Kysyntäohjautuvan joukkoliikenteen matemaattisia malleja ja algoritmeja

Lauri Häme

Aalto-yliopiston perustieteiden korkeakoulu

27. huhtikuuta 2013

Johdanto

- Kysyntäohjautuva joukkoliikenne = bussi- ja taksipalvelujen välimuoto, joka perustuu ajoneuvojen joustavaan reititykseen
- Väitöskirjan tärkeimpiä tuloksia ovat älykkäät reitinlaskentamenetelmät
- Menetelmiä voidaan joukkoliikenteen lisäksi hyödyntää esim. rahti- ja lentoliikenteessä, lähetti- ja ruoankuljetuspalveluissa sekä sotilaslogistiikassa

Kysyntä & tarjonta

- Ajoneuvojen reitinlaskenta, ohjauslogiikka
 - Esim. Kutsuplus
- Matkustajien matkansuunnitteluongelma
 - Esim. Reittiopas
- Taloudellinen tasapaino

Kauppamatkustajan ongelma

- Tunnetuin reitinlaskentaongelma on ns. kauppamatkustajan ongelma (Traveling Salesman Problem, TSP)
 - Joukko maantieteellisiä pisteitä, joiden väliset etäisyydet tunnetaan
 - Tavoitteena on löytää lyhin reitti joka kulkee kaikkien pisteiden kautta
 - Laskennallisesti haastava ongelma

Kauppamatkustajan ongelma, esimerkki

Kauppamatkustajan ongelma, esimerkki

Reitinlaskenta kuljetuspalveluissa

- Käytännössä, esim. kuljetuspalveluissa, reitinlaskentaongelma on usein monimutkaisempi
- Rajoituksia
 - Kapasiteetti Ajoneuvoihin mahtuu vain tietty määrä tavaraa/ matkustajia kerrallaan
 - ▶ Aika Kuljetus ei saa kestää liian kauan
 - Edeltävyys Esim. noutopisteessä pitää käydä ennen toimituspistettä
- ► Tavoitefunktio: Lyhin reitti ei välttämättä ole paras
- Ajoneuvoja eli laskettavia reittejä voi olla useita

Reitinlaskenta kysyntäohjautuvassa joukkoliikenteessä

- Kysyntäohjautuva joukkoliikenne perustuu pienten tai keskisuurten ajoneuvojen (esim. minibussien) joustavaan reititykseen
- Asiakkaat voivat tilata matkoja reaaliaikaisesti esim. internet-käyttöliittymällä
- Ajoneuvojen reitit muodostuvat tilattujen matkojen perusteella
- Kunkin matkatilauksen yhteydessä ratkaistaan reitinlaskentaongelma

Aikaikkunat

- Matka-aika voi pidentyä yllättäen reittimuutosten johdosta
- Palvelutasosta voidaan huolehtia ns. aikaikkunoilla
 - Esim. lähtö aikaisintaan klo 12:00, perillä viimeistään klo 13:00.
 - Aikaikkunat voivat olla osittain asiakkaan ja osittain järjestelmän määrittämiä
- Aikaikkunoita käytetään reitinlaskennassa, jotta tietty minimipalvelutaso toteutuisi
- Liian tiukat aikaikkunat vähentävät reitin joustavuutta

Ajoneuvon ja reitin valintaongelma

- Usean ajoneuvon tapauksessa jokaiselle uudelle asiakkaalle valitaan ajoneuvo ja valitulle ajoneuvolle määrätään uusi reitti
- Ajoneuvon ja reitin valinnassa pitää ottaa huomioon mm.
 - Uuden asiakkaan aiheuttama reitin pitenemä
 - Uuden asiakkaan palvelutaso ja muille asiakkaille aiheutuva palvelutason muutos
 - Kysyntäennuste
- ► Yleisesti jos minimoidaan reitin pituutta, palvelutaso saattaa kärsiä ja jos optimoidaan ainoastaan palvelutasoa, kustannukset kasvavat

Hajautettu ratkaisu

- Yritetään lisätä uusi asiakas johonkin olemassaolevista reiteistä
- Lasketaan jokaiselle ajoneuvolle uusi reittiehdotus ja valitaan niistä paras/parhaat
- Ajoneuvojen reittiehdotukset lasketaan erikseen

Kaksi ajoneuvoa, joista toinen odottaa tyhjänä

- ► Kaksi ajoneuvoa, joista toinen odottaa tyhjänä
- ▶ Uusi asiakas tilaa matkan (u^+, u^-)

- Kaksi ajoneuvoa, joista toinen odottaa tyhjänä
- ▶ Uusi asiakas tilaa matkan (u^+, u^-)
- ► Ehdotus 1: reitin pitenemä minimoituu, palvelutaso kärsii

- Kaksi ajoneuvoa, joista toinen odottaa tyhjänä
- ▶ Uusi asiakas tilaa matkan (u^+, u^-)
- ► Ehdotus 1: reitin pitenemä minimoituu, palvelutaso kärsii
- Ehdotus 2: palvelutaso on paras mahdollinen, reitin pituus kasvaa enemmän

- ► Yksinkertainen ratkaisu reittiehdotusten laskemiselle on lisätä uuden asiakkaan nouto- ja toimituspiste sopivaan väliin
- Ei-täydellinen ratkaisu: olemassaolevien pisteiden järjestys säilyy

Ajoneuvo

- ► Yksinkertainen ratkaisu reittiehdotusten laskemiselle on lisätä uuden asiakkaan nouto- ja toimituspiste sopivaan väliin
- Ei-täydellinen ratkaisu: olemassaolevien pisteiden järjestys säilyy

- ► Yksinkertainen ratkaisu reittiehdotusten laskemiselle on lisätä uuden asiakkaan nouto- ja toimituspiste sopivaan väliin
- Ei-täydellinen ratkaisu: olemassaolevien pisteiden järjestys säilyy

- ► Yksinkertainen ratkaisu reittiehdotusten laskemiselle on lisätä uuden asiakkaan nouto- ja toimituspiste sopivaan väliin
- Ei-täydellinen ratkaisu: olemassaolevien pisteiden järjestys säilyy

- ► Yksinkertainen ratkaisu reittiehdotusten laskemiselle on lisätä uuden asiakkaan nouto- ja toimituspiste sopivaan väliin
- Ei-täydellinen ratkaisu: olemassaolevien pisteiden järjestys säilyy

- ► Yksinkertainen ratkaisu reittiehdotusten laskemiselle on lisätä uuden asiakkaan nouto- ja toimituspiste sopivaan väliin
- Ei-täydellinen ratkaisu: olemassaolevien pisteiden järjestys säilyy

- ► Yksinkertainen ratkaisu reittiehdotusten laskemiselle on lisätä uuden asiakkaan nouto- ja toimituspiste sopivaan väliin
- Ei-täydellinen ratkaisu: olemassaolevien pisteiden järjestys säilyy

- ► Yksinkertainen ratkaisu reittiehdotusten laskemiselle on lisätä uuden asiakkaan nouto- ja toimituspiste sopivaan väliin
- Ei-täydellinen ratkaisu: olemassaolevien pisteiden järjestys säilyy

► Rakennetaan lisäysperiaatteella rinnakkain useampi vaihoehtoinen reitti ja valitaan niistä paras

,

Ajoneuvo

Aioneuvo

► Rakennetaan lisäysperiaatteella rinnakkain useampi vaihoehtoinen reitti ja valitaan niistä paras

 Rakennetaan lisäysperiaatteella rinnakkain useampi vaihoehtoinen reitti ja valitaan niistä paras

 Rakennetaan lisäysperiaatteella rinnakkain useampi vaihoehtoinen reitti ja valitaan niistä paras

► Rakennetaan lisäysperiaatteella rinnakkain useampi vaihoehtoinen reitti ja valitaan niistä paras

 Rakennetaan lisäysperiaatteella rinnakkain useampi vaihoehtoinen reitti ja valitaan niistä paras

► Rakennetaan lisäysperiaatteella rinnakkain useampi vaihoehtoinen reitti ja valitaan niistä paras

Laajennettu lisäysalgoritmi (Adaptive insertion algorithm)

 Rakennetaan lisäysperiaatteella rinnakkain useampi vaihoehtoinen reitti ja valitaan niistä paras

Täydellinen lisäysalgoritmi (Exact insertion algorithm)

Rakennetaan lisäysperiaatteella rinnakkain kaikki mahdolliset reitit (enintään $\frac{(2n)!}{2n}$ kpl)

$$1^+, 1^ 1^+, 1^-, 2^+, 2^ 1^+, 2^+, 1^-, 2^ 1^+, 2^+, 2^-, 1^ 2^+, 1^+, 1^-, 2^ 2^+, 1^+, 2^-, 1^ 2^+, 2^-, 1^+, 1^-$$

$$1^+,1^-,2^+,2^-,3^+,3^-\\1^+,1^-,2^+,3^+,2^-,3^-\\1^+,1^-,3^+,2^+,2^-,3^-\\1^+,3^+,1^-,2^+,2^-,3^-\\3^+,1^+,1^-,2^+,3^+,3^-,2^-\\1^+,1^-,3^+,2^+,3^-,2^-\\1^+,3^+,1^-,2^+,3^-,2^-\\1^+,1^-,3^+,3^-,2^-\\1^+,1^-,3^+,3^-,2^+,2^-\\1^+,1^-,3^+,3^-,2^+,2^-\\1^+,3^+,1^-,3^-,2^+,2^-\\1^+,3^+,1^-,3^-,2^+,2^-\\1^+,3^+,1^-,3^-,2^+,2^-\\3^+,1^+,1^-,3^-,2^+,2^-\\2^-$$

Lisäysalgoritmi, tuloksia

- Tiukkojen aika- tai kapasiteettirajoitusten vallitessa kaikkien mahdollisten reittien lukumäärä pysyy kohtuullisena ja täydellinen algoritmi tuottaa nopeasti optimaalisen ratkaisun
- Jos rajoitukset eivät ole tiukkoja, saadaan tehokas ratkaisu rajoittamalla rinnakkaisten reittien lukumäärää

lacktriangle Yksinkertainen lisäysalgoritmi on täydellinen, kun n < 3

Keskitetty ratkaisu

- ► Uuden matkatilauksen saapuessa etsitään parasta mahdollista asiakkaiden, ajoneuvojen ja reittien yhdistelmää
- ► Toistaiseksi noutamattomien asiakkaiden ajoneuvo voi vaihtua
- Periaate sisältää hajautetut ratkaisut

- ► Perusidea: Pyritään palvelemaan mahdollisimman suuri asiakasjoukko (klusteri) aikarajojen sisällä kullakin ajoneuvolla
- Uuden matkatilauksen saapuessa klusterit lasketaan uudelleen

- Perusidea: Pyritään palvelemaan mahdollisimman suuri asiakasjoukko (klusteri) aikarajojen sisällä kullakin ajoneuvolla
- Uuden matkatilauksen saapuessa klusterit lasketaan uudelleen

- ► Perusidea: Pyritään palvelemaan mahdollisimman suuri asiakasjoukko (klusteri) aikarajojen sisällä kullakin ajoneuvolla
- Uuden matkatilauksen saapuessa klusterit lasketaan uudelleen

- ► Perusidea: Pyritään palvelemaan mahdollisimman suuri asiakasjoukko (klusteri) aikarajojen sisällä kullakin ajoneuvolla
- Uuden matkatilauksen saapuessa klusterit lasketaan uudelleen

Arvojärjestysalgoritmi (Ranking algorithm)

- Maksimiklusterit voidaan määrittää tehokkaasti järjestämällä nouto- ja toimituspisteet arvojärjestykseen
- Suurimman arvon saavat pisteet, joista on mahdollista siirtyä mahdollisimman moneen arvokkaaseen pisteeseen aikarajojen sisällä
- Arvojärjestys saadaan laskemalla suurinta ominaisarvoa vastaava ominaisvektori (ks. HITS-hakualgoritmi)

Arvojärjestysalgoritmi (Ranking algorithm)

- Maksimiklusterit voidaan määrittää tehokkaasti järjestämällä nouto- ja toimituspisteet arvojärjestykseen
- Suurimman arvon saavat pisteet, joista on mahdollista siirtyä mahdollisimman moneen arvokkaaseen pisteeseen aikarajojen sisällä
- Arvojärjestys saadaan laskemalla suurinta ominaisarvoa vastaava ominaisvektori (ks. HITS-hakualgoritmi)

Arvojärjestysalgoritmi (Ranking algorithm)

- Maksimiklusterit voidaan määrittää tehokkaasti järjestämällä nouto- ja toimituspisteet arvojärjestykseen
- Suurimman arvon saavat pisteet, joista on mahdollista siirtyä mahdollisimman moneen arvokkaaseen pisteeseen aikarajojen sisällä
- Arvojärjestys saadaan laskemalla suurinta ominaisarvoa vastaava ominaisvektori (ks. HITS-hakualgoritmi)

Arvojärjestysalgoritmi, tuloksia

- Arvojärjestysalgoritmi tuottaa tehokkaasti käypiä ratkaisuja tiukkojen rajoitusten vallitessa
- ► Kertaluokkaa nopeampi aikaisempiin menetelmiin verrattuna

Matkansuunnittelu

- Matkansuunnittelu (Journey planning) = joukkoliikennevälineen ja reitin valinta
- ► Tarkoituksena on löytää matkustajalle paras reitti ja aikataulu lähtöpisteestä määränpäähän, esim.
 - ▶ 16:27: kävely pysäkille A,
 - 16:39: bussi numero 58 pysäkiltä A pysäkille B
 - ▶ 16:53: kävely pysäkiltä B määränpäähän, perillä klo 17:11

Stokastinen malli

- Olemassaolevilla menetelmillä voidaan laskea etukäteen paras reitti esim. matka-ajan, odotusajan, kävelymatkan tai vaihtojen lukumäärän suhteen
- Todellisuudessa paras reitti ei välttämättä toteudu esim. myöhästymisien tai vuorojen peruutuksien takia
- Stokastinen malli ottaa huomioon mahdolliset reittimuutokset matkan varrella
- Mallin avulla voidaan laskea paras matkastrategia eri tavoitteiden suhteen