

# **CURSO INTENSIVO 2022**

# ITA - 2022 Matemática

**Prof. Victor So** 





# Sumário

| APRESENTAÇÃO                                                | 4        |
|-------------------------------------------------------------|----------|
| 1. FUNÇÃO EXPONENCIAL                                       | 4        |
| 1.1. Potenciação e Radiciação                               | 4        |
| 1.1.1. Definição                                            | 4        |
| 1.1.2. Propriedades da Potenciação                          | 5        |
| 1.1.3. Propriedades da Radiciação                           | 5        |
| 1.1.4. Teorema 1                                            | 6        |
| 1.1.5. Teorema 2<br>1.1.6. Teorema 3                        | 6        |
| 1.1.7. Teorema 4                                            | 7        |
| 1.2. Equações Exponenciais                                  | 7        |
| 1.3. Inequações Exponenciais                                | 9        |
| 1.4. Funções Exponenciais                                   | 10       |
| 1.4.1. Definição                                            | 10       |
| 1.4.2. Caso 1                                               | 10       |
| 1.4.3. Caso 2                                               | 11       |
| 2. FUNÇÃO LOGARÍTMICA                                       | 12       |
| 2.1. Definição                                              | 12       |
| 2.2. Propriedades                                           | 14       |
| 2.3. Funções Logarítmicas                                   | 14       |
| 2.3.1. Definição                                            | 14       |
| 2.3.2. Propriedades                                         | 15       |
| 2.3.3. Gráfico                                              | 15       |
| 2.4. Equações Logarítmicas                                  | 18       |
| 2.5. Inequações Logarítmicas                                | 19       |
| 2.6. Logaritmos Decimais                                    | 20       |
| 2.6.1. Característica e Mantissa 2.6.2. Teorema da Mantissa | 20<br>20 |
| z.o.z. reorema da Mantissa                                  | 20       |
| 3. FUNÇÃO PISO E FUNÇÃO TETO                                | 20       |
| 3.1. Definição                                              | 21       |
| 3.1.1. Propriedades                                         | 21       |
| 3.2. Gráfico                                                | 21       |
| 4. EQUAÇÕES FUNCIONAIS                                      | 23       |
| 4.1. Equações Funcionais Básicas                            | 23       |
| 4.1.1. Equações funcionais de Cauchy                        | 23       |
| 4.1.2. Equação funcional de Jensen                          | 23       |
| 4.1.3. Equação funcional de D`Alambert                      | 23       |
|                                                             |          |



|             | 4.1.4. Equações funcionais trigonométricas | 24 |
|-------------|--------------------------------------------|----|
|             | 4.2. Como resolver uma equação funcional   | 24 |
| 5. Q        | UESTÕES DE PROVAS ANTERIORES               | 26 |
|             | Questões ITA                               | 26 |
|             | Questões IME                               | 32 |
| 6. GABARITO |                                            | 36 |
|             | Gabarito das Questões ITA                  | 36 |
|             | Gabarito das Questões IME                  | 37 |
| 7. Q        | UESTÕES DE PROVAS ANTERIORES COMENTADAS    | 37 |
|             | Questões ITA Comentadas                    | 38 |
|             | Questões IME Comentadas                    | 66 |



# Apresentação

Na aula de hoje, estudaremos as funções exponencial e logarítmicas, assuntos muito cobrados nas provas militares. Tente fazer todos os exercícios dessa aula, pois é bem provável que você encontre uma dessas questões no seu concurso. Também aprenderemos a resolver equações funcionais e outras funções que podem ser cobradas na prova.

Caso tenha alguma dúvida entre em contato conosco através do fórum de dúvidas do Estratégia ou se preferir:





Como se trata de um **curso intensivo**, o nosso objetivo é que você consiga estudar todas as principais questões que podem ser cobradas na prova e, por isso, teremos menos questões e nossa teoria será mais objetiva. Caso queira um material mais aprofundado e com mais questões, recomendo o nosso material do **curso extensivo**.

# 1. Função Exponencial

# 1.1. Potenciação e Radiciação

#### 1.1.1. Definição

Para  $a \in \mathbb{R}$ ,  $n \in \mathbb{N}$ , temos:

$$a^n = \underbrace{a \cdot a \cdot a \cdot \dots \cdot a}_{n \text{ neges}}$$

 $a^n$  representa o produto de n fatores iguais a a, onde n é o expoente e a é a base.

Para n=1, temos  $a^1$ . Como não temos um produto de mais fatores, consideramos  $a^1=a$ . Disso, podemos extrair a definição indutiva de potenciação:



Como consequência da definição, temos:

#### 1.1.2. Propriedades da Potenciação

**P1)** 
$$a^m \cdot a^n = a^{m+n}$$

P2) 
$$\frac{a^m}{a^n} = a^{m-n}, m > n$$
P3)  $(ab)^m = a^m \cdot b^m$ 

**P3)** 
$$(ab)^m = a^m \cdot b^m$$

P4) 
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, b \neq 0$$
  
P5)  $(a^m)^n = a^{m \cdot n}$ 

**P5)** 
$$(a^m)^n = a^{m \cdot n}$$

**P6)** 
$$a > 1 \Rightarrow 1 < a < a^2 < \dots < a^n, n \in \mathbb{N}$$

**P7)** 
$$0 < a < 1 \Rightarrow 1 > a > a^2 > \dots > a^n, n \in \mathbb{N}$$

A propriedade P1 nos diz que para multiplicação de potências de mesma base, conservamos a base e somamos os expoentes.

Um detalhe para essa propriedade é se m=0 e  $n \in \mathbb{N}^*$ , usando a propriedade, obtemos:

$$a^{0} \cdot a^{n} = a^{0+n} = a^{n}$$

$$\Rightarrow a^{0} = 1$$

Portanto, devemos considerar que um número elevado a 0 resulta no número 1.

As propriedades vistas até aqui são válidas para um expoente n natural. Vamos ver o que acontece quando estendemos o conceito para expoentes reais.

Começando pelos expoentes inteiros:

Para  $a \in \mathbb{R}$ ,  $m, n \in \mathbb{Z}$  e m = -n, usando a propriedade P1, temos:

$$a^{m} \cdot a^{n} = a^{-n} \cdot a^{n} = a^{n-n} = a^{0} = 1$$

$$a^{-n} \cdot a^{n} = 1$$

$$\Rightarrow a^{-n} = \frac{1}{a^{n}}$$

Usando esse resultado, podemos provar que todas as propriedades válidas para os expoentes naturais também são válidas para os inteiros.

Agora, vejamos para expoentes racionais:

Aqui, surge o conceito de radiciação. Além da potenciação, temos a operação chamada de radiciação. O que muda entre elas é a sua forma de representação. Tipicamente, a definição de radiciação é dada por:

$$b = \sqrt[n]{a} \Leftrightarrow b^n = a$$

Sendo  $a \in \mathbb{R}_+^*, b \in \mathbb{R}_+^*, n \in \mathbb{N}^*$ .

b é a raiz n-ésima de a.

n é o índice da radiciação.

a é o radicando.

$$\sqrt{\phantom{a}}$$
 é o radical.

Vejamos as propriedades para radiciação:

#### 1.1.3. Propriedades da Radiciação

**R1)** 
$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$$

**R2)** 
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}, b \neq 0$$

**R3)** 
$$\left(\sqrt[n]{a}\right)^m = \left(\sqrt[n]{a^m}\right)$$

**R4)** 
$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[n \cdot m]{a}$$

$$R5) \sqrt[n]{a^m} = \sqrt[n \cdot p]{a^{m \cdot p}}$$

Essas propriedades decorrem daquelas válidas para a potenciação.



Voltando ao conceito de potenciação de expoentes racionais, temos que se  $n=\frac{p}{q}$ , tal que  $p\in\mathbb{Z}$ ,  $q\in\mathbb{Z}^*$ ,  $n\in\mathbb{Q}$ , temos:

$$a^n = a^{\frac{p}{q}} = \sqrt[q]{a^p}$$

Para expoentes racionais juntamos os conceitos de potenciação e radiciação.

Usando a definição:

Sendo  $a \in \mathbb{R}, n = \frac{p}{q}, m = \frac{r}{s}, q, s \in \mathbb{N}^*$ , temos:

$$a^m \cdot a^n = a^{\frac{r}{s}} \cdot a^{\frac{p}{q}} = \sqrt[s]{a^r} \cdot \sqrt[q]{a^p}$$

Aqui, devemos igualar os índices para conseguir juntar os números em um mesmo radical. Para isso, basta fazer:

$$a^{\frac{r}{s}} = a^{\frac{qr}{qs}}$$

$$a^{\frac{p}{q}} = a^{\frac{ps}{qs}}$$

Desse modo:

$$a^{\frac{r}{s}} \cdot a^{\frac{p}{q}} = a^{\frac{qr}{qs}} \cdot a^{\frac{ps}{qs}} = \sqrt[qs]{a^{qr}} \cdot \sqrt[qs]{a^{ps}} = \sqrt[qs]{a^{qr} \cdot a^{ps}} = \sqrt[qs]{a^{qr} \cdot a^{ps}} = \sqrt[qs]{a^{qr+ps}} = a^{\frac{qr+ps}{qs}} = a^{\frac{r}{s} + \frac{p}{q}}$$

$$\Rightarrow a^{\frac{r}{s}} \cdot a^{\frac{p}{q}} = a^{\frac{r}{s} + \frac{p}{q}}$$

Usando esse resultado podemos provar todas as propriedades da potenciação.

Portanto, as propriedades são válidas para expoentes racionais.

Não veremos o estudo dos expoentes irracionais, pois isso foge ao escopo do curso. Mas saiba que todas aquelas propriedades podem ser usadas para expoentes reais.



Como eliminamos o radical do denominador do número acima?

Lembra da fatoração  $x^2 - y^2 = (x - y)(x + y)$ ? Vamos usá-la.

Para remover o radical, devemos multiplicar o numerador e denominador por  $a-\sqrt{b}$ . Com isso, obtemos:

$$\frac{1}{a+\sqrt{b}} \cdot \frac{a-\sqrt{b}}{a-\sqrt{b}} = \frac{a-\sqrt{b}}{a^2-b}$$

Esse processo chama-se racionalização.

Vamos ver 2 teoremas que nos ajudarão a resolver as questões da prova:

#### 1.1.4. Teorema 1

Para  $n \in \mathbb{R}$  e  $a \in \mathbb{R}$ :

$$a > 1 e a^n > 1 \Leftrightarrow n > 0$$

#### 1.1.5. Teorema 2

Para  $a, x, y \in \mathbb{R}$  e a > 1, temos:

$$a^x > a^y \Leftrightarrow x > y$$

#### 1.1.6. Teorema 3

Para  $n \in \mathbb{R}$  e  $a \in \mathbb{R}$ :





#### 1.1.7. Teorema 4

Para  $a, x, y \in \mathbb{R}$  e 0 < a < 1, temos:

$$a^x > a^y \Leftrightarrow x < y$$

#### 1.2. Equações Exponenciais

Aprendemos as operações básicas de potenciação e radiciação. Agora, somos capazes de resolver equações exponenciais.

Vamos ver algumas equações e aprender a resolvê-las:

1) 
$$2^x = 1024$$

Como encontramos o valor de x que satisfaz a equação acima?

A técnica, nesse caso, é escrever os números de modo a obter uma base em comum. Vamos fatorar o número 1024:

$$1024 = 2^{10}$$

Assim, fazendo a substituição, obtemos:

$$2^x = 2^{10}$$

Sabendo que a função  $2^x$  é injetora, para a igualdade ser verdadeira devemos ter:

$$x = 10$$

2) 
$$9^x + 3^{x+1} = 4$$

Para essa equação, devemos ver que  $9^x = (3^2)^x = (3^x)^2$  e  $3^{x+1} = 3^x \cdot 3$ 

Assim, fazendo as substituições na equação, temos:

$$(3^x)^2 + 3 \cdot 3^x = 4$$

Vamos chamar  $y = 3^x > 0$ ,  $\forall x \in \mathbb{R}$ :

$$y^{2} + 3y = 4$$
  

$$y^{2} + 3y - 4 = 0$$
  

$$(y+4)(y-1) = 0$$

Com isso, vemos que y=-4 u y=1 são soluções da equação acima. Vamos encontrar x para cada uma delas:

Para y = -4:

$$3^x = -4$$

Sabemos que  $3^x > 0, \forall x \in \mathbb{R}$ . Então,  $\nexists x$  que satisfaz a equação.

Para y = 1:

$$3^x = 1$$
$$\Rightarrow x = 0$$

Portanto, a equação possui apenas uma solução:

 $S = \{0\}$ 

3) 
$$4^x + 6^x = 2 \cdot 9^x$$

Vamos reescrever a equação:

$$(2^{2})^{x} + (2 \cdot 3)^{x} = 2 \cdot (3^{2})^{x}$$
$$(2^{x})^{2} + 2^{x} \cdot 3^{x} = 2 \cdot (3^{x})^{2}$$

O bizu aqui é dividir a equação por  $(2^x)^2$  (poderia ser também  $(3^x)^2$ ), já que esse número é diferente de zero para todo x real:

$$\frac{(2^x)^2 + 2^x \cdot 3^x}{(2^x)^2} = 2 \cdot \frac{(3^x)^2}{(2^x)^2}$$
$$1 + \frac{3^x}{2^x} = 2 \cdot \left(\frac{3^x}{2^x}\right)^2$$



$$1 + \left(\frac{3}{2}\right)^x = 2 \cdot \left(\frac{3}{2}\right)^{2x}$$

Agora, chamamos  $y = \left(\frac{3}{2}\right)^x$ :

$$1 + y = 2y^2 
2y^2 - y - 1 = 0$$

Encontrando a solução:

$$y = \frac{1 \pm \sqrt{1+8}}{4} = \frac{1 \pm 3}{4} = 1 \text{ ou } -\frac{1}{2}$$

Para encontrar a solução em x, basta testar os valores de y:

Para y = 1:

$$\left(\frac{3}{2}\right)^x = 1$$

$$\Rightarrow x = 0$$

Para  $y = -\frac{1}{2}$ :

$$\left(\frac{3}{2}\right)^x = -\frac{1}{2}$$

 $\Rightarrow \nexists x \in \mathbb{R}$  que satisfaz a igualdade

$$\therefore S = \{0\}$$

4) 
$$3^{x^2 + \frac{1}{x^2}} = \frac{81}{3^{x + \frac{1}{x}}}$$

Nessa equação, perceba os fatores  $x + \frac{1}{x}$ . Se elevarmos esse número ao quadrado, obtemos:

$$\left(x + \frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} + 2$$

Temos que fazer surgir o fator 2 no expoente do número à esquerda. Vamos multiplicar a equação por  $3^2$ :

$$3^{x^{2} + \frac{1}{x^{2}}} \cdot 3^{2} = \frac{81}{3^{x + \frac{1}{x}}} \cdot 3^{2}$$
$$3^{x^{2} + \frac{1}{x^{2}} + 2} = \frac{729}{3^{x + \frac{1}{x}}}$$
$$3^{(x + \frac{1}{x})^{2}} = \frac{729}{3^{x + \frac{1}{x}}}$$

Substituindo  $y = x + \frac{1}{x}$  na equação:

$$3^{y^2} = \frac{729}{3^y}$$
$$3^{y^2} \cdot 3^y = 729$$
$$3^{y^2+y} = 3^6$$

Dividindo por 36:

$$\frac{3^{y^2+y}}{3^6} = 1$$
$$3^{y^2+y-6} = 3^0$$

As potências possuem a mesma base. Desse modo, podemos igualar os expoentes:

$$y^{2} + y - 6 = 0$$
  
 $(y+3)(y-2) = 0$   
 $\Rightarrow y = -3 \text{ ou } y = 2$ 

Testando os valores:



Para y = -3:

$$x + \frac{1}{x} = -3$$

$$x^2 + 3x + 1 = 0$$

$$x = \frac{-3 \pm \sqrt{9 - 4}}{2} = \frac{-3 \pm \sqrt{5}}{2}$$

Para y = 2:

$$x + \frac{1}{x} = 2$$

$$x^2 - 2x + 1 = 0$$

$$(x - 1)^2 = 0$$

$$\Rightarrow x = 1$$

Portanto, a equação possui 3 soluções distintas:

$$S = \left\{1, \frac{-3 - \sqrt{5}}{2}, \frac{-3 + \sqrt{5}}{2}\right\}$$

#### 1.3. Inequações Exponenciais

Vamos aprender a resolver inequações exponenciais. O método de resolução deve seguir a seguinte ideia:

$$x, y \in \mathbb{R}$$

$$Se \ a > 1 \ e \ a^x > a^y \Rightarrow x > y$$

$$Se \ 0 < a < 1 \ e \ a^x > a^y \Rightarrow x < y$$

1) 
$$2^x - 1 > 2^{1-x}$$

Inicialmente, devemos organizar os números da inequação:

$$2^{x} - 1 > \frac{2}{2^{x}}$$

$$2^{x} - 1 - \frac{2}{2^{x}} > 0$$

$$\frac{2^{x} \cdot 2^{x} - 2^{x} - 2}{2^{x}} > 0$$

$$\frac{(2^{x})^{2} - 2^{x} - 2}{2^{x}} > 0$$

O denominador da inequação acima é sempre maior que 0,  $\forall x \in \mathbb{R}$ :

$$2^x > 0, \forall x \in \mathbb{R}$$

Então, devemos ter:

$$(2^x)^2 - 2^x - 2 > 0$$

Fazendo a substituição  $2^x = y$ , encontramos a seguinte inequação do segundo grau:

$$y^{2} - y - 2 > 0$$
$$(y - 2)(y + 1) > 0$$

Analisando o sinal:



Assim, y deve pertencer ao intervalo:

$$y < -1 \ ou \ y > 2$$

Agora, devemos retornar à variável x:



$$2^x < -1$$
 ou  $2^x > 2$ 

Sabemos que  $2^x > 0$ ,  $\forall x \in \mathbb{R}$ , então, a única solução é  $2^x > 2$ :

$$2^x > 2 \Rightarrow 2^x > 2^1$$

Como as bases da inequação acima são iguais e maiores do que 1, podemos comparar usar a mesma desigualdade e escrever:

Portanto, a solução da inequação é:

$$S = \{x \in \mathbb{R} | x > 1\}$$

#### 1.4. Funções Exponenciais

#### 1.4.1. Definição

A função exponencial é dada por:

$$f: \mathbb{R} \to \mathbb{R}_+^*$$

$$f(x) = a^x; a > 0 e a \neq 1$$

Perceba que a condição da base da função é a>0 e  $a\neq 1$ . Vamos ver a razão disso: Suponha a=-3, então:

$$f(x) = (-3)^x$$

Se x = 1/2, temos:

$$f\left(\frac{1}{2}\right) = (-3)^{\frac{1}{2}} = \sqrt{-3} \notin \mathbb{R}$$

O número resultante é irracional e não pertence ao conjunto dos reais!

Agora, suponha a=0 ou a=1, nesses casos, temos as funções constantes:

$$a = 0 \Rightarrow f(x) = 0, \forall x \in \mathbb{R}$$
  
 $a = 1 \Rightarrow f(x) = 1^x = 1, \forall x \in \mathbb{R}$ 

Temos dois casos diferentes de função exponencial, vamos estudar cada um deles.

#### 1.4.2. Caso 1

O primeiro caso é para base 0 < a < 1, vamos ver o que acontece com a forma da função:

$$f(x) = a^x$$

Verificando a monotonicidade da função:

$$\forall x_2, x_1 \in \mathbb{R}$$
, tal que  $x_2 < x_1 \Rightarrow x_2 - x_1 < 0$ 

Usando o Teorema 2, temos:

$$0 < a < 1 e a^n > 1 \Leftrightarrow n < 0$$

Fazendo  $n = x_2 - x_1$ :

$$x_2 - x_1 < 0 \Rightarrow a^{x_2 - x_1} > 1$$
  
 $\frac{a^{x_2}}{a^{x_1}} > 1$   
 $\Rightarrow a^{x_2} > a^{x_1}$ 

Assim, encontramos a seguinte implicação:

$$x_2 < x_1 \Rightarrow a^{x_2} > a^{x_1} \Rightarrow f(x_2) > f(x_1)$$

Portanto, a função é estritamente decrescente para 0 < a < 1.

Nesse caso, o gráfico da função fica:



Note que f(x) > 0,  $\forall x \in \mathbb{R}$ . A função exponencial nunca se zera!

Chamamos de assíntota, a reta que limita o valor que a função admite. No exemplo acima, a assíntota é a reta y=0 e coincide com o eixo x. Aumentando-se os valores de x, a função tende a se aproximar do valor 0!



#### 1.4.3. Caso 2

O segundo caso é para a > 1. Vamos analisar a monotonicidade da função:

 $\forall x_2, x_1 \in \mathbb{R}$ , tal que  $x_2 > x_1$ , temos  $x_2 - x_1 > 0$ . Usando o Teorema 1:

$$\boxed{a>1\ e\ a^n>1\Leftrightarrow n>0}$$

Fazendo  $n = x_2 - x_1 > 0$ , podemos escrever:

$$x_{2} - x_{1} > 0 \Rightarrow a^{x_{2} - x_{1}} > 1$$

$$\frac{a^{x_{2}}}{a^{x_{1}}} > 1$$

$$a^{x_{2}} > a^{x_{1}}$$

Desse modo, temos a seguinte implicação:

$$x_2 > x_1 \Rightarrow a^{x_2} > a^{x_1} \Rightarrow f(x_2) > f(x_1)$$

A função é estritamente crescente para o caso a > 1.

Se gráfico é dado por:



Perceba que o gráfico dessa função tende a zero quando x tende a menos infinito.



A função exponencial  $f(x) = a^x$  é injetora, pois para a > 1, a função é estritamente crescente e para 0 < a < 1, a função é estritamente decrescente. Consequentemente, temos:

$$x_2 = x_1 \Rightarrow a^{x_2} = a^{x_1}$$

A imagem da função exponencial é o conjunto dos reais positivos:

$$Im(f) = \mathbb{R}_+^*$$

Portanto, se o contra-domínio da função f for  $\mathbb{R}_+^*$ , ela é sobrejetora. Logo, é bijetora.

# 2. Função Logarítmica

# 2.1. Definição



Iniciaremos o estudo das funções logarítmicas. Esse tema é muito explorado nas provas militares, então, preste bastante atenção!

Preliminarmente, vamos ver como se deu sua criação.

Aprendemos no capítulo anterior, como resolver equações funcionais de bases iguais, por exemplo:

$$3^x = 9$$

$$3^x = 3^2$$

$$\Rightarrow x = 2$$

Mas o que aconteceria se as bases fossem diferentes? Como no exemplo abaixo:

$$2^{x} = 5$$

Vimos que a função exponencial é contínua e injetora, então, podemos esboçar o gráfico da função e verificar qual intervalo que x pertence:



Se  $x=\alpha$ , vemos que  $2<\alpha<3$ . Podemos representar o valor de  $\alpha$  usando a definição de logaritmo:

$$2^{\alpha} = 5 \Leftrightarrow \alpha = \log_2 5$$

Dizemos que  $\alpha$  é o expoente que na base 2 resulta em 5. Perceba que a função logarítmica é a função inversa da função exponencial!

Vejamos sua definição formal:

Para  $a, b, x \in \mathbb{R}$ , a, b > 0 e  $b \neq 1$ , temos:

$$\log_b a = x \Leftrightarrow b^x = a$$

 $\log_b a$  lê-se: logaritmo de a na base b.

a é o logaritmando ou antilogaritmo.

*b* é a base do logaritmo.

x é o logaritmo.

Exemplos:

1) 
$$\log_2 16 = 4$$
, pois  $2^4 = 16$ 

2) 
$$\log_5 125 = 3$$
, pois  $5^3 = 125$ 

3) 
$$\log_7 49 = 2$$
, pois  $7^2 = 49$ 

Decorre da definição as seguintes propriedades:

I) 
$$\log_b 1 = 0$$

Sabemos que qualquer base elevada a 0 resulta em 1. Logo, o logaritmo de 1 em qualquer base é

II)  $\log_b b = 1$ 

0.

III)  $b^{\log_b a} = a$ Sabemos que:

$$a = b^c \Leftrightarrow c = \log_b a$$

Basta substituir  $c = \log_b a$  em  $a = b^c$ :

$$a = b^{\log_b a}$$

#### IV) $\log_b a = \log_b c \Leftrightarrow a = c$

Vamos demonstrar essa propriedade:

$$\log_b a = \log_b c$$



Usando a definição de logaritmo, temos:

$$a = b^{\log_b c}$$

Usando a propriedade III:

$$\Rightarrow a = c$$

Portanto, a função logarítmica é injetora.

Além dessas propriedades, temos alguns casos específicos de logaritmos:

a) 
$$colog_ab = -\log_a b$$
 ou  $colog_ab = \log_a \left(\frac{1}{b}\right)$ 

Definição de cologaritmo.

$$b) \ln b = \log_e b$$

Essa é a definição de logaritmo natural de um número b > 0. Ele é o logaritmo de b na base e. e é um número e é chamado de número de Euler devido ao matemático Leonhard Euler.

O seu valor aproximado é  $e \cong 2,71$ .

$$c)\log b = \log_{10} b$$

Quando não dizemos qual base o logaritmo está escrito, subentende-se que a base é a decimal.

d) antilog<sub>a</sub>
$$x = a^x$$

Definição de antilogaritmo, em símbolos, se  $a, x \in \mathbb{R}$  e a > 0 e  $a \neq 1$ :

$$\log_a b = x \Leftrightarrow b = antilog_a x$$

#### 2.2. Propriedades

Para a, b, c > 0 e  $a \neq 1$ , as seguintes propriedades são válidas:

**P1**) 
$$log_a(bc) = log_ab + log_ac$$

$$\mathbf{P2})\log_a\left(\frac{b}{c}\right) = \log_a b - \log_a c$$

**P3**) 
$$\log_a b^{\alpha} = \alpha \log_a b$$
;  $\alpha \in \mathbb{R}$ 

$$\mathbf{P4})\log_a b = \frac{\log_c b}{\log_c a}$$

$$\mathbf{P5})\log_a b = \frac{1}{\log_b a}$$

**P6**) 
$$\log_{a^{\beta}} b = \frac{1}{\beta} \log_a b$$
;  $\beta \in \mathbb{R}^*$ 

$$P7) a^{\log_c b} = b^{\log_c a}$$

# 2.3. Funções Logarítmicas

#### 2.3.1. Definição

Definimos a função logarítmica do seguinte modo:

$$f: \mathbb{R}_+^* \to \mathbb{R}$$
$$f(x) = \log_a x$$

A função logarítmica possui uma condição de existência:

$$x > 0$$
  
$$a > 0 e a \neq 1$$

Vamos ver alguns exemplos de funções logarítmicas:

$$1) f(x) = \log x$$

$$2) g(x) = \ln x$$

$$3) h(x) = \log_{\frac{3}{2}} x$$



#### 2.3.2. Propriedades

**P1)** Se  $f: \mathbb{R} \to \mathbb{R}_+^*$  e  $g: \mathbb{R}_+^* \to \mathbb{R}$ , tal que  $f(x) = a^x$  e  $g(x) = \log_a x$ , para a > 0 e  $a \ne 1$ . Então, f e g são funções inversas.

**P2)** A função logarítmica  $f(x) = \log_a x$  é estritamente crescente para a > 1 e estritamente decrescente para 0 < a < 1. Logo, ela é uma função injetora. Ela também é sobrejetora, já que o contradomínio dessa função é o conjunto dos reais. Portanto, ela é bijetora e por isso é inversível.

$$f(x) = \log_a x \Rightarrow \begin{cases} estritamente \ crescente \Leftrightarrow a > 1 \\ estritamente \ decrescente \Leftrightarrow 0 < a < 1 \end{cases}$$

#### 2.3.3. Gráfico

Vimos que a função exponencial é a inversa da função logarítmica. Pela definição de função inversa, essas funções são simétricas em relação à reta y=x. Também estudamos que a função logarítmica  $f(x)=\log_a x$  é crescente para a>1 e decrescente para 0< a<1.

Vamos esboçar o gráfico para esses dois casos:

Para a > 1, temos:



Para 0 < a < 1, temos:





Vamos aprender a esboçar o gráfico usando exemplos:

1) 
$$f(x) = \log_2(2x + 8)$$

Condição de existência:

$$2x + 8 > 0 \Rightarrow 2x > -8 \Rightarrow x > -4$$

Raiz:

$$\log_2(2x + 8) = 0$$
  
2x + 8 = 2<sup>0</sup> = 1  
$$x = -\frac{7}{2}$$

Para x = 0, temos:  $f(0) = \log_2 8 = 3$ .

Devemos verificar a monotonicidade da função:

$$x_{2} > x_{1}$$

$$2x_{2} > 2x_{1}$$

$$2x_{2} + 8 > 2x_{1} + 8$$

$$\log_{2}(2x_{2} + 8) > \log_{2}(2x_{1} + 8)$$

$$\Rightarrow f(x_{2}) > f(x_{1})$$

f é crescente.

Para esboçar o gráfico, devemos traçar a reta que limita os valores de x, a reta assíntota x=-4:



Como a função é crescente, temos o seguinte esboço (lembrando que a função nunca encosta na assíntota!):





#### 2.4. Equações Logarítmicas

Aprendemos a usar as propriedades logarítmicas e o que é uma função logarítmica, agora, podemos proceder à resolução de equações logarítmicas.

As equações logarítmicas podem ser divididas em 3 casos:

Caso 1) 
$$\log_a f(x) = \log_a g(x)$$

Para resolver esse tipo de equação, sempre devemos verificar as **condições de existência** do logaritmo. Desse modo, temos que:

$$a > 0 e a \neq 1$$

$$f(x) > 0$$

$$g(x) > 0$$

$$\log_a f(x) = \log_a g(x) \Rightarrow f(x) = g(x)$$

Veja o exemplo:

1) Resolva a equação:

$$\log_3(3x - 4) = \log_3(x + 1)$$

Verificando as condições de existência, temos:

$$3x - 4 > 0 \Rightarrow x > \frac{4}{3}$$
$$x + 1 > 0 \Rightarrow x > -1$$

Fazendo a intersecção, obtemos x > 4/3.

Resolvendo a equação:

$$3x - 4 = x + 1$$
$$2x = 5$$
$$x = \frac{5}{2} > \frac{4}{3}$$

Como x = 5/2 > 4/3, temos que ela é solução da equação:

$$S = \left\{ \frac{5}{2} \right\}$$

Caso 2)  $\log_a f(x) = \beta, \beta \in \mathbb{R}$ 

Esse tipo de equação é resolvido fazendo:

$$f(x) = a^{\beta}$$

Para  $a \neq 1$  e a > 0.



Não precisamos verificar as condições de existência do logaritmo, pois:

$$f(x) = a^{\beta} > 0, \forall \beta \in \mathbb{R}$$

Veja o exemplo:

2) Resolva a equação:

$$\log_4(5x+1) = 2$$

Vamos proceder usando a definição de logaritmo:

$$5x + 1 = 4^2 = 16$$
$$5x = 15$$
$$\Rightarrow x = 3$$

Caso 3) Incógnita auxiliar

Esse tipo de equação se resume a substituir uma incógnita por outra de modo a facilitar o entendimento da equação. Lembre-se de prestar atenção às condições de existência quando fizer essa substituição!

Vejamos um exemplo:

3) Resolva a equação:

$$(\log_3 x)^2 - 2\log_3 x = 3$$

Condição de existência:

Nesse caso, basta fazer  $\log_3 x = y$ :

$$y^2 - 2y = 3$$
  
$$y^2 - 2y - 3 = 0$$

Essa é uma equação do segundo grau. Sabemos que suas raízes são dadas por:

$$y = 1 \pm \sqrt{4} = 1 \pm 2 = 3 \ ou - 1$$

Para y = -1, temos:

$$\log_3 x = -1 \Rightarrow x = 3^{-1} = \frac{1}{3}$$

Para y = 3, temos:

$$\log_3 x = 3 \Rightarrow x = 3^3 = 27$$

Portanto, a solução é dada por:

$$S = \left\{ \frac{1}{3}; 27 \right\}$$

#### 2.5. Inequações Logarítmicas

Para resolver inequações logarítmicas, devemos lembrar que a função logaritmo é crescente para base a>1 e decrescente se  $0<\alpha<1$ .

Assim, podemos escrever:

$$\log_a f(x) > \log_a g(x) \Leftrightarrow \begin{cases} f(x) > g(x) > 0 \text{ se } a > 1 \\ ou \\ 0 < f(x) < g(x) \text{ se } 0 < a < 1 \end{cases}$$

Vamos resolver algumas inequações:

1) Resolva a inequação:

$$\log_2(3x - 6) > \log_2(x - 1)$$

Antes de resolver uma inequação, sempre devemos verificar sua condição de existência:

$$3x - 6 > 0 \Rightarrow x > 2$$
  
$$x - 1 > 0 \Rightarrow x > 1$$
  
$$\Rightarrow x > 2$$

Agora, podemos proceder à resolução:

Como a base é 2 > 1, podemos escrever:



$$\log_2(3x - 6) > \log_2(x - 1) \Rightarrow 3x - 6 > x - 1$$

$$2x > 5$$

$$x > \frac{5}{2}$$

Fazendo a intersecção com a condição de existência, temos:

$$x > \frac{5}{2} e x > 2 \Rightarrow x > \frac{5}{2}$$
  
$$\therefore S = \left(\frac{5}{2}, +\infty\right)$$

#### 2.6. Logaritmos Decimais

Vamos estudar o sistema de logaritmos na base 10.

#### 2.6.1. Característica e Mantissa

Qualquer número positivo pode ser comparado entre potências de base 10 de expoentes consecutivos.

Exemplo:

1) 
$$0.012 \Rightarrow 10^{-2} < 0.012 < 10^{-1}$$

2) 
$$32 \Rightarrow 10^1 < 32 < 10^2$$

3) 
$$1252 \Rightarrow 10^3 < 1252 < 10^4$$

Usando essa ideia, podemos escrever para  $x \in \mathbb{R}_+$  e  $c \in \mathbb{Z}$ :

$$10^{c} < x < 10^{c+1}$$

$$\log 10^{c} < \log x < \log 10^{c+1}$$

$$c < \log x < c+1$$

Dessa desigualdade, temos:

$$\log x = c + m, 0 \le m < 1$$

c é chamado de característica do logaritmo decimal x e m é chamado de mantissa do logaritmo decimal x.

Vamos aprender a calcular a característica e a mantissa.

Devemos dividir em dois casos:

Caso 1) x > 1

x é um número com n algarismo na parte inteira. Então:

$$c = n - 1$$

Caso 2) 
$$0 < x < 1$$

x é um número com n algarismo zero antes do primeiro algarismo significativo.

$$c = -n$$

**Exemplos:** 

1) 124,3

$$n = 3 \Rightarrow c = 2$$

2) 0,015

$$n = 2 \Rightarrow c = -2$$

A mantissa é obtida através das tabelas de logaritmos. Ela, geralmente, é um número irracional e por esse motivo as tabelas fornecem valores aproximados dos logaritmos dos números inteiros.

#### 2.6.2. Teorema da Mantissa

Os logaritmos decimais x e  $x\cdot 10^p$  para  $x\in \mathbb{R}_+^*$  e  $p\in \mathbb{Z}$ , possuem a mesma mantissa.

# 3. Função Piso e Função Teto

Vamos estudar rapidamente duas funções que podem ser cobradas na prova, as funções piso e as funções teto.



#### 3.1. Definição

A função piso é denotada por  $f(x) = \lfloor x \rfloor$ . Ele representa o maior inteiro que é menor ou igual a x. Na prática, o que fazemos é um "arredondamento para baixo", de modo a obter um número inteiro que satisfaz os requisitos.

Ao contrário da função piso, temos a função teto, denotada por g(x) = [x]. Ele representa o menor inteiro que é maior ou igual a x. Nesse caso, fazemos o "arredondamento para cima" e pegamos o menor valor inteiro que satisfaz os requisitos da função. Vamos ver a definição formal de cada um deles:

$$f(x) = \lfloor x \rfloor = \max\{m \in \mathbb{Z} | m \le x\}$$
$$g(x) = \lceil x \rceil = \min\{n \in \mathbb{Z} | n \ge x\}$$

É possível representar a parte fracionária de x, usando a seguinte função:

$$h(x) = \{x\} = x - |x|$$

 $\{x\}$  representa a parte fracionária do número real x.

Exemplos:

1) 
$$|1,5| = 1$$

2) 
$$[\sqrt{3}] = 2$$

3) 
$$|\sqrt{3}| = 1$$

4) 
$${3,14159} = {3,14159} - {3,14159} = {3,14159} - 3 = {0,14159}$$

#### 3.1.1. Propriedades

**P1)** 
$$x - 1 < |x| \le x$$

**P2)** 
$$x \le [x] < x + 1$$

#### 3.2. Gráfico

Vamos esboçar o gráfico das funções piso, teto e a fracionária.

Para  $f: \mathbb{R} \to \mathbb{Z}$  tal que f(x) = |x|, temos:



Para  $g: \mathbb{R} \to \mathbb{Z}$  tal que g(x) = [x], temos:



Para  $h: \mathbb{R} \to \mathbb{R}$  tal que  $h(x) = \{x\}$ , temos:





#### 1. Resolva as seguintes equações:

a) 
$$[x]^2 - 2[x] - 3 = 0$$

b) 
$$\{x\} + 2[x] = 1$$
, para  $x \in ]3, 4[$ 

#### Resolução:

a) 
$$[x]^2 - 2[x] - 3 = 0$$

Vamos fazer a substituição  $y = \lceil x \rceil$ . Desse modo:

$$y^2 - 2y - 3 = 0$$

$$(y-3)(y+1)=0$$

Assim, encontramos as raízes:

$$y_1 = -1 \ ou \ y_2 = 3$$

Retornando à variável x:

$$\lceil x \rceil = -1 \Rightarrow -2 < x \le -1$$

$$[x] = 3 \Rightarrow 2 < x \le 3$$

A solução é dada por:



$$S = ]-2,-1] \cup ]2,3]$$

b) 
$$\{x\} + \left\{\frac{1}{x}\right\} = 1$$
, para  $x \in ]3, 4[$ 

Vamos escrever  $\{x\} = x - \lfloor x \rfloor$ :

$$x - \lfloor x \rfloor + \frac{1}{x} - \left| \frac{1}{x} \right| = 1$$

Como  $x \in [3, 4[$ , temos  $\lfloor x \rfloor = 3$ .

Para 1/x:

$$\frac{1}{4} < \frac{1}{x} < \frac{1}{3}$$

Então:

$$\left|\frac{1}{x}\right| = 0$$

Substituindo na equação, obtemos:

$$x - 3 + \frac{1}{x} - 0 = 1$$

$$x + \frac{1}{x} - 4 = 0$$

$$x^2 - 4x + 1 = 0$$

Encontrando as raízes:

$$x = (2 \pm \sqrt{3})$$

Assim, a solução é dada por:

$$S = \{2 \pm \sqrt{3}\}$$

Gabarito: a)  $S = ]-2, -1] \cup ]2, 3]$  b)  $S = \{2 \pm \sqrt{3}\}$ 

# 4. Equações Funcionais

Equações funcionais são equações cujas incógnitas são funções, vamos estudar as principais e aprender a resolver algumas. As outras podem ser resolvidas usando a mesma ideia.

#### 4.1. Equações Funcionais Básicas

#### 4.1.1. Equações funcionais de Cauchy

I) 
$$f(x + y) = f(x) + f(x)$$
  
II)  $f(x + y) = f(x) \cdot f(y)$ 

$$III) f(x \cdot y) = f(x) + f(y)$$

$$IV) f(x \cdot y) = f(x) \cdot f(y)$$

#### 4.1.2. Equação funcional de Jensen

$$f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}$$

#### 4.1.3. Equação funcional de D'Alambert

$$f(x + y) + f(x - y) = 2 \cdot f(x) \cdot f(y)$$



#### 4.1.4. Equações funcionais trigonométricas

I) 
$$g(x + y) = f(x) \cdot g(y) + f(y) \cdot g(x)$$
  
II)  $g(x \cdot y) = f(x) \cdot g(y) - f(y) \cdot g(x)$   
III)  $f(x + y) = f(x) \cdot f(y) - g(x) \cdot g(y)$   
IV)  $f(x - y) = f(x) \cdot f(y) + g(x) \cdot g(y)$ 

# 4.2. Como resolver uma equação funcional

1) Vamos resolver a primeira equação funcional de Cauchy:

$$f(x+y) = f(x) + f(y)$$

Para resolver esse tipo de problema, devemos usar o bom senso e ver quais informações conseguimos extrair dessa equação.

