Face Detection with Alignment

Generated by Doxygen 1.8.6

Thu May 22 2014 17:35:03

Contents

1	Main	1 Page		1
2	Clas	s Index		5
	2.1	Class I	st	5
3	File	Index		7
	3.1	File Lis		7
4	Clas	s Docu	nentation	9
	4.1	eHbbo	Struct Reference	9
		4.1.1	Detailed Description	9
		4.1.2	Member Data Documentation	9
			4.1.2.1 component	9
			4.1.2.2 score	9
	4.2	eHbox	f Struct Reference	10
		4.2.1	Detailed Description	10
	4.3	eHbox	Struct Reference	10
		4.3.1	Detailed Description	11
	4.4	eHface	nodel Struct Reference	11
		4.4.1	Detailed Description	11
		4.4.2	Member Data Documentation	11
			4.4.2.1 filters	11
	4.5	eHfeat	yramid Struct Reference	12
		4.5.1	Detailed Description	12
	4.6	eHfilte	Struct Reference	12
		4.6.1	Detailed Description	13
	4.7	eHima	e Struct Reference	13
		4.7.1		13
	4.8	eHmat	x2d Struct Reference	13
		4.8.1	Detailed Description	14
	4.9	eHmat		14
		491	Detailed Description	14

iv CONTENTS

	4.10	eHmati	ixkd Struct Reference	15
		4.10.1	Detailed Description	15
	4.11	eHpose	model Struct Reference	15
		4.11.1	Detailed Description	16
		4.11.2	Member Data Documentation	16
			4.11.2.1 filters	16
_				
5		Docume		17 17
	5.1			17 10
		5.1.1	•	18
		5.1.2		18
				18
		5.1.3		18
			- ·	18
				18
				18
				19
	5.2	eHbox.		19
		5.2.1	•	20
		5.2.2	Function Documentation	20
			5.2.2.1 fbox_getMoved	20
			5.2.2.2 fbox_getResized	20
			5.2.2.3 fbox_merge	20
			5.2.2.4 fbox_move	21
			5.2.2.5 fbox_resize	21
	5.3	eHface	model.h File Reference	21
		5.3.1	Detailed Description	22
		5.3.2	Function Documentation	22
			5.3.2.1 facemodel_detect	22
			5.3.2.2 facemodel_detect	22
			5.3.2.3 facemodel_detect	22
			5.3.2.4 facemodel_detect	23
			5.3.2.5 facemodel_parseXml	23
			5.3.2.6 facemodel_readFromFile	23
	5.4	eHfeat	yramid.h File Reference	23
		5.4.1	Detailed Description	24
		5.4.2	Function Documentation	24
			5.4.2.1 featpyra_create	24
	5.5	eHfilter	h File Reference	24
		5.5.1	Detailed Description	25

CONTENTS

	5.5.2	Function	Documentation	25
		5.5.2.1	filterv_apply	25
		5.5.2.2	filterv_apply_ST	25
5.6	eHima	ge.h File R	eference	26
	5.6.1	Detailed I	Description	27
	5.6.2	Function	Documentation	27
		5.6.2.1	image_alloc	27
		5.6.2.2	image_alloc	27
		5.6.2.3	image_crop	27
		5.6.2.4	image_delete	28
		5.6.2.5	image_display	28
		5.6.2.6	$image_fill \ . \ . \ . \ . \ . \ . \ . \ . \ . \$	28
		5.6.2.7	image_readJPG	28
		5.6.2.8	image_reduce	29
		5.6.2.9	image_resize	30
		5.6.2.10	image_showDetection	30
		5.6.2.11	image_showFaces	30
		5.6.2.12	image_subsample	31
5.7	eHima	geFeature.	h File Reference	31
	5.7.1	Detailed I	Description	31
	5.7.2	Function	Documentation	31
		5.7.2.1	eHhog	31
5.8	eHmat	rix.h File R	eference	32
	5.8.1	Detailed I	Description	33
	5.8.2	Function	Documentation	33
		5.8.2.1	mat2d_alloc	33
		5.8.2.2	mat2d_delete	33
		5.8.2.3	mat3d_alloc	33
		5.8.2.4	mat3d_delete	34
		5.8.2.5	mat3d_fill	34
		5.8.2.6	mat3d_pad	34
		5.8.2.7	matkd_alloc	34
		5.8.2.8	matkd_delete	34
5.9	eHpos	emodel.h F	ile Reference	34
	5.9.1	Detailed I	Description	35
	5.9.2	Function	Documentation	35
		5.9.2.1	posemodel_detect	35
		5.9.2.2	posemodel_detect	36
		5.9.2.3	posemodel_parseXml	36
		5.9.2.4	posemodel_readFromFile	36

vi CONTENTS

5.10	eHshift	dt.h File R	eference			 	 	 	 	 		 		36
	5.10.1	Detailed	Description	n		 	 	 	 	 		 		37
	5.10.2	Function	Documer	itation		 	 	 	 	 		 		37
		5.10.2.1	eHshiftd	t		 	 	 	 	 		 		37
5.11	eHutils	.h File Ref	erence .			 	 	 	 	 		 		37
	5.11.1	Detailed	Description	n		 	 	 	 	 		 		37
	5.11.2	Function	Documer	itation		 	 	 	 	 		 		38
		5.11.2.1	parseCS	SVstr2do	ouble	 	 	 	 	 		 		38
		5.11.2.2	parseCS	SVstr2in	t	 	 	 	 	 		 		39
Index														40

Chapter 1

Main Page

This project provides a C++ implementation for human face detection with Alignment from unconstrained photos. Below is a brief manual, detailed documentation is generated using doxygen.

Tip All the data structurs and functions are arranged in C style, you can use the *Files* tab to have an overview. Implemented by Hang Su.

Installation

Checkout latest code

svn checkout http://eharmony-photofeature.googlecode.com/svn/trunk/ eharmony-photofeature-read-only

Dependencies

The code depends on OpenCV to load/dispaly image. To install OpenCV on Ubuntu/Debian:

sudo apt-get install libopency-dev

A cblas library should also be installed, e.g.

Ubuntu/Debian

sudo apt-get install libblas-dev

Fedora

sudo yum install atlas-sse3-devel.x86_64

Compilation

make all

Usage example

- 1. #include "eHimage.h"
- 2. #include "eHfacemodel.h"
- 3. #include "eHposemodel.h"
- 4. #include "eHbbox.h"

Main Page 2

```
5. #include <vector>
   6.
   7. int main(int argc, char** argv){
   8.
        //load face model & body model
   9.
        facemodel_t* facemodel = facemodel_readFromFile("face_p146.xml");
        posemodel_t* posemodel = posemodel_readFromFile("pose_BUFFY.xml");
  10.
  11.
  12.
        //load a jpeg image
  13.
        image_t* img = image_readJPG(argv[1]);
  14.
  15.
        //detect faces and show results
        std::vector<bbox_t> faces = facemodel_detect(facemodel,posemodel,img);
  16.
  17.
        image showDetection(img, faces, "Face Detection Results");
  18.
  19.
        //destruct image and models
  20.
        image_delete(img);
  21.
        facemodel_delete(facemodel);
  22.
        posemodel delete(posemodel);
  23.
  24.
        return 0;
  25. }
Image data structure and operation
A structure type image_t is defined to present images. Some usesful operations are also provided, e.g. to load a
jpeg image from file, use
image_ptr image_readJPG (const char *filename)
To delete an image, use
void image_delete (image_ptr img)
Face detection
Face detection is based on algorithm described in [1]. Pre-trained models are provided in XML format.
facemodel t * facemodel readFromFile (const char *filepath)
```

To load a face model, use

To detect faces, use

vector< bbox t > facemodel detect (const facemodel t *model, const image ptr img)

A body detection model (described below) can also be combined to help improve detection performace

vector< bbox_t > facemodel_detect (const facemodel_t *facemodel, const posemodel_t *posemodel, const image_ptr img)

Results can be visualized using

 $void \quad image_showDetection \ (const \ image_ptr \ img, \ const \ vector < bbox_t > boxes, \ const \ std::string \ \&winname)$

or

void image_showFaces (const image_ptr img, const vector< bbox_t > boxes, const std::string &winname)

Finally, a face model can be deleted using

void facemodel_delete (facemodel_t *model)

Body/pose detection

Human body detection is based on algorithm described in [2]. Pre-trained models are provided in XML format.

To load a pose model, use

posemodel t* posemodel readFromFile(const char* filepath)

To detect poses, use

vector<bbox_t> posemodel_detect(const posemodel_t* model, const image_ptr img)

Results can be visualized using

void image_showDetection (const image_ptr img, const vector< bbox_t > boxes, const std::string &winname)

Finally, the model can be deleted using

void posemodel_delete(posemodel_t* model)

References

[1] X. Zhu, D. Ramanan. "Face detection, pose estimation and landmark localization in the wild" Computer Vision and Pattern Recognition (CVPR) Providence, Rhode Island, June 2012.

[2] Y. Yang, D. Ramanan. "Articulated Pose Estimation using Flexible Mixtures of Parts" Computer Vision and Pattern Recognition (CVPR) Colorado Springs, Colorado, June 2011.

Main Page

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

eHDDOX	
Multi-box "bounding box", used for detection result	ç
eHbox_f	
Box with floating-point boundaries	(
eHbox_i	
Box with integer boundaries	(
eHfacemodel	
Face detection model	1
eHfeatpyramid	
Image feature pyramid	2
eHfilter eHfilter	
Image feature filter	2
eHimage	
Basic image data structure	3
eHmatrix2d	
2D matrix	3
eHmatrix3d	
3D matrix	4
eHmatrixkd	
K-dimension matrix	5
eHposemodel	
Human body/pose mdoel	Ę

6 Class Index

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

eHbbox.h	
Multi-box bounding box type and operations	17
eHbox.h	
Box types and operations	19
eHfacemodel.h	
Face detection model and operations	21
eHfeatpyramid.h	
Feature pyramid data type and calculation	23
eHfilter.h	
Filters applied on image features	24
eHimage.h	
Basic image type and operations	26
eHimageFeature.h	
Compute image features	31
eHmatrix.h	
Basic matrix types and operations	32
eHposemodel.h	
Human body/pose detection model and operations	34
eHshiftdt.h	
Generalized Distance Transform	36
eHutils.h	
Some useful stuff (string parsing etc.)	37

8 File Index

Chapter 4

Class Documentation

4.1 eHbbox Struct Reference

Multi-box "bounding box", used for detection result.

```
#include <eHbbox.h>
```

Public Attributes

- std::vector< fbox_t > boxes
 part locations
- double score

detection score

· int component

component id for certain models

· fbox_t outer

outer "real" bounding box of the detection

· double area

area of outer

4.1.1 Detailed Description

Multi-box "bounding box", used for detection result.

4.1.2 Member Data Documentation

4.1.2.1 int eHbbox::component

component id for certain models

Face model has 13 components (id $0\sim12$) for viewpoints ranging from 90 degree (profile facing right) to -90 degree (profile facing left).

4.1.2.2 double eHbbox::score

detection score

10 Class Documentation

Warning

not calibrated

The documentation for this struct was generated from the following file:

• eHbbox.h

4.2 eHbox_f Struct Reference

```
box with floating-point boundaries
```

```
#include <eHbox.h>
```

Public Attributes

double x1

left bound

• double y1

up bound

• double x2

right bound

• double y2

bottom bound

4.2.1 Detailed Description

box with floating-point boundaries

Boxes are defined as tuples (x1, y1, x2, y2), where $x1 \le x2$, $y1 \le y2$; so (x1, y1) is the top-left corner, (x2, y2) is the bottom-right corner.

The documentation for this struct was generated from the following file:

· eHbox.h

4.3 eHbox_i Struct Reference

box with integer boundaries

```
#include <eHbox.h>
```

Public Attributes

int x1

left bound

• int y1

up bound

• int x2

right bound

• int y2

bottom bound

4.3.1 Detailed Description

box with integer boundaries

Boxes are defined as tuples (x1, y1, x2, y2), where x1 <= x2, y1 <= y2; so (x1, y1) is the top-left corner, (x2, y2) is the bottom-right corner.

The documentation for this struct was generated from the following file:

· eHbox.h

4.4 eHfacemodel Struct Reference

```
Face detection model.
```

```
#include <eHfacemodel.h>
```

Public Attributes

```
    vector< filter_t > filters
```

part filters

vector< facedef_t > defs

deformation params

vector< vector< facepart_t >> components

part infos

• int maxsize [2]

XXX.

• int len

not used

· int interval

interval of pyramid

• int sbin

bin for building hog feature

• double delta

not used

· double thresh

threshold for detection score

double obj

not used

4.4.1 Detailed Description

Face detection model.

4.4.2 Member Data Documentation

 $4.4.2.1 \quad \text{vector} {<} \text{filter_t} {>} \text{ eHfacemodel::filters}$

part filters

12 Class Documentation

Note

All part filters should be of the same size

The documentation for this struct was generated from the following file:

· eHfacemodel.h

4.5 eHfeatpyramid Struct Reference

```
Image feature pyramid.
```

```
#include <eHfeatpyramid.h>
```

Public Attributes

• mat3d_ptr * feat

features of each level

double * scale

scaled of each level

• int len

levels of pyra, size of feat & scale

· int interval

levels within a double-size interval

int imy

image height

int imx

image width

4.5.1 Detailed Description

Image feature pyramid.

The documentation for this struct was generated from the following file:

• eHfeatpyramid.h

4.6 eHfilter Struct Reference

```
Image feature filter.
```

```
#include <eHfilter.h>
```

Public Attributes

• int i

filter index, not used

• mat3d_t w

filter [y,x,f], where (y,x) is location, f is feature index

4.6.1 Detailed Description

Image feature filter.

The documentation for this struct was generated from the following file:

· eHfilter.h

4.7 eHimage Struct Reference

```
Basic image data structure.
```

```
#include <eHimage.h>
```

Public Attributes

```
    double * data
```

pixel value data

• double * ch [3]

a view into each channel

size_t sizy

image height

size_t sizx

image width

size_t nchannel

number of channels

• int imsize [3]

[sizy sizx nchanel]

· bool is_shared

whether share data with a parent image

· size_t stepy

step between columns

size_t stepyx

step between channels

4.7.1 Detailed Description

Basic image data structure.

Note

```
Using column major (Fortran) style

Data is associated with (double* data), (double* ch[3]) only provide a view into data
```

The documentation for this struct was generated from the following file:

· eHimage.h

4.8 eHmatrix2d Struct Reference

2D matrix

```
#include <eHmatrix.h>
```

14 Class Documentation

Public Attributes

```
    double * vals
        values
    size_t sizy
        matrix height
    size_t sizx
        matrix width
```

4.8.1 Detailed Description

2D matrix

Note

matrix is stored in column-major style

The documentation for this struct was generated from the following file:

· eHmatrix.h

4.9 eHmatrix3d Struct Reference

```
3D matrix
```

```
#include <eHmatrix.h>
```

Public Attributes

```
    double * vals
        values
    size_t sizy
        matrix height
    size_t sizx
```

matrix width

• size_t sizz

matrix depth

4.9.1 Detailed Description

3D matrix

Note

matrix is stored in column-row-page order

The documentation for this struct was generated from the following file:

• eHmatrix.h

4.10 eHmatrixkd Struct Reference

```
k-dimension matrix
```

```
#include <eHmatrix.h>
```

Public Attributes

```
double * vals
```

values

• size_t k

number of dimensions

• size t * siz

sizes along each dimension

4.10.1 Detailed Description

k-dimension matrix

The documentation for this struct was generated from the following file:

· eHmatrix.h

4.11 eHposemodel Struct Reference

```
Human body/pose mdoel.
```

```
#include <eHposemodel.h>
```

Public Attributes

```
vector< posebias_t > biases
```

bias towards part combinations

vector< filter_t > filters

part filters

vector< posedef_t > defs

deformation params

vector< posepart_t > parts

part configurations

• int maxsize [2]

XXX.

• int len

not used

int interval

interval of feature pyramid

• int sbin

bin for building hog feature

· double thresh

threshold for detection score

double obj

not used

16 Class Documentation

4.11.1 Detailed Description

Human body/pose mdoel.

4.11.2 Member Data Documentation

 $\textbf{4.11.2.1} \quad \text{vector}{<} \textbf{filter_t}{>} \, \textbf{eHposemodel::} \textbf{filters}$

part filters

Note

all filters should be of the same size

The documentation for this struct was generated from the following file:

• eHposemodel.h

Chapter 5

File Documentation

5.1 eHbbox.h File Reference

Multi-box bounding box type and operations.

```
#include "eHbox.h"
#include <vector>
```

Classes

struct eHbbox

Multi-box "bounding box", used for detection result.

Macros

#define EH_BBOXS_PRUNE 30000
 Default pruning parameter for bbox_v_nms()

Typedefs

• typedef struct eHbbox bbox_t

Multi-box "bounding box", used for detection result.

