Prioritetskøer, hobe og heap sort

Mikkel Abrahamsen

Dynamisk multi-mængde S af *nøgler*.

To (vigtigste) operationer:

- Extract-Max(S): fjern og returnér største nøgle.
- Insert(S, k): tilføj k til S.

Dynamisk multi-mængde S af *nøgler*.

To (vigtigste) operationer:

• Extract-Max(S): fjern og returnér største nøgle.

• Insert(S, k): tilføj k til S.

Extract-Max(S)

Dynamisk multi-mængde S af *nøgler*.

To (vigtigste) operationer:

• Extract-Max(S): fjern og returnér største nøgle.

• Insert(S, k): tilføj k til S.

 $\mathsf{Extract} ext{-}\mathsf{Max}(S)$

returnér 11

Dynamisk multi-mængde S af *nøgler*.

To (vigtigste) operationer:

• Extract-Max(S): fjern og returnér største nøgle.

• Insert(S, k): tilføj k til S.

Extract-Max(S)

returnér 11

Extract-Max(S)

Dynamisk multi-mængde S af *nøgler*.

To (vigtigste) operationer:

• Extract-Max(S): fjern og returnér største nøgle.

• Insert(S, k): tilføj k til S.

Extract-Max(S)

returnér 11

Extract-Max(S)

returnér 10

Dynamisk multi-mængde S af *nøgler*.

To (vigtigste) operationer:

• Extract-Max(S): fjern og returnér største nøgle.

• Insert(S, k): tilføj k til S.

Extract-Max(S)

returnér 11

Extract-Max(S)

returnér 10

Insert(S, 13)

Dynamisk multi-mængde S af *nøgler*.

To (vigtigste) operationer:

• Extract-Max(S): fjern og returnér største nøgle.

• Insert(S, k): tilføj k til S.

Extract-Max(S)

returnér 11

Extract-Max(S)

returnér 10

Insert(S, 13)

Dynamisk multi-mængde S af *nøgler*.

To (vigtigste) operationer:

• Extract-Max(S): fjern og returnér største nøgle.

• Insert(S, k): tilføj k til S.

Extract-Max(S)

returnér 11

Extract-Max(S)

returnér 10

Insert(S, 13)

I praksis: Vi gemmer hver nøgle sammen med sattelitdata: (k, data)

Kendte teknikker

Array:

Extract-Max(S): $\Theta(n)$ tid.

Insert(S, k): $\Theta(1)$ tid.

Kendte teknikker

Array:

Extract-Max(S): $\Theta(n)$ tid.

Insert(S, k): $\Theta(1)$ tid.

Sorteret array:

0	1	2					
3	7	8	10	10	11		

Extract-Max(S): $\Theta(1)$ tid.

Insert(S, k): $\Theta(n)$ tid.

Kendte teknikker

Array:

Extract-Max(S): $\Theta(n)$ tid.

Insert(S, k): $\Theta(1)$ tid.

Sorteret array:

0	1	2					
3	7	8	10	10	11		

Extract-Max(S): $\Theta(1)$ tid.

Insert(S, k): $\Theta(n)$ tid.

•11 •8 S •10 •3

Hægtet liste:

Extract-Max(S): $\Theta(n)$ tid.

Insert(S, k): $\Theta(1)$ tid.

Hob Fyldte lag |10|Fyldt

Hobeordenen:

Hob Fyldte lag |10|Fyldt

Hobeordenen:

Extract-Max(H)

Extract-Max(H)

$$max = 31$$

Extract-Max(H)

$$max = 31$$

Extract-Max(H)

max = 31

10 "bobler ned" (Max-Heapify)

Extract-Max(H)

max = 31

10 "bobler ned" (Max-Heapify)

Extract-Max(H)

max = 31

10 "bobler ned" (Max-Heapify)

Extract-Max(H)max = 3110 "bobler ned" (Max-Heapify) return maxH13

Hvordan ser hoben ud til sidst?

socrative.com \rightarrow Student login, Room name: ABRAHAMSEN3464

Insert

Insert(H, 17)

