In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import skew
from sklearn.preprocessing import StandardScaler
from scipy.cluster import hierarchy as hi
from sklearn.cluster import AgglomerativeClustering
from sklearn.model_selection import train_test_split
import warnings
warnings.filterwarnings("ignore")
```

load the dataset

In [2]:

```
df = pd.read_csv("Mall_Customers.csv")
df.head()
```

Out[2]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

In [3]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Genre	200 non-null	object
2	Age	200 non-null	int64
3	Annual Income (k\$)	200 non-null	int64
4	Spending Score (1-100)	200 non-null	int64

dtypes: int64(4), object(1)
memory usage: 7.9+ KB

In [4]:

df.describe()

Out[4]:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

In [5]:

df.corr().style.background_gradient()

Out[5]:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
CustomerID	1.000000	-0.026763	0.977548	0.013835
Age	-0.026763	1.000000	-0.012398	-0.327227
Annual Income (k\$)	0.977548	-0.012398	1.000000	0.009903
Spending Score (1-100)	0.013835	-0.327227	0.009903	1.000000

In [6]:

sns.heatmap(df.corr())

Out[6]:

<AxesSubplot:>

In [7]:

```
plt.figure(figsize=(7,7))
size=df['Genre'].value_counts()
label=['Female','Male']
color=['Red','Blue']
explode=[0,0.1]
plt.pie(size,explode=explode,labels=label,colors=color,shadow=True)
plt.legend()
plt.show()
```


In [8]:

```
plt.figure(figsize=(16,16))
sns.boxplot(data=df);
```


In [9]:

sns.pairplot(df)

Out[9]:

<seaborn.axisgrid.PairGrid at 0x19b380c6a30>

handling a outliers

```
In [10]:
def whiskers(col):
    q1=np.quantile(col,0.25)
    q3=np.quantile(col,0.75)
    iqr=q3-q1
    uw=q3+1.5*iqr
    lw=q1-1.5*iqr
    return uw, lw
In [11]:
whiskers(df["Annual Income (k$)"])
Out[11]:
(132.75, -13.25)
In [12]:
a=df[df["Annual Income (k$)"]>132.75].index
Out[12]:
Int64Index([198, 199], dtype='int64')
In [13]:
df.loc[a,"Annual Income (k$)"]=132.75
```

skew

```
In [14]:
col = df.select_dtypes("int64").columns
col
Out[14]:
```

Index(['CustomerID', 'Age', 'Spending Score (1-100)'], dtype='object')

In [15]:

```
for i in df[col]:
    print(i)
    print(skew(df[i]))

    plt.figure()
    sns.distplot(df[i])
    plt.show()
```

${\tt CustomerID}$

0.0

Age

0.48191947090957177

Spending Score (1-100) -0.04686530945553505

In [16]:

x = df.iloc[:, [3,4]]
x

Out[16]:

	Annual Income (k\$)	Spending Score (1-100)
0	15.00	39
1	15.00	81
2	16.00	6
3	16.00	77
4	17.00	40
195	120.00	79
196	126.00	28
197	126.00	74
198	132.75	18
199	132.75	83

200 rows × 2 columns

standard scaler

```
In [17]:
```

```
sc = StandardScaler()
x = sc.fit_transform(x)
```

clustering

In [18]:

```
lk = hi.linkage(x, method="ward")
ddg = hi.dendrogram(lk)
```


In [19]:

```
hc = AgglomerativeClustering(n_clusters=5)
ylabel = hc.fit_predict(x)
```

In [20]:

```
df["target"]=ylabel
```

```
In [21]:
```

```
df["target"].value_counts()

Out[21]:

2    85
1    39
0    32
4    23
3    21
Name: target, dtype: int64

In [22]:

df.head()
```

Out[22]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)	target
0	1	Male	19	15.0	39	4
1	2	Male	21	15.0	81	3
2	3	Female	20	16.0	6	4
3	4	Female	23	16.0	77	3
4	5	Female	31	17.0	40	4

classification

```
In [23]:
```

```
features = df.iloc[:, [3,4]]
y = df.iloc[:, -1]
```

```
In [24]:
```

```
xtrain, xtest, ytrain, ytest = train_test_split(x,y, test_size=0.3, random_state=1)
```

In [25]:

```
def pro(one):
    one.fit(xtrain, ytrain)
    ypred = one.predict(xtest)

    train = one.score(xtrain, ytrain)
    test = one.score(xtest, ytest)

    print(f"Training Accuracy : {train}\nTesting Accuracy : {test}\n\n")
    print(classification_report(ytest, ypred))
    return one
```

In [28]:

```
from sklearn.metrics import classification_report
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
```

In [30]:

svm=pro(SVC())

	precision	recall	f1-score	support
0	1.00	1.00	1.00	10
1	1.00	1.00	1.00	11
2	0.96	1.00	0.98	22
3	1.00	1.00	1.00	8
4	1.00	0.89	0.94	9
accuracy			0.98	60
macro avg	0.99	0.98	0.98	60
weighted avg	0.98	0.98	0.98	60

In []: