第一章 数字集成电路

1.1 数字集成电路简介

1.1.1 概 述

目前,世界上的数字集成电路(DIC—Digital Integrated Circuit) 有双极型和场效应两人系列,这两大系列主要由 TTL 和 CMOS 为代表,其分类及特点见表 1.1。高阈值晶体管逻辑电路(HTL)、发射极耦合逻辑电路(ECL)、集成注入逻辑电路(IIL)、N 沟道场效应管逻辑电路(NMOS) 和 P 沟道场效应管逻辑电路(PMOS)等系列,因使用较少,本手册不作介绍。

系列	子系列	名 称	国标型号	速度 - 功耗
	TIL	标准 TIL 系列	CT54/74	10ns - 10mW
T	HTIL	高速 TTL系列	CI54H/74H	6 - 22
T	LTTL	低功耗 TTL 系列	CT54L/74L	33 - 1
L	STIL.	肖特基 TIL 系列	CT54S/74S	3 - 19
系	LSTTL	低功耗肖特基 TTL 系列	CTS4LS/74LS	9.5 - 2
列	ALSTTL	先进低功耗肖特基 TTL系列	CIS4ALS/74ALS	3.5 - 1
	ASTTL	先进肖特基 TTL系列	CI54AS/74AS	3 - 8
	FTTL	快速 TTL 系列	CIS4F/74F	3.4 - 4
	PMOS	P沟道场效应管系列		
M	NMOS	N沟道场效应管系列		
0	CMOS	互补场效应管系列	CC4(CC14)	125ns = 1.25µW
\mathbf{s}	HCMOS	高速 CMOS 系列	; CC54HC/74HC	8 - 2.5
系	HCT	与 TTL 电平兼容的 HCMOS 系列	CC54HCT/74HCT	8 - 2.5
列	AC	先进的 CMOS 系列		5.5 -
	ACT	与TTL 电平兼容的 AC 系列		4.75 –

表 1.1 数字集成电路各系列分类及主要特性

表 1.1 所列系列中,有的已经基本淘汰,如 HTTL和 LTTL,最常用最流行的是 LSTTL和 CMOS 这两个子系列,它们的产品种类和产量远远超过其它各种。ALSTTL、ASTTL、FTTL的性能更好一些,目前还处于发展和完善阶段,它们之间相差不大,今后如何发展,是否会发生兼并,现在还不能下结论。考虑到目前国内的实际情况和需要,本手册将 TTL 各系列和 HCMOS、HCT 等系列放在一起列表给出,见表 1.6 至表 1.23。只要型号的序号相同,它们的功能就相同,双列直插类型封装的外引线排列也一致,只是在功耗和动态指标上不同。CC4---系列集成电路的有关参数和外引线排列在表 1.24 中给出。

现行国家标准对集成电路型号的规定,完全参照世界上通行的型号制定。国标中的第一个字母 C 代表中国,是 CHINA 的字头,第二位的 T 代表 TTL, C 代表 CMOS。CT 就是中国 TTL 集成电路,其后的部分国标型号与国际通用型号完全一致。CC 就是中国 CMOS集成电路,主要与国外的 CD4---系列和 MC14---系列对应。

1.1.2 数字集成电路的参数

1.1.2.1 电流参数

对于 TTL 数字集成电路来说,各端头的电流有时是向外流的,符号定为负;有时是向里流的,符号定为正。这些电流分别与高电平和低电平两种情况相对应。

 I_{iL} — 低电平输入电流。当集成电路输入端接低电平时,从该输入端流出的电流,数量约 – 1mA 左右。

 I_{iH} 一**高电平输入电流**。当集成电路输入端接高电平时,从该输入端流入的电流,数量约 $1 \sim 20 \mu A$ 左右。

 I_{oL} ——低电平输出电流。当集成电路输出低电平时,从该输出端流入的电流,随系列、品种不同, I_{oL} 有较大的差别,从 10mA 左右到近 100mA。

 I_{oH} 一**高电平输出电流**。当集成电路输出高电平时,从该输出端流出的电流,集成电路实际上可提供的 I_{oH} 与 I_{oH} 差不多,但规范给定的 I_{oH} 只有几百微安。

同一个 TTL 系列集成电路的某一个电流参数,对于该系列大多数型号的集成电路来说是一致的,具体数值参阅表 1.2,特殊者稍后加以说明。对于 CMOS 数字集成电路来说,因栅极是绝缘的,它没有 I_{ii} 与 I_{ii} 这两个参数。

1.1.2.2 电压参数

对于整个 TTL 数字集成电路来说, 其电压参数基本相同, 只是在有的子系列间稍微有些差别, 具体数值也请参阅表 1.2。

 U_{iH} ——**高电平输入电压**。对双值逻辑系统来说,该电压允许在一定的范围内变化,手册中是以其最小值的形式给出的,即 $U_{iHmin}=2$ V。

 U_{oH} ——**高电平输出电压**。规范规定 $U_{oHmin}=2.4V$,它必须大于 U_{iHmin} ,它们的差 $^{\bullet}$ 、即为高电平噪声容限 $U_{oH}=\Delta^{\circ}1^{\circ}=U_{oHmin}-U_{iHmin}$ 。

 U_{il} ——**低电平输入电压**。手册中是以其最大值的形式给出的,即 $U_{ilmax} = 0.8 \text{V}$ 。

 U_{oL} ——**低电平输出电压**。规范规定 $U_{oLmax}=0.4$ V,它必须小于 U_{iLmax} 。它们的差即为低电平噪声容限 $U_{oL}=\Delta$ "0"= $U_{iLmax}-U_{oLmax}$ 。

 U_{ill} 、 U_{iL} 、 U_{oll} 、 U_{oll} 、 U_{oll} 和 U_{oll} 的相互关系,可查阅表 1.2 和图 1.1。

 U_{iH} 、 U_{iL} 、 U_{oH} 、 U_{oL} 之所以不同,完全是实际工作的需要。DIC 组成一个电路,甚至一个系统,不可避免会有于扰。一个 DIC 的输出端要接另外一些 DIC 的输入端,所以 U_{oH} 要比 U_{iH} 大, U_{oL} 要比 U_{iL} 小,以便为于扰留有一定的余地,这对保证双值逻辑系统的正常工作是十分必要的。

1.1.2.3 电源工作电流和功耗

电路的复杂程度不同,工艺不同,各个 TTL DIC 的耗电量就不同。当然,环境温度升高,耗电量也增加。TTL DIC 的电源电流在输出低电平和高电平时是不同的,但差别不大。这两个电流分别用 I_{CCL} 和 I_{CCH} 表示,手册中则给出的是平均功耗 P_d ,且

$$P_d = 0.5 \times (I_{CCL} + I_{CCH}) V_{CC}$$

集成电路的耗电与每个门的耗电不是始终一致的,当集成电路的一个封装片内有几个门电路时,测得的耗电量就是每门耗电的几倍。考虑到数字集成电路的功耗都比较小,为简单起见,本手册中不给出芯片的功耗。

TIL、LSITL 系列 单位 参数名称 符号 54/74 系列 MEN NOM MAX 5.5 v 电源电压 5 V_{CC} 54 4.5 5.25 4.75 5 74 工作环境温度 125 C T_A 54 -5574 0 0.8(0.7)低电平输入电压 $U_{I\!\!L}$ 54 74 0.8 高电平输入电压 U_{iH} 54/74 2 低电平输出电压 U_{oL} 0.2(0.25)0.454 0.4(0.5)74 0.2(0.35)2.4(2.5)高电平输出电压 54 3.4 U_{aH} 74 2.4(2.7)3.4 -0.4高电平输出电流 54/74 mA I_{oH} 低电平输出电流 I_{oL} 54 16(4) mΑ 16(8) 74 低电平输入电流 54/74 -1.6(-0.4)mA I_{iL} 高电平输入电流 54/74 0.04(0.02) I_{iH} mΑ **- 55(- 100)** 输出短路电流 -20mΑ I_{aS} -18(-20)- 55(- 100) 74

表 1.2 TTL 数字集成电路的参数规范值

注 1:TTL 和 LSTTL 系列的参数规范值基本相同,不同之处用括号区分,括号内为 LSTTL 系列之值。

注 2: MIN 为最小值, MAX 为最大值, NOM 为名义值, 即典型值。

注3:表中数据适用于图腾输出级(推拉)。对于 OC 门, 仅 I_{cH} 减小; 对于 TTL 和 LSTTL 系列, I_{cH} 分别为 =0.25mA和 =0.1mA。

注 4:对于驱动器和缓冲器, Int 和 Int 要增加几倍到几十倍, 其它参数值不变。

1.1.2.4 平均传输延迟时间

从 DIC 的输入端的信号发生变化,到输出端的状态发生变化,中间会有一定的延迟,这就是传输延迟时间 t_{nd} ,请参阅图 1.2。 t_{nd} 实际上是 t_{pHL} 和 t_{pLH} 的平均值。DIC 工作

时,电路的输出端不可避免地存在负载电阻和负载电容,所以在测试 t_{pd} 时,往往要加上一定大小的 R_L 和 C_L ,如图 1.2(b) 所示。不同种类的电路,不同的系列, R_L 和 C_L 的数值有所不同,但差别不大。本手册所给的数据是一般情况下的典型值,仅供参考。对于绝大多数情况,电路的实际工作速度远低于 DIC 所能给出的最高工作速度,对 t_{pd} 可以不加考虑。

图 1.2 集成电路的传输延迟时间

1.1.2.5 静态功耗和动态功耗

数字集成电路的速度和功耗是一对矛盾,速度和功耗之积是表明集成电路品质优劣的重要指标,不同系列的速度功耗曲线见图 1.3。对于 TTL 数字集成电路来说,在很宽的频率范围内,速度功耗曲线是一条水平线,因为 TTL 数字集成电路的静态功耗远远大于它开关时的动态功耗。但是,CMOS 数字集成电路因其静态功耗十分微小,因而它的动态功耗就基本上随工作时的开关频率的增长而线性增加。

图 1.3 DIC 的速度功耗曲线

1.1.3 输出级与输入级的电路形式

TTL 输出级的电路形式有图腾柱(TOTEM)、集电极开路(OC)和三态(3S)三种形式,多数电路都采用图腾柱输出级的形式,在本手册中不加以注明,其它两种则加以注明。图腾柱和三态两种输出级的电流参数一般都符合表 1.2 的规定,但 OC 输出级的 I_{oH} 要小一些,对于 54/74 系列, $I_{oH} = -0.25$ mA;LSTTL 系列, $I_{oH} = -0.1$ mA。此外,作为缓冲器、驱动器和功率门的集成电路,要求 I_{oH} 和 I_{oL} 比较大,与表 1.2 的数值不同,具体数值请参阅表 1.8。

CMOS 输出级的电路形式也有图腾柱、漏极开路(OD)和三态三种形式,有关数值可参阅表 1.3 和表 1.4。

TTL 输入级有二极管(即二极管门)和三极管(即多发射极晶体管)两种电路形式。TTL、HTTL、STTL 等属于后者,LSTTL 中的绝大多数属于前者。因为二极管的反向耐压比较高,所以集成电路如果是二极管的输入形式,其输入端可以根据需要直接接至电源。而对于多发射极晶体管的输入级形式,一般要通过一只电阻接至电源。

CMOS 集成电路的输入端是场效应管的栅极,输入电阻极高,在常温下电流几乎等于零。为了避免静电损坏,它的输入端一般都加有输入保护网络,为安全计,它们的输入端也不要轻易用手触摸,以免静电损坏。

	•					DD	
参数 名称	符号	负载类别	54/7 MIN	4HC MAX	54/74 MIN	4HCT MAX	单位
低电平输入电压	U _L	-	ļ	0.9		0.8	v
高电平输入电压	Uill		3.15		2		V
低电平输出电压	U_{oL}	CMOS TTL		0.1 0.33(0.4)		0.1 0.33(0.4)	V
高电平输出电压	U_{cH}	CMOS TTL	4.4 3.84(3.7)		4.4 3.84(3.7)		V
高电平输出电流	I_{oH}		4(3.4)		4(3,4)		mA
低电平输出电流	I _{at.}	54	-4(-3.4)		-4(-3.4)		mA
输入电流	I,			±1		± 1	μΛ

表 1.3 54/74HC、54/74HCT 系列的参数规范值

 $V_{nn} = 5V$

1.1.4 CMOS 集成电路的参数

高速 CMOS 集成电路 54/74HC(T)系列的参数规范值列于表 1.3 中,标准 CMOS 集成电路 CC4--系列的参数规范值列于表 1.4 中,CMOS 集成电路的电压参数、时间参数和输出端电流参数的含义与 TTL 的相同。因为 CMOS 集成电路使用绝缘栅场效应管,它没有 I_{iH} 和 I_{iL} 这两个参数。其次,CMOS 集成电路的功耗与温度、电源电压和工作速度有关,其静态功耗一般在微瓦级,甚至更低,所以 CMOS 集成电路的功耗主要是开关过程中的动态功耗,并且随着工作速度的提高而线性增长。第三,CMOS 集成电路的电源电压可以在 $2 \ V \sim 20$ 多 V 的范围内工作,因此 CMOS 集成电路的各种参数都与电源电压值有关,表 1.3

注 1:54/74 系列的参数规范值基本相同,不同之处用括号区别,括号内为 54 系列之值。

注 2:74 系列的工作温度为 - 40℃ ~ 85℃, 54 系列为 - 55℃ ~ 125℃。

注 3:输入电流 /; 是最高温度条件下的数值。

给出的参数是在 5V 电源电压条件下的典型值。关于平均传输延迟时间 t_{pd} ,因测试条件不尽相同,故所列的数据仅供参考。

表 1.4 CC4 - ·	1CC	,14	<i>) 1</i> 5			SE 18
参数名称	符号	类	电		4 4	单位
		别	源	MIN	MAX	
低电平输入电压	UiL		5V		1.5	v
		ļ	15 V		4.0	
髙电平输入电压	U_{iH}		5V	3.5		V
			15V	11		
低电平输出电压	U_{oL}	:	5V		0.05	V
			15V		0.05	
高电平输出电压	U_{oH}		5V	4.95		v
			15V	14.95		
高电平输出电流	I_{oH}		5V		-0.51	mA
			15V		-3.4	
低电平输出电流	$I_{ol.}$		5V	0.51		mA
		<u> </u>	15V	3.4		
输人电流	I_i	I	15 V		±0.1	μA
		ַ װַ	15V		±0.3	

表 1.4 CC4 - - - {CC14 - - -)系列的参数规范值

图 1.4 外引线图举例

1.2 数字集成电路查阅说明

1.2.1 关于型号的说明

数字集成电路部分采用列表法排出。不论是 TTL 各系列, 还是 54/74HC、54/74HCT 系列,只要序号相同,它们的电路功能就相同,双列直插封装的外引线排列也相同。除了 54/74HC 系列外,其它各系列的逻辑电平也兼容。本手册将不同系列的同一序号的数字集成电路排列在一起,只给出数字序号,子系列的型号用"'"标在数字序号的前面,如 '138,它是 3 线/8 线二进制译码器,既代表 TTL138,又代表 LS138、ALS138、S138、AS138、HC138 和 HCT138 之中的任何一种。

1.2.2 型号的空缺

对于各个子系列,厂家生产的数字集成电路不是所有的型号都有,有的会有空缺。在表 1.6 等 TTL 参数表中没有标明具体参数值的子系列,就说明该子系列该型号空缺,但这种空缺可能是暂时的,等新的型号生产出来,就会填补这个空缺。例如'06,只有7406 和 5406 这一个子系列有产品,其它的子系列都没有。

1.2.3 分类索引表

本手册中 TTL 数字集成电路的功能分为逻辑门、扩展器和反相器;驱动器和缓冲器;显示译码器;译码器和编码器;数据选择器和比较器;异或门和运算器;触发器、锁存器、单稳态触发器和压控振荡器;计数器;寄存器和移位寄存器九类。如果已知电路的功能,可直接到相应的表格中去查阅;如果只知序号,则先到分类索引表表 1.5 中去查出

该序号的集成电路是属于哪一类的,在哪个表中,然后再到参数表表 1.6、1.8、1.10、1.12、1.14、1.16、1.18、1.20、1.22 中去查找有关参数,外引线排列则到表 1.7、1.9、1.11、1.13、1.15、1.17、1.19、1.21、1.23 中去查找。这些表还附有电路功能的简要说明。

本手册中 CMOS4---系列数字集成电路的参数和外引线按型号的序号排列,不分类,请参阅表 1.24。

1.2.4 几条规定和说明

①数字集成电路的参数比较多,对其中共同的部分已在表 1.2、表 1.3 和表 1.4 中给出,在参数表中只给出时间参数和一部分功率损耗。对逻辑门等是平均传输延迟时间 t_{pd} ,对触发器等是最大时钟频率。对驱动器和缓冲器也给出输出电流这一参数。但是对CMOS 数字集成电路因为它的静态功耗很小,所以 CMOS 电路的功耗数都没有给出,仅给出了动态参数。

②手册中用英文白体字母表示输入量,用黑体字母表示输出量。字母上方有"一"者,表示该输入量或输出量是低电平有效或代表"非"逻辑。对一些简单的电路,般用 A、B、C、D、E、F、G、H 等表示输入量,用 Q、Y、W、Z 等表示输出量。对一些较为复杂的电路,则用输入量和输出量的英文名称的缩写表示,如 EN 为使能端,是 ENABLE 的缩写。

③在同一封装片中有相同的几个电路时,分别在相应符号的前面用数字 1、2、3 ···来区分。例如 1A、1B、1C、1D、1Y、2A、2B、2C、2D、2Y 等,这实际上是一个双 4 输入与非门的标注,它与图 1.4 所示的引线图相对应,读者一见自明。

- ①NC表示空脚,即该引线没有使用。
- ⑤集成电路的封装形式很多,常用的有双列直插封装(DIP)、单列直插封装(SIP)、扁平封装、金属圆壳封装等。本手册以常用的双列直插封装为主。
- ⑥在表格中,双列直插封装的引脚编号是从半圆口或小圆点的左下方开始为 1,然后按逆时针方向顺序数,直到半圆口的左上方为止,引脚数有 8、14、16、20、24、28 和 40 等。为节省版面,引脚在一行中只从 1 排列到 16,超过 16 脚的,从 17 脚开始从右向左反过来继续在该行的上方排列,见表 1.7 中的实例。
- ⑦对于一些不常用的符号,在首次出现时,将在表格下方的备注中给以简单地说明。 在有关表格的备注栏中也有一些简要说明。
- ⑧由于输入量和输出量用不同的字体表示,高电平、低电平有效也能从表中看出,再加上必要的说明,所以引出线表基本上可以起到功能表的作用。通过查表,可以对所查阅的集成电路的功能和在相应的引脚上所加的逻辑电平有所了解,这有利于正确使用。

1.3 TTL 数字集成电路参数和外引线排列表

如果已知集成电路的型号,而不知电路的名称、功能、参数和外引线排列等,可以从表 1.5 中查找。在本手册中,通用集成电路共分九类:

①逻辑门、扩展器、反相器	参数查表 1.6	外引线查表 1.7
②缓冲器、驱动器、总线收发器	表 1.8	表 1.9
③显示译码器	表 1.10	表 1.11
①译码器、多路分配器、编码器	表 1.12	表 1.13

⑤数据选择器、比较器	表 1.14	表 1.15
⑥异或门、运算器	表 1.16	表 1.17
⑦触发器、锁存器、单稳态触发器、压控振荡器	表 1.18	表 1.19
⑧计数器	表 1.20	表 1.21
⑨寄存器、移位寄存器	表 1.22	表 1.23

表 1.5 序号分类表(由型号的序号查分类)

序号	00-05	06,07	08-15	5 16,1	7 18-	→25	26	27		28	30,32	33	34→36	37,38,40	00
分类	Ф	2	(Q	(D	2	①		2	1	2	①	2	
序号	4244	47	7→49 5	50,51,5	3→55	56,5	7 :	58,60,64	1,65	68,69	7(),72→78	80,82	,83	42
分类	4	· · · · · · · · · · · · · · · · · · ·	3	0		8)		1		®		Ī	•		
序号	85	86	90	91 92	2,93 9	4→96	97	100,107	, 109	→114 , 1	16, 12	1→124	125,126	,128	85
分类	5	6	8	9	8	9	6	7				Ø	2		
序号	131	132	-134	135,1	36	137-1	39	140		141→1	45 (47	7,148,149	9 150-+	153	131
分类	4		Φ	®		4		2		3		4	5		
序号	154→156	157,15	58 15	59 16	0-16	3 164→	166	168,169)	170	171	172,1	73 174,	175	154
分类	4	\$	Q	D)	(8)	9		8		®	Ø	9	(7)	
序号	176,177	178,17	79 180-	≻183 19	0-193	3 194,	195	196,197	198	8,199	221	237-2	239		176
分类	8	9	Œ	Ð	8	9		8		9	Ŧ	4			
序号	240→245	246	249 25	0-253	256	257,2	258	259	:	260 261	,264-	266 268	26	9	240
分类	2	3	Ć	Ð	7	5		7		①	6	7	(8)	
序号	273	274,27	75 27	76	278	279	}	280,	283,2	286 2	90,292	2→294	295,299	320,321	273
分类	Ø	6	Œ	D	(7			®			(8)	9	⑦	
序号	322,323	347	34	18 351-	→353	365	-36 €	373→3	79 3	85,386	390	393	395,	396	322
分类	9	3	4	D	(5)	2		T		6	(8)	6	9)	
序号	398,399	407,41	10 413,	,423 42	25,426	440-	444	445,447	,	148	490	518 → 5	522		398
分类	⑤	9	Ţ	D	2	2		3		 ②	8	\$			
序号	534	537-	÷539,5	47,548	557	,558	560,	561	564	568,5	69 57	3 →57 7	579		534
分类	Ø		4		1	6)	Ø	8		7	8		
序号	582,583	588	58	39 590-	→ 593	594-	-59 9	618	620-	≻ 623	624	529 640-	+6 45		582
分类	6	2	(g)	8)	9		①		②	Ø	2			
序号	668	669	670,6	71,673	+ 676	690	-6 93	3,69 6 +6	999	810,8	311	873	,874,87	6	668
分类	(3)	•-•	9			8)		6		,,	 ⑦		
序号	878-+8	80	1000	, 1002→	1005,1	1008,10)10,	1011,102	20,10	32,1034	1→103	6,1245			878
分类	Ø		2									2		··· · · · ·	
序号	1620-1	623				1638-	+ 16	42,1644	, 1645	i					1620
分类	2	- - • •				②			2						

表 1.6 逻辑门、扩展器、反相器參數

		<u> </u>		刻	医迟时间	ij t _{pel} (n	s)			.
型号	名 称	TIL	s	LS	AS	ALS	F	нс	AC	备注
'00	四2输入与非门	10	3	9.5	3	3.5	3.4	8	5.5	
'01	四2輸入与非门	22		16	!	16				oc ·
'02	四2输入或非门	10	3.5	10	3	5.5	3.4	8	4.3	
'03	四2輸入与非门	22	16	16		16		9		OC,OD
'04	六反相器	10	3	9.5	3	3.5	3.5	8	4	
'05	六反相器	24	5	16		14		9	б.5	OC,OD
'08	四2输入与门	15	4.8	12	4	6.5	4.1	8	5.5	
'09	四2输入与门	19	6.5	20		15		9		OC,OD
'10	三3输入与非门	10	3	9.5	3	7	3.5	9	4.3	
'11	三3 输入与门	ļ	4.8	12	4	9	4.2	8	4	
12	三3 輸入与非门	22		16		18				OC
13	双4输入与非门	17		17		7.8	ļ		1	斯密特
'14	六反相器	15	_	15	,	_	5	11	6.5	斯密特
'15	三3输入与门		15	15	!	15				OC
'18	双4输入与非门	<u> </u>		25						斯密特
'19	│ 六反相器 │ 377.4 (全) 目 # 3 1	١,,		16			ا	١		斯密特
'20 '21	双4输入与非门	10	3	9.5	3.3	4	3.5	11	4.5	
'22	双 4 输入与门 双 4 输入与非门	22	_	12	4.3	8.5		11		000
,23	双4個八与非日 可扩展双4输入或非门	11	5	16		17				OC 带选通
'24	四2输入与非门	111		19						斯密特
'25	双4输入或非门	11		19		1			-	一州五代 一带选通
'27	三3 输入或非门	8.5		10	3.5	6		9		THE LEWIS CO.
'30	三回動八象年7月 8 輸入与非门	10	3	17	3.5	7		12		į
'32	四 2 輸入或门	12	4	12	4.5	5.5	4.1	8	5.3	
'34	六跟随器	 	<u> </u>		3.3	8		22		
'35	六殿随器					2.5		24		OC,OD
'36	四2输入或非门							8		
'50	双2-2输入与或非门	11							1	可扩展
' 51	双2-2输入与或非门	11	3.5							1.2 //-
'51	3-3;2-2输入与或非门		<u> </u>	13				12		<u> </u>
'53	2-2-2-2 输入与或非门	11					1			可扩展
'54	2-2-2-2輸入与或非门	11								
'54	2-3-3-2輸入与或非门			13						
'55	4-4 输入与或非门			13						可扩展
'58	2-2;3-3輸入与或门							13		
'60	双4输入扩展器									1
`64	4-2-3-2 輸入与或非门		3.5				3.9			
65	4-2-3-2 輸入 与或非门		5.5							oc
132	四2输入与非门	15	8	15	ļ		6.3	21		斯密特
133	13 输入与非门		3			8		30		
134	12 输入与非门		4.5							3S
'260	双 5 输入或非门		4							
'618	三4输入与非门			25			<u> </u>			斯密特

注 1; CMOS 门的静态功耗很小,大约十几个微瓦,数据略去。

注 2. 为了便于排版,部分数据采用四舍五人法以缩短长度。

表 1.7 逻辑门、扩展器、反相器外引线排列

	_		_					外 i	引丝	支編	号 (表中	黑体	字母	代表	输出。	 献)
型号		-											20	19	18	17	<u> </u>
-E 7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	备 注
'00'	.	18	1Y	2A	2B		GND		3A	3B	4Y	4A	4B	Vcc		••	$Y = \overline{AB}$
	1Y	18	18	2Y	2B 2A		CND		3B	3Y		4A 4B		Vec		ĺ	$OC, Y = \overline{AB}$
'02	1	1.4	1B	2Y			GND					4B		Vec			$Y = \overline{A + B}$
	1.4	1B	1Y				GND					4A		Vec		1	$OC, OD, Y = \overline{AB}$
'04	1A	1 Y	2A				GND						6A				$Y = \overline{A}$
'05		1Y	2A	2Y			GND				5A	6 Y	6A	Vec			$OC, OD, Y = \overline{A}$
'08	1.4	1B	1 Y	2A	2B		GND									i	Y = AB
'09		1B	1Y	2A	2B		GND							Vec			OC, OD, Y = AB
'10		1B	2A	2B	2C		GND					1Y		Vec			$Y = \overline{ABC}$
'11		1B	2A	2B			GND					1Y		Vec			Y = ABC
112			_	-	_												
	i	iB	2A	2B			GND			3B	3C			Vec			$OC, Y = \overline{ABC}$
'13	1A	18	NC	10			GND				NC	2C		Vec			斯密特, Y = ABCD
'14 '15	1A	1Y 1B	2A				GND GND						6A IC				斯密特,Y=Ā
'18	l	1B	2A NC	1C			GND		2A		3C NC			Vec			OC, Y = ABC 斯密特, Y = ABCD
'19		1Y	2A	2Y			GND					6Y		Vcc			斯密特,Y=A
'20	1A	18	NC.				GND			2B	NC	2C		Vec			$Y = \overline{ABCD}$
'21	1A	1B	NC	10			GND			2B	NC	2C		Vec			Y = ABCD
'22	1A	18	NC				GND				NC		2D				$OC, Y = AB\overline{CD}$
_														Ü			$\mathbf{Y} = \overline{\mathrm{EN}(\mathrm{A} + \mathrm{B} + \mathrm{C} + \mathrm{D}) + \mathrm{X}},$
'23	1 X	I A	IB	LEN	IC	ıυ	1 Y	GND	ZY	2A	28	2EN	2C	2D	ĺΧ	Vec	X、X 与 7460 相连
'24	1A	1B	1 Y	2A	2B	2Y	GND	3 Y	3A	3B	4Y	4 A	4B	$V_{\mathbf{c}\mathbf{c}}$			斯密特,Y=AB
'25	1 A	1B	IEN	1 C	1D	14	GND	2Y	2A	2B	2EN	2C	2D	\mathbf{Vec}			斯密特,Y= EN(A+B+C+D)
'27	1A	1B	2A	2B	2C	2Y	GND	3 Y	3A	3B	3C	1Y	10	\mathbf{v}_{ee}			$Y = \overline{A + B + C}$
'30	A	В	C	D	E	F	GND	Y	NC	NC	\mathbf{G}	Н	NC	Vec			$Y = \overline{ABCDEFGH}$
'32	IA	18	1Y	2A	28		GND			•		4A		Vec			Y = A + B
'34	1A	1Y	2A	2Y	3A		GND		4A	5Y	5A	6Y		Vec			Y = A
'35		1Y					GND						6A			ļ	OC, OD, Y = A
'36	1A	1B	1Y		2B		GND			3B	4Y	4A		Vec			Y = A + B
'50	14	2A	2B	20			GND			ID	1X	1X		Vec			$X \setminus X = AB + CD + X$
<u>'51</u>	1A	2A	2B	2C	ZD	4 Y	GND	IX	Ю	. 10	NG	NC	118	Vec			51,S51,Y = AB + CD
'51	lA	2A	2B	2C	2D	2Y	GND	1 Y	10	1 E	1 F	IB	10	Vec			LS51, $1Y = \overline{ABC + DEF}$,
																ļ	$2\mathbf{Y} = \mathbf{A}\mathbf{B} + \mathbf{C}\mathbf{D}$
'53	A	С	D	E	F	NC	CND	Y	G	Н	Х	$\overline{\mathbf{X}}$	В	Vec			$Y = \overline{AB + CD + EF + GH + X}$
1		_	_		_								_			ļ	X接'60
'54	A	С	D	E	F		GND		G	H		NC		Vec			$54.Y = \overline{AB + CD + EF + GH}$
'54	A	В	C	D	E		GND		F	G	H	1	J •-	Vec			[S54, Y = AB + CDE + FGH + IJ]
<u>'55</u> '58	A 1 A	B	C	D 2C			GND			E	F	- <u>G</u>	<u>H</u>	Vec			LS55, Y = ABCD + EFGH
	l	2A	28	2C	2D		CND			1E	1F	1B		Vec			$1Y = ABC + DEF, 2Y = AB + CD$ $Y = ABCD = \begin{cases} 1 & \text{if } 202 \text{ AS 64} \text{ M} & \text{with } 102 \text{ M} \end{cases}$
'60 '64	l	1B E	IC	2A G	2B		GND		2X			1 X		Vec		!	X = ABCD, 与'23 等的 X、X 相连
'65	ı	E	F F	G	H		GND GND		J	K K	B B	C C		Vcc Vcc			$Y = \overline{ABCD} + \overline{EF} + \overline{GHI} + \overline{JK}$ $OC V = \overline{ABCD} + \overline{EF} + \overline{GHI} + \overline{JK}$
, 135	l	E IB	r 1Y	2A	H 2B		GND		J 3 A	3B	4Y			Vec		ļ	OC,Y = ABCD + EF + GHI + JK 斯密特,Y = AB
133		В	C	Đ	E	<u> </u>		GND		Н	[J	K K	L	M	Vec	Y = ABCDEFGHUKLM
'134		В	С	D	E	F		GND		Н	I	J	K			Vec	
1	'1	-	V	-		•	•		•		-	,	**		E11		$\mathbf{Y} = \overrightarrow{\mathbf{ABCDEFGHIJKL}}$
'260	1A	1B	10	2A	1Y	2 Y	GND	2B	2C	2D	2E	ΙD	1E	Vec		!	$Y = \overline{A + B + C + D + E}$
	1													3D			
'618	1A	ΙB	NC	1C	1D	1Y	2A	2B	NC	GND	2Y	NC	20	2D	3Y	3A	斯密特,Y= ABCD

表 1.8 缓冲器、驱动器、总线收发器参数 (一)

		攰	退時	前,	t _{pd} (n	ıs)		输出电	流 I _{oH} / I	_{of.} (mA)		
型号	名 称	TTL.	s	ıs	ALS	HC	TTL	s	LS	ALS	HC	备注
'06	六反相缓冲/驱动器	12.5	,				30;40		, 		<u> </u>	0C,30V
'07	六同相缓冲/驱动器	13	ļ				30;40				1	OC,30V
		['	/ 		İ	16		} 	Ì		4	OD,5V
'16	六反相缓冲/驱动器	12.5	 		1	-	40;30	ļ 	<u> </u>	_		OC, 15V
'17	六同相缓冲/驱动器	13	l	-	Ī	i	40;50		<u> </u>			OC, 15V
'26	四2输入与非缓冲器	13.5	i	16	1	1	16	i	4		1	OC, 15V
, 28	四2輸入或非缓冲器	7		12	4		2.4/48	·	1.2/12;	1.0/12;	1	
		}			i j			<u></u>	1.2/24	2.6/24		
'33	四2输入或非缓冲器	11		19	14.5		48	, —— —— 	12;24	12;24		ос
'37	四2输入与非缓冲器	10.5	4	12	4	F3.5	1.2/48	3/60	1.2/12;	1/12;	F1/20	
		<u> </u>	_		<u> </u>			<u> </u>	1.2/24	2.6/24	l 	<u> </u>
'38	四2输入与非缓冲器	12.5	6.5	19	14.5	F5.5	48	60	12;24	12;24	F64	ос
'40	双4输入与非缓冲器	10.5	4	12	4	F3.5	1.2/48	3/60	1.2/12;	1/12;	13/64	
							·		1.2/24	2.6/24	•	
125	四总线缓冲器	10		8		11	2/16;	İ	1/12;		7.8/7.8	3S
		<u> </u>		<u> </u>	<u> </u>		5.2/16	 	2.6/24		1	同相
126	四总线缓冲器	10		8.5]1	同"125		同'125		同'125	38,同相
`128	四2输入或非线驱动器	7		ļ			29/48;		1			54:75Ω
		<u> </u>					43/48					74:50Ω
'134	12 输入与非门	{	4.5	1	-		i	2/20;	ļ		1	38
		_		<u> </u>	-		ı	6.5/20				
'140	双 4 输入与非线驱动器		4					40/60]			50Ω
'240	八反相缓冲器/线驱动器		5	10	5.5	12	13/48	12/48;	12/12;	12/12;	30/30	38
	/线接收器	F4.3		•		\S12/4	8 ; 15/64	15/64	15/24	15/24;	15/48	
'241	八同相缓冲器/线驱动器		S 5	10	7	12	F3/48	12/48;	12/12;	12/12;	30/30	38
	/线接收器	F5_	AS4				<u> </u>	15/64	15/24	15/24		
<u>'242</u>	四总线收发器	F4	AS3.5	11	6	11	AS, L	S, ALS, F	司'240	<u> </u>	35/35	38,反相
'243	四总线收发器	F4	AS4 . 5	12	8	11	AS, L	S, ALS, F	可'240		35/35	38
244	八缓冲器/线驱动器/线		S 6		7	12	S,	AS, LS, A	LS,F同'2	40	35/35	38
	接收器	_	AS4	•		<u> </u>					ļ	l <u> </u>
'245	八双向总线发送/接收器	F4.6	AS 6	8	6	11	F48	AS32;48	12;24	12;24; 48	35	38
'365	六总线驱动器	12	F4.8	9.5	7	13	2/32;	F3/48	1/12;	同	35/35	38,同相
			<u> </u>				5.2/32	<u> </u>	2.6/24	'240		公共控制
'366	六总线驱动器	11	F4.8	9.5	5.5	12		同 '365				3S,反相
1367	六总线驱动器	12	F4.8	9.5	7	20	<u> </u>	'365 ,₹	F			3S,同相
368	六总线驱动器	11	F4.8	9.5	5.5	16	F1/4	8,其它同	'365]	38,反相

注 1;有的器件 54/74 系列 I_{cd} / I_{cd} 不同,两组参数之间用分号隔开,如 12/48; 15/64, 54 系列在前,74 系列在后。

注 2:对于开路输出,一般只给出 I_{al} ,如 54/74 系列 I_{al} 不同,两组参数之间也用分号隔开,如 30;40。

注 3:有些部分 ALS 系列分 54/74/74 = 1 三种型号,所以用两个分号隔离三组参数。

注4:为了充分利用版面,在有的空白处插入了其它系列器件的参数,如在TIL栏目下插入了F和AS系列的参数。

注 5;有些参数太长,在本栏目下排不开,就把垂直分隔线断开,延伸到相邻栏目下,但要注明系列代号。

表 1.8 缓冲器、驱动器、总线收发器参数 (二)

接送時間 接送時間		30	_	袋似及新多数(二)	.				
*** ** **	型号	名 称	_	Т.	T				注
1426 四总线使冲器 10	'425	四总线缓冲器	+	172	ALS	HC		25 67 7	.16
四級被政发器							1		
15			10	22					
11.5 LS:12/12:15/24 35.向相、三方传送 13.5 LS:12/12:15/24 35.向相、三方传送 24.44 四急线收发器 9									
1443 四島後牧安器					ļ]		
1-444 四总线收发器 9 LS:12/12;15/24 35,6/同相、三方传送 1-448 四总线收发器 17.5 LS:12;12 35,6/同相、三方传送 1-620 八总线收发器 F:8.5 L2:10 8 F:3/48 LS:12/12;15/24 HC:6/6 AS:12/12;15/24:15/24:15/44:15/48 35.反相 1-621 八总线收发器 ALS:34.5;26.5 LS:12;24 ALS:12;24:48 AS:48/64 OC.同相 OC.反相 1-622 八总线收发器 ALS:32.5;27;27 IS:12;24 ALS:12;24:48 AS:48/64 OC.反相 OC.反相 1-623 八总线收发器 AS:4 7 5 8 LS.ALS,AS,F,HC同 '620 38.同相 1-640 八总线收发器 AS:20 16.5 15 AS.ALS 同 '620 38. OC 1-641 八总线收发器 AS:20 16.5 15 AS.ALS 同 '620 LS:12;22;448 OC 1-642 八总线收发器 AS:20 16.5 20 AS.ALS 同 '620 LS:12/12;15/24; OC 1-643 八总线收发器 AS:20 16.5 20 AS.ALS 同 '621 LS:12;24;48 OC 1-643 八总线收发器 AS:5 9.5 6 12 AS.ALS 同 '620 LS:12/12;15/24; OC 1-645 八总线收发器 A		 	-	! -	<u> </u>	<u> </u>	-	_	
17.5]		
1/2		İ	-						
AS; 12/48; 15/64 AIS; 12/12; 15/24; 15/48				· · -					□ 推,三方传送 □ □ □ □
15/48	620	八总线収发器 	F:8.5		12;10	8	}		
621 八島銭收发器				Ī				;15/24;	38,反相
1622 八息銭收发器	'621	八总线收发器	_	ALS	;34.5;	26.5		:48/64	 OC, 同相
'622 八总线收发器 F.8.5 ALS;14;12;12;12;12;12;12 LS;ALS;AS;F,HC同'620 3S,同相 '640 八总线收发器 AS;4 7 5 8 LS;ALS;AS;F,HC同'620 3S '641 八总线收发器 AS;20 16.5 15 AS,ALS 同'621 LS;12;24;48 OC '642 八总线收发器 AS;20 16.5 20 AS,ALS 同'620 LS;12/12;15/24; 3S '643 八总线收发器 AS;4 8.5 5 8 AS,ALS 同'620 LS;12/12;15/24; 3S '644 八总线收发器 AS;20 16.5 20 AS,ALS 同'620 LS;12/12;15/24; 3S '644 八总线收发器 AS;5 9.5 6 12 AS,ALS 同'620 LS;12/12;15/24; 3S '645 八总线收发器 AS;5 9.5 6 12 AS,ALS 同'621 LS;12;24;48 OC '1000 四2 输入与非缓冲器/ *** AS;5 9.5 6 12 AS,ALS 同'621 LS;12;24;48 OC '1002 四2 输入或非缓冲器/ *** AS;1 4 AS;40/40;48/48 ALS;1/12;2.6/24 ALS;1/12;2.6/24 OC '1003 四2 输入与继续冲部/ *** AS;40/40;48/48 ALS;1/12;2.6/24 OC	622	八总线收发器	 	ALS	32.5;2	7;27			
7-640 八总线收发器	623	八总线收发器	F:8.5	ALS: 1	4;12;12	HC:8			
'642 八总线收发器 AS:20 16.5 20 AS,ALS 同 '621 LS;12;24;48 OC '643 八总线收发器 AS:4 8.5 5 8 AS,ALS 同 '620 LS;12/12;15/24; as 35 '644 八总线收发器 AS:20 16.5 20 AS,ALS 同 '621 LS;12;24;48 OC '645 八总线收发器 AS:5 9.5 6 12 AS,ALS 同 '620 IS;12/12;15/24; as 35 '1000 四2 输入与非缓冲器/ 聚动器 AS:1.7 4 AS:40/40;48/48 ALS;1/12;2.6/24 35 '1002 四2 输入与非缓冲门 4 ALS:1/12;2.6/24 OC '1003 四2 输入与非缓冲门 ALS:40/40;48/48 ALS;12/12;15/24 QC '1004 大驱动器 ALS:1/12;2.6/24 QC '1005 六反相缓冲门 ALS:1/12;2.6/24 QC '1010 三3 输入与非缓冲门 ALS:1/12;2.6/24 ALS:1/12;2.6/24 '1010 三3 输入与非缓冲门 ALS:1/12;2.6/24 ALS:1/12;2.6/24 '1011 三3 输入与缓冲门 ALS:1/12;2.6/24 ALS:1/12;2.6/24 '1012 双4输入与缓冲门 AS:40/40;48/48 ALS:1/12;2.6/24 '1034 六驱动器 AS:40/40;48/48 ALS:1/12;15/24 同相	'640	八总线收发器	AS;4	7	5	8			
'642 八总线收发器 AS;20 16.5 20 AS,AIS 同 '621 IS;12;24;48 OC '643 八总线收发器 AS;4 8.5 5 8 AS,AIS 同 '620 IS;12/12;15/24; as 3S '644 八总线收发器 AS;20 16.5 20 AS,AIS 同 '621 IS;12;24;48 OC '645 八总线收发器 AS;5 9.5 6 12 AS,AIS 同 '620 IS;12/12;15/24; as 3S '1000 四2 输入与非缓冲器 AS;1.7 4 AS;40/40;48/48 AIS;1/12;2.6/24 AIS;1/12;2.6/24 '1002 四2 输入或非缓冲门 4 AIS;1/12;2.6/24 OC '1003 四2 输入与非缓冲门 AIS;40/40;48/48 AIS;12/12;15/24 QC '1004 六驱动器 AIS;1/12;2.6/24 QC '1008 四2 输入与缓冲器/ AIS;1/12;2.6/24 QC '1008 四2 输入与缓冲器/ AIS;1/12;2.6/24 QC '1010 三3 输入与缓冲器/ AIS;1/12;2.6/24 AIS;1/12;2.6/24 '1010 至3 输入与缓冲门 AIS;1/12;2.6/24 AIS;1/12;2.6/24 '1011 三3 输入与缓冲门 AIS;1/12;2.6/24 AIS;1/12;2.6/24 '1020 双4输入与缓冲门 AIS;1/12;2.6/24 AIS;1/12;2.6/	- '641	八总线收发器	AS:20	16.5	15		AS, ALS 同 '621 IS: 12; 24; 4	- 18	
'643 八总线收发器 AS:4 8.5 5 8 AS:AIS 同'620 LS:12/12;15/24; 15/24; 15/48 OC '644 八总线收发器 AS:20 16.5 20 AS:AIS 同'620 IS:12/12;15/24; 8 OC '645 八总线收发器 AS:5 9.5 6 12 15/48 AS:AIS 同'620 IS:12/12;15/24; 15/24; 15/48 3S '1000 四2 输入与非缓冲器/ RS:1.7 4 AS:40/40;48/48 AIS:1/12;2.6/24 AS:40/40;48/48 AIS:1/12;2.6/24 OC '1002 四2 输入与非缓冲门 4 AIS:1/12;2.6/24 OC OC '1004 六驱动器 AS:40/40;48/48 AIS:1/2/12;15/24 QC '1005 六反相缓冲门 AIS:1/12;2.6/24 OC '1008 四2 输入与缓冲器/ AS:40/40;48/48 AIS:1/12;2.6/24 OC '1010 三3 输入与非缓冲门 AIS:1/12;2.6/24 AIS:1/12;2.6/24 '1011 三3 输入与非缓冲门 AIS:1/12;2.6/24 AIS:1/12;2.6/24 '1010 双4输入与排缓冲门 AS:40/40;48/48 AIS:1/12;2.6/24 AIS:1/12;2.6/24 '1030 四2 输入或缓冲门 AS:40/40;48/48 AIS:1/12;2.6/24 AIS:1/12;2.6/24 '1034 六驱动器 AS:40/40;48/48 AIS:1/12;2.6/24 Infl '1035 六缓冲器 AIS:40/40;4	642	八总线收发器	AS:20	16.5	20			 	OC.
'645 人总线收发器 AS:5 9.5 6 12 AS:ALS 同'620 IS:12/12;15/24; 15/24; 15/48 3S '1000 四 2 輸入与非缓冲器/ 驱动器 AS:1.7 4 AS:40/40;48/48 ALS:1/12;2.6/24 OC '1002 四 2 输入与非缓冲门 4 AIS:1/12;2.6/24 OC '1004 六驱动器 AS:40/40;48/48 ALS:12/12;15/24 反码 '1005 六反相缓冲门 AIS:1/12;2.6/24 OC '1008 四 2 輸入与缓冲器/ 驱动器 AS:40/40;48/48 ALS:1/12;2.6/24 OC '1010 三 3 輸入与非缓冲门 ALS:1/12;2.6/24 ALS:1/12;2.6/24 '1011 三 3 輸入与非缓冲门 ALS:1/12;2.6/24 ALS:1/12;2.6/24 '1020 双 4 輸入与非缓冲门 AS:40/40;48/48 ALS:1/12;2.6/24 AS:40/40;48/48 ALS:1/12;2.6/24 '1034 六驱动器 AS:40/40;48/48 ALS:1/12;2.6/24 同相 '1035 六缓冲器 AS:40/40;48/48 ALS:5.5/12;5.5/24 '1036 四 2 輸入或非驱动器 AS:40/40;48/48 ALS:15.5/12;5.5/24	'643	八总线收发器	AS;4	8.5	5	8	AS, ALS 同 '620 LS; 12/12;		38
No. No.	'644	八总线收发器	AS: 20	16.5	20		AS, ALS 同 '621 LS; 12; 24; 4	18	oc
AS; 40/40; 48/48 ALS; 1/12; 2.6/24 1002 四 2 输入或非缓冲门	'645		AS;5	9.5	6	12		15/24;	38
1003 四 2 輸入与非緩沖门	'1000		AS:1.7		4		AS:40/40;48/48 ALS:1/12;2	2.6/24	
'1004	1002	四 2 输入或非缓冲门			4		AIS:1/12;2.6/24		
'1005	,1003	四 2 输入与非缓冲门			14.5		AIS: 12; 24		<u>ос</u>
1008 四 2 輸入与缓冲器	'1004	六躯动器]	AS:40/40;48/48 ALS:12/12;	15/24	
1008 驱动器 '1010 三3 输入与非缓冲门 '1011 三3 输入与缓冲门 '1020 双4输入与非缓冲门 '1032 四2输入或缓冲门 AS:40/40;48/48 ALS:1/12;2.6/24 '1034 六驱动器 AS:40/40;48/48 ALS:12/12;15/24 同相 '1035 六缓冲器 ALS:5.5/12;5.5/24 AS:40/40;48/48 '1036 四2输入或非驱动器	1005						ALS:1/12;2.6/24		ос
'1011 三 3 輸入与缓冲门 ALS:1/12;2.6/24 '1020 双 4 輸入与非缓冲门 ALS:1/12;2.6/24 '1032 四 2 输入或缓冲门 AS:40/40;48/48 ALS:1/12;2.6/24 '1034 六驱动器 AS:40/40;48/48 ALS:12/12;15/24 同相 '1035 六缓冲器 ALS:5.5/12;5.5/24 '1036 四 2 输入或非驱动器 AS:40/40;48/48	1008						AS:40/40;48/48 ALS:1/12;2	2.6/24	
'1020 双 4 输入与非缓冲门 AIS:1/12;2.6/24 '1032 四 2 输入或缓冲门 AS:40/40;48/48 AIS:1/12;2.6/24 '1034 六驱动器 AS:40/40;48/48 AIS:12/12;15/24 同相 '1035 六缓冲器 AIS:5.5/12;5.5/24 '1036 四 2 输入或非驱动器 AS:40/40;48/48	'1010	三3輪入与非缓冲门					ALS:1/12;2.6/24		
'1032 四 2 输入或缓冲门 AS:40/40;48/48 ALS:1/12;2.6/24 '1034 六驱动器 AS:40/40;48/48 ALS:12/12;15/24 同相 '1035 六缓冲器 ALS:5.5/12;5.5/24 '1036 四 2 输入或非驱动器 AS:40/40;48/48	1011	三3输入与缓冲门					ALS:1/12;2.6/24		.,
1034 六驱动器 AS:40/40;48/48 ALS:12/12;15/24 同相 1035 六缓冲器 ALS:5.5/12;5.5/24 1036 四 2 输入或非驱动器 AS:40/40;48/48	1020	双4输入与非缓冲门					ALS:1/12;2.6/24		,
1035 六缓冲器 ALS:5.5/12;5.5/24 1036 四 2 输入或非驱动器 AS:40/40;48/48	1032	四2输人或缓冲门					AS:40/40;48/48 ALS:1/12;	2.6/24	
*1036 四 2 输入或非驱动器 AS:40/40;48/48	1034	六驱动器					AS:40/40;48/48 ALS:12/12;	15/24	同相
110.4 of 14 Ab (15.4) 0.0	'1035	六缓冲器					ALS:5.5/12;5.5/24		**
1245 八总线收发器 ALS-8 ALS-12/8-15/16-15/24 38 同相	1036	四 2 输入或非驱动器					AS:40/40;48/48		
	1245	八总线收发器		ALS:8			ALS: 12/8; 15/16; 15/24		38,同相

续表 1.8 缓冲器、驱动器、总线收发器参数 (二)

THE TAKE		έz τλ.	Q.	E迟时间 t _{pd} (ns)	输出电流 I _{all} (mA)/ I _{al.} (mA)	备注		
型号		名 称	TTL	LS ALS H	C TIL AS LS ALS	备注		
1620	八总线!	收发器		ALS:7.5	ALS: 12/8; 15/16; 15/25	38		
'1621	八总线	收发器		ALS; 18	ALS; 8; 16; 25	ос		
1622	八总线	收发器		ALS:19	ALS; 8; 16; 25	OC		
'1623	八总线	<u></u> 收发器		ALS:8	ALS: 12/8; 15/16; 15/25	38		
1638	/39/40	八总线收发器		ALS:7/8/7	ALS; 12/8; 15/16; 15/24	3S,注 2		
'1641.	/42/44	八总线收发器	_	ALS: 18/19/23	ALS; 8; 16; 24	OC		
1645		八总线收发器		ALS:10	ALS; 12/8; 15/16; 15/24	38		

注1.有关注释见表1.8。

注 2; '1638/39/40 为 3S 输出, '1641/42/44 为 OC 输出, 它们的引脚相同, 仅在输入输出的相位上有所差别, 具体见表 1.9。

表 1.9 缓冲器、驱动器、总线收发器外引线排列

•				外引	线线	编 号	(黑)	体字	母代:	表输	出量)			
型 号									20	19	18	17	16	15	备注
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
106	1A	1 Y	2A	2Y	3A	3Y	GND	4Y	4A	5Y	5A	6Y	6A	Vcc	$OC,30V,Y=\overline{A}$
'07	1.4	1 Y	2A	2Y	3 A	3Y	GND	4Y	4A	5Y	5A	6Y	6A	Vec	$OC,30V;OD,4.4V_{\circ} Y = A$
'16	1 A	1Y	2A	2Y	3A	3Y	GND	4Y	4A	5Y	5A	6Y	6A	Vec	$OC, 15V, Y = \overline{A}$
117	1A	1Y	2A	2Y	3 A	3Y	GND	4Y	4A	5Y	5A	6Y	6A	Vcc	OC, 15V, Y = A
'26	1A	18	1Y	2A	2B	2Y	GND	3Y	3A	3В	4Y	4A	4B	Vcc	OC, 15V, Y = AB
'28	1Y	1A	1B	2Y	2A	2B	GND	3A	3B	3Y	4A	4B	4Y	Vec	$Y = \overline{A + B}$
'33	1 Y	1A	18	2Y	2A	2B	GND	3A	3B	3Y	4A	4B	4Y	Vcc	$OC, Y = \overline{A + B}$
'37	1A	1B	1Y	2A	2 B	2Y	GND	3Y	3A	3B	4Y	4A	4B	Vec	$Y = \overline{AB}$
'38	1A	1B	1Y	2A	2B	2Y	GND	3 Y	3A	3B	4Y	4A	4B	Vec	$OC, Y = \overline{AB}$
`40	1A	1 B	NC	1C	1 D	1Y	GND	2Y	2A	2B	NC	20	2D	Vec	$Y = \overline{ABCD}$
'125	1G	1A	14	<u>2G</u>	2A	2Y	GND	3 Y	3A	<u>3</u> €	4Y	4A	4G	Vec	3S,Y=A,G=L输出允许,G即EN
126	1G	1A	14	2G	2A	2Y	GND	3Y	3A	3G	4Y	4A	4G	Vcc	3S,Y=A,G=H输出允许
128	1Y	1A	1B	2Y	2A	2B	GND	3A	3B	3Y	4A	4B	4Y	Vcc	$Y = \overline{A + B}$
													Vec	Ğ	3S, Y = ABCDEFCHIJKL,
'134	A	В] c	D	E	F	G	GND	Y	Н	I	J	K	L	G=L输出允许
' 140	1A	18	NC	iC	1D	1Y	GND	2Y	2A	2B	NC	2C	2D	Vœ	$50\Omega, Y = \overline{ABCD}$
·									Vec	2G	1Yl	2A4	1Y2	2A3	G即 EN,使能端,
'240	1 <u>G</u>	1AI	2Y4	1A2	2 Y 3	1 A3	2 Y 2	1A4	2Y1	GND	2A1	1Y4	2A2	1 Y 3	3S,Y=Ā,G=L输出允许
	1				}			j	Vec	2G	1Y1	2A4	1 Y 2	2A3	3S,Y=A, IG =L,1Y输出允许,
'241	ĪĞ	1AI	2Y4	1A2	2 Y 3	1A3	2Y2	1A4	2YI	GND	2A1	1Y4	2A2	1 Y 3	2G = H,2Y 输出允许
'242	GAB	NC	A1	A2	A3	A4	GND	В4	В3	B2	Bl	NC	GBA	Vec	3S,[1,13] = LL,HH,HL,LH
'243		• · - -	引約	·	上,控	制功	能同	上,	243	为 A-	►B;I	→A			对应 Ā→B; B→A; 隔离; 隔离
'244			引約	浅同,	240										3S,G=H高阻
					j				Vee	G	B1	B2	В3	B4	3S,[19,1] = LL,LH,Hx
'245	DIR	Al	A2	A3	A4	A5	A6	A7	A8	GND	B8	B7	B6	B 5	对应 B→A; A→B;隔离
													Vec	G2	3S,[19,1] = LL, Y = A,
'365	G1	1A	1 Y	2A	2Y	3A	3Y	GND	4Y	4A	5Y	5A	6Y	6A	其它高阻

续表 1.9 缓冲器、驱动器、总线收发器外引线排列

				15: 10	线系	ė 9.	(Met :	//r \ (★ 🕏 -	44.F	丰岭	中華	\		· •/-		
			<u> </u>	ייני 	5% 5	## 5	(P# - J								يد ب <u>ي</u>
型 号			: 						20	19	18	17	16	15		备 注
	I	2	3	4_	5	6	7	8	9	10	11	12	13	14		
'366	引维	炎同 .	Ŀ										,		35,	控制功能同上,只 Y=Ā
													Vce	$\overline{2G}$	38,	两组控制,G=L,Y=A,
'367	īG	1A1	1Y 1	1A2	1Y2	1A3	1 Y 3	GND	1Y4	1A4	2 Y 1	2At	2 Y 2	2A2	其它	高阻
'368	引約	线同	<u>L</u>												3S,	控制功能同上,只 Y = A
'425	1G	1A	1 Y	<u>2G</u>	2A	2¥	GND	3Y	3A	3G	4Y	4A	4G	Vee	38,	 Y = A, G = L 输出允许
'426	1G	1A	1Y	2G	2A	2Y	GND	3Y	3A	3G	4Y	4A	4G	Vec	35,	Y = A, G = H 输出允许
	-			† <u> </u>		-			Vce	Gc	G _B	\overline{G}_{Λ}	Al	A2		
1440	$\overline{\mathbf{c}}$	B 1	C1	C2	B2	B3	C3	C4	B4	GND	50	SI	A4	A3	οс,	同相
'441		S0	Si	GĀ	GB	<u>GC</u>	٠, ,	L 140/4	42	•	41/4	43	٠,	144/4 <u>/</u>	48	OC, 反相
'442		L	L	×	L	L	A→	·B, A	→ C	Ā	·B,Ā	→c	Ā	·B, Ā-	→ C	38, 同相
'443	ļ	L	Н	L	×	L	В→	·C,B	→A	Б⊣	·C, B	→A	В→	•C, B -	+A	3S,反柑
'444	功	H	L	L	L	×	C→	A,C	→B	C→	·A, \overline{C}	→B	C→	·A,C	- -B	3S,反/同
'448	能	L	L	×	L	Н		A⊶F	}		Ā → l	3		Ā→B	;	00.反/同
		L	Н	Н	×	L		B(<u>B</u> →0			B→C	- 1	'440~'448 控制功能相同,外 引线相同,片选CS=H 输出高
	表	H	L	L	Н	x		C→A A⊸a			C→/ Ā→(C →A	- 1	
		L L	L H	× L	H	Ł H		A→(B→/			A→(B→/			A→C B→A		阻,CS=L为工作状态
		Н	L	H	× L	л		o⊸. C→I			<u>C</u> →1			B→A C→B		
-		r. **	Γ"	T.,		Ĥ	-			GBA	•		_	B4		. 1] = II.; HH; HL; LH 对应
, 620	GAB	Al	A2	A3	A4	A5	A6	A7	1	GNE	1		B6	B5		A;Ā→B;隔离;Ē→A,Ā→B
'621						į	引线	闻_	Ŀ						OC,	同上只原码传送
'622	ļ					Ē	引线	间.	<u></u>						oc,	同'620
623						Ī	引线	同一	Ŀ						35,	同 '621
						_			Vee	G	BI	B2	В3	B4	3S,	[19,1] = I.L.; LH; H×
'6 4 0	DIR	Al	A2	A3	A4	A5	A6	A7	A8	GNI	B8	В7	В6	B5	分别	削对应 B→A; A→B;隔离
'641	뷝	线师	引上	, в-	-A; A	→ B;	隔离			· · · ·		-	'		OC.	
'642	引	线师	引上	, В⊸	-Ā; A	→Ē;	隔离								OC.	.控制功能问上
'643	뤼	线吊	引上	, B→	-A; A	→B;	隔离								3S,	控制功能同上
'644	引	线师	₹上	, B→	-A; A	→Ē;	隔离								OC.	,控制功能同上
'645	引	线师	引上	, В⊸	-A;A	- - B;	隔离								35,	控制功能同上
'1000	1A	1B	1Y	2A	2B	2Y	GNE	3Y	3A	3В	4Y	4A	4B	Vec	Y =	ĀB
1002	1Y	1A	1B	2Y	2A	2B	GNE	3A	3B	3Y	4A	4B	4Y	Vec	Y=	$\overline{A + B}$
1003	1A	1B	1¥	2A	2B	2Y	GND	3Y	3A	3B	4Y	4A	4B	Vec	oc	$\mathbf{Y} = \overline{\mathbf{A}\mathbf{B}}$
1004	1A		1	2Y	3A	1	GNE	1		1	5A	1	6A	Vec	1	
1005	1A		1	2Y		1	GNE	1		1	5A	1			i	$\mathbf{Y} = \overline{\mathbf{A}}$
'1008	1A		1Y			1	GNE	1		3B		1	1	Vec	1	
'1010	1A		2A			1	GNE	!	1	1	3C			1	_	ABC
'1011 '1000	1A		2A		1	1	GNU	1		1	1	1Y		Vcc		ABC
1020	1A	1B	NC	1C	IĐ	1Y	GNE	2¥	2A	2B	NC	2C	2D	Vec	Y =	ABCD

续表 1.9 缓冲器、驱动器、总线收发器外引线排列

			3	外引	线线	編号	(黑)	体字	母代	表输	出量)			
型号									20	19	18	17	16	15	备注
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1032	1A	1B	1Y	2A	2B	2Y	GND	3 Y	3A	3B	4Y	4A.	4B	Vec	Y = A + B
'1034	1A	1Y	2A	2Y	3A	3Y	GND	4Y	4A	5Y	5A	6 Y	6A	Vcc	Y = A
1035	1A :	1Y	2Λ	2Y	3A	3Y	GND	4Y	4A	5Y	5A	6Y	6A	Vcc	OC, Y = A
' 1036	1A	18	1 Y	2A	2В	2Y	GND	3Y	3A	3B	4Y	4A	4B	Vec	Y = A + B
									Vec	G	B1	B2	В3	B4	$3S,[19,1] = LL; LH; H \times$
' 1245	DIR	A1	A2	A3	A4	A5	A6	A7	A8	GND	B8	B7	B 6	B5	分别对应 B→A;A→B;隔离
									Vec	GBA	BI	B2	В3	B4	3S,[19,1] = LL; HH; HL; LH
' 1620	GAR	AI	A2	A3	A4	A5	A6	A 7	A8	CND	B8	B7	В6	B5	分别对应 B→A; A→B;隔离;
															BĀ, A>
'1621			引	线师	1 上,	B→	A; A	- - B;		OC,控制功能同上					
1622			引	线师	1上,	B→	Ā; A	→Ē;	隔离	; B→	Ā, A	→B			OC,控制功能同上
1623			引	线师	1上,	Β→	A; A	→ B;	隔离	; B→	A; A	→B			3S,控制功能同上
									Vec	G	B1	B2	B3	B4	B通道 3S, A 为 OC; [19,1] =
1638	DIR	A1	A2	A3	A4	A5	A6	A7	A8	GND	В8	B7	B6	B5	LL;LH;H×分别对应
' 1639				4	【线	司	. ,B	→A;	A→i	3;隔	<u></u>				B→A; A→B;隔离
									Vcc	G	B1	B2	B3	B4	3S, $[19,1] = LL; LH; H \times$
'1640	DIR	A1	A2	A3	A4	A5	A6	A7	A8	GND	B8	B7	B6	B5	分别对应 B→A; A→B;隔离
'1641	!				引	线师	1上,	В→	A; A	→ B					OC,控制功能同上
1642	İ				引	线师	1上,	B→	Ā; A	→ B					OC,控制功能同上
1643					퀽	线师	1上,	В→	A ; A	→B					3S,控制功能同上
' 1644					引	线师	i上,	В→	Ā; A	→B					00,控制功能同上
1645					引	线师	1上,	В	A; A	→B					3S,控制功能同上

注 1:DIR 为数据传输方向控制, G和 EN 为使能端, CS 为片选端。具有这些功能的芯片,一般为 3S 输出。

注 2;为了说明多个控制端的作用,用[19,1] = LL; LH; H×来表示一定的功能,方括号中的数字是引脚的编号, 其具体名称可查表。

表 1.10 显示译码器参数

#AI T.	名 称	输出电流	I _{oL} (mA)	静态功耗	P_d (mW)	备注
型号	名 称	TTL	LS	TTL	LS	备 注
'46	4线-7段译码驱动器			320		0C,30V,输出低有效
`47	4线-7段泽码驱动器			320	35	OC,15V,输出低有效
'48	4线-7段泽码驱动器	6.4	2;6	205	125	OC,5.5V,输出高有效
'49	4线-7段译码驱动器	10	4;8	165	40	OC,5.5V,输出高有效
'141	BCD十进制译码驱动器	7		80		OC,60V,输出低有效
142	计数/锁存/译码驱动器	7		340		OC,55V,输出低有效
'143	计数/锁存/译码驱动器	15				OC,7V,输出低有效
'144	计数/锁存/译码驱动器	20;25				OC,15V,输出低有效
'145	BCD 十进制译码驱动器	80	12;80	215	35	OC,15V,输出低有效
'246	4线-7段译码驱动器	40		320		OC,30V,输出低有效
'247	4线-7段译码驱动器	40	12;24	320	35	OC,15V,输出低有效
'248	4线-7段译码驱动器	6.4	2;6	265	125	OC,5.5V,输出高有效
'249	4线 - 7段译码驱动器	10	4;8	265	40	OC,5.5V,输出高有效
'347	4线-7段译码驱动器		12;24		35	OC,7V,输出低有效
'445	BCD 十进制译码驱动器		80		35	OC,7V,输出低有效
447	BCD 十进制译码驱动器		1.6;3.2		35	OC,7V,输出低有效

注:表中用分号隔开的电流,分号前的为54系列值,后面的为74系列值。

表 1.11 显示译码器外引线排列

							(黑体	今点	4.41	±0-iti	`						
型号	1	2	3	4	5	6	. 7	- 8 - 1. 立	11,700 9		, 11	12	13	14	15	16	备 注
'46	В	c	ĪĪ	*	RBI		<u> </u>	GND	-	ā	-c	-īz	ā	Ē		Vec	OC, 输出低有效,配共阳极 LED 数码管, DCBA 为输入。 * 4 脚为BI/RBO, BI = L 灭 灯; LT = L 试灯,显示 8; RBI = L和[DCBA] = 0000 为灭灯,且 RBO = L, 从[DCBA] = 0000 ~ III1 的字形变化为:
'47	同。	上															•;i⊢i⊢i Li⊏└
'48	同」	上 ,只	輸出	高电	1平有	效,	配共	朔极	LED	数码	管						
'49	В	C	Bl	D	A	e	GND	d	e	b	а	g	ſ	Vec			OC,输出高电平有效
141	D8	D9	A	D	Vec	В	C	D2	D3	D7	D6	GND	D4	D5	DI	DO	OC,输出低有效
142	R _D	D7	D6	D5	D4	D3	D2	GND	DI	DO	D8	D9	$\overline{\text{ST}}$	$\overline{Q_{D}}$	CP	Vec	OC,输出低有效,ST=L选通
143									Vec	PCEI	MAX	ST	$\mathbf{Q}_{\mathbf{D}}$	Qc	Q _B	Q_{A}	'143 和'144 引线相同
'144	SCEI	СР	$\overline{\mathbf{R}}_{\mathbf{b}}$	RBI	BI	*	DP	dр	d	f	e	GND	g	C	a	Ь	* 6 脚 为 BL/RBO, PCEI 和 SCEI 分别为并串时钟控制
' 145	DO	ĐI	1)2	D3	D4	D5	D6	GND	D7	D8	D9	D	С	В	A	Vce	OC,输出低有效
'246	同,	46															
*247	同'	47															
'248	同,	48															
'249	外引	线	ज '47	,功	能同'	48											
'347	同'	247														;	
'445	同,	145															
'447	闻,	47					_										

注:RD为直接清零端。

表 1.12 译码器/多路分配器、编码器参数

型号	名 称		最力	、延迟	制作	t_{pd}	(ns)		Arr iii
型写	4 教	TTL	s	LS	ALS	F	HC	AÇ	备 注
'42	4线-10线译码器	17		17			7		BCD 码输人
'43	4线-10线译码器	17							余三码输入
'44	4线-10线译码器	17							余三格雷码输入
131	3线-8线译码器/分配器				10		23		輸出低有效
'137	3线-8线译码器/分配器	-		17.5	11		14		输出低有效
'138	3线-8线译码器/分配器	i	8	22	9	5.8	15	6.5	输出低有效
'139	双 2 线 - 4 线译码器	i	7.5	22	10	5.3	12	6.5	输出低有效
147	10线-4线优先编码器	10		15			21		输出入低有效
148	8线-3线优先编码器	12		15		7.5	19		输出人低有效
149	8线-8线优先编码器						15		输出人低有效
' 154	4线-16线译码器	23					32		輸出低有效
155	双 2 线 - 4 线译码器	21		18			19		輸出低有效
156	双 2 线 - 4 线译码器	23		33					OC,输出低有效
' 159	4线-16线译码器	24							0C,输出低有效

续表 1.12 译码器/多路分配器、编码器参数

型号	kr Hr	最大延迟时间 t _{pd} (ns)	, , , , , , , , , , , , , , , , , , ,
32.2	名 称	TIL S LS ALS F HC AC	→ 备注 -
'237	3线-8线译码器	20	地址锁存
238	3线-8线译码器	15	7.7.
'239	双 2 线 - 4 线译码器	ļ 14	
'348	8线-3线优先编码器	16	输入低有效
'537	4线-10线译码器	8.3	
'538	3线-8线译码器	22 9.3	
'539	双 2 线 - 4 线译码器	22 12	
'547	3线-8线译码器	8	输出低有效,应答
'548	3线-8线译码器	6.8	应答功能

表 1.13 译码器/多路分配器、编码器外引线排列

	т -																·· ·
					外:	引线	编	号(無	体字	母代	表籍	(出)					
型 号									24	23	22	21	20	19	18	17	备 注
	1	2	3	4	5	6	7	8	9.	10	11	12	13	14	15	16	
'42	Y 0	$\overline{Y1}$	Y 2	Y 3	Y 4	Y 5	<u>Y</u> 6	GND	Y 7	Y 8	Y 9	A 3	A2	A1	AO	Vec	BCD 码输人
'43	外	引线[司上	,余ː	码输	人,;	余三	码为	3→4	→ 5⊸	-6→	7→8-	≻ 9→	10-	11	12-3	3
'44	外	引线师	司上	,余=	格雷	码輪	认,:	余三	各雷	码为	2-6	~►7→	-5	4→12	2→13	→ 15	→14→10→2
'131	A	В	С	CP	EN2	ENI	Y 7	GND	<u>¥6</u>	Y 5	<u>¥</u> 4	Y 3	ŸŽ	V 1	Y 0	Vee	CP ↑
`137	A	В	С	\overline{GL}	EN2	EN1	Y 7	GND	<u>¥6</u>	Y 5	Y 4	Y 3	$\overline{Y}\overline{2}$	$\overline{\mathbf{Y}1}$	<u>¥0</u>	Vcc	GL = L对 A、B、C 有锁存作用
'138	A	В	С	EN3	EN2	ENI	Y 7	GND	Y 6	Y 5	¥ 4	Y 3	<u>¥2</u>	Ϋ́l	<u>Y0</u>	Vee	[4,5,6] = LLH 允许译码
'139	1EN	1A	1B	1 Y 0	<u>1Y1</u>	1 Y 2	1 Y 3	GND	2Y 3	2 Y2	2Y 1	2Y 0	2B	2A	2EN	Vec	EN=L允许译码
147	4	5	<u>-</u> 6	7	8	c	B	GND	Ā	9	ī	$\bar{2}$	3	Đ	NC	Vec	
148	4	<u>5</u>	5	7	ΕĪ	<u>A2</u>	$\overline{\mathbf{A1}}$	GND	$\overline{A0}$	ō	ī	$\overline{2}$	3	\overline{GS}	EO	Vec	EI、EO 为使能输入、输出,
																ŀ	CS 为片优先编码输出
						•							Vec	<u></u>	ŌĪ	<u>0</u> 2	<u>. </u>
' 149	<u>IO</u>	ĪĪ	<u>12</u>	<u>13</u>	<u>14</u>	15	<u>16</u>	<u>17</u>	ROE	GND	RÓP	07	06	0 5	04	03	
	_								Vce	A	 B	С	D		EN1		
154	ō	ī	<u>-</u>	<u>3</u>	4	5	-	7	<u> </u>	9	10	GND	11	12	13	1 4	
			_														电路分两组,C可作为第三个
'155	IC.	IEN	В	1¥3	1 Y 2	111	1 Y U	GND	2 Y 0	2Y1	2 Y 2	2¥3	A	2EN	2C	Vcc	输入变量,对第一组 C 为原变 量,对第二组 C 为反变量
156	外	引线向	1上	功能	间上												
'159	外。	引线区	司'15	54													
'237	A	В	C	\overline{GL}	EN2	EN	Y 7	GND	Y 6	¥5	Y 4	Y 3	Y 2	Y1	Y 0	Vee	
`238	A	В	C	EN3	EN2	EN1	Y 7	GND	Y 6	Y 5	Y 4	Y 3	Y 2	ΥI	YO	Vee	[4,5,6] = 以从允许译码
'239	1EN	1 A	1B	1 Y ()	1 Y 1	1 Y 2	1Y 3	GND	2Y 3	2Y2	2Y1	2Y 0	2B	2A	2EN	Vee	EN = L 允许译码
'348	外引	引线和	中功的	能同'	148,	只'3	48 为	/ 3S 和	創出								
													Vec	Y 3	Y 4	р	[5,15,14] = LLH 允许译码,
'537	Y2	Y 1	Y 0	AL	$\overline{\text{OE}}$	A	В	Y 5	Y 6	GND	Y 7	Y 8	Y9	EN2	ENI	С	AL=L、H输出分别高、低有效
																	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

续表 1.13 译码器/多路分配器、编码器外引线排列

					外 5	引线	编	号(黑	体字	4母代	表籍	(出)					
型导									24	23	22	21	20	19	18	17	备 注
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
		•							ĺ				Vee	Y 3	Y 4	С	[4,5,13,14,15,16] = LLHHLL
'538	Y 2	Yl	Y ()	OE1	OE2	A	В	Y 5	Y 6	GND	Y 7	AI,	G1	G2	$\overline{G3}$	G4	允许译码,AL功能同上
													Vec	1 Y 3	18	1A	[OE, G] = LL 允许译码,
'539	1 Y 2	1Y 1	1Y0	1AL	TOE	2A	2B	2Y 3	2Y2	CND	2Yl	2Y0	2AL	20E	$\overline{2}\overline{G}$	1G	AL 功能同上
													Vec	Y 3	Y 4	A2	[15,14,13,16] = LHHH 直通,
' 547	<u>¥2</u>	<u> </u>	ACE	w w	$\overline{\mathbf{R}_{\mathrm{D}}}$	$\overline{A0}$	$\overline{\mathbf{AI}}$	Y 5	<u>¥</u> 6	GND	Y 7	Y 0	E3	F.2	$\overline{E1}$	LE	其它存储,ПACK = WR, [15,14, 13] ≠ LHH 时 3 = H,
																	R _D = L 时 3 = L。应答功能基
	1				••								Vec	Y 3	¥ 4	A2	本同上,无锁存
'548	<u>¥2</u>	<u>¥1</u>	ACI	₹ WR	$\overline{\mathbf{R}_{D}}$	A 0	Al	Y 5	Y 6	GND	Y 7	<u>Y</u> 0	E4	E3	E2	Ei	

表 1.14 数据选择器、比较器参数

	47. II.			最大延	迟时间	_{lpd} (ns)	ı		备 注
型号	名 称	TIL	s	LS	ALS	F	HC	AC	」 第 (T
185	4位数值比较器	21	11.5	23.5		14	13		
150	16选1数据选择器	18		! 	i				反码输出
151	8选1数据选择器	22	9	27	6	6.4	20	7	原/反码输出
152	8选1数据选择器	18		17			19		反码输出
153	双 4 选 1 数据选择器	17	9.5	17	5	6.4	14	5.3	
157	双2选1数据选择器	14	6	14	6.5	4.5	18	5.5	
158	双 2 选 1 数据选择器		7	12	6.5	3.6	18	5.5	反码输出
'250	16选1数据选择器	A	S:7.5;	12					3S
'251	8选1数据选择器	21	8	21	6	5.3	15	8.2	38,原/反码输出
'253	双4选1数据选择器	İ		16	5	5.5	24	6.8	38
257	四2选1数据选择器		14	18	7.5	5.3	13	6	38
'258	四2选1数据选择器		14	19	7.5	5.3	13	5	3S,反相
'351	双 8 选 1 数据选择器	17						1	38
'352	双4选1数据选择器		1	19	6	4.6	12	6	友码输出
'353	双 4 选 1 数据选择器		1	13	6	3.9	11	5	3S,反码输出
'398	四2輸入多路转換器			20		7.3	İ	6.5	有存储互补输出
'3 99	四2输入多路转换器		[]	27		7.3		6.5	! 有存储
'518	8位恒等比较器	-			23	1			ос
'519	8 位恒等比较器				23				oc
'520	8 位恒等比较器				21			9.5	}
'521	8 位恒等比较器				21	7		9.5	
'522	8位恒等比较器				30	<u> </u>			oc

注:本表给出的最大延迟时间,是指几个输入端头所加信号到输出端的延迟时间中的最大者。

表 1.15 数据选择器、比较器外引线排列

	<u> </u>				bl. e	11 4B	4年 1	 号 (黑	3 / A- 4-	× 101.74	<u>^</u> _± fo	4 dr \					
mut id	<u> </u>				71. 3	7	->110	- \m						10			п и
型号		_	_			:	_	٠.		23	22	21	20	19	18	17	备 注
	1	2	3	4	5	6	7	8	9	10	11	12		14	15	16	
	Q3	P <q< td=""><td>$P = Q_i$</td><td>P> Q;</td><td>P > Q</td><td>P=Q</td><td>P < Q</td><td>GND</td><td>Q0</td><td>P0</td><td>Q1</td><td>P1_</td><td>P2</td><td>Q2</td><td>P3</td><td>Vee</td><td>3、4、5 脚为串联输入</td></q<>	$P = Q_i$	P> Q;	P > Q	P=Q	P < Q	GND	Q0	P0	Q1	P1_	P2	Q2	P3	Vee	3、4、5 脚为串联输入
					ļ				Vec	E8	E9	E10	E11	E12	E13	E14	A3、A2、A1、A0 为选择端,
'150	E7	E6	E5	E4	E3	E2	El		EN	W	A3	GND	A2	A1	A0	E15	输出低电平有效
<u>'151</u>	D3	D2	Dl	DO	Y	W	ΕÑ	GND	A2	AI	A0	D7	D6	D5	D4	Vce	Y、W 分别为原反码输出
'152	1)4	D3	D2	D1	D0	$\overline{\mathbf{w}}$	GNI	A2	Al	A0	D7	D6_	D5	Vcc			₩ 为反码输出
153	1EN	Al	103	1C2	1CI	100	1 Y	GND	2 Y	200	2C1	2C2	203	AO	2EN	Vcc	A1、AD 为公共选择控制端
157	A∕B̄	1 A	IВ	1 Y	2A	2B	2Y	GND	3 Y	3B	3A	4 Y	4B	4A	EN	Vce	A/B 为选择控制端, '157
158	A∕B	1 A	1B	1 Y	2A	2B	2Y	GND	3Y	3B	3A	4 Y	4B	4A	$\overline{\text{EN}}$	Vee	原码输出,'158 反码输出
								•	Vec	E8	E9	El0	EII	E12	E13	E14	A3、A2、A1、A0 为选择端,
'250	E7	E6	E5	E4	E3	E2	E 1	EO	ĒÑ	w	A3	GND	A2	Al	A0	E15	38,其它同'150
'251	D3	D2	Di	D0	Y	$\overline{\mathbf{w}}$	ĒN	GND	A2	AI	AO	D7	D6	1)5	D4	Vee	3S,其它同'151
'253	ĪĒN	Al	103	1C2	1C1	100	1Y	GND	2Y	2C0	2C1	2C2	2C3	AO	2EN	Vce	3S,其它同'153
'257	A∕B	1A	IB	17	2A	28	2Y	GND	3 Y	3B	3A	4Y	4B	4A	EN	Vcc	38,其它同'157
'258	A/B	1 A	1B	1 Y	2A	2B	2Y	CND	3Y	3B	3A	4Y	4B	4A	\overrightarrow{EN}	Vee	3S,其它同'158
	Ì							· · · · · ·					Vec	2Y	2D0	2D1	35,D3、D2、D1、D0 两组分开,
`351	1Y	EN	AO	AI	A2	1D0	1D1	1D2	1D3	GND	D7	D6	D5	Ð4	2D3	2D2	D7、D6、D5、D4 为两组共用
'352	1EN	Αl	1C3	1C2	1CI	100	1 Y	GND	2Y	200	2C1	202	2C3	AO	2EN	Vec	反 码输 出
'353	1EN	Al	103	102	101	100	1 Y	GND	2¥	200	2C1	202	2C3	A0	2EN	Vee	3S,反码输出
							_		_				Vec	QD	QD	DI	WS=L、H分别选择1和2通
'398	ws	QA	$\overline{\mathbf{Q}\mathbf{A}}$	A1	A2	B2	B1	Q₿	QВ	GND	СP	QC	QC	C1	C2	D2	道,CP↑有效
'399	w/s	QA	Al	A2	В2	BI	QB	GND	СÞ	QC	C1	C2	D2	DI	QD	Vce	CP ↑ 有效, WS 作用同'398
					[‴ i								Vec	P=Q	Q7	P 7	OC, $EN = L$, $P_{7 \sim 0} = Q_{7 \sim 0}$ Fr ,
'518	ĒN	P0	Q 0	Pl	Qı	P2	Q2	P3	Q3	GND	P4	Q4	P5	Q5	P6	Q6	输出 P=Q为 H
'519	同	.l <u>.</u>			! 												
													Vec	P = Q	Q7	P7	OC , $\overrightarrow{EN} = L$, $P_{7 \sim 0} = Q_{7-0} $
'520	ĒN	P0	Q0	Pl	Qi	P2	Q2	P3	Q3	GND	P4	Q4	P5	QS	P6	Q6	输出 P=Q为 L
'521		同	J:														图腾,其它同上
,522		同	<u></u> †.														OC,其它同上
									<u></u>					Щ,			

表 1.16 异或门、运算器参数

型号	59 Sh			延迟	.时间 _{t_{pr}}	(ns)			Ax 53-
至之	名 称	TTL	s	ıs	AIS	F	нс	AC	备 注
'80	门控全加器	52			:				快速进位
'82	2位二进制全加器	25							
'83	4位二进制全加器	16		15					
'86	四2输入异或门	14	7	10	6.5	4.1	12	4.5	
'97	六位二进制乘法器	32MHz	z						比例系数乘法器,CP↑
135	四异或/异或非门		8						
'136	四2输入异或门	27		18	32				ос
'180	9位奇偶产生/校验器	35					28		
181	4位算术逻辑单元	24	11	24	AS6	7	32		
'182	超前进位产生器	13	7		5	6.7			
, 183	双进位保留全加器		-	15					
1261	2×4 位并行乘法器			25					锁存器输出
'264	超前进位产生器	:	AS5						ļ
'265	四互补输出单元	:							
'266	四 2 输入异或非门	İ		18			10		OC,OD
'274	4×4并行位乘法器		50						3S
'275	7位位片华莱士树		50	35					3S
280	9位奇偶产生/校验器	13		31		9	26		
`283	4位二进制超前进位全加器	16	11	15		7	38		
`286	9位奇偶产生/校验器		AS8, 25						
'385	四串行加法/减法器			16		6.1			R _D
'386	四2输入异或门			10			10		
'557	8×8位乘法器					70			3S,带锁存
`558	8×8位乘法器					70			
'583	4位 BCD 加法器					12			
'810	四 2 输入异或非门				20;17			7	
'811	四 2 输入异或非门				45;42				oc

注1:某一型号下,数据格式为20;17,前者为54系列值,后者为74系列值。

注 2:某一型号下,有 AS5 字样表明此数据为 AS 系列值,5 为 5ns。

表 1.17 异或门、运算器外引线排列

						线:	编号	(<u>M</u>	体字:	母代	-	出量))				
型 号:					, ,,		-714 7		24	23	22	21	20	19	18	17	备 注
<u>.</u>	ı	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	EE 1).
'80	В*	Bc	Сп	C _{u+1}	Σ	Σ	GND	Al	A2	A *	Ac	Bl	B2	Vec			A1、A2、A* 为 A 路輸入, B1、 B2、B* 为 B 路輸入。 A = Ac+ A* + A1 · A2。 A1、A2 输 入时, A*必须开路或作线与; A*輸入时, A1 或 A2 必 须是 低电平。B 路与 A 路同
*82	ΣΙ	Al	Bì	Vec	(3)	NC	NC	NC	NC	C 2	GND	Σ2	B2	A2			A1、B1 低位, A2、B2 高位
`83	A4	Σ3	A3	B3	Vec	Σ2	B2	A2	Σ1	Al	B1	GND	∞	C4	Σ4	В4	
'86	1A	1 B	1 Y	2A	2B	2Y	GND	3 Y	3A	3B	4Y	4A	4B	$\mathbf{v}_{\mathbf{cc}}$:	
'97	B 1	В4	B5	B 0	z	Y	ENo	GND	СР	STBZ	ENI	*	R_D	B2	В3	Vee	* 为 UNITY/CAS, 即 单元/级 联输人。12 = L, Y = H, 禁止 Y 输出
' 135	1A	1B	1Y	*	2A	2B	2 Y	GND	3 Y	3A	3B	#	4Y	4A	4B	Vee	* 为 C1、C2, # 为 C3、C4。
																	当 C = H 时, 为异或非运算; C = L 时, 为异或运算
'136	1A	łВ	1Y	2A	2B	2Y	GND	3Y	3A	3B	4¥	44	4B	Vec			
'180	G	Н	EVEN	ODD	*	#	GND	A	В	C	D	<u></u> E	F	Vec			* 为 ΣEVEN, # 为 ΣODD,
																	EVEN 偶数, ODD 奇数
									Vce	ĀĪ	BI	ĀŽ	<u>B2</u>	Ā3	<u>B3</u>	G	
'181	BO	Ā0	S3 -	S2	St	S0	Сп	M	F 0	Fl	F 2	GND	F 3	A = B	P	Cu+4	
'182	ĞÌ	P 1	<u>0</u> 0	Ρō	G3	<u>₽3</u>	P	GND	C ₀₊ ,	, G	C _{n+} ,	,C _{n+x}	Cn	<u>G</u> 2	<u>F2</u>	$V_{\mathbf{c}c}$	(5 或 6)、(14 或 1)、15、(6 或 3)、2、15、6 为 L, 输出 G= L, 其 它 G= H。 4、2、15、6 均 为 L, P 为 L。13(H)、(4 或 3) 为 L。 C _{n*x} = H。13(H)、4、(2 或 3)、(2 或 1) 为 L,C _{n+y} = H。13(H)、4、2、(15 或 3)、2、(15 或 1)、(15 或 14) 为 L,C _{n+z} = H
'183	1A	NC	IB	1Cn	IC _n ,	ι 1Σ	GND	2Σ	NC:	2C _{n+}	ı2Cn	2B	2A	Vec			
'261	В3	B4	EN	M 2	Q 4	Q3	Q 2	GND	Ql	Q0	MO	M1	B 0	B1	B2	Vcc	输人为 B、M,输出为 Q
'264	Al	Bl	A0	во	A3	В3	×	GND	C2	#	Cı	co	CE	A2	B2	Vec	* 为 RCOB, # 为 RCOA。
	髙	有效:	进位证	计数额	恭 ; CI	E = H	I, B =	L,駅	CO =	= AO,	C1 =	A0A1	, C2	= A0A	A1A2	, RCC)A = A0A1A2A3, RCOB = H
	低石	有效:	进位计	计数据			., <u>A</u> = = <u>B</u> 0			= B O,	Ci =	BO B	1, 📆	= B0	Bı B	2, RC	OA = BO B1 B2 B3,
'265	1A	1 W	1 Y	2A	2В	2 W	2Y	GND	3Y	3 W	3A	3B	4Y	4W	4A	Vec	
	Ei	逻辑	1 W :	= 1A,	1Y=	īΑ,	4W =	4A,	4Y =	4A;2	:W =	2A2B	,2Y	= <u>2A2</u>	B,3	W = 3	$3A3B, 3Y = \overline{3A3B}$
'266	ĮΑ	1B	1Y	2Y	2A	2B	GND	3A	3B	3Y	4Y	4A	4B	Vec			
										Ve	e B2	jn + 3	B2ª	+2 B	2n+1	G2	注
'274	A2n	A2"	1 A2	n+2 A	2n+3	B2 ^{ti}	2 ⁿ 2	n+1 2	ın+2 ∱	2n+3	GND	2n+4	2 ⁿ⁺⁵	2n+6	2 ⁿ⁺	7 GI	
								um. ai	+0 /	უ∎+1	n	+ 1 2m+	· 2 G	Oπ	20	Voc	间上
'275	2"	2°	2 ⁿ	2"	C2*	C2"	2" G	יטוי בי		4				- 4		100	1677
^{'275}	2 ⁿ G	2° H	2ª NC	2" I			2" G GND			c	D	E	F			YCC	ΣΕ 偶输出, ΣΟ 奇输出

续表 1.17 异或门、运算器外引线排列

	·			4	外 引	线	编号	(黑	本字	母代	表输	里 出)								
型 号									24	23	22	21	20	19	18	17	1		备		注
	1_	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16					
'286	G	H	*	Ī	P.E	PI/0	GND	A	В	С	D	E	F	Vec			为	奇偶	误差	輸出	☆输出, <u>P.E</u> E,* 为 XMIT O 使能
			••								_		Vee	4Σ	4S/A	4B	S/2	Ā = L	/H 分	·别为	加法器/
'385	CP	ıΣ	18/Ā	1B	1A	2A	2B	28/Ā	2Σ	GND	R_D	3Σ	3S/Ā	3B	3A	4A	减	法器	_		
'386	1A	18	Į¥	2Y	2A	2B	GNE	3A	3B	3 Y	4Y	4A	4B	Vec							
	X _M	S 0	S!	\$ 2	S 3	S 4	S 5	S 6	\$ 7	S8	GND	S 9	\$10	SII	\$12	S 13	\$14	S 15	815	ŌĒ	注。XMY _M = JL,
'557	xo	Xl	X2	Х3	X4	X5	X6	X7	R	Vec	ΙĒ	Y0	Yi	Y2	Y3	Y4	Y5	Y6	Y7	Y_{M}	III, HL, HIII, 对应 X _i Y _i 为无符号,无
	X _M	S 0	Sı	S 2	S 3	S 4	S 5	S 6	S 7	S 8	GND	S 9	S 10	SI 1	S 12	\$ 13	S 14	S 15	\$15	OE	符号;无符号,二 补码;二补码,无
558	xo	X 1	X2	Х3	X 4	X5	X6	х7	Rs	Vec	\mathbf{R}_{μ}	Y 0	Yı	Y 2	Y3	Y4	Y5	Y6	Y 7	$\mathbf{Y}_{\mathbf{M}}$	符号: 补码 补码.
'583	B1	B2	В3	A3	C0	C _{n+}	S 2	GND	S 3	SI	S 0	В0	AO	AI	A2	Vec	•				
'810	Į IA	1B	1Y	2A	2B	2Y	GNE	3 Y	3A	3B	4 Y	4A	4B	Vec							
'811	1A	1B	1 Y	2A	2В	2Y	GNE	3 Y	3A	3B	4Y	4A	4B	Vec							

注:本型号有的符号太长,与表头栏目中引线的序号不能一一对齐,请读者查阅时,从左侧数清楚引脚的编号。

表 1.18 触发器、锁存器、单稳态触发器、压控振荡器参数

型号	名称		最	大时钟	频率 for	_{MAX} (M	Hz)		64 24
型づ	名称	TH.	5	LS	ALS	F	HC	AC	备 注
'70	与门输入 J-K 触发器	35							$\overline{CP \uparrow , \overline{R_D}, \overline{S_D}}$
'72	与门输人 J-K 触发器	20	-	_	•				主从,R _D ,S _D
'73	双 J - K 触发器	20		45			35		TIL、LS 主从,其它↓, R ₀
74	双D触发器	25	110	33	50	125	60	160	CP↑, RD, SD, AS: 125MHz
'75	4位双稳态锁存器	15n		11			12		注 3,注 4,C = H
'76	双 J-K触发器	20	_	45			50		'76 主从,其它↓, ₹, ₹, ₹, ₹, ₹, ₹, ₹, ₹, ₹, ₹, ₹, ₹, ₹,
'77	4位双稳态锁存器	15n		10			11		
'78	双 J – K 触发器			45					公共 CP ↑,公共R _D ,S _D
100	8位双稳态锁存器	15n							注 3, 注 4, C = H
107	双 J-K触发器	20		45			53		'107 主从,其它 CP↓, R _D
109	双 J-K触发器	33		33	50	125	60	175	$CP \uparrow , \overline{R_p}, \overline{S_p}, AS_1 i 25 MHz$
'110	与门输入 J - K 触发器	25							主从,冠 _D ,云 _D
'111	双 J-K 触发器	25							主从,R _D ,S _D
112	双 J – K触发器		125	45	40	100	60		$CP \downarrow , \overline{R}_{D}, \overline{S}_{D}, AS; 200MHz$
1113	双 J – K 触发器		125	45	40	100	60		CP ↓ ,S _D , AS:200MHz
'114	双 J-K 触发器		125	45	40	100	50		公共↓和R _D , S _D , AS: 200MHz
'116	双 4 位锁存器	iln							C = L, R _D , 注 3, 注 4
121	单稳态触发器	输出	脉冲范[TTL;	40ns ~ 2	.8s			斯密特
122	可重触发单稳态	} TTL,1	LS:45a-	- ∝					$\overline{R_D}$

续表 1.18 触发器、锁存器、单稳态触发器、压控振荡器参数

	54.4X 1.10	ACE ON RI			页率 f _{CP}					
型号	名 称	TII.	s	LS	ALS	F	HC	AC	备	注
'123	双可重触发单稳态	TIL, L	S:45n ~	· cc					R _D	
124	双压控振荡器		85	30					CP↑,公共R _t	,Q输出
171	四D触发器	ļ :		30					R _D = L 清除	
174	六D触发器	35	110	40	80	100	50	125	R _D = L清除	
175	四D触发器	35	110	40	80	140	60	160	CP↑,公共R	, 点补输出
'221	双单稳态触发器	TTL:2	On ~ 21:	s;28s。	LS:20n	~ 49s;7	'Os		互补输出	
'256	8位寻址锁存器			_		7n		,	CR = L,清除	
'259	8位寻址锁存器	12п		17		7.5	15		RD,注3	
'268	六 D 锁存器		7n						C = H	
'273	 八 D 触发器	40		40	50	100	60	175	\uparrow , $\overline{R}_{\rm p}$	
'276	四 J-K 触发器	50							↓ , RD	
`279	匹 R-S 锁存器	12n		12			13		R, S,注3	
'320	晶体控制振荡器			30						
'321	! 晶体控制振荡器	İ		30						·
`373	八 D 锁存器		7n	19	8	4.5	13	7	38,公共控制	, C = H
'374	八D触发器		100	50	50	140	70	155	38,公共控制	,CP↑
'375	□ 四 D 锁存器	İ		12n			11		C = H	
`376	四 J – K 触发器	20n							公共R _D ,公共	ŧ CP↑,注3
'377	八D触发器			40		100	64	175	公共允许,公	共 CP f
'378	六 D 触发器	ļ <u> </u>	-	40		100	64	100	公共允许,公	:共 CP↑
'379	四D触发器	İ		40		140	64	160	公共允许,公	·共 CP↑
'413	可重触发单稳态	LS:40)n ~ ∝						互补输出,R	- D
'423	双可重触发单稳态	LS:40	On ~ ∝	HC;1m	s				互补输出,R	D
'534	八D触发器	AS; 165	5		50	100	40	150	3S,反相输出	1, †
'564	八D触发器				50	100	40	150	3S,反相输出	1,↑
`573	八D锁存器	AS:4.	5n		11	7	23	6	3S,C=H,注	3,注4
1574	八D触发器	AS; 160	0		50	100	40	160	35, ↑	
' 575	八 D 触发器	AS: 160	0		50				3S,公共RD,	†
'576	人 D 触发器	AS; 160	D		50				3S,反相输出	1,↑
'577	人 D 触发器	AS: 160	0		50				3S,公共R _D ,	反相输出, *
'624	压控振荡器	1 :	20			互补输	坩	ĒN	范围输入	R外接无
'625	双压控振荡器			20		互补输	出	Æ	无	无
626	双压控振荡器			20	,	互补输	出	$\overline{\mathbf{E}\mathbf{N}}$	无	无
'627	双压控振荡器	İ		20		无		尤	无	无
'628	- 压控振荡器			20		互补输	出	EN	范围输入	R外接
'629	双压控振荡器			20		无		ΈN	范围输人	无

续表 1.18 触发器、锁存器、单稳态触发器、压控振荡器参数

	er the	最大	时钟频率 f _{CPMAX} (M	IH2)	备 注
型号	名 称 	TTL S	IS ALS F	HC AC	·
`873	双4位D锁存器	AS:8n	11		3S,C=H,公共R _D ,注 3,注 4
'874	双 4 位 D 触发器	AS: 125	50		35. ↑,公共R _D
'876	双4位 D 触发器	AS; 125	50		3S, ↑, 反相, S _D
'878	双4位 D触发器	AS: 100; 125	ALS:50		3S, ↑, 同相, R _b
'879	双 4 位 D 触发器	AS: 100; 125	ALS:50		3S, ↑,反相,R _D
'880	双4位D锁存器	AS;9.6n	ALS:11.5		38, ↑,反相,5,,注3

- 注1: Ro为直接清零端, So为直接置位端。
- 注 2: ↑代表器件在时钟的上升沿动作, ↓代表器件在时钟的下降沿动作。
- 注 3: 镇存器在最大时钟频率栏下的参数全部为延迟时间,单位 ns,但只在第一个参数后加 n。
- 注 4: 在锁存器中, 高电平锁存用 C= H表示, 反之用 C= L表示, 比为加于引脚上的实际逻辑电平。

表 1.19 触发器、锁存器、单稳态触发器、压控振荡器外引线排列

			奉	t 1 .1	9	雕る	之裔、	现代	行动、	半核	显态用	民友	番、た	支程 :	版汤	語列	15] 级排列
				,	外引	线	编号	(黑)	体字	母代	表输	出量)				
型 号				·					24	23	22	21	20	19	18	17	备 注
	1.	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
'70	NC	$\overline{R_{D}}$	J1	J 2	J	Q	GND	Q	К	K1	K2	СР	$\overrightarrow{S_{D}}$	Vec			CP↑,同步清零在 CP↓
'7 2	NC	$\overline{R_{\!\scriptscriptstyle D}}$	J1	J 2	J3	$\overline{\textbf{Q}}$	GND	Q	K1	K2	К3	CP	$\overline{S_{\!\scriptscriptstyle D}}$	Vec			CP †
'73	1CP	1 R ₀	1 K	Vec	2CP	$2\overline{R_D}$	2J	2 Q	2 Q	2K	GND	ΙQ	ı \overline{Q}	1j			CP↑
'74	$1 \overline{R_0}$	1D	1CP	$1\overline{S_D}$	1 Q	1 Q	GND	$2\overline{\mathbf{Q}}$	2Q	$2\overline{S_D}$	2CP	2D	2 Rp	Vec			CP ↑
'75	١Ō	1D	2D3	3C/40	CVcc	3D	4D	4Q	4Q	3 Q	$3\overline{\mathbf{Q}}$	GND	10/20	2Q	2 Q	1 Q	C = H
√76	1CP	ı S	ı R	1,]	Vec	2CP	$2\overline{S_D}$	2 R _D	2J	$2\overline{\mathbf{Q}}$	2Q	2K	GND	ıQ	1 Q	1K	LS,HC,CP↓;TTL,CP↑
`77	1D	2D	3C/4C	Vec	3D	4D	NC	4Q	3 Q	NC	GND	IC/2(2Q	IQ		,	C = H
'78	CP	$1\overline{S_0}$	1)	$v_{\mathbf{cc}}$	$\overline{R_{D}} \\$	$2\overline{S_D}$	2 K	2Q	2 Q	2J	GND	١Q	1 Q	1K			IS,CP↓;H,L,CP↑
				•					Vec	10	1D3	1 <u>D</u> 4	1Q4	1 Q 3	2 Q 3	2 Q 4	C = H
100	NC	1D1	1D2	1 Q 2	1 Q 1	NC	GND	2 Q 1	2 Q 2	202	2D1	2C	NC	NC	21)3	2D4	
' 107	1,	ιQ	iQ	1K	2Q	2Q	GND	2J	2CP	$2\overline{R_{D}}$	2K	1CP	1 Ro	Vee			LS,HC,CP↓;TTL,CP↑
'109	1 Ro	1J	$1\overline{K}$	1 CP	$1\overline{S_0}$	1Q	$1\overline{\boldsymbol{Q}}$	GND	2Q	2 Q	$2\overline{S_0}$	2CP	$2\overline{K}$	2J	2 R _D	Vec	CP ↑
'110	NC	$\overline{R_{\!\scriptscriptstyle D}}$	Jl	32	J 3	$\overline{\mathbf{Q}}$	GND	Q	K 1	К2	кз	СÞ	SD	Vec			CP ↑
'111	1K	$1\overline{S_D}$	$1\overline{R_D}$	1J	1CP	1Q	1 Q	GND	2Q	$2\overline{\mathbf{Q}}$	2CP	2J	$2\;\overline{R_0}$	$2\overline{S_0}$	2K	Vec	CP ↑
J*112	ICP	1K	13	$1\overline{S_D}$	1Q	ΙQ	$2\overline{\mathbf{Q}}$	GND	2Q	2 S _D	23	2K	2CP	2 Rp	$1 \overline{R_p}$	Vec	C₽↓
'113	ICP	1K	1]	$1\overline{S_D}$	1 Q	ΙQ	CND	$2\overline{\mathbf{Q}}$	2 Q	$2\overline{S_0}$	2J	2K	2CP	Vec			CP↓
114	$\overline{R_0}$	tΚ	IJ	$1\overline{\hat{S}_D}$	IQ	ιQ	GND	$2\overline{\overline{\mathbf{Q}}}$	2 Q	$2\overline{S_{D}}$	2Ј	2K	CP	Vec			CP↓
		-			'				Voc	2 Q 4	2D4	2 Q 3	2D3	2 Q 2	2D2	2Q1	
'116	ı Ro	īci	<u>1C2</u>	1D1	1 Q 1	1D2	1Q2	1D3	1Q3	1D4	1Q4	GNE	2 R _D	2C1	2C2	2D1	C = L
,151	Q	NC	Al	A2	В	Q	GND	NC	Ri	Ci	*	NC	NC	Vec			Ri 为外接定时电阻 Rext, Ci 为外接定时电阻 Cext, * 为 外接定时电容 Cext, * 为 Rext/Cext,即外接电阻电容的 公共端
122	A1	A2	BI	B 2	$\overline{R_D}$	Q	GND	Q	Ri	NC	Ci	NC	*	Vec			见'121

续表 1.19 触发器、锁存器、单稳态触发器、压控振荡器外引线排列

	. — i				 小 引	线:	编号	(黑)	体字	母代:	 表输	出量)				
型 号				-					24	23	22	21	20	19	18	17	备 注
i	¦ j 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
123	1A	1B	I Ro	١Q	2 Q	2Ci	*	GND	2A	2В	2 R ₀	2 Q	1 Q	1Ci	#	Vec	* 为 2Ri/Gi, # 为 1Ri/Ci
'124	2 F C	IRC	1RYG	ICXI	1CX2	ιīN	ıy	OSOGNI	GND	2¥	2 EN	2CX1	2CX2	2RNC	OSCVec	Vec	±
`17!	1Q	$2\overline{\mathbf{Q}}$	2 Q	2D	3D	3 Q	3 Q	GND	4 Q	4Q	4D	CP	$\overline{\mathbf{R}_{\mathtt{D}}}$	1D	1 Q	Vec	CP †
'174	$\overline{\mathbf{R}}_{\!\scriptscriptstyle D}$	ΙQ	1D	2D	2Q	3D	3 Q	GND	СР	4Q	4D	5Q	5D	6D	6Q	Vec	CP †
175	R	١Q	ıQ	1 D	2D	$2\overline{\mathbf{Q}}$	2 Q	GND	СP	3Q	$3\overline{\mathbf{Q}}$	3D	4D	4Q	4Q	Vec	CP †
'221	11	lB	l Rp	ŀQ	2Q	2Ci	2Ri/C	i CND	2A	28	2 R _D	2Q	1Q	ICi	I Ri∕C i	Vœ	
'256	A0	Al	iĐ	1 Q 0	1 Q 1	1 Q 2	1 Q 3	GNĐ	2 Q 0	2QI	2 Q 2	2 Q 3	2D	Ē	CR	Vce	[15, 14] = LH, LL, HH, HL 分 别对应复位, Q = D = H 译码, 存储, 按地址 A1A0 锁存
*259	SO	Sl	S2	Q 0	Q1	Q 2	Q 3	GND	Q4	Q 5	Q 6	Q 7	D	$\overline{\mathbf{G}}$	$\overline{R_{\!\scriptscriptstyle D}}$	Vcc	[13,14] = HL 与 S 配合锁存
'268	EN	ΙQ	1D	2D	2Q	3D	3Q	GNĐ	c	4Q	4D	5Q	5D	6 D	6Q	Vec	9=H 锁存,9=L保持
			•					•	ĺ		-		Vec	8Q	8D	7D	
'273	R _D	IQ	1Đ	2D	2 Q	3 Q	3D	4D	4Q	GND	CP	5Q	5D	6D	6 Q	7Q	
												·	Vcc	4J	4CP	4K !	
'276	$\overline{R_D}$	IJ	1CP	$1\overline{K}$	1Q	2Q	$2\overline{\textbf{K}}$	2CP	2J	GND	PRE	3J	3CP	$\overline{3K} \\$	3 Q	4Q	PRE 置数端
'279	ŧ₹	īsī	1S2	1Q	$2\overline{R}$	$2\bar{S}$	2 Q	GND	3 Q	зī̃R	351	3S2	4Q	4R	$4\overline{S}$	Vec	
`320	TANKI	TANK2	E GNDI	FFQ	HD	NC	f	GND2	$\overline{\mathbf{F}}^{\mathfrak{f}}$	F'	Vec.	F	NC	XTALI	XTAL2	Vœ	往
'321	TANKI TANKI	TANK2	2 CND1	PFQ	FFD	F/4	F	CND2	F'	F¹	Vœ'	Ť	F /2	XTAL	XTAI2	Vœ	注 ,
'373	问,	363															
	<u> </u>								j				Vcc	8Q	8D	7D	OC 输出控制,CP↑
'374	ōc̄	1Q	IJ	2D	2 Q	3 Q	3Đ	4D	4Q	GND	CP	5Q	5D	6D	6 Q	7 Q	·
'375	ID	ΙQ̈	IQ.	IC,20	2 Q	$2\overline{\mathbf{Q}}$	2D	GND	3D	$3\overline{\mathbf{Q}}$	3Q3	3C,4	C4 Q	$4\overline{\mathbf{Q}}$	4D	Vec	1C、2C 或 3C、4C 各为一组
'376	$\overline{R_D}$	IJ	1 <u>K</u>	1Q	2Q	$2\overline{K}$	2J	GND	CP	3 J	3K	3Q	4Q	4K	4J	Vec	
													Vec	8Q	8 D	7D	
`377	G	1Q	1D	2D	2 Q	3 Q	3D	4D	4Q	GND	CP	5 Q	5D	6D	6Q	7Q	
'378	G	ìQ	ID	2D	2Q	3Đ	3 Q	GND	CP	4Q	4D	5Q	5D	6D	6Q	Vec	
'379	G	ΙQ	JQ	ID	2D	$2\overline{\mathbf{Q}}$	2Q	GND	СР	3Q	3 Q	3D	4D	4Q	4Q	Vec	<u> </u>
'413	A1	A2	B1	B2	$\overline{R_0}$	$\overline{\mathbf{Q}}$	GNE	Q	Ri	NC	Ci	NÇ	Ri/C	i Vec			
'423	IA	1B	t R _D	IQ	2Q	2Ci	2Ri/C	GND	2A	28	$2\overline{R}_D$	2Q	!Q	1G	iRi∕G	Vec	
													Vec	8₹	8D	7D	3S。 OC 输出控制,OC = H电 路高阻,CP↑
'534	0C	1Q	10	2D	$2\overline{\mathbf{Q}}$	3Q	3D	4D	4Q	GND	CP	5Q	5D	6 D	6Q	7 Q	
															$2\overline{\mathbf{Q}}$	-	同上
564	oc	10	2D	3D	4D	5D	6Đ	7D	8D	GND	CP	8Q	7Q	6Q	5Q	4Q̄	<u>-</u>
													Vec	1 Q	2 Q	3 Q	OC = H,高阻
573	<u>oc</u>	ID	2D	3D	4D	5D	6D	7D	8D	GND	C	8Q	7 Q	6Q	5Q	4Q	
'574	外引	引线	同上	,仅1	1脚)	力CIF	· 		<u> </u>								同上

续表 1.19 触发器、锁存器、单稳态触发器、压控振荡器外引线排列

	外 引 线 编 号 (黑体字母代表输出量)	
型 号	24 23 22 21 20 19 18 17 备	注
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
	Vcc NC 1Q 2Q 3Q 4Q 5Q 6Q 同上	
'575	\overline{R}_D \overline{OC} 1D 2D 3D 4D 5D 6D 7D 8D NC GND NC CP 8Q 7Q	
	V∞ IQ 2Q 3Q 同上	
'576	$\overline{0C}$ 1D 2D 3D 4D 5D 6D 7D 8D GND CP 8 $\overline{\mathbf{Q}}$ 7 $\overline{\mathbf{Q}}$ 6 $\overline{\mathbf{Q}}$ 5 $\overline{\mathbf{Q}}$ 4 $\overline{\mathbf{Q}}$	
'577	外引线同'575,仅1Q~8Q改为1Q~8Q	
'624	OSCGND RNG CX1 CX2 EN Y GND Z Vcc NC NC NC FC OSCVcc	注(14)
625	GND 1Z 1Y 1CX1 1CX2 1FC 108CVec 108CGND 208CGND 208CVec 2FC 2CX2 2CX1 2Y 2Z Vec	注(16)
'626	GND 1Z 1Y 1 EN 1CX1 1CX2 OSCVcc OSCCND 1FC 2FC 2CX2 2CX1 2 EN 2Y 2Z Vcc	注(16)
'62 7	10SCVcc 1FC 1CX1 1CX2 10S0GND 1Y GND 2Y 20S0GND 2CX2 2CX1 2FC 20S0Vcc Vcc	注(14)
`628	OSCGND RNG CX1 CX2 EN Y GND Z Vcc NC RX RX FC OSCVcc	注(14)
'629	2FC 1FC 1RNG 1CX1 1CX2 1 EN 1Y OSCGND CND 2Y 2 EN 2CX1 2CX2 2RNG OSCVec Vec	注(16)
	$V_{\text{CC}} = 1C + \overline{\mathbf{Q1}} + \overline{\mathbf{Q2}} + \overline{\mathbf{Q3}} + \overline{\mathbf{Q4}} + 2\overline{\mathbf{Q1}} + 2\overline{\mathbf{Q2}}$	
`873	1 R _D 1 OC (D1 (D2 1D3 (D4 2D1 2D2 2D3 2D4 2 OC GND 2 R _D 2C 2 Q4 2 Q3 同相,3S	
'874	外引线同'873,3S,仅14 脚改为2CP,23 脚改为1CP	
	$Vec\ 1CP\ 1\ \overline{Q1}\ 1\ \overline{Q2}\ 1\ \overline{Q3}\ 1\ \overline{Q4}\ 2\ \overline{Q1}\ 2\ \overline{Q2}$	
'876	1 $\overline{S_0}$ 1 \overline{OC} LDL 1D2 LD3 1D4 2D1 2D2 2D3 2D4 2OC GND 2 $\overline{S_0}$ 2CP 2 $\overline{Q4}$ 2 $\overline{Q3}$ 反相,3S	
	Vec 1CP 1Q1 1Q2 1Q3 1Q4 2Q1 2Q2	
'878	t R ₀ t OC tD1 1D2 1D3 1D4 2D1 2D2 2D3 2D4 2 OC GND 2 R _D 2CP 2Q4 2Q3 同相,3S	
'879	外引线同'878,3S,仅 Q 为反相输出	
'880	外引线同'876,38,仅 14 脚改为 2C,23 脚改为 1C	

注:因为有的引出线符号过长,本型号的引出线符号与表头栏目中引出线的序号不能全部对齐,请读者查阅时 从左侧第一脚开始数清楚。括号中为引脚数。

表 1.20 计数器参数

型号	名 称		最	大时钟	频率 fa	_{MAX} (MI	Hz)		备注
33.7	11 197	TTL	S	LS	ALS	F	HC	AC	# 4
'56	1/50分频器			25	•				$R_D, CP_A \downarrow \div 5, CP_B \downarrow \div 10$
'57	1/60 分频器			25					$R_D, CP_A \downarrow \div 6, CP_B \downarrow \div 10$
'68	双 4 位十进制计数器			60					$\overline{R_D}$, $CP \downarrow \div 2$, $\div 5$, $\div 10$
'69	双 4 位二进制计数器			70					$\overline{R_D}$, $CP \neq \div 2$, $\div 8$, $\div 10$
'90	2-5分频计数器	32		32					$R_D, CP_A \downarrow \div 2, (P_B \downarrow \div 5)$
'92	2-6分频计数器	32		32					$R_D, (P_A \downarrow \div 2, (P_B \downarrow \div 6))$
'93	2-8分频计数器	32		32					$R_{\rm D}$, $CP_{\rm A} \neq 2$, $CP_{\rm B} \neq 8$
160	4位十进制同步计数器	32		32	40	120	44	118	异步清零R _D ,CP▲
' 161	. 4 位二进制同步计数器	32		32	40	120	44	118	异步清零R _D ,CP↑
'162	4位十进制同步计数器	25	40	25	40	100	44	811	同步清零 <mark>R</mark> D,CP↑
`163	4位二进制同步计数器	25	40	25	40	100	44	118	同步清零R _D ,CP↑
168	4位十进制可逆计数器	i	40	25	40	115		154	CP [▲]
' 169	4位二进制可逆计数器	i i	40	35	40	115		154	CP A

续表 1.20 计数器参数

- _	<u> </u>		最	大时钟	——— 频率 fα	_{MAX} (Ml	łz)		
型号	名 称	TIL		18	AJS	F	нс	AC	备 注
176	可预置 2-5 进制计数器	35							R _D , CP ↓
'177	可预置2-8进制计数器	35							
'190	4位十进制可逆计数器	20		20	35	100	48	120	CP↓
191	4位二进制可逆计数器	20		20	35	100	48	133	CP↓
' 192	4位十进制可逆计数器	20		25	40	125	60	120	R_D , $CP + CP - \uparrow$
' 193	4位二进制可逆计数器	20		25	40	125	60	120	R_D , $CP + CP - \uparrow$
196	可预置2-5进制计数器	50	100	30					$\overline{R_D}$, $CP_A \vee \div 2$, $CP_B \vee \div 5$
'197	可预置 2-8 进制计数器	50	100	30					\overline{R}_D , $CP_A \neq 2$, $CP_B \neq \pm 8$
269	8位可逆计数器	<u> </u>				100			CP †
290	2-5分頻计数器	32		32			••		R_0 , $CP_A \neq 2$, $CP_B \neq 5$
292	可编程分频/定时器			50			30		$\overline{R_0}$, CP \uparrow , 2 ³¹
293	2-8分頻计数器	32		32					$\frac{R_{D}, CP_{A} + \div 2, CP_{B} + \div 8}{R_{D}, CP \uparrow, 2^{15}}$
'294	可编程分频/定时器 双 2 - 5 分频计数器	25		50 35		_	$\frac{-30}{60}$		$R_0, CP_A \downarrow \div 2, CP_B \downarrow \div 5$
'390 '393	双2-3分列计数器	25		35			60		$R_D, CP_A \neq 2, CP_B \neq 3$
393 1490	双4位十进制计数器	25		35			36		R _D , CP ₩
· 560	<u> </u>	1 2,5			30				3S,同步R _D ,CP↑
'561	4位二进制同步计数器				40				3S,同步R ₀ ,CP↑
'568	4位于进制可逆计数器			_	30	115		117	3S,同步R _D ,CP↑
`569	4位二进制可逆计数器				40	115		117	3S,同步R _D ,CP↑
'579	8位二进制可逆计数器	i i				100			3S, R _D , CP↑
590	8位二进制计数器	!		20			40		3S, ↑,输出寄存,R _D
'591	8位二进制计数器	İ		20					OC, 个, 输出寄存, Rp
'592	8位二进制计数器			20			40		CP↑,输入寄存,元
<u>'593</u>	8位二进制计数器	· 		20			40		38, ↑,输入寄存, R _D
'668	4位十进制可逆计数器	! 		35					' CP↑
<u>'669</u>	4位二进制可逆计数器	<u> </u>		35					CP↑
'690	4 位十进制同步计数器			20					、3S, ↑, 异步清零, 输出寄存
'691	4位二进制同步计数器			20					│ 3S, ↑,异步清零,输出寄存 □
1692	4位十进制同步计数器			20					3S, ↑,同步清零,输出寄存
693	4位 进制同步计数器	<u> </u>		20		<u></u>	<u> </u>		35, ↑,同步清零,输出寄存
'696	4 位十进制可逆计数器			20					3S, ↑,异步清零,输出寄存
'697	4位二进制可逆计数器	İ		20					3S, ↑,异步清零,榆出寄存
`698	4位十进制可逆计数器	ĺ		20					3S, ↑,同步清零,输出寄存
<u>'699</u>	4位二进制可逆计数器			20					38, ↑,同步清零,输出寄存

注 1:备注中的符号 CP 本和 CP ↓ 分别代表计数器的动作边沿。

注 $2:\overline{R_0}$ 代表低电平清零, R_b 代表高电平清零。

表 1.21 计数器外引线排列

 -	ļ				外引	线线	编号		本字	母代:	 表输	量出)	-			
序号				<u>-</u>						23	22	21	20	19	18	17	备 注
	i	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
'56	СРв	Vec	QA	GND	CP _A	R _D	QB	QC							-	_	$CP_A \downarrow \div 5, CP_B \downarrow \div 10$
'57	CP _B	Vec	QA	GND	CP _A	$R_{\rm D}$	QB	QC									$CP_A \downarrow \div 6$, $CP_B \downarrow \div 10$
*68	1CP _A	1QB	1QD	1 R _D	2QC	NÇ	2 Q A	GND	2CP	2QB	2 R _D	2QD	1QC	1QA	1CP _U	Vec	$CP_A \div 2$, $CP_B \div 5$, $2CP \div 10$
'6 9	1CPA	1QB	1 QD	ı R	2QC	NC	2QA	GND	2CP	2QB	$2\overline{R}_{D}$	2 QD	1 Q C	1 QA	1CP _B	Vcc	$CP_A \div 2$, $CP_B \div 8$, $2CP \div 16$
'90	CP _B	R ₀₁	R ₀₂	NC	Vec	Rg	R92	QC	QB	GND	QD	QA	NC	CP _A	_		$CP_A \downarrow \div 2, CP_B \downarrow \div 5$
'92	CPB	NC	NC	NC	Vec	R ₀₁	R_{02}	Qo	Qc	GND	QB	QA	NC	CP _A			$CP_A \downarrow \div 2 \cdot CP_B \downarrow \div 6$
'93	CP _B	Rot	Roz	NC	Vec	NC	NC	QC	QB	GND	QD	QA	NC	CP _A			$CP_A \downarrow \div 2, CP_B \downarrow \div 8$
160	$\overline{\mathbf{R}_{\mathbf{D}}}$	CP	A	В	C	Ð	EP	GND	ΙĎ	ET	QD	QC	QB	QA	RCO	Vec	'160~'163 外引线相同,
'161	其	†'16	0,'1	61 昇	步清	零;	162	'163	同步	清零	; 16	0,'1	62 为	2-1	0进	制;'	161、163 为 2 – 16 进制。
162	[9,	7,10] = [××	, нн	H, HI	L, x J	H× L	分别	対应	頹置	数、i	十数、	保持	、保持	寺	
163																	
'168	U/D̄	CP	A	В	C	D	ĒP	GND	교	ET	QD	QC	QB	QA	RCO	Vcc	[9,2] = L ↑ 为预置,
l e en	least :																[7,10,2] = LL * 为计数,[
'169	同上															ļ	10,1]=H×H,×HH 为保持
176	LD	QC	C	A	QA	CP _B	GND	CP _A	QB	В	D	QD	$\overline{\mathbf{R}_{\mathrm{D}}}$	Vec			CP _B DIV5; CP _A DIV2。注 1
177	LD	QC	C	A	QA	CP _B	GND	CP _A	QB	В	. D	QD	$\overline{\mathbf{R}_{\mathbf{p}}}$	v_{cc}			CP _B DIV8; CP _A DIV2。注 i
'190	В	QB	QA	ĒN	D/Ū	QC	QD	GND	D	c	LD N	IAX/M	DNRCO	æ	A	Vec	注 2。当加计数到最大数,调
' 191	同」	Ė.														i	计数到 0000 时, MAX/MIN=
' 192	В	QB	QA	CP -	CP+	QC	QD	GND	D	c	Ū	$\overline{\infty}$	BO	R_{D}	A	Vee	CO进位输出,BO借位输出
' 193	同」	Ŀ															
196	LD	QC	С	A	QA	CPB	GNE	CP _A	QB	В	D	QD	R	Vec			CP _B DIV5; CP _A DIV2。注 1
197	, IID	QC	C	A	QA	CPB	GND	CP _A	QB	В	D	QĐ	$\overline{\mathbf{R}_{\mathbf{D}}}$	Vec			CP _B DIV8; CP _A DIV2。注 1
			_						ΙD	DO	Di	D2	D3	Vec	D4	D5	
'269	U/D	Q 0	Qi	Q 2	Q3	Q4	GND	Q 5	Q 6	Q 7	CP	EP	Ēľ	$\overline{\mathbf{Q}}_{\alpha}$	D7	D6	有关符号参阅'160 和'190
'290	Roj	NC	R ₉₂	QC	QB	NC	GNE	QD	QA	CP _A	CP _B	Roi	R ₀₂	Vec		_	功能同'90,仅引出线不同
'292	В	E	TP1	CP _A	\mathbb{CP}_{B}	TP2	Q	GND	NC	A	$\overline{R_D}$	NC	TP3	D	С	Vcc	Q 输出 fi/2 ⁿ
'293	NC	NC	NC	QC	QB	NC	GNE	QD	QA	CP _A	CP _B	R_{01}	R ₀₂	Vee			功能同'93,仅引出线不同
'294	В	A	TP	CP _A	CP _B	NC	Q	GND	NC	NC	$\overline{R_{\upsilon}}$	NC	NC	Ð	С	Vec	Q输出 fi/2"
'390	1CP _A	1R _D	1QA	1CP _B	1QB	1 Q C	IQD	GND	2QD	2QC	2QB	2CP _B	2QA	$2\overline{R_D}$	20P _A	Voc	注 2。相当两个 '90
'393	1CP	1R _D	1QA	l QB	iQC	1 Q E	GNI	2 Q D	2 QC	2QB	2QA	2R _D	2CP	Vcc			相当两个 '93
'490	1CP	$1R_D$	1QA	1S ₉	1QB	100	:1 Q D	GND	2QD	2QC	2QB	2S ₉	2QA	2R _D	2CP	Vec	S9 为计数器的置 1001 端
						_				-			Vcc	RO	co	Ğ	'560~'561 外引线相同。
'560	ALD	СР	A	В	С	D	EP	\overline{AR}_{D}	SRp	GND	面	ET	QD	QC	QB	QA	17 = H 高阻,17 = L允许输出
																	页置。[17,1,7,8,9,11,12,2]

续表 1.21 计数器外引线排列

				- !	外引	线组	扇号	(黑	 体字	母代	表输	出量)	}				
序 号							_		24	23	22	21	20	19	18	17	备注
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	·
	i					-							Vec	RO	$\overline{\text{co}}$	G	17 = H 高阻,17 = L 允许输出。
'568	U∕Ū	CP	A	В	С	D	$\overline{\mathbf{EP}}$	$\overline{AR_D}$	$\overline{SR_D}$	GND	ĪD	ĒĪ	QD	QC	QB	QA	其它功能参阅'560和'561
'569	外号	线	引上		_	-		•									
		·	•			_							MR	SR	CEP	ŒĪ	(12 = 11 8X 12 (12) 11 3 → 14 (11) 1 0
· ' 579	œ	1/00	1/01	1/02	1/03	G N D	I/0 4	1/05	1/06	I/07	ŌĒ	<u>c</u> s	PÉ	U/Đ	TC	Voc	高阻;[12,13,11] = UHL,1/0 工作。20 = 上清零,[19,1] = HL ↑ 同步清零,[20 19,12,13,1] = HHLL ↑ 串入,[20,19,12 13,17,18] = HHLLL 计数
'590	QB	QС	QD	QE	QF	QG	QН	GND	<u>co</u>	CIR	CCK	COKEN	RCK	5	QA	Voc	CCK 计数器 CP, RCK 寄存器 CP
'591	外号	线	司上														LS590,3S;1S591,OC
`592	3	С	D	E	F	G	H	CND	$\overline{\omega}$	CIR	COOK	CCKEN	RCK	CLD	A	Vee	
													Vec	G	Ū F	CKEN	注 2
593	A∕QA	B/ QB	c/ Q c	D/ QC	E/QE	F/QF	G/ Q (Б√ Q Н	<u>an</u>	GND	$\vec{\omega}$	CLR	ÇCK	OCKE	OCKE	RCK	
`668	U/D	СP	A	B	C	Đ	ΕP	GND	<u> 110</u>	ĒΓ	QD	QC	QB	QA	$\overline{\mathbf{co}}$	Vcc	功能同'168
`669	外弓	线	司上														
										_			Vcc	co	QA	QB	'690~'693 外引线相同。
'690	CRD	CCK	A	В	¢	D	EP	\overline{RR}_{D}	RCK	GND	R/C	Ğ	<u>LD</u>	ET	QD	QC	'690和'691由RR _D =L寄
•	「 存着	潜流	₹ ,'6	i92 ≉	u'693	由Ŕ	R _D =	L和	RCK	↑寄	存器	清零	。 CI	<u>ξ</u> = !	L计费	火器 剂	青零。CCK 计数器时钟,RCK 部
'691	存都	器时名	肿,Ca	CK A	RCI	⟨反∤	目,CO	CK 和	RCJ	(均)	有多	χ. G	= H	高胜	l, EP	&ET :	= L禁止, ID = L预置, R√C = '
'692 '693		佳持 會出	H,Q	= 预	置数	, II /	变,	但计	数器	停止·	计数	,直至	RC	K∱≨	明来 计	十数署	器从停止状态恢复计数。CO 起
_	<u> </u>								•		•		Vec	$\overline{\mathbf{co}}$	QA	QB	'696~'699 外引线相同,
'696	U∕Ď	CCK	A	В	С	D	ΕĒ	$\overline{CR_D}$	RCK	GND	R∕Ĉ	. G	ĪD	ĒT	QD	QC	符号参阅'690。RCK 寄存
'697 '698 '699																	' R/C= ↑ 且维持 H,Q= 預置数 恢复 Q 的计数状态

注 1: CP_BDIV5 意为 CP_B 是五进制计数部分的时钟, 除以 5 之意, 也可用 + 5 表示。

注 2:本型号有的符号太长,与表头栏目中引出线的排列序号不能全部对齐,读者查阅时,请从左侧一一数清楚。

注 3.为了简化备注中的说明,以'560 为例:8=L异步清零,8 代表第八脚的 $\overline{AR_D}$; 1=L异步预置,1 代表第一脚的 \overline{ALD} ,且本计数器的 \overline{ALD} 、 $\overline{AR_D}$ 、 \overline{SLD} 等功能只能一个一个地执行,其有效的低电平也只能一个一个地加,备注中就没有逐项仔细说明。

表 1.22 寄存器、移位寄存器参数

	",	42.1	. 24	可什么	<u>√13714</u>	育1子育	子梦安 义		
型号	 名		最	大时钟	频率 f	_{IPMAX} (M	(Hz)		
<u> </u>	11 75	TTL	S	LS	ALS	F	HC	AC	- 备注
'91	8 位移位寄存器	10		25				-	CP ↑
'94	4 位移位寄存器	10							 双异步预置,
'95	4 位移位寄存器	25		30					并入并出事入,↓
196	5 位移位寄存器	10		10					并入并出串人,↑
164	8 位移位寄存器	36		36	60	90	62		并出串入, ↑, R ₀
`165	8 位移位寄存器	26		35	60		62		并入事入事出,↑
166	8 位移位寄存器	35		35	60		45		并入串入串出, ★, R _D
170	4×4寄存器阵	30n	27n			_			OC
'172	8×2寄存器阵	33n							38
' 173	4位 D 型寄存器	25		50			55		38
178	4 位通用移位寄存器	25	_					· -	Q輸出, ↓
' 179	4 位通用移位寄存器	25							QD 互补输出, √ , R _□
'194	4 位双向移位寄存器	25	70	25		150	36		并入并出串入, ↑, 📆
'195	4 位双向移位寄存器	30	70	30		150	60		J-K输入,并入并出, ↑, 元,
' 198	8位双向移位寄存器	25							并入并出,串入,↑, R□
' 199	8 位移位寄存器	25	-			-			J-K输入,并入出,↑,R _D
278	4 位可级联优先寄存器	35n							内部锁存
'295	4位双向移位寄存器			30					3S,并人并出,串入,↓
'299	4 位双向移位寄存器/		50	35	20	100			
	存储寄存器		JU	35	30	100	29	173	38,并入出,串入出, ↑, R _n
'322	8 位移位寄存器			35		90	40		
'323	8位移位寄存器			35	30	100	29	130	38,并串入,并串出,↑,展□
'395	4位可级联移位寄存器			30		105			3S,并串人,并串出,↓,Rn
'396	八进制存储寄存器			30					<u> </u>
407	数据地址寄存器					12n			†
'410	16×4 RAM 寄存器堆	 _			_	9n			38
'589	8位移位寄存器						36		38,输入锁存,↑
'594	8 位移位寄存器			*			*		3S,输出领存, ↑ , R _D
'595	8 位移位寄存器			*			*	İ	38,輸出锁存, ↑, 📆
' 59 6	8位移位寄存器			*					OC,输出锁存,≮,R _D
597	8位移位寄存器			20			40		输入锁存, 木, R _D
'598	8 位移位寄存器			20			40		3S,输入锁存, ↑, R _D
'599	8位移位寄存器			20					OC,输出锁存,↑,R _D
'670	4×4寄存器阵			24n					
' 671	4位通用移位寄存器/			170					38, ↑,异步清除,
673	锁存器 16 位移位宏有器						<u>.</u> .	!	LS672 同步清除
674	16 位移位寄存器			20		130	32	İ	38, ↓, 串人, 串并出
675	16 位移位寄存器			20		140	32		38, ↓, 串并入, 串出
	16 位移位寄存器					130			↓,串人,串并出
'676	16 位移位寄存器					110			

注:有关说明见触发器。 * 表示无数据。

表 1.23 寄存器、移位寄存器外引线排列

续表 1.23 寄存器、移位寄存器外引线排列

								 		Ì						明 用							
		光 極		3S。当 CP↓时,6=H,并人;6=L,右移	注 1。[2,3]=LL 使能,[19,1]=LL,	LH, HL, HH 对应保持、-*、・・、并入	3S。注 1。CP + ,G=L使能。2=H,→;2=L,	并人。SE符号扩展,DS数据选择	OE, 編川使能	38,CP +, OC = H 高阻, 但对 Q'D 和时序无影响	$CP \uparrow, \vec{G} = L \# \land, 1Q_i = Di, 2Q_i = 1Q_i$	10~13 指令输入, X0~X3 总线		38,C5=1片选,WE=1写允许,OE=1输出	使能, Ao~A3 地址码, Lb~D3 数据	3S,* 为SRLOAD, 13 = L 数据并入, SRCK 移位时钟,可SER→申人, RCK 锁存时钟, G= H 输出高阻	*为SRCIR,即申联清零;RCIR为寄存器清零		'595,35; '596, OC。均有输出锁存	* 为SRCLR, # 为SRLOAD, 有输入锁存	3S。注 1。* 为SRIOAD, * * 为SRCIR,	# 为 SCKEN,移位时钟使能	有输出锁存
\mid		13	91		Б	н/Он	ā	B/Q	 	Vcc	Vec	<u>D2</u>	ď	2	ŝ	Vcc	Vec	Vcc		Vec	SERI	ပ	
	ļ	82	15		S.	F/Q,	SE	ල්		ð	ū	ō	D3	Vec.	ō	-	ď	ර		¥	SERO	RCK	
		19	41	Vee	SI	D/ Q	8	F/Q,		రా	204	10	ර		õ	SER	SER	SER		SER	8	#	
		æ	13	ర	Vec	B/Q	Vec	H/Q _H	! 	Ç	Q	G	18	ļ i	123	*	RCLR	ن		#	Vcc	SRCK	
		21	12	ő		_ &		Q."]		පි	基	18	CND		ප	RCK	RCK	RCK		RCK.		*	
	(<u>a</u>	22	=	ဝိ		SR		පි		Q'D	2 0 2	 23 	æ		D3	SRCK	SRCK	SRCK		SRCK		Q' _B	
	衣輸出	23	10	රි	 	GND		CND	İ	ච	ŭ	تا تا	X	! 	J	9	*	*		*		GND	
	体字母代表输出量)	2	6	8		ĺ . π		2 2		18	83	Vec	X1		CND	0,"	Q`,	0,ª		Q'.	<u>[</u> 	*	
	魕	ध्र	∞	8		, O		田田		CND	CND		- 2		SE OE	GND	CIND	CND		GND		±0/₁	
	警	26	7	GND	 			°0∕5		HS/m	Ð		ð	! 	පි	=	ð	ő		I		G/Q _G H/Q _B	
	外引线	27	9	ID/SH (C/Qc A/Qs			经	n n	D2		EO _x		A3	9	ී	ဝိ		C			
	٠, ١	88	5	1		රී		⊘ E	同步灣	၂ ၂ ပ	Š.	!	5		A2	<u></u>	ඊ	ڻ		Ŀ		E/Q _E F/Q _F	<u> </u>
			4	٥	 	G/Q E/QE		A/QA C/Qc E/QE	., 323	B	202		2		¥	ഥ	రి	ð		됸		₽ 20/0	
			m	! m		: <u>2</u>		DC A	3.步清路	-:	īā		п		A0	ے ا	¦ ජී	ŝ		۵	<u> </u> 	C/Qc D/Q	l i
			2	~		[5]	ļ 	$s_{ar{P}}$	1,595	SER	ŏ	ļ 	0		WE	ر ا	ŏ	ŏ		ر		6 6 7	
			_	SER	! 	S		15	刊,299,799 异步清除,333 回步清除	1 26	50		Ε		ଞ	e e	ð	ථ	S6S, [미	<u>~</u>	 	√ 0⁄√	冠'594
		中田		7295		, 566		322	,323	395	396		.407		,410	,589	594	395	,296	165,		,298	665,

续表 1.23 寄存器、移位寄存器外引线排列

		条 许		3S, GR 读校制, GW写控制	3S,功能相同的还有 LS672。1S672 消除需 CP↓参与。	12=H高阻,[13,14]=LL,LH,HL,HH 对应保持、右串人、 左申人、并人	3S, * 为 MK/SIQP, # 为 SER/QIS, * * 为 STRCLR 常存器 消除。1 = H, 高阻,保持;[3,2] = L ∳ , 申人;[3,2,5] = H ∳	1.循环串出;[3,2,5]=H↓H并人数据无位移。Y为 I/O □(HC)	3S, # 为 SER/Q _{1s} , 功能基本同, 673。	有并串输人和申出,无并出	1=H保持,[3,2,5]=×↓×右移,	[3,2,5]=H↓H并行裝人, 无移位	1=H保特,[5,2]=L+申人冇移,	[5,2]=H↓并人
ļ		17	91	Vec	క	ö	5 6	Y.	83	82	8	క	£	<u>æ</u>
£#F 79		18	15	DI	ර	ථ	Y ₁₀	\mathbf{Y}_{7}	P10	ы	Q 10	۵,	P10	2
梁表 1.23 奇仔蕾、穆世奇仔韶外与线排列		96	4	WA	CASC	8	Ϋ́	χ,	PII	£	īö	8	PII	32
24年		82	13	W.B	Vec	S	Y ₁₂	X	P12	23	QI2	8	P12	Σ
表		21	12	CW.		اڻ	Y ₁₃	GND	P13	GND	Q 13	GND	PJ3	GND
作品	ÎŒ	22	11	GR i		8 <u>/</u> 3	Y.	Λ,	P14	P4 (Ol4	장	P14	점
53 #	(黑体字母代表輪出量)	23	10	Q.		CND 1	Y ₁₅	\mathbf{X}_3	PIS	P3	OIS (ප	P15	23
£₹ 1.	字母代表	4	6	ර		RCK	Vec	\mathbf{Y}_2	Vec	2	Vcc (8	Vex	23
372	(黑体)	23	20	CKD		SRCR				FI		õ		-FI
	线编号	38	4	ර		St.		Ϋ́		23		8		2
	7	27	9	ď	•	e.		#		#		8		8
	₩	28 2	\$	R,		_ U		*	 	MODE		STCP S		×
		2	4	R, F		<u>~</u>		*		NC MC		Si Si		22
			_	五 五				*		R/W N		R∕₩ .		NC S
			m					CP R∕W		CP R			! 	
				2 D3	<u> </u>	R SRCK		S SHCP	İ			S SHCP		© GP
		<u>i</u> ir	_	0 00		ı SR				 \Ω	!			
		哥		0.29,		129,		.673		,674		.675		9/9,

注2.CP↑表示上升沿动作,备注中投有标明时,引线符号为 CP;CP↑表示下降沿动作,引线符号为CD·→表示石移,有串人端时还有向右串人功能;←表示左移,以及向左串人。 注 1;有的引脚符号过长,与表头栏目中引线的排列序号不能对齐,读者查阅时请从左侧开始数清楚。

1.4 CMOS 数字集成电路参数和外引线排列表

表 1,24 CC4000、CC14000 系列 CMOS 数字集成电路参数和外引线排列

																ļ			
						*	外引线	推列	(縣)	(黑体字母代表输出量)	代表輪	五			 		参数[1]	[1]	
奉	各									24	23	77	21 2	20	81 61	71 8	7 tod/for	fg.	4 注
_			63	ę.	4	Ś	9	7	00	9/	10	=	12 1	13 1	15 15	5 16	5 (ns/MH2)	(THz	
4000	双3 输入或非门及 反相器	<u> </u>	NC	¥1	18	51	17	38	۰	ტ	2 X	2A 2	2B 2C		Vidu		45	2	$Y = \overline{A + B + G}, G = \overline{L}$
4001	四2輸入或非口	1.A	13	17	2 Y	2.A	2В	Vss	3.A	313	3Х ,	4¥ .	4A 4	4B V	VpD		250	0	$Y = \overline{A + B}$
4002	双4输入或非门	¥	1.A	8	10	<u> </u>	2	88.	NC	2 A	2B	2C 2	2D 2Y		Vou		250	0	$Y = A + B + C + \overline{D}$, $HC = 12ns$
4006	18 位静态移位 寄存器	_ 	QI +4,	ಕಿ	22	8	茎	V. ss	\$+ \$+) S+#3	B+4 Q	2+4 Q	Vss Q4+4 Q4+5 Q8+4 Q2+4 Q2+5 Q1+4		γ _D D		000		DI、DZ、D3、D4 为中人端。符号 Q4+5为输出端,4代表对应 D4 输入的寄存器,+5代表经过五级奢存器
4007	双互补对及反相器	됴	ပ	=	!	<u>r</u>	∢	Vss	٥	×	I	r	X J	Α Α	ad.			0 1	A为第一个互补对的棚板输入,B为P的将辐板输出;D为为管漏板,C为N沟管漏板输出;D为约气温,介上补对的输入,E、G为P均管漏极、膨胀,F、B为N沟管漏极、源极;I为反和器的输入,Y为反和器的输出,J按反和器的输入,Y为反和器的输出,J按及Nox,K 接 Vss
4008	4位二进制超前进位 全加器	A3	82	27	E	· - -	8	A0	22 2	5	<u>8</u>		띪	इ.स.	CO B3		Vpn 800		F 为和榆州, CO 为进位给出
4009	六反相缓冲器	Vcc	17	٧.	2γ	2A	31	3.4		4.A	4 Y	5.A.	S.Y N	NC 6	6A 6Y	ļ	V _{DD} 27.5	5.	$Y = \overline{A}$
4010	六同相缓冲器	Vec	17	ΙΛ	7X	2.A	3.V	3.4	33	4.4	4 Y	5A :	5Y N	NC 6	6A 6Y		V _{DD} 27.5	,	Y = A
4011	四2輪人与非门	1.4	1B	<u></u>	2X	2A	2B	Vss	3A	313	3 Y	4Y ,	4A 4	4B V	eu ^		250	٥	$Y = \overline{AB}$
4012	及4 输入与非门	1.4	1.A	18	10	1D	NC	3	NC	2.A	2B	25	2D Z	2 Y V	VDD	ļ	250	0	$Y = AB\overline{CD}$
4013	双D触发器	Š	Ō	Ω	동 .	=	lS _D	Vss	Sg.	2D	2R _D 2	2CP 2	20 2	20 V	Vuu	:	3.5MHz	4Hz	CP↑. [1]
4014	8 位移位寄存器	133	8	6	_ B	22	ā	8	Vss	×	වු	<u>s</u>	ـــــــــــــــــــــــــــــــــــــ	고	50	N 92	V _{DD} 3M	3MHz	CD↑。[I]。M=H 片人,M=L 右移。 DS 串人端

						≾	が	排	村鑑)	排 列 (黑体字母代表输出量)	化表输	出	_						
TIP.	名					- - - -				24	23	2	21	30	19	_∞	17	物餐[1] デビ/fo	多
		-	2	6	4	ď	9	7	œ	6	10	11	12	13	4	15	91	(ns/MHz)	
4015	双4位移位寄存器	2CP	203	102	īði	9	\mathbf{IR}_{D}	S _C	Vss	1CP 1	103	2 0 2	201 2	200 2	2R _{1) 2}	2 178	oo y	3MHz	CP↑, 有移。[1]。05 串人罐。[3]
4016	四双向开关	4 I	E	28	2 A	30	30	38	3.4	38	4 B	44	4C	10 1	Veu	!		15/10	A:1/0,B;0/1,C 控制。HC=15/50
4017	十进制计数器/ 分频器	Y 5	Y 1	k 0	42	γ,	4		Vss	Y8	Y4	6 Å	00	EN	CP .	S ₁₎ \	Vm	650/25	HC = 50Mlb
4018	可预置 N分類 计数器	29	8	<u>च</u>	Iō	8	8	22	SS A	D3	<u> </u>	 G	当	.g.	_ _ ප්	- E	V DID	400/3	(37↑。[1]。LD=II预置, Q=D
4019	四2选1数据 选择器	4Di	300	3DI	200	2DI	001	. <u>.</u>		94	Ι.	2 Y	3Y	4Y	Al 4	400 \	V, no	300	[AIA0] = × H, H×, LL 分别对应 Y = D0, D1, J.
4020	14位同步二进制 计数器	ΙΙÒ	Q12	QI3	ક	춍	ક	8	V.	8	Ð	\mathbf{R}_{D}	8	6	8	010	V DIS	400/3	CP↓, λ. QL, Q2 (Ψ.ο. HC = 16MHz.
4021	8 位移位寄存器	7.0	సి	۵	23	22	ā	8	SS.	F.3	ಕ	8	8	<u>₹</u>	<u> </u>	8	og V	320/3	CP↑,[P/S]=H, 异步, 并人;[P/S]= L, 在移, LS 串入
4022	八进制计数器/ 分频器	I,	X 0	X2	YS	¥6	2	23	Vss	NC I	4.4	¥4	83	EN	ð	R ₀	OG V	650/2.5	CP ↑ , HC = 50MHz
4023	三3篇人与非门	IA	89	2A	2В	, 2C	2.Y	₹	21	17	3¥	3.4	38	2	ν _{DD}			250	$Y = \overline{ABC}$
4024	7位同步二进制 计数器	45	J.	8	8	끃	පි	Vss	NC	8	NC	5	8	NC V	ou V			350/3.5	CP ↓ , HC = SOMHz
4025	三3 输入或非门	1,4	13	2A	2B	2C	2 Y	88	35	X	3¥	3A	3B	30	$\mathbf{V}_{\mathrm{D}0}$			250	$Y = \overline{A + B + C}$
4026	十进制计数器/ 译码器	Ð	EN	RBI	RBO	8	-	, po	.X.	.	æ	e e		ú	- -	я.	V (B)	500/2.5	CP↑,译码输出高有效,OC
4027	双主从 J−K 触发器	ŏ	ŏ	10,	$1 R_{\rm D}$	1K	=	1Sp	8	2S ₁₀	23	2K	2R _D 2	2CP 7	⊘ 2	70 7	Vuu	300/3.5	(₽ ↓
4028	4线-10线译码器	Y4	X 2	2 X	£	S.	X	¥6	V 88	₩	٧	ú	Ü	, B	Y. IY	¥3 \	V DID	350	译码输出高有效, HC = 25ns

						4	h 引线	5 排 3	列 (黑	(黑体字母代表輸出量	代表	輸出庫	-				外引线排列(黑体字母代表输出量)	·	
型 中	各			!						*	33	23	21	ន	6	<u>«</u>	17	tra/f.c	各
		-	7	т	4	S	9	7	∞	6	10	11	12	13	14	LS	91	(ns/MH2)	
4029	4位进制/十进制加/域计数器	9	පි	D3	8	II	8	8	Vss	B/Ū	<u>a</u> ⁄n	ō	<u> </u>	201	8	G.	Vpp	200/2	CP↑ BVD 为 + 进制变换, U/D 为加减控制。 GI时钟允许, CI = L 时, 在CP↑作用下计数。ID = H 预置
4030	四异或门	<u>B</u>	Ι¥	1.4	2 X	2.4	2B	Vss	3.13	3.4	3 Y	4 Y	4	4B	V			100	Y = A⊕8
4031	S 位静态移位 海存器	22	£	NC	NC NC	- <u>I</u> G	0	100	Vss	OUT	Σ	NC	NC	\ <u>2</u>	NC NC	õ	Von	300/1.6	¢₽+
4032	三年行加法器(正逻辑)	ន	INV3	8	ផ	INV2	CAR	INVI	Vss	ឆ	¥	B1	E 2	A2	82	A3	αdΛ	1400/4	CP↑
4033	上进制计数器/ 七段译码器	ච	EN	RBI	RBO	8	-	o.c	Vss	•	æ	a)	۔	် 	LT	R ₀	V.DID	500/2.5	CP↑,译码输出高有效。有关符号可参 阅表 1.11
										V	A	A 6	AS	\$	3	A 2	Ι¥	700/2.5	CP [↑] , ENA 为 A 数据线允许, P/S=L 中 行, A/B=L 为 A 数据并出
4034	8位总线寄存器	B 7	*	B 2	翠	B 3	B 2	B	2	ENA	8	A/B	Vss	P/S	\$\sigma_{\text{S}}	Ü	A 0		
4035	4位移位寄存器	8	0,/0 T/C	124	-	82	ð	P/S	V ₈₈	8	ī	22	133	0√0	ტ∕ტ	0,/0	V _{DO}	500/2	CP↑,T/C原码/补码
4038	二串行加法器	ធ	INV3	පි	ផ	INV2	CAR	INVI	SS A	ឆ	F	BI	123	25	B3	A3	V _{DD}	1400/4	Cr^, 负逻辑
4040	12 位同步二进制计数限	ᅙ	8	ষ্ঠ	පි	පි	8	ਠੋ	/ss	8	ਝ	~	క	Q 7	පි	\mathbf{Q}_{10}	VDD	360/3.5	CP + ,无 Q1、Q2 位, HC = 45MIL
4041	四原码反码缓冲器	Y	1	<u></u> ₹	2 Y	<u>2¥</u>	2.A	- ss	3X	34	3.4	4 Y	<u>4Y</u>	ac y	i		_	120	$V = A, \overline{Y} = A$
4042	四D锁存器	\$	10	S	E .	ð	×	2D	38	2 <u>0</u>	20	Š	lš.	30	4	15	V _{DD}	220	[5,6]=Ⅲ, ↑Ŀ,HH, ↓H对应 Q= D、锁存、Q= D、锁符
4043	四mS锁存器	\$	ŏ	18	13	EN	28	2R	Vss	20	30	38	38	NC		48	Vpo	300	EN = L 为 3S, [S, R] = LL, LH, HK, HH 对应 Q = Q,, L, H, H
404	MR-S锁存器	\$	ο̈́	1 R	is	EN	. 182 	2 <u>R</u>	V _{SS}	20	30	38	38	NG	154	4 <u>R</u>	Vuo	300	$EN = L \not \ni 3S, [\overline{S}, \overline{R}] = LL, LH, HL, HH \not \bowtie \emptyset \ \emptyset = L, H, L, O_n$
4045	21 位计数器	ν,	8	V	NC I	. NC	~	y + d	S	N.	NC	NC	š	× ×	1-5-	٠.	Vvo	7MHz	•相当时钟
4046	建 基 来	£	0.00	Nom.	OUTen/INcompOUT INH	Z S	چ د	ئ	2	INvco	INvcoOUTDEN RI	M RI	22	OUTER	2	 	VDD	1.2MHz	[2]

						4	乔司约	线排列	· · · · · · · · · · · · · · · · · · ·	朔 (黑体字母代表输出量)	代表制	一番出生	(排 列 (黑体字母代表输出量) 会数	条歉[1]	
中	名群									*	23	z	22	20	19	<u>×</u>	17	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	4 年
		_	2	m	4	'n	9	1	90	6	90	11	12	13	7	15	16	(ns/MHz)	
4047	非稳态/单稳态多谐 振荡器	3	Rext	*	AST	ASI	#	38 38	TR+	£,	0	ō	RET	Ques	V _{DD}			400	* 为 Rext/Cext,也记成 Ki/Ci。[5,4]= LH 单稳态,[5,4]= HX 非稳态
4048	8 输入多功能门	*	EN	-	Ħ	ပ	<u>[</u>	¥	, SS	M2	ş	۵	ပ	m	¥	EX	VDD	300	38, 可扩展
4049	六反相缓冲器	V	7.	ΥI	2 Y	2A	3Y	3.4	Vss	44	4¥	5A	5.4	NG.	6A	7.9	NC	92.5	$Y = \overline{A}$, HC = 17ns
4050	六同相缓冲器	<mark>۷</mark>	1 Y	TY.	2 Y	2A	3 Y	34	Vss	4	47	5A	SY	S.	6A	К9	NC	125	Y = A, $HC = 17ns$
4051	8 选1模拟开关 (分配器)	3	25	₹	£4	33	图	74 74 138	Vss	83	25	83	22	28	æ	B 2	Vod	09	Ron = 1050Ω, HC = 10ns/100Ω, A Λ B H, B Λ A H
/4052	双4选1模拟开关 (分配器)	8	1 B 2	<u>4</u> 1	183	1 B 1	3	VEE	Vss	SI	જ	2 B 3	2180	2 A	2 B !	2 B 2	Vou	25MHz	Ron = 1050Ω, HC = 95M/100Ω _c A \wedge B $\!$
4053	三2选1模拟开关(分配器)	1 B 1	. 1 3	2 B 1	2 A	2 IB ()	EN	ж	Vss	2S	15	38	386	3 B!	3 A	<u>⊀</u>	V up	30MHz	Ron = 1050Ω, HC = 120M/100Ω
4054	四段液晶显示驱动器	ST4	юţ	Y 4	Y3	Y 2	Αij	3a •	√ss	Z	SI	INZ	SIZ	IN3	SI3	IN4	VDD	400	
4055	4线/七段译码器	J.	¥	20	ပ	۵	عی ا	## ##	Vss	æ	م	3	P	a	0.0	f	V _{DD}	1300	输出高有效,显示字型 0~9、L、H、P、R、 - 灭
4056	BCD 七段译码器/ 驱动器	STR	ບ	æ	q	V	for	Y. EE	Vss	a	ā	ပ	-	.	cut.	_ ا	V _{DB}	050	SIR=H选通,显示字型同 4055
										V	OCT	呂	23	*	23	82	8		
4059	程控 1/n 计数器	ئ	EN	8	ΙΩ	22	8	D15	D14	DI3	D12	ŝ	Vss	क्र	Ŗ	DII	010	6MHz	
4060	14位同步计数器	ā	Q12	Q13	8	å	ප	ප	Vss	CK0	CKO	3	ಭ	ఇ	Ğ.	පි	V _{DD}	3.5MHz	CKO 振荡输出, HC = 45M。 Cr = H 清除, = L 计数
1904	14 位同步计数器	₽	Q 12	Q13	8	챵	8	ප	Vss	СКО	CKO	CKI	Ċ	8	Ų7	3	Vno	HC = 45M	Cr 对 CKO 无封锁
4063	4位数值比较器	83	A<	< B A = I	BA>B	FA'B	FA=B	FA < B	Vss	盎	OF:	BI	A1	A2	B2	£3	Vpp	625	
4066	四双向开关	17.0	10/	1 20/	10/1 20/1 21/0	22	3C	V.38	31/0	30/1	40/1 41/0	41/0	40	10	VDD			10M/10500	C=L 高斑,HC=160/175
					i İ					V _{DD}	2	ď	VO10 VO11	1/0/1	$1/\mathbf{O}_{12}$	1/0 ₁₃ 1/0 ₁₄	√O₁	£50/1050	INH=H 禁止,HC=15rs。0~15作输入时,
4067	16选1模拟开关	0/1	2	, VQ	0/1 1/0, 1/0, 1/0, 1/0,	O ∕1	, V0,	_	/0, 1/0 ₁	, Z	AO.	ΑΙ	V.88	A3	42	INH L/O _{IS}	Zols		1脚输出;1脚输入时,可多路分配至0~15

				440	续表 1.24	ষ	2	30, C	<u>2</u>	多彩	ট ভ	1083	数字角	医成电	路物	数和	우디창	000、CC14000 系列 CMOS 数字集成电路参数和外引线排列	
						外	、引线	计排列] (黑)	(黑体字母代表输出量)	代表	輸出量	Ω.					会教[1]	
回	名称	! 								*	23	23	21	707	e`	∞ ≃	17	1, pd/fCP	神
		-	7	8	4	ν,	9	7	∞	6	10	Ξ	ដ	13	4	15	91	(ns/MHz)	
4068	8 输入与非/与门	>	- ₹:	<u>~</u>	ບ	۵	ž	Vss	УС	ᇤ	ᄕ	ى	H	≱	VDD	}		300	Υ 与输出, Ψ 与非输出
4069	六反相器	¥	1.7	77	2 X	3.4	34	×.	47	44	SY	5A	Х9	6A	V			110	$Y = \overline{A}$
4070	四异或门	¥1	89	1.Y	2 Y	2A	2B	Υ. **	34	3B	3.4	4 Y	44	4 B	V DB			280	$Y = \overline{A}B + \overline{A}B$
407.1	四2 插入城门	¥1	<u>m</u>	X.	2 Y	2.A	2.13	× 38	3.4	38	3¥	4¥	4A	#	V			250	Y = A + B
4072	双4输入或门	17	<u>*</u>	≝	2	9	NC	.¥.	Š	2A	2B	သူ	50	2Y	V.			250	Y = A + B + C + D
4073	三3箱人与门	Y	≘	2A	2B	2C	2 Y	88.	2	14	31	30	338	3A) Eg			250	Y = ABC
4075	三3 糖人或门	ΥI	≝	2A	2 B	3C	2 Y	-K.	2	IY	31	သွ	38	34	na A			250	Y = A + B + C
4076	四D含存器	মূ	고	2	8	ŏ	\$	පි	V.SS	E	滤	1	30	2D	≘	ێ	V	6/009/3	[1,2]=II×,×H,Q=Z(商阻);
																			[9,10,7] = LL + Q = D
4077	四异或非门	ΥI	9	<u>×</u>	2 V	2.4	2B	V.	34	3.8	3¥	4 Y	4A	4B	V on			175	$Y = \overline{A \oplus B}$
4078	8 输人或/或非门	>	*	20	ပ္	a	.¥c	Vss	NC	Æ	F	C,	Н	¥	OG V			300, HC = 12	Y或输出,W或非输出
4081	国2七人与门	ΥI	1B	1.V	7.	2.4	2B	Vss	3.4	3.18	3¥	4 Y	44	4B	VDD			250	Y = AB
4082	双4输入与门	7.	1A	1B	1C	1 D	NC	Vss	NC	2A	2B	2С	20	2 Y	V			250	Y = ABCD
4085	双 2-2 輸入 与或非门	Į.	BI	Yı	λ2	42	멅	Vss	23	20	INHI	INH2	ប	Ħ	\mathbf{v}_{LN}			225	$Y = \overline{INH + AB + CD}$
4086	四路 2-2-2-2 輸入与或非门	₩.	, s a	>	NC NC	뚀	ഥ	Vss	·C	Н	INH	EN	ပ	۵	V DND			535	Y = AB + CD + EF + G11 + 11 + 10, 式中 11、10 为 11 脚、10 脚
4089	4位二进制比例 乘法器	QIS	SF2	SE3	SIS	1	14	S	Vss	C.	155	EN	CA	ప	$_{ m SE0}$	SEI	V _D U	220/1.2	
4093	四2输入与非门	4.	13	17	2 X	2A	213	Vss	3.4	3.B	3¥	4Y	4A	4B	VDD			009	$V = \overline{AB}$
4094	8位移位和存储总线 寄存器	SIR	٦	ਹੈ	8	ኞ	8	ප	¥:~	Š	ő	ά	8	ප	\$	OE.	V	HC18/60	STR 石移返通、Qa 串出, OE 输出使能
4005	JK触纹器	Š	R	IJ	J2	13	ō	Ves	0	ĸ3	Ŋ	K	J.	S.	V			500/3.5	CP^{A} , $J = J1J2J3$, $K = K1K2K3$

				70	※ ※ 1. 4				3	ž.	<u>[</u>	3	× 十 米	M.C.C.IAMM 永知 CMIOS 数十未及电路参数作// 可染非为	日初の	KTH ZI	<u>*</u>		
						泰	平	发排列		本字母	代表	(黑体字母代表輸出量				:	Ţ	参数[1]	
中	允典	i <u>. </u>								54	83	23	21	20	61	<u>∞</u>	17	tyd/fer	50000000000000000000000000000000000000
			2	κ)	4	S	9	1	90	6	10	Ξ	12	13	41	15	91	(ns/ Minz.)	
4096	J-K触发器	NC NC	αĝ	=	덕	ia	10	- £83	0	22	2	K	ਹੈ	ŝ	V			500/3.5	$CP \nmid J = J1J2 \overline{J3}, K = K1K2 \overline{K3}$
										V DID	2/0	21/0,21/0,21/0,21/0,21/0,21/0,21/0,	17.0,2	17.0,2	1/0,2	7 0 /2		20M/1050Ω	有双向传输功能,A0、A1、
4097	双8选1模拟开关	10/1	6 /11	0/1I	10/111/9,11/0,11/0,11/0,11/0,11/0,11/0,	11/0	11.O	11/0	11/0	11/O	90V	A1	Vss	INH	A2 2	2LO, 2LO	Š		A2 公共选通, INH = H 禁止
4098	双可重触发单稳态触发器	ij	IG IRI/G IR	i 1Ri	ITR + 1TR	1TR -	⋧	l&	Vss	<u> </u>	20	2TR - 2	-2TR+	2Ri 2l	2Ri/Ci	2Ci v	Vpp	250	TR+、TR-分别为正负触发
4099	8位可寻址锁存器	5	ڻ		SW	Ø.	AI	! - -	Vss	8	₽	8	ප	朰	! j 5⊱	ි න	V (B)	400	$[\overline{SW}, CR] = HH.Q=1$. $[SW, CR] = LL, LH, \overline{W}\overline{H}$
4316	四双向并关	<u> 2</u>	11/0 10/1	20/1	21/0	2C	30	ان	Vss	V RE	31/0	30/1 40/1 41/0	40/	41/0	 2	21	- OG	HC160M	[G,C]=LH,H,H×为通、断、断
					!							! 		oki V	23	×	OX.	HC80M/1000	[7,8] = 1.H 使能,X 输入, X 输出,可双向,LL 锁存控制
4351	8选1模拟开关	X	X 6	Š	×	X	X	ENI	EN2	V.	GND	E	၁	В	NC	4	ξ.		
	·			 				ļ i			i			V_{DD}	X	×	×	HC95M/1000	同上,Xi输入,X输出;Yi输入,y输出。 均可效向
4352	双4选1模拟开关	X 0	X 2	NC	¥	\$3	Yı	E	EN2	A KEE	GND	37	В	₹	NC	X3	X 0		
				 				ļ 			ļ i			an A	7	×	×	HC120M/	三
4353	三2选1模拟开关	Į,	X 0	SC	Z	7	Z	EN	EN2	VEE	GND	긤	၁	В	NC	₹	2	G(0)1	
4502	六反右/総沖器	3.4	3.7	IA	E	14	2A	2 Y	Vss	44	4A	57	ΙΝΉ	5.4	A 9	, V9	VDD	325	3S. 12 = H, Y = L; 4 = H, 路阻, Y = A
4503	小総字器	ENI	1.4	<u> </u>	2A	2 Y	3A	34	Vss	4 Y	 4	5¥	5A	7.9	6A	ENZ ,	V GBJ	7.5	3S,Y=A。[1]控制 Y,~ X4;[15]控制 Y5,Y6
										V	203	203	202	2D2	2Q1	201	8	790	38,[1,3,2]=1111,镇存
4508	双4位锁存器	<u>ئ</u>	$1S\Gamma$	NH I	1500	9	IOI	10	102	102	103	Š	× ss	2Cr	2ST	2 EN 3	200		
4510	十进制间步可逆计数器	î	පි	603	23	្ន	8	8	V 88	ڻ	ďΣ	₽	품 참	23	8	ق		400/2	CP↑,10=H加计数,10=L减计数
4511	BCD - 七段译码/ 驱动器	29	ပ	LT	퍞	<u>1,E</u>	Q	¥	V 88	<u>د</u>	9	o	۵	a	ĐÚ	<u>.</u>	V DEC	1180/HC102	输出高有效,符号见表1.10

						• 4	外引线	桊	列 (黑	存字母	(黑体字母代表輸出量)	判算	Ω					*************************************	k I
到号	谷祭									42	ន	ผ	21	8	52	138	11	th/fc	谷田
		ı	7	63	4	S	9	7	8	6	10	11	12	13	4	15	16	(ns/MHz)	
4512	8选1数据选择器	26	DI	20	133	茎	윰	28	Vss	<i>1</i> /1	INH	182	IS.	82.	>	ENas	Veo	200	[10,15]=LL,HL,×H;Y=选择,L,商 阻
										v _o	ان	۵	ပ	V10	YII	82	\$	970,HC24	LE=H锁存控制,Y=H有效
4514	4线-16线译码器	<u> </u>	≪	Э	X.	¥6	XX	Y	Ç	I.	23	Ş	GND	Y13	Y 12	Y15	Y14		
4515	4线-16线译码器	開上	ائہا															970/11C24	Y=L有效,其它同上
4516	4位二进制可逆 计数器	(T)	63	103	8	명	8	18	38 >	ಕ	ŒΛΊ	ರ.	吾	22	8	윤	Î >	400/2	CP ↑,[10] = H 加计数,[10] = L 減计数
4517	双 64 钦静态移位寄存器	Oles	Q	WEA	ਠੁੱ	ð	රි	ď	V _{SS}	D _g	5	3	ਝੁੰ	WE,	es#O	S _{los}	au A	150	CP↑,→,WE=H,Q商限
4518	双 4位十进制同步 计数器	102	1EN	<u>5</u>	ō	25	වි	<u>ت</u>	Vss	2CP	2EN	2 6	7 0 7	202	203	2Cr	V	500/1.5 HC20/60	[CP, G, EN] = ↑ LH, LL ↓ , 加计数
4519	四2选1数据	K3	Ŋ	Y2	XI	Υı	0X	7.0	Vss	¥	S .	Z	\mathbf{z}	83	B	æ	Veo	250	X、Y 为输人,Z 为输出,下标相同的为一组。[9,14] = LL,LH,HL,HL,A分别为L,Y、X、X 或 Y。A 选通 X,B 选通 Y
4520	双4位二进制同步 计数器	₫.	IEN	8∙	Š	8	Š	10.	N.	2CP	2EN	% %	201	202	203	2Cr	V	\$60/1.5 HC20/60	[CP, Gr, EN] = ↑ LH, LL↓, 加计数
4521	24位分叛器	8	ථ	V 38	OUTZ	2 V' DD	ZZI	OUT	Vss	INI	<u>8</u>	610	03 0	8	82	623	V	4.5	Q18 即 2 ¹⁸ ····,4=6,7=289
4527	BCD 比例乘法器	8	SEZ	SE3	ક્ર	<u> </u>	Œ	log Z	Vss	ð	정	EN	13	ඊ	SEO	SEI	VDD	220/1.2	[11,10,12,4,13] 仝为 L, CP = 10 个联种, F 输出的脉冲数点 SE3、SE2、SE1、SE0、设定、SB0 决定。S9 为置 9, 与 Cr 不能间时为H
4530	双 5 输入多功能 逻辑门	1A	18	10	Q1	IE	M I	21	V. SS	2A	2B	2C	20	2E	2₩	2 Z	V _{DO}	375	Z 为输出端。正逻辑 M5 = ABC + ABD + ABE + ACD + ACE + ADE + BCD + BCE + BDE + CDE, Z = M5⊕W
4531	13 输入奇偶校验/ 发生器	28	23	¥	23	23	ā	8	Vss	O	*	<u> </u>	DH0	28	22	101	V DD	-4.2/0.88[4]	*为 ODD/EVEN,Q= 全部 D 及 ODD/ EVEN 的异或运算

				-541	续表 1.24	75	2	4000、CC14000 系列 CMOS 数字集成电路参数和外引线排列	Ž	2 2	<u>ਦੇ</u> ਛ	** S	作字集	現	報	货和外	/引线	排列	
				1		*	<u> </u>	线排列	(編)	1 大大	代表	(黑体字母代表輸出量						※数[1]	
强	公奔									*	23	ដ	21	ន	61	18	17	1,4/for	各
		-	7	ю	4	ς.	9	7	90	6	10	11	13	13	41	55	16	(ns/MHz)	
4532	8线/3线优先 编码器	¥	8	28	12	酉	ප	5	Vss	8	8	I	D2	60	8	E0	V DID	205	EI、EO 为使能输入、输出,CS 为片优先 编码输出
4536	程控定时器	S	æ	E.		OUTIOUTZ	*	INH	Vss	¥	4	ပ	a	Opec	*	*	Oct A	1800/1.2	* 为 8 - BYPAS, 即 8 分路; * * 为 INH _{GSC} ,振荡禁 II; # 为 IN _{MONO} , 年稳糖 人; O _{DEC} 为译码输出; S = H 閏 L, R = H 閏 0
4538	双单稳多谐振荡器 (山)重触发)	GN9	GND 1Ci/Ri	i Æ	ΥI	æ	ō	õ	GND	20	Ø	B2	A2	R2 2	2CL/Ri GND		Vub	300, HC45	[A,B]=↑H,L↓,触炎
4541	程控定时器	Rtc	å	쿒	NC	A.	Æ	% %	ò	0/0	Ф∕Ф море	NC NC	-€	8	Voo			3.5/1.5	1.000
4543	BCD - 七段锁存/ 译码/LCD 驱动器	13	ပ	<u>m</u>	٩	¥	H	₩.	GND	.	م	ပ	₽		90	44	Oct.	1430, HC45	FH 相位输入, BI 消隐输入, IE 锁定允许输入,输出高有效, [DCBA]>1001,消隐
4555	双2线/4线译码器	- E	1A0	1A1	2.	17.1	172	173	V.95	2¥3	2 Y 2	2 Y 1	210	2A1	2A0	2 FIN	VDD	440	输出高有效
4556	双2线/4线译码器	E	140	IAI	1 1/0	141	1 72	1.53	Vss	2 <u>Y3</u>	2 1/2	2 <u>Y</u> 1	2 <u>Y0</u>	2A1	2A0	2 EN	V _{DD}	440	反码输出,输出低有效
4557	1~64 位可变时间移位寄存器	3	ュ	₽	ੳ	123	m	∢.	3 ⁸	A/Bsei	0	10	132	1,16	81	1.4	Von	300/3	[9,4,5]=L†L,H†L,LH;HH;对应 Q=B,A,B,A
4583	双斯密特触发器	Boom	# #2	RG	Aout	-4	+ V	Acorn	, % 88	AIN	Boat	Aout	Bout	SICI	₩	BEN	V ₀₀₀ V	930	$\overrightarrow{DIS} = L \text{ Bf }, \overrightarrow{Aout} = \overrightarrow{Bout} = Z; [A, B, \overrightarrow{DIS}] = CO1,011,101,111 \text{ Bf }, [Aout, Bout, OR] = CO0,011,101,110$
458 4584	六斯密特触发器	IZI	OUT	IN2	OUT2	EN3	OUT3	/ss	OUT4	暑	OUTS	£	OUTIS	IN6	Vpp		_	125	
14006	18 位静态移位 寄存器	23	ž	B	¥	ŝ	D13	Vss	QI6	Q 17	Q 12	8	8	8	V _{D0}			600/2.5	DO、DA、D9、D13 为单人端, 0 为输出端, 0 后的数字对应寄存器移位的位数
14175	四 D 触发器	ڻا	8	8	8	百	ō	Ö	VBS	ਹੈ	ಕ	8	70	62	iβ	8	V _{DD}	4.5M	
14501	双4輪人与非门及2輪人或非/或门		2A	3A	44	21	2C	3C	Vss	4	, X	e	2B	κ _α	£	ış.	V _{DO}		Yb = 1B + 2B, Ya = 1A2A3A4A Yc = 1C2C3C4C
		i																	

							外引丝	线排》	列 (黑体:		字母代表输出量)	出疆	<u></u>					产母代表输出量) 本報行	
中	名郡									2	ន	ដ	12	g	2	18	17	12/7c	加加
		-	2	33	4	5	9	7	90	6	10	Ξ	12	13	7	15	16	(ns/MHz)	
	六 TIL/CMOS- CMOS/TIL 电平转换 器	Vcc	ΥI	1A	2 Y	2A	3X	3A	Vss	44	47	5.A	57.	Σ	¥9	λ9	αdΛ	160	Y=A。M=H,TTL 方式;M=L,CMOS 方式
	8 迭 1 数据选择器	26	ī	22	103	¥	53	93	Vss	107	E	જ	ıs	83	*	E	VDA	650	EN _{3s} = H, Y 高阻
																V _{UU}	4		
	BCD - 七段译码/ 氪劲器	g	၁	<u>1.T</u>	Œ		9	¥	RBI	я >-	RBO	٥	5	ပ	ے	অঃ	3 0	1360	输出商有效,符号见表 1.10
,	二-N-十进制减法 计数器	ප	D3	<u>G</u>		8	ච	පි	Vss	õ	ð	ā	ď	ម	23	8	VPD	1100/1.5	ID=H 锁置数。[6,4]= † L, H ↓, IL, × H 对应计数、计数、保持、保持。
	二-N-十六进制 溪法计数器	8	D3	G.	ES	8	පි	8	Vss	♂	ċ	百	Q	ŧ	77	8	V	1100/1.5	当 Qo ~ Qs 为 0 时, Qqu = CF
	双可重触发单稳态触发器	ឮ	18/G 1 G 17R+1 TR	-1 C	1TR +	- E	2 .	ΙŽ	Vss	20	20 2	2 TR -	-2TR+	1	2 Gr 2Ci/Ni 2Ci	i 2G	V _{UD}	059	[TR+,TR-]=H [♠] , ↓ L, 触发
	双4选/8选1模拟数据选择器	1EN	81	Ē	172	103	0¥:	Ψ	Vss	2 Y	7.	203	202	2D1	200	2EN	VDD	SM/480Ω	8选1时1Y和2Y连接
	精密权可電触发 单稳态触发器	问"14528	4528										:					009	
	双4通道数据 选择器	1EN	 	£01	102	IGI	100	17	Vss	2 Y	200	2D1	202	2D3	2E.N	OV.	010'.3	420	
,	4线 - 七段译码器 (BCD)	स	\$	Αi	ઇ	VO	×	翌	Vas	æ	٠	ပ	ਚ	ų	àn	_	Vuv	1430, HC102	用 LCD、M 加方波。用共明 LED,M = L; 用共和 LED,M = Ti。ST = II 选通输入。 输出高有效。[DCBA] > 1001 消隐
· · · - ·	BCD - 七段锁存/ 译码/紫边器	. IS	ပ	<u> </u>	۵	<	Z	₩	RBO	/ss	RBI	æ	م ا	<u> </u>	7	V _{DD}	ou	1330	1回
†	4线-七段译码器/ 驱动器	20,	υ υ	NC	ΙĦ	<u> </u> <u> </u> <u> </u>	ے ا	~	Vss	a	₽	ပ	Д	=	540	4	ag v	1360	功能参阅,47

_						本	八引线	排列		(黑体字母代表输出量	代表籍	部田田	_					[-] 秦	
學中	名称									22	ឌ	22	12	23	61	22	17	174/fcs	加
		-	7	m	4	5	9	~	œ	0	10	11	12	13	14	15	91	(ns/MHz)	
14560	BCD 加法器	F	噩	23	B 2	A3	83	ū	Vss	8	F3	E	Fi	æ	B	A0	VDD	2100, HC18	
14561	BCD 求反器	92	IV	A2	A3	COMP	COMP COMP	V.85	S.	92	E	F2	Fi	E	VD			1000	ZD=H,F=L, [5,6]=HL,F 为 A 的补数;其它,F=A
14572	\ \ \ \ \	1.7	14	2 Y	2A	3¥	3A	3.B	V.Ss	¥4	5	5Y	5D	84	6A	eg	VDD	9 8	1Y,2Y,4V,5Y 为反相输出。3Y = 3A+3B,6Y=6A6B
14585	4位数值比较器	- R3	A2	F _{A=B}	A > B	A < B	A = B	ΑΙ	\ss	<u> </u>	9	8	FA <b< td=""><td>FA > B</td><td>B3</td><td>A3</td><td>CELLY</td><td>9860</td><td></td></b<>	FA > B	B3	A3	CELLY	9860	
		 										 				V _{UU}	8		
14599	8 位双向可寻址 锁存器	8	ð	D	E K	A0	¥.	A 2		88	W/R	8	ኞ	8	8	\$	8	004	8=1.高四。[10,4]=H1,写人,被寻址锁存器等于 D; [10,4]=HH, LH 对应锁存器不变, D 高贴和锁存器不变, D 为被寻址锁存器的状态
		<u> </u>								Veb	9,	XI	Z	K3	*	YS	*	15MHz	C、B、A 为选择变量,A 为低位。
40097	双8选1模拟开关	×	X	X	X	X	×	Į.	×	2	¥	Д	Vss	INH	၁	7.7	2,8		INH = H 禁止。 功能同 4097
40100	32位双问移位 寄存器	ž ——-	IN IN	පි	OUT _{SL} NC	S _S	Ŗ	NC	***	*	NG.	in _{sr} out _{sa}	XUT.	#	SC	NC	V _{DD}	360/2	* 为 CON _{NCO} # 为 CON _L , # = H, ←; CON _L , # → CP ↑, 内部 Q = IN; CP ↓, 内部 Q 不处, OUT = 内部 Q
40101	9位奇偶校验器	ā	23	2	五	8	OUT ₀	Vss	E	OUTE	23	8	107	82	V DO			350	6 脚奇数输出,9 脚偶输出
40102	8 位 BCD 向步喊法 计数器	ð	MR	臣	22	Ы	2	22	GND	뮵	老	ĸ	22	73	iQ	됨	V _{DD}	300/1.4	[2,9,15,3] = HTHH, HIHL, HHL×, HL ××, L×××对应禁止、减计数、下·· 个 CP [†] 预置、异步预置、清除到最大计 数值
40103	8位二进制同步减法 计数器	ਿ	WH.	国	£	II.	22	Z.	GND	邑	圣	Σ.	<u>8</u>	3		2	V _{DD}	300/1.4	

CC4000、CC14000 系列 CN/OS 數字集成电路參數和外引线排列	条数[1]	19 18 17 (4/50) 备 注	14 15 16 (ns/MHz)	Q1 Q0 V _{DD} HC12/60 ←、并行送数、商阻 + + + + + + + + + + + + + + + + + + +	V _{DD}	V _{DD} 200 OD	4A 4EN V _{D0} 430 [A,EN]=LH,HH,×L 对应Y=L,H,Z	CP ↑。[9, 7, 6, 4, 5] = ↑ × LJL, × ↑ LJL, ↑ ↓ × × K, X + H, × ↑ LJL, ↑ ↓ × × × H, × × + H, ↑ × × × H, ↑ + HJL 対应加	Y3 10 V _{D0} 875 BCD输出	400/2	340/2	340/2	340.7	300/3.5	150
氟成甲		8	13	8	49	NC	4¥	Ð	. 13				 		
数字1	(#E	21	21	8	7.9	NC	NC	40	21				ļ		
MOS	##田	22	Ξ	ච	SA	2A	31	081	=				·		
列 C	排 列 (黑体字母代表输出量)	ß	2	22	2.5	2B	3.4	8	£						
88	体字和	42	6	8	4A	2 Y	3EN	GP +	0 x			_			
CC14	列 (票		90	G.S.	4 Y	NC	Vss	Vss	88.						
000,	残排		7	É	Vs8	Vss	2EN	D	I.X	.21	.21	.21	.21	.19	.13
S	外引线		9	23	3X	NC	2A	Ξ	12	和表 1	和表 1	2000年	和表 1	见表 1.18 和表 1.19	- 英 - 一
1.24	4		3	23	3A	ΙΥ	2Y	ತ	≊	1.20	1.23	1.203	1.20 Å	1.18	1.12 Å
续表 1.24			4	· 🖺	2.1	118	17	ರ	22	同'160,见表 1.20 和表 1.21	同'161,见表 1.20 和表 1.21	同'162, 见表 1.20 和表 1.21	间'163,见表1.20和表1.21	,见表	同'257, 见表 1.12 和表 1.13
		<u> </u>	3	8	2A	1,4	1.4	-	<u> 5</u>	1,160	1,161	il '162,	£91. [63	同"174,	1.257
		!	8	2 5	17	Š	1EZ	- 34	53	<u> 18</u> ,	<u>=</u> .	<u>(III.</u>	Íπ	<u> 11 m</u>	, <u>je</u>
			-	30	≦ '	ž	20.	-86	4						<u></u>
		免券		4位双向移位寄存器	六反相器	双2十人与非级中路/驱动器	四低 - 高电平转换器	一进制可逆计数 译码锁存驱动器	10线-4线优先 编码器	十进制同步计数器	4位二制同步计数器	上进制同步计数器	4位二制同步计数器	六D触发器	四2选1数据 法每辈
		極		40104	40106	40107	40109	40110	40147	40160	40161	40162	40163	40174	40257

注[1]:参数栏对逻辑门和多数组合数字电路来说为平均传输延迟时间 f₂₀,单位 ns;对于触发器等时序数字电路,参数栏中填写的是时钟频率 f₆₀,单位 MHb,在数字后加 MHb 以债区 别:对于两种参数都给出的情况,表式格式为 15/50(t₂₀/f₆₀), f₁₂为最小值。 注[2]:本项号有的符号太长,与表头栏目中的引线排列序号不能——对齐,读者套阅时请从左侧开始数消楚。 注[3]:标准 CMOS 系列的型号为 CC4 ——,对应 CD4 ——。英托罗拉公司的型号为 MC14 ——,与之对应的国标型号为 CC14 ——。 大部分二者都有,例如 CD4015、MC14015,是中只给出了 4015,要查阅 14015 可查 4015.4 ——。 系列中的少数有 HCMOS,已在表中详明。单独的 14 ———品种见表 1.24 的后半部分。 注[4]; 出参数为 Lan/La, 单位 mA。

.44.

1.5 常用 ADC、DCA、半导体存储器、模拟开关、 采样保持器和单片微机芯片

1.5.1 ADC

表 1.25 ADC 的外引线和主要参数(一)

本表收入8bitADC: AD0801~4, AD570, AD670, AD0808/0809, AD0816/0817, AD673 10bitADC: AD571, AD573, AD579

95.4 A DORON A	01.14	AD507		AD670
8bit AD0801~4	8bit	ADM	J 0011	
	-5V NC-1	∩/# 18 NC	$\begin{bmatrix} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $	∩/# 20 - V _{cc} AD670 19 - +INLO
CR - 2 AD0804 - C		AD507 17 DATAIL	82 - 3	18 +INHI
WR-3 16-1		16-DCOM	B3 - 4	17 -INLO
CLK-4 15-1		15 BIPOFF 14 ACOM	B4-5	16⊢-INHI
INTR-5 14-1 VIN+-6 13-1		13-IN	85 - 6	15 ⊢ ÇE
VIN+-6 13-1 VIN7 12-1		12 - V	B6 - 7	14 CS
AGND- 8 11-i		ìī⊢B&Ō	B7-18	13 ⊢ R/W
B7-9 10-1		10 ├ ∀+	VccGND-10	12 -FORMAT 11 -BPO/UPO
j			i	_
100 μs/+5V	38	OUT/25 μs	3SOU	T/10µs/单+5V
8bit AD0808/09	8bit A	D0816/17	8bit	AD673
IN3 - 0/#	IN2 IN3 -1	0/# 40-IN2	<u> </u>	0/# 20-DEN
		AD0816 39-IN1	$-\frac{1}{2}$	AD673 19 -
IN5 - 3 26 -	IN0 IN5 - 3	38-IN0	B7-3	18-DREADY
IN6 - 4 25 -	A0 IN6 4	37 EXPAN		17-DCOM
IN7 - 5 24 -		36 - A0	B5-5	16 BIPOFF
START 6 23 -		35 - A1	84-6	15 ACOM
	ALE IN9 7 37MSB IN10 8	34 - A2 33 - A3	B3-7 B2-8	14 - IN
ENOUT 9 20-		32 - ALE	B1 - 9	13 - V _{EE} 12 - CONVERT
CLK - 10 19-			BO-10	11-V _{cc}
$V_{DD} - 11$ 18-	84 IN13 - 11		'-	
	BOLSB 17014- 12	2 29∤-B5	8bit/3S0	OUT/30 µs/+5V,-12V
	Vref = EOC = 13	28 B4		
B1-14 15-	1 1	6	10bit A	AD579
8bit/100µs/单电源5%	// MULTOUT 15		1	0.111 20 1611
8路模人开关	// START 16 Von 17			∩/# 32 15V AD579 31 -+15V
	COMPIN- 18	23 - V _{REF} -	Bo 73 '	30 - AGND
- 0816/17:8bit/100 µs	$V_{REF}+-\frac{1}{4}$ 19		B1-4	29 ZERO ADJ
单电源5V/16路模/	\开美 GND-120		B2-5	28-20V, IN
10bis AD551	10bit		B3-6	27 - 10V, IN
10bit AD571	I I VOIL A	D573	84-7	26 BIPOFF
B1-1 ∩/# 18-B0	, —	∩/# 20 - HBE	B5-8 B6-9	25 - Vree
B2 - 2 AD571 17 - DA		D573 19 - LBE	B6-9 B7-10	24 - REFOUT 23 - SERTAL
B3-3 16-D6	COM HB2-3	18 - DR [1]	88-111	22 - SERIAL
B4-4 15-BI	POFF HB3-4	17-DCOM	B9-12	21 -CONVERT
B5 5 14 A6	COM 4[84-15	16⊨ BIPOFF	MSB- 13	20 EOC
86 6 13 - IN		15 ACOM	+5V - 14	19 CLKIN
87 7 12 V 88 8 11 B		14 - AIN	DGND-15	18 CLKOUT
88 8 11 B 89 9 10 V	&C HB7- 8 + HB8- 9	13 - V- 12 - CONVER'	SHORT 16 CYCLE 16	17 - CLKADJ
" (HB9-10	11-V+		OFF=BIPOLAR OFFSET
B&C=BLANK & CON	VERT 110		Nonlineari	ity: < ± 0.048%
10bit/3SOUT/25µs	10bit/3SO	UT/30μs/+5V,-12V	Gain T.C:	±40ppm/℃max
注[1].DATA DR **	DATE DEADY			

注[1]:DATA、DR 为 DATA READY。

表 1.25 ADC 的外引线和主要参数(二)

本表收入12bitADC: AD574/674/774/1674, AD572, AD578

16bitADC; ADC1140, ADC1143 高速 8bitADC; AD7820/7821

多通道 8bitADC: AD7824, AD7828

		···
+5V,LOGIC- 12/8 - 2	15ppm/C 81 2 AD572 31 2 900mW 82 3 30 1: 83 4 29 E 84 5 28 A 85 6 27 C 86 7 26 A 87 8 25 2 88 9 24 1 89 10 23 E 810 11 22 C MSB 811 12 21 C MSB 13 20 S SHORT CYCLE 14 19 C	SERIAL SPAN -Vs15V BUFFER 1 左上角数据 BUFFER O 从上到下依 Vs.15V 次为位数、 GAINADJ 转换时间、 AGND 非线性、第 20V、SPAN 益温度系数 10V、SPAN 和功耗 BIPOFF COMPIN COMVERT GTATUS CLKOUT VREF OUT,+10V STATUS
12bit AD578 3µs 0.012% 30ppm/C 75mW B2 - 3 30 - AGND - A	DGND 2 ADCH 140 31 MS3 - 3	AGND 0.006%(J) AIN1 0.003%(K) AIN2 2ppm/C(J) AIN3 10V. OUT 175mW GUB STATUS CONVERT NC 0.006%(J) A.006%(J
B1-3 18-OFL III B2-4 17-B7 III B3-5 16-B6 III WR/RDY-6 15-B5 MODE-7 14-B4 RD-8 13-CS INT-9 12-+VREF GND-10 11VREF IN Sbit/660ns/50mW/Track/Hold GN 带跟踪保持器	N4- 1	Bbit AD7828 通道

表 1.25 ADC 的外引线和主要参数(三)

本表收入3 1/2位 ADC: ICL7106/7126/7107,5G14433

3 3/4 位 ADC: ADD3701

4 1/2 位 ADC: ICL7135

12bitADC: 7109 双积分

101 段液晶图条 ADC: ICL7182

1.5.2 DAC

表 1.26 DAC 的外引线和主要参数

本表收入8bitDAC; AD7524, AD588, 0832

10bitDAC: AD561, AD7533

12bitDAC; AD7541A, AD7545, AD7548 14bitDAC; AD7535

16bitDAC: AD569

18bitDAC; DAC1146

	AD559	8bit AD0832
8bit AD7524	8bit AD558 LSB	<u> </u>
10UT1-1 #/∩ 16-RFB	: RIT8-LL #/() 16F0U1 L	$\overline{CS} = 1 + \#/\Omega = 20 = V_{CC}$
10012-2 AD7524 15-VREE IN	7-12 AD558 15-00T SENSE	WRI-2 AD083219 - ILE(EN)
GND-3 14-VDD	6-3 14-OUT SELECT	AGND $\frac{18}{\text{WR}^2}$
B7 - 4 13 - WR	5-4 13-AGND	D3 4 17 XFER
B6-15 12- CS	4-5 12-DGND	D2-5 16-D4
B5 6 11 B0 LSB	3 6 11 Vcc	D1-6 15-D5 LSB D0-7 14-D6
B4 - 7 10 - B1		
B3 8 9 B2	BIT 1 - 8 9 - CE	, , , , , , , , , , , , , , , , , , , ,
	WSB Vout SENSE=0~2.56V	RFB 9 12 10011 DGND 10 11 10012
200ns,单电源5~15V	Vout SELECT=0~10V	DOND 10 11 10072
	単电源 5~15V, 1μs	电流输出,单源5~15V、1µs
	 	12bit AD7541A
10bit <u>AD561</u>	10bit <u>AD7533</u>	12011 AD7541A
GND-1 #/0 16-SPAN		loum - 1 #/Ĥ 18 - RF
BIPOFF-2 AD561 15-00T	10012 - 2 AD753315 - VREF	10012 - 2AD7541A17 - VREF
$-V_{S} - 3$ $14 - +V_{S}$	GND-3 14-V _{DD}	GND - 3 16 - V _{DD}
B0-4 13-B9 MSE	1 100 14 101 -0 705 1	MSB B0 - 4 15 - B11
B1-5 12-B8] B8- 5 12 -B1	B1-5 14-B10
B2 - 6 11 - B7	B7-6 11-B2	B2 - 6 13 - B9
B3-7 10-B6	B6-7 10-B3	B3 - 7 12 - B8
B4-8 9-B5	B5-8 9-B4	B4 8 11 B7
	600ns/±0.4%	B5-9 10-B6
250ns/±1/2LSB	AD7533JN±22ppm/C (Gain T.C.)	600ns/±1LSB/5ppm/°C
ADSOIDN±8Uppm/C(Gain 1.C.	AD7533AD±16ppm/℃	AD7541AJN±1LSB/5ppm/C(T.C.
AD561KN±30ppm/°C AD561SD±60ppm/°C	AD7533SD ±10ppm/°C	AD7543AK±1/2LSB/5ppm/°C
12bit AD7545	12bit AD7548	14bit <u>AD7535</u>
OUT - 1 #/\(\Omega\) - RFB	lωτ - 1 #/∩ 20 - R _{FB}	V _{REFS} - 1 #/∩ 28 -NC
	AGND-2 AD7548 19 VREE	VREFF- 2 AD7535 27 Vss
	DOUD IS ASI	RFB - 3 26 - VDD
	$\frac{\text{DGND-} 3}{\text{SMSB-} 4}$ 18 $\frac{\text{V}_{\text{DD}}}{\text{WR}}$	lour 4 25 <u>WR</u>
	F/DOR-5 16-CSLSB	AGNDS 5 24 CSLSB
B9 -6 15 - B0	CTRL 6 15 LDAC	AGNDF-6 23-LDAC
B8 -7 14-BI	B7 - 17 14 - B0	DGND-7 22-CSMSE
$\begin{vmatrix} B_7 & 8 \\ B_7 & 8 \end{vmatrix}$	B6 - 8 13 - B1	R13-8 21-B0
B6 - 9 12 - B3	B5 - 9 12 - B2	R12-9 20-B1
B5 -10 11-B4	B4 - 10 11 - B3	R11 10 19 B2
		R10 11 18 B3
5 μs/1LSB/5ppm/℃	12bit/8bitBUS/1 µs/5ppm/℃	R9 - 12 17-B4
16bit AD569		R8 - 13 16-B5 R7 - 14 15-B6
$+V_{8}-1$ #/\(\text{1}\) = $-V_{8}$		R7 - 14 15-B6
VREFS 2 AD569 27 B0 LS	\mathbf{B} AD:	7535JN: 1.5µs/±2LSB/5ppm/°C
VREFF 3 26 - B1	AD7	535KN: 1.5µs/±1LSB/2.5ppm/°C
B8 -4 25 - B2		
B9 -5 24-B3	18bit DAC1146	us/21 CD /12/sc
B10-6 23-LBE		µs/2LSB/12ppm/℃
B11-7 22-B4	引脚编号: 32 31 30 29	28 27 26 25 24 MPIN TOUT NC REFOUT REFIN TOK
HBE-8 21-B5		20 193 2 1
B12-{9 20 -B6	フログリック・23 22 21 10L SLAMPOUTOF	FSET BITI8 BIT2 MSB MSB
B13-10 19-B7	尺 寸:2"×2"×0.4"	
B14-11 18-GND	1 1 2 1 2 1 0.4"	
B15 12 17 0UT	注:16bit	
<u>CS</u> 13 16 - VREFS	Nonlinearity ±0.01%	AD569JN: 3 μs/ ± 1LSB/200mW
	<u>.</u>	AD569KN: $3\mu s/\pm 1/2LSB/200mW$
	e and to bus	M M M M M M M M M M

1.5.3 半导体存储器

半导体存储器 EPROM、EPROM、RAM 和 Flash EPROM等外引线排列		4 条		[8,10]=II,IH对应写、读。IK×4		[18,21,20]=11H,1HL,H××对应写人、读出、低功耗维持		[20,27,22] = LIH, IHL 对应写,读						$2K \times 8,450ns,5V$		4K×8。区= L 读。[18,20] = × H, H×, D0 ~ D7 高阻, 非片选;[18,20] = L1, 片选读 D0 ~ D7			8K×8		16K×8			32K×8
ROM \$		15	14	49	1/01	7O/7	1/05	1,04	Vss	7	Vss	70	Vss	000	ğ	900	8		D03		õ	Vss	8	Vss
sh EP		16	13	A8	1/07	<i>Γ</i> Ο 7	70	203	1/03	703	1,03	1705	7.03	900	DO 3	900	8		8	D 03	ğ	D 03	呂	D2
和 Fig		17	12	A7	1/03	1/08	Vss	78	707	28	1702	70%	7.02	100	Væ	700	Vss		9	≅	80	ē	8	ā
I, RAM		18	11	VpD	2 / 2	S	703	70/1	1/0	1.07	1.01	1.07	<u>10</u> /	CS/PGM DO7	D02	ାଥ	D 02		900	8	90	8	2	8
PROM	(}	61	10		\overline{WE}	AJO	7,00	708	A0	8	A0	7.0%	40 40	A10	<u>100</u>	A10	2		DO7	Ş	DO 3	92	Ď	9
\mathbf{M}, \mathbf{E}^2	(黑体代表输出)	R	6		Vss	<u>oe</u>	<u>10</u> 7		IV	පු	A1	ଓ	A1	OE	8	OE/V _{PP}	8		ଓ	Æ	ଞ	7	ાડ	TV
EPRC	(黑体丹	21	80		Œ	<u>3/M.</u>	W	A10	A2	AI0	A2	A10	A2	VPP	AO	A11	OV.		A10	Ş	A10	77	A10	इ
存储器	排列	22	7		A2	6¥	A1	OE)	A3	æ	A3	. %	A3	6V	ΑI	6¥	ΑI		13	A3	OE	£Ş	E)	A3
导体	引线	23	9		ΑI	A8	A2	Ail	A4	A11	A4	A11	A4	48	A2	A8	A2		All	44	A11	4 4	A11	\$
	#	24	5		A0	$v_{\rm DD}$	A3	49	AS	6¥	Ş	A9	A5	\mathbf{v}_{do}	EA.	V	A3		6¥	ΑŞ	6¥	સ્	49	ঠ
表 1.27		25	4		A3		44	A8	A6	A8	A6	A8	¥6		A4		¥4		A.8	94	A8	94 94	A8	9V
		26	3		A 4		A5	NC NC	A7	A13	A7	A13	A7		AS		A5	4	NC	Α7	A13	A7	A13	A7
		27	7		A5		46	₩Ē	A12	WR	A12	WR	A12		A6		9V	引线回	PCM	A12	PGM	A12	A14	A12
		88	-		A6		A7	V DD	NC	» na	SC	ν _{DG}	A14		A7		7.47		4 (13)	V.	v.	ا حد	آ منز	γ̈́PP
•		tr			2114		9119		6264		62128		62256		2716		2732	27(32	2764	(27C64)		27128		27256
		中	į		SRAM										EPROM									

续表 1.27 半导体存储器 EPROM、EPROM、RAM和 Flash EPROM 等外引线排列

-					续表 1.27	- 1	非 中 存	不配配	EPR	M.E.		KAN	[편] 편]	EP EP		半导体存储器 EPROM、E-PROM、RAM 和 Flach EPROM 等外引线排列	发排列
						#	外引线	事列(排列 (黑体代表輸出	大 大 大 大 大 大 大 大							
硏	中	28	22	92	22	*	23	22	21	20	19	18	17	16	€		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		-	2	3	4	Ş	٥	7	8	6	10	Ξ	12	13	4		
EPROM		V _B	A14	AI3	A8	Qγ	A11	Œ	A10	13	<u>10</u>	8	8	¥	8		
	27512	A15	A12	Α7	A6	A5	A4	А3	ν2	Α1	OV	00	īQ	DZ	Vss	64K×8	
	271024	A13	V	6V	A11	<u>OE</u>	A10	CE	DO7	900	900	DQ4	900g	GND	D02	DIP32 #	DIP32 封装,29~32 脚为 A14,NC、PGM、V _{ID}
	(27101)	√ PP	A16	AIS	A12	A7	9¥	AS	A4	A3	A2	Al	90	000	Ö		
						Von	A8	9A	WE	<u>OE</u>	AIO	ij	12.7	2	23	18,20,2	18,20,21]=11H,1HL,H××材应读、写和维特
E2PROM	2816A	LV.	Ψ	γŞ	\$	SV.	72	¥	A0	8	ā	D2	₹.	83	Z		
		Voc	W.E	S _C	A8	A9	NC	OE	A10	18	10 /1	80/1	7.0%	707	20/1	* RDY/I	* RDY/BUSY, 仁闲指示, WU写使能, OE输出使能, CE片选, A0 ~ A10 地址线, 1/0 双向数据线
	2817A	*	NC	LV	9٧	45	44	A3	A2	ΑÏ	0γ	1/00	1/0/1	70/1	GND		
		VINI	WE	NC	A8	64	AII	OE	A10	<u>CE</u>	80/1	1/0/	90/1	70%	1/04		
	58064	NC	A12	A7	9V	Ą	\$	ફ	V	Α1	VO.	1,01	70/1	1,03	X.		
Flash		Voc	WE	A17	A14	AJ3	A8	6¥	AII	ÖĔ	۸10	CE	DQ7	8	Š	DQ4	DQ3 DIF32 封接
EPROM	281020	VPP	A16	AIS	A12	A7	46	A.S	A4	A3	A2	Αl	AO	8	Š	DQ2 Vss	
		Vec	WE	NC	414	A13	A8	49	A11	(E)	A10	Œ	DQ7	Š	8	DQ IN	DQ3 成果 90ms, 標写 5s
	28F256	, Pg	NC	NC	A12	LV.	46	S.	\$	A3	42	A1	9	8	ō	DQ2 Vss	36
NVSRAM	IS1220AB	上 一 本 本	-代非5/	多失型4 1 引象	是新一代非易失型存储器,它既能像 RAM数 基本主压划 引线与 4.14 起局	心 克 克 克 克	(\$ RAM	4 图	机存取	一样随机存取, X 能像 EPROM 一样非易失保存信息。	\$ EPRC	斯 一 本	非易失	保存信	l	「保存数据	可保存数据十年以上,读写时间几十到几百纳秒,对核写次
串行 E ² PROM	24L004	₩ 9€	¥.	Q	CND	S S	苏	WP V	Vcc			封装 8] SDA 串	對裝 8DID、SOIC、14SOIC。 SDA 串行数据线,双向传纬	C,14SG 线,双点	IC。AX 引传输,	2, A1, A0 OD 输出。	對裝 8DIP、SOIC、14SOIC。 A2、A1、A0 器件地址的 低三位。SCI ↑数据写人,↓读出。SDA 串行数据线,双向传输,OD 输出。可在 2.5/3/5V 下工作
	93C46	3	¥		8	CND	ORC	20	Vcc			CS #	E;SK 型	IO: 志	報 人	## 0a;	CS 片选; SK 时钟, DI 串人端; DO 串出端; ORC 接地输出 8 位, 接 Acc 输引 16 位; DC 接Vcc

