ScikitLearn 操作記錄單 3

組別: _team15	學號:_41147046S	姓名:楊子萱
-------------	---------------	--------

Unsupervised Learning

1. 請根據以下教學資源操作: http://www.cse.msu.edu/~ptan/dmbook/tutorials/tutorial8/tutorial8.html 請自行查詢了解下列 scikit-learn 模組的功能作用 https://scikit-learn.org/stable/

程式碼連結: https://docs.google.com/document/d/1iLgXQBrAxYZiGHYVoEmOXQWWKFQQqkM1RpR087tqpJo/edit?usp=sharing

請根據需要的東西留下,其他部分註解後再跑

	Module	Function	試寫程式,實驗該函式所提供功能及主要參數設定效
			果
Clustering	Sklearn.cluster	KMeans()	KMeans(n_clusters=k, init='k-means++',
			random state=42)
			功能:將數據分為若干群 (n_clusters),以最小化群
			內樣本的距離平方和 (inertia)
			必要參數
			1. n_clusters
			。指定要分成的群數。
			。 選擇群數對聚類結果至關重要,肘部法
			則(Elbow Method)和輪廓係數
			(Silhouette Score)是常用方法。
			2. init
			。 指定初始群心的選擇方式:
			■ 'k-means++' (預設):優化群心
			初始位置,提升聚類效果和收斂
			速度。
			■ 'random':隨機選取群心位置。
			。 效果 :'k-means++' 通常更穩定。

1. n_clusters	Sklearn.cluster	AgglomerativeClustering()	3. max_iter
。指定最終要分成的群數。			先指定群數,而是可以根據距離閾值來進行分群。 必要參數 1. n_clusters
2		2	。 指定最終要分成的群數。

。 類似於 KMeans,但
AgglomerativeClustering 也支持通過距
離閾值(distance_threshold)來決定群
數,而不必直接指定。
2. affinity
。 定義相似度度量方法:
■ 'euclidean':歐氏距離(默認選
項)。
■ 'manhattan':曼哈頓距離。
■ 'cosine': 餘弦相似度。
• 'precomputed':使用事先計算的
距離矩陣。
。 效果 :影響分群效果和計算速度。不同
的相似度度量方法適用於不同的數據類
型。
3. linkage
。 定義如何計算兩個群之間的距離(聚合 方式):
方法),計算兩群合併後的變異
數。
• 'complete': 最大化群內的最遠距
离性。
■ 'average':使用群內的平均距離
來衡量。
■ 'single':最小化兩群中最短的距
BE
。 效果 :不同的 linkage 方法會影響分群
結果,特別是如何合併群。
4. distance_threshold
○ 指定一個距離閾值,如果兩群之間的距

		離小於該閾值,則合併它們。這是一種基於距離的停止標準。若指定,則可以不設置 n_clusters。 。 效果:這個參數讓你能夠以更靈活的方式控制聚類結果。 其他聚類演算法 (1) KMeans 基於距離的聚類方法,使用 n_clusters 指定群數,並且利用距離來最小化群內差異。 (2) DBSCAN 基於密度的分群方法,通過指定 eps(鄰域範圍)和min_samples(最小樣本數量)來識別密度區域。分群效果評估 Calinski-Harabasz Index(Calinski-Harabasz 指數)這是一種基於群內和群間變異度來評估分群效果的指標,數值越大表示聚類效果越好 Davies-Bouldin Index(Davies-Bouldin 指數)這是一種衡量分群結果的指標,數值越小越好,表示群間的分隔越清晰。它考慮群內的緊密度和群間的分隔。
Sklearn.cluster	DBSCAN()	DBSCAN(eps=0.5, min_samples=5) 功能:不需要指定預先確定的群數,它根據數據點的密度自動識別群集。這使得 DBSCAN 能夠處理形狀不規則的群集,並且能夠識別噪聲點主要參數 1. eps: ○ 定義每個點的鄰域範圍。當兩個點之間的距離小於 eps 時,這兩個點被視為相鄰。 ○ 設定過小的 eps 可能會將許多點視為噪聲,設置過大則可能會將不同的群集

