uhuru dataset

2022 - 10 - 04

1. Describing the data that we are using

we are using the dataset from this study

2. reading the data table into ${\bf R}$

First make sure we are in the correct working directory "getwd()" "/Users/atziri/Bio 195-197/Data Science" if it is not right set the working directory with 'setwd()'

read.csv(file = "/Users/atziri/Bio 195-197/Data Science/raw-data/ACACIA_DREPANOLOBIUM_SURVEY.txt", sep

##		SURVEY	YEAR	SITE	BLOCK	TREATMENT	PLOT	ID	HEIGHT	AXIS1	AXIS2	CIRC
##	1	1	2012	SOUTH	1	TOTAL	S1TOTAL	581	2.25	2.75	2.15	20.0
##	2	1	2012	SOUTH	1	TOTAL	S1TOTAL	582	2.65	4.10	3.90	28.0
##	3	1	2012	SOUTH	1	TOTAL	S1TOTAL	3111	1.5	1.70	0.85	17.0
##	4	1	2012	SOUTH	1	TOTAL	S1TOTAL	3112	2.01	1.80	1.60	12.0
##	5	1	2012	SOUTH	1	TOTAL	S1TOTAL	3113	1.75	1.84	1.42	13.0
##	6	1	2012	SOUTH	1	TOTAL	S1TOTAL	3114	1.65	1.62	0.85	15.0
##	7	1	2012	SOUTH	1	TOTAL	S1TOTAL	3115	1.2	1.95	0.90	9.0
##	8	1	2012	SOUTH	1	TOTAL	S1TOTAL	3199	1.45	2.00	1.75	12.2
##	9	1	2012	SOUTH	1	MESO	S1MESO	941	1.87	2.15	1.82	13.0
##	10	1	2012	SOUTH	1	MESO	S1MESO	942	2.38	5.55	4.82	35.0
##	11	1	2012	SOUTH	1	MESO	S1MESO	943	2.58	4.90	4.24	24.0
##	12	1	2012	SOUTH	1	MESO	S1MESO	944	2.65	3.75	3.10	27.0
##	13	1	2012	SOUTH	1	MESO	S1MESO	946	2.35	2.34	2.05	20.0
##	14	1	2012	SOUTH	1	MESO	S1MESO	947	1.88	2.10	1.85	28.0
##	15	1	2012	SOUTH	1	MESO	S1MESO	3116	2.32	3.05	2.63	30.0
##	16	1	2012	SOUTH	1	MESO	S1MESO		2.39	2.21	2.10	13.0
##	17	1	2012	SOUTH	1	MESO	S1MESO	3118	2.2	1.80	1.50	10.0
##	18	1	2012	SOUTH	1	MESO	S1MESO	3119	1.05	0.90	0.55	8.0
##	19	_		SOUTH	1	MESO	S1MESO	3120	2	1.25	1.20	10.0
##	20	1	2012	SOUTH	1	MESO	S1MESO	3131	1.28	1.14	1.00	10.0
##	21			SOUTH	2	OPEN	S20PEN	341	dead	NA	NA	NA
##	22	1	2012	SOUTH	2	TOTAL	S2TOTAL	3178	1.4	2.50	2.15	18.0
##	23			SOUTH	2	_	S2TOTAL	101	1.9	3.31		15.0
##				SOUTH	2		S2TOTAL	102	1.75	2.70		16.0
##	25			SOUTH	2	_	S2TOTAL	103	1.8	2.75		16.0
##	26			SOUTH	2		S2TOTAL	104	2.7	4.05		35.2
##	27			SOUTH	2	_	S2TOTAL	105	2.02	2.85		17.0
##	28			SOUTH	2		S2T0TAL	108	1.9	3.10		19.0
	29			SOUTH	2	_	S2T0TAL	109	1.85	2.45		19.0
##	30	1	2012	SOUTH	2	TOTAL	S2TOTAL	110	1.65	1.90	1.54	17.0

## 3	31 1	2012	SOUTH	2	TOTAL.	S2T0TAL	111	1.4	2.35	1.45 14.0
## 3			SOUTH	2		S2TOTAL	113	2.5	3.25	2.30 22.0
## 3		2012	SOUTH	2		S2TOTAL		2.05	5.40	4.50 33.0
## 3			SOUTH	2		S2TOTAL		2.26	3.50	3.10 33.0
## 3			SOUTH	2		S2TOTAL	117	2.13	2.40	2.30 20.0
## 3			SOUTH	2		S2TOTAL	118	1.8	3.15	2.55 22.0
## 3			SOUTH	2		S2TOTAL		1.85	2.00	2.27 20.0
## 3			SOUTH	2		S2TOTAL		1.5	2.15	1.80 15.0
## 3			SOUTH	2		S2TOTAL		1.87	2.34	2.05 13.0
## 4			SOUTH	2		S2TOTAL		1.58	1.28	0.75 11.0
## 4			SOUTH	2		S2TOTAL		2.05	2.10	1.75 17.0
## 4			SOUTH	2		S2TOTAL		1.75	2.45	3.28 16.0
## 4			SOUTH	2		S2TOTAL		1.49	1.50	1.45 13.0
## 4			SOUTH	2		S2TOTAL		1.28	2.00	0.90 10.0
## 4			SOUTH	2		S2TOTAL		1.49	2.35	1.65 13.0
## 4			SOUTH	2		S2TOTAL		1.43	1.20	0.95 11.0
## 4			SOUTH	2		S2TOTAL		1.48	1.25	1.20 9.0
## 4			SOUTH	2		S2TOTAL		1.25	1.25	0.90 10.0
## 4			SOUTH	2		S2TOTAL		1.41	1.41	1.40 14.0
## 5			SOUTH	2		S2TOTAL		1.6	1.60	1.30 13.0
## 5			SOUTH	2		S2TOTAL		1.0	1.20	1.30 13.0
## 5			SOUTH	2	_	S2TOTAL				1.20 8.0
## 5			SOUTH	2		S2TOTAL		1.49	1.49	1.50 14.0
## 5			SOUTH	2		S2TOTAL		1.5	1.50	2.00 20.0
			SOUTH			S2TOTAL		1.65	1.65	
## 5			SOUTH	2				1.13	1.13	1.20 10.0
## 5				2		S2TOTAL		1.25	1.25	0.90 10.0
## 5			SOUTH	2		S2TOTAL		1.1	1.20	1.10 10.0
## 5			SOUTH	2		S2TOTAL		2.2	2.70	2.40 25.0
## 5			SOUTH	2		S2TOTAL		1.45	1.65	1.25 10.0
## 6			SOUTH	2		S2TOTAL		1.6	2.45	2.10 13.0
## 6			SOUTH	2		S2TOTAL		1.55	2.40	1.80 13.0
## 6			SOUTH SOUTH	2		S2TOTAL		1.5	2.40	2.15 13.0
## 6			SOUTH	2		S2TOTAL S2TOTAL		1.03	1.20	1.00 10.0
## 6				2	_	-		2.14	1.90	1.70 13.0
## 6			SOUTH	2		S2TOTAL		1.2	1.90	1.65 12.0
## 6			SOUTH SOUTH	2		S2TOTAL		1.05	1.10	1.00 9.0 2.40 15.0
## 6						S2TOTAL		1.8	2.60	
## 6			SOUTH	2		S2TOTAL		1.2	1.00	0.95 7.0
## 6			SOUTH	2		S2TOTAL		1.75	1.40	1.10 10.0
## 7			SOUTH	2		S2TOTAL		1.45	3.10	1.80 10.0
## 7			SOUTH	2		S2TOTAL		1.17	1.20	1.10 5.0
## 7			SOUTH	2		S2TOTAL		2.15	3.10	2.58 22.0
## 7			SOUTH	2		S2TOTAL		1.7	1.70	1.40 12.0
## 7			SOUTH	2		S2TOTAL		1.98	2.85	2.70 12.0
## 7			SOUTH	2		S2TOTAL		1.26	1.95	1.75 17.0
## 7			SOUTH	2		S2TOTAL		1.11	1.95	1.50 10.0
## 7			SOUTH SOUTH	2		S2TOTAL		1.14	1.32	1.05 10.0
## 7				2		S2TOTAL		1.26	1.60	1.40 10.0
## 7			SOUTH	2		S2TOTAL		1.3	1.40	0.80 10.0
## 8			SOUTH	2		S2TOTAL		1.29	1.44	1.35 13.0
## 8			SOUTH	2		S2TOTAL		1.31	1.35	1.15 7.0
## 8			SOUTH	2		S2TOTAL		1.15	1.70	1.28 10.0
## 8			SOUTH	2		S2TOTAL		1.87	3.40	1.85 15.0
## 8	54 1	2012	SOUTH	2	IUTAL	S2TOTAL	3152	1.47	2.10	1.61 8.0

