

Licenciatura em Engenharia Informática e Computadores

Álgebra Linear e Geometria Analítica

9 - Subespaços de \mathbb{R}^n

Índice

Subespaços de \mathbb{R}^n - dimensão e base

Subespaços associados a uma matriz

Subespaços de \mathbb{R}^n - Equações

Revisão: Combinação linear e subespaço gerado

Seja V um espaço vetorial. Diz-se que o elemento u de V é **combinação linear** dos elementos u_1, \ldots, u_k de V se existem escalares $a_1, \ldots, a_k (\in \mathbb{R})$ tais que

$$u = a_1u_1 + \cdots + a_ku_k$$
.

O conjunto de todas as combinações lineares dos vetores $u_1,\ldots,u_k\in V$ é um subespaço vetorial de V, chamado **subespaço vetorial gerado por** u_1,\ldots,u_k e denotado por $\langle u_1,\ldots,u_k\rangle$:

$$\langle u_1,\ldots,u_k\rangle=\{a_1u_1+\cdots+a_ku_k\colon a_1,\ldots,a_k\in\mathbb{R}\}.$$

Os elementos u_1, \ldots, u_k são os geradores de S.

Revisão: Dependência e independência linear

Diz-se que u_1, u_2, \ldots, u_k elementos de V são:

▶ linearmente independentes (l.i.) se a combinação linear nula:

$$a_1u_1+a_2u_2+\cdots a_ku_k=0_V$$

implicar que todos os escalares a_1, a_2, \ldots, a_k são (obrigatoriamente) nulos;

▶ linearmente dependentes (l.d.) se existem escalares b_1, b_2, \ldots, b_k não todos nulos tais que:

$$b_1u_1+b_2u_2+\cdots b_ku_k=0_V$$

Neste caso, pelo menos um dos vetores é combinação linear dos restantes vetores.

Revisão: Base e dimensão

Um conjunto $\{u_1, \ldots, u_n\}$ diz-se uma base de V se:

- $ightharpoonup u_1, \ldots, u_n$ são linearmente independentes
- $ightharpoonup u_1, \ldots, u_n$ são geradores de V, ou seja $V = \langle u_1, \ldots, u_n \rangle$

Se $\{u_1,\ldots,u_n\}$ é uma base do espaço vetorial V então qualquer base de V tem n elementos e diz-se que V tem **dimensão** n. Escreve-se $\dim(V)=n$.

Subespaços de \mathbb{R}^n - Subespaço gerado

Dimensão e base

$$S = \langle u_1 = (1, 0, 1, 1), u_2 = (0, 1, 0, 1), u_3 = (1, 1, -1, 0), u_4 = (1, 1, 0, 1) \rangle$$
 combinação linear nula:

$$a_1 u_1 + a_2 u_2 + a_3 u_3 + a_4 u_4 = (0, 0, 0, 0) \Leftrightarrow \begin{cases} a_1 + a_3 + a_4 = 0 \\ a_2 + a_3 + a_4 = 0 \\ a_1 - a_3 = 0 \\ a_1 + a_2 + a_4 = 0 \end{cases}$$

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & -2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$r\begin{bmatrix} u_1 & u_2 & u_3 & u_4 \end{bmatrix} = 3 \quad u_1, u_2, u_3, u_4 \text{ são l.d.}$$

$$r \begin{bmatrix} \textbf{\textit{u}}_1 & \textbf{\textit{u}}_2 & \textbf{\textit{u}}_3 \end{bmatrix} = 3 \quad \textbf{\textit{u}}_1, \textbf{\textit{u}}_2, \textbf{\textit{u}}_3 \text{ são l.i.}$$

 $\{u_1, u_2, u_3\}$ é uma base de S e dim(S) = 3

Subespaços de \mathbb{R}^n - Subespaço gerado

Seja $S = \langle u_1, u_2, \dots, u_k \rangle$ um subespaço de \mathbb{R}^n . Tem-se:

- $\blacktriangleright \dim(S) = r \begin{bmatrix} u_1 & u_2 & \dots & u_k \end{bmatrix};$
- o conjunto dos vetores geradores correspondentes às colunas dos pivots da matriz em escada obtida por eliminação de Gauss a partir da matriz [u₁ u₂ ... u_k] é uma base de S.

Dada $A^{n \times k}$ chama-se **espaço das colunas de** A ao subespaço de \mathbb{R}^n gerado pelas colunas de A. Representa-se por C(A) e tem-se:

$$\dim (C(A)) = r(A)$$

Subespaços de \mathbb{R}^n - Soluções AX = 0 - Núcleo de A

Dimensão e base

$$S = \left\{ (x, y, z, w) \in \mathbb{R}^4 \colon \begin{bmatrix} 1 & 2 & 0 & -1 \\ -1 & -2 & 1 & 0 \\ 3 & 6 & 0 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$
$$\begin{bmatrix} 1 & 2 & 0 & -1 & 0 \\ -1 & -2 & 1 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} \quad \text{SPI}$$

$$\begin{bmatrix} 1 & 2 & 0 & -1 & 0 \\ -1 & -2 & 1 & 0 & 0 \\ 3 & 6 & 0 & -3 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 SPI $GI = 2$

Soluções:
$$(-2y + w, y, 0, w) = y(-2, 1, 0, 0) + w(1, 0, 0, 1), y, w \in \mathbb{R}$$

$$S = \langle \underbrace{(-2, 1, 0, 0)}_{u}, \underbrace{(1, 0, 0, 1)}_{v} \rangle \quad u, v \text{ l.i.}$$

$$\{u, v\}$$
 é uma base de S e $\dim(S) = 2 = GI = n - r(A)$

Subespaços de \mathbb{R}^n - Soluções AX = O - Núcleo de A

Seja $A \in \mathbb{R}^{m \times n}$ e seja S o subespaço de \mathbb{R}^n das soluções do sistema homogéneo AX = O, o **núcleo de** A:

$$S = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : A [x_1 \ x_2 \ \dots \ x_n]^T = O\} = N(A)$$

Tem-se:

- $\blacktriangleright \dim(S) = n r(A);$
- ▶ o conjunto das soluções geradoras obtidas ao substituir cada variável livre por 1 e as restantes por 0 é uma base de S.

