Procesamiento de microdatos en lenguaje R

Una introducción al uso en demografía

César Andrés Cristancho-Fajardo. Docente Universidad Santo Tomás. Experto DANE.

Introducción ¿Qué es data.table?

- · Es un paquete de R para trabajar con datos tabulares -Un paquete es una colección de funciones y conjuntos de datos desarrollados por la comunidad-.
- · Es popular por su velocidad de ejecución para grandes bases de datos.
- · La sintaxis de programación es más concisa que tidyverse.

Introducción ¿Qué es tidyverse?

- · Es una colección de paquetes de R diseñados para data science.
- Incluye los paquetes ggplot2 (gráficos), dplyr (procesamiento), tidyr (reestructuración de bases), readr (lectura de bases), purrr (programación funcional), tibble (data.frames optimizados), stringr (cadenas de caracteres), forcats (datos categoricos).

Instalación y carga de paquetes

```
# install.packages("data.table")
# install.packages("tidyverse")

library(data.table)
library(tidyverse)
```


Importación de datos desde un formato csv

Se debe configurar la dirección de la carpeta y en ella debe estar el archivo de trabajo.

```
setwd("D:/santo tomas/clase sem 3 datatable")
bd <- fread('pob sex eds mun anio.csv')</pre>
glimpse(bd)
## Rows: 506,568
## Columns: 6
## $ anio
                                                           <int> 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005
## $ cod area <int> 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001, 5001
                                                           <chr> "Medellín", "Medellín", "Medellín", "Medellín", "Medellín", "...
## $ area
## $ edad
                                                           <int> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,...
## $ h
                                                           <int> 18797, 16265, 16480, 16765, 17203, 18174, 18465, 18016, 18806...
## $ m
                                                           <int> 17809, 15711, 15798, 15948, 16728, 17312, 17516, 17615, 18453...
```

División político administrativa de Colombia en formato excel

Se puede descargar en un archivo formato excel de la siguiente dirección web: https://geoportal.dane.gov.co/geovisores/territorio/consulta-divipola-division-politico-administrativa-de-colombia/

Importación de un archivo de excel

```
dpola <- readxl::read excel('DIVIPOLA Municipios.xlsx')</pre>
head(dpola)
## # A tibble: 6 × 7
     `Codificación de la División Político Ad...` ...2 ...3 ...4 ...5 ...6 ...7
     <chr>>
                                                    <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
##
                                                    <NA> <NA> <NA> <NA> <NA> <NA>
## 1 <NA>
## 2 Municipios
                                                    <NA> <NA> <NA> <NA> <NA> <NA>
                                                    <NA> <NA> <NA> <NA> <NA> <NA>
## 3 <NA>
                                                    <NA> Muni... <NA> "Tip... <NA> <NA>
## 4 Departamento
## 5 Código
                                                    Nomb... Códi... Nomb... <NA> LATI... LONG...
                                                    ANTI... 05001 MEDE... "Mun... 6.25... -75....
## 6 05
```

Al ver el contenido del archivo se ve que se trata de datos no estructurados.

Lectura mejorada desde excel

Las opciones nos permiten configurar que se importe solo desde una cierta fila - skip- y un número determinado de filas -n_max-.

```
dpolab <- readxl::read_excel('DIVIPOLA_Municipios.xlsx', skip = 10, n_max = 1121)
glimpse(dpolab)

## Rows: 1,121
## Columns: 7
## $ Código...1 <chr> "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "05", "
```

Filtrado de subconjuntos de filas

Se debe reemplazar 52001 por el código DIVIPOLA de su municipio de interés. El código 52001 corresponde a Pasto.

Filtrado de subconjuntos de filas 2

Por ejemplo el código 52835 corresponde a Tumaco.

