IHF:MM II-9

DEPARTMENT OF COMMERCE BUREAU OF STANDATDS WASHINGTON

Letter Circular LC 18

May 10, 1923 IMPORTANT EUROPEAN SCREW THREAD SYSTEMS

(Superseding Communication B516 Originally issued February 25, 1916)

AND DIMENSIONS OF BOLT AND SCREW HEADS AND NUTS

	CONTENTS	D
1.	Introduction Wife	Page 23
II.	British standard Whitworth and British standard fine screw threads 1. British standard Whitworth and British standard fine screw threads 2. Dimensions, allowances, and tolerances 3. British standard automobile threads 4. Interchangeability of U.S. National Coarse and British standard Whitworth threads	2 2 3 4
III.	British Association screw threads	17
IV.	British standard pipe threads 1. British standard pipe thread for iron and steel tubes 2. British standard thread for steel conduit 3. British standard dimensions for copper tubes and their screw threads 4. Gaging British standard pipe threads	20 20 20 21 21
V.	British standard bolt heads, nuts, and screw heads. 1. British standard bolt heads and nuts. 2. British standard automobile bolt heads and nuts. 3. British standard heads for British Association screws.	27 27 27 27
VI.	International metric screw thread standard and proposed metric fine and International pipe threads	33
VII.	Screw thread standards in use in France	36
VIII.	Standard dimensions of bolt heads, nuts, and screw heads in use in France 1. Width across flats or diameters of bolt heads, nuts, and screw heads 2. Height of bolt and screw heads and thickness of nuts 3. Dimensions of slots in screw heads 4. Length below head and length of threaded portion 5. Angles of countersunk heads	38 38 39 40 40 41
IX.	The Loewenherz screw thread system and screw heads	51

I. INTRODUCTION

This circular is a collection of data appertaining to screw thread systems and standard dimensions for bolt and screw heads and nuts in use in various European countries. It covers, particularly, those standards which originated in Great Britain, France, Switzerland, and Germany, although used by other European nations as well.

So far as practicable the nomenclature in vogue in the United States and sanctioned by the Mational Screw Thread Commission has been used, in order that information given may be understood and applied with as little difficulty as possible. An effort has been made to give a complete presentation of all essential data.

Since American standards for the dimensions of bolt and screw heads are still in the process of formulation, this collection of data may prove of use in arriving at such standards. These data should also prove useful to those who manufacture machinery for export.

II. BRITISH STANDARD WHITVORTH AND BRITISH STANDARD FINE SCREW THREADS

1. British Standard Wnitworth and British Standard Fine Screw Threads

The Whitworth series of screw threads was proposed in 1841 by Joseph Whitworth of Great Britain in a paper read before the Institution of Civil Engineers. The Whitworth thread angle, diameters and pitches were chosen because they represented the average engineering practice at that time. Of thread angle, Mr. Whitworth said: "The mean of the angles in one inch screws was found to be about 55 deg , which was also nearly the mean in screws of different diameters, hence, it is adopted throughout the scale".

The British Engineering Standards Association adopted the British Standard Whitworth Screw Threads (B. G. W.) in 1905 and issued a report giving the essential dimensions of the series. The thread angle in an axial plane is 55 deg.; the threads are rounded equally at crest and root to a radius of 0.137529 times the pitch, and the resulting depth of thread becomes 0.640527

times the pitch. Thus, one-sixth of the depth of the basic triangle is removed from the crest of the thread, and one-sixth of the depth is filled in at the root. This form of thread is designated the "Whitworth" thread form, and is shown in Fig. 1.

The Whitworth form of thread is also used in the British standard Fine Screw Threads (B.S.F.) Thitigh Standard Pipe Threads (B.S.P.), and British Standard Conduit Threads.

Fig. 1. Whitworth Thread Form.

The British Standard Fine Scres Threads were introduced in 1908 by the British Engineering Standards Association, and are said to be well suited to the purposes for which they sere designated. The pitches are obtained by the formula,

$$p = 0.1 D$$

for sizes up to and including one inch, and 5/8 p = 0.1 D

for sizes above one inch. In these formulas,

p = pitch and D = major diameter.

2. Dimensions, Allowances, and Tolerances

The basic dimensions of British Standard Whitworth and British Standard Fine Screw Threads are given in Tables 1 and 4. In Tables 2, 5, 5, 6, 7, and 8 are given the dimensions and tolerances on bolts and nuts for both series.

The maximum screw is made to the basic size. For example, the maximum major diameter of a 1/4 inch B.S.W. screw is 0.2500 inch, and the minimum major diameter is equal to the maximum major diameter minus the tolerance. The tolerance is given in Table 2 as 0.0018 inch, hence, the maximum major diameter is 0.2482 inch.

All allowances to provide for clearance are in the hou, the minimum diameter of the thread in the nut being above basic size. As shown in Table 5, the minimum major diameter of a 1/4 inch nut is 0.0005 inch above basic size, or 0.2505 inch. The maximum major diameter is 0.2525 inch, being greater than the minimum major diameter by an amount equal to the tolerance, namely, 0.0018 inch.

3. British Standard Automobile Threads

In a report submitted by the Sub-Committee on Automobile Threads, which was adopted by the Section Committee on Screw Threads and Limit Gages, and approved by the British Engineering Standards Association in 1911, the sizes of the British Standard Fine Screw Threads from 1/4 in. to 1 in., inclusive, as given under bolt dimensions in Table 4, were taken as standard for threads used in automobile construction.

4. Interchangeability of United States National Goarse and British Standard Whitworth Threads by Diameter Modification

Table 9 shows that the diameters and pitches of the U.S. National Coarse Thread Reries and the British Standard Whitworth Threads, in most cases, correspond. Consequently the question of interchangeability between them has caused considerable discussion, both in this country and in England. A method of securing interchangeability is based on a slight modification of the diameters of either the National or the Whitworth threads, or both, without changing the angle or thread form of either. Table 10 shows the modification of diameters of either of the systems necessary to produce assembly. Since the Whitworth thread angle is 5 deg. less than that of the National Thread, contact occurs near the arest of the Whitworth thread and near the root of the National Thread. Table 10 includes only those threads whose pitches are common to both systems.

Fig. 2 shows the two possible combinations of the Whitworth and National Threads. The conditions of stress developed in the thread would be the same in either system as would ordinarily

occur with a slight difference in angle between bolt and mut. It is desirable that, in such combinations, the bolt thread oe of the National form and the nut thread of the Whitworth form, as in that case the crest of the nut thread will bear near the root of the bolt thread, which is a very favorable condition as to distribution of stresses in the nut. If, however, as in the combination of a Whitworth bolt thread with a National nut thread, the root of the nut thread bears on the crest of the bolt thread, the stresses in the nut will be two or three times as severe as in the first case, which may result in failure of the threads at the bottom of the nut.

References:

Institution of Civil Engineers, 1841, Vol. 1, page 157. British Engineering Standard Association Reports Nos. 20 - 1913. - Screw Threads

38 - 1913. - Standard Systems for Limit Gages for Screw Threads

54 - 1911. - British Standard Threads, Nuts, and Bolt Heads for use in Automobile Construction

84 - 1918. - British Standard Fine Screw Threads and their Tolerances.

Fig. 2.

Table 1.-Basic Dimensions of British Standard Whitworth Screw Threads

		1 3	7		 		1 r.			7 9 27
)	<u> </u>	No.of	3	D	5	6	7	8	9	
1	Nominal	thds.	-	Depth		ajor		tch	Min	
	dia.	per in.	Pitch	of.		ameter_		meter Nat	Bolt	ever
	In.	Der TII.	In.	thd. In.	Bolt In		Bolt In.		In.	In.
	-11·		7.14 •	-TIT *	In.	In.	4.71.	in.	111.	- L. A. L. o
	1/4	20	0.05000	0.03200	0.2500	0.2520	0.2130	0.2200	0,1860	0.1880
	5/16	18	.05556	.03555	.3125	.3145	.2769	.2789	.2414	.2434
	3/8	16	.06250	.04000	.3750	,3770	.3350	.3370	.2950	.2970
	7/16	14	.07143	.04575	.4375	4395	.391.8	.3938	.3460	.3480
	1/2	12	.08333	.05335	.5000	.5020	.4466	.4486	.5933	.3953
	9/16	12	.08333	.05335	.5625	.5645	.5091	.5111	.4558	.4578
	5/8	11	.09091	.05820	.6250	.6270	.5968	, 5663	.5086	.5106
	3/4	10	.10000	.06405	.7500	.7520	.6860	.6880	.6219	.6239
	7/8	9	.11111	.07115	.8750	.8770	,8039	.8059	.7327	.7347
	т	8	.12500	.08005	1.0000	1.0020	.9200	.9220	.8399	.8419
	1 1/8	7	7.4500	007.50	1 1050	2 2020	. 0005	1 0055	0400	.9440
	1 1/4	7	.14286	.09150				1.0355	.9420	1.0690
	1 1/2	6	.16667	.10670				1,1805	1.0670	1.2886
	1 3/4	5	.20000	.12805				1.3953	1.4939	1.4959
	1 3/4	4.5	.22222	1				1.8597		1.7174
				. 14200	5.0000	5.0050	1,00//	1.000.	1.1101	J
	2 1/4	4	.25000	.16010	2.2500	2.2520	2.0899	2.0919	1.9298	1.9318
	2 1/2 2 3/4	4	.25000						2.1798	2.1818
	2 3/4	3.5	.28571							2.3861
	3 1/4	3.5	.28571							2.6361
	3 1/4	3.25	.30769	.19700			3.0530	3.0550	2.8560	2.8580
	3 1/2	7 0-	50500			To a second				OOA
	3 1/2 3 3/4	3.25	.30769							3.1080
	4	3	.33333							3.3251
		2.875	.33333							3.5751 4.0566
	4 1/2	2.75	.34783							4.5363
		5.75	. 30304	. 20205	5.0000	5.0020	4.7672	4.7692	4,5040	¥,0000
	5 1/2	2.625	.38095	.24395	5.5000	5.5020	5.2561	5,2581	5.0121	5.0141
)	3	2.5	.40000							5.4897
_					0,0005	3.0020	0.1200	0.1200	0,2011	
										

This table is taken from British Engineering Standards Association Interim Report No. C.L.(M.) 7270-1919. Intermediate sizes included therein, which the association recommends be dispensed with, are not included.

Table 2. - Standard Sizes and Tolerances for Whreads on Bolts, British Standard Whitworth Screw Threads

		,-	·										
1	2	3	4	5	6	7	8	9	10	1,1	12	15	14
	Number		See no	te A	<u></u>	lajor qia		P	itch diame		Minor	diameter	
Naminal diameter	of threads per inch	Pitch	Pitch	Angle	 Maximum	Mi nimum	0.03/p Tolerance	lastimum	Minimum	3.0275 Tolerande	Maximum	Minimum	0.04Vp Tolerande
Tran 25	502 211011	Inches		Degrees		Inches	Inches	inches	Inches	Inches	Inches	Inches	Inches
1/4 5/16 3/8 7/16 1/2	20 18 16 14 1 2	0.05000 .05556 .06250 .07143 .08333	0.0012 .0013 .0013 .0014	4.5 4.0 5.8 5.3	0.2500 .3125 .3750 .4375	C. 2433 .3054 .3675 .4295 .4913	0.0037 .0071 .0075 .0080 .0087	0.20.90 .2769 .3050 .3918 .4466	0.2135 .2722 .3300 .3865 .4408	0.0645 .0047 .0050 .0053 .0058	0.1860 .2414 .2950 .3460 .3933	0.1770 .2520 .2850 .5353 .3818	0.0090 .0094 .0100 .0107 .0115
9/16 5/8 3/4 7/8	12 11 10 9 8	.08333 .09091 .10000 .11111 .12500	.0015 .0016 .0016 .0017	3.3 3.0 3.0 3.7	. 5625 . 6250 . 7500 . 8750 1.0000	.5538 .6160 .7405 .8650	.0087 .0090 .0095 .0100	.5091 .5668 .6860 .8039 .9200	.5033 .5608 .6797 .7972 .9129	.0058 .0060 .0063 .0067	. 4558 . 5086 . 6219 . 7327 . 8399	. 4443 . 4965 . 6093 . 7194 . 8258	.0115 .0121 .0126 .0133 .0141
1-1/8 1-1/4 1-1/2 1-5/4 2	7 7 6 5 4.5	.14286 .14286 .16567 .20000	.0020 .0020 .0021 .0023	2.5 2.5 2.1 2.0	1.1250 1.2500 1.5000 1.7500 2.0000	1.1137 1.2387 1.4878 1.7366 1.9859	.0113 .0113 .0122 .0134 .0141	1.0335 1.1585 1.3933 1.6219 1.8577	1.0259 1.1509 1.3851 1.6130 1.8483	.0076 .0076 .0083 .0089	.9420 1.0670 1.2866 1.4939 1.7154	.9269 1.0519 1.2703 1.4760 1.6965	.0151 .0151 .0163 .0179 .0169
2-1/4 2-1/2 2-5/4 3 3-1/4	4 4 3.5 3.5 3.85	. 25000 . 25000 . 28571 . 28571	.0026 .0026 .0028 .0028	1.9 1.9 1.8 1.8	2.2500 2.5000 2.7500 3.0000 3.2500	2,2350 2,4350 2,7040 2,9840 3,2334	.0150 .0150 .0160 .0160 .0166	2.0899 2.3399 2.5670 2.8170 3.0530	2.0799 2.5299 2.5563 2.8063 5.0419	.0100 .0100 .0107 .0107	1.9298 2.1798 2.3841 2.6341 2.8560	1.9098 2.1598 2.3627 2.6127 2.8338	.0300 .0300 .0314 .0314 .0323
3-1/2 3-3/4 4 4-1/2 5	3.25 3 3 2.875 2.75	. 130769 . 33333 . 33333 . 34783 . 36364	.0029 .0030 .0030 .0031	1.7 1.6 1.6 1.6	5.5000 3.7500 4.0000 4.5000 5.0000	3.4834 3.7327 3.9827 4.4823 4.9819	.0166 .0173 .0173 .0177	3.3030 5.5366 3.7866 4.2773 4.7672	3.2919 3.5271 3.7751 4.2655 4.7551	.0111 .0115 .0115 .0118 .0121	3.1060 3.3231 3.5731 4.0546 4.5343	3.0858 3.3000 3.5500 4.0310 4.5102	.0223 .0251 .0251 .0256 .0241
5-1/2	2.625 2.5	.38095	.0032 .0033	1.5 1.5	5. 5000 6. 0000	5.4815 5.9810	.0185 .0190	5.2561 5.7439	5. 243 8 5. 7313	.0125	5.0121 5.4877	4.9874 5.4624	.0347

This table is taken from British Engineering Standards Association Interim Report No. C.L. (M.) 7270-1919. Intermediate sizes included therein, which the Association recommends be dispensed with, are not included.

Note A:- The errors in pitch in the length of thread engaged, and in angle are given, which can each be compensated by one-half of the tolerance on pitch diameter as given. The errors in pitch and angle may exist together, provided that the pitch diameter has the minimum value; also the permissible error in pitch may be increased to twice the value shown, provided that the error in angle is correspondingly reduced, and vice versa.

Table 5. - Standard Sizes and Tolerances for Threads in Nuts.

