TDS1000B 및 TDS2000B 시리즈 디지털 스토리지 오실로스코프 사용 설명서

TDS1000B 및 TDS2000B 시리즈 디지털 스토리지 오실로스코프 사용 설명서 Copyright © Tektronix. All rights reserved. 사용 계약한 소프트웨어 제품은 Tektronix나 그 계열사 또는 공급 업체가 소유하며 대한민국 저작권법과 국제 조약에 의해 보호됩니다.

Tektronix 제품은 출원되었거나 출원 중인 미국 및 외국 특허에 의해 보호됩니다. 본 출판물에 있는 정보는 이전에 출판된 모든 자료를 대체합니다. 본사는 사양과 가격을 변경할 권리를 보유합니다.

TEKTRONIX 및 TEK는 Tektronix, Inc.의 등록 상표입니다.

OpenChoice™는 Tektronix, Inc.의 등록 상표입니다.

PictBridge는 이미지 장치에 대한 카메라 및 영상 기기 공업회 CIPA DC-001-2003 디지털 사진 솔루션 표준의 등록 상표입니다.

Tektronix 연락처

Tektronix, Inc. 14200 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 USA

제품 정보, 영업, 서비스 및 기술 지원에 대한 문의:

- 북미 지역에서는 1-800-833-9200번으로 전화하시면 됩니다.
- 기타 지역에서는 www.tektronix.com에서 각 지역 담당자를 찾으실 수 있습니다.

제한적 영구 보증

Tektronix는 아래에 나열된 제품의 최종 사용자 구매자("최초 구매자")에 대해 제품의 재료나 공정 기술에 있어서 결함이 없음을 제품의 수명 기간 동안 보증합니다. 이 문서에서 말하는 "제품의 수명"은 Tektronix의 결정에 의해 해당 제품의 제조를 단종한 날로부터 5년의 기간을 의미합니다. 그러나 보증 기간은 최초 구매자가 Tektronix나 Tektronix 유통업자로부터 제품을 구입한 날로부터 최소 10년입니다. 제한적 영구 보증은 최초 구매자에게만 적용되며 양도할 수 없습니다. 제한적 영구 보증에 의거하여 보증을 요구할 경우 구매자는 Tektronix나 Tektronix 유통업자로부터 제품을 구매한 날짜와 최초 구매자임을 증명할 수 있는 자료를 제시해야 합니다. 최초 구매자가 제품을 구매한지 3년 이내에 제3자에게 제품을 팔거나 양도하는 경우 보증 기간은 최초 구매자가 Tektronix나 Tektronix 유통업자로부터 제품을 구매한 날로부터 3년입니다. 프로브, 기타 액세서리, 배터리 및 퓨즈는 이 보증에 포함되지 않습니다.

유효한 보증 기간 동안 제품에 결함이 있는 것으로 증명되면, Tektronix는 옵션에 따라 부품이나 공임을 청구하지 않고 결함 제품을 수리하거나 결함 부품에 대해 Tektronix의 결정에 따라 동급의 교체품을 제공합니다. 보증 업무 를 위해 Tektronix에서 사용하는 부품, 모듈 및 교체 제품은 신품 또는 신품의 성능에 가깝게 수리된 것일 수 있습 니다. 교체한 모든 부품, 모듈 및 제품은 Tektronix의 재산이 됩니다.

이후부터 "고객"이라 함은 이 보증에 의거하여 권리를 행사하는 개인 또는 업체를 의미합니다. 본 보증에 의거하여 서비스를 받으려면, 유효한 보증 기간이 만료되기 전에 Tektronix에 결함을 통지하고 서비스 실시에 필요한 적절한 준비를 해야 합니다. 고객은 결함 제품을 포장하여 Tektronix에서 지정하는 서비스 센터로 발송해야 합니다. 이때 운송 요금은 선불로 지불해야 하며 최초 구매자의 구입 증명서 복사본을 동봉해야 합니다. 반송 주소지가 서비스 센터 소재 지역 내에 있는 경우 Tektronix에서는 고객에게 제품을 반송하는 운송 요금을 부담합니다. 기타 지역으로 제품을 반송하는 경우에는 고객이 모든 운송 요금, 관세, 세금 및 기타 비용을 부담합니다.

본 보증은 일시적 사고, 기계 부품의 자연적인 마모, 제품의 사양을 벗어난 사용, 잘못된 사용 또는 잘못되거나 적절치 못한 유지 보수 및 수리로 인하여 발생한 모든 결함, 고장 또는 손상에 대해서는 적용되지 않습니다. Tektronix는 본 보증에 의해 가) Tektronix 공인 기술자가 아닌 사람에 의한 제품의 설치, 수리 또는 서비스로 인하여 발생한 손상의 수리, 나) 잘못된 사용 또는 호환되지 않는 장비와의 연결로 인하여 발생한 손상의 수리, 다) 타사 소모품의 사용으로 인하여 발생한 손상 또는 고장의 수리 또는 라) 개조나 통합 때문에 제품의 서비스 시간이 길어지거나 어려워진 경우에 서비스를 제공할 책임이 없습니다.

이 보증은 명시적이거나 암시적인 다른 모든 보증을 대신해 이 제품과 관련하여 Tektronix에 의해 제공됩니다. Tektronix와 판매업체는 시장성 또는 특정 목적의 적합성에 대한 어떠한 묵시적 보증도 거부합니다. 결함 제품에 대한 Tektronix의 수리 또는 교체 책임이 본 보증의 위반에 대해 고객에게 제공되는 유일한 보상입니다. Tektronix와 판매업체는 어떤 간접적이거나 특수하거나 부수적이거나 결과적인 손해에 대해 책임을 지지 않으며, 이는 Tektronix와 판매업체가 그와 같은 손해의 가능성을 사전에 통지했든 통지하지 않았든 마찬가지입니다.

[W18 - 25MAY06]

보증서

Tektronix는 이 제품이 그 재료나 공정 기술에 있어서 결함이 없음을 제품을 구입한 날부터 1년의 기간 동안 보증합니다. 만약 보증 기간 내에 해당 제품에 결함이 있음이 증명될 경우, Tektronix는 옵션에 따라 부품 요금이나 공임을 청구하지 않고 결함 제품을 수리하거나, 결함 제품에 대해 교체품을 제공합니다. 보증 업무를 위해 Tektronix에서 사용하는 부품, 모듈 및 교체 제품은 신품 또는 신품의 성능에 가깝게 수리된 것일 수 있습니다. 모든 교체 부품, 모듈 및 제품은 Tektronix의 재산이 됩니다.

본 보증에 의거하여 서비스를 받으려면, 보증 기간이 만료되기 전에 Tektronix에 결함을 통지하고 서비스 실시에 필요한 적절한 준비를 해야 합니다. 고객은 결함 제품을 포장하여 Tektronix에서 지정하는 서비스 센터로 발송해야 합니다. 이때 운송 요금은 선불로 지불해야 합니다. 반송 주소지가 서비스 센터 소재 지역 내에 있는 경우 Tektronix에서는 고객에게 제품을 반송하는 운송 요금을 부담합니다. 기타 지역으로 제품을 반송하는 경우에는 고객이 모든 운송 요금, 관세, 세금 및 기타 비용을 부담합니다.

본 보증은 잘못된 사용 또는 잘못되거나 적절치 못한 유지 보수 및 수리로 인하여 발생한 모든 결함, 고장 또는 손상에 대해서는 적용되지 않습니다. Tektronix는 본 보증에 의해 가) Tektronix 공인 기술자가 아닌 사람에 의한 제품의 설치, 수리 또는 서비스로 인하여 발생한 손상의 수리, 나) 잘못된 사용 또는 호환되지 않는 장비와의 연결로 인하여 발생한 손상의 수리, 다) 타사 소모품의 사용으로 인하여 발생한 손상 또는 고장의 수리 또는 라) 개조나통합 때문에 제품의 서비스 시간이 길어지거나 어려워진 경우에 서비스를 제공할 책임이 없습니다.

이 보증은 명시적이거나 암시적인 다른 모든 보증을 대신해 이 제품과 관련하여 Tektronix에 의해 제공됩니다. Tektronix와 판매업체는 시장성 또는 특정 목적의 적합성에 대한 어떠한 묵시적 보증도 거부합니다. 결함 제품에 대한 Tektronix의 수리 또는 교체 책임이 본 보증의 위반에 대해 고객에게 제공되는 유일한 보상입니다. Tektronix와 판매업체는 어떤 간접적이거나 특수하거나 부수적이거나 결과적인 손해에 대해 책임을 지지 않으며, 이는 Tektronix와 판매업체가 그와 같은 손해의 가능성을 사전에 통지했는 통지하지 않았는 마찬가지입니다.

[W2 - 15AUG04]

목차

일반 안선 사항 요약	. 1V
표준 준수 정보	. vi
EMC 표준 준수	. vi
안전 표준 준수	viii
환경 고려 사항	. X
머리말	
도움말 시스템	
인터넷을 통한 펌웨어 업데이트	xii
규약	xiii
시작하기	. 1
일반 기능	. 1
설치	. 2
기능 검사	. 4
프로브 안전	
전압 프로브 검사 마법사	
수동 프로브 보정	
프로브 감쇠 설정	
전류 프로브 스케일	
자체 교정	
작동 기본 사항	
디스플레이 영역	
메뉴 시스템 사용	
수직 컨트롤	
수평 컨트롤	14
트리거 컨트롤	15
메뉴 및 컨트롤 버튼	15
입력 커넥터	18
기타 전면 패널 항목	
오실로스코프 기능 이해	
오실로스코프 설정	
트리거링	20
신호 획득	22
파형 스케일 및 위치 조정	
측정	25
애플리케이션 예제	27
간단한 측정 수행	28
자동 범위를 사용하여 일련의 테스트 포인트 검사	32
커서 측정	32
신호 세부 사항 분석	36
싱글-샷 신호 캡처	37
정의 자연 측정	39
특정 펼스 폭에서 트리거링	40
	1

비디오 신호에서 트리거링	41
차동 통신 신호 분석	44
네트워크에서 임피던스 변경 보기	46
Math FFT	49
시간 도메인 파형 설정	49
FFT 스펙트럼 표시	50
FFT 윈도우 선택	51
FFT 스펙트럼 확대 및 위치 조정	54
커서를 사용하여 FFT 스펙트럼 측정	55
USB 플래시 드라이브 및 장치 포트	57
USB 플래시 드라이브 포트	57
파일 관리 규약	58
USB 플래시 드라이브가 포함된 파일 저장 및 호출	59
PRINT 전면 패널 버튼의 저장 기능 사용	61
	63
USB 장치 포트	
PC에 PC 통신 소프트웨어 설치	63
PC에 연결	64
GPIB 시스템에 연결	65
명령 항목	66
프린터에 연결	66
화면 이미지 인쇄	66
기준	69
획득	69
자동 범위	71
자동 설정	73
커서	76
기본값 설정	77
디스플레이	77
도움말	79
수평	79
연산	80
측정	82
인쇄	82
프로브 검사	83
기준 메뉴	83
Save/Recall	84
트리거 컨트롤	88
유틸리티	94
수직 컨트롤	97
부록 A: 사양	99
오실로스코프 사양	99
도글로—모드 시 8 P2200 프로브 사양	108
부록 B: 액세서리	111
부록 C: 청소	111
우리 6. 경도	113

청소	113
부록 D: 기본값 설정	115
부록 E: 글꼴 사용권	117
생 <u>이</u>	

일반 안전 사항 요약

다음 안전 예방책을 확인하여 부상을 방지하고 본 제품이나 관련 제품의 손상을 예방합니다.

잠재적인 부상 위험을 방지하려면 이 제품을 지정된 대로만 사용합니다.

전문 직원만이 서비스 절차를 실시해야 합니다.

화재 또는 부상을 방지 하려면

적절한 전원 코드를 사용합니다. 본 제품용으로 지정되고 사용하는 국가에 승인된 전원 코드만 사용합니다.

적절하게 연결하고 분리합니다. 프로브를 테스트 중인 회로에 연결하기 전에 측정 장비에 프로브 출력을 연결합니다. 프로브 입력을 연결하기 전에 테스트 중인 회로에 프로브 기준 리드선을 연결합니다. 측정 장비에서 프로브를 분리하기 전에 프로브 입력과 프로브 기준 리드선을 테스트 중인 회로에서 분리합니다.

제품을 접지합니다. 본 제품은 전원 코드의 접지 도체를 통해 접지됩니다. 감전을 예방하려면 접지 도체를 접지에 연결해야 합니다. 제품의 입력이나 출력 단자에 연결하기 전에 제품이 적절히 접지되었는지 확인합니다.

모든 단자 정격을 준수합니다. 화재나 충격 위험을 피하기 위해 모든 정격과 제품의 표시를 준수합니다. 제품에 연결하기 전에 제품 설명서를 참조하여 추가 정격 정보를 확인하십시오.

프로브 기준 리드선은 접지에만 연결합니다.

공통 단자를 비롯하여 해당 단자의 최대 정격을 초과하는 단자에는 전위를 적용하지 마십시오.

전원을 끊습니다. 전원 스위치를 사용하여 제품의 전원을 끊습니다. 위치는 지침을 참조하십시오. 사용자가 항상 전원 스위치에 액세스할 수 있도록 전원 스위치를 차단하지 마십시오.

덮개 없이 작동하지 않습니다. 덮개나 패널을 제거한 상태로 본 제품을 작동하지 않습니다.

고장이 의심되는 제품은 작동하지 마십시오. 제품이 손상된 것으로 여겨지는 경우에는 전문요원의 검사를 받습니다.

노출된 회로를 만지지 않습니다. 전원이 공급 중일 때는 노출된 연결부와 구성 품을 만지지 않습니다.

축축하고 습기가 많은 환경에서 사용하지 않습니다.

폭발 위험이 있는 장소에서 사용하지 않습니다.

제품 표면을 깨끗하고 건조하게 유지합니다.

적절히 환기합니다. 적절히 환기되도록 제품을 설치하는 자세한 내용은 설명서의 설치 지침을 참조하십시오.

이 설명서의 용어 다음 용어가 본 설명서에 나올 수 있습니다.

경고. 경고문은 부상이나 사망을 초래할 수 있는 조건이나 상황을 명시합니다.

주의. 주의문은 본 제품 또는 기타 재산상에 피해를 줄 수 있는 조건이나 상황을 명시합니다.

제품에 있는 기호 및 용 어

다음 용어가 제품에 나올 수 있습니다.

- 위험은 표지를 읽는 즉시 영향을 받을 수 있는 부상 위험을 나타냅니다.
- 경고는 표지를 읽는 즉시 영향을 받지 않는 부상 위험을 나타냅니다.
- 주의는 제품을 포함한 재산상의 위험을 나타냅니다.

다음 기호가 제품에 나올 수 있습니다.

메인 연결 ON(전원)

표준 준수 정보

이 절에서는 장비가 준수하는 EMC(전자 환경 양립성), 안전 및 환경 표준에 대해설명합니다.

EMC 표준 준수

EC 적합성 선언 - EMC

전자 환경 양립성에 대한 Directive 2004/108/EC의 취지에 부합합니다. 유럽 공동체의 공식 저널에 실려 있는 다음 사양에 대한 표준 준수 여부가 증명되었습니다.

EN 61326-1:2006, EN 61326-2-1:2006: 측정, 제어 및 실험실용 전기 장비에 대한 EMC 요구 사항 1 2 3 4

- CISPR 11:2003. 복사성 및 전도성 방출, 그룹 1, A 등급
- IEC 61000-4-2:2001. 정전기 방전 차단
- IEC 61000-4-3:2002. RF 전자기장 차단 5
- IEC 61000-4-4:2004. 전기 고속 과도 전류/버스트 차단
- IEC 61000-4-5:2001. 전원선 서지 차단
- IEC 61000-4-6:2003. 전도된 RF 차단 6
- IEC 61000-4-11:2004. 전압 하락과 중단 차단 7

EN 61000-3-2:2006: AC 전원선 고조파 방출

EN 61000-3-3:1995: 전압 변화, 변동 및 깜박거림

유럽 연락처:

Tektronix UK, Ltd. Western Peninsula Western Road Bracknell, RG12 1RF United Kingdom

- 1 본 제품은 비주거 지역에서만 사용하도록 만들어졌습니다. 주거 지역에서 사용하면 전자 파 간섭이 발생할 수 있습니다.
- 2 이 장비를 테스트 대상에 연결할 때 이 표준에서 요구하는 레벨을 초과하는 방출이 발생할 수 있습니다.
- 3 위에 나열한 EMC 표준을 준수하려면 고품질 피복 인터페이스 케이블을 사용해야 합니다.
- 4 EUT가 IEC61000-4-11 과도 전류 차단 테스트에서 복구되는 데 10초보다 오래 걸리면 장비가 리부팅될 수 있습니다.
- 5 테스트 필드(80MHz 1GHz 및 1.4GHz 2.0GHz의 주파수 범위에 대해 3V/m, 1kHz에서 80% 진폭 변조, 2.0GHz 2.7GHz의 주파수 범위에 대해 1V/m, 1kHz에서 80% 진폭 변조)의 영향을 받는 동안 추적 노이즈의 증가는 2개 주요 구간의 피크-피크를 초과하지 않습니다. 주변 도체 필드는 트리거 한계값이 접지 기준으로부터 1개 미만의 주요 구간 오프셋일 때 트리거링을 유발할 수 있습니다.
- 6 테스트 필드(150kHz 80MHz의 주파수 범위에 대해 3V rms, 1kHz에서 80% 진폭 변조)의 영향을 받는 동안 추적 노이즈의 증가는 1개 주요 구간의 피크-피크를 초과하지 않습니

다. 주변 도체 필드는 트리거 한계값이 접지 기준으로부터 0.5개 미만의 주요 구간 오프 셋일 때 트리거링을 유발할 수 있습니다.

7 성능 기준 C가 70%/25사이클 전압-하락 및 0%/250사이클 전압-중단 테스트 레벨(IEC 61000-4-11)에 적용되었습니다.

호주/뉴질랜드 적합성 선언 - EMC

ACMA에 따라 다음 표준에 대해 EMC 무선 통신법 조항을 준수합니다.

■ EN 61326-1:2006 및 EN 61326-2-1:2006에 따른 CISPR 11:2003. 복사성 및 전도성 방출, 그룹 1, A 등급

아전 표준 준수

EC 적합성 선언 - 저전 안

유럽 공동체의 공식 저널에 실려 있는 다음 사양에 대한 규정 준수 여부가 증명되었습니다.

저전압 Directive 2006/95/EC

■ EN 61010-1: 2001. 측정 제어 및 실험용 전기 장비에 대한 안전 요구 사항

미국 국가 공인 테스트 실험실 목록

■ UL 61010-1:2004, 2nd Edition. 전기 측정 및 테스트 장비용 표준

캐나다 인증

■ CAN/CSA-C22.2 No. 61010-1:2004. 측정, 제어 및 실험용 전기 장비에 대 한 안전 요구 사항 1부

추가 규정 준수

■ IEC 61010-1: 2001. 측정, 제어 및 실험용 전기 장비에 대한 안전 요구 사항

장비 유형

테스트 및 측정 장비

안전 등급

등급 1 - 접지 제품

오염 지수 설명

제품 주변 및 제품 내의 환경에서 발생할 수 있는 오염 정도를 측정합니다. 일반적으로 제품 내부 환경과 외부 환경은 동일한 것으로 간주됩니다. 제품은 해당 제품에 대한 등급이 지정된 환경에서만 사용해야 합니다.

- 오염 지수 1. 오염이 없거나 비전도성 건조 오염만 발생합니다. 이 범주에 속하는 제품은 보통 캡슐화 또는 밀봉되어 있거나 청결한 공간에 배치되어 있습니다.
- 오염 지수 2. 일반적으로 비전도성 건조 오염만 발생합니다. 가끔 응축으로 인해 발생하는 일시적인 오염 확산이 발생할 수도 있으며, 위치는 일반적인 사 무실/가정 환경입니다. 일시적인 응축 현상은 제품을 사용하고 있지 않을 때 만 발생합니다.
- 오염 지수 3. 응축으로 인해 전도성 오염 또는 전도성이 될 수 있는 비전도성 건조 오염이 발생하며, 위치는 온도와 습도가 모두 제어되지 않는 격리된 위치 입니다. 그러나 직사 광선이나 직접적인 비바람으로부터는 보호됩니다.
- 오염 지수 4. 전도성 먼지나 눈비를 통해 지속적인 전도성 물질을 생성하는 오염 형태입니다. 보통 실외입니다.

설치(과전압) 범주 설명

본 제품의 단자에는 서로 다른 설치(과전압) 범주가 지정되어 있습니다. 설치 범주는 다음과 같습니다.

- 측정 범주 IV. 저전압 설치 소스에서 수행하는 측정용
- 측정 범주 III. 건물 설치에서 수행하는 측정용

- 측정 범주 II. 저전압 설치에 직접 연결된 회로에 대해 수행하는 측정용
- 설치 범주 I. MAINS에 직접 연결되지 않은 회로에 대해 수행하는 측정용

과전압 범주 과전압 범주 II(IEC 61010-1에 정의됨)

환경 고려 사항

이 절에서는 제품이 환경에 미치는 영향에 대한 정보를 제공합니다.

제품 폐기 처리

장비나 구성 요소를 재활용할 때 다음 지침을 준수하십시오.

장비 재활용: 이 장비를 생산하기 위해 천연 자원을 추출하여 사용했습니다. 제품을 잘못 폐기하면 장비에 들어 있는 물질이 환경이나 인간의 건강에 해를 끼칠수 있습니다. 이러한 물질이 환경에 침투하는 것을 막고 천연 자원의 사용량을 줄이기 위해서는 대부분의 재료가 올바르게 재사용 또는 재활용되도록 적절한 시스템에서 이 제품을 재활용하는 것이 좋습니다.

이 기호는 본 제품이 WEEE(폐전기전자 지침) 및 배터리에 대한 Directive 2002/96/EC 및 2006/66/EC에 의거하여 적용 가능한 유럽 연합의 요구 사항을 준수함을 나타냅니다. 재활용 옵션에 대한 자세한 내용은 Tektronix 웹 사이트(www.tektronix.com)의 지원/서비스 절을 확인하십시오.

수은에 대한 알림: 본 제품은 수은이 포함된 LCD 백라이트 램프를 사용합니다. 제품 폐기는 환경 고려 사항에 의해 규제될 수 있으므로, 폐기 또는 재활용 정보는 해당 지역의 관할 기관이나 미국의 경우 E-cycling Central 웹 페이지 (www.eiae.org)에 문의하십시오.

유해 물질에 대한 제한

본 제품은 모니터링 및 제어 장비로 분류되며 2002/95/EC RoHS Directive 규정의 적용을 받지 않습니다.

머리말

이 설명서에는 TDS1000B 및 TDS2000B 시리즈 디지털 스토리지 오실로스코프에 대한 작동 정보가 포함되어 있습니다. 설명서는 다음 장으로 구성됩니다.

- 시작하기 장에서는 오실로스코프의 기능을 간단히 설명하며 설치 지침을 제 공합니다.
- 작동 기본 사항 장에서는 오실로스코프의 작동 원리를 설명합니다.
- 오실로스코프 기능 이해 장에서는 오실로스코프의 기본 작동과 기능을 설명합니다. 오실로스코프 설정, 데이터 트리거링 및 획득, 파형 눈금 및 위치 지정, 측정
- 애플리케이션 예제 장에서는 다양한 측정 문제를 해결하는 방법에 대한 예를 제공합니다.
- Math FFT 장에서는 Math 고속 퓨리에 변환(FFT) 기능을 사용하여 시간 도메인 신호를 주파수 성분(스펙트럼)으로 변환하는 방법을 설명합니다.
- USB 플래시 드라이브 및 장치 포트 장에서는 USB 플래시 드라이브 포트를 사용하는 방법 및 USB 장치 포트를 통해 오실로스코프를 프린터와 컴퓨터에 연결하는 방법을 설명합니다.
- 참조 장에서는 각 옵션에 대한 선택 항목이나 사용할 수 있는 값의 범위를 설명합니다.
- 부록 A: 사양 장에는 오실로스코프와 P2220 프로브에 대한 전기, 환경 및 물리 사양과 승인 및 표준 준수가 포함되어 있습니다.
- 부록 B: 액세서리 장에서는 표준 및 옵션 액세서리를 간단히 설명합니다.
- 부록 C: 청소 장에서는 오실로스코프를 관리하는 방법을 설명합니다.
- 부록 D: 기본값 설정 장에는 기본값 설정 전면 패널 버튼을 누르면 호출되는 기본값(공장) 설정이 있는 메뉴와 컨트롤 목록이 포함되어 있습니다.
- 부록 E: 글꼴 사용권 장에서는 특정 아시아 언어의 글꼴들을 사용할 수 있도록 사용권을 제공합니다.

도움말 시스템

오실로스코프는 오실로스코프의 모든 기능을 다루는 도움말 시스템을 갖추고 있습니다. 도움말 시스템을 사용하여 다음과 같은 여러 종류의 정보를 표시할 수 있습니다.

- 메뉴 시스템 사용과 같이 오실로스코프를 이해하고 사용하는 일반 정보
- 수직 위치 컨트롤과 같은 특정 메뉴와 컨트롤에 대한 정보
- 노이즈 줄이기와 같이 오실로스코프 사용 중에 발생할 수 있는 문제에 대한 정보

도움말 시스템은 다음과 같이 필요한 정보를 찾을 수 있는 여러 가지 방법을 제공합니다. 구문-검색 도움말, 하이퍼링크 및 색인.

구문-검색 도움말

오실로스코프는 도움말 전면 패널 버튼을 누를 때 화면에 표시된 마지막 메뉴에 대한 정보를 표시합니다. 도움말 항목을 보면 범용 노브 옆의 LED가 켜져 노브가 활성화된 것을 나타냅니다. 항목이 두 페이지 이상을 사용할 경우 범용 노브를 돌려 항목 내에서 페이지를 이동합니다.

하이퍼링크

대부분의 도움말 항목에는 〈Autoset〉과 같이 각괄호로 표시된 구문이 포함되어 있습니다. 이러한 구문은 다른 항목에 대한 링크입니다. 범용 노브를 돌려 한 링 크에서 다른 링크로 강조 표시를 이동합니다. 항목 표시 옵션 버튼을 눌러 강조 표 시된 링크에 해당하는 항목을 표시합니다. 뒤로 옵션 버튼을 눌러 이전 항목으로 돌아갑니다.

색인 전면 패널의 도움말 버튼을 누른 다음 색인 옵션 버튼을 누릅니다. 보려는 항목이들어 있는 색인 페이지가 나타날 때까지 전 페이지 또는 다음 페이지 옵션 버튼을 누릅니다. 범용 노브를 돌려 도움말 항목을 강조 표시합니다. 항목 표시 옵션 버튼을 눌러 항목을 표시합니다.

주석노트. 종료 옵션 버튼이나 임의의 메뉴 버튼을 누르면 화면에서 도움말 텍스트가 사라지고 파형이 다시 표시됩니다.

인터넷을 통한 펌웨어 업데이트

새로운 버전의 펌웨어가 사용 가능하게 되면 인터넷과 USB 플래시 드라이브를 사용하여 오실로스코프를 업데이트할 수 있습니다. 인터넷에 액세스할 수 없는 경우업데이트 절차에 대한 내용은 Tektronix에 문의하십시오.

주석노트. 오실로스코프에서 펌웨어를 업데이트하려면 최대 2GB의 USB 플래시 드라이브를 사용해야 합니다.

인터넷에서 펌웨어를 업데이트하려면 다음 단계를 수행합니다.

- 1. UTILITY ► 시스템 상태 옵션을 누른 다음 오실로스코프의 펌웨어 버전 번호를 기록해둡니다.
- 2. 컴퓨터에서 www.tektronix.com 웹 사이트에 액세스하여 새로운 버전의 오실 로스코프 펌웨어가 사용 가능한지 확인합니다.
- 3. 새로운 버전의 펌웨어가 있으면 웹 페이지에서 펌웨어 파일을 다운로드합니다. 다운로드한 파일의 압축을 풀어야 할 경우도 있습니다.
- 4. 펌웨어 파일 TDS1K2KB.TEK를 USB 플래시 드라이브의 루트 폴더에 복사합니다.

- 5. 오실로스코프 전면에 있는 USB 플래시 드라이브 포트에 USB 플래시 드라이 브를 삽입합니다.
- 6. 오실로스코프에서 UTILITY ► 파일 유틸리티 ► 계속 2/2 쪽 ► 업데이트 펌웨어 옵션 버튼을 누릅니다.

펌웨어를 업데이트하는 데 2-3 분 정도 걸립니다.

펌웨어 업데이트가 완료되면 오실로스코프에서 버튼을 누르라는 메시지를 표시합니다. 펌웨어 업데이트가 완료되기 전에 USB 플래시 드라이브를 제거하거나 오실로스코프의 전원을 끄면 안 됩니다.

규약

이 설명서에서는 다음 규약을 사용합니다.

- 전면 패널 버튼, 노브 및 커넥터는 모두 대문자로 나타납니다. 예를 들면 다음 과 같습니다. 도움말, PRINT.
- 메뉴 옵션에서 각 단어의 첫 글자는 대문자로 표시됩니다. 예를 들면 다음과 같습니다. 피크 검출, 확대 범위.

범용 노브

전면 패널 버튼과 노브 레이블 - 모두 대 문자

옵션 버튼 - 각 단어의 첫 번째 문자가 대문자

주석노트. 옵션 버튼은 화면 버튼, 사이드 메뉴 버튼, 베젤 버튼 또는 소프트 키라고도 합니다.

■ → 구분 기호는 일련의 버튼 누르기를 구분합니다. 예를 들면 UTILITY ► 옵션 ► 날짜 및 시간 설정은 UTILITY 전면 패널 버튼을 누르고 옵션 옵션 버튼을 누른 다음 날짜 및 시간 옵션 버튼을 누르는 것을 의미합니다. 원하는 옵션을 선택하기 위해 옵션 버튼을 여러 번 눌러야 할 수 있습니다.

시작하기

TDS1000B 시리즈 및 TDS2000B 시리즈 디지털 스토리지 오실로스코프는 접지 기준 측정을 하는 데 사용할 수 있는 작고 가벼운 거치형 오실로스코프입니다.

본 장에서는 다음 작업을 수행하는 방법을 설명합니다.

- 제품설치
- 간단한 기능 검사 수행
- 프로브 검사 수행 및 프로브 보정
- 프로브 감쇠 계수 일치
- 자체 교정 루틴 사용

주석노트. 오실로스코프 전원을 켤 때 화면에 표시할 언어를 선택할 수 있습니다. 언제든지 UTILITY ► Language(언어) 옵션에 액세스하여 언어를 선택할 수도 있습니다.

일반 기능

다음 표와 목록에서는 일반 기능을 설명합니다.

모델	채널	대역폭	샘플 속도	디스플레이
TDS1001B	2	40MHz	500MS/s	모노
TDS1002B	2	60MHz	1.0GS/s	모노
TDS1012B	2	100MHz	1.0GS/s	모노
TDS2002B	2	60MHz	1.0GS/s	컬러
TDS2004B	4	60MHz	1.0GS/s	컬러
TDS2012B	2	100MHz	1.0GS/s	컬러
TDS2014B	4	100MHz	1.0GS/s	컬러
TDS2022B	2	200MHz	2.0GS/s	컬러
TDS2024B	4	200MHz	2.0GS/s	컬러

- 구문-검색 도움말 시스템
- 컬러 또는 모노 LCD 디스플레이
- 선택 가능한 20MHz 대역폭 제한
- 각 채널에 대해 2,500 포인트 레코드 길이
- 자동설정
- 자동 범위 설정
- 프로브 검사 마법사
- 설정 및 파형 스토리지

- 파일 저장을 위한 USB 플래시 드라이브 포트
- 모든 PictBridge 호환 프린터에 직접 인쇄
- OpenChoice PC 통신 소프트웨어를 사용하여 USB 장치 포트를 통해 PC 통신
- 옵션 TEK-USB-488 어댑터를 사용하여 GPIB 컨트롤러에 연결합니다.
- 판독값이 있는 커서
- 트리거 주파수 판독값
- 11가지 자동 측정
- 파형 평균화 및 피크 검출
- 듀얼 타임 베이스
- 연산 기능: +, -, 및 × 연산
- Math 고속 퓨리에 변환(FFT)
- 펄스폭트리거기능
- 라인을 선택할 수 있는 트리거링을 포함한 비디오 트리거 기능
- 외부 트리거
- 변수 지속기능 표시
- 10가지 언어로 된 사용자 인터페이스 및 도움말 항목

설치

전원 코드 오실로스코프와 함께 제공된 전원 코드만 사용합니다. 부록 B: 액세서리에서는 표준 및 옵션 액세서리를 나열합니다.

전원 소스 90에서 264 VAC_{RMS}, 45에서 66Hz를 제공하는 전원 소스를 사용합니다. 400Hz 전원 소스를 사용하는 경우 90에서 132 VAC_{RMS}, 360에서 440Hz를 제공해야 합니다.

보안용 루프 표준 랩톱 컴퓨터 보안 잠금을 사용하거나 내장형 케이블 채널을 통해 보안 케이블을 쓰레드하여 오실로스코프를 안전한 위치에 보호합니다.

주석노트. 오실로스코프는 대류 방식으로 냉각시킵니다. 통풍이 잘 되도록 제품 환기 의 옆면과 위쪽 2인치 사이에 아무것도 두지 않습니다.

기능 검사

오실로스코프가 올바르게 작동하고 있는지 확인하려면 이 기능 검사를 수행합니다.

ON/OFF 버튼

1. 오실로스코프의 전원을 켭니다. 기본값 설정 버튼을 누릅니다. 기본 프로브 옵션 감쇠 설정은 10X입니다.

기본값 설정 버튼

PROBE COMP

- 2. 스위치를 P2220 프로브에서 10X로 설정하고 프로브를 오실로스코프에 있는 채널 1에 연결합니다. 이렇게 하려면 프로브 커넥터의 슬롯을 CH 1 BNC 키에 맞게 정렬하고 눌러 연결한 후 오른쪽으로 감아 프로브가 제자리에 위치하도록 해야합니다.
 - 프로브 팁과 기준 리드선을 PROBE COMP 터미널에 연결합니다.
- AUTOSE
- 3. AUTOSET 버튼을 누릅니다. 몇 초 안에 1KHz에서 약 5V의 첨두치 구형파가 화면에 표시됩니다.

전면 패널의 CH 1 MENU 버튼을 두 번 눌러 채널 1을 제거하고 CH 2 MENU 버튼을 눌러 채널 2를 표시한 다음 2-3 단계를 반복합니다. 4채널 모델의 경우 CH 3 및 CH 4에 대해서만 이 단계를 반복합니다.

프로브 안전

프로브를 사용하기 전에 프로브 정격을 확인하고 준수하십시오.

P2220 프로브 본체 주변의 가드는 감전을 예방하기 위한 손가락 보호 장치를 제공합니다.

경고. 프로브를 사용할 때 감전을 예방하려면 손가락은 프로브 본체에 있는 보호 ▲ 장치 뒤에 두십시오.

프로브 사용 중에 감전을 예방하려면 전압 소스에 연결되어 있는 동안 프로브 헤드의 금속 부분을 건드리지 마십시오.

프로브를 오실로스코프에 연결하고 측정하기 전에 접지 단자를 접지에 연결합니다.

전압 프로브 검사 마법사

프로브 검사 마법사를 사용하여 전압 프로브가 제대로 작동하는지 확인할 수 있습니다. 이 마법사는 전류 프로브는 지원하지 않습니다.

이 마법사는 전압 프로브(보통 프로브 본체나 프로브 커넥터에 나사가 있음)에 대한 보정을 조정하고 CH1 MENU ► 프로브 ► 전압 ► 감쇠 옵션과 같은 각 채널의 감쇠 옵션에 대한 계수를 설정할 수 있도록 도와줍니다.

전압 프로브를 입력 채널에 연결할 때는 항상 프로브 검사 마법사를 사용해야 합니다.

프로브 검사 마법사를 사용하려면 **프로브 검사** 버튼을 누릅니다. 프로브가 제대로 연결되었고, 적절히 보정되었으며 오실로스코프 수직 메뉴의 감쇠 옵션이 프로브 에 맞도록 설정된 경우 오실로스코프 화면 하단에 합격 메시지가 표시됩니다. 그 렇지 않은 경우 오실로스코프의 화면 하단에는 문제 해결을 안내하는 지시 사항이 표시됩니다.

주석노트. 프로브 검사 마법사는 1X, 10X, 20X, 50X 및 100X 프로브에서 유용하게 사용됩니다. 500X나 1000X 프로브 또는 EXT TRIG BNC에 연결된 프로브에는 유용하지 않습니다.

주석노트. 검사 과정이 끝나면 프로브 검사 마법사가 오실로스코프 설정(프로브 옵션 제외)을 프로브 검사 버튼을 누르기 전 설정으로 복원합니다.

EXT TRIG 입력과 함께 사용하려는 프로브를 보정하려면 다음 단계를 수행합니다.

- 1. 프로브를 CH 1과 같은 임의의 입력 채널 BNC에 연결합니다.
- 2. 프로브 검사 버튼을 누른 다음 화면의 지시를 따릅니다.
- 3. 프로브 기능을 확인하고 적절하게 보정한 후에는 프로브를 EXT TRIG BNC 에 연결합니다.

수동 프로브 보정

프로브 검사 마법사를 사용하는 대신 프로브가 입력 채널에 맞도록 수동으로 조정할 수 있습니다.

프로브 감쇠 설정

프로브는 신호의 수직눈금에 영향을 미치는 다양한 감쇠 계수를 사용할 수 있습니다. 프로브 검사 마법사는 오실로스코프의 감쇠 계수가 프로브와 일치하는지 확인합니다.

프로브 검사를 수행하는 대신 프로브의 감쇠와 일치하는 계수를 수동으로 선택할수 있습니다. 예를 들어, CH 1에 연결되어 있는 10X로 설정된 프로브와 일치하도록 하려면 CH 1 MENU ► 프로브 ► 전압 ► 감쇠 옵션을 누르고 10X를 선택합니다.

주석노트. 감쇠 옵션의 기본 설정은 10X입니다.

P2220 프로브의 감쇠 스위치를 변경하는 경우 이와 일치하도록 오실로스코프 감쇠 옵션도 변경해야 합니다. 스위치 설정은 1X와 10X입니다.

감쇠 스위치

주석노트. 감쇠 스위치를 1X로 설정하면 P2220 프로브는 오실로스코프의 대역폭을 6MHz로 제한합니다. 오실로스코프의 전체 대역폭을 사용하려면 반드시 스위치를 10X로 설정합니다.

전류 프로브 스케일

전류 프로브는 전류에 비례하는 전압 신호를 프로브에 제공합니다. 전류 프로브의 눈금에 맞도록 오실로스코프를 설정해야 합니다. 기본 눈금은 10A/V입니다.

예를 들어, CH 1에 연결되어 있는 전류 프로브에 대한 눈금을 설정하려면 CH 1 MENU ► 프로브 ► 전류 ► 눈금 옵션을 누르고 적절한 값을 선택합니다.

자체 교정

자체 교정 루틴을 사용하면 최대 측정 정확도를 위해 오실로스코프 신호 경로를 최적화할 수 있습니다. 언제든지 루틴을 실행할 수 있지만 주변 온도가 5°C(9°F) 이상 변하는 경우 항상 루틴을 실행해야 합니다. 루틴은 약 2분 정도 걸립니다.

정확한 교정을 위해 오실로스코프 전원을 켜고 준비될 때까지 20분 정도 기다립니다.

신호 경로를 보정하려면 프로브나 케이블을 입력 커넥터에서 분리합니다. 그런 다음 UTILITY ► 자체 교정 시작 옵션에 액세스하여 화면에 나타나는 지시를 따릅니다.

작동 기본 사항

전면 패널은 사용하기 쉬운 기능 영역으로 구분되어 있습니다. 이 장에서는 화면에 표시되는 컨트롤과 정보의 간단한 개요를 제공합니다.

2 채널 모델

4 채널 모델

디스플레이 영역

디스플레이는 파형을 표시할 뿐 아니라, 파형과 오실로스코프 컨트롤 설정에 대한 다양한 세부 사항을 포함합니다.

주석노트. FFT 기능을 표시하는 방법에 대한 자세한 내용 (50페이지의 *FFT 스 펙트럼 표시* 참조)

1. 아이콘 디스플레이는 획득 모드를 표시합니다.

2. 트리거 상태는 다음을 나타냅니다.

오실로스코프가 사전 트리거 데이터를 획득 중입니 Armed. 다. 이 상태에서는 모든 트리거가 무시됩니다. 모든 사전 트리거 데이터가 획득되었고 오실로스코 R Ready. 프는 트리거를 받을 준비가 되어 있습니다. 오실로스코프가 트리거를 포착하였으며 사전 트리 T Trig'd. 거 데이터를 획득 중입니다. 오실로스코프가 데이터에서 파형 획득을 중지했 Stop. 습니다. 오실로스코프가 단일 순서 획득을 완료했습니다. Acq. Complete 오실로스코프는 자동 모드에 있으며 트리거가 없는 R Auto. 상태에서 파형을 획득 중입니다. 오실로스코프가 스캔 모드에서 계속해서 파형을 획 ☐ Scan.

3. 마커는 수평 트리거 위치를 보여줍니다. 수평 위치 다이얼을 돌려 마커 위치를 조절합니다.

득하고 표시하는 중입니다.

- 4. 판독값은 가운데 계수선에 시간을 표시합니다. 트리거 시간은 0입니다.
- 5. 마커는 에지나 펄스 폭 트리거 레벨을 표시합니다.
- 6. 화면 마커는 표시된 파형의 접지 기준 포인트를 표시합니다. 마커가 없을 경우 채널은 표시되지 않습니다.
- 7. 화살표 아이콘은 파형이 반전되었음을 나타냅니다.
- 8. 판독값은 채널의 수직 눈금 계수를 보여줍니다.
- 9. A Bw 아이콘은 채널 대역폭이 제한됨을 나타냅니다.
- 10. 판독값은 주 시간축 설정을 보여줍니다.
- 11. 판독값은 윈도우 시간축을 사용 중인 경우 그 설정을 보여줍니다.
- 12. 판독값은 트리거링에 사용되는 트리거 소스를 보여줍니다.
- 13. 아이콘은 선택된 트리거 종류를 다음과 같이 보여줍니다.

J상승 에지를 위한 에지 트리거↑하강 에지를 위한 에지 트리거라인 동기를 위한 비디오 트리거필드 동기를 위한 비디오 트리거필스 폭 트리거, 포지티브 극성필스 폭 트리거, 네거티브 극성

- 14. 판독값은 에지나 펄스 폭 트리거 레벨을 표시합니다.
- 15. 표시 영역에서 유용한 메시지를 표시하며 일부 메시지는 3초 동안만 표시됩니다.

저장된 파형을 호출할 경우 판독값은 RefA 1.00V 500μs와 같은 기준 파형에 대한 정보를 보여 줍니다.

- 16. 판독값은 날짜와 시간을 표시합니다.
- 17. 판독값은 트리거 주파수를 표시합니다.

메시지 영역

오실로스코프는 다음과 같은 유형의 유용한 정보를 전달하는 메시지 영역(앞 그림의 항목 번호 15)을 화면 맨 아래에 표시합니다.

- TRIG MENU 버튼을 누를 때와 같이 다른 메뉴에 액세스하는 명령: 트리거지연을 하려면 HORIZONTAL MENU를 이용
- MEASURE 버튼을 누를 때와 같이 다음에 할 수 있는 것을 제안: 측정 메뉴를 변경하려면 옵션 버튼을 누르십시오
- 기본값 설정 버튼을 누를 때와 같이 오실로스코프가 수행한 동작에 대한 정보: 기본값 설정을 호출
- AUTOSET 버튼을 누를 때와 같이 파형에 대한 정보: CH1에서 검출한 구형파나 펄스

메뉴 시스템 사용

오실로스코프의 사용자 인터페이스는 메뉴 구조를 통해 특수한 기능을 쉽게 사용할 수 있도록 설계되었습니다.

전면 패널 버튼을 누르면 오실로스코프는 화면 오른쪽에 해당 메뉴를 표시합니다. 메뉴에는 화면 오른쪽의 라벨이 없는 옵션 버튼을 누르면 사용할 수 있는 옵션이 표시됩니다.

오실로스코프는 다음과 같은 여러 가지 방법을 사용하여 메뉴 옵션을 표시합니다.

- 페이지(하위 메뉴) 선택: 일부 메뉴의 경우 상단의 옵션 버튼을 사용하여 2-3 개의 하위 메뉴를 선택할 수 있습니다. 상단 버튼을 누를 때마다 옵션이 변경 됩니다. 예를 들어, 트리거 메뉴에서 상단 버튼을 누르면 오실로스코프는 에 지, 비디오 및 펄스 폭 트리거 하위 메뉴를 순서대로 표시합니다.
- 순환 목록: 오실로스코프는 옵션 버튼을 누를 때마다 매개변수를 다른 값으로 설정합니다. 예를 들어, CH 1 MENU 버튼을 누른 다음 상단의 옵션 버튼을 누 르면 수직(채널) 커플링 옵션이 표시됩니다.

일부 목록에서는 범용 노브를 사용하여 옵션을 선택할 수 있습니다. 정보 라인에 범용 노브를 사용할 수 있는 시기가 나타나며, 노브가 활성화되면 범용 노브별로 LED가 켜집니다. (15페이지의 *메뉴 및 컨트롤 버튼* 참조)

- 실행: 오실로스코프는 실행 옵션 버튼을 누르면 즉시 발생하는 실행 유형을 표시합니다. 예를 들어, 도움말 색인이 표시될 때 다음 페이지 옵션 버튼을 누르면 오실로스코프는 색인 항목의 다음 페이지를 즉시 표시합니다.
- 라디오: 오실로스코프는 각 옵션에 다른 버튼을 사용합니다. 현재 선택된 옵션은 강조 표시됩니다. 예를 들어, ACQUIRE 메뉴 버튼을 누르면 다양한 획득모드 옵션이 표시됩니다. 옵션을 선택하려면 해당 버튼을 누릅니다.

수직 컨트롤

모든 모델, 4 채널 표시

위치(CH1, CH 2, CH 3 & CH 4): 파형을 수직으로 배치합니다.

CH 1, CH 2, CH 3 & CH 4 MENU: 수직 메뉴 선택을 표시하고 채널 파형 디스플레이를 토글합니다.

VOLTS/DIV(CH 1, CH 2, CH 3 & CH 4): 수직눈금 계수를 선택합니다.

MATH MENU: 파형 math 연산 메뉴를 표시하고 math 파형 디스플레이를 토글합니다.

수평 컨트롤

2 채널 모델

4 채널 모델

위치: 모든 채널과 math 파형의 수평 위치를 조정합니다. 이 컨트롤의 해상도는 시간축 설정에 따라 다릅니다. (80페이지의 *확대 범위* 참조)

주석노트. 수평 위치를 큰 값으로 조정하려면 SEC/DIV 노브를 큰 값으로 돌리고 수평 위치를 변경한 다음 SEC/DIV 노브를 다시 이전 값으로 돌립니다.

HORIZ MENU: 수평 메뉴를 표시합니다.

제로로 설정: 수평 위치를 제로로 설정합니다.

SEC/DIV: 주 또는 윈도우 시간축에 대한 수평 시간/구간(눈금 계수)을 선택합니다. 확대 범위가 활성화되면 윈도우 시간축을 변경하여 확대 범위의 폭을 변경합니다. (80페이지의 *확대 범위* 참조)

트리거 컨트롤

4 채널 모델

2 채널 모델

레벨: 에지 또는 펄스 트리거를 사용하면 레벨 노브는 파형을 획득하기 위해 신호가 통과해야 하는 진폭 레벨을 설정합니다.

TRIG MENU: 트리거 메뉴를 표시합니다.

SET TO 50%: 트리거 레벨은 트리거 신호의 피크 사이의 수직 중간 지점으로 설정됩니다.

강제 트리거: 적절한 트리거 신호에 관계 없이 획득을 완료합니다. 이 버튼은 획득이 이미 중지된 경우에는 효과가 없습니다.

TRIG VIEW: TRIG VIEW 버튼을 누른 상태에서 채널 파형 대신 트리거 파형을 표시합니다. 그러면 트리거 설정이 트리거 커플링과 같은 트리거 신호에 미치는 영향을 확인할 수 있습니다.

메뉴 및 컨트롤 버튼

범용 노브

메뉴와 버튼 컨트롤에 대한 자세한 내용은 참조 장을 참조하십시오.

범용 노브: 기능은 표시된 메뉴나 선택된 메뉴 옵션에 따라 결정됩니다. 활성화되면 옆의 LED가 켜집니다. 다음 표는 기능을 나열합니다.

활성 메뉴 또는 옵션	노브 기능	설명
Cursor	커서 1 또는 커 서 2	선택된 커서를 배치합니다.
Display	대비를 조정합니 다.	디스플레이의 대비를 변경합니 다.
도움말	스크롤	색인의 항목을 선택하고 항목 의 링크를 선택하며 항목의 다 음 페이지나 이전 페이지를 표 시합니다.
수평	지연	다른 트리거 이벤트를 받기 전 에 시간을 설정합니다.(93페이 지의 <i>홀드오프</i> 참조)
Math	위치	Math 파형 위치를 조정합니다.
	수직눈금	Math 파형의 눈금을 변경합니 다.
Measure	유형	각 소스에 대한 자동 측정 유형 을 선택합니다.
Save/Recall	실행	설정 파일, 파형 파일 및 화면 이 미지를 저장하거나 호출할 때 트 랜잭션을 설정합니다.
	파일 선택	저장할 설정, 파형 또는 이미지 파일을 선택하거나 호출할 설정 또는 파형 파일을 선택합니다.
트리거	소스	트리거 유형 옵션을 에지로 설정 하는 경우 소스를 선택합니다.
	비디오 라인 번 호	트리거 유형 옵션이 비디오로 설 정되고 동기 옵션이 라인 번호로 설정되었을 때 오실로스코프를 특정 라인 번호로 설정합니다.
	필스 폭	트리거 유형 옵션이 펄스로 설 정되었을 때 펄스 폭을 설정합 니다.
Utility ► 파일 유틸 리티	파일 선택	이름을 바꾸거나 삭제할 파일을 선택합니다.(96페이지의 <i>USB</i> <i>플래시 드라이브의 파일 유틸리</i> <i>티</i> 참조)
	이름 항목	파일이나 폴더 이름을 바꿉니 다.(96페이지의 <i>파일 또는 폴더</i> <i>이름 변경</i> 참조)
Utility ► 옵션 ► GPIB 셋업 ► 주소	값 항목	TEK-USB-488 어댑터의 GPIB 주소를 설정합니다.

활성 메뉴 또는 옵션	노브 기능	설명
Utility ► 옵션 ► 날짜 및 시간 설정	값 항목	날짜 및 시간 값을 설정합니 다.(95페이지의 <i>날짜 및 시간 설</i> <i>정</i> 참조)
수직 ► 프로브 ► 전 압 ► 감쇠	값 항목	CH 1 MENU와 같은 채널 메뉴 의 경우 오실로스코프에 감쇠 계수를 설정합니다.
수직 ► 프로브 ► 전 류 ► 눈금	값 항목	CH 1 MENU와 같은 채널 메뉴 의 경우 오실로스코프에 눈금을 설정합니다

자동 범위: 자동 범위 메뉴를 표시하고 자동 범위 기능을 활성화하거나 비활성 화합니다. 자동 범위가 활성화되면 옆의 LED가 켜집니다.

SAVE/RECALL: 설정 및 파형에 대한 저장/호출 메뉴를 표시합니다.

MEASURE: 자동 측정 메뉴를 표시합니다.

ACQUIRE: 획득 메뉴를 표시합니다.

기준 메뉴: 기준 메뉴를 표시하여 오실로스코프의 비휘발성 메모리에 저장된 기준 파형을 빠르게 표시하거나 숨깁니다.

UTILITY: 유틸리티 메뉴를 표시합니다.

CURSOR: 커서 메뉴를 표시합니다. 종류 옵션이 Off로 설정되어 있지 않으면, 커서 메뉴에서 나온 후에도 커서는 계속 표시되지만 조정할 수는 없습니다.

DISPLAY: 디스플레이 메뉴를 표시합니다.

도움말: 도움말 메뉴를 표시합니다.

기본값 설정: 공장 설정을 호출합니다.

AUTOSET: 입력 신호의 유용한 디스플레이를 생성하도록 오실로스코프 컨트롤을 자동으로 설정합니다.

SINGLE SEQ: 단일 파형을 획득한 다음 중지합니다.

RUN/STOP: 파형을 연속적으로 획득하거나 획득을 중지합니다.

PRINT: 데이터를 PictBridge 호환 프린터에서 인쇄하거나 USB 플래시 드라이 브에 저장합니다.

저장: USB 플래시 드라이브에 데이터를 저장하도록 PRINT 버튼을 구성하면 LED가 표시됩니다.

입력 커넥터

2 채널 모델

4 채널 모델

CH 1, CH 2, CH 3 & CH 4: 파형 표시를 위한 입력 커넥터

EXT TRIG: 외부 트리거 소스를 위한 입력 커넥터. 트리거 메뉴를 사용하여 Ext 또는 Ext/5 트리거 소스를 선택합니다. TRIG VIEW 버튼을 누르고 있으면 트리거 설정이 트리거 커플링과 같은 트리거 신호에 어떻게 영향을 미치는지 확인할 수 있습니다.

기타 전면 패널 항목

USB 플래시 드라이브 포트

USB 플래시 드라이브 포트: 데이터를 저장 또는 검색하려면 USB 플래시 드라이브를 삽입합니다. 플래시 드라이브가 활성화되는 시간이 나타나도록 오실로스코프에 시계 기호가 표시됩니다. 파일이 저장되거나 검색되면 오실로스코프는 시계를 제거하고 저장 또는 호출 작업이 완료되었음을 알리는 정보 라인을 표시합니다.

LED가 있는 플래시 드라이브인 경우 드라이브에서 데이터를 저장하거나 데이터를 검색할 때 LED가 깜박입니다. LED가 깜박이지 않을 때까지 기다린 후 드라이브를 제거하십시오.

PROBE COMP: 프로브 보정 출력 및 섀시 기준. 전압 프로브를 오실로스코프 입력 회로에 전기적으로 일치시키는 데 사용합니다. (5페이지의 전압 프로브 검사 마법사 참조) (7페이지의 수동 프로브 보정 참조)

오실로스코프 기능 이해

본 장에서는 오실로스코프를 사용하려면 이해할 필요가 있는 정보를 포함하고 있습니다. 오실로스코프를 효율적으로 사용하려면 다음과 같은 기능을 숙지하고 있어야 합니다.

- 오실로스코프 설정
- 트리거링
- 신호획득(파형)
- 파형스케일 및 위치 조정
- 파형측정

다음 그림은 오실로스코프의 다양한 기능과 상호 관계를 블록 다이어그램으로 보여 줍니다.

오실로스코프 설정

오실로스코프를 작동할 때 자주 사용되는 자동 설정, 자동 범위, 설정 저장 및 설정 호출 같은 여러 가지 기능에 익숙해져야 합니다.

Autoset 사용

AUTOSET 버튼을 누를 때마다 자동 설정 기능은 자동으로 안정된 파형 디스플레이를 표시합니다. 수직눈금, 수평눈금 및 트리거 설정을 자동으로 조정합니다. 또한 자동 설정은 신호 종류에 따라 계수선 영역에 여러 가지 자동 측정을 표시합니다.

자동 범위 사용

자동 범위는 사용자가 설정하거나 해제할 수 있는 연속 기능입니다. 이 기능은 신호가 큰 변화를 보일 때나 실제로 프로브를 다른 지점으로 이동할 때 신호를 추적하도록 설정 값을 조정합니다.

설정 저장

오실로스코프는 마지막 변경을 수행한 후 오실로스코프 전원을 끄기 전에 5초 정도 기다리면 현재 설정을 저장합니다. 다음에 전원을 켜면 오실로스코프는 이 설정을 호출합니다.

SAVE/RECALL 메뉴를 사용하여 최대 10가지의 다른 설정을 저장할 수 있습니다.

또한 USB 플래시 드라이브에 설정을 저장할 수 있습니다. 오실로스코프는 이동식 데이터 저장 및 검색을 위해 USB 플래시 드라이브를 사용합니다. (57페이지의 USB 플래시 드라이브 포트참조)

설정 호출

오실로스코프는 전원을 끄기 전의 최종 설정, 저장된 설정 또는 기본값 설정을 호출할 수 있습니다. (84페이지의 Save/Recall 참조)

기본값 설정

오실로스코프는 공장에서 출하될 때 일반 작업에 맞도록 설정되어 있습니다. 이 것이 기본값 설정입니다. 이 설정을 호출하려면 기본값 설정 버튼을 누릅니다. 기 본값 설정을 보려면 부록 D: 기본값 설정을 참조하십시오.

트리거링

트리거는 오실로스코프가 데이터 획득을 시작하고 파형을 표시할 때를 결정합니다. 트리거를 제대로 설정하면 오실로스코프는 불안정한 디스플레이나 빈 화면을 의미 있는 파형으로 변환해줍니다.

트리거되지 않은 파형

각 오실로스코프에 대한 설명은 작동 기본 사항 장을 참조하십시오. (15페이지의 *트리거 컨트롤* 참조) 또한 참조 장도 참조할 수 있습니다. (88페이지의 *트리거 컨트롤* 참조)

RUN/STOP 또는 SINGLE SEQ 버튼을 눌러 획득을 시작하면 오실로스코프는 다음 단계를 수행합니다.

- 1. 트리거 포인트의 왼쪽에 파형 레코드 부분을 채울 수 있을 만큼 충분한 데이터 를 획득합니다. 이를 사전 트리거라고 합니다.
- 2. 트리거 조건이 발생할 때까지 대기하면서 데이터 획득을 계속합니다.
- 3. 트리거 조건을 검출합니다.
- 4. 파형 레코드가 가득 찰 때까지 데이터 획득을 계속합니다.
- 5. 새로 획득한 파형을 표시합니다.

주석노트. 에지 및 펄스 트리거의 경우, 트리거 주파수를 알아내기 위해 오실로 스코프는 트리거 이벤트가 발생하는 속도를 계산합니다. 오실로스코프는 화면 하 단 오른쪽 모서리에 주파수를 표시합니다.

- 소스 트리거 소스 옵션을 사용하면 오실로스코프가 트리거로 사용하는 신호를 선택할 수 있습니다. 채널 BNC나 EXT TRIG BNC에 연결된 모든 신호 또는 AC 전원 라인(에지 트리거에만 사용할 수 있음)이 소스가 될 수 있습니다.
- **종류** 오실로스코프는 에지, 비디오 및 펄스 폭과 같은 세 가지 유형의 트리거를 제공합니다.
- 모드 자동 또는 보통 트리거 모드를 선택하여 오실로스코프가 트리거 조건을 검출하지 못했을 때 데이터를 획득하는 방법을 정의할 수 있습니다. (89페이지의 *모드 옵션* 참조)

단일 시퀀스 획득을 수행하려면 SINGLE SEQ 버튼을 누릅니다.

커플링 트리거 커플링 옵션을 사용하여 트리거 회로에 전달할 신호 부분을 결정할 수 있습니다. 그러면 파형을 안정적으로 표시할 수 있습니다.

트리거 커플링을 사용하려면 TRIG MENU 버튼을 누르고 에지나 펄스 트리거를 선택한 다음 커플링 옵션을 선택합니다.

주석노트. 트리거 커플링은 트리거 시스템에 전달된 신호에만 영향을 줍니다. 화면에 표시된 신호의 대역폭이나 커플링에는 영향을 미치지 않습니다.

트리거 회로에 전달된 조건 신호를 보려면 TRIG VIEW 버튼을 누르고 있습니다.

- 위치 수평 위치 컨트롤은 트리거와 화면 중앙 사이의 시간을 설정합니다. 이 컨트롤을 사용하여 트리거 위치를 조정하는 방법에 대한 자세한 내용은 수평눈금 및 위치의 사전 트리거 정보를 참조하십시오. (23페이지의 *수평눈금 및 위치; 사전 트리거 정보* 참조)
- 기울기 및 레벨 경사 및 레벨 컨트롤은 트리거를 정의하는 데 도움을 줍니다. 기울기 옵션(에지 트리거 유형 전용)은 오실로스코프가 트리거 포인트를 신호의 상승 에지에서 찾을지 하강 에지에서 찾을지 여부를 결정합니다. 트리거 레벨 노브는 에지에서 트리거 포인트가 발생하는 위치를 제어합니다.

트리거 레벨을 수직으 로 조정할 수 있습니다.

트리거가 상승 또는 하강될 수 있습니다.

신호 획득

신호를 획득하면 오실로스코프는 신호를 디지털 형식으로 변환하고 파형을 표시합니다. 획득 모드는 신호를 디지털화하는 방법을 정의하고 시간축 설정은 획득의 시간 범위와 세부 레벨에 영향을 미칩니다.

획득 모드 획득 모드에는 샘플, 피크 검출 및 평균의 세 가지가 있습니다.

샘플: 이 획득 모드에서 오실로스코프는 파형을 구성하기 위해 고른 간격으로 신호를 샘플링합니다. 이 모드는 대부분의 시간 동안 신호를 정확하게 표현합니다.

그러나 이 모드는 샘플 간에 발생할 수 있는 신호의 급격한 변동은 획득하지 못합니다. 따라서 앨리아싱이 발생할 수 있으며 폭이 좁은 펄스는 손실될 수 있습니다. 이런 경우에는 피크 검출 모드를 사용하여 데이터를 획득해야 합니다. (23페이지의 시간 도메인 앨리아싱 참조)

피크 검출: 이 획득 모드에서 오실로스코프는 각 샘플 간격에 있는 입력 신호 중 최저값과 최고값을 찾고 이 값을 사용하여 파형을 표시합니다. 이런 식으로 오실 로스코프는 샘플 모드에서는 놓칠 수 있는 폭이 좁은 펄스를 획득하고 표시할 수 있습니다. 노이즈는 이 모드에서 더 많이 나타납니다.

평균: 이 획득 모드에서 오실로스코프는 여러 파형을 획득하고 평균한 다음 결과 파형을 표시합니다. 이 모드를 사용하면 랜덤 노이즈를 줄일 수 있습니다.

시간축 오실로스코프는 각각 다른 포인트에서 입력 신호의 값을 획득함으로써 파형을 디지털화합니다. 시간축을 사용하면 값을 디지털화하는 빈도를 제어할 수 있습니다. 용도에 따라 시간축을 수평눈금으로 조정하려면 SEC/DIV 노브를 사용합니다.

파형 스케일 및 위치 조정

눈금 및 위치를 조정하여 파형의 디스플레이를 변경할 수 있습니다. 눈금을 변경하면 파형 디스플레이 크기가 증가하거나 감소합니다. 위치를 변경하면 파형은 위, 아래, 오른쪽 또는 왼쪽으로 이동합니다.

계수선 왼쪽에 있는 채널 표시기는 디스플레이의 각 파형을 식별합니다. 표시기는 파형 레코드의 접지 기준 레벨을 가리킵니다.

디스플레이 영역 및 판독값을 볼 수 있습니다. (9페이지의 *디스플레이 영역* 참조)

수직눈금 및 위치

디스플레이에서 파형을 위나 아래로 이동하여 파형의 수직 위치를 변경할 수 있습니다. 데이터를 비교하려면 파형을 다른 파형 위에 배치하거나 서로 겹치도록 정렬할 수 있습니다.

파형의 수직눈금을 변경할 수 있습니다. 파형 디스플레이는 접지 기준 레벨에 상 대적으로 축소되거나 확대됩니다.

