$\begin{array}{c} \text{Concurrent Systems} \, -\! \, \text{Exam} \\ \\ \text{June 2017} \end{array}$

Name:	
Duration: 120 minutes — No document authorized	
1. a) Explain informally what is a <i>deadlock</i> . Describe a simple strategy to make sure of locks never deadlock when acquiring the locks.	e that multiple threads that share a set
b) Explain what is the principle of a <i>future</i> and describe briefly how one can use	it (e.g., using pseudo-code).

The atomicAdd(in	it n) operation	n adds value	e n to an at	omic intege	er. Can	we in	npleme	ent this	operatio	n using
mpareAndset() / 1	i yes, provide a	(pseudo-co	ue) impiem	emanon.						
xplain informally wh	nat is the issue v	vith the simp	le "test-and	l-set" algori	ithm fo	r imple	ementi	ng a sp	inlock, a	nd why
xplain informally wh -and-test-and-set" ty	nat is the issue v	vith the simp	le "test-and	l-set" algori	ithm fo	r imple	ementi	ng a sp	inlock, a	nd why
xplain informally wh t-and-test-and-set" ty	nat is the issue v	vith the simp	le "test-and	l-set" algori	ithm fo	r imple	ementi	ng a sp	inlock, a	nd why
xplain informally wh -and-test-and-set" ty	nat is the issue v	vith the simp	le "test-and	l-set'' algori	ithm fo	r implo	ementi	ng a sp	inlock, a	nd why
xplain informally wh -and-test-and-set" ty	nat is the issue v	vith the simp	le "test-and	l-set" algori	ithm fo	r imple	ementi	ng a sp	inlock, a	nd why
xplain informally wh -and-test-and-set" ty	nat is the issue v	vith the simp	le "test-and	l-set" algori	ithm fo	r imple	ementi	ng a sp	inlock, a	nd why
xplain informally what and-test-and-set" ty	nat is the issue v	vith the simp	le "test-and	l-set'' algori	ithm fo	r imple	ementi	ng a sp	inlock, a	nd why
xplain informally wh -and-test-and-set" ty	nat is the issue v	vith the simp	le "test-and	l-set" algori	ithm fo	r imple	ementi	ng a sp	inlock, a	nd why
xplain informally wh -and-test-and-set" ty	nat is the issue v	vith the simp	le "test-and	l-set" algori	ithm fo	r imple	ementi	ng a sp	inlock, a	nd why
xplain informally wh -and-test-and-set" ty	nat is the issue v	vith the simp	le "test-and	l-set" algori	ithm fo	r implo	ementi	ng a sp	inlock, a	nd why
xplain informally what-and-test-and-set" ty	nat is the issue v	vith the simp	le "test-and	l-set" algori	ithm fo	r imple	ementi	ng a sp	inlock, a	nd why
xplain informally what-and-test-and-set" ty	nat is the issue v	vith the simp	le "test-and	l-set" algori	ithm fo	r implo	ementi	ng a sp	inlock, a	nd why
explain informally what-and-test-and-set" ty	nat is the issue v	vith the simp	le "test-and	l-set" algori	ithm fo	r imple	ementi	ng a sp	inlock, a	nd why
Explain informally what-and-test-and-set" ty	nat is the issue v	vith the simp	le "test-and	l-set" algori	ithm fo	r implo	ementi	ng a sp	inlock, a	nd why
Explain informally what-and-test-and-set" ty	nat is the issue v	vith the simp	le "test-and	l-set" algori	ithm fo	r imple	ementi	ng a sp	inlock, a	nd why
Explain informally what-and-test-and-set" ty	nat is the issue v	vith the simp	le "test-and	l-set" algori	ithm fo	r impl	ementi	ng a sp	inlock, a	nd why
Explain informally what-and-test-and-set" ty	nat is the issue v	vith the simp	le "test-and	l-set" algori	ithm fo	r impl	ementi	ng a sp	inlock, a	nd why

2. Assume you have two threads, T ₁ and T ₂ , executing the following code:	
T ₁ : instl ₁ inst2 ₁ T ₂ : instl ₂ inst2 ₂	
Implement a <i>rendezvous</i> point that guarantees that inst1 ₁ happens before ir inst2 ₁ . There is no order constraint between inst1 ₁ and inst1 ₂ . Use only so	
Reminder: A counting semaphore has two main methods: acquire() and re given number of permits. For each call to acquire() a permit is taken by the crelease() a permit is returned to the semaphore. Thus, at most N threads can without any release() calls, where N is the number of permits the semaphore permits left, a thread calling acquire() will block until new permits are available.	alling thread. For each call to pass the acquire() method was initialized with. If there are no
•	

3.

Consider the following barrier implementation pseudocode:

```
Lock lock = new ReentrantLock();
Semaphore sem = new Semaphore(0);  // Semaphore initially 0
int count = 0, n = NUM_THREADS;

// Reaching the barrier
lock.lock();
count = count + 1;
lock.unlock();
if (count == n) {
   sem.release();  // Increment semaphore
}
sem.acquire();  // Decrement semaphore
// Critical section follows
```

The variable **count** is used to keep track of how many threads reached the barrier. It is protected by a lock. **NUM_THREADS-1** threads will block when trying to acquire the semaphore. The last thread releases the semaphore and all threads can continue to the critical section.

this a correct barri		 	 _
			-
	 		_
	 	 	 -
	 	 	 -
			 -
			-
			 -
			-
			-
			-
			 -
			 -
			-
			-
			 -
			-

·	

4.a) Consider the following history for two threads T1 and T2 and two FIFO queues p and q:
T1 p.enq(x) T2 q.enq(y) T1 p:void T1 q.enq(x) T2 q:void T2 p.enq(y) T1 q:void T1 p:deq() T2 p:void T1 p:y T2 q:x
Is it linearizable?
Is it sequentially consistent?
b) If we change the last line of the history to:
 T2 q:y
Is it linearizable?
Is it sequentially consistent?
c) Consider again the original history of a). Prepend one operation (method invocation and response) in front of the history so that it becomes both linearizable and sequentially consistent.
<u> </u>

```
Consider the following code:
  class MyStream {
    static long n0 = 1;
    static long n1 = 1;
    static Stream<Long> get() {
       return Stream.generate(
                () -> {
                  long r = n0 + n1;
                  n0 = n1;
                  n1 = r;
                  return r;
                });
    }
  }
a) Explain what this stream does.
b) What will be the output of the following code?
  MyStream.get().limit(8).forEach(System.out::println);
c) Can we modify the code as follows? If not, explain why and propose a possible solution.
  MyStream.get().parallel().limit(8).forEach(System.out::println);
```

block until the current count reaches zero due to invocations of the countDown() method, after which all waiting threads are released and any subsequent invocations of await return immediately. This is a one-shot phenomenon; the count cannot be reset. Note that the CountDownLatch does not require that threads calling countDown() to wait for the count to reach zero before proceeding, it simply prevents any thread from proceeding past an await() until all threads could pass.
Provide a simple implementation of CountDownLatch using Java monitors.

A CountDownLatch is a synchronization aid that allows one or more threads to wait until a set of operations being