Calculus 2021 Final Exam ALL MATERIAL

— Do not turn this page before the official start of the exam! —

First Name, Surname:
Student ID:
Program: Bachelor's DKE)
Course code: KEN1440
Examiner: Alexia Briassouli and Otti D'Huys
Date/time: Monday, March 29 th , 2021, 8.30-10.30h

Format: Closed book exam

Allowed aides: Pens. Calculators are not allowed, and are not needed.

Instructions to students:

- The exam consists of 8 questions on 15 pages (excluding the 1 cover page(s)).
- Fill in your name and student ID number on each page, including the cover page.
- Answer every question at the reserved space below the questions. If you run out of space, continue on the back side, and if needed, use the extra blank page.
- Ensure that you properly motivate your answers.
- Do not use red pens, and write in a readable way. Answers that cannot be read easily cannot be graded and may therefore lower your grade.
- You are not allowed to have a communication device within your reach, nor to wear or use a watch.
- You have to return all pages of the exam. You are not allowed to take any sheets, even blank, home.
- If you think a question is ambiguous, or even erroneous, and you cannot ask during the exam to clarify this, explain this in detail in the space reserved for the answer to the question.
- If you have not registered for the exam, your answers will not be graded, and thus handled as invalid.
- For all the questions below, the lecture notes and your own critical judgement are sufficient. Good luck!

The following table will be filled by the examiner:

Question:	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Total
Points:	11	11	20	12	12	13	11	10	100
Score:									

Question 1 (Q1) (11 points)

Limits

(a) (5 points) Evaluate the following limit or explain why it does not exist:

$$\lim_{x \to 0^+} \frac{\ln(x)}{x} \stackrel{- \infty}{\bigcirc}$$

 <u>~</u> <u></u>	%	

(b) (6 points) Evaluate the following limit or explain why it does not exist:

(6 points) Evaluate the following limit or explain why it does not exist:
$$\lim_{x \to -\infty} \frac{1}{\sqrt{x^2 + 2x} - x} \qquad \sqrt{x^2 \left(1 + \frac{2}{x}\right)} - x$$

$$= 0 \qquad = |x| \sqrt{1 + \frac{2}{x}} + 1$$

$$= -x \sqrt{1 + \frac{2}{x}} + 1$$

Question 2 (Q2) (11 points)

Derivatives

(a) (5 points) Find the derivative of f(x):

$$f(x) = \frac{\sin(x)}{\sqrt{x}} \qquad g(x) = \int x \qquad g'(x) = \frac{1}{2\sqrt{x}}$$

$$\int (x) = \frac{h'(x)g(x) - g'(x)h(x)}{x}$$

$$= \left(\cos \times \sqrt{x} - \frac{\sin x}{2\sqrt{x}}\right) \frac{1}{x}$$

(b) (6 points) Let:

$$f(x) = e^x - 1 \text{ if } x \ge 0 \tag{1}$$

$$= ax + b \text{ if } x < 0 \tag{2}$$

Can you give values to the real parameters a and b such that f(x) is continuous, but NOT differentiable at x = 0. Explain all your reasoning.

Continuity

Differentiability	•	
f'(x)= S e x	χ> ο	
livr ex x	₩->e ⁻	
a ≠ 0		
=> b=0 A	a € R-50	, ,

Question 3 (Q3) (20 points) Sketching the graph of a function

(a) (20 points) Let:

$$f(x) = \tan x = \frac{\sin(x)}{\cos(x)}$$

- 1. Determine the domain of f. Is f continuous on its domain? Why?
- 2. Compute the first derivative of f. Determine from this derivative for what values of x the function f is increasing or decreasing. Does it have local minimum(s), maximum(s)? If yes, at which values of x?
- 3. Compute the second derivative of f. Determine from this derivative for what values of x the function f is convex (concave up) or concave (concave down). Does it have inflection points? If yes, at which values of x?
- 4. Find if f has vertical, horizontal or oblique asymptotes.
- 5. Is f even? Is f odd? Why?
- 6. Sketch the graph of f based on your previous answers, and show the properties found in your previous answers in the graph.

(b) cosx >0

(b)	(7 points) Evaluate the integral of the following piecewise defined function:
	$\int_{1}^{4} x^2 - 5x + 6 dx$
	J_1 '
	on 5 (Q5) (12 points) uences, Series
(a)	(5 points) Find the sum of the following series or show it diverges to infinity:
	$\sum_{k=0}^{\infty} \frac{2^{k+3}}{e^{k-3}}$
	~

(b)

(7 points) Determine if the given series converges or diverges using an appropriate test.
X
$\sum_{n=1}^{\infty} \left \sin \frac{1}{n^2} \right $
$\sum_{n=1}^{\infty} \left \sin \frac{1}{n^2} \right $ You can use the p-series or geometric series for comparison.
<i>10</i> —1
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.

Question 6 (Q6) (13 points)

Differe	ntial	$\mathbf{E}\mathbf{a}$	uati	ons

(y(-1)=0)	the solution valid?	$\begin{cases} y' = x^{-2} - x^{-3} \\ y(-1) = 0 \end{cases}$	
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$		(y(-1) = 0	
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
$\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$		ution $y = y(x)$ to the given initial value	e problem. On what interva
	the solution valid:	$y'' = \cos x$	
		$\begin{cases} y(0) = 0 \end{cases}$	
		y'(0) = 1	
		(- (<i>y</i>	

(b)	(6 points) If $z = f(x, y)$ where $x = 2s + 3t$, $y = 3s - 2t$, find
` ′	$\partial^2 z$
	$rac{\partial \widetilde{z}}{\partial s \partial t}$

Question 8 (Q8) (10 points) Double Integrals

(a)	(5 1)	points)	Evaluate	the	double	integral	by	iteration:
-----	-------	---------	----------	-----	--------	----------	----	------------

$\int \int_{R} (x^2 + y^2) dA,$	where R is the rectangle $0 \le x \le a, 0 \le y \le b$

• •	• •	 ٠.	 •	 	٠.	•	 	•	 ٠.	•	٠.	•	 	•	 •					•		•	 •	 •			٠.	•	 •	 •	 ٠.	•		 •	 •	 ٠.	•	•
		 	•	 	٠.	•	 	•	 ٠.		٠.	•	 	•	 •		•	•	٠.	•					 •			•		 •	 	•			 •	 	•	
		 ٠.	 •	 	٠.	•	 	•	 ٠.		٠.		 				•			•										 •	 					 		
		 		 	٠.		 		 				 																	 •	 	•				 		
		 	 •	 	٠.		 		 ٠.				 						٠.								٠.			 •	 					 		
		 		 		•	 		 				 																	 •	 					 		
		 		 			 		 				 																	 •	 					 		
		 		 			 		 				 																	 •	 					 		
		 		 			 		 				 																	 •	 					 		

(b) (5 points) Evaluate the double integral by iteration:

$$\int_0^2 \int_0^y y^2 e^{xy} dx dy$$

Student name:			
Student	ID:	Page 12 of 15	Final Exam Calculus 2021 - all materia
		• • • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •	

Page 13 of 15Final Exam Calculus 2021 - all material

Student name: Student ID:

Final Exam Calculus 2021 - all material

Student name: Student ID:

Page 14 of 15

Page 15 of 15 Final Exam Calculus 2021 - all material

Student name: Student ID: