METHOD OF MASS LOADING OF THIN FILM BULK ACOUSTIC RESONATORS (FBAR) FOR CREATING RESONATORS OF DIFFERENT FREQUENCIES AND APPARATUS EMBODYING THE **METHOD**

Patent Number:

US2002121945

Publication date:

2002-09-05

Inventor(s):

LARSON JOHN D (US); BRADLEY PAUL D (US); RUBY RICHARD C

(US)

Applicant(s):

Requested Patent:

T JP2002299980

Application

Number:

US20010799204 20010305

Priority Number(s): US20010799204 20010305

IPC Classification: H03H9/56

EC Classification:

H03H3/04, H03H9/17

Equivalents:

DE10207329, US6469597

Abstract

A method for fabricating a resonator, and in particular, a thin film bulk acoustic resonator (FBAR), and a resonator embodying the method are disclosed. An FBAR is fabricating on a substrate by introducing a mass loading electrode to a bottom electrode layer. For a substrate having multiple resonators, mass loading bottom electrode is introduced for only selected resonator to provide resonators having different resonance frequencies on the same substrate

Data supplied from the esp@cenet database - 12

(19)日本国特許庁(JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2002-299980A) (P2002-299980A) (43)公開日 平成14年10月11日(2002.10.11)

(51) Int. Cl. ⁷ 識別記号 F I デーマコート*(参考) H O 3 H 3/02 C 5J108 E

H01L 41/22 Z

審査請求 請求項の数6 (全9頁) OL(21)出願番号 特願2002-57362 (P2002-57362) (71)出願人 399117121 アジレント・テクノロジーズ・インク (22) 出願日 平成14年3月4日(2002.3.4) AGILENT TECHNOLOGIE S, INC. (31)優先権主張番号 799204 アメリカ合衆国カリフォルニア州パロアル (32)優先日 平成13年3月5日(2001.3.5) ト ページ・ミル・ロード 395 (33)優先権主張国 米国(US) (72)発明者 リチャード・シー・ルビー アメリカ合衆国カリフォルニア州メンロ・ パーク ナインス・アベニュー567 (74)代理人 100105913 弁理士 加藤 公久

最終頁に続く

(54) 【発明の名称】共振器の製造方法

(57)【要約】

【課題】同一基板上に共振周波数の異なる共振器を組立 てる。

【解決手段】基板(102)上に共振器(110)を製造するため、底部負荷電極(113)を作り、前記底部負荷電極(113)上に底部コア電極(112)を作り、圧電(PZ)層(104)を作り、前記PZ層(104)上に表面電極(116)を作るようにした。

1

【特許請求の範囲】

【請求項1】基板上に共振器を製造する方法において、 底部負荷電極を作り、

前記底部負荷電極上に底部コア電極を作り、

圧電(PZ)層を作り、

前記PZ層上に表面電極を作るようにした共振器の製造 方法。

【請求項2】前記底部負荷電極が、約10~100nmの 厚さを備えているようにした請求項1に記載の共振器の 製造方法。

【請求項3】前記底部負荷電極が、モリブデンを含むよ うにした請求項1に記載の方法。

【請求項4】前記底部負荷電極と前記底部コア電極が、 同一の材料を備えるようにした請求項1に記載の共振器 の製造方法。

【請求項5】前記PZ層が、窒化アルミニウム(A1 N)を含むようにした請求項1に記載の共振器の製造方 法。

【請求項6】前記底部負荷電極が、空洞にまたがるよう にした請求項1に記載の共振器の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、音響共振器に関 し、さらに詳しくは、電子回路におけるフィルタとして 使うことができる共振器に関する。

[0002]

【従来の技術】電子機器のコストとサイズを低減する要 求は、より小型な信号フィルタへの限りないニーズにつ ながる。セルラー電話や小型ラジオのような民生電子製 にきびしい制限を与えられている。このような製品の多 くは、精密な周波数に同調されなければならないフィル タを使っている。従って、安価で簡素なフィルタユニッ トを提供するために絶え間のない努力が続けられてい る。

【0003】これらのニーズを満足させる可能性を持っ たフィルタの一種類が、薄膜バルク音響共振器(FBA R)から構成されている。これらの装置は、薄膜圧電 (PZ) 材料中のバルク縦音波を用いている。その一つ の簡単な構成において、PZ材料の層が、二つの金属電 極間に挟持されている。この挟持構造は、支持構造によ って空気中に懸架されることが好ましい。電界が金属電 極間に加えられるとき、PZ材料が、電気エネルギのい くらかをメカニカルウェーブの形に変換する。このメカ ニカルウェーブは、電界と同じ方向に伝播し、電極/空 気インターフェースで反射する。

