Московский физико-технический институт (госудраственный университет)

Лабораторная работа по электричеству

Резонанс напряжений в последовательном контуре [3.2.2]

Талашкевич Даниил Александрович Группа Б01-009

Долгопрудный 2021

Содержание

1	Аннотация									
	1.1	Теоретическое вступление и модель								
	1.2	Экспериментальная установка								
2	Ход работы									
	2.1	Закон Ома в цепи переменного тока								
	2.2	Резонанс напряжений								
3	Обр	работка результатов								
4	Вывод									
5	Литература									

1 Аннотация

Цель работы: исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, получение амплитудно частотных и фазово-частотных характеристик, определение основных па раметров контура.

В работе используются: генератор сигналов, источник напряжения, нагрузкой которого является последовательный колебательный контур с переменной ёмкостью, двухканальный осциллограф, цифровые вольтметры.

1.1 Теоретическое вступление и модель

XXX

1.2 Экспериментальная установка

В данной работе изучаются резонансные явления в последовательном колебательном контуре (резонанс напряжений). Схема экспериментального стенда показана на рис. 1. Синусоидальный сигнал от генератора поступает на вход управляемого напряжсением источника напрялсения (см., например, [3]), собранного на операционном усилителе, питание которого осуществляется встроенным блоком-выпрямителем от сети $\sim 220~\mathrm{B}$ (цепь питания на схеме не показана). Источник напряжсения (источник с нулевым внутренним сопротивлением) обеспечивает с высокой точностью постоянство амплитуды сигнала $\mathcal{E} = \mathcal{E}_0 \cos{(\omega t + \varphi_0)}$ на меняющейся по величине нагрузке - последовательном колебательном контуре, изображённом на рис. 1 в виде эквивалентной схемы.

Источник напряжения, колебательный контур и блок питания заключены в отдельный корпус, отмеченный на рисунке штриховой линией. На корпусе имеются коаксиальные разъёмы «Вход», « U_1 » и « U_2 », а также переключатель магазина ёмкостей C_n с указателем номера $n=1,2,\ldots 7$. Величины ёмкостей C_n указаны на установке. Напряжение $\mathcal E$ на контуре через разъём « U_1 » попадает одновременно на канал 1 осциллографа и вход 1-го цифрового вольтметра. Напряжение на конденсаторе U_C подаётся через разъём « U_2 » одновременно на канал 2 осциллографа и вход 2-го цифрового вольтметра.

Рис. 1. Схема экспериментального стенда

2 Ход работы

2.1 Закон Ома в цепи переменного тока

Подготовив установку, выставив пределы всех измерительных приборов и выкрутив ручку регулятора напряжения в положение напряжения $\approx 127B$, можем проступать к снятию данных.

Указатель на положение сердечника установили на отметку $x=5\,$ мм и, перемещая сердечник шагами по 2 мм, снимаем зависимость тока I, напряжения U_R, U_L, U_{R+L} , а так же мощности P_L от координаты сердечника x.

Полученные результаты представлены в таблице.

	x, MM	U_R, B	U_{R+L}, B	U_L, B	I, дел	I, A	P_L , дел	P_L , BT
1	5	73	112	73	34	85	42	10.5
2	7	78	110	65	36	90	38	9.5
3	9	81	109	61	37	92.5	36	9
4	11	84	108	56	37.5	93.75	34	8.5
5	13	85	107	52	39.5	98.75	32	8
6	15	87	107	50	40	100	31	7.75
7	17	89	107	47	41	102.5	30	7.5

Таблица 1: Показания приборов от положения сердечника

Так же для снятия и обработки результатов пригодилась таблица с характеристиками приборов.

Амперметр $-2.5 A$					
Вольтметры $-150 \ B$					
Ваттметр — $25 B$					
Переключатель катушки напряжений — 100 В					
Штепсель токовой катушки $I-0.25 \ A$					
$R_1 - 98 \text{ Om}$					

Таблица 2: Характеристики установки

2.2 Резонанс напряжений

Подготовим установку вместе с измерительными приборами. Установив сердечник в среднее положение ($x \approx 12$ мм), подбираем значение ёмкости так, чтобы наблюдать резонанс тока по изменению эллипса на экране 90.

