

Théorie et Algorithmes de l'Apprentissage Automatique

2 - Régression linéaire

Simon BERNARD simon.bernard@univ-rouen.fr

Introduction

Régression linéaire simple

Premier exemple: Estimer l'altitude avec un thermomètre

- · Expérience de Joseph D. Hooker en 1849
- Mesure de pression atmosphérique p_i et de température d'ébullition de l'eau t_i dans l'Himalaya
- · Les lois de la physique disent que $y_i = \ln(p_i)$ est (approx.) proportionnel à t_i :

$$y_i = \alpha t_i + \beta + u_i$$

où ui représente l'erreur de mesure (ou bruit)

 Objectif: Prédire la pression atmosphérique à partir de la température d'ébullition de l'eau (ce qui permet ensuite de déduire l'altitude, sans utiliser de baromètre)

Premier exemple: Estimer l'altitude avec un thermomètre

Voici le tracé des points représentant les mesures, ainsi qu'une estimation de la droite :

$$y_i = wt_i + b$$

Les paramètres (w, b) sont estimés en minimisant l'erreur quadratique (moindre carrés)

Régression linéaire simple

- · La droite est un modèle de regression linéaire
- Elle explique au mieux une grandeur Y (variable cible) en fonction de d autres grandeurs $\{X^{(j)}\}_{j=1...d}$ (variables explicatives)
- Elle permet également d'étudier l'erreur irreductible, i.e. le bruit u_i , e.g. on peut supposer que u_i suit une distribution gaussienne centrée et estimer l'écart-type σ
- Elle permet de prédire n'importe quelle valeur de pression étant donné la température d'ébullition de l'eau

Régression linéaire multiple

Deuxième exemple : Prédire la progression du diabète à partir de données cliniques 1

	AGE	SEX	$_{\rm BMI}$	$_{\mathrm{BP}}$	\cdots Serum Measurements \cdots						Response
Patient	x1	x2	x3	x4	x_5	x6	x7	x8	x9	x10	у
1	59	2	32.1	101	157	93.2	38	4	4.9	87	151
2	48	1	21.6	87	183	103.2	70	3	3.9	69	75
3	72	2	30.5	93	156	93.6	41	4	4.7	85	141
4	24	1	25.3	84	198	131.4	40	5	4.9	89	206
5	50	1	23.0	101	192	125.4	52	4	4.3	80	135
6	23	1	22.6	89	139	64.8	61	2	4.2	68	97
:	1	1	:	1	- 1	1	:	:	1	:	:
441	36	1	30.0	95	201	125.2	42	5	5.1	85	220
442	36	1	19.6	71	250	133.2	97	3	4.6	92	57

Table 1. Diabetes study. 442 diabetes patients were measured on 10 baseline variables. A prediction model was desired for the response variable, a measure of disease progression one year after baseline.

On suppose que la relation entre les entrées et la sortie est linéaire :

$$y_i = w_1 x_i^{(1)} + w_2 x_i^{(2)} + \dots + w_d x_i^{(10)} + b + u_i$$

^{1.} Bradley Efron et al., "Least Angle Regression", Annals of Statistics, 2004

Régression linéaire multiple

Deuxième exemple : Prédire la progression du diabète à partir de données cliniques ²

· Le modèle $h: \mathbb{R}^d \to \mathbb{R}$ à déterminer est de la forme

$$h(\mathbf{x}) = \sum_{i=1}^{d} w_i x^{(i)} + b = \mathbf{x}^{\top} \mathbf{w} + b = [\mathbf{x}^{\top} \mathbf{1}] \boldsymbol{\alpha}$$

avec

- · $\mathbf{w} \in \mathbb{R}^d$, un vecteur qui définit un hyperplan
- $b \in \mathbb{R}$ un biais qui déplace la fonction perpendiculairement à l'hyperplan

$$\boldsymbol{\alpha} = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix} \in \mathbb{R}^{d+1}$$

 \cdot L'objectif est de déterminer (\mathbf{w},b) à partir de l'ensemble d'apprentissage $\mathcal D$

^{2.} Bradley Efron et al., "Least Angle Regression", Annals of Statistics, 2004

Deuxième exemple : Prédire la progression du diabète à partir de données cliniques ³

```
from sklearn import datasets
from sklearn.linear_model import LinearRegression

X, y = datasets.load_diabetes(scaled=False, return_X_y=True)
clf = LinearRegression().fit(X, y)
print(clf.coef_)
print(clf.intercept_)
```

```
> [-3.63612242e-02 -2.28596481e+01 5.60296209e+00 1.11680799e+00
-1.08999633e+00 7.46450456e-01 3.72004715e-01 6.53383194e+00
6.84831250e+01 2.80116989e-01]
-334.5671385187874
```

^{3.} Bradley Efron et al., "Least Angle Regression", Annals of Statistics, 2004

Méthode des moindres carrés

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_{1}^{\top} & 1 \\ \mathbf{x}_{2}^{\top} & 1 \\ \vdots & \vdots \\ \mathbf{x}_{i}^{\top} & 1 \\ \vdots & \vdots \\ \mathbf{x}_{n}^{\top} & 1 \end{bmatrix} = \begin{bmatrix} x_{1}^{(1)} & x_{1}^{(2)} & \dots & x_{1}^{(j)} & \dots & x_{1}^{(d)} & 1 \\ x_{2}^{(1)} & x_{2}^{(2)} & \dots & x_{2}^{(j)} & \dots & x_{2}^{(d)} & 1 \\ \vdots & \vdots \\ x_{n}^{(1)} & x_{i}^{(2)} & \dots & x_{i}^{(j)} & \dots & x_{n}^{(d)} & 1 \\ \vdots & \vdots \\ x_{n}^{(1)} & x_{n}^{(2)} & \dots & x_{n}^{(j)} & \dots & x_{n}^{(d)} & 1 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{i} \\ \vdots \\ y_{n} \end{bmatrix}$$

- $\mathbf{x}_i \in \mathbb{R}^d$ sont les observations (instances) pour $i = 1, \dots, n$
- $y_i \in \mathbb{R}$ sont les valeurs observées à prédire (réponse) pour $i = 1, \dots, n$
- $X \in \mathbb{R}^{n \times (d+1)}$ telle que $X = [x_1, x_2, \dots, x_n, e]^{\top}$ avec $e \in \mathbb{R}^d$ et $e_i = 1, \forall i$
- $\mathbf{y} \in \mathbb{R}^n$ telle que $\mathbf{y} = [y_1, y_2, \dots, y_n]^{\top}$

Représentation matricielle du modèle

· Sous sa forme matricielle, la relation s'écrit

$$y = X\alpha + u$$

où u est un vecteur de bruit

- · On suppose que X est de rang colonnes plein ⁴
- Dans ce cas, X^TX est inversible, nécessaire pour la méthode des moindres carrés
- Dans le cas contraire, cela signifie qu'une des variables s'obtient par combinaison linéaire des autres et qu'on ne peut pas estimer α^* sans hypothèses supplémentaires.

^{4.} Toutes les colonnes sont linéairement indépendantes

· On veut estimer les paramètres (w, b) tels que

$$h(\mathbf{x}) = \mathbf{x}^{\top}\mathbf{w} + b$$

 Pour cela, on cherche à minimiser les erreurs de prédiction sur les exemples d'apprentissage, aussi appelé résidus :

$$\epsilon_i = y_i - h(\mathbf{x}_i) = y_i - \mathbf{x}_i^{\mathsf{T}} \mathbf{w} - b$$

ou, sous la forme matricielle $\epsilon \in \mathbb{R}^n$:

$$\epsilon = \mathsf{y} - \mathsf{X} \pmb{lpha}$$

Ce problème peut s'interpréter comme la recherche de l'hyperplan $y = \mathbf{x}^{\top}\mathbf{w} + b$ qui minimise les distances des observations $(\mathbf{x}_i, y_i), i = 1, ..., n$ à l'hyperplan

