

Today's Material

- Branch Current Analysis (with example)
- Breakout #1
 - □ Branch current analysis problem

- Find VR3 and the power delivered by E2
 - □ Any thoughts?
 - □ Can we combine circuit elements in series or parallel?

Method

 Assign an arbitrary current to each branch of the network

Branch Current Analysis (by example)

Method

 Label the voltage drops for each resistor, determined by the appropriate branch current direction

Branch Current Analysis (by example)

Method

 Apply KVL around each closed, independent loop of the network

Note: We have 2 equations and 3 unknowns at this point

Method

 Apply KCL at the minimum number of nodes that will include all the network's branch currents

Note: Only 2 independent NODES here

Note: Only 1 NODE needed to include all three branch currents

$$I_1 + I_2 - I_3 = 0$$
, (3)

Method

5. Solve the simultaneous linear equations for the branch currents and then relate the solution to the unknown(s)

We have:

Rewritten:

$$+4-4 \cdot I_{1} - 8 \cdot I_{3} = 0, \quad (1)$$

$$+8 \cdot I_{3} + 2 \cdot I_{2} - 6 = 0, \quad (2)$$

$$I_{1} + I_{2} - I_{3} = 0, \quad (3)$$

$$-4 \cdot I_{1} + 0 \cdot I_{2} - 8 \cdot I_{3} = -4, \quad (1)$$

$$0 \cdot I_{1} + 2 \cdot I_{2} + 8 \cdot I_{3} = 6, \quad (2)$$

$$I_{1} + I_{2} - I_{3} = 0, \quad (3)$$

Note: 3 equations and 3 unknowns

- Solving the equations
 - Method of determinants (review) See Appendix B
 - Use your calculator for 3x3 or smaller (manual excerpt below and on the next page)

Rewritten:

$$-4 \cdot I_{1} + 0 \cdot I_{2} - 8 \cdot I_{3} = -4, \quad (1)$$

$$0 \cdot I_{1} + 2 \cdot I_{2} + 8 \cdot I_{3} = 6, \quad (2)$$

$$I_{1} + I_{2} - I_{3} = 0, \quad (3)$$

For the EL-W516T

- □ MODE **4 0** (2 eqs)
- □ MODE **4 1** (3 eqs)

Simultaneous Linear Equations

Simultaneous linear equations with two unknowns (2-VLE) or with three unknowns (3-VLE) may be solved using the following functions.

- ① 2-VLE: MODE 6 0 $\begin{bmatrix} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{bmatrix} |D| = \begin{bmatrix} a_1 b_1 \\ a_2 b_2 \end{bmatrix}$
- ② 3-VLE: MODE 6 1 $\begin{bmatrix} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \\ a_3x + b_3y + c_3z = d_3 \end{bmatrix} | D | = \begin{bmatrix} a_1 \ b_1 \ c_1 \\ a_2 \ b_2 \ c_2 \\ a_3 \ b_3 \ c_3 \end{bmatrix}$
- If the determinant D = 0, an error occurs.
- If the absolute value of an intermediate result or calculation result is 1 × 10¹⁰⁰ or more, an error occurs.

Solving simultaneous linear equations

- 1. Press (MODE) 6 0 or (MODE) 6 1.
- 2. Enter the value for each coefficient (a1, etc.).
 - Coefficients can be entered using ordinary arithmetic operations.
 - To clear the entered coefficient, press (ON/C).
 - Press or to move the cursor up or down through the coefficients. Press 2ndF or 2ndF to jump to the first or last coefficient.
- When all coefficients have been entered, press ENTER to solve the equation.
 - While the solution is displayed, press ENTER or ONC to return to the coefficient entry display. To clear all the coefficients, press (2ndF) CA.

Branch Current Analysis (by example)

Solving the equations using your calculator:

Work this example first:

For the EL-W516T

- □ MODE **4 0** (2 eqs)
- □ MODE **4 1** (3 eqs)

Now find I1, I2, I3:

$$-4 \cdot I_{1} + 0 \cdot I_{2} - 8 \cdot I_{3} = -4, \quad (1)$$

$$0 \cdot I_{1} + 2 \cdot I_{2} + 8 \cdot I_{3} = 6, \quad (2)$$

$$I_{1} + I_{2} - I_{3} = 0, \quad (3)$$

$$I_1 = -0.1429 A$$

$$I_2 = 0.7143 A$$

$$I_3 = 0.5714 A$$

Branch Current Analysis (by example)

- What were we looking for?
 - □ VR3 and PE2

$$V_{R3} = I_3 \cdot R_3$$

= 571.4 mA \cdot 8 \Omega = 4.57 V

$$P_{E2} = E_2 \cdot I_2$$

= 6 V · 714.3 mA = 4.29 W

$$I_2 = 0.7143 A$$

$$I_3 = 0.5714 A$$

Breakout #1

■ Find PE1, PR2 and the current through R3

