CHAPTER

37

Wave Optics

- 37.1 Young's Double-Slit Experiment
- 37.2 Analysis Model: Waves in Interference
- 37.3 Intensity Distribution of the Double-Slit Interference Pattern
- 37.4 Change of Phase Due to Reflection
- 37.5 Interference in Thin Films
- 37.6 The Michelson Interferometer

The colors in many of a hummingbird's feathers are not due to pigment. The *iridescence* that makes the brilliant colors that often appear on the bird's throat and belly is due to an interference effect caused by structures in the feathers. The colors will vary with the viewing angle. (Dec Hogan/ Shutterstock.com)

In Chapter 36, we studied light rays passing through a lens or reflecting from a mirror to describe the formation of images. This discussion completed our study of *ray optics*. In this chapter and in Chapter 38, we are concerned with *wave optics*, sometimes called *physical optics*, the study of interference, diffraction, and polarization of light. These phenomena cannot be adequately explained with the ray optics used in Chapters 35 and 36. We now learn how treating light as waves rather than as rays leads to a satisfying description of such phenomena.

37.1 Young's Double-Slit Experiment

In Chapter 18, we studied the waves in interference model and found that the superposition of two mechanical waves can be constructive or destructive. In constructive interference, the amplitude of the resultant wave is greater than that of either individual wave, whereas in destructive interference, the resultant amplitude is less than that of the larger wave. Light waves also interfere with one another. Fundamentally, all interference associated with light waves arises when the electromagnetic fields that constitute the individual waves combine.

Interference in light waves from two sources was first demonstrated by Thomas Young in 1801. A schematic diagram of the apparatus Young used is shown in Figure 37.1a. Plane light waves arrive at a barrier that contains two slits S_1 and S_2 . The light from S_1 and S_2 produces on a viewing screen a visible pattern of bright and dark parallel bands called **fringes** (Fig. 37.1b). When the light from S_1 and that from S_2 both arrive at a point on the screen such that constructive interference occurs at

Figure 37.1 (a) Schematic diagram of Young's double-slit experiment. Slits S_1 and S_2 behave as coherent sources of light waves that produce an interference pattern on the viewing screen (drawing not to scale). (b) A simulation of an enlargement of the center of a fringe pattern formed on the viewing screen.

that location, a bright fringe appears. When the light from the two slits combines destructively at any location on the screen, a dark fringe results.

Figure 37.2 is a photograph looking down on an interference pattern produced on the surface of a water tank by two vibrating sources. The linear regions of constructive interference, such as at *A*, and destructive interference, such as at *B*, radiating from the area between the sources are analogous to the red and black lines in Figure 37.1a.

Figure 37.3 on page 1136 shows some of the ways in which two waves can combine at the screen. In Figure 37.3a, the two waves, which leave the two slits in phase, strike the screen at the central point O. Because both waves travel the same distance, they arrive at O in phase. As a result, constructive interference occurs at this location and a bright fringe is observed. In Figure 37.3b, the two waves also start in phase, but here the lower wave has to travel one wavelength farther than the upper wave to reach point P. Because the lower wave falls behind

Figure 37.2 An interference pattern involving water waves is produced by two vibrating sources at the water's surface.

Figure 37.3 Waves leave the slits and combine at various points on the viewing screen. (All figures not to scale.)

the upper one by exactly one wavelength, they still arrive in phase at P and a second bright fringe appears at this location. At point R in Figure 37.3c, however, between points O and P, the lower wave has fallen half a wavelength behind the upper wave and a crest of the upper wave overlaps a trough of the lower wave, giving rise to destructive interference at point R. A dark fringe is therefore observed at this location.

If two lightbulbs are placed side by side so that light from both bulbs combines, no interference effects are observed because the light waves from one bulb are emitted independently of those from the other bulb. The emissions from the two lightbulbs do not maintain a constant phase relationship with each other over time. Light waves from an ordinary source such as a lightbulb undergo random phase changes in time intervals of less than a nanosecond. Therefore, the conditions for constructive interference, destructive interference, or some intermediate state are maintained only for such short time intervals. Because the eye cannot follow such rapid changes, no interference effects are observed. Such light sources are said to be **incoherent.**

To observe interference of waves from two sources, the following conditions must be met:

Conditions for interference

- The sources must be **coherent**; that is, they must maintain a constant phase with respect to each other.
- The sources should be **monochromatic**; that is, they should be of a single wavelength.

As an example, single-frequency sound waves emitted by two side-by-side loud-speakers driven by a single amplifier can interfere with each other because the two speakers are coherent. In other words, they respond to the amplifier in the same way at the same time.

A common method for producing two coherent light sources is to use a monochromatic source to illuminate a barrier containing two small openings, usually in the shape of slits, as in the case of Young's experiment illustrated in Figure 37.1. The light emerging from the two slits is coherent because a single source produces the original light beam and the two slits serve only to separate the original beam into two parts (which, after all, is what is done to the sound signal from two side-by-side loudspeakers). Any random change in the light emitted by the source occurs in both beams at the same time. As a result, interference effects can be observed when the light from the two slits arrives at a viewing screen.

If the light traveled only in its original direction after passing through the slits as shown in Figure 37.4a, the waves would not overlap and no interference pattern would be seen. Instead, as we have discussed in our treatment of Huygens's principle (Section 35.6), the waves spread out from the slits as shown in Figure 37.4b. In other words, the light deviates from a straight-line path and enters the region that

Figure 37.4 (a) If light waves did not spread out after passing through the slits, no interference would occur. (b) The light waves from the two slits overlap as they spread out, filling what we expect to be shadowed regions with light and producing interference fringes on a screen placed to the right of the slits.

would otherwise be shadowed. As noted in Section 35.3, this divergence of light from its initial line of travel is called **diffraction**.

37.2 Analysis Model: Waves in Interference

We discussed the superposition principle for waves on strings in Section 18.1, leading to a one-dimensional version of the waves in interference analysis model. In Example 18.1 on page 537, we briefly discussed a two-dimensional interference phenomenon for sound from two loudspeakers. In walking from point O to point P in Figure 18.5, the listener experienced a maximum in sound intensity at O and a minimum at P. This experience is exactly analogous to an observer looking at point O in Figure 37.3 and seeing a bright fringe and then sweeping his eyes upward to point P0, where there is a minimum in light intensity.

Let's look in more detail at the two-dimensional nature of Young's experiment with the help of Figure 37.5. The viewing screen is located a perpendicular distance L from the barrier containing two slits, S_1 and S_2 (Fig. 37.5a). These slits are separated by a distance d, and the source is monochromatic. To reach any arbitrary point P in the upper half of the screen, a wave from the lower slit must travel farther than a wave from the upper slit. The extra distance traveled from the lower slit is the **path difference** δ (Greek letter delta). If we assume the rays labeled r_1 and r_2 are parallel (Fig. 37.5b), which is approximately true if L is much greater than d, then δ is given by

$$\delta = r_2 - r_1 = d \sin \theta \tag{37.1}$$

The value of δ determines whether the two waves are in phase when they arrive at point *P*. If δ is either zero or some integer multiple of the wavelength, the two waves

Figure 37.5 (a) Geometric construction for describing Young's double-slit experiment (not to scale). (b) The slits are represented as sources, and the outgoing light rays are assumed to be parallel as they travel to P. To achieve that in practice, it is essential that $L \gg d$.

are in phase at point P and constructive interference results. Therefore, the condition for bright fringes, or **constructive interference**, at point P is

Condition for constructive interference

$$d\sin\theta_{\text{bright}} = m\lambda \qquad m = 0, \pm 1, \pm 2, \dots$$
 (37.2)

The number m is called the **order number.** For constructive interference, the order number is the same as the number of wavelengths that represents the path difference between the waves from the two slits. The central bright fringe at $\theta_{\text{bright}} = 0$ is called the *zeroth-order maximum*. The first maximum on either side, where $m = \pm 1$, is called the *first-order maximum*, and so forth.

When δ is an odd multiple of $\lambda/2$, the two waves arriving at point P are 180° out of phase and give rise to destructive interference. Therefore, the condition for dark fringes, or **destructive interference**, at point P is

Condition for destructive Interference

$$d \sin \theta_{\text{dark}} = (m + \frac{1}{2})\lambda$$
 $m = 0, \pm 1, \pm 2, \dots$ (37.3)

These equations provide the *angular* positions of the fringes. It is also useful to obtain expressions for the *linear* positions measured along the screen from O to P. From the triangle OPQ in Figure 37.5a, we see that

$$\tan \theta = \frac{y}{L} \tag{37.4}$$

Using this result, the linear positions of bright and dark fringes are given by

$$y_{\text{bright}} = L \tan \theta_{\text{bright}} \tag{37.5}$$

$$y_{\text{dark}} = L \tan \theta_{\text{dark}}$$
 (37.6)

where $\theta_{\rm bright}$ and $\theta_{\rm dark}$ are given by Equations 37.2 and 37.3.

When the angles to the fringes are small, the positions of the fringes are linear near the center of the pattern. That can be verified by noting that for small angles, $\tan \theta \approx \sin \theta$, so Equation 37.5 gives the positions of the bright fringes as $y_{\text{bright}} = L \sin \theta_{\text{bright}}$. Incorporating Equation 37.2 gives

$$y_{\text{bright}} = L \frac{m\lambda}{d}$$
 (small angles) (37.7)

This result shows that y_{bright} is linear in the order number m, so the fringes are equally spaced for small angles. Similarly, for dark fringes,

$$y_{\text{dark}} = L \frac{(m + \frac{1}{2})\lambda}{d}$$
 (small angles) (37.8)

As demonstrated in Example 37.1, Young's double-slit experiment provides a method for measuring the wavelength of light. In fact, Young used this technique to do precisely that. In addition, his experiment gave the wave model of light a great deal of credibility. It was inconceivable that particles of light coming through the slits could cancel one another in a way that would explain the dark fringes.

