LMS (Least Mean Square)

Minimize the cost function (error function):

$$E(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{p} \left(d^{(k)} - \sum_{l=1}^{m} w_{l} x_{l}^{(k)} \right)^{2} \frac{\partial E(\mathbf{w})}{\partial w_{j}} = -\sum_{k=1}^{p} \delta^{(k)} x_{j}^{(k)}$$

$$\frac{\partial E(\mathbf{w})}{\partial w_{j}} = -\sum_{k=1}^{p} \left(d^{(k)} - \sum_{l=1}^{m} w_{l} x_{l}^{(k)} \right) x_{j}^{(k)}$$

$$= -\sum_{k=1}^{p} \left(d^{(k)} - \mathbf{w}^{T} \mathbf{x}^{(k)} \right) x_{j}^{(k)} = -\sum_{k=1}^{p} \left(d^{(k)} - y^{(k)} \right) x_{j}^{(k)}$$

Adaline Learning Rule

Minimize the cost function (error function):

$$E(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{p} \left(d^{(k)} - \sum_{l=1}^{m} w_{l} x_{l}^{(k)} \right)^{2} \qquad \frac{\partial E(\mathbf{w})}{\partial w_{j}} = -\sum_{k=1}^{p} \delta^{(k)} x_{j}^{(k)}$$

$$\delta^{(k)} = d^{(k)} - y^{(k)}$$

$$\nabla_{w} E(\mathbf{w}) = \left(\frac{\partial E(\mathbf{w})}{\partial w_{1}}, \frac{\partial E(\mathbf{w})}{\partial w_{2}}, \dots, \frac{\partial E(\mathbf{w})}{\partial w_{m}} \right)^{T}$$

$$\Delta \mathbf{w} = - \eta \nabla_{\mathbf{w}} E(\mathbf{w})$$
 — Weight Modification Rule

Learning Modes

Batch Learning Mode:

$$\Delta w_j = \eta \sum_{k=1}^p \delta^{(k)} x_j^{(k)}$$

$$\frac{\partial E(\mathbf{w})}{\partial w_j} = -\sum_{k=1}^p \delta^{(k)} x_j^{(k)}$$

Incremental Learning Mode:

$$\delta^{(k)} = d^{(k)} - y^{(k)}$$

$$\Delta w_j = \eta \delta^{(k)} x_j^{(k)}$$

Summary – Adaline Learning Rule

δ-Learning Rule LMS Algorithm Widrow-Hoff Learning Rule

LMS Convergence

Based on the independence theory (Widrow, 1976).

- 1. The successive input vectors are statistically independent.
- 2. At time t, the input vector $\mathbf{x}(t)$ is statistically independent of all previous samples of the desired response, namely d(1), d(2), ..., d(t-1).
- At time t, the desired response d(t) is dependent on $\mathbf{x}(t)$, but statistically independent of all previous values of the desired response.
- The input vector $\mathbf{x}(t)$ and desired response d(t) are drawn from Gaussian distributed populations.

LMS Convergence

It can be shown that LMS is convergent if

$$0 < \eta < \frac{2}{\lambda_{\text{max}}}$$

where λ_{max} is the largest eigenvalue of the correlation matrix $\mathbf{R}_{\mathbf{x}}$ for the inputs.

$$\mathbf{R}_{\mathbf{x}} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{\infty} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

LMS Convergence

It can be shown that LMS is convergent if

$$0 < \eta < \frac{2}{\lambda_{\text{max}}}$$

Where λ_{max} is the largest eigenvalue of the correlation matrix R, for the inputs.

$$\mathbf{R}_{\mathbf{x}} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{\infty} \mathbf{x}_i \mathbf{x}_i^T$$
 Since λ_{max} is hardly available, we commonly use
$$0 < \eta < \frac{2}{tr(\mathbf{R}_{\mathbf{x}})}$$

$$0 < \eta < \frac{2}{tr(\mathbf{R}_{x})}$$

Comparisons

	Perceptron Learning Rule	Adaline Learning Rule (Widrow-Hoff)
Fundamental	Hebbian Assumption	Gradient Descent
Convergence	In finite steps	Converge Asymptotically
Constraint	Linearly Separable	Linear Independence

