MA2000: OTML

Nachiketa Mishra

Indian Institute of Information Technology, Design & Manufacturing, Kancheepuram

Function Example

Figure: Stationary points of a function

Quickest ever review of multivariate calculus

- Derivative
- ► Partial Derivative
- ► Gradient Vector

Function and its derivatives

► Slope of the tangent line

Figure: The function f is drawn in black and the tangent line to f(x) is drawn in blue. The derivative of f at x is the slope of the tangent line

▶ It is easy when a function is univariate.

Partial Derivative – Multivariate Functions

For multivariate functions (e.g two variables) we need partial derivatives – one per dimension. Examples of multivariate functions:

(d)
$$f = \cos^2(x) + \cos^2(y)$$

Gradient

- ► The gradient is the generalization of the derivative to multivariate functions.
- ▶ The gradient of f at $\mathbf{x} \in \mathbb{R}^n$ is written as $\nabla f(\mathbf{x})$ and is a vector.
- ► Each component of that vector is the partial derivative of *f* with respect to that component:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} & \frac{\partial f(\mathbf{x})}{\partial x_2} & \dots & \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix}^T.$$

- ► Why are we interested in gradients?
 - It captures the local slope of the function, allowing us to predict the effect of taking a small step from a point in any direction.
 - ▶ The gradient points are in the direction of the increase of a function f(x), Thus $-\nabla f(x)$ gives the direction of descent. Hence, it helps in pointing to local minima.

Gradient descent method

- ► What is a level curve?
- ▶ Where does ∇ point to?
- ► How does gradient help in going to minima?

Level curve and its graphical representation

The level curve of a scalar-valued function $f(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$ is defined as a set as follow

$$f_t = \{(x,y)|f(x,y) = t, t \in \mathbb{R}\}.$$

minima

(a) Color coding is needed to distinguish maxima from (b) Level curves are convenient for showing directions towards minima/maxima

Where does ∇ point to?

Let $P = (x_0, y_0, z_0)$ be a point in the level curve f(x, y, z) = c. Let r(t) = (x(t), y(t), z(t)) be a curve on the level surface with $r(t_0) = (x_0, y_0, z_0)$. We let g(t) = f(x(t), y(t), z(t)). Since the curve is

on the level surface we have g(t) = f(x(t), y(t), z(t)) = c. Differentiating this equation with respect to t gives

$$\frac{dg}{dt} = \frac{\partial f}{\partial x} \left|_{P} \frac{dx}{dt} \right|_{t_0} + \frac{\partial f}{dy} \left|_{P} \frac{dy}{dt} \right|_{t_0} + \frac{\partial f}{\partial z} \left|_{P} \frac{dz}{dt} \right|_{t_0} = 0.$$

In vector form this is

$$\left(\frac{\partial f}{\partial x}\bigg|_{P}, \frac{\partial f}{\partial y}\bigg|_{P}, \frac{\partial f}{\partial z}\bigg|_{P}\right) \cdot \left(\frac{dx}{dt}\bigg|_{t_{0}}, \frac{dy}{dt}\bigg|_{t_{0}}, \frac{dz}{dt}\bigg|_{t_{0}}\right) = 0,$$

which implies

$$\nabla f|_{P}.r'(t_0)=0.$$

Hence, Gradient is perpendicular to the tangent to any curve that lies on the surface and goes through P.

How does gradient help in going to minima?

 $-\nabla f(x)$ gives direction of descent.

Gradient Descent Algorithm

- 1. Start from initial vector: $x^{(0)}$
- 2. From the current position move in the direction of $-\nabla f(x^{(0)})$

$$x^{(i+1)} \longleftarrow x^{(i)} + t[-\nabla f(x^{(i)})], i = 1, 2, \cdots,$$

where t is a parameter that tells how far to move also called as **Learning Rate**.

- 3. When to stop?
 - ▶ When grad is going flat, i.e., $\nabla f(x^{(i)}) \approx 0$ (at least machine precision)
 - ▶ Indeed, then $x^{(i)}$ won't update, so another check: $||x^{(i)} x^{(i-1)}||$ is "small enough"
- 4. Return $x^{(i)}$ to be minima

How does gradient help in going to maxima?

 $ightharpoonup \nabla f(x)$ gives direction of ascent.

Gradient Ascent Algorithm

- 1. Start from initial vector: $x^{(0)}$
- 2. From the current position move in the direction of $\nabla f(x^{(0)})$

$$x^{(i+1)} \longleftarrow x^{(i)} + t\nabla f(x^{(i)}), i = 1, 2, \cdots,$$

where t is a parameter that tells how far to move

- 3. When to stop?
 - ▶ When grad is going flat, i.e., $\nabla f(x^{(i)}) \approx 0$ (at least machine precision)
 - ▶ Indeed, then $x^{(i)}$ won't update, so another check: $||x^{(i)} x^{(i-1)}||$ is "small enough"
- 4. Return $x^{(i)}$ to be maxima

Minimize
$$f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$$
 starting from the point $X_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Solution:

► The gradient of *f* is given by

$$abla f = egin{bmatrix} rac{\partial f}{\partial x_1} & rac{\partial f}{\partial x_2} \end{bmatrix}^T = egin{bmatrix} 1 + 4x_1 + 2x_2 \ -1 + 2x_1 + 2x_2 \end{bmatrix}, S_1 = -
abla f_1 =
abla f(X_1) = egin{bmatrix} -1 \ 1 \end{bmatrix}.$$

- ► Iteration 1:
 - To find X_2 , we need to find the optimal step length t_1^* . Thus, we minimize $f(X_1 + t_1S_1) = f(-t_1, t_1) = t_1^2 2t_1$ with respect to t_1 .
 - Since $\frac{df}{dt_1} = 0$ at $t_1 = 1$, we get

$$X_2 = X_1 + t_1^* S_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \text{ and } \nabla f_2 = \nabla f(X_2) = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Thus, X₂ is not optimal.

Minimize
$$f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$$
 starting from the point $X_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

► Iteration 2:

- To minimize $f(X_2 + t_2S_2) = f(-1 + t_2, 1 + t_2) = 5t_2^2 2t_2 1$ we set $\frac{df}{dt_2} = 0$, which gives $t_2^* = 1/5$
- ► Thus,

$$X_3 = X_2 + t_2^*S_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \frac{1}{5}\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -0.8 \\ 1.2 \end{bmatrix} \text{ and } \nabla f_3 = \nabla f(X_3) = \begin{bmatrix} 0.2 \\ -0.2 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

► Thus, X₃ is not optimal.

Minimize
$$f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$$
 starting from the point $X_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

- ► Iteration 3:

 - As $f(X_3 + t_3S_3) = f(-0.8 0.2t_3, 1.2 + 0.2t_3) = 0.04t_3^2 0.08t_3 1.20, \frac{df}{dt_2} = 0$, at $t_3^* = 1.0$
 - Thus,

$$X_4 = X_3 + t_3^* S_3 = \begin{bmatrix} -0.8 \\ 1.2 \end{bmatrix} + 1.0 \begin{bmatrix} -0.2 \\ 0.2 \end{bmatrix} = \begin{bmatrix} -1.0 \\ 1.4 \end{bmatrix} \text{ and } \nabla f_4 = \nabla f(X_4) = \begin{bmatrix} -0.2 \\ -0.2 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

- ► Thus, X₄ is not optimal.
- Continuing in this way, we get the optimum point $X^* = \begin{bmatrix} -1 \\ 1.5 \end{bmatrix}$

Conjugate Gradient

- Any minimization method that makes use of the conjugate directions are quadratically convergent.
- ► This property of **quadratically convergent** is very useful because it ensures that the method will minimize a quadratic function in *n* steps or less.
- ▶ Thus, convergence characteristics of the gradient descent method can be improved greatly by modifying it into a conjugate gradient method (which can be considered as a conjugate directions method involving the use of the gradient of the function).

Conjugate Gradient

► The conjugate gradient the method overcomes this issue by borrowing inspiration from methods for optimizing quadratic functions:

$$\underset{x}{\text{minimize }} f(x) = \frac{1}{2} x^{T} A x + b^{T} x + c,$$

where A is symmetric and positive definite.

Conjugate Direction Vs Gradient Direction

► The conjugate direction

Algorithm of Conjugate Gradient

- 1. Start from initial vector: X_1
- 2. Set the first search direction $S_1 = -\nabla f(x^{(1)}) = -\nabla f_1$.
- 3. Find the point X_2 according to the relation

$$X_2 \longleftarrow X_1 + t_1^* S_1$$
.

where t_1^* is the optimal step length in the direction S_1 .

4. find $\nabla f_i = \nabla f(X_i)$, and set

$$S_i = -\nabla f_i + \frac{|\nabla f_i|^2}{|\nabla f_{i-1}|^2} S_{i-1}$$

5. Compute the optimal step length t_i^* in the direction S_i , and find the new point

$$X_{i+1} = X_i + t_i^* S_i.$$

6. If X_{i+1} is optimal, stop the process. Otherwise, set the value of i = i + 1 and go to step 4.

Minimize
$$f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$$
 starting from the point $X_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Solution:

► The gradient of *f* is given by

$$abla f = egin{bmatrix} rac{\partial f}{\partial x_1} & rac{\partial f}{\partial x_2} \end{bmatrix}^T = egin{bmatrix} 1 + 4x_1 + 2x_2 \ -1 + 2x_1 + 2x_2 \end{bmatrix}, S_1 = -
abla f_1 =
abla f(X_1) = egin{bmatrix} -1 \ 1 \end{bmatrix}.$$

- ► Iteration 1:
 - To find X_2 , we need to find the optimal step length t_1^* . Thus, we minimize $f(X_1 + t_1S_1) = f(-t_1, t_1) = t_1^2 2t_1$ with respect to t_1 .
 - Since $\frac{df}{dt_1} = 0$ at $t_1 = 1$, we get

$$X_2 = X_1 + t_1^* S_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \text{ and } \nabla f_2 = \nabla f(X_2) = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Thus, X₂ is not optimal.

Minimize
$$f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$$
 starting from the point $X_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

- ► Iteration 2:

 - ► The next search direction is

$$S_2 = -\nabla f_2 + \frac{|\nabla f_2|^2}{|\nabla f_1|^2} S_1.$$

Here
$$|\nabla f_1|^2 = 2$$
 and $|\nabla f_2|^2 = 2$.

▶ Therefore,
$$S_2 = -\begin{bmatrix} -1 \\ -1 \end{bmatrix} + \frac{2}{2}\begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

Minimize
$$f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$$
 starting from the point $X_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

- ▶ Iteration 2: continue
 - ▶ To find t_2^* , we minimize

$$f(X_2 + t_2 S_2) = f(-1, 1 + 2t_2)$$

$$= -1 - (1 + 2t_2) + 2 - 2(1 + 2t_2) + (1 + 2t_2)^2$$

$$= 4t_2^2 - 2t_2 - 1.$$

- As $\frac{df}{dt_2} = 8t_2 2 = 0$ at $t_2^* = \frac{1}{4}$.
- ▶ Thus, the optimal value $X_3 = X_2 + t_2^* S_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1.5 \end{bmatrix}$.