DCC008 - Cálculo Numérico Polinômios de Taylor

Bernardo Martins Rocha

Departamento de Ciência da Computação Universidade Federal de Juiz de Fora bernardomartinsrocha@ice.ufjf.br

Conteúdo

- ► Introdução
- ► Definição do polinômio de Taylor
- ► Propriedades
- ► Exemplos
- ► Algoritmo de Horner
- ► Erro
- Exemplos
- ► Aproximação de Derivada

Introdução

Algumas funções matemáticas ditas "elementares" não são tão elementares assim quando tentamos avalia-las.

Se p é uma função polinomial,

$$p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

então p pode ser avaliado facilmente para qualquer número x.

Entretanto o mesmo não é verdadeiro para funções como e^x , $\sin{(x)}$, $\cos{(x)}$, $\log{(x)}$. Tente calcular essas funções sem usar a calculadora para qualquer x.

Estamos interessados em reduzir a avaliação de funções f(x) por funções que sejam mais fáceis de se avaliar.

Introdução

Já vimos que polinômios são funções fáceis de se avaliar, pois precisamos apenas de realizar operações de adição e multiplicação.

Sendo assim estamos interessados em aproximar a função f(x) por uma função polinomial $\hat{f}(x)$ que seja fácil de avaliar.

Uma das aproximações polinomiais mais usadas são os polinômios de Taylor.

Vamos estudar agora como encontrar estas funções polinomiais que aproximam f(x).

A fim de encontrar um polinômio que aproxima uma função, vamos antes analisar algumas propriedades de polinômios.

Considere o polinômio $p(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$.

É interessante observar que os coeficientes a_i , $i=0,\ldots,n$, podem ser escritos em termos de valores de p e de suas várias derivadas (p', p'', \ldots) em x=0.

Para começar observe que

$$p(0) = a_0$$

Derivando p(x) temos

$$p'(x) = a_1 + 2a_2x + \ldots + na_nx^{n-1}$$

e portanto

$$p'(0) = a_1$$

Derivando novamente

$$p''(x) = 2a_2 + 6a_3x + \ldots + n(n-1)a_nx^{n-2}$$

e portanto

$$p''(0) = 2a_2$$

Denotando a k-ésima derivada de p(x) por $p^{(k)}(x)$, de forma geral teremos a seguinte relação

$$p^{(k)}(0) = k! a_k$$

Lembrando que 0! = 1 e que $p^{(0)} = p$, temos

$$a_k = \frac{p^{(k)}(0)}{k!}, \ 0 \le k \le n$$

Se tivéssemos começado com uma função p como um polinômio em (x-a),

$$p(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + \dots + a_n(x - a)^n$$

procedendo da mesma forma como anteriormente, temos

$$p(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + \dots + a_n(x - a)^n$$

$$p(a) = a_0$$

$$p'(x) = a_1 + 2a_2(x - a) + \dots + na_n(x - a)^{n-1}$$

$$p'(a) = a_1$$

$$p''(x) = 2a_2 + 6a_3(x - a) + \dots + n(n - 1)a_n(x - a)^{n-2}$$

$$p''(a) = 2a_2$$

$$\dots$$

de forma geral, temos

$$a_k = \frac{p^{(k)}(a)}{k!}$$

Suponha agora que f(x) seja uma função (não necessariamente um polinômio) tal que $f^{(1)}(a)$, $f^{(2)}(a)$, ..., $f^{(n)}(a)$, existam. Seja

$$a_k = \frac{f^{(k)}(a)}{k!}, \ 0 \le k \le n$$
 (1)

então o polinômio de Taylor de grau n para f(x) em a é definido como

$$P_{n,a}(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \dots + a_n(x-a)^n$$
 (2)

Obs: vamos simplificar a notação e escrever apenas $P_n(x)$

O polinômio de Taylor foi definido tal que

$$P_n^{(k)}(a) = f^{(k)}(a), \quad \text{para } 0 \le k \le n$$

observe

$$P_n^{(0)}(x) = a_0 + a_1(x - a) + \dots + a_n(x - a)^n$$

$$P_n^{(1)}(x) = a_1 + 2a_2(x - a) + \dots + na_n(x - a)^{n-1}$$

$$P_n^{(2)}(x) = 2a_2 + 6a_3(x - a) + \dots + n(n-1)a_n(x - a)^{n-2}$$

$$P_n^{(3)}(x) = 6a_3 + 24a_4(x - a) + \dots + n(n-1)(n-2)a_n(x - a)^{n-3}$$
...

