2019 HMMT Guts #16

Tristan Shin

16 Feb 2019

Let \mathbb{R} be the set of real numbers. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that for all real numbers x and y, we have

$$f(x^2) + f(y^2) = f(x+y)^2 - 2xy.$$

Let $S = \sum_{n=-2019}^{2019} f(n)$. Determine the number of possible values of S.

Letting x = y = 0 we get $2f(0) = f(0)^2$, so f(0) = 0 or 2. Letting y = -x gives $f(x^2) = x^2 + f(0)$. If f(0) = 2 then f(4) = 6 and thus

$$12 = 2f(4) = f(4)^2 - 8 = 28,$$

contradiction. So f(0) = 0. Then $f(x^2) = x^2$ so f(x) = x for $x \ge 0$. Letting y = -2x gives

$$f\left(-x\right)^2 = x^2$$

so $f(-x) = \pm x$.

Now observe that for all negative numbers z, the function

$$f(t) = \begin{cases} t & \text{if } t \neq z \\ -t & \text{if } t = z \end{cases}$$

satisfies the functional equation. Indeed,

$$f(x^{2}) + f(y^{2}) = x^{2} + y^{2} = (x+y)^{2} - 2xy = f(x+y)^{2} - 2xy$$

because |f(t)| = |t| for all $t \in \mathbb{R}$.

So the possible values of S are

$$0+1+\ldots+2019\pm1\pm2\pm\ldots\pm2019$$
.

It is clear that this can take on any even integer from 0 to 2(1 + 2 + ... + 2019) inclusive, of which there are $\binom{2020}{2} + 1$ possible values of S.