

Fenômenos Térmicos e Ondulatórios (39A)

Oscilações

Docente Responsável: Prof. Dr. Leonilson Kiyoshi Sato de Herval

Discente:

José Augusto Pádua Bonifácio [202225002]

Resumo:

O experimento realizado procurar explorar fenômenos de natureza ondulatória, concentrando-se na propagação de ondas bidimensionais em uma superfície líquida em uma cuba iluminada. A análise matemática das ondas formadas foi fundamentada em equações já conhecidas sobre a propagação. A superposição de ondas foi discutida analisando os fenômenos de interferência construtiva e destrutiva. O procedimento experimental envolveu a utilização de um gerador de ondas programável e o de uma cuba de ondas iluminada. Os resultados mostraram padrões circulares de interferência, indicando construção e destruição de ondas. A relação entre comprimento de onda e frequência foi analisada, revelando uma diminuição acentuada da frequência com o aumento do comprimento de onda médio. A interpretação física sugere uma constante velocidade média das ondas. No entanto, a comparação entre as velocidades teóricas e gráficas revelou erros relativos, indicando influências externas. A resumo destaca a complexidade das relações entre comprimento de onda, frequência e velocidade, reforçando os princípios fundamentais da ondulatória e mecânica.

Introdução:

O entendimento dos fenômenos ondulatórios desempenhou e ainda desempenha papel importante no desenvolvimento científico. Em relação aos estudos em física experimental, mais precisamente tais conhecimentos se mostram necessários. O estudo de padrões de ondas e suas propriedades, especialmente as ondas bidimensionais em superfícies. No entanto, antes de descrever o experimento em si é necessário tecer considerações sobre os processos físicos como a propagação de pulsos em um meio líquido, a velocidade de onda, o comprimento e frequência associados, uma vez que tais conhecimentos não se limitam apenas à ondulatória como material de estudo, mas criam frentes de estudo em avanços tecnológicos não necessariamente estudados em um primeiro momento. É neste contexto que o estudo presente irá procurar explorar fenômenos como a reflexão, difração, interferência de ondas, e efeito Doppler, aplicados a ondas bidimensionais em uma superfície líquida.

Fundamentos Teóricos:

O movimento ondulatório, ubíquo no cotidiano, revela-se como um fenômeno presente em diversas áreas da física. A despeito da parte mais abstrata de interpretação dos fenômenos materiais, faz-se primeiro a análise matemática com a interpretação de uma onda como um

sinal que transmite energia, porém não transporta a matéria [1]. Tal generalização permite maior precisão conceitual como modo de generalizar e aplicar padrões matemáticos. Na natureza, as ondas podem ser classificadas como mecânicas, eletromagnéticas e ondas de matéria [2]. As ondas mecânicas necessitam de um meio material para se propagarem, enquanto as ondas eletromagnéticas dispensam a necessidade de um meio material de propagação [2], enquanto as ondas de matéria estão relacionadas às partículas elementares [1].

Fundamentação Matemática:

As equações que descrevem as ondas são essenciais para a compreensão do fenômeno. A equação (1) representa uma onda unidimensional propagando-se em um meio:

$$u(x,t) = A\sin(kx - \omega t) \quad (1)$$

Nesta equação, u(x,t) representa a amplitude da onda no ponto x e no instante t. A amplitude é a medida máxima da perturbação causada pela onda. A é a amplitude máxima da onda, indicando a altura máxima da onda em relação à sua posição de equilíbrio, $\sin(kx-\omega t)$ é a função seno, uma função trigonométrica, k é chamado de número de onda, representando a variação espacial da onda. Quanto maior k, mais rápida é a variação espacial da onda. Em que x é a posição na direção da propagação da onda, ω é a frequência angular da onda, representando a rapidez com que a onda oscila no tempo. A frequência angular está relacionada à frequência regular f pela equação ω =2 π f, onde t é o tempo.

Essa equação é fundamental para descrever a propagação de ondas, seja em cordas vibrantes, ondas sonoras, ou outros fenômenos ondulatórios [2].

