Explaining machine learning predictions with DALEX and beyond

Hubert Baniecki

MI² lab, Warsaw University of Technology, Poland

Ryanair Labs Madrid January, 2022

hbaniecki:~\$ whoami Researcher and data science student at Warsaw University of Technology Developing tools for explainable machine learning in R & Python

The semantics of Explainable AI (XAI)

- IBM: A set of capabilities and methods used to describe an AI model, its expected impact and potential biases.
- Microsoft: model interpretability

Explainable AI (XAI)

Google:

Tools and frameworks to understand and interpret your machine learning models.

Invest in XAI research 2017-21

DARPA (Defense Advanced Research Projects Agency)

Government agency

Arrieta et al. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. *Information Fusion*. 6/25

DALEX: moDel Agnostic Language for Exploration and eXplanation

Machine learning predictive task

GDP, life expectancy, freedom, social => country happiness score [0, 10]

parts

predict_parts

prediction

5

Break Down

5.5

6.875

7.5

6.5

contribution

model_parts

Permutational Importance

profile

predict_profile

model_profile

MODEL

- Scilit -learn
- tensorflow, keras
- xgboost, lightgbm
- ANY

DATA

- pandas
- numpy

pip install dalex

import dalex as dx

dx. Explainer

EXPLANATIONS

- result attribute (pandas)
- plot method (plotly)

predict/model + parts/profile/diagnostics /surrogate/performance

Explainer

```
-> data
# 0. package
                               -> label
import dalex as dx
# 1. data
X, y = \dots
# 2. model
model = \dots
model.fit(X, y)
# 3. explainer
explainer = dx.Explainer(model, X, y)
```

```
Preparation of a new explainer is initiated
                 : 156 rows 6 cols
  -> target variable : Argument 'y' was a pandas. Series. Converted to a numpy.ndarray.
  -> target variable : 156 values
                     : tensorflow.python.keras.engine.sequential.Sequential (default)
  -> model class
                    : custom label
  -> predict function : <function yhat_tf_regression at 0x000001D7649554C0> will be used
  -> predict function : accepts pandas.DataFrame and numpy.ndarray
  -> predicted values : min = 2.86, mean = 5.42, max = 7.73
  -> model type
                      : regression will be used (default)
  -> residual function : difference between y and yhat (default)
  -> residuals
                      : min = -0.616, mean = -0.0103, max = 0.555
                     : package tensorflow
  -> model info
A new explainer has been created!
```

model

```
# 4. examine
explainer.model_performance()

# 5. explain
explainer.model_parts().result

# 6. explore
explainer.model_profile().plot()
```

mse	rmse	r2	mae	mad	
0.017569	0.132549	0.985729	0.072329	0.03636	

	variable	dropout_loss	label
0	_full_model_	0.132549	custom label
1	generosity	0.567029	custom label
2	perceptions_of_corruption	0.572801	custom label
3	freedom_to_make_life_choices	0.665235	custom label
4	gdp_per_capita	0.888245	custom label
5	healthy_life_expectancy	0.917414	custom label
6	social_support	1.046778	custom label
7	_baseline_	1.557307	custom label

predict


```
# 7. observation
obs = ...
explainer.predict(obs)
```

8. why? explanation = explainer.predict_parts(obs) explanation.result explanation.plot()

9. what if?
explainer.predict_profile(obs).plot()

	variable_name	variable_value	variable	cumulative	contribution	sign	position	label
0	intercept	1	intercept	5.417360	5.417360	1.0	7	custom label
1	gdp_per_capita	1.433	gdp_per_capita = 1.433	6.189979	0.772619	1.0	6	custom label
2	healthy_life_expectancy	0.874	healthy_life_expectancy = 0.874	6.059744	-0.130235	-1.0	5	custom label
3	social_support	1.457	social_support = 1.457	6.764811	0.705067	1.0	4	custom label
4	perceptions_of_corruption	0.128	perceptions_of_corruption = 0.128	6.666029	-0.098782	-1.0	3	custom label
5	generosity	0.28	generosity = 0.28	6.894894	0.228865	1.0	2	custom label
6	freedom_to_make_life_choices	0.454	freedom_to_make_life_choices = 0.454	6.874513	-0.020381	-1.0	1	custom label
7			prediction	6.874512	6.874512	1.0	0	custom label

more!

```
# 10. residuals
explainer.model_diagnostics().plot()
# 11. surrogate
tree = explainer.model_surrogate()
tree.plot()
# 13. types
explainer.model_profile(type='accumulated')
# 14. shap
explainer.model_parts(type='shap_wrapper')
# 15. lime
explainer.predict_surrogate(obs)
```


EXPLANATORY MODEL ANALYSIS

Explore, Explain, and Examine Predictive Models

PRZEMYSŁAW BIECEK TOMASZ BURZYKOWSKI

https://ema.drwhy.ai

vivo

- alternative, model-agnostic way of calculating variable importance
- based on the Ceteris Paribus and Partial Dependence Profiles
- faster, no random component

Challenges in explanatory model analysis

- Various stakeholders
- High entry threshold
- Reproducibility
- ❖ A lot of coding...

- ✓ Automation
- ✓ Versioning
- ✓ Interactivity
- ✓ Customizability

Interactive

explanatory model analysis

II generation explanations (interactive explanatory model analysis)

modelStudio

- creates a dashboard for model analysis
- automated calculations
- customizable interface
- save & share your analysis

convenient

```
# 0. package
library("DALEX")
library("modelStudio")
# 1. data
X <- ...
y <- ...
# 2. model
model <- ...
# 3. explainer
explainer <- DALEX::explain(model, X, y)</pre>
# 4. dashboard
ms <- modelStudio::modelStudio(explainer)</pre>
ms
```

DEMO:

https://github.com/hbaniecki/user-21

Arena

- compare models!
- on multiple datasets!!
- fairness plots
- more pages & cache
- still easy to create...


```
# 0. package
library("DALEX")
library("arenar")
# 1. data
observations <- ...
# 2. models
model 1 <- ...
model_2 <- ...
# 3. explainers
explainer_1 <- DALEX::explain(model_1, X, y)</pre>
explainer_2 <- ...</pre>
# 4. dashboard
arena <- create_arena(live=TRUE) %>%
  push_model(explainer_1) %>%
  push_model(explainer_2) %>%
  push observations(observations)
run_server(arena)
```


Hype Cycle for Artificial Intelligence, 2021

gartner.com

Gartner.

Questions? Feedback appreciated!

Contact hbaniecki.com

EMA book ema.drwhy.ai

dalex dalex.drwhy.ai

modelStudio modelstudio.drwhy.ai

Arena arena.drwhy.ai