$$P_n^{(n)}(x) = n! \, a_n$$

Lembrando que

$$a_k = \frac{f^{(k)}(a)}{k!}$$

substituindo os coeficientes a_k e avaliando as expressões anteriores em x=a temos

$$P_n^{(0)}(a) = a_0 = f^{(0)}(a)$$

$$P_n^{(1)}(a) = a_1 = f^{(1)}(a)$$

$$P_n^{(2)}(a) = 2a_2 = 2\frac{f^{(2)}(a)}{2!} = f^{(2)}(a)$$

$$P_n^{(3)}(a) = 6a_3 = 6\frac{f^{(3)}(a)}{3!} = f^{(3)}(a)$$
...
$$P_n^{(n)}(a) = n! \ a_n = n! \ \frac{f^{(n)}(a)}{n!} = f^{(n)}(a)$$

E assim confirmamos que

$$P_n^{(k)}(a) = f^{(k)}(a), \quad \text{para } 0 \le k \le n$$

Usando a relação

$$a_k = \frac{f^{(k)}(a)}{k!}$$

vamos escrever o polinômio de Taylor de grau n da seguinte forma

$$P_n(x) = f(a) + f'(a)(x - a) + f''(a)\frac{(x - a)^2}{2} + \dots + f^{(n)}(a)\frac{(x - a)^n}{n!}$$

Exemplo 1

Encontrar o polinômio de Taylor de grau 1 (linear) que aproxima a função $f(x)=e^x$ em torno do ponto 0.

Solução Exemplo 1

Temos

$$f(x) = e^x \quad \Rightarrow \quad f'(x) = e^x$$

portanto o polinômio de Taylor linear é dado por

$$P_1(x) = f(a) + f'(a)(x - a)$$

$$= f(0) + f'(0)(x - 0)$$

$$= e^0 + e^0(x - 0)$$

$$= 1 + x$$

Exemplo 1 - Observação Geométrica

Equação da reta

$$y - y_0 = m(x - x_0)$$

Como o coeficiente angular da reta tangente ao gráfico de y=f(x) no ponto $(x_0,f(x_0))$ é $f'(x_0)=m$, temos a seguinte eq. para a reta tangente

$$y - f(x_0) = f'(x_0)(x - x_0)$$

Comparando com nossa aproximação

$$P_1(x) - f(a) = f'(a)(x - a)$$

vemos que neste exemplo a função aproximadora é a reta tangente a curva f(x) no ponto x=a.

Solução Exemplo 1

Solução Exemplo 1 (Zoom)

Exemplo 2

Determinar o polinômio de Taylor de grau 2 (quadrático) para $f(x)=e^x$ em torno do ponto a=0.

Solução Exemplo 2

Lembrando que

$$f(x) = e^x \quad \Rightarrow \quad f'(x) = e^x \quad \Rightarrow \quad f''(x) = e^x$$

então

$$P_2(x) = f(a) + f'(a)(x - a) + f''(a)\frac{(x - a)^2}{2}$$

$$= f(0) + f'(0)(x - 0) + f''(0)\frac{(x - 0)^2}{2}$$

$$= e^0 + e^0(x - 0) + e^0\frac{(x - 0)^2}{2}$$

$$= 1 + x + \frac{x^2}{2}$$

Solução Exemplo 2

Exemplo 3

Encontre a fórmula geral da aproximação usando polinômio de Taylor para a função $f(x) = \sin(x)$ em torno do ponto a = 0.

Solução Exemplo 3

Note que

$$f(x) = \sin(x) \qquad \Rightarrow \qquad f(a) = 0$$

$$f'(x) = \cos(x) \qquad \Rightarrow \qquad f'(a) = 1$$

$$f''(x) = -\sin(x) \qquad \Rightarrow \qquad f''(a) = 0$$

$$f'''(x) = -\cos(x) \qquad \Rightarrow \qquad f'''(a) = -1$$

$$f^{(4)}(x) = \sin(x) \qquad \Rightarrow \qquad f^{(4)}(a) = 0$$

A partir desse ponto as derivadas repetem em ciclo de 4.

Solução Exemplo 3

Os coeficientes do polinômio de Taylor

$$a_k = \frac{\sin^{(k)}(0)}{k!}$$

para $k=0,1,2,\ldots$ são dados por $0,1,0,-\frac1{3!},0,\frac1{5!},0,-\frac1{7!},0,\frac1{9!},\ldots$ portanto o polinômio de Taylor é dado por

$$P_n(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Considerando n como o número de termos, tem-se que

$$P_{2n+1}(x) = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

Obs:
$$P_{2n+1} = P_{2n+2}$$
. \square

Solução Exemplo 3

Exercício

Verifique que o polinômio de Taylor de grau 2n para $f(x) = \cos{(x)}$ em a=0 é dado por

$$P_{2n}(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!}$$

Exercício

Verifique que o polinômio de Taylor de grau n para $f(x)=e^x$ em a=0 é dado por

$$P_n(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{(n)!}$$

Exemplo de Implementação em C

```
double exp_taylor(int n, double x)
{
    int i;
    double fat=1.0, term=1.0, sum=term;
    for(i=1; i<=n; i++)
    {
        fat = fat * i;
        term = term * x;
        sum = sum + term/fat;
    }
    return sum;
```

Exemplo de Implementação em C

```
int main ()
   int n;
   double x;
   scanf("%d", &n);
   scanf("%lf", &x);
   printf("exp(x) = %e\n", exp(x));
   printf("taylor = %e\n", exp_taylor(n, x));
   return 0;
```

Exemplo de Implementação em C

```
n = 5
                                       n = 5
x = 0.25
                                       x = -0.25
exp(x) = 1.284025e+00
                                       exp(x) = 7.788008e-01
tavlor = 1.284025e+00
                                       tavlor = 7.788005e-01
n = 25
                                       n = 25
x = 2.5
                                       x = -2.5
exp(x) = 1.218249e+01
                                       exp(x) = 8.208500e-02
taylor = 1.218249e+01
                                       taylor = 8.208500e-02
n = 25
                                       n = 25
x = 10
                                       x = -10
exp(x) = 2.202647e+04
                                       exp(x) = 4.539993e-05
taylor = 2.202608e+04
                                       taylor = -1.804113e-01
                                                                     (***)
n = 25
                                       n = 25
x = 20
                                       x = -20
exp(x) = 4.851652e+08
                                       exp(x) = 2.061154e-09
taylor = 4.307370e+08
                                       taylor = -9.494844e+06
                                                                    (***)
```

Exemplo de Implementação em Python

```
def exp_taylor(n, x):
    fat = 1.0
    term = 1.0
    sum = term
    i = 1
    while i \le n:
        fat = fat * i
        term = term * x
        sum = sum + term/fat
        i = i + 1
    return sum
if __name__ == "__main__":
    n = int(raw_input("digite n"))
    x = float(raw_input("digite x"))
    print exp_taylor(n, x)
```

Exemplo 4

Encontre o valor de f(6) sabendo que f(4)=125, f'(4)=74, f''(4)=30, f'''(4)=6, e que todas as outras derivadas de ordem alta são nulas.

Solução Exemplo 4

Vamos usar uma aproximação por polinômio de Taylor de grau 3

$$P_3(x) = f(a) + f'(a)(x - a) + f''(a)\frac{(x - a)^2}{2!} + f'''(a)\frac{(x - a)^3}{3!}$$

Como temos os valores da função e suas derivadas em x=4 usaremos este ponto para aproximar f(6), portanto

$$f(6) \approx P_3(6) = f(4) + f'(4)(6 - 4) + f''(4)\frac{(6 - 4)^2}{2!} + f'''(4)\frac{(6 - 4)^3}{3!}$$

$$= 125 + 74 \cdot 2 + 30 \cdot \frac{4}{2} + 6 \cdot \frac{8}{6}$$

$$= 125 + 148 + 60 + 8$$

$$= 341$$

Algumas propriedades da aproximação por polinômio de Taylor:

- Quanto maior o grau do polinômio, melhor a aproximação.
- A medida que nos afastamos do ponto x=a, a aproximação piora.
- O polinômio de Taylor P_n(x) só precisa do valor da função e de suas derivadas em um ponto a. Não é preciso conhecer a expressão analítica de suas derivadas.

Exemplo 5

Como calcular o valor de $\sqrt{13}$ numa ilha deserta, sem usar calculadora?

Solução Exemplo 5

Aproximar $f(x)=\sqrt{x}$ perto de a usando polinômios de Taylor. Neste caso vamos usar um polinômio linear e vamos escolher o ponto a=9 (poderia ser a=16).