##	85	1	2012	SOUTH	2	TOTAL.	S2TOTAL	3153	1.05	1.79	1.50 10.0
##				SOUTH	2	_	S2TOTAL		2.1	4.90	3.75 25.0
##				SOUTH	2		S2TOTAL		1.99	1.80	1.35 13.0
##				SOUTH	2		S2TOTAL		1.42	1.90	1.80 14.0
	89			SOUTH	2		S2TOTAL		1.5	2.11	1.75 12.0
	90			SOUTH	2		S2TOTAL		1.06	1.05	0.85 4.0
##				SOUTH	2		S2TOTAL		1.49	1.50	1.15 13.0
##				SOUTH	2		S2TOTAL				1.50 14.0
									1.8	1.60	
## ##				SOUTH	2		S2TOTAL		1.93	1.74	1.20 14.0 1.30 10.0
	~ -			SOUTH	2		S2TOTAL		1.2	1.60	
##				SOUTH	2		S2TOTAL		1.65	1.25	1.10 11.0
	96			SOUTH	2		S2TOTAL		1.52	1.49	1.10 12.0
##				SOUTH	2		S2TOTAL		1.43	2.05	1.54 13.0
##	98			SOUTH	2		S2TOTAL		1.25	1.40	1.25 13.0
	99			SOUTH	2		S2TOTAL		1.88	2.65	2.64 20.0
##	100			SOUTH	2		S2T0TAL		1.03	1.40	0.60 13.0
##	101			SOUTH	2		S2T0TAL		1.1	1.30	1.20 10.0
	102			SOUTH	2		S2T0TAL		1.4	1.05	1.00 10.0
	103			SOUTH	2	_	S2T0TAL		1.05	1.55	0.90 10.0
	104			SOUTH	2	_	S2TOTAL		1.18	1.20	1.00 7.0
##	105	1	2012	SOUTH	2	TOTAL	S2TOTAL	3194	1.4	1.30	1.85 13.0
##	106	1	2012	SOUTH	2	TOTAL	S2TOTAL	3195	1.37	2.67	2.19 19.0
##	107			SOUTH	2	TOTAL	S2TOTAL	3196	1.32	2.15	1.55 11.0
##	108			SOUTH	2	MEGA	S2MEGA	182	1.55	2.20	1.20 20.0
##	109	1	2012	SOUTH	2	MEGA	S2MEGA	183	1.3	1.80	0.90 8.0
##	110	1	2012	SOUTH	2	MEGA	S2MEGA	184	1.24	1.20	1.20 25.0
##	111	1	2012	SOUTH	2	MEGA	S2MEGA	185	1.5	2.10	1.75 16.0
##	112	1	2012	SOUTH	2	MEGA	S2MEGA	186	1.65	2.50	2.20 15.0
##	113	1	2012	SOUTH	2	MEGA	S2MEGA	187	2.17	2.00	1.20 15.0
##	114	1	2012	SOUTH	2	MEGA	S2MEGA	188	1.28	1.60	1.50 10.0
##	115	1	2012	SOUTH	2	MEGA	S2MEGA	189	1.07	1.50	1.50 10.0
##	116	1	2012	SOUTH	2	MEGA	S2MEGA	190	0.67	1.00	0.80 8.0
##	117	1	2012	SOUTH	2	MEGA	S2MEGA	191	0.68	0.70	0.60 4.0
##	118	1	2012	SOUTH	2	MEGA	S2MEGA	192	1.87	1.60	1.40 9.0
##	119	1	2012	SOUTH	2	MEGA	S2MEGA	193	1.35	1.90	1.50 14.0
##	120	1	2012	SOUTH	2	MEGA	S2MEGA	194	1.75	2.10	2.10 15.0
	121			SOUTH	2	MESO	S2MES0	462	1.75	3.30	2.50 23.0
##	122			SOUTH	2	MESO	S2MES0	463	1.64	2.30	2.00 14.0
	123			SOUTH	2	MESO	S2MES0			0.90	0.80 10.0
	124			SOUTH	3	OPEN			dead	NA	NA NA
	125			SOUTH	3	OPEN			0.9	1.30	1.10 11.0
	126			SOUTH	3		SSTOTAL		dead	NA	NA NA
	127			SOUTH	3		SSTOTAL		1.8	2.60	2.60 15.0
	128			SOUTH	3		SSTOTAL		2.47	3.10	2.20 18.0
	129			SOUTH	3		SSTOTAL		2.15	1.60	1.10 17.0
	130			SOUTH	3		SSTOTAL		1.7	2.50	2.15 15.0
	131			SOUTH	3		SSTOTAL		1.9	1.80	1.50 20.0
	132			SOUTH	3		SSTOTAL		1.95	2.10	1.90 13.0
	133			SOUTH	3		SSTOTAL		1.8	1.70	1.40 13.0
	134			SOUTH	3		SSTOTAL			2.00	1.60 14.0
				SOUTH	3		SSTOTAL		1.4		
	135				3				1 75	1.30	1.20 7.0
	136			SOUTH			SSTOTAL		1.75	1.20	1.10 13.0
	137			SOUTH	3		SSTOTAL		1.28	1.50	0.95 4.0
##	138	Τ	2012	SOUTH	3	IUIAL	S3TOTAL	2151	1	1.40	1.20 4.0

```
1 2012 SOUTH
                                     TOTAL S3TOTAL 2152
                                                           1.45 1.50 1.30 10.0
## 139
## 140
            1 2012 SOUTH
                              3
                                     TOTAL S3TOTAL 2153
                                                              1 1.00 0.75 8.0
            1 2012 SOUTH
                                                           1.03 1.00 0.90 6.0
## 141
                              3
                                     TOTAL S3TOTAL 2154
## 142
            1 2012 SOUTH
                                     TOTAL S3TOTAL 2155
                                                                2.00
                                                                       1.80 12.0
                              3
                                                           1.51
## 143
            1 2012 SOUTH
                              3
                                     TOTAL S3TOTAL 2156
                                                           1.17
                                                                 1.10
                                                                        0.90 10.0
## 144
            1 2012 SOUTH
                              3
                                     TOTAL S3TOTAL 2157
                                                           1.33 1.90
                                                                      1.85 14.0
## 145
            1 2012 SOUTH
                              3
                                     TOTAL S3TOTAL 2158
                                                            1.3 1.10
                                                                        0.85 8.0
            1 2012 SOUTH
                              3
                                     TOTAL S3TOTAL 2159
                                                                        0.90 10.0
## 146
                                                           1.13 1.10
## 147
            1 2012 SOUTH
                              3
                                     TOTAL S3TOTAL 2160
                                                           1.58 1.40
                                                                        1.40 13.0
## 148
            1 2012 SOUTH
                              3
                                     TOTAL S3TOTAL 2171
                                                           1.06 1.40
                                                                       1.00 5.0
## 149
            1 2012 SOUTH
                              3
                                     TOTAL S3TOTAL 2172
                                                           1.05 1.40
                                                                        0.95 7.0
            1 2012 SOUTH
                                     TOTAL S3TOTAL 2173
## 150
                               3
                                                           1.45
                                                                1.60
                                                                       1.10 6.0
            1 2012 SOUTH
                                     TOTAL S3TOTAL 2174
## 151
                              3
                                                           1.15
                                                                1.10
                                                                        0.90 5.0
## 152
            1 2012 SOUTH
                               3
                                     TOTAL S3TOTAL 2175
                                                           1.42 1.45
                                                                        1.30 13.0
## 153
            1 2012 SOUTH
                              3
                                     TOTAL S3TOTAL 2176
                                                           1.02 1.20
                                                                        1.00
                                                                             8.0
## 154
            1 2012 SOUTH
                              3
                                     TOTAL S3TOTAL 2177
                                                            1.4
                                                                 1.20
                                                                        1.00 9.0
## 155
            1 2012 SOUTH
                              3
                                     TOTAL S3TOTAL 2178
                                                           1.45
                                                                2.10
                                                                        2.05 15.0
## 156
            1 2012 SOUTH
                               3
                                      MESO S3MESO 1421
                                                           1.95 2.20
                                                                       1.60 13.0
## 157
            1 2012 SOUTH
                              3
                                      MESO S3MESO 1422
                                                                   NA
                                                           dead
                                                                          NA
                                                                               NA
##
       FLOWERS BUDS FRUITS
                              ANT
## 1
             0
                   Λ
                         10
                               CS
## 2
             0
                   0
                        150
                               TP
## 3
             2
                         50
                   1
                               TP
## 4
             0
                   0
                         75
                               CS
## 5
             0
                         20
                               CS
                   0
## 6
             0
                   0
                          0
                                Ε
## 7
             0
                   0
                          0
                               CS
## 8
                         25
                               CS
             0
                   0
## 9
             0
                   0
                          0
                               TP
## 10
             0
                   0
                         50
                               TP
## 11
             0
                   0
                          5
                               CS
## 12
             0
                   0
                         60
                               TP
## 13
             0
                   0
                         60
                               TP
## 14
             2
                   0
                         60
                               CS
## 15
             2
                   0
                          0
                               CS
## 16
             0
                   0
                          0
                               TP
## 17
             0
                   0
                          0
                               TP
## 18
             0
                   0
                          0
                               CS
## 19
             0
                   0
                          0
                               CM
                          0
## 20
             0
                   0
                               TP
## 21
                         NA
            NA
                  NA
## 22
             0
                   0
                          5
                               CS
## 23
             0
                   0
                         45
                               CS
## 24
            40
                         35
                               CS
                  50
## 25
             8
                   2
                         65
                               CS
                         20
                               ΤP
## 26
             0
                   0
## 27
             0
                   0
                         70
                               CS
## 28
             0
                        125
                   0
                               CM
## 29
             0
                   0
                        200
                               CM
## 30
             0
                   0
                         10
                               CS
## 31
             0
                   0
                          0
                               CS
## 32
                         35
             0
                   0
                               TP
## 33
             0
                   0
                        300
                               CM
## 34
             2
                   2
                        100
                               CS
```