각 오실로스코프에 대한 설명은 작동 기본 사항 장을 참조하십시오. (13페이지의 수직 컨트롤 참조) 또한 참조 장도 참조할 수 있습니다. (97페이지의 수직 컨트롤 참조)

수평눈금 및 위치; 사전 트리거 정보

수평 위치 컨트롤을 조정하여 트리거 전, 트리거 후의 파형 데이터를 볼 수 있습니다. 파형의 수평 위치를 변경하면 트리거와 디스플레이 중앙 사이의 시간이 실제로 변경됩니다. (이것은 디스플레이에서 파형이 오른쪽이나 왼쪽으로 이동하는 것으로 나타납니다.)

예를 들어, 테스트 회로에서 글리치의 원인을 찾으려는 경우 글리치에서 트리거하고 글리치 전에 데이터를 포착할 수 있을 만큼 사전 트리거 주기를 크게 할 수 있습니다. 그런 다음 사전 트리거 데이터를 분석하면 글리치의 원인을 찾을 수 있습니다.

SEC/DIV 노브를 돌려 모든 파형의 수평눈금을 변경합니다. 예를 들어, 상승 에지에서 오버슈트를 측정하기 위해 파형의 한 사이클만 보아야 할 경우가 있습니다.

오실로스코프는 수평눈금을 눈금 판독값에서 구간당 시간으로 표시합니다. 모든 활성 파형은 같은 시간축을 사용하기 때문에 오실로스코프는 확대 범위를 사용할 때를 제외하고는 모든 활성 채널에 대해 하나의 값만 표시합니다. 창 기능을 사용하는 방법에 대한 정보는 확대 범위를 참조하십시오. (80페이지의 *확대 범위* 참조)

각 오실로스코프에 대한 설명은 작동 기본 사항장을 참조하십시오. (14페이지의 위치 참조) 또한 참조 장도 참조할 수 있습니다. (79페이지의 *수평* 참조)

시간 도메인 앨리아성: 앨리아싱은 오실로스코프가 정확한 파형 레코드를 구성하도록 충분히 빠른 신호를 샘플링하지 못할 때 발생합니다. 앨리아싱이 발생하면 오실로스코프는 실제 입력 파형보다 낮은 주파수로 파형을 표시하거나 불안정한 파형을 트리거하고 표시합니다.

실제 고 주파수 파형 앨리아싱으로 인한 저 주 파수 파형

샘플 포인트

오실로스코프는 신호를 정확하게 표시하지만, 신호 표시는 프로브 대역폭, 오실로스코프 대역폭 및 샘플링 속도에 의해 제한됩니다. 앨리아싱을 방지하려면 오실로스코프가 신호의 가장 높은 주파수 요소보다 세 배 이상 빠른 속도로 신호를 샘플링해야 합니다.

오실로스코프 샘플링 속도가 이론적으로 표시할 수 있는 가장 높은 주파수를 나이 퀴스트 주파수라고 합니다. 나이퀴스트 속도라고 하는 샘플링 속도는 나이퀴스트 주파수의 두 배입니다.

오실로스코프 최고 샘플 속도는 대역폭의 10배 이상 됩니다. 이렇게 높은 샘플 속도는 앨리아싱의 가능성을 줄이는 데 도움이 됩니다.

앨리아싱을 확인하는 방법은 여러 가지가 있습니다.

- SEC/DIV 노브를 돌려 수평눈금을 변경합니다. 파형의 모양이 크게 바뀌면 앨리아싱이 발생할 수 있습니다.
- 피크 검출 획득 모드를 선택합니다. (22페이지의 *피크 검출* 참조) 이 모드에서 는 오실로스코프가 더 빠른 신호를 검출할 수 있도록 가장 높은 값과 가장 낮

은 값을 샘플링합니다. 파형의 모양이 크게 바뀌면 앨리아싱이 발생할 수 있습니다.

■ 트리거 주파수가 디스플레이 정보보다 더 빠를 경우 트리거 레벨보다 여러 배빠른 앨리아싱이나 파형이 나타날 수 있습니다. 파형을 검토하면 선택된 트리거 레벨에서 단일 트리거가 사이클마다 교차할 수 있도록 신호 모양을 지정할 것인지 여부를 확인할 수 있습니다.

여러 트리거가 발생할 가능성이 있는 경우 사이클당 단일 트리거만 생성하는 트리거 레벨을 선택합니다. 트리거 주파수가 디스플레이에 표시되는 것보다 여전히 빠르면 앨리아싱이 발생할 수 있습니다.

트리거 주파수가 더 느린 경우 이 테스트는 적합하지 않습니다.

■ 또한 표시되는 신호가 트리거 소스인 경우에도 계수선이나 커서를 사용하여 표시된 파형의 주파수를 예측합니다. 이 값을 화면 오른쪽 아래 모서리에 있는 트리거 주파수 판독값과 비교합니다. 차이가 클 경우 앨리아싱이 발생할 수 있습니다.

다음 표에는 다양한 주파수와 개별 샘플 속도에서 앨리아싱을 방지하기 위해 사용할 수 있는 시간축 설정이 나열되어 있습니다. 가장 빠른 SEC/DIV 설정에서는 오실로스코프 입력 증폭기의 대역폭 제한으로 인해 앨리어싱이 발생할 가능성이 없습니다.

샘플 모드에서 앨리아싱을 방지하는 설정

시간축	초당 샘플	최대
2.5ns	2GS/s	200.0MHz†
5.0~250.0ns	1GS/s 또는 2GS/s*	200.0MHz†
500.0ns	500.0MS/s	200.0MHz†
1.0µs	250.0MS/s	125.0MHz†
2.5µs	100.0MS/s	50.0MHz †
5.0µs	50.0MS/s	25.0MHz †
10.0µs	25.0MS/s	12.5MHz †
25.0µs	10.0MS/s	5.0MHz
50.0µs	5.0MS/s	2.5MHz
100.0µs	2.5MS/s	1.25MHz
250.0µs	1.0MS/s	500.0kHz
500.0µs	500.0kS/s	250.0kHz
1.0ms	250.0kS/s	125.0kHz
2.5ms	100.0kS/s	50.0kHz
5.0ms	50.0kS/s	25.0kHz
10.0ms	25.0kS/s	12.5kHz
25.0ms	10.0kS/s	5.0kHz
50.0ms	5.0kS/s	2.5kHz
100.0ms	2.5kS/s	1.25kHz
250.0ms	1.0kS/s	500.0Hz
500.0ms	500.0S/s	250.0Hz
1.0s	250.0S/s	125.0Hz
2.5s	100.0S/s	50.0Hz
5.0s	50.0S/s	25.0Hz
10.0s	25.0S/s	12.5Hz
25.0s	10.0S/s	5.0Hz
50.0s	5.0S/s	2.5Hz
•		

^{*} 오실로스코프 모델에 따라 다릅니다.

측정

오실로스코프는 전압과 시간의 그래프를 표시하며 표시된 파형을 측정하는 데 도움을 줄 수 있습니다.

측정하는 방법은 여러 가지가 있습니다. 계수선, 커서 또는 자동화된 측정을 사용할 수 있습니다.

^{† 1}X로 설정된 P2220 프로브에서 대역폭은 6MHz로 감소되었습니다.

계수선 이 방법을 통해 빠르고 뚜렷한 예측이 가능해집니다. 예를 들어, 파형 진폭을 살펴 보면 100mV보다 약간 큰 것을 알 수 있습니다.

> 크고 작은 계수선 구간을 카운트하고 눈금 계수를 곱하여 간단한 측정을 수행할 수 있습니다.

> 예를 들어, 파형의 최소값 및 최대값 사이의 주요 수직 계수선 구간 5개를 카운트 했으며 배율 계수가 100mV/구간인 경우 첨두치 전압을 다음과 같이 쉽게 계산할 수 있습니다.

5 구간 x 100mV/구간 = 500mV

커서

커서 이 방법을 사용하면 항상 쌍으로 나타나는 커서를 이동하고 디스플레이 판독값에서 숫자 값을 읽어 측정을 수행할 수 있습니다. 커서는 진폭 및 시간의 두 종류가 있습니다.

커서를 사용할 때는 소스를 측정할 디스플레이에 있는 파형으로 설정합니다.

커서를 사용하려면 CURSOR 버튼을 누릅니다.

진폭 커서: 진폭 커서는 디스플레이에 수평선으로 나타나며, 수직 매개변수를 측정합니다. 진폭은 접지 기준 레벨을 기준으로 합니다. Math FFT 기능의 경우이러한 커서는 크기를 측정합니다.

시간 커서: 시간 커서는 디스플레이에 수직선으로 나타나며, 수평 및 수직 매개 변수를 모두 측정합니다. 시간은 트리거 포인트를 기준으로 합니다. Math FFT 기 능의 경우 이러한 커서는 주파수를 측정합니다.

시간 커서는 파형이 커서를 통과하는 지점에서 파형 진폭의 판독값도 포함합니다.

자동 MEASURE 메뉴를 사용하여 최대 5가지 자동 측정을 수행할 수 있습니다. 자동 측정을 수행하면 오실로스코프가 모든 계산을 자동으로 수행합니다. 이 측정은 파형 레코드 포인트를 사용하기 때문에 계수선 또는 커서 측정보다 정확합니다.

자동 측정은 판독값을 사용하여 측정 결과를 보여 줍니다. 이러한 판독값은 오실로스코프가 새로운 데이터를 획득하면 주기적으로 업데이트됩니다.

측정에 대한 설명은 참조 장을 참조하십시오. (82페이지의 측정 참조)

애플리케이션 예제

이 절에서는 몇 가지 애플리케이션 예제를 제공합니다. 이곳에 소개되는 간단한 예제는 오실로스코프 기능을 설명하고 사용자 스스로 테스트 문제를 해결하는 데 도움을 제공합니다.

- 간단한 측정자동 설정 사용측정 메뉴를 사용하여 자동 측정두 신호 측정 및 게인 계산
- 자동 범위를 사용하여 일련의 테스트 포인트 검사
- 커서 측정 수행
 링 주파수 및 링 진폭 측정
 펄스 폭 측정
 상승 시간 측정
- 신호 세부 사항 분석
 노이즈 신호 보기
 평균 기능을 사용하여 노이즈에서 신호 분리
- 싱글 샷 신호 포착획득 최적화
- 전파 지연 측정
- 펄스 폭에서 트리거링
- 비디오 신호에서 트리거링
 비디오 필드 및 비디오 라인에서 트리거링
 윈도우 기능을 사용하여 파형 세부 사항 보기
- Math 기능을 사용하여 차동 통신 신호 분석
- XY 모드 및 지속기능을 사용하여 네트워크의 임피던스 변화 보기

간단한 측정 수행

회로에 신호가 나타나도록 해야 하는데 신호의 진폭이나 주파수를 모르고 있습니다. 신호를 신속하게 표시하고 주파수, 주기 및 첨두치 진폭을 측정하려 합니다.

자동 설정 사용

신호를 신속하게 표시하려면 다음 단계를 수행합니다.

- 1. CH1 MENU 버튼을 누릅니다.
- 2. **프로브 ► 전압 ►감쇠 ►** 10X를 누릅니다.
- 3. P2220 프로브에서 스위치를 10X로 설정합니다.
- 4. 채널 1 프로브 팁을 신호에 연결합니다. 기준 리드선을 회로 기준 포인트에 연결합니다.
- 5. AUTOSET 버튼을 누릅니다.

오실로스코프는 수직, 수평 및 트리거 컨트롤을 자동으로 설정합니다. 파형 디스플레이를 최적화하려는 경우 이러한 컨트롤을 수동으로 조정할 수 있습니다.

주석노트. 오실로스코프는 감지된 신호 유형에 따라 화면의 파형 영역에 관련 자동 측정을 표시합니다.

각 오실로스코프에 대한 설명은 참조 장을 참조하십시오. (73페이지의 *자동 설정* 참조)

자동 측정 수행

오실로스코프는 표시된 신호 대부분을 자동으로 측정할 수 있습니다.

주석노트. 값 판독값에 물음표(?)가 표시되면 신호가 측정 범위 밖에 있는 것입니다. 해당 채널의 VOLTS/DIV 노브를 조정하여 감도를 감소시키거나 SEC/DIV 설정을 변경합니다.

신호 주파수, 주기, 첨두치 진폭, 상승 시간 및 포지티브 폭을 측정하려면 다음 단계를 수행합니다.

- 1. MEASURE 버튼을 눌러 측정 메뉴를 표시합니다.
- 2. 상단 옵션 버튼을 누르면 측정 1 메뉴가 나타납니다.
- 3. 종류 ▶ 주파수를 누릅니다.

값 판독값은 측정과 업데이트를 표시합니다.

- 4. 뒤로 옵션 버튼을 누릅니다.
- 5. 상단에서 두 번째 옵션 버튼을 누르면 측정 2 메뉴가 나타납니다.
- 6. 종류 ► 주기를 누릅니다.

값 판독값은 측정과 업데이트를 표시합니다.

- 7. 뒤로 옵션 버튼을 누릅니다.
- 8. 중간 옵션 버튼을 누르면 측정 3 메뉴가 나타납니다.
- 9. 종류 ▶ 첨두치를 누릅니다.

값 판독값은 측정과 업데이트를 표시합니다.

- 10. 뒤로 옵션 버튼을 누릅니다.
- 11. 하단에서 두 번째 옵션 버튼을 누르면 측정 4 메뉴가 나타납니다.
- 12. 종류 ► 상승 시간을 누릅니다.

값 판독값은 측정과 업데이트를 표시합니다.

- 13. 뒤로 옵션 버튼을 누릅니다.
- 14. 하단 옵션 버튼을 누르면 측정 5 메뉴가 나타납니다.
- 15. 종류 ► 상승 펄스를 누릅니다.

값 판독값은 측정과 업데이트를 표시합니다.

16. 뒤로 옵션 버튼을 누릅니다.

두 신호 측정

장비를 테스트 중이며 오디오 증폭기의 게인을 측정하려는 경우 증폭기 입력에 테스트 신호를 보낼 수 있는 오디오 생성기가 필요합니다. 두 오실로스코프 채널을 증폭기 입력과 출력에 다음과 같이 연결합니다. 두 신호 레벨을 모두 측정하고 측정값을 사용하여 게인을 계산합니다.

채널 1과 채널 2에 연결된 신호를 활성화하고 표시한 뒤 이 두 채널에 대한 측정을 선택하려면 다음 단계를 수행합니다.

- 1. AUTOSET 버튼을 누릅니다.
- 2. MEASURE 버튼을 눌러 측정 메뉴를 표시합니다.
- 3. 상단 옵션 버튼을 누르면 측정 1 메뉴가 나타납니다.
- 4. **신호원 ►** CH1을 누릅니다.
- 5. 종류 ► 첨두치를 누릅니다.
- 6. 뒤로 옵션 버튼을 누릅니다.
- 7. 상단에서 두 번째 옵션 버튼을 누르면 측정 2 메뉴가 나타납니다.

- 8. 신호원 ► CH2를 누릅니다.
- 9. 종류 ► 첨두치를 누릅니다.
- 10. 뒤로 옵션 버튼을 누릅니다.두 채널에 대해 표시된 첨두치 증폭을 판독합니다.
- 11. 증폭기 전압 게인을 계산하려면 다음 공식을 사용합니다.

VoltageGain = 출력 진폭/입력 진폭

VoltageGain(dB) = 20 x log (VoltageGain)

자동 범위를 사용하여 일련의 테스트 포인트 검사

제대로 작동하지 않는 기계가 있으면 다수 테스트 포인트의 주파수 및 RMS 전압을 찾고 이러한 값을 원하는 값과 비교해야 할 수 있습니다. 실질적으로 손으로 조작하기 힘든 테스트 포인트를 프로브할 때는 두 손을 모두 사용해야 하므로 전면패널 컨트롤에 액세스할 수 없습니다.

- 1. CH 1 MENU 버튼을 누릅니다.
- 2. 프로브 ► 전압 ► 감쇠를 눌러 채널 1에 부착된 프로브의 감쇠와 일치하도록 설정합니다.
- 3. 자동 범위 버튼을 눌러 자동 범위 지정을 활성화하고 **수직 및 수평** 옵션을 선 택합니다.
- 4. MEASURE 버튼을 눌러 측정 메뉴를 표시합니다.
- 5. 상단 옵션 버튼을 누르면 측정 1 메뉴가 나타납니다.
- 6. **신호원 ►** CH1을 누릅니다.
- 7. 종류 ▶ 주파수를 누릅니다.
- 8. 뒤로 옵션 버튼을 누릅니다.
- 9. 상단에서 두 번째 옵션 버튼을 누르면 측정 2 메뉴가 나타납니다.
- 10. **신호원 ►** CH1을 누릅니다.
- 11. 종류 ► 실효치를 누릅니다.
- 12. 뒤로 옵션 버튼을 누릅니다.
- 13. 프로브 팁 및 기준 리드선을 첫 번째 테스트 포인트에 부착합니다. 오실로스 코프 디스플레이에서 주파수 및 사이클 RMS 측정값을 판독하고 이 값을 원하는 값과 비교합니다.
- 14. 제대로 작동하지 않는 요소를 찾을 때까지 각 테스트 포인트에 대해 13 단계 를 반복합니다.

주석노트. 자동 범위가 활성화되어 있으면 프로브를 다른 테스트 포인트로 이동할 때마다 디스플레이를 유용하게 활용할 수 있도록 오실로스코프가 수평눈금, 수직눈금 및 트리거 레벨을 재조정합니다.

커서 측정

커서를 사용하여 파형에 대한 시간과 진폭을 신속하게 측정할 수 있습니다.

링 주파수 및 진폭 측정

신호의 상승 에지에서 링 주파수를 측정하려면 다음 단계를 수행합니다.

- 1. CURSOR 버튼을 눌러 커서 메뉴를 표시합니다.
- 2. 종류 ► 시간을 누릅니다.
- 3. 신호원 ► CH1을 누릅니다.

- 4. 커서 1 옵션 버튼을 누릅니다.
- 5. 범용 노브를 돌려 커서를 링의 첫 번째 피크에 놓습니다.
- 6. 커서 2 옵션 버튼을 누릅니다.
- 7. 범용 노브를 돌려 커서를 링의 두 번째 피크에 놓습니다.커서 메뉴에 Δ(절대차) 시간과 주파수(측정된 링 주파수)가 나타납니다.

- 8. 종류 ► 진폭을 누릅니다.
- 9. 커서 1 옵션 버튼을 누릅니다.
- 10. 범용 노브를 돌려 커서를 링의 첫 번째 피크에 놓습니다.
- 11. 커서 2 옵션 버튼을 누릅니다.
- 12. 범용 노브를 돌려 커서 2를 링의 가장 아랫부분에 놓습니다. 커서 메뉴에서 링의 진폭을 볼 수 있습니다.

펄스 폭 측정 필스 파형을 분석 중이며 펄스 폭을 파악하려는 경우 다음 단계를 수행합니다.

- 1. CURSOR 버튼을 눌러 커서 메뉴를 표시합니다.
- 2. 종류 ► 시간을 누릅니다.
- 3. 신호원 ► CH1을 누릅니다.
- 4. 커서 1 옵션 버튼을 누릅니다.
- 5. 범용 노브를 돌려 커서를 펄스의 상승 에지에 놓습니다.
- 6. 커서 2 옵션 버튼을 누릅니다.
- 7. 범용 노브를 돌려 커서를 펼스의 하강 에지에 놓습니다.

커서 메뉴에 다음 측정값이 나타납니다.

- 트리거에 상대적인 커서 1에서의 시간
- 트리거에 상대적인 커서 2에서의 시간
- 펄스 폭 측정인 ∆(절대차) 시간

주석노트. 상승 펄스 측정은 측정 메뉴에서 자동 측정으로 사용할 수 있습니다. (82페이지의 *측정* 참조)

주석노트. 상승 펄스 측정은 AUTOSET 메뉴에서 단일 사이클 구형파 옵션을 선택할 때도 표시됩니다. (74페이지의 *구형파 또는 펄스* 참조)

상승 시간 측정

펄스 폭을 측정한 후에 펄스의 상승 시간을 확인해야 할지 결정합니다. 일반적으로 파형의 10%와 90% 레벨 사이의 상승 시간을 측정합니다. 상승 시간을 측정하려면 다음 단계를 수행합니다.

- 1. SEC/DIV 노브를 돌려 파형의 상승 에지를 표시합니다.
- 2. VOLTS/DIV 및 수직 위치 노브를 돌려 파형 진폭을 약 5구간으로 설정합니다.
- 3. CH 1 MENU 버튼을 누릅니다.

- 4. Volts/Div ► 미세 조정을 누릅니다.
- 5. VOLTS/DIV 노브를 돌려 파형 진폭을 정확히 5구간으로 설정합니다.
- 6. **수직 위치** 노브를 돌려 파형을 가운데로 놓고 파형의 베이스라인을 중앙 계수 선 아래 2.5구간에 놓습니다.
- 7. CURSOR 버튼을 눌러 커서 메뉴를 표시합니다.
- 8. 종류 ► 시간을 누릅니다.
- 9. **신호원 ►** CH1을 누릅니다.
- 10. 커서 1 옵션 버튼을 누릅니다.
- 11. 범용 노브를 돌려 파형이 중앙 화면 아래 두 번째 계수선을 통과하는 위치에 커서를 놓습니다. 이것이 파형의 10% 레벨입니다.
- 12. 커서 2 옵션 버튼을 누릅니다.
- 13. 범용 노브를 돌려 파형이 중앙 화면 위의 두 번째 계수선을 통과하는 위치에 커서를 놓습니다. 이것이 파형의 90% 레벨입니다.

커서 메뉴의 Δt 판독값은 파형의 상승 시간입니다.

5 구간

주석노트. 상승 시간 측정은 측정 메뉴에서 자동 측정으로 사용할 수 있습니다. (82페이지의 *측정* 참조)

주석노트. 상승 시간 측정은 AUTOSET 메뉴에서 상승 에지 옵션을 선택할 때도 표시됩니다. (74페이지의 *구형파 또는 필스* 참조)

신호 세부 사항 분석

오실로스코프에 표시되는 노이즈 신호에 대한 세부 사항을 알려고 합니다. 현재 디스플레이에 표시된 것보다 훨씬 자세한 사항이 신호에 포함되어 있는 것으로 가 정합니다.

노이즈 신호 보기 신호에 노이즈가 나타나고 노이즈가 회로에서 문제를 일으키는 것으로 의심된다. 노이즈를 자세히 분석하려면 다음 단계를 수행합니다.

- 1. ACQUIRE 버튼을 눌러 획득 메뉴를 표시합니다.
- 2. 피크 검출 옵션 버튼을 누릅니다.
- 3. 필요하면 DISPLAY 버튼을 눌러 디스플레이 메뉴를 표시합니다. 범용 노브와 함께 명암 조정 옵션 버튼을 사용하여 노이즈를 쉽게 볼 수 있도록 조정합니다.

피크 검출은 특히 시간축이 느리게 설정되어 있을 때 신호에서 노이즈 스파이크와 글리치를 강조 표시합니다.

노이즈에서 신호 분리

이제 신호 모양을 분석하고 노이즈를 무시해야 합니다. 오실로스코프 디스플레이에서 랜덤 노이즈를 줄이려면 다음 단계를 수행합니다.

- 1. ACQUIRE 버튼을 눌러 획득 메뉴를 표시합니다.
- 2. 평균 옵션 버튼을 누릅니다.
- 3. 평균 옵션 버튼을 눌러 파형 디스플레이에서 평균 실행 횟수를 다르게 하면서 효과를 살펴봅니다.

평균화는 랜덤 노이즈를 줄이고 신호의 세부 사항을 쉽게 볼 수 있도록 합니다. 아래의 예에서 링은 노이즈를 제거할 때 신호의 상승 에지와 하강 에지를 보여 줍니다.

싱글-샷 신호 캡처

장비에서 리드 릴레이(reed relay)의 안정성이 떨어져 문제를 조사할 필요가 있습니다. 릴레이가 열릴 때 릴레이 접점에서 충격 신호가 있는 것으로 의심됩니다. 릴레이를 가장 빠르게 열고 닫는 것은 분당 한 번 정도이므로 싱글-샷 획득으로 릴레이를 통한 전압을 포착해야 합니다.

싱글-샷 획득을 설정하려면 다음 단계를 수행합니다.

- 1. 보려는 신호에 적합한 범위로 수직 VOLTS/DIV 및 수평 SEC/DIV 노브를 돌립니다.
- 2. ACQUIRE 버튼을 눌러 획득 메뉴를 표시합니다.
- 3. 피크 검출 옵션 버튼을 누릅니다.
- 4. TRIG MENU 버튼을 눌러 트리거 메뉴를 표시합니다.
- 5. 기울기 ▶ 상승을 누릅니다.
- 6. 레벨 노브를 돌려 릴레이가 열리고 닫히는 전압의 중간 전압으로 트리거 레벨 을 조정합니다.
- 7. SINGLE SEQ 버튼을 눌러 획득을 시작합니다.

릴레이가 열릴 때 오실로스코프는 이벤트를 트리거 및 캡처합니다.

획득 최적화

초기 획득은 트리거 포인트에서 열리기 시작하는 릴레이 접점을 보여 줍니다. 그 다음에는 회로에서 접촉 바운스와 인덕턴스를 나타내는 큰 스파이크가 나옵니다. 인덕턴스로 인해 접촉 충격 신호와 이른 릴레이 실패가 발생할 수 있습니다.

다음 싱글-샷 이벤트가 포착되기 전에 수직, 수평 및 트리거 컨트롤을 사용하여 설정을 최적화할 수 있습니다. 다음 획득이 새로운 설정을 사용하여 포착되면 (SINGLE SEQ 버튼을 다시 누름) 접촉이 열릴 때 여러번 바운스 되는 것을 볼 수 있습니다.

전파 지연 측정

마이크로프로세서의 메모리 타이밍이 한도에 도달한 것으로 의심됩니다. 칩 선택 신호와 메모리 장치의 데이터 출력 간의 전파 지연을 측정하도록 오실로스코프를 설정합니다.

전파 지연을 측정하도록 설정하려면 다음 단계를 수행합니다.

- 1. AUTOSET 버튼을 눌러 안정된 디스플레이를 트리거합니다.
- 2. 수평 및 수직 컨트롤을 조정하여 디스플레이를 최적화합니다.
- 3. CURSOR 버튼을 눌러 커서 메뉴를 표시합니다.
- 4. 종류 ► 시간을 누릅니다.
- 5. 신호원 ► CH1을 누릅니다.
- 6. 커서 1 옵션 버튼을 누릅니다.
- 7. 범용 노브를 돌려 커서를 칩 선택 신호의 활성 에지에 놓습니다.
- 8. 커서 2 옵션 버튼을 누릅니다.
- 9. 범용 노브를 돌려 두 번째 커서를 데이터 출력 전환에 놓습니다.

커서 메뉴의 Δt 판독값은 파형 사이의 전파 지연입니다. 두 파형의 SEC/DIV 설정이 같으므로 판독값은 유효합니다.

특정 펄스 폭에서 트리거링

회로에 있는 신호의 펄스 폭을 테스트하는 중입니다. 펄스는 모두 특정 폭이어야하며, 실제로 그런지 확인해야 합니다. 에지 트리거링은 신호가 지정된 것과 같으며 펄스 폭 측정은 사양과 다르지 않음을 보여 줍니다. 그러나 문제는 있을 것으로 예상됩니다.

펄스 폭 착오에 대한 테스트를 설정하려면 다음 단계를 수행합니다.

- 1. AUTOSET 버튼을 눌러 안정된 디스플레이를 트리거합니다.
- 2. AUTOSET 메뉴에서 단일 사이클 옵션 버튼을 눌러 신호의 단일 사이클을 보고 펄스 폭을 신속하게 측정합니다.
- 3. TRIG MENU 버튼을 눌러 트리거 메뉴를 표시합니다.
- 4. 종류 ► 펄스를 누릅니다.
- 5. **신호원 ►** CH1을 누릅니다.
- 6. 트리거 레벨 노브를 돌려 신호 하단 근처에 트리거 레벨을 설정합니다.
- 7. 시기 ► =(같음)을 누릅니다.
- 8. 범용 노브를 돌려 단계 2의 펄스 폭 측정에서 보고된 값으로 펄스 폭을 설정합니다.
- 9. 추가 ▶ 모드 ▶ 보통을 누릅니다.

보통 펄스에서 오실로스코프 트리거링을 사용하여 안정된 디스플레이를 얻을 수 있습니다.

1. 시기 옵션 버튼을 눌러 ≠, < 또는 >을(를) 선택합니다. 지정된 시기 조건을 만 족하는 착오 펄스가 있는 경우 오실로스코프가 트리거됩니다.

주석노트. 트리거 주파수 판독값은 오실로스코프가 트리거로 간주할 수 있는 이 벤트 주파수를 보여 주며, 펄스 폭 트리거 모드의 입력 신호 주파수보다 적을 수 있습니다.

비디오 신호에서 트리거링

의료 장비의 비디오 회로를 테스트하는 중이며 비디오 출력 신호를 표시해야 합니다. 비디오 출력은 NTSC 표준 신호입니다. 비디오 트리거를 사용하여 안정된 디스플레이를 얻습니다.

주석노트. 대부분의 비디오 시스템은 75 ohm 케이블링을 사용합니다. 오실로스코프 입력은 낮은 임피던스 케이블링을 올바르게 중단하지 않습니다. 부적절한 로딩과 반향으로 인해 진폭이 부정확해지는 현상을 방지하려면 신호 소스의 75 ohm 동축 케이블과 오실로스코프 BNC 입력 사이에 75 ohm 입력 통과형 터미네이터 (Tektronix 부품 번호 011-0055-02 또는 동급 제품)를 배치합니다.

비디오 필드에서 트리 거링

자동: 비디오 필드를 트리거하려면 다음 단계를 수행합니다.

1. AUTOSET 버튼을 누릅니다. 자동 설정이 완료되면 오실로스코프는 모든 필드에 동기화된 비디오 신호를 표시합니다.

자동 설정 기능을 사용하면 오실로스코프가 표준 옵션을 설정합니다.

1. AUTOSET메뉴에서 **홀수 필드** 또는 **짝수 필드** 옵션 버튼을 눌러 홀수나 짝수 필드에서만 동기화합니다.

설명서: 대체 방법에는 추가 단계가 필요하지만 비디오 신호에 따라 필요할 수 있습니다. 수동 방법을 사용하려면 다음 단계를 수행합니다.

- 1. CH 1 MENU 버튼을 누릅니다.
- 2. 커플링 ► AC를 누릅니다.
- 3. TRIG MENU 버튼을 눌러 트리거 메뉴를 표시합니다.
- 4. 상단 옵션 버튼을 누르고 비디오를 선택합니다.
- 5. **신호원 ►** CH1을 누릅니다.
- 6. 동기 옵션 버튼을 누르고 모든 필드, 홀수 필드 또는 짝수 필드를 선택합니다.
- 7. 표준 ► NTSC를 누릅니다.
- 8. 수평 SEC/DIV노브를 돌려 화면에서 전체 필드를 봅니다.
- 9. 수직 VOLTS/DIV 노브를 돌려 전체 비디오 신호가 화면에 표시되도록 합니다.

비디오 라인에서 트리 거링

자동: 필드에서 비디오 라인을 살펴볼 수도 있습니다. 비디오 라인을 트리거하려면 다음 단계를 수행합니다.

- 1. AUTOSET 버튼을 누릅니다.
- 2. 상단 옵션 버튼을 눌러 모든 라인에서 동기화할 라인을 선택합니다. (AUTOSET 메뉴에는 모든 라인과 라인 번호 옵션이 포함되어 있음)

설명서: 대체 방법에는 추가 단계가 필요하지만 비디오 신호에 따라 필요할 수 있습니다. 수동 방법을 사용하려면 다음 단계를 수행합니다.

- 1. TRIG MENU 버튼을 눌러 트리거 메뉴를 표시합니다.
- 2. 상단 옵션 버튼을 누르고 비디오를 선택합니다.
- 3. 동기 옵션 버튼을 누르고 모든 라인이나 라인 번호를 선택한 다음 범용 노브를 돌려 특정 라인 번호를 설정합니다.
- **4. 표준 ► NTSC**를 누릅니다.
- 5. SEC/DIV 노브를 돌려 화면에서 전체 비디오 라인을 봅니다.
- 6. VOLTS/DIV노브를 돌려 전체 비디오 신호가 화면에 표시되도록 합니다.

