

Recursive Architectures for 2DLNS Multiplication

Mahzad Azarmehr

Supervisor: Dr. M. Ahmadi

Summer 2009

Outline

- Multidimensional Logarithmic Number System (MDLNS)
 - Introduction
 - Definition

Multiplication

- Shift/Add Multiplication Algorithm
- 1-digit 2DLNS Multiplication
- 2-digit 2DLNS Multiplication
- One-level of Recursion
- Two-level of Recursion

Recursive Multiplication

Synthesis Results

Conclusion

MDLNS (Introduction)

- Desired characteristics of a number system used in DSP
 - Smaller size of corresponding representations
 - More error-free mapping approximations
 - Less complexity of arithmetic operations
 - More accurate representation of smaller values (like less than one coefficient values in a filter)

MDLNS (Definition)

A representation of the real number X , in the form:

$$X = \sum_{i=1}^{n} s_i \prod_{j=1}^{b} p_j^{e_j^{(i)}}$$

- where s_i is sign (-1,0,1), p_j is a real, and $e_j^{(i)}$ are integers, is called an n digit multi-dimensional logarithmic representation of X
- b is the number of bases used (at least two) and the first one, p_1 , is always be assumed to be 2

MDLNS (Optimal Base)

- The proper second base (optimal base) should be selected in accordance to the specific design considerations
- Different bases as D, are used to find the minimal error or score between the set of values and their MDLNS approximations
- With optimal bases, error-free input data mapping can be significantly improved
- The value of optimal base doesn't affect the hardware structure
- Every MDLNS value is represented in hardware with its sign and corresponding exponents

MDLNS (Properties)

- Larger dynamic range
- More degrees of freedom by virtue of having two or more orthogonal bases and the ability to use multiple digits
- A significant reduction in hardware complexity
- Simplified mathematical computation

MDLNS (Arithmetic)

Multiplication and Division

Given a single-digit representation of (one-bit sign):

$$x = \{s_x, a_x, b_x\} \text{ and } y = \{s_y, a_y, b_y\}$$

$$x.y = \{ s_x \text{ xor } s_y, a_x + a_y, b_x + b_y \}$$

 $x \div y = \{ s_x \text{ xor } s_v, a_x - a_v, b_x - b_v \}$

MDLNS (Arithmetic)

Addition and Subtraction

$$2^{a}x \cdot D^{b}x + 2^{a}y \cdot D^{b}y = (2^{a}x \cdot D^{b}x) \cdot (1 + 2^{a}y^{-a}x \cdot D^{b}y^{-b}x)$$

 $\approx (2^{a}x \cdot D^{b}x) \cdot \Phi(a_{y} - a_{x}, b_{y} - b_{x})$

$$2^{a}x \cdot D^{b}x - 2^{a}y \cdot D^{b}y = (2^{a}x \cdot D^{b}x) \cdot (1 - 2^{a}y^{-a}x \cdot D^{b}y^{-b}x)$$

 $\approx (2^{a}x \cdot D^{b}x) \cdot \Psi(a_{v} - a_{x}, b_{v} - b_{x})$

The operators Φ and Ψ are lookup tables that store the pre-computed 2DLNS values

MDLNS (Conversion)

- There is no functional relationship between Binary and MDLNS representations
- Conversions between Binary and MDLNS representations are efficiently implemented with Range Addressable Look-up Tables (RALUT)
- The virtue of using multiple digits makes appropriate size of RALUTs reasonably small

Standard Address Decode

 LUT does not scale well and is redundant, and therefore can be modified by changing the address decode system from exact matching to range matching

RALUT Structure

A RALUT differs from the classic LUT by changing the address decoder system to match on a range of values rather than exact

values

RALUTs in MDLNS

- Most of the designs which are used in MDLNS circuits can be efficiently implemented using RALUTs
- The RALUT is optimal for 2DLNS conversion architectures as its size mainly depends on the value of R (The number of bits to represent second base index); this RALUT has 2^R + 1 rows
- MDLNS addition/subtraction is also can be implemented using RALUTs

