

SEQUENCE LISTING

<110> Austin-Phillips, Sandra
Burgess, Richard D
German, Thomas L
Ziegelhoffer, Thomas

<120> Transgenic Plants as an Alternative Source of
Lignocellulosic-Degrading Enzymes

<130> Transgenic Plants Expressing Cellulase

<140>
<141>

<150> 08/883,495

<151> 1997-06-26

<160> 32

<170> PatentIn Ver. 2.0

<210> 1
<211> 1621
<212> DNA
<213> Thermomonospora fusca

<400> 1
cgatatggat gatctgacgt ctgaatcccc ttgtcaccct agacattcac ccattttgtc 60
gcttttacgg ctttcttgg gagttctccg tttcaccaag gaacaaaacc gcaacggaga 120
gtaggcgcgg tctttacagc tcccttgcca atggttatcg tccgaacgga aaacgatctg 180
ggagcgcctcc cagccatgctg ctcctcttcg tgccctcac ttcttttgag ccttgtgctc 240
gttaggagcc ccgaatgtcc cccagacactc ttgcgcgtct tctggcgcc gggcgccgg 300
ccttggtag cgcgcgtgt ctggccttcc ggtcgcaagc ggcggccaat gattctccgt 360
tctacgtcaa ccccaacatg tcctccggcg aatgggtcg gaacaacccc aacgaccgc 420
gtaccccggt aatccgcgac cggatcgcca gcgtgcccga gggcacctgg ttgcaccacc 480
acaaccccg gcagatcacc ggccagatcg acgcgcgtcat gagcgcggcc caggccggcg 540
gcaagatccc gatcctggtc gtgtacaacg ccccgccggcg cgactgcggc aaccacagca 600
gcggcggccgc ccccagtacac agcgcctacc ggtcctggat cgacgaattc gctgcggac 660
tgaagaacccg tcccgccac atcatcgctg ggccggaccc gatctcgctg atgtcgagct 720
gcatccagca cgtccagcag gaagtcttgg agacgatggc gtacgcgggc aaggccctca 780
aggccgggtc ctcgcaggcg cggatctact tcgacgcccgg ccactccggc tggcactcgc 840
ccgcacagat ggcttccctgg ctccagcagg ccgcacatctc caacagcgcg cacggatcg 900
ccaccaacac ctccaaactac cggtggaccg ctgacgaggt cgccctacgccc aaggccggcg 960
tctcgccat cggcaaccccg tccctgcgcg cggtcatcga caccagccgc aacggcaacg 1020
gccccggccgg taacgagtgg tgcgacccca gcgacgcgc catcggcacg cccagcacca 1080
ccaacacccgg cgaccgcgt atcgacgcct tcctgtggat caagctgccc ggtgaggccg 1140
acggctgcgt cggccggccgc ggccagttcg tcccgaggc ggcctacgag atggcgatcg 1200

ccgcggcg caccacccc aacccgaacc ccaacccgac gcccacccccc actccgaccc 1260
ccacgccc tccccgctcc tcggggcggt gcacggcgac gtacacgatc gccaacgagt 1320
ggaacgacgg cttccaggcg accgtgacgg tcaccgcgaa ccagaacatc accggctgga 1380
ccgtgacatg gaccctcacc gacggccaga ccatcaccaa cgcctgaaac gccgacgtgt 1440
ccaccagcg ctcctcggtg accgcgcccga acgtcgccca caacggaaacg ctctccagg 1500
gagcccccac agagttcgcc ttcgtcgct ctaaggcaa ctccaactct gttccgaccc 1560
ttacctgcgc cgccagctga cccctcctgg cagtgcactg ggtggcttag gcgtgctggg 1620
g 1621

<210> 2
<211> 3503
<212> DNA
<213> Thermomonospora fusca

<400> 2
cgcgatccc cctcatcatt caggtgcggt tagttccccc aggctaccga ggaccgaatt 60
tcggtccgtt tttcttgcgg cgagccctga gaccgttcc tggccgttc cgtcaccatc 120
cttgcgcgtc ccggcgagg gggaaagcac cccgcgagat ggctccgcca cggcctgttt 180
ccgacccccc tcacaaaagc ccatttaacg cggattttac aaccggtcat gaagtggcta 240
ctctcttttgcgtc ggagcgctcc cgtgccgcta gtcacactgg gacgtgaatg gcgtcacgg 300
agggctcgtc gtgtacacg cattttcgtac cctgctttaa gtccctaagt gggagcgctc 360
ccagccttcg ggagaactcc cacacaacca accgtccgac gccactctcc cagcgctcaa 420
acggaggcag cagtgttac catccccccgc tccccctccgg ggcccggc cgtcgccgc 480
gcaaccaccc cgaccggcgtg gctgaacact gcagcgtccg gttctcgacc atccccttgc 540
gagagaacat cctccaacca aggaagacac cgatatgagt aaagttcggt ccacgaacag 600
acgttcggttgg atgcggcgcc ggctggcagc cgcctctgg ctggcgcttgc ggcctccat 660
gttggcggtc gctgtccgg ccaacgcgc cggctgctcg gtgtactaca cggtaactc 720
ctggggtacc gggttcaccc ccaacgtcac catcaccaac ctggcagtg cgatcaacgg 780
ctggaccctg gagtgggact tccccggcaa ccagcagggt accaacctgt ggaacgggac 840
ctacacccac tccgggcagc acgtgtcggt cagcaacgc cccgtacaacg cctccatccc 900
ggccaacgga acggtttagt tcgggttcaa cggctcctac tcgggcagca acgacatccc 960
ctccctcttc aagctgaacg gggtttaccc cgcggctcg gacgacccccc accccgagcc 1020
cagccctccccc cccagccctt cccccagccc cacagacccg gatgagccgg gggccggac 1080
caacccccc accaaccccg gcgagaaggt cgacaacccg ttcgaggcg ccaagctgt 1140
cgtgaaccccg gtctggcg ccaaggccgc cgctgagccg ggccgttccg cggcgccaa 1200
cgagtccacc gctgtctggc tggaccgtat cggcggatc gaggcaacg acagcccgac 1260
caccggctcc atgggtctgc gcgaccaccc ggaggaggcc gtccgcccagt cgggtggcga 1320
cccgctgacc atccaggtcg tcatctacca cctgccccgc cgcgactgcg cccgcgtggc 1380
ctccaacgtt gagctgggtc ccgatgaact cgaccgtac aagagcgagt acatcgaccc 1440
gatcgccgac atcatgtggg acttcgcaga ctacgagaac ctgcggatcg tcgcccatt 1500
cgagatcgac tccctgccc acctcgatc caacgtggc gggaaacggcg gcacccgagct 1560
ctgcgcctac atgaagcaga acggcggcta cgtcaacggt gtcggctacg cccctccgcaa 1620
gctggcgag atcccgaaacg tctacaacta catcgaccc gcccaccacg gctggatcg 1680
ctgggactcc aacttcggcc cctcggtgga catcttctac gaggccgcca acgcctccgg 1740
ctccaccgtg gactacgtgc acggcttcat ctccaacacg gccaactact cggccactgt 1800
ggagccgtac ctggacgtca acggcaccgt taacggccag ctcatccgccc agtccaagt 1860
gttgactgg aaccagtacg tcgacgagct ctccttcgtc caggacctgc gtcaggccct 1920
gatcgccaag ggctccggc cgcacatcg gatgctcatc gacacccccc gcaacggctg 1980

