Report No.: AGC08696170501FE02 Page 1 of 42

FCC Test Report

Report No.: AGC08696170501FE02

FCC ID : 2AL62-KINMIV03

APPLICATION PURPOSE: Original Equipment

PRODUCT DESIGNATION: Mobile Phone

BRAND NAME : KINMI

KINMI V03, KINMI V01, KINMI V02, KINMI V05, KINMI

V06, KINMI V07, KINMI V08, KINMI V09, KINMI V10,

MODEL NAME : KINMI K01, KINMI K02, KINMI K03, KINMI K05, KINMI K06, KINMI K07, KINMI K08, KINMI L01, KINMI L02,

KINMI L03, KINMI L05, KINMI L06

CLIENT: Shenzhen Kinmi Technology Co., Ltd.

DATE OF ISSUE : May. 17, 2017

STANDARD(S) : FCC Part 22H & 24E Rules

REPORT VERSION: V1.0

Attestation of Globa Compliance (Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No.: AGC08696170501FE02 Page 2 of 42

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	May. 17, 2017	Valid	Original Report

TABLE OF CONTENTS

TABLE OF CONTENTS	3
1. VERIFICATION OF COMPLIANCE	5
2. GENERAL INFORMATION	6
2.1 PRODUCT DESCRIPTION	6
2.2 RELATED SUBMITTAL(S) / GRANT (S)	8
2.3 TEST METHODOLOGY	
2.4 TEST FACILITY	8
2.5 MEASUREMENT INSTRUMENTS	8
2.6 SPECIAL ACCESSORIES	10
2.7 EQUIPMENT MODIFICATIONS	10
3. SYSTEM TEST CONFIGURATION	11
3.1 EUT CONFIGURATION	
3.2 EUT EXERCISE	11
3.3 GENERAL TECHNICAL REQUIREMENTS	11
3.4 CONFIGURATION OF EUT SYSTEM	12
4. SUMMARY OF TEST RESULTS	13
5. DESCRIPTION OF TEST MODES	13
6. OUTPUT POWER	14
6.1 CONDUCTED OUTPUT POWER	14
6.2 RADIATED OUTPUT POWER	
6.3. PEAK-TO-AVERAGE RATIO	20
7. OCCUPIED BANDWIDTH	22
7.1 TEST OVERVIEW	22
7.2 PROVISIONS APPLICABLE	22
7.3 Measurement Result	22
APPENDIX A:BANDWIDTH	22
8. BAND EDGE	24
8.1 measurement method	24

8.2 PROVISIONS APPLICABLE	24
8.3 Measurement Result	24
APPENDIX B: BAND EDGES COMPLIANCE	24
9. SPURIOUS EMISSION	25
9.1 CONDUCTED SPURIOUS EMISSION	25
APPENDIX C: SPURIOUS EMISSION AT ANTENNA TERMINAL	26
9.2 RADIATED SPURIOUS EMISSION	30
10. MAINS CONDUCTED EMISSION	33
10.1 MEASUREMENT METHOD	33
10.2 PROVISIONS APPLICABLE	33
10.3 MEASUREMENT RESULT	34
11. FREQUENCY STABILITY	36
11.1 MEASUREMENT METHOD	36
11.2 PROVISIONS APPLICABLE	36
11.2.2 For equipment powered by primary supply voltage	37
11.3 MEASUREMENT RESULT	38
Appendix D:Frequency Stability	38
PHOTOGRAPHS OF TEST SETUP	41

Report No.: AGC08696170501FE02 Page 5 of 42

1. VERIFICATION OF COMPLIANCE

Applicant	Shenzhen Kinmi Technology Co., Ltd.		
Address	A3003, Electronic&Technology Building, No. 2070 Shennan Zhong Road, Futian District, Shenzhen City, China		
Manufacturer	Shenzhen Kinmi Technology Co., Ltd.		
Address	A3003, Electronic&Technology Building, No. 2070 Shennan Zhong Road, Futian District, Shenzhen City, China		
Product Designation	Mobile Phone		
Brand Name KINMI			
Test Model	KINMI V03		
Series model	KINMI V01, KINMI V02, KINMI V05, KINMI V06, KINMI V07, KINMI V08, KINMI V09, KINMI V10, KINMI K01, KINMI K02, KINMI K03, KINMI K05, KINMI K06, KINMI K07, KINMI K08, KINMI L01, KINMI L02, KINMI L03, KINMI L05, KINMI L06		
Difference Description	All the same except the model name.		
Date of test	May. 09, 2017~May. 17, 2017		
Deviation	None		
Condition of Test Sample	Normal		

We hereby certify that:

The above equipment was tested by Dongguan Precise Testing Service Co., Ltd. The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI/TIA- 603-D-2010. The sample tested as described in this report is in compliance with the FCC Rules Part 22H and 24E.

The test results of this report relate only to the tested sample identified in this report.