【0004】共振周波数において、装置は、電子的な共 振器と考えられる。二つ以上の共振器(異なる共振周波 数を有する)が電気的に接続されると、この集合体は、

カニカルウェーブの所定の位相速度に対して、装置内を 伝播するメカニカルウェーブの1/2波長が装置の全体 的な厚さに等しくなるような周波数である。メカニカル ウェーブの速度は光速度よりも4桁小さいので、構成さ れる共振器は、非常に簡素になる。GHz範囲の共振器 のアプリケーションは、横方向において100 μm以下 のオーダーのおよび厚さ方向において数μmのオーダー の物理的な寸法を備えた共振器の構成を可能にする。

【0005】マイクロ波分野での小型のフィルタを設計 10 して製造するとき、共振器(例えば、FBAR)間で、 通常数%だけのほんの少し異なる共振周波数を備えるよ うにする必要をしばしば生じる。一般的に、二つ異なる 周波数で十分であるが、より一般的なフィルタ設計で は、それぞれ異なる共振周波数を備えた三つ以上の共振 器を必要とすることがある。これらのフィルタにおいて いつも存在する問題は、共振器の共振周波数を精密にず らすことと、同時に、単一のウェーハー上あるいは基板 上にそれら共振器を作り上げることである。

[0006]

【発明が解決しようとする課題】共振器の周波数が共振 器の厚さに反比例することは、周知である。単一の基板 上にずれた周波数を備えた多数の共振器を作るために、 表面の金属電極を質量負荷する技術が、1999年4月 20日にLakinなどに与えられた米国特許第5,8 94、647号に開示されている。しかしながら、それ ぞれの共振器が同一の基板上で異なる共振周波数を有す るようにするために、さらに別の技術が求められる。

[0007]

【課題を解決するための手段】上記のニーズは、本発明 品は、その製品に内蔵されている部品の大きさとコスト 30 によって満される。本発明の第1の特徴によれば、基板 上に共振器を作るための方法が、開示される。まず、底 部負荷電極が、作られる。次いで、第1の底部コア電極 と第2の底部コア電極が作られ、第1の底部コア電極 は、底部負荷電極の上に作られてこの底部負荷電極と共 に第1の底部電極を構成し、第2の底部コア電極は、第 2の底部電極を構成する。次ぎに、圧電 (PZ) 層が作 られる。次いで、第1の表面電極が作られ、PZ層の第 1の部分は、一方の側を第1の表面電極に、他方の側を 第1の底部電極にして挟持される。最終的に、第2の表 面電極が作られ、PZ層の第2の部分は、一方の側を第 2の表面電極に、他方の側を第2の底部電極に挟持され る。

> 【0008】本発明の第2の特徴によれば、基板上に共 振器を製造する方法が、開示される。まず、底部負荷電 極が作られ、底部コア電極がこの底部負荷電極の上に作 られる。次いで、圧電(PZ)層が作られる。最終的 に、表面電極が、PZ層上に作られる。

【0009】本発明の第3の特徴によれば、圧電(P 乙)層を挟持している底部および表面電極を備えた共振 フィルタとして働く。共振周波数は、材料中におけるメ 50 器が、開示される。底部電極は、底部負荷電極および底

部コア電極部分を含んでいる。

【0010】本発明の第4の特徴によれば、第1の共振 器と第2の共振器を備えた装置が、開示される。第1の 共振器は、第1の圧電(PZ)材料を挟持している第1 の底部電極と第1の表面電極を備えており、第1の底部 電極は、底部負荷電極と底部コア電極を備えている。

【0011】本発明の他の特徴および利点は、本発明の 原理を実施例によって示すための添付の図面との組み合 わせにおいて行われる以下の詳細な説明から明らかにな るであろう。

[0012]

【発明の実施の形態】説明のための図面から明らかなよ うに、本発明は、複数の共振器を単一の基板上に組立て かつかつ異なる共振周波数を備える技術として実施され る。

【0013】1. 圧電層に質量負荷する薄膜共振器の 製造について

本発明の第1の実施例では、基板上に第1の共振器と第 2の共振器を備えた装置が、開示されている。第1の共 た第1の圧電 (PZ) 層を備えている。第2の共振器 は、二つの電極と、これらの二つの電極に挟持された第 2のPZ層を備えている。この第1のPZ層は、コアP Z層と追加のPZ層を備え、第2のPZ層は、コアPZ 層のみを備えている。従って、第1のPZ層は、第2の PZ層よりも厚く、第1の共振器は、第2の共振器の共 振周波数よりも低い共振周波数を有している。

