

# **Regression and Estimation**

Author: Wenxiao Yang

Institute: Haas School of Business, University of California Berkeley

**Date:** 2023

# **Contents**

| Chapte | r I Sta | tistics Basics                                                      | I  |
|--------|---------|---------------------------------------------------------------------|----|
| 1.1    | Rando   | m Sampling                                                          | 1  |
|        | 1.1.1   | Sample Mean and Sample Variance                                     | 2  |
|        | 1.1.2   | Distributional Properties                                           | 2  |
|        | 1.1.3   | Order Statistics                                                    | 2  |
| 1.2    | Statist | ics Model (ECON 240B)                                               | 4  |
|        | 1.2.1   | Model                                                               | 4  |
|        | 1.2.2   | Parametric Model                                                    | 4  |
|        | 1.2.3   | Parameter                                                           | 4  |
| 1.3    | Model   | Estimation (ECON 240B)                                              | 5  |
|        | 1.3.1   | Plug-In Estimation                                                  | 5  |
|        | 1.3.2   | Bootstrap                                                           | 7  |
| 1.4    | Point I | Estimation                                                          | 12 |
|        | 1.4.1   | Method of Moments (MM)                                              | 12 |
|        | 1.4.2   | Maximum Likelihood (ML)                                             | 14 |
| 1.5    | Compa   | aring Estimators: Mean Squared Error                                | 15 |
|        | 1.5.1   | Mean Squared Error = $Bias^2 + Variance$                            | 15 |
|        | 1.5.2   | Uniform Minimum Variance Unbiased (UMVU)                            | 16 |
| 1.6    | Suffici | ent Statistics                                                      | 16 |
|        | 1.6.1   | Sufficient Statistic: contains all information of $\theta$          | 16 |
|        | 1.6.2   | Rao-Blackwell Theorem                                               | 17 |
|        | 1.6.3   | Fisher-Neyman Factorization Theorem                                 | 17 |
|        | 1.6.4   | Minimal Sufficient Statistic                                        | 18 |
| 1.7    | Comp    | lete Statistic                                                      | 19 |
|        | 1.7.1   | Complete Statistic                                                  | 19 |
|        | 1.7.2   | Unbiased $\hat{\theta}(T)$ with sufficient and complete $T$ is UMVU | 20 |
| 1.8    | Fisher  | Information                                                         | 21 |
|        | 1.8.1   | Score Function                                                      | 21 |
|        | 1.8.2   | Fisher Information                                                  | 22 |

|    |       | 1.8.3   | Cramér-Rao Lower Bound                                                                            | 23 |
|----|-------|---------|---------------------------------------------------------------------------------------------------|----|
|    | 1.9   | Hypoth  | esis Testing                                                                                      | 24 |
|    |       | 1.9.1   | Formulation of Testing Problem                                                                    | 24 |
|    |       | 1.9.2   | Errors, Power Function, and Agenda                                                                | 25 |
|    |       | 1.9.3   | Choice of Critical Value                                                                          | 26 |
|    |       | 1.9.4   | Choice of Test Statistic: Uniformly Most Powerful (UMP) Level $\alpha$ Test $\ldots \ldots$       | 26 |
|    |       | 1.9.5   | Generalized Neyman-Pearson Lemma                                                                  | 29 |
|    | 1.10  | Trinity | of Classical Tests                                                                                | 29 |
|    |       | 1.10.1  | Test Statistics                                                                                   | 29 |
|    |       | 1.10.2  | Approximation to $T_{LR}$                                                                         | 30 |
|    | 1.11  | Interva | l Estimation                                                                                      | 31 |
| Ch | apter | 2 M-E   | Estimation                                                                                        | 32 |
|    | 2.1   | M-Esti  | mation                                                                                            | 32 |
|    |       | 2.1.1   | Extremum Estimator and M-Estimator                                                                | 32 |
|    |       | 2.1.2   | Consistency of M-estimators                                                                       | 34 |
|    |       | 2.1.3   | Asymptotic Normality of M-estimators                                                              | 34 |
|    |       | 2.1.4   | Efficiency of Asymptotically Linear Estimator                                                     | 35 |
|    |       | 2.1.5   | Misspecification and Pseudo-true Parameter                                                        | 36 |
|    | 2.2   | Binary  | Choice                                                                                            | 38 |
|    |       | 2.2.1   | Latent Utility Models (structural motivation for probit model)                                    | 38 |
|    |       | 2.2.2   | Estimation: Binary Regression                                                                     | 39 |
|    |       | 2.2.3   | Consistency and Asymptotic Normality                                                              | 40 |
|    |       | 2.2.4   | Example: Logistic Regression $F(t) = \frac{e^t}{1+e^t} \dots \dots \dots \dots \dots \dots \dots$ | 41 |
|    | 2.3   | Large S | Sample Testing                                                                                    | 41 |
|    |       | 2.3.1   | Wald Test: Distance on "x axis"                                                                   | 42 |
|    |       | 2.3.2   | Lagrange Multiplier Test: Distance using "gradient"                                               | 42 |
|    |       | 2.3.3   | Likelihood Ratio Test                                                                             | 42 |
|    |       | 2.3.4   | Wald is not invariant to parametrization                                                          | 43 |
|    | 2.4   | Nonline | ear Least Square                                                                                  | 43 |
|    |       | 2.4.1   | Efficient NLS                                                                                     | 45 |
|    | 2.5   | Quantil | le Regression                                                                                     | 46 |
|    |       | 2.5.1   | Linear Quantile Regression Model                                                                  | 46 |

|        | 2.5.2    | Quantile Causal Effects                         | 47       |
|--------|----------|-------------------------------------------------|----------|
| Chapte | r 3 Boo  | tstrap                                          | 49       |
| 3.1    | Traditi  | onal Monte-Carlo Approach                       | 49       |
| 3.2    | Bootsti  | rap (When data is not enough)                   | 50       |
| 3.3    | Residu   | al Bootstrap (for problem with not i.i.d. data) | 50       |
|        | 3.3.1    | Example: Linear                                 | 51       |
|        | 3.3.2    | Example: Nonlinear Markov Process               | 51       |
| 3.4    | Posteri  | or Simulation / Bayesian (Weighted) Bootstrap   | 52       |
|        | 3.4.1    | Dirichlet Distribution Prior                    | 52       |
|        | 3.4.2    | Haldane Prior                                   | 53       |
|        | 3.4.3    | Linear Model Case                               | 53       |
|        | 3.4.4    | Bernoulli Case                                  | 54       |
| Chanta | . 4 I in | oon Duodiatana / Daguessian                     | 55       |
| -      |          | ear Predictors / Regression                     | 55<br>55 |
| 4.1    |          | inear Predictor                                 |          |
| 4.2    |          | rgence of OLS                                   | 56       |
|        | 4.2.1    | Approximation                                   | 56       |
| 4.0    | 4.2.2    | Testing and Confidence Interval                 | 58       |
| 4.3    |          | Short, Auxilary Regression                      | 58       |
| 4.4    |          | al Regression                                   | 60       |
| 4.5    |          | Krueger Model                                   | 61       |
|        | 4.5.1    | Proxy Variable Regression                       | 62       |
| 4.6    |          | nental Variables                                | 63       |
|        | 4.6.1    | Motivation                                      | 63       |
|        | 4.6.2    | I.V. Model                                      | 63       |
|        | 4.6.3    | Weak I.V.                                       | 65       |
| 4.7    | Linear   | Generalized Method of Moments (Linear GMM)      | 66       |
|        | 4.7.1    | Generalized Method of Moments (GMM)             | 66       |
|        | 4.7.2    | Linear GMM                                      | 67       |
|        | 4.7.3    | Properties of Linear GMM Estimator              | 68       |
|        | 4.7.4    | Alternative: Continuous Updating Estimator      | 69       |
|        | 4.7.5    | Inference                                       | 69       |

|      | 4.7.6   | OVER-ID Test                                                  | 70  |
|------|---------|---------------------------------------------------------------|-----|
|      | 4.7.7   | Bootstrap GMM                                                 | 72  |
| 4.8  | Panel I | Data Models                                                   | 72  |
|      | 4.8.1   | Pooled OLS                                                    | 73  |
|      | 4.8.2   | Fixed Effect Model                                            | 74  |
|      | 4.8.3   | Random Effect Model                                           | 75  |
|      | 4.8.4   | Two-Way Fixed Effect Model                                    | 76  |
|      | 4.8.5   | Arellano Bond Approach                                        | 77  |
| 4.9  | Contro  | l Function Approach (another approach to handle endogenieity) | 78  |
| 4.10 | LATE    | (Local ATE): Application of I.V. on Potential Outcomes        | 78  |
| 4.11 | Differe | nce in Difference (DiD)                                       | 80  |
|      | 4.11.1  | After OLS Regression                                          | 81  |
|      | 1112    | Difference in Difference                                      | Q 1 |

# **Chapter 1 Statistics Basics**

**Objective:** Using x to give (data-based) answers to questions about the distribution of X, i.e.,  $P_0$ .

#### Probability vs. Statistics:

- o Probability: Distribution known, outcome unknown;
- o Statistics: Distribution unknown, outcome known.

**Setting:**  $X_1, ..., X_n$  is a random sample from a discrete/continuous distribution with pmf/pdf  $f(\cdot \mid \theta)$ , where  $\theta \in \Theta$  is unknown.

#### **Types of Statistical Inference:**

- Point estimation  $\Rightarrow$  "What is  $\theta$ ?";
- Hypothesis testing  $\Rightarrow$  "Is  $\theta = \theta_0$ ?";
- Interval estimation  $\Rightarrow$  "Which values of  $\theta$  are 'plausible'?".

#### **Example 1.1** Examples of Statistical Models

- (1).  $x_i \sim \text{i.i.d. Bernoulli}(p)$ , where p is unknown.
- (2).  $x_i \sim \text{i.i.d. } U(0, \theta)$ , where  $\theta > 0$  is unknown.
- (3).  $x_i \sim \text{i.i.d. } N(\mu, \sigma^2)$ , where  $\mu \in \mathbb{R}$  and  $\sigma^2 > 0$  are unknown.

# 1.1 Random Sampling

#### **Definition 1.1 (Random Sample)**

A **random sample** is a collection  $X_1, ..., X_n$  of random variables that are (mutually) independent and identical marginal distributions.

 $X_1,...,X_n$  are called "independent and identically distributed". The notation is  $X_i \sim i.i.d.$ 

#### **Definition 1.2 (Statistic)**

A **statistic** (singular) or sample statistic is any quantity computed from values in a sample which is considered for a statistical purpose.

If  $X_1,...,X_n$  is a random sample and  $T:\mathbb{R}^n\to\mathbb{R}^k$  (for some  $k\in\mathbb{N}$ ), then  $T(X_1,...,X_n)$  is called a **statistic**.

#### 1.1.1 Sample Mean and Sample Variance

#### **Definition 1.3 (Sample Mean and Sample Variance)**

- 1. The sample mean is  $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ ;
- 2. The sample variance is  $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2 = \frac{1}{n-1} (\sum_{i=1}^n X_i^2 n\bar{X}^2)$

\*



**Note** We use " $X_i \sim i.i.d(\mu, \sigma^2)$ " to denote a random sample from a distribution with mean  $\mu$  and variance  $\sigma^2$ .

# Theorem 1.1 ( $\mathbb{E}(\bar{X})$ , Var( $\bar{X}$ ), $\mathbb{E}(S^2)$ )

Suppose  $X_1, ..., X_n$  is a random sample from a distribution with mean  $\mu$  and variance  $\sigma^2$  (denoted by  $X_i \sim i.i.d(\mu, \sigma^2)$ ). Then,

- (a).  $\mathbb{E}(\bar{X}) = \mu$ ;
- (b).  $Var(\bar{X}) = \frac{\sigma^2}{n}$ ;
- (c).  $\mathbb{E}(S^2) = \sigma^2$ .

 $\sim$ 

# 1.1.2 Distributional Properties

#### Theorem 1.2

If  $X_i \sim i.i.d. \ N(\mu, \sigma^2)$ , then

- (a).  $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$
- (b).  $\frac{n-1}{\sigma^2}S^2 \sim \chi_{n-1}^2$
- (c).  $\bar{X} \perp S^2$

 $\sim$ 

# Theorem 1.3 ("Asymptotics")

If  $X_i \sim i.i.d.$   $(\mu, \sigma^2)$  and if n is "large", then

- (a).  $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$  (converges in distribution) by CLT 4.2;
- (b).  $S^2 = \sigma^2$  by LLN;

 $\sim$ 

#### 1.1.3 Order Statistics

#### **Definition 1.4 (Order Statistics)**

If  $X_1, ..., X_n$  is a random sample, then the **characteristics** are the sample values placed in ascending order. Notation:

$$X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}$$



# **Proposition 1.1 (Distribution of** $X_n = \max_{i=1,...,n} X_i$ )

If  $X_1,...,X_n$  is a random sample form a distribution with cdf F (denoted by " $X_i \sim i.i.d.$  F"), then

$$F_{X_{(n)}}(x) = P(X_{(n)} \le x) = F^n(x)$$

#### Proposition 1.2 (cdf and pdf)

More generally,

$$F_{X_{(r)}}(x) = \sum_{j=r}^{n} \binom{n}{j} [F_X(x)]^j [1 - F_X(x)]^{n-j}$$

$$f_{X_{(r)}}(x) = \frac{n!}{(r-1)!(n-r)!} f_X(x) [F_X(x)]^{r-1} [1 - F_X(x)]^{n-r}$$

#### Example 1.2

1. Order statistics sampled from a uniform distribution on unit interval (Unif[0, 1]): Consider a random sample  $U_1, ..., U_n$  from the standard uniform distribution. Then,

$$f_{X_{(k)}}(x) = \frac{n!}{(k-1)!(n-k)!} u^{k-1} (1-u)^{n-k}$$

The  $k^{th}$  order statistic of the uniform distribution is a beta-distributed random variable.

$$U_{(k)} \sim \text{Beta}(k, n+1-k)$$

which has mean  $\mathbb{E}[U_{(k)}] = \frac{k}{n+1}$ .

2. The joint distribution of the order statistics of the uniform distribution on unit interval (Unif[0, 1]): Similarly, for i < j, the joint probability density function of the two order statistics  $U_{(i)} < U_{(j)}$  can be shown to be

$$f_{U_{(i)},U_{(j)}}(u,v) = n! \frac{u^{i-1}}{(i-1)!} \frac{(v-u)^{j-i-1}}{(j-i-1)!} \frac{(1-v)^{n-j}}{(n-j)!}$$

The joint density of the n order statistics turns out to be constant:

$$f_{U_{(1)},U_{(2)},\ldots,U_{(n)}}(u_1,u_2,\ldots,u_n)=n!$$

For  $n \ge k > j \ge 1$ ,  $U_{(k)} - U_{(j)}$  also has a beta distribution:

$$U_{(k)} - U_{(j)} \sim \text{Beta}(k - j, n - (k - j) + 1)$$

which has mean  $\mathbb{E}[U_{(k)} - U_{(j)}] = \frac{k-j}{n+1}$ 

# 1.2 Statistics Model (ECON 240B)

#### **1.2.1 Model**

A statistical model is a family of probability distributions over the data.

In statistics, we define *data* be a vector  $x = (x_1, ..., x_n)' \in \Omega$  of numbers, where  $x_i \in \mathbb{R}^d$ . x is the realization of a random vector  $X = (X_1, ..., X_n)'$ . The X follows a distribution  $P_0$ , which is the *True Probability Generating Data (DGP)*. If  $P_0$  is i.i.d., we have  $P_0(X) = P_0(x_1)P(x_2)\cdots P_0(x_n)$ .

#### **Definition 1.5 (Model)**

A model  $P \subseteq \{\text{Probabilities over } \Omega\}$  and a i.i.d. model  $P \subseteq \{\text{Probabilities over } \mathbb{R}^d\}$ .

# \*

#### **Definition 1.6 (Well-Specified Model)**

A model is **well-specified** if  $P \ni P_0$ .

#### 1.2.2 Parametric Model

#### **Definition 1.7 (Parametric Model)**

A non-parametric model  $\bar{P} \cong \{\text{Probabilities over } \mathbb{R}^d\}.$ 

A parametric model  $P = \{P_{\theta} : \theta \in \Theta \subseteq \mathbb{R}^v\}.$ 

A semi-parametric model: not parametric / non-parametric.

# å

#### Example 1.3

- 1. Parametric model:  $P = \{\Phi(\theta, 1) : \theta \in \mathbb{R}\}$ , where  $\Phi$  is the Gaussian c.d.f.
- 2. Regression Models. Z := (Y, X). P belongs to the model iff  $\mathbb{E}_P[y^2] < \infty$  and  $\mathbb{E}_P[XX^T]$  is non-singular and finite. The model gives  $\mathbb{E}_P[Y|X] = h(X)$ .
  - (A). Semi-parametric model:  $h \in \{\text{linear functions}\}\ \text{i.e.}, h(X) = \beta^T X \text{ for some } \beta \in \mathbb{R}^d.$
  - (B). Non-parametric model:  $h \in \{f : \mathbb{E}_p[f(x)^2] < \infty\}$ .

#### 1.2.3 Parameter

**Example 1.4** Potential Outcome Model: Z := (Y, D, X), where Y is the outcome,  $D \in \{0, 1\}$  is the treatment, and X is the covariates.

- $\circ$  P belongs to the model iff  $(y_{(0)}, y_{(1)})$  represents the potential outcome given different treatment  $D \in \{0, 1\}, y = Dy_{(1)} + (1 D)y_{(0)}$ , and
- $\circ$  we study e(x) := P(D = 1|x).

 $\circ$  Average Treatment Effect (ATE) is given by  $ATE_{P_0} := \mathbb{E}_{P_0}[y_{(1)} - y_{(0)}]$ , where  $P_0$  is the DGP. It is impossible to estimate the ATE even if we have enough data, since  $y_{(1)}$  and  $y_{(0)}$  can't be observed at the same time. We need to link it to something we can estimate.

#### **Definition 1.8 (Parameter)**

A parameter is a "feature" of  $P_0$ :  $v(P), P \in \mathcal{P}$ . Specifically,  $v(P_0)$  is the true parameter of the DGP.



#### Example 1.5

- 1. <u>Linear Regression Model</u>:  $\mathbb{E}_{P_0}[Y|X] = \beta_0^T X$ . We solve  $\beta$  by  $\min_{\beta} \mathbb{E}_{P_0}[(y - \beta^T x)^2]$ . The F.O.C. gives  $\mathbb{E}_{P_0}[YX^T] = \beta^T \mathbb{E}_{P_0}[XX^T]$ .  $\beta_0$  solves this.
- 2. <u>Linear Instrumental Variable Model</u>:  $\mathbb{E}_P[(Y \beta_0^T X)|W] = 0$ , where W is the instrumental variable. Look at  $\mathbb{E}_{P_0}[(Y - \beta^T X)W] = 0$ . Consider an estimator  $\hat{\beta}$ ,

$$0 = \mathbb{E}_{P_0}[(Y - \beta^T X)W]$$
$$= \mathbb{E}_{P_0}[(\hat{\beta} - \beta_0)^T XW]$$
$$= \underbrace{(\hat{\beta} - \beta_0)^T}_{1 \times m} \underbrace{\mathbb{E}_{P_0}[XW]}_{m \times k}$$

which holds iff  $\hat{\beta} = \beta_0$  given  $\mathbb{E}_{P_0}[XW]$  has full rank.

3. <u>Identification of the ATE in the Potential Outcomes Model</u>: To identify the ATE, we give two assumptions:

$$ATE := \mathbb{E}[Y(1) - Y(0)]$$

To identify the ATE, we give two assumptions:

- (a). A1 (Overlap):  $e(X) := P(D = 1|X) \in (0,1)$
- (b). A2 (Unconfoundednes):  $(Y(0), Y(1)) \perp D|X$ , i.e., (Y(0), Y(1)) are independent of D given X.

ATE = 
$$\mathbb{E}[y(1) - y(0)] = \mathbb{E}[\mathbb{E}[y(1)|X] - \mathbb{E}[y(0)|X]]$$
.  $\mathbb{E}[y|D = 1, X] = \mathbb{E}[y(1)|D = 1, X]$ . Given Assumption A1:  $y(1) \perp D|X$ ,  $\mathbb{E}[y|D = 1, X] = \mathbb{E}[y(1)|D = 1, X] = \mathbb{E}[y(1)|X]$ .

4. <u>Inference</u>: For a parameter  $\theta(P_0)$ , we have an estimate  $\hat{\theta}_m$  (with sample size m), which has C.D.F.  $v(P_0)$ . For all  $t \in \mathbb{R}$ , the C.D.F. is given by

$$v(P_0)(t) = \Pr_{P_0}(\hat{\theta}_m - \theta(P_0) \le t)$$

# **1.3 Model Estimation (ECON 240B)**

#### 1.3.1 Plug-In Estimation

For a model P, we have "identification"  $v(P_0) := \theta_0$ . How to estimate unknown  $P_0$ ?

#### **Definition 1.9 (Empirical Probability/CDF)**

Empirical probability/CDF:

$$P_m(A) = \frac{1}{m} \sum_{i=1}^{m} \mathbf{1} \{ Z_i \in A \}$$

By the LLN,  $P_m(A) \xrightarrow{P_0} P_0(A)$ .

#### \*

#### **Definition 1.10 (Plug-in estimator)**

A Plug-in estimator is an estimator based on the empirical CDF, which is given by

$$\hat{\theta}_m = v(P_m)$$

Note: The domain of v is  $\mathcal{P}$ . Is  $v(P_m)$  well-defined? It might be  $P_m \notin \mathcal{P}$ .

# 4

#### Example 1.6

- 1.  $\mathcal{P} = \{\text{all pdf with finite first moments}\}.$   $v(P_0) = \mathbb{E}_{P_0}[Z], v(P_m) = \frac{1}{m} \sum_{i=1}^m Z_i.$
- 2.  $\mathcal{P}$  is the set of linear regression models.  $v(P_0) = \operatorname{argmin}_b \mathbb{E}_{P_0}[(Y b^T X)^2] = \mathbb{E}_{P_0}[XX^T]^{-1}\mathbb{E}_{P_0}[XY]$ ,

$$v(P_m) = \mathbb{E}_{P_m}[(Y - b^T X)^2] = \underset{b}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^m (Y_i - b^T X_i)^2 = \left(\frac{1}{m} \sum_{i=1}^m X_i X_i^T\right)^{-1} \left(\frac{1}{m} \sum_{i=1}^m X_i Y_i\right)^2$$

where  $v(P_m)$  is OLS.

3. **GMM**.  $\forall P \in \mathcal{P} : \mathbb{E}_P[g(Z, v(p))] = 0$ , where g is a known moment function.

$$v(P_0) = \operatorname*{argmin}_{\boldsymbol{\mu}} \mathbb{E}_{P_0}[g(Z, \theta)]^T W \mathbb{E}_{P_0}[g(Z, \theta)]$$

where W is a weighted matrix.

$$v(P_m) = \underset{\theta}{\operatorname{argmin}} \left( \frac{1}{m} \sum_{i=1}^m g(Z_i, \theta) \right)^T W \left( \frac{1}{m} \sum_{i=1}^m g(Z_i, \theta) \right)$$

The  $v(P_m)$  is the **Gaussian Estimator**.

4. (When it doesn't work.) For the linear regression case,  $v(P_m) = \underbrace{\left(\frac{1}{m}\sum_{i=1}^m X_iX_i^T\right)^{-1}}_{\text{well-defined?}} \left(\frac{1}{m}\sum_{i=1}^m X_iY_i\right).$ 

If the # of Covariates > m, the estimator is not well-defined.

5. (When it doesn't work.)  $\mathcal{P}$  is the potential outcome model. ATE  $=v(P_0)=\mathbb{E}_{P_0}[\mu_1(x)-\mu_0(x)]$  where  $\mu_d(x):=\mathbb{E}_{P_0}[y|D=d,x], d=0,1.$ 

$$v(P_m) = \frac{1}{m} \sum_{i=1}^{m} \left( \underbrace{\mathbb{E}_{P_m}[y|D=1, X_i]}_{\text{well-defined?}} - \mathbb{E}_{P_m}[y|D=0, X_i] \right)$$

 $\mathbb{E}_{P_m}[y|D=d,x]$  is "too complex" to define, (consider the example that x is continuous).

#### What is the solution when the Plug-in estimation doesn't work?

- 1. Propose a functional form restriction  $\mu_d$ .
- 2. "Regularization": Kernel estimators and series estimators.

#### 1.3.2 Bootstrap

Let  $v(P_0)$  be the CDF of  $\theta(P_m) - \theta(P_0)$ , where  $C(P_m, P_0) := \theta(P_m) - \theta(P_0)$ .

$$v(P_0)(t) = \Pr_{P_0} \left( C(P_m, P_0) \le t \right), \forall t$$

Here, the data  $\{Z_i\}_i$  is generated from  $P_0$ , which forms  $P_m$ .

**Remark** Sometimes, instead of  $C(P_m, P_0)$ , we may study

$$v_A(P_0)(t) = \Pr_{P_0} (T(P_m, P_0) \le t), \forall t$$

where  $T(P_m, P_0) := \frac{C(P_m, P_0)}{\sqrt{\operatorname{Var}_{P_0}(\theta(P_m))}}$ 

#### **Definition 1.11 (Bootstrap Estimator)**

The Plug-in estimator  $v(P_m)$  is a.k.a. the **Bootstrap estimator**. Now, we generate new data i.i.d. from  $P_m$ ,  $\{Z_i^*\}_i \overset{i.i.d.}{\sim} P_m$ , which forms  $P_m^*$ .

$$v(P_m)(t) := \Pr_{P_m} \left( \theta(P_m^*) - \theta(P_m) \le t \right)$$

2

#### Computation of $v(P_m)$

- (1). Draw  $\{Z_i^*\}_i$  from  $P_m$  and forms  $P_m^*$ .
- (2). Based on the new  $P_m^*$ , compute  $C^{(b)}(P_m^*, P_m) = \theta(P_m^*) \theta(P_m)$ .
- (3). Repeat (1) and (2):

$$\frac{1}{B} \sum_{h=1}^{B} \mathbf{1} \{ C^{(b)}(P_m^*, P_m) \le t \} \stackrel{B \to \infty}{\longrightarrow} v(P_m)(t)$$

**Example 1.7 (Sample Mean)** Consider  $\theta(P_0) = \mathbb{E}_{P_0}(Z)$ , then  $\theta(P_m) = \bar{Z}_m = \frac{1}{m} \sum_{i=1}^m Z_i$ .  $v(P_0)(t) = \Pr_{P_0}\left(\frac{1}{m}\sum_{i=1}^m (Z_i - \mathbb{E}_{P_0}(Z)) \le t\right)$ . The Bootstrap estimator is given by

$$v(P_m)(t) = \Pr_{P_m} \left( \frac{1}{m} \sum_{i=1}^m (Z_i^* - \bar{Z}_m) \le t \right)$$

or

$$v_A(P_m)(t) = \Pr_{P_m} \left( \sqrt{m} \frac{\frac{1}{m} \sum_{i=1}^m (Z_i^* - \bar{Z}_m)}{\sqrt{\operatorname{Var}_{P_m}(\theta(P_m^*))}} \le t \right)$$

where  $Z_i^* \sim_{i.i.d.} P_m, Z_i^* \in \{Z_1, ..., Z_m\}, \forall i \in \{1, ..., m\}$ . For the  $v_A(P_0)$ ,  $Var_{P_0}(\theta(P_m)) = \frac{1}{m} \sigma_{P_0}^2(Z)$  and  $Var_{P_m}(\theta(P_m^*)) = \frac{1}{m} \sigma_{P_m}^2(Z) = \frac{1}{m} S_Z^2$ , where  $S_Z^2$  is the sample variance of Z.

It is equivalent to give a weight to each  $Z_i$ ,  $\sum_{i=1}^m Z_i^* = \sum_{i=1}^m W_{i,m} Z_i$ , where

$$(W_{1,m},...,W_{m,m}) \sim \text{Multinomial}\left(\frac{1}{m},....,\frac{1}{m},m\right), \ W_{i,m} \in \{0,1,...,m\}$$

Based on this, the Bootstrap estimator can be rewritten as

$$v(P_m)(t) = \Pr\left(\frac{1}{m} \sum_{i=1}^{m} (W_{i,m} - 1)Z_i \le t\right)$$

(Other Bootstrap procedure,  $W_{i,m}$  is not restricted to be multinomial,  $\mathbb{E}[W_{i,m}] = 1$ .)

#### **Consistency**

#### **Definition 1.12 (Consistency of Estimator)**

The estimator  $v(P_m)(t)$  is **consistent** if

$$\sup_{t} |v(P_m)(t) - v(P_0)(t)| = \underbrace{o_{P_0}(1)}_{\text{Goes to zero in probability}}$$
(\*)

# **Bootstrap Confidence Intervals**

#### **Definition 1.13** ( $\tau$ -th quantile)

Let  $q_{\tau}(v(P))$  be the  $\tau$ -th quantile of v(P):

$$q_{\tau}(v(P)) = v(P)^{-1}(\tau), \ \tau \in (0,1)$$

"Ideal" Confidence Interval: Suppose you know  $v(P_0)$ , the ideal interval is

$$CI_{\alpha}^{0} := \left[\theta(P_{m}) - q_{1-\frac{\alpha}{2}}(v(P_{0})), \theta(P_{m}) - q_{\frac{\alpha}{2}}(v(P_{0}))\right]$$

The confidence interval of the Bootstrap estimator is given by

$$CI_{\alpha}^{\text{Bootstrap}} := \left[ \theta(P_m) - q_{1-\frac{\alpha}{2}}(v(P_m)), \theta(P_m) - q_{\frac{\alpha}{2}}(v(P_m)) \right]$$

#### **Theorem 1.4**

Assuming the consistency of the Bootstrap estimator, the confidence interval of it satisfies

$$\Pr_{P_0}\left(CI_{\alpha}^{Bootstrap} \ni \theta(P_0)\right) \ge 1 - \alpha + o_{P_0}(1)$$

#### Proof 1.1

By (\*), we have

$$q_{\tau}(v(P_m)) = q_{\tau}(v(P_0)) + o_{P_0}(1)$$

Then,

$$\begin{split} \Pr_{P_0}\left(CI_{\alpha}^{\textit{Bootstrap}} \ni \theta(P_0)\right) &= \Pr_{P_0}\left[\theta(P_m) - q_{1-\frac{\alpha}{2}}(v(P_m)) \le \theta(P_0) \le \theta(P_m) - q_{\frac{\alpha}{2}}(v(P_m))\right] \\ &= \Pr_{P_0}\left[q_{1-\frac{\alpha}{2}}(v(P_m)) \ge C(P_m, P_0) \ge q_{\frac{\alpha}{2}}(v(P_m))\right] \\ &= v(P_0)\left(q_{1-\frac{\alpha}{2}}(v(P_m))\right) - v(P_0)\left(q_{\frac{\alpha}{2}}(v(P_m))\right) \\ &= v(P_0)\left(q_{1-\frac{\alpha}{2}}(v(P_0))\right) - v(P_0)\left(q_{\frac{\alpha}{2}}(v(P_0))\right) + o_{P_0}(1) \\ &= 1 - \alpha + o_{P_0}(1) \end{split}$$

The second last equality holds by (\*) and continuity of the c.d.f.  $v(P_0)$  (assumed).

#### Remark

- (1). Choice of quantiles:
  - (a). If you impose symmetry at 0:  $-q_{1-\frac{\alpha}{2}}(v(P)) = q_{\frac{\alpha}{2}}(v(P))$ .
- (2). P-values: the same idea of using confidence intervals. By the consistency and the continuity of the c.d.f. v(P), the p-value converges to the true p-value.
- (3). "Bootstrap" standard errors can't be used.

#### **Definition 1.14 (Bootstrap standard error)**

The object of interest is  $\sqrt{\text{Var}_{P_0}(\theta(P_m))}$ . The bootstrap standard error is given by

$$BSE(P_m) = \sqrt{Var_{P_m}(\theta(P_m^*))}$$

Application:

1. For  $b \in \{1, ..., B\}$ 

For  $b \in \{1, ..., B\}$ , generate  $Z_1^*, ..., Z_m^*$  from  $P_m$  and forms  $P_m^*$ .

Compute  $\theta_b(P_m^*)$ 

2. BSE
$$(P_m) \approx \sqrt{\frac{1}{B} \sum_{b=1}^{B} \left(\theta_b(P_m^*) - \frac{1}{B} \sum_{i=1}^{B} \theta_i(P_m)\right)^2}$$
.

e.g. the bootstrap standard error for  $\theta(P) = \mathbb{E}_P[Z]$  is

$$BSE(P_m) = \sqrt{Var_{P_m}(\bar{Z}_m^*)} = \sqrt{\mathbb{E}_{P_m}\left[(\bar{Z}_m^* - \mathbb{E}_{P_m}[\bar{Z}_m^*])^2\right]}$$

As  $\mathbb{E}_{P_m}[\bar{Z}_m^*] = \mathbb{E}_{P_m}[Z^*] = \bar{Z}_m$ , we have

$$BSE(P_m) = \sqrt{\mathbb{E}_{P_m} \left[ \left( \frac{1}{m} \sum_{i=1}^m (Z_i^* - \bar{Z}_m) \right)^2 \right]}$$

$$= \sqrt{\frac{1}{m}} \mathbb{E}_{P_m} \left[ (Z^* - \bar{Z})^2 \right]$$

$$= m^{-\frac{1}{2}} \sqrt{m^{-1} \sum_{i=1}^m (Z_i - \bar{Z}_m)^2}$$

$$= m^{-\frac{1}{2}} S_Z$$

#### **Inconsistency**

We use bootstrap to approximate  $v(P_m)$ . It works to approximate  $v(P_0)$  iff

$$v(P_m) \xrightarrow{P_0} v(P_0)$$

which may don't work if

- 1.  $P_m \xrightarrow{P_0} P_0$  doesn't hold.
- 2. v is not continuous at  $P_0$ .

**Example 1.8** Parameter at the Boundary (Andrew, 2000, ECTA)

Suppose the parameter of the interest is  $\theta(P_0) := \mathbb{E}_{P_0}[Z]$ , and we know  $\mathbb{E}_{P_0}[Z] \ge 0$ .

Z is i.i.d.; The set of models is  $\mathcal{P} = \{\mathcal{N}(\theta, 1) : \theta \geq 0\}$ . The plug-in estimator is given by  $\theta(P_m) := \max\{\bar{Z}_m, 0\}$ .

$$v(P_0)(t) := \Pr_{P_0} \left( \sqrt{m} \left( \max\{\bar{Z}_m, 0\} - \mathbb{E}_{P_0}[Z] \right) \le t \right)$$

$$= \Pr_{P_0} \left( \max\{\sqrt{m} (\bar{Z} - \mathbb{E}_{P_0}[Z]), -\sqrt{m} \mathbb{E}_{P_0}[Z] \right) \le t \right)$$

$$= \Pr_{P_0} \left( \max\{\mathcal{Z}, -\sqrt{m} \mathbb{E}_{P_0}[Z] \right) \le t \right)$$

where  $\mathcal{Z} \sim \mathcal{N}(0, 1)$ .

(a). If 
$$\mathbb{E}_{P_0}[Z] = 0$$
,  $v(P_0)(t) = \Pr_{P_0}(\max\{Z, 0\} \le t)$ 

(b). If 
$$\mathbb{E}_{P_0}[Z] > 0$$
,  $v(P_0)(t) \stackrel{m \to \infty}{\longrightarrow} \Pr_{P_0}(Z \le t)$ 

Consider  $P_0 = \mathcal{N}\left(\frac{c}{\sqrt{m}},1\right)$ , where c>0. We have  $\mathcal{N}\left(\frac{c}{\sqrt{m}},1\right) \to \mathcal{N}\left(0,1\right)$ . However,  $v(P_0)(t) = \Pr_{P_0}\left(\max\{\mathcal{Z},-c\} \leq t\right) \neq \Pr_{P_0}\left(\max\{\mathcal{Z},0\} \leq t\right)$ .

The bootstrap estimator is given by

$$v(P_m)(t) = \Pr_{P_m} \left( \sqrt{m} \left( \max\{\frac{1}{m} \sum_{i=1}^m Z_i^*, 0\} - \max\{\bar{Z}_m, 0\} \right) \le t \right)$$

Consider the path of  $(Z_i)_{i=1}^{\infty}$  such that  $\sqrt{m}\bar{Z}_m \leq -c, c > 0$ .  $\frac{1}{m}\sum_{i=1}^{m} \left(Z_i - \bar{Z}_m\right)^2 = 1$ .

To prove the inconsistency, we want to show

$$v(P_m)(t) \ge \Pr\left(\max\{\mathcal{Z} - c, 0\} \le t\right) > v(P_0)(t)$$

We have

$$v(P_m)(t) = \Pr_{P_m} \left( \max\{\underbrace{\frac{1}{\sqrt{m}} \sum_{i=1}^{m} (Z_i^* - \bar{Z}_m)}_{(A)} + \underbrace{\sqrt{m} \bar{Z}_m}_{(B)}, 0\} - \underbrace{\max\{\sqrt{m} \bar{Z}_m, 0\}}_{(C)} \le t \right)$$

Since

(A). 
$$\frac{1}{\sqrt{m}}\sum_{i=1}^m (Z_i^* - \bar{Z}_m) \to \mathcal{N}(0,1)$$
 given the data  $(Z_i)_{i=1}^\infty$ .

(B). 
$$\sqrt{m}\bar{Z}_m \leq -c$$
 based on the assumption.

(C). 
$$\max\{\sqrt{m}\bar{Z}_m, 0\} \ge 0$$
.

Hence, 
$$v(P_m)(t) \ge \Pr\left(\max\{\mathcal{Z} - c, 0\} \le t\right) > v(P_0)(t)$$
.

#### Sub-Sampling / k-out-of m Bootstrap

Idea: We sample k (not m) observations.

- without replacement: Sub-Sampling

- with replacement: k-out-of-m Bootstrap

The bootstrap estimator is given by

$$v_k(P_m)(t) = \Pr_{P_m} \left( \sqrt{k} \left( \theta(P_k^*) - \theta(P_m) \right) \le t \right)$$

where  $P_k^*$  is the empirical probability using  $Z_1^*, \dots, Z_k^*$ .

Suppose  $P_0$  is know, the difference between the estimator and the true value is

$$\sup_{t} |v_k(P_m)(t) - v(P_0)(t)| \leq \underbrace{\sup_{t} |v_k(P_m)(t) - v_k(P_0)(t)|}_{\text{"Sampling Error"}} + \underbrace{\sup_{t} |v_k(P_0)(t) - v(P_0)(t)|}_{\text{"Bias"}}$$

"Sampling Error" is small when k is small  $(k \ll m)$ , while "Bias" is small when k is large  $(k \approx m)$ .

For a k(m) such that  $k(m) \to \infty$  as  $m \to \infty$ , but  $\frac{k(m)}{m} \to 0$ . Intuition: consider the previous example 1.8

$$\begin{aligned} v_k(P_m)(t) &= \Pr_{P_m} \left( \sqrt{k} \left( \max\{\frac{1}{k} \sum_{i=1}^k Z_i^*, 0\} - \max\{\bar{Z}_m, 0\} \right) \leq t \right) \\ &= \Pr_{P_m} \left( \max\{\underbrace{\frac{1}{\sqrt{k}} \sum_{i=1}^k (Z_i^* - \bar{Z}_m) + \underbrace{\sqrt{k}\bar{Z}_m}_{P \text{0 since } k < m}, 0\} - \underbrace{\max\{\sqrt{m}\bar{Z}_m, 0\}}_{P \text{0 since } k < m} \leq t \right) \end{aligned}$$

#### Theorem 1.5

The c.d.f.  $v(P_0)(t) = \Pr_{P_0}(C(P_m, P_0) \le t)$  converges to  $F(P_0)(t)$  if  $F(P_0)$  is continuous. Then, the sub-sampling estimator is consistent.

#### 1.4 Point Estimation

Suppose  $X_1, ..., X_n$  is a random sample from a discrete/continuous distribution with pmf/pdf  $f(\cdot \mid \theta)$ , where  $\theta \in \Theta$  is unknown.

#### **Definition 1.15 (Point Estimator)**

A **point estimator** (of  $\theta$ ) is a function of  $(X_1, ..., X_n)$ .

Notation:  $\hat{\theta} = \hat{\theta}(X_1, ..., X_n)$ .

#### Agenda

- (1). Constructing point estimators
  - Method of moments;
  - o Maximum likelihood.
- (2). Comparing estimators
  - o Pairwise comparisons;
  - o Finding 'optimal' estimators.

#### 1.4.1 Method of Moments (MM)

#### **Definition 1.16** (Method of Moments in $\mathbb{R}^1$ )

Suppose  $\Theta \subseteq \mathbb{R}^1$ . A **method of moments** estimator  $\hat{\theta}_{MM}$  solves

$$\mu(\hat{\theta}_{MM}) = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

where  $\mu:\Theta\to\mathbb{R}$  is given by

$$\mu(\theta) = \begin{cases} \sum_{x \in \mathbb{R}} x f(x \mid \theta), & \text{if } X_i \text{ are discrete} \\ \int_{-\infty}^{\infty} x f(x \mid \theta) dx, & \text{if } X_i \text{ are continuous} \end{cases}$$

**Remark** Existence of  $\mu(\cdot)$  is assumed; Existence (and uniqueness) of  $\hat{\theta}_{MM}$  is assumed.

#### Example 1.9

1. Suppose  $X_i \sim \text{i.i.d. Ber}(p)$  where  $p \in [0,1]$  is unknown. The moment function is

$$\mu(p) = p$$

Then, the estimator is

$$\hat{p}_{MM} = \mu(\hat{p}_{MM}) = \bar{X}$$

**Remark**  $\hat{p}_{MM} = \bar{X}$  is the 'best' estimator of p.

2. Suppose  $X_i \sim \text{i.i.d.} U(0, \theta)$  where  $\theta > 0$  is unknown.

**Remark** Non-regular statistical model: parameter dependent support, where supp $X = [0, \theta]$ .

The moment function is

$$\mu(\theta) = \frac{\theta}{2}$$

Then, the estimator is

$$\hat{\theta}_{MM} = 2\mu(\hat{\theta}_{MM}) = 2\bar{X}$$

Remark  $\hat{\theta}_{MM}$  is not a very good estimator of  $\theta$ . Concern  $X_i > \hat{\theta}_{MM}$  could happen. So,  $\max\{\hat{\theta}_{MM}, X_{(n)}\}$  can be better.

#### **Definition 1.17 (Method of Moments in** $\mathbb{R}^k$ )

Suppose  $\Theta \subseteq \mathbb{R}^k$ . A **method of moments** estimator  $\hat{\theta}_{MM}$  solves

$$\mu'_j(\hat{\theta}_{MM}) = \frac{1}{n} \sum_{i=1}^n X_i^j, \quad (j = 1, ..., k)$$

where  $\mu_j':\Theta\to\mathbb{R}$  is given by

$$\mu_j'(\theta) = \begin{cases} \sum_{x \in \mathbb{R}} x^j f(x \mid \theta), & \text{if } X_i \text{ are discrete} \\ \int_{-\infty}^{\infty} x^j f(x \mid \theta) dx, & \text{if } X_i \text{ are continuous} \end{cases}$$

#### Example 1.10

Suppose  $X_i \sim \text{i.i.d.} N(\mu, \sigma^2)$  where  $\mu \in \mathbb{R}$  and  $\sigma^2 > 0$  are unknown. The <u>moment function</u> is

$$\mu'_1(\mu, \sigma^2) = \mu$$

$$\mu'_2(\mu, \sigma^2) = \mu^2 + \sigma^2$$

Then, the estimator is

$$\mu'_{1}(\hat{\mu}_{MM}, \hat{\sigma}_{MM}^{2}) = \hat{\mu}_{MM} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$\mu'_{2}(\hat{\mu}_{MM}, \hat{\sigma}_{MM}^{2}) = \hat{\mu}_{MM} + \hat{\sigma}_{MM}^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}$$

$$\Rightarrow \hat{\mu}_{MM} = \bar{X}$$

$$\hat{\sigma}_{MM}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

**Remark**  $\bar{X}$  is the 'best' estimator of  $\mu$ ; An alternative better estimator of  $\sigma^2$  is  $\frac{1}{n-1}\sum_{i=1}^n(X_i-\bar{X})^2$ .

#### 1.4.2 Maximum Likelihood (ML)

#### **Definition 1.18 (Maximum Likelihood)**

A maximum likelihood estimator  $\hat{\theta}_{ML}$  solves

$$L(\hat{\theta}_{ML} \mid X_1, ..., X_n) = \max_{\theta \in \Theta} L(\theta \mid X_1, ..., X_n)$$

where  $L(\cdot \mid X_1,...,X_n):\Theta \to \mathbb{R}_+$  is given by

$$L(\theta \mid X_1, ..., X_n) = \prod_{i=1}^{n} f_{X_i}(X_i \mid \theta), \ \theta \in \Theta$$

**Remark**  $L(\cdot \mid X_1,...,X_n)$  is called the <u>likelihood</u> function.

#### **Definition 1.19 (Log-Likelihood)**

The log-likelihood function is

$$l(\theta \mid X_1, ..., X_n) = \log L(\theta \mid X_1, ..., X_n) = \sum_{i=1}^n \log f_{X_i}(X_i \mid \theta), \ \theta \in \Theta$$

#### Example 1.11

1. Suppose  $X_i \sim \text{i.i.d. Ber}(p)$  where  $p \in [0, 1]$  is unknown. The marginal pmf is

$$f(x \mid p) = \begin{cases} p, & x = 1 \\ 1 - p, & x = 0 \\ 0, & \text{otherwise} \end{cases}$$

Then, the <u>likelihood function</u> is

$$L(p \mid X_1, ..., X_n) = \prod_{i=1}^n \left\{ p^{X_i} (1-p)^{1-X_i} \underbrace{\mathbf{1}_{\{X_i \in \{0,1\}\}}}_{=1} \right\}$$
$$= p^{\sum_{i=1}^n X_i} (1-p)^{n-\sum_{i=1}^n X_i}, \ p \in [0,1]$$

and the log-likelihood function is

$$l(p \mid X_1, ..., X_n) = (\sum_{i=1}^n X_i) \log p + (n - \sum_{i=1}^n X_i) \log(1 - p), \ p \in (0, 1)$$

**Maximization:** 

(a). Suppose  $0 < \sum_{i=1}^{n} X_i < n$ , we can give the first-order condition:

$$\frac{\partial l(p \mid X_1, ..., X_n)}{\partial p} \Big|_{p = \hat{p}_{ML}} = \frac{\sum_{i=1}^n X_i}{\hat{p}_{ML}} - \frac{n - \sum_{i=1}^n X_i}{n - \hat{p}_{ML}} = 0$$

$$\Rightarrow \hat{p}_{ML} = \frac{\sum_{i=1}^n X_i}{n} = \bar{X}$$

(b). Suppose  $\sum_{i=1}^{n} X_i = 0$ , then

$$l(p \mid X_1, ..., X_n) = n \log(1 - p), \ p \in [0, 1) \Rightarrow \hat{p}_{ML} = 0$$

(c). Suppose  $\sum_{i=1}^{n} X_i = n$ , then

$$l(p \mid X_1, ..., X_n) = n \log p, \ p \in (0, 1] \Rightarrow \hat{p}_{ML} = 1$$

All in all,

$$\hat{p}_{ML} = \bar{X}$$

**Remark**  $\hat{p}_{ML} = \bar{X} = \hat{p}_{MM}$  is the 'best' estimator of p.

2. Suppose  $X_i \sim \text{i.i.d.}\ U[0,\theta]$  where  $\theta > 0$  is unknown. The marginal pdf is

$$f(x \mid \theta) = \begin{cases} \frac{1}{\theta}, & x \in [0, \theta] \\ 0, & \text{otherwise} \end{cases} = \frac{1}{\theta} \mathbf{1}_{\{x \in [0, \theta]\}}$$

and the likelihood function is

$$L(\theta \mid X_1, ..., X_n) = \prod_{i=1}^n \left\{ \frac{1}{\theta} \mathbf{1}_{\{x \in [0,\theta]\}} \right\} = \begin{cases} \frac{1}{\theta^n}, & \theta \ge X_{(n)} \\ 0, & \text{otherwise} \end{cases}$$

$$\Rightarrow \hat{\theta}_{ML} = X_{(n)}$$

Remark  $\hat{\theta}_{ML} = X_{(n)} \neq 2\bar{X} = \hat{\theta}_{MM}; \hat{\theta}_{ML} < X_i \text{ can't occur, which is good news; } \hat{\theta}_{ML} \leq \theta \text{ (low) must occur, which is bad news.}$ 

3. Suppose  $X_i \sim \text{i.i.d.} N(\mu, \sigma^2)$  where  $\mu \in \mathbb{R}$  and  $\sigma^2 > 0$  are unknown. Then,

$$\hat{\mu}_{ML} = \hat{\mu}_{MM} = \bar{X}, \ \hat{\sigma}_{ML}^2 = \hat{\sigma}_{MM}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$

# 1.5 Comparing Estimators: Mean Squared Error

# **1.5.1 Mean Squared Error = Bias<sup>2</sup> + Variance**

#### **General Approach**

o Statistical Decision Theory

Leading Special Case: Mean Squared Error.

#### **Definition 1.20 (Mean Squared Error)**

The **mean squared error** (MSE) of one estimator  $\hat{\theta}$  of  $\theta$  is defined as

$$MSE_{\theta}(\hat{\theta}) = \mathbb{E}_{\theta}[(\hat{\theta} - \theta)^2], \ \theta \in \Theta \subseteq \mathbb{R}$$

\*

#### **Definition 1.21 (Bias)**

The **bias** of  $\hat{\theta}$  is (the function of  $\theta$ ) given by

$$\operatorname{Bias}_{\theta}(\hat{\theta}) = \mathbb{E}_{\theta}(\hat{\theta}) - \theta, \ \theta \in \Theta$$

 $\hat{\theta}$  is **unbiased** iff  $\operatorname{Bias}_{\theta}(\hat{\theta}) = 0 \ (\forall \theta \in \Theta)$ 

#### **Decomposition:**

$$MSE_{\theta}(\hat{\theta}) = Bias_{\theta}(\hat{\theta})^2 + Var_{\theta}(\hat{\theta})$$

which is given by  $\mathbb{E}[X^2] = \mathbb{E}[X]^2 + \text{Var}(X)$ . Hence, if  $\hat{\theta}$  is unbiased (Bias $_{\theta}(\hat{\theta}) = 0$ ),  $\text{MSE}_{\theta}(\hat{\theta}) = \text{Var}_{\theta}(\hat{\theta})$ .

#### 1.5.2 Uniform Minimum Variance Unbiased (UMVU)

#### **Definition 1.22 (Uniform Minimum Variance Unbiased (UMVU))**

An unbiased estimator  $\hat{\theta}$  is a **uniform minimum variance unbiased (UMVU)** estimator (of  $\theta$ ) iff

$$MSE_{\theta}(\hat{\theta}) = Var_{\theta}(\hat{\theta}) \le Var_{\theta}(\tilde{\theta}) = MSE_{\theta}(\tilde{\theta})$$

whenever  $\tilde{\theta}$  is an unbiased estimator of  $\theta$ .

Remark UMVU estimators often exist; UMVU estimators are based on sufficient statistics.

#### 1.6 Sufficient Statistics

#### 1.6.1 Sufficient Statistic: contains all information of $\theta$

#### **Definition 1.23 (Sufficient Statistic)**

A statistic  $T=T(X_1,...,X_n)$  is **sufficient** iff the conditional distribution of  $(X_1,...,X_n)$  given T,  $(X_1,...,X_n)|T$ , doesn't depend on  $\theta$ .

$$f_X(x \mid T(X_1, ..., X_n) = t; \theta) = f_X(x \mid T(X_1, ..., X_n) = t), \ \forall x$$

That is, the mutual information between  $\theta$  and  $T(X_1,...,X_n)$  equals the mutual information between  $\theta$  and  $\{X_1,...,X_n\}$ ,

$$\mathcal{I}(\theta; T(X_1, ..., X_n)) = \mathcal{I}(\theta; \{X_1, ..., X_n\})$$

#### 1.6.2 Rao-Blackwell Theorem

#### Theorem 1.6 (Rao-Blackwell Theorem)

Suppose  $\tilde{\theta}$  is an unbiased estimator of  $\theta$  and suppose T is sufficient (for  $\theta$ ). Then,

- (a).  $\hat{\theta} = \mathbb{E}[\tilde{\theta}|T]$  is an unbiased estimator of  $\theta$ .
- (b).  $\operatorname{Var}_{\theta}(\hat{\theta}) \leq \operatorname{Var}_{\theta}(\tilde{\theta}), \forall \theta \in \Theta.$

#### $\Diamond$

#### Proof 1.2

(a). Estimator:  $\hat{\theta} = \mathbb{E}[\tilde{\theta} \mid T]$  doesn't depend on  $\theta$  because T is sufficient. By the Law of Iterative Expectation, we have

$$\mathbb{E}_{\theta}(\hat{\theta}) = \mathbb{E}_{\theta}[\mathbb{E}[\tilde{\theta} \mid T]] = \mathbb{E}_{\theta}[\tilde{\theta}] = \theta$$

(b). Variance Reduction: By the Law of Total Variance

$$Var(\hat{\theta}) = Var_{\theta}[\mathbb{E}[\tilde{\theta} \mid T]] \leq Var_{\theta}(\tilde{\theta}), \ \forall \theta \in \Theta$$

with strict inequality unless  $Var(\hat{\theta}|T) = 0$  (which also makes  $\hat{\theta} = \tilde{\theta}$ ).

 $\hat{\theta} = \mathbb{E}[\tilde{\theta}|T]$  is based on more information than  $\tilde{\theta}$ , which gives lower variance.

#### 1.6.3 Fisher-Neyman Factorization Theorem

### Finding sufficient statistics

- Apply "definition";
- o Apply factorization criterion.

#### **Proposition 1.3 (Fisher-Neyman Factorization Criterion)**

A statistic  $T = T(X_1, ..., X_n)$  is sufficient if and only if  $\exists g(\cdot|\cdot)$  and  $h(\cdot)$  such that

$$f_X((X_1, ..., X_n) \mid \theta) = \prod_{i=1}^n f(X_i \mid \theta)$$
$$= g[T(X_1, ..., X_n) \mid \theta] h(X_1, ..., X_n)$$

#### Example 1.12

- 1. Suppose  $\{X_i\}_{i=1}^n$  be a random sample from  $Poisson(\theta)$ . Then, show  $T(X_1,...,X_n) = \sum_{i=1}^n X_i$  is a sufficient statistic.
  - (a). **Prove by Definition:** The sum of independent Poisson random variables are Poisson random variable, so we have  $T = \sum_{i=1}^{n} X_i \sim Pois(n\theta)$ . Then the conditional distribution of  $X_1, ..., X_n$  given

T is

$$f(X_1, ..., X_n \mid T) = \frac{\prod_{i=1}^n \frac{\theta^{X_i} e^{-\theta}}{X_i!}}{\frac{(n\theta)^T e^{-n\theta}}{T!}} = \frac{T!}{n^T \prod_{i=1}^n X_i!}$$

which is independent of  $\theta$ . So,  $T(X_1,...,X_n)$  is sufficient statistic by definition.

(b). Prove by Factorization Theorem:

$$\prod_{i=1}^n f(X_i\mid\theta) = \prod_{i=1}^n \frac{\theta^{X_i}e^{-\theta}}{X_i!} = \frac{\theta^{T(X_1,...,X_n)}e^{-n\theta}}{\prod_{i=1}^n X_i!} = g(T(X_1,...,X_n)\mid\theta)h(X_1,...,X_n)$$
 where  $g(T(X_1,...,X_n)\mid\theta) = \theta^{T(X_1,...,X_n)}e^{-n\theta}$  and  $h(X_1,...,X_n) = \frac{1}{\prod_{i=1}^n X_i!}$ . Hence,  $T(X_1,...,X_n)$  is sufficient statistic by Fisher-Neyman Factorization Criterion.

(c). Prove by Exponential Family:

$$f(X \mid \theta) = \frac{\theta^X e^{-\theta}}{X!} = \frac{e^{-\theta + X \ln \theta}}{X!}$$

Hence, the distribution is a member of the exponential family, where  $c(\theta) = 1, h(X) = \frac{1}{X!}, w_1(\theta) = -\theta, w_2(\theta) = \ln \theta, t_1(X) = 1, t_2(X) = X$ . By theorem 1.9,  $\sum_{i=1}^n X_i$  is sufficient because  $\{w_1(\theta) = -\theta, w_2(\theta) = \ln \theta\}$  is non-empty.

2. Suppose  $X_i \sim \text{i.i.d.}\ U[0,\theta]$  where  $\theta > 0$  is unknown. The marginal pdf is

$$f(x \mid \theta) = \begin{cases} \frac{1}{\theta}, & x \in [0, \theta] \\ 0, & \text{otherwise} \end{cases} = \frac{1}{\theta} \mathbf{1}_{\{x \in [0, \theta]\}}$$

**Factorization:** 

$$\prod_{i=1}^{n} f(X_i \mid \theta) = \underbrace{\frac{1}{\theta^n} \mathbf{1}_{\{X_{(n)} \le \theta\}}}_{g(X_{(n)} \mid \theta)} \underbrace{\mathbf{1}_{\{X_{(1)} \ge 0\}}}_{h(X_1, \dots, X_n)}$$

Hence, we have shown that  $X_{(n)}$  is sufficient  $\Rightarrow \hat{\theta}_{MM} = 2\bar{X}$  cannot be UMVU and  $\hat{\theta}_{RB} = \mathbb{E}[\hat{\theta}_{MM}|X_{(n)}]$  is better.

#### 1.6.4 Minimal Sufficient Statistic

#### **Definition 1.24 (Minimal Sufficient Statistic)**

A sufficient statistic  $T(X_1,...,X_n)$  is called a **minimal sufficient statistic** if, for any other sufficient statistic  $T'(X_1,...,X_n)$ ,  $T(X_1,...,X_n)$  is a function of  $T'(X_1,...,X_n)$ .

# **Theorem 1.7 (Theorem to Check Minimal Sufficient Statistic)**

Let  $f(\vec{X})$  be the pmf or pdf of a sample  $\vec{X}$ . Suppose there exists a function  $T(\vec{X})$  such that,

"for every sample points  $\vec{X}$  and  $\vec{Y}$ , the ratio  $\frac{f(\vec{X}|\theta)}{f(\vec{Y}|\theta)}$  is constant for any  $\theta$  if and only if  $T(\vec{X}) = T(\vec{Y})$ ".

Then  $T(\vec{X})$  is a minimal sufficient statistic for  $\theta$ .

**Example 1.13** Let  $X_1,...,X_n \sim \text{i.i.d.}\ U[\theta-\frac{1}{2},\theta+\frac{1}{2}],$  with  $\theta \in \mathbb{R}$  unknown.

By  $f(X \mid \theta) = \mathbf{1}_{\{X \in [\theta - \frac{1}{2}, \theta + \frac{1}{2}]\}}$ , we have

$$\prod_{i=1}^{n} f(X_i \mid \theta) = \underbrace{\mathbf{1}_{\{X_{(1)} \ge \theta - \frac{1}{2}\}} \mathbf{1}_{\{X_{(n)} \le \theta + \frac{1}{2}\}}}_{g[T(X_1, \dots, X_n)|\theta]} \underbrace{\mathbf{1}_{h(X_1, \dots, X_n)}}_{h(X_1, \dots, X_n)}$$

By the Fisher-Neyman Factorization Criterion,  $T(X_1,...,X_n) = \{X_{(1)},X_{(n)}\}$  is a sufficient statistic.

We can prove  $T(X_1,...,X_n)=\{X_{(1)},X_{(n)}\}$  is a minimal sufficient statistic by proving "for every sample points  $(X_1,...,X_n)$  and  $(Y_1,...,Y_n)$ ,  $\frac{f(X_1,...,X_n|\theta)}{f(Y_1,...,Y_n|\theta)}$  is constant as a function of  $\theta$  if and only if  $T(X_1,...,X_n)=T(Y_1,...,Y_n)$ ."

$$\frac{f(X_1, ..., X_n \mid \theta)}{f(Y_1, ..., Y_n \mid \theta)} = \frac{\mathbf{1}_{\{X_{(1)} \ge \theta - \frac{1}{2}\}} \mathbf{1}_{\{X_{(n)} \le \theta + \frac{1}{2}\}}}{\mathbf{1}_{\{Y_{(1)} \ge \theta - \frac{1}{2}\}} \mathbf{1}_{\{Y_{(n)} \le \theta + \frac{1}{2}\}}}$$

Hence, for every sample points  $(X_1,...,X_n)$  and  $(Y_1,...,Y_n)$ ,  $\frac{f(X_1,...,X_n|\theta)}{f(Y_1,...,Y_n|\theta)}$  is constant for all  $\theta$  if and only if  $X_{(1)}=Y_{(1)}$  and  $X_{(n)}=Y_{(n)}$ . That is,  $T(X_1,...,X_n)=T(Y_1,...,Y_n)$ . Hence,  $T(X_1,...,X_n)=\{X_{(1)},X_{(n)}\}$  is a **minimal sufficient statistic**.

Consider  $g(T) = X_{(n)} - X_{(1)} - \frac{n-1}{n+1}$ , it has  $\mathbb{E}[g(T)] = 0$  but  $P_{\theta}[g(T) = 0] < 1$ . Hence, T is not a complete statistic by definition.

# 1.7 Complete Statistic

#### 1.7.1 Complete Statistic

Suppose T is sufficient and then  $\hat{\theta} = \hat{\theta}(T)$  is unbiased. Under what conditions (on T) is  $\hat{\theta}$  UMVU?

**Answers:** If "only one" estimator based on T is unbiased. (T is complete.)

#### **Definition 1.25 (Complete Statistic)**

A statistic T is **complete** if and only if

$$P_{\theta}[g(T) = 0] = 1, \forall \theta \in \Theta$$

whenever  $g(\cdot)$  is such that

$$\mathbb{E}_{\theta}[g(T)] = 0, \forall \theta \in \Theta$$

(whenever the mean is zero, it can only equal to zero).

