CSC4200/5200 - COMPUTER NETWORKING

INTRODUCTION

Instructor: Susmit Shannigrahi sshannigrahi@tntech.edu

Welcome

- Class website:
 - Syllabus
 - Grading policies
 - Homework and assignments
 - First homework and programming assignment already posted
- Instructor: Susmit Shannigrahi
 - Office hours: MWF after class (zoom) or by appointment
 - Email: sshannigrahi@tntech.edu
- GTA: David Reddick
 - Office hours:
 - Tuesday and Thursdays 2:00-3:30
 - Wednesday 12:30-2:00
 - Email: dereddick42@students.tntech.edu

Resources

- Class website:
 - https://tntech-ngin.github.io/csc4200/
- Slack: CSC4200-fall2020
 - https://join.slack.com/t/tntechhq/shared_invite/zt-gwbjtydw-xXfMJY4~pcjqohY9mXWreg
- Zoom (you need a password sent separately):
 - https://tntech.zoom.us/j/93613648609

Grading

- Homework 15%
- Projects + Demo 35%
- 3 exams 35%
 - approximately once every month (Sept, Oct, Nov) 35%
- Class participation 15%
 - Participate in breakout sessions and discussions.
 - Each student will need to lead a breakout session.

5200 - Extra reading and presentation requirements.

• Discuss with the instructor by end of the first week - (08/30)

Policies

- One late submission allowed (programming assignment), no questions asked. Homeworks due on time.
 - Use it wisely
 - Max 7 days late
 - Submit to iLearn
- Other late submissions
 - Flat 50% deducted
 - No exceptions!
- No make-up exams.
 - Your responsibility to find conflicts and work with the instructor to resolve them

Exams

- 3 exams.
- Open book
 - Will be challenging
 - Memorizing will not help, you need to understand the topics

Programming Assignments

- Must run on Google Cloud Vms Use the latest Ubuntu
- First assignment is individual. Second and third are group projects.
- Third assignment would require a Raspberry PI
 - We are trying to set this up.
- C/C++/Python
 - If you want to use other languages, talk to the GTA/Instructor

Cheating Policy

- If you cheat, you will fail the class!
 - Regardless of what you cheated in
 - Don't do it.
- You will also be reported for academic misconduct
 - http://catalog.tntech.edu/content.php?catoid=18&navoid=3312

In-person Class

- Most of the classes will be online.
- Zoom recordings will be posted for all classes.
- Sign-up sheets for in-person classrooms.
- Masks are mandatory, no exceptions of <u>any</u> reason!
 - You need to talk to Accessible Education Center (AEC)

Questions so far?

Chapter 1: Fundamentals

- Networking is ubiquitous
 - (Breakout) What did you use it for today?
- First things first:
 - Terminology
 - Basic tools
 - What does it take to build an Internet?

Links, Nodes, Network, Internet

- You can view the network as a graph
- Each device (a phone, a computer) is a node
- Each connection is a link
 - Wires = real links
 - Bluetooth, Radio, Infrared = virtual links
- Nodes + links = a network
 - Many connected networks = Internet

Links, Nodes, Cloud, Routers, Switches

Client and Server

- My laptop with a browser = client
 - It requests a service
 - Email, chat, video, youtube
- A node running a program that serves the requests = server
 - Runs a service
 - Chat, video, messaging
- A node can both be a client and a server

Connectivity

- Point to Point
- Multiple access
- Wireless

A Network and the Internet

Circuit Switching - Old telephone networks

Operator, get me

the navy

- Build physical wire:
 - Guaranteed resources
 - Great for voice

Circuit Switching - TDM and FDM

Breakout - What are the problems?

Packet Switching

- Packets are low level components
- Multiple kind of traffic with different requirements
 - Gaming vs Phone
- Dumb network How do you ensure quality of service?
- End points must be smart

But What is a Packet?

- Self-contained data unit
- Has two parts (generally)
 - Control information
 - Payload
- Breakout
- How do we transmit "Hello World?"
- How do we transmit a dictionary?

Network Architecture

- What are the requirements from a network?
- Architecture = High-level blueprint
 - Protocols = Building blocks of the architecture
 - Layering = Break down the problem in smaller pieces

Application programs

Process-to-process channels

Host-to-host connectivity

Hardware

Network Layers

- Makes it easier to divide functionality
- Hides implementation details
- Breakout few other reasons?

IP Suite

Network Topology

Data Flow

We reject kings, presidents, and voting. We believe in rough consensus and running code. (David Clark, IETF, July 1992)

wikipedia

Next Steps

- Read Chapter 1
- Homework 1 has posted due on next Monday 09/07
 - Substantial hands-on component, start ASAP
- Project 1 has posted due on 09/15
- Next lecture Network performance basics