Tested By	donjon strong	
	Donjon Huang(Huang	Apr. 19, 2017
	Dongyang)	
Reviewed By	De Cr.	
	Bart Xie(Xie Xiaobin)	May. 17, 2017
Approved By	solga shong	
	Solger Zhang(Zhang Hongyi)	May. 17, 2017
	Authorized Officer	May. 17, 2017

Page 6 of 42

2. GENERAL INFORMATION

2.1 PRODUCT DESCRIPTION

A major technical description of EUT is described as following:

Product Designation:	Mobile Phone		
Hardware version:	Z39-MB-V1.3		
Software version:	SC6531DA_Z39_JYM_3310_Kinmi_nk_3A_V1.1_20170419		
Frequency Bands:			
Antenna:	PIFA Antenna		
Type of Modulation	GSM / GPRS : GMSK		
Antenna gain(GSM):	1.0dBi		
Power Supply:	DC 3.7V by battery		
Battery parameter:	DC 3.7V/600mAh		
Adapter Input:	AC100-240V, 50-60Hz		
Adapter Output:	DC5V,500mA		
Dual Card:	GSM Card Slot		
GPRS Class	12		
Extreme Vol. Limits:	DC3.4 V to 4.2V (Normal: DC3.7 V)		
Extreme Temp. Tolerance	-10℃ to +50℃		
1			

^{***} Note: The High Voltage DC4.2V and Low Voltage DC3.4V were declared by manufacturer, The EUT couldn't be operating normally with higher or lower voltage.

Other functions have been performed according to verification procedure except for Bluetooth and MS function. Card 1 can't transmit with Card 2 simultaneously.

2. We found out the test mode with the highest power level after we analyze all the data rates. So we chose the worst case as a representative.

^{***} Note: 1.The maximum power levels are GSM for MCS-4: GMSK link, and RMC 12.2kbps mode, only these modes were used for all tests.

Report No.: AGC08696170501FE02 Page 7 of 42

GSM Card Slot 1:

	Maximum ERP/EIRP	Max. Conducted Power	Max. Average
	(dBm)	(dBm)	Burst Power (dBm)
GSM 850	30.23	32.30	31.77
PCS 1900	26.81	29.11	28.67

GSM Card Slot 2:

	Maximum ERP/EIRP	Max. Conducted Power	Max. Average
	(dBm)	(dBm)	Burst Power (dBm)
GSM 850	30.19	32.27	31.71
PCS 1900	26.78	29.06	28.59

Report No.: AGC08696170501FE02 Page 8 of 42

2.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID**: **2AL62-KINMIV03**, filing to comply with the FCC Part 22H&24E requirements.

2.3 TEST METHODOLOGY

The radiated emission testing was performed according to the procedures of ANSI/TIA-603-D-2010, and FCC CFR 47 Rules of 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057.

KDB 971168 D01 Power Meas License Digital Systems v02r02

2.4 TEST FACILITY

Site	Dongguan Precise Testing Service Co., Ltd.			
Location Building D,Baoding Technology Park,Guangming Road2,Dongcheng District, Dongguan, Guangdong, China,				
FCC Registration No.	371540			
Description	The test site is constructed and calibrated to meet the FCC requirements in documents of ANSI/TIA-603-D-2010.			

2.5 MEASUREMENT INSTRUMENTS

Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016	July 2, 2017
Trilog Broadband Antenna (25M-1GHz)	SCHWARZBECK	VULB9168	D69250	Mar 1, 2016	Feb 28, 2018
Trilog Broadband Antenna(substituted antenna) (25M-1GHz)	SCHWARZBECK	VULB9160	9160-3355	July 3, 2016	July 2, 2018
Signal Amplifier	SCHWARZBECK	BBV 9475	9745-0013	July 3, 2016	July 2, 2017
RF Cable	SCHWARZBECK	AK9515E	96221	July 3, 2016	July 2, 2017
3m Anechoic Chamber	CHENGYU	966	PTS-001	June 5, 2016	June 4, 2017
MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A	N/A
Active loop antenna (9K-30MHz)	Schwarzbeck	FMZB1519	1519-038	June 5, 2016	June 4, 2018
Spectrum analyzer	Agilent	E4407B	MY46185649	June 5, 2016	June 4, 2017
Horn Antenna (1G-18GHz)	SCHWARZBECK	BBHA9120D	9120D-1246	July 10, 2016	July 9, 2018
Horn Antenna(substituted antenna) (1G-18GHz)	ETS LINDGREN	3117	00034609	Mar 1, 2016	Feb 28, 2017

