Class8: Breast Cancer Mini Project

Cynthia Perez (A16393492)

About

In today's lab we will use techniques covered in class to perform a PCA on fine needle aspiration (FNA) of breast cancer mass from the University of Wisoncin

Data Import

```
wisc.df <- read.csv("WisconsinCancer.csv", row.names=1)
head(wisc.df)</pre>
```

	diagnosis rad	ius_mean	texture_mean	perimeter_mea	n area_mea	n
842302	М	17.99	10.38	122.8	0 1001.	0
842517	М	20.57	17.77	132.9	0 1326.	0
84300903	М	19.69	21.25	130.0	0 1203.	0
84348301	М	11.42	20.38	77.5	8 386.	1
84358402	М	20.29	14.34	135.1	0 1297.	0
843786	М	12.45	15.70	82.5	7 477.	1
	smoothness_me	an compa	ctness_mean co	ncavity_mean	concave.po	ints_mean
842302	0.118	40	0.27760	0.3001		0.14710
842517	0.084	74	0.07864	0.0869		0.07017
84300903	0.109	60	0.15990	0.1974		0.12790
84348301	0.142	50	0.28390	0.2414		0.10520
84358402	0.100	30	0.13280	0.1980		0.10430
843786	0.127	80	0.17000	0.1578		0.08089
	symmetry_mean	fractal	_dimension_mea	n radius_se t	exture_se	perimeter_se
842302	0.2419		0.0787	1 1.0950	0.9053	8.589
842517	0.1812		0.0566	7 0.5435	0.7339	3.398
84300903	0.2069		0.0599	9 0.7456	0.7869	4.585
84348301	0.2597		0.0974	4 0.4956	1.1560	3.445
84358402	0.1809		0.0588	3 0.7572	0.7813	5.438

843786	0	.2087		0.07613	0.3345	0.8902	2.217				
	area_se	${\tt smoothness}$	_se compa	ctness_se	concavity_se	concave.po	oints_se				
842302	153.40	0.006	399	0.04904	0.05373		0.01587				
842517	74.08	74.08 0.005225		0.01308	0.01860	1	0.01340				
84300903	94.03	94.03 0.006150		0.04006	0.03832		0.02058				
84348301	27.23	0.009	110	0.07458	0.05661		0.01867				
84358402	94.44	0.011	490	0.02461	0.05688	l	0.01885				
843786	27.19	0.007	510	0.03345	0.03672		0.01137				
symmetry_se fractal_dimension_se radius_worst texture_worst											
842302	0.03	8003	0.0	06193	25.38	17.33					
842517	0.01	.389	0.0	03532	24.99	23.41					
84300903	0.02	250	0.0	04571	23.57	25.53					
84348301	0.05	963	0.0	09208	14.91	26.50					
84358402	0.01	756	0.0	005115	22.54	16.67					
843786	0.02	2165	0.0	05082	15.47	23.75					
	perimete	r_worst ar	ea_worst	smoothness	s_worst compa	.ctness_wor	st				
842302		184.60	2019.0		0.1622	0.66	56				
842517		158.80	1956.0		0.1238	0.18	66				
84300903		152.50	1709.0		0.1444	0.42	45				
84348301		98.87	567.7		0.2098	0.86	63				
84358402		152.20	1575.0		0.1374	0.20	50				
843786		103.40	741.6		0.1791	0.52	49				
	concavit	y_worst co	ncave.poi	.nts_worst	symmetry_wor	st					
842302		0.7119		0.2654	0.46	01					
842517		0.2416		0.1860	0.27	50					
84300903		0.4504		0.2430	0.36	13					
84348301		0.6869		0.2575	0.66	38					
84358402		0.4000		0.1625	0.23	64					
843786		0.5355		0.1741	0.39	85					
fractal_dimension_worst											
842302		0.	11890								
842517		0.	08902								
84300903		0.	08758								
84348301		0.	17300								
84358402		0.	07678								
843786		0.	12440								

 ${\bf Q1}.$ How many patients/individuals/samples are in this dataset

Use nrow()

nrow(wisc.df)

```
[1] 569
     Q2. How many of the observations have a malignant diagnosis?
Use either table() or sum() functions
  table(wisc.df$diagnosis)
 В
      Μ
357 212
  sum(wisc.df$diagnosis =="M")
[1] 212
     Q3. How many variables/features in the data are suffixed with _mean?
Use grep() function
  ncol(wisc.df)
[1] 31
  colnames(wisc.df)
 [1] "diagnosis"
                                 "radius_mean"
 [3] "texture_mean"
                                 "perimeter_mean"
 [5] "area_mean"
                                 "smoothness_mean"
 [7] "compactness_mean"
                                 "concavity_mean"
 [9] "concave.points_mean"
                                 "symmetry_mean"
[11] "fractal_dimension_mean"
                                 "radius_se"
[13] "texture_se"
                                 "perimeter_se"
[15] "area_se"
                                 "smoothness se"
                                 "concavity_se"
[17] "compactness_se"
[19] "concave.points_se"
                                 "symmetry_se"
[21] "fractal_dimension_se"
                                 "radius_worst"
[23] "texture_worst"
                                 "perimeter_worst"
[25] "area_worst"
                                 "smoothness_worst"
                                 "concavity_worst"
[27] "compactness_worst"
[29] "concave.points_worst"
                                 "symmetry_worst"
```

