CÁLCULO NUMÉRICO TURMA IC

Guilherme Ferreira Lourenço - RA: 143172 Harrison Caetano Candido - RA: 156264 Thiago Cardoso Carvalho - RA: 156599

Parte 1 Exercício 1

 $\varepsilon = 10e-8$ maxit = 20 $f(x) = xe^{-x}$

a) x0 = 2

it	xk	f(xk)	df(xk)	stepk
0	2	0.2706705664732254	-0.1353352832366127	-
1	4.0	0.07326255555493674	-0.05494691666620256	2.0
2	5.33333333333333	0.025749066633767696	-0.020921116639936253	1.33333333333333
3	6.564102564102564	0.009255967820073523	-0.007845878972484198	1.2307692307692308
4	7.743826066406712	0.0033562527608168333	-0.0029228426180740222	1.1797235023041477
5	8.892109843323993	0.0012223922320443628	-0.0010849229189586604	1.1482837769172818
6	10.018818672756456	0.0004463739604246541	-0.00040182040825403236	1.126708829432463
7	11.129697939352729	0.00016327397927656275	-0.00014860386152797106	1.1108792665962728
8	12.228417566135983	5.9791023657819373e-05	-5.4901509267715626e-05	1.0987196267832537
9	13.317477310673443	2.1913666940247016e-05	-2.0268185109939404e-05	1.08905974453746
10	14.398662765680003	8.036415344217216e-06	-7.478279114832606e-06	1.08118545500656
11	15.473297079378938	2.948596362407102e-06	-2.7580360476092523e-06	1.074634313698935
12	16.542389836510605	1.0822550666448481e-06	-1.0168319278274924e-06	1.069092757131667
13	17.606730006234756	3.973498180122671e-07	-3.747817535351291e-07	1.0643401697241508
14	18.66694655697199	1.459222106648406e-07	-1.381050665904478e-07	1.060216550737234
15	19.723549433806152	5.3598963365322756e-08	-5.088145232375261e-08	1.0566028768341624
16	20.77695811059232	1.969081564010383e-08	-1.8743091938910764e-08	1.0534086767861695
17	21.82752200390736	7.2348923710580625e-09	-6.903435031568819e-09	1.05056389331504
18	22.875535396946265	2.658596777160507e-09	-2.542376687399661e-09	1.0480133930389037
19	23.92124856381758	9.770518070646525e-10	-9.3620729159306e-10	1.045713166871316
20	24.964876204659912	3.591049898085341e-10	-3.4472058081468923e-10	1.043627640842331

b) x0 = 0.5

it	xk	f(xk)	df(xk)	stepk
0	0.5	0.3032653298563167	0.3032653298563167	-
1	-0.5	-0.8243606353500641	2.4730819060501923	1.0
2	-0.1666666666666669	-0.19689340214427437	1.3782538150099204	0.333333333333333
3	-0.023809523809523808	-0.024383219846499493	1.0484784533994782	0.14285714285714288
4	-0.0005537098560354364	-0.0005540165355380033	1.0011078797171737	0.023255813953488372
5	-3.0642493416461764e-07	-3.0642502806087233e-07	1.0000006128500092	0.0005534034311012718
6	-9.389621148813321e-14	-9.389621148814203e-14	1.000000000001878	3.0642484026840615e-07
7	-8.80999858950826e-27	-8.80999858950826e-27	1.0	9.38962114881244e-14

É sabido que o Teorema de Taylor tem grande importância no estudo de métodos numéricos por ajudar na aproximação de uma função f(x) por um polinômio de grau n numa área próxima de um pivô, ou de maneira mais direta, um suposto ponto de interesse. Lembrando que podemos fazer aproximações lineares da função f em torno de pontos aleatórios no eixo X, ou seja, perto de um ponto Xk nós podemos trocar a função f por uma aproximação linear que fornece aproximações aceitáveis para os valores dessa função f, iremos solucionar uma sequência de equações lineares que fornecem valores próximos ao de f em k pontos do eixo X.

