Classe 3°BM Anno scolastico 2022/2023

GEOMETRIA ANALITICA E CONICHE

Realizzato da: Cristian Pranzo, Federico Badi, Bruno Pais, Hu Jiahao Alessandro, Lorenzo Monsù

Le coniche

La retta

La Parabola

GEOMETRIA ANALITICA

L'iperbole

Le circonferenze

L'ellisse

GEOMETRIA ANALITICA

GEOMETRIA ANALITICA

La Geometria Analitica è il ramo della geometria in cui le varie figure vengono espresse mediante espressioni algebriche per mezzo di un sistema di assi e coordinate.

In pratica è la fusione tra algebra e geometria: si risolvono problemi geometrici utilizzando l'algebra, rendendone così più semplice e agevole la risoluzione.

IL PUNTO

Il piano cartesiano è formato da due rette perpendicolari:

L'asse verticale, chiamato asse delle ordinate (y), e l'asse orizzontale, chiamato asse delle ascisse (x).

Per individuare un punto sull' asse cartesiano abbiamo bisogno di una coordinata, che non è altro che una coppia di numeri (il primo numero indica la posizione sull' asse x e la seconda sul asse y)

DISTANZA TRA DUE PUNTI

Se il segmento è orizzontale la formula è la seguente: $d(A,B) = |X_A - X_B|$

Se il segmento è verticale la formula è la seguente: $d(A,B) = |Y_A - Y_B|$

Se il segmento è obliquo la formula è la seguente:

$$d(A,B) = \sqrt{(X_A - X_B)^2 + (Y_A - Y_B)^2}$$

RETTA

LA RETTA

La retta è il secondo ente geometrico fondamentale della geometria Euclidea ed è quindi un'entità per cui non esiste una vera e propria definizione; tuttavia possiamo pensare a una linea retta come ad un insieme formato da infiniti punti che corrono lungo la stessa direzione, senza un principio né una fine.

EQUAZIONE DELLA RETTA IN FORMA ESPLICITA

L'equazione di una retta in forma esplicita è: y = mx+q se la retta non è parallela all'asse delle ordinate mentre è x = k se la retta è parallela all'asse delle ordinate, x e y sono variabili, mentre m, q, k sono coefficienti.

Esempio:

Y = 2x + 3

SIGNIFICATO DEL COEFFICIENTE ANGOLARE E DELLA INTERCETTA

Coefficiente angolare:

Il **coefficiente angolare** è indicato dalla lettera m ed è costituito dal coefficiente della x nell'equazione della retta. Esso esprime quantitativamente la pendenza della retta.

Intercetta:

L'intercetta corrisponde alla lettera *q* nell'espressione esplicita della equazione, e ha un significato molto semplice: è l'ordinata del punto di intersezione della retta con l'asse delle ordinate.

RETTE PARTICOLARI ORIZZONTALI E VERTICALI

Se k = 0, si ottiene x = 0, quindi la retta coincide con l'asse delle ordinate.

Se k > 0 la retta si interseca con il semiasse delle ascisse positive.

Se k < 0 la retta si interseca con il semiasse delle ascisse negative.

RETTE PARTICOLARI ORIZZONTALI E VERTICALI

Hanno coefficiente angolare pari a 0 (m=0), quindi hanno un equazione in cui y = q, mentre le rette che passano dall'origine hanno l'intercetta q = 0, quindi l'equazione sarà Y = mx.

EQUAZIONI DELLA BISETTRICE DEI QUADRATI

L'equazione della bisettrice del I e III quadrante equivale a x = y

EQUAZIONI DELLA BISETTRICE DEI QUADRATI

L'equazione della bisettrice del II e IV quadrante equivale a x = -y

COME CAPIRE SE UN PUNTO APPARTIENE AD UNA RETTA

Al fine di poter verificare l'appartenenza di un punto ad una retta è necessario che le sue coordinate siano una soluzione dell'equazione della retta. Sia che questa sia in forma esplicita o implicita, sostituendo alle generiche variabili x e y dell'equazione il valore delle coordinate del punto di interesse, l'equivalenza deve essere verificata. Consideriamo quindi un punto P di coordinate xp yp ed una retta di equazione.

