Evaluación 2

Fidel Alejandro Navarro Salazar

5 de mayo de 2019

1. Introducción

En la agricultura es importante el estudio del vapor de agua en la atmósfera proveniente de la evaporación de la humedad del suelo y de la transpiración de las plantas, conocido como evotranspiración.

La finalidad de este trabajo será el obtener la evotranspiración (ET_0) mediante el uso de ecuaciones.

2. Parte 1

2.1. Heat Map

En esta sección se trabajaron datos metereológicos del año 2018 de un viñedo que se encuentra ubicado en el kilómetro 41 de la carretera de Hermosillo a Bahía Kino (Latitud 28° 55.117' N, Longitud 111° 18.638' W, altitud 101m). Con los datos se elavoraron gráficos de la variación mensual de la temperatura, humedad relativa y radiación solar.

Para ello se utilizaron las bibliotecas de Pandas y Matplotlib de Python para el análisis y procesamiento de los datos.

3. Parte 2

En esta sección se trabajaran los mismos datos metereológicos, con la finalidad de estimar la Evapotranspiración (ET_0) mensual promedio. Dichas aproximaciones se calcularan utilizando las ecuaciones siguientes:

Jansen Haise (1963)

$$ET_0 = (0.0252T + 0.078)Rs$$

Donde T representa la temperatura y Rs la radiación solar. Valiantzas 1 (2012)

$$ET_0 = 0.0393 Rs (Tmean + 9.5)^0.5 - 0.19 Rs^0.6 \varphi^0.15 + 0.078 (Tmean + 20) (1 - \frac{RH}{100})$$

Donde Rs representa la radiación solar, Tmean es la temperatura promedio, φ es la latitud en radianes y RH es la humedad relativa.

Valiantzas 4 (2013)

$$ET_0 = 0.051(1-\alpha)Rs(Tmean + 9.5)^0.5 - 2.4(\frac{Rs}{Ra})^2 + 0.048(Tmean + 20)(1 - \frac{RH}{100})(0.5 + 0.536u) + 0.00012z$$

Figura 1: Evolución de la temperatura máxima, mínima y promedio mensual durante el año 2018.

Figura 2: Evolución de la humedad relativa máxima, mínima y promedio mensual durante el año 2018.

Donde α es el albedo, u es la velocidad del viento a 2 metros de altura, z es la altitud, y Ra es la radiación solar en la parte alta de la atmósfera, la cual se obtiene de la siguiente ecuación:

$$Ra = \frac{24(60)}{\pi} G_{sc} d_r [\omega_s sin(\varphi) sin(\delta) + cos(\varphi) cos(\delta) sin(\omega_s)]$$

Figura 3: Evolución de la radiación solar mensual durante el año 2018.

Donde:

 G_sc es la constante solar = 0.0820 $MJm^{-2}min^{-1}\ d_r$ es la distancia inversa realitva de la Tierra y el Sol

$$d_r = 1 + 0.033\cos(\frac{2\pi}{365}J)$$

 ω_s es el angulo de la hora de la puesta de sol.

$$\omega_s = arcos[-tan(\varphi)tan(\delta)]$$

 φ es la latitud en radianes. δ es la decimación solar.

$$\delta = 0.409 sin(\frac{2\pi}{365}J - 1.39)$$

J es el día del año.

4. Parte 3

En esta parte se trabajaran con datos de flujo para obtener el balance de energía con la finalidad de determinar la fracción de evapotrabspiración o calor latente λET .

$$Rn - G - \lambda ET - H = 0$$

Donde Rn-G es la radiación neta y H es el calor sensible.

Referencias

[1] Richard G. Allen et al. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements. Rome: FAO - Food and Agriculture Organization of the United Nations.

(2).png

Mes	ET_J&H	ET_Valiantzas1	ET_Valiantzas4
1	56.545212	21.310199	43.165927
2	64.715721	24.210628	50.449047
3	95.924988	33.834978	67.057178
4	134.322228	44.563196	86.068343
5	159.853219	51.067272	96.785325
6	178.380785	52.063887	99.099546
7	172.534524	48.026437	78.859969
8	158.592629	44.307655	84.900674
9	151.169927	42.835503	87.684736
10	98.529331	31.589043	70.496390
11	63.328515	23.683415	55.130708
12	43.659941	17.784211	38.243952

Figura 4: Evapotranspiración promedio mensual durante el año 2018.

^[2] Koffi Djaman et al. (2018). Evaluation of the Penman-Monteith and other 34 reference evapotranspiration equations under limited data in a semiarid dry climate. US: Springer.

Figura 5: Balance de energía promedio por hora de un mes durante el año 2018.