gggtggcccg aaccgtccga ccggaccgag ctccctccacc gacctaaca cctacgttga 2040
cgagagccgt atcgaccgccc gtatccaccc cggttaactgg tgcaaccagg ccgggtgcggg 2100
cctcggcgag cggcccacgg tcaacccggc tcccggtgtt gacgcctacg tctgggtgaa 2160
gccccgggt gagtccgacg ggcgcagcga ggagatccc aacgacgagg gcaagggctt 2220
cgaccgcattg tgccgaccggc cctaccaggc caacgcccgc aacggcaaca accccctcgga 2280
tgccgctgccc aacgccccca tctccggcca ctggttctct gcccagttcc gcgagctgct 2340
ggcccaacgccc taccggcctc tgtaaagcgg agtgaggcaa cggctgacag cctcaacgag 2400
gaactgatca gcacccctca gccggagacg gcgcggcgtcc actcccccgtg ggcggggcgc 2460
gcttttatgc cgaccgtgc cccagccca aggggcacgg gtcggcttat tccggcgatg 2520
tcggtcacgt cgccctagca cccggaaacg ccgagaaaga ctgccccgaa acggtcctct 2580
cccatccctg cattaggttg gccgagttcg cctatggctt cgtggggcgg aacccaaccc 2640
accatcaacg agaggtatca ccatggccag tgggtgaaa ttcaatgtgc tgacggttcc 2700
tcccggtgcc ggcgccaccc cggaggacgt ttgccaagcg cgcaggcctc gtggagaacc 2760
gggcccgggtt tcacgagttc caactgcccgg cggccggcga cgggacggac aagtacatcg 2820
tctacacgcg ctggcgctcc ggagaggact accagaactg gctgaacagc gaggccttcc 2880
agcgcggaca cgcggcggcc tctgaagact cccggcgcag cagccaggcgg ggcggccgg 2940
cgtccgcgag tgaactctgg tccttcgaag tcgtccagca cgtccaggcc caggactgat 3000
cccggtgcgg ccctcggttc tttaccgggg gcccggcacc cccttcatcc cttttcttct 3060
cccccgacc ccttttgcattc tgcaatgatg gaattcgca ttcttgagaa ggcgcgtcg 3120
gtcccatgacc gcgcagaagg caggacgacc acgcgtaccg gtcgacatcg aaggagtcaa 3180
ctgacagttgg ggactatcgc ggggctgatt gtcgcgtgt caggcgtggg gatggtctcg 3240
gcacacgtgc tcccggtggc accgtcgcac ccggcatccg tggccccgc cacctcgca 3300
ggcagcagggtt ctcccatgac gcccggagccc tcgcgtcccc ggtacccca ctcgtgcgt 3360
ccgtggtcga agaggtgccc agcgcaagcg gagaactgcg ggtcgtcgaa ggtgacgggg 3420
aggtcgtcggt cgaaggcaccg ctccctcgct acctgggtgaa ggtcgaagaa gggcttcccg 3480
gagaccccgcc cgacttcgct gca 3503

