Tema 6: Introducción a las Bases de Datos y al Modelo Relacional

Introducción a la Ingeniería del Software y los Sistemas de Información I Ingeniería Informática – Tecnologías Informáticas Departamento de Lenguajes y Sistemas Informáticos

Índice

- 1.Introducción
- 2.Conceptos básicos
- 3.Claves
- 4.Integridad

Introducción

¿Qué es una base de datos?

Un sistema de gestión de base de datos (SGBD) es un sistema informático que:

- Implementa (principalmente) las funciones de **memoria** e **informativa** de un sistema de información.
- Almacena grandes volúmenes de datos.
- Gestiona el acceso concurrente a los datos.
- Mantiene la integridad semántica de los datos.
- Controla el acceso a los datos.

Trazabilidad hacia otros productos

Trazabilidad hacia otros productos

El producto previo al diseño de una BD es el modelo conceptual.

Esquema relacional BD

Principales hitos:

- Sistemas pre-relacionales (antes de 1970)
 - Basados en archivos (secuenciales e indexados); bases de datos jerárquicas; bases de datos en red (CODASYL)
- Sistemas relacionales (desde 1970)
 - Experimentales: RDMS, Ingres, ...
 - Comerciales: Oracle, DB2, MS SQL Server
 - Open source: PostgreSQL, MySQL, MariaDB, SQLite...
- Sistemas post-relacionales (desde 1990)
 - Orientados a objetos; Objeto-relacionales; NoSQL.

Orígenes del modelo relacional

- Codd, E. F. (1970). A Relational Model of Data for Large Shared Data Banks. Communications of the ACM 13 (6): pp. 377–387.
- Modelo sencillo y flexible basado en fundamentos matemáticos de teoría de conjuntos y lógica de predicados.
- Primeras implementaciones:
 - RDMS (MIT), primeros años de los 70
 - Ingres (Universidad de Berkeley), 1974
 - Oracle V2, 1979
 - IBM System R/DB2, 1979

¿Qué es una relación?

- Una relación está compuesta por una intensión y por una extensión.
- La intensión define un conjunto de atributos, cada uno de los cuales toma valores sobre un dominio.
- Por ejemplo, para una relación denominada Empleado, su intensión podría ser:
 - nif: Naturales de 8 dígitos seguidos de una letra mayúscula
 - nombre: Cadenas menores de 50 caracteres
 - salario: Reales positivos

¿Qué es una relación?

- La extensión es un conjunto de tuplas, cada una formada por conjuntos de pares (atributo, valor), de forma que a cada atributo de la intensión se le asocia un valor del dominio sobre el que está definido.
- Por ejemplo, para la relación *Empleados*, su extensión podría ser:

relación	relación		Empleados	
atributos/intensión —	nif	nombre	salario	
	12.345.678-Z	Abel Abad	12.000	
	23.456.789-D	Braulio Brío	23.000	
tuplas/extensión <	34.567.890-V	Carlos Cepa	34.000	
	45.678.901-G	David Díaz	45.000	
	56.789.012-B	Enrique Estepa	56.000	

¿Qué es una relación?

- El número de atributos definidos en la intensión se denomina grado de la relación.
- El número de tuplas de la extensión se denomina cardinalidad de la relación.

Implementación del concepto de relación

- El concepto de relación se implementa mediante una tabla, cuyas columnas representan los atributos y las filas las tuplas.
- Las diferencias con una relación son:
 - Las filas están ordenadas, las tuplas no.
 - Las filas pueden estar repetidas, las tuplas no.
 - Las columnas (además de un nombre) tienen un orden, los atributos no.

¿Qué es un dominio?

- Es el conjunto de valores admisibles que puede tomar un atributo de una relación.
- Pueden ser:
 - Un tipo básico sin restricciones: enteros, cadenas, ...
 - Un tipo básico con restricciones: reales < 100, cadenas de longitud ≤ 50, naturales > 20, ...
 - Un tipo enumerado: lunes, martes, miércoles, ...
 - Un tipo compuesto: fechas (dd/mm/aaaa), horas (hh:mm:ss), ...
- Todos los dominios deben tener definido el operador de igualdad (=).
- Algunos dominios tienen su propia álgebra con operadores como +, -, *, /, etc.

