No. of Printing Pages: 5

Following Paper ID and Roll No. to be filled in your Answer Book.					
Paper ID: 43401 No.					

B.Tech. Examination -2023-24 (Odd Semster)

BASIC ELECTRONICS ENGINEERING

Time: Three Hours [Maximum Marks: 60

Note: Attemtp all questions.

SECTION-A

- Attempt each part in this section. Each part carry equal marks.
 8 x 1=8
 - (a) What is extrinsic semiconductor?
 - (b) Draw VI characteristics of an ideal diode.
 - (c) For $\alpha = 0.98$ find the value of β .
 - (d) Why FET is called unipolar device?

[P. T. O.

- (e) What is the biasing condition of BJT in saturation mode.
- (f) For a given op-amp, CMRR=10⁴ and Ad=10⁵, find its common mode gain.
- (g) Draw the circuit of voltage follower.
- (h) State demorgan's theorem.

SECTION-B

- Attempt any two parts in this section. Each part carry equal marks.
 2 x 6 = 12
 - (a) Explain working of PN junction diode in forward biased condition. Calculate the current I for the network given below—

(b) What do you mean by clipper circuits? Find the output waveform of the following clipper circuit.

3

NEC4101

- (c) Explain the construction and working of p-n-p transistor.
- (d) Draw the circuit diagram of non-inverting amplifier. Derive the expression of voltage gain for inverting amplifier.

SECTION-C

- 3. Attempt any two parts from each questions. Each part carry equal marks. $5 \times 8 = 40$
 - (a) What is avalanche breakdown. For the zener diode network of the following figures determine $V_{L_1}V_R$, I_z and P_z .

- (b) Explain working and output waveform of centre-tapped FWR in details.
- (c) A half wave rectifier circuit is supplied from a 230V, $50H_3$. Supply with a step down ratio of 3:1 to a resistive load of $10K\Omega$. The diode forward resistance is 75Ω while transformer

[P. T. O.

NEC4101

secondary resistance is 10Ω . Calculate maximum, average, rms valve of current, d.c. output voltage, efficiency of rectification and ripple factor.

- (a) Explain the construction and working of nchannel JFET.
 - (b) Derive the relationship between α and β . Calculate α and β for the given transistor for which lc=5mA, IB=50 μ A and ICBO= 1μ A.
 - (c) Sketch and explain the input and output characteristics of CB npn transistor configuration.
- (a) Draw the circuit diagram of a difference amplifier using op-amp and find expression for the output voltage.

(b) Calculate output voltage for the following circuit 100KΩ

- (c) Perform the following conversion—
 - (i) (A85)₁₆ into decimal
 - (ii) (25.815)10 into binary
 - (iii) (475.25)8 into decimal
 - (iv) (10110110.11)₂ into octal
- 6. (a) Define and explain the depletion region of a p-n junction diode.
 - (b) Explain the drain and transfer characteristics of n-channel JFET.
 - (c) Realise the following logic gates using NAND and NOR gate.
 - (i) AND gate
 - (ii) OR gate
 - (iii) EX-OR gate