Report No.: AGC08696170501FE02 Page 9 of 42

Spectrum Analyzer	Agilent	E4411B	MY4511453	July 3, 2016	July 2, 2017
Signal Amplifier	SCHWARZBECK	BBV 9718	9718-269	July 6, 2016	July 5, 2017
RF Cable	SCHWARZBECK	AK9515H	96220	July 7, 2016	July 6, 2017
Horn Ant (18G-40GHz)	Schwarzbeck	BBHA 9170	9170-181	June 5, 2016	June 4, 2017
Artificial Mains Network	Narda	L2-16B	000WX31025	July 7, 2016	July 6, 2017
Artificial Mains Network (AUX)	Narda	L2-16B	000WX31026	July 7, 2016	July 6, 2017
RF Cable	SCHWARZBECK	AK9515E	96222	July 3, 2016	July 2, 2017
Shielded Room	CHENGYU	843	PTS-002	June 5, 2016	June 4, 2017
COMMUNICATION TESTER	AGILENT	8960	GB46490550	July 24,2016	July 23, 2017
RF attenuator	N/A	RFA20db	68	N/A	N/A
Signal Generator	AGILENT	N5182A	MY50140530	Oct 10,2016	Oct 09,2017
Signal Generator(substituted equipment)	AGILENT	E8257D	MY45141029	Oct 10,2016	Oct 09,2017

Page 10 of 42

2.6 SPECIAL ACCESSORIES

The battery and the charger, earphone supplied by the applicant were used as accessories and being tested with EUT intended for FCC grant together.

2.7 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Page 11 of 42

3. SYSTEM TEST CONFIGURATION

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The Transmitter was operated in the maximum output power mode through Communication Tester. The TX frequency was fixed which was for the purpose of the measurements.

3.3 GENERAL TECHNICAL REQUIREMENTS

Item Number	Item	FCC Rules	
4	Output Power	Conducted output power	2.1046/22.913(a) (2) / 24.232
ľ	Output Power	Radiated output power	(c)
2	Peak-to-Average	Dook to Average Petie	24 222(4)
2	Ratio	Peak-to-Average Ratio	24.232(d)
		Conducted	
3	Spurious Emission	spurious emission	2.1051 / 22.917 / 24.238
		Radiated spurious emission	
4	Mains Conducted Emission		15.107 / 15.207
5	Frequency Stability		2.1055/22.355 /24.235
6	Occupied Bandwidth		2.1049 (h)(i)
7	Emission Bandwidth		22.917(a)/24.238(a)
8	Band Edge		22.917(a)/24.238(a)

Page 12 of 42

3.4 CONFIGURATION OF EUT SYSTEM

Fig. 2-1 Configuration of EUT System

Table 2-1 Equipment Used in EUT System

Item	Equipment	Model No.	ID or Specification	Note
1	Mobile Phone	KINMI V03	2AL62-KINMIV03	EUT
2	Adapter	KINMI V03	DC5V /0.5A	Accessory
3	Battery	BL-5C	DC3.7V/600mAh	Accessory
4	Earphone	N/A	N/A	Accessory
5	USB Cable	N/A	N/A	Accessory

^{***}Note: All the accessories have been used during the test. The following "EUT" in setup diagram means EUT system.

Page 13 of 42

4. SUMMARY OF TEST RESULTS

Item Number	Item Description		FCC Rules	Result	
		Conducted			
1	Output Dower	Output Power	2.1046/22.913(a) (2) /	Door	
l	Output Power	Radiated	24.232 (c)	Pass	
		Output Power			
0	Peak-to-Average	Peak-to-Average	24.222(4)	Door	
2	Ratio	Ratio	24.232(d)	Pass	
	Spurious Emission	Conducted			
3		Spurious Emission	2.1051 / 22.917 / 24.238	Pass	
3		Radiated	2.1031/22.91//24.236	Pass	
		Spurious Emission			
4	Mains Conducted Em	ission	15.107 / 15.207	Pass	
5	Fraguanay Stability		2.1055/22.355		
5	5 Frequency Stability		/24.235	Pass	
6	Occupied Bandwidth		2.1049 (h)(i)	Pass	
7	Emission Bandwidth		22.917(a)/24.238(a)	Pass	
8	Band Edge		22.917(a)/24.238(a)	Pass	

5. DESCRIPTION OF TEST MODES

During the testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication Tester (CMU 200) to ensure max power transmission and proper modulation. Three channels (The top channel, the middle channel and the bottom channel) were chosen for testing on both GSM and PCS frequency band.

***Note: 1.GSM/GPRS 850, GSM/GPRS 1900, mode have been tested during the test.

- 2. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions
- 3. All antenna port conducted emissions testing was performed on a test bench with the antenna Port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.

Report No.: AGC08696170501FE02 Page 14 of 42

6. OUTPUT POWER

6.1 CONDUCTED OUTPUT POWER

6.1.1 MEASUREMENT METHOD

The transmitter output port was connected to base station.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Measure the maximum burst average power and average power for other modulation signal.

The EUT was setup for the max output power with pseudo random data modulation. Power was measured with Spectrum Analyzer. The measurements were performed on all modes (GSM/GPRS850, GSM/GPRS1900) at 3 typical channels (the Top Channel, the Middle Channel and the Bottom Channel) for each band.

