1. Algorytm aglomeracyjny rozpoczyna proces analizy od stanu, w którym:

.

- a. obiekty podzielone są wstępnie przy użyciu innej metody grupowania
- b. wszystkie obiekty tworzą jedno skupienie
- c. obiekty są losowo przydzielone do skupień, a liczba skupień jest z góry określana
- d. każdy obiekt tworzy osobne skupienie
- 2. Problem klasyfikacyjny można zamienić na problem regresyjny poprzez:

.

- a. zredukowanie liczby klas do jednej
- b. zmniejszenie liczby wymiarów do dwóch
- c. zamianę zmiennych kategorycznych na ciągłe
- d. prognozowanie stopnia przynależności do klasy
- 3.Która z poniższych metod NIE służy do wyznaczania odległości pomiędzy skupieniami:
- a. metoda średnich połączeń
- b. metoda najdalszego sasiedztwa
- c. metoda pojedynczego wiązania
- d. metoda k-średnich
- 4. Metoda K najbliższych sąsiadów wybiera sąsiadów analizowanego punktu:

- a. najbliższych pod względem cech wejściowych
- b. należących do tego samego klastra
- c. najbliższych pod względem prognozowanej wartości
- d. leżących w tym samym wymiarze przestrzeni chyba?
- 5. Pojęcie tensora występujące często w dziedzinie uczenia głębokiego oznacza:

- a. wektor wskazujący kierunek najszybszego spadku błędu sieci
- b. wyspecjalizowany rodzaj neuronów przetwarzających obraz
- c. uogólnienie pojecia macierzy na wiele wymiarów
- d. warstwę wejściową rozprowadzającą sygnały do sieci
- 6.Końcowe trzy etapy eksploracji danych w metodologii CRISP-DM to KOLEJNO:
- a. Modelowanie Wdrożenie Ewaluacja
- b. Modelowanie Ewaluacja Wdrożenie

- c. Wdrożenie Ewaluacja Modelowanie
- d. Ewaluacja Modelowanie Wdrożenie
- 7. Sieć neuronowa Kohonena (SOM) generalnie jest przeznaczona do realizacji:

.

- a. prognozowania lub szacowania wartości
- b. klasyfikacji wzorcowej
- c. analizy szeregów czasowych
- d. klasyfikacji bezwzorcowej (grupowania)
- 8. Aglomeracyjne metody klasteryzacji polegają na:

.

- a. przyrostowym budowaniu klastrów poprzez dodawanie sąsiednich punktów
- b. krokowym dodawaniu linii dzielących klastry w optymalnym miejscu
- c. iteracyjnym dzieleniu klastrów na najbardziej odległe połowy
- d. stopniowym ograniczaniu klastrów poprzez usuwanie outlierów
- 9. Wskaż metodę NIEPRZYDATNĄ w rozwiązywaniu zadań predykcyjnych:

.

- a. sieć neuronowa typu RBF
- b. sieć neuronowa typu PERCEPTRON WIELOWARSTWOWY
- c. algorytm k-średnich
- d. liniowa regresja wieloraka
- 10. Poszukiwanie zbiorów częstych jest pierwszym etapem:

.

- a. algorytmu k-najbliższych sąsiadów
- b. algorytmu k-średnich
- c. algorytmu A priori
- d. algorytmu wstecznej propagacji błędów
- 11. Wskaż drugi algorytm (metodę), który służy do rozwiązywania tego samego typu problemów eksploracji danych, co algorytm k-najbliższych sąsiadów:

- a. algorytm PCA (analiza głównych składowych)
- b. algorytm k-średnich
- c. algorytm CART (drzewa klasyfikacyjne i regresyjne)
- d. algorytm Kohonena (sieć neuronowa typu SOM)

- 12. Problem klasteryzacyjny polega na:
- a. poszukiwaniu granic oddzielających obserwacje różnych klas
- b. identyfikacji skupisk zgodnie z pewnym kryterium podobieństwa
- c. predykcji przynależności danej obserwacji do różnych klas
- d. grupowaniu cech obserwacji w skorelowane ze sobą zespoły
- d. algorytmu wstecznej propagacji błędów
- 13. Metoda wzmacniania gradientowego (gradient boosting) służy do:
- a. przyspieszania procesu uczenia głębokich sieci neuronowych
- b. budowania mocnego modelu złożonego z wielu słabszych modeli
- c. generowania dodatkowych sztucznych próbek w zbiorach uczących
- d. zwiększania kontrastu pomiędzy blisko leżącymi klastrami
- 14. lloczyn skalarny wektora cech z pewnym wektorem wag można traktować jako formę:
- a. regresji liniowej
- b. ekstrakcji cech
- c. obrotu w przestrzeni cech
- d. redukcji wymiarowości
- 15. Na etapie wstępnej eksploracyjnej analizy danych najmniej przydatne jest:
- a. użycie metod nienadzorowanej klasteryzacji
- b. zliczenie wystąpień wartości zmiennych nominalnych
- c. wygenerowanie histogramów zmiennych ciągłych
- d. wizualne porównanie współzależności par zmiennych
- 16.Przeuczenie modelu (overfitting) można rozpoznać po tym, że:
- a. liczba błędnie zaklasyfikowanych przypadków spada do 0
- b. w procesie uczenia zaczyna rosnąć błąd dla próby testowej