Temos

$$f(x) = \sqrt{x} = x^{1/2}$$
 \Rightarrow $f'(x) = \frac{1}{2\sqrt{x}}$

logo

$$P_1(x) = f(a) + f'(a)(x - a) = \sqrt{a} + \frac{1}{2\sqrt{a}}(x - a)$$

Solução Exemplo 5

Substituindo a = 9 em $P_1(x)$ temos

$$P_1(x) = \sqrt{9} + \frac{1}{2\sqrt{9}}(x-9)$$

Sendo assim, avaliando em x=13 para obter o valor de $\sqrt{13}$ obtemos

$$P_1(13) = \sqrt{9} + \frac{1}{2\sqrt{9}}(13 - 9) = 3 + \frac{4}{6} = 3.6666$$

O valor exato de $\sqrt{13}$ é 3.6055.

Exemplo 6

Calcular o valor de $\sqrt[7]{1.1}$ (R : 1.013708856).

Solução Exemplo 6

A função que queremos avaliar é $f(x)=\sqrt[7]{x}$. Vamos usar um polinômio de Taylor linear em torno de a=1. Derivando

$$f(x) = x^{1/7} \quad \Rightarrow \quad f'(x) = \frac{1}{7\sqrt[7]{x^6}}$$

Assim temos a seguinte aproximação

$$\sqrt[7]{x} \approx f(a) + f'(a)(x - a) = \sqrt[7]{1} + \frac{1}{7\sqrt[7]{16}}(x - 1)$$

e para x = 1.1 temos

$$\sqrt[7]{1.1} \approx 1 + \frac{1.1 - 1}{7} = 1.01428$$

Exemplo 7

Calcular o valor de $\exp(0.2)$.

Solução Exemplo 7

A função que queremos avaliar é $f(x)=e^x=\exp{(x)}$. Vamos usar um polinômio de Taylor (i) linear e (ii) quadrático em torno do ponto a=0. Calculando as derivadas

$$f(x) = e^x \quad \Rightarrow \quad f'(x) = f''(x) = e^x$$

assim temos as seguintes aproximações

$$P_1(x) = f(a) + f'(a)(x - a) P_2(x) = f(a) + f'(a)(x - a) + f''(a)\frac{(x - a)^2}{2}$$

$$= e^0 + e^0(x - 0) = e^0 + e^0(x - 0) + e^0\frac{(x - 0)}{2}$$

$$= 1 + x = 1 + x + \frac{x^2}{2}$$

Solução Exemplo 7

Sabemos que o valor real da expressão $\exp{(0.2)}$ é 1.2214. Temos as seguintes funções aproximadoras

$$P_1(x) = 1 + x$$

 $P_2(x) = 1 + x + \frac{x^2}{2}$

que quando avaliadas em x = 0.2 fornecem

$$P_1(0.2) = 1 + 0.2 = 1.2$$

$$P_2(0.2) = 1 + 0.2 + \frac{0.2^2}{2}$$

$$= 1 + 0.2 + \frac{0.04}{2}$$

$$= 1 + 0.2 + 0.02 = 1.22$$

Exemplo 8

Encontre uma aproximação para $\log(x)$.

Solução Exemplo 8

O polinômio de Taylor para $\log{(x)}$ tem que ser calculado em algum ponto $a \neq 0$ já que a função não está definida neste ponto. Vamos usar então a=1 para começar. Calculando as derivadas temos

$$f'(x) = \frac{1}{x} \Rightarrow f'(1) = 1$$

$$f''(x) = -\frac{1}{x^2} \Rightarrow f''(1) = -1$$

$$f'''(x) = \frac{2}{x^3} \Rightarrow f'''(1) = 2$$

$$f^{(4)}(x) = -\frac{6}{x^4} \Rightarrow f^{(4)}(1) = -6$$

De forma geral, para $k = 1, \ldots, n$, temos

$$f^{(k)}(x) = \frac{(-1)^{k-1}(k-1)!}{x^k} \quad \Rightarrow \quad f^{(k)}(1) = (-1)^{k-1}(k-1)!$$

Solução Exemplo 8

Portanto temos

$$P_n(x) = f(1) + (x - 1)f'(1) + \frac{(x - 1)}{2}f''(1) + \dots + \frac{(x - 1)^n}{n!}f^{(n)}(1)$$
$$= 0 + (x - 1) - \frac{(x - 1)}{2} + \frac{(x - 1)^3}{6}2 + \dots + \frac{(x - 1)^n}{n!}(-1)^{n-1}(n - 1)!$$

assim

$$P_n(x) = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} + \dots + (-1)^{n-1} \frac{(x-1)^n}{n}$$

É mais simples considerar $f(x) = \log{(1+x)}$ e criar o polinômio de Taylor em torno do ponto a=0. Neste caso teríamos

$$P_n(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n}$$

Algoritmo de Horner

Uma tarefa computacional extremamente importante é a avaliação de polinômios, isto é: dado um ponto x qualquer, calcular o valor de p(x).

