Pseudoaleatoriedade

Leandro Miranda Zatesko leandro@inf.ufpr.br ORIENTADOR: Jair Donadelli Jr.

Grupo de Pesquisa em Algoritmos

25 de novembro de 2009

Sumário

- Introdução
 - Aleatoriedade
 - Algoritmos aleatorizados
 - Miscelânea de notacões vetoriais
- Pseudoaleatoriedade
 - Passeios aleatórios em grafos completos
 - Passeios aleatórios em grafos regulares
 - Passeios aleatórios em grafos expansores
 - Reciclagem de bits aleatórios
- Semialeatoriedade
 - Introdução ao conceito
 - Semialeatoriedade em subconjuntos do \mathbb{Z}_n
- Conclusão

Andamento da apresentação

- Introdução

Variáveis aleatórias

Definição

Uma variável aleatória é uma função

$$X: \Omega \rightarrow S$$
,

sendo Ω um espaço amostral de um espaço de probabilidades (Ω, \mathbb{P}) e *S* uma σ -álgebra (usualmente \mathbb{R}).

Variáveis aleatórias

Definição

Uma variável aleatória é uma função

$$X: \Omega \rightarrow S$$
,

sendo Ω um espaço amostral de um espaço de probabilidades (Ω, \mathbb{P}) e S uma σ -álgebra (usualmente \mathbb{R}).

Exemplo (Número de lançamentos duma moeda até sair cara)

E. amostral
$$\Omega = \{(cara), (coroa, cara), (coroa, coroa, cara), ...\}$$

V. aleatória $X((cara)) = 1$, $X((coroa, cara)) = 2$, $X((coroa, coroa, cara)) = 3$

Propriedade

Dado um espaço de probabilidades (Ω, \mathbb{P}) e uma variável aleatória $X: \Omega \to S$, X induz um espaço de probabilidades (Ω_X, \mathbb{P}_X) , em que $\Omega_X = S$, e, para todo $s \in S$,

$$\mathbb{P}_X(s) = \mathbb{P}_X[X = s]$$

Propriedade

Dado um espaço de probabilidades (Ω, \mathbb{P}) e uma variável aleatória $X : \Omega \to S$, X induz um espaço de probabilidades (Ω_X, \mathbb{P}_X) , em que $\Omega_X = S$, e, para todo $s \in S$,

$$\mathbb{P}_X(s) = \mathbb{P}_X[X = s] = \sum_{\omega \in \Omega} \mathbb{P}_X[X(\omega) = s]$$

Propriedade

Dado um espaço de probabilidades (Ω, \mathbb{P}) e uma variável aleatória $X : \Omega \to S$, X induz um espaço de probabilidades (Ω_X, \mathbb{P}_X) , em que $\Omega_X = S$, e, para todo $s \in S$,

$$\mathbb{P}_X(s) = \mathbb{P}_X[X = s] = \sum_{\omega \in \Omega} \mathbb{P}_X[X(\omega) = s] = \sum_{\omega \in X^{-1}(s)} \mathbb{P}(\omega).$$

Propriedade

Dado um espaço de probabilidades (Ω, \mathbb{P}) e uma variável aleatória $X : \Omega \to S$, X induz um espaço de probabilidades (Ω_X, \mathbb{P}_X) , em que $\Omega_X = S$, e, para todo $s \in S$.

$$\mathbb{P}_X(s) = \mathbb{P}_X[X = s] = \sum_{\omega \in \Omega} \mathbb{P}_X[X(\omega) = s] = \sum_{\omega \in X^{-1}(s)} \mathbb{P}(\omega).$$

Nomenclatura (Distribuição de probabilidades)

 \mathbb{P}_X é chamada de distribuição de probabilidades de X sobre S. Se $S = s_1, \dots, s_m$ for finito, representa-se \mathbb{P}_X por um vetor

$$\pi = (\mathbb{P}_X(s_1), \ldots, \mathbb{P}_X(s_m)).$$

Distribuição uniforme

Definição (Distribuição uniforme)

A distribuição uniforme de X sobre um conjunto finito S é aquela para a qual

$$\mathbb{P}[X=s] = \frac{1}{|S|} \qquad \text{para todo } s \in S.$$

Distribuição uniforme

Definição (Distribuição uniforme)

A distribuição uniforme de X sobre um conjunto finito S é aquela para a qual

$$\mathbb{P}[X=s] = \frac{1}{|S|} \quad \text{para todo } s \in S.$$

Notação

Se o contradomínio da variável aleatória é finito, costuma-se usar u para representar a distribuição uniforme.

Máquina de Turing probabilística offline

Definição (Máquina de Turing probabilística offline)

Uma máquina de Turing probabilística offline é uma máquina de Turing determinística que, além da fita de entrada, recebe outra fita, somente de leitura, com *m bits* aleatórios, cada um usado uma só vez.

Introdução

Máquina de Turing probabilística offline

Definição (Máquina de Turing probabilística offline)

Uma máquina de Turing probabilística offline é uma máquina de Turing determinística que, além da fita de entrada, recebe outra fita, somente de leitura, com *m bits* aleatórios, cada um usado uma só vez.

Exemplo (Teste de primalidade)

O algoritmo de Miller-Rabin usa uma sequencia de bits aleatórios para determinar se um número n é primo. Tem complexidade $O(\log^3 n)$.

- $n \text{ primo} \Longrightarrow MR(n) = \text{primo sempre}.$
- n composto $\Longrightarrow MR(n) = \text{primo com probabilidade menor que } \frac{1}{4}$.

^aO AKS (determinístico) tem complexidade $O(\log^{12+\epsilon} n)$.

Uma classe de complexidade probabilística

Definição (\mathcal{BPP})

 \mathcal{BPP} é o conjunto das linguagens que são decididas por uma máquina de Turing probabilística offline com probabilidade de acerto no mínimo $\frac{2}{3}$.

Uma classe de complexidade probabilística

Definição (\mathcal{BPP})

BPP é o conjunto das linguagens que são decididas por uma máquina de Turing probabilística offline com probabilidade de acerto no mínimo $\frac{2}{3}$.

Observação

- $L = \{\langle n \rangle : n \text{ \'e primo}\} \in \mathcal{BPP}.$
- $\mathcal{P} \subseteq \mathcal{BPP}$, mas ninguém sabe se $\mathcal{BPP} \subseteq \mathcal{P}$.

Pseudoaleatoriedade

Uma classe de complexidade probabilística

Definição (\mathcal{BPP})

 \mathcal{BPP} é o conjunto das linguagens que são decididas por uma máquina de Turing probabilística offline com probabilidade de acerto no mínimo $\frac{2}{3}$.

Observação

- $L = \{\langle n \rangle : n \text{ \'e primo}\} \in \mathcal{BPP}.$
- $\mathcal{P} \subseteq \mathcal{BPP}$, mas ninguém sabe se $\mathcal{BPP} \subseteq \mathcal{P}$.

Nomenclatura

Uma máquina de Turing \mathcal{BPP} é uma máquina de Turing probabilística offline cuja probabilidade de acerto é no mínimo $\frac{2}{3}$.

Introdução 0000000

Iteração de um algoritmo probabilístico

Iterando uma máquina de Turing \mathcal{BPP} k vezes e garantindo a independência entre as sequências de bits aleatórios, a probabilidade de erro no voto da maioria se reduz para no máximo

$$\frac{1}{2^{\Omega(k)}}$$

Iteração de um algoritmo probabilístico

Iterando uma máquina de Turing \mathcal{BPP} k vezes e garantindo a independência entre as sequências de bits aleatórios, a probabilidade de erro no voto da maioria se reduz para no máximo

$$\frac{1}{2^{\Omega(k)}}$$

Observação

Note-se que, se a máquina usa m bits aleatórios, precisamos de km bits aleatórios para o procedimento acima.

Introdução 000000

Algumas normas de vetores

$$\|(x_1,\ldots,x_n)\|_1 = \sum_{j=1}^n |x_j|$$

norma de Manhattan

Introdução 000000

Algumas normas de vetores

$$\|(x_1,\ldots,x_n)\|_1 = \sum_{j=1}^n |x_j|$$

 $\|(x_1,\ldots,x_n)\|_2 = \sqrt{\sum_{i=1}^n x_j^2}$

norma de Manhattan

norma euclidiana

Andamento da apresentação

- Pseudoaleatoriedade

Observação

Uma sequência de m bits aleatórios pode ser entendida como um número em [0..n-1], sendo $n=2^m$.

Observação

Uma sequência de m bits aleatórios pode ser entendida como um número em [0..n-1], sendo $n=2^m$. Assim, já que as ksequências R_1, \ldots, R_k são independentes, estando na j-ésima sequência (ou j-ésimo número) e indo para a (j + 1)-ésima, temos n possibilidades, cada uma com probabilidade $\frac{1}{n}$.

Observação

Uma sequência de m bits aleatórios pode ser entendida como um número em [0..n-1], sendo $n=2^m$. Assim, já que as ksequências R_1, \ldots, R_k são independentes, estando na *j*-ésima sequência (ou j-ésimo número) e indo para a (j + 1)-ésima, temos n possibilidades, cada uma com probabilidade $\frac{1}{n}$.

$$v_0, v_1, \ldots, v_k \mapsto R_1, \ldots, R_k$$

Observação

Uma sequência de m bits aleatórios pode ser entendida como um número em [0..n-1], sendo $n=2^m$. Assim, já que as k sequências R_1, \ldots, R_k são independentes, estando na *j*-ésima sequência (ou j-ésimo número) e indo para a (j + 1)-ésima, temos n possibilidades, cada uma com probabilidade $\frac{1}{n}$.

$$v_0, v_1, \ldots, v_k \mapsto R_1, \ldots, R_k$$

TOTAL km: Ideia Trocar m por d.

Troca de grafos completos por grafos regulares

G:

- conexo;
- com $n = 2^m$ vértices;
- bipartido;
- d-regular;
- com todos os laços (d não conta laços);
- com a seguinte distribuição de probabilidades para as arestas:

laço
$$\frac{1}{2}$$
; outras arestas $\frac{1}{2d}$.

Matrizes associadas a G

Definição (Matriz de adjacências)

$$\left(\mathsf{A}_{\mathcal{G}}\right)_{i,j} = \left\{ egin{array}{ll} 1, & ext{se } i ext{ \'e adjacente a } j; \\ 0, & ext{caso contrário.} \end{array} \right.$$

Matrizes associadas a G

Definição (Matriz de adjacências)

$$\left(\mathsf{A}_{G}\right)_{i,j} = \left\{ egin{array}{ll} 1, & ext{se } i ext{ \'e adjacente a } j; \\ 0, & ext{caso contrário.} \end{array} \right.$$

Observação

Note que, como G possui todos os laços, $(A_G)_{i,j} = 1$, para todo i.

Passeios aleatórios em grafos regulares

Matrizes associadas a G

Definição (Matriz de adjacências)

$$\left(\mathsf{A}_{G}\right)_{i,j} = \left\{ egin{array}{ll} 1, & ext{se } i ext{ \'e adjacente a } j; \\ 0, & ext{caso contrário.} \end{array} \right.$$

Observação

Note que, como G possui todos os laços, $(A_G)_{i,i} = 1$, para todo i.

Definição (Matriz de transição da cadeia de Markov)

$$\mathsf{P}_{i,j} = \begin{cases} \frac{1}{2}, & \text{se } i = j; \\ \frac{1}{2d}, & \text{se } i \text{ \'e adjacente a } j, \text{ mas } i \neq j; \\ 0, & \text{caso contr\'ario.} \end{cases}$$

Passeios aleatórios do ponto de vista probabilístico

Observação

O passeio aleatório em G pode ser entendido como uma sequência de distribuições de probabilidade.

$$\pi^{(0)}=$$
 distribuição de probabilidades inicial;

$$\pi^{(k)} = \mathsf{P}^k \big(\pi^{(0)}\big)^{ op}.$$

ARG

Passeios aleatórios do ponto de vista probabilístico

Observação

O passeio aleatório em G pode ser entendido como uma sequência de distribuições de probabilidade.

