Upper bounds for average Bayes accuracy in terms of mutual information

Charles Zheng and Yuval Benjamini

September 9, 2016

These are preliminary notes.

1 Introduction

Suppose X and Y are continuous random variables (or vectors) which have a joint distribution with density p(x,y). Let $p(x) = \int p(x,y)dy$ and $p(y) = \int p(x,y)dx$ denote the respective marginal distributions, and p(y|x) = p(x,y)/p(x) denote the conditional distribution.

Mutual information is defined

$$I[p(x,y)] = \int p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dxdy.$$

ABE_k, or k-class Average Bayes accuracy is defined as follows. Let $X_1, ..., X_K$ be iid from p(x), and draw Z uniformly from 1, ..., k. Draw $Y \sim p(y|X_Z)$. Then, the average Bayes accuracy is defined as

$$ABA_k[p(x, y)] = \sup_{f} Pr[f(x_1, ..., x_k, y) = Z]$$

where the supremum is taken over all functions f. A function f which achieves the supremum is

$$f_{Bayes}(x_1, ..., x_k, y) = \operatorname{argmax}_{z \in \{1, ..., k\}} p(y|x_z),$$

where an arbitrary rule can be employed to break ties. Such a function f_{Bayes} is called a Bayes classification rule. It follows that ABA_k is given explicitly

by

$$ABA_k = \frac{1}{k} \int \left[\prod_{i=1}^k p(x_i) dx_i \right] \int dy \max_i p(y|x_i).$$

2 Problem formulation

Let \mathcal{P} denote the collection of all joint densities p(x, y) on finite-dimensional Euclidean space. For $\iota \in [0, \infty)$ define $C_k(\iota)$ to be the largest k-class average Bayes error attained by any distribution p(x, y) with mutual information not exceeding ι :

$$C_k(\iota) = \sup_{p \in \mathcal{P}: I[p(x,y)] \le \iota} ABA_k[p(x,y)].$$

A priori, $C_k(\iota)$ exists since ABA_k is bounded between 0 and 1. Furthermore, C_k is nondecreasing since the domain of the supremum is monotonically increasing with ι .

It follows that for any density p(x, y), we have

$$ABA_k[p(x,y)] \le C_k(I[p(x,y)]).$$

Hence C_k provides an upper bound for average Bayes error in terms of mutual information.

Conversely we have

$$I[p(x,y)] \ge C_k^{-1}(ABA_k[p(x,y)])$$

so that C_k^{-1} provides a lower bound for mutual information in terms of average Bayes error.

On the other hand, there is no nontrivial *lower* bound for average Bayes error in terms of mutual information, nor upper bound for mutual information in terms of average Bayes error, since

$$\inf_{p \in \mathcal{P}: I[p(x,y)] \le \iota} ABA_k[p(x,y)] = \frac{1}{k}.$$

regardless of ι .

The goal of this work is to attempt to compute or approximate the functions C_k and C_k^{-1} .

3 Special case

We work out the special case where p(x, y) lies on the unit square, and p(x) and p(y) are both the uniform distribution. Let \mathcal{P}^{unif} denote the set of such distributions, and

$$C_k^{unif}(\iota) = \sup_{p(x,y) \in \mathcal{P}^{unif}: I[p] \le \iota} ABA_k[p].$$

In this case, letting $X_1,...,X_k \sim \text{Unif}[0,1]$, and $Y \sim \text{Unif}[0,1]$ define $Z_i(y) = p(y|X_i)$. We have $\mathbf{E}(Z(y)) = 1$ and,

$$I[p(x,y)] = \mathbf{E}(Z(Y) \log Z(Y))$$

while

$$ABA_k[p(x,y)] = k^{-1}\mathbf{E}(\max_i Z_i(Y)).$$

Letting g_y be the density of Z(y), we have

$$I[p(x,y)] = \mathbf{E}(-H[g_Y])$$

and

$$ABA_k[p(x,y)] = \mathbf{E}(\psi_k[g_Y])$$

where

$$H[g] = -\int g(x)x \log x dx$$

and

$$\psi_k[g] = \int xg(x)G(x)^{k-1}dx$$

for $G(x) = \int_0^x g(t)dt$. Additionally g_y satisfies the constraint $\int xg(x)dx = 1$ since $\mathbf{E}[Z(y)] = 1$.