British Standard Whitworth Screw Threads

ı	<u> </u>	2	3	1 4	5	T 6			1 (9	10	111 1	12	13	14
1	Nominal	Number thread	of	See n			jor diame	ster 8	4	itch diam	1		nor diama	eter
ı	diameter			Pitch	Angle	-	m Maximum		Minimum	Maximum	Tolerance 0.04Vp	Minimum	Mainmum	Tolerance 0.0.Vp
l	Inches		Inches	Inches	Degrees	Inches	Inches	0.04V6 Inches	Inches	Inches	inches	Inches	Tabhes	Inches
	1/4 5/16 3/8 7/16 1/2	16	.05000 .05556 .06250 .07143 .08333	0.0012 .0012 .0013 .0014 .0015	4.5 4.0 3.8 3.5 3.3	0.2520 .5145 .5770 .4395 .5020	0.2610 .3239 .3870 .4502 .5135	0.0090 .0094 .0100 .0107 .0115	0.2200 .2789 .3370 .3938 .4486	0.2245 .2836 .3420 .3991 .4544	0.0045 .0047 .0050 .0053 .0058	0.1830 .2434 .2970 .3480 .3955	0.1947 .2505 .3045 .3560 .4040	0.0067 .0071 .0075 .0080 .0087
	9/16 5/8 3/4 7/8	12 11 10 9 8	.08353 .09091 .10000 .11111 .12500	.0015 .0016 .0016 .0017 .0018	3.3 3.2 3.0 2.9 2.7	.5645 .6270 .7520 .8770 1.0020	.5760 .6391 .7646 .8903	.0115 .0121 .0126 .0135	.5111 .5688 .6880 .8059 .9220	:5169 .5748 .6943 .8126 .9291	.0058 .0060 .0063 .0067 .0071	.4578 .5106 .6239 .7547 .8419	.4665 .5196 .6334 .7447 .8525	.0087 .0090 .0095 .0100 .0106
	1-1/8 1-1/4 1-1/2 1-5/4 2	7 7 6 5 45	.14286 .14286 .16667 .20000 .22222	.0020 .0020 .0021 .0023 .0025	2.5 2.5 2.3 2.1 2.0	1.1270 1.2520 1.5020 1.7520 2.0020	1.1421 1.2671 1.5163 1.7699 2.0209	.0151 .0151 .0163 .0179 .0189	1.0355 1.1605 1.3953 1.6239 1.8597	1.0431 1.1681 1.4035 1.6328 1.8691	.0076 .0076 .0082 .0089 .0094	.9440 1.0690 1.2886 1.4959 1.7174	.9555 1.0805 1.3008 1.5095 1.7315	.0113 .0113 .0122 .0134 .0141
	2-1/4 2-1/2 2-3/4 3 3-1/4	4 4 35 35 325	.25000 .25000 .28571 .28571 .50769	.0026 .0026 .0028 .0028		2.7520	2.2720 2.5220 2.7734 3.0234 3.2742	.0200 .0200 .0214 .0214 .0222	2.0919 2.3419 2.5690 2.8190 3.0550	2.1019 2.3519 2.5797 2.8297 3.0661	.0100 .0100 .0107 .0107	1.9318 2.1818 2.3861 2.6361 2.8580	1.9468 2.1968 2.4021 2.6521 2.8746	.0150 .0150 .0160 .0160 .0166
	3-1/2 5-3/4 4 4-1/2 5	3.25 3 2875 275	. 333333 . 34785	.0029 .0030 .0030 .0031	1.6 1.6 1.6	3.7520 4.0020 4.5020	3.5242 3.7751 4.0251 4.5256 5.0261	.0222 .0231 .0231 .0236 .0241	3.3050 3.5386 3.7886 4.2793 4.7692	3.3131 3.5501 3.8001 4.2911 4.7813	.0111 .0115 .0115 .0118 .0121	3.1080 3.3251 3.5751 4.0566 4.5363	3.1246 3.3424 3.5924 4.0743 4.5544	.0166 .0173 .0173 .0177 .0181
	5-1/2			0032			5. 5267	.0247	5.2581 5.7459	5,2704 5,7585	.0123	5.0141 5.4897	5.0326 5.25087	.0185
	mai -	4 45							,					

This table is taken from British Engineering Standards Association Interim Report No. C.L. (M.) #270-1919. Intermediate sizes included therein, which the Association recommends be dispensed with, are not included.

Note A. - The errors in pitch in the length of thread engaged, and in angle are given, which can each be compensated by one-half of the tolerance on pitch diameter as given. The errors in pitch and angle walue; also, the permissible error in pitch may be increased to twice reduced, and vice versa.

- Basic Dimensions of British Standard Table 4.

						- 10 -		
1.0	121		Inches	0	26.24.4.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	.6453 .7678 .7606 .8739 .9847	1.1057 1.2559 1.4669 1.5669	1.8190 2.0336 2.236 2.5386 2.7459
6	Min	Bolt t	S	0.1731 .2607 .2320 .2543 .3110	6.44.00.00.00.00.00.00.00.00.00.00.00.00.	6473 7077 8778 8778 8778 7788 7788 7788	1.2017 1.3017 1.50394 1.56499	2.0366 2.0366 2.5366 2.7439
50	121	Nat	Inches	00000000000000000000000000000000000000	047.00.00 04.00.00 0.00.00.00 0.00.00.00 0.00.00.00 0.00.0	.6956 .7611 .8188 .9380 1.0559	1.2809 1.2809 1.5420 1.5420 1.6605	1.9105 2.1453 2.3953 2.6453 2.8739
co.	-t-	Bolt	12	0.1960 .25554 .25566 .25566 .35546 .3450	4400 4400 5277 500 500 500 500 500 500 500 500 500 5	.6965 .7591 .8168 .9360 1.0539	1.8950 1.78950 1.65850 1.65850	1.9085 2.1433 2.5933 2.6433 2.8719
v inread	or	0 H 0 H 0 H 0 H 0 H 0 H 0 H 0 H 0 H 0 H	Inches	0.2203 .2520 .2520 .2520 .3145 .3170	# 10.000 80.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000	.8145 .8145 .8770 1.0020	1.2520 1.3770 1.5020 1.6270 1.7520	2.0020 2.2520 2.5020 2.7020 3.0020
e sorew	国 .	Bolt Bolt	Inches	0.2188 .2500 .2813 .3125	# 100000 1000000 10000000000000000000000	.8125 .8125 .8755 1.0000	1.3750 1.3750 1.5000 1.5500 1.7500	2.7500 3.2000 3.2000 3.2000
17 th	Depth	or hre	0	3. J2285 . O2465 . O2910 . O3200	.03555 .0400 .0400 .0400 .0457540.		. 051170. . 08009 . 080050. . 09150	.09150 .10670 .10670 .10670
23	1	T C CII	Inches	0.03571 0.05846 0.03846 0.04545 0.05000	05250 .06250 .00250 .07270 .07470	.08333 .08335 .09090. .00001	.11111. .12500 .12500 .12500	.14286 .16667 .16667 .16667 .20000
0	HO	per inch		0.0000 0.00000	\$1 91 10 10 10 10 10 10 10 10 10 10 10 10 10	887. 887. 87. 87.	01 80 80 10 M	70007
-		mın ane	1 03	25/1 25/2 30/3 30/5 30/2 30/2 30/2 30/2 30/2 30/2 30/2 30/2	7/16/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	3/4 13/16 7/8 1	1-1/2 1-5/2 1-5/2 1-5/2 4	2 -1/4 2 -2/4 2 -3/4

This table is taken from British Engineering Standards Association Report No. 84-1918.

Table 5. - Standard Sizes and Tolerances for Three as on Bolts,

British Standard Fine Screw Phreeds

	7	T	1			ī		9	10	11	12	13	14
Yominal	Number of	Pitch	See no	te A	}⊬e.j	or diame	ter		h diamete			diameter	
			Piton	Angle	Maximum	Miniman	Tolerance	Maximum	Minimum	Tolerance	Maximum	Minimum	Tolerance
Inches		Inches	Luches	Degreus	Inches	Inches	Tiones	Inches	Inches	Inches	Inches	lnches	lnohes
7/32 1/4 9/32 5/16	28 26 26 22 20	0.03571 .03846 .03846 .04545	0.0010 .0010 .0010 .0011	5.1 4.8 4.5 4.3	0.3198 .3500 .2813 .3125 .3750	0.2131 .2441 .2754 .3061 .3683	0.0057 .0059 .0059 .0064 .0067	0.1960 .2254 .2566 .2834 .3430	0.1922 .2215 .2527 .2791 .3385	0.0033 .0039 .0039 .0043 .0045	0.1731 .2007 .2320 .2543 .3110	0,1665 .1529 .2842 .2458 .3020	0.0076 .0073 .0078 .0085 .0090
7/16 1/2 9/16 5/8 11/16	18 16 16 14	.05356 .03250 .03250 .07143	.0012 .0013 .0013 .0014	4.0 3.8 3.5 5.5	. 4375 . 5000 . 5635 . 6250	. 430 4 . 4925 . 5550 . 5_70 . 5765	.0071 .0075 .0075 .0060 .0060	.4019 .4600 .5225 .5793 .6418	.3972 .4550 .5175 .5740 .6365	.0047 .6050 .0050 .0053	.3664 .4200 .4825 .5335 .5960	.3570 .4100 .4735 .5228 .5853	.0094 .0100 .0100 .0107 .0107
3/4 13/16 7/8 1- 1- 1/8	12 12 11 10 9	.08333 .08333 .09091 .10000	.0015 .0015 .0018 .0018 .0017	5.3 3.3 3.0 3.9	.7300 .8135 .8750].0000].1350	.7413 .6038 .8660 .9905	.0087 .0087 .0090 .0095	.6966 .7591 .8168 .9360 1.0539	.6908 .7533 .8108 .9297 1.0472	.0058 .0058 .0060 .0063 .0067	.6433 .7058 .7536 .8719 .9827	.6318 .6945 .7465 .8593 .9694	.0115 .0115 .0121 .0126 .0133
1- 1/4 1- 5/6 1- 2/3 1- 5/8 1- 5/4	9 6 & 8 7	.11111 .12500 .13500 .12500 .14286	.0017 .0018 .0018 .0018	2.9 2.7 2.7 2.5	1.2500 1.3750 1.5000 1.8250 1.7500	1.2400 1.3644 1.4894 1.3144 1.7567	.0100 .0106 .0106 .0106 .0113	1.1789 1.2950 1.4200 1.5450 1.6585	1.1722 1.2879 1.4129 1.5379 1.6509	.0067 .0071 .0071 .0071	1.1077 1.2149 1.3399 1.4649 1.5670	1.0944 1.2008 1.3258 1.4508 1.5519	.0133 .0141 .0141 .0141 .0151
2 2- 1/4 2- 1/2 2- 3/4 3	7 6 6 6 5	.14236 .16637 .16637 .16667 .20000	.0020 .0021 .0021 .0021	35555 3666 3666 3666	2.0000 2.2500 2.5000 2.7500	1.9887 2.2878 2.4878 2.7378 2.9866	.0113 .0122 .0122 .0122 .0134	1.9085 2.1433 2.3933 2.6433 2.8719	1.9009 2.1351 2.3351 2.6351 2.8630	.0076 .0082 .0082 .0082 .0089	1,8170 2,0366 2,2866 2,5366 2,7439	1.8019 2.0203 2.2703 2.5203 2.7260	,0151 ,0163 ,0163 ,0163 ,0179

A. The errors in pitch in the length of thread engaged, and in angle, are given, which can each be compensated by one-half of the tolerance on pitch diameter as given. The errors in pitch and angle, may exist together, provided that the pitch diameter has the minimum value; also, the permissible error in pitch may be increased to twice the value shown, provided that the error in angle is correspondingly reduced, and vice versa.

Table 6. - Standard Sizes and Tolerances for Threads in Nuts British Standard Fine Screw Threads

П	1	2	3	1.	1 5	6	7	9	9	10	11	12 Mino
		Number	<u>-</u> -	See :	nove A		or diamet		Pito	1 diamete	<u>}'</u>	12716
	Nominal diameter Inches	of thds. per inch	Pitch Inches	Pitch	Argle	Minigum	Maximum	Toleraces	Minimum Inches	Maximum Inches	Tolerance Inches	Minimum Inches
	7/32 1/4 9/32 5/16 3/8	28 26 26 22 20	0.03571 .03846 .03946 .04545	0.0010 .0010 .0010 .0011	5.1 4.8 4.8 4.5 4.3	Inches 0.2203 .2520 .2833 .3145 .3770	1nches 0.2284 .2598 .2911 .3230 .3860	1ndies 0.0076 .0078 .0078 .0085 .0090	0.1980 .2274 .2586 .2854 .3450	0.2018 .2313 .2625 .2897 .3495	0.0038 .0339 .0339 .0043 .0045	0.1751 .2027 .2340 .2563 .3130
	7/16 1/2 9/16 5/8 11/16	18 16 16 14 14	.05556 .06250 .06250 .07143	.0012 .0013 .0013 .0014	4.0 3.8 3.5 3.5	.4395 .5020 .5645 .6270 .6835	.4489 .5120 .5745 .6377 .7002	.0094 .0100 .0100 .0107	.4039 .4620 .5245 .5813 .6438	.4086 .4670 .5895 .5866 .6491	.0047 .0050 .0050 .0053 .0053	.3694 .4220 .4845 .5355 5980
	3/4 13/16 7/8 1 1 1/8	12° 12 11 10 9	.03323 .08333 .09091 .10000	.0015 .0015 .0016 .0016	3.3 3.3 3.2 3.0 2.9	.7520 .8145 .8770 1.0020 1.1370	.7635 .8260 .8891 1.0146 1,1403	.0115 .0115 .0121 .0126 .0123	.6986 .7611 .8188 .9380 1.0559	.7044 .7669 .8248 .9443 1.0626	.0058 .0058 .0060 .0063 .0067	.6453 .7078 .7606 .8739 .9847
	1 1/4 1 3/8 1 1/2 1 5/8 1 3/4	9 8 8 8 7	.11111 .12500 .12500 .12500 .14286	.0017 .0018 .0018 .0018	2.9 2.7 2.7 2.7 2.5	1,2520 1.3770 1.5020 1.6270 1.7520	1.2653 1.3911 1.5161 1.6411 1.7671	.0153 .0141 .0143 .0141 .0151	1.1809 1.2970 1.4220 1.5470 1.6605	1.1876 1.3041 1.4291 1.5541 1.6681	.0067 .0071 .0071 .0071 .0076	1.1097 1.2169 1.3419 1.4669 1.5690
2	3 1/4 3 1/2 3 3/4	7 6 6 5	.14286 .16667 .16667 .16667 .20000	.0020 .0021 .0021 .0021	2.5 2.3 2.3 2.1	2.0020 2.2520 2.5020 2.7520 3.0020	2.0171 2.2683 2.5183 2.7683 3.0199	.0151 .0163 .0165 .0163 .0179	1.9105 2.1453 2,3953 2.6453 2.8739	1.9181 2.1535 2.4035 2.6535 2.8828	.0076 .0082 .0082 .0082 .0089	1.8190 2.0306 2.2683 2.5386 2.7459

	.2586 .2854 .3450	.2625 .2897 .3495	.0039 .0043 .0045	.2563	.2627	.0064 .0067	
	.4039 .4620 .5245 .5813 .6438	.4086 .4670 .5295 .5866 .6491	.0047 .0050 .0050 .0053 .0053	.3694 .4220 .4845 .5355 5980	.3755 .4395 .4920 .5435 .6060	.0071 .0075 .0075 .0080 .0080	
}	.6986 .7611 .8188 .9380	.7044 .7669 .8248 .9443 1.0626	.0058 .0058 .0060 .0063 .0067	.6453 .7078 .7606 .8739 .9847	.8540 .7165 .7696 .8834 .9947	.0087 .0037 .0030 .0035 .0100	
	1.1809 1.2970 1.4220 1.5470 1.6605	1.1876 1.3041 1.4291 1.5541 1.6681	.0067 .0071 .0071 .0071	1.1097 1.2169 1.3419 1.4669 1.5690	1.1197 1.2375 1.3525 1.4775 1.5803	.0100 .0106 .0106 .0106 .0113	
\$ 1 1	1.9105 2.1453 2,3953 2.6453 2.8739	1,9181 2,1535 2,4035 2,6535 2,8828	.0076 .0082 .0082 .0082 .0089	1.8190 2.0306 2.2686 2.5386 2.7459	1.8303 2.0508 2.3008 2.5508 2.7593	.0133 .0122 .0122 .0122 .0134	
				1			

13

Mariann

inones

0.1808

.2086

.2399

Tolerance

Inches

0.0057

.0059

.0059

Minor diamaner

Note A. The errors in pitch in the length of thread engaged, and in angle, are given, which can each be compensated by one-half of the tolerance on pitch diameter, as given. The errors in pitch and angle may exist together, provided that the pitch diameter has the maximum value; also, the permissible error in pitch may be increased to twice the value shown, provided that the error in angle is correspondingly reduced, and vice versa.

