ELECTROMAGNETISMO

Patricio Cordero S.

Departamento de Física

Facultad de Ciencias Físicas y Matemáticas

Universidad de Chile

versión 27 de junio de 2002

Índice general

		0.0.1. Uni	dades .						٠		•			٠				9
1.	Elect	rostática y	/ Dieléc	tricos	i													11
	1.1.	Ley de Cou	ılomb .															11
	1.2.	Campo Elé	ctrico de	e Fuen	ites C	omp	uest	as										
		Principio d	e Superp	osició	ón .											• •		12
	1.3.	Ley de Gau	ISS						٠		•							14
	1.4.	Potencial E																16
	1.5.	Dipolo Eléc	ctrico y	Expan	sión ľ	Multi	pola	ır .	٠				•		•			18
		1.5.1. Exp	ansión i	multip	olar				٠				•		•			19
	1.6.	Generalidae	des sobre	e Dielé	éctrico	os .										• •		20
	1.7.	Medios Pol	arizables	3					٠		•							21
	1.8.	Desplazam																23
	1.9.	Dieléctricos	s Lineale	s, Isót	tropos	з у с	omu	nme	ent	e								
		Homogéne	os													• •		25
	1.10.	Condicione	s de Bor	de .												• •		27
	1.11.	Problemas							ė		•		•					29
2.	Electrostática y Conductores 33																	
		Conductore							٠				•					33
		2.1.1. Ecu																36
	2.2.	Energía Ele	ctrostát	ica														37
		_	ergía en															37
		2.2.2. Ene	ergía en	térmir	nos de	e los	cam	pos	; .									38
	2.3.	Condensad																39
	2.4.	Energía y F	uerzas e	entre (Condi	ıctor	es C	arg	ado	os .								41
	2.5.	Integración																44
		2.5.1. Cas	o unidin	nensio	nal .								•					44
		2.5.2. Din	nensione	s may	ores				ė				•		•			44
	2.6	Problemas																46

3.	Cori	rientes Continuas	49
	3.1.	Generalidades Sobre Corrientes	49
	3.2.	Corrientes Continuas y Ley de Ohm	52
	3.3.	Fuerza Electromotriz y Efecto Joule	56
	3.4.	Circuitos y Leyes de Kirchhoff	58
	3.5.	Problemas	61
4.	Mag	gnetostática	63
	4.1.	Corrientes y Campo Magnético	63
			63
		•	63
			64
	4.2.	•	65
			65
		ightharpoonup	67
			68
	4.3.	Ley Circuital de Ampère	68
	4.4.	Fuerza magnética	70
	4.5.	-	72
	4.6.	Dipolos Magnéticos	73
	4.7.	Problemas	75
		Tropicinas	
5.	Pro	piedas Magnéticas de la Materia	77
	5.1	·	77
	5.2.		81
	5.3.		82
	5.4.		83
	5.5.	• •	84
	5.6.	•	85
	0.0.	<u> </u>	85
			86
		• •	87
		5.6.4. Ejemplo 4	87
	5.7	3 1	88
	J.1.	Troblemas	OC
6.	Indu		89
	6.1.	,	89
		, ,	91
			92
		6.1.3. Ejemplo básico	93

		6.1.4.	Otros ejemplos	94
		6.1.5.	Nueva ley de circuitos	95
		6.1.6.	No hay diferencias de potencial	96
		6.1.7.	En la práctica	97
	6.2.	Autoind	lucción	98
		6.2.1.	Circuito LC	98
		6.2.2.	Circuito RL	100
	6.3.	Inducció	ón mutua	101
		6.3.1.	Ejemplo básico de inducción mutua	102
			Coeficiente de acoplamiento	
		6.3.3.	Un transformador	104
		6.3.4.	La "caida" en una inductancia	105
		6.3.5.	Dos circuitos acoplados	105
	6.4.	Potencia	a y energía magnética	106
	6.5.	La corri	ente de desplazamiento y	
		las ecua	ciones de Maxwell	108
	6.6.	Problem	nas	110
_	_			115
7.			terna e Impedancias	115
	7.1.		transitorio	
	7.2.	· · · · · · ·	ncias	
	7.3.		a disipada en corriente alterna	
	7.4.	Problem	nas	120
8.	Ecua	aciones (de Maxwell y ondas	123
	8.1.	Ecuacio	nes de Maxwell y potenciales	123
	8.2.		ones de Borde	
	8.3.		electromagnéticas en medios neutros	
		8.3.1.	La ecuación de onda	125
		8.3.2.	La onda ideal	126
			Longitud de penetración	
	8.4.		olanas en medios aislantes y neutros	
		·-	Polarización	
		8.4.2.	Energía y flujo de ella	131
	8.5.		n y refracción	
			Ángulos	
		8.5.2.	Conservación de la energía	
			Amplitudes	
		8.5.4.	Reflexión total en una superficie conductora perfecta	137

Α.	. Operadores Diferenciales							
	A.1. Los conceptos de gradiente, divergencia y rotor	139						
	A.2. Los Operadores en Coordenadas Curvilíneas							
	A.3. Expresiones Útiles	142						
В.	Condiciones de Borde en Electromagnetismo	143						
C.	Unidades y Constantes	145						