# NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)



Serial No. N541 NAFO SCR Doc. 08/40

#### SCIENTIFIC COUNCIL MEETING - JUNE 2008

An Assessment of American Plaice (Hippoglossoides platessoides) in NAFO Division 3M

by

R. Alpoim and A. M. Ávila de Melo

Instituto Nacional de Recursos Biológicos, INRB/IPIMAR. Av. Brasília 1449-006 Lisboa, Portugal.

#### Abstract

The present assessment evaluates the status of the 3M American plaice stock. The catch at age matrix, EU survey abundance at age and the respective mean weights were updated. Both surveys and XSA estimated declines to very low values for abundance, biomass and SSB. Both F index (C/B ratio from the EU survey) and XSA fishing mortality show an increased in 2006 and 2007 but continue to be at a low level. There are no changes in the perception of the stock status from last assessment (2006). This stock continues to be in a very poor condition, despite the apparent good recruitment of the 2006 year class (age 1 in 2007) that remains to be confirmed in the next years, indices from the EU survey and XSA indicates no sign of recruitment from 1991 to 2005 year classes with only weak year-classes expected to be recruited to the SSB within at least four years. Although the level of catches is low since 1996, this stock has been kept at a very low level with no sign of recovery.

#### Introduction

# Catch trends and TAC regulation

On Flemish Cap American plaice mainly occurs at depths shallower than 600 m.

In the early-1960's catches were relatively low with the exception of 1961. Catches were high between 1964 and 1966, with a peak in 1965 of 5 341 tons. Till the end of the 1960's catches remained at a low level within 80 tons and 150 tons, jumping to a higher 600-1 100 tons level on the early-1970's. Since 1974 this stock became regulated and catches ranged from 600 tons (1981) to 5 600 tons (1987). From 1986 to 1989 catches exceed the TAC. Catches declined to 275 tons in 1993, following the fast decline of the stock biomass and the 1992 reduction of the Spanish directed effort. Catch for 2006 and 2007 were estimated to be 45 and 77 tons respectively (Table 1 and Fig.1).

Since 1974 till 1993 a TAC of 2 000 tons has been in effect for this stock with the exception of 1978 (TAC of 4 000 tons). A reduction to 1 000 tons was agreed for 1994 and 1995, and finally a moratorium was agreed thereafter (Table 1 and Fig.1).

In the recent year catches of 3M American plaice by Contracting Parties are mainly a by-catch of trawl fisheries directed to other species.

# Survey data

The plan of stratification of the Flemish Cap (Bishop, 1994) used by the surveys is presented in Fig. 2.

In the 2002 assessment (Alpoim *et al.*, 2002 - SCR 02/62) and in the 2003 update (Alpoim, 2003 - SCR 03/44) of the status of the stock several historical survey data were analysed, this analysis is resume in Fig 3. Since 2003 only EU-Spain/Portugal survey was conducted. This was the only survey updated and used in this assessment.

# EU-Spain/Portugal Survey (1988-2007), (Vázquez and González Troncoso, 2008 – SCR 08/34).

EU- Spain/Portugal conducted a random bottom trawl survey up to a depth of 730 metres (400 fathoms) on Flemish Cap since 1988. All surveys had a stratified design following NAFO specifications. The surveys were conducted in June-July of each year. Towing speed was around 3.5 knots. Trawling effective time is 35 min. The fishing gear used was a Lofoten gear with effective 30mm mesh size in the codend.

In June 2003 a new Spanish research vessel, the RV "Vizconde de Eza" (VE), replaced the RV "Cornide de Saavedra" (CS) that has carried out the whole EU survey series, with the exception of the years of 1989 and 1990. In order to preserve the full use of the 1988-02 survey indices available for several target species, the original time series needed to be converted to the new RV units.

During 2003 and 2004 Flemish Cap surveys, 130 pairs of parallel hauls (selected at random from the annual coverage of the bank) were performed simultaneously by the two vessels, at depths less than 730m. Those pairs of parallel hauls were distributed over the swept area trying in one hand to maximize the sampled area and on the other to guarantee a large enough number of hauls with acceptable catches of all target species, namely the ones from severely depleted stocks (cod and American plaice). Both vessels were fishing with the same gear, a Lofoten trawl gear with 35mm mesh size at the codend, which remained unchanged throughout the series. With the comparative fishing trials concluded and the conversion factors estimated, the indices from R/V Cornide de Saavedra were transformed to the R/V Vizconde de Eza scale to make them comparable. The results of the calibration shown that the new RV Vizconde de Eza is 33% more efficient than the former RV Cornide de Saavedra as regards American plaice (González Troncoso and Casas, 2005). 1988-2002 data are transformed R/V Cornide de Saavedra data, 2003-2007 data are original from R/V Vizconde de Eza (Vázquez and González Troncoso, 2008; Casas and González Troncoso, 2005).

The methodological aspects and results of the calibration are presented in SCR 05/29 (González Troncoso and Casas, 2005).

#### Biomass and abundance estimates

Estimates for biomass and abundance are presented in Table 2 and Fig. 3.

# Stock length composition.

Length compositions from 1988 to 2007 were given by the EU survey (Vázquez and González Troncoso, 2008; Casas and González Troncoso, 2007). (Table 3)

# Length weight relationships

Length weight relationships for the 3M American plaice (1988-2007) were calculated with EU survey length/weight data from both males and females (Vazquez and Casas, *pers. comm.* 2008) and used in this assessment on an annual basis (Table 4).

#### Stock abundance-at-age

The EU survey series presents different age reading criteria due to changes in the age reader along the series. The series can be split in two periods: the first from 1988 to 1992 that follows the criteria of one age reader and a second period from 1993 to 2001 in which several age readers have a very good agreement between them. Some effort have been spent in order to revisit the otoliths from the former years under the present accepted criteria, but, due to the size of the otoliths collections from several years and to the deterioration of some sets due to the enhancing methods used before, this work is difficult to achieve. In order to have the same criteria for all the series a combined age

length key from 1993 to 2001 was used backwards over 1988-1992. Since 2001 both age reader and criteria used are the same.

The age-length keys used in 2003 and 2004 became from the sampling of the two RV (Vizconde de Eza and Cornide Saavedra) in order to have a more complete AL key.

Abundance-at-age of the stock is presented in Table 5.

# Stock mean weights at age

The annual EU survey length weight relationships were used to calculate mean weights at age in the 3M American plaice stock for the period 1988-2007 (Table 6). For assessment purposes, on the years/ages where weight at age data are missing, the average mean weights at age for all the period were used.

#### Maturity ogive

The criteria applied in this work was the same applied in previous years. The spawning stock biomass was calculated as 50% of age 5 and age 6 plus.

#### **Commercial Data**

# Length composition of the commercial catch and by-catch

The length compositions presented in the 2006 Portuguese and Russian Research Reports (Vargas *et al.*, 2007; Vazkov *et al.*, 2007) were used to estimate the length composition of the 2006 total catch. The length compositions presented in the 2007 Portuguese and Russian Research Reports (Vargas *et al.*, 2008; Vazkov *et al.*, 2008) was used to estimate the length composition of the 2007 total catch.

From these length distributions a mean weight in the catch was derived in order to transform the correspondent catch in weight into a catch number. Each mean weight was calculated as:

$$\overline{W} = \frac{\sum (N_{LC} * \overline{W}_{LC})}{\sum N_{LC}}$$

where  $N_{LC}$  is the number observed in length-class LC and  $W_{LC}$  is the mean weight of the length-class LC. Mean weights at length were given by the length/weight relationships from the EU bottom trawl survey series (Table 4).

The breakdown of the total catch is presented in Table 7. The commercial catch at length matrix (Alpoim, 2006) was updated with the 2006 and 2007 data (Table 8).

# Catch at age

The catch-at-age was given by the same age length keys already used to get survey abundance-at-age (Table 9).

# Catch mean weights-at-age

The annual EU survey length weight relationships were used to calculate mean weights-at-age in the catch of 3M American plaice for the period 1988-2007 (Table 10). Missing weights were filled with the respective average catch mean weight-at-age for all the period. Average mean weight at age 1 from the stock was also assumed on the commercial catch for that age.

## Partial recruitment vector

In order to generate an observed partial recruitment vector, an F index was first derived from the 1988-2007 ratios at each age between the sum of the annual permilles on the commercial catch and the correspondent sum of permilles for the EU survey abundance. Those indicators of F at age were then standardised to its highest value, recorded at age 5. Assuming a flat top recruitment curve this observed partial recruitment vector was adjusted to a general logistic curve (Table 11, Fig. 4). The expected values were used in the yield per recruit analysis.

# Vectors used in yield-per-recruit analysis

An yield-per-recruit analysis was conducted incorporating the following sets of vectors (Table 12A), all of them considered to be representative, in terms of growth and maturity, of 3M American plaice:

- 1) Mean weights at age in the commercial catch.
- 2) Mean weights at age in the stock.
- 3) Female maturity ogive at age.
- 4) Expected partial recruitment vector.
- 5) Natural mortality set at 0.2.

#### **Assessment Results**

#### Comments on trends on stock indicators.

The two former USSR-Russian survey series showed a decreasing trend in biomass and abundance between 1972 and 1993. The Russian surveys in 2001-2002 show very low estimates of biomass and abundance. From 1978 till 1985 Canadian series is stable, with survey biomass and abundance around 6 700 tons and 10 million fish. A continuous decline in abundance and biomass is observed since the beginning of EU survey. The 2007 abundance and biomass were the lowest of this series (1 053 tons and 1.4 millions fishes). Results of the 1996 Canadian survey are comparable with the 1996 EU survey (Fig. 3) (Alpoim *et al.*, 2002; Alpoim, 2003; Vázquez and González Troncoso, 2008).

A proxy to fishing mortality has been giving by the ratio between catch and EU survey biomass for ages fully recruited to the fishery (ages 8-11). This index falls to 0.034 in 1993 and from 1994 till 2003 fluctuates around 0.09, from 2003 till 2005 this index declined again being at a minimum in 2005 (0.011) since then increase being in 2007 at 0.071 (Table 13 and Fig. 6).

The 1991 year-class, that was the best represented in the EU survey till 2005 (Table 5) is now in the 16+ group and lost is strength. Since 1991, all the recruiting year-classes were poorly represented in the EU survey, in 2007 age 1 appears to have some importance but that must be confirmed in future years. Survey spawning biomass is declining as well since 1988 reaching a minimum in 2007.

Age 3 is the first age to appear in all the years of the EU survey series, so it was used to evaluate the stock/recruitment relationship. Only 17 points are available, showing very poor recruitment for an SSB less than 9 000 tons. (Tab.14, Fig. 7).

In Fig 8 it is plotted an EU survey index of stock reproductive potential, the log of the R/SSB ratio for each year-class and with both sexes included in spawning biomass. Before 1991 an average of 0.121 recruits at age 3 were produced per Kg of SSB, from 1991 till 2000 this average was reduced to only 0.011 recruits per Kg of SSB. The 2001 and 2002 mean (0.086 recruits per Kg of SSB) although is higher than the previous period didn't generated good recruitments due to the poor level of SSB. The 2003 and 2004 mean is at the level of the 1991-2000 period (Fig.8). This recruitment failure seems not to be caused by the shrimp fishery developed in Flemish Cap since the beginning of 1990's, because estimation of by-catch gives very low figures for American plaice (Kulka, 1999).

# Yield-per-recruit analyses

An yield-per-recruit analysis was conducted, incorporating the sets of vectors already described. This analysis give a  $F_{0.1} = 0.162$  and an  $F_{max} = 0.346$  (Tab. 12, Fig. 5).

# XSA

An XSA was performed using the Lowestoft VPA Suite (Darby and Flatman, 1994). The input files for XSA analysis are presented in Table 15. Natural mortality was assumed constant at 0.2. The month with a peak of spawning for 3M American plaice is May (Serebryakov *et al.*, 1987) and was used to estimate of the proportion of F and M before spawning.

The ratios between annual catches and EU survey bottom biomass were considered to be a proxy of mean fishing mortalities from 1988 to 2007. The survey biomass can be considered representative of the mean annual biomass (EU survey is conducted around the middle of the year). The 2007 F index was multiplied by the observed PR to have a starting guess of F at age in the terminal year. In order to get the F's for the last age through 1988-2007 the selection at age 15 was multiplied by the F index of each year. The rest of the data were already described above. Several XSA frameworks have been tested, and the adopted in this assessment has the following settings:

- No year weights were applied, due to the short time series.
- Age 12 was considered to be the first age at which q is independent of age.
- Final estimates not shrunk towards mean F.
- The earliest year to be used for tuning the VPA was 1994.
- Minimum Log (S.E.) for the terminal population estimates derived from each fleet (Threshold se) was 0.5.

The XSA diagnostics and the plot of the log catchability residuals are presented in Table 16 and in Fig. 9. The XSA outputs are presented in Table 17 and in Fig. 10, 11 and 12.

Biomass and spawning stock biomass show a steady decline in the recent years to very low levels. Recruitment from 1991 to 2005 year class were at a very low level, the 2007 year class, in the EU survey, appears to be strong but that must be confirmed in future years. The rate of exploitation decreased till 2005 but in the last two years increase and is around 0.06.

If the 2007 point is take out, the SSB-R(Age 1) Scatter plot, based in the XSA results (Fig.10), show also a very poor recruitment for an SSB less than 5 000 tons (Fig 10).

In Fig 11 it is plotted the XSA survey index of stock reproductive potential calculated as described before. This plot show a continuous decrease from 1990 to 1997 (the lowest value), from 1997 to 2001 this index increase but after that decrease again to low levels. In 2001 and 2002, although the values of this index are higher than those in the previous period didn't generate good recruitments due to the poor level of SSB (Fig.11).

## Retrospective Analysis

A 2007-2003 retrospective analysis was carried out in order to determine the bias on the biomass, female spawning stock biomass (SSB), fishing mortality (mean F: ages 3-13 and 8-11) and recruitment (age 1) estimates from consecutive assessments back in time (Table 18 and Fig. 13).

The retrospective analysis show some bias in the Fs of the 2003 and 2004 runs but in recent years is rather consistent. This analysis for both total biomass and SSB show quite consistent stock trends during the period. By other hand recruitment show a very inconsistent retrospective pattern probably because the poor recruitment at age 1.

#### **Conclusions**

All results indicate that the stock suffered a continuous decline, even with catches kept at a low level since 1996. A general decrease is observed in the biomass and abundance estimated by the several surveys. The same trends are in the XSA results, ending at a very low biomass and SSB on the terminal year.

Despite the apparent good recruitment of the 2006 year class that remains to be confirmed in the next years, indices from the EU survey and XSA indicates no sign of recruitment from 1991 to 2005 year class, with only weak year-classes expected to be recruited to the SSB for at least the next four years.

Both the ratio of catch to EU survey biomass (F-index) and XSA fishing mortality declined from the mid-1980s to the mid-1990s and then fluctuated between 0.05 and 0.1 from 1996 to 2007 with the exception of 2005. Recent F is at a very low level.

#### Stock status

This stock continues to be in a very poor condition, with only weak year-classes expected to be recruit to the SSB on the next four years. Although the level of catches since 1996 is low, all the analysis indicates that this stock is kept at a very low level with no sign of recovery.

#### Acknowledgements

This study was supported by the European Commission (DG XIV), INRB/IPIMAR, CSIC, IEO and AZTI.

#### References

- Alpoim R., C. Darby and A. M. Ávila de Melo 2002. An assessment of American Plaice (*Hippoglossoides platessoides*) in NAFO Division 3M. NAFO SCR Doc. 02/62. N4674. 37p.
- Alpoim R. 2003. A stock status update of American Plaice (*Hippoglossoides platessoides*) in NAFO Division 3M. NAFO SCR Doc. 03/44. N4862. 12p.
- Alpoim R. 2006. An assessment of American Plaice (*Hippoglossoides platessoides*) in NAFO Division 3M. NAFO SCR Doc. 06/38. N5261. 28p.
- Bishop C. A. 1994. Revisions and additions to stratification schemes used during research vessel surveys in NAFO Subareas 2 and 3. NAFO SCR Doc 94/43. N2413, 23p.
- Casas, J. M. and D. González Troncoso 2005. Results from bottom trawl survey of Flemish Cap in July 2004. NAFO SCR Doc.05/35. N5121. 35p.
- Casas, J. M. and Diana González Troncoso, 2007. Results from Bottom Trawl Survey on Flemish Cap of June-July 2006. NAFO SCR Doc. 07/10, Serial Number N5353. 34 pp.
- Darby, C. and S. Flatman, 1994. Virtual population analysis: version 3.1 (Windows/Dos) user guide. *Info. Tech. Ser., MAFF Direct. Fish. Res.*, Lowestoft, (1): 85p.
- González Troncoso, D. and J. M. Casas 2005. Calculation of the Calibration Factors from the Comparative Experience between the R/V *Cornide de Saavedra* and the R/V *Vizconde de Eza* in Flemish Cap in 2003 and 2004. NAFO SCR Doc.05/29. N51125. 8p.
- Kulka, D. W. 1999. Update on the By-catch in the shrimp fisheries in Davis Strait to Flemish Cap. NAFO SCR Doc. 99/96. N4168. 15p.

- Serebryakov V.P., A.V. Astafjeva and V.K. Aldonov, 1987. USSR Ichthyoplankton Investigations on Flemish Cap, 1978-83. NAFO Sci. Coun. Studies, 11. 7-21p
- Vargas J., R. Alpoim, E. Santos and A. M. Ávila de Melo 2007. Portuguese research report for 2006. NAFO SCS Doc. 07/09. N5357. 54p.
- Vargas J., R. Alpoim, E. Santos and A. M. Ávila de Melo 2008. Portuguese research report for 2007. NAFO SCS Doc. 08/05. N5495. 47p.
- Vaskov, A. A., K. V. Gorchinsky, S.F. Lisovsky and M.V. Pochtar 2007. Russian research report for 2006. NAFO SCS Doc. 07/06. N5350. 26p.
- Vaskov, A.A., Pochtar, M.V., Skryabin, I.A., Sigaev, I.K. and V.A. Rikhter, 2008. Russian research report for 2007. NAFO SCS Doc. 08/06, Serial No. N5496, 28 pp.
- Vázquez, A. and González Troncoso, D., 2008. Results from bottom trawl survey of Flemish Cap of June-July 2007. NAFO SCR Doc.08/34. N5535. 31p.

TABLE 1 - Nonimal catches (t) from 1960-2007, Stacfis estimates (t) from 1988-2007 and TAC (t) from 1974-2008 of American plaice from NAFO Division 3M.

|                      |        |        | 111 1300 2007, 01 |         |          | minal catche |          |       |         |       | TIOTI WAT O DIVISIO |               |            |           |      |
|----------------------|--------|--------|-------------------|---------|----------|--------------|----------|-------|---------|-------|---------------------|---------------|------------|-----------|------|
| Year                 |        |        |                   | Country |          |              |          |       |         |       | Flatfishes (NS)     | Yellowtail f. | GRAND      | STACFIS   | TAC  |
|                      | Canada | Japan  | USSR/SUN          | Poland  | E/ESP    | E/GBR        | E/PRT    | E/DEU | Other   | Total | Total               | Total         | TOTAL      | estimates |      |
| 1960                 | -      | -      | -                 | -       | -        | -            | -        | -     | -       | 0     | 316                 | 0             | 316        |           |      |
| 1961                 | -      | -      | -                 | -       | -        | -            | -        | -     | -       | 0     | 2282                | 0             | 2282       |           |      |
| 1962                 | 14     | -      | -                 | -       | -        | -            | -        | -     | -       | 14    | 707                 | 0             | 721        |           |      |
| 1963                 | -      | -      | 51                | 108     | -        | 20           | -        | -     | -       | 179   | 0                   | 0             | 179        |           |      |
| 1964                 | -      | -      | 1831              | 8       | -        | 37           | -        | -     | -       | 1876  | 0                   | 0             | 1876       |           |      |
| 1965                 | 19     | -      | 4964              | 216     | -        | 83           | -        | -     | 2       | 5284  | 57                  | 0             | 5341       |           |      |
| 1966                 | -      | -      | 4003              | 17      | -        | 53           | -        | -     | -       | 4073  | 0                   | 0             | 4073       |           |      |
| 1967                 | 57     | -      | -                 | 63      | -        | 33           | -        | -     | 1       | 154   | 0                   | 0             | 154        |           |      |
| 1968                 | 100    | -      | 121               | -       | -        | 4            | -        | -     | -       | 225   | 6                   | 0             | 231        |           |      |
| 1969                 | 12     | -      | 113               | -       | -        | -            | -        | -     | -       | 125   | 0                   | 0             | 125        |           |      |
| 1970                 | -      | -      | 62                | -       | -        | -            | -        | -     | -       | 62    | 17                  | 0             | 79         |           |      |
| 1971                 | -      | -      | 1079              | -       | -        | -            | -        | -     | -       | 1079  | 0                   | 0             | 1079       |           |      |
| 1972                 | -      | -      | 665               | 8       | 17       | 65           | -        | -     | 106     | 861   | 0                   | 0             | 861        |           |      |
| 1973                 | 68     | -      | 312               | 39      | -        | 85           | -        | -     | -       | 504   | 3                   | 127           | 634        |           |      |
| 1974                 | 211    | -      | 1110              | -       | -        | 607          | -        | -     | -       | 1928  | 3                   | 12            | 1943       |           | 2000 |
| 1975                 | 140    | -      | 958               | -       | 8        | 80           | 522      | -     | -       | 1708  | 5                   | 31            | 1744       |           | 2000 |
| 1976                 | 191    | -      | 809               | 15      | 28       | -            | 149      | -     | -       | 1192  | 0                   | 137           | 1329       |           | 2000 |
| 1977                 | 30     | -      | 987               | 7       | 18       | -            | 457      | 1     | 118     | 1618  | 0                   | 10            | 1628       |           | 2000 |
| 1978                 | 7      | 49     | 581               | 21      | 36       | 2            | 486      | 100   | 51      | 1333  | 3                   | 0             | 1336       |           | 4000 |
| 1979                 | 10     | 63     | 457               | 2       | 16       | -            | 248      | -     | -       | 796   | 4                   | 0             | 800        |           | 2000 |
| 1980                 | 1      | 1      | 909               | 5       | 3        | -            | 232      | 34    | -       | 1185  | 64                  | 0             | 1249       |           | 2000 |
| 1981                 | -      | 47     | 309               | -       | 276      | -            | -        | -     | -       | 632   | 0                   | 0             | 632        |           | 2000 |
| 1982                 | -      | 53     | 1002              | -       | 17       | -            | -        | -     | -       | 1072  | 3                   | 0             | 1075       |           | 2000 |
| 1983                 | -      | 9      | 1238              | -       | 434      | -            | 208      | -     | -       | 1889  | 3                   | 0             | 1892       |           | 2000 |
| 1984                 | -      | 1      | 711               | -       | 204      | -            | 196      | 190   | -       | 1302  | 1                   | 0             | 1303       |           | 2000 |
| 1985                 | -      | 2      | 971               | -       | 163      | -            | 266      | 318   | -       | 1720  | 0                   | 0             | 1720       |           | 2000 |
| 1986                 | -      | 3      | 962               | -       | 1048     | -            | 1741     | -     | -       | 3754  | 0                   | 3             | 3757       |           | 2000 |
| 1987                 | -      | -      | 501               | -       | 4137     | -            | 969      | -     | -       | 5607  | 20                  | 0             | 5627       |           | 2000 |
| 1988                 | -      | 78     | 228               | _       | 1608     | -            | 941      | -     | 6       | 2861  | 127                 | 1             | 2989       | 2800      | 2000 |
| 1989                 | -      | 402    | 88                | _       | 2166     | -            | 1238     | -     | _       | 3894  | 72                  | 0             | 3966       | 3500      | 2000 |
| 1990                 | -      | 308    | -                 | _       | 102      | -            | 359      | -     | 21      | 790   | 38                  | 94            | 922        | 790       | 2000 |
| 1991                 | -      | 450    | 5                 | _       | 605      | 2            | 996      | -     | 24      | 2082  | 3                   | 1             | 2086       | 1600      | 2000 |
| 1992                 | -      | 50     | -                 | _       | 390      | -            | 314      | -     | 11      | 765   | 0                   | 1             | 766        | 765       | 2000 |
| 1993                 | -      | 49     | -                 | _       | 244      | -            | 231      | -     | 181     | 705   | 46                  | 20            | 771        | 275       | 2000 |
| 1994                 | _      | -      | _                 | _       | 3        | _            | 251      | _     | -       | 254   | 0                   | 84            | 338        | 669       | 1000 |
| 1995                 | _      | _      | _                 | _       | 125      | _            | 118      | _     | _       | 243   | 14                  | 0             | 257        | 1300      | 1000 |
| 1996                 |        | _      | _                 |         | 105      | _            | 29       |       | 8       | 142   | 2                   | 28            | 172        | 300       | 0    |
| 1997                 | _      | _      | <u>-</u>          | _       | 56       | _            | 52       | 7     | -       | 108   | 0                   | 0             | 108        | 208       | 0    |
| 1998                 | _      | _      | _                 | _       | 140      | _            | 47       | _     | 1       | 188   | 3                   | 2             | 193        | 294       | 0    |
| 1999                 | -      |        | 4                 | -       | 220      | -            | 18       | _     | 1       | 243   | 5                   | 0             | 248        | 255       | 0    |
| 2000                 | -      | -      | 55                | -       | 169      | -            | 27       | -     | 1       | 252   | 1                   | 6             | 259        | 133       | 0    |
| 2000                 | -      | -      | 14                | -       | 89       | -            | 162      | -     | 3       | 268   | 24                  | 135           | 427        | 149       | 0    |
| 2001                 | -      | 5      | 4                 | -       | 74       | -            | 73       | -     | 3<br>1  | 157   | 66                  | 32            | 255        | 128       | 0    |
| 2002                 | -      | 3      | 7                 | -       | 74<br>75 | -            | 73<br>28 | -     | 17      | 130   | 0                   | 32<br>15      | 255<br>145 | 131       | 0    |
|                      | -      | 3<br>4 | 4                 | -       | 75<br>39 | -            |          | -     | 3       | 108   | 0                   | 0             | 145        |           | 0    |
| 2004 (1)<br>2005 (1) | -      | 4      | 4                 | -       | 39<br>59 | -            | 58<br>11 | -     | 3<br>14 | 84    | 1                   | 3             | 88         | 81<br>45  | 0    |
| ٠,,                  | -      | -      | -<br>5            |         |          | -            |          | -     |         |       | •                   |               | 88<br>84   |           | 0    |
| 2006 (1)             | -      | -      | Э                 | -       | 32       | -            | 34       | -     | 13      | 84    | 0                   | 0             |            | 46<br>76  |      |
| 2007 (1)             | -      | -      | -                 | -       | 41       | -            | 30       | -     | 5       | 76    | 0                   | 0             | 76         | 76        | 0    |
| 2008                 |        |        |                   |         |          |              |          |       |         |       |                     |               |            |           | 0    |

<sup>(1) -</sup> Provisional
(2) - Recalculated from NAFO statistical data base using the FISHSTAT Plus program by FAO.



Fig.1 . American plaice in Div.3M: nominal catches and agreed TAC's



Fig. 2. Stratification scheme for stratified- randowm groundfish surveys in Div 3M. (Bishop 1994).

Table 2 - EU - surveys in Div.3M from 1988-2007: estimates of biomass (t) and abundance (000's) of A.plaice.

| Stratum   Column   Column | 714 284<br>354 209<br>74 101<br>109 153<br>63 81<br>61 99<br>37 20 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 502     148-183     838     2845     3602     1375     2663     1714     1267     1199     1335     943     740     1587     1810     976     835     1262     713     768     79       503     185-256     628     1367     1118     1668     1247     631     444     325     252     168     495     284     97     21     93     75     17     427     10       504     185-256     348     2199     461     817     320     557     572     853     489     268     203     343     53     100     85     128     395     35       505     185-256     703     2599     3093     1830     1407     837     1291     1230     549     500     619     744     73     56     112     189     82     72     48       506     185-256     496     479     1130     954     501     601     305     808     123     32     13     35     40     25     37     63     29     26     77       507     258-366     822     1174     531     837     389     639     319     316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 354 209<br>74 101<br>109 153<br>63 81<br>61 99<br>37 20            |
| 503     185-256     628     1367     1118     1668     1247     631     444     325     252     168     495     284     97     21     93     75     17     427     10       504     185-256     348     2199     461     817     320     557     572     853     489     268     203     343     53     100     85     128     395     35       505     185-256     703     2599     3093     1830     1407     837     1291     1230     549     500     619     744     73     56     112     189     82     72     48       506     185-256     496     479     1130     954     501     601     305     808     123     32     13     35     40     25     37     63     29     26     77       507     258-366     822     1174     531     837     389     639     319     316     249     72     83     47     19     15     28     52     30     84     33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 74 101<br>109 153<br>63 81<br>61 99<br>37 20                       |
| 504     185-256     348     2199     461     817     320     557     572     853     489     268     203     343     53     100     85     128     395     35       505     185-256     703     2599     3093     1830     1407     837     1291     1230     549     500     619     744     73     56     112     189     82     72     44       506     185-256     496     479     1130     954     501     601     305     808     123     32     13     35     40     25     37     63     29     26     7'       507     258-366     822     1174     531     837     389     639     319     316     249     72     83     47     19     15     28     52     30     84     33'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109 153<br>63 81<br>61 99<br>37 20                                 |
| 505 185-256 703 2599 3093 1830 1407 837 1291 1230 549 500 619 744 73 56 112 189 82 72 45 506 185-256 496 479 1130 954 501 601 305 808 123 32 13 35 40 25 37 63 29 26 75 507 258-366 822 1174 531 837 389 639 319 316 249 72 83 47 19 15 28 52 30 84 35 36 50 50 50 50 50 50 50 50 50 50 50 50 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63 81<br>61 99<br>37 20                                            |
| 506 185-256 496 479 1130 954 501 601 305 808 123 32 13 35 40 25 37 63 29 26 7° 507 258-366 822 1174 531 837 389 639 319 316 249 72 83 47 19 15 28 52 30 84 3°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61 99<br>37 20                                                     |
| 507 258-366 822 1174 531 837 389 639 319 316 249 72 83 47 19 15 28 52 30 84 3 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37 20                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |
| FOO OFF OOD ALT AND OOD OFF TOT ATT AND FO AND AND OFF TO ATT AND ADDRESS OF TOTAL ATT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 400 50                                                             |
| 508 258-366 646 417 164 263 251 727 487 171 132 56 123 165 3 45 43 14 55 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 163 58                                                             |
| 509 258-366 314 103 163 343 373 205 20 500 55 36 1 9 77 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |
| 510 258-366 951 2323 1491 2000 1308 1406 1459 2236 708 415 287 36 72 45 95 36 54 45 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97 24                                                              |
| 511 258-366 806 1186 1168 1316 401 372 292 303 109 68 32 29 37 23 27 59 29 69 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19 22                                                              |
| 512 367-549 670 9 19 45 17 11 15 33 12 32 7 4 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    |
| 513 367-549 249 3 20 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |
| 514 367-549 602 8 8 7 389 29 24 15 4 4 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |
| 515 367-549 666 23 99 3 97 37 109 40 68 23 7 7 6 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                  |
| 516 550-731 634 5 4 9 12 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |
| 517 550-731 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |
| 518 550-731 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |
| <u>519 550-731 414 15 4 5 3 11</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |
| total biomass 16046 14047 11983 10087 8656 7861 8227 6785 4098 3026 3437 2585 1606 2404 2049 2286 3525 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1691 1053                                                          |
| <u>s.e.</u> 1845 2048 1276 1180 954 1040 1373 1083 912 708 751 869 332 429 729 748 740 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 342 159                                                            |
| mean catch per tow (kg) 19.95 17.47 14.90 12.55 10.76 9.79 10.23 8.44 5.09 3.76 4.27 3.21 2.00 2.99 2.55 2.86 4.38 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.10 1,31                                                          |
| <u>s.e. 2.29 2.55 1.59 1.47 1.19 1.29 1.71 1.35 1.13 0.88 0.93 1.08 0.41 0.53 0.91 0.93 0.92 0.8</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.43 0,20                                                          |
| total abundance (000's) 27410 27391 20946 17643 13728 11648 11247 9376 5658 3770 3800 2672 2132 3168 1971 2769 4015 333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2188 1401                                                          |
| The annumber per tow 34.09 34.01 26.05 21.79 17.05 14.47 13.96 11.66 7.02 4.69 4.73 3.32 2.65 3.94 2.45 3.44 4.99 4.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |



Fig.3A. American plaice in Div. 3M: trends in biomass in the surveys.



Fig.3B. American plaice in Div. 3M: trends in abundance in the surveys.



Fig.3C. American plaice in Div. 3M: mean weight per tow in the surveys.



Fig.3D. American plaice in Div. 3M: mean number per tow in the surveys.

