

Estimating Supply Utilization Accounts (SUA)

Reconstruction of Tables with Fixed Marginal Totals

Natalia Golini - Marco Garieri - Luca Pozzi

email: natalia.golini@fao.org marco.garieri@fao.org luca.pozzi@fao.org

Roma, 9th December 2013

Aim

The balancing of Food Balance Sheets

Questions:

- What is a food balance sheet?
- Why and when a food balance sheet is unbalanced?
- How to solve this problem?

Food Balance Sheet (FBS)

- Presents a comprehensive picture of the pattern of a country's food supply during a specified reference period
- Shows the source of supply and utilization for each food item
- Total supply (TS) and total utilization (TU) are defined for each food item (i) in a given country (c) during the period (t) as follows:

$$TS_{i,c,t} = Production_{i,c,t} + Imports_{i,c,t} + Stock_{i,c,t-1}$$
 (1)

$$TU_{i,c,t} = Food_{i,c,t} + Seed_{i,c,t} + Feed_{i,c,t} + IndUse_{i,c,t}(2)$$

$$+ OtherUse_{i,c,t} + Losses_{i,c,t} + Exports_{i,c,t}$$

$$+ Stock_{i,c,t}$$

Closed Food Balance Sheet

A FBS is balanced when the following equality holds:

$$TS_{i,c,t} = TU_{i,c,t} \quad \forall i \tag{3}$$

Problems:

- A FBS is assembled from a variety of sources (both official and unofficial)
- The quality of a balance sheet and its coverage vary considerably among countries and items (or commodities)
- Inaccuracies and errors are introduced at each stage of a balance sheet's construction

As a consequence we have unbalanced FBS:

$$\implies TS_{i,c,t} \neq TU_{i,c,t}$$

How to solve the balancing problem?

Starting point: some terms of equations $TS_{i,c,t} = TU_{i,c,t}$ are consolidated, that is released by official sources and therefore considered as accurate values

```
\begin{array}{lll} \textit{Production}_{i,c,t} + \textit{Imports}_{i,c,t} + \textit{Stock}_{i,c,t-1} & = & \textit{Food}_{i,c,t} + \textit{Seed}_{i,c,t} + \textit{Feed}_{i,c,t} \\ & + & \textit{IndUse}_{i,c,t} + \textit{OtherUse}_{i,c,t} \\ & + & \textit{Exports}_{i,c,t} + \textit{Losses}_{i,c,t} \\ & + & \textit{Stock}_{i,c,t} \end{array}
```

Then we can rearrange the equation as follows:

$$\begin{array}{lll} \textit{Production}_{i,c,t} + \textit{Imports}_{i,c,t} - \textit{Exports}_{i,c,t} & = & \textit{Food}_{i,c,t} + \textit{Seed}_{i,c,t} + \textit{Feed}_{i,c,t} \\ & + & \textit{IndUse}_{i,c,t} + \textit{OtherUse}_{i,c,t} \\ & + & \textit{Losses}_{i,c,t} - \textit{StockVar}_{i,c,t} \end{array}$$

where $StockVar_{i,c,t} = Stock_{i,c,t-1} - Stock_{i,c,t}$

Estimating Supply Utilization Accounts (SUA)

Aim: to estimate the SUAs in such a way that the sum of consolidated balancing terms adds up to the sum of not consolidated balancing items

```
\begin{array}{lll} \textit{Production}_{i,c,t} + \textit{Imports}_{i,c,t} - \textit{Exports}_{i,c,t} &=& \textit{Food}_{i,c,t} + \textit{Seed}_{i,c,t} + \textit{Feed}_{i,c,t} \\ &+& \textit{IndUse}_{i,c,t} + \textit{OtherUse}_{i,c,t} \\ &+& \textit{Losses}_{i,c,t} - \textit{StockVar}_{i,c,t} \end{array}
```

Example of FBS

Food Balance Sheet in tabular form

Item	Food	Feed	Seed	IndUse	OthUse	StVar	Tot.
Cereals	9334	13715	765	902	371	2385	22702
Wheat	8686	2200	600	112	10	1644	9964
Rice	354	24	29	18	11	12	424
Oats	18	340	35			37	356
Potatoes	2370	50	150		184	-119	2873
Sweet Pot.	15	1				0	16