COME CAPIRE SE DUE RETTE SONO PARALLELE O PERPENDICOLARI

Due rette sono parallele quando non si intersecano mai e le loro equazioni hanno lo stesso coefficiente angolare.

COME CAPIRE SE DUE RETTE SONO PARALLELE O PERPENDICOLARI

Due rette perpendicolari sono due rette che nel piano, intersecandosi formano quattro angolo retti.

Due rette sono perpendicolari solo se i coefficienti angolari sono l'uno reciproco dell'opposto dell'altro.

COME TROVARE ALGEBRICAMENTE IL PUNTO D'INTERSEZIONE TRA DUE RETTE

Calcolare il punto di intersezione delle seguenti rette: 3x + 2y-3=0 e 2x+y-2=0.

Mettiamo a sistema le due equazioni:

$$\begin{cases} 3x + 2y - 3 = 0 \\ 2x + y - 2 = 0 \end{cases}$$

in questo caso risolviamo il sistema di equazioni mediante il metodo di sostituzione. La seconda equazione, infatti, può essere espressa in forma esplicita: y=-2x+2. Possiamo sostituire questo valore alla seconda equazione:

$$\begin{cases} 3x + 2(-2x + 2) - 3 = 0 \\ y = -2x + 2 \end{cases} \begin{cases} 3x - 4x + 4 - 3 = 0 \\ y = -2x + 2 \end{cases}$$

$$\begin{cases} x = 1 \\ y = -2x + 2 \end{cases}$$

Otteniamo come risultato il valore x=1. Sostituiamo tale valore alla seconda equazione. Otterremo:

$$\begin{cases} x = 1 \\ y = -2(1) + 2 \end{cases} \begin{cases} x = 1 \\ y = 0 \end{cases}$$

Il punto di intersezione A(1,0) è il punto di intersezione delle due rette.

EQUAZIONE DI UNA RETTA PASSANTE PER UN PUNTO E UN COEFFICIENTE ANGOLARE NOTO

Calcolare la retta passante per il punto A(1,1) e parallela alla retta -4x + 2y - 1 = 0.

Per prima cosa, è necessario rappresentare la retta in forma esplicita. Si ottiene:

$$y = 2x + \frac{1}{2}$$

Il coefficiente angolare della retta è quindi m=2.

Calcolare l'equazione della retta passante per il punto A(1,1) ed avente coefficiente angolare m=2. Applicare la formula:

$$y - y_a = m(x - x_a)$$

si ottiene:

$$-y - 1 = 2(x - 1)$$

$$-y - 1 = 2x - 2$$

$$-y = 2x - 1$$

La retta ottenuta è passante per il punto A(1,1) e parallela alla retta data.

LE CONICHE

LE CONICHE

Le coniche sono curve piane definite come l'insieme di punti equidistanti da un punto fisso chiamato fuoco e da una retta fissa chiamata direttrice. Ci sono diverse tipologie di coniche in base alla posizione del punto e della retta rispetto alla curva, come ad esempio:

Ellisse, parabola e iperbole.

LA PARABOLA

LA PARABOLA

La parabola è una curva piana definita come l'insieme di punti equidistanti da un punto fisso chiamato fuoco e da una retta fissa chiamata direttrice, il fuoco e la direttrice sono posizionati in modo che il fuoco coincida con un punto sulla direttrice.

$$x = ay^2 + by + c$$

SIGNIFICATO DEI COEFFICIENTI A, B, C

Abbiamo il coefficiente A che determina sia il grado di concavità della parabola che la sua direzione.

Il coefficiente B indica la posizione dell'asse di simmetria rispetto all'asse y.

