Structure of the program

Maxim Salo

October 2018

- 1. Functions for computing f(x, y) and y(x) functions for all the numerical methods.
- 2. Function $find_{-}x(x_0, x_{max}, step)$ to compute all the x values (where x returns an array of x_i values for given x_0, x_{max} and step).
- 3. Function $exact(x_0, y_0, x_{max}, step)$ to compute all the y values for exact analytic solution, where y returns an array of y_i values respectively to x_i from previous step for given x_0, y_0, x_{max} and step.
- 4. Function $euler(x_0, y_0, x_{max}, step)$ to compute all the y values for Euler Method method, where y returns an array of y_i values respectively to x_i from the second step for given x_0, y_0, x_{max} and step.
- 5. Function $euler_imp(x_0, y_0, x_{max}, step)$ to compute all the y values for Improved Euler method, where y returns an array of y_i values respectively to x_i from the second step for given x_0, y_0, x_{max} and step.
- 6. Function $runge_kutta(x_0, y_0, x_{max}, step)$ to compute all the y values for Runge-Kutta method, where y returns an array of y_i values respectively to x_i from the second step for given x_0, y_0, x_{max} and step.
- 7. Function $global_error(x_0, y_0, x_{max}, step_0, step_{max}, step_of_steps)$ to compute global errors for each method with respect to exact solution, where $global_error$ returns three arrays (for each method) of $global_error_i$ value respectively to $step_i$ value between $step_0$, $step_{max}$ with step $step_of_steps$.
 - 8. Computation of all the results using mentioned functions and plotting.