New Theory of Fertility II

Adda, Dustmann, and Stevens (2017)

柳本和春 📵

yanagimoto@econ.kobe-u.ac.jp

神戸大学

2025-12-22

Adda, Dustmann, and Stevens (2017)

Data

- ▶ German social security records (IABS): 行政データ. 被雇用者の 2% をカバー
- ▶ German Socio-Economic Panel (GSOEP): サーベイ. デモグラフィック, キャリアなど
- ▶ Income And Expenditure Survey (EVS): サーベイ. 貯蓄
- ▶ 1955 年から 1975 年の間に西ドイツで生まれた女性を対象
- ▶ low- and intermediate-track school の卒業生を対象
 - → 15/16 歳から 2-3 年の職業訓練を受ける
 - → ホワイトカラー, ブルーカラーのどちらの仕事もあり, 他国では大卒資格が必要な仕事も含まれる (e.g., nurse, medical assistant, accountant)
 - → 基本的に大学には進学しない

職種

- ▶ **Routine**: ルーティン仕事. 必要なスキルが変わりにくい. (e.g., shop assisntant, sewer)
- ▶ **Abstract**: 分析的. 必要なスキルが変わりやすい. (e.g., bank clerk, medical assistant)
- ▶ Manual: 肉体労働だがルーティンではない (e.g., nurse, steward)

Stylized Facts

TABLE 1
DESCRIPTIVE STATISTICS, BY OCCUPATION

	Routine	Abstract	Manual	Whole Sample
Initial occupation	25.0%	44.8%	30.3%	100%
Occupation of work	25.4%	52.7%	21.9%	
A				
Annual occupational transition rates:				
If in routine last year	97.9%	1.5%	.5%	
If in abstract last year	.7%	99.0%	.2%	
If in manual last year	.9%	.8%	98.3%	
B				
Log wage at age 20	3.598	3.742	3.470	3.634
	(.297)	(.301)	(.386)	(.337)
Log wage growth, at potential				
experience = 5 years	.0485	.0551	.0450	.0510
•	(.187)	(.156)	(.196)	(.175)
Log wage growth, at potential				
experience = 10 years	.0181	.0240	.0152	.0208
,	(.187)	(.206)	(.223)	(.206)
Log wage growth, at potential			, ,	
experience = 15 years	.00995	.0147	.0127	.0133
* /	(.206)	(.195)	(.211)	(.200)

C				
Total work experience after 15 years	11.55	12.81	12.14	12.34
,	(3.273)	(2.624)	(2.880)	(2.909)
Full-time work experience after 15 years	10.32	11.92	10.86	11.29
•	(3.907)	(3.348)	(3.570)	(3.617)
Part-time work experience after 15 years	1.229	.889	1.274	1.056
•	(2.187)	(1.828)	(2.125)	(1.997)
D				
Total log wage loss, after interruption = 1 year	0968	147	105	121
	(.560)	(.636)	(.633)	(.613)
Total log wage loss, after interruption $= 3$ years	152	253	223	216
	(.604)	(.639)	(.619)	(.625)
E				
Age at first birth	27.27	28.39	25.94	27.56
	(4.138)	(3.783)	(3.517)	(3.943)
No child (%) at age 38	14.39	20.08	14.86	17.58
	(3.067)	(2.544)	(4.164)	(1.787)
One child (%) at age 38	25.00	28.92	18.92	26.15
	(3.783)	(2.879)	(4.584)	(2.063)
Two or more children (%) at age 38	60.61	51.00	66.22	56.26
	(4.269)	(3.174)	(5.536)	(2.328)

- ▶ 職種間の移動がほとんどない (Panel A)
- ▶ Abstract は賃金が高く,経験による賃金上昇も大きい (Panel B)
- ▶ Abstract は経験年数やフルタイムの割合が高い (Panel C)
- ▶ Abstract は休業による賃金の減少が大きい (Panel D)
- ▶ Abstract は初産年齢が高く,子どもの数が少ない (Panel E)

Stylized Facts

貯蓄の重要性

- ▶ 女性は子どもを産む前に貯蓄を始める
- ▶ 貯蓄は晩産化の理由になりうる.またキャリアとの兼ね合いの結果かもしれない

設定

- ▶ 15-80 歳の女性のライフサイクルモデル. モデル内の一期間は半年
- $f_i = (f_i^P, f_i^L, f_i^C, f_i^F)$: 女性iのタイプ
 - $\rightarrow f_i^P$: 仕事の能力
 - $\rightarrow f_i^L$: 余暇への選好
 - $\rightarrow f_i^C$: 子どもへの選好
 - $\rightarrow f_i^F$: 不妊性. 5% の女性が該当と仮定. 自分からはわからない
- ▶ 女性は初めに職業 $o_{it} \in \{\text{routine}, \text{abstract}, \text{manual}\}$ を選択する
- ▶ 各期ごとに消費, 貯蓄, 職業, 労働時間, 新たに子どもを持つかどうかを決定する
- ▶ 各期ごとに確率的に新しい職種と労働時間のオファーがなされ,転職を決定する

