# Computational learning and discovery



**CSI 873 / MATH 689** 

**Instructor: I. Griva** 

Wednesday 7:20 - 10 pm

# **Bayesian learning**

- Provides a probabilistic approach to learning
- Can calculate explicit probabilities for hypotheses
- Perform well on practice
- Help understand better other learning algorithms

#### **Features of Bayesian Learning**

- Each training example either increase or decrease the probability that some hypothesis is correct
- Capable of probabilistic predictions
- Prior knowledge (such as probability for a candidate hypothesis) can be used
- New instances can be classified by combining the predictions of multiple hypotheses, weighted by their probabilities

# The goal of Bayesian Learning

To determine the best hypothesis from H, given the observe training data D and the prior knowledge about the quality of the hypotheses from H!

**best hypothesis = most probable hypothesis** 

# **Bayes Theorem**

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

- P(h) = prior probability of hypothesis h
- P(D) = prior probability of training data D
- P(h|D) = probability of h given D (posterior prob.)
- P(D|h) = probability of D given h

# Maximum a posteriori hypothesis (MAP)

 $Maximum\ a\ posteriori\ hypothesis\ h_{MAP}$ :

$$h_{MAP} = \arg \max_{h \in H} P(h|D)$$

$$= \arg \max_{h \in H} \frac{P(D|h)P(h)}{P(D)}$$

$$= \arg \max_{h \in H} P(D|h)P(h)$$

If we assume that P(h) = const for any h then we Are choosing the maximum likelihood (ML) hypothesis:

$$h_{ML} = \arg \max_{h \in H} P(D|h)$$

# **Example**

Does patient have cancer or not?

A patient takes a lab test and the result comes back positive. The test returns a correct positive result in only 98% of the cases in which the disease is actually present, and a correct negative result in only 97% of the cases in which the disease is not present. Furthermore, .008 of the entire population have this cancer.

# **Summary of basic probability formulas**

• Product Rule: probability  $P(A \wedge B)$  of a conjunction of two events A and B:

$$P(A \wedge B) = P(A|B)P(B) = P(B|A)P(A)$$

• Sum Rule: probability of a disjunction of two events A and B:

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

• Theorem of total probability: if events  $A_1, \ldots, A_n$  are mutually exclusive with  $\sum_{i=1}^n P(A_i) = 1$ , then

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

# **Brute-Force Bayes MAP Learning**

1. For each hypothesis h in H, calculate the posterior probability

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

2. Output the hypothesis  $h_{MAP}$  with the highest posterior probability

$$h_{MAP} = \operatorname*{argmax}_{h \in H} P(h|D)$$

# **MAP and Concept Learning**

Consider our usual concept learning task

- ullet instance space X, hypothesis space H, training examples D
- consider the FINDS learning algorithm (outputs most specific hypothesis from the version space  $VS_{H,D}$ )

What would Bayes rule produce as the MAP hypothesis?

Does FindS output a MAP hypothesis??

# **MAP and Concept Learning**

Assume fixed set of instances  $\langle x_1, \ldots, x_m \rangle$ Assume D is the set of classifications  $D = \langle c(x_1), \ldots, c(x_m) \rangle$ Choose P(D|h)

- P(D|h) = 1 if h consistent with D
- P(D|h) = 0 otherwise

Choose P(h) to be uniform distribution

•  $P(h) = \frac{1}{|H|}$  for all h in H

Then,

$$P(h|D) = \begin{cases} \frac{1}{|VS_{H,D}|} & \text{if } h \text{ is consistent with } D\\ 0 & \text{otherwise} \end{cases}$$

# **MAP** and Concept Learning



# Characterizing Learning algorithms by Equivalent MAP systems