· La méthode des moindres carrés consiste à minimiser la somme des résidus au carré :

$$\min_{h} \quad \sum_{i=1}^{n} (y_i - h(\mathbf{x}_i))^2$$

$$\min_{(\mathbf{w},b)} \quad \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w} - b)^2$$

$$\min_{(\mathbf{w},b)} \quad \sum_{i=1}^{n} \epsilon_i^2$$

· Sous sa forme matricielle :

$$\min_{\alpha} \|\epsilon\|^2 = \|\mathbf{y} - \mathbf{X}\alpha\|^2$$

où $\|.\|$ est la norme euclidienne d'un vecteur telle que $\|\epsilon\|^2 = \sum_{i=1}^n \epsilon_i^2$

Problème d'optimisation

· Nous voulons résoudre le problème d'optimisation ⁵ :

$$\min_{\alpha} J(\alpha)$$
 avec $J(\alpha) = \frac{1}{2} \|\mathbf{y} - \mathbf{X}\alpha\|^2$

où la fonction $J(\alpha)$ est convexe ⁶.

· Rappel : dans ce cas, α^* est un minimum de la fonction $J(\alpha)$ si et seulement si :

$$\nabla J(\alpha^*) = 0$$

où $\nabla J(\alpha)$ est le gradient de la fonction en α tel que :

$$\nabla J(\boldsymbol{\alpha}) = \frac{\partial J(\boldsymbol{\alpha})}{\partial \alpha_i}, \forall i$$

^{5.} le terme \frac{1}{2} simplifie les calculs mais il ne change rien au problème d'optimisation

^{6.} $f(x) = x^2$ est convexe et les transformations affines préservent la convexité

· En développant :

$$J(\alpha) = \frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\alpha}\|^2 = \frac{1}{2} (\mathbf{y} - \mathbf{X}\boldsymbol{\alpha})^\top (\mathbf{y} - \mathbf{X}\boldsymbol{\alpha})$$

$$= \frac{1}{2} (\mathbf{y}^\top - (\mathbf{X}\boldsymbol{\alpha})^\top) (\mathbf{y} - \mathbf{X}\boldsymbol{\alpha}) = \frac{1}{2} (\mathbf{y}^\top - \boldsymbol{\alpha}^\top \mathbf{X}^\top) (\mathbf{y} - \mathbf{X}\boldsymbol{\alpha})$$

$$= \frac{1}{2} \mathbf{y}^\top \mathbf{y} - \frac{1}{2} \mathbf{y}^\top \mathbf{X}\boldsymbol{\alpha} - \frac{1}{2} \boldsymbol{\alpha}^\top \mathbf{X}^\top \mathbf{y} + \frac{1}{2} \boldsymbol{\alpha}^\top \mathbf{X}^\top \mathbf{X}\boldsymbol{\alpha}$$

$$= \frac{1}{2} \mathbf{y}^\top \mathbf{y} - \boldsymbol{\alpha}^\top \mathbf{X}^\top \mathbf{y} + \frac{1}{2} \boldsymbol{\alpha}^\top \mathbf{X}^\top \mathbf{X}\boldsymbol{\alpha}$$

$$= \mathbf{A}^\top + \mathbf{B}^\top (\mathbf{A}\mathbf{B})^\top = \mathbf{B}^\top \mathbf{A}^\top \text{ et } \mathbf{y}^\top \mathbf{X}\boldsymbol{\alpha} = \boldsymbol{\alpha}^\top \mathbf{X}^\top \mathbf{y} \text{ (un scalaire)}$$

car $(A + B)^{\top} = A^{\top} + B^{\top}$. $(AB)^{\top} = B^{\top}A^{\top}$ et $\mathbf{v}^{\top}\mathbf{X}\boldsymbol{\alpha} = \boldsymbol{\alpha}^{\top}\mathbf{X}^{\top}\mathbf{v}$ (un scalaire).

