

Lilianne Mariko Izuti Nakazono Doutoranda em Astronomia (IAG-USP)

Support Vector Machines (SVM)

- Elaborado na década de 90 por V. Vapnik e colegas na AT&T Bell Laboratories
- O algoritmo encontra o melhor hiperplano que separa duas classes ao maximizar a distância entre os pontos mais próximos de cada classe (Vapnik, 1996)

Margem

Por simplicidade, vamos supor duas classes em um espaço de duas dimensões e linearmente separáveis:

Bolinhas

Como definir a região de decisão?

Por simplicidade, vamos supor duas classes em um espaço de duas dimensões e linearmente separáveis:

Bolinhas

Como definir a região de decisão?

Margem

Como definir a região de decisão?

Como encontrar o melhor hiperplano?

Margem

A margem superior e a margem inferior são paralelas e estão a uma mesma distância do hiperplano

Margem

Como definir a região de decisão?

Como encontrar o melhor hiperplano?

Este problema possui solução > analítica.

Perceptron (Rosenblatt, 1958)

Uma forma de descrever o problema do hiperplano é **minimizando a distância de pontos classificados erroneamente ao hiperplano**. Suponha y = {-1, 1} as duas respostas/classes possíveis:

- Se $y_i = 1$ foi classificado errado: $x_i^T \beta + \beta_0 < 0$
- Se $y_i = -1$ foi classificado errado: $x_i^T \beta + \beta_0 > 0$

Ou seja, deve-se minimizar:

$$D(\beta, \beta_0) = -\sum_{i \in \mathcal{M}} y_i (x_i^T \beta + \beta_0)$$

Support Vector Machines

No caso do SVM, queremos maximizar a distância M, ou seja:

$$\max_{\beta,\beta_0,||eta||=1}M$$

Sujeito à (i=1,...,N):

$$y_i(x_i^Teta+eta_0)\geq M$$

Ou ainda...

$$\max_{eta,eta_0} M \qquad \quad rac{1}{||eta||} y_i(x_i^Teta+eta_0) \geq M$$

Podemos, arbitrariamente, definir:

$$||\beta|| = \frac{1}{M}$$

Essa definição manterá a desigualdade mostrada no slide anterior e facilitará a otimização do algoritmo. Ou seja, um problema equivalente é:

$$\min_{eta,eta_0} rac{1}{2} ||eta||^2$$

Sujeito à:

$$y_i(x_i^Teta+eta_0)\geq 1$$

Formulando com multiplicadores de Lagrange:

$$|L_P = rac{1}{2} ||eta||^2 - \sum_{i=1}^N lpha_i [y_i(x_i^Teta + eta_0) - 1]$$

Fazendo as derivadas iguais a zero e substituindo em Lp, temos:

$$L_D = \sum_{i=1}^N lpha_i - rac{1}{2} \sum_{i=1}^N \sum_{k=1}^N lpha_i lpha_k y_i y_k x_i^T x_k$$

A solução é obtida maximizando $L_{\rm D}$ e esta solução deve ainda satisfazer, para todo i:

$$lpha_i[y_i(x_i^Teta+eta_0)-1]=0$$

Situações comumente encontradas na vida real e que ignoramos até agora

Região de confusão

Dados não-linearmente separáveis

Modificação para lidar com a região de confusão:

$$\min_{eta,eta_0} rac{1}{2}{||eta||}^2 + C \sum_{i=1}^N \xi_i$$

Sujeito à:

$$(oldsymbol{\xi}_i \geq 0, y_i(x_i^teta + eta_0) \geq 1 - oldsymbol{\xi}_i, orall i$$

C é um "custo" e é um hiperparâmetro do modelo.

Para o caso mostrado anteriormente sem região de confusão: C = infinito.

Para lidar com dados não-linearmente separáveis, utilizamos o que chamamos de **Kernel tricks**.

$$z = x^2 + y^2$$

Para lidar com dados não-linearmente separáveis, utilizamos o que chamamos de **Kernel tricks**.

Polinomial grau n:
$$K(x,x^\prime) = (1+ < x,x^\prime >)^d$$

Função de base radial (RBF):
$$K(x,x')=exp(-\gamma||(x-x'||^2)$$

Exemplo Classificação de estrelas e galáxias

Alguns trabalhos publicados

- <u>Self-supervised Learning for Astronomical Image Classification</u> -Martinazzo, Espadoto & Hirata 2020
- <u>Star-Galaxy Separation via Gaussian Processes with Model Reduction</u> -Goumiri et al. 2020 (submetido)
- The miniJPAS survey: star-galaxy classification using machine learning -Baqui et al. 2020 (submetido)
- Unsupervised Star Galaxy Classification with Cascade Variational Auto-Encoder - Sun et al. 2019
- Unsupervised star, galaxy, qso classification: Application of HDBSCAN Logan & Fotopoulou 2019

Exemplo Classificação de estrelas e galáxias

SUPER

EDIÇÃO DO MÊS

TODAS AS EDIÇÕES

VÍDEOS

CIÊNCIA

CULTURA

HISTÓRIA

SAÚDE

LIVROS

Ciência

Astrônomos brasileiros estão mapeando metade do céu no Hemisfério Sul

Projeto S-PLUS, que está em operação no Chile, é o maior levantamento do céu já realizado pela comunidade astronômica brasileira.

