Test of Three Slam Frameworks

1. Introduction

We have test three slam frameworks including *hdl_graph_slam*, *LeGO_LOAM*, and *lidarslam ros2*. First, a brief introduction to the three frameworks.

The first framework is *hdl_graph_slam*. It is an open source **ROS** package for real-time 6DOF SLAM using a 3D LIDAR. It is based on 3D Graph SLAM with NDT scan matching-based odometry estimation and loop detection. It also supports several graph constraints, such as GPS, IMU acceleration (gravity vector), IMU orientation (magnetic sensor), and floor plane (detected in a point cloud).

The github address: https://github.com/koide3/hdl graph slam

The second framework is *LeGO_LOAM*. This framework is designed as a lightweight and ground optimized lidar odometry and mapping (LeGO-LOAM) system for ROS compatible UGVs. The system takes in point cloud from a Velodyne VLP-16 Lidar (palced horizontally) and optional IMU data as inputs. It outputs 6D pose estimation in real-time.

The github address: https://github.com/RobustFieldAutonomyLabT/LeGO-LOAM
The third framework is https://github.com/RobustFieldAutonomyLabT/LeGO-LOAM
The third framework is https://github.com/RobustFieldAutonomyLabT/LeGO-LOAM
The third framework is https://github.com/loam-nos2 slam package of the frontend using OpenMP-boosted gicp/ndt scan matching and the backend using graph-based slam. Its process map uses threads and Future (this is the standard library of cpp) to update asynchronously with scan matching compared to https://github.com/https://gith

The github address: https://github.com/rsasaki0109/lidarslam ros2

2. Test

We test the three slam frameworks using 16/32/64 line lidar dataset on two types of hardware. This test records and compares the cpu/memory usage and trajectory offset of the three frameworks. We have shown specific values and figures to help you better understand this test.

The most figures are drawn by the evo tools. Currently I have not found the way using evo tools to process the message in ROS2. So I make a screen capture for lidarslam_ros2 instead. As a result there is missing some information than the other two frameworks.

The trajectories and offset on axis of frameworks are shown separately for datasets without ground truth. For those datasets with ground truth, we directly show the error map and ape values.

Since there are no graphical display on the cloud server, we cannot get the trajectory only the cpu/memory usage.

(1) 16 line dataset

The first dataset we used is NSH indoor outdoor dataset. You can download it from

https://doc-0c-44-

 $\frac{docs.googleusercontent.com/docs/securesc/7m9cafd7us0kjfjq79u1lg4a08m1h2qd/nv2h7blpte85qeo19v1hn1bb9rd46f04/1598539050000/10637983609117326248/07574466021164400993/1s05tBQOLNEDDurlg48KiUWxCp-$

 $\underline{YqYyGH?e=download\&authuser=0\&nonce=40t1ej7u573dk\&user=07574466021}\\164400993\&hash=mrju6o8hkuefb65fo1eb0vaupl2vuk2k.$

Since we did not find the 16 line dataset with ground truth, it is unable to test the trajectory offset.

[1] on cloud server with Xeon 6266C-16U 32G

- a. specific values
- **See Appendix 1.**
- b. figures

Figure 1 cpu/memory usage using 16 line dataset on cloud server

Table 1 trajectories using 16 line dataset on cloud server

dataset	ush_indoor_outdoor.bag					
framework	hdl_graph_slam	LeGO_LOAM	lidarslam_ros2			
trajectory	- /odom - 40 - 30 - 20 - 10 - 10 - 20 - 10 - 20 - 30 - 20 - 10 - 20 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 3	-80 -60 -40 -20	There are no graphical display on cloud server.			
xyz view	75	0				

From the figures and tables above, we find that the **hdl_graph_slam** takes up more cpu resource and less memory resource than the other two frameworks. Its slam ability looks like better.

[2] on pc with i7-1065G7-1U 8G

a. specific values

See Appendix 2.

b. figures

Figure 2 cpu/memory usage using 16 line dataset on pc

Table 2 trajectories using 16 line dataset on pc

From the figures and table above, we found the same truth as the cloud server.

(2) 32 line dataset

The first dataset we used here is an indoor dataset hdl_501.bag which you can download from http://www.aisl.cs.tut.ac.jp/databases/hdl graph slam/hdl 501.bag.tar.gz. You

Figure 3 hdl_501.bag

The second dataset we used here is a outdoor dataset hdl_400.bag which you can download from http://www.aisl.cs.tut.ac.jp/databases/hdl_graph_slam/hdl_400.bag.tar.gz. You

can see it from Figure 4.

Figure 4 hdl_400.bag

[1] on cloud server with Xeon 6266C-16U 32G

a. specific values

See Appendix 3&4.

b. figures

Figure 5 cpu/memory usage using hdl_501.bag

Figure 6 cpu/memory usage using hdl_400.bag

Table 3 trajectories using 32 line dataset on cloud server

dataset		hdl_501.bag	
framework	hdl_graph_slam	LeGO_LOAM	lidarslam_ros2
trajectory	-4.0_3.5_3.0_2.5_2.0_1.5_1.0_0.5_0.0	- Atmap.base_link	There are no graphical display on cloud server.

From the figures and table above, we found the same truth as the test using 16 line dataset.

[2] on pc with i7-1065G7-1U 8G

a. specific values

See Appendix 5&6.

b. figures

Table 4 trajectories using 32 line dataset on pc

dataset	J	hdl_501.bag	*
framework	hdl_graph_slam	LeGO_LOAM	lidarslam_ros2
trajectory	-4 -3 -2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0 0.3 1.0 15 2.0 2.5 3.0 3.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	
xyz view	0 (E) -2 / / / / / / / / / / / / / / / / / /	E 1	
rpy view	20 10 10 10 10 10 10 10 10 10 10 10 10 10	(6) 100 // Integrated to init (7) 100 // 100	

dataset	hdl 400.bag							
framewor	hdl_graph_slam	LeGO_LOAM	lidarslam_ros2					
k								
trajectory	-40 -30 -20 -10 20 30 -10	- Integrated to init						
xyz view	(E) 0 /odom 1	(E) 40						

The slam abilities of frameworks look worse than them in cloud server.

(3) 64 line dataset

The dataset we used here is 10.bag of the KITTI dataset.

[1] on cloud server with Xeon 6266C-16U 32G

- a. specific values
- **See Appendix 7.**
- b. figures

Figure 9 cpu/memory usage using 10.bag

Table 5 trajectories using 64 line dataset on cloud server

[2] on pc with core i7-1065G7-1U 8G

a. specific values

See Appendix 8.

b. figures

Figure 10 cpu/memory usage using 10.bag

Table 6 trajectories using 64 line dataset on pc

From the figures and table abstained from cloud server and pc, we found that the hdl_graph_slam and LeGO_LOAM both have good slam ability. The lidarslam_ros2 cannot draw the correct trajectory after long time parameter adjustment. This lidarslam_ros2 have few adjustable parameters. The best trajectory in the parameter adjustment process is shown in the following figure.

Figure 11 the best trajectory using kitti dataset

3. Conclusion

From the test I get the following conclusion. The *hdl_graph_slam* and *LeGO_LOAM* both have good slam ability for 16/32/64 line lidar dataset. The hdl_graph_slam prefer using more cpu resources for calculation while the *LeGO_LOAM* prefer using more memory resources. The third framework lidarslam_ros2 which I think is not a proven framework. The author of it is a Japanese scholar named Ryohei Sasaki which is a good person. I learned that the framework is similar to *hdl_graph_slam* and add asynchronous update function after his helping and teaching. It has few adjustable parameters which make it have poor slam ability than other frameworks.

4. Appendix

(1) Appendix 1

	nsh_indoor_outdoor.bag							
hdl_g	graph_slam	lidarslam ros2		LeGo	O_LOAM			
CPU/%	MEMORY/M	CPU/%	MEMORY/M	CPU/%	MEMORY/M			
	В		В		В			
0	80.86442	0	129.2539	0	186.8672			
174.7	102.2109	11.5	135.1328	12	204.3203			
261.1	107.4431	25.5	135.1367	12.5	204.3203			
246.8	107.07	27.5	135.1367	13.5	204.3203			
179.3	106.4328	26.4	135.1367	13.5	204.3203			
81.3	107.6917	25.5	135.1367	16.5	205.2031			

112.1 105.6954 48.5 154.0039 16 205.7656 119.5 108.0051 49 161.4375 14 206.2891 120.3 107.9954 49.5 172.2305 14 207.5742 112.8 108.9762 49 182.25 14.5 208.0898 112.6 109.1891 64.5 185.2656 14.5 209.4375 130.9 114.1818 56 193.8789 17.5 210.4609 94.3 108.6987 55.7 207.0313 16.5 210.9766 78.3 110.8889 46.5 211.5039 14.5 213.2969 91.5 114.9448 41 215.0547 16.5 215.1016 97.9 110.4518 41.5 223.9141 15 215.875 131.5 112.9701 43 229.7148 16.5 215.66484 112 117.5352 47 234.1055 18 217.2734 98.5 120.4763 58 238.7773					1	
119.5 108.0051 49 161.4375 14 206.2891 120.3 107.9954 49.5 172.2305 14 207.5742 112.8 108.9762 49 182.25 14.5 208.0898 112.6 109.1891 64.5 185.2656 14.5 209.4375 130.9 114.1818 56 193.8789 17.5 210.4609 94.3 108.6987 55.7 207.0313 16.5 210.9766 78.3 110.8889 46.5 211.5039 14.5 213.2969 91.5 114.9448 41 215.0547 16.5 213.8125 82 114.6814 33 215.3867 16.5 215.1016 97.9 110.4518 41.5 223.9141 15 215.875 131.5 112.9701 43 229.7148 16.5 216.6484 112 117.5352 47 234.1055 18 217.2734 98.5 120.4763 58 238.7773	155.3	106.4692	36.5	148.9844	14.5	205.9688
120.3 107.9954 49.5 172.2305 14 207.5742 112.8 108.9762 49 182.25 14.5 208.0898 112.6 109.1891 64.5 185.2656 14.5 209.4375 130.9 114.1818 56 193.8789 17.5 210.4609 94.3 108.6987 55.7 207.0313 16.5 210.9766 78.3 110.8889 46.5 211.5039 14.5 213.2969 91.5 114.9448 41 215.0547 16.5 213.8125 82 114.6814 33 215.3867 16.5 215.1016 97.9 110.4518 41.5 223.9141 15 215.875 131.5 112.9701 43 229.7148 16.5 216.6484 112 117.5352 47 234.1055 18 217.2734 98.5 120.4763 58 238.7773 17.5 218.0469 154.8 114.359 58.2 242.332						
112.8 108.9762 49 182.25 14.5 208.0898 112.6 109.1891 64.5 185.2656 14.5 209.4375 130.9 114.1818 56 193.8789 17.5 210.4609 94.3 108.6987 55.7 207.0313 16.5 210.9766 78.3 110.8889 46.5 211.5039 14.5 213.2969 91.5 114.9448 41 215.0547 16.5 213.8125 82 114.6814 33 215.3867 16.5 215.1016 97.9 110.4518 41.5 223.9141 15 215.875 131.5 112.9701 43 229.7148 16.5 216.6484 112 117.5352 47 234.1055 18 217.2734 98.5 120.4763 58 238.7773 17.5 218.0469 154.8 114.359 58.2 242.332 17.5 219.5898 138.1 118.768 74.5 247.5117			 			
112.6 109.1891 64.5 185.2656 14.5 209.4375 130.9 114.1818 56 193.8789 17.5 210.4609 94.3 108.6987 55.7 207.0313 16.5 210.9766 78.3 110.8889 46.5 211.5039 14.5 213.2969 91.5 114.9448 41 215.0547 16.5 213.8125 82 114.6814 33 215.3867 16.5 215.1016 97.9 110.4518 41.5 223.9141 15 215.875 131.5 112.9701 43 229.7148 16.5 216.6484 112 117.5352 47 234.1055 18 217.2734 98.5 120.4763 58 238.7773 17.5 218.0469 154.8 114.359 58.2 242.332 17.5 219.5898 138.1 118.768 74.5 247.5117 17 220.8789 158.4 120.7236 67 253.3008					+	
130.9 114.1818 56 193.8789 17.5 210.4609 94.3 108.6987 55.7 207.0313 16.5 210.9766 78.3 110.8889 46.5 211.5039 14.5 213.2969 91.5 114.9448 41 215.0547 16.5 213.8125 82 114.6814 33 215.3867 16.5 215.1016 97.9 110.4518 41.5 223.9141 15 215.875 131.5 112.9701 43 229.7148 16.5 216.6484 112 117.5352 47 234.1055 18 217.2734 98.5 120.4763 58 238.7773 17.5 218.0469 154.8 114.359 58.2 242.332 17.5 219.5898 138.1 118.768 74.5 247.5117 17 220.8789 158.4 120.7236 67 253.3008 17 221.9102 181.6 120.3446 83.5 254.8047						
94.3 108.6987 55.7 207.0313 16.5 210.9766 78.3 110.8889 46.5 211.5039 14.5 213.2969 91.5 114.9448 41 215.0547 16.5 213.8125 82 114.6814 33 215.3867 16.5 215.1016 97.9 110.4518 41.5 223.9141 15 215.875 131.5 112.9701 43 229.7148 16.5 216.6484 112 117.5352 47 234.1055 18 217.2734 98.5 120.4763 58 238.7773 17.5 218.0469 154.8 114.359 58.2 242.332 17.5 219.5898 138.1 118.768 74.5 247.5117 17 220.8789 158.4 120.7236 67 253.3008 17 221.9102 181.6 120.3446 83.5 254.8047 20 223.3398 126.2 119.6871 86 272.1523			ł		1	
78.3 110.8889 46.5 211.5039 14.5 213.2969 91.5 114.9448 41 215.0547 16.5 213.8125 82 114.6814 33 215.3867 16.5 215.1016 97.9 110.4518 41.5 223.9141 15 215.875 131.5 112.9701 43 229.7148 16.5 216.6484 112 117.5352 47 234.1055 18 217.2734 98.5 120.4763 58 238.7773 17.5 218.0469 154.8 114.359 58.2 242.332 17.5 219.5898 138.1 118.768 74.5 247.5117 17 220.8789 138.1 118.768 74.5 247.5117 17 220.8789 158.4 120.7236 67 253.3008 17 221.9102 181.6 120.3446 83.5 254.8047 20 223.3398 126.2 119.6871 86 272.1523 <t< td=""><td>130.9</td><td>114.1818</td><td>56</td><td>193.8789</td><td>17.5</td><td>210.4609</td></t<>	130.9	114.1818	56	193.8789	17.5	210.4609
91.5 114.9448 41 215.0547 16.5 213.8125 82 114.6814 33 215.3867 16.5 215.1016 97.9 110.4518 41.5 223.9141 15 215.875 131.5 112.9701 43 229.7148 16.5 216.6484 112 117.5352 47 234.1055 18 217.2734 98.5 120.4763 58 238.7773 17.5 218.0469 154.8 114.359 58.2 242.332 17.5 219.5898 138.1 118.768 74.5 247.5117 17 220.8789 138.1 118.768 74.5 247.5117 17 220.8789 158.4 120.7236 67 253.3008 17 221.9102 181.6 120.3446 83.5 254.8047 20 223.3398 126.2 119.6871 86 272.1523 19 223.8555 97.8 126.2268 98 283.4297 22	94.3	108.6987	55.7	207.0313	16.5	210.9766
82 114.6814 33 215.3867 16.5 215.1016 97.9 110.4518 41.5 223.9141 15 215.875 131.5 112.9701 43 229.7148 16.5 216.6484 112 117.5352 47 234.1055 18 217.2734 98.5 120.4763 58 238.7773 17.5 218.0469 154.8 114.359 58.2 242.332 17.5 219.5898 138.1 118.768 74.5 247.5117 17 220.8789 158.4 120.7236 67 253.3008 17 221.9102 181.6 120.3446 83.5 254.8047 20 223.3398 126.2 119.6871 86 272.1523 19 223.8555 97.8 126.2268 98 283.4297 22.5 224.8867 138.6 124.942 101 296.4688 20.4 226.1758 107.2 123.2339 108.5 303.8008 <	78.3	110.8889	46.5	211.5039	14.5	213.2969