Cálculos de indicadores para pirámides

```
bdsb <- bds %>%
       .[, total := sum(h, na.rm = TRUE) + sum(m, na.rm = TRUE), keyby = .(anio)] %>%
      .[, `:=`(pct h = h / total, pct m = m / total ) ]
glimpse(bds)
## Rows: 607
## Columns: 9
## $ anio
                                            <int> 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1...
## $ cod area <int> 52001, 52001, 52001, 52001, 52001, 52001, 52001, 52001, 52001...
                                           <chr> "Pasto", "Pasto", "Pasto", "Pasto", "Pasto", "Pasto"...
## $ area
## $ edad
                                           <int> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,...
## $ h
                                            <int> 726, 634, 625, 716, 717, 706, 642, 750, 715, 494, 696, 453, 7...
## $ m
                                            <int> 728, 606, 623, 731, 734, 715, 664, 767, 796, 517, 657, 419, 7...
## $ total <int> 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644,
## $ pct h <dbl> 0.014624124, 0.012770929, 0.012589638, 0.014422690, 0.0144428...
## $ pct m
                                        <dbl> 0.014664411, 0.012206913, 0.012549351, 0.014724841, 0.0147852...
```

Pirámides poblacionales con ggplot - básica

```
ggplot(bdsb) + facet_wrap(~anio) +
  geom_bar( aes(edad, -pct_h, fill = 'Hombre'), stat = 'identity', width = 1 ) +
  geom_bar( aes(edad, pct_m, fill = 'Mujer'), stat = 'identity', width = 1 ) +
  coord_flip() + scale_fill_discrete(name = NULL) + xlab('Edad') + ylab('')
```


Pirámides poblacionales con ggplot - código

Pirámides poblacionales con ggplot - gráfica

Una pirámide con doble eje - código

Una pirámide con doble eje - gráfico

Relaciones de masculinidad por edad - cálculo

```
bdsc \leftarrow bdsb[, rm := h / m]
glimpse(bdsc)
## Rows: 607
## Columns: 10
                                              <int> 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1
## $ anio
## $ cod area <int> 52001, 52001, 52001, 52001, 52001, 52001, 52001, 52001, 52001...
## $ area
                                              <chr> "Pasto", "Pasto", "Pasto", "Pasto", "Pasto", "Pasto"...
## $ edad
                                              <int> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,...
                                              <int> 726, 634, 625, 716, 717, 706, 642, 750, 715, 494, 696, 453, 7...
## $ h
## $ m
                                              <int> 728, 606, 623, 731, 734, 715, 664, 767, 796, 517, 657, 419, 7...
                                          <int> 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644, 49644...
## $ total
## $ pct h
                                          <dbl> 0.014624124, 0.012770929, 0.012589638, 0.014422690, 0.0144428...
## $ pct m
                                              <dbl> 0.014664411, 0.012206913, 0.012549351, 0.014724841, 0.0147852...
## $ rm
                                              <dbl> 0.9972527, 1.0462046, 1.0032103, 0.9794802, 0.9768392, 0.9874...
```

Relaciones de masculinidad por edad - gráfica

```
ggplot(bdsc[edad %in% 0:80 & anio %in% 1985:2018]) +
  geom_line(aes(edad,rm)) + facet_wrap(~anio) +
  ylab('Relación de masculinidad') + xlab('Edad')
```


Relaciones de masculinidad por grupos de edad - cálculo

Relaciones de masculinidad por grupos de edad - resultados

Relaciones de masculinidad por grupos de edad

```
ggplot(bdscgre[anio %in% 1985:2018]) + geom_line(aes(Edadgr5,rm, group = 1)) +
facet_wrap(~anio) + ylab('Relación de masculinidad') + xlab('Edad') +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
```


Relación de edades - cálculo

```
bdsd <- bdsc %>% .[ order(anio, edad), ] %>%
       .[, hlag := shift(h, type = 'lag') , keyby =.(anio) | %>%
       .[, hlead := shift(h, type = 'lead') , keyby =.(anio) | %>%
       .[, mlag := shift(m, type = 'lag') , keyby =.(anio) ] %>%
       .[, mlead := shift(m, type = 'lead') , keyby =.(anio) | %>%
       .[, raz ed h := 2 * h / (hlag + hlead) ] %>%
       .[, raz ed m := 2 * m / (mlag + mlead) ] %>%
       .[,.(anio, edad, raz ed h, raz ed m)]
glimpse(bdsd)
## Rows: 607
## Columns: 4
## $ anio <int> 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 1938, 19
                                                <int> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,...
## $ edad
## $ raz ed h <dbl> NA, 0.9385640, 0.9259259, 1.0670641, 1.0084388, 1.0389993, 0....
## $ raz ed m <dbl> NA, 0.8971132, 0.9319372, 1.0773766, 1.0152144, 1.0228898, 0....
```

