particle swarm optimization

- >> nature inspired evolutionary algorithm to solve computationally hard optimization problems
- >> robust technique based on intelligence of swarms
- >> abstracts the working mechanism of swarms like birds, fish, etc.
- >> a swarm of 'n' particles communicate either directly or indirectly with one another using gradients
- >> each particle updates its position according to its previous experience and neighbour's experience
- >> each particle is composed of 3 vectors:
- -> x-vector current position of the particle in the search space
 - -> p-vector records the best solution found so far
- -> v-vector contains a gradient in which particle will travel ideally
- >> concept every particle is moving towards their local best, and the local bests are moving towards the global best
- >> no survival of the fittest algorithm is applied
- >> all individuals are kept as members throughout the operation

- >> basic concept is accelerating each particle toward the best position found by it so far (pbest) and the global best(gbest) obtained so far by any particle, with a random weighted acceleration each time step
- >> this is done simply by adding the v-vector to the x-vector to get another x-vector, Xi = Xi + Vi

PSQ - Stands for Particle Swarm **Optimization**

The movement of the particles is given by

$$v_{t+1} = w_t v_t + c_1 r_1 (p_t^b - x_t) + c_2 r_2 (p^g - x_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

t: iteration number

Wt : inertia weight

 r_1, r_2 : random number between 0 & 1;

 c_1, c_2 : correction factor

 p_t^b : pbest position at t iteration;

 p^g : gbest position

 v_t, x_t : velocity and position at t iteration

Maximize
$$f(X) = x_1^2 - x_1x_2 + x_2^2 + 2x_1 + 4x_2 + 3$$

where $-5 \le x_1, x_2 \le 5$

PSO Parameter Setting (used only for illustration)

Randomly chosen

Population Size = 5 $c_1 = c_2 = 1.5$

Max. Iteration = 20

Dimension of the problem = 2 lnertia weight (w) = 0.9

Iteration 1:

- Randomly chosen Velocity between 0 & 1
- Randomly Initialize Position
 between -5 & 5

Goal is to update these values ALWAYS

$$p^g$$
 (gbest) = [-----]

Iteration 1:

- Randomly chosen Velocity between 0 & 1
- Randomly Initialize Position
 between -5 & 5
- Calculate fitness values f(x):

Goal is to update these values ALWAYS

v (velocity)		x (position)		f(x)	p_i^b (pbest)	
г0.2194	0.24491	г 3.1472	-4.02461	[31.9645]	·····	•••••]
0.1908	0.2228	4.0579	-2.2150	32.6168		
0.3828	0.3232	-3.7301	0.4688	13.2071		
0.3976	0.3547	4.1338	4.5751	48.6753		
$L_{0.0934}$	0.3773	1.3236	4.6489	41.4537	[

$$p^g$$
 (gbest) = [-----]

Maximize
$$f(X) = x_1^2 - x_1x_2 + x_2^2 + 2x_1 + 4x_2 + 3$$

- Randomly chosen Velocity between 0 & 1
- Randomly Initialize Position
 between -5 & 5
- Calculate fitness values f(x):
- Since there is NO previous iteration exists, so phest is $p^b = x$

Goal is to update these values ALWAYS

$$p^g$$
 (gbest) = [.....]

Iteration 2:

Velocity update:

$$x_{11} = v_{11} + x_{11}$$
$$= 3.4712 \in (-5,5)$$

Iteration I:

$$p^g$$
 (gbest) = (4.1338) 4.5751]

$$p^g$$
 (gbest) = [-----]

Iteration 2:

Velocity update:

1st particle; 2nd component:

$$\begin{split} v_{12} &= w v_{12} + c_1 r_1 \left(p_{12}^b - x_{12} \right) \\ &+ c_2 r_2 \left(p^g - x_{12} \right) \\ &= (0.9)(0.2449) \\ &+ (1.5)(0.5949)(-4.0246 + 4.0246) \\ &+ (1.5)(0.0855)(4.5751 + 4.0246) \\ &= 1.3233 \end{split}$$

Position update:

$$x_{12} = v_{12} + x_{12}$$
$$= -2.7013 \in (-5, 5)$$

Iteration 1:

$$p^g$$
 (gbest) = [-----]

pb (pbest)

Iteration 2:

Similarly, we can found for other pairs the

Velocity & Position updates.

