SMAI-M20-L22: Introduction to SVM

C. V. Jawahar

IIIT Hyderabad

September 30, 2020

Announcements

• Quiz 1

- The same time as last week.
- The same set of topics we planned.
- All objective. (similar to Class Review)

Class Review

In the context of binary classification and LDA:

- What do we know about the direction of the discriminant vector?
- What do we know about the objective?
- What do we know bout the uniqueness of the solution?
- What do we know about the ranks of S_w and S_B ?
- How does singularity of S_B and S_w affect us?

Const 1/61 = 1

Recap:

- **Supervised Learning:** Formulation, Conceptual Issues, Concerns etc.
- Classifiers: (i) Nearest Neighbour, (ii) Notion of a Linear Classifier (iii) Perceptrons (iv) Bayesian Optimal Classifier (v) Logistic Regression (vi) Multiclass classification architectures
- Dimensionality Reduction and Applications: (i) Feature Selection and Extraction (ii) PCA (iii) LDA (iv) Eigen face
- Matrix Factorization and Applications: (i) SVD, (ii) Eigen
 Decomposition (iii) Matrix Completion (iv) LSI (v) Recommendations
- Other Topics:
 - Linear Regression
 - MIF
 - Gradient Descent
 - Stochastic and Batch GD
 - Eigen Vector based optimization
 - Neuron model
 - Loss Functions and Optimization
 - Kernel Functions and Kernel Matrix

This Lecture:

- Introduction to SVMs
 - SVM as a classifier that maximizes the margin.
- Solving Logistic Regression as GD
 - From objective to GD and Regularization
- Stending to Multi-Class

st y (J,-16) >, pents?

Questions? Comments?

Discussions Point - I

Consider Five 1D samples:

- Which will be a valid decision boundary with perceptron criteria? (i) 2.5 (ii) 6.6 (ii) 5.00 (iv) 4.00
 - What will be the optimal decision boundary with SVM criteria? (i) 2.5 (ii) 6.5 (ii) 5.00 (iv) 4.00
 - Assume we add a sample (8, -) to the training set, will SVM decision boundary change? why? what is the new one?
 - **4** Assume we add a sample (4, -) to the training set, will SVM decision boundary change? why? what is the new one?

Discussions Point -II

We know the objective of logistic regression as:

$$\sum_{i=1}^{N} y_i \log(g(\mathbf{w}^T \mathbf{x}) + (1 - y_i) \log(1 - g(\mathbf{w}^T \mathbf{x}))$$

Derive the gradient ascent update equation

Hint:

$$w^{k+1} = w^k + \eta \sum_{i=1}^{N} (y_i - g(\mathbf{w}^T \mathbf{x}_i)) \mathbf{x}_i$$

Discussion Point - III

How do you compare the GD rule with that of if we had used an MSE loss between predicted probabilities and our actual labels (probabilities)?

$$\mathbf{w}^{k+1} = \mathbf{w}^k + \eta \sum_{i=1}^{N} (y_i - g(\mathbf{w}^T \mathbf{x}_i)) \mathbf{x}_i$$

What Next:? (next three)

- Winding up (i) Logistic Regression (ii) Multi-Class Classification and (iii) LDA
- SVMs and Kernels