The principles discussed in this section are the basis of the **waves in interference** analysis model. This model was applied to mechanical waves in one dimension in Chapter 18. Here we see the details of applying this model in three dimensions to light.

Ouick Quiz 37.1 Which of the following causes the fringes in a two-slit interference pattern to move farther apart? (a) decreasing the wavelength of the light (b) decreasing the screen distance L (c) decreasing the slit spacing d (d) immersing the entire apparatus in water

Analysis Model Waves in Interference

Imagine a broad beam of light that illuminates a double slit in an otherwise opaque material. An interference pattern of bright and dark fringes is created on a distant screen. The condition for bright fringes (constructive interference) is

$$d \sin \theta_{\text{bright}} = m\lambda \quad m = 0, \pm 1, \pm 2, \dots$$
 (37.2)

The condition for dark fringes (destructive interference) is

$$d \sin \theta_{\text{dark}} = (m + \frac{1}{2})\lambda \quad m = 0, \pm 1, \pm 2, \dots$$
 (37.3)

The number m is called the **order number** of the fringe.

Examples:

- a thin film of oil on top of water shows swirls of color (Section 37.5)
- x-rays passing through a crystalline solid combine to form a Laue pattern (Chapter 38)
- a Michelson interferometer (Section 37.6) is used to search for the ether representing the medium through which light travels (Chapter 39)
- electrons exhibit interference just like light waves when they pass through a double slit (Chapter 40)

Example 37.1 Measuring the Wavelength of a Light Source AM

A viewing screen is separated from a double slit by 4.80 m. The distance between the two slits is 0.030 0 mm. Monochromatic light is directed toward the double slit and forms an interference pattern on the screen. The first dark fringe is 4.50 cm from the center line on the screen.

(A) Determine the wavelength of the light.

SOLUTION

Conceptualize Study Figure 37.5 to be sure you understand the phenomenon of interference of light waves. The distance of 4.50 cm is y in Figure 37.5. Because L >> y, the angles for the fringes are small.

Categorize This problem is a simple application of the *waves in interference* model.

Analyze

Solve Equation 37.8 for the wavelength and substitute numerical values, taking m = 0 for the first dark fringe:

$$\lambda = \frac{y_{\text{dark}}d}{(m + \frac{1}{2})L} = \frac{(4.50 \times 10^{-2} \text{ m})(3.00 \times 10^{-5} \text{ m})}{(0 + \frac{1}{2})(4.80 \text{ m})}$$
$$= 5.62 \times 10^{-7} \text{ m} = 562 \text{ nm}$$

(B) Calculate the distance between adjacent bright fringes.

SOLUTION

Find the distance between adjacent bright fringes from Equation 37.7 and the results of part (A):

$$y_{m+1} - y_m = L \frac{(m+1)\lambda}{d} - L \frac{m\lambda}{d}$$
$$= L \frac{\lambda}{d} = 4.80 \text{ m} \left(\frac{5.62 \times 10^{-7} \text{ m}}{3.00 \times 10^{-5} \text{ m}} \right)$$
$$= 9.00 \times 10^{-2} \text{ m} = 9.00 \text{ cm}$$

Finalize For practice, find the wavelength of the sound in Example 18.1 using the procedure in part (A) of this example.

Example 37.2

Separating Double-Slit Fringes of Two Wavelengths

A light source emits visible light of two wavelengths: $\lambda = 430$ nm and $\lambda' = 510$ nm. The source is used in a double-slit interference experiment in which L = 1.50 m and d = 0.025 0 mm. Find the separation distance between the third-order bright fringes for the two wavelengths.

SOLUTION

Conceptualize In Figure 37.5a, imagine light of two wavelengths incident on the slits and forming two interference patterns on the screen. At some points, the fringes of the two colors might overlap, but at most points, they will not.

Categorize This problem is an application of the mathematical representation of the *waves in interference* analysis model.

Analyze

Use Equation 37.7 to find the fringe positions corresponding to these two wavelengths and subtract them:

$$\Delta y = y'_{\text{bright}} - y_{\text{bright}} = L \frac{m\lambda'}{d} - L \frac{m\lambda}{d} = \frac{Lm}{d} (\lambda' - \lambda)$$

Substitute numerical values:

$$\Delta y = \frac{(1.50 \text{ m})(3)}{0.025 \text{ 0} \times 10^{-3} \text{ m}} (510 \times 10^{-9} \text{ m} - 430 \times 10^{-9} \text{ m})$$
$$= 0.014 \text{ 4 m} = 1.44 \text{ cm}$$

Finalize Let's explore further details of the interference pattern in the following What If?

WHAT IF? What if we examine the entire interference pattern due to the two wavelengths and look for overlapping fringes? Are there any locations on the screen where the bright fringes from the two wavelengths overlap exactly?

