Einführung in die Künstliche Intelligenz

Übungszettel 4

Prof. Dr. Claudia Schon C.Schon@hochschule-trier.de

Fachbereich Informatik Hochschule Trier

1 Gini-Index als Kriterium für Entscheidungsbäume

Hinweis:

- Diese Aufgabe ist erneut auf dem Übungszettel, da die Aufgabe in der letzten Übungssstunde nicht in allen Gruppen besprochen werden konnte.
- Bei Übungsgruppen, in denen die Aufgabe besprochen werden konnte, können Sie gerne in der nächsten Stunde noch Fragen zu dieser Aufgabe oder zum letzten Übungszettel stellen.

Der Gini-Index ist ein alternatives Kriterium zur Auswahl des besten Attributs in einem Entscheidungsbaum. Er misst, wie "rein" eine Datenmenge im Hinblick auf die Klassenzugehörigkeit ist.

Definition des Gini-Index

Für eine Menge von Trainingsbeispielen S mit k Klassen ist der Gini-Wert definiert als:

$$Gini(S) = 1 - \sum_{i=1}^{k} p_i^2$$

Dabei ist p_i der Anteil der Beispiele in S, die zur Klasse i gehören.

Dann wird der Gini-Index für das Attribut A wie folgt berechnet:

$$Gini-Index(S, A) = \sum_{v \in Values(A)} \frac{|S_v|}{|S|} \cdot Gini(S_v)$$

Wobei $S_v = \{s \in S \mid A(s) = v\}$ (S_v ist also die Menge der Beispiele, die für das Attribut A den Wert v haben).

Das Attribut mit dem *kleinsten* Gini-Index wird bevorzugt, da es zu einer möglichst reinen Aufteilung der Daten führt.

In den folgenden Aufgabenteilen betrachten wir nur binäre Klassifikation.

(a) Gegeben sei ein Datensatz S mit nur zwei Klassen: positiv und negativ. Wie in der Vorlesung bezeichnen wir mit p die Anzahl der positiven Beispiele und mit n die Anzahl der negativen Beispiele.

Wir definieren den Anteil positiver Beispiele als

$$q = \frac{p}{p+n}$$

Drücken Sie den Gini-Wert $\operatorname{Gini}(S)$ in Abhängigkeit von q aus und vereinfachen Sie den Ausdruck.

Interpretieren Sie den Wert in Bezug auf die Reinheit der Daten. Was passiert, wenn q = 0, q = 1 oder q = 0.5?

- (b) Berechnen Sie den Gini-Wert Gini(S) für die gesamte Trainingsmenge aus Aufgabe 2 (Übungszettel 3) in Bezug auf die Zielvariable PlayTennis.
- (c) Berechnen Sie den Gini-Index Gini-Index(S, A) für jedes der drei Attribute: Outlook, Humidity und Wind. Welches Attribut besitzt den geringsten Gini-Index?
- (d) Überlegen Sie, welchen Wert Gini-Index(S, A) annimmt, wenn das Attribut A sich wie eine Kundennummer oder ein Datum verhält, d. h. für jedes Beispiel einen eindeutigen Wert hat.
- (e) Der Gini-Wert Gini(S) kann auch als die Wahrscheinlichkeit interpretiert werden, dass eine zufällig ausgewählte Instanz aus der Menge S falsch klassifiziert wird, wenn man sie gemäß der Klassenverteilung in S zufällig einer Klasse zuweist.

Begründen Sie, warum diese Interpretation korrekt ist.

Hinweis: Gehen Sie davon aus, dass Sie eine Instanz zufällig aus S auswählen und sie dann *ebenfalls zufällig*, basierend auf den Anteilen der Klassen in S, klassifizieren.

2 Klassifikatoren vergleichen

Wir möchten erkennen, ob es es sich bei einer gegebenen E-Mail um Spam (positive Klasse, kurz pos) oder nicht um Spam (negative Klasse, kurz neg) handelt. Wir haben zwei Klassifikatoren A und B trainiert und sie auf einen Testdatensatz angewendet. Die folgende Tabelle zeigt die Ergebnisse beider Klassifikatoren auf diesem Datensatz:

Text	Gold-Label	Klassifikation durch A	Klassifikation durch B
t_1	pos	pos	neg
t_2	pos	pos	pos
t_3	pos	neg	pos
t_4	pos	pos	neg
t_5	neg	pos	pos
t_6	neg	neg	neg
t_7	neg	pos	neg
t_8	neg	neg	pos

