Abstract

Reconstruction method for reconstructing a first signal (x(t)) regularly sampled at a sub-Nyquist rate, comprising the step of retrieving from the regularly spaced sampled values $(y_s[n], y(nT))$ a set of weights (c_n, c_{nr}, c_k) and shifts (t_n, t_k) with which said first signal (x(t)) can be reconstructed.

The reconstructed signal (x(t)) can be represented as a sequence of known functions $(\gamma(t))$ weighted by the weights (c_k) and shifted by the shifts (t_k) . The sampling rate is at least equal to the rate of innovation (ρ) of the first signal (x(t)).