R5.
$$(k+l).\vec{v} = k.\vec{v} + l.\vec{v}$$

Try:
$$\vec{v} = \vec{b}$$
, $k = 1$, $l = 1$.

LHS =
$$(1+1).\vec{b}$$
 RHS = $1.\vec{5} + 1.\vec{5}$
= $2.\vec{b}$ = $\vec{a} + \vec{a}$
= \vec{a}

Proof it is the in general:

Let k, l e IR.

LUS =
$$(K+l).\vec{a}$$
 RHS = $k.a + l.\vec{a}$
= \vec{a} = \vec{a}

RHS =
$$k.\vec{b} + l.\vec{b}$$

= $\vec{a} + \vec{a}$

: R5 is true.

But:

R7: Take V = 6

LHS= 1. 5 = a

put

RHS = 5

: LHS & RHS for R7.

. R7 not satisfied.

: V is not a vector space.

Example The set such that
$$B := \{ (b_1, b_2, b_3) \in \mathbb{R}^3 \text{ s.t.}$$

 $b_1 - b_2 + b_3 = 0 \}$

equipped with the following clate, is a vector space.

DI addition

$$(b_1,b_2,b_3)+(c_1,c_2,c_3)$$

 $:=(b_1+c_1,b_2+c_2,b_3+c_3)$

D2. 280 veckr

03. scalar mult: K.(b,,b,,b) = (Kb,,

RI Let
$$\vec{5} = (b_1, b_2, b_3)$$

 $\vec{c}' = (c_1, c_2, c_3)$.

[by defa of addition]
in B

$$=(C_1+b_1, C_2+b_2, C_3+b_3)$$

[since
$$x+y=y+x$$

for real numbers]

= (C₁, C₂, C₂) + (b, b, b, b)

=
$$(c_1, c_2, c_3) + (b_1, b_2, b_3)$$

= $(c_1, c_2, c_3) + (b_2, b_3, b_3)$
= $(c_1, c_2, c_3) + (b_2, b_3, b_3)$
= $(c_1, c_2, c_3) + (b_2, b_3, b_3)$

Example The Zero Vecter space.

D3.
$$k.\vec{z} := \vec{z}$$

Exercise Check this satisfies R1 to R8.

R5 LUS =
$$(K+\ell).\overline{z}$$

RHS =
$$k.\overline{z} + L.\overline{z}$$

= $\overline{z} + \overline{z}$

$$IR^{n} := \left\{ (x_{i}, -, x_{n}) : x_{i} \in IR \right\}$$

D1.
$$(x_1, \dots, x_n) + (y_1, \dots, y_n)$$

 $s = (x_1 + y_1, \dots, x_n + y_n)$

D3.
$$k.(x_1, ..., x_n) := (kx_1, ..., kx_n)$$

$$|R^{\infty} := \{(x_1, x_2, x_3, \dots), x_i \in |R_i\}$$

D1.
$$(x_1, x_2, \dots) + (y_1, y_2, \dots)$$

:= $(x_1+y_1, x_2+y_2, \dots)$

D2, D3 state similar.

Example Let X be ony set.

Fun(X):= {functions
$$f: X \rightarrow IR$$
}

$$f(a) = 7$$
 $g(a) = 2$
 $f(b) = 1.2$ $g(b) = 0$
 $f(c) = 6$ $g(c) = -5.9$

D1.
$$(f+g)(x) := f(x) + g(x)$$

 $x \in X$

where
$$Z(x) = 0$$

for all $\rightarrow \forall x \in X$

D3.
$$(k.f)(x) := kf(x)$$

Number function