Исследование диффузии гелия в воздухе в пористой среде.

Клименко Виталий, Владислав Загороднюк, Воложинов Дмитрий МФТИ, Июнь 2023

1 Цели работы

- 1) Регистрация зависимости концентрации гелия в воздухе от времени при разных начальных давлениях смеси;
- 2) Определение коэффициента диффузии газа в пористой среде;
- 3) Вычисление геометрических характеристик пористой среды по зависимости коэффициента диффузии от давления.

2 Теоретическая справка

Сначала разберёмся, что же такое пористая перегородка. Для простоты будем считать, что все поры в теле образуют каналы, пронизывающие тело по разным направлениям. Введём следующие обозначения:

- d эффективный диаметр каналов;
- δ коэффициент пористости отношение объёма, занятого порами, к объёму всей среды;
- ε коэффициент извилистости отношение толщины пористого слоя, через который происходит диффузия, к средней длине пути, проходимом газовой молекулой при «путешествии» сквозь слой по порам.

Диффузию газа вдали от стенок в одномерном случае будем описывать законом Фика:

$$j = -D\frac{\partial n}{\partial x} \tag{1}$$

где n — концентрация одного из компонентов (число частиц в единице объёма), j — диффузионный поток того же компонента через единицу площади в направлении оси x, D — коэффициент диффузии.

Также нам известна следующая формула для коэффициента диффузи через параметры молекул газа:

$$D = \frac{1}{3}v\lambda \tag{2}$$

где v — средняя тепловая скорость молекул рассматриваемого компонента, λ — средняя длина свободного пробега диффундирующих молекул.

Определённый нами до этого коэффициент диффузии D является коэффициентом диффузии в свободном пространстве, тогда как для газа в каналах перегородки мы также введём свой коэффициент диффузии D_1 , также подчиняющийся закону Фика. D_1 не равен D так как диаметр каналов сравним с длиной свободного пробега молекул газа.

Также, мы знаем что полный диффузионный поток через единицу площади сечения пористой среды равен сумме потоков по всем каналам в этом сечении:

$$I_{full} = -\sum_{i} S_{i} D_{i} \frac{dn}{dx_{i}} \simeq -\sum_{i} S_{i} \langle D \rangle \langle \frac{dn}{dx_{i}} \rangle$$
 (3)

В выражении (4) S_i — площадь сечения і-го канала, а угловые скобки означают усреднение. Заменяя сумму произведений на произведение $\sum_i S_i$ и средних величин D_i и $\frac{dn}{dx}$, мы совершаем ошибку, которая, однако, невелика. Заметим, что:

$$\langle \frac{dn}{dx_i} \rangle = \langle \frac{dn}{dx} \frac{dx}{dx_i} \rangle = \frac{dn}{dx} \varepsilon$$
 (4)

где $\varepsilon = \langle \frac{dx}{dx_i} \rangle$. Координата 2 отсчитывается сквозь пористое тело, т.е. по направлению, в котором проходит суммарный диффузионный поток.

Из определения пористости δ можно получить $\sum_i S_i$. Тогда:

$$\delta = \frac{\sum_{i} S_{i} x_{i}}{Sx} \approx \frac{\langle x_{i} \rangle \sum_{i} S_{i}}{Sx} = \frac{\sum_{i} S_{i}}{S\varepsilon}$$
 (5)

То есть:

$$\sum_{i} S_i = \delta \varepsilon S \tag{6}$$

где S - площадь поперечного сечения пористого тела. Используя эти выражения и заменяя $\langle D_i \rangle$ через D_1 , найдём

$$I_{full} = -\delta \varepsilon^2 D_1 \frac{dn}{dx} S \tag{7}$$

Введём обозначение:

$$D_{por} = \delta \varepsilon^2 D_1 \tag{8}$$

Подставляя (8) в (7), найдём

$$\frac{I_{full}}{S} = -D_{por}\frac{dn}{dx} \tag{9}$$

Рассмотрим теперь величину D_1 и её зависимость от давления. Диффузия, т.е. передвижение молекул, вызывающее выравнивание концентраций, происходит в результате случайных движений молекул в различных направлениях. Важную роль при этом играют столкновения, изменяющие направление движения, запутывающие путь молекул и уменьшающие поэтому скорость диффузии. Формула (2) правильно описывает зависимость D от λ и в случае пористого тела. Однако в этом случае нужно учитывать не только столкновения молекул между собой, но и их соударения со стенками:

