

MRC Technical Summary Report #2113

ELEMENTARY PROOFS OF AN INEQUALITY FOR SYMMETRIC FUNCTIONS FOR $n \le 5$

Roland Zielke

TV N

Mathematics Research Center
University of Wisconsin-Madison
610 Walnut Street
Madison, Wisconsin 53706

August 1980

(Received June 24, 1980)

FILE COPY

onsored by

U. S. Army Research Office P. O. Box 12211 Research Triangle Park North Carolina 27709 Approved for public release Distribution unlimited

89 12 22 007

(H) M+ C-T - 1-123

That 18/

UNIVERSITY OF WISCONSIN - MADISON MATHEMATICS RESEARCH CENTER

ELEMENTARY PROOFS OF AN INEQUALITY FOR SYMMETRIC FUNCTIONS FOR $n \leq 5$

10 Roland Zielke

valto

7 Technical Summary Report #2113
August 1980

ABSTRACT

TO EAR 31-11-19812

For $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ let the elementary symmetric functions $x_i = \mathbb{R}^n \to \mathbb{R}$ be defined by

 $\psi_{j}(x) = \sum_{i_{1}} x_{i_{1}} \dots x_{i_{j}}$, $j = 1, \dots, n$. So the real polynomial p_{x} of $1 \le i_{1} < \dots < i_{j} \le n$

degree n with leading coefficient 1 and zeros in $-x_1, \ldots, -x_n$ is given by $p_x(t) = t^n + \sum\limits_{i=1}^n \psi_i(x) t^{n-i}$. Let $x,y \in \mathbb{R}^n_+$ be points with $\psi_i(x) \leq \psi_i(y)$ for $i=1,\ldots,n$. It was conjectured (see [2]) that this implies $\psi_i(x^n) \leq \psi_i(y^n)$ for every $\alpha \in (0,1]$ and $i=1,\ldots,n$, where x^n is defined by $x^n = (x_1^n,\ldots,x_n^n)$.

By an argument involving total positivity, this conjecture may be reduced to the problem of finding a piecewise differentiable path $\{\phi(t) | t \in [0,1]\}$ in \mathbb{R}^n_+ with $\phi(0) = x$, $\phi(1) = y$ and such that ϕ_i ($\phi(t)$) is monotone increasing with t for each $i = 1, \ldots, n$ to $\phi(1)$. This problem looks deceivingly simple but was only recently so by Efroymson, Swartz and Wendroff using a rather involved argument. We give elementary proofs for $n \leq 5$.

AMS (MOS) Subject Classification: 26D05

Key Words: real polynomials, inequalities

Work Unit Number 3 (Numerical Analysis and Computer Science)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and in part by a travel grant of the Deutsche Forschungs-gemeinschaft.

SIGNIFICANCE AND EXPLANATION

Some aspects of the heat transfer in the emergency cooling of nuclear reactors lead to a nonlinear eigenvalue problem, the so-called model quelch front problem. Laquer and Wendroff suggested a procedure for computing bounds of the eigenvalue which depend - among other things - on the validity of a certain inequality for elementary symmetric functions. This inequality is of interest in itself and was recently proved by Efroymson, Swartz and Wendroff using a fairly complicated argument. We give an elementary proof for n 5.

The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the author of this report.

ELEMENTARY PROOFS OF AN INEQUALITY FOR SYMMETRIC FUNCTIONS FOR $n \le 5$

Roland Zielke

$$\text{Let }\mathbb{R}^n_{\stackrel{+}{(-)}} = \{z \in \mathbb{R}^n \mid \bigwedge_i z_i \geq 0\} \text{ and } \Delta^n_{\stackrel{+}{(-)}} = \{z \in \mathbb{R}^n_{\stackrel{+}{(-)}} \mid z_1 \leq z_2 \leq \ldots \leq z_n\}.$$

Let $\sigma : \mathbb{R}^n \to \mathbb{R}^n$, $\sigma : x \to \sigma(x)$, be defined by

$$\frac{n}{\pi}(t-x_i) = t^n + \sum_{i=1}^{n} \sigma_i(x) t^{n-i} =: p_x(t) \text{ for } t \in \mathbb{R}.$$

So we have
$$\sigma_{\mathbf{i}}(\mathbf{x}) = \sum_{1 \le j_1 < \dots < j_i \le n} (-1)^{\mathbf{i}} \mathbf{x}_{\mathbf{j}_1} \dots \mathbf{x}_{\mathbf{j}_i}, \mathbf{i} = 1, \dots, n,$$
 and $\sigma(\mathbb{R}^n_+) \subset \mathbb{R}^n_+$.

Let \mathbb{R}^n be partially ordered by "x < y iff $x_i \le y_i$ for i = 1, ..., n and $x \ne y$ ". Let $x,y \in \Delta_-^n$ be points with $\sigma(x) < \sigma(y)$ and $M = \{z \in \Delta_-^n | \sigma(x) \le \sigma(z) \le \sigma(y)\}$. So M is compact.

Theorem A: a) There is a continuous mapping ϕ : $[0,1] \to M$ with $\phi(0) = x$, $\phi(1) = y$ and $\sigma(\phi(u)) < \sigma(\phi(v))$ for all $u, v \in [0,1]$ with u < v.

b) ϕ is continuously differentiable except on a finite set.

By an argument involving total positivity (see [1]) one may derive from theorem A the following result:

Theorem B: If z^{α} is defined by $z^{\alpha} = (-|z_1|^{\alpha}, ..., -|z_n|^{\alpha})$ for $z \in \Delta^n$ and $z \in \mathbb{R}$, we have $\sigma(x^{\beta}) \leq \sigma(y^{\beta})$ for $\beta \in (0,1]$.

