	Wednesday, November 15, 2017 10:11 AM
	Vector extension of ~>
	Suppose Xn, X are vector-valued v.v.s R
	(DF) Xn ~ X when Fn > F for every point
	of continuity of F
	joint CDFs of r.v.
	(L) X, ~> X r.v. in R ^m =>
	Af: RM & R continuous and bounded
	Portmanteau $\mathbb{E}(f(X)) \to \mathbb{E}(f(X))$
	TH Continuous mapping (w/o proof) X, ~ X, f is continuous =>
	X, ~ X, f is continuous =>
	$f(x_n) \sim f(x)$
	$ x $ is the length of $x = \sqrt{x}x^T$
	x & RM
	(TH) $X_n \sim X$ $ X_n - Y_n \rightarrow 0$
	\Rightarrow $\forall \sim \times$
	P. 1. The for arbitrary limits bounded funct
	Proof: Take f as arbitrary Lipschitz, bounded funct.
/	$\parallel \mathbb{E}f(x_n) - \mathbb{E}f(x_n) \parallel \leq \mathbb{E}\parallel f(x_n) - f(x_n) \parallel =$
	= IE{ · ; · = = = + tE = · ; · > = = =
	< 9. Pr (1. 11 < E) + d. P(11.11>E)

Proof:
$$G \Rightarrow (X_n) \land X_n (X)$$

$$F_{X_n | Y_n} \rightarrow F_{X | C} \quad \text{at every point of continuity}$$

$$G(\text{non-random } C) = \{ \emptyset, \Omega \} \}$$

$$P(\text{X} \in B \cap Q^{\text{or}}) = P(\text{X} \in B) \cdot P(Q^{\text{or}}) \Rightarrow$$

$$\Rightarrow \text{X} \perp C \Rightarrow F_{X | C} = F_{X}$$

$$Y_n \Rightarrow Y_n \Rightarrow Y_n$$

Example:

I To is an extinator for
$$\theta$$
 S_{n}^{2} is an extinator for it variance σ^{2}

In $(T_{n}-\theta) \sim \mathcal{N}(0, \sigma^{2})$
 $S_{n}^{2} \rightarrow \sigma^{2}$

By Slutsky

 $\frac{1}{\sqrt{n}} \left(T_{n}-\theta\right) \sim \mathcal{N}(0, 1)$
 $\frac{1}{\sqrt{n}} \left(T_{n}-\theta\right) \sim \left(\frac{1}{\sqrt{n}}\right) \sim \left($

3.
$$y_{a \cdot X + 6} = [F(e^{it \cdot (aX + 6)}] = e^{ibt} [F(e^{ita}X)]$$
 $y(ta)$

2. | 4 | 1

4.
$$X \perp Y$$

$$g_{X+Y} = \mathbb{E}\{e^{i(X+Y)\cdot t}\} = \mathbb{E}\{e^{iX+t}\}\cdot \mathbb{E}\{e^{iY+t}\}$$

$$g_{X} \cdot g_{Y}$$

5. Moments
$$\varphi^{(k)}(0) = i^{k} \mathbb{E}\{x^{k} = x^{k}\} = 0$$

$$= i^{k} \mathbb{E}\{x^{k}\}$$

$$\vdots = M_{k}$$

6. Taylor expansion

$$g(t) = \sum_{k=1}^{n} \frac{(it)^{k}}{k!} \mathbb{E}\{X^{k}\} + o(|t|^{n})$$

$$M_{k} \quad \text{if } M_{k} \text{ exist}$$