【0014】図1において、本発明の第1の実施例によ る装置10が示されている。装置10は、基板12上に 形成された第1の共振器20と第2の共振器30とを備 えている。一つの例として、基板12は、シリコン基板 である。共振器20と30は、メカニカルウェーブを用 いる音響共振器である。そのために、図示されている共 振器20と30のそれぞれは、それぞれ空洞21と31 の上に作られている。例えば、2002年5月9日にR uby等に与えられた米国特許第6,060,818号 は、この方法を示しており、本発明にも適用できるその 他の詳細も開示されている。

【0015】本明細書の発明の実施の形態におよび他に おいて、用語「第1の」および「第2の」は、類似した 装置あるいは装置の部品における異なる存在を便宜的に 区別するために使われ、これらの用語が使われる特定の 文脈において適用されるものである。しかしながら、材 料、処理、および、いずれかの部分において述べられて いる装置の様々な部品の一般的なおよび相対的な寸法お よび位置は、一区分において述べられたものであっても この明細書を通じて使えるものとする。

【0016】第1の共振器20は、空洞21 (「第1の 空洞」)上をまたぐように作られ、底部電極22(「第 1の底部電極」)、表面電極26 (「第1の表面電

極」)、および、第1の底部電極22と第1の表面電極 26の間に挟持されたPZ材料を含んでいる。PZ材料 は、PZ層14(「コアPZ層」)の部分24(「第1 の部分」)および第1の部分24の上の追加のPZ層2 5を含んでいる。第1の部分24は、ほぼ第1の底部電 極22の上に位置するPZ層14の一部分である。参照 番号24は、PZ層14の第1の部分24の全般的な領 域を指示す。

【0017】PZ層14、追加のPZ層、あるいは、そ 10 の両方は、窒化アルミニウム(A 1 N)あるいは他の適 当な圧電材料を用いて構成できる。電極、例えば第1の 底部電極22は、モリブデンを使える。しかしながら、 電極には他の適当な導電体も使うことができる。

【0018】第2の共振器30は、空洞31 (「第2の 空洞」)上に作られ、底部電極32(「第2の底部電 極」)、表面電極36(「第2の表面電極」)、およ び、第2の底部電極32と第2の表面電極36の間に挟 持されたPZ材料を含んでいる。PZ材料は、コアPZ 層14の部分34(「第2の部分」)を含んでいる。第 振器は、二つの電極と、これらの二つの電極に挟持され 20 2の部分34は、ほぼ第2の底部電極32の上に位置す るコアPZ層14の一部分である。参照番号34は、コ アPZ層14の第2の部分34の全般的な領域を指示し ている。

> 【0019】第1と第2の共振器20と30の大きさ は、必要な共振周波数に対応している。例えば、190 OMH z の共振周波数を備える共振器に対しては、共振 器20と30のそれぞれの大きさは、約30,000平 方μmをカバーする約150×200μmとなる。このよ うな周波数と大きさでは、電極22と26は、通常それ ぞれ約150nmの厚さとなり、コアPZ層14は、約2 100mの厚さとなる。1900MHzよりも3%程度 低い共振周波数を得るためには、PZ材料の厚さは、約 110nm増加する。すなわち、追加のPZ層の厚さは、 コアPZ層14の厚さの約1~8%となる。これは、第 1の共振器20についての説明である。もちろん、これ らの測定値は、材料や共振周波数に応じて異なるもので ある。本発明の説明を明瞭なものとするために、図1の 装置10の種々の部材は、装置の10における他の部材 と完全に縮尺が合っているわけではない。追加のPZ層 **25の厚さは、コアPZ層14の厚さに対して広い幅を** 有し得る、例えば、これに限定されないが、コアPZ層 14の2~6%の範囲にできる。実際には、追加のPZ 層25の厚さは、コアP2層14の厚さの一桁以下とな る傾向にある。

> 【0020】示されている実施例において、追加のPZ 層25は、第1の共振器20に対してのみ追加されてい る。

【0021】装置10を製造するために、空洞21と3 1は、エッチングされ、ガラスを充填されて後に溶解さ 50 れるか他のやり方で除去されることによって空洞を形成

する。次に、底部電極22と32が、写真製版技術のよ うな従来周知の技術を用いて作られる。次いで、コアP **乙層14が、電極22と32の上に堆積される。PZ材** 料の厚さの異なる共振器20と30を製造するために は、PZ層の形成に多数の工程を必要とする。例えば、 コアPZ層14は、第1と第2の底部電極22と32の 両方の上に堆積される。次いで、二酸化ケイ素SiOz のような犠牲材料の薄層 (マスク) が、コアPZ層14 の上に堆積される。この犠牲層は、図1には示されてい ないが、約20nmの厚さである。犠牲層は、コアPZ層 10 14の第1の部分24を露出するようなパターンを備え ており、第1の部分24は、共振周波数が低くなるよう な共振器のためのPZ材料である。これは、この実施例 においては第1の共振器20である。

【0022】次に、追加のPZ材料 (A1Nのような) が、この実施例において約110nmの追加のPZ層25 を形成する基板全体に堆積される。次に、装置10は、 追加のPZ層25が残されるべき領域を保護するように フォトレジストを用いてパターン化されるために、装置 10は、犠牲層を除去するようにエッチング剤によって 20 処理される。エッチング剤は、希釈されたフッ化水素酸 (HF) であって、このHFの濃度に対応して約1分間 程度の処理を受ける。そのようにすることで、追加のP Z材料が、共振周波数が変化されない第2の共振器30 上から除去される。しかしながら、第1の共振器20を 保護しているフォトレジストに対して、追加のPZ層2 5は残留する。実施例の構成において、約110nmの厚 さを備えた追加のPZ層25は、第2の共振器30の共 振周波数に比較して約3%共振周波数を低くする。一つ の例としてこの技術を使うことにより、共振周波数は、 1~8%低下させられる。

【0023】最後に、表面電極28と38が作られ、空 洞21と31が、溶解あるいは他のやり方で除去され、 共振器20と30がそれぞれ空洞21と31の上に懸架 されるようにする。

【0024】2. 酸化により表面電極を質量負荷する 薄膜共振器の製造

図2において、本発明の第2の実施例による装置40が 示されている。装置40は、基板42上に製造された第 の例として、基板42は、シリコン基板でよい。

【0025】共振器50と60は、メカニカルウェーブ を用いる音響共振器である。そのため、示されている共 振器50と60は、それぞれ空洞51と61の上に作ら れている。装置40における第1の共振器50は、第1 の空洞51の上に作られ、底部電極52(「第1の底部 電極」)、PZ層54(「第1のPZ層」)、および、 表面電極56(「第1の表面電極」)を含んでいる。第 1のPZ層54は、大きなコアPZ層44の一部分

デンから作られ、PZ層54は、窒化アルミニウム

(「A1N」) から作られる。しかしながら、電極とP Z層とは他の適当な材料で作ってもよい。

【0026】装置40における第2の共振器60は、第 2の空洞61の上に作られ、底部電極62(「第2の底 部電極」)、PZ層64(「第2のPZ層」)、およ び、表面電極66(「第2の表面電極」)を含んでい る。第2のPZ層64は、コアPZ層44の一部分 (「第2の部分」) でよい。

【0027】一つの例として、第1の表面電極56は、 二つの部分、導電体部分57と酸化された導電体部分5 8を備える。導電体部分57は、モリブデンを含み、酸 化された導電体部分58は、酸化モリブデンを含む。第 1の表面電極56は、空気と熱に曝されたとき徐々に酸 化される導電体を使って作ることができる。この第1の 表面電極56は、無制限に酸化される性質を備えている ことが望ましい。すなわち、薄膜が受ける酸化の量を制 限するような対酸化被膜を形成しないのがよい。酸化特 性の検討のためには、例えば、C.A. Hampelに よって編集されたEncyclopedia of t he Chemical Elements, Reinh old Book Corporation, New York 1968、p. 419が参考になる。第 1の表面電極56に使える多数の導電体の酸化特性は、 G. V. Samsonov編集によるThe Oxid eHandbook, IFI/Plenum Publ ishers、NewYork、1973が参考にな る。

【0028】第1の表面電極56は、第2の共振器60 30 における第2の表面電極66のような導電体層のみから なる普通の表面電極から製造を始められる。そのような 第1の表面電極56が形成された後、装置40は、熱と 空気に曝されて第1の表面電極56の表面を酸化して導 電体酸化層58(酸化された導電体部分58)を形成す る。第2の表面電極66と装置40の他の部分は、マス クを用いて酸化処理中は保護されている。マスクは、二 酸化ケイ素他の硬質のマスキング材料である。第1の表 面層58が十分に酸化されると、マスクは除去される。

【0029】例えば、第1の共振器50が上述したよう 1の共振器50と第2の共振器60を有している。一つ 40 な寸法を備えているとき、第1の共振器50は、約30 0℃の空気中で約1時間加熱されて約5MHzあるいは それ以上の共振周波数低下が得られる。熱を連続的に加 えることで、第1の共振器50の共振周波数を、第1の 表面電極56の酸化前の第1の共振器50の共振周波数 に比較してあるいは第2の共振器60の共振周波数に比 較して1~3%低下させることができる。

【0030】第1の共振器50を製造するために、第1 の底部電極52、第1のPZ層54を含むコアPZ層4 4、および、第1の表面電極56が、従来周知の方法で (「第1の部分」)でよい。電極52と56は、モリブ 50 作られる。次いで、表面電極56が酸化される。酸化

は、空気中で第1の共振器50を加熱することによって 実行できる。熱を連続的に加えながら、共振器を常時監 視することによって、第1の共振器50における共振周 波数低下の程度が、制御可能となる。例えば、第1の共 振器50の共振周波数は、約1~6%の範囲で低下でき る。