97.9 110.4518 41.5 223.9141 15 215.875 131.5 112.9701 43 229.7148 16.5 216.6484 112 117.5352 47 234.1055 18 217.2734 98.5 120.4763 58 238.7773 17.5 218.0469 154.8 114.359 58.2 242.332 17.5 219.5898 138.1 118.768 74.5 247.5117 17 220.8789 158.4 120.7236 67 253.3008 17 221.9102 181.6 120.3446 83.5 254.8047 20 223.3398 126.2 119.6871 86 272.1523 19 223.8555 97.8 126.2268 98 283.4297 22.5 224.8867 138.6 124.942 101 296.4688 20.4 226.1758 107.2 123.2339 108.5 303.8008 21.5 228.4961 122.3 125.4137 119 311.1719	91.5	114.9448	41	215.0547	16.5	213.8125
131.5 112.9701 43 229.7148 16.5 216.6484 112 117.5352 47 234.1055 18 217.2734 98.5 120.4763 58 238.7773 17.5 218.0469 154.8 114.359 58.2 242.332 17.5 219.5898 138.1 118.768 74.5 247.5117 17 220.8789 158.4 120.7236 67 253.3008 17 221.9102 181.6 120.3446 83.5 254.8047 20 223.3398 126.2 119.6871 86 272.1523 19 223.8555 97.8 126.2268 98 283.4297 22.5 224.8867 138.6 124.942 101 296.4688 20.4 226.1758 107.2 123.2339 108.5 303.8008 21.5 228.4961 122.3 125.4137 119 311.1719 21 230.043 100.7 125.5262 114 319.5156	82	114.6814	33	215.3867	16.5	215.1016
112 117.5352 47 234.1055 18 217.2734 98.5 120.4763 58 238.7773 17.5 218.0469 154.8 114.359 58.2 242.332 17.5 219.5898 138.1 118.768 74.5 247.5117 17 220.8789 158.4 120.7236 67 253.3008 17 221.9102 181.6 120.3446 83.5 254.8047 20 223.3398 126.2 119.6871 86 272.1523 19 223.8555 97.8 126.2268 98 283.4297 22.5 224.8867 138.6 124.942 101 296.4688 20.4 226.1758 107.2 123.2339 108.5 303.8008 21.5 228.4961 122.3 125.4137 119 311.1719 21 230.043 100.7 125.5262 114 319.5156 20.5 232.1133 105.4 128.164 122.4 328.5781	97.9	110.4518	41.5	223.9141	15	215.875
98.5 120.4763 58 238.7773 17.5 218.0469 154.8 114.359 58.2 242.332 17.5 219.5898 138.1 118.768 74.5 247.5117 17 220.8789 158.4 120.7236 67 253.3008 17 221.9102 181.6 120.3446 83.5 254.8047 20 223.3398 126.2 119.6871 86 272.1523 19 223.8555 97.8 126.2268 98 283.4297 22.5 224.8867 138.6 124.942 101 296.4688 20.4 226.1758 107.2 123.2339 108.5 303.8008 21.5 228.4961 122.3 125.4137 119 311.1719 21 230.043 100.7 125.5262 114 319.5156 20.5 232.1133 105.4 128.164 122.4 328.5781 24 234.1758 128 125.7233 126 347.4258	131.5	112.9701	43	229.7148	16.5	216.6484
154.8 114.359 58.2 242.332 17.5 219.5898 138.1 118.768 74.5 247.5117 17 220.8789 158.4 120.7236 67 253.3008 17 221.9102 181.6 120.3446 83.5 254.8047 20 223.3398 126.2 119.6871 86 272.1523 19 223.8555 97.8 126.2268 98 283.4297 22.5 224.8867 138.6 124.942 101 296.4688 20.4 226.1758 107.2 123.2339 108.5 303.8008 21.5 228.4961 122.3 125.4137 119 311.719 21 230.043 100.7 125.5262 114 319.5156 20.5 232.1133 105.4 128.164 122.4 328.5781 24 234.1758 128 125.7233 126 347.4258 21.4 235.4648 111.9 123.4025 96.5 359.0781	112	117.5352	47	234.1055	18	217.2734
138.1 118.768 74.5 247.5117 17 220.8789 158.4 120.7236 67 253.3008 17 221.9102 181.6 120.3446 83.5 254.8047 20 223.3398 126.2 119.6871 86 272.1523 19 223.8555 97.8 126.2268 98 283.4297 22.5 224.8867 138.6 124.942 101 296.4688 20.4 226.1758 107.2 123.2339 108.5 303.8008 21.5 228.4961 122.3 125.4137 119 311.1719 21 230.043 100.7 125.5262 114 319.5156 20.5 232.1133 105.4 128.164 122.4 328.5781 24 234.1758 128 125.7233 126 347.4258 21.4 235.4648 111.9 123.4537 113 354.1914 23 236.4961 120.5 124.025 96.5 359.0781	98.5	120.4763	58	238.7773	17.5	218.0469
158.4 120.7236 67 253.3008 17 221.9102 181.6 120.3446 83.5 254.8047 20 223.3398 126.2 119.6871 86 272.1523 19 223.8555 97.8 126.2268 98 283.4297 22.5 224.8867 138.6 124.942 101 296.4688 20.4 226.1758 107.2 123.2339 108.5 303.8008 21.5 228.4961 122.3 125.4137 119 311.1719 21 230.043 100.7 125.5262 114 319.5156 20.5 232.1133 105.4 128.164 122.4 328.5781 24 234.1758 128 125.7233 126 347.4258 21.4 235.4648 111.9 123.4537 113 354.1914 23 236.4961 120.5 124.025 96.5 359.0781 20.5 236.4961 134.9 125.0503 92 365.4531	154.8	114.359	58.2	242.332	17.5	219.5898
181.6 120.3446 83.5 254.8047 20 223.3398 126.2 119.6871 86 272.1523 19 223.8555 97.8 126.2268 98 283.4297 22.5 224.8867 138.6 124.942 101 296.4688 20.4 226.1758 107.2 123.2339 108.5 303.8008 21.5 228.4961 122.3 125.4137 119 311.1719 21 230.043 100.7 125.5262 114 319.5156 20.5 232.1133 105.4 128.164 122.4 328.5781 24 234.1758 128 125.7233 126 347.4258 21.4 235.4648 111.9 123.4537 113 354.1914 23 236.4961 120.5 124.025 96.5 359.0781 20.5 236.4961 134.9 125.0503 92 365.4531 20.5 236.4961 143.3 122.5138 103 376.8672 <td>138.1</td> <td>118.768</td> <td>74.5</td> <td>247.5117</td> <td>17</td> <td>220.8789</td>	138.1	118.768	74.5	247.5117	17	220.8789
126.2 119.6871 86 272.1523 19 223.8555 97.8 126.2268 98 283.4297 22.5 224.8867 138.6 124.942 101 296.4688 20.4 226.1758 107.2 123.2339 108.5 303.8008 21.5 228.4961 122.3 125.4137 119 311.1719 21 230.043 100.7 125.5262 114 319.5156 20.5 232.1133 105.4 128.164 122.4 328.5781 24 234.1758 128 125.7233 126 347.4258 21.4 235.4648 111.9 123.4537 113 354.1914 23 236.4961 120.5 124.025 96.5 359.0781 20.5 236.4961 134.9 125.0503 92 365.4531 20.5 236.4961 143.3 125.2174 98 370.2539 20.4 236.4961 143.3 125.1362 98 385.0586 <td>158.4</td> <td>120.7236</td> <td>67</td> <td>253.3008</td> <td>17</td> <td>221.9102</td>	158.4	120.7236	67	253.3008	17	221.9102
97.8 126.2268 98 283.4297 22.5 224.8867 138.6 124.942 101 296.4688 20.4 226.1758 107.2 123.2339 108.5 303.8008 21.5 228.4961 122.3 125.4137 119 311.1719 21 230.043 100.7 125.5262 114 319.5156 20.5 232.1133 105.4 128.164 122.4 328.5781 24 234.1758 128 125.7233 126 347.4258 21.4 235.4648 111.9 123.4537 113 354.1914 23 236.4961 120.5 124.025 96.5 359.0781 20.5 236.4961 134.9 125.0503 92 365.4531 20.5 236.4961 106.5 125.2174 98 370.2539 20.4 236.4961 143.3 122.5138 103 376.8672 21 236.4961 117.8 125.1362 98 385.0586 <td>181.6</td> <td>120.3446</td> <td>83.5</td> <td>254.8047</td> <td>20</td> <td>223.3398</td>	181.6	120.3446	83.5	254.8047	20	223.3398
