#### Rui Carapinha - 248728





#### 1. Description of the Functions

- INIT DB a script which cleans the MATLAB workspace, adds a full path to the current directory to the MATLAB search path, declares global variables such as database a variable representing a database or A, B, C, D certain auxiliary variables.
- READ F a function, which reads parameters of dynamical systems from the ASCII file filename and then assigns them to suitable fields of the variable database
- READ K a function, which allows to add a new dynamical system to a database using a keyboard.
- SAVE DB a function, which saves the contents of a database to the ASCII file
- CONTENTS DB a function, which lists on a screen (with paging) the names of all the dynamical systems stored in a database
- SEARCH DB a function, which lists on a screen (with paging) the names of all the systems in a database, that include the string of characters.
- SORT N a function, which lists on a screen (with paging) the names of the systems from a database in the order of growing values of ||matrix||<sub>2</sub>, where matrix ∈ {'A', 'B', 'C', 'D'}.
- STABLE S a function, which lists on a screen (with paging) the names of systems from a database that are asymptotically stable.
- IMPULSE I a function, which implements a mathematical function  $impulse_i(t) = \begin{cases} a, \ for \ 0 \le t \le \frac{1}{a} \\ 0, \ otherwise \end{cases}$
- DYNAMICS a function representing a differential equation 'x = Ax + Bu, where u(t) = impulse i(t). A, B are global variables.
- PLOTS a function, which displays a figure with two plots, one above the other. The first plot shows the output of the system name on the time interval [0, tf] for zero initial conditions and the impulse i input signal. The plot should be titled by the system name. The second plot shows state space trajectories provided the number of state variables is equal to 2 or 3. If this condition is not met then a message should appear, instead of a figure, with the information dim x > 3 or dim x < 2.

### 2. Results

The stable systems of my program are: system A, B, E, H, I, J and K. The output of the plots function was the following:

### a) System A



## **b)** System B



# c) System E



# d) System H



## e) System I





### f) System J





### g) System K



# 3. Diary

The results I had using the diary function were the following:

0.2

 $\dim x > 3$ 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

>>init\_db

>>read\_f('database\_z.txt')

0

0.1

>>read\_k

System Name: B2

Enter Matrix A : [-2,-1;1,0]

Enter Matrix B: [1;0]

Enter Matrix C: [1,1]

Enter Matrix D: [0]

>>contents\_db

system A

system B

system C

system D

system E

| system F         |
|------------------|
| system G         |
| system H         |
| system I         |
| system J         |
| system K         |
| B2               |
| >>stable_s       |
| Stable systems:  |
| system A         |
| system B         |
| system E         |
| system H         |
| system I         |
| system J         |
| system K         |
| B2               |
| >>sort_N('A')    |
| system C         |
| system D         |
| system G         |
| system J         |
| system F         |
| system A         |
| system B         |
| B2               |
| system I         |
| system E         |
| system H         |
| system K         |
| >>search_db('B') |

### system B

#### В2

- >>save\_db('copy.txt')
- >>plots('system A', 5)
- >>plots('system B', 5)
- >>plots('system C', 5)
- >>plots('system D', 5)
- >>plots('system E', 5)
- >>plots('system F', 5)
- >>plots('system G', 5)
- >>plots('system H', 5)
- >>plots('system I', 5)
- >>plots('system J', 5)
- >>plots('system K', 5)