6.1.2 MEASUREMENT RESULT

Conducted Output Power Limits for GSM850						
Mode	Nominal Peak Power	Tolerance(dB)				
GSM	33 dBm (2W)	- 2				
GPRS	33 dBm (2W)	- 2				
	Conducted Output Power Limits for PC	CS1900				
Mode	Nominal Peak Power	Tolerance(dB)				
GSM	30 dBm (1W)	- 2				
GPRS	30 dBm (1W)	- 2				

Report No.: AGC08696170501FE02 Page 15 of 42

GSM 850:

Mode	Frequency	Reference	Peak	Tolerance	Avg.Burst	Duty cycle	Frame
Wode	(MHz)	Power	Power	Tolerance	Power	Factor(dB)	Power(dBm)
	824.2	33	32.23	-0.77	31.71	-9	22.71
GSM850	836.6	33	32.17	-0.83	31.59	-9	22.59
	848.8	33	32.30	-0.70	31.77	-9	22.77
CDDC050	824.2	33	31.36	-1.64	30.84	-9	21.84
GPRS850 (1 Slot)	836.6	33	31.26	-1.74	30.86	-9	21.86
(1 3101)	848.8	33	31.30	-1.70	30.74	-9	21.74
CDDC050	824.2	30	28.92	-1.08	28.21	-6	22.21
GPRS850 (2 Slot)	836.6	30	28.99	-1.01	28.10	-6	22.10
(2 3101)	848.8	30	28.74	-1.26	28.29	-6	22.29
CDDC050	824.2	28.23	27.19	-1.04	26.93	-4.26	22.67
GPRS850 (3 Slot)	836.6	28.23	27.43	-0.80	26.66	-4.26	22.40
(3 3101)	848.8	28.23	27.22	-1.01	26.72	-4.26	22.46
000000	824.2	27	25.69	-1.31	25.91	-3	22.91
GPRS850	836.6	27	25.71	-1.29	25.64	-3	22.64
(4 Slot)	848.8	27	25.62	-1.38	25.22	-3	22.22

PCS 1900:

Mode	Frequency (MHz)	Reference Power	Peak Power	Tolerance	Avg.Burst Power	Duty cycle Factor(dB)	Frame Power(dBm)
	1850.2	30	28.80	-1.20	28.36	-9	19.36
GSM1900	1880	30	28.77	-1.23	28.22	-9	19.22
	1909.8	30	29.11	-0.89	28.67	-9	19.67
CDDC1000	1850.2	30	28.59	-1.41	28.13	-9	19.13
GPRS1900	1880	30	28.60	-1.40	28.09	-9	19.09
(1 Slot)	1909.8	30	28.42	-1.58	27.93	-9	18.93
CDDC4000	1850.2	27	26.42	-0.58	26.04	-6	20.04
GPRS1900	1880	27	26.33	-0.67	25.89	-6	19.89
(2 Slot)	1909.8	27	26.55	-0.45	25.90	-6	19.90
CDDC4000	1850.2	25.23	24.39	-0.84	23.68	-4.26	19.42
GPRS1900	1880	25.23	24.49	-0.74	23.60	-4.26	19.34
(3 Slot)	1909.8	25.23	24.51	-0.72	23.93	-4.26	19.67

Report No.: AGC08696170501FE02 Page 16 of 42

GPRS1900	1850.2	24	22.80	-1.20	22.26	-3	19.26
	1880	24	22.60	-1.40	22.29	-3	19.29
(4 Slot)	1909.8	24	22.71	-1.29	22.34	-3	19.34

Page 17 of 42

6.2 RADIATED OUTPUT POWER

6.2.1 MEASUREMENT METHOD

The measurements procedures specified in ANSI/TIA-603-D-2010 were applied.

- 1. Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-D-2010 with the EUT transmitting into an integral antenna. Measurements on signal operating below 1GHz are performed using dipole antennas. Measurements on signals operating above 1GHz are performed using broadband horn antennas. All measurements are performed as RMS average measurements while the EUT operating at its maximum duty cycle, at maximum power, and at the approximate frequencies.
- 2. In an anechoic antenna test chamber, a half-wave dipole antenna for the frequency band of interest is placed at the reference centre of the chamber. An RF Signal source for the frequency band of interest is connected to the dipole with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A known (measured) power (Pin) is applied to the input of the dipole, and the power received (Pr) at the chamber's probe antenna is recorded.
- 3. The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established as ARpl=Pin + 2.15 Pr. The ARpl is the attenuation of "reference path loss", and including the gain of receive antenna, the cable loss and the air loss. The measurement results are obtained as described below: Power=PMea+ARpl
- 4. The EUT is substituted for the dipole at the reference centre of the chamber and a scan is performed to obtain the radiation pattern.
- 5. From the radiation pattern, the co-ordinates where the maximum antenna gain occurs are identified.
- 6. The EUT is then put into continuously transmitting mode at its maximum power level.
- 7. Power mode measurements are performed with the receiving antenna placed at the coordinates determined in Step 3 to determine the output power as defined in Rule 24.232 (b) and (c). The "reference path loss" from Step1 is added to this result.
- 8. This value is EIRP since the measurement is calibrated using a half-wave dipole antenna of known gain (2.15 dBi) and known input power (Pin).
- 9. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi...

