The Relational Algebra and Relational Calculus

الجبر العلائقي وحساب العلاقة

- الجبر العلائقي Relational algebra
 - Basic set of operations for the relational model
 - مجموعة أساسية من العمليات للنموذج العلائقي
- Relational algebra expression
- تعبير الجبر العلائقى
 - Sequence of relational algebra operations
 - تسلسل عمليات الجبر العلائقي -
- Relational calculus حساب العلاقة
 - Higher-level declarative language for specifying relational queries
 - لغة تعريفية عالية المستوى لتحديد الاستعلامات العلائقية

Unary Relational Operations: SELECT and PROJECT

العمليات العلائقية الأحادية: حدد والمشروع

- عملية التحديد The SELECT Operation
 - Subset of the tuples from a relation that satisfies a selection condition:
 - مجموعة فرعية من المجموعات من علاقة تفي بشرط التحديد:

$\sigma_{\text{selection condition}>}(R)$

- Boolean expression contains clauses of the form <attribute name>
 <comparison op> <constant value>
- يحتوي التعبير المنطقي على جمل من النموذج حاسم السمة> حمقارنة المرجع> حقيمة ثابتة> or
- <attribute name> <comparison op> <attribute name>
- اسم السمة>> <op>اسم السمة> حمقارنة

Unary Relational Operations: SELECT and PROJECT (cont'd.)

Example:

```
\sigma_{(\mathsf{Dno}=4\;\mathsf{AND}\;\mathsf{Salary}>25000)\;\mathsf{OR}\;(\mathsf{Dno}=5\;\mathsf{AND}\;\mathsf{Salary}>30000)}(\mathsf{EMPLOYEE})
```

- <selection condition> applied independently to each individual tuple t in R
 - If condition evaluates to TRUE, tuple selected
- Boolean conditions AND, OR, and NOT
- Unary
 - Applied to a single relation
 - تطبق على علاقة واحدة

Unary Relational Operations: SELECT and PROJECT (cont'd.)

- Selectivity الانتقائية
 - Fraction of tuples selected by a selection
 condition جزء من المجموعات المحددة بواسطة شرط التحديد
- SELECT operation commutative
- حدد عملية التبادل
- Cascade SELECT operations into a single operation with AND condition
- ANDفي عملية واحدة بالشرط SELECTتتالي عمليات

The PROJECT Operation

تشغيل المشروع

Selects columns from table and discards the other columns: يختار أعمدة من الجدول ويتجاهل الأعمدة الأخرى: π_{<attribute list>}(R)

الدرجة العلمية Degree

- Number of attributes in <attribute list>
- عدد السمات في حقائمة السمات>

حذف مکرر Duplicate elimination

 Result of PROJECT operation is a set of distinct tuples نتيجة عملية المشروع هي مجموعة من المجموعات الممبزة

Sequences of Operations and the RENAME Operation

RENAME تسلسل العمليات وعملية

In-line expression:

$$\pi_{\mathsf{Fname,\ Lname,\ Salary}}(\sigma_{\mathsf{Dno}=5}(\mathsf{EMPLOYEE}))$$

Sequence of operations:

$$\begin{aligned} & \text{DEP5_EMPS} \leftarrow \sigma_{\text{Dno}=5}(\text{EMPLOYEE}) \\ & \text{RESULT} \leftarrow \pi_{\text{Fname, Lname, Salary}}(\text{DEP5_EMPS}) \end{aligned}$$

- Rename attributes in intermediate results
- إعادة تسمية السمات في النتائج الوسيطة

$$\rho_{S(B1, B2, ..., Bn)}(R)$$
 or $\rho_{S}(R)$ or $\rho_{(B1, B2, ..., Bn)}(R)$

Relational Algebra Operations from Set Theory

عمليات الجبر العلائقية من نظرية المجموعات

- UNION, INTERSECTION, and MINUS
- الاتحاد والتقاطع والناقص
 - Merge the elements of two sets in various ways
 - ادمج عناصر مجموعتين بطرق مختلفة
 - Binary operations العمليات الثنائية
 - Relations must have the same type of tuples
 - يجب أن تحتوي العلاقات على نفس نوع المجموعات
- اتحاد UNION
 - R U S
 - Includes all tuples that are either in R or in S or in both R and S
 - . Sو المراو في كل من الأو الميشمل جميع المجموعات الموجودة إما في .
 - Duplicate tuples eliminated
 - تم حذف المجموعات المكررة

Relational Algebra Operations from Set Theory (cont'd.)