Il coefficiente C è il termine noto dell'equazione di una parabola ed esprime il punto di intersezione della parabola con l'asse delle ordinate (x=0).

FORMULA DEL VERTICE

Formula del vertice:

-asse di simmetria parallela all'asse delle ascisse

$$\left(\frac{b}{2a}; -\frac{\Delta}{4a}\right)$$

-asse di simmetria parallela all'asse ordinata

$$\left(-\frac{\Delta}{4a};+\frac{b}{2a}\right)$$

FORMULA DELL'ASSE

Formula dell' asse:

$$y = yv = -\frac{b}{2a}$$

La stessa formula vale nel caso della parabola orizzontale, ma in questo caso sarà rispetto alla variabile y.

FORMULA DEL FUOCO

Formula del fuoco:

-asse di simmetria parallela all'asse delle ascisse $\left(-\frac{b}{2a};\frac{1-\Delta}{4a}\right)$

-asse di simmetria parallela all'asse ordinata $(\frac{1-\Delta}{4a}; -\frac{b}{2a})$

FORMULA DELLA DIRETTRICE

Formula del fuoco:

-asse di simmetria parallela all'asse delle ascisse

$$X = -\frac{1+\Delta}{4a}$$

-asse di simmetria parallela all'asse ordinata

$$y = -\frac{1+\Delta}{4a}$$

Esterna: Nessun punto di intersezione.

Secante in due punti: la retta interseca la parabola in due punti.

In questo caso, la retta taglia la parabola e crea due segmenti di intersezione distinti.

Secante in un punto: la retta e la parabola hanno un unico punto di intersezione;

Tangente: la retta interseca la parabola in un solo punto, che è anche il punto in cui la tangente alla parabola è parallela alla retta. In altre parole, la retta è tangente alla parabola in quel punto. La tangente è perpendicolare all'asse della parabola e il punto di tangenza si trova a una distanza di 1/(2a) dal vertice della parabola.

Esterna: Nessun punto di intersezione.

TROVARE I PUNTI DI INTERSEZIONE TRA RETTA E PARABOLA

Per trovare i punti di intersezione tra una retta e una parabola, è necessario risolvere il sistema di equazioni che rappresentano la retta e la parabola. Il sistema è dato da:

y = mx + q (equazione della retta) y = ax^2 + b*x + c (equazione della parabola) Per risolvere il sistema si usa il metodo di confronto Come esempio poniamo:

$$y=2x^2+x+2$$
$$y=4x+1$$

Ottenendo come sistema:

$$\begin{cases} y = 2x^2 + x + 2 \\ y = 4x + 1 \end{cases} = 2x^2 + x + 2 = 4x + 1$$

TROVARE I PUNTI DI INTERSEZIONE TRA RETTA E PARABOLA

Ottenendo infine un sistema di 2° grado:

$$2x^2 + x + 2 = 4x + 1$$

$$2x^2 + x + 2 - 4x - 1 = 0$$

$$2x^2 - 3x + 1 = 0$$

Sapendo che:

 $\Delta > 0 \Rightarrow$ La retta interseca la parabola in due punti

 $\Delta < 0 \Rightarrow$ La retta non interseca la parabola

 $\Delta = 0 \Rightarrow$ La retta interseca la parabola in un punto

Calcoliamo il delta:

$$\Delta = (3)^2 - 4(2)(1)=1 \Rightarrow$$
 Due punti, due soluzioni

TROVARE I PUNTI DI INTERSEZIONE TRA RETTA E PARABOLA

Calcoliamo il delta:

$$\Delta = (3)^2 - 4(2)(1)=1 \Rightarrow$$
 Due punti, due soluzioni

Quindi La retta interseca la parabola in due punti: A (1/2; 3) & B (1; 5)

