https://github.com/savthe/discrete_math

Конечные кольца и поля -1

- **1.** Докажите, что $\mathbb{F}_5[x]/(x+2) \cong \mathbb{F}_5$.
- **2.** Докажите, что $\mathbb{F}_3[x]/(x^2+2) \cong \mathbb{F}_3 \times \mathbb{F}_3$, опишите явно этот изоморфизм (для каждого элемента укажите, в какой он переходит).
- **3.** Найдите такой многочлен $p(x) \in \mathbb{F}_3[x]$, что
- а) $\mathbb{F}_3[x]/(p(x))\cong\mathbb{Z}_3$, б) $\mathbb{F}_3[x]/(p(x))\cong\mathbb{Z}_9$, в) $\mathbb{F}_3[x]/(p(x))\cong\mathbb{Z}_2\times\mathbb{Z}_3$ или докажите его отсутствие.
- **4.** Пусть k поле, (p(x)) идеал кольца k[x]. Обозначим $\alpha = x + I$ класс эквивалентности x. Покажите, что α является корнем многочлена p(t) в кольце k[x]/(p(x)).
- **5.** Объясните следствие из предыдущей задачи: кольцо k[x]/(p(x)) можно понимать как минимальное кольцо, содержащее k и корень многочлена p(x).
- **6.** Для каждого многочлена второй степени в $p(x) \in \mathbb{F}_2[x]$ постройте кольцо $\mathbb{F}[\alpha]$, где α корень многочлена p(x). Укажите кольца, которые являются полями, найдите идемпотенты и идеалы в каждом полученном кольце. Укажите, какие кольца изоморфны $\mathbb{F}_2 \times \mathbb{F}_2$.
- 7. Докажите, что $\mathbb{F}_3[\alpha]$, где α корень многочлена $x^2 + x + 2$, является полем. Найдите порядок по умножению $\alpha + 2$ в этом поле.

Решение. Покажем, что многочлен $p(x) = x^2 + x + 2$ неприводим над \mathbb{F}_3 . Так как этот многочлен степени не выше 3, достаточно проверить, что он не имеет в \mathbb{F}_3 корней. Проверяем:

$$p(0) = 2$$
, $p(1) = 1$, $p(2) = p(-1) = 2$.

Многочлен p(x) неприводим, а следовательно идеал $(x^2 + x + 2)$ максимален в $\mathbb{F}_3[x]$, поэтому $\mathbb{F}_3[\alpha] \cong \mathbb{F}_3[x]/(x^2 + x + 2)$ — поле.

Так как α корень p(x), в поле $\mathbb{F}_3[\alpha]$ выполняется $\alpha^2 + \alpha + 2 = 0$, отсюда: $\alpha^2 = 2\alpha + 1$.

Найдем порядок элемента $\alpha + 2$. Мы знаем из теоремы Лагранжа, что порядок элемента — делитель порядка мультипликативной группы. Так как $\mathbb{F}_3[\alpha]$ поле, в котором 9 элементов:

$$0, 1, 2, \alpha, \alpha + 1, \alpha + 2, 2\alpha, 2\alpha + 1, 2\alpha + 2,$$

в мультипликативной группе 8 элементов (все, кроме 0). Поэтому $ord(\alpha+2)$ может быть только 1,2,4,8. Можно сообразить, что ответ будет лишь 4 или 8 (так как элементы порядка 1,2 находятся в подполе \mathbb{F}_3), поэтому достаточно возвести $\alpha+2$ в степень 4 и проверить, получим ли мы 1. Если нет, то ответ: 8. Возводим (не забываем, что арифметика по правилам \mathbb{F}_3):

$$(\alpha + 2)^2 = \alpha^2 + \alpha + 1 = (2\alpha + 1) + \alpha + 1 = 2$$
$$(\alpha + 2)^4 = 2^2 = 1$$

Таким образом $ord(\alpha + 2) = 4$.

- 8. Постройте поле из 4-х элементов и найдите порядок каждого элемента.
- **9.** В поле $\mathbb{F}_3[\alpha]$, где α корень многочлена x^2+1 , найдите порядок элемента α . Найдите элемент наибольшего порядка.
- **10.** Найдите порядок элементов α и $2\alpha 1$ в поле $\mathbb{F}_5[\alpha]$, где α корень многочлена $x^2 + 3x + 3$.
- **11.** Найдите все неприводимые над полем \mathbb{F}_2 многочлены, степени не выше 4.
- **12.** Найдите все неприводимые над полем \mathbb{F}_3 многочлены, степени не выше 2.

- **13.** Постройте приводимый над \mathbb{F}_3 многочлен, не имеющий корней.
- **14.** Определите количество неприводимых многочленов второй степени над \mathbb{F}_p , где: a) p=2, б) p=3, в) p- произвольное простое число.
- **15.** В поле $\mathbb{F}_2[\alpha]$, где α корень многочлена $p(x) = x^4 + x + 1$, найдите минимальный многочлен элемента $\alpha^3 + 1$ и все его корни.
- **16.** Для кольца $\mathbb{k} = \mathbb{F}_5[\alpha]$, где α корень многочлена $x^3 + 3x 2$ выполните задания:
- а) Докажите, что k поле.
- б) Найдите порядок элемента $\alpha^2 + 2$ и его минимальный многочлен.
- в) Найдите все корни многочлена $x^3 + 3x 2$.
- г) Найдите $(\alpha + 3)^{-1}$.
- **17.** В поле $\mathbb{F}_3[\alpha]$, где α корень многочлена $x^2 + 1$ решите уравнения:
- a) x + 2 = 0 6) $x^2 + x + 1 = 0$ B) $x^2 + 1 = 0$ r) $x^2 + 2x + 2 = 0$