##	35	0	0	30	CM
##	36	0	0	50	TP
##	37	0	0	10	CM
##	38	0	0	25	CS
##	39	0	0	15	TP
##	40	0	0	0	TP
##	41	0	0	15	TP
##	42	0	0	0	TP
##	43	0	0	40	TP
##	44	0	0	0	TP
##	45	0	0	15	CM
##	46	0	0	0	CM
##	47	0	0	0	TP
## ##	48 49	0	0 0	0	TP TP
##	50	0	0	20	TP
##	51	0	0	20	TP
##	52	0	0	0	TP
##	53	0	0	20	TP
##	54	0	0	0	TP
##	55	0	0	0	CN
##	56	0	0	0	CN
##	57	0	0	0	TP
##	58	0	0	5	TP
##	59	0	0	0	TP
##	60	0	0	25	TP
##	61	0	0	25	TP
##	62	0	0	20	TP
##	63	0	0	0	TP
##	64	0	0	10	CS
##	65	1	0	25	CS
##	66	0	0	0	TP
##	67	0	0	10	TP
##	68	0	0	0	TP
##	69	0	0	0	TP
##	70	0	0	0	TP
##	71	0	0	0	TP
##	72	0	0	0	CS
##	73	0	0	0	CS
##	74	0	0	25	AB_TP
##	75 76	0	0	0	TP
##	76 77	0	0	0	TP
##	77 78	0	0 0	0	TP
## ##	79	0	0	0	CS CS
##	80	0	0	0	CS
##	81	0	0	0	CS
##	82	0	0	5	CS
##	83	6	0	0	CS
##	84	0	0	0	CS
##	85	0	0	1	CS
##	86	0	0	25	CS
##	87	0	0	0	CS
##	88	0	0	0	CS

