Tous documents papier et appareils électroniques interdits.

Durée: 1H00

Le barème est donné à titre indicatif.

Les questions suivent l'ordre du cours. Les questions avec une * sont *a priori* plus difficiles que les autres.

[Q1 – 4 pts] Soit l'automate M suivant :

- a) Déterminisez l'automate M.
- b) En utilisant l'algorithme du cours, donnez une expression rationnelle correspondant au langage accepté par M.

 $[\mathbf{Q2} - \mathbf{5} \ \mathbf{pts}]^*$ Soit $M = (K, \Sigma, \delta, s, F)$ un automate à états finis déterministe. Donnez une définition formelle de l'automate $M' = (K', \Sigma, \delta', s', F')$ déterministe, défini sur le même alphabet Σ , tel que \forall $w \in \Sigma^*$, M' accepte w si et seulement si M accepte w.

[Q3 – 3 pts] Soit le langage $L = \{w = a^p b^q c^r \mid p, q, r \in \mathbb{N}, p^2 + q^2 = r^2\}$. Montrez que L est non rationnel.

[Q4 – 5 pts]* On rappelle qu'une grammaire G est dite ambiguë si G peut produire plusieurs arbres de dérivation distincts associés à un même mot.

Soient les grammaire $G_1 = (\{S\}, \{a, b\}, \{S \rightarrow SaS \mid b\}, S)$ et $G_2 = (\{S, T\}, \{a, b\}, \{S \rightarrow bT, T \rightarrow abT \mid e\}, S)$.

- a) Montrez que G₁ est ambiguë.
- b) Montrez que G₂ n'est pas ambiguë.
- c) Quel est le langage engendré par G₂?
- d) Montrez que $L(G_2) = L(G_1)$.

 $[\mathbf{Q5} - \mathbf{3} \ \mathbf{pts}]$ Soit le langage $L = \{ \mathbf{w} = \mathbf{a}^{\mathbf{p}} \mathbf{b}^{\mathbf{q}} \mathbf{c}^{\mathbf{r}} \mid \mathbf{p}, \mathbf{q}, \mathbf{r} \in \mathbf{N}, \mathbf{p} \neq \mathbf{r} \}$. Montrez que L est algébrique.

Annexe

On rappelle le lemme de l'étoile :