Feed-Forward Neural Networks

Learning Rules for Single-Layered Perceptron Networks

- Perceptron Learning Rule
- Adaline Leaning Rule
- δ-Learning Rule

Unipolar Sigmoid

Bipolar Sigmoid

Goal

Minimize

$$E(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{p} (\mathbf{d}^{(k)} - y^{(k)})^2$$

$$= \frac{1}{2} \sum_{k=1}^{p} \left[\mathbf{d}^{(k)} - a(\mathbf{w}^T \mathbf{x}^{(k)}) \right]^2$$

Gradient Descent Algorithm

$$\nabla_{w} E(\mathbf{w}) = \left(\frac{\partial E(\mathbf{w})}{\partial w_{1}}, \frac{\partial E(\mathbf{w})}{\partial w_{2}}, \dots, \frac{\partial E(\mathbf{w})}{\partial w_{m}}\right)^{T}$$

Minimize

$$E(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{p} (\mathbf{d}^{(k)} - y^{(k)})^2$$

$$= \frac{1}{2} \sum_{k=1}^{p} \left[d^{(k)} - a(\mathbf{w}^T \mathbf{x}^{(k)}) \right]^2$$

$$\Delta \mathbf{w} = -\eta \nabla_{\mathbf{w}} E(\mathbf{w})$$

The Gradient

$$\nabla_{w}E(\mathbf{w}) = \left(\frac{\partial E(\mathbf{w})}{\partial w_{1}}, \frac{\partial E(\mathbf{w})}{\partial w_{2}}, \dots, \frac{\partial E(\mathbf{w})}{\partial w_{m}}\right)^{T} \qquad \mathbf{y}^{(k)} = a\left(\mathbf{w}^{T}\mathbf{x}^{(k)}\right)$$
Minimize
$$E(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{p} \left(d^{(k)} - y^{(k)}\right)^{2}$$

$$\frac{\partial E(\mathbf{w})}{\partial w_{j}} = -\sum_{k=1}^{p} \left(d^{(k)} - y^{(k)}\right) \frac{\partial y^{(k)}}{\partial w_{j}}$$

$$= -\sum_{k=1}^{p} \left(d^{(k)} - y^{(k)}\right) \frac{\partial a\left(net^{(k)}\right)}{\partial net^{(k)}} \frac{\partial net^{(k)}}{\partial w_{j}}$$

$$\frac{\partial w_{j}}{\partial w_{j}}$$

$$net^{(k)} = \mathbf{w}^T \mathbf{x}^{(k)} = \sum_{i=1}^m w_i x_i^{(k)} \Rightarrow \frac{\partial net^{(k)}}{\partial w_i} = x_j^{(k)}$$

Weight Modification Rule

$$\nabla_{w} E(\mathbf{w}) = \left(\frac{\partial E(\mathbf{w})}{\partial w_{1}}, \frac{\partial E(\mathbf{w})}{\partial w_{2}}, \dots, \frac{\partial E(\mathbf{w})}{\partial w_{m}}\right)^{T}$$

$$y^{(k)} = a\left(net^{(k)}\right)$$

Minimize

$$E(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{p} (d^{(k)} - y^{(k)})^2 \qquad \delta^{(k)} = d^{(k)} - y^{(k)}$$

$$\delta^{(k)} = d^{(k)} - v^{(k)}$$

$$\frac{\partial E(\mathbf{w})}{\partial w_i} = -\sum_{k=1}^p \left(\frac{d^{(k)}}{d^{(k)}} - y^{(k)} \right) x_j^{(k)} \frac{\partial a(net^{(k)})}{\partial net^{(k)}}$$

Batch

$$\Delta w_{j} = \eta \sum_{k=1}^{p} \delta^{(k)} x_{j}^{(k)} \frac{\partial a(net^{(k)})}{\partial net^{(k)}}$$

Learning Rule

$$\Delta w_{j} = \eta \delta^{(k)} x_{j}^{(k)} \frac{\partial a(net^{(k)})}{\partial net^{(k)}}$$

The Learning Efficacy

$$\nabla_{w} E(\mathbf{w}) = \left(\frac{\partial E(\mathbf{w})}{\partial w_{1}}, \frac{\partial E(\mathbf{w})}{\partial w_{2}}, \dots, \frac{\partial E(\mathbf{w})}{\partial w_{m}}\right)^{T}$$

$$y^{(k)} = a\left(net^{(k)}\right)$$

$$y^{(k)} = a\left(net^{(k)}\right)$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{p} (\mathbf{d}^{(k)} - y^{(k)})^2$$

$$\frac{\partial E(\mathbf{w})}{\partial w_{i}} = -\sum_{k=1}^{p} \left(d^{(k)} - y^{(k)} \right) x_{j}^{(k)} \frac{\partial a(net^{(k)})}{\partial net^{(k)}}$$

