Rodzaje sterowników programowalnych.

Ze względu na strukturę sprzętową i programową (konfigurację) sterowniki programowalne dzieli się na:

- modułowe (duże, małe),
- kompaktowe (mikro-PLC, nano-PLC).

Duży sterownik modułowy PLC.

Duży sterownik modułowy, pod względem struktury sprzętowej i możliwości funkcjonalnych, zbliżony jest do urządzeń sterowania stosowanych w systemach **DCS** (ang. **D**istributed **C**ontrol **S**ystems = **rozproszone systemy sterowania**).

Są to systemy profesjonalne, najdroższe, dostarczane przez jednego generalnego dostawcę, najczęściej producenta, stosowane w automatyzacji najbardziej wymagających procesów. Przykładowy duży sterownik modułowy PLC przedstawiono na rys. 2.

W najbardziej rozbudowanej konfiguracji duży sterownik modułowy PLC charakteryzuje się następującymi właściwościami:

- liczba wejść/wyjść cyfrowych: maksymalnie 131056/131056,
- liczba wejść/wyjść analogowych: maksymalnie 8192/8192,
- pamięć programu: maksymalnie 4 Mbytes,
- standardy komunikacyjne: MPI, PROFIBUS, Ethernet itp.,
- bardzo krótki czas wykonywania instrukcji, zależny od częstotliwości taktowania zegara systemowego,
- konstrukcja obudowy bez wentylatora,
- duży wybór procesorów, modułów we/wy, standardów komunikacyjnych, modułów funkcyjnych,
- możliwość pracy wieloprocesorowej (kilka niezależnych modułów CPU),
- interfejsy do systemów IT (ang. Information Technology) i sieci WWW (ang. World Wide Web).

Do zamontowania takiego sterownika niezbędna jest **płyta łączeniowa** (ang. CPU Baseplate), zwana także **kasetą** (ang. Rack), która posiada **gniazda** (ang. Slot) do podłączenia wybranych modułów, przy czym modułami niezbędnymi są:

zasilacz PWR (ang.PoWeR Supply),

moduł centralnej jednostki przetwarzającej CPU (ang. Central Processing Unit).

Mały sterownik modułowy PLC.

Stanowi "okrojoną" wersję dużego sterownika modułowego i znajduje zastosowanie przy realizacji średnich aplikacji przemysłowych, takich jak: automatyzacja maszyn, linii produkcyjnych, linii montażowych, procesów technologicznych itp. Sterowniki takie są obecnie najpowszechniej wykorzystywane ze względu na stosunkowo niską cenę i duże możliwości funkcjonalne.

Typowy mały, modułowy sterownik PLC przedstawiony jest na rys. 1.

Od dużego sterownika modułowego różni się on liczbą wejść/wyjść procesowych, wielkością modułów i nieco mniejszymi możliwościami funkcjonalnymi. Ponadto mały sterownik PLC wyposażony jest z reguły w **przełącznik rodzaju pracy**, umożliwiający ustawienie różnych trybów działania: normalnej pracy, zatrzymania, wgrywania programu sterującego i testowania.

W najbardziej rozbudowanej konfiguracji mały sterownik modułowy PLC charakteryzuje się następującymi właściwościami:

- liczba wejść/wyjść cyfrowych: maksymalnie 65536,
- liczba wejść/wyjść analogowych: maksymalnie 4096,
- duży wybór rodzajów modułów wejść/wyjść,
- duży wybór rodzajów modułów funkcjonalnych (w produktach różnych firm spotykane są praktycznie wszystkie moduły dostępne w dużym sterowniku),
- możliwość budowy zdecentralizowanych systemów sterowania (sieci sterownikowe),
- możliwość łatwej rozbudowy.

Podstawową grupę modułów sterownika modułowego PLC (rys. 2) stanowią zasilacz i moduł CPU oraz dodatkowo przynajmniej po jednym module wejść i wyjść procesowych, jeżeli sterownik ma pracować samodzielnie (nie w sieci).

W celu zabezpieczenia przed utratą danych podczas awarii zasilania podtrzymuje się pamięć sterowników za pomocą baterii lub akumulatorów.

Wymianę danych pomiędzy modułem CPU i stacją operatorską zapewnia zwykle interfejs komunikacyjny typu **MPI** (ang. **M**ulti **P**oint Interface). Moduł CPU komunikuje się z innymi użytkownikami sieci przez interfejs magistrali PROFIBUS-DP.

Sterownik kompaktowy mikro-PLC.

Sterowniki kompaktowe (rys. 1 poniżej) są stosowane do automatyzacji pojedynczych maszyn i urządzeń oraz przeznaczone do tworzenia zdecentralizowanych struktur sterowania dla małych obiektów typu przepompownie, oczyszczalnie ścieków itp.

Sterowniki kompaktowe charakteryzują się sztywną architekturą i małymi wymiarami. W jednej obudowie i na jednym elemencie nośnym znajduje się zasilacz CPU oraz niewielka liczba wejść i wyjść cyfrowych (różna w zależności od typu jednostki centralnej), rzadziej analogowych. Sterownik może również posiadać zintegrowane wejście szybkiego licznika oraz wejścia przerywające.

W celu zwiększenia liczby wejść/wyjść (maksymalnie do 248 DI/DO i 28 AI/AO) stosuje się moduły rozszerzające (rys. 2 poniżej).

Sterownik kompaktowy nano-PLC.

