Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №5 «Интерполяция функции»

по дисциплине «Вычислительная математика»

Вариант: 13

Преподаватель: Наумова Надежда Александровна

Выполнил:

Саранча Павел Александрович

Группа: Р3209

<u>Цель работы</u>: решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

1. Вычислительная реализация задачи

1. Выбрать таблицу y = f(x):

	Х	y	N варианта	X_1	X_2
Таблица 1.3	1.10	0.2234	13	1.168	1.463
	1.25	1.2438			
	1.40	2.2644			
	1.55	3.2984			
	1.70	4.3222			
	1.85	5.3516			
	2.00	6.3867			

2. Построить таблицу конечных разностей:

Nº	Xi	y _i	Δy _i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$	$\Delta^5 y_i$	$\Delta^6 y_i$
0.	1,1	0,2234	1,0204	0,0002	0,0132	-0,0368	0,0762	-0,1313
1.	1,25	1,2438	1,0206	0,0134	-0,0236	0,0394	-0,0551	
2.	1,4	2,2644	1,034	-0,0102	0,0158	-0,0157		
3.	1,55	3,2984	1,0238	0,0056	0,0001			
4.	1,7	4,3222	1,0294	0,0057				
5.	1,85	5,3516	1,0351					
6.	2	6,3867						

3. Вычислить значения функции для аргумента *X***1**, используя первую или вторую интерполяционную формулу **Ньютона**:

Воспользуемся формулой Ньютона для интерполирования **вперед**, так как $X_1 = 1.168$ лежит в левой половине отрезка.

Для
$$X_1=1.168$$
: $t=\frac{(x-x_n)}{h}=\frac{(1.168-1.1)}{0.15}=0.453$
$$N_6(x)=y_0+t\Delta y_0+\frac{t(t-1)}{2!}\Delta^2 y_0+\frac{t(t-1)(t-2)}{3!}\Delta^3 y_0+\frac{t(t-1)(t-2)(t-3)}{4!}\Delta^4 y_0+\frac{t(t-1)(t-2)(t-3)(t-4)}{5!}\Delta^5 y_0+\frac{t(t-1)(t-2)(t-3)(t-4)(t-5)}{6!}\Delta^6 y_0$$

$$y(1.168) \approx 0.2234 + 0.453 * 1.0204 + \frac{0.453(0.453 - 1)}{2} * 0.0002$$

$$+ \frac{0.453(0.453 - 1)(0.453 - 2)}{6} * 0.0132$$

$$+ \frac{0.453(0.453 - 1)(0.453 - 2)(0.453 - 3)}{24} * (-0.0368)$$

$$+ \frac{0.453(0.453 - 1)(0.453 - 2)(0.453 - 3)(0.453 - 4)}{120} * 0.0762$$

$$+ \frac{0.453(0.453 - 1)(0.453 - 2)(0.453 - 3)(0.453 - 4)(0.453 - 5)}{720}$$

$$* (-0.1313)$$

 $y(1.168) \approx 0.69337$

4. Вычислить значения функции для аргумента *X*₂, используя первую или вторую интерполяционную формулу Гаусса:

Центральная точка a = 0.65, $X_2 = 0.645 < 0.65$, то есть $x < a \rightarrow$ используем **вторую** интерполяционную формулу Гаусса.

$$t = \frac{(x - x_0)}{h} = \frac{(1.463 - 1.55)}{0.15} = -0.58$$

$$\begin{split} P_6(x) &= y_0 + t\Delta y_{-1} + \frac{t(t+1)}{2!}\Delta^2 y_{-1} + \frac{t(t+1)(t-1)}{3!}\Delta^3 y_{-2} \\ &\quad + \frac{t(t+1)(t-1)(t+2)}{4!}\Delta^4 y_{-2} + \frac{t(t+1)(t-1)(t+2)(t-2)}{5!}\Delta^5 y_{-3} \\ &\quad + \frac{t(t+1)(t-1)(t+2)(t-2)(t+3)}{6!}\Delta^6 y_{-3} \end{split}$$

$$y(1.463) \approx 3.2984 + (-0.58) * 1.034 + \frac{-0.58(0.42)}{2} * (-0.0102) + \frac{(-0.58)(0.42)(-1.58)}{6}$$

$$* (-0.0236) + \frac{(-0.58)(0.42)(-1.58)(1.42)}{24} * (0.0394)$$

$$+ \frac{(-0.58)(0.42)(1.42)(-2.58)}{120} * (0.0762)$$

$$+ \frac{(-0.58)(0.42)(-1.58)(1.42)(-2.58)(2.42)}{720} * (-0.1313)$$

 $y(1.463) \approx 2.69903$

2. Программная реализация задачи

https://github.com/PaulLocust/comp_math_lab5

Листинг методов:

```
1 | def lagrange polynomial(xs, ys, n, x):
2 | """
3 | Интерполяция по методу Лагранжа.
4 |
5 | Входные параметры:
6 | xs : массив координат узлов интерполяции
7 | ys : массив значений функции в узлах
8 | n : количество узлов
9 | x : точка, в которой вычисляем значение интерполированного многочлена
10 |
11 | Возвращает:
12 | значение интерполированного многочлена в точке х
13 | """
14 | total = 0
15 | for i in range(n):
16 | product = 1
17 | for j in range(n):
18 | if i != j:
19 | product *= (x - xs[j]) / (xs[i] - xs[j])
20 | total += ys[i] * product
21 | return total
```

```
def gauss polynomial(xs, ys, n, x):
2
3
4
5
6
          хз : массив координат узлов интерполяции (равномерно расположенных)
          уѕ : массив значений функции в узлах
8 |
          n : количество узлов х : точка, в которой вычисляем значение интерполированного многочлена
10|
12|
13|
14|
21|
22|
               for i in range(len(prev) - 1):
    current.append(prev[i + 1] - prev[i])
24|
25 j
261
28|
341
35|
381
391
43|
44|
451
```

Логические схемы:

Многочлен Лагранжа

Многочлен Ньютона (конечные разности)

Результаты выполнения программы при различных исходных данных:

Вывод

В ходе выполнения данной лабораторной работы я рассмотрел и реализовал методы интерполяции Ньютона и Гаусса для заданной таблицы данных. Интерполяция позволяет нам предсказывать значения функции в промежуточных точках на основе имеющихся данных.

С помощью разработанной программы были вычислены приближенные значения функции для заданных аргументов с использованием методов Ньютона и Гаусса. Было проведено сравнение результатов, полученных разными методами.

Результаты показали, что оба метода могут быть эффективно использованы для интерполяции, но их точность может зависеть от конкретной функции и распределения данных. Эта работа подчеркивает важность выбора подходящего метода интерполяции в соответствии с требованиями конкретной задачи.