Handbook of Blind Source Separation

Independent Component Analysis and Applications

Edited by P. Comon and C. Jutten

COMON-F01 PII: B978-0-12-374726-6.00001-1 ISBN: 978-0-12-374726-6 PAGE: 1 (1-1)

Academic Press is an imprint of Elsevier
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

First edition 2010

Copyright $\stackrel{\frown}{(C)}$ 2010 Pierre Comon and Christian Jutten. All rights reserved

Q1

The rights of Pierre Comon and Christian Jutten to be identified as the authors' of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing in Publication Data

Comon, Pierre.

Handbook of blind source separation: independent component analysis and blind deconvolution.

- 1. Blind source separation.
- I. Title II. Jutten, Christian.

621.3'8223-dc22

Library of Congress Control Number: 2009941417

ISBN: 978-0-12-374726-6

For information on all Academic Press publications visit our website at elsevierdirect.com

Printed and bound in the United States
09 10 11 12 11 10 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER

BOOK AID

Sabre Foundation

COMON PII: C2009-0-19334-0 ISBN: 978-0-12-374726-6 PAGE: v (v-xviii)

Contents

About the edit	tors	X1X
Preface		xxi
Contributors .		xxiii
CHAPTER 1	Introduction	1
1.1	Genesis of blind source separation	1
	1.1.1 A biological problem	3
	1.1.2 Contextual difficulties	6
	1.1.3 A few historical notes	7
1.2	Problem formalization	10
	1.2.1 Invertible mixtures	11
	1.2.2 Underdetermined mixtures	11
1.3	Source separation methods	11
	1.3.1 Independent component analysis	12
	1.3.2 Non-temporally iid sources	12
	1.3.3 Other approaches	13
1.4	Spatial whitening, noise reduction and PCA	13
1.5	11	15
1.6	Content of the handbook	15
	References	19
CHAPTER 2	Information	23
2.1	Introduction	23
2.2	Methods based on the mutual information	24
	2.2.1 Mutual information between random vectors	24
	2.2.2 The mixing model and separation criterion	25
	2.2.3 Empirical criteria and entropy estimators	26
	2.2.4 Computation of entropy estimators	29
	2.2.5 Minimization of the empirical criteria	32
	2.2.6 Statistical performance	39
2.3	Methods based on the mutual information rate	45
	2.3.1 Entropy and mutual information rate	45
	2.3.2 Contrasts	48
	2.3.3 Estimation and separation	53

COMON PII: C2009-0-19334-0 ISBN: 978-0-12-374726-6 PAGE: vi (v-xviii)

vi Contents

	2.4	Conclusion and perspectives		
		References	62	
CHAPTER 3		Contrasts	65	
	3.1	Introduction	65	
		3.1.1 Model and notation	66	
		3.1.2 Principle of contrast functions	66	
		3.1.3 Bibliographical remarks	67	
	3.2	Cumulants	67	
	3.3	MISO contrasts	69	
		3.3.1 MISO contrasts for static mixtures	69	
		3.3.2 Deflation principle	71	
		3.3.3 MISO contrasts for convolutive mixtures	72	
	3.4	MIMO contrasts for static mixtures	78	
		3.4.1 Introduction	78	
		3.4.2 Contrasts for MIMO static mixtures	79	
		3.4.3 Contrasts and joint diagonalization	87	
		3.4.4 Non-symmetric contrasts	89	
	۰.	3.4.5 Contrasts with reference signals	90	
	3.5	MIMO contrasts for dynamic mixtures	92	
		3.5.1 Space-time whitening	92	
			93	
		3.5.3 Contrasts and joint diagonalization	95 99	
	3.6	3.5.4 Non-symmetric contrasts		
	3.7	Constructing other contrast criteria	101 102	
	3.7	References	102	
		references	103	
CHAPTER	4	Likelihood	107	
	4.1	Introduction: Models and likelihood	107	
	4.2	Transformation model and equivariance	109	
		4.2.1 Transformation likelihood	110	
		4.2.2 Transformation contrast	111	
		4.2.3 Relative variations	111	
		4.2.4 The iid Gaussian model and decorrelation	113	
		4.2.5 Equivariant estimators and uniform performance	115	
		4.2.6 Summary	116	
	4.3	Independence	116	
		4.3.1 Score function and estimating equations	117	
		4.3.2 Mutual information	118	
		4.3.3 Mutual information, correlation and	119	
		4.3.4 Summary	121	

Contents vii

	4.4	Identifiability, stability, performance	122
		4.4.1 Elements of asymptotic analysis	123
		4.4.2 Fisher information matrix	125
		4.4.3 Blind identifiability	126
		4.4.4 Asymptotic performance	126
		4.4.5 When the source model is wrong	127
		4.4.6 Relative gradient and natural gradient	130
		4.4.7 Summary	130
	4.5		131
		4.5.1 The likelihood contrast in iid models	131
		4.5.2 Score functions and estimating equations	132
		4.5.3 Gaussianity index	132
		4.5.4 Cramér-Rao bound	133
		4.5.5 Asymptotic performance	133
		4.5.6 Adaptive scores	134
		0	135
	4.6		136
		O	136
		,	137
			138
		1	140
		0 0	141
	4.7	,	142
		,	142
		•	143
		,	144
	4.8	0	148
		,	148
		,	149
	4.9	* *	152
		References	153
CHAPTER	5	Algebraic methods after prewhitening	155
	5.1	Introduction	155
		5.1.1 Multilinear algebra	155
		5.1.2 Higher-order statistics	
		5.1.3 Jacobi iteration	159
	5.2	Independent component analysis	161
		5.2.1 Algebraic formulation	161
		5.2.2 Step 1: Prewhitening	163
		5.2.3 Step 2: Fixing the rotational degrees of freedom using the	
			164

COMON PII: C2009-0-19334-0 ISBN: 978-0-12-374726-6 PAGE: viii (v-xviii)

viii Contents

	5.3	Diagonalization in least squares sense	165
		5.3.1 Third-order real case	167
		5.3.2 Third-order complex case	168
		5.3.3 Fourth-order real case	169
		5.3.4 Fourth-order complex case	170
	5.4	Simultaneous diagonalization of matrix slices	170
		5.4.1 Real case	173
		5.4.2 Complex case	173
	5.5	Simultaneous diagonalization of third-order tensor slices	174
	5.6	Maximization of the tensor trace	174
		References	175
CHAPTER	6	Iterative algorithms	179
	6.1	Introduction	179
	6.2	Model and goal	180
	6.3	Contrast functions for iterative BSS/ICA	181
		6.3.1 Information-theoretic contrasts	181
		6.3.2 Cumulant-based approximations	182
		6.3.3 Contrasts for source extraction	184
		6.3.4 Nonlinear function approximations	185
	6.4	Iterative search algorithms: generalities	186
		6.4.1 Batch methods	186
		6.4.2 Stochastic optimization	189
		6.4.3 Batch or adaptive estimates?	191
	6.5	Iterative whitening	192
	6.6	Classical adaptive algorithms	193
		6.6.1 Hérault-Jutten algorithm	193
		6.6.2 Self-normalized networks	194
		6.6.3 Adaptive algorithms based on contrasts	195
		6.6.4 Adaptive algorithms based on centroids	198
	6.7	Relative (natural) gradient techniques	199
		6.7.1 Relative gradient and serial updating	199
		6.7.2 Adaptive algorithms based on the relative gradient	200
		6.7.3 Likelihood maximization with the relative gradient	202
	6.8	Adapting the nonlinearities	203
	6.9	Iterative algorithms based on deflation	204
		6.9.1 Adaptive deflation algorithm by Delfosse-Loubaton	205
		6.9.2 Regression-based deflation	206
		6.9.3 Deflationary orthogonalization	207

Contents ix

		6.10.1 Introduction	208
		6.10.2 Implicit adaptation of the contrast in FastICA	209
		6.10.3 Derivation of FastICA as a Newton iteration	209
		6.10.4 Connection to gradient methods	211
		6.10.5 Convergence of FastICA	212
		6.10.6 FastICA using cumulants	213
		6.10.7 Variants of FastICA	214
	6.11	Iterative algorithms with optimal step size	216
		6.11.1 Optimizing the step size	216
		6.11.2 The RobustICA algorithm	217
	6.12	Summary, conclusions and outlook	220
		References	221
CHAPTER	7	Second order methods based on color2	27
OIIAI ILI	7.1		
	7.1		227
	1.2	r	228230
	7.3	•	232
	7.3	· · · · · · · · · · · · · · · · · · ·	232
			237
	7.4		245
	7.4	, ,	245
		11 / 0	251
		· · · · · · · · · · · · · · · · · · ·	251
			253
	7.5		260
	7.0	•	261
			266
		* *	268
	7.6	* *	270
	,,,		270
			273
		, , ,	275
		1	276
CHAPTER	₹8	Convolutive mixtures2	281
	8.1		281
			281
		8.1.2 Chapter organization	282

COMON PII: C2009-0-19334-0 ISBN: 978-0-12-374726-6 PAGE: x (v-xviii)

x Contents

8.2	Invert	ibility of convolutive MIMO mixtures	283
	8.2.1	General results	284
	8.2.2	FIR systems and polynomial matrices	285
8.3	Assun	nptions	287
	8.3.1	Fundamental assumptions	287
	8.3.2	Indeterminacies	288
	8.3.3	Linear and nonlinear sources	289
	8.3.4	Separation condition	291
8.4	Joint s	separating methods	292
	8.4.1	Whitening	292
	8.4.2	Time domain approaches	294
	8.4.3	Frequency domain approaches	298
8.5	Iterati	ve and Deflation Methods	301
	8.5.1	Extraction of one source	301
	8.5.2	Deflation	308
8.6	Non-s	tationary context	309
	8.6.1	Context	309
	8.6.2	Some properties of cyclostationary time-series	
	8.6.3	Direct extension of the results of section 8.5 for the source	
		extraction, and why it is difficult to implement	314
		A function to minimize: A contrast?	318
		A function to minimize: A contrast?	
CHAPTER 9	Refere	ences	322
CHAPTER 9 9.1	Refere Algeb		322 235
	Algeb Obser	praic identification of under-determined mixtures . vation model	322 235 235
9.1	Algeb Obser Intrins	praic identification of under-determined mixtures . vation modelsic identifiability	322 235 235 236
9.1	Algeb Obser Intrins	vation model	322 235 235 236
9.1	Algeb Obser Intrins 9.2.1	praic identification of under-determined mixtures . vation model	322 235 235 236 236 237
9.1	Algeb Obser Intrins 9.2.1 9.2.2 9.2.3	vation model	322 235 235 236 236 237 239
9.1	Algeb Obser Intrins 9.2.1 9.2.2 9.2.3 9.2.4	praic identification of under-determined mixtures . vation model	322 235 235 236 236 237 239 240
9.1 9.2	Algeb Obser Intrins 9.2.1 9.2.2 9.2.3 9.2.4 Proble	vation model	322 235 236 236 237 239 240 242
9.1 9.2	Algeb Obser Intrins 9.2.1 9.2.2 9.2.3 9.2.4 Proble	praic identification of under-determined mixtures a vation model	322 235 235 236 236 237 239 240 242
9.1 9.2	Algeb Obser Intrins 9.2.1 9.2.2 9.2.3 9.2.4 Proble 9.3.1	praic identification of under-determined mixtures a vation model	322 235 236 236 237 239 240 242
9.1 9.2	Algeb Obser Intrins 9.2.1 9.2.2 9.2.3 9.2.4 Proble 9.3.1	praic identification of under-determined mixtures a vation model sic identifiability. Equivalent representations. Main theorem. Core equation. Identifiability in the 2-dimensional case sem formulation. Approach based on derivatives of the joint characteristic function.	322 235 236 236 237 239 240 242 243
9.1 9.2 9.3	Algeb Obser Intrins 9.2.1 9.2.2 9.2.3 9.2.4 Proble 9.3.1 9.3.2 Highe	praic identification of under-determined mixtures a vation model	322 235 236 236 237 239 240 242 243
9.1 9.2 9.3	Algeb Obser Intrins 9.2.1 9.2.2 9.2.3 9.2.4 Proble 9.3.1 9.3.2 Highe 9.4.1	praic identification of under-determined mixtures a vation model associated identifiability. Equivalent representations Main theorem Core equation Identifiability in the 2-dimensional case are formulation Approach based on derivatives of the joint characteristic function. Approach based on cumulants arorder tensors Canonical tensor decomposition Essential uniqueness	322 235 236 236 237 239 240 242 243 247 248 250
9.1 9.2 9.3	Algeb Obser Intrins 9.2.1 9.2.2 9.2.3 9.2.4 Proble 9.3.1 9.3.2 Highe 9.4.1 9.4.2 9.4.3	praic identification of under-determined mixtures a vation model associated identifiability. Equivalent representations Main theorem Core equation Identifiability in the 2-dimensional case are formulation Approach based on derivatives of the joint characteristic function. Approach based on cumulants r-order tensors Canonical tensor decomposition Essential uniqueness Computation	322 235 236 236 237 239 240 242 243 247 248 250 254
9.1 9.2 9.3	Algeb Obser Intrins 9.2.1 9.2.2 9.2.3 9.2.4 Proble 9.3.1 9.3.2 Highe 9.4.1 9.4.2 9.4.3 Tensor	praic identification of under-determined mixtures a vation model associated identifiability. Equivalent representations. Main theorem. Core equation. Identifiability in the 2-dimensional case are formulation. Approach based on derivatives of the joint characteristic function. Approach based on cumulants arorder tensors. Canonical tensor decomposition. Essential uniqueness. Computation. r-based algorithms	322 235 236 236 237 239 240 242 243 247 248 250 254 255
9.1 9.2 9.3	Algeb Obser Intrins 9.2.1 9.2.2 9.2.3 9.2.4 Proble 9.3.1 9.3.2 Highe 9.4.1 9.4.2 9.4.3 Tensor	praic identification of under-determined mixtures a vation model associated identifiability. Equivalent representations Main theorem Core equation Identifiability in the 2-dimensional case are formulation Approach based on derivatives of the joint characteristic function. Approach based on cumulants r-order tensors Canonical tensor decomposition Essential uniqueness Computation	322 235 236 236 237 239 240 242 243 247 248 250 254

Contents xi

	9.5.3	SOBIUM family	261
	9.5.4	FOOBI family	264
	9.5.5	BIOME family	267
	9.5.6	ALESCAF and LEMACAF	269
	9.5.7	Other algorithms	270
9.6	Appe	ndix: expressions of complex cumulants	271
	Refer	ences	272
CHAPTER 10	Spar	se component analysis	367
10.1	Intro	duction	367
10.2	Sparse	e signal representations	370
	10.2.1	Basic principles of sparsity	371
	10.2.2	Dictionaries	372
	10.2.3	Linear transforms	373
	10.2.4	Adaptive representations	374
10.3	Joint	sparse representation of mixtures	374
	10.3.1	Principle	375
	10.3.2	Linear transforms	375
	10.3.3	Principle of ℓ^{τ} minimization	377
	10.3.4	, ,	
	10.3.5	Zirect or the chooses a criterion	379
	10.3.6	Optimization algorithms for ℓ^{τ} criteria	381
	10.3.7	Matching pursuit	385
	10.3.8	Summary	386
10.4	Estim	nating the mixing matrix by clustering	388
	10.4.1	8 8	389
	10.4.2	1	391
		Use of local scatter plots in the time-frequency plane	395
10.5		e mixing matrix: Relative Newton method for quasi-maximum	
		nood separation	396
	10.5.1	1	397
		Newton method	
	10.5.3	Gradient and Hessian evaluation	
	10.5.4	1 1	
		Numerical illustrations.	
10.0		Extension of Relative Newton: blind deconvolution	402
10.6		ation with a known mixing matrix	403
		Linear separation of (over-)determined mixtures	404
		Binary masking assuming a single active source	405
	10.6.3	Binary masking assuming $M < P$ active sources	405 406
	10 0 4	LOCAL NOBLEMON DV 7 - HUHHHHIZZHON	T1//C

COMON PII: C2009-0-19334-0 ISBN: 978-0-12-374726-6 PAGE: xii (v-xviii)

xii Contents

	10.6.5 10.6.6	Principle of global separation by ℓ^{τ} minimization Formal links with single-channel traditional sparse approxi-	407
	10.6.7	mation	408 408
		Iterative global separation: demixing pursuit	409
10.7		0 1	410
10.8			412
			414
CHAPTER 11	Quad	ratic time-frequency domain methods	421
11.1			421
11.2			422
	11.2.1		422
	11.2.2		422
	11.2.3		423
	11.2.4		425
11.3	Spatia	,	427
		Bilinear and quadratic transforms	427
	11.3.2	Spatial bilinear and quadratic transforms	427
	11.3.3	(Spatial) quadratic time-frequency representations	428
	11.3.4	(Spatial) bilinear and quadratic time-frequency spectra	430
	11.3.5	Descriptions of key properties and model structure, addi-	
		tional assumptions about the sources	430
		T	432
11.4		1 / 1	435
	11.4.1	Automatic time-frequency points selection in a whitened	
			435
	11.4.2	Automatic time-frequency points selection in a non-whitened	
44 5	0		438
11.5		0	440
	11.5.1	Joint diagonalization and/or joint zero-diagonalization criteria	441
	11.5.2	Whitened-based separation algorithms	443
	11.5.3	• •	445
	11.5.4		449
11.6	Practi	9	452
	11.6.1	Synthetic source signals	452
	11.6.2		453
	11.6.3		455
		Results	462
11.7			463
	Refer	ences	463

Contents xiii

CHAPTER 12	Bayesian approaches	.467
12.1	Introduction	. 467
12.2	Source separation forward model and notations	. 468
	General Bayesian scheme	
	Relation to PCA and ICA	
	Prior and likelihood assignments	
	12.5.1 General assignments	. 478
	12.5.2 Physical priors	. 479
12.6	Source modeling	. 482
	12.6.1 Modeling stationary white sources	. 482
	12.6.2 Accounting for temporal correlations of the sources	. 486
	12.6.3 Modeling non-stationary sources	. 488
12.7	Estimation schemes	. 493
12.8	Source separation applications	. 494
	12.8.1 Spectrometry	. 494
	12.8.2 Source separation in astrophysics	. 494
	12.8.3 Source separation in satellite imaging	. 495
	12.8.4 Data reduction, classification and separation in hyperspec	2-
	tral imaging	. 497
12.9	Source characterization	. 499
	12.9.1 Source separation and localization	
	12.9.2 Neural source estimation	
	12.9.3 Source characterization in biophysics	
12.10	Conclusion	. 508
	References	. 509
CHAPTER 13	Non-negative mixtures	.515
	Introduction	
	Non-negative matrix factorization	
	13.2.1 Simple gradient descent	
	13.2.2 Multiplicative updates	
	13.2.3 Alternating least squares (ALS)	
13.3	Extensions and modifications of NMF	
	13.3.1 Constraints and penalties	
	13.3.2 Relaxing the non-negativity constraints	
	13.3.3 Structural factor constraints	
	13.3.4 Multi-factor and tensor models	
	13.3.5 ALS Algorithms for non-negative tensor factorization	. 532
13.4	Further non-negative algorithms	
	13.4.1 Neural network approaches	
	13.4.2 Geometrical methods	
	13.4.3 Algorithms for large-scale NMF problems	

COMON PII: C2009-0-19334-0 ISBN: 978-0-12-374726-6 PAGE: xiv (v-xviii)

xiv Contents

13.5	Appli	cations	539
	13.5.1	Air quality and chemometrics	539
	13.5.2	Text analysis	539
	13.5.3	Image processing	540
	13.5.4	Audio analysis	541
	13.5.5	Gene expression analysis	541
13.6	Conc	lusions	541
	Refer	ences	542
CHAPTER 14	Nonli	inear mixtures	549
14.1	Introd	luction	549
14.2		inear ICA in the general case	550
		Nonlinear independent component analysis (ICA)	550
		Definitions and preliminary results	550
	14.2.3	Existence and uniqueness of transforms preserving indepen-	-
		dence	551
14.3	ICA f	or constrained nonlinear mixtures	554
	14.3.1	Structural constraints	554
	14.3.2	Smooth transforms	555
	14.3.3	Example of linear mixtures	
	14.3.4	Conformal mappings	
	14.3.5	,	
	14.3.6		
	14.3.7	A class of separable nonlinear mappings	563
14.4		s on sources	567
	14.4.1	Bounded sources in PNL mixtures	567
	14.4.2	Temporally correlated sources in nonlinear mixtures	
14.5	-	endence criteria	570
	14.5.1	Mutual information	570
	14.5.2	Differential of the mutual information	573
140	14.5.3		574
14.6		resian approach for general mixtures	
	14.6.1	, , ,	
		Extensions and experimental results	
147		Comparisons on PNL mixtures	
14.7		methods and algorithms	580
	14.7.1 14.7.2	Algorithms for PNL mixtures Constrained MLP-like structures	580 580
	14.7.2		580
14.8		Other approaches	581
14.0		Chemical sensors	582
	11.0.1	V11V111VW1 UV11UV1U	J U Z

Contents xv

	14.8.2	Gas sensors	582
	14.8.3	Mixtures of images	583
14.9	Conc	lusion	584
	Refer	ences	586
CHAPTER 15	Semi	-blind methods for communications	593
15.1			593
		Blind source separation and channel equalization	593
		Goals and organization of the chapter	594
15.2			595
	15.2.1	Training-based or supervised equalization	595
	15.2.2	Blind equalization	595
	15.2.3		596
15.3	Over	coming the limitations of blind methods	597
	15.3.1		597
	15.3.2	Multi-channel systems	598
	15.3.3	Semi-blind approach	598
15.4	Math	ematical formulation	599
	15.4.1	Signal model	599
	15.4.2	Notations	600
15.5	Chan	nel equalization criteria	601
	15.5.1	Supervised, blind and semi-blind criteria	601
	15.5.2	Relationships between equalization criteria	602
15.6	_	oraic equalizers	604
		Algebraic MMSE equalizer	
		Algebraic blind equalizers	
		Algebraic semi-blind equalizers	610
15.7		ive equalizers	610
	15.7.1	8	610
		Algorithms based on algebraic optimal step size	612
15.8		rmance analysis	
		Performance of algebraic blind equalizers	
	15.8.2	1	
	15.8.3	T	
	15 0 1	extrema	
	15.8.4	CP equalizers for a non-minimum phase channel	
	15.8.5	Blind CM and semi-blind CM-MMSE equalizers	
	15.8.6 15.8.7	1 1 0	
	13.8./	Influence of the relative weight between blind and supervised criteria	
	15 8 8	Comparison between the CM and CP criteria	627

COMON PII: C2009-0-19334-0 ISBN: 978-0-12-374726-6 PAGE: xvi (v-xviii)

xvi Contents

15.9	Semi-blind channel estimation	628
15.10	Summary, conclusions and outlook	632
	References	633
CHAPTER 16	Overview of source separation applications	639
16.1	Introduction	639
10.1	16.1.1 Context	639
	16.1.2 Historical survey	
	16.1.3 Organization of this chapter	
16.2	How to solve an actual source separation problem?	642
	16.2.1 Blind or semi-blind?	642
	16.2.2 ICA for BSS	
	16.2.3 Practical use of BSS and associated issues	644
16.3	Overfitting and robustness	645
	16.3.1 Overfitting	645
	16.3.2 Robustness	646
16.4	Illustration with electromagnetic transmission systems	648
	16.4.1 A variety of source natures and mixture configurations	648
	16.4.2 A case study on radio-frequency identification (RFID)	649
	16.4.3 A system with multi-path ionospheric propagation	655
	16.4.4 Using other signal properties	658
16.5	Example: Analysis of Mars hyperspectral images	658
	16.5.1 Physical model of hyperspectral images	658
	16.5.2 Decomposition models based on ICA	660
	16.5.3 Reference data and classification	
	16.5.4 ICA results on hyperspectral images	662
	16.5.5 Discussion	665
	16.5.6 Beyond ICA: semi-blind source separation	665
10.0	16.5.7 Conclusion	666
16.6	Mono- vs multi-dimensional sources and mixtures	668
	16.6.1 Time, space and wavelength coordinates	668
	16.6.2 Analyzing video frames from cortical tissues	
	16.6.3 Extracting components from a time series of astrophysical luminance images	
16.7	Using physical mixture models or not	
1017	16.7.1 Mother vs fetus heartbeat separation from multi-channel	
	ECG recordings	
	16.7.2 Analysis of heart control from single-channel ECG	674
	16.7.3 Additional comments about performance evaluation	676
16.8	Some conclusions and available tools	676
	References	677

Contents xvii

CHAPTER 17	Application to telecommunications	683
17.1	Introduction	683
17.2	Data Model, Statistics and Problem Formulation	687
	17.2.1 Observation model	687
	17.2.2 Data statistics	690
	17.2.3 Formulation of the problem	696
17.3	Possible Methods	696
	17.3.1 Treating the mixture as a convolutive one	696
	17.3.2 Treating the mixture as an instantaneous one	709
17.4	Ultimate separators of instantaneous mixtures	712
	17.4.1 Source separator performance	712
	17.4.2 Ultimate separator	713
	17.4.3 Ultimate performance	714
17.5	Blind separators of instantaneous mixtures	716
	17.5.1 JADE for stationary uncorrelated paths	716
	17.5.2 JADE for cyclostationary uncorrelated paths	718
	17.5.3 JADE for cyclostationary correlated paths	723
	17.5.4 Performance illustration	
17.6	Instantaneous approach versus convolutive approach: simulation	ı
	results	726
	17.6.1 BSS algorithms and measures of performance	726
	17.6.2 Performances	
17.7		
	References	730
CHAPTER 18	ICA and biomedical applications	737
18.1	Introduction	737
	One decade of ICA-based biomedical data processing	739
	18.2.1 Electromagnetic recordings for functional brain imaging	739
	18.2.2 Electrocardiogram signal analysis	
	18.2.3 Other application fields	
18.3	Numerical complexity of ICA algorithms	
	18.3.1 General tools	
	18.3.2 Complexity of several ICA algorithms	760
18.4	Performance analysis on biomedical signals	763
	18.4.1 Comparative performance analysis on synthetic signals	764
	18.4.2 ICA of real data	771
18.5	Conclusion	772
	References	772

COMON PII: C2009-0-19334-0 ISBN: 978-0-12-374726-6 PAGE: xviii (v-xviii)

xviii Contents

CHAPTER 19	Audio	o applications	779
19.1	Audio	mixtures and separation objectives	779
		Recorded mixtures	
	19.1.2	Synthesized mixtures	782
	19.1.3	Separation objectives and performance evaluation	783
19.2	Usabl	e properties of audio sources	787
	19.2.1	Independence	787
	19.2.2	Sparsity	788
19.3	Audio	applications of convolutive ICA	790
	19.3.1	Multichannel filtering	790
	19.3.2	Time-domain convolutive ICA	794
	19.3.3	Frequency-domain convolutive ICA	799
19.4	Audio	applications of SCA	806
	19.4.1	Time-frequency masking	807
	19.4.2	Instantaneous SCA	808
	19.4.3	Convolutive SCA	810
19.5	Conc	usion	814
	Refer	ences	815
Glossary			821
Index			823

COMON-F02 PII: B978-0-12-374726-6.00002-3 ISBN: 978-0-12-374726-6 PAGE: xix (xix-xix)

About the editors

The two editors are pioneering contributors of ICA. They wrote together the first journal paper on ICA, which appeared in *Signal Processing*, published by Elsevier in 1991, and received a best paper award in 1992, together with J. Hérault.

Pierre Comon is Research Director with CNRS, Lab. I3S, University of Nice, France. He has been Associate Editor of the *IEEE Transactions on Signal Processing*, and the *IEEE Transactions on Circuits of Systems I*, in the area of blind techniques. He is now Associate Editor of the *Signal Processing* journal, published by Elsevier. He has been the coordinator of the European network "ATHOS" on High-Order Statistics. He received the Monpetit prize from the French Academy of Sciences in 2005 (rewarding works with industrial applications), and the Individual Technical Achievement Award from Eurasip in 2006. He is Fellow of the IEEE, Emeritus Member of the SEE, and member of SIAM. He authored a paper in 1994 on the theoretical foundations of ICA; this paper still remains among the most cited both on the subject of ICA and/or blind techniques, in the whole signal processing community.

Christian Jutten is Professor at the University Joseph Fourier of Grenoble, France. He is currently associate-director of GIPSA-lab, a 300-people laboratory focused on automatic control, signal, images and speech processing. He has been Associate Editor of the *IEEE Transactions on Circuits and Systems I*, in the area of Neural Networks and Signal Processing techniques. He is currently Associate Editor of *Neural Processing Letters*, published by Kluwer. He was the co-organiser of the first international conference on Blind Source Separation and Independent Component Analysis, in 1999 (ICA 99). He was the coordinator of two European projects, one of them (BLISS) focused on Blind Source Separation and Applications. He received the Blondel Medal of the SEE in 1997 for his contributions in blind source separation. He is Fellow of the IEEE and Senior Member of Institut Universitaire de France. He co-authored a set of two papers in 1991, with J. Hérault and P. Comon, on the first algorithm for blind source separation and on theoretical foundation, which still remains in the top five papers cited on the subject of ICA and/or blind techniques, and in the whole signal processing community.

COMON-F03 PII: B978-0-12-374726-6.00003-5 ISBN: 978-0-12-374726-6 PAGE: xxi (xxi-xxi)

Preface

In signal processing, a generic problem consists in separating a useful signal from noise and interferences. Classical approaches of the twentieth century are based on *a priori* hypotheses, leading to parameterized probabilistic models. Blind Source Separation (BSS) attempts to reduce these assumptions to the weakest possible.

As shown in this handbook, there are various approaches to the BSS problem, depending on the weak *a priori* hypotheses one assumes. The latter include either statistical independence of source signals or their sparsity, among others.

In order to prepare this book, among the best worldwide specialists have been contacted to contribute (cf. page xxiii). One of them, Serge Degerine, has passed away unexpectedly during the writing of Chapter 7. We would like to dedicate this book to his memory.

This handbook is an extension of another book which appeared in 2007 in French, and published by Hermes. The present version contains more chapters and many additions, provided by contributors with international recognition. It is organized into 19 chapters, covering all the current theoretical approaches, especially Independent Component Analysis, and applications. Although these chapters can be read almost independently, they share the same notations and the same subject index. Moreover, numerous cross-references link the chapters to each other.

Pierre Comon and Christian Jutten

vector of components x_p , $1 \le p \le P$

Glossary

 \mathbf{X}

```
sources, observations, separator outputs
s, x, y
N
                              number of sources
P
                              number of sensors
T
                              number of observed samples
                              convolution
                              matrix with components A_{ij}
A
A, B
                              mixing and separation matrices
G, W, Q
                              global, whitening, and separating unitary matrices
ģ
                              Fourier transform of g
\hat{\mathbf{s}}
                              estimate of quantity s
                              probability density of x
p_{\mathbf{x}}
                              joint score function
ψ
                              marginal score function of source s_i
\varphi_i
Φ
                              first characteristic function
Ψ
                              second characteristic function
\mathbb{E}\mathbf{x}, \mathbb{E}\{\mathbf{x}\}
                              mathematical expectation of x
I\{y\} or I(p_y)
                              mutual information of y
K\{\mathbf{x};\mathbf{y}\} or K(p_{\mathbf{x}};p_{\mathbf{y}})
                              Kullback divergence between p_x and p_y
H\{\mathbf{x}\} or H(p_{\mathbf{x}})
                              Shannon entropy x
\mathscr{L}
                              likelihood
\mathcal{A}, \mathcal{B}
                              mixing, and separating (nonlinear) operators
cum\{x_1,\ldots,x_p\}
                              joint cumulant of variables \{x_1, ..., x_p\}
\operatorname{cum}_{R}\{y\}
                              marginal cumulant of order R of variable y
```

822 Glossary

 \mathbf{Q}^{T} transposition

Q^H conjugate transposition

Q* complex conjugation

Q[†] pseudo-inverse

Υ contrast function

 \mathbb{R} real field

 \mathbb{C} complex field

Â estimator of mixing matrix

diag A vector whose components are the diagonal of matrix A

Diag a diagonal matrix whose entries are those of vector a

trace A trace of matrix A

det A determinant of matrix A

mean a arithmetic average of component of vector a

 $\ddot{s}(v)$ Fourier transform of process s(t)

⊗ Kronecker product between matrices

• i contraction over index j

krank{A} Kruskal's k-rank of matrix A

dence (EASI), 201 ACPA), 610, 621, 627	complex fixed-point (CFPA), 216 constant modulus (CMA), 611, 619, 630, 699 constant power (CPA), 611, 618 efficient ICA, 204 ELS, 360 equivariant adaptive separation via indepen-	COM1, 174 QR constant modulus (Q COM2, 165, 692 recursive least squares	AMUSE, 251 optimal step-size constant power (OS-CPA), analytical constant modulus (ACMA), 597 614, 618, 621	ALGECUM, 348 optimal step-size constant modulus (OS-	algebraic semi-blind constant power (SB-ACPA), 627 non-negative, 533 non-unitary joint diagonalization, 447	algebraic constant modulus (ACMA), 624 Algebraic constant power (ACPA), 604, 605, NMF, 533 NMF, 533	accelerating adaptive filtering constant modulus (AAF-CMA), 616 adaptive, neural, on-line, recursive, stochastic, 189, 192, 193, 199, 612 ALESCAF, 359 hierarchical ALS, 538 InfoMax, 196 JADE, 170, 663, 692 kurtosis maximization fixed-point (KM-F), 216	A exact line search, 612 additivity of cumulants, 336 affine class, 428 air traffic control, 649 AJD, 245, 247 ALGECAF, 349 ALGECUM, 348 exact line search, 612 expectation-maximization (EM), 144 FastICA, 208, 663 flexible ICA, 204 FOOBI, 356 FOOBI2, 357 geometrical, 535, 568	additivity of cumulants, 336 affine class, 428 air traffic control, 649 AJD, 245, 247 ALGECAF, 349 ALGECUM, 348 algorithm accelerating adaptive filtering constant modulus (AAF-CMA), 616 adaptive, neural, on-line, recursive, stochastic, 189, 192, 193, 199, 612 ALESCAF, 359 algebraic, 597 algebraic constant modulus (ACMA), 624 algebraic constant power (ACPA), 604, 605, 616, 621 algebraic semi-blind constant power (SBACPA), 627 ALGECAF, 349 ALGECUM, 348 ALS, 538 AMUSE, 251 analytical constant modulus (ACMA), 597 batch vs. adaptive, 191 batch, block, off-line, windowed, 186, 192, 208, 217, 612 BIOME, 357 BIRTH, 357 clustering, 368 COM1, 174 COM2, 165, 692 complex FastICA, 215 complex fixed-point (CFPA), 216 constant modulus (CMA), 611, 619, 630, 699 constant power (CPA), 611, 618 efficient ICA, 204 ELS, 360 equivariant adaptive separation via indepen-	expectation-maximization (EM), 144 FastICA, 208, 663 flexible ICA, 204 FOOBI, 356 FOOBI2, 357 geometrical, 535, 568 greedy, 385 hierarchical ALS, 538 InfoMax, 196 JADE, 170, 663, 692 kurtosis maximization fixed-point (KM-F), 216 M-FOCUSS, 382 NFA, 579 NMF, 533 non-circular FastICA (nc-FastICA), 216 non-negative, 533 non-unitary joint diagonalization, 447 optimal step-size constant modulus (OS-CMA), 614, 619, 624, 626 optimal step-size constant power (OS-CPA), 614, 618, 621 optimal step-size kurtosis maximization (OS-KMA), 615, 616 optimal step-size semi-blind constant modulus (OS-SB-CMA), 614, 624, 626, 627 optimal step-size semi-blind constant power (OS-SB-CPA), 614, 619, 621, 627 QR constant modulus (QR-CMA), 616 recursive least squares constant modulus (RLS-CMA), 616, 619 relative gradient, 112 relative-gradient maximum likelihood, 202 RobustICA, 217 semi-blind algebraic constant modulus (SB-ACMA), 599, 624, 626, 627 semi-blind algebraic constant power (SB-
COM1, 174 COM2, 165, 692 complex FastICA, 215 complex fixed-point (CFPA), 216 constant modulus (CMA), 611, 619, 630, 699 constant power (CPA), 611, 618 efficient ICA, 204 ELS, 360 QR constant modulus (QR-CMA), 616 recursive least squares constant modulus (RLS-CMA), 616, 619 relative gradient, 112 relative-gradient maximum likelihood, 202 RobustICA, 217 semi-blind algebraic constant modulus (SB-ACMA), 599, 624, 626, 627	COM1, 174 QR constant modulus (QR-CMA), 616 COM2, 165, 692 QR constant modulus (QR-CMA) recursive least squares constant modulus	(000000111), 011,	batch, block, off-line, windowed, 186, 192, KMA), 615, 616	AMUSE, 251 analytical constant modulus (ACMA), 597 batch vs. adaptive, 191 batch, block, off-line, windowed, 186, 192, optimal step-size constant power (OS-CPA), 614, 618, 621 optimal step-size kurtosis maximization (OS- KMA), 615, 616	ALGECUM, 348 ALS, 538 AMUSE, 251 analytical constant modulus (ACMA), 597 batch vs. adaptive, 191 batch, block, off-line, windowed, 186, 192, optimal step-size constant modulus (OS-CMA), 614, 619, 624, 626 optimal step-size constant power (OS-CPA), 614, 618, 621 optimal step-size kurtosis maximization (OS-CMA), 615, 616	algebraic semi-blind constant power (SB-ACPA), 627 ALGECAF, 349 ALGECUM, 348 ALGECUM, 348 ALGECUM, 538 AMUSE, 251 analytical constant modulus (ACMA), 597 batch vs. adaptive, 191 batch, block, off-line, windowed, 186, 192, non-negative, 533 non-unitary joint diagonalization, 447 optimal step-size constant modulus (OS-CMA), 614, 619, 624, 626 optimal step-size constant power (OS-CPA), 614, 618, 621 optimal step-size kurtosis maximization (OS-CMA), 615, 616	algebraic constant modulus (ACMA), 624 algebraic constant power (ACPA), 604, 605, 616, 621 algebraic semi-blind constant power (SB-ACPA), 627 ALGECAF, 349 ALGECUM, 348 ALS, 538 AMUSE, 251 analytical constant modulus (ACMA), 597 batch vs. adaptive, 191 batch, block, off-line, windowed, 186, 192, NFA, 579 NMF, 533 non-circular FastICA (nc-FastICA), 216 non-negative, 533 non-unitary joint diagonalization, 447 optimal step-size constant modulus (OS-CMA), 614, 619, 624, 626 optimal step-size constant power (OS-CPA), 614, 618, 621 optimal step-size kurtosis maximization (OS-KMA), 615, 616	accelerating adaptive filtering constant modulus (AAF-CMA), 616 adaptive, neural, on-line, recursive, stochastic, 189, 192, 193, 199, 612 ALESCAF, 359 algebraic, 597 algebraic constant modulus (ACMA), 624 algebraic semi-blind constant power (ACPA), 604, 605, 616, 621 algebraic semi-blind constant power (SBACPA), 627 ALGECAF, 349 ALGECUM, 348 ALS, 538 AMUSE, 251 analytical constant modulus (ACMA), 597 batch vs. adaptive, 191 batch, block, off-line, windowed, 186, 192, hierarchical ALS, 538 InfoMax, 196 JADE, 170, 663, 692 kurtosis maximization fixed-point (KM-F), 216 M-FOCUSS, 382 NFA, 579 NMF, 533 non-circular FastICA (nc-FastICA), 216 non-negative, 533 non-unitary joint diagonalization, 447 optimal step-size constant modulus (OS-CMA), 614, 619, 624, 626 optimal step-size constant power (OS-CPA), 614, 618, 621 optimal step-size kurtosis maximization (OS-KMA), 615, 616	BIRTH, 357	optimal step-size semi-blind constant power
BIRTH, 357 clustering, 368 COM1, 174 COM2, 165, 692 complex FastICA, 215 complex fixed-point (CFPA), 216 constant modulus (CMA), 611, 619, 630, 699 constant power (CPA), 611, 618 efficient ICA, 204 ELS, 360 optimal step-size semi-blind constant power (OS-SB-CPA), 614, 619, 621, 627 QR constant modulus (QR-CMA), 616 recursive least squares constant modulus (RLS-CMA), 616, 619 relative gradient, 112 relative-gradient maximum likelihood, 202 RobustICA, 217 semi-blind algebraic constant modulus (SB-ACMA), 599, 624, 626, 627	BIRTH, 357 optimal step-size semi-blind constant power clustering, 368 (OS-SB-CPA), 614, 619, 621, 627 COM1, 174 QR constant modulus (QR-CMA), 616 COM2, 165, 692 recursive least squares constant modulus	BIRTH, 357 optimal step-size semi-bli		AMUSE, 251 optimal step-size constant power (OS-CPA), analytical constant modulus (ACMA), 597 614, 618, 621	ALGECUM, 348 optimal step-size constant modulus (OS-ALS, 538 CMA), 614, 619, 624, 626 optimal step-size constant power (OS-CPA), analytical constant modulus (ACMA), 597 614, 618, 621	algebraic semi-blind constant power (SB-ACPA), 627 ALGECAF, 349 ALGECUM, 348 ALS, 538 AMUSE, 251 analytical constant modulus (ACMA), 597 non-negative, 533 non-unitary joint diagonalization, 447 optimal step size, 612 optimal step-size constant modulus (OS-CPA), 614, 619, 624, 626 optimal step-size constant power (OS-CPA), 614, 618, 621	algebraic constant modulus (ACMA), 624 algebraic constant power (ACPA), 604, 605, 616, 621 algebraic semi-blind constant power (SB-ACPA), 627 ALGECAF, 349 ALGECUM, 348 ALS, 538 AMUSE, 251 analytical constant modulus (ACMA), 597 ANALY ALGECAF, 349 ALGECUM, 348 ALGECUM, 348 AMUSE, 251 AMUSE, 251 ANALY ALGECAF, 349 ALGECUM, 348 AL	accelerating adaptive filtering constant modulus (AAF-CMA), 616 adaptive, neural, on-line, recursive, stochastic, 189, 192, 193, 199, 612 ALESCAF, 359 algebraic, 597 algebraic constant modulus (ACMA), 624 algebraic constant power (ACPA), 604, 605, 616, 621 algebraic semi-blind constant power (SB-ACPA), 627 ALGECAF, 349 ALGECUM, 348 ALS, 538 AMUSE, 251 analytical constant modulus (ACMA), 597 hierarchical ALS, 538 InfoMax, 196 JADE, 170, 663, 692 kurtosis maximization fixed-point (KM-F), 216 M-FOCUSS, 382 NFA, 579 NMF, 533 non-circular FastICA (nc-FastICA), 216 non-negative, 533 non-unitary joint diagonalization, 447 optimal step-size constant modulus (OS-CMA), 614, 619, 624, 626 optimal step-size constant power (OS-CPA), 614, 618, 621	batch, block, off-line, windowed, 186, 192,	KMA), 615, 616 optimal step-size semi-blind constant modu-