윈도우 기능을 사용하 여 파형 세부 사항 보기

윈도우(확대) 기능을 사용하여 주 디스플레이를 변경하지 않고 파형의 특정 부분을 검토할 수 있습니다.

주 디스플레이를 변경하지 않고 이전 파형에서 컬러 버스트를 자세히 보려면 다음 단계를 수행합니다.

- 1. HORIZ MENU 버튼을 눌러 수평 메뉴를 표시하고 주 옵션을 선택합니다.
- 2. 확대 범위 옵션 버튼을 누릅니다.
- 3. SEC/DIV 노브를 돌려 500ns를 선택합니다. 이것이 확장된 보기의 SEC/DIV 설정이 됩니다.
- 4. 수평 위치 노브를 돌려 확장할 파형 부분 주변에 위도우를 놓습니다.

- 1. 윈도우 옵션 버튼을 눌러 파형의 확장된 부분을 봅니다.
- 2. SEC/DIV 노브를 돌려 확장된 파형 보기를 최적화합니다.

주 보기와 윈도우 보기를 전환하려면 수평 메뉴에서 **주** 또는 **윈도우** 옵션 버튼을 누릅니다.

차동 통신 신호 분석

직렬 데이터 통신 링크에 간헐적인 문제가 있고 신호 품질이 불량한 것으로 의심됩니다. 직렬 데이터 스트림의 스냅숏을 표시하도록 오실로스코프를 설정하여 신호 레벨과 전환 시간을 확인할 수 있도록 합니다.

이것은 차동 신호이므로 오실로스코프의 Math 기능을 사용하면 더 나은 모습의 파형을 볼 수 있습니다.

주석노트. 먼저 두 프로브를 보정했는지 확인합니다. 프로브 보정의 차이는 여러 신호에서 오류로 나타납니다.

채널 1과 채널 2에 연결된 차동 신호를 활성화하려면 다음 단계를 수행합니다.

- 1. CH 1 MENU 버튼을 누르고 프로브 ► 전압► 감쇠 옵션을 10X로 설정합니다.
- 2. CH 2 MENU 버튼을 누르고 프로브 ► 전압► 감쇠 옵션을 10X로 설정합니다.
- 3. P2220 프로브에서 스위치를 10X로 설정합니다.
- 4. AUTOSET 버튼을 누릅니다.
- 5. MATH MENU 버튼을 눌러 Math 메뉴를 표시합니다.
- 6. 연산 옵션 버튼을 누르고 -를 선택합니다.
- 7. CH1-CH2 옵션 버튼을 눌러 표시된 파형 사이의 차이점인 새로운 파형을 표시합니다.
- 8. Math 파형의 수직눈금 및 위치를 조정하려면 다음 단계를 수행합니다.
 - a. 디스플레이에서 채널 1과 채널 2 파형을 제거합니다.
 - b. CH 1과 CH 2 VOLTS/DIV 및 수직 위치 노브를 돌려 Math 파형의 수직 스케일과 위치를 조정합니다.

보다 안정된 디스플레이를 위해 SINGLE SEQ 버튼을 눌러 파형의 획득을 제어합니다. SINGLE SEQ 버튼을 누를 때마다 오실로스코프는 디지털 데이터 스트림의 스냅숏을 획득합니다. 커서나 자동 측정을 사용하여 파형을 분석하거나 나중에 분석하기 위해 파형을 저장할 수 있습니다.

네트워크에서 임피던스 변경 보기

넓은 범위의 온도에서 작동해야 하는 회로를 설계했습니다. 주변 온도가 변하면 회로의 임피던스에서 변경 내용을 평가해야 합니다.

회로의 입력과 출력을 모니터하기 위해 오실로스코프를 연결하고 온도 변화에 따라 발생하는 변경 내용을 포착합니다.

XY 디스플레이에서 회로의 입력과 출력을 보려면 다음 단계를 수행합니다.

- 1. CH 1 MENU 버튼을 누릅니다.
- 2. **프로브 ► 전압 ►감쇠 ►** 10X를 누릅니다.
- 3. CH 2 MENU 버튼을 누릅니다.
- 4. **프로브 ► 전압 ► 감쇠 ► 10X**를 누릅니다.
- 5. 스위치를 P2220 프로브에서 10X로 설정합니다.

- 6. 채널 1 프로브를 네트워크의 입력에 연결하고 채널 2 프로브를 출력에 연결합니다.
- 7. AUTOSET 버튼을 누릅니다.
- 8. VOLTS/DIV 노브를 돌려 각 채널에 거의 같은 진폭의 신호를 표시합니다.
- 9. DISPLAY 버튼을 눌러 디스플레이 메뉴를 표시합니다.
- 10. 형식 ► XY를 누릅니다.

오실로스코프는 회로의 입력과 출력 특성을 표현하는 리사쥬 패턴을 표시합니다.

- 11. VOLTS/DIV 및 수직 위치 노브를 돌려 디스플레이를 최적화합니다.
- 12. 지속기능 ► 무한대를 누릅니다.
- 13. 명암 조정 옵션 버튼을 누르고 범용 노브를 돌려 디스플레이를 조정합니다. 주변 온도를 조정하면 디스플레이 지속기능은 회로 특성의 변경 내용을 포착합니다.

Math FFT

본 장에는 Math FFT(고속 퓨리에 변환)를 사용하는 방법에 대한 자세한 정보가 포함되어 있습니다. FFT Math 모드를 사용하여 시간 도메인(YT) 신호를 주파수 성분(스펙트럼)으로 변환할 수 있습니다. 다음과 같은 분석 유형에 대해 Math FFT모드를 사용할 수 있습니다.

- 전원선의 고조파 분석
- 시스템의 고조파 성분과 왜곡 측정
- DC 전원 공급의 노이즈 특성화
- 필터와 시스템의 임펄스 응답 테스트
- 진동 분석

Math FFT 모드를 사용하려면 다음 작업을 수행해야 합니다.

- 소스(시간 도메인) 파형 설정
- FFT 스펙트럼 표시
- FFT 윈도우의 종류 선택
- 샘플 속도를 조정하여 앨리아싱이 없이 기본 주파수와 고조파 표시
- 줌 컨트롤을 사용하여 스펙트럼 확대
- 커서를 사용하여 스펙트럼 측정

시간 도메인 파형 설정

FFT 모드를 사용하려면 시간 도메인(YT) 파형을 설정해야 합니다. 이렇게 하려면 다음 단계를 수행합니다.

- 1. AUTOSET을 눌러 YT 파형을 표시합니다.
- 2. 수직 위치 노브를 돌려 YT 파형을 수직으로 가운데(제로 구간)로 이동합니다. 이렇게 하면 FFT는 실제 DC 값을 표시하게 됩니다.
- 3. 수평 위치 노브를 화면 중앙의 8개 구간에서 분석할 YT 파형 부분에 배치합니다.

오실로스코프는 시간 도메인 파형의 중앙 2048포인트를 사용하여 FFT 스펙트럼을 계산합니다.

- 4. VOLTS/DIV 노브를 돌려 전체 파형이 화면에 남도록 합니다. 오실로스코프는 전체 파형을 볼 수 없는 경우 고주파수 성분을 추가하여 오류 FFT 결과를 표시할 수 있습니다.
- 5. SEC/DIV 노브를 돌려 FFT 스펙트럼에 필요한 해상도에 맞춥니다.
- 6. 가능하면 많은 신호 사이클이 표시되도록 오실로스코프를 설정합니다.

SEC/DIV 노브를 돌려 더 빠른 설정(사이클은 더 적음)을 선택하면 FFT 스펙트럼은 더 큰 주파수 범위를 표시하고 FFT 앨리아싱의 가능성이 줄어듭니다. (53페이지의 FFT 앨리아싱 참조) 그러나 오실로스코프는 적은 주파수 해상도도 표시합니다.

FFT 디스플레이를 설정하려면 다음 단계를 수행합니다.

- 1. MATH MENU 버튼을 눌러 Math 메뉴를 표시합니다.
- 2. 연산 ► FFT를 누릅니다.
- 3. Math FFT 소스 채널을 선택합니다.

대부분의 경우에 오실로스코프는 YT 파형이 트리거되지 않아도 유용한 FFT 스펙트럼을 생성할 수 있습니다. 이것은 특히 신호가 주기적이거나 랜덤(노이즈)인 경우에 적용됩니다.

주석노트. 일시적 파형이나 버스트 파형은 가능한 화면 가운데에 가깝게 트리거되고 배치됩니다.

나이퀴스트 주파수

실시간 디지타이징 오실로스코프가 오류 없이 측정할 수 있는 가장 높은 주파수는 샘플 속도의 절반입니다. 이 주파수를 나이퀴스트 주파수라고 합니다. 나이퀴스트 주파수보다 높은 주파수 정보는 FFT 앨리아싱으로 인해 언더샘플됩니다. (53 페이지의 FFT 앨리아싱 참조)

math 기능은 시간 도메인 파형의 중앙 2048 포인트를 FFT 스펙트럼으로 변환합니다. 그 결과 FFT 스펙트럼에는 DC(0Hz)에서 나이퀴스트 주파수로 이동하는 1024 포인트가 포함되어 있습니다.

일반적으로 디스플레이는 FFT 스펙트럼을 250 포인트로 수평 압축하지만 FFT 확대 기능을 사용하면 FFT 스펙트럼을 확대하여 FFT 스펙트럼의 각 1024 데이터 포인트에서 주파수 성분을 더욱 분명하게 표시할 수 있습니다.

주석노트. 오실로스코프 수직 응답은 대역폭(모델에 따라 40MHz, 60MHz, 100MHz 또는 200MHz, 대역폭 제한 옵션이 ON으로 설정되었을 때는 20MHz) 위로 느리게 표시됩니다. 그러므로 FFT 스펙트럼은 오실로스코프 대역폭보다 높은 유효한 주파수 정보를 표시할 수 있습니다. 그러나 대역폭 근처나 그 이상의 크기정보는 정확하지 않습니다.

FFT 스펙트럼 표시

MATH MENU 버튼을 눌러 Math 메뉴를 표시합니다. 메뉴의 옵션을 사용하여 소스 채널, 윈도우 알고리즘 및 FFT 확대 계수를 선택합니다. 한 번에 한 FFT 스펙트럼만 표시할 수 있습니다.

Math FFT 옵션	설정	설명
소스	CH1, CH2, CH3 ¹ , CH4 ¹	FFT 소스로 사용되는 채널 선택

Math FFT 옵션	설정	설명
창	Hanning, Flattop, Rectangular	FFT 윈도우 유형을 선택합니다.(51페이지의 <i>FFT 윈도우 선택</i> 참조)
FFT 확대	X1, X2, X5, X10	FFT 디스플레이의 수평 확대를 변경합니다. (54페이지의 <i>FFT 스펙트럼 확대 및 위치 조</i> 정 참조)

^{1 4}채널 오실로스코프에만 사용 가능합니다.

- 1. 가운데 계수선에 있는 주파수
- 2. 구간당 dB 단위의 수직눈금(0dB = $1V_{RMS}$)
- 3. 구간당 주파수 단위의 수평눈금
- 4. 초당 샘플 수의 샘플 속도
- 5. FFT 윈도우 유형

FFT 윈도우 선택

윈도우는 FFT 스펙트럼의 스펙트럼 누출을 줄입니다. FFT는 YT 파형이 영구적으로 반복된다고 가정합니다. 정수 사이클(1, 2, 3...)에서는 YT 파형이 동일한 진폭에서 시작하고 끝나며 신호 모양에 불연속이 없습니다.

YT 파형에 정수가 아닌 사이클이 포함되어 있으면 신호 시작 및 끝 포인트는 다른 진폭에 있게 됩니다. 시작과 끝 포인트 사이에 변화가 있을 경우 신호에 불연속이 발생하여 높은 주파수의 일시적 이벤트가 생성됩니다.

윈도우를 YT 파형에 적용하면 파형이 변하여 시작과 정지 값이 서로 가까이에 있게 되므로 불연속이 줄어듭니다.

Math FFT 기능은 세 개의 FFT 윈도우 옵션을 포함하고 있습니다. 각 윈도우 종류마다 주파수 해상도와 진폭 정확도 사이의 장단점이 있습니다. 측정할 내용과 소스 신호 특성을 사용하면 사용할 윈도우를 결정할 수 있습니다.

윈도우	측정	특성
Hanning	주기적 파형	Flattop보다 양호한 주파수, 불량한 크기 정확도
Flattop	주기적 파형	Hanning보다 양호한 크기, 불량한 주파수 정확도
Rectangular	펄스 또는 변이	불연속이 없는 파형을 위한 특수 용 도의 윈도우입니다. 윈도우가 없는 것과 같습니다.

FFT 앨리아싱

오실로스코프가 나이퀴스트 주파수보다 큰 주파수 구성 요소를 포함하는 시간 도메인 파형을 획득할 때 문제가 발생합니다. (50페이지의 *나이퀴스트 주파수* 참조) 나이퀴스트 주파수보다 위에 있는 파형 주파수 성분은 나이퀴스트 주파수 주변에 "다시 접히는" 낮은 주파수 성분으로 나타납니다. 이 잘못된 성분을 앨리아싱이라고 합니다.

앨리아싱 제거 앨리아싱을 제거하려면 다음 방법을 시도합니다.

- SEC/DIV 노브를 돌려 샘플 속도를 더 빠르게 설정합니다. 샘플 속도를 높이 면 나이퀴스트 주파수가 증가하기 때문에 앨리아싱 주파수 성분은 적절한 주 파수에서 나타납니다. 화면에 너무 많은 주파수 성분이 표시되면 FFT 확대 옵션을 사용하여 FFT 스펙트럼을 확대할 수 있습니다.
- 20MHz 이상의 주파수 성분을 볼 필요가 없으면 대역폭 제한 옵션을 On으로 설정합니다.
- 소스 신호 대역폭에 외부 필터를 사용하여 주파수에 대한 소스 파형을 나이퀴
 스트 주파수의 소스 파형보다 낮게 제한합니다.
- 앨리아싱 주파수를 인식 및 무시합니다.
- 줌 컨트롤과 커서를 사용하여 FFT 스펙트럼을 확대 및 측정합니다.

FFT 스펙트럼 확대 및 위치 조정

확대하고 커서를 사용하여 FFT 스펙트럼에서 측정을 수행할 수 있습니다. 오실 로스코프는 수평으로 확대하기 위한 FFT 확대 옵션을 포함하고 있습니다. 수직으 로 확대하기 위해 수직 컨트롤을 사용할 수 있습니다.

수평 확대 및 위치

FFT 확대 옵션을 사용하면 샘플 속도를 변경하지 않고 FFT 스펙트럼을 수평으로 확대할 수 있습니다. 줌 계수는 X1(기본값), X2, X5 및 X10입니다. 줌 계수 X1에서 파형은 계수선 중앙에 있고, 왼쪽 계수선은 OHz에 있으며 오른쪽 계수선은 나이퀴스트 주파수에 있습니다.

중 계수를 변경하면 FFT 스펙트럼은 가운데 계수선을 중심으로 확대됩니다. 즉, 수평 확대 축이 가운데 계수선입니다.

수평 위치 노브를 시계 방향으로 돌려 FFT 스펙트럼을 오른쪽으로 이동합니다. 제로로 설정 버튼을 눌러 스펙트럼 가운데를 계수선 중앙에 배치합니다.

수직 확대 및 위치

채널 수직 노브는 FFT 스펙트럼을 표시할 때 해당 채널에 대한 수직 확대와 위치 컨트롤이 됩니다. VOLTS/DIV 노브는 X0.5, X1(기본값), X2, X5 및 X10의 줌 계 수를 제공합니다. FFT 스펙트럼은 M 마커(화면 왼쪽 에지에서 math 파형 기준 포인트) 주변에 수직으로 확대됩니다.

수직 위치 노브를 시계 방향으로 돌려 소스 채널의 스펙트럼을 위쪽으로 이동합니다.

커서를 사용하여 FFT 스펙트럼 측정

FFT 스펙트럼에서 다음과 같은 두 가지를 측정할 수 있습니다. 크기(dB 단위) 및 주파수(Hz 단위). 크기는 0dB가 기준입니다. 여기서 0dB는 $1V_{RMS}$ 와 같습니다.

커서를 사용하여 모든 줌 계수에서 측정을 수행할 수 있습니다. 이렇게 하려면 다음 단계를 수행합니다.

- 1. CURSOR 버튼을 눌러 커서 메뉴를 표시합니다.
- 2. 신호원 ► MATH를 누릅니다.
- 3. 종류 옵션 버튼을 눌러 크기 또는 주파수를 선택합니다.
- 4. 범용 노브를 사용하여 커서 1과 2를 이동합니다.

수평 커서를 사용하여 주파수 측정을 위한 진폭과 수직 커서를 측정합니다. 옵션은 커서 1 위치의 값과 커서 2 위치의 값 사이의 절대차를 표시합니다. 절대차는 커서 1에서 커서 2를 뺀 절대값입니다.

주파수 커서

커서를 사용하지 않고도 주파수를 측정할 수 있습니다. 이렇게 하려면 수평 위치 노브를 돌려 가운데 계수선에 주파수 성분을 배치하고 디스플레이 오른쪽 상단에 서 주파수를 읽습니다.

USB 플래시 드라이브 및 장치 포트

이 장에서는 다음 작업을 수행하기 위해 오실로스코프에서 범용 직렬 버스(USB) 포트를 사용하는 방법에 대해 설명합니다.

- 파형 데이터 또는 설정 데이터를 저장 및 호출하거나 화면 이미지를 저장합니다.
- 화면 이미지 인쇄
- 파형 데이터, 설정 데이터 또는 화면 이미지를 PC에 전송합니다.
- 원격 명령을 사용하여 오실로스코프 제어

PC 통신 소프트웨어를 사용하려면 소프트웨어의 온라인 도움말을 실행하여 참조하십시오.

USB 플래시 드라이브 포트

오실로스코프의 전면에는 파일 저장용 USB 플래시 드라이브를 연결할 수 있는 USB 플래시 드라이브가 탑재되어 있습니다. 오실로스코프는 플래시 드라이브에 데이터를 저장하고 플래시 드라이브에서 데이터를 검색할 수 있습니다.

USB 플래시 드라이브 포트

주석노트. 오실로스코프는 스토리지 용량이 64GB 이하인 플래시 드라이브만 지 원합니다.

USB 플래시 드라이브를 연결하려면 다음 단계를 수행합니다.

- 1. 오실로스코프의 USB 플래시 드라이브 포트에 USB 플래시 드라이브를 정렬합니다. 플래시 드라이브는 설치에 알맞는 모양입니다.
- 2. 드라이브가 완전히 삽입될 때까지 플래시 드라이브를 포트에 삽입합니다.

LED가 있는 플래시 드라이브인 경우 오실로스코프가 드라이브에 데이터를 쓰거나 드라이브에서 데이터를 읽는 동안 드라이브가 "깜박"입니다. 또한 오 실로스코프는 플래시 드라이브가 활성화되면 이를 나타내기 위해 시계 기호 를 표시합니다.

파일이 저장되거나 검색되면 드라이브에 있는 LED(있는 경우)의 깜박임이 중 지되고 오실로스코프에 시계가 나타나지 않습니다. 또한 저장 또는 호출 작업 이 완료되었다는 것을 알리는 정보 라인이 표시됩니다. USB 플래시 드라이브를 제거하려면 드라이브에 있는 LED(있는 경우)의 깜박임이 중지될 때까지 기다리거나 작업이 완료되었다는 것을 알리는 정보 라인이 나타날 때까지 기다리고 드라이브의 가장자리를 잡아당긴 다음 포트에서 드라이브를 꺼냅니다.

플래시 드라이브 초기 판독 시간

오실로스코프는 드라이브를 설치할 때마다 USB 플래시 드라이브의 내부 구조를 판독합니다. 판독을 완료하는 데 걸리는 시간은 플래시 드라이브의 크기와 포맷 방법 및 드라이브에 저장된 파일의 수에 따라 다릅니다.

주석노트. 64MB 이상의 USB 플래시 드라이브 초기 판독 시간을 크게 단축시키려면 PC에 있는 드라이브를 포맷합니다.

플래시 드라이브 포맷팅

포맷 기능은 USB 플래시 드라이브에서 모든 데이터를 삭제합니다. 플래시 드라이브를 포맷하려면 다음 단계를 수행합니다.

- 1. 오실로스코프 전면에 있는 플래시 드라이브 포트에 USB 플래시 드라이브를 삽입합니다.
- 2. UTILITY 버튼을 눌러 유틸리티 메뉴를 표시합니다.
- 3. 파일 유틸리티 ► 계속 ► 포맷을 누릅니다.
- 4. 예를 선택하여 플래시 드라이브를 포맷합니다.

플래시 드라이브 용량

오실로스코프는 USB 플래시 드라이브 메모리 1MB당 다음과 같은 유형의 파일을 다음 개수만큼 저장할 수 있습니다.

- 5개의 모두 저장 작업. (61페이지의 *파일에 모두 저장* 참조) (84페이지의 *모두 저장* 참조)
- 16개의 화면 이미지 파일(용량은 이미지 형식에 따라 다름)(62페이지의 *파일* 에 이미지 저장 참조) (85페이지의 그림 저장 참조)
- 250개의 오실로스코프 설정(.SET) 파일. (85페이지의 *설정 저장* 참조)
- 18개의 파형(.CSV) 파일. (86페이지의 *파형 저장* 참조)

파일 관리 규약

오실로스코프는 데이터 저장에 대해 다음 파일 관리 규약을 사용합니다.

- 파일을 쓰기 전에 USB 플래시 드라이브의 사용 가능한 공간을 확인하고 사용 가능한 메모리가 충분하지 않을 경우 경고 메시지를 표시합니다.
- 용어 "폴더"는 USB 플래시 드라이브상의 디렉토리 위치를 의미합니다.
- 파일 저장 또는 파일 호출 기능을 위한 기본 위치는 현재 폴더입니다.
- A:₩는 루트 폴더입니다.
- 오실로스코프 전원을 켜거나 전원을 켠 후 USB 플래시 드라이브를 넣으면 오 실로스코프가 현재 폴더를 A:₩로 재설정합니다.

- 파일 이름은 1~8개의 문자로 구성되며 뒤에 마침표와 1~3개의 문자로 된 확 장명이 붙습니다.
- 오실로스코프에는 운영 체제의 단축 파일 이름과 함께 PC 운영 체제에서 만든 긴 파일 이름이 표시됩니다.
- 파일 이름은 대/소문자를 구분하지 않고 대문자로 표시됩니다.

파일 유틸리티 메뉴를 사용하여 다음 작업을 수행할 수 있습니다.

- 현재 폴더의 내용을 나열합니다.
- 파일이나 폴더를 선택합니다.
- 다른 폴더를 탐색합니다.
- 파일 및 폴더를 만들고, 이름을 변경하고, 삭제합니다.
- USB 플래시 드라이브를 포맷합니다.

(96페이지의 *USB 플래시 드라이브의 파일 유틸리티* 참조)

USB 플래시 드라이브가 포함된 파일 저장 및 호출

파일 저장을 위해 USB 플래시 드라이브를 작동하는 방법은 두 가지가 있습니다.

- Save/Recall 메뉴 사용
- PRINT 버튼의 대체 저장 기능 사용

다음 Save/Recall 메뉴 옵션을 사용하여 USB 플래시 드라이브에 데이터를 쓰거나 USB 플래시 드라이브에서 데이터를 검색할 수 있습니다.

- 이미지 저장
- 설정 저장
- 파형저장
- 설정 호출
- 파형 호출

주석노트. 플래시 드라이브에 파일을 빨리 저장하기 위해 PRINT 버튼을 저장 버튼으로 사용할 수 있습니다. 한번에 많은 파일을 저장하거나 이미지를 차례대로 저장하는 방법에 대한 정보는 Print 버튼의 저장 기능 사용을 참조하십시오. (61 페이지의 *PRINT 전면 패널 버튼의 저장 기능 사용* 참조)

그림저장, 설정 저장 및 저장 옵션

Save/Recall 메뉴를 사용하여 USB 플래시 드라이브의 파일에 화면 이미지, 오실 로스코프 설정 또는 파형 데이터를 저장할 수 있습니다.

각 저장 옵션은 유사한 방법으로 작동됩니다. 예와 같이 화면 이미지 파일을 플래시 드라이브에 저장하려면 다음 단계를 수행합니다.

- 1. USB 플래시 드라이브를 USB 플래시 드라이브 포트에 삽입합니다.
- 2. UTILITY ▶ 옵션 ▶ 프린터 설정을 누르고 다음 옵션을 설정합니다.

잉크 절약	On, Off	On을 선택하면 흰색 배경에 화면 이미지가 인쇄됩니다.
인쇄방향	세로 방향, 가로 방 향	프린터 출력 방향

- 3. 저장하려는 화면에 액세스합니다.
- 4. SAVE/RECALL 전면 패널 버튼을 누릅니다.
- 5. 실행 ▶ 그림저장 ▶ 저장 옵션을 선택합니다.

오실로스코프는 현재 폴더에 화면 이미지를 저장하고 파일 이름을 자동으로 생성합니다. (84페이지의 Save/Recall 참조)

설정 호출 및 파형 호출 옵션

Save/Recall 메뉴를 사용하여 USB 플래시 드라이브에 있는 파일에서 오실로스코 프 설정 또는 파형 데이터를 호출할 수 있습니다.

각 호출 옵션은 유사한 방법으로 작동됩니다. 예와 같이 USB 플래시 드라이브에서 파형 파일을 호출하려면 다음 단계를 수행합니다.

- 1. 원하는 파형 파일이 포함되어 있는 USB 플래시 드라이브를 오실로스코프 전 면에 있는 USB 플래시 드라이브에 삽입합니다.
- 2. SAVE/RECALL 전면 패널 버튼을 누릅니다.
- 3. 실행 ▶ 파형 호출 ▶ 파일 선택 옵션을 선택합니다.

폴더 변경 옵션을 사용하여 플래시 드라이브의 다른 폴더를 탐색할 수 있습니다.

- 4. 범용 노브를 돌려 호출할 파형 파일을 선택합니다.
 - 스크롤하면 호출 옵션의 파일 이름이 변경됩니다.
- 5. 위치 옵션을 선택하여 RefA 또는 RefB로 파형을 호출할 기준 메모리 위치를 지정합니다. 4채널 모델에서는 RefC와 RefD를 사용할 수 있습니다.
- 6. FnnnnCHx.CSV가 파형 파일 이름인 Recall FnnnnCHx.CSV 옵션 버튼을 누릅니다.

주석노트. 하나의 파형 파일이 포함되어 있는 플래시 드라이브의 폴더인 경우 SAVE/RECALL ► 실행 ► 파형 호출 ► 위치 옵션을 선택하고 파형을 호출할 기준 메모리 위치를 지정합니다. 파일 이름이 호출 옵션(84페이지의 Save/Recall 참조)에 나타납니다.

PRINT 전면 패널 버튼의 저장 기능 사용

PRINT 전면 패널 버튼을 설정하여 대체 기능으로 USB 플래시 드라이브에 데이터를 쓸 수 있습니다. 데이터를 저장하도록 PRINT 버튼의 기능을 설정하려면 다음 옵션 중 하나에 액세스합니다.

- SAVE/RECALL ► 모두 저장 ► PRINT 버튼
- UTILITY ►옵션 ► 프린터 설정

주석노트. USB 플래시 드라이브에 데이터를 쓰는 대체 저장 기능을 나타내도록 PRINT 버튼 옆의 LED가 켜집니다.

파일에 모두 저장

파일에 모두 저장 옵션을 사용하면 USB 플래시 드라이브에 있는 파일에 현재 오실로스코프 정보를 저장할 수 있습니다. 일반적으로 파일에 모두 저장을 한 번 실행하면 플래시 드라이브에서 700KB 미만의 공간이 사용됩니다.

USB 플래시 드라이브에 데이터를 저장하려면 PRINT 전면 패널 버튼을 대체 저장 기능으로 변경해야 합니다. 이렇게 하려면 SAVE/RECALL ► 모두 저장 ► PRINT 버튼 ► 파일에 모두 저장 옵션을 선택합니다.

USB 플래시 드라이브에 모든 오실로스코프 파일을 저장하려면 다음 단계를 수행합니다.

- 1. USB 플래시 드라이브 포트에 USB 플래시 드라이브를 삽입합니다.
- 2. 현재 폴더로 지정된 폴더를 변경하려면 **폴더 선택** 옵션 버튼을 누르십시오. 오실로스코프는 PRINT 전면 패널 버튼을 누를 때마다 현재 폴더 내에 새 폴 더를 만들고 폴더 이름을 자동으로 생성합니다.
- 3. 오실로스코프를 설정하여 데이터를 포착합니다.
- 4. PRINT(저장) 버튼을 누릅니다.

오실로스코프는 플래시 드라이브에 새 폴더를 만들고 현재 오실로스코프 및 파일 형식 설정을 사용하여 해당 새 폴더의 개별 파일에 화면 이미지, 파형 데이터 및 설정 데이터를 저장합니다. 오실로스코프는 폴더 이름을 ALLnnnn으로 지정합니다. (84페이지의 *Save/Recall* 참조)

파일에 모두 저장 기능을 사용하여 만들어진 파일 목록을 보려면 UTILITY ▶파일 유틸리티 메뉴에 액세스합니다.

소스	파일 이름
CH(x)	FnnnnCHx.CSV, 여기에서 nnnn은 자동으로 생성되 는 번호이며 x는 채널 번호입니다.
MATH	FnnnnMTH.CSV
Ref(x)	FnnnnRFx.CSV, 여기에서 x는 기준 메모리 문자입 니다.
화면 이미지	FnnnnTEK.???, 여기에서 ???는 현재 파일 형식입 니다.
설정	FnnnnTEK.SET

파일 형식	내용 및 용도
.CSV	2,500개의 각 파형 데이터 포인트에 대한 시간(트리 거에 상대적인)과 진폭 값을 나열하는 ASCII 텍스 트 문자열이 포함되어 있으며, .CSV 파일을 다양한 스프레드시트 및 연산 분석 애플리케이션으로 가 져올 수 있습니다.
.SET	오실로스코프 설정의 ASCII 텍스트 문자열이 포함되어 있으며 문자열을 디코드하려면 TDS200, TDS1000/2000, TDS1000B/2000B 및 TPS2000시리즈 디지털 오실로스코프 프로그래머 설명서를 참조하십시오.
화면 이미지	파일을 스프레드시트와 워드프로세싱 애플리케이 션으로 가져오며, 이미지 파일 형식은 애플리케이션 에 따라 다릅니다.

주석노트. 오실로스코프는 기본값 설정 버튼을 눌러도 변경할 때까지는 이러한 설정을 저장합니다.

파일에 이미지 저장

이 옵션을 사용하면 오실로스코프 화면 이미지를 TEKnnnn.???라는 파일에 저장할 수 있으며, 여기에서 .???은 현재 이미지 저장 형식입니다. 다음 표는 파일 형식을 나열합니다.

파일 형식	확장명	설명
ВМР	ВМР	이 비트맵 형식은 손실이 없는 알고 리즘을 사용하며 대부분의 워드 프로 세싱 및 스프레드시트 프로그램과 호 환됩니다.
EPSIMAGE	EPS	포스트스크립트 형식
JPEG	JPG	이 비트맵 형식은 손실이 없는 알고 리즘을 사용하며 디지털 카메라 및 기타 디지털 사진 애플리케이션에 일 반적으로 사용됩니다.
PCX	PCX	DOS 페인트 브러시 형식
RLE	RLE	Run-length 인코딩: 이 형식은 손 실이 없는 압축 알고리즘을 사용합 니다.
TIFF	TIF	태그가 있는 이미지 파일 형식

USB 플래시 드라이브에 데이터를 저장하려면 PRINT 버튼을 대체 저장 기능으로 변경해야 합니다. 이렇게 하려면 SAVE/RECALL ► 모두 저장 ► PRINT 버튼 ► 파 일에 이미지 저장 옵션을 선택합니다. 대체 기능을 나타내기 위해 PRINT 버튼 옆 의 저장 LED가 켜집니다. USB 플래시 드라이브에 화면 이미지를 저장하려면 다음 단계를 수행합니다.

