

N 7 3 - 1 2 3 9 0

NASA CONTRACTOR
REPORT

NASA CR - 61399

EARTH RESOURCES DATA
PROCESSOR

By M. R. Phillips
Engineering Mechanics Division
IIT Research Institute
10 West 35th Street
Chicago, Illinois 60616

October 1972

CASE FILE
COPY

Final Report

Prepared for

NASA - GEORGE C. MARSHALL SPACE FLIGHT CENTER
Marshall Space Flight Center, Alabama 35812

TECHNICAL REPORT STANDARD TITLE PAGE

1. REPORT NO. NASA CR - 61399	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.	
4. TITLE AND SUBTITLE EARTH RESOURCES DATA PROCESSOR		5. REPORT DATE October 1972	
7. AUTHOR(S) M. R. Phillips		6. PERFORMING ORGANIZATION CODE	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Engineering Mechanics Division IIT Research Institute 10 West 35th Street Chicago, Illinois 60616		8. PERFORMING ORGANIZATION REPORT # J62443-6	
12. SPONSORING AGENCY NAME AND ADDRESS National Aeronautics and Space Administration Washington, D.C. 20546		10. WORK UNIT NO.	
		11. CONTRACT OR GRANT NO. NAS8-26797	
		13. TYPE OF REPORT & PERIOD COVERED CONTRACTOR REPORT	
14. SPONSORING AGENCY CODE			
15. SUPPLEMENTARY NOTES Prepared under the technical monitorship of Mr. Robert Jayroe, Flight Data Statistics Office, Aerospace Environment Division, Aero-Astrodynamic Laboratory, NASA-Marshall Space Flight Center.			
16. ABSTRACT The recent development of manned and unmanned space vehicles has brought about an almost unprecedented advance in studies concerned with remotely sensed earth observations. With this advance comes an unprecedented amount of data. The problem arises of how to efficiently analyze and compress unmanageable amounts of data into manageable amounts of useful information. A recently developed computer program is proposed as a partial solution to the above problem. The computer program is designed to determine the ground scene location and distribution of features extracted from remotely sensed earth observation data without human involvement in the data processing or a priori knowledge of ground truth. Human involvement and judgement are reserved for identification of the features presented in the compressed data.			
17. KEY WORDS Earth Resources Remote Sensing Clustering Classification		18. DISTRIBUTION STATEMENT UNCLASSIFIED-UNLIMITED W. J. Chinn E. D. Geissler Director, Aero-Astrodynamic Laboratory	
19. SECURITY CLASSIF. (of this report) Unclassified	20. SECURITY CLASSIF. (of this page) Unclassified	21. NO. OF PAGES 178	22. PRICE NTIS

FOREWORD

This study was undertaken by IIT Research Institute, Chicago Illinois, for NASA-Marshall Space Flight Center under contract NAS 8-26797. The work was under the direction of the Flight Data Statistics Office, Aerospace Environment Division, Aero-Astrodynamic Laboratory, with Mr. R. R. Jayroe, Jr., as the project monitor. The computer programs developed inhouse and under this contract will be used for processing ERTS and Skylab (EREP) data acquired over the state of Alabama via a cooperative effort involving the University of Alabama, the Geological Survey of Alabama, Auburn University, and Marshall Space Flight Center.

The author wishes to express his appreciation to Mr. Jayroe for providing the Mathematical rationale used in the classification program and for his support in completing this work.

CONTENTS

	<u>Page</u>
SUMMARY	1
SECTION I INTRODUCTION	1
1. Probability Distribution	2
A. Computer Program	2
B. Data Problem Parameters	4
2. Grey Level Mapping	4
A. Computer Program	6
B. Data Problem Parameters	6
3. Contour Plotting	7
A. Computer Program	8
B. Data Problem Parameters	11
4. Isometric Displays	11
A. Computer Program	12
B. Data Problem Parameters	12
5. Dynamic Joint Probability Distribution	14
6. Joint Probability Density Function	19
A. Computer Program	20
B. Core Storage Image	20
C. Output Display	23
D. Data Problem Parameters	23
7. Boundary Mapping	25
A. Data Problem Parameters	39
8. Channel Alignment	40
A. Computer Program	42
B. Data Problem Parameters	42
C. Program Flow Chart	43
9. Channel Registration	46
A. Computer Program	47
B. Data Problem Parameters	47
C. Program Flow Chart	48
10. Spectral Discrimination	51

ILLUSTRATIONS (concl)

	<u>Page</u>
23. Block Diagram ERFDP	55
24. Block Diagram ERFDP	57
25. Module Seven Output Example	104
26. Results of Sequential Merging and Classifying Process	105
27. Clustered Homogeneous Areas	106
28. Merged and Classified Homogeneous Areas	107
29. IBM 7094 Job Deck Setup	121
30. IBM 7094 Instruction Form 533	122

EARTH RESOURCES DATA PROCESSOR

M. R. Phillips
IIT Research Institute

SUMMARY

During the past several months and since the inception of the Flight Data Statistics Office, a growing trend to analyze and process Earth Resources Flight Data has prevailed. In view of the growing interest at Marshall Space Flight Center to organize and establish capabilities to perform research studies in this area, endeavors in the areas of interpretation, analysis, and development of algorithms have provided the necessary computational programming tools for data processing and data handling and analysis. Algorithms that have been developed thus far, are adequate and have been proven successful for several preliminary and fundamental applications such as software interfacing capabilities, probability distributions, grey level print plotting, contour plotting, isometric data displays, joint probability distributions, boundary mapping, channel registration and ground scene classification. This report is written in two sections. Section I consists of the algorithms that have been developed individually under the existing contract and section II is a description of an Earth Resources Flight Data Processor, (ERFDP), which handles and processes earth resources data under a users control.

SECTION I INTRODUCTION

In this section a description of each algorithm developed under the existing contract will be presented. The algorithms were developed as building blocks toward an automatic data processor for processing earth resources flight data. Each algorithm has been demonstrated to be compatible in an overall automatic processing environment. These algorithms were developed using an IBM 7094 computer with 32K available core storage.

1. PROBABILITY DISTRIBUTION

A probability density function was programmed, and the earth resources data processor which is available upon request as an option selection is included. This option gives a probability density function for any number of channels, not to exceed 12, of the multispectral data. This option is used when calculating the slicing intervals of the probability distribution to provide grey level mapping of any ground scene image. An estimate of the probability density function is obtained digitally by dividing the range of the data into a desired number of class intervals d_i . The probability of occurrence of a value X_i in the class interval is then given by

$$P_i(X) = N_i(X)/N,$$

where $N_i(X)$ is the number of values that occur within the range of $d_i < X \leq d_{i+1}$ and

$$N = \sum_{i=0}^{k-1} N_i$$

is the total size of the population where K = number of class intervals.

A. Computer Program

The computer program calculates the probability density of any channel of a multispectral scanner consisting of 12 channels of data. The distribution table is then printed out for all channels requested, over all the data samples (see table I). The program also passes to the grey level module the probability distribution of each channel for grey level mapping.

TABLE I
PROBABILITY DISTRIBUTION

<u>AMPLITUDE</u>	<u>CH 1</u>	<u>CH 2</u>	<u>CH 3</u>	<u>CH 4</u>	<u>CH 5</u>	<u>CH 6</u>	<u>CH 7</u>	<u>CH 8</u>	<u>CH 9</u>	<u>CH 10</u>	<u>CH 11</u>	<u>CH 12</u>
-1.5	0	0	0	0	0	0	0	0	0	0	0	0
-1.4	0	0	0	0	0	0	0	0	0	1	0	0
-1.3	0	0	0	0	0	0	0	0	0	0	1	8
-1.2	1	0	0	0	0	0	0	0	0	0	22	31
-1.1	0	5	0	0	7	0	1	0	0	4	47	60
-1.0	4	0	0	0	15	1	0	3	2	8	16	55
-0.9	8	0	0	0	34	2	0	9	7	20	27	11
-0.8	7	0	0	0	39	0	1	8	18	40	40	40
-0.7	6	0	0	0	47	12	0	22	25	30	30	30
-0.6	5	0	0	0	51	22	0	38	40	48	52	55
-0.5	21	0	0	0	55	10	0	50	55	60	62	72
-0.4	29	0	0	0	47	12	0	47	48	52	55	55
-0.3	35	0	0	0	51	22	0	50	55	60	62	72
-0.2	21	0	0	0	55	10	0	47	51	55	55	55
-0.1	48	0	0	0	47	12	0	50	55	60	62	72
0	39	0	0	0	51	22	0	47	51	55	55	55
1	12	0	0	0	55	10	0	50	55	60	62	72
2	0	0	0	0	47	12	0	50	55	60	62	72
3	0	0	0	0	51	22	0	47	51	55	55	55
4	0	0	0	0	55	10	0	50	55	60	62	72
5	0	0	0	0	47	12	0	50	55	60	62	72
6	0	0	0	0	51	22	0	47	51	55	55	55
7	0	0	0	0	55	10	0	50	55	60	62	72
8	0	0	0	0	47	12	0	50	55	60	62	72
9	0	0	0	0	51	22	0	47	51	55	55	55
10	0	0	0	0	55	10	0	50	55	60	62	72
11	0	0	0	0	47	12	0	50	55	60	62	72
12	0	0	0	0	51	22	0	47	51	55	55	55
13	0	0	0	0	55	10	0	50	55	60	62	72
14	0	0	0	0	47	12	0	50	55	60	62	72
15	0	0	0	0	51	22	0	47	51	55	55	55
16	0	0	0	0	55	10	0	50	55	60	62	72
17	0	0	0	0	47	12	0	50	55	60	62	72
18	0	0	0	0	51	22	0	47	51	55	55	55
19	0	0	0	0	55	10	0	50	55	60	62	72
20	0	0	0	0	47	12	0	50	55	60	62	72
21	0	0	0	0	51	22	0	47	51	55	55	55
22	0	0	0	0	55	10	0	50	55	60	62	72
23	0	0	0	0	47	12	0	50	55	60	62	72
24	0	0	0	0	51	22	0	47	51	55	55	55
25	0	0	0	0	55	10	0	50	55	60	62	72
26	0	0	0	0	47	12	0	50	55	60	62	72
27	0	0	0	0	51	22	0	47	51	55	55	55
28	0	0	0	0	55	10	0	50	55	60	62	72
29	0	0	0	0	47	12	0	50	55	60	62	72
30	0	0	0	0	51	22	0	47	51	55	55	55
31	0	0	0	0	55	10	0	50	55	60	62	72
32	0	0	0	0	47	12	0	50	55	60	62	72
33	0	0	0	0	51	22	0	47	51	55	55	55
34	0	0	0	0	55	10	0	50	55	60	62	72
35	0	0	0	0	47	12	0	50	55	60	62	72
36	0	0	0	0	51	22	0	47	51	55	55	55
37	0	0	0	0	55	10	0	50	55	60	62	72
38	0	0	0	0	47	12	0	50	55	60	62	72
39	0	0	0	0	51	22	0	47	51	55	55	55
40	0	0	0	0	55	10	0	50	55	60	62	72
41	0	0	0	0	47	12	0	50	55	60	62	72
42	0	0	0	0	51	22	0	47	51	55	55	55
43	0	0	0	0	55	10	0	50	55	60	62	72
44	0	0	0	0	47	12	0	50	55	60	62	72
45	0	0	0	0	51	22	0	47	51	55	55	55
46	0	0	0	0	55	10	0	50	55	60	62	72
47	0	0	0	0	47	12	0	50	55	60	62	72
48	0	0	0	0	51	22	0	47	51	55	55	55
49	0	0	0	0	55	10	0	50	55	60	62	72
50	0	0	0	0	47	12	0	50	55	60	62	72
51	0	0	0	0	51	22	0	47	51	55	55	55
52	0	0	0	0	55	10	0	50	55	60	62	72
53	0	0	0	0	47	12	0	50	55	60	62	72
54	0	0	0	0	51	22	0	47	51	55	55	55
55	0	0	0	0	55	10	0	50	55	60	62	72
56	0	0	0	0	47	12	0	50	55	60	62	72
57	0	0	0	0	51	22	0	47	51	55	55	55
58	0	0	0	0	55	10	0	50	55	60	62	72
59	0	0	0	0	47	12	0	50	55	60	62	72
60	0	0	0	0	51	22	0	47	51	55	55	55
61	0	0	0	0	55	10	0	50	55	60	62	72
62	0	0	0	0	47	12	0	50	55	60	62	72
63	0	0	0	0	51	22	0	47	51	55	55	55
64	0	0	0	0	55	10	0	50	55	60	62	72
65	0	0	0	0	47	12	0	50	55	60	62	72
66	0	0	0	0	51	22	0	47	51	55	55	55
67	0	0	0	0	55	10	0	50	55	60	62	72
68	0	0	0	0	47	12	0	50	55	60	62	72
69	0	0	0	0	51	22	0	47	51	55	55	55
70	0	0	0	0	55	10	0	50	55	60	62	72
71	0	0	0	0	47	12	0	50	55	60	62	72
72	0	0	0	0	51	22	0	47	51	55	55	55
73	0	0	0	0	55	10	0	50	55	60	62	72
74	0	0	0	0	47	12	0	50	55	60	62	72
75	0	0	0	0	51	22	0	47	51	55	55	55
76	0	0	0	0	55	10	0	50	55	60	62	72
77	0	0	0	0	47	12	0	50	55	60	62	72
78	0	0	0	0	51	22	0	47	51	55	55	55
79	0	0	0	0	55	10	0	50	55	60	62	72
80	0	0	0	0	47	12	0	50	55	60	62	72
81	0	0	0	0	51	22	0	47	51	55	55	55
82	0	0	0	0	55	10	0	50	55	60	62	72
83	0	0	0	0	47	12	0	50	55	60	62	72
84	0	0	0	0	51	22	0	47	51	55	55	55
85	0	0	0	0	55	10	0	50	55	60	62	72
86	0	0	0	0	47	12	0	50	55	60	62	72
87	0	0	0	0	51	22	0	47	51	55	55	55
88	0	0	0	0	55	10	0	50	55	60	62	72
89	0	0	0	0	47	12	0	50	55	60	62	72
90	0	0	0	0	51	22	0	47	51	55	55	55
91	0	0	0	0	55	10	0	50	55	60	62	72
92	0	0	0	0	47	12	0	50	55	60	62	72
93	0	0	0	0	51	22	0	47	51	55	55	55
94	0	0	0	0	55	10	0	50	55	60	62	72
95	0	0	0	0	47	12	0	50	55	60	62	72
96	0	0	0	0	51	22	0	47	51	55	55	55
97	0	0	0	0	55	10	0	50	55	60	62	72
98	0	0	0	0	47	12	0	50	55	60	62	72
99	0	0	0	0	51	22	0	47	51	55	55	55
100	0	0	0	0	55	10	0	50	55	60	62	72
1.1	1	0	0	0	47	12	0	50	55	60	62	72
1.2	0	1	0	0	51	22	0	47	51	55	55	55
1.3	1	1	0	0	55	10	0	50	55	60	62	72
1.4	0	0	1	0	47	12	0	50	55	60	62	72
1.5												

B. Data Problem Parameters

NCH	Number of channels or spectral bands on input tape
NSPS	Number of samples per record or resolution elements across one scan
NSCANS	Number of scans to process
NSTART	Starting resolution element
NSTOP	Stopping resolution element
NBTLG	Bit length of input data word
MODE	Signifying FORTRAN or non-FORTRAN input tape
ITYPE	Type of input data; Floating point or fixed point
MSFC	MSFC scanner format option
LTN	Logical unit to load input tape
NSKIP	Number of initial data records to skip before processing
NCRE	Data incrementation
XMAX	Maximum value in data set
XMIN	Minimum value in data set
NOCHS	Number of channels to calculate probability density function
NWHICH	Channel selection for probability distribution calculation

2. GREY LEVEL MAPPING

In order to preview earth resources data and obtain quick-look information, a grey level mapping program was written to include in the ERFDP. This gives a pictorial display of the ground scene image quantized to 10 different levels. Characters are selected to represent varying shades of grey. The levels are calculated by slicing the probability distribution table of selected channels into 10 separate cells (see Figure 1). The number of occurrences in each cell is equally distributed over the probability distribution. This is done by calculating equal areas for each cell using the trapezoidal rule method. Each of the 10 areas would represent one cell of the probability distribution. Each resolution element is compared with all the cells, and the cell in which it falls is assigned the respective alphanumeric character.

Ten Equal Area Intervals

Figure 1 Quantized Probability Distribution Curve

A. Computer Program

The computer program was written as a module to be included in the ERFDP. The logic provides communication with the probability distribution program, since information calculated in that module is used in grey level mapping. The data are input to the program module and each resolution element input to the module is compared with each cell until it falls within the quantized level of that cell. Each resolution element, x_i , is examined such that

$$\text{SLICE } (j-1) < x_i < \text{SLICE } (j)$$

where $j = 1, 2, 3, \dots, 11.$

After the data point, x_i has been quantized by this method, it is replaced by its representative alphanumeric character and plotted or printed. The plotting is output to the Stromberg-Carlson 4020 recorder for display.

If automatic quantization is not desired, the program provides an option where the user can input quantized levels as a table if other methods are desired (reference ERFDP users manual, section II of this report).

B. Data Problem Parameters

NCH	Number of channels on input tape
NSPS	Number of samples per record or scan
NSCANS	Number of scans to process
NSKIP	Number of scans to skip before processing
NSTART	Starting sample number in the scan
NSTOP	Stopping sample number in the scan
ITERM	Number of passes to make processing 120 samples each pass
N	Number of quantized levels plus one
ICHAN	Selected channel used in grey level mapping
IPRT	Option to print grey level

IPLT	Option to plot grey level
INCX	Increment in x direction for each sample (rasters)
INCY	Increment in y direction for each sample (rasters)
NSTX	Starting x coordinates or plot frame
NSTY	Starting y coordinates on plot frame
NBTLG	Bit length of input data words
MODE	Signifies FORTRAN or non-FORTRAN
ITYPE	Type of input data; Floating point or fixed point
MSFC	MSFC scanner format option
NCRE	Data increment
LTN	Logical tape unit to load input data
IOPT	Option to select automatic quantization or input quantized table

3. CONTOUR PLOTTING

In the analysis and interpretation of earth resources data, a useful tool is means of locating and outlining borders of ground scene images and also plot the snow pack temperature profiles recorded by an electronic scanner. A computer program was written to generate line plots, which is a line connecting points of boundaries, specified altitudes, temperatures, etc., providing a graphical display of contour levels or borders of ground scene images.

The data array to be plotted consists of the input data array only. These data points are ordered in an x y coordinate system. Four adjacent data points and their coordinates are examined to determine if a specified value intersects any of these four points. If an intersection occurs, these coordinates are converted to plotting raster counts, and two points are flagged. One point being coordinates of the entry point to the four adjacent data points and the other being the coordinates of the exit point of the four adjacent data points. If the intersection of a specified level continues to the next four successive

adjacent data points, then the coordinates of the exit point become the coordinates of the entry point of the next four adjacent data points. A search continues for the coordinates of the exit point and this procedure continues until the data set is exhausted. Lines are drawn connecting the points, reflecting continuity of the specified level. If the entry and exit point of successive four adjacent data points exist, then a line connecting these points is continuous. Otherwise, there exists a discontinuity and the points will not be connected. Continuous lines of multiple levels can be drawn reflecting contours of altitude, temperatures, and homogeneous area boundaries.

A. Computer Program

The computer program was written as a module to be included in the ERFDP and was designed to contour data sets of infinite lengths. However, only 2500 data points reside in the computer at one time because of the physical storage limits. Since only one block of data is processed at one time, the program automatically reloads blocks of data and abuts each block to provide a continuous plot of contours.

In Figure 2 contours of boundaries were plotted of the first 120 scans of field C1 from the Purdue data set. The data were blocked such that contours of 1776 resolution elements were plotted which covered eight scans. Each resolution element covered eight rasters on the plot frame, therefore each block abutted together occupies 64 rasters. After the abutment process, the boundary contours appear continuous. The boundaries that were contoured are shown in Figure 3. The boundary contours are elongated slightly due to scaling on the plot frame.

SCAN 1-120

RESOLUTION ELEMENT 1-222

RESOLUTION ELEMENTS

Figure 2 Boundary Contours (Purdue C1)

SCANN 1-120

RESOLUTION ELEMENT 1-222

Figure 3 Boundary Determination Channels 4 of 12 (Purdue C1)

B. Data Problem Parameters

NCH	Number of channels on input tape
NSPS	Number of samples in a scan
IRW	Logical tape units to load input data
NCHAN	Channel number
NSNCRE	Number of scans to increment
NPCRE	Number of samples to increment
NPTSL	Lower starting point
NPTSU	Upper stopping point
NOTLG	Bit length of input data word
ITYPE	Type data on input tape; Floating point or fixed point
MSFC	MSFC scanner format option
NSKIP	Number of records to skip
MAXSCN	Total number of scans to process
NSECT	Number of sections to process
MSZX	Data block size in x (samples)
MSZY	Data block size in y (scans)
BLK	Plot frame block size in rasters
FHINC	Contour level increment
ZMIN	Minimum contour level
ZMAX	Maximum contour level
LAB	Label interval

4. ISOMETRIC DISPLAYS

On occasion it has become necessary to preview the raw data and to determine the physical appearance to better understand the behavior of data collected from various ground scenes and from different types of sensors. For this purpose an isometric program was written to produce a two-dimensional projection of a three-dimensional graph of the raw data amplitude versus the x and y ground scene coordinates.

A. Computer Program

Program Isometric will handle any FORTRAN IV formatted tape with up to 12 channels of data. Only one channel is plotted per computer pass and the channel selection is based upon an input parameter.

The program was developed to produce two-dimensional data projections of ground cover scenes where data are gathered by sensors aboard an aircraft. The data collected across the flight line represent resolution elements, and the data collected along the flight line represent scans. Any NXM array can be displayed where N is the position in an array and M is the value to be displayed. The program does not require large amounts of core storage since it performs a continuous operation on the NXM array which is refilled before each operation.

The Stromberg-Carlson 4020 frame reference coordinates are altered after each operation for proper scaling based on the input parameters provided by the user. These parameters also control the density of the points plotted and the angle of rotation desired for display. Multiple plot frames are generated as necessary to display all the input data. To provide frame abutment for a continuous plot, the last row of each frame and the last sample of each row is stored and repeated on the next frame.

B. Data Problem Parameters

NCH	Total number of channels per resolution element on input tape
NSPS	Total number of resolution elements per channel across the ground scene
IRW	Logical tape number for input data
NCHAN	Number of the channel that isometrics are to be displayed
NSNCRE	Number of scans to increment along the flight line; This provides an option to use every scan line, every other scan line, etc.

NPCRE	Number of resolution elements to increment going across the flight line; If every resolution element is not desired, resolution elements can be skipped.
NPTSL	Starting resolution element number for the isometric
NPTSU	Stopping resolution element number for the isometric
MAXSON	Total number of scans along the flight to display
YMIN	The minimum value of the input data used for calculating scale factors for plotting the y axis
YMAX	The maximum value of the input data used also for calculating scale factors for plotting the y axis
NBLSZX	Stromberg-Carlson 4020 reference frame coordinate increment in the x direction
NBLSZY	Stromberg-Carlson 4020 reference frame coordinate increment in the y direction in raster counts (normal range 6 to 12) NBLSZX and NBLSZY are used to determine the degree of rotation of the isometric.
NSECT	Number of passes through the data necessary to display the full-scan width; If NPTSL and NPTSU only cover a portion of the data then NSECT can be adjusted to cover all the data.
Example:	
	If NPTSL = 1, NPTSU = 128 and NSPS = 256, then NSECT = 2 will cover resolution element 1 through 128 and resolution element 129 through 256.
NSMOV	Number of points in a moving mean span used in smoothing the input data; Set to zero if smoothing is not desired.
NDIREC	Direction of the rotation of the isometric; 1 = counterclockwise and -1 = clockwise rotation.

A portion of flight line C1 (Purdue data set) was used in the following examples. Every resolution element and every scan was used requiring two passes through the data. NSECT was set to 2, but only one section is shown here. NBLSZX and NBLSZY were set to 8 and 12 respectively and both counterclockwise and clockwise rotations were used.

Figure 4 shows scan lines 86-129 and resolution elements 1-111 of the total 222 elements of channel 8. NDIREC was set to -1 to rotate clockwise. Figure 5 shows channel 8 with only NDIREC changed to +1 to rotate counterclockwise. Figures 6 and 7 reflect identical isometrics using channel 2 of the same data.

5. DYNAMIC JOINT PROBABILITY DISTRIBUTION

Extensive data analysis of data on hand has revealed inadequacies in the current joint probability distribution program. The program was restrictive in that a fixed amount of square storage array allocation was required. This meant that, the greater the spread of the clusters of the joint probabilities or individual data pairs, the larger the square storage array required. This also required a screening of all the data to determine the ranges of data pairs. After determining the data ranges, the minimum square storage array required to display the joint probabilities became $N \times M$, where N is the range between the minimum and maximum value of the X data in the joint pairs, and M is the range between the minimum and maximum value of the Y data in the joint pairs. As this clearly points out, this does not adapt itself favorably to data that is ill behaved and possessing widely spread data clusters or widely spread individual data pairs. Due to the physical limits of the computer storage, in numerous cases, a considerably amount of data was lost. This depended largely on the characteristics of the data and since the primary function of the program was to display the dependent characteristics of two data channels, this required rerunning the program and making adjustments to the limits. Therefore, the program became inadequate.

FLIGHT LINE C1
SCANS 1-43
RESOLUTION ELEMENTS 1-111
ROTATED CLOCKWISE
CHANNEL 8 0.58-0.62 (MICRONS)

Figure 4 Flight Data Display

FLIGHT LINE C1
SCANS 1-43
RESOLUTION ELEMENT 1-111
ROTATED COUNTER-CLOCKWISE
CHANNEL 8 0.58-0.62 (MICRONS)

RESOLUTION ELEMENT
DIRECTION

Figure 5 Flight Data Display

FLIGHT LINE C1
SCANS 1-43
RESOLUTION ELEMENTS 1-111
ROTATED CLOCKWISE
CHANNEL 2 0.44-0.46 (MICRONS)

Figure 6 Flight Data Display

FLIGHT LINE C1
SCAN NO. 1-43
RESOLUTION ELEMENT 1-111
ROTATED COUNTER-CLOCKWISE
CHANNEL 2 0.44-0.46 (MICRONS)

Figure 7 Flight Data Display

A new technique has been employed, that adapts itself to data of any nature, particularly cluster data where the data clusters are tremendously scattered. The technique requires only as much storage as actually required by the number of different data pairs and the size of the data storage required is not dependent on the ranges of the data.

6. JOINT PROBABILITY DENSITY FUNCTION

A joint probability density function program is a necessary tool in the analysis of earth resources flight data. This program gives a preliminary insight to the commonality of occurrences observed from two time-series data traces.

For applications to feature extraction, the outputs of this program give insight to the distinctness of different features and the location of decision boundaries necessary to separate different features.

The joint probability distribution is calculated digitally by selecting a range $[a, b]$ on both sets of data X, Y and dividing the range into K intervals. This gives

$$C = \frac{b-a}{K} = \text{scale factor}$$

To find the X and Y coordinate for each variable X and Y jointly, an indexing pointer is calculated for each value of X and Y by

$$I_x = \frac{(x_n - a)}{C} \quad \text{and} \quad I_y = \frac{(y_n - a)}{C}$$

An integer one is added to the coordinate $p(I_x, I_y)$ for every value of X and Y in the interval $[a, b]$. The coordinate $p(I_x, I_y)$ contains the total number of occurrences.

A. Computer Program

Data points are paired (user option), given a class, and are stored in two single arrays, one for the X coordinates, NP_x , and one for the Y coordinates, NP_y . The number of data pairs that are common is accumulated in an array NKNT (i) identifying the class and the number of occurrences, i, of that class.

The first data pair read from the input tape, will be assigned class number 1 automatically. All subsequent data pairs read from the input tape, will be compared with all the individual data pairs that have been assigned a particular class. If no match is found during the comparison, a new class is created, using this data pair. There can be up to 4000 different classes of paired data points stored.

Once all the data pairs are classified, the data pairs are arranged and sorted such that the Y coordinates or vertical data are sorted in descending order and the X coordinates or horizontal data are sorted in ascending order. Data are rearranged in such a way that the largest spread between the minimum and maximum is displayed on the vertical axis, which is printed down the print paper. An example of the three data arrays containing the joint probability before and after the vertical sort is shown in Figure 8a and 8b.

B. Core Storage Image

For any data configuration, the core storage image will appear as in Figure 9a. Projecting this onto an NXM storage array used in the conventional method, shows the wasted storage which is used to store blanks (or no occurrences). See Figure 9b. The conventional data storage method required for this example is 6 x 7, or 42 core storage locations. The present scheme requires only 21 core storage locations to display the above example. The advantage, also, is that only 21 core storage locations are necessary regardless of the scatter of the joint probabilities.

$NP_x(8)_1$	$NP_y(6)_1$	$NKNT(1)_1$
• $(6)_2$	• $(12)_2$	• $(6)_2$
• $(12)_3$	• $(8)_3$	• $(8)_3$
• $(8)_4$	• $(7)_4$	• $(12)_4$
$(2)_5$	$(7)_5$	$(8)_5$
$(14)_6$	$(5)_6$	$(7)_6$
$(2)_7$	$(3)_7$	$(6)_7$

a. Before Vertical Sort

$NP_x(6)_1$	$NP_y(12)_1$	$NKNT(6)_1$
• $(12)_2$	• $(8)_2$	• $(8)_2$
• $(8)_3$	• $(7)_3$	• $(12)_3$
• $(2)_4$	• $(7)_4$	• $(8)_4$
$(8)_5$	$(6)_5$	$(1)_5$
$(14)_6$	$(5)_6$	$(7)_6$
$(2)_7$	$(3)_7$	$(6)_7$

b. After Vertical Sort

Figure 8 Data Arrays Before and After Vertical Sort

$NP_x(4)_1$	$NP_y(7)_1$	$NKNT(6)_1$
• $(3)_2$	• $(6)_2$	• $(8)_2$
• $(6)_3$	• $(5)_3$	• $(12)_3$
• $(2)_4$	• $(5)_4$	• $(8)_4$
$(6)_5$	$(3)_5$	$(1)_5$
$(5)_6$	$(3)_6$	$(7)_6$
$(1)_7$	$(2)_7$	$(6)_7$

a. Core Storage Configuration

•	•	•	6	•	•
•	•	8	•	•	•
•	8	•	•	•	12
•	•	•	•	•	•
•	•	•	•	7	1
6	•	•	•	•	•
•	•	•	•	•	•

b. Conventional Core Storage Configuration

Figure 9 Core Storage Image

In Figure 10a and 10b is an example of the same number of paired classes, but the data pairs are more widely scattered. In this example, the conventional data storage required is 14 x 12 or 168 core locations. The present scheme still required only 21 core locations.

C. Output Display

To display the arrays as a joint probability distribution, the first location in the NP_y array is examined and a decremental counter is set equal to this value. All the data points in the NP_x array that are paired with this NP_y value, are collected along with their number of occurrences $NKNT(i)$, and stored in a working array. This working array is sorted in ascending order for printing from left to right across the print paper. A print line is loaded with blank characters and the blank character is replaced with the number of occurrences in that location, if any exist. The number of occurrences is designated by an alphanumeric character of some hierarchy ordered by the user. The print line is then output to the printer. The next location in the NP_y array is examined and the counter is decreased by one. If the NP_y value is less than the counter, a print line filled with blank characters is printed and tagged with the value of the counter. The counter is then decremented and compared with the NP_y value again. If there is a comparison, then the above procedure is repeated. This continues until the NP_y array is exhausted.

D. Data Problem Parameters

NCH	Total number of channels on input tape
NSPS	Samples per logical record or scan line
NSCANS	Number of logical records or scan lines to process
NSKIP	Initial physical records to skip before processing
NSTART	Starting sample number

$NP_x(6)_1$	$NP_y(12)_1$	$NKNT(6)_1$
• (12) ₂	• (8) ₂	• (8) ₂
• (8) ₃	• (7) ₃	• (12) ₃
• (2) ₄	• (7) ₄	• (8) ₄
(8) ₅	(6) ₅	(1) ₅
(14) ₆	(5) ₆	(7) ₆
(2) ₇	(3) ₇	(6) ₇

a. Core Storage Configuration

•	•	•	•	•	6	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	8	•	•
•	8	•	•	•	•	•	12	•	•	•	•	•	•
•	•	•	•	•	•	•	1	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	7	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	6	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•

b. Conventional Core Storage Configuration

Figure 10 Core Storage Image

NSTOP	Stopping sample number
LTN	Logical tape unit to load input data
NOJP	Number of paired joint probabilities to process
IMX	X channel select
IMY	Y channel select
SCALE	Used to scale data
BIAS	Used to shift data

7. BOUNDARY MAPPING

A concerted effort has been made to improve boundary mapping techniques and to extend these ideas and techniques in order to classify different homogeneous areas of ground scene data. This section briefly describes one of several boundary enhancement techniques, which were investigated, and contains examples of test cases and problem parameter inputs.

The technique employed in this computer program, incorporates a moving rectangle made up of four adjacent resolution elements moved successively through the data. The configuration, produced by the magnitude of any four adjacent resolution elements connected by an imaginary path, will be defined as the area. Isometric displays of the ground scene (Figure 11) show different area configurations produced by any four adjacent resolution elements. The possible area configuration models are shown in Figure 12. From these configurations, the equations for calculating the area were derived, based on two cases presented by the data. Case I is the area produced by four adjacent resolution elements along the Y and Z plane, and case II is the area produced by four adjacent resolution elements along the X and Z plane. The equations that were derived (A_1 , B_1 , C_1 for case I and A_2 , B_2 , C_2 for case II) are shown in Figure 13a.

Several equations that appear here are redundant and are eliminated by combining similar equations. The composite test statements that determine which equation to use, are shown in Figure 13b, and a flow diagram of the decision logic incorporated in the computer program, is shown as Figure 14.

Figure 11 Isometric Display of Ground Scene

Figure 12 Area Configurations Produced by Four Adjacent Data Samples

CASE I

$$\begin{aligned}
 & \frac{1}{4}[(x_n, y_n) - (x_n, y_{n+1}) - (x_{n+1}, y_n) + (x_{n+1}, y_{n+1})] \\
 & \frac{1}{2}[(x_n, y_n) - (x_n, y_{n+1}) + (x_{n+1}, y_n) - (x_{n+1}, y_{n+1})] \\
 & \frac{1}{2}[(x_n, y_n) + (x_n, y_{n+1}) - (x_{n+1}, y_n) - (x_{n+1}, y_{n+1})] \\
 & \frac{1}{4}[-(x_n, y_n) + (x_n, y_{n+1}) + (x_{n+1}, y_n) - (x_{n+1}, y_{n+1})] \\
 & \frac{1}{2}[(x_n, y_n) + (x_n, y_{n+1}) - (x_{n+1}, y_n) - (x_{n+1}, y_{n+1})] \\
 & \frac{1}{2}[(x_n, y_n) + (x_n, y_{n+1}) - (x_{n+1}, y_n) - (x_{n+1}, y_{n+1})]
 \end{aligned}$$

(a)

CASE II

$$\begin{aligned}
 & \frac{1}{4}[(x_n, y_n) - (x_n, y_{n+1}) - (x_{n+1}, y_n) + (x_{n+1}, y_{n+1})] \\
 & \frac{1}{4}[(x_n, y_n) - (x_n, y_{n+1}) + (x_{n+1}, y_n) - (x_{n+1}, y_{n+1})] \\
 & \frac{1}{2}[-(x_n, y_n) + (x_n, y_{n+1}) - (x_{n+1}, y_n) + (x_{n+1}, y_{n+1})] \\
 & \frac{1}{4}[-(x_n, y_n) + (x_n, y_{n+1}) + (x_{n+1}, y_n) - (x_{n+1}, y_{n+1})] \\
 & \frac{1}{4}[(x_n, y_n) - (x_n, y_{n+1}) - (x_{n+1}, y_n) + (x_{n+1}, y_{n+1})] \\
 & \frac{1}{2}[(x_n, y_n) - (x_n, y_{n+1}) + (x_{n+1}, y_n) - (x_{n+1}, y_{n+1})]
 \end{aligned}$$

COMPOSITE TEST STATEMENTS

$$\left[\begin{array}{l} x_n, y_n > x_n, y_{n+1} \\ x_{n+1}, y_n < x_{n+1}, y_{n+1} \\ x_{n+1}, y_{n+1} > x_n, y_{n+1} \end{array} \right] \rightarrow A(1)$$

$$\left[\begin{array}{l} x_n, y_n < x_n, y_{n+1} \\ x_{n+1}, y_n > x_{n+1}, y_{n+1} \\ x_n, y_n > x_{n+1}, y_n \end{array} \right] \rightarrow B(1)$$

$$\left[\begin{array}{l} x_n, y_n < x_n, y_{n+1} \\ x_{n+1}, y_n < x_{n+1}, y_{n+1} \end{array} \right] \rightarrow C(1)$$

$$A(2) \rightarrow \left[\begin{array}{l} x_n, y_n < x_n, y_{n+1} \\ x_{n+1}, y_n > x_{n+1}, y_{n+1} \\ x_n, y_n < x_{n+1}, y_n \end{array} \right]$$

$$B(2) \rightarrow \left[\begin{array}{l} x_n, y_n > x_n, y_{n+1} \\ x_{n+1}, y_n < x_{n+1}, y_{n+1} \\ x_{n+1}, y_{n+1} < x_n, y_{n+1} \end{array} \right]$$

$$C(2) \rightarrow \left[\begin{array}{l} x_n, y_n > x_n, y_{n+1} \\ x_{n+1}, y_n > x_{n+1}, y_{n+1} \end{array} \right]$$

(b)

Figure 13 Area Equations for Four Adjacent Data Samples

Figure 14 Flow Diagram of Decision Logic

A probability density distribution of the area is calculated for each channel of data and every scan. An estimate of this probability density function is obtained digitally by dividing the range for X into an appropriate number of class intervals, say d_i , and by tabulating the number of occurrences in each of these intervals. The number of occurrences N_i in each interval satisfies the equation

$$N = \sum_{i=0}^{k-1} N_i$$

where k = number of class intervals and N is the total population.

This number sequence $\{N_i\}$ is found by

$$N_1 = \text{Total number of } X: X \leq d_1$$

$$N_2 = \text{Total number of } X: d_1 < X \leq d_2$$

$$N_3 = \text{Total number of } X: d_2 < X \leq d_3$$

.

.

.

$$N_k = \text{Total number of } X: d_{k-1} < X \leq d_k$$

A plot of the probability distribution of channel 3 and channel 12, both horizontal and vertical, are shown in Figures 15 and 16. These plots reflect the distribution of one scan of data, in particular, scan number 5. The criterion to determine if a resolution element reflects a change in a homogeneous population of ground scene is the mean of the probability distribution of the area plus its associated σ . All area calculations of four adjacent resolution elements that fall outside of the mean plus σ will be flagged as a boundary.

Figure 15 Boundary Determination, Probability Distribution Channel 3

Figure 16 Boundary Determination, Probability Distribution Channel 12

The mean area of the probability distribution, $P(A)$, is calculated by

$$\overline{P(A)} = \frac{\sum_i P(A_i) A_i}{\sum_i P(A_i)} \quad i=1, 2, \dots, \text{MAX}$$

on σ by

$$\sigma = \left\{ \frac{\sum_i P(A_i) A_i^2}{\sum_i P(A_i)} - \left(\overline{P(A)} \right)^2 \right\}^{1/2} \quad i=1, 2, \dots, \text{MAX}$$

In the test cases, all 12 channels were used, except for two cases where channel 3 and channel 12 were run separately, and boundary flags set for each channel. The final decision for determining the boundary, is based on an input parameter selected by the user. The number of channels indicating a boundary has to be greater than this value. In Figure 17 only channel 12 was used. This produced too many boundaries and the separation of different homogeneous areas was not clearly defined. In Figure 18 only channel 3 was used; this produced too few boundaries. Figure 19 shows all 12 channels with at least seven reflecting boundaries (Input Option); this produced too few boundaries. Figure 20 shows at least three channels of the 12 reflecting boundaries which produced too many boundaries. Figure 21 produces the best boundary map which uses at least four channels of the 12 total.

SCAN 1-120

RESOLUTION ELEMENT 1-222

Figure 17 Boundary Determination Channel 12 (Purdue C1)

SCAN 1-120

RESOLUTION ELEMENT 1-222

Figure 18 Boundary Determination Channel 3 (Purdue C1)

SCAN 1-120

RESOLUTION ELEMENT 1-222

Figure 19 Boundary Determination Channels 7 of 12 (Purdue C1)

SCAN 1-120

RESOLUTION ELEMENT 1-222

Figure 20 Boundary Determination Channels 3 of 12 (Purdue C1)

SCAN 1-120

RESOLUTION ELEMENT 1-222

Figure 21 Boundary Determination Channels 4 of 12 (Purdue C1)

A. Data Problem Parameters

NSCANS	Number of scans or logical records to process an input tape
NSTART	Starting resolution element in the scan
NSPS	The number of resolution elements or columns to process from each scan (< 255)
NCH	Number of channels present on input tape
NVAR	Number of variables or intervals desired in calculating the probability distribution; Maximum of 2000.
NSYM	Number of alphanumeric characters to display boundaries (note: At the present only two characters are used, blanks and dots, no boundary or yes boundary respectively).
ISUM	Total number of channels used in initial boundary calculation
NTEST	Number of channels (plus one), of ISUM, necessary for a final boundary decision
NBTLG	Number of bits per word on the input tape
MODE	Mode of input tape (2=non-FORTRAN, 1=FORTRAN)
NSKIP	Number of records to skip before processing input data
NCRE	Data increment
NBLK	Number of raster counts per character desired in displaying boundary on the Stromberg-Carlson 4020 plotter recorder
INCX	Raster counts incrementation in the X direction
INCY	Same as above in the Y direction
NSTX	Starting position or frame along the X axis
NSTY	Starting position on frame along the Y axis
NWHICH	Channel number desired in calculation of boundary

8. CHANNEL ALIGNMENT

In recent months there has been an increasing demand to process and analyze data collected by array cameras using different filters in the frequency spectrum. In order to analyze data from this camera source, the camera film is digitized and the digitizing process is carried out separately for each filtered film. Gross errors are introduced into the data, mainly missalignment of the film when being digitized by a densitometer. This missalignment must be compensated for before the digitized data can be merged and processed. A process was developed to align the digitized data sets by a matching matrix technique.

Boundaries separating homogeneous areas are calculated from each data set (see section 7) and the boundaries of each data set are correlated and matched. One particular technique proposed was the use of $N \times M$ data matrix for each data set where one set is assigned the reference channel and the other sets are correlated with the reference channel by moving the matching matrix successively through the selected data area.

The correlation of the reference channel with other channels is done by matching or correlating a resolution element from the reference channel with all resolution elements in the matching matrix of other channels. If there exists a match or correlation of boundaries, then a cell in the matching matrix display at those coordinates is incremented. The $N \times M$ matching matrix is moved by one resolution element, and the next resolution element from the reference channel is matched or correlated with all the resolution elements in the matching matrix of other channels. If there exists a match or correlation of boundaries, then a cell in the matching matrix display at those coordinates is again incremented. This continues as the matching matrix is moved successively through the selected data interval.

An expanding and collapsing technique is employed at the beginning and end of the data set to eliminate edge effects and loss of data. As the NXM matching matrix is moved successively through the data set, the correlation of the two channels, if a correlation exists, is accumulated at the beginning of the data set at the matching matrix display coordinates MATRIX (i,j) going across, where

$$i = \frac{N}{2} - b+1, \frac{N}{2} - b+2, \dots N; k = 1, 2, 3 \dots \frac{N}{2},$$

and going down where

$$j = \frac{M}{2} - b+1, \frac{M}{2} - b+2, \dots M; k = 1, 2, 3 \dots \frac{M}{2}.$$

This continues until the entire matching matrix is within the objective data, thus eliminating the edge effect. Once the matching matrix is within the objective data then $i = 1, 2, 3 \dots N$; and $j = 1, 2, 3 \dots M$. Upon termination of the matching matrix at the end of a data set, a collapsing technique is employed. This technique is the same as the expanding technique except the accumulation at the end of the data set at the matching matrix display coordinates MATRIX (j,i) is $i = 1, 2, 3 \dots N-k$, where $k = 1, 2, 3 \dots \frac{N}{2}$; and $j = 1, 2, 3 \dots M-k$, where $k = 1, 2, 3 \dots \frac{M}{2}$.

The matching matrix is then printed for each combination of correlations. No boundary and boundary correlation of two data channels (0,1), and boundary and boundary correlation of two data channels (1,1). Alignment shifts can be performed by locating the peaks in the NXM matrix where boundaries of two channels are matched. The matching matrix is shown in the output example. This peak occurred at coordinates (-5, +4), therefore, the channel being correlated with the reference should be shifted -5 data records and +4 resolution elements to align the two channels.

This technique corrects for any horizontal and vertical alignment satisfactorily, however it does not correct for any skewness introduced, while the film is being digitized, or any distortion in the camera array angles. A technique that fully corrects for this type of missalignment is presently being developed, but due to inadequate computer turnaround time, results are not available.

A. Computer Program

A program was written to match and correlate up to three data channels and as many different intervals of a data set as desired. This will enable the user to calculate the alignment in areas of the data set where boundaries are clear and can be detected. Input to the program is three FORTRAN formatted fixed point binary tapes containing boundary flags (fixed point integer 1 for boundary and 0 for areas that are homogeneous).

B. Data Problem Parameters

NTIMES	Number of sections to correlate
LT9	Logical unit to load input tape number one
LT10	Logical unit to load input tape number two
LT11	Logical unit to load input tape number three
NSTART	Starting resolution element
NSTOP	Final resolution element
NSCANS	Number of scans in the matching matrix
NSPS	Number of resolution elements across the scan in the matching matrix
NREFX	Starting resolution element in the reference channel; Tape number one.
NREFY	Starting scan number in the reference channel; Tape number one.
NCH1X	Starting resolution element in the channel to be correlated; Tape number two.
NCH1Y	Starting scan in the channel to be correlated; Tape number two.
NCH2X	Starting resolution element in the channel to be correlated; Tape number three.
NCH2Y	Starting scan in the channel to be correlated; Tape number three.

C. Program Flow Chart

Channel Alignment (Concluded)

OUTPUT EXAMPLE

MATCHING MATRIX (1 AND 1)

CH 2 WITH CH 1	
••• 174 176 176 182 192 160 170 193 198 192 167 182 198 196 159 176 168 161 169 181 156 171 171 163 149 146 167 •••	••• 171 178 172 183 185 164 169 185 193 210 189 173 181 196 187 178 175 171 194 179 176 165 178 187 157 158 173 •••
••• 177 179 178 185 204 174 170 184 208 212 197 183 184 184 183 168 177 177 178 184 180 178 178 192 196 169 163 173 168 168 174 •••	••• 189 191 183 193 204 197 185 193 205 201 195 199 186 182 173 164 184 168 171 171 173 173 168 168 174 182 182 178 •••
••• 182 179 208 192 202 218 208 194 202 227 212 197 214 209 192 193 198 186 181 201 193 173 182 195 171 179 185 180 •••	••• 172 204 213 193 191 196 196 202 199 218 212 202 215 216 198 218 227 188 184 192 199 196 201 191 174 184 190 •••
••• 186 185 201 189 198 194 212 196 198 230 221 225 231 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 198 •••	••• 193 187 199 195 183 191 215 216 236 232 214 226 245 213 214 216 216 216 216 216 216 216 216 216 216 216 216 197 •••
••• 163 184 200 171 189 190 195 207 219 237 220 221 232 214 221 221 214 212 212 211 211 211 211 211 211 211 211 196 192 •••	••• 208 187 193 183 194 204 202 211 249 238 240 226 223 233 232 223 233 236 216 197 214 207 208 222 209 211 210 197 191 •••
••• 210 194 188 186 192 218 204 218 256 239 249 250 225 235 225 235 204 217 234 213 192 212 212 220 201 209 209 209 209 198 •••	••• 207 206 189 197 195 218 200 207 243 236 246 223 234 233 229 234 201 193 199 219 220 203 204 204 203 204 211 195 •••
••• 198 222 230 186 194 204 197 212 241 235 232 223 237 236 236 227 216 186 195 203 217 216 216 216 216 190 210 210 210 •••	••• 183 196 221 187 205 206 195 225 255 224 236 220 220 226 207 208 212 218 244 211 242 211 242 210 219 205 207 207 198 195 •••
••• 194 163 211 189 194 189 201 219 239 242 244 225 230 243 206 216 209 214 214 216 227 232 233 233 214 208 213 175 •••	••• 184 164 196 192 187 208 210 215 238 239 222 232 222 220 211 220 211 220 190 201 216 230 244 209 209 209 196 •••
••• 183 190 192 186 199 212 196 199 195 225 218 223 197 222 224 226 218 194 210 203 228 221 216 216 209 205 174 •••	••• 176 164 190 188 202 189 168 175 196 222 218 204 201 211 223 217 212 221 220 225 228 226 226 226 226 226 226 196 •••
••• 177 176 192 173 172 180 165 171 195 212 211 203 191 203 191 203 191 203 191 203 191 203 191 203 191 203 191 203 191 •••	••• 183 184 203 187 185 181 169 202 207 211 213 200 195 208 224 234 227 195 196 226 210 167 202 204 204 205 206 •••
••• 181 182 139 194 178 168 181 205 210 224 220 199 190 208 213 214 214 202 193 209 212 202 202 202 202 202 202 202 •••	••• 159 162 182 187 187 175 201 209 219 214 202 193 209 212 214 192 188 214 245 184 204 211 196 •••
••• 170 161 165 173 191 186 191 187 203 210 207 200 218 208 205 244 211 209 247 190 200 204 207 204 197 196 191 •••	••• 181 160 161 174 182 195 191 213 215 225 212 217 190 223 223 226 222 227 215 209 204 208 211 184 172 166 •••
••• 152 152 191 165 190 180 181 183 226 224 205 214 183 208 222 242 209 200 209 215 196 211 212 210 184 194 •••	••• 144 149 155 173 170 178 207 188 196 217 225 186 198 188 191 200 221 204 197 223 209 191 193 199 195 199 •••
••• 144 151 158 175 162 154 192 200 205 204 206 194 190 214 216 216 199 195 207 212 188 184 210 191 209 •••	••• 144 151 158 175 162 154 192 200 205 204 206 194 190 214 216 216 199 195 207 212 188 184 210 191 209 •••

9. CHANNEL REGISTRATION

Registration of digital images of the digitized film processed from a multiple camera array system, has become necessary due to the rotational, translation and scaling errors introduced during processing. A coarse alignment is made by employing the matching matrix technique but this only corrects for a horizontal or vertical shift in the digital images for alignment. There exist errors in the digital images, such as rotation and translation errors, which have to be corrected by a more effective means. A technique which will accomplish this is presently being developed and has been demonstrated. Computer results are not available, due to contract expiration which prevented finalizing the analysis, therefore, no illustrations are shown.

The technique requires generating boundary maps of the digital images and a manual technique is used to correlate similar areas of the digital images with each other. A good sampling of the entire scene is made which provides enough input to a set of equations (equations are presently being derived and improved upon) to calculate coefficients for each digital image combination. When used with the x and y coordinates of a reference channel, position pointers are calculated giving the respective x and y coordinates of the channels to be aligned. Data points are taken from these coordinates and placed at the coordinates of the reference channel. All channels are then output to magnetic tape becoming merged for further processing.

A program was written to overlay any combination of digital images containing boundary information (0 and 1) that have been registered and merged. This overlay program produces a map showing the location of boundaries and homogeneous areas that are similar. This program is used in conjunction with the registration process and evaluating the accuracy of the registration process.

After the digital images are aligned satisfactorily the registration process can be carried out on the raw data and processed as desired, or the merged boundary tapes can be processed.

A. Computer Program

A computer program was written to register multiple digital images using boundary information or raw data. The program inputs a reference channel and the x and y coordinates of data points from the reference channel are input to a subroutine FETCH which returns through the call statement the x and y coordinates of the channel to be aligned. Subroutine FETCH contains DATA statements with coefficients used in the calculations. These DATA statements can be changed to reflect coefficients of different digital images.

B. Data Problem Parameters

NSPS	Number of samples per scan
NCHAN	Number of channels on input tape
NSCANS	Number of scans to process
NSKIP1	Initial position of tape number one
NSKIP2	Same as above for tape number two
NSKIP3	Same as above for tape number three

C. Program Flow Chart

Channel Registration

Channel Registration

Channel Registration (Concluded)

10. SPECTRAL DISCRIMINATION

Capabilities have been developed to discriminate ground scene features using computer techniques with digitized images. These capabilities are available at MSFC for analysis and interpretation of earth resources flight data. Computer programs and algorithms were developed during this contract period, March 22, 1971 to September 22, 1972, under the auspices of the National Aeronautics and Space Administration, with Mr. Robert Jayroe COR. The mathematical rationale used in the development of these computer programs are to be published by Mr. Robert Jayroe in a NASA report entitled "Unsupervised Spatial Clustering with Spectral Discrimination."

INTENTIONALLY BLANK

ERFDP USERS MANUAL
SECTION II INTRODUCTION

Processing earth resources data in the future will require a somewhat automatic approach due to the volume of data and the extent of analysis required to interpret the data. This requires a complex data processor designed to maintain an automatic data processing (ADP) environment for the user. The processor is designed using independent modules with an executive program driving each module. A block diagram depicting this modular structure is shown as Figure 22.

This processor uses an overlay technique, which compiles and communicates with all modules, but only executes modules selected by the user. The concept of using overlays provides capabilities for processing input data, through all the program modules sequentially or only selected modules as desired. Each module can be improved upon, expanded and modified independently of other modules, and each module can be improved or modified in a 32K core storage environment irrelevant to the other modules (see Figure 23).

This concept has the disadvantage of having to utilize an intermediate storage tape, which necessitates executing read/write commands, which are certainly time-consuming. However, the advantages outweigh the disadvantages significantly by providing versatility in the overall function. To further improve on the efficiency of the program, the read/write commands use alternate input/output channels when possible to eliminate, in most cases, the computer being in a "wait" condition due to either channel "A" or channel "B" being busy.

The overlay concept entails having a main program which calls each individual module as requested by the user. This keeps the overall processing contained in one large program and each program module is brought into the computer, compiled, overlay structures created, and then output onto an overlay tape. All modules are treated in this fashion regardless of which and how many are to

Earth Resources Flight Data Processing

Figure 22 Block Diagram Depicting Modular Structure

Earth Resources Flight Data Processor

Tape Assignments:

LT1 = A3
LT9 = B5
LT10 = A6
LT11 = B6
LT12 = A7
LT13 = B7
OPT = (Optional)

Figure 23 Block Diagram ERFDP

be used. Each module to be executed is brought into the computer in a "transit" area (see Figure 24), and upon completion, another module, if requested, is brought into the same "transit" area to be executed. A common area in the computer is used to store information that may be used by more than one module. Each module has access to this common area at any time it occupies the "transit" area.

1. EARTH RESOURCES FLIGHT DATA PROCESSOR

The ERFDP is comprised of seven separate and independent modules which reside in computer memory only while being executed. Module seven consists of three lower level modules that are called into memory to perform their function automatically when module seven is requested by the user. The segmented structure appears as diagrammed.

Each module can be called into core memory and executed independently and in any order with the exception of module seven. Module six has to be executed prior to module seven, since the boundary mapping output is input to module seven. If module six has been run previously and a boundary mapping output tape is available, then module seven can be executed alone.

Figure 24 Block Diagram ERFDP

Earth Resources Flight Data Processing

A dimensional variable called MODULE is dimensioned 8, which sets aside eight memory locations to store a users request for module execution. The number of locations filled depends upon the number of modules requested to be executed by the user. The remaining locations contain zeroes and when the processor encounters a zero while examining the list, it terminates under system control.

A. Data Problem Parameters Example Setup

```
$DATA  
$INIT  
MODULE = 1,2,4,6,7      User request modules 1,2,4,6,7  
                      to be executed and in that order.  
$END
```

B. Input Tapes

Unit - Users option under individual modules (A6 recommended)
Type - Reference individual modules

C. Output Tapes

Reference individual modules

2. MODULE ONE

Module one when called into memory calculates a probability density function for any number of channels not to exceed 12. The module provides options to calculate probability density functions on selected channels also.

A. Data Problem Parameters Example Setup

\$INPUT1	
NCH = 3	Number of input channels
NSPS = 794	Number of samples per record
NSCANS = 500	Number of scans or records to process
NSTART = 1	Starting sample number
NSTOP = 794	Stopping sample number
NBTLG = 12	Bit length of input data word
MODE = 2	Signifying non-FORTRAN input tape
ITYPE = 0	Fixed point input; ITYPE = 1 ; Floating point 36-bit word input
MSFC = 0	Not MSFC scanner format; MSFC = 1; MSFC scanner format
LTN = 10	Logical tape unit of input tape
NSKIP = 2	Skip first two data records
NCRE = 1	Data increment to process
XMAX = 1200.0	Maximum value in data set
XMIN = 300.0	Minimum value in data set
NOCHS = 3	Number of channels to calculate probability density function
NWHICH = 1,2,3	Calculate probability density function on channels 1,2, and 3
\$END	
7/8	

B. Input Tapes

Unit - Users option under input parameters

Type - Any odd parity binary, 3-bit modulus, fixed point with word lengths < 36 bits, or floating point.

C. Output Tapes

None (only print output)

D. Program Flow Chart

Multiple Channel Probability
Distribution (concluded)

OUTPUT EXAMPLE
PROBABILITY DISTRIBUTION

<u>AMPLITUDE</u>	<u>CH 1</u>	<u>CH 2</u>	<u>CH 3</u>	<u>CH 4</u>	<u>CH 5</u>	<u>CH 6</u>	<u>CH 7</u>	<u>CH 8</u>	<u>CH 9</u>	<u>CH 10</u>	<u>CH 11</u>	<u>CH 12</u>
-1.5	0	0	0	0	0	0	0	0	0	0	0	0
-1.4	0	0	2	0	2	0	0	0	0	0	1	0
-1.3	0	0	3	0	0	0	0	0	0	0	1	0
-1.2	1	0	9	0	5	0	0	1	0	0	1	0
-1.1	0	0	21	0	7	0	0	0	1	1	8	0
-1.0	5	0	29	0	15	1	0	0	1	0	22	0
-0.9	4	0	35	0	17	1	0	3	2	4	31	0
-0.8	8	1	39	0	34	2	3	9	7	8	47	0
-0.7	1	0	48	0	39	8	8	18	20	16	60	0
-0.6	24	7	55	1	47	12	12	22	25	30	55	0
-0.5	21	11	66	0	51	22	22	38	40	40	40	0
-0.4	38	5	58	2	55	31	41	47	48	52	27	0
-0.3	45	12	49	12	49	70	50	55	60	11	0	0
-0.2	57	22	42	18	44	66	82	54	62	72	6	5
-0.1	59	37	33	20	39	72	96	47	51	55	5	1
0	62	44	25	35	33	62	79	41	45	52	0	8
.1	58	48	19	30	25	40	62	35	39	31	1	16
.2	51	49	12	41	18	22	38	25	25	20	0	27
.3	47	56	6	54	7	12	12	17	16	15	0	32
.4	35	52	1	61	8	8	10	12	8	7	0	39
.5	25	40	0	55	2	2	7	8	5	3	0	47
.6	27	32	1	45	1	0	2	0	1	5	0	52
.7	24	0	40	0	1	0	1	2	0	1	0	65
.8	16	0	35	1	0	0	0	0	0	0	0	46
.9	8	0	28	0	0	0	0	0	0	0	0	58
1.0	7	0	20	0	0	0	0	0	0	0	0	46
1.1	1	0	12	0	0	0	0	0	0	0	0	39
1.2	0	0	7	0	0	0	0	0	0	0	0	22
1.3	1	1	0	0	0	0	0	0	0	0	0	7
1.4	0	0	1	0	0	0	0	0	0	0	0	1
1.5	0	0	0	0	0	0	0	0	0	0	0	0

NUMBER OF OCCURRENCES

3. MODULE TWO

Module two outputs on print paper and/or Stromberg-Carlson 4020 recorder, the quantized levels of a data set with alpha-numeric characters displaying specific quantized levels. Alpha-numeric characters can be selected and input to the module on a card included in the input problem parameters to provide different shading for certain levels. This module displays only one channel per computer pass, and that one channel is optional and selected by the user.

A. Data Problem Parameters Example Setup

\$INPUT2	
NCH = 3	Number of channels on input tape
NSPS = 794	Number of samples per record or scan
NSCANS = 500	Number of scans to process
NSKIP = 2	Number of scans to skip before processing
NSTART = 1	Starting sample number
NSTOP = 120	Stopping sample number
ITERM = 6	Number of passes processing 120 samples each pass
N = 11	Number of levels plus 1
ICHAN = 3	Channel used in mapping
IPRT = 1	Option to print
IPLT = 1	Option to plot
INCX = 0	Increment in x direction for each sample (rasters)
INCY = 8	Increment in y direction for each sample (rasters)
NSTX = 0	Starting x coordinates on plot frame
NSTY = 0	Starting y coordinates on plot frame
NBTLG = 12	Bit length of input data words
MODE = 2	Signifies non-FORTRAN
ITYPE = 0	Fixed point input data; ITYPE = 1 ; Input data floating point 36-bit words
MSFC = 0	Not MSFC scanner format; MSFC = 1; MSFC scanner format

```
NCRE = 1           Data increment
LTN = 10          Logical tape unit of input tape
IOPT = 0          Signifies automatic quantization
$END
$GRYLYL
GLVL = 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.
               1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.
               .
               .
               .
               1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.
$END
7/8
```

B. Input Tapes

Unit - Users option under input parameters

Type - Any odd parity binary, 3-bit modulus, fixed point,
with word length \leq 36 bits or floating point.

C. Output Tapes

None (only print output)

D. Program Flow Chart

Grey Level Mapping

Grey Level Mapping
(concluded)

OUTPUT EXAMPLE
PURDUE FLIGHT LINE C1
AUTOMATIC QUANTIZED GREY LEVEL

RESOLUTION ELEMENT 1-111 SCANS 1-120

SCAN

RESOLUTION ELEMENT

OUTPUT EXAMPLE
PURDUE FLIGHT LINE C1
AUTOMATIC QUANTIZED GREY LEVEL

RESOLUTION ELEMENT 112-222 SCANS 1-120

S C A N

RESOLUTION ELEMENT

4. MODULE THREE

Module three calculates contour lines throughout an input data set depicting elevation, altitude, temperature or boundary contours. The contour lines are output and displayed by the Stromberg-Carlson 4020 plotter. Frame butting in the module provides for continuous contour plotting for infinite data sets. The contour lines can be scaled by utilizing the block size option (BLK) in the input problem parameters.

A. Data Problem Parameters

\$INPUT3	
NCH = 1	Number of channels
NSPS = 90	Number of samples in a scan (record)
IRW = 11	Logical tape unit for input data
NCHAN = 1	Channel number
NSNCRE = 1	Number of scans to increment
NPCRE = 1	Number of samples to increment
NPTSL = 1	Lower starting point
NPTSU = 90	Upper stopping point
NBTLG = 36	Bit length of input data word
MODE = 1	FORTRAN formatted (1) or non-FORTRAN (2)
ITYPE = 0	Fixed point input ITYPE = 1, floating point input
MSFC = 0	MSFC = 1; MSFC scanner format
NSKIP = 0	Number of records to skip
MAXSCN = 100	Total number of scans to process
MSZX = 90	Data block size in x (samples)
MSZY = 8	Data block size in y (scans)
BLK = 8.0	Plot frame block size in rasters
FHINC = 10.0	Labeling increment
ZMIN = 8.0	Minimum label
ZMAX = 138.0	Maximum label
LAB = 1	Label every interval
\$END	

7/8

B. Input Tapes

Units - Optional under input data

**Type - Any odd parity binary, 3-bit modulus, fixed point,
with word lengths < 36 bits, or floating point.**

C. Output Tapes

SC 4020 Stromberg-Carlson formatted tape

D. Program Flow Chart

Contour Level Plotting

Contour Level Plotting

Contour Level Plotting
(concluded)

OUTPUT EXAMPLE

SCAN 1-120

RESOLUTION ELEMENT 1-222

RESOLUTION ELEMENTS
BOUNDARY CONTOURS (PURDUE C1)

5. MODULE FOUR

Module four displays a two-dimensional plot of three-dimensional data where only one single array of data is input and the data samples are ordered in an XY coordinate system, where Y is the scan line count and X is the resolution element in the scan. Data sets of infinite length can be displayed on the SC4020 recorder. The module provides for multiple passes through the data set in order to view the entire data set in sections.

A. Data Problem Parameters Example Input

\$INPUT4	
NCH = 12	Number of channels on input data tape
NSPS = 222	Number of resolution elements per scan
NSKIP = 0	Initial records to skip
NBTLG = 12	Bit length of the input data word
MODE = 1	FORTRAN formatted (1) or non-FORTRAN formatted
IRW = 10	Logical tape unit to load input
NCHAN = 6	Channel selected to be plotted
NSNCRE = 1	Scan incrementation
NPCRE = 1	Resolution element incrementation
ITYPE = 1	Fixed point input (0) or Floating point input (1)
MSFC = 0	MSFC scanner format (1) or not MSFC scanner format
NPTSL = 1	Lower resolution element to start
NPTSU = 111	Upper resolution element to stop
MAXSCN = 120	Scan lines to be processed
XMIN = 0.0	Minimum value for scaling the X axis
XMAX = 222.0	Maximum value for scaling the X axis
YMIN = 0.0	Minimum value for scaling the Y axis
YMAX = 255.0	Maximum value for scaling the Y axis
NBLSZX	The distance separating the plotted points in the X direction

NBLSZY The distance separating the plotted points
 in the Y direction

NSECT = 2 Two passes through the data to plot the
 data set in two sections

NSMOV = 0 No smoothing on input data

NDIREC = 1 Orientation of the isometric left view (-1)
 or right view (1)

\$END

7/8

B. Input Tapes

Unit - Users option under input parameters

Type - Any odd parity binary, 3-bit modulus, fixed point
 with word lengths \leq 36 bits, or floating point
 binary.

C. Output Tapes

Unit - A8 SC4020

D. Program Flow Chart

Isometric Program Display

Isometric Program Display

Isometric Program Display

Isometric Program Display
(concluded)

OUTPUT EXAMPLE

FLIGHT LINE C1
SCANS 1-43 &
RESOLUTION ELEMENTS 1-111
ROTATED CLOCKWISE
CHANNEL 8 0.58-0.62 (MICRONS)

OUTPUT EXAMPLE
FLIGHT LINE C1
SCANS 1-43
RESOLUTION ELEMENT 1-111
ROTATED COUNTER-CLOCKWISE
CHANNEL 8 0.58-0.62 (MICRONS)

6. MODULE FIVE

Module five calculates a joint probability density function from two time-series data traces selected by the user in the data problem parameters. The program provides for multiple passes through the data set for multiple joint probability density functions. The raised data points are classified and stored in one single array along with its associated occurrences of like data pairs. The joint pairs are sorted vertically in descending order and horizontally for each print line in ascending order.

A. Data Problem Parameters Example Setup

\$INPUT5

NCH = 12	Total number of channels on input tape
NSPS = 222	Samples per logical record or scan line
NSCANS = 920	Number of logical records or scan lines to process
NSKIP = 0	Initial physical records to skip before processing
NSTART = 2	Starting sample number
NSTOP = 222	Stopping sample number
LTN = 10	Logical FORTRAN IV tape unit
NOJP = 2	Number of paired joint probabilities to process
IMX = 4,3	Use channel 4 and 3 in X
IMY = 6,7	Use channel 6 and 7 in Y
SCALE = 1.0	Used to scale 1
BIAS = 0	Used to shift data

\$END

(1) (1)),/* ABC... (Alphanumeric characters)

7/8

B. Input Tapes

Unit - A6 (optional)

Type - Any odd parity binary, 3-bit modulus, fixed point
with word lengths \leq 36 bits, or floating point
binary.

C. Output Tapes

(none print output only)

D. Program Flow Chart

Dynamic Joint Probability
Distribution

Dynamic Joint Probability Distribution

Dynamic Joint Probability
Distribution

Dynamic Joint Probability
Distribution (concluded)

OUTPUT EXAMPLE

JOINT PROBABILITY DISTRIBUTION

X-AXIS IS 9 Y-AXIS IS 12 DATA SWITCH HAS OCCURRED

SYMBOLS

0	
3	
6	
9	
12	12
15	15
18	18
21	21
24	24
27	27
30	30
33	33
36	36
39	39
42	42
45	45
48	48
51	51
54	54
57	57
60	60
63	63
66	66
69	69
72	72
75	75
78	78
81	81
84	84
87	87
90	90
93	93
96	96
99	99
102	102
105	105
108	108
111	111
114	114
117	117
120	120
123	123
126	126
129	129
132	132
135	135
138	138

PART 1 OF 1

214.0
213.0
212.0

211.0	*
210.0	*
209.0	C
208.0	*
207.0	*
206.0	*
205.0	*
204.0	X
203.0	*
202.0	*
201.0	*
200.0	*
199.0	*
198.0	*
197.0	*
196.0	*
195.0	*
194.0	X
193.0	*
192.0	*
191.0	*
190.0	*
189.0	*
188.0	*
187.0	*
186.0	*
185.0	*
184.0	X
183.0	*
182.0	*
181.0	*
180.0	*
179.0	*
178.0	*
177.0	*
176.0	*
175.0	*
174.0	X
173.0	*
172.0	*
171.0	*
170.0	*
169.0	*
168.0	*
167.0	*
166.0	*
165.0	C
164.0	X
163.0	*
162.0	*
161.0	*
160.0	*

159.0	
158.0	
157.0	
156.0	
155.0	
154.0	*
153.0	X
152.0	*
151.0	
150.0	*
149.0	
148.0	*
147.0	
146.0	*
145.0	
144.0	X
143.0	*
142.0	
141.0	
140.0	
139.0	
138.0	
137.0	
136.0	
135.0	
134.0	X
133.0	
132.0	
131.0	
130.0	
129.0	
128.0	
127.0	
126.0	
125.0	
124.0	X
123.0	
122.0	
121.0	
120.0	
119.0	
118.0	
117.0	
116.0	
115.0	*
114.0	
113.0	*
112.0	
111.0	
110.0	
109.0	
108.0	
107.0	
106.0	

7. MODULE SIX

Module six calculates boundaries outlining edges of homogeneous areas of ground scene data. These boundaries are displayed on print paper where a selected alphanumeric character signifies a boundary and blanks signify areas of homogeneity. This output is also displayed on the SC4020 plotter where boundaries are flagged by an alphanumeric "period." The boundary output is used in further processing to extract information for feature discrimination.

A. Data Problem Parameters Example Setup

\$INPUT6	
NSCANS = 120	Process 120 scans of the data set
NSTART = 1	Starting sample number
NSPS = 222	Number of samples to process; (\leq 255)
NCH = 12	Number of channels on input tape
NSYM = 49	Dimension of the Alphanumeric array
ISUM = 5	Number of channels used in calculating boundaries
NBTLG = 12	Bit length of input data word
MODE = 1	FORTRAN formatted (1), non-FORTRAN formatted = 2
ITYPE = 0	Input data fixed point. Floating point binary = 1
MSFC = 0	Not MSFC scanner format MSFC scanner format = 1
NSKIP = 0	Skip no records before processing
INCX = 0	Incrementation in the X direction on the plot frame between resolution elements for each scan
INCY = 4	Incrementation in the Y direction on the plot frame between resolution elements for each scan
NSTX = 0	Starting X coordinates on the plot frame
NSTY = 0	Starting Y coordinates on the plot frame
NCRE = 2	Data incrementation; Use every other data sample for boundary calculations

```
$END  
$NCHUSE  
NWHICH = 1,3,4,8,12      Channel selection for calculating  
                           boundaries  
$END  
① ③. ① *(- =, $+ABC ....Z12 ...90-  
7/8
```

B. Input Tapes

Unit - Any odd parity binary, 3-bit modulus, fixed point with word lengths \leq 36 bits, or floating point binary.

C. Output Tapes

Unit - B6

Type - Fixed point binary 1's and 0's FORTRAN formatted 255 words or less plus 1 FORTRAN index per logical record.

D. Program Flow Chart

Boundary Mapping

Boundary Mapping (concluded)

OUTPUT EXAMPLE

SCAN 1-120

RESOLUTION ELEMENT 1-222

Boundary Determination Channels 4 of 12 (Purdue C1)

8. MODULE SEVEN

Module seven consists of three submodules called into core memory sequentially to classify land use data. These modules perform spatial clustering, sequential merging, and spectral discrimination of ground scene images. The module provides an option to select multiple passes to further classify small insignificant homogeneous areas that may be overlooked or misclassified during the first pass.

The input to module seven is the boundary mapped information (see Boundary Mapping) and the raw spectral digitized images. The spatial clustering submodule searches areas on the boundary map tape that contain homogeneous areas consisting of at least 100 square resolution elements as a threshold. When this search is satisfied, this homogeneous area is identified with a number which is incremented for each separate homogeneous area. A new tape is created containing these identified clusters. The sequential merging submodule searches the tape containing the identified clusters and selects the raw spectral data associated with each cluster. Criterion parameters are calculated and the merging process takes place merging all similar clusters.

The spectral discrimination submodule, classifies the merged clusters starting with an initial class of one, with unit incrementation for each new class detected. The raw spectral data criterion parameters, for each resolution element are compared with all classification criterion parameters. If a comparison exists, then the resolution element becomes classified. If there is no comparison, the resolution element is assigned a blank or a boundary flag, (if the resolution element reflects a boundary).

If the ground scene is not classified satisfactorily, another pass can be performed reducing the homogeneous square area threshold to 36 resolution elements. This will enable smaller homogeneous areas, that were not detected by the 100-square resolution element threshold to be detected and an attempt will be made to classify these areas also.

In the output example of module seven, Figure 25 shows the initial clustering of homogeneous areas that contain at least 100 square resolution elements. Figure 26 shows the results of the sequential merging and the classifying process. In Figure 26 there exist areas that were not classified therefore an additional pass was necessary to improve the classified areas. Figure 27 shows small homogeneous areas clustered using the 36-square resolution element threshold. These areas are clusters O, P, and Q. Figure 28 shows the areas O, P, and Q, have been merged and classified which improves the classified images.

A. Data Problem Parameters Input Example

\$INPUT7	
NPASS = 2	Perform two passes through the clustering, merging and classifying process
NCLUST = 0	Initial cluster number. Additional passes can be performed on reruns, by inputting the total number of classes already detected.
\$END	
\$INPUTA	
NSPS = 222	Number of resolution elements in entire scan or logical record
NSCANS = 120	Number of scans to process
NCH = 12	Total number of channels on input tape
LT1 = 1	Logical tape unit for scratch tape
LT9 = 9	Logical tape unit for storage of update information
LT10 = 10	Logical tape unit for raw data input
LT11 = 11	Logical tape unit for boundary map
LT12 = 12	Logical tape unit for clustered homogeneous areas
LT13 = 13	Logical tape unit containing the final classified map
NSTART = 1	Starting sample number
NSTOP = 140	Stopping sample number; Process only sample number 1-140 ($NSTOP-NSTART + 1 \leq 255$)
NBTLG = 12	Bit length of word on input raw data tape
MODE = 1	Input data FORTRAN formatted MODE = 2 non-FORTRAN formatted

SPATIAL CLUSTERING

PASS 1 SCAN 1-120 RESOLUTION ELEMENT 1-140

Figure 25 Module Seven Output Example

UNSUPERVISED SPECTRAL DISCRIMINATION
PASS 1 SCAN 1-120 RESOLUTION ELEMENT 1-140

S C A N

Figure 26 Results of Sequential Merging and Classifying Process

SPATIAL CLUSTERING

PASS 2 SCAN 1-120 RESOLUTION ELEMENT 1-140

SCAN

Figure 27 Clustered Homogeneous Areas

PASS 2 SCAN 1-120 RESOLUTION ELEMENT 1-140

Figure 28 Merged and Classified Homogeneous Areas

ITYPE = 0	Input tape binary integer ITYPE = 1, floating point format
MSFC = 0	Non-MSFC scanner format; MSFC scanner has housekeeping data requiring special handling.
14 = 1	Set MSFC = 1 if MSFC scanner data
NCRE = 1	Number of physical records per logical record
NSKIP = 0	Data increment; NCRE = 1 use every data sample
INCX = 0	Initial records to skip before processing
INCY = 0	Increment in X direction on SC4020 plot frame for each sample
NSTX = 0	Increment in Y direction on SC4020 plot frame for each sample
NSTY = 0	Starting X coordinate on the SC4020 plot frame
IXXX = 10	Starting Y coordinate on the SC4020 plot frame
IYYY = 10	Homogeneous area threshold samples in X direction
IYYY = 10	Homogeneous area threshold samples in Y direction

① ① 1234567890ABC(Alphanumeric characters for displaying
classified homogeneous areas)

B. Input Tapes

Unit - A6 and B6

A6 is any odd parity binary, 3-bit modulus, fixed
point with word lengths < 36 bits, or floating
point binary.

B6 is integer binary FORTRAN formatted.

C. Output Tapes

Units - B5 FORTRAN floating point binary
(update information)

A7 FORTRAN fixed point binary (Cluster data)

B7 FORTRAN fixed point binary

D. Intermediate Tapes

Units - A3, Scratch tape only

E. Program Flow Chart

Spectral Discrimination

Spectral Discrimination

Spectral Discrimination

Spectral Discrimination

Spectral Discrimination

Spectral Discrimination

Spectral Discrimination
(concluded)

Figure 29 IBM 7094 Job Deck Setup

7094- INSTRUCTIONS

NAME	John Doe	OP CODE:	11	STACK #	
BIN #	053	LOC:	4663	JOB #	123456

IF EXCEEDS MAX:		FAST TAPES: A B C D		
<input type="checkbox"/> STR <input type="checkbox"/> STZ <input type="checkbox"/> DMP <input type="checkbox"/> RETSY		INPUT TAPES		
		LOGIC	REEL NO	DEN
<input checked="" type="checkbox"/> 1BSYS	<input type="checkbox"/> COMPL / ASSMBL	A6	56565	8 B6
<input type="checkbox"/> SPOOK	<input checked="" type="checkbox"/> EXECUTE			A7
<input type="checkbox"/> OTHER	<input type="checkbox"/> PUNCH (BCD BIN)			B7
<input checked="" type="checkbox"/> 4 FTRN	<input type="checkbox"/> MAP			A3
<input type="checkbox"/> 2 FTRN	<input type="checkbox"/> FAP			B5
<input type="checkbox"/> APT	<input type="checkbox"/> SCAT			
<input type="checkbox"/> PERT	<input type="checkbox"/> OTHER			

LINES OF OUTPUT (1000'S)	MAXIMUM TIME:
0-5 15-15 15-30	OVER
PROGRAMMER COMMENTS:	HOURS 3 MINUTES 0
	NUMBER OF CASES

Comment, comment

OVER: _____

SEE ON-LINE
 SEE TECHNIQUES
 MAX EXCEEDED
 RETURN TO SYS
 LINE MAX

OPER INIT: _____
OVER: _____

OUTPUT TAPES ONLY						4020
REEL NO.	LOGIC	DEN.	UNIT	NO OF CPYS	SAVE	TAPE
	B-1	8				
	B6	8			V	
	B5	8			P	
	B7	8			P	
	A8	5			V	

NO FILES	NO FRAMES	COPIES	DENSITY	COPY-FLO	KALVAR
1	48	P F	5 8	P F	V V

MSFC - Form 533 (Rev February 1966)

Figure 30 IBM 7094 Instruction Form 533

APPENDIX
Computer Program Listing

***** I B M 7094 PROGRAM LISTING WITH JOB CARDS*****

```
$JOB          NASA JAYROE BIN 53 ,434300,00,12,I4MCE
$EXFCUTF      IBJOB
$IBJOB        FIOCS,MAP
$FILE         -UNIT03-,NONE
$FILE         -UNIT04-,NONE
$FILE         -UNIT07-,NONE
$FILE         -UNIT08-,NONE
$FILE         -UNIT14-,NONE
$FILE         -UNIT15-,NONE
$IRFTC FRFDP
              DIMENSION MODULE(8)
              COMMON DATA(12)
              NAMFLIST/INIT/MODULE
              DO 1 I=1,8
1           MODULE(I)=0
              I=0
              READ(5,INIT)
              WRITE(6,INIT)
998         CONTINUE
              I=I+1
              IGO=MODULE(I)
              IF (IGO .LE. 0) GO TO 999
              GO TO (10,11,12,13,14,15,16),IGO
10          CONTINUE
              CALL PROB
              GO TO 998
11          CONTINUE
              CALL GLEVEL
              GO TO 998
12          CONTINUE
              CALL JONTPB
              GO TO 998
13          CONTINUE
              CALL ISOMET
              GO TO 998
14          CONTINUE
              CALL CNTLIN
              GO TO 998
15          CONTINUE
              CALL RWNDR3
              GO TO 998
16          CONTINUE
              CALL CLASFY
              GO TO 998
999         CONTINUE
              CALL CLEAN
              STOP
              END
```

\$ORIGIN ALPHA, SYSUT2,REW

```

$IBFTC MOD1
  SUBROUTINE PROR
  COMMON DATA(12)
  COMMON/C1/ GLVL(11,12),NWHICH(12)
  DIMENSION NTABLE(201,12),DATAB(201)
  NAMELIST/INPUT1/NCH,NSPS,NSCANS,NSTART,NSTOP,NBTLG,MODE,
  ITYPE,MSFC,LTN,NSKIP,
  INCRE,XMAX,XMIN,NOCHS,NWHICH
  READ(5,INPUT1)
  WRITE(6,INPUT1)
C   CALCULATE PROBABILITY DISTRIBUTION TABLE
  RESOL=(XMAX-XMIN)/200.0
  SCALF=200.0/(XMAX-XMIN)
C   INITILIZE ARRAYS
  DO 6 IB=1,12
  DO 6 IBR=1,201
  NTABLE(IPB,IR)=0
6   CONTINUE
  DATAR(1)=XMIN
  DO 1 I=2,201
  DATAR(I)=DATAB(I-1)+RESOL
1   CONTINUE
  NFLAG=0
  DO 4 IC=1,NSCANS
  NFLAG2=1
  DO 2 I=NSTART,NSTOP,INCRE
  CALL GET1(DATA,NSPS,0,NCH,NSCANO,LTN,IFRR,NFLAG2,NFLAG,NSTART,
  INRTLG,MODE,NCRF,ITYPF,MSFC)
  GO TO (10,999,10,10,999),IERR
10  CONTINUE
  DO 3 IA=1,NOCHS
  NCHAN=NWHICH(IA)
  JJ=DATA(NCHAN)*SCALF+1.0
  IF (JJ .LT. 1) GO TO 3
  IF (JJ .GT. 201) GO TO 3
  NTABLE(JJ,NCHAN)=NTABLE(JJ,NCHAN)+1
3   CONTINUE
2   CONTINUE
4   CONTINUE
999  CONTINUE
  REWIND LTN
  WRITE(6,1000)
1000 FORMAT(1H1,50X,26HPROBABILITY DISTRIBUTION
1001 FORMAT(1H0,130H AMPLITUDE CH 1      CH 2      CH 3      CH 4
1     CH 5      CH 6      CH 7      CH 8      CH 9      CH 10     CH 1
21    CH 12      )
  WRITE(6,1001)
1002 FORMAT(1H ,F9.1,12I10)
  DO 5 I=1,201
  WRITE(6,1002) DATAR(I),(NTABLE(I,JJ),JJ=1,NCH)
5   CONTINUE
  CALL PRODEN(NTABLE,SCALF,GLVL,XMAX,XMIN)
20  REWIND LTN
  RETURN
END

```

```

$IBFTC PROBZ
  SUBROUTINE PROBFN (NTARLF,SCALF,GLVL,XMAX,XMIN)
  DIMENSION NTABLE(201,12),GLVL(11,12)
  DO 3 IM=1,12
  NTOTAL=0
  MAX=201
  DO 1 I=1,MAX
  NTOTAL=NTOTAL+NTABLE(I,IM)
1   CONTINUE
  NTFMP=0
  GLVL(1,IM)=0.0
  NCT=NTOTAL/10
  II=2
  DO 2 I=2,MAX
  IJ=I-1
  NTFMP=NTFMP+(NTARLF(IJ,IM)+NTARLF(I,IM))/2
  IF (NTFMP .LT. NCT) GO TO 2
  NTFMP=NTFMP-NCT
  GLVL(II,IM)=FLOAT(IJ)/SCALF+XMIN-.5
  II=II+1
2   CONTINUE
  GLVL(11,IM)=XMAX
3   CONTINUE
  DO 20 M=1,11
  WRITE(6,1000) (GLVL(M,MM),MM=1,12)
20  CONTINUE
1000 FORMAT(1X,12F6.1)
  RFTURN
  END

```

```

$IBFTC MOD2
  SUBROUTINE GLEVEL
C
C          7094 DECK - MULTISPECTRAL SCANNER PLOT
C
  DIMENSION IALPHA(20)
  DIMENSION IARAY(256)
  DIMENSION IWAVF(13)
  DIMENSION NUM(20),PERCENT(20)
  DIMENSION XLIM(12)
  COMMON DATA(12)
  COMMON/C1/ GLVL(11,12),NWHICH(12)
  NAMFLIST/INPUT2/NCH,NSPS,NSCANS,NSKIP,NSTART,NSTOP,ITFRM,N,ICHAN,
  IPT,IPLT,INCX,INCY,NSTX,NSTY,NBTLG,MODE,NCRE,LTN,IOP
  NAMFLIST/GRYLVL/GLVL
  IN=5
  IN1=10
  OUT=6
  NFLAG=0

```

```

NFLGPT=0
RFWIND IN1
CALL CAMRAV(35)
CALL BUTTV(1)
READ(5,INPUT2)
WRITE(6,INPUT2)
DO 303 I=1,N
XLIM(I)=GLVL(I,ICHAN)
303 CONTINUE
READ (IN,GRYLV)
IF (IOPT .EQ. 0) GO TO 302
DO 301 I=1,N
XLIM(I)=GLVL(I,ICHAN)
301 CONTINUE
302 CONTINUE
C ****
C ****
READ(IN,102)
READ (IN,99) (IALPHA(I),I=1,N ),LLP
READ(IN,109) XLOW,XUPP,(IWAVE(I),I=1,12)
WRITE(IOUT,110)
1003 FORMAT(1X,12A6,16,5X,2F8.4)
300 CONTINUE
DO 777 I=1,N
NUM(I)=0
777 CONTINUE
KK=N-1
WRITE(IOUT,106)
WRITE(IOUT,110)
WRITE(IOUT,102)
WRITE(IOUT,106)
WRITE(IOUT,103) ICHAN
DO 2 I=1,KK
IF(I,FQ,1) GO TO 9
WRITE (6,105) IALPHA(I),XLIM(I),XLIM(I+1)
GO TO 2
9 WRITE(IOUT,112) (IWAVE(K),K=1, 12),IALPHA(I),XLIM(I),XLIM(I+1)
GO TO 2
2 CONTINUE
WRITE(IOUT,106)
CALL LARFL1(NSTART,NSTOP,NCRE)
C
C          INUM COUNTS SCAN LINES
C
INUM=0
IDIF=NSTOP-NSTART+1
IF (NSKIP .EQ. 0) GO TO 806
DO 805 I=1,NSKIP
NFLAG2=1
CALL GET1(DATA,NSPS,0,NCH,NSCANO,LTN,IFRR,NFLAG2,NFLAG,NSTART,
1NRTLG,MODE,NCRF,ITYPE,MSFC)
805 CONTINUE
806 CONTINUE
NFLAG1=0
5 CONTINUE

```

```

IIN=0
NFLAG2=1
205 DO 90 I=NSTART,NSTOP
    IIN=IIN+1
    CALL GET1(DATA,NSPS,      0,NCH,NSCANO,IN1,IERR,NFLAG2,NFLAG,NSTART,
    1NRTLG,MODE,NCRF,ITYPE,MSFC)
    GO TO(800,801,800,800,801),IFRR
801  WRITF(IOUT,100) NSCANO
    GO TO 999
800  CONTINUE
    DO 601 I=2,N
        IF (DATA(ICHAN) .GT. XLIM(I)) GO TO 601
        NUM(I-1)=NUM(I-1)+1
        IARAY(IIN)=IALPHA(I-1)
        GO TO 90
601  CONTINUE
90   CONTINUE
    NUMTOT=NUM*IDIF
    TOTNUM=NUMTOT
    TOTPFR=0.0
    DO 888 I=1,11
        XXXNUM=NUM(I)
        PFRCFN(I)=(XXXNUM/TOTNUM) * 100.0
        TOTPFR=TOPPFR+PFRCFN(I)
888  CONTINUE
96   CONTINUE
    INUM=INUM+1
    IF (IPRT .EQ. 0) GO TO 889
    WRITF(IOUT,104) NSCANO,(IARAY(K),K=1,IDIF),LLP
889  CONTINUE
    IF (IPLT .EQ. 0) GO TO 890
    CALL PLTBF1(IARAY, IDIF, NBLK, INCX, INCY, NSTX, NSTY, NCRF,
    1NFLGPT,NFLAG1)
890  CONTINUE
    IF (NSCANO .GE. NSCANS) GO TO 218
    GO TO 5
218  CONTINUE
    NFLAG1=0
    NFLGPT=0
    NSCANO=0
    NSTART=NSTOP+1
    NSTOP=NSTOP+IDIF
    IF (NSTOP .GE. NSPS) NSTOP=NSPS
    ITFRM=ITERM-1
    REWIND IN1
    WRITE (IOUT,110)
    WRITE (IOUT,114)
    DO 666 I=1,11
        WRITE (IOUT,115) I,NUM(I),PFRCFN(I),IALPHA(I)
666  CONTINUE
    WRITE (IOUT,116) NUMTOT,TOPPER
    IF(ITERM.GT.0) GO TO 300
98   WRITE(IOUT,110)
99   FORMAT(25A1)
100  FORMAT(16I4)

```

```

101 FORMAT(12F6.1)
102 FORMAT(80H
1
103 FORMAT(2X,8HCHANNEL I2,36X,22HSYMBOL )           INTERVAL /)
104 FORMAT(5X,I4,1X,1H*,120A1,A1)
105 FORMAT(50X,A1,8X,F6.1,3H -,F6.1)
106 FORMAT(1X/)
108 FORMAT(10X,115A1)
109 FORMAT(2F10.0,12A1,
110 FORMAT(1H1/)
111 FORMAT(2X,83HCROPS C5-17,5-22,5-5,5-8,          ALTITUDE 2000 FT.
1           DATE RECORDED 6/30/66 //)
112 FORMAT(2X,23HWAVE LENGTH (MICRONS) ,12A1,13X,A1,8X,F6.1,
13H -,F6.1)
113 FORMAT(11X,112A1)
114 FORMAT(20X,5HCLASS,7X,13HSAMPLE NUMFR,6X,7HPFRFNT,10X,
112HALPHA SYMROL//)
115 FORMAT (21X,I2,10X,I6,12X,F7.2,15X,A1)
116 FORMAT (20X,5HTOTAL, 8X,I6,12X,F7.2)
117 FORMAT (3I4,12F7.3)
999 CONTINUE
REWIND IN1
RETURN
END

```

\$IRFTC PLOTT1

```

SUBROUTINE LABFL1(NSTART,NSTOP,INCRE      )
DIMENSION IOUT(120),JOUT(120),KOUT(120),LOUT(120)
NDIF=(NSTOP-NSTART+1)/INCRE
II=0
DO 1 I=NSTART,NSTOP,INCRE
II=II+1
IOUT(II)=I/1000
JOUT(II)=I/100-I/1000*10
KOUT(II)=I/10-I/100*10
LOUT(II)=I-I/10*10
IF (LOUT(II) .LE. 0 ) LOUT(II)=0
CONTINUE
1 WRITE (6,10) (IOUT(I),I=1,NDIF)
WRITE (6,10) (JOUT(I),I=1,NDIF)
WRITE (6,10) (KOUT(I),I=1,NDIF)
WRITE (6,10) (LOUT(I),I=1,NDIF)
10 FORMAT (11X,120I1)
RETURN
END

```

\$IRFTC PLLTT1

```

SUBROUTINE PLTBF1(ISYM,NN,NSQR,INCX,INCY,NSTX,NSTY,NCRF,
INFLAG,NFLAG1)
DIMENSION ISYM(1),NRUFER(50)
IF (INFLAG .NE. 0) GO TO 10
NSQR=1024/IABS(INCY+INCX)
10 CONTINUE

```

```

IF (NFLAG1 .NE. 0) GO TO 20
CALL FRAMFV(0)
NCOUNT=0
INCRX=NSTX
INCRY=NSTY
NFLAG1=1
IF (NFLAG .EQ. 0) GO TO 11
CALL APRNTV (INCX,INCY,NN,NBUFER,INCRX,INCRY)
INCRY=INCRY+INCX
INCRX=INCRX+IABS(INCY)
11
20
CONTINUF
NCOUNT=NCOUNT+1
DO 1 I=1,50
NBUFER(I)=0
1
CONTINUE
IA=0
DO 2 I=1,NN
IB=IA+6
IC=IB/6
ID=IB-IC*6
IE=ID*6
IA=IA+1
CALL FLD(NBUFER(IC),IF,6,0,ISYM(I))
2
CONTINUF
CALL APRNTV (INCX,INCY,NN,NBUFER,INCRX,INCRY)
INCRY=INCRY+INCX
INCRX=INCRX+IABS(INCY)
IF (NCOUNT .GE. NSQR) NFLAG1=0
RETURN
END

```

```

$IRFTC GFTDA1
SUBROUTINE GET1(DATA,NSPS,NSKIP,NCPW,NSCANO,IRW,IERR,NFLAG2,
1NFLAG,
1NSTART,NBTLG,MODE,NCRE,ITYPE,MSFC    )
DIMENSION DATA(1),NDAT(890)
DATA NFLAG/0/
IF (NFLAG .NE. 0 ) GO TO 12
NTMP=NCPW*(NCRE-1)
NSCANO=0
NL=36-NBTLG
NBLNG=36/NBTLG
NFLAG=1
NSTMP=(NSPS+NSTART-1)*NCPW+MSFC*19
NSCANS=NSTMP
NTMP=NSTMP/NBLNG
NSTMP=NSTMP/NBLNG*NBLNG
IF (NSTMP .LT. NSCANS) NTMP=NTMP+1
NSCANS=NTMP
IF (NSKIP .EQ. 0) GO TO 402
DO 401 I=1,NSKIP
NSCANO=NSCANO+1
CALL SKRBIN (IRW,1,RD  )

```

```

401 CONTINUE
402 CONTINUE
12 CONTINUE
13 IF (NFLAG2 .EQ. 0) GO TO 10
CONTINUE
M=(INSTART-1)*NCPW+MSFC*19
IF (MODE .EQ. 1) GO TO 50
CALL RENDPR (IRW,MODE,IFRR,NW,NSCANS,NDAT)
GO TO 51
50 CALL RENDPC (IRW,MODE,IFRR,NW,NSCANS,NDAT)
51 CONTINUE
1000 FORMAT (1X,I6)
NNW=NW*6
NFLAG2=0
NSCANO=NSCANO+1
10 CONTINUE
DO 14 NN=1,NCPW
IB=M+NBLNG
ID=IB/NBLNG
IF=IB-NBLNG*ID
IBIT=NBTLG*IF
M=M+1
IF (ITYPF .EQ. 1) GO TO 15
NDATA=0
CALL FLD(NDATA,NL,NBTLG,IBIT,NDAT(ID))
DATA(NN)=NDATA
GO TO 14
15 CONTINUE
DATAN=0.0
CALL FLD(DATAN,NL,NBTLG,IBIT,NDAT(ID))
DATA(NN)=DATAN
14 CONTINUE
M=M+NTEMP
RETURN
END

```

```

$ORIGIN ALPHA,SYSSUT2,REW
$IBFTC MOD3
SUBROUTINE JONTPB
DIMENSION NKNT(4000),NP(4000,2),NWKCD( 750),NWKCL( 750),
DIMENSION DATA(12),
C DIMENSION IBIN( 750),
DIMENSION ALPNUM(47),ALPHA(120),CORDX(3)
DIMENSION IMX(6),IMY(6)
NAMELIST /INPUT3/ NCH,NSPS,NSCANS,NSKIP,NSTART,NSTOP,LTN,NBTLG,
1 MODE,ITYPE,MSFC,NCRE,NOJP,IMX,IMY,SCALE,BIAS
DATA ASTRIK/1H*/
DATA XMARK/1HX/
DATA BLANK/6H      /
1060 FORMAT(48X,25HDATA SWITCH HAS OCCURRED   )
1061 FORMAT(49X,30HJOINT PROBABILITY DISTRIBUTION  )

```

```

1062 FORMAT(1H1)
1063 FORMAT(44X,11H X-AXIS IS ,I6,6X,11H Y-AXIS IS ,I6)
1040 FORMAT(1H ,67H MAXIMUM PROBABILITY OF UNCOMMONALITY EXCEEDED- CONT
1INUE EXECUTION ,I6)
1064 FORMAT(1X,26HSYMBOL N/SYMBOL )
1065 FORMAT(11X,121(1H*),/,11X,1H*,55X,5HPART ,I1,4H OF ,I1,53X,1H*,/
1,11X,121(1H*))
IRT=11
NFLG3=0
LIMIT=4000
READ(5,INPUT3)
WRITE(6,INPUT3)
RFAD(5,1000) (ALPNUM(I),I=1,47)
1000 FORMAT(1X,47A1)
C
RFWIND IRT
DO 80 NTIME=1,NOJP
NFLG=0
NH=1
NV=?
IF (NSKIP .EQ. 0) GO TO 9
DO 8 I=1,NSKIP
CALL SKRRBIN(LTN,1,RD)
8
CONTINUE
9
CONTINUE
MIX=IMX(NTIME)
MIY=IMY(NTIME)
DO 10 I=1,4000
10
NKNT(I)=1
WRITE (6,1062)
WRITF(6,1061)
WRITF(6,1063) MIX,MIY
NCLS=1
DO 13 MRP=1,NSCANS
NFLAG2=1
DO 15 MPR=1,NSPS
IF (NFLG3 .GT. 0) GO TO 16
CALL GET2(DATA,NSPS,0,NCH,NSCANO,LTN,IERR,NFLAG2,NSTART,
INRTLG,MODE,NCRF,ITYPE,MSFC)
NC=DATA(MIX)*SCALF+RIAS
NR=DATA(MIY)*SCALF+RIAS
IF (NC .LT. 1) NC=1
IF (NC .GT. 255) NC=255
IF (NR .LT. 1) NR=1
IF (NR .GT. 255) NR=255
NP(1,NH)=NC
NP(1,NV)=NR
NFLG3=1
GO TO 15
16
CONTINUE
CALL GET2(DATA,NSPS,0,NCH,NSCANO,LTN,IERR,NFLAG2,NSTART,
1NBTLG,MODE,NCRF,ITYPE,MSFC)
GO TO (996,999,998,996,999),IERR
999 WRITF(6,1070) NSCANO
1070 FORMAT(33HEND-OF-FILE ON INPUT AT SCAN NO. ,I6)
GO TO 995

```

```

998 WRITE(6,1071)
1071 FORMAT(27HIRRRECOVERABLE PARITY ERROR    )
      GO TO 995
996 CONTINUE
      NC=DATA(MIX)*SCALF+RIAS
      NR=DATA(MIY)*SCALE+RIAS
      IF (NC .LT. 1) NC=1
      IF (NC .GT. 255) NC=255
      IF (NR .LT. 1) NR=1
      IF (NR .GT. 255) NR=255
      DO 11 I=1,NCLS
      IF (NC .NE. NP(I,NH)) GO TO 11
      IF (NR .NE. NP(I,NV)) GO TO 11
      NKNT(I)=NKNT(I)+1
      GO TO 15
11   CONTINUE
      IF (NCLS .GE. LIMIT) GO TO 15
      NCLS=NCLS+1
      NP(NCLS,NH)=NC
      NP(NCLS,NV)=NR
15   CONTINUE
13   CONTINUE
17   CONTINUE
1020 FORMAT (1X,3I6)
C   FIND MINIMUM AND MAXIMUM IN ROW AND COLUMN DATA
      MINC=NP(1,NH)
      MAXC=NP(1,NH)
      MINR=NP(1,NV)
      MAXR=NP(1,NV)
      DO 25 I=1, NCLS
      IF (NP(I,NH) .GT. MAXC) MAXC=NP(I,NH)
      IF (NP(I,NV) .GT. MAXR) MAXR=NP(I,NV)
      IF (NP(I,NH) .LT. MINC) MINC=NP(I,NH)
      IF (NP(I,NV) .LT. MINR) MINR=NP(I,NV)
25   CONTINUE
C   TEST FOR SPREAD
      NDIFV=MAXR-MINR+1
      NDIFH=MAXC-MINC+1
      IF (NDIFV .GE. NDIFH) GO TO 19
      WRITE(6,1060)
      WRITE(6,1063) MIY,MIX
      NH=2
      NV=1
      NTEMP=MAXC
      MAXC=MAXR
      MAXR=NTEMP
      NTEMP=MINC
      MINC=MINR
      MINR=NTEMP
      NTEMP=NDIFH
      NDIFH=NDIFV
      NDIFV=NTEMP
19   CONTINUE
      WRITE(6,1064)
C   ORDER ROW DATA IN DESCENDING ORDER

```

```

C      BUBBLE-UP
NSORT=NCLS
21    CONTINUE
DO 20 I=2,NSORT
IF (NP(I-1,NV) .GE. NP(I,NV)) GO TO 20
NTEMP1=NP(I-1,NV)
NTEMP2=NP(I-1,NH)
NTEMP3=NKNT(I-1)
NP(I-1,NV)=NP(I,NV)
NP(I-1,NH)=NP(I,NH)
NKNT(I-1)=NKNT(I)
NP(I,NV)=NTEMP1
NP(I,NH)=NTEMP2
NKNT(I)=NTEMP3
20    CONTINUF
NSORT=NSORT-1
IF (NSORT .GT. 1) GO TO 21
C      CALCULATE TABLE
MAXKNT=0
DO 22 I=1,NCLS
22    IF (NKNT(I) .GT. MAXKNT) MAXKNT=NKNT(I)
NFACT=MAXKNT/45
XXX=FLOAT(MAXKNT)/46.0
NFAC=0
IF (NFACT .LT. 1) NFACT=1
WRITE(6,1050) BLANK,NFAC
NFAC=NFAC+NFACT
DO 23 I=1,46
WRITE(6,1050) ALPNUM(I),NFAC
1050 FORMAT (3X,A6,6X,I6)
NFAC=NFAC+NFACT
23    CONTINUE
GO TO 18
14    CONTINUE
WRITE(6,1040) LIMIT
GO TO 17
18    CONTINUE
C      PRINT DISTRIBUTION ON PAGE
C      SFT UP LOOP
ITFRM=1
IF (NDIFH .EQ. 120) GO TO 40
ITFRM=NDIFH/120+1
40    CONTINUE
NST=1
NSO=NST+119
IF (NSO .GT. NDIFH) NSO=NDIFH
DO 50 LOOP=1,ITERM
WRITE(6,1065) LOOP,ITERM
CORDX(1)=FLOAT(NST+MINC-2)
CORDX(2)=CORDX(1)+60.0
CORDX(3)=CORDX(1)+110.0
1021 FORMAT (1H1)
IB=1
DO 60 II=1,NDIFV
DO 66 I=1,120

```

```

ALPHA(I)=BLANK
66  CONTINUE
C   IF (NFLG .EQ. 1) GO TO 69
C   DO 68 I=1,NDIFH
C   IBIN(I)=0
C68  CONTINUE
C69  CONTINUE
      IF (NP(IB,NV) .NE. MAXR-II+1) GO TO 65
      IA=0
      DO 26 I=IB,NCLS
      IE=I
      IF (NP(I,NV) .NE. NP(IB,NV)) GO TO 31
      IA=IA+1
      NWKCD(IA)=NP(I,NH)
      NWKCL(IA)=NKNT(I)
26   CONTINUE
31   CONTINUE
      IB=IE
C   ORDER X-AXIS
      NSORT=IA
      NUMCLX=IA
      IF (IA .LE. 1) GO TO 30
28   CONTINUE
      DO 27 IC=2,NSORT
      IF (NWKCD(IC-1) .LE. NWKCD(IC)) GO TO 27
      NTEMP1=NWKCD(IC-1)
      NTEMP2=NWKCL(IC-1)
      NWKCD(IC-1)=NWKCD(IC)
      NWKCL(IC-1)=NWKCL(IC)
      NWKCD(IC)=NTEMP1
      NWKCL(IC)=NTEMP2
27   CONTINUE
      NSORT=NSORT-1
      IF (NSORT .GE. 2) GO TO 28
1030 FORMAT(1X,2I6)
30   CONTINUE
C   IF (NFLG .EQ. 1) GO TO 91
C   IM=1
C   DO 90 I=1,NDIFH
C   IF (NWKCD(IM) .NE. 1) GO TO 90
C   IBIN(I)=NWKCL(IM)
C   IM=IM+1
C90  CONTINUE
C91  CONTINUE
      NM1=NST+MINC-1
      DO 67 ID=1,NUMCLX
      IF (NWKCD(ID) .LT. NM1) GO TO 67
      IC=ID
      GO TO 29
67   CONTINUE
29   CONTINUE
      IA=0
      DO 64 I=NST,NSO
      IA=IA+1
      IF (NWKCD(IC) .NE. MINC+I-1) GO TO 64

```

```

XX=FLOAT(NWKCL(IC))/XXX
ICAR=XX+(1.001-1.0/XXX)
ALPHA(IA)=ALPNUM(ICAR)
IC=IC+1
64  CONTINUE
65  CONTINUE
IF (NFLG .EQ. 1) GO TO 70
C   WRITE(IRT) (IBIN(I),I=1,NDIFH)
70  CONTINUE
CORDY=FLOAT(MAXR-II+1)
YMARG=XMARK
IF (NDIFV-II .NE. (NDIFV-1-II/10*10)) YMARG=ASTRIK
WRITE(6,1008) CORDY,YMARG,(ALPHA(I),I=1,120)
1008 FORMAT(1X,F8.1,2X,A1,120A1)
60  CONTINUE
NST=NSO+1
NSO=NST+119
IF (NSO .GT. NDIFH) NSO=NDIFH
WRITE(6,1010)
WRITE(6,1011) CORDX(1),CORDX(2),CORDX(3)
1011 FORMAT (6X,F10.4,50X,F10.4,40X,F10.4)
NFLG=1
WRITE(6,1062)
50  CONTINUE
REWIND LTN
C   END FILE IRT
80  CONTINUE
C   REWIND IRT
995 CONTINUE
1010 FORMAT (11X,12(10HX*****))
RETURN
END

```

```

$IRFTC GFTDA2
SUBROUTINE GET2(DATA,NSPS,NSKIP,NCPW,NSCANO,IRW,IERR,NFLAG2,
1NSTART,NRTLG,MODE,NcRF,ITYPF,MSFC    )
DIMENSION DATA(1),NDAT(890)
DATA NFLAG/0/
IF (NFLAG .NE. 0 ) GO TO 12
NTEMP=NCPW*(INCRE-1)
NSCANO=0
NL=36-NBTLG
NBLNG=36/NBTLG
NFLAG=1
NSTMP=(NSPS+NSTART-1)*NCPW+MSFC*19
NSCANS=NSTMP
NTMP=NSTMP/NBLNG
NSTMP=NSTMP/NBLNG*NBLNG
IF (NSTMP .LT. NSCANS) NTMP=NTMP+1
NSCANS=NTMP
IF (NSKIP .EQ. 0) GO TO 402
DO 401 I=1,NSKIP
NSCANO=NSCANO+1
CALL SKRRIN (IRW,1,RD  )

```

```

401 CONTINUF
402 CONTINUF
12 CONTINUE
13 IF (NFLAG2 .EQ. 0) GO TO 10
CONTINUE
M=(NSTART-1)*NCPW+MSFC*19
IF (MODE .EQ. 1) GO TO 50
CALL REDTPR (IRW,MODE,IERR,NW,NSCANS,NDAT)
GO TO 51
50 CALL REDTPC (IRW,MODE,IERR,NW,NSCANS,NDAT)
51 CONTINUE
1000 FORMAT (1X,I6)
NNW=NW*6
NFLAG2=0
NSCANO=NSCANO+1
10 CONTINUE
DO 14 NN=1,NCPW
IB=M+NBLNG
ID=IB/NBLNG
IF=IB-NBLNG*ID
IBIT=NBTLG*IF
M=M+1
IF (ITYPF .EQ. 1) GO TO 15
NDATA=0
CALL FLD(NDATA,NL,NBTLG,IBIT,NDAT(ID))
DATA(NN)=NDATA
GO TO 14
15 CONTINUE
DATAN=0.0
CALL FLD(DATAN,NL,NBTLG,IBIT,NDAT(ID))
DATA(NN)=DATAN
14 CONTINUE
M=M+NTEMP
RETURN
END

```

```

$ORIGIN      ALPHA,SYSUT2,REW
$IBFTC MOD4
SUBROUTINE ISOMET
DIMENSION NTA(256),NTB(256), DATA(256),TIME(256),DAT(12)
DIMENSION NTC(256),NTD(256)
NAMELIST/INPUT4/ NCH,NSPS,NSKIP,NBTLG,MODE,IRW,NCHAN,NSNCRE,NPCRE,
1ITYPE,MSFC,
2NPTSL,NPTSU,
1MAXSCN,XMIN,XMAX,YMIN,YMAX,NBLSZX,NBLSZY,NSECT,NSMOV
2,NDIREC
RFAD (5,INPUT4)
WRITE(6,INPUT4)
NUP=512/NBLSZY
NBLDIR=NRLSZX*NDIREC
NTIMFS=MAXSCN/NUP
CALL CAMRAV(9)
NRACK=1

```

```

IF (NSKIP .EQ. 0) GO TO 33
DO 32 I=1,NSKIP
NFLAG2=1
CALL GET3(DAT,NSPS,0,NCH,NSCANO,IRW,IERR,NFLAG2,NPTSL,NBTLG,
12 ,NPCRE,ITYPE,MSFC)
32 CONTINUE
33 CONTINUE
DO 18 MMRR=1,NSECT
NPTSUU=NPTSU
XMIN=FLOAT(NPTSL)
XMAX=FLOAT(NPTSUU)
NDIFF=NPTSUU-NPTSL+1
IF (NSMOV .NE. 0) NPTSUM=NDIFF -NSMOV+1
NFLAG=0
DO 16 MPR=1,NTIMES
IF (NDIRFC) 23,24,24
24 IXR=512-(512/NRLSZX-NUP)*NRLSZX
IXL=0
GO TO 25
23 IXL=512-(512/NBLSZX-NUP)*NBLSZX
IXR=0
25 CONTINUE
IYR=512
IYT=0
CALL FRAMEV(0)
DO 10 MRP=1,NUP
DO 17 MMRP=1,NSNCRF
NFLAG2=1
CALL GET3(DAT,NSPS,0,NCH,NSCANO,IRW,IERR,NFLAG2,NPTSL,NBTLG,
1MODE,NPCRF,ITYPF,MSFC)
IF (NFLAG .EQ. 0) GO TO 19
17 CONTINUE
19 CONTINUE
NFLAG=1
DATA(1)=DAT(NCHAN)
DO 1 I=2,NDIFF
CALL GET3(DAT,NSPS,0,NCH,NSCANO,IRW,IERR,NFLAG2,NPTSL,NBTLG,
1MODE,NPCRE,ITYPE,MSFC)
DATA(I)=DAT(NCHAN)
1 CONTINUE
IF (NSMOV .EQ. 0) GO TO 22
DO 20 I=1 ,NPTSUM
IA=I
IB=IA+NSMOV-1
TFMP=0.0
DO 21 II=IA+IB
TFMP=TEMP+DATA(II)
21 CONTINUE
TFMP=TEMP/FLOAT(NSMOV)
DATA(I)=TFMP
20 CONTINUE
22 CONTINUE
CALL SETMIV (IXL,IXR,IYB,IYT)
CALL XSCALV (XMIN,XMAX,IXL,IXR)
CALL YSCALV (YMIN,YMAX,IYR,IYT)

```

```

DO 11 I=1,NDIFF
TIME(I)=FLOAT(NPTSL-1+I)
NTA(I)=NYV(DATA(I))
NTR(I)=NXV(TIME(I))
11 CONTINUE
DO 12 I=2,NDIFF
CALL LINEV (NTB(I-1),NTA(I-1),NTB(I),NTA(I))
12 CONTINUE
IF (MRP .LE. 1) GO TO 15
DO 13 I=1,NDIFF
CALL LINEV (NTD(I),NTC(I),NTB(I),NTA(I))
13 CONTINUE
15 CONTINUE
DO 14 I=1,NDIFF
NTD(I)=NTR(I)
NTC(I)=NTA(I)
14 CONTINUE
IXL=IXL+NBLDIR
IXR=IXR-NBLDIR
IYB=IYB-NBLSZY
IYT=IYT+NBLG
10 CONTINUE
CALL BSRECD(IRW,NBACK,NOF)
16 CONTINUE
REWIND IRW
IF (NSKIP .EQ. 0) GO TO 30
DO 31 I=1,NSKIP
NFLAG2=1
CALL GET3(DAT,NSPS,0,NCH,NSCANO,IRW,IFRR,NFLAG2,NPTSL,NBTLG,
1 MODE,NPCRE,ITYPE,MSFC)
31 CONTINUE
30 CONTINUE
NPTSU=NPTSUU
NTFMP=NPTSL
NPTSL=NPTSU+1
NPTSU=NPTSU+(NPTSU-NTEMP)+1
18 CONTINUE
RETURN
END

```

SIBFTC GETDA3

```

SUBROUTINE GET3(DATA,NSPS,NSKIP,NCPW,NSCANO,IRW,IERR,NFLAG2,
1NSTART,NBTLG,MODE,NCRE,ITYPE,MSFC)
DIMENSION DATA(1),NDAT(890)
DATA NFLAG/0/
IF (NFLAG .NE. 0 ) GO TO 12
NTFMP=(NCRE-1)*NCPW
NSCANO=0
NL=36-NBTLG
NBLNG=36/NBTLG
NFLAG=1
NSTMP=(NSPS+NSTART-1)*NCPW+MSFC*19
NSCANS=NSTMP
NTMP=NSTMP/NBLNG

```

```

NSTMP=NSTMP/NBLNG*NBLNG
IF (NSTMP .LT. NSCANS) NTMP=NTMP+1
NSCANS=NTMP
IF (NSKIP .EQ. 0) GO TO 402
DO 401 I=1,NSKIP
NSCANO=NSCANO+1
CALL SKRRIN (IRW,I,RD)
401 CONTINUE
402 CONTINUE
12 CONTINUE
IF (NFLAG2 .EQ. 0) GO TO 10
13 CONTINUE
M=(INSTART-1)*NCPW+MSFC*19
IF (MODE .EQ. 1) GO TO 50
CALL REDTPR (IRW,MODE,IERR,NW,NSCANS,NDAT)
GO TO 51
50 CALL REDTPC (IRW,MODE,IERR,NW,NSCANS,NDAT)
51 CONTINUE
1000 FORMAT (1X,I6)
NNW=NW*6
NFLAG2=0
NSCANO=NSCANO+1
10 CONTINUE
DO 14 NN=1,NCPW
IB=M+NBLNG
ID=IR/NBLNG
IF=IB-NBLNG*ID
IBIT=NBTLG*IF
M=M+1
IF (ITYPF .EQ. 1) GO TO 15
NDATA=0
CALL FLD(NDATA,NL,NBTLG,IBIT,NDAT(ID))
DATA(NN)=NDATA
GO TO 14
15 CONTINUE
DATAN=0.0
CALL FLD(DATAN,NL,NBTLG,IBIT,NDAT(ID))
DATA(NN)=DATAN
14 CONTINUE
M=M+NTEMP
RETURN
END

```

```

$ORIGIN ALPHA,SYSUT2,REW
$IRFTC MODS
SUBROUTINE CNTLIN
DIMENSION DAT(12)
COMMON /LAB /N13,NF3,NT3,Z(2560),KON(3400),N12,NF2,NT2,U(3400),
1V(3400)

```

```

NAMELIST /INPUT5/ NCH,NSPS,IRW,NCHAN,NSNCRE,NPCRE,NPTSL,NPTSU,
?NBTLG,MODE,
?ITYPE,MSFC,
?NSKIP,
1MAXSCN,NSECT, MSZX, MSZY, BLK,FHINC,ZMIN,ZMAX,LAB
READ (5,INPUT5)
WRITE (6,INPUT5)
CALL OPEN (IRW,1)
IXR=1024.0-BLK+.5
IXL=0
IYR=0
IYT=136
NCRE=NPCRE
NBLLK=1024.0/BLK+.5
XNBLK= BLK
FNPTSL=NPTSL
FNPTSU=NPTSU
NUP=MAXSCN/ ((MSZY-1)*NSNCRE)
NSECT=NSPS/ MSZX
NDIF=(NPTSU-NPTSL+1)/NPCRE
NFLAG1=0
FDIF=NDIF
FRM= MSZY
CALL CAMRAV( 35)
NWDS=NCH*NSPS
CALL BUTTV(1)
CALL SETMIV(IXL,IXR,IYR,IYT)
IF (NSKIP .EQ. 0) GO TO 25
DO 26 I=1,NSKIP
NFLAG2=1
CALL GET5(DAT,NSPS ,0,NCH,NSCANO,IRW,IERR,NFLAG2,NPTSL,
1NBTLG,MODE,NPCRE,ITYPE,MSFC)
26 CONTINUE
25 CONTINUE
C READ(IRW)
III=0
CALL FRAMEV(0)
DO 18 MMRR=1,NSECT
NPLTMP=NPTSL+1
NPTSUU=NPTSU
NPTSU=NPTSU-NPCRE
NFLAG=0
IMM=0
DO 16 MRPP=1,NUP
III=III+1
IF (III .LE. NBLLK)GO TO 21
CALL FRAMEV(0)
III=1
IXR=1024.0-BLK+.5
IXL=0
21 CONTINUE
CALL YSCALV(1.0 ,FDIF ,IYR,IYT)
CALL XSCALV(1.0,FRM,IXL,IXR)
DO 10 MRP=1, MSZY
IF (NFLAG1 .NE. 1) GO TO 20

```

```

DO 22 IIM=1,NDIF
IMM=IMM+1
IMI=IMI+1
Z(IMM)=Z(IMI)
22 CONTINUE
NFLAG1=0
GO TO 10
20 CONTINUE
DO 17 MMRP=1,NSNCRE
NFLAG2=1
1001 FORMAT(1X,16F4.1)
CALL GET5(DAT,NSPS ,0,NCH,NSCANO,IRW,IERR,NFLAG2,NPTSL,
1NRTLG,MODE,NPCRF,ITYPF,MSFC)
IF (NFLAG .EQ. 0) GO TO 19
17 CONTINUE
19 CONTINUE
NFLAG=1
IMM=IMM+1
Z(IMM)=DAT(NCHAN)
DO 1 I=NPLTMP,NPTSUU,NPCRE
IMM=IMM+1
CALL GET5(DAT,NSPS ,0,NCH,NSCANO,IRW,IERR,NFLAG2,NPTSL,
1NRTLG,MODE,NPCRE,ITYPF,MSFC)
Z(IMM)=DAT(NCHAN)
1 CONTINUE
10 CONTINUE
1000 FORMAT (1X,10F10.2)
CALL CONTOR(MSZY,NDTF,FHINC,LAB,FNPTSL,FNPTSU,FRM,ZMIN,ZMAX)
IXL=FLOAT(IXL)+BLK+.5
IXR=FLOAT(IXR)-BLK+.5
CALL SETMIV (IXL,IXR,IYB,IYT)
IMM=0
IMI=(MSZY-1)*NDIF
NFLAG1=1
16 CONTINUE
C RFWIND IRW
C READ (IRW)
NPTSU=NPTSUU
NTEMP=NPTSL
NPTSL=NPTSU-NPCRE
NPTSU=NPTSU+(NPTSU-NTEMP)-NPCRE
18 CONTINUE
STOP
END
$IRFTC GFTDA5
SURROUNDF GFT5(DATA,NSPS,NSKIP,NCPW,NSCANO,IRW,IERR,NFLAG2,
1INSTANT,NRTLG,MODE,NCRE,ITYPF,MSFC)
DIMENSION DATA(1),NDAT( 890)
DATA NFLAG/0/
IF (NFLAG .NE. 0 ) GO TO 12
NTEMP=(NCRE-1)*NCPW
NSCANO=0
NL=36-NRTLG
NRLNG=36/NRTLG
NFLAG=1

```

```

NSTMP=(NSPS+NSTART-1)*NCPW+MSFC*19
NSCANS=NSTMP
NTMP=NSTMP/NBLNG
NSTMP=NSTMP/NBLNG*NRLNG
IF (NSTMP .LT. NSCANS) NTMP=NTMP+1
NSCANS=NTMP
IF (NSKIP .EQ. 0) GO TO 402
DO 401 I=1,NSKIP
NSCANO=NSCANO+1
CALL SKRBIN (IRW,1,RD )
401 CONTINUE
402 CONTINUE
12 CONTINUE
IF (NFLAG2 .EQ. 0) GO TO 10
13 CONTINUE
M=(NSTART-1)*NCPW+MSFC*19
IF (MODE .EQ. 1) GO TO 50
CALL REDTPR (IRW,MODE,IERR,NW,NSCANS,NDAT)
GO TO 51
50 CALL REDTPC (IRW,MODE,IFRR,NW,NSCANS,NDAT)
51 CONTINUE
1000 FORMAT (1X,I6)
NNW=NW*6
NFLAG2=0
NSCANO=NSCANO+1
10 CONTINUE
DO 14 NN=1,NCPW
IB=M+NBLNG
ID=IR/NBLNG
IF=IB-NBLNG*ID
IBIT=NBTLG*IF
M=M+1
IF (ITYPF .EQ. 1) GO TO 15
NDATA=0
CALL FLD(NDATA,NL,NRTLG,IBIT,NDAT(ID))
DATA(NN)=NDATA
GO TO 14
15 CONTINUE
DATAN=0.0
CALL FLD(DATAN,NL,NRTLG,IBIT,NDAT(ID))
DATA(NN)=DATAN
14 CONTINUE
M=M+NTEMP
RETURN
END

```

\$IBFTC CTOR

```

SUBROUTINE CONTOR(L,M,FHINC,LAB,FNPTSL,FNPTSU,FRM,ZMIN,ZMAX)
DIMENSION I(5),V1(3),V2(3),P1(3),P2(3),X(5),Y(5)
DIMENSION V3(3)
COMMON /LAR /NT3,NF3,NT3,Z(2560),KON(3400),NT2,NF2,NT2,U(3400),
1V(3400)
LOGICAL JCDF
IF (M.GT.0.AND.L.GT.0.AND.FHINC.GT.0.0.AND.LAB.GT.0) GO TO 1

```

```

      WRITE (6,101) M,L,FHINC
      RETURN
1      N=3400
      NC=(ZMAX-ZMIN)/ABS(FHINC)
      FH=ZMIN
?      CONTINUE
      NLAB=LAB-1
      IF (LAB .EQ. 0) NLAB=LAB+1
      DO 15 IH=1,NC
      NT2=6
      NF2=5
      NT2=5
      V(2)=FNPTSU
      U(2)=FRM
      V(4)=FNPTSL
      U(4)=1.0
      K=1
      NLAB=NLAB+1
      IF (NLAB .NE. LAB) GO TO 51
      K=2
      NLAB=0
51      DO 10 IL=2,L
      DO 10 IM=2,M
      I(3)=(IL-1)*M+IM
      I(2)=I(3)-1
      I(4)=I(3)-M
      I(1)=I(4)-1
      I(5)=I(1)
      X(1)=IM-1
      X(2)=IM-1
      X(3)=IM
      X(4)=IM
      X(5)=IM-1
      Y(1)=IL-1
      Y(2)=IL
      Y(3)=IL
      Y(4)=IL-1
      Y(5)=IL-1
      IZ2=I(2)
      IZ1=I(1)
      IZ3=I(3)
      IZ4=I(4)
      IZ5=I(5)
1000  FORMAT (1X,2F10.2,16)
      V1(1)=(X(1)+X(4))/2.0
      V1(2)=(Y(1)+Y(2))/2.0
      V1(3)=(Z(IZ1)+Z(IZ2)+Z(IZ3)+Z(IZ4))/4.0
      DO 4 J=1,4
      IZ=I(J)
      V2(1)=X(J)
      V2(2)=Y(J)
      V2(3)=Z(IZ)
      IZ=I(J+1)
      V3(1)=X(J+1)
      V3(2)=Y(J+1)

```

```

V2(3)=Z(IZ)
IF (V2(3) .LE. 0.0 .AND. V3(3) .LE. 0.0) GO TO 4
NV2=V2(3)+.5
NV3=V3(3)+.5
IF (NV2 .EQ. NV3) GO TO 4
1002 FORMAT(1X,3F10.2)
CALL STRIKE(V1,V2,V3,FH,P1,P2,IER)
IF (IER .NE. 2) GO TO 4
IF (NF2+2 .LE. N) GO TO 59
WRITE (6,100) FH,N
GO TO 60
59 NF2=NF2+2
U(NF2-1)=P1(2)
V(NF2-1)=P1(1)
KON(NF2-1)=0
U(NF2)=P2(2)
V(NF2)=P2(1)
KON(NF2)=1
4 CONTINUE
10 CONTINUE
60 IF (NI2 .GE. NF2) GO TO 15
JCDF=TRUE.
DO 61 J=NI2,NF2
JTFMP=J
DO 61 JJ=2,4,2
IF (U(J) .EQ. U(JJ)) GO TO 68
IF (V(J) .EQ. V(JJ)) GO TO 68
61 CONTINUE
NT2=NT2+2
U(NT2-1)=U(NI2)
V(NT2-1)=V(NI2)
KON(NT2-1)=0
U(NT2)=U(NI2+1)
V(NT2)=V(NI2+1)
KON(NI2)=1
NI2=NI2+2
GO TO 70
68 J=JTFMP
IF (KON(J) .EQ. 0) GO TO 69
JJ=J-1
JMAX=J
GO TO 69
69 JJ=J+1
JMAX=JJ
63 V1(1)=U(J)
V1(2)=V(J)
V2(1)=U(JJ)
V2(2)=V(JJ)
JDIF=JMAX-NI2-1
DO 64 JSUB=1,JDIF
JDFX=JMAX-JSUB+1
KDFX=JMAX-JSUB-1
U(JDFX)=U(KDFX)
V(JDFX)=V(KDFX)
NI2=NI2+2

```

```

IF (JCODE) GO TO 72
NT2=NT2+1
U(NT2)=V2(1)
V(NT2)=V2(2)
KON(NT2)=1
GO TO 70
72 NT2=NT2+2
U(NT2-1)=V1(1)
V(NT2-1)=V1(2)
KON(NT2-1)=0
U(NT2)=V2(1)
V(NT2)=V2(2)
KON(NT2)=1
70 IF (NI2 .GE. NF2) GO TO 16
DO 71 J=NI2,NF2
JTFMP=J
IF (U(J).NE.U(NT2).OR.V(J).NE.V(NT2)) GO TO 71
JCODE=.FALSE.
GO TO 68
71 CONTINUE
GO TO 60
16 CONTINUE
NCNT=0
JI=6
DO 30 J=6,NT2
JJ=J
IF (KON(J) .EQ. 1) GO TO 31
IF (NCNT .GT. 4) GO TO 33
DO 32 JIJ=JI,JJ
KON(JIJ)=0
32 CONTINUE
33 NCNT=0
JI=J
GO TO 30
31 NCNT=NCNT+1
30 CONTINUE
IF (K .NE. 2) GO TO 801
CALL LABFL(FH)
801 CONTINUE
DO 800 J=6,NT2
JUL=NXV(U(J))
JVL=NYV(V(J))
JUR=NXV(U(J+1))
JVR=NYV(V(J+1))
WRITF (6,1003) JUL,JVL,JUR,JVR
1003 FORMAT(1X,4I6)
IF (KON(J+1) .NE. 0) CALL LINFV(JUL,JVL,JUR,JVR)
800 CONTINUE
15 FH=FH+FHINC
100 FORMAT (45H WARNING IN SUBROUTINE CONTOR AT A HEIGHT OF ,
1F7.1,
24HNUMBER OF POINTS EXCEEDED ALLOWABLE NUMBER OF ,
3I5,/,
42HEXECUTION CONTINUING //)
101 FORMAT (28H ERROR IN SUBROUTINE CONTOR ,/I11,

```

```

121H=NUMBER OF GRID ROWS ,/,I11,
224H=NUMBER OF GRID COLUMNS ,/,F11.3,
333H=INSTANCE RFTWFFN CONTOUR LARFLS ,/,I11,
429H=FREQUENCY OF CONTOUR LABELS ,/,
521H=EXECUTION TERMINATED // 1
      RETURN
      END

```

```

$IRFTC STRK
  SUBROUTINE STRKF(V1,V2,V3,FH,P1,P2,IFR)
  DIMENSION V1(1),V2(1),V3(1),P1(1),P2(1),Q(3,3)
  DO 6 I=1,3
    P1(I)=0.0
    P2(I)=0.0
    Q(I,1)=V1(I)
    Q(I,2)=V2(I)
6   Q(I,3)=V3(I)
1000 FORMAT (1X,3F10.5)
  DO 7 I=1,3
    II=I
    DO 1 J=II,3
      IF (Q(3,II)-Q(3,J)) 1,1,2
?    DO 8 L=1,3
      A=Q(L,II)
      Q(L,II)=Q(L,J)
      Q(L,J)=A
8    CONTINUE
1    CONTINUE
7    CONTINUE
    IFR=0
    IF(Q(3,3).LT.FH.OR. Q(3,1).GT.FH) RRETURN
    IF(Q(3,1).EQ.FH.AND.Q(3,2).EQ.FH.AND.Q(3,3).EQ.FH) RRETURN
    A=(FH-Q(3,1))/(Q(3,1)-Q(3,3))
    P1(1)=(Q(1,1)-Q(1,3))*A+Q(1,1)
    P1(2)=(Q(2,1)-Q(2,3))*A+Q(2,1)
    P1(3)=FH
    IF (Q(2,1) .NE. FH) GO TO 3
    IF (Q(3,2) .NE. FH) GO TO 4
    P2(1)=Q(1,2)
    P2(2)=Q(2,2)
    P2(3)=Q(3,2)
    IFR=2
    RRETURN
3   IF (Q(3,2) .GT. FH) GO TO 5
    A=(FH-Q(3,2))/(Q(3,2)-Q(3,3))
    P2(1)=(Q(1,2)-Q(1,3))*A+Q(1,2)
    P2(2)=(Q(2,2)-Q(2,3))*A+Q(2,2)
    P2(3)=FH
    IFR=2
    RRETURN
4   IFR=1
    P2(1)=P1(1)
    P2(2)=P1(2)
    P2(3)=FH

```

```

5      RETURN
A=(FH-Q(3,1))/(Q(3,1)-Q(3,2))
P2(1)=(Q(1,1)-Q(1,2))*A+Q(1,1)
P2(2)=(Q(2,1)-Q(2,2))*A+Q(2,1)
P2(3)=FH
IFR=2
RETURN
END

$IRFTC MARK
SUBROUTINE LARFL(H)
COMMON /LAR /N13,NF3,NT3,Z(2560),KON(3400),N12,NF2,NT2,U(3400),
1V(3400)
I2=5
12   I1=I2+1
DIS=0.0
IS=I1+1
IF (I1+4 .GT. NT2) GO TO 99
DO 10 I2=IS,NT2
IF (KON(I2) .EQ. 0) GO TO 11
10   DIS=DIS+SQRT((U(I2)-U(I2-1))**2+(V(I2)-V(I2-1))**2)
11   I12=I2-1
IF (DIS .LT. 270.0) GO TO 12
IM=(I12+I1)/2
IDIF=(I12-I1)/2
IF (IDIF .LT. 2) GO TO 12
DO 20 J=1, IDIF
IL=IM-1
IU=IM+J
DIS=SQRT((U(IU)-U(IL))**2+(V(IU)-V(IL))**2)
IF (DIS .GT. 68.0) GO TO 16
20   CONTINUE
GO TO 12
16   IS=IL+1
DO 19 JJ=IS,IU
KON(JJ)=0
REALM=10.0E+10
IF (U(IU)-U(IL) .NE. 0.0) REALM=(V(IU)-V(IL))/(U(IU)-U(IL))
ANGL=ATAN(REALM)
R=(DIS-68.0)/2.0
S=68.0+R
IF (U(IU) .GT. U(IL)) GO TO 30
II=IU
IU=IL
IL=II
30   XP=(R*U(IU)+S*U(IL))/DIS+6.8*SIN(ANGL)
YP=(R*V(IU)+S*V(IL))/DIS-6.8*COS(ANGL)
DO 18 JJ=1,5
ND=5-JJ
IF (ARS(H) .LT. 10.0**((JJ-1))) GO TO 17
18   CONTINUE
17   CONTINUE
IXP=XP
IYP=YP

```

```

        CALL LABLV(H,IXP,IYP,ND,1,5)
99      GO TO 12
        RETURN
        END

```

```

$ORIGIN           ALPHA, SYSUT2, REW
$IBFTC MOD6

SUBROUTINE BWNDR3
DIMENSION X(12,256),Y(12,256),MCHAN(12),NN( 256),KSYM(49),JSYM(1256)
DIMENSION NWHICH(12)
NAMELIST/INPUT6/NSCAN,NSTART,NSPS,NCH,NVAR,NSYM,ISUM,NRTLG,
IMODE,ITYPF,MSFC,NSKIP,NRLK,INCX,INCY,NSTX,NSTY,NCRE
NAMELIST/NCHUSE/NWHICH
EQUIVALENCE (NSCAN,NSCANS)
EQUIVALENCE (NSTRT,NSTART)
EQUIVALENCE (NCOL,NSPS)
EQUIVALENCE (NCHAN,NCH)
ICARD=5
IPRINT=6
INTAPE=10
IOTAPE=11
READ(ICARD,INPUT6)
WRITE(IPRINT,INPUT6)
READ(ICARD,NCHUSE)
WRITE(IPRINT,NCHUSE)
1 FORMAT(1X,7I4)
3 FORMAT(1X,12I1)
RFAD(ICARD,5)(KSYM(I),I=1,NSYM)
5 FORMAT(1X,60A1)
NFLAG=0
AVF=ISUM
APOP=0.0
DXAVF=0.0
DYAVF=0.0
DZAVF=0.0
NSAV=NSCAN
IF(NSKIP.EQ.0) GO TO 98
DO 97 I=1,NSKIP
CALL SKRBIN(INTAPE,1,NOP)
97  CONTINUE
98  CONTINUE
2 FORMAT(1H1)
4 FORMAT(5X,11111)
II=1
KK=NSTRT-1
160 IF(II.EQ.NSCAN) GO TO 510
II=II+1
NFLAG2=1

```

```

KK=KK+1
IF(II.NF.2) GO TO 290
DO 170 JJ=1,NCOL
  CALL GET6(X(1,JJ),NCOL,0,NCHAN,NSCANO,INTAPF,IFRR,NFLAG2,NSTRT,
  INBTLG,MODE,NCRF,ITYPE,MSFC)
170 CONTINUE
290 CONTINUE
NFLAG2=1
DO 300 JJ=1,NCOL
  CALL GFT6(Y(1,JJ),NCOL,0,NCHAN,NSCANO,INTAPF,IFRR,NFLAG2,NSTRT,
  INBTLG,MODE,NCRF,ITYPE,MSFC)
300 CONTINUE
DO 380 JJ=2,NCOL
IJ=JJ-1
XSUM=0.0
YSUM=0.0
ZSUM=0.0
DO 360 ICHAN=1,ISUM
IICHN=NWHICH(ICAHN)
XDIFF=Y(IICHN,JJ)-Y(IICHN,IJ)
YDIFF=Y(IICHN,JJ)-X(IICHN,JJ)
XSUM=XSUM+XDIFF*XDIFF
YSUM=YSUM+YDIFF*YDIFF
ZSUM=ZSUM+ZDIFF*ZDIFF
360 CONTINUE
XSUM=XSUM/AVF
YSUM=YSUM/AVE
ZSUM=ZSUM/AVF
APOP=APOP+1.0
AA=1.0/APOP
RB=1.0-AA
DXAVF=RB*DXAVF+AA*YSUM
DYAVF=RB*DYAVF+AA*XSUM
DZAVF=RB*DZAVF+AA*ZSUM
XSUM=SQRT(XSUM)
IF (XSUM .LT. 53.4) GO TO 365
364 XSUM=53.0
YSUM=53.0
GO TO 366
365 CONTINUE
YSUM=SQRT(YSUM)
IF (YSUM .LT. 53.4) GO TO 366
GO TO 364
366 CONTINUE
CALL JNTPB(YSUM,XSUM,NFLAG,0,0,KSYM(3),NPOP,
2DXAVE,DYAVE,
3DZAVF,
1JJ,NSCAN,II,NCOL,JSYM,X,NSTRT,NN,INCX)
NSCAN=NSAV
380 CONTINUE
DO 500 JJ=1,NCOL
DO 490 ICHAN=1,ISUM
IICHN=NWHICH(ICAHN)
X(IICHN,JJ)=Y(IICHN,JJ)
490 CONTINUE

```

```

500 CONTINUF
GO TO 160
510 CONTINUE
NFLAG=1
CALL JNTPB(YSUM,XSUM,NFLAG,0,0,KSYM(3),NPOP,
2DXAVF,DYAVE,
3DZAVF,
1JJ,NSCAN,II,NCOL,JSYM,X,NSTRT,NN,INCX)
RFWIND IOTAPF
REWIND INTAPE
C CALL CLEAN
RETURN
END

```

```

$IRFTC PLOTT6
SURROUTINF LARFL6(NSTART,NSTOP,INCRE      )
DIMENSION IOUT(120)
NDIF=(NSTOP-NSTART+1)/INCRE
II=0
DO 1 I=NSTART,NSTOP,INCRE
II=II+1
IOUT(II)=I/1000
1 CONTINUE
WRITE (6,10) (IOUT(I),I=1,NDIF)
II=0
DO 2 I=NSTART,NSTOP,INCRE
II=II+1
IOUT(II)=I/100-I/1000*10
2 CONTINUE
WRITE (6,10) (IOUT(I),I=1,NDIF)
II=0
DO 3 I=NSTART,NSTOP,INCRE
II=II+1
IOUT(II)=I/10-I/100*10
3 CONTINUE
WRITE (6,10) (IOUT(I),I=1,NDIF)
II=0
DO 4 I=NSTART,NSTOP,INCRE
II=II+1
IOUT(II)=I-I/10*10
IF (IOUT(II) .LE. 0 ) IOUT(II)=0
4 CONTINUE
WRITE (6,10) (IOUT(I),I=1,NDIF)
10 FORMAT (11X,120I1)
RETURN
END

```

```

$IRFTC GFTDA6
SURROUTINF GFT6(DATA,NSPS,NSKIP,NCPW,NSCANO,IRW,IERR,NFLAG2,
1NSTART,NRTLG,MODE,NCRF,ITYPF,MSFC      )
DIMENSION DATA(1),NDAT( 890)
DATA NFLAG/0/
IF (NFLAG .NE. 0 ) GO TO 12

```

```

NSCANO=0
NTFMP=(NCRF-1)*NCPW
NL=36-NBTLG
NBLNG=36/NBTLG
NFLAG=1
NSTMP=(NSPS+NSTART-1)*NCPW+MSFC*19
NSCANS=NSTMP
NTMP=NSTMP/NBLNG
NSTMP=NSTMP/NBLNG*NRLNG
IF (NSTMP .LT. NSCANS) NTMP=NTMP+1
NSCANS=NTMP
IF (NSKIP .EQ. 0) GO TO 402
DO 401 I=1,NSKIP
NSCANO=NSCANO+1
CALL SKRBIN (IRW,1,RD )
401 CONTINUF
402 CONTINUF
12 CONTINUF
IF (NFLAG2 .EQ. 0) GO TO 10
13 CONTINUE
M=(NSTART-1)*NCPW+MSFC*19
IF (MODE .EQ. 1) GO TO 50
CALL REDTPR (IRW,MODE,IERR,NW,NSCANS,NDAT)
GO TO 51
50 CALL RFDTPC (IRW,MONF,IERR,NW,NSCANS,NDAT)
51 CONTINUF
1000 FORMAT (1X,I6)
NNW=NW*6
NFLAG2=0
NSCANO=NSCANO+1
10 CONTINUF
DO 14 NN=1,NCPW
IR=M+NBLNG
ID=IR/NBLNG
IF=IR-NBLNG*ID
IBIT=NBTLG*IF
M=M+1
IF (ITYPF .EQ. 1) GO TO 15
NDATA=0
CALL FLD(NDATA,NL,NRTLGS,IBIT,NDAT(ID))
DATA(NN)=NDATA
GO TO 14
15 CONTINUF
DATAN=0.0
CALL FLD(DATAN,NL,NRTLGS,IBIT,NDAT(ID))
DATA(NN)=DATAN
14 CONTINUE
M=M+NTFMP
RETURN
END

```

\$IBFTC JOINT

SUBROUTINE JNTPB(DATAH,DATAV,NFLAG,MIX,MIY,ALPNUM,NPOP,
2DXAVF,DYAVF,

```

3DZAVF,
1JJ,NSCAN,ISCAN,NCOL,ISYM,NX,NSTRT,NN,INCXY)
DIMENSION INCXY(1)
DIMENSION NP(54,54)
DIMENSION DATA(12)
DIMENSION IBIN(255)
DIMENSION ISYM(1),QUIT(100)
DIMENSION NX(1),NN(1)
DIMENSION ALPNUM(1),ALPHA(120),CORDX(3)
DOUBLE PRECISION A(2,2),EIGFN(2,2)
INTEGER ALPNUM,ALPHA,BLANK
DATA ASTRIK/1H*/
DATA XMARK/1HX/
DATA BLANK/6H      /
DATA NFLAG4/0/
1060 FORMAT(48X,25HDATA SWITCH HAS OCCURRED      )
1061 FORMAT(49X,30HJOINT PROBABILITY DISTRIBUTION   )
1062 FORMAT(1H1)
1063 FORMAT(44X,11H X-AXIS IS ,I6,6X,11H Y-AXIS IS ,2I6)
1066 FORMAT(30X,6HDXAVF=,F15.7,6HDYAVF=,F15.7,6HDZAVF=,F15.7    )
1040 FORMAT(1H ,67H MAXIMUM PROBABILITY OF UNCOMMONALITY EXCEEDED- CONT
1INUE EXECUTION ,2I6)
1064 FORMAT(1X,26H SYMBOL      N/SYMBOL      )
1065 FORMAT(11X,121(1H*),/,11X,1H*,55X,5HPART ,11,4H OF ,11,53X,1H*,/,1
1,11X,121(1H*))
IF (NFLAG4 .GT. 0) GO TO 80
NFLG3=0
1000 FORMAT(1X,47A1)
NFLG=0
NI=2
IRW=1
NFLGFN=0
IRT=11
DO 1 I=1,54
DO 1 J=1,54
NP(I,J)=0
1 CONTINUE
REWIND IRT
REWIND IRW
NFLAG4=1
80 CONTINUE
IF (NFLAG.GT. 0) GO TO 13
NC=DATAV+1.5
NR=DATAH+1.5
IF (NC .LT. 1) NC=1
IF (NR .LT. 1) NR=1
NP(NR,NC)=NP(NR,NC)+1
I=54*(NC-1)+NR
IRIN(JJ)=I
IF (JJ .LT. NCOL) GO TO 15
IRIN(1)=IBIN(2)
WRITF(IRW)(IBIN(1)),II=1,NCOL)
15 CONTINUE
RETURN
13 CONTINUE

```

```

17 CONTINUE
REWIND IRW
IOPT=1
IN=?
IM=?
RHO=1.0/(10.0**5)
A(1,1)=DXAVE
A(2,2)=DYAVE
A(1,2)=DZAVF
A(2,1)=DZAVF
CALL DJC0RI(A,IM,IN,IOPT,RHO,FRR,FIGFN)
C WRITF(6,1067) A(1,1),A(1,2),FIGFN(1,1),FIGFN(1,2)
C WRITF(6,1067) A(2,1),A(2,2),FIGFN(2,1),FIGFN(2,2)
1067 FORMAT(1X,2F15.7,10X,2F15.7)
DXAVF=1.0/A(1,1)
DYAVF=1.0/A(2,2)
A(1,1)=FIGFN(1,1)*DXAVF
A(1,2)=FIGFN(2,1)*DXAVF
A(2,1)=FIGFN(1,2)*DYAVF
A(2,2)=FIGFN(2,2)*DYAVF
DXAVF=EIGEN(1,1)*A(1,1)+EIGEN(1,2)*A(2,1)
DYAVF=EIGEN(2,1)*A(1,2)+EIGEN(2,2)*A(2,2)
DZAVF=FIGFN(1,1)*A(1,2)+FIGFN(1,2)*A(2,2)+FIGFN(2,1)*A(1,1)
1+FIGFN(2,2)*A(2,1)
WRITF(6,1066) DXAVF,DYAVF,DZAVF
I=0
DO 130 NC=1,54
DO 130 NR=1,54
I=I+1
IF (NP(NR,NC) .EQ. 0) GO TO 130
XXX=NR*NR
YYY=NC*NC
ZZZ=NR*NC
SUM=DXAVE*XXX+DYAVF*YYY
1+DZAVE*ZZZ
IF(SUM.GT.1.0)GO TO 115
NX(I)=0
GO TO 130
115 NX(I)=-1
130 CONTINUE
WRITF(6,1062)
WRITF(6,1061)
WRITF(6,1066) DXAVF,DYAVF,DZAVF
WRITF(6,1064)
C CALCULATE TABLE
MAXKNT=0
DO 22 NC=1,53
DO 22 NR=1,53
IF (NP(NR,NC) .GT. MAXKNT) MAXKNT=NP(NR,NC)
22 CONTINUE
IF (MAXKNT .LT. 46 ) MAXKNT=46
NFACT=MAXKNT/45
XXX=FLOAT(MAXKNT)/46.0
NFAC=0
IF (NFACT .LT. 1) NFACT=1

```

```

      WRITE(6,1050) BLANK,NFAC
      NFAC=NFAC+NFACT
      DO 23 I=1,46
      WRITE(6,1050) ALPNUM(I),NFAC
1050 FORMAT (3X,A6,6X,I6)
      NFAC=NFAC+NFACT
23   CONTINUE
      WRITE(6,1062)
C     PRINT DISTRIBUTION ON PAGE
      CORDX(1)=0.0
      CORDX(2)=CORDX(1)+60.0
      CORDX(3)=CORDX(1)+110.0
1071 FORMAT (1H1)
      DO 65 IEND=1,54
      NC=55-IEND
      DO 66 I=1,54
      ALPHA(I)=BLANK
66   CONTINUE
      IF (NFLG .EQ. 1) GO TO 69
      DO 68 I=1,54
      IRIN(I)=0
68   CONTINUE
69   CONTINUE
      DO 64 NR=1,54
      XX=FLOAT(NP(NR,NC))
      IF (NFLG .EQ. 1) GO TO 91
      IRIN(NR)=NP(NR,NC)
91   CONTINUE
      ICAR=XX+(1.001-1.0/XXX)
      IF (ICAR .GT. 46) ICAR=46
      ALPHA(NR)=ALPNUM(ICAR)
64   CONTINUE
      CORDY=FLOAT(NC)
      YMARG=XMARK
      IF (NC .NE. 54-IEND/10*10) YMARG=ASTRIK
      WRITE(6,1008) CORDY,YMARG,(ALPHA(I),I=1,54)
1008 FORMAT(1X,F8.1,2X,A1,120A1)
65   CONTINUE
      WRITE(6,1010)
      WRITE(6,1011) CORDX(1),CORDX(2),CORDX(3)
1011 FORMAT (6X,F10.4,50X,F10.4,40X,F10.4)
      NFLG=1
      WRITE(6,1062)
      NSUR=1
      LWFR=1
      LOW=NSTRT
705  CONTINUE
      NHI=LOW+120-1
      NUPPER=LWFR+120-1
      IF (NUPPER .GT. NCOL) NUPPER=NCOL
      WRITE(6,1062)
      CALL LABFL6(LOW,NHI+1)
      DO 131 IT=NI,NSCAN
      READ(IRW) (IRIN(JJ),JJ=1,NCOL)
      DO 135 JJ=1,NCOL

```

```

ICHECK=IRIN(JJ)
JCHECK=NX(ICHECK)
IF (JCHECK .NE. 0) GO TO 117
ISYM(JJ)=ALPNUM(NSUB-1)
NN(JJ)=0
GO TO 135
117 ISYM(JJ)=ALPNUM(NSUB)
NN(JJ)=-1
135 CONTINUE
IF (NFLGFN .NE. 0) GO TO 136
WRITF(IRT) (NN(JJ),JJ=1,NCOL)
CALL PLTRF6(ISYM,NCOL,NBLK,INCXY(1),INCXY(2),INCXY(3),
1INCXY(4),NCRE)
136 CONTINUE
WRITF(6,1036) II,(ISYM(JJ),JJ=LWER,NUPPER)
1036 FORMAT(5X,I6,120A1)
1035 FORMAT(1X,I6)
131 CONTINUE
NFLGFN=1
REWIND IRW
LWFR=NUPPER+1
LOW=NHI+1
IF (NUPPER .LT. NCOL) GO TO 705
995 CONTINUE
1010 FORMAT (11X,12(10HX*****))
NFLGFN=0
RETURN
END

```

```

$IBFTC PLLT6
SUBROUTINE PLTRF6(ISYM,NN,NSQR,INCX,INCY,NSTX,NSTY,NCRE)
DIMENSION ISYM(1),NBUFFR(50)
DATA NFLAG/0/
DATA NFLAG1/0/
IF (NFLAG .NE. 0) GO TO 10
CALL CAMRAV(35)
CALL BUTTV(1)
10 CONTINUE
IF (NFLAG1 .NE. 0) GO TO 20
CALL FRAMEV(0)
NCOUNT=0
INCRX=NSTX
INCRY=NSTY
NFLAG1=1
IF (NFLAG .EQ. 0) GO TO 11
CALL APRNTV (INCX,INCY,NN,NBUFER,INCRX,INCRY)
INCRY=INCRY+INCX
INCRX=INCRX+IARS(INCY)
NCOUNT=NCOUNT+1
11 NFLAG=1
20 CONTINUE
NCOUNT=NCOUNT+1
DO 1 I=1,50
NBUFFR(I)=0

```

```

1    CONTINUE
IA=0
DO 2 I=1,NN
IB=IA+6
IC=IB/6
ID=IR-IC*6
IE=ID*6
IA=IA+1
CALL FLD(NBUFFER(IC),IF,6, 0,ISYM(I))
2    CONTINUE
CALL APRNTV(INCX,INCY,NN,NBUFFER,INCRX,INCRY)
INCRY=INCRY+INCX
INCRX=INCRX+IABS(INCY)
IF (INCRX .GE. 1023) NFLAG1=0
RETURN
END

```

```

$ORIGIN      ALPHA, SYSUT2, RFW
$IBFTC MOD7
        SURROUTINE CLASFY
COMMON /LAB1/XBAR(42,12),SIGMA(42,12),ROT(42,12,12)
COMMON /LAB2/X(12),ALPHA(49),NSPS,NSCANS,NCHAN,LT9,LT10,LT11,LT12,
1LT13,LT1,IXXX,IYYY,
INSTANT,NSTOP,
1NRTLG,MODE,ITYPE,MSFC,I4,NCRE,
1NSKIP,INCX,INCY,NSTX,NSTY
NAMELIST/INPUT7/NPASS,NCLUST
NAMELIST/INPUTA/NSPS,NSCANS,NCH, LT1,LT9,LT10,LT11,LT12,LT13,
1INSTANT,NSTOP,NBTLG,MODE,ITYPE,MSFC,I4,NCRE,NSKIP,INCX,INCY,NSTX,
2NSTY,IXXX,IYYY
EQUIVALENCE (NCH,NCHAN)
READ(5,INPUT7)
READ(5,INPUTA)
WRITE(6,INPUTA)
READ(5,1006) (ALPHA(I),I=1,48)
1006 FORMAT(1X,60A1)
KOUNT=NCLUST
NSCANS=NSCANS-1
INITCL=NCLUST+1
DO 1 I=1,NPASS
CALL TRUCK(NCLUST,NPASS   )
CALL SEQMRG (NCLUST,KOUNT,INITCL      )
CALL CLASS (KOUNT , I, NPASS   )
NCLUST=KOUNT
INITCL=KOUNT+1
1    CONTINUE
RETURN
END

```

```

$IBFTC GFTDA7
  SUBROUTINE GET7(DATA,NSPS,NSKIP,NCPW,NSCANO,IRW,IERR,NFLAG2,
  1NSTART,NBTLG,MODE,NCRE,ITYPF,MSFC    )
  DIMENSION DATA(1),NDAT( 890)
  DATA NFLAG/0/
  IF (NFLAG .NE. 0 ) GO TO 12
  NSCANO=0
  NTFMP=NCPW*(NCRE-1)
  NL=36-NBTLG
  NBLNG=36/NBTLG
  NFLAG=1
  NSTMP=(NSPS+NSTART-1)*NCPW+MSFC*19
  NSCANS=NSTMP
  NTMP=NSTMP/NBLNG
  NSTMP=NSTMP/NBLNG*NBLNG
  IF (NSTMP .LT.  NSCANS) NTMP=NTMP+1
  NSCANS=NTMP
  IF (NSKIP .EQ. 0) GO TO 402
  DO 401 I=1,NSKIP
  NSCANO=NSCANO+1
  CALL SKRRIN (IRW,I,RD  )
401  CONTINUE
402  CONTINUE
12  CONTINUE
  IF (NFLAG2 .EQ. 0) GO TO 10
13  CONTINUE
  M=(NSTART-1)*NCPW+MSFC*19
  IF (MODE .EQ. 1) GO TO 50
  CALL RENTPR (IRW,MODE,IERR,NW,NSCANS,NDAT)
  GO TO 51
50  CALL RENTPC (IRW,MODE,IERR,NW,NSCANS,NDAT)
51  CONTINUE
1000 FORMAT (1X,I6)
  NNW=NW*6
  NFLAG2=0
  NSCANO=NSCANO+1
10  CONTINUE
  DO 14 NN=1,NCPW
  IR=M+NBLNG
  ID=IR/NBLNG
  IF=IR-NBLNG*ID
  IBIT=NBTLG*IF
  M=M+1
  IF (ITYPF .EQ. 1) GO TO 15
  NDATA=0
  CALL FLD(NDATA,NL,NBTLG,IBIT,NDAT(ID))
  DATA(NN)=NDATA
  GO TO 14
15  CONTINUE
  DATAN=0.0
  CALL FLD(DATAN,NL,NBTLG,IBIT,NDAT(ID))
  DATA(NN)=DATAN
14  CONTINUE
  M=M+NTEMP

```

```
RETURN  
END
```

```
$IBFTF PLOTT7  
SUBROUTINE LABEL7 (NSTART,NSTOP,INCRE )  
DIMENSION IOUT(120)  
NDIF=(NSTOP-NSTART+1)/INCRE  
II=0  
DO 1 I=NSTART,NSTOP,INCRE  
II=II+1  
IOUT(II)=I/1000  
1 CONTINUE  
WRITE (6,10) (IOUT(I),I=1,NDIF)  
II=0  
DO 2 I=NSTART,NSTOP,INCRE  
II=II+1  
IOUT(II)=I/100-I/1000*10  
2 CONTINUE  
WRITE (6,10) (IOUT(I),I=1,NDIF)  
II=0  
DO 3 I=NSTART,NSTOP,INCRE  
II=II+1  
IOUT(II)=I/10-I/100*10  
3 CONTINUE  
WRITE (6,10) (IOUT(I),I=1,NDIF)  
II=0  
DO 4 I=NSTART,NSTOP,INCRE  
II=II+1  
IOUT(II)=I-I/10*10  
4 IF (IOUT(II) .LE. 0 ) IOUT(II)=0  
CONTINUE  
WRITE (6,10) (IOUT(I),I=1,NDIF)  
FORMAT (11X,120I1)  
RETURN  
END
```

```
$IBFTC PLLTT7  
SUBROUTINE PLTRFT7(ISYM,NN,NSQR,INCX,INCY,NSTX,NSTY,NCRF,  
1NFLAG,NFLAG1)  
DIMENSION ISYM(1),NBUFFER(50)  
DATA NFLG/0/  
IF (NFLG .NE. 0) GO TO 10  
NFLG=1  
CALL CAMRAV(35)  
CALL RUTTV(1)  
NSQR=1024/IABS(INCY+INCX)  
10 CONTINUE  
IF (NFLAG1 .NE. 0) GO TO 20  
CALL FRAMEV(0)  
NCOUNT=0  
INCRX=NSTX  
INCRY=NSTY  
NFLAG1=1
```

```

IF (NFLAG .EQ. 0) GO TO 11
CALL APRNTV (INCX, INCY, NN, NRUFER, INCRX, INCRY)
INCRY=INCRY+INCX
INCRX=INCRX+IABS(INCY)
NCOUNT=NCOUNT+1
11 NFLAG=1
20 CONTINUE
NCOUNT=NCOUNT+1
DO 1 I=1,50
NRUFER(I)=0
1 CONTINUE
IA=0
DO 2 I=1,NN,NCRE
IR=IA+6
IC=IR/6
ID=IR-IC*6
IE=ID*6
IA=IA+1
CALL FLD(NBUFFER(IC),IE,6, 0,ISYM(I))
2 CONTINUE
CALL APRNTV (INCX, INCY, NN, NRUFER, INCRX, INCRY)
INCRY=INCRY+INCX
INCRX=INCRX+IABS(INCY)
IF (INCRX .GE. 1024) NFLAG1=0
RRETURN
END

```

```

$ORIGIN BRAVO, SYSUT2, REW
$IRFTC MOD7A
SURROUNTF TRUCK(NCNT,NPASS      )
DIMENSION NNACC(12,256),MTAB(11),IPRT(256),IPLOT(256)
DIMENSION NTBL(400)
COMMON /LAB1/XBAR(42,12),SIGMA(42,12),ROT(42,12,12)
COMMON /LAB2/X(12),NSYM(49),NSPS,NSCANS,NCHAN,LT9,LT10,LT11,LT12,
LT13,LT1,IXXX,IYYY,
INSTART,NSTOP,
INRTLG,MODE,ITYPE,MSFC,I4,NCRF,
INSKIP,INCX,INCY,NSTX,NSTY
NFLGXX=0
NFLAGX=0
RFWIND LT11
RFWIND LT1
NFLAG1=0
MFIN=0
IXIY=IXXX*IYYY
DO 10 I=1,IYYY
MTAB(I)=I
10 CONTINUE
DO 50 I=1,400
NTBL(I)=I
50 CONTINUE
DO 11 I=1,IYYY
RFAD(LT11) (NNACC(I,JJ),JJ=1,NSPS)
MFIN=MFIN+1

```

```

11  CONTINUF
    NUP=NSPS-1XXX+1
    NCNT=NCCNT+1
    NFLAG=0
200  CONTINUE
    III=MTAB(1)
    DO 110 JJ=1,NSPS
    IF (JJ .GT. NUP) GO TO 102
    IJ=JJ
    JI=JJ+1XXX-1
    NZERO=0
    IKNT=0
    ISUM=0
    JIJ=MTAB(1)
    NTFMP= NCCNT+1
    DO 101 I=IJ,JI
    DO 100 JIJ=1,IYYY
    IIJ=MTAB(JIJ)
    IF (NNACC(IIJ,I) .LE. NCCNT .AND. NNACC(IIJ,I) .NE. 0) GO TO 102
    IF (NNACC(IIJ,I)) 102,107,106
106  IF (NNACC(IIJ,I) .GT. NTFMP) NTFMP=NNACC(IIJ,I)
    GO TO 100
107  NZFRO=NZERO+1
100  CONTINUE
101  CONTINUE
    IF (NZERO .NE. IXIY) GO TO 105
    DO 103 I=IJ,JI
    DO 104 JIJ=1,IYYY
    NNACC(JIJ,I)=NCNT
104  CONTINUE
103  CONTINUF
    NCNT=NCNT+1
    IF (NCNT .GT. 400) GO TO 999
    GO TO 110
105  CONTINUE
    DO 108 I=IJ,JI
    DO 108 JIJ=1,IYYY
    IF (NNACC(JIJ,I) .EQ. 0) NNACC(JIJ,I)=NTEMP
108  CONTINUF
    GO TO 110
102  CONTINUE
110  CONTINUE
    DO 111 JJ=1,NSPS
    IF (JJ .EQ. NSPS ) GO TO 111
    IF (NNACC(III,JJ) .LE. NCCNT) GO TO 111
    IF (NNACC(III,JJ+1) .LE. NCCNT) GO TO 111
    IF (NNACC(III,JJ) .LE. 0) GO TO 111
    IF (NNACC(III,JJ+1) .LE. 0) GO TO 111
    IF (NNACC(III,JJ) .EQ. NNACC(III,JJ+1)) GO TO 111
    IJ=NNACC(III,JJ)
    JI=NNACC(III,JJ+1)
    IF (JI .GT. 400 .OR. IJ .GT. 400) GO TO 111
    IF (NTBL(JI) .GT. NTBL(IJ)) GO TO 125
    NTBL(IJ)=NTBL(JI)
    GO TO 111

```

```

125 CONTINUE
NTBL(JI)=NTBL(IJ)
111 CONTINUE
1007 FORMAT (1X,I6)
WRITE(LT1) (NNACC(III,JJ),JJ=1,NSPS)
IF (MFIN .GE. NSCANS) GO TO 999
IYI=MTAB(1)
RFAD(LT11) (NNACC(IYI,JJ),JJ=1,NSPS)
MFIN=MFIN+1
NTFMP=MTAB(1)
IYY=IYYY-1
DO 121 I=1,IYY
MTAB(I)=MTAB(I+1)
121 CONTINUE
MTAB(IYYY)=NTFMP
GO TO 200
999 CONTINUE
DO 122 I=2,IYYY
III=MTAB(I)
DO 112 JJ=1,NSPS
IF (JJ .EQ. NSPS ) GO TO 112
IF (NNACC(III,JJ) .LF. NCCNT) GO TO 112
IF (NNACC(III,JJ+1) .LE. NCCNT) GO TO 112
IF (NNACC(III,JJ) .LE. 0) GO TO 112
IF (NNACC(III,JJ+1) .LE. 0) GO TO 112
IF (NNACC(III,JJ) .EQ. NNACC(III,JJ+1)) GO TO 112
IJ=NNACC(III,JJ)
JI=NNACC(III,JJ+1)
IF (JI .GT. 400 .OR. IJ .GT. 400) GO TO 112
IF (NTBL(JI) .GT. NTBL(IJ)) GO TO 126
NTBL(IJ)=NTBL(JI)
GO TO 112
126 CONTINUE
NTBL(JI)=NTBL(IJ)
112 CONTINUE
WRITE(LT1) (NNACC(III,JJ),JJ=1,NSPS)
122 CONTINUE
END FILE LT1
RFWIND LT1
RFWIND LT11
RFWIND LT12
WRITE(6,1007) (NTBL(I),I=1,400)
DO 113 I=1,400
IF (NTBL(I) .EQ. I) GO TO 113
JI=I+1
IF (NTBL(JI) .NE. I) GO TO 114
NTBL(JI)=NTBL(I)
114 CONTINUE
113 CONTINUE
II=1
NTFMP=II
DO 116 I=2,400
IF (NTBL(I)-NTBL(I-1)) 117,118,119
119 IF (NTBL(I) .NE. I) GO TO 117
NTBL(I-1)=NTFMP

```

```

II=II+1
NTEMP=II
GO TO 116
118 NTBL(I-1)=NTEMP
GO TO 116
117 N=NTBL(I)
NTRL(I-1)=NTFMP
NTFMP=NTRL(N)
116 CONTINUE
NTRL(400)=NTEMP
WRITE(6,1007) (NTBL(I),I=1,400)
LWFR=1
LOW=NSTART
705 CONTINUE
NUPPER=LWFR+120-1
NHI=LOW+120-1
IF (NUPPER .GT. NSPS ) NUPPER=NSPS
IDIF=NUPPER-LWER+1
WRITE(6,1005)
1005 FORMAT(1H1)
CALL LABEL7(LOW,NHI,1)
DO 710 II=1,NSCANS
READ(LT1) (NNACC(1,JJ),JJ=1,NSPS)
DO 115 JJ=1,NSPS
IB=NNACC(1,JJ)
IF (IB .LE. 0) GO TO 115
NNACC(1,JJ)=NTBL(IB)
115 CONTINUE
IF (NFLGXX .GT. 0) GO TO 127
WRITE(LT12) (NNACC(1,JJ),JJ=1,NSPS)
127 CONTINUE
JI=0
DO 711 JJ=LWER,NUPPER
JI=JI+1
N=NNACC(1,JI)-(NNACC(1,JI)-1)/45*45+2
IPRT(JJ)=NSYM(N)
IPLOT(JI)=NSYM(N)
711 CONTINUE
WRITE(6,1003) II,(IPRT(JJ),JJ=LWER,NUPPER)
CALL PLTRF7(IPLOT,JDIF,NBLK,INCX,INCY,NSTX,NSTY,
INCRE,NFLAGX,NFLAG1)
1003 FORMAT(4X,I6,1H*,120A1)
710 CONTINUE
REWIND LT1
NFLGX=0
NFLGXX=1
NFLAG1=0
LWER=NUPPER+1
LOW=NHI+1
IF (NUPPER .LT. NSPS ) GO TO 705
570 CONTINUE
NCNT=NCNT-1
END FILE LT12
REWIND LT12
REWIND LT1

