Proyecto de ADA - Primer Avance

Alejandro Goicochea

Diego Linares

Ariana Villegas

16 de Junio del 2020

Secuencias

Pregunta 1 (Voraz)

Algoritmo: Get-Blocks

Recibe: Un arreglos A de ceros y unos. Devuelve: Un arreglo X de bloques de unos.

Get-Blocks (A, p)	cost	times
1: $i = 1$	c_1	1
2: $j = 1$	c_1	1
3: while $i \leq p$	c_3	1
4: tmp = 0	c_1	1
5: while $A[i] \neq 1$	c_4	1
6: $i += 1$	c_5	0
7: while $A[i] \neq 0$	c_4	p+1
8: $i += 1$	c_5	p
9: $tmp += 1$	c_5	p
10: if tmp $\neq 0$	c_6	1
11: X[j] = tmp	c_7	1
12: $j += 1$	c_5	1
13: return X	c_8	1

Tiempo de ejecución: Get-Blocks

Para T(n) el tiempo de ejecución con un array de tamaño p como entrada, tenemos que

$$T(n) = c_1 + c_1 + c_3 + c_1 + c_4 + c_4 \cdot (p+1) + c_5 \cdot p + c_5 \cdot p + c_6 + c_7 + c_5 + c_8$$

$$T(n) = c_4 \cdot p + 2c_5 \cdot p + 3c_1 + c_3 + 2c_4 + c_5 + c_6 + c_7 + c_8$$

Si $a = c_4 + 2c_5$ y $b = 3c_1 + c_3 + 2c_4 + c_5 + c_6 + c_7 + c_8$, entonces

$$T(n) = ap + b$$

Nota: Para el análisis de los algoritmos propuestos en los siguientes apartados no se tomará en cuenta el tiempo de generar los bloques en los array de entrada.

Algoritmo: Min-Matching-Greedy

Recibe: Dos arreglos A y B de ceros y unos de tamaño p, con n bloques y m bloques respectivamente (los valores de n y m no son recibidos como entrada).

Devuelve: Un matching entre A y B, no necesariamente óptimo, y su peso.

MIN-MATCHING-GREEDY (A, B)	cost	times
1: $X = \text{Get-Blocks}(A,p)$		
2: $Y = Get\text{-Blocks}(B,p)$		
3: n = X.size	c_1	1
4: m = Y.size	c_2	1
5: Match = \emptyset	c_3	1
6: $w = 0$	c_4	1
7: for $i = 1 \text{ TO } min(n, m) - 1$	c_5	m
8: Match = Match $\cup \{\{i, i\}\}$	c_6	m-1
9: $w += X[i]/Y[i]$	c_7	m-1
10: if $n > m$	c_8	1
11: for $i = 0 \text{ TO } n - m$	c_5	n - m + 1
12: Match = Match $\cup \{\{m+i, m\}\}$	c_6	n-m
13: $w += X[m+i]/Y[m]$	c_7	n-m
14: else		
15: for $i = 0 \text{ TO } n - m$	c_5	0
16: Match = Match $\cup \{\{n, n+i\}\}$	c_6	0
17: w += X[n]/Y[n+i]	c_7	0
18: return w , Match	c_9	1

Tiempo de ejecución: Min-Matching-Greedy

Para T(n,m) el tiempo de ejecución con un array de tamaño p como entrada, tenemos que

$$T(n,m) = c_1 + c_2 + c_3 + c_4 + c_5 \cdot m + c_6 \cdot (m-1) + c_7 \cdot (m-1) + c_8 + c_5 \cdot (n-m+1) + c_6 \cdot (n-m) + c_7 \cdot (n-m) + c_9$$

$$T(n,m) = c_5 \cdot m + c_6 \cdot m + c_7 \cdot m - c_5 \cdot m - c_6 \cdot m - c_7 \cdot m + c_5 \cdot n + c_6 \cdot n + c_7 \cdot n + c_1 + c_2 + c_3 + c_5 - c_6 - c_7 + c_8 + c_9$$