Insert

Insert(H, 17)

Insert

Insert(H, 17)

17 "bobler op"

Insert

Insert(H, 17)

17 "bobler op"

Insert

Insert(H, 17)

17 "bobler op"

Hvordan ser hoben ud til sidst?

socrative.com \rightarrow Student login, Room name: ABRAHAMSEN3464

Insert: Boble op

Extract-Max: Boble ned

Insert: Boble op

Extract-Max: Boble ned

Insert: Boble op

Extract-Max: Boble ned

$$n = 2^0 = 1$$

$$h = 0$$

Insert: Boble op

Extract-Max: Boble ned

$$n = 2^0 = 1$$

$$h = 0$$

$$n = 2^1 = 2$$

$$h = 1$$

Insert: Boble op

Extract-Max: Boble ned

$$n = 2^0 = 1$$
$$h = 0$$

$$n = 2^1 = 2$$

$$h = 1$$

$$n = 2^2 = 4$$

$$h = 2$$

Insert: Boble op

Extract-Max: Boble ned

$$n = 2^0 = 1$$
$$h = 0$$

$$n = 2^3 = 8$$

$$h = 3$$

$$n = 2^1 = 2$$

$$h = 1$$

$$n = 2^2 = 4$$

$$h = 2$$

Insert: Boble op

Extract-Max: Boble ned

$$n = 2^0 = 1$$
$$h = 0$$

$$n = 2^3 = 8$$

$$h = 3$$

$$n = 2^{1} = 2$$

$$h = 1$$

$$n = 2^{4} = 16$$

$$h = 4$$

$$n = 2^2 = 4$$

$$h = 2$$

Insert: Boble op

Extract-Max: Boble ned

I begge tilfælde er
$$T(n) = \Theta(h)$$
, hvor h er højden af hoben.

$$n = 2^0 = 1$$

$$h = 0$$

$$n = 2^{3} = 8$$

$$h = 3$$

$$1 + 1 + 2 + 4 + \dots + 2^{h-1}$$

$$n = 2^{1} = 2$$

$$h = 1$$

$$n = 2^{4} = 16$$

$$h = 4$$

$$n = 2^2 = 4$$

$$h = 2$$

Insert: Boble op

Extract-Max: Boble ned

I begge tilfælde er
$$T(n) = \Theta(h)$$
, hvor h er højden af hoben.

$$n = 2^0 = 1$$

$$h = 0$$

$$n = 2^{3} = 8$$

$$h = 3$$

$$1 + 1 + 2 + 4 + \dots + 2^{h-1}$$

$$n = 2^{1} = 2$$

$$h = 1$$

$$n = 2^{4} = 16$$

$$h = 4$$

$$n = 2^2 = 4$$

$$h = 2$$

Insert: Boble op

Extract-Max: Boble ned

I begge tilfælde er $T(n) = \Theta(h)$, hvor h er højden af hoben.

$$n = 2^0 = 1$$
$$h = 0$$

$$n = 2^{3} = 8$$

$$h = 3$$

$$1 + 1 + 2 + 4 + \dots + 2^{h-1}$$

$$n = 2^1 = 2$$

$$h = 1$$

$$n = 2^4 = 16$$

$$h = 4$$

$$n = 2^2 = 4$$

$$h = 2$$

Insert: Boble op

Extract-Max: Boble ned

I begge tilfælde er $T(n) = \Theta(h)$, hvor h er højden af hoben.

$$n = 2^0 = 1$$
$$h = 0$$

$$n = 2^3 = 8$$

$$h = 3$$

$$1 + 1 + 2 + 4 + \dots + 2^{h-1}$$

$$n = 2^1 = 2$$

$$h = 1$$

$$n = 2^4 = 16$$

$$h = 4$$

$$n = 2^2 = 4$$

$$h = 2$$

Insert: Boble op

Extract-Max: Boble ned

I begge tilfælde er $T(n) = \Theta(h)$, hvor h er højden af hoben.