При резонанс измерим показания $I, U_{C,pes}, U_{\sum,pes}$ и по полученным данным оценим добротность контура по формуле (10).

x, MM	C , мк Φ	I, A	U_C, B	$U_{\Sigma} B$	Q	$R_{\mathrm{доп}}$
12	55.2	410	242	41	5.902	5.6

Таблица 3: Показания приборов при резонансе

Для резонансного положения сердечника измерим омическое сопротивление витков каткушки с помощью мультиметра GDM, а затем – L, r_L с помощью измерителя LCR на частотах 50 Γ ц и 1 к Γ ц.

	Омметр	LCR	График	Вект.диагр	$f\left(I,U_{\Sigma}\right)_{\mathrm{pes}}$	f(Q)
r_L	2170					
L	_				_	

Таблица 4: Данные с мультиметра GDM и LCR измерителя

3 Обработка результатов

• По результатам измерений P_L и I найдем значение r_L по следующей формуле $P_L = I^2 r_L$. Теперь по следующей формуле

$$U_L = I\sqrt{r_L^2 + (\Omega L)^2} \tag{1}$$

вычислим L ($\Omega = 50 \ \Gamma$ ц).

Результаты вычислений заносим в таблицу:

r_L , Om	x, MM	L , Γ H
0,00145	5	0,01718
0,00117	7	0,01444
0,00105	9	0,01319
0,00097	11	0,01195
0,00082	13	0,01053
0,00078	15	0,01
0,00071	17	0,00917

Построим графики зависимостей L и r_L от положения сердечника и определем по ним значения L и r_L соответствующие резонансному (среднему) положению сердечника.

• Построим векторную диаграмму напряжений.

Так же на диаграмме отложены $U_{L, \text{ акт}}$ и $U_{L, \text{ реакт}}$ составляющие напряжения на катушке. По ним рассчитаем значения L и r_L .

$$tg \psi_1 = 0$$

$$tg \psi_2 = \frac{\Omega L}{r_L}$$

$$tg \psi_3 = \frac{\Omega L}{r_L + R}$$
(2)

Из этих уравнений получаем значения для $r_L = \dots$ и $L = \dots$.

По диаграмме получим значения для $\cos \theta = \dots - \text{сдвиг}$ фаз между током и напряжением на катушке $(\operatorname{tg} \psi_2)$. Сравним полученное значение с теоретическим по формуле

$$\bar{P}_L = U_L \cdot I \cos \theta = I^2 \cdot r_L \tag{3}$$

 $\cos \theta_{ ext{Teop}} = \dots$. Видно, что XX

• Рассчитаем активное сопротивление катушки r_L через ток и напряжение на контуре, используя следующие соотношения:

$$R_{\Sigma} = R_1 + r_L$$

$$U_{\Sigma, \text{ pe3}} = I_{\text{ pe3}} R_{\Sigma}, \quad U_{C, \text{ pe3}} = \frac{I_{\text{ pe3}}}{\Omega C}$$

Тогда получаем

$$r_L = \frac{U_{\Sigma, \text{ pe3}}}{U_{C, \text{ pe3}} \cdot \Omega C} - R_1 = XX$$

Так же рассчитаем L и r_L через добротность Q при помощи следующих соотношений

$$\omega_0 L = \frac{1}{\omega_0 C}$$

$$Q = \frac{\omega_0 L}{R_{\Sigma}} = \frac{1}{\omega_0 C R_{\Sigma}}$$

$$R_{\Sigma} = R_1 + r_L$$

$$Q = \frac{U_{C, \text{ pe3}}}{U_{\Sigma, \text{ pe3}}}$$

Отсюда получаем L = XX, $r_L = XX$.

• Сведем результаты измерений в таблицу:

	Омметр	LCR	График	Вект.диагр	$f\left(I,U_{\Sigma}\right)_{\mathrm{pes}}$	f(Q)
r_L	2170					
L	_				_	

Таблица 5: Данные с мультиметра GDM и LCR измерителя

• Сравним величины L и r_L , определённые разными способами. Так же оценим погрешности и проанализируем возможные причины расхождения результатов.

4 Вывод

Χ

5 Литература

1. **Лабораторный практикум по общей физике:** Учебное пособие. В трех томах. Т. 2. Электричество и магнетизм /Гладун А.Д., Александров Д.А., Берулёва Н.С. и др.; Под ред. А.Д. Гладуна - М.: МФТИ, 2007. - 280 с.