Contents

1	Basisregels differentieren	2
2	Differentiaalquotient/analytisch differentieren 2.1 Notatie:	
3	2.1.1 Aanpak:	3
4	Kettingregel 4.1 Notatie:	3
5	Quotientregel 5.1 Notatie:	3

1 Basisregels differentieren

- Met differentieren pak je de afgeleide van een functie, de helling. Hiermee kunnen veranderingen van de functie t.o.v de variabelen beredeneerd worden
- De afgeleide van een functie die constant is, is altijd 0:

$$-f(x) = 27, f'(x) = 0$$

ullet Voor n-de graads vergelijkingen geldt de volgende regel:

$$-f(x) = x^n \Rightarrow f'(x) = n \cdot x^{n-1}$$

• Dit geldt ook voor gebroken vormen:

$$- f(x) = \frac{1}{x} = x^{-1} \Rightarrow f'(x) = -1x^{-2} = \frac{-1}{x^2}$$

• En voor wortels:

$$-\sqrt{x} = x^{\frac{1}{2}} \Rightarrow f'(x) = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2}\frac{1}{\sqrt{2}}$$

• Voor functies in de vorm $f(x) = a \cdot g(x)$ geldt de volgende regel:

$$- f(x) = a \cdot g(x) \Rightarrow f'(x) = a \cdot g'(x)$$

– Dus:

*
$$f(x) = 6x^3 \Rightarrow f'(x) = 6 \cdot 3x^2 = 18x^2$$

2 Differentiaalquotient/analytisch differentieren

2.1 Notatie:

$$\frac{\Delta y}{\Delta x} = \frac{f(x+h) - f(x)}{h}$$

2.1.1 Aanpak:

- 1: Vul in
- 2: Bepaal differentiaal quotient $\frac{\Delta y}{\Delta x}$
- 3: Bepaal differentiequotient $y'(x)\frac{dy}{dx}$

- 1. Voorbeeld:
- 2. TODO
- 3 Productregel
- 3.1 Notatie:
- 4 Kettingregel
- 4.1 Notatie:
- 5 Quotientregel
- 5.1 Notatie: