Introdução à Probabilidade e Estatística

Universidade de Évora

Departamento de Matemática

Ano lectivo 2015/16

Ana Isabel Santos

Aula 5

Variáveis Aleatórias

e

Distribuições de Probabilidade

Variáveis e Vetores Aleatórios

Vetores aleatórios

A $(X_1, X_2, ..., X_k)$ chama-se **vetor aleatório multivariado**.

No caso particular em que k=2 tem-se que (X, Y) representa o vetor aleatório bivariado ou o par aleatório ou a v. a. bidimensional.

Uma v. a. (X, Y) bidimensional diz-se **discreta** se e só se X e Y foram v. a. discretas.

Função de probabilidade conjunta

Definição 6: A **função de probabilidade conjunta** de uma v. a. (X, Y), que se denota por f(x,y), é a função que designa a probabilidade dessa variável tomar cada um dos valores do seu domínio, $D \subset \mathbb{R}^2$, isto é,

$$f(x,y) = P(X = x, Y = y).$$

Propriedades da função de probabilidade conjunta:

- $0 \le f(x,y) \le 1$, para qualquer $(x,y) \in D$;
- $\sum_{x \in D_x} \sum_{y \in D_y} f(x, y) = 1.$

Função de probabilidade marginal

Definição 7: Considere-se uma v. a. (X, Y) discreta, com função de probabilidade conjunta f(x,y).

A função de probabilidade marginal, $f_X(x)$, da v. a. discreta X é dada por

$$f_X(x) = P(X = x, -\infty < Y < +\infty) = \sum_{y \in D_Y} f(x, y), \quad x \text{ fixo.}$$

A função de probabilidade marginal, $f_Y(y)$, da v. a. discreta Y é dada por

$$f_Y(y) = P(-\infty < X < +\infty, Y = y) = \sum_{x \in D_X} f(x, y), \quad y \text{ fixo.}$$

Função de probabilidade condicionada

Definição 8: Considere-se uma v. a. (X, Y) discreta, com função de probabilidade conjunta f(x,y).

A função de probabilidade de X condicionada a $\{Y=y\}$ é dada por

$$f_{X|Y=y}(x) = P(X=x|Y=y) = \frac{P(X=x,Y=y)}{P(Y=y)} = \frac{f(x,y)}{f_Y(y)}$$

A função de probabilidade de Y condicionada a $\{X=x\}$ é dada por

$$f_{X=x|Y}(y) = P(Y=y|X=x) = \frac{P(X=x,Y=y)}{P(X=x)} = \frac{f(x,y)}{f_X(x)}$$

Independência de variáveis aleatórias

Definição 9: Dada uma v. a. bidimensional (X, Y), diz-se que X e Y **são independentes** se e só se

$$f(x,y) = f_X(x) \times f_Y(y).$$

Consequências:

- $f_{X|Y=y}(x) = f_X(x), \quad \forall x \in \mathbb{R}.$
- $f_{X=x|Y}(y) = f_Y(y), \quad \forall y \in \mathbb{R}.$

Distribuições de probabilidade discretas

Prova de Bernoulli

Considere-se uma experiência aleatória que tem apenas dois resultados possíveis: a realização do acontecimento A, que se designa por <u>sucesso</u>, e a realização do acontecimento complementar, A, que se designa por **insucesso**.

O sucesso ocorre com probabilidade p e o insucesso com probabilidade q=1-p, ou seja,

$$P(A) = p$$
 e $P(\overline{A}) = 1 - p = q$.

A uma experiência aleatória com características acima descritas chamamos prova de Bernoulli.

Distribuição de Bernoulli

Definição 1: Seja X uma v. a. associada ao resultado de uma prova de Bernoulli. Diz-se que X segue uma **distribuição de Bernoulli,** e escreve-se $X \sim Ber(p)$, se e só se a sua função de probabilidade é dada por

$$f(x) = P(X = x) = \begin{cases} p^{x}(1-p)^{1-x}, & x = 0, 1\\ 0, & \text{caso contrário} \end{cases}$$

Esta distribuição tem como único parâmetro caraterizador

$$p (p \in [0,1]).$$

Distribuição Binomial

Definição 2: Seja X a v. a. discreta que designa o número de sucessos em n provas de Bernoulli. Diz-se que X segue uma **distribuição Binomial,** e escreve-se $X \sim B(n; p)$, se e só se a sua função de probabilidade é dada por

$$f(x) = P(X = x) = {}^{n}C_{x} p^{x} (1-p)^{n-x}$$
, para $x = 0, 1, \dots, n$,

em que n ($n \in \mathbb{N}$) e p (0) são os parâmetros caraterizadores desta distribuição.

Distribuição Binomial

Definição 3: Tendo em consideração a definição de função de distribuição, deduz-se que a **função de distribuição Binomial** é dada por:

F(x) =
$$P(X \le x) = \begin{cases} 0 & \text{se } x < 0, \\ \sum_{x_i=0}^{x} {}^{n}C_{x_i} p^{x_i} (1-p)^{n-x_i} & \text{se } 0 \le x < n, \\ 1 & \text{se } x > n. \end{cases}$$

Teorema 1: Se X é uma v. a. discreta que segue uma distribuição Binomial, então

$$E(X) = \mu = np$$
 e $Var(X) = \sigma^2 = np(1-p) = npq$.

Distribuição de Poisson

Definição 4: Seja X a v. a. discreta que designa o número de sucessos num dado intervalo de tempo ou domínio específico. Diz-se que X segue uma **distribuição Poisson** de parâmetro λ , em que λ representa o número médio de sucessos que ocorrem no intervalo de tempo ou domínio específico e escreve-se $X \sim \mathcal{P}(\lambda)$ se e só se a sua função de probabilidade é dada por

$$f(x) = P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$$
, para $x = 0, 1, 2, \dots$

Teorema 2: Se X é uma v. a. discreta que segue uma distribuição de Poisson, então

$$E(X) = \mu = \lambda$$
 e $Var(X) = \sigma^2 = \lambda$.

Teoremas da Aditividade

Teorema da Aditividade 1: Se X_i , i=1,2,...,n, são variáveis aleatórias independentes e $X_i \sim B(n_i; p)$, então

$$X_1 + X_2 + \dots + X_k = \sum_{i=1}^k X_i \sim B\left(\sum_{i=1}^k n_i; p\right).$$

Teorema da Aditividade 2: Se X_i , i = 1, 2, ..., k, são variáveis aleatórias independentes, então

$$X_1 + X_2 + \cdots + X_k = \sum_{i=1}^k X_i \sim \mathcal{P}(k\lambda).$$