Co-design sur FPGA Conception d'un System on Chip (SoC)

Nicolas Gac – Imen Bahri IUT Cachan – Département GEII1 Module complémentaire S3

Demandez le programme!

- Séance 1 :
 - ✓ Panorama des techniques de conception des systèmes embarqués (très orienté FPGA du fabricant Altera)
 - ✓ Tutoriel de conception d'un SoC sur la DE2 (intégration d'un processeur NIOS) : « helloword »
 - ✓ Présentation plus détaillée du sujet de « conception hardware/software d'un système de commande d'affichage VGA »
- Séance 2 et 3 :
 - ✓ Conception hardware du module d'affichage VGA (VHDL)
- Séance 4 et 5 :
 - ✓ Conception software de la commande du module VGA (C)
 - ✓ Test de fin maquette

Planning!

- Mercredi 9 décembre :
 - 8h / 12h
 - 13h30 / 17h
- Jeudi 10 décembre :
 - ✓ 8h/12h30
- Vendredi 11 décembre :
 - ✓8h / 11h30
 - ✓ 13h / 16h30
 - ✓ 16h30 / 17h30 Test de fin maquette

Systèmes embarqués

système électronique et informatique autonome spécialisé dans une tâche bien précise aux ressources souvent limitées (encombrement spatial, consommation, contrainte temps réel...)

- Télécom/Multimédia: smartphones, tablettes, Box, Console, modem...
- Réseau/Informatique : routeur, stockage de données, impression, photocopieuse...
- Transport : Automobile, Aéronautique (avion), ferroviaire...
- Robotique
- Médical: instrumentation biomédical, scanners...
- Spatial : satellite, fusée, sonde spatiale...
- Militaire: missile...
- Mesures (métrologie) : télémètre...
- Banque: distributeur de billet, machine CB...
- Automate programmable industriel : Ascenseurs, gestion de batiments, logistique...

Systèmes à base de µC/µP

- Familles de $\mu C/\mu P$ couramment utilisées :
 - ✓ ARM: Cortex-A, Cortex-R, Cortex-M
 - ✓ Freescale ColdFire, Freescale 68HC12
 - ✓ Intel 805 ...
- Processeurs spécialisés : DSP (Texas Instrument), graphic (GPU : NVIDIA/AMD)
- Avantages µC/µP : Flexible, facilité d'évolution, bibliothèques disponibles, rapidité de développements
- Désavantage µC/µP: performances limitées

Systèmes Matériels ASIC/FPGA

- **ASIC**: Application Specific Integrated Circuit
 - ✓ du sur mesure avec conception au niveau transistors/physique (« Full custom » ou « Standard Cell ») pour gros volume de production > 100 000 pièces
- **FPGA** : logique programmable
 - ✓ Configuration et placement/routage de cellule logique à partir d'une conception en Hardware Description Language (HDL): VHDL, Vérilog, SystemC
 - ✓ Très utile pour le prototypage ou production à faible volume

FPGA: « mer de portes » logique programmable ou

plutôt reconfigurable

iMaxII (CPLD Max II - 2 kLEs)

(Cyclone V SoC - 110 kLEs + ARM A9 dual core)

FPGA: (1) Logic Fabric

- Milliers de cellules logiques élémentaires configurables, les Logic Elements (LE) :
 - ✓ 4-input LUT (Look-Up Table) + Adder + Registre
 - ✓ Configuration des LUTs par écriture dans les 2^4 SRAM bits

FPGA: (2) Routing Architecture

• Interconnexion entre les différents LEs (regroupés en LAB de 10 LEs)

Systèmes Matériels ASIC/FPGA

- Avantages ASIC : redoutablement précis et efficace (rapidité, faible consommation, déterminisme...)
- **Désavantages ASIC** : temps de développement très long (cycle 18 mois)

- Avantages FPGA : Bon compromis entre temps de développement, flexibilité et performance + possibilité d'utiliser des librairies (blocs IPs : Intellectual Property)
- **Désavantages FPGA** : nécessite des compétences hardware (VHDL...), flot logiciel pas aussi simple qu'un compilateur logiciel

Nécessité d'une nouvelle méthode de conception face à la complexité croissante

- Les progrès technologiques en semi-conducteur permet d'intégrer de + en + de complexité dans une puce
 - ✓ 2004 : Cyclone II en 90 nm offre 33 kLEs (Logic Elements)
 - ✓ 2013 : Cyclone V en 28 nm offre 110 kLEs + ARM A9 dual core
- Accélération du « time to market » : évolution rapide des produits, concurrence accrue...

