Introduction to Tidyverse and Exploratory Data Visualization with ggplot2

1. Introduction

The **Tidyverse** is an essential collection of R packages designed for data science. It includes packages such as:

- ggplot2 for data visualization
- **dplyr** for data manipulation
- tidyr for data tidying
- readr for reading data
- tibble for working with data frames
- forcats for handling categorical variables

This tutorial will guide you through using tidyverse for data manipulation and creating exploratory data visualizations using ggplot2.

2. Installing and Loading the Tidyverse

If١	100	haven't	installed	tidvvarca	inetall	it iiging•
	, ou	HUNGHL	motatica	tiuy voi so,	motatt	it doning.

install.packages("tidyverse")

Then, load the package:

library(tidyverse)

3. Importing and Inspecting Data

We will use the **NHANES** dataset from the NHANES package, which contains health survey data.

First, install and load the package if needed:

install.packages("NHANES")
library(NHANES)

Load the dataset:

Load dataset health_data <- NHANES

```
# View first few rows glimpse(health_data)
```

Key functions for inspecting data:

```
head(health_data) # First few rows
dim(health_data) # Dimensions of the dataset
summary(health_data) # Summary statistics
colnames(health_data) # Column names
```

4. Data Manipulation with dplyr

4.1 Selecting Columns

health_data %>% select(Age, Gender, BMI, BPSysAve, TotChol)

4.2 Filtering Rows

health_data %>% filter(Age > 50, BMI > 18.5) #18.5 is normal weight

4.3 Creating New Variables

health_data <- health_data %>% mutate(BMI_Category = ifelse(BMI > 25, "Overweight", "Normal"))

4.4 Summarizing Data

health_data %>% group_by(Gender) %>% summarise(avg_BMI = mean(BMI, na.rm = TRUE))

4.5 Identifying Missing Data, Cardinality, and Outliers

Identifying Missing Data

Missing data can impact analysis. We can check for missing values using:

sum(is.na(health_data)) # Total missing values
colSums(is.na(health_data)) # Missing values per column

To remove missing values:

health_data <- health_data %>% drop_na()

Imputing Missing Data

Instead of dropping missing values, we can impute them using different strategies:

• Fill with the mean:

health_data <- health_data %>% mutate(BMI = ifelse(is.na(BMI), mean(BMI, na.rm = TRUE), BMI))

Fill with the median:

health_data <- health_data %>% mutate(BMI = ifelse(is.na(BMI), median(BMI, na.rm = TRUE), BMI))

• Fill using group-wise mean:

 $\label{lem:mealth_data} $$\ensuremath{\sim}$- health_data %>% group_by(Gender) %>% mutate(BMI = ifelse(is.na(BMI), mean(BMI, na.rm = TRUE), BMI)) %>% ungroup()$

Checking Cardinality (Unique Values in Columns)

Cardinality refers to the number of unique values in a column:

```
sapply(health_data, function(x) length(unique(x)))
```

This helps identify categorical variables with too many unique values, which might not be useful for modeling.

Detecting Outliers

Boxplots help visualize outliers:

```
ggplot(health_data, aes(x = Gender, y = BMI)) +
geom_boxplot() +
labs(title = "BMI Outliers by Gender")
```

Another method is using the interquartile range (IQR):

```
Q1 <- quantile(health_data$BMI, 0.25, na.rm = TRUE) Q3 <- quantile(health_data$BMI, 0.75, na.rm = TRUE) IQR <- Q3 - Q1 outliers <- health_data %>% filter(BMI < (Q1 - 1.5 * IQR) | BMI > (Q3 + 1.5 * IQR)) outliers
```

This identifies extreme BMI values that might need further investigation.

5. Exploratory Data Visualization with ggplot2

5.1 Histogram

A histogram is useful for visualizing the distribution of a single variable.

```
ggplot(health_data, aes(x = BMI)) +
  geom_histogram(binwidth = 2, fill = "blue", color = "black") +
  labs(title = "BMI Distribution", x = "BMI", y = "Count")
```

5.2 Scatterplot

```
ggplot(health_data, aes(x = Age, y = BPSysAve, color = Gender)) +
geom_point(size = 3) +
labs(title = "Age vs. Blood Pressure", x = "Age", y = "Blood Pressure")
```

5.3 Boxplot

```
ggplot(health_data, aes(x = Gender, y = BMI)) +
geom_boxplot(fill = "lightblue") +
labs(title = "BMI by Gender", x = "Gender", y = "BMI")
```

5.4 Density Plot

```
ggplot(health_data, aes(x = BMI, fill = Gender)) +
geom_density(alpha = 0.5) +
labs(title = "Density Plot of BMI by Gender", x = "BMI", y = "Density")
```

5.5 Bar Chart

```
ggplot(health_data, aes(x = BMI_Category, fill = Gender)) +
geom_bar(position = "dodge") +
labs(title = "Count of BMI Categories by Gender", x = "BMI Category", y = "Count")
```

6. Customizing ggplot2 Visualizations

6.1 Modifying Themes

```
ggplot(health_data, aes(x = Age, y = BPSysAve)) +
  geom_point(color = "blue") +
  theme_minimal() +
  labs(title = "Customized Scatterplot", x = "Age", y = "Blood Pressure")
```

Other available themes include:

theme_classic(), theme_light(), theme_dark(), theme_bw()

6.2 Customizing Axis Labels and Titles

```
ggplot(health_data, aes(x = Age, y = BMI)) +
geom_point() +
labs(title = "Age vs BMI", subtitle = "NHANES Dataset", x = "Age (years)", y = "Body Mass Index (BMI)")
```

6.3 Changing Legends and Colors

```
ggplot(health_data, aes(x = Age, y = BMI, color = Gender)) +
geom_point() +
scale_color_manual(values = c("Male" = "blue", "Female" = "red")) +
labs(title = "Age vs BMI by Gender")
```

6.4 Customizing Grid Lines

```
ggplot(health_data, aes(x = Age, y = BPSysAve)) +
geom_point() +
theme(panel.grid.major = element_line(color = "grey", size = 0.5),
panel.grid.minor = element_line(color = "lightgrey", size = 0.25))
```

6.5 Adding Annotations

```
ggplot(health_data, aes(x = Age, y = BMI)) +
geom_point() +
annotate("text", x = 80, y = 40, label = "Possible Outlier", color = "red", size = 5)
```

7. Saving Plots

To save a plot, use ggsave():

```
ggplot(health_data, aes(x = BMI)) +
  geom_histogram(binwidth = 2, fill = "blue", color = "black")
ggsave("bmi_histogram.png", width = 8, height = 6)
```