TROVARE L'EQUAZIONE DELLA PARABOLA CONOSCENDO UN PUNTO E IL VERTICE

Prendiamo come esempio una parabola che passa per il punto(1;-12) e avente per vertice il punto

$$(3/2;-49/4);$$

La prima equazione viene ricavata sostituendo la x y , con la coordinata x y del punto, nell'equazione in forma esplicita della parabola ottenendo:

$$-12=a*1^2+b*1+c => -12=a+b+c$$

Imponiamo le altre due condizioni usando le formule del vertice:

$$-b/2a=3/2$$

$$V\left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right)$$

Seguendo le istruzioni precedenti otteniamo il sistema a tre incognite:

$$\begin{cases} a+b+c = -12 \\ -\frac{b}{2a} = \frac{3}{2} \\ \frac{-b^2 - 4ac}{4a^-} = \frac{49}{4} \end{cases}$$

TROVARE L'EQUAZIONE DELLA PARABOLA CONOSCENDO UN PUNTO E IL VERTICE

Concentrandosi sulle incognite a e b:

$$\begin{cases} a+b+c = -12 \\ -\frac{b}{2a} = \frac{3}{2} \\ \frac{-b^2 - 4ac}{4a^2} = \frac{49}{4} \end{cases}$$

$$4 \times (-3a)^2 + 16a^2 + 16a \times (-3a) - 4a = 0$$

(a, b)=(0,0) N.B.
$$a \ne 0$$

(a, b)=(1,-3)

Una volta risolto il sistema sostituiamo il valore di a b nell'equazione in forma esplicita della parabola, e cosi si viene ad ottenere l'equazione della parabola conoscendo un punto e il vertice

TROVARE L'EQUAZIONE DELLA PARABOLA PASSANTE PER TRE PUNTI

- Per trovare l'equazione della parabola passante per tre punti si ha bisogno di un sistema a tre incognite rispettivamente a b c, sostituendo in tre equazioni le coordinate dei tre punti noti.
- Esempio:

•
$$A(1;3) = 3 = a(1)^2 + b(1) + c$$

•
$$B(2; 2) = 2 = a(2)^2 + b(2) + c$$

•
$$A(1; 3) = 3 = a(1)^2 + b(1) + c$$

• $B(2; 2) = 2 = a(2)^2 + b(2) + c$
• $C(-1; 0) = 0 = a(-1)^2 + b(-1) + c$

$$\begin{cases} 3 = a + b + c \\ 2 = 4a + 2b + c \\ 0 = a - b + c \end{cases}$$

$$\begin{cases} 3/2 = b \\ -\frac{5}{6} = a \\ c = \frac{7}{3} \end{cases}$$

•
$$y = (-5/6) x^2 + (3/2) x + (7/3)$$
.

CIRCONFERENZA

DEFINIZIONE DI CIRCONFERENZA

In geometria, la circonferenza è una curva piana chiusa, costituente il luogo dei punti del piano equidistanti da un punto fisso detto centro o origine. La distanza costante è il raggio

EQUAZIONE DELLA CIRCONFERENZA

Siano $c(\alpha,\beta)$ il centro e r la misura del raggio; un punto P(x, y) del piano appartiene alla circonferenza di centro C e raggio r se e solo se:

$$\overline{PC} = r$$

Quindi:

$$\overline{PC} = \sqrt{(x-\alpha)^2 + (y-\beta)^2}$$

Risolvendo...

TROVARE L'EQUAZIONE DELLA PARABOLA CONOSCENDO PUNTO E VERTICE

$$(x - \alpha)^{2} + (y - \beta)^{2} = r^{2}$$

$$x^{2} + y^{2} - 2\alpha x - 2\beta y + \alpha^{2} + \beta^{2} - r^{2} = 0$$

$$x^{2} + y^{2} - 2\alpha x - 2\beta y + \alpha^{2} + \beta^{2} - r^{2} = 0$$

Quindi se poniamo:

$$-2\alpha = a \qquad \qquad -2\beta = b \qquad \alpha^2 + \beta^2 - r^2 = c$$

Otteniamo la formula generale dell'equazione di una circonferenza

$$x^2 + y^2 + \alpha x + \beta y + c = 0$$

COME SI CALCOLA LA CIRCONFERENZA

Il calcolo della circonferenza avviene tramite una formula $2\pi r$ (raddoppio il raggio per trovare il diametro, poi moltiplico il tutto per π)

E L'AREA?

