SWEN430 - Compilers

Lecture 20 - Register Allocation II

David J. Pearce & Alex Potanin & Roma Klapaukh

School of Engineering and Computer Science Victoria University of Wellington

Live Variables Analysis

Dataflow Equations

Let D = (V, E) represent the CFG of a method. Then, the dataflow equations for a node $v \in V$ are:

$$LIVE_{IN}(v) = \left((LIVE_{OUT}(v) - DEF_{AT}(v)) \cup USES(v) \right)$$

 $LIVE_{OUT}(v) = \bigcup_{v \to w \in E} LIVE_{IN}(w)$

• This is a **backwards** flow-analysis. Compute $LIVE_{OUT}(v)$ by unioning $LIVE_{IN}(w)$ for each successor w of v:

$$0: if (w > 0)$$

$$true$$

$$1: x = 1$$

$$3: y = 3$$

$$Here, LIVE_{OUT}(0) = LIVE_{IN}(1) \cup LIVE_{IN}(3)$$

Live Variables: Solving Dataflow Equations

Basic Algorithm:

- **1** Set $LIVE_{OUT}(v) = LIVE_{IN}(v) = \emptyset$ for all nodes v
- Select node v
- 3 Calculate $LIVE_{OUT}(v)$ based on current solution
- **4** Calculate $LIVE_{IN}(v)$ using $LIVE_{OUT}(v)$
- Separate From Step 2 until solution sets reach fixed point
 - » Guaranteed to terminate and yield smallest (i.e. most precise) solution for dataflow equations (provided select is fair)
 - » Solution sets reach fixed point when they no longer change

• Iteration Strategies:

- » Choice of select function affects performance
- » Chaotic select nodes at random
- » Forward Iterative select nodes in increasing order; when all done start over
- » Backward Iterative select nodes in decreasing order; when all done start over

	Node	0	1	2	3	4
0: if(w > 0) false	0	Ø				
1: x = 1	1	Ø				
2: y = 2	2	Ø				
3: y = 3	3	Ø				
4: return x+y	4	Ø				

(Initial state)

	Node	0	1	2	3	4
0: if(w > 0) false	0	Ø	{ w }			
1: x = 1	1	Ø	Ø			
2: y = 2	2	Ø	Ø			
3: y = 3	3	Ø	Ø			
4: return x+y	4	Ø	$\{x,y\}$			

(State after one iteration)

	Node	0	1	2	3	4
0: if(w > 0) false	0	Ø	{ w }	{ w }		
1: x = 1	1	Ø	Ø	Ø		
2: y = 2	2	Ø	Ø	{ <i>x</i> }		
3: y = 3	3	Ø	Ø	{ <i>x</i> }		
4: return x+y	4	Ø	$\{x,y\}$	$\{x,y\}$		

(State after two iterations)

	Node	0	1	2	3	4
0: if(w > 0) false	0	Ø	{ w }	{ w }	{ w , x }	
	1	Ø	Ø	Ø	Ø	
2: y = 2	2	Ø	Ø	{ <i>x</i> }	{ <i>x</i> }	
3: y = 3	3	Ø	Ø	{ x }	{ <i>x</i> }	
4: return x+y	4	Ø	$\{x,y\}$	$\{x,y\}$	$\{x,y\}$	

(State after three iterations)

	Node	0	1	2	3	4
0: if(w > 0) false	0	Ø	{ w }	{ w }	{ w , x }	{ w, x}
1 : x = 1	1	Ø	Ø	Ø	Ø	Ø
2: y = 2	2	Ø	Ø	{ <i>x</i> }	{ <i>x</i> }	{ <i>x</i> }
3: y = 3	3	Ø	Ø	{ x }	{ <i>x</i> }	{ <i>x</i> }
4: return x+y	4	Ø	$\{x,y\}$	$\{x,y\}$	{ <i>x</i> , <i>y</i> }	$\{x,y\}$

(State after four iterations — fixed-point reached)

	Node	0	1	2	3	4
0: if(w > 0) false	0	Ø				
1: x = 1	1	Ø				
2: y = 2	2	Ø				
3: y = 3	3	Ø				
4: return x+y	4	Ø				

(Initial State)

	Node	0	1	2	3	4
0: if(w > 0) false	0	Ø	{ w, x}			
1: x = 1	1	Ø	Ø			
2: y = 2	2	Ø	{ <i>x</i> }			
3: y = 3	3	Ø	{ <i>x</i> }			
4: return x+y	4	Ø	{ <i>x</i> , <i>y</i> }			

(State after one iteration)

	Node	0	1	2	3	4
0: if(w > 0) false	0	Ø	{ w, x}	{ w , x }		
1: x = 1	1	Ø	Ø	Ø		
2: y = 2	2	Ø	{ <i>x</i> }	{ <i>x</i> }		
3: y = 3	3	Ø	{ x }	{ <i>x</i> }		
4: return x+y	4	Ø	{ <i>x</i> , <i>y</i> }	$\{x,y\}$		

(State after two iterations — fixed-point reached)

	Node	0	1	2	3	4
0: i = 0	0	Ø				
1: if(i == w) true	1	Ø				
false 2: i = i + 1	2	Ø				
3: return x+i ◀	3	Ø				

(Initial State)

	Node	0	1	2	3	4
0: i = 0	0	Ø	{x, w}			
1: if(i == w) true	1	Ø	$\{x, w, i\}$			
false 2: i = i + 1	2	Ø	{ <i>i</i> }			
3: return x+i ◀	3	Ø	$\{x,i\}$			

(State after one iteration)

	Node	0	1	2	3	4
0: i = 0	0	Ø	{x, w}	{x, w}		
1: if(i == w) true	1	Ø	$\left \{x, w, i\} \right $	$\{x, w, i\}$		
false 2: i = i + 1	2	Ø	{ <i>i</i> }	$\{x, w, i\}$		
3: return x+i ◀	3	Ø	$\{x,i\}$	$\{x,i\}$		

(State after two iterations)

	Node	0	1	2	3
0: i = 0	0	Ø	{x, w}	{x, w}	{x, w}
1: if(i == w) true	1	Ø	$\left\{ x, w, i \right\}$	$\{x, w, i\}$	$\{x, w, i\}$
<pre>false 2: i = i + 1</pre>	2	Ø	{ <i>i</i> }	$\{x, w, i\}$	$\{x, w, i\}$
3: return x+i ◀	3	Ø	$\{x,i\}$	$\{x,i\}$	$\{x,i\}$

(State after three iterations — fixed-point reached)

Limitations of Live Variable Analysis

Consider the solution for this method:

Does our dataflow algorithm produce most accurate solution possible?

Limitations of Live Variable Analysis

Consider the solution for this method:

Does our dataflow algorithm produce most accurate solution possible?

Generating Interference Graph

Interference Graph

An *interference graph* is an undirected graph containing exactly one node per live range. An edge between two nodes exists iff their live ranges interfere.

- Simple algorithm:
 - Compute Live Variables Analysis
 - 2 Create graph G with one node per variable
 - **3** Consider $\{a,b\} \subseteq LIVE_{OUT}(v)$ for any node v, then $(a,b) \in G$
 - **4** Consider $\{a,b\} \subseteq LIVE_{IN}(v)$ for any node v, then $(a,b) \in G$
- Do we need last step?
- More precise approach is to split out live ranges
- How do we determine live range information from solution to live variables analysis?