Math 462 Homework 4

Paul Hacking

February 18, 2015

- (1) Determine algebraic formulas $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ for the following isometries T. (Here A is a 2×2 orthogonal matrix and $\mathbf{b} \in \mathbb{R}^2$ is a vector.)
 - (a) Rotation about the point $\binom{3}{1}$ through angle $\pi/4$ counterclockwise.
 - (b) Reflection in the line y = 4.
 - (c) Reflection in the line y=x+2 followed by a translation parallel to the line through distance $3\sqrt{2}$ in the direction of increasing x. (This is a glide reflection.)
- (2) Describe the following isometries of \mathbb{R}^2 geometrically.

(a)
$$R \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y+2 \\ -x+3 \end{pmatrix}$$
.

(b)
$$S \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y+4 \\ -x-3 \end{pmatrix}$$
.

- (3) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be rotation about a point P through angle θ counterclockwise and $U: \mathbb{R}^2 \to \mathbb{R}^2$ be rotation about a point Q through angle φ counterclockwise. What can you say about the composition $U \circ T$?
 - [Hint: Recall that a rotation T about a point P is given by an algebraic formula $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ where $S(\mathbf{x}) = A\mathbf{x}$ is the rotation about the origin through the same angle and $\mathbf{b} \in \mathbb{R}^2$ is a vector (which is determined by the point P).]

- (4) Let $R: \mathbb{R}^2 \to \mathbb{R}^2$ be the isometry of \mathbb{R}^2 given by rotation about a point P through angle θ counterclockwise. Let $S: \mathbb{R}^2 \to \mathbb{R}^2$ be the isometry given by rotation about a point Q through angle θ clockwise.
 - (a) Show that the composition $S \circ R$ is a translation, i.e., $S(R(\mathbf{x})) = \mathbf{x} + \mathbf{b}$ for some vector $\mathbf{b} \in \mathbb{R}^2$.
 - (b) Show that if the angle θ is small, then the translation vector **b** has length approximately $\theta \cdot d(P,Q)$ and is approximately perpendicular to the vector \overrightarrow{PQ} . (Here d(P,Q) denotes the distance from P to Q.) [This fact is sometimes useful when moving furniture.]
 - (c) What happens for $\theta = \pi$?

[Hint: By choosing coordinates appropriately we can assume P is the origin and Q lies on the x-axis. Now compute by expressing R and S in the form $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ where A is a 2×2 orthogonal matrix and $\mathbf{b} \in \mathbb{R}^2$ is a vector. For part (b) use the approximations $\cos(\theta) \simeq 1$ and $\sin(\theta) \simeq \theta$ for θ small.]

- (5) Let S be the square $S = \{(x, y) \in \mathbb{R}^2 \mid -1 \le x, y \le 1\} \subset \mathbb{R}^2$. We say an isometry $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a symmetry of S if $\mathbf{x} \in S \Rightarrow T(\mathbf{x}) \in S$.
 - (a) Explain why any symmetry T of S must fix the origin.
 - (b) List all the symmetries of S, giving both a geometric and algebraic description of each symmetry. [Note: Each symmetry has the algebraic form $T(\mathbf{x}) = A\mathbf{x}$ where A is a 2×2 orthogonal matrix (why?).]
- (6) Let Π be a plane through the origin in \mathbb{R}^3 with normal vector **n**. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be reflection in the plane Π .
 - (a) Show that

$$T(\mathbf{x}) = \mathbf{x} - 2\left(\frac{\mathbf{x} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n}}\right) \mathbf{n}.$$

(b) Now suppose $\mathbf{n} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$. Use the formula in part (a) to write T in the form $T(\mathbf{x}) = A\mathbf{x}$ where A is a 3×3 matrix, and check that A is orthogonal.