Define the set $D = \{(\alpha, \beta)\}$ as the set of possible values of $(-H[g], \psi_k[g])$ taken over all distributions g supported on $[0, \infty)$ with $\int xg(x)dx = 1$. Next, let $\mathcal{C}(D)$ denote the convex hull of D. It follows that $(I[p], ABA_k[p]) \in \mathcal{C}(D)$ since the pair is obtained via a convex average of points $(-H[g_y], \psi_k[g])$.

Define the upper envelope of D as the curve

$$d_k(\alpha) = \sup\{\beta : (\alpha, \beta) \in D\}.$$

We make the claim (to be shown in the following section) that $d_k(\alpha)$ is convex in α . As a result, the upper envelope of D is also the upper envelope of C(D). This in turn implies that $C_k^{unif}(\iota) = d_k(\iota)$. We establish these results, along with a open-form expression for C_k^{unif} , in the following section.

3.1 Variational methods

Consider the quantile function $Q(t) = G^{-1}(t)$. Q(t) must be a continuous function from [0,1] to $[0,\infty)$. We can rewrite the moment constraint $\mathbf{E}[g]=1$ as

$$\int_0^1 Q(t)dt = 1.$$

Meanwhile, $\beta = \psi_k[g]$ takes the form

$$\beta = \int_0^1 Q(t)x^{k-1}dt.$$

and $\alpha = -H[g]$ takes the form

$$\alpha = \int_0^1 Q(t) \log Q(t) dt.$$

To find the upper envelope, it will be useful to write the Langrangian

$$\mathcal{L}[g] = \lambda \int_0^1 Q(t)dt + \mu \int_0^1 Q(t)x^{k-1}dt + \lambda \int_0^1 Q(t)\log Q(t)dt$$

= $\int_0^1 Q(t)(\lambda + \mu x^{k-1} + \nu \log Q(t))dt$.

In order for a quantile function Q(t) to be on the upper envelope, it must be a local maximum of -H with respect to small perturbations. Therefore, consider the functional derivative

$$D[\xi] = \lim_{\epsilon \to 0} \frac{\mathcal{L}[g + \epsilon \xi] - \mathcal{L}[g]}{\epsilon}.$$

We have

$$D[\xi] = \int_0^1 \xi(t)(\lambda + \nu + \mu x^{k-1} + \nu \log Q(t))dt.$$

Now consider the following three cases:

- Q(t) is strictly monotonic, i.e. Q'(t) > 0.
- Q(t) is differentiable but not strongly monotonic:
- Q(t) is not strongly monotonic: there exist intervals $A_i = [a_i, b_i)$ such that Q(t) is constant on A_i , and isolated points t_i where $Q'(t_i) = 0$.

Strictly monotonic case. Because Q is defined on a closed interval, strict monotonicity further implies the property of strong monotonicity where $\inf_{[0,1]}Q'(t) > 0$. Therefore, for any differentiable perturbation $\xi(t)$ with $\sup_{[0,1]}|\xi'(t)| < \infty$, and further imposing that $\xi(0) \geq 0$ in the case that Q(0) = 0, there exists some $\epsilon > 0$ such that Q(0) = 0 is still a valid quantile function. Therefore, in order for Q(t) to be a local maximum, we must have

$$0 = \lambda + \nu + \mu x^{k-1} + \nu \log Q(t)$$

for $t \in [0,1]$. This implies that

$$Q(t) = c_0 e^{-c_1 x^{k-1}}$$

for some $c_0, c_1 \geq 0$.