- 1. USB 플래시 드라이브를 USB 플래시 드라이브 포트에 삽입합니다.
- 2. 현재 폴더로 지정된 폴더를 변경하려면 폴더 선택 옵션 버튼을 누릅니다.
- 3. 저장하려는 화면에 액세스합니다.
- 4. PRINT(저장) 버튼을 누릅니다.

오실로스코프가 화면 이미지를 저장하고 파일 이름을 자동으로 생성합니다.

파일에 모두 저장 기능을 사용하여 만들어진 파일 목록을 보려면 UTILITY ► 파일 유틸리티 메뉴에 액세스합니다.

USB 장치 포트

USB 케이블을 사용하여 오실로스코프를 PC에 연결하거나 PictBridge 호환 프린 터에 연결할 수 있습니다. USB 장치 포트는 오실로스코프의 후면에 있습니다.

USB 장치 포트

PC에 PC 통신 소프트웨어 설치

오실로스코프를 PC에 연결하려면 오실로스코프와 함께 제공된 CD에서 PC 통신소프트웨어를 설치해야 합니다.

주의. 소프트웨어를 설치하기 전에 오실로스코프를 PC에 연결한 경우 PC에서 오실로스코프를 인식하지 못합니다. PC에서 오실로스코프를 알 수 없는 장치로 인식하여 오실로스코프와 통신할 수 없습니다. 이를 방지하려면 오실로스코프를 PC에 연결하기 전에 PC에 소프트웨어를 설치합니다.

주석노트. 오실로스코프와 함께 제공된 PC 통신 소프트웨어와 같은 버전 또는 그 이상의 버전을 설치했는지 확인하십시오.

Tektronix 웹 사이트에 있는 Software finder를 사용하여 오실로스코프에 대한 소프트웨어를 찾을 수 있습니다. PC 통신 소프트웨어를 설치하려면 다음 단계를 수행합니다.

- 1. PC의 CD 드라이브에 오실로스코프와 함께 제공된 CD-ROM을 넣습니다. 화면에 InstallShield 마법사가 나타납니다.
- 2. 화면의 지시를 따릅니다.
- 3. InstallShield 마법사를 종료합니다.

PC에 연결

PC에 소프트웨어를 설치하면 오실로스코프를 PC에 연결할 수 있습니다.

주석노트. 소프트웨어를 설치한 후 오실로스코프를 PC에 연결해야 합니다. (63 페이지의 *PC에 PC 통신 소프트웨어 설치* 참조)

오실로스코프를 PC에 연결하려면 다음 단계를 수행합니다.

- 1. 오실로스코프의 전원을 켭니다.
- 2. USB 케이블의 한쪽 끝을 오실로스코프의 뒤쪽에 있는 USB 장치 포트에 삽입합니다.
- 3. PC의 전원을 켭니다.
- 4. PC에서 원하는 USB 포트에 케이블의 다른쪽 끝을 삽입합니다.
- 5. 새 하드웨어 발견 메시지가 나타나면 새 하드웨어 발견 마법사에 대해 화면에 나타나는 지침을 따릅니다.

웹 사이트에서 설치할 하드웨어를 검색하지 마십시오.

- 6. Windows XP 시스템인 경우 다음 단계를 수행합니다.
 - a. Tektronix PictBridge 장치 대화 상자가 나타나면 취소를 클릭합니다.
 - b. 메시지가 나타나면 Windows를 Windows 업데이트에 연결하지 않음 옵션을 선택하고 다음을 클릭합니다.
 - c. 다음 창에서 USB 테스트 및 측정 장치에 대한 소프트웨어를 설치하고 있는지 확인해야 합니다. USB 테스트 및 측정 장치 소프트웨어를 확인할 수 없으면 오실로스코프와 함께 제공된 소프트웨어가 제대로 설치되지 않습니다.
 - d. 소프트웨어를 자동으로 설치하는 옵션(권장 옵션)을 선택하고 다음을 클릭합니다.

Windows에 오실로스코프에 대한 드라이버가 설치됩니다.

e. 단계 B에서 USB 테스트 및 측정 장치가 확인되지 않거나 Windows에서 소프트웨어 드라이버를 찾을 수 없는 경우 오실로스코프와 함께 제공된 소 프트웨어가 제대로 설치되지 않습니다.

이러한 경우 취소를 클릭하여 새 하드웨어 발견 마법사를 종료합니다. 마법사를 종료할 수 없습니다.

오실로스코프에서 USB 케이블을 분리하고 오실로스코프와 함께 제공된 소프트웨어를 설치합니다.

오실로스코프를 PC에 다시 연결하고 6a, 6b, 6c 및 6d 단계를 수행합니다.

- f. 마침을 클릭합니다.
- g. 테스트 및 측정 장치라고 표시된 대화 상자가 나타나면 Windows에서 수 행할 작업을 선택한 다음 확인을 클릭합니다.
- 7. Windows 2000 시스템인 경우
 - a. 메시지가 나타나면 Windows에서 알려진 드라이버의 목록을 표시하도록 옵션을 선택하고 다음을 클릭합니다.
 - b. 다음 창에서 USB 테스트 및 측정 장치를 선택합니다. USB 테스트 및 측정 장치 선택을 확인할 수 없으면 오실로스코프와 함께 제공된 소프트웨어가 제대로 설치되지 않습니다.
 - c. 다음 창에서 다음를 클릭하여 Windows에 오실로스코프에 대한 드라이버 를 설치합니다.

Windows에 오실로스코프에 대한 드라이버가 설치됩니다.

d. 단계 b에서 USB 테스트 및 측정 장치가 확인되지 않거나 Windows에서 소프트웨어 드라이버를 찾을 수 없는 경우 오실로스코프와 함께 제공된 소 프트웨어가 제대로 설치되지 않습니다.

이러한 경우 취소를 클릭하여 새 하드웨어 발견 마법사를 종료합니다. 마법사를 종료할 수 없습니다.

오실로스코프에서 USB 케이블을 분리하고 오실로스코프와 함께 제공된 소프트웨어를 설치합니다.

오실로스코프를 PC에 다시 연결하고 7a, 7b 및 7c 단계를 수행합니다.

- 8. 메시지가 나타나면 마침을 클릭합니다.
- 9. CD를 넣을 것인지 묻는 메시지가 나타나면 취소를 클릭합니다.
- 10. PC에서 PC 통신 소프트웨어를 실행합니다.
- 11. 오실로스코프와 PC가 통신되지 않는 경우 PC 통신 온라인 도움말 및 설명서 를 참조하십시오.

GPIB 시스템에 연결

오실로스코프와 GPIB 시스템 간을 통신하려면 TEK-USB-488 어댑터를 사용하고 다음 단계를 수행합니다.

1. USB 케이블을 사용하여 오실로스코프를 TEK-USB-488 어댑터에 연결합니다.

액세서리 부록에는 어댑터를 주문하는 방법에 대한 정보가 포함되어 있습니다. (111페이지의 액세서리 참조)

2. GPIB 케이블을 사용하여 TEK-USB-488 어댑터를 GPIB 시스템에 연결합니다.

- 3. UTILITY ► 옵션 ► GPIB 셋업 ► 주소 옵션 버튼을 눌러 어댑터에 적절한 주소를 선택하거나 범용 노브를 사용합니다. 기본 GPIB 주소는 1입니다.
- 4. GPIB 시스템에서 GPIB 소프트웨어를 실행합니다.
- 5. 오실로스코프와 GPIB 시스템을 통신하지 못한 경우 GPIB 시스템의 소프트웨어에 대한 정보 및 TEK-USB-488 어댑터에 대한 사용 설명서를 참조하여 문제를 해결하십히오.

명령 항목

주석노트. 전체 명령 정보는 TDS200, TDS1000/2000, TDS1000B/2000B 및 TPS2000 시리즈 디지털 오실로스코프 프로그래머 설명서 071-1075-XX를 참조하십시오.

프리터에 연결

오실로스코프를 PictBridge 호환 프린터에 연결하면 오실로스코프와 프린터의 전원을 켜거나 끌 수 있습니다. 오실로스코프를 PictBridge 호환 프린터에 연결하려면 다음 단계를 수행합니다.

- 1. USB 케이블의 한쪽 끝을 오실로스코프에 있는 USB 장치 포트에 삽입합니다.
- 2. 케이블의 다른쪽 끝을 PictBridge 호환 프린터에 있는 PictBridge 포트에 삽입합니다. 프린터의 제품 설명서를 참조하여 포트를 찾습니다.
- 3. 연결을 테스트하려면 다음 절차에 설명된 대로 인쇄하도록 오실로스코프를 설정합니다.

주석노트. 프린터 전원이 켜져 있는 경우에만 프린트에서 오실로스코프를 인식합니다.

오실로스코프에서 프린터에 연결할 것인지 묻는 메시지가 나타나고 프린터가 연결되었다는 메시지가 나타나면 프린터 전원을 켜야 합니다.

화면 이미지 인쇄

PictBridge 호환 프린터를 설정하려면 다음 단계를 수행합니다.

- 1. 오실로스코프와 프린터 전원을 켭니다.
- 2. UTILITY ► 옵션 ► 프린터 설정 ► PRINT 버튼을 누르고 인쇄 옵션을 선택합 니다
- 3. 잉크 절약 옵션을 기본 설정인 On으로 설정합니다.
- 4. 계속 2/3 쪽과 계속 3/3 쪽 옵션 버튼을 눌러 프린터를 설정합니다. 오 실로스코프에서 프린터를 질의하고 프린터를 지원하는 값과 옵션만 표시합니다.

어떤 설정을 선택해야 할지 확실하지 않으면 각 옵션에 대해 기본값을 선택합 니다.

5. 화면 이미지를 인쇄하려면 PRINT 전면 패널 버튼을 누릅니다.

오실로스코프가 화면 이미지를 포착하는 데는 몇 초 정도 걸립니다. 프린터 설정과 인쇄 속도는 데이터를 인쇄하는 데 걸리는 시간에 따라 다릅니다. 선택한 형식에 따라 시간이 더 걸릴 수 있습니다.

주석노트. 프린터가 인쇄하는 동안 오실로스코프를 사용할 수 있습니다.

6. 인쇄에 실패한 경우 USB 케이블이 프린터에 있는 PictBridge 포트에 연결되어 있는지 확인하고 다시 시도하십시오.

주석노트. 오실로스코프에서는 사용자가 기본값 설정 버튼을 눌러 설정을 변경 하거나 오실로스코프의 전원을 끌 때까지는 이러한 설정을 저장합니다.

주석노트. 화면 이미지를 프린터에 전송하는 것을 중지하려면 **인쇄 취소**를 누릅니다.

기준

이 장에서는 각 전면 패널 메뉴 버튼이나 컨트롤과 관련된 메뉴와 작동 세부 사항에 대해 설명합니다.

획득

ACQUIRE 버튼을 눌러 획득 매개변수를 설정합니다.

옵션	설정	설명
샘플		대부분의 파형을 획득하고 정확하 게 표시하는 데 사용하는 기본 모드 입니다.
피크 검출		글리치를 검출하고 앨리아싱의 가능 성을 줄이는 데 사용합니다.
평 균		신호 디스플레이에서 랜덤 노이즈 나 관련이 없는 노이즈를 줄이는 데 사용합니다. 평균 횟수는 선택할 수 있습니다.
평균 횟수	4, 16, 64, 128	평균 횟수를 선택합니다.

요점 간헐적이고 좁은 글리치가 포함된 노이즈 구형파 신호를 프로브하는 경우 표시되는 과형은 사용자가 선택한 획득 모드에 따라 다릅니다.

샘플: 샘플 획득 모드를 사용하여 2,500 포인트를 획득하고 SEC/DIV 설정에서 표시합니다. 샘플 모드는 기본 모드입니다.

샘플 획득 간격(2,500)

• 샘플 포인트

샘플 모드는 각 간격에서 단일 샘플 포인트를 획득합니다.

다음 속도로 오실로스코프를 샘플링합니다.

- 40MHz 모델의 경우 최소 500MS/s
- 60MHz 또는 100MHz 모델의 경우 최대 1GS/s
- 200MHz 모델의 경우 최대 2GS/s

100ns 이상의 설정에서 이 샘플 속도는 2,500 포인트를 획득하지 않습니다. 이런 경우 디지털 신호 프로세서는 샘플링된 포인트 사이의 포인트를 보간하여 2,500 포인트 파형 레코드를 만듭니다.

피크 검출: 피크 검출 획득 모드를 사용하여 10ns만큼 좁은 글리치를 검출하고 앨리아싱의 가능성을 제한합니다. 이 모드는 5ms/div 이하의 SEC/DIV 설정에서 효과적입니다.

피크 검출 획득 간격(1250)

• 표시된 샘플 포인트

피크 검출 모드는 각 간격에서 가장 높고 가장 낮은 획득 전압을 표시합니다.

주석노트. SEC/DIV 설정을 2.5ms/div 이상으로 설정하면 샘플 속도는 피크 검출이 필요하지 않을 만큼 충분히 빠르기 때문에 획득 모드는 샘플로 변경됩니다. 오실로스코프는 모드가 샘플로 변경되었음을 알려 주는 메시지를 표시하지 않습니다.

충분한 파형 노이즈가 있으면 일반적인 피크 검출 디스플레이는 큰 검정 영역을 보여줍니다. 오실로스코프는 디스플레이 성능을 향상시키기 위해 이 영역을 대각 선으로 채워 표시합니다.

일반적인 피크 검출 디스플레이

TDS1000B/2000B 피크 검출 디스플 레이

평균: 평균 획득 모드를 사용하여 표시할 신호에서 랜덤 또는 관련 없는 노이즈를 줄일 수 있습니다. 데이터는 샘플 모드에서 획득되며, 많은 파형이 평균화됩니다. 획득 횟수(4, 16, 64 또는 128)를 선택하여 파형에 대해 평균화합니다.

RUN/STOP 버튼: 오실로스코프가 파형을 연속적으로 획득하도록 하려면 RUN/STOP 버튼을 누릅니다. 버튼을 다시 눌러 획득을 정지합니다.

SINGLE SEQ 버튼: 오실로스코프가 단발적인 파형을 획득한 다음 정지하도록 하려면 SINGLE SEQ 버튼을 누릅니다. SINGLE SEQ 버튼을 누를 때마다 오실로스코프는 다른 파형을 획득하기 시작합니다. 오실로스코프가 트리거를 검출하면 획득이 완료되어 정지됩니다.

획득 모드	SINGLE SEQ 버튼
샘플, 피크 검출	하나의 획득이 끝나면 시퀀스가 완료됩니다.
평균	정의된 획득 수에 도달하면 시퀀스가 완료됩니다. (69페이지의 <i>획득</i> 참조)

스캔 모드 디스플레이: 수평 스캔 획득 모드(롤 모드라고도 함)를 사용하여 느리게 변하는 신호를 지속적으로 모니터할 수 있습니다. 오실로스코프는 화면 왼쪽에서 오른쪽으로 파형 업데이트를 표시하고 새 포인트를 표시할 때 기존 포인트를 삭제합니다. 화면에서 이동하는 한 구간 넓이의 빈 구역은 새 파형 포인트를 기존 포인트와 구분합니다.

SEC/DIV 노브를 100ms/div 이하로 돌리고 트리거 메뉴에서 자동 모드 옵션을 선택하면 오실로스코프는 스캔 획득 모드로 변경됩니다.

스캔 모드를 비활성화하려면 TRIG MENU 버튼을 누르고 모드 옵션을 보통으로 설정합니다.

획득 정지: 획득을 실행하는 동안 파형 디스플레이는 계속 표시됩니다. RUN/STOP 버튼을 눌러 획득을 정지하면 디스플레이가 고정됩니다. 어느 모드에서나 수직 및 수평 컨트롤을 사용하여 파형 디스플레이의 눈금이나 위치를 지정할 수 있습니다.

자동 범위

자동 범위 버튼을 누르면 오실로스코프는 자동 범위 기능을 활성화하거나 비활성 화합니다. 기능이 활성화되면 자동 범위 버튼 옆의 LED가 켜집니다.

이 기능은 신호를 추적하기 위해 설정 값을 자동으로 조정합니다. 신호가 변경되어도 이 설정은 신호를 계속 추적합니다. 오실로스코프 전원을 켤 때 자동 범위 설정은 항상 비활성화되어 있습니다.

옵션	설명
자동 범위 설정	자동 범위 기능을 활성화하거나 비활성화하며 활성 화되면 옆의 LED가 켜집니다.
수직 및 수평	두 축 모두 추적 및 조정
수직만	수직눈금을 추적 및 조정하고 수평 설정은 변경하 지 않습니다.

옵션	설명
수평만	수평눈금을 추적 및 조정하고 수직 설정은 변경하 지 않습니다.
자동 범위 설정 취소	오실로스코프가 이전 설정을 호출하도록 합니다.

다음 조건은 자동 범위가 설정을 조정하도록 합니다.

- 트리거 소스를 선명하게 표시하기에는 파형 주기가 너무 많거나 너무 적은 경우(수직만 제외)
- 파형 진폭이 너무 크거나 너무 작은 경우(수평만 제외)
- 이상적인 트리거 레벨 변경

자동 범위 버튼을 누르면 오실로스코프는 컨트롤을 조정하여 입력 신호의 유용한 디스플레이를 생성합니다.

설정
샘플
YT
Off
조정됨
주
실행
조정됨
DC
최소
조정됨
에지
전체
Off
DC
Off
조정됨

오실로스코프의 설정에 대한 다음과 같은 변경 내용은 자동 범위 설정을 비활성화합니다.

- VOLTS/DIV는 수직 자동 범위 설정을 비활성화
- SEC/DIV는 수평 자동 범위 설정을 비활성화
- 채널 파형을 표시 또는 제거
- 트리거 설정
- 단일 시퀀스 획득 모드
- 설정 호출

- XY 디스플레이 형식
- 지속

다음과 같은 조건에서는 대개 자동 범위 기능이 자동 설정보다 더 유용합니다.

- 동적으로 변하는 신호 분석
- 오실로스코프를 조정하지 않고 여러 신호의 시퀀스를 신속하게 비교하는 경우. 이것은 두 프로브를 동시에 사용해야 하거나 한 손에는 프로브를 잡고 다른 손으로는 다른 것을 잡아야 하는 경우 매우 유용합니다.
- 오실로스코프가 자동으로 조정하는 설정을 제어

주파수에 따라 신호는 변하지만 진폭은 비슷한 경우 수평만 자동 범위 설정을 사용할 수 있습니다. 오실로스코프는 수평 설정은 조정하지만 수직 설정은 변경하지 않습니다. 이런 식으로 수직눈금 변경은 신경쓰지 않고 신호의 진폭을 눈으로 예측할 수 있습니다. 수직만 자동 범위 설정도 비슷하게 작동합니다. 수직 매개 변수는 조정되고 수평 매개 변수는 변경되지 않습니다.

자동 설정

AUTOSET 버튼을 누르면 오실로스코프는 파형의 종류를 식별하고 컨트롤을 조정하여 입력 신호의 유용한 디스플레이를 생성합니다.

기능	설정
획득 모드	샘플 또는 피크 검출로 조정
커서	Off
디스플레이 형식	YT로 설정
디스플레이 유형	비디오 신호의 경우 도트로 설정, FFT 스펙트럼 의 경우 벡터로 설정, 그 외에는 변경되지 않음
수평 위치	조정됨
SEC/DIV	조정됨
트리거 커플링	DC, 잡음제거 또는 HF 제거로 조정됨
트리거 지연	최소
트리거 레벨	50%로 설정
트리거 모드	자동
트리거 소스	조정됨, 이 테이블 뒤에 있는 정보 참조, EXT TRIG 신호에서 자동 설정을 사용할 수 없음
트리거 기울기	조정됨
트리거 유형	에지 또는 비디오
비디오 트리거 극성	보통
트리거 비디오 동기	조정됨
트리거 비디오 표준	조정됨
수직 대역폭	전체

기능	설정
수직 커플링	DC(이전에 GND가 선택된 경우), 비디오 신호의 경우 AC, 그 외에는 변경되지 않음
VOLTS/DIV	조정됨

Autoset 기능은 신호에 대해 모든 채널을 검사하고 해당하는 파형을 표시합니다. 또한 자동 설정은 다음 조건에 따라 트리거 소스를 결정합니다.

- 여러 채널에 신호가 있는 경우 오실로스코프는 주파수 신호가 가장 낮은 채널을 표시합니다.
- 신호가 없는 경우 Autoset이 호출되면 오실로스코프는 가장 낮은 번호의 채널을 표시합니다.
- 신호가 없고 채널이 표시되지 않으면 오실로스코프는 채널 1을 표시하고 사용합니다.

Autoset을 사용 중일 때 오실로스코프가 신호 유형을 결정할 수 없으면 오실로스 코프는 수평눈금과 수직눈금을 조정한 다음 평균 및 첨두치 자동 측정을 수행합니다.

다음과 같은 조건에서는 일반적으로 자동 설정 기능이 자동 범위보다 더 유용합니다.

- 안정된 신호 하나의 문제를 해결하려는 경우
- 측정된 신호를 자동으로 표시하려는 경우
- 신호를 표시하는 방법을 쉽게 변경하려는 경우 예를 들어, 파형의 한 사이클 또는 파형의 상승 에지만 표시
- 비디오 신호 또는 FFT 신호를 보려는 경우

사인파 자동 설정 기능을 사용하고 오실로스코프가 사인파와 비슷한 신호로 확인하면 오실로스코프는 다음 옵션을 표시합니다.

사인파	세부 사항
M	적절한 수직 및 수평 눈금으로 여러 사이클을 표 시합니다. 오실로스코프는 사이클 RMS, 주파수,
다중 사이클 사인	주기 및 첨두치 자동 측정을 표시합니다.
$\overline{\bigcirc}$	파형의 한 사이클 정도를 표시하도록 수평 스케 일을 설정합니다. 오실로스코프는 평균 및 첨두
단일 사이클 사인	치 자동 측정을 표시합니다.
M	입력 시간 도메인 신호를 주파수 요소로 변환하고 결과를 주파수 대 진폭(스펙트럼)의 그래프로
FFT	표시합니다. 이것은 수학적 계산이므로, 자세한 내용은 Math FFT 장을 참조하십시오.
Autoset 실행 취소	오실로스코프가 이전 설정을 호출하도록 합니다.

구형파 또는 펄스 자동 설정 기능을 사용하고 오실로스코프가 구형파 또는 펄스와 비슷한 신호로 확인하면 오실로스코프는 다음 옵션을 표시합니다.

구형파 또는	세부 사항
	적절한 수직 및 수평 눈금으로 여러 사이클을 표
다중 사이클 구형파	시합니다. 오실로스코프는 첨두치, 평균, 주기 및 주파수 자동 측정을 표시합니다.
	파형의 한 사이클 정도를 표시하도록 수평눈금 을 설정합니다. 오실로스코프는 최소, 최대, 평
단일 사이클 구형파	글 열성합니다. 오늘도그고르는 되도, 되내, 왕 균 및 상승 펄스 자동 측정을 표시합니다.
	에지, 상승 시간 및 첨두치 자동 측정을 표시합 니다.
상승 에지	чч.
	에지, 하강 시간 및 첨두치 자동 측정을 표시합 니다.
하강 에지	99.
Autoset 실행 취소	오실로스코프가 이전 설정을 호출하도록 합니다.

비디오 신호

자동 설정 기능을 사용하고 오실로스코프가 신호를 비디오 신호인 것으로 확인하면 오실로스코프는 다음 옵션을 표시합니다.

비디오 신호 옵션	세부 사항
	여러 필드가 표시되고 오실로스코프는 모든 필 드에서 트리거합니다.
필드 ▶ 모든 필드	
과 ^ 라인 ► 모든 라인	이전 라인과 다음 라인 일부가 포함된 하나의 완전한 라인을 표시합니다. 오실로스코프는 모든라인에서 트리거합니다.
라인 ► 번호	이전 라인과 다음 라인 일부가 포함된 하나의 완 전한 라인을 표시합니다. 범용 노브를 사용하여 오실로스코프가 트리거로 사용할 특정 라인 번 호를 선택할 수 있습니다.
홀수 필드	여러 필드가 표시되고 오실로스코프는 홀수 필 드에서만 트리거됩니다.
₩ 짜수 필드	여러 필드가 표시되고 오실로스코프는 짝수 필 드에서만 트리거됩니다.
Autoset 실행 취소	오실로스코프가 이전 설정을 호출하도록 합니다.

주석노트. 비디오 자동 설정은 디스플레이 유형 옵션을 도트 모드로 설정합니다.

커서

CURSOR 버튼을 눌러 측정 커서와 커서 메뉴를 표시한 다음 범용 노브를 사용하여 커서 위치를 변경합니다.

옵션	설정	설명
유형 1	시간, 진폭, Off	측정 커서를 선택하고 표시합니다. 시간은 시간과 주파수 및 진폭을 측정하고 진폭은 전류나 전압같은 진폭을 측정합니다.
신호원	CH1, CH2, CH3 ² , CH4 ² , MATH, REFA, REFB, REFC ² , REFD ²	커서 측정을 수행할 파형을 선택합니다. 커서 판독값은 측정을 표시합니다.
Δ		커서 간 차이(델타)의 절대값을 표 시합니다.
커서 1		선택된 커서 위치를 표시합니다(시
커서 2		간은 트리거 위치를 기준으로 하고 진폭은 연결을 기준으로 합니다).

¹ Math FFT 신호원의 경우 주파수와 진폭을 측정합니다.

델타(Δ) 값은 다음과 같이 커서 종류에 따라 다릅니다.

- 시간 커서는 Δt, 1/Δt 및 ΔV(또는 ΔI, ΔVV 등)를 표시합니다.
- 진폭 커서 및 크기 커서(Math FFT 신호원)는 ΔV, ΔI, ΔVV 등을 표시합니다.
- 주파수 커서(Math FFT 신호원)는 1/ΔHz와 ΔdB을 표시합니다.

주석노트. 오실로스코프는 커서에 대한 파형과 나타날 커서 판독값을 표시해야 합니다.

주석노트. 시간 커서를 사용하면 오실로스코프는 각 파형에 대해 시간과 진폭 값을 표시합니다.

요점 커서 움직임: 범용 노브를 사용하여 커서 1이나 커서 2를 이동합니다. 커서 메뉴가 표시되어 있을 때만 커서를 이동할 수 있습니다. 활성 커서는 진한 선으로 표시됩니다.

진폭 커서

시가 커서

^{2 4}채널 오실로스코프에만 사용 가능합니다.

기본값 설정

기본값 설정 버튼을 눌러 초기 상태 옵션과 컨트롤 설정 대부분을(모두는 아님) 호출합니다. 부록 D에는 호출할 기본 설정이 나열되어 있습니다.

디스플레이

DISPLAY 버튼을 눌러 파형 표시 방법을 선택하고 전체 디스플레이의 모양을 변경합니다.

옵션	설정	설명
유형	벡터, 도트	벡터는 디스플레이에서 주변 샘플 포인트 사이의 공간을 채웁니다.
		도트는 샘플 포인트만 표시합니다.
지속 기능	OFF, 1초, 2초, 5초, 무한대	각 샘플 포인트가 지속적으로 표시 되는 시간을 설정합니다.
포맷	YT, XY	YT 형식은 시간(수평눈금)과 관련하여 수직 전압을 표시합니다. XY 형식은 채널 1과 채널 2에서 샘플을 획득할 때마다 도트를 표시합니다. 채널 1 전압 또는 전류는 도트의 X 좌표(수평)를 결정하고 채널 2 전압 또는 전류는 Y 좌표(수직)를 결정합니다.
대비 1		채널 파형을 잔상과 구분하기 쉽도 록 해줍니다.

¹ 범용 노브를 사용하여 조정합니다.

종류에 따라 파형은 진하고, 흐리고, 점선 등 세 가지 다른 스타일로 표시됩니다.

1. 진한 파형은 채널(실제) 파형 디스플레이를 나타냅니다. 디스플레이 정확도를 불확실하게 만들도록 컨트롤을 변경하지 않은 경우 획득이 정지되면 파형은 진하게 유지됩니다.

정지된 획득에서는 수직 및 수평 컨트롤 변경이 허용됩니다.

2. TDS1000B 모델(모노 디스플레이)의 경우 잔상이 있는 파형 또는 기준 파형 이 흐리게 나타납니다.

TDS2000B 모델(컬러 디스플레이)의 경우 기준 파형은 흰색으로 나타나며 잔상이 적용된 파형은 주 파형과 같은 컬러로 나타나지만 덜 밝습니다.

3. 점선은 파형 디스플레이가 더 이상 컨트롤과 일치하지 않음을 나타냅니다. 이 것은 획득을 정지하고 오실로스코프가 표시된 파형에 적용할 수 없는 컨트롤 설정을 변경할 때 발생합니다. 예를 들어, 정지된 획득에서 트리거 컨트롤을 변경하면 점선 파형이 나타납니다.

요점 지속: 오실로스코프는 "실제" 파형 데이터보다 덜 밝게 지속 파형 데이터를 표시합니다. 지속을 무한대로 설정한 상태에서 레코드 포인트는 컨트롤을 변경할 때까지 누적됩니다.

옵션	설명
Off	새 파형을 표시할 때마다 기본 파형이나 이전 파형 을 제거합니다.
시간 제한	새 파형을 보통 밝기로 표시하고 이전 파형은 낮은 밝기로 표시합니다. 시간 제한에 도달하면 이전 파형 을 삭제합니다.
무한대	기존 파형은 덜 밝지만 항상 볼 수 있습니다. 무한대 지속을 사용하여 비정상적인 상황을 보고 장기 첨두 치 노이즈를 측정합니다.

XY 형식: XY 형식을 사용하여 리사쥬 패턴 표현과 같은 위상차를 분석할 수 있습니다. 이 형식은 채널 1의 전압과 채널 2의 전압을 그립니다. 여기서 채널 1은 수평 축이고 채널 2는 수직 축입니다. 오실로스코프는 트리거되지 않은 샘플 획득모드를 사용하며 데이터를 도트로 표시합니다. 샘플 속도는 1MS/s로 고정되어 있습니다.

주석노트. 오실로스코프는 모든 샘플 속도의 보통 YT 모드에서 파형을 포착할 수 있습니다. XY 모드에서 같은 파형을 볼 수 있습니다. 이렇게 하려면 획득을 정지하고 디스플레이 형식을 XY로 변경합니다.

XY 형식에서 컨트롤은 다음과 같이 작동합니다.

- 채널 1 VOLTS/DIV 및 수직 위치 컨트롤은 수평눈금과 위치를 설정합니다.
- 채널 2 VOLTS/DIV 및 수직 위치 컨트롤은 계속해서 수직눈금과 위치를 설정합니다.

다음 기능은 XY 디스플레이 형식에서는 작동하지 않습니다.

- Autoset(디스플레이 형식을 YT로 재설정)
- 자동 범위
- 자동 측정
- 커서

- 기준 또는 연산 파형
- SAVE/RECALL ► 모두 저장
- 시간축 컨트롤
- 트리거 컨트롤

도움말

도움말 버튼을 눌러 도움말 메뉴를 표시합니다. 도움말 항목은 오실로스코프의 모든 메뉴 옵션과 컨트롤을 다룹니다. (xi페이지의 *도움말 시스템* 참조)

수평

수평 컨트롤을 사용하여 각각 자체 수평눈금과 위치가 있는 파형의 두 보기를 설정할 수 있습니다. 수평 위치 판독값은 트리거 시간을 제로로 사용하여 화면 중앙에 표시된 시간을 보여줍니다. 수평눈금을 변경하면 화면 중앙 주변으로 파형이확대되거나 축소됩니다.

옵션	설명
주	주 수평 시간축 설정은 파형을 표시하는 데 사용됩 니다.
확대 범위	두 커서는 확대 범위를 정의합니다. 확대 범위를 수평 위치와 SEC/DIV 컨트롤로 조정 합니다.
윈도우	확대 범위 내에 파형 세그먼트를 표시하도록 디스플 레이를 변경합니다(화면 폭에 맞게 확대됨).
지연 설정	지연 값을 표시합니다. 옵션 버튼을 누르고 범용 노 브를 사용하여 조정합니다.

