Total No. of Questions: 8]	SEAT No. :
P3142	[Total No. of Pages : 2
	[5872] 295
	VLSI & Embedded Systems)
ANALO	GCMOS DESIGN

(2017 Pattern) (Semester - II) (504207)

Time: 3 Hours] [Max. Marks: 50

Time: 3 Hours]
Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- 3) Assume suitable data if necessary.
- Q1) a) How does MOSFET behave as a switch, diode and active resistor?What are its applications?[5]
 - b) Draw a schematic diagram and equivalent small-signal model for the CMOS inverter. Explain the model, [5]
- Q2) a) Explain the effect of channel length modulation and body effect on MOSFET. Also, show how these are accounted in the basic small signal model.
 - b) What is the need of voltage / current references? Explain in detail the concept of BGR with its necessity. [4]
 - c) Differentiate between the small-signal and large-signal models for the MOS transistor. [2]
- Q3) a) Draw the schematic of the CMOS difference amplifier with the current mirror load. Write the expression for ICMR, CMRR and 3dB frequency.

 [5]
 - b) Write a short note on Folded cascade amplifier. [3]
 - c) Which are the dominant noises in CMOS op-amp? List the techniques to reduce this noise. [2]

P.T.O.

<i>Q4</i>)	a)	With respect to important performance parameters, compare active locurrent source load and push-pull inverter.	ad, [4]
	b)	What is cascade amplifier? Write its advantages and disadvantages of a single-stage amplifier.	ver [3]
	c)	What is micropower op-amp? Explain the techniques used in micropower op-amp.	the [3]
Q 5)	a)	What is the need of compensation in multistage amplifiers. Explain mi compensation in two stage CMOS op-amp.	ller [5]
	b)	List and explain important static and dynamic characteristics of comparator.	the [3]
	c)	How propogation delay is related to slew rate, derive the relation.	[2]
Q6)	a) ×	Draw and explain single-ended and double-ended CMOS differen amplifier.	tial [5]
	b)	Write a note on the stability of op-amp and its effect on slew rate. Ware different ways to improve stability?	hat [5]
<i>Q7</i>)	a)	State and explain the practical considerations for Low Noise Amplit (LNA) design.	fier [4]
	b)	Explain differential PNA with neat circuit diagram.	[4]
	c)	Explain spurs in mixer.	[2]
Q 8)	a)	What are the techniques to improve the bandwidth? How to use ze as bandwidth enhancer? Explain shunt peaking in amplifier. Give expression for extended bandwidth.	
	b)	How nonlinear systems work as linear mixers. Explain square-lemosFET mixer with neat circuits.	aw [5]