Algorithms: Homework 2

Li-Yuan Wei

May 8, 2023

Problem 1

Using Figure 8.3 as a model, illustrate the operation of RADIX-SORT on the following list of English words: NOD, HOG, SHY, BAN, BAR, JET, EBB, PAR, ASH, PET, TED, ROT, FIG.

0(initial)	digit 1	digit 2	digit 3
NOD	$\mathrm{EB}\mathbf{B}$	BAN	ASH
HOG	NOD	BAR	\mathbf{B} AN
SHY	$\mathrm{TE}\mathbf{D}$	PAR	\mathbf{B} AR
BAN	$\mathrm{HO}\mathbf{G}$	$\mathbf{E}\mathbf{B}\mathbf{B}$	\mathbf{E} BB
BAR	$\mathrm{FI}\mathbf{G}$	$T\mathbf{E}D$	$\mathbf{F}\mathrm{IG}$
JET	$\mathrm{AS}\mathbf{H}$	$J\mathbf{E}T$	\mathbf{H} OG
EBB	BAN	P E T	$\mathbf{J}\mathrm{ET}$
PAR	$BA\mathbf{R}$	SHY	NOD
ASH	PAR	FIG	$\mathbf{P}AR$
PET	JET	$N\mathbf{O}D$	\mathbf{P} ET
TED	$\operatorname{PE}\mathbf{T}$	$H\mathbf{O}G$	\mathbf{R} OT
ROT	ROT	$R\mathbf{O}T$	\mathbf{S} HY
FIG	SHY	ASH	$\mathbf{T}\mathrm{ED}$

Problem 2

Show how to sort n integers in the range 0 to $n^2 - 1$ in $\mathcal{O}(n)$ time.

Solution. Psuedocode for sorting n integers in $\mathcal{O}(n)$, X is an array storing all n integers:

SORT-N-LINEAR(X, n)

- if n == 11: returnfor i = 1 to n# change X[i] into base n4: TO-BASE-N(X[i]) 5: # each integer will have at most $\log_n n^2 = 2$ digits $/\!\!/$ radix sort uses counting sort to sort n at most 2 digits integers RADIX-SORT(X)8: for i = 1 to n9:
- # convert X[i] back to its original value because we sorted them with base n 10:
- CONVERT-BASE-N(X[i])

TO-BASE-N converts an integer into a base n number. E.g. 100 integers have the largest number of 9999, which can be converted to base 100, $9999 = 99 * 100^1 + 99 * 100^0$. Originally, radix sort will sort 4 digits for 9999. After converting its base to n, radix sort will need to sort **2 digits** 99_{100} and 99_{100} . Another example that the integer 400 will be converted to 4_{100} . The **digit** here is not limit from 0 to 9.

Problem 3

Using Figure 8.4 as a model, illustrate the operation of BUCKET-SORT on the array A=<.49, .30, .56, .74, .68, .50, .69, .37, .41, .72>

Figure 1: Insert data

Figure 2: Sort each bucket

Solution. To get sorted data, chain all the nodes in Figure 2 from bucket 0 to bucket 10: < .30, .37, .41, .49, .50, .56, .68, .69, .72, .74 >

Problem 4

Suppose that you have a "black-box" worst-case linear time median subroutine. Give a simple, linear-time algorithm that solves the selection problem for an arbitrary order statistic.

Solution. Psuedocode for finding the k-th smallest element in array X[1..n]:

```
FIND-K-TH-SMALLEST(X, n, k)
```

- 1: // returns the index of the median for array X in linear time
- 2: b = BLACK-BOX(X)
- 3: **if** k == n / 2 // k-th smallest is median
- 4: **return** X[b]
- 5: // splits array X into two arrays, Y contains elements less than b and Z contains elements greater than b
- 6: Y, Z = SPLIT(X, b)
- 7: **if** k < n/2
- 8: **return** FIND-K-TH-SMALLEST(Y, n/2, k)
- 9: **else**
- 10: // Find n/2 k-th smallest for Z since it's half the size of X
- 11: **return** FIND-K-TH-SMALLEST(Z, n/2, n/2 k)

$$T(n) = T(n/2) + \mathcal{O}(n)$$

Apply master method $n^{\log_b a} = n^{\log_2 1} = n^0 = 1 < \mathcal{O}(n)$, may apply case 3.

First, we find $\epsilon = 1$ where $f(n) = \Omega(n^{(\log_2 1) + \epsilon})$.

Second, we find c = 1/2 where $af(n/b) = n/2 \le 1/2n = cf(n)$ is true.

Thus, we can conclude that the running time of this algorithm is $\Theta(f(n)) = \Theta(n)$.

Let X[1..n] and Y[1..n] be two arrays, each containing n numbers already in sorted order. Give an $\mathcal{O}(\lg n)$ -time algorithm to find the median of all 2n elements in arrays X and Y.

