CS2383 Fall 2021 Assignment 2 (110 marks) Due Tuesday., Oct. 12, by 5pm.

- Assignments in MS Word format should be handed in via D2L.
- 1. (15 marks) Prove or disprove each of the following statements:
 - (a) $n^3 + 8n^2 + 6n + 2$ is $\Theta(n^3)$.

Proof: (5 marks)

$$n^{3} + 8n^{2} + 6n + 2 \leq n^{3} + 8n^{3} + 6n^{3} + 2n^{3}$$

$$= 17n^{3}$$
(1)

Let C = 17 and $n_0 = 1$. We have $n^3 + 8n^2 + 6n + 2 \le Cn^3$ for all $n \ge n_0$. Therefore, $n^3 + 8n^2 + 6n + 2$ is $O(n^3)$.

$$n^3 + 8n^2 + 6n + 2 \ge n^3 \tag{2}$$

Let C = 1 and $n_0 = 1$. We have $n^3 + 8n^2 + 6n + 2 \ge Cn^3$ for all $n \ge n_0$. Therefore, $n^3 + 8n^2 + 6n + 2$ is $\Omega(n^3)$.

So $n^3 + 8n^2 + 6n + 2$ is $\Theta(n^3)$.

(b) $8n^2 - 6n + 2$ is $\Theta(n^2)$.

Proof: (5 marks)

$$8n^{2} - 6n + 2 \leq 8n^{2} + 2$$

$$\leq 8n^{2} + 2n^{2}$$

$$\leq 10n^{2}$$
(3)

Let C = 10 and $n_0 = 1$. We have $8n^2 - 6n + 2 \le Cn^2$ for all $n \ge n_0$. Therefore, $8n^2 - 6n + 2$ is $O(n^2)$.

$$8n^{2} - 6n + 2 \ge 8n^{2} - 6n = 2n^{2} + (6n^{2} - 6n)$$

$$\ge 2n^{2}$$
 (4)

Let C=2 and $n_0=1$. We have $8n^2-6n+2\geq Cn^2$ for all $n\geq n_0$. Therefore, $8n^2-6n+2$ is $\Omega(n^2)$.

So
$$8n^2 - 6n + 2$$
 is $\Theta(n^2)$.

(c) $2n^2 - 3n + 50$ is $\Theta(n^2)$.

Proof: (5 marks)

$$2n^{2} - 3n + 50 \leq 2n^{2} + 50
\leq 2n^{2} + 50n^{2}
\leq 52n^{2}$$
(5)

Let C = 52 and $n_0 = 1$. We have $2n^2 - 3n + 50 \le Cn^2$ for all $n \ge n_0$. Therefore, $2n^2 - 3n + 50$ is $O(n^2)$.

$$2n^2 - 3n + 50 \ge 2n^2 - 3n = n^2 + (n^2 - 3n)$$

 $\ge n^2 \text{ when } n \ge 3$ (6)

Let C=1 and $n_0=3$. We have $2n^2-3n+50 \ge Cn^2$ for all $n \ge n_0$. Therefore, $2n^2-3n+50$ is $\Omega(n^2)$.

So
$$2n^2 - 3n + 50$$
 is $\Theta(n^2)$.

- 2. (total 30 marks, 5 marks per question) Analyze the running time of the following algorithms asymptotically.
 - (a) **Algorithm** for-loop1(n):

$$\begin{aligned} p &\leftarrow 1 \\ \text{for } i &\leftarrow 1 \text{ to } n^2 \text{ do} \\ p &\leftarrow p \times i \end{aligned}$$
 return p

It is $\Theta(n^2)$.

(b) Algorithm $for\text{-}loop\mathcal{2}(n)$: $s \leftarrow 0$ for $i \leftarrow 1$ to n do for $j \leftarrow i$ to n do $s \leftarrow s + i$ return s

It is $\Theta(n^2)$.

(c) **Algorithm** Algorithm *WhileLoop1*(n):

$$\begin{aligned} x &\leftarrow 0; \\ j &\leftarrow 1; \\ \text{while } (j^3 <= n) \{ \\ x &\leftarrow x + 1; \\ j &\leftarrow j + 1; \\ \} \end{aligned}$$

It is $\Theta(n^{\frac{1}{3}})$.

(d) **Algorithm** WhileLoop2(n):

```
\begin{aligned} x &\leftarrow 0; \\ j &\leftarrow n; \\ \text{while } (j>=1) \{ \\ x &\leftarrow x+1; \\ j &\leftarrow 2j/3; \\ \} \end{aligned}
```

It is $\Theta(\log n)$.

