June 2006 6679 Mechanics M3 Mark Scheme

Question Number	Scheme	Ма	rks
1.	Use of $(\pi) \int y^2 dx \times \overline{x} = (\pi) \int xy^2 dx$ $\int x dx \times \overline{x} = \int x^2 dx$	M1	
	$\left[\frac{1}{2}x^2\right]_{}^{} \times \overline{x} = \left[\frac{1}{3}x^3\right]_{}^{}$	A1 = A1	I
	Using limits 0 and 4 $\frac{16}{2} \times \overline{x} = \frac{64}{3}$	M1	
	$\overline{x} = \frac{8}{3}$	A1	(5) [5]
2.	(a) Small Hemisphere Bowl Large Hemisphere Mass ratios $\frac{2}{3}\pi \left(\frac{a}{2}\right)^3 = \frac{2}{3}\pi \frac{7a^3}{8} = \frac{2}{3}\pi a^3$ Anything in the ratio 1:7:8	B1	
	\overline{x} $\frac{3}{16}a$ \overline{x} $\frac{3}{8}a$	B1	
	$1 \times \frac{3}{16} a + 7 \times \overline{x} = 8 \times \frac{3}{8} a$ Leading to $\overline{x} = \frac{45}{112} a $ cso	M1 A1	(5)
	(b) Bowl Liquid Bowl and Liquid Mass Ratios $M = kM = (k+1)M$ $\frac{45}{112}a = \frac{3}{16}a = \frac{17}{48}a$	B1 B1	
	$M \times \frac{45}{112} a + kM \times \frac{3}{16} a = (k+1)M \times \frac{17}{48} a$	M1 A1	
	Leading to $k = \frac{2}{7}$	A1	(5) [10]

Question Number	Scheme	Marks	
3.	(a) $a = 0.1$	B1	
	$\frac{2\pi}{\omega} = \frac{1}{5} \implies \omega = 10\pi$	M1 A1	
	$F_{\text{max}} = ma\omega^2$	M1	_
	$=0.2\times0.1\times(10\pi)^2$	M1	
	≈19.7 (N)	A1	
	cao	(6)	
	(b) $a' = 0.2, \omega' = 10\pi$	B1ft, B1ft	
	$v^2 = \omega^2 (a^2 - x^2) = 100\pi^2 (0.2^2 - 0.1^2) (= 3\pi^2 \approx 29.6 \dots)$	M1 A1	
	$v \approx 5.44 \left(\text{m s}^{-1} \right)$	A1	
	cao If answers are given to more than 3 significant figures a	(5)	
	maximum of one A mark is lost in the question.	[11]	
	ton a 3		
4.	$\tan \alpha = \frac{3}{4}$ or equivalent	B1	
	$\tan \alpha = \frac{r}{h}$		
	or $\frac{r}{s} = \frac{3a}{4}$	B1	
	$R(\uparrow) R \sin \alpha = mg$		
	$\left(R = \frac{5}{3}mg\right)$	M1 A1	
	$h mg R(\leftarrow) R\cos\alpha = mr\omega^2$	M1 A1	
	$= mr \times \frac{8g}{9a} \left(R = \frac{10mrg}{9a} \right)$	A1	
	· · · · · · · · · · · · · · · · · · ·		
	$\tan \alpha = \frac{9a}{8r} \left(\frac{5}{3}mg = \frac{10mrg}{9a}\right)$	M1 A1	
	Eliminating R (3 9 a 3)		
	$\left(\frac{3}{4} = \frac{9a}{8r} \implies r = \frac{3}{2}a\right)$		
	$h = \frac{r}{\tan \alpha} = \frac{3a}{2} \times \frac{4}{3} = 2a$	M1 A1 (11)	

	[11]

Question Number	Scheme	Marks
5.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$AP = \sqrt{\left(0.75^2 + 1^2\right)} = 1.25$	M1 A1
	Conservation of energy $\frac{1}{2} \times 2 \times v^2 + 2 \times \frac{49 \times 0.5^2}{2 \times 0.75} = 2g \times 1$ for each incorrect term	M1 A2 (1, 0)
	Leading to $v \approx 1.8 \text{ (m s}^{-1}\text{)}$ accept 1.81	A1 (6)
	(b) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$R(\uparrow) \qquad 2T\cos\alpha = 2g$ $y = \frac{0.75}{\sin\alpha}$	M1 A1
	Hooke's Law $T = \frac{49}{0.75} \left(\frac{0.75}{\sin \alpha} - 0.75 \right)$ $= 49 \left(\frac{1}{\sin \alpha} - 1 \right)$	M1 A1
	$\frac{9.8}{\cos \alpha} = 49 \left(\frac{1}{\sin \alpha} - 1 \right)$ Eliminating T	M1
	$\tan \alpha = 5(1 - \sin \alpha)$ $5 = \tan \alpha + 5\sin \alpha *$ cso	A1 (6) [12]

Question Number	Scheme	Marks
6.	Parabola Hyperbola Points 7.5 0 4 5 10 t	B1 B1 B1 (3)
	 (b) Identifying the minimum point of the parabola and 5 as the end points. 2 < t < 5 (c) Splitting the integral into two part, with limits 0 and 4, and 4 and 5, and evaluating both integrals. ∫₀⁴ 3t(t-4) dt = [t³ - 6t²]₀⁴ = -32 and ∫₄⁵ 3t(t-4) dt = [t³ - 6t²]₄⁵ = 7 	M1 A1 (2) M1 A1
	Both Total distance = 39 (m) * cso	A1 (3)
	(d) $\int_{5}^{t_{1}} \frac{75}{t} dt = 32 - 7$	M1 A1
	$75\left[\ln t\right]_{5}^{t_{1}} = 25$ $\ln \frac{t_{1}}{5} = \frac{1}{3} \implies t_{1} = 5e^{\frac{1}{3}}$ ≈ 6.98	A1 M1 A1 (5)
		[13]

			ı

Question	Scheme	Marks	
Number 7.	(a)		
	A \downarrow $ \begin{array}{c} P & \downarrow \\ \sqrt{\left(\frac{5gl}{2}\right)} \end{array} $ Conservation of Energy		
	$\frac{1}{2}m\left(\frac{5gl}{2}-u^2\right)=mgl$	M1 A1= A1	
	Leading to $u = \sqrt{\left(\frac{gl}{2}\right)}$	A1 (4))
	(b) *** *** *** *** *** *** *** **		
	T mg	†	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Conservation of Energy		
	$\frac{1}{2}m(u^2-v^2)=mgr$	M1 A1	
	$v^2 = u^2 - 2gr$		
	$R(\downarrow) \qquad T + mg = \frac{mv^2}{r}$	M1 A1	
	$T = \frac{m}{r} \left(u^2 - 2gr \right) - mg$	M1	
	$=\frac{mu^2}{r}-3mg$	A1	
	$=\frac{mgl}{2r}-3mg$	M1	
	$T \ge 0 \Rightarrow \frac{mgl}{2r} \ge 3mg$ $\Rightarrow \frac{1}{6} \ge r$	M1	
	$AB_{\text{MIN}} = \frac{5l}{6}$	A1 (9)	,
	0	[13	