Calculate the fitness values:

$$f(X) = x_1^2 - x_1 x_2 + x_2^2 + 2x_1 + 4x_2 + 3$$

Iteration I:

v (velocity)		(x_1) (x_2)		L1 become	
го.2194 0.244	3	-4.02461	[31.9645]	[3.1472	$-4.\overline{0}2467$
0.1908 0.222		-2.2150	32.6168	4.0579	-2.2150
0.3828 0.323	2 -3.7301	0.4688	13.2071	-3.7301	0.4688
0.3976 0.354		4.5751	48.6753	4.1338	4.5751
0.0934 0.377	3 1 1.3236	4.6489 1	41.4537	1.3236	4.6489

x (nocition) f(x)

$$p^g$$
 (gbest) = [4.1338 4.5751]

v (velocity)		x (position)		f(x)	p_i^b (pbest)	
г 0.3240	1.3233 1	[3.4712	-2.7013 1	[27.8600]]
0.1815	1.0714	4.2394	-1.1436	31.0325		
1.3531	0.8175	-2.3770	1.2863	13.7537		
0.3578	0.3192	4.4916	4.8943	53.7063		
0.4445	0.3301	1.7681	4.9790	45.5655		

Iteration 2:

Velocity update:

For 1st particle, 1st component

$$v_{11} = w v_{11} + c_1 r_1 (p_{11}^b - x_{11}) + c_2 r_2 (p^g - x_{11})$$

 $= 0.9 \times 0.2194$

+(1.5)(0.5949)(3.1472 - 3.1472)

+(1.5)(0.0855)(4.1338 - 3.1472)

= 0.3240

Position update:

$$x_{11} = v_{11} + x_{11}$$
$$= 3.4712 \in (-5,5)$$

Iteration 1:

v (velocity)

$$p_i^b$$
 (pbest)

$$\begin{bmatrix} 31.9645 \\ 32.6168 \\ 13.2071 \\ 48.6753 \\ 41.4537 \end{bmatrix} \begin{bmatrix} 3.1472 & -4.0246 \\ 4.0579 & -2.2150 \\ -3.7301 & 0.4688 \\ 4.1338 & 4.5751 \\ 1.3236 & 4.6489 \end{bmatrix}$$

$$p^g$$
 (gbest) = (4.1338) 4.5751]

$$p^g$$
 (gbest) = [----- |

Iteration 3:

Update the velocity & position:

Calculate the fitness value:

Update gbest (p^g) :

Since 56.7306 > 53.7063, so updated ghest is Gbest = [4.8137 5.0000]

Iteration 2: results

p^g (gbest) = [4.4916 4.8943]

v (velocity) 0.1334 0.9843

x (position) 3.6045 -1.71707

 p_i^b (pbest)

2.3770

-4.02461

-2.2150

1.2863

4 8943

4.9790

 p^g (gbest) = [4.8137 5.0000]

Iteration 4: Iteration 3: results x (position) f(x)v (velocity) Update the velocity & position: 3.6045 3.4712 0.1334 0.98431 25.47101 -1.717074.2394 0.0337 0.7826 4.2731 -0.361130.0346 19.3259 56.7306 1.1985 -0.27842.0987 -0.27842.4848 4.8137 0.3221 0.2873 4.8137 5.0000 Calculate the fitness value: 5.0000 146.7851 2.5174 2.5174 $L_{0.7493}$ 0.2862 $p^g(gbest) = [4.8137 5.0000]$ Update gbest (p^g) : p_i^b (pbest) v (velocity) f(x)x (position) Since 58.000 > 56.7306 r3.7606 [25.1798] 0.15610.8690 -0.8480₁ gbest = [5.0000 5.0000] 30.5409 4.3427 0.3325 0.0696 0.6935 34.4996 2.5419 1.4012 2.2635 3.8860 Update phest (p^b) : 5.0000 5.0000 58.0000 0.2899 0.2586 5.0000 1 149.69531 13.4863 L0.9689 0.2576 p^g (gbest) = [5.0000 5.0000]

 p_i^b (pbest)

 -2.7013_{7}

-1.1436

2.4848

5.0000

•••••

.....

5.0000