Subsequently we shall prove theorem A for $n \le 5$.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and in part by a travel grant of the Deutsche Forschungs-gemeinschaft.

<u>Proof:</u> a) It is sufficient to find a $\delta>0$ and a $g\in \mathbb{P}_{n-1}$ with nonnegative coefficients such that $p_x + \lambda g$ has n nonpositive real zeros $x_1^{(\lambda)}, \ldots, x_n^{(\lambda)}$ for all $\lambda \in \{0, \delta\}$ and $\sigma(x^{(\lambda)})$ is strictly increasing for $\lambda \in [0, \delta]$.

For $x_n < x_{n-1} < \ldots < x_1$ the claim is trivial. Also trivial is the following

Lemma 1: If y<x and $y_1<0$, then $\sigma_i(x)<\sigma_i(y)$ for all i. We denote d:= p_y-p_x . We consider the cases n = 2,3,4,5 separately: n=2:

 $x_2 = x_1$: choose g(t) = t, if $\sigma_1(x) < \sigma_1(y)$.

If $\sigma_1(x) = \sigma_1(y)$, we have $d(t) = \alpha$ for some $\alpha>0$, and p_y has no zeros, a contradiction.

n = 3:

<u>case 1</u>: $x_3 < x_2 = x_1$: choose g(t) = t, if $\sigma_1(x) < \sigma_1(y)$. Otherwise we have $d(t) = \alpha + \beta t^2$ for some $\alpha, \beta \in \mathbb{R}_+$, and lemma 1 gives a contradiction.

<u>case 2</u>: $x_3 = x_2 < x_1$: choose g(t) = 1, if $\sigma_0(x) < \sigma_0(y)$; choose $g(t) = t^2$ if $\sigma_2(x) < \sigma_2(y)$.

Otherwise we have $d(t) = \alpha t$ for some $\alpha \in \mathbb{R}_+$, implying $x_i < y_i$ for i = 1, 2, 3, a contradiction.

case 3: $x_1 = x_2 = x_3$: choose $g(t) = t(t-x_1)$, if $\sigma_i(x) < \sigma_i(y)$ for i = 1, 2.

Otherwise, if $\sigma_1(x) = \sigma_1(y)$, go to $\underline{n=3}$, case 1.

If $\sigma_2(x) = \sigma_2(y)$, consider p_x', p_y' and go to $\underline{n=2}$.

n = 4:

case 1: $x_4 < x_3 = x_2 < x_1$: choose g(t) = 1, if $\sigma_0(x) < \sigma_0(y)$; choose $g(t) = t^2$, if $\sigma_2(x) < \sigma_2(y)$.

Otherwise we have $d(t) = \alpha t + \beta t^3$ for some $\alpha, \beta \in \mathbb{R}_+$.

=> $d'(t) = \alpha + 3\beta t^2 => p_Y(t) > p_X(t)$ and

 p_y' (t) > p_x' (t) for t \in (- ∞ ,0).

So all zeros of p_y' are smaller than all zeros of p_x' , yielding $\sigma_2(x) < \sigma_2(y)$, a contradiction.

case 2: a) $x_4 < x_3 < x_2 = x_1$ or b) $x_4 = x_3 < x_2 < x_1$: choose g(t) = t, if $\sigma_1(x) < \sigma_1(y)$;

choose $g(t) = t^3$, if $\sigma_3(x) < \sigma_3(y)$;

otherwise we have $d(t) = \alpha + \beta t^2$, so d > 0, d' < 0, d'' > 0 on $(-\infty,0)$ and d'(0) = 0.

For a) this implies $Z(p_y') = (-\infty, x_3)$, but also $Z(p_y') \cap (x_1, 0) \neq \phi$, a contradiction.

For b) this implies that either all zeros of p_y' are larger than all zeros of p_x' , or that all zeros of p_y'' are larger than all zeros of p_x'' , in both cases a contradiction.

case 3: $x_4 < x_3 = x_2 = x_1$: choose $g(t) = t(t-x_1)$, if $\sigma_1(x) < \sigma_1(y)$ and $\sigma_2(x) < \sigma_2(y)$.

Otherwise, if $\sigma_2(x) = \sigma_2(y)$, we have $d(t) = \alpha + \beta t + \gamma t^3$, so $d'(t) = \beta + 3\gamma t^2$. Now go to n=3, case 1.

If $\sigma_1(x) = \sigma_1(y)$, we have $d(t) = \alpha + \beta t^2 + \gamma t^3$. So d has only one zero z in $(-\infty,0)$, d' has only one zero z' in $(-\infty,0)$, d'(0) = 0, $z \le z' \le 0$.

If p_1 has no zero in $(x_1,0)$, the same holds for p_y^i . But then all zeros of p_y^i are smaller than all zeros of p_x^i , and lemma 1 gives a contradiction.

If p, has a zero in $(x_1,0)$ we have $z\in (x_1,0)$ and thus $p_x\cdot p_y$ and $p_x'\cdot p_y'$ on $(-\infty,z)$. But then again the zeros of p_y' are smaller than those of p_y' .

case 4: $x_4 = x_3 = x_2 < x_1$: choose $g(t) = t - x_2$, if $\sigma_0(x) < \sigma_0(y)$ and $\sigma_1(x) < \sigma_1(y)$; choose $g(t) = t^2(t - x_2)$, if $\sigma_2(x) < \sigma_2(y)$ and $\sigma_3(x) < \sigma_3(y)$.

