

CITEU BY APPLICANT

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2002-278513 (P2002-278513A)

(43)公開日 平成14年9月27日(2002.9.27)

(51) Int.Cl. ⁷		酸別配号	FΙ	FΙ		ケーマコート (参考)		
G09G	3/30		C 0 9 G	3/30	•	J 5C	080	
	3/20	6 1 1	•	3/20	6 1 1 F	H.		
		6 2 3			6 2 3 I	2	•	
•		6 4 2			642	Λ		
		•			6 4 2 P			
		·	家拉請衣	未請求	請求項の数4	OL (全 12 頁)	
(21)出願番号		特願2001-79599(P2001-79599)	(71)出顧人	000005049 シャープ株式会社				
(22) 出顧日		平成13年3月19日(2001.3.19)		大阪府	大阪市阿倍野区」	長池町22番	22号	
			(72)発明者	加邊 ī	正章			
					大阪市阿倍野区」 株式会社内	長池町22番	22号 シ	
		•	(72)発明者	沼尾 幸	孝次			
		•			大阪市阿倍野区」 株式会社内	長池町22番	22号 シ	

(74)代理人 100078282

弁理士 山本 秀策

最終頁に続く

(54) 【発明の名称】 電気光学装置

(57)【要約】

【課題】 アクティブマトリクス構成において、各画素毎に電流測定素子を設けずに有機EL素子に流れる電流を測定し、TFT特性ばらつきによる輝度むらを補正する。

【解決手段】 アクティブ素子と有機EL素子がマトリクス状に配置され、有機EL素子に電流を供給する複数の電流供給線が配置され、各電流供給線毎に電流測定素子が設けられた電気光学装置において、1本の走査線に走査電圧を与え、それと同期して各データ線に所定のデータ電圧を供給し、電流測定素子により有機EL素子に流れる電流値を測定する。次に、同一の走査線に走査電圧を与え、それと同期して各データ線に電気光学素子をO階調にするデータ信号を供給する。この駆動動作を各走査線に対して行い、得られた電流測定値に基づいて各アクティブ素子に与えるデータ電圧を補正する。

【特許請求の範囲】

【請求項1】 基板上に、アクティブ素子および該アクティブ素子によって制御される電気光学素子がマトリクス状に配置されていると共に、該アクティブ素子に走査電圧を与える走査線およびデータ電圧を与えるデータ線が該アクティブ素子の近傍を通って互いに交差するように配置され、さらに、該電気光学素子に該アクティブ素子を介して電流を供給するための複数の電流供給線が配置され、各電流供給線毎に電流を測定するための電流測定素子が設けられた電気光学装置において、

各電流測定素子によって、その電流測定素子が配置された電流供給線に接続された複数の電気光学素子の各々に流れる電流値を測定するべく、

1本の走査線に走査電圧を与え、そのタイミングと同期して、各データ線に所定のデータ電圧を供給し、該電流測定素子により該電気光学素子に流れる電流値を測定するステップと、同一の走査線に再度走査電圧を与え、そのタイミングと同期して、各データ線に該電気光学素子を 0 階調にするデータ信号を供給するステップとを各走査線に対して行って、得られた電流測定値に基づいて、各電気光学素子に流れる電流が等しくなるように、各アクティブ素子に与えるデータ電圧を補正することを特徴とする電気光学装置。

【請求項2】 さらに、前記電流供給線と交差する方向に前記電気光学素子の輝度値を測定し、得られた輝度測定値と前記電流測定値とに基づいて、各電気光学素子の輝度が等しくなるように、前記アクティブ素子に与えるデータ電圧を補正することを特徴とする請求項2に記載の電気光学装置。

【請求項3】 基板上に、アクティブ素子および該アクティブ素子によって制御される電気光学素子がマトリクス状に配置されていると共に、該アクティブ素子に走査電圧を与える走査線およびデータ電圧を与えるデータ線が該アクティブ素子の近傍を通って互いに交差するように配置され、さらに、該電気光学素子に該アクティブ素子を介して電流を供給するための複数の電流供給線が配置され、該電流供給線の電流を測定するために1つの電流測定素子が設けられた電気光学装置において、

該電流測定素子によって複数の電気光学素子の各々に流れる電流値を測定するべく、

1本の走査線に複数回走査電圧を与え、各回のタイミングと同期して、各々異なる1本のデータ線に所定のデータ電圧を供給し、その他のデータ線には該電気光学素子を0階調にするデータ信号を供給して、該電流測定素子により該電気光学素子に流れる電流値を測定するステップを各走査線に対して行って、得られた電流測定値に基づいて、各電気光学素子に流れる電流が等しくなるように、各アクティブ素子に与えるデータ電圧を補正することを特徴とする電気光学装置。