労働市場

- ▶ 労働時間 l_{it} は フルタイム FT, パートタイム PT, 失業 U, 休業 OLF のいずれか
- ▶ 職種ごとにオファーの確率は異なる
- ▶ 各期,外生的な確率 δ で失業する

効用関数

$$u_{it} = u_1 \left(c_{it}, l_{it}; n_{it}, f_i^L \right) + u_2 \left(n_{it}; f_i^C, age_{it}^K, l_{it}, o_{it}, h_{it} \right) + u_3 (b_{it}, \Upsilon_{it})$$

- ► *c_{it}*:消費
- ▶ $l_{it} \in \{FT, PT, U, OLF\}$: 労働時間
- ▶ *n_{it}*:子どもの人数
- ightharpoonup age $_{it}^{K}$: 最も若い子どもの年齢
- **▶** *b_{it}*: 子どもを持つかどうか
- ト $\Upsilon_{it}=\left(\eta^C_{it},\eta^{NC}_{it}\right)$: 子どもを持とうとすること (conception) に対する選好 η^C_{it} と持とうとしないこと (non-conception) に対する選好 η^{NC}_{it} のベクトル

予算制約

$$A_{it+1} = (1+r)A_{it} + \text{net } (GI_{it}; h_{it}, n_{it}) - c_{it}^{HH} - \kappa \big(\text{age}_{it}^K, n_{it}\big)I_{l_{it} = FT, PT, n_{it} > 0}.$$

- ► *A_{it}*: 資産
- ▶ r: 利子率
- $ightharpoonup GI_{it}$: Gross Income. 税引き前の所得
- ト net (GI; h, n): 税引き後の所得. 結婚している場合 (h = 1) と独身の場合 (h = 0) や子どもの人数 (n) によって異なる
- $ightharpoonup \kappa(age^K,n)$: 子育てコスト. 最も若い子どもの年齢 age^K と子どもの人数 n によって異なる

スキルと賃金

フルタイムの日給 w_{it} は以下のように決定される $(\mathcal{N}-\mathsf{F}$ タイムの場合 $,0.5w_{it})$.

$$\log w_{it} = f_i^P + \alpha_O(o_{it}) + \alpha_X(o_{it})x_{it} + \alpha_{XX}(o_{it})x_{it}^2 + \eta_{it}.$$

仕事の能力 f_i^P , 職種 o_{it} , スキル x_{it} によって賃金が決定される. スキルは, 労働時間によって増加するが, 仕事を離れていた場合は減少する.

$$x_{it+1} = \begin{cases} x_{it} + 1 & \text{if } l_{it} = FT \\ x_{it} + 0.5 & \text{if } l_{it} = PT \\ x_{it} \rho(x_{it}, o_{it}) & \text{if } l_{it} \in \{OLF, U\} \end{cases}.$$

スキルの減少率はそれまでのスキルのレベル x_{it} と職種 o_{it} によって異なる.

$$\rho(x_{it},o_{it}) = \rho_1(o_{it})I_{x_{it} \in [0,5)} + \rho_2(o_{it})I_{x_{it} \in [5,7)} + \rho_3(o_{it})I_{x_{it} \in [7,\infty)}.$$

ライフイベント

結婚と離婚

年齢 ${
m age}_{it}^M$, スキル x_{it} , 子供への選好 f_i^C , 子どもの人数 n_{it} によって確率的に決定

$$P(h_{it} = 1 \mid h_{it-1} = 0; age_{it}^{M}, x_{it}, f_{i}^{C}) = \lambda_{0}^{M} + \lambda_{1}^{M} s(age_{it}^{M}) + \lambda_{2}^{M} x_{it} + \lambda_{3}^{M} f_{i}^{C})$$

$$P(h_{it} = 0 \mid h_{it-1} = 1; age_{it}^{M}, n_{it}) = \lambda_{0}^{D} + \lambda_{1}^{D} s(age_{it}^{M}) + \lambda_{2}^{D} n_{it}$$