- INTERSECTION تداخل
 - *R* ∩ *S*
 - Includes all tuples that are in both R and S
 - . Sو Rيشمل كل المجموعات الموجودة في كل من S.
- SET DIFFERENCE (or MINUS)
- ضبط الفرق (أو الطرح) =
 - *R*− *S*
 - Includes all tuples that are in R but not in S

يشمل جميع المجموعات الموجوده في ر وليست في س

The CARTESIAN PRODUCT (CROSS PRODUCT) Operation

تشغيل المنتج الكارتوني (عبر المنتج)

- منتج كارتيزي CARTESIAN PRODUCT
 - CROSS PRODUCT or CROSS JOIN
 - Denoted by × × برمز لها
 - عملية مجموعة ثنائية Binary set operation
 - Relations do not have to be union compatible
 - لا يجب أن تكون العلاقات متوافقة مع النقابات
 - Useful when followed by a selection that matches values of attributes
 - يكون مفيدًا عندما يتبعه تحديد يطابق قيم السمات

Binary Relational Operations: JOIN and DIVISION JOIN and DIVISION العمليات العلائقية الثنائية:

The JOIN Operation

- Denoted by یدل علیها
- Combine related tuples from two relations into single "longer" tuples
- اجمع المجموعات ذات الصلة من علاقتين في مجموعات فردية "أطول" •
- General join condition of the form <condition> AND
 <condition> AND...AND <condition>
- Example:

```
\begin{array}{l} \mathsf{DEPT\_MGR} \leftarrow \mathsf{DEPARTMENT} \bowtie_{\mathsf{Mgr\_ssn} = \mathsf{Ssn}} \mathsf{EMPLOYEE} \\ \mathsf{RESULT} \leftarrow \pi_{\mathsf{Dname},\;\mathsf{Lname},\;\mathsf{Fname}}(\mathsf{DEPT\_MGR}) \end{array}
```


Binary Relational Operations: JOIN and DIVISION (cont'd.)

THETA JOIN

- Each < condition > of the form $A_i \theta B_j$
- A_i is an attribute of R
- B_i is an attribute of S
- A_i and B_j have the same domain
- θ (theta) is one of the comparison operators:

Variations of JOIN: The EQUIJOIN and NATURAL الاختلافات في

اكويجوين EQUIJOIN ا

- Only = comparison operator used
- فقط = استخدام عامل المقارنة
- Always have one or more pairs of attributes that have identical values in every tuple
- احتفظ دائمًا بزوج واحد أو أكثر من السمات التي لها قيم متطابقة في كل مجموعة

انضمام طبيعي NATURAL JOIN

- Denoted by * * پرمز إليه ب
- Removes second (superfluous) attribute in an
 EQUIJOIN condition يزيل السمة الثانية (الزائدة) في حالة

Variations of JOIN: The EQUIJOIN and NATURAL JOIN (cont'd.)

- Join selectivity انضم إلى الانتقائية
 - Expected size of join result divided by the maximum size n_R * n_S
 - الحجم المتوقع لنتيجة الانضمام مقسومًا على الحجم الأقصى
- Inner joins ينضم الداخلية
 - Type of match and combine operation
 - نوع التطابق وعملية الجمع
 - Defined formally as a combination of CARTESIAN PRODUCT and SELECTION
 - مُعرَّف رسميًا على أنه مزيج من المنتج الكارتيزي والاختيار

A Complete Set of Relational Algebra Operations مجموعة كاملة من عمليات الجبر العلائقي

- Set of relational algebra operations {σ, π,
 ∪, ρ, –, ×} is a complete set
- -، φ، -، σ، τ، υ، ρ، -، σ مجموعة عمليات الجبر العلائقية {
 هی مجموعة كاملة
 - Any relational algebra operation can be expressed as a sequence of operations from this set
 - يمكن التعبير عن أي عملية جبر علائقية كسلسلة من العمليات من هذه المجموعة

