ZiborovAN 29112024-141420

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой $3003~\mathrm{MF}$ ц с внутренним сопротивлением $50~\mathrm{Om}$ и доступной мощностью плюс $10~\mathrm{дБм}$.

Колебание ПЧ формируется с помощью генератора меандра частотой 817 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 2 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 9850 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 3821 МГц до 3907 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра? Варианты ОТВЕТА:

1) -85 дБм 2) -88 дБм 3) -91 дБм 4) -94 дБм 5) -97 дБм 6) -100 дБм 7) -103 дБм 8) -106 дБм 9) -109 дБм

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = 0.35864 + 0.10297i, s_{31} = 0.10628 - 0.37019i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

- 1) -22 дБн 2) -24 дБн 3) -26 дБн 4) -28 дБн 5) -30 дБн 6) -32 дБн 7) -34 дБн
- 8) -36 дБн 9) 0 дБн

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 1. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n;m\}$ нельзя было бы объяснить наличие в спектре составляющей, отмеченной маркером 5?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 1 – Экран анализатора спектра

Варианты ОТВЕТА:

1)
$$\{8; -14\}$$
 2) $\{7; -9\}$ 3) $\{9; -19\}$ 4) $\{7; -4\}$ 5) $\{10; -24\}$ 6) $\{7; -9\}$ 7) $\{10; -24\}$

8) $\{10; -24\}$ 9) $\{9; -19\}$

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 4.8 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 10 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность на выходе промежуточной частоты измерена с помощью широкополосного измерителя мощности с входным сопротивлением 50 Ом, и получено значение минус 3.2 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 2.)

Рисунок 2 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

- 1) 3.7 дБ 2) 4.3 дБ 3) 4.9 дБ 4) 5.5 дБ 5) 6.1 дБ 6) 6.7 дБ 7) 7.3 дБ 8) 7.9 дБ
- 9) 8.5 дБ

Для полного подавления **нижней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная плюс 30 градусов.

Чему равна ёмкость компонента фазовращателя, если частота ПЧ равна 44 МГц?

Варианты ОТВЕТА:

1) $83.5 \text{ m}\Phi$ 2) $41.8 \text{ m}\Phi$ 3) $125.3 \text{ m}\Phi$ 4) $62.7 \text{ m}\Phi$

На рисунке 3 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1=r_2$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 3 – Двойной балансный смеситель

Частота гетеродина 482 МГц, частота ПЧ 44 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 44 MΓι
- 964 MΓ
- 3) 1402 MΓ_{II}
- 4) 438 MΓ_{II}.