CALCULUS ON MANIFOLDS

JACK CERONI

Contents

1.	Introduction	2
2.	Chapter 2	2
2.1.	. Notes	2
2.2.	. Problems and Solutions	3

Date: October 2021.

1. Introduction

2. Chapter 2

2.1. **Notes.**

Remark 1 (Motivating the Chain Rule). The chain rule is a very natural statement. More specifically, it states that given a the composition of two functions, $g \circ f$, we will have:

$$[D(g\circ f)](a)=[Dg](f(a))\circ [Df](a)$$

which amounts to the statement that a linear approximation near the point a of the function $g \circ f$ is the same as taking a linear approximation of f near a, and then mapping the points given from this linear approximation using the linear approximation of g near f(a).

Theorem 1 (General Chain Rule). Given functions f and g, such that f is differentiable at a, and g is differentiable at f(a), then $g \circ f$ is differentiable at a, with:

$$[D(g \circ f)](a) = [Dg](f(a)) \circ [Df](a)$$

Proof. Our goal is to show that in some neighbourhood around a, we have:

$$(g \circ f)(a + h) = (g \circ f)(a) + ([Dg](f(a)) \circ [Df](a)) h + o(h)$$

where o(h) is small. We first note that in a neighbourhood around f(a), and a neighbourhood around a, we have:

$$g(f(a) + h) = g(f(a)) + [Dg](f(a))h + g(h)$$
 $f(a+h) = f(a) + [Df](a)h + p(h)$

where q(h) and p(h) are small. It follows that in this neighbourhood, we have:

$$g(f(a + h)) = g(f(a) + [Df](a)h + p(h))$$

Since $[Df](a)h + p(h) \to 0$ as $h \to 0$, we can choose h small enough such that f(a) + [Df](a)h + p(h) is in the neighbourhood of f(a) for which the previous statement holds. In this neighbourhood around a, we have:

$$(g \circ f)(a+h) = (g \circ f)(a) + [Dg](f(a))([Df](a)h + p(h)) + q([Df](a)h + p(h))$$

$$\Rightarrow (g \circ f)(a+h) - (g \circ f)(a) - ([Dg](f(a)) \circ [Df](a)) h = [Dg](f(a))p(h) + q([Df](a)h + p(h))$$

so all that is left to do is to show the right-hand side of the above equation is small. Indeed, we have $|[Dg](f(a))p(h)| \leq M|p(h)|$, for some M. Thus:

$$\frac{|[Dg](f(a))p(h)|}{|h|} \leq \frac{M|p(h)|}{|h|}$$

Clearly, the right-hand side of the inequality goes to 0 as $h \to 0$, so the left-hand side does as well. Finally, we prove the final function is small.

Note that $|[Df](a)h| \le M|h|$ for some M, and since $p(h)/|h| \to 0$, we can choose $|h| < r_1$ such that |p(h)| < |h|. Thus, for $|h| < r_1$, we have $|[Df](a)h + p(h)| \le (M+1)|h|$.

Given some $\epsilon > 0$, we choose $|t| < \delta$ such that $\frac{|q(t)|}{|t|} < \frac{\epsilon}{M+1}$. We also choose r_2 such that for $|h| < r_2$, we have $|[Df](a)h + p(h)| < \delta$. We then note that for $|h| < r = \min\{r_1, r_2\}$, we have:

$$\frac{q\left([Df](a)h + p(h)\right)}{|h|} \leq (M+1)\frac{q\left([Df](a)h + p(h)\right)}{|[Df](a)h + p(h)|} < (M+1)\frac{\epsilon}{M+1} = \epsilon$$

Thus, this function is small as well.

Theorem 2. If f is differentiable, then all of the partial derivatives exist and the matrix of [Df](a) with respect to the standard basis is precisely the matrix of partial derivatives.

Proof. For some a, we can define a function of the form $h(x) = (a_1, ..., a_{k-1}, x, a_{k+1}, ..., a_n)$ We then note that the function $f \circ h$ is differentiable, as it is the composition of two differentiable functions. It is also easy to see that:

$$(f \circ h) = (f_1 \circ h, ..., f_m \circ h)$$

where each $f_j \circ h$ is differentiable. It is easy to see that $(f_j \circ h)'(a_k) = D_k f_j(a)$, from the definition of the partial derivative, so the partial derivatives exist. In addition, we have that:

$$D_k f_j(a) = [D(f_j \circ h)](a_k) = [Df_j](a) \circ e_k$$

which is the k-entry of $[Df_j](a)$. But since $[Df_j](a)$ is the j-th row of the matrix for [Df](a), it follows that $D_k f_j(a)$ is the entry at the k-column and j-th row.

2.2. Problems and Solutions.