Ans-5) Given: C- covariance matrin of vectors in $\mathcal{K} = \{x_1, x_2, \dots x_N\}$ e + eigenvector of e with highest eigenvalue

To prove: vector of perpendicular to e for which of the fish maximized is eigenvector of C with second highest eigenvalue We can apply two more constraints with out objective function.

(: f has unit magnitude)

1) $f^{t}f = 1$ (: f is perpendicular to e)

2) $f^{t}e = 0$ Now our objective function that we need to modimize is, J(f) = ftef - 2 (ftf-1) - \$ (fte)

(Using Lagrange multiplier) Differentiating wirt of (& setting result, 400) Multiplying with et on both sides 12et + pete = etcf c: etf=0) From (1) 4 (2) Azt = ct so, t is an eigenvector of tict (muetiplying with ft) Since we choose to maximize ftcf, we choose highest eigenvalue, which is not already taken. Hence, we get the second highest eigenvalue for 2. Thus, f is eigenvector with second highest eigenvalue.