પ્રશ્ન 1(અ) [3 માર્ક્સ]

CE રૂપરેખાંકન માટે એમ્પ્લીફાયર પરિમાણો Ai, Ri અને Ro સમજાવો.

જવાબ:

કોમન એમિટર (CE) રૂપરેખાંકનમાં, મુખ્ય પરિમાણો છે:

આકૃતિ:

- કરંટ ગેઇન (Ai): આઉટપુટ કરંટનો ઇનપુટ કરંટ સાથેનો ગુણોત્તર (Ic/Ib), સામાન્ય રીતે CE માં 50-200
- **ઇનપુટ રેઝિસ્ટન્સ (Ri)**: બેઝ ટર્મિનલ પર ઇનપુટ કરંટનો વિરોધ, CE માં 1-2kΩ
- **આઉટપુટ રેઝિસ્ટન્સ (Ro)**: કલેક્ટર ટર્મિનલ પર વિરોધ, સામાન્ય રીતે CE માં 50kΩ

મેમરી ટ્રીક: "CIR પરિમાણો - કરંટ ગેઇન, ઇનપુટ રેઝિસ્ટન્સ, અને આઉટપુટ રેઝિસ્ટન્સ એમ્પ્લીફાયરની કાર્યક્ષમતા નક્કી કરે છે"

પ્રશ્ન 1(બ) [4 માર્ક્સ]

હીટ સિંક પર ટૂંકી નોંધ લખો.

જવાબ:

આકૃતિ:

• ઉદ્દેશ: ઇલેક્ટ્રોનિક ઘટકોમાંથી થર્મલ નુકસાન રોકવા માટે વધારાની ગરમીનું વિસર્જન

- પ્રકારો: પેસિવ હીટ સિંક (એલ્યુમિનિયમ/કોપર ફિન્સ) અને એક્ટિવ હીટ સિંક (ફેન સાથે)
- **થર્મલ રેઝિસ્ટન્સ**: ઓછી થર્મલ રેઝિસ્ટન્સ (°C/W) વધુ સારી ગરમી વિસર્જન દર્શાવે છે
- સામગ્રી: કોપર (શ્રેષ્ઠ વાહકતા), એલ્યુમિનિયમ (હલકું, કિફાયતી), કમ્પોઝિટ

મેમરી ટ્રીક: "HARD સિંક - ગરમીને Heat Away using Radiation and Dissipation through metal sinks"

પ્રશ્ન 1(ક) [7 માર્ક્સ]

થર્મલ રનઅવે અને થર્મલ સ્ટેબિલિટીનું વર્ણન કરો. ટ્રાન્ઝિસ્ટરમાં થર્મલ રનઅવે કેવી રીતે દૂર કરી શકાય?

જવાબ:

આકૃતિ:

થર્મલ રનઅવે:

- વ્યાખ્યા: સ્વ-ત્વરિત પ્રક્રિયા જ્યાં ટ્રાન્ઝિસ્ટર ગરમ થાય છે, જેનાથી વધુ કરંટ પ્રવાહ અને વધુ ગરમી થાય છે
- **કારણ**: તાપમાનમાં વધારો Ico (લીકેજ કરંટ)માં વધારો કરે છે જે Ic વધારે છે
- પરિણામ: જો નિયંત્રણ ન કરવામાં આવે તો ટાન્ઝિસ્ટરનો અંતિમ વિનાશ

થર્મલ સ્ટેબિલિટી:

- વ્યાખ્યા: તાપમાન પરિવર્તન છતાં સ્થિર ઓપરેટિંગ પોઇન્ટ જાળવવાની ક્ષમતા
- માપ: સ્ટેબિલિટી ફેક્ટર (S) ઓછા મૂલ્યો વધુ સારી સ્થિરતા દર્શાવે છે

થર્મલ રનઅવે દૂર કરવાના ઉપાયો:

- હીટ સિંક્સ: વધારાની ગરમી દૂર કરવા માટે જોડો
- **એમિટર રેઝિસ્ટર**: નકારાત્મક ફીડબેક આપવા માટે અનબાયપાસ્ડ RE શામેલ કરો
- **વોલ્ટેજ ડિવાઇડર બાયસ**: વધુ સારી સ્થિરતા માટે ફિક્સ્ડ બાયસ ને બદલે ઉપયોગ કરો
- **થર્મલ કમ્પેન્સેશન**: બાયસ સર્કિટમાં તાપમાન-સંવેદનશીલ ઘટકો ઉમેરો

મેમરી ટ્રીક: "SHEER સુરક્ષા - ગરમી માટે સિંક્સ, એમિટર રેઝિસ્ટર્સ, બાહ્ય કૂલિંગ, અને મજબૂત બાયસિંગ થર્મલ રનઅવે અટકાવે છે"

પ્રશ્ન 1(ક) OR [7 માર્ક્સ]

બાયસિંગ પદ્ધતિઓના પ્રકારો લખો. વોલ્ટેજ વિભાજક બાયસિંગ પદ્ધતિને વિગતમાં સમજાવો.

જવાબ:

બાયસિંગ પદ્ધતિઓના પ્રકારો:

કોષ્ટક: ટ્રાન્ઝિસ્ટર બાયસિંગ પદ્ધતિઓ

પદ્ધતિ	સ્થિરતા	જટિલતા
ફિક્સ્ડ બાયસ	નબળી	સરળ
કલેક્ટર ફીડબેક	મધ્યમ	મધ્યમ
એમિટર બાયસ	સારી	મધ્યમ
વોલ્ટેજ ડિવાઇડર	 ਰਿਜਮ	જટિલ

વોલ્ટેજ ડિવાઇડર બાયસિંગ સર્કિટ:

વોલ્ટેજ ડિવાઇડર બાયસિંગ:

- **સર્કિટ સ્ટ્રક્ચર**: બેઝ પર સ્થિર વોલ્ટેજ બનાવવા માટે શ્રેણીમાં બે રેઝિસ્ટર્સ (R1, R2) વાપરે છે
- **ઓપરેટિંગ સિદ્ધાંત**: R2 પર વોલ્ટેજ બેઝ બાયસ સેટ કરે છે, β વેરિએશન છતાં સ્થિર રહે છે
- ફાયદા: શ્રેષ્ઠ તાપમાન કોમ્પેન્સેશન સાથેની સૌથી સ્થિર બાયસિંગ તકનીક
- સૂત્ર: બેઝ વોલ્ટેજ VB = Vcc × (R2/(R1+R2))
- સ્થિરતા: કલેક્ટર કરંટથી લગભગ સ્વતંત્ર બેઝ વોલ્ટેજ સાથે ઉચ્ચ સ્થિરતા ફેક્ટર

મેમરી ટ્રીક: "DIVE સ્થિરતા માટે - ડિવાઇડર તાપમાન અને β વેરિએશન માટે ખૂબ અસરકારક છે"

પ્રશ્ન 2(અ) [3 માર્ક્સ]

સ્ટેબિલિટી ફેક્ટર અને તેની વિશેષતાઓ સમજાવો.

