² A SEARCH FOR LONG-LIVED, CHARGED, SUPERSYMMETRIC PARTICLES USING IONIZATION WITH THE ATLAS DETECTOR

bradley axen

September 2016 – Version 0.15

8 Bradley Axen: A Search for Long-Lived, Charged, Supersymmetric Particles using Ionization with the ATLAS Detector, Subtitle, © September 2016

Usually a quotation.

Dedicated to.

12 ABSTRACT

- 13 How to write a good abstract:
- https://plg.uwaterloo.ca/~migod/research/beck00PSLA.html

15 PUBLICATIONS

- Some ideas and figures have appeared previously in the following publications:
- Put your publications from the thesis here. The packages multibib or bibtopic
- etc. can be used to handle multiple different bibliographies in your document.

21 ACKNOWLEDGEMENTS

Put your acknowledgements here.

23

And potentially a second round.

25

26 CONTENTS

27	1	INTR	ODUCTION	1		
28	1	INTRODUCTION 3				
20	Ш	THEC	Dretical context	5		
29	2			7		
30	2	2.1	DARD MODEL Particles	7		
31		2.1	Interactions	8		
32		2.3	Limitations	8		
33	2					
34	3	J J . L.	RSYMMETRY	9		
35		3.1	Motivation	9		
36		3.2	Structure	9		
37		3.3	Phenomenology	9		
38	4		G-LIVED PARTICLES	11		
39		4.1	Mechanisms	11		
40			4.1.1 Examples in Supersymmetry	11		
41		4.2	Phenomenology	11		
42			4.2.1 Disimilarities to Prompt Decays	11		
43			4.2.2 Characteristic Signatures	11		
44	Ш	EXPER	rimental structure and reconstruction	13		
45	5	THE L	arge hadron collider	15		
46		5.1	Injection Chain	15		
47		5.2	Design and Parameters	15		
48		5.3		15		
49	6	THF A	ATLAS DETECTOR	17		
50		6.1	Coordinate System	17		
51		6.2	Magnetic Field	17		
52		6.3	~	17		
53			6.3.1 Pixel Detector	17		
54			6.3.2 Semiconductor Tracker	17		
55			6.3.3 Transition Radiation Tracker	17		
56		6.4	Calorimetry	17		
57			6.4.1 Electromagnetic Calorimeters	17		
58			6.4.2 Hadronic Calorimeters	17		
59			6.4.3 Forward Calorimeters	17		
60		6.5	Muon Spectrometer	17		
61		6.6	Trigger	17		
62		0.0	6.6.1 Trigger Scheme	17		
			6.6.2 Missing Transverse Energy Triggers	17		
63	7	E\/ENI	T RECONSTRUCTION	19		
64	/	7.1		19		
65		/ . 1	Tracks and Vertices	17		

66			7.1.1 Track Reconstruction	19
67			7.1.2 Vertex Reconstruction	19
68		7.2	Jets	19
69			7.2.1 Topological Clustering	19
70			7.2.2 Jet Energy Scale	19
71			7.2.3 Jet Energy Scale Uncertainties	19
72			7.2.4 Jet Energy Resolution	19
73		7.3	Electrons	19
74			7.3.1 Electron Identification	19
75		7.4	Muons	19
76			7.4.1 Muon Identification	19
77		7.5	Missing Transverse Energy	19
78	IV	CALC	Drimeter response	21
79	8	RESPO	onse meaurement with single hadrons	23
80		8.1	Overview and Motivation	23
81		8.2	Inclusive Hadron Response	23
82		8.3	Identified Particle Response	23
83	9	JET EN	vergy response and uncertainty	25
84		9.1	Jet Energy Response in Simulation	25
85		9.2	Jet Energy Uncertainty	25
86	V	SFAR		27
87	10		G-LIVED PARTICLES IN ATLAS	29
88	10	10.1	Overview and Characteristics	
89		10.2	Simulation	29
90	11		T SELECTION	31
91	"	11.1	Trigger	31
92		11.2	Kinematics and Isolation	31
93		11.3	Standard Model Rejection	
94		11.4	Ionization	31
95			11.4.1 dE/dx Calibration	
96			11.4.2 Mass Estimation	31
97	12	BACK	Ground estimation	33
98		12.1	Background Sources	33
99		12.2	Prediction Method	33
100		12.3	Validation and Uncertainty	33
101	13	SYSTE	EMATIC UNCERTAINTIES AND RESULTS	35
102		13.1	Systematic Uncertainties	35
103		13.2	Final Yields	35
104	14	INTFF	rpretation	37
105		14.1	Cross Sectional Limits	37
106		14.2	Mass Limits	37
107		14.3	Context for Long-Lived Searches	37
			-	

