Смешанно-целочисленное программирование

Виктор Васильевич Лепин

- Задача смешанно-целочисленного программирования (СЦП) есть следующая оптимизационная задача: $\max\{c^Tx:b^1\leq Ax\leq b^2,d^1\leq x\leq d^2,\ x_j\in\mathbb{Z}\ для\ j\in S\},$ где
 - $b^1, b^2 \in \mathbb{R}^m$,

- Задача смешанно-целочисленного программирования (СЦП) есть следующая оптимизационная задача: $\max\{c^Tx:b^1\leq Ax\leq b^2,d^1\leq x\leq d^2,\ x_j\in\mathbb{Z}\ для\ j\in S\},$ где
 - $b^1, b^2 \in \mathbb{R}^m$,
 - $\bullet \ c, d^1, d^2 \in \mathbb{R}^n,$

- Задача смешанно-целочисленного программирования (СЦП) есть следующая оптимизационная задача: $\max\{c^Tx:b^1\leq Ax\leq b^2,d^1\leq x\leq d^2,\ x_j\in\mathbb{Z}\ для\ j\in S\},$ где
 - b^1 , $b^2 \in \mathbb{R}^m$,
 - $c, d^1, d^2 \in \mathbb{R}^n$,
 - A действительная $m \times n$ -матрица,

- Задача смешанно-целочисленного программирования (СЦП) есть следующая оптимизационная задача: $\max\{c^Tx:b^1\leq Ax\leq b^2,d^1\leq x\leq d^2,\ x_j\in\mathbb{Z}\ для\ j\in S\},$ где
 - b^1 , $b^2 \in \mathbb{R}^m$,
 - $c, d^1, d^2 \in \mathbb{R}^n$,
 - A действительная $m \times n$ -матрица,
 - \bullet x-n-вектор переменных (неизвестных),

- Задача смешанно-целочисленного программирования (СЦП) есть следующая оптимизационная задача: $\max\{c^Tx:b^1\leq Ax\leq b^2,d^1\leq x\leq d^2,\ x_j\in\mathbb{Z}\ для\ j\in S\},$ где
 - b^1 , $b^2 \in \mathbb{R}^m$,
 - $c, d^1, d^2 \in \mathbb{R}^n$,
 - A действительная $m \times n$ -матрица,
 - \bullet x-n-вектор переменных (неизвестных),
 - а $S \subseteq \{1, \dots, n\}$ есть множество целочисленных переменных.

- Задача смешанно-целочисленного программирования (СЦП) есть следующая оптимизационная задача: $\max\{c^Tx:b^1\leq Ax\leq b^2,d^1\leq x\leq d^2,\ x_j\in\mathbb{Z}\ для\ j\in S\},$ где
 - b^1 , $b^2 \in \mathbb{R}^m$,
 - $c, d^1, d^2 \in \mathbb{R}^n$,
 - A действительная $m \times n$ -матрица,
 - x n-вектор переменных (неизвестных),
 - а $S \subseteq \{1, \dots, n\}$ есть множество целочисленных переменных.
- В задаче целочисленного программирования (ЦП) все переменные целочисленны (|S|=n).

• Задача СЦП отличается от задачи линейного программирования (ЛП) тем,

- Задача СЦП отличается от задачи линейного программирования (ЛП) тем,
- что некоторые переменные могут принимать значения из дискретного множества.

- Задача СЦП отличается от задачи линейного программирования (ЛП) тем,
- что некоторые переменные могут принимать значения из дискретного множества.
- Это отличие делает задачу СЦП
 - существенно более полезной на практике,

- Задача СЦП отличается от задачи линейного программирования (ЛП) тем,
- что некоторые переменные могут принимать значения из дискретного множества.
- Это отличие делает задачу СЦП
 - существенно более полезной на практике,
 - но существенно сложнее с алгоритмической точки зрения.

- Задача СЦП отличается от задачи линейного программирования (ЛП) тем,
- что некоторые переменные могут принимать значения из дискретного множества.
- Это отличие делает задачу СЦП
 - существенно более полезной на практике,
 - но существенно сложнее с алгоритмической точки зрения.
- Можно сказать, что задача СЦП это одна из самых трудных задач математического программирования.