Answer Find such a location by setting the location of any bright fringe due to λ equal to one due to λ' , using Equation 37.7:

$$L\frac{m\lambda}{d} = L\frac{m'\lambda'}{d} \rightarrow \frac{m'}{m} = \frac{\lambda}{\lambda'}$$

Substitute the wavelengths:

$$\frac{m'}{m} = \frac{430 \text{ nm}}{510 \text{ nm}} = \frac{43}{51}$$

Therefore, the 51st fringe of the 430-nm light overlaps with the 43rd fringe of the 510-nm light.

Use Equation 37.7 to find the value of *y* for these fringes:

$$y = (1.50 \text{ m}) \left[\frac{51(430 \times 10^{-9} \text{ m})}{0.025 \ 0 \times 10^{-3} \text{ m}} \right] = 1.32 \text{ m}$$

This value of y is comparable to L, so the small-angle approximation used for Equation 37.7 is not valid. This conclusion suggests we should not expect Equation 37.7 to give us the correct result. If you use Equation 37.5, you can show that the bright fringes do indeed overlap when the same condition, $m'/m = \lambda/\lambda'$, is met (see Problem 48). Therefore, the 51st fringe of the 430-nm light does overlap with the 43rd fringe of the 510-nm light, but not at the location of 1.32 m. You are asked to find the correct location as part of Problem 48.

37.3 Intensity Distribution of the Double-Slit Interference Pattern

Notice that the edges of the bright fringes in Figure 37.1b are not sharp; rather, there is a gradual change from bright to dark. So far, we have discussed the locations of only the centers of the bright and dark fringes on a distant screen. Let's now direct our attention to the intensity of the light at other points between the positions of maximum constructive and destructive interference. In other words, we now calculate the distribution of light intensity associated with the double-slit interference pattern.

Again, suppose the two slits represent coherent sources of sinusoidal waves such that the two waves from the slits have the same angular frequency ω and are in

CHAPTER

38

Diffraction Patterns and Polarization

- 38.1 Introduction to Diffraction Patterns
- 38.2 Diffraction Patterns from Narrow Slits
- 38.3 Resolution of Single-Slit and Circular Apertures
- 38.4 The Diffraction Grating
- 38.5 Diffraction of X-Rays by Crystals
- 38.6 Polarization of Light Waves

The Hubble Space Telescope does its viewing above the atmosphere and does not suffer from the atmospheric blurring, caused by air turbulence, that plagues ground-based telescopes. Despite this advantage, it does have limitations due to diffraction effects. In this chapter, we show how the wave nature of light limits the ability of any optical system to distinguish between closely spaced objects. (NASA Hubble Space Telescope Collection)

When plane light waves pass through a small aperture in an opaque barrier, the aperture acts as if it were a point source of light, with waves entering the shadow region behind the barrier. This phenomenon, known as diffraction, was first mentioned in Section 35.3, and can be described only with a wave model for light. In this chapter, we investigate the features of the *diffraction pattern* that occurs when the light from the aperture is allowed to fall upon a screen.

In Chapter 34, we learned that electromagnetic waves are transverse. That is, the electric and magnetic field vectors associated with electromagnetic waves are perpendicular to the direction of wave propagation. In this chapter, we show that under certain conditions these transverse waves with electric field vectors in all possible transverse directions can be *polarized* in various ways. In other words, only certain directions of the electric field vectors are present in the polarized wave.

38.1 Introduction to Diffraction Patterns

In Sections 35.3 and 37.1, we discussed that light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit. This phenomenon is called *diffraction*. When light passes through a narrow slit, it spreads beyond the narrow path defined by the slit into regions that would be in shadow if light traveled in straight lines. Other waves, such as sound waves and water waves, also have this property of spreading when passing through apertures or by sharp edges.

Figure 38.1 The diffraction pattern that appears on a screen when light passes through a narrow vertical slit. The pattern consists of a broad central fringe and a series of less intense and narrower side fringes.

Figure 38.2 Light from a small source passes by the edge of an opaque object and continues on to a screen. A diffraction pattern consisting of bright and dark fringes appears on the screen in the region above the edge of the object.

You might expect that the light passing through a small opening would simply result in a broad region of light on a screen due to the spreading of the light as it passes through the opening. We find something more interesting, however. A diffraction pattern consisting of light and dark areas is observed, somewhat similar to the interference patterns discussed earlier. For example, when a narrow slit is placed between a distant light source (or a laser beam) and a screen, the light produces a diffraction pattern like that shown in Figure 38.1. The pattern consists of a broad, intense central band (called the **central maximum**) flanked by a series of narrower, less intense additional bands (called **side maxima** or **secondary maxima**) and a series of intervening dark bands (or **minima**). Figure 38.2 shows a diffraction pattern associated with light passing by the edge of an object. Again we see bright and dark fringes, which is reminiscent of an interference pattern.

Figure 38.3 shows a diffraction pattern associated with the shadow of a penny. A bright spot occurs at the center, and circular fringes extend outward from the shadow's edge. We can explain the central bright spot by using the wave theory of light, which predicts constructive interference at this point. From the viewpoint of ray optics (in which light is viewed as rays traveling in straight lines), we expect the center of the shadow to be dark because that part of the viewing screen is completely shielded by the penny.

