

Sample Paper-05 (unsolved) Mathematics Class - XI

Time allowed: 3 hours Maximum Marks: 100

General Instructions:

- a) All questions are compulsory.
- b) The question paper consists of 26 questions divided into three sections A, B and C. Section A comprises of 6 questions of one mark each, Section B comprises of 13 questions of four marks each and Section C comprises of 7 questions of six marks each.
- c) All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
- d) Use of calculators is not permitted.

Section A

- **1.** List the elements of the following set $B = \{x \in A, 10 + x = 7\}$ where $A = \{1, 2, 3, 4, 5, \dots \}$
- **2.** Represent the function $(1+x)^{50}$ as the sum of an even function and an odd function
- 3. Find the greatest and the least value of the function $f(x) = \cos x^3$
- **4.** Solve for x if |x| x = 1 + 2i
- **5.** Five geometric means are inserted between 8 and 512 Find the fifth term in the series.
- **6.** Find x for which the function $ax^2 + bx + c$, a > 0 assumes the least value

Section B

- 7. If For what values of b the for which the curve $y = x^2 + bx + 25$ touches the x-axis
- 8. Find the area of the parallelogram bounded by the lines x = 3, x = 5, 3x 2y + 4 = 0 and 3x 2y + 1 = 0
- 9. Solve the inequality $\left| \frac{1}{x} 2 \right| < 5$
- **10.** Determine whether the graphs of the equation y = |x| and y = x is symmetric about x-axis, y -axis, or about the origin

11. Find
$$f(x) + f(1-x)$$
 if $f(x) = \frac{100^x}{100^x + 10}$

12. Evaluate
$$cos(2 tan^{-1}(-7))$$

13. Find the limit
$$\lim_{h\to 0} \frac{f(a+h)}{2h}$$
 if $f(a) = 0$ and $f'(a) = 6$

14. Find
$$f^{-1}(x)$$
 if $f(x) = 1 + \log_e(x+5)$

- **15.** Find *c* in the equation $x^2 4x + c = 0$ if it is known that the sum of squares of the roots is equal to 16
- **16**. The vertices of a triangle are A (- 6, 2), B (6, 5), and C (2, 8). Find a point inside the triangle which is equidistant from all the sides.
- 17. Prove that $\cos(A+B) + \sin(A-B) = 2\sin(45+A)\cos(45+A)$
- **18.** Prove by mathematical induction that $2^n > 2n+1$ for all values of $n \ge 3$
- **19.** Using properties of set prove that $A (B C) = (A B) \cup (A \cap C)$

Section C

- **20.** Prove that $a_1 3a_2 + 3a_3 a_4 = 0$ if $a_1 a_2 a_3$ are in AP
- **21.** If four coins are tossed, find the probability that there should be two heads and two tails.
- **22.** Find *n* if the coefficient of the second term in the expansion of $(x^2 \frac{1}{4})^n$ is equal to 31

23. Find
$$\frac{dy}{dx}$$
 given that $y = (sinx)^{x^2}$

- **24.** Find an AP whose first term is unity and the second, tenth and 34th term form a GP
- **25.** A tangent to the parabola $y^2 = 12x$ is making an angle 45^0 with the straight line y = 3x + 5. Find its equation and point of contact.
- **26.** Calculate the mean deviation about the median for the distribution given below

Age	10-20	21-31	32-42	43-53	54-64	65-75	76-86
No of persons	15	14	30	20	10	7	4