6.2.2 PROVISIONS APPLICABLE

This is the test for the maximum radiated power from the EUT. Rule Part 24.232(b) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "Maximum ERP. The effective radiated power (ERP) of base transmitters and cellular repeaters must not exceed 500 Watts. The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

Report No.: AGC08696170501FE02 Page 18 of 42

Mode	Nominal Peak Power
GSM 850	<=38.45 dBm (7W)
GPRS 850	<=38.45 dBm (7W)
PCS 1900	<=33 dBm (2W)
GPRS 1900	<=33 dBm (2W)

Report No.: AGC08696170501FE02 Page 19 of 42

6.2.3 MEASUREMENT RESULT

Radiated Power (ERP) for GSM 850						
		Re	Result			
Mode	Frequency	Max. Peak ERP	Polarization	Conclusion		
		(dBm)	Of Max. ERP			
	824.2	30.23	Horizontal	Pass		
	836.6	30.12	Horizontal	Pass		
GSM 850	848.8	30.21	Horizontal	Pass		
GSIVI 650	824.2	27.78	Vertical	Pass		
	836.6	27.59	Vertical	Pass		
	848.8	27.35	Vertical	Pass		

Radiated Power (E.I.R.P) for PCS 1900						
		Res	Result			
Mode	Frequency	Max. Peak	Polarization	Conclusion		
		E.I.R.P.(dBm)	Of Max. E.I.R.P.			
	1850.2	26.74	Horizontal	Pass		
	1880.0	26.75	Horizontal	Pass		
GSM 1900	1909.8	26.81	Horizontal	Pass		
G3M 1900	1850.2	24.54	Vertical	Pass		
	1880.0	24.31	Vertical	Pass		
	1909.8	24.55	Vertical	Pass		

Note: Above is the worst mode data.

Page 20 of 42

6.3. PEAK-TO-AVERAGE RATIO

6.3.1 MEASUREMENT METHOD

Use one of the procedures presented in 4.1 to measure the total peak power and record as PPk. Use one of the applicable procedures presented 4.2 to measure the total average power and record as PAvg. Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:

PAPR (dB) = PPk (dBm) - PAvg (dBm).

6.3.2 PROVISIONS APPLICABLE

This is the test for the Peak-to-Average Ratio from the EUT.

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Report No.: AGC08696170501FE02 Page 21 of 42

6.3.3 MEASUREMENT RESULT

Modes	GSM850(GSM)			
Channel	128	190	251	
G.i.d.iii.G.	(Low)	(Mid)	(High)	
Frequency	824.2	836.6	848.8	
(MHz)	024.2	630.0	040.0	
Peak-To-Average Ratio (dB)/GSM	0.52	0.51	0.52	

Modes	PCS 1900 (GSM)			
Channel	512	661	810	
Ond more	(Low)	(Mid)	(High)	
Frequency	1850.2	1880	1909.8	
(MHz)	1030.2	1000	1303.0	
Peak-To-Average Ratio (dB)/GSM	0.54	0.55	0.53	

Page 22 of 42

7. OCCUPIED BANDWIDTH

7.1 TEST OVERVIEW

1. The Occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper Frequency limits, the mean power radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

2. RBW=1~5% of the expected OBW, VBW>=3 x RBW, Detector=Peak, Trace mode=max hold, Sweep=auto couple, and the trace was allowed to stabilize.

7.2 PROVISIONS APPLICABLE

The emission bandwidth is defined as two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power

7.3 Measurement Result

APPENDIX A:BANDWIDTH

Test Results

Test Band Mode	Test	Test	Occupied Bandwidth	Emission Bandwidth	Vardiet
	Mode	Channel	(KHZ)	(KHZ)	Verdict
		LCH	243.76	312.92	PASS
GSM850	GSM	MCH	244.81	310.04	PASS
		HCH	248.82	314.64	PASS

Toot Bond	Test	Test	Occupied Bandwidth	Emission Bandwidth	Verdict
Test Band	Mode	Channel	(KHZ)	(KHZ)	verdict
GSM1900		LCH	244.64	318.43	PASS
	GSM	MCH	246.55	320.19	PASS
		HCH	246.80	309.67	PASS

