aglaia norza

Linguaggi di Programmazione

appunti delle lezioni

libro del corso: non usato, integrati con le dispense del professor Cenciarelli

Contents

1	Algebre induttive	3
	1.1 I numeri naturali	3
	1.2 Algebre, algebre induttive	4
	1.3 Omomorfismi, lemma di Lambek	7
2	Espressioni, linguaggi	10
	2.1 Exp	10
	2.1.1 Semantica operazionale	11

1. Algebre induttive

1.1. I numeri naturali

def. 1: Assiomi di Peano

L'insieme $\mathbb N$ dei numeri naturali si può definire mediante i cinque **assiomi di Peano**:

- 1. $0 \in \mathbb{N}$
- 2. $n \in \mathbb{N} \implies \mathsf{succ}(n) \in \mathbb{N}$
- 3. $\not\exists n \in \mathbb{N} \mid 0 = \mathsf{succ}(n)$
- **4.** $\forall n, m \operatorname{succ}(n) = \operatorname{succ}(m) \Rightarrow n = m$ (iniettività)
- **5.** $\forall S \subseteq \mathbb{N} \ (0 \in S \land (n \in S \Rightarrow \mathsf{succ}(n) \in S) \Rightarrow S = \mathbb{N})$ (assign di induzione)

assioma di induzione

L'assioma di induzione è necessario per evitare di equiparare ai numeri naturali insiemi che, essenzialmente, contengono una struttura come quella di $\mathbb N$, e un "qualcosa in più". (Se all'interno dell'insieme A che stiamo considerando esiste un altro sottoinsieme proprio che rispetta gli altri assiomi, A non rispetterà il quinto assioma di Peano).

In più, il quinto assioma di Peano ci fornisce essenzialmente una definizione insiemistica di induzione.

def. 2: Principio di Induzione

L'induzione può essere definita, basandosi sulle "proprietà" invece che sull'insiemistica, come segue:

$$\forall P \quad \frac{P(0), \quad P(n) \Rightarrow P(n+1)}{\forall n \ P(n)}$$

(la notazione equivale a $P(0) \wedge (P(n) \Rightarrow P(n+1)) \Rightarrow \forall n P(n)$)

Possiamo dimostrare che il quinto assioma di Peano è equivalente al principio di induzione (in quanto i concetti di "proprietà" e "sottoinsieme" sono equivalenti).

Infatti, ad ogni proprietà corrisponde un sottoinsieme i cui elementi sono esattamente quelli che soddisfano tale proprietà

Prendiamo quindi $S = \{n \in \mathbb{N} \mid P(n) \text{ è vera}\}.$

In questo modo, dire P(0) equivale a dire $0 \in S$, e dire $P(n) \Rightarrow P(n+1)$ equivale a dire $n \in S \Rightarrow n+1 \in S$. E, allo stesso modo, dire $\forall n \in S \mid P(n) \mid$

def. 3: Numeri di von Neumann

Un altro modo di descrivere i numeri naturali viene dal matematico **John von Neumann**, che definisce i numeri naturali ("numeri di von Neumann", \mathcal{N}) in questo modo:

- $0_{\mathcal{N}} = \emptyset$ (ovvero $\{\}$)
- $1_{\mathcal{N}} = \{0_{\mathcal{N}}\}\ (\text{ovvero}\ \{\{\}\})$
- $2_{\mathcal{N}} = \{0_{\mathcal{N}}, 1_{\mathcal{N}}\}\ (\text{ovvero} \{\{\}, \{\{\}\}\}\})$
- ...

I numeri di von Neumann rispettano gli assiomi di peano! (dalle dispense)

1.2. Algebre, algebre induttive

nota: insieme unità e funzione nullaria

Ci è utile definire l'**insieme unità** $1 = \{*\}$. 1 è un insieme formato da un solo elemento (non ci interessa quale).

