Mathcord Mathematical Logic

Problem Set 3

Submission to mathcord.pset.submissions@gmail.com

Problem 1

Let \mathcal{A} be a σ -structure and $\{\mathcal{B}_{\lambda}\}_{{\lambda}\in\Lambda}$ a non-empty family of substructures, then prove that $\mathcal{B}=\bigcap_{{\lambda}\in\Lambda}\mathcal{B}_{\lambda}$ is a substructure of \mathcal{A} as well.

Thus if $S \subseteq A$, we can look at the substructure generated by S:

$$\langle S \rangle = \bigcap \{ \mathcal{B} \subseteq \mathcal{A} \mid S \subseteq B \}$$

this is the smallest substructure of A containing S. Show that

$$\langle S \rangle = \{ t^{\mathcal{A}}(a_1, \dots, a_n) \mid t \in \mathcal{T}, \ a_1, \dots, a_n \in S \}$$

Find lower and upper bounds on the cardinality of $|\langle S \rangle|$ in terms of |S| and $|\mathcal{L}|$ (notice that $|\mathcal{L}|$ is the first infinite cardinality at least as large as $|\sigma|$).

Problem 2

The following are the four isomorphism theorems for groups:

- (1) If $h: G \longrightarrow H$ is a homomorphism $G/\ker h \cong hG$,
- (2) If $H \leq G$ is a subgroup and $N \leq G$ a normal subgroup, then $HN \leq G$ and $N \cap H \leq H$ and $^{HN}/_{N}\cong ^{H}/_{H\cap N}$,
- (3) If $N \leq K$ are normal subgroups of G, then $K/N \leq G/N$ and

$$G/N /_{K/N} \cong G/_{K}$$

(4) If $N \triangleleft G$ is a normal subgroup of G, then there is a bijection of subgroups of G/N and intermediate subgroups $N \leq H \leq G$ given by

$$H \mapsto H/N$$

that is, every subgroup of G/N is of the form H/N for $N \leq H \leq G$, and all such Hs form a subgroup. Furthermore this bijection has the property:

- (1) $H_1 \leq H_2$ if and only if $H_1/N \leq H_2/N$,
- (2) if $H_1 \le H_2$ then the indices are equal: $[H_2: H_1] = [H_2/N: H_1/N]$ (where [A:B] = |A/B|),
- (3) $\langle H_1, H_2 \rangle / N = \langle H_1 / N, H_2 / N \rangle$,
- (4) $H_1 \cap H_2/N = H_1/N \cap H_2/N$,
- (5) $H \subseteq G$ if and only if $H/N \subseteq G/N$.

Formulate and prove analogous results for general σ -structures, where σ is an algebraic signature. (An analogous result for the first isomorphism theorem was proven in the lecture already.)

We say that φ and ψ are (elementarily) equivalent if for all models \mathcal{M} , $\mathcal{M} \models \varphi \iff \mathcal{M} \models \psi$. Denote this by $\varphi \equiv \psi$.

Problem 3

Show that

- (1) A conjunction of \exists_i s and their negations is equivalent to $\exists_n \land \neg \exists_m$ for suitable n, m. (Note that $\exists_n \land \neg \exists_0 \equiv \exists_n$, and $\exists_1 \land \neg \exists_m \equiv \neg \exists_m$).
- (2) A boolean combination of \exists_i is equivalent to either $\bigvee_{i=0}^n \exists_{=k_i}$ or $\exists_k \vee \bigvee_{i=0}^n \exists_{=k_i}$ for $k_0 < \dots < k_n$. (Note that $\bigvee_{i=0}^n \exists_{=k_i}$ is equal to $\exists_{=0} \equiv \bot$ for $n = k_0 = 0$, and $\neg \exists_n \equiv \bigvee_{i=0}^{n-1} \exists_{=i}$ for n > 0.)

Problem 4

Show that isomorphisms and elementary equivalence coincide for finite structures. That is, if \mathcal{A} and \mathcal{B} are finite structures, they are isomorphic if and only if they are elementarily equivalent. (Hint: why is it okay to assume that \mathcal{L} is finite?)

Problem 5

Let σ be a finite signature, and κ an infinite cardinal.

- (1) Show that there are at most 2^{κ} non-isomorphic σ -structures of cardinality κ .
- (2) Find a finite signature σ such that there are exactly 2^{κ} non-isomorphic σ -structures of cardinality κ .
- (3) Suppose σ consists only of k unary relation symbols. Let φ be a formula of length n (literally, its length as a string). Show that if φ has a model, it has a model of size $\leq n \cdot 2^k$.

Problem 6

Call a \mathcal{L} -formula a *literal* if it is atomic or the negation of an atomic formula. If C is a set of constants, let $\mathcal{L}C$ be the language obtained by adjoining constant symbols in C to the signature of \mathcal{L} . In particular if \mathcal{A} is an \mathcal{L} -structure, let $\mathcal{L}\mathcal{A}$ be the language obtained by adding constant symbols for every $a \in A$ to \mathcal{L} . \mathcal{A} can be canonically extended to a $\mathcal{L}\mathcal{A}$ -structure in the natural way.

