continua. La primera es la composición de $(x, y, z) \mapsto (x^2 + y^2 + z^2)$ con $u \mapsto u^{30}$, y la segunda es la composición de $(x, y, z) \mapsto z^3$ con $u \mapsto \text{sen } u$, y por tanto, por el Teorema 5, tenemos continuidad.

Límites en términos de ε y δ

Vamos a enunciar ahora un teorema que proporciona una formulación útil de la noción de límite en términos de épsilons y deltas, y que a menudo se toma como definición de límite. De hecho, esta es otra forma de precisar la formulación intuitiva de que " $f(\mathbf{x})$ se acerca a \mathbf{b} cuando \mathbf{x} se acerca a \mathbf{x}_0 ". Para entender esta formulación, el lector puede considerarla en cada uno de los ejemplos ya vistos.

Teorema 6 Sea $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ y sea \mathbf{x}_0 un punto de A o un punto frontera de A. Entonces $\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = \mathbf{b}$ si y solo si para todo $\varepsilon > 0$ existe un $\delta > 0$ tal que, para todo $\mathbf{x} \in A$ que satisface $0 < \|\mathbf{x} - \mathbf{x}_0\| < \delta$ se tiene que $\|f(\mathbf{x}) - \mathbf{b}\| < \varepsilon$ (véase la Figura 2.2.16).

Figura 2.2.16 Geometría de la definición ε - δ de límite.

Para ilustrar la metodología de la técnica épsilon-delta del Teorema 6, vamos a considerar los siguientes ejemplos.

Ejemplo 12

Demostrar que $\lim_{(x,y)\to(0,0)} x = 0$ usando el método ε - δ .

Solución

Observemos que si $\delta > 0, \|(x,y) - (0,0)\| = \sqrt{x^2 + y^2} < \delta$ implica $|x-0| = |x| = \sqrt{x^2} \le \sqrt{x^2 + y^2} < \delta$. Por tanto, si $\|(x,y) - (0,0)\| < \delta$, entonces |x-0| también es menor que δ . Dado $\varepsilon > 0$, debemos hallar $\delta > 0$ (que generalmente depende de ε) con la propiedad de que $0 < \|(x,y) - (0,0)\| < \delta$ implique $|x-0| < \varepsilon$. ¿Cómo elegiremos δ ? Del cálculo anterior, vemos que si elegimos $\delta = \varepsilon$, entonces $\|(x,y) - (0,0)\| < \delta$