Συναρτήσεις Εφαρμογές Κυρτότητας

Κωνσταντίνος Λόλας

 10^o ΓΕΛ Θεσσαλονίκης

Δίνεται η συνάρτηση $f(x) = \ln x - \frac{1}{x}$

- Να δείξετε ότι η f είναι κοίλη.

Δίνεται η συνάρτηση $f(x) = \ln x - \frac{1}{x}$

- Να δείξετε ότι η f είναι κοίλη.
- Να λύσετε την ανίσωση $f'(x^2+1) < 2$
- Να αποδείξετε ότι για κάθε $x_0>0$, η C_f και η εφαπτομένη της στο

Δίνεται η συνάρτηση $f(x) = \ln x - \frac{1}{x}$

- Να δείξετε ότι η f είναι κοίλη.
- Να λύσετε την ανίσωση $f'(x^2+1) < 2$
- Να αποδείξετε ότι για κάθε $x_0>0$, η C_f και η εφαπτομένη της στο $M(x_0, f(x_0))$ έχουν ένα μόνο κοινό σημείο

Δίνεται η συνάρτηση $f(x) = \ln x - \frac{1}{x}$

- Να δείξετε ότι η f είναι κοίλη.
- Να λύσετε την ανίσωση $f'(x^2+1) < 2$
- Να αποδείξετε ότι για κάθε $x_0>0$, η C_f και η εφαπτομένη της στο $M(x_0, f(x_0))$ έχουν ένα μόνο κοινό σημείο
- Να βρείτε την εφαπτόμενη στη γραφική παράσταση της f στο $x_0=1$

Δίνεται η συνάρτηση $f(x) = \ln x - \frac{1}{x}$

- Nα δείξετε ότι η f είναι κοίλη.
- Nα λύσετε την ανίσωση $f'(x^2+1) < 2$
- Να αποδείξετε ότι για κάθε $x_0>0$, η C_f και η εφαπτομένη της στο $M(x_0, f(x_0))$ έχουν ένα μόνο κοινό σημείο
- Να βρείτε την εφαπτόμενη στη γραφική παράσταση της f στο $x_0=1$
- 5

Δίνεται η συνάρτηση $f(x) = \ln x - \frac{1}{x}$

- Nα δείξετε ότι η f είναι κοίλη.
- Nα λύσετε την ανίσωση $f'(x^2+1) < 2$
- Να αποδείξετε ότι για κάθε $x_0>0$, η C_f και η εφαπτομένη της στο $M(x_0, f(x_0))$ έχουν ένα μόνο κοινό σημείο
- Να βρείτε την εφαπτόμενη στη γραφική παράσταση της f στο $x_0=1$
- 5 f Q Να δείξετε ότι $f(x)-2x\leq -3$, για κάθε x>0

Δίνεται η συνάρτηση $f(x) = \ln x - \frac{1}{x}$

- Να δείξετε ότι η f είναι κοίλη.
- Nα λύσετε την ανίσωση $f'(x^2+1) < 2$
- Να αποδείξετε ότι για κάθε $x_0>0$, η C_f και η εφαπτομένη της στο $M(x_0, f(x_0))$ έχουν ένα μόνο κοινό σημείο
- Να βρείτε την εφαπτόμενη στη γραφική παράσταση της f στο $x_0=1$
- 5 f Q Να δείξετε ότι $f(x)-2x\leq -3$, για κάθε x>0
 - Na lúsete thu exiswsh $\frac{3+f(x)}{x}=2$

Δίνεται η συνάρτηση $f(x) = \ln x - \frac{1}{x}$

- Nα δείξετε ότι η f είναι κοίλη.
- Nα λύσετε την ανίσωση $f'(x^2+1) < 2$
- Να αποδείξετε ότι για κάθε $x_0>0$, η C_f και η εφαπτομένη της στο $M(x_0, f(x_0))$ έχουν ένα μόνο κοινό σημείο
- Να βρείτε την εφαπτόμενη στη γραφική παράσταση της f στο $x_0=1$
- 5 **①** Να δείξετε ότι $f(x) - 2x \le -3$, για κάθε x > 0
 - Na lúsete thu exiswsh $\frac{3+f(x)}{x}=2$
- 6

Δίνεται η συνάρτηση $f(x) = \ln x - \frac{1}{x}$

- Nα δείξετε ότι η f είναι κοίλη.
- Nα λύσετε την ανίσωση $f'(x^2+1) < 2$
- Να αποδείξετε ότι για κάθε $x_0>0$, η C_f και η εφαπτομένη της στο $M(x_0, f(x_0))$ έχουν ένα μόνο κοινό σημείο
- Να βρείτε την εφαπτόμενη στη γραφική παράσταση της f στο $x_0=1$
- 5 **①** Να δείξετε ότι $f(x) - 2x \le -3$, για κάθε x > 0
 - Na lúsete thu exiswsh $\frac{3+f(x)}{x}=2$
- **1** Να δείξετε ότι $f(x^2+1)+1 < 2x^2$, για κάθε $x \in \mathbb{R}$ 6

Δίνεται η συνάρτηση $f(x) = \ln x - \frac{1}{x}$

- Nα δείξετε ότι η f είναι κοίλη.
- Nα λύσετε την ανίσωση $f'(x^2+1) < 2$
- Να αποδείξετε ότι για κάθε $x_0>0$, η C_f και η εφαπτομένη της στο $M(x_0, f(x_0))$ έχουν ένα μόνο κοινό σημείο
- Να βρείτε την εφαπτόμενη στη γραφική παράσταση της f στο $x_0=1$
- 5 **①** Να δείξετε ότι $f(x) - 2x \le -3$, για κάθε x > 0
 - Na lúsete thu exiswsh $\frac{3+f(x)}{x}=2$
- 1 Να δείξετε ότι $f(x^2+1)+1 < 2x^2$, για κάθε $x \in \mathbb{R}$ 6
 - Nα λύσετε την εξίσωση $f(e^x) 2e^x = -3$

Δίνεται η συνάρτηση $f(x) = e^x + x^2$.

- Να δείξετε ότι η f είναι κυρτή.

Δίνεται η συνάρτηση $f(x) = e^x + x^2$.

- Να δείξετε ότι η f είναι κυρτή.
- Να λύσετε τις εξισώσεις:

Δίνεται η συνάρτηση $f(x) = e^x + x^2$.

- Να δείξετε ότι η f είναι κυρτή.
- Να λύσετε τις εξισώσεις:
 - **1** f'(f(x)-x)=2+e

Δίνεται η συνάρτηση $f(x) = e^x + x^2$.

- Να δείξετε ότι η f είναι κυρτή.
- Να λύσετε τις εξισώσεις:
 - f'(f(x) x) = 2 + e
 - $e^{\eta\mu x} = \eta\mu x + \sigma v \nu^2 x$

Δίνεται η συνάρτηση $f(x) = e^x + x^2$.

- Να δείξετε ότι η f είναι κυρτή.
- 2 Να λύσετε τις εξισώσεις:

$$f'(f(x) - x) = 2 + e$$

$$e^{\eta\mu x} = \eta\mu x + \sigma v \nu^2 x$$

Να λύσετε τις ανισώσεις:

$$e^x(x^2+x-1) > -1$$

$$e^{x-1} - 3x + 1 > 0$$

Δίνεται η συνάρτηση $f(x) = e^x + x^2$.

- Να δείξετε ότι η f είναι κυρτή.
- 2 Να λύσετε τις εξισώσεις:

$$f'(f(x) - x) = 2 + e$$

$$e^{\eta\mu x} = \eta\mu x + \sigma v \nu^2 x$$

3 Να λύσετε τις ανισώσεις:

$$e^x(x^2+x-1) > -1$$

$$e^{x-1} - 3x + 1 > 0$$

Δίνεται η συνάρτηση $f(x) = e^x + x^2$.

- Να δείξετε ότι η f είναι κυρτή.
- 2 Να λύσετε τις εξισώσεις:
 - **1** f'(f(x) x) = 2 + e
 - $e^{\eta\mu x} = \eta\mu x + \sigma\nu\nu^2 x$
- 3 Να λύσετε τις ανισώσεις:
 - $e^x(x^2+x-1) > -1$
 - $e^{x-1} 3x + 1 > 0$

Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση με $f(\mathbb{R}) = \mathbb{R}$, η οποία είναι παραγωίσιμη, γνησίως αύξουσα και κυρτή. Επιπλέον είναι f(0) = 2 και f'(0) = 1.

- Nα λύσετε την εξίσωση $f(x) = 2 + x x^2$

Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση με $f(\mathbb{R}) = \mathbb{R}$, η οποία είναι παραγωίσιμη, ννησίως αύξουσα και κυρτή. Επιπλέον είναι f(0) = 2 και f'(0) = 1.

- Να λύσετε την εξίσωση $f(x) = 2 + x x^2$
- Να υπολογίσετε το $\lim_{x\to 0} \frac{1}{f(x)-(x+2)}$

Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση με $f(\mathbb{R}) = \mathbb{R}$, η οποία είναι παραγωίσιμη, ννησίως αύξουσα και κυρτή. Επιπλέον είναι f(0) = 2 και f'(0) = 1.

- Να λύσετε την εξίσωση $f(x) = 2 + x x^2$
- Να υπολογίσετε το $\lim_{x \to 0} \frac{1}{f(x) (x+2)}$
- Nα λύσετε την εξίσωση f(f(x-2)-x)=2

Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση με $f(\mathbb{R}) = \mathbb{R}$, η οποία είναι παραγωίσιμη, γνησίως αύξουσα και κυρτή. Επιπλέον είναι f(0) = 2 και f'(0) = 1.

- Να λύσετε την εξίσωση $f(x) = 2 + x x^2$
- Να υπολογίσετε το $\lim_{x \to 0} \frac{1}{f(x) (x+2)}$
- Να λύσετε την εξίσωση f(f(x-2)-x)=2
- Να δείξετε ότι η f αντιστρέφεται και $f^{-1}(x) \leq x-2$, για κάθε $x \in \mathbb{R}$

Δίνεται η συνάρτηση $f(x) = 3x^5 - 5x^4$.

- Να δείξετε ότι η C_f έχει ακριβώς ένα σημείο καμπής.

Δίνεται η συνάρτηση $f(x) = 3x^5 - 5x^4$.

- Να δείξετε ότι η C_f έχει ακριβώς ένα σημείο καμπής.
- Να λύσετε την ανίσωση $f'(x^2 + 2) > f'(2x^2 + 1)$

Δίνεται η συνάρτηση $f(x) = 3x^5 - 5x^4$.

- Να δείξετε ότι η C_f έχει ακριβώς ένα σημείο καμπής.
- Να λύσετε την ανίσωση $f'(x^2+2)>f'(2x^2+1)$
- Nα δείξετε ότι $f(x) + 5x \le 3$ για κάθε $x \le 1$

Δίνεται η συνάρτηση $f(x) = 3x^5 - 5x^4$.

- Να δείξετε ότι η C_f έχει ακριβώς ένα σημείο καμπής.
- Να λύσετε την ανίσωση $f'(x^2+2)>f'(2x^2+1)$
- Nα δείξετε ότι f(x) + 5x < 3 για κάθε x < 1
- Να λύσετε:

Δίνεται η συνάρτηση $f(x) = 3x^5 - 5x^4$.

- Να δείξετε ότι η C_f έχει ακριβώς ένα σημείο καμπής.
- Να λύσετε την ανίσωση $f'(x^2 + 2) > f'(2x^2 + 1)$
- Nα δείξετε ότι $f(x) + 5x \le 3$ για κάθε $x \le 1$
- Να λύσετε:
 - **1** την εξίσωση f(x) = 3 5x

Δίνεται η συνάρτηση $f(x) = 3x^5 - 5x^4$.

