Analysis I Lecture Notes

Guilherme Zeus Dantas e Moura gdantasemo@haverford.edu

Haverford College — Fall 2021 Last updated: August 31, 2021 This is Haverford College's undergraduate MATH H317, instructed by Robert Manning. All errors are my responsability.

Use these notes only as a guide. There is a non-trivial chance that some things here are wrong or incomplete (especially proofs).

Contents

1	Wha	at are the real numbers?	4
	1.1	Defining the real numbers: an axiomatic approach	4

1 What are the real numbers?

2021-08-30

1.1 Defining the real numbers: an axiomatic aproach

The main idea is to derive \mathbb{R} from \mathbb{Q} . We will layout some properties that \mathbb{Q} has that we also want \mathbb{R} to have; and then add an additional property that will distinguish \mathbb{Q} from \mathbb{R} .

First, \mathbb{Q} is a field, and we also want \mathbb{R} to be a field.

Definition 1.1 (Field Axioms)

A set F is a *field* if there exist two operations — addition and multiplication — that satisfy the following list of conditions:

- i. (Commutativity) x + y = y + x and xy = yx for all $x, y \in F$.
- ii. (Associativity) (x+y)+z=x+(y+z) and (xy)z=x(yz) for all $x,y,z\in F$.
- iii. (Identities) There exist two special elements, denoted by 0 and 1, such that x + 0 = x and x1 = x for all $x \in F$.
- iv. (Inverses) Given $x \in F$, there exists an element $-x \in F$ such that x+(-x)=(-x)+x=0. If $x \neq 0$, there exists an element x^{-1} such that $xx^{-1}=x^{-1}x=1$.
- **v.** (Distributivity) x(y+z) = xy + xz for all $x, y, z \in F$.

Being a field is not restrictive enough, since it allows for finite fields, such as $\mathbb{Z}/p\mathbb{Z}$, or complex numbers \mathbb{C} . Another feature of \mathbb{Q} (and a desired feature of \mathbb{R}) is order.

Definition 1.2 (Ordering)

An ordering on a set F is a relation, represented by \leq , with the following properties:

- **i.** $x \le y$ or $y \le x$, for all $x, y \in F$.
- ii. If $x \leq y$ and $y \leq x$, then x = y.
- iii. If $x \leq y$ and $y \leq z$, then $x \leq z$.

We define x < y as equivalent to $x \le y$ and $x \ne y$. We define $y \ge x$ as equivalent to $x \le y$. We define y > x as equivalent to x < y.

Additionally, a field F is called an *ordered field* if F is endowed with an ordering \leq that satisfies

- iv. If $y \le z$, then $x + y \le x + z$.
- **v.** If $x \ge 0$ and $y \ge 0$, then $xy \ge 0$.

1 What are the real numbers?

Now, we need to add a feature that distinguishes $\mathbb Q$ and our desired $\mathbb R$. Intuitively, " $\mathbb Q$ has holes", meaning that one can build a sequence in $\mathbb Q$ that approaches a limit that is not in $\mathbb Q$; on the other hand, " $\mathbb R$ has no holes", meaning that any sequence in $\mathbb R$ that converges can only converge to a limit that is in $\mathbb R$.