Functions

void bbox_calcOut (bbox_t *)

Filling the fields of given bbox: outer, area.

void bbox_clipboxes (bbox_t &bbox, const int *imsize)

Clip the boxes to image boundary.

void bbox_v_resize (std::vector< bbox_t > &bboxes, double scale)

Resize the input bboxs (in-place)

void bbox_v_move (std::vector< bbox_t > &bboxes, const int *offset)

Move the input bboxs (in-place)

 $\bullet \ \ void \ bbox_v_nms \ (std::vector < bbox_t > \&bboxes, \ double \ overlap, \ unsigned \ prune=EH_BBOXS_PRUNE) \\$

Non-maximum suppression.

5.1.1 Detailed Description

Multi-box bounding box type and operations. A "bounding box" is defined as a collection of boxes, which serve as detection results of different parts for part-based detection algorithms.

```
Author
```

Hang Su

Date

2012-08-13

5.1.2 Macro Definition Documentation

```
5.1.2.1 #define EH_BBOXS_PRUNE 30000
```

Default pruning parameter for bbox_v_nms()

See Also

bbox_v_nms()

5.1.3 Function Documentation

5.1.3.1 void bbox_clipboxes (bbox_t & bbox, const int * imsize)

Clip the boxes to image boundary.

Parameters

```
imsize imsize[0]=height, imsize[1]=width
```

See Also

fbox_clip()

5.1.3.2 void bbox_v_move (std::vector< bbox_t > & bboxes, const int * offset)

Move the input bboxs (in-place)

See Also

fbox_move()

5.1.3.3 void bbox_v_nms (std::vector < bbox_t > & bboxes, double overlap, unsigned prune = EH_BBOXS_PRUNE)

Non-maximum suppression.

Greedily select high-scoring detections and skip detections that are significantly coverd by a previously selected detection.

5.2 eHbox.h File Reference 19

Parameters

bboxes	an array of detection results, changed inside function
overlap	two results are not both kept if their overlap ratio exceed this value
prune	initial bboxes are pruned for higher speed

```
5.1.3.4 void bbox_v_resize ( std::vector < bbox_t > & bboxes, double scale )
```

Resize the input bboxs (in-place)

See Also

fbox resize()

5.2 eHbox.h File Reference

Box types and operations.

```
#include <stdlib.h>
#include <vector>
```

Classes

· struct eHbox_f

box with floating-point boundaries

struct eHbox_i

box with integer boundaries

Typedefs

typedef struct eHbox_f fbox_t

box with floating-point boundaries

typedef struct eHbox_i ibox_t

box with integer boundaries

Functions

void fbox_set (fbox_t *box, double x1, double y1, double x2, double y2)

Set values for given box.

ibox_t fbox_getibox (fbox_t *box)

Round floating-point box to intege box.

void ibox_set (ibox_t *, int x1, int y1, int x2, int y2)

Set values for given box.

double fbox interArea (const fbox t &box1, const fbox t &box2)

Compute area of intersection between two boxes.

void fbox_clip (fbox_t &box, const int *imsize)

Clip box so it's limited by the image size.

fbox_t fbox_merge (const vector < fbox_t > &boxes, const int *idxs, int num, const double *padding=NULL)

Merge boxes, resulting box can be optionally padded.

fbox_t fbox_getResized (const fbox_t &box, double scale)

Get a resized box, input box is not changed.

fbox_t fbox_getMoved (const fbox_t &box, const int *offset)

Get a moved box, input box is not changed.

• void fbox_resize (fbox_t *box, double scale)

Resize the input box.

void fbox_move (fbox_t *box, const int *offset)

Move the position of input box by given offset.

5.2.1 Detailed Description

Box types and operations. Boxes are defined as tuples (x1, y1, x2, y2), where x1 <= x2, y1 <= y2; so (x1,y1) is the top-left corner, (x2,y2) is the bottom-right corner.

Author

Hang Su

Date

2012-08-13

5.2.2 Function Documentation

5.2.2.1 fbox_t fbox_getMoved (const fbox_t & box, const int * offset)

Get a moved box, input box is not changed.

See Also

fbox_move()

5.2.2.2 fbox_t fbox_getResized (const fbox_t & box, double scale)

Get a resized box, input box is not changed.

See Also

fbox resize()

5.2.2.3 fbox t fbox_merge (const vector < fbox t > & boxes, const int * idxs, int num, const double * padding = NULL)

Merge boxes, resulting box can be optionally padded.

Parameters

boxes	array of boxes to be merged
idxs	indexs within vector, indicating which boxes to merge
num	length of idxs
padding	[I r u d] as ratio of corresponding edge, if NULL is passed in, no padding is performed

Returns

merged box

```
5.2.2.4 void fbox_move ( fbox_t * box, const int * offset )
Move the position of input box by given offset.
See Also
            fbox_getMoved()
5.2.2.5 void fbox_resize ( fbox_t * box, double scale )
Resize the input box.
See Also
            fbox_getResized()
```

5.3 eHfacemodel.h File Reference

face detection model and operations

```
#include <vector>
#include "eHimage.h"
#include "eHfilter.h"
#include "eHbbox.h"
#include "eHposemodel.h"
```

Classes

struct eHfacemodel

Face detection model.

Typedefs

- · typedef struct deformation_face facedef_t
- typedef struct part_face facepart_t
- typedef struct eHfacemodel facemodel_t

Face detection model.

Functions

facemodel_t * facemodel_parseXml (char *xmlstr)

Parse face model from xml style string.

facemodel t * facemodel readFromFile (const char *filepath)

Read face model from file.

