

POLITECHNIKA WARSZAWSKA

WYDZIAŁ: Mechaniczny Energetyki I Lotnictwa

Metody Komputerowe w Mechanice Konstrukcji

SPRAWOZDANIE

Ćwiczenie nr 2 (ANSYS)

Materialy Ortotropowe

Wykonał: Adam Nowak (indeks 304250)

(magisterskie niestacjonarne)

WARSZAWA, grudzień 2024

Spis treści

1.	Cel éwiczenia	3
2.	Obiekt – dane	3
3.	Dane materiałowe oraz kryterium zniszczenia	4
4.	Warunki brzegowe	4
5.	Model MES	5
6.	Deformacje pełnej płytki dla włókien pod kątem 0° oraz 45°	6
7.	Odkształcenia pełnej płytki	6
8.	Deformacje płytki z otworem centralnym oraz kryterium zniszczenia	7
9.	Kryterium zniszczenia	8
	9.1 Włókna pod kątem 0°	8
	9.2 Włókna pod kątem 45°	10
10). Mapy odkształceń	12
	10.1 Kąt 0°	12
	10.2 Kąt 5°	13
	10.3 Kąt 15°	14
	10.4 Kąt 30°	15
	10.5 Kąt 45°	16
	10.6 Kąt 60°	17
	10.7 Kąt 75°	18
	10.8 Kąt 85°	19
	10.9 Kat 90°	20

1. Cel ćwiczenia

Celem ćwiczenia jest analiza dwuwymiarowego materiału ortotropowego pod kątem jego orientacji w przestrzeni. Badaniu poddano dwie konfiguracje geometryczne: pełną płytkę oraz płytkę z otworem centralnym.

Zakres przeprowadzonych analiz:

- Analiza rozciągania pełnej płytki
- Analiza rozciągania płytki z centralnym otworem kołowym

W pierwszej części ćwiczenia wyniki uzyskane z metody elementów skończonych (MES) zostaną porównane z wynikami obliczeń analitycznych dla dziewięciu różnych kątów orientacji materiału. W drugiej części przedstawione zostaną wyniki analizy dla dwóch wybranych kątów, z uwzględnieniem czterech hipotez wytrzymałościowych.

Przeprowadzona analiza umożliwi ocenę wpływu orientacji materiału ortotropowego na jego zachowanie mechaniczne w obu konfiguracjach geometrycznych.

2. Obiekt – dane

W ćwiczeniu zostały przeanalizowane dwie pytki:

- 1. Płaska płytka 100 x 100 mm.
- 2. Płaska płytka $100 \times 100 \text{ mm}$ z centralnym otworem o promieniu r = 25 mm.

Rysunek 1 Geometria oraz przyjęty układ współrzędnych.

3. Dane materiałowe oraz kryterium zniszczenia

EX	2E+05
EY	50000
EZ	1
PRXY	0.25
PRYX	0
PRXZ	0
GXY	20000
GYZ	1
GXZ	1

Tabela 1 Dane materiałowe, model liniowy, ortotropowy

Rysunek 2 Kryterium zniszczenia

4. Warunki brzegowe

- Przyłożono ciśnienie na krawędziach bocznych o wartości $P = 10 \frac{N}{mm}$.
- Utwierdzenie: odebrane dwa stopnie swobody na kierunku X, Y w lewym dolnym wierzchołku oraz jeden stopień swobody na kierunku X w prawym górnym wierzchołku.

Rysunek 3 Warunki brzegowe

5. Model MES

5.1 Użyte oprogramowanie.

Do przeprowadzenia symulacji wykorzystano oprogramowanie Ansys Mechanical Enterprise z wykorzystaniem aplikacji wewnętrznej APDL.

5.2 Zastosowane elementy skończone.

Obiekt został zamodelowany za pomocą elementów PLANE183. Analizuje stan odkształcenia oraz naprężenia w całym modelu więc zbyteczna jest gęsta siatka.

Rysunek 4 Siatka modelu, orientacja włókien

5.3 Orientacja włókien dla pełnej płytki.

- 1. 0°
- 2. 5°
- 3. 15°
- 4. 30°
- 5. 45°
- 6. 60°
- 7. 75°
- 8. 85°
- 9. 90°

5.4 Orientacja włókien dla płytki z otworem centralnym.

- 1. 0°
- 2. 45°

6. Deformacje pełnej płytki dla włókien pod kątem 0° oraz 45°.

Rysunek 5 Rozkład przemieszczeń w kierunku "X" oraz "Y" dla materiału z orientacją włókien zgodną z kierunkiem osi obciążenia

Rysunek 6 Rozkład przemieszczeń w kierunku "X" oraz "Y" dla materiału z orientacją włókien pod kątem 45° względem osi obciążenia

7. Odkształcenia pełnej płytki

Porównanie wyników otrzymanych z analizy MES z wartościami z literatury.

Wartości otrzymane drogą analityczną									
α	0	5	15	30	45	60	75	85	90
$10^4 \varepsilon_{xx}$	0.500	0.528	0.741	1.297	1.812	2.047	2.040	2.006	2.000
$10^4 \varepsilon_{yy}$	-0.125	-0.142	-0.266	-0.547	-0.688	-0.547	-0.266	-0.142	-0.125
$10^4 \gamma_{xy}$	0.000	-0.323	-0.862	-1.137	-0.750	-0.162	-0.112	-0.062	0.000

	Wartości otrzymane z analizy MES								
α	0	5	15	30	45	60	75	85	90
$10^4 \varepsilon_{xx}$	0.005	0.528	0.741	1.300	1.810	2.050	2.040	2.010	2.000
$10^4 \varepsilon_{yy}$	-0.125	-0.142	-0.266	-0.547	-0.687	-0.547	-0.266	-0.142	-0.125
$10^4 \gamma_{xy}$	~0	-0.323	-0.862	-1.140	-0.750	-0.162	-0.112	-0.062	~0

Otrzymane wyniki z analizy MES są zgodne z wartościami literaturowymi, co potwierdza poprawność wykonanej analizy. Mapy odkształceń znajdują się w dalszej części sprawozdania w rozdziale 10.

8. Deformacje płytki z otworem centralnym oraz kryterium zniszczenia

Rysunek 7 Rozkład przemieszczeń w kierunku "X" oraz "Y" dla materiału z orientacją włókien zgodną z kierunkiem osi obciążenia

Rysunek 8 Rozkład przemieszczeń w kierunku "X" oraz "Y" dla materiału z orientacją włókien pod kątem 45° względem osi obciążenia

α	0	45
Max Strain	0.28	0.55
Tsai-Wu Strength	2.02	7.83
Inv Tsai-Wu Strength	1.42	2.79
Max Stress	1.41	2.78

Tabela 2 Kryteria zniszczenia

Dla $\alpha=0^\circ$, gdy włókna ułożone są zgodnie z kierunkiem obciążenia, materiał wykazuje mniejsze odkształcenia, wynoszące 0.28, a wartości maksymalnych naprężeń oraz kryteriów wytrzymałości (Tsai–Wu i jego odwrotności) są przekroczone, jednak na poziomie umiarkowanym, co oznacza, że materiał znajduje się w stanie przeciążenia, ale nie w krytycznym zakresie.

Natomiast dla $\alpha = 45^{\circ}$, gdy włókna ułożone są pod kątem do kierunku obciążenia, odkształcenia są większe i wynoszą 0.55, a wartości naprężeń oraz kryteriów wytrzymałości znacznie przekraczają dopuszczalne granice (Tsai-Wu: 7.83, odwrotność: 2.79, Max Stress: 2.78), co wskazuje na poważne przeciążenie materiału i wyraźnie większe ryzyko awarii w tym ustawieniu włókien.

Mapy kryteriów znaczeniowych znajdują się na kolejnej stronie.

9. Kryterium zniszczenia

9.1 Włókna pod kątem 0°

Rysunek 9 Maximum Strain

Rysunek 10 Tsai-Wu Strength Index

Rysunek 11 Inverse of Tsai-Wu Strength Ratio Index

Rysunek 12 Maximum Stress

9.2 Włókna pod kątem 45°

Rysunek 13 Maximum Strain

Rysunek 14 Tsai-Wu Strength Index

Rysunek 15 Inverse of Tsai-Wu Strength Ratio Index

Rysunek 16 Maximum Stress

10. Mapy odkształceń 10.1 Kąt 0°

Rysunek 17 Odkształcenia wzdłuż osi X

Rysunek 18 Odkształcenie postaciowe γ_{xy}

Rysunek 19 Odkształcenia wzdłuż osi Y

Rysunek 20 Odkształcenia wzdłuż osi X

Rysunek 21 Odkształcenie postaciowe γ_{xy}

Rysunek 22 Odkształcenia wzdłuż osi Y

Rysunek 23 Odkształcenia wzdłuż osi X

Rysunek 24 Odkształcenie postaciowe γ_{xy}

Rysunek 25 Odkształcenia wzdłuż osi Y

Rysunek 26 Odkształcenia wzdłuż osi X

Rysunek 27 Odkształcenie postaciowe γ_{xy}

Rysunek 28 Odkształcenia wzdłuż osi Y

Rysunek 29 Odkształcenia wzdłuż osi X

Rysunek 30 Odkształcenie postaciowe γ_{xy}

Rysunek 31 Odkształcenia wzdłuż osi Y

Rysunek 32 Odkształcenia wzdłuż osi X

Rysunek 33 Odkształcenie postaciowe γ_{xy}

Rysunek 34 Odkształcenia wzdłuż osi Y

Rysunek 35 Odkształcenia wzdłuż osi X

Rysunek 36 Odkształcenie postaciowe γ_{xy}

Rysunek 37 Odkształcenia wzdłuż osi Y

Rysunek 38 Odkształcenia wzdłuż osi X

Rysunek 39 Odkształcenie postaciowe γ_{xy}

Rysunek 40 Odkształcenia wzdłuż osi Y

Rysunek 41 Odkształcenia wzdłuż osi X

Rysunek 42 Odkształcenie postaciowe γ_{xy}

Rysunek 43 Odkształcenia wzdłuż osi Y