Tutorial 6

- 1. Find all the local maxima, local minima and saddle points of the functions.
 - (a) $f(x,y) = e^{x^2 + y^2 4x}$
 - (b) $f(x,y) = ln(x+y) + x^2 y$
 - (c) $f(x,y) = 1 (x^2 + y^2)^{1/3}$
- 2. Find the absolute maxima and minima of the function $f(x,y) = 2x^2 4x + y^2 4y + 1$ on the closed triangular area bounded by the lines x = 0, y = 2, y = 2x in the first quadrant.
- 3. Find two numbers a and b with $a \le b$ such that $\int_a^b (6-x-x^2) dx$ has its largest value.
- 4. Let $f(x,y) = x^2 xy + y^2 y$. Find the direction u and the value of $D_u f(1,-1)$ for which
 - (a) $D_u f(1,-1)$ is largest
 - (b) $D_u f(1,-1)$ is smallest
 - (c) $D_u f(1,-1) = 0$
 - (d) $D_u f(1,-1) = 4$
 - (e) $D_u f(1,-1) = -3$
- 5. Is there a direction u in which the rate of change of $f(x, y) = x^2 3xy + 4y^2$ at the point P(1, 2) equals 14? Give reason for your answer.
- 6. A flat circular plate has the shape of the region $x^2 + y^2 \le 1$. The plate including the boundary is heated so that the temperature at the point (x,y) is $T(x,y) = x^2 + 2y^2 x$. Find the temperature at the hottest and coldest points on the plate.