

Quenching of spectroscopic factors in ^{10,12}Be(d, ³He) reactions

M. Lozano-González, A. Matta, B. Fernández-Domínguez, F. Delaunay, J. Lois-Fuentes

USC-IGFAE and LPC-Caen

Status by October 2024

A recap on spectroscopic factors

Spectroscopic factors shed light on the occupancy of single-particle states:

$$\left.\frac{d\sigma}{d\Omega}\right|_{exp} = C^2S \cdot \left.\frac{d\sigma}{d\Omega}\right|_{s,p}, \quad \sum C^2S = (2j+1) \text{ in IPSM}$$

Experimentally:

Reduction of $\sim 65 \%$!

- **Short-range** correlations: tensor forces,...
- Long-range: vibrations, giant resonances,...

A long-standing puzzle

A trend with asymmetry energy $\Delta S \equiv S_n - S_p$ is found depending on the experimental **probe!**

T. Aumann et al. Prog. Part. Nucl. Phys. 118 (2021)

 \Rightarrow measure towards more exotic nuclei: $|\Delta S| \uparrow$

Importance of GMF

Towards exotic nuclei (loosely bound or halo), a **geometrical mismatch factor** emerges from the very different w.f. in the overlap:

N. K. Timofeyuk, private communication (in E748 proposal)

 \Rightarrow Need to correct C^2S by its value!

Physics case of E748

E748 @ GANIL back in 2017. Using ^{10,12}Be(d, ³He) reactions to:

Experimental technique

Tradional solid target experiment @ LISE

A glance at the analysis

3 E_x from missing mass technique $E_{\mathsf{beam}} + (E, \theta)_{\mathsf{Lab}} \to E_x$

Resuls: Elastic ^{10,12}Be(d,d)^{10,12}Be

Resuls: Elastic ^{10,12}Be(d,d)^{10,12}Be

Experimental cross-section formula:

$$\frac{d\sigma}{d\Omega} = \frac{N}{N_{\rm beam}N_{\rm targets}\epsilon\Delta\Omega} = \frac{N}{N_{\rm beam}\alpha\epsilon_{\rm np}\Delta\Omega}$$

- Target thickness not measured during experiment:
 - Set it from normalization of elastic
 - Ongoing: fix it from simulation

- **2** ZDD had a poor performance. Averaged ϵ :
- IC: 30 %
- Plastic: 50 %

From **npsimu**: $\epsilon_{\rm np} = \epsilon_{\rm geo,\ MUST2} \cdot \epsilon_{\rm reconstruction} \cdot \epsilon_{\rm geo,\ ZDD}$ Agglutinate missing factors: $\alpha = N_{\rm targets} \cdot \epsilon_{\rm instrinsic,\ ZDD} \cdot \epsilon_{\rm other?}$

About DWBA calculations

- OMPs for elastic
- 10,12Be + d: Haixia
- 9,11Be, Li + t,3He: Pang and HT1p

- Light overlap. Usually determines the xs strength.
 - $\langle t|d+n\rangle$
 - $| \langle ^3 \text{He} | d + p \rangle$

From GFMC calculations (ab initio)

- 3 Heavy overlap $\langle {}^{10,12}Be|{}^{9,11}Be, Li+n, p \rangle$. Two WS prescriptions:
 - Standard $r_0 = 1.25 \, \mathrm{fm}$
 - **N.** Timofeyuk PRC 81 (2010) Source Term Approach (STA): includes in a phenomenological way some correlations among nucleons. r_0 for each channel.

Results: ¹⁰Be(d,t)⁹Be

Relatively high statistics. Used for benchmarking analysis routines.

STA prediction:

 $C^2S = 1.50$

Our result: $C^2S_{\text{exp}} = 2.08$

SFO-tls shell-model:

$$C^2S = 2.51$$

Results: 10Be(d, 3He)9Li

$3/2^-$ ground state and $1/2^-$ 1st excited state.

Ground state

1st excited

So far only the **ground state** $3/2^-$ ($\ell = 1$) is analyzed.

Much lower cross section!