<210> 3

<211> 21

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: VSP Leader
Sequence

<400> 3

Met Lys Leu Phe Val Phe Phe Val Ala Ala Val Val Val Leu Val Ala Trp
1 5 10 15

Pro Cys His Gly Ala

20

<210> 4

<211> 25

<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Xba E2 PCR
Primer

<400> 4
gctctagatg aatgattctc cgttc

25

<210> 5
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Xba E2 PCR
Primer

<400> 5
tgaccggcag caaaatg

17

<210> 6
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Xba E3 PCR
-Primer

<400> 6
gctctagatg gccggctgct cggtg

25

<210> 7
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: RIE3 PCR
Primer

<400> 7
ggaattctta cagaggcggg tag

23

<210> 8
<211> 3004
<212> DNA
<213> Acidothermus cellulolyticus

<300>

<400> 8

ggatccacgt tgtacaaggta cacctgtccg tcgttctggta agagcggcgg gatggtcacc 60
cgcacgatct ctcccttggta gatgtcgacg gtcacgtggta tacgggttgc ctcggcccg 120
attttcgcgc tcgggcttgc tccggctgtc ggggttcggta tggcgtggta tgcggagcac 180
gccgaggcga tcccaatgag ggcaaggcga agagcggagc cgatggcacg tcgggtggcc 240
gatggggta gccgatgggg cgtggcgtcc ccggcccgga cagaaccgga tgcggaaatag 300
gtcacgggtgc gacatgttgc cgtaccggcg acccggatga caagggtggg tgcgcgggtc 360
gcctgtgagc tgccggctgg cgtctggatc atggaaacga tcccaccatt ccccgcaatc 420
gacgcgatcg ggagcaggcgc ggccgcgagcc ggaccgtgt gtcgagccgg acgattcgcc 480
catacgggtgc tgcaatgccc agcgccatgt tgtaatccg ccaaattgcag caatgcacac 540
atggacaggg attgtgactc tgagtaatga ttggattgcc ttcttgcgc ctagcgtta 600
cgccagatgtat gcggttagtt ggcgcgtccag ccgtggctg gacatgcctg 660
ctgcgaactc ttgacacgtc tggttgaacg cgaataactc ccaacaccga tgggatcggtt 720
ccataaaggta tccgtctcac aacagaatcg gtgcgcctc atgatcaacg taaaaggagt 780
acgggggaga acagacgggg gagaaaccaa cgggggattt gcggtgcgcgc ggcattgcg 840
gcaatgtcctt ggctcgccgg tgatgtcg ggtcgccgtc gtcgtcgccg tgctggcatt 900
gttgcgcgca ctcgcacacc tagccgtgcc gcgccggct cgcgcgcgg gggcggtta 960
ttggcacacg agcgccggg agatcctgga cgcgcacac gtcgggtac gatcgccgg 1020
catcaactgg tttgggttcg aaacctgca ttacgtcg caccgtctct ggtcacgcga 1080
ctaccgcacg atgctcgacc agataaaatgc gtcggctac aacacaatcc ggctgcgtta 1140
ctctgacacg attctcaagc cgggcacccat gccaacacg atcaattttt accagatgaa 1200
tcaggacctg cagggtctga cgtccttgca ggtcatggac aaaatcgatcg cgtacgcgg 1260
tcagatcgcc ctgcgcacca ttcttgaccg ccaccgaccg gattgcacgc ggcagtcggc 1320
gctgtggta acgacgcacg tctcgagggc tacgtggatt tccgacccgtc aagcgtggc 1380
- gcaatgtcctac aaggaaacc ctagcggtcg cggcttgc ttgcacaacg agccgcgtta 1440
cccgccctgc tgggctgcg gcgatccgag catcgactgg cgattggccg ccgagcggc 1500
cgaaacgcc gtcgtctcg gtaatccgaa cctgctcatt ttctgtcgaa gttgtcgatgg 1560
ctacaacgga gactcctact ggtggggcg caacctgca ggagccggcc agtacccgg 1620
cgtgtcgac gtcggcaacc gcctgggtta ctggcgcac gactacgcga cgagcgtcta 1680
cccgacacg tggttcagcg atccgacccat ccccaacac atgcccggca tctggaaacaa 1740
gaactggga tacctttca atcagaacat tgcaccggta tggctggcg aattcggtac 1800
gacactgcaaa tccacgaccg accagacgtg gctgaagacg ctcgtccagt acctacggcc 1860
gaccgcgcaaa tacgtcgccg acagttcca gtggacccctc tggctctggaa accccgattc 1920
cgccgacaca ggagaaattt tcaaggatga ctggcagacg gtcgacacag taaaagacgg 1980
ctatctcgcc ccgatcaagt cgtcgatttt cgatcctgtc ggcgcgtctg catgccttag 2040
cagtcaaccc tccccgtcg gtcgtccgtc tccgtcgccg agccgtcg gtagtgcggac 2100
ggccgacgcct actccgacgc cgacagcccg cccgacgcac acgctgaccc ctactgtac 2160
gccccacgccc acggcaagcc cgacgcgtc accgacggca gcctccggag cccgctgcac 2220
cgccgatgtac caggtaaca gcgattgggg caatggcttc acggtaacgg tggccgtgac 2280
aaattccgga tccgtcgca ccaagacatg gacggtcagt tggacattcg gcgaaatca 2340
gacgattacc aattcgtgga atgcagcggt cacgcagaac ggtcgtcgta taacggctcg 2400
gaatatgagt tataacaacg tgattcagcc tggcagaac accacgttgc gattccaggc 2460
gagctataacc ggaagcaacg cggcaccgac agtgcgtccgc gcagcaagtt aatacggtcg 2520
ggagccgacg ggaggggtccg gaccgtcggt tccccggctt ccacctatgg agcgaacccca 2580
acaatccgga cggaactgca ggtaccagag aggaacgaca cgaatgcggc ccatctcaaa 2640

acggctgcga gccggcgtcc tcgcccgggc ggtgagcatc gcagcctcca tcgtgccgct 2700
ggcgtgcag catcctgcca tcgcccgcac gcacgtgcac aatccctatg cgggagcgcac 2760
cttcttcgtc aaccctgtact gggcgcaaga agtacagagc gaacggcgaa ccagaccaat 2820
gccactctcg cagcgaaaat gcgcgtcggt tccacatatt cgacggccgt ctggatggac 2880
cgcatcgctg cgatcaacgg cgtcaacggc ggaccggct tgacgacata tctggacgcc 2940
gccctctccc agcagcaggg aaccacccct gaagtcatc agattgtcat ctacgatctg 3000
ccgg 3004

<210> 9
<211> 2220
<212> DNA
<213> Trichoderma reesei

<300>
<308> Genbank E00389
<309> 1997-09-29
<310> JP 1985149387-A1
<312> 1985-08-06

<400> 9
aaggtagcc aagaacaata gccgataaaag atagcctcat taaacggaat gagcttagtag 60
gcaaagtca gaaatgtgtatataaaagg ttcgaggtcc gtgcctccct catgctctcc 120
ccatctactc atcaactca gatcctccagg agacttgcac accatcttt gaggcacaga 180
aaccctaaatg tcaaccgcgg actggcatca tgtatcgaa gttggccgtc atcacggcct 240
tcttggccac agctcgtgct cagtcggcct gcactctcca atcggagact caccggcctc 300
tgacatggca gaaatgctcg tctggtgca cttgcactca acagacaggg tccgtggta 360
tcgacgccaa ctggcgctgg actcacgcta cgaacagcag cacgaactgc tacgatggca 420
acacttggag ctgcgacccta tgtcctgaca acgagacctg cgcaagaac tgctgtctgg 480
acgggtccgc ctacgcgtcc acgtacggag ttaccacggag cgtaacacgc ctctccattg 540
gctttgtcac ccagtctgctg cagaagaac ttggcgctcg cctttacctt atggcgagcg 600
acacgaccta ccaggaattc accctgcttgc gcaacgagtt ctcttcgat gttgatgttt 660
cgcaagctgcc gtaagtgact taccatgaa ccctgacgt tcttcttgat ggctcccg 720
tgactggcca atttaagggtg cggcttgaac ggagctctt acttcgtgtc catggacgcg 780
gatggtggcg tgagcaagta tcccaccaac aacgctggcg ccaagtaacgg cacggggtag 840
tgtgacagcc agtgtcccccg cgatctgaag ttcatcaatg gccaggccaa cgttgaggggc 900
tgggagccgt catccaacaa cgaaacacag ggcattggag gacacggaa ctgctgctct 960
gagatggata tctgggaggc caactccatc tccgaggctc ttacccccc cccctgcacg 1020
actgtcggcc aggagatctg cgagggtgtat gggtgccgc gaacttactc cgataacaga 1080
tatggcgccca cttgcgtatcc cgatggctgc gactggaaacc cataccggctt gggcaacacc 1140
agcttctacg gccctggctc aagctttacc ctcgataccca ccaagaaatt gaccgttgc 1200
acccagttcg agacgtcggt tgccatcaac cgatactatg tccagaatgg cgtcaacttc 1260
cagcagccca acgcccggact tggtagttac tctggcaacg agctcaacga tgattactgc 1320
acagctgagg agacagaatt cggcggtatct ctttctcaga caagggccgc ctgactcgt 1380
tcaagaaggc tacctctggc ggcattggtc tggcatgag tctgtggat gatgtgagtt 1440
tgatggacaa acatgcgcgt tgacaaagag tcaagcagct gactgagatg ttacagtact 1500
acgccaacat gctgtggctg gactccaccc acccgacaaa cgagacctcc tccacaccccg 1560
gtgccgtcg cgaaagctgc tccaccagct ccgggtgtccc tgctcaggc gaatctcagt 1620
ctcccaacgc caaggtcacc ttctccaaca tcaagttcg acccattggc agcaccggca 1680