Per calcolare l'area di un cerchio basterà elevare al quadrato il raggio e moltiplicarlo per π

POSIZIONI RECIPROCHE: RETTA SECANTE

Per capire se una retta è secante ad una circonferenza dobbiamo confrontare la distanza della retta al centro e il raggio: se il raggio è più lungo della distanza la retta è secante.

Discriminante: $\Delta > 0$

POSIZIONI RECIPROCHE: RETTA TANGENTE

Una retta si dice tangente a una circonferenza data se esse hanno uno e un solo punto in comune. La distanza dal centro alla retta deve essere uguale alla lunghezza del raggio.

Discriminante: $\Delta = 0$

POSIZIONI RECIPROCHE: RETTA ESTERNA

Una retta si dice esterna a una circonferenza data se esse non hanno punti in comune. La distanza dal centro è maggiore del raggio.

Discriminante: $\Delta < 0$

PUNTI DI INTERSEZIONE TRA RETTA E CIRCONFERENZA

Per conoscere i punti mi basterà utilizzare un sistema:

$$\begin{cases} x^2 + y^2 + ax + by + c = 0 \\ y = mx + q \end{cases}$$

Esempio:

Equazione della circonferenza:

$$x^2 + y^2 - 4x + 2y - 5 = 0$$

Posizione della retta rispetto alla circonferenza:

$$y = \frac{1}{2}x + \frac{1}{2}$$

$$\begin{cases} x^2 + y^2 - 4x + 2y - 5 = 0 \\ y = \frac{1}{2}x + \frac{1}{2} \end{cases}$$

$$\begin{cases} x^2 + \left(\frac{1}{2}x + \frac{1}{2}\right) - 4x + 2\left(\frac{1}{2}x + \frac{1}{2}\right) - 5 = 0 \\ y = \frac{1}{2}x + \frac{1}{2} \end{cases}$$

$$\begin{cases} x^2 - 2x - 3 = 0 \\ y = \frac{1}{2}x + \frac{1}{2} \end{cases}$$

PUNTI DI INTERSEZIONE TRA RETTA E CIRCONFERENZA

Calcoliamo il delta:

$$\Delta = 4 - (4)(1)(-3) = 16$$

$$x_{1/2} = \frac{2 \pm \sqrt{16}}{2(1)} = x_1 = \frac{2 + \sqrt{16}}{2} = \frac{6}{2} = 3$$

$$x_2 = \frac{2 - \sqrt{16}}{2} = \frac{-2}{2} = -1$$

Risolvendo il sistema:

$$\begin{cases} x = -1 \\ y = \frac{1}{2}(-1) + \frac{1}{2} \end{cases} \begin{cases} x = -1 \\ y = 0 \end{cases} A(-1,0)$$

$$\begin{cases} x = 3 \\ y = \frac{1}{2}(3) + \frac{1}{2} \end{cases} \begin{cases} x = 3 \\ y = 2 \end{cases} B(3,2)$$

EQUAZIONE DELLA CIRCONFERENZA CONOSCENDO IL RAGGIO E IL CENTRO

L'equazione fondamentale per trovare la circonferenza dato il raggio e il centro è la seguente:

$$(x - \alpha)^2 + (y - \beta)^2 = r^2$$

Esempio:

$$C(2;3) \rightarrow \alpha = 2$$
 $\beta = 3$
 $r = 5$
 $(x - 2)^2 + (y - 3)^2 = 5^2$
 $x^2 + 4 - 4x + y^2 + 9 - 6y = 25$
 $x^2 + 4 - 4x + y^2 + 9 - 6y - 25 = 0$
 $x^2 - 4x + y^2 - 6y - 12 = 0$

Ordinando i termini...

$$x^2 + y^2 - 4x - 6y - 12 = 0$$

ELLISSE

L'ELLISSE

L'ellisse è il luogo geometrico dei punti P del piano per i quali è costante la somma delle distanze da due punti fissi $f_{1\ e}$ f_{2} detti fuochi: PF_{1+} PF_{2} =costante.

