APPENDIX I MORE ON SIMPLIFIED AES

William Stallings

Copyright 2013

I.1	ARITHMETIC IN GF(2^4)	2
I.2	THE MIX COLUMN FUNCTION	4

Supplement to Cryptography and Network Security, Sixth Edition Prentice Hall 2013 ISBN: 0133354695

http://williamstallings.com/Cryptography

I.1 ARITHMETIC IN GF(24)

Table I.1 shows the addition and multiplication tables in GF(2^4) modulo $x^4 + x + 1$. For example, consider the product ($4 \cdot C$) = (0100 \cdot 1100). In terms of polynomials, this is the product [$x^2 \times (x^3 + x^2)$] mod ($x^4 + x + 1$) = ($x^5 + x^4$) mod ($x^4 + x + 1$). Because the degree of the polynomial to the right of the mod operator is greater than or equal to the modulus, a division is required to determine the remainder:

$$\begin{array}{r}
x + 1 \\
x^4 + x + 1 \overline{\smash)x^5 + x^4} \\
\underline{x^5 + x^2 + x} \\
x^4 + x^2 + x \\
\underline{x^4 + x^2 + x} \\
\underline{x^4 + x + 1} \\
x^2 + 1
\end{array}$$

In binary, the remainder is expressed as 0101, or 5 in hexadecimal. Thus $(4 \bullet C) = 5$, which agrees with the multiplication table in Table I.1.

Table I.1 Arithmetic in $GF(2^4)$ modulo $x^4 + x + 1$

(a) Addition

+	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
1	1	0	3	2	5	4	7	6	9	8	В	A	D	С	F	Е
2	2	3	0	1	6	7	4	5	A	В	8	9	Е	F	С	D
3	3	2	1	0	7	6	5	4	В	A	9	8	F	Е	D	С
4	4	5	6	7	0	1	2	3	C	D	Е	F	8	9	A	В
5	5	4	7	6	1	0	3	2	D	С	F	Е	9	8	В	A
6	6	7	4	5	2	3	0	1	Е	F	C	D	A	В	8	9
7	7	6	5	4	3	2	1	0	F	Е	D	С	В	A	9	8
8	8	9	A	В	С	D	Е	F	0	1	2	3	4	5	6	7
9	9	8	В	A	D	С	F	Е	1	0	3	2	5	4	7	6
Α	A	В	8	9	Е	F	С	D	2	3	0	1	6	7	4	5
В	В	A	9	8	F	Е	D	С	3	2	1	0	7	6	5	4
С	С	D	Е	F	8	9	A	В	4	5	6	7	0	1	2	3
D	D	С	F	Е	9	8	В	A	5	4	7	6	1	0	3	2
E	Е	F	С	D	A	В	8	9	6	7	4	5	2	3	0	1
F	F	Е	D	C	В	A	9	8	7	6	5	4	3	2	1	0

(b) Multiplication

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
2	0	2	4	6	8	A	С	Е	3	1	7	5	В	9	F	D
3	0	3	6	5	С	F	A	9	В	8	D	Е	7	4	1	2
4	0	4	8	С	3	7	В	F	6	2	Е	A	5	1	D	9
5	0	5	A	F	7	2	D	8	Е	В	4	1	9	С	3	6
6	0	6	С	A	В	D	7	1	5	3	9	F	Е	8	2	4
7	0	7	Е	9	F	8	1	6	D	A	3	4	2	5	C	В
8	0	8	3	В	6	Е	5	D	С	4	F	7	A	2	9	1
9	0	9	1	8	2	В	3	A	4	D	5	C	6	F	7	Е
Α	0	A	7	D	Е	4	9	3	F	5	8	2	1	В	6	C
В	0	В	5	Е	A	1	F	4	7	С	2	9	D	6	8	3
C	0	С	В	7	5	9	Е	2	A	6	1	D	F	3	4	8
D	0	D	9	4	1	С	8	5	2	F	В	6	3	Е	A	7
Е	0	Е	F	1	D	3	2	С	9	7	6	8	4	A	В	5
F	0	F	D	2	9	6	4	В	1	Е	С	3	8	7	5	Α

