Análise Complexa

LFis /MIEFis 30/01/2017 Exame de Recurso

Duração: 2h30m

Departamento de Matemática e Aplicações

Todas as respostas deverão ser convenientemente justificadas.

- 1. Apresente todos os valores de 2^{1+i} na forma a+bi, com $a,b \in \mathbb{R}$.
- 2. Considere a função $f(z) = z\overline{z}^2$. Determine o conjunto dos pontos para os quais a função f é derivável. Existe algum ponto onde a função f é analítica?
- 3. Use o Teorema de Cauchy-Riemann para mostrar que $(e^z)' = e^z$.
- 4. Determine a série de Taylor de $f(z) = \ln(4 + 3z z^2)$ em torno de z = 2. Indique também o disco de convergência desta série.
- 5. Determine a série de Laurent da função $f(z)=z^4\mathrm{e}^{1/z}$ em torno de z=0, identificando a parte principal e a parte regular desta série. Indique o tipo de singularidade de z=0 assim como o resíduo $\mathrm{res}_{z=0}f(z)$.
- 6. Calcule o integral $\int_{\gamma} \frac{\cos(iz)}{z^3 4z^2 + 3z} dz$, onde $\gamma = \{z \in \mathbb{C} : |z| = 2\}$.
- 7. Calcule o integral $\int_{\gamma} \frac{z^2}{1-z^{20}} dz$, onde $\gamma = \{z \in \mathbb{C} : |z| = 4\}$.
- 8. Calcule o integral $\int_0^{2\pi} \frac{1}{2 + \sin x} dx$.

- 9. Determine a série dos senos da função f(x) = x, no intervalo [0,1].
- 10. Determine uma solução do problema

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \\ u(t,0) = u(t,1) = 0, \quad t > 0, \\ u(0,x) = x, \quad 0 < x < 1. \end{cases}$$

11. Seja $f: \mathbb{C} \longrightarrow \mathbb{C}$, onde f(x+iy) = u(x,y) + iv(x,y), uma função analítica. Mostre que u é uma função harmónica, isto é, satisfaz a equação de Laplace:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$