accctagcg cgccaaccct cccggcgaa accgtggcac caccaccacc cgccgcccag 1740
ccactaccac tggagctct cccggaccta cccagtctca ctacggccag tgccgcgta 1800
ttggctacag cggccccacg gtctgcgcca gcggcacaac ttgccaggc tcgaaccctt 1860
actactctca gtgcctgtaa agctccgtgc gaaagcctga cgcaccggta gattcttggt 1920
gagcccgat catgacggcg gcgggagcta catggcccg ggtgatttat ttttttgta 1980
tctacttctg accctttca aatatacgtt caactcatct ttcaactggag atgcggcctg 2040
cttggtattt cgtatgttgc agcttggaa attgtggctt tcgaaaacac aaaacgattc 2100
cttagtagcc atgcatttttta agataacgga atagaagaaa gaggaaattha aaaaaaaaaa 2160
aaaaacaaac atccgttca taacccgtag aatcgccgct cttcgtgtat cccagtagcca 2220

<210> 10
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Nar E1 PCR
Primer

<400> 10
cgggcgccg gcggcgctt t 21

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Sac E1 PCR
Primer

<400> 11
ccgagctttt aacttgctgc 20

<210> 12
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Sac E1cd PCR
Primer

<400> 12
tggagctcta gacaggatcg aaaat 25

<210> 13
<211> 76

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: VSP leader
coding sequence

<400> 13
tcttagatcg accatgaagt tgggtttt ctttgttgc gcagtagttt tggtagcatg 60
gccatgccat ggcgcc 76

<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: CBH2-2 PCR
Primer

<400> 14
gctcttagatg tatcggaaat tggc 24

<210> 15
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: CBH3-1 PCR
Primer

<400> 15
ccccccgggtt acaggcactg agag 24

<210> 16
<211> 2199
<212> DNA
<213> Cellulomonas fimi

<300>
<303> Gene
<304> 44
<306> 315-342
<307> 1986
<308> Genbank M15823
<309> 1993-06-04

<400> 16

ggatccggac ggtggcggtc gtggccgaca ccgacgcgt ggagacgacc ttcgcggacg 60
tcgcggacct cgccggcag tgccggttcg gcgactgccg gcacgagcgg gagccgggt 120
gcgcgggtcg ggcggccgtc gagtcggcg acctgccgg ccggcggtg gactcgtggc 180
ggcgcctgga gcgcgaggcg gcctaccagg cacggcgca gacggcgcc tggccgcca 240
ggagcgcgca cgcttgaaga agatcacca ggagtaccag cggggatgc gccccccggg 300
gcgtcccgcc agctgacggg cccgggaggc ccccgccgg gcggtgggatgc 360
cgccagcggg tgcgaagcg acgggtcgaa gcgcgccaac gtcgcccgtat ccggaaactga 420
agcgattagg aaatccat ccgctcgcc cggtggcat tcgtcggtt tcctcgctgg 480
gaccgcacg agcgtgccac gaggccgaa cccagggagc tccttgcgtatgt ccaccccgag 540
aaccggccca gcgcgtctgg cggccggcc cgtcgccgtc ggcgtctga ccgcctcac 600
caccaccggc gcgcaggcg ctccggctg ccgcgtcgac tacgcgtca ccaaccagt 660
gcccggcgcc ttgcgcgcca acgtcacat caccaacctc ggcgaccccg tctcgctgt 720
gaagctcgac tggacctaca ccgcaggca gcgatccag cagctgttga acggcaccgc 780
gtcgaccaac ggcggccagg tctccgtcac cagcctgccc tggaaacggca gcatcccgac 840
ccgcggcact gcgtcggtcg ggtcaacgg ctcgtggcc ggttcaaccccg 900
gtcggtctcg ctcaacggca ccacctgcac gggaccgtg ccgacgacca gccccacgccc 960
gaccggacg ccgacgaccc ccacggac gccgaccccg accccccaccc ccacgcccac 1020
gttcacgcgc cagccgacca gcggcttcta cgtcgaccccg acgacgcagg gctaccgcgc 1080
gtggcaggcc gcgtccggca cggacaaggc gtcgtcgag aagatcgccgc tcaccccgca 1140
gcgtactgg gtgcgaact gggccgacgc gtgcacgcg caggccgagg tcgcccacta 1200
caccggccgc ggcgtcgccg cccggaaagac gccgatgctc gtgcgtctacg cgatcccggt 1260
ccgcgactgc ggctcgact ccggcggtgg tgggtccgag tccgagtgacg cgctgtgggt 1320
cgacaccgtc gcgcaggcgca tcaaggcgaa cccgatcgatc atcctcgagc ccgacgcgt 1380
ccgcgactgc ggctcgact ccggccagg tgaccgcgtc ggcttcctca agtacgcgc 1440
caagtcgctc accctcaagg gcgcgcgcgt ctacatcgac gcccggccacg cgaagtggct 1500
gtcggtcgac acgcccgtga accgcctcaa ccaggtcgcc ttgcgatcgac cggtgggtt 1560
cgcgctcaac acgtcgaaact accagacgac ggcggacgc aaggcgatcg gccagcagat 1620
ctcgcagccg ctggcgccgca agaagttcgat catcgacacc tcgcgcacacg gcaacggctc 1680
gaacggcgag tgggtcaacc cgcgcggccg cgcgtcgcc gaaacggccgg tcgcgttggaa 1740
cgacggctcc ggctggacg cgctcctgtg ggtcaagctg cccggcgagt ccgacggcg 1800
gtgcacgcg ggcggcccg ccggccagtg gtggcaggag atgcgcctgg agatggcg 1860
caacggccagg tgggtgacgtc agacctcgcc cacgacgacg cgcggacgg cgacgtgcg 1920
tccgcgggtcg cgtccgtccg gccgcggcg cccggacgtc ggggcggcg ggacaatggg 1980
gcggtggcgag ggcacgcac ggaccgcacc cgacgacggc cgcgcgcgc tcgacgtgt 2040
gcgcgcgcac cccgcaggcg tgccgaccc ggcgcggccg accgcgttcc ggttacgt 2100
cgaggagctc gccgacgtgg ccccccggca cgcgtcgag gtgcgcgtcc cgccggacgg 2160
cggccgtgca ggcgtcgac ggcggccggc acacccggg 2199

