Guía 10

Modelo de Ising, transiciones de fase, teoría de campo medio Guía 10 – Modelo de Ising, transiciones de fase, teoría de campo medio

Problema 10.1

Resuelva el modelo de Ising en d=1, y muestre que no presenta transición de fase.

Problema 10.2

El modelo de Heisenberg de ferromagnetismo es:

$$H = -J \sum_{\langle i,j \rangle} S_i \cdot S_j - \mu \sum_i H \cdot S_i$$

donde S_i es vector unitario y J > 0.

Calcule la temperatura critica T_c .

Calcule los exponentes críticos δ , β , γ , para estudiar la magnetización m y la susceptibilidad χ en el entorno del punto crítico, $m \sim (T_c - T)^{\beta}$, $\chi \sim (T_c - T)^{-\gamma}$

Problema 10.3

Utilice la solución de Onsager para el modelo de Ising d=2, muestre que presenta una transición de fase y determine los exponentes críticos.

Problema 10.4

Utilice como referencia la teoría de campo medio, para desarrollar el modelo de separación de fase de una mezcla binaria (A, B).

Problema 10.5

Considere un sistema con una expresión de la energía libre de Landau, de la forma:

$$F(t,m) = -hm + q(t) + r(t)m^2 + s(t)m^4 + u(t)m^6$$

minimice la energía libre con respecto a la variable m y examine la magnetización espontanea m_0 en función de r y s. muestre que:

$$\begin{split} \operatorname{Para} r &> 0 \text{ y } s > -(3ur)^{1/2}, m_0 = 0 \\ \operatorname{Para} r &> 0 \text{ y } -(4ur)^{\frac{1}{2}} < s \leq -(3ur)^{1/2}, m_0 = 0 \text{ o } \pm m_1 \text{ con, } m_1 = \sqrt{\frac{(s^2 - 3ur) - s}{3u}} \\ \operatorname{Para} r &> 0 \text{ y } s = -(4ur)^{\frac{1}{2}}, m_0 = 0 \text{ o } \pm \left(\frac{r}{u}\right)^{1/4} \end{split}$$

Para los casos analizados, determine cuando el sistema presenta un estado de mínima energía asociado al estado de magnetización espontanea.