Fundamentals of Stranger of St

Procedures for Economic Analysis

Time Value of Money

- Value of money changes over time
- Economic equivalence should be introduced to determine the different amount of money at different points in time
- Present Worth: To determine the present worth P of a given future amount F at discount rate i
- Discount rate: financing cost + risk + earning rate + ···
 - Minimum Attractive Rate of Return (MARR)
 - A project is not economically viable unless it is expected to return at least the MARR
 - Weighted Average Cost of Capital (WACC)
 - 43 Weighted average cost of equity financing and debt financing
 - Risk Premium: evaluation on the risks involved in the investment

Equivalence of Present & Future Value

F??
$$F_1 = P \times (1+0.1)$$

 $F_2 = F_1 \times (1+0.1) = P \times (1+0.1)^2$
P MARR=10% $F_n = F_{n-1} \times (1+0.1) = P \times (1+0.1)^n$

$$P = \frac{F}{(1+0.1)^n}$$

Present Value, Future Value, Annual Value

Financial Evaluation Methods

Profitability

Net Present Value: (NPV)

NPV (Net Present Value)

All future costs and revenues are transformed to equivalent monetary units NOW \Rightarrow IF NPV \geq 0, then it is economically viable

MARR 10%

$$NPV = 9.52$$

Present Value

Decision Guideline

$$NPV = PV_{in} - PV_{out}$$

$$NPV \ge 0 \rightarrow Go$$

 $NPV < 0 \rightarrow No Go$

Accepted !!

- The comparison must be made for equal-service periods
- NPV does not show earned rate of capital invested

Profitability

Internal Rate of Return (IRR)

IRR

(Internal Rate of Return)

Rate of return that makes NPV zero

 \Rightarrow IF IRR \geq MARR, then it is economically viable

MARR 10%

Decision Guideline

$$\sum \{ NCF_t \div (1+i)^t \} = 0$$

i ≥ MARR → Go i < MARR → No Go

Accepted!!

- There may exist none or multiple values
- Higher IRR does not guarantee better alternative among the mutually exclusive alt.s

Profitability

Profitability Index(PI)

PI (Profitability Index)

Divide NPV(PW of NCF_t, t=1,2,...,n) by initial invested capital

MARR 10%

Decision Guideline

 $PI = NPV \div IC \times 100(\%)$

 $PI \ge 1 \rightarrow Go$

 $PI < 1 \rightarrow No Go$

- NCF = Market size to be created x Operating Profit rate x Success Rate x Project Contribution rate x R&D Contribution rate (KISTEP, 2011)
- Estimation of NCF is rather complex

Public Benefit

B/C Ratio Analysis

B/C Ratio
(Cost Benefit Analysis)

All costs and benefit estimates will be converted to a common equivalent monetary unit \Rightarrow If B/C Ratio \geq 1, then it is economically viable

Public discount rate 10%

Decision Guideline

B/C Ratio = P(A)V benefit / P(A)V cost

B/C Ratio \geq 1 \rightarrow Go B/C Ratio < 1 \rightarrow No Go

Accepted !!

- How to determine public discount rate?
- How to quantify Intangible cost and benefit?
- How to consider technology risk premium?

Stability

Payback Period (PP)

Payback Period Method

Estimate time for the revenues to completely recover the initial investment \Rightarrow A project with shorter PP will be selected

Simple Payback Period

Time	0	1	2	3	4	5
(1) Cash Flow	-100	-10	20	40	60	50
(2) Accumulated CF	-100	-110	-90	-50(10	60

Discounted Payback Period(i= 10%)

Time	0	1	2	3	4	5
(1) Cash Flow	-100	-10	20	40	60	50
(2) Cost of Capital	0	-10	-12	-11	-8	-3
(3) Accumulated CF	-100	-120	-108	-80	-28 (19

Supplemental analysis technique used primarily for initial screening prior to a full evaluation by other methods

Spreadsheet Functions

- (1) Present Value, P: = PV(i%,n,A,F)
- (2) Future Value, F: = FV(i%,n,A,P)
- (3) Equal, periodic value, A: = PMT(i%,n,P,F)
- (4) Number of periods, n: = NPER(i%,A,P,F)
- (5) Compound interest rate, i: = RATE(n,A,P,F)
- (6) Compound interest rate, i: = IRR(first_cell:last_cell)
- (7) Present value, any series, P: = NPV(i%, 2nd_cell:last_cell) + first_cell