Primeiro Relatório de Medidas Eletromagneticas

Gabriel Soares Henrique da Silva

15 de fevereiro de 2023

Sumário

4 Conclusoes

1	Introdução			
	1.1	Analise preliminar		
2	Res	ultados esperados		
	2.1	Onda senoidal		
	2.2	Onda dente de serra		
3	Med	dicoes no Laboratorio		
	3.1	Tabela de medicoes		
	3.2	Graficos dos dados		
		3.2.1 Erro absoluto por frequencia		
		3.2.2 Erro percentual por frequencia		
	3.3	Analise da onda dente de serra		

1 Introdução

Neste relatório, vamos discutir o comportamento de um multimetro, e como ele induz erros para certas bandas de frequencia e o por que.

Todos arquivos utilizados para criar este relatorio, e o relatorio em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/5thsemester/labcircuitos

1.1 Analise preliminar

Analisaremos a maneira que o multimetro mede tensoes.

Especificamente mediremos uma tensao conhecida de $5V_{pp}$, e analisaremos o erro absoluto da medicao em funcao da frequencia provinda do gerador de sinais.

Faremos isto para dois tipos de onda de entrada, senoidal e serra.

2 Resultados esperados

2.1 Onda senoidal

Para a onda senoidal esperamos que o erro seja mais alto para frequencias baixas, e para frequencais altas.

Isto ocorre porque o multimetro tem uma banda de confianca, quando nos afastamos desta banda de confianca, perdemos a certeza nas medidas.

2.2 Onda dente de serra

Neste caso temos que lembrar que podemos decompor a onda em senoidais por serie de Fourier. E como vimos anteriormente as decomposicoes que tiverem frequencia alta ou baixa serao problematicas.

Mas esperamos que os erros sejam mais distribuidos ao longo da banda inteira que testarmos.

3 Medicoes no Laboratorio

Vamos utilizar o osciloscopio para medir uma tensao de saida conhecida do osciloscopio, esta de $5V_{pp}$. E registraremos o erro absoluto e relativo entre nossas medidas e a esperada de $5V_{pp}$.

3.1 Tabela de medicoes

E(II-) E(V) E				
Freq (Hz)	Erro(V)	Erro		
10	0.1818	3.58		
15	0.1267	2.50		
60	0.0930	1.83		
120	0.0916	1.80		
300	0.0913	1.80		
600	0.0924	1.82		
1000	0.0941	1.85		
10000	0.1139	2.25		
20000	0.1388	2.74		
30000	0.1219	2.40		
40000	0.1114	2.19		
50000	0.0766	1.51		
60000	0.0373	0.73		
70000	0.0050	0.10		
80000	0.0162	0.32		
90000	0.0247	0.49		
100000	0.0213	0.42		
110000	0.0068	0.13		
120000	0.0172	0.34		
130000	0.0497	0.98		
140000	0.0893	1.76		
150000	0.1349	2.66		
160000	0.1858	3.66		
170000	0.2401	4.73		
180000	0.2995	5.90		
190000	0.3606	7.10		
200000	0.4253	8.38		
250000	0.7718	15.21		
300000	1.1342	22.35		
330000	1.1342	26.11		

3.2 Graficos dos dados

3.2.1 Erro absoluto por frequencia

3.2.2 Erro percentual por frequencia

3.3 Analise da onda dente de serra

Quando analisamos este tipo de onda vimos erros distribuidos ao longo de toda banda de testes.

Isto ocorreu por que a funcao dente de serra pode ser decomposta em senoides, e estas multiplas senoides, obedecerem o erro de acordo com os graficos acima na secao 4 3.2.

Logo as senoides decompostas de alta frequencia e baixa nos deram um certo erro consideravel, porem distribuido em toda banda de testes.

4 Conclusoes

Vemos que o multimetro tem bastante confianca em uma faixa intermediaria, mas fora desta a confianca eh reduzida significantemente.

Precisamos levar em consideracao tambem o formato da onda de entrada e sua decomposicao por serie de Fourier.

Outro ponto que nao abordamos nesta pratica foi o aspecto da calibracao do multimetro. Esta pode afetar tanto a banda de frequencia de confianca quanto a confianca em todos pontos da banda.