

PhD Research Update

Market Changes, Moving Cycles
Bayesian Inference for hidden semi-Markov models

Patrick Aschermayr

Supervisor: Dr. Kostas Kalogeropoulos Co-Supervisor: Prof. Pauline Barrieu

May 2019

Department of Statistics

Motivation - foreword

Motivation - basic idea

Definition: Hidden Markov model

A hidden Markov model(HMM) is a bivariate stochastic process $\{E_t, S_t\}_{t=1,2,...}$, where $\{S_t\}$ is an unobserved Markov chain and, conditional on $\{S_t\}$, $\{E_t\}$ is an observed sequence of independent random variables.

K-state Bayesian HMM, parameter $\theta = \{\mathcal{T}, \mathcal{O}\}$ and hyperparameter $\{\beta, \gamma\}$. (Rabiner, 1989)

0.00 0.00 0.00

S&P500 Returns?

Table of contents

- 1. Challenges and research focus
- 2. Bayesian hidden semi-Markov model
- 3. Particle MCMC
- 4. Preliminary results and outlook
- 5. Appendix

Challenges and research focus

Basic HMM weaknesses

(1) the implicit state geometric distri**bution** causes rapid switching between states.

Bayesian hidden semi-Markov model

- → explicitly model state durations, such models are known as hidden semi-Markov models (HSMM).
- (2) the a priori assignment of a fixed number of hidden states.
- Bayesian (nonparametric) framework (see Beal et al., 2002; Teh et al., 2006), for inferring arbitrarily large state complexity from data.

Bayesian hidden semi-Markov

model

Model Definition

Definition: Hidden semi-Markov model

A hidden semi-Markov model is a bivariate stochastic process $\{Z_t, E_t\}_{t=1,2,\ldots,T}$, where $\mathbf{Z} = \{S, D\} = \{S_t, D_t\}_{t=1,2,\ldots,T}$ is an unobserved semi-Markov chain and, conditional on $\{Z_t\}$, $\{E_t\}$ is an observed sequence of independent random variables. S is the latent state sequence, and *D* is the corresponding 'latent remaining' duration sequence.

Particle MCMC

K-state Bayesian HSMM, parameter $\theta = \{\mathcal{D}, \mathcal{T}, \mathcal{O}\}$ and hyperparameters $\{\alpha, \beta, \gamma\}$.

Bayesian parameter estimation sketch

Target full posterior: $P(Z, \theta \mid E)$ by iterating:

- 1. Propose θ^* from some proposal distribution $f(\theta^* \mid \theta)$
- 2. Propose Z^* from the conditional distribution $P(Z^* \mid \theta^*, E)$.
- 3. Accept the pair (θ^*, Z^*) with acceptance probability

$$\begin{aligned} \textit{Acceptance} &= \frac{P(Z^{\star} \mid \theta^{\star})}{P(Z \mid \theta)} \frac{P(E \mid Z^{\star}, \theta^{\star})}{P(E \mid Z, \theta)} \frac{P(Z \mid E, \theta)}{P(Z^{\star} \mid E, \theta^{\star})} \frac{P(\theta^{\star})}{P(\theta)} \frac{q(\theta \mid \theta^{\star})}{q(\theta^{\star} \mid \theta)} \\ &= \frac{P(E \mid \theta^{\star})}{P(E \mid \theta)} \frac{P(\theta^{\star})}{P(\theta)} \frac{q(\theta \mid \theta^{\star})}{q(\theta^{\star} \mid \theta)}, \end{aligned}$$

Particle MCMC

$$\begin{split} P(E \mid \theta) &= \sum_{D} \sum_{S} P(S, D, E \mid \theta) \\ &= \sum_{D} \sum_{S} P(s_0 \mid \mathcal{T}_0) P(d_0 \mid \mathcal{D}_0) \prod_{t=1}^{T} P(s_t \mid s_{t-1}, d_{t-1}, \mathcal{T}) P(d_t \mid s_t, d_{t-1}, \mathcal{D}) P(e_t \mid s_t, \mathcal{O}) \end{split}$$

- \rightarrow Exact evaluation: computational complexity of up to $\mathcal{O}(K^2T^3)$.
- \rightarrow replace likelihood $\mathcal{L}_{\theta}(e_{1:T})$ with unbiased $\hat{\mathcal{L}}_{\theta}(e_{1:T})$ (Andrieu and Roberts, 2009)

Particle MCMC

```
input: Proposal distribution Q, iterationNumber N,
```

Particle filter proposal π , particleNumber M,

observation e_{1}

output:
$$(\theta^{i}, Z_{1:T}^{i})_{i=1:N}$$

Initialize θ :