જવાબ:

આકૃતિ:

- વ્યાખ્યા: સ્ટેબિલિટી ફેક્ટર (S) માપે છે કે લીકેજ કરંટથી કલેક્ટર કરંટ કેવી રીતે બદલાય છે
- સૂત્ર: S = ΔIC/ΔICBO
- **આદર્શ મૂલ્ય**: નીચું મૂલ્ય (S ≈ 1) વધુ સારી સ્થિરતા દર્શાવે છે
- **અસર કરતા પરિબળો**: બાયસિંગ સર્કિટ ડિઝાઇન, તાપમાન, અને ટ્રાન્ઝિસ્ટર પરિમાણો

મેમરી ટ્રીક: "LESS એટલે બેહતર - નીચા મૂલ્યો તાપમાન પરિવર્તન માટે સ્થિર સિસ્ટમ સુનિશ્ચિત કરે છે"

પ્રશ્ન 2(બ) [4 માર્ક્સ]

કાસ્કેડિંગની ડાયરેક્ટ કપલિંગ ટેકનિક વર્ણવો.

જવાબ:

આકૃતિ:

• વ્યાખ્યા: પ્રથમ તબક્કાના કલેક્ટરથી બીજા તબક્કાના બેઝ સાથે સીધો જોડાણ

- ફાયદા: કપલિંગ ઘટકોની જરૂર નથી, ઉત્તમ નિમ્ન-આવર્તન પ્રતિસાદ
- ગેરકાયદા: DC લેવત્સ મેચ કરવા જોઈએ, થર્મલ ડ્રિક્ટ સ્ટેજ દીઠ વધે છે
- **ઉપયોગો**: DC એમ્પ્લીફાયર્સ, ઇન્ટિગ્રેટેડ સર્કિટ્સ, ઓપરેશનલ એમ્પ્લીફાયર્સ

મેમરી ટ્રીક: "DIAL DC માટે - કેપેસિટર વગર સીધા જોડાણ નિમ્ન આવર્તનોને એમ્પ્લિફાય કરે છે"

પ્રશ્ન 2(ક) [7 માર્ક્સ]

બે તબક્કાના RC કપલ્ડ એમ્પ્લીફાયરનો આવર્તન પ્રતિભાવ સમજાવો.

જવાબ:

ક્રીક્વન્સી રિસ્પોન્સ કર્વ:

બે-તબક્કાનો RC કપલ્ડ એમ્પ્લીકાયર:

- સર્કિટ સ્ટ્રક્ચર: કપલિંગ કેપેસિટર્સ દ્વારા જોડાયેલ બે ટ્રાન્ઝિસ્ટર એમ્પ્લીફાયર્સ
- **નિમ્ન-આવર્તન પ્રતિસાદ (f < f1)**: કપલિંગ અને બાયપાસ કેપેસિટરની અસરોને કારણે ગેઇન ઘટે છે
- મધ્ય-આવર્તન પ્રતિસાદ (f1 < f < f2): મહત્તમ ગેઇન ક્ષેત્ર, સપાટ પ્રતિસાદ
- **ઉચ્ચ-આવર્તન પ્રતિસાદ (f > f2)**: આંતરિક કેપેસિટન્સ અને મિલર ઇફેક્ટને કારણે ગેઇન ઘટે છે
- **બેન્ડવિડ્ય**: નીચલા કટઓફ (f1) અને ઉપલા કટઓફ (f2) આવર્તન વચ્ચેની રેન્જ
- કુલ ગેઇન: વ્યક્તિગત સ્ટેજ ગેઇનનો ગુણાકાર ઓછા કપલિંગ નુકસાન

મેમરી ટ્રીક: "LMH આવર્તન ક્ષેત્રો - નિમ્નમાં વધતો ગેઇન, મધ્યમાં સપાટ ગેઇન, ઉચ્ચમાં ઘટતો ગેઇન"

પ્રશ્ન 2(અ) OR [3 માર્ક્સ]

એમ્પ્લીફાયરની બેન્ડવિડ્થ અને ગેઇન-બેન્ડવિડ્થ ઉત્પાદનને સંક્ષિપ્તમાં સમજાવો.

જવાબ:

આકૃતિ:

- **બેન્ડવિડ્ય**: નીચલા (f1) અને ઉપલા (f2) કટઓફ આવર્તનો વચ્ચેનો આવર્તન રેન્જ જ્યાં ગેઇન મહત્તમનો ઓછામાં ઓછો 70.7% હોય છે
- સૂત્ર: બેન્ડવિડ્થ = f2 f1 (Hz માં માપવામાં આવે છે)
- ગેઇન-બેન્ડવિડ્થ ઉત્પાદન: આપેલા એમ્પ્લીફાયર માટે ગેઇન ગુણાકાર બેન્ડવિડ્થનું અચળ મૂલ્ય
- મહત્વ: એમ્પ્લીફાયર કાર્યક્ષમતાની મૂળભૂત મર્યાદાને દર્શાવે છે

મેમરી ટ્રીક: "BIG મૂલ્ય - બેન્ડવિડ્થ અને ગેઇન વચ્ચે વિપરીત સંબંધ અચળ છે"

પ્રશ્ન 2(બ) OR [4 માર્ક્સ]

એમ્પ્લીફાયરના ફ્રીક્વન્સી રિસ્પોન્સ પર એમિટર બાયપાસ કેપેસિટર અને કપલિંગ કેપેસિટરની અસરો સમજાવો.

જવાબ:

કોષ્ટક: કેપેસિટરની ફ્રીક્વન્સી રિસ્પોન્સ પર અસરો

Capacitor Type	Low Frequency	Mid Frequency	High Frequency
Emitter Bypass	Affects gain	Full bypass	No effect
Coupling	Blocks signal	Full coupling	No effect

કેપેસિટરની અસરો:

એમિટર બાયપાસ કેપેસિટર:

- હેતુ: ગેઇન વધારવા માટે એમિટર રેઝિસ્ટરને બાયપાસ કરે છે
- નિમ્ન આવર્તન: ઉચ્ચ ઇમ્પિડન્સ તરીકે કાર્ય કરે છે, ગેઇન ઘટાડે છે
- સૂત્ર: Xc = 1/(2πfC) નિમ્ન આવર્તન પર વધે છે
- **કટઓફ અસર**: RE સાથે નીચલી કટઓફ આવર્તન સેટ કરે છે

કપલિંગ કેપેસિટર:

- હેતુ: DC બ્લોક કરે છે, તબક્કાઓ વચ્ચે AC સિગ્નલની મંજૂરી આપે છે
- નિમ્ન આવર્તન: ઉચ્ચ રિએક્ટન્સ સિગ્નલ ટ્રાન્સફર અવરોધે છે
- પ્રતિસાદ અસર: મોટી કેપેસિટન્સ નિમ્ન-આવર્તન પ્રતિસાદ સુધારે છે
- ફ્રેઝ શિફ્ટ: નિમ્ન આવર્તનોએ ફ્રેઝ શિફ્ટ ઉત્પન્ન કરે છે

મેમરી ટ્રીક: "CABLE અસર - કેપેસિટર્સ નિમ્ન આવર્તન પર અવરોધ તરીકે કાર્ય કરે છે, ઉચ્ચ આવર્તન પર સુધારો કરે છે"

પ્રશ્ન 2(ક) OR [7 માર્ક્સ]

ટ્રાન્સફોર્મર કપલ્ડ એમ્પ્લીફાયર અને RC કપલ્ડ એમ્પ્લીફાયરની સરખામણી કરો.

