JEGYZŐKÖNYV MODERN FIZIKA LABORATÓRIUM

9. MÉRÉS - RÖNTGEN-FLUORESZCENCIA ANALÍZIS

• Mérést végezte : Brindza Mátyás és Szűcs Máté

 \bullet Mérés időpontja : 2021.09.28.

• Jegyzőkönyv leadásának időpontja : 2021.10.12.

A mérés célja

A mérés során különböző minták anyagösszetételének meghatározására törekszünk röntgen-fluoreszcencia analízis (RFA) segítségével. Ez a módszer - sok más anyagvizsgálati módszerekkel ellentétben - roncsolásmentes, nem hagy nyomot a mintán. A mérőberendezés kalibrációját és a felbontógépesség meghatározását követően meghatározzuk egy ismeretlen minta alkotó elemeit - ezen belül is a Moseley-törvény konstansait a K_x vonalakra -, megvizsgáljuk két minta ólomkoncentrációjának arányát, valamint a wolfram, a bizmut és az ólom L_x vonalaival meghatározzuk a Moseley-törvény konstansait.

A mérés elméleti háttere

Az RFA módszer lényege, hogy (Röntgen-)sugárzással eltávolítunk egy elektront az atomok egy belső héjáról, melyben ennek hatására egy külsőbb héjról leugrik egy elektron az előbbi belső héjra - eközben elektromágneses sugárzást kibocsájtva. Az elektron által szintugráskor kibocsátott foton energiája anyagra jellemző - ezért nevezzük karakterisztikus Röntgen-sugárzásnak. Előfordul, hogy nem épp a legbelső elektront lökjük ki, ahogy az is, hogy nem a legkülső héjról töltődik be a helye. Az első két K_x -és az első három L_x vonal ismeretében azonban egyértelműen kimutatható, milyen anyagról van szó.

További "zavaró" tényezőket képeznek: a) Auger-effektus - az atomból egy külsőbb héjról származó elektron távozik, és egy belsőbb héjról származó elektron tölti be a besugárzással keltett elektronlyukat. b) A kibocsátott sugárzás elnyelődhet a minta anyagában - Compton- vagy fotoeffektussal kölcsönhatnak a minta más atomjaival. c) Ha az eredeti atomnak nagy a rendszáma, az általa kibocsátott sugárzás kiüthet egy kisebb rendszámú atom belső héjairól elektronokat - így az utóbbi atom karakterisztikus sugárzása kerül a detektorba. Tehát a mátrixhatás igencsak jelentős lehet, azaz a környező atomok rendszáma befolyásolja a mérés pontosságát. Ezeket a hatásokat egyesíthetjük egy adott konfiguációra (külső standardizálás) egyetlen paraméter formájában (későbbiekben Q).

A Moseley-törvény

A karakterisztikus Röntgen-fotonok energiáit Henry Moseley mérte meg a huszadik század elején. Észrevette, hogy a fotonok frekvenciájának (energiájának) gyöke egyenesen arányos az adott atomok rendszámával - külön K_x , L_x , stb. vonalakra. A konkrét összefüggés :

$$E_X = A \cdot (Z - B)^2$$

ahol a B paraméter fejezi ki azt, hogy az elektronfelhő leárnyékolja a pozitív magot, továbbá

$$A = -E_0 \cdot \left(\frac{1}{m^2} - \frac{1}{n^2}\right)$$

A minta összetevőinek koncentrációja

Ha ábrázoljuk a detektált fotonok becsapódási számát energiájuk függvényében (és ha megfelelően hosszú ideig mérünk, hogy a zaj mértéke eltörpüljön), tüskéket,

darabszám maximumokat kapunk a minta összetevőire jellemző elektron-átmenetek energiáinál. Ha sikerült egy anyagnak egynél több elektron-átmenetéhez tartozó vonalát megtalálni, akkor jó eséllyel az anyag ténylegesen jelen van a mintában. Fennáll annak a veszélye, hogy egy nagyobb rendszámú anyag L_x vonalát tévesen egy kisebb rendszámú anyag K_x vonalának azonosítjuk be (vagy fordítva), illetve megtörténhet, hogy a tüskék átfednek.

Ennek fényében egy anyag koncentrációja arányos a tüske területével, a mérés időtartamával, és a fentebb említett Q faktorral. Tehát, ha ismert mértékben megváltoztatjuk egy anyag koncentrációját a mintánkban, akkor meghatározható az anyag eredeti koncentrációja. Hasonlóképp egy anyag két különböző mintában vett koncentrációjának aránya is meghatározható.

A mérés összeállítása

A mérőberendezés összeállítását az alábbi kép vázolja.