【0031】3. 表面電極の質量削減による薄膜共振 器の製造

図3Aと図3Bに、本発明の第3の実施例による装置7 0と70aが示されている。図3Bの装置70aは、処 10 理後の図3Aの装置70に相当する。従って、図3Bの 装置70aにおける部材は、図3Aの装置70として示 されているものに類似している。便宜上、装置70にお ける対応する部材に類似する装置70aにおける部材 は、同じ参照番号を付与され、類似しているが異なる部 材は、文字「a」を伴う同じ番号を付与され、および、 異なる部材は、異なる参照番号を付与される。

【0032】本発明の図示されている実施例に従って基 板上に共振器を製造するために、底部電極層72が、基 板71上に作り上げられる。図1における装置10ある いは図2における装置40と同様に、装置70は、空洞 81 (「第1の空洞」)を備え、この空洞の上に共振器 80(「第1の共振器」)が、製造される。もちろん、 第1の空洞81は、底部電極層72の製造前にエッチン グされて充填されることができる。第1の空洞81上の 底部電極層72のセクション(「第1のセクション」、 通常、参照番号82によって示される)は、共振器

(「第1の共振器」)80のための底部電極82(「第 1の底部電極」)として機能できる。第2の空洞91上 の底部電極層72の他のセクション(「第2のセクショ 30 ン」、通常、参照番号92によって示される)は、他の 共振器(「第2の共振器」)90のための底部電極92 (「第2の底部電極」)として機能できる。ここで、第 1の底部電極82と第2の底部電極92は、図示のよう に接続できる。あるいは、底部電極82と92は、図1 における底部電極22と32と同様に分離しても良い。 当該発明の技術を説明するためには、この設計的な選択 は、重要ではない。

【0033】底部電極層72の上に、PZ層74が作ら れる。再び、一つの例として、PZ層74は、窒化アル 40 ミニウム(AlN)でよいが、他の適当な圧電材料であ っても良い。次ぎに、表面電極層 7 6 が、P Z 層 7 4 上 に形成され、この表面電極層76は、所定の厚さ(「第 1の厚さ」)を備える。例えば、上述された1900M Hz共振器に対して、表面電極層76は、100mmの厚 さを持つことができる。次いで、表面電極層76の選択 された領域 (一般的にカッコ79で示されている) が、 部分的にエッチングされる。すなわち、表面電極76の 材料 (例えば、モリブデン) が、除去されて表面電極7 6の薄い層を備えた選択領域79を生じる。簡単のため 50 られ、底部負荷電極113と第1の底部コア電極112

に、選択領域79の厚さは、ここでは「第2の厚さ」と 呼ぶことにする。図3Aは、本発明による部分的なエッ チング処理後の装置70を示している。

【0034】最後に、選択領域79を備えた表面電極層 76は、パターン化されて第1の表面電極79aと第2 の表面電極77aを形成する。第1の表面電極79aと 第1の底部電極82は、第1の共振器80を形成するP **Z層74の部分84(「第1の部分」)を挟持する。第** 2の表面電極77aと第2の底部電極92は、第2の共 振器90を形成するPZ層74の他の部分94(「第2 の部分」)を挟持する。これらの処理は、第2の共振器 90の共振周波数よりも高い共振周波数の第1の共振器 80を備えた装置70aを生じる。

【0035】表面電極層76を部分的にエッチングする ために、表面電極層76の選択領域79外は、マスクさ れる。次いで、選択領域79とマスクされた領域を含む 装置70は、エッチング剤で処理される。エッチング剤 は、希釈されたフッ化水素酸(HF)であることがで き、HFの濃度に従って、処理は約1分間である。ある いは、表面電極層76は、イオンミリング、フォトレジ スト、スパッタエッチング他の技術を用いてエッチング される。この発明の目的のために、表面電極層76をエ ッチングするために使われる実際の技術は、ここで挙げ た方法に限定されない。最終的に、マスクは除去され る。マスクの典型的な材料は、二酸化ケイ素(Si O₂)である。マスキングおよびエッチング処理は、従 来周知である。

【0036】共振器に関して、例えば、150μm×2 00μmの大きさと、約1,900MHzの共振周波数 を備えている第1の共振器80に関して、表面電極層7 6は、当初に約150nmの厚さを有することができる。 部分的なエッチング処理が、数十nm、例えば、約20nm を削除して約3%だけ第1の共振器80の共振周波数を 増加させる。一つの例として、選択領域79における表 面電極層76の厚さの1~30%が削除され、厚さの減 少の程度に対応して約1~6%だけ第1の共振器80に おける共振周波数が増加する。

【0037】4. 底部電極に質量負荷する薄膜共振器 の製造

図4は、本発明の第4の実施例による装置100を示す ものである。装置100は、基板102の上に作られた 第1の共振器110と第2の共振器120を備えてい る。一つの例として、基板102は、シリコン基板であ る。

【0038】共振器110と120は、メカニカルウェ ーブを用いる音響共振器である。そのために、図示され ている共振器110と120のそれぞれは、それぞれ空 洞111と121上に作り上げられる。装置100にお ける第1の共振器110は、第1の空洞111の上に作 の組み合わせである底部電極 (「第1の底部電極」)、 PZ材料114 (「第1のPZ材料」)、および、表面電極116 (「第1の表面電極」)を含んでいる。第1のPZ材料114は、PZ層104の一部分 (「第1の部分」)である。図示の実施例において、電極112、113および116は、モリブデンから作られており、PZ層104は、窒化アルミニウム (「A1N」)を用いて作られている。しかしながら、他の適当な導電体材料が、電極のために使われても良い。同様に、他の適当な圧電材料も、PZ層104に使える。一つの例として、第1の底部コア電極112と底部負荷電極113が、同一の材料から作られる。

【0039】装置100における第2の共振器120が、第2の空洞121の上に作られ、底部電極122(「第2の底部電極」あるいは「第2の底部コア電極」)、PZ材料124(「第2のPZ材料」)および表面電極126(「第2の表面電極」)を含んでいる。第2のPZ材料124は、PZ層104の一部分(「第2の部分」)でよい。

【0040】ここで、第2の底部電極122と第1の底部コア電極112は、厚さと大きさが等しい。従って、第1の底部電極(以後、第1の底部コア電極112と底部負荷電極113の組み合わせを「112+113」と呼ぶ)は、第2の底部電極122よりも厚い。例えば、一つの例として、第1の底部コア電極112と第2の底部電極122は、約150nmの厚さでよく、底部負荷電極113は、第1の底部コア電極112に10~100nmの範囲でを任意の厚みを加えることができる。これにより、第1の共振器110は、第2の共振器120よりも低い共振周波数を備えることになる。一つの例として、第1の共振器110の共振周波数は、1~6%の範囲だけ第2の共振器120の共振周波数よりも低くなる。

【0041】第1の共振器110を製造するために、底部負荷電極113が、まず作り上げられる。次いで、第1の底部コア電極112が、底部負荷電極113の上に作られる。次ぎに、PZ層104が、作られる。最終的に、第1の表面電極116が、PZ層104の上に作られる。図示のように、底部負荷電極113は、第1の空洞111をまたいでいる。

【0042】装置100を製造するために、底部負荷電極113が、まず作られる。次いで、第1の底部コア電極112と第2の底部コア電極122が作られ、第1の底部コア電極112は、底部負荷電極113の上に作られる。次ぎに、PZ層104が作られ、PZ層104は、第1の底部コア電極112の上に第1の部分114と、第2の底部コア電極122の上に第2の部分124を有する。最終的に、第1の表面電極116と第2の表面電極126が、それぞれ第1の部分114と第2の部分124の上に作られる。

【0043】5. 表面電極の質量負荷とオーバーエッチングを行なう薄膜共振器の製造

10

図5Aと図5Bにおいて、装置130と130aが、本発明の第5の実施例を説明するために使われる。図5Bの装置130aは、処理後の図5Aの装置130を示している。従って、図5Bにおける装置130aの部材は、図5Aの装置130として示されているものと同じものである。便宜上、装置130における対応する部材に類似している装置130aの部材は、同じ参照番号が10付与され、類似しているが異なる部材は、文字「a」を伴う同じ番号を付与され、および、異なる部材は、異なる参照番号を付与される。

【0044】本発明の図示されている実施例に従って基板132の上に共振器140と150を製造するために、第1の底部電極142と第2の底部電極152が、作られ、これらの電極は、それぞれ第1の空洞141と第2の空洞151にまたがっている。

【0045】次いで、圧電(PZ)層134が、両方の 第1と第2の底部電極142と152に作られ、PZ層 134は、第1の底部電極142の上に第1の部分14 4と第2の底部電極152の上に第2の部分154を有 している。次ぎに、表面電極層136が、作られ、表面 電極層136は、第1の部分144の上に第1のセクシ ョン146と第2の部分154の上に第2のセクション 156を有している。次ぎに、表面負荷層138が、第 1のセクション146の上に作られ、好ましくは第1の セクション146全体を覆うようにする。表面負荷層1 38は、導電性材料、絶縁材料、あるいは、その両方を 含み、材料の限定はされないが、モリブデン、窒化アル ミニウムあるいは二酸化ケイ素を含んでいる。次いで、 表面負荷層138は、オーバーエッチングされて第1の 表面電極(エッチングされた表面負荷層148と第1の セクションの組み合わせあるいは148+146)を形 成する。すなわち、表面負荷層138と表面電極層13 6は、同時にエッチングされて第1の表面電極148+ 146を形成する。もちろん、SiOz層のようなマス ク層が、エッチング剤から電極148+146および1 56をパターン化するために使われる。

