SDSC 3006: Fundamentals of Machine Learning I

Topic 3. Classification

Classification

- > Classification: predicting a qualitative response
- ➤ **Example 1:** A person arrives at the emergency room with a set of symptoms that could possibly be attributed to one of three medical conditions. Which of the three conditions does the individual have?
- Example 2: An online banking service must be able to determine whether or not a transaction being performed on the site is fraudulent, on the basis of the user's IP address, past transaction history, and so forth.
- ➤ **Example 3:** On the basis of DNA sequence data for a number of patients with and without a given disease, a biologist would like to figure out which DNA mutations are deleterious (disease-causing) and which are not.

Overview

- > A classification technique is called a *classifier*.
- Problem: given a training dataset

$$\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$$

we want to build a classifier that perform well in prediction.

> Popular classifiers

- Logistic regression
- Linear discriminant analysis (LDA) & QDA
- Naïve Bayes
- K-Nearest Neighbors (KNN)
- Performance assessment and comparison

Logistic Regression

Motivating Example

- Predicting whether an individual will default on his/her credit card payment
- \triangleright Default data set: Y = default (yes/no), $X_1 = balance$, $X_2 = income$

Why Not Linear Regression?

$$Y = \begin{cases} 0 & default = No \\ 1 & default = Yes \end{cases}$$

> Linear regression model using the binary response

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon$$

> Problem: the prediction $(\hat{Y} = \hat{\beta}_0 + \hat{\beta}_0 X_1)$ can take any value between negative and positive infinity. How do we interpret values greater than 1? Or values between 0 and 1?

Why Not Linear Regression?

Linear regression model using the probability as response

$$P(Y = 1) = \beta_0 + \beta_1 X_1$$

the probability
of default

Problem: now the values between 0 and 1 makes sense. But it is still difficult to interpret negative values and values greater than 1.

Solution: Logistic Function

$$P(Y=1) = \beta_0 + \beta_1 X_1$$

- \triangleright Left side: [0,1] Right side: $(-\infty,\infty)$
- Question: is there a transformation of the right side such that it has the same range as the left side?
- > The logistic function

$$P(Y = 1) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

Logistic Regression

> Logistic regression is very similar to linear regression

logistic regression:
$$log\left(\frac{P(Y=1)}{1-P(Y=1)}\right) = \beta_0 + \beta_1 X$$

linear regression: $Y \approx \beta_0 + \beta_1 X$

In linear regression, β_1 represents the average change in Y for one-unit increase in X. However, this simple interpretation does not work for logistic regression because we are predicting the probability P(Y), not the response Y.

Interpreting β_1

$$log\left(\frac{P(Y=1)}{1 - P(Y=1)}\right) = \beta_0 + \beta_1 X \leftrightarrow P(Y=1) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

- \triangleright If β_1 = 0, this means that there is no relationship between the response and the predictor(s).
- > If β_1 > 0, this means that when X gets larger so does the probability of default.
- > If β_1 < 0, this means that when X gets larger, the probability of default gets smaller.
- > How much bigger or smaller depends on value of the slope.

Estimating Coefficients

 \triangleright Find estimates of the parameters β_0 , β_1 based on training data

$$\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$$

Maximum likelihood method

Likelihood function

$$l(\beta_0, \beta_1) = \prod_{i:y_i=1} P(y_i = 1) \prod_{i':y_{i'}=0} P(y_{i'} = 0)$$

$$P(y_i = 1) = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}} \qquad P(y_{i'} = 0) = \frac{1}{1 + e^{\beta_0 + \beta_1 x_{i'}}}$$

 \succ The estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ are chosen to maximize this function.

Results of the **Default** Example

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

- Predicting default using balance
- > Use a z test instead of t test (as used in linear regression) to see whether β_0 and β_1 are significantly different from zero
- \succ Here the p-value for balance is very small, and $\hat{\beta}_1$ is positive. That means if the balance increases, then the probability of default will increase as well.

Making Predictions

Suppose an individual has an average balance of \$1000. What is their probability of default?

$$P(Y=1) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.00576$$

- > The predicted probability of default for an individual with a balance of \$1000 is less than 1%.
- > For a balance of \$2000, the probability is much higher, and equals to 0.586 (58.6%).

Qualitative Predictors

We can predict if an individual default by checking if she is a student or not. Thus we can use a qualitative variable "student" coded as a dummy variable (student=1, non-student=0).

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

$$\begin{split} \widehat{\Pr}(\texttt{default=Yes}|\texttt{student=Yes}) &= \frac{e^{-3.5041 + 0.4049 \times 1}}{1 + e^{-3.5041 + 0.4049 \times 1}} = 0.0431, \\ \widehat{\Pr}(\texttt{default=Yes}|\texttt{student=No}) &= \frac{e^{-3.5041 + 0.4049 \times 0}}{1 + e^{-3.5041 + 0.4049 \times 0}} = 0.0292. \end{split}$$

The estimate is positive, which indicates that students tend to have higher default probabilities than non-students.

Multiple Logistic Regression

Predicting a binary response using multiple predictors

$$\log\left(\frac{P(Y=1)}{1 - P(Y=1)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

$$P(Y = 1) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

Default Example

> Predict default using balance, income, and student (qualitative)

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

- > The p-values of balance and student are very small, indicating that they are associated with the probability of default.
- > The coefficient for student is negative, indicating that students are less likely to default than non-students.

Predictions

A student with a credit card balance of \$1,500 and an income of \$40,000 has an estimated probability of default

$$P(Y=1) = \frac{e^{-10.869 + 0.00574 \times 1500 + 0.003 \times 40 - 0.6468 \times 1}}{1 + e^{-10.869 + 0.00574 \times 1500 + 0.003 \times 40 - 0.6468 \times 1}} = 0.058$$

A non-student with the same balance and income has an estimated probability of default

$$P(Y=1) = \frac{e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 0}}{1 + e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 0}} = 0.105$$

An Apparent Paradox!

> Predicting default using only student

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

Conclusion: students tend to have higher probability of default than non-students.

> Predicting default using balance, income, and student

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Conclusion: students tend to have lower probability of default than non-students.

Interpretation

> Students tend to have higher balance. Higher balance tends to have higher probability of default. So, if not consider balance, students tend to have higher probability of default.

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

Interpretation

However, given the balance (i.e., after adjusting for the effect of balance), students tend to have lower probability of default.

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Useful Inference for Credit Card Company

- Question: to whom should they offer credit card?
- A student is risker than a non-student if no information about the student's credit card balance is available
- However, that student is less risky than a non-student with the same credit card balance!

Multinomial Logistic Regression

- Question: How to extend logistic regression to response variables with more than two classes?
- Multinomial Logistic Regression
- > Two ways:
 - Select a single class as baseline
 - Treat all classes symmetrically

LDA, QDA, Naïve Bayes

Why Need Another Method Given Logistic Regression?

- \gt In the case where n is small and the distribution of predictors X is approximately normal in each of the classes, LDA is more accurate than Logistic regression.
- > LDA can be naturally extended to the case of more than two response classes (logistic regression is usually used when there are only two classes).

Assumptions of LDA

- > The predictor variable is normally distributed under each response class.
- If there are more than one predictor, the predictors follow a multivariate normal distribution.

Review: Bayes Theorem

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i)P(B|A_i)}{\sum_{k=1}^{K} P(A_k)P(B|A_k)}$$

The Bayes Classifier

> According to the **Bayes theorem**

$$\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$$

- \triangleright K: the total number of response classes
- $\triangleright \pi_k$: the overall or prior probability of the *kth* class
- $\succ f_k(x)$: the density function of observations from the kth class

Rule of classification: Given an observation X = x, calculate P(Y = 1 | X = x), P(Y = 2 | X = x), ..., P(Y = K | X = x). Assign this observation to the class with the largest probability.

Example

- \triangleright Default data set, Y = default(No/Yes), <math>X = balance
- \triangleright The number of classes K=2

$$P(Y = 0|X = x) = P(\text{default} = \text{No|balance} = x)$$

$$= \frac{\pi_0 f_0(x)}{\pi_0 f_0(x) + \pi_1 f_1(x)}$$

$$P(Y = 1|X = x) = P(\text{default} = \text{Yes|balance} = x)$$

$$= \frac{\pi_1 f_1(x)}{\pi_0 f_0(x) + \pi_1 f_1(x)}$$

Figure 3.7 Given balance = \$1000, if we find P(Y = 0|X = 1000) = 0.7, P(Y = 1|X = 1000) = 0.3, the predicted class is Y = 0, i.e., no default.

Gold Standard for Classification

- ➤ In theory, the Bayes classifier has the best performance in classification, so we would always like to use it.
- However, for real data, we do not know the distribution of predictor(s) in each class, so computing the Bayes classifier is impossible.
- > The Bayes classifier serves as an unattainable gold standard against which to compare other classifiers.

Idea of LDA

- > Assume in each class the predictor follows a normal distribution Predictor in class k: $X \sim N(\mu_k, \sigma_k^2)$
- > Assume those normal distributions have equal variance

$$\sigma_1^2 = \sigma_2^2 = \dots = \sigma_K^2 = \sigma^2$$

 \triangleright So the density function in class k is

$$f_k(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x - \mu_k)^2\right)$$

Idea of LDA

> Plugging the normal density function into the Bayes classifier

▶ Rule of classification: Given an observation X = x, calculate $\delta_1(x), \delta_2(x), ..., \delta_K(x)$. Assign this observation to the class with the largest δ .

Estimates Used in LDA

 \succ To calculate $\delta_k(x)$, we need to find estimates for the prior probabilities π_k and parameters μ_k , σ^2 of the normal distribution

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i:y_i = k} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n - K} \sum_{k=1}^K \sum_{i:y_i = k} (x_i - \hat{\mu}_k)^2$$

$$\hat{\pi}_k = n_k/n$$

- $\triangleright \mu_k$ is estimated by the average of the training data from the *kth* class.
- $\triangleright \sigma^2$ is estimated by the weighted average of the sample variances for the K classes.
- $\triangleright \pi_k$ is estimated by the proportion of the training data that belong to the kth class.

LDA for Binary Response

- > A binary response *Y*, single predictor
- Discriminant function for class 1

$$\delta_1(x) = \frac{\mu_1}{\sigma^2} \cdot x + \left[\log(\pi_1) - \frac{\mu_1^2}{2\sigma^2} \right]$$

Discriminant function for class 2

$$\delta_2(x) = \frac{\mu_2}{\sigma^2} \cdot x + \left[\log(\pi_2) - \frac{\mu_2^2}{2\sigma^2} \right]$$

> Decision boundary (assume $\pi_1 = \pi_2 = 0.5$)

$$\delta_1(x_0) = \delta_2(x_0) \to x_0 = \frac{\mu_1 + \mu_2}{2}$$

 \triangleright Rule of classification: assume $\mu_2 > \mu_1$,

$$y(x) = \begin{cases} \text{class 2, } if \ x > x_0 \\ \text{class 1, } if \ x < x_0 \end{cases}$$

A Simple Example

- \triangleright Normal density functions $f_1(x)$ and $f_2(x)$ from the two classes
- The two density functions overlap, so there is some uncertainty to classify an observation with unknown class.
- > 20 observations were drawn from each of the two classes.
- LDA performs pretty well in prediction: LDA error rate=11.1% vs. Bayes error rate=10.6%

Left: normal density functions

Right: histograms of observations

Cases with Multiple Predictors (p > 1)

When there are multiple predictors (i.e., p > 1), we use exactly the same approach except that the density function of the predictors is modeled as a multivariate normal density.

An Example with Two Predictors (p = 2)

 \triangleright Bivariate normal density functions $f_1(x)$, $f_2(x)$ and $f_3(x)$ from three classes

Left: Ellipses that contain 95% of the probability

Right: 20 observations generated from each class

Quadratic Discriminant Analysis (QDA)

- > LDA assumes that all the classes have the same variance (or variance-covariance matrix in the case of multiple predictors).
- > LDA may perform poorly if this assumption is far from truth.
- > QDA works identically as LDA except that it estimates separate variance (or variance-covariance matrix in the case of multiple predictors) for each class.
- > The discriminant function of QDA takes a quadratic form.

Which Is Better?

- LDA assumes the predictor has class-specific mean and shared variance (variance-covariance matrix). QDA assumes the predictor has class-specific mean and class-specific variance (variance-covariance matrix).
- Since QDA allows for different variances among classes, the resulting boundaries become quadratic.
- Which approach is better: LDA or QDA?
 - QDA is more flexible than LDA.
 - QDA works best when the variances are very different between classes and we have enough observations to accurately estimate the variances.
 - LDA works best when the variances are similar among classes or we don't have enough data to accurately estimate the variances.