138.6 124.942 101 296.4688 20.4 226.1758 107.2 123.2339 108.5 303.8008 21.5 228.4961 122.3 125.4137 119 311.1719 21 230.043 100.7 125.5262 114 319.5156 20.5 232.1133 105.4 128.164 122.4 328.5781 24 234.1758 128 125.7233 126 347.4258 21.4 235.4648 111.9 123.4537 113 354.1914 23 236.4961 120.5 124.025 96.5 359.0781 20.5 236.4961 134.9 125.0503 92 365.4531 20.5 236.4961 106.5 125.2174 98 370.2539 20.4 236.4961 143.3 122.5138 103 376.8672 21 236.4961 117.8 125.1362 98 385.0586 19.5 236.4961 119.6 131.1668 109.5 392.976	126.2	119.6871	86	272.1523	19	223.8555
107.2 123.2339 108.5 303.8008 21.5 228.4961 122.3 125.4137 119 311.1719 21 230.043 100.7 125.5262 114 319.5156 20.5 232.1133 105.4 128.164 122.4 328.5781 24 234.1758 128 125.7233 126 347.4258 21.4 235.4648 111.9 123.4537 113 354.1914 23 236.4961 120.5 124.025 96.5 359.0781 20.5 236.4961 134.9 125.0503 92 365.4531 20.5 236.4961 106.5 125.2174 98 370.2539 20.4 236.4961 143.3 122.5138 103 376.8672 21 236.4961 117.8 125.1362 98 385.0586 19.5 236.4961 119.6 131.1668 109.5 392.9766 19 236.4961 131.4 124.4358 97 399.293 </td <td>97.8</td> <td>126.2268</td> <td>98</td> <td>283.4297</td> <td>22.5</td> <td>224.8867</td>	97.8	126.2268	98	283.4297	22.5	224.8867
122.3 125.4137 119 311.1719 21 230.043 100.7 125.5262 114 319.5156 20.5 232.1133 105.4 128.164 122.4 328.5781 24 234.1758 128 125.7233 126 347.4258 21.4 235.4648 111.9 123.4537 113 354.1914 23 236.4961 120.5 124.025 96.5 359.0781 20.5 236.4961 134.9 125.0503 92 365.4531 20.5 236.4961 106.5 125.2174 98 370.2539 20.4 236.4961 143.3 122.5138 103 376.8672 21 236.4961 117.8 125.1362 98 385.0586 19.5 236.4961 119.6 131.1668 109.5 392.9766 19 236.4961 131.4 124.4358 97 399.293 19 236.4961	138.6	124.942	101	296.4688	20.4	226.1758
100.7 125.5262 114 319.5156 20.5 232.1133 105.4 128.164 122.4 328.5781 24 234.1758 128 125.7233 126 347.4258 21.4 235.4648 111.9 123.4537 113 354.1914 23 236.4961 120.5 124.025 96.5 359.0781 20.5 236.4961 134.9 125.0503 92 365.4531 20.5 236.4961 106.5 125.2174 98 370.2539 20.4 236.4961 143.3 122.5138 103 376.8672 21 236.4961 117.8 125.1362 98 385.0586 19.5 236.4961 119.6 131.1668 109.5 392.9766 19 236.4961 131.4 124.4358 97 399.293 19 236.4961	107.2	123.2339	108.5	303.8008	21.5	228.4961
105.4 128.164 122.4 328.5781 24 234.1758 128 125.7233 126 347.4258 21.4 235.4648 111.9 123.4537 113 354.1914 23 236.4961 120.5 124.025 96.5 359.0781 20.5 236.4961 134.9 125.0503 92 365.4531 20.5 236.4961 106.5 125.2174 98 370.2539 20.4 236.4961 143.3 122.5138 103 376.8672 21 236.4961 117.8 125.1362 98 385.0586 19.5 236.4961 119.6 131.1668 109.5 392.9766 19 236.4961 131.4 124.4358 97 399.293 19 236.4961	122.3	125.4137	119	311.1719	21	230.043
128 125.7233 126 347.4258 21.4 235.4648 111.9 123.4537 113 354.1914 23 236.4961 120.5 124.025 96.5 359.0781 20.5 236.4961 134.9 125.0503 92 365.4531 20.5 236.4961 106.5 125.2174 98 370.2539 20.4 236.4961 143.3 122.5138 103 376.8672 21 236.4961 117.8 125.1362 98 385.0586 19.5 236.4961 119.6 131.1668 109.5 392.9766 19 236.4961 131.4 124.4358 97 399.293 19 236.4961	100.7	125.5262	114	319.5156	20.5	232.1133
111.9 123.4537 113 354.1914 23 236.4961 120.5 124.025 96.5 359.0781 20.5 236.4961 134.9 125.0503 92 365.4531 20.5 236.4961 106.5 125.2174 98 370.2539 20.4 236.4961 143.3 122.5138 103 376.8672 21 236.4961 117.8 125.1362 98 385.0586 19.5 236.4961 119.6 131.1668 109.5 392.9766 19 236.4961 131.4 124.4358 97 399.293 19 236.4961	105.4	128.164	122.4	328.5781	24	234.1758
120.5 124.025 96.5 359.0781 20.5 236.4961 134.9 125.0503 92 365.4531 20.5 236.4961 106.5 125.2174 98 370.2539 20.4 236.4961 143.3 122.5138 103 376.8672 21 236.4961 117.8 125.1362 98 385.0586 19.5 236.4961 119.6 131.1668 109.5 392.9766 19 236.4961 131.4 124.4358 97 399.293 19 236.4961	128	125.7233	126	347.4258	21.4	235.4648
134.9 125.0503 92 365.4531 20.5 236.4961 106.5 125.2174 98 370.2539 20.4 236.4961 143.3 122.5138 103 376.8672 21 236.4961 117.8 125.1362 98 385.0586 19.5 236.4961 119.6 131.1668 109.5 392.9766 19 236.4961 131.4 124.4358 97 399.293 19 236.4961	111.9	123.4537	113	354.1914	23	236.4961
106.5 125.2174 98 370.2539 20.4 236.4961 143.3 122.5138 103 376.8672 21 236.4961 117.8 125.1362 98 385.0586 19.5 236.4961 119.6 131.1668 109.5 392.9766 19 236.4961 131.4 124.4358 97 399.293 19 236.4961	120.5	124.025	96.5	359.0781	20.5	236.4961
143.3 122.5138 103 376.8672 21 236.4961 117.8 125.1362 98 385.0586 19.5 236.4961 119.6 131.1668 109.5 392.9766 19 236.4961 131.4 124.4358 97 399.293 19 236.4961	134.9	125.0503	92	365.4531	20.5	236.4961
117.8 125.1362 98 385.0586 19.5 236.4961 119.6 131.1668 109.5 392.9766 19 236.4961 131.4 124.4358 97 399.293 19 236.4961	106.5	125.2174	98	370.2539	20.4	236.4961
119.6 131.1668 109.5 392.9766 19 236.4961 131.4 124.4358 97 399.293 19 236.4961	143.3	122.5138	103	376.8672	21	236.4961
131.4 124.4358 97 399.293 19 236.4961	117.8	125.1362	98	385.0586	19.5	236.4961
	119.6	131.1668	109.5	392.9766	19	236.4961
	131.4	124.4358	97	399.293	19	236.4961
100.2 130.131 71 703.7003 10.3 230.4701	100.2	130.131	91	405.9063	18.5	236.4961
78.6 134.1132 62 408.4453 18.5 236.4961	78.6	134.1132	62	408.4453	18.5	236.4961
159.9 131.3734 51.5 408.4453 16.5 236.4961	159.9	131.3734	51.5	408.4453	16.5	236.4961
154 128.7551 44.3 408.4453 16.5 236.4961	154	128.7551	44.3	408.4453	16.5	236.4961
2 129.0495 17.5 408.4453 1.5 236.4961	2	129.0495	17.5	408.4453	1.5	236.4961
1 131.9742 2.5 408.4453 1 236.4961	1	131.9742	1	408.4453	1	236.4961
1 137.2302 1.5 408.4453 1.5 236.4961	1	137.2302	1.5	408.4453	1.5	
1 136.1493 2 408.4453 1.5 236.4961	1	136.1493	2	408.4453	1.5	236.4961

