Álgebra lineal I, Grado en Matemáticas

Febrero 2015, Segunda Semana

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora. Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Rango de una matriz
- (b) Dependencia e independencia lineal de vectores
- (c) Matriz de una aplicación lineal
- (d) Espacio vectorial cociente

Ejercicio 1: (2 puntos) Sean E y F dos espacios vectoriales sobre el mismo cuerpo \mathbb{K} , $\mathcal{B} = \{u_1, ..., u_n\}$ una base de E y $v_1, ..., v_n$ vectores de F. Demuestre que existe una única aplicación lineal $f: E \to F$ tal que $f(u_i) = v_i$, para i = 1, ..., n. ¿Qué ocurre si $\{u_1, ..., u_n\}$ es un sistema de generadores de E y no una base?

Ejercicio 2: (2 puntos) Sea $\mathcal{P}_3(t)$ el espacio vectorial de los polinomios en una variable t con coeficientes reales y grado menor o igual que 3. Encuentre los valores de α y β (reales) para los cuales el siguiente conjunto de vectores forma una base de $\mathcal{P}_3(t)$

$$\{1+t, 2t^2+3, t^3, \alpha t^3+t^2+\beta t\}$$

Para $\beta=1$ determine unas ecuaciones implícitas del subespacio vectorial V_{α} generado por los dos últimos vectores.

Ejercicio 3: (4 puntos) Una aplicación lineal $f: E \to E$, de un espacio vectorial en sí mismo, es una proyección si $f^2 = f \circ f = f$.

a) Encuentre las matrices en la base canónica de las posibles proyecciones $f: \mathbb{R}^4 \to \mathbb{R}^4$ tales que

$$f(1,1,0,0) = (0,1,0,-1), \quad f(1,0,1,0) = (1,1,1,\alpha), \quad \alpha \in \mathbb{R}.$$

b) ¿Qué ocurre en el caso $\alpha = -1$?