Un altro concetto che ci servirà è quello di **funzione costante** o **nullaria**. Una funzione nullaria f è tale che:

$$f: \mathbb{1} \to A \mid f() = a \quad a \in A$$

(chiaramente, essa è sempre iniettiva).

nota

Una funzione nullaria su un insieme A può essere vista come un elemento di A (un qualsiasi insieme A è isomorfo a all'insieme di funzioni $\mathbb{1} \to A$ (l'insieme di funzioni $\mathbb{1} \to A$ ha la stessa cardinalità di A), il che ci permette di **trattare gli elementi di un insieme come funzioni**.

def. 4: Algebra

Una **algebra** è una tupla (A, Γ) , dove:

- A è l'insieme di riferimento ("carrier" o "insieme sottostante")
- $\Gamma = \{\gamma_1, \gamma_2, \dots, \gamma_i\}$, è l'insieme di funzioni chiamate "operazioni fondamentali" o "costruttori" dell'algebra

la segnatura dei costruttori è: $\gamma_i: A^{\alpha_i} \times K_i \to A$.

nota

Tra le algebre, consideriamo anche le algebre eterogenee, che prendono argomenti da insiemi diversi da A.

def. 5: Chiusura di un insieme rispetto ad un'operazione

Sia $f: A^n \times K \to A$ un'operazione su A con parametri esterni $K = (K_1 \times \cdots \times K_m)$.

Un insieme $S \subseteq A$ si dice **chiuso** rispetto ad f quando:

$$a_1, \ldots, a_n \in S \Rightarrow f(a_1, \ldots, a_n, k_1, \ldots, k_n) \in S$$

nota!

Data un'operazione f che prende solo elementi esterni all'insieme S (come per esempio la funzione nullaria $\mathbb{1} \to A$), un insieme S si dice chiuso rispetto a $f \iff \operatorname{Im}(f) \subseteq S$).

def. 6: Algebra induttiva

Un'algebra A, Γ si dice **induttiva** quando:

- 1. tutte le $\gamma_i \in \Gamma$ sono iniettive
- 2. $\forall i, j \mid i \neq j$, $\text{Im}(\gamma_i) \cap \text{Im}(\gamma_j) = \emptyset$, ovvero tutte le γ_i hanno immagini disgiunte
- 3. $\forall S \subseteq A$, se S è chiuso rispetto a tutte le γ_i , allora S = A (ovvero il principio di induzione è rispettato)

terza condizione

La terza condizione pone quindi che A sia la più piccola sotto-algebra di se stessa (ovvero non abbia sotto-algebre diverse da se stessa).

nota

Le tre condizioni garantiscono quindi che:

- ci sia solo un modo per costruire ogni elemento dell'algebra (i, ii)
- non ci siano "elementi inutili" (iii)

Vediamo come possiamo costruire № come algebra induttiva.

La definizione di algebra induttiva non considera il concetto di "elemento", quindi, per il primo assioma di Peano, usiamo una *funzione costante* 0, con segnatura:

$$1 \times \mathbb{N} : x \to 0$$

Abbiamo quindi una tupla (\mathbb{N} , {succ, \mathbb{O} }).

Per dimostrare che questa tupla sia un'algebra induttiva, dobbiamo ora verificare le tre condizioni:

- 1. tutte le γ_i sono induttive:
 - 0 è necessariamente induttiva
 - succ è induttiva per il secondo assioma di Peano
- 2. tutti i costruttori hanno immagini disgiunte:
 - grazie al terzo assioma di Peano ($\exists n \in \mathbb{N} \mid 0 = \mathsf{succ}(n)$), sappiamo che succ e \mathbb{O} hanno immagini disgiunte
- 3. principio di induzione:

• è verificato dal quinto assioma di Peano ($0 \in S$ corrisponde alla chiusura rispetto a \mathbb{O} e $n \in \mathbb{N} \Rightarrow \operatorname{succ}(n) \in \mathbb{N}$ corrisponde alla chiusura rispetto a succ)

alberi binari come algebre induttive

L'insieme degli alberi binari finiti (B-trees, leaf, branch), dove:

- B-trees = $\{t \mid t \text{ è una foglia, oppure } t = \langle t_1, t_2 \rangle \text{ con } t_1, t_2 \in \text{B-trees} \}$
- leaf: $1 \rightarrow B$ -trees (foglia)
- branch: B-trees \times B-trees \to B-trees : $(t_{sx},t_{dx})\to t$ (costruisce rami in modo che t_{sx} e t_{dx} siano i due sottoalberi di t)

è un'algebra induttiva.

theorem 1: numero di nodi di un albero binario

Un albero binario con n foglie ha 2n-1 nodi

proof!

