Fluid Mechanics

Riddhiman

August 2024

Chapter 1

Fundamental Concepts

1.1 Basic Concepts

1.2 Continuum Hypothesis

•

Knudsen Number (kn) =
$$\frac{\text{Mean free path }(\lambda)}{\text{Chateristic Length}(L)}$$

Continuum hypothesis won't be valid for $Kn \geq 0.01$.

- Density $\rho = \frac{\text{mass}}{\text{volume}}$
- Specific volume $\nu = \frac{1}{\rho}$
- Specific weight $\gamma = \frac{mg}{V} = \rho g$
- Specific Gravity SG = $\frac{\rho}{\rho_{\text{water @ 227}K}}$

1.3 Forces on a fluid particle

- Body forces
- Surface forces
- Normal stress,

$$\sigma_n = \lim_{\delta A_n \to 0} \frac{\delta F_n}{\delta A_n}$$

• Shear stress,

$$\tau_n = \lim_{\delta A_n \to 0} \frac{\delta F_t}{\delta A_n}$$

• Shear tensor,

$$\begin{bmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{zz} \end{bmatrix}$$

1.4 Viscosity

$$\tau_{yx} = \lim_{\delta A_y \to 0} \frac{\delta F_x}{\delta A_y} = \frac{dF_x}{dA_y}$$
And,
$$DR = \lim_{\delta t \to 0} \frac{\delta \alpha}{\delta t} = \frac{d\alpha}{dt}$$
Since,
$$\delta l = \delta \alpha \ \delta y \ \text{and} \ \delta l = \delta u \ \delta t$$
we get
$$DR = \frac{du}{dy}$$

For Newtonian fluids,

$$\tau_{yx} = \mu \frac{du}{dy} \qquad \mu \to \text{Viscosity}$$

- Unit: $\frac{N s}{m^2}$
- Kinematic viscosity: $\nu = \frac{\mu}{\rho}$. Unit of this: $\frac{m^2}{s}$
- For non-Newtonian fluids: $\tau_{yx} = k \left(\frac{du}{dy}\right)^n = k \left|\frac{du}{dy}\right|^{n-1} \left(\frac{du}{dy}\right) = \eta \frac{du}{dy}$
- $k \to \text{consistency index}, n \to \text{flow behavior index}, \eta \to \text{apparent velocity}.$

1.5 Description and classification of fluid motion

1.5.1 Steady vs unsteady

$$\frac{\partial \rho}{\partial t} = 0 \implies \rho = \rho(x, y, z) \qquad \frac{\partial \vec{\mathbf{V}}}{\partial t} = 0 \implies \vec{\mathbf{V}} = \vec{\mathbf{V}}(x, y, z) \qquad \frac{\partial p}{\partial t} = 0 \implies p = p(x, y, z)$$

1.5.2 Uniform vs non-uniform

$$\left. \frac{\partial \vec{\mathbf{V}}}{\partial x} \right|_{t=\text{const}} = 0$$

where x is in direction of flow.

1.5.3 Compressible vs incompressible

- $\rho = \text{constant}$.
- At high pressures,

Bulk compressibility modulus
$$E_v = \frac{dp}{\left(d\rho/\rho\right)}$$

- Water hammer, cavitation
- Gases are taken to be incompressible if Mach number (Ma) ≤ 0.3 .

Mach number
$$Ma = \frac{\text{flow speed, } V}{\text{local speed of sound, } c}$$

2

• Compressible \rightarrow Supersonic (Ma > 1) or subsonic (Ma < 1).

1.5.4 Inviscid vs viscid flows

- Inviscid flows \rightarrow zero viscosity (frictionless flow).
- Viscid flows → finite viscosity.

Laminar vs turbulent 1.5.5

- Laminar \rightarrow smooth layers
- Turbulent \rightarrow fluid particles randomly mix.