No caso de métodos numéricos para zeros de funções, nosso valor de interesse é uma aproximação de f(x) = 0, sendo necessário encontrar uma posição X que seja próxima de X^* (valor que f(x) = 0). Tomando a reta tangente em torno do ponto Xk que faz interseção com o eixo das abscissas em um ponto f(Xk+1) como uma ferramenta para encontrar uma aproximação X^* , faremos iterações em um método deduzido do Teorema de Taylor, cujo pivô inicial X0 será escolhido quase

que aleatoriamente e o valor de X no ponto de interseção com o Eixo X irá convergir para aproximadamente X*.

Existem técnicas para achar um X0 adequado, como utilizando o Teorema de Bolzano no método da Bissecção, porém isso nem sempre é feito, resultando em situações como quando a derivada de f(x) é aproximadamente 0 ou quando X0 é tão distante de X* que o algoritmo de Newton acaba fazendo mais iterações do que se fosse em um ponto um pouco mais próximo. Este último caso é o que acontece para essa função, em que o ponto X0 = 0.5 converge muito mais rápido do que o ponto X0 = 2, além de ainda oferecer uma precisão muito maior do que o segundo ponto citado, que sequer consegue chegar no seu erro, sendo necessário que o algoritmo seja interrompido pelo valor máximo de iterações.

Exercício 2

 $\varepsilon = 10e-8$ maxit = 20 f(x) = x^3 - x - 3

É importante lembrarmos que a utilização de métodos números para zeros de funções se dá justamente quando não sabemos, ao certo, qual a solução para uma dada equação. Assim, faz-se necessário estipularmos um x0, que é, em outras palavras, um "chute" para a solução em questão. No caso dessa função, podemos perceber, pela utilização do método iterativo de Newton que a solução é algo próximo 1,671. Perceba, portanto, que quando nosso "chute inicial" é 1, devemos realizar 7 iterações para chegarmos no resultado. Já quando partimos de um x0 = 2, que apresenta uma distância bem menor da solução em relação ao x0 = 1, fazemos apenas 5 iterações. Todos os resultados podem ser vistos nas tabelas a seguir.

a) x0 = 1

it	xk	f(xk)	df(xk)	stepk
0	1	-3	2	-
1	2.5	10.125	17.75	1.5
2	1.9295774647887325	2.2547588646339456	10.169807577861537	0.5704225352112675
3	1.7078664002114352	0.2736513656831989	7.750422922913499	0.22171106457729728
4	1.6725584733531251	0.006343316785037523	7.392355540356011	0.03530792685831008
5	1.6717003819436402	3.693987285391387e-06	7.383746500971538	0.0008580914094848957
6	1.671699881657331	1.255440196246127e-12	7.383741482999403	5.002863092684606e-07
7	1.6716998816571609	-8.881784197001252e-16	7.3837414829976975	1.7008616737257398e-13

b) x0 = 2

it	xk	f(xk)	df(xk)	stepk
0	2	3	11	-
1	1.7272727272727273	0.4259954921111948	7.950413223140496	0.27272727272727
2	1.6736911736911737	0.014723079585861054	7.403726434675216	0.05358155358155359
3	1.671702569747502	1.9848200399685823e-05	7.383768445101206	0.0019886039436716185
4	1.671699881662069	3.623945588060451e-11	7.383741483046926	2.6880854331334803e-06
5	1.6716998816571609	-8.881784197001252e-16	7.3837414829976975	4.908073947262892e-12

Exercício 3

 $\varepsilon = 10e-8$ maxit = 20 f(x) = arctg(x)

