Mathematisches Seminar Prof. Dr. Jan Kallsen Henrik Valett, Fan Yu, Boy Schultz

Sheet 09

Computational Finance

Exercises for all participants

C-Exercise 33 (Pricing an American option with the Longstaff-Schwartz method) (4 points)

Write a Python function

$$V0 = BS_AmPut_LSM (S0, r, sigma, T, K, m, N, 1)$$

that approximates the initial price of an American put option with strike K>0 and maturity T>0 in the Black-Scholes model using the Longstaff-Schwartz method. Use the Laguerre polynomials (which are given in the <code>scipy.special</code> package) and test your function for

$$S0 = 100$$
, $r = 0.05$, $\sigma = 0.2$, $T = 1$, $K = 90$, $m = 1000$, $N = 2000$.

Compare your result with the result from C-Exercise 09.

T-Exercise 34 (Transforming the Black-Scholes PDE to the heat equation) (4 points) Let v(t,x) denote the solution of the Black-Scholes PDE (3.26). Consider the variables $\tilde{x} = \log(x/K)$, $\tilde{t} = \sigma^2(T-t)/2$, $q = 2r/\sigma^2$ and define the function $y(\tilde{t}, \tilde{x})$ via

$$y(\tilde{t}, \tilde{x}) = v\left(T - \frac{2\tilde{t}}{\sigma^2}, K\exp(\tilde{x})\right)K^{-1}\exp\left(\frac{1}{2}(q-1)\tilde{x} + \left(\frac{1}{4}(q-1)^2 + q\right)\tilde{t}\right).$$

Prove that $y(\tilde{t}, \tilde{x})$ solves the heat equation

$$\frac{\partial y}{\partial \tilde{t}} = \frac{\partial^2 y}{\partial \tilde{x}^2}$$

and that the initial conditions (6.2) resemble the terminal conditions for the European call and the European put, respectively.

C-Exercise 35 (Valuation of a European Call using the explicit finite difference scheme) (4 points)

Write a Python function

that approximates the option values $v(0,x_1),\ldots,v(0,x_{m-1})$ of a European call option with strike K>0 and maturity T>0 in the Black-Scholes model using the explicit finite difference scheme. Here, $x_i=K\exp(a+i\frac{b-a}{m})$ denote the initial stock prices and a,b,m,v_{max} are the parameters of the algorithm presented in the course. Test your function for

$$r = 0.05$$
, $\sigma = 0.2$, $a = -0.7$, $b = 0.4$, $m = 100$, $v_{max} = 2000$, $T = 1$, $K = 100$.

Compare your result with the exact solution using the BS-formula by plotting the difference between the finite difference approximation and the exact option price for all underlying initial stock prices.

T-Exercise 36 (for math only) (4 points)

Let $A \in \mathbb{R}^{d \times d}$ be a symmetric matrix. Show that the following properties are equivalent:

(a)
$$\lim_{v\to\infty} A^v z = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$
 for any $z \in \mathbb{R}^d$.

- (b) $\lim_{v\to\infty} (A^v)_{ij} = 0$ for any $i, j \in 1, \dots, d$.
- (c) The spectral radius of A satisfies $\rho(A) < 1$.

Please include your name(s) as comment in the beginning of the file. Do not forget to include comments in your Python-programs. **Submit until:** Thu, 23.06.2022, 08:15