Shortly before the central bright spot was first observed, one of the supporters of ray optics, Simeon Poisson, argued that if Augustin Fresnel's wave theory of light were valid, a central bright spot should be observed in the shadow of a circular object illuminated by a point source of light. To Poisson's astonishment, the spot was observed by Dominique Arago shortly thereafter. Therefore, Poisson's prediction reinforced the wave theory rather than disproving it.

Notice the bright spot at the center. Notice the bright spot at the center.

Figure 38.3 Diffraction pattern created by the illumination of a penny, with the penny positioned midway between the screen and light source.

38.2 Diffraction Patterns from Narrow Slits

Let's consider a common situation, that of light passing through a narrow opening modeled as a slit and projected onto a screen. To simplify our analysis, we assume the observing screen is far from the slit and the rays reaching the screen are approximately parallel. (This situation can also be achieved experimentally by using a converging lens to focus the parallel rays on a nearby screen.) In this model, the pattern on the screen is called a **Fraunhofer diffraction pattern.**¹

Figure 38.4a (page 1162) shows light entering a single slit from the left and diffracting as it propagates toward a screen. Figure 38.4b shows the fringe structure of

¹If the screen is brought close to the slit (and no lens is used), the pattern is a *Fresnel* diffraction pattern. The Fresnel pattern is more difficult to analyze, so we shall restrict our discussion to Fraunhofer diffraction.

Figure 38.4 (a) Geometry for analyzing the Fraunhofer diffraction pattern of a single slit. (Drawing not to scale.) (b) Simulation of a single-slit Fraunhofer diffraction pattern.

Pitfall Prevention 38.1

Diffraction Versus Diffraction Pattern Diffraction refers to the general behavior of waves spreading out as they pass through a slit. We used diffraction in explaining the existence of an interference pattern in Chapter 37. A diffraction pattern is actually a misnomer, but is deeply entrenched in the language of physics. The diffraction pattern seen on a screen when a single slit is illuminated is actually another interference pattern. The interference is between parts of the incident light illuminating different regions of the slit.

Figure 38.5 Paths of light rays that encounter a narrow slit of width a and diffract toward a screen in the direction described by angle θ (not to scale).

a Fraunhofer diffraction pattern. A bright fringe is observed along the axis at $\theta = 0$, with alternating dark and bright fringes on each side of the central bright fringe.

Until now, we have assumed slits are point sources of light. In this section, we abandon that assumption and see how the finite width of slits is the basis for understanding Fraunhofer diffraction. We can explain some important features of this phenomenon by examining waves coming from various portions of the slit as shown in Figure 38.5. According to Huygens's principle, each portion of the slit acts as a source of light waves. Hence, light from one portion of the slit can interfere with light from another portion, and the resultant light intensity on a viewing screen depends on the direction θ . Based on this analysis, we recognize that a diffraction pattern is actually an interference pattern in which the different sources of light are different portions of the single slit! Therefore, the diffraction patterns we discuss in this chapter are applications of the waves in interference analysis model.

To analyze the diffraction pattern, let's divide the slit into two halves as shown in Figure 38.5. Keeping in mind that all the waves are in phase as they leave the slit, consider rays 1 and 3. As these two rays travel toward a viewing screen far to the right of the figure, ray 1 travels farther than ray 3 by an amount equal to the path difference $(a/2) \sin \theta$, where a is the width of the slit. Similarly, the path difference between rays 2 and 4 is also $(a/2) \sin \theta$, as is that between rays 3 and 5. If this path difference is exactly half a wavelength (corresponding to a phase difference of 180°), the pairs of waves cancel each other and destructive interference results. This cancellation occurs for any two rays that originate at points separated by half the slit width because the phase difference between two such points is 180°. Therefore, waves from the upper half of the slit interfere destructively with waves from the lower half when

$$\frac{a}{2}\sin\theta = \frac{\lambda}{2}$$

or, if we consider waves at angle θ both above the dashed line in Figure 38.5 and below,

$$\sin \theta = \pm \frac{\lambda}{a}$$

Dividing the slit into four equal parts and using similar reasoning, we find that the viewing screen is also dark when

$$\sin\theta = \pm 2\,\frac{\lambda}{a}$$

Likewise, dividing the slit into six equal parts shows that darkness occurs on the screen when

$$\sin \theta = \pm 3 \frac{\lambda}{a}$$

Therefore, the general condition for destructive interference is

$$\sin \theta_{\rm dark} = m \frac{\lambda}{a} \quad m = \pm 1, \pm 2, \pm 3, \dots$$
 (38.1)

 Condition for destructive interference for a single slit

This equation gives the values of $\theta_{\rm dark}$ for which the diffraction pattern has zero light intensity, that is, when a dark fringe is formed. It tells us nothing, however, about the variation in light intensity along the screen. The general features of the intensity distribution are shown in Figure 38.4. A broad, central bright fringe is observed; this fringe is flanked by much weaker bright fringes alternating with dark fringes. The various dark fringes occur at the values of $\theta_{\rm dark}$ that satisfy Equation 38.1. Each bright-fringe peak lies approximately halfway between its bordering dark-fringe minima. Notice that the central bright maximum is twice as wide as the secondary maxima. There is no central dark fringe, represented by the absence of m=0 in Equation 38.1.

uick Quiz 38.1 Suppose the slit width in Figure 38.4 is made half as wide. Does the central bright fringe (a) become wider, (b) remain the same, or (c) become narrower?