Superposição de ondas:

Esse fenômeno se manifesta quando duas ondas bidimensionais circulares são originadas por fontes distintas, F1 e F2. Essas ondas compartilham não apenas amplitudes e frequências iguais, mas também estão em sincronia de fase [2]. Na Figura 1, a onda à esquerda apresenta cristas representadas por linhas contínuas pretas, enquanto os vales são delineados por linhas tracejadas vermelhas. Já a onda à direita mostra cristas através de linhas contínuas verdes e vales por meio de linhas tracejadas azuis. Os círculos preenchidos na figura correspondem a pontos de interferência construtiva, indicando locais nos quais as amplitudes das ondas se combinam de maneira favorável.

Os círculos em branco representam pontos de interferência destrutiva, ou seja, onde a amplitude é subtraída.

Figura.1: Superposição de ondas:

Fonte:sofisica (2023)

Considerando duas ondas representadas pela equação (2):

$$A_1 \cos(kx - \omega t) e$$
, $A_2 \cos(kx - \omega t + \phi)$ (2)

Onde, $A1\ e\ A2$ são as amplitudes das ondas, k é o número de onda, x é a posição, ω é a frequência angular, t é o tempo, e ϕ é a diferença de fase entre as duas ondas.

Podemos então falar sobre os tipos de interferências de ondas bidimensionais.

Interferência Construtiva:

Ocorre quando as ondas estão em fase, ou seja, a diferença de fase (ϕ) é um múltiplo inteiro de 2π .

- A amplitude resultante A (construtiva) é soma das amplitudes individuais das ondas A = A1 + A2.
- A equação (3) resultante da interferência construtiva é:

$$A\cos(kx - \omega t)$$
 (3)

Onde, A é a amplitude da onda, k é o número de onda, x é a posição, ω é a frequência angular e t é o tempo.

Interferência Destrutiva:

Ocorre quando as ondas estão em oposição de fase, ou seja, a diferença de fase (ϕ) é um múltiplo ímpar de π . A amplitude resultante destrutiva , Adestrutiva é a diferença das amplitudes individuais: A=|A1-A2|.

A equação resultante da interferência destrutiva é descrita pela equação (4):

$$A = \cos(kx - \omega t) \quad (4)$$

Onde, A é a amplitude da onda, k é o número de onda, x é a posição, ω é a frequência angular e t é o tempo.

As frentes de onda podem ainda ser representadas de forma esquemática pela Figura 2 abaixo:

Figura 2 – Desenho esquemático do processo ondulatório para a luz quando essa passa através de uma lente convergente (como a lente de um retroprojetor), sua amplitude é dobrada de tal forma que os raios de luz que estavam se espalhando são redirecionados para que se encontrem em um ponto, ou foco.

Fonte: INSTITUTO DE FÍSICA GLEB WATAGHIN-Unicamp

Procedimentos experimentais:

No procedimento experimental foram criadas ondas bidimensionais através de um dispositivo gerador de ondas programável. Tal dispositivo é capaz de produzir em uma cuba de ondas iluminada ondas senoidais, triangulares e quadradas [3]. Sendo que os detalhes técnicos do gerador de ondas seguem abaixo:

Frequência e fase programáveis.

Consumo de energia: 12,65 mW a 3V para o modelo AD9833 [3] e 8,5mW a 2,3V para o modelo AD9837 [3].

Faixa de frequência de saída: 0 MHz a 12,5MHz [3].

Resolução de 28 bits [3].

Fonte de alimentação: 2,3V a 5,5V [3].

Interface com 3 fios [3].

Na Figura 3 é possível observar a Interface do Controlador.

Figura.3- Interface do controlador vista acima.

