Departamento de Matemática da Universidade de Aveiro

Álgebra Linear e Geometria Analítica

Agrupamento IV

17/01/2023 Exame final Duração: 2h30min

Justifique detalhadamente todas as respostas. Apresente todos os cálculos. Este exame tem 6 questões.

(5.5) 1. Seja A a matriz dos coeficientes, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ o vetor das incógnitas e B a coluna dos termos independentes do sistema de equações lineares

$$\begin{cases} x+y=2\\ x+2y+\alpha z=3\\ \alpha y+z=2\alpha+1 \end{cases},$$

onde α é um parâmetro real.

- (a) Determine todos os valores do parâmetro α para os quais o sistema AX = B é:

 (i) possível e determinado, (ii) possível e indeterminado e (iii) impossível.
- (b) Considere $\alpha = -1$. Seja r a reta determinada pelas duas primeiras equações do sistema $AX = B \in \mathcal{P}$ o plano que tem como equação geral a terceira equação deste sistema. Determine a posição relativa de $r \in \mathcal{P}$.
- (c) Considere $\alpha = \mathbf{0}$. Calcule o determinante de A e verifique que A é invertível. Calcule a inversa de A, A^{-1} .
- (1.5) 2. Sabendo que

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 3,$$

usando as propriedades dos determinantes, calcule

$$\begin{vmatrix} 2a_1 - 4c_1 & c_1 & b_1 + 3a_1 \\ 2a_2 - 4c_2 & c_2 & b_2 + 3a_2 \\ 2a_3 - 4c_3 & c_3 & b_3 + 3a_3 \end{vmatrix}.$$

- (3.0) 3. Considere os vetores u = (0, 1, -2) e v = (-2, 2, 1) pertencentes a \mathbb{R}^3 .
 - (a) Calcule a área do paralelogramo com um vértice na origem e lados dados por $u \in v$.
 - (b) Considere a reta r que passa pelo ponto B(2, -3, -2) e tem a direção do vetor u = (0, 1, -2). Determine a distância do ponto A(4, -5, -3) à reta r.

- (4.0) 4. Considere o subconjunto $S = \{(x, y, z) \in \mathbb{R}^3 : y + z = 0\}$ do espaço vetorial \mathbb{R}^3 .
 - (a) Mostre que S é um subespaço vetorial de \mathbb{R}^3 .
 - (b) Determine uma base ordenada B de S e indique a dimensão de S.
 - (c) Determine a projeção ortogonal de v = (3, 0, 2) em S.
- (3.5) 5. Considere que A é uma matriz simétrica 3×3 que verifica as igualdades

$$AX = 2X, AY = 2Y \text{ e } AZ = -3Z,$$

onde
$$X = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $Y = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ e $Z = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

- (a) Determine, justificando, uma matriz ortogonal P e uma matriz diagonal D tal que $D = P^{\top}AP$.
- (b) Considere em \mathbb{R}^3 a quádrica de equação $X^TAX=4$. Determine uma equação reduzida e classifique a quádrica.
- (2.5) 6. Considere a transformação linear $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ tal que $\phi(X) = AX$, com $A = \begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix}$. Seja $\mathcal{B} = ((1,0),(1,-1))$ uma base de \mathbb{R}^2 e $\mathcal{C}_2 = ((1,0),(0,1))$ a base canónica de \mathbb{R}^2 .
 - (a) Determine o núcleo de ϕ . Verifique se ϕ é sobrejetiva.
 - (b) Determine a matriz de representação de ϕ , $M = M(\phi, \mathcal{C}_2, \mathcal{B})$.