Solution. Psuedocode for finding the median of arrays X[1..n] and Y[1..n], xi is X array's starting index and xj is X array's last index; yi is Y array's starting index and yj is Y array's last index:

```
FIND-MEDIAN(X, Y, xi, xj, yi, yj, n)
     if n == 1
        // Both arrays have only one element, pick the smaller one as median
 2:
        return MIN(X[1], Y[1])
 3:
     xmid = X[(xi + xj)/2] // X's median
 4:
     ymid = Y[(yi + yj)/2] \# Y's median
 5:
     if xmid < ymid
 6:
        // median must be greater than xmid and less than ymid
 7:
       return FIND-MEDIAN(X, Y, xmid + 1, xj, yi, ymid, n/2)
 8:
     else
 9:
        /\!/ median must be less than xmid and greater than ymid
10:
        return FIND-MEDIAN(X, Y, xi, xmid, ymid + 1, yj, n/2)
```

```
\begin{split} T(n) &= T(n/2) + \mathcal{O}(1) \\ \text{Apply master method case 2 because } n^{\log_b a} = n^{\log_2 1} = n^0 = 1 = f(n). \\ T(n) &= \Theta(n^{\log_2 1} \lg n) = \Theta(\lg n). \end{split}
```

Problem 6

Demonstrate the insertion of the keys 23, 38, 19, 40, 29, 43, 12, 27, 11 into a hash tale with collisions resolved by chaining. Let the table have 9 slots, and let the hash function be $h(k) = k \pmod{9}$.

Solution.

(1) insert $23 \to 23 \pmod{9} = 5$ (2) insert $38 \to 38 \pmod{9} = 2$ (3) insert $19 \to 19 \pmod{9} = 1$ (4) insert $40 \to 40 \pmod{9} = 4$ (5) insert $29 \to 29 \pmod{9} = 2$, insert head (6) insert $43 \to 43 \pmod{9} = 7$ (7) insert $12 \to 12 \pmod{9} = 3$ (8) insert $27 \to 27 \pmod{9} = 0$ (9) insert $11 \to 11 \pmod{9} = 2$, insert head

Figure 3: Hash table with chaining

Consider inserting the keys 10, 23, 31, 4, 12, 28, 17, 87, 58 into a hash table of length m = 11 using open addressing with the auxiliary hash function $h'(k) = k \pmod{m}$. Illustrate the result of inserting these keys using **linear probing**, using **quadratic probing** with c1 = 1, and c2 = 3, and using **double hashing** with $h_2(k) = 1 + (k \pmod{(m-1)})$.

	0	87		
(1) insert $10 \to 10 \pmod{11} = 10$	1	23		
(2) insert $23 \rightarrow 23 \pmod{11} = 1$	2	12		
(3) insert $31 \to 31 \pmod{11} = 9$	3	58		
$(4) insert 4 \rightarrow 4 \pmod{11} = 4$	9	90		
(5) insert $12 \to 12 \pmod{11} = 1 \times \text{collision}$	4	4		
insert 12 to slot 2 because slot 1 is occupied	5	X		
(6) insert $28 \rightarrow 28 \pmod{11} = 6$	c	00		
(7) insert $17 \rightarrow 17 \pmod{11} = 6 \times$	6	28		
insert 17 to index 7 because slot 6 is occupied	7	17		
(8) insert $87 \rightarrow 87 \pmod{11} = 10 \times$	8	х		
insert 87 to index 0 because slot 10 is occupied				
(9) insert $58 \to 58 \pmod{11} = 3$	9	31		
	10	10		

Figure 4: linear probing

```
resolve collision: h(k) + 1 * i + 3 * i^2 \pmod{11}
(1) insert 10 \to 10 \pmod{11} = 10
(2) insert 23 \to 23 \pmod{11} = 1
(3) insert 31 \to 31 \pmod{11} = 9
(4) insert 4 \rightarrow 4 \pmod{11} = 4
                                                                               0
(5) insert 12 \rightarrow 12 \pmod{11} = 1 \times \text{collision}
(1+1+3*1*1) \pmod{11} = (1+1+3) \pmod{11} = 5
                                                                               1
insert 12 to slot 5
______
(6) insert 28 \to 28 \pmod{11} = 6
(7) insert 17 \rightarrow 17 \pmod{11} = 6 \times
(6+1+3*1*1) \pmod{11} = (6+1+3) \pmod{11} = 10 \times 10
(6+2+3*2*2) \pmod{11} = (6+2+12) \pmod{11} = 9 \times 10^{-1}
(6+3+3*3*3) \pmod{11} = (6+3+27) \pmod{11} = 3
insert 17 to slot 3
(8) insert 87 \rightarrow 87 \pmod{11} = 10 \times
(10+1+3*1*1) \mod 11 = (-1+1+3) \mod 11 = 3 \times 1
(10+2+3*2*2) \mod 11 = (-1+2+12) \mod 11 = 2
insert 87 to slot 2
```

