RMS CURRENT AND POTENTIAL DIFFERENCE
$$I_{rms} = \frac{I_{max}}{\sqrt{2}} = 0.707 \; I_{max}$$

$$\Delta V_{rms} = \frac{\Delta V_{max}}{\sqrt{2}} = 0.707 \; \Delta V$$

TRANSFORMERS N is assumed to be a whole number.
$$\Delta V_2 = \frac{N_2}{N_1} \Delta V_1$$

Chapter 21 Atomic Physics

ENERGY OF A LIGHT QUANTUM	E = hf
MAXIMUM KINETIC ENERGY OF A PHOTOELECTRON	$KE_{max} = hf - hf_t$
WAVELENGTH AND FREQUENCY OF MATTER WAVES Planck's constant (h) equals 6.63×10^{-34} J·s.	$\lambda = \frac{h}{p} = \frac{h}{m\nu}$ $f = \frac{E}{h}$

Chapter 22 Subatomic Physics

RELATIONSHIP BETWEEN REST ENERGY AND MASS	$E_R = mc^2$
BINDING ENERGY OF A NUCLEUS	$E_{bind} = \Delta mc^2$
MASS DEFECT	$\Delta m = Z(\text{atomic mass of H}) + Nm_n - \text{atomic mass}$
ACTIVITY (DECAY RATE)	$activity = -\frac{\Delta N}{\Delta t} = \lambda N$
HALF-LIFE	$T_{1/2} = \frac{0.693}{\lambda}$