Dada $A \in \mathbb{R}^{m \times n}$ chama-se **nulidade de** A à dimensão do núcleo de A. Tem-se:

$$\dim\left(N(A)\right) = n - r(A)$$

Subespaços associados a uma matriz

Determine a dimensão e uma base do núcleo de
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 2 \\ -1 & 1 & k \\ 1 & -1 & -k \end{bmatrix}$$

$$N(A) = \{(x, y, z) \in \mathbb{R}^3 : A \begin{bmatrix} x & y & z \end{bmatrix}^T = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T \}$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & -1 & 2 & 0 \\ -1 & 1 & k & 0 \\ 1 & -1 & -k & 0 \end{bmatrix} \xrightarrow{\dots} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & k+3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

▶
$$k = -3 \Rightarrow \dim(N(A)) = n - r(A) = 3 - 2 = 1$$
Soluções: $(-z, 2z, z) = z(-1, 2, 1), z \in \mathbb{R}$
 $\{(-1, 2, 1)\}$ é uma base de $N(A)$

►
$$k \neq -3 \Rightarrow \dim(N(A)) = n - r(A) = 3 - 3 = 0$$

∅ é a base de $N(A)$

Subespaços associados a uma matriz

Determine a dimensão e uma base do espaço das colunas de $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 2 \\ -1 & 1 & k \\ 1 & -1 & -k \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 2 \\ -1 & 1 & k \\ 1 & -1 & -k \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & k+3 \\ 0 & 0 & 0 \end{bmatrix}$$

►
$$k = -3 \Rightarrow \dim(C(A)) = r(A) = 2$$
 { $(1, 0, -1, 1), (0, -1, 1, -1)$ } é uma base de $C(A)$

▶
$$k \neq -3 \Rightarrow \dim(C(A)) = r(A) = 3$$
 { $(1, 0, -1, 1), (0, -1, 1, -1), (1, 2, k, -k)$ } é a base de $C(A)$

Subespaços de \mathbb{R}^n - Equações

Seja S um subespaço vetorial de \mathbb{R}^n de dimensão k, 0 < k < n.

▶ Se $\{u_1, \ldots, u_k\}$ é uma base de S então para qualquer $u \in S$ existem escalares a_1, \ldots, a_k tais que:

$$u = a_1 u_1 + \cdots + a_k u_k$$
 - equação vetorial de S

Esta equação entre vetores pode separar-se em n equações entre números - equações paramétricas de S.

S pode ser definido pelo conjunto solução de um SEL homogéneo com n – k equações - equações cartesianas de S.

Subespaços de \mathbb{R}^n - Equações - Exemplo 1

$$S = \{(x, y, z) \in \mathbb{R}^3 : x + y - z = 0 \land y + z = 0 \land x - 2z = 0\}$$

$$\begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & -2 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} \mathsf{SPI} \\ \mathsf{GI} = 1 \\ \mathsf{dim}(S) = n - r(A) = 3 - 2 = 1 \end{array}$$

Equações cartesianas:
$$x + y - z = 0 \land y + z = 0$$

Soluções:
$$(2z, -z, z) = z(2, -1, 1), z \in \mathbb{R}$$

$$\{(2, -1, 1)\}$$
 é uma base de *S*

Equação vetorial:
$$(x, y, z) = a(2, -1, 1), a \in \mathbb{R}$$

Equações paramétricas:
$$\begin{cases} x = -2a \\ y = -a \\ z = a \end{cases}, \ a \in \mathbb{R}$$

Subespaços de \mathbb{R}^n - Equações - Exemplo 2

$$S = \langle \underbrace{(-1, 3, 2, 1)}_{u}, \underbrace{(1, -2, 1, 1)}_{v}, \underbrace{(0, 1, 3, 2)}_{w} \rangle$$

$$u = (x, y, z, t) \in S \Leftrightarrow (x, y, z, t) = a(-1, 3, 2, 1) + b(1, -2, 1, 1) + c(0, 1, 3, 2)$$

$$\begin{bmatrix}
-1 & 1 & 0 & | & x \\
3 & -2 & 1 & | & y \\
2 & 1 & 3 & | & z \\
1 & 1 & 2 & | & t
\end{bmatrix} \longrightarrow \begin{bmatrix}
-1 & 1 & 0 & | & x \\
0 & 1 & 1 & | & y + 3x \\
0 & 0 & 0 & | & z - 3y - 7x \\
0 & 0 & 0 & | & t - 2y - 5x
\end{bmatrix}$$

$$r\begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} \end{bmatrix} = 2 = \dim(S) = r\begin{bmatrix} \mathbf{u} & \mathbf{v} \end{bmatrix}$$
 e $\{u, v\}$ é uma base de S

Equação vetorial: $(x, y, z, t) = a(-1, 3, 2, 1) + b(1, -2, 1, 1), a, b \in \mathbb{R}$

Equações paramétricas:
$$\begin{cases} x = -a + b \\ y = 3a - 2b \\ z = 2a + b \end{cases}, \ a, b \in \mathbb{R}$$
$$t = a + b$$

$$r(A) = r(A|B) \Rightarrow z - 3y - 7x = 0 \land t - 2y - 5x = 0$$

Equações cartesianas:
$$z - 3y - 7x = 0 \land t - 2y - 5x = 0$$