주석노트. 수평 옵션 버튼을 눌러 전체 파형 디스플레이와 해당 디스플레이의 확대된 부분 간에 전환할 수 있습니다.

화면 오른쪽 상단 근처의 판독값은 현재의 수평 위치를 초 단위로 표시합니다. M 은 주 시간축을 나타내며 W는 윈도우 시간축을 나타냅니다. 또한 오실로스코프는 계수선 상단에 있는 화살표 아이콘으로 수평 위치를 나타냅니다.

노브 및 버튼

수평 위치 다이얼: 화면 중앙과 관련된 트리거의 위치를 제어하는 데 사용합니다.

트리거 포인트는 화면 중앙의 왼쪽이나 오른쪽으로 설정할 수 있습니다. 왼쪽의 최대 구간 수는 수평눈금(시간축) 설정에 따라 다릅니다. 대부분의 눈금에서 최대 값은 적어도 100구간입니다. 트리거 포인트를 화면 왼쪽으로 배치하는 것을 지연된 스위프라고 합니다.

제로로 설정 버튼: 수평 위치를 제로로 설정하는 데 사용합니다.

SEC/DIV 다이얼(수평눈금): 수평 시간 눈금을 변경하여 파형을 확대하거나 축소하는 데 사용합니다.

요점 SEC/DIV: RUN/STOP이나 SINGLE SEQ 버튼을 사용하여 파형 획득을 중지하면 SEC/DIV 컨트롤이 파형을 확대하거나 축소합니다. 파형의 세부 사항을 확대하는 데 사용합니다.

스캔 모드 디스플레이(롤 모드): SEC/DIV 컨트롤을 100ms/div 이하로 설정하고 트리거 모드를 자동으로 설정하면 오실로스코프는 스캔 획득 모드로 들어갑니다. 이 모드에서 파형 디스플레이는 왼쪽에서 오른쪽으로 업데이트됩니다. 스캔 모드 동안에는 파형의 트리거 또는 수평 위치 컨트롤이 없습니다. (71페이지의 스캔 모드 디스플레이 참조)

확대 범위: 확대 범위 옵션을 사용하여 자세하게(확대) 보려는 파형의 세그먼트를 정의합니다. 윈도우 시간축 설정은 주 시간축 설정보다 느리게 설정할 수 없습니다.

수직 막대가 확대 범위를 정의

주 시간축 표시

확대 범위 표시

확대 시간축: 확대 범위를 확대하여 전체 화면을 채웁니다. 두 시간축 사이를 전환하는 데 사용합니다.

주석노트. 주, 확대 범위 및 확대 시간축 보기 간에 변경할 때 오실로스코프는 지속 기능을 통해 화면에 저장된 파형을 모두 삭제합니다. 수평 메뉴 변경을 사용하여 잔상을 지웁니다.

지연: 지연을 사용하여 복잡한 파형의 디스플레이를 안정적으로 만듭니다. (93 페이지의 *홀드오프* 참조)

연산

MATH MENU 버튼을 눌러 파형 연산 작업을 표시합니다. MATH MENU 버튼을 다시 눌러 연산 파형을 제거합니다. (97페이지의 *수직 컨트롤* 참조)

옵션	설명
+ , -, ×, FFT	연산 작업은 다음 표 참고

옵션	설명
신호원	작업에 사용되는 신호원, 다음 표 참고
위치	범용 노브를 사용하여 결과 연산 파형의 수직 위치 를 설정합니다.
수직눈금	범용 노브를 사용하여 결과 연산 파형의 수직눈금 을 설정합니다.

연산 메뉴에는 각 작업을 위한 신호원 옵션이 포함되어 있습니다.

작업	신호원 옵션	설명
+ (더하기)	CH1 + CH2	채널 1과 채널 2를 더합니다.
	CH3 + CH4 1	채널 3과 채널 4를 더합니다.
- (眦기)	CH1 - CH2	채널 2 파형을 채널 1 파형 에서 뺍니다.
	CH2 - CH1	채널 1 파형을 채널 2 파형 에서 뺍니다.
	CH3 - CH4 1	채널 4 파형을 채널 3 파형 에서 뺍니다.
	CH4 - CH3 1	채널 3 파형을 채널 4 파형 에서 뺍니다.
×(곱셈)	CH1×CH2	채널 1과 채널 2를 곱합니다.
	CH3×CH4 1	채널 3과 채널 4를 곱합니다.
FFT	(49페이지의 참조)	

^{1 4}채널 오실로스코프에만 사용 가능합니다.

요점 파형 단위: 신호원 파형 단위의 결합은 연산 파형의 결과 단위를 결정합니다.

파형 단위	파형 단위	작업	결과 연산 단위
V	V	+ 또는 -	V
A	A	+ 또는 -	A
V	A	+ 또는 -	?
V	V	×	VV
A	A	×	AA
V	A	×	VA

측정

MEASURE 버튼을 눌러 자동 측정에 액세스합니다. 11가지 종류의 사용 가능한 측정이 있습니다. 한 번에 최대 5가지 측정을 표시할 수 있습니다.

상단 옵션 버튼을 눌러 측정 1 메뉴를 표시합니다. 신호원 옵션에서 측정을 수행할 채널을 선택할 수 있습니다. 종류 옵션에서 수행할 측정 종류를 선택할 수 있습니다. 뒤로 옵션 버튼을 눌러 측정 메뉴로 돌아간 다음 선택한 측정을 표시합니다.

요점 측정: 한 번에 최대 5가지 자동 측정을 표시할 수 있습니다. 측정을 수행하려면 파형 채널이 표시되어 있어야 합니다.

기준 파형에서, 그리고 XY 또는 스캔 모드를 사용 중일 때는 자동 측정을 수행할 수 없습니다. 측정은 초당 약 두 번 업데이트됩니다.

측정 유형	정의
주파수	첫 번째 사이클을 측정하여 파형의 주파수를 계산합니다.
주기	첫 번째 사이클의 시간을 계산합니다.
평균	전체 레코드에 대해 산술 평균 진폭을 계산합니다.
첨두치	전체 파형의 최대 피크와 최소 피크 간 절대차를 계산합니다.
실효치	파형의 첫 번째 완전한 사이클의 실제 RMS 측정을 계산합니다.
최소	전체 2,500 포인트 파형 레코드를 검사하고 최소값을 표시합니다.
최대	전체 2,500 포인트 파형 레코드를 검사하고 최대값을 표시합니다.
상승 시간	파형의 첫 번째 상승 에지의 10%와 90% 간 시간을 측정합니다.
하강 시간	파형의 첫 번째 하강 에지의 90%와 10% 간 시간을 측정합니다.
상승 펄스	파형 50% 레벨에서 첫 번째 상승 에지와 다음 하강 에지 간 시간을 측정합니다.
하강 펄스	파형 50% 레벨에서 첫 번째 하강 에지와 다음 상승 에지 간 시간을 측정합니다.
None(없음)	측정을 하지 않습니다.

인쇄

모두 저장 ► **PRINT 버튼** 옵션을 인쇄로 설정하면 PRINT 버튼을 눌러 화면 이미지를 프린터에 전송할 수 있습니다.

UTILITY ► 옵션 ► 프린터 설정 메뉴를 사용하여 화면 이미지를 프린터에 전송할 수 있도록 오실로스코프를 설정할 수 있습니다.

옵션	설정	설명
잉크 절약	설정, 해제	설정을 선택하면 흰색 배경 에 화면 이미지가 인쇄됩 니다.
인쇄 방향 1	세로 방향, 가로 방향	프린터 출력 방향
인쇄 취소		화면 이미지를 프린터에 전 송하는 것을 중지합니다.

옵션	설정	설명
용지 크기 2	기본값, L, 2L, Hagaki Postcard, Card 크기, 10 x 15 cm, 4" x 6", 8" x 10", Letter, 11" x 17", A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, B0, B1, B2, B3, B4, B5, B6, B7, B8, B9, 89mm Roll(L), 127mm Roll(2L), 100mm Roll(4"), 210mm Roll(A4)	PictBridge 호환 프린터에 서 사용 가능한 설정이 표 시됩니다.
이미지 크기 2	기본값, 2.5 x 3.25in, L(3.5 x 5in), 4 x 6in, 2L(5 x 7in), 8 x 10in, 4L(7 x 10in), E, Card, Hagaki card, 6 x 8cm, 7 x 10cm, 9 x 13cm, 10 x 15cm, 13 x 18cm, 15 x 21cm, 18 x 24cm, A4, Letter	
용지 종류 2	기본값, 보통, 사진, 보존 사진	
인쇄 품질 2	기본값, 정상, 낮음, 높음	
날짜 인쇄 2	기본값, Off, On	
ID 인쇄 2	기본값, Off, On	

- 1 프린터가 최적의 성능을 위해 사용자의 선택을 무시할 수 있습니다.
- 2 프린터가 지원하지 않는 선택을 한 경우 오실로스코프는 기본 설정을 사용합니다.

PRINT 버튼의 대체 기능은 USB 플래시 드라이브에 데이터를 저장하는 것입니다. (57페이지의 *USB 플래시 드라이브 및 장치 포트* 참조)

오실로스코프는 모든 PictBridge 호환 프린터에서 인쇄할 수 있도록 설계되었습니다. 프린터가 PictBridge 호환 프린터인지 확인하려면 프린터의 제품 설명서를 참조하십시오.

프로브 검사

프로브 검사 마법사를 사용하여 전압 프로브가 제대로 작동하는지 신속하게 확인할 수 있습니다. (5페이지의 전압 프로브 검사 마법사 참조)

기준 메뉴

기준 메뉴에서 기준 메모리 파형이 표시되도록 켜거나 끌 수 있습니다. 파형은 오 실로스코프의 비휘발성 메모리에 저장되며 다음과 같이 지정되어 있습니다. RefA, RefB, RefC 및 RefD (RefC와 RefD는 4채널 오실로스코프에서만 사용 가능)

기준 파형을 표시(호출)하거나 숨기려면 다음 단계를 수행합니다.

- 1. 기준 메뉴 전면 패널 버튼을 누릅니다.
- 2. 기준 옵션 옵션 버튼을 눌러 기준 파형을 표시하거나 숨기도록 선택합니다.

기준 파형에는 다음과 같은 특성이 있습니다.

- 컬러 모델에서 기준 파형은 흰색으로 표시됩니다.
- 모노 모델에서 기준 파형은 "실제" 채널 파형보다 낮은 파형 밝기로 표시됩니다.
- 동시에 두 개의 기준 파형이 표시될 수 있습니다.

- 수직 및 수평 눈금 판독값이 화면 하단에 나타납니다.
- 기준 파형은 줌 또는 팬할 수 없습니다.

"실제" 채널 파형과 동시에 하나 또는 두 개의 기준 파형을 표시할 수 있습니다. 두 개의 기준 파형이 나타나는 경우 다른 파형이 나타나기 전에 하나의 파형을 숨겨야 합니다.

기준 파형을 저장하는 방법에 대한 정보는 파형 저장을 참조하십시오. (86페이지의 *파형 저장* 참조)

Save/Recall

SAVE/RECALL 버튼을 눌러 오실로스코프 설정, 화면 이미지 또는 파형을 저장하거나, 오실로스코프 설정이나 파형을 호출합니다.

Save/Recall 메뉴는 실행 옵션을 통해 액세스할 수 있는 많은 하위 메뉴로 구성되어 있습니다. 각 실행 옵션은 저장이나 호출 기능을 추가로 정의할 수 있는 메뉴를 표시합니다.

실행 옵션	설명
모두 저장	데이터를 프린터로 전송하거나 USB 플래시 드라이브에 저장하도록 PRINT 버튼을 구성하는 옵션이 들어 있습 니다.
그림 저장	화면 이미지를 지정된 형식으로 파일에 저장합니다.
설정 저장	현재 오실로스코프 설정을 지정된 폴더의 파일 또는 비 휘발성 설정 메모리에 저장합니다.
파형저장	지정된 파형을 파일이나 기준 메모리에 저장합니다.
설정 호출	오실로스코프 설정 파일을 USB 플래시 드라이브나 비휘 발성 설정 메모리 위치에서 호출합니다.
파형 호출	파형 파일을 USB 플래시 드라이브에서 기준 메모리로 호출합니다.

모두 저장

모두 저장 실행은 데이터를 USB 플래시 드라이브에 저장하거나 데이터를 프린터로 전송하도록 PRINT 버튼을 구성합니다.

옵션	설정 또는 하위 메뉴	설명
PRINT 버튼	파일에 모두 저장 1	(61페이지의 참조)
	파일에 그림 저장 1	(62페이지의 참조)
	인쇄	(66페이지의 참조)

옵션	설정 또는 하위 메뉴	설명
폴더 선택		현재 USB 플래시 드라이브 폴 더의 내용을 나열합니다.
	폴더 변경	(58페이지의 <i>파일 관리 규약</i> 참
	새 폴더	조) (96페이지의 <i>USB 플래시 드 라이브의 파일 유틸리티</i> 참조)
	뒤로	모두 저장 메뉴로 돌아갑니다.
모두 저장 정보		도움말 항목을 표시합니다.

¹ PRINT 버튼 옆의 LED가 켜져 대체 저장 기능이 데이터를 USB 플래시 드라이브에 전송하는 것을 나타냅니다.

그림 저장 그림 저장 실행은 화면 이미지를 지정된 형식으로 파일에 저장합니다.

옵션	설정 또는 하위 메뉴	설명
파일 형식	BMP, PCX, TIFF, RLE, EPSIMAGE, JPEG	화면 이미지 그래픽 파일 형식 을 설정합니다.
그림 저장 정보		도움말 항목을 표시합니다.
폴더 선택		현재 USB 플래시 드라이브 폴 더의 내용을 나열하고 폴더 옵션 을 표시합니다.
	폴더 변경	(58페이지의 <i>파일 관리 규약</i> 참
	새 폴더	조) (96페이지의 <i>USB 플래시 드 라이브의 파일 유틸리티</i> 참조)
	인쇄방향 ¹ 세로, 가 로	세로 또는 가로 이미지 용지방향 을 선택합니다.
	잉크 절약 1 설정, 해 제	잉크절약 모드를 활성화하거나 비활성화합니다.
저장	파일 이름(예: TEK0000.TIF)	화면 이미지를 현재 USB 플래시 드라이브 폴더에서 자동으로 생 성된 파일 이름으로 저장합니다.

^{1 (82}페이지의 *인쇄* 참조)

PRINT 버튼 옵션을 파일에 그림 저장으로 설정한 경우 저장 버튼을 누르면 오실 로스코프는 화면 이미지를 USB 플래시 드라이브에 저장합니다. (62페이지의 *파* 일에 이미지 저장 참조)

설정 저장 설정은 현재 오실로스코프 설정을 지정된 폴더의 TEKnnnn.SET라는 파일 또는 비휘발성 설정 메모리에 저장합니다. 설정 파일에는 오실로스코프 설정을 나열하는 ASCII 텍스트 문자열이 포함되어 있습니다.

옵션	설정 또는 하위 메뉴	설명
저장 위치	설정	현재 오실로스코프 설정을 비휘 발성 설정 메모리 위치에 저장 합니다.
	파일	현재 오실로스코프 설정을 USB 플래시 드라이브의 파일에 저장 합니다.
설정	1에서 10	저장할 비휘발성 설정 메모리 위 치를 지정합니다.
폴더 선택		현재 USB 플래시 드라이브 폴 더의 내용을 나열합니다.
	폴더 변경	(58페이지의 <i>파일 관리 규약</i> 참
	새 폴더	¯조) (96페이지의 <i>USB 플래시 드 라이브의 파일 유틸리티</i> 참조)
저장	파일 이름(예: TEK0000.SET)	설정을 현재 USB 플래시 드라 이브 폴더에서 자동으로 생성된 파일 이름으로 저장합니다.

PRINT 버튼 옵션을 파일에 모두 저장으로 설정한 경우 저장 버튼을 누르면 오실로스코프는 오실로스코프 설정 파일을 USB 플래시 드라이브에 저장합니다. (61 페이지의 *파일에 모두 저장* 참조)

파형 저장

파형 저장 실행은 지정된 파형을 TEKnnnn.CSV라는 파일 또는 기준 메모리에 저장합니다. 오실로스코프는 파형 데이터를 "쉼표로 분리된 값"(.csv 형식)으로 파일에 저장합니다. 이 값은 트리거에 상대적인 시간을 나열하는 ASCII 텍스트 문자열과 2,500개의 파형 데이터 포인트 각각에 대한 진폭 값입니다. .CSV 파일을 여러 스프레드시트 및 연산 분석 애플리케이션으로 가져올 수 있습니다.

옵션	설정 또는 하위 메뉴	설명
저장 위치	파일	신호원 파형 데이터를 USB 플래 시 드라이브의 파일에 저장하도 록 지정합니다.
	기준	신호원 파형 데이터를 기준 메모 리에 저장하도록 지정합니다.
신호원 1	CH(x), Ref(x), MATH	저장할 신호원 파형을 지정합니 다.
위치	Ref(x)	신호원 파형을 저장할 기준 메모 리 위치를 지정합니다.

옵션	설정 또는 하위 메뉴	설명
폴더 선택		현재 USB 플래시 드라이브 폴더 의 내용을 나열합니다.
	폴더 변경	(58페이지의 <i>파일 관리 규약</i> 참
. <u> </u>	새 폴더	
저장	파일 이름(예: TEK0000.CSV)	파형 데이터를 현재USB 플래시 드라이브 폴더에서 자동으로 생 성된 파일 이름으로 저장합니다.

¹ 기준 파형으로 저장하려면 파형이 표시되어 있어야 합니다.

설정 호출

설정 호출 실행은 오실로스코프 설정 파일을 USB 플래시 드라이브나 비휘발성 설정 메모리 위치에서 호출합니다.

옵션	설정 또는 하위 메뉴	설명
호출 위치	설정	설정을 비휘발성 메모리에서 호 출하도록 지정합니다.
	파일	USB 플래시 드라이브에서 설정 파일을 호출하도록 지정합니다.
설정	1에서 10	호출할 비휘발성 설정 메모리의 설정 위치를 지정합니다.
파일 선택		파일을 선택하기 위해 현재 USB 플래시 드라이브 폴더의 내용을 나열합니다.
	폴더 변경	(58페이지의 <i>파일 관리 규약</i> 참 조) (96페이지의 <i>USB 플래시 드</i> <i>라이브의 파일 유틸리티</i> 참조)
호출		지정된 비휘발성 메모리 위치에 서 설정을 호출합니다.
	파일 이름(예: TEK0000.SET)	지정된 USB 플래시 드라이브 파 일에서 오실로스코프 설정을 호 출합니다.

파형 호출

파형 호출 실행은 파형 파일을 USB 플래시 드라이브에서 기준 메모리 위치로 호출합니다.

옵션	설정 또는 하위 메뉴	설명
위치	Ref(x)	파형을 로드할 기준 메모리 위치 를 지정합니다.
파일		USB 플래시 드라이브에서 파일 을 호출합니다.

옵션	설정 또는 하위 메뉴	설명
파일 선택		현재 USB 플래시 드라이브 폴더의 내용을 나열하고 다음 폴더 옵션을 표시합니다.
	폴더 변경	(58페이지의 <i>파일 관리 규약</i> 참 조) (96페이지의 <i>USB 플래시 드 라이브의 파일 유틸리티</i> 참조)
	위치	파형을 호출할 기준 메모리 위치 를 지정합니다.
호출	파일 이름(예: TEK0000.CSV)	지정된 파일에서 기준 메모리 위 치로 파형을 로드하여 표시합니 다.

요점 설정 및 호출 저장: 전체 메모리는 비휘발성 메모리에 저장됩니다. 설정을 호출 하면 오실로스코프의 모드는 설정을 저장했던 모드가 됩니다.

오실로스코프는 마지막 변경을 수행한 후 오실로스코프 전원을 끄기 전에 3초 정도 기다리면 현재 설정을 저장합니다. 오실로스코프는 다음에 전원을 켤 때 이 설정을 호출합니다.

기본 설정 호출: 기본값 설정 버튼을 눌러 오실로스코프를 알려진 설정으로 초기화할 수 있습니다. 이 버튼을 누를 때 오실로스코프가 호출하는 옵션과 컨트롤설정을 보려면 부록 D: 기본값 설정을 참조하십시오.

파형 저장 및 호출: 오실로스코프는 저장할 파형을 표시해야 합니다. 2채널 오실로스코프는 두 개의 기준 파형을 내부 비휘발성 메모리에 저장할 수 있습니다. 4채널 오실로스코프는 네 개의 기준 파형을 저장할 수 있지만 한 번에 두 개만 표시할 수 있습니다.

오실로스코프는 기준 파형과 채널 파형 획득을 모두 표시할 수 있습니다. 기준 파형은 조정할 수 없지만 오실로스코프는 화면 하단에 수평 및 수직 눈금을 표시합니다.

트리거 컨트롤

트리거 메뉴와 전면 패널 컨트롤을 통해 트리거를 정의할 수 있습니다.

트리거 유형

에지, 비디오 및 펄스 폭과 같은 세 가지 유형의 트리거를 제공합니다. 각 트리거 유형마다 다른 옵션 세트가 표시됩니다.

옵션	세부 사항
에지(기본값)	트리거 레벨(임계)을 통과할 때 입력 신호의 상승 또는 하강 에지에서 오실로스코프를 트리거합니다.

옵션	세부 사항
비디오	NTSC 또는 PAL/SECAM 표준 복합 비디오 파형을 표 시합니다. 비디오 신호의 필드나 라인에서 트리거합니 다. (91페이지의 <i>비디오 트리거</i> 참조)
펄스	착오 펄스에서 트리거합니다. (92페이지의 <i>펄스 폭 트리</i> <i>거</i> 참조)

에지 트리거

에지 트리거링을 사용하여 트리거 임계에 있는 오실로스코프 입력 신호의 에지에서 트리거합니다.

옵션	설정	설명
에지		에지가 강조 표시된 상태에서 입력 신호의 상승 에지나 하강 에지가 트리거에 사용됩니다.
신호원	CH1, CH2, CH3 ¹ , CH4 ¹ , Ext, Ext/5, AC 라인	입력 신호원을 트리거 신호로 선택합니다.(90페이지의 참조)
경사	상승, 하강	신호의 상승 에지나 하강 에지 에서 트리거하도록 선택합니 다.
모드	자동, 일반	트리거링 유형을 선택합니 다.(89페이지의 참조)
커플링	AC, DC, 잡음제거, HF 제거, LF제거	트리거 회로에 적용된 트리거 신호의 요소를 선택합니다.(90 페이지의 참조)

^{1 4}채널 오실로스코프에만 사용 가능합니다.

트리거 주파수 판독값

오실로스코프는 트리거 주파수를 결정하기 위해 트리거 이벤트가 발생하는 비율을 계산하고 화면 오른쪽 아래 모서리에 주파수를 표시합니다.

주석노트. 트리거 주파수 판독값은 오실로스코프가 트리거로 간주할 수 있는 이 벤트 주파수를 보여주며, 펄스 폭 트리거 모드의 입력 신호 주파수보다 적을 수 있습니다.

요점 모드 옵션: 오실로스코프가 SEC/DIV 설정의 특정 시간 내에 트리거를 검출하지 못하면 자동 모드(기본값)에서 강제 트리거하도록 합니다. 전원 공급 출력의 레벨을 모니터하는 등 여러 가지 상황에서 이 모드를 사용할 수 있습니다.

자동 모드를 사용하면 유효한 트리거가 없을 때 획득하지 않고 실행할 수 있습니다. 이 모드를 사용하면 100ms/div 이하의 시간축 설정에서 트리거하지 않으면서 파형을 스캔할 수 있습니다.

오실로스코프가 유효한 트리거 조건을 검출하는 경우에만 표시된 보통 모드가 업데이트됩니다. 오실로스코프는 새로운 파형으로 교체할 때까지 기존의 파형을 표시합니다.

트리거된 유효 파형만 보려고 하는 경우 보통 모드를 사용합니다. 이 모드를 사용할 때 오실로스코프는 첫 번째 트리거가 발생하기 전에는 파형을 표시하지 않습니다.

단일 시퀀스 획득을 수행하려면 SINGLE SEQ 버튼을 누릅니다.

신호원 옵션:

신호원 옵션	세부 사항
CH1, CH2, CH3 ¹ , CH4 ¹	파형이 표시되는지 여부에 따라 채널에서 트리거 합니다.
Ext	트리거 신호를 표시하지 않습니다. Ext 옵션은 EXT TRIG 전면 패널 BNC에 연결된 신호를 사용 하며 + 1.6V에서 -1.6V의 트리거 레벨 범위를 허 용합니다.
Ext/5	Ext 옵션과 같지만 계수 5만큼 신호를 감쇠하며 +8V에서 -8V까지의 트리거 레벨 범위를 허용하 므로 트리거 레벨 범위가 확장됩니다.
AC 라인 ²	전원 라인에서 파생된 신호를 트리거 소스로 사용하며 트리거 커플링은 DC로 설정되고 트리거 레벨은 0 볼트로 설정됩니다. 전원 라인의 주파수와 연관된 신호를 분석해야 하는 경우 조명 장비 및 전원 공급 장치와 같은 AC 라인을 사용할 수 있습니다. 오실로스코프에서는 자동으로 트리거를 생성하고 트리거 커플링을 DC로설정하며 트리거 레벨을 0볼트로 설정합니다.

- 1 4채널 오실로스코프에만 사용 가능합니다.
- 2 에지 트리거 유형을 선택하는 경우에만 사용 가능합니다.

주석노트. TRIG VIEW 버튼을 누르고 있으면 Ext, Ext/5 또는 AC 라인 트리거 신호를 볼 수 있습니다.

커플링: 커플링을 사용하면 획득을 트리거하는 데 사용되는 트리거 신호를 필터링할 수 있습니다.

옵션	세부사항
DC	신호의 모든 요소를 전달합니다.
노이즈 제거	트리거 회로에 이력 현상을 추가합니다. 이렇게 하면 감도가 감소되어 노이즈로 인한 잘못된 트리거링의 가능성이 줄어듭니다.
HF 제거	80kHz 이상의 높은 주파수 요소를 감쇠합니다.

옵션	세부 사항
LF 제거	DC 요소를 차단하고 300kHz 이하의 낮은 주파수 성분을 감쇠합니다.
AC	DC 요소를 차단하고 10Hz 이하의 신호를 감쇠합 니다.

주석노트. 트리거 커플링은 트리거 시스템에 전달된 신호에만 영향을 줍니다. 화면에 표시된 신호의 대역폭이나 커플링에는 영향을 미치지 않습니다.

사전 트리거: 트리거 위치는 일반적으로 화면의 수평 중앙에 설정됩니다. 이 경우 사전 트리거 정보의 5개 구간을 볼 수 있습니다. 파형의 수평 위치를 조정하면 약간의 사전 트리거 정보를 볼 수 있습니다.

비디오 트리거

옵션	설정	설명
비디오		비디오가 강조 표시된 상태에 서 트리거링이 NTSC, PAL 또 는 SECAM 표준 비디오 신호 에서 발생합니다.
		트리거 커플링은 AC로 사전 설정됩니다.
신호원	CH1, CH2, CH3 ¹ , CH4 ¹ , Ext, Ext/5	입력 신호원을 트리거 신호로 선택합니다. Ext 및 Ext/5 선 택 항목에서 EXT TRIG 커넥 터에 적용되는 신호를 사용합 니다.
극성	보통, 반전	보통은 동기 펼스의 네거티브 에지에서는 트리거하고 반전 은 동기 펄스의 포지티브 에지 에서 트리거합니다.
동기	모든 라인, 라인 번호, 홀수 필드, 짝수 필드 및 모든 필드	적절한 비디오 동기를 선택합 니다. 범용 노브를 사용하여 동기 옵 션에 대해 라인 번호를 선택할 때 라인 번호를 지정합니다.
표준	NTSC, PAL/SECAM	동기용 비디오 표준과 라인 번 호 카운트를 선택합니다.

^{1 4}채널 오실로스코프에만 사용 가능합니다.

요점 동기 펄스: 보통 극성을 선택하면 트리거는 항상 네거티브 동기 펄스에서 발생합니다. 비디오 신호에 포지티브 동기 펄스가 있는 경우 반전 극성 선택을 사용합니다.

펄스 폭 트리거 펄스 폭 트리거링을 사용하여 정상 또는 착오 펄스에서 트리거합니다.

옵션	설정	설명
펄스		필스가 강조 표시된 상태에서 트리거링은 신호원, 시기 및 펄 스 폭 설정 옵션에 의해 정의된 트리거 조건을 만족하는 펄스 에서 발생합니다.
신호원	CH1, CH2, CH3 ¹ , CH 4 ¹ , Ext, Ext/5	입력 신호원을 트리거 신호로 선택합니다.
시기	=, ≠, <, >	펼스 폭 옵션에서 선택한 값과 관련이 있는 트리거 펄스를 비 교하는 방법을 선택합니다.
펄스 폭	33ns에서 10.0초	범용 노브를 사용하여 폭을 설 정합니다.
극성	포지티브, 네거티브	포지티브나 네거티브 펄스에서 트리거를 선택합니다.
모드	자동, 보통	트리거링 유형을 선택합니다. 보통 모드는 대부분의 펄스 폭 트리거 애플리케이션에 적합 합니다.
커플링	AC, DC, 소음제거, HF제거, LF제거	트리거 회로에 적용된 트리거 신호의 요소를 선택합니다.(89 페이지의 <i>에지 트리거</i> 참조)
계속		하위 메뉴 페이지를 전환하는 데 사용합니다.

^{1 4}채널 오실로스코프에만 사용 가능합니다.

트리거 주파수 판독값

오실로스코프는 트리거 주파수를 결정하기 위해 트리거 이벤트가 발생하는 비율을 계산하고 화면 오른쪽 아래 모서리에 주파수를 표시합니다.

요점 트리거 시기: 펄스를 검출하려면 오실로스코프에 대한 신호원의 펄스 폭은 5ns 이상이 되어야 합니다.

시기 옵션	세부 사항
=	신호 펄스 폭이 ±5% 공차 내에서 지정된 펄스 폭과 같거
<u></u>	나 같지 않을 때 오실로스코프를 트리거합니다.
<	소스 신호 펄스 폭이 지정된 펄스 폭보다 작거나 클 때 오
>	실로스코프를 트리거합니다.

착오 펄스에서 트리거링하는 예는 애플리케이션 예제 장을 참조하십시오. (40페이지의 *특정 펄스 폭에서 트리거링* 참조)

노브 및 버튼 레벨 노브: 트리거 레벨을 제어하는 데 사용합니다.

SET TO 50% 버튼: SET TO 50% 버튼을 사용하여 파형을 신속하게 안정시킬수 있습니다. 오실로스코프는 트리거 레벨을 최소 및 최대 전압 레벨의 중간 정도가 되도록 자동으로 설정합니다. 이것은 신호를 EXT TRIG BNC에 연결하고 트리거 소스를 Ext 또는 Ext/5로 설정할 때 유용합니다.

FORCE TRIG 버튼: FORCE TRIG 버튼을 사용하여 오실로스코프가 트리거 검출 여부에 관계 없이 현재 파형 획득을 완료할 수 있습니다. 이것은 SINGLE SEQ 획득과 보통 트리거 모드에 유용합니다. (자동 트리거 모드에서 오실로스코프는 트리거가 검출되지 않은 경우 주기적인 강제 트리거를 자동으로 수행합니다.)

TRIG VIEW 버튼: 트리거 신호 모드를 사용하여 오실로스코프에 조건 트리거 신호가 표시되도록 할 수 있습니다. 이 모드를 사용하여 다음과 같은 정보 유형을 볼수 있습니다.

- 트리거 커플링 옵션의 효과
- AC 라인 트리거 신호원(에지 트리거만)
- EXT TRIG BNC에 연결된 신호

주석노트. 이 버튼은 사용하는 동안 계속해서 누르고 있어야 하는 유일한 버튼입니다. TRIG VIEW 버튼을 누르고 있는 동안에는 PRINT 버튼만 사용할 수 있습니다. 오실로스코프는 다른 모든 전면 패널 버튼을 비활성화합니다. 노브는 계속활성 상태로 유지됩니다.

