

Dokumentacja Projektu grupowego Raport semestralny

Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska

{wersja dokumentu wzorcowego: wersja 2/2023}

Nazwa i akronim projektu:	Zleceniodawca:	
Symulator pojazdu autonomicznego – SPA	dr inż. Krzysztof Manuszewski	
Numer zlecenia:	Kierownik projektu:	Opiekun projektu:
4@KAMS'2023/24	Łukasz Nowakowski	dr inż. Paweł Kowalski

Nazwa / kod dokumentu:	Nr wersji:
Raport semestralny – RS	
,	1.00
Odpowiedzialny za dokument:	Data pierwszego sporządzenia:
Konrad Bryłowski	20.01.2024
	Data ostatniej aktualizacji:
	20.01.2024
	Semestr realizacji Projektu grupowego: 1

Historia dokumentu

Wersja	Opis modyfikacji	Rozdział / strona	Autor modyfikacji	Data
1.00	wstępna wersja	całość	Konrad Bryłowski	20.01.2024

Spis treści

1 VV	/prowadzenie - o dokumencie	3
1.1	Cel dokumentu	3
1.2	Zakres dokumentu	3
1.3	Odbiorcy	3
1.4	Terminologia	3
2 R	ezultaty projektu	3
2.1	Założenia początkowe	3
2.2	Zakres wykonanych prac i ich charakterystyka	3
2.3	Charakterystyka pracy zespołowej	3
2.4	Osiągnięte wyniki	
2.5	Rozbieżności i zmiany w realizacji projektu	4
2.6	Postanowienia	
2.7	Plany na kolejny semestr prac	4
3 Za	ałączniki	4

1 Wprowadzenie - o dokumencie

1.1 Cel dokumentu

Celem dokumentu jest okresowe wskazanie wykonanych prac z podaniem ich krótkiej charakterystyki, wskazanie rozbieżności wykonywanych prac w stosunku do planowanych, podsumowanie prac z wykazaniem pracy zespołowej, krótkie wskazanie planów na II semestr oraz wyspecyfikowanie listy dokumentów, wytworzonych w projekcie (wersji końcowych), które zostały umieszczone i zatwierdzone przez opiekuna w serwisie SPG.

1.2 Zakres dokumentu

{określenie, co wchodzi w zakres dokumentu, a co nie wchodzi, ew. wskazanie na dokumenty powiązane}

Dokument opisuje postęp prac nad projektem po pierwszym semestrze realizacji oraz plany na następny semestr z uwzględnieniem zmian wynikających z decyzji podjętych w trakcie realizacji.

1.3 Odbiorcy

2

Odbiorcami dokumentu są członkowie zespołu projektowego oraz zleceniodawca i opiekun projektu.

1.4 Terminologia

{wyjaśnienie używanych w dokumencie pojęć i skrótów, oznaczenia używane wewnątrz dokumentu np. oznaczenia wymagań} code review – przegląd kodu przez innego członka zespołu projektowego mający na celu wykrycie i poprawienie błędów i niezgodności z przyjętą w zespole konwencją

Discord – komunikator

GitHub – platforma do przechowywania i publikowania projektów wykorzystujących system kontroli wersji Git

kanban – metoda planowania pracy zespołowej polegająca na umieszczaniu wszystkich zadań na tablicy z podziałem na kolumny np. "do zrobienia", "w trakcie", "do przetestowania", "gotowe" SI – sztuczna inteligencja

Rezultaty projektu

2.1 Założenia początkowe

{tu należy przypomnieć w telegraficznym skrócie założenia przyjęte na starcie}

Celem projektu jest opracowanie symulatora pojazdu autonomicznego do przeprowadzania badań z obszaru sztucznej inteligencji. Symulator powinien umożliwiać umieszczenie w nim jednego lub więcej modelu pojazdu i trenowanie sieci neuronowych do sterowania pojazdem bez konieczności posiadania fizycznego pojazdu.

2.2 Zakres wykonanych prac i ich charakterystyka

{tu należy rzeczowo opisać główne prace wykonane w I semestrze z podaniem krótkiej ich charakterystyki, może być tabela} W pierwszym semestrze podjęto następujące prace:

- Przegląd istniejących rozwiązań przegląd rynku symulatorów do trenowania SI do sterowania pojazdami, a także silników graficznych oraz rozwiązań wdrażających fizykę do symulatora.
- 2. Projektowanie symulatora zaprojektowano podstawowy interfejs użytkownika oraz edytor scenerii, a także zamodelowano w symulatorze pojazd udostępniony przez opiekuna projektu.
- 3. Implementacja głównego silnika symulatora wybrano silnik Unity, zaimplementowano sterowanie pojazdem przez operatora za pomocą klawiatury i joysticka oraz podstawy fizyki, którą użytkownik może manipulować za pomocą różnych parametrów.