$$n = 2^0 = 1$$
$$h = 0$$

$$n = 2^{3} = 8$$

$$h = 3$$

$$1 + 1 + 2 + 4 + \dots + 2^{h-1}$$

 2^h

$$n = 2^1 = 2$$

$$h = 1$$

$$n = 2^4 = 16$$

$$h = 4$$

$$n = 2^2 = 4$$

$$h = 2$$

Insert: Boble op

Extract-Max: Boble ned

I begge tilfælde er $T(n) = \Theta(h)$, hvor h er højden af hoben.

$$n = 2^0 = 1$$

$$h = 0$$

$$n = 2^{3} = 8$$

$$h = 3$$

$$1 + 1 + 2 + 4 + \dots + 2^{h-1}$$

 2^h

$$n = 2^1 = 2$$

$$h = 1$$

$$n = 2^4 = 16$$

$$h = 4$$

$$h = \lfloor \lg n \rfloor$$
, så $T(n) = \Theta(\log n)$.

Hvor mange blade er der?

Hvor mange blade er der?

Hver anden gang vi tilføjer en knude er antallet uændret, de andre gange vokser det med én. Derfor: #blade $= \lceil \frac{n}{2} \rceil$.

Hvor mange blade er der?

Hver anden gang vi tilføjer en knude er antallet uændret, de andre gange vokser det med én. Derfor: #blade $= \lceil \frac{n}{2} \rceil$.

$$\mathsf{H}\mathsf{øjde} = \lfloor \lg n \rfloor$$
 $\mathsf{Blade} = \lceil \frac{n}{2} \rceil$

Max-Heapify

Vi lader 10 "boble ned". Max-Heapify(A, 1)

Max-Heapify(A, i)


```
l = \operatorname{Left}(i) r = \operatorname{Right}(i) largest = i if l \leq A.heap\text{-}size and A[l] > A[largest] largest = l if r \leq A.heap\text{-}size and A[r] > A[largest] largest = r if largest \neq i swap A[i] and A[largest] Max-Heapify(A, largest)
```

Left(i) return 2i

16

 $\mathsf{Right}(i)$ return 2i+1

Max-Heapify

Vi lader 10 "boble ned". Max-Heapify(A, 1)


```
Max-Heapify(A, i)
  l = \mathsf{Left}(i)
  r = \mathsf{Right}(i)
  largest = i
  if l \leq A.heap\text{-}size and A[l] > A[largest]
     largest = l
  if r \leq A.heap\text{-}size and A[r] > A[largest]
     largest = r
  if largest \neq i
     swap A[i] and A[largest]
     Max-Heapify(A, largest)
```

Left(i) return 2i

16

Right(i) return 2i + 1

Max-Heapify

Vi lader 10 "boble ned".

 $\mathsf{Max} ext{-}\mathsf{Heapify}(A,1)$

Max-Heapify(A, i)


```
l = \mathsf{Left}(i)
r = \mathsf{Right}(i)
largest = i
if \ l \leq A.heap\text{-}size \ \mathsf{and} \ A[l] > A[largest]
largest = l
if \ r \leq A.heap\text{-}size \ \mathsf{and} \ A[r] > A[largest]
largest = r
if \ largest \neq i
\mathsf{swap} \ A[i] \ \mathsf{and} \ A[largest]
\mathsf{Max-Heapify}(A, largest)
```

Left(i) return 2i

 $\mathsf{Right}(i)$ return 2i+1

$\begin{aligned} &\operatorname{Insert}(A,k) \\ &A.heap\text{-}size = A.heap\text{-}size + 1 \\ &i = A.heap\text{-}size \\ &A[i] = k \\ &\text{while } i > 1 \text{ and } A[\operatorname{Parent}(i)] < A[i] \\ &\text{swap } A[i] \text{ and } A[\operatorname{Parent}(i)] \\ &i = \operatorname{Parent}(i) \end{aligned}$