Vamos verificar, inicialmente, o valor de x = y = 0:

$$f(0+0) = f(0) + f(0) = 2f(0)$$
  
 $\Rightarrow f(0) = 0$ 

Agora, podemos proceder verificando sua paridade, fazendo  $x \in \mathbb{R}$  e y = -x:

$$f(x-x) = f(x) + f(-x)$$
  

$$f(0) = f(x) + f(-x)$$
  

$$f(0) = 0 \Rightarrow -f(x) = f(-x)$$

Dessa forma, podemos afirmar que a paridade da função é ímpar.

E o que acontece se fizermos y = x, 2x, 3x, 4x, ...?

$$f(x + x) = f(x) + f(x)$$

$$f(2x) = 2f(x)$$

$$f(x + 2x) = f(x) + f(2x)$$

$$f(3x) = 3f(x)$$

$$f(x + 3x) = f(x) + f(3x)$$

$$f(4x) = 4f(x)$$
:

Podemos deduzir que f(kx) = kf(x). Vamos provar por PIF:

Para k = 1, temos f(x) = f(x).

Para  $k \in \mathbb{N}$ , devemos provar que  $f(kx) = kf(x) \Rightarrow f((k+1)x) = (k+1)f(x)$ :

Usando a equação funcional e fazendo y = kx, temos:

$$f(x + kx) = f(x) + f(kx)$$
  

$$f((k+1)x) = f(x) + kf(x)$$
  

$$\Rightarrow f((k+1)x) = (k+1)f(x)$$

Concluímos que a função também possui a forma f(kx) = kf(x).

Podemos também usar a indução vulgar e provar que f(-kx) = -kf(x).

Se f(-kx) = -kf(x), temos:

$$f(-x - kx) = f(-x) + f(-kx)$$

Como f é ímpar temos f(-x) = -f(x):

$$f(-(k+1)x) = -f(x) - kf(x)$$
  

$$\Rightarrow f(-(k+1)x) = -(k+1)f(x)$$

Com isso, provamos que  $f(kx) = kf(x), k \in \mathbb{Z} \ e \ x \in \mathbb{R}$ .

E se fizermos x = 1?

$$f(k \cdot 1) = kf(1)$$
$$f(k) = kf(1)$$

Perceba que f(1) pode ser escrito como uma constante, vamos defini-la como a constante c:

$$\Rightarrow f(k) = k \cdot c, k \in \mathbb{Z}$$

Se tomarmos  $k = x \in \mathbb{Z}$  e substituir na equação acima, temos:

$$f(x) = cx, x \in \mathbb{Z}$$



Vamos verificar se x pode ser racional, fazendo x = p/q, com  $p \in \mathbb{Z}$  e  $q \in \mathbb{Z}^*$ :

$$x = \frac{p}{q} \Rightarrow q \cdot x = p \cdot 1$$

$$f(q \cdot x) = f(p \cdot 1)$$

$$qf(x) = pf(1)$$

$$f(x) = \frac{p}{q}f(1)$$

$$\Rightarrow f(x) = xf(1)$$

Portanto,  $f(x) = cx, x \in \mathbb{Q}$  e f(1) = c.

Usando o Teorema de Dedekind, podemos provar que  $f(x) = cx, x \in \mathbb{R}$ . Não veremos essa demonstração nesta aula, pois ela foge ao escopo do curso.

$$\Rightarrow f(x) = cx, x \in \mathbb{R}$$

2) Vamos aprender a resolver a equação funcional de Jensen:

$$f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}$$

Inicialmente, vamos verificar o que ocorre quando  $x \in \mathbb{R}$  e y = 0:

$$f\left(\frac{x+0}{2}\right) = \frac{f(x) + f(0)}{2}$$
$$\Rightarrow f\left(\frac{x}{2}\right) = \frac{f(x) + f(0)}{2}$$

Assim, vamos fazer f(0) = b e substituir na equação:

$$\Rightarrow f\left(\frac{x}{2}\right) = \frac{f(x) + b}{2}$$

Usando essa equação, podemos escrever:

$$f\left(\frac{x+y}{2}\right) = \frac{f(x+y) + b}{2}$$

Mas a equação funcional também pode ser

$$f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}$$

Então, temos a igualdade:

$$\frac{f(x+y) + b}{2} = \frac{f(x) + f(y)}{2}$$
$$f(x+y) + b = f(x) + f(y)$$

Olha o bizu! Vamos subtrair -2b nos dois lados da equação:

$$f(x + y) + b - 2b = f(x) + f(y) - 2b$$
  
$$f(x + y) - b = [f(x) - b] + [f(y) - b]$$

Tomando g(x) = f(x) - b e substituindo, temos:

$$g(x+y) = g(x) + g(y)$$

A equação acima é a primeira equação de Cauchy, então, podemos escrever:

$$g(x) = cx, x \in \mathbb{R}$$

Retornando à função f:

$$g(x) = f(x) - b$$

$$cx = f(x) - b$$

$$\Rightarrow f(x) = cx + b, x \in \mathbb{R}$$

Portanto, a função que satisfaz a equação funcional de Jensen é a função linear acima.



# 5. Questões de Provas Anteriores



#### Questões ITA

2. (ITA/2020)

Sejam  $x_1, x_2, x_3, x_4, x_5, x_6$  números reais tais que  $2^{x_1} = 4$ ;  $3^{x_2} = 5$ ;  $4^{x_3} = 6$ ;  $5^{x_4} = 7$ ;  $6^{x_5} = 8$  e  $7^{x_6} = 9$ . Então, o produto  $x_1x_2x_3x_4x_5x_6$  é igual a

- a) 6.
- b) 8.
- c) 10.
- d) 12.
- e) 14.

3. (ITA/2019)

Sabendo que x pertence ao intervalo fechado [1,64], determine o maior valor da função

$$f(x) = (\log_2 x)^4 + 12(\log_2 x)^2 \cdot \log_2 \left(\frac{8}{x}\right)$$

4. (ITA/2018)

Se  $\log_2 \pi = a$  e  $\log_5 \pi = b$ , então

a) 
$$\frac{1}{a} + \frac{1}{b} \le \frac{1}{2}$$

b) 
$$\frac{1}{2} < \frac{1}{a} + \frac{1}{b} \le 1$$

c) 
$$1 < \frac{1}{a} + \frac{1}{b} \le \frac{3}{2}$$

d) 
$$\frac{3}{2} < \frac{1}{a} + \frac{1}{b} \le 2$$

e) 
$$2 < \frac{1}{a} + \frac{1}{b}$$

5. (ITA/2018)

Encontre o conjunto solução  $S \subset \mathbb{R}$  da inequação exponencial:

$$3^{x-2} + \sum_{k=1}^{4} 3^{x+k} \le \frac{1081}{18}$$

6. (ITA/2017)

Esboce o gráfico da função  $f: \mathbb{R} \to \mathbb{R}$  dada por



$$f(x) = \left| 2^{-|x|} - \frac{1}{2} \right|$$

#### 7. (ITA/2017)

Sejam a, b, c, d números reais positivos e diferentes de 1. Das afirmações:

- $I. a^{\log_c b} = b^{\log_c a}$
- II.  $\left(\frac{a}{b}\right)^{\log_d c} \left(\frac{b}{c}\right)^{\log_d a} \left(\frac{c}{a}\right)^{\log_d b} = 1$
- III.  $\log_{ab}(bc) = \log_a c$
- É (são) verdadeira(s)
- a) apenas I.
- b) apenas II.
- c) apenas I e II.
- d) apenas II e III.
- e) todas.

# 8. (ITA/2017)

Determine todos os valores reais de x que satisfazem a inequação  $4^{3x-1} > 3^{4x}$ .

#### 9. (ITA/2016)

Se x é um número natural com 2015 dígitos, então o número de dígitos da parte inteira de  $\sqrt[7]{x}$  é igual a

- a) 285
- b) 286
- c) 287
- d) 288
- e) 289

#### 10. (ITA/2016)

Considere as seguintes afirmações:

- I. A função  $f(x) = \log_{10}\left(\frac{x-1}{x}\right)$  é estritamente crescente no intervalo ]1, + $\infty$ [.
- II. A equação  $2^{x+2} = 3^{x-1}$  possui uma única solução real.
- III. A equação  $(x + 1)^x = x$  admite pelo menos uma solução real positiva.
- É (são) verdadeira(s)
- a) apenas I.
- b) apenas I e II.
- c) apenas II e III.



- d) I, II e III.
- e) apenas III.

#### 11. (ITA/2016)

Seja  $(a_1, a_2, a_3, ...)$  a sequência definida da seguinte forma:  $a_1 = 1000$  e  $a_n = \log_{10}(1 + a_{n-1})$  para  $n \ge 2$ . Considere as afirmações a seguir:

- I. A sequência  $(a_n)$  é decrescente.
- II.  $a_n > 0$  para todo  $n \ge 1$ .
- III.  $a_n < 1$  para todo  $n \ge 3$ .
- É (são) verdadeira(s)
- a) apenas I.
- b) apenas I e II.
- c) apenas II e III.
- d) I, II e III.
- e) apenas III.

#### 12. (ITA/2016)

Seja f a função definida por  $f(x) = \log_{x+1}(x^2 - 2x - 8)$ . Determine:

- a) O domínio  $D_f$  da função f.
- b) O conjunto de todos os valores de  $x \in D_f$  tais que f(x) = 2.
- c) O conjunto de todos os valores de  $x \in D_f$  tais que f(x) > 1.

# 13. (ITA/2015)

Considere as seguintes afirmações sobre números reais:

I. Se a expansão decimal de x é infinita e periódica, então x é um número racional.

II. 
$$\sum_{n=0}^{\infty} \frac{1}{(\sqrt{2}-1)\sqrt{2^n}} = \frac{\sqrt{2}}{1-2\sqrt{2}}.$$

III.  $ln\sqrt[3]{e^2} + (\log_3 2)(\log_4 9)$  é um número racional.

É (são) verdadeira(s):

- a) nenhuma.
- b) apenas II.
- c) apenas I e II.
- d) apenas I e III.
- e) I, II e III.

#### 14. (ITA/2014)



Determine as soluções reais da equação em x:

$$(\log_4 x)^3 - \log_4(x^4) - \frac{3\log_{10} 16x}{\log_{100} 16} = 0$$

15. (ITA/2014)

A soma

$$\sum_{1}^{4} \frac{\log_{1/2} \sqrt[n]{32}}{\log_{1/2} 8^{n+2}}$$

É igual a

- a)  $\frac{8}{9}$
- b)  $\frac{14}{15}$
- c)  $\frac{15}{16}$
- d)  $\frac{17}{18}$
- e) 1

#### 16. (ITA/2013)

Considere as funções f e g, da variável real x, definidas, respectivamente, por  $f(x) = e^{x^2 + ax + b}$  e  $g(x) = \ln\left(\frac{ax}{3b}\right)$ , em que a e b são números reais. Se f(-1) = 1 = f(-2), então pode-se afirmar sobre a função composta  $g \circ f$  que

- a)  $gof(1) = \ln 3$ .
- b)  $\not\exists gof(0)$ .
- c) gof nunca se anula.
- d) gof está definida apenas em  $\{x \in \mathbb{R}: x > 0\}$ .
- e) gof admite dois zeros reais distintos.

# 17. (ITA/2013)

Se os números reais a e b satisfazem, simultaneamente, as equações

$$\sqrt{a\sqrt{b}} = \frac{1}{2} e \ln(a^2 + b) + \ln 8 = \ln 5,$$

Um possível valor de  $\frac{a}{b}$  é

- a)  $\frac{\sqrt{2}}{2}$
- b) 1
- c)  $\sqrt{2}$
- d) 2



e)  $3\sqrt{2}$ 

#### 18. (ITA/2011)

Resolva a inequação em  $\mathbb{R}$ :

$$16 < \left(\frac{1}{4}\right)^{\log_{\frac{1}{5}}\left(x^2 - x + 19\right)}$$

#### 19. (ITA/2008)

Para  $x \in \mathbb{R}$ , o conjunto solução de  $|5^{3x} - 5^{2x+1} + 4 \cdot 5^x| = |5^x - 1|$  é

- a)  $\{0, 2 \pm \sqrt{5}, 2 \pm \sqrt{3}\}$
- b)  $\{0, 1, \log_5(2 + \sqrt{5})\}$
- c)  $\left\{0, \left(\frac{1}{2}\right) \log_5 2, \frac{1}{2} \log_5 3, \log_5 \frac{\sqrt{2}}{2}\right\}$
- d)  $\{0, \log_5(2+\sqrt{5}), \log_5(2+\sqrt{3}), \log_5(2-\sqrt{3})\}$
- e) A única solução é x=0

#### 20. (ITA/2007)

Sejam x e y dois números reais tais que  $e^x$ ,  $e^y$  e o quociente  $\frac{e^x-2\sqrt{5}}{4-e^y\sqrt{5}}$  são todos racionais. A soma x+y é igual a

- a) 0
- b) 1
- c) 2 log<sub>5</sub> 3
- d) log<sub>5</sub> 2
- e) 3 log<sub>e</sub> 2

#### 21. (ITA/2007)

Sejam x,y e z números reais positivos tais que seus logaritmos numa dada base n são números primos satisfazendo

$$\log_n(xy) = 49$$

$$\log_n\left(\frac{x}{z}\right) = 44$$

Então,  $\log_n(xyz)$  é igual a

- a) 52
- b) 61
- c) 67
- d) 80



e) 97

#### 22. (ITA/2005)

Considere a equação em x

$$a^{x+1} = b^{\frac{1}{x}}$$

Onde a e b são números reais positivos, tais que  $\ln b = 2 \ln a > 0$ . A soma das soluções da equação é

- a) 0
- b) -1
- c) 1
- d) ln 2
- e) 2

#### 23. (ITA/2004)

Para b > 1 e x > 0, resolva a equação em x:

$$(2x)^{\log_b 2} - (3x)^{\log_b 3} = 0$$

#### 24. (ITA/2004)

Seja  $\alpha$  um número real, com  $0 < \alpha < 1$ . Assinale a alternativa que representa o conjunto de todos os valores de x tais que

$$\alpha^{2x} \left( \frac{1}{\sqrt{\alpha}} \right)^{2x^2} < 1$$

- a) ]  $-\infty$ , 0]  $\cup$  [2,  $+\infty$ [
- b) ]  $-\infty$ , 0[  $\cup$  ]2,  $+\infty$ [
- c) ]0,2[
- d)] ∞, 0[
- e) ]2, +∞[

#### 25. (ITA/2003)

Mostre que toda função  $f: \mathbb{R}/\{0\} \to \mathbb{R}$ , satisfazendo f(xy) = f(x) + f(y) em todo seu domínio, é par.

#### 26. (ITA/2003)

Considere uma função  $f: \mathbb{R} \to \mathbb{R}$  não-constante e tal que  $f(x+y) = f(x)f(y), \forall x,y \in \mathbb{R}$ . Das afirmações:

I. 
$$f(x) > 0, \forall x \in \mathbb{R}$$



- II.  $f(nx) = [f(x)]^n, \forall x \in \mathbb{R}, \forall n \in \mathbb{N}^*$
- III. *f* é par
- É (são) verdadeira(s):
- a) apenas I e II.
- b) apenas II e III.
- c) apenas I e III.
- d) todas.
- e) nenhuma.

#### Questões IME

#### 27. (IME/2020)

Sabe-se que S = x + y + z, onde y e z são soluções inteiras do sistema abaixo.

$$\begin{cases} x = \frac{\sqrt[3]{2y^2}}{2} \\ y = e^{2\ln(x)} \\ \log_2 y + \log_x z = (x+3) \end{cases}$$

- O valor de S é:
- a) 84
- b) 168
- c) 234
- d) 512
- e) 600

#### 28. (IME/2020)

Uma progressão geométrica é formada com os números naturais  $A, B \in C$ , nessa ordem. O log(A) possui a mesma mantissa, M, do log(B) e C é a característica do log(A). Sabe-se que M = log(C) e que possui o maior valor possível. O valor da mantissa do log(ABC) é:

- a) *M*
- b) 2*M*
- c) 3*M*
- d) 3M 2
- e) 3M 3

#### 29. (IME/2020)

Considere a progressão geométrica  $a_1, a_2, ..., a_n, ...$  e a progressão aritmética  $b_1, b_2, ..., b_n, ...$  com as condições:

$$a_1 > 0$$



$$\frac{a_2}{a_1} > 1$$
; e  
 $b_2 - b_1 > 0$ 

Para que  $[\log_{\alpha}(a_n) - b_n]$  não dependa de n, o valor de  $\alpha$  deverá ser:

a) 
$$\left(\frac{a_2}{a_1}\right)^{\frac{1}{b_2}}$$

$$b) \left(\frac{a_2}{a_1}\right)^{\frac{1}{b_1}}$$

c) 
$$\left(\frac{a_2}{a_1}\right)^{\frac{1}{b_2-b_1}}$$

$$\mathsf{d}) \left( \frac{a_2}{a_1} \right)^{\frac{1}{b_1 - b_2}}$$

$$e) \left(\frac{a_2}{a_1}\right)^{\frac{1}{b_1b_2}}$$

# 30. (IME/2019)

Definimos a função  $f: \mathbb{N} \to \mathbb{N}$  da seguinte forma:

$$\begin{cases} f(0) = 0 \\ f(1) = 1 \\ f(2n) = f(n), \ n \ge 1 \\ f(2n+1) = f(n) + 2^{\lfloor \log_2 n \rfloor}, \ n \ge 1 \end{cases}$$

Determine f(f(2019)).

Observação: |k| é o maior inteiro menor ou igual a k.

#### 31. (IME/2018)

Sejam a,b,c e d números reais positivos diferentes de 1. Temos que  $\log_a d$ ,  $\log_b d$  e  $\log_c d$  são termos consecutivos de uma progressão geométrica e que a,b e c formam uma progressão aritmética em que a < b < c. Sabendo-se que  $b = b^{\log_a b} - a$ , determine:

- a) Os valores de  $a, b \in c$ ;
- b) As razões das progressões aritmética e geométrica, r e q, respectivamente.

# 32. (IME/2017)

Seja a equação  $y^{\log_3 \sqrt{3y}} = y^{\log_3 3y} - 6$ , y > 0.

O produto das raízes reais desta equação é igual a:

- a)  $\frac{1}{3}$
- b)  $\frac{1}{2}$
- c)  $\frac{3}{4}$



- d) 2
- e) 3

#### 33. (IME/2017)

Resolva o sistema de equações, onde  $x \in \mathbb{R}$  e  $y \in \mathbb{R}$ .

$$\begin{cases} \log_3(\log_{\sqrt{3}} x) - \log_{\sqrt{3}}(\log_3 y) = 1\\ (y\sqrt[3]{x})^2 = 3^{143} \end{cases}$$

#### 34. (IME/2016/Modificada)

Sabendo-se que os números reais positivos a,b e c formam uma progressão geométrica e  $\log\left(\frac{5c}{a}\right),\log\left(\frac{3b}{5c}\right)$  e  $\log\left(\frac{a}{3b}\right)$  formam uma progressão aritmética, ambas nessa ordem. Prove que b+c<a.

#### 35. (IME/2016)

Quantos inteiros k satisfazem à desigualdade  $2\sqrt{\log_{10}k-1}+10\log_{10^{-1}}k^{\frac{1}{4}}+3>0$ ?

- a) 10
- b) 89
- c) 90
- d) 99
- e) 100

#### 36. (IME/2015)

Determine os valores reais de x que satisfazem a inequação:

$$\frac{4}{\log_2 x^2 - 2} + \log_x \frac{1}{9} > 1$$

#### 37. (IME/2015)

Sejam x e y números reais não nulos tais que:

$$\begin{cases} \log_x y^{\pi} + \log_y x^e = a \\ \frac{1}{\log_y x^{\pi^{-1}}} - \frac{1}{\log_x y^{e^{-1}}} = b \end{cases}$$

O valor de  $\frac{x^{a+b+2e}}{y^{a-b+2\pi}}$  é:

- a) 1
- b)  $\sqrt{\frac{\pi}{e}}$





- d) a b
- e)  $\frac{(a+b)^{\frac{e}{\pi}}}{\pi}$

#### 38. (IME/2014)

Sabe-se que  $y \cdot z \cdot \sqrt{z \cdot \sqrt{x}} = x \cdot y^3 \cdot z^2 = \frac{x}{z \cdot \sqrt{y \cdot z}} = e$ , em que e é a base dos logaritmos naturais. O valor de x + y + z é

a) 
$$e^3 + e^2 + 1$$

b) 
$$e^2 + e^{-1} + e$$

c) 
$$e^3 + 1$$

d) 
$$e^3 + e^{-2} + e$$

e) 
$$e^3 + e^{-2} + e^{-1}$$

#### 39. (IME/2014)

Resolver o sistema de equações

$$\begin{cases} \sqrt{x} - \sqrt{y} = \log_3 \frac{y}{x} \\ 2^{x+2} + 8^x = 5 \cdot 4^y \end{cases}$$

# 40. (IME/2014)

Qual é o menor número?

