Sherlock and Pairs

Problem Statement

Sherlock is given an array of N integers A_0 , A_1 ... A_{N-1} by Watson. Now Watson asks Sherlock how many different pairs of indices i and j exist such that i is not equal to j but A_i is equal to A_j .

That is, Sherlock has to count total number of pairs of indices (i, j) where $A_i = A_j$ AND $i \neq j$.

Input Format

First line contains T, the number of testcases. T test case follows. Each testcase consists of two lines, first line contains an integer N, size of array.

Next line contains *N* space separated integers.

Output Format

For each testcase, print the required answer in different line.

Constraints

```
1 \le T \le 10

1 \le N \le 10^5

1 \le A[i] \le 10^6
```

Sample input

```
2
3
123
3
112
```

Sample output

0 2

Explanation

In the first testcase, no two pair of indices exist which satisfy the given property. In second testcase as A[0] = A[1] = 1, the pairs of indices (0,1) and (1,0) satisfy the given property.