夫の収入

$$\operatorname{earn}_{it}^{h} = \alpha_{0}^{h} + \alpha_{a1}^{h} \operatorname{age}_{it}^{M} + \alpha_{a2}^{h} \operatorname{age}_{it}^{M^{2}} + \sum_{j} \alpha_{j}^{h} I_{o_{it}=j} + \alpha_{P}^{h} f_{i}^{P} + \eta_{it}^{h}$$

出産

- ト 出産を決定した際,妊娠する確率は $\pi(\mathrm{age}_{it},f_i^F)$ で決定される.
- ▶ 不妊症である $f_i^F \in \{0,1\}$ ことは女性側が知ることはできない

ベルマン方程式

$$V_t(\Omega_{it}) = \max_{b_{it}, c_{it}, o_{it}, l_{it}} u \left(c_{it}, o_{it}, l_{it}; n_{it}, h_{it}, \operatorname{age}_{it}^K, \Upsilon_{it}, f_i\right) + \beta \mathbb{E}_t \left[V_{t+1} \left(\Omega_{i,t+1}\right)\right]$$

- ▶ 状態変数: $\Omega_{it} = (l_{it-1}, o_{it-1}, A_{it-1}, h_{it-1}, \text{age}_{it}^{M}, x_{it}, n_{it}, \text{age}_{it}^{K}, \Upsilon_{it}, f_{i})$
- ▶ 単に期待値 \mathbb{E}_t と表しているが,以下の要因を考慮する必要がある (元論文の Appendix)
 - ightarrow 子どもが生まれる確率 $\pi(\mathrm{age}_{it}^M, f_i^F)$
 - \rightarrow 外生的な失業リスク δ
 - \rightarrow 新たな仕事のオファー $\phi_0(o_{it}, l_{it})$

最初の職業選択

$$o_{i0} = \arg\max_{o} \beta^6 \mathbf{E}_0 V_6 (\Omega_{i,6}) - \cot(o, R_i, \mathrm{Year}_i) - \omega_{i0}$$

初職の職業訓練は6期間(3年)行われる.それを考慮して,最初の職業を離散選択する.

- ▶ R_i: 住んでる地域
- ullet ω_{i0} : Preference shock. ガンベル分布に従う
- ▶ 訓練期間は子どもを持つことができない

結果

TABLE 3
OCCUPATION-SPECIFIC PARAMETERS

Parameter	Routine	Abstract	Manual
	A. Atrophy Rates Parameters (Annual Depreciation Rates)		
At 3 years of uninterrupted work experience	06% (1e-5%)	11% (2e-5%)	
At 6 years of uninterrupted work experience	50%	-6.90% (.17%)	-3.45%
At 10 years of uninterrupted work experience	61% (14.2%)	. ,	, ,
	B. Wage Equation Parameters		
Log wage constant	3.39 (.0038)	3.6 (.0054)	3.32 (.0059)
Years of uninterrupted work experience	.1 (3.3e-05)	.09	.123
Years of uninterrupted work experience, squared	00382 (3e-06)		. ,
	C. Amenity Value of Occupations		
Utility of work if children	0	056	014
Utility of part-time work if children	0	(.001) 42 (.003)	(.0005) 08 (.007)

Wage Function (Panel B)

- ▶ 一年の休職に伴うスキルの減耗 (atrophy) は, Abstract で最も大きい
- ▶ Abstract は賃金が高く,より凹でない (離職による賃金の減少が大きい)
- ▶ 職種ごとの子育てのしやすさ (amenity) は, Abstract < Manual < Routine

結果

- ▶ 子どもを持つ数年前から貯蓄を始める
- ▶ 子どもを持つことにかかるコスト (消費,時間,人的資本)を想定

Career Costs of Children

- ▶ Career costs of children: $\pi(\cdot) = 0$, 子どもを持てないと知っている場合との比較
- ▶ Abstract を選ぶ女性の増加(a). 労働時間の増加(b).

Career Costs of Children

- ▶ パートタイムの増加(c). Baseline では子育て期に利用されている
- ▶ 賃金の上昇(d). Abstract の増加, 労働時間の増加による

Career Costs of Children

$$NPV_i^s = \sum_{t=0}^T \beta^t \left(w_{it}^s \mathbb{1}\{\text{working}\}_{it}^s + b_{U,it}^s \mathbb{1}\{\text{unemployed}\}_{it}^s + b_{M,it}^s \mathbb{1}\{\text{matternity leave}\}_{it}^s \right)$$

- ▶ $s \in \{F, NF\}$: シナリオ. 子どもを産む(F) / 産まない(NF)
- ト NPV_i^s : 15 歳時点での生涯所得の現在価値 (Net Present Value). $\beta=0.95$ は割引因子
- ▶ NPV^F , NPV^{NF} を各シナリオの平均値とすると, 子どもの相対的なコストを定義できる