$$D_1 = \frac{1}{3}v\lambda_{por} \tag{10}$$

где λ_{por} - средняя длина свободного пробега молекул в пористой среде. Теперь встаёт вопрос о том, какие столкновения в нашей работе будет целесообразно рассматривать - молекул с молекулами (в случае большого давления в системе, когда длина свободного пробега в газе $\lambda_g << D$ и $D \approx D_1$) или молекул со стенками каналов (в случае малого давления, когда $\lambda_g >> d$). Рассмотрим формулы для обоих случаев:

$$D_{por} = \delta \varepsilon^2 D = \frac{1}{3} \delta \varepsilon^2 v \lambda_g \tag{11}$$

$$D_{K_{por}} = \frac{1}{3}\delta\varepsilon^2 vd = \delta\varepsilon^2 D_K \tag{12}$$

где D_K - кнудсеновский или молекулярный коэффициент диффузии в капилляре (канале пористой перегородки). В промежуточном случае (λ_g порядка d) оба типа столкновений молекул играют сравнимую роль. Пусть молекула в среднем в одну секунду сталкивается z_1 раз с другими молекулами и z_2 раз — со стенками каналов. Полное число столкновений равно

$$z = z_1 + z_2 \tag{13}$$

Молекула в одну секунду в среднем проходит путь о, и средняя длина её пробега в пористой среде равна $\lambda_{por}=\frac{v}{z}.$ Также запишем формулы для длин пробега:

$$\frac{v}{z_1} = \lambda_g, \qquad \frac{v}{z_2} = \lambda_K = d \tag{14}$$

Подставляя (14) в (13), найдём:

$$\frac{1}{\lambda_{por}} = \frac{1}{\lambda_g} + \frac{1}{\lambda_K} \tag{15}$$

Учитывая (8), (10), (11), (12), (15), получаем:

$$\frac{1}{D_{por}} = \frac{1}{\delta \varepsilon^2 D} + \frac{1}{D_{K_{por}}} \tag{16}$$

В правой части формулы (16) от давления зависит только $D \sim \frac{1}{P}$. Поэтому зависимость коэффициента диффузии в пористой среде D_{por} от P имеет вид $\frac{1}{D_{por}} = AP + B$. Зная зависимость D_{por} от P и величину D, с помощью наших формул можно определить характеристики пористой среды $\delta \varepsilon^2$ и d. Для определения коэффициента диффузии используются два замкнутых объёма V_1 и V_2 , соединённые пористым телом. Объёмы заполняют до одинакового давления смесями газов, различающимися концентрацией компонентов. Рассчитаем при помощи уравнения (9), как будет изменяться разность концентраций в сосудах со временем. Заметим прежде всего, что в стационарном состоянии j_{full} не может зависеть от координаты x, так как в противном случае в пористом теле происходило бы накопление вещества (приток не был бы равен оттоку). Поскольку D_{por} тоже не зависит от x, не зависит от x и величина $\frac{dn}{dx}$. Поэтому можно записать

$$\frac{dn}{dx} = \frac{n_2 - n_1}{L} \tag{17}$$

где n_1 и n_2 - концентрации в сосудах 2 и 1, а L - толщина пористой перегородки. Напишем теперь, используя (9), изменение числа молекул во втором сосуде:

$$\frac{dN_2}{dt} = I_{full} = -SD_{por} \frac{n_2 - n_1}{L} \tag{18}$$

Замечая, что число молекул в сосуде 2 равно

$$N_2 = n_2 V_2 \tag{19}$$

подставляя (19) в (18) и деля обе части уравнения на V_2 , найдём

$$\frac{dn_2}{dt} = -D_{por} \frac{S}{V_2} \frac{n_2 - n_1}{L} \tag{20}$$

аналогично

$$\frac{dn_1}{dt} = +D_{por} \frac{S}{V_1} \frac{n_2 - n_1}{L} \tag{21}$$

Вычитая равенство (21) из (20), найдём

$$\frac{d(n_2 - n_1)}{dt} = -\frac{SD_{por}}{L} \left(\frac{1}{V_2} + \frac{1}{V_1}\right) (n_2 - n_1)$$
 (22)

Интегрируя это уравнение, получим

$$n_2 - n_1 = (n_2 - n_1)_0 e^{-\frac{t}{\tau}} (23)$$

где

$$\tau = \frac{V_1 V_2 L}{S D_{por} (V_1 + V_2)} \tag{24}$$

Формулы (23) и (24) определяют, как изменяется со временем разность концентраций в сосудах.

3 Оборудование и экспериментальная установка

В работе используются: измерительная установка (рис. 1); секундомер; источник напряжения; вольтметр; мостовая схема.

