

Moderado de Sistemas Assologicas

23/09/25

	,				
	Practic	. 1			
	Angli				
Ve (+) 1		V ₅ (+)			
1. (4)	3 L 12 (4) > PC				
	ZV Ic			- 1 To 1 M	
E eva vones pri					
e coa cones pri	nopacs				
Ve(1) - P.S. (+) +L		(+)] + R	C1, (+)-1	[(+)]	
1	94				(1 (2)).
() (L, (+) - L2 (+)]	+ R C 1, (+) -	2 (1)] - 1	lo(t) + R	(1(+) + -	JAZLEJOE
3.5					
V5(+) - Rla(+) +:	S12(+) d+				
		1			
Modelo de ecua	cones integr	o - diferen	ogles		
1, (1) = [vecx) - [2 (1, (1) - 12(1) i his	1)] 1		
	a t			7	
l2 (+) = [- d [] c	+)-12(+)] + P	- (+) - 1 c	Sl2 (1) 1:	3 R	
	d+				
U5 (+) = R (2(+) +	(12(1))				
VD (+) - 16 (-)	c				
		- 3			

Moderado de sistemas fisiológicos Ve (+) 4 la 1 1. L 11-12 12 2, R 12 Vs(1) R 1,

Modelado de sistemas fisiológicos

26/09/25

Tyan					1 1 1		
	made, do	L5+11	(s) - Ls I, - I 2 (s).	(5) + R	[1(s) - R[2(5)	
	s) - t2 (s)]						[2 (5)
Vs(s) = (ltr(s) + I	$\frac{z(s)}{cs} = \frac{c_1}{c}$		(3)	*		
Proce dimi	ento algeb	casco					
	R + L S + R) I L S + 2 R) I (cs)			
LS I. (S)_	LSI 2 (5) H	R J. (s) - R]	[z (s) =	2212 (5	1 + 1 2 (S		-
	+ P],(s) = 3			Tz(s)			
	(S) = (3p	63) [2 (5)				
	(5 (65)	2)					
T2 (5)= 5	(S(L) - R)				
Ve(s) = (1	(S + 2R)(CL		FI) I.	(s) - C			
= ((LS FIR ICC	152 + 3 CRS	+1) - ((15+1	1	I Iz G	

													+	-						T		1				T
1									(1	-					-								1
CL	16	5 +	3	(1	ns	2 +	L	5	1 1	(L R	sz	1	6	CR	2 5	+	2 12		100				-	100	1
,				1			1			14	1/2				/								,			-
- (L	3	۱ -	20	Lh	3	-		CR	25	6	+			50	R 2	5				1 1	1	13		23	+1
	-0-	1		-0		1			-				0	_		18	_ (_0	-		- 0		-
				1	1		. 9		1	U				7		11	1	70	1/2		100		4	1		1 3
Ve	(s)	=	3(LR	52	+	(!	5	CIL	2)	5	+ 2	K													
						(rai				193			7.	1	1 1		130	
												-														
V	(3)) -	(1	15	11	1	7	1	5)																	
			<u> </u>	((1				111	, inte	1	100	1
			3	(1)	0	2 +		. (R 7	+1	15	+ 2	n	7	1	(5)									
	4		1000		1	56					100					1	1	7	- 1/4			1	in a			
		,					63		4-1						g		2				100					
CC	ns																									
						1		2 1			70 4							3 3-								
								10																		
15 () =	()	n	52	+ 1	()	12	1	1	5	+ 0											4				
5 (RS								4	, 10					100								
			U	-	,	-	30	10		10	,		0													
																							-			
											44	1.7						4 11								
																		1			- 6-					
										100																
				1																						3
																				13/1/					III.	
					The state of																					
				- 4								1-0								14-3			53F			
							-	-				-						N	- 1	-	-					

Estabilidad en 1920 abierto				
· Corcular los polos de la fonción de transtavenda				
Vo(5) = CLR52 + (CR2+1) 5 + R Ve(5) 3 CLR52 + (SCR2+1) 5 + 2R				
den = [3* C* L* R, 5 * C * Q *** 2 + L, 2 * R]				
L=np.roots (den)				
topont: Las raices son 2 LEO13 y 4 LC1)3				
7, = -454545.113			1-1	
7 - 7 - 0 20	ect)	} = \ V	-	
Presenta una respuesto estable	LAN .		0.5V	
Error en estado estadonario				
Transitario			a Jonar)	0
c(s) = lim sue(s) [1 - 4s(s)] 5+0 Vecs)	(4 (2)			
		(+) =		
5-0 St 1 1 - CLRS2 + CCR2 + L) S+ R 5-0 SCLRS2 + (SCR2+L) S+ 2R	Ve	(3)=	5	
- 2 l				
e(t) = 1 1		•		
ŽV				

