Pre-Tutorial (To be completed by student before attending tutorial session

1. Let $r=a(a+b)^*$, $s=aa^*b$ and $t=a^*b$ be three regular expressions. Provide the relationship among the languages L(r), L(s), and L(t). Explain.

Solution:

$$y = a(0+b)^{*}$$

 $5 = aa^{*}b$
 $t = a^{*}b$

exait with on a followed by any Combination of do and bis

L(s): consists of all strings that stort with one (or) more No. of ois followed by o Single b

1(t): consists of all the strings start with zero (or) any No. of ais followed by a single b.

Relationship!

1) L(S) is a subset of L(t) and L(t)

2) L(t) is not a subset of L(v)

: L(s) is a Common set of both ((r) and L(t)

Course Title	itle THEORY OF COMPUTATION	
Course Code(s)	23MT2014	ACADEMIC YEAR: 2024-25
		Page 46 of 261

Tutorial #	TO BE FILLED BY STUDENTS	Ct. dans ID	0.0
Date	10 20 +80 216TUDENT>	Student Name	2300030088
		Student Name	TOTELES TO BY STUDENTS

2. Write the regular expression corresponding to the language L where L = $\{x \in \{0, 1\}^* | x \text{ ends with 1 and does not contain substring 00} \}$. Explain.

Solution:

$$\Rightarrow$$
 End with 1
 \Rightarrow Does not contain oo
 $1 = (1+01)^{+1}$
 $1 = (1,11,101,1101,---)$

3. Prove that $a(ba)^*b = ab(ab)^*$

The string accepted by or can be written as a (box) b

15 abtabab + abababab + -- -

ab (ab) = ab+ abab + ababab + ---

The Expanded from the strings accepted one equal

Course Title	THEORY OF COMPUTATION	ACADEMIC YEAR: 2024-25	
Course Code(s)	23MT2014	Page 47 of 261	47

T. 1 . 1	-		
lutorial#	< 1 BE FILLED BY STUDENT>	Student ID	93000300 80
Date	< 900 B LIST BY STUDENT>		
	DO POSTOCOLITY) Stocette Manne	

IN-TUTORIAL (To be carried out in presence of faculty in classroom)

1. Prove that $(1 + 00^{\circ}1) + (1 + 00^{\circ}1)(0 + 10^{\circ}1)^{\circ}(0 + 10^{\circ}1) = 0^{\circ}1(0 + 10^{\circ}1)^{\circ}$ Solution:

	Student ID	23000,2000,80
Tutorial # <10 BE HILED BY STODENT>	Student Name	< 2200020088 NT>
Date 10 70 10 574 000000		301

2. Give TWO R.E.s for representing the set L of strings in which every 0 is immediately followed by at least two 1s.

solution: (i)
$$R_1 = (1*)(011)* (1*)$$

3. Prove $(a + b)^* = a^*(ba^*)^*$ using identity rules of regular set.

Solution:

$$(a+b)^{*} = (+(a+b) + (a+b)(a+b) + ---$$

$$= (+a+b+aa+b+ba+bb+---)$$

$$= a^{*} + (b+ab+---)$$

$$= a^{*} + b((+a+b+---))$$

$$= a^{*} + ba^{*}$$

$$= a^{*} ((+ba^{*}))$$

$$= a^{*} ((+ba^{*}))$$

ttence	Proved.
	11

Course Title	THEORY OF COMPUTATION	ACADEMIC YEAR: 2024-25	
Course Code(s)	23MT2014	Page 49 of 261	49

Tutorial # <to belfilled="" by="" student=""></to>	Student ID	230003008
	Student Name	TP ash BY STO
Date TO BOH BEZIL STUDENTS		

Post-Tutorial (To be carried out by student after attending the tutorial session)

1. Find the regular expression representing the set of all strings of the form $a^mb^nc^p$ where $m,n,p\geq 1$

Solution:

Find the sets represented by the regular Expression (aa)* + (aaa)*
 Solution:

3. Prove that $P + PQ^*Q = a^*bQ^*$ where $P = b + aa^*b$ and Q is any regular expression. Solution:

4	04	7	Q*	
/	a	U	Q	

Course Title	THEORY OF COMPUTATION	ACADEMIC YEAR: 2024-25
Course Code(s)	23MT2014	Page 50 of 261

Tutorial #	TO BEFILLED BY STUDENT>	Student ID	<to be="" but="" hent="" luzs=""></to>
Date	< 10 820+8-1246TUDENT>	Student Name	<to be="" buttles="" ment=""></to>
Date			

Viva Questions

1. What is the relationship between regular sets and regular expressions? How do they help us describe and analyze patterns in strings?

Answer: Regular sets are the longuages described by regular expression and they represent patterns in string that Con be matched

2. How do we determine whether two regular expressions are equivalent, and what are the implications of equivalence in terms of language recognition and automata theory?

Two regular expression are equivalent if they describe the same regular longuage which means the generate (or) match the same set of Strings.

(For Evaluator's use only)

Comment of the Evaluator (if Any)	Evaluator's Observation
	Marks Secured:out of 50
	Full Name of the Evaluator:
	Signature of the Evaluator
	Date of Evaluation:

ACADEMIC YEAR: 2024-25	
Page 51 of 261	
	CONTRACTOR OF THE PROPERTY OF