$$H_1$$

Homework I

Prof. Dr. P. Tang, CS 3482: Comp. Org. I

Connor Taffe, T no. 3742

August 25, 2015

1 Details of Homework 1

Q. 1 Prove the following

$$(xy)' = x' + y' \tag{1}$$

\boldsymbol{x}	y	xy	(xy)'	x'	y'	x' + y'
0	0	0	1	1	1	1
0	1	0	1	1	1	0
1	0	0	1	1	0	1
1	1	1	1 1 1 0	0	0	0

Q. 2 Prove the following

$$(x+y)' = x'y' \tag{2}$$

\boldsymbol{x}	y	x+y	(x+y)'	x'	y'	x'y'
1	0	1	0	0	1	0
1	1	1	0	0	0	0
0	0	0	1	1	1	1
0	1	1	0	1	0	0

Q. 3 Prove the following

$$a + bc = (a+b)(a+c) \tag{3}$$

a	b	c	bc	a + bc	a + b	a + c	(a+b)(a+c)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1