- a)  $\pi \cdot 8!$
- b)  $9^9$
- c)  $2^{2^{2^2}}$
- d)  $3^{3^3}$
- e)  $2^{13} \cdot 5^3$

#### 41. (IME/2013)

Considere a equação  $\log_{3x} \frac{3}{x} + (\log_3 x)^2 = 1$ . A soma dos quadrados das soluções reais dessa equação está contida no intervalo

- a) [0,5)
- b) [5, 10)
- c) [10, 15)
- d) [15, 20)





#### 42. (IME/2012)

Se  $\log_{10} 2 = x$  e  $\log_{10} 3 = y$ , então  $\log_5 18$  vale:

- a)  $\frac{x+2y}{1-x}$
- b)  $\frac{x+y}{1-x}$
- c)  $\frac{2x+y}{1+x}$
- d)  $\frac{x+2y}{1+x}$
- e)  $\frac{3x+2y}{(1-x)}$

#### 43. (IME/2010)

Seja  $f(x) = |3 - \log(x)|, x \in \mathbb{R}$ . Sendo n um número inteiro positivo, a desigualdade

$$\left| \frac{f(x)}{4} \right| + \left| \frac{2f(x)}{12} \right| + \left| \frac{4f(x)}{36} \right| + \dots + \left| \frac{2^{n-3}f(x)}{3^{n-1}} \right| + \dots \le \frac{9}{4}$$

# Somente é possível se:

Obs.: log representa a função logarítmica na base 10.

- a)  $0 \le x \le 10^6$
- b)  $10^{-6} \le x \le 10^8$
- c)  $10^3 \le x \le 10^6$
- d)  $10^0 \le x \le 10^6$
- e)  $10^{-6} \le x \le 10^6$

#### 6. Gabarito



#### Gabarito das Questões ITA

- 2. a
- 3. 81
- 4. €
- 5.  $S = \left\{ x \in \mathbb{R} \middle| x \le \log_3\left(\frac{1}{2}\right) \right\}$
- 6. Esboço
- 7. (
- $8. \quad S = \left\{ x \in \mathbb{R} \middle| x < \log_{\frac{8}{9}} 2 \right\}$
- 9. d



- 10. b
- 11. e

12. a) 
$$D_f = \{x \in \mathbb{R} | x > 4\}$$
 b)  $S = \emptyset$  c)  $S = \{x \in \mathbb{R} | x > \frac{3 + 3\sqrt{5}}{2}\}$ 

13. d

14. 
$$S = \left\{ \frac{1}{4}, 64, \frac{1}{16} \right\}$$

- 15. d
- 16. e
- 17. a

18. 
$$S = (-\infty, -2) \cup (3, +\infty)$$

- 19. e
- 20. e
- 21. a
- 22. b
- 23.  $S = \left\{ \frac{1}{6} \right\}$
- 24. c
- 25. Demonstração
- 26. a

## Gabarito das Questões IME

- 27. a
- 28. d
- 29. c
- 30. f(f(2019)) = 10

31. a) 
$$a = 2^{\log_{\frac{3}{4}} 2}$$
,  $b = 2^{\log_{\frac{3}{4}} 2 + 1}$ ,  $c = 3 \cdot 2^{\log_{\frac{3}{4}} 2}$  b)  $r = 2^{\log_{\frac{3}{4}} 2}$  e  $q = \log_{\frac{3}{2}} 2$ 

32. a

33. 
$$S = \left\{ \left( \sqrt{3}^{363}; 3^{11} \right) \right\} S = \left\{ x \in \mathbb{R} \middle| x < \log_{\frac{8}{9}} 2 \right\}$$

- 34. Demonstração
- 35. c

36. 
$$S = \left\{ x \in \mathbb{R} \middle| \frac{1}{3} < x < 1 \text{ ou } 3 < x < 9 \right\}$$

- 37. a
- 38. b
- 39. x = y = 2
- 40. c
- 41. c
- 42. a
- 43. d

# 7. Questões de Provas Anteriores Comentadas





### Questões ITA Comentadas

### 2. (ITA/2020)

Sejam  $x_1, x_2, x_3, x_4, x_5, x_6$  números reais tais que  $2^{x_1} = 4$ ;  $3^{x_2} = 5$ ;  $4^{x_3} = 6$ ;  $5^{x_4} = 7$ ;  $6^{x_5} = 8$  e  $7^{x_6} = 9$ . Então, o produto  $x_1x_2x_3x_4x_5x_6$  é igual a

- a) 6.
- b) 8.
- c) 10.
- d) 12.
- e) 14.

#### Comentários

Os números reais podem ser escritos como:

$$2^{x_1} = 4 \Rightarrow x_1 = \log_2 4$$
  
 $3^{x_2} = 5 \Rightarrow x_2 = \log_3 5$   
 $4^{x_3} = 6 \Rightarrow x_3 = \log_4 6$   
 $5^{x_4} = 7 \Rightarrow x_4 = \log_5 7$   
 $6^{x_5} = 8 \Rightarrow x_5 = \log_6 8$   
 $7^{x_6} = 9 \Rightarrow x_6 = \log_7 9$ 

Assim, fazendo o produto entre eles, obtemos:

$$x_1x_2x_3x_4x_5x_6 = \log_2 4 \cdot \log_3 5 \cdot \log_4 6 \cdot \log_5 7 \cdot \log_6 8 \cdot \log_7 9$$

Podemos usar a seguinte propriedade dos logaritmos para simplificar a expressão:

$$\log_b a \cdot \log_a c = \log_b c$$

Reorganizando os termos da expressão:

$$\log_2 4 \cdot \log_4 6 \cdot \log_3 5 \cdot \log_5 7 \cdot \log_7 9 \cdot \log_6 8 = \log_2 6 \cdot \log_6 8 \cdot \log_3 7 \cdot \log_7 9$$

$$= \log_2 8 \cdot \log_3 9 = \log_2 2^3 \cdot \log_3 3^2 = 3 \cdot 2 = 6$$

$$\therefore x_1 x_2 x_3 x_4 x_5 x_6 = 6$$

#### Gabarito: "a".

### 3. (ITA/2019)

Sabendo que x pertence ao intervalo fechado [1, 64], determine o maior valor da função

$$f(x) = (\log_2 x)^4 + 12(\log_2 x)^2 \cdot \log_2 \left(\frac{8}{x}\right)$$

#### **Comentários**

Para analisar os valores dessa função, devemos simplificá-lo.

Usando as propriedades do logaritmo, temos:

$$\log_2\left(\frac{8}{x}\right) = \log_2 8 - \log_2 x = \log_2 2^3 - \log_2 x = 3 - \log_2 x$$

Assim, encontramos:

$$f(x) = (\log_2 x)^4 + 12(\log_2 x)^2 \cdot (3 - \log_2 x)$$

Vamos fazer uma mudança de variável. Como  $x \in [1, 64]$ , fazendo  $y = \log_2 x$ , obtemos:

$$x = 2^y \Rightarrow 1 \le 2^y \le 64 \Rightarrow 2^0 \le 2^y \le 2^6$$

Sendo a função exponencial injetora e  $2^{y}$  crescente, temos:

$$0 \le y \le 6 \Rightarrow y \in [0, 6]$$
  

$$f(y) = y^4 - 12y^3 + 36y^2$$
  

$$f(y) = y^2(y^2 - 12y + 36)$$
  

$$f(y) = y^2(y - 6)^2$$



$$\Rightarrow f(y) = (y^2 - 6y)^2$$

A expressão  $y^2-6y$  no plano cartesiano representa uma parábola com concavidade para cima. No intervalor  $y \in [0,6]$ , essa expressão assume os valores [-9,0] conforme a figura:



Desse modo, a imagem da função f é:

$$f(y) = (y^2 - 6y)^2 \xrightarrow{y \in [0,6]} [Im(f) \in [0,81]]$$

Portanto, o maior valor da função é 81.

### Gabarito: 81

4. (ITA/2018)

Se  $\log_2 \pi = a$  e  $\log_5 \pi = b$ , então

$$a) \frac{1}{a} + \frac{1}{b} \le \frac{1}{2}$$

b) 
$$\frac{1}{2} < \frac{1}{a} + \frac{1}{b} \le 1$$

c) 
$$1 < \frac{1}{a} + \frac{1}{b} \le \frac{3}{2}$$

d) 
$$\frac{3}{2} < \frac{1}{a} + \frac{1}{b} \le 2$$

e) 
$$2 < \frac{1}{a} + \frac{1}{b}$$

### **Comentários**

Analisando as alternativas, temos que encontrar alguma relação para o número  $\frac{1}{a} + \frac{1}{b}$ . Usando os dados do enunciado, temos:



$$\frac{1}{a} = \frac{1}{\log_2 \pi}$$

$$\frac{1}{b} = \frac{1}{\log_5 \pi}$$

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{\log_2 \pi} + \frac{1}{\log_5 \pi}$$

Vamos igualar a base dos logaritmos, fazendo:

$$\log_5 \pi = \frac{\log_2 \pi}{\log_2 5}$$

Substituindo na equação, encontramos:

$$\frac{1}{\log_2 \pi} + \frac{1}{\log_5 \pi} = \frac{1}{\log_2 \pi} + \frac{1}{\frac{\log_2 \pi}{\log_2 5}} = \frac{1 + \log_2 5}{\log_2 \pi}$$

$$1 = \log_2 2 \Rightarrow \frac{1 + \log_2 5}{\log_2 \pi} = \frac{\log_2 2 + \log_2 5}{\log_2 \pi} = \frac{\log_2 (2 \cdot 5)}{\log_2 \pi} = \frac{\log_2 10}{\log_2 \pi} = \log_\pi 10$$

$$\Rightarrow \frac{1}{a} + \frac{1}{b} = \log_\pi 10$$

Devemos analisar quanto vale o número  $\log_{\pi} 10$ . Fazendo  $x = \log_{\pi} 10$ , temos:

$$\pi^{x} = 10$$

 $\pi$  vale aproximadamente 3,14. Podemos dizer que  $\pi^2 < 10$ , então x deve ser maior do que 2. Com isso, encontramos:

$$2 < x$$

$$x = \log_{\pi} 10 = \frac{1}{a} + \frac{1}{b}$$

$$\Rightarrow 2 < \frac{1}{a} + \frac{1}{b}$$

Logo, o gabarito é a letra e.

### Gabarito: "e".

## 5. (ITA/2018)

Encontre o conjunto solução  $S \subset \mathbb{R}$  da inequação exponencial:

$$3^{x-2} + \sum_{k=1}^{4} 3^{x+k} \le \frac{1081}{18}$$

### **Comentários**

Reescrevendo a inequação, temos:

$$3^{x-2} + 3^{x+1} + 3^{x+2} + 3^{x+3} + 3^{x+4} \le \frac{1081}{18}$$
$$\frac{3^x}{3^2} + 3^x \cdot 3 + 3^x \cdot 3^2 + 3^x \cdot 3^3 + 3^x \cdot 3^4 \le \frac{1081}{18}$$



Fazendo  $y = 3^x$ , obtemos:

$$\frac{\frac{y}{9} + 3y + 9y + 27y + 81y \le \frac{1081}{18}}{\frac{y(1 + 27 + 81 + 243 + 729)}{9} \le \frac{1081}{18}}$$
$$\frac{\frac{y1081}{9} \le \frac{1081}{18}}{\frac{y1081}{9}} \le \frac{1081}{18}$$

Simplificando a inequação:

$$\Rightarrow y \le \frac{9}{18} = \frac{1}{2}$$

Voltando à variável x:

$$y = 3^x \le \frac{1}{2}$$

Aplicando o log na base 3 na inequação:

$$\log_3 3^x \le \log_3 \frac{1}{2}$$

$$\Rightarrow x \le \log_3 \frac{1}{2}$$

O conjunto solução é dado por:

$$S = \left\{ x \in \mathbb{R} \middle| x \le \log_3\left(\frac{1}{2}\right) \right\}$$

Gabarito: 
$$S = \left\{ x \in \mathbb{R} \middle| x \leq \log_3\left(\frac{1}{2}\right) \right\}$$

6. (ITA/2017)

Esboce o gráfico da função  $f: \mathbb{R} \to \mathbb{R}$  dada por

$$f(x) = \left| 2^{-|x|} - \frac{1}{2} \right|$$

#### **Comentários**

Para esboçar o gráfico de uma função modular, devemos construir a função de dentro pra fora. Do enunciado do problema, temos:

$$f(x) = \left| \frac{1}{2^{|x|}} - \frac{1}{2} \right|$$

Vamos iniciar pela função mais simples:

Esboçando  $\left(\frac{1}{2}\right)^x$ :

Como a base é menor do que 1, a função é decrescente.

$$f(x) = \left(\frac{1}{2}\right)^x$$



Agora aplicando o módulo em x,  $\left(\frac{1}{2}\right)^{|x|}$ :

$$\left(\frac{1}{2}\right)^{|x|} = \begin{cases} \frac{1}{2^x}, x \ge 0\\ 2^x, x < 0 \end{cases}$$

 $2^x$  é uma função crescente e  $1/2^x$  é uma função decrescente. O que muda no gráfico ao aplicar o módulo é a região do gráfico cujo x é negativo.

Para esboçar esse gráfico, basta redesenhar a parte das abcissas negativas de acordo com a função abaixo:



Agora, transladamos -1/2 no gráfico. Vamos descer o gráfico 1/2 unidade verticalmente.

Nesse caso, temos 2 raízes:

$$\frac{1}{2^{|x|}} - \frac{1}{2} = 0$$
$$\Rightarrow x = \pm 1$$



Esboçando:

$$f(x) = \frac{1}{2^{|x|}} - \frac{1}{2}$$



Por último, aplicamos o módulo no gráfico acima. Basta espelhar o gráfico em relação ao eixo x:

$$f(x) = \left| \frac{1}{2^{|x|}} - \frac{1}{2} \right|$$





O esboço final é dado por:



## **Gabarito: Esboço**

7. (ITA/2017)

Sejam a, b, c, d números reais positivos e diferentes de 1. Das afirmações:

$$I. a^{\log_c b} = b^{\log_c a}$$

II. 
$$\left(\frac{a}{b}\right)^{\log_d c} \left(\frac{b}{c}\right)^{\log_d a} \left(\frac{c}{a}\right)^{\log_d b} = 1$$

III. 
$$\log_{ab}(bc) = \log_a c$$

É (são) verdadeira(s)

- a) apenas I.
- b) apenas II.



- c) apenas I e II.
- d) apenas II e III.
- e) todas.

#### Comentários

I. Analisando a afirmação, para verificar a igualdade, devemos aplicar o log na base c em ambos os lados da igualdade:

$$\log_c a^{\log_c b} = \log_c b^{\log_c a}$$
$$\log_c b \log_c a = \log_c a \log_c b$$

Portanto, a afirmação é verdadeira.

II. Vamos usar a afirmação I para verificar essa afirmação.

$$a^{\log_c b} = b^{\log_c a}$$

Da equação:

$$\left(\frac{a}{b}\right)^{\log_d c} \left(\frac{b}{c}\right)^{\log_d a} \left(\frac{c}{a}\right)^{\log_d b} = \frac{a^{\log_d c}}{b^{\log_d c}} \frac{b^{\log_d a}}{c^{\log_d a}} \frac{c^{\log_d b}}{a^{\log_d b}}$$

Vamos escrever cada termo usando x, y, z para melhor visualizar o resultado:

$$a^{\log_d c} = c^{\log_d a} = x$$

$$b^{\log_d c} = c^{\log_d b} = y$$

$$a^{\log_d b} = b^{\log_d a} = z$$

Substituindo na expressão:

$$\frac{x}{y} \cdot \frac{z}{x} \cdot \frac{y}{z}$$

Calculando o resultado, temos:

$$\frac{x}{y} \cdot \frac{z}{x} \cdot \frac{y}{z} = \frac{xyz}{xyz} = 1$$

∴Verdadeira.

III. Analisando a afirmação, se tentarmos escrever todos os logs na base 10, encontramos:

$$\frac{\log bc}{\log ab} = \frac{\log c}{\log a}$$
$$\frac{\log b + \log c}{\log a + \log b} = \frac{\log c}{\log a}$$

Vendo a equação acima, podemos perceber que é improvável que o lado esquerdo se iguale ao lado direito. Vamos pensar em um contra-exemplo:

$$\log_{ab}bc = \log_ac$$
 Para  $a=2,b=2$  e  $c=1$ : 
$$\log_42 = \log_21$$
 
$$\Rightarrow \frac{1}{2} = 0 \; (absurdo!)$$



∴Falsa.

### Gabarito: "c".

### 8. (ITA/2017)

Determine todos os valores reais de x que satisfazem a inequação  $4^{3x-1} > 3^{4x}$ .

#### **Comentários**

$$4^{3x-1} > 3^{4x}$$

Vamos aplicar log na inequação:

$$\log 4^{3x-1} > \log 3^{4x}$$

$$(3x - 1)\log 4 > 4x\log 3$$

Isolando o x:

$$3x \log 4 - \log 4 > 4x \log 3$$

$$x(3 \log 4 - 4 \log 3) > \log 4$$

$$x(\log 4^3 - \log 3^4) > \log 4$$

$$x\left(\log \frac{4^3}{3^4}\right) > \log 4$$

$$x\left(\log \frac{64}{81}\right) > \log 4$$

Como  $\frac{64}{81}$  < 1, temos  $\log \frac{64}{81}$  < 0. Assim, dividindo a inequação por  $\log \frac{64}{81}$ , encontramos:

$$x < \frac{\log 4}{\log \frac{64}{81}}$$

Simplificando:

$$\log \frac{64}{81} = \log \frac{8^2}{9^2} = \log \left(\frac{8}{9}\right)^2 = 2\log \frac{8}{9}$$
$$\log 4 = \log 2^2 = 2\log 2$$

Dessa forma, temos:

$$x < \frac{2\log 2}{2\log \frac{8}{9}}$$
$$x < \frac{\log 2}{\log \frac{8}{9}}$$
$$x < \log_{\frac{8}{9}} 2$$

Portanto, a solução da inequação é:

$$S = \left\{ x \in \mathbb{R} \middle| x < \log_{\frac{8}{9}} 2 \right\}$$

Gabarito: 
$$S = \left\{ x \in \mathbb{R} \middle| x < \log_{\frac{8}{9}} 2 \right\}$$





Se x é um número natural com 2015 dígitos, então o número de dígitos da parte inteira de  $\sqrt[7]{x}$  é igual a

- a) 285
- b) 286
- c) 287
- d) 288
- e) 289

## **Comentários**

Vamos reescrever o número x. Seja  $a \in \mathbb{R}$  tal que  $a \in [1,10]$ .

Se x é um número natural com 2015 dígitos, podemos escrever:

$$x = a \cdot 10^{2014}$$

2014 é porque a conta como 1 dígito.

Agora, aplicando o radical:

$$\sqrt[7]{x} = \sqrt[7]{a} \cdot \sqrt[7]{10^{2014}}$$

$$x^{\frac{1}{7}} = a^{\frac{1}{7}} 10^{\frac{2014}{7}}$$

Dividindo 2014 por 7, obtemos:

$$2014 = 7 \cdot 287 + 5$$

Substituindo na equação:

$$x^{\frac{1}{7}} = a^{\frac{1}{7}} 10^{\frac{7 \cdot 287 + 5}{7}}$$

$$x^{\frac{1}{7}} = a^{\frac{1}{7}} 10^{287} \cdot 10^{\frac{5}{7}}$$

$$x^{\frac{1}{7}} = (a \cdot 10^{5})^{\frac{1}{7}} \cdot 10^{287}$$

$$\sqrt[7]{x} = \sqrt[7]{10^{5}a} \cdot 10^{287}$$

Definimos que  $1 \le a < 10$ . Então:

$$10^{5} \le 10^{5} \cdot a < 10^{6}$$

$$1 < \sqrt[7]{10^{5}} \le \sqrt[7]{10^{5} \cdot a} < \sqrt[7]{10^{6}} < 10$$

$$1 < \sqrt[7]{10^{5} \cdot a} < 10$$

Portanto, o número  $\sqrt[7]{10^5 \cdot a}$  possui 1 algarismo. Logo, o total de algarismos do número é dado por:

$$\sqrt[7]{x} = \underbrace{\sqrt[7]{10^5 a}}_{1 \text{ algarismo}} \cdot \underbrace{10^{287}}_{287 \text{ algarismos}}$$
$$287 + 1 = 288$$

Gabarito: "d".