- Задача СЦП отличается от задачи линейного программирования (ЛП) тем,
- что некоторые переменные могут принимать значения из дискретного множества.
- Это отличие делает задачу СЦП
 - существенно более полезной на практике,
 - но существенно сложнее с алгоритмической точки зрения.
- Можно сказать, что задача СЦП это одна из самых трудных задач математического программирования.
- И это неудивительно, поскольку даже самые трудные комбинаторные задачи очень просто формулируются как задачи СЦП.

- Задача СЦП отличается от задачи линейного программирования $(\Pi\Pi)$ тем,
- что некоторые переменные могут принимать значения из дискретного множества.
- Это отличие делает задачу СЦП
 - существенно более полезной на практике,
 - но существенно сложнее с алгоритмической точки зрения.
- Можно сказать, что задача СЦП это одна из самых трудных задач математического программирования.
- И это неудивительно, поскольку даже самые трудные комбинаторные задачи очень просто формулируются как задачи СЦП.
- Одно из самых распространенных применений СЦП в повседневной жизни касается эффективного использования ограниченных ресурсов.

• Одно из главных ограничений по применению линейного программирования для решения задач производственного планирования — это невозможность учесть фиксированные издержки.

- Одно из главных ограничений по применению линейного программирования для решения задач производственного планирования это невозможность учесть фиксированные издержки.
- В моделях СЦП учет фиксированных издержек осуществляется просто.

Функция стоимости с фиксированными доплатами имеет вид $c(x) = \left\{ \begin{array}{ll} ax + b, & \text{если } 0 < l \leq x \leq u, \\ 0, & \text{если } x = 0, \end{array} \right.$ где

Функция стоимости с фиксированными доплатами имеет вид $c(x) = \left\{ \begin{array}{ll} ax + b, & \text{если } 0 < l \leq x \leq u, \\ 0, & \text{если } x = 0, \end{array} \right.$ где

- а переменные издержки,
- b постоянные издержки.

Функция стоимости с фиксированными доплатами имеет вид

$$c(x) = \left\{ \begin{array}{ll} ax+b, & \text{если } 0 < l \leq x \leq u, \\ 0, & \text{если } x = 0, \end{array} \right.$$
где

- a переменные издержки,
- b постоянные издержки.

• Если ввести бинарную переменную y, которая принимает одно из двух значений 0 или 1,

Функция стоимости с фиксированными доплатами имеет вид

$$c(x) = \left\{ \begin{array}{ll} ax+b, & \text{если } 0 < l \leq x \leq u, \\ 0, & \text{если } x = 0, \end{array} \right.$$
где

• b — постоянные издержки.

ullet и добавить неравенства $ly \le x \le uy$,

Функция стоимости с фиксированными доплатами имеет вид

$$c(x) = \left\{ \begin{array}{ll} ax + b, & \text{если } 0 < l \leq x \leq u, \\ 0, & \text{если } x = 0, \end{array} \right.$$
где

• b — постоянные издержки.

Ее график представлен на рис. справа.

- Если ввести бинарную переменную y, которая принимает одно из двух значений 0 или 1,
- ullet и добавить неравенства $ly \le x \le uy$,
- то функцию c(x) можно преобразовать в линейную c(x,y) = ax + by.

• Дискретная переменная x может принимать только конечное число значений v_1, \ldots, v_k .

- Дискретная переменная x может принимать только конечное число значений v_1, \ldots, v_k .
- Например, в задаче проектирования автомобиля объем двигателя x может принимать, скажем, одно из четырех значений: 1.4, 1.6, 1.9 и 2.0 литра.