A sugárforrásunk röntgengenerátor. A készülékben beépített biztonsági zár van : a gyorsítófeszültség csak zárt kamra esetén kapcsolható be. A röntgencsövet javasolt 35kV gyorsítófeszültség és $10\mu A$ mellett működtetni.

Miután a minta felületén lejátszódik a röntgen-fluoreszcencia, a foton egy része a detektor felé halad. A legvalószínűbb eset, hogy a detektorban fotoeffektussal detektálódnak. A detektornak leadott energiával arányos elektron-lyuk pár keletkezik, melyek kivezetődnek az elektródokra. Tehát a beütést egy rövid áramimpulzus követi, mely egy jelformázón is átmegy. Összességében a detektornak leadott energia arányos a jel amplitúdójával, mely egy amplitúdó ADC-vel egész számmá alakítható.

Kiértékelés

Kalibráció

Mivel a berendezés expliciten csak azt tudja kimutatni, hogy adott csatornaszám mellett mennyi beütés történt, ezért szükséges hozzárendelni csatornaszámokhoz energia értékeket. Ez egy ismert minta energiacsúcsainak bevitelével történik.

A mintában két elemet is találtunk : rezet és ónt. Mindkét elemnek egyértelműen kimutatható a K_{α} és K_{β} vonala. A négy vonalból a két legszélsőt választottuk ki a kalibrációra, azaz a réz K_{α} vonalát és az ón K_{β} vonalát.

A kiértékelő program automatikusan érzékeli a csúcsokat, és bevihető a kalibrációra kiválasztott két csúcs mellé az energia érték is.

!!! felirat

	Csatornaszám	E[keV]
$\mathrm{Cu}[K_{\alpha}]$	202.91	8.047
$\operatorname{Sn}[K_{\beta}]$	717.44	28.483

A kalibráció

Az illesztés eredménye:

$$E(n) = A + B \cdot n$$

$$A = -12.1389eV$$

$$B = 39.7178eV$$

ahol n a csatornaszám.

Felbontóképesség

Határozzuk meg a rendszer energia-felbontóképességét a vas K_{α} vonalára. A kiértékelő program meg tudja határozni egy csúcs félértékszélességét (Full Width at Half Maximum). A félértékszélesség ≈ 2.3548 -szor nagyobb, mint σ (egészen pontosan FWHM = $2 \cdot \sqrt{2 \cdot ln(2)} \cdot \sigma$).

Az energia-felbontóképesség:

$$\delta = \frac{\sigma}{E}$$

A vas K_{α} vonala 6.403keV-nál található, melyre a kalibráció alapján az alábbiakat

!!! felirat

mértük (legyen $x_{1/2}$ a félértékszélesség):

$$E = 6.4022858 keV$$

 $x_{1/2} = 0.139 keV$

Mivel az energiában a sok tizedes az illesztett paraméterekből jön, és $x_{1/2}$ nincs megadva ennyi tizedessel, ezért kerekítsünk három tizedesre az energiában is (illetve a K_x és L_x vonalak energiáját is csak három tizedesig adtuk meg).

Tehát a felbontóképesség:

$$\delta = \frac{x_{1/2}}{2 \cdot \sqrt{2 \cdot ln(2)} \cdot E} = 9.220223 \cdot 10^{-3} = 0.922\%$$

Ismeretlen minta összetétele

Az ismeretlen minta vizsgálatánál a kiértékelő program az alábbi csúcsokat fedezte fel. A terület feltüntetésére azért van szükség, hogy lássuk, az egyes K_x és L_x vonalak bekövetkezésének gyakorisága hogyan aránylik.

Ismeretlen összetételű minta spektruma

i	Elem	Átmenet	E[keV]	$E_{m\acute{e}rt}[keV]$	T_{net}
1	Ag	L_{α}	2.984	2.967	116
2	Ca	K_{α}	3.691	3.682	1542
3	Va	K_{α}	4.952	4.953	3846
4	Va	K_{β}	5.427	5.429	665
5	Fe	K_{α}	6.403	6.402	7565
6	Fe	K_{eta}	7.057	7.058	1494
7	?	?	?	7.514	202
8	Cu	K_{α}	8.047	8.050	6366
9	Cu	K_{eta}	8.904	8.905	942
10	Pb	L_{α}	10.549	10.573	108
11	Se	K_{α}	11.221	11.228	6746
12	Se	K_{eta}	12.495	12.499	1098
13	Sr	K_{α}	14.164	14.147	7628
14	Sr	K_{β}	15.834	15.833	1185
15	Мо	K_{α}	17.478	17.444	7378
16	Мо	K_{β}	19.607	19.608	1170
17	Ag	K_{α}	22.162	22.150	845
18	Ag	K_{β}	24.942	24.911	203