Considere as seguintes afirmações:

- I. A função  $f(x) = \log_{10}\left(\frac{x-1}{x}\right)$  é estritamente crescente no intervalo ]1, + $\infty$ [.
- II. A equação  $2^{x+2} = 3^{x-1}$  possui uma única solução real.
- III. A equação  $(x + 1)^x = x$  admite pelo menos uma solução real positiva.
- É (são) verdadeira(s)
- a) apenas I.
- b) apenas I e II.
- c) apenas II e III.
- d) I, II e III.
- e) apenas III.

### Comentários

I. Vamos verificar se a função é crescente comparando dois números a,b. Seja  $a,b\in ]1,+\infty[$  tal que 1< a< b. Então:

$$1 < a < b$$

$$\frac{1}{b} < \frac{1}{a}$$

$$-\frac{1}{b} > -\frac{1}{a}$$

$$1 - \frac{1}{b} > 1 - \frac{1}{a}$$

$$\frac{b-1}{b} > \frac{a-1}{a}$$

$$f(b) > f(a)$$

Portanto,  $a < b \rightarrow f(a) < f(b)$ . f é estritamente crescente.

- ∴ Verdadeira.
- II. Vamos resolver a equação:

$$2^{x+2} = 3^{x-1}$$

$$4 \cdot 2^x = \frac{3^x}{3}$$

Isolando x:

$$12 = \left(\frac{3}{2}\right)^x$$

Aplicando log na base 3/2:

$$\log_{\frac{3}{2}} 12 = x$$

Encontramos uma única solução real.

∴Verdadeira.



III. Verificando a equação:

$$(x+1)^x = x$$

Aplicando log na base x:

$$\log_x(x+1)^x = \log_x x$$

$$x\log_x(x+1)=1$$

Vamos ver se existe algum x real positivo que satisfaz a equação:

Se 0 < x < 1, temos  $\log_x(x+1) < 1$  e consequentemente:

$$x \log_x(x+1) < 1$$

Se x > 1, temos  $\log_x(x + 1) > 1$  e consequentemente:

$$x \log_x(x+1) > 1$$

 $\forall x \in \mathbb{R}_+$ , a expressão  $x \log_x(x+1)$  resulta em uma desigualdade. Portanto, não temos x que satisfaz a equação.

∴Falsa.

#### Gabarito: "b".

### 11. (ITA/2016)

Seja  $(a_1, a_2, a_3, ...)$  a sequência definida da seguinte forma:  $a_1 = 1000$  e  $a_n = \log_{10}(1 + a_{n-1})$  para  $n \ge 2$ . Considere as afirmações a seguir:

I. A sequência  $(a_n)$  é decrescente.

II.  $a_n > 0$  para todo  $n \ge 1$ .

III.  $a_n < 1$  para todo  $n \ge 3$ .

É (são) verdadeira(s)

- a) apenas I.
- b) apenas I e II.
- c) apenas II e III.
- d) I, II e III.
- e) apenas III.

#### **Comentários**

I. Para n = 2, temos:

$$a_2 = \log_{10}(1 + a_1) = \log_{10}(1 + 1000) = \log_{10}1001$$

Vamos comparar  $a_2$  com  $a_1$ . Aproximando  $a_2$ :

$$a_2 = \log_{10} 1001 \cong \log_{10} 1000 = 3 < 1000 = a_1$$

Então, encontramos  $a_2 < a_1$ . Vamos supor que  $a_{n+1} < a_n$  e provar essa propriedade usando PIF.

Para n = 1, já sabemos que  $a_2 < a_1$ .

Para  $k \in \mathbb{N}$ , temos que provar que  $a_k < a_{k-1} \to a_{k+1} < a_k$ .

Usando a definição para  $a_k$ :



$$a_k = \log_{10}(1 + a_{k-1})$$

$$10^{a_k} = 1 + a_{k-1}$$

$$a_{k-1} = 10^{a_k} - 1$$

Para  $a_{k+1}$ :

$$a_{k+1} = \log_{10}(1 + a_k)$$
$$10^{a_{k+1}} = 1 + a_k$$
$$a_k = 10^{a_{k+1}} - 1$$

Da hipótese:

$$a_k < a_{k-1}$$

Substituindo  $a_k$  e  $a_{k-1}$ :

$$10^{a_{k+1}} - 1 < 10^{a_k} - 1$$
$$10^{a_{k+1}} < 10^{a_k}$$
$$\Rightarrow a_{k+1} < a_k$$

Portanto, encontramos que  $a_{n+1} < a_n$ , logo, a sequência  $(a_n)$  é decrescente.

∴Verdadeira.

II. 
$$a_1 = 1000 > 0$$

Se  $a_n > 0$ , temos:

$$a_{n+1} = \log_{10}(1 + a_n) > \log_{10} 1 = 0$$

Portanto,  $a_n > 0 \Rightarrow a_{n+1} > 0$ . Logo,  $a_n > 0$ ,  $\forall n \in \mathbb{N}$ .

∴Verdadeira.

III. Para 
$$n = 3$$
:

$$a_3 = \log_{10}(1 + a_2)$$

Usando a aproximação  $a_2 \cong 3 < 4$ , temos:

$$a_3 = \log_{10}(1 + a_2) < \log_{10}(1 + 4) = \log_{10} 5 < \log_{10} 10 = 1$$

Como a sequência é decrescente e  $a_3 < 1$ , temos que  $a_n < 1$ ,  $\forall n \ge 3$ .

∴Verdadeira.

### Gabarito: "e".

### 12. (ITA/2016)

Seja f a função definida por  $f(x) = \log_{x+1}(x^2 - 2x - 8)$ . Determine:

- a) O domínio  $D_f$  da função f.
- b) O conjunto de todos os valores de  $x \in D_f$  tais que f(x) = 2.
- c) O conjunto de todos os valores de  $x \in D_f$  tais que f(x) > 1.

#### **Comentários**

a) Analisando as condições da função, encontramos os seguintes requisitos:



$$\begin{cases} x+1 > 0 \\ x+1 \neq 1 \\ x^2 - 2x - 8 > 0 \end{cases}$$

$$x > -1 e x \neq 0$$

Resolvendo a inequação:



Juntando as condições, encontramos:

Portanto, o domínio da função é dado por:

$$D_f = \{x \in \mathbb{R} | x > 4\}$$

b) Fazendo f(x) = 2, temos:

$$\log_{x+1}(x^2 - 2x - 8) = 2$$

$$x^2 - 2x - 8 = (x+1)^2$$

$$x^2 - 2x - 8 = x^2 + 2x + 1$$

$$4x = -9$$

$$\Rightarrow x = -\frac{9}{4}$$

Como o domínio de f é x>4, temos que x=-9/4 não pode ser solução do problema. Logo:

$$S = \emptyset$$

c) Fazendo f(x) > 1, temos:

$$\log_{x+1}(x^2 - 2x - 8) > 1$$

Como x > 4, temos que a base do logaritmo é maior do que 1, logo a função é crescente.

Dessa forma, podemos escrever:

$$x^{2} - 2x - 8 > (x + 1)^{1}$$
$$x^{2} - 3x - 9 > 0$$

Raízes:

$$x = \frac{3 \pm \sqrt{9 + 36}}{2} = \frac{\left(3 \pm \sqrt{45}\right)}{2} = \frac{3 \pm 3\sqrt{5}}{2}$$





A solução dessa inequação é dada por:

$$x < \frac{3 - 3\sqrt{5}}{2}$$
 ou  $x > \frac{3 + 3\sqrt{5}}{2}$ 

Devemos fazer a intersecção dessa solução com o domínio de f. Para isso, precisamos saber se esses números são maiores ou menores do que 4. Comparando o maior valor:

$$\frac{3+3\sqrt{5}}{2} > \frac{3+3\cdot 2}{2} = \frac{9}{2} = 4,5 > 4$$
$$\Rightarrow \frac{3+3\sqrt{5}}{2} > 4$$

Agora, para o menor valor:

$$\frac{3 - 3\sqrt{5}}{2} < \frac{3 - 3 \cdot 2}{2} = -\frac{3}{2} = -1,5 < 4$$

$$\Rightarrow \frac{3 - 3\sqrt{5}}{2} < 4$$

Colocando os números no eixo x, temos:





Fazendo a intersecção da solução, encontramos:

$$S = \left\{ x \in \mathbb{R} \middle| x > \frac{3 + 3\sqrt{5}}{2} \right\}$$

Gabarito: a) 
$$D_f = \{x \in \mathbb{R} | x > 4\}$$
 b)  $S = \emptyset$  c)  $S = \left\{x \in \mathbb{R} \left| x > \frac{3 + 3\sqrt{5}}{2}\right\}$ 

#### 13. (ITA/2015)

Considere as seguintes afirmações sobre números reais:

I. Se a expansão decimal de x é infinita e periódica, então x é um número racional.

II. 
$$\sum_{n=0}^{\infty} \frac{1}{(\sqrt{2}-1)\sqrt{2^n}} = \frac{\sqrt{2}}{1-2\sqrt{2}}.$$



- III.  $ln\sqrt[3]{e^2} + (\log_3 2)(\log_4 9)$  é um número racional.
- É (são) verdadeira(s):
- a) nenhuma.
- b) apenas II.
- c) apenas I e II.
- d) apenas I e III.
- e) I, II e III.

### **Comentários**

Do enunciado da afirmação:

A expansão decimal de x é infinita e periódica, então x é uma dízima periódica. Portanto, x é racional.

- ∴Verdadeira.
- II. A sequência é uma PG infinita de razão  $q = 1/\sqrt{2}$ . Veja:

$$\sum_{n=0}^{\infty} \frac{1}{(\sqrt{2}-1)\sqrt{2^n}} = \frac{1}{\sqrt{2}-1} \sum_{n=0}^{\infty} \frac{1}{\sqrt{2^n}}$$
$$\frac{1}{\sqrt{2}-1} \sum_{n=0}^{\infty} \frac{1}{\sqrt{2^n}} = \frac{1}{\sqrt{2}-1} \left( \frac{1}{\sqrt{2}^0} + \frac{1}{\sqrt{2}^1} + \frac{1}{\sqrt{2}^2} + \cdots \right)$$

Lembrando que a soma de uma PG infinita é dada por:

$$S = \frac{1}{1 - q}$$

$$\frac{1}{\sqrt{2} - 1} \left( \frac{1}{\sqrt{2}^0} + \frac{1}{\sqrt{2}^1} + \frac{1}{\sqrt{2}^2} + \cdots \right) = \frac{1}{\sqrt{2} - 1} \left( \frac{1}{1 - \frac{1}{\sqrt{2}}} \right) = \frac{\sqrt{2}}{(\sqrt{2} - 1)(\sqrt{2} - 1)} = \frac{\sqrt{2}}{3 - 2\sqrt{2}}$$

O resultado que encontramos é diferente da afirmação.

- ∴ Falsa.
- III. Vamos simplificar o número:

$$\ln \sqrt[3]{e^2} + (\log_3 2)(\log_4 9)$$

$$\frac{2}{3} + (\log_3 2)(\log_{2^2} 3^2)$$

$$\frac{2}{3} + \log_3 2 \cdot \log_2 3$$

$$\frac{2}{3} + \frac{\log 2}{\log 3} \cdot \frac{\log 3}{\log 2}$$

$$\frac{2}{3} + 1 = \frac{5}{3} \in \mathbb{Q}$$

∴Verdadeira.



### Gabarito: "d".

14. (ITA/2014)

Determine as soluções reais da equação em x:

$$(\log_4 x)^3 - \log_4(x^4) - \frac{3\log_{10} 16x}{\log_{100} 16} = 0$$

### Comentários

Como condição de existência: x > 0.

Simplificando a equação, temos:

$$(\log_4 x)^3 - \log_4(x^4) - \frac{3\log_{10} 16x}{\log_{100} 16} = 0$$

$$(\log_4 x)^3 - 4\log_4 x - \frac{\frac{3\log_4 16x}{\log_4 10}}{\frac{\log_4 16}{\log_4 100}} = 0$$

$$(\log_4 x)^3 - 4\log_4 x - \frac{\frac{3(\log_4 4^2 + \log_4 x)}{\log_4 10}}{\frac{\log_4 4^2}{\log_4 10^2}} = 0$$

$$(\log_4 x)^3 - 4\log_4 x - \frac{\frac{3(2 + \log_4 x)}{\log_4 10}}{\frac{2}{2\log_4 10}} = 0$$

$$(\log_4 x)^3 - 4\log_4 x - 3(2 + \log_4 x) = 0$$

Fazendo  $\log_4 x = y$ :

$$y^3 - 4y - 3(2 + y) = 0$$
$$y^3 - 7y - 6 = 0$$

Fatorando a equação:

$$y^{3} - y - 6y - 6 = 0$$

$$y(y^{2} - 1) - 6(y + 1) = 0$$

$$(y + 1)(y(y - 1) - 6) = 0$$

$$(y + 1)(y^{2} - y - 6) = 0$$

$$(y + 1)(y - 3)(y + 2) = 0$$

Encontrando as raízes:

$$y_1 = -1$$
$$y_2 = 3$$
$$y_3 = -2$$

Encontrando os valores de x:

$$y = \log_4 x$$



$$y_1 = -1 \Rightarrow x_1 = \frac{1}{4}$$
 $y_2 = 3 \Rightarrow x_2 = 4^3 = 64$ 
 $y_3 = -2 \Rightarrow x_3 = 4^{-2} = \frac{1}{16}$ 

Portanto, a solução é dada por:

$$S = \left\{ \frac{1}{4}, 64, \frac{1}{16} \right\}$$

**Gabarito:** 
$$S = \left\{ \frac{1}{4}, 64, \frac{1}{16} \right\}$$

15. (ITA/2014)

A soma

$$\sum_{1}^{4} \frac{\log_{1/2} \sqrt[n]{32}}{\log_{1/2} 8^{n+2}}$$

É igual a

- a)  $\frac{8}{9}$
- b)  $\frac{14}{15}$
- c)  $\frac{15}{16}$
- d)  $\frac{17}{18}$
- e) 1

## Comentários

Simplificando a expressão, temos:

$$\sum_{1}^{4} \frac{\log_{1/2} \sqrt[n]{32}}{\log_{1/2} 8^{n+2}} = \sum_{1}^{4} \frac{\log_{2^{-1}} 2^{\frac{5}{n}}}{\log_{2^{-1}} (2^{3})^{n+2}} = \sum_{1}^{4} \frac{-\frac{5}{n}}{\frac{3(n+2)}{-1}} = \sum_{1}^{4} \frac{5}{3n(n+2)}$$

Calculando o valor da soma:

$$\sum_{1}^{4} \frac{5}{3n(n+2)} = \frac{5}{3} \left( \frac{1}{1 \cdot 3} + \frac{1}{2 \cdot 4} + \frac{1}{3 \cdot 5} + \frac{1}{4 \cdot 6} \right)$$

$$\frac{5}{3} \left( \frac{1}{3} + \frac{1}{8} + \frac{1}{15} + \frac{1}{24} \right) = \frac{\frac{5}{3} (40 + 15 + 8 + 5)}{120} = \frac{5}{3} \left( \frac{68}{120} \right) = \frac{68}{3 \cdot 24} = \frac{68}{72} = \frac{17}{18}$$

$$\Rightarrow S = \frac{17}{18}$$

Gabarito: "d".

16. (ITA/2013)



Considere as funções f e g, da variável real x, definidas, respectivamente, por  $f(x) = e^{x^2 + ax + b}$  e  $g(x) = \ln\left(\frac{ax}{3b}\right)$ , em que a e b são números reais. Se f(-1) = 1 = f(-2), então pode-se afirmar sobre a função composta  $g \circ f$  que

- a)  $gof(1) = \ln 3$ .
- b)  $\exists gof(0)$ .
- c) gof nunca se anula.
- d) gof está definida apenas em  $\{x \in \mathbb{R}: x > 0\}$ .
- e) gof admite dois zeros reais distintos.

#### **Comentários**

O enunciado nos dá f(-1) e f(-2). Vamos encontrar os coeficientes a e b de f:

$$f(-1) = e^{1-a+b} = 1$$

$$f(-2) = e^{4-2a+b} = 1$$

Dividindo  $\frac{f(-1)}{f(-2)}$ :

$$\frac{e^{1-a+b}}{e^{4-2a+b}}=1$$

$$e^{a-3} = 1$$

$$e^a = e^3$$

$$\Rightarrow a = 3$$

Substituindo o resultado em f(-1):

$$e^{1-3+b} = 1$$

$$e^{b-2} = 1$$

$$e^{b} = e^{2}$$

$$\Rightarrow b = 2$$

Portanto, as funções f e g são dadas por:

$$f(x) = e^{x^2 + 3x + 2}$$

$$g(x) = \ln\left(\frac{3x}{3\cdot 2}\right) = \ln\left(\frac{x}{2}\right)$$

Encontrando *gof*:

$$gof(x) = g(f(x)) = \ln\left(\frac{f(x)}{2}\right) = \ln\left(\frac{e^{x^2+3x+2}}{2}\right) = \ln(e^{x^2+3x+2}) - \ln 2 = x^2 + 3x + 2 - \ln 2$$

Vamos analisar as alternativas:

a) Devemos calcular gof(1):

$$gof(1) = 1 + 3 + 2 - ln2 = 6 - ln 2 \neq ln3$$

- b)  $gof(0) = 2 \ln 2$ . Existe gof(0).
- c) Vamos verificar se *gof* possui raízes:



$$gof(x) = 0$$

$$x^{2} + 3x + 2 - \ln 2 = 0$$

$$x = \frac{-3 \pm \sqrt{9 - 4(2 - \ln 2)}}{2} = \frac{-3 \pm \sqrt{1 + \ln 2}}{2}$$

gof possui 2 raízes distintas. O que nos leva à alternativa e.

### Gabarito: "e".

## 17. (ITA/2013)

Se os números reais a e b satisfazem, simultaneamente, as equações

$$\sqrt{a\sqrt{b}} = \frac{1}{2} e \ln(a^2 + b) + \ln 8 = \ln 5,$$

Um possível valor de  $\frac{a}{b}$  é

- a)  $\frac{\sqrt{2}}{2}$
- b) 1
- c)  $\sqrt{2}$
- d) 2
- e)  $3\sqrt{2}$

### **Comentários**

Do enunciado, temos o sistema:

$$\begin{cases} \sqrt{a\sqrt{b}} = \frac{1}{2} \\ \ln(a^2 + b) + \ln 8 = \ln 5 \end{cases}$$

Simplificando:

$$\begin{cases} a\sqrt{b} = \frac{1}{4} \\ \ln(a^2 + b) = \ln 5 - \ln 8 \end{cases} \Rightarrow \begin{cases} a^2b = \frac{1}{16} \\ \ln(a^2 + b) = \ln\left(\frac{5}{8}\right) \end{cases} \Rightarrow \begin{cases} a^2b = \frac{1}{16} \\ a^2 + b = \frac{5}{8} \end{cases}$$

Vamos encontrar os valores de a e b substituindo a primeira equação na segunda:

$$a^{2} = \frac{1}{16b}$$

$$\frac{1}{16b} + b = \frac{5}{8}$$

$$16b^{2} - 10b + 1 = 0$$

$$b = \frac{5 \pm \sqrt{25 - 16}}{16} = \frac{5 \pm 3}{16} = \frac{1}{2} ou \frac{1}{8}$$

Das condições da equação com radical, temos que necessariamente  $a \ge 0$  e  $b \ge 0$ . Então:

$$b = \frac{1}{2} \Rightarrow a^2 = \frac{1}{8} \Rightarrow a = \frac{\sqrt{2}}{4}$$



$$b = \frac{1}{8} \Rightarrow a^2 = \frac{1}{2} \Rightarrow a = \frac{\sqrt{2}}{2}$$

Possíveis valores para a/b:

$$\frac{a}{b} = \frac{\frac{\sqrt{2}}{4}}{\frac{1}{2}} = \frac{\sqrt{2}}{2}$$
$$\frac{a}{b} = \frac{\frac{\sqrt{2}}{2}}{\frac{1}{9}} = 4\sqrt{2}$$

Analisando as alternativas, encontramos a resposta em a.

