Labwork - 09

Naming Columns and Rows

Accessing Array Elements

Manipulating Array Elements

```
vArray[1,] + vArray[2,]
COL1 COL2 COL3 COL4 COL5
4 77 4 77 4
vArray[1,] + vArray[,1]
COL1 COL2 COL3 COL4 COL5
2 36 6 44 23
vArray[1,] * vArray[,1]
COL1 COL2 COL3 COL4 COL5
1 99 5 363 22
```

Calculations across array elements

```
> apply(vArray, c(1),sum)
ROW1 ROW2 ROW3 ROW4 ROW5
69 97 125 165 220
> apply(vArray, c(2),sum)
COL1 COL2 COL3 COL4 COL5
42 275 42 275 42
```

Generating factor levels using gl (a, b) function

where 'a' is the integers for numbers of levels and 'b' is an integer for the number of times each level has repeated.

```
> gl (3, 2)
[1] 1 1 2 2 3 3
Levels: 1 2 3
> gl (4, 3)
[1] 1 1 1 2 2 2 3 3 3 4 4 4
Levels: 1 2 3 4
> gl(3, 2, labels = c("mango", "berry", "apple"))
[1] mango mango berry berry apple apple
Levels: mango berry apple
```

Changing the order of levels

```
# By specifying the levels arguments

> myData = c (1, 2, 2, 4, 6, 3, 1, 2, 3, 4, 6, 6, 1, 3, 1, 2, 3, 3, 1)

> myFactor = factor (myData) # Creating a factor using factor function by

> myFactor passing a vector into it

[1] 1 2 2 4 6 3 1 2 3 4 6 6 1 3 1 2 3 3 1

Levels: 1 2 3 4 6

> myNewFactor = factor (myData, labels= c("One", "Two", "Three", "Four", "Six" ))

> myNewFactor

[1] One Two Two Four Six Three One Two Three Four Six Six

[13] One Three One Two Three Three One

Levels: One Two Three Four Six
```

Extract data from Data Frame

```
> print (myDataFrame$items)
[1] apple carrot tomato
Levels: apple carrot tomato
> print (data.frame (myDataFrame$items))
 myDataFrame.items
1
        apple
2
        carrot
3
        tomato
> print (data.frame (myDataFrame$items, myDataFrame$cost_per_item))
 myDataFrame.items myDataFrame.cost_per_item
1
        apple
                           110
2
                           60
        carrot
3
                            25
        tomato
# extracting 1<sup>st</sup> tworows
> print (data.frame (myDataFrame$items[1:2]))
 myDataFrame.items.1.2.
1
           apple
2
           carrot
Expand R Data Frame
# A data frame can be expanded by adding columns and rows.
# Adding column
> myDataFrame$total_items <- c(5,2,6)
> myDataFrame
 items cost_per_item total_items
1 apple
              110
                       5
2 carrot
              60
                       2
               25
                       6
3 tomato
# Adding row
> myNewDataFrame <- data.frame (items = c ("Beetroot", "Mosambi"),
cost_per_item = c(39,95), total_items = c(2,3))
> rowAddedDataFrame <- rbind(myDataFrame, myNewDataFrame)
> rowAddedDataFrame
  items cost_per_item total_items
1 apple
               110
                         5
2 carrot
                        2
               60
                25
3 tomato
                         6
                         2
4 Beetroot
                39
5 Mosambi
                  95
                           3
```

Merging Data Frames

```
> myDataFrame <- data.frame (id = c ("i001", "i002", "i003"), items = c ("apple", "carrot",
"tomato"), cost_per_item = c (110,60,25))
> myNewDataFrame <- data.frame (id = c ("i004", "i005"), items = c ("beetroot",
"mosambi"), cost_per_item = c (39,95))
> finale <- merge (myDataFrame, myNewDataFrame, by = "id")
> finale
[1] id
             items.x
                          cost_per_item.x items.y
[5] cost_per_item.y
<0 rows> (or 0-length row.names)
//Natural join
> finale <- merge (myDataFrame, myNewDataFrame, by = "id", all = FALSE)
> finale
[1] id
             items.x
                          cost_per_item.x items.y
[5] cost_per_item.y
<0 rows> (or 0-length row.names)
//fullouter join
> finale <- merge(myDataFrame, myNewDataFrame,by="id",all=TRUE)
> finale
  id items.x cost_per_item.x items.y cost_per_item.y
1 i001 apple
                           <NA>
                                          NA
                    110
                                         NA
2 i002 carrot
                     60
                          <NA>
3 i003 tomato
                      25
                           <NA>
                                          NA
4 i004
                       NA beetroot
                                           39
       \langle NA \rangle
5 i005
       \langle NA \rangle
                       NA mosambi
                                            95
//cross-join
> finale <- merge(x = myDataFrame,y = myNewDataFrame,by=NULL)
> finale
 id.x items.x cost_per_item.x id.y items.y cost_per_item.y
1 i001 apple
                    110 i004 beetroot
                                              39
                                             39
2 i002 carrot
                     60 i004 beetroot
                                              39
3 i003 tomato
                      25 i004 beetroot
4 i001 apple
                    110 i005 mosambi
                                               95
5 i002 carrot
                     60 i005 mosambi
                                               95
6 i003 tomato
                      25 i005 mosambi
                                                95
```

Melting the Data

> melt (myDataFrame, id = c("id", "items"))
 id items variable value
1 i001 apple cost_per_item 110
2 i002 carrot cost_per_item 60
3 i003 tomato cost_per_item 25