<210> 17

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: cenApst PCR
Primer

<400> 17
ggctgcaggc ggctgccgct tcgac 25

<210> 18
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: cemAsac PCR
Primer

<400> 18
ccgagctctc accacctggc gtt 23

<210> 19
<211> 82
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: VSP leader
coding sequence

<400> 19
tctagagtcg accatgaagt tgggtttt ctttggca gcagtagttt tggttagctt 60
gccttgcac ggcgtgcag tc 82

<210> 20
<211> 2286
<212> DNA
<213> Clostridium thermocellum

<300>
<303> Nucleic Acids Res.
<304> 14
<305> 21
<306> 8605-8613
<307> 1986
<308> Genbank X04584
<309> 1999-02-10

<400> 20
aaactaaaac tcctatccaa tacttttagtt cagttccagc atacgtctgt attcaaaatg 60
cctgtattta taactgcatt tataatacct gaagcaaata ataattaaac ttgtggaaga 120
aaggagggtg caacagggtt taaattatct taattcaggt attttacaat ttttaataaa 180
aagggggata aaggtaaaaa atgagtagaa tgaccttgaa aagcagcgtg aaaaaacgtg 240
tgtttatctt gctcattgct gtatgtttc taagcttgac cggagtattt ctttcggat 300

tgattgagac caaagtgtca gctgcaaaaa taacggagaa ttatcaattt gattcacgaa 360
tccgtttaaa ctcataatgg tttataccga accacagcaa aaaggcgact atagctgcaa 420
attgttcaac cttttatgtt gttaaagaag acggaacaat agtgtatacc ggaacggcaa 480
cttcaatgtt tgacaatgtat acaaaagaaa ctgtttatat tgctgatttt tcatactgtta 540
atgaagaagg aacgtactat cttgccgtgc cgggagtagg aaaaagcgta aactttaaaa 600
ttgcaatgaa tgtatatacg gatgctttt aaacagcaat gctggaaatg tatttgctgc 660
gctgcccac cagtggtcg gccacataca acggaataca ctattccat ggaccgtgcc 720
atactaatga tgcataatctt gattatataa acggacagca tactaaaaaa gacagtacaa 780
aaggctggca tcatgcggc gactacaaca aatatgtggt aaacgcccgc ataaccgtt 840
gttcaatgtt cctggcgtgg gagcatttt aagaccagtt ggagcctgtg gcattggaga 900
ttcccgaaaa gaacaattca ataccggatt ttcttgatga attaaaatat gagatagact 960
ggattcttac catgaatac cctgacggg gcggaaagggt ggctcataaaa gttcgacaa 1020
ggaactttgg cggcttatac atgcctgaga acgaacacga cgaaagattt ttcgtgccct 1080
ggagcagtcg cgcacacggca gactttgtt ccatgacggc catggctgca agaatattca 1140
ggccttatga tcctcaatat gctgaaaaat gtataatgc ggcaaaagta agctatgagt 1200
ttttgaagaa caatcctgca aatgttttg caaaccagag tggattctca acaggagaat 1260
atgccactgt cagtgtatgca gatgacagat tgtggcggc ggctgaaatg tgggagaccc 1320
tgggagatga agaataccctt agagattttg aaaacagggc ggcgaattc tcgaaaaaaaa 1380
tagaagccga ttttactgg gataatgtt caaacttagg tatgtttaca tatctttgt 1440
cagaaagacc gggcaagaat cctgcttgg tgcagtcaat aaaggatagt ctcccttcca 1500
ctgcggattc aattgtgagg accagccaaa accatggcta tggcagaacc ctgggtacaa 1560
catattactg gggatgcaac ggcacgggtt taagacagac tatgataactt caggttgcga 1620
acaagatttc acccaacaat gattatgtaa atgctgctt ccatgacgatt tcacatgtat 1680
tttggaaagaaa ctattacaac aggtctttag taacaggcct tggtataaaat ctccttatga 1740
atccctcatga cagacgttca gggctgacg gaatatggg gccgtggccc gtttacctt 1800
taggaggagg atggcccgga ccgaaggatt gggtgat tcaaggacagt tattcagacca 1860
atgaaatttc tataaactgg aatgcggcat tgatttatgc cttgcccga tttgtcaact 1920
ataattctcc tcaaaatgaa gtactgtacg gagatgtgaa tgatgacgga aaagtaaact 1980
ccactgactt gactttgtt aaaaagatatg ttcttaaagc cgtctcaact ctcccttctt 2040
ccaaagctga aaagaacgca gatgtaaatc gtgacggaa agttaattcc agtgatgtca 2100
caataacttc aagatatttg ataagggtaa tcgagaaatt accaatataa attctgataa 2160
atattgataa acactaatat ataagtgttt aatcgtaaa agagccctgt ggcaaaaaact 2220
gccgcaggct gtttttatca attccggcgc agacgaaaat agcagacgta aatattaatt 2280
actgaa 2286

<210> 21
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: celDpst PCR
Primer

<400> 21
agctgcagaa ataacgg

17

<210> 22

<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: celDsac PCR
Primer

<400> 22
ccgagcttt atattggtaa tttctc 26

<210> 23
<211> 4578
<212> DNA
<213> Clostridium cellulovorans

<300>
<303> Gene
<304> 211
<305> 1
<306> 39-47
<307> 1998
<308> Genbank U34793
<309> 1999-03-09

