

미래 모빌리티를 위한 소프트웨어 정의형 인프라스트럭처 기술 개발 (SDI 기술 검증·실증 계획)

Kick-off Workshop 2024.6.12.

한국정보통신기술협회

목차

- ▮. 기관(TTA) 소개
- ┃ SDI 기술 검증·실증 계획

I. TTA 소개

★ TTA 연혁 및 기능

★ TTA의 핵심역할. 「표준-R&D-시험인증-상용화」연계 지원 (기대효과)

신뢰성 확보

→ 표준과 시험인증은 제품에 대한 신뢰성과 안전성을 보장하며, 사용자에게 신뢰 제공

★ 품질 향상

- → 표준을 준수하고 인증을 획득하는 것은 제품 또는 서비스의 품질을 향상시키는데 도움
- →공통된 기준에 따라 제품이나 서비스가 생산되고 제공되므로 고객들은 일관된 품질을 기대

② ★ 시장점유율 확대

→ 시험인증을 획득하고 표준을 준수하는 기업은 시장에서의 경쟁력 확보 가능

법적 준수 보장

- → 표준 및 인증을 준수함으로써 기업은 관련 법규를 준수하고 법적 리스크를 최소화 가능
- → 일부산업이나국가에서는특정 인증을 필수조건 으로 요구하는 경우 존대

★ 경쟁 우위 확보

- → 표준 및 인증을 획득한 기업은 시장에서의 경쟁 우위 확보 가능
- → 고객들은 안전성과 품질이 보장된 제품에 더 높은 가치를 부여, 이를 통해 시장에서의 경쟁력 향상 가능

★소프트웨어 시험인증 - 필요성

소프트웨어 시험인증의 필요성

비용·시간 자원 절감

- 개발·결함 리스크 절감, 낮은 실패확률과 높은 납기성과
 - ♪ 개발초기 품질활동 진행, 비용과 시간절감의 핵심

제3자 검증 객관성 확보

- 제3자 기관의 객관적 검증을 통한 효과적 품질 확보
 - 다양한 테스팅 기법을 통한 SW 잠재결함 예방

국내 SW 시장 활성화

- 국산 SW 기능·성능 품질 우수성 입증, 사용권고 및 보급
 - ② 글로벌 경쟁력을 가진 우수 국산SW 발굴, 인증 제공

수출 경쟁력 확산

- 글로벌 SW 품질 인증기준 적용으로 수출 경쟁력 강화
- ▶ 수출국 현지화·고품질화 유도를 통한 해외진출 활성화

★ AI융합 시험인증 - 필요성

AI 시험인증의 필요성

AI 신뢰성 및 수용성 확보

- 글로벌 주요국은 AI신뢰성 확보를 최우선 산업발전 정책화

글로벌 경쟁력 확보

- 4차 산업혁명 시대, AI기술경쟁력은 제2의 원유 자원으로 비유
 - 글로벌 규격의 시험 제공을 통한 국내기업 경쟁력 강화

고품질 데이터 구축

- 산업계에서 활용할 수 있는 학습데이터 Al-Hub 필요성
 - 목적별 고품질 데이터 구축 컨설팅과 AI 품질검증 제공

정보보호 수준 제고

- 디지털 전환 가속화로 인한 보안 위협 증가
 - 정보보호시험인증을통한ICT신기술의안정적정착지원

II. SDI 기술 검증·실증 계획

★ SDI 과제 추진 체계

★ SDI 과제 정량적 목표

평가 항목	단위	비중	세계최고수준보유국/ 보유기업(/)	연구개발 전 국내수준	개발 목표치			평가 방법		
(주요성능 Spec)	211	(%)	(%)	성능수준	성능수준	1차년도 (2024년)	2차년도 (2025년)	3차년도 (2026년)	4차년도 (2027년)	0,108
1. 실시간 컨테이너 실행 성능 (x86컨테이너)	WCET overruns(건)	15	26 (이탈리아/University of Verona)	-	-	<100	<50	<20	공인시험인증서 (4차년도)	
2. 혼합 중요도 태스크 분업 오케스트레이션 성능	Deadline missrate(%)	15	3.3 (미국/Rancher-Native K3S)	-	-	-	<6	<3	공인시험인증서 (4차년도)	
3. 이종 SoC 지원 가상 모빌리티 플랫폼 참조 프로파일	종	15	3종 (미국/아마존)	1종	-	1	2	3	자체평가	
(자체 추가) 4. 국산 AI 반도체를 활용한 모빌 리티-SDI간 분업형 서비스의 동시 실행성	개	10	-	-	-	1	2	3	자체평가	
(<mark>자체 추가)</mark> 5. 스케줄링 알고리즘 기반 정책 반영 최대 지연 시간	ms	10		-	-	<220	<200	<180	공인시험인증서 (4차년도)	
(자체 추가) 6. SDI 서버상에서 단일 AI 전용 가속기의 이미지 추론 건수	queries/sec (samples/sec)	10	6,050 (미국/NVidia T4)	-	-	2,600	-	35,000	공인시험인증서 (4차년도)	
(자체 추가) 7. 모빌리티 분업형 SW 개발 기술 의 지원 도메인/디바이스/환경 조합	개	15	-	-	2	4	6	8	자체평가	
(자체 추가) 8. 모빌리티 연계형 양방향 API 수	개	10	13 (유럽연합/ETSI)	-	6	12	25	50	자체평가	