semi-blind constant modulus (SB-CMA), 611 semi-blind constant power (SB-CPA), 611, 619 SOBIUM, 354	blind source separation (BSS), 643 blind techniques, 1 bracket notation, 334 BSS, 643
stabilized FastICA, 215	bumps, 645
stochastic-gradient constant modulus (SG-	F,
CMA), 612, 616	C
STOTD, 174	CanDecomp, CanD, 338, 530
ALS, 520, 532, 538	Canonical Decomposition (CanDecomp), 162,
lternative least square (ALS), 520	338
mbiguity factors, 233	canonical factorization, 530
AMUSE, 251	cardinal spline, 29
pplication, 639	causal, 48
air quality, 539	CDMA, 630
astrophysics, 658, 671	central moment, 333
audio frequency, 779	centroid, 198
audio processing, 541	channel coding, 630
biomedical, 670, 672, 737	channel equalization, 599
chemistry, 539 image processing, 540, 658	channel state information at the transmitter, 631
music, 779	characteristic function, 68
telecommunication, 649, 683	estimated, 27
text analysis, 539	second, 329
AR, 228	chemical sensors, 582
ARMA, 228	Cholesky factorization, 399
rtifact removal, 748	circular, 275, 702
ertifacts, 784	circular cumulant, 336
strophysics, 658, 671	circularity, 603 circularized density estimate, 27
toms, 370	clustering, 368
trial activity extraction, 748	co-channel interference (CCI), 593
trial fibrillation (AF), 752	Cohen class, 428
uto-terms, 428	colored sources, 643
	COM1, 174, 738
3	COM2, 165, 738
Basis Pursuit, 383	conditional entropy, 45
Basis Pursuit Denoising, 383	conformal mapping, 557
Bayes theorem, 470	conic programming, 383
Bayesian approach, 467, 575, 576, 665	constant modulus (CM), 67
peamforming, 790	contrast, 39, 65, 66, 71, 79
oilinear model, 583	COM2, 89
oilinear transform, 427	deterministic, 102
oinary masking, 807	JAD, 89
oinning, 29, 30	MIMO, 78, 181
BIOME, 357 piomedical applications, 737	MISO, 70, 74 PAJOD, 97
BIRTH, 357	STOTD, 89
olind, 642	transformation, 111
identifiability, 126	with reference, 77, 90
olind deconvolution, 593, 599	contrast function, 179
olind equalization, 593	alphabet polynomial fitting (APF), 602
llind identification, 65	attraction basins, 618
	•