- Дискретная переменная x может принимать только конечное число значений v_1, \ldots, v_k .
- Например, в задаче проектирования автомобиля объем двигателя x может принимать, скажем, одно из четырех значений: 1.4, 1.6, 1.9 и 2.0 литра.
- Дискретную переменную *х* можно представить как обычную непрерывную переменную,
 - вводя бинарные переменные y_1, \ldots, y_k

- Дискретная переменная x может принимать только конечное число значений v_1, \ldots, v_k .
- Например, в задаче проектирования автомобиля объем двигателя x может принимать, скажем, одно из четырех значений: 1.4, 1.6, 1.9 и 2.0 литра.
- Дискретную переменную x можно представить как обычную непрерывную переменную,
 - вводя бинарные переменные y_1, \ldots, y_k
 - и записывая ограничения

$$x - v_1 y_1 - v_2 y_2 - \dots - v_k y_k = 0,$$

 $y_1 + y_2 + \dots + y_k = 1,$
 $y_i \in \mathbb{Z}_+, i = 1, \dots, k.$

- Нелинейная функция y = f(x) задана на отрезке [a, b].
- Выберем разбиение $a = \bar{x}_1 < \bar{x}_2 < \dots < \bar{x}_r = b$ отрезка [a,b].
- Соединяя соседние точки $(\bar{x}_k, \bar{y}_k = f(\bar{x}_k))$ и $(\bar{x}_{k+1}, \bar{y}_{k+1} = f(\bar{x}_{k+1}))$ отрезками прямых,
- мы получим кусочно-линейную аппроксимацию $\hat{f}(x)$ функции f(x).

- Нелинейная функция y = f(x) задана на отрезке [a, b].
- Выберем разбиение $a = \bar{x}_1 < \bar{x}_2 < \dots < \bar{x}_r = b$ отрезка [a,b].
- Соединяя соседние точки $(\bar{x}_k, \bar{y}_k = f(\bar{x}_k))$ и $(\bar{x}_{k+1}, \bar{y}_{k+1} = f(\bar{x}_{k+1}))$ отрезками прямых,
- мы получим кусочно-линейную аппроксимацию $\tilde{f}(x)$ функции f(x).

- Нелинейная функция y = f(x) задана на отрезке [a, b].
- Выберем разбиение $a = \bar{x}_1 < \bar{x}_2 < \dots < \bar{x}_r = b$ отрезка [a,b].
- Соединяя соседние точки $(\bar{x}_k, \bar{y}_k = f(\bar{x}_k))$ и $(\bar{x}_{k+1}, \bar{y}_{k+1} = f(\bar{x}_{k+1}))$ отрезками прямых,
- ullet мы получим кусочно-линейную аппроксимацию $\tilde{f}(x)$ функции f(x).

$$0 \le \lambda_k \le \delta_k, \, \delta_k \in \{0, 1\}, \, k = 1, \dots, r,$$

$$0 \le \lambda_k \le \delta_k, \, \delta_k \in \{0, 1\}, \, k = 1, \dots, r, \\ \delta_i + \delta_j \le 1, \, j = 3, \dots, r; \, i = 1, \dots, j - 2,$$

$$0 \le \lambda_k \le \delta_k, \, \delta_k \in \{0, 1\}, \, k = 1, \dots, r, \\ \delta_i + \delta_j \le 1, \, j = 3, \dots, r; \, i = 1, \dots, j - 2, \\ x = \sum_{k=1}^r \lambda_k \bar{x}_k, \qquad y = \sum_{k=1}^r \lambda_k \bar{y}_k, \qquad \sum_{k=1}^r \lambda_k = 1.$$

То, что точка $(x,y)^T$ лежит на графике функции \tilde{f} , выражается следующей системой ограничений:

$$0 \le \lambda_k \le \delta_k, \, \delta_k \in \{0, 1\}, \, k = 1, \dots, r, \\ \delta_i + \delta_j \le 1, \, j = 3, \dots, r; \, i = 1, \dots, j - 2, \\ x = \sum_{k=1}^r \lambda_k \bar{x}_k, \qquad y = \sum_{k=1}^r \lambda_k \bar{y}_k, \qquad \sum_{k=1}^r \lambda_k = 1.$$

