TP 21 : Les réactions chimiques de la photosynthèse

<u>Objectif</u>: Comprendre comment l'énergie lumineuse est à l'origine des produits de la photosynthèse.

<u>Capacités</u>: Etudier des expériences historiques sur l'energie lumineuse photosynthèse

Les plantes, autotrophes, sont à la base des réseaux alimentaires grâce à leur capacité à réaliser la photosynthèse. Au cours de cette réaction, la **lumière absorbée par les pigments est convertie en énergie chimique**. La photosynthèse comprend de nombreuses réactions chimiques dont les scientifiques ont réussi à déterminer la nature dans la 1^{ière} partie du XX^e siècle. A travers les résultats d'expériences historiques, on cherche à <u>caractériser</u> <u>ces réactions</u> qui se déroulent lors de la photosynthèse.

<u>Consigne</u>: à partir de l'exploitation des différents documents, démontrer que la photosynthèse est une réaction d'oxydo-réduction qui correspond au couplage de deux réactions que vous définirez et qui a pour équation bilan : $6H_2O + 6CO_2 \rightarrow C_6H_{12}O_6 + 6O_2$

Oxydation: perte d'électrons (e⁻) et de protons (H⁺) Réduction: gain d'électrons (e⁻) et de protons (H⁺)

Oxydant : accepteur d'électrons et de protons Réducteur: donneur d'électrons et de protons

Principe d'une réaction d'oxydo - réduction

Oxydant : accepteur d'électrons et de protons Réducteur: donneur d'électrons et de protons

Document 1 : Tableau de différentes expériences utilisant les isotopes de l'oxygène et du carbone

Expérience	Auteurs et années	Protocole	Résultat
1	Ruben et Kamen,	Euglènes (plante aquatique) éclairées en présence d'eau lourde (H ₂ 180).	Dégagement de ¹⁸ O ₂ , déchet de la photosynthèse.
2	1938 - 1941	Euglènes à l'obscurité en présence d'eau lourde (H ₂ ¹⁸ O).	Pas de dégagement de ¹⁸ 0 ₂ .
3		Chlorelles (algue unicellulaire) éclairées en présence de CO ₂ marqué au ¹⁴ C (radioactif).	Présence importante d'amido radioactif.
4	Calvin, Benson et Bassham,	Chlorelles mises à l'obscurité en présence de CO ₂ marqué au ¹⁴ C (radioactif).	Absence d'amidon.
5	1952 - 1959	Chlorelles préalablement éclairées sans CO ₂ radioactif puis immédiatement mises à l'obscurité en présence de CO ₂ marqué au ¹⁴ C (radioactif).	Présence peu importante d'amidon radioactif.

1 comparée à 2: ^{18}O de l'eau est retrouvé dans O_2 dégagé: donc O_2 dégagé provient de H_2O en présence de lumière.

3 comparée à 4: en présence de lumière, de l'amidon RA est produit à partir du CO_2 marqué au ^{14}C : donc le carbone de l'amidon est produit à partir du C du CO_2

5: à l'obscurité, un peu d'amidon RA peut être produit à partir du 14 C du CO_2 à condition que la plante ait été éclairé avant

<u>Document 2</u> : Les expériences de Ruben et Kamen

En 1941, les chimistes Ruben et Kamen ont permis de comprendre l'origine du dioxygène produit au cours de la photosynthèse.

Leurs expériences reposent sur le dispositif suivant : Des chlorelles (algues unicellulaires) sont cultivées dans de l'eau enrichie en dioxyde de carbone, et exposées à la lumière.

Le pourcentage de l'isotope ¹⁸0 est fixé par les expérimentateurs, à la fois dans les molécules d'eau et dans les molécules de dioxyde de carbone. Il diffère selon les expériences (voir les proportions dans le tableau).

Les expérimentateurs recueillent le dioxygène produit par les chlorelles et déterminent sa teneur en ¹⁸O.

Réaction de dissociation de l'eau $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$

Expériences	H ₂ O utilisée	CO ₂ utilisé	O ₂ recueilli
1	0,85 %	0,41 %	0,84 %
2	0,85 %	0,55 %	0,85 %
3	0,85 %	0,61 %	0,86 %
4	0,20 %	0,50 %	0,20 %
5	0,20 %	0,40 %	0,20 %

Résultats des expériences : teneurs en ¹⁸O dans les molécules d'H₂O, de CO₂ et d'O₂.

La dissociation de l'eau est une oxydation* qui demande beaucoup d'énergie. Elle permet de scinder la molécule d'eau en hydrogène et oxygène. Elle n'est possible qu'en présence d'un accepteur d'électrons suffisamment puissant. Après avoir été éclairée, la chlorophylle devient une molécule très oxydante, capable de provoquer cette photolyse de l'eau*.

Quelque soit l'expérience réalisée, le % d' ^{18}O trouvé dans le O_2 recueilli est toujours le même que celui de l'eau utilisée et jamais le même que celui du CO_2 cela confirme bien que O_2 dégagé lors de la photosynthèse provient de H_2O et pas du CO_2 .

Photolyse de l'eau = photooxydation de l'eau

Document 3 : La synthèse d'amidon au sein du chloroplaste

L'amidon est un polymère de glucose, c'est-à-dire qu'il est constitué de molécules de glucose (monomère) reliées entre elles par des liaisons particulières grâce à l'action d'enzymes contenues dans le chloroplaste.

L'amidon, polymère de glucose provient de la liaison de nombreuses molécules de glucose grâce à l'action d'enzymes du chloroplaste

<u>Document 4 : </u> les expériences de Calvin et Benson

Dans les années 1950, Calvin, Benson et Bassham réalisent des expériences sur les chlorelles, des algues unicellulaires capables de réaliser la photosynthèse. Ces chercheurs américains construisent un dispositif particulier nermettant d'incorporer du dioxyde de carbone radioactif (14CO₂) à ces algues avant de bloquer toute réaction chimique a l'aiae d'éthanol bouillant. L'objectif de leur expérience est de découvrir les molécules incorporant le dioxyde de carbone marqué.

Une fois les reactions chimiques bloquées, ils réalisent une chromatographie bidimensionnelle afin de séparer les molécules produites, puis une autoradiographie permettant de révéler les molécules radioactives.

A partir du C du CO_2 , il y a synthèse de molécules organique variées = produits de la photosynthèse

<u>Consigne</u>: à partir de l'exploitation des différents documents, démontrer que la photosynthèse est une réaction d'oxydoréduction qui correspond au couplage de deux réactions que vous définirez et qui a pour équation bilan :