I.2 THE MIX COLUMN FUNCTION

The mix column function operates on each column individually. Each nibble of a column is mapped into a new value that is a function of both nibbles in that column. The transformation was defined in Appendix 5B as follows:

$$\begin{bmatrix} 1 & 4 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} \\ s_{1,0} & s_{1,1} \end{bmatrix} = \begin{bmatrix} s'_{0,0} & s'_{0,1} \\ s'_{1,0} & s'_{1,1} \end{bmatrix}$$

We can recast this in terms of polynomials as follows. The value 1 corresponds to the polynomial 1 and the value 4 (binary 100) corresponds to the polynomial x^2 . Thus, we have:

$$\begin{bmatrix} 1 & x^2 \\ x^2 & 1 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} \\ s_{1,0} & s_{1,1} \end{bmatrix} = \begin{bmatrix} s'_{0,0} & s'_{0,1} \\ s'_{1,0} & s'_{1,1} \end{bmatrix}$$

Remember that multiplication is performed modulo $x^4 + x + 1$. Using the polynomial formulation allows us to develop a simple explanation of the arithmetic involved. Referring back to the representation of the state matrix in Figure 5.12a, we can recast the mix column multiplications as follows:

$$\begin{bmatrix} 1 & x^2 \\ x^2 & 1 \end{bmatrix} \begin{bmatrix} b_0 x^3 + b_1 x^2 + b_2 x + b_3 & b_8 x^3 + b_9 x^2 + b_{10} x + b_{11} \\ b_4 x^3 + b_5 x^2 + b_6 x + b_7 & b_{12} x^3 + b_{13} x^2 + b_{14} x + b_{15} \end{bmatrix}$$

Let's perform the multiplication of the first row of the left-hand matrix with the first column of the right-hand matrix to get the entry in the upper left-hand corner of the target matrix; that is, the polynomial value for $S'_{0,0}$. We have

$$s'_{0,0} = (b_0 x^3 + b_1 x^2 + b_2 x + b_3) + (x^2) (b_4 x^3 + b_5 x^2 + b_6 x + b_7)$$
$$= b_4 x^5 + b_5 x^4 + (b_0 \oplus b_6) x^3 + (b_1 \oplus b_7) x^2 + b_2 x + b_3$$

It can easily be shown that:

$$x^5 \mod (x^4 + x + 1) = (x^2 + x)$$

 $x^4 \mod (x^4 + x + 1) = (x + 1)$

The reader is invited to do the polynomial division to demonstrate these equalities. Using these results, we have:

$$s'_{0,0} = b_4(x^2 + x) + b_5(x + 1) + (b_0 \oplus b_6)x^3 + (b_1 \oplus b_7)x^2 + b_2x + b_3$$
$$= (b_0 \oplus b_6)x^3 + (b_1 \oplus b_4 \oplus b_7)x^2 + (b_2 \oplus b_4 \oplus b_5)x + (b_3 \oplus b_5)$$

Expressed in terms of bits, the four bits of $S'_{0.0}$ are

$$s_{0,0}' = [(b_0 \oplus b_6), (b_1 \oplus b_4 \oplus b_7), (b_2 \oplus b_4 \oplus b_5), (b_3 \oplus b_5)]$$

Similarly, we can show that:

$$s'_{10} = [(b_2 \oplus b_4), (b_0 \oplus b_3 \oplus b_5), (b_0 \oplus b_1 \oplus b_6), (b_1 \oplus b_7)]$$

$$\begin{split} s_{0,1}' &= [(b_8 \oplus b_{14}), \, (b_9 \oplus b_{12} \oplus b_{15}), \, (b_{10} \oplus b_{12} \oplus b_{13}), \, (b_{11} \oplus b_{13})] \\ s_{1,1}' &= [(b_{10} \oplus b_{12}), \, (b_8 \oplus b_{11} \oplus b_{13}), \, (b_8 \oplus b_9 \oplus b_{14}), \, (b_9 \oplus b_{15})] \end{split}$$