Reynold's Number $Re = \frac{\text{Inertial force}}{\text{Viscous force}} = \frac{\rho \bar{V}L}{\mu}$

• Laminar $\rightarrow Re \leq 2100$. Turbulent $\rightarrow Re \geq 4000$.

Surface tension 1.6

• Pressure difference in a droplet:

Tensile force due to surface tension $= \sigma \pi d$

Pressure force on the area = $(P_i - P_o) \frac{\pi d^2}{4}$

Force balance: $\sigma \pi d = (P_i - P_o) \frac{\pi d^2}{4}$ $P_i = P_o + \frac{4\sigma}{d}$

- For a soap bubble: $P_i = P_o + \frac{8\sigma}{d}$
- Capillary effect force balance:

Weight of fluid = $(Area \times height)\rho g$

Verticle component of surface tension = $\sigma \pi d \cos \theta$

 $\frac{\pi d^2 h}{4} \rho g = \sigma \pi d \cos \theta$

 $h = \frac{4\sigma\cos\theta}{\rho gd}$

Chapter 2

Fluid statics

2.1 Pressure formula

Imagine a small cube of fluid with sides dx, dy, dz. Assume this fluid is stationary relative to the stationary rectangular coordinates. Let $\vec{\mathbf{O}}$ denote the center of the cube and the pressure there be $P(\vec{\mathbf{O}})$. We want to do a force balance on this cube. There are two types of forces acting on this: Body and surface forces. The body force is just gravity:

$$\vec{\mathbf{F}}_B = \vec{\mathbf{g}} \ dm = \rho \vec{\mathbf{g}} \ dV = \rho \vec{\mathbf{g}} \ dx \ dy \ dz$$

For surface forces we need pressure difference. For pressure across the y direction, let on the face on the left we write the taylor series of p centered around $\vec{\mathbf{O}}$. Thus,

$$p_{L} = p + \frac{\partial p}{\partial y} (y_{L} - y)$$

$$\Rightarrow \qquad = p + \frac{\partial p}{\partial y} \left(-\frac{dy}{2} \right)$$

$$\Rightarrow \qquad = p - \frac{\partial p}{\partial y} \frac{dy}{2}$$

Similarly,

$$p_R = p + \frac{\partial p}{\partial y} (y_R - y)$$

$$\Rightarrow \qquad = p + \frac{\partial p}{\partial y} \frac{dy}{2}$$

Thus, force on the left face is $(p_L dx dz\hat{\mathbf{j}}) = \left(p - \frac{\partial p}{\partial y} \frac{dy}{2}\right) dx dz(\hat{\mathbf{j}})$ and that on the right face is $(p_R dx dz (-\hat{\mathbf{j}})) = \left(p + \frac{\partial p}{\partial y} \frac{dy}{2}\right) dx dz (-\hat{\mathbf{j}})$. Force different in this direction gives us: $(p_R (-\hat{\mathbf{j}}) - p_L (\hat{\mathbf{j}})) dx dz = -\left(\frac{\partial p}{\partial y} dx dy dz\right)$ Doing the same for other directions we get,

$$d\vec{\mathbf{F}}_{S} = -\left(\frac{\partial p}{\partial x}\hat{\mathbf{i}} + \frac{\partial p}{\partial y}\hat{\mathbf{j}} + \frac{\partial p}{\partial z}\hat{\mathbf{k}}\right) dx dy dz$$
$$= -\nabla p dx dy dz$$

Ultimately:

$$\vec{\mathbf{F}} = d\vec{\mathbf{F}}_B + d\vec{\mathbf{F}}_S$$
$$= (-\nabla p + \rho \vec{\mathbf{g}}) dV$$

For a static fluid, $\vec{\mathbf{F}} = m\vec{\mathbf{a}} = 0$. Thus, we simplify the previous equation. Since $\vec{\mathbf{g}}$ points in the $-\hat{\mathbf{j}}$ direction, all terms cancel but

$$\frac{dp}{dz} = -\rho g$$