<400> 23
taatatataa ataatattta aaatcaataa atcaatcgaa gaaaatttaa aaaaagagag 60
ggataatcaa tgagaaaaag attaaataag atcggtgctg ttgcttaac tgcaacaact 120
atatcatca tagcagctac tgttaataca gctcaagttt cagctgcacc agtagtgcca 180
aataatgaat atgttcaaca cttaaggat atgtacgcta agatccataa tgcaaacaat 240
ggataacttca gtgatgaagg aataccttac cacgcgttg aaacattaat ggttgaagca 300
ccagactatg gtcatgaaac tacaagtcaa gcttggatg taactgaaaa gtacataatt 360
ccaggtgaga ctgatcaacc aagcgcaagt atgagcaatt atgatccaaa taagccagct 420
acatatgcag ctgaacatcc agatccaagc atgtacccat ctcaattaca atttgggtct 480
gctgttagta aggtccatt atacaatgaa tttaaatcta ttatggaaac tagccaagta 540
tatggtatgc attgttact agatgttgc aactggatg gttttggatg tgcaacaagc 600
acaagcccaag tatacatcaa cacttccaa agaggtgttc aagaatcttgc ttggaaact 660
gtgccacaac catgtaaaga cgaatgaag tacgggtggaa gaaacggttt ctttagatcta 720
ttcactggatg attcacaata cgcaactcaa tttaaatata ctaacgctcc agacgcagat 780
gctcgtgcag ttcaagctac ttactatgca caattagctg ctaaagaatg gggagtagac 840
atcagctcat atgttagcaaa atctactaag atgggtgact tcttaagata ttcattctt 900
gataaatact tttagaaaaatg tggaaattca acacaagcag gaactggata tgattcagct 960
caataccat taaactggta ctatgcttgg ggtggatggaa tcagctcaaa ctggcttgg 1020
agaattggat caagccataa ccatttcgga taccaaaacc caatggcagc atggatatta 1080
tcaaatacat ctgactttaa accaaagtca ccaaattgtc ctacagattg gaataacagt 1140
ttaaagagac aaatagaatt ctatcaatgg ttacaatctg ctgaaggatgg tatcgcttgg 1200
ggagcttaga actcaaattgg aggaagctat caagcatggc cagcaggtac tcgaacattc 1260
tacggaaatgg gatatactcc tcacccagta tacgaagatc cagtagtaa cgaatggttt 1320

ggtatgcaag catggtaat gcaacgtgtg gctgaatact actacagttc aaaagatcca 1380
gcagctaaat cattacttga taaatggct aaatggcctt gtgcaaatgt tcaattcgat 1440
gatgcagcta agaaatttaa gattcctgct aaattagtat ggactggaca accagatact 1500
tggactggat catatacagg aaattcaaattt cttcatgtt aagttgaagc ttatggagaa 1560
gatcttggag tagcagggttc actttctaat gcattatcat attatgcaaa agctcttgc 1620
tctagcacag atgctgcaga taaagtagca tataacactg caaaagaaac ttctagaaag 1680
atacttgatt acttatgggc aagctaccaa gatgataagg gtatacgat tactgaaaca 1740
agaaaatgatt tcaaacgtt caatcaatct gtatataattc catcaggtt gacaggaaaa 1800
atgcctaattt gagatgtaat ccaaagtggc gctactttct taagcatacg ttcaaaatac 1860
aaacaagatc catcatggcc aaatgttcaa gctgcttag caaatggtac tgggttgc 1920
atgacatacc acagattctg gggtaaagt gatatcgct tagcatttgg aacatacggt 1980
acattattca cagaccctac tccaggattt aaaggtgtt gttactctga tgctaaagta 2040
aatgctatag atttagctat attaaagaaa tacatcttag attcaacaac taaaattaac 2100
actgctaattt ctgatattgaa cgggtatggc aaagttatg caatggattt agcttttata 2160
aagaaagcac ttctgtttaa gattaaataa ctttagatcg aaattgttaa gttatattaa 2220
gctggacaat atcaagtata ttgtccagct actttaaaaa atattggaa acactgtgt 2280
aggttaaactt aaaccatggc tatgaaatattt agtaagatc atgcatttgc tatggcaac 2340
ttaaaataaa tatatttagag cataaacatg aaatttaaattt aaaaaggcga taaataattc 2400
cctaataaaa aaaattaagg ggtggaaacta gtgtttaaca tatctaagaa aaaagcgc 2460
gctcttcttt tattcaggat cttgggtgca acttcattt caccagctgt attggtaaaa 2520
ggtaaacaacaa cagcgactcc aacattcaat tatggagaag cattacaaaaa gtcaataatg 2580
ttttatgaaat tccaacgttc tggaaagtta ccaacggata ttcgtatgaa ttggcgttgt 2640
gattctggaa caaaagatgg ctctgtatgta ggagttgatt taactggtgg atggatgtat 2700
gctggagacc acgttaaattt taatctgcca atgtcttata ctgtggcaat gcttgcattg 2760
tcattaatgt aagacaaaagc agcttacgaa aaaagcggcc aatttagatc cttgttaag 2820
gaaataaaaat gggctacaga ttatctaattt aagtgcataa cggcaccaaa tgaataactat 2880
tatcaagttt gtgatgggtgg agctgatcac aaatggtgg gacctgcaga agtaatgcag 2940
atggcaagac cggcttataaa agtagattt caaaaaccag gatcatcgt tgctgctgaa 3000
acagcagcag cattagcttc tacagctttt gcattaaaag acatagataa agcgtattca 3060
gaacaatgtt ttcagcatgc aaaagaactt tataactttt ctgatataac aaagagtgtat 3120
gctggttata cagcagcaaa tacatattac aattcatggc gtggatacta tgatgaaat 3180
tcatggctg cagcatggct ttacatggca acaaattgtt catcatatct agaaaaagcg 3240
gaatcatatg ttccatattt gaaagggttgc cagcaaaacaa ccactatagc atatagatgg 3300
gcccattgtt gggatgtatgtt acatttcggc gctcaatttac tccttgccag attaacaagg 3360
aaatcaatatac acaaagaatc agttgaaaga aaccttgattt attggacaac tggttatgt 3420
ggaaataaaaataa taaagtacac tccaaaagggtt ttagcttgc tggattctt gggctcattt 3480
agatatgcaatc ctacaacggc attccttgc gatgtttatg caagctcaga tggttgtct 3540
atttcttaagg tagatacata taagaattttt gctaaagatc aagctgatc tgcttttagga 3600
agttactggaa gaagttttgtt ggttaggat ggtgaaaatg ctccaaagaa accacatcat 3660
agaactgccc atagttcatg gtcagatcaa caagtaaattt caacagacca tagacatgtt 3720
ttatatgggtt cttagttgg aggaccatg gccagtgtt gttataacttga tgcttattgac 3780
aattttacta ataatgaggtt ggcttgcgtat tataatgcag gatttgcgtt acttttagct 3840
agacaatattt ctaaaatatgg cggagatcca atacctgattt ttaaagcgat agaaaagcc 3900
accaacatgtt agttctttgtt cgaagcaggaa gtaaaattgtt caggtccaaa ttttgcgtt 3960
attaaagctt tagttaataa tagaacaggaa tggccagcaaa gaatgggaga taaaacttca 4020
ttcaaaatactt tcataaaatgtt aagtgtatttt gttatgttgc gttacagtgc agatgatgtt 4080
aaggttactg ttggttacaa tactggcggc actgttatcaa acctaattccc atgggataag 4140
gaaaataataa ttattatgtt aaatgttgc ttcacagggg taaagattt tccaggtgg 4200