Table 7. - Standard Sizes and Tolerances for Threads on Bolts, British Standard Fine Scrow Threads (Close Fits)

1	2	3	4	5	6	77	3	9	10	111	1.0	13	3.4
artmp7	Number		See :	note A	Mea	jor diam	eter	Pit	ch diamet	er		OF CASON	
Nominal diameter	of thds.	Dia . N	2		1		ì						
Inches	per inch		Picon	Angle	Maximim	Minimum	Tolerance	Maximum	Minimum	Tolerance		Minimum	Tolernne
Inones		Inches	THOROR	Degrees	Inohes	Inches	Inches	Inches	Inches	lnohes	Inches	Inches	Inches
7/32	28	0.03571	0.0005	2.6	0.2188	0 03 60	0.0000	0.1960	0.1941	0.0050	0.1853	0.7000	0.0070
1/4	26	.03846	.0005	2.4	.2500	0.2159	0.0029	. 2254	.2234	0.0019 .0020	0.1731	0.1693	0,0038
1/4 9/32	26	.03846	.0005	2.4	.2813	.2783	.0030	. 2566	.2546	.0020	,2007 ,2320	,1968 .2381	.0029 .0059
5/16	22	.04545	.0006	2.3	.3125	.3093	.0032	.2834	,2812	.0020	.2543	.2500	.0033
3/8	20	.05000	.0006	2,2	.3750	.3716	.0034	. 3430	.3407	.0023	.3110	.3065	.0045
					10100	.0,10	.0001		, , , ,	.0(20	.0110		.0040
7/16	18	.05556	.0006	2.0	. 4375	.4339	.0036	. 4019	.3995	.0024	.3664	3617	.0047
1/2	16	.06250	.0007	1.9	. 5000	. 4962	.0038	. 4600	.4575	.0025	.4200	41.50	.0050
9/16	16	.06250	.0007	1.9	.5625	.5587	.0038	. 5225	.5200	.0625	.4825	.4"75	.0050
5/8	14	.07143	.0007	1.8	.6250	.6210	,0040	.5793	. 5766	.0037	.5335	.5881	.0054
11/16	14	.07143	.0007	1.8	.6875	.6835	.0040	.6418	.6391.	.0027	.5960	.5906	.0054
3/4	12	.08333	8000,	7 7	7500	7450	2011	.6966	. 6937	0000	0.155	02475	0050
13/16	12	.08333	.0008	1.7	.7500	7456	.0044 .0044	7591	.7562	.0039 .0039	.6433 .70 <i>5</i> 3	.6375	.0059 .00 <i>8</i> 9
7/8	īī	.09091	.0008	1.6	.8125 .8750	.8081	.0045	.8168	.8138	.0030	.7585	.7525	.0023
1	10	10000	8000		1.0000	.9952	.0048	.9360	9323	.0032	.8719	.8653	.0063
1 1/8	9	.11111	.0009		1.1250	1.1200	.0050	1.0539	1.0505	,0054	.9927	.9750	.0057
					2.2200	1,2200	,0000			, , ,			, , , ,
1 1/4	9	.11111	.0009	1.5	1.2500	1.2450	.0050	1.1789	1.1755	.0034	1.1077	1.3010	.0067
1 3/8	8	.12500	.0009	1.4	1.3750	1.3697	.0053	1.2950	1.2914	.0056	1.2149	1,2073	.0071
1 1/2	8	.12500	.0009	1.4	1,5000	1.4947	.0053	1.4200	1.4164	.0038	1.3399	1.3323	.0071
1 5/8	8 7	.12500	.0009		1.6250	1.6197	, 0053	1.5450	1.5414	.0036	1.4648	1.(573	.0071
1 3/4	7	.14286	.0010	1.3	1.7500	1.7443	.0057	1.6585	1.6547	.0033	1.5570	1.5594	.0078
2	7	.14286	207.0	7 7	0000	2 0047	0057	1.9085	1.9047	0.270	7 07 70	7 0001	,0075
	6	.16667	.0010		3.0000	1.9943	,0057 ,0061	2.1433	2.1392	.0038	1.8170	1.8034	.0062
2 1/4 2 1/2	6	16667	.0011		3.2500	2.2439	.0061	2.3933	2.3892	.0041	2.2866	2.2784	.00%
2 3/4	6	.16667	.0011		3.5000	2.7639	.0061	2.6433	2.6392	.0241	2.5306	2.5284	.0082
3	5	.20000	.0012		.0000	2.9933	.0067	2.8719	2.8674	.0045	2.7439	2.7349	.0090
			10072	1.1	.0500	5.0000	,000.			.0010	211100	2,10,20	, 0
		-											

Note A. The errors in pitch in the length of thread engaged, and in angle, are given, which can each be compensated by one-half of the tolerance on pitch diameter as given. The errors in pitch and engle may exist together, provided that the pitch diameter has the minimum value; also, the permissible error in pitch may be increased to twice the value shown, provided that the error in angle is correspondingly reduced, and vice versa.

Table 8. - Standard Sizes and Tolerances for Threads in Nuts.
British Standard Fine Sorew Threads (Close Fits)

							•						
<u></u>	2	3	4	5	1 6	7	8	9	10	11	1.2	13	14
	Number		See 1	Note A	Ma.	ior diame			tch diame	ter	Mi	nor diame	ter
Nominal diameter	of thds.	Pitch	Pitch	Angle		Maximum	Tolerance	Minimum	Maximum	Tolerance	Minimum	Maximum	Tolerance
Inches		Inohes	Inches	Degrees	inches	Inches	Inches	Inches	Inches	Inches	Irches	Inches	Inches
7/32 1/4 9/32 5/16	28 26 26 26 22	0.03571 .03846 .03846 .04545	0.0005 .0005 .0005	2.6 2.4 2.4 2.3	0.2208 .2530 .2833 .3145	0.2246 .2559 .2872 .3188	0.0038 .0039 .0039 .0043	0.1980 .2274 .2586 .2854	0.1999 .2294 .2606 .2876	0.0019 .0020 .0020 .0020	0.175). .2027 .2340 .2563	0.1780 .2057 .2370 .2595	0.0029
3/8	20	.05000	.0006	2.2	.3770	.3815	.0045	.3450	,3473	.0023	.3130	.3164	.0034
7/16 1/2 9/16 5/8 11/16	18 16 16 14 14	.05556 .06250 .06250 .07143 .07143	.0006 .0007 .0007 .0007	2.0 1.9 1.9 1.8 1.8	.4395 .5020 .5645 .6270 .6895	.4442 .5070 .5695 .6324 .6949	.0047 .0050 .0050 .0054 .0054	.4039 .4620 .5245 .5813 .6438	.4063 .4645 .5270 .5840 .6465	.0024 .0025 .0025 .0027 .0027	.3684 .4220 .4845 .5355 .5980	.3720 .4258 .4883 .5395 .6020	.0036 .0038 .0038 .0040
3/4 13/16 7/8 1 1 1/8	12 12 11 10 9	.08333 .08333 .0909). .10000	.0003 .0008 .0008 .0008	1.7 1.7 1.6 1.5	.7520 .8145 .8770 1.0020 1.1270	.7578 .8203 .8831 1.0063 1.1337	.0058 .0058 .0061 .0063 .0067	.6986 .7611 .8188 .9380 1.0559	.7015 .7640 .8218 .9412 1.0593	.0029 .0029 .0030 .0032 .0034	.6453 .7078 .7606 .8739 .9847	.6497 .7122 .7651 .8787 .9897	.0044 .0045 .0048 .0050
1 1/4 1 3/8 1 1/2 1 5/8 1 3/4	9 8 8 7	.11111 .12500 .12500 .12500 .14286	.0010 .0009 .0009 .0009	1.5 1.4 1.4 1.4	1.2520 1.3770 125030 1.6270 1.7520	1.2587 1.3841 1.5091 1.6341 1.7596	.0067 .0071 .0071 .0071	1.1809 1.2970 1.4220 1.5470 1.6605	1.1843 1.3006 1.4256 1.5506 1.6643	.0034 .0036 .0036 .0036 .0038	1.1097 1.2169 1.3419 1.4669 1.5690	1.1147 1.2222 1.3472 1.4722 1.5747	.0050 .0053 .0053 .0053
2 1/4 2 1/2 2 3/4 3	7 8 6 6 5	.14286 .16667 .16667 .16667 .20000	.0010 .0011 .0011	1.3 1.2 1.2 1.2 1.2	2.0020 2.2520 2.5020 2.7520 3.0020	2.0096 2.2602 2.5102 2.7602 3.0110	.0076 .0082 .0082 .0082 .0090	1.9105 2.1453 2.3953 2.6453 2.8739	1.9143 2.1494 2.3994 2.6494 2.8784	.0038 .0041 .0041 .0041 .0045	1.8190 2.0386 2.2886 2.5386 2.7459	1.8247 2.0447 2.2947 2.5447 2.7526	.0057 .0061 .0061 .0061 .0067

Note A. The errors in pitch in the length to thread engaged, and in angle, are given, which can be compensated by one-half of the tolerance on pitch diameter as given. The errors in pitch and angle may exist together, provided that the pitch diameter has the maximum value; also, the permissible error in pitch may be increased to twice the value shown, provided that the error in angle is correspondingly reduced, and vice verma.

Table 9. — Comparison of Threads per Inch of United States National and British Standard Whitworth and Fine Screw Threads

		-	-	
	2	3	4	5
	. Nur	nher of threa	as per inch	
	U.S.	British	U.S.	British
	National	Standard	National	Standard
_	Coarse	Whitworth	Fine	Fine
Size	Threads	Threads	Threads	Threads
Inches				
*7/32 1/4 5/16 3/8 7/16 1/2 9/16 5/8 3/4 7/8 1 1/8 1 1/2 1 3/4 2 1/4 2 3/4 3	24 20 18 16 14 13 11 10 98 77 65 41/2 44 44	20 18 16 14 12 12 11 10 9 8 7 7 6 5 4 4 3 1/2	28 24 20 20 18 14 12 12 12 12 12 12 12 12 12 12	286 280 186 14 110 199 87 766 65

^{*} National size #12, major diameter, 0.216 inches.

Table 10. - Diameter Modification of National or British Standard Whitworth Threads for Interchangeability

7.	1 2	7	1 4	G.
Threads	2	Change in pitch diameter for interchangeability	Lifference diameter I	required
per inch	Pitch	Manus on bolts or plus on nuts	U.S.nut B.S.W.bolt	B.S.W.nut
	Inches	Inches	Inches	Inches
20 18 16	0,0500 .0556 .0625	0.0024 .0027 .0031	0.0029 .0032 .0037	0.0019 .0022 .0025
14 12 11	.0714 .0833 .0909	.0035 .0041 .0045	.0042 .0048 .0053	.0028 .0034 .0035
10 9 8	.1000 .1111 .1250	.0049 .0054 .0061	.0059 .0065 .0073	.0039 .0043 .0049
7 6 5	.1429 .1667 .2000	.0070 .0083 .0098	.0083 .0088 .0116	.0057 .0066 .0080
4:5	.2222 .2500	.0109 .0122	.01.29 .0145	.0089

III. ERITISH ASSOCIATION SCPEW THREADS

In 1878 the Horological Section of the Geneva Society of Arts recommended a system of screw threeas assigned by Prof. M. Thury. This system was based on the measurement of well proportioned watch and small instrument screws in actual use in European countries. This thread had an angle of 47.5 degrees and was rounded equally at crest and root to a radius of approximately two elevenths of the pitch. The sizes were designated by consecutive numbers (A), the pitch (p) corresponding to any given size being siven by the formula:

$$p = 0.9^n$$
,

and the major diameter (D), corresponding to any pitch, being given by the formula:

$$D = \epsilon p^{\epsilon/5}.$$

Fig. 5. British Association Thread Form

In 1884 the British Association for the Advancement of Science recommended the use of the Thury system, with modifications, for all screws less than 1/4 inch in diameter. The thread form was modified to give an equal rounding at crest and root of approximately 2/11 p. See Fig. 3. The British Engineering Standards Association, in their Report No. 20 on British Standard Screw Threads, give dimensions of British Association Screw Threads, including recommended clearances between crests and roots of mating threads which are given herein in tables 11 and 12.

References:

Systematique des Vis Horologeries, oy H. Thury.
Reports of the British Association for the Advancement of Science, 1884 and 1800.
British Engineering Standards Association Peport
No. 20-1913. - Screw Threads.

Table 11. -- British Association Screw Threads

A contract of the contract of							
1	2	3	4	5	6	7	8
Desig- nating number	Major Diameter	Approxi- mate major diameter	Pitch	Approximate threads per inch	Depth of thread	Pitch diam- eter	Minor diam- eter
	mm	Inches	mm		mm	mm	mm
0 *1 2 *3 4	6.0 5.3 4.7 4.1 3.6	0.236 .209 .185 .161 .142	1.00 .90 .81 .73	25.4 28.2 31.4 34.8 38.5	0.60 .54 .485 .44 .395	5.40 4.76 4.215 3.66 3.205	4.80 4.22 3.73 3.22 2.81
*5 6 *7 8 *0	3.85 2.09 2.09	.126 .110 .098 .087 .075	.59 .53 .48 .43	43.1 48.0 53.0 59.1 65.2	.355 .32 .29 .26 .235	2.845 2.48 2.21 1.94 1.665	2.49 2.16 1.92 1.68 1.43
10 *11 12 *13 14	1.7 1.5 1.3 1.2 1.0	.067 .059 .051 .047 .039	.35 .31 .28 .25	72.6 82.0 90.7 102 110	.21 .185 .17 .15	1.49 1.315 1.13 1.05 .86	1.28 1.13 .96 .90
*15 16 17 18 19	.90 .79 .70 .62 .54	.035 .031 .028 .024 .021	.21 .19 .17 .15	121 134 149 169 181	.125 .115 .10 .09 .085	.775 .675 .60 .53 .455	.65 .56 .50 .44
20 21 22 23 24 25	.48 .42 .37 .33 .29 .25	.019 .017 .015 .013 .011	.12 .11 .10 .09 .08	212 231 254 282 318 363	.07 .065 .06 .055 .05	.41 .355 .31 .275 .24	.34 .29 .25 .22 .19

The figures in columns 3 and 5 are given for convenience only, and should, in no case, be worked to where satisfactory interchangeability is required.