1.5.4 采样保持器和多路模拟开关

表 1.28 采样保持器和多路模拟开关

	备注		IIN = LOGIC IN, 補投时间 6µs	5µ8	2.5µs	LIN=1OCIC IN, 捕捉时间 4ps	Sps.*为调零电位器动点、模块封装	8 路模拟开关,关断隔电流 10nA, Kov = 3000, ±15V,开关时间 800ns	双4路模拟开关,关断隔电流 5nA, Row = 3000, ±15V, 仟关时间 800ns		16 路模拟开关, Ron = 450Q, 20nA		7510:A=L,S与D断,关断漏电流 5nA。 7511:A=L,S与D校通,关断漏电流 3nA, R _{IN} = 1000	A=L,Y 与SI 通;A=H,Y 与S2 通	$A=L, S_{-1}^{-1} \ D_{-1} \ B_{\odot} \ 201A; \ Ron=60\Omega, \ t_{or}=300ns,$ $t_{off}=250ns; 202A; \ Ron=30\Omega, \ t_{on}=50ns, \ t_{off}=50ns$
	17	16			 			AO	.A0		VO V	7	15		2A
	18	15					į	V.58	Vss	(! [!	E.	¥2	a		23
	61	14	NC	8/11	HOLD			Vpb	VDn		8	£	83	ISI	જ
	20	13	NC	Ċ.	LREF			88	જ		S	NC	20	14	+ >
	21	12	LIN +	NC	ПОП		NC	our	OUT!		83	GND	38	751	NC
(22	11	- NI' -	უ ე	+ Vs		DCND	Si	SI		જ	8%	30	2S2	35
表输出	23	10	۲ ۲	NC	R _{IN}		S/H	22	\mathbf{z}		あ	æ	\$	2 Y	30
(黑体代表输出)	24	6	- [N	+ j > ;	Rrit		our	83	S		SS	810	4D	2S1	3.4
排列(25	8	OUT	NC	OUT	NTI	V – V	22	22		8	SII	V _{DB}	NC	44
引线排列	36	7	NC	OUT	CH	VREE	AGND	83	SS		SZ	\$12	NC	V _{DD}	4
쑛	27	9	Сн	NC.	GND	Ç.	+ 	3 8	88		/ss	\$13	4	NC	\$
	28	νı	v -	- j	NULL	our	*	ST	S		OUL	\$14	34	NC .	GND
ļ		4	NULI.	NUT	- Vs	V -	- II	γ5	OUT2			S15	2.4	2A	- A
j		w	NUJT	NULT.	NULL	+ 1K	NI +	EN	EN			NC	1.8	1A	1S
		5	NC	+ 1IN	AI +	NUCT	NULL	GND	GND	1901	,	NC	GND	CND	a:
		-	+ IN	N IN	~ IIN	V +	NULL NULL	. Al	A1	阿 AU7501]	Vnu	8 ×	Vss	1.4
	台 漆	!	AD582	AD583	AD585	1.F198/298/398	SHA1144	AL7/501	AD7502	AD7503		AD7506	AD7510D1 AD7811 DI	AD7512DI	LTC201A LTC202A

1.5.5 单片微机及主要外围支持芯片

表 1.29 单片微机及外围支持芯片的外引线和主要参数(一)

单片机 8035/8048/8748 8039/8049/8749	单片机 8031/8032/ 8051/8052/8751	可编程键盘/显示接口 8278/8279
TO - 1	P10 - 1	RI.2 - 1
8035/8039外接ROM,片内RAM 8048/8049片内ROM,IK/2K 8748/8749片内EPROM	8031外接ROM,片内RAM(128字节) 8051比8031增加ROM(4K) 8751比8031增加EPROM(4K)	8278为128键,8279为64键
#定时器的RAM/IO扩展器 8155/8156 PC3 - 1 40 - Vcc PC4 - 2 39 - PC2 TIMERIN- 3 38 - PC1 RESET - 4 37 - PC0 PC5 - 5 36 - PB7 TIMEROUT - 6 35 - PB6 IO/M - 7 34 - PB5 (8156CE)CE - 8 33 - PB4 RD - 9 32 - PB3 WR - 10 31 - PB2 ALE - 11 30 - PB1 AD0 - 12 29 - PB0 AD1 - 13 28 - PA7 AD2 - 14 27 - PA6 AD3 - 15 26 - PA5 AD4 - 16 25 - PA4 AD5 - 17 24 - PA3 AD6 - 18 23 - PA2 AD7 - 19 22 - PA1 Vss - 20 21 - PA0	#EPROM的I/O扩展器 8755 ROG&CE1 - 1	通用可编程I/O接口 8255 PA3 - 1

表 1.29 单片微机及外围支持芯片的外引线和主要参数(二)

第二章 模拟集成电路

模拟集成电路是 60 年代初期发展起来的集成电子器件,近年来在扩大品种和提高性能方面取得了明显的进步,除了以运算放大器为代表的模拟集成电路外,各种集成稳压器、功率放大器、模拟乘法器、特种放大器,以及种类繁多的模拟数字混合集成电路和专用集成电路都有大量的产品问世。就运算放大器本身而言,就出现了许多新品种,如大功率运算放大器、电流模集成运算放大器、程控运算放大器、休眠运算放大器等等,常规运算放大器的技术指标也有了一定的提高。

本手册以介绍运算放大器和集成稳压器为主,其它模拟集成电路则选择一些有代表性的加以介绍,主要包括它们的型号、参数、外引线排列和一些典型应用。

2.1 集成运算放大器

2.1.1 集成运算放大器简介

集成运算放大器简称集成运放,是一种高增益的直流放大器,它一般采用双端输入,单端输出的结构形式。双端输入中的同相输入端用"+"或"IN+"表示,反相输入端用"-"或"IN-"表示,OUT为输出端,V+为正电源输入端,V-为负电源输入端。集成运算放大器的种类很多,主要分为通用型集成运放、高精度集成运放、低功耗集成运放、高速集成运放、高输入阻抗集成运放、宽带集成运放、高压集成运放和功率集成运放等八种,下面分别介绍它们的特点。

- ①通用型集成运算放大器是指它的技术指标比较适中,可以满足多数情况下中等技术指标的要求。通用型运算放大器基本上属于第一和第二代运算放大器,其输入失调电压在 2mV 左右,开环增益一般不低于 80dB。
- ②高精度集成运算放大器是指失调电压小、温度漂移非常小和增益、共模抑制比非常高的运算放大器,这类运算放大器的噪声也比较小。其中单片高精度集成运放的失调电压可小到几个微伏,温度漂移小到几十纳伏每度。斩波自稳零式的运算放大器的失调电压温漂可小到几个纳伏每度。
- ③低功耗集成运算放大器,它的电源工作电流十分小,工作电压电很低,往往用于便携式电子设备中。整个运算放大器的功耗可低达十个微瓦量级。
- ④高速集成运算放大器,它的输出电压的转换速率(压摆率)很大,有的可达二三千伏每微秒。这样的运算放大器可用于高速大摆幅的输出级。
- ⑤高输入阻抗集成运算放大器的输入电阻十分大,输入电流十分微小。输入级往往 采用 MOS 管,偏置电流仅为皮安量级。
- ⑥宽带集成运算放大器的频带很宽,单位增益带宽可达千兆赫以上,往往用于宽带放大器之中。宽带和压摆率大并不一定共存,有的宽带运算放大器的压摆率比较大,但有的并不一定大。

- ⑦高压集成运算放大器的供电电压比常规的 15V 要高许多,可达数十伏。这样的运算放大器可免去使用时自己增加高压互补输出级的不便。
- ⑧功率集成运算放大器的输出级具有较大的输出电流,输出电阻小,可向负载提供比较大的输出功率和输出电流。功率集成运算放大器的失调电压、增益等指标一般也高于集成功率放大器。

2.1.2 集成运算放大器的参数

集成运算放大器的参数主要有静态参数和动态参数两大类,也分别称为直流参数和 交流参数。

2.1.2.1 运算放大器的直流参数

输入失调电压 U_{IO} ——运算放大器的直流输出调为零时,两输入端之间所加的补偿电压称为输入失调电压。通用型集成运算放大器的 U_{IO} 约为 \pm (1 ~ 10) \pm nV; 高精度运算放大器的 U_{IO} 一般小于 \pm 0.5 \pm nV,最小的不到 1 个微伏。

输入失调电压温度系数 $\alpha_{U_{no}}$ ——在一定的温度范围内,输入失调电压的变化与温度变化量的比值定义为输入失调电压的温度系数,一般表示为

$$\alpha_{U_{10}} = \frac{\Delta U_{10}}{\Delta T} = \frac{U_{10}(T_2) - U_{10}(T_1)}{T_2 - T_1}$$

式中 $U_{10}(T_1)$ 表示对应温度为 T_1 时的输入失调电压;

 $U_{IO}(T_2)$ 表示对应温度为 T_2 时的输入失调电压。

通用型运算放大器的输入失调电压温度系数约为 $\pm (10 \sim 20) \mu V/ \mathbb{C}$;高精度运算放大器约为 $\pm 1 \mu V/ \mathbb{C}$ 。

输入偏置电流 I_{IB} ——当运算放大器的直流输出为零时其两输入端偏置电流的平均值定义为输入偏置电流。两输入端的偏置电流分别记为 I_{IB1} 和 I_{IB2} ,而 I_{IB} 则为

$$I_{IB} = \frac{I_{IB1} + I_{IB2}}{2}$$

双极型三极管作为输入级的集成运算放大器的 I_{IB} 约为 $10nA \sim 10\mu A$; 场效应三极管作为输入级的集成运算放大器的 I_{IB} 一般小于 1nA。

输入失调电流 I_{10} —— 当运算放大器直流输出为零时,两输入端偏置电流的差,即

$$I_{IO} = I_{IB1} - I_{IR2}$$

一般来说, 集成运算放大器的偏置电流越大, 其输入失调电流也越大。

开环差模直流电压增益 A_{t0} ——简称开环增益。集成运算放大器工作于线性区时,两输入端加差模电压,输出电压的变化量与输入电压的变化量之比即为

$$A_{UD} = \frac{\Delta U_0}{\Delta U_I}$$

开环增益若以分贝为单位,则可表示为

$$A_{UD} = 20 \lg \frac{\Delta U_O}{\Delta U_I} \text{ (dB)}$$

大多数集成运算放入器的开环增益均大于 10⁴, 即 80dB 以上。

共模抑制比 K_{CMR} ——运算放大器工作于线性区时,其差模电压增益与共模电压增益之比称为共模抑制比,即

$$K_{CMR} = 20 \frac{A_{UD}}{A_{UC}} \quad (dB)$$

大多数集成运算放大器的 K_{CMR} 都在 $80 ext{dB}$ 以上。

输出峰峰值电压 U_{OPP} — 输出峰峰值电压是指在一定的负载和非线性条件下,集成运算放大器输出的最大电压幅度。目前大多数运算放大器的 U_{OPP} 都不小于 \pm $10V(\pm 15V$ 供电)。

最大共模输入电压 U_{ICM} ——不断增加运算放大器输入端的共模电压,直到运算放大器的共模抑制比显著变坏为止,这个输入的共模电压即为最大输入共模电压。现在比较好的运算放大器的 U_{ICM} 在正负两个方向相同,数值接近或等于电源电压的数值。

最大差模输入电压 U_{IDM} ——当不断增加运算放大器输入端的差模电压,直到运算放大器中有三极管退出线性区为止,这个输入的差模电压即为最大输入差模电压。

2.1.2.2 运算放大器的交流参数

开环带宽 BW ——当工作频率增加,集成运算放大器的开环电压增益从直流增益下降 3dB 时所对应的信号频率称为开环带宽。由于 BW 的测量比较困难,往往采用单位增益带宽。开环带宽的数值一般都较小,但加入反馈后,可根据单位增益带宽积的关系确定上限频率。

单位增益带宽 $BW_c(GB)$ ——单位增益带宽是在运算放大器闭环增益为 1 倍的条件下,用正弦小信号驱动时,其闭环增益下降至 0.707 倍时的频率。

电压转换速率 *SR* ——在额定的负载条件下,当输入阶跃大信号时,集成运算放大器输出电压的最大变换速率即为电压转换速率,也称压摆率。

等效输入噪声 U_N ——等效输入噪声是当运算放大器的输入短路时,将产生于输出端的噪声折算到输入端的等效电压值。

2.1.3 集成运算放大器查阅说明

运算放大器的主要电参数列于表 2.1 中,必要的说明见表注。运算放大器没有按分类列表,而是按型号的序号由小到大排列,共 105 个品种,207 个规格。表中运算放大器按国标优选系列给出,国家标准的集成运算放大器的型号的前面冠以 CF 的字样,仅有 F 字样的是部标型号。型号的序号与国外厂家的相应产品相同,国外厂家和公司的文字标志在备注中给出。运算放大器的型号一般还有如下规律,即型号中的序号 1 字头的是 I 类产品(军品级); 2 字头的是 II 类产品(工业级); 3 字头的是 II 类产品(民品级),如 CF124/224/324 分别对应三个等级。三个等级主要在工作温度上有差别, I 类的工作温度是 -55%~125%,型号的后缀为 M; II 类的工作温度是 -25%~85%,型号的后缀为 L; III 类的工作温度是 0%~70%,型号的后缀为 C。

运算放大器的封装形式、外引线排列以及某些引脚的外接补偿元件,如补偿电容和偏置电阻等均列在表 2.2 中。表中有关的主要符号含义是 C8、C14、C16 等为双列直插封装,数字 8、14、16 代表引线数; Y8、Y10、Y12 为金属圆壳封装; S 为单列直插封装, F2 为金属菱形封装,与大功率三极管 F2 封装相同。运算放大器的外引线排列的图谱见图 2.1。

IN-代表反相输入端, IN+代表同相输入端, OUT 为输出端, V+为正电源输入端, V-为负电源输入端, Vs表示供电电压, COMP 为补偿端, OA 为调零端, BI 为偏置电流输入端(外接一偏置电阻至电源端,多数情况接到正电源), Cx 为外接电容端, C_B 为外接电

容电阻的公共端,OSC 为振荡信号输出端,NC 为空闲的引线端。比较特殊的符号在备注中加以说明,也可查阅本手册最后所列的符号表。

图 2.1 集成运算放大器的外形封装图

2.1.4 集成运算放大器参数表

表 2.1 运算放大器参数

参数型号	輸入 失电 <i>Um</i> (mV)	失调电 压温 数 αυ ₁₀ (μV/℃)	偏置 电流 I _B (nA)	差模 开环 增益 <i>Au</i> (V/mV)	增益 带宽 乘 <i>GB</i> (MHz)	电压 转换 速 <i>SR</i> (V/s)	等效 输入 嗪 U _N (nV)	共模 抑制 比 K _{CMR} (dB)	共模 电范 U (X)	电源 电流 I _S (mA)	最大 电源 电 _{Vs} (V)	运放个数	引线编号	备 注
CF 0024M 0024L	2 5	20 25	15µ 18µ	5 4		500 400	•	60 60	± 13 ± 13	12.5 12.5	± 18 ± 18	1	1	LH
CF 101AM 201AL 301AC	0.7 0.7 2.0	3 3 6	30 30 70	160			MΩ MΩ MΩ	96 96 90	15, - 13 15, - 13 ± 15	1.8	± 22 ± 22 ± 18	1	3	LM
CF 102M 202L 302C	2 3 5	6 15 20	3 7 10	0.9996 0.9995 0.9995		$R_{LS} =$	10 ¹² Ω	R ₀₅ =	0.8 Ω	3.5	± 18	1	2	LM 电压 跟随器
F 107 207 307	0.7 0.7 2.0	3 3 6	30 30 70	160			ΜΩ ΜΩ ΜΩ	96 96 90	15, – 13	1.8	± 22 ± 22 ± 18	1	38	LM
CF 108 208 308	0.7 0.7 2.0	3 3 6	0.8 0.8 1.5	300		_	OMΩ OMΩ OMΩ	100	±13.5 ±13.5 ±14	0.3	± 22 ± 22 ± 18	1	4	LM
CF 110M 210L 310C	1.5 1.5 2.5	12	1 1 2	0.9999		$R_{IS} =$	10 ¹² Ω	R ₀₈ =	0.75Ω	3.9	± 18	1	2	LM 电压 跟随器

注 1:运算放大器参数 $U_{IO} \times \alpha_{U_{IO}} \times I_{IB} \times A_{UD} \times GB \times S_R \times U_N \times K_{CMR} \times I_S$ 是在标准的供电电压 $V_S = \pm$ 15V 和环境温度 $T_A = 25$ ℃的条件下给出的典型值。 U_{ICM} 是在 $V_S = \pm$ 15V 的条件下给出的最大共模输入电压范围,个别的也有在最大供电电压下的最大共模电压范围。个别参数的单位与表头栏目中不符时,在相应位置标明。M 代表 M2,p 代表 pA。

注 2. 为有效利用版面,在某些空白处插入一些参数,如输出电阻 R_{OS} 、输入电阻 R_{IS} 、差模输入电阻 R_{ID} ;正向最大输出电流 I_{O-} 。

注 3. 在差模开环增益栏单位为 V/mV,个别的用分贝表示,则在参数旁标以 dB 。对于电压跟随器,其电压放大倍数近似等于 I,其单位为 V/V。

注 4: 备注栏中的 LM、LF、LH、MC、CA、RC、ICL、μA、OP 等为对应的国外产品型号,其数字序号与国标···致,不一致的则完整标出。

注 5: 单电源工作,8、9 脚通过电阻接 V+;双电源工作,8、9 脚通过电阻接地。

续表 2.1 运算放大器参数

				33	表 2.1	连昇	放大器	梦蚁						
参数型号	输失电Uto (mV)	失调电 压温数 αυ ₁₀ (μV/℃)	偏置 电流 <i>I_H</i> (nA)	差模 开环 增益 Auo (V/mV)	增益 带稅 <i>GB</i> (MHz)	电压 转换率 SR (V/s)	等效 输 燥 <i>U_N</i> (nV)	共模 抑制 比 <i>K_{GMR}</i> (dB)	共模 电压制 U_{ICR} (V)	电源 电流 I _S (mA)	最大 电 V _s (V)	运放个数	引线编号	备注
CF 118 218 318	2 2 4	$R_{ID} = 3M\Omega$	120 120 150	200	15	70		100	+ 11.5	5	± 20	1	5	L.M
CF 124 224 324	2	7	45	100	I_a	+ = 40m - = 20m $15V$, T_A	A	85 85 70	- 0.3 至 V+	1.5	32 或 ± 16	4	22	LM 单电源
CF 143 343	2		8	180	l	2.5		90	± 26	2	± 40 ± 34	1	6	LM 只Y8
CF 144 344	2		8	180	1	30	·	90	± 26	2	± 40 ± 34	ı	3	LM 只Y8
CF 146 246 346	0.5		50	1000	1.2	0.4	28	100	± 14	1.4	± 22 ± 18 ± 18	4	28	LM 程控 [5]
CF 147 347	1 5	10 10	50pA 50pA	100 100	4	13 13	20 20	100 100	+ 15 - 12	7.2 7.2	± 22 ± 18	4	22	LF TL084
CF 148 248 348	1		30	160	1	0.5		90	± 12	2.4	± 22 ± 18 ± 18	4	22	I.M
CF 155 255 355	3	5	30pA	200	2.5	5	25	100	± 14	2	± 22 ± 22 ± 18	1	6	I.F
CF 156 256 356	3	5	30pA	200	5	12	15	100	± 14	5 	± 22 ± 22 ± 18	1	6	I.F
CF 157 257 357	3	5	30рА	200	20	50	15	100	± 14	5	± 22 ± 22 ± 18	1	6	I,F
CF 158 258 358	2 3 3	7	45	100	_	= 40mA 0.05mA	85 85 70		V ₊ -1.5	ı	32 或 ±16	2	7	LM 单电源
CF 159 359		増益 A/μA	8000 8000	72dB 72dB	30 30	30 30		2.5 kΩ 3.5Ω	<u> </u>	18.5 18.5	22 或 ± 11	2 2	31	LM 电流差动
CF 253	1	3 3	20 20	110 dB				100 100	± 13.5	0.04	36 或 ± 18	1	10	μРС
CF 351	5	10	50pA	100	4	13	16	100	+ 15 - 12	1.8	± 18	I	6	LF TLO81
CF 353	5	10	50pA	100	4	13	16	100	同上	3.6	± 18	2	7	LF,TL082
CF 411 411 A	0.8 0.3	7 7	50pA 50pA	200 200	4 4	15 15	25 25	100 100	± 11 ± 11	1.8	± 18 ± 22	1 1	+-	OP - 15
CF 412 412A	1 0.5	7 7	50pA 50pA	200 200	4 4	15 15	25 25	100 100	± 12 ± 14	3.6 3.6	± 18 ± 22	2 2	<u> </u>	LF
CF 441 441A	1 0.5	10 7	10pA 10pA	100 100	1 1	1	35 35	95 100	± 12 ± 14	0.15 0.15	± 18 ± 22			LF

续表 2.1 运算放大器参数

_					₹ Z. I	, , , , , , , , , , , , , , , , , , , 	双人裔	397.303						
参数型号	輸失电 _{Um} (mV)	失调电 压温 数 a _{vn} (μV/℃)	偏置 电流 / _{IB} (nA)	差模环 拼缝 <i>Aw</i> (V/mV)	增益 带宽 乘 <i>R</i> (MHz)	电压 转速 <i>SR</i> (V/s)	等输噪 <i>U_N</i> (nV)	共模 抑制 比 Kcure (dB)	共模 电危 <i>UKR</i> (V)	电源 电流 I _S (mA)	最大 电电 V _s (V)	运放个数	引线编号	备 注
CF 442 442A	1 0.5	7 7	10pA 10pA	200 200	1 ,	1	35 35	95 100	± 12 ± 14	0.4 0.3	± 18 ± 22	2	7	LF
CF 444 444A	3 2	10 10	10pA 10pA	100 100	i 1	1 1	35 35	95 100	± 12 ± 14	0.8	± 18 ± 22	4	22	Į.F
CF 702M 702C	0.5 0.5	2 5	2000) 2500	3.6 3.4	t, =	25ns = 1		100 92	0.5 -4	5 5	+ 12V - 6V	1	32	μA
CF 709M 709C	1 2	3 3	200 300	45 45	$t_r = 3$	900ns		90 90	± 10 ± 10	2.7 2.7	± 18 ± 18	į.	8	μA
CF 714M 714E 714C	0.03 0.03 0.06	0.3	1 1.2 1.8	500 500 400	0.6 0.6 0.6	0.17 0.17 0.17	10.3 10.5 10.5	126 123 120	± 14 ; ± 14 ; ± 14	12.5 12.5 13.3	± 22 ± 22 ± 22	1	14	ho A OP = 07
CF 715	2		400	30		100	15	92	± 12	5.5	± 18	1	33	μA,LM
CF 725	0.5	2	42	3000	_		15	120	± 14	2.7	± 22	1	15	μA, LM
CF 741M 741C	1 2	10 10	80 80	200 200	1	0.5 0.5	 	90 90	± 13 ± 13	1.7	± 22 ± 18	1	6	μA, LM CA
CF 747M 747C	! 1	10 10	80 80	200 200	· !	0.5 0.5		90 90	± 13 ± 13	3.4 3.9	± 22 ± 18	2	21 27	μΛ,LM CA
F 748M 748C	1 2		80 80	150 150		0.5 0.5		90 90	± 13 ± 13	1.9	± 22 ± 22	1	3	μΑ,LM GA
CF 1420 1520	5 5	2 2	2000 800	64dB 64dB	10 10	5 5	Πμ nms	90 - 90	±3 ±13	10 10	±8 ±8	1	34	MC
CF 1436 1536	5 2		15 8	500 500	1 1	2 2	50 50	110 110	± 25 ± 25	2.6 2.2	± 34 ± 40	1	6	MC
F 1437 1537	1	1.5	400 200	45 45	i	0.25 0.25	30 30	100 100	± 10 ± 10	5.3 5.3	± 18 ± 10	2	23	MC
CF 1439C 1539M	2	3 3	200 200	100 120	 	34 34	45 45	110 110	± 12 ± 12	3 3	± 18 ± 18	1	8	MC
F 1456C 1556M	5 2		15 8	100 100	1	2.5 2.5	45 45	110 110	± 12 ± 13	1.3	± 18 ± 22	1	6	MC
F 1458C 1558M	2		80 80	200 200	1 1	0.5 0.5		90 90	± 13 ± 13	2,3 2,3	± 18 ± 22	2	7	MC, LM,CA
CF 1458SC 1558SM	2		200 200	100 200		20 20		90 90	± 13 ± 13	2.3 2.3	± 18 ± 22	2	7	MC
CF 2500M 2505C	2 4	20 20	100 125	30 25	12 12	30 30		90 90	± 12 ± 12	4 4	± 20 ± 20	1	9	НА
CF 2520M 2525C	4 5	20 30	100 125	15 15	20 20	120 120		90 90	± 10 ± 10	4 4	± 20 ± 20	ı	9	HA
CF 2620M 2625C	0.5	5 5	1 5	150 150	100 100	35 35	11	100 100	± 11	3 3	± 22.5 ± 22.5	1	9	HA
CF 2900M 3900C		増益 1/μA	30 30	2.8	2.5 2.5	20 20				6.2 6.2	32 或 ± 16	4	24	LM 电流差动
CF 3078M 3078C	0.7		7 60	100dB 92dB	İ	0.04 0.04	25 25	115 110	± 18 ± 18	20μ 0.1	± 18 ± 18	1	10	CA 只Y8
CF 3080M 3080C	0.4 0.4	0.3	2000 2000		2 开环	50 50		110 110	+ 13.6 - 14.6	1.1	± 18 ± 18	ı	11	CA,LM 跨导

续表 2.1 运算放大器参数

													,	
	输失电 形质压	失调电 压温度 系 数 α _{Uno}	偏置 电流 [#	差模 开环 增益 A _{vp}	增益 带宽 乘积 CB	电压 转换 速率 SR	等效 输入 噪声 <i>U_N</i>	共模 抑制 比 K _{CMK}	共模 : 电压 起制	电源 电流 Is	最电电 电电 V _s	运放个数	引线编号	备注
型号((μν/℃)	(nA)	(V/mV)	(MHz)	(V/s)	(nV)	(dB)	(v)	(mA)	(V)	×	7	
CF 3094A 3094B	0.4 0.4	4 4	200 200	100 dB	30 30	50 50	18 18	110 110	+ 13.8	0.33 0.33	± 18 ± 22	1	35	CA 跨导
CF 3130	8	10	5pA	320	15	30	23μ	90	+ 12	10	± 16	,	12	CA
3130A 3130B	2 0.8	10 5	5рА 5рА	320 320 320	15 15 15	30 30	23μ 23μ	90 100	-0.5	10 10	± 16 ± 16	•	12	CMOS
CF 3140	5	8	10pA	100	4.5	9	40	90	+ 12.5	4	± 18	1	12	CA
3140A	2	6	10pA	100	4.5	9	40	90	- 15.5	4	± 18	} *	12	MOS
3140B	0.8	5	10pA	100	4.5	9	40	94		4	± 22			
CF 3193	0.3	1	20	110dB	. 1.2	0.25	25	110	+11.5	2.3	± 10	<u> </u>	6	CA
	0.14	1 1	10	115dB	1.2	0.25	25	115	+11.5	2.3 2.3	± 18 ± 18	I	0	CA MOS
· .	0.04	0.6	6	125dB	1.2	0.25	25	130	25.2	2.3	± 22	 	Ì	1
F71.401		_				0.6	I _o	+ = 10r	nA		<u> </u>) ·-	_	MC, GA
F3401			50	2	5	0.6		, - = 1m		6.9	± 9	4	24	电流
CF 4156M	0.5	5	60	100	3.5	1.6	1,6μ	80	± 14	5	± 20	4	22	RC
4156E	1	5	60	100	3.5	1.6	1.6μ	80	± 14	5	± 20			,
4156C	t	5	60	100	3.5	1.6	1.6μ	80	± 14	4.5	± 20			
CF 4250M	3		50	60	0.2	0.2		70	± 13.5	0.1	± 18	1	13	LM
4250C	3	ļ. <u></u>	75	100	0.2	0.2		min	± 13.5	90μ	± 18	<u> </u>		
CF 4558M 4558C	1 2		80 80	200 200	2.8 2.8	1.6		90 90	± 13 ± 13	2.3	± 22 ± 18	2	7	MC
CF 4741M	1		80	200	2.6	0.5	<u></u>	90	± 13	2.4	± 22	4	22	MC
4741C	2		80	200		0.5		90	± 13	3.5	± 18	4	22	WIC
F5037 A	0.01	0.2	10	1800	63	17	3.5	126	± 12.3	3	± 22	1	14	OP - 37
В	0.02	0.3	12	1800	63	17	3.5	123	± 12.3	3	± 22	1	((S. 27
C	0.03	0.4	15	1500	63	17	3.8	120	± 12.3	3	± 22]
	0.02	0.05	0.3	105dB	0.3	0.5	700	88	±4	1.7	±9	ı	25	1CL
7601	0.02	0.05	0.3	105dB	0.3	0.5	700	88	±4	1.7	±9	<u> </u>		
CF7611 B	2	10	1pA	104dB	44k	16mV	100	96	±4.4	10ул	±9	1	13	ICL
C	5	15	1pA	104dB	44k	16mV	100	96	±4.4	10μ	±9			CMOS
E	15	25	-1pA	104dB	44k	16mV	100	96	±4.4	10μ	±9		L	
CF7612 A	2	10	1pA	104dB	44k	16mV	100	96	±5.3	10μ	±9	1	13	1CL
В	5	15	ipΑ	104dB	44k	16mV	100	96	±5.3	10μ	±9	İ		CMOS
D	15	25	lpA 	104dB	44k	16тV	100	96	±5.3	10μ	±9			
CF7613 A	2	10	1pA	104dB	44k	16mV	100	96	±4.4	10μ	±9	1	13	
В	5	15	1pA	104dB	44k	16mV	100	96	±4.4	10μ	±9			CMOS
D	15	25	1pA	104dB	44k	l6mV	100	96	±4.4	10/4	±9		L	
CF7614 A	2	10	1. 5 p	102dB	0.48	0.16	100	91	±4.2	0.1	±9	1	36	ICL
В	5	15	1.5p	102dB	0.48	0.16	100	91	±4.2	0.1	± 9	1	1	\
	15	25	1.5p	102dB	0.48	0.16	100	91	±4.2	0.1	± 9	Ĺ		Ĺ
D												$\overline{}$	$\overline{}$	I —
D CF7615 A	2	10	lpA	102dB	0.48	0.16	100	91	± 4.2	0.1	±9	₁	36	ICT
	2 5 15	10 15 25	lpA lpA lpA	102dB 102dB 102dB	0.48 0.48 0.48	0.16 0.16 0.16	100 100 100	91 91 91	±4.2 ±4.2 ±4.2	0.1 0.1 0.1	±9 ±9 ±9	 	 	ICT

续表 2.1 运算放大器参数

参数	輸失电 Uno	失调电 压温度 系 数 a _{Uto}	候置 电流 /#	差 料 料 料 者 (a)	增益 带宽 乘积 <i>CB</i>	电压 电换 速率 SR	等 输 操 人 店 U _N	共模 抑制 比 K _{CMR}	共模 电范 Urcr	电源 电流 I _S	最大 电源 电V _s	运放个数	引线编号	备注
型号	(mV)	(μV/℃)		(V/mV)	(MHz)	(V/s)	(nV)	(dB)	(\mathbf{v})	(mA)	(v)	蚁	3	
CF7621 A B	2 5	10 15	1pA 1pA	102dB 102dB	0.48	0.16	100	91 91	±4.2 ±4.2	0.1	±9	2	7	ICL
D	15	25	lpA ————	102dB	0.48	0.16	100	91	±4.2	0.1	±9			
CF7622 A	2	10	1pA	102dB	0.48	0.16	100	91	±4.2	0.1	±9	2	27	ICL
B	5	15	1pA	102dB	0.48	0.16	100	91	±4.2	0.1	±9			ı
D	15	25	lpA	102dB	0.48	0.16	100	91	±4.2	0.1	±9			
CF7631 B	5	15	1pA	102dB	44k	16mV	- 100	96	±4.4			3	30	lCL
C	10	20	lpA	102dB	44k	16mV	100	96	±4.4	10μ	±9	_		CMOS
E	20	30	ipA	102dB	44k	16mV	100	96	±4.2	,		1	! 	
CF7632 B	5	10	lpA.	104dB	44k	16mV	100	96	ļ. -			3	30	icl
C	10	20	lpA	104dB	44k	16mV	100	96	±4.4	10μ	±9		**	CMOS
Ł	20	30	lpA	1.04dB	44k	16mV	100	96		,	,	-		
CF7641 B	5	15	lpA	98dB	1.4	1.6	100	87				4	22	ICL
C	10	20	lpA	98dB	1.4	1.6	100	87	±3.7	1	±9			CMOS
E	20	30	l pA	98dB	1,4	1.6	100	87			i			
CF7642 B	5	15	lpA	104dB	44k	16mV	100	96		· · · · · ·		4	22	ICL
C C	10	20	lpA	104dB	44k	16mV	100	96	±4.4	10μ	±9	-		CMOS
E	20	30	lpA	104dB	44k	16mV	100	96 .		,				
CF7650	0.7	0.01	1.5p	5000	2	2.5	100	130	+2.6	2	±9	1	26	ICL CMOS
CF13080	3	5	100	10		1.6	:	85	-0.3 +15	3	+7.5	1	37 39	程控 LM
CF14573	10		1	90dB		2.5		80	0 ~ 13	0.2	81	4	29	程控 MC
AD 549	0.15	2	0.04p		1	3	35			0.6	± 18	1	6	
840	0.1	3	-	102dB	40	400	10μ	115	1	15		1	14	ļ
5539	2		6000	52dB	1400	600	4	85		14	± 18	1	1	
9610	0.3	5	70			3500	0.7			21	± 18		41	
AH 9914	20	100			3000	900	20			40	± 18	1	42	
CLC 220	10	35	10μ			7000	50μ			30	± 20	1	43	
ICL 7600	2μ	5n	300p		1.2	1.8				7	±9	1	25	
7601 7652	2μ 700	5n	300p	ļ	1.8	1.8]		7 2	±9 ±9	1 1	25]
1002	700n	10n	J.5p		0.45	0.5		1			# 7	'	16 26	1
)			ļ 1			700				,		17	
			150	 	<u></u>		•		. 104	60		 	46	
LM 12	2	<u></u>	150p			<u></u>	L	1 to =	: 10A	60	± 50	1	40	

续表 2.1 运算放大器参数

				,										
参数型号	輸入 失调 电 (mV)	失调电 压温度 系 数 αυ ₁₀ (μV/℃)	IB	差模 开坏 增益 <i>Aw</i> (V/mV)	増益 帯競 乗供 GB (MHz)	电压 转换率 SR (V/s)	等翰·	块模 抑制 比 K _{CSR} (dB)	共模 电范 - 地面 - (V)	电源 电流 I _S (mA)	最 电 ル が (V)	运放个数	引线编号	备注
LT 1028 1037 1057 1058	10µ 10µ 0.15 0.15	0.2 0.2 1.8 1.8	25 10 5p 5p		75 50 5 5	15 15 14 14	0.85 2.5 13 13			7.4 2.7 3.2 6.4	± 22 ± 22 ± 20 ± 20	1 1 2 4	15 14 7 22	
1226 LTC 1052 7652	0.3 500n 500n	6 10n 10n	1p 1p	104dB	40 1.2	400 4 4	2.6 1.5μ 1.5μ	103dB		1.7	±9	1 1	14 17,26 19 16	
MAX 420 422 423	1μ 1μ 1μ	20n 20n 20n 20n	10p 10p 10p		0.5 0.13 0.13	0.5 0.13 0.13	1.1μ 1.2μ 1.2μ		-	1.3 0.3 0.3	± 18 ± 18 ± 18	1 1 1	16,17 16,17 26	
MAX 435 436 NE 5532 5534 5539	0.3 0.3 0.5 0.5 2.5	5 5 5	20μ 6μ 200 400 5000	4 8	275 200 10 10 1200	800 850 9 13 600	5 3.5 4	90 90		35 35 8 4 14	±5 ±5 ±22 ±22 ±12	1 1 2 1 1	44 47 7 20 40	跨导
OP 07A 07C 07E OP 27 OP 37 OP 47 OP 64 OP 80 OP 177	0.01 0.06 0.03 0.01 0.01 0.02 0.2 0.4 4 μ	0.2 0.5 0.3 0.2 0.2 0.3	0.7 0.8 1.2 10 i0 12 300 0.02p 0.5	500 500 400 142dB	0.5 0.5 0.5 8 63 70 200 0.3 0.6	0.17 0.17 0.17 0.17 2.8 17 50 200 0.4 0.3	9.6 9.6 9.6 3 3 7	126 120 123 40	± 14 ± 14 ± 14	4 4 5 3 3 7 0.17 1.6	± 22 ± 22 ± 22 ± 22 ± 22 ± 18 ± 8 ± 15		14 14 14 14 9 5	
TL 051 052 054 TL 061 062 064 TL 071 072 074 TL 084	0.35 0.4 0.5 3 3 3 3 3	8 6 23 10 10 10 10 10 10	30p 30p 30p 30p 30p 30p 5p 30p 30p 30p		3 3.1 2.7 1 1 3 4 4	23.7 20.7 17.8 3.5 3.5 3.5 13 13 13	18 19 21 42 42 42 18 18 18 25			2.7 4.8 8.4 0.2 0.4 0.8 1.4 2.8 5.6 5.6	± 18 ± 18 ± 18 ± 18 ± 18 ± 18 ± 18 ± 18	1 2 4 1 2 4 1 2 4 4 4	6 7 22 6 7 22 6 . 7 22 22	:::::::::::::::::::::::::::::::::::::::
TP 1443 1465	1 0.5	50 25	10p 10p		2000 2500	1000 1000	20 6μ		0.1A 0.75A	45 20	± 18 ± 40	1	18 45	+

表 2.2 集成运算放大器的外引线排列

外引:编号	线排列	-											
编号			•			16	15	1 14	13	12	11		
	封装	I	2	3 	4	5	6	7	8	9	10	备	注
1	Y8	СОМР	IN -	IN+	V -	COMP/OA	OUT	V +	COMP/OA				
2	Y8	OA1	NC	IN	V -	BOOSTER	OUT	V +	OA2				
3	C8 Y8	OA1/COMP1	IN –	LN+	V -	OA2	OUT	V +	COMP2				
4	C8 Y8	COMP1	IN –	IN+	V -	NC	OUT	V +	COMP2				
5	C8 Y8	OAL/COMP1	IN	IN+	V -	0A2/COMP3	OUT	V +	COMP2				
6	C8 Y8	OAl	IN -	IN+	V -	OA2	OUT	V +	NC				
7	C8 Y8	10UT	1IN -	1 IN +	V -	21N+	2EN -	20UT	V +				
8	C8 Y8	COMP1	IN -	IN+	V -	СОМР3	OUT	V +	COMP2				
9	C8 Y8	OA1	IN -	IN+	V -	OA2	OUIT	V +	BW				
10	C8 Y8	COMPI	IN –	IN+	V -	BI	OUT	V +	COMP2				
11	C8 Y8	NC	IN-	IN+	V -	BI	OUT	V +	NC	·		_	
12	C8 Y8	QA1	IN -	IN+	V -	OA2	OUT	V +	ST		•		
13	C8 Y8	OAI	IN -	IN+	V -	OA2	OUT	V ÷	Bì			-	
14	C8 Y8	OAI	IN –	IN+	V	NC	OUT	V +	0A2				
15	C8 Y8	OA1	IN –	IN+	V -	COMP	OUT	V +	OA2				_
16	Y8	CX	IN –	1N +	V -	CR	OUT	V + /CASE	CX			•	
17	C8	CX	1N -	IN+	V -	CR	OUT	V +	сх	•		_	
18	Y8	OUT	V +	COPM	OA1	IN-	IN+	V -	OA2				
19	Y8	CX	IN-	IN+	V -	CLA	OUT	V +	Cx			·	
20	C8	OA	IN –	IN +	V -	COMP ·	OUT	V +	OA/COMP	•••	-		
21	Y10	10UT	1 V +	11N -	11N +	V -	2IN+	21N –	2V +	20UT	NC		
22	C14	10UT	1IN -	1 i N+	V +	2LN +	2IN -	4OUT 2OUT	41N – 3OUT	4IN + 3IN -	V – 3IN +		
	•						=	V +	2COMP2	20UT	2COMP3	_	
23	C14	1COMP2	10UT	1COMP3	1COMP1	IIN –	1 [N +	V -	2IN +	2IN -	2COMP1		_
24	C14	1 IN +	2IN +	2IN -	20UT	100Г	1 FN -	V + GND	31N + 31N ~	4IN + 30UT	4IN – 40UT		
25	C14	Cxı	CXI	IN +	AZ_	IN –	CX2	DR CX2	NC V –	OSC BI	V + OUT		
26	C14	$C_{\mathbf{x}}$	C _X	NC NC	EN -	IN+	NC	IN/EXT V -	CPI CR	CP _o CLA	V + OUT		
27	C14	1IN -	1IN +	10A2	V -	20A2	2IN +	10A1 2lN -	1V + 2OA1	10UT 2V +	NC 2OUT		
				- 0.12	<u> </u>	40UT	4IN -	4IN +	V -	3IN +	3IN -	BI3	書第
28	C16	10UT	1 IN ~	1 IN +	<u>V</u> +	21N +	2IN -	20UT	BI1,2,4	BI3	3OUT	三 个 放的	区 BI
29	C16	10UT	1IN ~	11N +	V+	40UT 2IN+	4IN - 2IN -	4IN + 20UT	V + BI1,2	3IN + BI3,4	3IN 3OUT		
30	C16	NC	1 <u>IN</u> ~	1IN +	20UT	1Bi V +	V + 3BI	10UT 3IN -	2IN + 3IN +	2IN – V –	2BI 3QUT		
31	C14	Blo	10UT	1COMP	IGND	NC	IN -	20UT IN+	2COMP BI ₁	V + 21N +	2GND 2IN		

续表 2.2 集成运算放大器的外引线排列

外引	线排列		2	3	_	16	15	14	. 13	12	11	5 2. 34-
编号	封装	1	2		4	5	6	7	8	9	10	备 注
32	C8 Y8	GND	IN –	IN +	V -	COMP1	COMP2	OUT	V +	. -	!	
33	¥10	COMP1	CAS	IN –	IN+	V -	OUT	COMP2	V +	COMP	3 COMP4	
34	Y10	COMP1	COMP2	V -	OUTI	OUT2	COMP4	COMP3	V+	IN -	IN+	
35	C8 Y8	COMP/ST	IN –	IN+	V	BI	OUT-	V+	OUT+			
36	C8 Y8	OA1	IN –	IN +	V –	OA2	our	V +	COMP	_		
37	C8	JN –	BIo	IN +	GNDS	OUT	V +	BII	NC			GNDS 信 导地
38	C8 Y8	NC	IN –	IN+	V –	NC.	OUT	V +	NC		"	GNDG 功率地
39	SII	OUT	V +	BI _I	NC	in –	GND	Blo	1N +	NC	GNDP GNDS [1]	
40	C14	1N +	NC	V -	NC	TP	NC	IN – GND	NC OUT	COMP NC	NC V +	
41	Y12	V+	BYPASS	GND	R _F	IN –	IÑ +	GND	BYPASS	V + V -	OUT [1]	
42	C14	IN ~	IN +	COMP	NC	NC	NC	V + V -	NC OUT	NC NC	NC NG	_
43	Y12	V +	BIAS	GND	NC	IN –	IN+	GND	R _F	V + V -	OUT [1]	
44	C14	Vec	IN +	Z+	NC NC	z-	IN -	Vec V _{EE}	Iout +	Vee Iout -	Iset V _{EE}	
45	F2	OUT	NC	V +	EN+	IN –	V -	СОМР	COMP			
46	F2	our	V +	IN+	IN -	外売 V -						
47		. 县 Iout –	カ NC・2・	- - 和 Z - 前	 1接醫量図	└───── 		 ≸#₹				

注[1]:有的管脚标注太长,没有与表头栏目中的管脚标号——对齐,查阅时请数清楚。

2.1.5 集成电压比较器

集成电压比较器是一种专用的运算放大器,用于模拟信号的比较。此时,运算放大器在开环状态下工作,由于开环放大倍数很大,所以比较器的输出往往不是高电平,就是低电平。常用的集成电压比较器见图 2.2。常用比较器都是开路输出,故要在输出端和电源之间接一个 10kΩ 左右的电阻器。调零时可在两 OA 间接一个几千欧的电位器,电位器中心头经一个几千欧的电阻器接正电源。

单比较器 双比较器 CJ0311/LM311 LM393 IOUT OUTe -8 V+ $-\mathbf{V}_{\mathbf{CC}}$ IN+ $7 \vdash OUT_C$ 1IN--7 - 20UT 2 2 3 6 ⊢ OA/ST $11N+-\frac{1}{2}$ - 2 IN-IN-6 V_{EE} GND - 4 5 - 21N+ 5 OA 以 OUTe 输出时, 2 脚为 IN - , 3 脚 另有 Y8 封装,引脚, 为 IN+。OA 调零、ST≃ H 选通。另有 顺序同 C8 Y9 封装,引脚顺序同 C8 精密高速比较器 四比较器 CJ0339/LM339 AD790 2OUT --15V → 1 8 ⊢ +5V 14 - 30UT 10UT - 2 7 - OUT 1N+-1213 ⊢ 40UT

图 2.2 常用集成电压比较器

IN-+3

-15V-| 4

- GND

- U_{Latch}

6

5

 t_{pd} =40ns 锁定 t_{set} =5ns , t_k =25ns

 $U_{IO} = 50 \mu V$, $K_{CMR} = 105 \text{dB}$

2.2 集成稳压器

集成稳压器具有精度高、体积小、使用方便、输出电压固定或可调、输出电流规格多、有多种保护功能等特点,它可作为稳压电源广泛用于仪器仪表和电子线路中。集成稳压器的国标型号命名是 CW××,C是 CHINA 的词头,W是稳压拼音的第一个字母。集成稳压器的种类很多,输出端头多的逐步被淘汰,目前使用最多的是三端集成稳压器。它有输入、输出和公共端三个端头,在可调三端稳压器中公共端称为调整端。本手册集成稳压器部分主要介绍:

·三端固定正压输出集成稳压器;

 $V_{CC} - \mid 3$

11N- **-** 4

1IN+-5

2 IN - - 6

21N + -17

12 - GND

11 ⊢ 4[N+

10 ⊢ 4IN-

- 3IN+

- 3IN-

- ·三端固定负压输出集成稳压器;
- ·三端可调正压输出集成稳压器;
- ·三端可调负压输出集成稳压器;
- ·三端大电流集成稳压器;
- ·三端低压差集成稳压器;
- ·基准电压源;
- ·开关集成稳压器。

2.2.1 三端固定输出集成稳压器

2.2.1.1 CW78××系列三端固定正压输出集成稳压器

CW78××系列三端固定正压输出集成稳压器性能优越,外围附加元件少,使用方便,内部有过流、过热和调整管安全工作区保护,能有效地防止集成稳压器因过载而损坏。根据输出电流的大小,CW78××系列三端固定正压输出集成稳压器分有三个子系列,每个子系列一般有七个电压等级:5、6、9、12、15、18 和 24V。电流等级一般有三个:0.1、0.5 和 1.5 A。

- 1.5A, 型号为 CW7805、CW7806、CW7809、CW7812、CW7815、CW7818、CW7824;
- 0.5A. 型号为 CW78M05、CW78M06、CW78M09、CW78M12、···、CW78M24;
- 0.1A, 型号为 CW78L05、CW78L06、CW78L09、CW78L12、···、CW78L24。

CW78××系列三端集成稳压器的封装有金属菱形 F-2 (TO-3)、F-1 和金属圆壳 B-3D(TO-39),塑料封装 S-7(TO-220) 和 S-1(TO-92)型共五种,括号中的封装型 号是相应的国外型号。金属菱形封装比塑料封装可允许较大的功率损耗,因为它们的散热条件较好,热阻较小。集成稳压器在使用时应根据使用条件配以足够大的散热器,以保证集成稳压器的温升不超过热保护的温度,否则将不能正常工作。

集成稳压器根据工作结温允许范围分为三类, I 类; -55% ~ + 150%, I 类; -25% ~ + 150%, II 类; 0% ~ + 125%。一般来说, II 类为塑料封装, I 类和 II 类为金属封装。但国外产品 78 和 79 两个系列只有 I 类和 II 类和 II 类和 II 类和 II

2.2.1.2 CW79××系列三端固定负压输出集成稳压器

三端固定负压输出集成稳压器的型号是 CW79××,与 CW78××相比只是输出电压 极性不同,其它在电压、电流等级和封装形式上完全一样,在电气指标上也基本相同。必 须指出的是,不同子系列的正压输出、负压输出、不同封装的集成稳压器的外引线排列位置是不同的,使用时必须小心核对。

CW78××和 CW79××系列的集成稳压器的典型应用电路见图 2.3。为了进一步改善滤波效果,应接入 C_i和 Co。 CW78××系列的集成稳压器输入和输出之间的电压相差不得小于 2V,一般在 5V 左右为宜,这样集成稳压器的功耗不太大,又可使调整管处于放大区工作,保证较好的电气技术指标。目前有一种低压差集成稳压器,输入和输出之间有 0.5V 的压差就可正常工作,这

图 2.3 三端集成稳压器的应用电路

种低压差集成稳压器功耗可下降许多。还有一种跟踪式集成稳压器,它可输出正、负两路而绝对值相等的电压。

各种三端固定输出集成稳压器的的电气参数见表 2.3, 极限参数见表 2.5, 外引线排列见表 2.6。CW 系列集成稳压器的封装外形图见图 2.4。

图 2.4 CW 系列集成稳压器的封装外形图

2.2.2 三端可调输出集成稳压器

CW117/217/317/M/L系列是三端可调正电压输出集成稳压器,CW137/237/337/M/L系列是三端可调负电压输出集成稳压器。它们的输出电压可分别在1.2V~37V和-1.2V~-37V的范围内调节,其它电气技术指标、封装形式与固定输出三端集成稳压器基本相同。它也有1.5A、0.5A、0.1A三个电流等级,与运算放大器一样,型号的数字1字头为

图 2.5 三端可调集成稳压器的应用电路

1类产品,2字头为Ⅱ类产品,3字头为Ⅲ类产品。

三端可调输出集成稳压器的典型应用电路如图 2.5 所示,输出电压可通过调节电位器 Rp 实现,计算式如下

$$U_o = 1.25(1 + R_p/R_1)$$

三端可调输出集成稳压器的电气参数和外引线排列见表 2.4 和表 2.6,极限参数见表 2.5。

表 2.3 CW78/M/L××、CW79/M/L××系列三端固定输出集成稳压器电气参数 $T_i = 25$ $^{\circ}$

参数	輸出	电压	电压调整率	I	1.流调整率	5	噪声电压	输出温漂	纹波抑制比
	U_{η}	(V)	$S_V(mV)$		$R_{t} (\mathrm{mV})$		$U_{\Lambda}(\mu V)$	S_T (mV/°C)	$S_R(\mathrm{dB})$
型 异	MIN	MAX	U1:(* ~ * V)	$l_s; I_L \sim$	1.51/0.5	A/0,1A	10Hz ~ 100k		
7805	4.8	5.2	7(8 ~ 18)	25(20)	20(15)	8.5(5)	40	1.0	63
			[1]	[2]	[3]	[4]		[5]	
7806	5.75	6.25	8.5(9~19)	30(25)	25(20)	10(6)	50	1.0	61
7809	8.65	9.35	12.5(12~22)	40(30)	35(27)	15(9)	70	1.2	58
7812	11.5	12.5	17(15 ~ 25)	50(40)	50(35)	20(12)	100	1.2	55
7815	14.4	15.6	21(19~29)	60(50)	60(45)	25(15)	120	1.5	53
7818	17.3	18.7	25(22 ~ 32)	70(60)	70(55)	30(18)	150	1.8	52
7824	23.0	25.0	33.5(28 ~ 38)	90(80)	100(75)	40(24)	200	2.4	49

续表 2.3 CW78/M/L××、CW79/M/L××系列三端固定输出集成稳压器电气参数 $T_i = 25$ ℃

参数	输出电压	电压调整率	电流调整率	噪声电压	输出温漂	纹波抑制比
	$U_{o}\left(\mathbf{V}\right)$	S _V (mV)	$S_{V}(mV)$ $R_{I}(mV)$		$S_T (mV/C)$	S_R (dB)
型身	MIN MAX	$U_t:(* \sim * \mathbf{V})$	$I_o: I_L \sim 1.5 \text{A}/0.5 \text{A}/0$	0.1A 10Hz ~ 100k		
7905	-4.8 -5.2	7(-8~-18)	60(20) 20(15) 8.	5(5) 40	1.0	63
7906	-5.75 -6.25	8.5(-9~-19)	70(25) 25(20) 10	0(6) 50	1.0	61
7909	-8.65 -9.35	12.5(- 12 ~ - 22)	100(30) 35(27) 1	5(9) 70	1.2	58
7912	-11.5 -12.5	17(- 15 ~ - 25)	120(40) 50(35) 20	0(12) 100	1.2	55
7915	- 14.4 - 15.6	21(-19~-29)	150(50) 60(45) 25	5(15) 120	1.5	53
7918	-17.3 -18.7	25(-22~-32)	180(60) 70(55) 30	0(18) 150	1.8	52
7924	-23.0 - 25.0	33.5(-28~-38)	240(80) 100(75) 4	0(24) 200	2.4	49

- 说明 1. 本表对 CW 系列三端固定输出集成稳压器均适用,除了电流调整率对各个子系列的同一电压等级不同外, 其它电气参数均相同。
- 说明 2: CW78××和 CW79××系列集成稳压器最大输出电流值为 1.5A, 有些厂家的不到 1.5A。
- 说明 3: CW78 和 CW79 系列集成稳压器的外引线和封装形式请参阅表 2.6 和图 2.4。
- 注[1]: 电压调整率的典型值, 括号中为测试时的输入电压变化范围。对于 CW/M/L, 测试电流分别为 500/200/40mA。
- 注[2]: 此为 CW78××和 CW79××系列 B 档集成稳压器电流调整率的典型值, 括号中为 C 档的典型值, 测试电流的变化范围是 10mA ~ 1.5A。
- 注[3]: 此为 CW78M××和 CW79M××系列电流调整率的典型值, 其它同上, 测试电流的变化范围是 5mA~0.5A。
- 注[4]: 此为 CW78L××和 CW79L××系列电流调整率的最大值, 其它同上, 测试电流的变化范围是 1mA~0.1A。
- 注[5]: $T_{i, \leq T_{i} \leq T_{ii}}$, 对于三种电流等级的稳压器,测试时输出电流分别为 50/5/1mA。

表 2.4 CW117/M/L - 217/M/L - 317/M/L CW137/M/L - 237/M/L - 337/M/L 系列 三端可调输出集成稳压器电气参数 T₁ = 25℃

			70, — 3			43-30	•			, 200
参数	符号	测试条件	单位	型号	217/21/M/21/L			CW317/317M/317L CW337/337M/337L		
_					MIN	NOM	MAX[1]	MIN	NOM	MAX
电压调整率	S_V	$3V \leq (U_i - U_\sigma) \leq 40V$	%/V			0.02	0.05		0.02	0.07
电流调整率	Sı	$I_H \geqslant I_o \geqslant I_L[3]$	%			0.3	1		0.3	1.5
调整端电流	I_{ADJ}		μΑ			50(65)	100[2]		50(65)	100 [2]
基准电压	U_{REF}		v		1.20	1.25	1.30	1.20	1.25	1.30
最小负载电流	I_{omin}	$U_i - U_o = 40V$	mA			3.5	5	_	3.5	5/10/10
纹波抑制比	S_R	$\overline{U_g} = 10 \text{V}, f = 100 \text{Hz}$ $C_{ADI} = 10 \mu \text{F}$	dВ			80(70)			80(70)	
输出温漂	ST	$T_{j} \geqslant T_{fL}, T_{j} \leqslant T_{fH}$	mV∕°C			0.7			0.7	
最大输出电流	I		A		分1.5	A/0.5A/0.	IA 三档,J	记说明 1		

- 说明 1; CW117/217/317(I_o = 1.5A)、CW117M/217M/317M(I_o = 0.5A)、CW117L/217L/317L(I_o = 0.1A) 系列是三端 可调正压输出集成稳压器,输出电压调节范围是 1.2V ~ 37V。CW137/237/337(1.5A)、CW137M/237M/337M(0.5A)、CW137L/237L/337L(0.1A) 系列是三端可调负压输出集成稳压器,输出电压调节范围是 -1.2V ~ -37V,输入也为负,为简单表中的负号省略。由于稳压器本身有热保护,所以最大输出电流 还受功耗和散热条件的限制。
- 说明 2: I=1.5A 稳压器的封装有金属菱形 F-2 型和塑封 S-7 型,分别与国外的 TO-3 和 TO-220 型封装相对应; I=0.5A 稳压器的封装有金属菱形 F-1 型和塑封 S-7 型; I=0.1A 稳压器的封装有金属圆壳 B-3D 型和塑封 S-1 型,分别与国外的 TO-39 和 TO-92 型封装相对应。
- 注[1]: MIN 为最小值, NOM 为标称值, MAX 为最大值。
- 注[2]:括号中是三端可调负压输出集成稳压器的数据。
- 注[3]:对于 CW78/M/L、CW79/M/L系列, I, 分别是 100/10/5mA, I, 分别是 1.5/0.5/0.1A。

表 2.5 CW 系列三端集成稳压器的极限参数

	极限参数										
系 列	最大输入电压	输入输出压差	结温范围	功耗							
	U _{imax} (V)	$U_i - U_o\left(\mathbf{V}\right)$	<i>T_i</i> (℃)	$P_d\left(\mathbf{W}\right)$							
CW78××	$35(U_a = 5 - 18V)$			由内部电路限制,其							
CW79 × ×	40(U _o = 24V)		1类;	数据基本上取决于 対装形式。[2]							
	[1]			$F-2$; $P_d \ge 15W$							
CW78M××	$35(U_o = 5 \sim 18V)$		79	$F-1: P_d \geqslant 7.5W$							
CW79M××	$40(U_a = 24V)$		117/137	$S-7$; $P_d \geqslant 7.5W$							
CW78L××	$30(U_o = 5 \sim 9 \text{ V})$			$B-3D$; $P_d \ge 0.5W$							
CW79L××	35($U_o = 12 \sim 18 \text{V})$		∬类: 25℃ ~ 150℃								
	40($U_o = 24 \text{V}$)		相当国外217/								
CW117/217/317	:	***	237								
CW137/237/337		≤40									
CW117M/217M/317M		40	□类:								
CW137M/237M/337M		≤40	│ 0℃~125℃ │ 相当国外78--C								
CW117L/217L/317L			79 C								
CW137L/237L/337L		≼4 0	317/337								
	1		-								

注[1]:对于负电压集成稳压器,相应的电压为负,为简单计负号省略,下同。

注[2];对于 F-1、F-2、S-7 封装集成稳压器在使用时一般要加足够大的散热器。

表 2.6 CW 系列三端集成稳压器的外引线排列

26 Yel	TO - 3	F - 2	F - 1	то-	- 220 - 5	5 – 7	TO -	39 B	- 3D	TO	- 92 5	- 1
系 列	1	2	3	1	2	3	1	2	3	1	2	3
CW78×× [1]	I	0	GND	J	GND	0						
$CW78M \times \times [2]$	I	0	GND	I	GND	0		_			_	
CW78L××		_		L			I	0	GND	0	GND	1
CW79 x x	GND	O	1	GND	l	0		_			_	
CW79M××	ÇND	0	l	GND	1	0		_			_	
CW79L××					_		GND	0	I	GND	I	0
CW117/217/317	ADJ	I	0	ADJ	0	1		_			_	
CW117M/217M/317M	ADJ	I	0	ADJ	0	ı		_			_	
CW117L/217L/317L		_			_		I	ADJ	0	ADJ	0	I
CW137/237/337	ADJ	0	1	ADJ	i	0		_			_	
CW137M/237M/337M	ADJ	0	I	ADJ	I	0					_	
CW137L/237L/337L		_			_		ADJ	0	I	ADJ	0	I

注[1]:①、②、③代表引线编号,具体位置参阅图 2.3。I、O、GND 和 ADJ 分别代表输入、输出、地和调整端。

注[2]:对于 M 档 500mA 的集成电路稳压器金属封装中只有菱形 F-1型。

2.2.3 三端大电流集成稳压器

一般集成稳压器的输出电流在 1A 左右, 大电流集成稳压器的输出电流可达到 10A, 并也分固定输出和可调输出两类, 其参数见表 2.7, 其它参数指标的水平与 CW78 系列相似。使用较小电流的集成稳压器和大功率三极管可以扩展输出电流, 但集成稳压器的许多保护功能就会丧失。

型 당	输出电流(A)	輸出电压(V)	封装和引线
LM123	3	5	TO-3, F-2;1-0,2-I,3-GND
323			
μΑ78Η05	5	5	1-0(输出)
78H12	5	12	2—I(输入)
78H15	5	15	3—GND(地)
78P05	10	5	TO - 3:10,21,3GND
78P05	10	5	TO - 204:1-1,2-0,3-CND
LM145	3	-5	TO - 3, F - 2:
345	3	-5	1-GND,2-0,3-I
MC78T××	3	5,6,8,12,15,24	TO-3,F-2:1-I,2-GND,3-0
LM150K	3	1,2~37	TO-3,F-2;
250K	3	1.2~37	1—ADJ,2—I,3—O
350K	3	1.2~37	ADJ(调整端)
LM350T	3	1.2~37	TO - 220:1-ADJ,2-O,3-I
LM138K	5	1.2~37	TO - 3, F - 2;
338K	5	1.2~37	1—ADJ,2—I,3—O
LM196	10	1.2~15	TO-3,F-2:
396	10	1.2 ~ 15	1-0,2-ADJ,3-1

2.2.4 三端低压差集成稳压器

为了降低集成稳压器的功率损耗,可以降低集成稳压器的输入和输出之间的电压差。为此要大大降低调整管的饱和压降,使调整管在 IV 以下的管压降下仍有良好的放大作用。

多数	输出电压	电压调	整率	电流调	整率	输出电流	输入电压范围	纹波抑制比
	$U_{\sigma}(\mathbf{V})$	S_V (1	mV)	S_{l} (mV)		I, (A)	(v)	S_R (dB)
型号		NOM	MAX	NOM	MAX	NOM	,	· ·
μPC 2405	5	6	50	3	50	1	6~20	64
2406	6	7	60	4	60	1	7 ~ 21	63
2409	9	11	90	5	90	l i	10 ~ 24	60
2412	12	14	120	7	120	1	13 ~ 27	58
2415	15	18	150	9	150	1 1	16 - 30	56
2418	18	22	180	11	180	1	19 ~ 33	54
μPC 24M05	5	5	50	5	25	0.5	6~20	60
24M06	6	6	60	6	30	0.5	7 ~ 21	58
24M09	9	9	90	9	45	0.5	10 ~ 24	55
24M12	12	12	120	12	60	0.5	13 ~ 27	52
24M15	15	15	150	15	75	0.5	16 ~ 30	50
24M18	18	18	180	18	90	0.5	19 ~ 33	48
LM 2930T -		7	25	14	50	0.15	$U_i - U_o \geqslant 0.32 \text{V}$	52
2931CT	3 ~ 23	0.2[2]	1.5	0.3[3]	1	0.1	$U_i - U_o \geqslant 0.3 \text{V}$	2×10 ⁻⁵ /V
2940 -	_	20		35		1.0	$U_i - U_o \geqslant 0.5 \text{V}$	63

表 2.8 三端低压差集成稳压器的电气参数

注[1]: μPC24 × × 和 μPC24M × × 的封装为塑料 MP = 48 型, 在外形上与 TO = 220 相似, 其外引线排列与 CW78 × × 的 S = 7 塑封相同, 即 1—L,2—GND、3—O 。LM2930T × × 系列的 × × 代表电压值, TO220 封装; LM2931CT 为 TO92 或 TO220 封装; LM2940 为 TO220 封装,管脚排列与 CW78 × × 的顺序相同, 即 1—L、2—GND、3—O 。