【請求項4】 基板上に、アクティブ素子および該アク

ティブ素子によって制御される電気光学素子がマトリクス状に配置されていると共に、該アクティブ素子に走査電圧を与える走査線およびデータ電圧を与えるデータ線が該アクティブ素子の近傍を通って互いに交差するように配置され、さらに、該電気光学素子に該アクティブ素子を介して電流を供給するための複数の電流供給線が配置され、該電流供給線の電流を測定するために1つの電流測定素子が設けられた電気光学装置において、

各電流供給線毎に該電気光学素子よりも基板縁側にTF T素子が設けられ、

該電流測定素子によって複数の電気光学素子の各々に流れる電流値を測定するべく、

1本の走査線に走査電圧を与えると共に各データ線に所定のデータ電圧を供給し、各電流供給線毎に設けた前記TFT素子を順次走査することにより、該電流測定素子により該電気光学素子に流れる電流値を順次測定するステップを各走査線に対して行って、得られた電流測定値に基づいて、各電気光学素子に流れる電流が等しくなるように、各アクティブ素子に与えるデータ電圧を補正することを特徴とする電気光学装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、有機EL素子等の電気光学素子を用いた電気光学装置に関する。

[0002]

【従来の技術】有機EL素子は、他に光源を必要とせずに自ら発光する自発光素子であるため、これをディスプレイに応用した場合には、液晶を凌ぐ、高コントラストで広視野角が得られる薄型ディスプレイが得られる可能性を秘めている。

【0003】図1は、一般的な有機EL素子の構造を示す概略断面図である。ここでは、基板上に陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6および陰極7が順に積層されている。そして、両電極2、7に直流電圧を印加することにより、陽極2からホール(正孔)が、陰極7から電子が注入される。この2つの再結合によって、蛍光分子の1重項励起状態が生成され、その一重項励起分子が基底状態に戻る際に、外部に光を放出するという一連の過程により、有機EL素子の発光が得られるという原理である。

【0004】図2(a)~図2(c)に、一般的な有機 EL素子の特性を示す。図2(a)は印加電圧と輝度と の関係を示し、図2(b)は印加電圧と電流との関係を 示し、図2(c)は印加電圧と発光効率との関係を示 す。輝度はある関値電圧以上になると徐々に増加し、電 流密度もある関値電圧以上になると徐々に増加する。ま た、発光効率はある電圧において最大値となる。

【0005】近年では、有機EL素子を用いた単純マトリクス構成およびアクティブマトリクス構成のディスプレイが盛んに開発されている。

【0006】図3に、一般的な単純マトリクス構成のディスプレイの回路構成を示す。ここでは、有機EL素子がマトリクス状に配置され、走査ドライバに接続された走査線とデータドライバに接続されたデータ線とが互いに交差(この例では直交)して設けられている。走査線は有機EL素子の陰極に接続され、データ線は有機EL素子の陽極に接続され、データ線は有機EL素子の陽極に接続されている。

【0007】この単純マトリクス構成のディスプレイにおいては、各走査線を選択している期間のみ、それに接続された有機EL素子が発光する。このため、走査線の本数が増えてデューティー比が上がると、各走査線を選択している期間が短くなって各画素の点灯時間が短くなり、その結果、ディスプレイの輝度減少を招く。これを回避するため、有機EL素子への印加電圧を増やして各画素の輝度を上げると、一般的に発光効率は高電圧になるほど下がるため、消費電力の増大を招く。

【0008】図4に、一般的なアクティブマトリクス構成のディスプレイの回路構成を示す。ここでは、マトリクス状に有機EL素子とそれを制御するアクティブ素子とが配置されている。図5に示すように、アクティブ素子には、nチャンネルTFTであるスイッチングTFTと、pチャンネルTFTであるドライビングTFTの2種類が必要である。また、このアクティブ素子に走査電圧(ゲートを開く信号)を与える走査線およびデータ電圧(データ信号)を与えるデータ線が互いに交差(この例では直交)して設けられ、各々走査ドライバおよびデータドライバに接続されている。さらに、有機EL素子にアクティブ素子を介して電流を供給するための電流供給線がデータ線に平行に設けられている。