caatcagatt ataaaaaaga aattcaattt agaatttcag gaattcaaaa tgttaatatt 4260
tgggataatt ctgatgactt ctcttatgag gggattacaa aaactccagg taaaacacct 4320
gtgaaggta caaacatccc agtttatgt aatggagtt aggtattcgg aatgaacca 4380
gaaactacta agccacctgt tatacgctgt gatgtaaaca ataatggtat cgtgaattca 4440
atggatttag cgatgttaaa gaaatatacttggatacg aagtagaaaat gaataaagag 4500
gcttcagatt taaataaaga tggtaagatt aatgccattt attcgctct tttaaagaaa 4560
ctactttat cacagtag 4578

<210> 24
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: exgSnar PCR
Primer

<400> 24
cggggcgccg caccagtagt gccca

24

<210> 25
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: exgSsac PCR
Primer

<400> 25
ccgagcttt attaatctt aagc

24

<210> 26
<211> 5971
<212> DNA
<213> Thermobifida fusca

<300>

<400> 26
gcggccgcca ggtggggcgg ccgagtcga cgggtggcag gacttcgacc ccgtggcgt 60
cagcgaagca tgcttcgctg acgttggcgg cggtagcag gcctaccccg gtgcgggtca 120
tcccgaagt ggtggcgt tcttcgaggt ggttgtccgg gtcgggtccgc cggtagtcgc 180
cgtcgactt ggcgtttagt acgtatccc gtggtccgag gccgcccgg agcacgctgg 240
aggcggccat ggcgcagccg gggccgcact gccagagcac tgcggcaagg gcgcggccgt 300
tgtcgcccg ccagcgcagg tgcgcgggtga ggagggtgcc gtcgcccgtc gtctccgtgt 360
ccactccgtt ctccagggtc gggtccggg ggcacttta acgagtccgc atcgggcggc 420
agcgggggtca tgcttcatc tggcgaaatg ccacgcggag tactgcgtt ctcacgcttc 480

gtcccattgt ctttttacgg agggtttaca cggcacatcc ggaacgttac cctcctactg 540
ggagcgctcc cgtgactca gccacagggc cccttccgg ggcgagcccc caccaccccg 600
ggaaggccac tgcgaccct gagctcaatt catgggagcg ctcccatgcc agtgctcccg 660
gcagaaaagga gagaaccgga acccggtacc gctggttca ctgatcccc tggggcacc 720
cggcacatcgcc ccgacaccag cgatgccacc cccgcggcgg ctgcagttca caccggcac 780
gccgcacacc ccttcctgt gtgacacgcg gttccgaacg gccttgcgg ttctcggtat 840
gccgacgaac ggcacggctg ctccggaaacc ggaagatccg gaggttattt ccaagcatga 900
gatcgttact gtctcccg cgctggcga cgctggcctc gggggcgctc gcagcggccc 960
tggccgccc tgcgtactctcc cccggcgctg cgacacgcgc cgtcgcctgc tcgggtggact 1020
acgacgactc caacgactgg ggtagcggt tcgtcgccga agtcaagggt accaacaag 1080
gcagcgaccc catccagaac tggcaagtag gctggaccc ccccggttaac cagcagatca 1140
ccaacggctg gaacggcggt ttcagccaga gcggcgccaa cgtcaccgtc cgctaccgg 1200
actggAACCC caatatcgcc cccggagcca ccacatccctt cggttccag ggcacactaca 1260
gcggctccaa cgacgccccg accagcttca ccgtcaacgg cgtcacccgtc agcggatccc 1320
agccccccaa cctggccccc gatgtcaccc tgacatcccc ggccaacaac tcgacccccc 1380
tggtcaacga cccgatcgag ctgaccgcg tcgcctccga ccccgacggc tcgatcgacc 1440
gggttggaaatt cgccgcccac aacaccgtca tcggcatcga caccacccctt ccctacagct 1500
tcacccggac ggacgctgcc gccggctctt actcggtgac cgcgatcgcc tacgacgacc 1560
agggagccag gaccgtctcc gctcccatcg ccacccgagt gctggaccgg gccggcgta 1620
tcgcctcacc gcccacccgtc cgctgcggc agggcgac ccggacttc gaggtgcggc 1680
tgtccaaacca gcccggcgc aacgtcacgg tcaccgtggc gcgcacgtcg ggcagctccg 1740
acctgaccgt ctccagcgcc tcccaactcc agttcaccc cagcaactgg aaccagccgc 1800
agaagggtgac catcgccctcc gctgacaacg gcgaaacact ggccgaggcg gtcttcaccg 1860
tcagcgcccc cggccacgac tcggccgagg tgacgggtcg ggagatcgac ccgaacacca 1920
gctccctacga ccagcccttc ctggagcagt acgagaagat caaggacccc gccagcgct 1980
acttcccgca attcaacggg ctccctggtcc cctaccactc ggtggagacc atgatcgctg 2040
aggctccgga ccacggccac cagaccacgt ccgaggcggt cagctactac ctgtggctgg 2100
aggcgtacta cggccgggtc acccggtgact ggaagccgt ccacgacgac tgggagtgcg 2160
tggagaccc ttcatcccc ggcaccaagg accagccgac caactccgac tacaacccga 2220
actccccggc gacccatcc cccgagcagc ccaacgctga cggctaccgg tcgcctctca 2280
tgaacaacgt cccgggtggt caagacccgc tcgcccagga gctgagctcc acctacggg 2340
ccaacgagat ctacggcatg cactggctgc tcgacgtggca caacgtctac ggcttcgggt 2400
tctggggcga cggcaccgac gacgcccccg cctacatcaa cacctaccag cggtggcg 2460
gcgagtcgt gtggagacc attccgcacc cgtcctgcga cgacttcacg cacggcgcc 2520
ccaacggcta cctggacccctt ttcacccgacg accagaacta cgccaaacgac tggcgctaca 2580
ccaacggcccc cgacgctgac gcgcggggccg tccaggtgat gttctggcg cacgaatggg 2640
ccaaggagca gggcaaggag aacgagatcg cggccctgat ggacaaggcg tccaaagatgg 2700
gcgactaccc cccgtacgcg atgttcgaca agtacttcaa gaagatcgac aactgcgtcg 2760
gcgcacccctc ctgggggggt ggcacaggca aggacagcgc gcactacccg ctgtcctgg 2820
actactcctg gggccggctcg ctcgacaccc cctctgcgtg ggcgtggcg atcggctcca 2880
gctccctcga ccagggctac cagaacgtgc tcgctgccta cgccgtctcg caggtggcc 2940
aactgcagcc tgactccccg accgggtgtcc aggactgggc caccagcttc gaccggccagt 3000
tggagttccct ccagtggctg cagtcgcgtg aagggtgtat cggccgggtggc gccaaccaaca 3060
gctggaaagg aagctacgc accccggccga cccggctgac gcagttctac ggcatgtact 3120
acgactggca gccggctcgg aacgacccgc cgacccaa ctgggtcgcc ttccagggtct 3180
ggaacatgaa gcgcgtcgcc cagctctact acgtgaccgg cgacgccccg gccgaggcc 3240
tcctcgacaa gtgggtggc tggccatcc agcacaccga cgtggacgac gacaacggcg 3300
gccagaactt ccaggtcccc tccgacccctgg agtgggtggg ccagcctgac acctggaccg 3360