Fonte: SATOH, L. K. (2023) (Fenômenos Térmicos e Ondulatórios), Disponível em:

Fenômenos Térmicos e Ondulatórios (ufla.br)

Quando o visor era aceso, após pressionarmos a tecla PWR, o led mostrava o controle de amplitude e frequências de ondas. Ao pressionarmos a tecla OSC eram realizados dois pulsos de forma controlada, mantendo a mesma tecla pressionada a frequência de 10,0 Hz era mantida. A amplitude de onda era regulada pela tecla AMP, podendo-se variar a frequência de 1,0Hz através do botão FREQ, criando assim um sinal intermitente (sinais são descrições matemáticas de fenômenos físicos variáveis no tempo que obedecem a certos padrões de repetição.). Uma luz estroboscópica (Uma luz estroboscópica é um dispositivo que utiliza pulsos de luz intermitentes para criar a ilusão de que objetos em movimento estão parados ou se movendo lentamente. Essa técnica é útil para estudar e registrar movimentos rápidos ou periódicos, como a rotação de um objeto.), a luz só é mantida se o oscilador estiver funcionando em uma dada frequência fixa, ao pressionarmos o botão STBR/SINC, a fonte luminosa passava a operar como luz estroboscópica a uma frequência inicial de 15,00 Hz. A frequência podia ainda ser ajustada com incrementos de frequência da ordem de centésimos, décimos ou unidades de HZ. Uma vez que o valor decimal é selecionado, um toque adicional no botão confirmava a seleção. Ao girarmos o botão, poderíamos ajustar para o valor que desejávamos. Ao pressionarmos e mantendo pressionado o botão STBR/SYNC. A tela mostrava "LED:syn", indicando que a onda e a luz estavam sincronizadas. Se a tecla PWR fosse pressionada, além da função de ligar/desligar, ela permitiria a troca de controle da frequência do oscilador para a frequência da luz estroboscópica. Se o botão PWR fosse pressionado, poderíamos trocar o controle da frequência do vibrador para a luz estroboscópica. Para desativar a interface, era pressionada e mantida pressionada a tecla PWR até que o visor fosse desligado.

Cuba da Ondas:

Foi utilizada também uma cuba de ondas, necessária para a análise da propagação de um pulso de ondas se propagando em um meio isotrópico e homogêneo (um meio é dito homogêneo quando apresenta as mesmas características em todos os seus ponto, e é dito isotrópico quando a velocidade da luz e as demais características de propagação não dependem da direção de propagação da onda.[]).

A Figura.3 abaixo demonstra a montagem de uma cuba de ondas iluminada por uma luz estroboscópica.

Figura.4- Cuba de ondas, um dispositivo utilizado para estudar fenômenos ondulatórios, especialmente em meios líquidos como a água.

Fonte: SATOH, L. K. (2023) (Fenômenos Térmicos e Ondulatórios), Disponível em: Fenômenos Térmicos e Ondulatórios (ufla.br)

A cuba de ondas foi montada seguindo as instruções iniciais, e o espelho foi ajustado a uma distância de cerca de 2,0 m do anteparo de projeção. A água foi adicionada à cuba até atingir uma altura de aproximadamente 4 mm. A interface de controle foi ativada e a tecla foi pressionada para ligar a fonte de luz. A projeção foi observada e ajustes foram feitos conforme o especificado.

Resultados e discussões:

As ondas projetadas em uma parede tinham o formato circular, indicando que as ondas se propagavam de maneira radial a partir do ponto de excitação na superfície da água [4]. Além disso, constatamos que, em ondas circulares, a velocidade em cada ponto da onda é a mesma, pois todas as partes da onda se movem para fora do ponto de excitação com a mesma velocidade.

Ao analisar a projeção das ondas, notamos que a região mais clara correspondia a uma crista da onda, indicando uma maior concentração de energia nessa região. A formação das regiões claras e escuras na parede pode ser explicada pela interferência construtiva (regiões claras) e destrutiva (regiões escuras) das ondas circulares. Além disso, a distância entre os centros de duas regiões claras consecutivas representava o comprimento de onda das ondas circulares geradas na cuba.

Na segunda parte do experimento, observamos como o comprimento de onda variava com o aumento da frequência. Isso nos permitiu identificar padrões específicos de dispersão das ondas circulares. Os gráficos construídos com base no comprimento de onda versus frequência, podem demonstrar claramente a relação entre essas grandezas. O aspecto do gráfico dependia do comportamento específico das ondas circulares. Na tabela 1 são mostrados os comprimentos de onda médios e as frequências correspondentes.