【0009】このアクティブマトリクス構成のディスプ レイにおいては、走査線からスイッチングTFTのゲー ト信号が入力され、これと同期してデータ線からデータ 信号に応じた量の電荷がキャパシタに入力される。この キャパシタに蓄積された電荷量に応じてドライビングT FTのソース・ドレイン間の抵抗値が決定され、電流供 給線から有機EL素子に電流が供給されて有機EL素子 が発光する。そして、スイッチングTFTが閉じられた 後も、ドライビングTFTを通して電流供給線から有機 EL素子に電流供給されるため、次の走査まで、有機E L素子を発光させることが可能となる。このため、デュ ーティー比が上がってもディスプレイの輝度減少を招く ようなことはなく、低電圧で駆動できるため、低消費電 力化が可能となる。また、この構成の場合、データ線か らのデータ信号に応じてソース・ドレイン間の抵抗値が 決まり、これにより有機EL素子に供給される電流量が 決まるため、データ信号に応じた輝度が得られ、階調表 示を行うことも可能である。

【0010】このように、アクティブマトリクス構成の ディスプレイでは、単純マトリクス構成に比べて低消費 電力化を図ることができるため、好ましい。しかしなが ら、アクティブマトリクス構成では、ドライビングTF Tの特性ばらつきのため、各画素において有機EL素子 に流れる電流量が異なり、輝度むらが発生するという欠 点があった。

【0011】これを回避するために、例えば特開平11-282420号公報では、予め表示データをEL表示パネルに入力して全画面を点灯させ、そのときの各画素の輝度を測定し、この測定値の平均値を算出してその差分をさらに算出し、その差分を補正値として補正情報メモリに記憶させる。そして、その補正値を表示データ(データ信号)に加算器にて加算し、EL表示パネルに入力することにより、表示ばらつきを補正している。これにより、TFTの特性ばらつきによるEL素子の輝度むらを補正することができる。

【0012】また、有機EL素子は発光時間と共に劣化し、発光輝度が減少してくるという問題もあった。一般的に各画素毎の発光頻度は異なるため、発光頻度の多い画素は次第に暗くなり、発光頻度の少ない画素は変化が少ないため、輝度むらが発生する。

【0013】これを回避するために、例えば特開平10-254410号公報では、各有機EL素子を所定の電圧値で駆動したとき、有機EL素子に流れる電流値を計測し、この電流値をメモリに記憶させる。そして、その電流値に基づいてデータ信号を演算し、1フレーム期間内における発光時間を決めている。これにより、有機EL素子の劣化による輝度むらを補正することができる。【0014】さらに、特開2000-187467号公報では、点灯中の有機EL素子の各画素に流れる電流を検出する電流検出手段を設けて、検出した電流に応じて画素の点灯時間または点灯電流を制御している。これにより、素子のばらつきや劣化による輝度変化を検出することができ、良好な階調制御を行うことができる。【0015】

【発明が解決しようとする課題】単純マトリクス構成の場合、上述したような駆動方法のため、各走査線上の画素毎に順次発光し、走査が終了した走査線上の各有機E L素子には電流が流れず、発光しない。このため、特開200-187467号公報のように各データ線毎に電流測定素子が存在すれば、各有機E L素子に流れる電流を検出することができる。

【0016】しかし、この技術をアクティブマトリクス 構成に適用するのは、従来では不可能であった。その理 由は、スイッチングTFTの走査が終了した後も、ドラ イビングTFTを通して有機EL素子に電流が供給され るため、各電流供給線毎に電流測定素子を設けた場合、 その電流供給線に接続された全ての有機EL素子に流れ る電流値の総和を測定してしまうからである。

【0017】このため、各画素の有機EL素子に流れる 電流を測定しようとした場合、特開平10-25441 0号公報のように、各画素毎に電流測定素子を配置する 必要があった。しかし、各画素毎に電流測定素子を配置すると、開口率の低下を招き、また、各画素の回路構成も複雑になるため、製造歩留まり減少の要因となる。さらに、各画素毎の電流測定素子自体にも特性ばらつきがあるため、正確な電流検出は不可能である。

【0018】本発明は、このような従来技術の課題を解決するべくなされたものであり、アクティブマトリクス構成において、各画素毎に電流測定素子を設けなくても、有機EL素子や無機EL素子等の電気光学素子に流れる電流を測定することができ、TFT特性のばらつきによる輝度むらを補正できる電気光学装置を提供することを目的とする。

[0019]