홀드오프: 트리거 홀드오프 기능을 사용하여 펄스 트레인 같은 복잡한 파형의 안정된 디스플레이를 생성할 수 있습니다. 홀드오프는 오실로스코프가 하나의 트 리거를 검출하고 다른 트리거를 검출할 준비가 되기까지 사이의 시간입니다. 오 실로스코프는 지연 시간 동안에는 트리거하지 않습니다. 펄스 트레인의 경우 오 실로스코프가 트레인의 첫 번째 펄스에서만 트리거하도록 지연 시간을 조정할 수 있습니다.

홀드오프 시간 동안에는 트리거가 인식되지 않습니다.

트리거 홀드오프를 사용하려면 HORIZ MENU ▶ 홀드오프 설정 옵션 버튼을 누른 다음 범용 노브를 사용하여 지연을 조정합니다. 트리거 홀드오프의 해상도는 수평 SEC/DIV 설정에 따라 다릅니다.

유틸리티

UTILITY 버튼을 눌러 유틸리티 메뉴를 표시합니다.

옵션	설정	설명
시스템 상태		오실로스코프 설정 요약
	기타	모델, 제조업체 일련 번호, 연결된 어댑터, GPIB 설정 주소, 펌웨어 버전 및 기타 정보를 표시합 니다.
옵션	화면 형태 ¹	화면 데이터를 흰색 바탕에 검정색이나 검정색 바 탕에 흰색으로 표시합니다.
	프린터 설정	프린터 설정 변경(66페이지의 참조)
	GPIB 설정 ▶ 주소	TEK-USB-488 어댑터의 GPIB 주소를 설정합니다.(65페이지의 참조)
	날짜 및 시간 설정	날짜 및 시간을 설정합니다.(95페이지의 참조)
	에러 목록	로그된 에러 목록 및 전원 사이클 카운트를 표 시합니다.
		이 목록은 Tektronix 서비스 센터에 도움을 요청 할 때 유용합니다.
자체 교정 시작	<u> </u>	자체 교정을 수행합니다.

옵션	설정	설명
파일 유틸리티		폴더, 파일 및 USB 플래시 드라이브 옵션을 표시 합니다.(96페이지의 참조)
Language(언어)	영어, 프랑스어, 독일어, 이탈 리아어, 스페인어, 일본어, 포 르투갈어, 중국어 간체, 중국어 번체 및 한국어	오실로스코프의 디스플레이 언어를 선택합니다.

¹ 모노 모델 전용

요점 시스템 상태: Utility 메뉴에서 시스템 상태를 선택하면 오실로스코프 컨트롤의 각 그룹에 대한 컨트롤 설정 목록을 얻는 데 사용할 수 있는 메뉴가 표시됩니다. 전면 패널 메뉴 버튼을 눌러 상태 화면을 제거합니다.

옵션	설명
수평	수평 매개 변수를 나열합니다.
수직	채널의 수직 매개변수를 나열합니다.
트리거	트리거 매개변수를 나열합니다.
기타	오실로스코프의 모델, 소프트웨어 버전 번호 및 일련 번호를 나열합니다. 통신 매개변수 값을 나열합니다.

날짜 및 시간 설정: 날짜 및 시간 설정 메뉴를 사용하여 시계 날짜와 시간을 설정할 수 있습니다. 오실로스코프에 해당 정보가 표시되며, 또한 USB 플래시 드라이브에 작성된 시간 소인 파일에 이 정보를 사용합니다. 오실로스코프에는 시간 설정을 유지하기 위해 전용 배터리가 내장되어 있습니다.

시계는 서머 타임 변경을 자동으로 조정하지 않습니다. 그러나 달력은 윤년을 조정합니다.

옵션	설명
$\mathop{\downarrow}\limits_{\downarrow}$	필드 선택 강조 표시를 목록에서 아래위로 이동합니다. 범용 노브를 사용하여 선택된 필드의 값을 변경합니다.
날짜 및 시간 설 정	지정된 날짜 및 시간으로 오실로스코프를 업데이트합 니다.
취소	메뉴를 닫은 후 변경 내용을 저장하지 않고 이전 메뉴 로 돌아갑니다.

자체 교정: 자체 교정 루틴은 주변 온도에 맞게 오실로스코프 정확도를 최적화합니다. 정확도를 최대로 유지하기 위해 주변 온도가 5°C(9°F) 이상 변화하는 경우 자체 교정을 수행해야 합니다. 정확한 교정을 위해 오실로스코프 전원을 켜고준비될 때까지 20분 정도 기다립니다. 화면의 지시를 따릅니다.

초기상태 교정은 외부적으로 생성되는 전압을 바탕으로 하며 특별한 장비를 요구합니다. 권장하는 간격은 1년입니다. Tektronix에 오실로스코프의 초기상태 교정 수행을 요청하는 데 대한 정보는 저작권 페이지의 Tektronix 연락처를 참조하십시오.

USB 플래시 드라이브 의 파일 유틸리티

하나의 폴더가 항상 현재 폴더로 지정됩니다. 현재 폴더는 파일을 저장하고 호출하는 기본 위치입니다.

파일 유틸리티 메뉴를 사용하여 다음 작업을 수행할 수 있습니다.

- 현재 폴더의 내용을 나열합니다.
- 파일이나 폴더를 선택합니다.
- 다른 폴더를 탐색합니다.
- 파일 및 폴더를 만들고, 이름을 변경하고, 삭제합니다.
- USB 플래시 드라이브 포맷

옵션	설명	
폴더 변경	선택한 USB 플래시 드라이브 폴더를 탐색합니다. 범용 노브를 사용하여 파일 또는 폴더를 선택한 다음 폴더 변경 메뉴 옵션을 선택합니다.	
	이전 폴더로 돌아가려면 ↑ 위로 폴더 항목을 선택하 고 폴더 변경 메뉴 옵션을 선택합니다.	
새 폴더	이름이 NEW_FOL인 새 폴더를 현재 폴더 위치에 만 들고, 기본 폴더 이름을 변경하도록 이름 변경 메뉴 를 표시합니다.	
(파일 이름/폴더) 이 름 변경	다음에 설명된 대로 이름 변경 화면을 표시하여 폴더 나 파일 이름을 변경합니다.	
(파일 이름/폴더) 삭 제	선택한 파일 이름 또는 폴더를 삭제하려면 폴더가 비어 있어야 하니다.	
삭제 확인	삭제를 누른 다음 파일 삭제 실행을 확인하기 위해 표 시됩니다. 삭제 확인 이외의 버튼이나 노브를 누르 면 파일 삭제 실행이 취소됩니다.	
포맷	USB 플래시 드라이브 형식을 지정하면 USB 플래시 드라이브에 있는 데이터가 모두 삭제됩니다.	
펌웨어 업데이트	화면 지시에 따라 설정한 다음 펌웨어 업데이트 옵션 버튼을 눌러 펌웨어 업데이트를 시작합니다.	

파일 또는 폴더 이름 변경: USB 플래시 드라이브에 있는 파일과 폴더의 이름을 변경할 수 있습니다.

옵션	설정	설명
문자 입력	A - Z, 0 - 9, _	강조 표시한 영숫자 문자를 현재 이름 필드 커서 위치에 입력합니다.
		범용 노브를 사용하여 영숫자 문자 또는 백 스페이스, 문자 삭제 또는 이름 지우기 기능 을 선택합니다.
	백스페이스	메뉴 버튼 1 옵션을 백스페이스 기능으로 변 경합니다. 이름 필드에서 강조 표시한 문자 의 왼쪽 문자를 삭제합니다.
	문자 삭제	메뉴 버튼 1 옵션을 문자 삭제 기능으로 변 경합니다. 강조 표시한 문자를 이름 필드에 서 삭제합니다.
	이름 지우 기	메뉴 버튼 1 옵션을 이름 지우기 기능으로 변경합니다. 모든 문자를 이름 필드에서 삭 제합니다.

수직 컨트롤

수직 컨트롤을 사용하여 파형을 표시 및 제거하고 수직눈금과 위치를 조정하고 입력 매개 변수를 설정하며 수직 연산 작업을 수행할 수 있습니다. (80페이지의 *연산* 참조)

채널 수직 메뉴

각 채널마다 별도의 수직 메뉴가 있습니다. 각 옵션은 각 채널에 대해 개별적으로 설정됩니다.

옵션	설정	설명
커플링	DC, AC 및 접 지	DC는 입력 신호의 AC와 DC 요소를 모 두 통과시킵니다.
		AC는 입력 신호의 DC 요소를 차단하고 10Hz 이하의 신호를 감쇠합니다.
		접지는 입력 신호를 분리합니다.

옵션	설정	설명
대역 제한	20MHz ¹ , Off	대역폭을 제한하여 디스플레이 노이 즈를 줄이고 신호를 필터링하여 노 이즈와 기타 원하지 않는 높은 주파 수 요소를 줄입니다.
Volts/Div	보통 조정/미세 조정	Volts/Div 노브의 해상도를 선택합 니다.
		보통 조정은 1-2-5 순서를 정의합니다. 미세 조정은 보통 조정 설정에서 해상도를 작은 단계로 변경합니다.

옵션	설정	설명
프로브	다음 표 참고	프로브 옵션을 조정하려면 누릅니다.
반전	On, Off	기준 레벨에 상대적으로 파형을 반 전합니다(뒤집습니다).

^{1 1}X로 설정된 P2220 프로브에서 유효 대역폭은 6MHz입니다.

전압과 전류 프로브의 옵션은 감쇠 또는 눈금으로 서로 다릅니다.

프로브 옵션	설정	설명
프로브 ► 전압 ► 감쇠	1X, 10X, 20X, 50X, 100X, 500X, 1000X	올바른 수직 판독값을 얻기 위해 전압 프로브 의 감쇠 계수와 일치하 도록 설정합니다.
프로브 ► 전류 ► 눈금	5V/A, 1V/A, 500 mV/A, 200mV/A, 100mV/A, 20mV/A, 10mV/A, 1mV/A	올바른 수직 판독값을 얻기 위해 전류 프로브 의 눈금과 일치하도록 설정합니다.
뒤로		이전 메뉴로 돌아갑니 다.

노브 수직 위치 다이얼: 수직 위치 노브를 사용하여 채널 파형을 화면 위나 아래로 이 동합니다.

VOLTS/DIV 다이얼: 전압눈금 노브를 사용하여 오실로스코프가 채널 파형의 소스 신호를 증폭하거나 감쇠하는 방법을 제어합니다. 전압눈금 노브를 돌리면 오실로스코프는 화면에서 파형의 수직 크기를 늘리거나 줄입니다.

수직 측정 초과 범위(클리핑): 확장된 파형은 화면(초과 범위) 아래에 나타나며 측정 판독값에 ? 표시는 잘못된 값을 나타냅니다. 수직눈금을 조정하여 판독 값이 유효한지 확인합니다.

요점 접지 커플링: 접지 커플링을 사용하여 제로 볼트 파형을 표시합니다. 내부적으로 채널 입력은 제로 볼트 기준 레벨에 연결됩니다.

미세 조정 해상도: 수직눈금 판독값은 미세 조정 해상도 설정에 있는 동안 실제 전압눈금 설정을 표시합니다. 설정을 보통 조정으로 변경하면 VOLTS/DIV 컨트 롤을 조정할 때까지 수직눈금이 변경되지 않습니다.

파형 제거: 화면에서 파형을 제거하려면 채널 메뉴 전면 패널 버튼을 누릅니다. 예를 들어, CH 1 MENU 버튼을 누르면 채널 1 파형이 표시되거나 제거됩니다.

주석노트. 트리거 소스나 연산 작업으로 사용하기 위해 채널 파형을 표시할 필요가 없습니다.

주석노트. 채널 파형을 표시하여 측정을 수행하거나, 커서를 사용하거나, 기준 파형으로 저장하거나, 파일에 저장해야 합니다.

부록 A: 사양

모든 사양은 TDS1000B 및 TDS2000B 시리즈 모델에 적용됩니다. P2220 프로 브 사양은 이 장의 끝 부분에 서술되어 있습니다. 오실로스코프가 사양을 만족하 는지 확인하려면 오실로스코프는 먼저 다음 조건을 만족해야 합니다.

- 오실로스코프를 지정된 작동 온도 내에서 20분 동안 연속적으로 작동해야 합니다.
- 작동 온도가 5°C(9°F) 이상 변할 경우 유틸리티 메뉴를 통해 액세스할 수 있는 메뉴 자체교정 시작 작업을 수행해야 합니다.
- 오실로스코프는 초기 상태 교정 간격 이내에 있어야 합니다.

"편의 사양"이라고 적혀 있지 않은 사양들은 모두 보증됩니다.

오실로스코프 사양

표 1: 획득 사양

특성	설명	
획득 모드	샘플, 피크 검출 및 평균	
획득 속도, 편의 사 양	초당, 채널당 최대 180파형(샘플 획득 모드	, 측정 없음)
단일 순서	획득 모드	획득 정지 시점
	샘플, 피크 검출	단일 획득, 동시에 모든 채널
	평균	N 획득, 동시에 모든 채널, N은 4, 16, 64 및 128에서 선택 가능

표 2: 입력 사양

특성	설명
입력 커플링.	DC, AC 또는 접지
입력 임피던스, DC 커플됨	20pF ±3pF를 사용하여 병렬로 1MΩ ±2%
P2220 프로브 감 쇠	1X, 10X
지원되는 전압 프 로브 감쇠 계수	1X, 10X, 20X, 50X, 100X, 500X, 1000X
지원되는 현재 프 로브 눈금	5V/A, 1V/A, 500 mV/A, 200mV/A, 100mV/A, 20mV/A, 10mV/A, 1mV/A

표 2: 입력 사양 (계속)

특성	설명			
입력 BNC의 신호 와 기준 사이의 최 대 전압	과전압 범주		최대 전압	
	CAT I 및 CAT II		$300V_{RMS}$	
ना स्म	CAT III		$150V_{\text{RMS}}$	
	설치 범주 II; 100kHz 초과, 20dB/decade에서 3MHz 1 이상의 13V 피크 AC로 줄입니다. 비사인 파형의 경우 피크 값은 450V 미만이 되어야 합니다. 300V 초과 진폭은 100ms 미만의 기간이 되어야 하고 듀티 계수는 44% 이하로 제한됩니다. AC 커플링을통해 제거된 DC 성분을 포함하는 RMS 신호 레벨은 300V로 제한되어야 합니다. 이 값을 초과하면 장비가 손상될 수 있습니다. 위의 과전압 범주 설명을 참조하십시오.			
채널 동상 모드 제 거, 편의 사양	TDS1001B	TDS1002B, 2002B, 2004B	TDS1012B, 2012B, 2 2024B	2014B, 2022B,
	60Hz에서 100:1, 20MHz에서 20:11 2	60Hz에서 100:1, 30MHz에서 20:1 ¹ 2	60Hz에서 100:1, 50N	IHz에서 10:1 ¹²
	커플링 설정을 하여 N	상 사이에 테스트 신호 JATH Ch1- Ch2 파형 ATH 채널 3 - 채널 4		등일한 전압눈금과
채널 간 누화	TDS1001B	TDS1002B, 2002B, 2004B	TDS1012B, 2012B, 2014B	TDS2022B, 2024B
	20MHz에서 ≥ 100:1 1 2	30MHz에서 ≥ 100:1 1 2	50MHz에서 ≥100:11 2	100MHz에서 ≥ 100:112
		상 사이에 테스트 신호[구른 채널에서 측정합니	를 적용하고 각 채널에 동 다.	등일한 전압 눈금과

^{1 1}X 프로브에서 대역폭은 6MHz로 감소됩니다.

표 3: 수직 사양 1

특성	설명
디지타이저	8비트 해상도(2mV/div로 설정할 때는 제외), 각 채널은 동시에 샘플링됩니다.
전압눈금 범위	입력 BNC에서 2mV/div에서 5V/div
위치 범위	2mV/div에서 200mV/div ±2V
	> 200mV/div에서 5V/div,±50V

² 효과와 관련된 프로브는 포함되어 있지 않습니다.

표 3: 수직 사양 1 (계속)

특성	설명			
10X로 설정된 BNC 또는 P2220 프로브의 샘플과 평균 모드에서 아 날로그 대역폭, DC 커플됨	TDS1001B	TDS1002B, 2002B, 2004B	TDS1012B, 2012B, 2014B	TDS2022B, 2024B
	40MHz 2 3	60MHz 2 3	100MHz 2 3	200MHz ^{2 3} 0°C 에 서 + 35°C(32°F에 서 95°F) 160MHz ^{2 3} 0°C 에 서 + 50°C(32°F에 서 122°F)
	20MHz 2 (수직눈금이	< 5mV로 설정된 경우	-)	
피크 검출 모드 에서 아날로그 대	TDS1001B	TDS1002B, 2002B, 2004B	TDS1012B, 2012B, 2024B	2014B, 2022B,
역폭(5s/div에서 5µs/div 4), 편의 사	30MHz 2 3	50MHz 2 3	75MHz 2 3	
sps/div +), 원의 사 양	20MHz 2 (수직눈금이	< 5mV로 설정된 경우	.)	
선택 가능한 아날 로그 대역폭 제한, 편의 사양	20MHz ²			
낮은 주파수 제한, AC 커플됨	BNC에서 ≤ 10Hz 10X 패시브 프로브를 사용할 경우 ≤ 1Hz			
BNC에서 상승 시 간, 편의 사양	TDS1001B	TDS1002B, 2002B, 2004B	TDS1012B, 2012B, 2014B	TDS2022B, 2024B
	< 8.4ns	< 5.8ns	< 3.5ns	< 2.1ns
피크 검출 응답 4	가운데 8개의 수직 구 상 진폭을 포착합니다	⁷ 간에서 ≥12ns 폭(50s ∤.	/div에서 5ms/div))인	펄스의 50% 이
DC 게인 정확도	샘플 또는 평균 획득 모드의 경우 ±3%, 5V/div에서 10mV/div			
	샘플 또는 평균 획득	모드의 경우 ±4%, 5m\	V/div에서 2mV/div	
DC 측정 정확도,	측정 유형	정밀도		
평균 획득 모드	제로에서 수직 위 치인 ≥ 16 파형의 평균	10mV/div 이상이 선 1mV)	택되었을 때 ±(3% × 돼	관독값 + 0.1div +
	수직 스케일이 2mV/div에서 200mV/div 사 이이고 수직 위치 가-1.8V <에서< 1.8V 사이인 수직 위치에서 ≥ 16인 파형의 평균	±[3% × (판독값 + = 7mV]	수직 위치) + 수직 위치	의 1% + 0.2div +

표 3: 수직 사양 1 (계속)

특성	설명	
	수직 스케일이 > 200mV/div이고 수직 위치가 -45V <에서< 45V 사이 인 수직 위치에서 ≥ 16인 파형의 평 균	±[3% × (판독값 + 수직 위치) + 수직 위치의 1% + 0.2div + 175mV]
전압 측정 반복성, 평균 획득 모드	같은 설정과 주변 조건에서 획득한 16개 이상 파형의 두 평균 간 델타 전 압	±(3% × 판독값 + 0.05div)

- 1 프로브 ► 전압 ► 감쇠 옵션을 사용하여 사양을 1X로 설정합니다.
- 2 1X 프로브에서 대역폭은 6MHz로 감소됩니다.
- 3 수직눈금이 > 5mV로 설정된 경우입니다.
- 4 오실로스코프는 SEC/DIV(수평 스케일)가 1GS/s 모델에서는 2.5ms/div에서 5ns/div, 2GS/s 모델에서는 2.5ms/div에서 2.5ns/div로 설정될 때 샘플 모드로 되돌아갑니다. 샘플 모드는 여전히 10ns 글리치를 포착할 수 있습니다.

표 4: 수평 사양

특성	설명	
샘플 속도 범위	TDS1001B, 1002B, 1012B, 2002B, 2004B, 2012B, 2014B	TDS2022B, 2024B
	5S/s에서 1GS/s	5S/s에서 2GS/s
파형 보간	(sin x)/x	
레코드 길이	각 채널에 대해 2,500 샘플	
SEC/DIV 범위	TDS1001B, 1002B, 1012B, 2002B, 2004B, 2012B, 2014B	TDS2022B, 2024B
	1, 2.5, 5 순서로 5ns/div에서 50s/div	1, 2.5, 5 순서로 2.5ns/div에서 50s/div
샘플 속도 및 지연 시간 정확도	≥1ms 시간 간격에서 ±50ppm	
절대차 시간 측정 정확도(전체 대역 폭)	조건	정밀도
	싱글-샷, 샘플 모드	±(1 샘플 간격 + 100ppm × 판독값 + 0.6ns)
	> 16 평균	±(1 샘플 간격 + 100ppm × 판독값 + 0.4ns)
	샘플 간격 = s/div ÷ 250	

표 4: 수평 사양 (계속)

특성	설명		
위치 범위	TDS1001B, 1002B, 1012B, 2002	TDS1001B, 1002B, 1012B, 2002B, 2004B, 2012B, 2014B 2022B, 2024B	
	5ns/div에서 10ns/div	(-4div×s/div)부터 20ms	
	25ns/div에서 100µs/div	(-4div×s/div)부터 50ms	
	250ms/div부터 50s/div	(-4div×s/div)부터 50s	
	TDS2022B, 2024B		
	2.5ns/div	(-4div×s/div)부터 20ms	

표 5: 트리거 사양

특성	설명			
트리거 감도, 에지 트리거 종류, 트리 커 이벤트의 안정 된 디스플레이	커플링	감도	TDS1001B, 1002B, 1012B, 2002B, 2004B, 2012B, 2014B	TDS2022B, 2024B
	DC	EXT	DC에서 100MHz 부터 200mV ¹	DC부터 100MHz 까지 200mV ¹
				100MHz부터 200MHz까지 350mV ¹
		EXT/5	DC부터 100MHz 까지 1V ¹	DC부터 100MHz 까지 1V ¹
				100MHz부터 200MHz까지 1.75V ¹
		CH1, CH2, CH3 ² , CH4 ²	DC부터 10MHz까 지 1div ¹	DC부터 10MHz까 지 1div ¹
			10MHz부터 전체 까지 1.5div	10MHz부터 100MHz까지 1.5div
				100MHz부터 전체 까지 2div

표 5: 트리거 사양 (계속)

특성	설명			
트리거 감도, 에지 트리거 종류, 주파 수 계수기, 편의 사 양	커플링	감도	TDS1001B, 1002B, 1012B, 2002B, 2004B, 2012B, 2014B	TDS2022B, 2024B
	DC	EXT	DC부터 100MHz 까지 300mV ¹	DC부터 100MHz 까지 300mV ¹ 100MHz부터
				200MHz까지 500mV ¹
		EXT/5	DC부터 100MHz 까지 1.5V ¹	DC부터 100MHz 까지 1.5V ¹
				100MHz부터 200MHz까지 3V 1
		CH1, CH2, CH3 ² ,	DC부터 10MHz까지	
		CH4 2	10MHz부터 전체까기	이 3div
트리거 감도, 에지	커플링	감도		
트리거 종류, 편의 사양	AC	50Hz 이상에서 DC와 동일		
	잡음제거	> 10mv/div에서 5V, 배 정도 줄입니다.	/div에 대해 DC 커플된	트리거 감도를 2
	HF 제거	DC에서 7kHz까지 DC 커플된 제한과 동일하며 80kHz 이상 의 신호를 감쇠합니다.		
	LF 제거	300kHz 이상의 주파 300kHz 이하의 신호	수에 대해 DC 커플된 를 감쇠합니다.	제한과 동일하며
트리거 레벨 범위,	소스		범위	
편의 사양	CH1, CH2, CH3 2, C	H4 2	화면 중앙에서 ±8구	¹ 간
	EXT		±1.6V	
	EXT/5		±8V	
	AC 라인		설정할 수 없음	
트리거 레벨 정확	정확도는 ≥ 20ns의 -	상승 및 하강 시간을 갖	는 신호에 대한 것입니	다.
도, 편의 사양	소스		정밀도	
	내부		중앙 화면의 ±4구간 volts/div	내에서 ±0.2div ×
	EXT		±(설정의 6% + 40m	nV)
	EXT/5		±(설정의 6% + 200	mV)
50%로 설정, 편의 사양	≥ 50Hz의 입력 신호	에서 작동		
기본값 설정, 비디 오 트리거	커플링은 단일 순서 :	획득을 제외하고는 AC	및 자동 모드임	

표 5: 트리거 사양 (계속)

특성	설명	
감도, 비디오 트리	복합 비디오 신호	
거 종류, 편의 사양	소스	범위
	내부	2 구간의 첨두치 진폭
	EXT	400mV
	EXT/5	2V
신호 형식 및 필드 속도, 비디오 트리 거 유형	모든 필드나 라인에 대해 NTSC, PAL 및 SE	ECAM 브로드캐스트 시스템 지원
지연 범위	500ns에서 10s	
펄스 폭 트리거 모 드	<(보다 작음), > (보다 큼), =(같음) 또는 ≠(티브 펄스 트리거	같지 않음)일 때 포지티브 펄스 또는 네거
펄스 폭 트리거 포	같음: 오실로스코프는 펄스의 트레일링 에지	기가 트리거 레벨을 교차할 때 트리거합니다.
인트	같지 않음: 펄스가 지정된 폭보다 좁은 경우 트리거 포인트는 트레일링 에지입니다. 그렇지 않으면 오실로스코프는 펄스가 펄스 폭 설정 옵션으로 지정한 시간보다 길 어질 때 트리거합니다.	
	보다 작음: 트리거 포인트는 트레일링 에지	입니다.
	보다 큼(타임아웃 트리거라고도 함): 오실로 정한 시간보다 길어질 때 트리거합니다.	L스코프는 펄스가 펄스 폭 설정 옵션으로 지
펄스 폭 범위	33ns에서 10s까지 선택 가능	
펄스 폭 해상도	16.5ns 또는 천당 1파트 중에서 큰 것	
가드밴드와 동일	t > 330ns: ±5% ≤ 가드밴드 < ±(5.1% + 1	16.5ns)
	t ≤ 330ns: 가드밴드 = ±16.5ns	
가드밴드와 동일하	t > 330ns: ±5% ≤ 가드밴드 < ±(5.1% + 16.5ns)	
지 않음	165ns < t ≤ 330ns: 가드밴드 = -16.5 ns/+ 33 ns	
	t ≤ 165ns: 가드밴드 = ±16.5ns	_
트리거 주파수 계수기]	
판독값 해상도	6자리	
정확도(편의 사양)	모든 주파수 기준 오류와 ±1 카운트 오류를 포함하여 ±51ppm	

표 5: 트리거 사양 (계속)

특성	설명
주파수 범위	AC 커플됨, 최소 10Hz의 정격 대역폭
신호원	필스 폭 또는 에지 트리거 모드: 사용 가능한 모든 트리거 소스
	주파수 계수기는 오실로스코프 획득이 실행 상태 변화로 인해 멈추었거나 일회적인 이벤트의 획득이 완료되었을 때를 포함하여 펄스 폭 또는 에지 모드에서 트리거 소 스를 항상 측정합니다.
	펼스 폭 트리거 모드: 오실로스코프는 < 모드로 설정되고 폭이 상대적으로 작은 시간으로 설정된 경우 PWM 펄스 트레인에서 폭이 좁은 펄스와 같이 트리거할 수 있는 이벤트로 적합한 250ms 측정 윈도우 내에서 현저한 진폭 펄스를 카운트합니다.
	에지 트리거 모드: 오실로스코프는 충분한 진폭과 올바른 극성의 모든 에지를 카운 트합니다.
	비디오 트리거 모드: 주파수 계수기는 작동하지 않습니다.

^{1 1}X 프로브에서 대역폭은 6MHz로 감소됩니다.

표 6: 측정 사양

특성	설명
커서	커서 간의 진폭 차이(ΔV, ΔA 또는 ΔVA) 커서 간의 시간 차이(Δt) 헤르츠 단위 Δt의 역수(1/Δt)
자동 측정	주파수, 주기, 평균, 첨두치, 실효치, 최소, 최대, 상승 시간, 하강 시간, 상승 펄스, 하강 펄스

표 7: 일반 사양

특성	설명
디스플레이	
디스플레이 유형	5.7in.(145mm) 대각 LCD
디스플레이 해상도	320 x 240(수평 x 수직) 픽셀
화면 대비	조정 가능, 온도 보정
백라이트 밝기, 편의 사양 1	65cd/m ²
프로브 보정기 출력	
출력 전압, 편의 사양	5V에서 ≥ 1MΩ 로드
주파수, 편의 사양	1kHz
전원 신호원	
신호원 전압	100-240VAC _{RMS} (±10%) 50/60Hz
	$115VAC_{RMS}(\pm 10\%) \ 400Hz \ (\pm 10\%)$
전력 소모	30W 이하
환경	

^{2 4}채널 오실로스코프에만 사용 가능합니다.

표 7: 일반 사양 (계속)

특성	설명		
오염 지수	오염 지수 2 ² 는 실내 사용 전용 등급입니다. 오염원이 발생할 수 있는 환경에서는 작동하지 않습니다.		
온도	작동	32°F에서 122°F(0°C에서 + 50°C)	
	비작동	-40°F에서 159.8°F (-40°C에서 +71°C)	
냉각 방식	대류		
습도	+ 104°F 이하(+ 40°C 이하)	≤ 85% 상대 습도	
	106°F에서 122°F(+41°C에서 +50°C)	≤ 45% 상대 습도	
고도	3,000m(약 10,000ft)		
무작위 진동	작동	5Hz부터 500Hz에서 0.31g _{RMS} , 각 축에서 10분	
	비작동	5Hz부터 500Hz에서 2.46g _{RMS} , 각 축에서 10분	
기계 충격	작동	50g, 11ms, 1/2 사인	
기계			
크기	높이	158.0mm(6.22인치)	
	폭	326.3mm(12.845인치)	
	깊이	124.1mm(4.85인치)	
무게(근사치)	장비만	2.0kg(4.375lbs)	
조정(초기상태 교정) 간격			
권장하는 교정 간격은 1년입니	다.		

¹ 디스플레이 메뉴를 통해 조정 가능

² IEC 61010-1:2001로 정의되어 있습니다.

P2200 프로브 사양

P2200 프로브 사양

저기 자연	10V 0) =		
전기 작업 미영포		10X 위치	
대역폭		DC부터 200MHz	
감쇠 비율		10:1 ± 2%	
보정 범위	• •	15pF-25pF	
입력 저항	DC에서 10MΩ ±3%		
입력 커패시턴스	13.0pF-17.0pF		
상승 시간, 편의 사양	< 2.2ns		
팁(신호)과 기준 리드 간 의 ¹ 최대 입력 전압	10X 위치	1X 위치	
	300V _{RMS} CAT II 또는 300V DC CAT II	150V _{RMS} CAT II 또는 150V DC CAT II	
	150V _{RMS} CAT II 또는 150V DC CAT II	100V _{RMS} CAT III 또는 100V DC CAT III	
	420V 피크, <50% DF, <1s PW	210V 피크, <50% DF, <1s PW	
	670V 피크, <20% DF, <1s PW	330V 피크, <20% DF, <1s PW	
	상의 13V peak AC로 줄 피크 값은 450V 미만이 5 진폭은 100ms 이하의 기 플링을 통해 제거된 DC 4 벨은 300V로 제한되어야	20dB/decade에서 3MHz 이입니다. 비사인 파형의 경우되어야 합니다. 300V 초과간이 되어야 합니다. AC 커성분이 포함된 RMS 신호 레달하나다. 이 값을 초과하면다. 이 목차의 끝에 있는 과오.	
팁(신호)과 접지 간의 ¹ 최대 입력 전압	10X 위치	1X 위치	
	300V _{RMS} CAT II 또는 300V DC CAT II	150V _{RMS} CAT II 또는 150V DC CAT II	
	150V _{RMS} CAT II 또는 150V DC CAT II	100V _{RMS} CAT III 또는 100V DC CAT III	
	420V 피크, <50% DF, <1s PW	210V 피크, <50% DF, <1s PW	
	670V 피크, <20% DF, <1s PW	330V 피크, <20% DF, <1s PW	
1 IEC61010-1에 정의되어 있습니다. 2001.			
P2220 프로브 숭인 및 표준 준수			

EC 준수 선언	표준 준수는 유럽 커뮤니티의 공식 저널에 나열된 다음 사양에 설명되어 있습니다.		
	93/68/EEC에 의해 개정	성된 저전압 Directive 73/23/EEC:	
	EN 61010-1 2001 EN 61010-2-031	측정, 제어 및 실험실용 전기 장비에 대한 안전 요 구 사항	
	2003	전기 측정과 테스트를 위한 휴대용 프로브 어셈블리 에 대한 특정 요구 사항	
과전압 범주	범주	이 범주에서 제품의 예	
	CAT III	분배-레벨 메인, 고정 설치	
	CAT II	로컬-레벨 메인, 어플라이언스, 이동식 장비	
	CAT I	특수 장비나 장비 부품, 통신, 전자 장비에서 신 호 레벨	
오염 지수	오염 지수 2 ² . 실내 사용 전용 등급입니다. 오염원이 발생할 수 있는 환경에서 는 작동하지 않습니다.		
안전	UL61010-1, 2004 & UL61010B-2-031, 2003		
	CAN/CSA 22.22 No. 61010.1:2004		
	CAN/CSA 22.22 No. 61010-2-031:		
	IEC61010-031: 2001		
	EN61010-031: 2001		
환경 특성			
온도	작동	0°C에서 50°C	
		(32°F에서 122°F)	
	비작동	-40°C에서 71°C	
		(-40°F에서 + 159.8°F)	
냉각 방식	대류		
습도	104°F(40°C) 이하	≤ 90% 상대 습도	
	105°F에서 122°F (41°C에서 +50°C)	≤ 60% 상대 습도	
고도	작동	3,000m(약 10,000ft)	
	비작동	15,000m(40,000ft)	

¹ IEC 61010-1:2001에 정의되어 있습니다.