Tot = Food + Feed + Seed + IndUse + OtherUse - StockVar

Food Balance Sheet in tabular form

Item	Food	Feed	Seed	IndUse	OtherUse	StVar	Tot.	Tot.
Cereals	9334	13715	765	902	371	2385	22702	22794
Wheat	8686	2200	600	112	10	1644	9964	10035
Rice	354	24	29	18	11	12	424	423
Oats	18	340	35			37	356	362
Potat.	2370	50	150		184	-119	2873	2947
Sw. Pot.	15	1				0	16	15
Tot.	110203	30772	1981	34294	6104	5636	177718	183329

$$\label{eq:Tot_section} \begin{split} \mathsf{Tot} &= \mathsf{Food} + \mathsf{Feed} + \mathsf{Seed} + \mathsf{IndUse} + \mathsf{OtherUse} \text{ - StockVar} \\ \mathsf{Tot} &= \mathsf{Production} + \mathsf{Import} \text{ - Export} \end{split}$$

Note that "StockVar" can assume positive and negative values

Proposed Methodological Approach

Let us assume we fix a particular country and a particular year. The table has for each row a commodity \mathcal{C} , each column is a different levels \mathcal{L} (Food, Feed, Seed, Losses, StVar, IndUse and OtherUse), for each commodity \mathcal{C}

For each commodity the total of the row is R and for each level the total of the column is ${\cal T}$

	L_1	L_2	 L_{j}	 Ls	Tot_rows
C_1	<i>x</i> ₁₁	<i>x</i> ₁₂	 x_{1j}	 x_{1s}	R_1
C_2	<i>x</i> ₂₁	X22	 X _{2j}	 X2s	R_2
C_i	x _{i1}	X _{i2}	 Xij	 Xis	R_i
C_r	x_{r1}	x_{r2}	 x_{rj}	 X _{rs}	R_r
Tot_cols	T_1	T_2	 T_j	 T_s	

Prior information

- Totals of the rows R_i , given as fixed number
- Distribution of the cells: $x_{ij} \sim T\mathcal{N}(\mu_{ij}, \sigma_{ij}^2)$, where μ_{ij} is the estimated mean and a fixed standard deviation σ_{ij}
- The range of the possible outcomes of the columns' totals T_j , given as interval $(t_{j,min}, t_{j,max})$

Why TN distribution?

The shape of the distribution will change dependently with the prior information we have for that particular cell. Some estimates of particular levels L are more accurate than others, then if it is more accurate it will be closer to a normal distribution, otherwise it will be like a uniform distribution within the bounds

Sequential sampling steps

- For each row independently, sample each cell from their distribution except the last one (VarStock), which is given by difference from the total of the row R
- For each row independently, check if the value for the last column (VarStock) falls within the given distribution for that cell
- The column's totals T are calculated, and check if all T_j s fall inside the given intervals $(t_{j,min}, t_{j,max})$
- If not successful in the last step the table is rejected and it starts again
- If successful we choose the table with minimize/maximize our objective function

Algorithm

- For each row R_i (say commodity) of length s:
 - Set the last cell of the row x_{is} as StockVar, otherwise as the one with the biggest bounds
 - 2 Sample all cells beside the last one, x_{is}
 - **3** Compute x_{is} as difference from the totals minus all previous values: $x_{is} = R_i \sum_{j=1:s-1} x_{ij}$
 - Check if x_{is} falls inside $x_{is} \sim T\mathcal{N}(\mu_{is}, \sigma_{is}^2)$, if not, sample again from the first cell of the row
- 2 Once all rows R_i are sampled:
 - Compute the column totals T_j
 - 2 Check for all if T_i , $t_{i,min} \leq T_i \leq t_{i,max}$ is respected
 - If previous step succeed, the table is accepted as a solution
 - If previous step did not succeed, the algorithm starts from the beginning

Simulation on sample table

This is just an example of a little ${\sf FBS}$

Expected Value	Food	Feed	Losses	Seed	IndUse	StVar	Tot	Tot2
Cereals	9210	12940	122	624	833	-344	24073	24150
Starchy Roots	2274	191	129	150	0	-175	2919	2975
Oilcrops	177	310	26	24	5169	277	5429	5451
Vegetable Oils	1527	12	402	0	4	65	1880	1882
Vegetables	12430	930	0	12	0	0	13372	13411
Fruits	9000	0	6	0	6965	90	15881	15874
Meat	5218	0	0	0	16	0	5234	5238
Tot Col	39836	14383	685	810	12987	-87	68788	68981