Recall: A matrix  $A_{m \times k}$  has rank k iff  $Ax = 0 \Rightarrow x = 0$ .

#### Theorem 1.8 (Lehmann-Scheffé Theorem)

If T is complete and if  $\hat{\theta} = \hat{\theta}(T)$  and  $\tilde{\theta} = \tilde{\theta}(T)$  are unbiased, then

$$\mathbb{E}_{\theta}[\hat{\theta} - \tilde{\theta}] = 0 \Rightarrow P(\hat{\theta} - \tilde{\theta} = 0) = P(\hat{\theta} = \tilde{\theta}) = 1$$

# 1.7.2 Unbiased $\hat{\theta}(T)$ with sufficient and complete T is UMVU

#### **Implication:**

#### Corollary 1.1 (Unbiased $\hat{\theta}(T)$ with sufficient and complete T is UMVU)

If T is sufficient and complete and if  $\hat{\theta} = \hat{\theta}(T)$  is unbiased, then  $\hat{\theta}$  is UMVU (let  $\tilde{\theta}$  be an UMVU).



**Example 1.14** Suppose  $X_i \sim \text{i.i.d.} \ U[0, \theta]$  where  $\theta > 0$  is unknown.

#### **Facts:**

- $X_{(n)}$  is sufficient and complete  $\Rightarrow$  Any unbiased estimator given  $X_{(n)}$  is UMVU, e.g.  $\hat{\theta}_{RB} = \mathbb{E}[\hat{\theta}_{MM}|X_{(n)}];$
- $\mathbb{E}_{\theta}(X_{(n)}) = \frac{n}{n+1}\theta \Rightarrow \text{unbiased } \frac{n+1}{n}X_{(n)} \text{ is UMVU } (=\hat{\theta}_{RB}).$

**Remark** The cdf of  $X_{(n)}$  is

$$F_{X_{(n)}}(x \mid \theta) = F(x \mid \theta)^n = \begin{cases} 0, & \text{if } x < 0 \\ \left(\frac{x}{\theta}\right)^n & \text{if } 0 \le x \le \theta \\ 1, & \text{if } x > \theta \end{cases}$$

so  $X_{(n)}$  is continuous with pdf

$$f_{X_{(n)}}(x \mid \theta) = \begin{cases} \frac{n}{\theta^n} x^{n-1} & \text{if } x \in [0, \theta] \\ 0, & \text{otherwise} \end{cases}$$

Hence,  $\mathbb{E}_{\theta}X_{(n)} = \int_0^{\theta} \frac{n}{\theta^n} x^{n-1} x dx = \frac{n}{n+1} \theta$ .

# **Verifying Completeness**

- Apply definition:
  - Example:  $\sum_{i=1}^{n} X_i$  is complete when  $X_i \sim i.i.d.$  Ber(p) compute rank of the matrix to check completeness
- Show that  $\{f(\cdot|\theta):\theta\in\Theta\}$  is on exponential family and apply theorem 1.9.

#### Theorem 1.9 (Sufficient and Complete Statistic for Exponential Family)

If the distribution is a member of the exponential family, that is,

$$f(x|\theta) = c(\theta)h(x)\exp\left\{\sum_{j=1}^{k} w_j(\theta)t_j(x)\right\}$$

 $\Diamond$ 

then

$$T = \left(\sum_{i=1}^{n} t_1(x_i), ..., \sum_{i=1}^{n} t_k(x_i)\right)$$

is sufficient and complete if  $\{\{w_1(\theta),...,w_k(\theta)\}:\theta\in\Theta\}$  contains an open set.

**Example 1.15** Suppose  $X \sim \mathcal{N}(\mu, \sigma^2)$  for some  $\mu \in \mathbb{R}$  and some  $\sigma^2 > 0$ . Then,  $\theta = (\mu, \sigma^2)$  and  $\Theta = \mathbb{R} \times \mathbb{R}_{++}$ .

The pdf can be written as

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{\mu^2}{2\sigma^2}} e^{\frac{\mu}{\sigma^2}x - \frac{1}{2\sigma^2}x^2}$$

We can have  $h(x)=1, c(\mu,\sigma^2)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{\mu^2}{2\sigma^2}}, t_1(x)=x, w_1(\mu,\sigma^2)=\frac{\mu}{\sigma^2}, t_2(x)=x^2, w_2(\mu,\sigma^2)=-\frac{1}{2\sigma^2}.$ 

That is,  $T = \left(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2\right)$  is sufficient and complete.

And 
$$(\bar{X}, S^2) = \left(\frac{1}{n}\sum_{i=1}^n X_i, \frac{1}{n-1}\sum_{i=1}^n \left[X_i^2 - \frac{(\sum_{i=1}^n X_i^2)^2}{n}\right]\right)$$
 is UMVU estimator of  $(\mu, \sigma^2)$ .

#### 1.8 Fisher Information

#### 1.8.1 Score Function

The score function is the derivative of the log likelihood function with respect to  $\theta$ .

#### **Definition 1.26 (Score Function)**

The score function is

$$u(\theta, \vec{X}) = \frac{\partial}{\partial \theta} \log f_{\vec{X}}(\vec{X} \mid \theta)$$

where  $f_{\vec{X}}(\vec{X}\mid\theta)=L(\theta\mid X_1,...,X_n)=\prod_{i=1}^n f_{X_i}(X_i\mid\theta).$ 

# **Definition 1.27 ("Regularity" Condition)**

The regularity conditions are as follows:

- 1. The partial derivative of  $f_{\vec{X}}(\vec{X} \mid \theta)$  with respect to  $\theta$  exists almost everywhere. (It can fail to exist on a null set, as long as this set does not depend on  $\theta$ .)
- 2. The integral of  $f_{\vec{X}}(\vec{X}\mid\theta)$  can be differentiated under the integral sign with respect to  $\theta$ .
- 3. The support of  $f_{\vec{X}}(\vec{X}\mid\theta)$  does not depend on  $\theta.$

#### **Lemma 1.1 ("Regularity" Condition** ⇒ **Mean of Score Function is Zero)**

Under "Regularity" condition and X are continuous, the mean of score function, evaluated at the true parameter  $\theta_0$ , is zero:

$$\mathbb{E}_{\theta_0} \left[ u(\theta_0, \vec{X}) \right] = \int_{\vec{X}} \left[ \frac{\partial}{\partial \theta} \log f_{\vec{X}}(\vec{X} \mid \theta_0) \right] f_{\vec{X}}(\vec{X} \mid \theta_0) d\vec{X}$$

$$= \int_{\vec{X}} \left[ \frac{\partial}{\partial \theta} f_{\vec{X}}(\vec{X} \mid \theta_0) \right] d\vec{X}$$

$$(*) = \frac{\partial}{\partial \theta} \underbrace{\int_{\vec{X}} f_{\vec{X}}(\vec{X} \mid \theta_0) d\vec{X}}_{=1} = 0$$

(\*): Moving the derivative outside the integral can be done as long as the limits of integration are fixed,

i.e. they do not depend on  $\theta$ .



#### 1.8.2 Fisher Information

#### **Definition 1.28 (Fisher Information)**

The **Fisher information** is defined to be the variance of the score function at  $\theta_0$ .

$$\mathcal{I}(\theta_0) = \mathbb{E}_{\theta_0}[u(\theta_0, \vec{X})u(\theta_0, \vec{X})^T] = \mathbb{E}_{\theta_0}\left[\left(\frac{\partial}{\partial \theta} \log f_{\vec{X}}(\vec{X} \mid \theta_0)\right)^2\right]$$



#### **Lemma 1.2 (Fisher Information with "Regularity" Condition)**

*Under "regularity" conditions, the* **Fisher information** at  $\theta_0$  can also be written as

$$\mathcal{I}(\theta_0) = Var_{\theta_0}(u(\theta, \vec{X}))$$



#### **Lemma 1.3 (Second Information Equality)**

Under "Regularity" condition, the Fisher information is equal to the minus Hessian matrix,

$$\mathcal{I}(\theta_0) = -\mathbb{E}_{\theta} \left[ \frac{\partial^2}{\partial \theta^2} \log f_{\vec{X}}(\vec{X} \mid \theta_0) \right]$$



#### Proof 1.3

$$\begin{split} \frac{\partial^2}{\partial \theta^2} \log f_{\vec{X}}(\vec{X} \mid \theta) &= \frac{\frac{\partial^2}{\partial \theta^2} f_{\vec{X}}(\vec{X} \mid \theta)}{f_{\vec{X}}(\vec{X} \mid \theta)} - \left(\frac{\frac{\partial}{\partial \theta} f_{\vec{X}}(\vec{X} \mid \theta)}{f_{\vec{X}}(\vec{X} \mid \theta)}\right)^2 \\ &= \frac{\frac{\partial^2}{\partial \theta^2} f_{\vec{X}}(\vec{X} \mid \theta)}{f_{\vec{V}}(\vec{X} \mid \theta)} - \left(\frac{\partial}{\partial \theta} \log f_{\vec{X}}(\vec{X} \mid \theta)\right)^2 \end{split}$$

where

$$\mathbb{E}_{\theta} \left[ \frac{\frac{\partial^2}{\partial \theta^2} f_{\vec{X}}(\vec{X} \mid \theta)}{f_{\vec{V}}(\vec{X} \mid \theta)} \mid \theta \right] = \frac{\partial^2}{\partial \theta^2} \int_x f_{\vec{X}}(\vec{X} \mid \theta) dx = 0$$

#### 1.8.3 Cramér-Rao Lower Bound

#### Proposition 1.4 (Cramér-Rao Lower Bound)

Under "regularity" conditions, for every estimator  $\hat{\theta}$ 

$$Var_{\theta}[\hat{\theta}(\vec{X})] \geq rac{\left(rac{d}{d heta}\mathbb{E}_{ heta}[\hat{ heta}(\vec{X})]
ight)^2}{\mathcal{I}( heta)} \equiv \mathit{CRLB}( heta)$$

*Specifically, if the estimator*  $\hat{\theta}$  *is unbiased,* 

$$CRLB(\theta) = \mathcal{I}(\theta)^{-1}$$

**Remark**  $\mathcal{I}(\theta)$  is called the **Fisher Information**; "Regularity" conditions are satisfied by "smooth" exponential families; Proof uses Cauchy-Schwarz inequality.

#### 3 Possibilities

- (1). CR inequality is applicable and attainable:
  - (a). Estimating p when  $X \sim \text{i.i.d. Ber}(p)$ ;
  - (b). Estimating  $\mu$  when  $X \sim \text{i.i.d. } N(\mu, \sigma^2)$ .
- (2). CR inequality is applicable, but not attainable:
  - (a). Estimating  $\sigma^2$  when  $X \sim \text{i.i.d.}$   $N(\mu, \sigma^2)$ :  $\text{Var}(S^2) = \frac{2\sigma^4}{n-1} > \frac{2\sigma^4}{n} = \mathcal{I}(\theta)^{-1}$  (CR bound).
- (3). CR inequality is not applicable:
  - (a). Estimating  $\theta$  when  $X \sim \text{i.i.d.}\ U[0,\theta]$ : CR bound  $\mathcal{I}(\theta)^{-1} = \frac{\theta^2}{n}$  and  $\text{Var}(\hat{\theta}_{UMVU}) = \frac{\theta^2}{n(n+2)}$

# Theorem 1.10 (MLE Covariance $\stackrel{n\to\infty}{\longrightarrow}$ Cramér-Rao Lower Bound)

Suppose the sample  $\{X_i\}_{i=1}^n$  is i.i.d. The Maximum likelihood estimator (MLE)  $\hat{\theta} = \arg\max_{\theta} L(\theta \mid X_1,...,X_n)$ , under "regularity" conditions, as  $n \to \infty$ 

$$\sqrt{n}\left(\hat{\theta}-\theta\right) \to N(0,\mathcal{I}(\theta)^{-1})$$

### **Proposition 1.5 (Approximation of MLE Covariance Matrix)**

When the sample x is made up of i.i.d. observations, the covariance matrix of the maximum likelihood estimator  $\hat{\theta}$  is approximately equal to the inverse of the information matrix.

$$Cov(\hat{\theta}) \approx (\mathcal{I}(\theta))^{-1}$$

Hence, the covariance matrix can be estimated as  $(\mathcal{I}(\hat{\theta}))^{-1}$ . Similarly, SE is estimated by  $\sqrt{(\mathcal{I}(\hat{\theta}))^{-1}}$ .

# 1.9 Hypothesis Testing

 $X_1,...,X_n$  is a random sample from a discrete/continuous distribution with pmf/pdf  $f(\cdot \mid \theta)$ , where  $\theta \in \Theta$  is unknown.

#### **Ingredients of Hypothesis Test**

- (1). Formulation of Testing Problem:
  - $\circ$  Partioning of  $\Theta$  into two disjoint subsets  $\Theta_0$  and  $\Theta_1$ .
- (2). Testing Procedure:
  - Rule for choosing the two subsets specified in (1).

#### 1.9.1 Formulation of Testing Problem

#### Formulating a Testing Procedure

• Terminology:

#### **Definition 1.29 (Hypothesis)**

- (a). A hypothesis is a statement about  $\theta$ ;
- (b). Null hypothesis:  $H_0: \theta \in \Theta_0$ ;
- (c). Alternative hypothesis:  $H_1: \theta \in \Theta_1 = \Theta \backslash \Theta_0$ ;
- (d). Maintained hypothesis:  $\theta \in \Theta$  (always correct).
- (e). Typical Formulation:

$$H_0: \theta \in \Theta_0$$
 vs.  $H_1: \theta \in \Theta_1$ 

**Example 1.16** Suppose  $X \sim \text{i.i.d.} \ N(\mu, 1)$ , where  $\mu \geq 0$  is unknown.

Objective: Determine whether  $\mu = 0$ .

Two possible formulation:  $H_0: \mu = 0$  vs.  $H_1: \mu > 0$  (or vice versa).

• Testing Procedure:

Consider the problem of testing  $H_0: \theta \in \Theta_0$  vs.  $H_1: \theta \in \Theta_1$ .

#### **Definition 1.30 (Testing Procedure with Critical Region)**

A <u>testing procedure</u> is a (data-based) rule for choosing between  $H_0$  and  $H_1$ .

The rule:

"Reject 
$$H_0$$
 iff  $(X_1, ..., X_n) \in C$ " (for some  $C \in \mathbb{R}^n$ )

is a testing procedure with critical region C.

**Example 1.17** Suppose  $X \sim \text{i.i.d.} \ N(\mu, 1)$ , where  $\mu \geq 0$  is unknown. The decision rule "Reject  $H_0$  iff

$$\frac{\sum_{i=1}^{n} X_i}{n} = \bar{X} \ge \frac{1.645}{\sqrt{n}}$$
", where the critical region is  $C = \{(X_1, ..., X_n) : \frac{\sum_{i=1}^{n} X_i}{n} \ge \frac{1.645}{\sqrt{n}}\}$ 

### **Proposition 1.6 (Critical Region ⇔ Test Statistic and Critical Value)**

Any set  $C \in \mathbb{R}^n$  can be written as

$$C = \{(X_1, ..., X_n) : T(X_1, ..., X_n) > c\}$$

for some  $T: \mathbb{R}^n \to \mathbb{R}$  and some  $c \in \mathbb{R}$ .

#### **Definition 1.31 (Test Statistic and Critical Value)**

 $T(X_1,...,X_n)$  is called a <u>test statistic</u> and c is called the <u>critical value</u> (of the test).

#### 1.9.2 Errors, Power Function, and Agenda

#### Agenda

- 1. Choosing critical value (given test statistic).
- 2. Choosing test statistic.

#### **Definition 1.32 (Type I and Type II Errors)**

| Decision vs. Truth     | $H_0$ (True) | H <sub>1</sub> (False) |
|------------------------|--------------|------------------------|
| $H_0$ (Fail to Reject) |              | Type II Error          |
| $H_1$ (Reject)         | Type I Error |                        |

where

- 1. Type I Error: mistaken rejection of a null hypothesis that is actually true;
- 2. Type II Error: failure to reject a null hypothesis that is actually false.

There is a trade-off between Type I and Type II errors. The general approach is *statistical decision theory*.

**Example 1.18** Heading Special Case: Making  $P_{\theta}$ [Type I Error] "small".

#### **Definition 1.33 (Power Function)**

The **power function** of a test unit critical region  $C \subseteq \mathbb{R}^n$  is the function  $\beta: \Theta \to [0,1]$  given by

$$eta( heta) = P_{ heta}[ ext{Reject } H_0]$$

$$= P_{ heta}[(X_1,...,X_n)' \in C]$$

(equivalently) =  $P_{\theta}[T(X_1,...,X_n) > c]$ 

for corresponding statistic T and critical value c.



• For  $\theta \in \Theta_1$ :  $P_{\theta}[\text{Type II Error}] = 1 - P_{\theta}[\text{Reject } H_0] = 1 - \beta(\theta);$ 

$$\circ \ \ \text{Hence, the} \ \underline{\underline{\text{ideal power function}}} \ \text{is} \ \beta(\theta) = \begin{cases} 1, & \theta \in \Theta_1 \\ 0, & \theta \in \Theta_0 \end{cases};$$

• "Good" Power Function:  $\beta(\theta)$  is "low" ("high") when  $\theta \in \Theta_0$  ( $\theta \in \Theta_1$ ).

#### **Standard:**

- (1). Given  $T(\cdot)$ , choose critical value c such that  $\beta(\theta) = P_{\theta}[T(X_1, ..., X_n) > c] \le 5\%$  when  $\theta \in \Theta_0$  (i.e.,  $\sup_{\theta \in \Theta_0} \beta(\theta) \le 5\%$ );
- (2). Choose test statistic such that  $\beta(\theta) = P_{\theta}[T(X_1,...,X_n) > c(T)]$  is "large" for  $\theta \in \Theta_1$ . (Main Tool: Neyman-Pearson Lemma).

#### 1.9.3 Choice of Critical Value

Given  $T(\cdot)$ , choose critical value c such that  $\beta(\theta) = P_{\theta}[T(X_1,...,X_n) > c] \le 5\%$  when  $\theta \in \Theta_0$  (i.e.,  $\sup_{\theta \in \Theta_0} \beta(\theta) \le 5\%$ ).

# **Definition 1.34 (Test Size and Level** $\alpha$ )

The **size** of a test (with power function  $\beta$ ) is  $\sup_{\theta \in \Theta_0} \beta(\theta)$ .

A test is of **level**  $\alpha \in [0,1]$  if and only if its size is  $\leq \alpha$ . (Standard choice  $\alpha = 0.05$ ).

**Example 1.19** Suppose  $X \sim \text{i.i.d.} \ N(\mu, 1)$ , where  $\mu \geq 0$  is unknown.

Consider the decision rule "Reject  $H_0$  iff  $\frac{\sum_{i=1}^n X_i}{n} = \bar{X} \ge \frac{1.645}{\sqrt{n}}$ ". The power function is  $\beta(\mu) = P_{\mu}[\text{Reject } H_0] = P_{\mu}(\bar{X} \ge \frac{1.645}{\sqrt{n}})$ 

Recall: 
$$\bar{X} \sim \mathcal{N}(\mu, \frac{1}{n}) \Rightarrow \sqrt{n}(\bar{X} - \mu) \sim \mathcal{N}(0, 1)$$
.

$$\beta(\mu) = P_{\mu}[\text{Reject } H_0] = P_{\mu}(\bar{X} \ge \frac{1.645}{\sqrt{n}})$$

$$= P_{\mu}(\sqrt{n}(\bar{X} - \mu) \ge 1.645 - \sqrt{n}\mu)$$

$$= 1 - \Phi(1.645 - \sqrt{n}\mu)$$

where  $\Phi$  is the standard normal cdf.

$$\underline{\text{Size}} = \beta(0) = 1 - \Phi(1.645) \approx 0.05.$$

#### 1.9.4 Choice of Test Statistic: Uniformly Most Powerful (UMP) Level $\alpha$ Test

Choose test statistic such that  $\beta(\theta) = P_{\theta}[T(X_1, ..., X_n) > c(T)]$  is "large" for  $\theta \in \Theta_1$ . (Main Tool: Neyman-Pearson Lemma).

#### **Definition 1.35 (Uniformly Most Powerful (UMP) Level** $\alpha$ **Test)**

A test with level  $\alpha$  and power function  $\beta$  is a **uniformly most powerful (UMP) level**  $\alpha$  **test** iff

$$\beta(\theta) \geq \tilde{\beta}(\theta), \ \forall \theta \in \Theta_1$$

where  $\tilde{\beta}$  is the power function of some (other) level  $\alpha$  test.

4

Consider the problem of testing  $H_0: \theta = \theta_0 \in \mathbb{R}$ 

- $\circ \text{ UMP level } \alpha \text{ test always } \exists \text{ if } H_1: \theta = \theta_1 \text{ (Proven by Neyman-Pearson Lemma);}$
- UMP level  $\alpha$  test often  $\exists$  if  $H_1: \theta > \theta_0$  or  $H_1: \theta < \theta_0$  (Proven by Karlin-Rubin Theorem);
- ∘ UMP level  $\alpha$  test often  $\nexists$  if  $H_1: \theta \neq \theta_0$ ; UMP "unbiased" level  $\alpha$  test often  $\exists$ .

#### **Theorem 1.11 (Neyman-Pearson Lemma)**

Consider the problem of testing,

$$H_0: \theta = \theta_0$$
 vs.  $H_1: \theta = \theta_1$ 

For any  $k \geq 0$ , the test which

Rejects 
$$H_0$$
 iff  $L(\theta_1 \mid X_1, ..., X_n) \ge kL(\theta_0 \mid X_1, ..., X_n)$ 

is a UMP level  $\alpha$  test, where

$$\alpha = P_{\theta_0}[L(\theta_1 \mid X_1, ..., X_n) \ge kL(\theta_0 \mid X_1, ..., X_n)]$$

and where  $L(\theta \mid X_1,...,X_n) = \prod_{i=1}^n f(X_i \mid \theta)$ .

#### (

#### Remark

- UMP level  $\alpha$  test exists if  $\alpha \in \{P_{\theta_0}[L(\theta_1 \mid X_1, ..., X_n) \ge kL(\theta_0 \mid X_1, ..., X_n)] : k \ge 0\}.$
- o The Neyman-Pearson Lemma rejects the  $H_0$  iff

$$L(\theta_1 \mid X_1, ..., X_n) \ge kL(\theta_0 \mid X_1, ..., X_n) \Leftrightarrow \frac{L(\theta_1 \mid X_1, ..., X_n)}{L(\theta_0 \mid X_1, ..., X_n)} \ge k$$

 $(L(\theta_0 \mid X_1, ..., X_n) \neq 0)$ 

- Hence, it is called "Likelihood Ratio" test.
- $\circ$  Converse: Any UMP level  $\alpha$  test is of "NP type."

#### **Example of Using NP Lemma**

**Example 1.20** Suppose  $X \sim \text{i.i.d.} N(\mu, 1)$ , where  $\mu \geq 0$  is unknown.

Let  $\mu_1 = 0$  be given and consider the problem of testing

$$H_0: \mu = 0 \text{ vs. } H_1: \mu = \mu_1 > 0$$

We have 
$$L(\mu \mid X_1,...,X_n) = \prod_{i=1}^n \left( \frac{1}{\sqrt{2\pi}} e^{-\frac{(X_i - \mu)^2}{2}} \right) = (2\pi)^{-\frac{n}{2}} \, e^{-\frac{1}{2} \sum_{i=1}^n X_i^2} e^{\mu \sum_{i=1}^n X_i} e^{-\frac{n\mu^2}{2}}.$$
 Then, 
$$\frac{L(\mu = \mu_1 \mid X_1,...,X_n)}{L(\mu = 0 \mid X_1,...,X_n)} = e^{\mu_1 \sum_{i=1}^n X_i} e^{-\frac{n\mu_1^2}{2}}$$

Decision Rule: Reject  $H_0$  iff

$$\begin{split} \frac{L(\mu = \mu_1 \mid X_1, ..., X_n)}{L(\mu = 0 \mid X_1, ..., X_n)} = & e^{\mu_1 \sum_{i=1}^n X_i} e^{-\frac{n\mu_1^2}{2}} \ge k \\ \Leftrightarrow & -\frac{n\mu_1^2}{2} + \mu_1 \sum_{i=1}^n X_i \ge \log k \\ \Leftrightarrow & \bar{X} \ge \frac{\log k}{n\mu_1} + \frac{\mu_1}{2} \end{split}$$

The NP test reject for large values of  $\bar{X}$ .

#### **Optimality Theorem for One-sided Testing Problem**

Consider

$$H_0: \mu = \mu_0 \text{ vs. } H_1: \mu > \mu_0$$

For any  $\theta_1 > \theta_0$ , use NP Lemma to find optimal test of  $H_0: \mu = \theta_0$  vs.  $H_1: \mu = \mu_1$ .

- If the NP tests coincide, then the test is the UMP test of  $H_0: \mu = \mu_0$  vs.  $H_1: \mu > \mu_0$ ;
- Otherwise,  $\nexists$  UMP (level  $\alpha$ ) test of the  $H_0: \mu = \mu_0$  vs.  $H_1: \mu > \mu_0$ .

**Implications:** (The previous  $N(\mu, 1)$  example)

- (i). The UMP 5% test of  $H_0: \mu = 0$  vs.  $H_1: \mu > 0$  rejects  $H_0$  iff  $\bar{X} > \frac{1.645}{\sqrt{n}}$ .
- (ii). The UMP 5% test of  $H_0: \mu=0$  vs.  $H_1: \mu<0$  rejects  $H_0$  iff  $-\bar{X}>\frac{1.645}{\sqrt{n}}$ .
- (iii).  $\nexists$  UMP 5% test of  $H_0: \mu = 0$  vs.  $H_1: \mu \neq 0$ .

#### **Definition 1.36 (Unbiased Test)**

A test of

$$H_0: \theta \in \Theta_0$$
 vs.  $H_1: \theta \in \Theta_1$ 

is **unbiased** iff its power function  $\beta(\cdot)$  satisfies  $\sup_{\theta \in \Theta_0} \beta(\theta) \leq \inf_{\theta \in \Theta_1} \beta(\theta)$ 

#### Claim 1.1

The UMP <u>unbiased</u> 5% test of  $H_0: \mu = 0$  vs.  $H_1: \mu \neq 0$ : Rejects  $H_0$  iff  $|\bar{X}| > \frac{1.96}{\sqrt{n}}$ .

#### Corollary 1.2

Suppose  $X_i \sim i.i.d.$   $N(\mu, \sigma^2)$ , where  $\sigma^2$  is known. Then, the UMP unbiased 5% test of the  $H_0: \mu = \mu_0$  vs.  $H_1: \mu \neq \mu_0$ : Rejects  $H_0$  if  $|\frac{\bar{X} - \mu_0}{\sigma}| > \frac{1.96}{\sqrt{n}}$ .

#### Claim 1.2

"In general", "Natural" test statistics are (approximately) optimal and critical values can be find.



#### 1.9.5 Generalized Neyman-Pearson Lemma

NP Lemma:  $\max \beta(\theta_1)$  s.t.  $\beta(\theta_0) \leq \alpha$ ;

Generalized NP Lemma: How to optimize a function with infinity constraints.

Observation: If  $\beta$  is differentiable, then an unbiased test of the  $H_0: \theta = \theta_0$  vs.  $H_1: \theta \neq \theta_0$  satisfies  $\beta'(\theta_0) = 0$ 

**Theorem 1.12 (Generalized Neyman-Pearson Lemma)** 

 $\Diamond$ 

# 1.10 Trinity of Classical Tests

- o Likelihood Ratio Test
- o Lagrangian Multiplier Test (Score Test)
- o Wald Test

Properties: Deliver optimal test in motivating example; closely related (and "approximately" optimal) in general.

#### 1.10.1 Test Statistics

Settings:  $X_1, ..., X_n$  is a random sample from a discrete/continuous distribution with pmf/pdf  $f(\cdot \mid \epsilon)$ , where  $\theta \in \Theta \subseteq \mathbb{R}$  is unknown.

Testing Problem:  $H_0: \theta = \theta_0$  vs.  $H_1: \theta \neq \theta_0$  for some  $\theta_0 \in \Theta$ .

Recall the log likelihood function is given by

$$l(\theta \mid X_1, ..., X_n) = \sum_{i=1}^n \log f(X_i \mid \theta)$$

The (sample) score function is

$$u(\theta \mid X_1, ..., X_n) = \frac{\partial}{\partial \theta} l(\theta \mid X_1, ..., X_n)$$

and the (sample) fisher information is

$$\mathcal{I}(\theta \mid X_1, ..., X_n) = -\frac{\partial^2}{\partial \theta^2} l(\theta_0 \mid X_1, ..., X_n)$$

• Likelihood Ratio Test Statistic:

$$\begin{split} T_{LR}\left(X_{1},...,X_{n}\right) &= 2\left\{\max_{\theta \in \Theta}l(\theta \mid X_{1},...,X_{n}) - \max_{\theta \in \Theta_{0}}l(\theta \mid X_{1},...,X_{n})\right\} \text{ (general form)} \\ &= 2\left\{l(\hat{\theta}_{ML} \mid X_{1},...,X_{n}) - l(\theta_{0} \mid X_{1},...,X_{n})\right\} \\ &= 2\log\left\{\frac{l(\hat{\theta}_{ML} \mid X_{1},...,X_{n})}{l(\theta_{0} \mid X_{1},...,X_{n})}\right\} \end{split}$$

Motivation: Neyman-Pearson Lemma (1.11)

• Lagrangian Multiplier Test Statistic:

$$T_{LM}\left(X_{1},...,X_{n}\right) = \frac{\left(\frac{\partial}{\partial\theta}l(\theta_{0}\mid X_{1},...,X_{n})\right)^{2}}{-\frac{\partial^{2}}{\partial\theta^{2}}l(\theta_{0}\mid X_{1},...,X_{n})} = \frac{\left(u(\theta_{0}\mid X_{1},...,X_{n})\right)^{2}}{\mathcal{I}(\theta_{0}\mid X_{1},...,X_{n})}$$

Motivation:  $T_{LM}$  is approximate to  $T_{LR}$ ; No estimation required.

• Wald Test Statistic:

$$T_W(X_1, ..., X_n) = \frac{(\hat{\theta}_{ML} - \theta_0)^2}{\left\{ -\frac{\partial^2}{\partial \theta^2} l(\hat{\theta}_{ML} \mid X_1, ..., X_n) \right\}^{-1}} = \frac{(\hat{\theta}_{ML} - \theta_0)^2}{\left( \mathcal{I}(\hat{\theta}_{ML} \mid X_1, ..., X_n) \right)^{-1}}$$

Motivation:  $T_W$  is approximate to  $T_{LR}$ ;

Generalization: Reject the  $H_0: \theta = \theta_0$  if  $|\hat{\theta} - \theta_0|$  is "large", when  $\hat{\theta}$  is some estimator of  $\theta$ .