• Первые две группы ограничений означают, что среди чисел $\lambda_1, \ldots, \lambda_r$ не более двух ненулевых, причем, если два числа λ_{j_1} и λ_{j_2} ненулевые, то они соседние, т. е. $|j_1 - j_2| = 1$.

$$0 \le \lambda_k \le \delta_k, \, \delta_k \in \{0, 1\}, \, k = 1, \dots, r, \delta_i + \delta_j \le 1, \, j = 3, \dots, r; \, i = 1, \dots, j - 2, x = \sum_{k=1}^r \lambda_k \bar{x}_k, \qquad y = \sum_{k=1}^r \lambda_k \bar{y}_k, \qquad \sum_{k=1}^r \lambda_k = 1.$$

- Первые две группы ограничений означают, что среди чисел $\lambda_1, \ldots, \lambda_r$ не более двух ненулевых, причем, если два числа λ_{j_1} и λ_{j_2} ненулевые, то они соседние, т. е. $|j_1-j_2|=1$.
- Следующие три равенства означают, что точка $(x,y)^T$ принадлежит выпуклой оболочке точек $(\bar{x}_k, f(\bar{x}_k))^T$, $k=1,\ldots,r$.

$$0 \le \lambda_k \le \delta_k, \, \delta_k \in \{0, 1\}, \, k = 1, \dots, r, \delta_i + \delta_j \le 1, \, j = 3, \dots, r; \, i = 1, \dots, j - 2, x = \sum_{k=1}^r \lambda_k \bar{x}_k, \qquad y = \sum_{k=1}^r \lambda_k \bar{y}_k, \qquad \sum_{k=1}^r \lambda_k = 1.$$

- Первые две группы ограничений означают, что среди чисел $\lambda_1, \ldots, \lambda_r$ не более двух ненулевых, причем, если два числа λ_{j_1} и λ_{j_2} ненулевые, то они соседние, т. е. $|j_1-j_2|=1$.
- Следующие три равенства означают, что точка $(x,y)^T$ принадлежит выпуклой оболочке точек $(\bar{x}_k, f(\bar{x}_k))^T$, $k=1,\ldots,r$.
- Все условия вместе гарантируют, что точка $(x,y)^T$ лежит на графике функции $\tilde{f}(x)$.

Булевы переменные и формулы

• Формально мы записываем логические условия с помощью булевых переменных и формул.

- Формально мы записываем логические условия с помощью булевых переменных и формул.
- *Булева переменная* может принимать только два значения: **истина** и **ложь**.

- Формально мы записываем логические условия с помощью булевых переменных и формул.
- *Булева переменная* может принимать только два значения: **истина** и **ложь**.
- Из булевых переменных с помощью бинарных логических операций ∨ (или), ∧ (и)

- Формально мы записываем логические условия с помощью булевых переменных и формул.
- *Булева переменная* может принимать только два значения: **истина** и **ложь**.
- Из булевых переменных с помощью бинарных логических операций ∨ (или), ∧ (и)
- и унарной операции $\neg (\neg x \text{ означает не } x)$

- Формально мы записываем логические условия с помощью булевых переменных и формул.
- *Булева переменная* может принимать только два значения: **истина** и **ложь**.
- Из булевых переменных с помощью бинарных логических операций ∨ (или), ∧ (и)
- и унарной операции $\neg (\neg x \text{ означает не } x)$
- можно образовывать *булевы формулы* почти так же, как из действительных переменных с помощью арифметических операций можно образовывать алгебраические выражения.

- Формально мы записываем логические условия с помощью булевых переменных и формул.
- *Булева переменная* может принимать только два значения: **истина** и **ложь**.
- Из булевых переменных с помощью бинарных логических операций ∨ (или), ∧ (и)
- и унарной операции $\neg (\neg x \text{ означает не } x)$
- можно образовывать *булевы формулы* почти так же, как из действительных переменных с помощью арифметических операций можно образовывать алгебраические выражения.
- Например, $(x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_3)$ есть булева формула.