## 89	0	0	10	CS
## 90	0	0	0	CS
## 91	0	0	35	CS
## 92	0	0	0	CS
## 93	0	0	0	CS
## 94	0	0	0	CS
## 95	0	0	0	CS
## 96	0	0	20	CS
## 97	0	0	0	CS
## 98	0	0	0	CM
## 99	0	0	100	CM
## 100	0	0	0	CS
## 100 ## 101	0	0	0	CS
## 102	0	0	0	CS
## 103	0	0	0	CM
## 104	0	0	0	TP
## 105	0	0	30	CS
## 106	0	0	50	TP
## 107	0	0	10	CS
## 108	0	0	0	CS
## 109	0	0	15	CS
## 110	0	0	10	CS
## 111	5	0	200	CS
## 112	0	0	80	CS
## 113	0	0	150	TP
## 114	0	0	40	TP
## 115	0	0	60	TP
## 116	0	0	0	CS
## 117	0	0	0	TP
## 118	0	0	40	CS
## 119	0	0	20	CS
## 120	0	0	75	TP
## 121	0	0	20	CM
## 122	0	0	0	TP
## 123	0	0	0	Е
## 124	NA	NA	NA	
## 125	0	0	0	TP
## 126	NA	NA	NA	
## 127	0	0	50	TP
## 128	0	0	0	TP
## 129	0	0	0	TP
## 130	0	0	2	TP
## 131	0	0	25	TP
## 131	0	0	0	TP
## 133	0	0	0	TP
## 133 ## 134	0	0	0	TP
## 135 ## 136	0	0	0	TP
## 136	0	0	0	TP
## 137	0	0	0	TP
## 138	0	0	0	TP
## 139	0	0	0	TP
## 140	0	0	0	TP
## 141	0	0	0	TP
## 142	0	0	0	TP

```
## 143
                                TP
                   0
## 144
              0
                   0
                           0
                                TP
## 145
                   0
                                TP
## 146
                   0
                           0
                                TP
              0
## 147
              0
                   0
                           0
                                TP
## 148
             0
                   0
                           8
                                TP
## 149
                   0
                           0
                                TP
                   0
                           0
                                TP
## 150
             0
## 151
             0
                   0
                           0
                                TP
## 152
             0
                   0
                           0
                                TP
## 153
                   0
                           0
                                TP
                   0
                           0
                                TP
## 154
             0
## 155
             0
                   0
                          20
                                TP
## 156
              0
                   0
                           2
                                CS
## 157
            NA
                          NA
                  NA
```