Tabela 1 – Medidas dos comprimentos de onda.

Frequência (HZ)	Medida 1 λ1(m)	Medida 2 λ2(m)	Medida 3 λ3(m)	Medida 4 λ4(m)	Medida 5 λ5(m)	Comprimento De onda médio λ(m)
10	0,250	0,245	0,260	0,280	0,270	0,261
12	0,210	0,190	0,210	0,205	0,210	0,205
14	0,170	0,175	0,175	0,165	0,190	0,175
16	0,160	0,165	0,170	0,155	0,155	0,161
18	0,150	0,150	0,160	0,145	0,150	0,151
20	0,135	0,135	0,135	0,145	0,145	0,139

Legenda: A tabela 1 acima apresenta as medidas do comprimento de onda para diferentes frequências. Cada frequência tem cinco medidas correspondentes (λ 1, λ 2, λ 3, λ 4, λ 5), e o comprimento de onda médio é calculado a partir dessas cinco medidas.

Fonte: Dados do experimento.

Na Figura.5 é possível ver a relação entre o comprimento de onda médio e sua relação com as frequências correspondentes através de um ajuste exponencial. No eixo das Ordenadas é possível ver com uma aproximação de duas casas decimais o

Ajuste Exponencial para Comprimento de Onda Médio em Função da Frequência

Fonte: Próprio Autor, [2023]

comprimento de onda médio, enquanto no eixo das abscissas são plotadas as frequências correspondentes da menor frequência 10Hz até a maior frequência 20Hz, em intervalos de 2,0 Hz. O ajuste exponencial é possível através da equação 5:

$$f(x) = a.e^{-bx} + c$$
 (5)

Onde:

- a é um parâmetro relacionado à amplitude ou altura da curva.
- b é um parâmetro relacionado à taxa de decaimento exponencial.
- c é um parâmetro relacionado ao valor de f(x) quando x se aproxima do infinito.

Podemos tirar como conclusão de que, a forma exponencial da função (e^{-bx}) é comum em situações em que existe decaimento exponencial. Neste contexto, ela pode representar, por exemplo, como o comprimento de onda médio diminui à medida que a frequência aumenta.

Na Figura.5 é possível observar a relação exponencial que existe entre a frequência no eixo das Ordenadas, enquanto no eixo das Abscissas é possível observar os comprimentos de onda médio. Tal relação é possível através de um ajuste exponencial obtido por meio da equação:

$$f(x) = a. e^{-bx} + c$$

Já representada pela equação (5), no entanto, há uma mudança na relação das variáveis dependentes e independentes, onde:

- f(x) é a frequência.
- *x* é o comprimento de onda médio.

a,b,c são os parâmetros ajustados durante o processo de ajuste de curva.

1. Parâmetro a:

- a=344.23
- A amplitude elevada indica que a curva exponencial tem uma variação significativa na frequência em relação ao comprimento de onda médio.

2. Parâmetro b:

- b=25.67
- Um valor elevado de b indica que a taxa de decaimento exponencial é rápida. Isso sugere que a frequência diminui consideravelmente à medida que o comprimento de onda médio aumenta.

3. Parâmetro c:

- c=10.44
- O valor de c influencia o valor da frequência para comprimentos de onda muito grandes.

Interpretação Geral:

- A função exponencial ajustada sugere que, no experimento, à medida que o comprimento de onda médio aumenta, a frequência diminui rapidamente, e essa relação é caracterizada por oscilações significativas.
- O valor elevado de a indica que essas oscilações têm uma amplitude substancial, enquanto o valor elevado de b sugere que a mudança é rápida.
- O valor de <u>c</u> influencia a frequência para comprimentos de onda muito grandes, indicando um comportamento específico em extremos de comprimento de onda.

Figura.6 Ajuste Exponencial para a Frequência em função do Comprimento de Onda Médio.