જવાબ:

કોષ્ટક: ટ્રાન્સફોર્મર કપલ્ડ અને RC કપલ્ડ એમ્પ્લીફાયર્સની સરખામણી

પરિમાણ	ટ્રાન્સફોર્મર કપલ્ડ	RC sucs
કપલિંગ ઘટક	ટ્રાન્સફોર્મર	કેપેસિટર અને રેઝિસ્ટર
કાર્યક્ષમતા	ઉચ્ચ (90%)	નીચી (30-50%)
આવર્તન પ્રતિસાદ	મર્યાદિત, છેડાઓ પર નબળો	વિશાળ, નિમ્ન આવર્તન પર વધુ સારો
કદ અને વજન	મોટું, ભારે	કોમ્પેક્ટ, હલકું
ખર્ય	ઊંચો	નીથો
ઇમ્પિડન્સ મેચિંગ	ਓπਮ	નબળું
વિકૃતિ	નીચી	ઊંચી
DC આઇસોલેશન	સંપૂર્ણ	સારું

આકૃતિ સરખામણી:

મેમરી ટ્રીક: "TREE પરિબળો - ટ્રાન્સફોર્મર્સ મજબૂત કાર્યક્ષમતા અને ઉત્તમ ઇમ્પિડન્સ મેચિંગ આપે છે, RC ખર્ચની બચત કરે છે"

પ્રશ્ન 3(અ) [3 માર્ક્સ]

ટ્રાન્ઝિસ્ટર ટ્યુન કરેલ એમ્પ્લીફાયરનું વર્ણન કરો.

જવાબ:

સર્કિટ આકૃતિ:

- વ્યાખ્યા: યોક્કસ આવર્તન બેન્ડને એમ્પ્લિફાય કરવા માટે કલેક્ટરમાં LC ટેન્ક સર્કિટ સાથેનો એમ્પ્લીફાયર
- **સિદ્ધાંત**: LC સર્કિટ fr = 1/(2π√LC) પર રેઝોનેટ થાય છે, રેઝોનન્સ પર મહત્તમ ગેઇન આપે છે
- **બેન્ડવિડ્ય**: RC એમ્પ્લીફાયર્સ કરતાં સાંકડી, ટ્યુન્ડ સર્કિટના Q ફેક્ટર દ્વારા નિર્ધારિત
- **ઉપયોગો**: RF એમ્પ્લીફાયર્સ, રેડિયો રિસીવર્સ, વાયરલેસ કોમ્યુનિકેશન સર્કિટ્સ

મેમરી ટ્રીક: "TRIP રેઝોનન્સ માટે - ટ્યુન્ડ રેઝોનન્ટ સર્કિટ્સ ચોક્કસ આવર્તનો પર કાર્યક્ષમતા સુધારે છે"

પ્રશ્ન 3(બ) [4 માર્ક્સ]

ડાયરેક્ટ કપલ્ડ એમ્પ્લીફાયર સંક્ષિપ્તમાં સમજાવો.

જવાબ:

સર્કિટ આકૃતિ:

```
+Vcc

|
RC2
|
+-----+--Output
|
|
C RC1
|
+-----+
```

• વ્યાખ્યા: કપલિંગ ઘટકો વગર સીધા જોડાણવાળો મલ્ટી-સ્ટેજ એમ્પ્લીફાયર

- કાર્યપદ્ધતિ: પ્રથમ તબક્કાનો કલેક્ટર બીજા તબક્કાના બેઝ સાથે સીધો જોડાય છે
- કાયદા: ઉત્તમ નિમ્ન-આવર્તન પ્રતિસાદ, ઓછા ઘટકો, કોમ્પેક્ટ ડિઝાઇન
- **ગેરફાયદા**: DC બાયસ સમસ્યાઓ, થર્મલ સ્ટેબિલિટી સમસ્યાઓ, તબક્કા દીઠ મર્યાદિત ગેઇન

મેમરી ટ્રીક: "COLD ફાયદા - કોમ્પેક્ટ ડિઝાઇન, ઉત્તમ નિમ્ન-આવર્તન પ્રતિસાદ, ઓછા ઘટકો, સીધું જોડાણ"

પ્રશ્ન 3(ક) [7 માર્ક્સ]

બે પોર્ટ નેટવર્કમાં h પરિમાણોનું મહત્વ વર્ણવો. CE એમ્પ્લીફાયર માટે h-પેરામીટર્સ સર્કિટ દોરો.

જવાબ:

CE માટે h-પેરામીટર સમકક્ષ સર્કિટ:

h-પેરામીટર્સનું મહત્વ:

- **સાર્વત્રિક ઉપયોગ**: બધા ટ્રાન્ઝિસ્ટર રૂપરેખાંકન (CE, CB, CC) માટે કામ કરે છે
- સરળ માપન: પેરામીટર્સ સરળ સર્કિટ્સનો ઉપયોગ કરીને સીધા માપી શકાય છે
- **સંપૂર્ણ લક્ષણો**: ચાર પેરામીટર્સ સાથે ટ્રાન્ઝિસ્ટર વર્તનનું સંપૂર્ણ વર્ણન કરે છે
- સર્કિટ એનાલિસિસ: જટિલ ટ્રાન્ઝિસ્ટર સર્કિટ એનાલિસિસ સરળ બનાવે છે
- **તાપમાન સ્વતંત્રતા**: સામાન્ય ઓપરેટિંગ તાપમાન પર પ્રમાણમાં સ્થિર

CE માટે h-પેરામીટર્સ:

- h11 (hie): આઉટપુટ શોર્ટ-સર્કિટેડ સાથે ઇનપુટ ઇમ્પિડન્સ
- h12 (hre): રિવર્સ વોલ્ટેજ ટ્રાન્સફર રેશિયો
- **h21 (hfe)**: ફોરવર્ડ કરંટ ગેઇન (β)
- h22 (hoe): ઇનપુટ ઓપન-સર્કિટેડ સાથે આઉટપુટ એડમિટન્સ

મેમરી ટ્રીક: "FINE પેરામીટર્સ - ચાર ઇન્ટરકનેક્ટેડ નેટવર્ક એલિમેન્ટ્સ ટ્રાન્ઝિસ્ટરને સંપૂર્ણપણે વ્યાખ્યાયિત કરે છે"

પ્રશ્ન 3(અ) OR [3 માર્ક્સ]

ટ્રાન્સફોર્મર કપલ્ડ એમ્પ્લીફાયર અને ડાયરેક્ટ કપલ્ડ એમ્પ્લીફાયરની સરખામણી કરો.

જવાબ:

કોષ્ટક: ટ્રાન્સફોર્મર vs ડાયરેક્ટ કપલ્ડ એમ્પ્લીફાયર્સ

પરિમાણ	ટ્રાન્સફોર્મર કપલ્ડ	ડાયરેક્ટ કપલ્ડ
DC આઇસોલેશન	સંપૂર્ણ	નથી
નિમ્ન આવર્તન પ્રતિસાદ	નબળો	ઉπ્
38	મોટું	કોમ્પેક્ટ
ઇમ્પિડન્સ મેચિંગ	 ਰਿਜ਼ਮ	નબળું
વિકૃતિ	નીચી	ઊંચી હોઈ શકે
ખર્ચ	ઊંચો	નીચો
જટિલતા	મધ્યમ	સરળ

મેમરી ટ્રીક: "TIP પસંદગી માટે - ઇમ્પિડન્સ મેચિંગ અને પાવર ટ્રાન્સફર માટે ટ્રાન્સફોર્મર, નિમ્ન આવર્તન માટે ડાયરેક્ટ"

પ્રશ્ન 3(બ) OR [4 માર્ક્સ]

કોમન એમિટર એમ્પ્લીફાયરનું સર્કિટ ડાયાગ્રામ દોરો અને સમજાવો.

જવાબ:

CE એમ્પ્લીકાયર સર્કિટ:

```
+Vcc
|
| RC
|
| +----||---o Output
| CC
|
| +--+
| | |
| C |
| | |
| RE
| GND
```

- **રપરેખાંકન**: બેઝ પર ઇનપુટ, કલેક્ટરથી આઉટપુટ, એમિટર બંનેમાં સામાન્ય છે
- **લક્ષણો**: વોલ્ટેજ ગેઇન ~50-500, કરંટ ગેઇન ~50-200, ફેઝ શિફ્ટ 180°
- ફાયદા: ઉચ્ચ વોલ્ટેજ ગેઇન, મધ્યમ ઇનપુટ ઇમ્પિડન્સ, સારું વોલ્ટેજ એમ્પ્લિફિકેશન

• ઉપયોગો: ઓડિયો એમ્પ્લીફાયર્સ, રેડિયો ફ્રીક્વન્સી એમ્પ્લીફાયર્સ, સ્વિચિંગ સર્કિટ્સ

મેમરી ટ્રીક: "GAIN લક્ષણો - ઉલટા આઉટપુટ અને નોંધપાત્ર કાર્યક્ષમતા સાથે સારું એમ્પ્લિફિકેશન"

પ્રશ્ન 3(ક) OR [7 માર્ક્સ]

ટ્રાન્ઝિસ્ટર ટુ પોર્ટ નેટવર્ક દોરો અને તેના માટે h-પેરામીટર્સનું વર્ણન કરો. હાઇબ્રિડ પેરામીટર્સના ફાયદા લખો.

જવાબ:

ટુ-પોર્ટ નેટવર્ક આકૃતિ:

h-પેરામીટર્સ સમીકરણો:

- V1 = h11I1 + h12V2
- I2 = h21I1 + h22V2

h-પેરામીટર્સનું વર્ણન:

- h11: આઉટપુટ શોર્ટ-સર્કિટેડ સાથે ઇનપુટ ઇમ્પિડન્સ (Ω)
- h12: રિવર્સ વોલ્ટેજ ટ્રાન્સફર રેશિયો (અપરિમાણ)
- h21: ફોરવર્ડ કરંટ ગેઇન (અપરિમાણ)
- h22: ઇનપુટ ઓપન-સર્કિટેડ સાથે આઉટપુટ એડમિટન્સ (સીમેન્સ)

હાઇબ્રિડ પેરામીટર્સના કાયદા:

- સરળ માપન: દરેક પેરામીટર વ્યક્તિગત રીતે માપી શકાય છે
- **માનક સંજ્ઞા**: ઉદ્યોગ અને શૈક્ષણિક ક્ષેત્રમાં સાર્વત્રિક સ્વીકૃતિ
- **સચોટ મોડેલ**: ટ્રાન્ઝિસ્ટર વર્તનનું સટીક મોડેલિંગ પ્રદાન કરે છે
- રૂપરેખાંકન લવચીકતા: બધા ટ્રાન્ઝિસ્ટર રૂપરેખાંકન માટે લાગુ
- તાપમાન સ્થિરતા: ઓપરેટિંગ તાપમાન શ્રેણી પર પ્રમાણમાં સ્થિર

મેમરી ટ્રીક: "SMART પેરામીટર્સ - સરળ માપન, સચોટ મોડેલિંગ, વિશ્વસનીય, તાપમાન-સ્થિર"

પ્રશ્ન 4(અ) [3 માર્ક્સ]

ડાર્લિંગ્ટન પેર અને તેની એપ્લિકેશનો સમજાવો.

જવાબ:

ડાર્લિંગ્ટન પેર સર્કિટ:

- વ્યાખ્યા: બે ટ્રાન્ઝિસ્ટરનું રૂપરેખાંકન જ્યાં પ્રથમનો એમિટર બીજાના બેઝને ડ્રાઇવ કરે છે
- **લક્ષણો**: ખૂબ ઉચ્ચ કરંટ ગેઇન (β1 × β2), ઉચ્ચ ઇનપુટ ઇમ્પિડન્સ
- નુકસાન: ઉચ્ચ સેચ્યુરેશન વોલ્ટેજ, ઓછી સ્વિચિંગ સ્પીડ
- ઉપયોગો: પાવર એમ્પ્લીફાયર્સ, મોટર ડ્રાઇવર્સ, ટચ-સેન્સિટિવ સ્વિચ, ડાર્લિંગ્ટન ICs

મેમરી ટ્રીક: "HIGH ગેઇન - બે ટ્રાન્ઝિસ્ટર્સનો ઉપયોગ કરીને ખૂબ જ વધારેલો ગેઇન"

પ્રશ્ન 4(બ) [4 માર્ક્સ]

જરૂરી ડાયાગ્રામ સાથે ડાયોડ ક્લેમ્પર સર્કિટનું વર્ણન કરો.

જવાબ:

પોઝિટિવ કલેમ્પર સર્કિટ:

- વ્યાખ્યા: DC ઘટક ઉમેરીને વેવફોર્મને ઉપર/નીચે શિફ્ટ કરતી સર્કિટ
- પ્રકારો: પોઝિટિવ ક્લેમ્પર (ઉપર શિફ્ટ), નેગેટિવ ક્લેમ્પર (નીચે શિફ્ટ)
- **કાર્યપદ્ધતિ**: કેપેસિટર પ્રથમ અર્ધ-ચક્ર દરમિયાન ચાર્જ થાય છે, પછી DC લેવલ જાળવે છે
- **ઉપયોગો**: TV સિંક પત્સ રિસ્ટોરેશન, પત્સ મોડ્યુલેશન સર્કિટ્સ, વેવફોર્મ પ્રોસેસિંગ

મેમરી ટ્રીક: "CAPS અસર - કેપેસિટર અને ડાયોડ જોડી સિગ્નલને યોક્કસ DC લેવલથી શિફ્ટ કરે છે"

પ્રશ્ન 4(ક) [7 માર્ક્સ]

OLED નું બાંધકામ, કાર્ય અને એપ્લિકેશન સમજાવો.

જવાબ:

OLED સ્ટ્રકચર:

OLED બાંધકામ:

• **લેયર્સ**: સબસ્ટ્રેટ, એનોડ (ITO), કન્ડક્ટિવ લેયર, એમિસિવ લેયર, કેથોડ

• સામગ્રી: ઇલેક્ટ્રોડ્સ વચ્ચે ઓર્ગેનિક સેમિકન્ડક્ટર સામગ્રી

• પ્રકારો: PMOLED (પેસિવ મેટ્રિક્સ) અને AMOLED (એક્ટિવ મેટ્રિક્સ)

કાર્થપદ્ધતિ:

• **મિકેનિઝમ**: ઇલેક્ટ્રિક કરંટ ઇલેક્ટ્રોલ્યુમિનિસન્સ દ્વારા ઓર્ગેનિક સામગ્રીને પ્રકાશ ઉત્સર્જિત કરવા કારણ બને છે

• પ્રક્રિયા: ઇલેક્ટ્રોન્સ અને હોલ્સ એમિસિવ લેયરમાં ફોટોન્સ ઉત્પન્ન કરવા માટે રીકોમ્બાઇન થાય છે

• કાર્યક્ષમતા: બેકલાઇટ વગર સીધો પ્રકાશ ઉત્સર્જન, ઉચ્ચ કાર્યક્ષમતા

ઉપયોગો:

• **ડિસ્પ્લે**: સ્માર્ટફોન્સ, ટીવી, વેરેબલ્સ, ડિજિટલ કેમેરા

• લાઇટિંગ: ફ્લેક્સિબલ અને પારદર્શક લાઇટિંગ પેનલ

• સાઇનેજ: ઉચ્ચ-કોન્ટ્રાસ્ટ ડિજિટલ સાઇન અને બિલબોર્ડ

મેમરી ટ્રીક: "OLED ફાયદા - ઓર્ગેનિક સામગ્રી, હલકું ડિઝાઇન, કાર્યક્ષમ ઓપરેશન, સીધું ઉત્સર્જન, સ્ટનિંગ કોન્ટ્રાસ્ટ"

પ્રશ્ન 4(અ) OR [3 માર્ક્સ]

LDR પર ટૂંકી નોંધ સમજાવો.

જવાબ:

LDR સિમ્બોલ અને સ્ટ્રક્ચર:

- વ્યાખ્યા: લાઇટ ડિપેન્ડન્ટ રેઝિસ્ટર, એક ફોટોરેઝિસ્ટર જેનો રેઝિસ્ટન્સ પ્રકાશ સાથે ઘટે છે
- **સામગ્રી**: કેડમિયમ સલ્ફાઇડ (CdS) અથવા કેડમિયમ સેલેનાઇડ (CdSe)
- **સિદ્ધાંત**: ફોટોકંડક્ટિવિટી પ્રકાશ ઊર્જા ઇલેક્ટ્રોન્સ મુક્ત કરે છે, વાહકતા વધારે છે
- **ઉપયોગો**: લાઇટ સેન્સર્સ, ઓટોમેટિક લાઇટિંગ કંટ્રોલ, કેમેરા એક્સપોઝર સિસ્ટમ

મેમરી ટીક: "DARK રેઝિસ્ટન્સ વધારે છે - ઘટતો પ્રકાશ અને વધતો અંધકાર રેઝિસ્ટન્સ ઊંચો રાખે છે"

પ્રશ્ન 4(બ) OR [4 માર્ક્સ]

જરૂરી ડાયાગ્રામ સાથે ડાયોડ ક્લિપર સર્કિટનું વર્ણન કરો.

જવાબ:

પોઝિટિવ ક્લિપર સર્કિટ:

- વ્યાખ્યા: થ્રેશોલ્ડ ઉપર/નીચેના ઇનપુટ વેવફોર્મના ભાગોને મર્યાદિત (ક્લિપ) કરતી સર્કિટ
- પ્રકારો: પોઝિટિવ ક્લિપર (પોઝિટિવ ક્લિપ), નેગેટિવ ક્લિપર (નેગેટિવ ક્લિપ), બાયસ્ડ ક્લિપર
- **કાર્યપદ્ધતિ**: જ્યારે સિગ્નલ થ્રેશોલ્ડને વટાવે છે ત્યારે ડાયોડ કન્ડક્ટ કરે છે, આઉટપુટને મર્યાદિત કરે છે
- ઉપયોગો: વેવફોર્મ શેપિંગ, પ્રોટેક્શન સર્કિટ્સ, સિગ્નલ કન્ડિશનિંગ

મેમરી ટ્રીક: "CLIP તરંગો - સર્કિટ ડાયોડ કન્ડક્શનનો ઉપયોગ કરીને ઇનપુટ પીક્સને મર્યાદિત કરે છે"

પ્રશ્ન 4(ક) OR [7 માર્ક્સ]

હાફ વેવ અને ફુલ વેવ વોલ્ટેજ ડબલર સમજાવો.

જવાબ:

હાફ-વેવ વોલ્ટેજ ડબલર:

કુલ-વેવ વોલ્ટેજ ડબલર:

હાફ-વેવ વોલ્ટેજ ડબલર:

• **ઓપરેશન**: નેગેટિવ હાફ સાયકલ દરમિયાન, C1 પીક વોલ્ટેજ સુધી ચાર્જ થાય છે; પોઝિટિવ સાયકલ દરમિયાન, આઉટપુટ 2Vp બને છે

• **આઉટપુટ**: પીક વેલ્યુ ઇનપુટ પીકના બમણા સાથે પલ્સેટિંગ DC

• **રિપલ**: ઉચ્ચ રિપલ સામગ્રી

• કાર્યક્ષમતા: કુલ-વેવ કરતાં નીચી

કુલ-વેવ વોલ્ટેજ ડબલર:

• **ઓપરેશન**: બંને હાફ સાયકલ્સ આઉટપુટમાં યોગદાન આપે છે, દરેક કેપેસિટર વૈકલ્પિક સાયકલ્સ દરમિયાન ચાર્જ થાય છે