² IEC 60529. 2001에 정의되어 있습니다.

부록 B: 액세서리

모든 액세서리(표준 및 옵션)는 해당 지역 Tektronix 사무소에 연락하면 구입할 수 있습니다.

표준 액세서리	
	P2220 1X, 10X 패시브 전압 프로브. P2220 P2200 프로브는 스위치가 1X 위치에 있을 때는 150V _{RMS} CAT II 정격에서 대역폭이 6MHz이며 스위치가 10X 위치에 있을 때는 300V _{RMS} CAT II 정격에서 대역폭이 200MHz입니다. 영어 전용 프로브 설명서가 포함되어 있습니다.
	TDS1000B 및 TDS2000B 시리즈 오실로스코프 사용 설명서.하나의 사용 설명서가 들어 있습니다. 여러 언어로 제공되는 설명서의 전체 목록은 옵션 액세서리를 참조하십시오.
	PC 통신 CD-ROM. PC 통신 소프트웨어를 사용하면 오실로스코프에서 PC로 쉽게 데이터를 전송할 수 있습니다.
옵션 액세서리	
	P6101B 1X 패시브 전압 프로브. P6101B 프로브는 300V _{RMS} CAT II 정격에서 대역폭이 15MHz입니다.
	RM2000B 랙마운트키트. RM2000B 랙마운트 키트를 사용하면 TDS1000B 또는 TDS2000B 시리즈 오실로스코프를 업계 표준 19인 치 랙에 설치할 수 있습니다. 랙마운트 키트를 설치하려면 7인치의 수직 랙 공간이 필요합니다. 랙마운트 키트 전방에서 오실로스코프 전원을 켜거나 끌 수 있습니다. 랙마운트 키트에는 슬라이드 아웃 기능이 없습니다.
000	P2220 1X, 10X 프로브 지침 P2220 프로브 설명서(071-1464-XX, 영어)에서는 프로브 및 프로브 액세서리에 대한 정보를 제공합니다.

TDS200, TDS1000/2000, TDS1000B/2000B 및 TPS2000 시리 즈 디지털 오실로스코프 프로그래머 설명서 프로그래머 설명서 (071-1075-XX 영어)에서는 명령과 구문 정보를 제공합니다.
TDS1000B 및 TDS2000B 시리즈 디지털 저장 오실로스코프 서비스 설명서 서비스 설명서(071-1828-XX, 영어)에서는 모듈 레벨 정비 정보를 제공합니다.
TDS1000B 및 TDS2000B 시리즈 디지털 저장 오실로스코프 사용 설명서 사용 설명서는 다음 언어로 제공됩니다. 영어, 071-1817-XX 프랑스어, 071-1818-XX 이탈리아어, 071-1819-XX 독일어, 071-1802-XX
스페인어, 071-1821-XX 일본어, 071-1822-XX 포르투갈어, 071-1823-XX 중국어 간체, 071-1824-XX 중국어 번체, 071-1825-XX 한국어, 071-1826-XX 러시아어, 071-1827-XX
국제 전원 코드 오실로스코프에 제공된 전원 코드 이외에 다음과 같은 코드를 구할 수 있습니다. 옵션 A0, 북미 120V, 60Hz, 161-0066-00 옵션 A1, 유럽 230V, 50Hz, 161-0066-09 옵션 A2, 영국 230V, 50Hz, 161-0066-10 옵션 A3, 호주 240V, 50Hz, 161-0066-11 옵션 A5, 스위스 230V, 50Hz, 161-0154-00 옵션 A10, 중국 220V, 50Hz, 161-0304-00 옵션 A5, 인도 230V, 50Hz, 161-4000-00
TEK-USB-488 어댑터 GPIB 어댑터를 사용하여 오실로스코프를 GPIB 컨트롤러에 연결할 수 있습니다. 소프트 케이스. 소프트 케이스(AC2100)는 장비가 손상되지 않도록 하며 프로브, 전원 코드 및 설명서를 보관할 수 있는 공간이 있습니다.
운송 케이스. 운송 케이스(HCTEK4321)는 한 장소에서 다른 장소로 운송할 때 오실로스코프를 충격, 진동, 충돌 및 습기로부터 보호합니 다. 필요한 소프트 케이스는 운송 케이스 내에 맞게 되어 있습니다.

부록 C: 청소

일반 관리

LCD 디스플레이가 장기간 직사광선에 노출되는 곳에 오실로스코프를 보관하거나 배치하지 않습니다.

주의. 오실로스코프 또는 프로브의 손상을 방지하려면 스프레이, 액체 또는 솔벤 ▲ 트에 노출되지 않도록 합니다.

청소

작동 조건에 필요할 경우 오실로스코프와 프로브를 자주 검사합니다. 외부 표면을 청소하려면 다음 단계를 수행합니다.

- 1. 보풀 없는 천을 사용하여 오실로스코프와 프로브 외부에 묻은 먼지를 제거합 니다. 투명 유리 디스플레이 필터가 긁히지 않도록 주의합니다.
- 2. 물에 적신 부드러운 천을 사용하여 오실로스코프를 청소합니다. 효율적인 청소를 위해 75% 이소프로필 알코올의 수성 용제를 사용합니다.

주의. 오실로스코프나 프로브 표면의 손상을 방지하기 위해 마모제나 화학 세척 제는 사용하지 않습니다.

부록 D: 기본값 설정

이 부록은 기본값 설정 버튼을 누를 때 설정이 변경되는 옵션, 버튼 및 컨트롤을 설명합니다. 이 부록의 마지막 페이지에 변경하지 말아야 할 설정이 나열됩니다.

주석노트. 기본값 설정 버튼을 누르면 오실로스코프는 CH1 파형을 표시하고 다른 모든 파형을 제거합니다.

메뉴 또는 시스템	옵션, 버튼 또는 노브	기본값 설정
ACQUIRE	(세 가지 모드 옵션)	샘플
	평균 횟수	16
	RUN/STOP	RUN
자동 범위	자동 범위	해제
	모드	수직 및 수평
CURSOR	유형	해제
	신호원	CH1
	수평(진폭)	+/- 3.2divs
	수직(시간)	+/- 4divs
DISPLAY	유형	벡터
	지속 기능	해제
	포맷	YT
수평	확대 시간축	주
	트리거 노브	레벨
	위치	0.00s
	SEC/DIV	500ms
	확대 범위	50ms
연산	작업	
	신호원	CH1 - CH2
	위치	Odivs
	수직눈금	2V
	FFT 연산:	CH1
	신호원	해닝
	확대 시간축	X1
	FFT 확대	
MEASURE(모두)	신호원	CH1
	유형	None(없음)

메뉴 또는 시스템	옵션, 버튼 또는 노브	기본값 설정
트리거(일반)	유형	에지
	신호원	CH1
트리거(에지)	경사	상승
	모드	자동
	커플링	DC
	레벨	0.00V
트리거(비디오)	극성	보통
	동기	모든 라인
	표준	NTSC
트리거(펄스)	시기	=
	펄스 폭 설정	1.00ms
	극성	포지티브
	모드	자동
	커플링	DC
수직 시스템, 모든	커플링	DC
채널	대역 제한	Off
	Volts/Div	보통 조정
	프로브	전압
	전압 프로브 감쇠	10X
	현재 프로브 눈금	10A/V
	반전	Off
	위치	0.00divs (0.00V)
	VOLTS/DIV	1.00V

기본값 설정 버튼은 다음 설정을 재설정하지 않습니다.

- Language(언어) 옵션
- 저장된 설정
- 저장된 기준 파형
- 화면 대비
- 교정 데이터
- 프린터 설정
- GPIB 셋업
- 프로브 설정(종류 및 감쇠 계수)
- 날짜 및 시간
- USB 플래시 드라이브에 있는 현재 폴더

부록 E: 글꼴 사용권

다음 사용권 계약에는 TDS1000B 및 TDS2000B 시리즈 오실로스코프에 사용된 아시아 글꼴이 포함되어 있습니다.

Copyright © 1988 The Institute of Software, Academia Sinica.

주소: P.O.Box 8718, Beijing, China 100080.

이 소프트웨어 및 설명서를 특별한 목적을 가지고 무료로 사용, 복사, 수정 및 배포할 수 있는 권한이 부여되었으며 모든 복사본에 저작권 표시가 제공되고 해당 저작권 표시 및 권한 표시가 지원 문서에 나타나며 문서에 기록된 특정 권한이 없으면 해당 소프트웨어의 배포와 관련하여 "the Institute of Software, Academia Sinica"를 광고 또는 홍보에 사용할 수 없습니다. The Institute of Software, Academia Sinica에서는 어떠한 목적으로도 이 소프트웨어에의 적합성에 대해 표시하지 않습니다. 어떠한 명시적 보증이나 묵시적 보증도 하지 않고 "현재 상태"로 제공합니다.

THE INSTITUTE OF SOFTWARE, ACADEMIA SINICA는 상품성과 적합성의 모든 묵시적 보증을 포함하여 이 소프트웨어에 관한 모든 보증을 부인합니다. THE INSTITUTE OF SOFTWARE, ACADEMIA SINICA는 이 계약서나 소프트웨어의 사용 또는 사용할 수 없음으로 인한 모든 직접적 또는 간접적 손해나 소프트웨어 사용, 데이터 및 이익에 대한 손실과 과실 또는 기타 불법 행위 및 이 소프트웨어의 사용 또는 실행과 관련된 모든 행위에 대하여 어떠한 경우에도 책임을 지지 않습니다.

© Copyright 1986-2000, Hwan Design Inc.

모든 Hwan Design 적합성으로 4 Baekmuk 트루타입 윤곽선 글꼴을 사용, 복사, 수정, 재라이선스, 판매 및 재배포할 수 있는 권한을 부여 받았으며 해당 글꼴에 대해 모든 복사본의 왼쪽에 이와 같은 내용이 표시되며 Hwan Design Int.의 상표는 4 Baekmuk 트루타입 글꼴에 대한 모든 복사본 아래에 나타납니다.

BAEKMUK BATANG은 Hwan Design Inc.의 등록 상표입니다. BAEKMUK GULIM은 Hwan Design Inc.의 등록 상표입니다. BAEKMUK DOTUM은 Hwan Design Inc.의 등록 상표입니다. BAEKMUK HEADLINE은 Hwan Design Inc.의 등록 상표입니다.

© Copyright 2000-2001 /efont/ The Electronic Font Open Laboratory. All rights reserved.

다음 조건을 충족하는 경우 수정하거나 수정하지 않고 원본 및 이중 형식으로 재 배포하고 사용하는 것이 허용됩니다.

- 원본 코드의 재배포가 저작권 표시, 조건 목록 및 다음 고지 사항에 포함되어 야 합니다.
- 이중 형식으로 재배포하면 배포용으로 제공된 문서 및/또는 기타 자료에 저작권 표시, 조건 목록 및 다음 고지 사항이 적용되어야 합니다.
- 특별히 기록된 권한 없이 이 글꼴에서 파생된 제품을 지지하고 장려하는 데 공급자 이름을 사용할 수 없습니다.

글꼴은 공급자에 의해 "현재 상태"로 제공되며 명시적이거나 묵시적인 어떤 형태의 보증(상품성 및 특정 목적에 대한 적합성에 대한 묵시적인 보증을 포함하며 이에 제한되지 않음)도 배제합니다. 공급자는 이 계약서나 소프트웨어의 사용 또는 사용할 수 없음으로 인한 모든 파생적, 부수적, 직접, 간접, 특별, 징벌적 또는 기타모든 손해(대체 상품 생산 또는 서비스, 사용, 데이터 또는 이익 손실 또는 사업 중단 또는 그 밖의 금전적 손실로 인한 손해를 포함하되 이에 제한되지 않음) 및 글꼴 사용에 대한 어떠한 불법 행위에도 책임을 지지 않습니다. 이는 그와 같은 손해의 가능성을 사전에 알고 있던 경우에도 마찬가지입니다.

색인

JI CF 42 8 4. 02	ENGLISH TERMS AC 커플링 수직, 97 트리거, 89 ACQUIRE 버튼, 17, 69 AUTOSET 버튼, 17 BMP 파일 형식, 62 CH 1, CH 2, CH 3 또는 CH 4 MENU 버튼, 13 커넥터, 18 CSV 파일 형식, 86 CURSOR 버튼, 17, 76 DC 커플링 수직, 97 트리거, 89 DISPLAY 버튼, 17, 77 EPSIMAGE 파일 형식, 62 EXT TRIG 커넥터, 18 프로브 보정, 6 FFT 스펙트럼 나이퀴스트 주파수, 50 애플리케이션, 49 윈도우, 51 커서를 사용하여 크기와 주파 수 측정, 55 판독값, 51 표시, 50 프로세스, 49 확대, 54 FFT 앨리아싱, 53 해결, 54 FFT 앨리아싱, 53 해결, 54 FFT 앨리아싱, 52 Rectangular, 52 FFT 확대 수직, 50 수평, 51 Flattop 윈도우, 52 GPIB 시스템 모실로스코프에 연결, 65 GPIB 어댑터 주문, 112 GPIB 인터페이스를 사용하여 원 격제어, 65 Hanning 윈도우, 52 HORIZ MENU 버튼, 14	Languages(언어), 95 도움말스크를 LED, xii 주시간축에 대한 M 표시기, 79 math 파형 히용되는 단위, 81 Math FFT, 49, 50 MATH MENU 버튼, 13 MEASURE 버튼, 17 NTSC 비디오 표준, 91 OpenChoice 소프트웨어, 111 설치, 63 P2200 프로브 사양, 108 PAL 비디오 표준, 91 PC 오실로스코프에 연결, 64 PRINT 버튼 옵션, 84 USB 플래시 드라이브에 저장, 61 PRINT 버튼, 17, 82 PROBE COMP 연결, 18 RCX 파일 형식, 62 Rectangular 윈도우, 52 RLE 파일 형식, 62 사이클 RMS 측정, 82 RMS 측정, 82 RMS 측정, 82 RUN/STOP 버튼, 17, 71 누르면 오실로스코프가 수행하는 단계, 20 Save/Recall 메뉴, 84 USB 플래시 드라이브에 저장, 59 SAVE/RECALL 버튼, 17 SECAM 비디오 표준, 91 SEC/DIV 컨트롤, 14, 80 SET TO 50% 버튼, 15 SINGLE SEQ 버튼, 71 누르면 오실로스코프가 수행하는 단계, 20 TEK-USB-488 어댑터 연결, 65 주문, 112 TIFF 파일 형식, 62 TRIG MENU 버튼, 15 TRIG MENU 버튼, 15 TRIG WIEW 버튼, 15 TRIG VIEW 버튼, 15	USB 플래시 드라이브 PRINT 버튼, 61 Save/Recall 메뉴, 59 설치, 57 스토리지 용량, 58 저장 작업 표시기, 57 파일 유틸리티, 96 파일 저장, 모든, 61 파일 저장, 이미지, 62 파일 저장, 이미지, 62 파일 저장, 의형, 61 포맷, 58 포트의지 모든, 63 UTILITY 버튼, 17 Volts/Div 미세 조정, 97 보통 장시 컨트, 13 VOLTS/DIV 축에 대, 46 YT 디스플레에이 형식, 77, 78 애플레이 형식, 77 함 전압의거, 99 YT 디스 압위, 97 보통, 8, 98 감세 트리거, 80 교정, 8 라이션, 94 구구형과 자동 설정 메뉴, 80 교정, 74 그러 지장 미르리거, 92 기능 개요, 1 기능 검사, 4
	JPG 파일 형식, 62		기능 검사, 4

기본값 설정 비디오 트리거, 116 에지 트리거, 116 필스 트리거, 116 기본값 설정 버튼 보존된 옵션 설정, 116 옵션 및 컨트롤 설정, 115 기본 설정 호출, 88 기울기, 21 기준 단자, 18 마커, 11 프로브의 리드선, 5 프로브 터미널, 5	도움말 항목의 하이퍼링크, xii 도트 디스플레이 유형, 77 동기 비디오 극성, 91 비디오 트리거 라인 또는 필 드, 91 동기 필스, 91 듀얼 타임 베이스, 14, 79 디렉토리 삭제, 93, 96 디스플레이 유형: 벡터 또는 도트, 77 XY 형식, 77 YT 형식, 77 대비, 77	메모리 USB 플래시 드라이브, 57 설정, 84 파형, 84 화면 이미지, 84 메시지, 11, 12 모두 저장 메뉴, 84 미세 조정 해상도, 97 世 반전된 파형 판독값, 11 밝기, 77 버튼 이름, xiii
기준 메뉴, 83 기준 메뉴 버튼, 17 기준 파형 저장 및 호출, 88 판독값, 12 표시 및 제거, 83 기준 파형 제거, 83	메뉴, 77 밝기, 77 지속, 77 파형 스타일, 77 판독값, 9 형태(반전), 98	범용 노브, 16 베젤 버튼, xiii 벡터, 77 보간, 70 보안용 루프, 2 보정 PROBE COMP 커넥터, 18 전압 프로브 검사 마법사, 5
나이퀴스트 주파수, 50 날짜, 95 날짜 및 시간 설정, 95 날짜 및 시간 판독값, 12 노이즈 감소 수직 대역폭 제한, 97 연산 뺄셈, 81 트리거 커플링, 89 평균 모드, 69 눈금	라인 비디오 트리거, 91 레벨, 15, 21 레벨 컨트롤, 15 롤 모드 <i>를 참조하십시오</i> 스캔 모 드 리사쥬 패턴 XY 형식, 78 □	전압 프로브 설명서, 7 보통 조정 해상도, 97 보통 트리거 모드, 89 비디오 신호 자동 설정 기능, 75 비디오 트리거, 91 애플리케이션 예제, 41 비정상적인 상황 무한대 지속, 78 비휘발성 메모리 기준 파형 파일, 84 설정 파일, 84
수직, 22 수평, 23 전류 프로브, 8, 98 달력, 95 대류 냉각, 3 대비, 77 대역폭 제한 수직, 97 트리거, 89 판독값, 11 덧셈 파형 연산 메뉴, 80 도움말 시스템, xii 도움말 항목의 색인, xiii	Save/Recall, 84 기준, 83 도움말, 79 디스플레이, 77 수직, 97 수평, 79 연산, 80 유틸리티, 94 인쇄, 82 자동 범위, 71 자동 설정, 73 측정, 82 커서, 76 트리거, 88 획득, 69 메뉴 시스템 사용, 12	배 벨셈 파형 연산 메뉴, 80 人 사양 P2220 프로브, 108 오실로스코프, 99 사이드 메뉴 버튼, xiii 사인파 자동 설정 기능, 74 사전 트리거, 20 사전 트리거 보기, 91 삭제 파일 또는 폴더, 96

상승 시간 측정	시간 도메인	애플리케이션 예제
자동, 82	파형, 49	XY 모드 사용, 47
커서 사용, 34 상승 펄스 측정, 82	시간축, 22	네트워크에서 임피던스 변경 보기, 46
성 등 월드 특성, 62 상태	윈도우, 14, 79 주, 14, 79	보기, 40 노이즈 감소, 37
기타, 95	판독값, 11	노이즈 신호 보기, 36
시스템, 94	시간 커서, 26, 76	두 신호 측정, 30
샘플 모드	시계	링 주파수 측정, 32
아이콘, 10	날짜 및 시간 설정, 95	링 진폭 측정, 32
샘플 속도 최대 70	신호원 AC 라인, 91	비디오 라인에서 트리거링, 43 비디오 신호에서 트리거링, 41
최대, 70 샘플 획득 모드, 22, 69	Ext/5, 90	비디오 필드에서 트리거링, 41
서비스	트리거, 89, 91, 92	상승 시간 측정, 34
기준으로서의 에러 목록, 94	신호 획득	신호 세부 사항 분석, 36
서비스 설명서 주문, 112	기본 개념, 22	싱글 샷 신호 포착, 37
설명	싱글 샷 신호	윈도우 기능 사용, 44
일반, 1 설명서 주문, 112	애플리케이션 예제, 37	자동 범위로 테스트 포인트 검 사, 32
실정시 구군, 112 설정		^r, 52 자동 범위를 사용하여 테스트
기본 개념, 19	0	포인트 검사, 32
저장 및 호출, 84	아이콘	자동 설정, 사용, 28
설정 저장 메뉴, 85	기준 마커, 11	자동 측정, 28, 29
설정 호출 메뉴, 87	기준 파형 판독값, 12 날짜 및 시간 판독값, 12	전파 지연 측정, 39
설치 PC에 OpenChoice 소프트웨	글까 옷 시신 권득畝, 12 대역폭 제한 판독값, 11	증폭기 게인 계산, 31 지속기능 사용, 47
어, 63	반전된 파형 판독값, 11	차동 통신 신호 분석, 44
소스	수직눈금, 11	커서, 사용, 32
트리거, 21	수평 위치 마커, 11	커서 측정 수행, 32
소프트웨어	시간축 판독값, 11	특정 펄스 폭에서 트리거
OpenChoice, 111	윈도우 시간축 판독값, 11 채널 눈금, 11	링, 40 퍼스 프 추기 24
소프트 케이스 주문, 112 소프트 키, xiii	트리거, 레벨 마커, 11	펄스 폭 측정, 34 평균화, 사용, 37
ㅗㅡㅡ / I, XIII 수직	트리거, 레벨 판독값, 11	피크 검출, 사용, 36
눈금, 22	트리거 상태, 스캔 모드, 11	획득 최적화, 38
메뉴, 97	트리거 상태, 자동 모드, 11	액세서리, 111
상태, 95	트리거 상태, 준비, 11 트리거 상태, 중지, 11	앨리아싱 PPR - 0
위치, 22 위치 노브, 13	트리거 상대, 중시, 11 트리거 상태, 트리거, 11	FFT, 53 시간 도메인, 23
귀시 <u>노트, 15</u> 수직에 대한 대역폭 제한, 97	트리거 상태, 획득 완료, 11	작년 도메년, 25 확인, 23
수평	트리거, 소스, 11	에러 목록, 94
눈금, 23	트리거 위치 마커, 11	에지 트리거, 89
메뉴, 79	트리거, 위치 판독값, 11	연산 ,
상태, 95	트리거 유형, 비디오, 11 트리거 유형, 에지, 11	기능, 80
스캔 모드, 71, 80 앨리아싱, 시간 도메인, 23	트리거 유형, 펠스 폭, 11	메뉴, 80 오실로스코프
위치, 23	트리거, 주파수 판독값, 12	도르고프로 GPIB 시스템에 연결, 65
위치 마커, 11	획득 모드, 샘플, 10	PC에 연결, 64
수평 확대	획득 모드, 평균, 10	기능 이해, 19
확대 시간축, 79	획득 모드, 피크 검출, 10 안전 사항 요약, iv	날짜 및 시간 설정, 95
스윕 스퍼누크 80	단선 /Y 영 호 약, IV	사양, 99 전면 패널, 9
수평눈금, 80 지연됨, 79		전년 페틸, 9 프린터에 연결, 66
스캔 모드, 71, 80		그년의 및 년달, 00 옵션 버튼, xiii

옵션 종류	자동 즉정, 82	초기상태 설정, 115
옵션 종류 라디오, 13 순환 목록, 12	기본 개념, 26	호출, 88
순환 목록, 12	자동 트리거 모드, 89	최대 측정, 82
실행, 13	자체 교정, 8	최소 측정, 82
페이지 선택, 12	자체 교정 시작 옵션, 8	측정값
운송 케이스 주문, 112	저장	FFT 스펙트럼, 55
위상차, 78	USB 플래시 드라이브에 이미	사이클 RMS, 82
위치	지 파일, 62	계수선, 26
수직, 97	USB 플래시 드라이브에 모든	기본 개념, 25
수평, 23, 79	파일, 61	상승 시간, 82
트리거, 91	설정 19 88	상승 펄스, 82
위치 컨트롤	교형 88	유형, 82
수직, 13	설정, 19, 88 과형, 88 전류 프로브 눈금 설정, 8, 98	자동, 26, 82
	선표 프로트 노크 시키 0 00	へら、20、02 ろっ) 00
수평, 14		주기, 82
윈도우	건 된, 4	1 4 1 , 02
FFT 스펙트럼, 51	사양, 106	첨두치, 82
윈도우 시간축, 14, 79	전원 사이클 카운트, 94	최대, 82
판독값, 11	전원 코드, 2	최소, 82
유용한 메시지, 11	 주문, 112	커서, 26, 32
유틸리티 메뉴, 94	접지 커플링, 97	평균, 82
이동식 파일 저장소	제로로 설정 버튼, 14	하강 시간, 82
		약경기선, 02 귀기되고 00
	주기 측정, 82	하강 펄스, 82
	주 시간축, 14, 79	측정 메뉴, 82
이미지 파일 형식, 62	주파수	
이 설명서에서 사용하는 규약, xiii	트리거 판독값, 12, 89	7
인쇄	주파수 측정, 82	7
취소, 67, 82	FFT 커서, 55	커넥터
화면 데이터, 82	커서 사용, 32	CH 1, CH 2, CH 3 및 CH
화면 이미지, 67	주파수 커서, 26	4, 18
		EXT TRIG, 18
인쇄 취소, 67, 82	FFT 스펙트럼, 55	PROBE COMP, 18
일반 작업	줌, 44	
기본값 설정 호출, 20	FFT, 54	USB 플래시 드라이브 포
	HORIZ 메뉴, 79	三, 57
	확대 범위, 79, 80	USB 장치 포트, 63
大	지속, 77, 78	커서
자동 범위 기능, 19	지연, 80	FFT 스펙트럼 측정, 55
개요, 71	지연된 스위프, 79	FFT의 주파수, 76
<u> </u>	지연 컨트롤, 15	FFT의 진폭, 76
자동 범위 메뉴, 71	지근 선드일, 10 진폭 측정	기본 개념, 26
자동 범위 버튼, 17	선두 구경	사용, 76
	지속, 77, 78 지역, 80 지연된 스위프, 79 지연 컨트롤, 15 진폭 측정 커서 사용, 32 진폭 커서, 26, 76	가(항, 10 기가 96 76
자동 설정 기능, 19	진폭 커서, 26, 76	시간, 26, 76
DC 레벨, 73		1 6, 10
FFT, 74		진폭, 26, 76
개요, 73		측정 예제, 32
구형파, 74	채널	커서 메뉴, 76
노이즈, 74	눈금, 11	커서 메뉴의 델타 판독값, 76
비디오 신호, 75	메뉴, 97	커플링
사용 시기, 74	커플링, 97	수직, 97, 98
사인파, 74	기들 o, 57 첨두치 노이즈, 78	트리거, 21, 90
실행 취소, 74	첨두치 측정, 82	크기 커서, 26
필스 신호, 74	청소, 113	FFT 스펙트럼, 55
자동 설정 메뉴, 73	초기상태 교정, 95	

E	파형	표시기, 10
타임아웃 트리거, 105	데이터 획득, 22	프로그래머 설명서 주문, 112
탐색	디지털화, 22	프로브
파일 시스템, 96	스캔, 71	감쇠 스위치, 8
통신	스케일, 22	보정, 18
	시간 도메인, 49	사양, 108
OpenChoice 소프트웨어 설		
치, 63	압축, 80	안전, 5
트리거	위치, 22	전류 및 눈금, 8
모드: 보통, 89	측정 수행, 25	전압 및 감쇠, 98
모드: 자동, 89	화면에서 제거, 98	전압 프로브 검사 마법사, 5
강제, 93	화면 형태의 의미, 77	전압 프로브 수동 보정, 7
경사, 89	확장, 80	프로브 검사 마법사
극성, 92	파형 스캔, 80	전압 프로브, 5
기울기, 21	파형 스케일	프로브 검사 버튼, 6
동기, 91	기본 개념, 22	프로브 설명서 주문
	파형의 대각선	P2220 1X/10X 패시브, 112
레벨, 15, 21, 88	피크 검출, 70	프로브 옵션
레벨 마커, 11		전류 프로브 눈금과 일치, 8
레벨 판독값, 11	파형 저장 메뉴, 86	
메뉴, 88	파형 제거, 97	전압 프로브 감쇠 일치, 8
모드, 21	파형 표시, 97	프린터
보기, 15, 93	기준, 83	PictBridge 호환, 66
비디오, 91, 92	파형 호출 메뉴, 87	설정, 66
사전 트리거 정보, 91	판독값	연결, 66
상태, 95	FFT(Math), 51	피크 검출 모드, 69
상태 표시기, 11	일반, 9	아이콘, 10
소스, 11, 21	패닝	피크 검출 획득 모드, 22, 70
소프, 11, 21 신호원, 89, 92	수직, 22	필드 비디오 트리거, 91
	- 1, 22 수평, 23	= = =
에지, 89 이 카 - 01	필스 신호	_
위치, 21	르— 근포 자동 설정 기능, 74	ਰ
위치 마커, 11		하강 시간 측정, 82
위치 판독값, 11	필스 폭 측정	하강 펄스 측정, 82
유형, 21	커서 사용, 34	
정의, 20	펄스 폭 트리거링, 92	해상도
종류 표시기, 11	펌웨어 업데이트, 96	미세 조정, 98
주파수 판독값, 12, 89, 92	인터넷, xii	현재 폴더, 58, 96
지연, 15, 80, 93	평균	호출
커플링, 21, 89, 90	평균 측정, 82	공장 설정(기본값), 20
, 2 0, 11, 10, 10	획득 모드, 69	설정, 20, 88
	평균 모드	파형, 88
$\overline{\mathbf{u}}$	아이콘, 10	홀드오프, 93
파일 또는 폴더 삭제, 93	평균 획득 모드, 22, 71	화면 버튼, xiii
파일 또는 폴더 이름 변경, 96	포맷	화면 이미지
파일 유틸리티, 96	고 / USB 플래시 드라이브, 58	파일에 저장, 62
		프린터로 전송, 67
USB 플래시 드라이브 내	디스플레이, 77	프린기도 원 8 , 67 확대 범위, 79, 80
용, 96	_ 이미지 파일, 62	
디렉토리 구조 탐색, 96	至三	환기, 3
파일 또는 폴더 만들기, 96	_ USB 플래시 드라이브, 57	획득
파일 또는 폴더 삭제, 93, 96	폴더	실시간 디스플레이, 71
파일 또는 폴더 선택, 96	만들기, 96	싱글 샷 예제, 37
파일 또는 폴더 이름 변경, 96	삭제, 93, 96	정지, 71
	이름 변경, 96	획득 메뉴, 69

획득 모드, 22, 69 샘플, 22, 69 평균, 22, 71 표시기, 10 피크 검출, 22, 70