Project 1 Description

Goal

 Simulate people leaving Bobby Dodd Stadium area after football game.

Minimize total egression time

• i.e. all individuals should leave the designated area

surrounding the

Assumptions and Simplifications

- Pedestrians should obey traffic lights and stay on sidewalks
- Main roads should stay open and contain traffic
 - Smaller roads may be closed off
- Stadium should be at near capacity
- Etc...

Optimizing over what?

- Desire is to decrease time for people to leave designated area
- Develop a (parametric) strategy for the departure.
- Parameters may include:
 - Closing certain (small) streets (which ones?)
 - Route people to leave area in certain paths (changes based on closed streets)
 - Have traffic cops "take over" some of the traffic lights
 - Makes for more efficient flow
 - Don't want to keep cars waiting too long though --> Added feature in optimization

Where will people go?

- Pedestrians will tend to go to
 - Marta Station (i.e. exit to top right of map)
 - Car Parking (located ones outside designated area)
 - Home on foot (if they live close by)
- Each person knows this before leaving the stadium
 - Develop distributions for how many come by car, Marta, ...
 - Friends that exit stadium together may go in same direction

Model of Choice

- Cellular Automata (CA)
- Time-stepped model (i.e. simulation advances every one time unit)
- Great for capturing local relationships among individuals
- Easy to model and implement (relatively)

What does a CA look like?

- Lay a 2D grid over your map
- How big should a grid cell be?
 - Depends on how many individuals can fit in a cell
 - Typically one person per cell
- Cell shape?
- Cells that lie outside the sidewalks are "invalid"

Local Relationships

- At each time-step, the value of a cell is determined by it's neighbors
- E.g. suppose rule is that cell is
 - 1 if more than 1/3 of its neighbors are 1,
 - and 0 otherwise

At time t

1	0	1
0		1
0	1	1

At time t+1

1	0	1
0	1	1
0	1	1

CA for Pedestrian Simulation

- Friends (intra-group relationships)
 - Groups/Friends tend to walk together
 - Use local relationships to keep individuals together
- How about inter-group relationships?
 - Crowds tend to take similar paths
 - Especially people coming from out of town who may not know the area well
 - Groups may be several grid cells apart from each other..

	G1 G1 G2 G2								
• Can we		G1	G1				G2	G2	
	G1	G1	G1				G2	G2	
		G1	G1				G2	G2	

CA for Long-Distance Interactions

- Basic method
 - Extend cell "neighborhood"

- Give cells "memory"
 - How many people passed through this cell?
 - The larger the number, the more "attractive" the cell is to new crowds
 - Memory should "decay" over time... How?

Stochastic Process!

- What should be probabilistic?
 - Target destination for each individual (drawn from distributions)
 - Speed of each individual (from single distribution derived from data or literature)
 - Behavior of individual (or even group)
- Stochastic.... and reproducible!

Where to get Data!

- Collect some @
 - How fast does a typical person walk in a crowd?
 - Time your friends in walking Klaus at 12:01
- Look at the literature
 - Tons and tons and tons of it!
 - Building evacuations, pedestrian simulation, group dynamics ...
- Don't forget to make your map accurate (and to scale)!
 - Use Goog/App-le Maps!
 - Go and measure for yourselves! (don't take a ruler)

Speaking of Literature...

- ... Assignment!!
- Prepare literature review for next Friday
- No formal report
 - we'll ask each group to give several interesting ideas they came across
- Typically one or two papers per team member (for now at least)

Logistics (check Syllabus for details)

- Project Checkpoint: Friday February 5
 - Problem description, literature review, conceptual model, simulation model
 - Basic version of (operational) simulator
 - Written report (will be part of your final report, so do it well)
- Final Report: Friday February 26
 - Final version of report and working source code
- Poster Session: Friday February 26
 - Prepare 5 minute presentation
 - Get ready for some Q&A!