注[2]:此参数是 $\Delta U_{OUT}/\Delta U_{IN}$,单位是 mV/V。

注[3]:此参数是 $\Delta U_{out}/\Delta I_{out}$,单位是%。

2.2.5 基准电压源(参考源)

在有些电子线路中,需要高精度的直流电压信号源,例如 AD 转换器的参考电压源,对电压的精度、温度和时间稳定性的要求很高,一般的集成稳压器很难满足这一要求。采用严格的工艺、温度补偿和新型能隙基准源或埋层基准源,可使电压温度系数小到 1~3ppm/℃以下。表 2.9 给出了常用的基准电压源,国产型号为 CJ×××,×××代表数字序号,与国外对应型号的数字序号相同。引出线的位置见图 2.6,参考电路见图 2.7。

参数	输出电压	输出电流	输入电压范围	温度系数	时间稳定性	外形
型号	(v)	(mA)	(v)	(ppm/℃)	(ppm/1000h)	图 2.6
MC1403[1]	2.5 ± 1%	1.2	4.5~15	10 ~ 100		a
1503[2]	2.5 ± 1%	1.2	4.5 ~ 15	25 ~ 55		a
LM113/313	1.22 ± 1 ~ 5%	20		100		Ь
LM136/236/336 - 2.5	2.5	10		30		d,c
- 5.0	5.0	10		30		d,e
LM168/268/368 - 5.0	5±0.02%	10	8 ~ 30	20		[3] (
LM169/369 - 10	10±0.05%	10	35(max)	3		f, g
IM185 [4]	1.24 ~ 5.30	20	ļ			ď
285/385	1.24 ~ 5.30	20				e
T1.431 M/I/C	2.5 ~ 36	$0.4 \sim 100$		50	<u>.</u>	j
LM199/299	6.95 ± 2%	0.5 ~ 10	9~40	1	20	h
399	6.95 ± 5%	0.5 ~ 10	9 ~ 40	2	20	h
LM3999	± 6.95 ± 5%	10	9 ~ 40	5	20	i
ICL8069	1.2	5		10 ~ 100		c
LT1021A - 10	10 ± 0.005			1	15	
AD580J[1]	2.5 ± 3%	1.0	4.5 ~ 30	85	1	k
580K	2.5 ± 3%	1.0	4.5~30	40	•	
580L/T	2.5±0.4%	1.0	4.5 ~ 30	25		
580M/U	2.5±0.4%	1.0	4.5 ~ 30	10		
580S[2]	2.5 ± 1%	1.0	4.5 ~ 30	55		
AD581J/K/L/S/T/U	10 ± 5mV	10	12 ~ 40	5(L)/10(U)	25	k
AD584J/K/L/S/T[5]	2.5/7.5/10	10	4.5 ~ 30	5(L)/15(T)	25	1
AD589J/K/L/M/S/T/U	1.2	5		10 ~ 100		b
AD2710K(I.)	$10.000 \pm 1 \text{mV}$	10	$U_{N_{P-P}} = 30\mu\text{V}$	2(1)	25	m[6]
AD2712K(L)	$\pm 10.000 \pm 1 \text{mV}$	10	$U_{N_p-p}=30\mu\mathrm{V}$	2(1)	25	n[7]
MAX676	4.096 ± 0.01%	5	4.75 ~ 5.25	1(1.5max)		o
677	5.000 ± 0.01%	5		1(1.5max)		
678	10.000 ± 0.01%	5	1	1(1.5max)	}	

表 2.9 基准电压源的电气参数

注[1]:工作温度范围 0℃~70℃。 AD580 系列中, J/K/L/M 档属于 0~70℃温度范围。

注[2]:工作温度范围 - 55℃~125℃。 AD580 系列中, S/T/U 档属于该温度范围。

注[3];LM168/268/368 有 5.0、6.2、10.0V 三种输出电压规格。

注[4]:LM185/285/385 有 1.25 和 2.5V 二种输出电压规格。

注[5];AD584 有三种输出电压规格, 端子 2、3 开路、输出 10.000V; 端子 2、3 连接、输出 7.500V; 端子 2、4 开路, 输出 5.000V; 端子 3、1 连接, 输出 2.500V。

注[6]; DIP14 封装, 管脚依次为 1 ~ 6NC、COMMON、NC、NC、TEST POINT、+ 15.0V、FINE ADJUST、10.0000V OUT、FINE ADJUST。

注[7];DIP14 封装, 管脚依次为 - FINE ADJUST、- 10.0000V OUT、+ FINE ADJUST、- 15.0V、NC、NC、COMMON、NC、NC、TEST POINT、+ 15.0V、FINE ADJUST、10.0000V OUT、FINE ADJUST。

图 2.6 几种基准电压源的封装和外引线排列

图 2.7 几种基准电压源的典型应用电路

2.2.6 开关集成稳压器

开关稳压电源的功率器件工作在开关状态,从而使效率大大提高,一般可达 70% ~ 90%,而线性稳压电源的效率在 30% ~ 60%, 开关集成稳压电源还具有体积小、重量轻、允许输入电压变化范围大和发热量小等优点。开关集成稳压电源的纹波一般较线性稳压电源大一些,不宜用于微弱信号的放大。

开关集成稳压电源一般都采用脉宽调制的方式工作,从控制上分有电压型和电流型两大类;从输入输出的关系上分有降压型、升压型和极性反转型三类;从结构上看有开关集成稳压器和开关电源控制器之分。为了避免大功率集成的一些困难,往往开关电源的控制部分单独集成,另加大功率器件和少数外围元件,即可构成一个开关稳压电源。表2.10 给出了一些典型的开关集成稳压器和开关电源控制器的参数,图 2.8~图 2.10 给出了几种开关集成稳压器和开关电源控制器的应用电路,其它一些电路的外引线排列如图 2.11 所示。

输出形式 最大输出电流 内参考源温度系数 电源范围 类型 型号 封装 备注 (%/℃) **(V)** V或I [1] (V) (A) 8 ~ 35 0.01见 2.2.5.1 SG3524/5/6/7 V P - P16DIP 0.1 5 SG3525A 8 ~ 35 V P - P16DIP 0.5 5 SG3527A V P - P16DIP $8 \sim 35$ 0.5 5 见 2.2.5.2 VC3842/3/4/5 8DIP $8(6) \sim 25$ 0.15 1 S 见图 2.13 1.31 RC4191/2/3 V S 8DIP 2.4 - 300.15 1.24 0.01 见图 2.13 μA78S40 ٧ 16DIP 2.5 - 401.5 S 见图 2.13 $7 \sim 40$ 5 TL493/4/5 V P - P 16DIP 0.2MC34063 V 8DIP 2.5 - 401.5 1.25 见 2.2.5.3 S \mathbf{v} s 16DIP 2.5 - 403 1.25 34163 1.5 1.25 $3 \sim 65$ 34165 V S 16DIP 见 2.2.5.4 $39 \times 56 \times 28$ $15 \sim 40$ 1 TW119311 2 $39 \times 56 \times 28$ $15 \sim 40$ 9312 9313 $50 \times 56 \times 32$ $15 \sim 40$ 0.3A/5V 2.5 5 1.24 LP1070 I S $3 \sim 30$ 见 2.2.5.5 LM2575[1] 1.23 TO220 3.5 - 351 TO220 2 1.23 LM2577[1] $3.5 \sim 35$

表 2.10 开关集成稳压器的电气参数

注[1]:LM2575 为降压型稳压器, LM2577 为升压型稳压器,效率可达 80%,振荡频率 52kHz。它们的输出电压为固定的,在型号的后面加 = 5、= 12、= 15 等数字; 可调的加 ADJ。

2.2.6.1 CW1524/2524/3524 集成开关稳压控制器的外引线和应用电路

CW1524/2524/3524 集成开关稳压控制器的应用电路见图 2.8,其外引线标号已在图中标明,主要电参数见表 2.10。图中的三极管 V_1 和 V_2 应选用高速开关管,电流不小于 5A, 电压不小于 60V,二极管 D_1 和 D_2 应选用肖特基管。滤波电容 C_5 应选用自身电感量小的产品,变压器可用小型铁淦氧磁芯。3524 还有一种改进型,型号是 3524A,引脚兼容,它增加了过热保护、脉宽调制器锁存和小于 8V 时的欠压闭锁电路,明显地提高了电路的性能。

图 2.8

2.2.6.2 VC3842/3843 集成开关稳压控制器的外引线和应用电路

VC3842 是电流型 PWM 控制器,其应用电路见图 2.9,外引线标号已在图中标明,主

图 2.9

(a)LM2575 构成的可调输出直流电源

(b)LM2577 构成的可调输出直流电源 图 2.10 LM2575 和 LM2577 开关稳压器的应用电路

要电参数见表 2.10。图中的三极管 V_1 是 500V、5A 的功率 MOSFET,变压器与图 2.8 的不 同. 需要留有足够的气隙,选型号 EC35 铁淦氧磁芯,气隙约 0.5mm。电路的输出有 5V、 4A 和 ± 12V 、0.3A 两组,变压器原边用 26AWG 号漆包线绕 45 匝, 副边 12V 用 30 号线双 线并绕 9 匝,5V 用 26 号线绕 4 匝, 并联使用, 反馈绕组用 30 号线双股绕 10 匝而成。

2.2.6.3 LM2575 和 LM2577 开关稳压器的外引线和应用电路

LM2575 为降压型稳压器, LM2577 为升压型稳压器。效率可达 80%,振荡频率 52kHz。它们的输出电压有固定的,在型号的后面加 - 5、- 12、- 15 等数字; 可调的加 ADJ。LM2575 和 LM2577 有两种封装五脚 TO220, 型号的后缀为 T; 四脚 TO3, 后缀为 K。 对 TO220 封装, LM2575 的①脚是 UIN, ②是 OUT, ③是 GND, ④是 UFB, ⑤是 ON/OFF。 IM2577 的①脚是 COMP, ②是 UFB, ③是 GND, ④是 OUT, ⑤是 UIN 。具体见图 2.10。

开关集成稳压控制器的外引线排列图 图 2.11

模拟乘法器 2.3

模拟乘法器也是一种重要的模拟集成电子器件,它可以实现两个模拟量的相乘,用 数学式表示为

$$U_{\alpha} = KU_{\alpha}U_{\alpha}$$

式中, U_* 和 U_* 表示输入信号,K为比例系数, U_o 表示输出信号。模拟乘法器与运算放大 器等其它器件配合,广泛应用于模拟乘法、除法、开方、相位检波、平衡调制、增益控制等 方面。本手册介绍儿种模拟乘法器,有 F1495/1595(BG314)和 AD532、AD534、AD538、 AD539、AD834、LMT04 的参数和外引线排列,分别见表 2.11 和图 2.12 和图 2.13。

表 2.11 模拟来法裔的参数(一) $T_A = 25$												
参数	满量程 特 度	温度系数	满量程 非线性	满量程 非线性	小信号 带 宽	电 <i>源</i> 电 压	工作温 度范围					
	max	typ	X	Y	typ							
型号	(%)	(%/℃)	(%)	(%)	(MHz)	(y)	(℃)					
F 1495	0.75		1	2	3	-15, +32	0 ~ 70					
1595	0.5	! 	0.5	1	_3	-15, +32	<u>- 55</u> ~ 1 <u>25</u>					
AD 532J	2	0.04	0.8	0.3	l l	$\pm 10 \sim \pm 18$	0 ~ 70					
532K	ı	0.03	0.5	0.2	1	±10~ ±18	0 ~ 70					
5328	ì	0.04max	0.5	0.2	1 _1	±10~ ±22	- 55 ~ 125					
AD534J	1	0.022	0.4	0.01	ı	± 8 ~ ± 18	0 ~70					
534K	0.5	0.015	0.3max	0.01max	1	± 8 ~ ± 18	0 ~ 70					
534L	0.25	0.008	0.12max	0.01max	1 1	± 8 ~ ± 18	0 ~ 70					
5348	1	0.02max	0.4	10.0	1 1	± 8~ ± 18	- 55 ~ 125					
534T	0.5	0.01max	0.3max	0.01max	1	± 8 ~ ± 18	- 55 ~ 125					

参数	乘法误差	乘法误差	小信号带宽	电源电压	温度范围
	(%FS)	(%FS)	(MHz)	(v)	(°C)
型身	25℃	T _{min} ~ T _{max}			
AD538A	500μV + 1.0%	250µV + 2.0%	0.4	± 10 ~ ± 18	-25 ~ 85
538B	$250\mu V + 0.5\%$	500μV + 1.0%	0.4	± 10 ~ ± 18	- 25 ~ 85
538S	$500\mu V + 1.0\%$	1 m V + 2.5%	0.4	± 10 ~ ± 18	- 55 ~ 125
AD539J	2.5	2typ	30	±4.5~ ±16.5	0 ~ 70
539K	1.5	1 typ	30	±4.5~ ±16.5	0~70
539S	4	1 typ	30	±4.5~ ±16.5	- 55 ~ 125

表 2.11 模拟乘法器 AD834/MLT04 的参数(三)

 $T_A = 25$ °C

参数	总误差	线性度	总误差温漂	输出失调	输入失调	量程因子	小信号带宽	转换速率	输人范围
型号	(±%FS)	(±%)	(%/℃)		X = Y	(1/V)	(MHz)	(V/µ8)	(v)
AD834	0.5	X:0.2 (Y:0.1)		± 20μA	0.5mV		500 ~ 1000		
MLT04	2 ~ 5	0.2~1	0.005	± 10mV	± 10.5%	0.4	8.9	53	-2.5 - 2.5

 $R_3=16k\Omega$, K系数调节 $R_{Y} = R_{X} = 15k$, $R_{13} = 13.7k$ $(OUT_1-OUT_2)=K(X_1-X_2)(Y_1-Y_2)$

 $OUT = (X_1 - X_2)(Y_1 - Y_2)/10V$

OUT = $[(X_1-X_2)(Y_1-Y_2)/10V]+Z_3$

(a) F1495/1595

(b) AD532

(c) AD534

MLT04是单片四模拟乘法器. DIP18封装 引线如下:

1	2	3	4	. 5	6	7	8	9
$\mathbf{W_{i}}$	GND_1	X_1	Y_{l}	V_{cc}	Y ₂	X ₂	GND ₂	W_2
10_	11	12	13	14	15	16	17	18
W_3	GND_3	Х,	Y ₃	V_{EE}	Y ₄	X.	GND₄	W_4

W=0.4(
$$U_X$$
+ U_{OSY})(U_Y + U_{OSY})+ Z_{OS}
(g) MLT04

· 76 ·

图 2.12 模拟乘法器的外引线排列

(a) AD834 体宽带乘法器

(b)MLTO4 作除法器

图 2.13 模拟乘法器的典型应用电路

2.4 特种放大器

2.4.1 数据放大器

数据放大器有很强的共模抑制能力和小的失调电压,增益可调节,经常用于小信号中混合有大的共模信号的输入放大级。比较典型的单片数据放大器有 AD521、AD522、AD524 和 AD624 等,其电参数见表 2.12,典型应用电路和外引线编号见图 2.14 和图 2.15。

参数	输入失 调电压	失调电 压温漂	增益	増益 误差	増 益 温 漂	単位増 益帯宽	非线性!	共 模 抑制比	噪声	电源电压
	U_{IO}	a <i>u</i> 10	G	G = 100		GB		K _{CMR}	U_{Np-p}	V_S
型号	(μV)	(μV/°C)		(±%)	$(\operatorname{bbm}_{\backslash_{\mathfrak{g}}}\!$	(MHz)	(±% e)	(dB)	(μV)	(v)
AD521J	2mV	7	1 ~ 1k		± (3±0.05G)	2		110(G = 1k)		±5-18
К	500	1.5	1 ~ 1k		$\pm (3 \pm 0.05G)$	2		120		
L	500	2	l ~ 1k		± (3±0.05G)	2		120		
S	500	[7]	1 ~ 1k		$\pm (15 \pm 0.4G)$	2		120		<u> </u>
AD522A	400	6(G = 100)	1 ~ 1k			0.3	0.05	120(G=1k)		±5~18
В	200	2	1 ~ 1k	'		ĺ	0.01	120		
S	200	6	1 ~ 1k			<u></u>	0.01	120		<u> </u>
AD524A	250	2	1 ~ 1k	0.5	35	25	0.1	130	0.3	±5~18
В	100	0.75	1 ~ 1k	0.35	25	25	0.05	130	0.3	!
С	50	0.5	1 ~ 1k	0.25	25	25	0.03	130	0.3	
\$	50	2	1 ~ 1k	0.5	25	25	0.1	130	0.3	<u> </u>
AD624A	200	2	1 ~ 1k	0.25	10	25	0.05	130	0.2	±5~18
В	75	0.5	1 ~ 1k	0. เร	10	25	0.03	130	0.2	ì
C	25	0.25	1 ~ 1k	0.1	10	25	0.01	130	0.2]
\$	75	2	1 ~ 1k	0.25	10	25	0.05	130	0.2	L
AD625A	200	2	1 ~ 10k	0.01	5	25	0.05	130	0.2	±5~18
В	50	0.5	1 ~ 10k	0.008	5	25	0.02	130	0.2	-
C	25	0.25	1 ~ 10k	0.005	5	25	0.01	130	0.2	
S	200	2	1 ~ 10k	0.01	_5	25	0.05	130	0.2	

表 2.12 数据放大器的电气参数

注: AD521S 的工作温度为 - 55℃~+ 125℃, 其它为 - 25℃~+85℃; AD522A/B/S 的工作温度为 - 55℃~+125℃; AD524/624/625 的 S 档工作温度为 - 55℃~+125℃, 其它为 - 25℃~+85℃。

图 2.14 数据放大器 AD522 和 AD625 的应用电路

图 2.15 数据放大器 ADS21/524/624 的外引线

2.4.2 隔离放大器

隔离放大器用于测量高共模电压环境中的低电平信号,它可消除地线网络的干扰所引起的测量误差,避免地线回路的寄生反馈,不需要对偏流提供返回通路。用于人体信号测量时,由于隔离放大器对信号通道和电源通道都是隔离的,可提供安全可靠的接口。隔离放大器的电气参数见表 2.13,典型应用电路见图 2.16。

表 2.13 隔离放大器的电气参数

多数	共模电压	增益调节范围	增益非线性	温度系数	漏电	小信号带宽	供电电压
	CMV	G		T. C.			V_{S}
型号	IN/OUT	(y/v)	typ	(μV/℃)typ	(μΛ)	(kHz)typ	(V)
277.	± 2500Vp - p	1 ~ 1000	± 0.05%	3	1.0(115V,60Hz)	2.5	± 15V
277K	± 2500Vp - p	1 ~ 1000	±0.025%	1	1.0(115V,60Hz)	2.5	± 15V
277A	± 2500Vp - p	1 ~ 1000	±0.05%	3	1.0(115V,60Hz)	2.5	± 15V
289』	± 2500Vp + p	1 ~ 100	±0.05%	22	2.0(115V,60Hz)	20	+ 14 ~ 25
289K	± 2500Vp - p	1 ~ 100	± 0.025%	16	2.0(115V,60Hz)	20	+ 14 ~ 25
2891.	± 2500Vp - p	1 ~ 100	± 0.012%	10.5	2.0(115V,60Hz)	20	+ 14 ~ 25
290A	± 1500Vp - p	I ~ 100	± 0.1%	11.5	10(115V,60Hz)	2.5	+ 8 ~ 15
292 A	± 1500Vp - p	1 ~ 100	± 0.1%	10.5	10(115V,60Hz)	2.5	+8~15
AD293A	± 2500Vp - p	1 ~ 1000	±0.05%	10.5	与 294 类似	2.5	± 15V
293B	± 2500Vp - p	1 ~ 1000	±0.05%	5.2		2.5	± 15V
AD294A	± 3500Vp - p	1 ~ 1000	±0.1 %	11	2.0(115V,60Hz)	2.5	± 15V
AD295A	± 2500Vp + p	1 ~ [000	± 0.005%	10.4	与 294 类似	4.5	± 15V
295B	± 2500Vp - p	1~1000	±0.025%	3.3		4.5	± 15V
295C	± 2500Vp – p	1 ~ 1000	± 0.012%	1.6	<u> </u>	4.5	± 15V

图 2.16 隔离放大器的外引线排列和典型应用电路

图 2.16 隔离放大器的外引线排列和典型应用电路

2.5 功率放大器

功率放大器要求不仅能线性地放大信号,而且要求输出约 100mW 以上,乃至上百瓦的功率给负载。使用功放最多的是音响和电视设备以及自动控制机电一体化设备。早期的集成功率运算放大器(如 F0021/0041)实际上就是在通用型运放的基础之上加入功率驱动级而构成的。60 年代末刚出现的功率运放的主要缺点是效率低、电源适应性差,尤其不适合于低压工作。70 年代是以厚膜电路为主。80 年代以后涌现出很多单片集成功率放大器,它们性能优良,功能齐全,附加有各种保护、消噪声电路,外接元件大大减少,易于安装使用;并且出现了低供电电压、低失真、宽频带和双功放等新品种。使用功率放大器最重要的是选用适当的散热器以及电气工作条件,同时必须在电源引脚近旁加退耦电容以防自激。功率放大器基本都工作在甲乙类(AB类)状态,静态电流大都在 50mA 左右,静态功耗小,但动态功耗很大,且随输出的变化而变化。

2.5.1 集成功率放大器的型号和主要电参数

表 2.14 常用集成功率放大器型号和参数

			2.14 府。	/ 17 年以,约/4	- NX > C PH ==	311-32-34			,	
参数型	工作 电压 V _{cc} (V)	最高 电压 V _{max} (V)	最大允 许功耗 P _{dmax} (W)	輸出 功率 P。 (W)	最大 失真度 THD _{max} (%)	功率频响 BW (Hz)	输人 电阻 R _i (kΩ)	负载 阻抗 R, (Ω)	通道数	封装 编号
AN5260	24	26.4	7	6.6	1.7	20 ~ 20k			1	1
AN7160	5 ~ 16	24	37.5	18	0.2	15 ~ 30k		: : 4	2	2
AN7161(N)	6 ~ 26	26	35.7	23	0.15	15 ~ 30k		4	2	3
BA516 BA526/527 BA546	6	9	0.8	0.7	1.8	20 ~ 20k	47	4~8	I	4
BA532	9 ~ 16	18	6.5	5.8	1.5	20 ~ 20k	180	4	1	5
BA5406	5 ~ 15	18	20	5	1.5	20 ~ 20k	100	3.2~4	2	6
CD2009	8 ~ 28	28	20	10	0.1	20 ~ 20k	200	2~4	2	7
CD2020	5 ~ 25	± 25	25	20	0.3	10 ~ 33k	5000	4	1	8
CD2822	1.8~15	15	1.4	1	0.3	22 ~ 22k	100	8	2	9
CD4112	3 ~ 12	13	2.25	4.6	2.0	50 ~ 25k	20	3.2-8	1	10
CD4140	3.5~14	14	0.75	0.5	1.0	50 ~ 20k	15	8	1	11
CD7232	3.5~12	16	12.5	5.5	1.0	50 ~ 20k	20	4	2	12
CD7240	9 ~ 18	45	25	5.8/19	0.25	20 ~ 20k	33	4/8	2	13
CD7273	18 ~ 37	37	25	23	0.2	20 ~ 20k	30	8	2	14
CD7767	0.9~3	3	0.75	0.02	4.5	20 ~ 20k	50	32	2	15
LA4180	6	. 9	4	1/2.8	1.5	20 ~ 20k	30	2 ~ 8	2	16
LA4192	9	11	4	2.3/5	2.0	20 ~ 20k	30	4~8	2	16
LA4265	9~24	25	7.5	3.5	1.0	20 ~ 20k	20	8	2	17
LA4505	6 ~ 24	24	15	8.5	1.5	20 ~ 20k	30	3	2	18
LM386N	5 ~ 18	22	1.25	1	0.2	20 ~ 100k	50	8	1	19
LM2895	3 ~ 15	18	4.3	4	0.15	20 ~ 20k	150	4	1	20
LM2896	3 ~ 15	18	4.3	2.5/9	0.11	20 ~ 20k	100	4	2	21
TA7237AP	8 ~ 18	18	25	17	1.5	50 ~ 20k	35	4	2	22
ТА7263Р	9~18	25	25	5.8	0.3	20 ~ 20k	33	4	2	13
TA7264P	9 ~ 18	25	25	5.8	0.3	20 ~ 20k	33	4	2	23
TA7269P	6 ~ 15	20	25	4.5	0.8	20 ~ 20k	30	5	2	24
TA7270P	9 ~ 18	25	25	5.8/19	0.25	20 ~ 20k	33	4	2	13
TA7271P	9 ~. 18	25	25	5.8/19	0.25	20 ~ 20k	33	4	2	23
TA7283P	6 ~ 15	16	12.5	4.6	1.0	20 ~ 20k	30	4	2	24
TA7299AP	9 ~ 18	25	25	5.8	0.3	20 ~ 20k	33	4	2	13
TDA2008	10 ~ 28	28	20	12	0.15	40 ~ 15k	150	3.2~8	ì	25
TDA2009	8 ~ 28	28	20	10	0.1	22 ~ 22k	200	4/8	2	26

续表 2.14 常用集成功率放大器型号和参数

多数型号	工作 电压 <i>V</i> _{&} (V)	最高 电压 V _{reux} (V)	最大允 许功耗 P _{drnax} (W)	输出 功率 <i>P。</i> (W)	最大 失真度 THD _{max} (%)	- 功率频响 - <i>BW</i> (Hz)	输人 电阻 <i>R_i</i> (kΩ)	负载 阻抗 R _L (Ω)	通道数	
TDA2020	± 22	± 22	25	20	0.3	10 ~ 160k	5000	4/8	1	8
TDA2030	± 14	± 18	20	14	0.5	10 ~ 140k	5000	4/8	1	27
TDA2030A	± 22	± 22	20	18	0.08	40 ~ 15k	5000	4/8	l	27
TDA2040 (A)	± 20	± 20	25	22	0.08	40 ~ 15k	5000	4/8	1	27
TDA2822	3 ~ 15	15	4	1.4	1.0	22 ~ 22k	100	8	2	28
TDA7240	6 ~ 18	28	20	20	1.0	22 ~ 22k		4/8	1	29
TEA2024	6~18	20	5	3.5/10	1.5	15 ~ 40k		. 4	2	30
TEA2025	3 ~ 12	15	5	2.3/5	1.5	20 ~ 20k	30	4	2	31
μPC1241H μPC1242H	8 ~ 18	25	12	7	1.0	20 ~ 20k		2/4	ı	32
μPC1288V	6 ~ 20	25	14	7/20	1.0	20 ~ 20k	30	3.2~8	2	33

注:最大允许功耗是在有相应的散热片情况下的值(下同)。

2.5.2 集成功率放大器的外引线排列和封装形式

集成功率放大器的封装见图 2.17。表 2.15 内符号说明如下:

AGC 一自动增益控制	BI 一偏置	BIp 一功放偏置
B-0 — BTL 输出端	BPS 一旁路	BS 一自举
Blc 一公共偏置	COMP—补偿	CON —偏流控制
DC 一退耦	FB 一反馈	FIL 一滤波
GND1一前置放大地	GND2一功放地	GND 一地
IN + 一同相输入端	Ⅳ 一输入端	IN - ──反相输入端
MUT 一静噪	OUTp—功放输出	OUTv─分压输出
OUT 一输出端	PRO保护	sw 一开关
SW 一双声道/BTL 转换开关	Vc1 ─前置电源 1	V + ─正电源
Vcc 一电源	Vref─基准电源	Vc2 一前置电源 2
V 负电源	Ven 一功放电源	~ 一表示接散热片

图 2.17 集成功率放大器的外形封装表 2.15 常用集成功率放大器的管脚功能与封装形式(一)

封装	· · ·						i			·	-		16	15	封装
编号	1脚	2 脚	3脚	4脚	5脚。	6脚	7脚	8脚	9脚	10 脚	11脚	12 脚	13 脚	14 脚	形式
1	BS	FB	FIL	Vec	COMP	BPS	IN	GND	COMP	GND	OUT				SII
2	1BS	TOUT	GND2	20UT	2BS	Vec	PRO	2FB	GND1	IN	1FB	FIL.			S12
3	Vec	2 R S	20Ur	GND2	HOUT	1BS	ΓIL	IFB	IN	GND1	2FB	OUT		<u></u>	S12
4	COMP	COMP	Vee	OUT	GND	FII.	FB	IN	BPS	į					S9
5	OUT	GND	COMP	FIL.	lN	FB	COMP	COMP	RS	Vec					SIO
6	Vee	10UT	1BS	IFB	1IN	FIL	FIL	2IN	2FB	2RS	20UT	GND			Si2
7	[HN +	iIN –	DC	2IN -	21N+	GND	NC	20UT	Vec	TUOI	11 胰	¶ ~ 15 ∰	ΨNC		郡 (a)
8	V +	NC	V -	NC.	V -	NC	IN+	IN-	COMP	COMP	NC	PRO	NC	OUT	图(c)

续表 2.15 常用集成功率放大器的管脚功能与封装形式(一)

封装		_									<u>-</u>		16	15	封装
编号	ì脚	2脚	3脚	4脚	5脚	6脚	7脚	8脚	9脚	10 脚	11.脚	12 脚	13 脚	14 脚	形式
9	10UT	Vec	20UT	GND	2 1 N –	2IN +	1IN +	1 IN -					_		C8
10	тло	NC	GND	COMP	СОМР	FВ	NC	CON	IN	D C1	NC	DC2	BS	v_{cc}	图(d)
11	СОМР	lN	FB	COMP	GND	OUT	Vec	BS	DC						S-9
12	1BS	10UT	GND2	1 F B	1IN	DC	GND1	2IN	2FB	2BS	20UT	Vec			S – 12
13	21N	2FB	DC	GND1	1FB	1IN	GND2	10UT	1BS	Vec	2BS	20υτ			S - 12
14	2BPS	2lN	GND1	1IN	1BPS	FIL	10UT	1FB	Vce	GND2	2FB	20UT			图(e)
15	IIN	1FB	MUT	Vel	Bl	GNDI	2FB	2IN	СОМР	ОШТ	GND2	20UT	10UT Ve2	COMP COMP	C – 16

表 2.15 常用集成功率放大器的管脚功能与封装形式(二)

封装					20	19	18	17	16	15	14	13	封装
编号_	」脚	2 脚	3脚	4脚	5脚	6脚	7脚	8脚	9脚	10脚	11 脚	12 脚	形式
16	B - O	20UT	2BS	2FB	2IN	DC	GND	1 IN	1FB	188	IOUT	Vcc	C – 12
17	GND	OUT	Vcc	NC	DC	COMP	COMP	PRO	FВ	IN			S - 10
18					GNP	2BS	COMP	2OUT	COMP	COMP	2IN	2FB	
	Vec	1BS	COMP	10UT	COMP	COMP	4FB	IIN	DC	GND	PRO	DC	C - 20
19	AGC	JN ~	IN+	GND	OUT	Vcc	BPS	AGC					C-8
20	Vcc	OUT	BS	NC	BPS	GND	NC	IN +	EN	NC	NC_		S - 11
21	Vce	20UT	2BS	2IN -	2IN +	GND	IIN+	1IN	1BS	10UT	BPS		S - 11
22	1 B S	10UT	PRO	1FB	1IN	GND	CND	FIL	2FB	20UT	2BS	Vec	S – 12
23	10UT	1BS	Vec	2BS	20UT	GND	2IN	2FB	GND	DC	1FB	1IN	S - 12
24	1BS	lout	PRO	1FB	1 IN	GND	2IN	2FB	GND	20UT	2BS	Vec	S-12
25	IN+	IN -	GND	OUT	Vee		_					•	S-5
26	1 IN +	iIN –	FIL	2IN ~	2IN+	GND	NC	20UI	Vec	10UT	NC		图(a)
27	IN+	IN -	V -	OUT	V +	-		-					S-5
28	1 IN +	NC	11N -	GND	GND	10UT	NC NC	Vee	2IN +	NC	2IN -	GND	
		, ,,,,							NC	NC	2OUT	GND	C - 16
29	FB	FIL	IN	GND	OUT	Vec	OUT	<u></u>					图(a)
30	GND	1FB	1 IN	DC	10UT	Vec	20UT	2IN	2FB	GND		<u> </u>	S - 10
31	B-O	20UT	2BS	GND2	GND2	2FB	2IN+	FIL	Vec	10UT	1BS	GND1	_
	D-0	2001	211.5	GADE	(ANDZ	Zrb	Z1:1 T	r IL	GND1	1 IN +	1FB	GND1	C - 16
32	£N	FIL	FB	GND1	GND2	OUT	BS	Vec					S-8
33	10UT	1BS	COMP	i 1IN	1FB	GND	FIL	2IN	2FB	2BS	GND	20UT	
	1001			1,"	1,2	,					COMP	Vec	S – 14

2.5.3 几种功率放大器应用电路介绍

2.5.3.1 音频功率放大器 LM1875

音频功率放大器 LM1875 是性能优异的单 片集成功率放大器之一。它具有失真低、工作 稳定可靠、外围电路元件少、功率带宽范围宽、 电流负载能力大等优点。该电路非常适合组装 高保真音响设备、收录机、立体声唱机及家庭影 院之用。除此之外,该电路还可用于桥式放大 器、伺服放大器及仪表系统。

LM1875 的输出功率大,在±30V 供电 8Ω 负载时可达 30W,电路具有短路保护、过热保护、电流限制和安全工作区保护等功能。表 2.16是功率放大电路 LM1875 主要参数,图2.18 是功率放大电路 LM1875 典型应用电路。

2.5.3.2 单片立体声音频功率放大器 AN7188NK

双 22W 单片立体声音频功放 AN7188NK 主要用于高级轿车音响和其它音响。该集成电路可 以提供两路 22W(额定值)的不失真音频功率;由于是单片式集成,体积小,单列 16 脚封装;内含负载短路等保护功能,外围电路简单,装调容易;有软启动功能。

表 2.16 LM1875 主要电参数

20 ~ 60V
70mA
ov
25W(THD = 1%)
0.015%(20W,1kHz)
± 1mV
± 0.2μA
± 0.5μA(max)
$5.5 \text{MHz} (f_0 = 20 \text{kHz})$
70kHz
90dB
95dB(Vec, 1kHz, 1Vrms) 83dB(Vec, 1kHz, 1Vrms)
9V/μs
$3\mu \text{Vrms}(Rs = 600\Omega)$
3A
0°C ~ 70°C

表 2.17 为功率放大器 AN7188NK 的主要电参数,图 2.19 是功率放大器 AN7188NK 的典型应用电路。

表 2.17 AN7188NK 主要电参数

参数	测试条件	最小	典型值	最大	单位
静态电路电流	$U_{\rm in}=0$ $Rg=\Omega\Omega$		120	200	mА
输出杂音电压	$U_{\rm in}=0$ $R_{\rm g}=0\Omega$		0.4	1.0	mV
电压增益	$U_{\rm in} = 20 {\rm mV}$	38	40	42	dB
总谐波失真	U _{in} = 20mV	0	0.1	0.4	%
最大输出(4Ω)	THD = 10%	15	18		W
最大輸出(2Ω)	THD = 10%	15	22		W
纹波消除率	$U_{\rm in}=0$ $R_{\rm g}=0\Omega$	55	60	_	dВ
输出失调电压	$U_{\rm in}=0$ $R_{\rm g}=0\Omega$	- 250	0	+ 250	mV
通道平衡	$U_{\rm in} = 20 {\rm mV}$	- 1	0	+ 1	qB
软启动电流	$U_{\text{stB}} = 0$	Ţ —	0.5	100	μA
输入阻抗			30	_	kΩ

图 2.18 LM1875 的应用电路

推荐的铝合金散热板勿小于

图 2.19 AN7188NK 的应用电路

 $400\times300\times2\text{mm}$

2.5.3.3 高保真(Hi-Fi)集成功率放大器 AMP1200

高保真音频集成功率放大器 AMP1200, 在电子爱好者中常称为"皇后"集成功率放大器,其额定输出功率高达 100W。要想让"皇后"发出优美的音色,就必须十分重视直流电源的品质,双声道立体声放大器最好能使每个声道拥有独立的电源部分,选用内阻小、对电压变化反应敏捷的大容量环形电源变压器,能使"皇后"的放声更富有魅力。图 2.20 为其应用电路图,表 2.18 为主要电参数。

推荐最佳直流工作电压 +38V, -38V额定输出功率 100W(有效值) 频率特性 $10 \text{ Hz} \sim 30 \text{kHz} \pm 1 \text{dB}$ 总共谐波失真 3900 输入阻抗 $47~k\Omega$ 负载阻抗 8Ω 电压增益 30dB零信号时的静态电流 不大于 45mA 输出端的失调电压 小于 0.05V 能适应的直流工作电压范围 25V~40V(双电源) 极限直流工作电压 +44V, -44V最大输出功率 200W

表 2.18 音频集成功放 AMP1200 的主要电参数

图 2.20 AMP1200 的应用电路

2.6 电压频率转换器(V/F)和频率电压转换器(F/V)

电压频率转换器简称压频转换器,一般用 V/F 表示; 频率电压转换器简称频压转换器,一般用 F/V 表示。有些单片集成电路同时具有这两种功能,但具体使用时只能选择其中一种功能。压频转换器和频压转换器是一种应用很广的接口电路,它是模拟和数字混合的集成电路。一般模拟量要经过 A/D 转换器,将模拟量转换为数字量,才能被计算机电路所识别。压频转换器是将模拟电压信号转换为频率信号,频率信号也是数字信号,也便于计算机识别。常用的压频转换器和频压转换器的参数见表 2.19,外引线排列见表 2.20, 典型应用电路见图 2.21 和图 2.22。

参 数型 号	模拟电 压范围 <i>U_i</i> (V)	模拟电 流范围 I _i (mA)	满量程 非线性 U ₁ (%)	满量程 非线性 1.(%)	温度系数 (ppm/℃)	调电压	响应时间 或工作频率 (µs,kHz)	电源电 压范围 (V)	温度范围	工作 模式
AD 537IH 537KH 537SH 537ID 537KD 537SD	- Vs ~ (+ Vs - 4)	0.1μ 100μ		0.15 0.07 0.07 0.15 0.07 0.07	± 150 ± 50 ± 150 ± 150 ± 50 ± 150	±5 ±2 =2 ±5 ±2 ±2	10kHz	+5 - +36 或±5 - ±18	0 ~ 70 0 ~ 70 - 55 ~ 125 0 ~ 70 0 ~ 70 - 55 ~ 125	F/V
AD650 J A 650 K B 650S	0~10	0~0.25	±0.5 ±0.5 ±0.1 ±0.1 ±0.2	±0.5 ±0.5 ±0.1 ±0.1 ±0.2	150 150 100 100 150	±4	1	±9 ~ ±18	0 ~ 70 - 25 ~ 85 0 ~ 70 - 25 ~ 85 - 55 ~ 125	V/F 或 F/V
ADVF32 K B S	0~10	0 - 25	±0.2	±0.2	150 100 150	±4	1	±9 ~ ±18	0 ~ 70 - 25 ~ 85 - 55 ~ 125	V/F 或 F/V
AD651 AQ SQ BQ	- 10 ~ + 10	5 ~ 20 μA	±0.02 ±0.02 ±0.01		± 20 ~ ± 50	±1~4.5	2MHz	± 15	- 25 ~ 85 - 55 ~ 125 - 55 ~ 85	V/F 或 F/V
AD654JN	- Vs ~ (+ Vs - 4)					± 1	500kHz	5~36 或±5 ~±18	0~70	V/F

表 2.19 压频转换器和频压转换器的参数

表 2.20 压频转换器和频压转换器的外引线排列

- <u></u>					外引组	浅编号				
型 号	16	15	14	13	12	11	10	9	封装	· · · · · · · · · · · · · · · · · · ·
	1	2	3	4	5	6	7	8	形式	工作模式
AD537	DGND	SYNC	OUT I _{IN}	+ Vs - U _{IN}	CAP + U _{IN}	CAP U _{TEMP}	Uos U _{REF}	Uos Vs	D14	F/V
AD537	– U _{IN}	+ U _{IN}	UTEMP	UREF	– Vs	САР	DGND CAP	OUT + Vs	Y10	F/V
AD650	our	+ U _{IN}	NULL - U _{IN}	NULL ± I ₀₆	+ Vs - Vs	AGND CAP	DGND NC	COMP F _{OUT}	D14	F/V,V/F
AD651	Unir + Va	COMP + TRIM	COMP - TRIM	COMP - OPAo	AGND OPA –	DGND OPA+	F _{OU?}	Cos - Vs	D16	F/V,V/F
AD654	· F _{out}	DGND	R _T	+ U _{tN}	– U _{IN}	C_{T}	Cr	+ Vs	D8	V/F
ADVF32	– U _{IN}	NC	+ UIN NC	OUT - Vs	+ V _B CAP	GND NC	COMP - F _{OUT}	NC NC	D14	F/V, V/F
LM331	Iour	I _{RET}	Four	GND	Rc	UREF	U _{IN}	Vec	D8	V/F,F/V

图 2.21 AD651 作 F/V 转换器

图 2.22 AD654 做 V/F 转换器

第三章 半导体二极管和三极管

3.1 中华人民共和国国家标准——半导体器件型号命名方法(GB249 - 74)

我国从 1975 年开始执行国标 GB249 - 74, 对半导体器件的型号按下列方法命名,即国标规定半导体器件的型号由五个部分组成;

表 3.1 半导体器处型导命 2 注

第一	·部分		第二部分		第三	部分		And and the /\	 林子女八
符号	意义	符号	意义	符号	意义	符号	意义	第四部分	第五部分
2	二极管	A	N型锗材料	P	普通管	D	低频大功率管	用阿拉伯	用汉语护
]	В	P型锗材料	V	微波管	•	$f_{HFb} < 3$ MHz	数字表示	 音字母表
		С	N型硅材料	W	稳压管		$P_c \geqslant 1 \mathbf{W}$	序号	示规格号
		D	P型硅材料	C	参量管	A	高频大功率管	4 4	74428014 3
3	三极管	A	锗 PNP 型管	Z	整流管		$f_{HPb} \geqslant 3 \text{MHz}$		
		В	绪 NPN 型管	L	整流堆		$P_c \geqslant 1 $ W		
		C	硅 PNP 型管	s	隧道管	T	可控整流器		
		Ð	硅 NPN 型管	N	阻尼管	Y	体效应器件		
		£	化合物	U	光电器件	В	雪崩管		
			\	K	开关 管	J	阶跃恢复管		
		j i	l	X	低频小功率管	1			
			1		f_{HFb} < 3MHz	cs	场效应器件		ļ
			1		$P_{\rm c} < 1 { m W}$	BT	特殊器件	•	ļ
				G	高频小功率管	FH	复合管		
					$f_{HFb} \geqslant 3 \text{MHz}$	PIN	PIN 型管		•
					$P_c < 1$ W	JG	激光管	!	

常用半导体二极管的参数 3.2

3.2.1 二极管的分类

二极管的类别很多,主要包括检波二极管、整流二极管、高频整流二极管、整流堆、整 流桥、变容二极管、开关二极管、稳压二极管、阶跃二极管和隧道二极管等。高频小电流的 二极管一般为点接触型的,大电流的为面接触型的,大电流的二极管在工作时还要加散热 器。本手册在表 3.4~表 3.12 中分别介绍这些二极管的电参数。

3.2.2 二极管的主要参数

- 二极管的参数很多,对于不同的二极管,其参数的侧重面也有所不同,现简述如下:
- (1) /_k——正向整流电流, 也称正向直流电流。手册上一般给出的是正向额定整流 电流,在电阻负载条件下,它是单向正弦交流电流的平均值。 1,的大小随二极管的品种 而异,且差别很大,小的十几毫安,大的几千安培。
- (2)I_R——**反向电流,**也称反向漏电流。反向电流是二极管加反向电压,但没有超过 最大反向耐压时,流过二极管的电流。 I_R 一般在微安级以下,大电流二极管一般也在 毫安级以下。
- (3) U_m——最大反向耐压,也称最大反向工作电压。二极管加反向电压,发生击穿 时的电压称为击穿电压,最大反向耐压一般是击穿电压的二分之一到三分之二。最大反 向耐压一般在型号中用后缀字母表示(第五部分),也有用色环表示的,具体规定见表3.2 和表 3.3. 但也不是所有的型号都遵循这一规定。
- I_r大几十倍。手册上给出的浪涌电流一般为单次,即不重复正向浪涌电流,有时也给出 若干次条件下的浪涌电流。
- $(5)U_{\mathbf{r}}$ 一正向压降。正向压降是在规定的正向电流条件下,,极管的正向电压降。 它反映了二极管正向导电时正向电阻的大小和损耗的大小。
- (6)t_{rr}—**一反向恢复时间**。反向恢复时间是从二极管所加的正向电压变为反向电压 的时刻开始,到二极管恢复反向阻断的时间(当反向电流降低到最大反向电流 10%的时 间)。

表 3.2 整流二极管的耐压等级(字母表示)

后缀字母	A	В	С	D	E	F	G	Н	1	К	ī.
耐 压(V)	25	50	100	200	300	400	500	600	700	800	900
后缀字母	М	N	P	Q	R	s	Т	Ĺ	v	W	Х
耐 压(V)	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000

表 3.3 整流二极管的耐压等级(色环表示)

色环	账	棕	a	橙	黄	绿	<u></u> <u></u>	紫	灰
耐 压(v)	50	100	200	300	400	500	600	700	800

3.2.3 二极管的外形封装

二极管的外形和封装见图 3.1、图 3.2、图 3.3 和图 3.4。

图 3.1 二极管的外形封装

图 3.2 整流桥的外形封装

图 3.3 高压硅堆的外形封装

图 3.4 二极管的外形封装

3.2.4 半导体二极管的参数表

表 3.4 整流二极管的参数

参	数	额定整流电流	浪涌电流	正向压降	反向电流	最大反向耐压	MT LA
		I_F	I_{FSM}	U_F	I_R	U _{RM}	外 形 (图3.1)
型	号	(A)	(A)	(v)	(μ Λ)	(V)	(\$15.1)
•	4001 4002 4003 4004 4005 4006 4007	1	30	1.1	5	50 100 200 400 600 800 1000	约 43 × 8 两 假 引线
1N:	5391 5392 5393 5394 5395 5396 5397 5398 5399	1.5	50	1.4	10	50 100 200 300 400 500 600 800	约 44 × 10 两 例 引线
	200 201 202 204 206 208 2010	2	200	1.2	15	50 100 200 400 600 800 1000	约 \$4 × 10 两 6 引线
1N	5400 5401 5402 5403 5404 5405 5406 5406 5407 5408	3	200	1.2	10	50 100 200 300 400 500 600 800 1000	约 的 × 10 两 億 引线

续表 3.4 整流二极管的参数

			75 010 — 100			
参数	额定整流电流	浪涌电流	正向压降	反向电流	最大反向耐压	
	l_F	I _{FSM}	U_F	I _R	U_{RM}	外 形 (图 3.1)
型号	(A)	(A)	(v)	(μA)	(v)	
P600 A B D G J K L	6	400	0.9	25	50 100 200 400 600 800 1000	约 報×12 两侧 引线
2CZ52A ~ M	0.1	2	€1	1	25 ~ 1000	EA - 3
2CZ53A ~ M	0.3	6	≤ 1	5	25 ~ 1000	ED - 2
2CZ54A ~ K	0.5	10	≼l	10	25 ~ 800	EE
2CZ55A ~ P	1	20	≼l	10	25 ~ 1400	EE
2CZ56B ~ S	3	65	≤0.8	20	50 ~ 2000	EF
2CZ57A ~ S	5	105	≤0.8	20	25 ~ 2000	EF
2CZ58C ~ S	10	210	≤0.8	30	100 ~ 2000	EG 1
2CZ59A ~ S	20	420	≤0.8	40	25 ~ 2000	EG 1

表 3.5 整流桥和整流堆的参数(一)

多数	额定整流电流	浪涌电流	正向压降	反向电流	最大反向耐压	外 形
	I_F	I_{FSM}	U_F	I_R	U _{RM}	グド ルジ (图 3.2)
型号	(A)	(A)	(V)	(μ A)	(v)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2CQi	1	40	0.55(单管)	5	100	
2CQ2	1	40	0.55(单管)	5	200	半桥 (a)
2CQ3	1	40	0.55(单管)	5	200	
QL1	0.05	1		10		
QL2	0.1	2		10		
QL3	0.2	4		10		全桥
_QL4	0.3	6	1	10		(P)
QL5	0.5	10	1.2	10	25 ~ 1000	
Q L6	ļ	20	-	10]	
QL7	2	40		15] [(-)
QL8	3	60]	15] [(c)
QL9	5	100		20		(q)
QL52	0.05		!			
QL53	0.1	20	•	10	25 1000	(e)
QL54	0.2	20	1	103	25 ~ 1000	(t)
QL55	0.5		L	<u> </u>	L \	
QL56	0.1					•
QL57	0.2					(g)
QL58	0.3	20	1	10	26 1000	
QL59	0.5		I I		25 ~ 1000	
QL60	1]	(1)
QL61	2	20]	15]	(h)

表 3.5 整流桥和整流堆的参数(二)

***	数	额定整流电流	浪涌电流	正向压降	反向电流	最大反向耐压	
		I_F	I_{FSM}	U_F	I_R	U_{RM}	外 形
型・号		(A)	(A)	(v)	(μA)	(v)	
2CL51A	- M	0.02	10 ~ 6 0		20		A~J档图 3.3
(]] (!	A B C D E F G H K L	0.05(55℃) 0.02(100℃)	10 10 10 10 10 20 20 20 35 35 50	≤5 (25°C) ≤30(100°C)	20	1kV 2kV 3kV 4kV 5kV 7.5kV 10kV 20kV 25kV 30kV	(a),K~M档图 3.3(b) 反压分档本表 均适用
2CL53E	3 ~ M	0.1(55℃) 0.04(100℃)	10 ~ 40	≤5(25°C) ≤30(100°C)	20		
2CL54E	8 ~ M	0.2(55℃) 0.08(100℃)	8 ~ 35	≤5(25°C) ≤30(100°C)	20		
2CI.55E	3 ~ M	0.5(55℃) 0.2(100℃)	8 ~ 35	≤5(25°C) ≤30(100°C)	20		
2CL56E	3 ~ M	1(55℃) 0.4(100℃)	8 ~ 35	≤5(25°C) ≤30(100°C)	20		
2DL51 -	- 56			同 2CL51 ~ :	56		<u> </u>

表 3.6 高频整流二极管和高压硅堆的参数

参数	额定整流电流	液涌电流	正向压降	反向电流	最大反向耐压	反向恢复时间	
	I_{F}	I_{FSM}	U_F	I_R	U_{RM}	t _{rr}	外形
型 号	(mA)	(A)	(V)	(μ A)	(kV)	(µs)	
2CZ34 E					0.3		
н	}	1		5(25°C)	0.6	ļ	
Ĺ	500	15	2	150(125℃)	0.9	1	
N	1]	ŀ		1.2	i	
P		ĺ	[1		1.4		
PA	400	25	3	10(25°C)	1.5	1	
2DG05A ~ N	500		2	10	25 ~ 1200V	i	
2DGL 12	_		30		12		图 3.3
15			30		15	ļ	(a)
20	5		40	2	20	1.2	(b)
25		Ì	50		25	' I	(c)
30			60		30		
2CLG 12			25		12		
15		1	30		15		
20	5	1	40	2	20	1.2	
25	1	İ	50		25		
30			60		30		
2CL 24			30		10		图 3.3
25	5		37.5	2	12	0.1	(d)
27	3		50		16	[V.1	玻璃钝化
29			62.5		20	į.	双柳地化

表 3.7 检波二极管的参数

								
参数	正向电流	反向电压	击穿电压	反向电流	截止頻率	零偏电容	检波效率	外形
	I_F	U_R	U_B	I_R	f	C _o	η	
型 당	(mA)	(V)	(v)	(μ A)	(MHz)	(pF)	%	<u> </u>
2AP1	≥2.5	01≤	≥40	≤200	150	≤1		约 \$3 × 8.
2AP2	≥2.5	≥25	≥45	€200	150	<u></u> ≰1		两侧引线
2AP3	≥7.5	≥25	≥45	≤200	150	≤1 		
2AP4	≥5	≥50	≥75	≤200	150	≤ 1		!
2AP5	≥2.5	≥75	≥110	≤200	150	<u></u> ≰l		
2AP6	≥1	≥ 100	≥ 150	≤200	150	≼l		
2AP7	≥5	≥100	≥ 150	€200	150	≼l		
2AP8A	≥4	≥10	≥20	≤ 100	150	≤ 1		
2AP8B	≥ 6	≥10	≥20	≤ 100	150	≼l		
2AP9	≥8	≥10	_ ≥20 _	≤200	100	<u>≤1</u>	65	约 \$3 × 8
2AP10	≥8	≥20	≥30	≤ 40	100	≤ 1		两侧引线
2API1	≥ 10	≥10	≥ 10	≤200	40	≤ 1		
2AP12	≥90	≥10	≥ 10	≤200	40	≰l		
2AP13	≥ 10	≥30	≥30	≤200	40	≤ 1]	
2AP14	≥30	≥30	≥30	€200	40	≰l] 	
2AP15	≥60	≥30	≥30	≤200	40	≤ 1]	
2AP16	≥30	≥50	≥50	≤200	40	€ 1		
2AP17	≥10	≥100	≥ 100	€200	40	≼i]	•
2AP18 - 1	≥ 100	≥50	≥50	≤ 100	40	≼l		
2AP18 – 2	≥ 150	≥75	≥75	€ 100	40	≤1		
2AP18 - 3	≥ 200	≥100	≥ 100	≤ 100	40	≼l]	
2AP21	≥50	≥7	≥10	≤200	150	≤1	1	
2AP27	≥2~10	≥150	≥ 150	≤200	150	≤1	1	
2AP30C	≥2	≥10	≥20	≤ 50	400	€0.6	Ì	
2AP30D	≥2	≥10	≥20	≤30	400	€0.6		
2AP30E	≥2	≥10	≥35	≼ 11	400	€0.6		
2AP31A	≥2	≥10	≥25	≤30	400	€0.3	1	
2AP31B	≥2	≥10	≥35	≤ 30	400	€0.3		
2AP34A	≥5	≥60	≥ 75	€20		≼l	60	1
2AP60	⇒4	≥ 35	≥40	≤ 75	1	≤l	50	1
2AP90	≥2	≥20	≥30	≤ 100]	≤1	50	1
2AP110	≥3	≥40	≥50	≤40	1	<u>≤</u> 1	50	1
2AP188	≥ 5	≥35	≥40	≤ 33	1	≤ 1	50	1
2AP261	≥9	≥35	≥40	€70	1	<u>≤</u> 1	50	1
			!	1		1	 	<u> </u>

