Traffic Control Project

교통제어프로젝트 최종보고서

세삼사거리~매탄권선역사거리 신호체계 개선

2조

CONTENTS

프로젝트 배경 및 목적

❖ 도로 포화가 매우 심각

- 1. 삼성로(삼성전자)로 진입하기 위한 구간
- => 출근 시간대에 신호체계로 인한 상습 정체 발생
- 2. 많은 통행량으로 인한 대기행렬
- ⇒ 차량의 포화로 인한 도로 막힘, 꼬리물기 등 교통 문제 발생

세삼사거리-매탄권선역 사거리(770m 구간)

〈프로젝트의 공간적 범위〉

프로젝트 수행절차

대상구간 현황

- 대상 구간의 기하구조도 현황
 - WB 방향 기준 양방향 8차로 도로임
 - WB 직진 방향에서 차량의 정체 발생

〈세삼사거리-매탄권선역사거리 기하구조도 현황〉

대상구간 현황

매탄권선역 사거리

	(교통량(veh/hr), 비율(%)〉												
접근로		NB			EB			SB		WB			
이 동 류	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
교통량		1585			1878		1465			1674			
방향별 교통량	571	939	75	142	1212	524	250	1001	214	191	1124	359	
승용차 교통량	566	901	70	133	1173	512	247	955	202	191	1083	343	
중차량 교통량	5	38	5	9	39	12	3	46	12	0	41	16	
중차량 비율	0.9	4.0	6.7	6.3	3.2	2.3	1.2	4.6	5.6	0.0	3.6	4.5	

						(단역	위 : 초)
	Ø 1	Ø 2	ø3	ø 4	ø5	Ø 6	주기
phase	+	\uparrow	+	+	\leftarrow		180
녹색 시간	27	27	48	20	20	20	Off
황색 시간	3	3	3	3	3	3	set
현시 시간	30	30	51	23	23	23	0

〈매탄권선역 사거리 교통량 현황〉

〈매탄권선역 사거리 현시체계〉

■ WB의 직진 교통량이 다른 방향에 비해 높은 실태

대상구간 현황

세삼 사거리

									√	<u>고</u> 통량(ve	h/hr), ㅂ	율(%)〉	
접근로		NB			EB			SB			WB		
이 동 류	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
교통량		600			1590		966		1493				
방향별 교통량	154	320	126	84	1326	180	130	635	201	214	919	360	
승용차 교통량	151	302	126	84	1274	162	127	619	201	211	917	354	
중차량 교통량	3	18	0	0	52	18	3	16	0	3	2	6	
중차량 비율	1.9	5.6	0.0	0.0	3.9	10	2.3	2.5	0.0	1.4	0.2	1.7	

						(단	ː위 : 초)
	Ø 1	Ø 2	ø3	ø 4	ø 5	ø 6	주기
phase	+	$\uparrow \downarrow$	+	+	→		180
녹색 시간	27	20	37	17	41	20	Offse
황색 시간	3	3	3	3	3	3	t
현시 시간	30	23	40	20	44	23	0

〈세삼 사거리 교통량 현황〉

〈세삼 사거리 현시체계〉

■ WB의 직진 교통량이 다른 방향에 비해 높은 실태

대상구간 현황분석 결과

VISSIM을 통한 현황분석

N	MOE	평균	표준편차	최솟값	최댓값
QLEN (m)	매탄권선역사거리 WB직진	402.5	14.72	43.54	497.97
TRAVTM (sec)	전체구간 WB직진		35.37	141.91	1150.05
SPEEDAVGARITH (km/h)	전체구간 WB직진	35.15	2.24	23.82	51.98
DELA	DELAYAVG(s)		3.40	47.01	128.01
STO	OPAVG	1.51	0.13	0.78	2.74

〈VISSIM을 이용한 현황 분석 결과〉

《QLEN, TRAVTM, SPEEDAVGARITH의 검지 위치》

대상구간 현황분석 결과

SSAM을 통한 현황분석

	평균	표준편차	최솟값	최댓값
Crossing	307	106.23	197	409
Rear_End	1656	153.91	1509	1816
Lane_Change	445.67	125.67	416	465

〈SSAM을 이용한 현황 분석 결과〉

〈매탄권선역사거리 현황 분석 결과 SSAM Image〉

〈세삼사거리 현황 분석 결과 SSAM Image〉

〈전체구간 현황 분석 결과 SSAM Image〉

대상구간 현황분석 결과

Synchro을 통한 현황분석

HCM 2000 Control Delay	102.6	HCM 2000 Level of Service	F
HCM 2000 Volume to Capacity ratio	0.97		
Actuated Cycle Length (s)	180.0	Sum of lost time (s)	12.0
ntersection Capacity Utilization	91.3%	ICU Level of Service	F
Analysis Period (min)	15		

〈매탄권선역사거리 현황 Synchro Report〉

Intersection Summary			
HCM 2000 Control Delay	74.6	HCM 2000 Level of Service	E
HCM 2000 Volume to Capacity ratio	88.0		
Actuated Cycle Length (s)	180.0	Sum of lost time (s)	12.5
Intersection Capacity Utilization	84.1%	ICU Level of Service	E
Analysis Period (min)	15		
c Critical Lane Group			

〈세삼사거리 현황 Synchro Report〉

대상 구간 유출 구간인 매탄권선역 사거리 LOS 수준 낮음

개선안 제시

1

기하구조만 개선하여 통행 최적화

2

기하구조와 신호개선을 하여 통행 최적화

	매탄권선	역사거리	세삼시	사거리	
개선 방안	Control Delay	LOS	Control Delay	LOS	Control Delay 합
	107.2초	F	74.6초	E	
1	HCM 2000 Control Delay 107.2	HCM 2000 Level of Service F	HCM 2000 Control Delay 74.6	HCM 2000 Level of Service E	181.8초
_	51.6초	D	61.5초	E	
2	HCM 2000 Control Delay 67.8	HCM 2000 Level of Service E	HCM 2000 Control Delay 61.5	HCM 2000 Level of Service E	113.1초

Control Delay의 합이 가장 작은 '개선 2'를 최종 개선안으로 선정

〈기하구조 개선 및 신호 최적화 이용한 개선안〉

개선안 제시

											(1	단위 : 초)
	ø1		Ø 2		Ø3		ø 4		ø5			Ø6
phase	}	•	$\qquad \qquad $	+	+		+		→		_	↑
현시시간	25		38		38		26			25		28
N=04	22	3	73			3	23	3		50		3
신호운영	60		3	3	5	3	4		3		25	3
주기	180		옵셋		7:	3	all-p	hae	All-	-red		0

(단위 : 초) Ø2 Ø3 ø4 phase 현시시간 30 23 40 20 45 22 60 64 27 17 신호운영 37 3 19 50 옵셋 주기 all-phase All-red 180

〈매탄권선역 사거리 신호 개선안〉

〈세삼 사거리 신호 개선안〉

- 6현시를 유지하되 각 현시 마다 유효녹색시간 변화
- Cycle Length는 180초, Offset은 73초, 황색시간은 모든 현시에서 3초로 개선

개선 전/후 결과 비교

-W.I I	Control De	elay (sec)	LOS				
대상구간	개선 전	개선 후	개선 전	개선 후			
매탄권선역사거리	102.6	67.8	F	Е			
세삼사거리	74.6	61.5	E	Е			

Control Delay	NB				SB			EB			WB		
(sec)	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
개선 전	64.7	38.5	0	75.5	94.2	48.0	111.1	141.6	86.3	172	136.9	164.1	
개선 후	101.9	42.9	0	83.9	80.2	45.7	88	84.5	69.5	101.8	43.2	0	
후 - 전	-44.9	-5.6	0	-14.2	-10.8	1.6	-1.9	-13.3	-8.3	70.2	64.3	194.4	

〈현황(개선 전) 및 개선안(개선 후) LOS 및 Control Delay 결과〉

- 두 교차로 모두 LOS 및 Control Delay가 개선되었으므로, 본 대상구간이 개선되었음
- 두 교차로의 Approach Delay 개선 결과, 개선 목표인 매탄권선역사거리 WB의 Approach Delay가 감소되었지만 나머지 접근로의 경우 오히려 증가함
- 그러나 본 프로젝트에서의 개선목표인 매탄권선역사거리 WB의 Delay를 감소시키는 것이 우선이고 WB의 Approach Delay가 약 90초 크게 감소하기 때문에 결과가 잘 나왔다고 판단