(2) Appendix 2

nsh indoor outdoor.bag						
hdl g	graph slam	_	lam ros2	LeGo	O LOAM	
CPU/%	MEMORY/M	CPU/%	MEMORY/M	CPU/%	MEMORY/M	
	В		В		В	
0	77.07422	0	120.1408	0	186.8672	
167.5	95.22266	15.9	134.7768	12	204.3203	
257.5	98.05469	27	134.0624	12.5	204.3203	
241.5	99.08594	29.4	128.6824	13.5	204.3203	
170.6	102.6719	28.1	132.8094	13.5	204.3203	
73	103.2773	25.9	127.6456	16.5	205.2031	
146	102.457	38.8	146.2697	14.5	205.9688	
105	100.7383	51.9	150.1141	16	205.7656	
110	98.50391	53	157.6813	14	206.2891	
112	102.3281	54.2	171.5789	14	207.5742	
106	105.9805	51.1	180.5884	14.5	208.0898	
104.5	105.0273	65.8	179.1809	14.5	209.4375	
124.5	106.6953	56.8	192.1774	17.5	210.4609	
91.5	106.3359	58.8	199.1009	16.5	210.9766	
72.5	106.3359	47	205.2033	14.5	213.2969	
83.6	107.8828	43.9	212.0066	16.5	213.8125	
74.5	108.1406	37.6	213.653	16.5	215.1016	
94	108.1406	45.1	218.8662	15	215.875	
127	108.3984	43.7	221.0668	16.5	216.6484	
103.5	110.4609	49	227.6904	18	217.2734	
93.5	114.0703	58.7	229.9987	17.5	218.0469	
148.8	111.9805	60.4	238.2309	17.5	219.5898	
135.5	113.5273	76.2	240.1861	17	220.8789	
151	111.8984	67.4	251.8254	17	221.9102	
173	112.7031	84.4	245.5701	20	223.3398	
125	115.4844	90	266.9869	19	223.8555	
89.6	117.4766	102.8	276.9203	22.5	224.8867	
129.5	118.6797	103.6	289.6538	20.4	226.1758	
104.5	120.2266	111.7	299.2934	21.5	228.4961	
112.5	120.2266	120.8	309.3204	21	230.043	
91.5	120.2266	116.9	314.7211	20.5	232.1133	
96.5	120.7383	124.9	325.2748	24	234.1758	
119.5	120.7383	126.2	341.7159	21.4	235.4648	
106.5	120.7383	114.2	348.5569	23	236.4961	
113	120.9961	99	352.2864	20.5	236.4961	
126.5	120.9961	95.4	363.9393	20.5	236.4961	
105.5	120.9961	100.4	366.3348	20.4	236.4961	

134.8	118.8984	107.6	368.7357	21	236.4961
110	123.2813	99.1	378.0112	19.5	236.4961
118	123.9258	114.2	391.6818	19	236.4961
126	122.4766	100	396.7675	19	236.4961
95.5	127.1172	91.6	402.2645	18.5	236.4961
71.1	127.1172	63.7	406.9241	18.5	236.4961
158	127.1172	53.6	399.4503	16.5	236.4961
151	127.6289	48.2	401.8069	16.5	236.4961
1	127.6289	19.8	406.9962	1.5	236.4961
1	127.6289	3	406.8318	1	236.4961
1.5	127.6289	1	407.2353	1.5	236.4961
1	127.6289	1	407.6989	1.5	236.4961