Scenario I

In this scenario, the bounds given for each cell are really tight. In the following table both percentage and absolute value of gap from the expected values are shown for each cell

$\pm\%$ (absolute)	Food	Feed	Losses	Seed	IndUse	StVar
Cereals	2 (184)	5 (647)	10 (12)	2 (12)	2 (17)	10 (-34)
Starchy Roots	2 (45)	5 (10)	10 (13)	2 (3)	0	10 (-18)
Oilcrops	2 (4)	5 (16)	10 (3)	10 (2)	2 (103)	10 (28)
Vegetable Oils	2 (31)	5 (1)	10 (40)	0	10 (0)	10 (7)
Vegetables	2 (249)	2 (19)	0	10 (1)	0	0
Fruits	2 (180)	0	10 (1)	0	2 (139)	10 (9)
Meat	2 (104)	0	0	0	10 (2)	0
Tot Col	20 (7967)	20 (2877)	20 (137)	20 (162)	20 (2597)	20 (-17)

Scenario II

The bounds, in this case, has a almost double size than in Scenario I

$\pm\%$ (absolute)	Food	Feed	Losses	Seed	IndUse	StVar
Cereals	5 (461)	10 (1294)	20 (24)	5 (31)	2 (17)	20 (-69)
Starchy Roots	5 (114)	10 (19)	20 (26)	5 (8)	0	20 (-35)
Oilcrops	5 (9)	10 (31)	20 (5)	20 (5)	2 (103)	20 (55)
Vegetable Oils	5 (76)	10 (1)	20 (80)	0	20 (1)	20 (13)
Vegetables	5 (622)	5 (47)	0	20 (2)	0	0
Fruits	5 (450)	0	20 (1)	0	2 (139)	20 (18)
Meat	5 (261)	0	0	0	20 (3)	0
Tot Col	20 (7967)	20 (2877)	20 (137)	20 (162)	20 (2597)	20 (-17)

Scenario III

In this scenario, the prior bounds have an huge size comparing to the Scenario $\ensuremath{\mathsf{II}}$

$\pm\%$ (absolute)	Food	Feed	Losses	Seed	IndUse	StVar
Cereals	10 (921)	10 (1294)	30 (37)	5 (31)	5 (42)	30 (-103)
Starchy Roots	10 (227)	10 (19)	30 (39)	5 (8)	0	30 (-58)
Oilcrops	10 (18)	10 (31)	30 (8)	30 (7)	5 (258)	30 (83)
Vegetable Oils	10 (153)	10 (1)	30 (121)	0	30 (1)	30 (20)
Vegetables	10 (1243)	5 (47)	0	30 (4)	0	0
Fruits	10 (900)	0	30 (2)	0	5 (348)	30 (27)
Meat	10 (522)	0	0	0	30 (5)	0
Tot Col	20 (7967)	20 (2877)	20 (137)	20 (162)	20 (2597)	20 (-17)

Results

In the following table the execution times for each Scenario for 100 iterations are shown

Scenario	user	system	elapsed	
I	27.00	1.45	55.91	
П	11.04	0.39	11.07	
Ш	11.82	0.03	11.87	

In all the three Scenarios and for different number of iterations (100, 1000, 10000) no table has a frequency more than one, thus all the sampled table are different from each other As a summary for the results of the different iterations for each Scenario, the Root-Mean-Square-Error (RMSE) and the Relative-RMSE (RRMSE) have been calculated. It is important to remark that this step makes sense just in a simulation study and not when the real tables will be sampled

Case a single cell has a true value, how to resample

If after the sampling particular cell values are given as fixed, an additional function of the method is given in order to resample the table given that value as true

- The best table obtain from the sampling procedure is taken
- The new cell bounds are given (a point distribution is given for that cell)
- Resample the row where the cell is present
- Calculate the new column totals
- Take the best new table

Critical Points

- Objective function (maximum of the Food for developed countries, minimize of the VarStock for not-developed countries), probably another one is better
- Need of the prior information for each cell from your side

...

Homeworks

For each country and for each year you need to provide:

- Prior distribution of each cell (mean and percentage of difference from the mean)
- 2 Intervals for column totals
- 3 Row totals exact values

Question: if we produce a closed FBS at time t, can we use this information for the balancing of the FBS at time t+1?

Thanks!