Du 7 au 11 avril

L'ensemble du cours depuis le début d'année doit être connu. Les questions de cours suivantes, portant sur les chapitres récents, sont à travailler particulièrement. En gras, les questions rajoutées au programme de colles de la semaine.

Questions de cours à préparer

- 1) Cardinal de $E \times F$, de $\mathcal{F}(E, F)$ et de $\mathcal{P}(E)$. Expliciter l'ensemble $\mathcal{P}(E)$ pour un ensemble E au choix du colleur (de très petit cardinal).
- 2) Nombre d'injections entre deux ensembles finis, nombre de bijections entre deux ensembles finis.
 - Liens entre les cardinaux de E, f(E) et F (pour $f: E \to F$), notamment dans le cas où f est injective/surjective/bijective.
- 3) Soient E et F de même cardinal. Montrer que $f \in \mathcal{F}(E, F)$ est injective si et seulement si elle est bijective.
- 4) Rappels : coefficients binomiaux (définition à l'aide de factoriels, coefficients binomiaux généralisés), formule du binôme, $\mathrm{DL}_n(0)$ de $(1+x)^{\alpha}$ où $\alpha \in \mathbb{R}$. Lien avec le nombre de combinaisons de p éléments parmi n.
- 5) Théorèmes opératoires pour la dérivée en un point. Dérivée de la bijection réciproque en un point. Démontrer que (uv)'(a) = u'(a)v(a) + u(a)v'(a).
- 6) Énoncer et démontrer la formule de Leibniz.
- 7) Énoncer le théorème de Rolle et le théorème des accroissements finis. Démontrer l'un des deux.
- 8) Énoncer (sans démonstration) la formule de Taylor-Young, l'inégalité des accroissements finis et la condition suffisante d'existence d'un extremum local en $a \in \mathring{I}$.
- 9) Révisions : énoncer (sans démonstration) les équivalence entre existence d'un DL à l'ordre 0 ou 1 et la continuité ou dérivabilité d'une fonction en un point (théorème 9.13 du cours).
- 10) Révisions : DL de référence.
- 11) Énoncer (sans démonstration) le théorème de limite de la dérivée.
- 12) Soit $f:[a;b] \rightarrow [a;b]$, continue. Montrer que f possède au moins un point fixe. (voir feuille de TD sur les suites récurrentes)
- 13) Suites récurrentes : soit I un intervalle réel, $f: I \to I$. Soit u définie $u_0 \in I$ et $u_{n+1} = f(u_n)$. Que peut-on affirmer sur la suite u? On suppose f croissante sur I. Que peut-on affirmer sur la suite u? On suppose que I = [a; b], f continue et croissante. Que peut-on affirmer sur la suite u?
- 14) Révisions : énoncer le théorème de convergence monotone.

15)	$R\'{e}visions$:	toute	question	de	cours	(sans	$d\acute{e}mc$	onstrati	on)	sur	les	chap it	tres
	$Syst\`emes$	lir	$n\'eaires$, Calcul	mat	criciel,	Espace	es vec	toriels,	Esp	aces	vec	toriels	de
	dimension	n f	inie.											

Programme pour les exercices

Dénombrement. Suites récurrentes.