【0046】第2の表面電極156は、第1の表面電極 148+146を作る工程と同じ工程で作ることができる。表面電極層136の第2の表面セクション156上には負荷電極が存在しないので、第2のセクション156を残して第2の表面電極156とし、および、第1の表面電極148+146を残しつつ、表面電極層136は、表面電極層136の他のすべての部分を削除するようにエッチングされる

【0047】単一の共振器、例えば、第1の共振器14 0を作るために、底部電極142が、まず作られる。次 いで、PZ層134、表面電極層136、および、表面 50 負荷層138が、順次作られる。表面負荷層138は、

表面電極層136の第1のセクション146を覆うこと が好ましく、第1のセクション146は、表面電極14 8+146の一部分となる。最終的に、表面負荷電極層 138と表面電極層136は、エッチングされ、第1の 共振器140の表面電極148+146を形成する。こ れらの層138と136は、二つの工程でエッチングさ れる。しかしながら、一つの例として、これらは、一つ の工程でエッチングされ、あるいは、オーバーエッチン グされる。オーバーエッチングのために、表面負荷層1 と表面電極層136がエッチングされると同時にこれら の層のマスクされていない部分が除去される。マスキン グには、二酸化ケイ素(SiOz)が使える。

11

【0048】共振器に対して、例えば、約150 μm× 200μmの大きさを備えるとともに約1,900MH zの共振周波数を備える第1の共振器140に対して、 底部電極142と表面電極層136は、それぞれ約15 Onmの厚さを有することができ、PZ層134は、約2 100nmの厚さを有することができ、および、表面負荷 層138は、10~100nmの範囲の厚さ、あるいは、 表面電極層134の厚さの約1~6%の厚さを有するこ とができる。1つの実施例で、この技術を使って、第1 共振器の共振周波数を1~6%低くなる。

【0049】6. 圧電層を質量削減する薄膜共振器の 製造

図6Aと図6Bにおいて、装置160と160aは、本 発明の第6の実施例を説明するために示されている。図 6Bの装置160aは、処理後の図6Aの装置160を 示している。従って、図6Bにおける装置160aの部 材は、図6Aにおける装置160の部材と同じである。 便宜上、装置160における対応する部材と同一の装置 160aの部材は、同じ参照番号が付与され、類似して いるが異なる部材は、文字「a」を伴う同じ番号を付与 され、および、異なる部材は、異なる参照番号を付与さ れる。

【0050】本発明の図示されている実施例に従って基 板上に共振器を作るために、底部電極層162が、基板 161の上に作られる。図1の装置10あるいは図2の 装置40と同様に、装置160が、空洞171(「第1の 空洞」)を備え、その上に共振器170(「第1の共振 40 器」)が作られる。もちろん、第1の空洞171は、底 部電極層162の形成前にエッチングされて充填されて いる。

【0051】第1の空洞171上の底部電極層162の セクション (一般的に参照番号172で示されている 「第1のセクション」)は、共振器(「第1の共振 器」) 170に対する底部電極172(「第1の底部電 極」)として機能することができる。第2の空洞181 上の底部電極層162の他のセクション(一般的に参照 番号181で示されている「第2のセクション」)は、

他の共振器(「第2の共振器」)180に対する底部電 極182(「第2の底部電極」)として機能することがで きる。ここで、第1の底部電極172と第2の底部電極 182は、図示のように接続されることができる。 ある いは、底部電極172と182は、図1の底部電極22 と32のように分離されることもできる。本発明のこの 技術を説明するためには、この設計事項は、重要ではな 11

12

【0052】底部電極層162の上には、PZ層164 38が、まずマスクされる。次いで、表面負荷層138 10 が、作られる。再び、PZ層164は、一つの例として 窒化アルミニウム (A1N) であるが、他の適当な圧電 材料から構成しても良い。次ぎに、コアPZ層164の 選択された部分(一般的にカッコ169で示されてい る)が、部分的にエッチングされる。エッチング工程 は、PZ層の任意の場所を1~30%削除することがで きてPZ層の厚さの減少によって1~6%だけ形成され る共振器170の共振周波数を増加させる。図6Aは、 本発明による部分的なエッチング工程後の装置160を 示している。