Otherwise: a) If $\sigma_0(x) = \sigma_0(y)$ and $\sigma_2(x) = \sigma_2(y)$, go to $\underline{n} = 4$, case 1. b) If $\sigma_1(x) = \sigma_1(y)$ and $\sigma_3(x) = \sigma_3(y)$, go to $\underline{n} = 4$, case 2b. c) If $\sigma_0(x) = \sigma_0(y)$ and $\sigma_3(x) = \sigma_3(y)$, we have $\underline{d}(t) = \alpha t + \beta t^2$ and $\underline{d}_1(x) > 0$ w.l.o.g.. So \underline{p}_1^n has its zeros in (x_2, x_1) , and $\underline{d}_1(x) = \alpha t + \beta t^2$ and tive zero in $(x_1, 0)$. But then $x_1 \le y_1$ for all $\underline{d}_1(x) = \alpha t + \beta t^3$ and $\underline{d}_1(x) = \sigma_1(y)$ and $\underline{d}_2(x) = \sigma_2(y)$, we have $\underline{d}(t) = \alpha t + \beta t^3$ and $\underline{d}_1(x) = \sigma_1(y)$ and $\underline{d}_2(x) = \sigma_2(y)$, we have $\underline{d}(t) = \alpha t + \beta t^3$ and $\underline{d}_1(x) = \sigma_1(y)$ and $\underline{d}_2(x) = \sigma_2(y)$, we have $\underline{d}(t) = \alpha t + \beta t^3$ and $\underline{d}_1(x) = \sigma_1(y)$ and $\underline{d}_2(x) = \sigma_2(y)$, we have $\underline{d}(t) = \alpha t + \beta t^3$ and $\underline{d}_1(x) = \sigma_1(y)$ and $\underline{d}_2(x) = \sigma_2(y)$, we have $\underline{d}(t) = \alpha t + \beta t^3$ and $\underline{d}_1(x) = \sigma_1(y)$ and $\underline{d}_1(x) = \sigma_1(y)$, we would have $\underline{d}_1(x) = \sigma_1(y)$. Let $\underline{d}_1(x) = \sigma_1(y)$, for all $\underline{d}_1(x) = \sigma_1(y)$, we have $\underline{d}_1(x) = \sigma_1(y)$, so $\underline{d}_1(x) = \sigma_1(y)$, for otherwise $\underline{d}_1(x) = \sigma_1(y)$, where $\underline{d}_1(x) = \sigma_1(y)$ are $\underline{d}_1(x) = \sigma_1(y)$, so $\underline{d}_1(x) = \sigma_1(y)$, for otherwise $\underline{d}_1(x) = \sigma_1(y)$, and $\underline{d}_1(x) = \sigma_1(y)$, so $\underline{d}_1(x) = \sigma_1(y)$, for otherwise $\underline{d}_1(x) = \sigma_1(y)$, and $\underline{d}_1(x) = \sigma_1(y)$, so $\underline{d}_1(x) = \sigma_1(y)$, for otherwise $\underline{d}_1(x) = \sigma_1(y)$, and $\underline{d}_1(x) = \sigma_1(y)$, so $\underline{d}_1(x) = \sigma_1(y)$, for otherwise $\underline{d}_1(x) = \sigma_1(y)$, and $\underline{d}_1(x) = \sigma_1(y)$, so $\underline{d}_1(x) = \sigma_1(y)$, for otherwise $\underline{d}_1(x) = \sigma_1(y)$, and $\underline{d}_1(x) = \sigma_1(y)$, so $\underline{d}_1(x) = \sigma_1(y)$, we have $\underline{d}_1(x) = \sigma_1(y)$, so $\underline{d}_1(x) = \sigma_1(y)$, so

case 5: $x_4 = x_3 = x_2 = x_1$: choose $g(t) = t(t-x_1)^2$, if $\sigma_i(x) < \sigma_i(y)$ for i = 1, 2, 3.

Otherwise, if $\sigma_i(x) = \sigma_i(y)$ for i = 2 or i = 3, consider p_X' and p_Y' , i.e., go to n=3, case 3.

If $\sigma_1(x) = \sigma_1(y)$, we have $d(t) = \alpha + \beta t^2 + \gamma t^3$ with $\beta, \gamma > 0$ w.l.o.g. Go to $\underline{n}=4$, case 3, corresponding case.

<u>n = 5:</u>

We use the following notations:

The zeros of p_x' are z_4, z_3, z_2, z_1 with $z_4 \le z_3 \le z_2 \le z_1$.

The zeros of $p_x^{"}$ are w_3, w_2, w_1 , with $w_3 \le w_2 \le w_1$.

The negative zeros of d are p,q,r,... with $p \le q \le r \le ...$

The negative zeros of d' are p',q',r' with $p' \le q' \le r'$

The negative zeros of d" are p",q" — with $p" \le q$ ".

The strement " $\gamma_i(x) \sim_i (y)$ " is called A_i , i = 0,1,...,4.

., , are nonnegative real numbers.

case 1:

a)
$$x_5 < x_4 < x_3 < x_2 = x_1$$

b)
$$x_5 < x_4 = x_3 < x_2 < x_1$$

c)
$$x_5 < x_4 = x_3 < x_2 = x_1$$

Choose g(t) = t if A_1 , choose $g(t) = t^3$ if A_3 .

If $1A_1 \wedge 1A_3$, we have $d(t) = \alpha + \beta t^2 + \gamma t^4 \Rightarrow d'(0) = 0 \wedge d' < 0 < d''$ on $(-\infty, 0)$.

- a) We have $Z(p_y) \subset (-\infty, x_5) \cup (x_4, x_3)$ and $Z(p_y') \cap (x_1, 0) \neq \emptyset \Rightarrow Z(p_y) \cap (x_1, 0) \neq \emptyset$; contradiction.
- c) Follows from a).
- b) We have $Z(p_y) = (-\infty, x_5) \cup (x_2, x_1)$ and $Z(p_y) = (-\infty, z_4) \cup (x_3, z_2) \cup (z_1, 0)$.

If $Z(p_y'') \subseteq (-\infty, w_3]$, lemma 1 gives a contradiction to 1A_3 .

$$=> \ \#(\mathbb{Z}(p_{y}^{"})\cap(-\infty,w_{3}]) \ = 1 \wedge \#(\mathbb{Z}(p_{y}^{"})\cap[w_{2},w_{1}]) \ = \ 2$$

$$=> p_y'$$
 has 2 zeros in (z_3, z_1)

$$\Rightarrow$$
 p' has 2 zeros in (z₃,z₂)

 \Rightarrow p_v has 1 zeros in $(z_3, z_2) \subset (x_3, x_2)$, contradiction.

case 2:

a)
$$x_5 < x_4 < x_3 = x_2 < x_1$$

b)
$$x_5 = x_4 < x_3 < x_2 < x_1$$

c)
$$x_5 = x_4 < x_3 = x_2 < x_1$$

Choose g(t) = 1 if A_0 ,

$$g(t) = t^2 \text{ if } A_2$$

$$g(t) = t^4 \text{ if } A_4.$$

If $_1A_0 \wedge _1A_2 \wedge _1A_4$, we have $d(t) = \alpha t + \beta t^3 \Rightarrow d' > 0 > d''$ on $(-\infty,0)$.

a) p_y has one zero in $(x_1,0)$ and 4 zeros in $(x_5,x_4) \land Z(p_y) = (z_4,z_3)$

=>
$$Z(p_{Y}^{"}) \subset (z_{4}, z_{3})$$
. But $p_{Y}^{"}$ (0) = $p_{X}^{"}$ (0) ≥ 0 ∧ $p_{Y}^{"}(w_{1})$ < $p_{X}^{"}(w_{1})$ = 0 ⇒

 $Z(p_v^*) \cap (w_1 0) \neq \phi$, contradiction.

b) p_y has one zero in $(x_1,0)$ and 4 zeros in $(x_3,x_2) \wedge Z(p_y') = (z_2,z_1)$ => $Z(p_y'') = (w_1,z_1)$, contradiction.

case 3:

a)
$$x_5 \le x_4 < x_3 = x_2 = x_1$$

b)
$$x_5 = x_4 = x_3 < x_2 \le x_1$$

a) Choose
$$g(t) = t(t-x_1)$$
 if $A_1 \wedge A_2$,
$$g(t) = t^3(t-x_1)$$
 if $A_3 \wedge A_4$,
$$g(t) = t(t^3-x_1^3)$$
 if $A_1 \wedge A_4$. Otherwise we have:

a) 1)
$$1A_2 \wedge 1A_4$$
: consider p'_X , p'_Y and go to $\underline{n=4}$, case $2a$).

a) 2)
$${}_{1}A_{1} \wedge {}_{1}A_{3}$$
: we have $d(t) = \alpha + \beta t^{2} + \gamma t^{4} \wedge d' < 0$ on $(-\cdot, 0) =$

$$Z(p_{Y}^{*}) \cap (x_{1}, 0) + \varepsilon$$
. But $Z(p_{Y} \subset (-\infty, x_{1}) => Z(p_{Y}^{*}) \subset (-\infty, x_{1})$ contradiction.

a) 3)
$$1A_1 \wedge 1A_4$$
: we have $d(t) = a + \beta t^2 + \gamma t^3$ and $p > 0$ w.l.o.g. So d,d',d'' have exactly one negative zero each, and $p < p' < p''$.

If
$$p \in \{x_1, 0\} \Rightarrow Z(p_y) \subset (x_5, x_4) \cup (x_1, p) \Rightarrow Z(p_y') \subset (z_4, z_3)$$

If $p < x_1 \Rightarrow Z(p_y) \subset (-\infty, x_1) \Rightarrow Z(p_y') \subset (-\infty, x_1) \Rightarrow p' \in (x_1, 0) \Rightarrow Z(p_y') \subset (z_4, z_3)$

 $Z(p_y^u)\subset (z_4,z_3)$. But $p^u\in (x_1,0) \Rightarrow p_y^u(x_1) < 0 \Rightarrow Z(p_y^u)\cap (x_1,0) + :$, contradiction.

b) Choose
$$g(t) = t(t-x_5)$$
 if $A_1 \wedge A_2$,
$$g(t) = t^3(t-x_5)$$
 if $A_3 \wedge A_4$,
$$g(t) = t(t^3-x_5^3)$$
 if $A_1 \wedge A_4$. Otherwise we have:

b) 1)
$$_{1}A_{2}A_{1}A_{4}$$
: consider p_{x}' , p_{y}' and go to $\underline{n=4}$, case 2b).

b) 2)
$${}_{1}A_{1}A_{1}A_{3}$$
: we have $d(t) = \alpha + \beta t^{2} + \delta t^{4}$, so $d^{4} < 0 < d^{4}$ on $(-\alpha, 0)$ and $Z(p_{y}) \subset (-\alpha, x_{5}) \cup (x_{2}, x_{1})$, $Z(p_{y}^{4}) \subset (-\alpha, x_{2}) \cup (x_{1}, 0)$, $Z(p_{y}^{4}) \subset (-\alpha, x_{5}) \cup (w_{2}, w_{1})$.

