Low Complexity Near Optimal Hybrid Detectors for Large MIMO Uplink Systems Based on Complex Support Vector Regression

Tianpei Chen

Department of Electrical and Computer Engineering

McGill University

Montreal, Quebec, Canada

Abstract

I. INTRODUCTION

A. Large MIMO System

Introduce the development and history of Large MIMO systems. The challenges and opportunities.

B. Large MIMO detections

- Local Search (Likelihood Ascend Search and its variances, Reactive Tabu Search and its variances)
- Probabilistic Data Association (PDA and its variances)
- Message Passing Scheme based on Graph Model (Belief Propagation and its variances)
- Monte Carlo Markov Chain detection (Gibbs sampling and its variances)
- Element Based Lattice Reduction aided linear detectors (Lattice reduction)

Evaluate advantages and disadvantages.

C. Support Vector Regression

History and applications.

D. Thesis Contribution

- 1) Propose a complex support vector detector which can generate more reliable preliminary estimates than linear detectors (ZF, MMSE) in large MIMO systems but cost less complexity:
- 2) Proposed a low complexity hybrid detector based on complex support vector preliminary detector and hybrid genetic algorithm which achieve near optimal performance at both low order and high order modulation scheme:
- 3) Provide theoretical analysis of channel hardening phenomenon and its application in the design of large MIMO detectors:

E. Thesis Outline

II. THEORETICAL ANALYSIS OF CHANNEL HARDENING PHENOMENON

III. COMPLEX SUPPORT VECTOR PRELIMINARY DETECTOR (CSVD) FOR LARGE MIMO SYSTEMS

A. The Algorithm

B. Channel Hardening Approximation

Employ channel hardening phenomenon to the detector proposed based on the theoretical analysis.

- 1) Complexity Analysis: Including original version and modified version (with channel hardening approximation).
 - 2) CSVD Aided Detectors:
 - Ordered Parallel Interference Cancellation (OPIC).
 - Likelihood Ascend Search (LAS)

- 3) Computer Simulation Results (Spatial Uncorrelated Channel):
- Bit error rate (BER) performance comparisons between CSVD and MMSE detectors.
- BER performance comparison between original CSVD and modified CSVD (with channel hardening approximation).
- BER performance comparisons between CSVD-OPIC and MMSE-OPIC detectors.
- BER performance comparisons between CSVD-LAS and MMSE-LAS detectors.

IV. Low Complexity Near Optimal Hybrid Detector Based on Genetic Algorithm and Complex Support Vector Preliminary Detector

A. The Algorithm

- B. Parameter settings
 - 1) Population Size:
- 2) Number of Generations: Discuss the influence of the population size and number of generations to convergence performance (with respect to the performance of ML detector).
- 3) Initial Searching Area: Discuss the influence of initial searching area to the BER performance.
- C. Computer Simulation Results (Spatial Uncorrelated Channel)
 - BER performance under fixed SNR against number of generations for different values of population sizes.
 - BER performance under a fixed SNR against different initial searching areas.
 - BER performance Comparison between CSVD-GA and other advanced detectors (LAS, RTS, LTS, R3TS).

D. Complexity Analysis

V. Influences of Spatial Correlated Channel and Imperfect Channel State Information (4QAM and 16QAM) (32×32 MIMO, 64×64 MIMO, 128×128 MIMO)

A. BER performance of Complex Support Vector Preliminary Detectors
CSVD, CSVD-LAS, CSVD-OPIC

- B. BER performance of Complex Support Vector Detector with Channel Hardening Approximation
- C. BER performance of Complex Support Vector Detector Aided Hybrid Genetic Algorithm (CSVD-GA)

VI. CONCLUSION