Sigmoid

Adaline

$$a(net) = net$$

$$a(net) = \frac{1}{1 + e^{-\lambda net}}$$

$$a(net) = \frac{1}{1 + e^{-\lambda net}} \qquad a(net) = \frac{2}{1 + e^{-\lambda net}} - 1$$

$$\frac{\partial a(net)}{\partial net} = 1$$

$$\frac{\partial a(net)}{\partial net} = \lambda y^{(k)} (1 - y^{(k)})$$

Exercise

Comparisons

$$\lambda \mathcal{Y}^{(k)}(1-\mathcal{Y}^{(k)})$$

Adaline

Batch

$$\Delta w_j = \eta \sum_{k=1}^p \delta^{(k)} x_j^{(k)}$$

Incremental

$$\Delta w_j = \eta \delta^{(k)} x_j^{(k)}$$

Sigmoid

Batch

$$\Delta w_{j} = \eta \sum_{k=1}^{p} \delta^{(k)} x_{j}^{(k)} \lambda y^{(k)} (1 - y^{(k)})$$

$$\Delta w_j = \eta \delta^{(k)} x_j^{(k)} \lambda y^{(k)} (1 - y^{(k)})$$

$$\delta_{j}^{(l)} = \frac{\partial E^{(l)}}{\partial net_{j}^{(l)}} = -(d_{j}^{(l)} - o_{j}^{(l)})\lambda o_{j}^{(l)} (1 - o_{j}^{(l)})$$

$$E^{(l)} = \frac{1}{2} \sum_{j=1}^{n} \left[d_j^{(l)} - o_j^{(l)} \right]^2$$

$$E = \sum_{l=1}^{p} E^{(l)}$$

$$E = \sum_{l=1}^{p} E^{(l)}$$

$$o_j^{(l)} = a(net_j^{(l)})$$

$$o_j^{(l)} = a(net_j^{(l)})$$
 $net_j^{(l)} = \sum w_{ji}o_i^{(l)}$

$$d_1$$
 d_j
 d_n
 d_n
 d_j
 d_n

$$\frac{\partial E}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} \sum_{l=1}^{p} E^{(l)} = \sum_{l=1}^{p} \frac{\partial E^{(l)}}{\partial w_{ji}}$$

$$\frac{\partial E^{(l)}}{\partial w_{ji}} = \frac{\partial E^{(l)}}{\partial net_{j}^{(l)}} \frac{\partial net_{j}^{(l)}}{\partial w_{ji}}$$

$$\frac{\partial E^{(l)}}{\partial net_{j}^{(l)}} = \frac{\partial E^{(l)}}{\partial o_{j}^{(l)}} \frac{\partial o_{j}^{(l)}}{\partial net_{j}^{(l)}}$$

Using sigmoid,

$$-(d_{j}^{(l)}-o_{j}^{(l)})$$

$$\lambda o_j^{(l)} (1 - o_j^{(l)})$$

Learning on Output Neurons

$$E^{(l)} = \frac{1}{2} \sum_{j=1}^{n} \left[d_j^{(l)} - o_j^{(l)} \right]^2$$

$$E = \sum_{l=1}^{p} E^{(l)}$$

$$E = \sum_{l=1}^{p} E^{(l)}$$

$$o_j^{(l)} = a(net_j^{(l)})$$

$$\frac{\partial E}{\partial w_{ii}} = \frac{\partial}{\partial w_{ii}} \sum_{l=1}^{p} E^{(l)} = \sum_{l=1}^{p} \frac{\partial E^{(l)}}{\partial w_{ii}}$$

$$\frac{\partial E^{(l)}}{\partial w_{ji}} = \frac{\partial E^{(l)}}{\partial net_{j}^{(l)}} \frac{\partial net_{j}^{(l)}}{\partial w_{ji}}$$