 $p_Y^{"}$ has one zero in $(\neg\cdot,x_5)$ and two zeros in $(w_2,w_1),$ for otherwise lemma 1 and A_3 give a contradiction.

b) 2) a)
$$Z(p_{Y}) \subset (-\cdot, x_{5}) \Rightarrow 1 \text{ emma } 1 \text{ contradicts } A_{3}$$
.

b) 2) b)
$$\#(Z(p_y) \cap (x_2, x_1)) = 2 \implies \#(Z(p_y') \cap (z_1, 0)) = 1$$

 $\implies p_1' \text{ has } 3 \text{ zeros in } (-\infty, x_5)$
 $\implies p_y'' \text{ has } 2 \text{ zeros in } (-\infty, x_5) \text{ contradiction.}$

b) 2) c)
$$\#(Z(p_Y) \cap (x_2, x_1)) = 4 = \#(Z(p_Y') \cap (z_1, x_1)) = 3$$

 $\#(Z(p_V'') \cap (z_1, x_1)) = 2$, contradiction

b) 3)
$$1A_1 \wedge 1A_4$$
: we have $d(t) = \alpha + \beta t^2 + \gamma t^3$.

b) 3) a) p' $\in (z_1,0)$: If $\#(Z(p_y')\cap [z_1,0)) = 2$, lemma 1 and $\neg A_4$ give a contradiction.

If
$$Z(p_Y') \subset (-\infty, z_1) \approx Z(p_Y') \subset (z_2, z_1]$$
. From

d"<0 in $(-\infty,p')$ follows $Z(p_y") \subset (w_1,z_y)$, contradiction.

b) 3) b)
$$p' \in [z_2, z_1) =$$
 lemma 1 and A_4 give a contradiction.

b) 3) c)
$$p' \in [x_5, z_2) \implies Z(p_y') \subset (p; z_2) \cup (z_1, 0)$$

 $\implies \{(Z(p_y') \cap (p; z_3)) = 3 \implies \{(Z(p_y) \cap (p; z_2)) = 2.$

But $p_v > p_x > 0$ in $(p, z_2) \cap (x_5, z_2) \supset (p, z_2)$, contradiction.

b) 3) d)
$$p' < x_5$$
: If $\#(Z(p_y') \cap (x_5, z_2)) = 2 \Rightarrow Z(p_y) \cap (x_5, z_2) \neq \emptyset$, but $p_y > p_x > 0$ on (x_5, z_2) , contradiction.

case 4:

$$x_5 < x_4 = x_3 = x_2 < x_1$$
: Choose $g(t) = t - x_3$ if $A_0 \wedge A_1$,
$$g(t) = t^2(t - x_3)$$
 if $A_2 \wedge A_3$,
$$g(t) = t^3 - x_3^3$$
 if $A_0 \wedge A_3$. Otherwise

we have:

1) ${}_{1}A_{1}A_{1}A_{3}$: consider p_{X}^{1}, p_{Y}^{1} and go to $\underline{n=4}$, case 1.

2)
$$1A_0 \wedge 1A_2$$
: we have $d(t) = \alpha t + \beta t^3 + \gamma t^4$.

=> d,d',d", have each exactly one negative zero, and p<p'<p".

One checks that $Z(p_y'') \subset (x_3, 0)$ or $Z(p_y'') \subset (-\infty, x_3]$ are impossible.

a) p'
$$\in [z_1,0) \Rightarrow z(p_v) \subset (-\infty,z_4) \cup (z_1,0)$$
.

If p_Y' had 3 zeros in (z_1,p') , p_Y'' would have 2 zeros in (z_1,p') , contradiction.

- If p_v^* had 3 zeros in $(-\infty, z_4)$, p_v^* would have 2 zeros in $(-\infty, z_4)$
- \Rightarrow $\mathbb{Z}(p_v^n) \subset (-\infty, w_3) \Rightarrow {}_{1}\mathbb{A}_2$ and lemma 1 give a contradiction.
- b) p' $\in (x_3, z_1)$:
- if p_v' has exactly one zero > p', p_v'' has at most one zero $\geq x_3$.
- for $p_{...}^{"}$ has no zero $\geq x_3$, contradiction.
- \mathbb{P}_{T}^{1} has 3 zeros in (p',0), p_y has 4 zeros in (x₁,0).

 \Rightarrow Z(p_y) \subset (x₁,0), contradiction.

- c) $p' \in (-\infty, x_3) => \#(\mathbb{Z}(p_Y') \cap (x_3, z_1)) \ge 2$, for otherwise
- $$\begin{split} &\mathbb{Z}\left(\mathbf{p}_{\mathbf{Y}}^{\text{u}}\right)\!\subset\!\left(-\infty,\mathbf{x}_{3}\right)\text{, contradiction. So we have } \mathbb{R}(\mathbb{Z}\left(\mathbf{p}_{\mathbf{Y}}\right)\cap\left(\mathbf{x}_{3},z_{1}\right))\neq1,\\ &\text{but this contradicts }\mathbf{p}_{\mathbf{V}}\!<\!\mathbf{p}_{\mathbf{x}}\!<\!0\text{ in }\left(\mathbf{x}_{3},z_{1}\right). \end{split}$$
- 3) ${}_{1}A_{0} \wedge {}_{1}A_{3}$: we have: $d(t) = \alpha t + \beta t^{2} + \gamma t^{4}$. Then d and d' have exactly one negative zero each, p<p', and d">0 on (---,0] w.l.o.g.. So p''_y has 2 zeros in (x_{3},w_{1}) , i.e., p'_y has a local maximum r and a local minimum s with p'<r<s< w_{1} .