Таблицы истинности логических операций

• Логическая операция ¬

х	$\neg x$	
ложь	истина	
истина	ложь	

• Логические операции ∧ и ∨

x_1	x_2	$x_1 \wedge x_2$	$x_1 \vee x_2$
ложь	ложь	ложь	ложь
истина	ложь	ложь	истина
ложь	истина	ложь	истина
истина	истина	истина	истина

• Подставляя значения для булевых переменных, мы можем вычислить значение булевой формулы.

- Подставляя значения для булевых переменных, мы можем вычислить значение булевой формулы.
- Например, для набора истинности $(x_1, x_2, x_3) = ($ истина,ложь,ложь)

- Подставляя значения для булевых переменных, мы можем вычислить значение булевой формулы.
- Например, для набора истинности $(x_1, x_2, x_3) = ($ истина,ложь,ложь)
- булева формула $(x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_3)$

- Подставляя значения для булевых переменных, мы можем вычислить значение булевой формулы.
- Например, для набора истинности $(x_1, x_2, x_3) = ($ истина,ложь,ложь)
- ullet булева формула $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3)$
- принимает значение (истина∨¬ложь)∧(¬истина∨ложь) = истина∧ложь = ложь.

Конъюнктивная нормальная форма (КНФ)

• Любую булеву формулу n булевых переменных можно представить в виде конъюнктивной нормальной формы (КНФ):

$$\bigwedge_{i=1}^{m} \left(\bigvee_{j \in S_i} x_j^{\sigma_j^i} \right),$$

Конъюнктивная нормальная форма (КНФ)

 Любую булеву формулу п булевых переменных можно представить в виде конъюнктивной нормальной формы (КНФ):

$$\bigwedge_{i=1}^{m} \left(\bigvee_{j \in S_i} x_j^{\sigma_j^i} \right),$$

ullet где $S_i\subseteq\{1,\ldots,n\}\;(i=1,\ldots,m)$ и все $\sigma_i\in\{0,1\}.$

Конъюнктивная нормальная форма (КНФ)

• Любую булеву формулу n булевых переменных можно представить в виде конъюнктивной нормальной формы (КНФ):

$$\bigwedge_{i=1}^{m} \left(\bigvee_{j \in S_i} x_j^{\sigma_j^i} \right),\,$$

- где $S_i \subseteq \{1, \dots, n\} \ (i = 1, \dots, m)$ и все $\sigma_i \in \{0, 1\}$.
- Здесь мы использовали следующие обозначения: $x^1 \stackrel{\mathsf{def}}{=} x$ и $x^0 \stackrel{\mathsf{def}}{=} \neg x$.

• KH
$$\Phi \bigwedge_{i=1}^m \left(\bigvee_{j \in S_i} x_j^{\sigma_j^i} \right)$$
,

- KH $\Phi \bigwedge_{i=1}^m \left(\bigvee_{j \in S_i} x_j^{\sigma_j^i} \right),$
- принимает значение истина тогда и только тогда, когда

- KH $\Phi \bigwedge_{i=1}^m \left(\bigvee_{j \in S_i} x_j^{\sigma_j^i} \right),$
- принимает значение истина тогда и только тогда, когда
- каждый ее дизъюнкт $\left(\bigvee_{j \in S_i} x_j^{\sigma_j^i}\right)$ содержит хотя бы один литерал (литералом называется переменная или ее отрицание) со значением **истина**.

- KH $\Phi \bigwedge_{i=1}^m \left(\bigvee_{j \in S_i} x_j^{\sigma_j^i} \right),$
- принимает значение истина тогда и только тогда, когда
- каждый ее дизъюнкт $\left(\bigvee_{j \in S_i} x_j^{\sigma_j^i}\right)$ содержит хотя бы один литерал (литералом называется переменная или ее отрицание) со значением **истина**.
- Если отождествить значения **ложь** с 0, а **истина** с 1, то операция отрицания \neg превращает x в 1-x.