4 Ход работы

В течение работы проделывался следующий алгоритм действий:

- 1) Создание вакуума в трубках установки при помощи насоса.
- 2) Закачка в сосуды воздуха до выбираемого нами изначального рабочего объёма.
- 3) Настройка рабочего сопротивления при помощи выравнивания моста.
- 4) Откачка воздуха из установки.
- 5) Закачка воздуха в один объём до двух рабочих давлений, закачка гелия до 0,1 от рабочего давления.
- 6) Выравнивание давления путём кратковременного открытия крана без

Рис. 1: Схема установки

перегородки между двумя сосудами.

7) Открытие пористой перегородки и начало измерений зависимости напряжения на вольтметре от времени.

Далее повторяем приведённые выше действия для разных рабочих давлений.

5 Обработка измерений

Показания вольтметра в каждом эксперименте снимались на видео, после чего при помощи специального программного обеспечения производилась посекундная раскадровка видео, данные занесены в таблицу, часть которой представлена ниже (рис.2):

Р, торр		22	Р, торр		28	Р, торр		33
t, c	U, мВ	In(U/U0)	t, c	U, мВ	In(U/U0)	t, c	U, мВ	In(U/U0)
0	3,525	0,0000	0	1,548	0,0000	0	1,820	0,0000
1	3,466	-0,0169	1	1,528	-0,0130	1	1,807	-0,0072
2	3,437	-0,0253	2	1,475	-0,0483	2	1,744	-0,0427
3	3,400	-0,0361	3	1,467	-0,0537	3	1,720	-0,0565
4	3,368	-0,0456	4	1,462	-0,0572	4	1,718	-0,0577
5	3,346	-0,0521	5	1,441	-0,0716	5	1,697	-0,0700
6	3,330	-0,0569	6	1,434	-0,0765	6	1,690	-0,0741
7	3,315	-0,0614	7	1,425	-0,0828	7	1,685	-0,0771
8	3,300	-0,0660	8	1,413	-0,0912	8	1,692	-0,0729
9	3,288	-0,0696	9	1,406	-0,0962	9	1,685	-0,0771
10	3,274	-0,0739	10	1,401	-0,0998	10	1,675	-0,0830
11	3,261	-0,0778	11	1,398	-0,1019	11	1,668	-0,0872
12	3,249	-0,0815	12	1,394	-0,1048	12	1,662	-0,0908
13	3,238	-0,0849	13	1,404	-0,0976	13	1,656	-0,0944
14	3,225	-0,0889	14	1,401	-0,0998	14	1,652	-0,0968
15	3,213	-0,0927	15	1,400	-0,1005	15	1,647	-0,0999
16	3,202	-0,0961	16	1,392	-0,1062	16	1,639	-0,1048
17	3,190	-0,0999	17	1,388	-0,1091	17	1,634	-0,1078
18	3,178	-0,1036	18	1,385	-0,1113	18	1,630	-0,1103
19	3,169	-0,1065	19	1,377	-0,1171	19	1,627	-0,1121
20	3,156	-0,1106	20	1,375	-0,1185	20	1,621	-0,1158
21	3,145	-0,1141	21	1,370	-0,1222	21	1,617	-0,1183
22	3,134	-0,1176	22	1,367	-0,1243	22	1,613	-0,1207
23	3,122	-0,1214	23	1,363	-0,1273	23	1,609	-0,1232
24	3,110	-0,1253	24	1,359	-0,1302	24	1,605	-0,1257
25	3,099	-0,1288	25	1,354	-0,1339	25	1,601	-0,1282
26	3,089	-0,1320	26	1,351	-0,1361	26	1,596	-0,1313
27	3,077	-0,1359	27	1,348	-0,1383	27	1,592	-0,1338
28	3,065	-0,1398	28	1,343	-0,1421	28	1,588	-0,1364
29	3,056	-0,1428	29	1,339	-0,1450	29	1,584	-0,1389
30	3,045	-0,1464	30	1,335	-0,1480	30	1,579	-0,1420

Рис. 2: Прямые измерения $\Delta U(t)$ (часть таблицы)

Проверим теоретическую зависимость $\Delta n(t)$, убедившись в том, что процесс диффузии подчиняется закону (23). Для этого для каждой серии измерений U(t) рассчитаем значения $\ln(U/U_0)$, где $U_0=U(t=0)$ и построим графики зависимости $\ln(U/U_0)(t)$ (рис. 3-7). Теоретическая зависимость имеет вид:

$$\ln \frac{\Delta U}{\Delta U_0} = \ln \frac{\Delta n}{\Delta n_0} = -\frac{t}{\tau}$$