case 5:

$$x_5 = x_4 < x_3 < x_2 = x_1$$
: choose $g(t) = t(t-x_3)$ if $A_1 \wedge A_2$,
$$g(t) = t^3(t-x_3)$$
 if $A_3 \wedge A_4$,
$$g(t) = t(t^3-x_3)$$
 if $A_1 \wedge A_4$. Other-

wise we have:

- in $A_1 \wedge A_3$: go to n=5, case 1a.
- 2) ${}_{1}A_{2} \wedge {}_{1}A_{4}$: we have $d(t) = \alpha + \beta t + \gamma t^{3}$, so d'>0>d'' on $(-\alpha,0)$.
- $\Rightarrow \ \, z\,(p_v^{\, \shortmid})\! \subset\! (x_5,z_3) \, U\,(z_2,x_1) \, \wedge z\,(p_v^{\, \shortparallel})\! \subset\! (w_3,w_2) \, U\,(w_1,0)$
- \rightarrow p_y has at least 2 zeros in (z_2,x_1) and 1 zero in (x_5,w_3)
- > p_v has a local minimum in (z_2,x_1) and a local maximum in $(\kappa_{\epsilon_i},w_i)$.
- > 4 has at least 2 zeros in (- \sim ,0), contradiction.

3) $A_1 \wedge A_4$: we have $d(t) = \alpha + \beta t^2 + \gamma t^3$.

=> d,d',d" have each exactly one negative zero, and p<p'<p".

We have either $Z(p_y) \subset (-\infty, x_3]$ or $Z(p_y) \subset (x_3, 0)$:

 $Z(p_y) \subset (-\infty, x_5)$ implies $Z(p_y'') \subset (-\infty, x_3) \Rightarrow p' > x_1 \Rightarrow p'' > x_1$ contradiction.

$$\mathtt{Z}(\mathtt{p}_{\mathtt{y}}) \mathtt{c}(\mathtt{x}_{\mathtt{3}},\mathtt{0}) \text{ implie: } \mathtt{Z}(\mathtt{p}_{\mathtt{y}}) \mathtt{c}(\mathtt{z}_{\mathtt{2}},\mathtt{0}) \implies \mathtt{Z}(\mathtt{p}_{\mathtt{y}}'') \mathtt{c}(\mathtt{z}_{\mathtt{2}},\mathtt{w}_{\mathtt{1}})$$

=> p"<w₁, => p'<w₁ => $Z(p_y') \cap (x_1,0] \neq \Rightarrow x_1$

case 6:

$$x_5 = x_4 = x_3 = x_2 < x_1$$
: choose $g(t) = (t-x_5)^2$ if $A_0 \wedge A_1 \wedge A_2$
 $g(t) = t^2(t-x_5)^2$ if $A_2 \wedge A_3 \wedge A_4$
 $g(t) = (t^2+x_5t+x_5^2)(t-x_5)^2 =$
 $= t^4-x_5t^3-x_5^3t+x_5^4$, if $A_0 \wedge A_1 \wedge A_3 \wedge A_4$.

Otherwise we have:

- 1) $(_{1}A_{1} \wedge _{1}A_{3})$ or $(_{1}A_{1} \wedge _{1}A_{4})$: consider p_{X}', p_{Y}' and go to $\underline{n=4}$, case 4.
- 2) ${}_{1}A_{0} \wedge {}_{1}A_{3}$: go to n=5, case 4,3).
- 3) $_{1}A_{0} \wedge _{1}A_{4}$: we have $d(t) = \alpha t + \beta t^{2} + \gamma t^{3}$.

=> d has 2, d' has 2, d" has 1 negative zero, and p<p'<q<q'<0,p'<p"<q'.

From p"<w₁ follows that p" has at least 2 zeros in $(\max\{p_1^nx_5\},w_1)$.

So p'_y has a local maximum r and a local minimum s with p"<r and $x_5 < r < s < w_1$. => d'(r)>0 => either r'<q'<r or r<p'<q'.

As p has a local maximum 1 $\epsilon(r,s)$ and d(1)>0, we have 1 $\epsilon(p,q)$, so r<1<q<q', and so finally r<p'<q' => r<p",contradiction.

case 7:

 $x_5 < x_4 = x_3 = x_2 = x_1$: choose g(t) = t(t- x_1)² if $A_1 \wedge A_2 \wedge A_3$. Otherwise we have:

- 1) ${}^{1}A_{2}$ or ${}^{1}A_{3}$: consider p_{x}', p_{y}' and go to $\underline{n=4}$, case 3.
- 2) $_{1}A_{1}$: we have $d(t) = a + \beta t^{2} + \gamma t^{3} + \delta t^{4}$ with $x_{1}, y_{2} = 0$ w.l.o.g..

=> d has at most 2 zeros in $(-\infty,0)$. If d had no zero or one double zero in $(-\infty,0)$, lemma 1 and nA_1 would give a contradiction. => d has exactly 2 zeros in $(-\infty,0)$, as well as d' and d", and p< p' < q < q' < 0 and p' < p'' < q'' < 0.

 $\underline{\text{claim 1}}\colon \text{Z}(p_{Y}^{"}) \subset (-\circ, w_{3}] \Rightarrow \text{d" has no zero in } [x_{1}, 0].$

<u>Proof</u>: explicit computation gives $p_x^* < p_y^*$ on $[x_1, 0]$.

