§ 43. Парабола

Б.М.Верников

Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики

Определение параболы

Определение

Параболой называется множество всех точек плоскости, координаты которых в подходящей системе координат удовлетворяют уравнению вида

$$y^2 = 2px, (1)$$

где p > 0. Это уравнение называется *каноническим уравнением* параболы. Число р называется параметром параболы.

- Как и в случаях эллипса и гиперболы, каноническое уравнение параболы является ее общим уравнением в смысле понятия общего уравнения кривой на плоскости, введенного в начале § 15.
- Параметрические уравнения параболы очевидным образом могут быть записаны в виде

$$\begin{cases} x = \frac{t^2}{2p}, \\ y = t. \end{cases}$$

• В школьном курсе математики дается другое определение параболы. Связь между «школьной» параболой и тем понятием параболы, которое введено только что, будет обсуждена в конце данного параграфа.

Вершина, ось, фокус и директриса параболы

Введем ряд понятий, играющих важную роль в изучении параболы.

Определения

Пусть парабола задана уравнением (1). Тогда точка O(0,0) (начало координат) называется вершиной параболы, прямая y=0 (ось абсцисс) — осью параболы, а точка $F(\frac{p}{2},0)$ — ее фокусом. Прямая с уравнением $x=-\frac{p}{2}$ называется директрисой параболы.

Происхождение терминов «вершина параболы» и «ось параболы» станет ясно позднее, после того, как мы изучим форму параболы.

Расположение параболы на плоскости

Изучим «внешний вид» параболы. Ясно, график параболы симметричен относительно оси Ox и $x=rac{y^2}{2p}\geqslant 0$, т. е. вся парабола расположена в правой полуплоскости. Поэтому достаточно изучить вид параболы в первой четверти. В этом случае из (1) вытекает, что

$$y = \sqrt{2px}. (2)$$

Вычислив первую и вторую производные этой функции, получим:

$$y' = \frac{1}{2\sqrt{2px}}$$
 u $y'' = \frac{-1}{4\sqrt{2px^3}}$.

Следовательно, y'>0, а y''<0 при любом x. Это означает, что в первой четверти парабола возрастает и вогнута (т. е. выпукла вверх). Кроме того, из (2) с очевидностью вытекает, что она пересекает оси абсцисс и ординат в единственной точке — начале координат. С учетом симметрии относительно оси абсцисс, получаем кривую, изображенную на рис. 1 на следующем слайде (чтобы выделить параболу среди вспомогательных линий, она изображена красным цветом).

Расположение параболы на плоскости (рисунок)

Рис. 1. Парабола

Расположение параболы на плоскости (комментарий к рисунку)

Внешне парабола напоминает одну из ветвей гиперболы, но есть очень существенное отличие: в отличие от гиперболы, парабола не имеет асимптот. Как и в случаях эллипса и гиперболы (см. рис. 1 в $\S41$ и 42), директриса параболы не пересекают кривую, а ее фокус расположен «внутри» кривой. На точки M, P и Q, проходящую через них прямую и отрезок FM, присутствующие на рис. 1, можно пока внимания не обращать — они появятся в нашем изложении позднее.

Характеризация параболы (1)

Следующее утверждение дает характеризацию параболы, которую нередко принимают за ее определение.

Теорема о параболе

Точка M принадлежит параболе тогда и только тогда, когда расстояние от M до фокуса равно расстоянию от M до директрисы.

Доказательство. Необходимость. Предположим, что ℓ — директриса параболы, а точка M(x,y) принадлежит параболе. Тогда

$$|FM| = \sqrt{\left(x - \frac{p}{2}\right)^2 + y^2} = \sqrt{x^2 - px + \frac{p^2}{4} + 2px} = \sqrt{\left(x + \frac{p}{2}\right)^2} = \left|x + \frac{p}{2}\right|.$$

Поскольку $x\geqslant 0$, а p>0, получаем, что $x+\frac{p}{2}>0$, и потому $|FM|=x+\frac{p}{2}.$ Проведем через точку M прямую, перпендикулярную оси ординат. Точки пересечения этой прямой с осью ординат и с директрисой параболы обозначим через P и Q соответственно (см. рис. 1). Ясно, что

$$d(M,\ell) = |MP| + |PQ| = x + \frac{p}{2}.$$

Следовательно, $|FM| = d(M, \ell)$.

Характеризация параболы (2)

Достаточность. Пусть M(x,y) — произвольная точка плоскости и расстояние от M до фокуса параболы равно расстоянию от M до ее директрисы. Используя формулу (14) из § 15, получим

$$\sqrt{\left(x-\frac{p}{2}\right)^2+y^2}=\left|x+\frac{p}{2}\right|.$$

Возводя обе части последнего равенства в квадрат, имеем

$$x^{2} - px + \frac{p^{2}}{4} + y^{2} = x^{2} + px + \frac{p^{2}}{4},$$

откуда $y^2 = 2px$. Следовательно, точка M принадлежит параболе.