For GSM

Report No.: AGC08696170501FE02 Page 23 of 42

Test Band=GSM850/GSM1900

Test Mode=GSM

Report No.: AGC08696170501FE02 Page 24 of 42

8. BAND EDGE

8.1 measurement method

- 1. All out of band emissions are measured with an analyzer spectrum connected to the antenna terminal of the EUT while the EUT at its maximum duty cycle, at maximum power, and at the approximate frequencies. All data rates were investigated to determine the worst case configuration
- 2. The test set up and general procedure is similar to conducted peak output power test. Only different for setting the measurement configuration of the measuring instrument of Spectrum Analyzer.
- 3. Start and stop frequency were set such that the band edge would be placed in the center of the plot.
- 4. Span was set large enough so as to capture all out of band emissions near the band edge.
- 5. RBW>1% of the emission bandwidth, VBW >=3 x RBW, Detector=RMS, Number of points>=2 x Span/RBW, Trace mode=max hold, Sweep time=auto couple, and the trace was allowed to stabilize

8.2 PROVISIONS APPLICABLE

As Specified in FCC rules of 22.917(a) and 24.238(a) and KDB 971168 V02r02

8.3 Measurement Result

APPENDIX B: BAND EDGES COMPLIANCE

Test Results

For GSM

Test Band=GSM850/GSM1900

Test Mode=GSM

Report No.: AGC08696170501FE02 Page 25 of 42

9. SPURIOUS EMISSION

9.1 CONDUCTED SPURIOUS EMISSION

9.1.1 MEASUREMENT METHOD

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- 1. The level of the carrier and the various conducted spurious and harmonic frequency is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the approximate frequencies. All data rates were investigated to determine the worst case configuration.
- 2. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of PCS1900 band, this equates to a frequency range of 30 MHz to 19.1 GHz, data taken from 30 MHz to 20 GHz. For GSM 850, data taken from 30 MHz to 9 GHz.
- 3. Determine EUT transmit frequencies: the following typical channels were chosen to conducted emissions testing.

Typical Channels for testing of GSM 850				
Channel	Frequency (MHz)			
128	824.2			
190	836.6			
251	848.8			

Typical Channels for testing of PCS 1900	
--	--

Report No.: AGC08696170501FE02 Page 26 of 42

Channel	Frequency (MHz)
512	1850.2
661	1880.0
810	1909.8

9.1.2 PROVISIONS APPLICABLE

On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

9.1.3 MEASUREMENT RESULT

APPENDIX C: SPURIOUS EMISSION AT ANTENNA TERMINAL

Test Results

Test Band=GSM850/GSM1900

Test Mode=GSM

Note: 1. Below 30MHZ no Spurious found and The GSM modes is the worst condition.

2. As no emission found in standby or receive mode, no recording in this report.

Report No.: AGC08696170501FE02 Page 30 of 42

9.2 RADIATED SPURIOUS EMISSION

9.2.1 MEASUREMENT METHOD

The measurements procedures specified in TIA-603-D-2010 were used for testing. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set 1MHz as outlined in Part 24.238. The measurements were performed on all modes(GPRS 850, GPRS 1900, HSPA band V) at 3 typical channels(the Top Channel, the Middle Channel and the Bottom Channel) for each band.

The procedure of radiated spurious emissions is as follows:

a) Pre-calibration With pre-calibration method, the Radiated Spurious Emissions(RSE) is calculated as, RSE=Rx(dBuV)+CL(dB)+SA(dB)+Gain(dBi)-107(dBuV to dBm) The SA is calibrated using following setup.

b) EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the test item for emission measurements. The height of receiving antenna is 0.8m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the test item and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1MHz bandwidth.

Report No.: AGC08696170501FE02 Page 31 of 42

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the PCS 1900 band (1850.2 MHz, 1880 MHz and 1909.8 MHz) ,GSM850 band (824.2MHz, 836.6MHz, 848.8MHz), UMTS band V(826.6MHz, 836.4MHz, 846.4MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of any band into any of the other blocks.

The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss and the air loss. The measurement results are obtained as described below: Power=P_{Mea}+A_{Rpl}

9.2.2 PROVISIONS APPLICABLE

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Note: only result the worst condition of each test mode:

Page 32 of 42

9.2.3 MEASUREMENT RESULT

GSM 850:

The Worst Test Results for Channel 251/848.8 MHz							
Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit (dBm)	Polarity		
1687.34	-45.28	-5.01	-50.29	-13.00	Horizontal		
2459.52	-42.84	-2.18	-45.02	-13.00	Vertical		
3644.51	-43.76	3.46	-40.30	-13.00	Vertical		
4542.86	-42.19	2.79	-39.40	-13.00	Horizontal		

PCS 1900:

The Worst Test Results for Channel 810/1909.8MHz							
Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit (dBm)	Polarity		
1431.25	-46.34	-3.22	-49.56	-13.00	Vertical		
2568.41	-48.69	-0.24	-48.93	-13.00	Vertical		
3647.15	-43.38	3.98	-39.40	-13.00	Horizontal		
4569.41	-44.06	11.56	-32.50	-13.00	Vertical		
5686.34	-45.20	17.89	-27.31	-13.00	Horizontal		

Note: ARpl= Factor=Antenna Factor+ Cable loss-Amplifier gain.

