

ASM30AM083C8T9

汽车级32位ARM MO 微控制器数据手册(V1.9)

赛腾微电子有限公司 Sine Microelectronics Co.,Ltd

目 录

1	忧 还	
	1.1 功能简述	3
	1.2 主要优势	4
	1.3 系统资源框图	5
2	管脚分布	6
	2.1 管脚分布图	6
	2.2 管脚说明	7
3	封装尺寸	13
4	电气性能参数	14
5	模拟性能参数	15
6	电源管理系统	17
7	时钟系统	18
8	基准电压源	19
9	ADC 模块	20
10	运算放大器	21
11	比较器	22
12	温度传感器	23
13	DAC 模块	24
14	处理器核心	25
15	电机驱动专用 MCPWM	26
16	Timer	27
17	Hall 传感器接口	28
18	DSP	29
19	通用外设	30
20	版本历中	21

概述

1.1 功能简述

ASM30AM083C8T9 是一款汽车级 32 位内核的通用型 MCU。该 MCU 支持一路 CAN 2.0 接口,含有面向电机控制应用的专用处理器,集成了常用电机控制系统所需要的所有模块,特别适用于电机控制领域,其丰富的接口也可用作其他各类高可靠性控制领域。

● 性能

- ▶ 96MHz 32 位 RISC 内核
- ▶ 集成自主指令集电机控制专用 DSP
- ➤ 超低功耗休眠模式,低功耗休眠电流 10uA
- ▶ 超强抗静电和群脉冲能力
- ➤ AEC-Q100 Grade1

● 存储器

- ▶ 64K Flash, 带加密功能
- > 8K RAM

● 工作范围

- ▶ 2.2V~5.5V 电源供电,内部集成 1 个 LDO,为数字部分电路供电
- ▶ 工作环境温度范围: -40~125°C

● 时钟

- ▶ 内置 4MHz 高精度 RC 时钟,-40~105°C范围内精度在±1%之内
- ▶ 内置低速 32KHz 低速时钟,供低 功耗模式使用
- ▶ 可外挂 4~8MHz 外部晶振
- ▶ 内部 PLL 可提供最高 96MHz 时钟

● 外设模块

- ▶ 两路 UART
- ▶ 一路 SPI, 支持主从模式
- ▶ 一路 IIC, 支持主从模式
- ▶ 2 个通用 16 位 Timer, 支持捕捉 边沿对齐 PWM 功能
- ▶ 2 个通用 32 位 Timer, 支持捕捉和 边沿对齐 PWM 功能
- ➤ 电机控制专用 PWM 模块,支持 8 路 PWM 输出,独立死区控制
- ▶ Hall 信号专用接口,支持测速、去 抖功能

- ▶ 硬件看门狗
- ▶ 一路 CAN2.0A/B 接口

● 模拟模块

- 集成1路12bit SAR ADC,同步双 采样,3Msps 采样及转换速率,共 12 通道
- ▶ 集成 4 路运算放大器,可设置为差分 PGA 模式
- ▶ 集成两路比较器,可设置滞回模式
- ▶ 集成 12bit DAC 数模转换器
- ▶ 内置±2°C温度传感器
- ▶ 内置 1.2V 0.5%精度电压基准源
- ▶ 内置1路低功耗LDO和电源监测电路
- ▶ 集成高精度、低温飘高频 RC 时钟
- ▶ 集成晶体起振电路

● 封装: TQFP48

1.2 主要优势

- ▶ 高可靠性、高集成度、最终产品体积小、节约 BOM 成本。
- ▶ 内部集成 4 路高速运放和两路比较器,可满足单电阻/双电阻/三电阻电流采样拓扑 架构的不同需求;
- ▶ 内部高速运放集成高压保护电路,可以允许高电平共模信号直接输入芯片,可以用 最简单的电路拓扑实现 MOSFET 电阻直接电流采样模式;
- ▶ 集成硬件 MOSFET 温度漂移补偿电路,确保电流采样精度;
- ➤ 应用专利技术使 ADC 和高速运放达到最佳配合,可处理更宽的电流动态范围,同时兼顾高速小电流和低速大电流的采样精度;
- ▶ 整体控制电路简洁高效, 抗干扰能力强, 稳定可靠;
- ▶ 单电源 2.2V~5.5V 供电,确保了系统供电的通用性;
- ▶ 赛腾微可提供软件算法支持等全套方案

该 MCU 特别适用于有感 BLDC/无感 BLDC/有感 FOC/无感 FOC 及步进电机、永磁同

步、异步电机等各种电机控制系统,也可用于汽车空调面板控制、车窗防夹、PTC 控制等 其他控制系统。

1.3 系统资源框图

图 2-1 ASM30AM083C8T9 系统框图

2 管脚分布

2.1 管脚分布图

图 2-1 ASM30AM083C8T9 管脚分布图

* 图中深色 PIN 脚内置上拉至 AVDD 的电阻:

RSTN 内置 100kΩ 上拉电阻, 固定开启上拉

SWDIO/SWCLK 内置 10kΩ 上拉电阻,固定开启上拉

其余红色 PIN 脚内置 10kΩ 上拉电阻,可软件控制开启关闭上拉

2.2 管脚说明

表 2-1 ASM30AM083C8T9 管脚说明

(A) H	衣 Z-1 ASM3UAM		
编号	名称	类型	功能说明
1	ADC_CH4/DAC_OUT/P0.0	输入/输出	ADC 通道 4/DAC 输出/P0.0,内置可软件开启的 10k 上拉电阻
2	RSTN/P0.2	输入/输出	RSTN/P0.2,默认作为 RSTN 使用,外部接一个 100nF 的电容到地即可,内部有 100k 上拉电阻。
3	AVSS	地	系统地
4	AVDD	电源	芯片电源输入,电压范围 2.2~5.5V。片外去耦电容 建议≥1uF,并尽量靠近 AVDD 引脚
5	P3.2	输入/输出	P3.2
6	SCL/TIM2_CH0/ADC_CH7/P0.3	输入/输出	IIC 时钟/Timer2 通道 0/ADC 通道 7/P0.3
7	SDA/TIM2_CH1/ADC_CH8/P0.4	输入/输出	IIC 数据/Timer2 通道 1/ADC 通道 8/P0.4
8	ADC_CH9/P0.5	输入/输出	ADC 通道 9/P0.5
9	UART1_RXD/TIM1_CH0/P0.6	输入/输出	串口 1 RXD/Timer1 通道 0/P0.6, 内置可软件开启的 10k 上拉电阻
10	UART1_TXD/TIM1_CH1/P0.7	输入/输出	串口 1 TXD/Timer1 通道 1/P0.7, 内置可软件开启的 10k 上拉电阻
11	MCPWM_CH1P/TIM2_CH0/P2.11	输入/输出	电机 PWM 通道 1 高边/Timer2 通道 0/P2.11
12	MCPWM_CH1N/TIM2_CH1/ADC_TRIGGER2/P2.12	输入/输出	电机 PWM 通道 1 低边/Timer2 通道 1/ADC 触发信号 2/P2.12
13	HALL_IN0/TIM3_CH0/ADC_CH15/CMP0_IP1/P0.11	输入/输出	Hall 传感器 A 相输入/Timer3 通道 0/ADC 通道 15/ 比较器 0 正端输入通道 1/P0.11
14	HALL_IN1/TIM3_CH1/ADC_CH16/CMP0_IP2/P0.12 /CAN_RX	输入/输出	Hall 传感器 B 相输入/Timer3 通道 1/ADC 通道 16/ 比较器 0 正端输入通道 2/P0.12/CAN_RX
15	HALL_IN2/ADC_CH17/CMP0_IP3/P0.13/CAN_TX	输入/输出	Hall 传感器 C 相输入/ADC 通道 17/比较器 0 正端输入通道 3/P0.13/CAN_TX
16	CMP0_OUT/MCPWM_BKIN1/SPI_CLK/TIM0_CH1/ ADC_TRIGGER0/SIF/ADC_CH10/CMP0_IP4/P0.14	输入/输出	比较器 0 输出/电机 PWM 终止信号 1/SPI 时钟 /Timer0 通道 1/ADC 触发信号 0/一线通/ADC 通道 10/比较器 0 正端输入通道 4/P0.14
17	MCPWM_CH0P/UART0_RXD/SPI_DO/TIM0_CH0/ ADC_TRIGGER1/CMP0_IN/P0.15	输入/输出	电机 PWM 通道 0 高边/串口 0 RXD/SPI 数据输出 /Timer0 通道 0/ADC 触发信号 1/比较器 1 负端输入 /P0.15
18	MCPWM_CH0N/UART0_TXD/SPI_DI/P1.0	输入/输出	电机 PWM 通道 0 低边/串口 0 TXD/SPI 数据输入 /P1.0, 内置可软件开启的 10k 上拉电阻
19	TIM3_CH1/ADC_CH5/P1.3	输入/输出	Timer3 通道 1/ADC 通道 5/P1.3, 内置可软件开启的 10k 上拉电阻
20	OPAO_IP/P3.5	输入/输出	运放 0 正端输入/P3.5
21	OPA0_IN/P3.7	输入/输出	运放 0 负端输入/P3.7
22	ADC_CH11/OPAx_OUT/LDO15/P2.7	输入/输出	ADC 通道 11/0PAx 输出/LDO15 输出/P2.7,内置可 软件开启的 10k 上拉电阻
23	OPA1_IP/P3.0	输入/输出	运放 1 正端输入/P3.0
<u> </u>		<u> </u>	<u> </u>

ASM30AM083C8T9 数据手册

	Sine Microelectronics		ASIVISUAIVIOUSCUTS 致加丁加
编号	名称	类型	功能说明
24	OPA1_IN/P3.1	输入/输出	运放 1 负端输入/P3.1
25	HADEA DVD /EIMA CHO /OCC IN /D3 O	t≙ \	串□ 1 RXD/Timer3 通道 0/晶振输入/P2.8,内置可
25	UART1_RXD/TIM3_CH0/OSC_IN/P2.8	输入/输出	软件开启的 10k 上拉电阻
26	HARTA TVD /TIM2 CH4 /OCC OUT /D2 O	t≙ \	串□ 1 TXD/Timer3 通道 1/晶振输出/P3.9,内置可
26	UART1_TXD/TIM3_CH1/OSC_OUT/P3.9	输入/输出	软件开启的 10k 上拉电阻
27	LRC/MCPWM_CH0P/P1.4	输入/输出	32kHz RC 时钟输出/电机 PWM 通道 0 高边/P1.4
28	HRC/MCPWM_CH0N/P1.5	输入/输出	4MHz RC 时钟输出/电机 PWM 通道 0 低边/P1.5
29	MCPWM_CH1P/P1.6	输入/输出	电机 PWM 通道 1 高边/P1.6
30	MCPWM_CH1N/P1.7	输入/输出	电机 PWM 通道 1 低边/P1.7
31	MCPWM_CH2P/P1.8	输入/输出	电机 PWM 通道 2 高边/P2.8
32	MCPWM_CH2N/P1.9	输入/输出	电机 PWM 通道 2 低边/P1.9
			电机 PWM 通道 3 高边/串口 0 RXD/IIC 时钟/Timer0
33	MCPWM_CH3P/UARTO_RXD/SCL/TIM0_CH0/	输入/输出	通道 0/ADC 触发信号 2/P1.10,内置可软件开启的
	ADC_TRIGGER2/P1.10		10k 上拉电阻
			电机 PWM 通道 3 低边/串口 0 TXD/IIC 数据/Timer0
34	MCPWM_CH3N/UART0_TXD/SDA/TIM0_CH1/	输入/输出	通道 1/ADC 触发信号 3/P1.11, 内置可软件开启的
	ADC_TRIGGER3/SIF/P1.11		10k 上拉电阻
35	OPA2_IP/P3.10	输入/输出	运放 2 正端输入/P3.10
36	OPA2_IN/P3.11	输入/输出	运放 2 负端输入/P3.11
		10 1 100 II.	SPI 数据输入/IIC时钟/ADC 通道 12/比较器 0 正端输
37	SPI_DI/SCL/ADC_CH12/CMP0_IP0/P2.9	输入/输出	入通道 0/P2.9
			SPI 数据输出/IIC 数据/P2.10,内置可软件开启的 10k
38	SPI_DO/SDA/P2.10	输入/输出	上拉电阻
39	OPA3_IN/P3.14	输入/输出	运放 3 负端输入/P3.14
40	OPA3_IP/P3.15	输入/输出	运放 3 正端输入/P3.15
			SPI 时钟/ADC 通道 14/比较器 1 正端输入通道
41	SPI_CLK/ADC_CH14/CMP1_IP0/P2.1	输入/输出	0/P2.1,内置可软件开启的 10k 上拉电阻
42	CMP1_IN/P2.2	输入/输出	比较器 1 负端输入/P2.2
		10 1 100 II	比较器 1 输出/电机 PWM 终止信号 0/SPI 片选信号/
43	CMP1_OUT/MCPWM_BKIN0/SPI_CS/REF/P2.3	输入/输出	电压参考信号/P2.3
			Hall 传感器 A 相输入/电机 PWM 通道 2 高边/串口 1
44	HALL_INO/MCPWM_CH2P/UART1_RXD/TIM1_CH0/	输入/输出	RXD/Timer1 通道 0/ADC 触发信号 3/比较器 1 正端
	ADC_TRIGGER3/CMP1_IP1/P2.4		输入通道 1/P2.4,内置可软件开启的 10k 上拉电阻
			Hall 传感器 B 相输入/电机 PWM 通道 2 低边/串口 1
45	HALL_IN1/MCPWM_CH2N/UART1_TXD/TIM1_CH1/	输入/输出	TXD/Timer1 通道 1/ADC 触发信号 0/比较器 1 正端
	ADC_TRIGGER0/CMP1_IP2/P2.5		输入通道 2/P2.5,内置可软件开启的 10k 上拉电阻
			Hall 传感器 C 相输入/电机 PWM 通道 3 高边
46	HALL_IN2/MCPWM_CH3P/TIM3_CH0/	输入/输出	/Timer3 通道 0/ADC 触发信号 1/比较器 1 正端输入
	ADC_TRIGGER1/CMP1_IP3/P2.6		通道 3/P2.6,内置可软件开启的 10k 上拉电阻
47	SWCLK	输入	SWD 时钟,内置固定上拉的 10k 电阻
48	SWDIO	输入/输出	SWD 数据,内置固定上拉的 10k 电阻
		,	=

表 2-2 ASM30AM083C8T9 引脚功能选择

Port	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AFE
P0.0												ADC_CH4, DAC_OUT
P0.1												ADC_CH6
P0.2												
P0.3						SCL		TIM2_CH0				ADC_CH7
P0.4						SDA		TIM2_CH1				ADC_CH8
P0.5												ADC_CH9
P0.6				UART1_RXD			TIM1_CH0					
P0.7				UART1_TXD			TIM1_CH1					
P0.8												
P0.9						SCL		TIM2_CH0				
P0.10						SDA		TIM2_CH1				
P0.11		HALL_IN0						TIM3_CH0				ADC_CH15/CMP0_IP1
P0.12		HALL_IN1						TIM3_CH1				ADC_CH16/CMP0_IP2
P0.13		HALL_IN2										ADC_CH17/CMP0_IP3
P0.14	CMP0_OUT		MCPWM_BKIN1		SPI_CLK		TIM0_CH1		ADC_TRIGGER0		SIF	ADC_CH10/CMP0_IP4
P0.15			MCPWM_CH0P	UARTO_RXD	SPI_DO		TIM0_CH0		ADC_TRIGGER1			CMP0_IN

赛腾微电子有限公司技术文档

表 2-2 ASM30AM083C8T9 引脚功能选择(续)

Port	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AFE
P1.0			MCPWM_CH0N	UARTO_TXD	SPI_DI							
P1.1					SPI_CS							
P1.2								TIM3_CH0				
P1.3								TIM3_CH1				ADC_CH5
P1.4	LRC		MCPWM_CH0P									
P1.5	HRC		MCPWM_CH0N									
P1.6			MCPWM_CH1P									
P1.7			MCPWM_CH1N									
P1.8			MCPWM_CH2P									
P1.9			MCPWM_CH2N									
P1.10			MCPWM_CH3P	UARTO_RXD		SCL	TIM0_CH0		ADC_TRIGGER2			ADC_CH13
P1.11			MCPWM_CH3N	UARTO_TXD		SDA	TIM0_CH1		ADC_TRIGGER3		SIF	
P1.12			MCPWM_BKIN0									
P1.13					SPI_CLK		TIM0_CH0					
P1.14					SPI_DO		TIM0_CH1					
P1.15					SPI_DI			TIM2_CH0				

表 2-2 ASM30AM083C8T9 引脚功能选择(续)

Port	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AFE
P2.0					SPI_CS			TIM2_CH1				
P2.1					SPI_CLK							ADC_CH14/
1 2.1					or 1_cen							CMP1_IP0
P2.2												CMP1_IN
P2.3	CMP1_OUT		MCPWM_BKIN0		SPI_CS							REF
P2.4		HALL_IN0	MCPWM_CH2P	UART1_RXD			TIM1_CH0		ADC_TRIGGER3			CMP1_IP1
P2.5		HALL_IN1	MCPWM_CH2N	UART1_TXD			TIM1_CH1		ADC_TRIGGER0			CMP1_IP2
P2.6		HALL_IN2	MCPWM_CH3P					TIM3_CH0	ADC_TRIGGER1		SIF	CMP1_IP3
												ADC_CH11/
P2.7												OPAx_OUT/
												LD015
P2.8				UART1_RXD				TIM3_CH0				OSC_IN
P2.9					SPI_DI	SCL						ADC_CH12/
1 2.7					31 1_D1	JGL						CMP0_IP0
P2.10					SPI_DO	SDA						
P2.11			MCPWM_CH1P					TIM2_CH0				
P2.12			MCPWM_CH1N					TIM2_CH1	ADC_TRIGGER2			
P2.13			MCPWM_CH3N					TIM3_CH1				
P2.14						SCL						
P2.15				1		SDA						

赛腾微电子有限公司技术文档

表 2-2 ASM30AM083C8T9 引脚功能选择(续)

Port	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AFE
P3.0												OPA1_IP
P3.1												OPA1_IN
P3.2												
P3.3												
P3.4												
P3.5												OPA0_IP
P3.6												
P3.7												OPA0_IN
P3.8												
P3.9				UART1_TXD				TIM3_CH1				OSC_OUT
P3.10												OPA2_IP
P3.11												OPA2_IN
P3.12												
P3.13							 					
P3.14												OPA3_IN
P3.15												OPA3_IP

3 封装尺寸

TQFP48 Profile Quad Flat Package:

TOP VIEW

SIDE VIEW

图 3-1 ASM30AM083C8T9 封装图示

表 3-1 ASM30AM083C8T9 封装尺寸

CVMDOI		MILLIMETER	
SYMBOL	MIN	NOM	MAX
A	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
b	0.17	0.22	0.27
С	0.09	-	0.20
D	-	9.00	-
D1	-	7.00	-
Е	-	9.00	-
E1	-	7.00	-
e	-	0.50	-
θ	0°	3.5°	7°
L	0.45	0.60	0.75
L1	-	1.00	-

4 电气性能参数

表 4-1 ASM30AM083C8T9 电气极限参数

3				
参数	最小	最大	单位	说明
电源电压	-0.3	+7.0	V	相对于地
工作温度	-40	+125	°C	
存储温度	-40	+150	°C	
结温	-	150	°C	
引脚温度(焊接,10秒)	-	300	°C	

表 4-2 ASM30AM083C8T9 ESD/Latch-up 参数

项目	最小	最大	单位	
ESD测试 (HBM)	-6000	6000	V	
ESD测试 (MM)	-600	600	V	
ESD测试 (CDM)	-1200	1200	V	
Latch-up电流 (85°C)	-200	200	mA	

表 4-3 ASM30AM083C8T9 IO 极限参数

参数	描述	最小	最大	单位
VIN	GPIO信号输入电压范围	-0.3	7.0	V
IINJ_PAD	单个GPIO最大注入电流	-10	10	mA
IINJ_SUM	所有GPIO最大注入电流	-50	50	mA

表 4-4 ASM30AM083C8T9 IO DC 参数

参数	描述	VDD	条件	最小	最大	单位
VINH	数字IO输入高电压	5		0.65*VDD		V
VINL	数字IO输入低电压	5			0.35*VDD	V
VHYS	施密特迟滞范围	5		0.1*VDD		V
IIH	数字IO输入高电压,电流消耗	5			1	uA
IIL	数字IO输入低电压,电流消耗	5		-1		uA
VOH	数字IO输出高电压	5	最大驱动电流 12mA	0.8*VDD		V
VOH	数字IO输出低电压	5	最大驱动电流 12mA		0.1*VDD	V
Rpup	上下拉电阻大小*	5		8	12	KOhm
CIN	数字IO输入电容	5			10	pF

^{*}仅部分 IO 内置上拉,详见引脚说明章节

5 模拟性能参数

表 5-1 ASM30AM083C8T9 模拟性能参数

42 1/4.			3C8T9 模拟性能		у⊻ нп
参数 	最小	典型	最大	单位	说明
	<u> </u>	芯	I	T	T
工作电源	2.2	5	6	V	
		AD	OC .	r	
工作电源	2.8	5	5.5	V	
输出码率		3		MHz	f _{adc} /16
差分输入信号范围	-REF		+REF	V	Gain=1 时; REF=2.4V
	-3.6		+3.6	V	Gain=2/3 时; REF=2.4V
单端输入信号范围	-0.3		AVDD+0.3	V	受限于 IO 口输入 电压限制
直流失调 (offset)		5	10	mV	可校正
有效位数(ENOB)	10.5	11		bit	
INL		2	3	LSB	
DNL		1	2	LSB	
SNR	63	66		dB	
输入电阻	500k			Ohm	
输入电容		10pF		F	
		基准电压	E(REF)		
工作电源	2.2	5	5.5	V	
输出偏差	-9		9	mV	
电源抑制比		70		dB	
温度系数		20		ppm/°C	
输出电压		1.2		V	
		DAC	212		
工作电源	2.2	5	5.5	V	
负载电阻	5k			Ohm	
负载电容			50p	F	· 输出 BUFFER 开 · 启
输出电压范围	0.05		AVDD-0.1	V	
转换速度			1M	Hz	
DNL		1	2	LSB	
INL		2	4	LSB	
OFFSET		5	10	mV	
SNR	57	60	66	dB	
运放 (OPA)					
工作电源	2.8	5	5.5	V	

