Tensor Decomposition

16.01.20 Karolina Spiel, Korbinian Schmidhuber

Vertiefung der Grundlagen der Computerlinguistik WiSe 19/20 Prof. Dr. Klaus Schulz, Luisa März

Inhalt

- 1. Was ist ein Tensor?
- 2. Grundlegende Tensor-Konzepte
 - a. Skalarprodukt zweier Tensoren
 - b. Frobenius-Norm eines Tensors
 - c. Tensor-Matrix-Multiplikation
- 3. Tensor-Decomposition-Algorithmen
 - a. Canonical Polyadic Decomposition (CPD)
 - b. Tucker Decomposition (TD)
 - c. Higher Order Singular Value Decomposition (HOSVD)
- 4. Anwendungen von Tensor Decomposition
- 5. Quellen und Empfehlungen

Skalar

Wie viel beträgt die Temperatur in München?

Nur 1 Komponente / Einheit / Zahl A nötig:

z.B. $\mathbf{A} = 0^{\circ}$ C, 273 K, ...

München

→ **0** Basisvektoren pro Komponente

Skalar

Wie viel beträgt die Temperatur in München?

Nur 1 Komponente / Einheit / Zahl A nötig:

z.B. $\mathbf{A} = 0^{\circ}$ C, 273 K, ...

München

- → **0** Basisvektoren pro Komponente
- → Rang-0 Tensor

Vektor

Wie weit ist die Spitze des Olympiaturms entfernt?

3 Komponenten nötig: z.B. 19 km Richtung Osten ($\mathbf{A}_{\mathbf{x}}$), 12 km Richtung Süden ($\mathbf{A}_{\mathbf{y}}$), 291 m in die Höhe ($\mathbf{A}_{\mathbf{z}}$)

$$\vec{u} = \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} = \begin{pmatrix} 19 \\ 12 \\ 0.291 \end{pmatrix} = 21.2 \text{ km}$$

→ **1** Basisvektor pro Komponente

Vektor

Wie weit ist die Spitze des Olympiaturms entfernt?

3 Komponenten nötig: z.B. 19 km Richtung Osten ($\mathbf{A}_{\mathbf{x}}$), 12 km Richtung Süden ($\mathbf{A}_{\mathbf{y}}$), 291 m in die Höhe ($\mathbf{A}_{\mathbf{z}}$)

$$\vec{u} = \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} = \begin{pmatrix} 19 \\ 12 \\ 0.291 \end{pmatrix} = 21.2 \text{ km}$$

→ **1** Basisvektor pro Komponente

→ Rang-1 Tensor

Matrix

Welche Kräfte wirken an einem Punkt in einem Stahlträger im Olympiaturm?

Matrix

Welche Kräfte wirken an einem Punkt in einem Stahlträger im Olympiaturm?

9 Komponenten nötig:

Für die Fläche mit Flächenvektor entlang x-Achse und Kraft

entlang x-Achse: \mathbf{A}_{xx} , für die Fläche mit Flächenvektor entlang x-Achse und Kraft entlang y-Achse: \mathbf{A}_{xy} , für die Fläche mit Flächenvektor entlang x-Achse und Kraft entlang z-Achse: \mathbf{A}_{xy} , ...

Matrix

Welche Kräfte wirken an einem Punkt in einem Stahlträger im Olympiaturm?

9 Komponenten nötig:

$$\begin{pmatrix} A_{xx} & A_{xy} & A_{xz} \\ A_{yx} & A_{yy} & A_{yz} \\ A_{zx} & A_{zy} & A_{zz} \end{pmatrix}$$

→ 2 Basisvektoren pro Komponente

Matrix

Welche Kräfte wirken an einem Punkt in einem Stahlträger im Olympiaturm?