(e) **Algorithm** WhileLoop3(n):

```
\begin{aligned} x &\leftarrow 0; \\ j &\leftarrow 2; \\ \text{while } (j <= n) \{ \\ x &\leftarrow x + 1; \\ j &\leftarrow j^3; \\ \} \end{aligned}
```

It is $\Theta(\log \log n)$.

(f) **Algorithm** $WhileLoop_4(n)$:

```
\begin{array}{c} x \leftarrow 0 \\ j \leftarrow n \\ \text{while } (j \geq 1) \\ \text{for } i \leftarrow 1 \text{ to } j \text{ do} \\ x \leftarrow x + 1 \\ j \leftarrow j - 2 \end{array} return x
```

It is $\Theta(n^2)$.

- 3. (total 15 marks, 5 marks per question) What does each of the following recursive algorithms do? Analyze their running time asymptotically using recursion trees.
 - (a) Algorithm fun1(n, m)if (n = 0)return m; else return fun1(n - 1, n + m);

The function fun1(n, m) calculates and returns $((1 + 2 \dots + n-1 + n) + m)$. Time complexity: $\Theta(n)$.

(b) **Algorithm** fun2(n)

```
if (n = 1)
return 0;
else
return 1 + fun2(\frac{n}{2});
```

The function fun2(n) calculates and returns $\log_2 n$. Time complexity: $\Theta(\log n)$.

(c) Algorithm fun3(A, l, h)

Input: A is an array, l and h are two integers.

```
if (l \ge h) return;
```

```
\begin{split} & minindex \leftarrow l \\ & minivalue \leftarrow A[l] \\ & \text{for } (\ i \leftarrow l+1; \ i \leq h; \ i++) \\ & \text{ if } (minivalue > A[i]) \\ & \quad minivalue \leftarrow A[i]; \\ & \quad minindex \leftarrow i; \\ & \text{swap}(A[l], \ A[minindex]); \\ & \text{fun3}(A, \ l+1, \ h); \end{split}
```

The function fun3(A, l, h) sorts a sub-array from A[l] to A[h] using selection sort. The initial call is: fun3(A, 0, n-1) with time complexity: $\Theta(n^2)$.

4. (10 marks) Given a stack that includes n numbers, write a recursive algorithm to sort the elements in the stack. For example, if the contents of the input stack is: 3 (top), 5, 2, 1, 4, the sorted stack should be 1 (top), 2, 3, 4, 5. Assume that the size of the stack is n, what is the time complexity of your algorithm.

```
Output: S with the elements sorted.

if (!S.\text{isEmpty}())
temp \leftarrow S.\text{pop}();
stackSort(S);
stackInsert(S, \text{ temp});

Algorithm stackInsert(S, e)
Input: a sorted stack S and an element e
Output: S with e inserted, and S is sorted.
```

Algorithm stackSort(S)

Input: a stack S

```
if (S.\text{isEmpty}() \text{ OR } e > S.\text{top}())

S.\text{push}(e);

else

\text{temp} \leftarrow S.\text{pop}();

\text{stackInsert}(S, e);

S.\text{push}(\text{temp});
```

Time complexity: $\Theta(n^2)$.

5. (20 marks) Write a recursive algorithm that reverses a given integer. For example, if the given number is 12345, the output of your algorithm should be 54321. Analyze its time complexity using a recursion tree. Then describe an algorithm for determining a given number w is palindrome or not. A number is called palindrome if it is equal to its reverse. For example, 1221 is palindrome. Implement your algorithm in Java and hand in the source code via D2L.

Algorithm reverse(n, rev):

Input: an integer n. Output: reversed n.

```
if (n=0) return rev;
return reverse(n/10, rev \times 10 + n \% 10);
```

Draw a recursion tree. The time complexity is $\Theta(\log n)$ (or the number of digits of n).

Algorithm: 10 marks; Time complexity: 3 marks; Java implementation: 7 marks.

6. (20 marks) Write a recursive Insertion Sort algorithm that takes an array A of n numbers as input. Analyze its time complexity using a recursion tree. Implement your algorithm in Java and hand in the source code via D2L.

Algorithm insertionSort(A, n):

Input: Array A of n real numbers.

Output: Sorted A.

```
if (n=1) return;
insertionSort(A, n-1);
temp \leftarrow A[n-1];
for (i \leftarrow (n-2) to 0)
if (A[i] > temp)
A[i+1] \leftarrow A[i];
A[i+1] \leftarrow temp;
```

Draw a recursion tree. The time complexity is $\Theta(n^2)$.

Algorithm: 10 marks; Time complexity: 3 marks; Java implementation: 7 marks.