 $\underline{\text{claim 2}} \colon x_5 \le q \implies Z(p_Y') \subset (--, q').$

claim 3: $p' \le x_1 \le q' =$ either $p' < z_4$, or p'_y has 2 zeros in (q', 0).

Proof: If p' has less than 2 zeros in (q',0), p' has no zero there, so $Z(p_Y') \subset (-\infty,x_1]$. If now p' had a zero $\leq z_4$, lemma 1 and 1A, would yield a contradiction.

From $q \le x_5$ would follow A_1 by lemma 1, a contradiction. So we have $x_5 \le q \implies p' < x_1$, for otherwise $x_1 < p' < q' \implies Z(p_y') \subset (x_1, p')$ because of claim $2 \implies Z(p_y'') \subset (x_1, p')$, contradiction.

a)
$$x_1 < q \implies x_1 < q' \implies Z(p'_y) \subset (-\infty, x_1)$$

b) $q \le x_1 \implies Z(p_y) \subset (-\infty, x_1) \implies Z(p'_y) \subset (-\infty, x_1)$ $\Longrightarrow Z(p'_y) \subset (z_4, x_1)$, for

otherwise lemma 1 and ${}_{3}A_{1}$ yield a contradiction.

=> $Z(p_y'') \subset (-\infty, x_1) \land x_1 < q' < q'' => x_1 < p'' => Z(p_y'') \subset (-\infty, w_3)$ contradiction to claim 1.

case 8:

 $x_5 = x_4 = x_3 = x_2 = x_1$: choose $g(t) = t(t-x_1)^3$ if $A_1 \wedge A_2 \wedge A_3 \wedge A_4$.

- 1) ${}_{1}A_{2}$ or ${}_{1}A_{3}$ or ${}_{2}A_{4}$: p_{x}' and p_{y}' can be treated as $\underline{n=4}$, case 5.
- 2) $_{1}A_{1}$: same as $\underline{n=5}$, case 7.
- b) Let \mathbb{N} denote any fixed norm in \mathbb{R}^n .

We construct $f_1, f_2, \ldots, \in \mathbb{P}_n$ with corresponding zeros $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \in \mathbb{N}$ as follows: Let $f_o = \mathbf{p}_{\mathbf{x}}$ and $\mathbf{x}^{(0)} = \mathbf{x}$. If for $k \ge 0$, $\mathbf{x}^{(k)}$ and \mathbf{f}_k are

given, for every

$$g \in S := \{f \in \mathbb{P}_{n-1} | \max_{t \in [0,1]} |f(t)| = 1\},$$

let δ_{α} be maximal such that

a) for all $\lambda \in [0, \delta_g]$, $f_k + \lambda g$ has n zeros $z_{g_1}^{(\lambda)}$, ..., $z_{g_n}^{(\lambda)}$ with $z_g^{(\lambda)} \in M$

b) $\sigma(z_g^{(\lambda)})$ is strictly increasing for $\lambda \in [0, \delta_g]$.

Let $\hat{g} \in S$ be a function with

$$||\sigma(z_{\hat{q}}^{(\delta_{\hat{q}})} - \sigma(f_{k})|| = \max_{g \in S} \sigma(z_{g}^{(\delta_{g})} - \sigma(f_{k})||,$$

and define $f_{k+1} = f_k + \delta_{\hat{g}}\hat{g}$, $x^{(k+1)} = z_{\hat{g}}^{(\delta_{\hat{g}})}$.

So p_x and every f_k are connected by a path along which : is strictly increasing, and this path corresponds to a polygonal are in $\sigma(M)$ with corners $\sigma(x^{(0)}, \sigma(x^{(1)}, \ldots, \sigma(x^{(k)}))$. We have to show $f_k = p_y$ occurs for some k.

Suppose the contrary, i.e. $\sigma(x^{(k)}) \sim \sigma(y)$ for all k = 1, 2, ...

As{ $\sigma(\mathbf{x}^{(k)})$ } is an increasing sequence, $\sigma := \lim_{k \to \infty} \sigma(\mathbf{x}^{(k)})$ exists.

Let $\mathbf{x}^{\infty} := \lim_{k \to \infty} \mathbf{x}^{(k)}$, so $\sigma^{\infty} = \sigma(\mathbf{x}^{(\infty)})$, and \mathbf{f}_{∞} the corresponding polynomial.

There is a g $\in \mathbb{P}_{n-1}$, and a δ O such that fixing has nizeros $z_1^{(\lambda)}, \ldots, z_n^{(\lambda)}$ with $Z^{(+)} \in \Lambda_-^n$ for all $\lambda \in [0, 2\delta]$, and $\lambda(Z^{(+)})$ is strictly increasing with $\lambda \in [0, 2\delta]$. Let $\lambda = \| \lambda(Z^{(+)}) - \lambda(X^{(+)}) \|$.

We shall show that for every -0, there is an index and a

 $\tilde{g} \in \mathbb{P}_{n-1}$ (near g) such that

1) $f_k + \lambda \widetilde{g}$ has n zeros $\widetilde{z}_1^{(\cdot)}, \ldots, z_n^{(\cdot)}$ with $\widetilde{z}^{(\cdot)} \in \Delta_+^n$ for all $\cdot \in [0, \delta]$,

2) $\geq (\widetilde{z}^{(\lambda)})$ is strictly increasing for $\leq \varepsilon[0, 1]$,

3) $|| c(z^{(\delta)}) - \sigma(\tilde{z}^{(\delta)}) || < \epsilon$.

(This implies $||\sigma(\mathbf{x}^{(k+1)})|| \ge ||\sigma(\widetilde{\mathbf{z}}^{(\delta)})|| \ge ||\sigma^{\infty}|| + \alpha - \epsilon > ||\sigma^{\infty}||$

for all sufficiently small $\varepsilon>0$, a contradiction.)