The "Factor" value can be calculated automatically by software of measurement system.

Below 30MHZ no Spurious found and The GSM modes is the worst condition.

Page 33 of 42

10. MAINS CONDUCTED EMISSION

10.1 MEASUREMENT METHOD

The measurement procedure specified in ANSI/TIA-603-D-2010 was used for testing. Conducted Emission was measured with travel charger.

10.2 PROVISIONS APPLICABLE

Frequency of Emission (MHz)	Conducted Limit(dBuV)				
	Quasi-Peak	Average			
0.15 – 0.5	66 to 56 *	56 to 46 *			
0.5 – 5	56	46			
5 – 30	60	50			
*Decreases with the logarithm of the frequency.					
*The lower limit shall apply at the transition frequency.					

Note: The GSM850 mode is the worst condition and the test result as following:

10.3 MEASUREMENT RESULT

LINE CONDUCTED EMISSION - L

MEASUREMENT RESULT: "AGC_fin"

2017/5/12 10:28		
Frequency Level Transd Limit Margin Detector Line	PE	AUX
		STATE
MHz dBuV dB dBuV dB		
0.204000 38.30 10.3 63 25.1 QP L1	FLO	ON
0.321000 39.40 10.3 60 20.3 QP L1	FLO	ON
0.658500 37.80 10.3 56 18.2 QP L1	FLO	ON
1.612500 35.60 10.4 56 20.4 QP L1	FLO	ON
4.038000 30.50 10.5 56 25.5 QP L1	FLO	ON
15.738000 16.40 11.3 60 43.6 QP L1	FLO	ON

MEASUREMENT RESULT: "AGC_fin2"

20	17/5/12 10:	28							
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX
									STATE
	MHz	dBuV	dB	dBuV	dB				
	0.204000	26.50	10.3	53	26.9	AV	L1	FLO	ON
	0.312000	30.90	10.3	50	19.0	AV	L1	FLO	ON
	0.658500	27.70	10.3	46	18.3	AV	L1	FLO	ON
	1.621500	21.00	10.4	46	25.0	AV	L1	FLO	ON
	4.038000	19.40	10.5	46	26.6	AV	L1	FLO	ON
	15.738000	9.10	11.3	50	40.9	AV	L1	FLO	ON

LINE CONDUCTED EMISSION - N

MEASUREMENT RESULT: "AGC fin"

2017	100	100	10:	4 00
2017	15	7.12	1.01 -	

.017/3/12 10:13								
Frequenc	y Level	Transd	Limit	Margin	Detector	Line	PE	AUX
								STATE
MH	z dBuV	dB	dBuV	dB				
0.20850	36.30	10.3	63	27.0	QP	N	FLO	ON
0.30750	36.10	10.3	60	23.9	QP	N	FLO	ON
0.66300	33.00	10.3	56	23.0	QP	N	FLO	ON
1.64850	30.60	10.4	56	25.4	QP	N	FLO	ON
2.75550	27.40	10.5	56	28.6	QP	N	FLO	ON
10.41450	16.80	10.8	60	43.2	QP	N	FLO	ON

MEASUREMENT RESULT: "AGC fin2"

т.	α	7 7	/ =	/12	3.0	:13
,	L D	1.7	/ "	/ 1 /	1.11	

Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX
								STATE
MHz	dBuV	dB	dBuV	dB				
0.208500	22.50	10.3	53	30.8	AV	N	FLO	ON
0.312000	25.20	10.3	50	24.7	AV	N	FLO	ON
0.663000	20.60	10.3	46	25.4	AV	N	FLO	ON
1.648500	18.10	10.4	46	27.9	AV	N	FLO	ON
2.571000	17.60	10.5	46	28.4	AV	N	FLO	ON
10.365000	8.00	10.8	50	42.0	AV	N	FLO	ON

Note: The GSM850 mode is the worst condition.

Page 36 of 42

11. FREQUENCY STABILITY

11.1 MEASUREMENT METHOD

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU200 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -10 $^{\circ}$ C.
- 3.With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on channel 661 for PCS 1900 band, channel 190 for GSM 850 band, channel 9400 for UMTS band II and channel 4175 for UMTS band V measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4.Repeat the above measurements at 10° C increments from - 10° C to + 55° C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +55℃.
- 7. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10° C increments from +55 $^{\circ}$ C to -10 $^{\circ}$ C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 9.At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

11.2 PROVISIONS APPLICABLE

11.2.1 For Hand carried battery powered equipment

According to the ANSI/TIA-603-D-2010, the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.4V DC and 4.2V DC, with a nominal voltage of 4.2 DC V. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -10 % and

Report No.: AGC08696170501FE02 Page 37 of 42

+12.5 %. For the purposes of measuring frequency stability these voltage limits are to be used.

11.2.2 For equipment powered by primary supply voltage

According to the ANSI/TIA-603-D-2010, the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment, the normal environment temperature is 20°C.