【課題を解決するための手段】本発明の電気光学装置 は、基板上に、アクティブ素子および該アクティブ素子 によって制御される電気光学素子がマトリクス状に配置 されていると共に、該アクティブ素子に走査電圧を与え る走査線およびデータ電圧を与えるデータ線が該アクテ ィブ素子の近傍を通って互いに交差するように配置さ れ、さらに、該電気光学素子に該アクティブ素子を介し て電流を供給するための複数の電流供給線が配置され、 各電流供給線毎に電流を測定するための電流測定素子が 設けられた電気光学装置において、各電流測定素子によ って、その電流測定素子が配置された電流供給線に接続 された複数の電気光学素子の各々に流れる電流値を測定 するべく、1本の走査線に走査電圧を与え、そのタイミ ングと同期して、各データ線に所定のデータ電圧を供給 し、該電流測定素子により該電気光学素子に流れる電流 値を測定するステップと、同一の走査線に再度走査電圧 を与え、そのタイミングと同期して、各データ線に該電 気光学素子を0階調にするデータ信号を供給するステッ プとを各走査線に対して行って、得られた電流測定値に 基づいて、各電気光学素子に流れる電流が等しくなるよ うに、各アクティブ素子に与えるデータ電圧を補正し、 そのことにより上記目的が達成される。

【0020】上記構成によれば、後述する実施形態1に示すように、電流測定素子が各電流供給線毎に設けられている構成において、各電気光学素子に流れる電流値を測定してデータ電圧(データ信号)を補正することが可能である。

【0021】さらに、前記電流供給線と交差する方向に前記電気光学素子の輝度値を測定し、得られた輝度測定値と前記電流測定値とに基づいて、各電気光学素子の輝度が等しくなるように、前記アクティブ素子に与えるデータ電圧を補正してもよい。

【0022】上記構成によれば、後述する実施形態2に示すように、電流測定素子自体にばらつきがあっても、電気光学素子の発光輝度にばらつきが生じるのを防ぐことが可能である。

【0023】本発明の電気光学装置は、基板上に、アク

ティブ素子および該アクティブ素子によって制御される 電気光学素子がマトリクス状に配置されていると共に、 該アクティブ素子に走査電圧を与える走査線およびデー タ電圧を与えるデータ線が該アクティブ素子の近傍を通 って互いに交差するように配置され、さらに、該電気光 学素子に該アクティブ素子を介して電流を供給するため の複数の電流供給線が配置され、該電流供給線の電流を 測定するために1つの電流測定素子が設けられた電気光 学装置において、該電流測定素子によって複数の電気光 学素子の各々に流れる電流値を測定するべく、1本の走 査線に複数回走査電圧を与え、各回のタイミングと同期 して、各々異なる1本のデータ線に所定のデータ電圧を 供給し、その他のデータ線には該電気光学素子を0階調 にするデータ信号を供給して、該電流測定素子により該 電気光学素子に流れる電流値を測定するステップを各走 査線に対して行って、得られた電流測定値に基づいて、 各電気光学素子に流れる電流が等しくなるように、各ア クティブ素子に与えるデータ電圧を補正し、そのことに より上記目的が達成される。

【0024】上記構成によれば、後述する実施形態3に示すように、1つの電流測定素子により各電気光学素子に流れる電流値を測定してデータ電圧(データ信号)を補正することが可能である。

【0025】本発明の電気光学装置は、基板上に、アク ティブ素子および該アクティブ素子によって制御される 電気光学素子がマトリクス状に配置されていると共に、 該アクティブ素子に走査電圧を与える走査線およびデー タ電圧を与えるデータ線が該アクティブ素子の近傍を通 って互いに交差するように配置され、さらに、該電気光 学素子に該アクティブ素子を介して電流を供給するため の複数の電流供給線が配置され、該電流供給線の電流を 測定するために1つの電流測定素子が設けられた電気光 学装置において、各電流供給線毎に該電気光学素子より も基板縁側にTFT素子が設けられ、該電流測定素子に よって複数の電気光学素子の各々に流れる電流値を測定 するべく、1本の走査線に走査電圧を与えると共に各デ ータ線に所定のデータ電圧を供給し、各電流供給線毎に 設けた前記TFT素子を順次走査することにより、該電 流測定素子により該電気光学素子に流れる電流値を順次 測定するステップを各走査線に対して行って、得られた 電流測定値に基づいて、各電気光学素子に流れる電流が 等しくなるように、各アクティブ素子に与えるデータ電 圧を補正し、そのことにより上記目的が達成される。