based on cumulants, 182	decorrelation, 227
based on kurtosis, 183, 184, 208, 601, 603, 615	deflation, 67, 72, 184, 204, 308
constant modulus (CM), 594, 596	dimensionality reduction, 205, 207
constant power (CP), 594, 601	orthogonalization, 207
for signal extraction, 184	regression, 206
InfoMax, 181	delay spread, 684
marginal entropy, 182	demixing pursuit, 409
maximum likelihood, 86, 181	density, 24
mutual information, 81, 182	diagonalization
nonlinear approximations, 185	partial, 98
orthogonal, 183, 208	tensor, 85
convergence	dictionary, 371
global, 184, 205, 213	complete, 372
convolutive, 281	differential of mutual information, 573, 57
NMF model, 526	digital communications, 309, 310
convolutive mixture, 11, 793	direct path, 781
convolutive post-nonlinear model (CPNL), 560	direction of arrival (DOA), 791
core equation, 329	directivity pattern, 791
correlated sources, 102	discrete alphabet, 597
correlation matrix, 424	diversity, 13, 17
cortical tissue imaging, 670	induced by discrete alphabets, 102
CP-degeneracy, 345	DOA, 791
CPM modulations, 703	doubly normalized filters, 94
CPNL, 560	Dugué, 326
Cramér-Rao bound, 127, 133, 241	Dagae, 320
CRLB, 241	-
cross-correlation matrix, 424	E
cross-terms, 428	ECG, 746
cumulant, 157, 333, 738	echoes, 781
additivity, 336	EEG, 740
complex, 360	eigenvalue decomposition (EVD), 192
deductive estimation, 615	EJD, 245
matching, 90	electro-encephalography (EEG), 740
multivariate, 335	electrocardiogram analysis, 746
nonlinear, non-polynomial, 209	electromagnetic source, 648
of complex random variables, 336	electromyogram (EMG), 758
tensor, 335	embedded pilots, 631
cumulant matching, 337	EMG, 758
cumulative distribution function (cdf), 182, 197	EML, 260
cyclic frequency, 273, 311, 684, 696	empirical quantile function, 29
cyclo-correlation, 311, 313	energetic, 428
cyclo-ergodicity, 692	enhanced line search (ELS), 360
cyclo-spectrum, 312	entropy, 24
cyclo-spectrum, 312 cyclo-stationarity, 273, 310, 658, 684	entropy rate, 45
27 5, 510, 050, 004	equalizer
_	MIMO, 96
ע	equivariance, 109, 239, 240
Darmois, 39, 52, 326, 330, 551, 552, 554, 557,	essential uniqueness, 340
563, 564, 569, 570	estimated characteristic function, 27
decomposability, 328	estimating equations, 60, 115, 263
deconvolution	estimation
principle, 47	equivariant, 200

maximum likelihood, 181, 183, 198, 202, 203, 208, 211 minimum mean square error (MMSE), 206 exact line search, 612, 633 exact ML (EML), 260 excess bandwidth, 598 expected rank, 341 extraction, 66, 308 atrial activity, 748 fetal ECG, 748 extractor MISO, 72 extrema local, 619, 632	relative, natural, 199 stochastic, 132 gradient descent, 517 Gram-Schmidt orthogonalization, 207 H Hermitian symmetry, 430 Hessian matrix, 187, 399 hexacovariance, 345 hidden Markovian models, 482 hidden variables, 482 hierarchical ALS, 538 higher-order statistics, 630 history, 1, 367, 639 hyperspectral images, 658
F. FartiC A (62, 727)	
FastICA, 663, 737 fetal ECG extraction, 672, 748 filter spatial, 186 filtered Markov process, 47, 52 FIM, 241 finite alphabet, 630 finite impulse response (FIR), 93, 597, 598 Fisher information, 125, 137 floating point operation (flop), 615 fMRI, 647, 672, 739, 757 FOBIUM, 738 FOOBI, 356 forward model, 467, 470, 471 frequency offset, 691 function brain imaging, 739	IC, 658, 662 interpretation of, 664 relevance of, 662 ICA, 2, 7, 12, 549, 550, 554, 559, 642, 643, 660, 737, 814 frequency-domain convolutive, 799 spatial, 660, 662 spectral, 660 time-domain convolutive, 794 iCRLB, 244 identifiability, 125, 233, 557 iid, 227, 560, 570, 684 non-temporally, 12 temporally, 8, 11 ill-posed inverse problem, 467
_	independence, 6, 642, 664, 738
gamma distribution, 482 gas sensors, 582 Gaussian distribution, 557, 559, 560, 566, 569, 576, 578, 580 Gaussian entropy rate, 46 Gaussian MI (GMI), 261 Gaussian mutual information, 787 Gaussian mutual information rate, 50 Gaussian source, 643 generalized Gaussian, 789 generalized Gaussian (GG), 482 global filter, 69, 73, 79, 237 GMI, 261 gradient classical, 187 natural, 130 relative, 112, 130	independence criterion, 570 independent component (IC), 658, 662, 738 interpretation of, 664 relevance of, 662 independent component analysis (ICA), 2, 8, 12, 471, 643 independent subspace analysis (ISA), 216, 739 indeterminacy, 551 induced CRLB (iCRLB), 244 inference problem, 467 inferences, 470 InfoMax, 737 initialization, 597 innovation sequence, 230 inter-microphone intensity difference, 801 inter-microphone time difference, 791 interference, 784 intersymbol interference (ISI), 593, 599

inverse filter	link with MI, 86
FIR, 73, 75, 93	line search, 217, 360, 399
ISA, 739	linear model, 557
ISR, 234, 238	linear process, 47, 51, 73, 76, 94, 95
iterative power method, 608	linear programming, 383
iterative reweighted least squares, 382	local minima, 574
iterative thresholding, 383	local scatter plots, 395
	log-likelihood, 260, 396
J	LTI, 230
Jacobi iteration, 159	
JADE, 172, 663, 738	M
joint	M-FOCUSS, 382
diagonalization, 50, 54, 87, 441, 760	MA, 228
diagonalizer, 444	magneto-encephalography (MEG), 740
diagonalizer/zero-diagonalizer, 445, 449	mapping
orthogonal diagonalization, 760	conformal, 557
wide sense stationarity (JWSS), 229	example of nonlinear mapping, 564
zero-diagonalization, 441	linearizable
zero-diagonalizer, 444	separability, 566
joint entropy rate, 45	smooth, 557
joint score function (JSF), 55, 573	mappings
joint sparse approximation, 377	linearizable, 564
JSF, 573	Marcinkiewicz, 329
JWSS, 229	marginal entropy, 182, 183
	marginal score function (MSF), 573
K	Markovian model, 580
k-rank, 341	matching pursuit, 385
Kagan, 564, 566	maximal ratio combining, 609
kernel, 26	maximum a posteriori (MAP), 378, 407, 602
	McCullagh, 334
of a set of vectors, 341 Khatri-Rao product, 346	mean correlation matrix, 424
	mean field, 190
KLD, 250	MEG, 740
KM-CM equivalence, 603	mesokurtic, 334
Kronecker product, 346	MI, see mutual information, 261
Kruskal, 341	MIMO, 1, 67
Kullback-Leibler divergence, 24, 86, 181, 250,	minimum mean square error (MMSE), 595
518, 577, 737	minimum phase, 48, 52
kurtosis, 183, 184, 208, 217	misadjustment, 188
definition, 334	MISO, 67
maximization (KM), 67	MISO extractor, 69
optimal step size, 217	mixing matrix, 422
sensitivity to outliers, 185, 215	FIR, 93
	mixture
L	convolutive, 11
- Lagrange multiplier, 188	nonlinear, 11
Lagrangian, 188	mixture of Gaussians, 482
least squares (LS), 595	mixtures
leptokurtic, 334	spatial, 593
	± .
likelihood, 107, 378	temporal, 593
contrast, 111	MLE, 241

