CCE Proficience course, IISc. 2022

Course name: AIML 2022 Project Report

Title: Image compression using SVD, PCA, K-mean algorithm

Submitted by

Parinita Bora Shriti Singh

Date of Submission: 29/11/2022

Contents	ii
CHAPTER 1 Introduction and the current experiment	3
1.2 The Techniques, data and scope	3
1.2 A brief overview of the methods	4
1.3 The implementation and results	4
CHAPTER 2 Future Scope. 2.1 Future scope:	
References	9

1.1 Data compression in machine learning application

For training a machine learning model when there is large amount of unlabelled data, several unsupervised learning algorithms can helps in the understanding of the data.

- Unsupervised learning also can help in dimensionality reduction.
- Dimensionality reduction again can help in data visualization
- When the data is reduced, the complexity of the model can be reduced, so as the training time.

1.2 The Techniques, data and scope

Three unsupervised algorithms namely Singular value decomposition (SDV), Principal component analysis (PCA) and K-mean are experimented as a part of this work.

The algorithms are applied as a part of pre-processing of task, with goal for experimental study on data reduction or compression for high resolution image.

The data file is with dimension 570X 985 x 3, image of Cosmic object, Captured by James Webb Space Telescope (publicly available in NASA website)

Figure 1 Sample data file of image dimension 570X 985 x 3

1.2 A brief overview of the methods

Method Singular Value	Inventor	Purpose	General overview
Singular Value Decomposition(SVD) - https://en.wikipedia.org/wiki /Singular_value_decompositi on	Independently Eugenio Beltrami, Camille Jordon over 100 yrs back	To predict a set of optimal factors.	Original U S V* maximization paymetric paymetric paymetric
Principal comonent Analysis(PCA) - https://en.wikipedia.org/wiki /Principal_component_analy sis reduction	Karl Pearson in 1901, later in 1930, developped by Harold Hotelling	Dimnetionalit y reduction	x1 x0
K-Means clustering - https://en.wikipedia.org/wiki /K-means_clustering	First used by James MacQueen in 1967 ,used by Steinhaus in 1956	In pulse code modulation(b y Steinhaus)	

The Advantages:

- 1. **SVD**: SDV simplifies data, can remove noise also it can be used for coloured image to segregation components for computational efficiency
- 2. **PCA**: Dimensionality reduction is the biggest advantage preserving most significant data. PCA can also used in data exploratory analysis and visualization
- 3. **K-Mean**: Simplicity and guarantees convergence. It provides good representation of reduced features/ data.

1.3 The implementation and results

The algorithms are implemented in python. The Python libraries scikitlearn, matplotlib libraries are used for visualizations. The details about the project is stored in the readme.md file in Github repository https://github.coom/Gitpabora/Data reduction compression .The source code and results are shared in google colab bnotepads links in table 2.

Table 1 Detailed implemenatation

PCA	https://drive.google.com/file/d/1_pBJL6v9sRRetdD0tLqvmihOVvtvivf8/view?usp=share_link
SVD	https://colab.research.google.com/drive/1eG843MHVTwohPAqRmsQa8JToxPNJZR1M?usp=sharelink
K- Mean	https://drive.google.com/file/d/1VFxHAb34riaiYDiqaN0uYt8Jw4hqJbUk/view?usp=sharing

Table 2 The Algorithms flow

PCA	SVD	K-Mean
Step1 . Calculate the	Step1 . getting three	Step 1. An optimal number of
covariance matrix of the data	component matrices with Red ,	clusters (K) is chosen.
	Blue and green constituents	
step2. Extract the eigenvectors		Step 2 . k number of points
and the eigenvalues of that	Step2 . Applying SVD on each of	"centroids" are initialized
matrix	the three components to	randomly within the data area.
	generate three vectors for	
Step3 . Select the number of	each of the matrices	Step 3 . Each data or
desired dimensions and filter		observation is attributed to
the eigenvectors to match it,	Step3 . Preserving only K i.e.	own closest centroid.
sorting them by their	Selecting k columns from U	
associated eigenvalue	matrix and k rows from VT	Step 4. Updating is done for
	matrix, and resetting rest to	the centroids to hold the value
Step4 . Multiply the original	zero	corresponding to the centre of
space by the feature vector	Step4 . Reconstructing the	its all attributed observations.
generated in the previous step.	coloured components from U	
	and V	Step 5 . Steps 3-4 are repeated
	Step5 . Final image is formed by	a number of times / until all of
	oncatenating the three	the centroids are prominent.
	components	

The measurement for compression or data reduction:

- The compression ratio is calculated using the below formula:

 Compression ratio = ((original_number_of_image_element -new_number_of_values after applying the algorithm)/original_number_of_image element)*100.
- The same is experimented for varying parameters like number of principal components in case of PCA, number of component selected in case of SVD and number of clusters in case of K-mean respectively.