【0026】上記構成によれば、後述する実施形態4に示すように、1つの電流測定素子により各電気光学素子に流れる電流値を測定してデータ電圧(データ信号)を補正することが可能となる。

[0027]

【発明の実施の形態】以下に、本発明の実施の形態について、図面を参照しながら説明する。

【0028】(実施形態1)図6は、本発明の電気光学 装置の一実施形態である有機ELパネルの構成を説明す るための回路図である。この有機ELパネルは、基板上 に、アクティブ素子とそれによって制御される有機EL 素子がマトリクス状に配置されている。有機EL素子 は、図1に示したように、基板1上に陽極2、正孔注入 層3、正孔輸送層4、発光層5、電子輸送層6および陰 極7を順に積層して構成されている。また、アクティブ 素子は、図5に示したように、スイッチングTFT、ド ライビングTFTおよびキャパシタから構成されてい る。また、アクティブ素子に走査電圧を与える走査線お よびデータ電圧を与えるデータ線がアクティブ素子の近 傍を通って互いに交差するように配置されている。走査 線は走査ドライバに接続され、データ線はデータドライ バに接続されている。さらに、電気光学素子にアクティ ブ素子を介して電流を供給するための複数の電流供給線 が配置されている。

【0029】さらに、本実施形態では、各電流供給線毎に電流を測定するための電流測定素子が設けられている。この電流測定素子としては、例えば図18に示すような構成のものを用いることができる。電流測定素子には、電流測定結果を記憶するためのメモリ素子が接続され、メモリ素子は、演算素子を介してデータドライバに接続されている。

【0030】次に、このように構成された有機ELパネ ルにおいて、TFT特性のばらつきによる有機EL素子 の輝度むらを補正する方法について説明する。まず、各 有機EL素子に流れる電流値を測定する方法について説 明する。まず、第一の走査線に走査電圧を与えて、第一 の走査線上のスイッチングTFTのゲートをオープンに する。これと同期して、各データ線を通して所定のデー タ電圧 (例えば、電流-輝度特性において輝度を等分割 した場合に相当する電流を実現するための電圧)を入力 する。これにより、ドライビングTFTのゲートがキャ パシタに蓄積された電荷量に応じてオープンされ、電流 供給線から第一の走査線上の有機EL素子に電流が流れ 込む。このときのドライビングTFTのゲート電圧はデ ータ電圧とほぼ等しく、それに応じた電流が有機EL素 子に流れる。このときに各有機EL素子に流れる電流量 を電流測定素子によって測定し、測定結果をメモリ素子 に記憶させる。その後、再び第一の走査線に走査電圧を 与えて、第一の走査線上のスイッチングTFTのゲート をオープンにする。これと同期して、各データ線を通し て、有機EL素子をO階調とするデータ電圧を入力す る。これにより、第一の走査線上の有機EL素子に電流 が流れなくなる。

【0031】以上の走査を順次、他の走査線についても 行っていく。これにより、各有機EL素子に流れる電流 値を全て測定することが可能になる。

【0032】例えば、第一のデータ線上の各有機EL素 子(有機EL(1、1)、有機EL(1、2)、・・

・、有機EL(1、n))に流れる電流量は、電流測定 素子1により測定される。この電流量は、縦軸に10g (I)(Iは電流量)をとると、図7に示すようにばら つきがある。これは、ドライビングTFTの特性ばらつ きによるものである。このように各有機EL素子に流れ る電流量が異なると、得られる輝度も異なり、輝度むら が発生する。

【0033】次に、この電流値ばらつきを補正して、均一な輝度を得る方法について説明する。一般的なTFTにおいて、ゲート電圧:Vgateと流れる電流値:10g(I)の関係は、図8に示すようになる。この図8において、傾いている部分は、

[0034]

【数1】

log(I)=aVgate+b (a は傾き、b は切片) … (1)

【0035】で表される直線により定義することができる。

【0036】TFT素子の特性が異なると、図9に示すように、特性に差異が生じる。このため、同一のゲート電圧を入力しても、流れる電流値にばらつきが生じるのである。但し、各TFTにおいて、上記式(1)のaについてはほとんど変わらない。また、図6に示したような回路構成においては、ゲート電圧はデータ信号(データ電圧)に等しいと考えられる。