- c. trafność predykcji modelu przekracza poziom 99.73%
- d. szybkość uczenia się modelu zaczyna spadać w kolejnych iteracjach
- 17. Argumentem funkcji aktywacji neuronu typu RBF jest

ważona liczba weiść dane

- a. ważona liczba wejść danego neuronu
- b. odległość wektorów: wejściowego x i wag w
- c. suma sygnałów x1 + x2 + ... wektora wejściowego x
- d. iloczyn skalarny wektorów: wejściowego x i wag w
- 18.Oryginalna zmienna x przyjmuje trzy wartości: -2, 1, 4. Po przeprowadzeniu normalizacji tej zmiennej wg metody min-max do przedziału [0, 1], oryginalnej wartości 1 odpowiada znormalizowana wartość:

.

- a. 0,25
- b. 0,5
- c. 0,75
- d. 1
- 19.Klasyczny (perceptronowy) model neuronu posiada dwa wejścia o wagach w1=1, w2=2, na które podano odpowiednio sygnały x1=-1, x2=+1. Funkcja aktywacji jest funkcją liniową postaci y=2x. Sygnał wyjściowy neuronu wynosi:

•

- a. 1
- b. 0
- c. 2
- d. -1
- 20. Problem klasyfikacyjny polega na:

- a. ustaleniu optymalnej liczby klas, do których należą obserwacje
- b. poszukiwaniu przypadków najbardziej reprezentacyjnych dla klas
- c. rozróżnianiu obserwowanych cech na wejściowe i wyjściowe
- d. prognozowaniu kategorii obserwacji na podstawie jej cech
- 21. Technika k-krotnej walidacji krzyżowej służy do:
- .a. klasteryzacji zbioru na k maksymalnie odległych skupień
- b. wyeliminowania wzajemnych zależności między zmiennymi
- c. ustalenia optymalnego momentu przerwania uczenia modelu

d. uniknięcia tendencyjności w ocenie jakości modelu

22.Rolą pojedynczego neuronu w warstwie perceptronu użytego do klasyfikacji jes
a. podział przestrzeni wejść na dwie półprzestrzenie b. rozpoznawanie jednej ze znanych klas w zbiorze c. rozpoznawanie jednego przypadku w zbiorze d. klasyfikacja pojedynczej cechy wejściowej
23. Algorytmy genetyczne (ewolucyjne) służa generalnie do realizacji zadań:
 a. poszukiwania reguł asocjacyjnych b. eksploracji danych zapisanych w chromosomach roślin i zwierząt c. optymalizacji d. regresji
24.Przyjęcie metryki L1 (metryki Manhattan) sprawia, że okręgi przyjmują kształt: a. trójkątów b. kardioid c. elips d. rombów
25.Przycinanie drzew decyzyjnych stosuje się w celu:
a. eliminacji zmiennych nieistotnych b. uniknięcia przeuczenia i skomplikowania modelu c. redukcji liczby klas d. ponownego przeprowadzenia podziału w miejscu cięcia
26.Problem regresyjny polega na:
a. dopasowaniu współczynników modelu do obserwacji uczących

b. prognozowaniu wartości na podstawie obserwowanych cech

c. poszukiwaniu korelacji między zmiennymi wejściowymid. znajdowaniu prostej najlepiej dopasowanej do obserwacji

27. Typowy zbiór danych używany do trenowania modeli uczenia maszynowego składa się z:

.

- a. instancji zgrupowanych w kategorie
- b. obserwacji obejmujących cechy
- c. obiektów posiadających atrybuty
- d. klas zawierających instancje
- 28. Hiperparametrami modelu nazywa się parametry, które:

.

- a. są dopasowywane podczas uczenia do danych wejściowych
- b. mogą zmieniać się w bardzo szerokim zakresie wartości
- c. steruja przebiegiem procesu uczenia modelu
- d. opisują wagi połączeń pomiędzy całymi warstwami sieci
- 29.W pewnym problemie eksploracji danych zmienna wyjściowa (zależna) przyjmuje 3 możliwe wartości: "biały", "czerwony", "niebieski". Dany problem zaliczamy do zadań:

.

- a. klasyfikacji bezwzorcowej (grupowania)
- b. regresyjnych (szacowanie, predykcja)
- c. poszukiwania reguł asocjacyjnych
- d. klasyfikacji wzorcowej
- 30. Istotną WADĄ sieci neuronowych jako modeli eksploracji danych jest:

. . .

- a. brak zdolności wyjaśniania (uzasadniania) wygenerowanych odpowiedzi
- b. bardzo długi czas reakcji (odpowiedzi) nauczonej sieci
- c. nieparametryczność
- d. brak zdolności do modelowania zjawisk nieliniowych
- 32. Aby wyeliminować tzw. efekt przeuczenia sieci neuronowej (uczenie nadzorowane), należy uznać za optymalny (ostateczny) zbiór wartości wag, otrzymany w momencie:

- a. zakończenia działania algorytmu uczącego
- b. minimum błędu dla ciągu walidacyjnego
- c. zidentyfikowania minimum lokalnego funkcji błędu uczącego
- d. minimum błędu dla ciągu uczącego