A forma mais direta de fazer isto é:

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 (3)$$

Essa expressão pode ser reformulada como

$$p(x) = ((a_3x + a_2)x + a_1)x + a_0 (4)$$

Temos então o seguinte número de operações aritméticas:

- ▶ para n = 4, Eq. (3) faz 10 multiplicações e 4 adições
- ▶ para n = 4, Eq. (4) faz 4 multiplicações e 4 adições
- ▶ para n = 20, Eq. (3) faz 210 multiplicações e 20 adições
- ▶ para n = 20, Eq. (4) faz 20 multiplicações e 20 adições

Algoritmo de Horner

Para

$$p(x) = ((a_3x + a_2)x + a_1)x + a_0$$

podemos usar o seguinte esquema prático

portanto $p(x) = b_0$. Para avaliar um polinômio de grau n

$$p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

podemos usar a seguinte fórmula

$$b_n = a_n$$

$$b_i = a_i + x \cdot b_{i+1}, \quad \text{ para } i = n-1, \dots, 2, 1, 0$$

Algoritmo de Horner

Se os valores intermediários de b_i não são de interesse, podemos usar apenas uma variável b para implementar o algoritmo.

```
entrada: a_0, a_1, ..., a_n, x saída: p(x) b = a_n; para i = n - 1 até 0 faça b = a_i + x \cdot b; fim-para retorne b;
```

Frro

Precisamos saber qual o erro cometido ao aproximar a função f(x) pelo polinômio de Taylor $P_n(x)$.

Vamos representar o erro por $R_n(x)$.

Se f(x) é uma função para a qual $P_n(x)$ existe, definimos o erro (ou resto) $R_n(x)$ por $R_n(x)=f(x)-P_n(x)$. Ou seja

$$f(x) = P_n(x) + R_n(x)$$

= $f(a) + f'(a)(x - a) + \dots + f^{(n)}(a)\frac{(x - a)^n}{n!} + R_n(x)$

Gostaríamos de ter uma expressão para $R_n(x)$ cujo tamanho seja fácil de se estimar.

Através do **Teorema de Taylor** iremos encontrar algumas expressões para o erro $R_n(x)$.

Teorema (Teorema de Taylor)

Suponha que as derivadas $f^{(1)}$, ..., $f^{(n+1)}$ estejam definidas e sejam contínuas em um intervalo [a,x], então temos que

$$R_n(x) = f(x) - P_n(x) = \int_a^x f^{(n+1)}(t) \frac{(x-t)^n}{n!} dt$$

onde

$$P_n(x) = f(a) + f'(a)(x - a) + \dots + f^{(n)}(a) \frac{(x - a)^n}{n!}$$

Para a demonstração do teorema iremos utilizar:

Integração por partes:

$$\int_{a}^{b} u \ dv = uv \Big|_{a}^{b} - \int_{a}^{b} v \ du$$

Teorema Fundamental do Cálculo (TFC), que diz que se f(x) é definida em [a,b] que admite uma anti-derivada g(x) em [a,b], isto é f(x)=g'(x), então

$$\int_{a}^{b} f(x) \ dx = g(b) - g(a)$$

Prova

Para encontrar a expressão do erro na forma integral, vamos começar com o caso n=0:

$$f(x) = f(a) + R_0(x)$$

pelo Teorema Fundamental do Cálculo, podemos escrever

$$R_0(x) = f(x) - f(a) = \int_a^x f'(t) dt$$

portanto

$$f(x) = f(a) + \int_{a}^{x} f'(t) dt$$

Prova (cont.)