#### **Claim 1.3**

In general, for "large" n,

$$T_{LR} \approx T_{LM} \approx T_W \sim \chi^2(1) = N(0,1)^2$$
 under  $H_0: \theta = \theta_0$ 

- Approximate 5% critical value is  $(1.96)^2 = 3.84$ .
- $T_{LR} = T_{LM} = T_W \sim \chi^2(1) = N(0, 1)^2 \text{ under } H_0 : \theta = \theta_0 \text{ when } X_i \sim i.i.d. \ N(\mu, 1).$

#### **1.10.2** Approximation to $T_{LR}$

In this part as  $n \to \infty$ , we use  $l(\theta), l'(\theta), l''(\theta)$  to denote  $l(\theta \mid X_1, ..., X_n), l'(\theta \mid X_1, ..., X_n) \triangleq u(\theta \mid X_1, ..., X_n), l''(\theta \mid X_1, ..., X_n) \triangleq -\mathcal{I}(\theta \mid X_1, ..., X_n).$ 

(1).  $T_{LM}$ :

Suppose

$$l(\theta) \approx l(\theta_0) + l'(\theta_0)(\theta - \theta_0) + \frac{1}{2}l''(\theta_0)(\theta - \theta_0)^2 \triangleq \tilde{l}(\theta)$$

Then

$$\hat{\theta}_{ML} = \underset{\theta}{\operatorname{argmax}} l(\theta) \approx \underset{\theta}{\operatorname{argmax}} \tilde{l}(\theta) = \theta_0 - \frac{l'(\theta_0)}{l''(\theta_0)} \triangleq \tilde{\theta}_{ML}$$

Hence,

$$T_{LR} = 2\left\{l(\hat{\theta}_{ML}) - l(\theta_0)\right\} \approx 2\left\{\tilde{l}(\tilde{\theta}_{ML}) - \tilde{l}(\theta_0)\right\} = -\frac{l'(\theta_0)^2}{l''(\theta_0)} = T_{LM}$$

(2).  $T_W$ :

Suppose

$$l(\theta) \approx l(\hat{\theta}_{ML}) + l'(\hat{\theta}_{ML})(\theta - \hat{\theta}_{ML}) + \frac{1}{2}l''(\hat{\theta}_{ML})(\theta - \hat{\theta}_{ML})^2 \triangleq \hat{l}(\theta)$$

Then,

$$T_{LR} = 2\left\{l(\hat{\theta}_{ML}) - l(\theta_0)\right\} \approx 2\left\{\tilde{l}(\hat{\theta}_{ML}) - \hat{l}(\theta_0)\right\} = \frac{(\hat{\theta}_{ML} - \theta_0)^2}{(-l''(\hat{\theta}_{ML}))^{-1}} = T_W$$

# 1.11 Interval Estimation

#### **Definition 1.37**

Suppose  $\theta \in \mathbb{R}$ .

- 1. An <u>interval estimator</u> of  $\theta$  is an interval  $[L(X_1,...,X_n),U(X_1,...,X_n)]$ , where  $L(X_1,...,X_n)$  and  $U(X_1,...,X_n)$  are statistics.
- 2. The converge probability (of the interval estimator) is the function (of  $\theta$ ) given by

$$P_{\theta}[L(X_1,...,X_n) \le \theta \le U(X_1,...,X_n)]$$

3. The <u>confidence coefficient</u> is  $\inf_{\theta} P_{\theta} [L(X_1,...,X_n) \leq \theta \leq U(X_1,...,X_n)]$ 

**Example 1.21** Suppose  $X_i \sim \text{i.i.d. } N(\mu, 1)$ , where  $\mu$  is unknown.

 $\underline{\text{Interval estimator:}} \left[ \bar{X} - \tfrac{1.96}{\sqrt{n}}, \bar{X} + \tfrac{1.96}{\sqrt{n}} \right].$ 

Converge probability:  $P_{\mu}\left[\bar{X} - \frac{1.96}{\sqrt{n}} \le \mu \le \bar{X} + \frac{1.96}{\sqrt{n}}\right] = P_{\mu}\left[-1.96 \le \sqrt{n}(\bar{X} - \mu) \le 1.96\right] = \Phi(1.96) - \Phi(-1.96) \approx 0.95.$ 

#### Interpretation:

- (I). Recall
  - (i).  $\bar{X} = \hat{\mu}_{MM} = \hat{\mu}_{ML} = \hat{\mu}_{UMVU};$

(ii). 
$$\bar{X} \sim \mathcal{N}(\mu, \frac{1}{n}) \Rightarrow \frac{1}{\sqrt{n}} = \sqrt{\text{Var}(\bar{x})}$$
.

Hence, 
$$\left[\bar{X} - \frac{1.96}{\sqrt{n}}, \bar{X} + \frac{1.96}{\sqrt{n}}\right] = \left[\bar{X} - 1.96\sqrt{\mathrm{Var}(\bar{x})}, \bar{X} + 1.96\sqrt{\mathrm{Var}(\bar{x})}\right]$$
.  $\frac{\bar{X} - \mu}{\mathrm{Var}(\bar{x})} \sim \mathcal{N}(0, 1)$ .

(II). Recall: The "optimal" two-sided 5% of the  $\mu=\mu_0$  rejects  $\inf |\bar{X}-\mu_0|>\frac{1.96}{\sqrt{n}}$ 

$$\Leftrightarrow \bar{X} - \mu_0 > \frac{1.96}{\sqrt{n}} \text{ or } \bar{X} - \mu_0 < -\frac{1.96}{\sqrt{n}}$$

$$\Leftrightarrow \mu_0 < \bar{X} - \frac{1.96}{\sqrt{n}} \text{ or } \mu_0 > \bar{X} + \frac{1.96}{\sqrt{n}}$$

Hence, the test "accepts"  $H_0$  iff

$$\bar{X} - \frac{1.96}{\sqrt{n}} \le \mu_0 \le \bar{X} + \frac{1.96}{\sqrt{n}}$$

# **Chapter 2 M-Estimation**

# 2.1 M-Estimation

### 2.1.1 Extremum Estimator and M-Estimator

Suppose there is a parameter of interest  $\theta \in \mathbb{R}^d$ . Data Z is generated from  $F_{\theta_0}$ .

### **Definition 2.1 (Extremum Estimator)**

**Extremum estimators** are a wide class of estimators for parametric models that are calculated through maximization (or minimization) of a certain objective function, which depends on the data.

Suppose the true parameter  $\theta_0 = \operatorname{argmin}_{\theta \in \Theta} Q(\theta)$ , where  $Q : \Theta \to \mathbb{R}$  is criterion (objective) function (unknown). In estimation,  $\{Z_i\}_{i=1}^n$  are i.i.d. sample, where  $Z_i \sim F_Z$  whose parameter  $\theta$  is of interest.  $\hat{Q} : \Theta \to \mathbb{R}$  is a sample criterion.  $\hat{\theta}$  is called **extremum estimator** of  $\theta$  if

$$\hat{\theta}(\theta) = \operatorname*{argmin}_{\theta \in \Theta} \hat{Q}(\theta)$$

\*

### **Definition 2.2 (M-Estimator)**

**M-estimators** are a broad class of extremum estimators for which the objective function is a sample average. Specifically, Q is in the form of  $\mathbb{E}m(Z,\theta)$ , where  $m(Z,\theta)$  is called M-estimator loss that only depends on one data sample and the parameter. Then,  $\hat{Q}$  is in the form of

$$\hat{Q} = \frac{1}{n} \sum_{i=1}^{n} m(Z_i, \theta)$$

we call the  $\hat{\theta} = \operatorname{argmin}_{\theta \in \Theta} \hat{Q}(\theta)$  be the **M-estimator** of  $\theta$ .

MLE is a special case of M-estimator.

Maximum Likelihood Estimators ⊆ M-Estimators ⊆ Extremum Estimators

**Example 2.1 (ML Identification)** Take  $m(Z, \theta) = -\ln f(Z|\theta)$ , where  $z \to f(z|\theta)$  is the parametric density function such that  $z \to f(z|\theta_0)$  is the true density function of Z.

$$\theta_0 = \operatorname*{argmin}_{\theta \in \Theta} Q(\theta) := -\mathbb{E} \log f(x|\theta)$$

Why this is feasible? We can show that  $Q(\theta) \ge Q(\theta_0), \forall \theta \in \Theta$ .

# **Lemma 2.1 (Information Inequality:** $\theta_0 = \operatorname{argmin}_{\theta \in \Theta} - \mathbb{E} \log f(x|\theta)$ )

Given  $\theta_0$  be the true parameter, we have

$$Q(\theta) - Q(\theta_0) = -\mathbb{E}\left[\log f(x|\theta) - \log f(x|\theta_0)\right] > 0, \forall \theta \neq \theta_0$$

# Proof 2.1

$$\begin{split} Q(\theta) - Q(\theta_0) &= -\mathbb{E}_{\theta_0} \left[ \log f(x|\theta) - \log f(x|\theta_0) \right] \\ &= -\mathbb{E}_{\theta_0} \left[ \log \frac{f(x|\theta)}{f(x|\theta_0)} \right], \text{ where } \log(z) \text{ is concave} \end{split}$$
 by Jensen's inequality  $> -\log \mathbb{E}_{\theta_0} \frac{f(x|\theta)}{f(x|\theta_0)} \\ &= -\log \int \frac{f(x|\theta)}{f(x|\theta_0)} f(x|\theta_0) dx \\ &= -\log 1 = 0 \end{split}$ 

# Example 2.2 (Nonlinear Least Squares) Consider the conditional restriction

$$\mathbb{E}[Y|X=x] = g(x,\theta_0)$$

where g is known up to  $\theta$  and differentiable in  $\theta$ . Then, the NLLS criterion function is

$$Q(\theta) = \mathbb{E}[Y - g(X, \theta)]^2$$

We can show that  $Q(\theta_0) \leq Q(\theta), \forall \theta \in \Theta$ .

# **Lemma 2.2 (NLS Identification)**

$$Q(\theta) = \mathbb{E}[Y - g(X, \theta)]^{2}$$

$$= \mathbb{E}[Y - g(X, \theta_{0}) - (g(X, \theta) - g(X, \theta_{0}))]^{2}$$

$$= \mathbb{E}[Y - g(X, \theta_{0})]^{2} + \mathbb{E}[g(X, \theta) - g(X, \theta_{0})]^{2}$$

$$= Q(\theta_{0}) + \mathbb{E}[g(X, \theta) - g(X, \theta_{0})]^{2} \ge Q(\theta_{0})$$

### **Notations**

Define  $g(Z,\theta):=\frac{\partial}{\partial \theta}m(Z,\theta)\in\mathbb{R}^d$  and  $G(Z,\theta):=\frac{\partial^2}{\partial \theta\partial \theta^T}m(Z,\theta)\in\mathbb{R}^{d\times d}$ .

### **Definition 2.3**

Suppose the data Z follows true distribution with parameter  $\theta_0$ .

- 1. Loss:  $Q(\theta) := \mathbb{E}_{\theta_0} m(Z, \theta)$ .
- 2. Score:  $g(\theta) := \mathbb{E}_{\theta_0} g(Z, \theta)$ .
- 3. Hessian:  $G(\theta) := \mathbb{E}_{\theta_0} G(Z, \theta) = \mathbb{E}_{\theta_0} \left[ \frac{\partial^2}{\partial \theta \partial \theta^T} m(Z, \theta) \right]$ . (We use G denote the true population

Hessian,  $G := G(\theta_0)$ ).

\*

In the MLE  $m(Z, \theta) = \ln f(Z; \theta)$ , we also use Information Matrix  $\mathcal{I}(\theta) := \mathbb{E}[g(Z, \theta)g(Z, \theta)^T]$ .

**Example 2.3** (Poisson Distribution) A Poisson distribution with rate parameter  $\lambda$  has p.m.f.  $f(Z; \lambda) = \frac{\lambda^Z}{Z!} e^{-\lambda}$ .

Then, in MLE, we have  $g(Z;\lambda)=\frac{Z}{\lambda}-1\Rightarrow \lambda_0=\mathbb{E} Z=\mathrm{Var} Z.\ I(\lambda_0)=\frac{1}{\lambda_0}, G(\lambda_0)=-\frac{1}{\lambda_0}.$ 

### 2.1.2 Consistency of M-estimators

Consistency means:  $\hat{\theta} \xrightarrow{P_0} \theta_0$  as  $n \to \infty$ .

Can  $\hat{Q}(\theta) \xrightarrow{P_0} Q(\theta)$  give the consistency of the M-estimator  $(\hat{\theta} \xrightarrow{P_0} \theta_0)$ ? No.

**Example 2.4**  $Q(\theta) = -1\{\theta = 0\}$  and  $Q_n(\theta) = -1\{\theta = 0\} - 21\{\theta = n\}$ .  $\theta_n \nrightarrow \theta_0$  but  $Q_n(\theta) - Q(\theta) \to 0$ .

# **Theorem 2.1 (Extremum Consistency)**

Remind the definition of  $\theta_0$  that  $\theta_0 = \operatorname{argmin}_{\theta \in \Theta} Q(\theta)$ . We give extra assumptions:

A1. Uniform Convergence, i.e., the worst-case distance converges to zero.

$$\sup_{\theta \in \Theta} |\hat{Q}(\theta) - Q(\theta)| \xrightarrow{P} 0$$

A2.  $\inf_{\|\theta-\theta_0\|>\epsilon}Q(\theta)>Q(\theta_0)$  (Its sufficient condition:  $Q(\theta)$  is continuous in  $\theta$  on compact set  $\Theta$ .) Suppose A1 and A2 hold. Then,

$$\hat{\theta} \stackrel{P}{\longrightarrow} \theta_0$$



# 2.1.3 Asymptotic Normality of M-estimators

Review: By the Taylor expansion for any f - n, the  $h : \Theta \to \mathbb{R}^d$ ,

$$h(\theta) - h(\theta_0) = \underbrace{\left(\frac{\partial h}{\partial \theta}\big|_{\theta = \bar{\theta}}\right)}_{\in \mathbb{R}^{d \times d}} \cdot \underbrace{\left(\theta - \theta_0\right)}_{\in \mathbb{R}^d}$$

where  $\bar{\theta} = \alpha \theta + (1 - \alpha)\theta_0$  for some  $\alpha \in (0, 1)$ .

### **Theorem 2.2 (Asymptotic Normality of M-estimators)**

Suppose

A1. 
$$\sup_{\theta \in \Theta} |\hat{Q}(\theta) - Q(\theta)| \stackrel{P}{\longrightarrow} 0.$$

A2.  $G(\theta)$  is continuous in  $\Theta$ .

A3. 
$$G := G(\theta_0) = \mathbb{E}_{\theta_0} \left[ \frac{\partial^2}{\partial \theta \partial \theta^T} m(Z, \theta_0) \right]$$
 is invertible.

Then,

$$\sqrt{n}\left(\hat{\theta}-\theta_0\right) \stackrel{d}{\Rightarrow} N\left(0, G^{-1}\Omega G^{-1}\right)$$

where

$$\Omega = \operatorname{Var}(\sqrt{n}\hat{g}(\theta_0)) = \operatorname{Var}(g(Z, \theta_0)), \quad \hat{g}(\theta_0) = \frac{1}{n} \sum_{i=1}^{n} g(Z_i, \theta_0)$$

# Proof 2.2

By the optimality of  $\hat{\theta}$ ,

$$\hat{q}(\hat{\theta}) = 0$$

where  $\hat{g}(\theta_0) = \frac{1}{n} \sum_{i=1}^{n} g(Z_i, \theta_0)$ ,

$$\mathbb{E}\hat{g}(\theta_0) = \mathbb{E}g(Z, \theta_0) = 0$$

$$\operatorname{Var}(\hat{g}(\theta_0)) = \frac{1}{n} \underbrace{\operatorname{Var}(g(Z, \theta_0))}_{:=\mathcal{I}(\theta_0)}$$

By Taylor,

$$\hat{g}(\hat{\theta}) - \hat{g}(\theta_0) = \hat{G}(\bar{\theta})(\hat{\theta} - \theta_0)$$

for some  $\hat{\theta}$ . By assumptions and results above

$$-\hat{g}(\theta_0) = \hat{g}(\hat{\theta}) - \hat{g}(\theta_0) \approx G(\hat{\theta} - \theta_0)$$

$$\hat{\theta} - \theta_0 \approx -G^{-1}\hat{g}(\theta_0)$$

$$\sqrt{n} \left( \hat{\theta} - \theta_0 \right) \stackrel{d}{\Rightarrow} N \left( 0, G^{-1} \underbrace{\operatorname{Var}(\sqrt{n} \hat{g}(\theta_0))}_{= \operatorname{Var}(g(Z, \theta_0))} G^{-1} \right)$$

### Corollary 2.1 (Asymptotic Normality of ML-estimator under correct specification)

For MLE, under "Regularity" condition,  $\mathcal{I}(\theta_0) = -G(\theta_0)$ ,

$$\sqrt{n} \left( \hat{\theta} - \theta_0 \right) \stackrel{d}{\Rightarrow} N \left( 0, \mathcal{I}(\theta_0)^{-1} \right)$$

$$\sqrt{n}\hat{g}(\theta_0) \stackrel{d}{\Rightarrow} N(0, \mathcal{I}(\theta_0))$$

### 2.1.4 Efficiency of Asymptotically Linear Estimator

### **Definition 2.4 (Efficient Asymptotically Linear Estimator)**

An asymptotically linear estimator is called **efficient** if it attains the <u>smallest variance</u> among the class of asymptotic estimators.

Use  $\Omega_{\beta}$  denote the variance of  $\hat{\beta}$ .

 $\hat{\beta}_1$  is more efficient than  $\hat{\beta}_2$  if both of them are asymptotic normal

$$\Omega_{\hat{\beta}_2} - \Omega_{\hat{\beta}_1} \succeq 0$$
 in matrix sense.

· Standard errors of  $\hat{\beta}_1$  are smaller in large sample.

 $\hat{\beta}$  is **efficient** if for any other  $\hat{\beta}_2$ ,  $\Omega_{\hat{\beta}_2} - \Omega_{\hat{\beta}_1} \succeq 0$  in matrix sense.

# 2.1.5 Misspecification and Pseudo-true Parameter

**Misspecification:** Sometimes, the true density of the data distribution is unknown. We minimize a criterion function (or a density function we assume for MLE) to approximate the true parameter. This assumed function loses the original interpretation.

### **Definition 2.5 (Pseudo-true Parameter)**

Pseudo-true parameter is given by

$$\beta_0 \equiv \arg\min_{\beta} Q(\beta)$$

$$\beta_0$$
 s.t.  $g(\beta_0) = 0 = \mathbb{E}[g(Y|X,\beta_0)] = 0$ .

In MLE case, because the density function used in the criterion function is different to the true density function of data, the pseudo-true parameter doesn't satisfy the second information equality,  $G^{-1}\mathcal{I}G^{-1} \neq \mathcal{I}^{-1}$ .

### **Example of Misspecification**

**Example 2.5** Consider a linear exponential density of the form

$$f(y;\theta) = \exp(A(\theta) + B(y) + C(\theta)y)$$
$$\theta = \int yf(y;\theta)dy$$

(a). What is  $\mathbb{E} \ln f(y; \theta)$  when y has PDF  $f(y; \theta_0)$  (i.e.,  $\theta$  may differ from  $\theta_0$ ):

$$\mathbb{E} \ln f(y;\theta) = \int f(y;\theta_0) (A(\theta) + B(y) + C(\theta)y) dy$$
$$= A(\theta) + \int f(y;\theta_0) B(y) dy + C(\theta)\theta_0$$

(b). By information inequality, for any other  $\theta$ ,  $\mathbb{E}_{\theta_0}[\ln(y;\theta_0)] > \mathbb{E}_{\theta_0}[\ln(y;\theta)]$ . That is,

$$A(\theta_0) + \int f(y; \theta_0) B(y) dy + C(\theta_0) \theta_0 > A(\theta) + \int f(y; \theta_0) B(y) dy + C(\theta) \theta_0$$
$$A(\theta_0) + C(\theta_0) \theta_0 > A(\theta) + C(\theta) \theta_0$$

i.e.,  $A(\theta) + C(\theta)\theta_0$  is maximized at  $\theta = \theta_0$ .

(c). In general, if the distribution of y is not in the form  $f(y \mid \theta)$  and we only know  $\mathbb{E}[y]$ , we can show that  $\mathbb{E}[\ln f(y;\theta)]$  is maximized at  $\mathbb{E}[y]$ :

$$\operatorname*{argmax}_{\theta} \mathbb{E}[\ln f(y;\theta)] = \operatorname*{argmax}_{\theta} \left( A(\theta) + C(\theta) \mathbb{E}[y] \right) = \mathbb{E}[y]$$

The last equality is given by the previous result.

(d). Hence, when the likelihood is not correctly specified, the pseudo-true parameter is given by

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \sum_{j=1}^{n} \ln f(y_i; \theta) \xrightarrow{P} \underset{\theta}{\operatorname{argmax}} \mathbb{E} \left[ \ln f(y_i; \theta) \right] = \mathbb{E}[y]$$

(e). Now, suppose we use the following density function as the criterion

$$\begin{split} f(y\mid x,\beta,\gamma) &= \exp\left(A(h(x,\beta),x,\gamma) + B(y,x,\gamma) + C(h(x,\beta),x,\gamma)y\right) \\ \mathbb{E} \ln f(y\mid x,\beta,\gamma) &= A(h(x,\beta),x,\gamma) + \mathbb{E}[B(y,x,\gamma)\mid x,\beta,\gamma] + C(h(x,\beta),x,\gamma)\mathbb{E}[y\mid x,\beta,\gamma] \end{split}$$

o If specified correctly, i.e., the  $y \mid x$  has the form  $f(y \mid x, \beta_0, \gamma)$  and  $\beta_0 = \mathbb{E}[y \mid x, \beta_0, \gamma]$ : By information inequality,

$$\beta_0 = \operatorname*{argmax}_{\beta} \mathbb{E} \ln f(y \mid x, \beta, \gamma) = \operatorname*{argmax}_{\beta} A(h(x, \beta), x, \gamma) + C(h(x, \beta), x, \gamma) \mathbb{E}[y \mid x, \beta_0, \gamma]$$

 $\circ$  If misspecified, i.e., the  $y \mid x$  has expectation  $\mathbb{E}[y \mid x]$  but we still maximize  $\mathbb{E} \ln f(y \mid x, \beta, \gamma)$ :

$$\mathbb{E}[y\mid x] = \operatorname*{argmax}_{\beta} \mathbb{E} \ln f(y\mid x,\beta,\gamma) = \operatorname*{argmax}_{\beta} A(h(x,\beta),x,\gamma) + C(h(x,\beta),x,\gamma) \mathbb{E}[y\mid x]$$

Suppose you are interested in firms' applications for patents. You estimate the conditional mean parameters using a Poisson regression model:

$$\begin{split} \log \lambda &= \log \left( \mathbb{E}[Y \mid X] \right) = X^T \beta \\ \Rightarrow f(y \mid x) &= \frac{\lambda^Y}{Y!} e^{-\lambda} = \frac{[exp(X^T \beta)]^Y}{Y!} exp(-exp(X^T \beta)) \end{split}$$

However, the truth (unbeknownst to you) is that patents actually follow a negative binomial model (which permits the variance to differ from the mean), but the mean is correctly specified.

- 1. Will your estimator be consistent? Yes. This is directly given by the result above.
- 2. <u>Will your estimator be asymptotically normal?</u> Yes. The data are iid and the estimator is consistent, so the CLT holds under regularity conditions on the existence of second moments.
- 3. The information matrix equality **does not hold** if the likelihood is not correct.
- 4. <u>An estimator of the asymptotic variance of the quasi-maximum likelihood estimator</u> of the Poisson regression model that **is consistent** even if the Poisson assumption is incorrect:

$$\sqrt{n}\left(\hat{\theta} - \theta_*\right) \stackrel{d}{\Rightarrow} N\left(0, G^{-1}\Omega G^{-1}\right)$$

where  $\theta_*$  is the pseudo-true parameter that estimated by the Poisson regression model.

$$\Omega = \mathbb{E}[s(z, \theta_*)s(z, \theta_*)^T], \ G = \mathbb{E}\left[\frac{\partial^2}{\partial \theta \partial \theta^T}f(Z; \theta_0)\right]$$

where  $s(\cdot)$  is the score function. To obtain a consistent estimator, we would use  $\hat{G}^{-1}\hat{\Omega}\hat{G}^{-1}$ , where

$$\hat{\Omega} = \frac{1}{n} \sum_{i=1}^{n} [s(z_i, \hat{\theta}) s(z_i, \hat{\theta})^T], \ \hat{G} = \frac{1}{n} \sum_{i=1}^{n} \left[ \frac{\partial^2}{\partial \theta \partial \theta^T} f(z_i; \hat{\theta}) \right]$$

# 2.2 Binary Choice

The goal in binary choice analysis is estimation of the **conditional or response probability**,  $\Pr(Y=1\mid X)$ , given a set of regressors X. We may be interested in the response probability or some transformation such as its derivative - the **marginal effect**,  $\frac{\partial}{\partial X}\Pr(Y=1\mid X)$ .

 $Y \in \{0,1\}, X \in \mathbb{R}^d$  (is assumed to) affects Y via  $X^T \beta_0$ , where  $\beta_0 \in \mathbb{R}^d$ .

The conditional probability of Y = 1 is represented by a link function  $F : \mathbb{R} \to [0, 1]$ .

$$\Pr(Y = 1 \mid X) = F(X^T \beta_0)$$

In other words, the model assumes that  $Y \mid X$  is a coin flip (i.e., Bernoulli) with the parameter  $F(X^T \beta_0)$ :

$$Y \mid X \sim \text{Bernoulli}(F(X^T \beta_0)) \text{ a.s. in } X$$

**Example 2.6** The choice of link:

- 1. Linear Probability Model (LPM):  $F(t)=t\mathbf{1}\{t\in[0,1]\}= egin{cases} 0, & t\leq 0 \\ t, & t\in[0,1] \text{ (projection).} \\ 1, & t\geq 1 \end{cases}$
- 2. Logit Model:  $F(t) = \Lambda(t) = \frac{e^t}{1+e^t}$
- 3. Probit Model:  $F(t) = \Phi(t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$

### 2.2.1 Latent Utility Models (structural motivation for probit model)

An agent makes a binary choice  $d \in \{0, 1\}$ . The utility of each choice is given by

$$Y^*(d) = X^T \gamma_d + \epsilon(d), d \in \{0, 1\}$$

where  $X^T \gamma_d$  is the predicted/explained part of utility and  $\epsilon(d)$  is the "taste shock" unobservable part of utility,  $\mathbb{E}\epsilon(0) = \mathbb{E}\epsilon(1) = 0$ . The key difference from RCT is the  $Y^*$  is not randomly assigned.

After observing X and  $\epsilon(1)$ ,  $\epsilon(0)$ , the agent makes a utility-maximizing choice

$$Y = 1\{Y^*(1) \ge Y^*(0)\}$$

The conditional probability of Y = 1 given X is

$$\begin{split} \Pr(Y = 1|X) &= \Pr(Y^*(1) \geq Y^*(0) \mid X) \\ &= \Pr(X^T \gamma_1 + \epsilon(1) \geq X^T \gamma_0 + \epsilon(0)) \\ &= \Pr\left(\frac{\epsilon(0) - \epsilon(1)}{\sqrt{\operatorname{Var}(\epsilon(0) - \epsilon(1))}} \leq X^T \left(\frac{\gamma_1 - \gamma_0}{\sqrt{\operatorname{Var}(\epsilon(0) - \epsilon(1))}}\right)\right) \\ &= F\left(X^T \left(\frac{\gamma_1 - \gamma_0}{\sigma_{\epsilon(1) - \epsilon(0)}}\right)\right) \end{split}$$

where  $F(\cdot)$  is the CDF of  $\frac{\epsilon(1)-\epsilon(0)}{\sigma_{\epsilon(1)-\epsilon(0)}}$ . If  $\epsilon(1),\epsilon(0)$  are jointly normal, then  $F(\cdot)=\Phi(\cdot)$  is the CDF of the standard normal. It gives probit link function by leting  $\beta=\frac{\gamma_1-\gamma_0}{\sigma_{\epsilon(1)-\epsilon(0)}}\in\mathbb{R}^d$ .

The relative importance of  $X_j$  relative to  $X_k$  is  $\frac{\beta_j}{\beta_k} = \frac{(\gamma_1 - \gamma_0)_j}{(\gamma_1 - \gamma_0)_k}, \forall j, k \in \{1, ..., d\}.$ 

# **Marginal Effect**

The marginal effect of change on  $X_i$  is

$$\frac{\partial}{\partial X_i} \Pr(Y = 1 | X = X) = F'(X^T \beta_0) \cdot \beta_j$$

The "average marginal effect" (AME) is given by

$$AME = \mathbb{E}_X F'(X^T \beta_0) \cdot \beta_j$$

The marginal effect for an "average person" (MEA) (may not make sense if X is discrete).

$$MEA = F'((\mathbb{E}X)'\beta_0)\beta_j$$

When  $F'(\cdot)$  is nonlinear, AME  $\neq$  MEA.

# 2.2.2 Estimation: Binary Regression

### From joint to conditional likelihood

Denote the joint distribution of Y and X

$$f(Y, X; \beta) = f(Y \mid X; \beta) \cdot f_X(X)$$

Then,

$$\ln f(Y, X; \beta) = \ln f(Y \mid X; \beta) + \ln f_X(X)$$

Define the conditional likelihood criterion function,

$$Q(\beta) := -\mathbb{E}_{\beta} \ln f(Y, X; \beta) = -\mathbb{E}_{\beta} \ln f(Y \mid X; \beta) - \mathbb{E}_{\beta} \ln f_X(X)$$

The sample criterion function is given by

$$\hat{Q}_n(\theta) = -\frac{1}{n} \sum_{i=1}^n \ln f(Y_i, X_i; \beta)$$

Since  $\ln f_X(X)$  doesn't depend on  $\beta$ ,

$$\arg\min_{\beta} Q(\beta) \equiv \arg\max_{\beta} \mathbb{E}_{\beta} \ln f(Y \mid X; \beta)$$

$$\hat{\theta} = \arg\min_{\beta} \hat{Q}_n(\beta) \equiv \arg\max_{\beta} \frac{1}{n} \sum_{i=1}^n \ln f(Y_i \mid X_i; \beta)$$

# **Binary Regression**

- 1.  $Pr(Y = 1|X; \beta) = F(X^T\beta)$ .
- 2. Log-likelihood

$$\ln f(Y \mid X; \beta) = Y \cdot \ln F(X^{T} \beta) + (1 - Y) \cdot \ln(1 - F(X^{T} \beta))$$

3. Take the derivative, the score is

$$g(Y \mid X; \beta) := \frac{\partial \ln f(Y \mid X; \beta)}{\partial \beta} = \frac{\partial \ln f(Y \mid X, \beta)}{\partial F(X^T \beta)} \frac{\partial F(X^T \beta)}{\partial \beta}$$
$$= \frac{Y - F(X^T \beta)}{F(X^T \beta)(1 - F(X^T \beta))} \cdot (F'(X^T \beta) \cdot X)$$

Note that the score function obeys conditional mean zero restriction at the true value  $\beta = \beta_0$ :  $\mathbb{E}[Y - F(X^T \beta_0)]$ 

$$X] = 0 \Rightarrow \mathbb{E}g(Y \mid X; \beta_0) = 0$$

The MLE ( $\hat{\beta}_{\text{MLE}}$ ) is given by solving F.O.C.

$$\hat{g}(\beta)|_{\beta = \hat{\beta}_{MLE}} = \frac{1}{n} \sum_{i=1}^{n} g(Y_i \mid X_i; \beta)|_{\beta = \hat{\beta}_{MLE}} = 0^d$$
 (2.1)

which is a system of (non)linear equations.

