Name: Ron Kalin / Lamin Jammeh Date: 07/03/24

One of the widely used communication protocols is the UART (Universal Asynchronous Receiver Transmitter). The book pages 388 - 399 have detailed information about UART receiver. Translate the code into a block diagram that includes the DataPath and the Controller modules. Based on the Controller code sketch the state graph of the FSM, and based on the DataPath design, sketch the internal registers, the dataflow through them and what control signals they wait for to complete a data transmission or state transition.

Main objective: understand how the UART receiver works.

Block Diagram

FIGURE 7-25 Block diagram of UART_receiver, including the interface signals between the control unit and the datapath unit.

The state machine has the following primary (external) inputs and status inputs:

read_not_ready_in signals that the host is not ready to receive data

 Ser_in_0 asserts while $Serial_in$ is 0 SC_eq_3 asserts while $Sample_counter = 3$ SC_lt_7 asserts while $Sample_counter < 7$ BC_eq_8 asserts while $Bit_counter = 8$ $Sample_counter$ counts the samples of a bit

Bit_counter counts the bits that have been sampled

The state machine produces the following outputs:

read_not_ready_out signals that the receiver has received 8 bits

clr_Sample_counter
inc_Sample_counter
clr_Bit_counter
inc_Bit_counter
inc_Bit_counter
inc_Bit_counter
inc_Bit_counter

shift causes RCV_shftreg to shift towards the LSB load causes RCV_shftreg to transfer data to RCV_datareg Error1 asserts if host is not ready to receive data after last bit

has been sampled

Error2 asserts if the stop-bit is missing

ASMD Flow chart -Controller Rx

$RCV_shiftreg <= \{Serial_in, RCV_shiftreg \{word_size-1: 0 \}$ $Bit_counter <= Bit_counter +1$ Sample_counter <= Sample_counter +1 idlerst b Ser_in_0 (clr_Sample_counter) (inc_Sample_counter) starting Ser_in_0 1 SC_eq_ RCV_datareg <= RCV_shftreg Sample_counter <= 0 (clr_Sample_counter) receiving shift (inc_Sample_counter) inc_Bit_counter SC_lt_7 (clr_Sample_counter) BC_eq_8 $Bit_counter <= 0$ read_not_ready_out (Error2) clr_Bit_counter/ load read_not_ready_in Ser_in_0

FSM Diagram for Controller Rx- read directly from ASMD graph

- green text indicates this will be sent to Rx Datapath
- blue text indicates input or internal to the Rx Controller
- red text indicates output to the Transmitter (Tx)

Note: Ser_in_0 asserts if Serial_in is 0 SC_eq_3 asserts if Sample_counter = 3 SC_lt_7 asserts while Sample_counter < 7 BC_eq_8 asserts if Bit_counter = 8

FIGURE 7-26 ASMD chart for UART_receiver.

idle	starting	(Ser_in_0),(rst_b)
idle	idle	(!Ser_in_0) + (Ser_in_0).(!rst_b)
receiving	receiving	(IBC_eq_8).(rst_b) + (BC_eq_8).(SC_lt_7).(rst_b)
receiving	idle	(!BC_eq_8).(!rst_b) + (BC_eq_8).(!SC_lt_7) + (BC_eq_8).(SC_lt_7).(!rst_b)
starting	receiving	(SC_eq_3).(Ser_in_0).(rst_b)
starting	starting	(inc_Sample_counter).(rst_b)
starting	idle	(!Ser_in_0) + (Ser_in_0).(!rst_b)

Datapath Register Diagram

DataPath register data is read directly from the given ASMD graph (flowchart similar graph).