Relación de edades - gráfico hombres

```
p <- ggplot(bdsd[anio %in% 1985:2018 ]) + geom_line(aes(edad, raz_ed_h)) +
  facet_wrap(~anio)
p</pre>
```


Relación de edades - gráfico mujeres

```
p <- ggplot(bdsd[anio %in% 1985:2018 ]) + geom_line(aes(edad, raz_ed_m)) +
  facet_wrap(~anio)
p</pre>
```


Un gráfico dinámico básico

install.packages("plotly")
library(plotly)
ggplotly(p)

Diagramas triangulares

El paquete ggtern (www.ggtern.com) es adecuado para elaborar diagramas triangulares.

```
# install.packages('ggtern')
```

Como es usual se carga la libreria con la siguiente linea.

```
library('ggtern')
```

A continuación se debe organizar una matriz de datos para tres categorías de edad.

Diagrama triangular de edad - datos

Diagrama triangular de edad - porcentajes

Diagrama triangular de edad - código

```
ggtern(bdgrb, aes(`0 a 14`, `15 a 59` , `60 y más` )) +
    theme_nomask() +
    theme_bvbw() +
    geom_point(aes(colour = variable) , size = 2.5) +
    geom_text(aes(label = paste(anio, variable)) , size = 2.5, hjust= -.1) +
    limit_tern(.82, .48, .37) +
    scale_colour_manual(name = '', values = c('#3FA0FF', '#D82632') ) +
    labs(x = '', y = '', z = '', xarrow = '0 a 14', yarrow = '15 a 59', zarrow = '60+')
```

Diagrama triangular de edad - gráfico

Un diagrama de lexis - código

```
Edad <- 0:10
Tiempo <- 2010:2020
pol <- data.table( y = c(0,0,10,9), x = c(2011,2010,2020, 2020), gr = rep(1,4) )
ggplot() + geom line( aes(x=Tiempo, y=Edad), colour = "gray") +
 theme bw() + coord fixed(ratio = 1) +
  scale x continuous(breaks = seq(2010, 2020), limits =c(2010, 2020)) +
  scale y continuous(breaks = seq(0,10), limits =c(0,10)) +
  geom line( aes(x=Tiempo + 1, y=Edad), colour = "gray") +
  geom line( aes(x=Tiempo + 2, y=Edad), colour = "gray") +
  geom rect(aes(xmin = 2010, xmax = 2020, ymin = 2, ymax = 3),
           fill = "#CCEDB1", alpha = .5 ) + # horizontal edad
  geom rect(aes(xmin = 2013, xmax = 2014, ymin = 0, ymax = 10),
           fill = "#F2DBC8" , alpha = .5 ) + # vertical periodo +
  geom polygon( aes(x = polx, y = poly, group = poly,
               fill = '#A5CFE9', alpha = .5) +
  theme(axis.text.x = element text(angle = 90, vjust = 0.5, hjust=1))
```

Un diagrama de lexis - gráfico

Edad periodo y cohorte - código

```
Edad <- 0:10
Tiempo <- 2010:2020
edad per <- data.table(y = c(4,4,5,5), x = c(2011, 2012, 2011), gr = rep(1,4))
per coh <- data.table( y = c(4,5,6,5), x = c(2014, 2015, 2015, 2014), gr = rep(1,4) )
coh edad \leftarrow data.table( y = c(4,4,5,5), x = c(2017, 2018, 2019, 2018), gr = rep(1,4) )
ggplot() +
 theme bw() + coord fixed(ratio = 1) +
  scale x continuous(name = 'Periodo', breaks = seq(2010, 2020), limits =c(2010, 2020)) +
  scale y continuous(name = 'Edad', breaks = seq(0,10), limits =c(0,10)) +
 geom polygon(aes(x = edad perx, y = edad pery, group = edad pery,
           fill = "#CCEDB1", alpha = .5 ) +
  geom polygon(aes(x = per cohx, y = per cohy, group = per cohy,
           fill = "#F2DBC8", alpha = .5) +
  geom polygon(aes(x = coh edadx, y = coh edady, group = coh edady,
           fill = "#A5CFE9", alpha = .5) +
 theme(axis.text.x = element text(angle = 90, vjust = 0.5, hjust=1))
```

Edad periodo y cohorte - gráfico