^{*}The British Engineering Standards Association recommend that for general use these sizes be dispensed with.

Table 12. -- Recommended Crest and Root Clearances,
British Association Screw Threads

1	2	3	4	5		
Designating	Minor	liameter sorew	Major diameter of tap			
number	Maximum	Mininum	Maximum	Minimum		
,	mm	mm	min	mm		
0 *1 2 *3 4	4.74 4.16 3.68 3.17 2.77	4.60 4.04 3.57 3.07 2.68	6.20 5.48 4.86 4.25 3.77	6.06 5.36 4.75 4.15 3.64		
*5 6 *7 8 *9	2.45 2.13 1.99 1.65 1.41	2.37 2.05 1.82 1.59 1.35	3.32 2.91 2.60 2.29 1.98	3.24 2.83 2.53 2.23 1.92		
10 *11 12 *13 14	1.26 1.11 .94 .88 .71	1.21 1.07 .90 .85 .67	1.77 1.56 1.36 1.25 1.05	1.72 1,52 1.32 1.22 1.01		
*15 16 17 19	.64 .55 .49 .36	.61 .52 .47 .34	.94 .83 .77 .55 .57	.91 .80 .7 .83 .55		
20 21 22 23 24 25	.33 .28 .24 .21 .18 .16	.32 .27 .23 .20 .17 .15	.50 .44 .39 .35 .31 .27	.49 .43 .38 .34 .30		

^{*}The British Engineering Standards Association recommend that for general use these sizes be dispensed with.

1000 19 11 Tope a 1 1 ·# .. ¢. . . 10 1 m e. 1450 18. 17 30 g 57. 20. 80. 3. 35. SE. SE. 65. ి ఎవ్కార్కాలు కూడువికుముందింది. ఇయ్యాంకాకుకేద్ ప్రాతెడ్డాడు. ఏత్తున్నా మండట్నే ఇక్స్కో ఎందుకుక్కువుకుక్కువుకు కండా ఇదుకుడు అందుకు కార్మకు మెందుకాత్రం మాట్కారు. మెందుకాత్రం మాట్క్ కా మెడ్

- 4

the g

- 84

5 th a

5.

大き

ê

138

Ca a

di di

108 ×

IV. BRITISH STANDARD PIPE THREADS

1. British Standard Pipe Thread for Iron and Steel Tubes

The British Standard Pipe Thread for Iron and Steel Tubes (B.S.P.) was adopted in 1905 by the Sectional Committee on Screw Threads and Limit Gages of the British Engineering Standards Association. It was approved by the Association in March 1905.

The Whitworth form of thread was adopted. Two classes of pipe threads were recognized by the Association, and are now in use, namely, -

Class I - the taper thread Class II - the parallel (straight) thread.

Class I. The thread at the pipe end is tapered 1/16 inch per inch of length, the threads being perpendicular to the surface of the cone and pitch being measured parallel to the axis of the thread. The thread in the coupling may be either straight or tapered; ordinarily, a straight coupling and tapered pipe end are used. Taper couplings are used to secure exceptionally good fits.

Dimensions of Class I, tapered threads, are given in Table 13. All threads for iron and steel pipe and tubing purporting to be of British Standard dimensions shall have the dimensions given in this table.

Class II. Straight pipe threads have the same diameters as the diameters of tapered threads at the gaging notch. (See Column 3, Table 13).

2. British Standard Thread for Steel Conduit

Two classes of steel conduit are recognized as standard:-

Class A - plain, Class B - threaded.

Class "A" is a light gage conduit. The coupling joining the lengths of tubing is a sleeve and neither the ends of the conduit, nor the coupling joining the lengths are threaded.

Class "B" is a heavy gage conduit. Both ends of the conduit are threaded with the Whitworth form of thread as defined for British Standard Pipe Threads.

The length of thread on the ends of conduits, which shall be the same for binds, tees, junction boxes and other threaded accessories, is given in Table 14, and is deduced by the formula,

L = 1/2 D + 3/8 inches,

L = length of thread,

D = outside diameter.

in which

British Standard Dimensions of both Class "A" and Class "B" steel conduit are given in Table 14.

3. British Standard Dimensions for Copper Tubes and Their Screw Threads.

The report of the Sub-Committee or Metal Tubes and Connections on standard specifications for copper tubes and their screw threads was adopted by the Sectional Committee on Screw Threads and Limit Gages, and was approved by the British Engineering Standards Association, in March 1913. For the heavier gage tubes the British Standard Pipe Threads, as given in Tables 13 and 16, were adopted, and for the lighter gage tubes the dimensions given in Table 15 were adopted, the Whitworth form of thread being used.

4. Gaging British Standard Pipe Threads

In order to insure correct gaging, it is necessary to define the position of the gage diameter on the pipe end and in the coupling. Fig. 4 is a drawing of plug and ring gages which give satisfactory results. Instead of dimensions being given on the drawing, reference is made to column numbers of Table 13. By referring to the table, dimensions may be found for gaging any size of thread.

The distances between the surfaces A and B of the ring gages, for any given size, is the difference between values given in columns 10 and 11. The gage having a plain conical surface is slipped over the end of the pipe, and, when pressed on by hand, the pipe end must protrude beyond surface B. On the plug gage, surfaces C and D correspond to surfaces A and B on the ring. The plug must enter beyond C, but surface D must remain outside.

References:

British Engineering Standards Association Reports Nos. 21-1909.-Pipe Threads for Iron or Steel Pipes and Tubes.

31-1910.-Steel Conduits for Electrical Wiring 61-1913. Copper Tubes and Their Screw Threads.

Thread form of British Standard Pipe Threads

Fig. 4. - Gages for British Standard Pipe Threads

Table 13. - Dimensions of British Standard Pipe Threads

1	. 2	3	4	5	6	7	8	9	10	11
Nominal	Outside	Gage diameter	Number of	Depth	Minor dia- meter corres-	Minimum length	of thread	Distance o	f gage diam Class I ta	eter from
size of	diameter	(basic major	threads	of	ponding to	Tu Tulling Telly on	In	Dibe-end /	Class I ta	per screw)
pipe	of pipe	diameter)	per inch	thread	gage diameter	on pipe-end.	coupling	Standard	Maximum	Minimum
Inches	Inches	Inches		Inches	Inches	Inches	Inches	Inches	Inches	Inches
1/8 1/4 3/8 1/2 5/8	13/32 17/32 11/16 27/32 15/16	0.383 .518 .656 .825 .902	28 19 19 14 14	0.02285 .03370 .03370 .04575 .04575	0.3373 .4506 .5886 .7335 .8105	3/8 7/16 1/2 5/8 5/8	3/4 7/8 1 1 1/4 1 1/4	5/32 3/16 1/4 1/4 1/4	0,1823 .2188 .2917 .2917 .2917	0.1302 1.1562 2.083 2.2083 2.2083
3/4 7/8 1 1 1/4 1 1/2	l 1/16 1 7/32 1 11/32 1 11/16 1 29/32	1.041 1.189 1.309 1.650 1.882	14 14· 11 11 11	.04575 .04575 .05830 .05820 .05820	.9495 1.0975 1.1926 1.5336 1.7656	3/4 3/4 7/8 1	1 1/2 1 1/2 1 3/4 2 2	3/8 3/8 3/8 1/2 1/2	.4375 .4375 .4375 .5823 .5833	.3125 .3125 .3125 .4167 .4167
1 3/4 2 1/4 2 1/2 2 3/4	2 5/32 2 3/8 2 5/8 3 1/4	2.11.6 2.347 2.587 2.960 3.210	11 11 11 11	.05820 .05820 .05820 .05820 .05820	1.9996 2.2306 2.4705 2.8436 3.0936	1 1/8 1 1/8 1 1/4 1 1/4 1 3/8	2 1/4 2 1/4 2 1/2 2 1/2 2 3/4	5/8 5/8 11/16 11/16 13/16	.7292 .7292 .8031 .8031 .9479	.5208 .5208 .5729 .5729 .6771
3 3 1/4 3 1/2 3 3/4 4	3 1/2 3 3/4 4 4 1/4 4 1/2	3.460 3.700 3.950 4.200 4.450	11 11 11 11	.05820 .05820 .05820 .05820 .05820	2.3436 3.5836 3.8336 4.0836 4.3336	1 3/8 1 1/2 1 1/2 1 1/2 1 5/8	2 3/4 3 3 3 3 3 1/4	13/16 7/8 7/8 7/8 7/8	.9479 1.0208 1.0208 1.0208 1.1667	.6771 .7292 .7292 .7292 .8333
4 1/2 5 5 1/2 6 7	5 1/2 6 6 1/2 7 1/2	4.950 6.450 5.950 6.450 7.450	11 11 11 11 10	.05820 .05820 .05820 .05820 .0640	4.8336 5.3336 5.8336 6.3336 7.3219	1 5/8 1 3/4 1 7/8 2 1/8	3 1/4 3 1/2 3 3/4 4 4 1/4	1 1 1/8 1 1/4 1 3/8 1 3/8	1.1667 1.3125 1.4553 1.6042 1.6042	.8333 .9375 1.0417 1.1458 1.1458
8 9 10 11 11	8 1/2 9 1/2 10 1/2 11 1/2 12 1/2	8.450 9.450 10,450 11.450 12.450	10 10 10 8 8	.06405 .06405 .06405 .08005 .08005	8.3219 9.3219 10.3219 11.2899 12.2899	2 1/4 2 1/4 2 3/8 2 1/2 2 1/2	4 1/2 4 1/3 4 3/4 5 5	1 1/2 1 1/2 1 5/8 1 5/8 1 5/8	1.7500 1.7500 1.8958 1.8958 1.8958	1.2500 1.2500 1.3542 1.3542 1.3542
13 14 15 16 17 18	13 3/4 14 3/4 15 3/4 16 3/4 17 3/4 18 3/4	13.680 14.680 15.680 16.680 17.680 18.680	8 8 8 8	.08005 .08005 .08005 .08005 .08005	13.5199 14.5199 15.5199 16.5199 17.5199 18.5199	2 5/8 2 3/4 2 3/4 2 7/8 3	5 1/4 5 1/2 5 1/2 5 3/4 6	1 5/8 1 3/4 1 3/4 1 7/8 2	1.8958 2.0417 2,0417 3.1975 2.3333 2.3333	1.3542 1.4563 1.4583 1.5685 1.6667 1.6667

Table 14.-British Stanfard Dimensions of Threaded Steel Conduits, Chass "B", and Plain Steel Conduit, Chass "A"

1 2 3 4 5 6										
	_	 		······································		10	3	13		
	Outside di	iameter	in	inches	5/8	3/4	1	1 1/4	1 1/2	2
	Threads pe	er inch			18	16	16	16	14	14
	Depth of t	hread i	n i	nches	0.035	0.0400	0.0400	0.0400	0.0457	0.0457
	Maximum le	ength of duit in	th:	read on ches	1/2	9/16	11/16	13/16	15/16	1 3/16
	Minimum le				7/3.6	1/2	5/8	3/4	7/8	1 1/8
	Nominal	Class	A	S.W.G.	No. 19	1.3 0.048	18 0.048	17 0.056	16	16
	hickness	Class	B)	S.W.G. Inches	16	15	15	1.5	14	13
-				Tuches	0.004	0.072	0.078	0.012	0.000	0.002
	Veight	Class A	. A	Max.	28.9	40.8	55.4	79.9	108.7	146.7
	per .00 ft.			Min.	23.6	34.4	46.6	68.9	95.4	128.1
	in	Class B	В	Max.	42.2	56.9	78.1	99.3	132.1	202.4
	lbs.	02456	D	Min.	37.4	51.0	69.8	88.5	119.0	184.7
P	ombined le	engths of plain nches	f r	ccessed kets in	21/4	2 1/2	3	3 1/2	4	5
r:	nickness of	f plain nches	soc	chet in	0.060	0.072	0.072	0.084	0.096	0.098
Le	Length of coupling in inches			1 1/8	1 1/4	1 1/2	1 3/4	8	2 1/2	
rr ir	Thickness of coupling in inches before threading			0.128	0.144	0.144	0.144	0.160	0.184	
	nimum radi				1 7/8	2	2 1/2	2 3/4	5 1/4	8 1/2

Table 15. - Screw Threads for Low and Medium Pressure Copper Tubes

						and the terminal control of the control of
1	2	3	4	5	6	7
Nominal	Outside	Cage	No. of	Depth	Minor	Length
bore	diameter	dia-	threads	OX.	dia-	of
of tube	standard	meter	per in.	thread	meter	thread
Inches	Inches	Inches		Inches	Inches	Inches
1/8	0.253	0.248	28	0.0230	0.202	5/16
1/4	394	389	20	.0320	325	3/8
3/8	.519	.514	20	.0320	.450	1/2
				.0020	1	-/-
1/2	.644	.639	20	.0320	.575	1/2
5/8	. 769	.764	20	0800.	.700	5/8
3/4	. 894	.889	20	.0380	.825	5/8
7/8	1.019	1.014	80	.0320	.950	3/4
1	1.160	1.155	20	.0320	1.091	3/4
1 1/4	1.410	1,405	20	.0320	1.341	7/8
		21300	20	.0020	1.011	1/0
1 1/2	1.660	1.655	20	.0320	1,591	7/.8
1 3/4	1.934	1.929	16	.0400	1.849	1
2	2.184	2.179	16	.0400	2.099	1
2 1/4	2.434	2.429	16	.0400	2 349	1
2 1/2	2.684	2.679	16	.0400	2.599	ī
2 3/4	2.934	2.929	16	.0400	2.849	ī
		2,000		10200		
3	3.208	3.203	16	.0400	3.123	1 1/8
3 1/4	3.458	3.453	16	.0400	3,373	1 1/8
3 1/2	3.732	3.727	16	.0400	3.647	1 1/8
3 3/4	3.982	3.977	16	.0400	3.897	1 1/8
4	4.256	4.251	16	.0400	4.171	1 1/4
		2	-	.0100	(who (eve	/ -

Table 16. - Screw Threads for British Standard High Pressure Copper Tubes

For working pressures up to 200 lbs. per square inch.

