Алгоритмы и модели вычислений. Задание 8: линейное программирование

Сергей Володин, 272 гр. задано 2014.03.27

(каноническое) Задача 32

(каноническое) Задача 33

(каноническое) Задача 34

(каноническое) Задача 35

(каноническое) Задача 36

(Тарасов, лекция 2014.04.01)

Фиксируем $k \in \mathbb{N}$, $\{t_i\}_{i=1}^k \subset \mathbb{R}$. Определим $\vec{r} \colon \mathbb{R} \to \mathbb{R}^4 : \vec{r}(t) \stackrel{\text{def}}{=} \|t^4 - t^3 - t^2 - t\|^T$. Рассмотрим точки $\vec{x}_i = \vec{r}(t_i)$. Рассмотрим $G \stackrel{\text{def}}{=} \text{conv}(\{\vec{x}_i\}_{i=1}^k)$ — выпуклую оболочку этих точек. Фиксируем $i_1 \neq i_2 \in \overline{1,k}$. Докажем, что $\vec{x}_{i_1},\vec{x}_{i_2}$ — вершины G, соединенные ребром $\stackrel{\text{def}}{\Leftrightarrow} \exists$ гиперплоскость $\pi \colon (\vec{x}_{i_1},\vec{x}_{i_2} \in \pi)$ и (многогранник G лежит по одну сторону от π).

- 1. Определим многочлен $P(t)\stackrel{\mbox{\tiny def}}{=} (t-t_{i_1})^2\cdot (t-t_{i_2})^2 \equiv t^4+a_3t^3+a_2t^2+a_1t+a_0$
- 2. Определим гиперплоскость π . $\mathbb{R}^4 \ni \vec{x} \equiv \begin{vmatrix} x_1 & x_2 & x_3 & x_4 \end{vmatrix}^T \in \pi \Leftrightarrow F(\vec{x}) \equiv x_1 + a_3x_2 + a_2x_3 + a_1x_4 + a_0 = 0$.
- 3. Тогда $F(\vec{r}(t)) = P(t)$: $F(\vec{r}(t)) = F(t^4, t^3, t^2, t) = t^4 + a_3 t^3 + a_2 t^2 + a_1 t + a_0$
- 4. t_{i_1} и t_{i_2} корни P(t), откуда $P(t_{i_1})=P(t_{i_2})=0$, значит, $F(\vec{x}_{i_1})=F(\vec{x}_{i_2})=0$, значит, $\vec{x}_{i_1},\vec{x}_{i_2}\in\pi$
- 5. Фиксируем $t \in \mathbb{R}$. Тогда $F(\vec{r}(t)) = P(t) \geqslant 0$

(каноническое) Задача 37