• **આઉટપુટ**: પીક વેલ્યુ ઇનપુટ પીકના બમણા સાથે વધુ સ્મૂધ DC

• **રિપલ**: ઓછી રિપલ સામગ્રી

• કાર્યક્ષમતા: હાફ-વેવ કરતાં ઉચ્ચ

ઉપયોગો:

• ઉચ્ચ વોલ્ટેજ જનરેશન: CRT ડિસ્પ્લે, ફોટોમલ્ટિપ્લાયર્સ

• પાવર સપ્લાય: ઓછા કરંટ, ઉચ્ચ વોલ્ટેજ એપ્લિકેશન્સ

• કેસ્કેડ કનેક્શન: ડબલિંગ ઉપરાંત વોલ્ટેજ મલ્ટિપ્લિકેશન માટે

મેમરી ટ્રીક: "CHASE 2V - કેપેસિટર્સ 2× વોલ્ટેજ ઉત્પન્ન કરવા માટે ઓલ્ટરનેટિંગ સપ્લાય એનર્જી રાખે છે"

પ્રશ્ન 5(અ) [3 માર્ક્સ]

IC નો ઉપયોગ કરીને +5v પાવર સપ્લાય માટે સર્કિટ ડાયાગ્રામ દોરો અને ટૂંકમાં સમજાવો.

જવાબ:

7805 નો ઉપયોગ કરીને 5V પાવર સપ્લાય:

- ઘટકો: બ્રિજ રેક્ટિફાયર (D1-D4), ફિલ્ટર કેપેસિટર (C1), 7805 રેગ્યુલેટર, આઉટપુટ કેપેસિટર (C2)
- **કાર્યપદ્ધતિ**: રેક્ટિફાયર દ્વારા AC ને DC માં રૂપાંતરિત, C1 દ્વારા ફિલ્ટર, 7805 દ્વારા ચોક્કસ 5V માં નિયમિત
- **વિશેષતાઓ**: શોર્ટ-સર્કિટ પ્રોટેક્શન, થર્મલ શટડાઉન, 1A સુધી કરંટ ક્ષમતા
- **ઉપયોગો**: ડિજિટલ સર્કિટ્સ, માઇક્રોકન્ટ્રોલર્સ, ઇલેક્ટ્રોનિક્સ પ્રોજેક્ટ્સ

મેમરી ટ્રીક: "FIRM વોલ્ટેજ - ફિલ્ટર્ડ ઇનપુટ, 7805 દ્વારા રેગ્યુલેટેડ સ્થિર વોલ્ટેજ બનાવે છે"

પ્રશ્ન 5(બ) [4 માર્ક્સ]

પાવર સપ્લાયના સંદર્ભમાં લોડ રેગ્યુલેશન અને લાઇન રેગ્યુલેશનની ચર્ચા કરો.

જવાબ:

રેગ્યુલેશન પરફોર્મન્સ કર્લ્સ:

લોડ રેગ્યુલેશન:

- વ્યાખ્યા: લોડ કરંટ પરિવર્તન છતાં સ્થિર આઉટપુટ વોલ્ટેજ જાળવવાની ક્ષમતા
- **સૂત્ર**: % લોડ રેગ્યુલેશન = ((VNL VFL)/VFL) × 100
- મહત્વ: વિવિધ લોડ માંગ માટે સ્થિર વોલ્ટેજ સુનિશ્ચિત કરે છે
- આદર્શ મૂલ્ય: 0% (લોડ પરિવર્તન સાથે આઉટપુટ વોલ્ટેજમાં કોઈ ફેરફાર નહીં)

લાઇન રેગ્યુલેશન:

• વ્યાખ્યા: ઇનપુટ વોલ્ટેજમાં ફેરફાર છતાં સ્થિર આઉટપુટ જાળવવાની ક્ષમતા

- **સૂત્ર**: % લાઇન રેગ્યુલેશન = (ΔVout/ΔVin) × 100
- મહત્વ: મેઇન્સ વોલ્ટેજ ફ્લક્ચ્યુએશનથી સર્કિટ્સને બચાવે છે
- આદર્શ મૂલ્ય: 0% (ઇનપુટ પરિવર્તન સાથે આઉટપુટ વોલ્ટેજમાં કોઈ ફેરફાર નહીં)

મેમરી ટ્રીક: "LIVER સ્વાસ્થ્ય - ઇનપુટ વેરિએશન માટે લાઇન રેગ્યુલેશન, બાહ્ય રેઝિસ્ટન્સ ફેરફારો માટે લોડ રેગ્યુલેશન"

પ્રશ્ન 5(ક) [7 માર્ક્સ]

સર્કિટ ડાયાગ્રામ સાથે LM317 નો ઉપયોગ કરીને એડજસ્ટેબલ વોલ્ટેજ રેગ્યુલેટર સમજાવો.

જવાબ:

LM317 એડજસ્ટેબલ રેગ્યુલેટર સર્કિટ:

```
R1
+Vin o---+---www----+

| ADJ |
| +----+ |
+--| 317 |--+--o +Vout
| | |
| +----+ |
| R2
| GND
```

કાર્યપદ્ધતિનો સિદ્ધાંત:

- મૂળલૂત ઓપરેશન: LM317 આઉટપુટ અને એડજસ્ટમેન્ટ પિન વચ્ચે 1.25V જાળવે છે
- આઉટપુટ વોલ્ટેજ: Vout = 1.25V(1 + R2/R1) + IADJ(R2)
- **સરળીકૃત સૂત્ર**: Vout ≈ 1.25V(1 + R2/R1) (IADJ ખૂબ નાનો હોવાથી)
- એડજસ્ટમેન્ટ રેન્જ: ઇનપુટ વોલ્ટેજના આધારે 1.25V થી 37V

વિશેષતાઓ:

- **કરંટ ક્ષમતા**: 1.5A સુધીનો આઉટપુટ કરંટ
- પ્રોટેક્શન: આંતરિક થર્મલ ઓવરલોડ અને શોર્ટ સર્કિટ પ્રોટેક્શન
- ફાયદા: સરળ ડિઝાઇન, ન્યુનતમ બાહ્ય ઘટકો, સ્થિર આઉટપુટ
- **ઉપયોગો**: વેરિએબલ પાવર સપ્લાય, બેટરી યાર્જર, કસ્ટમ વોલ્ટેજ રેગ્યુલેટર્સ

મેમરી ટ્રીક: "VAIR નિયંત્રણ - વેરિએબલ એડજસ્ટેબલ ઇન્ટિગ્રેટેડ રેગ્યુલેટર વોલ્ટેજને ચોક્કસપણે નિયંત્રિત કરે છે"

પ્રશ્ન 5(અ) OR [3 માર્ક્સ]

સૌર બેટરી ચાર્જર સર્કિટની કાર્યપદ્ધતિ સમજાવો.

