Small dense subgraphs of polarity graphs and the extremal number for the 4-cycle

Michael Tait* Craig Timmons[†]

Abstract

In this note, we show that for any $m \in \{1, 2, ..., q+1\}$, if G is a polarity graph of a projective plane of order q that has an oval, then G contains a subgraph on $m + {m \choose 2}$ vertices with $m^2 + \frac{m^4}{8q} - O(\frac{m^4}{q^{3/2}} + m)$ edges. As an application, we give the best known lower bounds on the Turán number $\exp(n, C_4)$ for certain values of n. In particular, we disprove a conjecture of Abreu, Balbuena, and Labbate concerning $\exp(q^2 - q - 2, C_4)$ where q is a power of 2.

1 Introduction

Let F be a graph. A graph G is said to be F-free if G does not contain F as a subgraph. Let $\operatorname{ex}(n,F)$ denote the $\operatorname{Tur\'{a}n}$ number of F, which is the maximum number of edges in an n-vertex F-free graph. Write $\operatorname{Ex}(n,F)$ for the family of n-vertex graphs that are F-free and have $\operatorname{ex}(n,F)$ edges. Graphs in the family $\operatorname{Ex}(n,F)$ are called extremal graphs. Determining $\operatorname{ex}(n,F)$ for different graphs F is one of the most well-studied problems in extremal graph theory. A case of particular interest is when $F=C_4$, the cycle on four vertices. A well known result of Kővari, Sós, and Turán [12] implies that $\operatorname{ex}(n,C_4) \leq \frac{1}{2}n^{3/2} + \frac{1}{2}n$. Brown [3], and Erdős, Rényi, and Sós [6] proved that $\operatorname{ex}(q^2+q+1,C_4) \geq \frac{1}{2}q(q+1)^2$ whenever

^{*}Department of Mathematics, University of California San Diego, mtait@math.ucsd.edu

[†]Department of Mathematics and Statistics, California State University Sacramento, craig.timmons@csus.edu

q is a power of a prime. It follows that $ex(n, C_4) = \frac{1}{2}n^{3/2} + o(n^{3/2})$. For more on Turán numbers of bipartite graphs, we recommend the survey of Füredi and Simonovits [10].

The C_4 -free graphs constructed in [3] and [6] are examples of polarity graphs. To define these graphs, we introduce some ideas from finite geometry. Let \mathcal{P} and \mathcal{L} be disjoint, finite sets, and let $\mathcal{I} \subset \mathcal{P} \times \mathcal{L}$. We call the triple $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ a finite geometry. The elements of \mathcal{P} are called points, and the elements of \mathcal{L} are called lines. A polarity of the geometry is a bijection from $\mathcal{P} \cup \mathcal{L}$ to $\mathcal{P} \cup \mathcal{L}$ that sends points to lines, sends lines to points, is an involution, and respects the incidence structure. Given a finite geometry $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ and a polarity π , the polarity graph G_{π} is the graph with vertex set $V(G_{\pi}) = \mathcal{P}$ and edge set

$$E(G_{\pi}) = \{ \{p, q\} : p, q \in \mathcal{P}, (p, \pi(q)) \in \mathcal{I} \}$$

Note that G_{π} will have loops if there is a point p such that $(p, \pi(p)) \in \mathcal{I}$. Such a point is called an absolute point. We will work with polarity graphs that have loops, and graphs obtained from polarity graphs by removing the loops. A case of particular interest is when the geometry is the Desarguesian projective plane PG(2,q). For a prime power q, this is the plane obtained by considering the one-dimensional subspaces of \mathbb{F}_q^3 as points, the two-dimensional subspaces as lines, and incidence is defined by inclusion. A polarity of PG(2,q) is given by sending points and lines to their orthogonal complements. The polarity graph obtained from PG(2,q) with this polarity is often called the $Erd \tilde{o}s$ - $R \tilde{e}nyi$ orthogonal polarity graph and is denoted ER_q . This is the graph that was constructed in [3, 6] and we recommend [2] for a detailed study of this graph.

Our main theorem will apply to ER_q as well as to other polarity graphs that come from projective planes that contain an oval. An *oval* in a projective plane of order q is a set of q+1 points, no three of which are collinear. It is known that PG(2,q) always contains ovals. One example is the set of q+1 points

$$\{(1, t, t^2) : t \in \mathbb{F}_q\} \cup \{(0, 1, 0)\}$$

which form an oval in PG(2,q). There are also non-Desaurgesian planes that contain ovals. We now state our main theorem.

