Ecuaciones Diferenciales – 2° cuatrimestre 2015

PRÁCTICA ADICIONAL DE TRANSFORMADA DE FOURIER

Aclaracíon:

En esta práctica notamos $\mathcal{F}(f)(\xi) = \frac{1}{2\pi^{n/2}} \int_{\mathbb{R}^n} f(x) e^{-2\pi i \xi \cdot x} dx$ y salvo especial mención tomamos $L^1 := L^1(\mathbb{R}^n)$

La transformada en L^1

- 1. Sea $f \in L^1$ Probar que:
 - $a) \ \mathcal{F}(af+bg) = a\mathcal{F}(f) + b\mathcal{F}(g)$ para $a,b \in \mathbb{R}$ y $f,g \in L^1$
 - b) $\mathcal{F}(f)$ es uniformemente continua
 - c) El operador $\mathcal{F}: L^1 \to L^\infty$ es continuo y:

$$\|\mathcal{F}(f)\|_{L^\infty} \leq \|f\|_{L^1}$$

d) Tenemos que $\lim_{|\xi|\to\infty} \mathcal{F}(f)(\xi) = 0$

O sea que $\mathcal{F}(L^1) \subseteq C_0$ (las funciones continuas que tienden a cero en el infinito)

- 2. Sea a > 0 y $f = e^{\pi a|x|^2}$, entonces:
 - Probar que $\mathcal{F}(f) = \frac{a^{\frac{n}{2}}}{(2\pi)^{\frac{n}{2}}} e^{\frac{-\pi|\xi|^2}{a}}$
 - lacksquare Concluir que \mathcal{F} admite al menos un punto fijo.
- 3. Sea a > 0 y $f = e^{-2\pi a|x|}$. Entonces $\mathcal{F}(f) = c_n \frac{a}{(a^2 + |\xi|^2)^{\frac{n+1}{2}}}$ con c_n una constante que depende de la dimensión del espacio.
- 4. Sea $f, \mathcal{F}(f) \in L^1$, probar que si tanto f como $\mathcal{F}(f)$ tienen soporte compacto, entonces f = 0
- 5. Sean $f, g \in L^1$ probar que:

$$\int_{\mathbb{R}^n} \mathcal{F}(f)(\xi)g(\xi)d\xi = \int_{\mathbb{R}^n} f(x)\mathcal{F}(g)(x)dx$$

O sea que si se diese que $f,g\in L^1\cap L^2$ tenemos que $\mathcal F$ preserva ángulos.

Definición Sea $f \in L^1$, definimos:

- $\tau_{x_0}(f)(x) := f(x x_0)$
- $Mod_{x_0}(f)(x) := e^{2\pi i x. x_0} f(x)$
- $Dil_U^p(f)(x) := |det(U)|^{-\frac{1}{p}} f(U^{-1}x)$ con $1 \le p \le \infty$ y $U \in GL(\mathbb{R}^n)$
- 6. Sea $f \in L^1$ probar que:
 - a) $\mathcal{F}\tau_{x_0} = Mod_{-x_0}\mathcal{F}$
 - b) $\mathcal{F}Mod_{\xi_{\theta}} = \tau_{\xi_{0}}\mathcal{F}$
 - c) $\mathcal{F}Dil_{U}^{p} = Dil_{U^{*}}^{p'}\mathcal{F}$ donde U^{*} es la única tal que $\langle Ux,y\rangle_{\mathbb{R}^{n}} = \langle x,U^{*}y\rangle_{\mathbb{R}^{n}}$
- 7. Probar que si $f,g\in L^1$ y $\mathcal{F}(f)=\mathcal{F}(g)$ entonces f=g

8. a) Sea $f \in L^1$ tal que $x_k f \in L^1$, entonces $\mathcal{F}(f)$ es diferenciable respecto a ξ_k y

$$\frac{\partial}{\partial \xi_k} \left(\mathcal{F}(f) \right) (\xi) = \mathcal{F}(-2\pi i x_k f)(\xi)$$

b) Sea $f \in H^{1,k} \cap C^k \cap H_0^{1,k-1}$, entonces:

$$\mathcal{F}(D^{\alpha}(f))(\xi) = (2\pi i \xi)^{|\alpha|} \mathcal{F}(f)(\xi)$$

Definición Sea $P \in \mathbb{R}[X_1, X_2, ..., X_d]$, definimos $P(\partial_x) := \sum_{|\alpha| \le k} c_\alpha \partial_x^\alpha := \sum_{|\alpha| \le k} c_\alpha \partial_{x_1}^{\alpha_1} ... \partial_{x_k}^{\alpha_k}$

- 9. Probar las siguientes relaciones de conmutatividad:
 - a) $\mathcal{F}P(-2\pi i x_k) = P(\partial_{\varepsilon}^{\alpha})\mathcal{F}$
 - b) $\mathcal{F}P(\partial_x^{\alpha}) = P(2\pi i \xi)\mathcal{F}$
- 10. Sea $f \in L^1$ tal que f es continua en 0 y que $\mathcal{F}(f) \geq 0$. Probar que $\mathcal{F}(f) \in L^1$.

La transformada y el Espacio de Schwartz

Definición Sea $p_N(f) := \sup_{|\alpha| \leq N} \sup_{x \in \mathbb{R}^n} |x^{\alpha} \partial^{\beta} f| \text{ con } \alpha, \beta \in \mathbb{N}_0^n$. Entonces definimos al espacio de Schwartz como:

$$\mathcal{S} := C^{\infty} \cap \{ f \mid p_N(f) < \infty \ \forall N \in \mathbb{N} \}$$

- 11. a) Probar que S es un espacio vectorial sobre \mathbb{R}
 - $b) \ f(x) = e^{-\pi|x|^2} \in \mathcal{S}$
 - c) Es más probar que S es metrizable por $d(f,g) = \sum_{N} \frac{p_N(f-g)}{2^N(1+p_N(f-g))}$
 - d) Sea $\{\phi_k\}_{k\in\mathbb{N}}\subseteq\mathcal{S}$ una sucesión, entonces $\phi_k\to 0$ en \mathcal{S} sii $p_N(\phi_k)\to 0 \ \forall N\in\mathbb{N}$
 - e) Probar que $\mathcal S$ con la métrica dada es un espacio métrico completo.
 - f) Sea $U_{\epsilon,N} := \{ f \in \mathcal{S} \ / \ p_N(f) < \epsilon \}$, probar que los $U_{\epsilon,N}$ son una base de entornos del 0 que hacen de \mathcal{S} un espacio localmente convexo y por ende podemos usar Hanh-Banach.
- 12. Sea $T: \mathcal{S} \to \mathcal{S}$ un operador lineal, entonces T es continuo sii $\forall N \ \exists N' > 0 \ y \ C > 0$ tal que:

$$p_N(T(\phi)) \le C p_{N'}(\phi) \quad \forall \phi \in \mathcal{S}$$

- 13. a) Probar que $\mathcal{F}(\mathcal{S}(\mathbb{R}^n)) = \mathcal{S}(\mathbb{R}^n)$. O sea que $\mathcal{F}|_{\S}$ esta bien definida y es un operador survectivo y continuo.
 - b) Recordar que \mathcal{F} es es operador inyectivo en L^1 y por ende en \mathcal{S}
 - c) Probar que $\mathcal{F}|_{\mathcal{S}}: \mathcal{S} \to \mathcal{S}$ es un homemorfismo.
- 14. Si $f, g \in \mathcal{S}$ entonces $f * g \in \mathcal{S}$ y $\mathcal{F}(f * g) = C\mathcal{F}(f)\mathcal{F}(g)$

La transformada en L^2

Definición Notemos que si $f \in L^2$ uno puede tomar una sucesión $\psi_k \to_{L^2} f$ tal que $\psi_k \in \mathcal{S}$, entonces definimos $\mathcal{F}(f) := \lim_{k \to \infty} \mathcal{F}(\psi_k)$

