Home Credit Default Risk Challenge

Misbah Uddin

June 24, 2018

Machine Learning Models

Logisitic Regression:

Hypothesis: We want $0 \le h_{\theta}x \le 1$

So, we use sigmoid function (see Fig. 1): $h_{\theta}x = \frac{1}{1 + e^{-\theta^T x}}$

Decision boundary:

predict y = 1, if $h_{\theta} x \ge 0.5$

predict y = 0, otherwise

* based on hyper parameters

Cost function:

$$cost(h_{\theta}x, y) = -h_{\theta}x \log h_{\theta}x - (1 - h_{\theta}x) \log(1 - h_{\theta}x)$$
$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} cost(h_{\theta}x, y)$$

- Gradient descent: want $min_{\theta} J(\theta)$

Repeat update simultaneously, $\theta_j = \theta_j - \alpha \sum_{i=1}^m (h_\theta x^{(i)} - y^{(i)}) x_j^{(i)}$

Logistic regression

$$\Rightarrow h_{\theta}(x) = g(\theta^T x) = \rho(y=1) \times \theta$$

$$\Rightarrow g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "y=1" if $\underline{h_{\theta}(x)} \geq 0.5$

$$\label{eq:predict "y = 0" if $h_{\theta}(x) < 0.5$}$$

Andrew N

Figure 1: Sigmoid function