Regression Model to Predict Cement Compressive Strength

Compressive strength of cement at 7 and 28 days

import library
import pandas as pd
import numpy as np

import data

cement = pd.read_csv('https://github.com/ybifoundation/Dataset/raw/main/Concrete%20Compressive%20Strength.csv')

view data
cement.head()

	Cement (kg in a m^3 mixture)	Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	(kg in a m^3	Superplasticizer (kg in a m^3 mixture)	Coarse Aggregate (kg in a m^3 mixture)	Fine Aggregate (kg in a m^3 mixture)
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0
4							•

info of data
cement.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1030 entries, 0 to 1029

RangeIndex: 1030 entries, 0 to 1029 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype					
0	Cement (kg in a m^3 mixture)	1030 non-null	float64					
1	Blast Furnace Slag (kg in a m^3 mixture)	1030 non-null	float64					
2	Fly Ash (kg in a m^3 mixture)	1030 non-null	float64					
3	Water (kg in a m^3 mixture)	1030 non-null	float64					
4	Superplasticizer (kg in a m^3 mixture)	1030 non-null	float64					
5	Coarse Aggregate (kg in a m^3 mixture)	1030 non-null	float64					
6	Fine Aggregate (kg in a m^3 mixture)	1030 non-null	float64					
7	Age (day)	1030 non-null	int64					
8	Concrete Compressive Strength(MPa, megapascals)	1030 non-null	float64					
dtyp	es: float64(8), int64(1)							
memo	memory usage: 72.5 KB							

summary statistics
cement.describe()

Blast Co Fly Ash Water (kg Superplasticizer Cement (kg Furnace Aggre (kg in a in a m^3 Slag (kg in a m^3 (kg in a m^3 (kg m^3 mixture) in a m^3 mixture) mixture) mixt mixture) count 1030.000000 1030.000000 1030.000000 1030.000000 1030.000000 1030.00 181.566359 281.165631 73.895485 54.187136 6.203112 972.91 104.507142 21.355567 std 86.279104 63.996469 5.973492 77.75 102.000000 0.000000 0.000000 121.750000 0.000000 801.00 min 0.000000 25% 192.375000 0.000000 0.000000 164.900000 932.00 50% 272.900000 22.000000 0.000000 185.000000 6.350000 968.00 142.950000 118.270000 192.000000 350.000000 10.160000 1029.40

check for missing value
cement.isna().sum()

```
Cement (kg in a m^3 mixture) 0
Blast Furnace Slag (kg in a m^3 mixture) 0
Fly Ash (kg in a m^3 mixture) 0
Water (kg in a m^3 mixture) 0
Superplasticizer (kg in a m^3 mixture) 0
Coarse Aggregate (kg in a m^3 mixture) 0
Fine Aggregate (kg in a m^3 mixture) 0
Age (day) 0
Concrete Compressive Strength(MPa, megapascals) 0
dtype: int64
```

check for categories
cement.nunique()

visualize pairplot
import seaborn as sns
sns.pairplot(cement)


```
# columns name
cement.columns
     'Coarse Aggregate (kg in a m^3 mixture)'
             'Fine Aggregate (kg in a m^3 mixture)', 'Age (day)',
             'Concrete Compressive Strength(MPa, megapascals) '],
           dtype='object')
# define y
y=cement['Concrete Compressive Strength(MPa, megapascals) ']
# define X
X=cement[['Cement (kg in a m^3 mixture)',
'Blast Furnace Slag (kg in a m^3 mixture)',
'Fly Ash (kg in a m^3 mixture)', 'Water (kg in a m^3 mixture)',
'Superplasticizer (kg in a m^3 mixture)',
'Coarse Aggregate (kg in a m^3 mixture)',
'Fine Aggregate (kg in a m^3 mixture)', 'Age (day)']]
# split data
{\tt from \ sklearn.model\_selection \ import \ train\_test\_split}
\label{lem:control_control_control} \textbf{X\_train}, \textbf{X\_test}, \textbf{y\_train}, \textbf{y\_test=train\_test\_split}(\textbf{X}, \textbf{y}, \textbf{train\_size=0.7}, \textbf{random\_state=2559})
# verify shape
{\tt X\_train.shape,X\_test.shape,y\_train.shape,y\_test.shape}
     ((721, 8), (309, 8), (721,), (309,))
# select model
from sklearn.linear_model import LinearRegression
model=LinearRegression()
# train model
model.fit(X_train,y_train)
LinearRegression()
```

LinearRegression()

predict with model y_pred=model.predict(X_test)

model evaluation

 $from \ sklearn.metrics \ import \ mean_absolute_error, mean_absolute_percentage_error, mean_squared_error$

model MAE

mean_absolute_error(y_test,y_pred)

7.814891951068712

model MAPE

mean_absolute_percentage_error(y_test,y_pred)

0.28040027489426594

model MSE

mean_squared_error(y_test,y_pred)

102.62674212692517

future prediction

X.sample()

₽	Cement (kg in a m^3 mixture)	Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	Water (kg in a m^3 mixture)	Superplasticizer (kg in a m^3 mixture)	Coarse Aggregate (kg in a m^3 mixture)	00 0 . 0	Age (day)
961	336.5	0.0	0.0	181.9	3.4	985.8	816.8	28

define X_new

X_new=X.sample()

X_new

m^3 in a m^3 m^3 mxture) mixture) mixture mixture) mixture mi		(kg in a Slag (kg m^3 in a m^3 mixture) mixture)		Water (kg in a m^3 mixture)	(kg in a m^3 mixture)	m^3	(kg in m^ mixture	
361 218 23 54 64 123 78 140 75 11 01 1075 7	361	218 23 54 64	123 78	140 75	11 01	1075.7	792 A	

predict for X_{new}

 ${\tt model.predict(X_new)}$

array([40.76926684])