The DIVISION Operation

- Denoted by ÷
- Example: retrieve the names of employees who work on all the projects that 'John Smith' works on
- مثال: استرجاع أسماء الموظفين الذين يعملون في جميع "المشاريع التي يعمل عليها "جون سميث"
- Apply to relations $R(Z) \div S(X)$
 - Attributes of R are a subset of the attributes of S
 - سمات R

Operations of Relational Algebra

عمليات الجبر العلائقي

Table 6.1	Operations of	f Relational Algebra
	o por acronio o	i i tolational i ligobia

OPERATION	PURPOSE	NOTATION
SELECT	Selects all tuples that satisfy the selection condition from a relation R .	$\sigma_{\langle \text{selection condition} \rangle}(R)$
PROJECT	Produces a new relation with only some of the attributes of R , and removes duplicate tuples.	$\pi_{< ext{attribute list}>}(R)$
THETA JOIN	Produces all combinations of tuples from R_1 and R_2 that satisfy the join condition.	$R_1 \bowtie_{< \text{join condition}>} R_2$
EQUIJOIN	Produces all the combinations of tuples from R_1 and R_2 that satisfy a join condition with only equality comparisons.	$R_1\bowtie_{<\text{join condition}>} R_2$, OR $R_1\bowtie_{(<\text{join attributes 1>}),} (<\text{join attributes 2>})} R_2$
NATURAL JOIN	Same as EQUIJOIN except that the join attributes of R_2 are not included in the resulting relation; if the join attributes have the same names, they do not have to be specified at all.	$R_1*_{<\text{join condition}>} R_2$, OR $R_1*_{(<\text{join attributes 1>})}$, R_2 OR $R_1*_{(<\text{join attributes 2>})} R_2$

Operations of Relational Algebra (cont'd.)

Table 6.1 Operations of Relational Algebra		
UNION	Produces a relation that includes all the tuples in R_1 or R_2 or both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cup R_2$
INTERSECTION	Produces a relation that includes all the tuples in both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cap R_2$
DIFFERENCE	Produces a relation that includes all the tuples in R_1 that are not in R_2 ; R_1 and R_2 must be union compatible.	$R_1 - R_2$
CARTESIAN PRODUCT	Produces a relation that has the attributes of R_1 and R_2 and includes as tuples all possible combinations of tuples from R_1 and R_2 .	$R_1 \times R_2$
DIVISION	Produces a relation $R(X)$ that includes all tuples $t[X]$ in $R_1(Z)$ that appear in R_1 in combination with every tuple from $R_2(Y)$, where $Z = X \cup Y$.	$R_1(Z) \div R_2(Y)$

Notation for Query Trees

تدوين لشجرة الاستعلام

Query tree

- Represents the input relations of query as leaf nodes of the tree
- يمثل علاقات الإدخال الخاصة بالاستعلام كعقد طرفية للشجرة -
- Represents the relational algebra operations as internal nodes
- يمثل عمليات الجبر العلائقي كعقد داخلية

Additional Relational Operations

عمليات علائقية إضافية

| Generalized projection اسقاط عام

- Allows functions of attributes to be included in the projection list
- يسمح بتضمين وظائف السمات في قائمة الإسقاط $\pi_{F1, F2, ..., Fn}(R)$
- Aggregate functions and grouping
- تجميع الوظائف والتجميع =
 - Common functions applied to collections of numeric values
 - يتم تطبيق الدالات الشائعة على مجموعات القيم الرقمية -
 - Include SUM, AVERAGE, MAXIMUM, and MINIMUM

Additional Relational Operations (cont'd.)

- Group tuples by the value of some of their attributes
- جمِّع المجموعات حسب قيمة بعض سماتها -
 - Apply aggregate function independently to each group
 - تطبيق وظيفة التجميع بشكل مستقل على كل مجموعة -

$$_{ ext{ 3 $_{ ext{}$ $(R)$$$

Figure 6.10

The aggregate function operation.