## Gabarito: "a".

18. (ITA/2011)

Resolva a inequação em R:

$$16 < \left(\frac{1}{4}\right)^{\log_{\frac{1}{5}}(x^2 - x + 19)}$$

#### **Comentários**

Vamos simplificar a inequação:

$$16 < \left(\frac{1}{4}\right)^{\log_{\frac{1}{5}}(x^{2}-x+19)}$$

$$4^{2} < (4^{-1})^{\log_{5}-1}(x^{2}-x+19)$$

$$4^{2} < (4^{-1})^{(-1)\log_{5}(x^{2}-x+19)}$$

$$4^{2} < 4^{\log_{5}(x^{2}-x+19)}$$

$$\Rightarrow 2 < \log_{5}(x^{2}-x+19)$$

$$5^{2} < x^{2}-x+19$$

$$0 < x^{2}-x-6$$

$$0 < (x-3)(x+2)$$

Raízes:

$$x = 3 ou x = -2$$

Estudo do sinal:



$$\therefore x < -2 \text{ ou } x > 3$$

$$S = (-\infty, -2) \cup (3, +\infty)$$



# **Gabarito:** $S = (-\infty, -2) \cup (3, +\infty)$

19. (ITA/2008)

Para  $x \in \mathbb{R}$ , o conjunto solução de  $|5^{3x} - 5^{2x+1} + 4 \cdot 5^x| = |5^x - 1|$  é

- a)  $\{0, 2 \pm \sqrt{5}, 2 \pm \sqrt{3}\}$
- b)  $\{0, 1, \log_5(2 + \sqrt{5})\}$
- c)  $\left\{0, \left(\frac{1}{2}\right) \log_5 2, \frac{1}{2} \log_5 3, \log_5 \frac{\sqrt{2}}{2}\right\}$
- d)  $\{0, \log_5(2+\sqrt{5}), \log_5(2+\sqrt{3}), \log_5(2-\sqrt{3})\}$
- e) A única solução é x=0

### **Comentários**

Inicialmente, devemos simplificar a equação:

$$|5^{3x} - 5^{2x+1} + 4 \cdot 5^x| = |5^x - 1|$$

$$|5^x (5^{2x} - 5 \cdot 5^x + 4)| = |5^x - 1|$$

$$|5^x (5^{2x} - 5 \cdot 5^x + 4)| = |5^x - 1|$$

$$|5^x (5^x - 1)(5^x - 4)| = |5^x - 1|$$

$$|5^x - 1|(|5^x (5^x - 4)| - 1) = 0$$

Possibilidades:

$$5^{x} - 1 = 0 \Rightarrow 5^{x} = 1 \Rightarrow x = 0$$
Ou
$$|5^{x}(5^{x} - 4)| - 1 = 0$$

$$|5^{x}(5^{x} - 4)| = 1 \Rightarrow \begin{cases} 5^{x}(5^{x} - 4) = 1 \\ 5^{x}(5^{x} - 4) = -1 \end{cases} \Rightarrow \begin{cases} 5^{2x} - 4 \cdot 5^{x} - 1 = 0 \\ 5^{2x} - 4 \cdot 5^{x} + 1 = 0 \end{cases}$$

Resolvendo cada equação separadamente, temos:

$$5^{2x} - 4 \cdot 5^x - 1 = 0$$
$$5^x = (2 \pm \sqrt{4+1}) = 2 \pm \sqrt{5}$$

Como  $5^x > 0$  e  $2 - \sqrt{5} < 0$ , nesse caso, a única solução é  $5^x = 2 + \sqrt{5}$ . O que resulta:

$$x = \log_5(2 + \sqrt{5})$$

Resolvendo a outra equação:

$$5^{2x} - 4 \cdot 5^{x} + 1 = 0$$

$$5^{x} = (2 \pm \sqrt{4 - 1}) = 2 \pm \sqrt{3}$$

$$2 - \sqrt{3} > 0$$

$$\Rightarrow 5^{x} = 2 \pm \sqrt{3}$$

$$\Rightarrow x = \log_{5}(2 \pm \sqrt{3})$$

Portanto, encontramos 4 soluções:



$$S = \{0, \log_5(2 + \sqrt{5}), \log_5(2 \pm \sqrt{3})\}$$

### Gabarito: "e".

20. (ITA/2007)

Sejam x e y dois números reais tais que  $e^x$ ,  $e^y$  e o quociente

$$\frac{e^x - 2\sqrt{5}}{4 - e^y\sqrt{5}}$$

são todos racionais. A soma x + y é igual a

- a) 0
- b) 1
- c) 2 log<sub>5</sub> 3
- d) log<sub>5</sub> 2
- e) 3 log<sub>e</sub> 2

#### Comentários

Vamos eliminar o termo radical do denominador do número:

$$\frac{(e^{x} - 2\sqrt{5})}{(4 - e^{y}\sqrt{5})} \frac{(4 + e^{y}\sqrt{5})}{(4 + e^{y}\sqrt{5})}$$

$$\frac{4e^{x} - 8\sqrt{5} + e^{x+y}\sqrt{5} - 2e^{y}5}{16 - 5e^{2y}}$$

$$\frac{4e^{x} - 2e^{y}5 - 8\sqrt{5} + e^{x+y}\sqrt{5}}{16 - 5e^{2y}}$$

O enunciado afirma que o número é racional, então necessariamente os radicais do numerador devem ser iguais a zero:

$$-8\sqrt{5} + e^{x+y}\sqrt{5} = 0$$
$$e^{x+y} = 8$$
$$\Rightarrow x + y = \ln 2^3 = 3 \ln 2$$

Com isso, encontramos a resposta no gabarito e.

### Gabarito: "e".

21. (ITA/2007)

Sejam x,y e z números reais positivos tais que seus logaritmos numa dada base n são números primos satisfazendo

$$\log_n(xy) = 49$$

$$\log_n\left(\frac{x}{z}\right) = 44$$

Então,  $\log_n(xyz)$  é igual a

- a) 52
- b) 61



- c) 67
- d) 80
- e) 97

#### Comentários

O enunciado afirma que  $\log_n x$ ,  $\log_n y$ ,  $\log_n z$  são números primos. Vamos procurar alguma informação usando os dados fornecidos:

$$\log_n(xy) = 49$$

$$\log_n x + \log_n y = 49$$

Como os logs envolvidos são números primos e a soma é ímpar, temos que um número deve ser par e o outro ímpar. O único par que é primo é 2, então:

$$\begin{cases} \log_n x = 2 \\ \log_n y = 47 \end{cases} ou \begin{cases} \log_n x = 47 \\ \log_n y = 2 \end{cases}$$

Usando a outra equação:

$$\log_n\left(\frac{x}{z}\right) = 44$$

$$\log_n x - \log_n z = 44$$

Testando os valores dos logs, temos:

$$\log_n x = 2 \Rightarrow 2 - \log_n z = 44$$

$$\log_n z = -42$$

Vamos testar o outro valor:

$$\log_n x = 47 \Rightarrow 47 - \log_n z = 44$$

$$\log_n z = 3$$

Então, os logs que satisfazem o problema são:

$$\log_n x = 47$$

$$\log_n y = 2$$

$$\log_n z = 3$$

A questão pede  $\log_n(xyz)$ :

$$\log_n(xyz) = \log_n x + \log_n y + \log_n z = 52$$

Portanto, encontramos o gabarito na letra a.

Gabarito: "a".

22. (ITA/2005)

Considere a equação em x

$$a^{x+1} = b^{\frac{1}{x}}$$



Onde a e b são números reais positivos, tais que  $\ln b = 2 \ln a > 0$ . A soma das soluções da equação é

- a) 0
- b) -1
- c) 1
- d) ln 2
- e) 2

## Comentários

Aplicando In na equação, temos:

$$\ln a^{x+1} = \ln b^{\frac{1}{x}}$$
$$(x+1)\ln a = \frac{1}{x}\ln b$$

Substituindo  $\ln b = 2 \ln a$ :

$$(x+1)\ln a = \frac{1}{x} \cdot 2\ln a$$

Como  $\ln a > 0$ :

$$x + 1 = \frac{2}{x}$$

$$x^{2} + x - 2 = 0$$

$$x_{1,2} = \frac{-1 \pm \sqrt{1+8}}{2} = \frac{-1 \pm 3}{2}$$

$$x_{1} = -2 e x_{2} = 1$$

A soma das raízes é dado por:

$$x_1 + x_2 = -2 + 1 = -1$$

### Gabarito: "b".

23. (ITA/2004)

Para b > 1 e x > 0, resolva a equação em x:

$$(2x)^{\log_b 2} - (3x)^{\log_b 3} = 0$$

#### **Comentários**

Reescrevendo a equação do enunciado:

$$(2x)^{\log_b 2} = (3x)^{\log_b 3}$$

Aplicando log na base b, temos:

$$\log_h(2x)^{\log_b 2} = \log_h(3x)^{\log_b 3}$$

Simplificando:

$$\log_b 2 \log_b 2x = \log_b 3 \log_b 3x$$
$$\log_b 2 (\log_b 2 + \log_b x) = \log_b 3 (\log_b 3 + \log_b x)$$





Portanto, encontramos uma única solução dada por:

$$S = \left\{ \frac{1}{6} \right\}$$

Gabarito: 
$$S = \left\{\frac{1}{6}\right\}$$

24. (ITA/2004)

Seja  $\alpha$  um número real, com  $0<\alpha<1$ . Assinale a alternativa que representa o conjunto de todos os valores de x tais que

$$\alpha^{2x} \left( \frac{1}{\sqrt{\alpha}} \right)^{2x^2} < 1$$

a) 
$$]-\infty,0]\cup[2,+\infty[$$

b) 
$$] - \infty, 0[ \cup ]2, +\infty[$$

#### **Comentários**

Simplificando a inequação, temos:

$$\alpha^{2x} \left(\frac{1}{\sqrt{\alpha}}\right)^{2x^2} < 1$$

$$\frac{\alpha^{2x}}{\alpha^{\frac{2x^2}{2}}} < 1$$

$$\alpha^{2x} < \alpha^{x^2}$$

Como  $0 < \alpha < 1$ , temos:

$$2x > x^{2}$$

$$2x - x^{2} > 0$$

$$x(2 - x) > 0$$

Vamos fazer o estudo do sinal da ineguação acima:





Portanto, os valores de x que satisfazem a inequação é:

$$S = [0, 2[$$

#### Gabarito: "c".

25. (ITA/2003)

Mostre que toda função  $f: \mathbb{R}/\{0\} \to \mathbb{R}$ , satisfazendo f(xy) = f(x) + f(y) em todo seu domínio, é par.

### **Comentários**

Vamos analisar a equação funcional dada:

$$f(xy) = f(x) + f(y)$$

Fazendo  $x = y = k \in \mathbb{R}/\{0\}$ , temos:

$$f(k \cdot k) = f(k) + f(k)$$

$$f(k^2) = 2f(k)$$

Para x = y = -k:

$$f((-k)(-k)) = f(-k) + f(-k)$$

$$f(k^2) = 2f(-k)$$

Desse modo, encontramos a igualdade:

$$2f(k) = 2f(-k)$$

$$f(k) = f(-k)$$

Portanto, a função f é par em todo o seu domínio.

### Gabarito: Demonstração.

26. (ITA/2003)

Considere uma função  $f: \mathbb{R} \to \mathbb{R}$  não-constante e tal que  $f(x+y) = f(x)f(y), \forall x, y \in \mathbb{R}$ .

Das afirmações:

I. 
$$f(x) > 0, \forall x \in \mathbb{R}$$

II. 
$$f(nx) = [f(x)]^n, \forall x \in \mathbb{R}, \forall n \in \mathbb{N}^*$$

III. f é par

É (são) verdadeira(s):

- a) apenas I e II.
- b) apenas II e III.
- c) apenas I e III.
- d) todas.





#### Comentários

I. O bizu nessa questão é fazer:

$$f(x) = f\left(\frac{x}{2} + \frac{x}{2}\right)$$

Usando a equação funcional, encontramos:

$$f(x) = f\left(\frac{x}{2}\right) f\left(\frac{x}{2}\right) = \left[f\left(\frac{x}{2}\right)\right]^2 \ge 0$$
  
$$\Rightarrow f(x) \ge 0$$

Devemos provar que  $f(x) \neq 0$ :

Para x = y = 0:

$$f(0) = (f(0))^{2}$$
$$f(0)(1 - f(0)) = 0$$
$$f(0) = 0 \text{ ou } f(0) = 1$$

Para y = 0, temos:

$$f(x+0) = f(x)f(0)$$
$$f(x)(1-f(0)) = 0$$

Se f(0) = 0:

$$f(x) = f(x)f(0) = 0$$
$$f(x) = 0, \forall x \in \mathbb{R}$$

O enunciado diz que a função f não é constante, logo essa igualdade não pode ser válida.

Com isso, nos resta f(0) = 1.

Portanto,  $f(x) > 0, \forall x \in \mathbb{R}$ .

∴Verdadeira.

II. Vamos provar por PIF que essa equação é válida:

Para n = 1, temos:

$$f(nx) = [f(x)]^n$$
$$f(x) = f(x)^1$$

Para  $n = k \in \mathbb{N}^*$ , temos que provar que  $f(kx) = [f(x)]^k \Rightarrow f[(k+1)x] = [f(x)]^{k+1}$ .

Usando a equação funcional do enunciado:

$$f(x+y) = f(x)f(y)$$

Fazendo y = kx:

$$f(x + kx) = f(x)f(kx)$$

Da hipótese, temos  $f(kx) = [f(x)]^k$ , logo:

$$f[(k+1)x] = f(x)[f(x)]^k$$



$$\Rightarrow f[(k+1)x] = [f(x)]^{k+1}$$

Portanto, a equação da afirmação é válida.

∴Verdadeira.

III. Para x = k e y = -k, temos:

$$f(k-k) = f(k)f(-k)$$

$$f(0) = f(k)f(-k)$$

Da afirmação I, sabemos que f(0) = 1. Logo:

$$f(k)f(-k) = 1 \Rightarrow f(k) = \frac{1}{f(-k)}$$

Portanto:

$$f(k) \neq f(-k)$$

A função não é par.

∴Falsa.

Gabarito: "a".

### Questões IME Comentadas

27. (IME/2020)

Sabe-se que S = x + y + z, onde y e z são soluções inteiras do sistema abaixo.

$$\begin{cases} x = \frac{\sqrt[3]{2y^2}}{2} \\ y = e^{2\ln(x)} \\ \log_2 y + \log_x z = (x+3) \end{cases}$$

O valor de S é:

- a) 84
- b) 168
- c) 234
- d) 512
- e) 600

#### **Comentários**

Das condições de existência dos logaritmos, devemos ter x, y, z > 0 e  $x \neq 1$ . Nessa questão, o bizu é observar a segunda equação:

o bizu e observar a segunda equação: 
$$y = e^{2\ln(x)} = e^{\ln(x^2)} = x^2 \Rightarrow y = x^2$$

Com essa relação, substituímos na primeira equação para achar o valor de x:

$$x = \frac{\sqrt[3]{2y^2}}{2} = \frac{\sqrt[3]{2x^4}}{2} \Rightarrow 2x = \sqrt[3]{2x^4} \Rightarrow 8x^3 = 2x^4 \Rightarrow \boxed{x = 4} \Rightarrow \boxed{y = 16}$$

Agora, basta substituir x e y na terceira equação para achar z:

$$\log_2 y + \log_x z = (x+3)$$

$$\log_2 16 + \log_4 z = 7 \Rightarrow 4 + \log_4 z = 7 \Rightarrow \log_4 z = 3 \Rightarrow z = 4^3 \Rightarrow z = 64$$



## $\therefore S = x + y + z = 4 + 16 + 64 = 84$

#### Gabarito: "a".

#### 28. (IME/2020)

Uma progressão geométrica é formada com os números naturais  $A, B \in C$ , nessa ordem. O log(A) possui a mesma mantissa, M, do log(B) e C é a característica do log(A). Sabe-se que M = log(C) e que possui o maior valor possível. O valor da mantissa do log(ABC) é:

- a) *M*
- b) 2M
- c) 3M
- d) 3M 2
- e) 3M 3

#### Comentários

Como (A, B, C) formam uma PG nessa ordem, podemos escrever:

$$B^2 = AC$$

O enunciado dá informações a respeito da característica e da mantissa dos logaritmos. A primeira coisa que devemos lembrar é que a característica de um logaritmo é a parte inteira do seu valor e a mantissa é a parte fracionária.

O enunciado diz que:

$$\log(A) = C + M$$
$$\log(B) = X + M$$
$$\log(C) = M$$

Não sabemos qual é a característica de log(B), podemos extrair essa informação da PG:

$$B^2 = AC$$

Aplicando o log na equação acima:

$$\log(B^2) = \log(AC) \Rightarrow 2\log(B) = \log(A) + \log(C)$$

Substituindo os valores dos logaritmos:

$$2(X+M) = C + M + M \Rightarrow 2X = C \Rightarrow X = \frac{C}{2}$$

Como a característica de C é zero, temos que C é um número entre 1 e 10. Além disso, X deve ser um número natural, logo C deve ser um número par, as possibilidades são:

$$C \in \{2; 4; 6; 8\}$$

O enunciado diz que  $M = \log(C)$  possui o maior valor possível, logo, C = 8.

Com isso, temos:

$$\log(C) = \log(8) = \log(2^3) = 3 \cdot \log(2)$$

O valor do log(2) é aproximadamente 0,3, logo:

$$M \cong 3 \cdot 0.3 = 0.9$$

Queremos saber o valor da mantissa do log(ABC):

$$\log(ABC) = \log(A) + \log(B) + \log(C)$$

Usando  $2 \log(B) = \log(A) + \log(C)$ :

$$\log(ABC) = 3\log(B) = 3(X+M) = \frac{3C}{2} + 3M = \frac{3\cdot 8}{2} + 3(0.9) = 12 + 2.7$$

Devemos notar que a mantissa do log(ABC) está no número 2,7 e ele é resultado de 3M, ou seja,

$$3M = 2.7 = 2 + 0.7 \Rightarrow 3M - 2 = 0.7$$

Portanto, a mantissa do log(ABC) é 0.7 = 3M - 2.



### Gabarito: "d".

29. (IME/2020)

Considere a progressão geométrica  $a_1, a_2, ..., a_n, ...$  e a progressão aritmética  $b_1, b_2, ..., b_n, ...$  com as condições:

$$a_1 > 0$$
 $\frac{a_2}{a_1} > 1$ ; e
 $b_2 - b_1 > 0$ 

Para que  $[\log_{\alpha}(a_n) - b_n]$  não dependa de n, o valor de  $\alpha$  deverá ser:

a) 
$$\left(\frac{a_2}{a_1}\right)^{\frac{1}{b_2}}$$

b) 
$$\left(\frac{a_2}{a_1}\right)^{\frac{1}{b_1}}$$

$$\mathsf{c)} \left( \frac{a_2}{a_1} \right)^{\frac{1}{b_2 - b_1}}$$

$$\mathsf{d}) \left( \frac{a_2}{a_1} \right)^{\frac{1}{b_1 - b_2}}$$

e) 
$$\left(\frac{a_2}{a_1}\right)^{\frac{1}{b_1b_2}}$$

#### **Comentários**

Como  $(a_1,a_2,\dots,a_n,\dots)$  é uma PG e  $(b_1,b_2,\dots,b_n,\dots)$  é uma PA, temos:

$$a_n = a_1 q^{n-1}$$
  
$$b_n = b_1 + (n-1)r$$

Sendo q a razão da PG e r a razão da PA.

Das condições do enunciado:

$$a_1 > 0 \ e \ \frac{a_2}{a_1} > 1 \Rightarrow a_1 > 0 \ e \ q > 1$$
  
 $b_2 - b_1 > 0 \Rightarrow r > 0$ 

Assim, a PG possui apenas termos positivos e é crescente e a PA também é crescente.

