Lecture 20: Review of Linear Algebra

Summary:

We review essential concepts in linear algebra, focusing on vector spaces, subspaces, and linear transformations. We examine the fundamental subspaces of a matrix and prove the rank-nullity theorem. We explore orthogonality and its applications to coding theory, establishing connections between vector spaces and linear codes.

Topics Covered: basis, dimension, image, kernel, linear code, linear transformation, orthogonality, subspace, vector space

Review of linear algebra

Let \mathcal{V} be a vector space over a field \mathbb{F} .

In \mathcal{V} , we have linear combinations of the form

av + bw

where $a,b\in\mathbb{F}$ and $v,w\in\mathcal{V}$.

 $\mathcal{W} \subseteq \mathcal{V}$ is a subspace of \mathcal{V} means it is closed under linear combinations

If we have two vector spaces $\mathcal{V}, \mathcal{V}'$ over \mathbb{F} , a function $T: \mathcal{V} \to \mathcal{V}'$ is called a linear transformation when it preserves linear combinations

A linear transformation has two fundamental subspaces

$$\ker(T) = \{v \in \mathcal{V} \ : \ T(v) = \vec{0}\} \subseteq \mathcal{V}$$
 $\operatorname{im}(T) = \{v' \in \mathcal{V}' \ : \ \exists v \in \mathcal{V}. \ T(v) = v'\} \subseteq \mathcal{V}'$

Note that $\ker(T)$ and $\operatorname{im}(T)$ are subspaces, meaning they are closed under linear combinations.

A basis of a vector space is a set of vectors that are linearly independent and span the space.

Every basis has the same cardinality, and we call that $\dim \mathcal{V}$.

Rank nullity theorem:

$$\dim \mathcal{V} = \dim \ker(T) + \dim \operatorname{im}(T)$$

Exercise:

Let $\mathbb{F}=\mathbb{F}_q$ be a field with q elements.

- 1. Let $\mathcal{V} = \mathbb{F}_q^n$. What is $\dim \mathcal{V}$ and |V|?
- 2. Let $\mathcal{W} \subseteq \mathcal{V}$ be a subspace with $\dim \mathcal{W} = k$. What does Lagrange's theorem tell us?

Part 1:

$$|\mathcal{V}|=q^n$$

$$\dim V = n$$

Part 2:

Note that $(\mathcal{W}, +)$ is a subgroup of $(\mathcal{V}, +)$. Both groups are finite. By Lagrange's theorem, we know that $|\mathcal{W}|$ divides $|\mathcal{V}|$.

Suppose that $\mathcal{V} = \mathbb{F}^n$.

 $v,w \in \mathcal{V}$ are orthogonal means $v \cdot w = \sum_{i=1}^n v_i \cdot w_i = v^T w = 0$, where

$$v=(v_1,\ldots,v_n)\in\mathbb{F}^n$$

$$w=(w_1,\ldots,w_n)\in\mathbb{F}^n$$

Let $\mathcal{W} \subseteq \mathcal{V}$ be a subspace. We denote the orthogonal subspace

$$\mathcal{W}^{\perp} = \{v \in \mathcal{V} \ : \ orall w \in \mathcal{W}. \ v \cdot w = 0\}$$

Note that

$$\mathcal{V} = \mathcal{W} \oplus \mathcal{W}^{\perp}$$

Which means

1.
$$\mathcal{V} = \mathcal{W} + \mathcal{W}^{\perp}$$

2. $\mathcal{W} \cap \mathcal{W}^{\perp} = \{0\}$

Therefore, when $\dim \mathcal{W}, \dim \mathcal{W}^{\perp} < \infty$, we have that

$$\dim \mathcal{V} = \dim \mathcal{W} + \dim \mathcal{W}^{\perp}$$

Views of linear combinations:

Row vector multiplication on the left

$$egin{aligned} \left[x_1 & x_2
ight] egin{bmatrix} lpha & lpha' & lpha'' \ eta & eta' & eta'' \end{bmatrix} = x_1 \left[lpha & lpha' & lpha''
ight] + x_2 \left[eta & eta' & eta''
ight] \end{aligned}$$

Column vector multiplication on the right

$$egin{bmatrix} lpha & lpha' & lpha'' \ eta & eta' & eta'' \end{bmatrix} egin{bmatrix} y_1 \ y_2 \ y_3 \end{bmatrix} = y_1 egin{bmatrix} lpha \ eta \end{bmatrix} + y_2 egin{bmatrix} lpha' \ eta' \end{bmatrix} + y_3 egin{bmatrix} lpha'' \ eta'' \end{bmatrix}$$

4 subspaces of a matrix A:

$$A \in \mathbb{F}^{m imes n}$$
 $T: \mathbb{F}^m o \mathbb{F}^n$ $T(y) = Ay$

- $ullet \ker T = \{y \in \mathbb{F}^m \ : \ Ay = 0\}$ is called the **kernel** or **right nullspace** of A
- ullet im T is called the **image** or **column space** of A

$$ilde{T}: \mathbb{F}^n o \mathbb{F}^m \ ilde{T}(x) = xA$$

$$T(x) = xA$$

- $\ker \tilde{T}$ is called the **left nullspace** of A
- ullet im $ilde{T}$ is called the **row space** of A

Theorem:

Fix $A \in \mathbb{F}^{n \times m}$. Then, we have

$$\operatorname{nullspace}(A) = \operatorname{rowspace}(A)^{\perp}$$

Note that

$$y\in \mathrm{null}(A)\iff Ay=0\iff \mathrm{dot}\ \mathrm{productof}\ \mathrm{every}\ \mathrm{row}\ \mathrm{of}\ \mathrm{A}\ \mathrm{with}\ \mathrm{y}\ \mathrm{is}\ 0$$

$$\iff \mathrm{y}\ \mathrm{is}\ \mathrm{orthogonal}\ \mathrm{to}\ \mathrm{every}\ \mathrm{row}\ \mathrm{of}\ \mathrm{A}$$

$$y\in \mathrm{row}(A)^\perp$$

Reminder:

$$\dim \operatorname{row} A = \dim \operatorname{col} A = \operatorname{rank} A$$

Graphs:

Each vertex represents a vector and each edge represents the difference of two vectors $e_i - e_j$.

$$S_G = \{e_i - e_j \, : \, (i,j) \in G, \ i < j\}$$
 $\mathcal{V} = \operatorname{span}_{\mathbb{R}} S_G$

Bases for a graph-based vector space:

A basis corresponds to an MST of the graph.

An MST is a minimal subset of edges that spans the graph.

Definition:

A linear code C is a vector subspace of \mathbb{F}_q^m . Furthermore, if $\dim C=n$, then call it an [m,n] code.

Let C be a 3-fold repitition code over \mathbb{F}_2 with message length 2.

$$C = \{00000, 101010, 010101, 1111111\} \subseteq \mathbb{F}_2^6$$

Note that C is a subspace of \mathbb{F}_q^m .

$$= \operatorname{span}\{y_2, y_3\}$$

Then, we have $y_2 + y_3 = y_4$.

The Hamming distance of ${\cal C}$ is

$$d(C) = 3$$

Lemma 1:

Let C be a linear code. Then,

$$d(C) = \min\{w(y) \ : \ y \in C\}$$

• w(y) denotes the weight of y

Proof:

By definition, we have

$$d(C) = \min\{d(x,y) \ : \ x,y \in C, x \neq y\}$$

Note that d(x,y) = w(x-y).

Let $x, y \in C$. Then, we have

$$d(x,y) = w(x-y)$$

And, since C is a subspace, we have

$$x-y\in C$$