- vector < bbox_t > facemodel_detect (const facemodel_t *model, const image_ptr img, double thrs)
 Perform face detection.
- vector< bbox_t > facemodel_detect (const facemodel_t *model, const image_ptr img)

Perform face detection using threshold inside model.

vector < bbox_t > facemodel_detect (const facemodel_t *facemodel, const posemodel_t *posemodel_t *posemodel_t

Perform face detection with help of body detection.

vector < bbox_t > facemodel_detect (const facemodel_t *facemodel, const posemodel_t *posemodel_t *posemodel_t

Perform face detection with help of body detection using thresholds inside models.

• void facemodel_delete (facemodel_t *model)

Delete a face model, release related memory.

5.3.1 Detailed Description

face detection model and operations

See Also

Xiangzin Zhu, Deva Ramanan, "Face Detection, Pose Estimation, and landmark Localization in the Wild". In CVPR 2012.

Author

Hang Su

Date

2012-08-13

5.3.2 Function Documentation

5.3.2.1 vector<bbox_t> facemodel_detect (const facemodel_t * model, const image_ptr img, double thrs)

Perform face detection.

Parameters

model	face detection model
img	where to find faces from
thrs	threshold used for pruning results

Returns

array of detected faces (together with part locations)

5.3.2.2 vector
bbox_t> facemodel_detect (const facemodel_t * model, const image_ptr img)

Perform face detection using threshold inside model.

Parameters

model	face detection model
img	where to find faces from

Returns

array of detected faces (together with part locations)

5.3.2.3 vector
bbox_t> facemodel_detect (const facemodel_t * facemodel, const posemodel_t * posemodel, const image_ptr img, double thrs_face, double thrs_pose)

Perform face detection with help of body detection.

Parameters

facemodel	face detection model
posemodel	body pose detection model
img	where to find faces from
thrs_face	threshold used for pruning face detections
thrs_pose	threshold used for pruning pose detections

Returns

array of detected faces (together with part locations)

5.3.2.4 vector
bbox_t> facemodel_detect (const facemodel_t * facemodel, const posemodel_t * posemodel, const image_ptr img)

Perform face detection with help of body detection using thresholds inside models.

Parameters

facemodel	face detection model
posemodel	body pose detection model
img	where to find faces from

Returns

array of detected faces (together with part locations)

5.3.2.5 facemodel_t* facemodel_parseXml (char * xmlstr)

Parse face model from xml style string.

Note

xmlstr is modified during parsing, this can be avoided by using Non-Destrutive Mode of rapidxml

 $5.3.2.6 \quad facemodel_t*facemodel_readFromFile (\ const \ char * \textit{filepath}\)$

Read face model from file.

See Also

facemodel_parseXml()

5.4 eHfeatpyramid.h File Reference

Feature pyramid data type and calculation.

```
#include "eHmatrix.h"
#include "eHimage.h"
```

Classes

• struct eHfeatpyramid

Image feature pyramid.

Typedefs

typedef struct eHfeatpyramid featpyra_t

Pointer to a feature pyramid.

Functions

featpyra_t * featpyra_create (const image_ptr im, int interval, int sbin, const int *maxsize, bool hallucinate=true)

Allocate and compute a feature pyramid from an image.

void featpyra_delete (featpyra_t *pyra)

Delete a feature pyramid.

5.4.1 Detailed Description

Feature pyramid data type and calculation.

Author

Hang Su

Date

2012-08-14

5.4.2 Function Documentation

5.4.2.1 featpyra_t* featpyra_create (const image_ptr im, int interval, int sbin, const int * maxsize, bool hallucinate = true)

Allocate and compute a feature pyramid from an image.

Parameters

hallucinate | whether hallucinate a higher resolution interval

5.5 eHfilter.h File Reference

Filters applied on image features.

```
#include "eHmatrix.h"
#include <vector>
```

Classes

· struct eHfilter

Image feature filter.

Typedefs

typedef struct eHfilter filter_t

Image feature filter.

Functions

- mat3d_ptr filterv_apply (const std::vector< filter_t > filters, const mat3d_ptr feats, int start, int end)
 Convolve a feature map with a set of filters Multithreaded version.
- mat3d_ptr filterv_apply_ST (const std::vector< filter_t > filters, const mat3d_ptr feats, int start, int end)

 Convolve a feature map with a set of filters Singlethreaded version.

5.5.1 Detailed Description

Filters applied on image features.

Author

Hang Su

Date

2012-08

5.5.2 Function Documentation

5.5.2.1 mat3d ptr filterv_apply (const std::vector < filter t > filters, const mat3d ptr feats, int start, int end)

Convolve a feature map with a set of filters - Multithreaded version.

Parameters

filters	a set of part filters
feats	feature map
start	range of filters used - first one
end	range of filters used - last one

Returns

filter responses

Note

filter responses is allocated inside, proper delete is necessary after use cblas library is required

See Also

filterv_apply_ST()

 $5.5.2.2 \quad mat3d_ptr \ filterv_apply_ST \ (\ const \ std::vector < filter_t > \textit{filters}, \ const \ mat3d_ptr \ \textit{feats}, \ int \ \textit{start}, \ int \ \textit{end} \)$

Convolve a feature map with a set of filters - Singlethreaded version.

Parameters

filters	a set of part filters
feats	feature map
start	range of filters used - first one
end	range of filters used - last one

Returns

filter responses

Note

filter responses is allocated inside, proper delete is necessary after use

See Also

filterv_apply()

5.6 eHimage.h File Reference

Basic image type and operations.

```
#include <stdlib.h>
#include <string>
#include "eHbox.h"
#include "eHbbox.h"
```

Classes

• struct eHimage

Basic image data structure.

Typedefs

• typedef struct eHimage image_t

Basic image data structure.

typedef image_t * image_ptr

Pointer to image.

