CARLINGFORD HIGH SCHOOL

DEPARTMENT OF MATHEMATICS

Year 12 Mathematics Ext 1

Term 2 Examination 2013

Time allowed: 55 mins	
Name:	Class : 12M
Teacher: Ms Strilakos / Mr Gong / Mr Cheng	

Instructions

- Start each question on a new page and write on one side of the paper only
- Board approved calculators may be used
- Show all necessary working by using blue/ black pen except graphs/diagrams
- Marks may be deducted for untidy setting out

Outcomes	MC	Q4	Q5	Q6	Q 7	Q8	Q9	Q10	Q11	Q12	Total
					· ·						
HE4	/2	/11	/6	/3							/29
								_			
H5	/1				/2	/3	/1	/4			/11
HE6										,	
11150									/11		/11
Total	/3	/11	/6	/3	/2	/3	/1	/4	/11	17	/51

Mutiple Choice (1 mark each) 3 marks

Question 1

 $\tan^{-1}\frac{3}{5}$ is equal to:

(A)
$$\sin^{-1}\frac{3}{4}$$
 (B) $\cos^{-1}\frac{3}{4}$

B)
$$\cos^{-1} \frac{3}{4}$$

(C)
$$\sin^{-1}\frac{3}{\sqrt{3^2}}$$

(C)
$$\sin^{-1} \frac{3}{\sqrt{34}}$$
 (D) $\cos^{-1} \frac{3}{\sqrt{34}}$

Question 2

Which of the following represents the inverse function of $f(x) = \frac{2}{5x + 10} + 1$?

(A)
$$f^{-1}(x) = \frac{2}{5x - 5} - 2$$

(B)
$$f^{-1}(x) = 5 - \frac{2}{5x - 5}$$

(C)
$$f^{-1}(x) = 2 - \frac{1}{5x - 5}$$

(D)
$$f^{-1}(x) = \frac{2}{5x-5} + 2$$

Question 3

By considering the sketches of $y = \sin 2\theta$ and $y = \cos \theta$ or otherwise, determine how many solutions the equation $\sin 2\theta = \cos \theta$ has in the domain $0 \le \theta \le 2\pi$.

5

Question 4

- Consider the function $f(x) = 3 \sin^{-1} 2x$ a)
 - State the domain and range of f(x)i)

2

Sketch the graph of f(x)ii)

2

- b) Find the exact value of
 - i) $\cos^{-1}(\cos\frac{-5\pi}{3})$

1

ii) $\cos(\cos^{-1}(\frac{4}{7}) + \tan^{-1}(\frac{-4}{3}))$

2

- c) Find the derivative of
 - i) $f(x) = \sin^{-1}(3x+2)$

2

ii) $y = \log_e(\tan^{-1}(3x^2))$

2

Question 5

Consider the function

$$f(x) = x^2 - 6x$$
.

i) Sketch the graph of f(x)

1

ii) State the **domain** and **range** of f(x).

- 2
- iii) The domain of this function is restricted so that an inverse function $f^{-1}(x)$ exists whose range is entirely positive. Write down the largest domain for this inverse function.
- 1

ii) Sketch this inverse function.

2

Question 6

The area between the curve $y = \frac{1}{\sqrt{1+x^2}}$ and the x-axis, from x = 0 to x = 3 is rotated about the

x-axis. Find the exact volume of revolution of the solid formed.

Question 7

The graph of $y = A \cos(nx)$ is drawn on the right.

Find the values of A and n.

Question 8

3

2

The diagram shows the graphs of the functions $y = \cos x$ and $y = \sin 2x$ between x = 0 and $x = \frac{\pi}{2}$. The two graphs intersect at $x = \frac{\pi}{6}$ and $x = \frac{\pi}{2}$. Calculate the area of the shaded region.

Question 9

1

Evaluate
$$\lim_{x\to 0} \frac{\sin 3x}{5x}$$
.

Question 10

i) Write down the expansion of $\cos 2x$ in terms of $\sin^2 x$.

1

ii) Hence find
$$\int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \left(\sin^2(2x) - \frac{1}{2} \right) dx$$

3

Question 11

(a) Find $\int \cot x \, dx$

2

(b) Write down the general solutions of
$$cos\theta = \sqrt{3}sin\theta$$

3

(c) By using the substitution
$$x = 2\sin\theta$$
 find $\int \frac{x^2 dx}{\sqrt{4-x^2}}$

3

(d) By using the substitution
$$u = 1 + x$$
 find $15 \int_{-1}^{0} x \sqrt{1 + x} dx$

3

Question 12

The curve on the right has equation

$$f(x) = 2\cos^{-1}\left(\frac{x}{3}\right).$$

The point A has coordinates $\left(\frac{3}{2}, \frac{2\pi}{3}\right)$.

Hilary wanted to find the shaded area. However she realised that she could not integrate f(x).

Her friend Barack suggested she use the inverse function.

