Poznań 2 kwietnia 2024

Politechnika Poznańska

Wydział Informatyki i Telekomunikacji

Algorytmy i Struktury Danych, Informatyka (semestr 2) **Sprawozdanie #1** — Algorytmy sortowania

1. Wprowadzenie

Algorytm sortowania to kluczowe narzędzie w informatyce, używane do porządkowania elementów w określonej kolejności.

Istnieje wiele różnych algorytmów sortowania, z których każdy ma swoje własne cechy, zalety i wady. Sprawozdanie skupi się wyłącznie na trzech specyficznych algorytmach:

Merge Sort

Złożoność obliczeniowa			
Pesymistyczna	Średnia	Optymistyczna	
O(nlogn)	O(nlogn)	O(nlogn)	

Liczba operacji w Merge Sort jest bezpośrednio związana z liczbą scalanych elementów. Każde scalenie ma złożoność czasową **O(n)**, a całkowita liczba scalanych elementów wynosi **O(nlogn)**. Stąd łączna liczba operacji jest proporcjonalna do iloczynu liczby elementów i logarytmu liczby elementów.

Quick Sort Rekurencyjny

Quick Sort Iteracyjny

Złożoność obliczeniowa			
Pesymistyczna	Średnia	Optymistyczna	
0(n²)	O(nlogn)	O(nlogn)	

Liczba operacji w Quick Sort zależy od wyboru osi podziału oraz podziałów, które następują w wyniku tego wyboru. W najgorszym przypadku, gdy zawsze wybieramy minimum lub maksimum jako osie podziału, liczba operacji może wynosić $0(n^2)$. Jednak w najlepszym przypadku, gdzie wybór osi podziału jest odpowiednio zbalansowany, liczba operacji wynosi 0(nlogn).

2. Zależność czasu (t) sortowania od liczby elementów (n) dla poszczególnych algorytmów

3. Zależność czasu (t) sortowania od liczby elementów (n) dla poszczególnych typów danych

Język implementacji:

Python % (Python 3.10.10)

Platforma realizacji testów:

Windows 10 x64 (Microsoft Windows [Version 10.0.19045.4170])

Repozytorium:

https://github.com/xKond3i/put_aisd

Źródła:

- [1]:cs.put.poznan.pl/mszachniuk/site/teaching/algorytmy-i-struktury-danych
- [2]:www.ekursy.put.poznan.pl
- [3]:www.geeksforgeeks.org/merge-sort
- [4]:www.geeksforgeeks.org/quick-sort
- [5]:www.geeksforgeeks.org/iterative-quick-sort
- [6]:www.geeksforgeeks.org/time-complexities-of-all-sorting-algorithms