ASM30AM083C8T9 数据手册

参数	最小	典型	最大	单位	说明	
带宽		10M	20M	Hz		
负载电阻	20k			Ohm		
负载电容			5p	F		
输入共模范围	0		AVDD	V		
输出信号范围	0.1		AVDD-0.1	V	最小负载电阻下	
OFFSET		5	10	mV		
共模抑制 (CMRR)		80		dB		
电源抑制 (PSRR)		80		dB		
负载电流			500	uA		
摆率(Slew rate)		5		V/us		
相位裕度		60		度		
比较器(CMP)						
工作电源	2.2	5	5.5	V		
输入信号范围	0		AVDD	V		
OFFSET		5	10	mV		
传输延时		0.15u		S	默认功耗	
		0.6u		S	低功耗	
回差(Hysteresis)		20		mV	HYS='0'	
		0		mV	HYS='1'	

模拟寄存器表说明:

地址 0x40000040~0x40000050 是各个模块的校正寄存器,这些寄存器在出厂之前都会填上各自的校正值。一般情况下用户不要去配置或改变这些值。如果需要对模拟参数进行微调,需要读取原校正值,并以此为基础进行微调。

地址 0x40000020~0x4000003c 是开放给用户的寄存器,其中空白部分的寄存器必须全部配置为 0 (芯片上电后会被复位为 0)。其他寄存器根据应用场合需要进行配置。

6 电源管理系统

电源管理系统由 LDO15 模块、电源检测模块 (PVD)、上电/掉电复位模块 (POR)组成。

LDO 上电后自动开启,无需软件配置,但 LDO 输出电压可通过软件实现微调。

LDO15 的输出电压可通过设置寄存器 LDO15TRIM<2:0>来调节,具体寄存器所对应值见模拟寄存器表说明。LDO15 在芯片出厂前已经过校正,一般情况下,用户不需要额外配置这些寄存器。如需微调 LDO 的输出电压,需要读取原配置值,在此基础加上微调量对应的配置值填入寄存器。

POR 模块监测 LD015 的电压,在 LD015 电压低于 1.1V 时(例如上电之初,或者掉电之时), 为数字电路提供复位信号以避免数字电路工作产生异常。

PVD 模块对 5V 输入电源进行检测,如低于某一设定阈值,则产生报警(中断)信号以提醒 MCU。中断提醒阈值可通过寄存器 PVDSEL<1:0>设置为不同的电压。PVD 模块可通过设置 PD_PDT='1'关闭。具体寄存器所对应值见模拟寄存器表说明。

7 时钟系统

时钟系统包括内部 32KHz RC 时钟、内部 4MHz RC 时钟、外部 4~8MHz 晶体起振电路、PLL 电路组成。

32K RC 时钟作为 MCU 系统慢时钟使用,作为诸如滤波模块或者低功耗状态下的 MCU 时钟使用。 4MHz RC 时钟作为 MCU 主时钟使用,配合 PLL 可提供最高到 96MHz 的时钟。外部 4~8MHz 晶体起振电路作为备份时钟使用。

32k 和 4M RC 时钟均带有出厂校正,可在常温下实现 32K RC 时钟±5%的精度,4M RC 时钟±1%的精度。其中 4M RC 时钟还开放有用户校正寄存器,可进一步将精度校正到±0.5%范围。32K RC 时钟在-40~125℃范围内的精度为±20%, 4M RC 时钟在该温度范围的精度为±1%。

32K RC 时钟频率可通过寄存器 RCLTRIM<3:0>进行设置,4M RC 时钟频率可通过寄存器 RCHTRIM<5:0>进行设置,具体寄存器所对应值见模拟寄存器表说明。

芯片出厂前时钟已经过校正,一般情况下,用户不需要额外配置这些寄存器。如需微调频率, 需要读取原配置值,在此基础加上微调量对应的配置值填入寄存器。

4M RC 时钟通过设置 RCHPD ='0'打开(默认打开,设'1'关闭), RC 时钟需要 Bandgap 电压基准源模块提供基准电压和电流,因此开启 RC 时钟需要先开启 BGP 模块。芯片上电的默认状态下,4M RC 时钟和 BGP 模块都是开启的。32K RC 时钟是始终开启的,不能关闭。

PLL 对 4M RC 时钟进行倍频,以提供给 MCU、ADC 等模块更高速的时钟。MCU 和 PWM 模块的最高时钟为 96MHz, ADC 模块典型工作时钟为 48MHz,通过寄存器 ADCLKSEL<1:0>可设置为不同的 ADC 工作频率。

