NEURAL NETWORKS IN HEART DISEASE DETECTION

Rajesh thomas (rr15f)

Sourindu chatterjee (sc15)

MACHINE INTELLIGENCE

DR. SIMON FOO

INTRODUCTION

- Heart supplies blood to different parts of body
- Heart is a muscle (myocardium), so it itself needs blood to function
- Arteries that carry blood to the myocardium are called coronary arteries.
- Coronary arteries can get blocked, in general called Coronary Heart Disease (CHD)

MOTIVATION

- About 610,000 people die in the United States due to heart diseases every year.
- That's about 1 in every 4 deaths
- Coronary Heart Disease (CHD) is the most common type of heart disease.
- CHD causes more than 370,000 deaths annually.
- Modern Machine Learning algorithms, combined with powerful hardware have become sophisticated enough to aid CHD detection.

Heart Disease Death Rates, 2008-2010 Adults, Ages 35+, by County

Alaska

Rates are spatially smoothed to enhance the stability of rates in counties with small populations.

Data Source: National Vital Statistics System National Center for Health Statistics

PROJECT GOALS

- Predict if a patient will get heart disease or not using the UCI database
- Preprocessing data using PCA
- Compare the performance of different algorithms
- Algorithms used are K-Nearest Neighbor, Backpropagation,
 Decision Tree and Radial Basis Function.

UCI DATABASE

- Very comprehensive database which contains data from different parts of the world.
- Provides many attributes which records many parameters that checks the health of the heart
- Provides ample number of samples

Age

Gender

Chest Pain Type (4 types considered)

Resting Blood Pressure

Cholesterol

Blood Sugar

Resting ECG

Maximum Heart Rate

Exercise Induced Angina (chest pain)

ST Depression Induced by Exercise

PRINCIPAL COMPONENT ANALYSIS

- Orthogonal transformation to convert correlated values into uncorrelated variables.
- Uncorrelated variables are called principal components
- This helps in feature reduction for better feature separation

PCA GRAPHS

K-NEAREST NEIGHBOR

- Find the number of k nearest values corresponding to the new observation.
- Find which attribute has the maximum frequency among them.
- The predicted output will be the one with the maximum frequency
- The algorithm optimizes the value of k and the distance function to give the best results.

KNN OPTIMIZATION GRAPHS

BACKPROPAGATION ALGORITHM

- The Multi-Layer Feed-Forward Network is effectively trained using Backpropagation Algorithm.
- Calculates the gradient of a error function e.g
 MSE, with respect to the weights in the network.
- The gradient is used to update the weights so that the error function is minimized.
- Outputs are calculated in both the layers using Sigmoid function.

BACKPROPAGATION TRAINING

BACKPROPAGATION TRAINING

RADIAL BASIS NETWORK

- Works by approximating functions
- Approximation is done by iterative training on the given data
- The error on the training data can be reduced to values as small as desired
- New neurons can be added until the mean square error goal is achieved.

RBF TRAINING

DECISION TREE

- Decision support tool with a flowchart like structure
- Traditionally created using hand
- Grow a decision tree based on the input values and a desired cost function like Entropy.
- Cross check with testing data

TREE OPTIMIZATION

THE DECISION TREE DEVELOPED

CODE VIDEO

TRAINING VIDEO

CONCLUSION

- Accuracy of about 85, 90, 89, 80 percent for RBF, MLFF (Backpropagation),
 KNN, Decision Tree.
- The development for an effective weight function to be used in PCA is in progress.
- The higher accuracy can be achieved using revised PCA to gain the maximum information.

FUTURE WORK

- Use more number of attributes given in the UCI database
- Apply the techniques used for a larger database
- Create a reliable phone app for real-time use.

QUESTIONS?