- 1. Erstellen Sie für beide Klassifikatoren jeweils die Confusion Matrix.
- 2. Berechnen Sie für beide Klassifikatoren:
 - Precision
 - Recall
 - Accuracy
- 3. Gegeben seien zwei Klassifikatoren E und F. Sei E_{error} (bzw. F_{error}) die Menge der Beispiele, die E (bzw. F) auf einer Testdatenmenge falsch klassifiziert hat. Der Komplementarit atswert von E in Bezug auf F ist wie folgt definiert:

$$Comp(E, F) = \begin{cases} \left(1 - \frac{|E_{error} \cap F_{error}|}{|E_{error}|}\right) \cdot 100, & \text{falls } E_{error} \neq \emptyset \\ 0, & \text{sonst} \end{cases}$$

- a) Berechnen Sie für die in der obigen Tabelle angegebenen Ergebnisse die Werte für Comp(A, B) und Comp(B, A) für die beiden Klassifikatoren A und B.
- b) Erklären Sie mit eigenen Worten, was der Wert Comp(A, B) aussagt.

3 Entscheidungsbäume und die Titanic¹

In dieser Aufgabe werden Sie mit KNIME einen Entscheidungsbaum zur Vorhersage des *Überlebensstatus* von Passagieren der Titanic erstellen. Dazu verwenden Sie einen vorbereiteten, bereinigten Datensatz.

Datensatz herunterladen

Laden Sie die Datei titanic_cleaned_age.xlsx von Stud.IP herunter. Der Datensatz enthält verschiedene Informationen zu Passagieren der Titanic, u.a. Alter, Geschlecht, Ticketpreis etc. Ziel ist es, vorherzusagen, ob eine Person überlebt hat (Survived).

Daten in KNIME einlesen

- Fügen Sie einen Excel Reader-Node in Ihren Workflow ein.
- Wählen Sie die Datei titanic_cleaned_age.xlsx aus und lesen Sie sie ein.

Datenvorverarbeitung

Gehen Sie in den Einstellung des **Excel Reader**-Nodes auf *Transformation* und führen Sie die folgenden Schritte aus.

- Löschen Sie die folgenden Spalten, da sie für die Klassifikation nicht hilfreich sind:
 - PassengerId (reine Identifikationsnummer)
 - Name (zu individuell, keine Verallgemeinerung möglich)
 - Ticket (ebenso zu individuell)
 - Cabin (viele fehlende Werte, wenig Informationsgehalt)
- Behalten Sie alle übrigen Spalten bei, insbesondere: Pclass, Sex, Age, SibSp, Parch, Fare, Embarked, Survived
- Stellen Sie sicher, dass die Zielspalte Survived vom Typ String ist.

Aufteilung in Trainings- und Testdaten

- Verwenden Sie den Node Partitioning, um die Daten aufzuteilen.
- Einstellung:
 - Verhältnis: 80% Training, 20% Testdaten
 - Methode: **Random** (zufällig)

 $^{^1\}mathrm{Aufgabe}$ wurde mit Unterstützung von ChatGPT erstellt.

- Random Seed: 42

• Der obere Ausgang des **Partitioning** Nodes liefert die Trainings- der untere die Testdaten.

Entscheidungsbaum lernen

- Fügen Sie den Node **Decision Tree Learner** ein.
- Verbinden Sie ihn mit dem **oberen Ausgang** des Partitioning-Nodes.
- Konfiguration:

- Class column: Survived

- Quality measure: Gain ratio

- Pruning method: No pruning

- Haken bei Reduced Error Pruning setzen

Visualisierung des Entscheidungsbaums

- Fügen Sie den Node **Decision Tree to Image** hinzu.
- Verbinden Sie ihn mit dem Ausgang des Decision Tree Learners.

Testdaten klassifizieren

- Fügen Sie den Node **Decision Tree Predictor** hinzu.
- Verbinden Sie:
 - unteren Ausgang des Partitioning-Nodes mit dem unteren Eingang
 - Ausgang des Decision Tree Learners mit dem oberen Eingang

Modell auswerten (Accuracy, Precision, Recall)

- Fügen Sie den Node **Scorer** hinzu und verbinden Sie ihn mit dem Ausgang des Decision Tree Predictors.
- Konfigurieren Sie:

- First column: Survived

Second column: Prediction(Survived)

- Führen Sie den Node aus und sehen Sie sich die Confusion Matrix an.
- Notieren Sie sich die Precision, Recall und Accuracy.