Mikrokanonski ansambl :: Idealni plin

Mikrokanonski ansambl – ansambl (skup) sustava koji je određen sa E, N, V.

Promatramo:

• Izolirani sustav fiksnog broja čestica N, volumena V i ukupne energije E.

Općenito:

• Izolirani mikroskopski sustav teži vremenski neovisnom ravnotežnom stanju maksimalne entropije.

Makroskopsko stanje:

- Određeno je vrijednostima *E*,*N*,*V*.
- Postoji velik broj mikrostanja koje rezultiraju istim makrostanjem.
- Sva mikrostanja, koja proizvode isto makrostanje, imaju istu vjerojatnost pojavljivanja.

Određivanje fizikalnih veličina sustava:

- 1. Zbrajanje po svim mogućim mikrostanjima i usrednjavanje
 - ✓ broj je mikrostanja i za mali sustav ogroman
 - ✓ neefikasan, prezahtjevan način
- 2. Monte Carlo demon algoritam
 - ✓ uveden novi stupanj slobode demon
 - ✓ demon "interagira" sa sustavom pokušavajući promijeniti neku dinamičku varijablu i na taj način izmjenjuje energiju sa sustavom.
 - ✓ sustav ima mnogo stupnjeva slobode pa su fluktuacije energije sustava reda veličine 1/N
 - ✓ jednostavniji način
 - ✓ ne postoji matematički dokaz jednakosti s prvim načinom, ali se u praksi pokazao točnim

Oznake

- v = dinamička veličina
- dvMax= maksimalna promjena veličine v
- ES = Energija sustava
- ED = Energija demona
- dE = Promjena energije sustava prilikom mijenjanja veličine v u vTmp
- N = broj čestica
- ip = indeks čestice (index of particle)
- ran1(&idum) = random broj iz [0,1] //ran1 generator iz NumRec, idum negativan

Demon algoritam

- sljedeće korake (unutar petlje po šetačima unutar petlje po česticama) treba ponavljati sve dok se demon i sustav "dogovore" oko srednjih energija:
- 1. Nasumično odaberemo česticu i promijenimo joj v za nasumični broj iz [-dvMax ,dvMax]

```
ip = (int)(ran1(\&idum)*N); if (ip==N) ip=N-1; //ip iz {0,1,2,...,N-2,N-1} dv = (2.*ran1(&idum)-1.)*dvMax; vTmp = v + dv;
```

2. Izračunamo promjenu energije dE prilikom mijenjanja veličine v

```
dE = E(vTmp) - E(v);
```

3. Ako je promjena energije manja ili jednaka 0, sustav daje |dE| demonu i prihvaća se promjena veličine v

```
if(dE<=0) {
    ED = ED - dE;
    ES = ES + dE;
    v = vTmp; }
```

4. Ako je promjena veća od 0 i ED>=dE, demon daje energiju sustavu i prihvaća se promjena veličine v Ako je promjena veće od 0 i ED<dE, ne prihvaća se promjena veličine v pa nema promjene energije

```
if(dE>0 && ED>=dE) {
  ED = ED - dE;
  ES = ES + dE;
  v=vTmp; }
```

Korake 3. i 4. možemo zapisati kao jedan

```
if(ED>=dE) {
    ED = ED - dE;
    ES = ES + dE;
    v=vTmp;
}
```

- Ukupna energija ostaje konstantna, ED + ES = E = Const
- Demon ima ulogu posrednika koji omogućava česticama u sustavu izmjenu energije jedne s drugom bez njihove interakcije.
- Jedino ograničenje: ED>=0

Z8 Idealni plin

- a) Model idealnog plina služi samo kao jednostavan primjer, za provjeru demon algoritma, jer već znamo kako se sustav idealnog plina ponaša
- b) Idealni plin => brzine čestica jedine su značajne veličine za promatranje energije
- c) Radi jednostavnosti promatramo 1D, a uvijek je ukupna energija sustava $ES = \frac{1}{2} \sum_{ip=0}^{N-1} m_i v_i^2$
- d) Uloga demona: izmjenjuje energiju sa česticama plina dok pokušava promijeniti dinamičke varijable (željene varijable akumuliramo nakon stabilizacije, odnosno nakon nskip koraka)
 - √ bira nasumično česticu kojoj nasumično promijeni brzinu
 - ✓ dE≤0, sustav demonu predaje |dE|, nova brzina biva prihvaćena
 - ✓ dE>0 i dE≤ED, demon sustavu predaje dE, nova brzina biva prihvaćena
 - √ dE>0 i dE>ED, nema izmjene energije, ostaje stara brzina
- e) Srednja je energija demona <ED> 2 puta (N>>1) veća od srednje kinetičke energije po čestici <ES>/N

N	E	<ed></ed>	<es></es>	<es>/N</es>	<es>/(N*<ed>)</ed></es>	0.5N* <ed></ed>
10	20	4	16	1.6	0.400	20
20	20	2	18	0.9	0.450	20
40	20	1	19	0.475	0.475	20
80	20	0.5	19.5	0.24375	0.488	20
160	20	0.25	19.75	0.123438	0.494	20
320	20	0.125	19.875	0.062109	0.497	20
640	20	0.0625	19.9375	0.031152	0.498	20
1000	20	0.0400	19.9600	0.019960	0.499	20
100	10	0.2	9.8	0.098	0.490	10
100	20	0.4	19.6	0.196	0.490	20

$$\checkmark E = \frac{1}{2}NkT \implies \langle ED \rangle = kT$$

- ✓ Jedinice su odabrane kako bi radi jednostavnosti vrijedilo m=1; k=1.
- f) Ispitajte kod produciranjem nekog retka iz gornje tablice. Priložiti kod.
- g) Provjerite efikasnost uzorkovanja promatranjem prosjeka energije tijekom simulacije. Priložiti graf.

h) Distribucija energija demona

```
// Deklaracija polja za distribucije i inicijalizacija int idm=800, id; float DIS_ED[idm], dED=100; for(id=0,id<m;id++) DIS_ED[id]=0.;

// Akumulacija velicina tijekom racunanja unutar svih petlji id = (int)(ED*dED); if(id<m) DIS_ED[id]=DIS_ED[id]+1.; else printf ("skip ED: %d\t%f\n", id, ED);

// Pohrana distribucija for(id=0,id<m;id++) fprintf(fp,"%f\t%f\n", (float)id/dED, DIS_ED(id)/norma);
```

✓ Analogan algoritam vrijedi za ostale pozitivne veličine, dok je negativne potrebno pomaknuti za idm/2 (id=id+idm/2;) te one u idm/2 podijeliti sa 2 zbog načina zaokruživanja.

 In P(ED) ovisi linearno o ED s negativnim nagibom, a inverz apsolutne vrijednosti odgovara srednjoj vrijednosti energije demona (1/2.5=0.4). Napravite sljedeći fit i i ispišite rezultate fita na grafu.
 Priložiti graf.

j) Dodatni test: distribucija brzina

k) Dodatni test: distribucija kvadrata brzina