Relative Costs of Children =
$$\frac{NPV^F - NPV^{NF}}{NPV^F}.$$

Decomposition of Costs of Children

i Kitagawa-Oaxaca-Blinder 分解

ある 2 つのグループ $g \in \{1,2\}$ に関して, 線形のモデルを考える. $y_i^g = X_i^g \gamma^g + \varepsilon_i^g$. この時, 非説明変数の平均の差は以下のように分解できる.

$$\overline{y}^1 - \overline{y}^2 = \overline{X}^1 \hat{\gamma}^1 - \overline{X}^2 \hat{\gamma}^2 = \left(\overline{X}^1 - \overline{X}^2 \right) \hat{\gamma}^1 + \overline{X}^2 (\hat{\gamma}^1 - \hat{\gamma}^2).$$

この論文では (おそらく) $NPV = hw + \varepsilon_i$ と仮定し,以下のように分解している.

$$\frac{NPV^F - NPV^{NF}}{NPV^F} = \underbrace{\frac{\overline{h}^F - \overline{h}^{NF}}{NPV^F} w^F}_{\text{Labor supply contribution}} + \underbrace{\frac{\overline{h}^{NF}}{NPV^F} (w^F - w^{NF})}_{\text{Wage contribution}} \quad \text{(Table 6a)}$$

Table 6b では, Wage contribution をさらに 2 通りに分解している

- 1. Atrophy (スキルの減少) vs Other factors
- 2. Occupation (初職の違い) vs Other factors

Decomposition of Costs of Children

TABLE 6
CAREER COST OF CHILDREN: PERCENTAGE LOSS IN NET PRESENT VALUE OF INCOME AT AGE 15, WITH AND WITHOUT FERTILITY

	Percentage Loss Compared to Baseline
Total cost	-35.3%
Total Cost	A. Oaxaca Decomposition of Total Cost
Labor supply contribution Wage contribution	-27% -8.5%
	B. Oaxaca Decomposition of Wage Contributions
Contribution of atrophy Contribution of other factors Contribution of occupation	-1.8% $-6.7%$ $-1.6%$
Contribution of other factors	-7%

- ▶ Career Cost of Children: 全体としては 35.3% の NPV の減少
- ▶ 労働時間の減少がより大きな要因
- ▶ スキルの減少 (atrophy), 初職の違いも Wage contribution のうち 20% 弱を説明

Gender Wage Gaps and Fertility

- ▶ サンプルの女性と同様のプロファイル(生年, 学歴)の男性の賃金をプロット
- ▶ 25 歳以降の男女格差の大きな部分が子育てによって説明される

Pro-Fertility Policy

TABLE 8
EFFECT OF INCREASED CHILD BENEFITS

	Age at Start of Policy			
	15	25	35	45
Change, no child (%)	8%	7%	0%	0%
Change, one child (%)	08%	05%	05%	0%
Change, two children (%)	.2%	.2%	.07%	0%
Change, age at first birth (years)	4	1	0005	0
Change, age at second birth (years)	04	007	.002	0
Change, skills (%)	29%	11%	049%	0019%
Change, number of years working	08	03	01	0004
Change, number of years working part-time	.04	.01	007	0003
Change, proportion routine	.3%	0%	0%	0%
Change, proportion manual	.07%	0%	0%	0%

- ▶ 子どもが生まれるごとに出産一時金として 6000€を支給する政策を考える
- ▶ 政策によって子どもを早く多く持つ女性が増え,スキルが低い女性が増える
- ▶ 15歳 (職業選択前)で政策が開始されると, Abstract を選ぶ女性が減少する
 - → 稼ぐ必要性が減るため. 貯蓄の必要性も減る (本文 Fig. 4c)

まとめ

Stylized facts

- ▶ 高賃金かつ経験による賃金上昇の大きい職種は、子育てに伴う賃金の減少が大きい
- ▶ 子どもを持つ前に貯蓄を始める

Career cost of children

- ▶ 女性は子育てに時間を割くために労働時間を減らし、スキルが停滞および減少する
- ▶ 子どもを持つ (持てる) ことによって生涯所得の現在価値が 35% 減少する
- ▶ 労働時間の減少が大きな要因

Pro-fertility policy

▶ 出産一時金は出生率を上昇させるが, 貯蓄の減少やスキルの低下をもたらす

参考文献

Adda, Jérôme, Christian Dustmann, and Katrien Stevens. 2017. "The Career Costs of Children". Journal of Political Economy 125 (2): 293–337. https://doi.org/10.1086/690952.