Table 3: Length composition (absolute frequencies in '000) of the 3M american plaice stock. EU survey 1988-2007.

| Length<br>group | 1988  | 1989  | 1990  | 1991  | 1992  | 1993  | 1994  | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | Length<br>group |
|-----------------|-------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----------------|
| 4               |       |       |       |       |       |       | 7     |      |      |      |      |      |      |      |      |      |      |      |      |      | 4               |
| 6               |       |       |       | 20    |       |       |       |      |      |      |      |      |      |      |      |      |      |      |      |      | 6               |
| 8               |       |       |       | 20    |       |       |       |      |      |      |      |      |      |      |      |      |      |      |      | 20   | 8               |
| 10              |       | 41    | 8     | 27    |       |       |       |      |      |      |      | 7    | 8    |      |      |      |      |      |      | 174  | 10              |
| 12              | 68    | 14    |       | 46    |       |       |       |      | 8    | 8    |      |      | 7    |      |      | 7    |      |      | 7    | 13   | 12              |
| 14              | 555   | 14    |       | 48    | 48    |       |       |      |      |      |      |      |      |      |      |      |      |      |      |      | 14              |
| 16              | 1274  | 104   | 149   | 136   | 230   |       | 8     | 14   | 7    | 8    |      |      |      |      |      | 6    | 13   |      |      |      | 16              |
| 18              | 295   | 327   | 411   | 101   | 443   | 19    | 31    | 15   | 32   | 16   |      |      | 7    | 8    |      |      | 7    | 8    |      |      | 18              |
| 20              | 55    | 1205  | 146   | 77    | 253   | 37    | 33    |      |      |      | 16   |      | 8    | 31   |      | 7    | 22   | 8    | 14   | 13   | 20              |
| 22              | 166   | 2836  | 188   | 461   | 131   | 191   | 31    |      | 14   |      | 16   |      | 16   |      |      | 14   | 66   | 39   | 7    |      | 22              |
| 24              | 295   | 3199  | 391   | 828   | 272   | 565   | 44    | 45   | 38   | 30   | 8    | 8    | 8    | 8    | 9    | 13   | 109  | 24   | 14   |      | 24              |
| 26              | 575   | 1602  | 690   | 469   | 360   | 619   | 129   | 45   | 24   | 60   | 8    | 15   | 8    | 31   | 8    | 7    | 127  | 40   | 7    | 7    | 26              |
| 28              | 932   | 499   | 1301  | 456   | 392   | 360   | 297   | 113  | 68   | 44   | 45   | 31   | 44   | 54   | 32   | 27   | 73   | 48   | 31   |      | 28              |
| 30              | 1434  | 637   | 2964  | 782   | 452   | 657   | 729   | 212  | 111  | 30   | 15   | 8    | 31   | 23   | 24   | 72   | 69   | 149  | 49   |      | 30              |
| 32              | 2459  | 998   | 2836  | 1625  | 568   | 563   | 965   | 639  | 286  | 189  | 77   | 54   | 69   | 68   | 32   | 64   | 57   | 178  | 62   | 41   | 32              |
| 34              | 3019  | 2020  | 1600  | 2522  | 1105  | 595   | 864   | 663  | 352  | 181  | 219  | 121  | 133  | 200  | 73   | 129  | 122  | 138  | 90   | 59   | 34              |
| 36              | 3582  | 3495  | 1726  | 2749  | 2251  | 1302  | 1161  | 1292 | 757  | 426  | 413  | 256  | 250  | 365  | 109  | 336  | 403  | 250  | 230  | 106  | 36              |
| 38              | 2651  | 2627  | 1790  | 2269  | 2042  | 1397  | 1710  | 1688 | 1040 | 678  | 401  | 258  | 258  | 682  | 145  | 482  | 404  | 419  | 387  | 121  | 38              |
| 40              | 2740  | 1959  | 1427  | 1384  | 1576  | 1439  | 1511  | 1420 | 979  | 456  | 500  | 316  | 289  | 443  | 195  | 413  | 459  | 420  | 364  | 202  | 40              |
| 42              | 2873  | 1680  | 1282  | 787   | 1266  | 1178  | 594   | 930  | 594  | 321  | 379  | 209  | 250  | 265  | 106  | 376  | 455  | 370  | 221  | 148  | 42              |
| 44              | 2663  | 2017  | 1492  | 1020  | 630   | 936   | 708   | 472  | 356  | 295  | 375  | 205  | 130  | 172  | 96   | 136  | 263  | 227  | 123  | 87   | 44              |
| 46              | 788   | 1165  | 1318  | 883   | 604   | 705   | 803   | 451  | 232  | 216  | 339  | 218  | 221  | 138  | 189  | 123  | 134  | 139  | 98   | 67   | 46              |
| 48              | 467   | 527   | 763   | 582   | 602   | 349   | 729   | 405  | 312  | 285  | 285  | 327  | 156  | 177  | 289  | 136  | 197  | 177  | 169  | 81   | 48              |
| 50              | 203   | 191   | 291   | 184   | 331   | 397   | 419   | 468  | 233  | 317  | 330  | 260  | 133  | 211  | 310  | 206  | 344  | 203  | 97   | 101  | 50              |
| 52              | 162   | 164   | 101   | 117   | 120   | 236   | 273   | 279  | 104  | 153  | 235  | 271  | 76   | 187  | 233  | 142  | 412  | 261  | 91   | 61   | 52              |
| 54              | 72    | 47    | 46    | 28    | 40    | 62    | 117   | 183  | 66   | 29   | 90   | 60   | 21   | 98   | 77   | 45   | 208  | 109  | 35   | 60   | 54              |
| 56              | 55    | 15    | 21    | 14    | 7     | 24    | 76    | 31   | 34   | 21   | 44   | 35   | 7    |      | 44   | 21   | 54   | 104  | 85   | 33   | 56              |
| 58              | 28    | 6     | 6     | 7     |       | 16    |       | 6    | 6    | 7    | 6    | 6    |      | 6    |      | 8    | 20   | 16   |      |      | 58              |
| 60              |       |       |       |       |       |       |       | 6    | 6    |      |      | 6    |      |      |      |      |      |      | 7    | 7    | 60              |
| 62              |       |       |       |       |       |       | 6     |      |      |      |      |      |      |      |      |      |      |      |      |      | 62              |
| 64              |       |       |       |       |       |       |       |      |      |      |      |      |      |      |      |      |      |      |      |      | 64              |
| 66              |       |       |       |       | 6     |       |       |      |      |      |      |      |      |      |      |      |      |      |      |      | 66              |
| Total           | 27410 | 27391 | 20946 | 17643 | 13728 | 11648 | 11247 | 9376 | 5658 | 3770 | 3800 | 2672 | 2132 | 3168 | 1971 | 2769 | 4015 | 3326 | 2188 | 1401 | Total           |
| mean            | 26.6  | 24.2  | 26.4  | 26.6  | 27 F  | 20.6  | 40.0  | 40.9 | 40.7 | 41.7 | 42.2 | 44.2 | 41.6 | 41.0 | 4F 0 | 41.0 | 42 E | 42.2 | 40.1 | 20.0 |                 |
| length          | 36.6  | 34.3  | 36.4  | 36.6  | 37.5  | 38.6  | 40.0  | 40.8 | 40.7 | 41.7 | 43.3 | 44.3 | 41.6 | 41.8 | 45.8 | 41.8 | 42.5 | 42.3 | 42.1 | 38.9 | I               |

Table 4: Length weight relationships of 3M American plaice.

| Table 4. Length weight | relationships of 3ivi Am | encan plaice. |      |
|------------------------|--------------------------|---------------|------|
| Year                   | а                        | b             | n    |
| 1988                   | 0.0048                   | 3.2121        | 1211 |
| 1989                   | 0.0055                   | 3.1810        | 1192 |
| 1990                   | 0.0043                   | 3.2420        | 1314 |
| 1991                   | 0.0043                   | 3.2404        | 1032 |
| 1992                   | 0.0048                   | 3.2130        | 1296 |
| 1993                   | 0.0030                   | 3.3362        | 1036 |
| 1994                   | 0.0029                   | 3.3373        | 1065 |
| 1995                   | 0.0027                   | 3.3474        | 772  |
| 1996                   | 0.0048                   | 3.1978        | 571  |
| 1997                   | 0.0046                   | 3.2116        | 435  |
| 1998                   | 0.0044                   | 3.2260        | 442  |
| 1999                   | 0.0043                   | 3.2294        | 452  |
| 2000                   | 0.0082                   | 3.0444        | 411  |
| 2001                   | 0.0044                   | 3.2074        | 570  |
| 2002                   | 0.0029                   | 3.3242        | 225  |
| 2003                   | 0.0044                   | 3.2292        | 400  |
| 2004                   | 0.0064                   | 3.1222        | 602  |
| 2005                   | 0.0043                   | 3.2177        | 345  |
| 2006                   | 0.0058                   | 3.1403        | 312  |
| 2007                   | 0.0042                   | 3.2301        | 209  |

| Table F. Depulation | a abundance (000s) et ege | (vra) of A plaine from ourvoy | s in Div. 3M during ELL survey 1 | 000 2007 |
|---------------------|---------------------------|-------------------------------|----------------------------------|----------|
|                     |                           |                               |                                  |          |

| Table 6.1 optical abundance (6000) at age (yes) of 7t. place noninear voye in Bir. ow during 20 out of 1000 2001. |     |      |      |      |      |      |      |      |      |      |     |     |     |      |     |     |
|-------------------------------------------------------------------------------------------------------------------|-----|------|------|------|------|------|------|------|------|------|-----|-----|-----|------|-----|-----|
| Year/age                                                                                                          | 1   | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11  | 12  | 13  | 14   | 15  | 16+ |
| 1988                                                                                                              | 483 | 1339 | 1619 | 3955 | 3725 | 3423 | 5016 | 3004 | 1802 | 1157 | 669 | 418 | 230 | 358  | 138 | 74  |
| 1989                                                                                                              | 55  | 1827 | 6621 | 2682 | 2787 | 2544 | 3794 | 2548 | 1616 | 1089 | 672 | 429 | 221 | 332  | 117 | 57  |
| 1990                                                                                                              | 8   | 665  | 1581 | 5311 | 2456 | 1802 | 2785 | 2066 | 1427 | 995  | 648 | 432 | 242 | 337  | 128 | 62  |
| 1991                                                                                                              | 154 | 353  | 1628 | 2530 | 2796 | 1945 | 2645 | 1855 | 1283 | 879  | 575 | 378 | 186 | 262  | 91  | 83  |
| 1992                                                                                                              | 24  | 795  | 886  | 1210 | 1544 | 1682 | 2433 | 1642 | 1142 | 813  | 541 | 363 | 187 | 287  | 108 | 71  |
| 1993                                                                                                              |     | 27   | 1536 | 1082 | 775  | 447  | 4116 | 467  | 782  | 367  | 257 | 299 | 354 | 1065 | 32  | 42  |
| 1994                                                                                                              | 7   | 47   | 45   | 2134 | 1034 | 878  | 983  | 3425 | 322  | 654  | 224 | 221 | 252 | 519  | 490 | 9   |
| 1995                                                                                                              |     | 29   | 115  | 741  | 2127 | 1368 | 1377 | 913  | 1536 | 161  | 181 | 145 | 145 | 292  | 219 | 28  |
| 1996                                                                                                              | 8   | 39   | 116  | 260  | 585  | 1666 | 894  | 545  | 403  | 630  | 144 | 78  | 82  | 109  | 69  | 28  |
| 1997                                                                                                              | 8   | 16   | 110  | 25   | 122  | 419  | 1204 | 270  | 413  | 293  | 487 | 129 | 25  | 93   | 47  | 110 |
| 1998                                                                                                              |     | 25   | 31   | 47   | 72   | 266  | 622  | 903  | 526  | 356  | 301 | 288 | 88  | 113  | 57  | 105 |
| 1999                                                                                                              | 7   |      | 23   | 65   | 79   | 80   | 241  | 472  | 510  | 255  | 338 | 207 | 121 | 117  | 59  | 98  |
| 2000                                                                                                              | 16  | 25   | 7    | 84   | 106  | 153  | 119  | 153  | 392  | 427  | 231 | 185 | 74  | 56   | 46  | 59  |
| 2001                                                                                                              |     | 40   | 52   | 58   | 104  | 56   | 111  | 268  | 438  | 581  | 478 | 420 | 190 | 162  | 111 | 99  |
| 2002                                                                                                              |     |      | 32   | 65   | 17   | 89   | 66   | 126  | 159  | 190  | 297 | 221 | 249 | 142  | 131 | 187 |
| 2003                                                                                                              | 7   | 6    | 32   | 93   | 80   | 58   | 79   | 147  | 300  | 258  | 431 | 426 | 272 | 272  | 148 | 160 |
| 2004                                                                                                              |     | 117  | 280  | 73   | 79   | 107  | 105  | 127  | 246  | 316  | 285 | 598 | 426 | 404  | 327 | 525 |
| 2005                                                                                                              |     | 31   | 111  | 288  | 106  | 106  | 126  | 102  | 224  | 206  | 225 | 252 | 353 | 403  | 252 | 540 |
| 2006                                                                                                              | 7   | 28   | 37   | 107  | 133  | 139  | 72   | 57   | 123  | 163  | 200 | 193 | 192 | 211  | 200 | 326 |
| 2007                                                                                                              | 207 | 7    | 13   | 35   | 106  | 119  | 49   | 49   | 35   | 47   | 76  | 122 | 143 | 82   | 75  | 236 |

| Total |
|-------|
| 27410 |
| 27391 |
| 20946 |
| 17643 |
| 13728 |
| 11648 |
| 11247 |
| 9376  |
| 5658  |
| 3770  |
| 3800  |
| 2672  |
| 2132  |
| 3168  |
| 1971  |
| 2769  |
| 4015  |
| 3326  |
| 2188  |
| 1401  |
|       |

Table 6 - Weights at age of the 3M American plaice stock (Kg) from EU surveys, 1988-2007.

| Year/age | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16+   |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1988     | 0.027 | 0.048 | 0.152 | 0.338 | 0.495 | 0.620 | 0.721 | 0.786 | 0.801 | 0.820 | 0.876 | 0.959 | 1.201 | 1.208 | 1.537 | 1.742 |
| 1989     | 0.013 | 0.090 | 0.151 | 0.295 | 0.523 | 0.630 | 0.725 | 0.815 | 0.839 | 0.856 | 0.912 | 0.991 | 1.181 | 1.186 | 1.462 | 1.646 |
| 1990     | 0.010 | 0.062 | 0.189 | 0.312 | 0.425 | 0.564 | 0.709 | 0.829 | 0.857 | 0.893 | 0.956 | 1.029 | 1.179 | 1.200 | 1.412 | 1.578 |
| 1991     | 0.015 | 0.070 | 0.157 | 0.341 | 0.478 | 0.563 | 0.660 | 0.770 | 0.799 | 0.829 | 0.886 | 0.953 | 1.141 | 1.157 | 1.417 | 1.634 |
| 1992     | 0.029 | 0.063 | 0.158 | 0.315 | 0.516 | 0.616 | 0.684 | 0.758 | 0.807 | 0.832 | 0.910 | 1.000 | 1.182 | 1.190 | 1.408 | 1.712 |
| 1993     |       | 0.061 | 0.160 | 0.295 | 0.407 | 0.579 | 0.727 | 0.755 | 0.798 | 0.874 | 0.906 | 0.932 | 1.075 | 1.218 | 1.839 | 1.628 |
| 1994     | 0.001 | 0.062 | 0.162 | 0.316 | 0.490 | 0.568 | 0.650 | 0.808 | 0.954 | 0.917 | 1.025 | 1.025 | 1.271 | 1.228 | 1.540 | 1.895 |
| 1995     |       | 0.044 | 0.191 | 0.330 | 0.488 | 0.624 | 0.668 | 0.789 | 0.888 | 1.222 | 1.279 | 1.468 | 1.518 | 1.515 | 1.563 | 2.082 |
| 1996     | 0.017 | 0.055 | 0.190 | 0.332 | 0.469 | 0.589 | 0.708 | 0.823 | 0.929 | 0.864 | 1.081 | 1.390 | 1.307 | 1.519 | 1.649 | 1.777 |
| 1997     | 0.017 | 0.049 | 0.171 | 0.236 | 0.427 | 0.559 | 0.673 | 0.643 | 0.859 | 0.998 | 1.007 | 1.215 | 1.275 | 1.437 | 1.607 | 1.515 |
| 1998     |       | 0.090 | 0.174 | 0.260 | 0.384 | 0.514 | 0.652 | 0.778 | 0.826 | 1.027 | 1.239 | 1.322 | 1.501 | 1.513 | 1.606 | 1.650 |
| 1999     | 0.010 |       | 0.166 | 0.315 | 0.440 | 0.546 | 0.568 | 0.773 | 0.849 | 0.998 | 1.178 | 1.275 | 1.462 | 1.705 | 1.563 | 1.587 |
| 2000     | 0.016 | 0.091 | 0.115 | 0.245 | 0.409 | 0.522 | 0.614 | 0.673 | 0.756 | 0.748 | 0.848 | 0.939 | 1.222 | 1.177 | 1.295 | 1.386 |
| 2001     |       | 0.072 | 0.210 | 0.245 | 0.374 | 0.434 | 0.528 | 0.603 | 0.622 | 0.702 | 0.703 | 0.853 | 1.076 | 1.321 | 1.427 | 1.487 |
| 2002     |       |       | 0.191 | 0.287 | 0.398 | 0.444 | 0.668 | 0.757 | 0.711 | 0.871 | 1.098 | 1.151 | 1.298 | 1.415 | 1.486 | 1.524 |
| 2003     | 0.017 | 0.041 | 0.134 | 0.327 | 0.361 | 0.457 | 0.543 | 0.669 | 0.674 | 0.735 | 0.794 | 0.858 | 0.886 | 1.028 | 1.314 | 1.499 |
| 2004     |       | 0.110 | 0.182 | 0.307 | 0.457 | 0.565 | 0.594 | 0.691 | 0.710 | 0.754 | 0.785 | 0.837 | 0.999 | 1.092 | 1.240 | 1.490 |
| 2005     |       | 0.094 | 0.180 | 0.295 | 0.396 | 0.527 | 0.643 | 0.620 | 0.747 | 0.792 | 0.795 | 0.827 | 0.885 | 0.920 | 1.048 | 1.413 |
| 2006     | 0.018 | 0.119 | 0.212 | 0.350 | 0.475 | 0.600 | 0.711 | 0.673 | 0.715 | 0.679 | 0.792 | 0.845 | 0.769 | 0.876 | 0.925 | 1.294 |
| 2007     | 0.010 | 0.079 | 0.128 | 0.354 | 0.588 | 0.621 | 0.695 | 0.987 | 0.912 | 0.949 | 0.783 | 0.767 | 0.913 | 0.874 | 0.873 | 1.537 |
| _        | •     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| mean     | 0.015 | 0.072 | 0.169 | 0.305 | 0.450 | 0.557 | 0.657 | 0.750 | 0.803 | 0.868 | 0.943 | 1.032 | 1.167 | 1.239 | 1.411 | 1.604 |

