Universidad Autónoma de Baja California Facultad de Ciencias Químicas e Ingeniería

CIRCUITOS DIGITALES Ejercicios para practicar

Docente: Sánchez Herrera Mauricio Alonso

Alumno: Gómez Cárdenas Emmanuel Alberto

Matrícula: 1261509

Actividad 1

Utilizando la Tabla 5.7 y el método de mapa de Karnaugh, diseñar la lógica para controlar el elemento de calefacción del tanque. Utilice puertas NAND e inversores para implementar el circuito.

Entradas				Salidas					
$L_{ m H}$	$L_{ m L}$	T_{H}	T_{L}	$V_{ m ENTRADA}$	$V_{ m SALID}$	$_{\Lambda}H$	A	Comentarios	
0	0	0	0	1	0	0	0	Rellenar/calefacción apagada	
0	0	0	1	1	0	1	0	Rellenar/calefacción encendida	
0	0	1	0	1	0	0	1	Rellenar/calefacción apagada/alarma	
0	0	1	1	0	0	0	1	Fallo sensor de temp/alarma	
0	1	0	0	1	1	0	0	Rellenar y vaciar/ calefacción apagada	
0	1	0	1	1	0	1	0	Rellenar/calefacción encendido	
0	1	1	0	1	0	0	1	Rellenar/calefacción apagada/alarma	
0	1	1	1	0	0	0	1	Fallo sensor de temp./alarma	
1	0	0	0	0	0	0	1	Fallo sensor de nivel/alarma	
1	0	0	1	0	0	0	1	Fallo sensor de nivel/alarma	
1	0	1	0	0	0	0	1	Fallo sensor de nivel/alarma	
1	0	1	1	0	0	0	1	Fallo de varios sensores /alarma	
1	1	0	0	0	1	0	0	Vaciar/calefacción apagada	
1	1	0	1	0	0	1	0	Calefacción encendida	
1	1	1	0	0	0	0	1	Calefacción apagada/alarma	
1	1	1	1	0	0	0	1	Fallo de sensor de temp/alarma	

Empleando el metodo de mapa de karnaugh la ecuacion quedaria A'C'D + BC'D, podemos reducirla mas al factorizar C'D de la ecuacion C'D(A'+B). La ecuacion simulada en tinkercad quedaria asi:

1 Circuito C'D(A'+B)

Actividad 2. Diseñar la lógica para activar la alarma.

Entradas				Salidas					
$L_{ m H}$	$L_{\scriptscriptstyle m L}$	T_{H}	T_{L}	$V_{ m ENTRADA}$	$V_{ m SALII}$	$_{_{\mathrm{DA}}}H$	A	Comentarios	
0	0	0	0	1	0	0	0	Rellenar/calefacción apagada	
0	0	0	1	1	0	1	0	Rellenar/calefacción encendida	
0	0	1	0	1	0	0	1	Rellenar/calefacción apagada/alarma	
0	0	1	1	0	0	0	1	Fallo sensor de temp./alarma	
0	1	0	0	1	1	0	0	Rellenar y vaciar/ calefacción apagada	
0	1	0	1	1	0	1	0	Rellenar/calefacción encendido	
0	1	1	0	1	0	0	1	Rellenar/calefacción apagada/alarma	
0	1	1	1	0	0	0	1	Fallo sensor de temp./alarma	
1	0	0	0	0	0	0	1	Fallo sensor de nivel/alarma	
1	0	0	1	0	0	0	1	Fallo sensor de nivel/alarma	
1	0	1	0	0	0	0	1	Fallo sensor de nivel/alarma	
1	0	1	1	0	0	0	1	Fallo de varios sensores /alarma	
1	1	0	0	0	1	0	0	Vaciar/calefacción apagada	
1	1	0	1	0	0	1	0	Calefacción encendida	
1	1	1	0	0	0	0	1	Calefacción apagada/alarma	
1	1	1	1	0	0	0	1	Fallo de sensor de temp/alarma	

Al implemetar mapa de Karnaugh en el caso de la alarma obtenemos C + AB'

	CD 00	01	11	10
AB	0	0	1	1
00				
01	0	0	1	1
11	0	0	1	1
10	1	1	1	1

El Circuito armado quedaría así:

Actividad 3. Combinar la lógica de cada una de las cuatro funciones de control del tanque en un diagrama lógico completo.

 $V_{Entrada} = L_H'T_{H'} + L_H'T_{L'}$

 $V_{salida} = L_L T_H' T_L'$

 $H = L_H' T_H'T_L + B T_H'T_L \circ T_H'T_L(L_H'+L_L)$

 $A = T_H + L_H L_L'$

Los switch y las salidas estan acomodados

 $\begin{array}{ccccc} Entradas & y & Salidas \\ L_H & & V_{Entrada} \\ L_L & & V_{Salida} \\ T_H & & H \\ T_L & & A \end{array}$

Donde

 $\begin{array}{lll} L_{\rm H} & {\rm Sensor~de~nivel~alto} \\ L_{\rm L} & {\rm Sensor~de~nivel~bajo} \\ T_{\rm H} & {\rm Sensor~de~temperatura~alta} \\ T_{\rm L} & {\rm Sensor~de~temperatura~baja} \\ V_{\rm ENTRADA} & V{\rm \'alvula~de~entrada} \\ V_{\rm SALIDA} & V{\rm \'alvula~de~salida} \\ H & {\rm Elemento~de~calefacci\'on} \\ A & {\rm Alarma} \end{array}$

respectivamente

Anexos

Circuito de Actividad 1 simulado, funcion elemento de calefaccion (Vigencia de aprox 300+ horas en el link)

https://www.tinkercad.com/things/86U3xCYVsxL-actividad-1/editel?sharecode=JdS03NCO2rZhIo4QyHFXFWQvmoD42B0eXWUjxkot6JM

Diagrama interactivo, lógica de funciones de control del tanque http://tinyurl.com/re8ewcj

Circuito de Actividad 2 simulado, Alarma
https://www.tinkercad.com/things/0jYtKKnnaTT-actividad-2/editel?sharecode=FN1i4n8Wc26mn6pcmWyu43cl-uBO7D3hlM3fb84ZQAE