$$\frac{\partial E^{(l)}}{\partial w_{ii}} = \delta_j^{(l)} o_i^{(l)}$$

$$= -(d_j^{(l)} - o_j^{(l)}) \lambda o_j^{(l)} (1 - o_j^{(l)}) o_i^{(l)}$$

Learning on Output Neurons

$$E^{(l)} = \frac{1}{2} \sum_{j=1}^{n} \left[d_j^{(l)} - o_j^{(l)} \right]^2$$

$$E = \sum_{l=1}^{p} E^{(l)}$$

$$E = \sum_{l=1}^{p} E^{(l)}$$

$$\frac{\partial E}{\partial w_{ji}} = \sum_{l=1}^{p} \delta_{j}^{(l)} o_{i}^{(l)}$$

$$\Delta w_{ji} = -\eta \sum_{l=1}^{p} \delta_j^{(l)} o_i^{(l)}$$

$$o_j^{(l)} = a(net_j^{(l)})$$

$$o_j^{(l)} = a(net_j^{(l)})$$
 $net_j^{(l)} = \sum w_{ji}o_i^{(l)}$

$$\partial E \qquad \partial \qquad \stackrel{p}{\sim} _{\mathbf{r}(l)} \qquad \stackrel{p}{\sim} \partial E^{(l)}$$

How to train the weights connecting to output neurons?

$$OW_{ji}$$
 $Onel_j$ OW_{ji} $O_i^{(l)}$

$$\frac{\partial E^{(l)}}{\partial w_{ii}} = \delta_j^{(l)} o_i^{(l)}$$

$$= -(d_j^{(l)} - o_j^{(l)}) \lambda o_j^{(l)} (1 - o_j^{(l)}) o_i^{(l)}$$

$$E^{(l)} = \frac{1}{2} \sum_{j=1}^{n} \left[d_j^{(l)} - o_j^{(l)} \right]^2$$

$$E = \sum_{l=1}^{p} E^{(l)}$$

$$E = \sum_{l=1}^{p} E^{(l)}$$

$$\frac{\partial E}{\partial w_{ik}} = \frac{\partial}{\partial w_{ik}} \sum_{l=1}^{p} E^{(l)} = \sum_{l=1}^{p} \frac{\partial E^{(l)}}{\partial w_{ik}}$$

$$\frac{\partial E^{(l)}}{\partial w_{ik}} = \frac{\partial E^{(l)}}{\partial net_i^{(l)}} \frac{\partial net_i^{(l)}}{\partial w_{ik}}$$

$$E^{(l)} = \frac{1}{2} \sum_{j=1}^{n} \left[d_j^{(l)} - o_j^{(l)} \right]^2$$

$$\frac{\partial E}{\partial w_{ik}} = \frac{\partial}{\partial w_{ik}} \sum_{l=1}^{p} E^{(l)} = \sum_{l=1}^{p} \frac{\partial E^{(l)}}{\partial w_{ik}}$$

$$\frac{\partial E^{(l)}}{\partial w_{ik}} = \frac{\partial E^{(l)}}{\partial net_i^{(l)}} \frac{\partial net_i^{(l)}}{\partial w_{ik}}$$

$$E^{(l)} = \frac{1}{2} \sum_{j=1}^{n} \left[d_j^{(l)} - o_j^{(l)} \right]^2$$

$$E = \sum_{l=1}^{p} E^{(l)}$$

$$\frac{\partial E^{(l)}}{\partial w_{ik}} = \frac{\partial E^{(l)}}{\partial net_i^{(l)}} \frac{\partial net_i^{(l)}}{\partial w_{ik}} \longrightarrow o_k^{(l)}$$

$$\frac{\partial E^{(l)}}{\partial net_i^{(l)}} = \frac{\partial E^{(l)}}{\partial o_i^{(l)}} \frac{\partial o_i^{(l)}}{\partial net_i^{(l)}}$$

$$\lambda o_i^{(l)} (1 - o_i^{(l)})$$

$$E^{(l)} = \frac{1}{2} \sum_{j=1}^{n} \left[d_j^{(l)} - o_j^{(l)} \right]^2$$

$$E = \sum_{l=1}^{p} E^{(l)}$$

$$\mathcal{S}_{i}^{(l)} = \frac{\partial E^{(l)}}{\partial net_{i}^{(l)}} = \lambda o_{i}^{(l)} (1 - o_{i}^{(l)}) \sum_{j} w_{ji} \mathcal{S}_{j}^{(l)}$$

$$\vdots$$

$$\vdots$$

$$\frac{\partial E}{\partial w_{ik}} = \frac{\partial}{\partial w_{ik}} \sum_{l=1}^{p} E^{(l)} \sum_{l=1}^{OE} \frac{\partial E}{\partial w_{ik}}$$