a) x0 = 1.45

it	xk	f(xk)	df(xk)	stepk
0	1.45	0.9670469933974603	0.32232070910556004	-
1	-1.5502632970156205	-0.9979075580246077	0.29383105029545525	3.0002632970156204
2	1.8459317511972355	1.0743231874315433	0.22688784143798943	3.396195048212856
3	-2.889109054086136	-1.237575582047004	0.10698675819276336	4.735040805283371
4	8.678449426536321	1.456074323932289	0.013103500648927308	11.567558480622457
5	-102.44256799803165	-1.5610350697449524	9.527911300484988e-05	111.12101742456797
6	16281.36937686645	1.5707349068998253	3.7724035058131336e-09	16383.811944864483
7	-416358823.91280764	-1.5707963243931222	5.768520678200044e-18	416375105.2821845
8	2.7230487842881142e+17	1.5707963267948966	1.3486186341842e-35	2.7230487884517024e+17
9	-1.1647446409081358e+35	-1.5707963267948966	7.3712061661483e-71	1.1647446409081358e+35
10	2.1309895441653207e+70	1.5707963267948966	2.202101650107294e-141	2.1309895441653207e+70
11	-7.133169019324616e+140	-1.5707963267948966	1.9653276789371744e-282	7.133169019324616e+140
12	7.99254161852727e+281	1.5707963267948966	0.0	7.99254161852727e+281
13	-inf	-1.5707963267948966	0.0	inf

Com este ponto x0, vemos que o ponto xk se afastou muito, uma vez que o ponto escolhido não foi adequado, uma vez que o método não convergiu.

Quando isso acontece, devemos tomar outro ponto x0.

b)
$$x0 = 1$$

it	xk	f(xk)	df(xk)	stepk
0	1	0.7853981633974483	0.5	-
1	-0.5707963267948966	-0.5186693692550166	0.7542567725392094	1.5707963267948966
2	0.1168599039989131	0.11633226511389591	0.9865277431717276	0.6876562307938097
3	-0.001061022117044716	-0.0010610217188900932	0.9999988742333344	0.11792092611595782
4	7.963096044106416e-10	7.963096044106416e-10	1.0	0.0010610229133543204
5	0.0	0.0	1.0	7.963096044106416e-10
6	0.0	0.0	1.0	0.0

Neste caso, o ponto escolhido como x0 teve sua inclinação mais favorável para a aproximação pelo método de Newton ser feita com sucesso.

Parte 2

2. Prove que a equação (2) possui pelo menos uma raiz no intervalo [0, 1] na variável x.

k	ж	f(xk)	stepk
1	0.5	0.35777087598291996	1

Perceba que o algoritmo não retornou erro e convergiu até 1 iteração, quantidade mínima para provar que f(ak)f(bk) < 0 é válida e, pelo Teorema de Bolzano, nos prova que existe ao menos um zero no intervalo analisado, nesse caso (0,1).

3. Utilize o código implementado do Método da Bissecção para encontrar uma raiz aproximada da equação (2) no intervalo [0, 1] , adotando ε = 10−8 e maxit = 50.

k	xk:	f(xk)	dapk
1	05	0.35777087598291996	1
2	0.25	0.2252685231465611	0.5
3	0125	01221265074861742	025
4	0.0625	0.06213556567135244	0125
5	0.03125	0.03120427903152579	0.0625
6	0.015625	0015619279282757722	0.03125
7	0.0078125	0.0078117543817820665	0.015625
8	0.00390625	0.0039061601776916544	0.0078125
9	0.001953125	0.0019531134071359704	0.00390625
30	0.0009765625	0.0009765606559713787	0.001953125
11	0.00048528125	0.00048525065533064456	0.0009765625
12	0.000244140625	0.00024414018612570402	0.00048828125
13	0.0001220703125	0.00012206989272509118	0.000244140625
34	6103315625e-05	6103473556251472e-05	0.0001220703125
15	30517578125e-05	3051716103594267e-05	6103515625e-05
16	152557890625e-05	15255372010746166e-05	30517578125e-05
17	7.62939453125e-06	7.625977454159102e-06	152557890625e-05
18	3814697263625e-06	38142802191169693e-06	7.62939453125e-06
19	19073486328125e-06	19069315563773277e-06	3814697263625e-06
20	95367431640625e-07	9532572699801549e-07	19073486328125e-06
21	476537155203125e-07	47642011177819534e-07	95367431640625e-07
22	2.384185791015625e-07	2.3500153267677512e-07	476537155203125e-07
25	11920928955078125e-07	1.1879224312601467e-07	2.384185791015625e-07
24	5.960464477539063e-05	3.915759835062626e-05	11920928955078125e-07
25	29802322387695312e-05	2.9355275962931225e-05	5.960464477539063e-05
26	14901161193847656e-05	1.4454114769053605e-08	2.9502322357695312e-05
27	7.450580596923528e-09	7.033534172159753e-09	14901161193847656e-05

