Shapes of dependencies in reaction systems 🕶 💢

Luca Manzoni • Antonio E. Porreca

Grzegorz Rozenberg

Università degli Studi di Milano-Bicocca

Aix-Marseille Université & Laboratoire d'Informatique et Systèmes

Leiden University
& University of

Colorado Boulder

Structure vs behaviour

- What are the consequences of structural restrictions on the behaviour of RS?
- Example: minimal RS cannot compute all result functions
- But, for each RS \mathcal{A} there exists a minimal RS \mathcal{B} such that $\operatorname{res}_{\mathcal{A}}^{k}(T) = \operatorname{res}_{\mathcal{B}}^{2k}(T)$ for all $k \in \mathbb{N}$ and state T of \mathcal{A}

Positive dependency graph

- Vertices = set of reactions A
- There is an oriented edge a → b iff at least one product of reaction a is a reactant of reaction b

Positive dependency graph

A path in the (positive) dependency graph such that for each edge a → b we have:

- Reaction a produces all reactants of b: R_b ⊆ P_a
- Reaction a doesn't produce any inhibitor for b: Pa ∩ Ib = Ø

Non self-inhibiting reactions

A set of reactions $\{a_1, a_2, ..., a_n\}$ such that no reaction produces inhibitors for any other reaction in the set: $P_i \cap P_j = \emptyset$ for all i, j belonging to the set

Otherwise, the set is called self-inhibiting

Self-sustaining but also self-inhibiting cycle

Simple cyclical dependencies

 P_0

 P_3

 P_2

Rotations and cycles

The rotations of active reactions along the (unique) cycle in the dependency graph (starting from a given configuration) correspond to transitions in the graph of the dynamics.

IF the dependency graph of a RS consists only one self-sustaining, non-self-inhibiting cycle of length n

THEN the dynamics of the RS only contains cycles of length dividing n, and there is at least one such cycle for each divisor of n.

Length of the cycles

Length of the cycles

Length of the cycles

Chains of dependency

Chains \$

IF the dependency graph of a RS contains a chain of two self-sustaining, non self-inhibiting cycles of length m and n

THEN when starting from a configuration where at least one reaction involved in the cycles is enabled, eventually all the reactions will be enabled once every gcd(m, n) steps.

S

Lemma in action

Lemma in action

All reactions are enabled every $3 = \gcd(3, 6)$ steps

Flower-shaped dependencies

Flowers

IF the dependency graph of a RS consists only of a flower of self-sustaining, non-self-inhibiting cycles (petals) with at lest of them of coprime lengths

THEN the RS has exactly two fixed points.

All reactions enabled every $1 = \gcd(3, 4)$ step! Saturation!

- When all reactions are always enabled the products are always the same: T = ∪{P_a : a ∈ A}
- Thus the RS enters a nonempty fixed point: $res_{\mathcal{A}}(T) = T$
- The second fixed point is by definition the empty state Ø

Chain-shaped dependencies

IF the dependency graph of a RS consists only of a chain of self-sustaining, non-self-inhibiting cycles containing two cycles of coprime lengths,

THEN the RS has exactly two fixed points

activated

Conclusions

Summary

Behaviour of RS having a dependency graph consisting of self-sustaining, non-self-inhibiting cycles:

- With a single cycle of length n, the dynamics of the RS contains only cycles of length dividing n
- With a chain or flower with two cycles of coprime length, the RS has exactly two fixed points

Future work

- Does restricting the dependency graphs to cycles, chains and flowers reduce the complexity of decision problems related to the dynamics? (e.g., fixed points, reachability)
- Investigate the relationship with Boolean automata networks and their interaction graphs
- Investigate more sophisticated dependency graphs (e.g., pre-periods, multiple intersections between cycles)

Dziękuje za uwagę! © Thanks for your attention!