 $\mathsf{Parent}(i)$ return $\lfloor rac{i}{2}
floor$

$\begin{aligned} &\operatorname{Insert}(A,k) \\ &A.heap\text{-}size = A.heap\text{-}size + 1 \\ &i = A.heap\text{-}size \\ &A[i] = k \\ &\text{while } i > 1 \text{ and } A[\operatorname{Parent}(i)] < A[i] \\ &\text{swap } A[i] \text{ and } A[\operatorname{Parent}(i)] \\ &i = \operatorname{Parent}(i) \end{aligned}$

 $\begin{array}{c} \mathsf{Parent}(i) \\ \mathsf{return} \, \left\lfloor \frac{i}{2} \right\rfloor \end{array}$

$\begin{aligned} &\operatorname{Insert}(A,k) \\ &A.heap\text{-}size = A.heap\text{-}size + 1 \\ &i = A.heap\text{-}size \\ &A[i] = k \\ &\text{while } i > 1 \text{ and } A[\operatorname{Parent}(i)] < A[i] \\ &\text{swap } A[i] \text{ and } A[\operatorname{Parent}(i)] \\ &i = \operatorname{Parent}(i) \end{aligned}$

 $\mathsf{Parent}(i)$ return $\lfloor rac{i}{2}
floor$

$\begin{aligned} &\operatorname{Insert}(A,k) \\ &A.heap\text{-}size = A.heap\text{-}size + 1 \\ &i = A.heap\text{-}size \\ &A[i] = k \\ &\text{while } i > 1 \text{ and } A[\operatorname{Parent}(i)] < A[i] \\ &\text{swap } A[i] \text{ and } A[\operatorname{Parent}(i)] \\ &i = \operatorname{Parent}(i) \end{aligned}$

 $\mathsf{Parent}(i)$ return $\lfloor rac{i}{2}
floor$

 $\begin{array}{l} \text{Build-Max-Heap}(A) \\ A.heap\text{-}size = A.length \\ \text{for } i = \lfloor \frac{A.length}{2} \rfloor \text{ downto } 1 \\ \text{Max-Heapify}(A,i) \text{ } / / \text{ Lad } A[i] \text{ boble ned} \end{array}$


```
\begin{array}{l} \mathsf{Build-Max-Heap}(A) \\ A.heap\text{-}size = A.length = A.length - \lceil \frac{A.length}{2} \rceil \\ \mathsf{for}\ i = \left \lfloor \frac{A.length}{2} \right \rfloor \ \mathsf{downto}\ 1 \\ \mathsf{Max-Heapify}(A,i)\ //\ \mathsf{Lad}\ A[i]\ \mathsf{boble}\ \mathsf{ned} \end{array}
```



```
\begin{array}{l} \text{Build-Max-Heap}(A) \\ A.heap\text{-}size = A.length \underbrace{ = A.length - \lceil \frac{A.length}{2} \rceil}_{\text{Sidste knude med et barn}} \\ \text{for } i = \underbrace{ \lceil \frac{A.length}{2} \rceil}_{\text{Max-Heapify}} \text{downto } 1 \\ \text{Max-Heapify}(A,i) \text{// Lad } A[i] \text{ boble ned} \end{array}
```



```
\begin{array}{l} \text{Build-Max-Heap}(A) \\ A.heap\text{-}size = A.length - \lceil \frac{A.length}{2} \rceil \\ \text{for } i = \left \lfloor \frac{A.length}{2} \right \rfloor \text{ downto } 1 \\ \text{Max-Heapify}(A,i) \text{ // Lad } A[i] \text{ boble ned} \end{array}
```



```
\begin{array}{l} \text{Build-Max-Heap}(A) \\ A.heap\text{-}size = A.length \quad = A.length - \lceil \frac{A.length}{2} \rceil \\ \text{for } i = \left \lfloor \frac{A.length}{2} \right \rfloor \text{ downto } 1 \\ \text{Max-Heapify}(A,i) \text{ // Lad } A[i] \text{ boble ned} \end{array}
```



```
\begin{array}{l} \text{Build-Max-Heap}(A) \\ A.heap\text{-}size = A.length - \lceil \frac{A.length}{2} \rceil \\ \text{for } i = \left \lfloor \frac{A.length}{2} \right \rfloor \text{ downto } 1 \\ \text{Max-Heapify}(A,i) \text{ // Lad } A[i] \text{ boble ned} \end{array}
```



```
\begin{array}{l} \text{Build-Max-Heap}(A) \\ A.heap\text{-}size = A.length \quad = A.length - \lceil \frac{A.length}{2} \rceil \\ \text{for } i = \left \lfloor \frac{A.length}{2} \right \rfloor \text{ downto } 1 \\ \text{Max-Heapify}(A,i) \text{ // Lad } A[i] \text{ boble ned} \end{array}
```



```
\begin{array}{l} \text{Build-Max-Heap}(A) \\ A.heap\text{-}size = A.length \underbrace{ = A.length - \lceil \frac{A.length}{2} \rceil}_{\text{Sidste knude med et barn}} \\ \text{for } i = \underbrace{ \lceil \frac{A.length}{2} \rceil }_{\text{Discontinuous}} \text{downto } 1 \\ \text{Max-Heapify}(A,i) \text{ // Lad } A[i] \text{ boble ned} \end{array}
```



```
\begin{array}{l} \text{Build-Max-Heap}(A) \\ A.heap\text{-}size = A.length \underbrace{ = A.length - \lceil \frac{A.length}{2} \rceil}_{\text{Sidste knude med et barn}} \\ \text{for } i = \underbrace{ \lceil \frac{A.length}{2} \rceil }_{\text{Discontinuous}} \text{downto } 1 \\ \text{Max-Heapify}(A,i) \text{ // Lad } A[i] \text{ boble ned} \end{array}
```


