# Assignment 4

Sangeeta Yadav (15318)

April 4, 2022

All the source codes are available here

## 1 Ques 1

In this question we implement a toy version of JPEG. The steps to implement are:-

- Read the input image and cast it into double.
- Transform: Compute an 8x8 discrete cosine transform (DCT) for every non-overlapping block in the input grey scale image.
- Quantization: Used the same quantization matrix as mentioned in the question.
- Lossless source coding: Use the same table as mentioned in the question to encode the quantized index corresponding to each DCT coefficient.

The input is 256x256 size 8-bit gray scale image. Therefore the size of the image is 524288 bits. **Lossless source coding:-** For the lossless source coding of an input x, based on the examples given in the table, the following logic was used.

- The coded bit will be zero for x = 0
- If  $2^{n-1} < +|x| <= 2^n 1 \forall x \neq 0$ : code = n times '1' then 0 then x converted into n bits code with max(x) = n times '1' and min(x) = n times '0'

### 1.1 With quantization

For [a, b, c] = [10, 40, 20] and Quantizing the DCT coefficients using above mentioned methods, the results are shown below. CR(compression ratio) is given by bit-length of input uncompressed image divided by bit length of compressed image.

Table 1: Results

| Parameter                  | Values             |
|----------------------------|--------------------|
| Input filesize(in bits)    | 521920             |
| Output file size (in bits) | 100918             |
| MSE                        | 42.42529296875     |
| CR                         | 5.1717235775580175 |

The reconstructed image with and without quantization are shown below:



Figure 1: Original gray scale image



Figure 2: Reconstructed image with quantization

## 1.2 Without quantization





Figure 3: Reconstructed image with quantiza-Figure 4: Reconstructed image without quantion  ${\it tization}$ 

Table 2: Compare the quality of image compression for with and without quantization

|                           | With Quantization  | Without quantization |
|---------------------------|--------------------|----------------------|
| Input filesize (in bits)  | 521920             | 521920               |
| Output file size(in bits) | 100918             | 353276               |
| MSE                       | 42.42529296875     | 0.302584201097488    |
| CR                        | 5.1717235775580175 | 1.4773717999524452   |

Table 3: Minimum MSE

| Parameter             | Value            |
|-----------------------|------------------|
| MSE                   | 32.8125839233398 |
| [a,b,c]               | [30, 30, 50]     |
| Output size(in bits)  | 100394           |
| Output size(in bytes) | 12549.25         |

## 1.3 Optimal a, b, c



Figure 5: Reconstructed image with optimal value of [a,b,c] = [30,30,50]

## 2 Ques 2

# 2.1 Find the optimal quantization points and decision boundaries for a 2-bit scalar uniform quantizer

Part 1) Since the given pdf is symmetric around x=0, so we will consider a symmetric quantizer. We need three thresholds and 2 representation levels  $y_i$  for this. The 2- bit uniform quantizer divides the range of input data in 2 regions, the inner region  $(-x_{max}, x_{max})$  and the outer  $(-\infty, -x_{max}) \cup (x_{max}, \infty)$ . The total distortion will be the sum of distortions in these 2 regions.

$$f_X(x) = \frac{1}{6} exp(\frac{-|x|}{3})$$

$$D_{in} = 2(\int_0^d (x - y_1)^2 * f_X(x) dx + \int_d^{2d} (x - y_2)^2 * f_X(x) dx)$$

$$D_{out} = 2(\int_{x_{max}}^\infty (x - y_{max})^2 * f_X(x) dx$$

$$D_{total} = D_{in} + D_{out}$$
(1)

For calculating  $D_{in}$  and  $D_{out}$ , I have used scipy.integrate for integrating.