 $\pi^{(0)} = \text{distribuição de probabilidades inicial};$

$$\pi^{(k)} = \mathsf{P}^k (\pi^{(0)})^{^{ op}}.$$

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{4} & 0 & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{2} \end{pmatrix}$$

$$\left(\frac{1}{2},\frac{1}{4},0,\frac{1}{4}\right)$$

$$(\frac{3}{8}, \frac{1}{4}, \frac{1}{8}, \frac{1}{4})$$

Autovalores de P

Teorema

P é simétrica e, portanto, diagonalizável, seus autovalores $\lambda_1 \geqslant \cdots \geqslant \lambda_n$ são reais, e

$$1 = \lambda_1 > \lambda_2 \geqslant \cdots \geqslant \lambda_n \geqslant 0.$$

Autovalores de P

Teorema

P é simétrica e, portanto, diagonalizável, seus autovalores $\lambda_1 \geqslant \cdots \geqslant \lambda_n$ são reais, e

$$1 = \lambda_1 > \lambda_2 \geqslant \cdots \geqslant \lambda_n \geqslant 0.$$

Teorema

$$\left\|\boldsymbol{\pi}^{(k)} - \boldsymbol{u}\right\|_2 \leqslant \lambda_2^k.$$

Autovalores de P

Teorema

P é simétrica e, portanto, diagonalizável, seus autovalores $\lambda_1 \geqslant \cdots \geqslant \lambda_n$ são reais, e

$$1 = \lambda_1 > \lambda_2 \geqslant \cdots \geqslant \lambda_n \geqslant 0.$$

Teorema

$$\left\|\boldsymbol{\pi}^{(k)}-\boldsymbol{u}\right\|_{2}\leqslant\lambda_{2}^{k}.$$

Observação

 λ_2 pode ser entendido como uma medida de quão perto de **u** a distribuição $\pi^{(k)}$ é. Quanto menor o λ_2 , mais próximo.

Grafos expansores

Definição (Grafo expansor)

Um grafo bipartido conexo $H = (X \cup Y, E)$ é (n, d, c)-expansor se:

- ① $X = Y = \frac{n}{2}$;
- H é d-regular;
- \odot para todo $W \subseteq X$,

$$|\{(w,y): w \in W\}| \leq \left(1+c\left(1-\frac{2|W|}{n}\right)\right)|W|.$$

ARG

Autovalores de A_G

Teorema

A_G é simétrica e, portanto, diagonalizável, seus autovalores $\mu_1 \geqslant \cdots \geqslant \mu_n$ são reais, e

$$\mu_1 = -\mu_n = d$$

Passeios aleatórios em grafos expansores

Autovalores de A_G

Teorema

A_G é simétrica e, portanto, diagonalizável, seus autovalores $\mu_1 \geqslant \cdots \geqslant \mu_n$ são reais, e

$$\mu_1 = -\mu_n = d$$

Notação

 μ denota o 2° maior autovalor distinto de A_G . Note-se que não necessariamente $\mu = \mu_2$.

Algumas propriedades dos grafos expansores

Definição (Discrepância dos grafos expansores)

Sendo
$$A \subseteq X$$
 e $B \subseteq Y$,

$$D(A,B) = \left| |E(A,B)| - \frac{2d|A||B|}{n} \right|.$$

Algumas propriedades dos grafos expansores

Definição (Discrepância dos grafos expansores)

Sendo $A \subseteq X$ e $B \subseteq Y$.

$$D(A,B) = \left| |E(A,B)| - \frac{2d|A||B|}{n} \right|.$$

Teorema

$$D(A, B) = |\mu| \sqrt{|A||B|}.$$

Ideia do algoritmo

• F é o conjunto das sequências de bits que fazem a máquina falhar. Assumimos que $F < \frac{n}{100}$, $n = 2^m$ e

$$F_{i,j} = \begin{cases} 1, & \text{se } i = j \text{ e } i \in F; \\ 0, & \text{caso contrário.} \end{cases}$$

- G é um (n, d, c)-expansor com adição de laços.
- t é um natural tal que $\lambda_2^t < \frac{1}{10}$.
- R₁ é um vértice aleatório de G.
- Passeio aleatório:

$$R_1 \xrightarrow{t \text{ passos}} R_2 \xrightarrow{t \text{ passos}} R_3 \rightarrow \cdots \rightarrow R_k.$$

Um lema importante

Observação

Dada uma distribuição de probabilides π sobre os vértices de G, $\|\mathsf{F}\boldsymbol{\pi}^{\mathsf{T}}\|_1$ representa a probabilidade de uma sequência de bits escolhida aleatoriamente com distribuição π estar em F.

Um lema importante

Observação

Dada uma distribuição de probabilides π sobre os vértices de G, $\|\mathsf{F}\boldsymbol{\pi}^{\mathsf{T}}\|_{1}$ representa a probabilidade de uma sequência de bits escolhida aleatoriamente com distribuição π estar em F.

Lema

Para todo vetor **x** do \mathbb{R}^n .

$$\left\|\mathsf{F}\mathsf{P}^t\mathbf{x}^{\scriptscriptstyle \top}\right\|_2\leqslant\frac{1}{5}\|x\|_2\qquad e\qquad \left\|(\mathsf{I}-\mathsf{F})\mathsf{P}^t\mathbf{x}^{\scriptscriptstyle \top}\right\|_2\leqslant\|x\|_2.$$

ARG

O grande teorema

Teorema

Dada uma máquina BPP que usa m bits aleatórios por rodada, consegue-se uma probabilidade de erro do voto da maioria no máximo $\frac{1}{2k}$ utilizando O(m+k) bits aleatórios e O(k) rodadas.

$$\mathbb{P}[\textit{R}_1 \in \textit{F}] = \left\lVert \mathsf{F} \pi^{(0)^\top} \right\rVert_1$$

$$\mathbb{P}[R_1 \in F] = \left\| \mathsf{F}\boldsymbol{\pi^{(0)}}^{\top} \right\|_1 \leqslant \sqrt{n} \left\| \mathsf{F}\boldsymbol{\pi^{(0)}}^{\top} \right\|_2$$

$$\mathbb{P}[R_1 \in F] = \left\| \mathsf{F}\boldsymbol{\pi^{(0)}}^\top \right\|_1 \leqslant \sqrt{n} \left\| \mathsf{F}\boldsymbol{\pi^{(0)}}^\top \right\|_2 = \sqrt{n} \left\| \mathsf{F}\boldsymbol{\mathsf{u}}^\top \right\|_2$$

$$\mathbb{P}[R_1 \in F] = \left\| \mathsf{F}\boldsymbol{\pi^{(0)}}^\top \right\|_1 \leqslant \sqrt{n} \left\| \mathsf{F}\boldsymbol{\pi^{(0)}}^\top \right\|_2 = \sqrt{n} \left\| \mathsf{F}\mathbf{u}^\top \right\|_2 \leqslant \sqrt{n} \sqrt{\frac{n}{100} \left(\frac{1}{n^2}\right)} = \sqrt{n} \left(\frac{1}{10\sqrt{n}}\right)$$

