Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference Migrate-n version 3.7.2 [April-12-18]

Program started at Tue Jun 1 13:45:41 2021 Program finished at Tue Jun 1 18:05:46 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 2044896875

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	*	*	0	0	0	0	0	0	0	0	0	0
2 Bamfiel	*	*	*	0	0	0	0	0	0	0	0	0
3 PortRen	0	*	*	*	0	0	0	0	0	0	0	0
4 WalkOnB	0	0	*	*	*	0	0	0	0	0	0	0
5 BodegaH	0	0	0	*	*	*	0	0	0	0	0	0
6 Davenpo	0	0	0	0	*	*	*	0	0	0	0	0
7 VistaDe	0	0	0	0	0	*	*	*	0	0	0	0
8 HazardR	0	0	0	0	0	0	*	*	*	0	0	0
9 Refugio	0	0	0	0	0	0	0	*	*	*	0	0
10 Carpint	0	0	0	0	0	0	0	0	*	*	*	0

44 White De											*	*	*		\neg
11 WhitePo		0	0	0	0	0	0	0	0	0		*	*		
12 LaJolla	(0	0	0	0	0	0	0	0	0	0	•	•		
Order of param															
1	Θ_1								-	-					
2	Θ_2									yed:					
3	Θ_3^2									yed:					
4	Θ_4^{J}									yed:					
5	Θ_5^{T}									yed:					
6	Θ_6									yed:					
7	Θ_7°									yed:					
8	Θ_8									yed:					
9	Θ_9									yed:					
10	Θ_{10}									yed:					
11	Θ_{11}									yed:					
12	Θ_{12}^{11}									yed:					
13	M 2->	1								yed:					
24	M 1->	-2								yed:					
25	M 3->	-2								yed:					
36	M _{2->}	-3								yed:					
37	M ₂ >	>3								yed:					
48 49	N/I									yed:					
60	N/I									yed: yed:					
61	4->									iyed: iyed:					
72	N //									iyed: iyed:					
73	N/I									yed:					
84	/->									yed:					
85	N / O->									yed:					
96	0->								-	yed:					
97	/->								-	yed:					
108	M _{8->}								-	yed:					
109	M ₁₀₋									yed:					
120	$M_{9->}^{10-}$								-	yed:					
121	M ₁₁₋		١						-	yed:					
132	M 10-								-	yed:					
133	M ₁₂₋								-	yed:					
144	M 11-							<0	ispla	yed:	>				
	11-	/12	,						-						
Mutation rate an	nong loci:													Mutation rate is constar	nt
Analysis strateg	Analysis strategy: Bayesian infer					се									
•															-

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Slice sampling

Prior distribution for parameter

Parameter Prior Delta Bins Minimum Mean* Maximum Theta Exp window 0.000010 0.010000 10.000000 1.000000 500 0.000100 100000.000000 1000000.000000 100000.000000 Μ Exp window 500

Markov chain settings: Long chain

Number of chains 1

Recorded steps [a]1000Increment (record every x step [b]100Number of concurrent chains (replicates) [c]3Visited (sampled) parameter values [a*b*c]300000Number of discard trees per chain (burn-in)1000

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

100000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: ../../mcalifornianus_210528.mig

Output file:

Posterior distribution raw histogram file:

Print data:

outfile.txt
bayesfile

No

Print genealogies [only some for some data type]:

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies
1 ElfinCo	1	19
2 Bamfiel	1	23
3 PortRen	1	15
4 WalkOnB	1	16
5 BodegaH	1	7
6 Davenpo	1	17
7 VistaDe	1	19
8 HazardR	1	23
9 Refugio	1	16
10 Carpint	1	19
11 WhitePo	1	11
12 LaJolla	1	8
Total of all populations	1	193