Perceba que como comprovado pelo Teorema de Bolzano existe ao menos um zero no intervalo (0,1) e, sendo assim o algoritmo não retornou erro e convergiu até o mínimo iterável determinado por k > log(|b0 - a0|)/log 2. A raiz aproximada da equação é 7.450580596923828e-09.

4. Tomando o ponto inicial x0 = 0.3, utilize o código implementado do Método de Newton para encontrar uma raiz aproximada da equação (2), adotando ε = 10-8 e maxit = 20.

t	ak:	(sk)	d(xk)	stepk
0	0.3	0.2636219129465732	0.6610702414622878	-
1	0.09878048717401255	-0.09735213483205282	0.9569694396297669	0.39878048717401254
2	0.0029491300953920913	0.002949091204257953	0.9999608625517165	0.10172961726940465
3	-7.653328776930654e-05	-7.695033419407192e-05	0.999099999999735	0.0029492066286798606
4	41704642476538844e-10	13435481099392552e-21	10	7.695033419407393e-05
5	4170464247640449e-10	0.0	10	13435481099392552e-21

A raiz aproximada é 4.170464247640449e-10

5. Tomando os pontos iniciais x0 = 0.3 e x1 = 0.6, utilize o código implementado do Método da Secante para encontrar uma raiz aproximada da equação (2), adotando $\varepsilon = 10-8$ e maxit = 20.

k	ak:	(xk	stepic
1	0.38980551849194325	-0.31518370293373316	0.9896055184919432
2	0.060159870130452764	0.05983474422495841	0.449765388622396
3	-0.01160085842398087	-0.011598517371093893	0.07176072855443363
4	5.0529292696595e-05	5.08288754534851e-05	0.011651687716677765
5	-0.799149091159855e-09	4.0216195515923933e-08	3.083909184598616e-05
6	41704646434851854e-10	39584473648891626e-17	10216195555506406e-06

A raiz aproximada é 4.1704646434851854e-10

6. Aplique novamente o Método de Newton para encontrar uma raiz aproximada da equação (2), tomando o ponto inicial x0 = 0.7, ε = 10−4 e maxit = 10 . Explique e justifique o comportamento observado.

t	*k	(xk)	d(xk)	stepk
a	0.7	0.38487405620263704	0.007380135313896183	-
1	51.44999994349034	0.0003775579964535156	1.4665365950508539e-05	52.149999994349034
2	-T7.1896063603T319	-0.00016779309276927472	4.346451396559673e-06	25.739608416882845
3	-115.79422564050426	-7.457272962260963e-05	-1.2575702769121545e-06	38.60461728043107
4	-173.69813953606121	-3.314313150393634e-05	3.5159350243751925e-07	57.90391389527696
5	260.55262011792195	-1.4730307418972722e-05	-1.1306403220185631e-07	85.85445055154073
6	390.83549728149507	6.5465953494854194e-06	-3.349955774591415e-05	150.28287716357312
7	886.2676141946539	2.9095362187884543e-06	-0.925182305224117e-09	195.43211691315684
ă	879.4447195921933	-1.293368D466D59846e-D6	2.940374679140079e-09	293.17710539753944
9	1319.309766649473	5.749352621505745e-07	6.70941359091252e-10	429.36504705727964
10	1979.4440640386454	2.556362600320027e-07	2.5786949028610433e-10	680.1342973891724

A raiz aproximada é -1979.4440640386454. Aqui é possível perceber que a derivada de f(x0) é aproximadamente 0, o que faz com que ocorra divergência na sequência gerada pelo método, já que o método de Newton produz um ponto x1 (que faz interseção com o eixo das abscissas) muito distante de X^* (ponto em que $f(x^*) = 0$). Nesse caso precisaríamos escolher outro x0.