Functions

• image_ptr image_alloc (size_t sizy, size_t sizx, size_t nch=3)

Allocate a new image of size [sizy, sizx, nch].

• image_ptr image_alloc (size_t sizy, size_t sizx, size_t nch, const double *fillval)

Allocate a new image of size [sizy, sizx, nch], and initialize all pixel values to fill.

void image_delete (image_ptr img)

Delete image and associated memory.

void image_fill (image_ptr img, const double *val)

Fill all pixels with same values.

image ptr image readJPG (const char *filename)

Read Jpeg image file.

void image_display (const image_ptr img, const std::string &winname)

Display an image.

• image_ptr image_subsample (const image_ptr img, double scale)

Fast image subsampling.

• image_ptr image_reduce (const image_ptr img)

Get an image half the size of input one.

image_ptr image_resize (const image_ptr img, double scale)

Resize an image using bilateral interpolation.

image_ptr image_crop (const image_ptr img, fbox_t crop, int *offset=NULL, bool shared=true)

Crop image This function can be used in two ways, either get shared data from original image, or allocate a new image, which is more expensive.

- void image_showDetection (const image_ptr img, const vector < bbox_t > boxes, const std::string &winname)

 Show detection results on image and wait.
- void image_showFaces (const image_ptr img, const vector< bbox_t > boxes, const std::string &winname)

 Show face detection results: face region, eyes, nose, mouth.

5.6.1 Detailed Description

Basic image type and operations.

Note

images are stored using column major style

Author

Hang Su

Date

2012-08-13

5.6.2 Function Documentation

```
5.6.2.1 image_ptr image_alloc ( size_t sizy, size_t sizx, size_t nch = 3 )
```

Allocate a new image of size [sizy, sizx, nch].

Returns

pointer to the allocated image

Note

Returned image is not initialized

```
5.6.2.2 image_ptr image_alloc ( size_t sizy, size_t sizx, size_t nch, const double * fillval )
```

Allocate a new image of size [sizy, sizx, nch], and initialize all pixel values to fill.

Returns

pointer to the allocated image

```
5.6.2.3 image_ptr image_crop ( const image_ptr img, fbox_t crop, int * offset = NULL, bool shared = true )
```

Crop image This function can be used in two ways, either get shared data from original image, or allocate a new image, which is more expensive.

Parameters

img	original image
crop	crop area within img
store	offset [offy offx] of the cropped patch inside image if not NULL
shared	indicate whether the result shares data with original image

Returns

cropped image patch, NULL if allocation failed

5.6.2.4 void image_delete (image_ptr img)

Delete image and associated memory.

Note

If it's a shared image(the "child"), no data is destroyed; if the image that owns the data is deleted, all descendants are not accessible anymore

5.6.2.5 void image_display (const image_ptr img, const std::string & winname)

Display an image.

Parameters

img	the image to be displayed
winname	window name, also serves as the identifier of the window

Note

Requires opency library: libopency_core, libopency_highgui

If a window with the same name already exists, no new window is created windows need to be destroyed later, using cy::destroyWindow()

5.6.2.6 void image_fill (image_ptr img, const double * val)

Fill all pixels with same values.

Parameters

img	target
val	value to be filled to each pixel, it should be at least the same length as img->nchannel

5.6.2.7 image_ptr image_readJPG (const char * filename)

Read Jpeg image file.

Returns

pointer to allocatd image, NULL if failed

Note

Requires opencv library: libopencv_core, libopencv_highgui

5.6.2.8 image_ptr image_reduce (const image_ptr img)

Get an image half the size of input one.

Parameters

img	the image to be reduced
-----	-------------------------

Returns

reduced image

Note

input image remains alive and unchanged

5.6.2.9 image_ptr image_resize (const image_ptr img, double scale)

Resize an image using bilateral interpolation.

Parameters

image	the image to be resized
scale	resizing scale

Returns

resized image

See Also

image_subsample()

Note

input image remains alive and unchanged

5.6.2.10 void image_showDetection (const image ptr img, const vector< bbox t > boxes, const std::string & winname)

Show detection results on image and wait.

Parameters

img	detection target
boxes	detection results
winname	display window name, also serves as an identifier

See Also

image_showFaces()

5.6.2.11 void image_showFaces (const image_ptr img, const vector < bbox_t > boxes, const std::string & winname)

Show face detection results: face region, eyes, nose, mouth.

See Also

image_showDetection()

5.6.2.12 image_ptr image_subsample (const image_ptr img, double scale)

Fast image subsampling.

Unlike image_resize(), this function can only be used to down-scale an image, and focus more on anti-aliasing when building pyramid

Parameters

img	the image to be subsampled
scale	subsample scale (<1)

Returns

subsampleded image, or NULL if scale>1

See Also

```
image_resize()
```

Note

input image remains alive and unchanged src image is not destroyed

5.7 eHimageFeature.h File Reference

Compute image features.

```
#include "eHimage.h"
#include "eHmatrix.h"
```

Functions

mat3d_ptr eHhog (const image_ptr img, int sbin)
 Compute HOG feature of a color image.

5.7.1 Detailed Description

Compute image features.

Author

Hang Su

Date

2012-08

5.7.2 Function Documentation

5.7.2.1 mat3d_ptr eHhog (const image_ptr img, int sbin)

Compute HOG feature of a color image.