(3) Appendix 3

hdl_501.bag							
hdl	_graph_slam	lidarslam_ros2		LeGO_LOAM			
CPU/%	MEMORY/MB	CPU/%	MEMORY/MB	CPU/%	MEMORY/MB		
0	77.98438	6.7	130.9961	0	188.7461		
210.4	99.57031	4.5	131.2539	17	212.8672		
472.5	100.9336	4.5	136.1172	26	216.6797		
271.5	101.2891	9	139.2461	27.4	219.2109		
400	107.0156	15.9	139.4336	29.5	221.8281		
201.5	106.4844	20.5	152.4023	28	220.3516		
170	103.0781	20	153.4297	29.5	220.9258		
122.4	104.0781	19	158.0977	28	220.9258		
99.5	103.4688	18.5	161.2773	30	221.25		
128	106.8438	19.9	161.2461	29.5	221.2109		
97.5	111.2305	18	161.2461	29.5	224.4023		
115	113.25	19.5	169.0938	30.4	224.9063		
174.6	109.7266	21.5	167.1406	33	226.4336		
126	109.2227	19.5	167.1406	29.5	224.1797		
149.5	112.3242	21.4	175.7969	32	224.1445		
125.5	109.9336	20.5	175.7969	28.5	225.9492		
188.5	113.6484	20	175.7969	31	225.9961		
148.3	112.2773	21	175.7969	30	226.207		
145.5	113.3242	22.5	175.9453	31.4	226.4922		
173	113.4648	23.4	177.9219	31	226.5664		
138.5	112.8633	22	177.9219	30.5	226.5938		
161.5	110.5781	22.5	181.6328	29	226.6875		
130.5	116.25	22.5	182.2266	29	225.0703		
83.6	113.0781	22	181.9609	28	225.0703		
90	115.6563	21.9	181.9609	26.5	225.3242		
12	115.6563	6.5	181.9609	4	225.3242		

0.5	115.6563	4.5	181.9609	1.5	225.3242
0.5	115.6563	4.5	181.9609	2.5	225.3242
1	115.6563	3	181.9609	2.5	225.3242

(4) Appendix 4

hdl_400.bag						
hdl	graph_slam	lida	arslam_ros2	LeC	LeGO_LOAM	
CPU/%	MEMORY/MB	CPU/%	MEMORY/MB	CPU/%	MEMORY/MB	
0	77.91406	0	130.8203	6.7	188.7422	
733	129.6367	4.5	134.1992	27.9	216.0859	
529	146.8086	3.5	134.1992	44.9	221.9414	
314	146.7813	4.5	134.1992	50	226.4258	
305.5	151.2734	3.5	134.1992	50	232.6094	
327	151.4609	4.5	134.1992	58	237.4688	
270	150.3945	8	142.5508	54.8	241.3359	
239.5	153.7617	38.5	163.2852	56.9	245.4609	
290.5	153.9141	22.5	163.457	62.9	245.6406	
256.7	143.793	2.5	163.457	63	253.6211	
229.5	154.5547	3	171.7422	62.9	256.4805	
218	156.1016	3	171.7422	66.3	259.0039	
270.5	157.3008	4	171.7422	65	263.8984	
297	158.0742	3	171.7422	66.4	265.1914	
309	158.5898	4.5	171.7422	67	268.2813	
225.5	158.5898	3.5	171.7422	66.5	273.3984	
240.5	158.5898	3	171.7422	65.3	277.3047	
231	160.6523	4	171.7422	69.5	280.3555	
247.5	159.9492	31.5	176.8008	67.8	285.5039	
272.1	161.6641	123.5	191.8125	69	289.3711	
332	157.332	34.8	193.6172	72.5	289.8867	
266.5	166.7109	4	193.6172	71.3	289.8867	
384	158.832	3.5	193.6172	71.5	289.8867	
241.5	170.832	4	193.6172	71.9	289.8867	
243.8	173.3008	3	193.6172	71.5	289.8867	
261	173.8281	4	193.6172	74	288.1484	
262	166.793	4	193.6172	71.3	289.6914	
350	176.8906	4	193.6172	75.5	289.6914	
312	168.4492	4	196.5781	77.8	298.7148	
396.5	177.4727	3	200.0781	78	299.7461	
434.3	181.3594	4	200.8633	78	305.1602	
348.5	175.9414	3.5	200.8633	77.7	306.4492	
302	181.3555	3.5	200.8633	79.5	307.9961	
302	182.2344	16	199.4883	81.4	316.5039	
307.5	185.8438	4	199.4883	83	320.8867	

			T		
254	184.2891	3.5	199.4883	85	325.2695
324.4	194.5703	3.5	199.4883	84	329.6523
375	203.0781	4	199.4883	88.2	333.5195
221	204.9258	4	199.4883	94.8	337.9023
226	204.9688	82.5	207.2891	93	353.5898
250.7	204.9688	41.3	207.2891	95	356.6836
227	205.0273	3.5	207.2891	103.5	360.8086
230	205.2109	3.5	207.2891	99.1	363.3828
426	207.1445	4	210.2031	98.4	368.2813
275	207.1445	3	214.5625	99.5	370.8594
398	216.8086	2.5	213.6641	102.9	371.6328
260.5	217.0664	33	213.6641	103	373.6953
293.5	219.6445	11.5	219.8242	107.5	386.8438
311	223.5117	2.5	219.8242	106	391.2266
237	223.5117	4	219.8242	107.9	392
316.4	223.5117	4	219.8242	99.5	396.125
483	226.8633	2.5	219.8242	110.5	398.9609
263	231.2227	21.5	224.207	102	398.9609
226	227.3984	116.5	250.0117	97	399.2188
257.5	227.1406	24.5	250.0117	97	399.2188
239.5	229.6172	2.5	250.0117	96.6	399.2188
230.8	226.6563	3	250.0117	97.4	399.2188
250	229.2344	3.5	250.0117	100.5	399.2188
412.5	236.9648	3	250.0117	97	399.2188
266.5	223.8477	96.5	260.0352	96.5	399.2188
344.5	223.0352	113	254.7539	91	399.2188
228.9	231.2227	114	287.8672	94	399.2188
395.5	230.1992	23	287.8672	92	399.2188
468.5	228.7148	3.5	287.8672	86	399.2188
246.5	228.7148	3.5	287.8672	40	399.4766
0	228.7148	4	287.8672	2	399.4766
1	228.7148	3.5	287.8672	2	399.4766
0	228.7148	4	287.8672	3	399.4766

(5) Appendix 5

	hdl_501.bag							
hdl	_graph_slam	lida	arslam_ros2	LeC	GO_LOAM			
CPU/%	MEMORY/MB	CPU/%	MEMORY/MB	CPU/%	MEMORY/MB			
6.7	77.35938	6.7	130.9961	0	188.7461			
109	100.7617	4.5	131.2539	17	212.8672			
122.4	107.1289	4.5	136.1172	26	216.6797			
133.5	110.125	9	139.2461	27.4	219.2109			
188.5	110.5	15.9	139.4336	29.5	221.8281			