	1	3	3	4	- 5	6	7	8	5		
	lom-	Outside		No. of	Depth	Minor	Lengin	οf		ande of	
j	nal	dia-	dia-	tads.	OÎ.	dia-	tareu	a, Min.	di ame		ion, end.
	ore	meter	meter	per	thd.	meter	On	In goup-	1	of pi	
	Of			inch			pipe	ling	Sta.	Hax.	Min.
	In.	In.	In.		In.	In.	In.	In.	In.	In.	La.
	1/8 1/4 3/8 1/2 5/8	.523	0.383 .518 .656 .825	28 19 19 14 14	0.0230 .0335 .0335 .0453 .0455	0.337 .451 .589 .734 .511	5/8 7/16 1/2 5/8 5/8	1 1/4	5/52 3/16 1/4 1/4 1/4		0.13
1111	7/8	1.046 1.194 1.314 1.497 1.655	1.041 1.189 1.309 1.492 1.650	14 14 11 11	.0580	.950 1.098 1.193 1.376 1.534	3/4 3/4 7/8 7/8	1 1/2	3/8 3/8 3/8 3/8 1/2	. 44 . 44 . 44 . 58	.31 .31 .31 .31 .42
1 1 1 1	1/2 5/8 3/4	1.750 1.887 2.087 2.121 2.249	1.745 1.882 2.082 2.116 2.244	11 11 11 11	.0580 .0580 .0580	1.966 2.000	1 1/8 2 1 1/8 2 1 1/8 2 1 1/8 2	3 1/4 3 1/4	1/2 1/2 5/8 5/8 5/8	. 58 . 58 . 75 . 73	. 42 . 42 . 52 . 52
SANNE	1/4 1/2 3/4	2.965	2.347 2.587 2.960 3.210 3.460	11 11 11 11 11	.0580	2,471 3.844 3.094 1		1/2 1/2 3/4	5/8 11/16 11/16 13/16 13/16	. 73 . 80 . 80 . 95	. 53 . 57 . 57 . 68 . 68
3 3 3 4	1/2	3.705 3.955 4.205 4.455	3.700 3.950 4.200 4.450	11 11 11 11	.0580 3	3.584 1 3.834 1 1.084 1	1/2 3	1/4]	7/8	1.02 1.02 1.02 1.17	. 75 . 75 . 73 . 88

V. BRITISH STANDARD BOLT HEADS, NUTS, AND SCREW HEADS

1. British Standard Bolt Heads and Nuts.

Standard dimensions for hexagonal bright nuts and bright bolt heads; black nuts, black lock nuts, and black bolt heads; spanners; and castle nuts, which were adopted by the Sectional Committee on Screw Threads and Limit Gages, and approved by the British Engineering Standards Association in 1906, are given in Tables 17, 18, and 19.

2. British Standard Automobile Bolt Heads and Nuts

Standard dimensions for puts and holt heads used in automobile construction as given in Table 20 were submitted by the Sub-Committee on Automobile Threads, adopted by the Sectional Committee on Screw Threads and Limit Gages, and approved by the British Engineering Standards Association in 1911.

3. British Standard Heads for British Association Screws

The proportions of heads for small screws, namely, countersunk, instrument, round, cheese, filister, capstan, connection, and hexagon, for sizes 0 to 15 ("British Association" designating numbers) were established by the Sectional Committee on Machine Parts, their Caging and Nomenclature, and approved on behalf of the British Engineering Standards Association in 1920. The sizes standardized range from 6 mm to 0.9 mm (0.235 in. to 0.035 in.). The smaller sizes not being in general use, except ir special cases, were not standardized. See Table 21

hererences:

British Engineering Standards Association Reports
Nos. 28-1908. Nuts, Bolt Heads, and Spanners.
54-1911. Screw Threads, Nuts, and Bolt
Heads for use in Automobile
Construction.
57-1920. Heads for British Association
Screws.

Table 17. -- British Standard Hexagonal Bright Muts and Bolt Heads

1	3	7 3	4	5	6
Diameter		В	right Nuts		
of	Width a	cross flats	Width auross	Thic	kness
bolt	Man	Min.	corners	Max.	Mil
Inches	Max. Inones	Inches	Approx. Max	Inches	Inches
41101133	2110:155	17101170].
1/4	0,585	0.520	0.61	0.26	0.25
5/16	.600	. 595	.69	.32	.31
3/8 7/16	.710	.705	.82	.39	.38
1/2	.920	.815	.95 1.06	51	50
		.010	1.00		
9/16	1.010	1.002	1.17	.57	.56
5/8	1.100	1.092	1.27	.64	.63
11/16 3/4	1.200	1.192	1,39	.70	.75
13/16	1.390	1.382	1,61	.82	81
·	1	1.000			
7/8	1.480	1.472	1.71	.89	.88
1 1 1/8	1.670	1.662	1.93	1.01	1.00
1 1/4	1.860 2.050	1.850 2.040	2.15 2.37	1.15	1.25
i 3/8	2.220	2.210	2.56	1.40	1.38
1 1/2	2,410	2.400	2.78	1.52	1.50
1 5/8 1 3/4	2.580 2.760	2.570 2.750	2.98 3.19	1.65 1.77	1.63
2	3.150	3.140	3.64	2.02	2.00
2 1/4	3.550	3.535	4.10	2.27	2.25
2 1/2 2 3/4 3 3 1/4	3.890	3.875	4.49	2.52	2.50
3 3/4	4.180 4.530	4.165 4.515	4.33 5.23	2.77 3.02	2.75
3 1/4	4.850	4.830	5,60	3.27	3.25
3 1/2	5.180	5,160	5.98	3.52	3,50
3 3/4	5.550	5,530	6.41	3.77	3.75
4 4 1/2	5,950 6,820	5.930 6.795	5.87 7.88	4.02 4.53	4,00
5	7.800	7.775	9,01	5.03	5.00
5 1/2	8.850	8.830	10,22	5.53	5.30
6	10.000	9.970	11.55	6.03	6.00

7	8	9	10
	lock nuts		oct heads
101	ckness	Inic	okness
Max,	Min.	Nax.	M.521.
Inches	Inches	Inches	lnches
0.18 .22 .26 .30 .34	0.17 .21 .25 .29	0.23 .28 .34 .39 .45	0.22 .27 .33 .38 .44
.39 .43 .47 .51	.38 .42 .46 .50 .54	.50 .56 .61 .67 .72	.49 .55 .60 .66 .71
.59 .68 .77 .85	.58 .67 .75 .83 .92	.78 .89 1.00 1.11 1.22	.77 .88 .98 1.09 1.20
1.02 1.10 1,19 1.35 1.52	1.00 1.03 1.17 1.33 1.50	1.33 1.44 1.55 1.77 1.99	1.31 1.42 1.53 1.75 1.97
1.69 1.85 2.02 2.19 2.35	1.67 1.83 2.00 2.17 2.33	2.21 2.43 2.65 2.86 3.08	2.19 2.41 2.63 2.84 3.06
2.52 2.69 3.03 3.36 3.70 4.03	2.50 2.67 3.00 3.33 3.67 4.00	3.30 3.52 3.97 4.44 4.84 5.28	3.28 3.50 3.94 4.38 4.82 5.25

Table 18. -- British Standard Black Nuts, Look Nuts, and Bolt Heads

- Discrete	3	3		4				
Diamete			Blac			5	6	,
Bolt	Width	across flats	3	Width acre	Cal	(N)		
DOLE	[corners	33	Th	ickness	
Tan a b	Max	. Min.		Арргох. Ма		3/-		
Inches	Inche	s Inches		Inches		Max.	Mi:	n.
214				anones	14	nches	Inch	es
1/4	0.525	0.505	1	0.61	- 1			
5/16	.600	580	- 1			0.27	0.28	5
3/8 7/16	.710	690	- 1	. 69	- 1	.33	.31	L
7/16	.820	800	- 1	.82	f	.40	.38	3
1/2	920		- 1	.95	- 1	. 46	. 44	
		,,,,,,	- 1	1.06		. 52	.50	,
9/16	1.010	.990	- 1					
5/8	1.100	1.080	- 1	1.17		. 58	. 56	
11/16	1.200	1.180		1.27		.65	.63	
3/4	1,300	1.280	- 1	1.39		.71	. 69	
13/16	1.390	1.370		1.50		.77	.75	
		1.370	- 1	1.61		. 83	,81	
7/8	1,480	1.460						
1	1.670	1.650		1.71		.90	.88	
1 1/8	1.860	1.830	- 1	1.93		.02	1.00	1
1 1/4	2.050		- 1	2.15		.16	1.13	
1 3/8	2.220	2.020	- 1	2.37	1	. 28	1.25	
,	2.550	2.190		2.56	1.	.41	1.38	
1 1/2	2.410	2 700						
1 5/8	2.580	2.380		2,78		53	1.50	
1 3/4	2.760	2.550		2,98	1.	66	1.63	
3	3.150	2.730		3.19	11.	78	1,75	
3 1/4	3.550	3.120	1	3.64	12.	03	2.00	
, -	0.000	3.510		4.10		28	2.25	1
1/2	3.890	7 07-					,	
3/4	4,180	3.850	1	4.49	2,	53	2.50	1
, -	4.530	4.140		4.83	2.		2.75	
1/4		4.490	1	5.23	3,		3.00	
1/3	4.850	4.810		5.60	3.		3,25	
4/ 5	5.180	5.140		5,98	3.		3.50	
3/4	E EE-						0100	
3/4 1/2 1/2	5,550	5.510	1	6.41	3.7	78	3.75	
1/2	5,950	5,910		6,87	4.0		4.00	
1/0	6.820	6.770		7.88	4.5			
1/2	7.800	7.750	1	9.01	5.0		4.50	
1/5	8.850	8.800	1	10.22	5.5		5.00	
	10.000	9.950	1	11.55	6.0		5.50	

7	8	9	10
Black			holt heads
	ickness	Thi	ckness
Max.		Nax.	Min.
Inche	s Inches	Inches	Inches
0.19 .23 .27 .31	0.17 .21 .25 .29 .33	0.24 .23 .35 .40 .46	0.22 .27 .33 .38 .44
. 40 . 44 . 48 . 52 . 56	.38 .42 .46 .50 .54	.51 .57 .62 .58 .73	.49 .55 .60 .66
.60 .69 .78 .86	.58 .67 .75 .83 .92	.79 .90 1.01 1.12 1.23	.77 .88 .98 1.09 1.20
1.03 1.11 1.20 1.36 1.53	1.00 1.08 1.17 1.33 1.50	1.34 1.45 1.56 1.78 2.00	1.31 1.42 1.53 1.75 1.97
1.70 1.86 2.03 2.20 2.36	1.67 1.83 2.00 2.17 2.33	2.22 2.44 2.66 2.87 3.09	2.19 2.41 2.63 2.94 3.06
3.53 2.70 3.04 3.37 3.71 4.04	2,50 2,67 3,00 3,33 3,67 4,00	3.31 3.53 3.98 4.42 4.85 5.29	3.28 3.50 3.94 4.38 4.81 5.25

Table 19. -British Standard Castle Nuts .

100,50 10, 021, 031										
			Dia	mensions of	nut					
Diameter of bolt	Width across flats		across flats corners thickness		Thickness of hexagon- al portion					
	Max.	Min.	Approxi- mate Max.*	מ	Н					
Inches 1/4 3/8 1/2 5/8 3/4 7/8 1 1 1/8 1 1/4 1 1/2 1 3/4	Inches 0.525 .710 .920 1.100 1.300 1.480 1.670 1.860 2.050 2.410 3.760 3.150	Inches 0.520 .705 .915 1.092 1.292 1.472 1.662 1.850 2.040 2.750 3.140	Inohes 0.61 .82 1.06 1.27 1.50 1.71 1.93 3.15 3.37 2.70 3.19 3.64	Inohee 0.31 .47 .63 .78 .94 1.09 1.25 1.41 1.56 1.88 2.19 2.50	Inches 0.19 .28 .38 .47 .53 .66 .75 .84 .94 1.13 1.31					

*The figures in this column represent the maximum width across the corners correct to two decimal places.

The dimensions given are based on the following proportions, which the committee believe have, by experience, proved themselves to be the most satisfactory:

T = 1.25D H = 0.75DS = 0.4375D

C = Width across flats minus 1/16 in. where D = full diameter of thread on bolt.

			Cimension	of elot
Thickness of cylindri- oal portion	Diameter of cylindri- cal portion	Rounding of edge of cylindri- cal portion	Width	Depth
	G	R	য়	S
D-H Inches 0.13 .19 .25 .31 .38 .43 .50 .57 .62 .75 .88	Inches 0.45 .64 .85 1.02 1.22 1.400 1.590 1.78 1.97 2.33 8.69 3.07	130hos 0.03 .05 .06 .09 .21 .13 .14 .16 .19 .22	Inches 0.063 .094 .125 .156 .188 .219 .250 .281 .313 .375 .438 .500	Inches 0.11 .16 .22 .27 .33 .38 .44 .49 .55 .66 .77 .88

Table 20. - British Standard Automobile Nuts and Bolt Heads

padeds make	hid namen sedessehri ettimidelle mikmidmatillilli intelletti	Malindan	uts and l	tolt heads	N	ies	Bolt	Fords	
Di	ameter	Wid	th	Wiath					
of	f bolt across flate		flats	across corners	Thi cl	eness	Thickmess		
		Lax.	Min.	Approx. Max.	Max.	Min.	Max.	M.O.	
Africalestics	In.	Inches	Inches	Inches	Luches	Indies	Inches	Inches	
	1/4	0.445	0.440	0.515	0.21	0.20	0.16	0.1.5	
	9/32	,525	. 520	.61	.26	. 25	.23	. 22	
	5/16	.525	. 520	.61	, 26	.25	. 23	12	
	3/8	. 600	.595	.69	.32	. 31	. 68	. 27	
	7/1€	.710	, 705	, 82	. 39	. 38	.34	.33	
	1/3	.820	.815	. 95	.45	.44	. 39	.38	
	9/16	.920	.915	1.06	. 51.	,50	.45	.44	
	5/8 11/16	1.010	1.002	1.17	,57	. 56	.50	. 49	
	3/4 13/16	1.200	1.192	1.39	.70	. 60	.61	,60	
	7/8	1.390	1.388	1.61	.82	.81	.72	.71	
1		1.480	1.472	1.71	.89	.88	.78	\$14 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

The above nuts and bolt heads are lighter than the B.S.W. and B.S.F. bright nuts and bolt heads, but the same set of wrenches will fit all sizes with the exception of the 1/4 in. diameter size, since, with this exception, the widths across the flats of the British Standard Buts and Bolt Heads have been adopted.

Table 21. - BRITISH STANDARD HEADS FOR BRITISH ASSOCIATION SCHEWS. SCHEDULE OF DIMENSIONS. (All dimensions are given in mile except where otherwise stated.) Dne mit = '001 of an inch. .D. ≁ D ⊲ ← D -Pro. 6. F30. 8. Fig. 10 Frg. 11. Ftc.12 FIG. 13. Fig. 14. CHEESE. FILISTER CAPSTAN. HEXAGON NUT Total Depth of Head. With of Saw Cut. Depth of Saw Cut. Radii See Notes for Tolersuces. and Full Diameter Round Head-Distance between Centres. (See Figs. 6 & 7). Spike Holes (45, 16, 17, -05D 0-15mm. T+Q T+Q+C 0.4D 1-0 D mile. 236 209 185 D - G-1 mun. 0-22 D (App) 0-31 D (App) 0-375 D 89 78 69 112 99 88 77 67 60 129 113 101 12 13 14 11-G

Notes to Table.—T Tolemoses on Dismeter and Depths of Heat are minus, i.e., the dimentions to which they refer should not exceed the values gives in the Table.

The Association recommends that the tolerances on the Widths and Depths of the Saw Cuts (columns 19 to 25 inclusive) be from +7% to +8% of the dimensions given to the Table, such standard tolerances being determined by the noment unit above . Estendard

VI. International Metric Screw Thread Standard, and Proposed Metric Fine and International Pipe Threads.

The International Screw Thread Standard (S. I.) was adopted by a congress, representing principal continental countries, at Zurich in 1898. The system proposed was based on the French Metric Screw Thread System as adopted by the Societé d'Encouragement de l'Industrie Nationale in 1894. The principal difference between the two systems is in the pitch of three screws 8, 9 and 12 mm; the French system specifying 1, 1, and 1.5 mm pitch respectively while the International gives 1.25, 1.25, and 1.75 mm. The International form of thread has a 60° angle and the crest of thread is flattened 1/8th the height of the basic triangle while the root is filled in 1/16 the height, either flat or rounded, as shown in Fig. 16. This gives a definite clearance between the tops and bottoms of the threads of screw and nut. The actual form at the root is left to the choice of the manufacturer.

The dimensions of the International Screw Thread System are given in Table 23. The sizes from 6 mm to 80 mm, inclusive, were standardized at the Congress of Zurich, and those above 80 mm were added by the Societé de Encouragement pour l'Industrie Nationale of France. No tables of allowances and tolerances for this thread series are available. A chart showing a comparison of the pitches and diameters of the International with the U.S. National Coarse and Fine Thread Series is given in Fig. 16.

A series of Metric Fine Threads consisting of 188 sizes ranging from 1 mm to 300 mm has been proposed by the German Industry Committee on Standards, but has not yet been established as a standard.

A series of pipe threads has been proposed as an International Standard, and published (see reference below). It is practically a translation of the British Standard into metric units.

References:

International Metric Screw Threads

Bulletin Soc. d'Encouragement pour l'Industrie Nationale, March 1899 and September-October 1919. Ptotokoll International Commission, 1898, (Druck von F. Lehbaner).

Proposed Metric Fine Threads

Normenausschuss der Deutschen Industrie, Machinenbau, Vol. 1, No. 7, July 8, 1922, pp. 475-492.

Proposed International Pipe Threads

Bulletin Soc. d'Encouragement pour l'Industrie Nationale. May-June, 1916.

Table 22. - International Metric Screw Thread System

- 1	2	3	4	5	6	Minor di	8 ameter
		Approx.	Major di	ameter	Pitch	MINITION OF	amovo ₂
Size	Pitch	threads	0 0:::	Nut	diameter	Screw	Nut
		per inch	Screw	Inches	Inches	Inches	inches
mm	mm		17107162	11101100	111022012		7
6	1.0	25.4	0.2362	C.2405	0.2106	0.1308	0,1851
6 7	1.0	25.4	.2756	.2799	.2500	.2202	.2344
, , 8	1.25	20.3	.3150	.3203	. 2830	.2457	.2510 .290±
9	1.25	20.3	.3543	.3597	.3223	.2851	.3170
10	1.5	16.9	.3937	.4001	. 3553	,5100	
77	1.5	16,9	.4331	. 4395	.3947	.3500	, 3564
11 12	1.75	14.5	.4724	4799	. 4276	.3755	. 3829
14	2.0	12.7	.5512	.5597	.5001	. 4404	.4489
16	2.0	12.7	.6239	.6384	,5788	.5191	,5808
18	2.5	10.2	.7087	.7193	.6448	,5701	, 5000
0.0	2.5	10.2	.7874	, 7981	.7235	.6489	.6595
20 22	2.5	10.2	.8661	8768	.8022	.7276	,7383
24	3.0	8.5	.9449	.9577	.8682	.7787	.7915
27	3.0	8.5	1.0630	1.0758	.9863	.8968	.9096 1.0021
30	3,5	7.3	1.1811	1.1960	1.0916	.9872	1,0021
33	3.5	7.3	1.2992	1.3141	1.2097	1.1053	1,1202
36	4.0	6.3	1,4173	1.4344	1.3150	1,1957	1.2127
39	4.0	6.3	1.5354	1.5525	1.4331	1.3138	1.3308
42	4.5	5.6	1.6535	1.6727	1.5384	1.4042	1.5415
45	4.5	5.6	1.7716	1.7908	1,6565	1.0220	
48	5.0	5,1	1.8898	1,9111	1.7619	1.6127	1.6340
52	5.0	5,1	2.0472	2.0685	1.9193	1.7702	1.7915
56	5.5	4.6	2.2047	2.2282	2.0640	1,9000	2.0809
60	5.5	4.6	2.3622	2.3856	2.2215	2.0575	2.2128
64	6.0	4.2	2.5197	2.5453	2.3663	2.1012	
68	€.0	4.2	2.6772	2.7027	2.5238	2.3447	2.3703
72	6.5	3.9	2.8346	2.8623	2.6684	2.4745	2.5022
76	6.5	3.9	2.9921	3.0198	2.8259	2.6320 2.7618	2,7916
80	7.0	3.6	3.1496	3.1794	3.9706	2.9192	2.9491
84	7.0	3.6	3.3071	3,3339	3,1201		
88	7.5	3,4	3.4646	3.4965	3.2728	3.0490	3.0810
92	7.5	3.4	3,6220	3.6540	3.4303	3.2065	3.2385
96	0.8	3.2	3.7795	3.8136	3.5749	3.3363	3.5279
100	0.8	3.2	3.9370	3.9711	3.7324	3.4000	0,00,0
					ji		

VII. SCREW THREAD STANDARDS IN USE IN FRANCE

The International form of thread (Fig. 13) is the standard form for screw threads used in France. The diameters and pitches of the International System are most widely used for those sizes which fall within the range of this series. The Societé d'Encouragement pour l'Industrie Nationale has supplemented the International series by introducing sizes between 12 mm and 40 mm so that the series advances by 1 mm steps throughout this range. The interpolated diameters have, in each case, the same pitch as the next larger diameter in the Congress of Zunich series. See Table 23.

A small machine screw series (Série de la Petite Mécanique) below the International series, from 2.5 to 5.5 mm inclusive, Tables 23 and 24, were added by the Société d'Encouragement in 1906, and the small watchmakers' screws (Série Horlogère), Table 27, were standardized by the same body in 1909.

The various commercial interests recognize selected sizes, given in Table 23, of the International and Societe d'Encouragement series, with the following exceptions and additions:

- 1. The Establissements Schneider et Cie add a size having a diameter of 106 mm and a pitch of 8.5 mm.
- 2. In the series of the Chambre Syndicale des Constructeurs d'Automobiles, the sizes 0.3 mm and 0.5 mm have the pitches 0.5 mm and 0.75 mm respectively, and are, therefore, not interchangeable with the corresponding sizes of the "Série de la Petite Mécanique". The same is true of the 5 mm size in the series of the Chambre Syndicale des Industries Aéronautiques.

There are also variations in practice as to the form of thread at crest and root. The Societe d'Encouragement does not specify a clearance at the major and minor diameters of screw and nut, and the Syndicale des Constructeurs d'Automobiles does not round the profile at the root. Neither of these modifications, however, prevent interchangeability with S. I. threads.

No tables of allowances and tolerances are available except those fcr. the Aircraft Threads given in Tables 25 and 26. These tolerances were suggested by the British Engineering Standards Association at the request of the Naval and Military Air Service of Great Britain.

References:

Bulletin Soc. d'Encouragement l'Industrie Nationale, Sept.-Oct. 1919.

Table 26. - Ständard Screw Threads in Use in France

1	1 2	7									
		3 Diame	+ 0.7	5	6	7	11	1 2	3	6	7
(Intern	ot Contitu	Diame	Chambre	Chambre			-		meter		
ional) Congrè de Zurich	d'En cours	our de fer	Syndicale des Constructeurs d'Automobile (Automobiles	Syndicale des Indus- tries Aero nautiques) (Aircraft)	ments Schneider et Cie.	Pitch	(International) Congrès de Zurich	Société d'Encoura- gement pour l'Industrie nationale	Chemins de fer Francais (Railroads)	Fetablisse- ments Schneider et Cie. (Ordusnes)	Pitch
	2.5	2012	mm	mm	mm	mrı	mm	mm	mia	ran:	mm
	3 3,5 4 4.5		3	3 4		0.45 .5 .6 .6	33 36	33 34 35 36	33 36	33 36	3.5 3.5 3.5 3.5 4
6	5 5.5 6	6	5	5 6	6	.75 .75 .9 .9	39 42:	37 38 39 40 42		39 42	4 4 4 4 5
8 9 10 11	7 8 9 10 11	10	7 8 9 10	7 8 9 10	8	1.0 1.25 1.25 1.5	45 48 52 56 60	45 48 58 56 60		45 48 52 56 60	4.5 5.5 5.5 5.5
12 14 16	12 13 14 15 16	12 14 16	12 14 16	12	12 14 16	1.75 1.75 2 2	64 68 72 76 80	64 68 72 76 80		64 68 72 76 80	6 6 6.5 6.5 7
18 20	17 18 19 20 21	18	18		18	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	84 88 92 96 100	84 83 92 96 100		84 83 92 96	7 7.5 7.5 8
32 34	22 23 24 25 26	22 24	22 24 26		22	2.5 2.5 3 3 3				106	8.5
30	27 28 29 30 31	30	28		27 30	3 3 3 3.5 3.5					
,											

Table 24. - Standard Small Screws in Use in France

<u> </u>	1 2	3	4	5
Standard so	crews in use.			s superseded
Name of series	Diameter	Pitch	Pitch	Remarks
Watchmakers' screws	0.40 .45 .550 .65 .70 .75 .85 .95	0.11 .13 .13 .15 .15 .17 .17 .19 .19	mm.	
Watchmakers' screws and small machine screws. Sizes common to both	1.00 1.20 1.25 1.30 1.50 1.70 1.75 1.80 1.90 2.20 2.30 2.40 2.50	. 24 .27 .27 .27 .30 .33 .33 .36 .39 .42 .42 .45	0.25 .25 .35 .35	Superseded pitches of small machine screws temporar- ily main- tained for existing machines
Small machine screw. series	5.00 3.50 4.00 4.50 5.50 6.00	.60 .60 .75 .95 .90 .90		

This table is taken from the table issued by the Société d'Encouragement pour l'Industrie Nationale in the Bulletin of November-December, 1915.

Table 25. - French Metric Aircraft Threads
Screw Sizes

	Majo	r diam	eter		Toler	ance or	104	tch di	ameter	Minor	
	majo.	r that Citi	.0001		i .	t ch	*	0 011 0.2	CAND OUT	. I	neter
Nomi-		First	3	1				First	Second		or
nal	Max.		grade	Pitch	First	Second	Max.	grade			grade
size		Min.	Min.		grade	grade		Min.	Min.	Min.	Max.
HO.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
3	3.00	2.84	2.78	0.60	0.046	0.092	2.61	2.53	2.45	2.00	2.22
4	4.00	3.84	3.78	. 75	.046	.092	3.51	3.43	3.35	2.80	3.02
5	5.00	4.84	4.78	. 75	.046	.092	4.51	4.43	4.35	3.80	4.02
6	6.00	5.84	5.74	1.00	.046	.092	5.35	5.27	5.19	4.44	4.70
7	7.00	6.84	6.74	1.00	.046	.092	6,35	6.27	€.19	5.44	5.70
8	8.00	7.80	7.70	1.25	.058	.115	7.19	7.09	6.99	6.06	6.36
9	9.00	8,80	8.70	1.25	.058	,115	8.19	8.09	7,99	7.06	7.36
10	10.00	e. 8 0	9.64	1.50	. 058	.115	9.03	8,93	8.83	7.68	8.C4
11	11.00	10,80	10.64	1.50	.058	.115	10.03	9.93	9.83	8,68	9.04
12	12.00	11.80	11.60	1.75	.058	.115	10.86	10.76	10.66	9.32	9.72

Tables 25 and 26 were prepared by the British Engineering Standards Committee upon request. The pitch of the 5 mm. screw given in these tables is 0.75 mm!, whereas the pitch commonly used in France is 0.90 mm., as shown by Table 23.

Table 26. - French Metric Aircraft Threads
Sizes for Nuts and Tapped Holes

_	Major Tolerance on/ Pitch diameter Minor												
								on/ Pit	ch dia	neter			
1			dia	meter		P:	itch_		-		ļ		eter
	om			lst cr					First	Second	1	First	1
	al		Max.		Pitch	First	Second	Min.	1	grade	Min.	grade	
-	iz	е		Min.	1	grade	grade		Max.	Max.		Max.	Me.x.
11	m.		mm.	min.	mm.	am.	mm.	um.	mir.	mm.	mm.	mille.	mni.
	3		3.24	3.02	0.60	Q.046	0.092	2.63	2.71	2.79	2.24	2.40	2.46
	4		4.24	4.02	. 75	.046	.092	3.53	3.61	3.69	3.04	3.20	3.26
ţ	5		5.24	5.02	.75	. C46	.092	4.53	4.61	4.69	4.04	1.20	4.26
•	6		6.28	6.02	1.00	.046	092	5.37	5.45	5.53	4.72	4.88	4.98
	7		7.28	7.08	1.00	.046	.092	6.37	6.45	6,53	5.72	5.88	5.98
8	3		8.32	8.02	1.25	. 058	.115	7.21	7.31	7.41	6.38	6.58	6.68
ξ	€		9.32	9.02	1.25	.058	.115	8.21	8.31	8.41	7.38	7.58	7.68
10)		10.38	10.02	1.50	.058	.115	9.05	9.15	9.25	8.06	8.26	8.42
13	L		11.38	11.02	1.50	.058	.115	10.05	10.15	10.25	9.06	9,26	9.42
12	3		12.42	12.02	1.75	.058	.115	10.38	10.98	11.08	2.74	9.92	C 42

VIII. STANDARD DIMENSIONS OF BOLT HEADS, NUTS, AND SCREW HEADS IN USE IN FRANCE

The commercial practice in France as to dimensions of bolt heads, nuts, and somew heads, varies among the various industrial organizations. The standard practice of each organization is given separately for each element in tables, 27. to 32 inclusive. This information was taken from two numbers of the Bulletin of the Société d'Encouragement pour l'Industrie Nationale, September - October 1913, and April 1921. The wrench openings specified by the Congress of Zurich, all dimensions specified by L'Union des Syndicats d'Electricite, the depth of slot of circular heads, and the angle of countersunk heads were copied directly from tables published in the Bulletin. The remainder of the dimensions given in the tables herein were computed from the formulas published in the Bulletin.

1. Width Across Flats or Diameters of Polt Heads, Nuts, and Screw Heads (Table 27)

Congress of Zurich. The Congress of Zurich did not fix the sizes of heads, as such, but specified a wrench opening for every diameter of the International Standard Series determined by the formula 1.4 D \(\delta\) 4 mm, in which D is the diameter of body in millimeters. These wrench openings thus determine the widths across flats of both hexagon and square heads and nuts.

Société d'Encouragement pour l'Industrie Nationale. For hexagon heads and nuts of the small machine screw series, a diameter across corners of 2 D is recommended, that is, 1.732 D is the width across flats. For circular heads a diameter of 2 D is recommended.

Establishments Schneider et Cie. The widths across flats of hexagon and square heads, and hexagon nuts are the same as the wrench openings specified by the Congress of Zurich, that is, 1.4 D + 4mm. The diameters of circular heads are the same as the widths across flats of the corresponding hexagon heads.

Chambre Syndicale des Constructeurs d'Automobiles. The widths across flats of square and hexagon heads are determined by the width of a hexagon inscribed in a circle whose diameter is 2 D (that is, 1.732 D), in which D is the diameter of body of the next smaller size in the series. More than half of the sizes thus determined do not fit the wrench sizes specified by the Congress of Zurich.

The diameters of circular heads are not listed in Table 27, since they are permitted to vary from 1.8 D to 2 D for cylindrical and countersunk heads. Round heads are somewhat smaller.

The widths across flats of hexagon nuts is 1.732 D, D being the diameter of the body of the bolt. The nuts are, thus, larger than the corresponding bolt heads.