表 3.8 开关二极管的参数

The color of th					*****					
Max Max	参数			反向电压		正向压降	零偏电容		额定功率	
2AK1 ≥150 10 30 ≤1 ≤3 ≤200 E 2AK2 ≥150 20 40 ≤1 ≤3 <200		I_F	I_{oM}	U_R	U_{RM}	U_F	C_o	t _r ,	P_{M}	外形
2AK2	型号	(mA)	(mA)	(V)	(v)	(v)	(pF)	(en)	(mW)	_
2AK2	2AK1		≥150	10	30	≰l	€3	≤200		EA
2AKS ≥200 40 60 ≤0.9 ≤2 ≤150 2AK6 ≥200 50 70 <0.9 ≤2 ≤150 50 E 2AK9 ≥10 40 60 ≤1 ≤2 ≤150 50 E 2AK10 ≥10 50 70 ≤1 ≤2 ≤150 50 E 2AK11 ≥250 30 50 ≤0.7 ≤2 ≤150 50 2AK11 ≥250 30 50 ≤0.7 ≤2 ≤150 50 2AK11 ≥250 30 50 ≤0.7 ≤2 ≤150 50 2AK14 ≥250 50 70 ≤0.7 ≤2 ≤150 50 2AK15 ≥33 12 40 ≤1 ≤2 ≤150 50 2AK16 ≥33 12 40 ≤1 ≤2 ≤150 50 2AK16 ≥33 12 40 ≤1 ≤2 ≤150 50 2AK18 ≥250 30 50 ≤0.65 ≤2 ≤150 50 2AK19 ≥10 12 45 ≤1 ≤2 ≤120 50 2AK19 ≥250 40 60 ≤0.7 ≤2 ≤120 50 2AK19 ≥250 40 60 ≤0.65 ≤2 ≤100 50 2AK19 ≥250 40 60 ≤0.65 ≤2 ≤100 50 2AK19 ≥250 40 60 ≤0.65 ≤2 ≤100 50 2AK19 ≥250 40 60 ≤0.65 ≤2 ≤100 50 2AK19 ≥250 40 60 ≤0.65 ≤2 ≤100 50 2AK19 ≥250 40 60 ≤0.8 ≤1.5 ≤3 30 E 2AK20 ≥250 50 70 ≤0.65 ≤2 ≤100 50 2AK20 ≥250 50 70 ≤0.65 ≤2 ≤100 50 2AK20 ≥250 50 70 ≤0.65 ≤2 ≤100 50 2AK20 ≥250 50 75 ≤0.8 ≤1.5 ≤3 30 E 2AK20 ≥300 ≥10 ≥10 ≥10 ≥10 ≥0 ≤0.8 ≤1.5 ≤3 30 E 2AK20 ≥250 ≥0 ≥0 ≤0.8 ≤1.5 ≤3 30 E 2AK20 ≥250 ≥0 ≥0 ≤0.8 ≤1.5 ≤3 30 E 2AK20 ≥0 ≥0 ≥0 ≥0 ≥0 ≥0 ≥0	2AK2		≥150	20	40	≼l	€ 3	≤ 200	1	
2AK6 ≥ 200 50 70 ≤0.9 ≤2 ≤150 50 E	2AK3	1	≥200	30	50	≤0.9	€2	€150		
2AK7 ≥10 30 50 ≤1 ≤2 ≤150 50 E 2AK0 ≥10 40 60 ≤1 ≤2 ≤150 50 2AK11 ≥250 30 50 ≤0.7 ≤2 ≤150 50 2AK13 ≥250 40 60 <0.7	2AK5	1	≥200	40	60	≤0.9	€2	≤ 150		
2AK7 ≥10 30 50 ≤1 ≤2 ≤150 50 E 2AK0 ≥10 40 60 ≤1 ≤2 ≤150 50 2AK11 ≥250 30 50 ≤0.7 ≤2 ≤150 50 2AK13 ≥250 40 60 <0.7	2AK6]	≥200	50	70	≤0.9	€2	≤150		
2AK9 ≥10 40 60 ≤1 ≤2 ≤150 50 2AK10 ≥10 50 70 ≤1 ≤2 ≤150 50 2AK13 ≥250 30 50 ≤0.7 ≤2 ≤150 50 2AK14 ≥250 40 60 ≤0.7 ≤2 ≤150 50 2AK14 ≥250 50 70 <0.7 <2 <150 50 2AK16 ≥3 12 40 <1 <2 <150 50 2AK17 ≥10 12 45 <1 <2 <150 50 2AK19 ≥250 30 50 <0.65 <2 <100 50 2AK19 ≥250 40 60 <0.65 <2 <100 50 2AK19 ≥250 40 60 <0.65 <2 <100 50 2AK19 ≥20 40 60 <0.65 <2 <100 50 </td <td>2AK7</td> <td>≥10</td> <td></td> <td>30</td> <td>50</td> <td><u></u> €1</td> <td></td> <td>≤150</td> <td>50</td> <td>EA</td>	2AK7	≥10		30	50	<u></u> €1		≤150	50	EA
2AKI1 ≥ 250 30 50 ≤ 0.7 ≤ 2 ≤ 150 50 2AKI3 ≥ 250 40 60 ≤ 0.7 ≤ 2 ≤ 150 50 2AKI4 ≥ 250 50 70 ≤ 0.7 ≤ 2 ≤ 150 50 2AKI5 ⇒ 3 12 40 ≤ 1 ≤ 2 ≤ 150 50 2AKI6 ⇒ 3 12 40 ≤ 1 ≤ 2 ≤ 150 50 2AKI7 ⇒ 10 12 45 ≤ 1 ≤ 2 ≤ 80 50 2AKI8 ⇒ 250 30 50 < 0.65	2AK9	≥10		40	60	€ 1	€2	≤150	50]
2AKI3 ≥250 40 60 ≤0.7 ≤2 ≤150 50 2AKI4 ≥250 50 70 ≤0.7 ≤2 ≤150 50 2AKI5 ≥3 12 40 ≤1 ≤2 ≤150 50 2AK17 ≥10 12 45 ≤1 ≤2 ≤120 50 2AK18 ≥250 30 50 <0.65	2AK10	≥10		50	70	≤ 1	€2	≤150	50	1
2AKI3 ≥250 40 60 ≤0.7 ≤2 ≤150 50 2AKI4 ≥250 50 70 ≤0.7 ≤2 ≤150 50 2AKI5 ≥3 12 40 ≤1 ≤2 ≤150 50 2AK17 ≥10 12 45 ≤1 ≤2 ≤120 50 2AK18 ≥250 30 50 <0.65		-	≥250	30	50		€2	≤150	50	}
2AKI4 ≥250 SO 70 ≤0.7 ≤2 ≤150 50 2AKI5 ≫3 12 40 ≤1 ≪2 ≤150 50 2AKI7 ≫10 12 40 ≤1 ≪2 ≤120 50 2AKI8 ≫250 30 50 ≪0.65 ≪2 ≤100 50 2AKI9 ≫250 40 60 ≪0.65 ≪2 ≤100 50 2AKI9 ≫250 50 70 ≪0.65 ≪2 ≤100 50 2AK20 ≫250 50 70 ≪0.65 ≪2 ≤100 50 2AK20 ≫10 ≫10 №10 30 ≪0.8 ≪1.5 ≪3 30 E 2AK20 №10 ≫10 %0 %0.8 ≪1.5 ≪3 30 E 2AK20 №10 %0 %0.8 ≪1.5 ≪3 30 E 2AK20 №10 %0 %0 ≪0.8		1	·	40	60	_		≤ 150	50	
2AK15 ⇒3 12 40 ≤1 ≤2 ≤150 50 2AK16 ≥3 12 40 ≤1 ≤2 ≤80 50 2AK17 ≥10 12 45 ≤1 ≤2 ≤80 50 2AK19 ≥250 30 SO <0.65	- -	1		50	70	+-	 	 -	50	1
2AK16 ≥3 12 40 ≤1 ≤2 ≤80 50 2AK17 ≥10 12 45 ≤1 ≤2 ≤120 50 2AK18 ≥250 30 50 ≪0.65 ≪2 ≤100 50 2AK20 ≥250 40 60 ≪0.65 ≪2 ≤100 50 2AK20 ≥250 50 70 ≪0.65 ≪2 ≤100 50 2CK70 A ≥10 ≥10 20 30 ≪0.8 ≪1.5 ≪3 30 E B ≥10 ≥10 40 60 ≪0.8 ≪1.5 ≪3 30 E №3 30 E №10 ≥10 50 75 ≪0.8 ≪1.5 ≪3 30 E №10 ≥10 %0 ≪0.8 ≪1.5 ≪3 30 E №10 ≥20 戶月 上 ≪0.8 ≪1.5 ≪3 30 E №10 №10 №10 <t< td=""><td></td><td>≥3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>		≥3								1
2AK17 ≥10 12 45 ≤1 ≤2 ≤120 50 2AK18 ≥250 30 50 ≤0.65 ≤2 ≤100 50 2AK19 ≥250 40 60 ≤0.65 ≤2 ≤100 50 2AK20 ≥250 50 70 <0.65					40	-		 	50	1
2AK18 ≥ 250 30 SO ≤ 0.65 ≤ 2 ≤ 100 50 2AK20 ≥ 250 40 60 ≤ 0.65 ≤ 2 ≤ 100 50 2CK70 A ≥ 10 ≥ 10 ≥ 20 30 ≤ 0.65 ≤ 2 ≤ 100 50 B ≥ 10 ≥ 10 ≥ 0 30 ≤ 0.8 ≤ 1.5 ≤ 3 30 E C ≥ 10 ≥ 10 ≥ 0 50 75 ≤ 0.8 ≤ 1.5 ≤ 3 30 E 20 E ≥ 10 ≥ 10 ≥ 10 ≥ 10 ≥ 10 ≥ 10 ≥ 10 ≥ 0 ≤ 0.8 ≤ 1.5 ≤ 3 30 ≥ 0 E ≥ 3 30 ≥ 0 E ≤ 1.5 ≤ 3 30 ≥ 0 E ≥ 20 E E ≤ 0.8 ≤ 1.5 ≤ 3 30 ≥ 0 ≥ 0 E E ≤ 0.8 ≤ 1.5 ≤ 3 30 ≥ 2 ≥ 20 E E ≥ 0.8 ≤ 0.8					-				 -	
2AK19 ≥250 40 60 ≤0.65 ≤2 ≤100 50 2AK20 ≥250 50 70 ≤0.65 ≤2 ≤100 50 2CK70 A ≥10 ≥10 ≥0 30 ≤0.8 ≤1.5 ≤3 30 E B >10 ≥10 ≥10 40 60 ≤0.8 ≤1.5 ≤3 30 E D ≥10 ≥10 50 75 ≤0.8 ≤1.5 ≤3 30 E D ≥10 ≥10 60 90 ≤0.8 ≤1.5 ≤3 30 E 2CK71A - E ≥30 □ □ ±0.8 ≤1.5 ≤3 30 E 2CK73A - E ≥30 □ □ ±0.8 ≤1.5 ≤4 30 □ 2CK73A - D ≥100 ≥100 □ □ ± ≤1 ≤4 ≤5 100 2CK76A - D ≥200 ≥200 □		2.7	> 250		-			+		1
2AK20 ≥ 250 50 70 ≤ 0.65 ≤ 2 ≤ 100 50 2CK70 A ≥ 10 ≥ 10 20 30 ≤ 0.8 ≤ 1.5 ≤ 3 30 E B ≥ 10 ≥ 10 30 45 ≤ 0.8 ≤ 1.5 ≤ 3 30 E D ≥ 10 ≥ 10 50 75 ≤ 0.8 ≤ 1.5 ≤ 3 30 E E ≥ 10 ≥ 10 60 90 ≤ 0.8 ≤ 1.5 ≤ 3 30 E 2CK71A - E ≥ 20 □ □ 上 ≤ 0.8 ≤ 1.5 ≤ 4 30 E 2CK73A - E ≥ 50 ≥ 50 □ □ ⊥ ≤ 1 ≤ 4 ≤ 5 50 € 2CK74A - D ≥ 100 ≥ 150 □ □ ⊥ ≤ 1 ≤ 4 ≤ 5 50 € 2CK76A - D ≥ 200 ≥ 150 □ □ ⊥ ≤ 1 ≤ 8 ≤ 10		1		+	+			+		1
2CK70 A ≥ 10 ≥ 10 20 30 ≤ 0.8 ≤ 1.5 ≤ 3 30 E B ≥ 10 ≥ 10 30 45 ≤ 0.8 ≤ 1.5 ≤ 3 30 E ≤ 1.5 ≤ 3 30 E ≥ 10 ≥ 10 ≥ 10 ≤ 0.8 ≤ 1.5 ≤ 3 30 E ≥ 10 ≥ 10 ≤ 0.8 ≤ 1.5 ≤ 3 30 E ≥ 10 ≥ 10 ≤ 0.8 ≤ 1.5 ≤ 3 30 E ≥ 10 ≥ 10 ≤ 0.8 ≤ 1.5 ≤ 3 30 E ≥ 10 ≥ 10 ≤ 0.8 ≤ 1.5 ≤ 3 30 E ≥ 10 ≥ 10 ≤ 0.8 ≤ 1.5 ≤ 3 30 E ≥ 10 ≥ 10 ≤ 0.8 ≤ 1.5 ≤ 4 30 E ≥ 10 ≥ 20 ≥ 20 ≥ 10 ≥ 10 ≥ 10 ≥ 10 ≥ 10 ≥ 10 ≥ 10 ≥ 10 ≥ 10 ≥ 10 ≥ 10 ≥ 10 ≥ 10 ≥ 10 ≥ 10 ≥ 10 ≥ 10 </td <td></td> <td>•</td> <td></td> <td>/ </td> <td></td> <td></td> <td></td> <td></td> <td> -</td> <td>1</td>		•		/ 					 -	1
B	-	> 10		+						- Date
C ≥ 10 ≥ 10 40 60 ≤ 0.8 ≤ 1.5 ≤ 3 30 D ≥ 10 ≥ 10 50 75 ≤ 0.8 ≤ 1.5 ≤ 3 30 2CK71A - E ≥ 20 □ □ 上 ≤ 0.8 ≤ 1.5 ≤ 3 30 2CK72A - E ≥ 30 □ □ 上 ≤ 0.8 ≤ 1.5 ≤ 4 30 □ 2CK73A - E ≥ 50 ≥ 50 □ □ ⊥ ≤ 1 ≤ 4 ≤ 5 50 ∮ 3 2CK74A - D ≥ 100 ≥ 100 □ □ □ ⊥ ≤ 1 ≤ 4 ≤ 5 100 □ 2CK74A - D ≥ 100 ≥ 100 □ □ ⊥ ≤ 1 ≤ 4 ≤ 5 100 □ □ □ ⊥ ≤ 1 ≤ 4 ≤ 5 100 □ □ □ □ □ □ □ □ □ □ □ □ □ □				1	1	7		1		ET
D ≥10 ≥10 ≥10 50 75 ≤0.8 ≤1.5 ≤3 30 30 2CK71A ~ E ≥20	_			1	1	I .	1			
2CK71A~E ≥20 File ± ≤0.8 ≤1.5 ≤4 30 File 2CK72A~E ≥30 File ± ≤0.8 ≤1.5 ≤4 30 File 2CK73A~E ≥50 ≥50 File ± ≤1 ≤4 ≤5 50 43 2CK74A~D ≥100 ≥100 File ± ≤1 ≤4 ≤5 100 2CK75A~D ≥150 File ± ≤1 ≤4 ≤5 100 2CK76A~D ≥200 ≥200 File ± ≤1 ≤4 ≤5 150 2CK77A~D ≥260 ≥300 File ± ≤1 ≤8 ≤10 250 2CK73A~D ≥280 ≥500 File ± ≤1 ≤8 ≤10 250 2CK79A~D ≥280 ≥500 File ± ≤1 ≤8 ≤10 250 2CK81A~E ≥300 ≥600 File ± ≤1	D		J	50	1	1	1	,	30	
2CK72A~E ≥30 □ □ 上 ≤0.8 ≤1.5 ≤4 30 □ 2CK73A~E ≥50 ≥50 □ ⊥ ≤1 ≤4 ≤5 50 ∮3 2CK74A~D ≥100 ≥100 □ ⊥ ≤1 ≤4 ≤5 100 2CK75A~D ≥150 □ ⊥ ≤1 ≤4 ≤5 150 2CK76A~D ≥200 ≥200 □ □ ⊥ ≤1 ≤4 ≤5 200 2CK77A~D ≥260 ≥300 □ □ ⊥ ≤1 ≤8 ≤10 250 2CK79A~D ≥280 ≥500 □ □ ⊥ ≤1 ≤8 ≤10 250 2CK80A~D ≥300 ≥600 □ □ ⊥ ≤1 ≤8 ≤10 250 2CK81A~E ≥320 ≥700 □ □ ⊥ ≤1 ≤8 ≤10 250 2CK82A ≥10	E	≥ 10	≥ 10	60	L	≤0.8	≤1.5	≤ 3	30	
2CK73A - E ≥ 50 ≥ 50 両 ± ≤ 1 ≤ 4 ≤ 5 50 ♦ 3 2CK74A - D ≥ 100 ≥ 100 両 ± ≤ 1 ≤ 4 ≤ 5 100 2CK75A - D ≥ 150 ≥ 150 両 ± ≤ 1 ≤ 4 ≤ 5 150 2CK76A - D ≥ 200 ≥ 200 両 ± ≤ 1 ≤ 8 ≤ 10 250 2CK77A - D ≥ 260 ≥ 300 両 ± ≤ 1 ≤ 8 ≤ 10 250 2CK79A - D ≥ 280 ≥ 500 両 ± ≤ 1 ≤ 8 ≤ 10 250 2CK80A - D ≥ 300 ≥ 600 両 ± ≤ 1 ≤ 8 ≤ 10 250 2CK81A - E ≥ 320 ≥ 700 両 ± ≤ 1 ≤ 8 ≤ 10 250 2CK82 A ≥ 10 ≥ 30 10 15 ≤ 1 ≤ 3 ≤ 5 10 E B ≥ 10 ≥ 30 <td>2CK71A ~ E</td> <td>≥20</td> <td>1</td> <td>同</td> <td></td> <td>≤0.8</td> <td>€1.5</td> <td>≤4</td> <td>30</td> <td>ET</td>	2CK71A ~ E	≥20	1	同		≤0.8	€1.5	≤ 4	30	ET
2CK74A ~ D ≥100 ≥100 ⋈ E ≤1 ≤4 ≤5 100 2CK75A ~ D ≥150 ≥150 ⋈ E ≤1 ≤4 ≤5 150 2CK76A ~ D ≥200 ≥200 ⋈ E ≤1 ≤4 ≤5 200 2CK77A ~ D ≥260 ≥300 ⋈ E ≤1 ≤8 ≤10 250 2CK78A ~ D ≥270 ≥400 ⋈ E ≤1 ≤8 ≤10 250 2CK79A ~ D ≥280 ≥500 ⋈ E ≤1 ≤8 ≤10 250 2CK80A ~ D ≥300 ≥600 ⋈ E ≤1 ≤8 ≤10 250 2CK81A ~ E ≥320 ≥700 ⋈ E ≤1 ≤8 ≤10 250 2CK82 A ≥10 ≥30 10 15 ≤1 ≤3 ≤5 10 In E ≤1 ≤8 ≤10 250 E E	2CK72A ~ E	≥30		同	<u>上</u>	≤0.8	≰1.5	≤ 4	30	或
2CK75A ~ D ≥150 ≥150 E E ≤1 ≤4 ≤5 150 2CK76A ~ D ≥200 ≥200 E ± ≤4 ≤5 200 2CK77A ~ D ≥260 ≥300 E ± ≤1 ≤8 ≤10 250 2CK79A ~ D ≥280 ≥500 E ± ≤8 ≤10 250 2CK80A ~ D ≥300 ≥600 E ± ≤8 ≤10 250 2CK81A ~ E ≥320 ≥700 E ± ≤8 ≤10 250 2CK82A ≥ 10 ≥ 30 10 15 ≤ 1 ≤8 ≤ 10 250 2CK82A ≥ 10 ≥ 30 10 15 ≤ 1 ≤ 3 ≤ 5 10 E B ≥ 10 ≥ 30 30 45 ≤ 1 ≤ 3 ≤ 5 10 E B ≥ 10 ≥ 30 50 75 ≤ 1 ≤ 3	2CK73A ~ E	≥ 50	≥50	同	<u> </u>	≰ì	≤4	€5	50	ф3×б
2CK76A ~ D ≥200 ≥200 □ E ≤1 ≤4 ≤5 200 2CK77A ~ D ≥260 ≥300 □ E ≤1 ≤8 ≤10 250 2CK78A ~ D ≥270 ≥400 □ □ E ≤1 ≤8 ≤10 250 2CK79A ~ D ≥280 ≥500 □ □ E ≤1 ≤8 ≤10 250 2CK80A ~ D ≥300 ≥600 □ □ E ≤1 ≤8 ≤10 250 2CK81A ~ E ≥320 ≥700 □ □ E ≤1 ≤8 ≤10 250 2CK82 A ≥10 ≥30 10 15 ≤1 ≤3 ≤5 10 E B ≥10 ≥30 20 30 ≤1 ≤3 ≤5 10 E B ≥10 ≥30 30 45 ≤1 ≤3 ≤5 10 E B <td< td=""><td>2CK74A ~ D</td><td>≥100</td><td>≥ 100</td><td>同</td><td>上</td><td>≼l</td><td>≤4</td><td>€5</td><td>100</td><td>j</td></td<>	2CK74A ~ D	≥100	≥ 100	同	上	≼l	≤ 4	€5	100	j
2CK77A ~ D ≥ 260 ≥ 300 □ L ≤1 ≤8 ≤10 250 2CK78A ~ D ≥ 270 ≥ 400 □ □ L ≤1 ≤8 ≤10 250 2CK79A ~ D ≥ 280 ≥ 500 □ □ L ≤1 ≤8 ≤10 250 2CK80A ~ D ≥ 300 ≥ 600 □ □ L ≤1 ≤8 ≤10 250 2CK81A ~ E ≥ 320 ≥ 700 □ □ L ≤1 ≤8 ≤10 250 2CK82 A ≥ 10 ≥ 30 10 15 ≤1 ≤3 ≤5 10 □ B ≥ 10 ≥ 30 20 30 ≤1 ≤3 ≤5 10 □ C ≥ 10 ≥ 30 30 45 ≤1 ≤3 ≤5 10 □ E ≥ 10 ≥ 30 50 75 ≤1 ≤3 ≤5 10 □	2CK75A ~ D	≥150	≥ 150	同	上	≰ 1	<u>≤4</u>	<u>≤</u> 5	150	
2CK78A ~ D ≥ 270 ≥ 400 File ± ≤ 1 ≤ 8 ≤ 10 250 2CK79A ~ D ≥ 280 ≥ 500 File ± ≤ 1 ≤ 8 ≤ 10 250 2CK80A ~ D ≥ 300 ≥ 600 File ± ≤ 1 ≤ 8 ≤ 10 250 2CK81A ~ E ≥ 320 ≥ 700 File ± ≤ 1 ≤ 8 ≤ 10 250 2CK82 A ≥ 10 ≥ 30 10 15 ≤ 1 ≤ 3 ≤ 5 10 File B ≥ 10 ≥ 30 20 30 ≤ 1 ≤ 3 ≤ 5 10 File C ≥ 10 ≥ 30 30 45 ≤ 1 ≤ 3 ≤ 5 10 File D ≥ 10 ≥ 30 50 75 ≤ 1 ≤ 3 ≤ 5 10 File 2CK83A ~ E ≥ 10 ≥ 30 File ± ≤ 1 ≤ 30 ≤ 150 50 50 File	2CK76A ~ D	≥200	≥200	同	上	≤ 1	€4	≤ 5	200]
2CK79A ~ D ≥ 280 ≥ 500 □ L ≤1 ≤8 ≤10 250 2CK80A ~ D ≥ 300 ≥ 600 □ L ≤1 ≤8 ≤10 250 2CK81A ~ E ≥ 320 ≥ 700 □ L ≤1 ≤8 ≤10 250 2CK82 A ≥ 10 ≥ 30 10 15 ≤1 ≤3 ≤5 10 B B ≥ 10 ≥ 30 20 30 ≤1 ≤3 ≤5 10 B C ≥ 10 ≥ 30 30 45 ≤1 ≤3 ≤5 10 B D ≥ 10 ≥ 30 50 75 ≤1 ≤3 ≤5 10 B 2CK83A ~ E ≥ 10 ≥ 30 □ 1 ≤1 ≤5 ≤5 10 2CK84 A ≥ 50 60 90 ≤1 ≤30 ≤150 50 B ≥ 50 90 135 ≤1<	2CK77A ~ D	≥ 260	≥300	同		≤ 1	≤8	≤ 10	250	
2CK80A ~ D ≥ 300 ≥ 600 □ 上 ≤1 ≤8 ≤10 250 2CK81A ~ E ≥ 320 ≥ 700 □ □ □ ≤1 ≤8 ≤10 250 2CK82 A ≥ 10 ≥ 30 10 □	2CK78A ~ D	≥270	≥400	同	Ŀ	€1	€8	€10	250	
2CK81A~E ≥320 ≥700 FI ± ≤1 ≤8 ≤10 250 2CK82 A ≥10 ≥30 10 15 ≤1 ≤3 ≤5 10 F B ≥10 ≥30 20 30 ≤1 ≤3 ≤5 10 F C ≥10 ≥30 30 45 ≤1 ≤3 ≤5 10 F D ≥10 ≥30 40 60 ≤1 ≤3 ≤5 10 F E ≥10 ≥30 50 75 ≤1 ≤3 ≤5 10 F 2CK83A~E ≥10 ≥30 50 11 ≤1 ≤5 ≤5 10 50 10 20<	2CK79A ~ D	≥280	≥500	间	上	≼l	≤ 8	≤10	250	1
2CK82 A ≥ 10 ≥ 30 10 15 ≤ 1 ≤ 3 ≤ 5 10 E B ≥ 10 ≥ 30 20 30 ≤ 1 ≤ 3 ≤ 5 10 E C ≥ 10 ≥ 30 30 45 ≤ 1 ≤ 3 ≤ 5 10 E D ≥ 10 ≥ 30 50 75 ≤ 1 ≤ 3 ≤ 5 10 2CK83A - E ≥ 10 ≥ 30 □ □ □ ≤ 1 ≤ 3 ≤ 5 10 2CK84 A ≥ 50 ≥ 50 30 45 ≤ 1 ≤ 30 ≤ 150 50 B ≥ 50 60 90 ≤ 1 ≤ 30 ≤ 150 50 B ≥ 50 120 180 ≤ 1 ≤ 30 ≤ 150 50 B ≥ 50 150 225 ≤ 1 ≤ 30 ≤ 150 50 B ≥ 50 150 225 ≤ 1 ≤ 30 ≤ 150 50 B ≥ 50 150 240 ≤ 1 ≤ 30 ≤	2CK80A ~ D	≥300	≥600	同	上	€1	≤8	≤10	250	
2CK82 A ≥ 10 ≥ 30 10 15 ≤ 1 ≤ 3 ≤ 5 10 E B ≥ 10 ≥ 30 20 30 ≤ 1 ≤ 3 ≤ 5 10 E C ≥ 10 ≥ 30 30 45 ≤ 1 ≤ 3 ≤ 5 10 E D ≥ 10 ≥ 30 50 75 ≤ 1 ≤ 3 ≤ 5 10 2CK83A ~ E ≥ 10 ≥ 30 □ □ □ □ ≤ 1 ≤ 3 ≤ 5 10 2CK84 A ≥ 50 30 45 ≤ 1 ≤ 30 ≤ 150 50 50 B ≥ 50 60 90 ≤ 1 ≤ 30 ≤ 150 50 50 B ≥ 50 120 180 ≤ 1 ≤ 30 ≤ 150 50 B ≥ 50 150 225 ≤ 1 ≤ 30 ≤ 150 50 B ≥ 50 150 225 ≤ 1 ≤ 30 ≤ 150 50 B ≥ 50 160 1 ≤ 1	2CK81A~E	≥320	≥700	同	Ŀ	≤ 1	€8	≤10	250	
B ≥ 10 ≥ 30 20 30 ≤ 1 ≤ 3 ≤ 5 10 3 C ≥ 10 ≥ 30 30 45 ≤ 1 ≤ 3 ≤ 5 10 </td <td>2CK82 A</td> <td>≥10</td> <td>≥ 30</td> <td>10</td> <td>15</td> <td>\$1</td> <td>≤3</td> <td>€5</td> <td>01</td> <td>EA</td>	2CK82 A	≥10	≥ 30	10	15	\$ 1	≤3	€5	01	EA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	В	1	≥30		30	1			1	或
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	1				1	ET
2CK83A - E ≥ 10 ≥ 30 □ ⊥ ≤ 1 ≤ 5 ≤ 5 10 2CK84 A ≥ 50 30 45 ≤ 1 ≤ 30 ≤ 150 50 B ≥ 50 60 90 ≤ 1 ≤ 30 ≤ 150 50 C ≥ 50 90 135 ≤ 1 ≤ 30 ≤ 150 50 D ≥ 50 120 180 ≤ 1 ≤ 30 ≤ 150 50 E ≥ 50 150 225 ≤ 1 ≤ 30 ≤ 150 50 F ≥ 50 (80 240 ≤ 1 ≤ 30 ≤ 150 50 2CK85A ~ D ≥ 100 □ □ ⊥ ≤ 1 ≤ 20 ≤ 50 100 2CK86 ≥ 10 □ ⊥ ≤ 1 ≤ 3 ≤ 5 50 EA		1	1	1	1	1				
2CK84 A ≥ 50 30 45 ≤1 ≤30 ≤150 50 50 B ≥ 50 60 90 ≤1 ≤30 ≤150 50 50 C ≥ 50 90 135 ≤1 ≤30 ≤150 50 D ≥ 50 120 180 ≤1 ≤30 ≤150 50 E ≥ 50 150 225 ≤1 ≤30 ≤150 50 F ≥ 50 180 240 ≤1 ≤30 ≤150 50 2CK85A ~ D ≥ 100 □ □ ≤1 ≤20 ≤50 100 2CK86 ≥ 10 □ □ □ ≤1 ≤3 ≤5 50 EA		-	1				 		 	 -
B ≥50 60 90 ≤1 ≤30 ≤150 50 C ≥50 90 135 ≤1 ≤30 ≤150 50 D ≥50 120 180 ≤1 ≤30 ≤150 50 E ≥50 150 225 ≤1 ≤30 ≤150 50 F ≥50 180 240 ≤1 ≤30 ≤150 50 2CK85A~D ≥100 □ □ ± ≤1 ≤20 ≤50 100 2CK86 ≥10 □ □ ± ≤1 ≤3 ≤5 50 EA			≥30							 -
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			{			1			1	EA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					135		€30	€150	1	
F ≥ 50 180 240 ≤ 1 ≤ 30 ≤ 150 50 2CK85A~D ≥ 100 □ ⊥ ≤ 1 ≤ 20 ≤ 50 100 2CK86 ≥ 10 □ ⊥ ≤ 1 ≤ 3 ≤ 5 50 EA		≥50				≤ 1			1	
2CK85A~D ≥100 □ ⊥ ≤1 ≤20 ≤50 100 2CK86 ≥10 □ ⊥ ≤1 ≤3 ≤5 50 EA		1		í	1	1			1	
2CK86 ≥10 Fi ⊥ ≤1 ≤3 ≤5 50 EA			1			1				1
		+	-				 			EA,E
1N4148 ≤75 200 100 ≤1 4 5 ¢2		+	200	 			 	 		\$2.5
		+	200		1		1 -	_		Ψ2.5 ×6

表 3.9 阻尼二极管的参数

参数	额 定 正向电流	反向电压	正向压降	浪涌电流	反向电流	反 询 恢复时间	AL TO
#	I_F	U_R	U_F	I_{PSM}	I_R	t_{rr}	外形
型号	(A)	(v)	(y)	(A)	(μΛ)	(µs)	<u> </u>
2CN1	11	400 ~ 1200	11	50	5	2	DO
2CN2	2	400 ~ 800	1	50	5	2	EM
S2CN2	0.5	400	0.65	10	5	. 4	EM
2CN4	1.5	100 ~ 400	0.65	30	5	1	EM
2CN5C	1,5	200	1.2		3	i	D0
2CN6	1 1	300 ~ 1000	1.2		3	4	DO
2CN7	1.6	300 ~ 1200	1.2	70	10	6	EM
2CN41	ı	200	1.8[1]	35	10	1	EM
BSV06	0.8	_600	1.6[1]	25	15	6	EM
BSV09	0.8	600	1.94[1]	25	15	0.8	EM
BS1 - 1	1.5	200 ~ 400	0.8	30	3	1	EM
BNf - 2	1	200 ~ 1400	0.75	20	3	6	EM
BN3	2	200 ~ 1400	1.1	40	3	6	EM
FR100 ~ 107	1	25 ~ 1000	1.3	50	5	0.85	DO
SK4 - 1 ~ 10	0.5	100 ~ 1000	1.2	50	5	0.7_	DO
SK2 – 1 ~ 10	1	100 ~ 1000	1.2	50	5	0.7	DO

注[1]: 在3倍1,条件下侧得的值。

表 3.10 稳压二极管的参数

			衣	3.10_	想点	做實	的麥	£X			
参数	最大耗 散功率	最大工 作电流	稳定电压		动态			反向电流	正向压降	电压温 度系数	AL TE
型号	P_{ZM}	IZM	Uz	Rz ₁	Iz I	Rz_2	$I_{\mathbf{z}_2}$	I_R	U_F	αU	外形
- TE -3	(W)	(mA)	(v)	(Ω)	(mA)	(U)	(mA)	(μA)	(v)	(10 ⁻⁴ /°C)	
2CW 50		83	1~2.8	≤300		≤50	10	≤ 10	1 : 	≽ −9	ED 或 EA
51		71	2.5~3.5	≤400	[]	≤60	10	≰5		≥ -8	LA
52		55	3.2~4.5	≤550	1	≤70	10	€2		-6~4	
53		41	4~5.8	≤550		≤50	10	≤ 1		-3~5	
54	1	38	5.5~6.5	≤500	1	≤30	10			≤ 6	
55		33	6.2~7.5	≤500		≤15	10			≤ 7	
56		27	7~8.8		1	≰15	10			≤8	
57		26	8.5~9.5			≤20	10			€ 8	
58		23	9.2 ~ 10.5			€25	5		!	€ 9	
59	ļ	20	10 ~ 11.8]		≤30	5	[[≼ 9	
60		19	11.5~12.5	ĺ		≰40	5				
61		16	12.2 ~ 14			≤50	3			≤ 9.5	
62	•	14	13.5~17			≤60	3	, ≤0.5			
63		13	16 ~ 19	≤ 400		≼ 70	3	_		ĺ	
64	0.25	11	18 ~ 21	}		≤75	3		€1		
65		10	20 ~ 24	ĺ		≤80	3	ļ			
66		9	23 ~ 26		1	≤85	3			ا مد	
67		9	25 ~ 28	ļ		€90	3			€10	
68		8	27 ~ 30		f	≤95	3	•			
69		7	29 ~ 33			≤95	3			}	
70		7	32 ~ 36			€100	3	1			
71	!	6	35 ~ 40		j	≤100	3	_ _			
72)	29	7~8.8	≤12]]	≼ 6	5			€7	
73	i	25	8.5~9.5	≤18		≤10	5			€8	
74	[23	9.2~10.5	≤25		€12	5	≤ 0.l	l	≤8	
75]	21	10~11.18	≤30		≤15	5			≤ 9	
76		20	11.5~12.5	≤35		≤18	5]		≤ 9	
77		18	12.2 ~ 14	≤35]]	≰18	5			€9.5	
78		14	13.5 ~ 17	≰40		≤ 21	5	≤0.1		€9.5	

续表 3.10 稳压二极管的参数

				表 3.10	促口	5极情	HA 38	* 950X			
多数	最大 耗 散功率	最大工 作电流	稳定电压	}	动态	电阻		反向电流	正向压降	电压温 度系数	
	P_{ZM}	I_{ZM}	Uz	R_{z_1}	Iz_1	Rz_2	Iz_2	I_R	U_F	a _U	外形
型号	(W)	(mA)	(V)	(Ω)	(mA)	(Ω)	(mA)	(μA)	(v)	(10 ⁻⁴ /°C)	
2CW 100		330	1~2.8	≤300		≤ 5	50	≤ 10		<u>≥</u> -9	ED 或
101		280	2.5~3.5	≤400	1	≤25	50	≤ 10		-9 -9	EA
102		220	3.2~4.5	≤500	1	≤30	50	≤ 5		≥ -8	
103		165	4~5.8	≤550	il	€20	50	≤1		-6~4	
104		150	5.5~6.5	≤500		€ 15	30			-3~5	
105	}	130	6.2~7.5		1	≼ 7	30			≤6	
106		110	7~8.8			≤5	30			≤ 7	
107		100	8.5~9.5		1	≤10	20		ļ 1	≤8	
108	ļ	95	9.2~10.5			≤12	20			≤ 8	
109	1	83	10~11.8			≤15	20			≤ 9	
110	[.	76	11.5 ~ 12.5		[]	≤20	20			€ 9	
101	1	66	12.2 ~ 14		١. ١	≤20	20		€1	≤ 10	
112	4	58	13.5 ~ 17		1 1	≤35	10			≤10	
113		52	16 ~ 19	≤400		≤40	10	≤0.5			
114		47	18 ~ 21	72 700		≤45	10		Ì	,	
115		41	20 ~ 24			≤50	10			,	
116		38	23 ~ 26			≤5 5	10			≤ 11	
117	1	35	25 ~ 28		[]	≤60	10			[
118		33	27 ~ 30			≤80	5			1	
119	ļ	30	29 ~ 33		1	≤90	5				EE
120		27	32 ~ 36			€110	5				
121	ļ	25	35 ~ 40	j		€130	5			€12	
2CW 130	-	660	3~4.5	≤250	1	€20	10	€5	-	≥ -8	
131	ļ	500	4~5.8	≤300	1	€15	10	ĺ		-6~4	
132	İ	460	5.5~6.5	€250	1 1	≤12	10			-3~5	
133	ļ	400	6.2 ~ 7.5	İ	3	≰6	10	1		≤ 6	
134		330	7~8.8		-	≤ 5	50			€7	
135		310	8.5~9.5	: 		€7	50			≤8	
136		280	9.2 ~ 10.5			≤ 9	50			≤8	
137		250	10~11.8			≤12	50			≤ 9	
138		230	11.5 ~ 12.5) 		≤14	50			≤ 9	
139		200	12.2 ~ 14			≤16	50			€10	
140	3	170	13.5~17] :	}	≤25	30	≤0.5	€ 1	≤10	EE
141		150	16 ~ 19			€30	30			≤11	
142		140	18 ~ 21	€200	3	≤35	30			j ≼11	
143		120	20 ~ 24			≤ 4 0	30			<u> </u> ≤11	
144	i	110	23 ~ 26		¦	≤45	30]	
145	•	105	25 ~ 28		ĺi	≤55	15		İ	(
146	İ	100	27 ~ 30		'	≤60	15			≰li	
J47	1	90	29 ~ 33			≤70	15		•	≤12	
148	1	80	32 ~ 36			€80	15			== 12	
149	Į	75	35 ~ 40	<u> </u>	,]		15				
	<u> </u>	<u> </u>				<u>≼</u> 90	1	<u></u>	<u> </u>		

续表 3.10 稳压二极管的参数

\	最大耗	最大工		AC 3.10	THE A	E — 2X E	4 4 7 5		I	电压温	
参数	散功率	作电流	稳定电压		动态	电阻		反向电流	正向压降	电压温 度系数	
	P_{ZM}	I _{ZM}	Uz	Rz ₁	I_{Z_1}	Rz_2	Iz_2	I_R	U_F	av	外形
쩐 당	(w)	(mA)	(V)	(Ω)	(mA)	(Ω)	(mA)	(μ A)	(v)	(10 ⁻⁴ /°C)	
2DW 50		22	38 ~ 45		1	≤90	5				ED
51		18	42 ~ 55			≤95	5				
52		15	52 ~ 65			≤ 120	3				
53		13	62 ~ 75	≼lk		≤170	3		 		
54		11	70 ~ 85			€210	3				
55		10	80 ~ 95			€250	3				
56		9	90 ~ 110			≤300	3	≤0.5		€12	
57	1	8	100 ~ 120		1	€400	3	-			
58		7	110 ~ 130			≤ 500	3				
59		6	120 ~ 145			≤600	3				
60		6	135 ~ 155	۵.		≤700	3				
61		6	145 ~ 165	≼2k		≤800	3				
62		5	155 ~ 175			≤900	3				
63		5	165 ~ 190			≰lk	3		≰l		
64	·	5	180 ~ 200] ;	≼1.1k	3				
2DW 80		65	38 ~ 45			≰35	20				EE
81		50	42 ~ 55			≤40	20				
82		45	52 ~ 65		1	≤40	20	€0.5		≤ 12	
83		40	62 ~ 75			€45	20				
84	3	35	70 ~ 85			≤60	20				
85		30	80 ~ 95	≼lk		≤150	8				
86		25	90 ~ 110	== 1V		≤250	8				
87		25	100 ~ 120			≤280	8				
88		20	110 ~ 130			€370	8				
89		20	120 ~ 145			≤550	8				
90		19	135 ~ 155			≤600	8				
91		18	145 ~ 165			≤650	8				
92		17	155 ~ 175			≤ 700					
93	3	15	165 ~ 190	≰lk	1	≤800	8	€0.5	≤ 1	≤ 12	EE
94		15	180 ~ 200			≤920					
2DW 230		30	5.8~6.6	€25	10					1501	
231		30	5.8~6.6	€15	10						
232		30	- "	10	5				i		B – 4
233	0.2	30		≤10	7.5			≤ 1		151	见图
234		30		≤ 10	10						3.4
235		30	6.0~6.5	≤ 10	12.5						
236		30		≤10	15						
BZY - 88	0.5	Lz = 5 mA	2.4~91V								
BZY ~ 55	0.5		2.4~91V				<u> </u>				
BZY - 61	1.3		7.5 ~ 72V								
BZY ~ 97	1.5		9.1 ~ 37V								
					-						

表 3.11 变容二极管的参数

			-	•	·						
* *	Ż.	最大 反向电压 <i>U_{RM}</i>	反向电流 I _R	结 U _R = 3\ C _D	电容 $U_R = 10V$ C_{i10}	电容比 C _{j3} /C _{j30}	击穿 电压 <i>U_{HH}</i>	优值 ≥ Qv	l	电容温 度系数 a _c	l
型号		(V)	(μΑ)	(pF)	(pF)		(v)		(kΩ)	(1/℃)	
2CC 120A ~ D 220A ~ D 320A ~ D 420A ~ D 2CC 122A ~ F 222A ~ F 322A ~ F 422A ~ F 422A ~ D 2CC 124A ~ D 224A ~ D 324A ~ D 424A ~ D	A B C D A B C D F A B C D	30	€0.1	20 ~ 22 ~ 24	7~8.5 8.5~10 7~8.5 8.5~10 8.5~9.5 9.5~10.5 10.5~12 8~9.5 9.5~10.5 10.5~12 10~11.5 11.5~13 10~11.5 11.5~13	≥6 ≥6 5~6 5~6 ≥6 ≥6 5~6 5~6 5~6 ≥6 5~6	35	120	1.5	€5× 10 ⁻⁴	120~ 124 ES型 320~ 324 ER型 420~ 424 ET型
201A ~ M 201A ~ M 301A ~ M 202A ~ M 202A ~ M 202A ~ M 202A ~ G 203A ~ G 203A ~ G 204A ~ M 204A ~ M		20 30 40	≪0.5	A B C D E F G H J: K: L:	$U_R = 4V$) $:10 \sim 20$ $:20 \sim 30$ $:30 \sim 40$ $:40 \sim 50$ $:50 \sim 60$ $:60 \sim 70$ $:70 \sim 80$ $:80 \sim 90$ $:90 \sim 100$ $:100 \sim 110$ $:10 \sim 120$ $:20 \sim 130$	≥2		300		5× 10 ⁻⁴	101~ 104 EA型 201~ 204 ET型 301~ 304 ES型

表 3.12 双基极二极管的参数

参数	分压比	基极间 电阻	E = B间 反向电流	饱和压降	峰电流	谷电流	谷电压	调制电流	功耗	М пи
	,	R_{BB}	I _{EBR}	U_{E8}	I_p	I_{ν}	U_{t}	I _{B2}	P_{R2M}	外形
型号	7	(kΩ)	(μ A)	(V)	(μ A)	(mA)	(V)	(mA)	(mW)	
BT31 A	0.3~	3~6						5 ~ 30		
В	0.55	5 ~ 12						[ET型
C	0.45 ~	3~6	-1	1	0	≤ 1.5	≤ 3.5		100	陶瓷
D	0.75	5 ~ 12	€1	≤ 4	€2	[€1.5	€3.5	€30	100	图 3.4
E	0.65 ~	3~6						!		B4 3.4
F	0.90	5 ~ 12								
BT32 A	0.3~	3~6						8 ~ 35		
В	0.55	5 ~ 12								
С	0.45~	3~6	≤ 1	≼ 4.5	€2	≤ 1.5	≤ 3.5	1	250	B型
D _.	0.75	5~12	==1	==1.3	== 2	# I.J	= 3.5	≰35	2.50	D 44.
E	0.65 ~	3~6	•			i I				
F	0.90	5 ~ 12								<u> </u>
BT33 A	0.3~	3~6						8 ~ 40		
В	0.55	5~12				, ;				
C	0.45~	3~6	 ≰l	≤ 5	€2	≤1.5	€3.5	'	400	B型
D	0.75	5 ~ 12	<u>₹</u> 1	# J	<u>€</u> .4	£1.J	£3.3	≤40	400	D 3E
E	0.65~	3~6	1							
F	0.90	5 ~ 12						<u> </u>		
BT35 A	0.45~	2 ~	≥30							
В	0.9	5	≥60	≤ 5	€2	≤ 1.5	≤ 3.5	≤ 40	400	В型
С -	0.3~	4.5~	≥30	== 2		, in 1	<u>=</u> ,,,,	25 40	700	D:R
D	0.90	12	≥60	<u></u> .						
BT37A ~ F			其它参数同	∄ BT33A ~ I	r		≰4		700	

3.3 常用晶闸管(可控硅)的参数

可控硅的学名为晶闸管,它分为单向晶闸管、双向晶闸管、高频晶闸管、光控晶闸管、栅极可关断晶闸管(CTO),主要用于无触点开关、电机调速、功率负载的调压以及稳压、变频和控制等方面。

晶闸管的主要参数如下:

- (1)**额定正向平均电流** I_T ——在规定的条件下,在阳极和阴极之间可以连续通过的 50Hz 正弦半波电流的平均值。
 - (2)**正向阻断峰值电压** U_{DRM} ——定义为正向转折电压减去 100V 后的电压值。
 - (3)反向阻断峰值电压 U_{RRM} ——定义为反向击穿电压减去 100V 后的电压值。
 - (4)维持电流 I_H ——在规定的条件下,维持晶闸管导通的最小正向电流。
- (5) **栅极触发电压** U_{CT} 和触发电流 I_{CT} ——在规定的条件下,加在栅极上的可以使晶闸管导通的所必须的最小电压和电流。
- (6)**导通时间** $t_{gT}(t_{on})$ ——从在晶闸管的栅极加上触发电压 U_{GT} 开始到晶闸管导通,其电流达到最终值的 90% 为止,这一段时间称为导通时间。
- (7)**关断时间** $t_q(t_{off})$ ——从切断晶闸管的正向电流开始到控制极恢复控制能力的这一段时间称为关断时间。

表 3.13 单向可控硅(晶闸管)的参数

			42, 3.1.		かだぼり間が	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
参数	I_T	U_{DRM} U_{RRM}	U_T	U_{GT}	I_{GT}	I _H	I _{TSM}	t _{on}	$t_{ m eff}$	外形
型 春	(A)	(V)	(v)	(v)	(mA)	(mA)	(A)	(µs)	(ps)	, ,,
3CT021 ~ 024	0.1		≤1.5	≤1.5	0.01 ~ 10	0.4~20	0.95	≤1		В
3CT031 ~ 034	0.2		≤1.5	≼ 1.5	0.01 ~ 15	0.4~30	1.9	€1		
3Cf041 ~ 044	0.3	20 ~	≤1.5	€2	0.01 - 20	0.4~30	2.8	≤ 1	≤80	
3CT051 ~ 054	0.5	1000	€1.2	€2	0.05 ~ 20	0.5~30	4.5	<u></u> ≤1.5		F
3CT061 ~ 064	1		≤1.2	≤ 2	0.01 ~ 30	0.8~30	9.5	≤2.5		
3CT101	1	_		€2.5	3 ~ 30		_			M6 螺栓
3CT103	5			€3.5	5 ~ 70	< 50	90			形、栓体阳
3CT104	10	50 ~	≪1	≤3.5	5~100		_	≤8	≤80	极
3CT105	20	1400		€3.5	5 ~ 100	< 100	380		1200	10A以上
3CT107	50			€3.5	8 ~ 150	< 200	940			M8
	_					1200	~~			
3CT 203	5	!	€1.5		10~100		100	≰1.4		
204	10	100~	≤1.5	_	10 ~ 150		150	€1.8		
205	20	1200	≤1.5	€3	10 ~ 150		300	≤1.8	≤20	同上
206	30	;	€1.2		10 ~ 150		450	€2.3	i	
207	50		€1.2		10 ~ 150		750	€2.3		
3CT1KA		20								
В	i 	50								
С	0.05	100		≤1.5		0.4~8		≤ 0.3	≤ 5	B-3型
D		150					!			
E		200			İ		:			
3CT2KA		50				·				
В		100							!	
С		200				;				
Ð	0.1	300		≼ 3		≤ 20		≤1.5		B-3型
E		400			,					•
F		500				'				
G		600			:	!				•
3CI5KA/B		150/200		-						
C/D		300/400			,				i	
E/F		500/600			!	!				
G/H	1	700/800		≼ 3		≤ 30		≤ 3	≤ 15	F-1型
I		900					ĺ .			
}		1000			<u>'</u>					
K		1100			!	!				

续表 3.13 单向可控硅(晶闸管)的参数

多数	I_{τ}	U _{DRM} U _{RRM}	U_T	U_{GT}	I _{CT}	I _H	ITSM	t _{een}	t off	外形
型号	(A)	(V)	(v)	(V)	(mA)	(mA)	(A)	(µs)	(μs)	
TL 1003	1	100	≤1.8	3	15	į	70			
2003	1	200	€1.8	3	15		70			CB - 274
4003	1	400	≤1.8	3	15		70			5 TO - 220
6003	1	600	≤1.8	3	15		70			相似,不带
8003	1	800	≤1.8	3	15]	70			小散热板
TL 1006	2	100	€1.9	3	15	· - · · ·	70			
8006	2	800	≤1.9	3	15		70	Ĺ	L	
SF3B/D/G/J41	3	100/200/	400/600		$I_{GRM} = 5V I_{G}$	$_{MM} = 3A$	60			TO - 220
SF5B/D/G/J41	5	100/200/	400/600	l U	$I_{GPOM} \simeq 5V I_{G}$	FM = 2A	80			
SF8B/D/G/J41	8	100/200/	400/600	L.	$I_{GRM} = 5V I_{G}$	_{FM} = 2A	120			KAG

表 3.14 双向晶闸管的参数

** * **	I_T	UDRM	IDRM	U_{TM}	Im	I_{GI}	I_{CT}	du/ds	du/dt	
		± '				I ~ II	IV	断态电压	换向电压	外 形
型号	(A)	(V)	(mA)	(v)	(A)	(mA)	(mA)	(V/µs)	(V/μs)	
TLC HIT/S	1	200				T:5	. 5	10	1	-¥ e./hu
221T/S	1	400	0.75	1.8	1.4		i	10	1	类似 220
331T/S	1	600						1		TO - 220
381T/S	1	700	l		!	S:10	10	20	4	封装,无小
В	ı	同上	0.75	1.8	1.4	25	50	20	4	散热板
TLC 113D/A		200				D:5	10	10	1	
223D/A	1.6	400	0.75	1.8	2.3					欧洲封装
333D/A		600]	Ì				ļ		型号 CB -
383D/A		700		•		A: 10	25	20	4	274
В	1.6	同上	0.75	1.8	2.3	25	50	20	4	
TLC 116A	3	200								
226A	3	400		ļ		1	ļ !		į.	
336A	! , 3	600	0.75	1.85	4	10	25	20	4	
386A	3	700			1				ł	
—в	3	同上	0.75	1.85	4	25	50	20	4	

续表 3.14 双向晶闸管的参数

					1	1			_	
参数	I_T	U_{DRM}	I_{DRM}	U_{TM}	I_{TM}	I_{GT}	I_{GT}	du/dt	du∕dt	
		±			Ì	I ~ II	IV	断态电压	换向电压	外 形
型号	(A)	. (V)	(mA)	(V)	(A)	(mA)	(mA)	(V/µs)	(V/gs)	
BCR3AM -4	3	200								
-8	3	400	,4	人国蜘蛛点	± 20 A ZZ	$_{M}=6V,I_{GS}$	-0.51			ale hit mo
- 10	3	500	¹ TSM)•(1 99 1™≛12	a sum, ug	M = 04, 163	y = 0.3A			类似 TO = 220 或
12	3	600								220 或 TO- 220A
BCR6AM	6	同上	I _{TSM} -1	卜周期峰值	60A, U	$_{GM} = 10V$	$I_{GM} = 2A$			封装,三个
BCR8CM/DM	8	同上	I _{TSM} —1	卜周期峰值	1 80A, <i>U</i>	$_{GM} = 10V$,	$I_{GM} = 2A$			引脚从左
BCRIO AM/EM /CM/DM	10	阿上	I _{TSM} −4	↑周期峰值 	100A, ($U_{GM} = 10 \mathrm{V}$	$I_{GM}=2A$			至 右 为 T1、T2、G
BCR12 AM/EM /CM/DM	12	同上	I _{TSM} —1	周期峰個	1 120A, ($U_{GH} = 10V$	$I_{GM} = 2A$			<u></u>
BTA06 - 600B	6	600	0.5	1.65	8.5	50	1	10	. 1	
BTA12 - 600B	12	600	0.5	1.5	17	50	100	100	10	
BTA24 - 600B	25	600	1	1.8	35	50	100	TDO	10	[1]
BTA41 - 600B	40	600	4	1.6	60	50	100	150	5	[1]
TGAL608	60	800	10	2	100	100	150	100	5	[1]
TXDV812	12	800	2	1.95	17	100		200	200	
TPDV825	25	800	2	1.8	35	150		200	200	[1]
TPDV1225	25	1200	2	1.8	35	150	_	200	200	[1]
TGDV608	60	800	5	2	85	200		200	200	[1]
TGDV612	60	1200	5	2	85	200	_	200	200	[1]
TKAL280	200	800	25	2	300	300	300	100	100	[1]
TKAL2120	200	1200	25	2	300	300	300	100	100	[1]
TPDV1225	25	1200	2	1.8	35	150		200	200	[1]
TGDV608	60	800	5	2	85	200	_	200	200	[1]
TCDV612	60	1200	5	2	85	200		200	200	[1]
TKAL280	200	800	25	2	300	300	300	100	100	[1]
TKAL2120	200	1200	25	2	300	300	300	001	100	[1]

注[1]:20A 以上的可控码的封装不是 TO - 220. 有模块、螺栓等形式。

3.4 常用半导体三极管的参数

3.4.1 三极管的分类

三极管的种类很多,主要分双极型和场效应两大类,具体分类如下:

 双
 极
 型
 场
 效
 应

 N型 Ge
 P型 Ge
 N型 Si
 P型 Si
 结型(JFET)
 绝缘栅型(MOSFET)

 3A - - - 3B - - - 3C - - 3D - - 耗 尽型
 增强型
 耗 尽型

 N沟道 P沟道 N沟道 P沟道 N沟道 P沟道 N沟道 P沟道
 N沟道 P沟道 N沟道 P沟道 N沟道 P沟道

一般从用途上分,三极管包括低频三极管、高频三极管、开关三极管等;其功耗大于等于 1W 属于大功率管,小于 1W 的属于小功率管。本手册在表 3.15~3.23 中分别介绍这

些三极管的电参数。

3.4.2 三极管的主要参数

三极管的参数很多,对不同的三极管,其参数的侧重面也有所不同,现简介如下。对于双极型和场效应半导体三极管,它们的参数基本上是一致的,场效应管特有的一些参数将在场效应三极管参数表前介绍。

3.4.2.1 极限参数

- ① P_{CM}—— 集电极最大允许功率损耗。
- ②I_{CM}——集电极最大允许电流。
- ③ Tim 最大允许结温。
- $④R_T$ ——热阻。

3.4.2.2 直流参数

- ① Uce——集电极 发射极之间的电压。
 - Ucco——第三电极基极开路时集电极 发射极之间的电压。
 - U_{CFS} ——BE 短路时集电极 发射极之间的电压。
 - UR_{CEO}—— 第三电极基极开路时集电极 发射极之间的击穿电压。
 - U_{CEst} ----集电极 发射极之间的饱和压降。

与此相似的有如下的几个电压:

- $\bigcirc U_{CRO}$, UR_{CRO} .
- $\textcircled{3}U_{EBO}$, $U_{BE_{\text{sat}}}$, UR_{EBO} .
- ④ICRO ——发射极开路, CB(集电结)之间的反向饱和电流。
- ⑤ Icro ——基极开路, CE 之间的反向饱和电流(穿透电流)。
- ⑥ $H_{FF}(\beta)$ 共发射极接法短路电流放大系数,也称直流 β 。

3.4.2.3 交流参数

- ① f_a--- 共基极接法的截止频率。
- ②f₈——共发射极接法的截止频率。
- ③ h.。—— 共发射极接法的输入电阻。
- ④h。—— 共发射极接法的短路交流电流放大系数。
- ⑤ h., 一一 共发射极接法的交流开路电压反馈系数。
- ⑥ / 从 共发射极接法的交流开路输出导纳。
- $\mathfrak{D}f_{T}$ ——特征频率。
- ⑧N_€----- 噪声系数。
- ⑨Kp---- 功率增益。
- ① Cob 共基极接法的输出电容。
- ① r_{bb}· ——基区扩散电阻(基区本征电阻)。

3.4.3 半导体三极管的外形封装

半导体三极管的外形封装有多种形式,见图 3.5~图 3.7。在实际使用之前,应用万用表测试各个电极,一一核对,以免出错。

图 3.5 小功率半导体三极管的外形封装

图 3.6 大功率三极管的外形封装(塑料外壳封装)

图 3.7 大功率三极管的外形封装(金属外壳封装)

· 108 ·

3.4.4 双极型半导体三极管的参数表

表 3.15 低频小功率三极管的电参数(一)

				- 14 .		IM-5X-1					-				
参数	P _{CM}	I _{CM}	T_{jM}	UR _{CBO}	URCEO	I_{CBO}	I_{CEO}	H_{FE}	f _a	N_F	h _{ie}	h _{re}	h_{fe}	h _{oe}	MT IA
型号	(wm)	(mA)	(℃)	(v)	(v)	(μΑ)	(μΑ)		(kHz)	(dB)	(kΩ)	10-3		(բԾ)	外形
3AX31 M				15	6	€25	≤100	80 ~ 400		_	1	_	40	_	C型
A				20	12	€20	≤800	40 ~	_	_	-	-	~	'	
В				30	18	€12	≤600	180		<u> </u>			180	-	
c	125	125	75	40	24	≼ 6	≼40 0	25 ~ 70	- -		-	-			
D				20	12	≤12	≤600	_	≥8*	≤15	0.5	€	40	< <	
E				20	12	€12	≤600	_	≥8*	€8	-	2.2	~	100	
F				20	12	≰12	≤600		≥8*	≰4	4.5		180		
3AX51 A					12		≤500	40 ~		–			25		C型
В		ļ			12		≤500	150	ŀ	≤8	0.6		~		
С	100	100	75	30	18	€12	≤300	30 ~ 100	≥500	 	~	≰	80	<	
D					24		≤300	25 ~ 70			4.5	2.2		80	
3AX52 A					12		≤550	40~		<u> </u>			25		C型
В		•	İ		12		≤550	150		≤8	0.6		~		•
С	150	150	75	30	18	. ≤12	≤300	30 ~ 100	≥500	≤15	-	≤	80	<	
D					24		≤300	25 ~ 70		<u> </u>	4.5	2.2		80	
3AXS3 A		<u></u>		<u> </u>	12		≤800	30 ~			0.6	·	40		B型
В	200	200	75	30	18	€20	≤ 700	200	≥ 500	_	-	≤	~	≤	
C				ļ	24		≤700				4.5	2.2	180	100	ļ <u>.</u>
3AX54 A					35	≤100						-	25		B型
В	200	160	75	65	45	≤100			≥500	_ _	≰l	ŀ	-	<	
С			1		60	≤ 50	-	_				İ	120	60	
D				100	70	≤50]		ļ	<u> </u>			<u> </u>
3AX55 A		1		1	20		_	30 ~			-		40	_	D型
В	500	500	75	50	30	≤80	≤1200	150	≥200	-	-		~	-	
C					45								180	<u> </u>	<u> </u>
3AX81 A	200	200	75	20	10	≤30	≤1000			-	_	-	40~		B型
B	ļ	ļ <u> </u>	<u> </u>	30	15	≤ 15	≤700	270	ļ <u> </u>	 - -	<u> </u>	 -	270	+-	
3BX31 M				- 15	-8	≤25	≤ 1000	×							
A	125	125		- 20	- 12	≤20	≤800		- Q z						C型
В				- 30	- 18	≤12	≤600		≥8*						235
C				- 40	- 24	≤ 6	≤400								
3BX55 M					- 12	"-									
A		500		- 50	- 20	≤80	≤1200		≽ 6*						D型
В					- 30				≥0*						1 2 34
C					-45					-					1
3BX81 A	1	200	 	- 20	- 10	≤30	≤100		 	+	 	+		+	
звлет и	1	100		- 30	1		≤700	1			-				C型

注:有*者为fi。

表 3.15 低频小功率三极管的电参数 (二)

参数	P _{CM}	ICM	T _{jM}	UR _{CEO}	UR _{EBO}	I_{CBO}	I_{CEG}	I_{EBO}	$U_{\mathit{BE}_{Sat}}$	U _{CEsat}	HFE	
型号	(mW)	(mA)	(%)	(v)	(v)	(μA)	(μ A)	(μ A)	(v)	(v)		外 形
3CX200 A	300	300		≥ 12	≱4	≤ 0.5	≤ 1	≤0.5	≤0.9	€0.5	 	
В	<u></u>			≥ 18								
3CX201 A	300	300		≥ 12	≱4	≤0.5	≰l	≤0.5	€0.9	≤0.5	55	TO - 92
В				≥ 18								B型
3CX202 A	300	300		≥ 12	≥4	€0.5	≰l	≤0.5	≰0.9	€0.5	400	S-2型
<u>B</u>				_≥18			į.					S-3型
3CX203	500	500		15	≥4	€5	≤ 1	≤0.5	€0.9	≤0.5		
3CX204 A	700	700		≥ 15							55	TO - 126
В			i	≥25	≥4	≤ 20	≤ 5	≤ 5	≤0.9	≤0.5		10 120
С				≥35							400	
D				≥45								
3DX200 A	300	300		≥12	≥4	≼l	€2	<u>≼</u> 1	≤0.9	≤0.5	\vdash	
В				≥18						-		
3DX201 A	300	300		≥ 12	≥4	≼l	€2	≤1	≤0.9	≤0.5	55	TO - 92
В				≥ 18								B型
3DX202 A	300	300		≥ 12	≥4	≰l	€2	≼l	€0.9	€0.5	400	S-2型
В	L.,,			, ≥18							+00	S-3型
3DX203	500	500		15	≥4	≤ 5	≤ 1	≤0.5	€0.9	€0.5	1	
3DX204 A	700	700		≥ 15		·				,	55	TO - 126
В				≥ 25	≱4	€20	≤ 5	≤ 5	≤0.9	z0 5		10 120
C				≥35			~~	-23	~ 4.7	2,0.5	400	
D				≥45							100	

表 3.16 低频大功率三极管的电参数

***************************************	数	P _{CM}	I _{CM}	T_{jM}	R _{Ti}	UR _{CBO}	URCEO	UR _{EBO}	I _{GBO}	I _{CEO}	$U_{CE_{\mathrm{Mat}}}$	H_{FE}	f_{β}	
型号		(W)	(A)	(℃)	(W/°C)	(v)	(v)	(v)	(mA)	(mA)	(v)	•	(MHz)	外形
3 AD50 A						50	18	30			≤0.6	 棕		-
В		10	3	90	3.5	60	24	45	₩	\{	€0.8	20	≥4	F型
C						70	30	60	0.3	2.5	≤0.8	~		
3AD51 A						50	18	30			· ·	30		
В		10	2	90	3.5	60	24	45	*	€	€	紅	≥4	圆型
С						70	30	60	0.3	2.5	0.35	30		
3AD52 A						50	18	30	·			~		
В		10	2	90	3.5	60	24	45	€	€	€0.5	40	≥4	F型
C					[70	30	60	0.3	2.5		橙		
3AD53 A						50	18	30		≤ 12	≼l	40		
В		20	6	90	1.75	60	24	45	¥	≤ 10	≈ 1	~	≥2	F型
C						70	30	60	0.5	≤ 10	≰l	60		