Ajuste Exponencial para Frequência em Função do Comprimento de Onda Médio

Figura.6 Ajuste linear para o Comprimento de Onda em função do inverso da Frequência. Fonte: Próprio Autor, [2023]

Tal ajuste linear obtido usando o inverso da frequência resultou em uma reta do tipo mostrado pela equação (6):

$$y = mx + b \quad (6)$$

Onde:

m é a inclinação da reta e seu valor resultante foi de 237.46 e b será o intercepto da reta, o seu valor foi de 1.45 sendo que o intercepto representa o valor inicial do comprimento de onda médio. Ou seja, é o comprimento de onda médio quando a frequência é muito alta. Fisicamente, isso implica que um aumento na frequência inversa está associado a um aumento significativo no comprimento de onda médio, de acordo com a relação linear modelada.

Figura.7: Ajuste Linear para Comprimento de Onda Médio em função do Inverso da Frequência.

Figura 7 Ajuste linear para o comprimento de onda médio em função do inverso da frequência.

Fonte: Próprio Autor, [2023]

Há ainda outra interpretação física a ser discutida, essa tem relação entre o comprimento de onde e a frequência associada a cada comprimento de onda sendo possível pela equação 7 obtermos a velocidade correspondente para os comprimentos médios de onda

$$v = \lambda f$$
 (7)

Onde:

v representa a velocidade para a onda em m/s, λ representa o comprimento médio de onda para cada frequência correspondente e f a frequência associada aos comprimentos médios de onda. Sendo que os valores obtidos são:

- 1. Para 10 Hz, com comprimento médio de onda 0,2610 metros, a velocidade é 2,61 metros por segundo.
- 2. Para 12 Hz, com comprimento médio de onda 0,2050 metros, a velocidade é 2,46metros por segundo.
- 3. Para 14 Hz, com comprimento médio de onda 0,1750 metros, a velocidade é 2,45 metros por segundo.
- 4. Para 16 Hz, com comprimento médio de onda 0,1600 metros, a velocidade é 2,56 metros por segundo.
- 5. Para 18 Hz, com comprimento médio de onda 0,1510 metros, a velocidade é 2,72 metros por segundo.
- 6. Para 20 Hz, com comprimento médio de onda 0,1390 metros, a velocidade é 2,78 metros por segundo.

Dos dados obtidos até essa parte podemos responder a algumas questões como e equação que relaciona o comprimento de onda e a frequência, por meio da equação 7:

$$\lambda = 2,0219.e^{-0,2778f} + 0,1346$$
 (7)

Os coeficientes na expressão têm interpretações específicas, representando a amplitude inicial, a taxa de decaimento exponencial e um deslocamento vertical.

Na Figura.8 é possível observar de forma comparativa através da plotagem de dois gráficos no mesmo intervalo de tempo como se dá a relação entre a velocidade de propagação das ondas geradas pelo pulso, uma vez que no primeiro gráfico a relação entre comprimento de onda e frequência pode ser observado, e logo abaixo o gráfico para a velocidade em relação

à frequência gerada pelo pulso.

Podemos perceber que não há uma relação direta entre a velocidade de propagação e a frequência encontrada. Uma vez que a média das velocidades a partir das velocidades médias para cada frequência podemos obter que: A média das velocidades é 2,5963 metros/s. Podemos obter a velocidade através da relação entre o comprimento de onda e o inverso da frequência, tal resultado é demonstrado pela Figura.9 abaixo:

Figura.9- Na figura acima é possível percebermos através de um ajuste linear a equação de uma reta em que a sua taxa de variação pode ser demonstrada como a velocidade de propagação da onda: v = 2.37m/s.

Fonte: Próprio Autor, [2023]

Há ainda outros dados importantes a serem abordados como aquele relacionado com a velocidade encontrada através do gráfico plotado na Figura.8 e a velocidade encontrada através da relação dada pela equação (7), tal análise leva em conta o erro relativo dado pela equação (8) abaixo:

$$e\% = \frac{\left|v_{gr\'afico} - v_{tabela}\right|}{v_{tabela}}$$

Tal equação relaciona a velocidade obtida para as ondas através do gráfico já descrito anteriormente e aquelas obtidas pela equação (7), sendo que os resultados de tal análise se encontram agrupados abaixo:

Para 10 Hz, Velocidade Teórica: 2.6100 m/s, Velocidade Gráfica: 2.3746 m/s, Erro Relativo: 9.02%

Para 12 Hz, Velocidade Teórica: 2.4600 m/s, Velocidade Gráfica: 2.3746 m/s, Erro Relativo: 3.47%

Para 14 Hz, Velocidade Teórica: 2.4500 m/s, Velocidade Gráfica: 2.3746 m/s, Erro Relativo: 3.08%

Para 16 Hz, Velocidade Teórica: 2.5600 m/s, Velocidade Gráfica: 2.3746 m/s, Erro Relativo: 7.24%

Para 18 Hz, Velocidade Teórica: 2.7180 m/s, Velocidade Gráfica: 2.3746 m/s, Erro Relativo: 12.63%

Para 20 Hz, Velocidade Teórica: 2.7800 m/s, Velocidade Gráfica: 2.3746 m/s, Erro Relativo: 14.58%

Na Tabela 2 abaixo os dados referentes às frequências correspondentes e os erros relativos a cada uma dessas pode ser observado, levando em conta as velocidades teóricas e as velocidades gráfica

Tabela 2- Frequência como índices demonstrando na linha abaixo de cada uma o erro relacionado obtido pela equação (8):

Frequência 1	Frequência 2	Frequência 3	Frequência 4	Frequência 5	Frequência 6
10Hz	12Hz	14Hz	16Hz	18Hz	20Hz
Erro relativo:					
9,02%	3,47%	3,08%	7,24%	12,63%	14,58%

Legenda: a tabela acima demonstra os erros relativos, sendo que tais erros, no caso dois deles estão abaixo dos 5%, enquanto os outros quatro estão acima dos 5%, sendo assim as velocidades relacionadas a tais erros acima de tal porcentagem não são iguais quando obtemos o valor através da forma gráfica e através da equação (7):

$$v = \lambda f$$
 (7)

Conclusões:

O experimento realizado demonstrou a criação de padrões de interferência em ondas circulares, desse modo os conceitos sobre os processos de interferência construtiva e destrutiva puderam ser observados de modo crítico.

A avaliação de maneira estatística dos dados obtidos durante a realização do experimento possibilitou a formulação de uma equação que associa o comprimento de onda e frequência, deixando claro que havia uma diminuição acelerada da frequência com o aumento do comprimento de onda médio. Tal correlação foi avaliada indicando que a velocidade média das ondas é praticamente constante independente da frequência ou do comprimento de onda, indicando que não há uma relação de unicidade entre a variável velocidade e as demais variáveis estudadas, indo de acordo à conceitos físicos já há muito generalizados sobre o comportamento ondulatório.

Os erros relativos acima dos 5% permitem demonstra de forma empírica que alguns fatores externos ao experimento o influenciaram de modo a aumentar o erro associado, variáveis como os erros de medições, a luminosidade do local da amostragem, o uso incorreto dos equipamentos, enfim todos esses fatores podem ter contribuído para a mudança relativa dos dados obtidos de cada amostra.

Sendo assim pode-se chegar a importantes conclusões sobre a propagação de ondas bidimensionais em uma superfície líquida, ressaltando ainda a complexidade das relações entre comprimento de onda, frequência e velocidade. Essas conclusões estão alinhadas com os princípios fundamentais da mecânica e da ondulatória, auxiliando na compreensão mais profunda de fenômenos ondulatórios em contextos específicos.

Referências:

- [1] NUSSENZVEIG, H. M. (2002). Curso de Física Básica, Volume 2. São Paulo: Blucher.
- [2] HALLIDAY, David; RESNICK, Robert; WALKER, Jearl. Fundamentos de Física: Gravitação, Ondas e Termodinâmica. 10. ed. Rio de Janeiro: LTC, 2019.
- [3] Analog Devices. (2021). AD9833: Gerador de formas de onda programável de baixo consumo. Disponível em: https://www.analog.com/en/products/ad9833.html#product-samplebuy.
- [4] http://mundoeducacao.bol.uol.com.br/fisica/frente-onda-raio-onda.htm