Difficultés accrues pour les concepteurs de suivre le rythme...

Vers une approche système avec la conception d'une architecture hybride

Source : cours Michel Robert (Université Montpellier II)

Les System On Chip (SoC)

- Systèmes sur Puces regroupant sur une même puce :
 - ✓ Microcontrôleur et ses périphériques
 - ✓ Mémoire interne
 - ✓ Contrôleur mémoire (mémoire externe SDRAM)
 - **✓** Bus
 - ✓ Des blocs logiques (ASIC ou FPGA) : « glue logic »
 - **√** ...
- Deux types de SoC à base de FPGA :
 - ✓ 100 % FPGA : µC sur FPGA (**soft-core**) + glue logic sur FPGA
 - ✓ 50 % Hard + 50 % FPGA : µC en dur sur silicium (hard-core) + glue logic sur FPGA

Une Etude de cas Altera dans le domaine automobile (white paper « Real Time Challenge » on SoCs)

Différentes solutions hardware/logicielles possibles

Solution	Interrupt Latency	Execution Speed	Data Sets	Derterminism	Design Method
ARM Cortex-A9 Processor	Moderate	High	Very large	Moderate	С
Nios II Soft Processor	Low (vectored interrupt controller)	Moderate	Large	High	С
DSP Builder + Intellectual Property (IP)	Low	High to very high	Limited	Very high (no jitter)	MATLAB/ Simulink
Hardware-Based State Machines	Very low	Extremely high	Small	Very high (no jitter)	FPGA design, HDL tools

Temps de réaction (Temps de prise en compte de l'interruption + Temps d'exécution de l'ISR)

Fluctuation du temps de réaction (jitter)

Conception d'un SoC sur la DE2 : « commande de l'affichage sur écran VGA »

- FPGA Cyclone II
 - ✓ Glue Logic : Module VGA qui va générer les signaux vers le port VGA relié à l'écran (pixels + synchronisation ligne/image)
 - ✓ Processeur : soft-core NIOS qui va commander via une liaison série relié au PC le module VGA pour changer les couleurs sur l'écran (programmation en C)
- Flot logiciel
 - I. Quartus:
 - a) Génération du NIOS
 - b) Conception VHDL du module VGA
 - c) Intégration NIOS +VGA dans un schématic top du circuit
 - d) Synthèse logique puis configuration du FPGA
 - II. Eclipse:
 - a) Génération du code (drivers « BSP ») et écriture de votre programme (main.c)
 - b) Compilation logicielle
 - c) Exécution du programme sur le FPGA configuré comme un SoC

Tutoriel « Helloword »

- But : créer un premier SoC avec la configuration de votre premier processeur NIOS. Ce NIOS sera relié au switch et au LEDs, aucun bloc hardware (VHDL ou IP) ne sera créer.
- Documents disponibles dans le cours Dokeos
 S3 Module complémentaire Co-design (C/VHDL)
 UTCACHANGEII1S3MCCOD—nicolas.gac
 - Tutorial Altera (parties utiles surlignées en jaune fluo)
 - Documents Altera pour l'utilisation de l'UART du NIOS
 - DE2.qsf
 - Sujets 1 et 2 du projet VGA

Préparation du terrain

REPERTOIRE DETRAVAIL

· Créer un répertoire personnel en local dans C:/Travail

Ex: C/Travail/toto_and_titi

Puis un répertoire pour le tutoriel

C/Travail/toto_and_titi/Myfirst_codesign

• Aller rechercher dans le cours Dokeos « S3 Module complémentaire Co-design (C/VHDL) », le fichier de configuration des pins « DE2.qsf », placer le dans le répertoire Myfirst_codesign

QUARTUS

• Créer sous Quartus dans le répertoire « Myfirst_codesign » un projet

Nom du projet : Myfisrt_codesign FPGA : Cyclone 2 EP2C35F67C6

• Créer un fichier schématique (new -> Block Diagram/Schematic File), enregistrez le (save as) comme « top.bdf » et définissez comme le top level entity (onglet Files dans le project navigator, clic droit sur le top.bdf, « Set as top level entity »