This exam contains 5 pages, 5 questions for the total of 36 points. On average, you will have 1.25 minutes for each point. Give your answers in the spaces provided on the question sheets.

Name:	Date of birth:
Class:	.Student ID:

For Examiner's Use

Question:	1	2	3	4	5	Total
Points:	6	4	10	7	9	36
Score:						

Formulae

Data	
speed of light in free space	$c = 3.00 \times 10^8 \mathrm{ms^{-1}}$
permeability of free space	$\mu_0 = 4\pi \times 10^{-7} \mathrm{Hm^{-1}}$
permittivity of free space	$\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{F}\mathrm{m}^{-1}$
	$(\frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \mathrm{mF^{-1}})$
elementary charge	$e = 1.60 \times 10^{-19} \mathrm{C}$
the Planck constant	$h = 6.63 \times 10^{-34} \text{Js}$
unified atomic mass unit	$1 u = 1.66 \times 10^{-27} kg$
rest mass of electron	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
rest mass of proton	$m_{\rm p} = 1.67 \times 10^{-27} \rm kg$
molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
the Avogadro constant	$N_{\rm A} = 6.02 \times 10^{23} \rm mol^{-1}$
the Boltzmann constant	$k = 1.38 \times 10^{-23} \mathrm{J}\mathrm{K}^{-1}$
gravitational constant	$G = 6.67 \times 10^{-11} \mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$
acceleration of free fall	$g = 9.81 \mathrm{m}\mathrm{s}^{-2}$

Tormalac	
uniformly accelerated motion	$s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$
work done on/by a gas	$W = p\Delta V$
gravitational potential	$\phi = -\frac{Gm}{r}$
hydrostatic pressure	$p = \rho g h$
pressure of an ideal gas	$\rho = \frac{1}{3} \frac{Nm}{V} \langle c^2 \rangle$
simple harmonic motion	$a = -\omega^2 x$
velocity of particle in s.h.m.	$v = v_0 \cos \omega t$ $v = \pm \omega \sqrt{(x_0^2 - x^2)}$
Doppler effect	$f_{\rm o} = \frac{f_{\rm s} v}{v \pm v_{\rm s}}$
electric potential	$V = \frac{Q}{4\pi\varepsilon_0 r}$
capacitors in series	$1/C = 1/C_1 + 1/C_2 + \dots$
capacitors in parallel	$C = C_1 + C_2 + \dots$
energy of charged capacitor	$W = \frac{1}{2} QV$
electric current	I = Anvq
resistors in series	$R = R_1 + R_2 + \dots$
resistors in parallel	$1/R = 1/R_1 + 1/R_2 + \dots$
Hall voltage	$V_{H} = \frac{BI}{ntq}$
alternating current/voltage	$x = x_0 \sin \omega t$
radioactive decay	$x = x_0 \exp(-\lambda t)$
decay constant	$\lambda = \frac{0.693}{t_{\frac{1}{2}}}$

1.	A boy whirls a stone in a horizontal circle at height $1.5\mathrm{m}$ aboacceleration of $150\mathrm{ms^{-2}}$. The string breaks, and the stone figround after traveling a horizontal distance of $8.0\mathrm{m}$.				3]
	What is the radius of the orbit during the circular motion of the	e stone?	?		
	• • • • • • • • • • • • • • • • • • • •				
	• • • • • • • • • • • • • • • • • • • •				
	• • • • • • • • • • • • • • • • • • • •				
	• • • • • • • • • • • • • • • • • • • •				
2.	Fig. 2.1 depicts the motion of a particle moving along an x axis figure's vertical scaling is set by $x_s = 6.0 \mathrm{m}$. Determine the initi			on. The [4	1]
		x (1	m)		
		x_s	,		
		0	1 2	t (s)	
		•	D: 0.1		
			Fig. 2.1		

Page 1 of 5 [Turn over 3. In Fig. 3.1, a constant horizontal force \vec{F}_a is applied to block A, which pushes against block B with a 20.0 N force directed horizontally to the right. In Fig. 3.2, the same force is applied to block B; now block A pushes on block B with a 10.0 N force directed horizontally to the left.

10 p

Fa

В

Α

Fig. 3.1

Fig. 3.2

The blocks have a combined mass of $12.0\,\mathrm{kg}$. Friction is negligible.

(\mathbf{a})	Determine the magnitude of the acceleration of the system in Fig. 3.1.	[6]
(\mathbf{b})	Calculate the magnitude of the force $\vec{\mathbf{F}}_{\mathrm{a}}$.	[1]

Page 2 of 5

(\mathbf{c})	i.	Define momentum of an object.	[1]
	ii.	State the first theorem about momentum (second form of Newton's second law of motion).	[2]

Page 3 of 5 [Turn over

1 .				7 p
((\mathbf{a})	i.	State what is meant by gravitational potential at a point.	[2]
		ii.	Suggest why, for small changes in height near the Earth's surface, gravitational potential is approximately constant.	[2]
(,		e Moon may be considered to be a uniform sphere with a diameter of 3.5×10^3 km and a ss of 7.4×10^{22} kg.	[3]
			neteor strikes the Moon and, during the collision, a rock is sent off from the surface of the on with an initial speed v .	
			uming that the Moon is isolated in space, determine the minimum speed of the rock such tit does not return to the Moon's surface. Explain your working.	
			$minimum\ speed = \dots \dots m\ s^{-1}$	

Page 4 of 5 [Turn over

5.	5. Early test flights for the space shuttle used a "glider" (mass of $980\mathrm{kg}$ including pilot). After a horizontal launch at $480\mathrm{km}\mathrm{h}^{-1}$ at a height of $3500\mathrm{m}$, the glider eventually laspeed of $210\mathrm{km}\mathrm{h}^{-1}$.	anded at a
	(a) What would its landing speed have been in the absence of air resistance?	[4]
	(b) What was the average force of air resistance exerted on it if it came in at a constant of 12° to the Earth's surface?	glide angle [5]

Page 5 of 5 [End of exam]