

LINEAR OPTIMIZATION PROBLEMS

Definition

An optimization problem (\mathcal{X}, f) is called *linear* (a *linear optimization problem*) if $\mathcal{X} \subset \mathbf{R}^n$ is a polyhedron and $f : \mathbf{R}^n \to \bar{\mathbf{R}}$ is a linear function.

Problem data

Recall that f is linear means there exists $c \in \mathbb{R}^n$ such that

$$f(x) = c^{\top} x$$
 for all $x \in \mathbf{R}^n$

Also, \mathcal{X} polyhedral means there exists $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^d$ such that

$$\mathcal{X} = \{ x \in \mathbf{R}^n \mid Ax \le b \}$$

For this reason, the *problem data* (A, b, c) is sufficient to specify a linear optimization problem. Recall that $Ax \leq b$ means element-wise inequality (i.e., that the inequality holds in each component).

Task

Given data $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^n$, $c \in \mathbf{R}^n$, we want to find $x \in \mathbf{R}^d$ to

$$\begin{aligned} & \text{minimize} & & c^\top x \\ & \text{subject to} & & Ax \leq b \end{aligned}$$

We either want $x^* \in \mathbf{R}^n$ so that $Ax^* \leq b$ and $c^\top x^* \leq c^\top x$ for all $x \in \mathbf{R}^n$, or we want to know that $\{x \mid Ax \leq b\} = \varnothing$, or we want to know that for all $\alpha \in \mathbf{R}$, there is an $x \in \mathbf{R}^n$ satisfying $Ax \leq b$ and $c^\top x \leq \alpha$. This problem is regularly called *linear programming* (a *linear program*). Many authors define this problem with the goal as maximization: of course, minimizing $c^\top x$ is equivalent to (has the same set of optimal solutions) maximizing $-c^\top x$.

Notation

In the context of linear optimization, $c^{\top}x$ is often abbreviated cx. As usual, $x \in \mathbb{R}^n$ is called *feasible* (a *feasible solution*) if $Ax \leq b$. $x^* \in \mathbb{R}^n$

is called *optimal* (an *optimal solution*, *optimum solution*) if $c^{\top}x^{\star} \leq c^{\top}x$ for all $x \in \mathbf{R}^n$. We sometimes denote the rows of a by $\bar{a}_i^{\top} \in \mathbf{R}^n$ for $i = 1, \ldots, m$, i.e.,

$$A = \begin{bmatrix} - & \bar{a}_1^\top & - \\ & \vdots \\ - & \bar{a}_m^\top & - \end{bmatrix} \in \mathbf{R}^{m \times n}$$

and refer to the inequality $\bar{a}_i^{\top} x \leq b_i$ as an inequality constraint for i = 1, ..., m. The set or the expression $Ax \leq b$ are both sometimes called the inequality constraints of the problem. For this reason, we can say in English that linear optimization deals with maximizing or minimizing a linear objective function of finitely many variables subject to finitely many linear inequalities.

The problem (A, b, c) is *infeasible* if the polyhedron

$$P = \{ x \in \mathbf{R}^n \mid Ax \le b \}$$

is empty. In symbols, if $P = \emptyset$. The problem is unbounded if for all $\alpha \in \mathbf{R}$, there exists $x \in P$ with $c^{\top}x < \alpha$.

Here's an infeasible instance. Define

$$A = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \quad b = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \quad c = \begin{bmatrix} 1 \end{bmatrix}$$

We want $x \in \mathbf{R}^1$ so that $x \leq -1$ and $x \geq 1$. There is no such x.

Here's an unbounded instance: drop the second inequality constraint. Then we are interested in finding x_1 to minimize x_1 subject to $x_1 \leq -1$. Given $\alpha \in \mathbf{R}$, if $\alpha > 0$ pick $x_1 = -1$, else pick 2α . This problem is unbounded.

Here's a simple example with an optimal solution. Modify $b = \begin{bmatrix} 1 & 0 \end{bmatrix}^{\top}$. Now we want to find x_1 so that

$$x_1 \le 1$$
 and $x_1 \ge 0$

and we minimize x_1 Clearly $x_1 = 0$ is an optimal solution. Indeed, it is the unique optimal solution in this case.