Expected sizeable contribution of GMF

So far only the **ground state** $3/2^-$ ($\ell=1$) is analyzed.

STA not available yet!

Shell model with SFO-tls: $C^2S = 1.642$

The reduction factor $R_S = C^2 S_{\rm exp}/C^2 S_{\rm theo}$ is computed:

What happens with 9Be?

R_S compatible with litterature

 $\sim 20\,\%$ reduction GMF playing a role

The reduction factor $R_S = C^2 S_{\rm exp}/C^2 S_{\rm theo}$ is computed:

Great prediction for ⁹Li but understimates SF for ⁹Be!

Missing predictions for ⁹Li_{1st} and ¹¹Li

Conclusions

Angular distributions for ^{10,12}Be(d, ³He) have been extracted and compared with DWBA

Found strong sensitivity to nuclear overlap: stdWS or newer STA

 R_{S} for $\left<^{10}\text{Be}\right|^{9}\text{Li}\right>$ in agreement with systematics

 R_S for $\left\langle ^{12}Be\right|^{11}Li\right\rangle$ displays a strong reduction linked to GMF

• Found a quite low efficiency for the ZDD. This lowers the general efficiency since it is mandatory to gate on the heavy particle to identify on the ToF plot.

3- Combined efficiency of IC (= CHIO) and PL

Algorithm to count efficiency on physics data:

- Select all the physical runs for 10Be or 12Be with PID already applied (this implies good CATS reconstruction as there is a cut in target position)
- 2. Count events with Must2Multiplicity >= 1
- Relatively to that, count events with 0 <= IC_E <= 3000 (there is a constant overflow at 60000)
- Relatively to those good IC events, count QPlast > 0 (contrary to IC, here there is a constant underflow at -1000)

Here are the results for both beams

Beam	IC / Must2	PL / IC	Combined [%]
10Be	0.265027	0.532634	14.116
12Be	0.198695	0.587892	11.681

2 Experimental and simulated σ do not match \rightarrow Work in progress to infer target thickness from this feature.

Clearly all (but 10Be(d,d)...) agree when thickness $\sim 28\,\mu\mathrm{m}$

3 There is an issue with the CsI matching.

Check this link for further info

4 What happens with the B(E2) deformations of $^{10-12}$ Be? 10 Be(d,d) 12 Be(d,d)

Coulomb deformation:

$$p_2 = \sqrt{B(E2)}$$

Nuclear deformation:

$$p_2 = \beta_2 \cdot R_0$$
 with $R_0 = 1.3 \, \mathrm{fm} \cdot A^{1/3}$

Acknowledgments

The E748 collaboration:

- Santiago:B Fernández
- LPC-Caen: A. Matta
 - F. Delaunay
 - N. L. Achouri
 - F. Flavigny
 - J. Gibelin
 - M. Marques N Orr
- IJCLab:
 - D. Beaumel
 - M. Assié
 - Y. Blumenfeld
 - S. Franchoo
 - A. Georgiadou
 - V. Girard-Alcindor
 - F. Hammache
 - N. de Séreville
 - A. Meyer
 - I Stefan

- GANIL:
 - B. Jacquot
 - O. Kamalou
 - A. Lemasson
 - M. Rejmund
 - T. Roger
 - O. Sorlin
 - J.C. Thomas
 - M. Vandebrouck
 - B. Bastin
 - F. de Oliveira
 - C. Stodel
- RIKEN:S. Koyama
- D. Suzuki
 Surrey:
- N. Timofeyuk

Additional: ¹⁰Be(p,p)

This ground state is employed to obtain the number of protons in the target

Additional: 12Be(p,p)

Same as before but for ¹²Be

Additional: inelastic B(E2) with protons

The deformations included in the potential are exactly the same as for (d,d) channel.

For ¹⁰Be(p,p) efficiency is critical: events impinge onto the boundary of the telescope

Status with light isotopes

Several experiments allowed for the extraction of C^2S with Li-induced (d, 3 He) reactions:

Several challenges in this region:

Dealing with **unbound** nuclei (¹⁰He)

2 Many-body dynamics and/or core excitations

Kinematical lines

