Lab 2 - Validity

Tony Tan & Jarl Kristensen *University of Oslo*

Monday, 14 November 2022

Today

- Classical validity analysis using multitrait-multimethod matrix (MTMM)
- Examine convergent validity and discriminant validity
- MTMM's relevance depends on intended interpretations and uses of the test scores

MTMM: Background

- First proposed by Campbell and Fiske (1959)
- Origin in personality (or trait) psychology
- Involving examining convergent and discriminant validity
 - Convergent validity: Scores of same trait measured by different methods should correlate sufficiently strongly
 - Discriminant validity: Different traits measured by the same methods should not correlate more strongly than above
- A method for providing evidence pertaining to the relations to other variables category of the Standards (AERA et al., 2014)

MTMM: Structure

TABLE 1
A Synthetic Multitrait-Multimethod Matrix

	Traits	Method 1			Method 2			Method 3		
		A ₁	В	Cı	A ₂	B ₂	C ₂	A ₁	Ba	C ₈
	A	(.89)								
Method 1	B_1	.51	(.89)							
	C_1	.38	.37	(.76)						
Method 2	As	.57	. 22	.09	(.93)					
	B_2	.22	.57	.10	.68	(.94)				
	C_2	.11	.11	.46	.59	.58	(.84)			
Method 3	A_3	.56	.22	.11	. 67	.42	.33	(.94)		
	B_3	.23	.58	.12	.43	.66	.34	. 67	(.92)	
	C ₃	.11	.11	.45	.34	.32	.58	.58	.60	(.85)

Convergent validation

- Reliability coefficient: The proportion of variance shared between true scores and observed scores produced when a trait is measured by way of one specific method.
- Validity coefficient: Correlation between trait scores produced by means of one method should correlate strongly with those produced using another method.

Discriminant validation

- Between-trait, within-method correlation: Correlation between scores on different traits measured using the same method
- Between-trait, between-method correlations: Correlation between scores on different traits measured sing different methods

MTMM validation criteria

- Validity diagonal values should be
 - statistically significant, and
 - sufficiently large.
- 2 Validity diagonal values should be higher than heterotrait-heteromethod triangles.
- 3 Within each heteromethod block, correlation of the same trait should be higher than correlations between different traits.
- 4 The same pattern of trait interrelationship should be evident in all heterotrait triangles of both the monomethod and heteromethod blocks

Criterion 1 = Convergent validity Criteria 2–4 = Discriminant validity

Task 1: MTMM analysis

- Download pomlab02.RData from Canvas and load it into
- These are MTMM matrices presented in Campbell and Fiske's (1959) original paper
- Conduct convergent and discriminant validation organised in the MTMM matrix
 - Examine convergence and discriminant validities for the first method
 - Examine convergence and discriminant validities for the second method
 - Examine convergence and discriminant validities across methods

"Disattenuating" correlations

Correlations between scores are often impacted by imperfect reliability ("attenuation"). To get a "true correlation" between traits, we may correct for attenuation ("disattenuation").

- Let ρ_{xy} denote true correlation between traits x and y ("true"/perfect reliability).
- Let r_{xy} denote the observed correlation between traits x and y.
- Let r_{xx} and r_{yy} denote the reliabilities with which x and y are measured respectively.

An estimate of the "true" correlation between traits x and y can be obtained by:

$$\widehat{\rho}_{xy} = \frac{r_{xy}}{\sqrt{r_{xx}r_{yy}}}.$$

Task 2: MTMM disattenuation

- Select one trait from the mtmm matrix
 - Examine convergence and discriminant validities for the first method
 - Examine convergence and discriminant validities for the second method
 - Examine convergence and discriminant validities across methods

References

AERA, APA & NCME. (2014). Standards for educational and psychological testing. American Educational Research Association; American Psychological Association; National Council on Measurement in Education. https://www.testingstandards.net/uploads/7/6/6/4/76643089/standards 2014edition.pdf

Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. *Psychological Bulletin*, *56*(2), 81–105. https://doi.org/10.1037/h0046016