Stosuje się je w przypadku najprostszych zadań, dla których użycie sterownika PLC nie byłoby ekonomicznie uzasadnione. Spotyka się je np. w układach sterowania oświetleniem, napędach bram wjazdowych, w urządzeniach domowych i maszynach przemysłowych.

Niewielką liczbę wejść/wyjść procesowych nano-sterownika można zwiększyć stosując dodatkowe moduły rozszerzające. Na rys. 3 przedstawiony jest typowy nano-sterownik z trzema modułami rozszerzającymi.

Na wyjściach sterowników miniaturowych znajdują się najczęściej styki przekaźników, oddzielone galwanicznie od napięcia zasilania i obwodów wejściowych. Dzięki temu można przyłączać do nich bezpośrednio elementy wykonawcze albo sterować przekaźnikami lub stycznikami. Jeżeli przełączenie musi się odbywać szybko, dostępne są także wersje z wyjściami tranzystorowymi.

Do programowania i obserwowania sygnałów na wejściach i wyjściach sterowniki miniaturowe są zwykle wyposażone w **pulpit operacyjny** lub **operatorski** (rys. 3 i rys. 1 powyżej), zawierający kilka przycisków i wyświetlacz ciekło-krystaliczny **LCD** (ang. Liquid **C**ristal**D**isplay).

Sterowniki miniaturowe są przystosowane do wbudowania w rozdzielniach elektrycznych i są montowane na typowych szynach montażowych standardu DIN.

Wirtualny sterownik PLC, SoftControl-PLC.

Koncepcja sterownika SoftControl-PLC polega na realizacji sterownika PLC w postaci programu działającego na komputerze PC.

W tym przypadku sterownik PLC przyjmuje postać wirtualną, natomiast jego powiązanie z procesem dokonywane jest za pomocą kart wejść/wyjść procesowych wstawianych do PC, za pomocą sieci z innych sterowników PLC lub koncentratorów danych, które są praktycznie sterownikami PLC, ale pozbawionymi możliwości wykonywania programu sterującego, przeznaczonymi jedynie do obsługi wejść/wyjść procesowych.

Sieć sterowników PLC.

W przypadku złożonych, rozproszonych przestrzennie obiektów automatyzacji (cukrownie, zakłady chemiczne, montownie samochodów), do obsługi poszczególnych jednostek produkcyjnych

wykorzystuje się sterowniki połączone w sieć, najczęściej typu **Master-Slave** (np. w standardzie komunikacyjnym Profibus DP lub AS-I) (rys. 2).

Jeden ze sterowników pełni w tego typu sieci funkcję sterownika nadrzędnego (Master) i to on decyduje o całej wymianie danych pomiędzy sterownikami PLC. Natomiast pozostałe są sterownikami podrzędnymi (Slave), udostępniającymi swoje zasoby w sieci i wykonującymi własne algorytmy sterujące skojarzone z własnymi fragmentami procesu. Użytkownikami sieci mogą być dodatkowo inne urządzenia (element sieci), takie jak: panele i stacje operatorskie (ang. operation, maintenance), stacje monitorowania (ang. monitoring), nadzorowania (ang. supervision) i zarządzania (ang. management). Dodatkowymi użytkownikami sieci mogą być koncentratory danych wyposażone w tzw. sieć polową (FieldBus, obiektową procesową, np. AS-I ang. ActuatorSensor Interface). Tego typu koncentratory mogą być dołączane również indywidualnie do każdego ze sterowników pracujących w sieci.

Współczesne sterowniki PLC są wyposażone w porty komunikacyjne standardu ETHERNET TCP/IP, uzyskując tym samym bardziej elastyczne możliwości wymiany danych.

Zintegrowany sterownik PLC.

Sterownik PLC może być także zintegrowany z innymi systemami sterowania cyfrowego (mikroprocesorowego), np. z systemem sterowania **CNC** (ang. **C**omputer**N**umerical**C**ontrol = komputerowe sterowanie numeryczne).

W tym przypadku sterownik programowalny jest uaktywniany przez system oprogramowania CNC (rys. 1).

Jeśli potrzebne są tylko wybrane funkcje sterownika programowalnego, to najczęściej integruje się tylko odpowiednie moduły oprogramowania PLC z systemem operacyjnym CNC.

Podobna możliwość występuje przy współpracy sterowników PLC z manipulatorami, robotami przemysłowymi i innymi inteligentnymi urządzeniami automatyki i pomiarów. Jako przykład można

podać **ustawnik pozycyjny** (pozycjoner), będący urządzeniem montowanym na zaworze ciągłym, analogowym, którego głównym zadaniem jest sterowanie położeniem tłoczyska siłownika zaworu (a tym samym wydatkiem przepływu medium przez zawór).

Komputer przemysłowy IPC.

Komputer przemysłowy stanowi zintegrowany zespół następujących urządzeń (rys. 2):

- pulpit operatorski, wyposażony w wyświetlacz LCD oraz zespół pokrytych folią klawiatur (w różnych rozmiarach i o różnej liczbie klawiszy), zastępowanych coraz częściej ekranem dotykowym,
- komputer PC,
- sterownik PLC.

Zaletą takiej konstrukcji jest możliwość wykorzystania na miejscu narzędzi oferowanych przez różne środowiska programowe PC (np. MS Windows, MS Office, CAD-CAM).

Bardzo ważną zaletą komputerów przemysłowych jest ich odporność na trudne warunki powszechnie występujące w przemyśle (zapylenie, agresywna atmosfera, podwyższona temperatura, zaolejenie powietrza), w których trudno sobie wyobrazić poprawne działanie zwykłych komputerów PC.