Vamos analisar a expressão dada:

$$[\log_{\alpha}(a_n) - b_n] = [\log_{\alpha}(a_1 q^{n-1}) - (b_1 + (n-1)r)]$$
  
=  $\log_{\alpha} a_1 + (n-1)\log_{\alpha} q - b_1 - nr + r$   
=  $\log_{\alpha} a_1 - \log_{\alpha} q - b_1 + r + n\log_{\alpha} q - nr$ 

Para que a expressão não dependa de n, devemos ter:

$$n \log_{\alpha} q - nr = 0$$

 $n(\log_{\alpha}q-r)=0\Rightarrow\log_{\alpha}q-r=0\Rightarrow\log_{\alpha}q=r\Rightarrow q=\alpha^r\Rightarrow\alpha=q^{\frac{1}{r}}$  Escrevendo q em função de  $a_1$  e  $a_2$ , e r em função de  $b_1$  e  $b_2$ :

$$q = \frac{a_2}{a_1} e r = b_2 - b_1$$

$$\therefore \boxed{\alpha = \left(\frac{a_2}{a_1}\right)^{\frac{1}{b_2 - b_1}}}$$

Gabarito: "c".



30. (IME/2019)

Definimos a função  $f: \mathbb{N} \to \mathbb{N}$  da seguinte forma:

$$\begin{cases}
f(0) = 0 \\
f(1) = 1 \\
f(2n) = f(n), n \ge 1 \\
f(2n+1) = f(n) + 2^{\lfloor \log_2 n \rfloor}, n \ge 1
\end{cases}$$

Determine f(f(2019)).

Observação: |k| é o maior inteiro menor ou igual a k.

### Comentários

Inicialmente, devemos analisar a lei de formação da função. Para um número par, temos que f(2n) = f(n) e para um número ímpar,  $f(2n+1) = f(n) + 2^{\lfloor \log_2 n \rfloor}$ . A função está determinada para n=1 ou n=0, vamos usar esses valores para encontrar o que se pede.

Usando a lei de formação, obtemos:

$$f(2019) = f(1009) + 2^{\lfloor \log_2 1009 \rfloor}$$

$$f(1009) = f(504) + 2^{\lfloor \log_2 504 \rfloor}$$

$$f(504) = f(252)$$

$$f(252) = f(126)$$

$$f(126) = f(63)$$

$$f(63) = f(31) + 2^{\lfloor \log_2 31 \rfloor}$$

$$f(31) = f(15) + 2^{\lfloor \log_2 15 \rfloor}$$

$$f(15) = f(7) + 2^{\lfloor \log_2 7 \rfloor}$$

$$f(7) = f(3) + 2^{\lfloor \log_2 3 \rfloor}$$

$$f(3) = f(1) + 2^{\lfloor \log_2 1 \rfloor}$$

$$f(1) = 1$$

Vamos somar as equações para cancelar os termos de f:

$$f(2019) = f(1009) + 2^{\lfloor \log_2 1009 \rfloor}$$

$$f(1009) = f(504) + 2^{\lfloor \log_2 504 \rfloor}$$

$$f(504) = f(252)$$

$$f(252) = f(126)$$

$$f(126) = f(63)$$

$$f(63) = f(31) + 2^{\lfloor \log_2 31 \rfloor} + 2^{\lfloor \log_2 31 \rfloor}$$

$$f(31) = f(15) + 2^{\lfloor \log_2 15 \rfloor}$$

$$f(15) = f(7) + 2^{\lfloor \log_2 7 \rfloor}$$

$$f(7) = f(3) + 2^{\lfloor \log_2 3 \rfloor}$$

$$f(3) = f(1) + 2^{\lfloor \log_2 1 \rfloor}$$

$$f(3) = f(1) + 2^{\lfloor \log_2 1 \rfloor}$$

 $f_{,}(2019) = 2^{\lfloor \log_2 1009 \rfloor} + 2^{\lfloor \log_2 504 \rfloor} + 2^{\lfloor \log_2 31 \rfloor} + 2^{\lfloor \log_2 31 \rfloor} + 2^{\lfloor \log_2 15 \rfloor} + 2^{\lfloor \log_2 3 \rfloor} + 2^{\lfloor \log_2 1 \rfloor} + 1$ 

Agora, precisamos encontrar os valores de  $2^{\lfloor \log_2 1009 \rfloor}$ ,  $2^{\lfloor \log_2 504 \rfloor}$ , ...,  $2^{\lfloor \log_2 1 \rfloor}$ . Das propriedades dos logaritmos, sabemos que  $2^{\log_2 a} = a$ .

Analisemos o valor de  $\lfloor \log_2 1009 \rfloor$ . Seja  $\log_2 1009 = x$ :

$$\lfloor \log_2 1009 \rfloor = \lfloor x \rfloor$$

Como 2 é uma base maior que 1, temos que a função logarítmica é crescente. Então, podemos escrever:

$$\log_2 512 < \log_2 1009 < \log_2 1024$$



$$\log_2 2^9 < x < \log_2 2^{10}$$
  
$$9 < x < 10$$

|k| é o maior inteiro menor ou igual a k, desse modo:

$$|x| = |\log_2 1009| = 9$$

Analogamente, para os outros valores:

$$\begin{split} \log_2 256 < \log_2 504 < \log_2 512 &\Rightarrow 8 < \log_2 504 < 9 \Rightarrow \lfloor \log_2 504 \rfloor = 8 \\ \log_2 16 < \log_2 31 < \log_2 32 \Rightarrow 4 < \log_2 31 < 5 \Rightarrow \lfloor \log_2 31 \rfloor = 4 \\ \log_2 8 < \log_2 15 < \log_2 16 \Rightarrow 3 < \log_2 15 < 4 \Rightarrow \lfloor \log_2 15 \rfloor = 3 \\ \log_2 4 < \log_2 7 < \log_2 8 \Rightarrow 2 < \log_2 7 < 3 \Rightarrow \lfloor \log_2 7 \rfloor = 2 \\ \log_2 2 < \log_2 3 < \log_2 4 \Rightarrow 1 < \log_2 3 < 2 \Rightarrow \lfloor \log_2 7 \rfloor = 1 \\ \lfloor \log_2 1 \rfloor = 0 \end{split}$$

Assim, obtemos:

$$f(2019) = 2^{\lfloor \log_2 1009 \rfloor} + 2^{\lfloor \log_2 504 \rfloor} + 2^{\lfloor \log_2 31 \rfloor} + 2^{\lfloor \log_2 15 \rfloor} + 2^{\lfloor \log_2 7 \rfloor} + 2^{\lfloor \log_2 3 \rfloor} + 2^{\lfloor \log_2 1 \rfloor} + 1$$

$$f(2019) = 2^9 + 2^8 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 + 1$$

$$f(2019) = 512 + 256 + 16 + 8 + 4 + 2 + 1 + 1$$

$$\boxed{f(2019) = 800}$$

Queremos o valor de f(f(2019)), usando o mesmo raciocínio:

$$f(f(2019)) = f(800) = f(400) = f(200) = f(100) = f(50) = f(25)$$

$$f(25) = f(12) + 2^{\lfloor \log_2 12 \rfloor}$$

$$f(12) = f(6)$$

$$f(6) = f(3)$$

$$f(3) = f(1) + 2^{\lfloor \log_2 1 \rfloor} = 1 + 2^0 = 2$$

$$\Rightarrow f(12) = f(6) = f(3) = 2$$

$$\Rightarrow f(25) = 2 + 2^{\lfloor \log_2 12 \rfloor}$$

$$\log_2 8 < \log_2 12 < \log_2 16 \Rightarrow 3 < \log_2 12 < 4 \Rightarrow \lfloor \log_2 12 \rfloor = 3$$

$$\Rightarrow f(25) = 2 + 2^3 = 10$$

Portanto:

$$f\big(f(2019)\big) = 10$$

# Gabarito: f(f(2019)) = 10

#### 31. (IME/2018)

Sejam a,b,c e d números reais positivos diferentes de 1. Temos que  $\log_a d$ ,  $\log_b d$  e  $\log_c d$  são termos consecutivos de uma progressão geométrica e que a,b e c formam uma progressão aritmética em que a < b < c. Sabendo-se que  $b = b^{\log_a b} - a$ , determine:

- a) Os valores de  $a, b \in c$ ;
- b) As razões das progressões aritmética e geométrica, r e q, respectivamente.

#### **Comentários**

a) Do enunciado, temos:

$$a,b,c,d>0$$
  $e$   $a,b,c,d\neq 1$   $(\log_a d,\log_b d,\log_c d)$  é uma PG  $(a,b,c)$  é uma PA, com  $a< b< c$   $b=b^{\log_a b}-a$ 

Vamos analisar a PA, usando os dados fornecidos, podemos escrever:



$$b = \frac{a+c}{2}$$

$$\Rightarrow 2b = a + c$$
 (I)

Analisando a PG:

$$(\log_b d)^2 = (\log_a d)(\log_c d)$$
$$\left(\frac{\log_a d}{\log_a b}\right)^2 = (\log_a d)\left(\frac{\log_a d}{\log_a c}\right) = \frac{(\log_a d)^2}{\log_a c}$$
$$\Rightarrow (\log_a b)^2 = \log_a c \quad (II)$$

Agora, vamos usar a equação para encontrar alguma informação entre a e b:

$$b = b^{\log_a b} - a$$
$$a + b = b^{\log_a b}$$
(III)

O bizu agora é fazer  $b = a^{\log_a b}$  para o lado direito da equação (III):

$$a+b=\left(a^{\log_a b}\right)^{\log_a b}=a^{(\log_a b)^2}$$

Usando a equação (II):

$$(\log_a b)^2 = \log_a c$$

$$\Rightarrow a^{(\log_a b)^2} = a^{\log_a c} = c$$

Perceba que o termo encontrado é igual àquele encontrado na equação (III):

$$a + b = a^{(\log_a b)^2} = c$$

Dessa forma, usando as equações encontradas, podemos escrever:

$$\begin{cases} a+b=c\\ 2b=a+c \end{cases}$$

Encontrando b e c em função de a:

$$2b = a + c \Rightarrow 2b = a + a + b$$

$$\Rightarrow b = 2a$$

$$a + b = c$$

$$\Rightarrow c = 3a$$

Substituindo esses valores na equação (III), temos:

$$a + b = b^{\log_a b}$$
 (III)  

$$a + 2a = (2a)^{\log_a 2a}$$
  

$$3a = (2a)^{(\log_a 2+1)}$$

Aplicando log na base a na equação:

$$\log_a 3a = (\log_a 2 + 1)(\log_a 2a)$$

$$\log_a 3 + 1 = (\log_a 2 + 1)(\log_a 2 + 1)$$

$$\log_a 3 + 1 = (\log_a 2)^2 + 2\log_a 2 + 1$$

$$\Rightarrow \log_a 3 = (\log_a 2)^2 + 2\log_a 2$$



Escrevendo os logs na base 2:

$$\frac{\log_2 3}{\log_2 a} = \left(\frac{\log_2 2}{\log_2 a}\right)^2 + \frac{2\log_2 2}{\log_2 a}$$

Fazendo  $x = \log_2 a$ , temos:

$$\frac{\log_2 3}{x} = \left(\frac{1}{x}\right)^2 + \frac{2\log_2 2}{x}$$
$$\log_2 3x = 1 + 2x$$
$$x(\log_2 3 - 2) = 1$$
$$x = \frac{1}{\log_2 3 - 2}$$

Retornando à variável a:

$$\log_2 a = \frac{1}{\log_2 3 - 2} = \frac{1}{\log_2 3 - \log_2 2^2} = \frac{1}{\log_2 \frac{3}{4}} = \log_{\frac{3}{4}} 2$$

$$\Rightarrow a = 2^{\frac{\log_{\frac{3}{4}} 2}{4}}$$

$$b = 2a$$

$$\Rightarrow b = 2^{\frac{\log_{\frac{3}{4}} 2}{4}}$$

$$c = 3a$$

$$\Rightarrow c = 3 \cdot 2^{\frac{\log_{\frac{3}{4}} 2}{4}}$$

b) Temos as sequências:

$$(\log_a d \log_b d \log_c d) \text{ é uma PG}$$

$$(a,b,c) \text{ é uma PA, com } a < b < c$$

$$\Rightarrow r = b - a = 2^{\log_{\frac{3}{4}}2+1} - 2^{\log_{\frac{3}{4}}2} = 2^{\log_{\frac{3}{4}}2}(2-1) = 2^{\log_{\frac{3}{4}}2}$$

$$\Rightarrow q = \frac{\log_b d}{\log_a d} = \frac{\log_2 d}{\log_2 d} = \frac{\log_2 a}{\log_2 b}$$

$$q = \frac{\log_2 2^{\log_{\frac{3}{4}}2}}{\log_2 2^{\log_{\frac{3}{4}}2+1}} = \frac{\log_{\frac{3}{4}}2}{\log_{\frac{3}{4}}2+1} = \frac{1}{1+\frac{1}{\log_{\frac{3}{4}}2}} = \frac{1}{1+\log_2 \frac{3}{4}} = \frac{1}{\log_2 2 + \log_2 \frac{3}{4}} = \frac{1}{\log_2 2} = \log_{\frac{3}{2}}2$$
Portanto,  $r = 2^{\log_{\frac{3}{4}}2}$  e  $q = \log_{\frac{3}{2}}2$ .

Questão trabalhosa pessoal, para encontrar os valores de a,b,c, temos que ir pelo método da tentativa e erro até achar alguma informação relevante.

Gabarito: a) 
$$a=2^{\log_3 2 \over 4}$$
 ,  $b=2^{\log_3 2+1}$  ,  $c=3\cdot 2^{\log_3 2 \over 4}$  b)  $r=2^{\log_3 2 \over 4}$  e  $q=\log_{\frac{3}{2}}2$ 

32. (IME/2017)





O produto das raízes reais desta equação é igual a:

- a)  $\frac{1}{3}$
- b)  $\frac{1}{2}$
- c)  $\frac{3}{4}$
- d) 2
- e) 3

# Comentários

Vamos simplificar a equação do problema:

$$y^{\log_3 \sqrt{3y}} = y^{\log_3 3y} - 6$$

$$y^{\log_3(3y)^{\frac{1}{2}}} = y^{\log_3 3y} - 6$$

$$y^{\frac{1}{2}\log_3 3y} = y^{\log_3 3y} - 6$$

Chamando  $x = y^{\frac{1}{2}\log_3 3y}$ , temos:

$$x = x^2 - 6$$

$$x^2 - x - 6 = 0$$

$$(x-3)(x+2) = 0$$

Raízes:

$$x_1 = -2 \ ou \ x_2 = 3$$

Encontrando os valores de y:

$$y^{\frac{1}{2}\log_3 3y} = -2$$

O enunciado diz que y>0, então a equação acima não é válida. Então, temos que usar a outra raiz:

$$v^{\frac{1}{2}\log_3 3y} = 3$$

Aplicando log na base 3:

$$\log_3 y^{\frac{1}{2}\log_3 3y} = \log_3 3$$

$$\frac{1}{2}(1 + \log_3 y)\log_3 y = 1$$

Substituindo  $z = \log_3 y$ :

$$(1+z)z=2$$

$$z^2 + z - 2 = 0$$

$$z = \frac{-1 \pm \sqrt{9}}{2} = \frac{-1 \pm 3}{2} = -2 \text{ ou } 1$$

$$z_1 = -2 \Rightarrow \log_3 y_1 = -2$$



$$y_1 = 3^{-2} = \frac{1}{9}$$

$$z_2 = 1 \Rightarrow \log_3 y_2 = 1$$

$$y_2 = 3$$

Multiplicando as raízes, temos:

$$y_1 y_2 = \frac{3}{9} = \frac{1}{3}$$

Portanto, encontramos a resposta na letra a.

## Gabarito: "a".

# 33. (IME/2017)

Resolva o sistema de equações, onde  $x \in \mathbb{R}$  e  $y \in \mathbb{R}$ .

$$\begin{cases} \log_3(\log_{\sqrt{3}} x) - \log_{\sqrt{3}}(\log_3 y) = 1\\ (y\sqrt[3]{x})^2 = 3^{143} \end{cases}$$

## Comentários

Inicialmente, devemos analisar a condição de existência dos logs:

$$\log_{\sqrt{3}} x > 0 \Rightarrow x > 1$$

$$\log_3 y > 0 \Rightarrow y > 1$$

Vamos usar a primeira equação:

$$\log_3(\log_{\sqrt{3}} x) - \log_{\sqrt{3}}(\log_3 y) = 1$$

Fazendo  $\log_{\sqrt{3}} x = z$  e  $\log_3 y = w$ , temos:

$$\log_3 z - \log_{\frac{1}{3^2}} w = 1$$
$$\log_3 z = 1 + 2\log_3 w$$
$$\log_3 z = \log_3 3 + \log_3 w^2$$
$$\log_3 z = \log_3 3w^2$$
$$\Rightarrow z = 3w^2$$

Agora, vamos usar a segunda equação:

$$(y\sqrt[3]{x})^2 = 3^{143}$$

Aplicando log na base 3:

$$\log_3(y\sqrt[3]{x})^2 = \log_3 3^{143}$$
$$2\left(\log_3 y + \log_3 x^{\frac{1}{3}}\right) = 143$$
$$2\log_3 y + \frac{2}{3}\log_3 x = 143$$

Substituindo  $z = \log_{\sqrt{3}} x$  e  $w = \log_3 y$ :

$$z = \log_{\sqrt{3}} x = 2\log_3 x$$



$$\Rightarrow 2w + \frac{z}{3} = 143$$

$$6w + z = 143 \cdot 3$$

Substituindo  $z = 3w^2$ :

$$6w + 3w^{2} = 143 \cdot 3$$

$$2w + w^{2} = 143$$

$$w^{2} + 2w - 143 = 0$$

$$w = (-1 \pm \sqrt{1 + 143}) = -1 \pm 12 = -13 \text{ ou } 11$$

Mas pelas condições de existência, temos  $w=\log_3 y>0$ . Então, a única solução é w=11. Desse modo:

$$w = 11 \Rightarrow \log_3 y = 11 \Rightarrow y = 3^{11}$$
$$z = 3w^2 = 3 \cdot 11^2 = 363$$
$$2\log_3 x = 363$$
$$\Rightarrow x = 3^{\frac{363}{2}} = \sqrt{3}^{\frac{363}{3}}$$

Portanto, a solução é dada por:

$$S = \left\{ \left(\sqrt{3}^{363}; 3^{11}\right) \right\}$$

Gabarito: 
$$S = \left\{ \left( \sqrt{3}^{363}; 3^{11} \right) \right\}$$

#### 34. (IME/2016/Modificada)

Sabendo-se que os números reais positivos a,b e c formam uma progressão geométrica e  $\log\left(\frac{5c}{a}\right),\log\left(\frac{3b}{5c}\right)$  e  $\log\left(\frac{a}{3b}\right)$  formam uma progressão aritmética, ambas nessa ordem. Prove que b+c < a.

#### **Comentários**

Do enunciado, temos:

$$(a, b, c) \text{ \'e uma PG}$$

$$\Rightarrow b^2 = ac$$

$$\left(\log\left(\frac{5c}{a}\right), \log\left(\frac{3b}{5c}\right), \log\left(\frac{a}{3b}\right)\right) \text{ \'e uma PA}$$

$$\Rightarrow 2\log\left(\frac{3b}{5c}\right) = \log\left(\frac{5c}{a}\right) + \log\left(\frac{a}{3b}\right)$$

$$\log\left(\frac{3b}{5c}\right)^2 = \log\left[\left(\frac{5c}{a}\right)\left(\frac{a}{3b}\right)\right]$$

$$\Rightarrow \left(\frac{3b}{5c}\right)^2 = \frac{5c}{3b}$$

$$(3b)^3 = (5c)^3$$

$$3b = 5c$$



$$\Rightarrow b = \frac{5}{3}c$$

Usando a informação da PG:

$$b^{2} = ac$$

$$\left(\frac{5}{3}c\right)^{2} = ac$$

$$\Rightarrow a = \frac{25}{9}c$$

Dessa forma, somando b + c, temos:

$$b+c = \frac{5}{3}c+c = \frac{8}{3}c < \frac{25}{9}c = a$$
$$\therefore b+c < a$$

# Gabarito: Demonstração

35. (IME/2016)

Quantos inteiros k satisfazem à desigualdade  $2\sqrt{\log_{10}k-1}+10\log_{10^{-1}}k^{\frac{1}{4}}+3>0$ ?