Por A. J. Oliveira Atualizado em 10 jul 2019, 18h43 - Publicado em 9 jul 2019, 15h46

On the discovery of stars, quasars, and galaxies in the Southern Hemisphere with S-PLUS DR1

L. M. I. Nakazono^{1*}, C. Mendes de Oliveira¹, N. S. T. Hirata², S. Jeram³

C. Queiroz⁴, Stephen S. Eikenberry³, A. H. Gonzalez³, R. Abramo⁴, R. Overzier⁵,

M. Espadoto², A. Martinazzo², L. Sampedro¹, F. R. Herpich¹, A. Cortesi¹,

F. Almeira-Fernandes¹, A. Werle¹, C. E. Barbosa¹, L. Sodré Jr.¹, E. V. Lima¹,

M. L. Buzzo¹, K. Menéndez-Delmestre⁶, S. Akras⁷, Alvaro Alvarez-Candal^{5,8,9},

A. R. Lopes⁵, E. Telles⁵, W. Schoenell¹⁰, A. Kanaan¹¹, T. Ribeiro¹²

Dados públicos: http://www.splus.iag.usp.br/data/

¹ Instituto de Astronomia, Geofísica e Ciências Atmosféricas da U. de São Paulo, Cidade Universitária, 05508-900, São Paulo, SP, Brazil

² Departamento de Ciência da Computação, Instituto de Matemática e Estatística da USP, Cidade Universitária, 05508-090, São Paulo, SP, Brazil

³ Department of Astronomy, University of Florida, 211 Bryant Space Center, Gainesville, FL 32611, USA

⁴ Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, SP, Rua do Matão 1371, São Paulo, Brazil

Observatório Nacional / MCTIC, Rua General José Cristino 77, Rio de Janeiro, RJ, 20921-400, Brazil The remaining institutions are at the end of the paper.

Nakazono et al. 2020 (submetido)

Features	Algorithm Training time (s)	Class	Precision (P)	Recall (R)	F-measure (F)		
		QSO	0.6219 ± 0.0125	0.9031 ± 0.0065	0.7365 ± 0.0083		
	(a) SVM	STAR	0.6618 ± 0.0037	0.723 ± 0.0027	0.691 ± 0.0026		
	821 ± 85	GAL	0.8032 ± 0.0022	0.6983 ± 0.0052	0.7471 ± 0.0039		
(i) 12 S-PLUS bands:			Macro-averaged F-measure (\bar{F}): 0.7249 \pm 0.0043				
uJAVA, J0378, J0395, J0410, J0430, J0515, J0660, J0861, g, r, i and z				0.50000 10.88 1489 Janes			
, ,		QSO	0.9093 ± 0.0083	0.8735 ± 0.0076	0.891 ± 0.0072		
	(b) RF	STAR	0.9588 ± 0.0019	0.9026 ± 0.002	0.9299 ± 0.0012		
	30.3 ± 0.9	GAL	0.9248 ± 0.0012	0.9647 ± 0.0003	0.9443 ± 0.0007		
			Macro-averaged F-measure (\bar{F}): 0.9218 \pm 0.0024				
		QSO	0.7932 ± 0.0153	0.9304 ± 0.0055	0.8562 ± 0.0078		
	(a) SVM	STAR	0.8753 ± 0.0031	0.8784 ± 0.0046	0.8768 ± 0.0019		
	694 ± 104	GAL	0.9188 ± 0.0025	0.8912 ± 0.0038	0.9048 ± 0.0024		
(ii) 12 S-PLUS bands + 2 WISE bands: uJAVA, J0378, J0395, J0410, J0430, J0515,			Macro-averaged F-measure (\bar{F}): 0.8793 ± 0.0037				
J0660, J0861, g, r, i, z, W1 and W2		0.00	0.0520 . 0.0027	0.0201 . 0.0072	0.0464 80.0040		
	(I.) D.F	QSO	0.9539 ± 0.0036	0.9391 ± 0.0073	0.9464 ± 0.0048		
	(b) RF	STAR	0.9713 ± 0.0014	0.9679 ± 0.0009	0.9696 ± 0.0002		
	30.9 ± 1.7	GAL	0.9715 ± 0.0008 0.9760 ± 0.0006 0.9737 ± 0.0006 Macro-averaged F-measure (\bar{F}) : 0.9633 ± 0.0018				

Dados do exemplo em R

- → 5k galáxias e 5k estrelas (amostradas aleatoriamente de um conjunto maior para fins didáticos)
- → Sem dados faltantes (também para fins didáticos)
- → Variáveis preditoras:
 - ◆ Largura à meia altura do perfil de brilho (FWHM)
 - Semieixo maior
 - Semieixo menor
 - ◆ Raio de Kron
 - Magnitude em cada uma das 12 bandas do S-PLUS

Código disponível no GitHub: https://github.com/marixko/stargalaxy_SVM

Table 2: From a qualitative examination of a sample of ~ 200 referred publications from 2017 to February 2019, a mapping emerges between the nature of astronomical data and the types of machine learning and artificial intelligence algorithms that are being applied. The table presents a summary of the types of astronomical data and the algorithms that appeared most regularly. The purpose of the table is to provide a convenient starting point for selecting an algorithm that has been used successfully for each data type.

Data/Method	ANN	CNN	GAN	SVM	DT	RF	DBSCAN	k-NN	k-M
Image	•	•	•	•	•	•		•	
Spectroscopy	•	•	1 1	•		•			•
Photometry	•				•	•	•		•
Light curve		•				•			
Time Series	•				•		•		
Catalogue	•			•	•	•	•	•	
Simulation	•	•	•	•		•			

ANN = Artificial Neural Network; CNN = Convolutional Neural Network; GAN = Generative Adversarial Network; SVM = Support Vector Machine; DT = Decision Tree; RF = Random Forest; DBSCAN = Density-based spatial clustering of applications with noise; k-NN = k-Nearest Neighbours; k-M = k-means clustering

Surveying the reach and maturity of machine learning and artificial intelligence in astronomy - Fluke & Jacobs 2019