Si può dimostrare per induzione strutturale sui costruttori degli alberi.

- (caso base): la proprietà è vera per l'albero formato da una sola foglia costruito con leaf (o) esso ha infatti n=1 foglie e 2n-1=1 nodi.
- (**ipotesi induttiva**): ogni argomento dei costruttori rispetta la proprietà
- dobbiamo quindi verificare che il costruttore branch, dati due argomenti che rispettano la proprietà, la mantenga
- (passo induttivo): abbiamo $t = branch(t_1, t_2)$.

Sia $n=n_1+n_2$ il numero di foglie di t, dove le foglie di t_1 sono n_1 e quelle di t_2 sono n_2 .

Per ipotesi, t_1 ha $2n_1-1$ nodi e t_2 ne ha $2n_2-1$. Dunque, t avrà $(2n_1-1)+(2n_2-1)+1$ nodi, ovvero $2(n_1+n_2)-1=2n-1$, qed.

liste finite come algebra induttiva

Dato un insieme A, indichiamo con A-list l'insieme delle liste finite di elementi di A. La tupla (A-list, empty, cons) è un'algebra induttiva, dove:

- empty: $\mathbb{1} \to A list$ è la funzione costante che restituisce la **lista vuota** " $\langle \rangle$ ".
- cons: $A \times A list \to A list$: cons $(3, \langle 5, 7 \rangle) = \langle 3, 5, 7 \rangle$ è la funzione che **costruisce una lista** aggiungendo un elemento in testa

Si tratta di un'algebra induttiva (notiamo che i due costruttori hanno immagini chiaramente disgiunte, sono entrambi chiusi per A-list, e c'è un unico modo per costruire ogni lista).

liste infinite

Le liste infinite non possono essere un'algebra induttiva, in quanto contengono una sotto-algebra induttiva (quella delle liste finite).

i booleani come algebra non induttiva

Consideriamo l'algebra (B, not) , dove $B = \{0, 1\}$ e not: $B \to B : b \to \neg b$.

Notiamo che not è sicuramente iniettiva, e che, poiché è l'unico costruttore, anche la seconda caratteristica delle algebre induttive è rispettata.

Notiamo però che l'algebra non rispetta il terzo requisito. Se consideriamo infatti $\emptyset \subseteq B$, notiamo che not è chiusa rispetto ad esso.

Infatti, l'implicazione $x \in \emptyset \Rightarrow \mathsf{not}(x) \in \emptyset$ risulta vera per falsificazione della premessa (non esistono elementi in \emptyset).

 $(\emptyset, \mathsf{not})$ è quindi una sotto-algebra induttiva di B, che però è diversa da essa. L'implicazione della terza condizione $(x \in \emptyset \ \Rightarrow \ \mathsf{not}(x) \in \emptyset) \ \Rightarrow \ \emptyset = B$ è falsa, e (B, not) non è quindi un'algebra induttiva.

1.3. Omomorfismi, lemma di Lambek

digressione - teoria delle categorie

Facciamo una piccola parentesi che introduce alcune nozioni di teoria delle categorie (perché è molto interessante).

La teoria delle categorie studia in modo astratto le strutture matematiche. Una categoria $\mathcal C$ consiste di:

- una classe ob(C), i cui elementi sono chiamati **oggetti**
- una classe mor(C, i cui elementi sono chiamati**morfismi** $(o mappe o frecce); ogni morfismo <math>f: a \to b$ ha associati un unico oggetto sorgente a e un unico oggetto destinazione b.
- per ogni terna di oggetti $a,b,c\in\mathcal{C}$, è definita una funzione $\operatorname{mor}(b,c)\times\operatorname{mor}(a,b)\to \operatorname{mor}(a,c)$ chiamata **composizione di morfismi**. La composizione di $f:b\to c$ con $g:a\to b$ si indica con $f\circ g:a\to c$

la composizione deve soddisfare i seguenti assiomi:

```
(associatività): se f:a \to b, \ g:b \to a e h:c \to d, allora h\circ (g\circ f)=(h\circ g)\circ f (identità): per ogni oggetto x esiste un morfismo id_x:x \to x chiamato morfismo identità, tale che per ogni morfismo f:a \to x vale id_x\circ f=f e per ogni morfismo g:x \to b si ha g\circ \mathrm{id}_x=g.
```

Quindi, ogni oggetto è associato ad un unico morfismo identità. Questo permette di dare una definizione di categoria basata esclusivamente sulla classe dei morfismi: gli **oggetti vengono identificati con i corrispondenti morfismi identità**.

