VOLTAGE DETECTING, SYSTEM RESETTING IC SERIES

DESCRIPTION

M51957A,B/M51958A,B are semiconductor integrated circuits ideal for detecting input voltage and resetting all types of logic circuits such as CPUs.

They include a built-in delay circuit to provide the desired retardation time simply by adding an external capacitor.

Applications are extensive, including circuits for battery checking, level detecting and waveform shaping.

FEATURES

- Few external parts
- Large delay time with a capacitor of small capacitance ($t_d \approx 100 \text{ms}$, at $0.33 \mu \text{F}$) (M51957, M51958)
- Wide supply voltage range. 2 ~ 17∨
- Sudden change in power supply has minimal effect on the ICs
- Wide operation range of detecting input pin . . . Narrower ranges of $-0.3V \sim V_{cc}$ or $-0.3V \sim 7V$ (Input voltage detecting type)
- Suitable for high supply voltage circuit with simple circuit structure (M51957B, M51958B)
- Permits easy configuration of circuit for protection against reverse connection or surges. (M51957B, M51958B)
- Wide application range
- SIL package of the same height as DIP (5-pin SIP)

APPLICATION

Reset circuit of Pch, Nch, CMOS, microcomputer, CPU and microcomputer, Reset of logic circuit, Battery check circuit, Switching circuit back-up voltage, Level detecting circuit, Waveform shaping circuit, Delay waveform generating circuit, DC-DC converter, Over voltage protection circuit.

RECOMMENDED OPERATING CONDITION

VOLTAGE DETECTING, SYSTEM RESETTING IC SERIES

FUNCTION DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C, unless otherwise noted)

Symbol	Parameter	Conditions		Ratings	Unit	
Vcc	Supply voltage			18	V	
sink	Output Sink Current			6	mA	
Vo	Output voltage	A Type (Output wi	th constant current load)	Vcc		
		B Type (Open colle	ector output)	18		
Pd	Power dissipation	5P SIL		450	mW	
		8P FLAT		300		
K _θ	Thermal Derating	Ta ≧ 25 °C	5P SIL	4.5	11/20	
			8P FLAT	3	mW/℃	
Topr	Operating temperature			-30-+85	C	
Tstq	Storage temperature			-40~+125	r	

ELECTRICAL CHARACTERISTICS (Ta = $25 \,^{\circ}$ C, unless othewise noted)

"L" reset type	"H" reset type		
M51957A	M51958A		
M51957B	M51958B		

0 1 1	0	Test conditions		Limits			Unit
Symbol	Parameter			Min	Тур	Max	Unit
Vs	Detecting voltage			1.20	1.25	1.30	V
⊿ Vs	Hysterisis voltage	V _{CC} = 5V		9	15	23	mV
V _S / ₄ T	Detecting Voltage Temperature Coefficient			_	0.01		%/℃
Vcc	Supply Voltage Range	Ta = -30 - +85 ℃		2	_	17	V
VIN	Input voltage Range	Ta = -30 - +85 °C , V _{CC} ≦ 7V		-0.3	_	Vcc	V
		$Ta = -30 - +85 ^{\circ}C$, $V_{CC} > 7V$		-0.3		7	
lin	Input Current	V _{IN} = 1.25V		_	100	500	nΑ
1cc	Circuit Current	Type A $V_{CC} = 5V$			390	590	μΑ
		Type B V _{CC} = 5V			360	540	
tpd	Delay Time	$T_a = -30 - +85 ^{\circ}\text{C}$, $C_d = 0.01 \mu\text{F}$ (Nete)		1.6	3.4	7	ms
lpd	Constant Current at Cd pin	V _{CC} = 5 V		-8	5	-3	μΑ
Vsat	Output Saturation Voltage	L reset type V _{CC} =5V, V _{IN} <1.2V, I _{SINk} =4mA		_	0.2	0.4	٧
		H reset type V _{CC} = 5V, V _{IN} < 1.35V, I _{SINk} = 4mA					
VopL	Threshold Operating Voltage	L reset type minimum	$R_L = 2.2 k \Omega$, $V_{sat} \le 0.4 V$		0.67	0.8	
		supply voltage for IC operation	$R_L = 100 k\Omega$, $V_{Sat} \le 0.4 V$	_	0.55	0.7	
I _{OH}	Output Leakage Current	Type B		_		30	nΑ
		Type B. $Ta = -30 - +85$ °C		_		1	μΔ
loc	Output Load Current	Type A $V_{CC} = 5V$, $V_{O} = 1/2 V_{CC}$		- 40	- 25	- 17	μΑ
V _{DH}	Output High Voltage	Туре А		V _{CC} - 0.2	V _{CC} - 0.06	_	V

Note: Delay time can be changed by changing delay capacitor for external deray capacitor types. (Please refer to typical characteristics.)

VOLTAGE DETECTING, SYSTEM RESETTING IC SERIES

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS THERMAL DERATING (MAXIMUM RATING) 1000 POWER DISSIPATION Pd (mW) 800 600 5PIN SIP 400 8PIN FLAT 200 0 25 50 75 100 125

AMBIENT TEMPERATURE Ta (°C)

DETECTING VOLTAGE VS. AMBIENT TEMPERATURE (Input voltage detecting series)

AMBIENT TEMPERATURE Ta (°C)

DETECTION VOLTAGE VS. SUPPLY VOLTAGE

(Input voltage detection series)

SUPPLY VOLTAGE Vcc (V)

INPUT CURRENT VS. **SUPPLY VOLTAGE**

(Input voltage detecting series)

SUPPLY VOLTAGE V_{cc} (V)

DELAY CAPACITANCE VS. DELAY TIME

(M5195XX, External delay capacitor type)

DELAY TIME VS. AMBIENT TEMPERATURE (M5195XX, External delay capacitor type)

AMBIENT TEMPERATURE Ta (°C)

VOLTAGE DETECTING, SYSTEM RESETTING IC SERIES

CONSTANT CURRENT AT Cd PIN VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

THRESHOLD OPERATING VOLTAGE ([L] reset type)

SUPPLY VOLTAGE Vcc (V)

OUTPUT SATURATION VOLTAGE VS. OUTPUT SINK CURRENT

OUTPUT SINK CURRENT Isink (mA)

OUTPUT LOAD CURRENT VS. OUTPUT VOLTAGE (M519XXA)

OUTPUT VOLTAGE Vo (V)

CIRCUIT CURRENT VS. SUPPLY VOLTAGE (M51957B, M51958B)

SUPPLY VOLTAGE Vcc (V)

VOLTAGE DETECTING, SYSTEM RESETTING IC SERIES

EXAMPLE OF APPLICATION CIRCUIT M5195XX Series Reset Circuit

Note 1. When the detecting supply voltage is 4.25V, M51951, M51952, M51953 and M51954 are used. In the case, R_1 and R_2 are not necessary.

When the voltage is anything except 4.25V, M51955, M51956, M51957 and M51958 are used. In this case, the detecting supply voltage is 1.25 x $\frac{R_1 + R_2}{R_2}$ (V) approximately. The detecting supply voltage can be set between 2V and 15V.

Note 2. When the delay time is short, M51951, M51952, M51955 and M51956 are available. These ICs have a delay capacity and the delay time is about 200 µs.

If a longer delay time is necessary, M51953, M51954, M51957 and M51958 are used. In the case, the delay time is about $0.34 \times Cd(pF)\mu sec$.

Note 3. If M5195XX and the logic circuit have a common power supply, type A (built-in load type) can be applied whether a pull-up resister is included in the logic circuit or not.

Note 4. The logic circuit preferably should not have a pull-down resistor, but if one is present, add load resistor R_L to overcome the pull-down resistor.

Note 5. When the reset terminal in the logic circuit is of the low reset type, M51951, M51953, M51955 and M51957 are used and when the terminal is of the high reset type, M51952, M51954, M51956 and M51958 are used.

Note 6. When a negative supply voltage is used, supply voltage side of M5195XX and the GND side are connected to negative supply voltage respectively.

Case of Using Other Reset Signal except Supply Voltage in the M5195XX Series

(a) Reset at ON

RESET AT ON

(b) Reset at transistor ON

RESET AT TRANSISTOR ON

VOLTAGE DETECTING, SYSTEM RESETTING IC SERIES

Delay Waveform Generating Circuit

When M51957 and M51958 are used, a waveform with a large delay time can generate only by adding a small capacitor.

Operating Waveform

Application to High Supply Voltage Circuit

The absolute maximum rating of supply voltage for M51957B, M51958B is 18V. By dividing supply voltage

using resistors, these ICs can be used in high supply voltage circuit.

VOLTAGE DETECTING, SYSTEM RESETTING IC SERIES

In the above figure, the voltage applied to M5195XB is as follows. The voltage range is set.between 2V and 17V.

at Q₁ ON:

$$\frac{R_2 \cdot \left[\frac{R_3}{(R_1 + R_3)} \cdot V_{CC} - (R_1 /\!/ R_3) \cdot I_{CC}\right] + (R_1 /\!/ R_3) \cdot V_{BEI}}{R_2 + (R_1 /\!/ R_3)}$$

at Q₁ OFF:

$$\frac{R_2 \cdot \left\{ \frac{R_3}{(R_1 + R_3)} \cdot V_{cc} - (R_1 /\!/ R_3) \cdot I_{cc} \right\}}{R_2 + (R_1 /\!/ R_3)}$$

$$R_1/\!/R_3 \equiv \frac{R_1 \cdot R_3}{R_1 + R_2}$$

V_{cc}: Circuit current of M5195XB

 V_{BEI} : Base-emitter voltage $\approx 0.7V$ (Transistor Q_1)

This circuit provides reverse protection (in case of reverse connection of power supply) and surge protection.

Using the application circuit, the directly rectified or smoothing commercial voltage can be applied as shown below.