acacia <-read.csv(file = "/Users/atziri/Bio 195-197/Data Science/raw-data/ACACIA_DREPANOLOBIUM_SURVEY.tx

3. explore our data set

'head()' gives us the first six rows

head(acacia)

```
SURVEY YEAR SITE BLOCK TREATMENT
                                         PLOT
                                                ID HEIGHT AXIS1 AXIS2 CIRC
## 1
         1 2012 SOUTH
                                TOTAL S1TOTAL 581
                                                     2.25 2.75 2.15
## 2
         1 2012 SOUTH
                                TOTAL S1TOTAL 582
                                                     2.65 4.10 3.90
                                                                        28
                          1
## 3
         1 2012 SOUTH
                                TOTAL S1TOTAL 3111
                                                      1.5 1.70 0.85
                          1
## 4
         1 2012 SOUTH
                                TOTAL S1TOTAL 3112
                                                     2.01 1.80 1.60
                                                                        12
                          1
                                TOTAL S1TOTAL 3113
         1 2012 SOUTH
                          1
                                                     1.75 1.84 1.42
                                TOTAL S1TOTAL 3114
         1 2012 SOUTH
                                                     1.65 1.62 0.85
                                                                        15
                          1
    FLOWERS BUDS FRUITS ANT
## 1
                     10 CS
          0
               0
## 2
                    150
                         ΤP
## 3
          2
                     50
                         TP
               1
## 4
          0
               0
                     75 CS
## 5
          0
                     20 CS
               0
## 6
                      0
```

summary(acacia)