169	111.1367	20.5	152.4023	28	220.3516
188	111.9219	20	153.4297	29.5	220.9258
181.5	109.3164	19	158.0977	28	220.9258
186.6	111.8906	18.5	161.2773	30	221.25
170	112.9219	19.9	161.2461	29.5	221.2109
208.5	110.625	18	161.2461	29.5	224.4023
202.5	114.8398	19.5	169.0938	30.4	224.9063
208.5	114.6992	21.5	167.1406	33	226.4336
219	113.9531	19.5	167.1406	29.5	224.1797
143.5	112.7031	21.4	175.7969	32	224.1445
121.9	113.2188	20.5	175.7969	28.5	225.9492
156.5	116.2266	20	175.7969	31	225.9961
206.5	115.625	21	175.7969	30	226.207
175.6	113.7031	22.5	175.9453	31.4	226.4922
225	119.6172	23.4	177.9219	31	226.5664
213.9	112.9414	22	177.9219	30.5	226.5938
188	120.0039	22.5	181.6328	29	226.6875
137.5	116.4219	22.5	182.2266	29	225.0703
75	116.9375	22	181.9609	28	225.0703
111	116.9375	21.9	181.9609	26.5	225.3242
1	116.9375	6.5	181.9609	4	225.3242
1	116.9375	4.5	181.9609	1.5	225.3242
1.5	116.9375	4.5	181.9609	2.5	225.3242
1.5	116.9375	3	181.9609	2.5	225.3242

(6) Appendix 6

hdl 400.bag						
hdl	graph slam	lidarslam ros2		LeGO LOAM		
CPU/%	MEMORY/MB	CPU/%	MEMORY/MB	CPU/%	MEMORY/MB	
0	77.17188	0	127.6406	5.9	183.8064	
122.5	135.6406	3.9	130.2817	26.8	207.1176	
254	146.5273	2.4	126.764	42.2	214.5086	
256.7	159.9336	4.1	125.9809	48.3	217.5711	
257	168.4414	2	125.1246	49.5	227.004	
262	177.75	3	133.1595	56.4	237.227	
262.2	170.6563	7.1	142.1951	52.4	239.6161	
263	175.293	38.4	157.285	54.1	236.641	
263	184.0586	20.6	154.6551	60.2	238.544	
263.5	190.5039	0.7	154.0145	61.9	251.6666	
262.7	194.1133	1.1	163.2936	61.8	254.0544	
259.5	203.1367	2.3	169.6886	63.4	252.9819	
265.2	203.1367	2.2	171.6056	62.8	258.5346	
263.5	203.1367	1.3	165.6285	64.2	261.6517	

262	212.1602	2.7	166 2415	((262 1567
263	212.1602	2.7	166.3415	66	263.1567
261.2	219.6367	2	171.6081	63.8	268.7359
263	211.5234	1.3	166.8504	65.3	271.0572
263	214.0977	3.5	167.5611	69.2	272.8657
264.5	218.1406	29.7	173.352	67.6	279.0973
260.7	218.1406	123.3	189.4326	67.8	285.1476
264	222.7813	33	187.1941	71.3	287.4603
264	228.6914	2.7	187.1647	69.8	284.9329
266.5	232.5586	1.7	187.6501	70.6	288.8528
261.5	234.9023	3.1	183.9837	69	285.2836
260.2	237.2188	2.4	185.3095	70.3	280.037
266.5	254.4297	3.7	185.237	71.8	280.4141
261.2	265.8555	3.8	188.724	70.7	279.7159
265	280.9258	3.9	189.8375	73.1	285.9976
267.5	293.2148	2.5	195.394	77.2	289.5493
262.5	299.7227	1.9	196.4505	77	292.6497
263.5	309.9023	3.1	200.3305	77.7	298.9814
259.5	321.0742	2.3	199.7192	74.9	298.2344
263.2	328.9883	2.2	199.2654	78.4	301.5272
259.5	339.043	15	191.9863	79.1	309.3019
255	349.0039	2.4	194.3793	81.6	316.6698
261	349.7773	3	197.0641	84.3	322.3194
256	351.6406	2.2	191.8562	83.8	324.9117
260.2	353.4414	3.7	192.1193	87.4	331.8539
262	356.1445	4	197.2427	94.8	329.9862
264.5	358.7227	82.4	198.3733	91.4	352.4852
263	358.7227	39.4	203.741	92.6	355.7994
262.7	361.5586	2.4	202.7367	101.8	351.704
265	362.4961	1.6	199.5248	98.4	355.9083
267.5	362.4961	3	209.9819	98.1	362.7622
268.5	362.4961	1	213.5996	98.7	368.2811
267.5	362.4961	1.2	207.8675	102	369.1277
267.2	366.1055	32.5	204.7233	101.5	363.9116
268	373.0664	9.6	217.6073	106.5	376.0156
259.5	385.4414	1.3	218.0759	104.4	383.6986
264	397.625	3.9	214.7398	104.9	382.5274
254	417.8711	3.6	214.9291	97.5	393.3135
242.3	424.0313	0.9	215.5609	109.8	390.1581
246.5	425.5781	20.4	218.4621	99.2	394.1346
205	429.4453	115.2	242.1789	96	394.605
244	429.4453	23.8	240.7366	96.1	391.5763
245	429.4453	1.8	246.5657	94.1	397.2881
242.8	429.4453	2.6	249.2077	96.6	395.5651

250.5	429.4453	3.3	241.4347	97.7	392.1815
244.5	429.4453	2.4	245.7158	94.1	396.7373
241	388.4609	95.2	250.6474	95.5	389.959
252.7	398.418	112.2	251.4578	88.4	399.1755
247.5	398.4531	112.7	281.4793	92.1	389.9268
244	374.4336	21.7	287.1776	91.6	390.9947
249.5	376.1484	3.5	279.4748	83.1	393.3048
256.5	376.1484	3	278.9003	38.6	390.1401
266.7	354.4609	3.5	282.6857	3	398.4428
229	354.4609	4	280.5193	3	391.7327
158.5	354.4609	4	284.8671	3	394.4251

(7) Appendix 7

10.bag						
hdl	graph_slam	lidarslam ros2		LeC	GO_LOAM	
CPU/%	MEMORY/MB	CPU/%	MEMORY/MB	CPU/%	MEMORY/MB	
0	76.83203	0	128.5156	0	203.6797	
130	197.6406	3.5	129.8047	7	203.6797	
276.5	241.2188	2	129.8047	8	203.6797	
259.5	305.9922	82	170.207	6	203.6797	
259.7	362.9688	199	265.4492	120	242.4492	
262.5	421.4922	198	296.4727	156.4	253.082	
253.5	473.8281	194	328.5938	148	255.6563	
269.5	510.9531	191	364.082	158	263.3555	
268	564.0625	190	394.7891	145	268.8242	
268.2	592.3555	194	417.9727	163.5	268.8242	
263.5	630.5117	195	440.8086	128	272.0352	
271.5	657.582	185	469.918	109	287.0859	
265.5	682.0742	182.5	532.4102	103	288	
261.5	691.6133	191.5	551.0781	92	288	
263.7	701.9258	169.7	570.9414	88	304.9805	
256	712.2969	170.5	617.6016	100	304.9805	
269.5	727.7656	190.5	601.8125	106.9	306.0117	
259.5	745.8125	177.5	627.9453	98	306.0117	
271.5	762.5703	191.1	637.8516	97	306.0117	
269.2	776.4922	186.5	673.8984	110	309.0898	
270.5	790.9297	196.5	667.3555	115	309.8633	
268.5	805.1094	187.5	681.3359	118	311.9219	
268	820.5781	193.5	688.25	124	312.4375	
272.5	839.6563	185.1	632.2461	112	313.9844	
262	851.5156	194.5	681.8398	111	322.1875	
256.5	851.5156	206.5	695.7617	120	323.2188	
263.2	851.5156	197.5	709.7109	134	327.3438	