EQUAZIONE DI UN ELLISSE CON FUOCHI SULL'ASSE X E Y

Con fuochi sull'asse X:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ con } a > b$$

EQUAZIONE DI UN ELLISSE CON FUOCHI SULL'ASSE Y

Con fuochi sull'asse Y:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \operatorname{con} a < b$$

ECCENTRICITA' DI UN ELLISSE

L'eccentricità di un ellisse è un termine che misura quanto l'ellisse è schiacciata rispetto ai propri assi. Chiamiamo **eccentricità** di un ellisse il rapporto:

semiasse focale

POSIZIONE RECIPROCA TRA ASSE E CIRCONFERENZA

L'intersezione di un'ellisse e una retta si determinano risolvendo le loro equazioni; indicando con Δ il discriminante dell'equazione risolvente il sistema ellisse-retta, i casi che si possono presentare sono: Retta secante, Retta tangente, Retta esterna.

RETTA SECANTE

 $\Delta \! > 0:$ il sistema ha due soluzioni reali distinte, la retta interseca l'ellisse in due punti A e B

retta secante

RETTA TANGENTE

 $\Delta = 0:$ il sistema ha due soluzioni reali coincidenti, la retta interseca l'ellisse in un solo punto P

retta tangente

RETTA ESTERNA

 $\Delta < 0$: il sistema non ha soluzioni reali, non ci sono punti di intersezione.

EQUAZIONE DI UN ELLISSE CONOSCENDO LE COORDINATE DEI DUE VERTICI

Ipotizziamo di avere la lunghezza dei due vertici dove A misura(-4,0) e B(3,0).

$$a=|xA|=|-4|=4 \Rightarrow a2=16$$

 $b=|yB|=|3|=3 \Rightarrow b2=9$

dunque l'equazione del nostro ellisse sarà:

$$\frac{x^2}{16^2} + \frac{y^2}{9^2} = 1$$

Ricapitoliamo i passaggi:

- 1. Verificare che i due vertici non appartengano allo stesso asse
- 2. Identificare il tipo di ellisse, se orizzontale o verticale, direttamente dalle coordinate dei vertici
- 3. Estrapolare i valori dei coefficienti a e b direttamente dalle coordinate dei vertici
- 4. Scrivere l'equazione dell'ellisse

EQUAZIONE DI UN ELLISSE CONOSCENDO LE MISURE DEGLI ASSI E IL CENTRO

Ipotizziamo di avere la lunghezza dei due assi dove A misura 4 e B 3 e il centro nelle coordinate (0,0).

dunque l'equazione della nostra ellisse sarà:

$$\frac{x^2}{4^2} + \frac{y^2}{3^2} = 1$$

L'IPERBOLE

L'IPERBOLE

L'iperbole è il luogo geometrico dei punti P del piano per i quali è costante la differenza in modulo delle distanze da due punti fissi F1 e F2 detti fuochi:

$$|PF_1 - PF_2| = costante$$

EQUAZIONE DI UN'IPERBOLE DATO IL CENTRO

Con fuochi sull'asse X:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Con fuochi sull'asse Y:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$

IPERBOLE RIFERITO AGLI ASINTOTI

È un caso particolare di un'iperbole equilatera è quella i cui asintoti sono assi cartesiani, cioè la curva è ruotata di 45 gradi in senso orario o antiorario, quindi stiamo parlando di un iperbole riferita ai propri asintoti

$$xy = K$$

ASINTOTO

L'asintoto è una retta sulla quale una curva che si estende all'infinito, si avvicina senza mai raggiungerla

$$|PF_1 - PF_2| = costante$$

