Exercise 6. Show that the hypothesis of σ -finiteness cannot be omitted from Proposition 3.4.5. (*Hint:* Consider counting measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.)

Proof. Let μ be the counting measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. The countable set $\mathscr{A} = \{(-\infty, r], r \in \mathbb{Q}\}$ satisfies $\sigma(\mathscr{A}) = \mathscr{B}(\mathbb{R})$ (for example from exercise 1.1.2), so $\mathscr{B}(\mathbb{R})$ is countably generated by \mathscr{A} . Let $\{X_n\}_{n\in\mathbb{N}}$ be a family of Borel subsets of \mathbb{R} such that $\mu(X_i)$ is finite for all i. Since μ is the counting measure, X_i is also finite for all i. As a countable union of finite sets, $\bigcup_{n\in\mathbb{N}} X_n$ is countable; since \mathbb{R} is uncountable, $\mathbb{R} \neq \bigcup_{n\in\mathbb{N}} X_n$, and therefore μ is not σ -finite.

Let $\varepsilon > 0$ and suppose that there exists a family of functions $\{\varphi_n\}_{n \in \mathbb{N}}$ in $\mathcal{L}^p(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$ such that:

$$\forall f \in \mathcal{L}^p(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu), \quad \exists n \in \mathbb{N}, \quad \|f - \varphi_n\|_p < \varepsilon$$

Let $\{\delta_x\}_{x\in\mathbb{R}}$ be the family of functions of $\mathcal{L}^p(\mathbb{R},\mathcal{B}(\mathbb{R}),\mu)$ defined by:

$$\forall y \in \mathbb{R}, \quad \delta_x(y) = \begin{cases} 1 & \text{if } y = x \\ 0 & \text{otherwise} \end{cases}$$

Let $x, y \in \mathbb{R}$ such that $x \neq y$; we have $\|\delta_x - \delta_y\|_p = 2^{1/p} \geq 1$. If $m, n \in \mathbb{N}$ are such that

$$\|\delta_x - \varphi_n\|_p < \varepsilon$$
$$\|\delta_y - \varphi_m\|_p < \varepsilon$$

then the triangular inequality gives us

$$\|\varphi_n - \varphi_m\|_p \ge \|\delta_x - \delta_y\|_p - (\|\delta_x - \varphi_n\|_p + \|\delta_y - \varphi_m\|_p) > 1/3$$
 (1)

as soon as $\varepsilon < 1/3$. For all $x \in \mathbb{R}$, let $D_x = \{n \in \mathbb{N}, ||\delta_x - \varphi_n||_p < \varepsilon\}$. Using the axiom of choice, we can define a function

$$\psi: \{\delta_x\}_{x \in \mathbb{R}} \to \mathbb{N}$$

$$\delta_y \mapsto n \quad \text{such that } n \in D_y$$

From (1), we deduce that ψ is injective, and therefore $\{\delta_x\}_{x\in\mathbb{R}}$ must be countable, which is absurd. Therefore, the family $\{\varphi_n\}_{n\in\mathbb{N}}$ does not exist and $L^p(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$ is not separable.