- KH $\Phi \bigwedge_{i=1}^m \left(\bigvee_{j \in S_i} x_j^{\sigma_j^i} \right)$,
- принимает значение истина тогда и только тогда, когда
- каждый ее дизъюнкт $\left(\bigvee_{j \in S_i} x_j^{\sigma_j^i}\right)$ содержит хотя бы один литерал (литералом называется переменная или ее отрицание) со значением **истина**.
- Если отождествить значения **ложь** с 0, а **истина** с 1, то операция отрицания \neg превращает x в 1-x.
- С учетом сказанного наборы истинности, на которых КНФ $\bigwedge_{i=1}^{m} \left(\bigvee_{j \in S_i} x_j^{\sigma_j^i}\right)$ принимает значение **истина**, являются решениями следующей системы неравенств: $\sum_{j \in S_i: \sigma_j^i = 1} x_j + \sum_{j \in S_i: \sigma_j^i = 0} (1 x_j) \ge 1, \ i = 1, \dots, m,$ $x_j \in \{0, 1\}, \ j = 1, \dots, n,$

Наборы истинности КНФ: пример

ΚΗΦ

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (x_2 \lor \neg x_3) \land (x_3 \lor \neg x_1)$$

• принимает значение **истина** на наборах, которые являются решениями системы

$$x_1 + x_2 + x_3 \ge 1$$
,
 $x_1 + (1 - x_2) \ge 1$,
 $x_2 + (1 - x_3) \ge 1$,
 $x_3 + (1 - x_1) \ge 1$,
 $x_1, x_2, x_3 \in \{0, 1\}$.

• Требуется, чтобы из m неравенств $A_i x \leq b_i, \ i=1,\dots,m,$ выполнялись не менее q любых неравенств.

- Требуется, чтобы из m неравенств $A_i x \leq b_i, \ i = 1, \ldots, m,$ выполнялись не менее q любых неравенств.
- Например, если два задания i и j должны выполняться на одной машине, то мы должны потребовать выполнения следующей дизъюнкции: $e_i s_i < 0$ или $e_j s_i < 0$,

- Требуется, чтобы из m неравенств $A_i x \leq b_i, \ i = 1, \ldots, m,$ выполнялись не менее q любых неравенств.
- Например, если два задания i и j должны выполняться на одной машине, то мы должны потребовать выполнения следующей дизъюнкции: $e_i s_i \le 0$ или $e_i s_i \le 0$,
- где s_i и e_i есть соответственно время начала и завершения задания i.

• Требуется, чтобы из m неравенств $A_i x \leq b_i, \ i=1,\ldots,m,$ выполнялись не менее q любых неравенств.

- Требуется, чтобы из m неравенств $A_i x \leq b_i, \ i=1,\ldots,m,$ выполнялись не менее q любых неравенств.
- Пусть M есть достаточно большое число, такое, что неравенства $A_i x \leq b_i + M$ выполняются автоматически для всех допустимых векторов x решаемой задачи.

- Требуется, чтобы из m неравенств $A_i x \leq b_i, \ i=1,\ldots,m,$ выполнялись не менее q любых неравенств.
- Пусть M есть достаточно большое число, такое, что неравенства $A_i x \leq b_i + M$ выполняются автоматически для всех допустимых векторов x решаемой задачи.
- Вводя бинарные переменные $y_i = \left\{ \begin{array}{ll} 1, & \text{если ограничение } A_i x \leq b_i \text{ выполняется,} \\ 0, & \text{в противном случае,} \end{array} \right.$

- Требуется, чтобы из m неравенств $A_i x \leq b_i, \ i=1,\ldots,m,$ выполнялись не менее q любых неравенств.
- Пусть M есть достаточно большое число, такое, что неравенства $A_i x \leq b_i + M$ выполняются автоматически для всех допустимых векторов x решаемой задачи.
- Вводя бинарные переменные $y_i = \left\{ \begin{array}{ll} 1, & \text{если ограничение } A_i x \leq b_i \text{ выполняется,} \\ 0, & \text{в противном случае,} \end{array} \right.$
- ullet мы можем учесть требуемое условие след. образом: $A_i x \leq b_i + M(1-y_i), \ i=1,\ldots,m,$

$$\sum_{i=1}^{m} y_i \ge q, \ y_i \in \{0,1\}, \ i = 1, \dots, k.$$