

VOGUE

- Monthly magazine covering the beauty and fashion industries:
 - o Both are multi-billion dollar industries in the US alone
- 127 years of covering these topics
- Vogue Archive goes back to first issue (1892)
- Strong presence in the fashion industry with tons of data to explore

OBJECTIVE

Pull and analyze color in Vogue cover images to identify any trends

AGENDA

- 1. Data Collection (Web-scraping Vogue's Archive)
- 2. Data Processing
- 3. OpenCV (Extracting Color from an image with OpenCV and KMeans)
- 4. Model (Binary Classification Predicting Editor in Chief)
- 5. Conclusions
- 6. Next Steps

DATA COLLECTION 2,078 images

- Vogue Archive
- Beautiful Soup
- Pandas DataFrame
- Download images

DATA PROCESSING: COLOR TO DATAFRAME

array([[131,	131,	120],
[164,	153,	126],
[102,	83,	52],
,		
[160,	143,	134],
[155,	147,	143],
[79,	82,	41]])

	r7	g7	b7
1059	164	100	94
1060	144	71	54
1061	188	173	139
1062	85	70	62
1063	86	77	76

STEP 1

Image

STEP 2

OpenCV

STEP 3

RGB Array

STEP 4

DataFrame

OPEN CV

- 1. Open Source Computer Vision
- 2. Uses Numpy to extract RGB values in an image
 - a. OpenCV extracts color from the reverse order, BGR
 - b. You need to re-order so that you are not looking at BGR Meryl Streep

Feature	Description
AME	Datetime format of the cover's publication date
Month	Month of the cover's publication date
Year	Year of the cover's publication date
Name	.jpg name of the cover's image
f#	frequency (in pixels) of an RBG value in a cover's image
r#	value of R (red) in an RBG value
g#	value of G (green) in an RBG value
b#	value of B (blue) in an RBG value
color#	the RBG array of r#, g#, b#
xkcd#	the xkcd study color name that most closely matches the color#
distance#	the distance between the xkcd# RBG array and the color# RBG array

BINARY CLASSIFICATION MODEL

- 1950's to present
- Predicting whether Anna Wintour was Editor in Chief for a given cover
- Features: colors (dummy variables)
- Logistic, Random Forest, and Bayes
- Baseline accuracy: 62%
- Train score: ~80.9%
- Test score: ~72.5%

CONFUSION MATRIX

	Actual Positive	Actual Negative
Predicted Positive	50	23
Predicted Negative	61	172

- Model ran better than the baseline
- There are trends worth exploring
- OpenCV less computationally taxing compared to a Convolutional Neural Network
- Exploring Color and Sales

CONCLUSIONS

NEXT STEPS

- 1. Develop a time series
- 2. Identify whether there are any trends in seasons and/or decades
- 3. Create a multi-classification model for seasons and or/decades
- 4. Create a KMeans Clustering model to identify any other potential trends

SOURCES

https://www.mckinsey.com/industries/retail/our-insights/the-state-of-fashion

https://www.reuters.com/brandfeatures/venture-capital/article?id=30351

https://blog.xkcd.com/2010/05/03/color-survey-results/

https://frankturnerv.com/portfolio/fashion-models-from-fashion-models/

https://towardsdatascience.com/color-identification-in-images-machine-learning-application-b26e770c4c71

https://scikit-image.org/docs/dev/auto_examples/transform/plot_histogram_matching.html#sphx-glr-auto-examples-transform/plot-histogram-matching-py

https://www.pyimagesearch.com/2014/08/04/opencv-python-color-detection/

