Développement. Le théorème de Frobenius-Zolotarev

Lemme 1. Soient K un corps et $n \in \mathbb{N}^*$ un entier avec $K \neq \mathbb{F}_2$ ou $n \neq 2$. Soit G un groupe abélien. Alors tout morphisme de groupes $\varphi \colon \operatorname{GL}_n(K) \longrightarrow G$ se factorise par le déterminant, c'est-à-dire il existe un unique morphisme de groupes $\delta \colon K^{\times} \longrightarrow G$ tel que $\varphi = \delta \circ \det$.

Preuve Comme $K \neq \mathbf{F}_2$ et $n \neq 2$, on peut écrire $D(GL_n(K)) = SL_n(K)$. Montrons alors que $Ker \varphi \supset D(GL_n(K))$. Soient $g, h \in GL_n(K)$. Comme le groupe G est abélien et l'application φ est un morphisme de groupes, on obtient

$$\varphi([g,h]) = \varphi(ghg^{-1}h^{-1}) = \varphi(g)\varphi(h)\varphi(g)^{-1}\varphi(h)^{-1}$$
$$= \varphi(g)\varphi(g)^{-1}\varphi(h)\varphi(h)^{-1} = 1.$$

En notant $\pi \colon \operatorname{GL}_n(K) \longrightarrow \operatorname{GL}_n(K)/\operatorname{SL}_n(K)$ la projection canonique, le première théorème d'isomorphisme assure qu'il existe un unique morphisme de groupes

$$\tilde{\varphi} \colon \operatorname{GL}_n(K) / \operatorname{SL}_n(K) \longrightarrow G$$

tel que

$$\varphi = \tilde{\varphi} \circ \pi$$
.

Par ailleurs, le déterminant se factorise aussi en un isomorphisme de groupes

$$\overline{\det} \colon \operatorname{GL}_n(K) / \operatorname{SL}_n(K) \longrightarrow K^{\times}$$

puisqu'il est lui-même surjectif. Ce dernier vérifie det = $\overline{\det} \circ \pi$. Finalement, en considérant le morphisme de groupes

$$\delta \coloneqq \tilde{\varphi} \circ \overline{\det}^{-1},$$

on obtient

$$\varphi = \tilde{\varphi} \circ \overline{\det}^{-1} \circ \overline{\det} \circ \pi = \delta \circ \det.$$

L'unicité vient du fait que le déterminant est surjectif sur K^{\times} .

Lemme 2. Soient $p \geqslant 3$ un nombre premier. Alors le symbole de Legendre

$$a \in \mathbf{F}_p^{\times} \longmapsto \left(\frac{a}{n}\right) \in \{\pm 1\}$$

est l'unique morphisme de groupes non trivial $\mathbf{F}_p^{\times} \longrightarrow \{\pm 1\}$.

Preuve Notons d'abord que le symbole de Legendre n'est pas trivial puisque $p \geqslant 3$:

il y a (p-1)/2 non carrés dans \mathbf{F}_p^{\times} . Montrons que c'est le seul. Soit $\alpha \colon \mathbf{F}_p^{\times} \longrightarrow \{\pm 1\}$ un morphisme de groupes non trivial. Alors il est surjectif et son noyau Ker α est un sous-groupe d'indice 2 de \mathbf{F}_p^{\times} puisque

$$\mathbf{F}_n^{\times}/\operatorname{Ker}\alpha\simeq\{\pm 1\}$$
.

Par ailleurs, comme $p\geqslant 3$, le groupe $\mathbf{F}_p^\times\simeq \mathbf{Z}/(p-1)\mathbf{Z}$ est cyclique de cardinal pair, donc il admet un unique sous-groupe $H\leqslant \mathbf{F}_p^\times$ d'indice 2. D'après ce qui précède, il s'agit du sous-groupe $H=\operatorname{Ker}\alpha.$ Soit $x\in \mathbf{F}_p^\times\setminus H.$ On obtient alors la partition $\mathbf{F}_p^\times=H\sqcup xH$ et, pour tout $y\in \mathbf{F}_p^\times$, on peut écrire

$$\alpha(y) = \begin{cases} 1 & \text{si } y \in H, \\ -1 & \text{si } y \in xH \end{cases}$$

Ainsi l'unique sous-groupe $H \leq \mathbf{F}_p^{\times}$ d'indice 2 caractérise entièrement le morphisme α ce qui montre l'unicité de ce dernier.

Un isomorphisme u d'un espace vectoriel E de dimension finie sur un corps fini est a fortiori un élément du groupe symétrique $\mathfrak{S}(E)$ de cet espace vectoriel. Par conséquent, on peut considérer sa signature $\varepsilon(u)$.

Théorème 3. Soient $p \ge 3$ un nombre premier et E un \mathbf{F}_p -espace vectoriel de dimension fini. Alors

$$\forall u \in GL(E), \qquad \varepsilon(u) = \left(\frac{\det u}{p}\right).$$

Preuve On considère l'application signature $\varepsilon\colon \mathrm{GL}(E)\longrightarrow \{\pm 1\}$ obtenu en composant l'inclusion $\mathrm{GL}(E)\longrightarrow \mathfrak{S}(E)$ et la signature $\mathfrak{S}(E)\longrightarrow \{\pm 1\}$. Il s'agit alors d'un morphisme de groupes. Comme $p\geqslant 3$ et le groupe $\{\pm 1\}$ est abélien, le lemme nous donne un morphisme de groupes $\delta\colon \mathbf{F}_p^\times\longrightarrow \{\pm 1\}$ tel que

$$\varepsilon = \delta \circ \det$$
.

On veut montrer que le morphisme δ est le symbole de Legendre. Grâce au lemme 2, il suffit de montrer qu'il n'est pas trivial. En notant $d := \dim_{\mathbf{F}_p}(E)$ et $q := p^d$, les \mathbf{F}_p -espaces vectoriels E et \mathbf{F}_q sont isomorphes. Il suffit alors de trouver un élément du groupe $\mathrm{GL}(\mathbf{F}_q)$ qui est de signature -1. Le groupe $\mathbf{F}_q^{\times} \simeq \mathbf{Z}/(q-1)\mathbf{Z}$ est cyclique d'ordre q-1. Soit $g \in \mathbf{F}_q^{\times}$ un générateur. Considérons alors l'isomorphisme

$$(x \longmapsto gx) \in GL(\mathbf{F}_q).$$

Vu comme une permutation, il s'agit du cycle $(1\ g\ g^2\ \cdots\ g^{q-2})\in\mathfrak{S}(\mathbf{F}_q)$. Sa longueur vaut q-1, donc sa signature vaut $(-1)^q=-1$ car, comme l'entier p est impair, l'entier $q=p^d$ est impair. Ainsi le morphisme δ n'est pas trivial ce qui donne la conclusion.

Vincent Beck, Jérôme Malick et Gabriel Peyré. Objectif Agrégation. 2e édition. H&K, 2005.