Capítulo 9

Algoritmos Hash

Plano de Curso

- MD5 Message Digest (RFC 1321) por Ron Rivest
- SHA Security Hash Algorithm
- RIPEMD-160
- HMAC

Algoritmo MD5

- 1 Adicionar bits (total \equiv 448 mod 512)
- 2 Adicionar o Comprimento
- 3 Inicializar Buffer MD

```
A = 67452301 B = EFCDAB89 C = 98BADCFE D = 10325476
```

4 - Processar Mensagens em Blocos de 512 bits

$$1 <= j <= 64$$

T[j] = 2^{32} x abs[sin(j)]

Tabela Verdade das Funções Lógicas

b	С	d	F	G	н	I
0	0	0	0	0	0	1
0	0	1	1	0	1	0
0	1	0	0	1	1	0
0	1	1	1	0	0	1
1	0	0	0	0	1	1
1	0	1	0	1	0	1
1	1	0	1	1	0	1
1	1	1	1	1	1	0

Função de Compressão

Fase	g	G(b,c,d)
1	F(b,c,d)	$(b \land c) \lor (\overline{b} \land d)$
2	G(b,c,d)	$(b \land d) \lor (c \land \overline{d})$
3	H(b,c,d)	b⊕c⊕d
4	I(b,c,d)	c⊕(b∨d)

Onde: $\begin{vmatrix}
AND - \wedge \\
OR - \vee \\
NOT - - \\
XOR - \oplus
\end{vmatrix}$

$$\rho_2(i) = (1+5i) \mod 16$$
 $\rho_3(i) = (5+3i) \mod 16$
 $\rho_4(i) = 7i \mod 16$

S - RFC 1321

MD4

Ron Rivest, 1990 RFC 1320, 1992

- 3 rodadas
- Constantes aditivas iguais (0, t1, t2)
- 3 funções lógicas primitivas

Criptoanálise do MD5

- Criptanálise Diferencial de uma rodada, por Berson em 1992
- Ataque de Dobbertin em 1996. Conseguiu uma entrada diferente para a mesma saída de 128 bits (Um único bloco)

Algoritmo de Hash Seguro - SHA

Bloco de 160 bits

NIST SHA = FIPS PUB 180, 1993 SHA-1 = FIPS PUB 180-1, 1995

- 1 Adicionar bits (total \equiv 448 mod 512)
- 2 Adicionar o Comprimento
- 3 Inicializar Buffer MD

```
A = 67452301 B = EFCDAB89
```

$$C = 98BADCFE$$
 $D = 10325476$

E = C3D2E1F0

4 - Processar Mensagens em Blocos de 512 bits

SHA-1

$$K_1 = 5A827999$$

 $K_2 = 6ED9EBA1$
 $K_3 = 8F1BBCDC$
 $K_4 = CA62C1D6$

$$K_{1} = 2^{30}x\sqrt{2}$$

$$K_{2} = 2^{30}x\sqrt{3}$$

$$K_{3} = 2^{30}x\sqrt{5}$$

$$K_{4} = 2^{30}x\sqrt{10}$$

SHA-1

Tabela Verdade das Funções Lógicas

b	C	d	f ₀₁₉	f ₂₀₃₉	f ₄₀₅₉	f ₆₀₇₉	
0	0	0	0	0	0	0	
0	0	1	1	1	0	1	
0	1	0	0	1	0	1	
0	1	1	1	0	1	0	
1	0	0	0	1	0	1	
1	0	1	0	0	1	0	
1	1	0	1	0	1	0	
1	1	1	1	1	1	1	

Criação das 80 palavras W

$$W_{t}=S^{1}(W_{t-16} \oplus W_{t-14} \oplus W_{t-8} \oplus W_{t-3})$$

RIPEMD - 160

Bloco de 160 bits

- 1 Adicionar bits (total \equiv 448 mod 512)
- 2 Adicionar o Comprimento
- 3 Inicializar Buffer MD

```
A = 67452301 B = EFCDAB89
```

$$C = 98BADCFE$$
 $D = 10325476$

E = C3D2E1F0

4 - Processar Mensagens em Blocos de 512 bits

RIPEMD - 160

$$K_{1} = 0$$

$$K_{2} = 2^{30}x\sqrt{2}$$

$$K_{3} = 2^{30}x\sqrt{3}$$

$$K_{4} = 2^{30}x\sqrt{5}$$

$$K_{5} = 2^{30}x\sqrt{7}$$

$$K'_{1} = 2^{30}x^{3}\sqrt{2}$$

$$K'_{2} = 2^{30}x^{3}\sqrt{3}$$

$$K'_{3} = 2^{30}x^{3}\sqrt{5}$$

$$K'_{4} = 2^{30}x^{3}\sqrt{7}$$

$$K'_{5} = 0$$

Um Passo

HMAC

FIPS PUB 113 RFC 2104

- MAC para IPsec
- SSL

K+ = K adicionado de zeros ipad = 00110110 repetido b/8 vezes opad = 01011100 repetido b/8 vezes

Implementação Eficiente