Union des Syndicats d'Electricite. For sizes from 2.5 to 7 mm the widths across flats for square and hexagon heads and nuts are equal to the diameter d' of the body four steps larger in the series. For sizes from 8 to 12 mm. the widths across flats are 1.4 d* + 4 mm., d* being the diameter of body of two steps smaller in the series. Thus the same widths across flats, or wrench openings are used as those specified by the Congress of Zurich, but are associated with different sizes of bolts or screws.

For circular heads, whether rounded, cylindrical, or countersunk, the diameters are equal to the diameter d' of the bolt four steps larger in the series. The diameters of circular heads agree, therefore, with those of the body diameters of bolts and screws, thus reducing the necessary number of sizes of bar stock.

2. Height of Bolt and Screw Heads and Thickness of Nuts (Tables 33 and 29)

Congress of Zurich. The Congress of Zurich recommended a height of 0.7 D for square and hexagon bolt and screw heads, and a thickness equal to D for nuts, D being the major diameter of the thread.

Scoieté d'Encouragement pour l'Industrie Nationale. The height of heads, whether hexagonal or circular, and also the thickness of nuts, is equal to the diameter of thread, D.

Establissements Schneider et Cie. The height of hexagonal or cylindrical heads is approximately 0.7 D. Two different thicknesses of nuts are provided, - thick nuts whose thickness is equal to D, and lock nuts of a thickness equal to 0.7 D.

ChambreSyndicale des Constructeurs d'Automobiles. The heights of heads approved by this association vary considerably. For hexagonal or square heads, the height is about 2/3 D. The thicknesses of nuts are equal to D, and of lock-nuts, 2/3 D.

L'Union des Syndicats d'Electricite. The heights of heads for corresponding sizes are the same for hexagonal, cylindrical, and rounded forms, and are equal to 0.7 D. The height of the conical portion of a countersunk head is determined by the coneangle, 84°, and the diameter of the head. It is equal to 1.555 times the difference between the diameters of the head and body.

A cylindrical portion surmounts the cone, its height being equal to one-half the pitch of the thread. The total height of the flat countersunk head is equal to the sum of the heights of these two portions. If the head is convex, the height of the rounded portion is added to this height.

Two thicknesses of nuts are provided, both of which apply to either square or hexagonal nuts. For thick nuts, the thickness is equal to the diameter of body, D, two steps smaller in the series. The thickness of thin nuts is equal to 2/3 that of the thick nuts.

3. Dimensions of Slots in Screw Heads (Table 30)

Neither the Congress of Zurich nor the Societé d'Encouragement have specified the dimensions of slots in circular screw heads.

Establissements Schneider et Cie. The width of slot is specified for screws from 6 mm to 18 mm in diameter. The depth of slot varies for different types of head between the limits indicated in Table 30.

Chambre Syndicale des Constructeurs d'Automobiles. The width of slot is specified for screws from 3 mm to 30 mm in diameter. The depth of slot varies for different types of head between the limits indicated in Table 30.

Union des Syndicats d'Electricite. The width of slot is the same for corresponding sizes of all forms of heads. The depth of slot is the same for cylindrical and rounded heads, and is equal to 1/3 the height of the head. For countersunk heads the depth of slot is equal to 1/2 the total height of head.

4. Length Below Head and Length of Threaded Portion of Bolts and Screws (Tables 31 and 32)

Establissements Schneider et Cie. There are twenty-nine lengths of bolts, studs, and screws listed in Column I of Table 31, which are obtained by adding to the minimum length of 10 mm the successive increments listed in Column 3, which are also used in determining threaded lengths.

The length of threading is such that if the screw, stud, or bolt were cut down to the next shorter length in the series, the threaded part would still remain long enough to take a nut. The formula applied is

F = D + 3R/2,

in which F = length of threaded part,

D = diameter of thread,

and R = difference in length between the bolt and the next shorter one in the series.

When the threaded part must also carry a lockrut, the threaded length is increased by the thickness of the locknut and becomes,

$$F' = F + 0.7 D = 1.7 D + 3R/2.$$

Chambre Syndicale des Constructeurs d'Automobiles. The total lengths below heads are graduated as follows:

by 5 mm steps between 10 mm and 100 mm, "10" " 100" " 200", " 300".

Thus there are 30 different lengths from 10 mm to 300 mm.

Threads to take nut and locknut have a length equal to 2 d, and for nut and washer equal to 1.5 d, d being the diameter of the next smaller (in diameter) bolt in the series. For sizes up to and including 12 mm this length is increased by 2 mm. This is not sufficient, in all cases, to permit a bolt cut down to the next shorter length to take a nut.

Union des Syndicats d'Electricite. The minimum lengths below head for each diameter of screw are given in Table 32. The series of lengths above these minima corresponds to the series obtained by adding successively and cumulatively to the base 4 mm the natural series of numbers 1, 2, 3, 4, 5, etc. giving the lengths given in Column 7, Table 31. These values serve only as a suggestion and are those recognized by Establissements Schneider et Cie, and Chemins de fer Français.

5. Angles of Countersunk Heads.

The Congress of Zurich made no recommendation in regard to the cone angle of countersunk heads. The angles specified by other organizations are as follows:

Société d'Encouragement,	84	degrees,
Schneider et Cie,		11
Constructeurs d'Automobiles,	80	11
Syndicate a'Electricite,	84	ft.

References:

Bulletin Société d'Encouragement pour l'Industrie Nationale, September-October 1919, and April 1921.

Table 27. - Widths Across Flats and Diameters of Bolt Heads, Screw Heads, and Nuts in Use in France.

	Sc	rew Heads, and	Nuts in Use	in France	ತಿವರs, e								
Diamete	~ ! ~ .	1 4 6	1 7 1 8	9	30	11	12	13	14	15	16 des Syndica	17	15
of body	Zurich	Societe d'Enco pour l'Industr	ouragement	Establ:	issements	Chambre S	vndicale des	s Const	ructeurs	L'Union	des syndica	ass ara	77603-
and maj	or	Hexagon neads,	Circular		der et Cie.	5	d'Automo	siles	n nuts,	Source a	nd hexagon	Circu	lar
diamete	1 11-0022	Width across	heads, dia-	nexagor	or circul- is and nuts,	square an	d hexagon dths across	mexago eidtn	across	heads an	d nuts,	hea	ads,
of thre		flats	meter		or diameter		ats		ats	width ac	ross ilats	diam	eter
D	1. 4D+ 1. 4D+ 4mm 1571n	1.732D	2D			}	732Ď*	1.7	32D				
mi [Inch	es am Inches	mm Inches	mm Inches		nm 1.40+.157	Tirin .	Inches	1	Inches	mm	Inches	mm	Inches
0.500.00			mmi Tricilee	mm	Inches	15 444	inches	111111	11101100	2.112			
2.5 0.09 3 ,11 5.5 .13 4 .15	18 38	4 0.157 5 .197 6 .236	5 0.197 6 .236 7 .276			4	0.157	5	0.197	4.5 5 5.5	0.177 .197 .217 .236	4.5 5.5 6	0.177 .197 .217 .236
4 .18		7 , 276	8 .315	ł		5	.197	7	. 276	6 7	.276	7	. 276
5 .19	7	8 .315 9 .354 10 .394	9 .354 10 .394 11 .433			7	.276	9	.354	8 9	.315	8 9	.315 .354 .394
6 , 23			1 1 1 1 1 1 1 1	12	0.473	9	.354	10	.394	10	.394	10	. 433
7 .27				} ===	0.415	10	.394	12	.472 .551	11 12	472	12	,472
, , , , ,	5 15 .591			15	.591	12	.472	14	. 551	12		1	
9 .354 10 .394 11 .433	4 18 .709			18	.709	14 16	.551 .630	16 17	.630 .669	15 15 16	.512 .591 .630	14 16 18	,551 .630 .709
12 .472 14 .551 16 .630	3 21 .827 1 25 ,906			21 23	.827 .906	19	.748 .827 .945	21 24 28	.827 ,945 1.102	18	.709	20	.787
18 ,709	29 1.142			29	1.024	24 28 31	1.102	31 35	1.320				
22 ,866 24 ,945	35 1.378			55	1,260 1,378 1,496	35 38	1.558 1.496	38 42	1.496				
26 1.024 27 1.063						42	1.654	45	1.772				
28 1.102 30 1,181				i	1.654	45 48	1.772	48 52	2.047				
33 1,299 36 1,417	50 1.968 54 2.126			50	1,811 1,968	52 57	2.047 2.244	57 62	2.244 2.441 2.677				
39 1.555 42 1.654	58 2.283			58	2.126 2.283	62 68	2.441 2.677	68	2.874				
45 1.772 48 1.890	67 2.638			67 7	2.480 2.638	73	2,874	78 83	3.071 3.268				
	77 3.031				2 . 79 5	85	3.268	90	3.543				
₩ 12.B05	82 3.228			84 1	5.051 3.228	90	3.543 5.819	97	3.819				
04 2,520	94 3.701				3.465 3.701	104	4.094	111	4.370				
14 2.8351	100 3.937 105 4.134			1.00	5,937	111	4.646	125	4.921				
6 2.992	110 4.331				4,134 4,331	125	4.921 5.197	139	5.472				
84 3.307	116 4.567 122 4.803			116 4	1.567 1.803	132	5.472	145 152	5.709				
3,465	127 5.000				5,000	145	5.709	155	6.260	* D	in columns	11 and	12 is
3.622 96 3.780 100 3.937	153 5.236				5,236	152	5.984 6.260	166	6.535	the di	in columns ameter of t r size.	ody of	tne next
	138 5.433 144 5.669				5, 433 5, 669	166	6. 53 5	173	6.811	smalle	T 07 m 6.		
106 4.173					5.984								
- T						(m)							

Table 28. - Heights of solt and Screw Heads in Use in France

De= miameter of body H = diametal of head p = pitch of thread.

-	1 2	13	14	1 5	1 6	7	1 8	9	1 10			_					
Diam	eter	Con	gress	Societé			ssement	Cha	mbre	- 1-1	12	13	1 de Sh	1 15	15 15 eur	171	18
of b	ody	of	Zurich	d'Encour	agement		er et Cie.		cale des		of nex-	13 011.10	Cour	sersunk	a Elect heads	110102	
	major			pour l'I					ructeurs	agon,	cylindrical,	Height	of	Heighi	CI	Total	height
diam	eter	-		National	e	0 + 0 0 0 0		a'Aut	omobiles	. and ro	und heads	conica		cylindr	cical .		
OI t	hread D	7	0.7D	D D	Height	of heads	. 7D	<u> </u>	D/3	· - · · - 8	7D		7.7	pant p/i			
nom			Inches		Inches	mm	Inches	mm	Inches	rom	Inches	1.555(mm	Inches	mm P/ L	; Inches	mra ,	Inches
44/4/3	1 +11011	Comm	Filones	111111	Inches	111111	11101103	1	201.01			*11/11/1	11101103	161111	THORES	111111	11101168
2.5	0.09		}	2.5	0.098					2	0.079	1.11	0.044	0.2	0.008	1.31	0.052
5 _	111			3	.118			2	0.079	2 2.5	.079	1.11	.044	. 3	.012	1.41	.056
3.5	.13			3.5 4	.138			2.5	.098	3	.098	1.11	.044	. 3	.012	1.41	.056
4 4.5	17			4.5	.177	!		2.5	.000	3	.118	1.59	.035	.4	.016 .016	1.51	.059
5	.19			5 .	.197			3.5	.138	3.5	.138	1.65	065	. 5	.020	2.16	.085
5. 5	.21			5.5	.217					4	.157	1.94	.075	. 5	.020	2.44	.096
6	. 236	3 4	0.157			4	0.157	4	.157	4.5 5	.177	2. 32	.087	. 5	.C20	2.72	.107
7 8	276 315		.197	•		5. 5	.217	4.5 5.5	.177	5.5	.217	2. 22	.087	.5	.030 .024	2.72	.107
0	. 01:) 5. 5	. 21			3. 5	.617	5.5	. 211	0.0		మ. సబ	.037	• 0	•024	చ. 0ప	• 111
9	. 354	6.5						6	.236	6.5	. 256	3.77	.109	.6	.034	3.37	. 153
10	. 394	7	.276			7	.276	6.5	. 256	7	.276	5.33	.131	. 6	.C31	4.13	.163
11	. 433	7.5					er er		535	7.5 8.5	.295 .335	3.88	.153	.8	.031	4.68	.184
15 14	. 472		.355			8.5	.335	8 9.5	.315	0.0	.000	4.44	.175	.9	.035	5.34	.210
16	.630	111	. 433	ļ		10 11	. 394	10.5	.413								
18	.709	12. 5	.492			12.5	.492	12	472							-	
20	. 787	14	. 551		1	14	.551	13.5	, , 531	İ	•						
22		15.5				15.5	.610	14.5	.571								
34	. 945	17	.669			17	.669	16	. 630								
26	1.024			-				17.5	. 689								
	1.063		.748			19	.748	1									
28	1.102							18.5	.728								
50	1.181	21	. 827			21	.827	20	.787								
33 36	1.299	23	906	1		23 25	.906	22 24	. 866								
39	1.535	27.5	1.083			27.5	1.083	26	1.024								
42	1.654	29.5	1.161			29.5	1.161	28	1.103								
45	1.772	31.5	1.240			31.5	1.240	30	1.181								
48	1.890	33.5	1.319			33.5	1.319	32	1.260								
52	2 042	36 E	1.437			36 5	1.437	34.5	1,358								
56	2.205	39	1.555			39	1.555	37. 5	1.476								
60	2.362	42	1.673			42	1.673	40	1.575								
64	2.520	45	1,791			45	1.791	42.5	1.673								
68	2.677	47.5	1.870			47.5	1.870	45.5	1.791								
72 76	2.835 2.992	53	2.087			50.5 53	1.988	48 50.5	1.890		- 1	/					
80	4.992 3.150	56	2.205			56	2.205	53.5	2.106								
	3.307		2.323			59	2.323	56	2.205			1					
88	3.465	61.5	2.421			61.5	2.431	58.5	2.303								
}						C. 4	0.530	63 6	2 423								
92	3.622	64.5	2.539			64.5 67	2,539	61.5	2.421 2.539								
96 100	3.780 3.937	70	2.638			70	2.638 2.756	65.5	2.579								
106	4.173	/μ	2. 100			74	2.913	30.0	1								
70	43 410									-							