	合併為一個群集。
	2. min_samples:
	○ 形成一個群集所需的最小點數。
	。 設置過小的 min_samples 可能會產生更
	多的群集,而設置過大的 min_samples
	則可能導致某些群集無法形成。
	3. metric:
	○ 定義距離度量,默認 是 歐式距離
	('euclidean')。也可以設置為其他度量
	方式,如曼哈頓距離('manhattan')
	等。
	4. algorithm:
	。 用來計算鄰域點的算法。選項包括
	'auto', 'ball tree', 'kd tree', 和 'brute'。
	'auto' 會根據數據選擇最佳算法。
	5. leaf_size :
	。 用於 ball_tree 和 kd_tree 算法中,控
	制樹的葉子節點大小,這會影響計算的
	速度。
	評估方法比較:
	1. Silhouette Score:
	。 用來衡量每個樣本是否被正確分配到聚
	類中。值範圍從 -1 到 1,越接近 1
	越好,越接近 -1 表示樣本被錯誤分配
	到聚類中。
	o DBSCAN 的 Silhouette Score 可能較
	低,因為它可能將許多點標記為噪聲
	(即標記為 -1)。
	2. Davies-Bouldin Index (DBI):
	○ 衡量群集間的分離度和群內的緊密度,
	數值越小表示聚類效果越好。DBSCAN
	数围越小衣小衣规双未越好。DBSCAN

			的 DBI 可能會較高,尤其在存在大量 噪聲點的情況下,因為噪聲點不屬於任 何群集,可能會影響分隔性。
Clustering	Sklearn.metrics.cluster	normalized_mutual_info_score()	功能: 計算兩個聚類結果之間的互信息(Mutual
Evaluation			Information,簡稱 MI),並將其標準化。其值範圍從
			0 到 1,1 表示兩個聚類結果完全一致,0 表示兩個
			聚類結果完全不同。
			主要參數設定效果
			1. labels_true:
			。 這是代表真實標籤的數據,通常是已知
			的分類結果,用來作為評估基準。
			2. labels_pred:
			。 這是算法產生的聚類結果,即預測標
			籤。這些標籤是聚類算法給出的群集標
			識符。
			3. average_method:
			。 這是用來計算互信息的平均方法。常見
			選項包括:
			■ 'arithmetic' (算術平均,預設):
			返回計算的平均值。
			■ 'geometric' (幾何平均): 使用幾
			何平均來計算互信息。
			• 'max' (最大值): 返回最大的互
			信息。
			4. beta (在某些版本中提供):
			。 用於控制對標準化的影響的參數。這主
			要涉及對不同的聚類結果進行加權,這

		不是經常使用的參數。 分群的效果評估方法比較 1. Silhouette Score: 。 這個指標衡量每個樣本的聚類效果,範圍從 -1 到 1,值越大表示聚類效果越好。若聚類結果與真實標籤相符,Silhouette Score 會接近 1。DBSCAN可能會因為有噪聲點(標記為 -1)而導致較低的分數。 2. Normalized Mutual Information (NMI): 。 這個指標用來評估兩個聚類結果之間的一致性,與真實標籤的匹配度。NMI的範圍是 0 到 1,1 表示完全一致,0表示完全無關。當真實標籤已知時,這個方法能夠有效評估不同聚類算法的表
Sklearn.metrics.cluster	silhouette_score()	現。 sklearn.metrics.silhouette_score(X, labels, metric='euclidean', sample_size=None, random_state=None) 功能: 衡量樣本與其所屬群組的相似度與與其他群組 的區別度。該指標的值範圍為 [-1, 1] 多數說明: 1. X: 。 輸入的數據集,通常是經過標準化處理 的數值數據(如 KMeans 或 DBSCAN 聚類後的數據)。 。 其形狀應該是 (n_samples, n_features),

即每行為一個樣本,列為該樣本的特
徵。
2. labels:
。 聚類結果的標籤(每個樣本的群組標
籤),形狀應該為 (n_samples,)。
。 如果使用 DBSCAN,這裡會包含標註
為-1 的噪音點。
3. metric :
。 用來計算距離的度量方法,默認為
'euclidean'(歐式距離)。也可以使用
'manhattan'(曼哈頓距離)等其他距離
度量方法。
4. sample_size:
。 如果數據集很大,可以指定樣本數量以
減少計算時間。默認情況下,使用全部
數據來計算。
5. random_state:
。 隨機狀態,用於確保結果的可重現性
(特別是在隨機初始化的聚類方法
中)。

其他參考資源:

- machine learning 參考書: "Introduction to Machine Learning with Python" 之 github code

github code of the books "Introduction to Machine Learning with Python"

https://github.com/amueller/introduction_to_ml_with_python/blob/master/03-unsupervised-learning.ipynb

Scikit Learn documentation(http://scikit-learn.org/stable/index.html)

- 尋搜尋其他可信網路資源