- 15. Probar la buena definición de \mathcal{F} en sentido que no depende de la sucesión que tiende a f, y que si $f \in L^2 \cap L^1$ entonces esta definición coincide con la anterior.
- 16. Probar que $\mathcal{F}: L^2 \to L^2$ es un operador unitario.
- 17. Diagonalización de \mathcal{F}
 - a) Recordar que si n=1 entonces $\mathcal{F}(e^{-\frac{x^2}{2}}) = e^{-\frac{\xi^2}{2}}$
 - b) Sea $V:=\{p(x)e^{-\frac{x^2}{2}}\ ,\ p\in\mathbb{R}[X]\}$ probar que $V=\bigcup_n V_n$ donde $V_n=V\cap K_{\leq n}[X]$ y por ende $dim_{\mathbb{R}}V_n=n+1.$
 - c) Notemos que si llamamos D(f):=f' entonces $D(p(x)e^{-\frac{x^2}{2}})=D(p)(x)e^{-\frac{x^2}{2}}$ y por ende $V_n=\text{Ker}(D^{n+1})$

Definición Definimos los polinomios de Hermite de grado n como $H_x(x)$ los que $H_n(x)e^{-\frac{x^2}{2}} = (-1)^n \frac{d^n}{dx^n} (e^{-\frac{x^2}{2}})$

- d) Probar que $\mathcal{F}(x^ne^{-\frac{x^2}{2}})=(-i)^nH_n(x)e^{-\frac{x^2}{2}}$ y por ende $\mathcal{F}(V_n)=V_n$, concluir que $\exists!p_n\in K_{\leq n}[X]$ tal que $\psi_n=p_ne^{-\frac{x^2}{2}}$ cumple que $\mathcal{F}(\psi_n)=(-i)^n\psi_n$
- e) Si $D' = D^2 x^2$ entonces D' conmuta con \mathcal{F} y por ende tiene los mismos autoespacios. Concluir que $p_n = H_n$ y ya tenemos diagonalizado a \mathcal{F}

Transformada en distribuciones temperadas

Definición Notemos como $\mathcal{S}' := (\mathcal{S})^*$ el dual topológico del espacio de Schwartz. Notemos que como $C_c^{\infty} \subset \mathcal{S} \subset L^p$ y $\mathcal{S} \subset C_0$; entonces $L^p \subset \mathcal{S}' \subset \mathcal{D}$ y que $\mathcal{M}(\mathbb{R}^n) \subset \mathcal{S}'$ donde $\mathcal{M}(\mathbb{R}^n)$ es el conjunto de medidas de Radon en \mathbb{R}^n con la norma de la variación total.

- 18. Probar que:
 - a) Dada $f \in L^p$ entonces la aplicación $\lambda_f(\phi) = \int_{\mathbb{R}^n} f(x)\phi(x)dx \ \forall \phi \in \mathcal{S}$ cumple que $\lambda_f \in \mathcal{S}'$. Entonces a cada $f \in L^p$ le podemos asociar una $\lambda_f \in \mathcal{S}'$, probar además que la aplicación $\lambda : L^p \to \mathcal{S}'$ dada por $f \mapsto \lambda_f$ es continua
 - b) Análogamente al item anterior lo mismo con $\psi \in \mathcal{S}$
 - c) Análogo con $\mu \in \mathcal{M}(\mathbb{R}^n)$ donde $\lambda_{\mu}(\phi) = \int_{\mathbb{R}^n} \phi(x) d\mu$
 - d) El funcional $\delta'_0: \phi \mapsto -\phi'(0)$ con $\phi \in \mathcal{S}$ cumple que $\delta'_0 \in \mathcal{S}'$ pero $\delta'_0 \notin \mathcal{M}(\mathbb{R}^n)$ y por ende la inclusión es estricta.
- 19. (Difícil) Probar que la inclusión $i: \mathcal{S} \hookrightarrow \mathcal{S}'$ tiene rango denso en la topología débil

Definición Sea $\lambda \in \mathcal{S}'$ y $\phi \in \mathcal{S}$, entonces definimos $\mathcal{F}(\lambda)(\phi) := \lambda(\mathcal{F}(\phi))$.

- 20. Probar que \mathcal{F} así definida esta bien definida y que resulta un homeomorfismo de \mathcal{S}' en sí mismo.
- 21. Probar que todas las anterior propiedades y simetrías de \mathcal{F} valen en el contexto de las distribuciones temperadas (convolución, traslación, modulación, etc...) adecuadamente definidas.
- 22. Probar que $\mathcal{F}(pv\frac{1}{x})(\xi) = -\pi i sgn(\xi)$
- 23. Probar que $\mathcal{F}_{\frac{1}{|x|^2}} = \frac{\pi}{|\xi|}$