-	Tabl	o 29.	- Thickne	eses of Muta	in Use in Fr	ance											
1	unever	'	ngress	Societe d	Encouragement	7	1 8	9	lio	-1	12	1.5	1.4	1.5	16		18
οÎ	body	of	Zurion	Thoni T. Tak	Astrie Nation	. Sci	agilde: nebien	P. 04	0	Constr	ore Synd	1 calle d d'Autor	es obiles		on des Sy d'Electri		S
	majo: meter		Icaness f nuts	101	ckness nuts	T'fh:	lckhess	mick	ness of	Thi	ckness	Inack	1058	Talck	ness of	Thilla	ness of
oi	thread	1			nuts	01	fnuts	Lock	-มบรร	01	nuts	of n	นซิธ	thick	nuts	tIn	nuts
-intri	D Jiñch	es Tor	. Inches		Ď		מ	10	717		D.	ZD	/3				
			23301168	mm	Inches	mn	Inches	mm	Inches	mm	Inches	mni	Inches	min	Inches	mm	Inches
3.	0.09			2.5	0.093									2	0.079	i.	0.039
3.	. 13	8		3 3.5	.118					3	0.118	2	0.079	2	.079	1	.039
4	.15			4	.157			1		4	.157	2.5	.098	2.5 3	.093 .118	1,5 2	.059
5	19			4.5 5	.177	İ						1		5.5	. 138	2.5	.098
5, 3	.217	7		5 . 5	.197					5	.197	3.5	,138	4.5	.157	2.5 3	.098
6	. 236		.236			6	0.236	4	0.157	6	. 236	4	. 157	5	.197	3.5	.138
8	.315		.276			8	575		03.5	7 8	.376	4.5	.177	5.5 6	. 217 . 236	3.5 4	.138
0	754					0	.315	5, 5	.217	8	.315	อิ. อิ	ا ۳ به ۱				•
9	.354		.354			7.0	504			9	. 35:4	6	. 236	7 8	.275 .315	4.5 5.5	.177
11	.435	11	. 453			10	.394	7	. 276	10	.394	6.5	. 256	9	.354	6	,236
12 14	.472		.472			12	.472	8.5	. 535	12	.472	8 '	.315	10	.394	6.5	. 256
16	630	16	.551			14	. 551	10	.394	14 16	.55l .630	9.5	.374				
18	.009	18	.709			16 18	. 630 . 709	11 12.5	. 433 . 492	18	.709	12	.473				
30 32	. 787	20	.787 .866			20	.787	14	.551	20	.787	13.5	.531 .571				
24	.945	24	.945			23	. 86€ . 945	15.5 17	- 310	22	.866 .945	14.5	.630				
26	1.024	1				21	.040	7.1	. 669				0.510				
	1.063	27	1.063	1		2.	3 000	7.0		26	1.024	17.5	.689				
88	1.102					27	1.063	19	. 748	28	1.102	18.5	. 728				
	1.181	30	1.181			30	1.181	21	.827	30	1.181	20	.787				
36	1.417	36	1.417			33 36	1.299	23 25	.906 .984	33	1.299	22	. 866 . 945				
	1.535	39	1.535			39	1.535	27.5	1.083	39	1.535	26	1.024			ļ	
45	1.772	42	1.654 1.772			48	1.654	29.5	1.161	42 45	1.654 1.772	30	1.102				
	1.890	48	1.890		1	45 48	1.772		1.245	48	1.890	32	1.260				
52 56	2.047	52	2.047			ĺ				50	2 045	31 5	7 350				
	2.205	55	2.205			56	2.205		1.430	52 ± 56	2.047 2.205	37.5	1.476				
60 64	4,562	60	2.362			60	2.362	42	1.673	60	2.362	40	1.575				
68	2,520 2,677	64 68	2.530 2.677			64	2.530	45	1.791	64	2.520	42.5	1.673 1.791				
72	2.835	72	2.835			69 72	2.677	47.5	1.870	68 72	2.677 2.855	48	1.890				
76 80	2.992 3.150	76	2.903			76	2.992	53	2.087	7/6	2.993	50.5	1.988				
84	5.307	80 84	3.150 3.307			80 34	3.150 3.307		2.205 2.323	80	3.150 2.307	53.5 56	2.106 2.205				
88 1	3,465	88	3.455			88	3.465		2.421	88	3.465	58.5	2.303				
98	3.622	92	3 600								5 699	61.5	2.421				
96	3.780	96	3.622				3.622 3.780	64.5	შ. 539 შ. 633	92 96	3,622 3,780	64	2.539			1	
00	3.937 4.173	100	3.937			100	3.937	70	3.756	100	3.937	65.5	2.579				
	11719			l.]	106	4.173	74	3.913			J				I	1

Table 30. - Dimensions of Slots in Screw Heads in Use in France

	-		1 6				3 177					
	1)4 000	eter of	3	2011.000	5	6	1 7	Ι ε	9	1.0	111	10
		and		ablisse-	Gnam	pre syn-	171.0	nion c.e	es Syr	ncicats	0.178	ctricite
		r diam-	nen	ts Schn- er et				mer ataun.	and the co	Deptn	OIS	LCV
		oî		Cie.		Constructeurs d'Automobiles		Width		drical		
	thre		-	Width o	t alas	FOWORITE				ounded	n	eads
		Inches	rem	Inches	mm			slot	ne	a.d.s	1	Inches
			******	-1101168	unn	Inches	namin	ruches	mm	inches	mm	Indias
	2.5 5 3.5 4 4.5	0.098 .118 .138 .157			1	0.039	0.7	0.028 020. 320. 820.	.7 .8 1.0	.031	0.7	0.028 .028 .028 .028 .035
	5 5,5 6 7 8	.197 .217 .236 .276 .515	2	0.079	1 1 1 1 . 5	.039	1.2 1.2 1.2 1.2	.047 .047 .047 .047	1,2 1,3 1,5 1,7	.051	1.1 1.2 1.4 1.4	.043 .047 .055 .055
	9 10 11 12	.354 .394 .433 .472 .551	2.5	.098	ಬಬ ಬಸ್ತ 5	.079 .079 .079 .098	N N N N	.079 .079 .075 .079	2.558	.087 .091 .098 .110	1.7 2 2.3 2.7	.067 .079 .091 .106
23 23 6 6	16 18 30 32 34		2.5	.098 .098	3 3.5 4 4.5 5	.118 138 .157 .177 .197						
2	6 8 0	1.024 1.102 1.181			5.5 5.5 6	.217			d tribles is region — to a derivative popularity.			

The same of the sa								
11	3	1 5	4	5	6	7		
Shape of head	Establis	sements	Chambre Synuicale des					
	Schneider	r et Cie.	Constructeurs d'Automobiles .					
	Depth of	slot		dia. of to	read De	epth of slot		
	mm	inches	mm	Linches	mm	Inches		
,								
Cylindrical	2.5to4.0	.10to.16	20to30	.79tol.18	1to2.5	.04to.10		
Rounded	2.5to4.0							
Countersunk flat				.34tol.18	1.5to8	.06to.31		
convex	2.5to7.0	.10to.28	20 to 30	.79tol.18	1to2.5	.04to.10		

49 -

Table 51. - Lenghis below Head of Bolts and Screwsein Use in France

_				·				
	1	2	3	4:	Ör ambar	6	7	8
	Estab.	lissements				Syndicale		s Syndicats
		et Cie.				structeurs	d.Flec	tricite
_			,			omobiles		
		below		ries		th below	Lengt.	h below
	the same a second	ead.		ements		nead		ead
	nim	Inches	mm	Inches	mm'	Inches	mm	Inches
	10 14	0.39 .55	4	0.16	10 15	0,39 ,59	4 5 7 10 14	0.16 .20 .28 .39 .55
	19 25 32 1 0 49	.75 .98 1.26 1.57 1.93	5 6 7 8 9	.20 .24 .28 .31	20 25 30 35	.79 .98 1.18 1.38 1,57	19 25 32 40 49	.75 .98 1.26 1.57 1.93
	59 70 82 95 109	2,32 2,76 3,23 3,74 4,29	10 11 12 13 14	.39 .43 .47 .51	45 50 55 60 65	1.77 1.97 2.17 2.36 2.56	59 70 82 95 109	2.32 2.76 3.23 3.74 4.29
	124 140 157 175 194	4.88 5.51 6.18 6.89 7.64	15 16 17 18 19	.59 .63 .67 .71	75 80 85	2,76 2.95 3.15 3.35 3.54	124 140 157 175 194	4.88 5.51 6.18 6.89 7.64
	214 235 257 280 304	8.43 9525 10.12 11.02 11.97	20 21 22 23 24	.79 .83 .87 .91	100 110 120	3.74 3.94 4.35 4.72 5.12	214 235 257 280 304	8,43 9,25 10,12 11,02 11,97
	329 355 382 410 439	12.95 13.98 15.04 16.14 17.28	25 26 27 28 29	.98 1.03 1.06 1.10	150 160 170	5.51 5.91 6.30 6.70 7.09	329 355 382 410 439	12.95 13.98 15.04 16.14 17.28
	4 69 5 00	18.46	30 31	1.18 1.22		7.48 7.87 9.84 11.81	469 500	18.46: 19.68
-								

• 3

Table 32. - Minimum Length Below Head, L'Union des Syndicats d'Electricite

			1
	2	3	4
	diameter of	Minimum	length below
t	hread		head
mm	Inches	mm	Inches
2.5 3 3,5 4 4.5	0.098 .118 .138 .157 .177	4 4 4 5 5	0.16 .16 .16 .20 .20
5 5, 5 6 7 8	.197 .217 .236 .276 .315	7 7 10 10 14	.28 .28 .39 .39
9 10 11 12	.354 .394 .433 .472	14 19 19 19	. 55 . 75 . 75 . 75

IX. The Loewenherz Screw Thread System and Standard Instrument and Machine Screws

The Verein Deutscher Ingenieure in 1888 adopted a system of metric screw threads for sizes from 6 mm to 40 mm diameter inclusive. The thread form selected, shown in Fig. 17, has an angle of 53° 8' and is flattened at top and bottom 1/8th the height of the basic triangle. The angle 53° 8' gives a triangle whose height is equal to its base, therefore, the depth of thread is 3/4 of the pitch.

In December 1892 a commission representing German instrument makers, technical socities, and government departments, adopted a system of threads ranging in diameter from 1 mm to 10 mm, and especially intended for use in small machines and instruments. The same form of thread is employed as in the earlier system and the overlapping sizes 6 mm to 10 mm are identical. The system was called the Lowenherz System after Dr. Leopold Lowenherz, at one time Director of the Physicalisch-Technische Reichsanstalt. The dimensions of the Loewenherz Screw Thread System are given in Table 33.

At the same time standard proportions for instrument and machine screws for sizes from 1.0 to 10.0 mm were adopted by the commission, which are given in Table 34.

Fig. 17 - Loewenherz Thread Form

References:

Zeitschrift Verein Deutcher Ingeneure, 1888. Zeitschrift für Instrumentkunde, February 1893, pages 41-58; June 1893, pages 246-249; and August 1894, pages 285-291.

Table 33. - Lowenherz Screw Thread System

Approx.												
Ma	P	itch	threads	Pitch	Minor							
dian			per inch	diameter	diameter							
mm.	Inches	1	nn.		Inches	Inches						
1. 1.2 1.4 1.7	0.0394 .0472 .0551 .0669 .0787		0.25 .25 .3 .35	102. 102. 84.6 72.6 63.5	0.0320 .0399 .0462 .0566 .0669	0.0246 .0325 .0374 .0463 .0551						
2.3 2.6 3.5 4.0	.0906 .1024 .1181 .1378 .1575	.4 .45 .5 .6		63.5 56.4 50.8 42.3 36.3	.0787 .0891 .1033 .1201 .1368	.0669 .0758 .0886 .1024 .1161						
4.5 5. 5.5 6.	.1772 .1969 .2165 .2362 .2756		,75 .8 .9	33.9 31.7 28.2 25.4 23.1	.1550 .1732 .1900 .2067 .2431	.1329 .1496 .1634 .1772 .2106						
8. 9. 10. 12. 14.	.3150 .3543 .3937 .4724 .5512]	23.44.66.8	21.2 19.5 18.1 15.9 14.1	.2795 .3159 .3524 .4251 .4980	.2441 .2776 .3110 .3779 .4449						
16. 18. 20. 22. 24.	.6299 .7087 .7874 .8661 .9449	N N N	02488	12.7 11.5 10.6 9.1 9.1	.5708 .6437 .7615 .7835 .8622	.5118 .5787 .6457 .7008 .7795						
26. 28. 30. 32. 36.	1.0236 1.1024 1.1811 1.2598 1.4173	333	00000	7.9 7.9 7.1 7.1 6.3	.9291 1.0079 1.0748 1.1535 1.2992	.8346 .9134 .9685 1.0472 1.1811						
40.	1.5748	4	.4	5.8	1.4449	1.3150						

Table 34. - Loewenherz Stundard Instrument and Machine Screws

1	1 2	1 3	1 4	7 5	1 6	7	1 8	7 9	1:0	111	12	13	14	15	15	17.	1.3	19
Dia	meter	Pitch		ti. of		ter of		ter of	Heis	11 nt of	Dir	mensions o	if slot,	slotted neau	Gal Gal	patar I	Limet	20.
of body			thresica oylindrical		countersally slotted		tei	Wiath		Dep to		Height of Capstan		Oi				
			portion .hea		head	head		head		of		of slot		head		10:6		
		<u> </u>									slot				h _a = 0.90		c = 0.25a + 0.45	
d p L =		L =	3d + 1	1 $D = \frac{5i + 1}{5}$		D., = 3a		$h_s = 0.6D$		b = 0.1d + 0.2		t = 0.5a + 0.3						
mm	Inches	mm	mm	Inches	mnm	Luches	APP9	Inches	min	Inches	him	Inches	mun	Inches	nara	laches	min	Laches
1.0 1.2 1.4 1.7 2.0	0.039 .047 .055 .067	0.25 .25 .30 .35 .40	45566	0.157 .197 .197 .256	2.0 2.3 2.7 3.2 3.7	0.079 .091 .106 .126	2.0 2.4 3.8 3.4		1.2 1.4 1.6 1.9 2.2	0.047 .055 .063 .075 .087	0.3	0.012 .012 .012 .016	0.8 .9 1.0 1.1 1.3	0.031 .035 .039 .043 .651	1.6	0.063 .075 .087 .102 .118	0.3	0.031 .035 .035 .039 .045
2.3 2.6 3.0 3.5 4.0	.091 .102 .118 .138 .157	. 40 . 45 . 50 . 60 . 70	8 9 10 11 13	.515 .554 .394 .453 .512	4.2 4.7 5.3 6.0 7.0	.165 .185 .209 .236 .276	4.6 5.2 6 7 8	.181 .205 .256 .276 .315	2.5 2.8 3.7 4.2	.098 .110 .128 .148 .165	.5566	.016 .020 .020 .024 .024	1.4 1.6 1.8 2.0 2.3	.055 .063 .071 .079	3.4 3.8 4.3 5.0 5.6		1.3 1.4 1.5 1.7 1.8	.055 .059 .067 .071
4.5 5.0 5.5 6	.177 .197 .21 7 .236	.75 .8 .9 1.0	14 13 17 19 22	.551 .630 .669 .748	8.0 8.5 9.5 10.5 12.0	.315 .335 .374 .415	9 10 11 12 14	.354 .394 .433 .472 .551	4.7 5.2 5.7 6.2 772	.185 .205 .234 .244 .283	.7	.028 .028 .031 .031	2.5 2.8 3.3 5.8	.093 .110 .118 .130 .150	6.3 7.0 7.6 8.3 9.6	.276 .299 .327	3.0 2.4 2.5 3.0 3.0	.079 .087 .094 .098 .114
8 9 10	.315 .354 .394	1.2 1.3 1.4	25 23 31	.984 1.102 1.220	13,5 15,5 17.0	.532 .610 .669	16 18 20	. 630	8.2 9.2 10.2	.323 .362 .402	1.0 1.1 1.2	.039 .043 .047	4.3 4.8 5.3	.169 .189 .209	11.0 12.5 13.8	. 484		.126 .142 .157

The diameter of cylindrical head, D, is rounded off to the next half or whole millimeter when d is greater than 3 mm.

Countersunk heads have an included angle of 90° and are finished on the top of the head with a spherical surface of radius 2d, or with a cylindrical projection of height equal to 0.4d.

Length of unthreaded portion varies in all gradations from 0.5d to 1.0d.