Køretid: Max-Heapify tager $O(\log n)$ tid. I alt $O(n\log n)$. Bedre analyse: $\Theta(n)$.

Hvordan ser hoben ud til sidst?

socrative.com \rightarrow Student login, Room name: ABRAHAMSEN3464

$$n = 2^{h+1} - 1$$

Her: h = 4, $n = 2^5 - 1 = 31$.

$$B = 2^{h-1} \cdot 1 + 2^{h-2} \cdot 2 + 2^{h-3} \cdot 3 + \dots + 2^0 \cdot h$$

$$B/2 = B - B/2$$

$$= 2^{h-1} \cdot 1 + 2^{h-2} \cdot 2 + 2^{h-3} \cdot 3 + \dots + 2^{0} \cdot h$$

$$-2^{h-2} \cdot 1 - 2^{h-3} \cdot 2 - \dots - 2^{0} \cdot (h-1) - 2^{-1} \cdot h$$

$$B/2 = B - B/2$$

$$= 2^{h-1} \cdot 1 + 2^{h-2} \cdot 2 + 2^{h-3} \cdot 3 + \dots + 2^{0} \cdot h$$

$$-2^{h-2} \cdot 1 - 2^{h-3} \cdot 2 - \dots - 2^{0} \cdot (h-1) - 2^{-1} \cdot h$$

$$= 2^{h-1} + 2^{h-2} + \dots + 2^{0} - h/2$$

$$n = 2^{h+1} - 1$$

Her: h = 4, $n = 2^5 - 1 = 31$.

$$B = 2^{h-1} \cdot 1 + 2^{h-2} \cdot 2 + 2^{h-3} \cdot 3 + \dots + 2^0 \cdot h$$

$$B/2 = B - B/2$$

$$= 2^{h-1} \cdot 1 + 2^{h-2} \cdot 2 + 2^{h-3} \cdot 3 + \dots + 2^{0} \cdot h$$

$$-2^{h-2} \cdot 1 - 2^{h-3} \cdot 2 - \dots - 2^{0} \cdot (h-1) - 2^{-1} \cdot h$$

$$= 2^{h-1} + 2^{h-2} + \dots + 2^0 - h/2$$

$$< 2^h - h/2$$

$$n = 2^{h+1} - 1$$

Her: h = 4, $n = 2^5 - 1 = 31$.