[31] "fractal_dimension_worst"

```
inds <- grep("_mean", colnames(wisc.df))
length(inds)</pre>
```

[1] 10

Initial Analysis

Remove "diagnosis" column before clustering the data.

```
wisc.data <- wisc.df[,-1]
```

Create diagnosis vector for later use

```
diagnosis <- as.factor(wisc.df$diagnosis)
head(diagnosis)</pre>
```

```
[1] M M M M M M M Levels: B M
```

Clustering

We can try kmeans() clustering first

```
km <- kmeans(wisc.data, centers=2)

#use membership vector to determine what cluster each input is in
table(km$cluster)</pre>
```

```
1 2
438 131
```

Cross-table

```
table(km$cluster, diagnosis)
```

```
diagnosis
B M
1 356 82
2 1 130
```

Let's try hclust(). The key input required for this function is a distance matrix as produced by the dist() function

```
hc <- hclust(dist(wisc.data))</pre>
```

We can make a dendrogram with hc vector

```
plot(hc)
```

Cluster Dendrogram

dist(wisc.data) hclust (*, "complete")

PCA

Check sd of the data

```
# Check column means and standard deviations
round(apply(wisc.data,2,sd))
```

```
texture_mean
           radius_mean
                                                            perimeter_mean
                                                                         24
              area_mean
                                 smoothness_mean
                                                         compactness_mean
                    352
        concavity mean
                             concave.points mean
                                                             symmetry mean
fractal dimension mean
                                       radius se
                                                                texture se
                                                0
                                                                          1
          perimeter se
                                         area se
                                                             smoothness se
                      2
                                               45
        compactness_se
                                                        concave.points_se
                                    concavity_se
                      0
                                                0
                                                                          0
           symmetry_se
                            fractal_dimension_se
                                                              radius_worst
                      0
                                                0
                                                                          5
         texture_worst
                                 perimeter_worst
                                                                area_worst
                      6
                                               34
                                                                        569
                               compactness_worst
      smoothness_worst
                                                           concavity_worst
                                  symmetry_worst fractal_dimension_worst
  concave.points_worst
                      0
                                                0
```

Scale the data before when we PCA. prcomp() with scale=TRUE.

```
wisc.pr <- prcomp(wisc.data, scale=TRUE)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                         PC10
                                                         PC12
                                  PC9
                                                PC11
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                                  PC16
                                          PC17
                                                  PC18
                                                           PC19
                                                                   PC20
                          PC15
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                         PC26
                                                                  PC27
                                                                          PC28
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Standard deviation
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
```

Generate our main PCA plot (score plot, PC1 v PC2 plot)

```
library(ggplot2)

res <- as.data.frame(wisc.pr$x)

ggplot(res) +
   aes(PC1, PC2, col=diagnosis) +
   geom_point()</pre>
```


Combining methods

Clustering on PCA results

```
d <- dist(wisc.pr$x[,1:3])
hc <- hclust(d, method = "ward.D2")
plot(hc)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

To get my clustering result/membership vector I need to "cut" the tree with cutree() function.

Color plot by groups

```
plot(res$PC1, res$PC2, col=grps)
```


Prediction

We can use our PCA result (model) to do predictions, that is take new unseen data and project it onto our new PC variables.

```
url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(wisc.pr, newdata=new)
npc</pre>
```

```
PC1
                  PC2
                            PC3
                                      PC4
                                               PC5
                                                         PC6
     2.576616 -3.135913
                      1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945
                                                             0.8193031
          PC8
                   PC9
                            PC10
                                     PC11
                                              PC12
                                                       PC13
                                                               PC14
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
        PC15
                  PC16
                             PC17
                                        PC18
                                                   PC19
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
PC22
                             PC23
                                       PC24
                                                  PC25
[1,] 0.1228233 0.09358453 0.08347651 0.1223396 0.02124121
                                                      0.078884581
```

```
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238 PC27 PC28 PC29 PC30
[1,] 0.220199544 -0.02946023 -0.015620933 0.005269029
[2,] -0.001134152 0.09638361 0.002795349 -0.019015820
```

Make plot

```
plot(res$PC1, res$PC2, col=grps)
points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
text(npc[,1], npc[,2], labels=c(1,2), col="white")
```


Summary

Principal Component Analysis is a super useful method for analyzing large datasets. It works by finding new variables (PCs) that capture the most variance from the original variables in your dataset.