- Να δείξετε ότι η C_f έχει ακριβώς ένα σημείο καμπής.
- Να λύσετε την ανίσωση $f'(x^2 + 2) > f'(2x^2 + 1)$
- Nα δείξετε ότι $f(x) + 5x \le 3$ για κάθε $x \le 1$
- Να λύσετε:
 - **1** την εξίσωση f(x) = 3 5x
 - 2 την ανίσωση 3-f(x)<5x

Δίνεται η συνάρτηση $f(x) = 3x^5 - 5x^4$.

- $\ensuremath{\text{\textcircled{1}}}$ Να δείξετε ότι η C_f έχει ακριβώς ένα σημείο καμπής.
- ② Να λύσετε την ανίσωση $f'(x^2+2) > f'(2x^2+1)$
- $oldsymbol{3}$ Να δείξετε ότι $f(x)+5x\leq 3$ για κάθε $x\leq 1$
- Φ Να λύσετε:
 - $\label{eq:force_force} \text{ in this exists } f(x) = 3 5x$
 - $\ \ \, \hbox{thn anisoms} \, 3-f(x)<5x$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 5/13

Δίνεται η συνάρτηση $f(x) = 3x^5 - 5x^4$.

- Να δείξετε ότι η C_f έχει ακριβώς ένα σημείο καμπής.
- Να λύσετε την ανίσωση $f'(x^2 + 2) > f'(2x^2 + 1)$
- Nα δείξετε ότι f(x) + 5x < 3 για κάθε x < 1
- Να λύσετε:
 - **1** την εξίσωση f(x) = 3 5x
 - 2 την ανίσωση 3-f(x)<5x
- Nα δείξετε ότι η $f(e^x x) + 5e^x > 5x + 3$
- Για κάθε $x \geq 1$, να δείξετε ότι $x f\left(rac{1}{x}
 ight) \leq 3x 5$

Δίνεται η συνάρτηση $f(x)=arepsilon \varphi x$, $x\in A=\left(-rac{\pi}{2},rac{\pi}{2}
ight)$

- Να μελετήσετε τη συνάρτηση f ως προς την κυρτότητα και τα σημεία καμπής

Δίνεται η συνάρτηση $f(x) = \varepsilon \varphi x$, $x \in A = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

- Να μελετήσετε τη συνάρτηση f ως προς την κυρτότητα και τα σημεία καμπής
- Να δείξετε ότι $\eta \mu x < x < arepsilon arphi x$, για κάθε $x \in \left(0, \frac{\pi}{2}\right)$

Δίνεται η συνάρτηση $f(x)=arepsilon \varphi x$, $x\in A=\left(-rac{\pi}{2},rac{\pi}{2}
ight)$

- Να μελετήσετε τη συνάρτηση f ως προς την κυρτότητα και τα σημεία καμπής
- Να δείξετε ότι $\eta \mu x < x < arepsilon arphi x$, για κάθε $x \in \left(0, \frac{\pi}{2}\right)$
- 3 Να βρείτε το $\lim_{x\to 0} \frac{\ln x}{\varepsilon \varphi x x}$

Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση δύο φορές παραγωγίσιμη με f''(1) = 1, συνεχή δεύτερη παράγωγο και ισχύει $f''(x) \neq 0$, για κάθε $x \in \mathbb{R}$.

- Να αποδείξετε ότι η f δεν έχει σημεία καμπής και είναι κυρτή Aν f(1) = 1 και f'(1) = 1, τότε:

Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση δύο φορές παραγωγίσιμη με f''(1) = 1, συνεχή δεύτερη παράγωγο και ισχύει $f''(x) \neq 0$, για κάθε $x \in \mathbb{R}$.

- Να αποδείξετε ότι η f δεν έχει σημεία καμπής και είναι κυρτή Aν f(1) = 1 και f'(1) = 1, τότε:
- Να υπολογίσετε τα όρια

Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση δύο φορές παραγωγίσιμη με f''(1) = 1, συνεχή δεύτερη παράγωγο και ισχύει $f''(x) \neq 0$, για κάθε $x \in \mathbb{R}$.

