# ARMA-X Analysis

## Contents

| a                                 | 2     |
|-----------------------------------|-------|
| ecting Relevant Data              | 2     |
| Volatility                        | <br>2 |
| Number of Posts                   | <br>3 |
| Dummy for Social Media Post       | <br>4 |
| Merge                             | <br>4 |
| MA-X Models                       | 4     |
| Find Number of Lags               | <br>4 |
| Tweet Count on Volatility by hour | <br>5 |
| Tweet Dummy on Volatility by hour | <br>7 |

#### Data

```
# 1. Load Political Social Media
#contains posts from Twitter & TruthSocial
social <- read.csv(here("data/mothership", "social.csv"))</pre>
social_hourly <- read.csv(here("data/mothership", "socialhourly.csv"))</pre>
# 2. Load Financial
#S&P500
SPY <- read.csv(here("data/mothership", "SPY.csv"))</pre>
VGK <- read.csv(here("data/mothership", "VGK.csv"))</pre>
#CSI 300 (China)
ASHR <- read.csv(here("data/mothership", "ASHR.CSV"))
#make posixct
SPY$timestamp = as.POSIXct(SPY$timestamp,format = "%Y-%m-%d %H:%M:%S")
VGK$timestamp = as.POSIXct(VGK$timestamp,format = "%Y-%m-%d %H:%M:%S")
ASHR$timestamp = as.POSIXct(ASHR$timestamp,format = "%Y-%m-%d %H:%M:%S")
social$timestamp = as.POSIXct(social$timestamp,format = "%Y-%m-%d %H:%M:%S")
social_hourly$timestamp = as.POSIXct(social_hourly$timestamp,format = "%Y-%m-%d %H:%M:%S")
```

## Selecting Relevant Data

#### Volatility

#### **Number of Posts**

```
#find count
tweetcount_alltime = dplyr::select(social_hourly,timestamp,N)
#select time period
tweetcount = filter(tweetcount_alltime,
                  between (timestamp,
                          as.Date('2019-01-01'),
                          as.Date('2025-04-10')))
#plot
ggplot(tweetcount_alltime, aes(x = timestamp, y = N)) +
    geom_point(color = "#253494", size = 1) +
   scale_x_datetime(date_labels = "%b %Y", date_breaks = "9 month") +
   labs(title = "Trump Social Media Count",
         x = NULL,
         y = "number of tweets/truths") +
   theme_minimal(base_size = 14) +
   theme(axis.text.x = element_text(angle = 45, hjust = 1),
          plot.title = element_text(face = "bold", hjust = 0.5))
```

## Warning: Removed 1172 rows containing missing values or values outside the scale range
## (`geom\_point()`).

## **Trump Social Media Count**



### Dummy for Social Media Post

#### Merge

```
#merge our dependant and independant vars
armax_data = left_join(SPY_volatility, tweetcount, by="timestamp")
armax_data = left_join(armax_data, tweetdummy, by="timestamp")

#convert NA to zeroes
armax_data$N[is.na(armax_data$N)] = 0
armax_data$dummy[is.na(armax_data$dummy)] = 0
```

### ARMA-X Models

#### Find Number of Lags

```
nb.lags <- 3 #r
count_lags <- embed(armax_data$N, nb.lags + 1)</pre>
dummy_lags <- embed(armax_data$dummy, nb.lags + 1)</pre>
colnames(count_lags) <- paste0("Lag_", 0:nb.lags)</pre>
#align volatility to match count rows (for lag)
vol_aligned <- tail(armax_data$r_vol_h, nrow(count_lags))</pre>
#choosing how many lags
# fit an ARMA(0,0,0) model with lm (with r set above)
eq <- lm(vol_aligned ~ count_lags)
eq2 <- lm(vol_aligned ~ dummy_lags)
#compute Newey-West HAC standard errors
var.cov.mat <- NeweyWest(eq, lag = 7, prewhite = FALSE)</pre>
robust_se <- sqrt(diag(var.cov.mat))</pre>
#for both
var.cov.matD <- NeweyWest(eq2, lag = 7, prewhite = FALSE)</pre>
robust_seD <- sqrt(diag(var.cov.matD))</pre>
#output table; significant lags are how many we choose
stargazer(eq, eq, type = "latex",
```

```
column.labels = c("(no HAC)", "(HAC)"), keep.stat = "n",
se = list(NULL, robust_se), no.space = TRUE)
```

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Wed, Apr 30, 2025 - 19:28:11

