# Termodinâmica e Transferência de Calor 2022/2023

Aula n°6: Entropia

José M. Castanheira Departamento de Física, Universidade de Aveiro

8 de novembro de 2022

# ► Variação de entropia



A figura ao lado representa dois ciclos reversíveis. Tratando-se de processos reversíveis, e atendendo à desigualdade de Clausius, poderemos escrever

$$\left(\int_{1}^{2} \frac{\delta Q}{T}\right)_{A} + \left(\int_{2}^{1} \frac{\delta Q}{T}\right)_{C} = \cancel{P}^{0} \qquad (1)$$

$$\left(\int_{1}^{2} \frac{\delta Q}{T}\right)_{R} + \left(\int_{2}^{1} \frac{\delta Q}{T}\right)_{C} = \cancel{O}^{0} \qquad (2)$$

# ► Variação de entropia



A figura ao lado representa dois ciclos reversíveis. Tratando-se de processos reversíveis, e atendendo à desigualdade de Clausius, poderemos escrever

$$\left(\int_{1}^{2} \frac{\delta Q}{T}\right)_{A} + \left(\int_{2}^{1} \frac{\delta Q}{T}\right)_{C} = \cancel{P}^{0} \qquad (1$$

$$\left(\int_{1}^{2} \frac{\delta Q}{T}\right)_{B} + \left(\int_{2}^{1} \frac{\delta Q}{T}\right)_{C} = \mathcal{O}^{0}$$
 (2)

Subtraindo as equações (2) de (1), obtém-se

$$\left(\int_{1}^{2} \frac{\delta Q}{T}\right)_{A} = \left(\int_{1}^{2} \frac{\delta Q}{T}\right)_{B} \tag{3}$$



▶ Como A e B são dois percursos reversíveis quaisquer, conclui-se que o integral de  $\delta Q/T$  num processo reversível apenas depende dos estados inicial e final. Assim, o representa a variação de uma propriedade do sistema. Designamos essa propriedade por entropia e utilizaremos a letra S para a representar

$$S_2 - S_1 = \left(\int_1^2 \frac{\delta Q}{T}\right)_R \tag{4}$$



Como A e B são dois percursos reversíveis quaisquer, conclui-se que o integral de  $\delta Q/T$  num processo reversível apenas depende dos estados inicial e final. Assim, o representa a variação de uma propriedade do sistema. Designamos essa propriedade por entropia e utilizaremos a letra S para a representar

$$S_2 - S_1 = \left(\int_1^2 \frac{\delta Q}{T}\right)_R \tag{4}$$

A letra R é para lembrar que a integração é feita num processo reversível.



Como A e B são dois percursos reversíveis quaisquer, conclui-se que o integral de  $\delta Q/T$  num processo reversível apenas depende dos estados inicial e final. Assim, o representa a variação de uma propriedade do sistema. Designamos essa propriedade por entropia e utilizaremos a letra S para a representar

$$S_2 - S_1 = \left(\int_1^2 \frac{\delta Q}{T}\right)_R \tag{4}$$

A letra R é para lembrar que a integração é feita num processo reversível.

A variação de entropia num processo variação infinitesimal (processo elementar) do estado do sistema é dada por

$$dS = \left(\frac{\delta Q}{T}\right)_{R} \tag{5}$$

# A figura em baixo mostra dois diagramas T-S e h-s para uma substância pura.



Considerando processos reversíveis num sistema simples compressível, a primeira lei da termodinâmica  $\,$ 

$$\delta Q = \mathrm{d}U + \delta W,$$

Considerando processos reversíveis num sistema simples compressível, a primeira lei da termodinâmica

$$\delta Q = dU + \delta W,$$

pode escrever-se na seguinte forma

$$T dS = dU + pdV. (6)$$

Considerando processos reversíveis num sistema simples compressível, a primeira lei da termodinâmica

$$\delta Q = dU + \delta W,$$

pode escrever-se na seguinte forma

$$T dS = dU + pdV. (6)$$

Esta equação só envolve variáveis de estado e sera válida para sempre que dois estados de equilíbrio difiram de quantidades infinitesimais.

Considerando processos reversíveis num sistema simples compressível, a primeira lei da termodinâmica

$$\delta Q = dU + \delta W,$$

pode escrever-se na seguinte forma

$$T dS = dU + pdV. (6)$$

Esta equação só envolve variáveis de estado e sera válida para sempre que dois estados de equilíbrio difiram de quantidades infinitesimais.

Diferenciando a H = U + pV e substituindo na equação (6), obtém-se

$$T dS = dH - V dp. (7)$$

Considerando processos reversíveis num sistema simples compressível, a primeira lei da termodinâmica

$$\delta Q = dU + \delta W,$$

pode escrever-se na seguinte forma

$$T dS = dU + pdV. (6)$$

Esta equação só envolve variáveis de estado e sera válida para sempre que dois estados de equilíbrio difiram de quantidades infinitesimais.

Diferenciando a H=U+pV e substituindo na equação (6), obtém-se

$$T dS = dH - V dp. (7)$$

Demonstre a equação (7).

As equações (6) e (7) podem reescrever-se usando as respectivas grandezas específicas:

$$T ds = du + p dv \Leftrightarrow ds = \frac{du}{T} + p \frac{dv}{T};$$
 (8)

$$T ds = dh - v dp \quad \Leftrightarrow \quad ds = \frac{dh}{T} - v \frac{dp}{T}.$$
 (9)

As equações (6) e (7) podem reescrever-se usando as respectivas grandezas específicas:

$$T ds = du + p dv \Leftrightarrow ds = \frac{du}{T} + p \frac{dv}{T};$$
 (8)

$$T ds = dh - v dp \quad \Leftrightarrow \quad ds = \frac{dh}{T} - v \frac{dp}{T}.$$
 (9)

# Varição de entropia de uma substância incompressível

Se uma substância puder ser modelada como incompressível, a variação de energia interna será apenas função da temperatura,  $\mathrm{d}u=c(T)\mathrm{d}T$  e a equação (8) reduz-se a

$$ds = \frac{c(T)dT}{T} + p\frac{dc}{T} = \frac{c(T)dT}{T}$$
(10)

$$\therefore s(T_2) - s(T_1) = \int_{T_1}^{T_2} \frac{c(T)}{T} dT. \tag{11}$$

#### Entropia de uma substância incompressível

TABLE A-2 Properties of Saturated Water (Liquid-Vapor): Temperature Table

6.197

272.02 2463.1 272.06 2346.2 2618.3 .8935 7.8310

292.95 2469.6 292.98 2333.8 2626.8 .9549 7.7553

.2503 1.0199

.3119 1.0228 5.042

| TABLE A-                                                          | 2 Properti | es or Satura                              | ted water (                     | Liquid-vap                       | or): remp                       | erature iai       | ble    |                                 |                      |                                 |             |
|-------------------------------------------------------------------|------------|-------------------------------------------|---------------------------------|----------------------------------|---------------------------------|-------------------|--------|---------------------------------|----------------------|---------------------------------|-------------|
| Pressure Conversions:<br>1 bar = 0.1 MPa<br>= 10 <sup>2</sup> kPa |            | Specific Volume<br>m³/kg                  |                                 | Internal Energy<br>kJ/kg         |                                 | Enthalpy<br>kJ/kg |        |                                 | Entropy<br>kJ/kg · K |                                 |             |
| Temp.                                                             | Press.     | Sat.<br>Liquid<br>$v_{\rm f} \times 10^3$ | Sat.<br>Vapor<br>v <sub>g</sub> | Sat.<br>Liquid<br>u <sub>f</sub> | Sat.<br>Vapor<br>u <sub>g</sub> | Sat.<br>Liquid    | Evap.  | Sat.<br>Vapor<br>h <sub>g</sub> | Sat.<br>Liquid       | Sat.<br>Vapor<br><sup>S</sup> g | Temp.<br>°C |
| .01                                                               | 0.00611    | 1.0002                                    | 206,136                         | 0.00                             | 2375.3                          | 0.01              | 2501.3 | 2501.4                          | 0.0000               | 9.1562                          | .01         |
| 4                                                                 | 0.00813    | 1.0001                                    | 157.232                         | 16.77                            | 2380.9                          | 16.78             | 2491.9 | 2508.7                          | 0.0610               | 9.0514                          | 4           |
| 5                                                                 | 0.00872    | 1.0001                                    | 147.120                         | 20.97                            | 2382.3                          | 20.98             | 2489.6 | 2510.6                          | 0.0761               | 9.0257                          | 5           |
| 6                                                                 | 0.00935    | 1.0001                                    | 137,734                         | 25.19                            | 2383.6                          | 25.20             | 2487.2 | 2512.4                          | 0.0912               | 9.0003                          | 6           |
| 8                                                                 | 0.01072    | 1.0002                                    | 120.917                         | 33.59                            | 2386.4                          | 33.60             | 2482.5 | 2516.1                          | 0.1212               | 8.9501                          | 8           |
| 10                                                                | 0.01228    | 1.0004                                    | 106,379                         | 42.00                            | 2389.2                          | 42.01             | 2477.7 | 2519.8                          | 0.1510               | 8,9008                          | 10          |
| 11                                                                | 0.01312    | 1.0004                                    | 99.857                          | 46.20                            | 2390.5                          | 46.20             | 2475.4 | 2521.6                          | 0.1658               | 8.8765                          | 11          |
| 12                                                                | 0.01402    | 1.0005                                    | 93,784                          | 50.41                            | 2391.9                          | 50.41             | 2473.0 | 2523.4                          | 0.1806               | 8.8524                          | 12          |
| 13                                                                | 0.01497    | 1.0007                                    | 88.124                          | 54.60                            | 2393.3                          | 54.60             | 2470.7 | 2525.3                          | 0.1953               | 8.8285                          | 13          |
| 14                                                                | 0.01598    | 1.0008                                    | 82.848                          | 58.79                            | 2394.7                          | 58.80             | 2468.3 | 2527.1                          | 0.2099               | 8.8048                          | 14          |
| 15                                                                | 0.01705    | 1.0009                                    | 77,926                          | 62.99                            | 2396.1                          | 62.99             | 2465.9 | 2528.9                          | 0.2245               | 8,7814                          | 15          |
| 16                                                                | 0.01818    | 1.0011                                    | 73.333                          | 67.18                            | 2397.4                          | 67.19             | 2463.6 | 2530.8                          | 0.2390               | 8.7582                          | 16          |
| 17                                                                | 0.01938    | 1.0012                                    | 69.044                          | 71.38                            | 2398.8                          | 71.38             | 2461.2 | 2532.6                          | 0.2535               | 8,7351                          | 17          |
| 18                                                                | 0.02064    | 1.0014                                    | 65.038                          | 75.57                            | 2400.2                          | 75.58             | 2458.8 | 2534.4                          | 0.2679               | 8.7123                          | 18          |
| 19                                                                | 0.02198    | 1.0016                                    | 61.293                          | 79.76                            | 2401.6                          | 79.77             | 2456.5 | 2536.2                          | 0.2823               | 8.6897                          | 19          |
| 20                                                                | 0.02339    | 1.0018                                    | 57,791                          | 83.95                            | 2402.9                          | 83.96             | 2454.1 | 2538.1                          | 0.2966               | 8,6672                          | 20          |
| 21                                                                | 0.02487    | 1.0020                                    | 54.514                          | 88.14                            | 2404.3                          | 88.14             | 2451.8 | 2539.9                          | 0.3109               | 8,6450                          | 21          |