Let the weight of observation i be  $w(X_i, \beta) := \frac{F'(X_i^T \beta)}{F(X_i^T \beta)(1 - F(X_i^T \beta))} \cdot X_i$ . Then, (2.1) can be written as

$$\hat{g}(\beta)|_{\beta = \hat{\beta}_{\text{MLE}}} = \sum_{i=1}^{n} w(X_i, \hat{\beta}_{\text{MLE}}) \cdot (Y_i - F(X_i^T \hat{\beta}_{\text{MLE}})) = 0^d$$

### 2.2.3 Consistency and Asymptotic Normality

Remind that  $\hat{\beta}_{MLE}$  is M-estimator.

**Assumption** *The consistency theorem requires assumptions:* 

- (A1).  $Q(\beta)$  is uniquely minimized at  $\beta = \beta_0$ .
- (A2).  $Q(\beta)$  is continuous on a compact subset of  $\mathbb{R}$ .  $(Q(\beta))$  is continuous if the link  $F(\cdot)$  is continuous.)
- (A3). Uniform Convergence (if  $Q(\beta)$  is convex in  $\beta$ , pointwise convergence is enough, which follows from LLN.) By the Corollary 2.1,

$$\sqrt{n} \left( \hat{\beta}_{\text{MLE}} - \theta_0 \right) \stackrel{d}{\Rightarrow} N \left( 0, \mathcal{I}(\theta_0)^{-1} \right)$$

Since  $Y \mid X \sim \text{Bernoulli}(F(X^T \beta_0)), \text{Var}(Y \mid X) = F(X^T \beta_0) \cdot (1 - F(X^T \beta_0)),$ 

$$\begin{split} \mathcal{I}(\theta_0) &= G(\theta_0) = \text{Var} \left( g(Y \mid X; \theta_0) \right) \\ &= \mathbb{E} \frac{\text{Var} \left( Y \mid X; \theta_0 \right)}{F(X^T \beta_0)^2 (1 - F(X^T \beta_0))^2} \cdot \left( F'(X^T \beta_0) \cdot X \right) \cdot \left( F'(X^T \beta_0) \cdot X \right)^T \\ &= \mathbb{E} \frac{(F'(X^T \beta_0))^2}{F(X^T \beta_0) (1 - F(X^T \beta_0))} \cdot X X^T \end{split}$$

We want to find the "sufficient conditions" for A1 (to ensure that  $Q(\beta)$  is uniquely minimized at  $\beta_0$ ).

**Example 2.7** Consider the example  $F(t) = \frac{e^t}{1+e^t}$ . The Hessian is

$$G(\beta) = \mathbb{E} \frac{\partial g(Y|X,\beta)}{\partial \beta} = \mathbb{E} \frac{\partial X \cdot (Y - F(X^T \beta))}{\partial \beta} = -\mathbb{E} F'(X^T \beta) X \cdot X^T$$

The sufficient condition for (A1) ( $\mathbb{E}XX^T$  is positive definite) is  $0 < \kappa \le F'(X^T\beta_0) \Leftrightarrow X^T\beta_0$  is not too large  $\Leftrightarrow$  tails of  $F'(X^T\beta)$  are not close to 0.

# **2.2.4 Example: Logistic Regression** $F(t) = \frac{e^t}{1+e^t}$

# Lemma 2.3

Given the link function  $F(t) = \frac{e^t}{1+e^t}$ ,

$$F'(t) = \frac{e^t(1+e^t) - e^t \cdot e^t}{(1+e^t)^2} = \frac{e^t}{1+e^t} \cdot \frac{1}{1+e^t} = F(t) \cdot (1-F(t))$$

It implies that

$$g(Y \mid X; \beta) = (Y - F(X^T \beta)) X$$

In this case,  $w(X_i, \beta) = X_i$  doesn't depend on  $\beta$ .

The information matrix is

$$\mathcal{I}(\beta_0) = \mathbb{E}F(X^T \beta_0) \cdot (1 - F(X^T \beta_0)) \cdot XX^T$$

The asymptotic normality is

$$\sqrt{n} \left( \hat{\theta}_{MLE} - \theta_0 \right) \stackrel{d}{\Rightarrow} N \left( 0, \left[ \mathcal{I}(\beta_0) \right]^{-1} \right)$$

The standard errors can be computed by

$$se(\hat{\theta}_{MLE}) = diagonal \left(\frac{1}{n}\hat{\mathcal{I}}(\theta_{MLE})^{-1}\right)^{\frac{1}{2}}$$

# 2.3 Large Sample Testing

Let  $\mathcal{I} := \mathcal{I}(\theta_0)$ . By the Corollary 2.1,

$$\sqrt{n} \left( \hat{\theta}_{\text{MLE}} - \theta_0 \right) \stackrel{d}{\Rightarrow} N \left( 0, \mathcal{I}^{-1} \right)$$
$$\sqrt{n} \hat{g}(\theta_0) \stackrel{d}{\Rightarrow} N \left( 0, \mathcal{I} \right)$$

We want to test

$$H_0: \theta = \theta_0$$
 vs.  $H_1: \theta \neq \theta_0$ 

# 2.3.1 Wald Test: Distance on "x axis"

The test statistic is

$$W = n \left( \hat{\theta}_{\text{MLE}} - \theta_0 \right)^T \hat{\mathcal{I}} \left( \hat{\theta} - \theta_0 \right)$$

where  $\hat{\mathcal{I}}$  is an estimator of  $\mathcal{I}(\theta_0)$ ,  $\hat{\mathcal{I}} := \mathcal{I}(\hat{\theta}_{MLE})^{-1}$ .

Under  $H_0$ :

$$W \sim \chi^2(d)$$
, where  $d = \dim(\theta)$ 

The rejection region (RR) is RR =  $\{W \ge C_{1-\alpha}\}$ , where  $C_{1-\alpha}$  is the  $1-\alpha$  quantile of  $\chi^2(d)$ .

### Proof 2.3

 $\sqrt{n}\mathcal{I}^{\frac{1}{2}}\left(\hat{\theta}_{\mathrm{MLE}}-\theta_{0}\right)\overset{d}{\Rightarrow}N\left(0,I_{d}\right)$ , where  $I_{d}$  is the identity matrix.

# 2.3.2 Lagrange Multiplier Test: Distance using "gradient"

Consider the optimization problem:

$$\max -\hat{Q}(\theta)$$
 s.t.  $\theta = \theta_0$ 

Note  $\hat{g}(\theta) = -\frac{\partial \hat{Q}(\theta)}{\partial \theta}$ . By the F.O.C.,

$$\begin{vmatrix}
\hat{g}(\hat{\theta}) + \lambda &= 0 \\
\hat{\theta} &= \theta_0
\end{vmatrix} \Rightarrow \hat{\lambda} = -\hat{g}(\theta_0)$$

The Lagrange Multiplier test statistic is

 $LM = n\hat{g}(\theta_0)\mathcal{I}^{-1}\hat{g}(\theta_0)$ , where  $\mathcal{I}^{-1}$  is calculated by hypothetical value

Under  $H_0$ :

$$W \sim \chi^2(d)$$
, where  $d = \dim(\theta)$ 

The rejection region (RR) is RR =  $\{LM \ge C_{1-\alpha}\}$ , where  $C_{1-\alpha}$  is the  $1-\alpha$  quantile of  $\chi^2(d)$ .

### **Proof 2.4**

 $\sqrt{n}\mathcal{I}^{-\frac{1}{2}}\hat{g}(\theta_0) \stackrel{d}{\Rightarrow} N(0, I_d)$ , where  $I_d$  is the identity matrix.



**Note** In most distribution,  $W \ge LM$ . (Use Wald if you want to reject.)

### 2.3.3 Likelihood Ratio Test

The Likelihood Ratio test statistic is

$$LR = -2n\left(\hat{Q}(\theta_0) - \hat{Q}(\hat{\theta}_{MLE})\right) \ge 0$$

By Taylor expansion

$$\hat{Q}(\theta_0) - \hat{Q}(\hat{\theta}_{\text{MLE}}) = \underbrace{\frac{\partial}{\partial \theta} \hat{Q}(\hat{\theta}_{\text{MLE}})}_{=0} \left(\theta_0 - \hat{\theta}_{\text{MLE}}\right) + \frac{1}{2} \left(\theta_0 - \hat{\theta}_{\text{MLE}}\right)^T \frac{\partial^2}{\partial \theta^2} \hat{Q}(\theta) \big|_{\theta = \bar{\theta}} \left(\theta_0 - \hat{\theta}_{\text{MLE}}\right)$$

# 2.3.4 Wald is not invariant to parametrization

Consider the hypothesis  $H_0: \beta=1$  vs.  $H_1: \beta\neq 1$  ( $\beta>0$ ). The Wald test statistic is

$$W = n \left( \hat{\beta}_{\text{MLE}} - 1 \right)^T \hat{\mathcal{I}} \left( \hat{\beta} - 1 \right)$$

Parametrization: an equivalent form,  $H_0: \tau(\beta) = \tau(1)$  vs.  $H_1: \tau(\beta) \neq \tau(1)$   $(\beta > 0)$ .

By first order continuously differentiable,

$$\tau(\hat{\beta}) - \tau(1) = \tau'(1)(\hat{\beta} - 1) + \frac{1}{2}\tau''(\bar{\beta})(\hat{\beta} - 1)^{2}$$
$$\sqrt{n}\left(\tau(\hat{\beta}) - \tau(1)\right) = \sqrt{n}\tau'(1)(\hat{\beta} - 1) + \sqrt{n}\frac{1}{2}\tau''(\bar{\beta})(\hat{\beta} - 1)^{2}$$

where  $\bar{\beta} \in [1, \hat{\beta}]$ . Then, under  $H_0$ :

$$\sqrt{n}\left(\tau(\hat{\beta}) - \tau(1)\right) \stackrel{d}{\Rightarrow} N(0, \tau'(1) \text{Var}(\hat{\beta}) \tau'(1))$$

# 2.4 Nonlinear Least Square

Suppose Y is the outcome and X are explanatory variables.

In previous "linear case," we use the form

$$\mathbb{E}[Y \mid X] = B(X)^T \beta, \quad B(X) = [1, X, X^2, ...]$$

Now, we consider a nonlinear expectation function

$$\mathbb{E}[Y \mid X] = \rho(X, \beta_0)$$

where  $\rho$  is known up to  $\beta$  and may not be linear in  $\beta$ 

### Example 2.8

1. Binary case,  $\mathbb{E}[Y \mid X] = \Pr(Y = 1 \mid X) \ Y \in \{0, 1\}$ 

$$Y \mid X \propto \text{Bernoulli}(\rho(X, \beta_0))$$

2. Exponential case,  $\mathbb{E}[Y \mid X] = \lambda(X) := \exp(B(X)^T \beta)$ 

$$Y \mid X \propto \text{Poisson}(\lambda(X))$$

Consider the nonlinear expectation

$$\mathbb{E}[Y \mid X] = \rho(X, \beta_0) = \rho(B(X)^T \beta)$$

Then, a criterion function can be given

$$Q(\beta) = \mathbb{E}[Y - \rho(B(X)^T \beta)]^2, \quad Q(\beta) \ge 0, \forall \beta$$

Necessary:  $\mathbb{E}[Y \mid X] = \operatorname{argmin}_f \mathbb{E}[Y - f(X)]^2$ ; We want to find the  $\beta_0$  s.t.  $\beta_0 = \operatorname{argmin} Q(\beta)$  (sufficiency).

The sample criterion function is

$$\hat{Q}(\beta) = \frac{1}{n} \sum_{i=1}^{n} [Y_i - \rho(B(X_i)^T \beta)]^2$$

The NLS estimator is given by

$$\hat{\beta}_{\text{NLS}} = \operatorname{argmin} \hat{Q}_n(\beta)$$

NLS estimator is also M-estimator, which satisfies consistency and asymptotic normality under some conditions (see Section 2.1).

Let  $m(Z \mid \beta) = \frac{1}{2}(Y - \rho(B(X)^T\beta))^2$ . The score function is

$$g(Z \mid \beta) = \frac{\partial_{\frac{1}{2}}^{1}(Y - \rho(B(X)^{T}\beta))^{2}}{\partial \beta} = -\left[Y - \rho(B(X)^{T}\beta)\right]\rho'(B(X)^{T}\beta)B(X)$$

where  $\mathbb{E}g(Z \mid \beta_0) = 0$  because  $\mathbb{E}[Y|X] = \rho(B(X)^T\beta_0)$ .

The Hessian matrix is given by

$$G(Z \mid \beta) = \frac{\partial}{\partial \beta^T} g(Z \mid \beta) = -\left[ Y - \rho(B(X)^T \beta) \right] \rho''(B(X)^T \beta) B(X) B(X)^T$$
$$+ \rho'(B(X)^T \beta) \rho'(B(X)^T \beta) B(X) B(X)^T$$

The Hessian matrix function at  $\beta = \beta_0$  is

$$G = \mathbb{E}G(Z \mid \beta_0) = \mathbb{E}\left[ (\rho'(B(X)^T \beta))^2 B(X) B(X)^T \right]$$

The variance of  $g(Z \mid \beta)$  can be computed by Law of total variance,

$$\begin{split} \Omega &= \operatorname{Var}(g(Z \mid \beta)) = \mathbb{E}_X \operatorname{Var}(g(Z \mid \beta) \mid X) + \operatorname{Var} \underbrace{\mathbb{E}[g(Z \mid \beta) \mid X]}_{=0} \\ &= \mathbb{E}\left[\left(Y - \rho(B(X)^T \beta)\right)^2 \left(\rho'(B(X)^T \beta)\right)^2 B(X) B(X)^T\right] \end{split}$$

The asymptotic normality gives

$$\sqrt{n}\left(\hat{\beta}_{\text{NLS}} - \beta_0\right) \Rightarrow N\left(0, G^{-1}\Omega G^{-1}\right)$$

We can find the second information equality doesn't hold,  $G \neq \Omega \Rightarrow G^{-1}\Omega G^{-1} \neq G^{-1}$ .

Note Second information equality gives I = -G for maximization problem (e.g. MLE) and I = G for minimization problem.

#### 2.4.1 Efficient NLS

In <u>binary</u> case,  $m(Z \mid \beta) = \frac{1}{2}(Y - \rho(B(X)^T\beta))^2$  is the simplest criterion but  $G \neq \Omega \Rightarrow$  NLS may not be efficient. The inefficiency can be fixed by

$$m_w(Z \mid \beta) = \frac{1}{2}w(x)(Y - \rho(B(X)^T\beta))^2$$

where w(x) is a non-negative weight.

### Claim 2.1

$$\beta_0 = \operatorname{argmin} Q_w(\beta) := \frac{1}{2} \mathbb{E} w(x) (Y - \rho(B(X)^T \beta))^2$$

### Proof 2.5

Notice that by definition

$$\rho(B(X)^T \beta_0) := \mathbb{E}[Y \mid X = x] = \operatorname*{argmin}_{f(x)} \mathbb{E}[(Y - f(x))^2 \mid X = x]$$

Then,

$$\beta_0 = \operatorname*{argmin}_{\beta} \mathbb{E}[Y - \rho(B(X)^T \beta) \mid X] w(x)$$

$$\Rightarrow \beta_0 = \operatorname*{argmin}_{\beta} \int_x \mathbb{E}[Y - \rho(B(X)^T \beta) \mid X] w(x) f_X(x) dx$$

### Claim 2.2

Optimal weight 
$$w^*(x) = \frac{1}{\text{Var}(Y|X)} = \frac{1}{\rho(B(X)^T\beta)(1-\rho(B(X)^T\beta))}$$

### Proof 2.6

$$Q_w(\beta) := \frac{1}{2} \mathbb{E}w(X) (Y - \rho(B(X)^T \beta))^2$$

$$G_w = \mathbb{E}\left[w(X) (\rho'(B(X)^T \beta))^2 B(X) B(X)^T\right]$$

$$\Omega_w = \mathbb{E}\left[w^2(X) \left(Y - \rho(B(X)^T \beta)\right)^2 \left(\rho'(B(X)^T \beta)\right)^2 B(X) B(X)^T\right]$$

The efficient choice of  $w^*(x)$  is to make  $G_w = \Omega_w$ 

$$w^*(X) = \frac{1}{\mathbb{E}(Y - \rho(B(X)^T \beta) \mid X)^2} = \frac{1}{\text{Var}(Y \mid X)}$$

### **Two-Step NLS**

- 1. Estimate  $\hat{\beta}_{NLS}$  by (regular) NLS.
- 2. Estimate  $\hat{\beta}_{WNLS}$  by

$$\hat{\beta}_{\text{WNLS}} = \operatorname{argmin} \sum_{i=1}^{n} \frac{(Y - \rho(B(X)^{T}\beta))^{2}}{\rho(B(X)^{T}\beta)(1 - \rho(B(X)^{T}\beta))}$$

# 2.5 Quantile Regression

Let  $\tau \in (0,1)$  be the quantile level and the  $\tau$ 'th quantile  $q_Y(\tau) \in \mathbb{R}$  is defined as

$$F_Y(q_Y(\tau)) = \tau$$

Given  $Y \sim F_Y$  (CDF, continuous without point mass), we construct a criterion  $Q(\tau)$  such that

$$q_Y(\tau) = \operatorname*{argmin}_q Q(q) := \mathbb{E}\rho_{\tau}(Y - q)$$

where  $\rho_{\tau}(\cdot)$  is the check function defined as

$$\rho_{\tau}(u) := \{(1-\tau)\mathbf{1}\{u < 0\} + \tau\mathbf{1}\{u > 0\}\}|u|$$

# 2.5.1 Linear Quantile Regression Model

Given (Y, X), let  $F_{Y|X}(y \mid x)$  be the conditional CDF, which is strictly monotone a.s. in X (for all values of X).

Define  $Q_{Y|X}(\tau \mid x)$  be the conditional quantile, where

$$F_Y(Q_{Y|X}(\tau \mid x)) = \tau$$
 a.s. in X

# **Definition 2.6 (Linear Quantile Regression Model (LQR))**

$$Q_{Y|X}(\tau \mid x) = X^T \beta_0(\tau)$$

Consider

$$Y = X^T \gamma_0 + \epsilon$$

where  $\epsilon$  is independent of X (not  $\mathbb{E}[\epsilon|X] = 0$ , which is too weak).

**Assumption** (Independence)  $\epsilon$  is independent of X (stronger than  $\mathbb{E}[\epsilon|X] = 0$ ).

### **Lemma 2.4 (By Independence)**

$$Q_{\epsilon|X}(\tau|X) = Q_{\epsilon}(\tau)$$
 a.s. in  $X$ 

Proof 2.7

$$\begin{split} F_{\epsilon,X}(\epsilon,X) &= F_{\epsilon}(\epsilon) F_X(X) \Rightarrow F_{\epsilon|X}(\epsilon|X) = F_{\epsilon}(\epsilon) \\ &\Rightarrow Q_{\epsilon}(\tau) = F_{\epsilon}^{-1}(\epsilon) = Q_{\epsilon|X}(\tau|X) \end{split}$$

### **Lemma 2.5 (Equivalence Property)**

Let  $T: \mathbb{R} \to \mathbb{R}$  be an increasing function. Then

$$Q_{T(Y)}(\tau) = T(Q_Y(\tau))$$

### Proof 2.8

Given T is strictly increasing,

$$\begin{split} \tau &= \Pr(Y < Q_Y(\tau)) \\ &= \Pr(T(Y) < T(Q_Y(\tau))) \\ &= F_{T(Y)}(T(Q_Y(\tau))) \\ \Rightarrow Q_{T(Y)}(\tau) &= T(Q_Y(\tau)) \end{split}$$

**Example 2.9** The  $T(\cdot)$  can be  $T(y) = \min\{y, L\}, T(y) = ay + b$ .

The quantile form of the LQR model is

$$Q_{Y|X}(\tau|X) = X^T \beta_0 + Q_{\epsilon}(\tau|X) = X^T \beta_0(\tau)$$

as  $X = (1, X_1, ..., X_n)$ , where

$$(\beta_0(\tau))_1 = (\beta_0)_1 + Q_{\epsilon}(\tau)$$

$$(\beta_0(\tau))_{2:d} = (\beta_0)_{2:d}$$

**Example 2.10 (Location-Scale Model)**  $Y = X^T \gamma_0 + (X^T \delta_0) \epsilon$ , where  $X^T \delta_0 > 0$  a.s. in X. Then,

$$\begin{aligned} Q_{Y|X}(\tau|X) &= Q_{\epsilon|X}(\tau|X)(X^T\delta_0) + X^T\gamma_0 \\ \text{(by independence)} &= X^T(Q_{\epsilon}(\tau)\delta_0) + X^T\gamma_0 \\ &= X^T\beta_0(\tau) \end{aligned}$$

where  $\beta_0(\tau) = Q_{\epsilon}(\tau)\delta_0 + \gamma_0$ .

### 2.5.2 Quantile Causal Effects

Z = (D, Y), there is no covariate X for now.

$$Y = h(D, u)$$

where  $D \in \{0, 1\}$  is binary treatment and  $u \in \mathbb{R}$  is unobservable.

The treatment effect is

$$Y(1) - Y(0) = h(1, u) - h(0, u)$$

Suppose  $D \perp (Y(1), Y(0))$  by random assignment. ATE  $= \mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y|D=1] - \mathbb{E}[Y|D=0]$ . Instead of considering the ATE, we care about the  $\tau$ -quantile of TE

$$Q_{Y(1)-Y(0)}(\tau)$$

It can be identified without further assumptions

### **Assumption**

- A1.  $D \perp (Y(1), Y(0))$
- A2. h(1, u) and h(0, u) are increasing in u.
- A3. h(1, u) h(0, u) is also increasing in u.

### Theorem 2.3

If these three assumptions hold,

$$Q_{Y(1)-Y(0)}(\tau) = Q_{Y|D=1}(\tau) - Q_{Y|D=0}(\tau)$$

# Proof 2.9

$$Q_{Y(1)-Y(0)}(\tau) = Q_{h(1,u)-h(0,u)}(\tau)$$

(By equivalence property 2.5 and A3) =  $h(1, Q_u(\tau)) - h(0, Q_u(\tau))$ 

(By equivalence property 2.5 and A2) 
$$=Q_{h(1,u)}(\tau)-Q_{h(0,u)}(\tau)$$

$$= Q_{Y|D=1}(\tau) - Q_{Y|D=0}(\tau)$$

With covariate X, the assumptions needed for identification change to

### **Assumption**

A1. 
$$D \perp (Y(1), Y(0)) \mid X$$

A2. h(1, x, u) and h(0, x, u) are increasing in u for each x.

A3. h(1, x, u) - h(0, x, u) is also increasing in u for each x.

# **Chapter 3 Bootstrap**

Bootstrap is a procedure to compute properties of an estimator by random re-sampling with replacement from the data. It was first introduced by Efron (1979).

Suppose we have i.i.d. sample  $\vec{Y} = (Y_1, Y_2, ..., Y_n)$  taken i.i.d. from a distribution with cdf F and we want to compute a statistic  $\theta$  of the distribution using an estimator  $\hat{\theta}_n(\vec{Y})$ . The distribution of the statistic  $\theta$  has cdf G. While the estimator  $\hat{\theta}_n(\vec{Y})$  may not be optimal in any sense, it is often the case that  $\hat{\theta}_n(\vec{Y})$  is consistent in probability, i.e.,  $\hat{\theta}_n(\vec{Y}) \stackrel{p}{\longrightarrow} \theta$  as  $n \to \infty$ . We want to analyze the performance of the estimartor  $\hat{\theta}_n(\vec{Y})$  in terms of the following quantities:

(1). Bias:

$$\operatorname{Bias}(\hat{\theta}_n) = \mathbb{E}_{\theta}[\hat{\theta}_n(\vec{Y})] - \theta$$

(2). Variance:

$$\operatorname{Var}(\hat{\theta}_n) = \mathbb{E}_{\theta}[\hat{\theta}_n^2(\vec{Y})] - \mathbb{E}_{\theta}^2[\hat{\theta}_n(\vec{Y})]$$

(3). CDF:

$$G_n(t) = P(\hat{\theta}_n(\vec{Y}) < t), \forall t$$

# 3.1 Traditional Monte-Carlo Approach

Generate k vectors  $\vec{Y}^{(i)}, i = 1, 2, ..., k$  (total kn random variables)

(1). Bias:

$$\widehat{\text{Bias}}(\hat{\theta}_n) = \frac{1}{k} \sum_{j=1}^k \hat{\theta}_n(\vec{Y}^{(j)}) - \theta$$

By the strong law of large number, the mean  $\frac{1}{k}\sum_{j=1}^k \hat{\theta}_n(\vec{Y}^{(j)})$  converges almost surely to the expected value  $\mathbb{E}_{\theta}[\hat{\theta}_n(\vec{Y})]$ , so  $\widehat{\text{Bias}}(\hat{\theta}_n) \xrightarrow{a.s.} \text{Bias}(\hat{\theta}_n)$ .

(2). Variance:

$$\widehat{\text{Var}}(\hat{\theta}_n) = \frac{1}{k} \sum_{j=1}^k \hat{\theta}_n^2(\vec{Y}^{(j)}) - \left(\frac{1}{k} \sum_{j=1}^k \hat{\theta}_n(\vec{Y}^{(j)})\right)^2$$

Still by the strong law of large number, the mean  $\frac{1}{k}\sum_{j=1}^k \hat{\theta}_n(\vec{Y}^{(j)})$  converges almost surely to the expected value  $\mathbb{E}_{\theta}[\hat{\theta}_n(\vec{Y})]$  and the mean  $\frac{1}{k}\sum_{j=1}^k \hat{\theta}_n^2(\vec{Y}^{(j)})$  converges almost surely to the expected value  $\mathbb{E}_{\theta}[\hat{\theta}_n^2(\vec{Y})]$ , so  $\widehat{\text{Var}}(\hat{\theta}_n) \xrightarrow{a.s.} \text{Var}(\hat{\theta}_n)$ .

(3). Empirical Distribution Function (CDF):

$$\hat{G}_n(t) = \frac{1}{k} \sum_{j=1}^k \mathbf{1} \{ \hat{\theta}_n(\vec{Y}^{(j)}) < t \}, \forall t$$

By law of large numbers, we have  $\hat{G}_n(x) \xrightarrow{a.s.} G_n(x), \forall t \in \mathbb{R}$  as  $k \to \infty$ .

By Glivenko-Cantelli Theorem, we have  $\sup_{t\in\mathbb{R}|\mathbb{R}} \hat{G}_n(x) - G_n(x)| \xrightarrow{a.s.} 0$  as  $k\to\infty$ . (Stronger result).

# 3.2 Bootstrap (When data is not enough)

Suppose we only have data  $\vec{Y} = (Y_1, ..., Y_n)$  and we can't draw new samples from the real distribution anymore. We reuse  $Y_1, ... Y_n$  to obtain resamples  $\vec{Y}^* = (Y_1^*, ..., Y_n^*)$  (drawing from  $\{Y_1, ... Y_n\}$  uniformly, equivalently drawing from the empirical distribution with cdf  $F_n(y) \triangleq \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{Y_i = y\}$ ). We get k resamples, denoted by  $\vec{Y^*}^{(1)}, ..., \vec{Y^*}^{(k)}$ .

1. Bias:

$$\operatorname{Bias}^*(\hat{\theta}_n) \triangleq \frac{1}{k} \sum_{j=1}^k \hat{\theta}_n(\vec{Y^*}^{(j)}) - \theta$$

2. Variance:

$$\operatorname{Var}^{*}(\hat{\theta}_{n}) \triangleq \frac{1}{k} \sum_{j=1}^{k} \hat{\theta}_{n}^{2}(\vec{Y^{*}}^{(j)}) - \left(\frac{1}{k} \sum_{j=1}^{k} \hat{\theta}_{n}(\vec{Y^{*}}^{(j)})\right)^{2}$$

3. CDF:

$$\hat{G}_{n}^{*}(t) = \frac{1}{k} \sum_{j=1}^{k} \mathbf{1}_{\hat{\theta}_{n}(\vec{Y}^{*}(j)) < t}, \forall t$$

\$

**Note**  $\hat{G}_n^*(t)$  may not always converges to  $G_n$  as  $n \to \infty$ .

**Example 3.1 (Bootstrap Fail Example)** Suppose  $Y \sim \text{i.i.d.} [0, \theta]$  and consider the estimator  $\hat{\theta}_n(\vec{Y}) = \max_i Y_i \triangleq Y_{(n)}$ . Then, for all  $t \geq 0$ ,

$$G_n(t) \to 1 - e^{-\frac{t}{\theta_F}} \text{ as } n \to \infty$$

But for all  $t \geq 0$ ,

$$\hat{G}_n^*(t) \ge P_{F_n}(Y_{(n)} = Y_{(n)}^*) = 1 - (1 - \frac{1}{n})^n \to 1 - e^{-1} \text{ as } n \to \infty$$

# 3.3 Residual Bootstrap (for problem with not i.i.d. data)

The bootstrap principle is quite general and may also be used in problems where the data  $Y_i$ ,  $1 \le i \le n$ , are not i.i.d.

# 3.3.1 Example: Linear

Consider the model

$$Y_i = a + bs_i + Z_i, i = 1, 2, ..., n$$

where  $\theta = (a, b)$  is the parameter to be estimated,  $\vec{s} = (s_1, ..., s_n)$  is a known signal, and  $Z_i \sim \mathcal{N}(0, \sigma^2)$  (i.i.d.).

The Linear Least Square Estimator is

$$(\hat{a}_n, \hat{b}_n) = \underset{(a,b)}{\operatorname{argmin}} \sum_{i=1}^n (Y_i - a - bs_i)^2$$

Given  $\vec{Y}$  and estimator  $\hat{\theta}_n = (\hat{a}_n, \hat{b}_n)$ , define the residual errors (not i.i.d.)

$$E_i = Y_i - \hat{a}_n - \hat{b}_n s_i \approx Z_i$$

Then, we use bootstrap to generate k resamples of  $\vec{E} = (E_1, E_2, ..., E_n)$ .

