Takehome Assigment 3 Due Monday, April 26

In this assignment we establish some basic facts about prime and maximal ideals in *commutative* unital rings. In this assignment all rings will be commutative rings with identity.

- 1. Let $\varphi: R \to S$ be a homomorphism between commutative unital rings with $\varphi(1_R) = 1_S$.
 - (a) Let $\mathfrak{q} \subseteq S$ be a prime ideal. Show that $\varphi^{-1}(\mathfrak{q})$ is a prime ideal of R.
 - (b) Suppose φ is surjective, and $\mathfrak{m} \subseteq S$ is a maximal ideal. Show that $\varphi^{-1}(\mathfrak{m})$ is a maximal ideal of S.
 - (c) Give a counterexample to part (b) if φ is not surjective.
- 2. In class we defined the ring of fractions for a good multiplicative subset of a ring, i.e., a subset of R which contains no zero divisors and is closed under multiplication. If R is a unital ring, then one can define this slightly more generally. We define a subset $S \subseteq R$ to a be multiplicative subset if it is closed under multiplication and contains 1. In this exercise we will describe the ring of fractions $S^{-1}R$.
 - (a) Consider the subset $\{(a,b): a \in R, b \in S\} \subseteq R \times R$. Prove that:

$$(a_1, b_1) \sim (a_2, b_2)$$
 if there exits $t \in S$ such that $t(a_1b_2 - b_1a_2) = 0$,

is an equivalence relation on R. The equivalence class of (a, b) will be denoted $\frac{a}{b}$. Explain why if S contains no zero divisors, this is the same equivalence relation as the one defined in class

(b) Let $S^{-1}R = \{\frac{a}{b} : a \in R, b \in S\}$ be the set of equivalence classes of the relation described above. Define addition and multiplication on $S^{-1}R$ by the rules:

$$\begin{array}{rcl} \frac{a_1}{b_1} + \frac{a_2}{b_2} & = & \frac{a_1b_2 + a_2b_1}{b_1b_2} \\ \frac{a_1}{b_1} \times \frac{a_2}{b_2} & = & \frac{a_1a_2}{b_1b_2}. \end{array}$$

Show that these rules make $S^{-1}R$ into a commutative ring with identity. (You must first show that they are well defined. Then show that the ring axioms are satisfied)

- (c) Define $\iota: R \to S^{-1}R$ by the rule $\iota(r) = \frac{r}{1}$. Show that ι is a ring homomorphism, that $\iota(1_R) = 1_{S^{-1}R}$ and that if $s \in S \subseteq R$, the $\iota(s)$ is a unit in $S^{-1}R$. Prove also that ι is injective if and only if S contains no zero divisors (or zero),
- (d) Show that $S^{-1}R$ satisfies the following universal property. For any commutative unital ring A, and ring homomorphisms $\varphi: R \to A$ such that $\varphi(s) \in A^{\times}$ for every $s \in S$, there is a unique morphism $\tilde{\varphi}: S^{-1}R \to A$ such that $\tilde{\varphi} \circ \iota = \varphi$.

$$S^{-1}R$$

$$\downarrow \uparrow \qquad \tilde{\varphi}$$

$$R \xrightarrow{\varphi} A.$$

Deduce that there is a bijection:

{Homomorphisms $\varphi: R \to A$ such that elements of S map to A^{\times} }

$$\label{eq:continuous} \mbox{\updownarrow}$$
 {Homomorphisms \$\tilde{\varphi}: S^{-1}R \to A\$}.

- (e) Let $r \in R$ be nonzero and consider the multiplicative set $S = \{1, r, r^2, r^3, \dots\}$. Define $R[1/r] := S^{-1}R$. Show that R[1/r] = 0 if and only if r is nilpotent.
- 3. In this exercise we calculate the intersection of all the prime ideals in a commutative unital ring R.
 - (a) Show that the element 0 is contained in every ideal of R.
 - (b) Let r be a nilpotent element of R. Show that r is contained in every prime ideal of R.
 - (c) Conversely, suppose r is not nilpotent. Show that there is some prime ideal not containing r. Deduce that:

$$\mathfrak{N}(R) = \bigcap_{\mathfrak{p} \subseteq R \text{ prime}} \mathfrak{p}.$$

(Hint: To find such a prime ideal, try applying 1(a) and 2(e) to the map $\iota: R \to R[1/r]$.)

- (d) Deduce that the intersection of all the prime ideals in an integral domain is the 0 ideal.
- (e) Suppose that r is in the intersection of all the prime ideals of R. Show that $1 ry \in R^{\times}$ for every $y \in R$. (We will see below that the converse is not true in general, but that we can characterize all elements satisfying this property).
- 4. In this exercise we calculate the intersection of all the maximal ideals in a commutative unital ring R. Given a ring R, we define the $Jacobson\ radical$ of R to be:

$$\mathfrak{J}(R) = \bigcap_{\mathfrak{m} \subseteq R \text{ maximal}} \mathfrak{m}.$$

- (a) Show that $\mathfrak{N}(R) \subseteq \mathfrak{J}(R)$.
- (b) Show that an element $r \in R$ is a unit if and only if it is not contained in any maximal ideal.
- (c) Suppose \mathfrak{m} is a maximal ideal and $r \in R \setminus \mathfrak{m}$. Compute the ideal (\mathfrak{m}, r) generated by \mathfrak{m} and r.
- (d) Prove that the condition from 3(e) actually characterizes elements in the Jacobson Radical! That is, prove that $r \in \mathfrak{J}(R)$ if and only if $1 ry \in R^{\times}$ for every $y \in R$. (Parts (b) and (c) might help!)