

Mehrnaz Bastani, Laura, Ngo, Janelle Ah Kit, Helene Gao

TABLE OF CONTENTS

O1

ABOUT THE DATA

02

DATA CLEANING

O4 CONCLUSIONS

DESCRIBING THE DATASET

Diabetes risk assessment and prediction - collected health-related attributes Source: National Institute of Diabetes and Digestive and Kidney Diseases Goal: early diagnosis and personalized treatment strategies

2,768 Observations

10 variables

Variables

Id, Pregnancies, Glucose, Blood Pressure, Skin Thickness, Insulin, BMI,
 Diabetes Pedigree Function, Age, Outcome

RESEARCH QUESTION AND HYPOTHESIS

- Which demographics are more likely to have diabetes?
- Is BMI a good indicator of an individual's likelihood of developing diabetes?
- How do BMI and personal background (demographics) jointly impact diabetes prediction?

Hypothesis: we expect there to be a significant association between BMI and diabetes, with higher BMI values being indicative of increased diabetes risk.

- Sort the BMI into defined ranges: underweight, healthy, overweight, obese
- Use weights as there are more data points in certain BMI ranges than others

Body Mass Index

```
# BMI = kq / m^2
# underweight = 18.5 or below
# healthy = 18.5 - 24.9
# overweight = 25 - 29.9
# obesity = 30+
# Define BMI ranges
underweight <- as.numeric(c(0, 18.5))
healthy \leftarrow as.numeric(c(18.5, 24.9))
overweight <- as.numeric(c(25, 29.9))
obese <- as.numeric(c(30, max(diabetes$BMI)))
# Create a function to label BMI values based on the defined ranges
labels <- function(bmi) {
  if (bmi >= underweight[1] && bmi <= underweight[2]) {
    return("Underweight")
  } else if (bmi >= healthy[1] && bmi <= healthy[2]) {
    return("Healthy")
  } else if (bmi >= overweight[1] && bmi <= overweight[2]) {
    return("Overweight")
  } else if (bmi >= obese[1] && bmi <= obese[2]) {
    return("Obese")
  } else {
    return("Unknown")
# Apply the labels function to create the bmi.ranges variable
diabetes$bmi.ranges <- sapply(diabetes$BMI, labels)
# Convert bmi.ranges into a factor variable with all levels
diabetes$bmi.ranges <- factor(diabetes$bmi.ranges, levels = c("Underweight", "Healthy", "Overweight",
# Check missing/unexpected outputs
table(diabetes$bmi.ranges)
```


DATA CLEANING AND PROCESSING | ibrary (gplot2) | the period of the age ranges | the age ranges | the period of the age ranges | the age

Sort the ages into bins of ranges : Young adult, middle aged, senior

```
young.adults <- c(18, 35)
middle.aged \leftarrow c(36, 55)
senior <- c(55, max(diabetes$Age))
# Create a function to label age values based on the defined ranges
labels2 <- function(ages) {
 if (ages >= young.adults[1] && ages <= young.adults[2]) {
   return("Young Adult")
 } else if (ages >= middle.aged[1] && ages <= middle.aged[2]) {
   return("Middle Aged")
 } else if (ages >= senior[1] && ages <= senior[2]) {
   return("Senior")
 } else {
   return("Unknown")
# Apply the labels function to create the age, ranges variable
diabetes$age.ranges <- sapply(diabetes$Age, labels2)
# Convert age.ranges into a factor variable with all levels
diabetes age.ranges <- factor(diabetes age.ranges, levels = c("Young Adult", "Middle Aged", "Senior"))
# Check missing/unexpected outputs
table(diabetes$age.ranges)
## Young Adult Middle Aged
                                Senior
# Fit linear regression model with weighted sample sizes
weights_age <- 1 / table(diabetes$age.ranges)</pre>
weight_vector_age <- weights_age[diabetes$age.ranges]</pre>
weighted_model_age <- lm(Outcome - age.ranges, data = diabetes, weights = weight_vector_age)
summary(weighted model age)
```


DATA CLEANING AND PROCESSING

Sort the glucose into bins of ranges : Normal, Impaired Fasting, Faster Hyperglycemia, unknown


```
Glucose
normal.fasting <- c(0, 100)
impaired.fasting <- c(100,125)
fasting.hyperglycemia <- c(126, max(diabetes Glucose))
# Create a function to label BMI values based on the defined ranges
labels3 <- function(glucose) {
  if (glucose >= normal.fasting[1] && glucose <= normal.fasting[2]) {
   return("Normal")
 } else if (glucose >= impaired.fasting[1] && glucose <= impaired.fasting[2]) {
   return("Impaired Fasting")
 } else if (glucose >= fasting.hyperglycemia[1] && glucose <= fasting.hyperglycemia[2]) {
    return("Fasting Hyperglycemia")
 } else {
    return("Unknown")
diabetes$glucose.ranges <- sapply(diabetes$Glucose, labels3)
diabetes$glucose.ranges <- factor(diabetes$glucose.ranges, levels = c("Normal", "Impaired Fas
table(diabetes$glucose.ranges) # check missing/unexpected outputs
                 Normal
                              Impaired Fasting Fasting Hyperglycemia
model3 <- lm(Outcome ~ glucose.ranges, data = diabetes)
summary(model3)
## Call:
## lm(formula = Outcome ~ glucose.ranges, data = diabetes)
## Residuals:
## -0.58287 -0.27434 -0.09126 0.41713 0.90874
```


OBSERVATIONS

Higher prevalence of diabetes for those who are obese

• Higher prevalence of diabetes for those who are middle-aged

• Higher prevalence of diabetes outcomes for fasting hyperglycemia glucose types

CONCLUSIONS

CONCLUSIONS

Those who are obese are more at risk

 Middle Aged group is more at risk for diabetes

 Higher prevalence of diabetes outcomes for fasting hyperglycemia glucose types

WHAT DOES THIS MEAN?

Predicting diabetes early-on

THANKS!