$$B = 2^{h-1} \cdot 1 + 2^{h-2} \cdot 2 + 2^{h-3} \cdot 3 + \dots + 2^0 \cdot h$$

$$B/2 = B - B/2$$

$$= 2^{h-1} \cdot 1 + 2^{h-2} \cdot 2 + 2^{h-3} \cdot 3 + \dots + 2^{0} \cdot h$$

$$-2^{h-2} \cdot 1 - 2^{h-3} \cdot 2 - \dots - 2^{0} \cdot (h-1) - 2^{-1} \cdot h$$

$$= 2^{h-1} + 2^{h-2} + \dots + 2^0 - h/2$$

$$< 2^h - h/2 < 2^h$$

$$n = 2^{h+1} - 1$$

Her: h = 4, $n = 2^5 - 1 = 31$.

$$B = 2^{h-1} \cdot 1 + 2^{h-2} \cdot 2 + 2^{h-3} \cdot 3 + \dots + 2^0 \cdot h$$

$$B/2 = B - B/2$$

$$= 2^{h-1} \cdot 1 + 2^{h-2} \cdot 2 + 2^{h-3} \cdot 3 + \dots + 2^{0} \cdot h$$

$$-2^{h-2} \cdot 1 - 2^{h-3} \cdot 2 - \dots - 2^{0} \cdot (h-1) - 2^{-1} \cdot h$$

$$= 2^{h-1} + 2^{h-2} + \dots + 2^0 - h/2$$

$$< 2^h - h/2 < 2^h$$

Konklusion: $B < 2^{h+1}$, så $B \le 2^{h+1} - 1 = n$.

Køretid for Build-Max-Heap: $\Theta(n)$.


```
\begin{aligned} & \mathsf{Heapsort}(A) \\ & \mathsf{Build-Max-Heap}(A) \\ & \mathsf{for}\ i = A.length\ \mathsf{downto}\ 2 \\ & \mathsf{swap}\ A[1]\ \mathsf{and}\ A[i] \\ & A.heap\text{-}size = A.heap\text{-}size - 1 \\ & \mathsf{Max-Heapify}(A,1) \end{aligned}
```



```
\begin{aligned} & \mathsf{Heapsort}(A) \\ & \mathsf{Build-Max-Heap}(A) \\ & \mathsf{for}\ i = A.length\ \mathsf{downto}\ 2 \\ & \mathsf{swap}\ A[1]\ \mathsf{and}\ A[i] \\ & A.heap\text{-}size = A.heap\text{-}size - 1 \\ & \mathsf{Max-Heapify}(A,1) \end{aligned}
```



```
\begin{aligned} & \mathsf{Heapsort}(A) \\ & \mathsf{Build-Max-Heap}(A) \\ & \mathsf{for}\ i = A.length\ \mathsf{downto}\ 2 \\ & \mathsf{swap}\ A[1]\ \mathsf{and}\ A[i] \\ & A.heap\text{-}size = A.heap\text{-}size - 1 \\ & \mathsf{Max-Heapify}(A,1) \end{aligned}
```



```
\begin{aligned} &\mathsf{Heapsort}(A)\\ &\mathsf{Build-Max-Heap}(A)\\ &\mathsf{for}\ i = A.length\ \mathsf{downto}\ 2\\ &\mathsf{swap}\ A[1]\ \mathsf{and}\ A[i]\\ &A.heap\text{-}size = A.heap\text{-}size - 1\\ &\mathsf{Max-Heapify}(A,1) \end{aligned}
```



```
\begin{aligned} &\mathsf{Heapsort}(A)\\ &\mathsf{Build-Max-Heap}(A)\\ &\mathsf{for}\ i = A.length\ \mathsf{downto}\ 2\\ &\mathsf{swap}\ A[1]\ \mathsf{and}\ A[i]\\ &A.heap\text{-}size = A.heap\text{-}size - 1\\ &\mathsf{Max-Heapify}(A,1) \end{aligned}
```



```
\begin{aligned} & \mathsf{Heapsort}(A) \\ & \mathsf{Build-Max-Heap}(A) \\ & \mathsf{for}\ i = A.length\ \mathsf{downto}\ 2 \\ & \mathsf{swap}\ A[1]\ \mathsf{and}\ A[i] \\ & A.heap\text{-}size = A.heap\text{-}size - 1 \\ & \mathsf{Max-Heapify}(A,1) \end{aligned}
```



```
\begin{array}{l} \mathsf{Heapsort}(A) \\ \mathsf{Build-Max-Heap}(A) \\ \mathsf{for} \ i = A.length \ \mathsf{downto} \ 2 \\ \mathsf{swap} \ A[1] \ \mathsf{and} \ A[i] \\ A.heap\text{-}size = A.heap\text{-}size - 1 \\ \mathsf{Max-Heapify}(A,1) \end{array}
```


