networks: Training

Industrial AI
Prof. Seungchul Lee

Training Neural Networks: Loss Function

Measures error between target values and predictions

$$\min_{\omega} \sum_{i=1}^{m} \ell\left(h_{\omega}\left(x^{(i)}
ight), y^{(i)}
ight)$$

- Example
 - Squared loss (for regression):

$$rac{1}{m}\sum_{i=1}^{m}\left(h_{\omega}\left(x^{(i)}
ight)-y^{(i)}
ight)^{2}$$

— Cross entropy (for classification):

$$-rac{1}{m}\sum_{i=1}^{m}y^{(i)}\log\Bigl(h_{\omega}\left(x^{(i)}
ight)\Bigr)+\Bigl(1-y^{(i)}\Bigr)\log\Bigl(1-h_{\omega}\left(x^{(i)}
ight)\Bigr)$$

Gradients in ANN

- Learning weights and biases from data using gradient descent
- $\frac{\partial \ell}{\partial \omega}$: too many computations are required for all ω
- Structural constraint of NN:
 - Composition of functions
 - Chain rule
 - Dynamic programming

Training Neural Networks with TensorFlow

Optimization procedure

- It is not easy to numerically compute gradients in network in general.
 - The good news: people have already done all the "hard work" of developing numerical solvers (or libraries)
 - There are a wide range of tools → We will use the TensorFlow

ANN in TensorFlow: MNIST

MNIST database

- Mixed National Institute of Standards and Technology database
- Handwritten digit database
- 28×28 gray scaled image
- Flattened matrix into a vector of $28 \times 28 = 784$

Our Network Model

Machine Learning and Deep Learning

Prof. Seungchul Lee Industrial AI Lab.

Machine Learning

- Image of digit 0
- Image of digit 1

Deep Learning

- Convolutional Neural Networks (CNN)
- Image pattern recognition problems

Deep Learning

- Convolutional Neural Networks (CNN)
- Image pattern recognition problems

Machine Learning

Deep Learning