Calcul du gradient de $J(\alpha)$

$$\begin{split} \frac{\partial J(\boldsymbol{\alpha})}{\partial \alpha_i} &= \frac{\partial}{\partial \alpha_i} \left(\frac{1}{2} \mathbf{y}^\top \mathbf{y} - \boldsymbol{\alpha}^\top \mathbf{X}^\top \mathbf{y} + \frac{1}{2} \boldsymbol{\alpha}^\top \mathbf{X}^\top \mathbf{X} \boldsymbol{\alpha} \right) \\ &= \frac{\partial}{\partial \alpha_i} \frac{1}{2} \mathbf{y}^\top \mathbf{y} - \frac{\partial}{\partial \alpha_i} \boldsymbol{\alpha}^\top \mathbf{X}^\top \mathbf{y} + \frac{\partial}{\partial \alpha_i} \frac{1}{2} \boldsymbol{\alpha}^\top \mathbf{X}^\top \mathbf{X} \boldsymbol{\alpha} \end{split}$$

En posant $p = X^{T}y$ et $M = X^{T}X$, on a :

$$\frac{\partial}{\partial \alpha_{i}} \boldsymbol{\alpha}^{\top} \mathbf{p} = \frac{\partial}{\partial \alpha_{i}} \sum_{j=1}^{d+1} p_{j} \alpha_{j} = p_{i}$$

$$\frac{\partial}{\partial \alpha_{i}} \boldsymbol{\alpha}^{\top} \mathbf{M} \boldsymbol{\alpha} = \frac{\partial}{\partial \alpha_{i}} \sum_{j=1}^{d+1} \sum_{k=1}^{d+1} \alpha_{j} \alpha_{k} M_{jk} = \sum_{j=1}^{d+1} \alpha_{j} M_{ji} + \sum_{k=1}^{d+1} \alpha_{k} M_{ik}$$

Car
$$(uv)' = uv' + u'v$$
 avec $u = \alpha_j$ et $v = \sum_{k=1}^{d+1} \alpha_k M_{jk}$

^{7.} détails du calcul en annexe, à la fin du support

$$\frac{\partial J(\boldsymbol{\alpha})}{\partial \alpha_{i}} = \frac{\partial}{\partial \alpha_{i}} \left(\frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{y} - \boldsymbol{\alpha}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \frac{1}{2} \boldsymbol{\alpha}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \boldsymbol{\alpha} \right)
= \frac{\partial}{\partial \alpha_{i}} \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{y} - \frac{\partial}{\partial \alpha_{i}} \boldsymbol{\alpha}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \frac{\partial}{\partial \alpha_{i}} \frac{1}{2} \boldsymbol{\alpha}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \boldsymbol{\alpha}
= 0 - p_{i} + \frac{1}{2} \sum_{j=1}^{d+1} (M_{ij} + M_{ji}) \alpha_{j}$$

Ce qui donne sous la forme matricielle :

$$\nabla J(\alpha) = -p + M\alpha$$
$$= -X^{\top}y + X^{\top}X\alpha$$

· Minimiser J(lpha) revient à trouver le lpha qui annule le gradient :

$$\nabla J(\hat{\boldsymbol{\alpha}}) = 0 \quad \Leftrightarrow \quad -\mathbf{X}^{\top}\mathbf{y} + \mathbf{X}^{\top}\mathbf{X}\hat{\boldsymbol{\alpha}} = 0$$

 \cdot La solution du problème de minimisation des moindres carrés est le vecteur $\hat{m{lpha}}$ défini par :

$$\hat{\boldsymbol{\alpha}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

que l'on appelle l'estimateur des moindres carrés


```
import numpy as np
from sklearn import datasets

X, y = datasets.load_diabetes(scaled=False, return_X_y=True)
Xa = np.concatenate((X, np.ones((X.shape[0], 1))), axis=1)
w = np.dot(np.linalg.inv(np.dot(Xa.T, Xa)), np.dot(Xa.T, y))
print(w[:-1])
print(w[-1])
```

```
> [-3.63612242e-02 -2.28596481e+01 5.60296209e+00 1.11680799e+00
-1.08999633e+00 7.46450456e-01 3.72004715e-01 6.53383194e+00
6.84831250e+01 2.80116989e-01]
-334.5671385187874
```


Moindres carrés ordinaires

- · La méthode précédente s'appelle la méthode des moindres carrés "ordinaires"
- · On cherche à minimiser :

$$\min_{\alpha} J(\alpha)$$
 avec $J(\alpha) = \frac{1}{2} \|\mathbf{y} - \mathbf{X}\alpha\|^2$

· La solution du problème est :

$$\hat{\boldsymbol{\alpha}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

- · Problème :
 - Lorsque n < d + 1, X^TX n'est pas inversible
 - · La solution n'est pas unique : le problème est mal posé
- Solution : régularisation

Moindres carrées régularisés

· Régularisation : ajout d'une contrainte sur les paramètres à estimer

$$J(\alpha) = \frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\alpha}\|^2 + \lambda \Omega(\boldsymbol{\alpha})$$

- · Vise à pénaliser les modèles trop complexes :
 - · Modèle complexe : fort risque de sur-apprentissage
 - · Plusieurs solutions : on favorise la solution la moins complexe
- · L'influence de ce terme est contrôlée par un hyperparamètre de régularisation λ ($\lambda=0 \to$ moindres carrés ordinaire)

$$\min_{\mathbf{w},b} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w} - b)^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

- · Promouvoir les w de norme minimale et rendre le problème strictement convexe
- \cdot λ est un hyperparamètre qui permet de limiter le sur-apprentissage
- \cdot $\lambda = 0$ permet de revenir à la régression des moindres carrés (MCO)
- · Cette régularisation est appelée régularisation de Tikhonov
- · La méthode résultante s'appelle la regression ridge (ou regression de crête)

$$\min_{\alpha} J(\alpha) \quad avec \quad J(\alpha) = \frac{1}{2} \|\mathbf{y} - \mathbf{X}\alpha\|^2 + \frac{\lambda}{2} \alpha^{\top} \mathbf{S}\alpha$$

avec $S \in \mathbb{R}^{(d+1)\times(d+1)}$, une matrice dont le terme général est :

$$S_{i,j} = \begin{cases} 1 & \text{si } i = j \text{ et } i \leq d \\ 0 & \text{sinon} \end{cases}$$

S est une matrice diagonale unitaire dont le dernier terme diagonal est nul. On trouve donc :

$$\boldsymbol{\alpha}^{\top} \mathbf{S} \boldsymbol{\alpha} = \sum_{i,j=1}^{d+1} \alpha_i \alpha_j \mathbf{S}_{i,j} = \sum_{i=1}^{d} \alpha_i^2 = \sum_{i=1}^{d} \mathbf{w}_i^2 = \|\mathbf{w}\|^2$$

Calcul du gradient de $J(\alpha)$

· En reprenant la formulation des MCO :

$$J(\alpha) = \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} - \alpha^{\top} \mathbf{X}^{\top} \mathbf{y} + \frac{1}{2} \alpha^{\top} \mathbf{X}^{\top} \mathbf{X} \alpha + \frac{\lambda}{2} \alpha^{\top} \mathbf{S} \alpha$$
$$= \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} - \alpha^{\top} \mathbf{X}^{\top} \mathbf{y} + \frac{1}{2} \alpha^{\top} (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{S}) \alpha$$

• En posant $\mathbf{p} = \mathbf{X}^{\top} \mathbf{y}$ et $\mathbf{M} = \mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{S}$, on retrouve :

$$\frac{\partial J(\alpha)}{\partial \alpha_{i}} = \frac{\partial}{\partial \alpha_{i}} \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{y} - \frac{\partial}{\partial \alpha_{i}} \alpha^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \frac{\partial}{\partial \alpha_{i}} \frac{1}{2} \alpha^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X} + \lambda \mathbf{S}) \alpha$$

$$= 0 - p_{i} + \frac{1}{2} \sum_{j=1}^{d+1} (M_{ij} + M_{ji}) \alpha_{j}$$

· Forme matricielle

$$abla J(lpha) = -\mathbf{p} + \mathbf{M} lpha = -\mathbf{X}^{ op} \mathbf{y} + (\mathbf{X}^{ op} \mathbf{X} + \lambda \mathbf{S}) lpha$$

Minimisation de $J(\alpha)$

· La minimisation de $J(\alpha)$ est réalisée lorsque le gradient s'annule :

$$\nabla J(\hat{\alpha}) = 0 \Leftrightarrow -X^{\top}y + (X^{\top}X + \lambda S)\hat{\alpha} = 0$$

· La solution est le vecteur $\hat{m{lpha}}$ défini par :

$$\hat{\boldsymbol{\alpha}} = (\mathbf{X}^{\top}\mathbf{X} + \boldsymbol{\lambda}\mathbf{S})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

- · Régularisation :
 - S ajoute λ à tous les éléments de la diagonale de X^TX , ce qui la rend inversible.
 - · Le problème est maintenant bien posé et une solution unique existe

Régularisation LASSO

• Basé sur la norme ℓ_1 (vs norme ℓ_2 pour ridge)

$$\|\mathbf{w}\|_1 = \sum_{i=1}^d |w_i|$$

• Regression LASSO (least absolute shrinkage and selection operator):

$$\min_{\mathbf{w},b} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w} - b)^2 + \frac{\lambda}{2} ||\mathbf{w}||_1$$

· Pas de calcul direct : algorithmes itératifs jusqu'à obtenir une solution

· Combinaison des deux régularisations :

$$\min_{\mathbf{w},b} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w} - b)^2 + \frac{\lambda_1}{2} ||\mathbf{w}||^2 + \frac{\lambda_2}{2} ||\mathbf{w}||_1$$

avec (
$$\lambda_1 = 0$$
 et $\lambda_2 > 0$): Ridge; ($\lambda_1 > 0$ et $\lambda_2 = 0$): LASSO; ($\lambda_1 = 0$ et $\lambda_2 = 0$): MCO

· ou

$$\min_{\mathbf{w},b} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w} - b)^2 + \frac{\lambda}{2} \left(\omega \|\mathbf{w}\|^2 + (1 - \omega) \|\mathbf{w}\|_1 \right)$$

avec ($\omega = 0$): Ridge; ($\omega = 1$): LASSO

· Pas de calcul direct mais plusieurs algorithmes itératifs.

Ridge vs LASSO vs Elastic net

- Quelques soit λ , Ridge n'autorise pas $w_i = 0$ (tous les coefficients sont non nuls)
- En revanche, c'est souvent la cas avec LASSO = sélection de caractéristiques
- · Si beaucoup de caractéristiques et/ou certaines sont non pertinentes, LASSO est préférable
- · Si caractéristiques corrélées, Ridge est préférable car LASSO peut sélectionner "au hasard"
- Elastic net est un bon compromis entre les deux mais nécessite de régler deux hyperparamètres $(\lambda_1$ et $\lambda_2)$

- 1. Preparer les données :
 - · charger le dataset (augmenter X avec une colonne de 1 si nécessaire)
 - · Séparer le dataset en sous-ensemble d'apprentissage et de test

```
from sklearn import datasets

X, y = datasets.load_diabetes(scaled=False, return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3333, random_state=42)

# Note: on augmente pas X car c'est fait automatiquement avec l'implémentation de Scikit-learn
```


- 2. Choisir une métrique d'évaluation :
 - · Erreur quadratique moyenne (MSE pour mean suqared error)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- · 0 quand la prédiction est parfaite
- · Pas normalisée (dépend de la variance de y)
- · Peu interprétable

- 2. Choisir une métrique d'évaluation :
- · Erreur absolue moyenne (MAE pour mean absolute error)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

- · 0 quand la prédiction est parfaite
- · Pas normalisée (dépend de la variance de y)
- · Plus interprétable que MSE

- 2. Choisir une métrique d'évaluation :
- · Coefficient de détermination (R2)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

- · 1 quand la prédiction est parfaite
- · Normalisée (entre 0 et 1) mais valeurs négatives possibles en test
- · La plus interprétable

- 3. Sélectionner la valeur de λ :
 - · choisir une méthode de validation : cross-validation
 - · sélectionner un intervalle de valeur pour λ , e.g. \in [10⁻⁴, 10⁴]