Køretid

Heapsort(A)		Tid	Gange
Build-Max-Heap (A)		$\Theta(n)$	1
for $i = A.length$ downto 2			
swap $A[1]$ and $A[i]$		$\Theta(1)$	$\mid n \mid$
A.heap-size = A.heap-size - 1			
$Max ext{-}Heapify(A,1)$		$O(\log n)$	$\mid n \mid$

Køretid

Heapsort(A)	
Build-Max-Heap (A)	(
for $i = A.length$ downto 2	
swap $A[1]$ and $A[i]$	(
$A.heap ext{-}size = A.heap ext{-}size - 1$	
$Max ext{-}Heapify(A,1)$	(

Tid	Gange
$\Theta(n)$	1
$\Theta(1)$	n
$O(\log n)$	n

 $\mathsf{Køretid} \colon T(n) = O(n \cdot 1) + O(1 \cdot n) + O(\log n \cdot n) = O(n \log n).$

Der gælder også $T(n) = \Omega(n \log n)$, så $T(n) = \Theta(n \log n)$.

Køretid

Heapsort(A)		Tid	Gange
Build-Max-Heap (A)		$\Theta(n)$	1
for $i = A.length$ downto 2			
swap $A[1]$ and $A[i]$		$\Theta(1)$	$\mid n \mid$
A.heap-size = A.heap-size - 1			
$Max ext{-}Heapify(A,1)$		$O(\log n)$	$\mid n \mid$

 $\mathsf{Køretid} \colon T(n) = O(n \cdot 1) + O(1 \cdot n) + O(\log n \cdot n) = O(n \log n).$

Der gælder også $T(n) = \Omega(n \log n)$, så $T(n) = \Theta(n \log n)$.

Ekstra plads: $\Theta(1)$.

Bemærk: Merge-Sort bruger $\Theta(n)$ ekstra plads!

$$n = 2^{h+1} - 1$$

Her: h = 4, $n = 2^5 - 1 = 31$.

Nøgleværdier: $\{1,2,\ldots,2^{h+1}-1\}$, én af hver.

Knuder med de 2^h største værdier kaldes *store*, dvs. værdi $\geq 2^h - 1$.

$$n = 2^{h+1} - 1$$

Her: h = 4, $n = 2^5 - 1 = 31$.

Nøgleværdier: $\{1,2,\ldots,2^{h+1}-1\}$, én af hver.

Knuder med de 2^h største værdier kaldes *store*, dvs. værdi $\geq 2^h - 1$.

Observation 1: Efter Build-Max-Heap danner de store knuder et (sammenhængende) træ.

$$n = 2^{h+1} - 1$$

Her: h = 4, $n = 2^5 - 1 = 31$.

Nøgleværdier: $\{1,2,\ldots,2^{h+1}-1\}$, én af hver.

Knuder med de 2^h største værdier kaldes *store*, dvs. værdi $\geq 2^h - 1$.

Observation 1: Efter Build-Max-Heap danner de store knuder et (sammenhængende) træ.

Observation 2: Enhver stor knude der starter i lag h-1, bevæger sig til roden og bliver fjernet i løbet af 2^h Extract-Max. Dvs. $\Omega(\log n)$ skridt op.

$$n = 2^{h+1} - 1$$

Her: h = 4, $n = 2^5 - 1 = 31$.

Nøgleværdier: $\{1,2,\ldots,2^{h+1}-1\}$, én af hver.