Vamos usar integração por partes no termo da integral

$$u = f'(t)$$
 \Rightarrow $du = f''(t) dt$
 $dv = 1 dt$ \Leftarrow $v = t - x$

assim temos

$$\int_{a}^{x} f'(t) dt = f'(t)(t-x) \Big|_{a}^{x} - \int_{a}^{x} f''(t)(t-x) dt$$

$$= \left[f'(x)(x-x) - f'(a)(a-x) \right] - \int_{a}^{x} f''(t)(t-x) dt$$

$$= -f'(a)(a-x) - \int_{a}^{x} f''(t)(t-x) dt$$

$$= f'(a)(x-a) + \int_{a}^{x} f''(t)(x-t) dt$$

Prova (cont.)

Logo

$$f(x) = \underbrace{f(a) + f'(a)(x - a)}_{P_1(x)} + \int_a^x f''(t)(x - t) dt$$

Portanto

$$R_1(x) = \int_a^x f''(t)(x-t) dt$$

Para encontrar $R_2(x)$, usamos integração por partes novamente no termo com a integral. Para isso escolhemos

$$u = f''(t) \qquad \Rightarrow \quad du = f'''(t) \ dt$$
$$dv = (x - t) \ dt \quad \Leftarrow \quad v = -\frac{(x - t)^2}{2}$$

Prova (cont.)

Assim

$$\int_{a}^{x} f''(t)(x-t) dt = -f''(t) \frac{(x-t)^{2}}{2} \Big|_{a}^{x} + \int_{a}^{x} f'''(t) \frac{(x-t)^{2}}{2} dt$$
$$= f''(a) \frac{(x-a)^{2}}{2} + \int_{a}^{x} f'''(t) \frac{(x-t)^{2}}{2} dt$$

Desta forma

$$f(x) = \underbrace{f(a) + f'(a)(x - a) + f''(a)\frac{(x - a)^2}{2}}_{P_2(x)} + \underbrace{\int_a^x f'''(t)\frac{(x - t)^2}{2}}_{R_2(x)} dt$$

ou seja

$$R_2(x) = \int_a^x f'''(t) \frac{(x-t)^2}{2} dt$$

Prova (cont.)

Considerando que $f^{(n+1)}$ é contínua em [a,x] por hipótese do teorema, podemos mostrar por indução que

$$R_n(x) = \int_a^x f^{(n+1)}(t) \frac{(x-t)^n}{n!} dt$$
 (5)

É possível ainda obter as seguintes expressões para o erro:

Forma de Cauchy

$$R_n(x) = f^{(n+1)}(t) \frac{(x-t)^n}{n!} (x-a), \quad t \in (a,x)$$
 (6)

Forma de Lagrange

$$R_n(x) = f^{(n+1)}(t) \frac{(x-a)^{(n+1)}}{(n+1)!}, \quad t \in (a,x)$$
 (7)

Essas expressões são muito úteis para se obter estimativas para o erro de uma aproximação usando o polinômio de Taylor.

Estimativa do erro

A forma do erro de Lagrange

$$R_n(x) = f^{(n+1)}(t) \frac{(x-a)^{(n+1)}}{(n+1)!}$$
(8)

é muito parecida com o próximo termo do polinômio de Taylor. A única diferença é o valor t na fórmula. t é **algum** valor entre a e x, que **não conhecemos**.

Obs: t é um valor que no desenvolvimento da forma do erro de Lagrange surge da aplicação do Teorema do Valor Médio.

Para estimar o erro, precisamos analisar os valores de $f^{(n+1)}(t)$ para todo a < t < x e usar o maior deles. Ou, usar algum outro valor que com certeza é maior do que todos eles.

Exemplo 1

Seja $f(x)=\sin{(x)}$. Encontre o polinômio de Taylor cúbico em torno do ponto a=0, em seguida encontre um limitante superior para este no ponto $x=\frac{\pi}{4}$ e calcule o erro.

Solução Exemplo 1

Para $f(x) = \sin{(x)}$ com a = 0 já vimos que o polinômio cúbico de Taylor é

$$P_3(x) = x - \frac{x^3}{6}$$

Pela fórmula do erro de Lagrange, sabemos que

$$R_3(x) = f^{(4)}(t)\frac{(x-a)^4}{4!} = \sin(t)\frac{x^4}{24}$$

Solução Exemplo 1

Portanto para o limitante superior temos

$$|R_3(x)| \le \max \left| \frac{\sin(t)x^4}{24} \right|, \quad \text{para } t \in [0, \pi/4]$$

$$\le \left| \frac{\sin(\frac{\pi}{4})(\frac{\pi}{4})^4}{24} \right| \le 0.0112$$

Avaliando $P_3(x)$ em $\frac{\pi}{4}$ temos

$$P_3(\frac{\pi}{4}) = \frac{\pi}{4} - \frac{\frac{\pi}{4}^3}{6} = 0.7046$$

O valor real é $\sin{(\frac{\pi}{4})} = \frac{\sqrt{2}}{2} = 0.7071$, logo o erro cometido é |0.7071 - 0.7046| = 0.0024. \square

Exemplo 2

Obtenha o limitante superior do erro para $e^{0.5}$ quando esta expressão é aproximada por um polinômio de Taylor de grau 4 para e^x em torno do ponto 0.