<u>Demonstração</u>

$$\mathbb{P}[R_1 \in F] = \left\| \mathsf{F}\boldsymbol{\pi^{(0)}}^{\top} \right\|_1 \leqslant \sqrt{n} \left\| \mathsf{F}\boldsymbol{\pi^{(0)}}^{\top} \right\|_2 = \sqrt{n} \left\| \mathsf{F}\mathbf{u}^{\top} \right\|_2 \leqslant \sqrt{n} \sqrt{\frac{n}{100} \left(\frac{1}{n^2}\right)} = \sqrt{n} \left(\frac{1}{10\sqrt{n}}\right) \leqslant \frac{1}{5}.$$

$$\mathbb{P}[R_1 \in F] = \left\| \mathsf{F}\boldsymbol{\pi}^{(0)^\top} \right\|_1 \leqslant \sqrt{n} \left\| \mathsf{F}\boldsymbol{\pi}^{(0)^\top} \right\|_2 = \sqrt{n} \left\| \mathsf{F}\mathbf{u}^\top \right\|_2 \leqslant \sqrt{n} \sqrt{\frac{n}{100} \left(\frac{1}{n^2}\right)} = \sqrt{n} \left(\frac{1}{10\sqrt{n}}\right) \leqslant \frac{1}{5}.$$

$$\mathbb{P}[R_2 \in F \mid R_1 \notin F] = \left\| \mathsf{FP}^t (\mathsf{I} - \mathsf{F}) \pi^{(\mathbf{0})^\top} \right\|_1$$

$$\mathbb{P}[R_1 \in F] = \left\| \mathsf{F} \boldsymbol{\pi}^{(0)^{\top}} \right\|_1 \leqslant \sqrt{n} \left\| \mathsf{F} \boldsymbol{\pi}^{(0)^{\top}} \right\|_2 = \sqrt{n} \left\| \mathsf{F} \mathbf{u}^{\top} \right\|_2 \leqslant \sqrt{n} \sqrt{\frac{n}{100} \left(\frac{1}{n^2} \right)} = \sqrt{n} \left(\frac{1}{10\sqrt{n}} \right) \leqslant \frac{1}{5}.$$

$$\mathbb{P}[R_2 \in F \mid R_1 \notin F] = \left\| \mathsf{FP}^t (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi}^{(0)^{\top}} \right\| \leqslant \sqrt{n} \left\| \mathsf{FP}^t (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi}^{(0)^{\top}} \right\|$$

$$\mathbb{P}[R_2 \in F \mid R_1 \notin F] = \left\| \mathsf{FP}^t (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi^{(0)}}^\top \right\|_1 \leqslant \sqrt{n} \left\| \mathsf{FP}^t (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi^{(0)}}^\top \right\|_2$$

$$\begin{split} \mathbb{P}[R_{1} \in F] &= \left\| \mathsf{F} \boldsymbol{\pi^{(0)}}^{\top} \right\|_{1} \leqslant \sqrt{n} \left\| \mathsf{F} \boldsymbol{\pi^{(0)}}^{\top} \right\|_{2} = \sqrt{n} \| \mathsf{F} \mathbf{u}^{\top} \|_{2} \leqslant \sqrt{n} \sqrt{\frac{n}{100} \left(\frac{1}{n^{2}} \right)} = \\ \sqrt{n} \left(\frac{1}{10\sqrt{n}} \right) \leqslant \frac{1}{5}. \\ \mathbb{P}[R_{2} \in F \mid R_{1} \notin F] &= \left\| \mathsf{FP}^{t} (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi^{(0)}}^{\top} \right\|_{1} \leqslant \sqrt{n} \left\| \mathsf{FP}^{t} (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi^{(0)}}^{\top} \right\|_{2} \leqslant \\ \frac{\sqrt{n}}{5} \left\| (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi^{(0)}}^{\top} \right\|_{2} \end{split}$$

$$\begin{split} \mathbb{P}[R_1 \in F] &= \left\| \mathsf{F} \boldsymbol{\pi^{(0)}}^\top \right\|_1 \leqslant \sqrt{n} \left\| \mathsf{F} \boldsymbol{\pi^{(0)}}^\top \right\|_2 = \sqrt{n} \| \mathsf{F} \boldsymbol{u}^\top \|_2 \leqslant \sqrt{n} \sqrt{\frac{n}{100}} \left(\frac{1}{n^2} \right) = \\ \sqrt{n} \left(\frac{1}{10\sqrt{n}} \right) \leqslant \frac{1}{5}. \\ \mathbb{P}[R_2 \in F \mid R_1 \notin F] &= \left\| \mathsf{FP}^t (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi^{(0)}}^\top \right\|_1 \leqslant \sqrt{n} \left\| \mathsf{FP}^t (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi^{(0)}}^\top \right\|_2 \leqslant \\ \frac{\sqrt{n}}{5} \left\| (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi^{(0)}}^\top \right\|_2 \leqslant \frac{\sqrt{n}}{5} \sqrt{n \left(\frac{1}{n^2} \right)} = \frac{\sqrt{n}}{5} \left(\frac{1}{\sqrt{n}} \right) \end{split}$$