> 【0053】最終的に、表面電極層176が、第1共振 器170が形成しているPZ層164の部分的にエッチ ングされた部分174の上に作られる。

【0054】PZ層164を部分的にエッチングするた めに、PZ層164の選択された部分169が、マスク される。次いで、選択された部分169とマスクされた 領域を備えた装置160は、エッチング剤で処理され る。エッチング剤は、希釈されたフッ化水素酸(HF) であることができ、HFの濃度に従って、処理は約1分 間である。あるいは、PZ層164は、イオンミリン 30 グ、フォトレジスト、スパッタエッチング他の技術を用 いてエッチングされる。この発明の目的のために、PZ 層164をエッチングするために使われる実際の技術 は、ここで挙げた方法に限定されない。最終的に、マス クは除去される。マスクに使われる典型的な材料は、二 酸化ケイ素(SiOz)である。マスキングとエッチン グ処理は、従来周知の技術である。

【0055】共振器に対して、例えば、約150μm× 200μmの大きさを備えるとともに約1,900MH zの共振周波数を備える第1の共振器170に対して、 PZ層164は、約2,100nmの厚さを備えることが できる。選択された部分的にエッチングされる部分は、 1~30%薄くすることができ、第1の共振器170の 共振周波数を1~30%だけ増加することができる。

【0056】装置160と160aは、第2の空洞18 1上に作られた底部電極182、PZ層184(「第2の 部分」)、および、表面電極186を備えた第2の共振 器180を設けることも可能である。この場合、PZ層 164の第2の部分184は、部分的にエッチングされ ていない。

【0057】以上の説明から、本発明が新規なものであ

り、従来周知の技術よりも優れていることが明らかになったと思われる。本発明は、単一の基板の上に異なる共振周波数を備えたFBARを形成する技術を開示するものである。本発明における特定の実施例が、図示されて説明されたが、この発明は、図示され説明されたような特定の形態あるいは配置に限定されるものではない。例えば、異なる構造、大きさ、あるいは、材料が、本発明を実施するために使える。本発明は、特許請求の範囲によって限定される。しかしながら、本発明の実施者への参考のために、下記に本発明の実施態様の幾つかを例示す 10 る。

13

【0058】(実施態様1)基板(102)上に共振器(110)を製造する方法において、底部負荷電極(113)を作り、前記底部負荷電極(113)上に底部コア電極(112)を作り、圧電(PZ)層(104)を作り、前記PZ層(104)上に表面電極(116)を作るようにした共振器の製造方法。

【0059】(実施態様2)前記底部負荷電極(113)が、約10~100mの厚さを備えているようにした実施態様1に記載の共振器の製造方法。

【0060】(実施態様3)前記底部負荷電極(113)が、モリブデンを含むようにした実施態様1に記載の方法。

(実施態様4)前記底部負荷電極(113)と前記底部コア電極(112)が、同一の材料を備えるようにした実施態様1に記載の共振器の製造方法。

【0061】(実施態様5)前記PZ層(104)が、 窒化アルミニウム(A1N)を含むようにした実施態様 1に記載の共振器の製造方法。

(実施態様6) 前記底部負荷電極(113)が、空洞

(111)にまたがるようにした実施態様1に記載の共 振器の製造方法。

【図面の簡単な説明】

【図1】本発明の第1の実施例による共振器を含む装置の簡易化側断面図である。

【図2】本発明の第2の実施例による共振器を含む装置の簡易化側断面図である。

【図3A】本発明の第3の実施例による共振器を含む装置の簡易化側断面図である。

0 【図3B】本発明の第3の実施例による共振器を含む装 置の簡易化側断面図である。

【図4】本発明の第4の実施例による共振器を含む装置の簡易化側断面図である。

【図5A】本発明の第5の実施例による共振器を含む装置の簡易化側断面図である。

【図5B】本発明の第5の実施例による共振器を含む装置の簡易化側断面図である。

【図6A】本発明の第6の実施例による共振器を含む装置の簡易化側断面図である。

20 【図 6 B】本発明の第 6 の実施例による共振器を含む装置の簡易化側断面図である。

【符号の説明】

102 基板

30

104 コア圧電 (PZ) 層

110、120 第1、第2の共振器

111, 121 空洞

112, 122 第1、第2の底部コア電極

113 底部負荷電極

116, 126 第1、第2の表面電極

【図1】

【図3A】

【図2】

【図3B】

フロントページの続き

(72)発明者 リチャード・シー・ルビー アメリカ合衆国カリフォルニア州メンロ・ パーク ナインス・アベニュー567 (72)発明者 ポール・ディー・ブラッドリー アメリカ合衆国カリフォルニア州マウンテ ンビュー アパートメント120 ファイエ ット・ドライブ2680

(72)発明者 ジョン・ディー・ラーソン・サード アメリカ合衆国カリフォルニア州パロ・ア ルト テニーソン・アベニュー143

Fターム(参考) 5J108 MM11 MM14