- Να αποδείξετε ότι η f δεν έχει σημεία καμπής και είναι κυρτή Aν f(1) = 1 και f'(1) = 1, τότε:
- Να υπολογίσετε τα όρια
 - $\lim_{x \to 1} \frac{\ln(x-1)}{f'(x) f'(x^2)}$

Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση δύο φορές παραγωγίσιμη με f''(1) = 1, συνεχή δεύτερη παράγωγο και ισχύει $f''(x) \neq 0$, για κάθε $x \in \mathbb{R}$.

- Να αποδείξετε ότι η f δεν έχει σημεία καμπής και είναι κυρτή Aν f(1) = 1 και f'(1) = 1, τότε:
- Να υπολογίσετε τα όρια
 - $\lim_{x \to 1} \frac{\ln(x-1)}{f'(x) f'(x^2)}$
 - $\lim_{x \to +\infty} f(x)$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 7/13

Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση δύο φορές παραγωγίσιμη με f''(1) = 1, συνεχή δεύτερη παράγωγο και ισχύει $f''(x) \neq 0$, για κάθε $x \in \mathbb{R}$.

- Να αποδείξετε ότι η f δεν έχει σημεία καμπής και είναι κυρτή Aν f(1) = 1 και f'(1) = 1, τότε:
- Να υπολογίσετε τα όρια

 - $\lim_{x \to +\infty} f(x)$
- Nα λύσετε την εξίσωση $f(x) + f'(x-1) = f'(\ln x) + x$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 7/13

Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση με f(0) = 1, η οποία είναι παραγωγίσιμη, κυρτή και ισχύει $f(x) \geq 1$, για κάθε $x \in \mathbb{R}$.

- Να μελετήσετε την f ως προς την μονοτονία Aν επιπλέον f(1) = f'(1) = 2, τότε:

Λόλας (10^o ΓΕΛ) Συναρτήσεις 8/13

Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση με f(0) = 1, η οποία είναι παραγωγίσιμη, κυρτή και ισχύει $f(x) \geq 1$, για κάθε $x \in \mathbb{R}$.

- Να μελετήσετε την f ως προς την μονοτονία Aν επιπλέον f(1) = f'(1) = 2, τότε:
- Nα λύσετε την εξίσωση f(x) + f(x+1) = 2x + 3

Συναρτήσεις 8/13

Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση με f(0) = 1, η οποία είναι παραγωγίσιμη, κυρτή και ισχύει $f(x) \geq 1$, για κάθε $x \in \mathbb{R}$.

- Να μελετήσετε την f ως προς την μονοτονία Aν επιπλέον f(1) = f'(1) = 2, τότε:
- Nα λύσετε την εξίσωση f(x) + f(x+1) = 2x + 3
- Nα βρείτε το $\lim_{x\to 1} \frac{1}{f\left(f(x)\right)-f(2x)}$

Συναρτήσεις 8/13

Εστω $f:\mathbb{R}\to\mathbb{R}$ μια συνάρτηση η οποία είναι κυρτή. Να δείξετε ότι

$$f(e^x)-f(x)>(e^x-x)f'(x)$$
, για κάθε $x\in\mathbb{R}$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 9/13

Εστω $f:[0,1] \to \mathbb{R}$ μια παραγωγίσιμη συνάρτηση με f(0)=f(1)=0 η οποία είναι κυρτή. Να δείξετε ότι:

- Υπάρχει μοναδικό $\xi \in (0,1)$ τέτοιο ώστε $f'(\xi)=0$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 10/13

Εστω $f:[0,1] \to \mathbb{R}$ μια παραγωγίσιμη συνάρτηση με f(0)=f(1)=0 η οποία είναι κυρτή. Να δείξετε ότι:

- Υπάρχει μοναδικό $\xi \in (0,1)$ τέτοιο ώστε $f'(\xi)=0$
- ② f(x) < 0, για κάθε $x \in (0,1)$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 10/13

Εστω $f:\mathbb{R}\to\mathbb{R}$ μια συνάρτηση με f(0)=0 η οποία είναι παραγωγίσιμη με f'(0)=1 και κυρτή. Αν $\alpha>1$, να δείξετε ότι η εξίσωση

$$\frac{f'(\alpha)-1}{x} + \frac{f(2\alpha)-\alpha}{x-1} + \frac{f(\alpha^2)-\alpha}{x-2} = 0$$

έχει ακριβώς δύο ρίζες στο διάστημα (0,2).

Λόλας (10^{o} ΓΕΛ) Συναρτήσεις 11/13

Εστω $f:(0,+\infty)\to\mathbb{R}$ μια συνάρτηση η οποία είναι παραγωγίσιμη, ννησίως αύξουσα και κοίλη

$$-1 < f(1) < 1 + \sigma \upsilon \nu 1 - \sigma \upsilon \nu 2$$

Συναρτήσεις 12/13

Εστω $f:(0,+\infty)\to\mathbb{R}$ μια συνάρτηση η οποία είναι παραγωγίσιμη, ννησίως αύξουσα και κοίλη

- ② Αν f(2) = 1 και f'(1) = 2, να δείξετε ότι

$$-1 < f(1) < 1 + \sigma \upsilon \nu 1 - \sigma \upsilon \nu 2$$

Συναρτήσεις 12/13

Εστω $f:[0,+\infty] \to \mathbb{R}$ μια συνάρτηση με f(0)=0 η οποία είναι κυρτή. Να δείξετε ότι:

- ① f(x+1) f(x) > f'(x), για κάθε x > 0

$$\frac{f(\alpha)}{\alpha} - \frac{f(\alpha+1)}{\alpha+1} = \frac{\alpha-2}{\alpha^2+\alpha}$$

Εστω $f:[0,+\infty] \to \mathbb{R}$ μια συνάρτηση με f(0)=0 η οποία είναι κυρτή. Να δείξετε ότι:

- ① f(x+1) f(x) > f'(x), για κάθε x > 0
- Η συνάρτηση g(x) = (x+1)f(x) xf(x+1) x + 2, $x \ge 0$ είναι γνησίως φθίνουσα

$$\frac{f(\alpha)}{\alpha} - \frac{f(\alpha+1)}{\alpha+1} = \frac{\alpha-2}{\alpha^2+\alpha}$$

Εστω $f:[0,+\infty] \to \mathbb{R}$ μια συνάρτηση με f(0)=0 η οποία είναι κυρτή. Να δείξετε ότι:

- ① f(x+1) f(x) > f'(x), για κάθε x > 0
- Q Η συνάρτηση q(x) = (x+1)f(x) xf(x+1) x + 2, x > 0 είναι γνησίως φθίνουσα
- $(3) f(x) < \frac{2}{3} f\left(\frac{3x}{2}\right)$, για κάθε x>0

$$\frac{f(\alpha)}{\alpha} - \frac{f(\alpha+1)}{\alpha+1} = \frac{\alpha-2}{\alpha^2+\alpha}$$

Εστω $f:[0,+\infty]\to\mathbb{R}$ μια συνάρτηση με f(0)=0 η οποία είναι κυρτή. Να δείξετε ότι:

- ① f(x+1) f(x) > f'(x), για κάθε x > 0
- Q Η συνάρτηση q(x) = (x+1)f(x) xf(x+1) x + 2, x > 0 είναι γνησίως φθίνουσα
- $(3) f(x) < \frac{2}{3} f\left(\frac{3x}{2}\right)$, για κάθε x>0
- \P Υπάρχει μοναδικό $\alpha \in (0,2)$ τέτοιο ώστε

$$\frac{f(\alpha)}{\alpha} - \frac{f(\alpha+1)}{\alpha+1} = \frac{\alpha-2}{\alpha^2 + \alpha}$$