

Vector Spaces of finite dimension

Monjid Younes

French-AZerbaijani University (UFAZ)

Generated Vector Subspace (review)

Theorem

Let $\{v_1, \ldots, v_n\}$ a finite set of vectors of a Vector Space E over \mathbb{K} . Then :

- The set of linear combinations of the vectors $\{v_1, \ldots, v_n\}$ is a Vector Subspace of E, and
- It is the smallest Vector Subspace of E (in the sense of inclusion) containing v_1, \ldots, v_n .

This Vector Subspace is called **generated Subspace by** v_1, \ldots, v_n and is denoted $Vect(v_1, \ldots, v_n)$. We thus have

$$u \in Vect(v_1, \ldots, v_n) \iff \exists (\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n, \ u = \lambda_1 v_1 + \ldots + \lambda_n v_n$$

Definition

The generated vector spaces by a finite number of vectors (called a set of vectors) are said to be vector spaces of finite dimension.

Reminder

Let $n \in \mathbb{N}$, $n \ge 1$ and v_1, v_2, \ldots, v_n n vectors in a Vector Space E over \mathbb{K} . Then every vector $u \in E$ of the form

$$u = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n,$$

with $\lambda_1, \lambda_2, \ldots, \lambda_n$ scalars in \mathbb{K} , is called a **linear combination** of the vectors v_1, v_2, \ldots, v_n , and the scalars $\lambda_1, \lambda_2, \ldots, \lambda_n$ are called **coefficients** of the linear combination.

Definitions

• A set of vectors $\{v_1, v_2, \dots, v_n\}$ of a vector space E over \mathbb{K} is said to be **linearly independent** if and only if

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0_E$$
 \Rightarrow $\lambda_1 = 0, \lambda_2 = 0, \ldots$, and $\lambda_n = 0$

- By contra-position, if
 - $\exists i \in \{1,...,n\}$ such that $\lambda_i \neq 0$ and $\lambda_1 v_1 + \ldots + \lambda_i v_i + \ldots + \lambda_n v_n = 0_E$ then we say that the set $\{v_1, v_2, \ldots, v_n\}$ is **linearly dependent**.
- If a set of vectors is linearly dependent, we call dependence relation the expression of one vector as function of the others.
- In order to determine if a set of vectors $\{v_1, v_2, \dots, v_n\}$ in the vector space \mathbb{R}^n is linearly dependent or independent, we need to solve a linear system.

Examples:

1) Determine whether the set of vectors $\{v_1, v_2, v_3\}$ is linearly dependent or independent in \mathbb{R}^3 :

a)
$$v_1=inom{1}{2}{3},\ v_2=inom{4}{5}{6}$$
 and $v_3=inom{2}{1}{0},$

b)
$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$ and $v_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$.

2) Determine whether the set of polynomials $\{P_1, P_2, P_3\}$ is linearly dependent of independent in $\mathbb{R}[x]$, with $P_1(x) = 2 - x$, $P_2(x) = 1 - 2x + x^2$ and $P_3(x) = 3 + 2x - x^2$.

Proposition

Let E be a vector space over \mathbb{K} , then

- a set of one vector $v \in E$ is linearly independent, resp. dependent, if $v \neq 0_E$, resp. $v = 0_E$,
- a set $\{v_1, v_2\}$ is linearly dependent if and only if v_1 is a multiple of v_2 or v_2 is a multiple of v_1 .

Theorem

Let E be a vector space over \mathbb{K} . A set $S=\{v_1,v_2,\ldots,v_n\}$ $(n\geq 2)$ is linearly dependent if and only if

$$\exists i \in \{1,\ldots,n\}, \ v_i = \sum_{j=1, i \neq j}^n \lambda_j v_j$$

i.e., at least one vector of S is a linear combination of the others.

Interpretations:

- In \mathbb{R}^2 and \mathbb{R}^3 , two vectors are linearly dependent if they are colinear and form a vectorial line.
- \bullet In \mathbb{R}^3 , three vectors are linearly dependent if they are coplanar and form a vectorial plane.

Proposition

Let $S = \{v_1, v_2, \dots, v_p\}$ be a set of vectors in \mathbb{R}^n . If p > n, then the set S is linearly dependent.

Exercise:

For which values of $t \in \mathbb{R}$ the set \mathcal{S} is linearly independent?

a)
$$\mathcal{S} = \left\{ \begin{pmatrix} -1 \\ t \end{pmatrix}, \begin{pmatrix} t^2 \\ -t \end{pmatrix} \right\}$$
 in \mathbb{R}^2 ?

b)
$$S = \left\{ \begin{pmatrix} 1 \\ t \\ t^2 \end{pmatrix}, \begin{pmatrix} t^2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ t \\ 1 \end{pmatrix} \right\}$$
 in \mathbb{R}^3 ?

Definition

Let E be a Vector Space over \mathbb{K} and v_1, v_2, \ldots, v_n vectors in E. We say that $S = \{v_1, v_2, \ldots, v_n\}$ is a **generating set** of the Vector Space E if

$$\forall v \in E, \exists \lambda_1, \ldots, \lambda_n \in \mathbb{K}, v = \lambda_1 v_1 + \ldots + \lambda_n v_n$$

- We say that the set S generates the Vector Space E.
- Remark :

if a set $S = \{v_1, v_2, \dots, v_p\}$ generates a Vector Space E, then we get back the previous concept of a generated Vector Space by the vectors V_1, V_2, \dots, V_p :

$$E = Vect(v_1, v_2, \ldots, v_p)$$

Examples:

1) Which Vector Space generates the set S?

$$a) \ \mathcal{S} = \bigg\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \bigg\}.$$

b) $S = \{1, X, X^2, \dots, X^n\}$ the set of polynomials of degree $n \ge 1$.

$$c) \,\, \mathcal{S} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

2) Is $S = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$ a generating set of \mathbb{R}^2 ?

Proposition

Let $S = \{v_1, \ldots, v_n\}$ a generating set of E. Then $S' = \{v'_1, \ldots, v'_n\}$ is also a generating set of E if and only if every vector in S is a linear combination of the vectors of S'.

Exercise

For which values of $t\in\mathbb{R}$ the set $\mathcal{S}=\left\{\begin{pmatrix} 0\\ t-1\end{pmatrix},\begin{pmatrix} t\\ -t\end{pmatrix}\right\}$ is a generating set of \mathbb{R}^2 ?

Definition

Let E be a Vector Space over \mathbb{K} . A set $\mathcal{F} = \{v_1, v_2, \dots, v_n\}$ of vectors in E is said to be a **basis** of E if it is:

- \bullet a generating set of E, and
- linearly independent.

Theorem

Let $\mathcal{F} = \{v_1, v_2, \dots, v_n\}$ be a basis of a Vector Space E. Then, every vector $v \in E$ is expressed in a unique way as a linear combination of elements of \mathcal{F} . I.e.,

$$\forall v \in E, \exists ! \lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}, v = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n.$$

 $\Rightarrow (\lambda_1, \lambda_2, \dots, \lambda_n)$ are called the **coordinates** of the vector v in the basis \mathcal{F} .

Examples:

- Let $e_1 = \binom{1}{0}$ and $e_2 = \binom{0}{1}$. Then (e_1, e_2) is the so-called **canonical basis** of \mathbb{R}^2 .
- Let $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Then (e_1, e_2, e_3) is the so-called canonical basis of \mathbb{R}^3 .
- Let $e_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$, ..., $e_n = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$. Then (e_1, e_2, \ldots, e_n) is the so-called **canonical basis** of \mathbb{R}^n .
- The canonical basis of $\mathbb{R}_n[X]$ is the set $\mathcal{F} = \{1, X, X^2, \dots, X^n\}$.
- The canonical basis of $M_2(\mathbb{R})$ is the set $\mathcal{F} = \{A, B, C, D\}$ where $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $D = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

Exercise:

Let
$$v_1=\begin{pmatrix}1\\2\\1\end{pmatrix}$$
, $v_2=\begin{pmatrix}2\\2\\0\end{pmatrix}$ and $v_3=\begin{pmatrix}3\\3\\4\end{pmatrix}$. Show that the set $\mathcal{F}=\{v_1,v_2,v_3\}$ is a basis of \mathbb{R}^3 .

Remarks:

- To show that a set of n vectors $\mathcal{F} = \{v_1, v_2, \dots, v_n\}$ is a basis of \mathbb{R}^n , we simply need to determine whether the matrix whose columns are the vectors v_1, v_2, \dots, v_n is invertible or not.
- The basis of a Vector Space is not unique.

Theorem 1: Existence of a basis

Every Vector Space with a generating set has a basis.

Theorem 2

Let E be a Vector Space over \mathbb{K} with a finite generating set.

- Incomplete basis theorem :
 - Every linearly independent set $\mathcal I$ in E can be completed to a basis. I.e., there exists a set of elements $\mathcal S$ in E such that $\mathcal I \cup \mathcal S$ is a generating and linearly independent set.
- Extracted basis theorem :

From every generating set $\mathcal G$ of E we can extract a basis of E. I.e., there exists a set of elements $\mathcal B\subset \mathcal G$ such that $\mathcal B$ is a generating and linearly independent set of E.

Theorem 3

Let $\mathcal G$ a finite generating set and $\mathcal I$ a linearly independent set of E. Then, there exists a set $\mathcal S \subset \mathcal G$ such that $\mathcal I \cup \mathcal S$ is a basis of E.

Exercise:

1) Let E be the Vector Subspace of the \mathbb{R} -Vector Space $\mathbb{R}[X]$ generated by the set $\mathcal{G} = \{P_1, P_2, P_3, P_4, P_5\}$ defined as :

$$P_1(X)=1,\; P_2(X)=X,\; P_3(X)=X+1,\; P_4(X)=1+X^3,\; P_5(X)=X-X^3$$

Find a basis \mathcal{B} of E.

2) Show that the set $S = \{v_1, v_2, v_3\}$, with $v_1 = (1, 0, 2, 3)$, $v_2 = (0, 1, 2, 3)$ and $v_3 = (1, 2, 0, 3)$, can be completed to a basis.

Definition

A Vector Space E over $\mathbb K$ with a basis of finite elements is said to be of **finite** dimension

Theorem

All the bases of a Vector Space E of finite dimension have the same number of elements.

 \rightarrow We will prove this theorem later.

Definition

The dimension of a Vector Space of finite dimension, denoted $\dim(E)$, corresponds to the number of elements of a basis of E.

Remarks:

- 1) In order to determine the dimension of a Vector Space of finite dimension,
 - Find a basis of E (generating and linearly independent set),
 - determine the cardinal (number of elements) of this basis.
- 2) The dimension of the Vector Space $\{0_E\}$ is 0.

Examples:

- 1) Determine the dimension of \mathbb{R}^2 , \mathbb{R}^n and $\mathbb{R}_n[X]$,
- 2) The Vector Spaces $\mathbb{R}[X]$ and $\mathcal{F}(\mathbb{R},\mathbb{R})$ are not of finite dimension.

Exercise:

Let (S) be the following linear system :

$$\begin{cases} 2x_1 & +2x_2 & -x_3 & +x_5 & =0 \\ -x_1 & -x_2 & +2x_3 & -3x_4 & +x_5 & =0 \\ x_1 & +x_2 & -2x_3 & -x_5 & =0 \\ & & x_3 & +x_4 & +x_5 & =0 \end{cases}$$

- 1) Is the solution set of S a Vector Space?
- 2) Determine the solution set of S,
- 3) Determine the dimension of this Vector Space.

Proposition 1

Let E be a Vector Space, \mathcal{I} a linearly independent set and \mathcal{G} a generating set of E. Then $\operatorname{card}(\mathcal{I}) \leq \operatorname{card}(\mathcal{G})$.

 \rightarrow We admit this result.

Proposition 2

Let E be a Vector Space with a basis of n elements. Then,

- ullet Every linearly independent set of E has at most n elements,
- ullet Every generating set of E has at least n elements.

Proposition 3

If E is a Vector Space with a basis of n elements, then every basis of E is composed of n elements.

Theorem

Let E be a Vector Space over \mathbb{K} of dimension n, and $S = (v_1, \dots, v_n)$ a set of n elements of E. Then, the following statements:

- S is a basis of E.
- ② S is a linearly independent set of E,
- \odot S is a generating set of E,

are equivalent. I.e.,

$$(1) \Leftrightarrow (2) \Leftrightarrow (3)$$

Exercise:

For which values of $t \in \mathbb{R}$ the set $S = (v_1, v_2, v_3)$ is a basis of \mathbb{R}^3 ?

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 3 \\ t \end{pmatrix} \text{ and } v_3 = \begin{pmatrix} 1 \\ 1 \\ t \end{pmatrix}$$

Theorem

Let E be a K-Vector Space of finite dimension. Then

- Every Vector Subspace F of E is of finite dimension,
- $dim(F) \leq dim(E)$,
- $F = E \Leftrightarrow dim(F) = dim(E)$

Example:

Find the Vector Subspaces of the \mathbb{K} -Vector Space E of dimension 2, and determine their dimensions.

Definition

Let E be a \mathbb{K} -Vector Space of dimension n. We call a **hyperplane** every Vector Subspace of E of dimension n-1.

Proposition

Let E be a \mathbb{K} -Vector Space of finite dimension and F,G Vector Subspaces of E. If $G\subset F$, then

$$F = G \Leftrightarrow \dim(F) = \dim(G)$$

Example:

Show that the following Vector Subspace of \mathbb{R}^3 :

$$F = \{(x,y,z) \in \mathbb{R}^3 | 2x - 3y + z = 0\}$$

$$G = \mathsf{Vect}(u,v), \text{ where } u = (1,1,1) \text{ and } v = (2,1,-1)$$

are equal.

Theorem

Let E be a Vector Space of finite dimension and F, G Vector Subspaces of E. Then

$$dim(F + G) = dim(F) + dim(G) - dim(F \cap G)$$

Proposition

If $E = F \oplus G$, then $\dim(E) = \dim(F) + \dim(G)$.

Proposition

Every Vector Subspace of a Vector Space E of finite dimension has a supplementary in E.

Exercise: Let $v_1 = (1, t, -1)$, $v_2 = (t, 1, 1)$ and $v_3 = (1, 1, 1)$, with $t \in \mathbb{R}$.

Consider the following Vector Subspaces of \mathbb{R}^3 :

$$F = Vect(v_1, v_2)$$
 and $G = Vect(v_3)$

Determine the dimensions of $F, G, F \cap G$ and F + G as function of t.

END

References:

- -Sophie Chemla. Université Pierre et Marie Curie.
- -Eva Bayer-Fluckiger, Philippe Chabloz and Lara Thomas. Ecole Polytechnique Fédérale de Lausanne.
- -Alain Soyeur and Emmanuel Vieillard-Baron. Cours de Mathématiques, Sup MPSI PCSI PSI TSI — Spé MP PC PSI TSI.