PLL 通过设置 PLLPDN='1'打开(默认关闭,设 1 打开),开启 PLL 模块之前,同样也需要开启 BGP(Bandgap)模块。开启 PLL 之后,PLL 需要 6us 的稳定时间来输出稳定时钟。芯片上电的默认状态下,RCH 时钟和 BGP 模块都是开启的,但 PLL 默认是关闭的,需要软件来开启。

晶体起振电路内置了放大器和起振电容,仅需在 IO OSC_IN/OSC_OUT 之间接入一个晶体,并设置 XTALPDN='1'即可起振。

8 基准电压源

该基准源为 ADC、DAC、RC 时钟、PLL、温度传感器、运算放大器、比较器和 FLASH 提供基准电压和电流,使用上述任何一个模块之前,都需要开启 BGP 基准电压源。

芯片上电的默认状态下,BGP 模块是开启的。基准源通过设置 BGPPD ='0'打开,从关闭到开启, BGP 需要约 2us 达到稳定。BGP 输出电压约 1.2V,精度为±0.8%

基准源可通过设置 REF_AD_EN='1',将基准电压送至 IO P2.3 进行测量。

9 ADC 模块

芯片内部集成 1 路同步双采样的 SAR 结构 ADC, 芯片上电的默认状态下, ADC 模块是关闭的。 ADC 开启前,需要先开启 BGP 和 4M RC 时钟和 PLL 模块,并选择 ADC 工作频率。默认配置下 ADC 工作时钟是 48M,对应 3MHz 的转换数据率。

同步双采样电路可在同一时刻对两路输入信号进行采样,采样完成之后 ADC 按先后顺序将这两路信号进行转换,并写入相应的数据寄存器中。

ADC 完成一次转换需要 16 个 ADC 时钟周期,其中 13 个为转换周期,3 个为采样周期。即 $f_{conv} = f_{adc}/16$ 。在 ADC 时钟设为 48M 时,转换速率是 3MHz。

ADC 在降频应用时,可通过寄存器 CURRIT<1:0>降低 ADC 的功耗水平。

ADC 可工作在如下模式:单次单通道触发、连续单通道、单次 1~20 通道扫描、连续 1~20 通道扫描。每路 ADC 都有 20 组独立寄存器对应每一个通道。

ADC 触发事件可以来自外部的定时器信号 T0、T1、T2、T3 发生到预设次数,或者为软件触发。 20 个通道里最后一个通道用来测量 ADC 自身的 offset,将其保存在通道寄存器中,其他通道的 ADC 值都已自动减去该 offset。在芯片上电之初,应由 MCU 发起 offset 校正信号,校正控制模块将 ADC 通道设置为通道 1,并将值储存在通道寄存器中。如果客户对 offset 要求较高,可定期(例如一小时/一天)在 ADC 空闲时将 offset 校正一次。

在 GAIN_REF=0 时,基准电压源为 2.4V。ADC 带有两种增益模式,通过 GAIN_SHAx 进行设置,对应 1 倍和 2/3 倍增益。1 倍增益对应±2.4V 的输入信号,2/3 倍增益对应±3.6V 的输入信号幅度。在测量运放的输出信号时,根据运放可能输出的最大信号来选择具体的 ADC 增益。

10 运算放大器

4 路输入输出 rail-to-rail 运算放大器,内置反馈电阻 R2/R1,外部引脚需串联一个电阻 R0。反馈电阻 R2:R1 的阻值可通过寄存器 RES_OPA0<1:0>设置,以实现不同的放大倍数。具体寄存器所对应值见模拟寄存器表说明。

最终的放大倍数为 R2/(R1+R0), 其中 R0 是外部电阻的阻值,

对于 MOS 管电阻直接采样的应用,建议接>20kΩ的外部电阻,以减小 MOS 管关断时,往芯片引脚里流入的电流。

对于小电阻采样的应用,建议接 100Ω的外部电阻。

放大器可通过设置 OPAOUT_EN<2:0>选择将 4 路放大器中的某一路输出信号通过 BUFFER 送至 P2.7 IO 口进行测量和应用(对应关系见 datasheet 芯片管脚说明)。因为有 BUFFER 存在,在运放正常工作模式下也可以选择送一路运放输出信号出来。

芯片上电的默认状态下,放大器模块是关闭的。放大器可通过设置 OPAxPDN ='1'打开,开启放大器之前,需要先开启 BGP 模块。

运放输入正负端内置钳位二极管,电机相线通过一匹配电阻后直接接入输入端,从而简化了 MOSFET 电流采样的外置电路。

11 比较器

内置 2 路输入 rail-to-rail 比较器,比较器比较速度可编程、迟滞电压可编程、信号源可编程。 比较器的比较延时可通过寄存器 IT_CMP 设置为 0.15uS/0.6uS。迟滞电压通过 CMP_HYS 设置为 20mV/0mV。