All'interno della teoria delle categorie, una funzione iniettiva $f:B\to C$ si chiama **monomorfismo**. Visto che non si possono utilizzare gli elementi per definire l'iniettività,

un monomorfismo è descritto come una funzione f tale che:

$$\forall A, \forall h, k : A \rightarrow B, h \circ f = k \circ f \Rightarrow h = k$$

(se le funzioni h e k sono identiche ogni volta che vengono composte con f, significa che non ci sono valori in f che sono assunti da più di un elemento di B)

def. 7: Algebre con la stessa segnatura

Due algebre (A, Γ_A) e (B, Γ_B) hanno la stessa segnatura se, sostituendo A con B in tutte le $\gamma_i \in \Gamma_A$, si ottiene Γ_B .

(La segnatura di un'algebra è data dalle segnature delle sue operazioni).

def. 8: Omomorfismo

Date due algebre con la stessa segnatura (A,Γ) e $(B,\Delta=\{\delta_1,\ldots,\delta_k\})$, un omomorfismo è una funzione $f:A\to B$ tale che:

$$\forall i \ f(\gamma_i(a_1,\ldots,a_k,k_1,\ldots,k_m)) = \delta_i(f(a_1),\ldots,f(a_k),k_1,\ldots,k_m)$$

 $(con k_1, \ldots, k_m parametri esterni)$

(definizione algebrica: $\forall a,b \in A$, date \circ operazione di A e \bullet operazione di B, si ha $f(a \circ b) = f(a) \bullet f(b)$)

un omomorfismo "rispetta le operazioni"

• nota: la composizione di due omomorfismi è a sua volta un omomorfismo

def. 9: Isomorfismo

Un isomorfismo è un omomorfismo biettivo.

(Due algebre sono isomorfe (\cong) quando esiste un isomorfismo tra loro)

theorem 2: Omomorfismo tra algebre con stessa segnatura

Sia A un'algebra induttiva. Per ogni algebra B (non necessariamente induttiva) con la stessa segnatura, esiste un **unico omoformismo** $A \to B$.

theorem 3: Lemma di Lambek

Due algebre induttive A e B con la **stessa segnatura** sono necessariamente **isomorfe**.

proof!

- Siccome A è un'algebra induttiva, $\exists !$ omomorfismo $f:A \rightarrow B$.
- Allo stesso modo, $\exists !$ omomorfismo $g:B \to A$.
- Componendo i due omomorfismi, si ottiene un omomorfismo $g\circ f$ con segnatura $A\to A$.
- Sappiamo che per ogni algebra esiste l'omomorfismo "identità".
- Sappiamo anche, per il teorema sopra, che esiste un unico omomorfismo $A \to A$.

Ne segue necessariamente che $g\circ a=\mathrm{Id}_A.$ (lo stesso discorso si applica a $f\circ g=\mathrm{Id}_B)$

• $g\circ f=\mathrm{Id}\iff g=f^{-1}$, quindi g e f sono funzioni invertibili (= biettive) $\Rightarrow g,f$ sono isomorfismi $\Rightarrow A\cong B$

2. Espressioni, linguaggi

Definiamo un **linguaggio** L come insieme di stringhe.