Report No.: AGC08696170501FE02 Page 38 of 42

11.3 MEASUREMENT RESULT

Appendix D:Frequency Stability

Test Results

Frequency Error vs. Voltage:

Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	\/o ndi ot
Band	Mode	Channel	Temp.	Volt.(V)	(Hz)	(ppm)	(ppm)	Verdict
GSM850 GSM		LCH	TN	3.4	14.59	0.02	±2.5	PASS
			TN	3.7	12.79	0.02	±2.5	PASS
			TN	4.2	11.88	0.01	±2.5	PASS
		SM MCH	TN	3.4	13.11	0.02	±2.5	PASS
	GSM		TN	3.7	12.79	0.02	±2.5	PASS
			TN	4.2	11.11	0.01	±2.5	PASS
			TN	3.4	14.92	0.02	±2.5	PASS
		HCH	TN	3.7	13.11	0.02	±2.5	PASS
			TN	4.2	14.72	0.02	±2.5	PASS

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt. (V)	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
GSM1900 GSM		LCH	TN	3.4	25.51	0.01	±2.5	PASS
			TN	3.7	24.60	0.01	±2.5	PASS
			TN	4.2	21.31	0.01	±2.5	PASS
			TN	3.4	11.75	0.01	±2.5	PASS
	GSM	GSM MCH HCH	TN	3.7	9.04	0.00	±2.5	PASS
			TN	4.2	7.43	0.00	±2.5	PASS
			TN	3.4	6.59	0.00	±2.5	PASS
			TN	3.7	4.20	0.00	±2.5	PASS
			TN	4.2	7.81	0.00	±2.5	PASS

Report No.: AGC08696170501FE02 Page 39 of 42

Frequency Error vs. Temperature:

Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	Vardiat
Band	Mode	Channel	Volt.	Temp.	(Hz)	(ppm)	(ppm)	Verdict
			VN	-10	12.14	0.01	±2.5	PASS
			VN	0	15.30	0.02	±2.5	PASS
			VN	10	14.98	0.02	±2.5	PASS
GSM850	GSM	LCH	LCH VN	20	11.11	0.01	±2.5	PASS
			VN	30	12.91	0.02	±2.5	PASS
			VN	40	12.46	0.02	±2.5	PASS
			VN	50	15.63	0.02	±2.5	PASS
		MCH	VN	-10	14.33	0.02	±2.5	PASS
			VN	0	12.14	0.01	±2.5	PASS
			VN	10	14.27	0.02	±2.5	PASS
GSM850	GSM		VN	20	10.53	0.01	±2.5	PASS
			VN	30	12.20	0.01	±2.5	PASS
			VN	40	15.95	0.02	±2.5	PASS
			VN	50	14.33	0.02	±2.5	PASS
		НСН	VN	-10	12.91	0.02	±2.5	PASS
			VN	0	15.05	0.02	±2.5	PASS
GSM850			VN	10	12.59	0.01	±2.5	PASS
	GSM		VN	20	11.82	0.01	±2.5	PASS
			VN	30	13.69	0.02	±2.5	PASS
			VN	40	12.59	0.01	±2.5	PASS
			VN	50	13.88	0.02	±2.5	PASS

.

Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	\/a valiat
Band	Mode	Channel	Volt.	Temp.	(Hz)	(ppm)	(ppm)	Verdict
			VN	-10	14.33	0.01	±2.5	PASS
			VN	0	10.91	0.01	±2.5	PASS
			VN	10	14.27	0.01	±2.5	PASS
GSM1900	GSM	LCH	VN	20	13.56	0.01	±2.5	PASS
			VN	30	12.79	0.01	±2.5	PASS
			VN	40	9.49	0.01	±2.5	PASS
			VN	50	11.82	0.01	±2.5	PASS
	GSM	MCH	VN	-10	13.50	0.01	±2.5	PASS
			VN	0	8.85	0.00	±2.5	PASS
			VN	10	9.10	0.00	±2.5	PASS
GSM1900			VN	20	12.79	0.01	±2.5	PASS
			VN	30	6.46	0.00	±2.5	PASS
			VN	40	6.97	0.00	±2.5	PASS
			VN	50	5.49	0.00	±2.5	PASS
	GSM	GSM HCH	VN	-10	4.97	0.00	±2.5	PASS
			VN	0	6.20	0.00	±2.5	PASS
GSM1900			VN	10	8.65	0.00	±2.5	PASS
			VN	20	4.20	0.00	±2.5	PASS
			VN	30	4.71	0.00	±2.5	PASS
			VN	40	8.59	0.00	±2.5	PASS
			VN	50	6.33	0.00	±2.5	PASS

Report No.: AGC08696170501FE02 Page 41 of 42

PHOTOGRAPHS OF TEST SETUP

CONDUCTED EMISSION

RADIATED SPURIOUS EMISSION

CONDUCTED MEASUREMENTS

----END OF REPORT----