node- <i>k</i> product, 156	non-circular, 55/
modeling the sources, 482	non-Gaussianity, 132, 642
modified Yule-Walker equations, 232	non-minimum phase, 596, 621
nodulation	non-negative IĈA, 515
binary phase shift keying (BPSK), 601	non-negative ICA (NNICA), 525
continuous phase (CPM), 685	non-negative matrix factor deconvolution
minimum shift keying (QPSK), 602	(NMFD), 527
phase shift keying (PSK), 594	non-negative matrix factorization (NMF), 515
pulse amplitude (PAM), 603	642
quadrature phase shift keying (QPSK), 601	non-negative tensor factorization, 529
moment, 156, 333	non-stationarity, 482
Monte Carlo (MC), 617	non-stationary source, 643
morphological diversity, 412	nonlinear
notion decoding, 3	ICA, 550
MSE, 241	model, 11, 549, 554
MSF, 573	process, 95, 289
multi-input multi-output (MIMO), 593–595	nonlinear factor analysis (NFA), 575
	nonlinear model
multi-layer NMF, 528	structural constraints, 554
multi-layer perceptron, 555, 580	bilinear, 583
multi-linearity property, 335	multiplicative, 563
multipath, 709	nonlinearity
multiplicative nonlinear model, 563	adaptation, 203
multiplicative update, 518	cubic, 208
multivariate cumulant, 335	
multivariate moment, 335	implicit adaptation in FastICA, 209
music, 783, 803	optimal, 202 tanh, 208
mutual information, 24, 81, 83, 119, 182, 183,	
197, 261, 550, 570, 573, 574, 579, 580,	normalization, 423
585, 787	nuisance parameters, 260
differential of, 573, 574	numerical complexity, 758, 760
direct minimization of, 573	•
Gaussian, 787	0
link with likelihood, 86, 118	optimal step size, 612
rate, 46	optimal Wiener filtering, 595
	optimization
N	constrained, 188, 209
natural gradient, 397, 737	global, 196, 217, 612-614
negentropy, 82, 182, 737	gradient method, 187
cumulant approximation, 184	Newton method, 188
neural network	oracle performance, 785
feed-forward architecture, 194	order statistics, 29
feedback architecture, 193	ordinary differential equation (ODE) method
self-normalized, 194	189
Newton method, 398	outer product, 155, 338
NFA, 575, 576, 579, 586	over-determined, 78, 108
NIFA, 579, 576, 577, 586	overfitting, 645
	0.
NMF, 515, 642, 665	Р
NMFD, 527 NNICA, 525	PAJOD, 98
noise, 14	para-unitary, 92, 94, 293
noise removal, 326, 748	ParaFac, 530

parallel factor decomposition (ParaFac), 162, 338	quasi-disjoint, 439
parcor, 266	R
partial autocovariance, 257	radio-frequency identification, 649
partial correlation, 266	radio-frequency source, 649
partial diagonalization, 98	RAKE, 609
partition of unity, 30	range, 43
PCA, 8, 526, 534, 662, 671	rank
pdf, 229	Kruskal, 341
performance, 115, 763	of tensor, 338
performance criterion, 764	structured, 339
performance evaluation, 676	rank-1 approximation, 608
permutation factor, 233	rank-1 diagonal matrix, 435
permutation problem, 800	rank-1 linear combination problem, 607
physical significance, 479	reduced columns, 75
pilot or training sequence, 593, 595	relative gradient, 32, 199, 397
platykurtic, 334	relative Hessian, 32
PMF, 515	relative Newton, 396
PNL, 558–560, 566–568, 571, 579, 580, 586	relative optimization, 397
poly-periodic (PP) function, 691	relaxation, 267
polynomial rooting formula	relevant priors, 479
Cardan's, 614	representation
Ferrari's, 219, 614, 615	equivalent, 327
positive matrix factorization (PMF), 515	reverberation time, 781 RobustICA, 217
positivity prior, 665	robustness, 127, 645, 646
post-nonlinear model (PNL), 558, 582, 585 convolutive (CPNL), 560	stability, 129
separability, 559, 568	S
posterior probability, 467	SAR, 785
prewhitening, 163	SCA, 642, 814
principal component analysis (PCA), 8, 471	scale factor, 234
prior, 643, 665	scatter plot, 367
prior information, 467	Schur decomposition, 597, 599
prior probabilities, 467	score function, 33, 117, 202, 571, 572, 574, 586
probability density function (pdf), 181	approximation, 203
generalized Gaussian distribution (GGD),	joint, 573
204	marginal, 573
Pearson's system, 204	score function difference (SFD), 573, 574
proper, 275	SDR, 785
	semi-blind, 642, 665
Q	semi-blind methods, 593, 598
QML, 241, 260	semi-NMF, 525
quadratic criterion, 575	semi-unitary, 99 separating functions, 60
quadratic energetic transforms, 428	separating functions, 60
quadratic programming, 383	separation matrix, 422
quadratic transform, 427	serial updating, 200
quadricovariance, 345, 693	SFD, 573
quantile function, 28	shift invariance of cumulants, 336
Quasi ML, 260	side information, 630

sign factor, 234	quadratic time-frequency spectrum, 430
signal extraction, 184, 204	quadratic transform, 428
signal model, 470	whitening matrix, 424
signal separation	spatial aliasing, 801
deflationary, 184, 204	spatial coherence, 14, 809
joint or symmetric, 184	spatial diversity, 412
signal subspace, 14	spatial ICA, 660, 662, 756
signal-to-artifacts ratio (SAR), 785	spatial whitening
signal-to-distortion ratio (SDR), 785	of the observations, 423
signal-to-interference ratio (SIR), 785	spatial whitening matrix, 80
signal-to-noise ratio (SNR), 617, 785	spatio-temporal equalization, 594
single-input multi-output (SIMO), 595, 598	spatio-temporal ICA, 756
single-input single-output (SISO), 595, 596, 696	spectral ICA, 660
singular value decomposition (SVD), 192, 607	spectrum, 228
SIR, 785	specular channel, 697
SISO, 1	speech, 783, 803
skewness, 334	sphering, 227
Skitovic, see Darmois, 330	spurious independent component, 645
smoothing method of multipliers (SMOM), 401	spurious solutions, 596, 619
smoothness, 523	standardization, 80
SNR, 785	stationary point
SOBI, 253, 738	definition, 187, 190
	local asymptotic stability, 190
SOBIUM, 738	maximum, 187
SOS, 227	spurious, 184, 193, 195, 205
source	step size, 188
bounded, 567	optimal, 216, 217
bounded pdf, 536	STOTD, 174
colored, 93, 643	strong uncorrelating transform, 276
correlated, 102	structural constraints, 554
electromagnetic, 648	subspace fitting, 607
Gaussian, 643	subspace methods, 607
music, 787	sufficient statistic, 256
non-stationary, 643	superimposed pilots, 631
radio-frequency, 649	SUT, 276
speech, 787	Sylvester theorem, 346
temporally correlated, 568	
Darmois decomposition, 569	symbol error rate (SER), 617 symmetric rank, 339
example, 569	symmetric rank, 557
source signals	_
sub-Gaussian, 183	Т
super-Gaussian, 183	target-matrices, 247
source-microphone impulse response, 781	TDSEP, 251
spark, 341	tensor, 335
sparse component analysis (SCA), 642	factorization, 521
sparse representation	rank, 338
joint, 377	symmetric, 336, 338, 339
truly, 379	thresholding function, 383
sparsity, 521	time multiplexed pilots, 631
spatial	time-reversibility, 257
bilinear time-frequency spectrum, 430	transform
bilinear transform, 427	σ -diagonal, 550, 551, 557
	-

```
preserving independence, 551
                                                      W
        Darmois method, 553
                                                      whitened observation, 181, 424
        example, 552
                                                      whitening, 14, 92, 113, 180, 227, 292
        existence, 552
                                                         iterative, 192
  smooth, 555
                                                         matrix, 180
        counterexample, 555
                                                         spatial, 80
trivial filter, 69, 78, 93
                                                      Wiener filter, 271
                                                      Wiener systems, 560
                                                      word error rate, 785
under-determined, 11, 16, 72, 325, 368, 642, 658,
                                                      WSS, 227
uniform performance, 199, 200
                                                      Υ
unimodular, 75
uniqueness
                                                      Yule-Walker equations, 231
  essential, 327
                                                      Z
                                                      zero forcing (ZF), 597
ventricular arrhythmia detection, 748
```