【0037】ここで、説明を簡単にするために、図6における有機EL(1、1)、有機EL(1、2)および有機EL(1、3)の3つの有機EL素子に流れる電流値(2)のみを考え、これを基にして輝度を補正する方法を考える。これらは、同一のデータ電圧、すなわち、同一のゲート電圧(以下、20 をドライビングTFTに与えたときに流れた電流値であり、各々20 の20 に示すようになる。20 に示すようになる。20 に示すようになる。20 に示すようになる。20 に示すようになる。20 に示すようになる。20 に示すようになる。20 にすると、図21 のの各点を通過するようにすると、図21 に示すようになる。20 にすると、図21 に示すようになる。20 になるに示したいる部分の直線は、

[0038]

【数2】

有機 EL(1,1) では、
$$log(I)=aV_{gate}+(log(I_1)-aV_c)$$
 … (2)

有機 EL(1,2) では、
$$log(I)=aV_{gate}+(log(I_2)-aV_c)$$
 … (3)

有機 EL(1,3) では、
$$log(I)=aV_{gate}+(log(I_{\bar{3}})-aV_{c})$$
 … (4)

【0039】のように表される。

【0040】ここで、図7に示すように、基準の電流値を有機EL(1、2)に流れる電流と決めて、有機EL(1、1)および有機EL(1、3)においても有機EL(1、2)と同一の電流値が流れるゲート電圧を上記式(2)および上記式(4)から求めると、

[0041]

【数3】

有機
$$EL(1,1)$$
 では、 $log(I_2)-log(I_1)+aV_c$

有機
$$EL(1,3)$$
 では、 $log(I_2)-log(I_3)+aV_c$

【0042】となる。このゲート電圧を各々有機EL(1、1)および有機EL(1、3)のドライビングTFTに入力すれば、有機EL(1、2)と同一の電流が流れ、均一な輝度が得られる。なお、aは素子間のばらつきが少ないため、いずれか一つのTFTで予め測定しておくことができる。

【0043】このように同一のデータ電圧(ゲート電圧)をドライビングTFTに与えた場合に、流れる電流値が異なる場合でも、簡単な演算によりデータ電圧を補正することにより、有機EL素子に同一の電流を流して、均一な輝度を得られるようにすることができる。

【0044】他のデータ電圧(ドライビングTFTのゲート電圧)の補正においては、上記電流測定を再び行ってもよいが、上記式(2)~上記式(4)を利用して、計算により求めることもできる。例えば、有機EL(1、2)において、ゲート電圧V_c'のとき、流れる電流は

[0045]

【数4】

$aV_c + (log(I_2) - aV_c)$

【0046】で表される。有機EL(1、1)および有機EL(1、3)において、有機EL(1、2)と同一の電流値が流れるゲート電圧を上記式(1)および上記式(3)から求めると、

[0047]

【数5】

有機
$$EL(1,1)$$
 では、 $\frac{\log(I_2)-\log(I_1)+\alpha V_c}{\alpha}$

有機 EL(1,3) では、
$$\frac{\log(I_2)-\log(I_3)+aV_c'}{a}$$

【0048】となる。このゲート電圧を各々有機EL(1、1)および有機EL(1、3)のドライビングTFTに入力すれば、有機EL(1、2)と同一の電流が流れ、均一な輝度が得られる。このように、一旦あるデータ電圧で電流測定を行っておけば、他のデータ電圧における補正も、この電流値に基づいて行うことができる。

【0049】第一の走査線上の他の有機EL素子、および他の走査線上の有機EL素子においても、簡単な演算により同一の電流が流れるデータ電圧(ドライビングTFTのゲート電圧)を決定することができ、これによって均一な輝度を得ることができる。

【0050】上記電流測定素子により得られた電流測定結果は、図6に示した結果を記憶するメモリ素子に記憶され、演算素子によりデータ信号の補正が行われ、補正されたデータ信号がデータドライバに送られる。以上の過程により、均一な階調表示を行うことができる。なお、上述のような輝度補正は、ユーザが使用前や使用中に適宜行うことができる。

【0051】(実施形態2)上記実施形態1において、データ線に沿った方向の有機EL素子の輝度補正は、各電流測定素子によって測定される電流値によって行われる。よって、各電流測定素子自体にばらつきが無い場合には、実施形態1で説明した方法により、全ての有機ELにおいて均一な輝度を得ることができる。

【0052】しかし、電流測定素子が基板に作り込まれている場合には、電流測定素子自体に特性ばらつきがあり、測定自体にばらつきが生じているおそれがある。この場合、実施形態1のようにデータ電圧を補正しても、走査線に沿った方向(電流供給線を横切る方向)において、有機EL素子の輝度が異なる。例えば、有機EL(1、1)、有機EL(2、1)、・・・、有機EL(m、1)において、輝度が同一となるようにデータ電