108	\vee I	CON	CLUSIONS	39	
109	15	SUMA	MARY AND OUTLOOK	41	
110		15.1	Summary	41	
111		15.2	Outlook	41	
112	VII	APPE	NDIX	43	
113	Α	INELASTIC CROSS SECTION 4			
114	В	APPEN	NDIX TEST	47	
115		B.1	Appendix Section Test	47	
116			B.1.1 Appendix Subection Test	47	
117		B.2	A Table and Listing	47	
118		B.3	Some Formulas	48	
119	BIB	liogr	АРНУ	51	

120 LIST OF FIGURES

Figure 1 The particle content of the Standard Model. 8

122	LIST	$\bigcirc F$	TABL	FS
IZZ		\sim 1	1/ 10 L	

		I C -	ГΙ	N	
124	ш	.)	ш	ΙN	IGS

Listing 1 A floating example (listings manual) 48

126 ACRONYMS

127 EG Example

PART I

9 INTRODUCTION

You can put some informational part preamble text here.

132 INTRODUCTION

131

PART II

THEORETICAL CONTEXT

You can put some informational part preamble text here.

STANDARD MODEL

The Standard Modelof particle physics seeks to explain the symmetries and interactions of all currently discovered fundamental particles. It has been tested by several generations of experiments and has been remarkably successful, no significant deviations have been found. The Standard Modelprovides predictions in particle physics for interactions up to the Planck scale (10¹⁵-10¹⁹ GeV).

The theory itself is a quantum field theory grown from an underlying $SU(3) \times SU(2) \times U(1)$ that requires the particle content and quantum numbers consistent with experimental observations (see Section 2.1). Each postulated symmetry is accompanied by an interaction between particles through gauge invariance. These interactions are referred to as the Strong, Weak, and Electromagnetic forces, which are discussed in Section 2.2.

Although this model has been very predictive, the theory is incomplete; for example, it is not able to describe gravity or astronomically observed dark matter. These limitations are discussed in more detail in Section 2.3.

2.1 PARTICLES

The most familiar matter in the universe is made up of protons, neutrons, and electrons. Protons and neutrons are composite particles, however, and are made up in turn by particles called quarks. Quarks carry both electric charge and color charge, and are bound in color-neutral combinations called baryons. The electron is an example of a lepton, and carries only electric charge. Another type of particle, the neutrino, does not form atomic structures in the same way that quarks and leptons do because it carries no color or electric charge. Collectively, these types of particles are known as fermions, the group of particles with half-integer spin.

There are three generations of fermions, although familiar matter is formed predominantly by the first generation. The generations are identical except for their masses, which increase in each generation by convention. In addition, each of these particles is accompanied by an antiparticle, with opposite-sign quantum numbers but the same mass.

The fermions compromise what is typically considered matter, but there are additional particles that are mediators of interactions between those fermions. These mediators are known as the gauge bosons, gauge in that their existance is required by gauge invariance (discussed further in Section 2.2) and bosons in that they have integer spin. The boson which mediates the electromagnetic force is the photon, the first boson to be discovered; it has no electric charge, no mass, and a spin of 1. There are three spin-1 mediators of the weak force, the two W bosons and the Z boson. The W bosons have electric charge of \pm 1 and a mass of 80.385 \pm 0.015 GeV, while the Z boson is neutral and has a mass of 91.1876 \pm

179

180

181

0.0021 GeV. The strong force is mediated by eight particles called gluons, which are massless and electrically neutral but do carry color charge.

The final particle present in the Standard Modelis the Higgs boson, which was recently observed for the first time by experiments at CERN in 2012. It is electrically neutral, has a mass of 125.7 ± 0.4 GeV, and is the only spin-0 particle yet to be observed. The Higgs boson is the gauge boson associated with the mechanism that gives a mass to the W and Z bosons.

Figure 1: The particle content of the Standard Model.

Together these particles form the entire content of the Standard Model, and are summarized in Figure 1. These are the particles that constitute the observable universe and all the so-far-observed interactions within it.

2.2 INTERACTIONS

186

The interactions predicted and described by the Standard Modelare fundamentally tied to the particles within it, both in that they describe the way those particles can influence each other and also in that the existence of the interactions requires the existence of some particles (the gauge bosons).