Comparing LDA and QDA

Two simulated examples with binary response Left: variances of the two classes are equal (LDA is better) Right: variances of the two classes are not equal (QDA is better)

- Black dotted: LDA boundary
- Purple dashed: Bayes' boundary
- Green solid: QDA boundary

Naïve Bayes

> Recall the **Bayes theorem**

$$\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$$

- \succ *K*: the total number of response classes
- $\triangleright \pi_k$: the overall or prior probability of the *kth* class
- $\succ f_k(x)$: the density function of observations from the kth class
- > To use this rule in practice, we need estimates for π_k and $f_k(x)$, k = 1, ..., K. Estimating the priors is straightforward, but estimating the density functions are challenging.
- In LDA and QDA, strong normality assumption has been made to simplify the task.

Naïve Bayes

- ➤ The Naïve Bayes classifier does not assume the density functions belong to a particular family of distributions. It is based on another assumption: Within each class, the predictors are independent.
- > This means that for each class

$$f_k(x) = f_{k1}(x_1) \times f_{k2}(x_2) \times \dots \times f_{kp}(x_p)$$

- > By assuming the independence between predictors, we eliminate the need to figure out their associations, thus simplifying the estimation task.
- We can estimate the density function of each predictor in different ways, such as assuming normality or using nonparametric methods.

Performance of Naïve Bayes

- \triangleright The independence assumption in Naïve Bayes is made for convenience and may not be true in most scenarios, but it often leads to pretty decent results, especially when n is not large enough relative to p.
- > This assumption introduces some bias, but reduces variance, leading to a classifier that works quite well in practice as a result of the bias-variance trade-off.

K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) Classifier

- \triangleright Given a test observation $X = x_0$, KNN works in the following steps to find its predicted class:
- > **Step 1**: identify the K points in the training data that are closest to x_0 , i.e., the "K nearest neighbors".
- > **Step 2**: calculate the fraction of observations belonging to each class among the *K* points.
- > Step 3: assign this observation to the class with the largest fraction.

A Simple Example

- > Training data set includes 6 blue points and 6 orange points.
- \gt KNN method (K=3):
 - (1) find the 3 nearest neighbors of the test point
 - (2) among the 3 points, 2/3 belong to blue class, 1/3 orange class.
 - (3) the test point is assigned to blue class.

KNN Decision Boundary

- > Blue grid: region of the blue class
- Orange grid: region of the orange class

KNN Can Work Pretty Well!

> Though KNN is a very simple approach, it can often perform surprisingly well, close to the Bayes classifier.

KNN: K=10

Choice of *K*

- > K = 1: decision boundary is flexible
- > As *K* grows, the boundary becomes less flexible and gets close to linear.
- > 1/K represents the level of flexibility.

Training/Test Error vs. Flexibility

 \gt Optimal choice to minimize test error rate: K=10

Performance Assessment and Comparison

Classifiers

- Logistic regression
- > LDA
- > QDA
- Naïve Bayes
- > KNN

Logistic Regression vs. LDA

- > Both logistic regression and LDA produce linear boundaries.
- LDA assumes that the observations are drawn from the normal distribution with common variance in each class, while logistic regression does not have this assumption.
- > LDA would do better than logistic regression if the normality assumption holds, otherwise logistic regression can outperform LDA.

LDA, QDA and Naïve Bayes

- ➤ LDA produces a linear boundary, QDA produces a quadratic boundary, Naïve Bayes produces a linear or more flexible boundary.
- > LDA is a special case of QDA.
- Naïve Bayes and LDA can be a special case of each other in some cases.
- Compared to Naïve Bayes, QDA tends to perform better when the interactions among predictors are important in discriminating between classes.
- None of these methods uniformly dominates the others.

KNN vs. Others

- KNN is completely non-parametric: No assumptions are made about the shape of the decision boundary!
- We can expect KNN to dominate both LDA and logistic regression when the decision boundary is highly non-linear.
- > KNN requires a lot of data relative to the number of predictors for accurate classification.
- \succ In cases where the decision boundary is non-linear but n is only modest or p is not very small, QDA may be preferred to KNN.
- Unlike logistic regression, KNN does not tell us which predictors are important (no table of coefficients)

Assessing Performance of Classification

> Performance measures for all classifiers

Accuracy

Error rate

Sensitivity

Specificity

> Performance measures for logistic regression/LDA/QDA

Receiver operating characteristics (ROC)

Area under curve (AUC)

Confusion Matrix

Example: Default data set (training)