Other cases. (TODO) We have to show that these cannot be local maxima.

4 General case

We claim that the constants $C_k^{unif}(\iota)$ obtained for the special case also apply for the general case, i.e.

$$C_k(\iota) = C_k^{unif}(\iota).$$

We make use of the following Lemma:

Lemma. Suppose X, Y, W, Z are continuous random variables, and that $W \perp Y|Z$, $Z \perp X|Y$, and $W \perp Z|(X,Y)$. Then,

$$\mathit{I}[p(x,y)] = \mathit{I}[p((x,w),(y,z))]$$

and

$$ABA_k[p(x,y)] = ABA_k[p((x,w),(y,z))].$$

Proof. Due to conditional independence relationships, we have

$$p((x, w), (y, z)) = p(x, y)p(w|x)p(z|y).$$

It follows that

$$\begin{split} \mathrm{I}[p((x,w),(y,z))] &= \int dx dw dy dz \ p(x,y) p(w|x) p(z|w) \log \frac{p((x,w),(y,z))}{p(x,w) p(y,z)} \\ &= \int dx dw dy dz \ p(x,y) p(w|x) p(z|w) \log \frac{p(x,y) p(w|x) p(z|y)}{p(x) p(y) p(w|x) p(z|y)} \\ &= \int dx dw dy dz \ p(x,y) p(w|x) p(z|w) \log \frac{p(x,y)}{p(x) p(y)} \\ &= \int dx dy \ p(x,y) \log \frac{p(x,y)}{p(x) p(y)} = \mathrm{I}[p(x,y)]. \end{split}$$

Also,

$$\begin{aligned} \operatorname{ABA}_{k}[p((x,w),(y,z))] &= \int \left[\prod_{i=1}^{k} p(x_{i},w_{i}) dx_{i} dw_{i} \right] \int dy dz \, \max_{i} p(y,z|x_{i},w_{i}). \\ &= \int \left[\prod_{i=1}^{k} p(x_{i},w_{i}) dx_{i} dw_{i} \right] \int dy \, \max_{i} p(y|x_{i}) \int dz \, p(z|y). \\ &= \int \left[\prod_{i=1}^{k} p(x_{i}) dx_{i} \right] \left[\prod_{i=1}^{k} \int dw_{i} p(w_{i}|x_{i}) \right] \int dy \, \max_{i} p(y|x_{i}) \\ &= \operatorname{ABA}_{k}[p(x,y)]. \end{aligned}$$

Next, we use the fact that for any p(x, y) and $\epsilon > 0$, there exists a discrete distribution $p_{\epsilon}(\tilde{x}, \tilde{y})$ such that

$$|\mathrm{I}[p(x,y)] - \mathrm{I}[p_{\epsilon}(\tilde{x},\tilde{y})]| < \epsilon,$$

where for discrete distributions, one defines

$$I[p(x,y)] = \sum_{x} \sum_{y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}.$$

We require the additional condition that the marginals of the discrete distribution are close to uniform: that is, for some $\delta > 0$, we have

$$\sup_{x,x':p_{\epsilon}(x)>0 \text{ and } p_{\epsilon}(x')>0} \frac{p_{\epsilon}(x)}{p_{\epsilon}(x')} \leq 1 + \delta.$$

and likewise

$$\sup_{y,y':p_{\epsilon}(y)>0 \text{ and } p_{\epsilon}(y')>0} \frac{p_{\epsilon}(y)}{p_{\epsilon}(y')} \leq 1 + \delta.$$

To construct the discretization with the required properties, choose a regular rectangular grid Λ over the domain of p(x,y) sufficiently fine so that partitioning X,Y into grid cells, we have

$$|I[p(x,y)] - I[\tilde{p}(\tilde{x},\tilde{y})]| < \epsilon.$$

[NOTE: to be written more clearly] Next, define