| 22                                                                | 0.02645    | 1.0022                                    | 51,447                          | 92.32                            | 2405.7                          | 92.33             | 2449.4 | 2541.7                          | 0.3251               | 8,6229                          | 22          |
| 23                                                                | 0.02810    | 1.0024                                    | 48.574                          | 96.51                            | 2407.0                          | 96.52             | 2447.0 | 2543.5                          | 0.3393               | 8,6011                          | 23          |
| 24                                                                | 0.02985    | 1.0027                                    | 45.883                          | 100.70                           | 2408.4                          | 100.70            | 2444.7 | 2545.4                          | 0.3534               | 8.5794                          | 24          |
| 25                                                                | 0.03169    | 1.0029                                    | 43.360                          | 104.88                           | 2409.8                          | 104.89            | 2442.3 | 2547.2                          | 0.3674               | 8.5580                          | 25          |
| 26                                                                | 0.03363    | 1.0032                                    | 40.994                          | 109.06                           | 2411.1                          | 109.07            | 2439.9 | 2549.0                          | 0.3814               | 8.5367                          | 26          |
| 27                                                                | 0.03567    | 1.0035                                    | 38,774                          | 113.25                           | 2412.5                          | 113.25            | 2437.6 | 2550.8                          | 0.3954               | 8,5156                          | 27          |
| 28                                                                | 0.03782    | 1.0037                                    | 36.690                          | 117.42                           | 2413.9                          | 117.43            | 2435.2 | 2552.6                          | 0.4093               | 8.4946                          | 28          |
| 29                                                                | 0.04008    | 1.0040                                    | 34.733                          | 121.60                           | 2415.2                          | 121.61            | 2432.8 | 2554.5                          | 0.4231               | 8.4739                          | 29          |
| 30                                                                | 0.04246    | 1.0043                                    | 32.894                          | 125.78                           | 2416.6                          | 125.79            | 2430.5 | 2556.3                          | 0.4369               | 8.4533                          | 30          |
| 31                                                                | 0.04496    | 1.0046                                    | 31.165                          | 129.96                           | 2418.0                          | 129.97            | 2428.1 | 2558.1                          | 0.4507               | 8.4329                          | 31          |
| 32                                                                | 0.04759    | 1.0050                                    | 29.540                          | 134.14                           | 2419.3                          | 134.15            | 2425.7 | 2559.9                          | 0.4644               | 8.4127                          | 32          |
| 33                                                                | 0.05034    | 1.0053                                    | 28.011                          | 138.32                           | 2420.7                          | 138.33            | 2423.4 | 2561.7                          | 0.4781               | 8.3927                          | 33          |
| 34                                                                | 0.05324    | 1.0056                                    | 26.571                          | 142.50                           | 2422.0                          | 142.50            | 2421.0 | 2563.5                          | 0.4917               | 8.3728                          | 34          |
| 35                                                                | 0.05628    | 1.0060                                    | 25.216                          | 146.67                           | 2423.4                          | 146.68            | 2418.6 | 2565.3                          | 0.5053               | 8.3531                          | 35          |
| 36                                                                | 0.05947    | 1.0063                                    | 23.940                          | 150.85                           | 2424.7                          | 150.86            | 2416.2 | 2567.1                          | 0.5188               | 8.3336                          | 36          |
| 38                                                                | 0.06632    | 1.0071                                    | 21.602                          | 159.20                           | 2427.4                          | 159.21            | 2411.5 | 2570.7                          | 0.5458               | 8.2950                          | 38          |
| 40                                                                | 0.07384    | 1.0078                                    | 19.523                          | 167.56                           | 2430.1                          | 167.57            | 2406.7 | 2574.3                          | 0.5725               | 8.2570                          | 40          |
| 45                                                                | 0.09593    | 1.0099                                    | 15.258                          | 188.44                           | 2436.8                          | 188.45            | 2394.8 | 2583.2                          | 0.6387               | 8.1648                          | 45          |
| 50                                                                | .1235      | 1.0121                                    | 12.032                          | 209.32                           | 2443.5                          | 209.33            | 2382.7 | 2592.1                          | .7038                | 8.0763                          | 50          |
| 55                                                                | .1576      | 1.0146                                    | 9.568                           | 230.21                           | 2450.1                          | 230.23            | 2370.7 | 2600.9                          | .7679                | 7.9913                          | 55          |
| 60                                                                | .1994      | 1.0172                                    | 7.671                           | 251.11                           | 2456.6                          | 251.13            | 2358.5 | 2609.6                          | .8312                | 7.9096                          | 60          |
| 65                                                                | 2502       | 1.0112                                    | 6.107                           | 272.02                           | 2.50.0                          | 272.00            | 2000.0 | 2009.0                          | 00012                | 7.0030                          |             |

