```
Entropy
程序简介
程序原理
```

程序运行方式

Windows环境

交互模式(默认)

文件模式

获取帮助信息

linux环境

交互模式(默认)

文件模式

获取帮助信息

"mat.in"文件介绍

Entropy

程序简介

本程序采用python3编写,具体用到的第三方库有numpy, scipy, pandas。如有问题,及时联系J.Pei(J<u>.Pei@foxmail.com</u>)。

本程序源代码托管在github上面,如需要查看最新版本程序,请移步至: https://github.com/13skeleto n/config-entropy

程序原理

2.2 构型熵的计算—

热力学上,熵代表了体系混乱和无序的程度,它由构型熵和运动熵(包括固体振动熵、磁熵等)构成,构型熵是由材料各组元不同组合方式引起的,所以可以通过组成或化学式计算构型熵。构型熵又称混合熵,可以表示多种原子混合后产生的多余的熵,一般记为 ΔS_{mix} ,本文只考虑了构型熵部分,所以将构型熵简单记为 S。按照玻尔兹曼方程, S 和微观组态数 W_{m} (这里指只由组元组合方式引起的部分),以及玻尔兹曼常数 k 关系如下 $^{[68]}$:

$$S = klnW_m \tag{2-1}$$

假设固溶体 AB 中 A 和 B 完全随机混合,A 和 B 原子数量分别是 N_A 和 N_B ,则固溶体微观组态数 W_m :

$$W_{\rm m} = \frac{(N_{\rm A} + N_{\rm B})!}{N_{\rm A}! N_{\rm B}!} \tag{2-2}$$

当 N 取值很大,可利用 Stirling 公式计算阶乘的对数:

$$ln(N!) = NlnN - N \tag{2-3}$$

宏观固溶体中格点数量巨大,所以满足 Stirling 公式,因此可以得到:

$$S = k[(N_A + N_B) \ln(N_A + N_B) - N_A \ln N_A - N_B \ln N_B]$$

$$= k \left(N_A \ln \frac{N_A + N_B}{N_A} + N_B \ln \frac{N_A + N_B}{N_B} \right)$$

$$= -R \frac{N_A + N_B}{N_A^0} (x_A \ln x_A + x_B \ln x_B)$$

$$= -nR(x_A \ln x_A + x_B \ln x_B)$$
(2-4)

其中 R 是摩尔气体常数 (取 8.314J•K-¹•mol-¹), 通常可以用作构型熵的单位, $k = \frac{R}{N_A^0}$; N_A^0 是阿伏伽德罗常数 (6.022*10²³ mol-¹); $n = \frac{N_A + N_B}{N_A^0}$ 是摩尔数 (单位 mol), x_A 和 x_B 分别是 A 和 B 组分含量, n = 1 时代表单位摩尔量。当组元数更多,且具有不等价位置时,构型熵的计算推导类似,最终形式为:

$$S = -R \sum_{i} n^{j} \sum_{i} x_{i}^{j} \ln x_{i}^{j}$$
 (2-5)

j代表不同位置, n^j 代表 j 位置的原子总摩尔数; x_i^j 是 j 位置上 i 原子数占的比例。在钙钛矿构型 (ABO₃) 压电陶瓷中计算构型熵时,A 位和 B 位格点,以及 O 位置不等价,所以构型熵可以写成 $^{[69]}$:

$$S = -R \left[\left(\sum_{a}^{n_a} x_a \ln x_a \right)_{A-\text{site}} + \left(\sum_{b}^{n_b} x_b \ln x_b \right)_{B-\text{site}} + 3 \left(\sum_{0}^{n_0} x_0 \ln x_0 \right)_{O-\text{site}} \right]$$
(2-6)

2.3 铅基压电陶瓷的构型熵和压电系数

表 2.1 收集了 47 个成分陶瓷的构型熵 S (由成分计算)、压电系数 d33 和居 里温度 Tc数据。由于此处统计的铅基体系,只有 B 位置的元素有区别,所以根 据式 2-6,构型熵计算式可以简化为:

$$S_{Pb} = -R\left(\sum_{b}^{n_b} x_b \ln x_b\right)_{R-site}$$
 (2-7)

表 2.1 组成在准同型相界的铅基压电陶瓷的构型熵、压电常	表 2.1	1成在准同型相界的铅基压电陶瓷的构	型熵、	压电常数与居里温度
-------------------------------	-------	-------------------	-----	-----------

序号	Materialsystem	S/R	d33(pC/N)	T _c (°C)	ref
1	0.5PYN-0.5PT	1.040	505	371	[70]
2	0.52PLN-0.48PT	1.053	350	375	[71]
3	0.7PMN-0.3PT	1.056	669	139	[9]
4	0.67PMN-0.33PT	1.061	505	165	[72]
5	0.64PMN-0.36PT	1.063	625	171	[73]
6	0.64PNN-0.36PT	1.063	410	90	[74]
7	0.3PbSnO3-0.245PZ-0.445PT	1.064	450	273	[75]
8	0.13PLuN-0.40PT-0.47PZ	1.077	239	372	[76]
9	0.63PIN-0.37PT	1.096	435	320	[77]

程序运行方式

Windows环境

● 单击"entropy.exe",即可自动运行

根据程序,回答几个问题,即可计算出构型熵

文件模式

- 右击"entropy.exe", 创建快捷方式
- 右击"entropy.exe"的快捷方式,选择属性,在目标栏最后加入-r,如下图所示。

- 准备好"mat.in"文件
- 双击"entropy.exe"快捷方式

只有首次运行需要创建快捷方式,后续运行程序直接双击快捷方式即可。

获取帮助信息

entropy.exe -h

linux环境

交互模式(默认)

entropy_linux -i

其中-i 可省略。

文件模式

- 1. 在当前文件夹下准备"mat.in"文件
- 2. 运行以下命令

entropy_linux -r

其中-r表示启用文件模式,不可省略。

获取帮助信息

entropy_linux -h

"mat.in"文件介绍

mat.in 文件如下:

Yb Nb Ti #位置1存在的化学元素 0.25 0.25 0.5 #三种元素的摩尔量

- Pb #位置2存在的化学元素
- 1 #对应元素的摩尔量
- 0 #位置3存在的化学元素
- 3 # 对应元素的摩尔量
 - 1. 行首加入"#",表示注释,信息不录入程序中
 - 2. 空行不录入程序中
 - 3. 摩尔量,元素符号之间用空格隔开