QUESTION 1. (15 marks)

(a) Solve the following linear recurrence, that is, write a_n in terms of n: $a_n = 10a_{n-1} - 25a_{n-2}$ for $n \ge 2$, with initial conditions $a_0 = 7$, $a_1 = 10$.

(b) Using induction, prove that

$$\sum_{i=0}^{n-1} (2i+1) = n^2, \quad \forall n \in \mathbb{N}.$$

Solution

(a) The characteristic equation is

$$x^{2} - 10x + 25 = 0$$
$$(x - 5)^{2} = 0.$$

This equation has a repeated root s=5. Hence $a_n=u5^n+nv5^n$ for some u and v. Using the initial conditions, we find that u=7 and v=-5. Thus $a_n=7\cdot 5^n-n5^{n+1}$.

[Distribution: 4 marks for correct expression for a_n and 3 marks for the justification]

(b) Let P(k) denote the predicate $\sum_{i=0}^{k-1} (2i+1) = k^2$. First we check the base case P(1). Here the LHS, $(2 \cdot 0 + 1) = 1$ is equal to the RHS $1^2 = 1$.

Now we want to prove the proposition $\forall k \in \mathbb{N}, P(k) \to P(k+1)$. For our inductive hypothesis, assume P(k) is true for some $k \in \mathbb{N}$. The LHS of P(k+1), $\sum_{i=0}^{k} (2i+1)$, is equal to 2k+1 plus by the LHS of P(k). Hence, using the inductive hypothesis, we have

$$\sum_{i=0}^{k} (2i+1) = \sum_{i=0}^{k-1} (2i+1) + (2k+1)$$
$$= k^2 + (2k+1)$$
$$= (k+1)^2.$$

Thus, we have shown that P(k+1) follows from P(k), as required.

[Distribution: 2 marks for correct predicate, 2 marks for base case, 2 marks for inductive hypothesis, 2 marks for correctly using induction.]

QUESTION 2.

(15 marks)

Let A, B, and C be sets.

- (a) Prove that $A \cap (\overline{(C \cup B)} \cup (\overline{B} \cap C)) = A \cap \overline{B}$.
- (b) Show that $(A B) C \subseteq A (B C)$.
- (c) Is (A B) C = A (B C)? If yes, prove it, if no, give a counterexample.

Solution

(a) It suffices to show $(\overline{(C \cup B)} \cup (\overline{B} \cap C)) = \overline{B}$.

$$\overline{(C \cup B)} \cup (\overline{B} \cap C) = (\overline{C} \cap \overline{B}) \cup (\overline{B} \cap C)
= (\overline{C} \cup (\overline{B} \cap C)) \cap (\overline{B} \cup (\overline{B} \cap C))
= ((\overline{C} \cup \overline{B}) \cap (\overline{C} \cup C)) \cap (\overline{B} \cup (\overline{B} \cap C))
= (\overline{C} \cup \overline{B}) \cap (\overline{B} \cup (\overline{B} \cap C))
= (\overline{C} \cup \overline{B}) \cap \overline{B}
= \overline{B}$$

[Distribution: 5 marks for justification, any set equality technique is OK.]

(b) Take $x \in (A - B) - C$. Then $x \in A - B$ and $x \notin C$. Hence $x \in A$ and $x \notin B$. Since $x \notin B$ we have $x \notin B - C$. Thus, $x \in A - (B - C)$.

[Distribution: 5 marks for justification, also OK to use other methods, e.g., membership table. Venn diagrams can be used as a guide but should not be the only justification.]

(c) Set $A = \{1, 2\}$, $B = C = \{1\}$. Then $(A - B) - C = \{1\}$ but $A - (B - C) = \{1, 2\}$.

[Distribution: 5 marks for counterexample. Any valid set assignment for a counterexample is OK.]

QUESTION 3.

(20 marks)

- (a) Consider the sets $A = \{0, 2, 4, 6\}$ and $B = \{1, 2, 3, 4\}$.
 - (i) Write out each subset of A that has cardinality 2.
 - (ii) Write out the cardinalities of $A \cup B$, A B, and $A \times B$.
 - (iii) Find the number of subsets of $A \times B$ that have at most 2 elements.

No justification is necessary for the answers of part (a).

- (b) Consider the *distinguishable* permutations of the number 436314. (Note that each permutation has six digits.)
 - (i) How many are there in total?
 - (ii) How many are odd numbers?

Briefly justify your answers.

Solution

- (a) Consider the sets $A = \{0, 2, 4, 6\}$ and $B = \{1, 2, 3, 4\}$. Find
 - (i) {0,2}, {0,4}, {0,6}, {2,4}, {2,6}, {4,6}.

 [Distribution: 4 marks total, at least 2 marks if half the sets are found or if the right sets are found but the notation is wrong.]
 - (ii) $|A \cup B| = 6$, |A B| = 2, and $|A \times B| = 16$. [Distribution: 1 mark for correct cardinality, 1 bonus mark if all are correct]
 - (iii) 1+16+120=137. [Distribution: 4 marks for 137, 3 marks for 136 (e.g., missed the empty set)]
- (b) (i) 6!/(2!2!) [Distribution: 2 marks for correct number, 2 marks for justification]

(ii) The number of distinguishable permutations where the last digit is 1: 5!/(2!2!).

The number of distinguishable permutations where the last digit is 3: 5!/(2!).

Thus the total is 5!/(2!2!) + 5!/(2!).

[Distribution: 2 marks for correct number, 2 marks for justification]