Let $\tilde{\epsilon}>0$ be arbitrarily fixed and k so large that

$$(f_{\omega}-f_{k})(t)$$
 $< \tilde{\epsilon}$ for all $t \in I:= [2x_{n}^{\infty}-1,1]$, and $||x^{(k)}-x^{\infty}|| < \tilde{\epsilon}$.

So in an $\tilde{\epsilon}$ -neighbourhood of every zero z of f^{∞} of multiplicity m, f_k has exactly m zeros couting multiplicities.

As the functions g in part a) of the proof were constructed only in view of the multiplicities of the zeros of f^{∞} , \widetilde{g} can be constructed correspondingly in view of the zeros of f_k .

As an example, we consider the case $\underline{n=5}$, case 8 (leaving the analogous details of the other cases to the reader):

For
$$f_{\infty}(t) = (t-x_{1}^{\infty})^{5}$$
, we had $g(t) = (t-x_{1})^{3}t$.

For
$$f_k(t) = \int_{i=1}^{5} (t-x_i^{(k)})$$
 with $x_5^{(k)} \le x_4^{(k)} \le ... \le x_1^{(k)}$, we choose

$$\widetilde{g}(t) = (t-x_2^{(k)}(t-x_3^{(k)})(t-x_4^{(k)})t$$

=>
$$\max\{|(g-\tilde{g})(t)|\} = O(\tilde{\epsilon})$$
, and

$$\max\{|(f_{\infty}+\delta g)(t) - (f_{k}+\delta \widetilde{g})(t)|\} = O(\widetilde{\epsilon}).$$
tel

As $f_{\infty} + \delta g$ has 2 simple zeros * x_1 , $f_k + \delta \widetilde{g}$ has simple zeros near these.

For sufficiently small $\widetilde{\epsilon}$ and large k, statement 3) above holds, too.

References

- [1] Efroymson, G.A., Swartz, B. and B. wendroff: An inequality for symmetric functions. Submitted to "Advances in Mathematics".
- [2] Laquer, H.T. and B. Wendroff: Bounds for the model quelch front; to appear.

DEPORT POCHUENTATION BACE	READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	
2113 A D-A 193	574
4. TITLE (and Subtitio)	5. TYPE OF REPORT & PERIOD COVERED
	Summary Report - no specific
ELEMENTARY PROOFS OF AN INEQUALITY	reporting period
FOR SYMMETRIC FUNCTIONS FOR $n \le 5$	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e)	B. CONTRACT OR GRANT NUMBER(4)
	B. CONTRACT OR GRANT NOWNER(8)
Roland Zielke	DAAG29-80-C-0041 1
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS
Mathematics Research Center, University of	
610 Walnut Street Wisconsin	Work Unit Number 3 - Numerical Analysis and
Madison, Wisconsin 53706	Computer Science
11. CONTROLLING OFFICE NAME AND ADDRESS	12 REPORT DATE
U. S. Army Research Office	August 1980
P.O. Box 12211	13. NUMBER OF PAGES
Research Triangle Park, North Carolina 27709	13
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15 SECURITY CLASS. (of this report)
	UNCLASSIFIED
	150 DECLASSIFICATION DOWNGRADING SCHEDULE
16. DISTR BUTION STATEMENT (of this Report)	
Approved for public release; distribution unlimited.	
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report)	
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
real polynomials, inequalities	
20 ABSTRACT (Continue on reverse side if necessary and identify by block number)	
For $x = (x_1,, x_n) \in \mathbb{R}^n$ let the elementary symmetric functions $w_i = \mathbb{R}^n \cdot \mathbb{R}$	
1 n tal the exementary symmetric functions of the first	
be defined by	
$\psi_{j}(\mathbf{x}) = \sum_{i_{j}} \mathbf{x}_{i_{j}} \dots \mathbf{x}_{i_{j}}, j = 1, \dots, n.$ So the real polynomial $\mathbf{p}_{\mathbf{x}}$ of degree n	
in it is a second real polynomial particular in the second real polynomial in the second real po	
1≤i ₁ < <i<sub>1≤n</i<sub>	
- 1 j-	(continued)

ABSTRACT (cont.)

with leading coefficient 1 and zeros in $-x_1, \dots, -x_n$ is given by $p_{\mathbf{x}}(t) = t^n + \sum_{i=1}^n \psi_i(\mathbf{x}) t^{n-i}.$ Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n_+$ be points with $\psi_i(\mathbf{x}) \leq \psi_i(\mathbf{y})$ for $i = 1, \dots, n$. The was conjectured (see [2]) that this implies $\psi_i(\mathbf{x}^\alpha) \leq \psi_i(\mathbf{y}^\alpha)$ for every

is defined by $\mathbf{x}^{\alpha} = (\mathbf{x}_{1}^{\alpha}, \dots, \mathbf{x}_{n}^{\alpha})$. By an argument involving total positivity, this conjecture may be reduced to the problem of finding a piecewise differentiable path $\{\phi(t) \mid t \in [0,1]\}$ in \mathbb{P}^{n}_{+} with $\phi(0) = \mathbf{x}$, $\phi(1) = \mathbf{y}$ and such that $\psi_{\mathbf{i}}(\phi(t))$ is monotone increasing with t for each $\mathbf{i} = 1, \dots, n$ (see [1]). This problem looks deceivingly sample but was only recently solved by Efroymson, Swartz and Wendroff using a rather involved argument. We give elementary proofs for $n \leq 5$.