Как видим, графики линейны на основном диапазоне значений, рассчитаем по коэффицентам их наклона значения коэффицента диффузии в пористой перегородке D_{por} по формуле:

$$D_{por}=\frac{V_1V_2L}{S\tau(V_1+V_2)}$$
 , где $\tau=-\frac{1}{K}=-\frac{1}{d(\ln\frac{U}{U_0})/dt}$

Р, торр	22,0	28,0	33,0	46,0
K, 1/c	-0,00384	-0,00309	-0,00284	-0,00269
tau, c	260,6	323,8	352,6	371,7
Dπ, см2/с	0,164	0,132	0,121	0,115
1/Dn	6,11	7,59	8,26	8,71

Рис. 3: Данные из графиков $\ln(U/U_0)(t)$

Δτ, c	0,5368	0,7157	0,5719	1,235
ΔDп, см2/с	0,00747	0,00601	0,00552	0,00524
∆1/Dп, с/см2	0,27843	0,34612	0,37668	0,39786

Рис. 4: Погрешности измерений

Определим величину $\delta \varepsilon^2$ и коэффицент $D_{K_{por}}$, для этого построим график зависимости $\frac{1}{D_{por}}(P)$. Теоретическая зависимость описывается формулой (16), в которой $D \approx C \cdot \frac{1}{P}$, где $C = 0, 3*760, 0 \approx 228, 0$ Торр \cdot см $^2/c$ то есть:

$$\frac{1}{D_{por}} = AP + B$$

График зависимости 1/Dп(Р)

Найдём из графика коэффиценты наклона и пересечения с осью: $A\approx (0,0995\pm 0,025)~{\rm c/(cm^2\cdot Topp)},~B\approx (4,46\pm 0,22)~{\rm c/(cm^2)}$

Тогда
$$\delta \varepsilon^2 = \frac{1}{AC} \approx (0,044 \pm 0,001), \, D_{K_{por}} = \frac{1}{B} \approx (0,224 \pm 0,011) \, \, \mathrm{cm}^2/\mathrm{c}$$

По полученным данным определим средний диаметр пор d: выразим его из формулы (12):

$$d = \frac{3D_{K_{por}}}{\delta \varepsilon^2 v} = \frac{3D_{K_{por}}}{\delta \varepsilon^2 \sqrt{\frac{8kT}{\pi m}}}$$

Численный рассчёт даёт $d \approx (1, 22 \pm 0, 07)$ мкм

Из формулы (11) выразим λ_g и рассчитаем её для каждого эксперимента:

 $\lambda_g = \frac{3D_{por}}{\delta \varepsilon^2 v} = \frac{3D_{K_{por}}}{\delta \varepsilon^2 \sqrt{\frac{8kT}{\pi m}}} \tag{26}$

Р, торр	22	28	33	46,000	
λг, мкм	0,896	0,721	0,662	0,628	
d, мкм	1,227	1,227	1,227	1,227	

Рис. 5: Значения λ_q

Для сравнения λ_g и d по порядку величины отложим их значения на графике с логарифмической шкалой:

Нетрудно видеть, что по всех экспериментах значения $\lambda_g \approx d$, что говорит о некотором переходном режиме течения газа (между моделями Пуазейля и Кнудсена).

6 Выводы

1) Таким образом, теоретическая зависимость концентрации гелия в воздухе от времени при его диффундировании через пористую среду подтвердилась экспериментально, она экспоненциальна:

$$\Delta n = \Delta n_0 e^{-\frac{t}{\tau}}$$

- 2) Эксперимент подтвердил применимость закона Фика и для пористой среды, с хорошей точностью был определён коэффицент диффузии в ней: $D_{K_{por}} \approx (0,224\pm0,011)~{\rm cm}^2/{\rm c}$
- 3) Были численно рассчитанны геометрические параметры рассматриваемой пористой среды: безразмерный коэффицент $\delta \varepsilon^2 \approx (0,044\pm0,001)$ и эффективный диаметр каналов $d\approx (1,22\pm0,07)$ мкм
- 4) Значения d и λ_g , рассчитанные экспериментально, оказались близки по значению, что говорит о том, что в выбранном диапазоне давлений (20-50 Topp) действительно реализуется некоторый промежуточный режим течения газа через пористую перегородку, в котором ощутимую роль играют как столкновения молекул друг с другом, так и со стенками каналов пористой среды.