Table 4 The results & Observations (Note:all numeric results are rounded to 2decimal places)

#components(Principal	Compression ratio (%)	Compression ratio (%)	Compression ratio (%)
component) /component	PCA	SVD	K-Mean
SVD/ cluster for K-mean			
10	99.08	97.23	98.25
20	98.15	94.46	96.49
30	97.23	91.69	94.74
40	96.30	88.91	92.98
50	95.38	86.14	91.23
60	94.46	83.37	89.47
70	93.53	80.60	87.72
80	92.61	77.83	85.96
90	91.69	75.06	84.21
100	90.76	72.29	82.46

Table 5 Reconstructed Images for PCA & SVD , Kmean clustering

#components(Principal component) /component SVD/ cluster for K-mean	PCA reconstructed image	Reconstructed Image after SVD	K-mean Scatter plot
10	Percentage Reduction in Image Size for components =10	200 - 200 - 400 - 800 - 804	sctterplot for n_cluster is = 10 175 150 125 100 25 50 75 100 125 125 126 127 128 129 129 129 120 121 121 120 121 121 122 123 124 125 126 127 128 128 128 128 128 128 128 128 128 128
20	Percentage Reduction in Image Size for components =20	200 200 400 800 800	sctterplot for n_cluster is =20 175 150 125 25 50 75 100 125 130 175 260
30	Percentage Reduction in Image Size for components =30		sctterplot for n_cluster is =30 175 130 135 100 73 20 23 25 50 75 160 125 160 175 260
40	Percentage Reduction in Image Size for components =40	0 20 20 40 50 50 50 50 50 50 50 50 50 50 50 50 50	sctterplot for n cluster is =40 175 130 125 100 75 25 50 75 1de 125 130 175 200
50	Percentage Reduction in Image Size for components =50		sctterplot for n_cluster is =50 175 100 125 100 75 25 25 50 75 140 125 140 125 250 260
60	Percentage Reduction in Image Size for components =60		sctterplot for n_cluster is =60 175 186 129 100 75 25 25 50 75 160 125 150 175 260
70	Percentage Reduction in Image Size for components =70	200	sctterplot for n_cluster is =70 175 130 125 100 75 25 25 25 26 27 100 175 200 175 200

Observations:

- 1. Note: The image for K mean clustering is placed only showing the cluster formation, not comparable in terms of reconstruction.
- 2. In both the algorithms for PCA and SVD as the Number of principal component or K the compression ratio decreases.
- 2. Reconstruction for PCA is better at a lower value of number of principal components
- 3. The compression ratio higher in PCA for the same value of component in PCA and K value in SVD

2.1 Future scope:

- 1. Exploring other data reduction techniques for Machine learning.
- 2. Most importantly
- (a) Experimenting with large dataset and setting up github CI
- (b) test for the measures of these algorithms in terms of the impact on the model performance (c) when which algorithm is suitable.

The applicability which algorithm is most appropriate can only be experimented after evaluating accuracy of the model for the pre-treated data by these algorithms

Other References: 1) https://bair.berkeley.edu/blog/2019/09/19/bit-swap/

Omar H.D et.al. (2020). Algeria Image Compression using PCA, 2021, 1–11. 2020 International Conference on Mathematics and Information Technology

 ${\color{red} Blog~\underline{https://towardsdatascience.com/pca-102-should-you-use-pca-how-many-components-to-use-how-to-interpret-them-da0c8e3b11f0}$

https://courses.grainger.illinois.edu/cs357/fa2020/assets/lectures/complete-slides/18-PCA.pdf

https://scikit-learn.org/stable/modules/clustering.html

James Fowler, , Qian Du , IEEE member , Hyper spectral Image Compression using JPEG2000 and PCA Stewart, W. G. (1993)On the early History of the Singular Value Decomposition, SIAM Review, Volume 35, Issue 4. Dec, 1993 551-556 , JTHOR, available at

https://www.math.ucdavis.edu/~saito/courses/229A/stewart-svd.pdf

Toderici, G. (2017), Full Resolution Image Compression wit Recurrent Neural Network , https://arxiv.org/pdf/1608.05148.pdf

Vieira, M.N.C.S Vasco (2012) Permutation tests to estimate significance on Principal component analysis., Technical university of Lisbon, available at https://www.researchgate.net/publication/255728363