ESP8266 Sensor

Von Patrick Hess / Com2u

Wir bauen ein Sensornetzwerk mit einem ESP 8266. Der ESP 8266 ist ein günstiger Microcontroller mit WLAN und vielen Anschlussmöglichkeiten. Mit USB Anschluss kostet die Platine (NodeMCU) nur ca. 4€-

Programmiert wird der ESP mit der Arduino IDE. Diese ist in JAVA programmiert und läuft auf Linux, Mac und Windows. Die Arduino IDE kann hier heruntergeladen werden:

Für die Verbindung mit dem ESP ist ggf. noch ein serieller Treiber zu installieren.

Für unser Projekt ist noch eine Libraries in der Arduino IDE zu installieren.

Vor dem Programmieren muss der richtige COM-Port ausgewählt werden.

Was ist ThingSpeak?

Arduino IDE Download von Arduino IDE: https://www.arduino.cc/en/main/software

Pinout:

Farbe	Funktion	ESP8266	Sensor
braun	gnd	G	LED GND
rot	3,3V	3	LED 5V
orange	5V	VV	MQ135 VCC
gelb	LED out	D2	LED DI
grün	Analog In	A0	MQ135 A0
blau	gnd	G	MQ135 GND
violett	3,3V	3	Sensor Board +3,3V
grau	SDA	D3	Sensor Board SDA
weiß	SCL	D4	Sensor Board SCL
schwarz	gnd	G	Sensor Board GND

12C Anbindung

Individuelle Einstellungen

In unserem Beispiel ist alles auf ein bestehendes WLAN und einen ThingSpek Kanal eingestellt.

Ausblicke

Zukünftig können noch weitere Sensoren angeschlossen werden:

Feinstaubsensor, Beschleunigungssensor, Magnetkompass, Relais, Entfernungsmesser, Bewegungsmelder

Akustik Sensor, Geiger-Müller Zähler, Gewitter Sensor, Etc.

ESP8266 Sensor

Von Patrick Hess / Com2u

Wir bauen ein Sensornetzwerk mit einem ESP 8266. Der ESP 8266 ist ein günstiger Microcontroller mit WLAN und vielen Anschlussmöglichkeiten. Mit USB Anschluss kostet die Platine (NodeMCU) nur ca. 4€-

Programmiert wird der ESP mit der Arduino IDE. Diese ist in JAVA programmiert und läuft auf Linux, Mac und Windows. Die Arduino IDE kann hier heruntergeladen werden:

Für die Verbindung mit dem ESP ist ggf. noch ein serieller Treiber zu installieren.

Für unser Projekt ist noch eine Libraries in der Arduino IDE zu installieren.

Vor dem Programmieren muss der richtige COM-Port ausgewählt werden.

Was ist ThingSpeak?

Arduino IDE Download von Arduino IDE: https://www.arduino.cc/en/main/software

Pinout:

Farbe	Funktion	ESP8266	Sensor
braun	gnd	G	LED GND
rot	3,3V	3	LED 5V
orange	5V	VV	MQ135 VCC
gelb	LED out	D2	LED DI
grün	Analog In	A0	MQ135 A0
blau	gnd	G	MQ135 GND
violett	3,3V	3	Sensor Board +3,3V
grau	SDA	D3	Sensor Board SDA
weiß	SCL	D4	Sensor Board SCL
schwarz	gnd	G	Sensor Board GND

12C Anbindung

Individuelle Einstellungen

In unserem Beispiel ist alles auf ein bestehendes WLAN und einen ThingSpek Kanal eingestellt.

Ausblicke

Zukünftig können noch weitere Sensoren angeschlossen werden:

Feinstaubsensor, Beschleunigungssensor, Magnetkompass, Relais, Entfernungsmesser, Bewegungsmelder

Akustik Sensor, Geiger-Müller Zähler, Gewitter Sensor, Etc.