Департамент *Информатика* Школа *Състезателно програмиране* СЪСТЕЗАНИЕ, 17 ноември 2018 г.

Задача А. Хипотеза на Голдбах

Известната (недоказана) хипотеза на Голдбах гласи: Всяко четно цяло число по-голямо от 2 може да бъде представено като сбор от две прости числа. Да се напише програма за намиране по колко начина може да стане това.

 $Bxo\partial$.

На стандартния вход е дадена редица от четни числа, по-големи от 2.

Ограничения.

Числата са по-малки от 10000.

Изход.

На стандартния изход да се отпечати редица, като всеки неин елемент е съответния брой представяния (сбор от прости числа) на числото от входната редица.

Пример:

 $Bxo\partial.$ Из $xo\partial.$

4 6 60 600 6000 1 1 6 32 178

Департамент *Информатика* Школа *Състезателно програмиране* СЪСТЕЗАНИЕ, 17 ноември 2018 г.

Задача В. Израз нула

Дадена е редица от n естествени числа. Да се поставят операции "+"и "-"между числата така, че резултатът след пресмятане на получения израз да бъде 0.

$Bxo\partial$.

На стандартния вход са задаени няколко примера – всеки на отделен ред.

Ограничения.

 $1 < n \le 20$

Числата в редицата са по-малки от 100.

Изход.

На стандартния изход (за всеки пример на отделен ред) да се изведе броя на решенията на задачата.

Пример:

$Bxo\partial$.	Изход.
1 1	1
1 2 3 4 5 6 7 8	7
3 4 2	0
30 20 40 10	1

Департамент *Информатика* Школа *Състезателно програмиране* СЪСТЕЗАНИЕ, 17 ноември 2018 г.

Задача С. Низове

Даден е низ от n малки латински букви, от които трябва да се изберат точно k и да образува с тях нов низ. Целта е новият низ да бъде с възможно най-много различни букви и да е възможно най-малък лексикографски.

 $Bxo\partial$.

За всеки тест на първия ред на стандартния вход са зададени две естествени числа n и k – броя на буквите в първоначалния низ и броя букви, които трябва да съдържа новия низ. Следващият ред съдържа първоначалния низ.

Ограничения.

 $1 \le n \le 1000$

 $1 \le k \le n$

Изход.

На стандартния изход за всеки тест се извежда (на отделен ред) търсения нов низ.

Пример:

 $Bxo\partial.$ Изхо $\partial.$

12 7 eeqrtwy qwertyqwerty aaab

6 4 babaab

Департамент *Информатика* Школа *Състезателно програмиране* СЪСТЕЗАНИЕ, 17 ноември 2018 г.

Задача D. Търсене на низа

Даден е низ с дължина m, състоящ се от малки латински букви. Да се намери друг низ, който е n-ти в лексикографски наредената редица от различни низове, състоящи се от всички букви на дадения низ.

 $Bxo\partial$.

За всеки тестов пример на стандартния вход се задава низа и числото n.

Ограничения.

 $1 \le m \le 20$

n < m!

Изход. За всеки тестов пример на стандартния изход на отделен ред да се отпечати търсения низ.

Пример:

 $Bxo\partial.$ Из $xo\partial.$

dabc 2 abdc byebye 1 bbeeyy

Департамент *Информатика* Школа *Състезателно програмиране* СЪСТЕЗАНИЕ, 17 ноември 2018 г.

Задача Е. Минимуми и максимуми на функция

Дадена е функция f, дефинирана върху множеството от целите числа. Дефинираме минимум на такава функция в точка n, ако f(n) < f(n-1) и f(n) < f(n+1). Аналогично се дефинира и максимум на функцията. Да се намери броят на минимумите и максимумите на зададена с редица такава функция.

 $Bxo\partial$.

От стандартния вход трябва да се прочетат всички примери. Всеки пример започва с цяло положително число N – броя на точките, където е определена функцията. Следват стойностите на функцията в точките n=1,2,3,...,N.

Ограничения.

 $f:[1,10000] \rightarrow [-1000,1000]$

Изход.

За всеки пример на стандартния изход на отделен ред да се изведат две числа – броя на минимумите и броя на максимумите на функцията, отделени с един интервал.

Пример:

 $Bxo\partial.$ Из $xo\partial.$

10 2 3

3 2 3 2 2 7 8 2 9 1

Департамент *Информатика* Школа *Състезателно програмиране* СЪСТЕЗАНИЕ, 17 ноември 2018 г.

Задача F. Еднакви елементи

Дадена е редица от N цели неотрицателни числа. От текущата редица на всяка итерация получаваме нова, като $a'_k = |a_k - a_{k+1}|$, започвайки последователно от първия й елемент и $a'_N = |a_N - a_1|$. Колко итерации са нужни, за да получим редица от еднакви елементи? За N = 4 и редицата 0 2 5 11 са нужни следните 8 итерации:

2 3 6 11

1 3 5 9

2 2 4 8

0 2 4 6

2 2 2 6

0 0 4 4

0 4 0 4

4 4 4 4

$Bxo\partial$.