Let \mathcal{A} be a \mathcal{L} -structure, define its diagram to be:

$$\Delta \mathcal{A} = \{ \varphi \in \mathcal{L} \mathcal{A} \mid \varphi \text{ is a literal sentence and } \mathcal{A} \models \varphi \}$$

and its positive diagram to be:

$$\Delta^+ \mathcal{A} = \{ \varphi \in \mathcal{L} \mathcal{A} \mid \varphi \text{ is an atomic sentence and } \mathcal{A} \vDash \varphi \}$$

(a literal sentence is a literal which is a sentence, i.e. it has no variables. Atomic sentences are defined analogously.)

Let $\mathcal{B}_{\mathcal{A}}$ be an $\mathcal{L}\mathcal{A}$ -structure, and let \mathcal{B} be its \mathcal{L} -reduct. Show the following:

- (1) $\mathcal{B}_{\mathcal{A}} \models \Delta^{+}\mathcal{A}$ if and only if there is a homomorphism $\mathcal{A} \longrightarrow \mathcal{B}$.
- (2) $\mathcal{B}_{\mathcal{A}} \models \Delta \mathcal{A}$ if and only if there is an embedding $\mathcal{A} \longrightarrow \mathcal{B}$.

Hint for Problem 2

Recall that the analog of a normal subgroup for general structures is a congruence. Thus for the second isomorphism theorem you need to define what the product of a substructure by a congruence is. Notice that for groups

$$g \in HN \iff \exists h \in H : gh^{-1} \in N \iff \exists h \in H : g \theta_N h$$

where θ_N is the congruence derived from N. Consider how to generalize this to a general congruence θ . You also need to generalize $H \cap N \leq H$, notice that $\theta_{H \cap N} = \theta_N \cap H^2 = \theta_N \mid_H$.

For the third isomorphism theorem you need to generalize the congruence $\theta_{K/N}$ on G/N. That is, given congruences $\theta_2 \subseteq \theta_1$ on \mathcal{A} , define what a quotient congruence θ_1/θ_2 is on \mathcal{A}/θ_1 . Notice that

$$aN \ \theta_{K/N} \ bN \iff aN \cdot K/N = bN \cdot K/N \iff ab^{-1}N \in K/N \iff ab^{-1} \in K \iff a \ \theta_K \ b$$

Hint for Problem 5

- (1) Let $|X| = \kappa$, how many distinct n-ary relations and functions are there on X? How many constants?
- (2) Consider $\sigma = \{ \leq, R \}$ where \leq is a binary relation and R a unary relation. Consider only the σ -structures which are well-ordered (recall that isomorphic well-ordered sets have a unique isomorphism). Show that if R defines different subsets relative to \leq , then the structures are non-isomorphic.
- (3) Let $\sigma = \{r_1, \dots, r_k\}$. For a σ -structure \mathcal{A} and a vector $\bar{\varepsilon} \in \{0, 1\}^k$ define

$$r_{ar{arepsilon}}^{\mathcal{A}} = igcap_{i=1}^k arepsilon_i r_i^{\mathcal{A}}$$

where $\varepsilon r^{\mathcal{A}}$ is $r^{\mathcal{A}}$ when $\varepsilon = 1$ and its complement otherwise. For $s \in \mathbb{N}_{>0}$, say that \mathcal{A} and \mathcal{B} are s-close if

$$\min\{s, |r_{\bar{\varepsilon}}^{\mathcal{A}}|\} = \min\{s, |r_{\bar{\varepsilon}}^{\mathcal{B}}|\}, \quad \text{for all } \bar{\varepsilon} \in \{0, 1\}^k$$

Call $\bar{a} \in A^n$ and $\bar{b} \in B^n$ similar if

$$\mathcal{A} \vDash \varphi[\bar{a}] \iff \mathcal{B} \vDash \varphi[\bar{b}], \quad \text{for all atomic } \varphi$$

Finally define the weight of a formula φ to be the sum of the number of quantifiers in φ and the number of free variables.

Show the following:

- (1) Suppose \mathcal{A}, \mathcal{B} are s-close, $\bar{a} \in A^n, \bar{b} \in B^n$ are similar, and n < s. Then for every $a' \in A$ there exists a $b' \in B$ such that (\bar{a}, a') and (\bar{b}, b') are similar.
- (2) Suppose \mathcal{A}, \mathcal{B} are s-close, the weight of $\varphi(\bar{x})$ is less than s, and \bar{a}, \bar{b} are similar. Then for all formulas $\varphi, \mathcal{A} \models \varphi[\bar{a}] \iff \mathcal{B} \models \varphi[\bar{b}]$.
- (3) For any σ -structure \mathcal{A} , there is a \mathcal{B} which is s-close to \mathcal{A} and has at most $s \cdot 2^k$ elements. Conclude the desired result.

Hint for Problem 6

Suppose $\mathcal{B}_{\mathcal{A}} \vDash \Delta^{+}\mathcal{A}$, show that $h(a) = a^{\mathcal{B}_{\mathcal{A}}}$ is a homomorphism. If $\mathcal{B}_{\mathcal{A}} \vDash \Delta \mathcal{A}$ show that this homomorphism is an embedding.