개선안 VISSIM 네트워크 구축

- 기존에 구축했던 현황 네트워크에 기하구조, 신호와 Conflict Area 등 개선안에 의해 변경된 사항을 바탕으로 개선안 네트워크를 구축하였음

〈매탄권선역사거리 개선안 네트워크 구축 결과〉

개선 효과 통계 검증

- 개선 효과를 분석하기 위해 현황 및 개선안의 다양한 MOE에 대해 비교하고, 이에 대한 통계적 검증을 진행함
- 통계적 검증으로는 동일 집단의 사전·사후 평균을 비교할 때 사용하는 대응표본 t검정을 Excel의 '데이터 분석'기능을 활용
- 신뢰도는 해당 기능의 Default 값인 95%로 함

MOE 선정

- 현황분석을 위한 MOE로 Network Performance와 SSAM을 선정
- Network Performance와 대기 행렬로 인한 정체 분석을 위해 선정
- SSAM은 교차로 내 상충에 대한 분석을 위해 선정

- Average speed per vehicle : 차량 당 평균 통행 속도이며 단위는 '초'
- Average queue length per vehicle: 차량 당 평균 대기행렬 길이이며 단위는 'm'
- Average travel time per vehicle : 차량 당 평균 주행 시간이며 단위는 '초'
- Average delay per vehicle : 차량 당 평균 지체 시간이며 단위는 '초'
- Average number of stops per vehicle : 차량 당 평균 정지 횟수

Network Performance

parameter	평균	표준편차	최대값	최소값
Average speed per vehicle [s], All vehicle types	42.45	8.44	51.39	30.9
Average queue length per vehicle, [m] All vehicle types	278.94	172.44	489.08	10.54
Average travel time per vehicle [s], All vehicle types	358.49	157.64	610.41	122.53
Average delay per vehicle [s], All vehicle types	64.30	17.62	90.02	35.44
Average number of stops per vehicle , All vehicle types	1.08	0.28	1.51	0.73

〈개선 Network Performance〉

Network Performance

- 해당 구간의 평균 속도 및 통행시간이 눈에 띄게 개선된 모습을 그래프를 통해 확인할 수 있음
- 개선 후 개선 전보다 평균 통행속도가 30km 이하로 떨어지는 시간이 약 20분 가량 지연됨

Network Performance

- 해당 구간의 대기행렬 길이가 포화되는 시점이 늘어남
- 전체적인 총 지체 및 평균 정지횟수가 감소한 것을 볼 수 있음

Network Performance

해당 구간의 다양한 각도의 상충 지표가 눈에 띄게 개선된 모습을 그래프를 통해 확인할 수 있음

- 각 상충이 감소하여 안전성이 개선됨
- Crossing 상충이 확연히 감소 한 것이 특징

SSAM 결과 분석

parameter	평균	표준편차	최대값	최소값
Average total	1409.67	181.71	1533	1201
Average crossing	20.33	19.55	42	4
Average rear-end	1019.33	143.31	1124	856
Average lane change	370	37.75	405	330

표는 개선 네트워크 시뮬레이션 *.trj파일을 SSAM을 이용하여 상충을 측정한 결과

- 상충결과 평균 Total은 1409.67이며 표준 편차는 181.71로 나타났고 최댓값은 1533, 최솟값은 1201임
- 상충결과 평균 Crossing은 20.33이며 표준 편차는 19.55로 나타났고 최댓값은 42, 최솟값 은 4임
- 상충결과 평균 Rear-End는 1019.33이며 표준 편차는 143.31로 나타났고 최댓값
 은 1124, 최솟값은 856임
- 상충결과 평균 Lane Change는 370이며 표준 편차는 37.75로 나타났고 최대값은 405, 최소값은 330임

〈개선 SSAM 결과 분석〉

결론

결론 및 한계점

- 기하구조만 변경하였을시 기존의 교차로보다 Control delay의 총합이 오히려 4.6s 증가하였음.
- 기하구조와 함께 신호현시 개선 방안을 채택하였을 때 Control delay의 총합이 64.1s 감소하였으며 평균 속도, 대기행렬 길이, 이동 시간, 평균 정지 횟수과 같은 MOE가 충분히 개선되는 것을 VISSIM과 SSAM, Syunchro를 통해 확인하였음.
- COM Interface를 통한 자율주행 도입 시 개선효과를 구현하고 싶었으나 라이선스의 한계로 구현하지 못하였음.

감사합니다