【0053】この電流測定素子自体の特性ばらつきを補正するためには、実施形態1のような補正を行って補正された所定のデータ電圧を入力した後、図12に示すように、走査線に沿った方向に対して画素の輝度測定を行う。この輝度測定によって、有機EL(1、1)、有機EL(2、1)、・・・、有機EL(m、1)の輝度が例えば図13に示すようになった場合を考える。

圧を入力しても輝度が異なることになる。

【0054】以下では、説明の簡略化のために、有機EL(1、1)および有機EL(2、1)について考える。有機ELの電流-輝度特性は、図14に示すように、ほぼ直線で近似することができる。ここで、有機E

L(1、1)の輝度をK₁、有機EL(2、1)の輝度 K₂とし、そのときの電流値を I_{K1}、 I_{K2}とする。ま た、この輝度における有機EL(1、1)のドライビン グTFTのゲート電圧を V_{K1} 、有機EL(2、1)のド ライビングTFTのゲート電圧をVK2とする。この場 合、ゲート電圧と有機ELに流れる電流の関係は図15 に示したようなものになる。

【0055】よって、有機EL(1、1)の輝度レベル を基準輝度として、上記実施形態1と同様の考え方によ り、有機EL(1、1)のドライビングTFTのゲート 電圧を

[0056]

【数6】

$\frac{\log(I_{K2}) - \log(I_{K1}) + \alpha V_{K1}}{\alpha}$

【0057】にすれば、有機EL(1、1)および有機 EL(2、1)に流れる電流値が一致し、輝度を同じに することができる。第一のデータ線上の他の有機EL素 子においても、上記と同様に補正を行うことにより、第 二のデータ線上の有機EL素子と同一の輝度が得られ る。

【0058】このように、電流測定素子自体に特性ばら つきがあり、走査線に沿った方向において有機EL素子 の発光輝度にばらつきが生じている場合にも、以上のよ うに補正を行うことにより、均一な輝度を得ることがで きる。

【0059】(実施形態3)本実施形態では、図16に 示すように、1つの電流測定素子により各有機EL素子 に流れる電流を測定する例について説明する。この場 合、実施形態1のように、走査線の走査と同期して、全 てのデータ線に所定の電圧を与えたのでは、各々の有機 EL素子に流れる電流を測定することができない。そこ で、本実施形態では、以下のような手順により有機EL 素子に流れる電流を測定する。

【0060】まず、第一の走査線に走査電圧を与えて、 第一の走査線上のスイッチングTFTのゲートをオープ ンにする。これと同期して、第一のデータ線に所定のデ ータ電圧を入力し、それ以外のデータ線には有機EL素 子を0階調とするデータ電圧を入力する。これにより、 有機EL(1、1)に流れる電流を電流測定素子により 測定することができる。その後、再び第一の走査線に走 査電圧を与えて、第一の走査線上のスイッチングTFT のゲートをオープンにする。これと同期して、第二のデ ータ線に所定のデータ電圧を入力し、それ以外のデータ 線には有機EL素子をO階調とするデータ電圧を入力す る。これにより、有機EL(1、2)に流れる電流を電 流測定素子により測定することができる。以上の処理を 順次、他のデータ線にについて繰り返すことにより、第 一の走査線上の各有機EL素子に流れる電流を1つの電 流測定素子により測定することができる。他の走査線上 の各有機EL素子に流れる電流を測定する際には、以上 の処理を順次、他の走査線について行えばよい。これに より、各有機EL素子に流れる電流値を全て測定するこ とが可能になる。

【0061】このようにして得られた各有機EL素子に 流れる電流値をメモリに保存し、これに基づいて上記実 施形態1に示したようにデータ電圧を補正することによ り、均一な階調表示を得ることができる。

【0062】(実施形態4)本実施形態では、図17に 示すように、1つの電流測定素子により各有機EL素子 に流れる電流を測定する他の例について説明する。ここ では、各電流供給線毎にTFT素子が配置されている。 この場合の電流測定方法について、以下に説明する。