- (i) Find the inverse function $f^{-1}(x)$
- (ii) Sketch the inverse function $f^{-1}(x)$ and shade the corresponding area. You must be sure your sketch clearly shows the domain and range of $f^{-1}(x)$
- (iii) Hence evaluate the shaded area.

3

2

END OF EXAM

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

X=tan-13 Lex tax = 3 134 3

 $S_{1}N_{X} = \frac{3}{3}$ by $x = \frac{\tau}{\sqrt{3}+}$

K=5151 (Fox)=)(E)

y= == +1

Interchange X and y)= = = +1

 $\frac{1}{\sqrt{-1}} = \frac{1}{\sqrt{5}}$

(x-1)(5y+10)=2

5y(x-1) + 10(x-1) = 2

5y = 10-10x +2

= - (10x+10) + 2 +xr +xr

- -2+ ---

Q4

(4)-14276 61

(1)

-15 K 52 Doman

-J 4 Sti-12k & I

-31 535 22 5 1 Ry

45 . b(i) les $X = 405 \left(-\frac{511}{3}\right)$ $= 605 \frac{514}{716}$ 12-6x=0 x(x-6) = 3 X = o or teb = 10 (271-17) f(x)= 24-6 二四百 $=\frac{1}{2}$. L=3 (-91 651(2) (1) let X = 15-1(4) Y=+-1(4) los x = 4 ty= 3. 7 Sox= V5 / 7 4 / 7 9 / 101 y= 3 (1) At red number of X Domaih: 577-4 47,-9 (I) Cos (xty) = Losnosy - sixsil) (11) Logest poslo deser 二十十一一一个 sc \$7,3 Rym = 12 - 455) = 12-4537 (1) D.17-9

$$V = T \int y^2 dx$$

$$= T \left[\frac{3}{1+x^2} \right]^3 dx$$

$$= T \left[\frac{4}{1+x^2} \right]^3 dx$$

$$= T \left[\frac{4}{1+x^2} \right]^3 dx$$

$$= \frac{1}{100} \left[\frac{1}{100} - \frac{1}{100} \right]$$

$$A = \int_{-\infty}^{\infty} (\sin 2x - \cos x) dx$$

$$= \left[-\frac{\cos x}{2} - \sin x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x$$

$$= \left[-\frac{\cos x}{2} - \sin x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x$$

$$= \left[-\frac{\cos x}{2} - \sin x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x$$

$$= \left[-\frac{\cos x}{2} - \sin x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x$$

$$= \left[-\frac{\cos x}{2} - \sin x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x$$

$$= \left[-\frac{\cos x}{2} - \sin x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x$$

$$= \left[-\frac{\cos x}{2} - \sin x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x$$

$$= \left[-\frac{\cos x}{2} - \sin x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x$$

$$= \left[-\frac{\cos x}{2} - \sin x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x$$

$$= \left[-\frac{\cos x}{2} - \sin x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x$$

$$= \left[-\frac{\cos x}{2} - \sin x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x$$

$$= \left[-\frac{\cos x}{2} - \sin x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \sin x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \sin x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin x dx$$

$$= \left[-\frac{\cos x}{2} - \cos x \right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin$$

(1 loszx = 602x -562)e = (-silx)-bil LOSY = 1-363

> 6052(2x)= 1-2862x LONY = 1-25:22x.

$$= -\left(\frac{\sin \frac{\pi}{4}}{4} - \frac{\sin \frac{\pi}{4}}{4}\right)$$

6/ Cotrada

let u=silx

du: wsxdx

- lh (sinx) +CV

$$61 \cos 0 = 53500$$

$$1 = 53500$$

$$1 = 53500$$

$$1 = 53500$$

is = two 8A 0= 7.

1.0= nT+7 Were m 1) anj iteje

(c)
$$\int \frac{x^2 dx}{\sqrt{4-x^2}}$$
Let $x = 2\sin \theta$

$$dx = 2\cos \theta d\theta$$

$$= 2 \int \sin^2 \theta = 2 \int 1-\sin^2 \theta$$

$$= 2\cos \theta$$

$$= \int 4\sin^2 \theta = 1 - \cos \theta d\theta$$

$$= 2\sin^2 \theta = 1 - \cos^2 \theta$$

$$= 2 \left(1 - \cos^2 \theta\right)$$

$$= 2 \int (1 - \cos^2 \theta) d\theta$$

$$= 2 \int (1 - \cos^2 \theta)$$

$$Sin 20 = 25 in 0 cosp$$

$$Sin 0 = \frac{1}{2} \times \frac{$$

1) Let
$$y = 2 \cos^{3} \left(\frac{x}{3}\right)$$

1) Let $y = 2 \cos^{3} \left(\frac{x}{3}\right)$

1) Let $y = 2 \cos^{3} \left(\frac{x}{3}\right)$
 $x = 2 \cos^{3} \left(\frac{x}{3}\right)$

: A = (T1 + 6 - 353) west ~

-Imk for domain, range & all critical point
-Imk fir correct shape & shaded over.