一. 碱基比对有三种情况:

str1: SS_str2: T_T

-str1 的字符和 str2 的字符相互配对

-str1 的字符和 str2 的 gap 相互配对

-str1 的 gap 和 str2 的字符相互配对

二. 比对原则:

str1 和 str2 根据*打分矩阵*进行相关匹配。

最佳匹配分数 = Σ 单独残基比分

最好比分 = 之前最好 + 当前最好 (*动态规划)

*动态规划:局部最优解组合即为全局最优解

三. 定义与 Needleman_Wunch 公式:

F(i,j) = 第一序列 X 从 1 到 i

} 的最好的比对分数

第二序列 Y 从 1 到 i

 $F(i,j) = \max of$

F(i-1,j-1) + s(X_i,Y_i)【str1 的字符和 str2 的字符相互配对】

F(i,j-1) + d 【str2Y 比对到 Gap】

F(0,0)=0

*Gap 分为 open gap 和 extending gap,这里中先都用 d 代替

$$F(i-1, j-1)$$

$$f(i, j-1)$$

$$f(i, j-1)$$

$$f(i-1, j) \longrightarrow d \longrightarrow F(i, j)$$

例:

通过打分矩阵结合 Needleman_Wunsch 公式进行计算。

根据结果-6 进行反推可以了解到有两条通路:

		Α	Α	G
	0 _	-5 -	· -10	→ -15
Α	-5	2 _	→ -3 =	→ -8
G	-10	-3	-3	-1
С	-15	-8	-8	-6

黄:

所以确定最佳比对格式,都是<mark>最佳</mark>。

红:

AAG_ AAG_

_AGC A_GC

四. 过度

全局比对要死的特点是无法去掉内含子

序列比对的大部分目的是观察外显子,所以出现了局部比对的需求。

Smith waterman 就是经典的局部比对算法。这是对 Needleman Wunsch 的改进。

五. Smith_Waterman 算法

 $F(i,j) = \max of$

F(i-1,j-1) + s(X_i,Y_j) 【str1 的字符和 str2 的字符相互配对】

F(i,j-1) + d 【str2Y 比对到 Gap】

0【0的作用实际是止损,一旦差异过大,0就来止损了】

F(0,0)=0

例:

()()A	Α	G	【打分矩阵】	A	С	G T
() 0 0	0	0	Α	2	-7	-5 -7
A 0			C -	-7	2	-7 -5
G 0			G	-5	-7	2 -7
C 0			Т -	-7	-5	-7 2

通过打分矩阵结合 Smith_Waterman 公式进行计算

		А	А	G
	0	0	0	0
А	0	2	2	0
G	0	0	0	4
С	0	0	0	0

结果:

AG A

AG A

六 再次改进

由于gap 分为open gap 和 extending gap。因此引入*有限自动机*进行详解

有限自动机的三个状态:

M: 彼此对上,但不一定相同

X: X 的残基对上了空位

Y: Y 的残基对上了空位

自动机:

M(i,j)=max of

 $M(i-1,j-1) + S(X_i,Y_j)$ after a match

 $X(i-1,j-1) + S(X_i,Y_j)$ after a gap

 $Y(i-1,j-1) + S(X_i,Y_j)$ after a gap

 X_i aligned to a gap $X(i,j) = \max of$

M(i-1,j) - d

M(i-1,j) - e

 Y_j aligned to a gap $Y(i,j) = \max of$

M(i,j-1) - d

M(i,j-1) - e

d: open gap 罚分

e: extend gap 罚分