比较器正负两个输入端的信号来源都可通过寄存器 CMP_SELP<2:0>和 CMP_SELN<1:0>编程, 详见寄存器模拟说明。

芯片上电的默认状态下,比较器模块是关闭的。比较器通过设置 CMPxPDN ='1'打开,开启比较器之前,需要先开启 BGP 模块。

12 温度传感器

芯片內置精度为±2℃的温度传感器。芯片出厂前会经温度校正,校正值保存在 flash info 区。 芯片上电的默认状态下,温度传感器模块是关闭的。开启传感器之前,需要先开启 BGP 模块。 温度传感器通过设置 TMPPDN='1'打开,开启到稳定需要约 2us,因此需在 ADC 测量传感器之前 2us 打开。

13 DAC 模块

芯片内置一路 12bit DAC,输出信号的最大量程可通过寄存器 DAC_GAIN<1:0>设置为 1.2V/3V/4.85V。

12bit DAC 可通过配置寄存器 DACOUT_EN=1,将 DAC 输出送至 IO 口 P0.0,可驱动>5kΩ 的负载电阻和 50pF 的负载电容。

DAC 最大输出码率为 1MHz。

芯片上电的默认状态下, DAC 模块是关闭的。DAC 可通过设置 DAC12BPDN =1 打开, 开启 DAC 模块之前, 需要先开启 BGP 模块。

14 处理器核心

- ▶ 集成 32 位 RISC CPU+DSP 双核处理器
- ▶ 2线调试管脚
- ▶ 最高工作频率 96MHz
- ▶ 内置 64KB Flash
- ▶ 内置 8KB SRAM

15 电机驱动专用 MCPWM

- ▶ MCPWM 最高工作时钟频率 96MHz
- ▶ 支持最大 4 通道相位可调的互补 PWM 输出
- ▶ 每个通道死区宽度可独立配置
- ▶ 支持边沿对齐 PWM 模式
- ▶ 支持软件控制 IO 模式
- ▶ 支持 IO 极性控制功能
- ▶ 内部短路保护,避免因为配置错误导致短路
- 外部短路保护,根据对外部信号的监控快速关断
- ▶ 内部产生 ADC 采样中断
- 采用加载寄存器预存定时器配置参数
- ▶ 可配置加载寄存器加载时刻和周期

16 Timer

- ▶ 4路通用定时器,2路16bit 位宽计时器,2路32bit 位宽计时器。
- ▶ 4路支持捕获模式,用于测量外部信号宽度
- ▶ 4 路支持比较模式,用于产生边沿对齐 PWM/定时中断

17 Hall 传感器接口

- ▶ 内置最大 1024 级滤波
- ▶ 三路 Hall 信号输入
- ▶ 32 位计数器,提供溢出和捕获中断

18 DSP

- ▶ 电机控制算法专用 DSP, 自主指令集, 三级流水
- ▶ 最高工作频率 96MHz
- ▶ 32/16 位除法器 10 周期计算完成
- ▶ 32 位硬件开方 8 周期计算完成
- ▶ Q15 格式 Cordic 三角函数模块, sin/cos/artanc 8 周期计算完成
- ▶ DSP 配备独立的程序区和数据区,可自主执行 DSP 程序,亦可由 CPU 调用进行某项计算
- ▶ 支持中断暂停,与 CPU 进行数据交互

19 通用外设

- ➤ 两路 UART,全双工工作,支持 7/8 位数据位、1/2 停止位、奇/偶/无校验模式,带 1 字 节发送缓存、1 字节接收缓存,支持 Multi-drop Slave/Master 模式,波特率支持 300~115200
- ▶ 一路 SPI, 支持主从模式
- ▶ 一路 IIC,支持主从模式
- ▶ 硬件看门狗,使用 RC 时钟驱动,独立于系统高速时钟,写入保护, 2/4/8/64 秒复位间隔

20 版本历史

表 20-1 文档版本历史

时间	版本号	说明		
2020.05.20	1.9	增加关于 CAN 的说明		
2019.11.18	1.8	针对发布的修订		
2019.11.15	1.7	删除编码器描述		
2019.7.29	1.6	修改一个引脚为 GPIO P3.2		
2019.6.11	1.5	格式调整		
2019.05.31	1.4	修改电源范围描述		
2019.05.27	1.3	修改部分功能描述		
2019.04.13	1.1	修订内部框图		
2019.03.18	1.0	针对发布的修订		
2019.03.12	0.5	修订 IO 功能描述、模拟参数等		
2019.01.09	0.4	修订通用定时器描述		
2018.12.07	0.2	修改模拟电路部分内容		
2018.11.30	0.1	初始版本		