- a. $\rho_{R(Dno, No_of_employees, Average_sal)}(Dno 3_{COUNT Ssn, AVERAGE Salary}(EMPLOYEE))$.
- b. $_{\text{Dno}}\, \mathfrak{I}_{\text{ COUNT Ssn, AVERAGE Salary}}(\text{EMPLOYEE}).$
- c. $\mathfrak{I}_{\text{COUNT Ssn, AVERAGE Salary}}(\text{EMPLOYEE}).$

R

(a)	Dno	No_of_employees	Average_sal
	5	4	33250
	4	3	31000
	1	1	55000

(b)	Dno	Count_ssn	Average_salary
	5	4	33250
	4	3	31000
	1	1	55000

(c)	Count_ssn	Average_salary
	8	35125

PEARSON

⁸Note that this is an arbitrary notation we are suggesting. There is no standard notation.

Recursive Closure Operations عملیات إغلاق متکررة

- Operation applied to a recursive relationship between tuples of same type
- يتم تطبيق العملية على علاقة عودية بين مجموعات من نفس **ا** النوع

```
\begin{aligned} &\mathsf{BORG\_SSN} \leftarrow \pi_{\mathsf{Ssn}}(\sigma_{\mathsf{Fname='James'}} \mathsf{AND} \ \mathsf{Lname='Borg'}(\mathsf{EMPLOYEE})) \\ &\mathsf{SUPERVISION}(\mathsf{Ssn1}, \, \mathsf{Ssn2}) \leftarrow \pi_{\mathsf{Ssn},\mathsf{Super\_ssn}}(\mathsf{EMPLOYEE}) \\ &\mathsf{RESULT1}(\mathsf{Ssn}) \leftarrow \pi_{\mathsf{Ssn1}}(\mathsf{SUPERVISION} \bowtie_{\mathsf{Ssn2=Ssn}} \mathsf{BORG\_SSN}) \end{aligned}
```


OUTER JOIN Operations

عمليات الانضمام الخارجية الصلات الخارجية Outer joins

- - Keep all tuples in R, or all those in S, or all those in both relations regardless of whether or not they have matching tuples in the other relation
 - احتفظ بجميع المجموعات في ر

، أو كل تلك الموجودة في س ، أو كل تلك الموجودة في كلا العلاقات بغض النظر عما إذا كان لديهم مجموعات متطابقة في العلاقة الأخرى أم لا

- Types
 - LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL OUTER JOIN
 - الانضما $ext{TEMP} \leftarrow (ext{EMPLOYEE} igmta_{ ext{Ssn=Mgr ssn}} ext{DEPARTMENT})$ الانضما
- Example: RESULT $\leftarrow \pi_{\text{Fname, Minit, Lname, Dname}}(\text{TEMP})$

The OUTER UNION Operation عملية الاتحاد الخارجي

- Take union of tuples from two relations that have some common attributes
- خذ اتحاد الصفوف من علاقتين لهما بعض السمات المشتركة =
 - عير متوافق مع (نوع) الاتحاد Not union (type) compatible
- متوافق جزئيًا Partially compatible
 - All tuples from both relations included in the result
 - تم تضمين جميع المجموعات من كلا العلاقتين في النتيجة
 - Tut tuples with the same value combination will appear only once
 - Tutستظهر مجموعات

ذات تركيبة القيمة نفسها مرة واحدة فقط واحدة فقط Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Examples of Queries in Relational Algebra

أمثلة من الاستعلامات في الجبر العلائقي

Query 1. Retrieve the name and address of all employees who work for the 'Research' department.

```
\begin{aligned} & \mathsf{RESEARCH\_DEPT} \leftarrow \sigma_{\mathsf{Dname}=`\mathsf{Research}'}(\mathsf{DEPARTMENT}) \\ & \mathsf{RESEARCH\_EMPS} \leftarrow (\mathsf{RESEARCH\_DEPT} \bowtie_{\mathsf{Dnumber}=\mathsf{Dno}} \mathsf{EMPLOYEE}) \\ & \mathsf{RESULT} \leftarrow \pi_{\mathsf{Fname},\;\mathsf{Lname},\;\mathsf{Address}}(\mathsf{RESEARCH\_EMPS}) \end{aligned}
```

As a single in-line expression, this query becomes:

```
\pi_{\mathsf{Fname},\,\mathsf{Lname},\,\mathsf{Address}}\left(\sigma_{\mathsf{Dname}=\,\mathsf{`Research'}}(\mathsf{DEPARTMENT}\,\bowtie\,\,_{\mathsf{Dnumber}=\mathsf{Dno}}(\mathsf{EMPLOYEE})\right)
```


Examples of Queries in Relational Algebra (cont'd.)