Per descrivere la sintassi di linguaggi formali (la grammatica), usiamo la BNF (Backus-Naur Form), con questa sintassi:

Esempio: prendiamo come esempio questa grammatica:

$$M, N ::= 5 | 7 | M + N | M * N$$

Le espressioni che seguono questa grammatica, sono del tipo:

- "5" o "7"
- un'espressione M+N o M*N, in cui M e N rispettano a loro volta la grammatica Introduciamo una funzione $eval:L\to\mathbb{N}$, che valuta le espressioni del linguaggio:
 - eval(5) = 5
 - eval(7) = 7
 - eval(M + N) = eval(M) + eval(N)
 - eval(M * N) = eval(M) * eval(N)

Possiamo notare subito che (L,eval) non è un'algebra induttiva. Infatti, una stringa come "5+7*5" potrebbe essere stata generata in due modi diversi: (5+7)*5*e 5+(7*5). Possiamo però stipulare che sia induttiva. Ci basta infatti considerare +, *, 5* e 7* come costruttori dell'algebra. In questo modo, (5+7)*5 risulta essere un oggetto diverso da 5+(7*5). È quindi possibile dimostrare che (L,5,7,+,*) è un'algebra induttiva.

2.1. Exp

def. 10: Linguaggio Exp

Introduciamo il linguaggio Exp, con grammatica:

$$M, N = k \mid x \mid M + N \mid let x = M in N$$

dove:

- $k \in Val = \{0, 1, \dots\}$ è una costante
- $x \in Var$ è una variabile
- $M+N: Exp \times Exp \rightarrow Exp$ è la somma tra due espressioni
- $let: Var \times Exp \times Exp \rightarrow Exp$ assegna alla variabile x il valore M all'interno di N

esempi:

- let x = 3 in x + x + 2 viene valutata come 8
- let x = 3 in 12 viene valutata come 12

Questo linguaggio causa però facilmente ambiguità. Per esempio, come valutiamo un'espressione come $let\ x=3\ in\ let\ y=x\ in\ let\ x=5\ in\ y$?

Per esplicitare la struttura del termine, è necessario legare le occorrenze delle variabili alle dichiarazioni.

def. 11: Variabili libere, legate, scope

Si dice che un'occorrenza di una variabile x è **libera** in un termine t quando non compare nel corpo di N nessun sottotermine di t nella forma $let\ x=M\ in\ N$ (quindi, quando non le viene assegnato un valore).

Ogni occorrenza libera di x in un termine N si dice **legata** (bound) alla dichiarazione di x nel termine $let\ x = M\ in\ N$.

Lo scope di una dichiarazione è l'insieme delle occorrenze libere di x in N.

Lo **scope di una variabile** è la porzione di programma all'interno della quale una variabile può essere riferita.

Introduciamo una funzione $free: Exp \to \mathcal{P}(Var)$, che restituisce l'insieme delle variabili libere di un'espressione:

$$free(k) = \emptyset$$

$$free(x) = \{x\}$$

$$free(M+N) = free(M) \cup free(N)$$

$$free(let x = M in N) = free(M) \cup (free(N) - \{x\})$$

(eliminiamo la x, dalle variabili libere in N perché viene dichiarata dal $let\ x$, ma non la eliminiamo da M perché potrebbe comparire al suo interno come variabile libera, e M non fa parte dello scope di $let\ x$ (esempio: in $let\ x=x\ in\ x$, la x è libera perché compare libera in =x))

esempio: $free(let x = 7 in x + y) = \{y\}$

2.1.1. Semantica operazionale

Vogliamo introdurre nel linguaggio Exp il concetto di "quanto fa?" (valutazione di un; 'espressione).

Per farlo, abbiamo bisogno di definire un ambiente all'interno del quale valutare le espressioni (stile operazionale, "structural operational semantics").

def. 12: Ambienti

Un **ambiente** è una funzione parziale (funzione non necessariamente definita su tutti gli elementi del dominio) con dominio finito che associa dei valori ad un insieme finito di variabili.

$$E: Var \stackrel{fin}{\rightharpoonup} Val$$

Scriviamo gli ambienti come insiemi di coppie. Per esempio, l'ambiente E in cui z vale 3 e y vale 9 è indicato con $\{(z,3),(y,9)\}$.

Notiamo che, essendo E una funzione parziale, il dominio dom(E) è un sottoinsieme finito di Var.

def. 13: Insieme di ambienti

 ${\it Env}$ è definito come l'insieme degli ambienti di ${\it Exp}.$

finisci