```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('seaborn')
```

In [2]: df = pd.read\_csv(r'C:\Users\NEW\Downloads\winequality-red.csv', delimiter = ';')

In [3]: df.head()

## Out[3]:

|   | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free<br>sulfur<br>dioxide | total<br>sulfur<br>dioxide | density | рН   | sulphates | alcohol  |
|---|------------------|---------------------|----------------|-------------------|-----------|---------------------------|----------------------------|---------|------|-----------|----------|
| 0 | 7.4              | 0.70                | 0.00           | 1.9               | 0.076     | 11.0                      | 34.0                       | 0.9978  | 3.51 | 0.56      | 9.4      |
| 1 | 7.8              | 0.88                | 0.00           | 2.6               | 0.098     | 25.0                      | 67.0                       | 0.9968  | 3.20 | 0.68      | 9.8      |
| 2 | 7.8              | 0.76                | 0.04           | 2.3               | 0.092     | 15.0                      | 54.0                       | 0.9970  | 3.26 | 0.65      | 9.8      |
| 3 | 11.2             | 0.28                | 0.56           | 1.9               | 0.075     | 17.0                      | 60.0                       | 0.9980  | 3.16 | 0.58      | 9.8      |
| 4 | 7.4              | 0.70                | 0.00           | 1.9               | 0.076     | 11.0                      | 34.0                       | 0.9978  | 3.51 | 0.56      | 9.4      |
| 4 |                  |                     |                |                   |           |                           |                            |         |      |           | <b>•</b> |

In [4]: fig, ax = plt.subplots(nrows = 1, ncols = 2)
 print(ax)
 plt.show()

## [<AxesSubplot:> <AxesSubplot:>]





```
In [6]: fig, ax = plt.subplots(nrows = 2, ncols = 2, figsize = (10,10))
        ax[0,0].scatter(df['fixed acidity'], df['volatile acidity'], ec = 'k',
                     color = 'slateblue')
        ax[0,0].set xlabel('Fixed Acidity')
        ax[0,0].set_ylabel('Volatile Acidity')
        ax[0,0].set_title('Relation b/w Acidities')
        ax[0,1].bar(df['quality'], df['alcohol'],
                   color = 'red')
        ax[0,1].set ylabel('Alcohol')
        ax[0,1].set_xlabel('Quality')
        ax[0,1].set_title('Relation Alcohol & Quality')
        ax[1,0].scatter(df['fixed acidity'], df['pH'], ec = 'k',
                     color = 'skyblue')
        ax[1,0].set_ylabel('pH')
        ax[1,0].set_xlabel('Fixed Acidity')
        ax[1,0].set title('Relation b/w Acidity & pH')
        freq, bins = np.histogram(df['fixed acidity'], bins = 15)
        ax[1,1].hist(df['fixed acidity'], ec = 'k',
                    bins = bins)
        ax[1,1].set xlabel('Fixed Acidity')
        ax[1,1].set ylabel('Frequency')
        ax[1,1].set title('Distribution of Fixed Acidity')
        fig.suptitle('Key Indicators for Red wine')
        plt.tight layout()
        plt.show()
```



In [ ]: