

Arhitectura sistemelor de calcul

- Prelegerea 8 -

ALU (Unitatea aritmetică și logică)

Ruxandra F. Olimid

Facultatea de Matematică și Informatică Universitatea din București

Cuprins

- 1. ALU simplificat pe 1 bit
- 2. ALU pe 32 de biţi

ALU (Unitatea aritmetică și logică)

- Scop: realizarea calculelor aritmetice şi logice
- Abreviere: ALU (Arithmetic and Logic Unit)
- Mod de funcţionare: este un cicuit pur combinaţional (nu necesită cicluri) cu rolul de a efectua operaţii aritmetice (adunare, scădere,...) şi operaţiile logice (AND, OR,...)
- Reprezentare schematică:

[Considerăm ALU pe 32 biţi (MIPS32)]

ALU (Unitatea aritmetică și logică)

Intrare:

> ALU operation: indică operaţia care se efectuează (4 biţi)

ALU operation	Operație
0000	and
0001	or
0010	add
0110	substract
1100	nor
0111	set on less than

[COD]

a, b: operanzi (32 biţi)

ALU (Unitatea aritmetică și logică)

leşire:

- Zero: indică dacă se obţine 0 (1 bit)
- Result: rezultatul operaţiei (32 biţi)
- Overflow: indică depăşire (1 bit)
- CarryOut: bitul de transport (1 bit)

[COD]

- Considerăm ALU pe 1 bit care efectuează doar AND şi OR
- Acesta se construiește ușor cu ajutorul a 2 porți și un EMUX care selectează operația

Operation	Operație
0	and
1	or

- Adăugăm operaţia de adunare pe 1 bit cu bit de transport linfo
- Acesteia îi corespunde următoarea reprezentare schematică şi următorul tabel de adevăr:

a	b	CarryIn	Sum	CarryOut
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- Construcţia necesită MUX cu 2 intrări care selectează operaţia
- > Atunci ALU pe 1 bit care efectuează AND, OR și ADD devine:

Operation	Operație
00	and
01	or
10	add

- Adăugăm operația de **scădere** (aceasta se reduce la adunare dacă scăzătorul este reprezentat în complement față de 2, i.e. negat și adunat cu 1)
- \succ Construcția necesită în plus un EMUX al cărui bit de selecție să fie setat la 1 pentru scădere (preia \overline{b}), iar *CarryIn* trebuie setat la 1
- Atunci ALU pe 1 bit care efectuează AND, OR, ADD şi SUB devine:

Binvert	Operation	Operație
0	00	and
0	01	or
0	10	add
1	10	substract

- Adăugăm operația **NOR** ($a\ NOR\ b$ se reduce la $\overline{a}\ AND\ \overline{b}$ din legile lui DeMorgan)
- \blacktriangleright Construcția are deja o poartă AND şi negarea intrării b, deci se mai adaugă negarea lui a şi un bit de selecție *Ainvert*
- > Atunci ALU pe 1 bit care efectuează AND, OR, ADD, SUB și NOR devine:

- \blacktriangleright Adăugăm operația **set on less than** (a < b se reduce la a b < 0)
- Pentru numere mai mari de 1 bit, **set on less than** va întoarce rezultatul 0 peste tot cu excepţia ultimului bit (*lsb*) care va fi :
 - ✓ 1 dacă a < b
 - ✓ 0 altfel
- \blacktriangleright Observaţi că *lsb* se reduce la bitul de semn al valorii a-b
 - ✓ 1 dacă a-b este negativ, echivalent cu a < b
 - ✓ 0 altfel
- Construcţia necesită o nouă intrare în EMUX care va genera rezultatul comparaţiei; fie Less această intrare

> Construcţia devine:

Ainvert	Binvert	Operation	Operaţie
0	0	00	and
0	0	01	or
0	0	10	add
0	1	10	substract
1	1	00	nor
0	1	11	set on less than

[COD]

- ✓ Pentru Less = 0 rezultă primii 31 de biţi ai comparaţiei, care sunt mereu 0
- ✓ Pentru *Less = bitul de semn* rezultă *lsb*, deci avem nevoie de o ieşire suplimentară *Set*: ieşirea din Full Adder

Ainvert	Binvert	Operation	Operație
0	0	00	and
0	0	01	or
0	0	10	add
0	1	10	substract
1	1	00	nor
0	1	11	set on less than

[Am introdus şi detecţie la depăşire (overflow), fără să explicităm]

ALU pe 32 biţi

- Extensia serială conduce la ALU pe 32 de biţi
- Notatăm $a_{31} \dots a_0$ reprezentarea binară a lui a, respectiv $b_{31} \dots b_0$ reprezentarea binară a lui b
- Observaţii:
 - ✓ Se propagă transportul: Carryln pentru ALU i este CarryOut al ALU (i-1)
 - ✓ BInvert şi CarryIn au aceeaşi valoare (la scădere 1, altfel 0), deci semnalele se pot comasa într-unul singur, numit *Bnegate*
 - ✓ Set din ALU31 devine Less în ALU1 ca să se realizeze corect comparaţia
- Adăugăm în plus un flag *Zero*, care va fi activ când a=b (necesar pentru instrucțiunile de branch; acesta se obține imediat prin **OR** pe toate ieșirile a-b

ALU pe 32 biţi

Ainvert

Bnegate

Operation

00

01

10

10

00

11

Operație

and

or

add

substract

nor

set on less

than

- Dezavantajul construcției seriale este imediat: circuitul este lent (pentru o adunare, fiecare FA trebuie să aștepte rezultatul FA precedent)
- Pentru a înlătura acest neajuns se poate folosi *Carry Lookahead*, un circuit care calculează transportul mult mai rapid, nefiind pur serial

> Din tabela de adevăr rezultă imediat că putem exprima:

$$CarryOut = ab \oplus (a \oplus b)CarryIn$$

Cum CarryOut devine CarryIn pentru următorul sumator, se obţine:

$$c_{i+1} = a_i b_i \oplus (a_i \oplus b_i) c_i = G_i \oplus P_i c_i$$

- Notaţii:
 - $\checkmark c_i$ = transportul în runda i
 - $\checkmark G_i = a_i b_i$ = generate
 - $\checkmark P_i = a_i \oplus b_i$ = propagate

а	b	CarryIn	Sum	CarryOut
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- Carry Lookahead primeşte la intrare valorile binare a şi b şi generează biţii de transport
- Problema care apare este complexitatea circuitului:

$$c_{1} = G_{0} \oplus P_{0}c_{0}$$

$$c_{2} = G_{1} \oplus P_{1}c_{1} = G_{1} \oplus P_{1}(G_{0} \oplus P_{0}c_{0}) = G_{1} \oplus P_{1}G_{0} \oplus P_{1}P_{0}c_{0}$$

$$c_{3} = G_{2} \oplus P_{2}c_{2} = \dots = G_{2} \oplus P_{2}G_{1} \oplus P_{2}P_{1}G_{0} \oplus P_{2}P_{1}P_{0}c_{0}$$

...

În consecință se alege un compromis între compunerea serială şi CarryLookahead pe un număr favorabil de biţi

Un exemplu de astfel de sumator pe 16 biţi foloseşte care foloseşte valorile G_i, P_i calculate pe grupuri de câte 4 biţi:

Plecăm de la tabelul de adevăr şi construim sumatorul complet (Full Adder)

а	b	CarryIn	Sum	CarryOut
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Funcţiile canonice pentru cele 2 componente care formează ieşirea sunt:

$$Sum = \bar{a}\bar{b}c + \bar{a}b\bar{c} + a\bar{b}\bar{c} + abc$$

$$CarryOut = \bar{a}bc + a\bar{b}c + ab\bar{c} + abc$$

Notă: Pentru simplitate, am notat CarryIn cu c

а	b	CarryIn	Sum	CarryOut
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

> Având formele canonice, se defineşte circuitul combinaţional:

[Xilinx - ISE]

- ➤ Sumatorul complet (FA=Full Adder) accept acceptă transport la intrare, spre deosbire de un semi-sumator (HA=Half Adder)
- Half Adder poate fi realizat imediat (suma a doi biţi este realizată prin XOR şi transportul este 1 numai dacă ambii biţi sunt 1) astfel:

а	b	Sum	CarryOut
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

[inapoi]

Legile lui DeMorgan

Permit exprimarea conjuncţiei şi a disjuncţiei una în funcţie de cealaltă prin negare

$$\overline{a+b} = \bar{a}\bar{b}$$

$$\overline{ab} = \overline{a} + \overline{b}$$

Rezultă imediat că se poate renunţa la unul dintre operatorii AND sau OR pentru reprezentarea unei funcţii logice (în condiţiile în care se poate utiliza negarea).

Referințe bibliografice

[AAT] A. Atanasiu, Arhitectura calculatorului

[COD] D. Patterson and J. Hennessy, Computer Organisation and Design

Schemele [Xilinx - ISE] au fost realizate folosind

http://www.xilinx.com/tools/projnav.htm