2.3 LIMITATIONS

192

193 SUPERSYMMETRY

- 194 3.1 MOTIVATION
- 195 3.2 STRUCTURE
- 196 3.3 PHENOMENOLOGY

197

198 LONG-LIVED PARTICLES

- 199 4.1 MECHANISMS
- 200 4.1.1 EXAMPLES IN SUPERSYMMETRY
- 201 4.2 PHENOMENOLOGY
- 202 4.2.1 DISIMILARITIES TO PROMPT DECAYS
- 203 4.2.2 CHARACTERISTIC SIGNATURES

PART III

EXPERIMENTAL STRUCTURE AND RECONSTRUCTION

You can put some informational part preamble text here.

207

THE LARGE HADRON COLLIDER

- 209 5.1 INJECTION CHAIN
- 5.2 DESIGN AND PARAMETERS
- 5.3 LUMINOSITY

THE ATLAS DETECTOR

- 214 6.1 COORDINATE SYSTEM
- 215 6.2 MAGNETIC FIELD
- 216 6.3 INNER DETECTOR
- 217 6.3.1 PIXEL DETECTOR
- 218 6.3.2 SEMICONDUCTOR TRACKER
- 219 6.3.3 TRANSITION RADIATION TRACKER
- 220 6.4 CALORIMETRY
- 221 6.4.1 ELECTROMAGNETIC CALORIMETERS
- 222 6.4.2 HADRONIC CALORIMETERS
- 223 6.4.3 FORWARD CALORIMETERS
- 224 6.5 MUON SPECTROMETER
- 225 6.6 TRIGGER
- 226 6.6.1 TRIGGER SCHEME
- 227 6.6.2 MISSING TRANSVERSE ENERGY TRIGGERS

event reconstruction

The ATLAS experiment combines measurements in the subdetectors to form a cohesive picture of each physics event.

- 7.1 TRACKS AND VERTICES
- 233 7.1.1 TRACK RECONSTRUCTION
- 234 7.1.1.1 NEURAL NETWORK
- 235 7.1.1.2 PIXEL DE/DX
- 236 7.1.2 VERTEX RECONSTRUCTION
- 237 7.2 JETS

- 7.2.1 TOPOLOGICAL CLUSTERING
- 239 7.2.2 JET ENERGY SCALE
- 7.2.3 JET ENERGY SCALE UNCERTAINTIES
- 7.2.4 JET ENERGY RESOLUTION
- 242 7.3 ELECTRONS
- 243 7.3.1 ELECTRON IDENTIFICATION
- 244 7.4 MUONS
- 245 7.4.1 MUON IDENTIFICATION
- 246 7.5 MISSING TRANSVERSE ENERGY

PART IV

CALORIMETER RESPONSE

You can put some informational part preamble text here.

2	5	Λ	

- RESPONSE MEAUREMENT WITH SINGLE HADRONS
- 252 8.1 OVERVIEW AND MOTIVATION
- 8.2 INCLUSIVE HADRON RESPONSE
- 8.3 IDENTIFIED PARTICLE RESPONSE

7	5	5	

- 256 JET ENERGY RESPONSE AND UNCERTAINTY
- 9.1 JET ENERGY RESPONSE IN SIMULATION
- 9.2 JET ENERGY UNCERTAINTY

PART V

SEARCH FOR LONG-LIVED PARTICLES

You can put some informational part preamble text here.

_		_	
7	6	Э.	

LONG-LIVED PARTICLES IN ATLAS

264 10.1 OVERVIEW AND CHARACTERISTICS

265 10.2 SIMULATION

266

267 EVENT SELECTION

- 268 11.1 TRIGGER
- 269 11.2 KINEMATICS AND ISOLATION
- 270 11.3 STANDARD MODEL REJECTION
- 271 11.4 IONIZATION
- 272 11.4.1 DE/DX CALIBRATION
- 273 11.4.2 MASS ESTIMATION

2	74	

275 BACKGROUND ESTIMATION

- 276 12.1 BACKGROUND SOURCES
- 12.2 PREDICTION METHOD
- 12.3 VALIDATION AND UNCERTAINTY

279

280 SYSTEMATIC UNCERTAINTIES AND RESULTS

- 13.1 SYSTEMATIC UNCERTAINTIES
- 13.2 FINAL YIELDS

2	_	_	

284 INTERPRETATION

- 285 14.1 CROSS SECTIONAL LIMITS
- 286 14.2 MASS LIMITS
- 14.3 CONTEXT FOR LONG-LIVED SEARCHES

PART VI

89 CONCLUSIONS

You can put some informational part preamble text here.

291

292 SUMMARY AND OUTLOOK

293 15.1 SUMMARY

294 15.2 OUTLOOK

PART VII

296 APPENDIX

299 INELASTIC CROSS SECTION

298

B

300

APPENDIX TEST

Examples: *Italics*, SMALL CAPS, ALL CAPS ¹. Acronym testing: **UML!** (UML!) – UML! – UML! (UML!) – UML!s

This appendix is temporary and is here to be used to check the style of the document.

B.1 APPENDIX SECTION TEST

Random text that should take up a few lines. The purpose is to see how sections and subsections flow with some actual context. Without some body copy between each heading it can be difficult to tell if the weight of the fonts, styles, and sizes use work well together.

309 B.1.1 APPENDIX SUBECTION TEST

Random text that should take up a few lines. The purpose is to see how sections and subsections flow with some actual context. Without some body copy between each heading it can be difficult to tell if the weight of the fonts, styles, and sizes use work well together.

B.2 A TABLE AND LISTING

Curabitur tellus magna, porttitor a, commodo a, commodo in, tortor. Donec interdum. Praesent scelerisque. Maecenas posuere sodales odio. Vivamus metus lacus, varius quis, imperdiet quis, rhoncus a, turpis. Etiam ligula arcu, elementum a,
venenatis quis, sollicitudin sed, metus. Donec nunc pede, tincidunt in, venenatis
vitae, faucibus vel, nibh. Pellentesque wisi. Nullam malesuada. Morbi ut tellus ut
pede tincidunt porta. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Etiam congue neque id dolor.

There is also a Python listing below Listing 1.

1 Footnote example.

LABITUR BONORUM PRI NO	QUE VISTA	HUMAN
fastidii ea ius	germano	demonstratea
suscipit instructior	titulo	personas
quaestio philosophia	facto	demonstrated

Table 1: Autem usu id.

3 B.3 SOME FORMULAS

Due to the statistical nature of ionisation energy loss, large fluctuations can occur in the amount of energy deposited by a particle traversing an absorber element². Continuous processes such as multiple scattering and energy loss play a relevant role in the longitudinal and lateral development of electromagnetic and hadronic showers, and in the case of sampling calorimeters the measured resolution can be significantly affected by such fluctuations in their active layers. The description of ionisation fluctuations is characterised by the significance parameter κ , which is proportional to the ratio of mean energy loss to the maximum allowed energy transfer in a single collision with an atomic electron:

You might get unexpected results using math in chapter or section heads.

Consider the pdfspacing option.

$$\kappa = \frac{\xi}{E_{\text{max}}} \tag{1}$$

 E_{max} is the maximum transferable energy in a single collision with an atomic electron.

$$E_{\text{max}} = \frac{2m_{\text{e}}\beta^{2}\gamma^{2}}{1 + 2\gamma m_{\text{e}}/m_{\text{x}} + (m_{\text{e}}/m_{\text{x}})^{2}},$$

where $\gamma = E/m_x$, E is energy and m_x the mass of the incident particle, $\beta^2 = 1 - 1/\gamma^2$ and m_e is the electron mass. ξ comes from the Rutherford scattering cross section and is defined as:

$$\xi = \frac{2\pi z^2 e^4 N_{\rm Av} Z \rho \delta x}{m_{\rm e} \beta^2 c^2 A} = 153.4 \frac{z^2}{\beta^2} \frac{Z}{A} \rho \delta x \quad \text{keV},$$

327 where

328

z charge of the incident particle

N_{Av} Avogadro's number

Z atomic number of the material

A atomic weight of the material

 ρ density

 δx thickness of the material

 κ measures the contribution of the collisions with energy transfer close to $E_{\rm max}$. For a given absorber, κ tends towards large values if δx is large and/or if β is small. Likewise, κ tends towards zero if δx is small and/or if β approaches 1.

2 Examples taken from Walter Schmidt's great gallery: http://home.vrweb.de/~was/mathfonts.html

Listing 1: A floating example (listings manual)

```
for i in xrange(10):

print i, i*i, i*i*i

print "done"
```

The value of κ distinguishes two regimes which occur in the description of ionisation fluctuations:

- 1. A large number of collisions involving the loss of all or most of the incident particle energy during the traversal of an absorber.
- As the total energy transfer is composed of a multitude of small energy losses, we can apply the central limit theorem and describe the fluctuations by a Gaussian distribution. This case is applicable to non-relativistic particles and is described by the inequality $\kappa > 10$ (i. e., when the mean energy loss in the absorber is greater than the maximum energy transfer in a single collision).
 - 2. Particles traversing thin counters and incident electrons under any conditions.
- The relevant inequalities and distributions are $0.01 < \kappa < 10$, Vavilov distribution, and $\kappa < 0.01$, Landau distribution.

350	50	Bradley Axen	
349	Berkeley, CA, September 2016		
348	Put your declaration here.		
347	47 DECLARATION		

352 COLOPHON

Not sure that this is necessary.