Оптическое свойство параболы (1)

Парабола обладает следующим оптическим свойством:

Оптическое свойство параболы

Пучок лучей, параллельных оси параболы, отражаясь от параболы, собирается в ее фокусе; и наоборот, свет от источника, находящегося в фокусе, отражается параболой в пучок параллельных ее оси лучей.

Доказательство. Дальнейшие рассуждения иллюстрирует рис. 2. Пусть луч света, выпущенный из фокуса, отражается от параболы в точке $M(x_0,y_0)$. Через ℓ обозначим касательную к параболе в точке M, через A — точку пересечения прямой ℓ с осью абсцисс, а через ℓ' — луч, являющийся отражением от параболы луча, выпущенного из фокуса. Требуется доказать, что $\ell' \parallel Ox$. Произвольным образом выберем на прямой ℓ и на луче ℓ' точки, расположенные правее точки M, и обозначим их через B и C соответственно (см. рис. 2). Поскольку угол падения равен углу отражения, получаем, что $\angle BMC = \angle MAF$.

Оптическое свойство параболы (2)

Докажем, что |AF|=|FM|. Из доказательства теоремы о параболе вытекает, что $|FM|=x_0+\frac{p}{2}$. Для того, чтобы найти длину отрезка AF, найдем уравнение прямой ℓ . Продифференцируем по x обе части канонического уравнения параболы (считая y функцией от x и используя при дифференцировании левой части правило дифференцирования сложной функции). Получим 2yy'=2p, откуда $y'=\frac{p}{y}$. Подставим найденное выражение для y' в общий вид уравнения касательной, т. е. в уравнение $y=y_0+y'(x_0)(x-x_0)$. Получим $y=y_0+\frac{p}{y_0}(x-x_0)$. Используя тот факт, что точка $M(x_0,y_0)$ лежит на параболе, имеем

$$y_0y = y_0^2 + px - px_0 = 2px_0 + px - px_0 = p(x + x_0).$$

Таким образом, прямая ℓ имеет уравнение $p(x+x_0)-y_0y=0$. Подставив в него y=0, получим $x=-x_0$. Таким образом, точка A имеет координаты $(-x_0,0)$, и потому $|AF|=x_0+\frac{p}{2}=|FM|$.

Итак, |AF| = |FM|. Следовательно, углы $\angle MAF$ и $\angle AMF$ равны, как углы при основании равнобедренного треугольника $\triangle AMF$. Таким образом, $\angle MAF = \angle AMF = \angle BMC$. Поскольку $\angle MAF$ и $\angle BMC$ — соответствееные углы при пересечении прямой, содержащей луч ℓ' , и оси OX прямой ℓ , из равенства этих углов вытекает, что $\ell' \parallel Ox$.

Оптическое свойство параболы (рисунок)

Рис. 2. К доказательству оптического свойства параболы

«Школьная» парабола (1)

В школьном курсе математики параболой называется график функции $y=ax^2+bx+c$, где $a\neq 0$. Покажем, что «школьная» парабола является параболой и в смысле определения, введенного в начале данного параграфа. Дальнейшие рассуждения иллюстрирует рис. 3. Выделив в правой части равенства $y=ax^2+bx+c$ полный квадрат по x, получим $y=a(x+\frac{b}{2a})^2-\frac{b^2}{4a}+c$. Сделав замену неизвестных

$$\begin{cases} x' = x + \frac{b}{2a} & , \\ y' = y + \frac{b^2}{4a} - c, \end{cases}$$
 (3)

получим уравнение $y' = a(x')^2$. Применяя теперь замену неизвестных

$$\begin{cases} x'' = y', \\ y'' = x', \end{cases} \tag{4}$$

и полагая $p=\frac{1}{2a}$ (напомним, что $a\neq 0$), мы приходим к уравнению $(y'')^2=2px''$. Если p>0, мы получили каноническое уравнение параболы. В противном случае, чтобы прийти к тому же результату, надо еще сделать замену неизвестных

$$\begin{cases} x''' = -x'', \\ y''' = y''. \end{cases}$$
 (5)

«Школьная» парабола (2)

Отметим, что замены системы координат, определяемые формулами (3), (4) и (5), имеют простой геометрический смысл: первой из них соответствует параллельный перенос системы координат, переводящий начало координат в точку O' с координатами $\left(-\frac{b}{2a}, -\frac{b^2}{4a} + c\right)$, второй — переименование осей координат, а третьей — изменение направления вдоль оси Ox.

• В этом и предыдущем параграфах для приведения к каноническому виду «школьных» уравнений гиперболы и параболы использовались четыре преобразования системы координат: поворот, параллельный перенос, переименование осей и изменение направления вдоль одной из осей. Как мы увидим в следующем параграфе, этих четырех преобразований достаточно, для того, чтобы определить тип произвольной квадрики на плоскости и привести ее уравнение к простейшему виду.

«Школьная» парабола (рисунок)

Рис. 3. График функции $y = ax^2 + bx + c$ при a > 0