Inner Distortion: 
$$\left(-6.0de^{\frac{2d}{3}} + \left(0.25d^2 - 3.0d + 18.0\right)e^d - \left(0.25d^2 + 3.0d + 18.0\right)e^{\frac{d}{3}}\right)e^{-d}$$
  
Outer Distortion:  $\left(0.25d^2 + 3.0d + 18.0\right)e^{-\frac{2d}{3}}$  (2)  
Total Distortion:  $0.25d^2 - 3.0d - 6.0de^{-\frac{d}{3}} + 18.0$ 

I have differentiated the  $D_{total}$  w.r.t d, I got

$$\left(2.0d + (0.5d - 3.0)e^{\frac{d}{3}} - 6.0\right)e^{-\frac{d}{3}} \tag{3}$$

Equating this to zero, we get:

$$d(t+1) = 6 + \frac{(12 - 4d(t))}{exp(\frac{d(t)}{3})}$$
(4)

I have calculated the optimal value of d iteratively.  $d(0) = \frac{\ln(4)}{\sqrt{2}}$ . The optimal quantization pts are  $y_i = (i - 0.5) * d$  for i = 1, 2. The decision boundaries are  $x_i = i * d$  for i = 0, 1, 2

- The optimal quantization pts are: [[-1.1858],[-0.3952],[0.3952], [1.1858]]
- The decision boundaries are: [[-1.5811],[-0.7905],[0.0], [0.7905], [1.5811]]
- Distortion achieved by the optimal quantizer 12.1399



# 2.2 Find the quantizaton points and decision boundaries for a 2-bit Lloyd-Max quantizer



The final quantization pts: [-7.7189, -1.7196, 0.0,1.8433, 7.8441] The final decision boundaries: [-4.7189, -0.0622,0.0622, 4.8441] Value of distortion at optimal step size d: 3.1715

# 2.3 Compare the distortion achieved by the uniform scalar quantizer and the Lloyd-Max quantizer and explain your observation

We can see that the distortion achieved by 2-bit Lloyd-Max quantizer is very less as compared to the scalar uniform quantizer.

## 3 Ques 3

Dataset is downloaded from here as given in the assignment. Following metrics(as given in part A) on the dataset are calculated:

#### 3.0.1 Mean squared error in pixel domain

MSE between 2 images is:

$$e_{mse} = \frac{1}{MN} \sum_{n=1}^{M} \sum_{m=1}^{N} [img(n,m) - ref_{img}(n,m)]^2$$
 (5)

### 3.0.2 Single scale structural similarity index(SSIM)

SSIM is used for measuring the similarity between two images. The SSIM index is a full reference metric; in other words, the measurement or prediction of image quality is based on an initial uncompressed or distortion-free image as reference.

#### 3.0.3 Learned perceptual image patch similarity metric (LPIPS)

Higher means more different. Lower means more similar.

### 3.1 Spearman rank order correlation coefficient

Spearman's correlation measures the strength and direction of monotonic association between two variables. It takes values between 1 and -1. The sign of the Spearman correlation indicates the direction of association between X (the independent variable) and Y (the dependent variable). If Y tends to increase when X increases, the Spearman correlation coefficient is positive. If Y tends to decrease when X increases, the Spearman correlation coefficient is negative. A Spearman correlation of zero indicates that there is no tendency for Y to either increase or decrease when X increases. The Spearman correlation increases in magnitude as X and Y become closer to being perfect monotone functions of each other. When X and Y are perfectly monotonically related, the Spearman correlation coefficient becomes 1. A perfect monotone increasing relationship implies that for any two pairs of data values  $X_i$ ,  $Y_i$  and  $X_j$ ,  $Y_j$ , that  $X_iX_j$  and  $Y_iY_j$  al- ways have the same sign. A perfect monotone decreasing relationship implies that these differences always have opposite signs. We calculate the Spearman rank order correlation coefficient between human opinion score ( $blur_{dmos}$ ), MSE values and SSIM values for all images and tabulated below. Spearman rank order correlation coefficient between the dmos scores in "blur dmos" and each metric is as shown below:

Table 4: Spearman rank order correlation coefficient

| Metrics       | Correlation w.r.t $blur_{dmos}$ | p-value                |
|---------------|---------------------------------|------------------------|
| $blur_{dmos}$ | 0.999999999999998               | 0.0                    |
| MSE           | 0.6607345299952763              | 1.530215622624923e-19  |
| SSIM          | -0.9213194772476775             | 1.5504169627935235e-60 |
| LPIPS         | 0.8724137931034482              | 2.6518716703443e-46    |

#### 3.1.1 Comment on the relative performances of all the indices

LPIPS is highly correlated to human opinion whereas SSIM is negatively correlated to human opinion. Thus LPIPS is a much better metric for checking image quality.