Лабораторная работа 2.4.1

Определение теплоты испарения жидкости

Татаурова Юлия Романовна

27 марта 2024 г.

Цель работы:

- 1) измерение давления насыщенного пара жидкости при разной температуре;
- 2) вычисление по полученным данным теплоты испарения с помощью уравнения Клайперона-Клаузиуса.

Теоретические сведения

Теплоту парообразования вычислим по формуле Клайперона-Клазиуса:

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}\tag{1}$$

где $V_2 = V$ - объем пара, V_1 - объем жидкости.

Запишем уравнение Ван-дер-Ваальса для насыщенного пара:

$$\left(P + \frac{a}{V^2}\right)(V - b) \tag{2}$$

 ${\bf C}$ учетом того, что b и a вносят небольшую погрешность, при данных давлениях и температурах можно записать:

$$V = \frac{RT}{P} \tag{3}$$

Однако с учетом того, что $V_1 \ll V_2$ получаем:

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)} \tag{4}$$

Экспериментальная установка

Экспериментальная установка показана на рисунке ниже. В приборе 13 находится исследумая жидкость 14. Давление насыщенных паров определятеся по ртутному манометру 15.

Рис. 1: Схема установки для поределения теплоты испарения

Экспериментальные данные

$T^{\circ}C$	23.14	24	25	26	27	28	29	30	31	32	33	35	37	40
P, MM.PT.CT	17.35	18.3	13.9	24.55	21.5	23	24.25	25.6	27.8	29.7	32	36.3	41	48.55

Таблица 1: Зависимость P от T при нагревании жидкости

$T^{\circ}C$	37	35.75	34	32	30	28	26	24
P, mm.pt.ct	44.05	46.6	37.45	33.3	29.2	26	22.8	19.6

Таблица 2: Зависимость P от T при охлаждении жидкости

(a) Зависимость P от T при нагревании жидкости

(b) Зависимоть $\ln(P)$ от $\frac{1}{T}$

T, K	296.57					
L1(T,P), Дж/моль	45295	50588	41186	50920	49309	45322
$\sigma_{L1},$ Дж/моль	1271	1137	826	886	722	506

Таблица 3: Молярная теплоемкость и ее погрешность в случае нагревания, определенная по первому графику

T, K	308.5	304.0	300.0
L1(T,P), Дж/моль	42698	50379	49042
$\sigma_{L1},$ Дж/моль	524	806	1005

Таблица 4: Молярная теплоемкость и ее погрешность в случае охлаждения, определенная по первому графику

Оценим погрешность:

$$\sigma_P = 0.5 \text{ mm}; \ \sigma_T = 0.01 \text{ K}$$

$$\sigma_{L1} = k1 \cdot \sqrt{\left(\frac{2RTdT}{P}\right)^2 + \left(\frac{RT^2dP}{P^2}\right)^2} \tag{5}$$

$$\sigma_{L2} = \sqrt{(R \ln P dT)^2 + \left(\frac{RT dP}{P}\right)^2} \tag{6}$$

Найдем значение теплоты парообразования с помощью первого графика:

 $L1_{
m cp} = 47.103 \pm 1.27 \; {
m кДж/моль} \; (pprox 2\%)$

Значение теплоты парообразования, найденное из второго графика:

 $L2_{
m hot} = 47.85 \pm 0.7 \; {
m кДж/моль}, \; L2_{
m cold} = 47.46 \pm 0.7 \; {
m кДж/моль}$

Табличное значение теплоты парообразования воды: 41.4 кДж/моль