#### Se c for constante

65 70

$$s(T_2) - s(T_1) = c \ln \left(\frac{T_2}{T_1}\right).$$

| TABLE A-2                                                         | Properti      | es of Satura                        | ted Water (                     | Liquid-Vap                   | or): Temp                       | erature Tal                  | ble    |                             |                                  |                                 |             |
|-------------------------------------------------------------------|---------------|-------------------------------------|---------------------------------|------------------------------|---------------------------------|------------------------------|--------|-----------------------------|----------------------------------|---------------------------------|-------------|
| Pressure Conversions:<br>1 bar = 0.1 MPa<br>= 10 <sup>2</sup> kPa |               | Specific Volume<br>m³/kg            |                                 | Internal Energy<br>kJ/kg     |                                 | Enthalpy<br>kJ/kg            |        |                             | Entropy<br>kJ/kg · K             |                                 |             |
| Temp.<br>°C                                                       | Press.<br>bar | Sat. Liquid $v_{\rm f} \times 10^3$ | Sat.<br>Vapor<br>ບ <sub>g</sub> | Sat.<br>Liquid<br><i>u</i> r | Sat.<br>Vapor<br>u <sub>g</sub> | Sat.<br>Liquid<br><i>h</i> t | Evap.  | Sat.<br>Vapor<br><i>h</i> g | Sat.<br>Liquid<br><sup>S</sup> r | Sat.<br>Vapor<br><sup>S</sup> g | Temp.<br>°C |
| .01                                                               | 0.00611       | 1.0002                              | 206.136                         | 0.00                         | 2375.3                          | 0.01                         | 2501.3 | 2501.4                      | 0.0000                           | 9.1562                          | .01         |
| 4                                                                 | 0.00813       | 1.0001                              | 157.232                         | 16.77                        | 2380.9                          | 16.78                        | 2491.9 | 2508.7                      | 0.0610                           | 9.0514                          | 4           |
| 5                                                                 | 0.00872       | 1.0001                              | 147.120                         | 20.97                        | 2382.3                          | 20.98                        | 2489.6 | 2510.6                      | 0.0761                           | 9.0257                          | 5           |
| 6                                                                 | 0.00935       | 1.0001                              | 137.734                         | 25.19                        | 2383.6                          | 25.20                        | 2487.2 | 2512.4                      | 0.0912                           | 9.0003                          | 6           |
| 8                                                                 | 0.01072       | 1.0002                              | 120.917                         | 33.59                        | 2386.4                          | 33.60                        | 2482.5 | 2516.1                      | 0.1212                           | 8.9501                          | 8           |
| 10                                                                | 0.01228       | 1.0004                              | 106,379                         | 42.00                        | 2389.2                          | 42.01                        | 2477.7 | 2519.8                      | 0.1510                           | 8,9008                          | 10          |
| 11                                                                | 0.01312       | 1.0004                              | 99.857                          | 46.20                        | 2390.5                          | 46.20                        | 2475.4 | 2521.6                      | 0.1658                           | 8.8765                          | 11          |
| 12                                                                | 0.01402       | 1.0005                              | 93.784                          | 50.41                        | 2391.9                          | 50.41                        | 2473.0 | 2523.4                      | 0.1806                           | 8.8524                          | 12          |
| 13                                                                | 0.01497       | 1.0007                              | 88.124                          | 54.60                        | 2393.3                          | 54.60                        | 2470.7 | 2525.3                      | 0.1953                           | 8.8285                          | 13          |
| 14                                                                | 0.01598       | 1.0008                              | 82.848                          | 58.79                        | 2394.7                          | 58.80                        | 2468.3 | 2527.1                      | 0.2099                           | 8.8048                          | 14          |
| 15                                                                | 0.01705       | 1.0009                              | 77.926                          | 62.99                        | 2396.1                          | 62.99                        | 2465.9 | 2528.9                      | 0.2245                           | 8.7814                          | 15          |
| 16                                                                | 0.01818       | 1.0011                              | 73.333                          | 67.18                        | 2397.4                          | 67.19                        | 2463.6 | 2530.8                      | 0.2390                           | 8.7582                          | 16          |
| 17                                                                | 0.01938       | 1.0012                              | 69.044                          | 71.38                        | 2398.8                          | 71.38                        | 2461.2 | 2532.6                      | 0.2535                           | 8.7351                          | 17          |
| 18                                                                | 0.02064       | 1.0014                              | 65.038                          | 75.57                        | 2400.2                          | 75.58                        | 2458.8 | 2534.4                      | 0.2679                           | 8.7123                          | 18          |
| 19                                                                | 0.02198       | 1.0016                              | 61.293                          | 79.76                        | 2401.6                          | 79.77                        | 2456.5 | 2536.2                      | 0.2823                           | 8.6897                          | 19          |
| 20                                                                | 0.02339       | 1.0018                              | 57.791                          | 83.95                        | 2402.9                          | 83.96                        | 2454.1 | 2538.1                      | 0.2966                           | 8.6672                          | 20          |
| 21                                                                | 0.02487       | 1.0020                              | 54.514                          | 88.14                        | 2404.3                          | 88.14                        | 2451.8 | 2539.9                      | 0.3109                           | 8.6450                          | 21          |
| 22                                                                | 0.02645       | 1.0022                              | 51.447                          | 92.32                        | 2405.7                          | 92.33                        | 2449.4 | 2541.7                      | 0.3251                           | 8.6229                          | 22          |
| 23                                                                | 0.02810       | 1.0024                              | 48.574                          | 96.51                        | 2407.0                          | 96.52                        | 2447.0 | 2543.5                      | 0.3393                           | 8.6011                          | 23          |
| 24                                                                | 0.02985       | 1.0027                              | 45.883                          | 100.70                       | 2408.4                          | 100.70                       | 2444.7 | 2545.4                      | 0.3534                           | 8.5794                          | 24          |
| 25                                                                | 0.03169       | 1.0029                              | 43.360                          | 104.88                       | 2409.8                          | 104.89                       | 2442.3 | 2547.2                      | 0.3674                           | 8.5580                          | 25          |
| 26                                                                | 0.03363       | 1.0032                              | 40.994                          | 109.06                       | 2411.1                          | 109.07                       | 2439.9 | 2549.0                      | 0.3814                           | 8.5367                          | 26          |
| 27                                                                | 0.03567       | 1.0035                              | 38.774                          | 113.25                       | 2412.5                          | 113.25                       | 2437.6 | 2550.8                      | 0.3954                           | 8.5156                          | 27          |
| 28                                                                | 0.03782       | 1.0037                              | 36.690                          | 117.42                       | 2413.9                          | 117.43                       | 2435.2 | 2552.6                      | 0.4093                           | 8.4946                          | 28          |
| 29                                                                | 0.04008       | 1.0040                              | 34.733                          | 121.60                       | 2415.2                          | 121.61                       | 2432.8 | 2554.5                      | 0.4231                           | 8.4739                          | 29          |
| 30                                                                | 0.04246       | 1.0043                              | 32.894                          | 125.78                       | 2416.6                          | 125.79                       | 2430.5 | 2556.3                      | 0.4369                           | 8.4533                          | 30          |
| 31                                                                | 0.04496       | 1.0046                              | 31.165                          | 129.96                       | 2418.0                          | 129.97                       | 2428.1 | 2558.1                      | 0.4507                           | 8.4329                          | 31          |
| 32                                                                | 0.04759       | 1.0050                              | 29.540                          | 134.14                       | 2419.3                          | 134.15                       | 2425.7 | 2559.9                      | 0.4644                           | 8.4127                          | 32          |
| 33                                                                | 0.05034       | 1.0053                              | 28.011                          | 138.32                       | 2420.7                          | 138.33                       | 2423.4 | 2561.7                      | 0.4781                           | 8.3927                          | 33          |
| 34                                                                | 0.05324       | 1.0056                              | 26.571                          | 142.50                       | 2422.0                          | 142.50                       | 2421.0 | 2563.5                      | 0.4917                           | 8.3728                          | 34          |
| 35                                                                | 0.05628       | 1.0060                              | 25.216                          | 146.67                       | 2423.4                          | 146.68                       | 2418.6 | 2565.3                      | 0.5053                           | 8.3531                          | 35          |
| 36                                                                | 0.05947       | 1.0063                              | 23.940                          | 150.85                       | 2424.7                          | 150.86                       | 2416.2 | 2567.1                      | 0.5188                           | 8.3336                          | 36          |
| 38                                                                | 0.06632       | 1.0071                              | 21.602                          | 159.20                       | 2427.4                          | 159.21                       | 2411.5 | 2570.7                      | 0.5458                           | 8.2950                          | 38          |
| 40                                                                | 0.07384       | 1.0078                              | 19.523                          | 167.56                       | 2430.1                          | 167.57                       | 2406.7 | 2574.3                      | 0.5725                           | 8.2570                          | 40          |
| 45                                                                | 0.09593       | 1.0099                              | 15.258                          | 188.44                       | 2436.8                          | 188.45                       | 2394.8 | 2583.2                      | 0.6387                           | 8.1648                          | 45          |
| 50                                                                | .1235         | 1.0121                              | 12.032                          | 209.32                       | 2443.5                          | 209.33                       | 2382.7 | 2592.1                      | .7038                            | 8.0763                          | 50          |
| 55                                                                | .1576         | 1.0146                              | 9.568                           | 230.21                       | 2450.1                          | 230.23                       | 2370.7 | 2600.9                      | .7679                            | 7.9913                          | 55          |
| 60                                                                | .1994         | 1.0172                              | 7.671                           | 251.11                       | 2456.6                          | 251.13                       | 2358.5 | 2609.6                      | .8312                            | 7.9096                          | 60          |
| 65                                                                | .2503         | 1.0199                              | 6.197                           | 272.02                       | 2463.1                          | 272.06                       | 2346.2 | 2618.3                      | .8935                            | 7.8310                          | 65          |
| 70                                                                | .3119         | 1.0228                              | 5.042                           | 292.95                       | 2469.6                          | 292.98                       | 2333.8 | 2626.8                      | .9549                            | 7.7553                          | 70          |
|                                                                   |               |                                     |                                 |                              |                                 |                              |        |                             |                                  |                                 |             |