$$\begin{split} \mathbb{P}[R_{1} \in F] &= \left\| \mathsf{F} \boldsymbol{\pi^{(0)}}^{\top} \right\|_{1} \leqslant \sqrt{n} \left\| \mathsf{F} \boldsymbol{\pi^{(0)}}^{\top} \right\|_{2} = \sqrt{n} \left\| \mathsf{F} \mathbf{u}^{\top} \right\|_{2} \leqslant \sqrt{n} \sqrt{\frac{n}{100} \left(\frac{1}{n^{2}} \right)} = \\ \sqrt{n} \left(\frac{1}{10\sqrt{n}} \right) \leqslant \frac{1}{5}. \\ \mathbb{P}[R_{2} \in F \mid R_{1} \notin F] &= \left\| \mathsf{FP}^{t} (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi^{(0)}}^{\top} \right\|_{1} \leqslant \sqrt{n} \left\| \mathsf{FP}^{t} (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi^{(0)}}^{\top} \right\|_{2} \leqslant \\ \frac{\sqrt{n}}{5} \left\| (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi^{(0)}}^{\top} \right\|_{2} \leqslant \frac{\sqrt{n}}{5} \sqrt{n \left(\frac{1}{n^{2}} \right)} = \frac{\sqrt{n}}{5} \left(\frac{1}{\sqrt{n}} \right) \leqslant \frac{1}{5}. \\ \mathbb{P}[R_{2} \in F \mid R_{1} \in F] &= \left\| \mathsf{FP}^{t} \mathsf{F} \boldsymbol{\pi^{(0)}}^{\top} \right\|_{1} \end{split}$$

$$\begin{split} & \mathbb{P}[R_{1} \in F] = \left\| \mathsf{F} \boldsymbol{\pi^{(0)}}^{\top} \right\|_{1} \leqslant \sqrt{n} \left\| \mathsf{F} \boldsymbol{\pi^{(0)}}^{\top} \right\|_{2} = \sqrt{n} \| \mathsf{F} \mathbf{u}^{\top} \|_{2} \leqslant \sqrt{n} \sqrt{\frac{n}{100} \left(\frac{1}{n^{2}} \right)} = \\ & \sqrt{n} \left(\frac{1}{10\sqrt{n}} \right) \leqslant \frac{1}{5}. \\ & \mathbb{P}[R_{2} \in F \mid R_{1} \notin F] = \left\| \mathsf{FP}^{t} (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi^{(0)}}^{\top} \right\|_{1} \leqslant \sqrt{n} \left\| \mathsf{FP}^{t} (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi^{(0)}}^{\top} \right\|_{2} \leqslant \\ & \frac{\sqrt{n}}{5} \left\| (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi^{(0)}}^{\top} \right\|_{2} \leqslant \frac{\sqrt{n}}{5} \sqrt{n \left(\frac{1}{n^{2}} \right)} = \frac{\sqrt{n}}{5} \left(\frac{1}{\sqrt{n}} \right) \leqslant \frac{1}{5}. \\ & \mathbb{P}[R_{2} \in F \mid R_{1} \in F] = \left\| \mathsf{FP}^{t} \mathsf{F} \boldsymbol{\pi^{(0)}}^{\top} \right\|_{1} \leqslant \sqrt{n} \left\| \mathsf{FP}^{t} \mathsf{F} \boldsymbol{\pi^{(0)}}^{\top} \right\|_{2} \end{split}$$

Introdução

Esboço de demonstração (I)

$$\begin{split} \mathbb{P}[R_{1} \in F] &= \left\| \mathsf{F} \boldsymbol{\pi^{(0)}}^{\top} \right\|_{1} \leqslant \sqrt{n} \left\| \mathsf{F} \boldsymbol{\pi^{(0)}}^{\top} \right\|_{2} = \sqrt{n} \left\| \mathsf{F} \mathbf{u}^{\top} \right\|_{2} \leqslant \sqrt{n} \sqrt{\frac{n}{100} \left(\frac{1}{n^{2}}\right)} = \\ \sqrt{n} \left(\frac{1}{10\sqrt{n}} \right) \leqslant \frac{1}{5}. \\ \mathbb{P}[R_{2} \in F \mid R_{1} \notin F] &= \left\| \mathsf{FP}^{t} (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi^{(0)}}^{\top} \right\|_{1} \leqslant \sqrt{n} \left\| \mathsf{FP}^{t} (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi^{(0)}}^{\top} \right\|_{2} \leqslant \\ \frac{\sqrt{n}}{5} \left\| (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi^{(0)}}^{\top} \right\|_{2} \leqslant \frac{\sqrt{n}}{5} \sqrt{n \left(\frac{1}{n^{2}}\right)} = \frac{\sqrt{n}}{5} \left(\frac{1}{\sqrt{n}}\right) \leqslant \frac{1}{5}. \\ \mathbb{P}[R_{2} \in F \mid R_{1} \in F] &= \left\| \mathsf{FP}^{t} \mathsf{F} \boldsymbol{\pi^{(0)}}^{\top} \right\|_{1} \leqslant \sqrt{n} \left\| \mathsf{FP}^{t} \mathsf{F} \boldsymbol{\pi^{(0)}}^{\top} \right\|_{2} \leqslant \frac{\sqrt{n}}{5} \left\| \mathsf{F} \boldsymbol{\pi^{(0)}}^{\top} \right\|_{2} \end{split}$$

$$\begin{split} & \mathbb{P}[R_{1} \in F] = \left\| \mathsf{F} \boldsymbol{\pi}^{(0)^{\top}} \right\|_{1} \leqslant \sqrt{n} \left\| \mathsf{F} \boldsymbol{\pi}^{(0)^{\top}} \right\|_{2} = \sqrt{n} \| \mathsf{F} \mathbf{u}^{\top} \|_{2} \leqslant \sqrt{n} \sqrt{\frac{n}{100} \left(\frac{1}{n^{2}}\right)} = \\ & \sqrt{n} \left(\frac{1}{10\sqrt{n}}\right) \leqslant \frac{1}{5}. \\ & \mathbb{P}[R_{2} \in F \mid R_{1} \notin F] = \left\| \mathsf{FP}^{t} (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi}^{(0)^{\top}} \right\|_{1} \leqslant \sqrt{n} \left\| \mathsf{FP}^{t} (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi}^{(0)^{\top}} \right\|_{2} \leqslant \\ & \frac{\sqrt{n}}{5} \left\| (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi}^{(0)^{\top}} \right\|_{2} \leqslant \frac{\sqrt{n}}{5} \sqrt{n \left(\frac{1}{n^{2}}\right)} = \frac{\sqrt{n}}{5} \left(\frac{1}{\sqrt{n}}\right) \leqslant \frac{1}{5}. \\ & \mathbb{P}[R_{2} \in F \mid R_{1} \in F] = \left\| \mathsf{FP}^{t} \mathsf{F} \boldsymbol{\pi}^{(0)^{\top}} \right\|_{1} \leqslant \sqrt{n} \left\| \mathsf{FP}^{t} \mathsf{F} \boldsymbol{\pi}^{(0)^{\top}} \right\|_{2} \leqslant \frac{\sqrt{n}}{5} \left(\frac{1}{10\sqrt{n}}\right) \end{split}$$

