<u> אלגוריתמים – פתרונות לתרגיל 6</u>

- 1. נחליף כל קשת בזוג קשתות אנטי-מקבילות, ונגדיר את הקיבולים שלהן להיות המשקלים. כעת נבחר בחליף כל קשת בזוג קשתות אנטי-מקבילות, ונגדיר את הקיבולים אנימלי שמפריד בין t-t ל t-t ומצא חתך מינימלי שמפריד בין t-t ל t-t ל שרירותי קודקוד t-t ל ולכל החתכים האלה.
 - $O(|V|^3|E|)$ פעמים, לכן |V|-1 פעמים זרימה מקסימלית מוצאים מוצאים מוצאים
- נסמן את משקל $t\in V\setminus \{s\}$ לכל W. לכל W. נסמן את משקל את משקל את משקל וב- או אר שמיים אודר כללי מינימלי, ונסמן את משקל ב- אודר שלכל W_t מתקיים W_t לכן מספיק להראות שקיים W_t ברור שלכל W_t ברור שלכל W_t מתקיים לכן עבור W_t נסתכל על החתך W_t ונניח בלי הגבלת הכלליות ש- W_t בסתכל על החתך W_t ביים W_t כך ש- W_t כלומר החתך W_t מפריד בין W_t לכן W_t לכן W_t לכן W_t ולכן W_t
- 2. נחפש את P^R ב- P^R שהיא סיפא של KMP ומצא לכל P^R את אורך הרישא המקסימלית של P^R שהיא סיפא של P^R לכן נוכל למצוא את המקסימום על פני כל ה- R^R שמופיעה למצוא את המקסימלית של R^R שמופיעה ב- R^R , וזה בעצם אורך הסיפא המקסימלית של R^R שמופיעה ב- R^R .
 - .KMP ע"י TT מופיעה ב- T ע"י 3
- *. ניתן להניח, בלי הגבלת הכלליות, שאין ב- P רצף של *-יות, וש- P לא מתחילה או מסתיימת ב- P (אין משמעות ל- * בהתחלה ובסוף, ורצף של *-יות ניתן להחליף ב- * אחת). כלומר, P מהצורה P_1, P_2, \dots, P_k כאשר P_1, P_2, \dots, P_k לא מכילים *-יות. P_1, P_2, \dots, P_k אחרת אם מופע זה מסתיים כעת נחפש את המופע הראשון של P_1, P_2, \dots, P_k החל מהמקום ה- P_1, P_2, \dots, P_k וכך הלאה, עד P_1, P_2, \dots, P_k סיבוכיות: P_1, P_2, \dots, P_k
- ספיקלי מקסימלי עבורה |X| עבורה |X| מקסימלי מתקיים בדומה לתרגיל שראינו בכיתה, מספיק לבדוק אם בסימלי מענים ש- |X| פלינדרום. את החלוקה נמצא ע"י אוי לאחרון בכיתה, ואז נשווה את התו הראשון של Y לאחרון, וכו'.
- 0. נגדיר פונקציה f באופן הבא: לכל f(j)=1 , $0 \le j \le m$ אם יש f(j)=1 אם יש f(j)=1 אבורו f(j)=0 באופן הבא: לכל f(j)=0 האת של f(j)=0 נחשב בנוסף ל- f(j)=0 גריץ f(j)=0 נראיר את כל המקומות f(j)=1 עבורם f(j)=1 אם f(j)=1 ואחרת $f(j)=f(\pi[j])$, ואחרת $f(j)=f(\pi[j])$, ואחרת $f(j)=f(\pi[j])$ ואחרת $f(j)=f(\pi[j])$ אם $f(j)=f(\pi[j])$ אם $f(j)=f(\pi[j])$ אם $f(j)=f(\pi[j])$ אם $f(j)=f(\pi[j])$ פרישוב $f(j)=f(\pi[j])$ ואחרת $f(j)=f(\pi[j])$ אם $f(\pi[j])$ אם
 - יו שוב 1. ס-(ס)ו, ויללי זוו ב עב 1, אם ע מונות קבי ל או 1 –(עו, ואווי זו ענטא)ו–(עו, O(n+m).