##	SURVEY	YEAR	SITE	BL	OCK
##	Min. :1	Min. :2012	Length: 157	Min.	:1.000
##	1st Qu.:1	1st Qu.:2012	Class : character	1st Qu	.:2.000
##	Median :1	Median :2012	Mode :character	Median	:2.000
##	Mean :1	Mean :2012		Mean	:2.089
##	3rd Qu.:1	3rd Qu.:2012		3rd Qu	.:2.000
##	Max. :1	Max. :2012		Max.	:3.000
##					
##	TREATMENT	PLO	T	ID	HEIGHT
##	Length:157	Length:	157 Min.	: 101	Length:157

```
Class :character
                       Class :character
                                           1st Qu.:1062
                                                          Class : character
                                           Median:1301
##
   Mode :character
                       Mode :character
                                                          Mode :character
##
                                           Mean
                                                 :1743
##
                                           3rd Qu.:3118
##
                                           Max.
                                                  :3199
##
                                          CIRC
                                                        FLOWERS
##
        AXIS1
                        AXIS2
##
   Min.
           :0.700
                    Min. :0.550
                                    Min.
                                           : 4.00
                                                     Min.
                                                            : 0.0000
##
   1st Qu.:1.400
                    1st Qu.:1.100
                                    1st Qu.:10.00
                                                     1st Qu.: 0.0000
##
   Median :1.800
                    Median :1.490
                                    Median :13.00
                                                     Median : 0.0000
##
   Mean
          :1.972
                          :1.636
                                    Mean
                                           :13.76
                                                     Mean
                                                            : 0.4444
                    Mean
##
   3rd Qu.:2.350
                    3rd Qu.:2.000
                                     3rd Qu.:16.00
                                                     3rd Qu.: 0.0000
##
          :5.550
                           :4.820
                                            :35.20
                                                            :40.0000
   Max.
                    Max.
                                    Max.
                                                     Max.
##
   NA's
           :4
                    NA's
                           :4
                                     NA's
                                            :4
                                                     NA's
                                                            :4
         BUDS
                          FRUITS
                                            ANT
##
##
   Min.
          : 0.0000
                      Min. : 0.00
                                       Length: 157
   1st Qu.: 0.0000
                      1st Qu.: 0.00
##
                                       Class : character
   Median : 0.0000
                      Median: 0.00
                                       Mode :character
                            : 20.03
          : 0.3595
##
   Mean
                      Mean
##
   3rd Qu.: 0.0000
                      3rd Qu.: 25.00
##
   Max.
           :50.0000
                      Max.
                             :300.00
   NA's
                      NA's
                             :4
```

colnames(acacia)

```
## [1] "SURVEY" "YEAR" "SITE" "BLOCK" "TREATMENT" "PLOT"
## [7] "ID" "HEIGHT" "AXIS1" "AXIS2" "CIRC" "FLOWERS"
## [13] "BUDS" "FRUITS" "ANT"
```

make sure that everything htat should be a numeric value is a number one way to check is the 'summary()' command

another way is using the type function

```
typeof(acacia [,"HEIGHT"])
```

[1] "character"