¿Qué es el valor nulo?

- Si un atributo tiene valor nulo (null), significa que no se conoce su valor, que es desconocido.
- El valor nulo puede asignarse a atributos definidos sobre cualquier dominio, pero no pueden compararse valores nulos de atributos definidos sobre dominios diferentes.
- La introducción del valor nulo implica la necesidad de una lógica trivaluada:

A	В	A OR B	A AND B	NOT A
true	null	true	null	false
false	null	null	false	true
null	null	null	null	null

Definiciones:

- Una Superclave es un subconjunto de atributos (descriptor) de una relación que identifica de manera única a las tuplas de dicha relación.
- Criterio de unicidad
 - Un descriptor es único si no tiene sentido* que existan dos tuplas distintas en una relación con los mismos valores de dicho descriptor.
 - Toda Superclave cumple este criterio

^{*} Si no tiene sentido en el dominio del problema, asumiendo que una relación representa una parte de un modelo conceptual, como se verá en los próximos temas.

Definiciones:

- En cualquier relación, siempre existe una **superclave** formada por todos sus atributos, ya que no puede haber tuplas repetidas.
- Una relación puede tener varias superclaves.

Definiciones:

- Una Clave Candidata es una superclave que cumple el criterio de minimalidad.
- Criterio de Minimalidad
 - Una Superclave es mínima si al eliminar cualquier atributo de su descriptor deja de cumplir el criterio de unicidad.

Hay que evitar las Superclaves que no son Claves Candidatas.

- Claves candidatas
 - Una relación siempre tiene al menos una clave candidata, aunque puede tener varias.
- Clave primaria (primary key, PK)
 - Clave candidata seleccionada arbitrariamente como mecanismo de identificación de la relación.
- Clave alternativa (alternative key, AK)
 - Cualquier clave candidata no seleccionada como primaria.

Claves ajenas (foreign keys, **FK**)

- Las claves ajenas son conjuntos de atributos de una relación cuyos valores deben
 coincidir con los de la clave primaria de otra relación.
- Es la forma de representar las asociaciones del modelo conceptual en el modelo relacional.
- Se debe evitar ponerles nombres distintos a la clave primaria.

Integridad

Integridad de la entidad

- Ningún atributo que forme parte de la clave primaria de una relación puede tomar el valor nulo.
- Esta regla de integridad garantiza la identificación de tuplas mediante valores de la clave primaria.

		Empleados			
nif (PK)	nss	nombre	edad	salario	estadoCivil
12.345.678-Z	123.456.789	Abel Abad	21	12.000	soltero
null 🔘	234.567.890	Braulio Brío	32	23.000	casado
34.567.890-V	345.678.901	Carlos Cepa	43	34.000	separado
45.678.901-G	456.789.012	David Díaz	54	45.000	divorciado
56.789.012-B	567.890.123	Enrique Estepa	65	56.000	casado

Integridad

Integridad referencial

- Todos los atributos de una clave ajena deben tomar valores que coincidan con valores de la clave primaria correspondiente o bien tomar valores nulos.
- Esta regla de integridad garantiza que todas las tuplas con claves ajenas se relacionan con otras tuplas existentes o bien con ninguna.

Empleados			> 2		CentrosSalud		
<u>nss</u>	nif	nombre	edad	idCentroSalud		idCentroSalud	dirección
		Abel	21	48		1	c/ Primera
		Braulio	32	1		2	c/ Segunda
		Carlos	43	2		3	c/ Tercera
		David	40	4		4	c/ Cuarta
		Enrique	65	null			1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Esquema conceptual vs Esquema relacional

Esquema Relacional -Diagrama relacional-

Tema 6: Introducción a las Bases de Datos y al Modelo Relacional

Introducción a la Ingeniería del Software y los Sistemas de Información I Ingeniería Informática - Ingeniería del Software Departamento de Lenguajes y Sistemas Informáticos