Query 2. For every project located in 'Stafford', list the project number, the controlling department number, and the department manager's last name, address, and birth date.

```
\begin{split} & \mathsf{STAFFORD\_PROJS} \leftarrow \sigma_{\mathsf{Plocation}=\mathsf{`Stafford'}}(\mathsf{PROJECT}) \\ & \mathsf{CONTR\_DEPTS} \leftarrow (\mathsf{STAFFORD\_PROJS} \bowtie_{\mathsf{Dnum}=\mathsf{Dnumber}} \mathsf{DEPARTMENT}) \\ & \mathsf{PROJ\_DEPT\_MGRS} \leftarrow (\mathsf{CONTR\_DEPTS} \bowtie_{\mathsf{Mgr\_ssn}=\mathsf{Ssn}} \mathsf{EMPLOYEE}) \\ & \mathsf{RESULT} \leftarrow \pi_{\mathsf{Pnumber},\;\mathsf{Dnum},\;\mathsf{Lname},\;\mathsf{Address},\;\mathsf{Bdate}}(\mathsf{PROJ\_DEPT\_MGRS}) \end{split}
```

Query 3. Find the names of employees who work on *all* the projects controlled by department number 5.

```
\begin{split} & \mathsf{DEPT5\_PROJS} \leftarrow \rho_{(\mathsf{Pno})}(\pi_{\mathsf{Pnumber}}(\sigma_{\mathsf{Dnum}=5}(\mathsf{PROJECT}))) \\ & \mathsf{EMP\_PROJ} \leftarrow \rho_{(\mathsf{Ssn},\,\mathsf{Pno})}(\pi_{\mathsf{Essn},\,\mathsf{Pno}}(\mathsf{WORKS\_ON})) \\ & \mathsf{RESULT\_EMP\_SSNS} \leftarrow \mathsf{EMP\_PROJ} \div \mathsf{DEPT5\_PROJS} \\ & \mathsf{RESULT} \leftarrow \pi_{\mathsf{Lname},\,\mathsf{Fname}}(\mathsf{RESULT\_EMP\_SSNS} \star \mathsf{EMPLOYEE}) \end{split}
```


Examples of Queries in Relational Algebra (cont'd.)

Query 6. Retrieve the names of employees who have no dependents.

This is an example of the type of query that uses the MINUS (SET DIFFERENCE) operation.

```
\begin{aligned} & \mathsf{ALL\_EMPS} \leftarrow \pi_{\mathsf{Ssn}}(\mathsf{EMPLOYEE}) \\ & \mathsf{EMPS\_WITH\_DEPS}(\mathsf{Ssn}) \leftarrow \pi_{\mathsf{Essn}}(\mathsf{DEPENDENT}) \\ & \mathsf{EMPS\_WITHOUT\_DEPS} \leftarrow (\mathsf{ALL\_EMPS} - \mathsf{EMPS\_WITH\_DEPS}) \\ & \mathsf{RESULT} \leftarrow \pi_{\mathsf{Lname\_Fname}}(\mathsf{EMPS\_WITHOUT\_DEPS} * \mathsf{EMPLOYEE}) \end{aligned}
```

Query 7. List the names of managers who have at least one dependent.

```
\begin{aligned} & \mathsf{MGRS}(\mathsf{Ssn}) \leftarrow \pi_{\mathsf{Mgr\_ssn}}(\mathsf{DEPARTMENT}) \\ & \mathsf{EMPS\_WITH\_DEPS}(\mathsf{Ssn}) \leftarrow \pi_{\mathsf{Essn}}(\mathsf{DEPENDENT}) \\ & \mathsf{MGRS\_WITH\_DEPS} \leftarrow (\mathsf{MGRS} \cap \mathsf{EMPS\_WITH\_DEPS}) \\ & \mathsf{RESULT} \leftarrow \pi_{\mathsf{Lname\_Fname}}(\mathsf{MGRS\_WITH\_DEPS} * \mathsf{EMPLOYEE}) \end{aligned}
```


The Tuple Relational Calculus حساب التفاضل والتكامل العلائقي

- تعبير تعريفي Declarative expression
 - Specify a retrieval request nonprocedural language حدد طلب استر داد لغة غير إجرائية
- Any retrieval that can be specified in basic relational algebra
- أي استرجاع يمكن تحديده في الجبر العلائقي الأساسي -
 - Can also be specified in relational calculus
 - يمكن أيضًا تحديدها في حساب التفاضل والتكامل -

Tuple Variables and Range Relations و علاقات المدى Tuple متغيرات

- Tuple variables
 - Ranges over a particular database relation
 - نطاقات على علاقة قاعدة بيانات معينة
- $\{t \mid \mathsf{COND}(t)\}$

- Satisfy COND(t):
- Specify:
 - Range relation R of t
 - Select particular combinations of tuples
 - حدد مجموعات معينة من المجموعات
 - Set of attributes to be retrieved (requested attributes) مجموعة السمات المراد استردادها (السمات المطلوبة)

Expressions and Formulas in Tuple Relational Calculus التعبيرات والصيغ في حساب التفاضل والتكامل العلائقي

- General expression of tuple relational calculus is of the form:
- التعبير العام عن حساب التفاضل والتكامل العلائقي هو الشكل:

$$\{t_1.A_j,\,t_2.A_k,\,...,\,t_n.A_m \,\big|\, \, \mathsf{COND}(t_1,\,t_2,\,...,\,t_n,\,t_{n+1},\,t_{n+2},\,...,\,t_{n+m})\}$$

- Truth value of an atom
 - Evaluates to either TRUE or FALSE for a specific combination of tuples
 - يتم التقييم إلى صبح أو خطا لمجموعة محددة من المجموعات
- Formula (Boolean condition) (الشرط المنطقي)
 - Made up of one or more atoms connected via logical operators AND, OR, and NOT تتكون من ذرة واحدة أو أكثر متصلة عبر عوامل التشغيل المنطقية OR, and NOT

Addison-Wesley is an imprint of

OR POOT Ramez Elmasri and Shamkant Navathe

Existential and Universal Quantifiers المحددات الوجودية والعالمية

- مُحدِّد كَمِّي عالمي Universal quantifier (∀) مُحدِّد كَمِّي
- محدد الكم الوجودي (∃) Existential quantifier •
- Define a tuple variable in a formula as free or bound
- tupleحدد متغیر
- في صيغة حرة أو منضمة

Sample Queries in Tuple Relational Calculus

استعلامات نموذجية في حساب التفاضل والتكامل العلائقي

Query 1. List the name and address of all employees who work for the 'Research' department.

```
Q1: \{t.\text{Fname}, t.\text{Lname}, t.\text{Address} \mid \text{EMPLOYEE}(t) \text{ AND } (\exists d)(\text{DEPARTMENT}(d) \text{ AND } d.\text{Dname='Research'} \text{ AND } d.\text{Dnumber=}t.\text{Dno})\}
```

Query 4. Make a list of project numbers for projects that involve an employee whose last name is 'Smith', either as a worker or as manager of the controlling department for the project.

```
Q4: { p.\mathsf{Pnumber} \mid \mathsf{PROJECT}(p) \; \mathsf{AND} \; (((\exists e)(\exists w)(\mathsf{EMPLOYEE}(e) \mathsf{AND} \; \mathsf{WORKS\_ON}(w) \; \mathsf{AND} \; w.\mathsf{Pno=}p.\mathsf{Pnumber} \; \mathsf{AND} \; e.\mathsf{Lname=`Smith`} \; \mathsf{AND} \; e.\mathsf{Ssn=}w.\mathsf{Essn}) ) \\ \mathsf{OR} \\ ((\exists m)(\exists d)(\mathsf{EMPLOYEE}(m) \; \mathsf{AND} \; \mathsf{DEPARTMENT}(d) \; \mathsf{AND} \; p.\mathsf{Dnum=}d.\mathsf{Dnumber} \; \mathsf{AND} \; d.\mathsf{Mgr\_ssn=}m.\mathsf{Ssn} \; \mathsf{AND} \; m.\mathsf{Lname=`Smith`}))) \}
```