Parameters

im	g 3 channel double precision image
sbi	in bin size

Returns

HOG feature matrix

Note

feature matrix is allocated inside, proper delete is necessary after use

5.8 eHmatrix.h File Reference

Basic matrix types and operations.

```
#include <stdlib.h>
```

Classes

struct eHmatrix2d

2D matrix

struct eHmatrix3d

3D matrix

struct eHmatrixkd

k-dimension matrix

Typedefs

typedef struct eHmatrix2d mat2d_t

2D matrix

typedef mat2d_t * mat2d_ptr

pointer to a 2D matrix

typedef struct eHmatrix3d mat3d t

3D matrix

typedef mat3d_t * mat3d_ptr

pointer to a 3D matrix

• typedef struct eHmatrixkd matkd_t

k-dimension matrix

typedef matkd_t * matkd_ptr

pointer to a k-dimension matrix

Functions

• mat2d_ptr mat2d_alloc (size_t sizy, size_t sizx)

Allocate a 2D matrix.

void mat2d_delete (mat2d_ptr)

Destruct a 2D matrix.

mat3d_ptr mat3d_alloc (size_t sizy, size_t sizx, size_t sizz)

```
Allocate a 3D matrix.

    void mat3d_delete (mat3d_ptr)

          Destruct a 3D matrix.
    • void mat3d_pad (mat3d_ptr mat, const size_t *pad, double pad_val)
          Pad 3d matrix.
    • void mat3d_fill (mat3d_ptr mat, const size_t *start, const size_t *width, double fill_val)
          Fill continous region of a 3D matrix with fill_val.
    • matkd_ptr matkd_alloc (size_t k, size_t *sizs)
          Allocate a kD matrix.

    void matkd_delete (matkd_ptr)

          Delete a kD matrix.
5.8.1 Detailed Description
Basic matrix types and operations.
Author
      Hang Su
Date
      2012-07
5.8.2 Function Documentation
5.8.2.1 mat2d_ptr mat2d_alloc ( size_t sizy, size_t sizx )
Allocate a 2D matrix.
See Also
      mat2d_delete()
5.8.2.2 void mat2d_delete ( mat2d_ptr )
Destruct a 2D matrix.
See Also
      mat2d_alloc()
5.8.2.3 mat3d_ptr mat3d_alloc ( size_t sizy, size_t sizx, size_t sizz )
Allocate a 3D matrix.
See Also
      mat3d delete()
```

```
5.8.2.4 void mat3d_delete ( mat3d_ptr )
```

Destruct a 3D matrix.

See Also

mat3d_alloc()

5.8.2.5 void mat3d_fill ($mat3d_ptr\ mat$, $const\ size_t*\ start$, $const\ size_t*\ width$, $double\ fill_val$)

Fill continous region of a 3D matrix with fill_val.

Parameters

start	starting point
width	width in each dimension
fill_val	the value to be filled in

5.8.2.6 void mat3d_pad (mat3d_ptr mat, const size_t * pad, double pad_val)

Pad 3d matrix.

Parameters

pad	width of padding along each dimension
pad_val	values to be padded in each dimension

```
5.8.2.7 matkd_ptr matkd_alloc ( size_t k, size_t * sizs )
```

Allocate a kD matrix.

See Also

matkd_delete()

5.8.2.8 void matkd_delete (matkd_ptr)

Delete a kD matrix.

See Also

matkd_alloc()

5.9 eHposemodel.h File Reference

Human body/pose detection model and operations.

```
#include <vector>
#include "eHimage.h"
#include "eHfilter.h"
#include "eHbbox.h"
```

Classes

struct eHposemodel

Human body/pose mdoel.

Typedefs

- typedef struct deformation pose posedef_t
- typedef struct part_pose posepart_t
- typedef struct bias_pose posebias_t
- typedef struct eHposemodel posemodel_t

Functions

posemodel_t * posemodel_parseXml (char *xmlstr)

Parse body/pose model from xml style string.

• posemodel_t * posemodel_readFromFile (const char *filepath)

Read body/pose model from file.

- vector < bbox_t > posemodel_detect (const posemodel_t *model, const image_ptr img, double thrs)
 Perform body/pose detection.
- vector< bbox_t > posemodel_detect (const posemodel_t *model, const image_ptr img)

Perform body/pose detection using default threshold.

void posemodel_delete (posemodel_t *model)

Delete a pose model, release related memory.

5.9.1 Detailed Description

Human body/pose detection model and operations.

See Also

Y. Yang, D. Ramanan, "Articulated Pose Estimation using Flexible Mixtures of Parts". In CVPR 2011.

Author

Hang Su

Date

2012-08

5.9.2 Function Documentation

5.9.2.1 vector
bbox t> posemodel_detect (const posemodel_t * model, const image_ptr img, double thrs)

Perform body/pose detection.

Parameters

model	pose detection model
img	where to find human poses from
thrs	threshold used for pruning results

Returns

array of detected poses (together with part locations)

 $5.9.2.2 \quad \text{vector} < \text{bbox_t} > \text{posemodel_detect} \left(\text{ const posemodel_t} * \textit{model}, \text{ const image_ptr } \textit{img} \right)$

Perform body/pose detection using default threshold.

Parameters

model	pose detection model
img	where to find human poses from

Returns

array of detected poses (together with part locations)

5.9.2.3 posemodel_t* posemodel_parseXml (char * xmlstr)

Parse body/pose model from xml style string.

Note

xmlstr is modified during parsing, this can be avoided by using Non-Destrutive Mode of rapidxml

5.9.2.4 posemodel_t* posemodel_readFromFile (const char * filepath)

Read body/pose model from file.

See Also

posemodel_parseXml()

5.10 eHshiftdt.h File Reference

Generalized Distance Transform.

Functions

• void eHshiftdt (double *M, int *Ix, int *Iy, int lenx, int leny, int offx, int offy, int dstep, const double *vals, int sizx, int sizy, const double *w)

Perform generalized distance transform.

void eHshiftdt (double *M, int *Ix, int *Iy, const double *vals, int sizx, int sizy, const double *w)

5.11 eHutils.h File Reference 37

5.10.1 Detailed Description

Generalized Distance Transform.