$$\begin{split} & \mathbb{P}[R_{1} \in F] = \left\| \mathsf{F} \boldsymbol{\pi}^{(0)^{\top}} \right\|_{1} \leqslant \sqrt{n} \left\| \mathsf{F} \boldsymbol{\pi}^{(0)^{\top}} \right\|_{2} = \sqrt{n} \| \mathsf{F} \mathbf{u}^{\top} \|_{2} \leqslant \sqrt{n} \sqrt{\frac{n}{100} \left(\frac{1}{n^{2}} \right)} = \\ & \sqrt{n} \left(\frac{1}{10\sqrt{n}} \right) \leqslant \frac{1}{5}. \\ & \mathbb{P}[R_{2} \in F \mid R_{1} \notin F] = \left\| \mathsf{FP}^{t} (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi}^{(0)^{\top}} \right\|_{1} \leqslant \sqrt{n} \left\| \mathsf{FP}^{t} (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi}^{(0)^{\top}} \right\|_{2} \leqslant \\ & \frac{\sqrt{n}}{5} \left\| (\mathsf{I} - \mathsf{F}) \boldsymbol{\pi}^{(0)^{\top}} \right\|_{2} \leqslant \frac{\sqrt{n}}{5} \sqrt{n \left(\frac{1}{n^{2}} \right)} = \frac{\sqrt{n}}{5} \left(\frac{1}{\sqrt{n}} \right) \leqslant \frac{1}{5}. \\ & \mathbb{P}[R_{2} \in F \mid R_{1} \in F] = \left\| \mathsf{FP}^{t} \mathsf{F} \boldsymbol{\pi}^{(0)^{\top}} \right\|_{1} \leqslant \sqrt{n} \left\| \mathsf{FP}^{t} \mathsf{F} \boldsymbol{\pi}^{(0)^{\top}} \right\|_{2} \leqslant \frac{\sqrt{n}}{5} \left(\frac{1}{10\sqrt{n}} \right) \leqslant \frac{1}{50} \leqslant \frac{1}{5}. \end{split}$$

Demonstração.

Indutivamente, dada uma sequência aleatória de "(bom, ruim, . . .)" com no mínimo $\frac{k}{2}$ "ruins", a probabilidade de (R_1, \ldots, R_k) casar com essa sequência é no máximo $\left(\frac{1}{5}\right)^{\frac{k}{2}}$.

Demonstração.

Indutivamente, dada uma sequência aleatória de "(bom, ruim, . . .)" com no mínimo $\frac{k}{2}$ "ruins", a probabilidade de (R_1,\ldots,R_k) casar com essa sequência é no máximo $\left(\frac{1}{5}\right)^{\frac{k}{2}}$. Como há 2^k possíveis arranjos "(bom, ruim, . . .)", a probabilidade de (R_1,\ldots,R_k) conter no mínimo $\frac{k}{2}$ "ruins" é no máximo $2^k \left(\frac{1}{5}\right)^{\frac{k}{2}}$.

Demonstração.

Indutivamente, dada uma sequência aleatória de "(bom, ruim, ...)" com no mínimo $\frac{k}{2}$ "ruins", a probabilidade de (R_1, \ldots, R_k) casar com essa sequência é no máximo $(\frac{1}{5})^{\frac{\kappa}{2}}$. Como há 2^k possíveis arranjos "(bom, ruim, ...)", a probabilidade de (R_1, \ldots, R_k) conter no mínimo $\frac{k}{2}$ "ruins" é no máximo $2^k \left(\frac{1}{5}\right)^{\frac{k}{2}}$. Logo, a probabilidade de erro no voto da maioria é no máximo

$$\left(\frac{2}{\sqrt{5}}\right)^k$$
.

Demonstração.

Indutivamente, dada uma sequência aleatória de "(bom, ruim, ...)" com no mínimo $\frac{k}{2}$ "ruins", a probabilidade de (R_1, \ldots, R_k) casar com essa sequência é no máximo $(\frac{1}{5})^{\frac{\kappa}{2}}$. Como há 2^k possíveis arranjos "(bom, ruim, ...)", a probabilidade de (R_1, \ldots, R_k) conter no mínimo $\frac{k}{2}$ "ruins" é no máximo $2^k \left(\frac{1}{5}\right)^{\frac{k}{2}}$. Logo, a probabilidade de erro no voto da maioria é no máximo

$$\left(\frac{2}{\sqrt{5}}\right)^k$$
.

Sendo c tal que $\left(\frac{2}{\sqrt{5}}\right)^c \leqslant \frac{1}{2}$, rode a máquina k' = ck = O(k) vezes.

Demonstração.

Indutivamente, dada uma sequência aleatória de "(bom, ruim, ...)" com no mínimo $\frac{k}{2}$ "ruins", a probabilidade de (R_1, \ldots, R_k) casar com essa sequência é no máximo $(\frac{1}{5})^{\frac{\kappa}{2}}$. Como há 2^k possíveis arranjos "(bom, ruim, ...)", a probabilidade de (R_1, \ldots, R_k) conter no mínimo $\frac{k}{2}$ "ruins" é no máximo $2^k \left(\frac{1}{5}\right)^{\frac{k}{2}}$. Logo, a probabilidade de erro no voto da maioria é no máximo

$$\left(\frac{2}{\sqrt{5}}\right)^k$$
.

Sendo c tal que $\left(\frac{2}{\sqrt{5}}\right)^c \leqslant \frac{1}{2}$, rode a máquina k' = ck = O(k) vezes. Para gerar R_1 , precisamos de m bits aleatórios.

Demonstração.