【0063】初期状態においては、各電流供給線に配置 されたTFT素子のゲートは閉じられている。その状態 において、まず、第一の走査線に走査電圧を与えて、第 一の走査線上のスイッチングTFTのゲートをオープン にし、これと同期して、第一のデータ線に所定のデータ 電圧を入力する。これにより、第一の走査線上のドライ ビングTFTのゲートはオープンになるが、各電流供給 線に配置されたTFTのゲートが全て閉じられているた め、第一の走査線上の有機EL素子には電流が流れな 41。次に、第一の電流供給線に配置されたTFTのゲー トをオープンにする。これにより、有機EL素子(1、 1)のみに電流が流れる。このときの電流を電流測定素 子により測定する。この後、順次第二の電流供給線に配 置されたTFT、第三の電流供給線に配置されたTF T、・・・とゲートをオープンにし、このときに各有機 EL素子に流れる電流を測定することにより、第一の走 査線上の各有機EL素子に流れる電流値を1つの電流測 定素子により測定することができる。この後、再び第一 の走査線を走査して、各データ線を通して有機EL素子 が〇階調となるデータ電圧を入力する。そして、第二の 走査線、第三の走査線、・・・と順次以上の処理を繰り 返すことにより各有機EL素子に流れる電流値を全て測 定することが可能になる。

【0064】このようにして得られた各有機EL素子に 流れる電流値をメモリに保存し、これに基づいて上記実 施形態1に示したようにデータ電圧を補正することによ り、均一な階調表示を得ることができる。

【0065】なお、上記実施形態では、電気光学光学素 子として有機EL素子を用いた電気光学装置の例につい て説明したが、本発明は、無機EL素子を用いた電気光 学装置に対しても適用可能である。

[0066]

【発明の効果】以上詳述したように、本発明によれば、 アクティブマトリクス構成の有機EL素子において、各 電流供給線毎に電流測定素子を設けた場合でも、各有機 EL素子に流れる電流を測定し、この電流値を用いて輝 度ばらつきを補正することができる。さらに、電流測定 素子を1つだけ設けた場合でも、各有機EL素子に流れる電流を測定し、この電流値を用いて輝度ばらつきを補正することができる。従って、各画素毎に電流測定素子を配置する必要があった従来技術に比べて、開口率を向上し、回路構成を簡略化して歩留まりを向上させることができる。さらに、電流測定素子の特性ばらつきによる電流測定ばらつきを防いで正確に電流検出を行うことができる。

【図面の簡単な説明】

【図1】一般的な有機EL素子の構造を示す概略断面図である。

【図2】有機EL素子の特性を示すグラフであり、

(a)は印加電圧と輝度との関係を示し、(b)は印加電圧と電流との関係を示し、(c)は印加電圧と発光効率との関係を示す。

【図3】一般的な単純マトリクス構成の有機ELパネルの構成を示す回路図である。

【図4】一般的なアクティブマトリクス構成の有機 ELパネルの構成を示す回路図である。

【図5】一般的なアクティブマトリクス構成の有機EL パネルの基本単位を示す詳細図である。

【図6】実施形態1の有機ELパネルの構成を示す回路 図である。

【図7】実施形態1において、電流測定素子により測定された、各有機EL素子に流れる電流量を示すグラフである。

【図8】一般的なTFTにおけるゲート電圧と電流量の 関係を示すグラフである。

【図9】一般的なTFTにおいて、素子特性がばらつい

た場合のゲート電圧と電流量の関係を示すグラフである。

【図10】図6に示した有機EL(1、1)、有機EL(1、2)および有機EL(1、3)のゲート電圧 V_c における電流量を示すグラフである。

【図11】図6に示した有機EL(1、1)、有機EL(1、2)および有機EL(1、3)のドライビングTFTの特性を示す示すグラフである。

【図12】輝度測定の方法を説明するための図である。

【図13】走査線方向に沿った方向の有機ELの輝度ばらつきを示すグラフである。

【図14】有機ELの電流-輝度特性を示すグラフである。

【図15】図6に示した有機EL(1、1)、(2、1)のドライビングTFTの特性を示すグラフである。

【図16】実施形態2の有機ELパネルの構成を示す回路図である。

【図17】実施形態3の有機ELパネルの構成を示す回路図である。

【図18】実施形態で用いる電流測定素子の構成の一例を示す図である。

【符号の説明】

- 1 基板
- 2 陽極
- 3 正孔注入層
- 4 正孔輸送層
- 5 発光層
- 6 電子輸送層
- 7 陰極

【図1】

【図5】

【図18】

【図11】

【図12】

【図13】

[図14]

【図15】

【図16】

【図17】

フロントページの続き

(72)発明者 伊藤 信行 大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(72)発明者 向殿 充浩

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

F ターム(参考) 5C080 AA06 BB05 DD05 EE28 FF11 JJ02 JJ03 JJ05

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)