The McGraw-Hill Companies

Chapter 13 Wired LANs: Ethernet

Case Study: Ethernet

"dominant" LAN technology:

- cheap \$20 for 100Mbs!
- first widely used LAN technology
- Simpler, cheaper than token LANs and ATM
- Kept up with speed race: 10, 100, 1000 Mbps, 10Gbps

Original picture drawn by Bob Metcalfe, inventor of Ethernet (1972 - Xerox PARC)

2/40

3. LAN의 연결

direct

cross

Network Interface Card (NIC)

- Ethernet 10Mbps
- Fast Ethernet 100Mbps
 - 100BaseT
- Giga Ethernet 1Gbps
- 10Giga Ethernet 10Gbps

The 100Mb/s Ethernet Standard

thernet MAC Protocol

100Base-T4

100Base-TX

100Base-FX

Up to 100m of cable per segment.

100Base-T4: Uses four pairs of voice grac^{25 Mbps}

Category-3 cable.

100Base-TX: Uses two pairs of data grad

Category-5 cable.

100Base-FX: Uses two optical fibers.

Ethernet Frame Structure*

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

- Preamble: (7bytes) trains clock-recovery circuits 10101010 1.
- Start of Frame Delimiter: indicates start of frame 10101011 2.
- Destination Address: 48-bit globally unique address 3. assigned by manufacturer.

1b=0: unicast/multicast multicast range [0x01 00 5E:0x0~7F FF F Destination: unicast 0, multicast 1

1b=1: local/global address

Byte 6

- Pad: Zeroes used to ensure minimum frame length (=46bytes) 5.
- Cyclic Redundancy Check(4byte): check sequence to detect bit errors. 6.

13-1 IEEE STANDARDS

In 1985, the Computer Society of the IEEE started a project, called Project 802, to set standards to enable intercommunication among equipment from a variety of manufacturers. Project 802 is a way of specifying functions of the physical layer and the data link layer of major LAN protocols.

LLC: Logical link control

MAC: Media access control

Topics discussed in this

Data Link Layer Physical Layer

IEEE Project 802 Standards

- IEEE 802.1 High Level Interface
 - IEEE 802.1D Local Bridge (Spanning Tree Algorithm), IEEE 802.1G Remote Bridge
 - IEEE 802.1p Dynamic Multicast membership, IEEE 802.1Q Virtual LAN (VLAN)
- IEEE 802.2 LLC (Logical Link Control)
- IEEE 802.3 CSMA/CD (Carrier Sense Multiple Access with Collision Detection
- IEEE 802.4 Token-Bus
- IEEE 802.5 Token-Ring
- IEEE 802.6 DQDB (Distributed Queue Dual Bus)
- IEEE 802.7 Broadband Technical Advisory Group
- IEEE 802.8 Fiber Optic Technical Advisory Group
- IEEE 802.9 Integrated Voice and Data LAN Working Group
- IEEE 802.10 LAN Security Working Group
- IEEE 802.11 Wireless LAN
- IEEE 802.12 Demand-Priority (100VG-AnyLAN)
- IEEE 802.14 CATV Networks (HFC)

Figure 13.1 IEEE standard for LANs

LLC: Logical link control MAC: Media access control

	Upper layers		Upper layers				
	Data link layer		LLC				
			Ethernet MAC	Token Ring MAC	Token Bus MAC	•••	
	Physical layer		Ethernet physical layers (several)	Token Ring physical layer	Token Bus physical layer	•••	
Tra	nsmission mediun		Transmission medium				
OSI or Internet model			IEEE Standard				

Protocol Multiplexing

참조 한국항공대학교 윤종호

Figure 13.2 HDLC frame compared with LLC and MAC frames

13-2 STANDARD ETHERNET

The original Ethernet was created in 1976 at Xerox's Palo Alto Research Center (PARC). Since then, it has gone through four generations. We briefly discuss the Standard (or traditional) Ethernet in this section.

Topics discussed in this section:
MAC Sublayer
Physical Layer

Figure 13.3 Ethernet evolution through four generations

Figure 13.4 802.3 MAC frame

Preamble: 56 bits of alternating 1s and 0s.

SFD: Start frame delimiter, flag (10101011)

Preamble	SFD	Destination address	Source address	Length or type	Data and padding	CRC
7 bytes	1 byte	6 bytes	6 bytes	2 bytes		4 bytes
Physical I heade	•					

Figure 13.5 Minimum and maximum lengths

Frame length:

Minimum: 64 bytes (512 bits)

Maximum: 1518 bytes (12,144 bits)

Figure 13.6 Example of an Ethernet address in hexadecimal notation

47:20:1B:2E:08:EE

6 bytes = 12 hex digits = 48 bits

Hexadecimal	47	20	1B	2 E	08	EE
Binarys	01000111	00100000	00011011	00101110	00001000	11101110
$Transmitted \leftarrow$	11100010	00000100	11011000	01110100	00010000	01110111

Figure 13.7 Unicast and multicast addresses

-

Note

The least significant bit of the first byte defines the type of address. If the bit is 0, the address is unicast; otherwise, it is multicast.

Note

The broadcast destination address is a special case of the multicast address in which all bits are 1s.

Example 13.1

- Define the type of the following destination addresses:
- a. 4A:30:10:21:10:1A b. 47:20:1B:2E:08:EE
- c. FF:FF:FF:FF:FF

Solution

To find the type of the address, we need to look at the second hexadecimal digit from the left. If it is even, the address is unicast. If it is odd, the address is multicast. If all digits are F's, the address is broadcast. Therefore, we have the following:

- a. This is a unicast address because A in binary is 1010.
- b. This is a multicast address because 7 in binary is 0111.
- c. This is a broadcast address because all digits are F's.

Example 13.2

Show how the address 47:20:1B:2E:08:EE is sent out on line.

Solution

The address is sent left-to-right, byte by byte; for each byte, it is sent right-to-left, bit by bit, as shown below:

11100010 00000100 11011000 01110100 00010000 01110111

Figure 13.8 Categories of Standard Ethernet

Figure 13.9 Encoding in a Standard Ethernet implementation

Figure 13.10 10Base5 implementation

Figure 13.11 10Base2 implementation

Figure 13.12 10Base-T implementation

Figure 13.13 10Base-F implementation

Table 13.1 Summary of Standard Ethernet implementations

Characteristics	10Base5	10Base2	10Base-T	10Base-F
Media	Thick coaxial cable	Thin coaxial cable	2 UTP	2 Fiber
Maximum length	500 m	185 m	100 m	2000 m
Line encoding	Manchester	Manchester	Manchester	Manchester

13.2.6 Changes in the Standard

Before we discuss higher-rate Ethernet protocols, we need to discuss the changes that occurred to the 10-Mbps Standard Ethernet. These changes actually opened the road to the evolution of the Ethernet to become compatible with other high-data-rate LANs.

Topics discussed in this section:

Bridged Ethernet Switched Ethernet Full-Duplex Ethernet

Figure 13.15 A network with and without a bridge

a. Without bridging

b. With bridging

b. Second station

Figure 13.14 Sharing bandwidth

Figure 13.16 Collision domains in an unbridged network and a bridged network

a. Without bridging

b. With bridging

Figure 13.14: Switched Ethernet

Figure 13.15: Full – duplex switched Ethernet

13-3 FAST ETHERNET

In the 1990s, Ethernet made a big jump by increasing the transmission rate to 100 Mbps, and the new generation was called the Fast Ethernet. The designers of the Fast Ethernet needed to make it compatible with the Standard Ethernet. The MAC sublayer was left unchanged. But the features of the Standard Ethernet that depend on the transmission rate, had to be changed.