261	851.5156	201	733.6406	118.8	328.1133
271.5	855.5156	190.5	735.4023	111	328.8867
267.5	855.5156	194.5	738.4609	108	336.8789
264.5	855.5156	179.5	741	101	336.8789
265.7	855.5156	169.7	739.2969	121	338.9414
265	855.5156	187.5	765.8867	103	339.7148
269	855.5469	189	778.9063	113	340.2305
266.5	856.5781	192.5	810.3984	100.9	342.8086
266.5	856.5781	194.5	816.6602	110	343.8398
265.2	856.5781	186.6	849.3711	155	349.2539
265.5	862.25	182.4	885.9375	133	351.0586
264	874.8828	187	909.2734	134	353.3789
263.5	880.0391	192.5	930.1445	137	360.3359
265.2	883.6484	178	951.0313	124	361.8828
264.5	896.2813	184.6	968.4727	160	363.4297
269.5	900.1484	174	1003.332	123	363.6875
268.5	907.8828	207	999.6484	121	363.6875
261.5	909.6875	176.5	1009.902	122.8	364.4609
264	909.6875	204	1013.188	114	364.4609
267.7	921.3242	185	1015.176	136	364.9727
263.5	921.3242	194	1030.539	120	367.5508
259.5	934.2422	194.5	1044.039	129	368.582
271.5	947.4414	197.5	1074.203	141	370.9023
266	955.9492	188.6	1085.41	129	373.2227
266.7	959.043	214.5	1095.23	127	379.4102
267.5	959.043	187	1112.941	98	380.4414
269.5	959.043	193	1120.469	108.9	380.4414
267.5	959.043	191.5	1138.422	109	392.043
265	959.043	191.5	1099.328	120	392.043
265.2	959.043	189.5	1193.43	152	395.1367
267	959.043	200.5	1125.762	105	395.9102
258.5	959.043	223	1217.488	97	396.4258
268.5	959.043	198	1160.992	105	401.582
270.5	959.1055	196	1176.992	112.9	401.582
261.7	959.1055	203.5	1196.887	155	410.8633
257.5	959.1055	187	1229.926	121	411.1211
264	959.1055	58	1246.168	116	412.9258
294	959.1055	84.6	1254.16	110	424.5938
279.5	959.1055	44.5	1221.824	99	425.1094
276	959.1055	3.5	1221.824	4	425.8828

(8) Appendix 8

hdl	graph slam	lida	arslam ros2	LeC	GO LOAM
CPU/%	MEMORY/MB	CPU/%	MEMORY/MB	CPU/%	MEMORY/MB
0	77.07422	0	131.1045	0	207.6876
794	158.668	5.1	131.2952	14.5	208.7392
967	160.8008	4.7	137.7249	17.8	209.4096
770.6	178.1797	82.1	181.3728	6.5	213.7907
618.5	188.2344	201.2	272.375	126.8	245.5416
590	195.1953	200.4	307.2832	164.4	262.0224
556.5	196.2266	196.2	330.2901	151.9	261.475
407	196.2266	193	367.2007	162.3	273.8038
299	197.2578	192.4	401.0411	147.8	277.4578
301	197.2578	197.7	421.2637	169	271.9618
272	197.5156	198	441.5996	131.6	280.1469
184.5	197.5156	185.1	469.9919	116.8	294.81
189.5	197.5156	185.2	532.947	104.4	293.7964
195	197.5156	193.6	553.2439	98.9	295.4094
284.5	198.2891	172.4	579.5708	96.1	313.2851
388	200.8672	172.8	623.6049	106.3	311.7053
358	201.3828	195.2	612.477	109.6	311.0309
272	201.3828	180.2	634.7976	104.1	316.126
229.9	201.3828	192.3	649.6305	104.9	306.7216
331.5	202.6719	186.7	677.3958	114.5	319.7371
340.5	206.0234	199.9	676.6128	124.8	320.8131
432	207.0547	187.6	685.4261	121.7	315.632
404	208.8555	198.1	697.8267	125.2	320.5678
407.5	209.3711	187.9	632.662	115.1	324.5809
411.5	212.4648	196.2	684.3644	117.2	330.1538
444	213.7539	209	702.7905	123.7	327.9568
400.5	215.043	198.6	716.9282	138.8	333.614
340.8	215.043	203.9	737.368	121.3	336.4183
277	215.043	195.2	745.3665	111.1	339.6615
259	215.043	199.1	745.2963	113.8	343.2644
231.5	215.043	183.2	741.1002	101.8	339.0367
264	215.043	174.2	748.3157	130.2	344.7212
279.1	215.043	191.4	774.029	108.7	341.1089
238.5	225.6563	191.3	787.4197	116.8	348.8226
241	225.7188	197.4	811.8704	101.2	346.3456
327.5	226.0625	195.1	824.3402	112.1	354.0297
421.5	226.0625	188.4	851.486	157.2	359.3929
504	226.6406	184.6	894.918	139.5	360.1453
623.5	239.7891	191.8	910.9625	141.2	359.388
548	239.7891	196.8	930.7658	142.2	363.372
561	242.8828	178.4	952.067	132.1	369.6419

507.5	242.9766	184.7	973.4592	167.1	363.834
528.5	242.9766	176.1	1009.857	124.2	371.4595
630.5	258.4414	210.8	1007.935	124	365.1561
517.5	258.4414	179.2	1020.148	125.1	369.88
388	267.1211	207.1	1016.43	123.3	370.4748
407	267.1211	189.4	1025.064	138	374.7516
314.5	267.1211	198.1	1030.554	122.6	378.4536
272	267.1211	195.6	1052.554	136	376.9083
277.5	267.1211	197.7	1079.748	149.9	379.2294
268.5	267.1211	192.2	1095.336	137.3	381.91
174.1	267.1563	216	1103.299	135.8	382.6473
194.5	267.1563	187.3	1114.559	105.9	385.6877
190.5	267.1563	193.8	1131.619	113.9	381.4005
309.5	267.1563	196.3	1146.653	118.7	396.7408
341	267.1563	192.4	1103.104	129.6	395.1551
370	267.1563	191.7	1198.491	155.9	404.6382
371.5	267.1563	203.4	1134.463	105.2	401.0337
272.5	267.1563	227.1	1219.832	105.8	404.6557
203.5	289.582	201.9	1163.725	111.9	404.3525
166	289.582	200.6	1181.431	113.4	412.1129
148.5	289.582	204.2	1201.441	157.6	421.4721
166	289.582	187.4	1237.668	128.3	411.7722
48	289.582	58.5	1248.799	119.4	419.8129
1	289.582	89.1	1263.242	118.3	431.1596
1	289.582	44.6	1226.517	101.7	434.3226
1	289.582	4.5	1270.155	4	430.2388