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.08001	0.18001	0.09001	0.03284
1	Θ_2	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01977
1	Θ_3	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01811
1	Θ_4	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01952
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01593
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01190
1	Θ_{7}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01590
1	Θ_8	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.03096
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01830
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.02027
1	Θ_{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01273
1	Θ_{12}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01105
1	M _{2->1}	6000.0	40000.0	53000.0	66000.0	70000.0	49000.0	42784.7
1	M _{1->2}	0.0	0.0008	29000.0	48000.0	60000.0	45000.0	62004.9
1	$M_{3->2}$	0.0	0.0	7000.0	24000.0	52000.0	41000.0	43234.5
1	$M_{2->3}$	0.0	0.0	1000.0	14000.0	18000.0	77000.0	77029.4
1	$M_{4->3}$	0.0	6000.0	19000.0	32000.0	40000.0	29000.0	52827.9
1	$M_{3->4}$	0.0008	18000.0	27000.0	36000.0	46000.0	29000.0	27726.2
1	$M_{5->4}$	6000.0	44000.0	57000.0	72000.0	0.00088	53000.0	48783.5
1	$M_{4->5}$	34000.0	44000.0	57000.0	96000.0	162000.0	89000.0	92590.9
1	$M_{6->5}$	82000.0	94000.0	115000.0	140000.0	162000.0	137000.0	148253.0
1	$M_{5->6}$	6000.0	18000.0	35000.0	48000.0	66000.0	49000.0	55890.0
1	M _{7->6}	0.0	6000.0	19000.0	32000.0	38000.0	29000.0	33105.8
1	M _{6->7}	2000.0	26000.0	43000.0	52000.0	64000.0	39000.0	35427.6
1	M _{8->7}	4000.0	16000.0	29000.0	40000.0	78000.0	43000.0	42116.7
1	M _{7->8}	0.0	12000.0	23000.0	34000.0	48000.0	27000.0	23458.2
1	M _{9->8}	0.0	10000.0	27000.0	42000.0	54000.0	39000.0	46984.6
1	$M_{8->9}$	56000.0	72000.0	85000.0	94000.0	110000.0	87000.0	85085.5
1	M _{10->9}	42000.0	52000.0	63000.0	0.00008	160000.0	95000.0	99092.6
1	M _{9->10}	18000.0	26000.0	35000.0	44000.0	116000.0	69000.0	67021.9
1	M _{11->10}	0.0	2000.0	17000.0	30000.0	68000.0	27000.0	29569.4
1	M _{10->11}	0.0	0.0	1000.0	16000.0	18000.0	43000.0	47633.8
1	M _{12->11}	84000.0	106000.0	123000.0	136000.0	174000.0	113000.0	96920.6
1	M _{11->12}	0.0	6000.0	21000.0	32000.0	38000.0	75000.0	72417.2

Citation suggestions:

 Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345 Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968. Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 13:45:41]

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2207.743135	(1a)
	-2131.648985	(1b)
Harmonic mean	-1868.169242	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	773/4352	0.17762
Θ_2	1079/4295	0.25122
Θ_3^-	1404/4356	0.32231
Θ_{Δ}	1640/4501	0.36436
05	2367/4441	0.53299
06	1078/4346	0.24804
) ₇	868/4488	0.19340
) ₈	603/4384	0.13755
) _Q	1695/4411	0.38427
)10	1335/4540	0.29405
) ₁₁	1951/4502	0.43336
12	1622/4371	0.37108
1 2->1	4407/4407	1.00000
1 1->2	4528/4528	1.00000
1 3->2	4375/4375	1.00000
1 2->3	4348/4348	1.00000
1 4->3	4547/4547	1.00000
1 3->4	4575/4575	1.00000
1 5->4	4312/4312	1.00000
1 4->5	4553/4553	1.00000
1 6->5	4435/4435	1.00000
1 5->6	4402/4402	1.00000
1 7->6	4464/4464	1.00000
1 6->7	4368/4368	1.00000
1 8->7	4408/4408	1.00000
1 _{7->8}	4390/4390	1.00000
1 9->8	4347/4347	1.00000
1 8->9	4469/4469	1.00000
1 10->9	4473/4473	1.00000
1 _{9->10}	4391/4391	1.00000
11->10	4426/4426	1.00000
10->11	4327/4327	1.00000
10->11	4354/4354	1.00000
11->12	4387/4387	1.00000
Genealogies	37127/149727	0.24796

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.86983	213.73
Θ_2	0.85933	233.17
Θ_3^-	0.73725	507.71
Θ_A	0.72036	502.45
9_5^{7}	0.52794	982.49
) ₆	0.81424	321.28
) ₇	0.85761	243.58
) ₈	0.89656	165.80
) _o	0.68024	603.82
) ₁₀	0.77708	385.49
) ₁₁	0.65329	631.32
12	0.71881	538.90
M ¹² _{2->1}	0.70046	530.43
1 1->2	0.76788	396.43
$M_{3->2}$	0.72207	487.05
$M_{2->3}^{3->2}$	0.78824	382.87
1 4->3	0.86263	223.89
1 3->4	0.65243	635.85
1 5->4	0.80214	335.76
1 4->5	0.78364	368.24
1 6->5	0.78026	373.56
1 5->6	0.75252	434.60
1 7->6	0.77509	389.01
1 6->7	0.75683	416.82
1 8->7	0.78721	363.82
1 7->8	0.76313	413.02
Λ	0.77136	387.82
1 _{9->8} 1 _{8->9}	0.66661	630.07
8->9 1	0.75682	422.56
10->9 1 _{9->10}	0.76804	398.33
9->10 1	0.85648	234.24
11->10 1	0.81261	313.35
10->11 1	0.86077	228.13
// 12->11 // _{11->12}	0.82150	300.24
11->12	0.98865	17.11

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very

informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run