Topics discussed in this section:

MAC Sublayer Physical Layer

Figure 13.19 Fast Ethernet topology

a. Point-to-point

b. Star

Figure 13.20 Fast Ethernet implementations

Figure 13.16: Encoding for fast Ethernet

100Base-FX

100Base-T4

Figure 4.13 Multitransition: MLT-3 scheme

a. Typical case

b. Worse case

3 레벨의 신호 (+, 0, -) 과 3 가지 규칙을 사용하여 부호화

다음 비트가 0 이면 레벨 변화가 없다 다음 비트가 1 이고 현재 레벨이 0 이 아니면 다음 레벨은 0 다음 비트가 1 이고 현재 레벨이 0 이면 다음 레벨은 최근 0 이 아니었던 레벨의 역

c. Transition states

Figure 4.6 Polar NRZ-L and NRZ-I schemes

O No inversion: Next bit is 0

• Inversion: Next bit is 1

Figure 4.11 Multilevel: 8B6T scheme

8비트 → 6 비트 ternary

Figure 4.16 Substitution in 4B/5B block coding

Table 4.2 4B/5B mapping codes

Data Sequence	Encoded Sequence	Control Sequence	Encoded Sequence
0000	11110	Q (Quiet)	00000
0001	01001	I (Idle)	11111
0010	10100	H (Halt)	00100
0011	10101	J (Start delimiter)	11000
0100	01010	K (Start delimiter)	10001
0101	01011	T (End delimiter)	01101
0110	01110	S (Set)	11001
0111	01111	R (Reset)	00111
1000	10010	Invalid code	
1001	10011		
1010	10110		
1011	10111		
1100	11010		
1101	11011		
1110	11100		
1111	11101		

Figure 4.15 Using block coding 4B/5B with NRZ-I line coding scheme

Table 13.2 Summary of Fast Ethernet implementations

Implementation	Medium	Medium Length	Wires	Encoding
100Base-TX	STP	100 m	2	4B5B + MLT-3
100Base-FX	Fiber	185 m	2	4B5B + NRZ-I
100Base-T4	UTP	100 m	4	Two 8B/6T

13-4 GIGABIT ETHERNET

The need for an even higher data rate resulted in the design of the Gigabit Ethernet protocol (1000 Mbps). The IEEE committee calls the standard 802.3z.

Topics discussed in this section:

MAC Sublayer
Physical Layer
Ten-Gigabit Ethernet

-

Note

In the full-duplex mode of Gigabit Ethernet, there is no collision; the maximum length of the cable is determined by the signal attenuation in the cable.

Figure 13.22 Topologies of Gigabit Ethernet

a. Point-to-point

b. Star

c. Two stars

d. Hierarchy of stars

Figure 13.23 Gigabit Ethernet implementations

Figure 13.24 Encoding in Gigabit Ethernet implementations

Figure 4.12 Multilevel: 4D-PAM5 scheme

Figure 4.14 8B/10B Block coding concept

Figure 4.6 Polar NRZ-L and NRZ-I schemes

O No inversion: Next bit is 0

• Inversion: Next bit is 1

Figure 4.15 Using block coding 8B/10B with NRZ-I line coding scheme

Table 13.3 Summary of Gigabit Ethernet implementations

Implementation	Medium	Medium Length	Wires	Encoding
1000Base-SX	Fiber S-W	550 m	2	8B/10B + NRZ
1000Base-LX	Fiber L-W	5000 m	2	8B/10B + NRZ
1000Base-CX	STP	25 m	2	8B/10B + NRZ
1000Base-T4	UTP	100 m	4	4D-PAM5

Table 13.4 Summary of Ten-Gigabit Ethernet implementations

<i>Implementation</i>	Medium	Medium Length	Number of wires	Encoding
10GBase-SR	Fiber 850 nm	300 m	2	64B66B
10GBase-LR	Fiber 1310 nm	10 Km	2	64B66B
10GBase-EW	Fiber 1350 nm	40 Km	2	SONET
10GBase-X4	Fiber 1310 nm	300 m to 10 Km	2	8B10B