```

```

IXXX=IXXX-4
IYYY=IYYY-4
LT11=13
RETURN
END

```

```

$ORIGIN BRAVO, SYSUT2, REW
$IBFTC MOD7B
      SUBROUTINE SEQMRG(NCLUST,KOUNT,INITCL)
      COMMON /LAB1/XBAR(42,12),SIGMA(42,12),ROT(42,12,12)
      COMMON /LAB2/X(12),ALPHA(49),NSPS,NSCANS,NCHAN,LT9,LT10,LT11,LT12,
      LT13,LT1,IXXX,IYYY,
      INSTART,NSTOP,
      INBTLG,MODE,ITYPE,MSFC,I4,NCRE,
      INSKIP,INCX,INCY,NSTX,NSTY
      DOUBLE PRECISION A(12,12),EIGEN(12,12)
      DIMENSION MERGF(150),MPOP(150),NEXFC(20),C(42,78),B(12,12)
      DIMENSION COM(24)
      EQUIVALENCE(COM(1),NSPS)
1000 FORMAT(1X,I6,12F10.3)
1001 FORMAT(1X,4HXBAR )
1002 FORMAT(1X,16HDID NOT CONVERG )
1003 FORMAT(1X,7HICLUST= ,I6,14HMFRGF(ICLUST)= ,I6)
1004 FORMAT(1X,5HRHO= ,E15.7,5HERR= ,E15.7)
1005 FORMAT(1X,12F10.4)
1006 FORMAT(1X,12I6)
1007 FORMAT(1X,23HMERGING WILL TAKE PLACE )
1008 FORMAT(1H )
1009 FORMAT(13H COV. MATRIX )
1010 FORMAT(12H NORM EIGEN )
1011 FORMAT(18H P.A. COV. MATRIX )
1012 FORMAT(1H ,6HASUM= ,E15.7,7HCLUSTER,I4)
1013 FORMAT(1X,28HXBAR(I,J),J=1,12),I=1,KOUNT )
1014 FORMAT(1X,29HSIGMA(I,J),J=1,12),I=1,KOUNT )
1015 FORMAT(1X,55HROT(I,ICHAN,JCHAN),JCHAN=1,12),ICHAN=1,12),I=1,KOINT
    1)
1016 FORMAT(1X,I6,(12F10.3))
1017 FORMAT(1H1)
      NFLG=0
      CZFCH=FLOAT(NCHAN)-2.0
      IF(CZECH .LE. 0.0) CZECH=1.0
     REWIND LT10
     REWIND LT12
      RHO=1.0/(10.0**5)
      IF(NSKIP .EQ. 0) GO TO 6
      DO 7 I=1,NSKIP
      CALL SKRRIN(LT10+1,NOP)
7   CONTINUE
6   CONTINUE

```

```

DO 5 ICLUST=1,NCLUST
MERGF(ICLUST)=ICLUST
5 CONTINUE
IM=NCHAN
WRITE(6,1017)
IN=IM
IOPT=1
DO 10 ICLUST=INITCL,NCLUST
IF (NFLG .GT. 0) GO TO 11
IF (KOUNT .GE. 42 ) GO TO 11
KOUNT=KOUNT+1
IFLAG=KOUNT
CALL FETCOR(IFLAG,      C,      MPOP,NFLG,INITCL   )
WRITE(6,1001)
WRITE(6,1000) IFLAG,(XBAR(IFLAG,I),I=1,12)
MI=1
MJ=12
MK=12
DO 500 MM=1,12
WRITE(6,1000) IFLAG,(C(IFLAG,MR),MR=MI,MJ)
MI=MJ+1
MJ=MJ+MK-MM
500 CONTINUE
CALL AMTRX (IFLAG,XBAR,C,A,NCHAN)
WRITE(6,1008)
WRITE(6,1009)
WRITE(6,1005) ((A(MI,MJ),MJ=1,12),MI=1,12)
CALL DJCORI (A,IM,IN,IOPT,RHO,ERR,EIGEN)
WRITE(6,1004) RHO,FRR
WRITE(6,1005) ((A(MI,MJ),MJ=1,12),MI=1,12)
WRITE(6,1008)
WRITE(6,1005) ((EIGFN(MI,MJ),MJ=1,12),MI=1,12)
IF (ERR .EQ. 0.0) GO TO 15
MFRGE(ICLUST)=0
KOUNT=KOUNT-1
WRITE(6,1002)
GO TO 10
15 CONTINUE
CALL ROTA (IFLAG,ROT,EIGEN,NCHAN,A,SIGMA)
MERGF(ICLUST)=KOUNT
WRITE(6,1003) ICLUST,MERGE(ICLUST)
MPOP(KOUNT)=MPOP(ICLUST)
IF (KOUNT .EQ. 1) GO TO 10
MCLUST=KOUNT-1
DO 20 ICHECK=1,20
NFXEC(ICHFCK)=0
20 CONTINUE
MCHECK=1
DO 25 JCLUST=1,NCLUST
IF (MFRGE(JCLUST).LT.MCHECK) GO TO 25
MCHECK=MCHECK+1
IF (MERGF(JCLUST) .EQ. KOUNT) GO TO 26
JFLAG=MERGE(JCLUST)
DO 30 ICHAN=1,NCHAN
X(ICHAN)=XBAR(JFLAG ,ICHAN)-XBAR(KOUNT,ICHAN)

```

```

30    CONTINUE
      IFLAG=KOUNT
      CALL KCHFCK(IFLAG,           ROT,X,SIGMA,ASUM,NCHAN)
      WRITE(6,1008)
      WRITE(6,1012)ASUM,JFLAG
      IF (ASUM .GT. CZECH) GO TO 25
      IFLAG=JFLAG
      CALL KCHECK(IFLAG,           ROT,X,SIGMA,ASUM,NCHAN)
      WRITE(6,1008)
      WRITE(6,1012)ASUM,JFLAG
      IF (ASUM .GT. CZECH) GO TO 25
      NFXFC(1)=NEXEC(1)+1
      NSUB=NFXFC(1)+1
      NFXFC(NSUB)=JFLAG
25    CONTINUE
26    IF (NEXEC(1) .EQ. 0) GO TO 10
      DO 501 KK=1,NSUB
      WRITE(6,1006) KK,NFXFC(KK)
501   CONTINUF
      MSUB=NFXFC(1)+1
      TOTAL=MPOP(KOUNT)
      DO 31 IRUN=2,MSUB
      NSUB=NEXEC(IRUN)
      SUM=MPOP(NSUB)
      TOTAL=TOTAL+SUM
31    CONTINUE
      INUM=0
      DEN=MPOP(KOUNT)
      DO 35 ICHAN=1,NCHAN
      X(ICHAN)=XBAR(KOUNT,ICHAN)*DEN/TOTAL
      DO 40 JCHAN=ICHAN,NCHAN
      INUM=INUM+1
      B(ICHAN,JCHAN)=C(KOUNT,INUM)*DEN/TOTAL
40    CONTINUE
35    CONTINUE
      DO 45 IRUN=2,MSUB
      NSUB=NEXEC(IRUN)
      INUM=0
      DEN=MPOP(NSUB)
      DO 50 ICHAN=1,NCHAN
      X(ICHAN)=X(ICHAN)+XBAR(NSUB,ICHAN)*DEN/TOTAL
      DO 55 JCHAN=ICHAN,NCHAN
      INUM=INUM+1
      B(ICHAN,JCHAN)=B(ICHAN,JCHAN)+C(NSUB,INUM)*DEN/TOTAL
55    CONTINUE
50    CONTINUF
45    CONTINUE
      DO 60 ICHAN=1,NCHAN
      DO 65 JCHAN=ICHAN,NCHAN
      A(ICHAN,JCHAN)=B(ICHAN,JCHAN)-X(ICHAN)*X(JCHAN)
      A(JCHAN,ICHAN)=A(ICHAN,JCHAN)
65    CONTINUE
60    CONTINUF
      WRITE(6,1009)
      WRITE(6,1005) ((A(MI,MJ),MJ=1,12),MI=1,12)

```

```

CALL DJCOBI(A,IM,IN,IOPt,RHO,ERR,EIGEN)
WRITE(6,1004) RHO,ERR
WRITE(6,1005) ((A(MI,MJ),MJ=1,12),MI=1,12)
WRITE(6,1008)
WRITE(6,1005) ((EIGFN(MI,MJ1,MJ=1,12),MI=1,12)
IF (FRR .NE. 0.0) GO TO 10
WRITE(6,1007)
IFLAG=NEXEC(2)
MPOP(IFLAG)=TOTAL
INUM=0
DO 70 ICHAN=1,NCHAN
XBAR(IFLAG,ICHAN)=X(ICHAN)
DO 75 JCHAN=ICHAN,NCHAN
INUM=INUM+1
C(IFLAG,INUM)=B(ICHAN,JCHAN)
75 CONTINUE
70 CONTINUE
CALL ROTA (IFLAG,ROT,EIGEN,NCHAN,A,SIGMA)
DO 80 JCLUST=1,NCLUST
DO 85 IRUN=? ,MSUB
NSUB=NEXEC(IRUN)
IF (MERGE(JCLUST) .NE. NSUR) GO TO 85
MFRGE(JCLUST)=IFLAG
85 CONTINUE
80 CONTINUE
MFRGE(JCLUST)=IFLAG
IF(NEXEC(1).EQ.1)GO TO 94
ISW=0
JCHECK=1
DO 90 JCLUST=1,NCLUST
IDUM=MERGE(JCLUST)
91 IF(MERGE(JCLUST).LT.JCHECK)GO TO 90
IF(MFRGE(JCLUST).GT.JCHECK)GO TO 92
IF(ISW.EQ.1)GO TO 93
JCHECK=JCHECK+1
IF(JCHECK.EQ.KOUNT)GO TO 94
GO TO 90
92 MFRGE(JCLUST)=MERGF(JCLUST)-1
ISW=1
GO TO 91
93 IF (JCHECK .GT. KOUNT) GO TO 94
ISW=0
INUM=0
MPOP(JCHECK)=MPOP(IDUM)
DO 95 ICHAN=1,NCHAN
XBAR(JCHECK,ICHAN)=XBAR(IDUM,ICHAN)
SIGMA(JCHECK,ICHAN)=SIGMA(IDUM,ICHAN)
DO 100 JCHAN=ICHAN,NCHAN
INUM=INUM+1
C(JCHECK,INUM)=C(IDUM,INUM)
ROT(JCHECK,ICHAN,JCHAN)=ROT(IDUM,ICHAN,JCHAN)
ROT(JCHECK,JCHAN,ICHAN)=ROT(IDUM,JCHAN,ICHAN)
100 CONTINUE
95 CONTINUE
DO 96 LCLUST=1,NCLUST

```

```

      IF(MERGE(LCLUST).NE.IDUM)GO TO 96
      MERGE(LCLUST)=JCHECK
96   CONTINUE
      JCHECK=JCHECK+1
90   CONTINUE
94   KOUNT=KOUNT-NEXEC(1)
10   CONTINUE
11   CONTINUE
      WRITE(LT9) (COM(I),I=1,24)
      WRITE(LT9) ((XBAR(I,J),I=1,KOUNT),J=1,12)
      WRITE(LT9) ((SIGMA(I,J),I=1,KOUNT),J=1,12)
      WRITE(LT9) (((ROT(I,ICHAN,JCHAN),I=1,KOUNT),ICHAN=1,NCHAN),
1 JCHAN=1,NCHAN)
      WRITE(6,1013)
      DO 510 I=1,KOUNT
      WRITE(6,1000) I,(XBAR(I,J),J=1,12)
510  CONTINUE
      WRITE(6,1014)
      DO 511 I=1,KOUNT
      WRITE(6,1000) I,(SIGMA(I,J),J=1,12)
511  CONTINUE
      WRITE(6,1015)
      DO 512 I=1,KOUNT
      WRITE(6,1016) I,((ROT(I,ICHAN,JCHAN),JCHAN=1,12),ICHAN=1,12)
512  CONTINUE
      DO 513 I=1,NCLUST
      IF(MERGE(I).GT.KOUNT)GO TO 514
      WRITE(6,515) I,MERGF(I)
515  FORMAT(1X,7HCLUSTER,I4,1X,5HCLASS,I4)
513  CONTINUE
514  CONTINUE
      DO 660 I=1,KOUNT
      DO 620 ICHAN=1,NCHAN
      DO 610 JCHAN=1,NCHAN
      B(ICHAN,JCHAN)=ROT(I,JCHAN,ICHAN)/SIGMA(I,ICHAN)
610  CONTINUE
620  CONTINUE
      DO 650 ICHAN=1,NCHAN
      DO 640 KCHAN=1,NCHAN
      SUM=0.0
      DO 630 JCHAN=1,NCHAN
      SUM=SUM+ROT(I,ICHAN,JCHAN)*B(JCHAN,KCHAN)
630  CONTINUE
      A(ICHAN,KCHAN)=SUM
640  CONTINUE
650  CONTINUE
      WRITE(6,600) I
600  FORMAT(1X,13HCLASS FLLIPSE,I4)
      WRITE(6,1005) ((A(IA,JA),JA=1,NCHAN),IA=1,NCHAN)
660  CONTINUE
      REWIND LT9
      RETURN
      END

```

```

$IBFTF GETCOR
SURROUNTRINE FETCOR(IFLAG,C,NPOP,NFLG,N      )
COMMON /LAB1/XBAR(42,12),SIGMA(42,12),ROT(42,12,12)
COMMON /LAB2/X(12),ALPHA(49),NSPS,NSCANS,NCHAN,LT9,LT10,LT11,LT12,
1LT13,LT1,IX,IY,
1NSTART,NSTOP,
1NRTLG,MODE,ITYPE,MSFC,I4,NCRE,
1NSKIP,INCX,INCY,NSTX,NSTY
DIMENSION NPOP(1),C(42,78),NDAT(255)
DATA NCNT/0/
INUM=0
NFLG1=0
NFLG3=0
DO 5 ICHAN=1,NCHAN
XBAR(IFLAG,ICHAN)=0.0
DO 10 JCHAN=ICHAN,NCHAN
INUM=INUM+1
C(IFLAG,INUM)=0.0
10 CONTINUE
5 CONTINUE
KNT=0
40 CONTINUE
IF (NCNT .GE. NSCANS) GO TO 70
NFLG2=0
READ(LT12)(NDAT(JJ),JJ=1,NSPS)
NCNT=NCNT+1
NFLG1=1
NFLG2=1
DO 20 JJ=1,NSPS
CALL GET7(X(1),NSPS,0,NCHAN,NSCAN0,LT10,IERR,NFLAG2,
1NSTART,NBTLG,MODE,NCRE,ITYPF,MSFC      )
IF (NDAT(JJ) .NE. N) GO TO 30
KNT=KNT+1
NFLG2=1
AI=FLOAT(KNT)
INUM=0
DO 25 ICHAN=1,NCHAN
XBAR(IFLAG,ICHAN)=(1.0-1.0/AI)*XBAR(IFLAG,ICHAN)+X(ICHAN)/AI
DO 26 JCHAN=ICHAN,NCHAN
INUM=INUM+1
C(IFLAG,INUM)=(1.0-1.0/AI)*C(IFLAG,INUM)+X(ICHAN)*X(JCHAN)/AI
26 CONTINUE
25 CONTINUE
GO TO 20
30 CONTINUE
IF (NFLG3 .EQ. 1) GO TO 20
IF (NDAT(JJ) .NE. N+1) GOTO 20
NSAV=NCNT
NFLG3=1
20 CONTINUE
C WRITF(6,1000) NCNT,KNT,NSAV,NRCKUP,N,NFLAG2,NFLG3
1000 FORMAT(1X,7I8)
IF (NFLG2 .NE. 0) GO TO 40
IF (NFLG3 .EQ. 0) GO TO 40
NRCKUP=NCNT-NSAV+1

```

```

CALL BSRCFD(LT10,NBCKUP*I4,RF)
CALL BSRCFD(LT12,NBCKUP,RF)
NCNT=NSAV-1
NPOP(N)=KNT
N=N+1
RRETURN
70 CONTINUE
REWIND LT10
REWIND LT12
NFLG=1
RRETURN
END

```

```

$IRFTF TRXAM
SUBROUTINE AMTRX(IFLAG,XBAR,C,A,NCHAN)
DIMENSION XBAR(42,12),C(42,78)
DOUBLE PRECISION A(12,12)
INUM=0
DO 1 ICHAN=1,NCHAN
DO 2 JCHAN=ICHAN,NCHAN
INUM=INUM+1
A(ICHAN,JCHAN)=C(IFLAG,INUM)-XBAR(IFLAG,ICHAN)*XBAR(IFLAG,JCHAN)
A(JCHAN,ICHAN)=A(ICHAN,JCHAN)
2 CONTINUE
1 CONTINUE
RRETURN
END

```

```

$IRFTF ATOR
SUBROUTINE ROTA(IFLAG,ROT,EIGEN,NCHAN,A,SIGMA)
DIMENSION ROT(42,12,12)
DIMENSION SIGMA(42,12)
DOUBLE PRECISION A(12,12)
DOUBLE PRECISION EIGEN(12,12)
DO 1 ICHAN=1,NCHAN
SIGMA(IFLAG,ICHAN)=A(ICHAN,ICHAN)
DO 2 JCHAN=1,NCHAN
ROT(IFLAG,ICHAN,JCHAN)=EIGEN(JCHAN,ICHAN)
2 CONTINUE
1 CONTINUE
RRETURN
END

```

```

$IRFTF KCEHCK
SUBROUTINE KCHFCK(IFLAG,ROT,X,SIGMA,ASUM,NCHAN)
DIMENSION ROT(42,12,12),SIGMA(42,12),X(1)
ASUM=0.0
DO 3 ICHAN=1,NCHAN
SUM=0.0
DO 4 JCHAN=1,NCHAN
SUM=SUM+ROT(IFLAG,ICHAN,JCHAN)*X(JCHAN)
4 CONTINUE
3 CONTINUE

```

```

3      ASUM=ASUM+SUM*SUM/SIGMA(IFLAG,ICHAN)
      CONTINUE
      RETURN
      END

$ORIGIN      BRAVO,SYSUT2,REW
$IRBTC MOD7C
      SUBROUTINE CLASS(NCLASS,NTEST,NPASS   )
      COMMON /LAR1/XBAR(42,12),SIGMA(42,12),ROT(42,12,12)
      COMMON /LAR2/X(12),ALPHA(49),NSPS,NSCANS,NCHAN,LT9,LT10,LT11,LT12,
      LT13,LT1,IX,NDUMMY,
      INSTANT,NSTOP,
      INPTLG,MODE,ITYPF,MSFC,I4,NCRF,
      INSKIP,INCX,INCY,NSTX,NSTY
      DIMENSION W(12),MTAB(3)
      DIMENSION NDAT(255,3),PRNT(255)
      DIMENSION COM(24)
      EQUIVALENCE(COM(1),NSPS)
      REWIND LT9
      REWIND LT10
      REWIND LT1
      REWIND LT12
      REWIND LT13
      NFLAG1=0
      LT1=1
      IF (NPASS .NE. NTFST) LT1=LT13
      CZFCH=NCHAN
      IF (NSKIP .EQ. 0) GO TO 601
      DO 602 I=1,NSKIP
      CALL SKRBIN(LT10,1,NOP)
602  CONTINUE
601  CONTINUE
      RFAD(LT9) ((COM(I),I=1,24)
      RFAD(LT9) ((XBAR(I,J),I=1,NCLASS),J=1,12)
      RFAD(LT9) ((SIGMA(I,J),I=1,NCLASS),J=1,12)
      RFAD(LT9) (((ROT(I,ICHAN,JCHAN),I=1,NCLASS),ICHAN=1,NCHAN),
      1JCHAN=1,NCHAN)
      DO 1 I=1,3
1      MTAB(I)=I
      DO 10 IEND=1,NSCANS
      RFAD(LT12) (NDAT(I,1),I=1,NSPS)
      NFLAG2=1
      DO 20 ISUBN=1,NSPS
      CALL GFT7(X(1),NSPS,0,NCHAN,NSCAN0,LT10,IFRR,NFLAG2,
      INSTANT,NBTLG,MODE,NCRE,ITYPF,MSFC   )
      IF (NDAT(ISURN,1) .GT. 0) NDAT(ISURN,1)=0
      SMALL=1.75*CZFH
      DO 25 ICLASS=1,NCLASS
      DO 30 ICHAN=1,NCHAN
      W(ICHAN)=X(ICHAN)-XBAR(ICLASS ,ICHAN)
30      CONTINUE
      ASUM=0.0
      DO 35 ICHAN=1,NCHAN
      SUM=0.0

```

```

DO 40 JCHAN=1,NCHAN
SUM=SUM+W(JCHAN)*ROT(ICLASS,ICHAN,JCHAN)
40 CONTINUE
41 ASUM=ASUM+SUM/SIGMA(ICLASS,ICHAN)
35 CONTINUF
IF (ASUM .GT. SMALL) GO TO 25
SMALL=ASUM
NDAT(1,SURN,1)=ICLASS
25 CONTINUE
1016 FORMAT(1X,3I6,F10.2)
20 CONTINUF
WRITF(LT1)(NDAT(I,1),I=1,NSPS)
10 CONTINUE
END FILE LT1
RFWIND LT1
RFWIND LT12
REWIND LT10
IF (NPASS .NE. NTEST) GO TO 804
DO 610 IZ=1,NSCANS
IY=MTAB(1)
RFAD(LT1)(NDAT(IA,IY),IA=1,NSPS)
NTFMP=MTAB(1)
MTAB(1)=MTAB(2)
MTAB(2)=MTAB(3)
MTAB(3)=NTEMP
IF (IZ .LT. 3) GO TO 610
DO 620 IA=NSTART,NSTOP
IF (IA .EQ. 1) GO TO 620
IF (IA+1 .GT. NSTOP) GO TO 620
IIY=MTAB(2)
IM=MTAB(1)
IN=MTAB(2)
M=NDAT(IA,IM)
N=NDAT(IA-1,IN)
IF (M .NE. N) GO TO 650
IL=MTAB(3)
L=NDAT(IA,IL)
IF (M .NE. L) GO TO 650
NDAT(IA,IIY)=M
GO TO 620
650 IM=MTAB(1)
M=NDAT(IA-1,IM)
IN=MTAB(3)
N=NDAT(IA-1,IN)
IF (M .NE. N) GO TO 620
L=NDAT(IA+1,IM)
IF (M .NE. L) GO TO 620
NDAT(IA,IIY)=M
620 CONTINUF
IF (IZ .LT. 3) GO TO 610
L=MTAB(1)
WRITF(LT13)(NDAT(I,L),I=1,NSPS)
610 CONTINUF
DO 611 I=2,3
L=MTAB(I)

```

```

611  WRITE(LT13) (NDAT(IL,L),IL=1,NSPS)
CONTINUE
804  CONTINUE
REWIND LT1
REWIND LT9
REWIND LT13
REWIND LT10
LOW=NSTART
LWFR=1
800  CONTINUF
NHI=LOW+120-1
NUPPFR=LWER+120-1
IF (NUPPFR .GT. NSPS ) NUPPFR=NSPS
IDIF=NUPPER-LWFR+1
WRITE(6,1007)
1007 FORMAT(1H1)
CALL LABFL7(LOW,NHI+1)
DO 801 II=1,NSCANS
READ(LT13) (NDAT(JJ,1),JJ=1,NSPS)
DO 803 JJ=LWER,NUPPFR
IR=NDAT(JJ,1)
IRND=IR-(IR-1)/45*45+2
PRNT(JJ)=ALPHA(IRND)
803  CONTINUE
CALL PLTBF7(PRNT(LWER),IDIF,NBLK,INCX,INCY,NSTX,NSTY,NCRE,
1NFLAGX,NFLAG1)
WRITE(6,1008) II, (PRNT(JJ),JJ=LWER,NUPPFR)
1008 FORMAT(4X,I6,1H*,120A1)
801  CONTINUE
REWIND LT13
NFLAG1=0
NFLAGX=0
LWER=NUPPER+1
LOW=NHI+1
IF (NUPPFR .LT. NSPS ) GO TO 800
802  CONTINUE
NSCANS=NSCANS-7
RETURN
END

```