Zadanie nr 4 - Przekształcenie Fouriera, Walsha-Hadamarda, kosinusowe i falkowe, szybkie algorytmy.

Cyfrowe Przetwarzanie Sygnałów

Paweł Purgat, 203975 Bartłomiej Ciach, 203860

15.06.2018

1 Cel zadania

Celem ćwiczenia było zapoznanie się oraz prezentacja operacji transformacji sygnałów dyskretnych wybranymi metodami.

2 Wstęp teoretyczny

W zadaniu zostały zaimplementowane wersje dyskretne i szybkie operacji transformaty Fouriera oraz Walsha-Hadamarda.

3 Eksperymenty i wyniki

W celu ilustracji wykonania zadania został wykonany szereg eksperymentów. Aby zaprezentować wyniki ww. transformat został wygenerowany sygnał określony jako:

$$S(t) = 2\sin(\frac{2\pi}{2}t) + \sin(\frac{2\pi}{1}t) + 5\sin(\frac{2\pi}{0.5}t), f_{pr} = 16$$

Sygnał ten zaprezentowany jest poniżej.

Rysunek 1: Sygnał użyty do prezentacji transformat.

3.1 Eksperyment nr 1

Transformata Fouriera.

3.1.1 Przebieg

Opisany sygnał został poddany algorytmowi dyskretnej transformaty Fouriera (DFT) oraz szybkiej transformaty Fouriera (FFT). Wyniki transformat zostały przedstawione w dwóch wersjach: pierwsza wersja - wykres części rzeczywistej oraz wykres części urojonej oraz druga wersja - wykres modułu liczby zespolonej oraz wykres jej argumentu.

3.1.2 Rezultat

Rysunek 2: Dyskretna transformata Fouriera, pierwszy typ prezentacji wyniku.

Rysunek 3: Dyskretna transformata Fouriera, drugi typ prezentacji wyniku.

Rysunek 4: Szybka transformata Fouriera, pierwszy typ prezentacji wyniku.

Rysunek 5: Szybka transformata Fouriera, drugi typ prezentacji wyniku.

Dyskretna transformata Fouriera oraz szybka transformata Fouriera zostały porównane przy użyciu sygnału o 512 próbkach. Czas wykonania transformaty w poszczególnych testach został przedstawiony w tabeli.

	Nr	1	2	3	4	5	Średnia
	DFT[s]	0,144	0,14	0,142	0,142	0,142	0,142
ĺ	FFT[s]	0,006	0,004	0,004	0,006	0,004	0,0048

3.2 Eksperyment nr 2

Transformata Walsha-Hadamarda.

3.2.1 Przebieg

Opisany sygnał został poddany algorytmowi dyskretnej transformaty Walsha-Hadamarda oraz szybkiej transformaty Walsha-Hadamarda. Wyniki transformat zostały przedstawione na wykresach.

3.2.2 Rezultat

Rysunek 6: Dyskretna transformata Walsha-Hadamarda.

Rysunek 7: Szybka transformata Walsha-Hadamarda.

Dyskretna transformata Walsha-Hadamarda oraz szybka transformata Walsha-Hadamarda zostały porównane przy użyciu sygnału o 512 próbkach. Czas wykonania transformaty w poszczególnych testach został przedstawiony w tabeli.

Nr	1	2	3	4	5	Średnia
Dyskretna[s]	0,88	0,122	0,81	0,107	0,074	$0,\!3986$
Szybka[s]	0,023	0,024	0,031	0,024	0,044	0,0292

4 Wnioski

- Szybkie wersje transformat drastycznie zmniejszają czas trwania algorytmu.
- Transformata Fouriera pozwala na detekcję częstotliwości składowych sygnału.
- Wyniki dyskretnych wersji transformat są identyczne z wynikami szybkich wersji

5 Bibliografia

1. Instrukcja do zadania 4: Przekształcenie Fouriera, Walsha-Hadamarda, kosinusowe i falkowe, szybkie algorytmy., WIKAMP