Let K(Yn) be an function such that,

$$= \left(\frac{\partial}{\partial x}\right)^{\frac{N}{N}} = \left(\frac{\partial}{\partial x}\right)^{\frac{N}{N}} + \left(\frac{\partial}{\partial x}\right)^$$

Signification of y_i is a function of y_i Only through $t_i = \sum_{i=1}^{N} y_i$ Consider $0 \le y_i (1-0)^{N-\sum_i y_i} = \emptyset (T_i = 0)$

$$\Rightarrow \phi(T_{1},\theta) = \theta^{T_{1}}(1-\theta)^{N-T_{1}}$$

3 f (yn, 0) =
$$\phi(\tau_1, \theta)$$
 $K(y_n)$

By the Neyman-Fisher fectorisation theorem,

To is a sufficient statistic for θ .

Now; $E(\tau) = E(\Sigma Y_i) = \sum_{i=1}^{N} E(Y_i)$

Elie of $f(Y_i \theta) = g(Y_i) = \sum_{i=1}^{N} E(Y_i)$
 $g(Y_i) = 0 \times 1 \times (1-0) \times 0$
 $g(Y_i) = 0 \times 1 \times (1-0) \times 0$
 $g(Y_i) = 0 \times 1 \times (1-0) \times 0$
 $g(Y_i) = 0 \times 1 \times (1-0) \times 0$
 $g(Y_i) = 0 \times 1 \times (1-0) \times 0$
 $g(Y_i) = 0 \times 1 \times (1-0) \times 0$
 $g(Y_i) = 0 \times 1 \times (1-0) \times 0$
 $g(Y_i) = 0 \times 1 \times (1-0) \times 0$
 $g(Y_i) = 0 \times 1 \times (1-0) \times 0$
 $g(Y_i) = 0 \times 1 \times (1-0) \times 0$
 $g(Y_i) = 0 \times 1 \times (1-0) \times 0$
 $g(Y_i) = 0 \times 1 \times (1-0) \times 0$
 $g(Y_i) = 0 \times 1 \times (1-0) \times 0$
 $g(Y_i) = 0 \times (1-0) \times (1-0) \times 0$
 $g(Y_i) = 0 \times (1-0) \times ($

: the moutifor to is

1 5 7i.