For j = 1, ..., k, do the following:

- 1. Obtain  $\vec{E^*}^{(j)}$  by uniformly resampling from  $\vec{E}$ .
- 2. Compute pseudo-data  $Y_i^{*(j)} = \hat{a}_n + \hat{b}_n s_i + E_i^{*(j)}$  for  $1 \le i \le n$ .
- 3. Compute LS estimator to the pseudo-data

$$\hat{\theta}_n^{(j)} = (\hat{a}_n^{(j)}, \hat{b}_n^{(j)}) = \underset{(a,b)}{\operatorname{argmin}} \sum_{i=1}^n (Y_i^{*(j)} - a - bs_i)^2$$

Then, we can evaluate bias

$$\widehat{Bias} = \frac{1}{k} \sum_{i=1}^{k} \hat{\theta}_n^{(j)} - \theta$$

### 3.3.2 Example: Nonlinear Markov Process

Consider the model  $Y_i = F_{\theta}(Y_{i-1}) + Z_i$ , where  $Z_i \sim \mathcal{N}(0, \sigma^2)$  (i.i.d.) for i = 1, 2, ..., n

Parameter  $\theta = (a, b)$ . Linear Least Square Estimator:

$$\hat{\theta}_n(\vec{Y}) = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^n (Y_i - F_{\theta}(Y_{i-1}))^2$$

Given  $\vec{Y}$ , the residual (not i.i.d.)

$$E_i = Y_i = \hat{a}_n - F_{\hat{\theta}_n}(Y_{i-1}) \approx Z_i$$

Generate k resamples of  $\vec{E} = (E_1, E_2, ..., E_n)$ 

$$\Rightarrow$$
 obtain  $\vec{E^*}^{(1)}, \vec{E^*}^{(2)}, ..., \vec{E^*}^{(k)}$  by resampling

$$\Rightarrow$$
 Fix  $Y_0^{*(j)}=Y_0$  , compute pseudo-data  $Y_i^{*(j)}=F_{\hat{\theta}_n}(Y_{i-1}^{*(j)})+E_i^{*(j)}$ 

⇒ Compute LS estimator

$$\hat{\theta}_n^{(j)} = \underset{(a,b)}{\operatorname{argmin}} \sum_{i=1}^n (Y_i^{*(j)} - F_{\hat{\theta}_n}(Y_{i-1}^{*(j)}))^2$$

⇒ Evaluate bias

$$\widehat{Bias} = \frac{1}{k} \sum_{i=1}^{k} \hat{\theta}_n^{(j)} - \theta$$

# 3.4 Posterior Simulation / Bayesian (Weighted) Bootstrap

**Assumption** Bootstrap makes a strong assumption: The data is discrete and values not seen in the data are impossible.

Consider  $Z \in \mathbb{Z} = \{z_1, ..., z_J\}$  with parameter  $\vec{\theta} = \{\theta_1, ..., \theta_J\} \in \Theta = \mathbb{S}^{J-1} = \{\vec{\theta} \in \mathbb{R}^J : \sum_{j=1}^J \theta_j = 1, \theta_j \geq 0, j = 1, ..., J\}$  such that  $P(Z = z_j \mid \vec{\theta}) = \theta_j$ .

Given a sample  $\vec{Z}=(Z_1,...,Z_N)$ . Define  $N_j=\sum_{i=1}^N \mathbf{1}\{Z_i=z_j\}, j=1,2,...,J$ , the number of observations that have value  $z_j$ . Then, the conditional pmf of  $\vec{Z}\mid\vec{\theta}$  is

$$f(\vec{Z} \mid \vec{\theta}) = \prod_{j=1}^{J} \theta_{j}^{N_{j}}$$

# Definition 3.1 (Steps to estimate $\beta$ by Bayesian Bootstrap)

- (1). We have prior  $\pi(\vec{\theta})$ .
- (2). Given  $\vec{Z}$ , calculate posterior distribution  $\pi(\vec{\theta} \mid \vec{Z})$ .
- (3). Draw samples  $\vec{\theta}^{(t)}, t = 1, ..., T$  from  $\pi(\vec{\theta} \mid \vec{Z})$ .
- (4). Then compute  $\frac{1}{T} \sum_{t=1}^{T} \hat{\beta}(\vec{\theta}^{(t)})$ .

# 3.4.1 Dirichlet Distribution Prior

A convenient way to assign the prior distribution of  $\vec{\theta}$  over  $\Theta$  is to use Dirichlet distribution.

# **Definition 3.2** (Dirichlet Distribution)

A Dirichlet distribution with parameters  $\vec{\alpha} = (\alpha_1, ..., \alpha_J), J \geq 2$ . It allocates mass on  $\vec{\theta}$  over  $\Theta$ ,

$$\pi(\vec{\theta}) = \frac{\Gamma(\sum_{j=1}^{J} \alpha_j)}{\sum_{j=1}^{N} \Gamma(\alpha_j)} \prod_{j=1}^{J} \theta_j^{\alpha_j - 1}$$

where  $\Gamma(z) \triangleq \int_0^\infty t^{z-1} e^{-t} dt$  is Gamma function (if z is positive integer,  $\Gamma(z) = (z-1)!$ ).

Note Dirichlet distribution generalizes Beta distribution.

Now let's use Dirichlet distribution with parameters  $\vec{\alpha} = (\alpha_1, ..., \alpha_J)$  to estimate  $\mathbb{E}[\vec{\theta} \mid \vec{Z}]$ .

As  $f(\vec{Z}\mid\vec{\theta})=\prod_{j=1}^{J}\theta_{j}^{N_{j}},$  we can compute the posterior beliefs

$$\pi(\vec{\theta} \mid \vec{Z}) = \frac{f(\vec{Z} \mid \vec{\theta})P(\vec{\theta})}{\int f(\vec{Z} \mid \vec{\theta}')P(\vec{\theta}')d\vec{\theta'}} = \frac{\Gamma(\sum_{j=1}^{J}(N_j + \alpha_j))}{\sum_{j=1}^{N}\Gamma(N_j + \alpha_j)} \prod_{i=1}^{J} \theta_j^{N_j + \alpha_j - 1}$$



Figure 3.1: Dirichlet Distribution Examples

That is

$$\theta \mid \vec{Z} \sim \text{Dirichlet}(\bar{\alpha}), \text{ where } \bar{\alpha}_j = \alpha_j + N_j, \forall j$$

# Simulate samples from Dirichlet distribution

### **Definition 3.3 (Simulate samples from Dirichlet**( $\vec{\alpha}$ ))

- 1. Consider a series of independent Gamma random variable  $w_i \sim \text{Gamma}(\alpha_i, 1), i = 1, ..., J;$
- 2. Define  $v_i = \frac{w_i}{\sum_{j=1}^{J} w_j}$ ;
- 3. We have  $(v_1,...,v_J) \sim \text{Dirichlet}(\alpha_1,...,\alpha_J)$ .

# 3.4.2 Haldane Prior

We may also begin with an uninformative prior, an improper prior,  $\operatorname{Dirichlet}(\vec{\alpha})$ , where  $\vec{\alpha} \to 0$ .  $\pi(\theta) \propto \frac{1}{\theta_1 \theta_2 \cdots \theta_J}$ . Under this prior, the posterior is  $\operatorname{Dirichlet}(N_1,...,N_J)$ , where  $N_j = \sum_{i=1}^N \mathbf{1}\{Z_i = z_j\}$ .

# 3.4.3 Linear Model Case

Each sample is  $Z_i = (1, X_{1,i}, X_{2,i}, X_{3,i}, X_{4,i})$ . The linear regression coefficient is  $\beta = \mathbb{E}[XX']^{-1}\mathbb{E}[XY]$ , and  $\mathbb{E}^*[Y \mid X = x] = x'\beta$ .

#### 3.4.4 Bernoulli Case

Consider the problem of Example ??. Given N random sample  $\{Z_1, ..., Z_N\}$  from a Bernoulli distribution with parameter  $\theta$  and the sum  $\sum_{i=1}^{N} Z_i = S$ .

Consider a series of Gamma random variable  $w_i^{(t)} \sim \operatorname{Gamma}(1,1)$  from time t=1,...,T. Then, we have

$$\begin{split} &\sum_{i=1}^{N} w_i^{(t)} \mathbf{1}_{\{Z_i=1\}} \sim \operatorname{Gamma}(S, 1) \\ &\sum_{i=1}^{N} w_i^{(t)} \mathbf{1}_{\{Z_i=0\}} \sim \operatorname{Gamma}(N-S, 1) \end{split}$$

Define  $v_i^{(t)} = \frac{w_i^{(t)}}{\sum_{j=1}^N w_j^{(t)}}$ . Based on the property of Gamma distribution, we have  $\mathbb{E}[w_i^{(t)}] = \operatorname{Var}[w_i^{(t)}] = 1$  and  $\mathbb{E}[v_i^{(t)}] = \frac{1}{N}$ .

As the relation between Gamma distribution and Beta distribution, we have

$$\frac{\operatorname{Gamma}(S,1)}{\operatorname{Gamma}(S,1) + \operatorname{Gamma}(N-S,1)} \sim \operatorname{Beta}(S,N-S)$$

Hence, we can define

$$\begin{split} \hat{\theta}^{(t)} &= \sum_{i=1}^{N} v_i^{(t)} Z_i \\ &= \sum_{i=1^N} \frac{w_i^{(t)} Z_i}{\sum_{j=1}^{N} w_j^{(t)}} \sim \text{Beta}(S, N - S) \end{split}$$

which is close to the posterior beliefs in Example ?? and can be seen as the posterior beliefs drawn from an  $\underline{\text{improper prior}}$ :  $\theta \sim \text{Beta}(\epsilon, \epsilon), \epsilon \to 0$ , which has p.d.f.  $\pi(\theta) = \frac{1}{\theta(1-\theta)}$ .

We use

$$\frac{1}{T} \sum_{t=1}^{T} \hat{\theta}^{(t)} \approx \mathbb{E}[\theta^{(t)} | \{Z_1, ..., Z_n\}]$$

to estimate  $\mathbb{E}[\theta^{(t)}|\{Z_1,...,Z_n\}].$ 

# **Chapter 4 Linear Predictors / Regression**

# 4.1 Best Linear Predictor

Consider a prediction problem that the distribution  $F_{X,Y}$  is known, we observe  $X = \begin{pmatrix} 1 \\ R \end{pmatrix} \in \mathbb{R}^{K \times 1}$  and predict  $Y \in \mathbb{R}$ . Only linear functions of X are allowed  $\mathcal{L} = \{X'b : b \in \mathbb{R}^K\}$ . We use square experience loss  $(Y - X'b)^2$ . We want to minimze Risk (mean squared error)

$$\mathbb{E}_{X,Y}[(Y - X'b)^{2}] = \int_{x,y} (y - x'b)^{2} f_{x,y}(x,y) dx dy$$

**Assumption** Following inference is based on assumptions:

(i). 
$$\mathbb{E}[Y^2] < \infty$$
;

(ii). 
$$\mathbb{E}[||X||^2] < \infty$$
 (Frobenius norm);

(iii). 
$$\mathbb{E}[(\alpha'X)^2] > 0$$
 for any non-zero  $\alpha \in \mathbb{R}^K$ .

Let  $\beta_0 = \arg\min_{b \in \mathbb{R}^k} \mathbb{E}_{X,Y}[(Y - X'b)^2]$ . By the F.O.C.

$$\mathbb{E}[X(Y - X'\beta_0)] = 0$$

$$\mathbb{E}[XY] - \mathbb{E}[XX']\beta_0 = 0$$

$$\mathbb{E}[XY] = \underbrace{\mathbb{E}[XX']}_{non-singular}\beta_0$$

$$\beta_0 = \mathbb{E}[XX']^{-1}\mathbb{E}[XY]$$

# **Proposition 4.1 (Best Linear Predictor)**

Hence, the mean-squared error minimizing linear predictor of Y given X is

$$\mathbb{E}^*[Y|X] = X'\beta_0$$
, where  $\beta_0 = \mathbb{E}[XX']^{-1}\mathbb{E}[XY]$ 

$$\mathbb{E}_{X,Y}[X(\underline{Y-X'\beta_0})] = \begin{pmatrix} \mathbb{E}[u] \\ \mathbb{E}[uR] \end{pmatrix} = \mathbf{0}$$

Hence, we have  $\mathbb{E}[u] = 0$ , then  $\mathbb{E}[uR] = 0 = \text{Cov}(u, R)$ .

$$\mathbb{E}[u] = \mathbb{E}[uR] = Cov(u, R) = 0$$
, where  $u = Y - \mathbb{E}^*[Y|X]$ .

If u > 0, it is underpredicting and if u < 0, it is overpredicting.

### **Result 1 (ure Partitioned Inverse Formula)**

When we separate the constant term from other variables, we can write the **Best Linear Predictor** as:

# Proposition 4.2 (Best Linear Predictor (ure Partitioned Inverse Formula))

$$X = \begin{pmatrix} 1 \\ R \end{pmatrix}, \, \beta_0 = \begin{pmatrix} \alpha_0 \\ \beta_* \end{pmatrix}, \, \mathbb{E}[XX']^{-1} = \begin{bmatrix} 1 & \mathbb{E}[R]' \\ \mathbb{E}[R] & \mathbb{E}[RR'] \end{bmatrix}^{-1}, \, \mathbb{E}[XY] = \begin{pmatrix} \mathbb{E}[Y] \\ \mathbb{E}[RY] \end{pmatrix}. \, \textit{Then,}$$

$$\alpha_0 = \mathbb{E}[Y] - \mathbb{E}[R]'\beta_*$$

$$\beta_* = \underbrace{Var(R)^{-1}}_{(K-1)\times(K-1)} \times \underbrace{Cov(R,Y)}_{(K-1)\times1}$$

# 4.2 Convergence of OLS

# 4.2.1 Approximation

OLS Fit is

$$\hat{\beta} = \left[\frac{1}{N} \sum_{i=1}^{N} X_i X_i'\right]^{-1} \left[\frac{1}{N} \sum_{i=1}^{N} X_i Y_i\right]$$

# Theorem 4.1 (Weak Law of Large Numbers (wLLN))

The weak law of large numbers (also called Khinchin's law) states that the sample average converges in probability towards the expected value.

$$\overline{X}_n \xrightarrow{P} \mu$$
 when  $n \to \infty$ .

*That is, for any positive number*  $\varepsilon$ *,* 

$$\lim_{n\to\infty} \Pr(|\overline{X}_n - \mu| < \varepsilon) = 1.$$



2. By LLN and 
$$f(X) = X^{-1}$$
 is continuous,  $\left[\frac{1}{N} \sum_{i=1}^{N} X_i X_i'\right] \xrightarrow{P} \mathbb{E}[XX']^{-1}$ 

3. Hence,

$$\hat{\beta} = \left[\frac{1}{N} \sum_{i=1}^{N} X_i X_i'\right]^{-1} \left[\frac{1}{N} \sum_{i=1}^{N} X_i Y_i\right] \xrightarrow{P} \mathbb{E}[XX']^{-1} \mathbb{E}[XY] = \beta_0$$

# Theorem 4.2 (Central Limit Theorem (CLT))

$$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \xrightarrow{D} N(0, 1) \text{ when } n \to \infty$$

Z converges in distribution to N(0,1) as  $n \to \infty$ 

(converges in distribution:  $P(\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \le a) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-\frac{x^2}{2}} dx$ )

Application to OLS: Let  $u = Y - X'\beta_0$ . Then,

$$\hat{\beta} = \left[ \frac{1}{N} \sum_{i=1}^{N} X_i X_i' \right]^{-1} \left[ \frac{1}{N} \sum_{i=1}^{N} X_i Y_i \right]$$

$$= \left[ \frac{1}{N} \sum_{i=1}^{N} X_i X_i' \right]^{-1} \left[ \frac{1}{N} \sum_{i=1}^{N} X_i (u_i + X_i' \beta_0) \right]$$

$$= \beta_0 + \left[ \frac{1}{N} \sum_{i=1}^{N} X_i X_i' \right]^{-1} \left[ \frac{1}{\sqrt{N}} \sum_{i=1}^{N} X_i u_i \right]$$

Then,

$$\sqrt{N}(\hat{\beta} - \beta_0) = \left[\frac{1}{N} \sum_{i=1}^{N} X_i X_i'\right]^{-1} \left[\frac{1}{\sqrt{N}} \sum_{i=1}^{N} X_i u_i\right]$$

1. By LLN, 
$$\left[\frac{1}{N}\sum_{i=1}^{N}X_{i}X_{i}'\right]^{-1} \xrightarrow{P} \mathbb{E}[XX']^{-1} \triangleq \Gamma_{0}^{-1}$$
.

2. By CLT, 
$$\left[\frac{1}{\sqrt{N}}\sum_{i=1}^{N}X_{i}u_{i}\right]\sim\mathcal{N}(0,\Omega_{0})$$
, where

$$\Omega_0 = Var[X_i u_i] = \mathbb{E}[\|X_i u_i\|^2] = \mathbb{E}[\|x_i\|^2 u_i^2] \le (\mathbb{E}[\|x_i\|^4])^{\frac{1}{2}} \mathbb{E}[u_i^4]^{\frac{1}{2}}$$

Hence,

$$\sqrt{N}(\hat{\beta} - \beta_0) \xrightarrow{D} N\left(0, \Gamma_0^{-1}\Omega_0\Gamma_0^{-1}\right)$$

The estimation of  $\Gamma_0$  and  $\Omega_0$ :

$$\begin{split} \hat{\Gamma} &= \frac{1}{N} \sum_{i=1}^{N} X_i X_i' \\ \hat{\Omega} &= \frac{1}{N} \sum_{i=1}^{N} X_i \hat{u_i} \hat{u_i}' X_i', \quad \text{where } \hat{u_i} = Y_i - X_i' \hat{\beta} \end{split}$$

We have

$$\hat{\Gamma}^{-1}\hat{\Omega}\hat{\Gamma}^{-1} \xrightarrow{P} \Gamma_0^{-1}\Omega_0\Gamma_0^{-1}$$

Then,

$$\hat{\beta} \xrightarrow{approx} N\left(\beta_0, \frac{\hat{\Gamma}^{-1}\hat{\Omega}\hat{\Gamma}^{-1}}{N}\right)$$

### 4.2.2 Testing and Confidence Interval

Let  $\hat{\Lambda} = \hat{\Gamma}^{-1} \hat{\Omega} \hat{\Gamma}^{-1}$ ,  $\Lambda = \Gamma_0^{-1} \Omega_0 \Gamma_0^{-1}$ ,  $\sqrt{N} (\hat{\beta}_k - \beta_k) \xrightarrow{D} N (0, \Lambda_{kk})$ . Hence,

$$T_N \triangleq \sqrt{N}\Lambda_{kk}^{-\frac{1}{2}} \left(\hat{\beta}_k - \beta_k\right) \xrightarrow{D} N(0, 1)$$

Consider the event  $A = \mathbf{1} \{ |T_N| \le 1.96 \}$ . We have

$$Pr(A = 1) = \Phi(1.96) - \Phi(-1.96) = 0.95$$

Specifically,

$$A = \mathbf{1} \{ |T_N| \le 1.96 \}$$

$$= \mathbf{1} \left\{ \hat{\beta}_k - 1.96 \frac{\Lambda_{kk}^{\frac{1}{2}}}{\sqrt{N}} \le \beta_k \le \hat{\beta}_k + 1.96 \frac{\Lambda_{kk}^{\frac{1}{2}}}{\sqrt{N}} \right\}$$

The "Random Interval" is

$$\left[ \hat{\beta}_{k} - 1.96 \frac{\Lambda_{kk}^{\frac{1}{2}}}{\sqrt{N}}, \hat{\beta}_{k} + 1.96 \frac{\Lambda_{kk}^{\frac{1}{2}}}{\sqrt{N}} \right]$$

### **Testing Linear Restrictions**

Let  $\theta = H\beta$ , where H is  $p \times k$  and  $\beta$  is  $k \times 1$ .

$$H_0: \theta = \theta_0; \quad H_1: \theta \neq \theta_0$$

We have

$$\sqrt{N}(\hat{\theta} - \theta_0) = H\sqrt{N}\left(\hat{\beta} - \beta_0\right) \xrightarrow[H_0]{D} N(0, H\Lambda_0 H')$$

Moreover,

$$W_0 = N\left(\hat{\theta} - \theta_0\right) (H\Lambda_0 H')^{-1} \left(\hat{\theta} - \theta_0\right) \xrightarrow[H_0]{D} \chi_p^2$$

where  $\mathbb{E}[\chi_p^2] = p$ .

# 4.3 Long, Short, Auxiliary Regression

 $Y \in \mathbb{R}^1$ ,  $X \in \mathbb{R}^K$ ,  $K \in \mathbb{R}^J$ . Consider a researcher interested in the conditional distribution of the logarithm of weekly wages  $(Y \in \mathbb{R}^1)$  given years of competed schooling  $(X \in \mathbb{R}^K)$  and vector of additional worker attributes. This vector could include variables such as age, childhood test scores, and race. Let W be this  $J \times 1$  vector of additional variables.

We can run regression by two ways:

1. Long regression:  $\mathbb{E}^*[Y|X,W] = X'\beta_0 + W'\gamma_0$ .

2. Short regression:  $\mathbb{E}^*[Y|X] = X'b_0$ .

### **Proposition 4.3 (Long Regression)**

Long regression is another form of best linear predictor.

$$\mathbb{E}^*[Y|X, W] = \mathbb{E}^*[Y|Z]$$

$$= Z' \left( \mathbb{E}[ZZ']^{-1} \mathbb{E}[ZY] \right)$$

$$= X'\beta_0 + W'\gamma_0$$

where 
$$egin{pmatrix} eta_0 \\ \gamma_0 \end{pmatrix} = \mathbb{E}[ZZ']^{-1}\mathbb{E}[ZY], \ Z = egin{pmatrix} X \\ W \end{pmatrix}.$$

# **Proposition 4.4 (Auxiliary Regression)**

$$\mathbb{E}^*[W|X] = \Pi_0 X$$

which is multivariate regression. For each row j = 1, ..., J,

$$\mathbb{E}^*[W_i|X] = X'\Pi_{i0}$$

where 
$$\Pi_{j0}=\mathbb{E}[XX']^{-1}\mathbb{E}[XW_j]$$
 and  $\Pi_0=\begin{pmatrix}\Pi'_{10}\\\vdots\\\Pi'_{J0}\end{pmatrix}=\mathbb{E}[WX']\mathbb{E}[XX']^{-1}.$ 

# Theorem 4.3 (Law of Iterated Linear Predictors (LILP))

$$\mathbb{E}^*[Y|X] = \mathbb{E}^*[\mathbb{E}^*[Y|X,W]|X]$$

<u>Facts:</u> Linear predictor is linear operator,  $\mathbb{E}^*[X+Y|W] = \mathbb{E}^*[X|W] + \mathbb{E}^*[Y|W]$ .

Let 
$$Y = \mathbb{E}^*[Y|X,W] + u = X'\beta_0 + W'\gamma_0 + u$$
. Then,

$$\mathbb{E}^*[Y|X] = \mathbb{E}^*[X'\beta_0 + W'\gamma_0 + u|X]$$

$$= \mathbb{E}^*[X'\beta_0|X] + \mathbb{E}^*[W'\gamma_0|X] + \mathbb{E}^*[u|X]$$

$$= X'\beta_0 + (\Pi_0 X)'\gamma_0 + 0$$

$$= X'(\underbrace{\beta_0 + \Pi'_0 \gamma_0}_{b_0})$$

# **Proposition 4.5 (Short Regression)**

$$\mathbb{E}^*[Y|X] = X'b_0$$

where  $b_0 = \beta_0 + \Pi'_0 \gamma_0$ .

# 4.4 Residual Regression

Let the variation in W unexplained by X.

$$\underbrace{V}_{J\times 1} = \underbrace{W}_{J\times 1} - \underbrace{\mathbb{E}^*[W|X]}_{J\times 1} = W - \Pi_0 X$$

# **Proposition 4.6 (Residual Regression)**

Let 
$$\tilde{Y} = Y - \mathbb{E}^*[Y|X]$$
,

$$\mathbb{E}^*[\tilde{Y}|V] = V'\gamma_0$$

# Proof 4.1

$$Y = X'\beta_0 + W'\gamma_0 + u$$

$$\tilde{Y} = X'\beta_0 - \mathbb{E}^*[Y|X] + W'\gamma_0 + u$$

$$= -X'(\Pi'_0\gamma_0) + W'\gamma_0 + u$$

$$= V'\gamma_0 + u$$

$$\mathbb{E}^*[\tilde{Y}|V] = V'\gamma_0$$

By long regression,

$$\mathbb{E}^*[Y|X,W] = X'\beta_0 + W'\gamma_0$$

$$= X'b_0 - X'(\Pi'_0\gamma_0) + W'\gamma_0$$

$$= X'b_0 + V'\gamma_0$$

$$= \mathbb{E}^*[Y|X] + \mathbb{E}^*[\tilde{Y}|V]$$

# Theorem 4.4 (Frisch-Waugh Theorem)

$$\mathbb{E}^*[Y|X,V] = \mathbb{E}^*[Y|X] + \mathbb{E}^*[Y|V] - \mathbb{E}[Y]$$
$$= \mathbb{E}^*[Y|X,W]$$

### Lemma 4.2

If Cov(X, W) = 0, then

$$\mathbb{E}^*[Y|X,W] = \mathbb{E}^*[Y|X] + \mathbb{E}^*[Y|W] - \mathbb{E}[Y]$$

Proof 4.2

Let 
$$u = Y - \mathbb{E}^*[Y|X, W]$$
.

$$0 = \mathbb{E}[uW]$$

$$= \mathbb{E}[(Y - \mathbb{E}^*[Y|X] - \mathbb{E}^*[Y|W] + \mathbb{E}[Y])W]$$

$$= \mathbb{E}[(Y - \mathbb{E}^*[Y|W])W] - \mathbb{E}[\mathbb{E}^*[Y|X]]\mathbb{E}[W] + \mathbb{E}[Y]\mathbb{E}[W]$$

$$= 0 \text{ by F.O.C.}$$

# 4.5 Card-Krueger Model

Consider a model about log-learning based on schooling, ability, luck.

$$Y(s) = \alpha_0 + \beta_0 \underbrace{s}_{\text{schooling } s \in \mathbb{S}} + \underbrace{A}_{\text{ability}} + \underbrace{V}_{\text{luck}}$$

Given a cost function about s:

$$C(s) = \underbrace{C}_{\text{cost heterogeneity}} s + \frac{k_0}{2} s^2$$

### **Assumption** We assume

- 1. Information set  $I_0 = (C, A)$  are known by agent when choosing schooling.
- 2. V is independent of C, A:  $V|C, A \triangleq V$ .

Then, the observed schooling s should satsify

$$s = \arg\max_{s} \mathbb{E}[Y(s) - C(s) \mid I_0]$$
$$= \arg\max_{s} \alpha_0 + \beta_0 s + A - Cs - \frac{k_0}{2} s^2$$

By F.O.C.

$$\beta_0 - C - k_0 s = 0 \Rightarrow s = \frac{\beta_0 - C}{k_0}$$

1. Long Regression:

$$\mathbb{E}^*[Y|s,A] = \alpha_0 + \beta_0 s + A \tag{LR}$$

2. Short Regression:

$$\mathbb{E}^*[Y|s] = a_0 + b_0 s$$

3. **Auxillary Regression**: By the best linear predictor, the  $\mathbb{E}^*[A|s]$  can be written as

$$\mathbb{E}^*[A|s] = \mathbb{E}[A] - \frac{\text{Cov}(A,s)}{\text{Var}(s)} \mathbb{E}[s] + \frac{\text{Cov}(A,s)}{\text{Var}(s)} s$$

$$= \mathbb{E}[A] - \eta_0 \mathbb{E}[s] + \eta_0 s$$
(AR)

where 
$$\eta_0 = \frac{\operatorname{Cov}(A,s)}{\operatorname{Var}(s)}$$
 and  $s = \frac{\beta_0 - C}{k_0}$  and  $\mathbb{E}[s] = \frac{\beta_0 - \mu_C}{k_0}$ , 
$$\operatorname{Cov}(A,s) = \operatorname{Cov}\left(A,\frac{\beta_0 - C}{k_0}\right) = -\frac{\operatorname{Cov}(A,C)}{k_0} = -\frac{\sigma_{AC}}{k_0}$$
 
$$\operatorname{Var}(s) = \operatorname{Var}\left(\frac{\beta_0 - C}{k_0}\right) = \frac{\sigma_C^2}{k_0^2}$$
 
$$\eta_0 = -k_0\frac{\sigma_{AC}}{\sigma_C^2} = -k_0\frac{\sigma_{AC}}{\sigma_A\sigma_C}\frac{\sigma_A}{\sigma_C} = -k_0\rho_{AC}\frac{\sigma_A}{\sigma_C}$$

The Auxillary Regression is written as

$$\mathbb{E}^*[A|s] = \mathbb{E}[A] + k_0 \rho_{AC} \frac{\sigma_A}{\sigma_C} \frac{\beta_0 - \mu_C}{k_0} - k_0 \rho_{AC} \frac{\sigma_A}{\sigma_C} s$$

$$= \mathbb{E}[A] + \rho_{AC} \frac{\sigma_A}{\sigma_C} (\beta_0 - \mu_C) - k_0 \rho_{AC} \frac{\sigma_A}{\sigma_C} s$$
(AR-1)

Hence, the Short Regression

$$\mathbb{E}^*[Y|s] = \mathbb{E}^* \left[ \mathbb{E}^*[Y|s, A]|s \right]$$

$$= \mathbb{E}^* \left[ \alpha_0 + \beta_0 s + A|s \right]$$

$$= \alpha_0 + \beta_0 s + \mathbb{E}^*[A|s]$$

$$= \underbrace{\alpha_0 + \mathbb{E}[A] + \rho_{AC} \frac{\sigma_A}{\sigma_C} (\beta_0 - \mu_C)}_{a_0} + \underbrace{\left( \beta_0 - k_0 \rho_{AC} \frac{\sigma_A}{\sigma_C} \right)}_{b_0} s$$
(SR)

### 4.5.1 Proxy Variable Regression

What if we don't observe A or C. We observe some observed variables W (proxy variable) instead.

**Assumption** We assume

- 1. Redundancy:  $\mathbb{E}^*[Y|s, A, W] = \mathbb{E}^*[Y|s, A]$  (W doesn't give extra information).
- 2. Conditional Uncorrelatedness:  $\mathbb{E}^*[A|s,W] = \mathbb{E}^*[A|W] = \Pi_0 + W'\Pi_W$  (Auxillary Regression).
- 3. Conditional Independence:  $C \perp A|W = w$ .

