DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

Least Squares and SLAM Landmark-SLAM

Giorgio Grisetti

Part of the material of this course is taken from the Robotics 2 lectures given by G.Grisetti, W.Burgard, C.Stachniss, K.Arras, D. Tipaldi and M.Bennewitz

The Graph

- The SLAM graph we have seen so far consists of:
 - Vertices, representing robot poses x_i = $(x,y,\theta)^T$
 - Edges, representing virtual observations between robot poses $\mathbf{z}_{ij} = \langle (x, y, \theta)^T_{ij}, \Omega_{ij} \rangle$.
- In this lecture we will:
 - Extend the system to operate on an extended graph (i.e. with landmarks)
 - See how to obtain a pose-graph out of a landmark based system.

The Graph in the General Case

- A node represents a state variable:
 - A robot position, or
 - A landmark in the environment
- An edge represents a measurement:
 - Landmark observation
 - Odometry measurement
- The minimization seeks for the configuration of landmarks and robot poses that is most consistent with the observations in the edges.

Landmarks in x-y

- A landmark represents a 2D point in the world $\mathbf{x_i} = (x \ y)^T$.
- The robot observes the landmark relative to its current location.
- Synthetic measurement

Landmarks in x-y

- A landmark represents a 2D point in the world $\mathbf{x_i} = (x \ y)^T$.
- The robot observes the landmark relative to its current location.
- Synthetic measurement

$$\widehat{\mathbf{z}}_{ij}(\mathbf{x}_i,\mathbf{x}_j) = \mathbf{R}_i^T(\mathbf{x}_j - \mathbf{t}_i)$$
Robot Landmark Robot translation

Error Function

Landmarks in x-y

- A landmark represents a 2D point in the world $\mathbf{x_i} = (x \ y)^T$.
- The robot observes the landmark relative to its current location.
- Synthetic measurement

$$\widehat{\mathbf{z}}_{ij}(\mathbf{x}_i,\mathbf{x}_j) = \mathbf{R}_i^T(\mathbf{x}_j - \mathbf{t}_i)$$
Robot Landmark Robot translation

Error Function

$$\mathbf{e}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \hat{\mathbf{z}}_{ij} - \mathbf{z}_{ij}$$
$$= \mathbf{R}_i^T(\mathbf{x}_j - \mathbf{t}_i) - \mathbf{z}_{ij}$$

Landmarks in the Bearing only Case

- A landmark still represents a 2D point, but we can observe only the bearing.
- Synthetic Measurement

Error function:

Landmarks in the Bearing only Case

- A landmark still represents a 2D point, but we can observe only the bearing.
- Synthetic Measurement

Error function:

Landmarks in the Bearing only Case

- A landmark still represents a 2D point, but we can observe only the bearing.
- Synthetic Measurement

$$\widehat{\mathbf{z}}_{ij}(\mathbf{x}_i,\mathbf{x}_j) = \operatorname{atan} \frac{(\mathbf{x}_j - \mathbf{t}_i).y}{(\mathbf{x}_j - \mathbf{t}_i).x} - \underline{\theta}_i$$
Robot Landmark Robot-landmark angle

Error function:

Landmark Bearing

$$\mathbf{e}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \operatorname{atan} \frac{(\mathbf{x}_j - \mathbf{t}_i).y}{(\mathbf{x}_i - \mathbf{t}_i).x} - \theta_i - \mathbf{z}_j$$

Considerations about the Rank of the Hessian

- What is the rank of the Hessian of a 2D landmark-pose constraint?
 - The jacobian is a 2x3 matrix
 - The Hessian cannot be more than 2

- What is the rank of the hessian for a bearing-only constraint?
 - The Jacobian is a 1x3 matrix -> rank=1

Again on the Rank

• If I see 1 landmark (x-y) where can the robot be?

• If I observe the bearing of 1 landmark where can the robot be?

It can be everywhere on the plane.
Constraint on orientation: inf^2.

Rank

- In the landmark case the system can be under-determined.
- The rank of the Hessian is at most equal to the sum of the ranks of the constraints.
- Now, looking at the rank:
 - How many bearing observations do I need to resolve for a robot pose?
 - How many 2d-landmark observations do I need to resolve for a robot pose?
- To determine a unique solution, the system should be full rank!

Dealing with under-determined Systems

- In the general case one cannot guarantee that the system will be over-determined.
 - Certain landmarks can be observed only once
 - The robot might have no odometry
- We can still deal with these situations by adding a "damping" factor to the Hessian.
 - Instead of solving $H \Delta x = -b$, we solve

$$(H + \lambda I) \Delta x = -b$$

- The damping factor λ \boldsymbol{I} makes the system positive definite (from semi-positive), by adding additional constraints that "drag" the increments towards 0.
- What happens when $\lambda >> |H|$?

Levenberg Marquardt (simplified)

 This "damping" trick can be used to regulate the convergence by using appropriate backup/restore actions.

```
x: the initial guess
While (! converged)
      \lambda = \lambda_{init}
      <H,b> = buildLinearSystem(x);
     E = error(x)
     \mathbf{x}_{old} = \mathbf{x}_{i}
     \Delta x = \text{solveSparse}((H + \lambda I) \Delta x = -b);
     \mathbf{x} += \Delta \mathbf{x}
     If (E<error(x)){
           x = x_{old};
           \lambda *= 2:
     } else {
           \lambda */2;
```

Fixing a (set of) variables

- Assume that the value of certain variables during the optimization is known a priori.
- We may want to optimize all others and keep these fixed.
- How?

Fixing a (set of) variables

- Assume that the value of certain variables during the optimization is known a priori.
- We may want to optimize all others and keep these fixed.
- How?
- If a variable is not optimized, it simply "disappears" from the linear system

Fixing a (set of) variables

- Assume that the value of certain variables during the optimization is known a priori.
- We may want to optimize all others and keep these fixed.
- How?
- If a variable is not optimized, it simply "disappears" from the linear system
- Construct the full system
- Suppress the rows and the columns corresponding to the variables to fix

Determining the Relative Uncertainty

- The Hessian represents the inverse covariance of the likelihood around the linearization point
- Inverting the Hessian gives the covariance matrix (which is dense)
- The diagonal blocks of the covariance matrix represent the absolute uncertainties of the corresponding variables
- To determine the relative uncertainty between x_i and x_i :
 - Construct the full Hessian
 - Suppress the rows and the columns o x_i (fix it)
 - Compute the j,j block of the inverse. This block will contain the covariance matrix of $\mathbf{x_i}$ w.r.t. $\mathbf{x_i}$, which has been fixed.

Example

Conclusions

- We now know
 - How to incorporate landmarks in the map
 - How to determine the relative uncertainties
 - How to embed prior knowledge about the position of some parts of the map