续表 3.16 低频大功率三极管的电参数

		~~~	<del>~ 3.10</del>		124-34-		HHYV			<del></del>			
参数	$P_{CM}$	I _{CM}	$T_{jM}$	R	UR _{CBO}	$UR_{GEO}$	$UR_{EBO}$	$I_{CBO}$	I _{CEO}	$U_{CE_{\mathrm{mat}}}$	$H_{FE}$	$f_{\beta}$	
型号	(W)	(A)	(℃)	(w/℃)	(v)	(v)	(v)	(mA)	(mA)	(v)		(MHz)	外形
3AD54 A					50	18	30		€8	≤0.35	黄		
В	20	5	90	1.75	60	24	45	€	<b>≤</b> 6	≤0.5	60	≥3	圆型
C		_	[		70	30	60	0.4	<b>≤</b> 6	€0.5	~	-	
3AD55 A	<b>-</b>		-	_	50	18	30		€8	≤0.35	90		
	20	5	90	1.75	60	24	45		. ≤6	€0.5		≥3	   F型
В	20	,	90	1.15				€ 0.4			绿	== 3	1 325
С					70	30	60	0.4	€6	≤0.5	•		<del></del>
3AD56 A			İ	[	60	30	40		1	[€0.7]	90		
В	50	15	90	0.7	80	45	60	€		<b>≤</b> 1	~	≥3	方圆型
C				ļ <u>.</u>	100	60	80	0.8	≤0.7	≼1	140		
3DD50A ~ E	1	1		100		A:≥	≥3	•					G1 - 2
3DD51 A ~ E	1	1		100		30	≥3	0.4		]		1	F
3DD52A - E	l	0.5	1	100			≥5	•		.		-	F
3DD53A ~ E	5	2_				B; ≥	≥3	0.5		<b>≤</b> 1			G1 - 2
3DD54A ~ E	5	2	ļ	20		50	≥3			_	İ	ļ	F
3DD55A ~ E	5	1	]	20			≥5				'		G1 - 2
3DD56A ~ E	10	3		10		C; ≽	≥3	≰l					G1 – 2
3DD57A ~ E	10	3		10		80	≥3			! 		}	F
3DD58A ~ E	10	1.5		10			≥5			€1.5			F
3DD59A ~ E	20	5_	175	4		D; ≽	≥3	€		≤1.2		•	G1 - 2
3DD60A ~ E	25	5_	]	4		110	≥3	1.5			≥10	•	F
3DD61A~E	_25	2.5	1	4		ļ	≥5	<b>≤</b> 2		€2			F
3DD62A ~ E	50	7.5		2 ·	<u> </u>	E: ≥	≥3			€1.5			G3 – 6
3DD63A ~ E	50	7.5	]	2		150	≥3						F
3DD64A ~ E	50	5		2			≥5	€3		≤2.5			F
3DD65A ~ E	75	10		1.33			≥3		-	≤1.5			G3 ~ 6
3DD66A ~ E	75	10		1.33			<b>∌</b> 3					1	F
3DD67A~E	75	7	_	1.33			≥5	≼4		€3			F
3DD68A ~ E	100	15	1	1	<u> </u>	İ	≥3	≤5					G3 - 6
3DD69A ~ E	100	15	l -	1			≥3	≤5					F
3DD70A ~ E	100	9	_	1	ļ		≥5	€4	<u> </u>	<b>≤3.5</b>		<del>                                      </del>	F
3DD100A ~ E	20	5	_	3	A: 150	1	4	≤0.2	≤0.8	棕 20	≥3	-	F
					B:200	1			(A,B)	- 40		ļ	
3DD101A ~ E	50	5	175	1.3	C:250	1	4	€2	≤1.5	红 40	<u>≱</u> 1	1	}
					D:300	1			(C - E	- 80	_		1
3DD102A ~ E	50	5	1	1.5	E:350		1	≤2	ļ <b>-</b>	橙 80	≥2	-	
3DD103A ~ E	50	3	4	1.7	A:300	1	4	≤0.4	€2	- 120	ì≰		
			1.		B:600	1	4		(A,B)	黄≥			
3DD104A ~ E	50	3	175	2	C:800		$(A \sim C)$		<b>≼</b> 4		≱l	]	
					D: 1200	1	8(D,E)		(C - E)	120			1
		<u> </u>	<u> </u>		E:1600	800		<u> </u>	<u> </u>	<u>L</u>			<u> </u>

续表 3.16 低频大功率三极管的电参数

多数	$P_{CM}$	I _{CM}	$T_{jM}$	$R_{\tau_j}$	$UR_{CRO}$	$UR_{CEO}$	UREBO	$I_{CBO}$	$I_{CEO}$	$U_{CE_{\mathrm{Sat}}}$	HFE	$f_{\beta}$	
型 号	(W)	(A)	(°C)	(W/°C)	(v)	(v)	( <b>v</b> )	(mA)	(mA)	(v)		(MHz)	外形
3DD151A ~ G	5	1		20	A:80	50		≤0.5	≼l	红 15	≥1	≤1.5	F
3DD152A ~ G	5	1		20	B: 150	80				- 25			_
3DD153A ~ G	10	1.5		10	C:200	150	i						
3DD154A ~ G	10	1.5		10	D:250	200				橙 25	ļ	,	
3DD155A ~ G	20	2	]	5	E:350	250				- 40			
3DD156A ~ G	20	2		5	F:450	300		!	•	黄 40			
3DD157A ~ G	30	3		3.3	G;600	400		≰l	≤1.2	- 80			
3DD158A ~ G	30	_3	175	3.3			5			绿 80		·	
3DD159A ~ G	50	5	1/3	2			,			- 120		<b>≤</b> 2	
3DD160A ~ G	50	5		2						± 120		≰1.5	
3DD161A ~ G	50	5		2	1					- 180		€2	   G3 – 6
3DD162A ~ G	75	7.5		1.33						紫 180			F
3DD163A ~ G	75	7.5		1.33									G3 – 6
3DD164A ~ G	100	10		1				€2	≰l.5	- 270		≤2.5	F
3DD165A ~ G	100	10		_ 1								·	F
3DD166A ~ G	100	10		1									G3 - 6
3DD200	30	3		250	100	6	€0.5	≤1.5	30 ~ 120		<b>≤</b> 1		F
3DD201	50	8		320	150	6			40 ~ 120	"-	≤1		
3DD202A	50	3		1100	500	8	€3	≤3	7~30		≤1.2		
В				1400	600								
3DD203	10	1		100	60	4	€0.5	≤0.6	50 ~ 200				
3DD204	30	3	150	100	60	4	[1]						
3DD205A	15	1.5		200	100	5	≤0.1	<b>≰</b> 1	40 ~ 200				
В				300	150								
3DD206	25	1.5		800	400	6	€0.1		≥30				
3DD207	30	3			0	4	[1]	≤1.5	40 ~ 250				

注[1]:此为 I_{CEO}值。

表 3.17 高频小功率三极管的电参数(一)

\$ \$	t P _{ON}	I _{CM}	$T_{jM}$	UR _{CBO}	UR _{GEO}	$I_{CBO}$	$I_{CEO}$	$f_T$	Cab	r ₆₆ ,	$h_{fe}$	h _m	外形
型号	(mW)	(mA)	(°C)	(v)	(v)	≰ (μ <b>A</b> )	≰ (μA)	≱ (MHz)	<b>≤</b> (pF)	(Ω) ≷		(μ ⁸ υ)	1
3AG53 A B C D E	50	10	75	25	15 25 25	5	200	30 50 100 200 300	5 5 5 3	100 100 5 5 5	30 200	1.5	ß
3AG54 A B C D E	100	30	75	25	15	5	300	30 50 100 200 300	5	100 100 50 50 50	30 ~ 200		В
3AG55 A B C	150	50	75	25	15	. 8	500	100 200 300	8	50 30 30	30 ~ 200		В

续表 3.17 高频小功率三极管的电参数(一)

			寒夜.	3.17	南 2007 / J	`************************************	二100 円	H) HE 3	<b>∌£X(</b> —	٠,				
*	数	$P_{CM}$	I _{CM}	$T_{jM}$	$UR_{CBO}$	URCEO	$I_{CRO}$	$I_{GEO}$	$f_T$	$C_{ob}$	r _{bb} ,	$h_{fe}$	h _{or}	, _i 外形
型号		(mW)	(mA)	(℃)	(v)	(v)	(μΛ)	≪ (μA)	≱ (MHz)	(pF)	(Ω) ≤	<u> </u>	(μ <b>ΰ</b> )	
3AG56 A B C D E1 E2 F		50	10	75	20	10	7 7 5	200	25 25 50 65 80 100 120	7 7 6 5 4 4 3	200 100 70 60 50 45 35	40 ~ 270 40 	1.5	В
3AG80 A B C D E		50	10	85	20 25 25	12 15	5	50	300 400 400 600 600	3 2 2 2 2	150 100 55 100 55	20 ~	_	В
3AG87 A B C D		300	50	85	25 30 30	15 20 20	5	50	300 500 500 700	4 3 3 3	80 80 40 80	20		ន
3AG95 A B C		150	30	85	30	20	3	50	500 700 1k	25	80 60 60	20 150		В
3DG100 A B C D		100	20	150	30 40 30 40	20 30 20 30	1	0.01	0.01	150 150 300 300	7	4		В
3DG101 A B C D E F		100	20	150	20 30 40 20 30 40	15 20 30 15 20 30	0.35	0.01	0.01	150 150 150 300 300 300	7	4	_	В
3DG102 A B C D		100	20	ì	30 40 30 40	20 30 20 30	0.35	0.1	0.1	150 150 300 300	7	4		B
3DG103 A B C D		100	20	150	30 40 30 40	20 30 20 30	0.35	0.1	0.1	500 500 700 700	10	3	<u> </u>	В
3DG111 A B C D		300	50	150	20 40 60 20	15 30 45 15	0.35	0.1	0.1	150 150 150 300	7	5		В
3DG123 A B C		500	50	150	30 30 40	20 20 30	0.35	0.1	0.5	1000 1500 1000	18	2.5	3.5	В
3DG130 A B C D		700	500		40 60 40 60	30 45 30 45	0.6	0.5	1	500 500 300 300	6	10	_	' в   

续表 3.17 高频小功率三极管的电参数(一)

								·						
参	数	$P_{CM}$	$I_{CM}$	$T_{jM}$	$UR_{CBO}$	URCEO	Icro	$I_{CEO}$	$f_T$	$C_{ob}$	r ₆₆ ,	$h_{fe}$	$h_{\infty}$	外形
型号		(mW)	(mA)	(°C)	(v)	(v)	<b>≤</b> (μ <b>A</b> )	≰ (μA)	≱ (MHz)	€ (pF)	(Ω)   ≰		≰ (μ℧)	
3DG131 A B C		700	100	150	30 40 50	20 30 40	0.35	0.1	0.5	1000 1000 1000	15	3	7	В
3DG132 A B		700	200	150	30 40	25 35	0.5	0.1	0.5	1000	8	3.5	4.5	В
3DG140 A B C		100	15	150	15	10	0.35	0.1	0.1	400	15	2	5 2.5 1.5	В
3D141 A B C		100	15	150	15	10	0.35	0.1	0.1	600	8	2	8 4 2.5	В
3DG142 A B C		100	15	150	15	10	0.35	0.1	0.1	800	8	2	6 4 2.5	В
3DG143 A B C		100	20	150	15	10	0.25	0.1	_	4000		0.5	3 2 1.5	J-1
3DG144 A B C		100	20	150	15	10	0.25	0.1		2500		0.7	3 2 1.5	В
3DG145 A B C		100	20	150	15	10	0.25	0.1		2000		0.7	5 4 3	В
3DG146 A B C		100	20	150	15	10	0.25	0.1		2000		0.6	5 4 3	В
3DG148 A B C		100	15	150	15	10	0.25	0.1		5000		0.5	6 4.5 3.5	J-1
3DG149 A B		100	20	150	12	10	0.25	0.1	! <b>!</b>	7000		0.3	5 4	<b>J</b> - 2
3DG152 A B C		200	30	150	30	15	0.25	0.1		1200	 	1.7	3.5 2.5 2	В
3DG153 A B C D		200	30	150	20	10	0.25	0.1		5000		0.35	3 2 1.5 1.2	J-2
3DG154 A B C		200	30	150	20	10	0.25	0.1	 	6000	i İ	0.35	3 2 1.7	J-2
3DG155 A B C		700	50	150	20	10	0.25	0.5		5500	:	0.45	4 3 2.5	J-2
3DG156 A B C D		700	150	150	20	10	0.35	0.1		700 700 700 700 1000		3	3	В

表 3.17 高频小功率三极管的电参数(二)

			3.17 mmg 999.71V	71	-W = 1	13.536	** ( —	<u>,                                     </u>				
多数	$P_{CM}$	I _{GM}	$UR_{CBO}$	$U_{C\mathcal{E}_{Set}}$	$I_{CBO}$	ICEO	$H_{FE}$	$f_T$	Kp	$C_{ob}$	$N_F$	外形
型号	(mW)	(mA)	≱ (V)	(V)	≰ (μA)	<b>≤</b> (μA)	≱	≱ (MHz)	≥ (dB)	€ (ρF)	(dB)	
3DG160A ~ D	300	20	200 ~ 500	0.5	0.1	0.1	10	10				В
3DG170 A ~ E F ~ J	500	50	60 ~ 220	0.5	0.1	0.5	20	50 100			_	В
3DG180 A ~ G H ~ N	700	100	60 ~ 300	0.8	0.5	1	20	50 100				В
3DG181 A - E F - J	700	200	60 ~ 220	0.8	0.5	2	20	50 100	,		<del>-</del>	В
3DG182 A ~ E F ~ J	700	300	60 ~ 220	1	0.5	1	10	50 100			-	В
3DG 200A 201A 202A	100	20	15	0.9	0.1	0.5	_	100	,	3	4	B 或 S-2
3DG 200B 201B 202B	100	20	25	0.9	0.05	0.1	25 ~	100		3	4	
3DG 200C 201C 202C	100	20	20		0.05	0.1	270 	100		3	4	
3DG204 A B	100	10	15 25	1	0.1	0.5		500		3	4	S-1
3CG100 A B C	100	30	15 25 45	0.3	0.1	0.1	25	100	13	4.5	5	В
3CG101 A B C	100	30	15 30 45	0.8	0.1	0.1	25	100	11	3.5	4	В
3CG102 A B C D	150	20	12 15	0.6	0.1	0.1	25	700 800 1000 1200	14 14 16 16	2.5	4.5	В
3CG103 A B C D	150	20	15	0.5	0.1	0.1	25	700 1000 1200 1500	15	2.5	3	В
3CG110 A B C	300	50	15 30 45	0.5	0.1	0.1	25	100	13	4.5	4	В
3CG111 A B C	300	50	15 30 45	0.5	0.1	0.1	25	200	18	3.5	5	В
3CG112 A B C	300	50	15 30 45	0.5	0.1	0.1	25	100	14	5	5	В
3CG113 A B	300	50	15	0,3	0.1	0.1	25	700 900	16	4	4	В

续表 3.17 高频小功率三极管的电参数(二)

			(3.17 (0)987)	-72 -	— r~ r=	из по в	- A	-,				
参数	$P_{CM}$	I _{CM}	$UR_{CBO}$	$U_{CEsst}$	$I_{\mathrm{CBO}}$	$I_{ ext{CFO}}$	$H_{FE}$	$f_T$	Kp	$C_{ob}$	$N_F$	外形
型号	(mW)	(mA)	≥ (v)	(v)	(μ <b>A</b> )	<b>≤</b> (μA)		≱ (MHz)	(¶B)     ≥	€ (pF)	(dB)	
3CG114 A B	300	40	15	0.3	0.1	0.1	25	700 900	16	3	4	В
3CG120 A B C	500	100	15 30 45	0.5	0.1	0.1	25	200	17	7	4	В
3CG121 A B C	500	100	15 30 45	0.5	0.1	0.1	25	200	16	7	4	В
3DG122 A B C D E F	500	100	15 25 45 15 25 45	0.3	0.1	0.1	25	500 500 500 700 700 700	12	7	6	В
3CGI30 A B C	700	300	15 30 45	0.6	0.1	0.1	25	80	11	10	<del>} =-</del>     	В
3CGI31 A B C	700	300	15 30 45	0.6	0.1	0.1	25	80	10	10	<del>-</del>     	В
3CG132 A B	700	120	15	0.9	0.1	0.1	25	700 900	16	5		В
3CG140 A B	100	20	12	0.5	0.1	0.1	25	1000	10	2	5 3.5	В
3GG160 A ~ C D ~ E	300	20	60 ~ 140 180 ~ 220	0.5	0.1		25	100 50			_	В
3CC170 A ~ C D~ E	500	50	60 ~ 140 180 ~ 220	0.5	0.1	0.5	25	100 50				В
3CG180 A ~ D E ~ H	700	100	100 ~ 220	0.8	0.5	1	15	50 150			   	В

表 3.17 高频小功率三极管的电参数(三)

			秋 3.1	16128	3-23-4-	- IW EI WI-	电多数(.				
参数	PCM	I _{CM}	$UR_{CBO}$	$UR_{CEO}$	$I_{CBO}$	UCEsas	$H_{FE}$	$f_T$	C _{ob}	<u> </u>	
	l	I	} ≥	≱	€	_ ≤		≱	€	极性	外形
型号	(Wm)	(mA)	(v)	(y)	(pA)	(v)_		(MHz)	(pF)		 -i
CS9011						}	28				1
E					}		39	<u> </u>			TO - 92
F	310	100	20	18	0.05	0.3	54	150	3.5	NPN	10- 32
G			]		[		72			[	
н							97			1	1
I							132				! 
CS9012					<u> </u>	<u> </u>	64	<u> </u>	<u> </u>		j j
E		<b> </b>					78	]	<u>'</u>		}
F	600	500	25	25	0.5	0.6	96	150		PNP	}
G	1 1		i -~ i		0.2	0.3	118	} 150			[ [
Н			<u> </u>			<i> </i> 	144	}		}	
CS9013	400	500	25	25	0.5	0.6	同上	150		NPN	1
CS9014			,			}	60			r — — I	1
Α				!		Ì	63			}	
В	300	100	20	18	0.05	0.3	100	150		NPN	
C			i				200	'i			<i>)</i> 1
D					•		400				}
		_					<del>                                     </del>	-	•		TO - 92
CS9015	310					0.5	60	50	6		[
A	.						60	] ,			)
В	600	100	20	18	0.05	0.7	100	100		PNP	}
C						ļ	200	}			}
Đ							400				
CSONIE		<del>-</del>	<del></del>	- <del>-</del>		<del> </del> -		ļ. <u>.                                   </u>	. <u>-</u>	<del> </del>	_
CS9016 D		, ]				ļ	28	[		ĺ	
E E	310	25	20	30	0.05		28	[ ]		B.J.Fra. 1	J
F.	310	دی ا	20	20	0.05	0.3	39 54	500		NPN	ļ
r G				ļ			72	ļ			
Н			<b> </b>	ļ			97	}			
		-	\ <del></del>								] <del>]</del>
CS9017	310	100	15	12	0.05	0.5	28 ~ 72	600	2	NPN	Ì
CS9018	310	100	15	_12	0.05	0.5	28 ~ 72	700		NPN	{

表 3.18 高频大功率三极管的电参数

Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect				***	3.10	1-0222	ツギニュ	~ [ , ,						
Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect	参数	PCM	$I_{CM}$	$T_{jM}$	$R_{Tj}$	UR _{CBO}	URGEO	$U_{C\!E}$ eat	$I_{CEO}$	$H_{FE}$	$f_{\beta}$	$K_p$	$C_{ab}$	
3AA7					•	≥	, ≽	*	€	≱	≥	≥	*	外形
SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS   SAAS	型号	( <b>W</b> )	(A)	(℃)	(W/°C	(v)_	( <u>v)</u>	( <u>v)</u>	(m <u>A</u> )		(MH2)	(dB)	(pF)	
3AAS/9	3AA7					75	35				140	6		
SACAIA	3AA8/9	1	0.5	85	<u> </u>	60	25	2	0.1	30	120	10	30	F'
3CA1A - F   1   0.1   3CA2A - F   2   0.25   3CA2A - F   2   0.25   3CA2A - F   2   0.25   3CA2A - F   2   0.25   3CA2A - F   2   0.25   3CA2A - F   2   0.25   3CA2A - F   2   0.25   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3CA2A - F   3	3AA10				]	75	35		[1]		80	10	,	
3CA2A - F   2   0.25   3   40   F, 150   1   -0.1   20   50   40   F, 30   F, 150   1   0.2 - 0.5   20   30   60   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F, 30   F	3CA1A ~ F	1	0.1		·	A:30 B:	50 C:80	1	0.05	20	50[2]		15	В
A;30 B;50 C;80	3CA2A ~ F	2	0.25				·	1	- 0.1	20	50		40	F,G
3CAHA~E	3CA3A ~ E	5	0.5	175	_			1	0.2 ~ 0.5	20	30		60	F,G
3CA5A - E   15   1.5	3CA4A ~ E	7.5	1					2	1~1.5	10	30		30	F,G
SCA7	3CA5A ~ E	15	1.5			D:100	E:150	2	1 ~ 2	<del></del>	30		40	F,G
SCA8	3CA6	20	2				40 ~ 120	1	1.5~3		30[2]	_	i	
3CA8	3CA7	30	2.5		 		30 ~ 130	3	5		10	·		
3DA100 A	3CA8	40	3	175	_	<u> </u>	30 ~ 130	3	5	10	10			<b>F,</b> G
B	3CA9	50	4		<u> </u>		30 ~ 110	3	7		10			
3DA101 A   B   7.5   1   175   14   55   45   1   0.5   15   70   15   28   1	3DA100 A	40	5	175	2.5	50	45	1.5	3	12	180	6	100	F
B 7.5 1 175 14 55 45 1 0.5 15 70 15 28 1   C 70 60 0.2 15 100 17    3DA102 A 7.5 1 175 14 40 30 1.5 0.5 15 100 8 25 B   B 70 50 15 150 10    3DA103 3 0.3 175 35 50 40 1 0.1 20 200 7 15 E    3DA104 A 7.5 1 175 14 40 35 1.5 1 10 400 7 15 E    3DA105 A 4 0.4 175 25 45 35 1 3 10 600 6 8 E    3DA106 A 7.5 1 175 14 40 30 - 1 10 400 5 16 E    3DA106 A 7.5 1 175 14 40 30 - 1 10 400 5 16 E    3DA107 A 15 1.5 175 7.5 40 30 1.5 3 10 400 4 25 G1    B 3DA108 A 1.5 0.2 175 70 40 30 1.5 3 10 400 4 25 G1    B 3DA108 A 1.5 0.2 175 70 40 30 1 0.5 10 400 5 4 E    B 3DA150A/B 1 0.1 150 - 100/150 1 10 30 50    (151) C/D 200/250    3DA102 A/B	В				ļ	60	55			15	220	7		
C	3DAI01 A				Ţ <u></u>	40	30		1	10	50	13	_	ļ
SIDA102 A	В	7.5	1	175	14	55	45	ı	0.5	15	70	l . 15	28	, F
B	C				<b>!</b> [	70	60		0.2	15	100	l 17	ļ	
3DA103	3DA102 A	7.5	1	175	14	40	30	1.5	0.5	15	100	8	25	F
3DA104 A	B			_	_	70	50_			15	150	10		
B   55   45   3   10   600   6   8   F   B   60   40   30	3DA103	3	0.3	175	35	50	40	1	0.1	20	200	7	15	F
SDA105 A	3DA104 A	7.5	1	175	14	40	35	1.5	1	10	400	7	15	G1 - 2
B   60   40   7.5   1   175   14   40   30     1   10   400   5   16   F   10   10   10   10   10   10   10		<u> </u>			L	55	45						<u> </u>	<u> </u>
SDA106 A	3DA105 A	4	0.4	175	25	45	35	1	3	10	600	6	8	Н
B   65   50   66   67   68   68   69   69   69   69   69   69					<u> </u>		<del></del>				<u> </u>	<u> </u>		
SDA107 A   15   1.5   175   7.5   40   30   1.5   3   10   400   4   25   GI		7.5	1	175	14			_	I	10	400		16	Н
B         I.5         0.2         175         70         40         30         1         0.5         10         400         5         4         F           B         40         30         1         0.5         10         400         5         4         F           B         40         30         1         0.5         10         400         5         4         F           B         40         30         1         0.5         10         400         5         4         F           B         40         30         1         10         30         50         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1		15	1 5	175	7.5	<del></del>	<del></del>	1.5	2	10	400	+	25	G1 - 2
3DA108 A		1.7		1/3	1.3			1.3		10	+00		~	61 – 2
B	<del></del>	1.5	0.2	175	70	<del></del>		1	+	10	400		4	Н
3DAI50A/B						1		-			.55	_	†	
3DA152 A/B C/D E 3 0.3 150 — — 250 1 0.2 30 10 S- F/G H/I J 50 50 50	<del></del>	1	0.1	150		<u> </u>		ī	10	30	50			В
C/D E 3 0.3 150 — 150/200 F/G H/I J 250 1 0.2 30 10 S- 30/100 150/200 250 50	(151)C/D			L			200/250							
E 3 0.3 150 — 250 1 0.2 30 10 S- F/G 30/100 250 50	3DA152 A/B						30/100				10	_		
E 3 0.3 150 — 250 1 0.2 10 S- F/G H/I J 250 50	C/D		Į		İ		150/200		]	20				!
H/I J 250 50 50		3	0.3	150	-	-	250	1	0.2	30	10	Ì		S-3
H/I 150/200 J 250 50	F/G			į	<del>1</del> 		30/100			250	50			
	H⁄I						150/200			250	}	)	)	
	J		L	L.	L	Ĺ.	250		<u> </u>	[1	50	İ	<u>L</u>	L.
3DA89 7.5 0.75 — 14 40 30 0.5 1 10 1000 5 10 F	3DA89	7.5	0.75	_	14	40	30	0.5	1	10	1000	5	10	Н
3DA92 15 1.5 — 7 60 40 1.2 3 10 400 3.5 25	3DA92	15	1.5	_	7	60	40	1.2	3	10	400	3.5	25	

续表 3.18 高频大功率三极管的电参数

多数	P _{CM}	I _{CM}	T _{jM}	$R_{T_j}$	$UR_{CBO}$	UR _{CEO}	U _{CEsat}	Iceo	$H_{FE}$	$f_{\beta}$	K _p	Cali	外形
				₩	W	≥	*	€	≱	≥	≱	•	
_型 号	(W)	(A)	(℃)	( <b>W</b> /℃)	(V)	(V)	(V)	(mA)	L	(MHz)	(dB)	(pF)	<u> </u>
3DA815	2	0.4		j	30	15	0.5	0.1	10	470	7	<u> </u>	]
3DA816	5	1		_ E0	30	15	1	0.5	10	470	5.5		
3DA817	7.5	1.5	_	50	30	15	1	1	10	470	5		H
3DA818	15	2		] [	30	15	1	2	10	470	4		
3DA819	2	0.2	_	50	45	30	0.5	0.1	15	1000	7		
3DA820	3	0.3		30	40	30	0.5	0.2	15	1000	7		
3DA821	6	0.6		15	40	30	1	0.5	10	1000	6		н
3DA823	15	1.5	_	7	40	30	1	2	10	1000	3.5	_	
3DA824	31	5		4	36	16	1	6	10	470	4		
3DA825	40	4	_	3.15	50	35	1.2	5	_10	400	4.5	_	

注[1];此处为 I_{CBO} 值。

注[2]:此处为 f_T 值。

表 3.19 开关三极管的电参数

秋 3.15															
参数	$P_{CM}$	I _{CW}	$T_{jM}$	UR _{CBO}	URCEO	$I_{CBO}$	Iceo	$U_{\mathit{BE}_{sat}}$	$U_{CE_{\mathrm{mat}}}$	$H_{FE}$	$f_T$	$C_{ab}$	t _{on}	$t_{eff}$	外形
				≱	≱	*	€ .	€	€	≥	≱	€ .	€	€	
型号	(mW)	(mA)	(°C)	(V)	(v)	(pA)	(μ <b>A</b> )	(V)	(V)		(MHz)	(pF)	(ns)	(ns)	
3AK801 A		]	i	•	12	1			0.4		100	8	60	180	В
В	50	20	75	30	15	3	50	0.5	0.35	30	150	5	50	160	
C		ļ			15	1	•		0.4		200	_ :	-	140	
D					35				0.35		150	<b>—</b>	<b>–</b>	120	
3AK802 A					15		80				50	8	100	1200	В
В					20		50				50	8	100	1000	!
C	50	35	75	30	20	12	50	0.45	0.25	30	100	7	80	800	
D					15		50				150	7	80	700	
<u>E</u>					15		50		L		200	4	60	700	L
3AK803 A	]	:			12		100		0.4		100	8	60	180	С
В	100	30	75	30	15	3	50	0.5	0.35	30	150	5	50	160	
C					15		50		0.3		200	5 :	50	140	
D					15		50		0.35		150	5	50	120	
3AK804 A	<del>-</del>				15		80				50	8	100	1200	С
В				1	20		50		'		50	8	100	1000	
c	100	60	75	30	20	2.5	50	0.45	0.25	30	100	7	80	800	
D		l			15		50	!			150	7	80	700	
E	 			•	15		50				200	4	60	700	
3 <b>AK805</b> A					20		200				40		120	1600	B
В	300	150	75	40	18	5	150	0.55	0.35	30	. 80	10	80	1400	
С					16	!	100	!	١		120		80	1200	

续表 3.19 开关三极管的电参数

T 43 W	_ n	<del></del>				· .	,	7,	7,7						
参数	PCM	I _{CM}	T _{jM}	UR _{CBO}	<del>}</del>	J _{CHO}	Iceo	U _{BE}	$U_{CE_{\mathrm{sat}}}$	HFE	$f_T$	$C_{ob}$	. Lon	t _{off}	外形
型号	(mW)	(mA)	(°C)	≥ (v)	≥ (V)	(μΛ)	<b>≤</b>	(v)	≰ (V)	$\geq$	≥ (m) \	⟨ Ε\	<b>≪</b>	€ ( )	
3AK806 A B C D	1000	700	75	70 70 70 70 60	30 30 45 25	70	(μA) 600	1	1.5	15	50 80 80 100	_(pF) 30	(ns) 150 100 100 80	(ns) 500 300 200 150	F
3DK100 A B C	100	30	175	20 20 15	15 15 10	0.1	0.1	0.9	0.3	25	300	3	20	35 25 25	В
3DK101 A B C	200	40	175	30 30 20	20 25 15	0.1	0.1	0.9	0.3	25	300	4	30	60 40 35	В
3DK162 A B C D	300	50	175	20 30 20 30	15 25 15 25	0.1	0.1	0.9	0.3	25	300	4	40	50 50 35 35	В
3DK103 A B C	300	50	175	20 40 60	15 30 45	0.1	0.1	0.9	0.3	25	200	4	50	65	В
3DK104 A B C D	700	400	175	75 100 75 100	60 80 60 80	1	1	1	0.5	25		15	100 100 50 50	230 230 130 130	В
3DK105 A B C D	700	500	175	40 60 40 60	30 45 30 45	0.5	1	1.2	0.5	25		10	25	280 280 130 130	В
3DK106 A B C D	700	600	175	40 60 40 60	30 45 30 45	0.5	1	1.2	0.5	25		12	30	280 280 130 130	В
3DK107 A B C D	700	800	175	40 60 40 60	30 45 30 45	0.5	1	1.2	0.5	25		12	30	280 280 130 130	В
3CK110 A S E	300	50		20 ~ 50	15 ~ 45	0.2	0.2	0.95	0.3	25	150 ~ 450	5	50	60 ~ 110	В
3CK112 A S E	300	50		20 ~ 50	15 ~ 45	0.2	0.2	0.95	0.3	25	150 ~ 450	5	50	80 - 130	В
3CK120 A S E	500	200		20 - 50	15 ~ 45	0.5	0.5	1.2	0.5	25	150 ~ 450	10	30	60 ~ 110	В
3CK121 A S E	500	200		20 ~ 50	15 ~ 45	0.5	0.5	1.2	0.5	25	150 ~ 450	10	50	80 ~ 200	В
3CK130 A S E	700	700		20 ~ 50	15 ~ 45	5	10	1.2	0.5	25	150 ~ 450	10	50	120 ~ 160	В.

表 3.20 大功率开关三极管的电参数(一)

No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.	外 G或F G
P(1) $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(1)$	G 或 F
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	或 F
3DK35B~F         10         3         50~200         0.25         0.5         20         30         0.25         0.4         0.1           3DK36B~H         30         5         50~130         0.5         0.7         20         60         0.3         0.6         0.15           3DK37B~H         50         7.5         50~200         0.5         1         20         60         0.3         0.6         0.15           3DK38B~H         30         15         50~200         0.7         3         20         60         0.3         0.6         0.3           3DK39B~H         100         15         50~200         0.7         3         20         300         0.5         0.7         0.3           3DK03         30         3         30~160         0.4         15         15         0.3         0.5           3DK12         50         5         30~160         0.4         15         15         0.3         0.5	或 F
3DK36B - H         30         5         50 ~ 130         0.5         0.7         20         60         0.3         0.6         0.15           3DK37B ~ H         50         7.5         50 ~ 200         0.5         1         20         60         0.3         0.6         0.15           3DK38B ~ H         30         15         50 ~ 200         0.7         3         20         60         0.3         0.6         0.3           3DK39B ~ H         100         15         50 ~ 200         0.7         3         20         300         0.5         0.7         0.3           3DK03         30         3         30 ~ 160         0.4         15         15         0.3         0.5           3DK12         50         5         30 ~ 160         0.4         15         15         0.3         0.5	
3DK37B~H         50         7.5         50~200         0.5         1         20         60         0.3         0.6         0.15           3DK38B~H         30         15         50~200         0.7         3         20         60         0.3         0.6         0.3           3DK39B~H         100         15         50~200         0.7         3         20         300         0.5         0.7         0.3           3DK03         30         3         30~160         0.4         15         15         0.3         0.5           3DK12         50         5         30~160         0.4         15         15         0.3         0.5	
3DK38B~H         30         15         50~200         0.7         3         20         60         0.3         0.6         0.3           3DK39B~H         100         15         50~200         0.7         3         20         300         0.5         0.7         0.3           3DK03         30         3         30~160         0.4         15         15         0.3         0.5           3DK12         50         5         30~160         0.4         15         15         0.3         0.5	
3DK39B ~ H         100         15         50 ~ 200         0.7         3         20         300         0.5         0.7         0.3           3DK03         30         3         30 ~ 160         0.4         15         15         0.3         0.5           3DK12         50         5         30 ~ 160         0.4         15         15         0.3         0.5	G
3DK03         30         3         30~160         0.4         15         15         0.3         0.5           3DK12         50         5         30~160         0.4         15         15         0.3         0.5	G
3DK12 50 5 30~160 0.4 15 15 0.3 0.5	c
	G
3DK08 60 7.5 40~160 0.5 15 15 0.3 0.5	或
3DK32 75 10 40~160 0.5 15 10 0.6 1	F
3DK33 100 20 40~160 0.8 10 10 0.8 1.2	
3CK01 5 1 30~100 0.6 15 5 0.3 0.5	Ģ
3CK02 10 2 30~100 0.6 15 5 0.3 0.5	或 F
3CK03 20 3 30~100 0.6 15 4 0.4 0.6	
3CK05 50 5 30~100 0.6 15 4 0.4 0.6	
3CK010 75 10 30~100 0.7 15 3 0.5 0.8	
3CK015 100 15 30~100 0.7 15 3 0.6 0.8	
3CK5A~E 5 1.5 15~60 15~50 0.8 0.05 25 50 15 0.08 0.2	
3CK10A~E 1 1 25~80 20~70 1 0.01 25 100 10 0.06 0.15	
3DKG3 50 3 300~900 1.5 0.1 10 0.8 0.8	G
3DKG5 100 5 300~900 1.5 0.2 10 1.4 1.4	或 F
3DKG10 150 10 300~900 1.5 0.2 10 2 2	
3DKG208 12 5 1500 700 6	
3DKG208A 12 7.5 1500 700 6 7 10 7	
3DK536 50 8 1100 480 15 5	G 或
3DKG3236 60 5 500 400 0.6 15 8	或 F
3DKG326A 75 6 900 400 1.5 25 10 0.5 3.5 0.5	
3DKG6547 75 15 850 400 1.5 6 10 1 4 0.7	
3DKG48B 75 15 1000 600 1.5 6 10 0.5 1.5 0.2	
3DKG23 250 30 400 325 1 8 8 0.55 1.7 0.26	
3DKG23 250 40 300 255 1.5 10 8 1.3 2 0.5	
3DKG23 250 50 160 125 0.6 10 8 1.5 1.2 0.3	

表 3.20 NPN 大功率开关三极管的电参数(二)

参数	P _{CM}	I _{CM}	I _{BM}	$BU_{C\!E\!O}$	$BU_{CES}$	$BU_{CBO}$	BU _{REO}	$I_{CEO}$	$U_{CES}$	$U_{BES}$	$f_T$	t _m	t,	$t_f$	$H_{FK}$
				≱	*	*	≱	*	$I_C/I_B$	$I_C/I_B$			: :		$Ie \angle U_{CE}$
型号	(W)	(A)	(A)	(V)	(v)	(v)	(v)	(mA)	( <b>v</b> )	(v)	(MHz)	(µs)	(µs)	$(\mu s)$	
2N6546	175	15	10	300	650		9				6~24				
2N6547	175	15	10	400	850		9		1.5 10/2	1.6 10/2	6~24	1	4	0.7	6 ~ 30 10/2
BUX48	175	15	4	400	850		7	1	1.5 10/2	1.6 10/2	10	1	3	0.8	
BUX48A	175	15	4	450	1000		7	1	1.5 8/1.6	1.6 8/1.6	10	1	3	0.8	
48B	175	15	4	600	1000		7	ı	1.5 6/1.5	1.6 6/1.5	10	ı	3	0.8	
48C	175	15	4	700	1000		7	1	1.5 6/1.5	1.6 6/1.5	10	1	3	0.8	
BUV20	75	50	10	125		160	7	3	2 50/5	2 50/5	8	1.5	1.2	0.3	10 50/4
21	75	40	8	200		250	7	3	1.5 25/3	1.5 25/3	8	1.2	1.8	0.4	10 25/4
22	75	40	8	250		300	7	3	1.5 20/2.5	1.5 20/2.5	8	1.3	2	0.5	10 20/4
23	75	30	6	325		400	7	3	1 16/3.2	1.5 16/3.2	8	1.3	2.5	1.2	8 16/4
24	75	20	4	400		450	7	3	1 12/2.4	1.15 12/2.4	8	1.6	3	1.4	8 12/4
25	75	15	3	500	<u>.</u>	500	7	3	1 8/1.6	1.5 8/1.6	8	1.8	5	1.6	8 8/4

注 1:  $U_{CES}$  和  $U_{BES}$  参数中,  $I_C/I_B$  为测试条件,  $I_C$ 、 $I_B$  的单位是 A;  $H_{IE}$  栏中 $I_C/U_{CE}$  的单位是 A/V。

注 2:本表中的三极管的工作温度为 -65℃ ~ +200℃,极性均为 NPN,封装均为 TO -3(F-2)。

表 3.21 互补、达林顿大功率三极管的电参数

参数	P _{CM}	I _{CM}	T _{jM}	R _{Tj}	UR _{GBO}	UR _{GEO}	UR _{EBO}	IcBo	ICEO	$U_{CE_{\mathrm{eat}}}$	$H_{FE}$	$f_T$	极性	外形
					≱	≱	≱	€	€	€	≱	≱		Į
型号	(W)	(A)	(°C)	(°C/W)	(v)	(y)	(v)	(mA)	(mA)	(V)		(MHz)		
BD 131					70	45	6						NPN	TO - 126
132	15	3			45	45	4	0.05			40	60	PNP	i i
133					90	60	6						NPN	
BD 135	12.5	1.5			45	45	5				40	50	NPN	TO - 126
136												75	PNP	
BD 137	12.5	1.5			60	60	5				40	50	NPN	TO - 126
138												75	PNP	
BD241	40	3			45	45	5				20	3	NPN	TO - 220
BD242	40	5			45	45	5				20	3	PNP	
A						60	5							
В						80	5	0.02			25	3		
C						100	5							
BD 907	90	15			60	60	5	0.5			15 ~ 150	3	NPN	TO - 220
908	<u> </u>										: 		PNP	L .

续表 3.21 互补、达林顿大功率三极管的电参数

												<del></del> -		
参数	PCM	$I_{CM}$	$T_{jM}$	$R_{l_j^n}$	$UR_{CBO}$	$UR_{CSO}$	$UR_{EBO}$	$I_{CBO}$	$I_{CETi}$	$U_{CE}$ ent	$H_{FE}$	$f_T$	极性	外形
	: 	! 		İ	≱ !	≱	≱	- ≰	€	*	≱	≱		
型 号	(w)	(A)	(°C)	(℃/ <b>w</b> )	(V)	(v)	(V)	(mA)	(mA)	( <b>v</b> )		(MHz)		Ĺ
MJE2955	117	15		<u> </u>	100	60	5	1			20 ~ 70	2	NPN	TO - 3
2N3055						ļ						0.8	PNP	
MJE 3302	15	4			80						1000	20	NPN	
3312													PNP	
TIP 31 A	40	3			60	60	5	3			10 ~ 50	3	NPN	TO - 220
31B	Ĺ. <u> </u>		<u> </u>		80	80	5							
TIP 42A		6			60	60	5	0.7	!	i	15 ~ 75	3	PNP	TO - 220
42B					80	80_	5							
TIP 132	70	8	Ì		100	100	5				1000	20	NPN	TO - 220
137_													PNP	
HY 8050	0.8	1	ļ		30	25	6				40 ~ 200	300	NPN	TO - 92
8550								<u></u>					PNP	
BF 422	0.83	0.1			250								NPN	TO - 92
423													PNP	
YZ121 A ~ F	20	5		3.8	A:300	)	5		1.5	2.5	红:500		NPN	F
YZ123A ~ F	50	10		1.5	B:400	)	5		2	2.5	~ 1000		NPN	
YZ125A ~ F	75	12.5		1	C;500	)	5		2	2.5	黄 1000		NPN	
YZ127A ~ F	100	15	ļ i	0.8	D:600	)	5		2	2.5			NPN	
YZ129A ~ F	150	20		0.5	E:700	)	5		2	3	~ 2000		NPN	
YZ161A ~ F	200	25		0.4	F:800	ı	5		2	3	绿 >		NPN	
YZ <u>163A</u> ~ F	300	30	]	0.3			5		2	3	2000		NPN	
					. 20									
YZ31A ~ F	20	4		3.8	A:30		5		1.5	2.5			PNP	F
					B:50			l						
YZ33A ~ F	50	6	i	1.5	C;80		5	1	2	2.5	红:500		PNP	
			150		D;110	)	İ			i	- 1000	'		
YZ35A ~ F	75	10		1	E:150	}	5		2.5	2.5	黄 1000		PNP	
				; i	F:200	ı						·		
YZ37A ~ F	100	12.5		0.8	ļ I		5	i	3	2.5	~ 2000		PNP	
·				ļ <u>.</u>	<u>-</u> .					<u> </u>	绿 2000			_
YZ21A ~ F	20	5		3.8	A:30		5	 	1.5	2	~ 4000		NPN	F
YZ23A ~ F	50	10		1.5	B:50		5		2	2	紫 4000			
YZ25A ~ F	75	12.5		1	C:80		5		2	2	~ 6000			
YZ27A ~ F	100	15	150	0.8	D:110	3	5		2	2	白 >			
			1.50								6000			
YZ29A ~ F	150	20		0.5	E:150	,	5		2	2.5				
YZ61 A ~ F	200	25		0.4			5		3	2.5				
YZ63A ~ F	300	30	-	0.3	F;200	)	5		3	2.5				ļ
	<u> </u>	-	ւ	<u>-</u>	<u> </u>					<u> </u>				

### 3.4.5 场效应半导体三极管的参数表

场效应半导体三极管特有的参数如下:

- ①  $I_{DSsat}(I_{DSS})$ —— 饱和漏源电流。
- ② U_{GSoff}( U_P)——夹断电压。
- ③ $U_T$  开启电压,  $U_P$  一 夹断电压。

- ④r_{GS}—— 栅源绝缘电阻。
- ⑤g_- 跨导。
- ⑥ $C_{iss}(C_{is})$  共源接法,漏源交流短路的输入电容。
- ⑦ $C_{rs}(C_{fs})$  共源接法,输入交流短路的反馈电容。

表 3.22 N 沟道场效应三极管的电参数(一)

※ 数														
参数	IDSS	$U_P$	rcs	g _m	Ciss	$C_{rss}$	N _{FL}	K _{PS}	$N_{FH}$	f _M	$BU_{DS}$	$BU_{GS}$	P _{DM}	$I_{DSM}$
		<	≱	≱	€	€	€	≱	€	≱	>	>		
型号	(mA)	(V)	(Ω)	(mA/V)	(pF)	(pF)	(dB)	(dB)	(dB)	(MHz)	( <b>y</b> )	(V)	(mW)	(mA)
3DJ2 D	< 0.35	1-4												
E	0.3 ~ 1.2	1-4												
F	i~3.5	1-41	108	2	3	- 1	5	10	5	300	20	20	100	15
G	3~6.5	191											 	
Н	6~10	1-9												i I
3DJ3A ~ C	_	1 – 91	108	g _m	: A/B/(	C = 4/7,	/12				20	20	100	<b>30</b> [1]
3D <b>J4</b> D ~ F	同 3DJ2	1 - 31	10 ⁸	2	3	1	5	10		300	20	20	100	15
G ~ H	同 3DJ2	-61												
3DJ5 E	<1.2	1 – 51				,								
F	1~3.5	1 – 51											100	对管
G	3~6.5	1 – 51		2	5	3	5				20	20	×	
Н	6~10	1 - 71											2	
3DJ6 D~ F	同 3DJ2	-4	10 ⁸	1	5	2	5	10		30	20	20	100	15
G ~ H	同 3DJ2	1-91	10	-		_				50	. 20	20	100	15
3DJ7 D	< 0.35	-41						-						
E E	<1.2	1 – 41												
F	1~3.5	1-41		ļ										
G	3~11	1-91	10 ⁸	3	6	3		10		90	20	30	100	1.5
н	10 ~ 18	1 - 91	10			3		. 10		90	20	20	100	15
1. I	17 ~ 25	1 - 91												
	24 ~ 35	1 - 91												
J	24~33	1 - 91						_						
3DJ8 F ~ J	同 3DJ7	1 – 91	107	6	8	3	5			90	20	20	100	15
K	35 - 70	1-91									_~	_~	100	1.7
							_							
3D <b>J</b> 9 F	1~3.5	I 71												
G	3~6.5	i - 71	107	4	2.8	0.9				800	20	20	100	15
Н	6~11	1 – 71												:
1	10 ~ 18	1 – 71												
		L										L.		

续表 3.22 N 沟道场效应三极管的电参数(一)

多数	$I_{DSS}$	$U_P$	$r_{GS}$	g _m	$C_{iss}$	Crass	$N_n$	$K_{PS}$	$N_{PH}$	f _M	$BU_{DS}$	BU⇔	PDM	$I_{DSM}$
		<	≥	≥	€	€	≤	≥	€	≥	>	>		
型号	(mA)	(V)	(n)	(mA/V)	(pF)	(pF)	(dB)	(dB)	(dB)	(MHz)	(V)	(V)	(mW)	(mA)
3DJ15 F	1~3.5			3	3	0.6		14	3.5					
G	3 ~ 7			3	3	0.6	:	14	3.5					
H	6 ~ 31	-5.5		8	3	0.6		14	3.5		20	20	100	10
I	10 ~ 18			8	5	0.8		18	5.5	}				
J	16 ~ 30			8	5	0.8		18	5.5					
3DJ17 F	1~3.5			3	3	1		10	3.5			-		
G G	3~11			3	3	1		10	3.5				İ	
H	10~18	-5.5		6	3	1	ļ	14	3.5		20	20	200	20
		-3.3		1	ļ	1.5		14	5		20	~	200	
1	17 ~ 25			6	5	ļ .			Į.					
J	24 ~ 35			6	5	10.5		14	5					
3CJ1 D ~ G	同 3DJ2			*	10	2	5	* g,	.分档(	3.3/0.5	/1/1.5	/2.25	100	P沟道
<u> </u>	10 ~ 20		. <u>.</u>						1	1		ı		1 177.65
3D01 D	< 0.35													
E	0.3~1.2												İ	
F	1~3.5	1 - 91	10°	1	5	1.5	5	10	8	90	20	40	100	15
G	3~6.5													
Н	6 ~ 10		I											
3D02 D	< 0.35		10 ⁸		<del>                                     </del>					800	20	25	25	15
E	0.3~1.2		10 ⁹							1000	12	25	100	15
F~ H	同上	l – 91	10	4	2.5	0.3	5	8	6	1000				
3D04 D ~ H	同上	1 91	10 ⁹	2		0.9	5	10	6	300	20	25	100	15
i	10 ~ 15													

注[1]: C档为40mA。

注:与 3D01 相近的型号有 3D07、3D07H、3D012、3D013;与 3D02 相近的型号有 3D09、3D09H、3D016、3D017;与 3D04 相近的型号有 3D08、3D08H、3D014、3D015。这些相近型号均为具有双向栅极保护特性。

表 3.22 N 沟道结型场效应三极管的电参数(二)

<del></del>	· · · · · ·				E~41.7A.		H H 27	<u> </u>		,	,	
多数	Ines	$U_P$	g _m	Ciu	$C_{rss}$	K _{PS}	$N_F$	$U_n$	$BU_{GS}$	P _{DM}	$I_{DSM}$	注
W		•	≥	€	€	≱	€	M	≱			
型导	(mA)	(V)	mA/V	(pF)	(pF)	(dB)	(dB)	(nV/Hz)	(v)	(mW)	(mA)	
CS1 ~ 3 A	0.03 ~ 0.3	1 – 41	0.3									
В	0.3~1	1-4	0.5									<b>112.</b> 1.
C	1~3	1-4	1	4	2		5		- 30	100		陶瓷
D	3 ~ 10	1-6	1.5									环氧
CS4 ~ 6 C	1~3	1 - 41	2			12		-				封装
D	3 ~ 10	1 – 41	3		-	12					į	
E	10 ~ 20	i - 81	4	6	3	15	5		- 30	200	20	
F	20 ~ 30	18-1	5			15						
G	30 ~ 40	18-1	6		! !	15						
CS7 ~ 9 D	3 ~ 10	- 4	6									
E	10 - 20	1 - 8	7	6	3	20	5		- 30		20	
F	20 ~ 30	1-8	7	,							_~	
G	30 ~ 40	1 – 81										
CS 10 A	0.05 ~ 0.3	<del>                                     </del>	0.5									
11 B	0.3~1	41		4	2			100	- 25	100		
c	1~3		2									
Ð	3 ~ 10		3									
CS 12A ~ D			1					50	- 25	100		
13		间	上								i	
CS 14A ~ D		同	Ŀ					20	- 25	100		
15		1	- <del>-</del> -									
35												B-1
CS 38A ~ G	≽5	1-61		15	5	_	_	_	- 30	100		陶瓷
41										<u> </u>		S-2
36												
CS 39A ~ G	≥10	1-8		15	5	[	_	_	- 30	100		
42												B – 1
37												S-2
CS 40A ~ G	≥20	1 - 81		15	5			_	- 30	100		
43												
CS 44A ~ G	≥5	1-61		15	5			_	- 30	300		
48							_					
CS 45A ~ G	≥10	- 8		15	5	_	_	_	- 30	300		
49 05 46 4 - C	- 00		_	15						<b>.</b>		
CS 46A ~ G	≥20	1 – 8		15	5	_	_		- 30	300		
50 CS 47A ~ G	≥30	l 101		30	15				20	200		
51	35 JU	1. – 101		30	رد		_	_	- 30	300		
	<u> </u>	<u> </u>	L		·							

表 3.23 VMOS 大功率三极管的电参数

参数	漏源击穿电压	漏极电流	漏极电流最大 值(连续工作)	湯源电阻	漏极功耗	极性 P沟	
	BR _{DSMIN}	$I_D$	I _{DCONTMAX}	rus	$P_{D}$	N沟	外 形
型号	(v)	(A)	(A)	(Ω)	(W)		
MTPINIO0	1000	0.5	1	10	75	N	
MTP3NI00	1000	1.5	3	7	75	Ŋ	
MTP2N90	900	1	2	8	75	N	
MTP4N90	900	2	4	5	125	N	
MTP3N80	800	1.5	3	7	75	N	
MTP 1 N60	600	0.5	1	12	75	N	
2N60	600	1	2	6	75	N	
3N60	600	1.5	3	2.5	75	N	
6N60	600	3	6	1.2	125	N	
MTP 1N50	500	0.5	1	8	50	N	i
2N50	500	1	2	4	75	N	
2P50	500	1	2	6	75	P	
3N50	500	1.5	3	3	75	N	TO - 220
4N50	500	2	4	1.5	75	N	GDS
MTP 2N40	400	1	2	5	50	N	
3N40	400	1.5	3	3.3	75	N	
4N40	400	2	4	1.8	75	N	
5N40	400	2.5	5	1	75	N	
10N40	400	5	10	0.55	125	N	
MTIP 2N20	200	1	2	1.8	50	N	
4N20	200	2	4	1.2	50	N	
5N20	200	2.5	5	ι	75	N	
5P20	200	2.5	5	1	75	P	
7N20	200	3.5	7	0.7	75	N	
8N20	200	4	8	0.4	75	N	
12N20	200	6	12	0.35	125	N	
MTM 2P50	500	1	2	6	75	P	TO - 3
2P45	450	1	2	6	75	P	图 3.6
8P20	200	4	8	0.7	125	P	(d)
5P20	200	2.5	5	1	75	P	(0)

说明,VMOS大功率管是近年来发展起来的大功率半导体器件,其主要优点是:医为是多了导电,没有双极型晶体管少子的存储效应,故开关速度可达纳秒级;漏电流呈负温度特性,有自镇流作用,无二次击穿现象;是电压控制器件,输入阻抗高,只需电压激励;线性好,失真小,增益高;易制成耐压高、电流大的器件。

## 3.5 显示器件

### 3.5.1 概述

显示器件种类很多,本手册只介绍与集成电路易于连接的发光二极管(LED)构成的显示器件和液晶显示器件(LCD)。发光二极管由半导体材料磷化镓、磷砷化镓等制造,正向导电时,电子受激发发光。光的颜色有红外、红、黄、绿、橙、兰、紫、紫外等,一般商品以

红外、红、黄、绿、橙各色居多。发光二极管可单只构成器件,外形有多种形状和尺寸,也可组合成数字和文字。目前显示器件主要有两类,一是 LED 七段数码显示器件,二是点阵显示器件,此外还有专用图形符号的显示器件。液晶显示器件都是密封在玻璃中,玻璃上有透明电极,一般也分七段数码显示器件和点阵显示器件。LED 和 LCD 都可在几伏低电压下工作,易于和集成电路连接,LED 的工作电流只有几个毫安,是主动发光器件,颜色多,亮度高。LCD 的工作电流只有微安级,是被动显示器件,是靠反差显示文字和图形。新型的液晶显示器件有彩色和背景光,显示效果也不错。

由若干个发光二极管可组合成 LED 数码管和符号管,国内外品种规格繁多,型号也是五花八门。它们从结构上看和发光二极管一样,有笔划段和点阵式两种,电极连接分共阴极和共阳极两种。对于多位的数码管,为了减少引出电极的数目,往往采用动态扫描的方式,将每一位数字相同位置的笔划段连在一起,作为段选信号的输入,每一位数字的公共电极(即共阴极或共阳极)作为位选信号的输入。段选信号和位选信号相遇,则相应数字的笔划段点亮。笔划段式的显示的字形有限,点阵式往往以行数乘列数和外形尺寸来表示,它可以显示任何文字和图形。LCD显示器件往往笔划段都比较多,所以都采用动态扫描的方式,其驱动电路也是集成化的,与液晶显示器制作在一起,使用十分方便。

在使用发光二极管时,遵循的原则是一样的,通过发光二极管的正向电流不能超过额定值,发光二极管的正向电压降一般在 2V 左右。正向电流大一些,其正向电压降也大一些,发光也强一些;正向电流小一些,其正向电压降也小一些,发光也弱一些。在正常发光时,其正向电压降与 2V 的差别不大,并且都要串入电阻以限制正向电流,保护发光二极管不被烧毁。发光二极管正向电流一定时,其发光强度与发光效率有关,发光效率高的,发光强度就大。目前商品化的发光二极管的发光效率分为普通、高亮度和超高亮度三种。

发光二极管的参数比较特殊的有:

 $I_{v}$  ——发光强度,单位毫坎(med);

 $\theta$  ——半强度角,单位度;

 $\lambda_n$  ——发光峰值波长,单位微米( $\mu$ m);

 $\Delta \lambda$  ——半峰宽度,单位微米( $\mu$ m)。

### 3.5.2 显示器件的命名方法

目前,显示器件的命名方法还比较乱,一是汉语拼音 FG 为型号前缀的部标型号,适合于发光二极管;二是厂标型号。

### 3.5.2.1 部标发光二极管型号的规定

第一部分	第二部分	第三部分	第四部分	第五部分	第六部分
FG	一位数字	一位数字	一位数字	一位数字	二位数字
型号	代表材料	代表颜色	封装形式	外形分类	序号
	1—GaAsP	0一红外	1一无色透明	0一圆形	由电子ユ
	2—GaAlAs	1—红	2—无色散射	1一长形	业部标准
•	3—GaP	2—橙	3—有色透明	2—符号	化所统一
	4—GaAs	3一黄	4一有色散射	3—三角形	给出
		4绿		4一方形	

5—≝

5-组合形

6-复合

6-特殊形

7—靛

8一紫

9一紫外,黑,白

### 3.5.2.2 部分厂标发光二极管型号的规定

厂标型号比较杂,在此把我国几个主要的发光二极管生产厂的型号加以简单地介绍。 同一型号不同厂家的发光二极管参数不尽一致,但差别不大,只要遵循使用的基本原则就不会损坏器件。

①北京光电器件厂

BT	×	×	×	×
型号	外形大类	材料及其它	颜色	封装形式
	1 <b>—</b> \$3		1—红	D—加色散射
	2 4 或  4.4		<b>2</b> —≰T.	C—加色透明
	3—∳5		3一绿	W—乳白
	$4-2 \times 5$		4	T—无色透明

### ②佛山光电器件厂

BT	×	××	×
型号	颜色	管形序号	特殊的支架或封装
	1一绿		
	2—红		
	3一黄		
	4—橙		

### ③苏州半导体总厂

- 一部分以 BT 为首,后续数字按部标规定执行。
- ④上海半导体器件六厂

 LED
 ×
 ×

 型号
 材料
 颜色及外形

 6—GaAsP
 00~20—红

 7—GaP
 (6)20~(6)40—橙

 (6)40以上—黄
 (7)20以上—绿

# 3.5.3 发光二极管参数表

表 3.24 发光二极管的特性参数(一)

				•	夜 3.44	· 60	JL 12	( B.B.) 1	A 177.30	34.2. (	, _			
	参	数	颜色	P _M	I _{FM}	$U_R$	$U_F$	$I_R$	C _o	$I_v$	θ	$\lambda_p$	Δλ	
#41	导			( TR()		<u>≽</u>	<b>≰</b>	<b>≤</b>	€ (12)	≱   ( 1)	/ HH: \	(	()	外形
型 ————	——		- <del>-</del>	(mW)	(mA)	(V)	(v)	(μA)	(pF)	(med)	(度)	(fm)	(µm)	
BT 101			έΙ	ĺ			2.0			0.4	180	0.650	0.03	
105			_ ⁄στ	50	20	5	2.5	50	100	0.5	- 180	0.700	0.10	\$3 × 3
102			紅	30	لک ا	,	٠ ٧.٥	30	100	0.5	190	0.700	0.10	
103			绿				2.5			0.4	180	0.565	0.03	
104			黄				2.5		! !	0.5	180	0.585	0.03	
107										0.5	<u> </u>			
BT 111			组	50	20	·	2.0			同上	30	0.650	0.03	
			ļ	:							20			
112 113			红绿	:		5	2.5	50	100		同上	0.700 0.565	0.10	\$3.2×4.6
113			绿黄	İ	-	İ	2.5	·				0.585		
					<del>  -</del>		<del> </del>	<del></del> -						
BT 201			紅	90	40	5	2.0	50	100	0.5	30 20	0.650	0.03	
202			紅				2.5			同上	同上	0.700	0.10	<b>46</b> ×7
203			绿				2.5					0.565	0.03	
204			黄				2.5	<u></u>		_		0.585	0.03	
BT 211			紅	90	40	5	2.0	50	100	0.5	25	0.650	0.03	
212			<b>μ</b> τ			1	2.5			1.0	<b>2</b> 0   间上	0.700	0.10	∳5.4×7
212			红绿			İ	2.5			; P ^M —	HJ IL	0.565		¥3.4×7
214			黄	1			2.5			Ì		0.585		
BT 301			\$t	90	40	5	2.0	50	100	0.5	20	0.650	0.03	·-
										0.4	15			
302 303			紅绿				2.5			同上	同上	0.700		<b>♦9.4 × 1</b> 2
304			黄				2.5					0.585		
D/T 211			<u> </u>	90	40	5	2.0	50	100	0.5	30	0.650	0.03	
BT 311			<u>*</u> T	90	40	,	2.0	30	100	1.0	20	0.000	0.05	
312			紅				2.5			同上	同上		0.10	∳6×8.6
313 314			绿黄				2.5			1		0.565		
314			, M					<del> </del> -	ļ	<del> </del> -	<u> </u>	0.363	0.03	
BT 411			<b>≱</b> T.	90	40	5	2.0	50	100		70	0.650		1
412 413			红绿		1		2.5			1.0	70	0.700		4×4×8
414			黄				2.5				70	0.585		
BT 411	-1		红	90	40	5	2.0	50	100		75	0.650	0.03	
412	<del>-</del> 1		#I				2.5	ĺ		1.0	75	0.700	0.10	5×2.5×9
413			绿黄	[		· }	2.5				! 75 ] 75	0.565		
414	- I		黄	.]	<u> </u>		2.5			ł	75	0.383	0.03	

续表 3.24 发光二极管的特性参数(一)

多数	y 颜色	P _M	I _{PM}	$U_{R}$	$U_F$	$I_R$	Co	$I_v$	θ	λρ	Δλ	
型		(wm)	(mA)	≱ (y)	€ (V)	≰ (μΛ)	≰ (pF)	≱ (med)	(度)	(µm)	(µm)	外 形
BT 411 - 2 412 - 2 413 - 2 414 - 2	红红绿黄	90	40	5	2.0 2.5 2.5 2.5 2.5	50	100	1.0	70 70 70 70	0.650 0.700 0.565 0.585	0.10 0.03	5×4×8

表 3.24 发光二极管的特性参数(二)

				双 3.44	· 24	ノレ120	(B) B) f	<u> 4 1 T 38 A</u>	<u> </u>	,		
<b>*</b>	数	颜色	$P_M$	$I_{FM}$ .	$U_R$	$U_F$	$I_R$	C _o	$I_v$	θ	$\lambda_p$	
型号			(mW)	(mA)	≱ (V)	€ (V)	≰ (μA)	<b>≤</b> (pF)	≱ (mcd)	(度)	(µm)	外 形
											0.655	
BT 114033			30	20	! !	2			0.7		0.700	
314033		Ì	60			2.8	:		0.4		*****	
313033			60	ļ		2.5	i		0.8			
312033			60			2.5			0.4			∳3.8×6
311033		≰T.	60	20	5	2.5			0.8			
111032			100	50		2			0.8			$$43.3 \times 3.3$
112032			100			2			0.5		0.655	
113032			100			2		<u>.</u>	0.8			
114032			100	50		2			0.5	 		
ВГ134033		黄	50	20	5	2.5			1.5		0.585	φ3.8×6
BE121033		橙				İ			3.5		0.630	\$3.8×6
BT344033		黄绿	50	20	5	2.5			2		0.565	φ3.8×6