જવાલ:

સૌર બેટરી ચાર્જર બ્લોક ડાયાગ્રામ:

- ઘટકો: સોલર પેનલ, ચાર્જ કંટ્રોલર, બેટરી, પ્રોટેક્શન સર્કિટ્સ
- **કાર્યપદ્ધતિનો સિદ્ધાંત**: સોલર પેનલ DC જનરેટ કરે છે, કંટ્રોલર ચાર્જિંગ કરંટને નિયંત્રિત કરે છે
- **યાર્જ ફેઝ**: બલ્ક યાર્જિંગ (સ્થિર કરંટ), એબ્સોર્પ્ટાન (સ્થિર વોલ્ટેજ), ફ્લોટ (જાળવણી)
- **પ્રોટેક્શન વિશેષતાઓ**: ઓવરચાર્જ પ્રોટેક્શન, ડીપ ડિસ્ચાર્જ પ્રિવેન્શન, રિવર્સ પોલારિટી

મેમરી ટ્રીક: "SCBL સિસ્ટમ - સોલર પેનલ સૂર્યપ્રકાશને કન્વર્ટ કરે છે, બેટરી સંગ્રહ કરે છે, લોડ વપરાશ કરે છે"

પ્રશ્ન 5(બ) OR [4 માર્ક્સ]

UPS ની કાર્યપદ્ધતિ સમજાવો.

જવાબ:

UPS બ્લોક ડાયાગ્રામ:

- વ્યાખ્યા: અનઇન્ટરપ્ટિબલ પાવર સપ્લાય મુખ્ય સપ્લાય નિષ્ફળતા દરમિયાન બેકઅપ પાવર પ્રદાન કરે છે
- પ્રકારો: ઓફલાઇન (સ્ટેન્ડબાય), લાઇન-ઇન્ટરેક્ટિવ, ઓનલાઇન (ડબલ કન્વર્ઝન)
- ઘટકો: રેક્ટિફાયર, બેટરી, ઇન્વર્ટર, કંટ્રોલ સર્કિટ્રી, ટ્રાન્સફર સ્વિચ
- **ઓપરેશન**: સામાન્ય રીતે ફિલ્ટર કરેલ મેઇન્સ પાવર પસાર કરે છે, આઉટેજ દરમિયાન બેટરી પર સ્વિય કરે છે

મેમરી ટ્રીક: "PRIME પાવર - મેઇન્સ ઇલેક્ટ્રિસિટી સમસ્યાઓ દરમિયાન પાવર અખંડિત રહે છે"

પ્રશ્ન 5(ક) OR [7 માર્ક્સ]

SMPS બ્લોક ડાયાગ્રામ તેના ફાયદા અને ગેરફાયદા સાથે દોરો અને સમજાવો.

જવાબ:

SMPS બ્લોક ડાયાગ્રામ:

કાર્યપદ્ધતિનો સિદ્ધાંત:

- **ઇનપુટ સ્ટેજ**: AC રેક્ટિફાયર દ્વારા અનરેગ્યુલેટેડ DC માં રૂપાંતરિત
- **સ્વિચિંગ સ્ટેજ**: હાઈ-ફ્રિક્વન્સી ટાન્ઝિસ્ટર્સ DC ને પલ્સમાં કાપે છે
- ટ્રાન્સફોર્મર: ઉચ્ચ આવર્તન પર આઇસોલેટ અને વોલ્ટેજ ટ્રાન્સફોર્મ કરે છે
- **આઉટપુટ સ્ટેજ**: ક્લીન DC ઉત્પન્ન કરવા માટે રેક્ટિફાય અને ફિલ્ટર કરે છે
- **ફીડબેક લૂપ**: આઉટપુટને મોનિટર કરે છે અને નિયમન માટે સ્વિચિંગ એડજસ્ટ કરે છે

ફાયદા:

- કાર્યક્ષમતા: લિનિયર સપ્લાય માટે 30-60% ની સરખામણીએ 70-90%
- કદ/વજન: ઉચ્ચ-આવર્તન ઓપરેશનને કારણે નાના ટ્રાન્સફોર્મર
- હીટ જનરેશન: ઓછો પાવર ડિસિપેશન, ઘટાડેલી કૂલિંગ જરૂરિયાતો
- **વાઇડ ઇનપુટ રેન્જ**: વિશાળ ઇનપુટ વોલ્ટેજ વેરિએશન પર ઓપરેટ કરી શકે છે

ગેરફાયદા:

- જટિલતા: લિનિયર સપ્લાય કરતાં વધુ જટિલ ડિઝાઇન
- EMI/RFI: ઇલેક્ટોમેગ્નેટિક ઇન્ટરકેરન્સ ઉત્પન્ન કરે છે
- નોઇઝ: સ્વિચિંગ ઓપરેશનને કારણે ઉચ્ચ આઉટપુટ નોઇઝ
- ખર્ચ: ઓછી-પાવર એપ્લિકેશન્સ માટે વધુ ખર્ચાળ

મેમરી ટ્રીક: "FISH ફેક્ટર્સ - ફ્રીક્વન્સી સ્વિચિંગ, આઇસોલેશન, નાનું કદ, ઉચ્ચ કાર્યક્ષમતા SMPS ના ફાયદા છે"

મુખ્ય કોન્સેપ્ટ્સનો સારાંશ

ટ્રાન્ઝિસ્ટર બાયસિંગ અને સ્ટેબિલિટી

- **બાયસિંગ પદ્ધતિઓ**: ફિક્સ્ડ બાયસ, કલેક્ટર ફીડબેક, એમિટર બાયસ, વોલ્ટેજ ડિવાઇડર (સૌથી સ્થિર)
- **થર્મલ સ્ટેબિલિટી**: થર્મલ રનઅવે અટકાવવા માટે એમિટર રેઝિસ્ટર્સ, વોલ્ટેજ ડિવાઇડર બાયસ, હીટ સિંક્સનો ઉપયોગ
- **સ્ટેબિલિટી ફેક્ટર (S)**: નીચું મૂલ્ય તાપમાન પરિવર્તન સામે વધુ સારી સ્થિરતા દર્શાવે છે

એમ્પ્લીફાયર પેરામીટર્સ

- **CE એમ્પ્લીફાયર**: ઉચ્ચ વોલ્ટેજ ગેઇન (50-500), મધ્યમ ઇનપુટ ઇમ્પિડન્સ, 180° ફેઝ શિફ્ટ
- **h-પેરામીટર્સ**: h11 (ઇનપુટ ઇમ્પિડન્સ), h21 (કરંટ ગેઇન), h12 (રિવર્સ વોલ્ટેજ રેશિયો), h22 (આઉટપુટ એડમિટન્સ)
- ફ્રીક્વન્સી રિસ્પોન્સ: નિમ્