Se c for constante

$$s(T_2) - s(T_1) = c \ln \left(\frac{T_2}{T_1}\right).$$

#### Exercício 1.

Considere uma massa de água líquida inicialmente à temperatura de 300 K e pressão de 2 bar. A água é aquecida até à temperatura de 323 K e a pressão é baixada para 1 bar. Determine a variação de entropia específica da água em  $kJ/(K \cdot kg)$ . O calor específico da água pode considerar-se constante e igual a  $c = 4.18 \, \text{kJ/(K} \cdot \text{kg)}$ .

| Pressure Conversions:<br>1 bar = 0.1 MPa<br>= 10 <sup>2</sup> kPa |               | Specific Volume<br>m³/kg                 |                                 | Internal Energy<br>kJ/kg         |                                 | Enthalpy<br>kJ/kg                |        |                                 | Entropy<br>kJ/kg · K |                     |            |
|-------------------------------------------------------------------|---------------|------------------------------------------|---------------------------------|----------------------------------|---------------------------------|----------------------------------|--------|---------------------------------|----------------------|---------------------|------------|
| Temp.<br>°C                                                       | Press.<br>bar | Sat.<br>Liquid<br>$v_{\rm f} 	imes 10^3$ | Sat.<br>Vapor<br>v <sub>g</sub> | Sat.<br>Liquid<br>u <sub>t</sub> | Sat.<br>Vapor<br>u <sub>g</sub> | Sat.<br>Liquid<br>h <sub>i</sub> | Evap.  | Sat.<br>Vapor<br>h <sub>g</sub> | Sat.<br>Liquid       | Sat.<br>Vapor<br>Sg | Temp<br>°C |
| .01                                                               | 0.00611       | 1.0002                                   | 206.136                         | 0.00                             | 2375.3                          | 0.01                             | 2501.3 | 2501.4                          | 0.0000               | 9.1562              | .01        |
| 4                                                                 | 0.00813       | 1.0001                                   | 157.232                         | 16.77                            | 2380.9                          | 16.78                            | 2491.9 | 2508.7                          | 0.0610               | 9.0514              | 4          |
| 5                                                                 | 0.00872       | 1.0001                                   | 147.120                         | 20.97                            | 2382.3                          | 20.98                            | 2489.6 | 2510.6                          | 0.0761               | 9.0257              | 5          |
| 6                                                                 | 0.00935       | 1.0001                                   | 137.734                         | 25.19                            | 2383.6                          | 25.20                            | 2487.2 | 2512.4                          | 0.0912               | 9.0003              | 6          |
| 8                                                                 | 0.01072       | 1.0002                                   | 120.917                         | 33.59                            | 2386.4                          | 33.60                            | 2482.5 | 2516.1                          | 0.1212               | 8.9501              | 8          |
| 10                                                                | 0.01228       | 1.0004                                   | 106.379                         | 42.00                            | 2389.2                          | 42.01                            | 2477.7 | 2519.8                          | 0.1510               | 8,9008              | 10         |
| 11                                                                | 0.01312       | 1.0004                                   | 99.857                          | 46.20                            | 2390.5                          | 46.20                            | 2475.4 | 2521.6                          | 0.1658               | 8.8765              | 11         |
| 12                                                                | 0.01402       | 1.0005                                   | 93,784                          | 50.41                            | 2391.9                          | 50.41                            | 2473.0 | 2523.4                          | 0.1806               | 8.8524              | 12         |
| 13                                                                | 0.01497       | 1.0007                                   | 88.124                          | 54.60                            | 2393.3                          | 54.60                            | 2470.7 | 2525.3                          | 0.1953               | 8.8285              | 13         |
| 14                                                                | 0.01598       | 1.0008                                   | 82.848                          | 58.79                            | 2394.7                          | 58.80                            | 2468.3 | 2527.1                          | 0.2099               | 8.8048              | 14         |
| 15                                                                | 0.01705       | 1.0009                                   | 77.926                          | 62.99                            | 2396.1                          | 62,99                            | 2465.9 | 2528.9                          | 0.2245               | 8.7814              | 15         |
| 16                                                                | 0.01818       | 1.0011                                   | 73.333                          | 67.18                            | 2397.4                          | 67.19                            | 2463.6 | 2530.8                          | 0.2390               | 8.7582              | 16         |
| 17                                                                | 0.01938       | 1.0012                                   | 69.044                          | 71.38                            | 2398.8                          | 71.38                            | 2461.2 | 2532.6                          | 0.2535               | 8.7351              | 17         |
| 18                                                                | 0.02064       | 1.0014                                   | 65.038                          | 75.57                            | 2400.2                          | 75.58                            | 2458.8 | 2534.4                          | 0.2679               | 8.7123              | 18         |
| 19                                                                | 0.02198       | 1.0016                                   | 61.293                          | 79.76                            | 2401.6                          | 79.77                            | 2456.5 | 2536.2                          | 0.2823               | 8.6897              | 19         |
| 20                                                                | 0.02339       | 1.0018                                   | 57,791                          | 83.95                            | 2402.9                          | 83.96                            | 2454.1 | 2538.1                          | 0.2966               | 8.6672              | 20         |
| 21                                                                | 0.02487       | 1.0020                                   | 54.514                          | 88.14                            | 2404.3                          | 88.14                            | 2451.8 | 2539.9                          | 0.3109               | 8.6450              | 21         |
| 22                                                                | 0.02645       | 1.0022                                   | 51.447                          | 92.32                            | 2405.7                          | 92.33                            | 2449.4 | 2541.7                          | 0.3251               | 8.6229              | 22         |
| 23                                                                | 0.02810       | 1.0024                                   | 48,574                          | 96.51                            | 2407.0                          | 96.52                            | 2447.0 | 2543.5                          | 0.3393               | 8.6011              | 23         |
| 24                                                                | 0.02985       | 1.0027                                   | 45.883                          | 100.70                           | 2408.4                          | 100.70                           | 2444.7 | 2545.4                          | 0.3534               | 8.5794              | 24         |
| 25                                                                | 0.03169       | 1.0029                                   | 43.360                          | 104.88                           | 2409.8                          | 104.89                           | 2442.3 | 2547.2                          | 0.3674               | 8.5580              | 25         |
| 26                                                                | 0.03363       | 1.0032                                   | 40.994                          | 109.06                           | 2411.1                          | 109.07                           | 2439.9 | 2549.0                          | 0.3814               | 8.5367              | 26         |
| 27                                                                | 0.03567       | 1.0032                                   | 38,774                          | 113.25                           | 2412.5                          | 113.25                           | 2437.6 | 2550.8                          | 0.3954               | 8.5156              | 27         |
| 28                                                                | 0.03782       | 1.0037                                   | 36.690                          | 117.42                           | 2413.9                          | 117.43                           | 2435.2 | 2552.6                          | 0.4093               | 8.4946              | 28         |
| 29                                                                | 0.04008       | 1.0040                                   | 34,733                          | 121.60                           | 2415.2                          | 121.61                           | 2432.8 | 2554.5                          | 0.4231               | 8.4739              | 29         |
| 30                                                                | 0.04246       | 1.0043                                   | 32.894                          | 125.78                           | 2416.6                          | 125.79                           | 2430.5 | 2556.3                          | 0.4369               | 8,4533              | 30         |
| 31                                                                | 0.04496       | 1.0046                                   | 31.165                          | 129.96                           | 2418.0                          | 129.97                           | 2428.1 | 2558.1                          | 0.4507               | 8.4329              | 31         |
| 32                                                                | 0.04759       | 1.0050                                   | 29,540                          | 134.14                           | 2419.3                          | 134.15                           | 2425.7 | 2559.9                          | 0.4644               | 8.4127              | 32         |
| 33                                                                | 0.05034       | 1.0053                                   | 28.011                          | 138.32                           | 2420.7                          | 138.33                           | 2423.4 | 2561.7                          | 0.4781               | 8.3927              | 33         |
| 34                                                                | 0.05324       | 1.0056                                   | 26,571                          | 142.50                           | 2422.0                          | 142.50                           | 2421.0 | 2563.5                          | 0.4917               | 8.3728              | 34         |
| 35                                                                | 0.05628       | 1.0060                                   | 25.216                          | 146.67                           | 2423.4                          | 146.68                           | 2418.6 | 2565.3                          | 0.5053               | 8.3531              | 35         |
| 36                                                                | 0.05028       | 1.0063                                   | 23.210                          | 150.85                           | 2423.4                          | 150.86                           | 2416.0 | 2567.1                          | 0.5188               | 8.3336              | 36         |
| 38                                                                | 0.06632       | 1.0003                                   | 21.602                          | 159.20                           | 2427.4                          | 159.21                           | 2411.5 | 2570.7                          | 0.5458               | 8.2950              | 38         |
| 40                                                                | 0.07384       | 1.0078                                   | 19.523                          | 167.56                           | 2430.1                          | 167.57                           | 2406.7 | 2574.3                          | 0.5725               | 8.2570              | 40         |
| 45                                                                | 0.01504       | 1.0099                                   | 15.258                          | 188.44                           | 2436.8                          | 188.45                           | 2394.8 | 2583.2                          | 0.6387               | 8.1648              | 45         |
|                                                                   |               |                                          |                                 |                                  |                                 |                                  |        |                                 |                      |                     |            |
| 50                                                                | .1235         | 1.0121                                   | 12.032                          | 209.32                           | 2443.5                          | 209.33                           | 2382.7 | 2592.1                          | .7038                | 8.0763              | 50         |
| 55                                                                | .1576         | 1.0146                                   | 9.568                           | 230.21                           | 2450.1                          | 230.23                           | 2370.7 | 2600.9                          | .7679                | 7.9913              | 55         |
| 60                                                                | .1994         | 1.0172                                   | 7.671                           | 251.11                           | 2456.6                          | 251.13                           | 2358.5 | 2609.6                          | .8312                | 7.9096              | 60         |
| 65                                                                | .2503         | 1.0199                                   | 6.197                           | 272.02                           | 2463.1                          | 272.06                           | 2346.2 | 2618.3                          | .8935                | 7.8310              | 65         |
| 70                                                                | .3119         | 1.0228                                   | 5.042                           | 292.95                           | 2469.6                          | 292.98                           | 2333.8 | 2626.8                          | .9549                | 7.7553              | 70         |