Si $a = c_5 + c_6 + c_7 - c_5 - c_6 - c_7 = 0$, $b = c_5 + c_6 + c_7$ y $c = c_1 + c_2 + c_3 + c_5 - c_6 - c_7 + c_8 + c_9$, entonces si n > m

$$T(n,m) = bn + c$$

Y si m > n, tenemos que

$$T(n,m) = am + c$$

Entonces, podemos generalizarlo como

$$T(n,m) = max(am,bn) + c$$

Prueba que T(n) = O(max(n, m))

Note que para $n_0 \ge max(a, b) + 1$, tenemos que

$$\begin{array}{ll} \max(am,bn) + c & \leq & \max(\max(a,b) \cdot m, \max(a,b) \cdot n) + c \\ & \leq & \max(a,b) \cdot \max(m,n) + c \\ & \leq & (\max(a,b) + 1) \cdot \max(m,n) \\ & \leq & n_0 \cdot \max(m,n) \end{array}$$

Y como la función max es creciente, tenemos que

$$0 \le max(am, bn) \le n_0 \cdot max(m, n)$$

Entonces por definición, concluimos que T(n) = O(max(n, m))

Pregunta 2 (Recurrencia)

Asumimos que:

X = Get-Blocks(A, p)

Y = Get-Blocks(B, p)

$$M_g(i,j) = \min_{k=1}^{i-1} \left\{ \frac{\sum_{p=k+1}^{i} X_p}{Y_j} + OPT(k,j-1) \right\}$$

$$M_d(i,j) = min_{k=1}^{j-1} \{ \frac{X_i}{\sum_{p=k+1}^{j} Y_p} + OPT(i-1,k) \}$$

Pregunta 3 (Recursivo)

Asumimos que:

X = Get-Blocks(A, p)

Y = Get-Blocks(B, p)

Algoritmo: Group

GROUP
$$(X, Y, i, j)$$
 cost times
1: Min = ∞ c₁ 1
2: for $k = 1$ TO $i - 1$ c₂ i
3: accum = 0 c₃ $i - 1$

```
\sum_{k=1}^{i} i - k - 1
     for p = k + 1 \text{ TO } i
 4:
       accum += X[p]
 5:
     accum /= Y[j]
 6:
     match, pmin = MIN-MATCHING-RECURSIVE(X, Y, k, j - 1)
 7:
     if Min>accum+pmin
 8:
        Min = accum + pmin
 9:
        Match = match
10:
11: return Match \cup \{[i,j]\}, Min
                                                                     1
                                                             c_1
```

Algoritmo: Division

Division(X, Y, i, j)	cost	times
1: $Min = \infty$	c_1	1
2: for $k = 1 \text{ TO } j - 1$	i	
3: accum = 0	•	•
4: for $p = k + 1 \text{ TO } j$	•	•
5: $\operatorname{accum} += Y[p]$		
6: $\operatorname{accum} = X[i]/\operatorname{accum}$	•	•
7: match, pmin = Min-Matching-Recursive(X, Y, i)	-1, k)	
		•
8: if Min>accum+pmin		
9: $Min = accum + pmin$		
10: $Match = match$		
11: return Match $\cup \{[i,j]\}$, Min	•	

Algoritmo: Min-Matching-Recursive

Min-Matching-Recursive (X,Y,i,j)	cost	times
1: if $i == 1$ and $j == 1$	c_1	1
2: return $\{[i,j]\}, \frac{X[i]}{Y[i]}$	c_2	1
3: if $i == 1$ and $j > 1$	c_3	1
$4: \text{match} = \{\}$	c_4	1
5: $\operatorname{accum} Y = 0$	c_5	1
6: for $p = 1 \text{ TO } j$		•
7: $\operatorname{accum} Y += Y[p]$	•	•
8: Match = Match $\cup \{[i, p]\},\$		•
9: return Match, $\frac{X[i]}{accumY}$		
10: if $i > 1$ and $j == 1$		
$11: \text{match} = \{\}$		•
12: $\operatorname{accum} X = 0$		•
13: for $p = 1 \text{ TO } i$	•	
14: $\operatorname{accum} X += X[p]$	•	•
15: Match = Match $\cup \{[p, j]\},$	•	
16: return $Match$, $\frac{accumX}{Y[j]}$		