Multiplication

- Multiplication is a heavily used arithmetic operation that figures prominently in signal processing and scientific applications
- Multiplication is hardware intensive, and the main criteria of interest are higher speed, lower power, and less VLSI area
- The main concern in classic multiplication, often realized by K cycles of shifting and adding, is to speed up the underlying multi-operand addition of partial products
- Using MDLNS, multiplication can be replaced by parallel small adders

Multiplication

- Based on some previous work, considering B = 6 and R = 5 provides most error free mapping of 16-bit binary data, while for 32-bit binary data, B = 11 and R = 9 have been considered
- In order to achieve the desired precision, 2-digit 2DLNS representations are considered
- The optimal base for each 2DLNS representation has been computed. The optimal base for 24-bit architecture obtained as D = 0.92024380912663017, and for 42-bit representation calculated as D = 0.870789850126489

Shift/Add Multiplication Algorithm

With the following notation:

a	Multiplicand	$a_{k-1}a_{k-2}a_1a_0$
---	--------------	------------------------

x Multiplier
$$x_{k-1}x_{k-2}...x_1x_0$$

p Product
$$p_{2k-1}p_{2k-2}...p_1p_0$$

Each row corresponds to the product of the multiplicand and a single bit of multiplier. Each term is either 0 or a

 Binary multiplication reduces to adding a set of numbers, each of which is 0, or shifted version of the multiplicand a

1-digit 2DLNS Multiplication

- Two parallel adders determine the corresponding exponents of the product
- Since 1-bit sign representations are assumed, 0 for positive and 1 for negative sign, an XOR gate specifies the sign of product

2-digit 2DLNS Multiplication

- Each number is represented with a summation of 2 digits, in HW is shown with a set of sign, first and second base exponents
- There are four partial products that should be summed up to form the final result

Recursive Multiplier (One-level of Recursion)

 For n×n multiplication one can use n/2-bit adders exclusively to accumulate the partial products

Recursive Multiplier (One-level of Recursion)

 Applying one level of recursion to a 64 × 64 bit multiplier lead to having four number of base modules which are 2DLNS equivalents to 32 × 32 bit multipliers

Recursive Multiplier (Two-level of Recursion)

Recursive Multiplier (Two-level of Recursion)

Synthesis Results

Architecture 64 × 64 bit	2DLNS-based Proposed-1	2DLNS-based Proposed-1 32 x 32 bit	2DLNS-based Proposed-2	Binary-based [1]	Binary-based Synopsys
Level of Recursion	One	One	Two	One	None
Technology	90nm	90nm	90nm	0.18µm	90nm
Clock Frequency (MHz)	233	256	233	200	-
Overall Area (µm) ²	24,041,537.19	936,852.64	3,788,860.25	360,417.44	64,308.38
Dynamic Power (mW)	1,412.51	5.20	6.01	582.31	62.72
Data Arrival Time (ns)	57.95	3.60	3.99	8.51	35.52

[1] Mokrian, P.; "A Reconfigurable Digital Multiplier Architecture", M.A.Sc. Thesis, University of Windsor, 2003

Related Works

- The recursive multiplication schemes can be implemented in reconfigurable architectures due to their flexibility, performance, speed, and power consumption
- The 2DLNS/Binary conversions can be improved in terms of using more efficient RALUTs and hardware features
- 2DLNS addition/subtraction structures can be implemented in order to avoid data conversion
- Examining potential application in multiplication intensive algorithms in a variety of data widths
- The parallel and series architectures can be substituted to provide delay and area requirements

Conclusion

- These architectures benefit the 2DLNS properties as well as recursive multiplication that lead to low-power and high speed designs
- Multiple level of recursion can be applied to make the size of converters reasonably small
- These architectures provide optimistic context to implement highperformance reconfigurable digital signal processors

Questions and Comments

Divide and Conquer Design

- A 2b×2b multiplier can be synthesized using b×b multiplier
- Although there are four partial products, only three values need to be added
- 2b×2b multiplication has been reduced to 4 b×b multiplications and a three-operand addition

Divide and Conquer Design

 For 2b×2b multiplication one can use b-bit adders exclusively to accumulate the partial products