ફ્રીક્વન્સી રિસ્પોન્સ

- નિમ્ન આવર્તનો પર: કપલિંગ કેપેસિટર્સની અસરોને કારણે ગેઇન ઘટે છે
- મધ્ય આવર્તનો પર: મહત્તમ ગેઇન ક્ષેત્ર, સમતલ પ્રતિસાદ
- ઉચ્ચ આવર્તનો પર: આંતરિક કેપેસિટન્સ અને મિલર ઇકેક્ટને કારણે ગેઇન ઘટે છે

કપલિંગ પદ્ધતિઓ

- RC કપલિંગ: સરળ, ઓછી કિંમત, સારો આવર્તન પ્રતિસાદ (ખૂબ નિમ્ન આવર્તનો સિવાય)
- ટ્રાન્સફોર્મર કપલિંગ: સારું ઇમ્પિડન્સ મેચિંગ, ઉત્તમ કાર્યક્ષમતા, મોટું અને ખર્ચાળ
- **ડાયરેક્ટ કપલિંગ**: ઉત્તમ નિમ્ન-આવર્તન પ્રતિસાદ, DC બાયસ સમસ્યાઓ, ઇન્ટિગ્રેટેડ સર્કિટ્સમાં વપરાય છે

પ્રેક્ટિકલ એપ્લિકેશન્સ

- ક્લિપર & કલેમ્પર: વેવફોર્મ શેપિંગ, મર્યાદિત, લેવલ શિફ્ટિંગ સર્કિટસ
- **વોલ્ટેજ મલ્ટિપ્લાયર્સ**: ઓછા AC ઇનપુટથી ઉચ્ચ DC વોલ્ટેજ જનરેટ કરે છે (ડબલર, ટ્રિપલર, વગેરે)
- ડાર્લિંગ્ટન પેર: પાવર એપ્લિકેશન્સ માટે સુપર-હાઈ કરંટ ગેઇન કોન્ફિંગરેશન
- **OLED ડિસ્પ્લે**: ઉચ્ચ કોન્ટ્રાસ્ટ, ઊર્જા કાર્યક્ષમતા સાથે ઓર્ગેનિક લાઇટ-એમિટિંગ ડાયોડ

પાવર સપ્લાય સર્કિટ્સ

- **વોલ્ટેજ રેગ્યુલેટર્સ**: 78xx સિરીઝ (પોઝિટિવ), 79xx સિરીઝ (નેગેટિવ), LM317 (એડજસ્ટેબલ)
- SMPS: નાના કદ પરંતુ વધુ જટિલતા સાથે ઉચ્ચ-કાર્યક્ષમતા સ્વિચ-મોડ પાવર સપ્લાય
- UPS: બેટરી-ઇન્વર્ટર સિસ્ટમનો ઉપયોગ કરીને આઉટેજ દરમિયાન બેકઅપ પાવર આપે છે
- **સોલર ચાર્જર્સ**: ઓવરચાર્જ પ્રોટેક્શન સાથે બેટરી ચાર્જ કરવા માટે સૌર ઊર્જાને રૂપાંતરિત કરે છે

યાદ રાખવા માટે મહત્વપૂર્ણ સૂત્રો

પેરામીટર	સૂત્ર	વર્ણન
વોલ્ટેજ ગેઇન (Av)	Vout/Vin	આઉટપુટથી ઇનપુટ વોલ્ટેજનો ગુણોત્તર
કરંટ ગેઇન (Ai)	lc/lb	કલેક્ટરથી બેઝ કરંટનો ગુણોત્તર
બેન્ડવિડ્થ	f2 - f1	કટઓફ પોઇન્ટ્સ વચ્ચેની આવર્તન રેન્જ
લોડ રેગ્યુલેશન	((VNL-VFL)/VFL)×100%	લોડ ચેન્જ સાથે વોલ્ટેજ સ્થિરતા
લાઇન રેગ્યુલેશન	(ΔVout/ΔVin)×100%	ઇનપુટ ચેન્જ સાથે વોલ્ટેજ સ્થિરતા
સ્ટેબિલિટી ફેક્ટર (S)	ΔΙC/ΔΙCΒΟ	લીકેજ સામે કલેક્ટર કરંટમાં ફેરફાર
LM317 આઉટપુટ	1.25V(1+R2/R1)	એડજસ્ટેબલ રેગ્યુલેટર આઉટપુટ વોલ્ટેજ
રેઝોનન્ટ ફ્રીક્વન્સી	1/(2π√LC)	ટ્યુન્ડ એમ્પ્લીફાયર રેઝોનન્સ પોઇન્ટ

ઇલેક્ટ્રોનિક સર્કિટ્સ માટે પરીક્ષા ટિપ્સ

- 1. **પહેલા બેઝિક્સ દોરો**: વિગતો ઉમેરતા પહેલા હંમેશા બેઝિક સર્કિટ ડાયાગ્રામથી શરૂઆત કરો
- 2. **ધ્રુવીયતાઓ યાદ રાખો**: વોલ્ટેજ ધ્રુવીયતા અને કરંટ દિશાઓ પર ધ્યાન આપો
- 3. **તુલના કોષ્ટકમાં કરો**: માહિતીને વ્યવસ્થિત કરવા માટે તુલના પ્રશ્નો માટે કોષ્ટકનો ઉપયોગ કરો
- 4. **પ્રેક્ટિકલ ઉપયોગો પર ધ્યાન કેન્દ્રિત કરો**: સૈદ્ધાંતિક ખ્યાલોને વાસ્તવિક-વિશ્વ એપ્લિકેશન્સ સાથે જોડો
- 5. **નંબરો જાણો**: ટિપિકલ મૂલ્યો (ગેઇન્સ, ઇમ્પિડન્સ, વોલ્ટેજ) યાદ રાખો
- 6. **નેમોનિક્સનો ઉપયોગ કરો**: જટિલ સંકલ્પનાઓ અને સૂત્રો માટે મેમરી એઇડ્સ બનાવો

સામાન્ય ભૂલો ટાળો

- 1. **બાયસિંગ મિક્સ અપ**: વિવિધ બાયસિંગ પદ્ધતિઓ અને તેમના સ્ટેબિલિટી ફેક્ટર્સને ભ્રમિત ન કરો
- 2. પેરામીટર કન્ફ્યુઝન: h-પેરામીટર્સની વ્યાખ્યાઓ સ્પષ્ટ અને અલગ રાખો
- 3. **સાઇન એરર્સ**: કોમન એમિટર કોન્ફિગરેશનમાં ફેઝ ઇન્વર્ઝન્સ (180° શિફ્ટ) યાદ રાખો
- 4. **રેગ્યુલેશન ફોર્મ્યુલા**: લોડ રેગ્યુલેશન અને લાઇન રેગ્યુલેશન સૂત્રો મિક્સ ન કરો
- 5. **ડાયાગ્રામ્સ ઓવરકોમ્પ્લિકેટિંગ**: સર્કિટ આરેખો સરળ અને મુખ્ય ઘટકો પર કેન્દ્રિત રાખો

ક્વિક રેફરન્સ: કોમ્પોનન્ટ સિમ્બોલ