9 Komponenten nötig:

$$\begin{pmatrix} A_{xx} & A_{xy} & A_{xz} \\ A_{yx} & A_{yy} & A_{yz} \\ A_{zx} & A_{zy} & A_{zz} \end{pmatrix}$$

- → 2 Basisvektoren pro Komponente
- → Rang-2 Tensor

"In an **n-dimensional space**, a tensor of **rank k** is specified by **n^k** parameters, known as the components of the tensor." (Deshmukh 2019: 37)

Rang-0 Tensor in 3d: 1 Komponente (A),

Rang-1 Tensor in 3d: 3 Komponenten (A_x, A_y, A_z) ,

Rang-2 Tensor in 3d: 9 Komponenten $(A_{xx}, A_{xy}, A_{xz}, ...)$,

"In an **n-dimensional space**, a tensor of **rank k** is specified by **n^k** parameters, known as the components of the tensor." (Deshmukh 2019: 37)

Rang-0 Tensor in 3d: 1 Komponente (A),

Rang-1 Tensor in 3d: 3 Komponenten (A_x, A_y, A_z) ,

Rang-2 Tensor in 3d: 9 Komponenten $(A_{xx}, A_{xy}, A_{xz}, ...)$,

Rang-3 Tensor in 3d: 27 Komponenten $(A_{xxx}, A_{xyx}, A_{xxz}, ...)$,

Rang-4 Tensor in 3d: 81 Komponenten, (A_{xxxx}, A_{xyxx}, A_{xyxx}, ...)

USW.

Grundlegende Tensor-Konzepte

Skalarprodukt zweier Tensoren

$$\langle A,B\rangle = \sum_{i,j,k} a_{ijk} b_{ijk}$$

Skalarprodukt zweier Tensoren

$$\langle A,B\rangle = \sum_{i,j,k} a_{ijk} b_{ijk}$$

Frobenius-Norm eines Tensors

$$\|A\|_F = \langle A, A \rangle^{1/2} = \left(\sum_{i,j,k} a_{ijk}^2\right)^{1/2}$$

→ Entspricht der Wurzel des Skalarprodukts des Tensors mit sich selbst

 Für einen Rang 3 Tensor und eine Matrix gibt es 3 Multiplikationen (Für jeden Rang eine)

• Für einen Tensor $\mathcal{A} \in \mathbb{R}^{l \times m \times n}$ und eine Matrix $U \in \mathbb{R}^{l_0 \times l}$ ist die sogenannte 1-mode Multiplikation wie folgt definiert

Tensor: $A \in \mathbb{R}^{l \times m \times n}$, Matrix: $U \in \mathbb{R}^{l_0 \times l}$

1-Mode Multiplikation:

$$(\mathcal{A} \times_1 U)(j, i_2, i_3) = \sum_{k=1}^l u_{j,k} * a_{k,i_2,i_3}$$

Zum Vergleich:

1-Mode Tensor-Matrix Multiplikation:

$$(\mathcal{A} \times_1 U)(j, i_2, i_3) = \sum_{k=1}^{l} u_{j,k} * a_{k,i_2,i_3}$$

Matrix-Matrix Multiplikation:

$$(A \times U)(j,i) = \sum_{k=1}^{i} u_{j,k} * a_{k,i}$$

1-Mode Tensor-Matrix Multiplikation:
$$(\mathcal{A} \times_1 U)(j,i_2,i_3) = \sum_{l=-1}^l u_{j,k} * a_{k,i_2,i_3}$$

2-Mode Tensor-Matrix Multiplikation:
$$(\mathcal{A} \times_2 U)(i_1,j,i_3) = \sum_{k=1} u_{j,k} * a_{i_1,k,i_3}$$

3-Mode Tensor-Matrix Multiplikation:
$$(\mathcal{A} \times_3 U)(i_1,i_2,j) = \sum_i u_{j,k} * a_{i_1,i_2,k}$$

Bekannteste Algorithmen:

- 1. Canonical Polyadic Decomposition (CPD)
- 2. Tucker Decomposition (TD)
- Beide: Tensor-Zerlegung in ein dyadisches Produkt, aber mit unterschiedlichen Struktureigenschaften
- CDP i.d.R. zur Schätzung latenter Parameter, TD i.d.R. u.a. zur Komprimierung und Dimensionsreduktion
- Basis für viele weitere Zerlegungen

Bekannteste Algorithmen:

1. Canonical Polyadic Decomposition (CPD)

= Rang-Zerlegung:

Tensor wird als **Summe einer (endlichen) Anzahl an Rang-1 Tensoren** ausgedrückt

→ z.B. Jennrich Algorithm, Alternating Square Algorithm, Tensor Power Method, ... (siehe hierfür Rabanser et al. 2017)

28

Bekannteste Algorithmen:

2. Tucker Decomposition (TD)

Tensor wird zerlegt in einen Kern-Tensor und mehrere Matrizen

- z.B. Zerlegung in 1 Kern-Tensor und 3 Matrizen
- → Higher Order Singular Value Decomposition (HOSVD)

$$\mathcal{A} \in \mathbb{R}^{l \times m \times n}$$

$$\mathcal{A} \in \mathbb{R}^{l \times m \times n}$$
$$S \in \mathbb{R}^{l \times m \times n}$$

$$\mathcal{A} \in \mathbb{R}^{l \times m \times n}$$

$$S \in \mathbb{R}^{l \times m \times n}$$

$$U^{(1)} \in \mathbb{R}^{l \times l}, U^{(2)} \in \mathbb{R}^{m \times m}, U^{(3)} \in \mathbb{R}^{n \times n}$$

$$\mathcal{A} \in \mathbb{R}^{l \times m \times n}$$

$$S \in \mathbb{R}^{l \times m \times n}$$

$$U^{(1)} \in \mathbb{R}^{l \times l}, U^{(2)} \in \mathbb{R}^{m \times m}, U^{(3)} \in \mathbb{R}^{n \times n}$$

HOSVD:
$$A = S \times_1 U^{(1)} \times_2 U^{(2)} \times_3 U^{(3)}$$

Die Bestandteile der Zerlegung haben dabei folgende Eigenschaften:

Die Bestandteile der Zerlegung haben dabei folgende Eigenschaften:

• U(1), U(2), U(3) sind orthogonal Matrizen

Die Bestandteile der Zerlegung haben dabei folgende Eigenschaften:

- U(1), U(2), U(3) sind orthogonal Matrizen
- Zwei jeweils unterschiedliche Slices von S sind orthogonal in Bezug auf das Skalarprodukt (<S(i,:,:), S(j,:,:)> = <S(:,i,:), S(:,j,:)> = <S(:,:,i), S(:,:,j)> = 0, mit i ungleich j)

Die 1-Mode Singulärwerte sind definiert als:

$$\sigma_i^{(1)} = ||S(i,:,:)||_F, \quad i = 1,...,l$$

Sie besitzen die Eigenschaft, dass Singulärwerte mit zunehmendem Index kleiner werden:

$$\sigma_1^{(1)} \ge \sigma_2^{(1)} \ge \dots \ge \sigma_l^{(1)}$$

 2-Mode Singulärwerte und 3-Mode Singulärwerte sind analog dazu definiert und besitzen dieselbe Eigenschaft

Anwendungen von Tensor Decomposition

- Kompression von Tensoren
- Dimensionsreduktion
- Inferenz in Latent Variable Models
- Entdecken neuer Relationen in Multilayer Networks
- uvm.

Quellen und Empfehlungen

Literatur:

Deshmukh, P.C. (2019): **Foundations of Classical Mechanics.** Cambridge: University Press.

Elden, L. (2007): Matrix Methods in Data Mining and Pattern Recognition. Philadelphia: SIAM.

Rabanser, S., Shchur, O., Günnemann, S. (2017): **Introduction to Tensor Decomposition and their Applications in Machine Learning.** München: Technische Universität.

Abbildungen:

S. 6 f.: http://geogebra-rlp.zum.de/images/b/ba/Quader_auf_KOS.PNG [Letzter Zugriff: 15.01.20]

S. 8 ff.: https://www.intmath.com/vectors/img/cosines.gif [Letzter Zugriff: 15.01.20]

S. 15 ff.: https://www.cc.gatech.edu/~san37/img/dl/tensor.png [Letzter Zugriff: 15.01.20]

YouTube:

What's a Tensor: https://youtu.be/f5liqUk0ZTw [Letzter Zugriff: 15.01.20]

Introduction to Tensors: https://youtu.be/uaQeXi4E7qA [Letzter Zugriff: 15.01.20]