- a) 10
- b) 89
- c) 90
- d) 99
- e) 100

## **Comentários**

Resolvendo a inequação:

Da condição de existência do log:

$$k > 0$$

$$2\sqrt{\log_{10} k - 1} + 10\log_{10^{-1}} k^{\frac{1}{4}} + 3 > 0$$

$$2\sqrt{\log_{10} k - 1} + 10 \cdot \frac{1}{4} \cdot \frac{1}{-1}\log_{10} k + 3 > 0$$

Substituindo  $\log_{10} k = x$ :

$$2\sqrt{x-1} - \frac{5}{2}x + 3 > 0$$
$$4\sqrt{x-1} > 5x - 6$$

Possibilidades:

$$\begin{cases} 5x - 6 \le 0 \\ x - 1 \ge 0 \end{cases} \Rightarrow \begin{cases} x \le \frac{6}{5} \Rightarrow 1 \le x \le \frac{6}{5} \end{cases}$$
$$\begin{cases} 5x - 6 \ge 0 \\ x - 1 \ge 0 \\ 16(x - 1) > (5x - 6)^2 \end{cases}$$



$$x \ge \frac{6}{5}$$

$$x \ge 1$$

$$\Rightarrow x \ge \frac{6}{5}$$

$$16(x-1) > 25x^2 - 60x + 36$$

$$25x^2 - 76x + 52 < 0$$

Raízes:

$$x = \frac{\left(38 \pm \sqrt{38^2 - 25 \cdot 52}\right)}{25} = \frac{38 \pm \sqrt{144}}{25} = \frac{38 \pm 12}{25} = 2 \text{ ou } \frac{26}{25}$$

Com isso, temos:

$$\frac{26}{25} < x < 2$$

Juntando com as outras condições, temos:

$$\frac{26}{25} < \frac{6}{5} < x < 2$$

$$\Rightarrow \frac{6}{5} < x < 2$$

Unindo os intervalos de soluções, temos:

$$x \in \left[1, \frac{6}{5}\right] \cup \left(\frac{6}{5}, 2\right)$$
$$\Rightarrow x \in [1, 2)$$

Dessa forma, temos os valores de k:

$$\log_{10} k = x$$

$$1 \le x < 2$$

$$\log_{10} 10^{1} \le \log_{10} x < \log_{10} 10^{2}$$

$$\Rightarrow 10 \le x < 100$$

Então, os valores inteiros de x pertencem ao intervalo [10,100). A quantidade é dada por:

$$n = 99 - 10 + 1 = 90$$

Com isso, encontramos o gabarito na letra c.

## Gabarito: "c".

36. (IME/2015)

Determine os valores reais de x que satisfazem a inequação:

$$\frac{4}{\log_3 x^2 - 2} + \log_x \frac{1}{9} > 1$$

#### **Comentários**

Simplificando a inequação, temos:



$$\frac{4}{\log_3 x^2 - 2} + \log_x \frac{1}{9} > 1$$

$$\frac{4}{2\log_3 x - 2} + \log_x 3^{-2} > 1$$

$$\frac{4}{2\log_3 x - 2} - 2\log_x 3 > 1$$

$$\frac{4}{2\log_3 x - 2} - \frac{2}{\log_3 x} > 1$$

Fazendo  $\log_3 x = y$ :

$$\frac{4}{2y-2} - \frac{2}{y} > 1$$

$$\frac{4y-4(y-1)}{2y(y-1)} - 1 > 0$$

$$\frac{4-2y(y-1)}{2y(y-1)} > 0$$

$$\frac{-2y^2 + 2y + 4}{2y(y-1)} > 0$$

$$\frac{-y^2 + y + 2}{y(y-1)} > 0$$

$$-\frac{(y+1)(y-2)}{y(y-1)} > 0$$

$$\frac{(y+1)(y-2)}{y(y-1)} < 0$$

Estudando o sinal das funções acima, temos:



Analisando a tabela, vemos que y deve pertencer ao intervalo:

$$-1 < y < 0$$
 ou  $1 < y < 2$ 



$$-1 < \log_3 x < 0 \Rightarrow \frac{1}{3} < x < 1$$
$$1 < \log_3 x < 2 \Rightarrow 3 < x < 9$$

Portanto, a solução é dada por:

$$S = \left\{ x \in \mathbb{R} \,\middle|\, \frac{1}{3} < x < 1 \ ou \ 3 < x < 9 \right\}$$

Gabarito: 
$$S = \left\{ x \in \mathbb{R} \left| \frac{1}{3} < x < 1 \text{ ou } 3 < x < 9 \right\} \right\}$$

37. (IME/2015)

Sejam x e y números reais não nulos tais que:

$$\begin{cases} \log_x y^{\pi} + \log_y x^e = a \\ \frac{1}{\log_y x^{\pi^{-1}}} - \frac{1}{\log_x y^{e^{-1}}} = b \end{cases}$$

O valor de  $\frac{x^{a+b+2e}}{y^{a-b+2\pi}}$  é:

- a) 1
- b)  $\sqrt{\frac{\pi}{e}}$
- c)  $\sqrt{\frac{a \cdot e}{b \cdot \pi}}$
- d) a b
- e)  $\frac{(a+b)^{\frac{e}{\pi}}}{\pi}$

# Comentários

Simplificando o sistema, temos:

$$\begin{cases} \log_{x} y^{\pi} + \log_{y} x^{e} = a \\ \frac{1}{\log_{y} x^{\pi^{-1}}} - \frac{1}{\log_{x} y^{e^{-1}}} = b \end{cases}$$
$$\begin{cases} \pi \log_{x} y + e \log_{y} x = a \\ \frac{1}{\frac{1}{\pi} \log_{y} x} - \frac{1}{\frac{1}{e} \log_{x} y} = b \end{cases}$$
$$\begin{cases} \pi \log_{x} y + e \log_{y} x = a \\ \pi \log_{x} y - e \log_{y} x = b \end{cases}$$

Somando as equações, encontramos:

$$2\pi \log_x y = a + b$$
$$\log_x y = \frac{a + b}{2\pi}$$
$$\frac{\log y}{\log x} = \frac{a + b}{2\pi}$$



$$\log y^{2\pi} = \log x^{a+b}$$
$$\Rightarrow y^{2\pi} = x^{a+b}$$

Subtraindo as equações:

$$2e \log_y x = a - b$$

$$2e \log x = (a - b) \log y$$

$$\log x^{2e} = \log y^{a-b}$$

$$\Rightarrow x^{2e} = y^{a-b}$$

Queremos calcular:

$$\frac{x^{a+b+2e}}{y^{a-b+2\pi}} = \frac{x^{a+b} \cdot x^{2e}}{y^{a-b} \cdot y^{2\pi}}$$

Usando as relações que encontramos, temos:

$$\frac{x^{a+b} \cdot x^{2e}}{y^{a-b} \cdot y^{2\pi}} = \frac{y^{2\pi} \cdot y^{a-b}}{y^{a-b} \cdot y^{2\pi}} = 1$$

Portanto, o gabarito é a letra a.

## Gabarito: "a".

38. (IME/2014)

Sabe-se que  $y \cdot z \cdot \sqrt{z \cdot \sqrt{x}} = x \cdot y^3 \cdot z^2 = \frac{x}{z \cdot \sqrt{y \cdot z}} = e$ , em que e é a base dos logaritmos naturais. O valor de x + y + z é

a) 
$$e^3 + e^2 + 1$$

b) 
$$e^2 + e^{-1} + e$$

c) 
$$e^3 + 1$$

d) 
$$e^3 + e^{-2} + e$$

e) 
$$e^3 + e^{-2} + e^{-1}$$

## **Comentários**

Analisando as condições de existência dos radicais, encontramos:

Vamos usar as equações dadas para encontrar os valores de x, y, z:

$$y \cdot z \cdot \sqrt{z \cdot \sqrt{x}} = x \cdot y^3 \cdot z^2 = \frac{x}{z \cdot \sqrt{y \cdot z}} = e$$

$$\begin{cases} y \cdot z \cdot \sqrt{z \cdot \sqrt{x}} = e \\ x \cdot y^3 \cdot z^2 = e \\ \frac{x}{z \cdot \sqrt{y \cdot z}} = e \end{cases}$$

Simplificando:



$$\begin{cases} y^2 \cdot z^2 \cdot z \cdot \sqrt{x} = e^2 \\ x \cdot y^3 \cdot z^2 = e \end{cases}$$

$$\begin{cases} x^2 \\ \overline{z^2 \cdot (y \cdot z)} = e^2 \end{cases}$$

$$\begin{cases} y^4 \cdot z^6 \cdot x = e^4 \quad (I) \\ x \cdot y^3 \cdot z^2 = e \quad (II) \\ x^2 \cdot y^{-1} \cdot z^{-3} = e^2 \quad (III) \end{cases}$$

Elevando a equação (III) ao quadrado e multiplicando por (I):

$$x^{4} \cdot y^{-2} \cdot z^{-6} \cdot (y^{4} \cdot z^{6} \cdot x) = e^{4} \cdot e^{4}$$
$$x^{5} \cdot y^{2} = e^{8} (IV)$$

Dividindo a equação (I) pelo cubo da equação (II), temos:

$$\frac{y^4 \cdot z^6 \cdot x}{x^3 \cdot y^9 \cdot z^6} = \frac{e^4}{e^3}$$
$$x^{-2} \cdot y^{-5} = e \quad (V)$$

Elevando (IV) ao quadrado e (V) à quinta e multiplicando ambos, temos:

$$x^{10} \cdot y^4 = e^{16}$$

$$x^{-10} \cdot y^{-25} = e^5$$

$$\Rightarrow y^{-21} = e^{21}$$

$$\Rightarrow y = e^{-1}$$

Substituindo em (V):

$$x^{-2} \cdot e^5 = e$$
$$x^{-2} = e^{-4}$$
$$\Rightarrow x = \pm e^2$$

Mas da condição de existência, x>0. Então,  $x=e^2$ .

Substituindo x e y na equação (II):

$$x \cdot y^{3} \cdot z^{2} = e \qquad (II)$$

$$e^{2} \cdot e^{-3} \cdot z^{2} = e$$

$$z^{2} = e^{2}$$

$$\Rightarrow z = e$$

Portanto, a soma pedida é dada por:

$$x + y + z = e^2 + e^{-1} + e$$

Encontramos a resposta na letra b.

## Gabarito: "b".

39. (IME/2014)

Resolver o sistema de equações



$$\begin{cases} \sqrt{x} - \sqrt{y} = \log_3 \frac{y}{x} \\ 2^{x+2} + 8^x = 5 \cdot 4^y \end{cases}$$

#### **Comentários**

Das condições de existência iniciais, temos:

Dos radicais:

$$x \ge 0 \text{ e } y \ge 0$$

Do logaritmo:

$$\frac{y}{x} > 0$$

Fazendo a intersecção entre eles:

$$\Rightarrow x, y > 0$$

Analisando a primeira equação:

$$\sqrt{x} - \sqrt{y} = \log_3 \frac{y}{x}$$

Se x > y, temos  $\frac{y}{x} < 1$  e consequentemente  $\log_3 \frac{y}{x} < 0$ .

$$x > y \Rightarrow \sqrt{x} - \sqrt{y} > 0$$
$$\log_3 \frac{y}{x} < 0$$

Nesse caso, é impossível ter valores de x e y que satisfaçam as condições acima.

Se x < y:

$$\frac{y}{x} > 1 \Rightarrow \log_3 \frac{y}{x} > 0$$
$$x < y \Rightarrow \sqrt{x} - \sqrt{y} < 0$$

Também temos um sistema impossível.

Portanto a única solução é x = y:

$$\sqrt{x} - \sqrt{x} = 0 = \log_3 1$$

Substituindo x = y na segunda equação, temos:

$$2^{x+2} + 8^x = 5 \cdot 4^x$$
$$4 \cdot 2^x + (2^3)^x = 5 \cdot (2^2)^x$$

Fazendo  $2^x = z$ , temos:

$$4z + z^{3} = 5z^{2}$$

$$z^{3} - 5z^{2} + 4z = 0$$

$$z(z^{2} - 5z + 4) = 0$$

$$z(z - 4)(z - 1) = 0$$

Dessa forma, encontramos as raízes:

$$z = 0$$
 ou  $z = 4$  ou  $z = 1$ 



$$z = 4 \Rightarrow 2^x = 2^2 \Rightarrow x = 2$$

$$z = 1 \Rightarrow 2^x = 2^0 \Rightarrow x = 0$$
 (impossível, pois  $x > 0$ )

Portanto, a única solução é x = y = 2.

## Gabarito: x = y = 2

40. (IME/2014)

Qual é o menor número?

- a)  $\pi \cdot 8!$
- b) 9<sup>9</sup>
- c)  $2^{2^{2^2}}$
- d)  $3^{3^3}$
- e)  $2^{13} \cdot 5^3$

### **Comentários**

Ainda não estudamos fatorial, mas o número  $n! = n \cdot (n-1) \cdot (n-2) \cdot ... \cdot 1$ .

Vamos comparar os números:

$$\pi \cdot 8! = \pi \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = \pi \cdot 2^{7} \cdot 3^{2} \cdot 5 \cdot 7$$

$$9^{9} = (3^{2})^{9} = 3^{18}$$

$$2^{2^{2^{2}}} = 2^{2^{4}} = 2^{16}$$

$$3^{3^{3}} = 3^{27}$$

$$2^{13} \cdot 5^{3}$$

Analisando os valores acima, temos:

$$2^{16} < 3^{18} < 3^{27}$$

$$2^{13} \cdot (2^2)^3 < 2^{13} \cdot 5^3 < 3^{13} \cdot 5^3 = 3^{13} \cdot 125 < 3^{13} \cdot 3^5 = 3^{18}$$

$$2^{16} < 2^{19} < 2^{13} \cdot 5^3 < 3^{18}$$

Dessa forma:

c.

$$2^{16} < 2^{13} \cdot 5^3 < 3^{18} < 3^{27}$$

Resta saber se  $\pi \cdot 2^7 \cdot 3^2 \cdot 5 \cdot 7$  é menor que  $2^{16}$ :

Testando  $2^{16} < \pi \cdot 2^7 \cdot 3^2 \cdot 5 \cdot 7$ :

$$2^{16} < \pi \cdot 2^{7} \cdot 3^{2} \cdot 5 \cdot 7$$

$$2^{9} < \pi \cdot 3^{2} \cdot 5 \cdot 7$$

$$2^{3} \cdot 2^{6} < 3^{2} \cdot \pi \cdot 35$$

$$8 \cdot 64 < 9 \cdot 105 < 9 \cdot \pi \cdot 35$$

A desigualdade acima é verdadeira, logo o menor número é  $2^{16}$ . Encontramos o gabarito na letra



# Gabarito: "c".

### 41. (IME/2013)

Considere a equação  $\log_{3x} \frac{3}{x} + (\log_3 x)^2 = 1$ . A soma dos quadrados das soluções reais dessa equação está contida no intervalo

- a) [0,5)
- b) [5, 10)
- c) [10, 15)
- d) [15, 20)
- e) [20, ∞)

# Comentários

Inicialmente, devemos verificar a condição de existência:

Simplificando a equação, obtemos:

$$\log_{3x} \frac{3}{x} + (\log_3 x)^2 = 1$$
$$\frac{\log_3 \left(\frac{3}{x}\right)}{\log_3 3x} + (\log_3 x)^2 = 1$$
$$\frac{1 - \log_3 x}{1 + \log_2 x} + (\log_3 x)^2 = 1$$

Substituindo  $\log_3 x = y$ :

$$\frac{1-y}{1+y} + y^2 = 1$$

$$\frac{(1-y) + y^2(y+1)}{1+y} = 1$$

$$1-y+y^3+y^2 = 1+y$$

$$y^3+y^2-2y=0$$

$$y(y^2+y-2) = 0$$

$$y(y+2)(y-1) = 0$$

Encontrando as raízes da equação, temos:

$$y_1 = 0 \Rightarrow \log_3 x_1 = 0 \Rightarrow x_1 = 3^0 = 1$$
$$y_2 = -2 \Rightarrow \log_3 x_2 = -2 \Rightarrow x_2 = \frac{1}{9}$$
$$y_3 = 1 \Rightarrow \log_3 x_3 = 1 \Rightarrow x_3 = 3$$

O problema pede a soma dos quadrados das soluções, então:

$$x_1^2 + x_2^2 + x_3^2 = 1^2 + \frac{1}{9^2} + 3^2 = 1 + \frac{1}{81} + 9 = 10 + \frac{1}{81}$$



Analisando as alternativas, encontramos:

$$10 < 10 + \frac{1}{81} < 15$$
$$\Rightarrow 10 + \frac{1}{81} \subset [10, 15)$$

O que nos leva à alternativa c.

## Gabarito: "c".

42. (IME/2012)

Se  $\log_{10} 2 = x$  e  $\log_{10} 3 = y$ , então  $\log_5 18$  vale:

a) 
$$\frac{x+2y}{1-x}$$

b) 
$$\frac{x+y}{1-x}$$

c) 
$$\frac{2x+y}{1+x}$$

d) 
$$\frac{x+2y}{1+x}$$

e) 
$$\frac{3x+2y}{(1-x)}$$

## Comentários

Vamos manipular  $\log_5 18$  de modo a obter os fatores  $\log 2$  e  $\log 3$ . Mudando a base e fatorando os números:

$$\log_5 18 = \frac{\log 2 \cdot 3^2}{\log \left(\frac{10}{2}\right)} = \frac{(\log 2 + 2 \log 3)}{1 - \log 2}$$

Substituindo  $\log 2 = x e \log 3 = y$ :

$$\Rightarrow \log_5 18 = \frac{x + 2y}{1 - x}$$

Dessa forma, encontramos o gabarito na letra a.

# Gabarito: "a".

43. (IME/2010)

Seja  $f(x) = |3 - \log(x)|, x \in \mathbb{R}$ . Sendo n um número inteiro positivo, a desigualdade

$$\left| \frac{f(x)}{4} \right| + \left| \frac{2f(x)}{12} \right| + \left| \frac{4f(x)}{36} \right| + \dots + \left| \frac{2^{n-3}f(x)}{3^{n-1}} \right| + \dots \le \frac{9}{4}$$

Somente é possível se:

Obs.: log representa a função logarítmica na base 10.

a) 
$$0 \le x \le 10^6$$

b) 
$$10^{-6} \le x \le 10^8$$

c) 
$$10^3 \le x \le 10^6$$

d) 
$$10^0 \le x \le 10^6$$



e) 
$$10^{-6} \le x \le 10^6$$

#### **Comentários**

Vamos verificar a desigualdade para vermos se encontramos alguma relação para f:

$$\left| \frac{f(x)}{4} \right| + \left| \frac{2f(x)}{12} \right| + \left| \frac{4f(x)}{36} \right| + \dots + \left| \frac{2^{n-3}f(x)}{3^{n-1}} \right| + \dots \le \frac{9}{4}$$

$$\frac{1}{4} |f(x)| + \frac{2}{12} |f(x)| + \frac{4}{36} |f(x)| + \dots + \frac{2^{n-3}}{3^{n-1}} |f(x)| + \dots \le \frac{9}{4}$$

$$|f(x)| \left( \frac{1}{4} + \frac{2}{12} + \frac{4}{36} + \dots + \frac{1}{4} \left( \frac{2}{3} \right)^{n-1} + \dots \right) \le \frac{9}{4}$$

O número em vermelho é a soma de uma PG infinita de razão 2/3 e  $a_1=1/4$ . Desse modo, podemos usar a fórmula da soma infinita da PG:

$$S = \frac{a_1}{1 - q} = \frac{\frac{1}{4}}{1 - \frac{2}{3}} = \frac{\frac{1}{4}}{\frac{1}{3}} = \frac{3}{4}$$

$$\Rightarrow |f(x)| \left(\frac{1}{4} + \frac{2}{12} + \frac{4}{36} + \dots + \frac{1}{4} \left(\frac{2}{3}\right)^{n-1} + \dots\right) \le \frac{9}{4}$$

$$|f(x)| \frac{3}{4} \le \frac{9}{4}$$

$$\Rightarrow |f(x)| \le 3$$

$$\Rightarrow -3 \le f(x) \le 3$$

Substituindo  $f(x) = |3 - \log x|$ , temos:

$$-3 \le |3 - \log x| \le 3$$

Das propriedades do módulo, sabemos que  $|3 - \log x| \ge 0$ .

Então:

$$0 \le |3 - \log x| \le 3$$

$$\Rightarrow |3 - \log x| \le 3$$

$$-3 \le 3 - \log x \le 3$$

$$-6 \le -\log x \le 0$$

$$0 \le \log x \le 6$$

$$\Rightarrow 10^{0} \le x \le 10^{6}$$

Portanto, encontramos a resposta na letra d.

Gabarito: "d".