Всеки тестов пример се състои от един ред, на който с по един празен символ са разделени елементите на редицата.

Ограничения.

2 < N < 20

Числата от входа са по-малки от 10000.

Изход.

За всеки тестов пример, на отделен ред на стандартния изход изведете търсения брой итерации във формата, показан в примерите по-долу. Ако след 1000 итерации все още не се получава желаната редица от еднакви числа, изведете "not attained" за съответния тест.

Пример: $Bxo\partial$.

0 2 5 11		Case 1:	8 iterations
0 2 5 11 3	3	Case 2:	not attained
0 4 0 4		Case 3:	1 iterations
300 8600 9	9000 4000	Case 4:	3 iterations
1 1 1		Case 5:	0 iterations

Изход.

Департамент *Информатика* Школа *Състезателно програмиране* СЪСТЕЗАНИЕ, 17 ноември 2018 г.

Задача G. Коалиции

На изборите за Народно събрание n партии влизат в парламента. Да се напише програма, която определя всички възможни коалиции за образуване на правителство с изискването такава коалиция да има повече от половината депутати.

$Bxo\partial$.

Няколко примера са зададени на стандартния вход. Всеки пример започва с числото n и след него на n реда са дадени име на партия (низ без интервали) и брой на депутатите на тази партия.

Ограничения.

Най-много 10 партии влизат в парламента.

Общият брой на депутатите е най-много 500.

Изход.

На стандартния изход да се изведат списъци от имена на партии, влизащи в коалицията за съставяне на правителство, всеки списък на отделен ред с по един интервал между имената на партиите. Редът на партиите в коалицията е по броя на депутатите в намаляващ ред. Ако в коалицията две партии имат еднакъв брой депутати, наредбата на тези две партии е лекси-кографска по имената на партиите. Най-напред се отпечатват коалиции с най-малко партии. При еднакъв брой партии в две колиции по-напред се отпечатва коалицията с повече депутати. Ако и броят на партиите и броят на депутатите в две коалиции са равни, наредбата е лексикографска на списъците на имената на партиите, както са подредени в коалицията.

Пример:

$Bxo\partial$.	Изход.
4	A D
A 10	A B
B 6	D B
C 3	A D B
D 10	A D C
2	A B C
par1 100	D B C
par2 400	A D B C
	par2
	par2 par1

Департамент *Информатика* Школа *Състезателно програмиране* СЪСТЕЗАНИЕ, 17 ноември 2018 г.

Задача Н. Избори

На изборите за Народно събрание в парламента влизат партии, които са получили повече от 4% от действителните гласове на избирателите. Да се напише програма, която пресмята колко партии влизат в парламента при дадено разпределение на действителните гласове.

$Bxo\partial$.

Няколко примера са зададени на стандартния вход. Всеки пример започва с числото n — брой на участващите в изборите партии и след него на нов ред n числа — брой на действителните гласове на партиите по реда на номерата на бюлетините.

Ограничения.

Най-много 50 партии участват в изборите.

Има общо 6 милиона гласоподаватели.

Изход.

За всеки пример на стандартния изход на отделен ред да се изведе броя на партиите, влизащи в парламента.

Пример:

$Bxo\partial$.	Изход.
4	3
100001 123456 2000000 12	1
2	2
100 4	
3	
100 50 0	

Департамент *Информатика* Школа *Състезателно програмиране* СЪСТЕЗАНИЕ, 17 ноември 2018 г.

Задача I. Ограничени суми

За дадени цяли положителни числа p и s, напишете програма, която пресмята броя на всички различни редици от n неотрицателни цели числа, в които всеки елемент е по-малък от p и сумата на всички елементи е по-малка от s.

$Bxo\partial$.

Първият ред на входа съдържа броя на тестовете. Данните за всеки тест са дадени на отделен ред в следната последователност: p, n и s.

Ограничения.

0

0 < n < 20

Изход.

Програмата трябва да изведе намерените стойности на съответни редове в изхода.

Пример:

 $Bxo\partial.$ Из $xo\partial.$

2 7

2 3 3 190

5 4 7

Департамент *Информатика* Школа *Състезателно програмиране* СЪСТЕЗАНИЕ, 17 ноември 2018 г.

Задача Ј. Коефициент

Напишете програма, която намира коефициента пред k-тата степен на x в полинома $p(x) = (x-1)^n (x+1)^m$.

 $Bxo\partial$.

От първия ред на стандартния вход се въвежда броя на тестовите примери. За всеки са зададени по три цели числа – стойностите на n, m и k за съответния тестов пример.

Ограничения.

 $n, m \ge 0,$
 $n + m \le 60,$

 $0 \le k \le n + m$

Изход.

За всеки тестов пример програмата трябва да изведе на отделен ред коефициента пред k-тата степен на x в съответния полином.

Пример:

 $Bxo\partial.$ Из $xo\partial.$

2 -2

3 1 3 6

4 0 2