Notation for Query Graphs

تدوين لرسومات الاستعلام

Transforming the Universal and Existential Quantifiers تحويل المحددات العالمية والوجودية

- Transform one type of quantifier into other with negation (preceded by NOT)
- تحويل نوع واحد من المحددات الكمية إلى أخرى مع النفى (NOT)مسبوقًا ب
 - AND and OR replace one another
 - و و أو استبدال بعضهما البعض -
 - Negated formula becomes unnegated
 - تصبح الصيغة المنفية غير مرتبطة
 - Unnegated formula becomes negated
 - تصبح الصيغة غير المقيدة باطلة

Using the Universal Quantifier in Queries استخدام المحدد العالمي في الاستعلامات

Query 3. List the names of employees who work on *all* the projects controlled by department number 5. One way to specify this query is to use the universal quantifier as shown:

```
Q3: \{e. \text{Lname}, e. \text{Fname} \mid \text{EMPLOYEE}(e) \text{ AND } ((\forall x)(\text{NOT}(\text{PROJECT}(x)) \text{ OR NOT} (x. \text{Dnum}=5) \text{ OR } ((\exists w)(\text{WORKS\_ON}(w) \text{ AND } w. \text{Essn}=e. \text{Ssn AND} x. \text{Pnumber}=w. \text{Pno}))))\}
```

```
Q3A: \{e. \text{Lname}, e. \text{Fname} \mid \text{EMPLOYEE}(e) \text{ AND } (\text{NOT } (\exists x) (\text{PROJECT}(x) \text{ AND } (x. \text{Dnum}=5) \text{ AND } (\text{NOT } (\exists w)(\text{WORKS\_ON}(w) \text{ AND } w. \text{Essn}=e. \text{Ssn } \text{AND } x. \text{Pnumber}=w. \text{Pno}))))\}
```


Safe Expressions

تعابير آمنة

- Guaranteed to yield a finite number of tuples as its result
- مضمون لإعطاء عدد محدود من المجموعات كنتيجة لها -
 - Otherwise expression is called unsafe
 - وإلا يسمى التعبير غير آمن
- Expression is safe التعبير آمن
 - If all values in its result are from the domain of the expression
 - إذا كانت جميع القيم في نتيجتها من مجال التعبير

The Domain Relational Calculus

مجال حساب التفاضل والتكام<mark>ل</mark>

- Differs from tuple calculus in type of variables used in formulas
- يختلف عن حساب التفاضل والتكامل في نوع المتغيرات المستخدمة في الصيغ
 - Variables range over single values from domains of attributes تتراوح المتغيرات على قيم مفردة من مجالات السمات
- الصيغة مكونة من ذرات Formula is made up of atoms
 - Evaluate to either TRUE or FALSE for a specific set of values
 - لمجموعة معينة من القيم FALSEأو TRUEقم بالتقييم إلى
 - Called the truth values of the atoms
 - تسمى قيم الحقيقة للذرات •

The Domain Relational Calculus (cont'd.)

- QBE language
 - Based on domain relational calculus
 - على أساس المجال العلائقية حساب التفاضل والتكامل

Query 1. Retrieve the name and address of all employees who work for the 'Research' department.

Q1: $\{q, s, v \mid (\exists z) (\exists l) (\exists m) (EMPLOYEE(qrstuvwxyz) AND DEPARTMENT(lmno) AND l='Research' AND m=z)\}$

Query 2. For every project located in 'Stafford', list the project number, the controlling department number, and the department manager's last name, birth date, and address.

Q2: $\{i, k, s, u, v \mid (\exists j)(\exists m)(\exists n)(\exists t)(PROJECT(hijk) \text{ AND} \\ EMPLOYEE(qrstuvwxyz) \text{ AND DEPARTMENT}(lmno) \text{ AND } k=m \text{ AND} \\ n=t \text{ AND } j=\text{`Stafford'})\}$