Indutivamente, dada uma sequência aleatória de "(bom, ruim, . . .)" com no mínimo $\frac{k}{2}$ "ruins", a probabilidade de (R_1,\ldots,R_k) casar com essa sequência é no máximo $\left(\frac{1}{5}\right)^{\frac{k}{2}}$. Como há 2^k possíveis arranjos "(bom, ruim, . . .)", a probabilidade de (R_1,\ldots,R_k) conter no mínimo $\frac{k}{2}$ "ruins" é no máximo $2^k\left(\frac{1}{5}\right)^{\frac{k}{2}}$. Logo, a probabilidade de erro no voto da maioria é no máximo

 $\left(\frac{2}{\sqrt{5}}\right)^k$.

Sendo c tal que $\left(\frac{2}{\sqrt{5}}\right)^c \leqslant \frac{1}{2}$, rode a máquina k' = ck = O(k) vezes. Para gerar R_1 , precisamos de m bits aleatórios. Para gerar R_2, \ldots, R_k , precisamos de O(tdk) = O(k) bits aleatórios.

Demonstração.

Indutivamente, dada uma sequência aleatória de "(bom, ruim, . . .)" com no mínimo $\frac{k}{2}$ "ruins", a probabilidade de (R_1,\ldots,R_k) casar com essa sequência é no máximo $\left(\frac{1}{5}\right)^{\frac{k}{2}}$. Como há 2^k possíveis arranjos "(bom, ruim, . . .)", a probabilidade de (R_1,\ldots,R_k) conter no mínimo $\frac{k}{2}$ "ruins" é no máximo $2^k\left(\frac{1}{5}\right)^{\frac{k}{2}}$. Logo, a probabilidade de erro no voto da maioria é no máximo

 $\left(\frac{2}{\sqrt{5}}\right)^k$.

Sendo c tal que $\left(\frac{2}{\sqrt{5}}\right)^c \leqslant \frac{1}{2}$, rode a máquina k' = ck = O(k) vezes. Para gerar R_1 , precisamos de m bits aleatórios. Para gerar R_2, \ldots, R_k , precisamos de O(tdk) = O(k) bits aleatórios. Portanto, para gerar R_1, \ldots, R_k , precisamos de O(m+k) bits aleatórios.

Semialeatoriedade

Andamento da apresentação

- Semialeatoriedade

Assimetria de grafos

Definição (Automorfismo)

Um automorfismo sobre um grafo G é um isomorfismo de G em G. É fácil verificar que o conjunto dos automorfismos sobre G, denotado por Aut(G), forma um grupo de permutações sobre V(G) para a operação usual de composição \circ . Dizemos que um grafo G é assimétrico se o grupo $(Aut(G), \circ)$ é composto apenas pela permutação identidade.

Semialeatoriedade

Observação

A probabilidade de um grafo com *n* vértices tomado aleatoriamente ser assimétrico tende a 1 quando n tende ao infinito.

Semialeatoriedade em subconjuntos do \mathbb{Z}_n

Assimetria de grafos

Definição (Semialeatoriedade para subconjuntos do \mathbb{Z}_n)

Diz-se que um subconjunto S do \mathbb{Z}_n é semialeatório quando S satisfaz alguma — e, por conseguinte, cada uma^a — das propriedades listadas a seguir.

^aAs propriedades são todas equivalentes.

Pseudoaleatoriedade

Dado um subconjunto S de \mathbb{Z}_n :

Definição (Caracter, função característica ou função indicatória)

É a função $\chi_S \colon \mathbb{Z} \to \{0,1\}$ tal que $\chi_S(z) = 0$, se $z \notin S$, e $\chi_S(z) = 1$, caso contrário.

Semialeatoriedade 0000000

Dado um subconjunto S de \mathbb{Z}_n :

Definição (Caracter, função característica ou função indicatória)

É a função $\chi_S \colon \mathbb{Z} \to \{0,1\}$ tal que $\chi_S(z) = 0$, se $z \notin S$, e $\chi_S(z) = 1$, caso contrário.

Semialeatoriedade 0000000

Definição (Translado de S por x)

$$S + x = \{s + x \colon s \in S\}.$$

Dado um subconjunto S de \mathbb{Z}_n :

Definição (Caracter, função característica ou função indicatória)

É a função $\chi_S \colon \mathbb{Z} \to \{0,1\}$ tal que $\chi_S(z) = 0$, se $z \notin S$, e $\chi_S(z) = 1$, caso contrário.

Semialeatoriedade 0000000

Definição (Translado de S por x)

$$S + x = \{s + x \colon s \in S\}.$$

Definição (Grafo associado a S)

$$G_S = (\mathbb{Z}_n, \{\{i,j\} : i+j \in S\}).$$

ARG

Dado um subconjunto S de \mathbb{Z}_n :

Definição (Caracter, função característica ou função indicatória)

É a função $\chi_S \colon \mathbb{Z} \to \{0,1\}$ tal que $\chi_S(z) = 0$, se $z \notin S$, e $\chi_S(z) = 1$, caso contrário.

Semialeatoriedade 0000000

Definição (Translado de S por x)

$$S + x = \{s + x \colon s \in S\}.$$

Definição (Grafo associado a S)

$$G_S = (\mathbb{Z}_n, \{\{i,j\} : i+j \in S\}).$$

Notação

$$(\tilde{\forall} x \in X) (p(x)) \iff |\{x \in X : p(x)\}| = |X| - o(|X|).$$

Semialeatoriedade

Propriedades sobre a translação

Um subconjunto $S \subseteq \mathbb{Z}_n$ tem a propriedade ... se...

Propriedade (Translação fraca)

Para quase todo $x \in \mathbb{Z}_n$,

$$\left|S\cap(S+x)\right|=\frac{|S|^2}{n}+o(n).$$

Semialeatoriedade

Propriedades sobre a translação

Um subconjunto $S \subseteq \mathbb{Z}_n$ tem a propriedade ... se...

Propriedade (Translação fraca)

Para quase todo $x \in \mathbb{Z}_n$,

$$\left|S\cap(S+x)\right|=\frac{|S|^2}{n}+o(n).$$

Propriedade (Translação forte)

Para todo subconjunto T de \mathbb{Z}_n e quase todo x em \mathbb{Z}_n ,

$$\left|S\cap (T+x)\right|=\frac{|S||T|}{n}+o(n).$$

ARG

Propriedades sobre o padrão

Um subconjunto $S \subseteq \mathbb{Z}_n$ tem a propriedade ... se...