		True Default Status		
		No	Yes	Total
Predicted	No	9644	252	9896
$Default\ Status$	Yes	23	81	104
	Total	9667	333	10000

Accuracy =
$$\frac{(}{}$$
 Error rate = $\frac{(}{}$

Error rate =
$$\frac{(}{}$$

Sensitivity =
$$\frac{(}{}$$
 Specificity = $\frac{(}{}$)

Specificity =
$$\frac{(}{(}$$

Performance Measures

True positive rate =
$$\frac{TP}{P}$$
 False positive rate = $\frac{FP}{N}$

Accuracy = $\frac{(TN + TP)}{N + P}$ Error rate = $\frac{(FN + FP)}{N + P}$

Sensitivity = $\frac{TP}{P}$ Specificity = $\frac{TN}{N}$

		Predicted class			
		– or Null	+ or Non-null	Total	
True	– or Null	True Neg. (TN)	False Pos. (FP)	N	
class	+ or Non-null	False Neg. (FN)	True Pos. (TP)	Р	
	Total	N^*	P*		

Error rate = 1 - AccuracySensitivity = True positive rate Specificity = 1 - False positive rate

Interpretation

		True Default Status		
		No	Yes	Total
Predicted	No	9644	252	9896
$Default\ Status$	Yes	23	81	104
	Total	9667	333	10000

- Accuracy: fraction of people that are correctly classified (97.25%).
- (Training) Error rate: fraction of people that are incorrectly classified (2.75%)
- Sensitivity (true positive rate): fraction of defaulters that are correctly identified (24.3%)
- Specificity: fraction of non-defaulters that are correctly identified as non-defaulters (99.76%)
- False positive rate (1– Specificity): fraction of non-defaulters that are incorrectly classified as defaulters (0.24%)

Threshold in Class Prediction

- Recall that logistic regression and LDA/QDA produce a probability estimate for each observation, and then a threshold is used to determine its predicted class.
- > Usually 0.5 is used as threshold.
- > If we use a different value for the threshold, the performance of classification will be different.

Example

- Use LDA for the Default data set
- > Threshold = 0.5: the training error rate is 2.75%, but the sensitivity is only 24.3%.
- > Threshold = 0.2: the training error rate is 3.73%, while the sensitivity increases to 58.6%.

Threshold = 0.5

Threshold = 0.2

		True Default Status		
		No	Yes	Total
Predicted	No	9644	252	9896
$Default\ Status$	Yes	23	81	104
	Total	9667	333	10000

		True Default Status		
		No	Yes	Total
Predicted	No	9432	138	9570
$Default\ Status$	Yes	235	195	430
	Total	9667	333	10000

Threshold Values vs. Error Rates

- > Black solid: overall error rate
- Blue dashed: fraction of defaulters missed (1–Sensitivity)
- Orange dotted: non-defaulters incorrectly classified (False positive rate, 1–Specificity)

Decide the threshold based on domain knowledge, such as detailed information about the cost associated with default.

Receiver Operating Characteristics (ROC)

- > Ideal: top left corner.
- Diagonal: "no information" classifier or random guessing
- > Overall performance: area under the curve (AUC)

Questions (1)

Read slides of Topic 3. Then answer the following questions.

- > Is logistic regression a method for classification or regression?
- How many classes (or levels) does the response variable have in a logistic regression model?
- Does the slope(s) in logistic regression have the same interpretation as slope(s) in linear regression?
- In fitting a logistic regression, how to generate predictions based on the fitted model?
- What is a confusion matrix?
- > How to find training error rate and test error rate?

Questions (2)

- What are the assumptions in LDA? Does logistic regression have such assumptions?
- What is the relationship of LDA and Bayes classifier?
- What are assumptions in Naïve Bayes?
- What are the suitable situations of LDA vs. logistic regression?
- What are the suitable situations of LDA vs. QDA?
- If KNN a parametric method or nonparametric method?
- What is the shape of decision boundary of KNN?
- When K increases, does the flexibility of KNN increase or decrease?
- ➤ How to find the optimal value of K in the use of KNN?

Questions (3)

- > What are the four performance measures for classifiers?
- What are the relationships of the four measures?
- How to calculate those measures based on the confusion matrix?
- When a different threshold is used in generating class prediction, which of the four performance measures of a classifier will change?
- > What is a ROC curve? How is it made?
- > Do we prefer a classifier with a higher or lower AUC?