Experiment No. 04

Name of the Exp: Verification of Thevenin's theorem.

<u>**Objective:**</u> To verify Thevenin's theorem with reference to a given circuit theoretically as well as experimentally.

Theory:

The Thevenin's theorem states that any two terminal linear bilateral network containing sources and passive elements can be replaced by an equivalent circuit consisting of a voltage source V_{th} in series with a resistor R_{th} where,

- Vth= The open circuit voltage (VOC) at the two terminals A & B.
- R_{th} = The resistance looking into the terminals A and B of the network with all sources removed

Fig-1: Circuit diagram for Thevenin's theorem.

Apparatus:

- 1. DC power supplies
- 2. Resistors
- 3. Digital Multi-meter
- 4. Bread Board
- 5. Connecting wires

Procedure:

- 1. Check the values of the resistor using multi-meter (ohm section of multi-meter). Record the values in Table -1.
- 2. Give the connection as per the circuit diagram shown in Fig.1.

Finding V_{th} & R_{th}:

- 1. Remove the load resistance RL and find the open circuit voltage between terminals A & B. This voltage is Thevenin voltage i.e., $V_{th} = VOC$.
- 2. Replace the voltage sources with short circuits. With RL removed from the circuit and measure R_{th} using a multimeter OR,
- 3. Place a short circuit between terminals A & B and find the short circuit current ISC.
- 4. Divide the open circuit voltage by the short circuit current to find the Thevenin resistance R_{th} i.e.,

$$R_{th} = \frac{VOC}{ISC}$$

5. Record the results in Table 2.

Circuit diagram:

Fig-2. For measuring the R_{th} .

Fig-3. For measuring the V_{th} .

Fig-4. Thevenin equivalent circuit after calculation.

Fig-5. For measuring R_{th}.

Fig-6. For measuring V_{th} .

Model calculation:

• Theoretical value

First, we are going to find the V_{th} from fig-3 according to that circuit the V_{th} is the same voltage as the voltage across R_2 .

Applying the voltage divider rule we get,

$$V_{th} = \frac{V \times R_2}{R_1 + R_2} = \frac{10 \times 9}{9 + 9} = \frac{90}{18} = 5V$$

To determine the R_{th} we must measure the resistance of the whole circuit from point A & B.

$$\frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{9} + \frac{1}{9} = \frac{9}{1+1} = 4.5\Omega$$

$$R_{(1+2)} + R_3 = 4.5 + 9 = 13.5\Omega$$

The R_{th} is 13.5Ω

Measured value

We can see from fig-5 the voltage across the R₂ is 5V. so

$$\therefore V_{th} = 5V$$

And from fig-4 the short circuited current is ISC = 0.37037A so the R_{th} is

$$R_{th} = \frac{VOC}{ISC} = \frac{5}{0.37037} = 13.5\Omega$$

Observations:

Table-1. Resistor value.

Resistors (Ω)	R_1	R_2	R_3
Ohm meter	9	9	9
reading			

Table-2. Result for theoretical & measured value

No. of observation	$V_s(V)$	$V_{th}(V)$		$R_{th}(\Omega)$	
		TV	MV	TV	MV
1	10	5	5	13.5	13.5

Result: We got the same result from theoretical & measured value. Thus, we can say that our measurement was correct.

Precautions:

- 1. Check for proper connections before switching ON the supply.
- 2. Take care of the reading of the apparatus.
- 3. The terminal of the resistance should be properly connected.