Knuder med de 2^h største værdier kaldes *store*, dvs. værdi $\geq 2^h - 1$.

Observation 1: Efter Build-Max-Heap danner de store knuder et (sammenhængende) træ.

Observation 2: Enhver stor knude der starter i lag h-1, bevæger sig til roden og bliver fjernet i løbet af 2^h Extract-Max. Dvs. $\Omega(\log n)$ skridt op.

Observation 3: Knuder i lag $1, \ldots, h-2$:

$$1+2+\ldots+2^{h-2}<2^{h-1}$$
.

$$n = 2^{h+1} - 1$$

Her: h = 4, $n = 2^5 - 1 = 31$.

Nøgleværdier: $\{1,2,\ldots,2^{h+1}-1\}$, én af hver.

Knuder med de 2^h største værdier kaldes *store*, dvs. værdi $\geq 2^h - 1$.

Observation 1: Efter Build-Max-Heap danner de store knuder et (sammenhængende) træ.

Observation 2: Enhver stor knude der starter i lag h-1, bevæger sig til roden og bliver fjernet i løbet af 2^h Extract-Max. Dvs. $\Omega(\log n)$ skridt op.

Observation 3: Knuder i lag $1, \ldots, h-2$:

$$1 + 2 + \ldots + 2^{h-2} < 2^{h-1}.$$

Observation 4: Mindst 2^{h-1} store knuder i lag h-1,h.

$$n = 2^{h+1} - 1$$

Her: h = 4, $n = 2^5 - 1 = 31$.

Nøgleværdier: $\{1, 2, \dots, 2^{h+1} - 1\}$, én af hver.

Knuder med de 2^h største værdier kaldes *store*, dvs. værdi $\geq 2^h - 1$.

Observation 1: Efter Build-Max-Heap danner de store knuder et (sammenhængende) træ.

Observation 2: Enhver stor knude der starter i lag h-1, bevæger sig til roden og bliver fjernet i løbet af 2^h Extract-Max. Dvs. $\Omega(\log n)$ skridt op.

Observation 3: Knuder i lag $1, \ldots, h-2$:

$$1+2+\ldots+2^{h-2}<2^{h-1}$$
.

Observation 4: Mindst 2^{h-1} store knuder i lag h-1,h.

Observation 5: x knuder i lag $h-1 \Rightarrow h$ øjst 3x knuder i lag h-1,h. Derfor

$$3x \ge 2^{h-1} \Rightarrow x \ge \frac{2^{h-1}}{3} = \frac{2^{h+1}}{12} = \frac{n+1}{12} = \Omega(n).$$

$$n = 2^{h+1} - 1$$

Her: h = 4, $n = 2^5 - 1 = 31$.

Nøgleværdier: $\{1, 2, \dots, 2^{h+1} - 1\}$, én af hver.

Knuder med de 2^h største værdier kaldes *store*, dvs. værdi $\geq 2^h - 1$.

Observation 1: Efter Build-Max-Heap danner de store knuder et (sammenhængende) træ.

Observation 2: Enhver stor knude der starter i lag h-1, bevæger sig til roden og bliver fjernet i løbet af 2^h Extract-Max. Dvs. $\Omega(\log n)$ skridt op.

Observation 3: Knuder i lag $1, \ldots, h-2$:

$$1+2+\ldots+2^{h-2}<2^{h-1}$$
.

Observation 4: Mindst 2^{h-1} store knuder i lag h-1,h.

Observation 5: x knuder i lag $h-1 \Rightarrow h$ øjst 3x knuder i lag h-1,h. Derfor

$$3x \ge 2^{h-1} \Rightarrow x \ge \frac{2^{h-1}}{3} = \frac{2^{h+1}}{12} = \frac{n+1}{12} = \Omega(n).$$

Konklusion: Observation 2+5 giver $\Omega(n \log n)$ tid.

Hvor meget forstod du af beviset?

socrative.com \rightarrow Student login,

Room name: ABRAHAMSEN3464

Det hele.

Α

Det meste.

В

Noget.

Kun en lille smule.

Ingenting.