Table 7: Criteria applied to convert total catches in weight to total catches in number, 2006-2007.

| YEAR | TOTAL CATCH | BREAKDOWN<br>TOTAL CATCH | L        | ENGTHS COMF | POSITION |           | Mean Weight | TOTAL CATCH IN |
|------|-------------|--------------------------|----------|-------------|----------|-----------|-------------|----------------|
|      | (ton)       | (ton)                    | Country  | Source      | Gear     | Paper     | (Kg)        | NUMBER (000's) |
| 2006 | 45.8        | 15.0                     | Russia   | Commercial  | OTB      | scs 07/06 | 0.719       | 20.9           |
| 2000 | 43.0        | 30.8                     | Portugal | Commercial  | OTB      | scs 07/09 | 0.649       | 47.4           |
| 2007 | 76.8        | 5.0                      | Russia   | Commercial  | OTB      | scs 08/06 | 1.115       | 4.5            |
| 2007 | 70.0        | 71.8                     | Portugal | Commercial  | OTB      | scs 08/05 | 0.564       | 127.3          |

| lable 8: Length    | 1988   | 1989   | 1990   | 1991   | 1992  | 1993  | 1994  | 1995   | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004 | 2005 | 2006 | 2007  |
|--------------------|--------|--------|--------|--------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|------|-------|
| length group<br>16 | 1900   | 19.3   | 0.8    | 1991   | 1992  | 1993  | 0.7   | 3.0    | 1390  | 1997  | 1990  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004 | 2005 | 2006 | 2007  |
| 18                 |        | 60.5   | 3.9    |        |       |       | 2.9   | 3.0    |       |       |       |       |       |       |       |       |      |      |      |       |
| 20                 | 6.9    | 126.5  | 2.0    |        | 5.3   | 1.8   | 3.3   | 3.2    |       |       |       |       |       |       |       |       |      |      |      |       |
| 22                 | 10.4   | 88.0   | 8.2    | 5.8    | 1.3   | 6.9   | 3.2   |        |       |       |       |       | 0.3   | 0.1   |       |       | 0.1  |      |      |       |
| 24                 | 65.6   | 35.8   | 10.4   | 6.6    | 1.4   | 14.3  | 4.8   | 9.7    | 5.1   |       | 0.2   |       | 0.3   | 0.1   |       |       | 0.1  |      |      |       |
| 26                 | 186.5  | 41.3   | 20.2   | 0.0    | 7.4   | 16.1  | 18.3  | 9.7    | 0.4   |       | 0.2   |       | 0.7   | 0.2   | 0.3   | 0.02  | 0.1  |      |      | 1.9   |
| 28                 | 345.3  | 131.2  | 43.2   | 23.2   | 23.7  | 17.1  | 30.6  | 24.3   | 10.0  |       | 0.2   |       | 9.4   | 3.0   | 1.1   | 0.02  | 1.3  |      | 0.2  | 3.4   |
| 30                 | 276.2  | 226.7  | 91.7   | 28.2   | 37.5  | 23.2  | 71.1  | 45.4   | 31.6  |       | 0.7   |       | 16.3  | 10.0  | 2.2   | 0.1   | 2.3  |      | 2.4  | 7.9   |
| 32                 | 303.9  | 365.4  | 131.9  | 109.7  | 36.7  | 23.0  | 94.4  | 136.9  | 63.4  |       | 1.8   | 5.2   | 21.5  | 18.1  | 5.1   | 2.5   | 4.2  |      | 2.9  | 16.5  |
| 34                 | 611.2  | 569.3  | 96.5   | 203.1  | 61.0  | 19.9  | 81.3  | 142.1  | 98.4  | 14.6  | 4.0   | 10.4  | 23.4  | 22.5  | 17.9  | 3.0   | 4.2  | 0.2  | 11.2 | 17.4  |
| 36                 | 621.5  | 603.5  | 86.9   | 283.0  | 90.5  | 28.5  | 88.0  | 225.2  | 86.5  | 13.0  | 6.2   | 25.9  | 23.4  | 29.7  | 27.9  | 10.8  | 7.9  | 0.2  | 7.8  | 21.4  |
| 38                 | 372.9  | 477.8  | 71.1   | 147.1  | 122.7 | 37.5  | 128.1 | 294.5  | 74.7  | 24.4  | 15.6  | 51.9  | 24.5  | 31.1  | 24.7  | 15.2  | 12.8 | 1.5  | 10.9 | 19.5  |
| 40                 | 372.9  | 356.7  | 70.6   | 146.2  | 108.2 | 29.4  | 112.6 | 249.8  | 47.4  | 37.8  | 22.6  | 15.6  | 23.0  | 28.9  | 24.1  | 25.1  | 12.8 | 3.9  | 11.2 | 11.7  |
| 42                 | 473.1  | 696.1  | 82.1   | 147.7  | 57.1  | 34.6  | 44.9  | 166.2  | 47.2  | 22.8  | 17.8  | 20.8  | 17.1  | 22.2  | 22.9  | 22.1  | 9.8  | 3.6  | 8.4  | 15.4  |
| 44                 | 397.1  | 630.2  | 125.0  | 320.8  | 67.8  | 32.6  | 55.2  | 86.1   | 23.3  | 8.1   | 44.0  | 36.3  | 12.9  | 18.1  | 12.8  | 5.5   | 12.3 | 1.5  | 3.9  | 6.4   |
| 46                 | 158.8  | 405.0  | 132.8  | 295.7  | 79.8  | 25.6  | 63.3  | 84.6   | 14.1  | 17.2  | 36.5  | 31.1  | 11.6  | 14.3  | 10.7  | 16.0  | 7.1  | 2.7  | 4.3  | 4.5   |
| 48                 | 76.0   | 97.4   | 73.9   | 120.1  | 86.9  | 23.0  | 59.4  | 78.4   | 12.7  | 33.5  | 30.9  | 46.7  | 9.8   | 12.6  | 9.8   | 10.9  | 6.0  | 5.4  | 1.3  | 2.2   |
| 50                 | 62.2   | 68.0   | 30.3   | 106.6  | 63.2  | 22.0  | 35.4  | 94.0   | 8.4   | 24.4  | 37.8  | 25.9  | 6.5   | 6.5   | 6.4   | 14.8  | 6.5  | 8.0  | 1.8  | 2.2   |
| 52                 | 72.5   | 35.8   | 9.6    | 9.1    | 33.1  | 12.7  | 24.3  | 58.5   | 2.8   | 16.3  | 36.1  | 10.4  | 6.9   | 3.6   | 5.4   | 6.9   | 5.6  | 6.6  | 0.4  | 0.4   |
| 54                 | 34.5   | 27.5   | 6.7    | 3.0    | 10.3  | 3.8   | 10.8  | 40.2   | 0.6   | 4.1   | 5.3   |       | 0.8   | 1.5   | 1.9   | 3.0   | 2.4  | 3.4  | 1.1  | 0.6   |
| 56                 | 17.3   | 13.8   | 3.4    | 0.004  | 5.4   | 1.6   | 7.4   | 7.2    | 0.3   | 1.7   | 4.4   |       | 0.4   | 0.5   | 0.2   | 0.2   | 0.2  | 0.5  | 0.2  | 0.2   |
| 58                 | 3.5    |        | 0.8    | 0.002  | 4.8   | 0.7   |       | 1.5    |       |       | 0.03  |       |       | 0.1   |       |       | 0.04 |      |      |       |
| 60                 |        |        |        |        | 0.01  | 0.1   |       | 1.5    |       |       |       |       |       | 0.04  |       |       |      |      | 0.1  |       |
| 62                 |        |        | 0.1    |        |       | 0.001 | 0.6   |        |       |       |       |       |       | 0.1   |       | 1.0   |      |      |      |       |
| 64                 |        |        |        |        |       |       |       |        |       |       |       |       |       | 0.01  |       |       |      |      |      |       |
| 66                 |        |        |        |        |       |       |       |        |       |       |       |       |       |       |       |       |      |      |      |       |
| 68                 |        |        |        |        |       |       |       |        |       |       |       |       |       |       |       |       |      |      | 0.1  |       |
| Total ('000)       | 4468.2 | 5075.7 | 1102.2 | 1955.9 | 904.0 | 374.5 | 940.5 | 1762.1 | 527.0 | 218.0 | 264.8 | 280.2 | 208.7 | 223.8 | 173.5 | 137.5 | 95.8 | 37.7 | 68.3 | 131.8 |
| mean length        | 37.9   | 38.7   | 39.5   | 41.6   | 41.8  | 39.6  | 39.5  | 40.8   | 37.9  | 44.6  | 46.7  | 43.9  | 39.3  | 40.3  | 41.3  | 44.1  | 42.8 | 48.4 | 40.2 | 38.2  |

Table 9 - Catch at age (000s) of the 3M American plaice, 1988-2007.

| Year/age | 1 | 2   | 3    | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13 | 14  | 15 | 16+ |
|----------|---|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|----|-----|
| 1988     |   | 7   | 311  | 731 | 549 | 440 | 720 | 532 | 386 | 265 | 173 | 118 | 65 | 102 | 43 | 25  |
| 1989     |   | 175 | 209  | 573 | 527 | 482 | 886 | 715 | 520 | 356 | 230 | 148 | 80 | 118 | 39 | 19  |
| 1990     |   | 7   | 49   | 183 | 112 | 87  | 158 | 147 | 110 | 78  | 55  | 39  | 24 | 33  | 13 | 7   |
| 1991     |   | 1   | 19   | 133 | 185 | 168 | 342 | 331 | 243 | 174 | 124 | 84  | 50 | 68  | 23 | 12  |
| 1992     |   | 4   | 17   | 76  | 75  | 76  | 136 | 124 | 100 | 77  | 60  | 46  | 31 | 45  | 23 | 14  |
| 1993     |   |     | 47   | 42  | 26  | 11  | 112 | 13  | 24  | 12  | 9   | 11  | 15 | 49  | 2  | 2   |
| 1994     |   | 4   | 6    | 219 | 98  | 77  | 75  | 254 | 24  | 48  | 16  | 17  | 20 | 40  | 43 | 1   |
| 1995     |   | 6   | 24   | 167 | 458 | 235 | 231 | 155 | 250 | 31  | 35  | 30  | 30 | 58  | 45 | 7   |
| 1996     |   |     | 13   | 60  | 101 | 173 | 63  | 41  | 23  | 34  | 6   | 3   | 3  | 3   | 2  | 0.4 |
| 1997     |   |     |      |     | 4   | 17  | 61  | 12  | 28  | 23  | 35  | 13  | 3  | 9   | 4  | 10  |
| 1998     |   |     | 0.3  | 1   | 2   | 7   | 28  | 57  | 36  | 31  | 32  | 33  | 8  | 14  | 7  | 10  |
| 1999     |   |     |      | 4   | 6   | 8   | 27  | 59  | 60  | 35  | 40  | 21  | 9  | 5   | 3  | 5   |
| 2000     |   | 0.2 | 0.1  | 19  | 25  | 25  | 12  | 13  | 33  | 35  | 17  | 13  | 6  | 3   | 3  | 4   |
| 2001     |   |     | 5    | 6   | 16  | 8   | 10  | 21  | 30  | 41  | 35  | 29  | 10 | 6   | 3  | 3   |
| 2002     |   |     | 1    | 8   | 4   | 17  | 13  | 21  | 22  | 23  | 24  | 17  | 12 | 4   | 3  | 5   |
| 2003     |   |     | 0.02 | 2   | 2   | 2   | 3   | 6   | 13  | 12  | 23  | 25  | 16 | 15  | 9  | 10  |
| 2004     |   | 0.1 | 1    | 2   | 3   | 3   | 4   | 4   | 8   | 10  | 8   | 16  | 10 | 9   | 7  | 9   |
| 2005     |   |     |      | 0   | 0   | 0   | 1   | 1   | 2   | 2   | 2   | 3   | 5  | 5   | 4  | 12  |
| 2006     |   |     | 1    | 5   | 7   | 4   | 2   | 3   | 4   | 7   | 7   | 5   | 6  | 6   | 5  | 6   |
| 2007     |   |     | 2    | 22  | 22  | 17  | 6   | 4   | 3   | 4   | 8   | 14  | 11 | 8   | 6  | 5   |

Table 10 - Mean weight at age of the 3M American plaice catch (Kg), 1988-2007.

|          | Wican wei |       |       | •     |       | •     |       |       |       |       |       |       |       |       |       |       |
|----------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Year/age | 1         | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16+   |
| 1988     |           | 0.097 | 0.200 | 0.312 | 0.449 | 0.572 | 0.684 | 0.762 | 0.790 | 0.823 | 0.886 | 0.981 | 1.215 | 1.271 | 1.590 | 1.736 |
| 1989     |           | 0.079 | 0.165 | 0.342 | 0.479 | 0.617 | 0.750 | 0.842 | 0.860 | 0.882 | 0.928 | 0.985 | 1.136 | 1.185 | 1.484 | 1.717 |
| 1990     |           | 0.072 | 0.191 | 0.320 | 0.424 | 0.558 | 0.738 | 0.889 | 0.924 | 0.963 | 1.031 | 1.095 | 1.223 | 1.262 | 1.481 | 1.618 |
| 1991     |           | 0.115 | 0.189 | 0.367 | 0.480 | 0.598 | 0.763 | 0.891 | 0.929 | 0.962 | 1.035 | 1.087 | 1.188 | 1.206 | 1.361 | 1.477 |
| 1992     |           | 0.086 | 0.210 | 0.327 | 0.487 | 0.606 | 0.723 | 0.855 | 0.919 | 0.966 | 1.074 | 1.169 | 1.373 | 1.381 | 1.574 | 1.666 |
| 1993     |           |       | 0.162 | 0.296 | 0.394 | 0.580 | 0.756 | 0.813 | 0.865 | 0.979 | 1.039 | 1.059 | 1.179 | 1.339 | 1.819 | 1.627 |
| 1994     |           | 0.061 | 0.155 | 0.314 | 0.487 | 0.562 | 0.653 | 0.824 | 0.969 | 0.954 | 1.068 | 1.065 | 1.318 | 1.289 | 1.561 | 1.895 |
| 1995     |           | 0.044 | 0.190 | 0.335 | 0.494 | 0.626 | 0.684 | 0.816 | 0.925 | 1.244 | 1.320 | 1.474 | 1.532 | 1.547 | 1.571 | 2.108 |
| 1996     |           |       | 0.225 | 0.331 | 0.425 | 0.535 | 0.671 | 0.733 | 0.852 | 0.825 | 1.002 | 1.302 | 1.202 | 1.385 | 1.539 | 1.333 |
| 1997     |           |       |       |       | 0.445 | 0.639 | 0.726 | 0.682 | 0.949 | 1.059 | 1.097 | 1.270 | 1.261 | 1.509 | 1.508 | 1.513 |
| 1998     |           |       | 0.185 | 0.269 | 0.396 | 0.554 | 0.776 | 0.889 | 0.950 | 1.140 | 1.337 | 1.380 | 1.461 | 1.509 | 1.589 | 1.613 |
| 1999     |           |       |       | 0.365 | 0.495 | 0.536 | 0.581 | 0.786 | 0.872 | 0.943 | 1.109 | 1.194 | 1.337 | 1.445 | 1.439 | 1.389 |
| 2000     |           | 0.115 | 0.115 | 0.268 | 0.359 | 0.444 | 0.566 | 0.637 | 0.706 | 0.692 | 0.782 | 0.891 | 1.225 | 1.140 | 1.290 | 1.389 |
| 2001     |           |       | 0.263 | 0.283 | 0.340 | 0.401 | 0.471 | 0.595 | 0.615 | 0.691 | 0.703 | 0.805 | 0.975 | 1.150 | 1.298 | 1.534 |
| 2002     |           |       | 0.231 | 0.341 | 0.398 | 0.436 | 0.622 | 0.692 | 0.658 | 0.734 | 0.813 | 0.850 | 0.992 | 1.349 | 1.378 | 1.470 |
| 2003     |           |       | 0.232 | 0.419 | 0.419 | 0.554 | 0.613 | 0.754 | 0.746 | 0.786 | 0.868 | 0.949 | 0.968 | 1.084 | 1.311 | 1.567 |
| 2004     |           | 0.125 | 0.242 | 0.331 | 0.432 | 0.539 | 0.554 | 0.704 | 0.716 | 0.788 | 0.795 | 0.815 | 0.926 | 0.998 | 1.100 | 1.333 |
| 2005     |           |       |       | 0.436 | 0.573 | 0.721 | 0.902 | 0.806 | 0.928 | 0.977 | 0.941 | 1.045 | 1.116 | 1.181 | 1.292 | 1.442 |
| 2006     |           |       | 0.275 | 0.377 | 0.438 | 0.596 | 0.674 | 0.534 | 0.678 | 0.627 | 0.719 | 0.747 | 0.692 | 0.732 | 0.790 | 1.144 |
| 2007     |           |       | 0.177 | 0.306 | 0.472 | 0.567 | 0.614 | 0.778 | 0.604 | 0.816 | 0.612 | 0.691 | 0.723 | 0.653 | 0.716 | 1.202 |
| mean     | I         | 0.088 | 0.200 | 0.334 | 0.444 | 0.562 | 0.676 | 0.764 | 0.823 | 0.893 | 0.958 | 1.043 | 1.152 | 1.231 | 1.385 | 1.539 |
| moun     |           | 0.000 | 0.200 | 0.007 | ∪7-7- | 0.002 | 0.070 | 0.70- | 0.020 | 0.000 | 0.000 | 1.070 | 1.102 | 1.201 | 1.000 | 1.000 |