The Proxy Variable Regression is given by

$$\mathbb{E}^*[Y|s, W] = \mathbb{E}^* \left[ \mathbb{E}^*[Y|s, A, W]|s, W \right]$$

$$= \mathbb{E}^* \left[ \mathbb{E}^*[Y|s, A]|s, W \right]$$

$$= \mathbb{E}^* \left[ \alpha_0 + \beta_0 s + A|s, W \right]$$

$$= \alpha_0 + \beta_0 s + (\Pi_0 + W'\Pi_W)$$

$$= (\alpha_0 + \Pi_0) + \beta_0 s + W'\Pi_W$$
(PVR)

A general form of Proxy Variable Regression with

- 1. Long Regression:  $\mathbb{E}^*[Y|X,A] = X'\beta_0 + A'\gamma_0$
- 2. Redundancy:  $\mathbb{E}^*[Y|X, A, W] = \mathbb{E}^*[Y|X, A]$

3. Conditional Uncorrelatedness:  $\mathbb{E}^*[A|X,W] = \mathbb{E}^*[A|W] = \Pi_0 W$  where  $\Pi_0$  is  $P \times J$ , W is  $J \times 1$ , and A is  $P \times 1$ .  $\mathbb{E}^*[Y|X,W] = \mathbb{E}^*\left[\mathbb{E}^*[Y|X,A,W]|X,W\right]$   $= \mathbb{E}^*\left[\mathbb{E}^*[Y|X,A]|X,W\right]$   $= \mathbb{E}^*\left[X'\beta_0 + A'\gamma_0|X,W\right]$   $= X'\beta_0 + \mathbb{E}^*[A|X,W]'\gamma_0$ 

# 4.6 Instrumental Variables

### 4.6.1 Motivation

Suppose we want to estimate an OLS model  $y = \beta^T x + e$ , where  $x \in \mathbb{R}^k$ . The OLS estimator is given by

$$\hat{\beta}_{\text{OLS}} = \left(\frac{1}{m} \sum_{i=1}^{m} X_i X_i^T\right)^{-1} \left(\frac{1}{m} \sum_{i=1}^{m} X_i Y_i\right)$$

 $= X'\beta_0 + W'\Pi'_0\gamma_0$ 

which converges (in probability) to

$$\mathbb{E}_{P_0}[XX^T]^{-1}\mathbb{E}_{P_0}[XY] = \beta + \mathbb{E}_{P_0}[XX^T]^{-1} \underbrace{\mathbb{E}_{P_0}[Xe]}_{\text{assumed to be 0 (Exogeneity)}}$$

What if the exogeneity doesn't hold?

#### Example 4.1

1.  $y = \beta x^* + e$ , where  $\mathbb{E}[x^*e] = 0$ . However, we don't have  $x^*$  and we only have a noisy variable  $x = x^* + v$  (with  $\mathbb{E}[v] = 0$ ). Then,  $y = \beta(x - v) + e = \beta x + \epsilon$ , where  $\epsilon := e - \beta v$ . The probability limits of the OLS estimator satisfies

$$\hat{\beta}_{OLS} - \beta = \frac{\mathbb{E}_{P_0}[x\epsilon]}{\mathbb{E}_{P_0}[x^2]} = \frac{\mathbb{E}_{P_0}[(x^* + v)(e - \beta v)]}{\mathbb{E}_{P_0}[(x^* + v)^2]} = -\frac{\beta \mathbb{E}_{P_0}[v^2]}{\mathbb{E}_{P_0}[(x^* + v)^2]}$$

Hence, it is impossible to let the estimator converge to the true  $\beta$ .

2. Returns to Schooling: Consider a model

$$\ln \text{Wage} = \beta_0 + \beta_1 \text{EDUC} + e$$

Suppose the e is correlated to both the wage and the education. Given e is positively correlated to the education, the OLS estimator is over-estimating.

### 4.6.2 I.V. Model

Consider a model  $Y = X^T \beta + e$ , where  $X \in \mathbb{R}^k$  and  $\mathbb{E}_{P_0}[xe] \neq 0$ .

# **Definition 4.1 (Instrumental Variable)**

A variable  $Z \in \mathbb{R}^l$  is an **instrumental variable** if it satisfies

- (1).  $\mathbb{E}_{P_0}[Ze] = 0$  (exogeneity).
- (2).  $\mathbb{E}_{P_0}[ZZ^T]$  is non-singular (tech).
- (3). Rank( $\mathbb{E}_{P_0}(ZX^T)$ ) = k (relevance), which requires  $l \geq k$ .



Remark Exogeneity implies "exclusion restriction", which means the Z can't directly affect Y without affecting X.

# **Implementation:**

o Outcome Equation:

$$Y = X^T \beta + e$$

 $\circ$  1<sup>st</sup> Stage Equation (no economic meaning, just for mathematical use):

$$X = \Gamma^T Z + u$$

where X and u are  $k \times 1$ ,  $\Gamma$  are  $l \times k$ , and Z is  $l \times 1$ .  $Z \perp u$  and  $\Gamma = \mathbb{E}[ZZ^T]^{-1}\mathbb{E}[ZX^T]$ .

• Reduced Form Equation:

$$Y = \beta^{T} X + e$$
$$= \beta^{T} (\Gamma^{T} Z + u) + e$$
$$= \lambda^{T} Z + v$$

where  $\lambda = \Gamma \beta$  and  $v = \beta^T u + e$ .

Note that  $\mathbb{E}[Zv] = 0$ , which satisfies exogeneity. Hence, we can use OLS to estimate  $\lambda$ .

**Identification:** Suppose  $\lambda$  and  $\Gamma$  are known, we want to recover  $\beta$ .

$$\lambda = \Gamma \beta$$

1. Case 1: l = k,

$$\beta = \Gamma^{-1}\lambda$$

where  $\Gamma^{-1}$  exists by relevance.

2. Case 2: l > k,

$$\Gamma^T \lambda = (\Gamma^T \Gamma) \beta \Rightarrow \beta = (\Gamma^T \Gamma)^{-1} \Gamma^T \lambda$$

#### Estimation of $\Gamma$ and $\lambda$ :

- (A). "Plug In"
  - (a). The estimation of  $\Gamma$  is given by

$$\hat{\Gamma} = \left(\frac{1}{m} \sum_{i=1}^{m} Z_i Z_i^T\right)^{-1} \left(\frac{1}{m} \sum_{i=1}^{m} Z_i X_i^T\right)$$
 (hG)

The OLS estimator of regressing X on Z should converge to  $\Gamma$  in probability.

(b). The estimation of  $\lambda$  is given by

$$\hat{\lambda} = \left(\frac{1}{m} \sum_{i=1}^{m} Z_i Z_i^T\right)^{-1} \left(\frac{1}{m} \sum_{i=1}^{m} Z_i Y_i\right)$$

which converges to  $\lambda$  in probability.

(B). "2SLS"

The reduced form can also be written as

$$Y = \beta^{T} X + e$$

$$= \beta^{T} (\Gamma^{T} Z + u) + e$$

$$= \beta^{T} \underbrace{(\Gamma^{T} Z)}_{W} + v$$
(hl)

Assuming  $\Gamma$  is known, we can regress Y on W:

$$\tilde{\beta} = \left(\frac{1}{m} \sum_{i=1}^{m} W_i W_i^T\right)^{-1} \left(\frac{1}{m} \sum_{i=1}^{m} W_i Y_i\right)$$
$$= \left(\Gamma^T \left(\frac{1}{m} \sum_{i=1}^{m} Z_i Z_i^T\right) \Gamma\right)^{-1} \Gamma^T \left(\frac{1}{m} \sum_{i=1}^{m} Z_i Y_i\right)$$

Hence, we can estimate  $\beta$  based on

$$\hat{\beta}_{2\text{SLS}} = \left(\hat{\Gamma}^T \left(\frac{1}{m} \sum_{i=1}^m Z_i Z_i^T\right) \hat{\Gamma}\right)^{-1} \hat{\Gamma}^T \left(\frac{1}{m} \sum_{i=1}^m Z_i Y_i\right)$$

where  $\hat{\Gamma}$  is given by (4.1). Specifically, in the case of l=k,  $\hat{\beta}_{2\text{SLS}}=\left(\frac{1}{m}\sum_{i=1}^{m}Z_{i}X_{i}^{T}\right)^{-1}\left(\frac{1}{m}\sum_{i=1}^{m}Z_{i}Y_{i}\right)$ .

**Remark** Why not use the following steps?

- (a). Regress X on Z to construct  $\hat{W} := \hat{\Gamma}^T Z$
- (b). Regress Y on  $\hat{W}$ .

(Note that the mathematical foundation of OLS doesn't hold here because  $\hat{W}$  is not i.i.d.)

### 4.6.3 Weak I.V.

The "relevance" of the IV doesn't hold:  $\mathbb{E}[ZX^T] \approx 0$ . Why this is a problem?

Let's begin with a simple case that l = k = 1. The 2SLS estimator is given by

$$\hat{\beta}_{2\text{SLS}} = \frac{\frac{1}{m} \sum_{i=1}^{m} Z_i Y_i}{\frac{1}{m} \sum_{i=1}^{m} Z_i X_i} = \beta + \frac{\frac{1}{m} \sum_{i=1}^{m} Z_i e_i}{\frac{1}{m} \sum_{i=1}^{m} Z_i X_i}$$

where the small  $Z_iX_i$  may lead to a large bias

Consider the  $\mathbb{E}[ZX] = \frac{c}{\sqrt{m}}, c \neq 0$ . Then, the 2SLS estimator can be written as

$$\hat{\beta}_{2\text{SLS}} = \beta + \frac{\frac{1}{m} \sum_{i=1}^{m} Z_i e_i}{\frac{c}{\sqrt{m}} \frac{1}{m} \sum_{i=1}^{m} Z_i^2 + \frac{1}{m} \sum_{i=1}^{m} Z_i v_i} = \beta + \frac{\frac{1}{\sqrt{m}} \sum_{i=1}^{m} Z_i e_i}{c \frac{1}{m} \sum_{i=1}^{m} Z_i^2 + \frac{1}{\sqrt{m}} \sum_{i=1}^{m} Z_i u_i}$$

where the  $\lim_{m\to\infty}\frac{1}{\sqrt{m}}\sum_{i=1}^m Z_ie_i\sim \mathcal{N}(0,\sigma^2)$  and  $\lim_{m\to\infty}\frac{1}{\sqrt{m}}\sum_{i=1}^m Z_iu_i\sim \mathcal{N}(0,r^2)$  by LLN, and  $\frac{1}{m}\sum_{i=1}^m Z_i^2\to 1+0_P(1)$  with normalized Z. Hence, As  $m\to\infty$ ,

$$\hat{\beta}_{2\text{SLS}} \approx \beta + \frac{\mathcal{N}(0, \sigma^S)}{\mathcal{N}(c, r^2)}$$

which gives that  $\hat{\beta}_{2SLS}$  is not good for nonzero  $\mathbb{E}[ZX]$ .

# 4.7 Linear Generalized Method of Moments (Linear GMM)

### 4.7.1 Generalized Method of Moments (GMM)

**Assumption** GMM model assumes that, given the true probability of data  $P_0$ , there exists a unique parameter  $\beta$  such that

$$\mathbb{E}_{P_0}[g(\mathrm{Data},\beta_0)]=0$$

where  $g(\cdot)$  is a residual function.

 $\beta_0$  is given by

$$\beta_0 = \operatorname*{argmin}_{\beta} J(\beta, P_0)$$

where

$$J(\beta, P_0) := \left(\mathbb{E}_{P_0}[g(Y, X, Z, \beta)]\right)^T W \left(\mathbb{E}_{P_0}[g(Y, X, Z, \beta)]\right)$$

and the weight matrix  $W \succ 0$  (is positive definite and symmetric).

The GMM estimator is given by

$$\hat{\beta}_{\text{GMM}} = \operatorname*{argmin}_{\beta} J(\beta, P_m)$$

Using this for

- 1. Linear Regression:  $g(Y, X, \beta) := (Y X^T \beta)X$ ;
- 2. IV Model:  $g(Y, X, Z, \beta) = Z(Y X^T \beta)$ , which is called Linear GMM.

### 4.7.2 Linear GMM

### **Definition 4.2 (Linear GMM)**

A Linear GMM is defined as

$$\mathbb{E}_{P_0}[\underbrace{Z}_{l\times 1}(\underbrace{Y}_{1\times 1}-\beta_0^T\underbrace{X}_{k\times 1})]=0$$

If Rank  $(\mathbb{E}_{P_0}[ZX^T]) = k$ , there is a unique  $\beta_0 = \text{minimizes } J(\beta, P_0)$  with

$$J(\beta, P_0) := \left( \mathbb{E}_{P_0} [Z(Y - X^T \beta)] \right)^T W \left( \mathbb{E}_{P_0} [Z(Y - X^T \beta)] \right)$$
$$J(\hat{\beta}, P_0) := \left( \frac{1}{m} \sum_{i=1}^m Z_i (Y_i - X_i^T \beta) \right)^T W \left( \frac{1}{m} \sum_{i=1}^m Z_i (Y_i - X_i^T \beta) \right)$$

The GMM estimator is given by

$$\hat{\beta}_{\text{GMM}} = \underset{\beta}{\operatorname{argmin}} \left( \frac{1}{m} \sum_{i=1}^{m} Z_i (Y_i - X_i^T \beta) \right)^T W \left( \frac{1}{m} \sum_{i=1}^{m} Z_i (Y_i - X_i^T \beta) \right)$$
(4.1)

**Remark** W matters for  $\hat{\beta}_{GMM}$ .

The FOC of (4.1) is given by

$$\left(\frac{1}{m}\sum_{i=1}^{m} Z_{i}X_{i}^{T}\right)^{T} W\left(\frac{1}{m}\sum_{i=1}^{m} Z_{i}Y_{i} - (\frac{1}{m}\sum_{i=1}^{m} Z_{i}X_{i}^{T})\hat{\beta}_{\text{GMM}}\right) = 0$$

Let  $\hat{Q} := \frac{1}{m} \sum_{i=1}^m Z_i X_i^T \in \mathbb{R}^{l \times k}$ . Then,

$$\hat{\beta}_{\text{GMM}} = \left(\hat{Q}^T W \hat{Q}\right)^{-1} \hat{Q}^T W \frac{1}{m} \sum_{i=1}^m Z_i Y_i$$

### Lemma 4.3

If 
$$W = (\frac{1}{m} \sum_{i=1}^{m} Z_i Z_i^T)^{-1}$$
, then  $\hat{\beta}_{\text{GMM}} = \hat{\beta}_{2\text{SLS}}$ 

With  $W^T = W$ ,

Proof 4.3

$$\begin{split} \hat{\beta}_{\text{GMM}} &= \left( \hat{Q}^T W \hat{Q} \right)^{-1} \hat{Q}^T W \frac{1}{m} \sum_{i=1}^m Z_i Y_i \\ & \left( \hat{Q}^T W W^{-1} W \hat{Q} \right)^{-1} \hat{Q}^T W \frac{1}{m} \sum_{i=1}^m Z_i Y_i \\ &= \left( (W \hat{Q})^T W^{-1} (W \hat{Q}) \right)^{-1} (W \hat{Q})^T \frac{1}{m} \sum_{i=1}^m Z_i Y_i \end{split}$$

Substitute W by  $W = (\frac{1}{m} \sum_{i=1}^{m} Z_i Z_i^T)^{-1}$ . We have  $W\hat{Q} = \hat{\Gamma}$ . The lemma is proved.

 $\Diamond$ 

## 4.7.3 Properties of Linear GMM Estimator

## **Theorem 4.5 (Asymptotic)**

$$\sqrt{m}\left(\hat{\beta}_{\text{GMM}} - \beta_0\right) \to \mathcal{N}(0, V_{P_0}).$$

#### **Proof 4.4**

$$\begin{split} \hat{\beta}_{\text{GMM}} &= \left( \hat{Q}^T W \hat{Q} \right)^{-1} \hat{Q}^T W \frac{1}{m} \sum_{i=1}^m Z_i \underbrace{Y_i}_{X_i^T \beta_0 + e_i} \\ &= \left( \hat{Q}^T W \hat{Q} \right)^{-1} \hat{Q}^T W \left( \underbrace{\left( \frac{1}{m} \sum_{i=1}^m Z_i X_i^T \right) \beta_0 + \frac{1}{m} \sum_{i=1}^m Z_i e_i}_{\hat{Q}} \right) \\ &= \beta_0 + \left( \hat{Q}^T W \hat{Q} \right)^{-1} \hat{Q}^T W \frac{1}{m} \sum_{i=1}^m Z_i e_i \end{split}$$

By LLN,  $\hat{Q} \stackrel{P}{\longrightarrow} Q := \mathbb{E}[ZX^T]$ . Then we have,  $\hat{Q}^TW\hat{Q} \stackrel{P}{\longrightarrow} Q^TWQ$ . Because  $Q^TWQ$  is invertible,  $(\hat{Q}^TW\hat{Q})^{-1} \stackrel{P}{\longrightarrow} (Q^TWQ)^{-1}$ . So,  $(\hat{Q}^TW\hat{Q})^{-1} = (Q^TWQ)^{-1} + o_{P_0}(1)$ . Hence,

$$\hat{\beta}_{\text{GMM}} = \beta_0 + ((Q^T W Q)^{-1} + o_{P_0}(1)) (Q^T W + o_{P_0}(1)) \frac{1}{m} \sum_{i=1}^m Z_i e_i$$

$$= \beta_0 + ((Q^T W Q)^{-1} Q^T W + o_{P_0}(1)) \frac{1}{m} \sum_{i=1}^m Z_i e_i$$

$$= \beta_0 + (Q^T W Q)^{-1} Q^T W \frac{1}{m} \sum_{i=1}^m Z_i e_i + o_{P_0}(1) \frac{1}{m} \sum_{i=1}^m Z_i e_i$$

By orthogonality condition,  $\mathbb{E}_{P_0}[Ze] = 0$ . And by central limit theorem, we have  $\sqrt{m} \frac{1}{m} \sum_{i=1}^m Z_i e_i \to \mathcal{N}(0, \Omega_{P_0})$ . Then, we represent  $\hat{\beta}_{\text{GMM}}$  as

$$\hat{\beta}_{GMM} = \beta_0 + (Q^T W Q)^{-1} Q^T W \frac{1}{m} \sum_{i=1}^m Z_i e_i + o_{P_0}(\frac{1}{\sqrt{m}})$$
(4.2)

which is called asymptotic linear representation.

Multiplying  $\sqrt{m}$ ,

$$\sqrt{m}(\hat{\beta}_{\text{GMM}} - \beta_0) = (Q^T W Q)^{-1} Q^T W \underbrace{\frac{1}{\sqrt{m}} \sum_{i=1}^m Z_i e_i}_{\rightarrow \mathcal{N}(0, \Omega_{P_0})} + o_{P_0}(1)$$

$$\rightarrow \mathcal{N} \left( 0, \underbrace{(Q^T W Q)^{-1} Q^T W \Omega_{P_0} W Q (Q^T W Q)^{-1}}_{\triangleq V_P} \right)$$

# Corollary 4.1

$$\hat{\beta}_{\text{GMM}} \stackrel{P}{\longrightarrow} \beta_0.$$

## $\Diamond$

## Proof 4.5

$$\hat{\beta}_{\text{GMM}} - \beta_0 = O_{P_0}(\frac{1}{\sqrt{m}}) \to o_{P_0}(1).$$

Efficiency Consideration We want to choose the weight matrix to minimize the asymptotic variance within GMM estimator,  $W^* = \operatorname{argmin}_W V_{P_0}$ .

# Theorem 4.6

$$W^* = \Omega_{P_0}^{-1}$$
. That is,  $V_{P_0}^* := \left(Q^T \Omega_{P_0}^{-1} Q\right)^{-1} \leq V_{P_0}, \forall W$ .

Then, we want to compute the efficient GMM by  $\Omega_{P_0} := \mathbb{E}[e^2 Z Z^T]$ .

$$\hat{W}^* = \left(\hat{\Omega}\right)^{-1}$$

where  $\hat{\Omega} = \frac{1}{m} \sum_{i=1}^m \hat{e}_i^2 Z Z^T$  and  $\hat{e}_i$  is given by

$$\hat{e}_i := Y_i - X_i^T \hat{\beta}$$

where  $\hat{\beta}$  can be any GMM estimator, e.g., W = I or a 2SLS estimator. As long as we can make sure  $\hat{\Omega} \xrightarrow{P} \Omega_{P_0}$ . Finally, we have  $\hat{\beta}_{\text{EFFI}} := \hat{W}^* = W^* + o_{P_0}(1)$ ,

$$\sqrt{m}\left(\hat{\beta}_{\text{EFFI}} - \beta_0\right) \to \mathcal{N}(0, \left(Q^T \Omega_{P_0}^{-1} Q\right)^{-1})$$

**Remark** If  $\mathbb{E}_{P_0}[e^2|Z] = \sigma_e^2$ , then 2SLS is efficient.

$$\Omega^{-1} = \left(\mathbb{E}_{P_0}[e^2 Z Z^T]\right)^{-1} = \frac{1}{\sigma_e^2} \underbrace{\left(\mathbb{E}_{P_0}[Z Z^T]\right)^{-1}}_{W \text{ used in 2SLS}}$$

## 4.7.4 Alternative: Continuous Updating Estimator

Based on the idea of efficiency, we may use

$$\hat{\beta}_{\text{CUE}} = \underset{\beta}{\operatorname{argmin}} \left( \frac{1}{m} \sum_{i=1}^{m} g(\text{Data}_i, \beta) \right)^T \left( \frac{1}{m} \sum_{i=1}^{m} \hat{e}_i^2 Z Z^T \right) \left( \frac{1}{m} \sum_{i=1}^{m} g(\text{Data}_i, \beta) \right)$$

However, it may not be convex.

## 4.7.5 Inference

Suppose we want test  $H_0: \Gamma(\beta_0) = \theta_0 = 0$  or  $H_0: \theta_0 = \Gamma(\beta_0) \neq \hat{\theta} = \Gamma(\hat{\beta})$ .

## Theorem 4.7 (Construct Chi-square)

By using the asymptotic variance of GMM,  $V_{P_0}$ ,

$$m(\hat{\theta} - \theta)^T \left( R(\beta_0)^T V_{P_0} R(\beta_0) \right)^{-1} (\hat{\theta} - \theta) \Rightarrow \chi_l^2$$

where  $R(\beta_0) := \frac{d\Gamma(\beta_0)}{d\beta} \in \mathbb{R}^{k \times l}$ .

 $\Diamond$ 

## Proof 4.6

Let

$$\underbrace{m(\hat{\theta} - \theta)^T \underbrace{\left(R(\beta_0)^T V_{P_0} R(\beta_0)\right)^{-1}}_{\triangleq \Omega} (\hat{\theta} - \theta)}^{\mathcal{W}} \Rightarrow \chi_l^2$$

We have

$$\hat{\theta} - \theta_0 = \Gamma(\hat{\beta}) - \Gamma(\beta_0) = \underbrace{\frac{d\Gamma(\beta_0)}{d\beta}}_{R(\beta_0)} (\hat{\beta} - \beta_0) + o_{P_0}(m^{-\frac{1}{2}})$$

$$\mathcal{W} = \left(\sqrt{m}R(\beta_0)(\hat{\beta} - \beta_0) + o_{P_0}(1)\right)^T \Omega\left(\sqrt{m}R(\beta_0)(\hat{\beta} - \beta_0) + o_{P_0}(1)\right)$$

As  $\sqrt{m}\left(\hat{\beta}-\beta_0\right)\Rightarrow \mathcal{N}(0,V_{P_0})$ , by continuous mapping theorem, we have

$$\mathcal{W} \Rightarrow \left( \mathcal{N}(0, R(\beta_0) V_{P_0} R(\beta_0)^T) \right)^T \Omega \left( \mathcal{N}(0, R(\beta_0) V_{P_0} R(\beta_0)^T) \right)$$

Let  $M := R(\beta_0)V_{P_0}R(\beta_0)^T$ . Since M is symmetric, it can be decomposed by  $M = LL^T$ . Then,  $M^{-1} = (L^T)^{-1}L^{-1}$ . We have  $L^{-1}M(L^T)^{-1} = I$ .

Since  $\Omega = M^{-1} = (L^{-1})^T L^{-1}$ ,

$$\mathcal{W} \Rightarrow (\mathcal{N}(0,I))^T (\mathcal{N}(0,I)) = \chi_I^2$$

Based on this theorem, we have the "real" Wald test for  $H_0:\Gamma(\beta_0)=\theta_0=0.$ 

$$W = m(\hat{\theta} - \theta)^T \left( R(\hat{\beta})^T \hat{V}_{P_0} R(\hat{\beta}) \right)^{-1} (\hat{\theta} - \theta) \Rightarrow \chi_l^2$$

## 4.7.6 OVER-ID Test

Remind that

$$J(\beta, P_0) := \left(\mathbb{E}_{P_0}[Z(Y - X^T \beta)]\right)^T W\left(\mathbb{E}_{P_0}[Z(Y - X^T \beta)]\right)$$

We want to test

$$H_0: J(\beta, P_0) = 0$$

which is equivalent to  $\mathbb{E}[Ze] = 0$ .  $H_1: J(\beta, P_0) > 0$ , which is equivalent to  $\mathbb{E}[Ze] \neq 0$ .

# Theorem 4.8

If W is efficient weighting matrix ( $W = \hat{\Omega}^{-1}$ ), then  $mJ(\hat{\beta}, P_m) \Rightarrow \chi^2_{l-k}$ 

 $\bigcirc$ 

#### **Proof 4.7**

Remind (4.2) that  $\hat{\beta} = \beta_0 + (Q^T W Q)^{-1} Q^T W \frac{1}{m} \sum_{i=1}^m Z_i e_i + o_{P_0}(\frac{1}{\sqrt{m}})$  and  $Q := \mathbb{E}[ZX^T]$ . Then,

$$Z_{i}(Y_{i} - X_{i}^{T}\hat{\beta}) = Z_{i}(X_{i}^{T}\beta_{0} + e_{i} - X_{i}^{T}\hat{\beta})$$
$$= -Q(\hat{\beta} - \beta_{0}) + \frac{1}{m} \sum_{i=1}^{m} Z_{i}e_{i} + o_{P_{0}}(\frac{1}{\sqrt{m}})$$

which gives

$$\frac{1}{m} \sum_{i=1}^{m} Z_i (Y_i - X_i^T \hat{\beta}) = \left( I - Q(Q^T W Q)^{-1} Q^T W \right) \frac{1}{m} \sum_{i=1}^{m} Z_i e_i + o_{P_0}(\frac{1}{\sqrt{m}})$$

By decomposing W by  $W := LL^T$ ,

$$mJ(\hat{\beta}, P_m) = \left(L^T \frac{1}{\sqrt{m}} \sum_{i=1}^m Z_i (Y_i - X_i^T \hat{\beta})\right)^T \left(L^T \frac{1}{\sqrt{m}} \sum_{i=1}^m Z_i (Y_i - X_i^T \hat{\beta})\right)$$

where

$$L^{T} \frac{1}{\sqrt{m}} \sum_{i=1}^{m} Z_{i}(Y_{i} - X_{i}^{T} \hat{\beta}) = \left(L^{T} - \underbrace{L^{T} Q}_{:=M} ((L^{T} Q)^{T} (L^{T} Q))^{-1} (L^{T} Q)^{T} L^{T}\right) \frac{1}{\sqrt{m}} \sum_{i=1}^{m} Z_{i} e_{i} + o_{P_{0}}(1)$$

$$= \underbrace{\left(I - M(M^{T} M)^{-1} M^{T}\right)}_{:=R_{M}} \left(L^{T} \left(\frac{1}{\sqrt{m}} \sum_{i=1}^{m} Z_{i} e_{i}\right)\right) + o_{P_{0}}(1)$$

where  $R_M$  satisfies  $R_M = R_M^T R_M$ , which shows  $R_M$  has eigenvalues  $\in \{0, 1\}$  and its number of eigenvalues equal to 1 is l - k.

Hence,

$$mJ(\hat{\beta}, P_m) = \left(L^T \left(\frac{1}{\sqrt{m}} \sum_{i=1}^m Z_i e_i\right)\right)^T R_M \left(L^T \left(\frac{1}{\sqrt{m}} \sum_{i=1}^m Z_i e_i\right)\right) + o_{P_0}(1)$$

$$As\left(L^T \left(\frac{1}{\sqrt{m}} \sum_{i=1}^m Z_i e_i\right)\right) \Rightarrow \xi \sim \mathcal{N}(0, L^T \Omega L). So,$$

$$mJ(\hat{\beta}, P_m) \Rightarrow \xi^T R_m \xi$$

If  $W = \Omega^{-1}$ , then  $L^T \Omega L = I$ , which gives

$$mJ(\hat{\beta}, P_m) \Rightarrow \xi_*^T R_m \xi_*, \ \xi_* \sim \mathcal{N}(0, I)$$
$$= \sum_{j=1}^{l-k} \omega_j^2, \omega_j \sim \mathcal{N}(0, 1)$$
$$\sim \chi_{l-k}^2$$

#### Remark

1. Test by  $c_{\alpha}$ , which gives  $\Pr(\chi^2_{l-k} \geq c_{\alpha}) = \alpha \in (0,1)$ .

- 2. Only make sense for l > k.
  - (a). You "spent" k degrees of freedom estimating  $\beta_0$ .
  - (b). The rest (l k) is "spent" on testing.

## 4.7.7 Bootstrap GMM

Now, we gives estimator by using bootstrap data,

$$\hat{\beta}^* = \operatorname*{argmin}_{\beta} J(\beta, P_m^*)$$

where

$$J(\beta, P_m^*) := \left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^{*T} \beta) - \mathbb{E}_{P_m} [Z(Y - X^T \hat{\beta})]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^{*T} \beta) - \mathbb{E}_{P_m} [Z(Y - X^T \hat{\beta})]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^{*T} \beta) - \mathbb{E}_{P_m} [Z(Y - X^T \hat{\beta})]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^{*T} \beta) - \mathbb{E}_{P_m} [Z(Y - X^T \hat{\beta})]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^{*T} \beta) - \mathbb{E}_{P_m} [Z(Y - X^T \hat{\beta})]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^{*T} \beta) - \mathbb{E}_{P_m} [Z(Y - X^T \hat{\beta})]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^{*T} \beta) - \mathbb{E}_{P_m} [Z(Y - X^T \hat{\beta})]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^{*T} \beta) - \mathbb{E}_{P_m} [Z(Y - X^T \hat{\beta})]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^{*T} \beta) - \mathbb{E}_{P_m} [Z(Y - X^T \hat{\beta})]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^{*T} \beta) - \mathbb{E}_{P_m} [Z(Y - X^T \hat{\beta})]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^{*T} \beta) - \mathbb{E}_{P_m} [Z(Y - X^T \hat{\beta})]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^{*T} \beta) - \mathbb{E}_{P_m} [Z(Y - X^T \hat{\beta})]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^{*T} \beta) - \mathbb{E}_{P_m} [Z(Y - X^T \hat{\beta})]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^{*T} \beta) - \mathbb{E}_{P_m} [Z(Y - X^T \hat{\beta})]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^{*T} \beta) - \mathbb{E}_{P_m} [Z(Y - X^T \hat{\beta})]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^{*T} \beta) - \mathbb{E}_{P_m} [Z(Y - X^T \hat{\beta})]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^{*T} \beta) - \mathbb{E}_{P_m} [Z(Y - X^T \hat{\beta})]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^{*T} \beta) - \mathbb{E}_{P_m} [Z(Y - X^T \hat{\beta})]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^* \beta) - \mathbb{E}_{P_m} [Z(Y - X^T \hat{\beta})]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^* \beta) - \mathbb{E}_{P_m} [Z(Y - X_i^* \beta)]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^* \beta) - \mathbb{E}_{P_m} [Z(Y - X_i^* \beta)]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^* \beta) - \mathbb{E}_{P_m} [Z(Y - X_i^* \beta)]\right)^T W\left(\frac{1}{m} \sum_{i=1}^m Z_i^* (Y_i^* - X_i^* \beta) - \mathbb{E}_{P_m} [Z(Y - X_i^* \beta)]\right)$$

where  $\mathbb{E}_{P_m}[Z(Y-X^T\hat{\beta})]=\frac{1}{m}\sum_{i=1}^m Z_i\hat{e}_i$ , which is used to debias. Then,

$$\hat{\beta}_{\text{GMM}} = \left(\hat{Q}^{*T} W \hat{Q}^{*}\right)^{-1} \hat{Q}^{*T} W \left(\frac{1}{m} \sum_{i=1}^{m} (Z_{i}^{*} Y_{i}^{*} - Z_{i} \hat{e}_{i})\right)$$

**Bootstrap OVER-ID Test** The distribution  $mJ(\hat{\beta}^*, P_m^*)$  is the <u>same</u> as  $mJ(\hat{\beta}, P_m)$  regardless of W.

