Waveform and Passive Beamforming Design for Intelligent Reflecting Surface-Aided Wireless Information and Power Transfer

Yang Zhao

Department of Electrical and Electronic Engineering Imperial College London

Early Stage Assessment, July 2, 2020

Table of Contents

- Introduction and Review
 - WPT
 - SWIPT
 - IRS

What is WPT?

Wireless Power Transfer (WPT) varies electromagnetic fields to deliver power.

Table: WPT Technologies

Categories	Technology	Devices	Power	Frequency	Range
Near-field	Magnetic resonant coupling	Resonators	Up to 10 W	kHz – MHz	m
	Inductive coupling	Wire coils	Up to 10 W	Hz – MHz	mm – cm
	Capacitive coupling	Metal plates	Up to 1 W	kHz – MHz	mm
Far-field	RF waves	Rectennas	μW – mW	MHz – GHz	m – km
	Light waves	Lasers	μW – mW	THz	km

Characteristics:

- no wires and batteries
- everlasting, controllable, reliable, sustainable

WPT by RF waves

Energy flow: $DC \rightarrow RF \rightarrow RF \rightarrow DC$

Pros:

- long range (up to hundreds of m) with NLoS support
- compact receiver (few cm), easy integration
- suitable for mobile devices

Cons:

- low power level (μW mW)
- \bullet low energy harvesting efficiency (40% at 100 μ W, 20% at 10 μ W)

SWIPT

Why RF waves?

RF waves enables:

- Wireless communication (WIT)
- WPT

Simultaneous Wireless Information and Power Transfer (SWIPT): downlink WIT and WPT at the same time. Receivers can be either separated or co-located.

Figure: SWIPT receivers

Co-located receiver architecture

Two practical receiver architecture:

- Time-Switching (TS) switches between Information Decoding (ID) and Energy Harvesting (EH) modes on time basis.
- Power-Splitting (PS) splits the received signal into individual components for ID and EH.

Figure: Co-located receiver architecture

Design issue

- TS can be achieved by a time sharing between WIT and WPT. Waveform is optimized individually for both cases.
- ullet In PS, the splitting ratio ρ is coupled with the waveform design.

Harvester model

RF-to-DC conversion requires **rectenna** (receive antenna + rectifier), whose behavior is dominated by diode I-V characteristics.

Figure: Rectenna equivalent circuit and a single diode rectifier [1]

Consider small-signal model and truncate its Taylor expansion to the n_0 -th order:

- diode linear model ($n_o = 2$): output power is proportional to input power
- diode nonlinear model ($n_o > 2$): significant contribution from high-order terms

SWIPT

A superposed signal containing modulated information waveform and multisine power waveform is demonstrated to bring a two-fold benefit:

- rate: multisine is deterministic with no interference on information waveform (by waveform cancellation or translated codebook)
- energy: multisine brings high PAPR and triggers the diode nonlinear model more often (reduce threshold from -20 dBm to -30 dBm)

Figure: Multisine waveform

What is IRS?

Intelligent Reflecting Surface (IRS) consists of multiple individual passive reflecting elements that adjust the amplitude and phase of the incident signal.

(a) IRS architecture

- outer layer: redistribute incident signals
- middle layer: avoid signal energy leakage
- inner layer: adjust reflection amplitude and phase shift

(b) Application scenario

- enhance primary transmission by constructive reflection
- null interference by destructive reflection

IRS

Characteristics:

- passive (different from AF relay)
 - no RF chains
 - low power consumption
 - no additional thermal noise
 - squared gain: received power scales quadratically with the number of reflectors (boost receive power and array gain in equal gain transmission)
- full-duplex
- assistant (different from backscatter node)
- adjustable in real-time

Challenges:

- channel estimation
 - cannot separate incident and reflective channels
 - large number of extra channels
- practical restriction
 - discrete phase shifts
 - phase shift are coupled with reflection amplitude (by impedance equation)

IRS

- both aim at improving spectral/energy efficiency
- enhanced channel boosts received power to benefit from harvester nonlinearity
- extra links increase system diversity and stability, which is essential for SWIPT
- SWIPT can potentially support low-power IRS

B. Clerckx, A. Costanzo, A. Georgiadis, and N. Borges Carvalho, "Toward 1G Mobile Power Networks: RF, Signal, and System Designs to Make Smart Objects Autonomous," *IEEE Microwave Magazine*, vol. 19, no. 6, pp. 69–82, 2018.

IRS

B. Clerckx, R. Zhang, R. Schober, D. W. K. Ng, D. I. Kim, and H. V. Poor, "Fundamentals of wireless information and power transfer: From RF energy harvester models to signal and system designs," *IEEE Journal on Selected Areas in Communications*, vol. 37, no. 1, pp. 4–33, 2019.

M. S. Trotter, J. D. Griffin, and G. D. Durgin, "Power-optimized waveforms for improving the range and reliability of RFID systems," *2009 IEEE International Conference on RFID, RFID 2009*, pp. 80–87, 2009.

Q. Wu and R. Zhang, "Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming," *IEEE Transactions on Wireless Communications*, vol. 18, no. 11, pp. 5394–5409, 2019.

—, "Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network," *IEEE Communications Magazine*, vol. 58, no. 1, pp. 106–112, 2020.