Pregunta 4 (Memoizado)

Los algoritmos para las funciones group y división permanecen igual. La diferencia con el algoritmo recursivo es que almacena los datos ya calculados en una matriz de tamaño m*n para evitar llamadas que calculen datos que ya sabemos. Dado esto y la definición de nuestra recurrencia en la pregunta 2, esta claro que el algoritmo va a tener tiempo de ejecución $\Theta(n*m)$ ya que es el tiempo que toma llenar toda la matriz. El algoritmo funciona de la siguiente manera:

Recibe: Dos arreglos de bits, X y Y con la cantidad de pesos que tienen i y j respectivamente.

Devuelve: El matching de peso mínimo junto con su peso.

Algoritmo: Min-Matching-Memoization

```
MIN-MATCHING-MEMOIZATION(X, Y, i, j)
                                                                         cost
                                                                                   times
 1: if minMatch[i][j][2]! = \infty
       return minMatch[i][j][1], minMatch[i][j][2]
                                                                                   1
                                                                        c_1
 3: if i == 1 and j == 1
       minMatch[i][j][1] = [(i,j)]
                                                                                   1
                                                                        c_2
       minMatch[i][j][2] = \frac{X[i]}{Y[j]}
                                                                                   1
                                                                        c_3
       return minMatch[i][j][1], minMatch[i][j][2]
                                                                                   1
                                                                        c_4
 7: if i == 1 and i > 1
       match = \{\}
                                                                                   1
                                                                        c_5
 9:
       accum Y = 0
                                                                                   1
                                                                        c_6
       for p = 1 \text{ TO } j
10:
                                                                                   j
                                                                        c_7
          \operatorname{accum} Y += Y[p]
                                                                                   1
11:
                                                                        c_8
          Match = Match \cup \{[i, p]\},\
12:
                                                                                   1
                                                                        c_9
       minMatch[i][j][1] = Match
                                                                                   1
13:
                                                                        c_{10}
       minMatch[i][j][2] = \frac{X[i]}{accumY}
14:
                                                                                   1
                                                                        c_{11}
       return minMatch[i][j][1], minMatch[i][j][2]
15:
                                                                                   1
                                                                        c_{12}
16: if i > 1 and j == 1
17:
       match = \{\}
                                                                                   1
                                                                        c_{13}
       accum X = 0
                                                                                   1
18:
                                                                        c_{14}
       for p = 1 \text{ TO } i
19:
                                                                                   i
                                                                        c_{15}
          \operatorname{accum} X += X[p]
                                                                                   1
20:
                                                                        c_{16}
          Match = Match \cup \{[p, j]\},\
21:
                                                                                   1
                                                                        c_{17}
       minMatch[i][j][1] = Match
                                                                                   1
22:
                                                                        c_{18}
```

```
minMatch[i][j][2] = \frac{\mathit{accumX}}{Y[j]}
23:
                                                                          1
                                                                 c_{19}
      return minMatch[i][j][1], minMatch[i][j][2]
24:
                                                                 c_{20}
                                                                          1
25: MatchG, MinG = GROUP(X, Y, i, j)
                                                                 i * j
                                                                          1
26: MatchD, MinD = DIVISION(X, Y, i, j)
                                                                 i * j
                                                                          1
27: if MinG>MinD
      return MatchD, MinD
                                                                          1
                                                                 c_{21}
29: return MatchG, MinG
                                                                          1
                                                                 c_{22}
```

Pregunta 5 (Programación Dinámica)