Table11: American plaice exploitaion pattern given by the generalized logit of the 1988-07 observed partial recruitment (See text).

| Age | F at age index | Observed PR          | Logit PR | Squared difference |
|-----|----------------|----------------------|----------|--------------------|
| 1   | 0.000          | 0.000                | 0.053    | 0.003              |
| 2   | 0.168          | 0.147                | 0.147    | 0.000              |
| 3   | 0.464          | 0.406                | 0.407    | 0.000              |
| 4   | 1.083          | 0.949                | 0.948    | 0.000              |
| 5   | 1.142          | 1.000                | 1.000    | 0.000              |
| 6   | 0.989          | 0.866                | 1.000    | 0.018              |
| 7   | 0.947          | 0.829                | 1.000    | 0.029              |
| 8   | 1.083          | 0.949                | 1.000    | 0.003              |
| 9   | 1.097          | 0.961                | 1.000    | 0.002              |
| 10  | 1.131          | 0.990                | 1.000    | 0.000              |
| 11  | 1.128          | 0.988                | 1.000    | 0.000              |
| 12  | 1.125          | 0.985                | 1.000    | 0.000              |
| 13  | 1.022          | 0.895                | 1.000    | 0.011              |
| 14  | 1.045          | 0.915                | 1.000    | 0.007              |
| 15  | 0.963          | 0.844                | 1.000    | 0.024              |
| 16  | 0.856          | 0.750                | 1.000    | 0.062              |
|     | M              | inimum sum of square | es.      | 0.157              |

| Curve parameters | а       | b     | т     |
|------------------|---------|-------|-------|
|                  | -27.497 | 7.076 | 0.144 |



Table 12 A: Yield per recruit parameters for 3M American plaice.

| Age | mean weig | ghts 1988-07 | og mat (%) | PR 88-07 | Ref. M    |
|-----|-----------|--------------|------------|----------|-----------|
|     | stock     | catch        |            |          | IXCI. IVI |
| 1   | 0.015     | 0.015        | 0.000      | 0.053    | 0.20      |
| 2   | 0.072     | 0.088        | 0.000      | 0.147    | 0.20      |
| 3   | 0.169     | 0.200        | 0.000      | 0.407    | 0.20      |
| 4   | 0.305     | 0.334        | 0.000      | 0.948    | 0.20      |
| 5   | 0.450     | 0.444        | 0.500      | 1.000    | 0.20      |
| 6   | 0.557     | 0.562        | 1.000      | 1.000    | 0.20      |
| 7   | 0.657     | 0.676        | 1.000      | 1.000    | 0.20      |
| 8   | 0.750     | 0.764        | 1.000      | 1.000    | 0.20      |
| 9   | 0.803     | 0.823        | 1.000      | 1.000    | 0.20      |
| 10  | 0.868     | 0.893        | 1.000      | 1.000    | 0.20      |
| 11  | 0.943     | 0.958        | 1.000      | 1.000    | 0.20      |
| 12  | 1.032     | 1.043        | 1.000      | 1.000    | 0.20      |
| 13  | 1.167     | 1.152        | 1.000      | 1.000    | 0.20      |
| 14  | 1.239     | 1.231        | 1.000      | 1.000    | 0.20      |
| 15  | 1.411     | 1.385        | 1.000      | 1.000    | 0.20      |
| 16+ | 1.604     | 1.539        | 1.000      | 1.000    | 0.20      |

Table 12 B: Yield per recruit results for 3M American plaice.

| . 0.0.0 | 71 1101G POL 1 | oor and rooming r | 01 01117 11110111 | Jan Plaider |       |
|---------|----------------|-------------------|-------------------|-------------|-------|
|         | Ref F          | В                 | Υ                 | SSB         | Slope |
|         | 0.000          | 2416              | 0                 | 1961        | 2,084 |
|         | 0.000          | 2416              | 0                 | 1961        | 1,591 |
|         | 0.035          | 1895              | 56                | 1450        | 931   |
|         | 0.070          | 1546              | 88                | 1111        | 566   |
|         | 0.105          | 1299              | 108               | 874         | 352   |
|         | 0.140          | 1119              | 120               | 704         | 222   |
| F0.1    | 0.162          | 1030              | 126               | 621         | 208   |
|         | 0.175          | 982               | 128               | 576         | 139   |
|         | 0.210          | 876               | 133               | 479         | 85    |
|         | 0.245          | 791               | 136               | 402         | 48    |
|         | 0.280          | 722               | 138               | 341         | 23    |
|         | 0.315          | 664               | 138               | 292         | 4     |
| Fmax    | 0.346          | 622               | 139               | 256         | 0     |
|         | 0.385          | 575               | 138               | 218         | -16   |
|         | 0.420          | 540               | 138               | 190         | -22   |
|         | 0.455          | 510               | 137               | 167         | -27   |
|         | 0.490          | 483               | 136               | 146         | -30   |
|         | 0.525          | 459               | 135               | 129         | -32   |

Fig.5 - Yield, B and SSB per recruit curve for 3M American plaice



Table 13 - Trend of the 3M American plaice F index

|      | based in EU su | irvey series (ages | s 8-11). |
|------|----------------|--------------------|----------|
| Year | Catch (tons)   | Survey (tons)      | C/B      |
| 1988 | 1082           | 5338               | 0.203    |
| 1989 | 1576           | 4979               | 0.317    |
| 1990 | 364            | 4443               | 0.082    |
| 1991 | 817            | 3692               | 0.221    |
| 1992 | 336            | 3335               | 0.101    |
| 1993 | 53             | 1531               | 0.034    |
| 1994 | 295            | 3903               | 0.076    |
| 1995 | 443            | 2512               | 0.176    |
| 1996 | 84             | 1525               | 0.055    |
| 1997 | 97             | 1311               | 0.074    |
| 1998 | 163            | 1874               | 0.087    |
| 1999 | 176            | 1450               | 0.121    |
| 2000 | 69             | 915                | 0.076    |
| 2001 | 84             | 1178               | 0.072    |
| 2002 | 65             | 700                | 0.093    |
| 2003 | 44             | 833                | 0.053    |
| 2004 | 23             | 724                | 0.032    |
| 2005 | 6              | 573                | 0.011    |
| 2006 | 13             | 395                | 0.033    |
| 2007 | 13             | 184                | 0.071    |



Fig. 6. Trend of the 3M American plaice F index based in EU survey.

Table 14. Evolution of Recruit ('000) and SSB ('000 tons) EU survey index during the period 1988-2007.

| Year           | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
|----------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| SSB            | 13.5 | 11.4 | 9.4  | 8.3  | 7.6  | 7.0  | 7.3  | 6.1  | 3.8  | 2.9  | 3.4  | 2.5  | 1.6  | 2.4  | 2.0  | 2.2  | 3.4  | 2.6  | 1.7  | 1.0  |
| Age 3 recruits | 1619 | 6621 | 1581 | 1628 | 886  | 1536 | 45   | 115  | 116  | 110  | 31   | 23   | 7    | 52   | 32   | 32   | 280  | 111  | 37   | 13   |



Fig. 7. SSB-Recruitment scatter plot based in EU survey series.



Fig. 8. Recruit at age 3 produced per kg of SSB index from EU indices.

Table 15: Lowestoft XSA input files for 3M American plaice (2008 assessment)

| Table 15:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lowest                                                                                                                                                                  | oft XSA i                                                                                                                                                                                  | input file                                                                                                                                                                                        | s for 3M                                                                                                                                                                                           | America                                                                                                                                                                                            | n plaice                                                                                                                                                                                      | (2008 as                                                                                                                                                                                                | sessmer                                                                                                                                                                                               |                                                                                                                                                                                                     | AMERICAN                                                                                                                                                                                          | I PLAICE N                                                                                                                                                                                | AFO 3M L                                                                                                                                                                             | ANDINGS t                                                                                                                                                                           | ons                                                                                                                                          |                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AMERICAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PLAICE N                                                                                                                                                                | IAFO DIVIS                                                                                                                                                                                 | SION 3M IN                                                                                                                                                                                        | IDEX OF IN                                                                                                                                                                                         | NPUT FILE                                                                                                                                                                                          | S JUNE 20                                                                                                                                                                                     | 108                                                                                                                                                                                                     |                                                                                                                                                                                                       | ,                                                                                                                                                                                                   | 1 1988                                                                                                                                                                                            | 1 1                                                                                                                                                                                       |                                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                              |                                                                                                                                                                         |
| pla3mla.bt<br>pla3mcn.txt<br>pla3mcw.txt<br>pla3mcw.txt<br>pla3mmcw.txt<br>pla3mmc.txt<br>pla3mpf.bt<br>pla3mpf.bt<br>pla3mpf.bt<br>pla3mpf.bt<br>pla3mfn.bt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t<br>t<br>t                                                                                                                                                             |                                                                                                                                                                                            |                                                                                                                                                                                                   |                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                                                                               |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                     | 15<br>2800.0<br>3500.0<br>790.0<br>1600.0<br>765.0<br>275.0<br>669.0<br>1300.0<br>208.0<br>294.0<br>255.0<br>133.0<br>149.0<br>128.0<br>131.0                                                     | 16                                                                                                                                                                                        |                                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                              |                                                                                                                                                                         |
| 1<br>1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2007                                                                                                                                                                    |                                                                                                                                                                                            |                                                                                                                                                                                                   |                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                                                                               |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                     | 45.8<br>76.8                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                              |                                                                                                                                                                         |
| 1<br>1<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16 7.173 175.482 6.843 0.826 4.055 0.000 0.000 0.000 0.000 0.000 0.163 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                                      | 311.143<br>209.362<br>48.514<br>18.908<br>16.669<br>46.566<br>5.540<br>24.070<br>13.477<br>0.000<br>0.311<br>0.000<br>1.310<br>0.018<br>1.466<br>0.000<br>0.859<br>1.918                   | 730.939<br>573.039<br>183.081<br>132.757<br>75.811<br>42.316<br>218.845<br>167.228<br>60.135<br>0.000<br>0.795<br>3.687<br>19.370<br>6.313<br>7.507<br>1.635<br>1.742<br>0.058<br>5.373<br>21.693 | 549.470<br>526.509<br>112.480<br>185.009<br>75.174<br>26.310<br>97.846<br>457.569<br>101.313<br>4.127<br>1.779<br>5.715<br>24.736<br>15.595<br>3.971<br>1.813<br>2.988<br>0.235<br>7.441<br>21.885 | 439.632<br>481.596<br>86.964<br>168.106<br>76.423<br>10.898<br>77.178<br>234.940<br>172.912<br>16.665<br>6.961<br>7.562<br>25.180<br>7.634<br>17.199<br>1.740<br>3.077<br>0.407<br>4.493<br>16.890 | 720.274<br>886.452<br>158.021<br>341.718<br>135.610<br>111.805<br>75.464<br>230.745<br>63.443<br>61.358<br>27.531<br>26.536<br>11.505<br>10.087<br>13.147<br>3.117<br>4.142<br>2.172<br>6.026 | 532.354<br>715.483<br>146.640<br>331.450<br>123.772<br>13.051<br>1253.952<br>154.915<br>41.371<br>12.153<br>56.541<br>58.790<br>13.399<br>20.963<br>20.828<br>6.465<br>4.227<br>0.626<br>2.958<br>3.864 | 386.160<br>519.799<br>109.896<br>242.806<br>99.740<br>23.865<br>23.683<br>250.209<br>23.700<br>27.868<br>36.400<br>60.383<br>33.195<br>30.316<br>22.316<br>13.057<br>8.421<br>1.871<br>3.848<br>3.409 | 264.927<br>355.616<br>78.140<br>173.529<br>76.833<br>12.333<br>47.534<br>31.301<br>34.003<br>22.766<br>30.980<br>34.501<br>34.508<br>41.413<br>22.896<br>12.298<br>9.758<br>2.474<br>6.616<br>3.501 | 173.455<br>229.522<br>55.217<br>124.320<br>60.036<br>8.865<br>16.248<br>34.815<br>6.211<br>34.742<br>31.954<br>40.136<br>17.427<br>35.175<br>23.896<br>22.889<br>8.405<br>1.950<br>6.628<br>8.490 | 117.634<br>147.672<br>39.041<br>84.203<br>46.126<br>10.874<br>16.864<br>29.966<br>2.755<br>13.361<br>32.958<br>20.555<br>13.385<br>28.772<br>16.694<br>24.817<br>15.530<br>2.846<br>5.314 | 64.944<br>80.390<br>24.185<br>49.967<br>31.165<br>14.948<br>20.150<br>29.784<br>3.395<br>2.599<br>7.613<br>9.220<br>5.704<br>10.327<br>12.272<br>15.526<br>10.408<br>6.224<br>11.357 | 102.356<br>117.524<br>33.081<br>67.842<br>45.422<br>46.678<br>39.615<br>58.238<br>2.958<br>8.714<br>13.894<br>4.569<br>3.081<br>5.869<br>15.103<br>9.371<br>5.262<br>5.512<br>8.088 | 42.774 38.571 13.221 22.925 22.935 1.740 42.826 45.445 3.699 6.838 3.244 2.956 3.041 3.027 8.891 7.340 4.246 4.797 6.142                     | 24.999 18.755 6.859 11.569 14.216 2.265 0.830 6.630 0.411 9.932 10.197 5.283 3.939 2.790 4.771 10.150 8.877 71.555 6.065 4.761                                          |
| AMERICAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                         | IAFO 3M C                                                                                                                                                                                  | ATCH WE                                                                                                                                                                                           | IGHT AT A                                                                                                                                                                                          | GE kg                                                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                     |                                                                                                                                                                                                   |                                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                              |                                                                                                                                                                         |
| 1<br>1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2007                                                                                                                                                                    |                                                                                                                                                                                            |                                                                                                                                                                                                   |                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                                                                               |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                     |                                                                                                                                                                                                   |                                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                              |                                                                                                                                                                         |
| 1 1 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4<br>2007                                                                                                                                                               | 0.200<br>0.165<br>0.191<br>0.189<br>0.210<br>0.162<br>0.155<br>0.190<br>0.225<br>0.200<br>0.185<br>0.200<br>0.1185<br>0.202<br>0.213<br>0.231<br>0.232<br>0.242<br>0.200<br>0.275<br>0.177 | 0.312<br>0.342<br>0.320<br>0.367<br>0.327<br>0.296<br>0.314<br>0.335<br>0.365<br>0.268<br>0.283<br>0.341<br>0.419<br>0.331<br>0.436<br>0.377<br>0.306                                             | 0.449<br>0.479<br>0.424<br>0.480<br>0.487<br>0.394<br>0.487<br>0.495<br>0.495<br>0.396<br>0.495<br>0.398<br>0.419<br>0.432<br>0.573<br>0.438<br>0.472                                              | 0.572 0.617 0.558 0.598 0.696 0.580 0.562 0.626 0.535 0.639 0.554 0.536 0.444 0.534 0.559 0.721 0.596 0.567                                                                                        | 0.684<br>0.750<br>0.753<br>0.763<br>0.753<br>0.653<br>0.684<br>0.671<br>0.726<br>0.581<br>0.581<br>0.562<br>0.613<br>0.554<br>0.902<br>0.613                                                  | 0.762<br>0.842<br>0.889<br>0.891<br>0.855<br>0.813<br>0.824<br>0.816<br>0.733<br>0.682<br>0.754<br>0.692<br>0.754<br>0.704<br>0.806<br>0.806                                                            | 0.790<br>0.860<br>0.924<br>0.929<br>0.919<br>0.865<br>0.969<br>0.925<br>0.872<br>0.706<br>0.618<br>0.746<br>0.716<br>0.716<br>0.928<br>0.678                                                          | 0.823<br>0.882<br>0.963<br>0.962<br>0.966<br>0.979<br>0.954<br>1.244<br>0.825<br>1.059<br>1.140<br>0.943<br>0.691<br>0.734<br>0.788<br>0.777<br>0.816                                               | 0.886<br>0.928<br>1.031<br>1.035<br>1.074<br>1.039<br>1.068<br>1.320<br>1.097<br>1.109<br>0.782<br>0.703<br>0.813<br>0.868<br>0.795<br>0.941<br>0.719<br>0.612                                    | 0.981<br>0.985<br>1.095<br>1.087<br>1.069<br>1.065<br>1.474<br>1.302<br>1.270<br>1.380<br>1.194<br>0.895<br>0.805<br>0.949<br>0.815<br>1.045<br>0.747<br>0.691                            | 1.215<br>1.136<br>1.123<br>1.188<br>1.373<br>1.179<br>1.318<br>1.532<br>1.202<br>1.261<br>1.461<br>1.337<br>1.265<br>0.975<br>0.992<br>0.968<br>0.926<br>1.116                       | 1.271<br>1.185<br>1.262<br>1.206<br>1.339<br>1.289<br>1.547<br>1.385<br>1.509<br>1.445<br>1.150<br>1.150<br>1.150<br>1.181<br>0.998<br>1.181<br>0.998                               | 1.590<br>1.484<br>1.481<br>1.361<br>1.574<br>1.561<br>1.571<br>1.539<br>1.598<br>1.439<br>1.298<br>1.378<br>1.311<br>1.100<br>1.292<br>0.790 | 1.736<br>1.717<br>1.618<br>1.477<br>1.668<br>1.627<br>1.895<br>2.108<br>1.333<br>1.513<br>1.389<br>1.389<br>1.389<br>1.353<br>1.470<br>1.567<br>1.333<br>1.470          |
| 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                                                                                                                                      |                                                                                                                                                                                            |                                                                                                                                                                                                   |                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                                                                               |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                     |                                                                                                                                                                                                   |                                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                              |                                                                                                                                                                         |
| 0.027<br>0.013<br>0.010<br>0.015<br>0.029<br>0.015<br>0.001<br>0.015<br>0.017<br>0.017<br>0.017<br>0.015<br>0.016<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.010<br>0.015<br>0.010<br>0.015<br>0.010<br>0.015<br>0.010<br>0.015<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.015<br>0.010<br>0.015<br>0.010<br>0.015<br>0.010<br>0.015<br>0.017<br>0.017<br>0.015<br>0.010<br>0.015<br>0.010<br>0.015<br>0.010<br>0.015<br>0.010<br>0.015<br>0.010<br>0.015<br>0.010<br>0.015<br>0.010<br>0.015<br>0.010<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0.015<br>0. | 0.048<br>0.090<br>0.062<br>0.070<br>0.063<br>0.061<br>0.062<br>0.044<br>0.055<br>0.049<br>0.072<br>0.072<br>0.072<br>0.071<br>0.072<br>0.074<br>0.110<br>0.094<br>0.119 | 0.152<br>0.151<br>0.189<br>0.157<br>0.158<br>0.160<br>0.162<br>0.191<br>0.190<br>0.171<br>0.174<br>0.166<br>0.115<br>0.210<br>0.191<br>0.191<br>0.191<br>0.191<br>0.192<br>0.182           | 0.338<br>0.295<br>0.312<br>0.341<br>0.315<br>0.295<br>0.316<br>0.330<br>0.236<br>0.260<br>0.315<br>0.245<br>0.245<br>0.245<br>0.245<br>0.237<br>0.307                                             | 0.495<br>0.523<br>0.425<br>0.478<br>0.516<br>0.407<br>0.490<br>0.488<br>0.469<br>0.427<br>0.384<br>0.440<br>0.374<br>0.396<br>0.457<br>0.396<br>0.457                                              | 0.620<br>0.630<br>0.564<br>0.563<br>0.616<br>0.579<br>0.568<br>0.624<br>0.589<br>0.514<br>0.543<br>0.434<br>0.444<br>0.457<br>0.565<br>0.527<br>0.600<br>0.621                                     | 0.721<br>0.725<br>0.709<br>0.660<br>0.684<br>0.727<br>0.650<br>0.668<br>0.708<br>0.673<br>0.652<br>0.568<br>0.614<br>0.528<br>0.694<br>0.543<br>0.594                                         | 0.786<br>0.815<br>0.829<br>0.770<br>0.758<br>0.808<br>0.789<br>0.823<br>0.643<br>0.778<br>0.673<br>0.603<br>0.755<br>0.603<br>0.757<br>0.603                                                            | 0.801<br>0.839<br>0.857<br>0.799<br>0.807<br>0.798<br>0.954<br>0.859<br>0.826<br>0.829<br>0.756<br>0.622<br>0.711<br>0.674<br>0.715<br>0.715                                                          | 0.820<br>0.856<br>0.893<br>0.829<br>0.832<br>0.874<br>0.917<br>1.222<br>0.864<br>0.998<br>1.027<br>0.998<br>0.748<br>0.702<br>0.873<br>0.754<br>0.754<br>0.792                                      | 0.876<br>0.912<br>0.956<br>0.886<br>0.910<br>0.906<br>1.025<br>1.279<br>1.081<br>1.007<br>1.239<br>1.178<br>0.848<br>0.703<br>1.0794<br>0.785<br>0.795<br>0.795                                   | 0.959<br>0.991<br>1.029<br>0.953<br>1.000<br>0.932<br>1.025<br>1.488<br>1.390<br>0.853<br>1.151<br>0.858<br>0.837<br>0.845<br>0.845                                                       | 1.201<br>1.181<br>1.179<br>1.141<br>1.182<br>1.075<br>1.271<br>1.518<br>1.307<br>1.275<br>1.501<br>1.462<br>1.222<br>1.076<br>0.886<br>0.999<br>0.885<br>0.769<br>0.913              | 1.208<br>1.186<br>1.200<br>1.157<br>1.190<br>1.218<br>1.228<br>1.515<br>1.519<br>1.437<br>1.513<br>1.705<br>1.177<br>1.321<br>1.402<br>1.092<br>0.920<br>0.876<br>0.876             | 1.537<br>1.462<br>1.412<br>1.417<br>1.408<br>1.540<br>1.563<br>1.649<br>1.606<br>1.563<br>1.295<br>1.427<br>1.486<br>1.240<br>1.048          | 1,742<br>1,646<br>1,578<br>1,634<br>1,712<br>1,628<br>1,895<br>2,082<br>1,777<br>1,515<br>1,650<br>1,587<br>1,386<br>1,487<br>1,499<br>1,490<br>1,413<br>1,294<br>1,537 |

Table 15: cont.

```
AMERICAN PLAICE NAFO 3M NATURAL MORTALITY
                 5
     1988
              2007
                16
       3
      0.2
AMERICAN PLAICE NAFO 3M PROPORTION MATURE AT AGE
              2007
    1988
       1
                16
     0.00
              0.00
                        0.00
                                  0.00
                                                               1.00
                                                                         1.00
                                                                                   1.00
                                                                                             1.00
                                                                                                      1.00
                                                                                                                1.00
                                                                                                                          1.00
                                                                                                                                   1.00
                                                                                                                                             1.00
                                                                                                                                                       1.00
AMERICAN PLAICE NAFO 3M PROPORTION OF F BEFORE SPAWNING
                                                                              AMERICAN PLAICE NAFO 3M PROPORTION OF M BEFORE SPAWNING
    1988
              2007
                                                                                   1988
                                                                                            2007
                                                                                              16
       3
                                                                                      3
     0.42
                                                                                   0.42
AMERICAN PLAICE NAFO 3M F ON OLDEST AGE GROUP BY YEAR
    1988
              2007
                16
    0.171
    0.267
    0.069
    0.187
    0.085
    0.029
    0.064
    0.149
    0.047
    0.062
    0.073
    0.102
    0.064
    0.060
    0.079
    0.045
    0.027
    0.010
    0.028
    0.060
AMERICAN PLAICE NAFO 3M F AT AGE IN LAST YEAR
    1988
              2007
                16
    0.000
             0.011
                       0.029
                                 0.068
                                           0.071
                                                    0.062
                                                              0.059
                                                                        0.068
                                                                                  0.069
                                                                                           0.071
                                                                                                     0.071
                                                                                                               0.070
                                                                                                                         0.064
                                                                                                                                  0.065
                                                                                                                                            0.060
                                                                                                                                                      0.054
AMERICAN PLAICE NAFO 3M SURVEY TUNNING DATA
     101
EU BOTTOM TRAWL SURVEY
     1988
              2007
       1
                         0.5
                                   0.6
                15
                      1338.8
                                1618.6
   10555
              483.2
                                          3955.0
                                                   3725.0
                                                             3423.3
                                                                       5016.5
                                                                                 3003.7
                                                                                          1802.1
                                                                                                    1156.9
                                                                                                               669.2
                                                                                                                         417.7
                                                                                                                                  230.1
                                                                                                                                            357.9
                                                                                                                                                      138.1
   10555
               55.0
                      1826.7
                                6621.2
                                          2681.7
                                                   2786.6
                                                             2544.4
                                                                       3794.3
                                                                                 2547.7
                                                                                           1615.7
                                                                                                     1088.6
                                                                                                               672.3
                                                                                                                         428.6
                                                                                                                                   221.5
                                                                                                                                             332.5
                                                                                                                                                      117.5
    10555
                7.6
                       665.1
                                1581.3
                                          5311.4
                                                   2455.6
                                                             1802.2
                                                                       2784.7
                                                                                 2066.0
                                                                                           1427.1
                                                                                                     994.9
                                                                                                               647.8
                                                                                                                         432.2
                                                                                                                                   242.3
                                                                                                                                             337.2
                                                                                                                                                      128.1
   10555
              153.6
                       353.2
                                1627.9
                                          2530.3
                                                   2795.7
                                                             1944.8
                                                                       2645 4
                                                                                 1855 1
                                                                                           1282 8
                                                                                                     878.9
                                                                                                               575.3
                                                                                                                         378.4
                                                                                                                                   185.9
                                                                                                                                            261.8
                                                                                                                                                       90.7
   10555
                                          1210.3
                                                             1681 7
                                                                       2432 7
                                                                                 1642 2
                                                                                                               541.5
               23.5
                       795 4
                                 885.5
                                                   1544 0
                                                                                           1141 8
                                                                                                     813 1
                                                                                                                         362.9
                                                                                                                                   187 2
                                                                                                                                            286.8
                                                                                                                                                      108 4
   10555
                        27.2
                                1535.5
                                          1082.4
                                                    775.0
                                                              446.8
                                                                       4115.8
                                                                                  467.5
                                                                                                     366.6
                                                                                                               257.5
                                                                                                                         299.0
                                                                                                                                            1064.7
               0.0
                                                                                           781.9
                                                                                                                                   354.4
                                                                                                                                                       32.2
   10555
                        47.2
                                                              878.2
                                                                                                                                                      490.4
                7.5
                                  45.4
                                          2133.9
                                                    1033.6
                                                                        983.2
                                                                                 3425.5
                                                                                           321.8
                                                                                                     654.2
                                                                                                               224.2
                                                                                                                         221.4
                                                                                                                                   252.0
                                                                                                                                            519.2
    10555
                0.0
                        28.6
                                 114.6
                                           741.1
                                                   2127.1
                                                             1367.6
                                                                       1376.8
                                                                                  913.0
                                                                                           1535.9
                                                                                                      161.3
                                                                                                               180.8
                                                                                                                         145.1
                                                                                                                                   145.0
                                                                                                                                             292.1
                                                                                                                                                      219.0
   10555
                8.0
                        39 1
                                 115 9
                                           259 7
                                                     585.5
                                                              1666 2
                                                                        894 1
                                                                                  545 4
                                                                                           403 4
                                                                                                     630.4
                                                                                                               144 3
                                                                                                                          77 9
                                                                                                                                   82 2
                                                                                                                                             109.4
                                                                                                                                                       69 O
   10555
                                                                                  269.8
                                                                                                     292.5
                                                                                                               487.5
                        16.1
                                            24.9
                                                     122.4
                                                              418.8
                                                                       1203.8
                                                                                           413.4
                                                                                                                         128.9
                                                                                                                                   24.9
                                                                                                                                             92.9
                                                                                                                                                       46.6
                8.1
                                 110.0
   10555
                        24.7
                                            46.5
                                                              266.5
                                                                        622.2
                                                                                  902.6
                                                                                                     355.8
                                                                                                               301.0
                                                                                                                         288.5
                                                                                                                                   88.0
                                  31.5
                                                     71.9
                                                                                           525.8
                                                                                                                                             113.4
                                                                                                                                                       56.7
                0.0
    10555
                         0.0
                                            65.4
                                                      78.7
                                                                        241.0
                                                                                  471.6
                                                                                           509.9
                                                                                                     254.8
                                                                                                               337.8
                                                                                                                         207.1
                                                                                                                                             117.1
                                                                                                                                                       59.1
                                  23.2
                                                               79.5
                                                                                                                                   121.3
    10555
               15.6
                        25.1
                                   6.8
                                            84.2
                                                     105.7
                                                              153.0
                                                                        118.7
                                                                                  153.5
                                                                                           391.6
                                                                                                     427.0
                                                                                                               231.1
                                                                                                                         185.0
                                                                                                                                   74.0
                                                                                                                                             55.6
                                                                                                                                                       46.3
                                  52 2
                                                                                                                                                      111 4
   10555
                0.0
                        39.8
                                            58.2
                                                     104 1
                                                               56.1
                                                                        111 0
                                                                                  267.6
                                                                                           437 9
                                                                                                     580.7
                                                                                                               478.5
                                                                                                                         4198
                                                                                                                                   189 9
                                                                                                                                             161 6
   10555
                                                                                                     189.6
                         0.0
                                  32.2
                                            65.5
                                                      16.5
                                                               88.8
                                                                                  126.3
                                                                                           158.6
                                                                                                               297.4
                                                                                                                         221.4
                                                                                                                                  248.7
                0.0
                                                                         65.9
                                                                                                                                            141.8
                                                                                                                                                      131.4
   10555
                7.1
                         6.2
                                  31.6
                                            93.3
                                                      79.8
                                                               58.2
                                                                         79.3
                                                                                  147.4
                                                                                           299.7
                                                                                                     258.0
                                                                                                               431.4
                                                                                                                         425.5
                                                                                                                                   271.9
                                                                                                                                            272.2
                                                                                                                                                      148.0
    10555
                0.0
                       117.2
                                 279.7
                                            73.5
                                                      79.1
                                                              106.9
                                                                        104.5
                                                                                  127.0
                                                                                           246.3
                                                                                                     315.8
                                                                                                               285.2
                                                                                                                         598.0
                                                                                                                                   426.1
                                                                                                                                             404.0
                                                                                                                                                      326.6
    10555
                0.0
                        31.5
                                 111.4
                                           287.8
                                                     106.3
                                                              105.9
                                                                        125.9
                                                                                  101.5
                                                                                           224.4
                                                                                                     206.4
                                                                                                               225.1
                                                                                                                         251.5
                                                                                                                                   353.0
                                                                                                                                             403.2
                                                                                                                                                      252.3
   10555
                7.3
                        28.2
                                  36.7
                                           106.5
                                                     132.7
                                                              139.0
                                                                         72.2
                                                                                   56.6
                                                                                           123.0
                                                                                                     163.2
                                                                                                               199.8
                                                                                                                         193.4
                                                                                                                                   192.4
                                                                                                                                            211.3
                                                                                                                                                      200.2
   10555
              207.2
                                  13.4
                                            35.2
                                                     105.8
                                                                         49.3
                                                                                   48.6
                                                                                             34.5
                                                                                                      47.3
                                                                                                                75.8
                                                                                                                         122.0
                                                                                                                                   143.2
                                                                                                                                             82.1
                                                                                                                                                       74.9
                         6.7
                                                              119.4
```

Table 16: Extended Survivor Analysis diagnostics for 2006 (Lowestoft VPA Version 3.1)

AMERICAN PLAICE NAFO DIVISION 3M INDEX OF INPUT FILES JUNE 2008 CPUE data from file pla3mtun.txt

Catch data for 20 years. 1988 to 2007. Ages 1 to 16.

| Fleet                | First | Last | First | Last | Alpha | Beta |
|----------------------|-------|------|-------|------|-------|------|
|                      | year  | year | age   | age  |       |      |
| EU BOTTOM TRAWL SURV | 1994  | 2007 | 1     | 15   | 0.5   | 0.6  |

Time series weights:

Tapered time weighting not applied

Catchability analysis:

Catchability independent of stock size for all ages Catchability independent of age for ages >= 12

Terminal population estimation :

Final estimates not shrunk towards mean F

Minimum standard error for population estimates derived from each fleet = .500

Prior weighting not applied

Tuning converged after 103 iterations

| Regression weights                 | 1           | 1          | 1      | 1     | 1     | 1     | 1      | 1     | 1     | 1     |
|------------------------------------|-------------|------------|--------|-------|-------|-------|--------|-------|-------|-------|
| Fishing mortalities                |             |            |        |       |       |       |        |       |       |       |
| Age                                | 1998        | 1999       | 2000   | 2001  | 2002  | 2003  | 2004   | 2005  | 2006  | 2007  |
| 1                                  | 0.000       | 0.000      | 0.000  | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000 | 0.000 |
| 2                                  | 0.000       | 0.000      | 0.000  | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000 | 0.000 |
| 3                                  | 0.001       | 0.000      | 0.000  | 0.015 | 0.003 | 0.000 | 0.002  | 0.000 | 0.002 | 0.006 |
| 4                                  | 0.001       | 0.008      | 0.049  | 0.033 | 0.027 | 0.004 | 0.005  | 0.000 | 0.009 | 0.068 |
| 5                                  | 0.003       | 0.011      | 0.068  | 0.051 | 0.026 | 0.008 | 0.009  | 0.001 | 0.015 | 0.046 |
| 6                                  | 0.009       | 0.018      | 0.059  | 0.027 | 0.073 | 0.014 | 0.017  | 0.002 | 0.020 | 0.043 |
| 7                                  | 0.029       | 0.045      | 0.034  | 0.030 | 0.059 | 0.017 | 0.042  | 0.006 | 0.010 | 0.034 |
| 8                                  | 0.065       | 0.081      | 0.029  | 0.081 | 0.080 | 0.037 | 0.029  | 0.008 | 0.025 | 0.023 |
| 9                                  | 0.066       | 0.092      | 0.060  | 0.083 | 0.116 | 0.066 | 0.062  | 0.016 | 0.062 | 0.036 |
| 10                                 | 0.100       | 0.082      | 0.069  | 0.098 | 0.084 | 0.086 | 0.064  | 0.023 | 0.072 | 0.074 |
| 11                                 | 0.166       | 0.181      | 0.054  | 0.094 | 0.076 | 0.113 | 0.078  | 0.016 | 0.080 | 0.123 |
| 12                                 | 0.231       | 0.153      | 0.084  | 0.120 | 0.059 | 0.105 | 0.104  | 0.034 | 0.056 | 0.236 |
| 13                                 | 0.133       | 0.093      | 0.058  | 0.087 | 0.069 | 0.071 | 0.058  | 0.046 | 0.098 | 0.163 |
| 14                                 | 0.355       | 0.110      | 0.041  | 0.078 | 0.040 | 0.113 | 0.056  | 0.038 | 0.063 | 0.178 |
| 15                                 | 0.225       | 0.130      | 0.096  | 0.051 | 0.052 | 0.129 | 0.073  | 0.032 | 0.044 | 0.092 |
| XSA population numbers (Thousan    | ds)         |            |        |       |       |       |        |       |       |       |
| YEAR\AGE                           | ´ 1         | 2          | 3      | 4     | 5     | 6     | 7      | 8     | 9     | 10    |
| 1998                               | 394.0       | 664.0      | 629.0  | 738.0 | 575.0 | 829.0 | 1060.0 | 992.0 | 629.0 | 361.0 |
| 1999                               | 586.0       | 323.0      | 543.0  | 514.0 | 604.0 | 469.0 | 672.0  | 839.0 | 761.0 | 482.0 |
| 2000                               | 785.0       | 480.0      | 264.0  | 445.0 | 418.0 | 489.0 | 377.0  | 526.0 | 634.0 | 569.0 |
| 2001                               | 687.0       | 642.0      | 393.0  | 216.0 | 347.0 | 320.0 | 378.0  | 299.0 | 419.0 | 489.0 |
| 2002                               | 1220.0      | 562.0      | 526.0  | 317.0 | 171.0 | 270.0 | 255.0  | 300.0 | 225.0 | 315.0 |
| 2003                               | 1210.0      | 1000.0     | 460.0  | 429.0 | 252.0 | 137.0 | 205.0  | 197.0 | 227.0 | 164.0 |
| 2004                               | 669.0       | 994.0      | 821.0  | 377.0 | 350.0 | 205.0 | 110.0  | 165.0 | 155.0 | 174.0 |
| 2005                               | 533.0       | 548.0      | 814.0  | 670.0 | 307.0 | 284.0 | 165.0  | 86.6  | 131.0 | 119.0 |
| 2006                               | 542.0       | 436.0      | 449.0  | 667.0 | 549.0 | 251.0 | 232.0  | 134.0 | 70.4  | 106.0 |
| 2007                               | 20800.0     | 444.0      | 357.0  | 366.0 | 541.0 | 443.0 | 202.0  | 188.0 | 107.0 | 54.1  |
| Estimated population abundance at  | 1st Jan 200 | 08         |        |       |       |       |        |       |       |       |
|                                    | 0.0         | 17100.0    | 363.0  | 291.0 | 280.0 | 423.0 | 347.0  | 160.0 | 151.0 | 84.8  |
| Taper weighted geometric mean of   | the VPA po  | pulations: |        |       |       |       |        |       |       |       |
|                                    | 1520.0      | 1170.0     | 1060.0 | 967.0 | 838.0 | 707.0 | 598.0  | 492.0 | 398.0 | 314.0 |
| Standard error of the weighted Log |             |            |        |       |       |       |        |       |       |       |
|                                    | 1.036       | 0.905      | 0.903  | 0.904 | 0.884 | 0.897 | 0.931  | 0.908 | 0.903 | 0.828 |

| Га |  | 6: | С |  |  |
|----|--|----|---|--|--|
|    |  |    |   |  |  |
|    |  |    |   |  |  |

| XSA population numbers (Thousan                         | ds)         |            |       |       |       |       |       |       |       |       |       |       |       |       |
|---------------------------------------------------------|-------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| YEAR \ AGE                                              | 11          | 12         | 13    | 14    | 15    |       |       |       |       |       |       |       |       |       |
| 1998                                                    | 230.0       | 176.0      | 67.7  | 51.4  | 37.4  |       |       |       |       |       |       |       |       |       |
| 1999                                                    | 268.0       | 160.0      | 115.0 | 48.6  | 29.5  |       |       |       |       |       |       |       |       |       |
| 2000                                                    | 364.0       | 183.0      | 112.0 | 85.5  | 35.6  |       |       |       |       |       |       |       |       |       |
| 2001                                                    | 434.0       | 282.0      | 138.0 | 86.7  | 67.2  |       |       |       |       |       |       |       |       |       |
| 2002                                                    | 363.0       | 324.0      | 205.0 | 103.0 | 65.6  |       |       |       |       |       |       |       |       |       |
| 2003                                                    | 238.0       | 276.0      | 250.0 | 157.0 | 81.2  |       |       |       |       |       |       |       |       |       |
| 2004                                                    | 123.0       | 174.0      | 203.0 | 191.0 | 115.0 |       |       |       |       |       |       |       |       |       |
| 2005                                                    | 134.0       | 93.5       | 128.0 | 157.0 | 148.0 |       |       |       |       |       |       |       |       |       |
| 2006                                                    | 95.6        | 108.0      | 74.0  | 100.0 | 124.0 |       |       |       |       |       |       |       |       |       |
| 2007                                                    | 80.8        | 72.2       | 83.2  | 54.9  | 77.1  |       |       |       |       |       |       |       |       |       |
| Estimated population abundance at                       | 1et Ian 200 | 18         |       |       |       |       |       |       |       |       |       |       |       |       |
| Estimated population abundance at                       | 41.1        | 58.4       | 46.7  | 57.9  | 37.7  |       |       |       |       |       |       |       |       |       |
|                                                         | 71          | 00.4       | 40.7  | 01.5  | 07.7  |       |       |       |       |       |       |       |       |       |
| Taper weighted geometric mean of                        | the VPA po  | pulations: |       |       |       |       |       |       |       |       |       |       |       |       |
|                                                         | 256.0       | 196.0      | 149.0 | 111.0 | 63.8  |       |       |       |       |       |       |       |       |       |
| Standard error of the weighted Log(                     | VPA nonula  | itions) ·  |       |       |       |       |       |       |       |       |       |       |       |       |
|                                                         | 0.714       | 0.650      | 0.603 | 0.633 | 0.904 |       |       |       |       |       |       |       |       |       |
|                                                         |             |            |       |       |       |       |       |       |       |       |       |       |       |       |
| Log catchability residuals. Fleet: EU BOTTOM TRAWL SURV | ,           |            |       |       |       |       |       |       |       |       |       |       |       |       |
| Age                                                     | 1994        | 1995       | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  |
| 1                                                       | -0.56       | 99.99      | -0.15 | 0     | 99.99 | 0.25  | 0.69  | 99.99 | 99.99 | -0.53 | 99.99 | 99.99 | 0.3   | 0     |
| 2                                                       | -0.36       | -0.24      | 0.05  | -0.48 | 0.09  | 99.99 | 0.43  | 0.6   | 99.99 | -1.7  | 1.24  | 0.53  | 0.64  | -0.81 |
| 3                                                       | -1.47       | 0          | 0.63  | 0.54  | -0.35 | -0.51 | -1.01 | 0.63  | -0.15 | -0.04 | 1.57  | 0.65  | 0.14  | -0.64 |
| 4                                                       | 1.26        | 0.63       | 0.12  | -1.63 | -1.06 | -0.35 | 0.07  | 0.41  | 0.15  | 0.18  | 0.08  | 0.86  | -0.12 | -0.6  |
| 5                                                       | 0.79        | 1.29       | 0.36  | -0.72 | -0.68 | -0.64 | 0.06  | 0.22  | -0.93 | 0.25  | -0.09 | 0.33  | -0.02 | -0.21 |
| 6                                                       | 0.53        | 0.91       | 0.92  | -0.23 | -0.23 | -0.86 | -0.23 | -0.82 | -0.17 | 0.06  | 0.26  | -0.08 | 0.32  | -0.38 |
| 7                                                       | 0.76        | 1.07       | 0.51  | 0.57  | 0.09  | -0.4  | -0.53 | -0.6  | -0.71 | -0.34 | 0.57  | 0.34  | -0.56 | -0.78 |
| 8                                                       | 1.59        | 0.82       | 0.24  | -0.72 | 0.27  | -0.2  | -0.89 | 0.27  | -0.49 | 0.06  | 0.08  | 0.49  | -0.52 | -1.01 |
| 9                                                       | 0.22        | 0.99       | -0.03 | -0.17 | -0.21 | -0.42 | -0.52 | 0.02  | -0.36 | 0.24  | 0.43  | 0.47  | 0.52  | -1.19 |
| 10                                                      | 1.02        | -0.25      | 0.45  | -0.2  | -0.16 | -0.8  | -0.45 | 0.02  | -0.67 | 0.29  | 0.43  | 0.36  | 0.27  | -0.3  |
| 11                                                      | 0.03        | 0.09       | -0.18 | 0.4   | 0.01  | -0.01 | -0.77 | -0.2  | -0.5  | 0.31  | 0.54  | 0.19  | 0.44  | -0.34 |
| 12                                                      | 0.06        | -0.09      | -0.5  | -0.09 | 0.16  | -0.11 | -0.4  | 0.01  | -0.81 | 0.03  | 0.84  | 0.55  | 0.16  | 0.2   |
| 13                                                      | -0.11       | 0.12       | -0.29 | -1.4  | -0.12 | -0.35 | -0.84 | -0.09 | -0.23 | -0.33 | 0.31  | 0.58  | 0.55  | 0.17  |
| 14                                                      | 0.23        | 0.64       | 0.25  | 0.16  | 0.53  | 0.48  | -0.87 | 0.21  | -0.12 | 0.16  | 0.32  | 0.51  | 0.32  | 0.04  |
| 15                                                      | 0           | -0.2       | -0.3  | -0.33 | 80.0  | 0.31  | -0.14 | 0.07  | 0.27  | 0.21  | 0.63  | 0.1   | 0.05  | -0.44 |

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age        | 1        | 2        | 3        | 4        | 5        | 6        | 7       | 8       | 9       | 10      |
|------------|----------|----------|----------|----------|----------|----------|---------|---------|---------|---------|
| Mean Log q | -13.7657 | -12.5375 | -11.7972 | -10.8619 | -10.5479 | -10.0581 | -9.7603 | -9.4854 | -9.0838 | -8.9499 |
| S.E(Log q) | 0.4224   | 0.7842   | 0.7847   | 0.7472   | 0.6172   | 0.5456   | 0.6272  | 0.7092  | 0.5418  | 0.4969  |
| Age        | 11       | 12       | 13       | 14       | 15       |          |         |         |         |         |
| Mean Log q | -8.8096  | -8.6964  | -8.6964  | -8.6964  | -8.6964  |          |         |         |         |         |
| S.E(Log q) | 0.3727   | 0.4101   | 0.5455   | 0.4265   | 0.2878   |          |         |         |         |         |

Regression statistics : Ages with q independent of year class strength and constant w.r.t. time.

| Age | Slope | t-value | Intercept | RSquare | No Pts | Reg s.e | Mean Q |
|-----|-------|---------|-----------|---------|--------|---------|--------|
| 1   | 1.08  | -0.526  | 14.31     | 0.87    | 8      | 0.48    | -13.77 |
| 2   | 1.71  | -0.79   | 16.75     | 0.11    | 12     | 1.37    | -12.54 |
| 3   | 1.04  | -0.108  | 12.01     | 0.37    | 14     | 0.85    | -11.8  |
| 4   | 0.75  | 1.223   | 9.79      | 0.67    | 14     | 0.55    | -10.86 |
| 5   | 0.71  | 2.249   | 9.32      | 0.83    | 14     | 0.38    | -10.55 |
| 6   | 0.78  | 1.586   | 9.23      | 0.82    | 14     | 0.40    | -10.06 |
| 7   | 0.74  | 1.769   | 8.80      | 0.80    | 14     | 0.43    | -9.76  |
| 8   | 0.81  | 0.974   | 8.82      | 0.69    | 14     | 0.58    | -9.49  |
| 9   | 1.05  | -0.248  | 9.27      | 0.64    | 14     | 0.59    | -9.08  |
| 10  | 1.30  | -1.131  | 10.00     | 0.54    | 14     | 0.64    | -8.95  |
| 11  | 1.42  | -1.591  | 10.30     | 0.55    | 14     | 0.5     | -8.81  |
| 12  | 1.28  | -0.906  | 9.74      | 0.46    | 14     | 0.53    | -8.70  |
| 13  | 0.84  | 0.579   | 8.19      | 0.52    | 14     | 0.45    | -8.84  |
| 14  | 0.95  | 0.254   | 8.31      | 0.72    | 14     | 0.37    | -8.49  |
| 15  | 0.98  | 0.161   | 8.59      | 0.86    | 14     | 0.29    | -8.67  |

Table 16: Cont.

Terminal year survivor and F summaries :

| Terminar year survivor and 1 sum                        | manes.        |           |              |              |       |         |           |
|---------------------------------------------------------|---------------|-----------|--------------|--------------|-------|---------|-----------|
| Age 1 Catchability constant w.r.t.                      | time and depe | endent on | age          |              |       |         |           |
| Year class = 2006                                       |               |           | 3-           |              |       |         |           |
| Fleet                                                   | Estimated     | Int       | Ext          | Var          | N     | Scaled  | Estimated |
|                                                         | Survivors     | s.e       | s.e          | Ratio        |       | Weights | F         |
| EU BOTTOM TRAWL SURV Weighted prediction:               | 17069         | 0.5       | 0            | 0            | 1     | 1       | 0         |
| Survivors                                               | Int           | Ext       | N            | Var          | F     |         |           |
| at end of year                                          | s.e           | s.e       | . •          | Ratio        | •     |         |           |
| 17069                                                   | 0.5           | 0         | 1            | 0            | 0     |         |           |
| 17 000                                                  | 0.0           | Ü         | •            | Ü            | Ū     |         |           |
| Age 2 Catchability constant w.r.t.<br>Year class = 2005 | time and depo | endent on | age          |              |       |         |           |
| Fleet                                                   | Estimated     | Int       | Ext          | Var          | N     | Scaled  | Estimated |
|                                                         | Survivors     | s.e       | s.e          | Ratio        |       | Weights | F         |
| EU BOTTOM TRAWL SURV Weighted prediction:               | 363           | 0.426     | 0.496        | 1.16         | 2     | 1       | 0         |
| Survivors                                               | Int           | Ext       | N            | Var          | F     |         |           |
| at end of year                                          | s.e           | s.e       |              | Ratio        |       |         |           |
| 363                                                     | 0.43          | 0.5       | 2            | 1.164        | 0     |         |           |
|                                                         |               |           |              |              |       |         |           |
| Age 3 Catchability constant w.r.t.<br>Year class = 2004 | time and depo | endent on | age          |              |       |         |           |
| Fleet                                                   | Estimated     | Int       | Ext          | Var          | N     | Scaled  | Estimated |
|                                                         | Survivors     | s.e       | s.e          | Ratio        |       | Weights | F         |
| EU BOTTOM TRAWL SURV<br>Weighted prediction :           | 291           | 0.576     | 0.64         | 1.11         | 2     | 1       | 0.006     |
| Survivors                                               | Int           | Ext       | N            | Var          | F     |         |           |
| at end of year                                          | s.e           | s.e       |              | Ratio        |       |         |           |
| 291                                                     | 0.58          | 0.64      | 2            | 1.111        | 0.006 |         |           |
| Age 4 Catchability constant w.r.t.<br>Year class = 2003 |               |           |              |              |       |         |           |
| Fleet                                                   | Estimated     | Int       | Ext          | Var          | N     | Scaled  | Estimated |
| FU DOTTOM TRANSPORT                                     | Survivors     | s.e       | s.e          | Ratio        |       | Weights | F         |
| EU BOTTOM TRAWL SURV Weighted prediction:               | 280           | 0.462     | 0.334        | 0.72         | 3     | 1       | 0.068     |
| Survivors                                               | Int           | Ext       | N            | Var          | F     |         |           |
| at end of year                                          | s.e           | s.e       |              | Ratio        |       |         |           |
| 280                                                     | 0.46          | 0.33      | 3            | 0.723        | 0.068 |         |           |
| Age 5 Catchability constant w.r.t.<br>Year class = 2002 | time and depo | endent on | age          |              |       |         |           |
| Fleet                                                   | Estimated     | Int       | Ext          | Var          | N     | Scaled  | Estimated |
| i ieet                                                  | Survivors     | s.e       |              | Ratio        | IN    | Weights | F         |
| EU BOTTOM TRAWL SURV                                    | 423           | 0.3       | s.e<br>0.308 | 1.03         | 5     | weigins | 0.046     |
| Weighted prediction : Survivors                         |               |           |              |              |       | ·       | 0.040     |
| at end of year                                          | Int           | Ext       | N            | Var<br>Ratio | F     |         |           |
| 423                                                     | s.e<br>0.3    | s.e       | 5            | 1.029        | 0.046 |         |           |
| 423                                                     | 0.3           | 0.31      | 5            | 1.029        | 0.040 |         |           |
| Age 6 Catchability constant w.r.t.<br>Year class = 2001 | time and depo | endent on | age          |              |       |         |           |
| Fleet                                                   | Estimated     | Int       | Ext          | Var          | N     | Scaled  | Estimated |
|                                                         | Survivors     | s.e       | s.e          | Ratio        |       | Weights | F         |
| EU BOTTOM TRAWL SURV                                    | 347           | 0.312     | 0.486        | 1.56         | 5     | 1       | 0.043     |
| Weighted prediction :                                   |               |           |              | -            |       |         | -         |
| Survivors                                               | Int           | Ext       | N            | Var          | F     |         |           |
| at end of year                                          | s.e           | s.e       |              | Ratio        |       |         |           |
| 347                                                     | 0.31          | 0.49      | 5            | 1.559        | 0.043 |         |           |
|                                                         |               |           |              |              |       |         |           |