acacia\$HEIGHT

```
[1] "2.25" "2.65" "1.5" "2.01" "1.75" "1.65" "1.2" "1.45" "1.87" "2.38"
    [11] "2.58" "2.65" "2.35" "1.88" "2.32" "2.39" "2.2" "1.05" "2"
##
    [21] "dead" "1.4" "1.9" "1.75" "1.8" "2.7" "2.02" "1.9"
##
                                                               "1.85" "1.65"
    [31] "1.4" "2.5" "2.05" "2.26" "2.13" "1.8" "1.85" "1.5" "1.87" "1.58"
##
   [41] "2.05" "1.75" "1.49" "1.28" "1.49" "1.07" "1.48" "1.25" "1.41" "1.6"
   [51] "1.2" "1.49" "1.5" "1.65" "1.13" "1.25" "1.1"
                                                        "2.2"
                                                               "1.45" "1.6"
##
   [61] "1.55" "1.5" "1.03" "2.14" "1.2" "1.05" "1.8" "1.2" "1.75" "1.45"
##
   [71] "1.17" "2.15" "1.7" "1.98" "1.26" "1.11" "1.14" "1.26" "1.3" "1.29"
##
   [81] "1.31" "1.15" "1.87" "1.47" "1.05" "2.1" "1.99" "1.42" "1.5" "1.06"
##
   [91] "1.49" "1.8" "1.93" "1.2" "1.65" "1.52" "1.43" "1.25" "1.88" "1.03"
##
## [101] "1.1" "1.4" "1.05" "1.18" "1.4" "1.37" "1.32" "1.55" "1.3" "1.24"
## [111] "1.5" "1.65" "2.17" "1.28" "1.07" "0.67" "0.68" "1.87" "1.35" "1.75"
```

```
## [121] "1.75" "1.64" "1.42" "dead" "0.9" "dead" "1.8" "2.47" "2.15" "1.7" ## [131] "1.9" "1.95" "1.8" "1.4" "1" "1.75" "1.28" "1" "1.45" "1" ## [141] "1.03" "1.51" "1.17" "1.33" "1.3" "1.13" "1.58" "1.06" "1.05" "1.45" ## [151] "1.15" "1.42" "1.02" "1.4" "1.45" "1.95" "dead"
```

we identifyed a column that has problematic data we need to fix this

We are going to read the data table again, but we are going to assign 'NA' to the "dead value" that we dont want in our arguments are always plain text

acacia <- read.csv(file = "/Users/atziri/Bio 195-197/Data Science/raw-data/ACACIA_DREPANOLOBIUM_SURVEY.

4. Visualize our data

For this we are using the 'ggplot' package. lets install and load it

```
# install.packages("ggplot2")
library(ggplot2)
```

Now We are going to create our first plotting layer with the function 'ggplot.

```
colnames(acacia)
   [1] "SURVEY"
                   "YEAR"
                               "SITE"
                                           "BLOCK"
                                                       "TREATMENT" "PLOT"
                                                       "CIRC"
                   "HEIGHT"
##
  [7] "ID"
                               "AXIS1"
                                           "AXIS2"
                                                                   "FLOWERS"
## [13] "BUDS"
                   "FRUITS"
                               "ANT"
acacia$CIRC
    [1] 20.0 28.0 17.0 12.0 13.0 15.0 9.0 12.2 13.0 35.0 24.0 27.0 20.0 28.0 30.0
                                  NA 18.0 15.0 16.0 16.0 35.2 17.0 19.0 19.0 17.0
   [16] 13.0 10.0 8.0 10.0 10.0
##
   [31] 14.0 22.0 33.0 33.0 20.0 22.0 20.0 15.0 13.0 11.0 17.0 16.0 13.0 10.0 13.0
   [46] 11.0 9.0 10.0 14.0 13.0 14.0 8.0 14.0 20.0 10.0 10.0 10.0 25.0 10.0 13.0
  [61] 13.0 13.0 10.0 13.0 12.0 9.0 15.0 7.0 10.0 10.0 5.0 22.0 12.0 12.0 17.0
   [76] 10.0 10.0 10.0 10.0 13.0 7.0 10.0 15.0 8.0 10.0 25.0 13.0 14.0 12.0 4.0
   [91] 13.0 14.0 14.0 10.0 11.0 12.0 13.0 13.0 20.0 13.0 10.0 10.0 10.0 7.0 13.0
## [106] 19.0 11.0 20.0 8.0 25.0 16.0 15.0 15.0 10.0 10.0 8.0 4.0 9.0 14.0 15.0
## [121] 23.0 14.0 10.0
                        NA 11.0
                                   NA 15.0 18.0 17.0 15.0 20.0 13.0 13.0 14.0 7.0
## [136] 13.0 4.0 4.0 10.0 8.0 6.0 12.0 10.0 14.0 8.0 10.0 13.0 5.0 7.0 6.0
## [151] 5.0 13.0 8.0 9.0 15.0 13.0
ggplot(data = acacia, mapping = aes(x = CIRC, y = HEIGHT)) + geom_point()
```

Warning: Removed 4 rows containing missing values (geom_point).