gcacctacac cgccaacccg aacctgcacg tccaggtcgt ctccctacagc caggacgtcg 3420
gtgtgaccgc cgctctggcc aagaccctga tgtactacgc gaagcgttcg ggcgacacca 3480
ccgcctcgc caccgcggag ggtctgctgg acgcctgct ggcccacccg gacagcatcg 3540
gtatcgccac ccccggcagc cgcagctggg accgtctggc cgaccctgtgg gacggctccg 3600
agggcctgta cgtgccgccc ggctggtcgg gcaccatgcc caacggtgac cgcatcgagc 3660
cgggcgcgac cttctgtcc atccgctcgt tctacaagaa cgaccctgtg tggccgcagg 3720
tcgaggcaca cctgaacgac ccgcagaacg tcccggcgc gatcgtggag cgccaccgct 3780
tctggctca ggtgaaatc gcgaccgcgt tcgcagccca cgacgaactg ttccggggccg 3840
gagctccctg atccctgaaca gtccgtctcc tgaccggcgg tccgtggcgg cgtagtgtc 3900
ccccgcccgcg gaccgcctc caccaccccc ctggggccgt cggcgcacc aacacccggac 3960
ggccccagac tccttcacg gcctgtact cggcccgacg ccccgcccta tccagccgaa 4020
tcaaccagt cagcgtagtc cgggtgcgc tcgagccacg ctttgacata gggcagacc 4080
gcacgcaccc gcagccgcg ggcccgacca tcatccaacg cttccgcac cagccggctg 4140
cccatccct tccctggaa agagccgtcc acccgagtgt ggaagaagac caccgatca 4200
ccggcaacag gctggatttc cgtgaaacccg gcgattttct ccccgccacg gatctcgta 4260
cggtgctgtg ccggattgtc gatcaccgtg acatccatgg cgttccctc ccgttcccc 4320
ggcggcggcg catctctcat ccggcggcct gcccaggact gtccctttcc ccaggacagc 4380
ctgagcacgc gcccgcacgg cgaaccccg ccacagccct agcatggta acggccacgg 4440
tcgcagggcg accacgacac cgaggaggag ttagtggcga cggcggcaca gtacgccacc 4500
cttccgtacg tgccgtatca ccggcagcgt tggacgaggc ggtacgcgtc ctgcggcag 4560
gcggcctcgt agcttccccc accgaaacccg tctacggct aggccggac gccgcgaacc 4620
cggccgcgtt agcgcgcatt ttgcgcgcga aaggccgtcc cgctgaccac ccctgtatcg 4680
tgcacgtcgc ttccgcggag agcgcgcgcg actgggctgc tacctttct cctctcgccc 4740
gcacgctggc ggacgcgttc tggcccgccc cgctgaccct catcctccccc cgctccgccc 4800
aagtgccgaa cgcagtgacc ggtggacgcg ccacggtagg gtcgcgggtc cccgaccagc 4860
cggtcgcgtt cgcactcctg gaacgcttcg gcccggaaat cgccgcaccc tccgcgaacc 4920
gttccggcgg agtgagcccg accacggccg cgacacgttc cgctgacccctc ggggaccggg 4980
tcgaccttgtt gttggacggc ggaccgtgca cggtcggcgt ggaatcgacg atcgtcgaag 5040
tggccgacgg ccggctcacc gtgctccgca ccggaggcat caccggac gaccccttccg 5100
cggtcaccgg agccccccgtc gacaccaccc ccacggacc gggccggca cccggcatgc 5160
tcgcccggcca ctacgcaccc gccgcacggg tcgtgttagc cgaagcagca gaagccgcgg 5220
acacggtcgc ccagtgggtg gagaaaggac accgggtggc tgcgtggcg gagaccgcta 5280
ccgtccccca aaacctgcgg gaaggcgtgg tgggtctacc gtccctgtct tcggctcg 5340
actatgcggc cgtgtgtac cagcggctgc gggacgttga cgccggcgaa gcccacgtgg 5400
tcgtcgcgtat ccccccggaa cccgcggggta tcggcttggc ggtacggac cgctgtcgc 5460
gcgcaccccg ggccgactga cctctccccc tggggcaagg gatcttccg catagacgag 5520
cccgtttccg ggtatctttt ctgtggagac agaaagagag caccgacacc agggaggggcc 5580
gtgaaagct caagccggag accggatcgt tgcgtggcg ccccgccatg acctgcccgc 5640
gcccggcggc gtcgtgtca aagtgcagg ggacaacggg gggccggccct actgggtgcg 5700
gtggggaggac gaaggccggg aaacctctgtt ctacccggaa ccggacgccc gtatcgagcc 5760
ccgcccacccccc gtcccccggaa cccgcggag ggacacggg gcccgtcaac cgccggccgg 5820
acagttccctg aaacggatac agatcgacgt cgcaactgtcg gaggtgcacg agaacggctc 5880
cgtgcgcacc ctcggccgaag cgcaactgccc gtccaccaag tggaaacctgc gcggccacgg 5940
agaagcacgc aagcatccca ccgacgcggat t 5971

<210> 27

<211> 21

<212> DNA


```
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: 3227 PCR
      Primer

<400> 31
      gcgacgctcg ggccg 15

<210> 32
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Reverse 3227
      PCR Primer

<400> 32
      aacagctatg accatg 16
```