# 4.8 Panel Data Models

## **Definition 4.3 (Panel Data)**

For each unit i, it has time  $\{1, ..., T\}$ .

$$t = 1$$

$$i = 1$$

$$t = T$$

$$t = 1$$

$$i = 2$$

$$\vdots$$

$$t = T$$

$$\vdots$$

The typical model is given by

$$Y_{i_t} = \underbrace{\alpha_i}_{\text{Fixed Effect}} + X_{i_t}^T \beta + \epsilon_{i_t}$$

 $\alpha_i$  is a fixed effect, which is unobserved, random, and time invariant.

#### **Assumption**

- 1.  $\{\alpha_i, (X_{i_t})_{t=1}^T, (Y_{i_t})_{t=1}^T, (\epsilon_{i_t})_{t=1}^T\}$  is i.i.d. for all  $i \in \{1, ..., N\}$ . (Within a unit, data at different time can be dependent, which means there are no estimators within units.)
- 2.  $N \to \infty$ , T is fixed.

## 4.8.1 Pooled OLS

$$Y_{i_t} = X_{i_t}^T \beta_0 + \underbrace{e_{i_t}}_{:=\alpha_i + \epsilon_{i_t}}$$

Use the notations of vectors  $\vec{Y}_i := \begin{bmatrix} Y_{i_1} \\ \vdots \\ Y_{i_T} \end{bmatrix}$ ,  $\vec{X}_i := \begin{bmatrix} X_{i_1} \\ \vdots \\ X_{i_T} \end{bmatrix}$ ,  $\vec{e}_i := \mathbf{1}\alpha_i + \vec{\epsilon}_i$ , where  $\mathbf{1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$ . Then, the equation can be written as

$$\vec{Y}_i = \vec{X}_i \beta_0 + \vec{e}_i$$

The pooled OLS estimator is

$$\hat{\beta}_{\text{pool}} := \left(\frac{1}{N} \sum_{i=1}^{N} \vec{X}_i^T \vec{X}_i\right)^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} \vec{X}_i^T \vec{Y}_i\right)$$

#### **Properties**

$$\hat{\beta}_{\text{pool}} = \beta_0 + \left(\frac{1}{N} \sum_{i=1}^{N} \vec{X}_i^T \vec{X}_i\right)^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} \vec{X}_i^T \vec{e}_i\right)$$

For consistency:

- 1.  $\frac{1}{N} \sum_{i=1}^{N} \vec{X}_i^T \vec{X}_i \stackrel{P}{\longrightarrow} \mathbb{E}[\vec{X}^T \vec{X}]$ , which is required to be non singular.
- 2.  $\frac{1}{N} \sum_{i=1}^{N} \vec{X}_i^T \vec{e}_i \xrightarrow{P} \mathbb{E}[\vec{X}^T \vec{e}]$ , where

$$\mathbb{E}[\vec{X}^T \vec{e}] = \underbrace{\mathbb{E}[\vec{X}^T \mathbf{1}\alpha]}_{\text{need assumed to be 0}} + \underbrace{\mathbb{E}[\vec{X}^T \vec{e}]}_{:=0, \text{ by assumption}}$$

The pooled OLS estimator is inconsistent if  $X_{it}$  is correlated with  $\alpha_i$ .

**Assumption**  $X_{it}$  is uncorrelated with  $\alpha_i$ ,  $\mathbb{E}[X_{it}\alpha_i] = 0$ .

Asymptotic Normality:

$$\begin{split} \sqrt{N} \left( \hat{\beta}_{\text{pool}} - \beta_0 \right) &= \underbrace{\left( \frac{1}{N} \sum_{i=1}^{N} \vec{X}_i^T \vec{X}_i \right)}_{\mathbb{E}[\vec{X}^T \vec{X}] + o_{P_0}(1)} \underbrace{\left( \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \vec{X}_i^T \vec{e}_i \right)}_{\text{by CLT:} \Rightarrow N(0, \mathbb{E}[\vec{X}^T \vec{e} \vec{e}^T \vec{X}])} \\ &\Rightarrow N \left( 0, \mathbb{E}[\vec{X}^T \vec{X}]^{-1} \mathbb{E}[\vec{X}^T \vec{e} \vec{e}^T \vec{X}] \mathbb{E}[\vec{X}^T \vec{X}]^{-1} \right) \end{split}$$

where  $\mathbb{E}[\vec{X}^T \vec{e} \vec{e}^T \vec{X}] = \vec{X}^T \mathbb{E}[\vec{e} \vec{e}^T \mid \vec{X}] \vec{X}$ . Specifically,  $\mathbb{E}[e_s e_t \mid \vec{X}] = \mathbb{E}[\alpha^2 + \epsilon_s \epsilon_t \mid \vec{X}] \neq 0, \forall s \neq t$ . Hence,

the variance of the normal distribution is not identical matrix. We need to compute the variance:

$$[\frac{1}{N}\sum_{i=1}^{N}\vec{X}_{i}^{T}\vec{X}_{i}]^{-1}[\frac{1}{N}\sum_{i=1}^{N}\vec{X}_{i}^{T}\hat{e}_{i}\hat{e}_{i}^{T}\vec{X}_{i}][\vec{X}_{i}^{T}\vec{X}_{i}]^{-1}$$

where  $\hat{\vec{e}}_i = \vec{Y}_i - \vec{X}_i \hat{\beta}_{\text{pool}}$ .

#### 4.8.2 Fixed Effect Model

$$Y_{i_t} = \underbrace{\alpha_i}_{\text{Fixed Effect}} + X_{i_t}^T \beta + \epsilon_{i_t}$$

where is no assumption over  $\alpha$  and  $\vec{X}_i$ .

"Naive" Time Difference (losing many data, inefficient):

$$\Delta Y_i = Y_{i_t} - Y_{i_{t-1}}$$
, for some  $t$ 

$$\Delta Y_i = \Delta X_i \beta_0 + \Delta \epsilon_i$$

We get OLS estimator

$$\hat{\beta}_{\text{Diff}} = \frac{\sum_{i=1}^{n} \Delta X_i \Delta Y_i}{\sum_{i=1}^{n} \Delta X_i^2}$$

With assumptions  $\mathbb{E}[X_t \epsilon_t] = \mathbb{E}[X_t \epsilon_{t-1}] = \mathbb{E}[X_{t-1} \epsilon_t] = \mathbb{E}[X_{t-1} \epsilon_{t-1}] = 0$ , we have  $\mathbb{E}[\Delta X \Delta \epsilon] = 0$ , which gives the consistency.

Fixed Effect Estimator (most used): Let

$$\bar{Y}_i = \frac{1}{T} \sum_{t=1}^T Y_{i_t} = \alpha_i + \bar{X}_i \beta + \bar{\epsilon}_i$$

"Dot" Model:

$$\dot{Y}_{i_t} = Y_{i_t} - \bar{Y}_i = \dot{X}_{i_t} \beta_0 + \dot{\epsilon}_{i_t}$$

Use the notations of vectors  $\vec{Y}_i := \begin{bmatrix} \dot{Y}_{i_1} \\ \vdots \\ \dot{Y}_{i_T} \end{bmatrix} = \vec{Y}_i - \mathbf{1} \left( \mathbf{1}^T \mathbf{1} \right)^{-1} \mathbf{1}^T \vec{Y}_i =: Q \vec{Y}_i$ , where  $Q := I - \mathbf{1} \left( \mathbf{1}^T \mathbf{1} \right)^{-1} \mathbf{1}^T$ 

(notice that QQ = Q).

Then, the equation  $\vec{Y}_i = \vec{X}_i eta_0 + \vec{\epsilon}_i$  can be written as

$$Q\vec{Y}_i = Q\vec{X}_i\beta_0 + Q\vec{\epsilon}_i$$

Run OLS

$$\hat{\beta}_{FE} = \left(\frac{1}{N} \sum_{i=1}^{N} \vec{X}_i^T Q \vec{X}_i\right)^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} \vec{X}_i^T Q \vec{Y}_i\right)$$

**Assumption** We assume  $\mathbb{E}[\vec{X}^T Q \vec{\epsilon}] = 0$ , which is equivalent to  $\mathbb{E}[\vec{X}_i^T \vec{\epsilon}_i] = 0$ .

\$

Note "Strict exogeneity" is sufficient for above assumption:  $\mathbb{E}[X_s \epsilon_t] = 0, \forall s, t \ (\epsilon \text{ is uncorrelated with past, present, and future } X$ 's).

Consistency:

$$\hat{\beta}_{FE} = \beta_0 + \left(\frac{1}{N} \sum_{i=1}^{N} \vec{X}_i^T Q \vec{X}_i\right)^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} \vec{X}_i^T Q \vec{\epsilon}_i\right)$$

The sufficient condition is  $\mathbb{E}[\vec{X}^T Q \vec{\epsilon}] = 0$ , that is the motivation of giving the above assumption.

#### Theorem 4.9

$$\sqrt{N}(\hat{\beta}_{FE} - \beta_0) \Rightarrow N\left(0, (\mathbb{E}[\vec{X}^T Q \vec{X}])^{-1} \mathbb{E}[\vec{X}^T Q \vec{\epsilon} \vec{\epsilon}^T Q \vec{X}] (\mathbb{E}[\vec{X}^T Q \vec{X}])^{-1}\right)$$

#### Remark

1. Actually, all we want to do is constructing a matrix Q such that  $Q\alpha_i=0$ , so that we can get rid of fixed  $\begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \end{bmatrix}$ 

effect. Another example of this kind of matrix is  $D=\begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ & & & & \ddots & \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix}$  .

- 2. Time invariant covariant? No.
- 3. Dummy interpretation:

$$Y_{i_t} = \gamma_1 D1_{i_t} + \gamma_2 D2_{i_t} + \vdots + \gamma_N DN_{i_t} + X_{i_t} \beta + \epsilon_{i_t}$$

where  $Dj_{i_t} = 1$  if i = j and  $Dj_{i_t} = 0$  if  $i \neq j$ .

4. Fixed effect can't be estimated.

## 4.8.3 Random Effect Model

(Based on many assumptions, but more efficient than fixed effect. However, still not suggested.)

**Assumption**  $\alpha_i$  is orthogonal to  $X_{it}$ ,  $Cov(\alpha_i X_{i_t}) = 0$ .

$$Y_{i_t} = X_{i_t} \beta_0 + e_{i_t}, \ e_{i_t} = \alpha_i + \epsilon_{i_t}$$

which can be written as the form of vector

$$\vec{Y}_i = \vec{X}_i \beta_0 + \vec{e}_i, \vec{e}_i = \alpha_i \mathbf{1} + \vec{\epsilon}_i \tag{4.3}$$

The R.E. estimator is the OLS estimator for (4.3). The pooled OLS estimator:

$$\sqrt{N} \left( \hat{\beta}_{\text{pool}} - \beta_0 \right) \Rightarrow N \left( 0, \mathbb{E}[\vec{X}^T \vec{X}]^{-1} \mathbb{E}[\vec{X}^T \vec{e} \vec{e}^T \vec{X}] \mathbb{E}[\vec{X}^T \vec{X}]^{-1} \right)$$

where 
$$\mathbb{E}[\vec{X}^T \vec{e} \vec{e}^T \vec{X}] = \vec{X}^T \mathbb{E}[\vec{e} \vec{e}^T \mid \vec{X}] \vec{X}$$
. Specifically,  $\mathbb{E}[e_s e_t \mid \vec{X}] = \mathbb{E}[\alpha^2 + \epsilon_s \epsilon_t \mid \vec{X}] \neq 0, \forall s \neq t$ .

$$\mathbb{E}[\vec{e}\vec{e}^T \mid \vec{X}] = \mathbb{E}[(\alpha \mathbf{1} + \vec{\epsilon})(\alpha \mathbf{1} + \vec{\epsilon})^T \mid \vec{X}]$$

(assuming 
$$\alpha \perp \vec{\epsilon}$$
)  $= \mathbb{E}[\alpha^2 \mathbf{1} \mathbf{1}^T \mid \vec{X}] + \mathbb{E}[\vec{\epsilon} \vec{\epsilon}^T \mid \vec{X}]$ 

(assuming homoscedasticity and  $Cov(\epsilon_s, \epsilon_t) = 0$ )  $= \sigma_{\alpha}^2 \mathbf{1} \mathbf{1}^T + \sigma_{\epsilon}^2 I$ 

$$:= \Omega$$

Given  $\Omega$  (or  $\hat{\Omega}$ ),

$$\hat{\beta}_{RE} = \left(\frac{1}{N} \sum_{i=1}^{N} \vec{X}_{i}^{T} \Omega^{-1} \vec{X}_{i}\right)^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} \vec{X}_{i}^{T} \Omega^{-1} \vec{Y}_{i}\right)$$

So,

$$\sqrt{N} \left( \hat{\beta}_{RE} - \beta_0 \right) \Rightarrow N \left( 0, \underbrace{\left( \mathbb{E}[\vec{X}^T \Omega^{-1} \vec{X}] \right)^{-1}}_{V_{RE}} \right)$$

**Hausmon Test** We want to test  $H_0 : Cov(\alpha_i, X_{i_t}) = 0$ . Under  $H_0$ :

$$\sqrt{N}\left(\hat{\beta}_{RE} - \beta_0\right) \Rightarrow N\left(0, V_{RE}\right)$$

$$\sqrt{N}\left(\hat{\beta}_{FE} - \beta_0\right) \Rightarrow N\left(0, V_{FE}\right)$$

where 
$$V_{FE} \ge V_{RE}$$

#### Theorem 4.10

Under 
$$H_0$$
,  $\hat{H} := N \left( \hat{\beta}_{FE} - \hat{\beta}_{RE} \right)^T (V_{FE} - V_{RE})^{-1} \left( \hat{\beta}_{FE} - \hat{\beta}_{RE} \right) \Rightarrow \chi^2_{\dim(\beta_0)}$ .

## 4.8.4 Two-Way Fixed Effect Model

In this model, we consider an extra "time fixed effect"  $V_t$ .

$$Y_{i_t} = \alpha_i + V_t + X_{i_t} \beta_0 + \epsilon_{i_t}$$

1. Principle of deleting fixed effect:

$$\dot{Y}_{i_t} = Y_{i_t} - \bar{Y}_i - \bar{Y}_t + \bar{Y}$$

where  $\bar{Y}_t := \frac{1}{N} \sum_{i=1}^N Y_{i_t}$  and  $\bar{Y} := \frac{1}{NT} \sum_{t,i} Y_{it}$ . Then,

$$\dot{Y}_{i,} = \dot{X}_{i,} \beta_0 + \dot{\epsilon}_{i,}$$

where  $\dot{X}_{i_t}$  and  $\dot{\epsilon}_{i_t}$  are given in the same way.

2. Hybrid Model (better?):

$$Y_{i_t} = \alpha_i + \gamma_2 \delta 2_t + \gamma_3 \delta 3_t + \dots + \gamma_T \delta T_t + X_{i_t} \beta_0 + \epsilon_{i_t}$$

where 
$$\delta s_t = \begin{cases} 1, & s=t \\ 0, & s 
eq t \end{cases}$$
 . Then, in the matrix form,

$$Y_{i_t} = \alpha_i + Z_{i_t}^T \Theta + \epsilon_{i_t}, \text{ where } Z_{i_t}^T = \begin{bmatrix} X \\ \delta 2 \\ \vdots \\ \delta T \end{bmatrix}$$

# 4.8.5 Arellano Bond Approach

- 1. "Strict exogeneity":  $\mathbb{E}[X_s \epsilon_t] = 0, \forall s, t \ (\epsilon \text{ is uncorrelated with past, present, and future } X$ 's).
- 2. "Sequential exogeneity":  $\mathbb{E}[X_s \epsilon_t] = 0, \forall t \geq s \ (\epsilon \text{ is uncorrelated with past } X$ 's).

Reminds that Fixed Effect model has assumption  $\mathbb{E}[\vec{X}_i\vec{\epsilon}_i]=0$ , which can be given by "strict exogeneity". However, the assumption of "strict exogeneity" is too strong.

Example 4.2  $Y_{i_t} = \alpha_i + \rho \underbrace{Y_{i_{t-1}}}_{X_{i_t}} + \epsilon_{i_t}$ , which doesn't satisfy the "strict exogeneity":  $\mathbb{E}[X_{i_{t+1}}\epsilon_{i_t}] = \mathbb{E}[Y_{i_t}\epsilon_{i_t}] \neq 0$ .

Instead of using the "strict exogeneity" assumption, we can use "sequential exogeneity" assumption.

Consider model

$$\Delta Y_{i_t} = \Delta X_{i_t} \beta_0 + \Delta \epsilon_{i_t}$$

we have

$$\mathbb{E}[X_s(\Delta \epsilon_t)] = \underbrace{\mathbb{E}[X_s \epsilon_t]}_{=0, \forall s \le t} - \underbrace{\mathbb{E}[X_s \epsilon_{t-1}]}_{=0, \forall s \le t-1}$$

Moreover, we suppose  $\mathbb{E}[X_s\Delta X_t]\neq 0$ , then  $\{X_s,s\leq t-1\}$  are I.V. for the model above!

$$\mathbb{E}[X_s (\Delta Y_t - \Delta X_t \beta_0)] = 0, \forall t, s : s \le t - 1.$$

$$t = 2 \quad \mathbb{E}[X_1 (\Delta Y_2 - \Delta X_2 \beta_0)]$$

$$t = 3 \quad \mathbb{E}[X_1 (\Delta Y_3 - \Delta X_3 \beta_0)]$$

$$\mathbb{E}[X_2 (\Delta Y_3 - \Delta X_3 \beta_0)]$$

$$\vdots \qquad \vdots$$

All in all, we have

$$\mathbb{E}[g(\vec{\Delta Y}, \vec{\Delta X}, \vec{X}, \beta_0)] = \begin{bmatrix} \mathbb{E}[X_1 (\Delta Y_2 - \Delta X_2 \beta_0)] \\ \mathbb{E}[X_1 (\Delta Y_3 - \Delta X_3 \beta_0)] \\ \mathbb{E}[X_2 (\Delta Y_3 - \Delta X_3 \beta_0)] \\ \vdots \end{bmatrix} = 0$$

We can use GMM to estimate the parameters:

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \left( \frac{1}{N} \sum_{i=1}^{N} g(\vec{\Delta Y}_i, \vec{\Delta X}_i, \vec{X}_i, \beta_0) \right)^T W \left( \frac{1}{N} \sum_{i=1}^{N} g(\vec{\Delta Y}_i, \vec{\Delta X}_i, \vec{X}_i, \beta_0) \right)$$

Arellano Bond estimator is GMM estimator over I.D.

# 4.9 Control Function Approach (another approach to handle endogenieity)

Another approach to handle endogenieity.

Suppose we are facing the problem of endogenieity that

$$Y_i = X_i \beta_i + U_i, \ \mathbb{E}[U|X] \neq 0$$

Suppose W is a variable that

$$\mathbb{E}[U|X,W] = \varphi(W)$$

which is only a function of W. That is, the relationship between X and U can only be determined by W:  $X \to W \to U$ .

## **Definition 4.4 (Control Variable)**

W is a Control Variable.



A control variable doesn't have to be an I.V.

**Example 4.3**  $X = Z\gamma + V$ , where Z is I.V. that  $\mathbb{E}[ZU] = 0$ .  $\mathbb{E}[U|X,V] = \varphi(V)$ .

Based on the control variable, we can write the regression as

$$Y_i = X_i \beta_0 + \gamma W_i + U_i$$

$$Y_i = X_i \beta_0 + \gamma W_i + \varphi(W_i) + \underbrace{U_i - \varphi(W_i)}_{\xi_i}$$

where  $\mathbb{E}[\xi_i|X_i,W_i]=0$ .

To implement this, we can decompose  $\varphi(W_i) := \sum_{l=1}^L \pi_l \phi_l(W_i)$  (e.g. polynomial).



**Note** We may get inconsistent  $\gamma$ .

**Example 4.4** Suppose 
$$\varphi(W) = \Pi W$$
, then  $Y_i = X_i \beta_0 + \underbrace{(\gamma + \Pi)}_{\beta_1} W_i + \xi_i$ . Hence, in OLS,  $\hat{\beta}_0 \stackrel{P}{\longrightarrow} \beta_0$  and  $\hat{\beta}_1 \stackrel{P}{\longrightarrow} \beta_1 = \gamma + \Pi$ .

# 4.10 LATE (Local ATE): Application of I.V. on Potential Outcomes

(Application of I.V.)

Consider the potential outcome framework:  $X \in \{0,1\}, Y(0), Y(1): Y := XY(1) + (1-X)Y(0)$ .

The Average treatment effect (ATE) is

$$ATE = \mathbb{E}[Y(1) - Y(0)]$$

Consider another variable  $Z \in \{0, 1\}$ .

- 1. X: the assigned treatment of an agent.
- 2. Z: the intended treatment of an agent. (instrument)

Suppose X(Z) be the potential treatment status X(0), X(1). X = ZX(1) + (1 - Z)X(0).

**Example 4.5** Some people are suggested to stay at home, but they don't.

We have  $Z \to X \to Y$  and Z doesn't have a direct effect on Y.

There are four possible cases:

- 1. Never Treated (NT): X(0) = X(1) = 0.
- 2. Always Treated (AT): X(0) = X(1) = 1.
- 3. Complies (C): X(0) = 0, X(1) = 1.
- 4. Defiers (D): X(0) = 1, X(1) = 0.

Usually, we assume the instruments are relevant and rule out the defiers.

**Assumption**  $X_i(0) \le X_i(1), \forall i \text{ and } X_j(0) < X_j(1) \text{ for some } j.$ 

$$\hat{\beta}_{2SLS} = \frac{\operatorname{Cov}(\hat{\boldsymbol{Y}}, \boldsymbol{Z})}{\operatorname{Cov}(\hat{\boldsymbol{X}}, \boldsymbol{Z})} \xrightarrow{P} \frac{\operatorname{Cov}(\boldsymbol{Y}, \boldsymbol{Z})}{\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Z})}$$

#### Theorem 4.11

$$\frac{\operatorname{Cov}(Y,Z)}{\operatorname{Cov}(X,Z)} = \frac{\mathbb{E}[Y|Z=1] - \mathbb{E}[Y|Z=0]}{\mathbb{E}[X|Z=1] - \mathbb{E}[X|Z=0]}$$

 $\sim$ 

## Proof 4.8

$$\begin{aligned} & \mathrm{Cov}(Y,Z) = \mathbb{E}[YZ] - \mathbb{E}[Y]P(Z=1) \\ & = \mathbb{E}[Y|Z=1]P(Z=1) - (\mathbb{E}[Y|Z=1]P(Z=1) + \mathbb{E}[Y|Z=0]P(Z=0))P(Z=1) \\ & = P(Z=1) \left( \mathbb{E}[Y|Z=1](1-P(Z=1)) - \mathbb{E}[Y|Z=0]P(Z=0) \right) \\ & = P(Z=1)P(Z=0) \left( \mathbb{E}[Y|Z=1] - \mathbb{E}[Y|Z=0] \right) \end{aligned}$$

Similarly,

$$Cov(X, Z) = P(Z = 1)P(Z = 0) (\mathbb{E}[X|Z = 1] - \mathbb{E}[X|Z = 0])$$

Since we rule out the possible of (D), we can write

$$\begin{split} &\mathbb{E}[Y|Z=1] \\ =&\mathbb{E}[Y|AT,Z=1]\text{Pr}(AT|Z=1) + \mathbb{E}[Y|NT,Z=1]\text{Pr}(NT|Z=1) + \mathbb{E}[Y|C,Z=1]\text{Pr}(C|Z=1) \\ =&\mathbb{E}[Y(1)|AT]\text{Pr}(AT) + \mathbb{E}[Y(0)|NT]\text{Pr}(NT) + \mathbb{E}[Y(1)|C]\text{Pr}(C) \end{split}$$

We can also decompose the  $\mathbb{E}[Y|Z=1]$ .

$$\begin{cases} \mathbb{E}[Y|Z=1] &= \mathbb{E}[Y(1)|AT]\Pr(AT) + \mathbb{E}[Y(0)|NT]\Pr(NT) + \mathbb{E}[Y(1)|C]\Pr(C) \\ \mathbb{E}[Y|Z=0] &= \mathbb{E}[Y(1)|AT]\Pr(AT) + \mathbb{E}[Y(0)|NT]\Pr(NT) + \mathbb{E}[Y(0)|C]\Pr(C) \end{cases}$$

Then, we have

$$\mathbb{E}[Y|Z=1] - \mathbb{E}[Y|Z=0] = \Pr(C) \left( \mathbb{E}[Y(1)|C] - \mathbb{E}[Y(0)|C] \right)$$

We also have 
$$\mathbb{E}[X|Z=1]=\Pr(AT)+\Pr(C)$$
 and  $\mathbb{E}[X|Z=0]=\Pr(AT)$ . Hence, 
$$\frac{\mathbb{E}[Y|Z=1]-\mathbb{E}[Y|Z=0]}{\mathbb{E}[X|Z=1]-\mathbb{E}[X|Z=0]}=\frac{\Pr(C)\left(\mathbb{E}[Y(1)|C]-\mathbb{E}[Y(0)|C]\right)}{\Pr(C)}$$
 
$$=\mathbb{E}[Y(1)|C]-\mathbb{E}[Y(0)|C]$$
 
$$=\mathbb{E}[Y(1)-Y(0)|C]$$

which is called LATE.

# **Proposition 4.7**

With Assumption 4.10, the LATE is given by

$$\mathbb{E}[Y(1) - Y(0)|C] = \frac{\mathbb{E}[Y|Z=1] - \mathbb{E}[Y|Z=0]}{\mathbb{E}[X|Z=1] - \mathbb{E}[X|Z=0]} = \frac{\text{Cov}(Y,Z)}{\text{Cov}(X,Z)}$$

#### Remark

1. In RCT, Pr(C) = 1, in which case ATE=LATE.

# **4.11 Difference in Difference (DiD)**

The setup is the potential outcomes in Panel data.

Consider a two-way fixed effect model on the potential outcomes. For  $D_{i_t} \in \{0,1\}$ ,  $Y_{i_t}$  is given by

$$Y_{i_t}(0) = \alpha_i + \delta_t + \gamma X_{i_t} + \epsilon_{i_t}(0)$$

$$Y_{i_t}(1) = \alpha_i + \delta_t + \gamma X_{i_t} + \epsilon_{i_t}(1) + \theta$$

**Assumption** We use following assumptions:

1. 
$$\epsilon_{i_t}(0) = \epsilon_{i_t}(1) := \epsilon_{i_t}$$

2. 
$$\mathbb{E}[\epsilon_{i_t}|X_{i_t}]=0$$

The ATE is given by

$$ATE := \mathbb{E}[Y_t(1) - Y_t(0)] = \theta + \underbrace{\mathbb{E}[\epsilon_{i_t}(1) - \epsilon_{i_t}(0)]}_{\text{by assumption} = 0}$$

## Lemma 4.4

With Assumption 4.11,  $ATE = \theta$ .

 $\Diamond$ 

$$Y_{i_t} = D_{i_t} Y_{i_t}(1) + (1 - D_{i_t}) Y_{i_t}(0) = \alpha_i + \delta_t + \theta D_{i_t} + \gamma X_{i_t} + \epsilon_{i_t}$$

## 4.11.1 After OLS Regression

Let T=2, we have

$$Y_{i_2} = \delta_2 + \theta D_{i_2} + \gamma X_{i_2} + e_{i_2}$$
, where  $e_{i_2} = \alpha_i + \epsilon_{i_2}$ 

#### Theorem 4.12

If  $\mathbb{E}[e_{i_2}|X_{i_2},D_{i_2}]=\Pi_0+\Pi_1X_{i_2}$ , then the control function estimator (OLS) is consistent:

$$\hat{\theta}_{\mathrm{CF}} \xrightarrow{P} ATE = \theta$$

However, what if  $\alpha_i < \alpha_j$ , the assumption  $\mathbb{E}[e_{i_2}|X_{i_2},D_{i_2}] = \Pi_0 + \Pi_1 X_{i_2}$  doesn't hold.

## 4.11.2 Difference in Difference

$$\Delta Y_i := Y_{i_2} - Y_{i_1} = \underbrace{\delta_2 - \delta_1}_{\delta} + \theta \Delta D_i + \gamma \Delta X_i + \Delta \epsilon_i$$

Case without covariate ( $\gamma = 0$ )

$$\Delta Y_i = \delta + \theta D_{i_2} + \Delta \epsilon_i$$

**Assumption** [Parallel Trends Assumption]  $\mathbb{E}[\Delta \epsilon | D_2 = 1] = \mathbb{E}[\Delta \epsilon | D_2 = 0].$ 

## Theorem 4.13

Parallel Trends Assumption is equivalent to each of following conditions.

$$PT \Leftrightarrow \mathbb{E}[\Delta Y(1)|D_2 = 1] = \mathbb{E}[\Delta Y(1)|D_2 = 0]$$

$$\Leftrightarrow \mathbb{E}[\Delta Y(0)|D_2 = 1] = \mathbb{E}[\Delta Y(0)|D_2 = 0]$$

$$\Leftrightarrow \operatorname{Cov}(D_2, \Delta \epsilon) = 0$$

The DiD estimator is numerically same with OLS:

$$\hat{\theta}_{\text{DiD}} = \frac{\frac{1}{N} \sum_{i=1}^{N} \Delta Y_i D_{i_2}}{\frac{1}{N} \sum_{i=1}^{N} D_{i_2}} - \frac{\frac{1}{N} \sum_{i=1}^{N} \Delta Y_i (1 - D_{i_2})}{1 - \frac{1}{N} \sum_{i=1}^{N} D_{i_2}}$$
(DiD)

Case with covariates

$$\Delta Y_i = \delta + \theta D_{i2} + \gamma \Delta X_i + \Delta \epsilon_i$$

**Assumption**  $\mathbb{E}[\Delta\epsilon|D_2=1,\Delta X]=\mathbb{E}[\Delta\epsilon|D_2=0,\Delta X]$ , which is equivalent to  $\mathbb{E}[\Delta Y(d)|D_2=1,\Delta X]=\mathbb{E}[\Delta Y(d)|D_2=0,\Delta X], \forall d\in\{0,1\}.$ 

**Remark** The DiD estimator (DiD) is no longer consistent:

$$\hat{\theta}_{\mathrm{DiD}} \overset{P}{\longrightarrow} \theta + \underbrace{\gamma \left( \mathbb{E}[\Delta X | D_2 = 1] - \mathbb{E}[\Delta X | D_2 = 0] \right)}_{\text{"selection on observables"}}$$