2 87 3 17 4 4 12 5 6 28 58 7 8 х 9 31 10 10

Х

23

Figure 5: quadratic probing

```
resolve collision: h_2(k) = 1 + k \pmod{10}
new_k = (h_1(k) + i * h_2(k)) \pmod{11}
(1) insert 10 \to 10 \pmod{11} = 10
(2) insert 23 \to 23 \pmod{11} = 1
(3) insert 31 \to 31 \pmod{11} = 9
(4) insert 4 \rightarrow 4 \pmod{11} = 4
                                                                       0
                                                                           \mathbf{X}
(5) insert 12 \rightarrow 12 \pmod{11} = 1 \times \text{collision}
                                                                          23
                                                                       1
h_2(12) = 1 + 12 \pmod{10} = 3
                                                                       2
                                                                           87
1 + 1 * 3 \pmod{11} = 4 \times
1 + 2 * 3 \pmod{11} = 7
                                                                       3
                                                                          58
insert 12 to slot 7
                                                                           4
                                                                       4
______
                                                                           17
                                                                       5
(6) insert 28 \to 28 \pmod{11} = 6
(7) insert 17 \rightarrow 17 \pmod{11} = 6 \times
                                                                       6
                                                                           28
h_2(17) = 1 + 17 \pmod{10} = 8
                                                                       7
                                                                           12
8 + 1 * 8 \pmod{11} = 5
                                                                       8
                                                                           X
insert 17 to slot 5
_______
                                                                          31
                                                                       9
(8) insert 87 \rightarrow 87 \pmod{11} = 10 \times
                                                                          10
                                                                      10
h_2(87) = 1 + 87 \pmod{10} = 8
8 + 1 * 8 \pmod{11} = 5 \times
```

Figure 6: double hashing

 $8 + 2 * 8 \pmod{11} = 2$ insert 87 to slot 2

Solve the following assembly-line problem:

(9) insert $58 \to 58 \pmod{11} = 3$

$$\begin{split} e_1 &= 1, e_2 = 1, x_1 = 7, x_2 = 3 \\ a_{1,1} &= 3, a_{1,2} = 2, a_{1,3} = 5, a_{1,4} = 4, a_{1,5} = 2 \\ a_{2,1} &= 4, a_{2,2} = 2, a_{2,3} = 4, a_{2,4} = 6, a_{2,5} = 4 \\ t_{1,1} &= 1t_{1,2} = 2, t_{1,3} = 3, t_{1,4} = 1 \\ t_{2,1} &= 2, t_{2,2} = 3, t_{2,3} = 1, t_{2,4} = 2. \end{split}$$

	1	2	3	4	5	
$f_1[j]$	4	6	11	15	17	24
$f_2[j]$	5	7	11	17	20	23

Figure 7: f table

Figure 8: 1 table

Solution. $f^* = 23, l^* = 2$. The best solution for this assembly line is to start from $a_{1,1}$, and goes through $a_{1,2}, a_{1,3}, a_{1,4}, t_{1,4}, a_{2,5}, x_2.$

Find an optimal parenthesization of a matrix-chain product whose sequence of dimension is <5, 7, 3, 2, 4, 5>. $A_1=A_{5\times7}, A_2=A_{7\times3}, A_3=A_{3\times2}, A_4=A_{2\times4}, A_5=A_{4\times5}$ $p_0=e, p_1=7, p_2=3, p_3=2, p_4=4, p_5=5$

j\i	1	2	3	4	5	i i
5	202	152	70	40	0	J ,
4	152	98	24	0		5
3	112	42	0			4
2	105	0		•		3
1	0		•			۷ _

Figure 9: m table

Figure 10: s table

3 3

3

Solution. Positions of parenthesis: $((A_1(A_2A_3))(A_4A_5))$ or $(((5\times7)((7\times3)(3\times2)))((2\times4)(4\times5)))$

Problem 10

Determine an LCS of <1, 1, 0, 1, 0, 1> and <0, 0, 1, 1, 0, 1, 1>.

	i	0	1	2	3	4	5	6	7
j		y_j	0	0	1	1	0	1	1
0	x_i	0	0	0	0	0	0	0	0
1	1	0	† 0	† 0		1	← 1	1	1
2	1	0	† 0	† 0	1	$\binom{\nwarrow}{2}$	\leftarrow 2	<u>\</u>	2
3	0	0	1	1	← 1	\uparrow	$\left(\begin{array}{c} 3 \end{array}\right)$	← 3	← 3
4	1	0	\uparrow 1	↑ 1	2	2	\uparrow 3	$\begin{pmatrix} 4 \end{pmatrix}$	4
5	0	0	1	2	\uparrow 2	\uparrow 2	3	$\left(\begin{array}{c} + \\ 4 \end{array} \right)$	$\stackrel{\uparrow}{4}$
6	1	0	† 1	\uparrow	3	3	† 3	4	5

Figure 11: c table for LCS

Solution. Thus, the longest common sequence is <1, 1, 0, 1, 1>.