Table 1:

|                 | 10010 1.                         |                             |  |
|-----------------|----------------------------------|-----------------------------|--|
|                 | Dependent variable:  vol aligned |                             |  |
|                 |                                  |                             |  |
|                 | (no HAC)                         | (HAC)                       |  |
|                 | (1)                              | (2)                         |  |
| count_lagsLag_0 | -0.001*                          | $-0.001^{***}$              |  |
|                 | (0.001)                          | (0.0002)                    |  |
| count_lagsLag_1 | -0.001                           | $-0.001^*$                  |  |
|                 | (0.001)                          | (0.0003)                    |  |
| count_lagsLag_2 | 0.0002                           | 0.0002                      |  |
|                 | (0.001)                          | (0.0004)                    |  |
| count_lagsLag_3 | -0.0002                          | -0.0002                     |  |
|                 | (0.001)                          | (0.0002)                    |  |
| Constant        | 0.036***                         | 0.036***                    |  |
|                 | (0.001)                          | (0.002)                     |  |
| Observations    | 11,036                           | 11,036                      |  |
| Noto.           | *n <0 1. **n <                   | * <0.1. ** <0.05. *** <0.01 |  |

Note:

\*p<0.1; \*\*p<0.05; \*\*\*p<0.01

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Wed, Apr 30, 2025 - 19:28:11

#### Tweet Count on Volatility by hour

Table 2:

|                | $Dependent\ variable:$ |             |  |
|----------------|------------------------|-------------|--|
|                | vol_aligned            |             |  |
|                | (no HAC)               | (HAC)       |  |
|                | (1)                    | (2)         |  |
| dummy_lags1    | -0.001                 | -0.001      |  |
|                | (0.003)                | (0.003)     |  |
| $dummy\_lags2$ | -0.003                 | -0.003      |  |
|                | (0.003)                | (0.002)     |  |
| $dummy\_lags3$ | 0.006**                | $0.006^{*}$ |  |
|                | (0.003)                | (0.003)     |  |
| dummy_lags4    | 0.004                  | 0.004       |  |
|                | (0.003)                | (0.003)     |  |
| Constant       | $0.033^{***}$          | 0.033***    |  |
|                | (0.002)                | (0.001)     |  |
| Observations   | 11,036                 | 11,036      |  |

*Note:* \*p<0.1; \*\*p<0.05; \*\*\*p<0.01

```
## Series: y_trimmed
## Regression with ARIMA(4,0,5) errors
##
## Coefficients:
            ar1
                    ar2
                             ar3
                                      ar4
                                               ma1
                                                        ma2
                                                                  ma3
                                                                          ma4
                                                                                   ma5
         0.0838 \quad 1.7090 \quad 0.0159 \quad -0.8111 \quad 0.2502 \quad -1.7016 \quad -0.5867 \quad 0.8504 \quad 0.2422
##
## s.e. 0.0182 0.0137 0.0173
                                  0.0138 0.0213 0.0113 0.0297 0.0108 0.0152
##
         intercept X1_Lag_0
##
            0.0335
                       -4e-04
## s.e.
            0.0240
                        4e-04
## sigma^2 = 0.009625: log likelihood = 9968.81
## AIC=-19913.63
                  AICc=-19913.6 BIC=-19825.92
##
## Training set error measures:
                                                           MPE
                           ME
                                    RMSE
                                                 MAE
                                                                    MAPE
## Training set 0.0008280272 0.09805725 0.02189906 -74.14026 116.5155 1.095958
## Training set -0.004526612
```

armax\_fit\$ICplot



#### armax\_fit\$params

```
## $p
## [1] 4
##
## $q
## [1] 5
##
## $r
## [1] 0
```

## Tweet Dummy on Volatility by hour

```
##
                     ar2
                             ar3
                                     ar4
                                               ma1
                                                         ma2
                                                                  ma3
         0.0836 \quad 1.7077 \quad 0.0161 \quad -0.8097 \quad 0.2505 \quad -1.7007 \quad -0.5867 \quad 0.8497 \quad 0.2419
##
## s.e. 0.0185 0.0138 0.0175
                                  0.0138 0.0215 0.0115
                                                             0.0299 0.0110 0.0152
         intercept X1_Lag_0
##
##
            0.0332
                     -0.0003
## s.e.
            0.0243
                       0.0018
## sigma^2 = 0.009626: log likelihood = 9968.35
## AIC=-19912.71
                  AICc=-19912.68
## Training set error measures:
                                                           MPE
##
                                    RMSE
                                                MAE
                                                                             MASE
## Training set 0.000833075 0.09806137 0.02187804 -74.22759 115.9798 1.094907
                         ACF1
## Training set -0.004629921
```

#### armax\_fit\$ICplot



5

#### armax\_fit\$params

## \$p ## [1] 4 ## ## \$q ## [1] 5 r (Number of Lags on Exogenous Variable)

##

## \$r

## [1] 0