Se c for constante

$$s(T_2) - s(T_1) = c \ln \left(\frac{T_2}{T_1}\right).$$

#### Exercício 1.

Considere uma massa de água líquida inicialmente à temperatura de 300 K e pressão de 2 bar. A água é aquecida até à temperatura de 323 K e a pressão é baixada para 1 bar. Determine a variação de entropia específica da água em  $kJ/(K \cdot kg)$ . O calor específico da água pode considerar-se constante e igual a  $c = 4.18 \, \text{kJ/(K} \cdot \text{kg)}$ .

Se considerarmos a água incompressível, poderemos fazer a aproximação  $s(T,p)\approx s_f(T)$ . Outra possibilidade é fazer o cálculo pela equação da em cima, considerando c constante.

#### Entropia de um gás ideal

Exercício 2: Partindo das equações (6) e (7), derive as expressões da variação de entropia de um gás ideal entre um estado 1 e um estado 2.

#### Entropia de um gás ideal

Exercício 2: Partindo das equações (6) e (7), derive as expressões da variação de entropia de um gás ideal entre um estado 1 e um estado 2.

Num gás ideal verificam-se as seguintes relações:  $du = c_v(T)dT$ , dh = cp(T)dT e pv = RT. Substituindo nas equações (8) e (9), obtém-se

$$ds = c_v(T)\frac{dT}{T} + R\frac{dv}{v} \qquad e \qquad ds = c_p(T)\frac{dT}{T} - R\frac{dp}{p}.$$
 (12)

# Entropia de um gás ideal

Exercício 2: Partindo das equações (6) e (7), derive as expressões da variação de entropia de um gás ideal entre um estado 1 e um estado 2.

Num gás ideal verificam-se as seguintes relações:  $du = c_v(T)dT$ , dh = cp(T)dT e pv = RT. Substituindo nas equações (8) e (9), obtém-se

$$ds = c_v(T)\frac{dT}{T} + R\frac{dv}{v} \qquad e \qquad ds = c_p(T)\frac{dT}{T} - R\frac{dp}{p}.$$
 (12)

Integrando as equações (12), obtêm-se as seguintes equações para a variação da entropia entre dois estados de um gás ideal

$$s(T_2, v_2) - s(T_1, v_1) = \int_{T_1}^{T_2} \frac{c_v(T)}{T} dT + R \ln \left(\frac{v_2}{v_1}\right)$$
 (13)

$$s(T_2, p_2) - s(T_1, p_1) = \int_{T_1}^{T_2} \frac{c_p(T)}{T} dT - R \ln \left(\frac{p_2}{p_1}\right)$$
 (14)

# ▶ Balanço de entropia em sistemas fechados



A figura ao lado representa um ciclo composto de um processo irreversível (I) e de um processo reversível. De acordo com a desigualdade de Clausius,

$$\int_{1}^{2} \left( \frac{\delta Q}{T} \right)_{b} + \int_{2}^{1} \left( \frac{\delta Q}{T} \right)_{R} = -\sigma, \tag{15}$$

onde b indica que T representa a temperatura na fronteira do sistema.

# ▶ Balanço de entropia em sistemas fechados



A figura ao lado representa um ciclo composto de um processo irreversível (I) e de um processo reversível. De acordo com a desigualdade de Clausius,

$$\int_{1}^{2} \left( \frac{\delta Q}{T} \right)_{b} + \int_{2}^{1} \left( \frac{\delta Q}{T} \right)_{R} = -\sigma, \tag{15}$$

onde b indica que T representa a temperatura na fronteira do sistema.

Usando a definição de variação de entropia (3), pode-se escrever o  $2^{\circ}$  integral como

$$\int_{2}^{1} \left(\frac{\delta Q}{T}\right)_{\mathbf{R}} = S_1 - S_2. \tag{16}$$

# ▶ Balanço de entropia em sistemas fechados



A figura ao lado representa um ciclo composto de um processo irreversível (I) e de um processo reversível. De acordo com a desigualdade de Clausius,

$$\int_{1}^{2} \left( \frac{\delta Q}{T} \right)_{b} + \int_{2}^{1} \left( \frac{\delta Q}{T} \right)_{R} = -\sigma, \tag{15}$$

onde b indica que T representa a temperatura na fronteira do sistema.

Usando a definição de variação de entropia (3), pode-se escrever o  $2^{\circ}$  integral como

$$\int_{2}^{1} \left(\frac{\delta Q}{T}\right)_{\mathcal{R}} = S_1 - S_2. \tag{16}$$

Substituindo esta igualdade na equação (15) e rearranjando os termos, obtém-se a seguinte equação

$$\underbrace{S_2 - S_1}_{varia\,\tilde{q}ao\,de} = \underbrace{\int_1^2 \left(\frac{\delta Q}{T}\right)_b}_{transfer\,\hat{e}ncia} + \underbrace{\sigma}_{gera\,\tilde{q}ao} \\ entropia \\ de\,entropia$$
(17)

$$\underbrace{S_2 - S_1}_{varia\,\tilde{q}ao\,de} = \underbrace{\int_1^2 \left(\frac{\delta Q}{T}\right)_b}_{transfer\,\hat{e}ncia} + \underbrace{\sigma}_{gera\,\tilde{q}ao} \\ entropia \\ de\ entropia$$
(17)

ou, para variações elementares,

$$dS = \left(\frac{\delta Q}{T}\right)_b + \delta \sigma. \tag{18}$$

$$\underbrace{S_2 - S_1}_{varia\,\tilde{q}\tilde{a}o\,de} = \underbrace{\int_{1}^{2} \left(\frac{\delta Q}{T}\right)_{b}}_{transfer\,\hat{e}ncia} + \underbrace{\sigma}_{gera\,\tilde{q}\tilde{a}o} + \underbrace{\sigma}_{de\,entropia} \tag{17}$$

ou, para variações elementares,

$$dS = \left(\frac{\delta Q}{T}\right)_b + \delta \sigma. \tag{18}$$

Se não ocorrer qualquer irreversibilidade no sistema,  $\delta\sigma$  será nulo.

$$\underbrace{S_2 - S_1}_{varia\,\tilde{q}ao\,de} = \underbrace{\int_1^2 \left(\frac{\delta Q}{T}\right)_b}_{transfer\,\hat{e}ncia} + \underbrace{\sigma}_{gera\,\tilde{q}ao} \\ entropia \qquad de\ entropia$$
(17)

ou, para variações elementares,

$$dS = \left(\frac{\delta Q}{T}\right)_b + \delta\sigma. \tag{18}$$

Se não ocorrer qualquer irreversibilidade no sistema,  $\delta\sigma$  será nulo.

Se o sistema for isolado não trocará massa nem energia com a vizinhança. Nesse caso

$$\Delta S = \int_{1}^{2} \left(\frac{\delta Q}{T}\right)_{b}^{0} + \sigma \ge 0. \tag{19}$$

#### O Princípio do aumento da entropia

Considere um sistema que interage com a vizinhança. O sistema mais a vizinhança pode considerar-se um sistema composto isolado. De acordo com a equação (19),

$$\Delta S_{\text{sistema}} + \Delta S_{\text{vizinhan} ca} \ge 0,$$
 (20)

onde considerámos que a entropia é uma grandeza extensiva, sendo a entropia do sistema composto dada pela soma da entropia do sistema mais a entropia da vizinhança.

# O Princípio do aumento da entropia

Considere um sistema que interage com a vizinhança. O sistema mais a vizinhança pode considerar-se um sistema composto isolado. De acordo com a equação (19),

$$\Delta S_{\text{sistema}} + \Delta S_{\text{vizinhan} ca} \ge 0,$$
 (20)

onde considerámos que a entropia é uma grandeza extensiva, sendo a entropia do sistema composto dada pela soma da entropia do sistema mais a entropia da vizinhança.

A equação (20) pode se escrita na forma

$$\Delta S(\text{universo}) \ge 0,$$
 (21)

e diz-nos que em qualquer processo natural a entropia aumenta sempre. Note que todos os processos naturais são irreversíveis, apenas processos ideais são reversíveis.

#### O Princípio do aumento da entropia

Considere um sistema que interage com a vizinhança. O sistema mais a vizinhança pode considerar-se um sistema composto isolado. De acordo com a equação (19),

$$\Delta S_{\text{sistema}} + \Delta S_{\text{vizinhan} ca} \ge 0,$$
 (20)

onde considerámos que a entropia é uma grandeza extensiva, sendo a entropia do sistema composto dada pela soma da entropia do sistema mais a entropia da vizinhança.

A equação (20) pode se escrita na forma

$$\Delta S(\text{universo}) \ge 0,$$
 (21)

e diz-nos que em qualquer processo natural a entropia aumenta sempre. Note que todos os processos naturais são irreversíveis, apenas processos ideais são reversíveis.

O princípio do aumento da entropia é um enunciado sucinto da segunda lei da termodinâmica.

Exercício 3: Uma barra de metal, com a massa de 363 gramas e à temperatura  $T=782\,^{\circ}\mathrm{C}$ , é imersa em 9.1 kg de água à temperatura  $T=21\,^{\circ}\mathrm{C}$ . Supondo que a água e o metal podem ser modelados como substâncias incompressíveis, com capacidade térmicas específicas  $c_w=4.186\,\mathrm{kJ}\cdot\mathrm{kg}$  e  $c_m=0.4186\,\mathrm{kJ}\cdot\mathrm{kg}$ , respectivamente, determine a temperatura final da barra e da água, em °C, e a variação de entropia em kJ/K.

Exercício 3: Uma barra de metal, com a massa de 363 gramas e à temperatura  $T=782\,^{\circ}\mathrm{C}$ , é imersa em 9.1 kg de água à temperatura  $T=21\,^{\circ}\mathrm{C}$ . Supondo que a água e o metal podem ser modelados como substâncias incompressíveis, com capacidade térmicas específicas  $c_w=4.186\,\mathrm{kJ\cdot kg}$  e  $c_m=0.4186\,\mathrm{kJ\cdot kg}$ , respectivamente, determine a temperatura final da barra e da água, em  $^{\circ}\mathrm{C}$ , e a variação de entropia em kJ/K.



(b)

# ► Interpretação estatística da entropia

Para ganharmos mais alguma compreensão do significado físico da entropia, a figura ao lado representa uma experiência imaginada. Considera-se um gás ideal monoatómico, inicialmente confinado ao volume  $V_1$ , igual a metade do volume de uma caixa com paredes rígidas e adiabáticas. Retira-se a partição e deixa-se o gás expandir livremente, ocupando todo o volume  $V_2 = 2V_1$ . Como não há transferência de calor nem há realização de trabalho, a energia interna do gás conserva-se:  $U_1 = U_2$ . Como a energia interna de um gás ideal depende apenas da temperatura, então a temperatura também se mantém:  $T_1 = T_2$ .





A expansão é um processo irreversível e, portanto,  $S_2 > S_1$ .

Se quiséssemos fazer uma descrição microscópica detalhada do sistema em cada instante, poderíamos pensar em indicar a posição e a velocidade de cada partícula. Tal descrição torna-se impossível dado o número elevadíssimo de partículas. Outra possibilidade seria indicar a probabilidade de encontrar moléculas num volume dV com velocidade  $v \pm dv$ .



A expansão é um processo irreversível e, portanto,  $S_2 > S_1$ .

Se quiséssemos fazer uma descrição microscópica detalhada do sistema em cada instante, poderíamos pensar em indicar a posição e a velocidade de cada partícula. Tal descrição torna-se impossível dado o número elevadíssimo de partículas. Outra possibilidade seria indicar a probabilidade de encontrar moléculas num volume dV com velocidade v + dv.

A distribuição de probabilidades depende do número de configurações diferentes (micro-estados: posições e velocidades das partículas, compatíveis com a energia total do sistema) que o sistema possa ter.

Considerando que o gás monoatómico pode ser modelado como massas pontuais, a energia do sistema é igual à soma da energia cinética das partículas. Ora como a energia total se conserva, podemos admitir que a distribuição de energia cinética, ou da velocidade, pelas partículas se conserva, ou seja a probabilidade de as moléculas terem velocidades no intervalo  $v \pm dv$  deve manter-se igual ao valor antes da expansão.



# Interpretação estatística da entropia (continuação) Após a expansão, para cada posição que uma

partícula podia ocupar no volume  $V_1$  existe uma posição correspondente na metade esquerda do volume  $V_2$ . Assim por cada partícula, o número de estados possíveis duplicou. Se inicialmente no volume  $V_1$  o número de micro-estados era  $\Omega_1$ , então o número de micro-estados no volume  $V_2$ será  $\Omega_2 = 2^N \Omega_1$ , onde N é o número de partículas.



# Interpretação estatística da entropia (continuação)

Após a expansão, para cada posição que uma partícula podia ocupar no volume  $V_1$  existe uma posição correspondente na metade esquerda do volume  $V_2$ . Assim por cada partícula, o número de estados possíveis duplicou. Se inicialmente no volume  $V_1$  o número de micro-estados era  $\Omega_1$ , então o número de micro-estados no volume  $V_2$ será  $\Omega_2 = 2^N \Omega_1$ , onde N é o número de partículas.

Com base em cálculos detalhados da mecânica estatística pode-se mostrar que a entropia de um sistema é dada pela seguinte expressão

$$S = k_B \ln \Omega, \tag{22}$$

onde  $k_B$  é a constante de Boltzmann.



Interpretação estatística da entropia (continuação) Após a expansão, para cada posição que uma partícula podia ocupar no volume  $V_1$  existe uma posição correspondente na metade esquerda do volume  $V_2$ . Assim por cada partícula, o número de estados possíveis duplicou. Se inicialmente no volume  $V_1$  o número de micro-estados era  $\Omega_1$ , então o número de micro-estados no volume  $V_2$  será  $\Omega_2 = 2^N \Omega_1$ , onde N é o número de partículas.

Com base em cálculos detalhados da mecânica estatística pode-se mostrar que a entropia de um sistema é dada pela seguinte expressão

$$S = k_B \ln \Omega, \tag{22}$$

onde  $k_B$  é a constante de Boltzmann.

Assim, a variação de entropia do sistema será dada por

$$S_2 - S_1 = k_B \ln(2^N \Omega_1) - k_B \ln(\Omega_1) = Nk_B \ln 2$$
 (23)

$$\frac{S_2 - S_1}{n} = N_A k_B \ln 2, \tag{24}$$



# Interpretação estatística da entropia (continuação)

onde n é o número de moles.

Tratando-se de uma expansão isotérmica e adiabática do gás ideal, a variação de entropia é dada por

$$\frac{S_2 - S_1}{n} = R^* \ln \left(\frac{V_2}{V_1}\right) = R^* \ln 2. \tag{25}$$



# Interpretação estatística da entropia (continuação)

onde n é o número de moles.

Tratando-se de uma expansão isotérmica e adiabática do gás ideal, a variação de entropia é dada por

$$\frac{S_2 - S_1}{n} = R^* \ln \left(\frac{V_2}{V_1}\right) = R^* \ln 2. \tag{25}$$

Das equações (24) e (25), conclui-se que

$$k_B N_A = R^* \qquad \Leftrightarrow \qquad k_B = \frac{R^*}{N_A}.$$
 (26)