Solução Exemplo 2

Pela fórmula de Lagrange do erro temos

$$R_4(x) = f^{(n+1)}(t) \frac{(x-0)^5}{5!} = e^t \frac{x^5}{120}, \quad \text{para algum } t \in [0, 0.5]$$

assim quando aproximamos $e^{0.5}$ o erro está limitado por

$$|R_4(x)| \le \max \left| \frac{e^t x^5}{120} \right| \le \left| \frac{e^{0.5} 0.5^5}{120} \right| \le 2 \frac{0.5^5}{120} = 0.00052$$

Solução Exemplo 2

Neste caso a aproximação de Taylor é

$$P_4(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}$$

e portanto

$$e^{0.5} \approx 1 + 0.5 + \frac{0.5^2}{2} + \frac{0.5^3}{6} + \frac{0.5^4}{24} = 1.6484$$

O valor real é $e^{0.5}=1.6487$, e vemos novamente que o erro é menor do que o estimado, pois |1.6487-1.6484|=0.0003.

Exemplo 3

Seja $f(x)=\sin{(x)}$ e a=0. Determine n para que o erro ao se aproximar f(x) por um polinômio de Taylor seja menor do que 10^{-7} para $-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$.

Solução Exemplo 3

Pela fórmula do erro temos que

$$R_{2n+1}(x) = \sin(x) - P_{2n+1}(x) = f^{(2n+2)}(t) \frac{(x-0)^{2n+2}}{(2n+2)!}$$
$$= (-1)^{n+1} \sin(t) \frac{x^{2n+2}}{(2n+2)!}$$

Queremos saber qual o valor de n garante que

$$|R_{2n+1}(x)| \le 10^{-7}$$
, para $x \in [-\pi/4, \pi/4]$

Solução Exemplo 3

Então

$$|R_{2n+1}(x)| = \left| (-1)^{n+1} \sin(t) \frac{x^{2n+2}}{(2n+2)!} \right| < \frac{\left(\frac{\pi}{4}\right)^{2n+2}}{(2n+2)!} < 10^{-7}$$

analisando temos

$$n = 1 \Rightarrow (2+2)! = 24 \qquad \Rightarrow \frac{\left(\frac{\pi}{4}\right)^4}{4!} \approx 0.15 \times 10^{-1}$$

$$n = 2 \Rightarrow (4+2)! = 720 \qquad \Rightarrow \frac{\left(\frac{\pi}{4}\right)^6}{6!} \approx 0.326 \times 10^{-3}$$

$$n = 3 \Rightarrow (6+2)! = 40320 \qquad \Rightarrow \frac{\left(\frac{\pi}{4}\right)^8}{8!} \approx 3.590860 \times 10^{-6}$$

$$n = 4 \Rightarrow (8+2)! = 3628800 \qquad \Rightarrow \frac{\left(\frac{\pi}{4}\right)^{10}}{10!} \approx 2.461137 \times 10^{-8}$$

Solução Exemplo 3

ou seja, para que

$$\frac{\left(\frac{\pi}{4}\right)^{2n+2}}{(2n+2)!} < 10^{-7}$$

temos que $n\geq 4$. Portanto, precisamos usar um polinômio de Taylor de grau maior ou igual a 9 para atingir a precisão desejada.

Exemplo 4

Seja $f(x)=e^x$ e a=0. Determine n para que o erro ao se aproximar f(x) por um polinômio de Taylor seja menor do que 10^{-5} para $-1 \le x \le 1$.