Ismeretlen összetételű mintában talált átmeneti vonalak

Bizonyára látszik, hogy az első, a második és a hetedik csúcs kilóg a sorból. Az ezüst L_{α} vonala azért került rá a spektrumra, mert elég nagy hozzá a rendszáma és a koncentrációja. A kálcium K_{β} vonalát nem sikerült megtalálni, így nem lehetünk biztosak benne, hogy tényleg található a mintában kálcium. A hetedik mérési pont

nem lehet a szamárium L_{γ} vonala, mivel látnunk kellene az $L\beta$ vonalát. Hasonlóképp nem lehet a holmium L_{α} vonala sem. Elképzelhető, hogy a fentebb felsorolt "zavaró" tényezők egyike okozza ezt a csúcsot.

A Moseley-törvény konstansai K-vonalakra

A Moseley-törvény konstansainak meghatározása egyenes illesztéssel - K_{α} és K_{β} vonalak esetén Az illesztés eredménye $(A + B \cdot x)$:

$$A_{\alpha} = (-0.14767 \pm 0.00876)\sqrt{keV}$$

 $B_{\alpha} = (0.10304 \pm 0.00026)$

$$A_{\beta} = (-0.22685 \pm 0.01083)\sqrt{keV}$$

 $B_{\beta} = 0.11084 \pm 0.00031$

Ólomkoncentráció

Ez a mérés egy tiszta és egy szennyezett minta ólomkoncentrációjának arányával foglalkozik.

A szennyezett minta energiaspektruma

A tisztább minta energiaspektruma

A két csúcsra kapott 1-1 terület :

$$T_{p,1} = 288.275 keV$$

$$T_{p,2} = 290.764 keV$$

$$T_{t,1} = 88.605 keV$$

 $T_{t,2} = 92.904 keV$

ahol $X_{t,x}$ a tiszta mintára vonatkozik és $X_{p,x}$ a szennyezettre. A t mintánál 300s volt a mérés időtartama, a szennyezettnél 60s. Így a koncentrációik aránya:

$$\frac{c_p}{c_t} = 15.9505 \pm 0.3168$$

Tehát a szennyezett mintában nagyjából $16\times$ nagyobb az ólom koncentrációja.

Wolfram és Bizmut

 ${\bf A}$ wolfram energiaspektruma

 ${\bf A}$ bizmut energiaspektruma

A Moseley-törvény vonalai L-vonalakra

Elem	Átmenet	E[keV]	$E_{m\acute{e}rt}[keV]$	T_{net}
Pb	L_{α}	10.549	10.553	288
Pb	L_{β}	12.611	12.618	291
Pb	L_{γ}	14.762	14.167	20
Bi	L_{α}	10.836	10.831	4245
Bi	L_{β}	13.021	13.017	4198
Bi	L_{γ}	15.244	15.256	427
W	L_{α}	8.396	8.388	2033
W	L_{β}	9.670	9.679	1297
W	L_{γ}	11.283	11.307	168

Az ólom, a bizmut és a wolfram mintában talált ${\cal L}_x$ átmeneti vonalak

A Moseley-törvény konstansainak meghatározása egyenes illesztéssel - L_{α} , L_{β} és L_{γ} vonalak esetén Az illesztés eredménye:

$$A_{\alpha} = (-0.35503 \pm 0.01159)\sqrt{keV}$$

$$B_{\alpha} = (0.04393 \pm 0.00015)$$

$$A_{\beta} = (-0.97184 \pm 0.00448)\sqrt{keV}$$

$$B_{\beta} = 0.05517 \pm 5.61e - 5$$

$$A_{\gamma} = (-0.82003 \pm 0.69513)\sqrt{keV}$$

$$B_{\gamma} = 0.05645 \pm 0.00871$$

Diszkusszió

A detektor és az ADC pontossága miatt nagyon reális értékeket mértünk a K_x és az L_x átmenetek energiáira. A kirajzolódott csúcsok többségét be is tudtuk azonosítani. A legnagyobb hibát talán a koncentrációk aranyánál tapasztaltuk - ez is főképp a diszkrét felbontás, a terület miatt történt. A Moseley-törvény konstansainak hibája sem túl nagy. Alapvetően sikeresnek nevezhető a mérés.

Felhasznált irodalom

[1] Modern fizika laboratórium - Egyetemi tananyag, szerkesztette: Koltai János, lektorálta: Papp Elemér (2013.)