Run particle filter
$$\rightarrow$$
 get $\hat{P}(e_{1:T} \mid \theta)$.;

for $i \leftarrow 1$ to N do

- 1. Propose a new θ^* , $\theta^* \sim Q(\theta^* \mid \theta)$;
- 2. Run particle filter \rightarrow get $\hat{P}(e_{1:T} \mid \theta^*)$ and $Z_{1:T}^*$.;
- 3. Accept the pair $(\theta^*, Z_{1:T}^*)$ with probability:

$$\min(1, \frac{\hat{P}(e_{1:T} \mid \theta^{\star})}{\hat{P}(e_{1:T} \mid \theta)} \frac{P(\theta^{\star})}{P(\theta)} \frac{Q(\theta \mid \theta^{\star})}{Q(\theta^{\star} \mid \theta)})$$

4. If accepted, set $\hat{P}(e_{1:T} \mid \theta) = \hat{P}(e_{1:T} \mid \theta^*)$ and $\theta = \theta^*$.

end

Algorithm 1: Particle Metropolis Hastings algorithm

Posterior samples:

Filtering estimates:

Fig.1 Posterior mean remaining state duration with 10% & 90% credible intervals against actual duration.

Fig.2 Posterior mean and most probable visited state against actual state.

Fig.3 Observation sequence input for particle MCMC sampler.

Particle Filter - likelihood approximation

Bayesian hidden semi-Markov model

Filtering sketch - Approximate C_t , $\hat{C}_t = \frac{1}{N} \sum_{n=1}^{N} \prod_{t=1}^{T} w_t^n(X_{t,t}^n)$

- **1. Goal**: Sample from $P_t(X_{1:t}) = \frac{\tau_t(X_{1:t})}{C_t}$.
- **2. Choose** $\pi_t(X_{1:t}) \propto \tau_t(X_{1:t})$ of form $\pi_t(X_{1:t}) = \pi_{t-1}(x_{1:t-1})\pi_t(X_t)$.
- **3. Iterate** for k = 1, ..., t:

Sample (i) I particles $X_k^i \sim \pi_k(X_k \mid x_{1:k-1}^i)$.

$$\text{Get } w_t^i(X_{1:t}^i) = w_{t-1}^i(X_{1:t-1}^i) \frac{\tau_t(X_t^i|X_{1:t-1}^i)}{\pi_t(X_t^i|X_{1:t-1}^i)}, \ W_t^i = \frac{w_t^i(X_{1:t}^i)}{\sum_{n} w_t^n(X_{1:t}^n)}$$

Resample & reweight X_{t+k}^i according to W_t^i .

HSMM: $P_t(X_{1:t}) = P(Z_{1:t} \mid e_{1:t})$

$$\begin{array}{l} P_t(Z_{1:t} \mid e_{1:t}) = \frac{\prod_{t=1}^T P(Z_t | Z_{t-1}) P(e_t | Z_t)}{P(e_{1:T})} \\ w_t(X_{t-1:t}) = \frac{P(Z_t | Z_{t-1}) P(e_t | Z_t)}{P(Z_t | e_t, Z_{t-1})} \end{array}$$

$$\rightarrow$$
 (ii) $\pi_t \approx P(Z_t \mid Z_{t-1}, e_t)$ unfeasable \rightarrow select $\pi_t \approx P(Z_t \mid Z_{t-1})$

(iii) Resampling trade-off:

Particle Filter - Proposal distribution verification

Questions:

- Likelihood function peaked?
- $Var[\hat{p}_{\theta}(e_{1:T})]$ constant across θ ?

HSMM likelihood estimate on a θ grid:

Conclusion:

- Likelihood function moderately peaked.
- Var[p̂_θ(e_{1:T})] not independent of D.
- → Increase number of particles.
- \rightarrow Tune particle size to $Var[\hat{p}_{\mathcal{D}}(e_{1:T})]$.
- \rightarrow Find better $\pi_t \approx P(Z_t \mid Z_{t-1}, e_t)$.
- → "Jitter" particles.

HSMM likelihood estimate for duration grid:

Preliminary results and outlook

Bayesian inference for HSMMs - status quo

Advantage particle MCMC:

- 1. Computational complexity both linear in time T and in number of particles N. $\mathcal{O}(NT)$, $N \approx T$.
- 2. Computational complexity independent of number of states
- 3. Straight forward to extend estimation to the continuous state case.

Challenges:

- 1 Particle Filter:
- \rightarrow Find better $\pi_t \approx P(Z_t \mid Z_{t-1}, e_t)$.
- \rightarrow "Jittering" particles.
- 2. PMCMC Sampler:
- \rightarrow Find better $Q(\theta^* \mid \theta)$.
- \rightarrow Initialize θ
- Infinite HSMMs
- (Sequential parameter estimation framework)

Discussion

References I

References

- Andrieu, C. and Roberts, G. O. (2009). The pseudo-marginal approach for efficient monte carlo computations. *Ann. Statist.*, 37(2):697–725.
- Beal, M., Ghahramani, Z., and Rasmussen, C. (2002). The infinite hidden markov model. *Advances in neural information processing systems*, 14:577–584.
- Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in speech recognition. *Proceedings of the IEEE*, 77(2):257–286.

References II

Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006). Hierarchical dirichlet processes. *Journal of the American Statistical Association*, 101(476):1566–1581.