Pitfall Prevention 38.2

Similar Equation Warning! Equation 38.1 has exactly the same form as Equation 37.2, with *d*, the slit separation, used in Equation 37.2 and *a*, the slit width, used in Equation 38.1. Equation 37.2, however, describes the *bright* regions in a two-slit interference pattern, whereas Equation 38.1 describes the *dark* regions in a single-slit diffraction pattern.

Example 38.1

Where Are the Dark Fringes?

Light of wavelength 580 nm is incident on a slit having a width of 0.300 mm. The viewing screen is 2.00 m from the slit. Find the width of the central bright fringe.

SOLUTION

Conceptualize Based on the problem statement, we imagine a single-slit diffraction pattern similar to that in Figure 38.4.

Categorize We categorize this example as a straightforward application of our discussion of single-slit diffraction patterns, which comes from the *waves in interference* analysis model.

Analyze Evaluate Equation 38.1 for the two dark fringes that flank the central bright fringe, which correspond to $m = \pm 1$:

$$\sin \theta_{\rm dark} = \pm \frac{\lambda}{a}$$

Let y represent the vertical position along the viewing screen in Figure 38.4a, measured from the point on the screen directly behind the slit. Then, $\tan \theta_{\rm dark} = y_1/L$, where the subscript 1 refers to the first dark fringe. Because $\theta_{\rm dark}$ is very small, we can use the approximation $\sin \theta_{\rm dark} \approx \tan \theta_{\rm dark}$; therefore, $y_1 = L \sin \theta_{\rm dark}$.

The width of the central bright fringe is twice the absolute value of y_1 :

$$2|y_1| = 2|L \sin \theta_{\text{dark}}| = 2\left|\pm L\frac{\lambda}{a}\right| = 2L\frac{\lambda}{a} = 2(2.00 \text{ m})\frac{580 \times 10^{-9} \text{ m}}{0.300 \times 10^{-3} \text{ m}}$$

= 7.73 × 10⁻³ m = 7.73 mm

Finalize Notice that this value is much greater than the width of the slit. Let's explore below what happens if we change the slit width.

WHAT IF? What if the slit width is increased by an order of magnitude to 3.00 mm? What happens to the diffraction pattern?

Answer Based on Equation 38.1, we expect that the angles at which the dark bands appear will decrease as a increases. Therefore, the diffraction pattern narrows.

Repeat the calculation with the larger slit width:

$$2|y_1| = 2L\frac{\lambda}{a} = 2(2.00 \text{ m})\frac{580 \times 10^{-9} \text{ m}}{3.00 \times 10^{-3} \text{ m}} = 7.73 \times 10^{-4} \text{ m} = 0.773 \text{ mm}$$

Notice that this result is *smaller* than the width of the slit. In general, for large values of *a*, the various maxima and minima are so closely spaced that only a large, central bright area resembling the geometric image of the slit is observed. This concept is very important in the performance of optical instruments such as telescopes.

Figure 38.22 Crystalline structure of sodium chloride (NaCl). The length of the cube edge is a = 0.562737 nm.

Figure 38.23 A two-dimensional description of the reflection of an x-ray beam from two parallel crystalline planes separated by a distance d. The beam reflected from the lower plane travels farther than the beam reflected from the upper plane by a distance $2d \sin \theta$.

The arrangement of atoms in a crystal of sodium chloride (NaCl) is shown in Figure 38.22. Each unit cell (the geometric solid that repeats throughout the crystal) is a cube having an edge length a. A careful examination of the NaCl structure shows that the ions lie in discrete planes (the shaded areas in Fig. 38.22). Now suppose an incident x-ray beam makes an angle θ with one of the planes as in Figure 38.23. The beam can be reflected from both the upper plane and the lower one, but the beam reflected from the lower plane travels farther than the beam reflected from the upper plane. The effective path difference is $2d \sin \theta$. The two beams reinforce each other (constructive interference) when this path difference equals some integer multiple of λ . The same is true for reflection from the entire family of parallel planes. Hence, the condition for *constructive* interference (maxima in the reflected beam) is

$$2d \sin \theta = m\lambda \quad m = 1, 2, 3, \dots$$
 (38.8)

This condition is known as **Bragg's law**, after W. L. Bragg (1890–1971), who first derived the relationship. If the wavelength and diffraction angle are measured, Equation 38.8 can be used to calculate the spacing between atomic planes.