Solução Exemplo 4

Ou seja queremos saber, qual n satisfaz

$$|R_n(x)| \le 10^{-5}, \quad x \in [-1, 1]$$

Neste caso temos que o erro é dado por

$$|R_n(x)| = \left| f^{(n+1)}(t) \frac{(x-0)^{n+1}}{(n+1)!} \right| = \left| \frac{e^t x^{n+1}}{(n+1)!} \right|$$

Solução Exemplo 4

Assim

$$|R_n(x)| = \left| \frac{e^t x^{n+1}}{(n+1)!} \right| \le \frac{e^1 |x^{n+1}|}{(n+1)!} < \frac{3}{(n+1)!} < 10^{-5}$$

ou seja

$$3 < 10^{-5}(n+1)!$$
 \Rightarrow $(n+1)! > 3 \cdot 10^{5}$
 \Rightarrow $(n+1)! > 300000$

Analisando

$$7! = 5040, \quad 8! = 40430, \quad 9! = 362880$$

concluímos que se $n \geq 8$, então (n+1)! > 300000 o que garante que o erro satisfaz $|R_n(x)| < 10^{-5}$. \square

Considere que uma função f(x), cuja **expressão é desconhecida**, seja fornecida por meio de um conjunto de pontos $(x_0, f(x_0))$, $(x_1, f(x_1))$, ..., $(x_n, f(x_n))$.

Como calcular $f'(x_i)$?

Podemos usar polinômio de Taylor para aproximar as derivadas da função.

Para calcular a derivada $f'(x_i)$ em cada ponto x_i , vamos usar um polinômio de Taylor linear em torno do ponto x_i .

▶ Diferença Progressiva: $x = x_{i+1}$

$$f(x_{i+1}) = f(x_i) + f'(x_i) \underbrace{(x_{i+1} - x_i)}^{h}$$
$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h}$$

▶ Diferença Regressiva: $x = x_{i-1}$

$$f(x_{i-1}) = f(x_i) + f'(x_i) \underbrace{(x_{i-1} - x_i)}^{-h}$$
$$f'(x_i) = \underbrace{f(x_i) - f(x_{i-1})}_{h}$$

▶ Diferença Central: $x = x_{i+1}$ e $x = x_{i-1}$

$$f(x_{i+1}) = f(x_i) + f'(x_i)h$$

$$f(x_{i-1}) = f(x_i) - f'(x_i)h$$

subtraindo, temos

$$f(x_{i+1}) - f(x_{i-1}) = 2hf'(x_i)$$

que resulta em

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h}$$

- A diferença central é mais precisa para aproximar a derivada.
- As derivadas de alta ordem são calculadas de forma similar.
- Quanto mais pontos em um intervalo [a, b], ou seja, quanto menor o espaçamento h entre eles, melhor a qualidade da aproximação.

Exemplo 5

Calcule f'(1.3) para $f(x) = \log{(x)}$ usando diferença progressiva e central para h=0.01 e h=0.001.

Solução Exemplo 5

Usando h=0.01, com diferença progressiva temos

$$f'(1.3) \approx \frac{\log(1.31) - \log(1.30)}{0.01} = 0.76628$$

Com diferença central temos

$$f'(1.3) \approx \frac{\log(1.31) - \log(1.29)}{2 \cdot 0.01} = 0.76924$$

Solução Exemplo 5

Usando h = 0.001, com diferença progressiva temos

$$f'(1.3) \approx \frac{\log(1.301) - \log(1.300)}{0.001} = 0.76893$$

com diferença central temos

$$f'(1.3) \approx \frac{\log(1.301) - \log(1.299)}{2 \cdot 0.001} = 0.76923$$

Podemos calcular o valor real usando a derivada de f(x), pois neste caso conhecemos a expressão da função. O resultado é

$$f'(x) = \frac{1}{x} \implies f'(1.3) = 0.76923$$

Exemplo em Python

```
from pylab import *
def f(x):
    return exp(x)*sin(x)
def df(x):
    return exp(x)*sin(x) + exp(x)*cos(x)
def aprox(f,x,h):
    return (f(x+h)-f(x))/h
def aproxCentral(f,x,h):
    return (f(x+h)-f(x-h))/(2*h)
```

Exemplo em Python

```
if __name__ == "__main__":
   hh = 0.001
    xx = arange(-2, 2, hh)
    yy = df(xx)
    # diferenca progressiva e central
    h = 0.01
    x = arange(-2, 2, h)
    d1 = aprox(f,x,h)
    d2 = aproxCentral(f,x,h)
    # exibe grafico
    plot(xx, yy, label='Derivada Analitica')
    plot(x, d1, 'o', label='Aprox. Diferenca Progressiva')
    plot(x, d2, '^', label='Aprox. Diferenca Central')
    show()
```

Exemplo em Python (h=0.1)

Exemplo em Python (h=0.05)