BT1341529		黄	100	40	5	2.5			0.4		0.585	5 × 2.5 × 10
BT1141529		红	100	40	5	2.5			0.4		0.655	5×2.5×10
BT1441529		黄绿	100	40	5	2.5			0.4		0.565	5×2.5×10
BT1241529			100	40	5	2.5	' i		0.4		0.630	5×2.5×10

表 3.24 发光二极管的特性参数(三)

参数	颜色	P _M	I _{FM}	$U_{R}$	$U_F$	$I_{\nu}$	$\lambda_p$	
型号	84 C	(mW)	(mA)	≥ (V)	(v)	> (med)	··· _p (μm)	外 形
FG223001	橙	50	20	5	2.1	3	0.630	∳3,1×5.4
FS233001	黄	50	20	5	2.2	1	0.585	\$3.1×5.4
FG313001	<b>£</b> T.	50	20	5	2.1	1	0.700	\$5.1 × 8.6
FG313003	紅	75	40	5	2.1	5	0.700	∳5.1×8.6
FG333001	绿	50	20	5	2.2	3	0.565	\$3.1 × 5.4
FG343001	绿	50	20	5	2.2	ı	0.555	\$3.1×5.4
FG331003	黄绿	75	20	5	2.2	9	0.565	\$5.1 × 5.4
FG333003	黄绿	75	20	5	2.2	9	0.565	\$5.1×5.4

### 3.5.4 发光二极管符号管和数码管

发光二极管符号管和数码管的型号规格很多,选用时主要看尺寸和颜色,注意功耗和电流不超过额定值即可。

- ①发光二极管符号管和数码管的颜色与发光二极管相同,主要有黄、橙、绿、红四种。
- ②发光二极管符号管和数码管也分共阴极和共阳极两种。对于共阴极结构,笔划段电极加高电平点亮;对于共阳极结构,笔划段电极加低电平点亮。如果不清楚一种发光二极管符号管和数码管的结构和引出电极,可以用万用表的 Ω 档测试,不过亮度低些;也可用 5V 直流电源和一只 300Ω 电阻器测试确定。
- ③发光二极管符号管和数码管的形状都是矩形,引出线的位置在上下两侧,或者在左右两侧。引出线在上下两侧的,公共电极,即共阳极和共阴极,用 V 表示图 3.8 中,一般都在上侧和下侧的中间。符号和数码的高度尺寸是 7.6、12.7、16.0、25.4mm 等,是按英寸划分的,1 吋的是 25.4mm ,0.5 吋的是 12.7mm。管脚间距都是 0.1 英寸,即 2.54mm,与双列直插集成电路的封装的管脚间距一样。发光二极管符号管和数码管的外形尺寸稍大于符号和数码字形的尺寸。
  - ④佛山光电器件厂生产的数码管的型号为  $FR \times \times \times$ ,符号管为  $FR F \times \times \times$ 。 上海半导体器件六厂生产的数码管的型号以 LDD 开头。
  - 苏州半导体总厂和绍兴电子管厂生产的数码管的型号以 BS 开头。
  - ⑤发光二极管符号管和数码管的参数与发光二极管差不多, 只是工作电流大一些。



图 3.8 LED 数码管和符号管的引线排列

## 3.6 光电耦合器

光电耦合器是一种电信号的耦合器件,它一般是将发光二极管和光敏三极管的光路 耦合在一起,输入和输出之间可以不共地,输入电信号加于发光二极管上,输出信号由光 敏三极管取出。光电耦合器传输的信号一般为数字信号,若要传输模拟信号则要采用线 性光耦。光电耦合器在传输信号的原理上与隔离变压器相同,但它体积很小,传输信号的

## 频率更高,使用方便。光电耦合器一般都采用 DIP 封装。

表 3.25 国外常用光电耦合器的参数

A #	r eta tri titi.	<b>工台山坡</b>	土谷市田	Alta Firt Lt. 1984.	电流传输比	上升时间	下降时间	出人耐压	
参数	正向压降	正向电流	击穿电压		1				±க்-பன் ≡் ≀
	$U_F$	$I_F$	$BU_{CEO}$	$U_{C\!E\!S}$	CTR	L,	$t_{\rm f}$	$U_{tSO}$	输出级形式
型导	(V)	(mA)	(v)	(V)	(%)	$(\mu_8)$	(µs)	(V)	
4N25A	1.5	10	30	0.5	20	0.8	8	2500	三极管
4N26	1.5	10	30	0.5	20	0.8	8	1500	DIP-6 封装
4N27	1.5	10	30	0.5	10	2	8	1500	1—阳极
4N28	1.5	10	30	0.5	10	2	8	500	2—阴极
4N35	1.5	10	30	0.4	10	4[1]	4[1]	3500	3一空
4N36	1.5	10	30	0.3	10	4[1]	4[1]	2500	4—发射极
4N37	1.5	10	30	0.3	10	4[1]	4[1]	1500	5-集电极
4N38A	1.5	10	80	1	10	0.8	7	2500	6一基极
TIL117	1.4		30	0.4	50	2	2	2500	
4N29A	1.5	200	20	1	100	2	25	2500	达林顿
4N30	1.5	200	30	1	100	2	25	1500	DIP-6封装
4N31	1.5	200	30	1.2	50	2	25	1500	引线同上
4N32	1.5	200	20	1	500	2	25	2500	
4N33	1.5	200	30	1	500	2	25	1500	
TIL113	1.5	100Ω	30	1	300	300	300	1500	
TIL119	1.5		<u> </u>		300			1500	

注[1]:此为 tan 和 toff。

# 第四章 敏感元器件

敏感元器件是直接感受非电量,并将其变换为电量的元器件。非电量包括温度、流量、压力、光线、磁、位移、速度、加速度、气体、离子浓度、放射性等物理量。由于敏感元器件种类十分繁多,本手册只对其中常用的有代表性的加以介绍。敏感元器件一般都是独立的,可自成元器件;更往往与其它一些部件、电路组成一个装置,具有将非电量按照一定的规律转换为电量的功能,这时也称其为传感器。各种非电量必须通过各种敏感元器件将其变换为电量后才能作为电子线路的输入信号使用,因此,敏感元器件是电子线路与外围电路的重要接口元器件,在测量与控制电路中不可缺少。

## 4.1 压力敏感元器件

力敏器件一般是指半导体力学量敏感器件,它是利用半导体的压阻效应而制成的敏感元件。利用半导体的压阻效应可制成多种力敏器件,如压力传感器、荷重传感器、拉压传感器等上千个品种。为简单计,一般按其工艺结构来划分,有体型应变片、分立扩散硅、硅蓝宝石和集成化四种。

多数	桥臂电阻	反向漏电	反向击	零位输出	零位输出	桥臂电阻	正反向电阻
	THE PERT	/X 1F1 (M FE)	穿电压	→ ◆ □ 4 脚 □	稳定率	误差	不平衡
型号	(kΩ)	(nA)	(v)	(mV)	(%)	(%)	(%)
ML32	2.2	100(max)	60(min)	100(max)	-0.1~0.1	2(max)	2(max)
ML33	5	100(max)	60(min)	100(max)	0~0.1	2(max)	5(max)
ML34	1.1	5(max)	60(min)	1(max)	0		
ML 35						量程;0~0.	l MPa
36	1.2~1.5	50	40(min)	100(max)	0.1(max)	0 ~ 1 N	MPa
37						0 ~ 10	MPa

表 4.1 ML32/33/34/35/36/37 系列力敏芯片

说明:应变电阻、弹性体做在同一硅衬底材料上,用该芯片组装的传感器具有灵敏度高、体积小、精度高、频响宽等特点。主要用于各种压力传感器和变送器。

名 称	单 位	参数	工作温度
俎 值	kΩ	4~6	
		A; ≥10	
击穿电压	v	B; ≥60	
		C; ≥100	- 20°C ~ + 60°C
		A; ≤60	
反向漏电	nA	B; ≤40	
		C; ≤20	

表 4.2 KJY 型扩散硅全桥集成应变片

续表 4.2 KJY 型扩散硅全桥集成应变片

名 称	单 位	参 数	工作温度
灵敏度系数	%	≥80	
电阻温度系数	×10 ⁻³ F·S/℃	€2	7
	1	A: ±2	$-20^{\circ}\text{C} \sim +60^{\circ}\text{C}$
阻值均匀性	%	$B_1 \pm J$	!
		$C_t \pm 0.5$	

说明:用于各种应变力的测量和装配压力传感器。

# 4.2 温度敏感元器件

温度敏感元器件简称温敏元器件,它是使用最多的敏感元器件之一。温敏元器件主要有半导体热敏电阻、热电偶、热电阻、温敏二极管(PN结)、半导体集成温度传感器和石英晶体等。热敏电阻将在下面敏感电阻器中介绍。

### 4.2.1 热电阻

金属的电阻虽然很小,但制成极细的丝,或蒸镀在绝缘衬底上,就可获得较大的电阻。 金属的电阻一般随温度的增加而增加,利用金属的电阻温度系数即可实现对温度的测量。 用来制造热电阻的金属有铜和铂,分别称为铜电阻和铂电阻。热电阻的有关特性见表 4.3。

	八座見	0℃阻值	温度系数	允许偏差	测温范围
<i>ጊ</i> ለው	分度号	(Ω)	(×10 ⁻² /°C)	(%)	<u>(°C)</u>
# 1 ti ma	Cu50	50	D 4390	± (0.3+0.006 t)	- 50 ~ 300
铜电阻	Ca100	100	0.4280	± (0.5+0.000 t )	30 ~ 300
	Pi100	100	i l	$A_{1} \pm (0.15 + 0.002 \ t)$	- 250 ~ 1000
铅电阻	Pt500	500	0.3850	B; $\pm (0.3 + 0.05 t)$	
	Pr1000	1000			Ì

表 4.3 热电阻的分类和特性

不管什么热电阻都有一个分度号,铜电阻是 Cu50、Cu100,铂电阻是 Pt100、Pt500、Pt1000,数字代表 0℃时的电阻值。我们可以根据这个电阻值和温度系数计算出某个温度下的电阻值,也可以查阅该分度号热电阻的温度阻值分度表。计算出来的电阻值有些偏差,要求准确时应查阅作为标准颁布的分度表。

#### 4.2.2 热电偶

两种不同的金属结合在一起,在不同的温度条件下,会产生不同的热电势,利用这一特性,即可将两种金属丝的端头熔接在一起制成热电偶。这些金属有铂、铑、镍、铜、康铜、硅等,用铂铑构成的就称为铂铑热电偶。热电偶的测温范围 - 273℃ ~ 2800℃,但同一个热电偶不会有如此宽的测温范围,每一种热电偶都有各自的较窄的测温范围。我国现在采用"90 国际温标",使用的热电偶有 12 种,用相应的字母表示,它们的分度号和名称是: S——铂铑 10 - 铂; R——铂铑 13 - 铂; B——铂铑 30 - 铂铑 6; K——镍铬 - 镍硅; N——镍铬硅 - 镍硅; E——镍铬 - 铜镍(康铜); J——铁 - 铜镍; T——铜 - 铜镍; WRe3/25——钨铼 3 - 钨铼 25; WRe5/26——钨铼 5 - 钨铼 26; NiCr - AuFe0.07——镍铬 - 金铁;

NiCr - CuFeO.07——镍铬 - 铜铁。其中前八种采用 IEC 国际标准,后四种采用美国 ASTM 权威标准。各种热电偶的热电势与温度的关系见表 4.4。

表 4.4 各型热电偶的热电势与温度关系计算公式表

<u>Д</u>	温度范围	热电势与温度关系式	<b>亚</b>
分度号	(°C)	(μV)	系 数
	- 50 ~ 630 , 74	$E = \sum_{i=0}^{6} a_i t^i$	$a_0 = 0$ $a_1 = 5.399578$ $a_2 = 1.251977 \times 10^{-2}$ $a_3 = -2.244822 \times 10^{-5}$ $a_4 = 2.845216 \times 10^{-8}$ $a_5 = -2.244058 \times 10^{-11}$ $a_6 = 8.505417 \times 10^{-15}$
s	630.74 ~ 1064.43	$E = \sum_{i=0}^{2} b_i t^i$	$b_0 = -2.982448 \times 10^{+2}$ $b_1 = 8.237553$ $b_2 = 1.645391 \times 10^{-3}$
	1064.43 ~ 1665	$E = \sum_{i=0}^{3} c_i \left( \frac{t - 1365}{300} \right)^i$	$c_0 = 1.3943439 \times 10^{+4}$ $c_1 = 3.6398687 \times 10^{+3}$ $c_2 = -5.0281206$ $c_3 = -4.2450546 \times 10^{+1}$
	1665 ~ 1767.6	$E = \sum_{i=0}^{3} d_i \left(\frac{i - 1715}{50}\right)^i$	$d_0 = 1.8113083 \times 10^{+4}$ $d_1 = 5.6795375 \times 10^{+2}$ $d_2 = -1.2112492 \times 10^{+1}$ $d_3 = -2.8117589$
В	0 ~ 1820	$E = \sum_{i=0}^{8} \alpha_i t^i$	$\alpha_0 = 0$ $\alpha_1 = -2.4674601620 \times 10^{-1}$ $\alpha_2 = 5.9102111169 \times 10^{-3}$ $\alpha_3 = -1.4307123430 \times 10^{-6}$ $\alpha_4 = 2.1509149750 \times 10^{-9}$ $\alpha_5 = -3.1757800720 \times 10^{-12}$ $\alpha_6 = 2.4010367459 \times 10^{-15}$ $\alpha_7 = -9.0928148159 \times 10^{-19}$ $\alpha_8 = 1.3299505137 \times 10^{-22}$
J	- 210 ~ 760	$E = \sum_{i=0}^{7} \alpha_i t^i$	$\alpha_0 = 0$ $\alpha_1 = 5.0372753027 \times 10$ $\alpha_2 = 3.0425491284 \times 10^{-2}$ $\alpha_3 = -8.5669750464 \times 10^{-5}$ $\alpha_4 = 1.3348825735 \times 10^{-7}$ $\alpha_5 = -1.7022405966 \times 10^{-10}$ $\alpha_6 = 1.9416091001 \times 10^{-13}$ $\alpha_7 = -9.6391844859 \times 10^{-17}$
	760 ~ 1200	$E = \sum_{i=0}^{5} b_i t^i$	$b_0 = 2.9721751778 \times 10^{+5}$ $b_1 = -1.5059632873 \times 10^{+3}$ $b_2 = 3.2051064215$ $b_3 = -3.2210174230 \times 10^{-3}$ $b_4 = 1.5949968788 \times 10^{-6}$ $b_5 = -3.1239801752 \times 10^{-10}$

续表 4.4 各型热电偶的热电势与温度关系计算公式表

分度号	温度范围	热电势与温度关系式	系 数
刀皮写	(℃)	(μV)	75、
Т	- 270 ~ G	$E = \sum_{i=0}^{14} \alpha_i t^i$	$\alpha_0 = 0$ $\alpha_1 = 3.8740773840 \times 10$ $\alpha_2 = 4.4123932482 \times 10^{-2}$ $\alpha_3 = 1.1405238498 \times 10^{-4}$ $\alpha_4 = 1.9974406568 \times 10^{-5}$ $\alpha_5 = 9.0445401187 \times 10^{-7}$ $\alpha_6 = 2.2766018504 \times 10^{-8}$ $\alpha_7 = 3.6247409380 \times 10^{-10}$ $\alpha_8 = 3.8648924201 \times 10^{-12}$ $\alpha_9 = 2.8298678519 \times 10^{-14}$ $\alpha_{10} = 1.4281383349 \times 10^{-16}$ $\alpha_{11} = 4.8833254364 \times 10^{-20}$ $\alpha_{12} = 1.0803474683 \times 10^{-21}$ $\alpha_{13} = 1.3949291026 \times 10^{-24}$ $\alpha_{14} = 7.9795893156 \times 10^{-26}$
	O ~ 400	$E = \sum_{i=0}^{8} b_i t^i$	$b_0 = 0$ $b_1 = 3.8740773840 \times 10$ $b_2 = 3.3190198092 \times 10^{-2}$ $b_3 = 2.0714183645 \times 10^{-4}$ $b_4 = -2.1945834823 \times 10^{-6}$ $b_5 = 1.1031900550 \times 10^{-8}$ $b_6 = -3.0927581898 \times 10^{-11}$ $b_7 = 4.5653337165 \times 10^{-14}$ $b_8 = -2.7616878040 \times 10^{-17}$
E	- 270 ~ 0	$E = \sum_{i=0}^{13} \alpha_i t^i$	$\alpha_{0} = 0$ $\alpha_{1} = 5.8695857799 \times 10$ $\alpha_{2} = 5.1667517705 \times 10^{-2}$ $\alpha_{3} = -4.4652683347 \times 10^{-4}$ $\alpha_{4} = -1.7346270905 \times 10^{-5}$ $\alpha_{3} = +4.8719368427 \times 10^{-7}$ $\alpha_{6} = -8.8896550447 \times 10^{-9}$ $\alpha_{7} = -1.0930767375 \times 10^{-10}$ $\alpha_{8} = -9.1784535039 \times 10^{-13}$ $\alpha_{9} = -5.2575158521 \times 10^{-15}$ $\alpha_{10} = -2.0169601996 \times 10^{-17}$ $\alpha_{11} = -4.9502138782 \times 10^{-20}$ $\alpha_{12} = -7.0177980633 \times 10^{-23}$ $\alpha_{13} = -4.3671808488 \times 10^{-26}$
	0 ~ 1000	$E = \sum_{i=0}^{9} b_i t^i$	$b_0 = 0$ $b_1 = 5.8695857799 \times 10$ $b_2 = 4.3110945462 \times 10^{-2}$ $b_2 = 5.7220358202 \times 10^{-5}$ $b_4 = -5.4020668085 \times 10^{-7}$ $b_5 = 1.5425922111 \times 10^{-9}$ $b_6 = -2.485089136 \times 10^{-12}$ $b_7 = 2.3389721459 \times 10^{-15}$ $b_8 = -1.1946296815 \times 10^{-18}$ $b_9 = 2.5561127497 \times 10^{-22}$

温度范围 热电势与温度关系式 分度号 系 数 (°C)  $(\mu V)$  $\alpha_1 = 3.9475433139 \times 10$  $a_2 = 2.7465251138 \times 10^{-2}$  $a_3 = -1.6565406716 \times 10^{-4}$  $\alpha_4 = -1.5190912392 \times 10^{-6}$  $\alpha_5 = -2.4581670924 \times 10^{-8}$  $\alpha_6 = -2.4757917816 \times 10^{-10}$  $\alpha_7 = -1.5585276173 \times 10^{-12}$  $\alpha_8 = -5.9729921255 \times 10^{-15}$  $\alpha_9 = -1.2688801216 \times 10^{-17}$ K  $\alpha_{10} = -1.1382797374 \times 10^{-20}$  $b_0 = -1.8533063273 \times 10$  $b_1 = 3.8918344612 \times 10^{-1}$  $b_2 = 1.6645154356 \times 10^{-2}$  $b_3 = -7.8702374448 \times 10^{-5}$  $b_4 = 2.2835785557 \times 10^{-7}$  $0 \sim 1372$  $b_5 = -3.5700231258 \times 10^{-10}$  $b_5 = 2.9932909136 \times 10^{-13}$ 

续表 4.4 各型热电偶的热电势与温度关系计算公式表

读者可以根据表中公式、计算出相应分度号热电偶的电势温度表。

### 4.2.3 半导体集成温度传感器

半导体集成温度传感器是依靠集成电路制造技术,在近二十年发展起来的一种精度高、使用方便的温度传感器,它由电阻、PN结、二极管、三极管、电流源等部分组成。

### 4.2.3.1 AD590 电流型半导体集成温度传感器

AD590 是一个两端电流型半导体集成温度传感器(封装引线一般有三条,第三条引线接管壳),它具有  $1\mu$ A/K 的温度系数,并且按开氏度定标,即摄氏零度时它的电流是  $273\mu$ A。AD590 的测温范围是 -55  $^{\circ}$ C ~ 150  $^{\circ}$ C,在测温范围内只有  $\pm$  0.3% 的非线性。 AD590 的工作电压范围是 4V ~ 30V。AD590 的外引线排列和典型应用电路如图 4.1 所示。AD590 的电流标定的准确程度可由型号的后缀分档,这个偏差可由外电路修正,偏差越小售价就越高,应该根据需要选定。与 AD590 类似的有 AD592,它的精度比 AD590 更高一些。



图 4.1 AD590 的引线

表 4.5 AD590 的主要参数

 $b_7 = -1.2849848798 \times 10^{-16}$  $b_3 = 2.2239974336 \times 10^{-20}$ 

型号	输出电流	标定误差	非线性	温度范围
型 号 ————	$I_{g}\left( \mu \mathbf{A}\right)$	(%)	( <u>°C)</u>	(%)
AD5901	298.2	± 20	±3	- 55 ~ 150
AD590J	298.2	± 10	±1.5	~ 55 ~ 150
AD590K	298.2	±5.5	± 0.8	<b>- 5</b> 5 <b>- 15</b> 0
AD590L	298.2	±3.0	±0.4	- 55 - 150
AD590M	298.2	±1.7	± 0.3	- 55 ~ 150

### 4.2.3.2 LM134/234/334 电流型半导体集成温度传感器

LM134/234/334 电流型半导体集成温度传感器有三个端头,第三个端头是器件电流的设定端,可在校正端与负端两引线之间并接一只电阻 R_{set}来设定 L_a, L_a 的表达式为

$$I_{\nu} = (227 \mu \text{V/K} \cdot R_{\text{set}}) T$$

式中的 T 为 K 氏温度。当  $R_{\rm set}$  = 227 $\Omega$  时,温度系数正好是  $1\mu$ A/ $\mathbb{C}$ 。如串入的负载电阻  $R_L = 10$ k $\Omega$ ,那么可获得 10mV/ $\mathbb{C}$ 的温度电压信号。

LMI34/234/334 依次是军品、工业品和民品,1 字头、2 字头和 3 字头的规定与运算放大器中的规定相同。LMI34 的工作温度范围是 -55% ~ 125%, LM234 的工作温度范围是 -25% ~ 100%, LM334 的工作温度范围是 0% ~ 70%。LM134/234/334 所加的工作电压最大不得超过 40%,最小工作电压 0.8%,输出电流范围 0.001mA ~ 10mA,输出电流温度系数为 0.96 $\mu$ A/K ~ 1.04 $\mu$ A/K。工作电压变化对输出电流的影响;当  $I_o=0.1$ mA 时,为  $\leq 0.26\%$ /V;当  $I_o=1$ mA 时,为  $\leq 0.15\%$ /V。



图 4.2 LMI34/234/334 的引线和典型应用电路

### 4.2.3.3 LM135/235/335 电压型半导体集成温度传感器

LM135/235/335 是与 LM134/234/334 对应的电压型半导体集成温度传感器,它们的外封装相同,它的输出电压温度系数是 10mV/℃,其它参数见表 4.6。在使用时 + 、= 端之间可接 - 电位器,中心头接校正端 A,调节 A点电位,可校正输出电压之值。

型号	W. 73	LM135/235			,	LM335				
多数	单位	MIN	NOM	MAX	MIN	NOM	MAX	дк 1r		
输出电压	v	2.95	2.98	3.01	2.92	2.98	3.04	$T = 25$ °C, $I_{K} = 1$ mA		
动态电阻	Ω		0.5			0.6		$I_n = 1 \text{mA}$		
温度系数	mV≠°C		10			10		In - tate		
测温误差	C		0.5	1.5		1	2	$T_{\min} \leq T \leq T_{\max}, I_R = 1 \text{mA}$		
非线性	₹0		0.3	1		0.3	1.5	$I_R = 1 \text{mA}$		
热响应	s		80			80				
稳定性	°CZkh	ı	0.2			0.2		T = 125℃		

表 4.6 LM135/235/335 电压型半导体集成温度传感器的参数

## 4.3 石英晶体谐振器和振荡器

石英晶体是一种压电晶体,在电子线路中一般用于产生稳定的振荡频率和作晶体滤波器用。石英晶体可单独制成元件使用,电可与半导体器件和阻容元件在一起组成石英晶体振荡器。石英晶体振荡器一般都安装在金属盒中,在底部有多个引脚,有引脚标

记,以便连接。几种石英晶体谐振器和石英晶体振荡器的有关数据见表 4.7~4.10。

石英晶体产生振荡时,我们希望振荡频率稳定。但是,石英晶体的谐振频率会随温度的变化而有小的变化,利用这一特性,通过测量石英晶体振荡器的频率,就可间接知道相应的温度值,所以石英晶体也是一种温敏元件。

石英谐振器的型号由三部分组成:

第一部分由一个汉语拼音字母表示外壳形状和材料,具体为:

B─玻璃壳; J─金属壳; S 塑料壳。

第二部分代表石英晶体的切割方向,具体为:

A-AT 切割; B-BT 切割; C-CT 切割; D-DT 切割; E-ET 切割; F-FT 切割;

G-GT 切割; H-HT 切割; M-MT 切割; N-NT 切割; U-WX 切割,弯曲振动;

X-X 切割,伸缩振动; Y-Y 切割。

第三部分用数字序号区分石英晶体谐振器的主要技术指标和外形尺寸。

惠 号	标称频率 (MHz)	总频差 (10 ⁻⁶ )	负载电容 (pF)	型号	标称频率 (MHz)	息频差 (10 ⁻⁶ )	负载电容 (pF)
JA94 A	1~5	± 50	30	JA95 D	3 ~ 25	± 50	i 16
В	1~5	± 100	30	ļ E	3 ~ 25	± 100	16
$\mathbf{c}$	1~5	± 150	30	j F	3 ~ 25	± 150	16
υ	1~5	± 50	16	JA96 A	20 ~ 75	± 50	30
£	1 ~ 5	± 100	16	B	20 ~ 75	± 100	30
F	1~5	± 150	16	∫ c	20 ~ 75	± 150	30
JA95 A	3 ~ 25	± 50	30	u u	20 ~ 75	± 50	16
В	3 ~ 25	± 100	30	E	20 ~ 75	± 100	16
C	3 ~ 25	± 150	30	j F	20 ~ 75	± 150	16

表 4.7 石英谐振器(微机角)参数

表 4.8	石英谐振器(	(电子钟用)	参数

셸 号	松称频率 (kHz)	调整频差 (10 ⁻⁶ )	温度频差 (10-6)	负载电容 (pF)	激励电平 (mW)	階級电阻 (Ω)	工作温度 (℃)
JA40 A B C	4194.304	± 10	± 10 ± 20 ± 30	30	1-2	≤80 ≤80 ≤80	0 ~ 40 - 10 ~ 55 - 25 ~ 55
JA42 A B C	4194.304	± 10	± 10 ± 20 ± 30	12	1 ~ 2	≤ 100 ≤ 100 ≤ 100	0 ~ 40 - 10 ~ 55 - 25 ~ 55

表 4.9 低频金属盒石英谐振器参数

型号	标称频率 (kHz)	凋整频差 (10 ⁻⁶ )	总频差 (10 ⁻⁶ )	负载电容 (pF)	激励电平 (mW)	工作温度 (气)
JW1	8~12		± 200	100	0.1	<b>- 40 ~ 70</b>
JNI	16 ~ 85		± 200	100	0.1	<b>- 40 ~ 70</b>
JN3	16 ~ 85	± 50	± 200	100	0.1	- 25 ~ 55
JN5	80 ~ 110	± 50	± 150	100	0.1	- 25 - 55
JXI	75 ~ 150		± 200	30	2	- 40 ~ 70
JX5	75 ~ 150	± 50	± 200	30	2	- 25 ~ 55
JDI	150 ~ 200	i I	± 150	30	2	- 40 ~ 70
JD3	130 ~ 150	l į	± 150	30	] 2	- 40 ~ 70
JD5	200 ~ 400	<u> </u>	± 150	30	; 2	$\frac{!}{!} = 40 - 70$
JD7	200 ~ 400	± 50	± 150	1 30	2	- 25 ~ 55
109	500 ~ 600	ĺ	± 200	30	2	- 4 <b>0</b> 70
JDH	500 ~ 600	<u>'</u>	± 200	, oc	2	= 10 × 70

续表 4.9 低频金属盒石英谐振器参数

型号	标称频率 (kHz)	週整频差 (10 ⁻⁶ )	总频差。 (10 ⁶ )	负载电容 (pF)	激励电平 (mW)	工作温度 (℃)
JD15	500 ~ 600	± 50	± 200	30	2	- 25 ~ 55
₹C1	400 ~ 500		± 200	30	2	- 40 ~ 70
JC3	400 ~ 500		± 200	· ox	2	· 40 ~ 70
JC5	400 ~ 500		± 200	30	2	<b>- 25 ~ 55</b>

表 4.10 小公差石英谐振器参数

型号	标称频率 (MHz)	调整频差 (10 ⁻⁶ )	温度频差 (10 ⁻⁶ )	负载电容 (pF)	激励电平 (mW)	工作温度 (℃)
JA 45 46	6 ~ 25	± 20	A: ± 10 B: ± 10 C: ± 15	30	1	- 25 ~ 55 - 10 ~ 55 - 25 ~ 55
JA 47 48	25 ~ 75	± 20	A: ± 10 B: ± 10 C: ± 15	<b>o</b> c	I	- 25 ~ 55 - 10 ~ 55 - 25 ~ 55
JA 45 – 1 46 – 1	6~25	± 20 ± 15	A ₁ ± 10 B ₁ ± 10 C ₁ ± 15	30	1	- 25 ~ 55 - 10 ~ 55 - 25 ~ 55
JA 47 – 1 48 – 1	25 ~ 75	± 20 ± 15	A: ± 10 B: ± 10 C: ± 15	300	ı	- 25 ~ 55 - 10 ~ 55 - 25 ~ 55

## 4.4 敏感电阻器

敏感电阻器是利用其特性,如电阻率随温度、电压、湿度、光通量、气体浓度、磁通和机械力等物理量变化而制成的元器件。敏感电阻器的符号是在普通的电阻器符号上加一条弯折的斜线,并在折线弯折处用文字符号注明敏感源,例如热敏电阻注以 t,压敏电阻器注以 V等等,见图 4.3。

对于热敏电阻,由于制造材料的不同,具有不同的电阻值和温度系数,温度系数分正温度系数(PTC)和负温度系数(NTC)两种。敏感电阻器的型号命名方法见表 4.11。例如,有一个 MF51 型的敏感电阻器,根据表 4.11,可知为测温用负温度系数热敏电阻器。

第四 第一部分 第二部分 第三部分 表示用途和特征 部分 表示类 气 敏 磁敏 光 敏 热敏 压 敏 湿く敏 カー 序号 Z:PTC 热敏电 1一普通 W一稳压 1─紫外 「C─测湿 Z—电阻 1一硅应 数字 2一稳压 G一高压 2--紫外 K--控影 K---可燃 W一电位 变片 阻器 3一紫外 保护 性 器 2---硅应 M F:NTC热敏电 3--微波 P---高频 4-- 町见 变梁 4—旁热 5一可见 表示 阴器 **>**一高能 3---硅林 Y:压敏电阻器 K一高可 6—可见 敏感 5—测温: 7一红外 똮 元件 S;湿敏电阻器 6-控温 I-防雷 8一红外 Q:气敏电阻器 7-消磁 Ⅱ一天弧 9-红外 G:光敏电阻器 8-线性 2一消噪 0一特殊 C;磁敏电阻器 B一补偿 9—阻温 图 4.3 - 敏感电阻器的符号 C一消磁 L:力敏电阻器 0-特殊

表 4.11 敏感电阻器的型号命名方法

## 4.5 光敏元器件

光敏元器件主要有光敏二极管、光敏三极管、硅光电池等。

表 4.12 光敏二极管的参数

					70 4X -	- WA ES H7				
*	数	$U_{RM}$	U	$I_{\mathcal{B}}$	$I_L$	$c_i$	t _r	$t_f$	$\lambda_p$	外 形
				€	≽		€	1		
型号		(v)	(V)	(nA)	(μA)	(pF)	(ns)	(ns)	(µm)	
2CUI A		10								GD1 1
В		20						İ		GD1 4
С		30		200	80	8	5	50	0.88	
D		40								
E		50								
2CU2 A		10								GD1 – 2
В	:	20								GD1 - 5
C		30		100	30	8	5	50	0.88	
D		40								
. <b>E</b>		50								
2CU101 - A				10		0.4				
– B				10	40[.]	1.0	_			
– C			15	10	60[1]	2.0	5		0.5~1.1	
– D	•			20		5.0				
2CU201 - A				5		1				
- B			50	10	35[1]	1.6	10	ĺ		
– Ċ		:	50	20	33[1]	3.6	10		0.5~1.1	
- D	l 			40		13				
2DU101 A				,	10[2]					
В		100		10	30	. 4	100			
c					50	·				
2DU201 A					10				<del>                                     </del>	
2110201 <b>д</b> В	, ;	100		10	20	4	10			
С		100		10	50 50	*	10			
					50					
2CU301 A		20		100	20	• • • • • • • • • • • • • • • • • • • •			0.9	四象限硅
<u>B</u>				100					0.9	光电二极管
2CU79		30		0.1		30			0.85	B 1
80										- <del>-</del>

注[1];在峰值波长下, 输入 100μW 的直射光产生的光电流。

^{[2];}最佳倍增的最小值。

表 4.13 光敏三极管的参数

参数	UR _{CE}	I _B	$I_L$	ι,	t _d	$t_f$	t,	$\lambda_p$	$P_M$	外 形
	≽	€	≽							71 72
烈 号 】	(V)	(µA)	(mA)	(புக)	(дв)	(µs)	(814)	(µm)	(mW)	
3DU11	10	0.3	0.5	3	2	3	1	0.88	30	į
3DU12	30	0.3	0.5	3	2	3	1	0.88	50	
3DU13	50	0.3	0.5	3	2	3	1	0.88	300	
3DU14	100	0.2	0.5	3	2	3	1	0.88	100	
3DU21	10	0.3	1	3	2	3	i	0.88	30	
3DU22	30	0.3	. 1	3	2	3	1	0.88	50	
3DU23	50	0.3	1	3	2	3	1	0.88	100	1
3DU24	100	0.2	1	3	2	3	1	0.88	100	
3DU31	10	0.3	2	3	2	3	I	0.88	30	
3DU32	30	0.3	2	3	2	3	1	0.88	50	
3DU33	50	0.3	2	3	. 2	3	1	0.88	100	
3DU42	30	1	4	60		60		0.88	100	
3DU51	10	0.2	0.5	3	2	3	1	0.88	30	
3DU52	30	0.2	0.5	3	2	3	1	0.88	30	
3DU53	50	0.2	0.5	3	2	3	1	0.88	30	i
3DU54	30	0.2	1.0	3	2	3	1	0.88	30	
3DU55	30	0.5	2.0	3	2	3	1	0.88	70	
3DU62	30	ı	6	60		60		0.88	100	-
3DU 80	12	0.1	1		-			0.35		
80A	12	0.01	1.5				•	~	150	,
80B	30	0.1	1.5					1.1		
3DU82	30	1	8	60		60		0.88	100	i
3DU100 A	-	0.1	0.5					[1]		
B	,.	0.05	0.5		<u> </u>	<u></u>		[1]	<u> </u>	
3DU 912	10	J	2							
912A	15	1	5	100			1	0.5		
9128	15	1	10	~				-	100	
9120	30	í	5	1000				1.1	1	
9120	30	1	10							

注[1]:工作波长范围 0.3 μm ~ 1.05 μm, 属紫外一可见一近红外光敏三极管。

# 4.6 磁敏元器件

磁敏元器件主要有磁敏二极管、磁敏三极管、差分磁敏三极管、霍尔器件和霍尔集成 电路等。

				双 4.	14 1021	IX — 12X ≅	39 BX				
参数	$I_C H_0$	$\gamma_1$	$I_{\mathcal{C}}E_0$	$BU_{C}E_{0}$	h ±	$a_h$	$\alpha_I$	$P_{M}$	$T_{op}$	<i>T</i> ,	_
型号	≤ (μ <b>A</b> )	≤ (%)	≰ (μA)	≥ (V)	≥ (%/kG)	(%/℃)	(%/℃)	(mW)	(℃)	(℃)	备 注
3CCM1 A	100	1.72	1	40	6	-0.6	-0.1 ~ -0.3	20	-45 <b>~</b> 100	125	
В	ļ		İ		5						
3CCM2 A	200		1	40	5	-0.6	-0.1~ -0.3	20	<b>-</b> 45 ~ 100	125	
В				ı	4						
3ССМЗ А	300		i	40	4	-0.6	-0.10.3	20	<b>- 45 ~ 100</b>	125	
В					3						
4CCM1 A	120	5		40	10	-0.6	€0.05	40	- 45 ~ 100	125	差分对管
В		10						'			
С		15			!						
4CCM2 A	240	5		40	8	-0.6	≤0.05	40	- 45 ~ 100	125	
В		10		; I		!					
С		15					!				

表 4.14 磁敏三极管参数

注: lcHo ----不加磁场时, 在一定基极电流条件下的静态集电极电流。

- γ₁——差分磁敏三极管两管静态集电极电流的不对称度。
- $h\pm$ ——集电极电流磁灵敏度,在正反向 1kGS 磁场下,集电极电流与  $I_0H_0$ 的相对变化量。
- ah ----集电极电流磁灵敏度的温度系数。

10

a_t — 静态集电极电流温度系数。

4CCM3 A

В

400

表 4.15 霍尔器件的参数

-0.6

≤0.05

- 45 ~ 100 l25

参 数	符号	单位			型		북		
			<b>Hz</b> – 1	Hz – 2	Hz - 3	6SH	4SH	HS - 1	HSG - 1
输入电阻	$R_{\rm in}$	Ω	120 ± 20%	120 ± 20%	130 ± 20%	250 ~ 380	200 ~ 320	1.2 ± 2%	100 ~ 500
输出电阻	$R_{\rm red}$	Ω	100 ± 20%	110 ± 20%	110 ± 20%	< Rin	< R _{in}	1 ± 2%	400 ~ 800
不等位电势	$U_{O}$	mV				<1	< l		< -1
不等位电阻	$R_M$	Ω	< 0.1	< 0.05	< 0.1			< 0.003	
磁灵敏度	$S_H$	mV/mAkGs	1.4 ± 20%	1.2 ± 20%	1.4 ± 20%	≥1.5	≥1.5	0.1 ± 20%	20 ~ 50
内阻温度系数	а	%/°C	0.5	0.4	0.55	0.6~1	0.6~1	0.3	
霍尔电势 温度系数	β	%/℃	0.05	0.06	0.02	0.01 ~ 0.05	0.01 ~ 0.05	- 0.045	- 0.05
寄生直流电势		μV	< 150	< 250	< 250			0~18	
套尔电势 磁线性度	у	%			i	0.1~0.5	0.1~0.5		~
霍尔电势 电线性度	z	%				0.1~0.6	0.1~0.6		
工作温度范围	$T_{\sigma p}$	°C	0 ~ 60	0~60	0 ~ 60			- 40 ~ 60	- 55 ~ 180

# 第五章 阻容元件

电子电路一般都是由有源器件、无源元件和接插件等组成的,电阻器、电容器和电感器是最常用的无源电子元件。下面将向读者介绍它们的分类、参数、型号、规格和使用注意事项等问题。

### 5.1 电阻器

#### 5.1.1 分类

电阻器分固定和可变两类。按结构来分则有合成电阻器、薄膜电阻器、线绕电阻器和 电阻网络等几种。

**合成电阻器**——合成电阻器又称实芯电阻器。它是用石墨粉作导电材料,用黏土、石棉或石英作填充剂,加上粘合剂,装上引线后,在模具内压制成形,经热处理后成为坚固的实芯电阻体,外层喷漆和标上阻值后就制成了合成电阻器。改变石墨粉的比例就可以改变电阻值的大小。

合成炭质电阻器的可靠性高,体积较小,易于自动化生产,价格低廉。缺点是稳定性较差,噪声也较大。一般用于要求不高的电路中。

**薄膜电阻器**——薄膜电阻器是在一个绝缘体(一般是圆柱形瓷棒)上真空喷镀一层导电薄膜或通过化学热分解的方法淀积一层导电膜,加上引线,喷上保护漆而制成的。薄膜电阻器的阻值可通过镀膜厚度来控制,更多是采用刻槽的办法来控制。将镀好膜的瓷棒夹在刻槽机上,瓷棒开始旋转,用刻刀把薄膜刻成螺旋状,刻的越细越长,阻值越大。

常用的薄膜有碳膜、氧化膜和金属膜,因而有碳膜电阻器、氧化膜电阻器和金属膜电阻器之分。碳膜电阻器(RT)体积小,重量轻,稳定性和精度都较高,噪声较小,自身电感较小,可用于数百兆赫以下的电路中,功率一般在2W以下。它又分超小型、小型、测量用等几种。金属膜电阻器(RJ)精度高,噪声小,温度系数小,能耐受较高的温度,功率容量比较大,相同的功率等级体积要比碳膜电阻器小。氧化膜电阻器(RY)在高温下的化学性质稳定,更容易制成低阻值的电阻器。

**线绕电阻器**——线绕电阻器是在绝缘体上用高电阻率的金属线绕制而成,它在较宽的温度范围内有很小的温度系数,耐高温,功率容量大,可制成大功率精密电阻器。缺点是自电感较大,不宜用于高频电路中。

#### 5.1.2 电阻器的型号

部标电阻器的型号由四部分组成,第一部分是主称,用 R 表示,第二部分代表电阻体的材料,具体见表 5.1,第三部分代表类别,第四部分为序号。

#### 5.1.3 电阻器的参数

电阻器的参数主要有容许 误差、标称阻值、标称功率、最 大工作电压、温度系数和噪声。

容许误差——固定电阻器 的容许误差一般分为八级,具 体规定见表 5.2。N 级很少 用。

标称电阻值——即电阻器 的电阻值一般按规定的阻值系 列制造, 详见表 5.3。

标称功率——电阻体通过

表 5.1 电阻器的型号 第一部分 第二部分 第三部分 第四部分 数字序号 R-电阻器 T— 碳膜 9-- 特殊 H- 合成膜 W-电位器 1一 普通 G一 高功率 S- 有机实芯 ₩-- 微调 3- 超高频 T- 可调 N- 无机实芯 J─ 金属膜 4— 高阻 ₽─ 多圏 Y- 氧化膜 5-- 高阻 C— 化学沉积膜 j— 玻璃釉膜 7-- 精密 X-- 线缆 8-- 高压

电流后就要发热,温度太高就要烧毁。根据电阻器制造材料的情况和使用环境,对电阻器 的功率损耗要有一定的限制,以保证其安全工作的功率值,这就是电阻器的标称功率。

最大工作电压——指电阻器不发生电 击穿、放电等有害现象时,其两端所允许加 的最大工作电压  $U_m$ 。由标称功率和标称阻 值可计算出一个电阻器在达到满功率时, 它两端所允许加的电压  $U_n$ 。实际工作时电 阻器两端所加的电压既不能超过  $U_m$ ,也不 能超过  $U_{n}$  。

温度系数——温度的变化会引起电阻 值的变化,温度系数是温度每变化 1℃产 生的电阻值的变化量,与标准温度下(一般

表 5.2 电阻器的容许误差

容许误差	文字符号	标称值系列
± 0.1%	В	E192
±0.25%	С	E192
±0.5%	D	E192
± 1%	F	E96
± 2%	G	F48
± 5%	J	E24
± 10%	K	E12
± 20%	M	Ŀ6
± 30%	N	

为 25℃)的电阻值之比,单位为 1/್,或写成 ppm/℃。温度系数表达式为

 $\alpha = (1/R_{25})(\Delta R/\Delta T)$ 

温度系数可正(PTC)可负(NTC),可以是线性的,也可以是非线性的。

嗓声──电阻器的噪声是产生于电阻器中的一种不规则的电压起伏。它主要包括导 体中电子的不规则热运动引起的热噪声,热噪声是不可消除的。流过电阻器的电流的起 伏会引起电流噪声, 它是用一定通频带内电流噪声电势的均方根值与被测电压比值的分 贝数来表示的。

#### 5.1.4 标称值与色环标记

关于确定电阻器标称值的一般原则是,生产出来的电阻器按照一定的误差等级从小 阻值到大阻值分布, 使所有的电阻器都能找到一个标称值, 以免造成不必要的损失。电 阻器的误差等级有  $E6 \times E12 \times E24$ .分别对应  $\pm 20\% \times \pm 10\% \times \pm 5\%$  三个误差等级,分别有六 个、十二个和二十四个标称值。高精度的电阻器则有 E48、E96 和 E192 等三个误差系列, 分别对应  $\pm 2\%$ 、 $\pm 1\%$ 、 $\pm 0.5\%$  三个误差等级、高于  $\pm 0.5\%$  的也使用 E192 误差等级、本 手册没有给出 E96 和 E192 误差等级。E6、E12、E24 和 E48 四个标称值系列的电阻值列于表 5.3 之中。

系列						标	称	值					
E6	1.0	1.5	2.2	3.3	4.7	6.8				1			
E12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2	
E24	1.0	1.1	1,2	1.3	1.5	1.6	1.8	2.0	2.2	2.4	2.7	3.0	3.3
	3.6	3.9	4.3	4.7	5.1	5.6	6.2	6.8	7.5	8.2	9.1		
E48	100	105	110	115	121	127	133	140	147	154	162	169	178
	187	196	205	215	226	237	249	261	274	287	301	316	332
	348	365	383	402	422	442	464	487	511	536	562	590	619
	649	681	715	750	787	825	866	909	953		ļ	1	

表 5.3 E6/E12/E24/E48 标称值系列

电阻器的标称值也可以用色环标记,即用不同的颜色来代表不同的数字。色环标记的电阻器便于机械手安装,安装时不必判断色环方向,因为它总有一面是便于观察的。标称值与色环颜色的规定见表 5.4,一般有四环和五环两种表示法,四环适用于 5%及更大的误差,五环法适用于 2%及更小误差的电阻器。色环左第一位的颜色代表有效数字的高位,左第二位的颜色代表有效数字的次高位。采用四环法标记的第三环代表倍率,即在有效数字后加几个零,右面第一环代表误差。对于五环法标记的电阻器,有三位有效数字,左面的三个环代表有效数字位,第四环为倍率,第五环为误差。误差等级有时也用文字表示,也一并列入表 5.4 中。

颜 色	左第一位	左第二位	左第三位	左第四位	右第一位	杀 例
棕	1	1	1	10¹	棕 F ± 1%	TITE
<u>.</u> ≱π.	2	2	2	10 ²	红 G ± 2%	-()))-
橙	3	3	3	10³		棕橙
黄	4	4	4	10 ⁴		212kΩ±2%
绿	5	5	5	10 ⁵	绿 D±0.5%	绿黑
<u>¥</u>	6	6	6	10 ⁶	≝ C±0.25%	-(1111)
紫	7	7	7	107	紫 B±0.1%	
灰	8	8	8	108		$51\Omega \pm 5\%$
Ĥ	9	9	9	109		-↓↓ 
黑	0_	0	0	100		<del>-()   () </del>
<del></del>		_		10-1	金 J±5%	绿金
報			<u> </u>	1 <b>0</b> ⁻²	银 K±10% M±20%	1.5MΩ±5%

表 5.4 色环颜色的规定

#### 5.1.5 电阻器的功率等级

电阻器的功率等级见表 5.5。厂家也经常生产非标准功率等级的电阻器。线绕电阻器一般也将功率等级印在电阻器上,其它电阻器一般不标注功率值。

表 5.5 电阻器的功率等级

名 称			额 定 功	字 (W)		
实芯电阻器	0.25	0.5	ì	2	5	
线绕电阻器	0.5	1	2	6	10	15
	25	35	50	75	100	150
ADE 1944 - 1- 1912 44.8	0.025	0.05	0.125	0.25	0.5	1
薄膜电阻器	2	5	10	25	50	100

## 5.2 电位器

#### 5.2.1 型号与规格

电位器是具有二个固定端头和一个滑动端头的可变电阻器。特殊用途的电位器有三个固定端头的,也有和开关组合在一起的开关电位器,还有作精细调节的多圈电位器,以及两个电位器组合在一起的双连电位器。电位器可作可变电阻用,或用于调节电路中某一点的电位。

电位器有线绕电位器和薄膜电位器之分。前者阻值可从  $1\Omega$  以下到  $100k\Omega$ , 功率可达数十瓦, 甚至更大; 后者阻值范围数欧到数兆欧, 功率一般有 0.1W、0.125W、0.25W、0.5W、1W 和 2W 几种。电位器的误差一般为  $\pm$  10% 和  $\pm$  20%,所以只按 E12 和 E6 标称值系列生产。

电位器的调节可以通过旋转轴带动滑动端,也可以直线推拉。滑动端的移动与阻值的变化有三种形式;直线式、对数式和指数式,分别用字母 X、D 和 2 表示,特殊用途用 S 表示。电位器的型号命名见表 5.6,几种常用的电位器性能指标见表 5.7~表 5.9。

电位器用途不同,其轴长和轴端的形式也不同。轴长用毫米表示,有多种规格可供选用;轴端的形式有三种:ZS-1(端面平)、ZS-3(端面有槽,便于螺刀调节)、ZS-5(轴端铣平一段,以便旋钮的顶紧螺丝顶牢),具体见图 5.1。一个电位器型号完整的书写格式如下:

表 5.6 电位器的型号

型导	名 称
Wf	碳膜电位器
WH	合成膜电位器
WJ	金属膜电位器
WS	实芯电位器
WX	线绕电位器



图 5.1 电位器的轴端形式

## 5.2.2 WS、WH、WX 三种系列电位器的特性指标

表 5.7 几种有机实芯电位器(WS)的特性指标

型号	特 征	主尺寸	安装形式	额定功率	标称值
WS-1	<b>普通单圈</b>	\$12.7	单孔轴套	X:0.5W	100Ω ~ 4.7ΜΩ
WS-2		_		D,Z;0.25W	IkΩ ~ IMΩ
WS16-4	普通单圈	φ17	支架卧式	X:0.5W	100Ω ~ 2.2ΜΩ
				D,Z:0.25W	1kΩ ~ 1MΩ
WS19-3	同轴双联	<b>∳18</b>	防转轴套	X:1 W	100Ω ~ 4.7ΜΩ
WS19-4				D,Z;0.5W	1kΩ ~ 470kΩ
WS25-K1	带旋转开关	<b>\$22</b>	支架卧式	X:1 W	100Ω ~ 4.7ΜΩ
WS25-K2	<b>¬</b> }	ļ	防转轴套	D,Z;0.5W	$1 k\Omega \sim 470 k\Omega$
WSW3-3	- 単圏微调	φ7.5	引线立式	0.25W	100Ω ~ 1 ΜΩ
WS23	单圈微调	ф12.7	引线立式	0.5W	100Ω ~ 1 MΩ
WS24	单圈微调	φ12.7	引线卧式	0.5W	100Ω ~ 1 ΜΩ
WSW2B-5	矩形微调	32×7	引线卧式	0.25W	100Ω ~ 1 ΜΩ

表 5.8 几种合成膜电位器(WH)的特性指标

参数	额定 功率	阻值 特性	阻值范围	精度	最大工 作电压	工作温度	温度系数	旋转角度 或行程	动噪声
型号	$(\mathbf{W})$		(U)	(±%)	(V)	(℃)	(ppm/℃)	<u> </u>	(mV)
WH118	2	X D,Z	470 ~ 4.7M 4.7k ~ 2.2M	20	500 400	- 55 ~ 85	$\leq 100 \text{k}\Omega$ ; $\leq \pm 1000$ $\geq 150 \text{k}\Omega$ ; $\leq \pm 2000$	l '''	€50
WH5	0.5 0.25	X D,Z	470 ~ 4.7M 4.7k ~ 2.2M	20	200 150	- 25 ~ 70 - 55 ~ 70	$\leq 100 \text{k}\Omega$ ; $\leq \pm 1000$ $\geq 150 \text{k}\Omega$ ; $\leq \pm 2000$		[1]
WH19	0.25 0.1	X D,Z	1k ~ 2.2M 4.7k ~ 470k	20	200 160	<i>-</i> 25 ∼ 70	$\leq 100 \text{k}\Omega$ ; $\leq \pm 2000$ $\geq 150 \text{k}\Omega$ ; $\leq \pm 3000$	l ' I	<b>≤</b> 70
WH20	0.25 0.1	X D,Z	470 ~ 1 M 4.7k ~ 470k	20	200 160	- 25 ~ 70	$\leq 100 \text{k}\Omega$ ; $\leq \pm 1500$ $\geq 100 \text{k}\Omega$ ; $\leq \pm 3000$	1 1	<b>≤</b> 50
WH23	0.5 0.25	X D,Z	1k ~ 1M 4.7k ~ 100k	20	150 100	- 40 <b>~ 7</b> 0	$\leq 100 \text{k}\Omega; \leq \pm 1500$ $\geq 150 \text{k}\Omega; \leq \pm 3000$		€70
WH130	0.1 0.05	X D,Z	470 ~ 4.7M 4.7k ~ 2.2M	20	150 100	- <b>40 ~ 7</b> 0	$\leq 100 \text{k}\Omega; \leq \pm 1000$ $\geq 150 \text{k}\Omega; \leq \pm 2000$	I 2917° I	€70
WH144	0.25	X	220 ~ 2.2M	20	350	- 25 ~ 100	≤ ± 1000	≮290°	
WH167	0.1	Х	470 ~ 2.2M	20	100	- 25 ~ 70	≤ ± 2000	≮ 250°	
WH173	0.1 0.05	X D,Z	470 ~ 1 M 1 k ~ 470 k	20	160 120			约 20mm	
WH181 182	0.1 0.05	X D,Z,S	470 ~ 2.2M 1k ~ 470 k	20	150 100	- 25 <b>~</b> 70	$\leq 100 \text{k}\Omega; \leq \pm 2000$ $\geq 150 \text{k}\Omega; \leq \pm 3000$		€50
WH185	0.1 0.05	X D,Z	470 ~ 4.7M 4.7k ~ 2.2M	20	150 100	<i>–</i> 40 ~ 70	$\leq 100 \text{k}\Omega; \leq \pm 1000$ $\geq 150 \text{k}\Omega; \leq \pm 2000$		<b>≤</b> 50

注[1]: WH5 分 WH5-1(单联旋转)、WH5-2(单联带锁紧)、WH5-3(双联旋转)、WH5-4(双联带锁紧)四种。

表 5.9 几种线绕电位器(WX)的特性指标

 型 당	特征	主尺寸	安装形式	额定功率	标称值
WX2	普通单圈	<b>\$18</b>	防转轴套	1W	27Ω ~ 15kΩ
WX2	普通单圈	<b>418</b>	焊片立式	2W	27Ω ~ 15kΩ
WX3	普通单圈	<b>∳23</b>	防转轴套	3W	27Ω ~ 15kΩ
WXX0, 25-1	单圈微调	<b>\$9</b>	<b>定立</b>	0.25W	$47\Omega \sim 4.7 k\Omega$
WXX0.25-2	单圈微调	<b>\$</b> 9	<b>抽套</b>	0.25W	47Ω ~ 4.7kΩ
WXX0.25-3	单圈微调	<b>\$9</b>	引线卧式	0.25W	47Ω ~ 4.7kΩ
WXX0.5-1,2,3	<b>単圏微</b> 调	ф13.7	序号1、2、3 与0.25W间	0.5W	15Ω ~ 15 kΩ
WXW1B	方形微调	14 × 13	同 0.25W	0.5W	100Ω ~ 10kΩ
WXD9	10 圏単连	<b>ф</b> 12	轴套,压板	0.5W	22Ω ~ 27kΩ
WXD2-13B	10 圏双连	<b>\$20.8</b>	轴套,压板	1.6W	100Ω ~ 47kΩ
WXD2-53	10 醫单连	<b>\$20</b>	轴套,压板	1.6W	100Ω ~ 47kΩ
WXD3A-13,43	10 圏単连	<b>∲25</b>	轴套,压板	2 W	100Ω ~ 100kΩ

## 5.3 电容器

#### 5.3.1 型 号

电容器从结构上看有固定电容器、可变电容器和微调电容器之分。电容器的品种繁多,其型号由四部分组成。第一个部分字母 C 代表电容器,第二部分代表介质材料,第三部分表示结构类型和特征,第四部分为序号。具体参见表 5.10 和 5.11。

表 5.10 电容器的型号

Andre - Andre ().		第二部分介质材料	第三部分	<b>)结构类型</b>	## mm ## /\ je_ []
第一部分	符号	意 义	符号	意义	第四部分序号
	С	高频瓷	G	高功率	数 字
c	T	低频瓷	W	微调	
	. 1	玻璃釉	1		
	0	玻璃膜	2		
	Y	云母	3		
	Z	纸介质	4	见表 5.12	
	j	金属化纸介质	5		
	В	聚苯乙烯等非极性有机薄膜	6		
	L	<b>涤纶等有极性有机薄膜</b>	7		
	Q	漆膜	8		
	Н	纸膜复合介质	9		
	D	铝电解电容			
	A	钽电解电容			
	N	铌电解电容			
	G	金属电解电容			
	E	其它材料电解电容			

表 5.11 电容器型号第三部分数字的含义

类 数字 別 名 称	1	2	3	4	5	6	7	8	9
资介电容器	圆片	管 形	登片	独石	穿心	支柱管		高压	_ <del></del>
云母电容器	非密封	非密封	密封	密封		†		高压	
有机电容器	非密封	性密非	密封	密封	穿心	ļ		高压	特殊
电解电容器	箱式	箔 式	烧结粉液体	烧结粉固体 烧结粉固体		无极性			特殊

#### 5.3.2 参数指标

容许误差——固定电容器的容许误差有九级,即 005 级(±0.5%)、01 级(±1%)、0 级(±2%)、I 级(±5%)、I 级(±10%)、I 级(±20%)、V 级(+20% ~ -10%)、V 级(+30 % ~ -20%)和 V 级(+50% ~ -20%)。

标称值──参见表 5.3 和表 5.4。

工作电压——按技术指标规定的温度长期工作时,电容器两端所能承受的最大安全工作直流电压。此外,为了试验电容器的绝缘性能而短时间加于电容器两端的电压叫试验电压,它比工作电压高。不同类型的电容器有不同的工作电压范围。例如纸介质和瓷介质电容器的工作电压可从几十伏到几万伏;电解电容器的工作电压从几伏到上千伏。

电容温度系数——温度、湿度和压力等对电容器的容量都会产生影响。一般温度的影响最大,常用电容器的电容温度系数表示。

**绝缘电阻**——电容器的绝缘电阻决定所用介质的质量和厚度。绝缘电阻下降会使漏电流增加,引起温度升高,最后导致热击穿。

能量损耗——能量损耗是指电容器两端加交流电压时所产生的功耗,包括介质损耗和金属部分的损耗。能量损耗常用电容器损耗角的正切 tgδ 表示, tgδ 与温度、湿度和频率有关。在高频运用时,必须考虑能量损耗的影响。

**固有电感**——电容器的固有电感包括极片电感和引线电感,尽管数值很小,但在高频运用时,必须考虑其影响。

#### 5.3.3 电容器的容量和误差表示法

电容器容量和误差的表示方法很多、以下介绍主要的几种。

#### 5.3.3.1 容量表示法

直接表示法——这种表示法通常是用表示数量级的字母,如  $\mu$ 、n、p 等加上数字组合而成的。例如,4n7 表示 4.7×10⁻⁹F=4700pF, 47n 表示 47×10⁻⁹F=47000pF,6p8 表示 6.8pF。另外,有时在数字前冠以 R,如 R33,表示 0.33 $\mu$ F。有时用大于 1 的数字表示,单位为 pF,如 2200,则为 2200pF;有时用小于 1 的数字表示,单位为  $\mu$ F,如 0.22,则为 0.22 $\mu$ F。

三位数码表示法——一般用三位数字来表示容量的大小,单位为 pF。前两位为有效数字,后一位表示倍率,数字是几就加几个零,但第三位数字是9时,则对有效数字乘以0.1。如 104表示是 100000pF, 223表示是 22000pF, 479表示是 4.7pF。这种表示法比较

常见, 也经常用于电位器的阻值表示上。

色码表示法──这种表示法与电阻器的色环表示法类似,颜色涂在电容器的一端或 从顶端向另一侧排列。前两位为有效数字,第三位为倍率,单位为 pF。有时色环较宽,如 红红橙,两个红色环涂成一个宽的,表示 22000pF。

#### 5.3.3.2 误差表示法

直接表示法——将电容器的绝对误差直接标出,如 8.2±0.4pF,表示该电容器的容 量在(8.2+0.4)pF~(8.2-0.4)pF之间。

字母表示法——具体见表 5.12。

表 5.12 电容器误差的字母表示

字母	W	В	С	D	F	G	J	K	М	N
误差%	± 0.05	±0.1%	±0.25	±0.5	± 1	± 2	± 5	± 10	± 20	± 30
字母	•	Q	Т		s		Z		R	
误差%	+ 30 -	~ - 10	+ 50 -	- 10	+ 50 -	20	+ 80 -	~ - 20	+ 100	~ - 10

#### 5.3.4 CC1 型瓷介电容器

CC1 型瓷介电容器可供低损耗和需要容量稳定的交直流电路和脉冲电路使用, 也可 用于温度补偿电路。表 5.13 中 D 代表直径, d 代表引线直径。

示例:

CC1-1 b - H - 160V - 10pF -K

型号尺寸 温度

耐压 容量 误差

系数 阻别

表 5.13 CC1 型瓷介电容器的规范

	额定直流		容量范围									
型 号	工作电压				电容温度	系数组别	<u> </u>				. ·}	
	(V)	Α	U	0	Q	D	·	Н	L	D	d	
CC1-1		1~3.3	1~4.3	1~4.7	1~4.7	1~6.8	1~8.2	3.3 ~ 16	4.7 ~ 30	4	0.:	
CCI-2	340	3.6~8.2	4.7~15	5.1 ~ 16	5.1 ~ 16	7.5~27	9.1~43	9,1 ~ 43	33 ~ 100	6		
CC1-3	160	9.1 ~ 22	16 ~ 30	18 ~ 33	18 ~ 33	30 ~ 56	47 ~ 91	47 ~ 91	110 ~ 150	8		
CCI-4		_	_	_	- <del>-</del>			_	160 ~ 430	10		
CC1-2	250	1~8.2	1 ~ 12	1~12	1 ~ 12	1 ~ 20	1.5~27	8.2~43	15 ~ 75	6		
CC1-3		9.1 ~ 15	13 ~ 22	13 ~ 22	13 ~ 22	22 ~ 33	30 ~ 43	47 ~ 82	82 ~ 130	8	0.	
CC1-2		1~2.7	1~3.3	1~3.3	1~3.3	1~6.8	1.5 ~ 11	3.3~15	15 ~ 30	6	1	
CC1-3		3.3~6.8	3.6~8.2	3.6~8.2	3.6~8.2	7.5 ~ 12	12 ~ 30	16 - 30	33 ~ 62	8	1	
CC1-4	500	7.5 ~ 10	9.1 ~ 15	8.2 ~ 15	9.1~15	13 ~ 22	33 ~ 62	33 ~ 62	68 ~ 100	10		
CC1-5		11 ~ 16	16 ~ 24	16 ~ 24	16 ~ 24	24 ~ 36	68 ~ 82	68 ~ 91	110 ~ 150	12	0.	
CC1-6		18 ~ 30	27 ~ 39	27 ~ 39	27 ~ 39	39 ~ 51	91 ~ 130	100 ~ 200	160 ~ 300	16	1	

### 5.3.5 CC4D/CT4D 型独石电容器

CT4D 型低频独石电容器可在电子电路中作旁路或耦合之用,或用于对损耗和稳定性要求不高的低频电路。CC4D 型独石电容器可在电子电路中作槽路电容,或作温度补偿、旁路或耦合之用。CT4C/CT4D 型独石电容器的规范见表 5.14。

示例:

CT4-1- C-100V-0.01μF J 型号尺寸 温度 耐压 容量 误差 代号 特性 组别

	表 5.14	CT4C/CT4D 型独介	电容器	耐水	10		
型号	标称容量	直流工作电压		尺	4		外 形
和尺寸代号	(nF)	(v)	L	В	Н	d	71
CC4D-1	O.1-2.2 EI2 系列	40	6	4	3.5	0.4	<b>←</b> L <del>←</del>
CC4D-2	0.27 ~ 8.2	40	8	6	4	0.5	Ţ
CC4D-3	0.82 ~ 18	40	10	8	5	0.6	
CC4D-4	1.8 ~ 100	40	12	10	6.5	0.7	\ \\
CTMD I	3.3 - 22 E6 系列	40	6	4	3.5	0.4	1 1 ,
CT4D-1	3.3~10	100				J4	<u> </u>
C04D 2	33 ~ 68	40	8	6	4	0.5	厚H
C/4D-2	15 ~ 47	100	°			0.5	₽₽
	100 ~ 150	40	10	8	5	0.6	
CT4D-3	68 ~ 100	100	10		,	0.0	
CT4D-4	220 ~ 680	40	12	10	6.5	0.7	I
CT4D-5	1000 ~ 2200	40	16	12	8	0.9	

表 5 14 CT4C/CT4D 型独石电容器的规范

### 5.3.6 铝电解电容器

铝电解电容器的容量大,一般用于具有交直流分量的滤波、耦合和旁路电路中。由于铝电解电容器的自身电感比较大,所以交流信号的频率不宜过高,一般用于低频电路中。铝电解电容器的损耗也比较大,且具有极性,使用中不能超过规定的直流工作值,极性也不能接反。如果一旦极性接反,漏电流急剧加大,最终因发热膨胀而使外壳破裂。一般在铝电解电容器的外壳上都有刻痕,以适当降低该处的机械强度,避免铝电解电容器因极性接反引起的爆炸。

		额定直流工作电压(V)										
容量	6.3	10	16	25	32	50	63	100	160			
(μ <b>F</b> )	外形尺寸 D×H(mm)											
1						5 × 12	5 × 12	5 × 12	6 × 12			
. 2.2						5 × 12	5 × 12	5 × 12	8×12			
3.3		<u> </u>			!	5 × 12	5 × 12	5 × 12	10 × 16			

表 5.15 CD11 型铝电解电容器的标称容量及耐压

续表 5.15 CD11 型铝电解电容器的标称容量及耐压

	Ţ <u> </u>			额定	直流工作电点	<b>E</b> (V)						
容 量 (µF)	6.3	10	16	25	32	50	63	100	160			
(μι )		外形尺寸 D×H(mm)										
4.7				5 × 12	5 × 12	5 × 12	5 × 12	6 × 12	10 × 16			
10			5×12	5 × 12	5×12	5 × 12	6 × 12	8 × 12	10×16			
22		5 × 12	5×12	5 × 12	6×12	6×12	8 × 12	10 × 12	12 × 20			
33	5 × 12	5 × 12	5 × 12	6 × 12	6×12	8 × 12	8 × 12	10 × 16	12 × 25			
47	5 × 12	5 × 12	6 × 12	6 × 12	8×12	8 × 12	10 × 12	10 × 20	16 × 25			
100	6 × 12	6 × 12	8×12	8 × 12	10×12	10×16	10×20	12 × 20	16 × 35			
220	8×12	8 × 12	10 × 12	10 × 16	10×20	12 × 20	12 × 20	16 × 25				
330	10×12	10 × 12	10 × 16	10×20	12 × 20	12 × 20	12 × 25	16 × 30	-			
470	10 × 12	10 × 16	10 × 20	12 × 20	12 × 25	16 × 25	16 × 25	19 × 35	<del>.</del> I			
1000	10×20	12 × 20	12 × 25	16 × 25	16 × 25	16 × 30	19 × 35					
2200	12×25	16 × 25	16×25	16 × 35	19×35							
3300	16 × 25	16 × 30	16 × 35	19 × 40				i	<u> </u>			
4700	16 × 30	16 × 35	19 × 35		, <u> </u>			<u> </u>	_			
10000	19×40		•	-		_	i		<u></u> :			

注:CD11 型铝电解电容器主要用于滤波和脉动电路中,属小形化类型。CD11 为圆柱形,立式一侧引线,表中 D 代表直径,B 代表高。它的工作温度范围是 =40% ~ +85%,损耗角正切 0.1 ~ 0.5,漏电流小于等于  $(0.03\,CU_R+20)\mu$ A,容量允许偏差,对于容量 $\leq 10\mu$ B 为 +100% ~ -10%, $>10\mu$ B 为 +50% ~ -10%。

表 5.16 CD25/26 型铝电解电容器的容量和耐压

外形尺寸	重量	直流工作电压(V)									
$D \times L - d$	(g)	6.3	10	16	25	32	50	63	100	125	160
			-	· •		标称容	量(μF)		•	-	
12 × 15 - 0.8	5	470	330	220	150	100	68	47	33	22	15
11 25 2 2	7	680	470	330	220	150	100	68	47	33	22
14 × 25 - 0.8		1000	680	470	330	220	150	100	68	47	33
$16 \times 35 - 1$	12	1500	1000	680	470	330	220	150	100	68	47
19 × 35 - 1	18	2200	1500	1000	680	470	330	220	150	100	68
21 × 35 – 1	20	3300	2200	1500	1000	680	470	330	220	150	100
21 × 45 – 1	26	4700	3300	2200	1500	1000	680	470	330	220	150
21 × 45 – 1	40	6800	4700	3300	2200	1500	1000	680	470	330	220

注:CD25/26 型標电解电容器主要用于滤波和脉动电路中,属长寿命类型。CD25 为圆柱形, 卧式两侧引线; CD26 为圆柱形, 立式一侧引线。表中 D代表直径, L代表长度, d代表引线的直径。这两个系列的电解电容器工作温度范围是-55℃~+85℃,损耗角正切 0.15~0.3,漏电流小于等于 0.03  $CU_{RP}A$ ,容量偏差为 +50%~-20%。

#### 5.3.7 钽电解电容器

钽电解电容器的用途一般与铝电解电容器相同,但它的自身电感比较小,可用于比铝电解电容器工作频率更高的电路中。钽电解电容器的漏电小,损耗也比较小,稳定性优于铝电解电容器,寿命也长于铝电解电容器,价格则高于铝电解电容器,一般用于比较重要的部位。钽电解电容器使用的注意事项与铝电解电容器相同。与钽电解电容器相似的还有铌电解电容器。

表 5.17 几种钽电解电容器的特性

阳极结构		箱 式					
电解质状态		固体电解质		液体印	电解质	液体电解质	
型号	CA	CA42, CAP	CA9	CAI	CA30	CA6	
外形结构	全密封,管形金属壳,轴向引线	树脂包封,滴 形,一侧或轴 向引线	无极性,全密封,管形轴向引线,矩形同相引线	半密封杯形, 轴向引线	半密封管形, 轴向引线	半密封管形, 轴向引线	
标称容量范围 (μF)	0.1~470	0.01 ~ 100	0.22 ~ 220	6.8~1500	6.8 ~ 1500	0.22 ~ 47	
工作电压范围 (V)	6.3~100	6.3 ~ 63	6.3~63	6.3 - 125	6.3 ~ 160	6.3 ~ 300	
容量误差(%)	± 20, + 50 ~ - 20	±20, +50~ -20	± 20, + 50~ -20	± 20, + 50 ~ - 20	± 20, + 50 ~ - 20	± 20, + 50 ~ - 20	
K 值	0.02 ~ 0.04	0.04	0.08	(20 ~ 5)10 -4	0.002	0.02 ~ 0.04	
tgδ	0.08 ~ 0.15	0.08	0.1 ~ 0.15	0.06~0.3	0.1~0.3	0.1~0.15	
反向耐压(V)	1~3	1~3	6.3 ~ 63	O	0	0	
频率特征	良好	良好	良好	较好	较好	较好	
体积比容 (CV/cm³)	良好	良好	好	最好	· · · · · · · · · · · · · · · · · · ·		
可靠性	最好	较好	良好	良好	良好	良好	
主要特点	可靠,性能稳 定,耐一定反 向电压,频率 特性好	体积小,重量 轻,结构整 样,价格较 宜,性能较好	无极性, 体积 较大, 频率特 性较好	漏电流最小, 体积比容最 大,耐温, 易渗漏	   編电很小,体   親比容大,場   装方便,場   編	工作电压高, 体积比容较 大,价格最贵	

注:漏电流按 I=KCV 计算, C 为标称容量( $\mu F$ ),V 为额定工作电压(V),漏电流的单位为 $\mu A$ 。如计算结果小于  $1\mu A$ ,按  $1\mu A$  计算。

## 主要符号

3S--三态输出

ACOM一模拟信号公共端,一般即模拟地

ACND-模拟地

AL-输出电平控制

ALD-异步预置,即 ALOAD

ARD—异步清零、即 ACLR

A/B--选择控制端

AZ-自动调零

B/D-二-十进制变换

BL/RBO—灭灯输入/纹波灭灯输出 (动态灭灯输出)

B/C-AD 转换器的启动/转换信号

B&C一同上

BI, BII一运算放大器的外偏置输入端

BIAS一运算放大器的外偏置输入端

BIPOFF—AD 转换器的输入信号极性设置

BO---借位输出

BOOSTER—运算放大器的负向能力扩展端

BW-运算放大器的带宽控制端

BYPASS--旁路

CAR—进位

CAS—运算放大器的共发共基端

CASE—外壳

Ci--外接定时电容,即 Cext

CEP-见EP

CET—见 ET

CE一片使能,同片选

Co一进位输出

COMP一运算放大器的补偿端

CON L/R一左移/右移控制

CONREC—再循环控制

Cr—清除端、即CR、RD

CK,CP—时钟端,时钟脉冲

CCK--计数器时钟

CCKEN--计数器时钟允许

CKO---时钟振荡输出

· 156 ·

CLA-箝位输出

CLD-计数器预置

CLK一时钟,一般与 CP 同

CPINH—时钟禁止

CP₄, CP_B一计数器中的三路时钟

CP+, CP - 一可逆计数器的加、减时钟, 与 CP_n, CP_n 同

C-锁存器的锁存允许端

CT-代表计数器或计数器状态

CRn一计数器清零

CR一运算放大器的外接电容公共端

CS一片选端

Cx一外接电容,即Cext

D一数据端

DATA-AD 转换器的数据读允许输出,与 DR 同

DCOM-数字信号公共端,一般即数字地

DGND-数字地。

DIR-数据输入准备,方向控制输入,选择

DIV5--除以 5, 即五进制计数

DR--- 见 DATA

DR-比例分频

DSR一右移串行输入

DSL一左移串行输入

EN一使能端,是 ENABLE 的缩写

EI,EO-使能输入,使能输出

EVEN—偶数

EP--计数允许端

ET-计数允许端

f;/2"--分频输出

f_{CPMAX}一最大时钟频率

CND, GNDS, GNDP一地, 信号地, 电源地

GR--读控制

GW-写控制

G---与 EN 相同

GL一选通、锁存

HBE-二进制数高位组允许

ILE—见 LE

IN/EXT一内部/外部

INH-禁止

INHOSC一振荡禁止

INMONO--单稳输入

INTR-结束信号

INV-原码补码转换

1/00一输入输出0号口,即一个端口

可双向传输

Lour-DA 转换器的电流输出端

INcomp—比较输入

INvco一压控输入

INSL-左移串行输入

INSR-右移串行输人

LBE-二进制数低位组允许

LD-预置端

LE-锁存控制,寄存控制

LSB--二进制数的最低位

MSB—二进制数的最高位

MR-清除到最大计数,异步清除

TA一工作环境温度

NC-空脚

0/I-输出/输入

OA-运算放大器的调零端

OC-集电极开路输出

OD-漏极开路输出

ODD--奇数

ODEC—为译码输出

OE-输出使能

OSC一振荡信号

OUTSL一左移串行输出

OUTSR-右移串行输出

OUT。一时钟输出

OUTyco一压控输出

P.E-奇偶误差输出

PE--同步预置

PH-相位输入

PL/O-奇偶校验输出

PL一异步预置

PP-相位脉冲

PRE-置数端

 $P < Q_i, P = Q_i, P > Q_i$ 一比较器的小于、等于、

大于串联输入

P < Q, P = Q, P > Q一比较器的小于、等于、大

于输出

QA,QB,…,QO,Q1-触发器输出端

Os-串出

QL一左移输出

QR—右移输出

RCLR-寄存器清零

R_D一直接置"0"端,直接复位端

 $R_{01}, R_{02}$ 一置"0"端,与 RO(1)、RO(2)同

RF-反馈电阻端

RBO一借位输出,动态灭灯输出

RBI--动态灭灯输入

RCK-寄存器时钟

RCO-进位输出,进位允许端

RCKEN—寄存器时钟允许

REFIN-参考源输入

REFOUT 一参考源输出

R-触发器的数据端,代表置"0"

R/W一读/写控制

Ri-外接定时电阻,即 Rext

R/C-加减控制,与 U/D 相似

Rext/Cext-外接电阻电容的公共端

Ri/Ci--外接电阻电容的公共端

RRD-寄存器清零

S₉₁, S₉₂一置"9"端,与 S9(1)、S9(2)同

S/A-加法器/减法器控制

SCKEN—同步移位时钟使能

SCLR--同步清零

Sp-直接置"1"端,直接置位端

SE--符号扩展

SER -右移串入

SH/LH一右移/预置

SL-左移串联输入

SLD--同步预置

SR一右移串联输入,同步清除

SRD—同步清零,即 SCLR

SLOAD—同步预置

STRCLR—寄存器清除

ST—选通

STR-右移选通

Sw—写禁止(Write Disable)

t_{nd}—平均传输延迟时间

tall一输出从高到低的传输延迟时间

t_{ill}一输出从低到高的传输延迟时间

TC-行波计数

T/C-原码/反码选择

TR+,TR-一分别为正负触发

U/D-可逆计数器的加减控制端

Vcc一电源电压(TTL)

V_{DD}一电源电压(CMOS)

V_{EE}一电源电压

Vpp-EPROM 的写入电压

Vss一电源电压(CMOS 中源极电源,

--般接地)

V_{REF}, U_{REF}一参考源

WE-写允许

WR一写入信号

W/R一写/读控制

Y—输出端

∑EVEN—偶数和

∑ODD—奇数和

∑E─偶数和输出

∑0─奇数和输出

∑—和输出

♦,→一时钟,反相时钟

## 参考文献

- [1] 蔡惟铮,吴建强主编.常用电子元器件简明手册.哈尔滨工业大学出版社,1989
- [2] 崔忠勤, 将建飞, 童本敏. 标准集成电路数据手册——运算放大器. 北京, 电子工业出版社, 1991
- [3] 童本敏等主编,标准集成电路数据手册——TTL 电路,北京:电子工业出版社, 1991
- [4] 童本敏统编. 标准集成电路数据手册——高速 CMOS 电路. 北京: 电子工业出版社,1994
- [5] 崔忠勤主编,中外集成电路简明速查手册——TTL、CMOS 电路,北京,电子工业出版社,1991
- [6] 孙人杰主编.标准集成电路数据手册——TIL电路(增补本).北京:电子工业出版社,1994
- [7] 无线电编辑部编, 赵大和、李军主编, 电子爱好者实用资料大全, 北京; 电子工业出版社, 1993
- [8] 山东工业大学电子学教研室编,常用半导体器件手册,北京;高等教育出版社,1993
  - [9] 柯节成编, 简明电子元器件手册, 北京, 高等教育出版社, 1991
  - [10] 袁光明编. 新颖电子器件应用手册. 四川科学技术出版社, 1994
  - [11] 张风言编著.电子电路基础.北京:高等教育出版社,1995
- [12] 国内外功率晶体管实用手册编写组编,国内外功率晶体管实用手册,北京:电子工业出版社,1987
- [13] 赵负图主编,国内外最新常用传感器和敏感元器件性能数据手册,辽宁科学技术出版社,1994