Vector Spaces

September 2020

Bases and dimension of a vector space

Bases of a vector space

Definition (basis): Let V be a vector space. Then the subset $A = \{v_1, v_2, \dots, v_t\}$ of V is said to be a basis for V if:

- 1. A is a linearly independent set of vectors;
- 2. A spans V, that is, $V = \langle A \rangle$.

Example: The set $A = \{(1,1), (1,-2)\}$ is a basis of \mathbb{R}^2 .

- $1. \ k_1(1,1)+k_2(1,-2)=(0,0) \Leftrightarrow \left\{ \begin{array}{l} k_1+k_2=0 \\ k_1-2k_2=0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} k_2=0 \\ k_1=0 \end{array} \right. \text{, that is, A is linearly independent;}$
- 2. A spans \mathbb{R}^2 , because for any $(x,y) \in \mathbb{R}^2$ there are $k_1,k_2 \in \mathbb{R}$ such that $k_1(1,1)+k_2(1,-2)=(x,y)$. Indeed $\begin{cases} k_1+k_2=x\\ k_1-2k_2=y \end{cases} \Leftrightarrow \begin{cases} k_2=(x+y)/3\\ k_1=(2x-y)/3 \end{cases}.$

Example: The set $A = \{(1,1,2), (1,-2,0), (2,-1,2)\}$ is not a basis of \mathbb{R}^3 , because A is linearly dependent.

In fact, (1,1,2) = -(1,-2,0) + (2,-1,2), that is, the first is a linear combination of the others.

Theorem: If V is a vector space, then a smallest spanning set is a basis of V.

Example: The set $B = \{(1, 1, 2), (1, -2, 0), (1, -1, 1)\}$ is a basis of \mathbb{R}^3 .

In fact

$$k_1(1,1,2) + k_2(1,-2,0) + k_3(1,-1,1) = (0,0,0) \Leftrightarrow$$

$$\begin{cases} k_1 + k_2 + k_3 = 0 \\ k_1 - 2k_2 - k_3 = 0 \\ 2k_1 + k_3 = 0 \end{cases} \Leftrightarrow \begin{cases} -k_1 + k_2 = 0 \\ 3k_1 - 2k_2 = 0 \\ k_3 = -2k_1 \end{cases} \Leftrightarrow \begin{cases} k_1 = k_2 \\ k_1 = 0 \\ k_3 = -2k_1 \end{cases}$$

That is, the vector equation has the unique solution $k_1 = k_2 = k_3 = 0$.

In addition, B spans \mathbb{R}^3 . In fact, any $(x,y,z) \in \mathbb{R}^3$ is a linear combination of the vectors of B. That is, the linear system $k_1(1,1,2) + k_2(1,-2,0) + k_3(1,-1,1) = (x,y,z)$ in variables k_1,k_2,k_3 is possible for any values of $x,y,z \in \mathbb{R}$.

Note that $B \cup \{v\}$, for any $v \in \mathbb{R}^3$, is not a basis of \mathbb{R}^3 . In fact, $B \cup \{v\}$ is linearly dependent.

Dimension of a vector space

Theorem: Consider V a vector space with a basis $B = \{v_1, v_2, \dots, v_n\}$ of n vectors. Then any set of n+1vectors is linearly dependent. Besides that, any basis of V has exactly n vectors.

Example: The set $C = \{(1,0,0), (0,1,0), (0,0,1)\}$ is a basis of \mathbb{R}^3 , because C is linearly independent and any (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).

The set $D = C \cup \{(-1, 2, 0)\}$ is not a basis of \mathbb{R}^3 . In fact,

$$k_1(1,0,0) + k_2(0,1,0) + k_3(0,0,1) + k_4(-1,2,0) = (0,0,0)$$

represents a system, whose expanded matrix is

$$\left[\begin{array}{ccc|cccc}
1 & 0 & 0 & -1 & | & 0 \\
0 & 1 & 0 & 2 & | & 0 \\
0 & 0 & 1 & 0 & | & 0
\end{array}\right]$$

which is linearly dependent, that is, there are other solutions besides the null solution.

Also the space generated for $S = \{(1,0,0), (0,1,0)\} \subset C$ is its own subspace that represents a plane, it is not \mathbb{R}^3 . Indeed, the vectors (x,y,z) that $(x,y,z)=k_1(1,0,0)+k_2(0,1,0)$ are those for which the system whose expanded matrix

$$\left[\begin{array}{ccc|c}
1 & 0 & | & x \\
0 & 1 & | & y \\
0 & 0 & | & z
\end{array}\right]$$

is possible. This happens if z = 0, that is, $\langle S \rangle = \{(x, y, 0) : x, y \in \mathbb{R}\}.$

Definition (dimension): The number n of vectors of any basis of vector space V is called the dimension of V and is denoted by dim(V).

Examples:

- We say that \mathbb{R}^2 is a space two-dimensional because any of its bases has 2 vectors of \mathbb{R}^2 ;
- We say that \mathbb{R}^3 is a space three-dimensional because any of its bases has 3 vectors of \mathbb{R}^3 .

Example: The set $A = \{(1,1), (1,-2)\}$ is a basis of \mathbb{R}^2 and the set $C = \{(1,0), (0,1)\}$ is other basis of \mathbb{R}^2 , called the canonical basis of \mathbb{R}^2 .

Furthermore, all bases of \mathbb{R}^2 are sets of two linearly independent vectors of \mathbb{R}^2 , so \mathbb{R}^2 has dimension 2. Note that:

- $\mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}$ has dimension 2 and the generic vector (x,y) has 2 free variables.
- $\mathbb{R}^3 = \{(x, y, z) : x, y, z \in \mathbb{R}\}$ has dimension 3 and the generic vector (x, y, z) has 3 free variables.

Generally, the dimension of a vector space is equal to the number of free variables in its generic vector.

Example: The set $A = \{(1, -1, 0), (2, 0, 1)\}$ spans

$$\{(x,y,z)\in\mathbb{R}^3:(x,y,z)=k_1(1,-1,0)+k_2(2,0,1)\}.$$

In fact, the condition that defines $\langle A \rangle$ represents a system whose expanded matrix is:

$$\begin{bmatrix} 1 & 2 & | & x \\ -1 & 0 & | & y \\ 0 & 1 & | & z \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & | & x \\ 0 & 2 & | & y+x \\ 0 & 1 & | & z \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & | & x \\ 0 & 2 & | & y+x \\ 0 & 0 & | & 2z-x-y \end{bmatrix}$$

This system is possible, if x + y - 2z = 0. This means that $\langle A \rangle = \{(2z - y, y, z) : y, z \in \mathbb{R}\}$. The generic vector has 2 free variables and therefore $\langle A \rangle$ has dimension 2.

Flora Silva Paula Maria Barros