Table 16: Cont.

| Table 16: Cont.                    |                         |              |       |              |       |         |           |
|------------------------------------|-------------------------|--------------|-------|--------------|-------|---------|-----------|
| Age 7 Catchability constant w.r.t. | time and den            | andent on    | 200   |              |       |         |           |
| Year class = 2000                  | une and dep             | endent on    | aye   |              |       |         |           |
| Fleet                              | Estimated               | Int          | Ext   | Var          | N     | Scaled  | Estimated |
|                                    | Survivors               | s.e          | s.e   | Ratio        | • •   | Weights | F         |
| EU BOTTOM TRAWL SURV               | 160                     | 0.3          | 0.217 | 0.72         | 5     | 1       | 0.034     |
| Weighted prediction :              |                         | -            |       | *            | -     |         |           |
| Survivors                          | Int                     | Ext          | N     | Var          | F     |         |           |
| at end of year                     | s.e                     | s.e          |       | Ratio        |       |         |           |
| 160                                | 0.3                     | 0.22         | 5     | 0.724        | 0.034 |         |           |
|                                    |                         |              |       |              |       |         |           |
| Age 8 Catchability constant w.r.t. | time and depo           | endent on    | age   |              |       |         |           |
| Year class = 1999                  |                         |              |       |              |       |         |           |
| Fleet                              | Estimated               | Int          | Ext   | Var          | N     | Scaled  | Estimated |
|                                    | Survivors               | s.e          | s.e   | Ratio        |       | Weights | F         |
| EU BOTTOM TRAWL SURV               | 151                     | 0.232        | 0.201 | 0.86         | 8     | 1       | 0.023     |
| Weighted prediction:               |                         |              |       |              |       |         |           |
| Survivors                          | Int                     | Ext          | N     | Var          | F     |         |           |
| at end of year                     | s.e                     | s.e          |       | Ratio        |       |         |           |
| 151                                | 0.23                    | 0.2          | 8     | 0.865        | 0.023 |         |           |
|                                    |                         |              |       |              |       |         |           |
| Age 9 Catchability constant w.r.t. | time and dep            | endent on    | age   |              |       |         |           |
| Year class = 1998                  | E.C                     | 1.4          |       | 17-          |       | 0       | E.C       |
| Fleet                              | Estimated               | Int          | Ext   | Var          | N     | Scaled  | Estimated |
| EU BOTTOM TRAWL SURV               | Survivors               | S.e          | S.E   | Ratio        | 0     | Weights | F         |
|                                    | 85                      | 0.215        | 0.201 | 0.94         | 9     | 1       | 0.036     |
| Weighted prediction :<br>Survivors | Int                     | Eve          | NI    | Var          | F     |         |           |
| at end of year                     | Int                     | Ext          | N     | Vai<br>Ratio | Г     |         |           |
| 85                                 | s.e<br>0.21             | s.e<br>0.2   | 9     | 0.935        | 0.036 |         |           |
| 85                                 | 0.21                    | 0.2          | 9     | 0.333        | 0.030 |         |           |
| Age 10 Catchability constant w.r.t | time and de             | nendent or   | n age |              |       |         |           |
| Year class = 1997                  | umo ana ao <sub>l</sub> | portaonit of | . ago |              |       |         |           |
| Fleet                              | Estimated               | Int          | Ext   | Var          | N     | Scaled  | Estimated |
|                                    | Survivors               | s.e          | s.e   | Ratio        |       | Weights | F         |
| EU BOTTOM TRAWL SURV               | 41                      | 0.224        | 0.211 | 0.94         | 8     | 1       | 0.074     |
| Weighted prediction:               |                         |              |       |              |       |         |           |
| Survivors                          | Int                     | Ext          | N     | Var          | F     |         |           |
| at end of year                     | s.e                     | s.e          |       | Ratio        |       |         |           |
| 41                                 | 0.22                    | 0.21         | 8     | 0.939        | 0.074 |         |           |
|                                    |                         |              |       |              |       |         |           |
| Age 11 Catchability constant w.r.t | . time and de           | pendent or   | n age |              |       |         |           |
| Year class = 1996                  |                         |              |       |              |       |         |           |
| Fleet                              | Estimated               | Int          | Ext   | Var          | N     | Scaled  | Estimated |
|                                    | Survivors               | s.e          | s.e   | Ratio        |       | Weights | F         |
| EU BOTTOM TRAWL SURV               | 58                      | 0.185        | 0.091 | 0.49         | 11    | 1       | 0.123     |
| Weighted prediction:               |                         | _            |       |              | _     |         |           |
| Survivors                          | Int                     | Ext          | N     | Var          | F     |         |           |
| at end of year                     | s.e                     | s.e          |       | Ratio        |       |         |           |
| 58                                 | 0.19                    | 0.09         | 11    | 0.492        | 0.123 |         |           |
| A 40 0 . I I III                   |                         |              |       |              |       |         |           |
| Age 12 Catchability constant w.r.t | i. time and de          | pendent or   | n age |              |       |         |           |
| Year class = 1995                  | E.C                     | 1.4          |       | 17-          |       | 0       | E.C       |
| Fleet                              | Estimated               | Int          | Ext   | Var          | N     | Scaled  | Estimated |
| FU DOTTOM TRAVAL CURV              | Survivors               | s.e          | S.E   | Ratio        | 40    | Weights | F         |
| EU BOTTOM TRAWL SURV               | 47                      | 0.174        | 0.128 | 0.73         | 12    | 1       | 0.236     |
| Weighted prediction :              | Int                     | Ev4          | N I   | 1/05         | _     |         |           |
| Survivors                          | Int                     | Ext          | N     | Var          | F     |         |           |
| at end of year                     | s.e                     | s.e          | 10    | Ratio        | 0.006 |         |           |
| 47                                 | 0.17                    | 0.13         | 12    | 0.732        | 0.236 |         |           |

Table 16: Cont.

Age 13 Catchability constant w.r.t. time and age (fixed at the value for age) 12 Y Year class = 1994

| Fleet                              | Estimated<br>Survivors | Int<br>s.e | Ext<br>s.e | Var<br>Ratio | N     | Scaled<br>Weights | Estimated F |
|------------------------------------|------------------------|------------|------------|--------------|-------|-------------------|-------------|
| EU BOTTOM TRAWL SURV               | 58                     | 0.177      | 0.123      | 0.69         | 12    | 1                 | 0.163       |
| Weighted prediction :<br>Survivors | Int                    | Ext        | N          | Var          | F     |                   |             |
| at end of year                     | s.e                    | s.e        | 40         | Ratio        | 0.400 |                   |             |
| 58                                 | 0.18                   | 0.12       | 12         | 0.693        | 0.163 |                   |             |

Age 14 Catchability constant w.r.t. time and age (fixed at the value for age) 12 Y Year class = 1993

| 04. 0.400            |           |      |       |       |       |         |           |
|----------------------|-----------|------|-------|-------|-------|---------|-----------|
| Fleet                | Estimated | Int  | Ext   | Var   | N     | Scaled  | Estimated |
|                      | Survivors | s.e  | s.e   | Ratio |       | Weights | F         |
| EU BOTTOM TRAWL SURV | 38        | 0.16 | 0.158 | 0.99  | 14    | 1       | 0.178     |
| Weighted prediction: |           |      |       |       |       |         |           |
| Survivors            | Int       | Ext  | N     | Var   | F     |         |           |
| at end of year       | s.e       | s.e  |       | Ratio |       |         |           |
| 38                   | 0.16      | 0.16 | 14    | 0.988 | 0.178 |         |           |
|                      |           |      |       |       |       |         |           |

Age 15 Catchability constant w.r.t. time and age (fixed at the value for age) 12 Year class = 1992

| Fleet                | Estimated | Int   | Ext   | Var   | N     | Scaled  | Estimated |
|----------------------|-----------|-------|-------|-------|-------|---------|-----------|
|                      | Survivors | s.e   | s.e   | Ratio |       | Weights | F         |
| EU BOTTOM TRAWL SURV | 58        | 0.161 | 0.143 | 0.89  | 14    | 1       | 0.092     |
| Weighted prediction: |           |       |       |       |       |         |           |
| Survivors            | Int       | Ext   | N     | Var   | F     |         |           |
| at end of year       | s.e       | s.e   |       | Ratio |       |         |           |
| 58                   | 0.16      | 0.14  | 14    | 0.888 | 0.092 |         |           |
|                      |           |       |       |       |       |         |           |

Fig.9. Log catchability residuals





| Table 17  | Evtanda    | d Survivor          | Analysis resu  | ılte  |
|-----------|------------|---------------------|----------------|-------|
| Table I7. | . Exteriue | a Survivor <i>i</i> | Aliaivsis lesu | IIIS. |

| Table 17. Exterioca ( | Survivor Arialysis resul |          |          |           |           |
|-----------------------|--------------------------|----------|----------|-----------|-----------|
|                       | RECRUITS                 | TOTAL    | SPAWNING |           |           |
| YEAR                  | Age 1                    | BIOMASS  | BIOMASS  | FBAR 3-13 | FBAR 8-11 |
|                       | (Thousands)              | (Tonnes) | (Tonnes) |           |           |
| 1988                  | 3754                     | 14366    | 9580     | 0.2674    | 0.2878    |
| 1989                  | 3859                     | 11521    | 7091     | 0.4214    | 0.4804    |
| 1990                  | 4465                     | 7895     | 5145     | 0.1194    | 0.1203    |
| 1991                  | 6416                     | 7312     | 4227     | 0.3002    | 0.4223    |
| 1992                  | 4150                     | 6563     | 3928     | 0.1661    | 0.2975    |
| 1993                  | 2429                     | 6099     | 3681     | 0.0454    | 0.0644    |
| 1994                  | 1311                     | 6769     | 3990     | 0.1214    | 0.1935    |
| 1995                  | 1345                     | 6503     | 3830     | 0.2575    | 0.3315    |
| 1996                  | 938                      | 4978     | 3465     | 0.0661    | 0.0782    |
| 1997                  | 811                      | 4393     | 3413     | 0.0560    | 0.0836    |
| 1998                  | 394                      | 4215     | 3316     | 0.0732    | 0.0993    |
| 1999                  | 586                      | 3852     | 3047     | 0.0694    | 0.1090    |
| 2000                  | 785                      | 2942     | 2389     | 0.0513    | 0.0530    |
| 2001                  | 687                      | 2439     | 1941     | 0.0653    | 0.0891    |
| 2002                  | 1224                     | 2709     | 2165     | 0.0608    | 0.0887    |
| 2003                  | 1215                     | 1987     | 1489     | 0.0474    | 0.0754    |
| 2004                  | 669                      | 2082     | 1451     | 0.0428    | 0.0582    |
| 2005                  | 533                      | 2192     | 1571     | 0.0138    | 0.0159    |
| 2006                  | 542                      | 1807     | 1162     | 0.0408    | 0.0596    |
| 2007                  | 20846                    | 1888     | 1170     | 0.0774    | 0.0641    |





Fig. 10. SSB-Recruitment scatter plot based in XSA results.





Fig. 11. Recruit at age 1 produced per kg of SSB index from XSA indices.



В 

Fig.12 A. Extended Survivor Analysis results for F (age 8-11)



Tfig. 12 B. Extended Survivor Analysis results for total biomass (tons)



Fig. 12 C: Extended Survivor Analysis results for spawning biomass (tons)

Fig.12 D: Extended Survivor Analysis results for recruits at age 1 ('000)





Fig. 13a: F (3-13) XSA retrospective analysis, 2007-2003



Fig. 13b: F (8-11) XSA retrospective analysis, 2007-2003



Fig. 13c: Biomass (thousand tons) XSA retrospective analysis, 2007-2003



Fig. 13d: SSB (thousand tons) XSA retrospective analysis, 2007-2003

| Table 18: co         | ont.       |             |      |      |      |
|----------------------|------------|-------------|------|------|------|
| RECRUITS             | 2007       | 2006        | 2005 | 2004 | 2003 |
| 1988                 | 3754       | 3891        | 3814 | 3799 | 3707 |
| 1989                 | 3859       | 4017        | 3913 | 3894 | 3789 |
| 1990                 | 4465       | 4685        | 4533 | 4506 | 3979 |
| 1991                 | 6416       | 6686        | 6485 | 6358 | 5749 |
| 1992                 | 4150       | 4368        | 4139 | 3760 | 3175 |
| 1993                 | 2429       | 2744        | 2535 | 2181 | 1591 |
| 1994                 | 1311       | 1415        | 1270 | 999  | 710  |
| 1995                 | 1345       | 1442        | 1291 | 1047 | 789  |
| 1996                 | 938        | 1010        | 871  | 679  | 454  |
| 1997                 | 811        | 962         | 865  | 699  | 520  |
| 1998                 | 394        | 474         | 394  | 360  | 203  |
| 1999                 | 586        | 852         | 865  | 741  | 562  |
| 2000                 | 785        | 1066        | 1124 | 1136 | 861  |
| 2001                 | 687        | 976         | 847  | 656  | 533  |
| 2002                 | 1224       | 1646        | 1899 | 319  | 150  |
| 2003                 | 1215       | 1687        | 1637 | 1696 | 482  |
| 2004                 | 669        | 1152        | 1384 | 0    |      |
| 2005                 | 533        | 1261        | 0    |      |      |
| 2006                 | 542        | 964         |      |      |      |
| 2007                 | 20846      |             |      |      |      |
| RECRUITS             | 2007       | 2006        | 2005 | 2004 | 2003 |
| 1988                 | 3754       | 3891        | 3814 | 3799 | 3707 |
| 1989                 | 3859       | 4017        | 3913 | 3894 | 3789 |
| 1990                 | 4465       | 4685        | 4533 | 4506 | 3979 |
| 1991                 | 6416       | 6686        | 6485 | 6358 | 5749 |
| 1992                 | 4150       | 4368        | 4139 | 3760 | 3175 |
| 1993                 | 2429       | 2744        | 2535 | 2181 | 1591 |
| 1994                 | 1311       | 1415        | 1270 | 999  | 710  |
| 1995                 | 1345       | 1442        | 1291 | 1047 | 789  |
| 1996                 | 938        | 1010        | 871  | 679  | 454  |
| 1997                 | 811        | 962         | 865  | 699  | 520  |
| 1998                 | 394        | 474         | 394  | 360  | 203  |
| 1999                 | 586        | 852         | 865  | 741  | 562  |
| 2000                 | 785        | 1066        | 1124 | 1136 | 861  |
| 2001                 | 687        | 976         | 847  | 656  | 533  |
| 2002                 | 1224       | 1646        | 1899 | 319  | 150  |
| 2003                 | 1215       | 1687        | 1637 | 1696 | 482  |
| 2004                 | 669        | 1152        | 1384 | 0    |      |
|                      |            |             |      |      |      |
| 2005                 | 533        | 1261        | 0    |      |      |
| 2005<br>2006<br>2007 | 533<br>542 | 1261<br>964 | U    |      |      |



Fig. 13e: Recruitment (thousands - age 1) XSA retrospective analysis, 2007-2003



Fig. 13f: Recruitment (thousands - age 1) XSA retrospective analysis, 2007-2003 (without 2007 point)