

Distributed power electronics for PV systems

National Renewable Energy Laboratory's EPRI PV Technology Seminar

Chris Deline

12/15/2011

NREL/PR-5200-54183

Overview

- Introduction to PV power electronics
- Types of mismatch in PV systems
- Performance improvement from distributed electronics
- Market share and other considerations

Introduction – Distributed power electronics

- Per-module electronics (DC-DC, μinverter) reduce mismatch loss
- Each device tracks individual module max power point.
 - Decouples the panel voltage & current from the rest of the string
 - Monitoring capability
 - Safety, anti-theft

How DC-DC converters work

The output of a DC-DC converter is a constant power curve with voltage and current upper limits.

Impaired modules have their current boosted to match I_{mp} of unshaded modules.

With buck-boost devices, voltage of unshaded modules can be boosted to match parallel string voltage.

Note that device efficiency and insertion loss may offset gains

Introduction – Impact of Shade

- Shade impact depends on module type (fill factor, bypass diode placement), severity of shade, and string configuration.
- Power loss occurs from shade, also current mismatch within a PV string and voltage mismatch between parallel strings.
- Power lost is greater than proportional to the amount of shade on the system

'Shade Impact Factor' (ratio of power lost to area of shade) for a single module in a single string PV system^[1]

[1] C. Deline, IEEE PVSC, 2009

Introduction – Other sources of mismatch

Other types of mismatch can impact system performance:

- Soiling (dirt accumulation, bird droppings, snow build-up)
- Orientation of panels on different roof planes
- Distribution of panels' Imp rating (manufacturers typically bin to 2%)
- Differential aging
- Inverter voltage limits

System with varying module orientation

Inverter Vmp clipping due to high temperature and partial shade

Example mismatch losses

Type of mismatch	System loss (est)	Potential DC-DC gain*	Ref
Residential roof shade, 1 string	5-15%	+15-20% of loss	[2]
Residential rooftop shade – multiple strings	5-20%	+20-30% of loss	[2]
Commercial system with interrow shading	1-5%	+30-40% of loss	[3]
Residential orientation mismatch, 1 string (East-West)	5-20%	+100% of loss	[4]
Imp distribution mismatch	0.2 - 1%	+100% of loss	[3]
Soiling – CA and Southwest US	1.5 – 6.2%	+15-40% of loss	[5]

^{*}Not accounting for device efficiency or diode insertion loss

- [2] C. Deline, IEEE PVSC, 2010
- [3] C. Deline et al, NREL technical report TP5200-50003
- [4] S. MacAlpine, ASME, ES2009
- [5] A. Kimber, IEEE Conference on PV energy conversion, 2006

Estimates of performance improvement from PV power electronics

Side by side comparison, 8kW systems - one with micro-inverters, one with a string inverter [7]

4%-12% performance improvement

- [3] C. Deline et al, NREL technical report TP5200-50003
- [6] S. MacAlpine, EUPVSEC, 4AV.3.15, 2011
- [7] C. Deline et al, "Partial Shading Testbed for PV-Integrated Power Electronics Operating Procedure Draft"

CAD shading simulation [6]

4%-8% performance improvement

Site survey based simulation [3]

3%-6% performance improvement

Current market share of micros and DC-DC

Majority of sales are for residential systems

Tigo: 90% of sales are < 30kW

Business is good and growing:

- Enphase had 13% share of CA installations <10kW in 2010. [8]
- Market is growing >100%/yr

Lots of mismatched PV systems out there:

• Site survey shows 7.6% median shading, with a long tail.

Residential site survey distribution showing 7.6% median annual shading [Solar Works, CA]

[8] Enphase press release dated 1/19/11 based on CSI database for CA installations < 10 kW

Interesting future trends:

- Enphase's efficiency already beats some string inverters (M-215 has η_{CFC} = 96%)
- Incremental cost to add DC power optimizers to a system will be 5-10¢/W by 2012.¹
- Distributed power electronics will account for 1GW, or 5% of inverter capacity by 2013.²
- 45% of units will be packaged directly into PV modules by 2015.²

1: Tigo energy 2: IMS Research

Additional considerations:

Added benefits to using per-panel devices may include:

- Per-module performance monitoring
- Emergency shut-off or lower voltage for fireman safety
- Ability to add more PV panels at a later date
- Greater freedom in design and layout

Some concerns to keep in mind may include:

- Different devices may not be inter-operable, obsolescence risk may be a concern.
- Insertion loss during unshaded times may offset benefit
- Additional equipment = more points of failure

In conclusion...

- The impact of shade is greater than just the area of shade
- Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling
- Per-module devices can help increase performance, 4-12% or more depending on the system.
- Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption
- The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

Questions / Comments?

Chris Deline

chris.deline@nrel.gov

Ph: (303) 384-6359