Propriedade (Padrão-2)

Para quase todo $u_1, u_2 \in \mathbb{Z}_n$,

$$\sum_{S \in S} \chi_S(x + u_1) \chi_S(x + u_2) = \frac{|S|^2}{n} + o(n).$$

Semialeatoriedade 00000000

Propriedades sobre o padrão

Um subconjunto $S \subseteq \mathbb{Z}_n$ tem a propriedade ... se. . .

Propriedade (Padrão-2)

Para quase todo $u_1, u_2 \in \mathbb{Z}_n$,

$$\sum_{s \in S} \chi_S(x + u_1) \chi_S(x + u_2) = \frac{|S|^2}{n} + o(n).$$

Propriedade (Padrão-k)

Para quase todo $u_1, \ldots, u_k \in \mathbb{Z}_n$,

$$\sum_{S \subseteq S} \prod_{i=1}^{k} \chi_{S}(x + u_{j}) = \frac{|S|^{k}}{n^{k-1}} + o(n).$$

990

Propriedades sobre a representação

Um subconjunto $S \subseteq \mathbb{Z}_n$ tem a propriedade ... se. . .

Propriedade (Representação-2)

Para quase todo $x \in \mathbb{Z}_n$,

$$\sum_{\substack{u_1,u_2\in S\\u_1+u_2=x}}\chi_S(u_1)\chi_S(u_2)=\frac{|S|^2}{n}+o(n).$$

Semialeatoriedade 0000000

Propriedades sobre a representação

Um subconjunto $S \subseteq \mathbb{Z}_n$ tem a propriedade ... se. . .

Propriedade (Representação-2)

Para quase todo $x \in \mathbb{Z}_n$,

$$\sum_{\substack{u_1, u_2 \in S \\ u_1 + u_2 = x}} \chi_{S}(u_1) \chi_{S}(u_2) = \frac{|S|^2}{n} + o(n).$$

Semialeatoriedade 0000000

Propriedade (Representação-k)

Para quase todo $x \in \mathbb{Z}_n$,

$$\sum_{\substack{u_1,\ldots,u_k \in S \\ \sum_{\ell=1}^k u_j = x}} \prod_{j=1}^k \chi_S(u_j) = \frac{|S|^k}{n^{k-1}} + o(n).$$

0000000

Mais propriedades

Um subconjunto $S \subseteq \mathbb{Z}_n$ tem a propriedade ... se. . .

Propriedade (Soma exponencial)

Para todo $j \in \mathbb{Z}_n \setminus \{0\}$,

$$\sum_{x \in S} \chi_S(x) e^{\frac{2\pi i j x}{n}} = o(n).$$

Um subconjunto $S \subseteq \mathbb{Z}_n$ tem a propriedade ... se. . .

Propriedade (Soma exponencial)

Para todo $j \in \mathbb{Z}_n \setminus \{0\}$,

$$\sum_{x \in S} \chi_S(x) e^{\frac{2\pi i j x}{n}} = o(n).$$

Semialeatoriedade 00000000

Propriedade (Grafo semialeatório)

Gs é semialeatório.

Mais propriedades ainda

Um subconjunto $S \subseteq \mathbb{Z}_n$ tem a propriedade ... se. . .

Propriedade (Ciclo-2t)

$$\sum_{x_1,\dots,x_{2t}} \chi_S(x_1+x_2)\chi_S(x_2+x_3)\cdots\chi_S(x_{2t-1}+x_{2t})\chi_S(x_{2t}+x_1)$$

$$= s^{2t} + o((n^{2t}).$$

Mais propriedades ainda

Um subconjunto $S \subseteq \mathbb{Z}_n$ tem a propriedade ... se. . .

Propriedade (Ciclo-2t)

$$\sum_{x_1,\dots,x_{2t}} \chi_S(x_1+x_2)\chi_S(x_2+x_3)\cdots\chi_S(x_{2t-1}+x_{2t})\chi_S(x_{2t}+x_1)$$

$$= s^{2t} + o((n^{2t}).$$

Propriedade (Densidade relativa)

Para todo subconjunto T de \mathbb{Z}_n ,

$$\sum_{x,y \in S} \chi_{T}(x) \chi_{T}(y) \chi_{S}(x+y) = \frac{|S||T|^{2}}{n} + o(n^{2}).$$

99 Q (P

Andamento da apresentação

- Conclusão

• A pseudoaleatoriedade trata sobre como, a partir de algumas sequências aleatórias, gerar outras sequências, de modo que o conjunto de todas as sequências se comporte quase como se fosse verdadeiramente aleatório para a distribuição uniforme.

- A pseudoaleatoriedade trata sobre como, a partir de algumas sequências aleatórias, gerar outras sequências, de modo que o conjunto de todas as sequências se comporte quase como se fosse verdadeiramente aleatório para a distribuição uniforme.
- Vimos que, dada uma máquina \mathcal{BPP} que usa m bits aleatórios por rodada, consegue-se uma probabilidade de erro do voto da maioria no máximo $\frac{1}{2k}$ utilizando O(m+k) bits aleatórios e O(k) rodadas.

- A pseudoaleatoriedade trata sobre como, a partir de algumas sequências aleatórias, gerar outras sequências, de modo que o conjunto de todas as sequências se comporte quase como se fosse verdadeiramente aleatório para a distribuição uniforme.
- Vimos que, dada uma máquina \mathcal{BPP} que usa m bits aleatórios por rodada, consegue-se uma probabilidade de erro do voto da maioria no máximo $\frac{1}{2k}$ utilizando O(m+k) bits aleatórios e O(k) rodadas.
- A semialeatoriedade busca definir propriedades equivalentes que sirvam para garantir a representatividade de um elemento de uma classe, de acordo com aquilo que é esperado que um elemento realmente aleatório daquela classe tenha.

Referências

B. Chazelle.

The Discrepancy Method: Randomness and Complexity.

Cambridge University Press, 2000.

Capítulo 9: Pseudorandomness.

F. R. K. Chung and R. L. Graham.

Quasi-random subsets of \mathbb{Z}_n .

Journal of Combinatorial Theory, pages 64–86, 1992.

F. R. K. Chung, R. L. Graham, and R. M. Wilson.

Quasi-random graphs.

Proc. Natl. Acad. Sci., 85:969–970, 1988.