★ SDI 과제 정량적 목표 달성 방법

정량목표1. 실시간 컨테이너 실행 성능

- 실시간 컨테이너들의 WCET deadline miss (단위: 건)
- 공인시험인증

연차	1	2	3	4
목표	-	<100	<50	<20

정량목표5. 스케줄링 알고리즘 기반 정책 반영 최 대 지연 시간

- 대규모 실시간 작업의 스케줄링 지연 시간 (단위: ms)
- 공인시험인증

연차	1	2	3	4
목표	2	<220	<200	<180

정량목표2. 혼합 중요도 태스크 분업 오케스트레이 션 성능

- 다중 혼합 복잡도 기반 실시간 작업의 miss-rate (단위: %)
- 공인시험인증

연차	1	2	3	4
목표	-	-	<6	<3

정량목표6. SDI 서버상에서 <mark>국산 서버용 AI 반도체</mark> 의 이미지 추론 건수

- SDI 서버의 AI 가속을 위한 국산 반도체의 초당 이미지 추론 건수
- 공인시험인증

연차	1	2	3	4
목표	7/25	2,600	2	35,000

디바이스-엣지-클라우드 연계 소프트웨어 정의형 인프라스트럭쳐 (SDI)

ETRI 5G 특화망 테스트베드

정량목표3. 이종 SoC 지원 가상 모빌리티 플랫폼 참조 프로파일

- 이종 SoC를 지원하는 가상 모빌리티 플랫폼의 참조 프로파일 개수 (단위: 종)
- 자체평가

	1			
연차	1	2	3	4
목표	-	1	2	3

정량목표4. <mark>국산 AI 반도체</mark>를 활용한 모빌리티-SDI 간 분업형 서비스의 동시 실행성

- 국산 AI 반도체를 활용한 모빌리티-SDI 분업형 서비스의 동시 실행 개수 (단위: 개)
- 공인시험인증

연차	1	2	3	4
목표	-	1	2	3

정량목표8. 모빌리티 연계형 양방향 API 수

- 모빌리티-SDI 연계형 양방향 API 개수 (단위: 개)
- 자체평가

연차	1	2	3	4
목표	6	12	25	50

정량목표7. 모빌리티 분업형 SW 개발 기술의 지원 도메인/디바이스/환경 조합

- 모빌리티 분업형 서비스 개발 기술의 ad-hoc polymorphism order 개수 (단위: 개)
- 자체평가

	The second second			
연차	1	2	3	4
목표	2	4	6	8

★ SDI 과제 통합 기술 적용 및 실증 테스트

SDI 통합 기술 적용 및 실증 테스트

★ SDI 과제 검증 절차

시험 목표 및 범위 설정

시험 범위 협의 및 시험 환경 구성

품질 시험 수행

1:1시험 전문가 현장 맞춤형 시험 수행

제품 품질 개선

결함 원인 분석 및 해결 방법 제시를 통한 제품 품질 개선

시험성적서 발행

시험 결과서 및 성적서 발행

TTA

Verified

* TTA Verified

- V&V 시험 ★ AI 융합 제품 및 서비스
 - * 데이터 융합 제품 및 서비스
 - * 시스템 (HW/기반SW) 성능
 - * 디지털인프라 제품 및 서비스
 - * 정보보호 제품 및 서비스
- 블록체인 신뢰성 시험
- 무선통신망(PS-LTE, LTE-R, LTE-M) 보안성 시험

❖ TTA R&D 결과검증

- 정부 R&D 결과검증 등

★ TTA의 핵심역할. 「표준-R&D-시험인증-상용화」연계 지원 (중요성)

EC 2008 Conference, 'European ICT standardization policy at a crossroads'

• 연구개발 결과물 품질 검증

★ TTA 연구 개발 내용

1차년도

미래 모빌리티를 위한 소프트웨어 정의 인프라 요구사항 분석 및 검증 계획 수립

미래 모빌리티 디바이스의 요구사항을 분석 및 SDI와 연계를 위한 기술 요구사항 도출

저지연 모빌리티 서비스를 위한 SDI 운영 및 연결성 지원 기술 검증 계획 수립

5G 및 특화망 연계형 SDI 실증 계획 수립

2차년도

미래 모빌리티를 위한 소프트웨어 정의 인프라 요소 기술 검증

미래 모빌리티를 위한 소프트웨어 정의 인프라 요소기술 검증 범위 및 테스트 케이스 도출

미래 모빌리티를 위한 소프트웨어 정의 인프라 테스트 환경 구축

5G 및 특화망 연계형 SDI 실증을 위한 응용서비스 분석

EDGE COMPUTING

3차년도

미래 모빌리티를 위한 소프트웨어 정의 인프라 통합 검증

미래 모빌리티를 위한 소프트웨어 정의 인프라 통합 테스트 시나리오 도출 및 기술 검증

5G 및 특화망 연계형 SDI 실증을 위한 시범서비스 구축

4차년도

미래 모빌리티를 위한 소프트웨어 정의 인프라 실증

5G 및 특화망 연계형 SDI 실증

미래 모빌리티와 소프트웨어 정의 인프라 연계 시나리오 도출 및 성능 검증

감사합니다

ICT 표준화 및 시험인증의 글로벌 리더 한국정보통신기술협회

