SUMS OF TWO SQUARES AND LATTICES

KEITH CONRAD

One of the basic results of elementary number theory is Fermat's two-square theorem.

Theorem 1 (Fermat, 1640). An odd prime p is a sum of two squares if and only if $p \equiv 1 \mod 4$. Furthermore, a representation of a prime as a sum of two squares is unique up to the order of addition of the squares.

That an odd prime which is a sum of two squares must be 1 mod 4 follows from a calculation of squares modulo 4. To prove, conversely, that any prime $p \equiv 1 \mod 4$ is a sum of two squares, there are several methods available: descent [6, Chap. 26] (this was Fermat's own approach, according to [7, p. 67]), factorization of p in the Gaussian integers [2, p. 120], Jacobi sums [2, p. 95], the pigeonhole principle [1, pp. 264–265], continued fractions [5, pp. 132–133], quadratic forms [3, pp. 163–164], and Minkowski's convex body theorem [3, pp. 454–455]. One of the virtues of the proof using Gaussian integers is that, thanks to unique factorization in $\mathbf{Z}[i]$, one simultaneously obtains the uniqueness of the representation of a prime $p \equiv 1 \mod 4$ as a sum of two squares. This uniqueness can also be proved using simple congruence and divisibility arguments [1, pp. 265–266].

The question which motivated the present note is whether or not there is a proof of the uniqueness part of Theorem 1 using lattice methods, in the spirit of Minkowski's proof of the existence part of Theorem 1. We will give such a proof, as suggested by D. Clausen. Let p be an odd prime and assume $p = a^2 + b^2$ for some integers a and b. We want to show this is the only representation of p as a sum of two squares.

Since $a^2 + b^2 \equiv 0 \mod p$, both a and b are nonzero modulo p, so dividing by b shows there is a solution to $k^2 + 1 \equiv 0 \mod p$. For any integers x and y, $x^2 + y^2 \equiv 0 \mod p$ if and only if $y \equiv \pm kx \mod p$. Set

$$L = \{(x, y) \in \mathbf{Z}^2 : y \equiv kx \bmod p\} = \mathbf{Z}(1, k) + \mathbf{Z}(0, p),$$

which is a lattice in the plane whose fundamental parallelogram has area $|\frac{1}{0}\frac{k}{p}|=p$. (This is the lattice which appears in Minkowski's proof of the existence part of Theorem 1.) Let $C=\{(x,y)\in\mathbf{R}^2:x^2+y^2=p\}$. The uniqueness in Theorem 1 amounts to showing C contains only 8 integral points (those coming from modifying a and b by order and sign). For each integral point (x,y) of C, exactly one of (x,y) or (x,-y) is in L since $y\equiv\pm kx$ mod p and $k\not\equiv -k$ mod p (because $p\not\equiv 2$). Therefore the total number of integral solutions to $x^2+y^2=p$ is $2\#(C\cap L)$.

Changing the signs on a and b if necessary, we may assume $b \equiv ka \mod p$, so there are at least 4 points in $C \cap L$: (a,b), (-a,-b), (-b,a), and (b,-a). (There are four more integral points on C: (a,-b), (-a,b), (b,a), and (-b,-a), and they lie not on L but on the lattice $L' = \{(x,y) \in \mathbf{Z}^2 : y \equiv -kx \mod p\} = \mathbf{Z}(1,-k) + \mathbf{Z}(0,p)$.) This same argument for other integral points on C shows $\#(C \cap L)$ is a multiple of 4.

We will now count $\#(C \cap L)$ in a different way, using areas. Construct the convex polygon whose vertices are the points in $C \cap L$. This polygon lies in C, so the area of the polygon is no larger than the area of C, which is πp . The area of the polygon can be given by an exact formula in terms of $\#(C \cap L)$ using Pick's theorem:

Theorem 2 (G. Pick, 1899). Let $\Lambda \subset \mathbf{R}^2$ be a lattice and Π be a polygon with vertices on Λ . If Π is convex, or more generally has no self-intersections, then the area of Π is

 $(I+B/2-1)\Delta$, where I is the number of interior points of the polygon in L, B is the number of boundary points of the polygon in Λ , and Δ is the area of a fundamental parallelogram for Λ .

Often Pick's theorem is stated for polygons with vertices on the standard integral lattice \mathbf{Z}^2 , but here the formulation with a more general lattice is relevant. This more general case can be reduced by linear algebra to the case of the standard integral lattice. A proof of Pick's theorem is in [4].

For the convex polygon whose vertices are $C \cap L$, the only point of L in the interior of C is the origin since (by the definition of L) each element of L has squared distance from (0,0) equal to a multiple of p. Therefore I=1. Since $B=\#(C\cap L)$ and $\Delta=p$, the area of the polygon is $(1+B/2-1)p=\#(C\cap L)p/2$. Comparing this with the upper bound πp from before, we get $\#(C\cap L)p/2 < \pi p$, so $\#(C\cap L) < 2\pi \approx 6.2$. Since $\#(C\cap L)$ is a multiple of 4, we are left with $\#(C\cap L)=4$, so the only integral solutions to $p=x^2+y^2$ are the 8 choices coming from the pair (a,b) and changes in sign and order of the coordinates.

References

- [1] D. M. Burton, "Elementary Number Theory," 6th ed., McGraw-Hill, New York, 2007.
- [2] K. Ireland and M. Rosen, "A Classical Introduction to Modern Number Theory," 2nd ed., Springer–Verlag, New York, 1990.
- [3] J. R. Goldman, "The Queen of Mathematics: A Historically Motivated Guide to Number Theory," A.K. Peters, Natick, MA, 2004.
- [4] I. Niven and H. Zuckerman, Lattice points and polygonal area, Amer. Math. Monthly 74 (1967), 1195— 1200.
- [5] C. D. Olds, "Continued Fractions," Math. Assoc. America, Washington, D.C., 1963.
- [6] J. H. Silverman, "A Friendly Introduction to Number Theory," 3rd ed., Prentice Hall, Upper Saddle River, NJ, 2006.
- [7] A. Weil, "Number Theory: An Approach Through History from Hammurapi to Legendre," Birkhäuser, Boston, 1984.