38.6 Polarization of Light Waves

In Chapter 34, we described the transverse nature of light and all other electromagnetic waves. Polarization, discussed in this section, is firm evidence of this transverse nature.

An ordinary beam of light consists of a large number of waves emitted by the atoms of the light source. Each atom produces a wave having some particular orientation of the electric field vector $\vec{\mathbf{E}}$, corresponding to the direction of atomic vibration. The *direction of polarization* of each individual wave is defined to be the direction in which the electric field is vibrating. In Figure 38.24, this direction happens to lie along the y axis. All individual electromagnetic waves traveling in the x direction have an $\vec{\mathbf{E}}$ vector parallel to the yz plane, but this vector could be at any possible angle with respect to the y axis. Because all directions of vibration from a wave source are possible, the resultant electromagnetic wave is a superposition of waves vibrating in many different directions. The result is an **unpolarized** light beam, represented in Figure 38.25a (page 1176). The direction of wave propagation in this figure is perpendicular to the page. The arrows show a few possible

Different Angles Notice in Figure 38.23 that the angle θ is measured from the reflecting surface rather than from the normal as in the case of the law of reflection in Chapter 35. With slits and diffraction gratings, we also measured the angle θ from the normal to the array of slits. Because of historical tradition, the angle is measured differently in Bragg diffraction, so interpret Equation 38.8 with care.

◀ Bragg's law

Figure 38.24 Schematic diagram of an electromagnetic wave propagating at velocity \vec{c} in the x direction. The electric field vibrates in the xy plane, and the magnetic field vibrates in the xz plane.

Figure 38.25 (a) A representation of an unpolarized light beam viewed along the direction of propagation. The transverse electric field can vibrate in any direction in the plane of the page with equal probability. (b) A linearly polarized light beam with the electric field vibrating in the vertical direction.

directions of the electric field vectors for the individual waves making up the resultant beam. At any given point and at some instant of time, all these individual electric field vectors add to give one resultant electric field vector.

As noted in Section 34.3, a wave is said to be **linearly polarized** if the resultant electric field $\vec{\mathbf{E}}$ vibrates in the same direction *at all times* at a particular point as shown in Figure 38.25b. (Sometimes, such a wave is described as *plane-polarized*, or simply *polarized*.) The plane formed by $\vec{\mathbf{E}}$ and the direction of propagation is called the *plane of polarization* of the wave. If the wave in Figure 38.24 represents the resultant of all individual waves, the plane of polarization is the *xy* plane.

A linearly polarized beam can be obtained from an unpolarized beam by removing all waves from the beam except those whose electric field vectors oscillate in a single plane. We now discuss four processes for producing polarized light from unpolarized light.

Polarization by Selective Absorption

The most common technique for producing polarized light is to use a material that transmits waves whose electric fields vibrate in a plane parallel to a certain direction and that absorbs waves whose electric fields vibrate in all other directions.

In 1938, E. H. Land (1909–1991) discovered a material, which he called *Pola-roid*, that polarizes light through selective absorption. This material is fabricated in thin sheets of long-chain hydrocarbons. The sheets are stretched during manufacture so that the long-chain molecules align. After a sheet is dipped into a solution containing iodine, the molecules become good electrical conductors. Conduction takes place primarily along the hydrocarbon chains because electrons can move easily only along the chains. If light whose electric field vector is parallel to the chains is incident on the material, the electric field accelerates electrons along the chains and energy is absorbed from the radiation. Therefore, the light does not pass through the material. Light whose electric field vector is perpendicular to the chains passes through the material because electrons cannot move from one molecule to the next. As a result, when unpolarized light is incident on the material, the exiting light is polarized perpendicular to the molecular chains.

It is common to refer to the direction perpendicular to the molecular chains as the *transmission axis*. In an ideal polarizer, all light with \vec{E} parallel to the transmission axis is transmitted and all light with \vec{E} perpendicular to the transmission axis is absorbed.

Figure 38.26 represents an unpolarized light beam incident on a first polarizing sheet, called the *polarizer*. Because the transmission axis is oriented vertically in the figure, the light transmitted through this sheet is polarized vertically. A second polarizing sheet, called the *analyzer*, intercepts the beam. In Figure 38.26, the analyzer transmission axis is set at an angle θ to the polarizer axis. We call the electric field vector of the first transmitted beam $\vec{\mathbf{E}}_0$. The component of $\vec{\mathbf{E}}_0$ perpendicular to the analyzer axis is completely absorbed. The component of $\vec{\mathbf{E}}_0$ parallel to the

Figure 38.26 Two polarizing sheets whose transmission axes make an angle θ with each other. Only a fraction of the polarized light incident on the analyzer is transmitted through it.

Figure 38.27 The intensity of light transmitted through two polarizers depends on the relative orientation of their transmission axes. The red arrows indicate the transmission axes of the polarizers.

analyzer axis, which is transmitted through the analyzer, is $E_0\cos\theta$. Because the intensity of the transmitted beam varies as the square of its magnitude, we conclude that the intensity I of the (polarized) beam transmitted through the analyzer varies as

$$I = I_{\text{max}} \cos^2 \theta \tag{38.9}$$

◀ Malus's law

where $I_{\rm max}$ is the intensity of the polarized beam incident on the analyzer. This expression, known as **Malus's law,** ² applies to any two polarizing materials whose transmission axes are at an angle θ to each other. This expression shows that the intensity of the transmitted beam is maximum when the transmission axes are parallel ($\theta=0$ or 180°) and is zero (complete absorption by the analyzer) when the transmission axes are perpendicular to each other. This variation in transmitted intensity through a pair of polarizing sheets is illustrated in Figure 38.27. Because the average value of $\cos^2\theta$ is $\frac{1}{2}$, the intensity of initially unpolarized light is reduced by a factor of one-half as the light passes through a single ideal polarizer.

Polarization by Reflection

When an unpolarized light beam is reflected from a surface, the polarization of the reflected light depends on the angle of incidence. If the angle of incidence is 0°, the reflected beam is unpolarized. For other angles of incidence, the reflected light is polarized to some extent, and for one particular angle of incidence, the reflected light is completely polarized. Let's now investigate reflection at that special angle.

Suppose an unpolarized light beam is incident on a surface as in Figure 38.28a (page 1178). Each individual electric field vector can be resolved into two components: one parallel to the surface (and perpendicular to the page in Fig. 38.28, represented by the dots) and the other (represented by the orange arrows) perpendicular both to the first component and to the direction of propagation. Therefore, the polarization of the entire beam can be described by two electric field components in these directions. It is found that the parallel component represented by the dots reflects more strongly than the other component represented by the arrows, resulting in a partially polarized reflected beam. Furthermore, the refracted beam is also partially polarized.

Now suppose the angle of incidence θ_1 is varied until the angle between the reflected and refracted beams is 90° as in Figure 38.28b. At this particular angle of incidence, the reflected beam is completely polarized (with its electric field vector parallel to the surface) and the refracted beam is still only partially polarized. The angle of incidence at which this polarization occurs is called the **polarizing angle** θ_p .

²Named after its discoverer, E. L. Malus (1775–1812). Malus discovered that reflected light was polarized by viewing it through a calcite (CaCO₃) crystal.

Figure 38.28 (a) When unpolarized light is incident on a reflecting surface, the reflected and refracted beams are partially polarized. (b) The reflected beam is completely polarized when the angle of incidence equals the polarizing angle θ_p , which satisfies the equation $n_2/n_1 = \tan \theta_p$. At this incident angle, the reflected and refracted rays are perpendicular to each other.

We can obtain an expression relating the polarizing angle to the index of refraction of the reflecting substance by using Figure 38.28b. From this figure, we see that $\theta_p + 90^\circ + \theta_2 = 180^\circ$; therefore, $\theta_2 = 90^\circ - \theta_p$. Using Snell's law of refraction (Eq. 35.8) gives

$$\frac{n_2}{n_1} = \frac{\sin \theta_1}{\sin \theta_2} = \frac{\sin \theta_p}{\sin \theta_2}$$

Because $\sin \theta_2 = \sin (90^\circ - \theta_p) = \cos \theta_p$, we can write this expression as $n_2/n_1 = \sin \theta_p/\cos \theta_p$, which means that

$$\tan \theta_p = \frac{n_2}{n_1} \tag{38.10}$$

This expression is called **Brewster's law**, and the polarizing angle θ_p is sometimes called **Brewster's angle**, after its discoverer, David Brewster (1781–1868). Because n varies with wavelength for a given substance, Brewster's angle is also a function of wavelength.

We can understand polarization by reflection by imagining that the electric field in the incident light sets electrons at the surface of the material in Figure 38.28b into oscillation. The component directions of oscillation are (1) parallel to the arrows shown on the refracted beam of light and therefore parallel to the reflected beam and (2) perpendicular to the page. The oscillating electrons act as dipole antennas radiating light with a polarization parallel to the direction of oscillation. Consult Figure 34.12, which shows the pattern of radiation from a dipole antenna. Notice that there is no radiation at an angle of $\theta=0$, that is, along the oscillation direction of the antenna. Therefore, for the oscillations in direction 1, there is no radiation in the direction along the reflected ray. For oscillations in direction 2, the electrons radiate light with a polarization perpendicular to the page. Therefore, the light reflected from the surface at this angle is completely polarized parallel to the surface.

Polarization by reflection is a common phenomenon. Sunlight reflected from water, glass, and snow is partially polarized. If the surface is horizontal, the electric field vector of the reflected light has a strong horizontal component. Sunglasses made of polarizing material reduce the glare of reflected light. The transmission axes of such lenses are oriented vertically so that they absorb the strong horizontal component of the reflected light. If you rotate sunglasses through 90° , they are not as effective at blocking the glare from shiny horizontal surfaces.