$$\frac{\partial E^{(l)}}{\partial w_{ik}} = \frac{\partial E^{(l)}}{\partial net_i^{(l)}} \frac{\partial net_i^{(l)}}{\partial w_{ik}} \longrightarrow o_k^{(l)}$$

$$\frac{\partial E^{(l)}}{\partial net_i^{(l)}} = \frac{\partial E^{(l)}}{\partial o_i^{(l)}} \frac{\partial o_i^{(l)}}{\partial net_i^{(l)}}$$

$$\frac{\partial E^{(l)}}{\partial o_i^{(l)}} = \sum_{j} \frac{\partial E^{(l)}}{\partial net_j^{(l)}} \frac{\partial net_j^{(l)}}{\partial o_i^{(l)}}$$

$$\delta_i^{(l)}$$
 w_{ji}

$$E^{(l)} = \frac{1}{2} \sum_{j=1}^{n} \left[d_j^{(l)} - o_j^{(l)} \right]^2$$

$$E = \sum_{l=1}^{p} E^{(l)}$$

$$E = \sum_{l=1}^{p} E^{(l)}$$

$$\delta_{i}^{(l)} = \frac{\partial E^{(l)}}{\partial net_{i}^{(l)}} = \lambda o_{i}^{(l)} (1 - o_{i}^{(l)}) \sum_{j} w_{ji} \delta_{j}^{(l)}$$

$$w_{ji}$$

$$\frac{\partial E}{\partial w_{ik}} = \frac{\partial}{\partial w_{ik}} \sum_{l=1}^{p} E^{(l)} = \sum_{l=1}^{p} \frac{\partial E^{(l)}}{\partial w_{ik}}$$

$$\frac{\partial E^{(l)}}{\partial w_{ik}} = \frac{\partial E^{(l)}}{\partial net_i^{(l)}} \frac{\partial net_i^{(l)}}{\partial w_{ik}} \longrightarrow o_k^{(l)}$$

$$\frac{\partial E}{\partial w_{ik}} = \sum_{l=1}^{p} \delta_i^{(l)} o_k^{(l)}$$

$$\Delta w_{ik} = -\eta \sum_{l=1}^{p} \delta_i^{(l)} o_k^{(l)}$$

Back Propagation

Back Propagation
$$\delta_{j}^{(l)} = \frac{\partial E^{(l)}}{\partial net_{j}^{(l)}} = -\lambda (d_{j}^{(l)} - o_{j}^{(l)}) o_{j}^{(l)} (1 - o_{j}^{(l)})$$

$$\Delta w_{ji} = -\eta \sum_{l=1}^{p} \delta_{j}^{(l)} o_{i}^{(l)}$$

Back Propagation
$$\delta_{j}^{(l)} = \frac{\partial E^{(l)}}{\partial net_{j}^{(l)}} = -\lambda (d_{j}^{(l)} - o_{j}^{(l)}) o_{j}^{(l)} (1 - o_{j}^{(l)})$$

$$\Delta w_{ji} = -\eta \sum_{l=1}^{p} \delta_{j}^{(l)} o_{i}^{(l)}$$

$$\Delta w_{ik} = -\eta \sum_{l=1}^{p} \delta_i^{(l)} o_k^{(l)}$$

$$X_1 \quad \cdots \quad X_m$$

$$\delta_i^{(l)} = \frac{\partial E^{(l)}}{\partial net_i^{(l)}} = \lambda o_i^{(l)} (1 - o_i^{(l)}) \sum_j w_{ji} \delta_j^{(l)}$$

Learning Factors

- Initial Weights
- Learning Constant (η)
- Cost Functions
- Momentum
- Update Rules
- Training Data and Generalization
- Number of Layers
- · Number of Hidden Nodes

Reading Assignments

- Shi Zhong and Vladimir Cherkassky, "<u>Factors Controlling Generalization Ability of MLP Networks.</u>" In Proc. IEEE Int. Joint Conf. on Neural Networks, vol. 1, pp. 625-630, Washington DC. July 1999. (http://www.cse.fau.edu/~zhong/pubs.htm)
- Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986b). "Learning Internal Representations by Error Propagation," in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. I, D. E. Rumelhart, J. L. McClelland, and the PDP Research Group. MIT Press, Cambridge (1986).

(http://www.cnbc.cmu.edu/~plaut/85-419/papers/RumelhartETAL86.backprop.pdf).