2.3 Charakterystyka pracy zespołowej

Do organizacji pracy zespołowej wykorzystano platformę GitHub – założono organizację, do której przypisano członków zespołu, utworzono projekt z tablicą kanban pozwalającą na przypisanie zadania do konkretnych osób i integrującą się z funkcjami repozytorium, założono i skonfigurowano repozytorium tak, aby wymagało zatwierdzenia wprowadzanych zmian przez innego członka zespołu. Zespół spotykał się raz w tygodniu zdalnie na platformie Discord i omawiał co zostało zrobione od ostatniego spotkania oraz plany na kolejny tydzień.

Podział pracy zespołu:

Konrad Bryłowski	•	tworzenie dokumentacji					
	•	dbanie	0	przejrzystość	struktury	repozytorium,	notatek

	: Irans automic ages to bligg than bean
	i komentarzy oraz tablicy kanban
	 code review
	przegląd rozwiązań fizyki
Aleksander Czerwionka	 generator losowej sceny
	 zbieranie obrazów otoczenia pojazdu w symulacji
	 przegląd dostępnych silników symulacji
Michał Krause	 interfejs użytkownika
	 modelowanie pojazdu
	 implementacja sterowania
Krystian Nowakowski	 implementacja sterowania
	edytor scen
	 przegląd dostępnych na rynku symulatorów
	implementacja fizyki symulacji
Łukasz Nowakowski	kierowanie spotkaniami
	 implementacja fizyki symulacji
	 implementacja zapisywania danych o jeździe pojazdu w symulacji
	code review

Każdy z członków zespołu umieszczał swoją część pracy w systemie SPG. Poza tym kierownik projektu (Łukasz Nowakowski) utworzył harmonogram i przedstawił go opiekunowi oraz umieścił w systemie Plakat.

Każdy z członków zespołu był przynajmniej na kilku spotkaniach stacjonarnych z opiekunem projektu w celu przedstawienia postępów prac, za komunikację mailową odpowiadał kierownik projektu.

2.4 Osiągnięte wyniki

Obecny stan symulatora pozwala na sterowanie przez użytkownika modelem za pomocą klawiatury lub joysticka, wygenerowanie losowej mapy ze ścieżką do śledzenia oraz edytowanie mapy ze ścieżką w edytorze graficznym, zbiera dane o jeździe modelu w symulacji oraz obrazy otoczenia z symulowanych kamer. Zaimplementowano fizykę symulacji, którą można manipulować parametrami. Symulator jest uruchamiany z poziomu edytora Unity.

2.5 Rozbieżności i zmiany w realizacji projektu

Z powodu problemów z uprawnieniami opiekuna projektu w SPG informacje o kierowniku projektu, harmonogram oraz pliki ukazujące postęp prac zostały w systemie umieszczone później niż zamierzono. W porozumieniu z opiekunem zdecydowano, że harmonogram w SPG będzie zawierał daty przeszłe, zgodne z pierwotnie zaplanowanymi, więc wszystkie pliki umieszczono w systemie po upływie dat w harmonogramie. Raport semestralny jako dokument pisany na podstawie zawartości umieszczonej w systemie jest napisany z opóźnieniem w stosunku do zaplanowanego terminu.

W trakcie prac zespołu okazało się, że prace nad symulacją rzeczywistej fizyki (etap E) są bardziej czasochłonne niż pierwotnie oszacowano, a dodatkowo nastąpiła awaria komputera jednego z członków zespołu, który się nimi zajmował, dlatego prace nad scenerią miejską (część etapu F) przeniesiono na kolejny semestr. Z prac pierwotnie zaplanowanych na kolejny semestr zrealizowano generator losowej sceny.

2.6 Postanowienia

nie dotyczy

2.7 Plany na kolejny semestr prac

W kolejnym semestrze zespół będzie pracować nad zaimplementowaniem interfejsów komunikacji między symulacją a sieciami neuronowymi, edytorem konfiguracji, możliwością dodania dodatkowych modeli, drugą scenerią, udoskonaleniem fizyki oraz testowaniem z wykorzystaniem popularnych architektur sieci neuronowych. Po przetestowaniu symulator wydany jako aplikacja instalowana za pomocą prostego instalatora.

3 Załaczniki

Tabela. 3.1. Specyfikacja opracowanych dokumentów w 1 semestrze

L.p.	Nazwa dokumentu	Nazwa pliku umieszczonego w SPG
1	Informacje o projekcie	PG_WETI_loP_wer. 1.01.pdf
2	Harmonogram i specyfikacja	PG WETI HiSW wer. 1.01.pdf

	wymagań	
3	Dokumentacja techniczna projektu	PG_WETI_DTP_wer. 1.00.pdf
4	Plakat	PG_WETI_Plakat.pdf
5	Raport semestralny	PG WETL RS war 1.00 ndf