

THE PROBLEM

We are provided with a novel dataset on which we need to perform regression. We are given Lidar, Pose and Goal information. We have to use a regression model to predict the command velocity (translational and angular) based on the path taken.

Features:

- Laser Range
- Final Goal (x,y,qk,qr)
- Local Goal (x,y,qk,qr)
- Pose (x,y,qk,qr)

Predict:

- Cmd_vel_v
- Cmd_vel_w

Data Processing

Feature Engineering

Imputation Check

Outlier Check

Train-Validation Split

Feature Selection

Feature Reduction

Feature Scaling

Machine Learning Pipeline

- The strategy was as follows:
- Train model with default parameters
- Run prediction on Training Data and Testing Data
- Compute R^2 score and Mean Square Error
- Tune Hyperparameters
 - Build parameter dictionary
 - Fit data on Validation Set to find best parameters
- Evaluate best model on Training Data and Testing Data
- Compute R^2 score and Mean Square Error for best version

EVALUATION METRIC

$$R^2 = 1 - \frac{SS_{Regression}}{SS_{Total}}$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

- 1. R-Squared
- 2. Mean Squared Error

Learning Curves

Conclusion: A training data set exceeding 50,000 instances is sufficient for this Learning Problem.

Regularization Strategies

Linear Regression with SGD:

- a. penalty: Lasso Regularization (L1) and Ridge Regularization (L2) are considered.
- b. alpha: tunes the regularization term. High value means high regularization.

Decision Tree, Random Forest and XGBoost:

- a. max_Depth: reduce the maximum depth of the tree to discourage memorization
- b. n_estimators: reduce number of decision trees to improve generalization
- c. max_depth: specify a value to ensure that $\boldsymbol{E_{in}}$ is not 100 %

Models Considered

- Linear Regression with Stochastic Gradient Descent
- Decision Tree
- Random Forest
- XG Boost

CONCLUSIONS

- Tree based regression outperforms classic linear regressors.
- Tree based regression requires extensive hyperparameter tuning, they tend to overfit.
- Translational Velocity is more predictable and learnable given the features provided in the dataset.
- Extremely large datasets (> 100,000 instances) have no significant improvement on E_{out} value for any of the models.
- Randomized Search is faster than Grid Search but it may not always give the ideal hyperparameter configuration.

Best Model ==> XG Boost

	Translational		Angular	
XG	Velocity (v)		Velocity (w)	
Boost	Test	Test	Test	Test
	Set 1	set 2	Set 1	set 2
MSE	0.01	0.09	0.02	0.10
R^2	0.92	0.34	0.77	-0.73

- XG Boost gives the best R^2 scores while giving the lowest MSE values.
- The Out of Sample errors are shown on the right:
- Other models are indeed easier to understand and implement.
- However, the immense amount of data, and the complexity of the learning problem required a learning architecture that is efficient and robust.
- Hence, XG Boost came out as the winner.

THANK YOU