4. Apprentissage et évaluation

```
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
    ridge = grid.best_estimator_
    ridge.fit(X_train, y_train)
    predictions = ridge.predict(X_test)
    print(mean_squared_error(y_test, predictions))
    print(mean_absolute_error(y_test, predictions))
    print(r2_score(y_test, predictions))
```

```
> 2785.964605380989
41.515630696714524
0.5102031756244414
```

Normalisation des données

· Normalisation (standardisation)

$$X = \frac{X - \mu}{\sigma}$$

avec μ et σ respectivement la moyenne et l'écart type de chaque colonne de X

· Aucun effet sur la solution des MCO, mais mportant pour LASSO et Ridge

Normalisation des données


```
from sklearn.preprocessing import StandardScaler

X, y = datasets.load_diabetes(return_X_y=True, scaled=False)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3333, random_state=42)
scaler = StandardScaler()
X_train_std = scaler.fit_transform(X_train)
X_test_std = scaler.transform(X_test)
```

Annexes

Explications du calcul de la diapositive 16

On yeut calculer:

$$\frac{\partial J(\boldsymbol{\alpha})}{\partial \alpha_i} = \frac{\partial}{\partial \alpha_i} \frac{1}{2} \mathbf{y}^\top \mathbf{y} - \frac{\partial}{\partial \alpha_i} \boldsymbol{\alpha}^\top \mathbf{X}^\top \mathbf{y} + \frac{\partial}{\partial \alpha_i} \frac{1}{2} \boldsymbol{\alpha}^\top \mathbf{X}^\top \mathbf{X} \boldsymbol{\alpha}$$

Pour calculer le troisième terme, on pose $M = X^T X$ et on utilise (uv)' = uv' + u'v avec $u = \alpha_i$ et $v = \sum_{h=1}^{d+1} \alpha_h M_{ih}$:

$$\begin{split} \frac{\partial}{\partial \alpha_i} \boldsymbol{\alpha}^{\top} \boldsymbol{\mathsf{M}} \boldsymbol{\alpha} &= \frac{\partial}{\partial \alpha_i} \sum_{j=1}^{d+1} \sum_{k=1}^{d+1} \alpha_j \alpha_k \boldsymbol{\mathsf{M}}_{jk} = \sum_{j=1}^{d+1} \frac{\partial}{\partial \alpha_j} \left(\alpha_j \sum_{k=1}^{d+1} \alpha_k \boldsymbol{\mathsf{M}}_{jk} \right) = \sum_{j=1}^{d+1} (\boldsymbol{\mathsf{u}} \boldsymbol{\mathsf{v}} \boldsymbol{\mathsf{v}} + \boldsymbol{\mathsf{u}} \boldsymbol{\mathsf{v}}') \\ &= \sum_{j=1}^{d+1} \left(\boldsymbol{\mathsf{u}}' \boldsymbol{\mathsf{v}} + \boldsymbol{\mathsf{u}} \boldsymbol{\mathsf{v}}' \right) = \sum_{j=1}^{d+1} \boldsymbol{\mathsf{u}}' \boldsymbol{\mathsf{v}} + \sum_{j=1}^{d+1} \boldsymbol{\mathsf{u}} \boldsymbol{\mathsf{v}}' \end{split}$$

Comme u' = 0 pour $j \neq i$ et u' = 1 pour j = i, on a

$$\sum_{j=1}^{d+1} u' v = v \quad \text{avec } j = i \quad \Rightarrow \quad \sum_{j=1}^{d+1} u' v = \sum_{k=1}^{d+1} \alpha_k \mathsf{M}_{jk}$$

Et comme v' = 0 pour $k \neq i$ et $v' = M_{ii}$ pour k = i

$$\sum_{j=1}^{d+1} uv' = \sum_{j=1}^{d+1} uM_{jj} \quad \Rightarrow \quad \sum_{j=1}^{d+1} uv' = \sum_{j=1}^{d+1} \alpha_j M_{jj}$$

Et donc

$$\frac{\partial}{\partial \alpha_{i}} \boldsymbol{\alpha}^{\mathsf{T}} \mathbf{M} \boldsymbol{\alpha} = \sum_{j=1}^{d+1} \alpha_{j} M_{jj} + \sum_{k=1}^{d+1} \alpha_{k} M_{ik}$$