Theorem 1.1. Let Π be a projective plane of order q that contains an oval and has a polarity π . If $m \in \{1, 2, ..., q + 1\}$, then the polarity graph G_{π} contains a subgraph on at

 $most \ m + {m \choose 2} \ vertices \ that \ has \ at \ least$

$$2\binom{m}{2} + \frac{m^4}{8q} - O\left(\frac{m^4}{q^{3/2}} + m\right)$$

edges.

Theorem 1.1 allows us to obtain the best-known lower bounds for $ex(n, C_4)$ for certain values of n by taking the graph ER_q and removing a small subgraph that has many edges. All of the best lower bounds in the current literature are obtained using this technique (see [1, 7, 13]). An open conjecture of McCuaig is that any graph in $Ex(n, C_4)$ is an induced subgraph of some orthogonal polarity graph (cf [8]). For $q \geq 15$ a prime power, Füredi [9] proved that any graph in $Ex(q^2 + q + 1, C_4)$ is an orthogonal polarity graph of some projective plane of order q. For some recent progress on this problem, see [7]. By considering certain induced subgraphs of ER_q , Abreu, Balbuena, and Labbate [1] proved that

$$\exp(q^2 - q - 2, C_4) \ge \frac{1}{2}q^3 - q^2$$

whenever q is a power of 2. They conjectured that this lower bound is best possible. Using Theorem 1.1, we answer their conjecture in the negative.

Corollary 1.2. If q is a prime power, then

$$\operatorname{ex}(q^2 - q - 2, C_4) \ge \frac{1}{2}q^3 - q^2 + \frac{3}{2}q - O(q^{1/2}).$$

Corollary 1.2 also improves the main result of [13]. In Section 2 we give some necessary background on projective planes and polarity graphs. We prove Theorem 1.1 and Corollary 1.2 in Section 3. We finish with some concluding remarks in Section 4.

2 Preliminaries

3 Proof of Theorem 1.1 and Corollary 1.2

4 Concluding remarks

References

- [1] M. Abreu, C. Balbuena, D. Labbate, Adjacency matrices of polarity graphs and other C_4 -free graphs of large size, Des. Codes Cryptogr. (2010), 55, 221-233.
- [2] M. Bachratý, J. Širáň, *Polarity graphs revisited*, Ars Mathematica Contemporanea 8 (2015), 55-67.
- [3] W. G. Brown, On graphs that do not contain a Thomsen graph, Canada Math. Bull. 9 (1966), 281-289.
- [4] E. R. van Dam, W. H. Haemers, Which graphs are determined by their spectrum?, Linear Algebra and its Applications 373 (2003), 241-272.
- [5] P. Dembowski, Finite Geometries, Springer-Verlag Berlin Heidelberg 1968, Germany.
- [6] P. Erdős, A. Rényi, V. T. Sós, On a problem of graph theory, Studia Sci. Math. Hungar. 1 (1966), 215-235.
- [7] F. Firke, P. Kosek, E. Nash, J. Williford, *Extremal graphs without 4-cycles*, Journal of Combinatorial Theory, Series B **103**, 327-336 (2013).
- [8] Z. Füredi, Quadrilateral-free graphs with maximum number of edges, Proceedings of the Japan Workshop on Graph Theory and Combinatorics, Keio University, Yokohama, Japan 1994, 13-22.
- [9] Z. Füredi, On the number of edges of quadrilateral-free graphs, Journal of Combinatorial Theory, Series B 68, 1-6 (1996).
- [10] Z. Füredi, M. Simonovits, The history of degenerate (bipartite) extremal graph problems, arXiv:1306.5167

- [11] J. W. P. Hirschfeld, *Projective Geometries over Finite Fields*, second edition, Clarendon Press, 1998.
- [12] T. Kővári, V. T. Sós, P. Turán, On a problem of Zarankiewicz, Colloq. Math. 3 (1954), p. 50-57.
- [13] M. Tait, C. Timmons, Sidon sets and graphs without 4-cycles, J. of Combinatorics., Vol 5 (2014), Issue 2, 155-165.