Aufgabenblatt 8

Statistik für Wirtschaftsinformatiker, Übung, HTW Berlin

Martin Spott, Michael Heimann

Stand: 26.05.2024

Wiederholung

Diese Fragen beziehen sich auf qualitative Merkmale

- Was bedeutet es, wenn zwei Merkmale unabhängig voneinander sind?
- Was sind die erwarteten Häufigkeiten im Falle von Unabhängigkeit und wie berechnet man sie?
- Wie kann man den Grad der Unabhängigkeit messen?

Aufgabe 8.1

Wir benutzen die Daten von Aufgabe 7.1 (Aufgabenblatt 7):

	Vollzeit	Nebenerwerb	Pacht
$\overline{[0,50)}$	639	64	41
[50, 180)	487	131	41
[180, 500)	203	153	33
[500, 1000)	54	91	17
>= 1000	46	112	18

- a) Berechnen Sie Pearsons χ^2 -Statistik, den Φ -Koeffizienten, das Kontingenzmaß C nach Pearson und das Kontingenzmaß V nach Cramer aus der Tabelle mit R. Benutzen Sie dazu die Funktion assocstats() der Bibliothek vcd oder die Funktionen Phi(), ContCoef() oder CramerV() der Bibliothek DescTools.
- b) Berechnen Sie die Kontingenztabelle für die erwarteten absoluten Häufigkeiten, die im Falle der Unabhängigkeit von Betriebsgröße und Betriebsführung auftreten würden.
- c) Berechnen Sie die Kontingenztabelle für die erwarteten relativen Häufigkeiten, die im Falle der Unabhängigkeit von Betriebsgröße und Betriebsführung auftreten würden.
- d) Erzeugen Sie einen Mosaikplot der Originaltabelle und der Tabelle mit den erwarteten Häufigkeiten und vergleichen Sie sie. Beschreiben und erklären Sie die Unterschiede.
- e) Was sind die Werte von Pearsons χ^2 -Statistik, dem Φ -Koeffizienten und des Kontingenzmaßes V nach Cramer für die Tabelle mit den erwarteten Häufigkeiten?
- f) (Zusatzaufgabe) Berechnen Sie Pearsons χ^2 -Statistik, den Φ -Koeffizienten und das Kontingenzmaß V nach Cramer aus Aufgabe c) händisch in R, in dem Sie die Formeln der Maße in R umsetzen.

Aufgabe 8.2

Benutzen Sie die Daten von Aufgabe 7.4 bezüglich der Wirkung einer Hautsalbe (Aufgabenblatt 7).

	besser	schlechter
mit Creme	223	75
ohne Creme	107	21

- a) Berechnen Sie die bedingten relativen Häufigkeiten f(Salbe verwendet|Ausschlag besser) und f(Salbe nicht verwendet|Ausschlag besser). Sagen diese beiden Häufigkeiten etwas darüber aus, ob die Anwendung der Salbe sinnvoll ist oder nicht? Interpretieren Sie die Ergebnisse.
- b) Berechnen Sie die Kontingenztabelle für die erwarteten absoluten Häufigkeiten, die im Falle der Unabhängigkeit von Benutzung der Salbe und Hautausschlag auftreten würden.
- c) Berechnen Sie Pearsons χ^2 -Statistik, den Φ -Koeffizienten, das Kontingenzmaß C nach Pearson und das Kontingenzmaß V nach Cramer. Benutzen Sie dazu die Funktion assocstats() der Bibliothek vcd. Was sagen uns die berechneten Werte bezüglich des Grades der Unabhängigkeit?
- d) Betrachten Sie folgende veränderte Kontingenztabelle:

	besser	schlechter
mit Creme	298	0
ohne Creme	0	128

Interpretieren Sie die Tatsache, dass zwei der Werte Null sind. Berechnen Sie Pearsons χ^2 -Statistik, den Φ -Koeffizienten und das Kontingenzmaß V nach Cramer und machen Sie sich die Werte klar.