ЛР 4. Дифференцирование функции, заданной таблично.

Вариант 8

8.
$$f(t) = \cos 3x$$
, $\xi = 0.8$;

① Найдите значение производной функции f(x) в точке ξ (используя любую формулу численного дифференцирования) с точностью 10^{-3} , 10^{-6} . Пользоваться точным значением производной в качестве эталона запрещено³. Выберите функцию f(t) и точку ξ , номер которых совпадает с номером вашего компьютера:

Функция вычисления производной, через две формулы (правая разность и центральная разность):

```
function [ dy0_1, dy0_2 ] = proiz( y, x0, epsilon )
h_1=epsilon;
dy0_1=(y(x0+h_1)-y(x0))/h_1;
dy0_2=(y(x0+h_1)-y(x0-h_1))/(2*h_1);
end
```

Вычислим значение функции в заданной точке по двум, заданным погрешностям:

```
y=@(x) cos(3*x);
h1=10^(-3);
h2=10^(-6);
x0=0.8;
dy1_h1=proiz(y,x0,h1)
dy1_h2=proiz(y,x0,h2)
```

Значение производной в точке 0.8 с точностями 10^{-3} и 10^{-6} соответственно

```
dy1_h1 =
    -2.023068232839043

dy1_h2 =
    -2.026386223374921
```

② Выберите функцию f(x) и точку ξ , как указано выше. Сравните погрешности у формул с разными порядками погрешностей (например, $f'(x) \approx \frac{f(x+h)-f(x)}{h}$ и $f'(x) \approx \frac{f(x+h)-f(x-h)}{2h}$) для последовательности убывающих шагов (например, $h = \frac{1}{2}, \frac{1}{4}, \frac{1}{8}$). С какими скоростями убывают погрешности для каждой формулы? Дайте теоретическую оценку и подтвердите ответ экспериментом⁴.

Сравним погрешности у формулы правой разности и у формулы центральной разности:

```
i=[1:1:60];
h=2.^(-i);
etalon=proiz(y,x0,10^(-10))
for j=1:1:length(h)
[dy1(j),dy2(j)]=proiz(y,x0,h(j));
delta1(j)=abs(dy1(j)-etalon);
delta2(j)=abs(dy2(j)-etalon);
end
```

Значения производных для первых 10 уменьшений шага:

 $0.678846784082253 \\ 0.184701517223842 \\ 0.047160196993253 \\ 0.011852037412853 \\ 0.002966554779631 \\ 0.002966579631 \\ 0.00296679631 \\ 0.0029679631 \\ 0.00296796$

Скорость убывания погрешности у первой формулы должна быть линейной, а у второй формулы квадратичной.

Эксперимент подтверждает скорость убывания погрешности.

③ Неустойчивость численного дифференцирования. Выберите функцию f(x) и точку ξ , как указано выше. Попробуйте применить формулу $f'(x) \approx \frac{f(x+h)-f(x)}{h}$ для стремящейся к нулю последовательности $h=\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{16},\ldots$). Будет ли погрешность $\varepsilon=\left|f'(x)-\frac{f(x+h)-f(x)}{h}\right|$ монотонно убывать при уменьшении h? Сравните практический и теоретический результаты.

Теоретически погрешность должна монотонно убывать.

Эксперимент показывает, что она убывает до 52 шага, а когда значащие цифры выходят за пределы мантиссы приращение округляется до 0 и производная становится равна 0.

