Engenheiro de corrida com IA e Machine Learning

como melhorar o traçado de pilotos com técnicas de clusterização

Rafael Marques Cruz Russo

Prof. Dr. Leandro Carlos Fernandes

Motivação e Objetivo

Engenheiros de corrida têm muitas responsabilidades entre ajudar o piloto e elaborar estratégias, podendo ficar sobrecarregados em momentos cruciais da corrida. Uma de suas tarefas principais é informar ao piloto quando ele está errando o traçado ideal e perdendo tempo, algo que demanda atenção constante. Como essa preocupação é constante, ajudar o engenheiro nesse ponto pode abrir espaço para ele pensar em estratégias melhores. Assim, utilizando redes neurais e KPIs, o sistema detecta onde o piloto está errando e comunica a ele por meio de uma ferramenta Text-to-Speech. Dessa maneira, o engenheiro do piloto consegue focar em outros pontos da corrida e melhor exercer suas responsabilidades.

Metodologia

Os dados utilizados para a pesquisa de clusterização e treinamento de modelos de Machine Learning (ML) e Inteligência Artificial (IA) foram extraídos da biblioteca Python Fast-F1 (THEOEHRLY, 2024). A biblioteca fornece dados de coordenadas para o desenho do traçado do piloto e dados de telemetria, como velocidade, RPM e pressão no pedal.

Métodos como Redes Neurais Recorrentes (RNNs) ou Dynamic Time Warping (DTW) serão aplicados para realizar a clusterização, como indicado por trabalhos prévios (REMÖNDA et al., 2021; BOETTINGER; KLOTZ, 2023).

Figura 1: Diagrama de funcionamento do sistema

Fonte: Rafael Russo

Após classificar a volta de entrada em um cluster, o programa calculará pontuações para as voltas agrupadas, considerando métricas como velocidade média e tempo de ativação do DRS. Redes neurais Long Short-Term Memory (LSTM) serão utilizadas para essa análise, dadas sua rapidez e precisão em contextos automotivos (SCHLEINITZ et al., 2022).

Com base nas diferenças entre a volta de entrada e a melhor do cluster, o sistema gerará mensagens pré-programadas contendo informações relevantes para o piloto. Essas mensagens serão transmitidas por meio de síntese de texto para fala (Text-to-Speech), como o Google Text-to-Speech API.

Cronograma

Atividades	J.	F.	M.	A.	M.	J.	J.	A.	S.	0.	N.
Clusterização de	X	X									
voltas											
Modelo LSTM		X	X								
Sistema de				X	X						
classificação											
Geração de					X	X					
mensagens											
Sistema de TTS						X	X				
Elaboração do							X	X			
protótipo											
Testes com								X	X		
protótipo											
Ajustes finais no									X	X	X
protótipo											

Referências

THEOEHRLY, Fast-F1. Version 3.4.4. Github. Disponível em https://github.com/theOehrly/Fast-F1

REMONDA, Adrian; VEAS, Eduardo; LUZHNICA, Granit. *Comparing driving behavior of humans and autonomous driving in a professional racing simulator*. PLoS ONE. 2021. Disponível em https://doi.org/10.1371/journal.pone.0245320 para consulta. Acesso em 17 de Set. 2024.

BOETTINGER, Max; KLOTZ, David. *Mastering Nordschleife -- A comprehensive race simulation for AI strategy decision-making in motorsports*. arXiv. 2023. Disponível em https://arxiv.org/abs/2306.16088 para consulta. Acesso em 17 de Set. 2024.

SCHLEINITZ, Julian Von; SCHWARZHUBER, Thomas; WÖRLE, Lukas. *Race Driver Evaluation at a Driving Simulator using a physical Model and a Machine Learning Approach*. arXiv. 2022. Disponível em https://arxiv.org/abs/2201.12939 para consulta. Acesso em 17 de Set. 2024.