See Also

P. F. Felzenszwalb and D. P. Huttenlocher, "Distance Transforms of Sampled Functions". 2004.

Author

Hang Su

Date

2012-07

5.10.2 Function Documentation

5.10.2.1 void eHshiftdt (double * M, int * Ix, int * Iy, int Ix, int

Perform generalized distance transform.

This applies computes a min convolution of a quadratic function ax^2+bx This outputs results on a shifted(offy, offx), subsampled(dstep) grid

Note

M, Ix, Iy should be properly allocated before passed in, they are then modified as output results

5.11 eHutils.h File Reference

Some useful stuff (string parsing etc.)

Functions

• int * parseCSVstr2int (const char *csvstr, int *siz, int offset=0)

Parse given string(e.g. "10, 5\0") to integer array.

double * parseCSVstr2double (const char *csvstr, int *siz)

Parse given string(e.g. "1.2, 3.4 $\0$ ") to double precision array.

5.11.1 Detailed Description

Some useful stuff (string parsing etc.)

Author

Hang Su

Date

2012-08

5.11.2 Function Documentation

5.11.2.1 double* parseCSVstr2double (const char * csvstr, int * siz)

Parse given string(e.g. "1.2, 3.4\0") to double precision array.

Parameters

csvstr	null-terminated c string
siz	amount of numbers inside the string; if -1 is passed, actural size will be calculated and stored
	in siz

Returns

array of numbers, memory is allocated for it

5.11.2.2 int* parseCSVstr2int (const char * csvstr, int * siz, int offset = 0)

Parse given string(e.g. "10, 5\0") to integer array.

Parameters

csvstr	null-terminated c string
siz	number of integers inside the string; if -1 is passed, actural size will be calculated and stored
	in siz

Returns

array of integers, memory is allocated for it

Index

bbox_clipboxes	image_delete, 28
eHbbox.h, 18	image_display, 28
bbox_v_move	image_fill, 28
eHbbox.h, 18	image_readJPG, 28
bbox v nms	image reduce, 28
eHbbox.h, 18	image_resize, 30
bbox_v_resize	image_showDetection, 30
eHbbox.h, 19	image_showFaces, 30
	image_subsample, 30
component	eHimageFeature.h, 31
eHbbox, 9	eHhog, 31
	eHmatrix.h, 32
EH_BBOXS_PRUNE	mat2d_alloc, 33
eHbbox.h, 18	mat2d_delete, 33
eHbbox, 9	mat3d_alloc, 33
component, 9	mat3d_delete, 33
score, 9	mat3d fill, 34
eHbbox.h, 17	mat3d_pad, 34
bbox_clipboxes, 18	matkd_alloc, 34
bbox_v_move, 18	matkd_delete, 34
bbox_v_nms, 18	eHmatrix2d, 13
bbox_v_resize, 19	eHmatrix3d, 14
EH_BBOXS_PRUNE, 18	eHmatrixkd, 15
eHbox.h, 19	eHposemodel, 15
fbox_getMoved, 20	filters, 16
fbox_getResized, 20	eHposemodel.h, 34
fbox_merge, 20	posemodel_detect, 35, 36
fbox_move, 20	posemodel_parseXml, 36
fbox resize, 21	posemodel_readFromFile, 36
eHbox_f, 10	eHshiftdt
eHbox_i, 10	eHshiftdt.h, 37
eHfacemodel, 11	eHshiftdt.h, 36
filters, 11	eHshiftdt, 37
eHfacemodel.h, 21	eHutils.h, 37
facemodel_detect, 22, 23	parseCSVstr2double, 38
facemodel_parseXml, 23	parseCSVstr2int, 39
facemodel_readFromFile, 23	parseos vstrzint, 55
eHfeatpyramid, 12	facemodel_detect
eHfeatpyramid.h, 23	eHfacemodel.h, 22, 23
featpyra_create, 24	facemodel_parseXml
eHfilter, 12	eHfacemodel.h, 23
eHfilter.h, 24	facemodel readFromFile
filterv_apply, 25	eHfacemodel.h, 23
filterv_apply_ST, 25	fbox_getMoved
eHhog	eHbox.h, 20
eHimageFeature.h, 31	fbox getResized
eHimage, 13	eHbox.h, 20
eHimage, 13	fbox merge
image_alloc, 27	eHbox.h, 20
- -	
image_crop, 27	fbox_move

eHbox.h, 20 fbox_resize eHbox.h, 21 featpyra_create eHfeatpyramid.h, 24 score filters eHfacemodel, 11 eHposemodel, 16 filtery apply eHfilter.h, 25 filterv_apply_ST eHfilter.h, 25 image_alloc eHimage.h, 27 image_crop eHimage.h, 27 image delete eHimage.h, 28 image_display eHimage.h, 28 image fill eHimage.h, 28 image_readJPG eHimage.h, 28 image_reduce eHimage.h, 28 image_resize eHimage.h, 30 image showDetection eHimage.h, 30 image_showFaces eHimage.h, 30 image_subsample eHimage.h, 30 mat2d_alloc eHmatrix.h, 33 mat2d_delete eHmatrix.h, 33 mat3d_alloc eHmatrix.h, 33 mat3d delete eHmatrix.h, 33 mat3d_fill eHmatrix.h, 34 mat3d_pad eHmatrix.h, 34 matkd_alloc eHmatrix.h, 34 matkd delete eHmatrix.h, 34 parseCSVstr2double eHutils.h, 38 parseCSVstr2int eHutils.h, 39 posemodel_detect

posemodel_parseXml eHposemodel.h, 36 posemodel_readFromFile eHposemodel.h, 36 eHbbox, 9

eHposemodel.h, 35, 36