TOÁN HỌC TOÀN ĐÔ

Lê Quốc Dũng

Đường đi ngàn dặm, bắt đầu bằng một bước chân.

Lão Tử

Không thể là một nhà Toán học mà không có tâm hồn thi sĩ.

Sofia Kovalevskaya

Những thứ đích thực có giá trị không sinh ra từ tham vọng hoặc ý thức trách nhiệm đơn thuần, mà đến từ tình yêu và sự hiến dâng cho nhân loại và những điều khách quan.

Albert Einstein

Tôi tư duy nên tôi tồn tại.

René Descartes

Mục lục

Ι	Đại số						
1	Đại cương về tập hợp	10					
	1.1 Tập hợp	10					
	1.2 Toán tử trên tập hợp	11					
	1.3 Lực lượng của tập hợp	12					
2	Đại số cơ bản	14					
	2.1 Ánh xạ	14					
	2.2 Hàm số	15					
	2.3 Đồng biến và nghịch biến	17					
	2.4 Đồ thị hàm số	18					
3	Một số loại hàm số	21					
	3.1 Hàm chẵn và hàm lẻ	21					
	3.2 Hàm cộng tính	22					
	3.3 Hàm nhân tính	22					
	3.4 Hàm tuần hoàn	22					
II	Số học	24					
	·						
4	Mở đầu về số học	25					
	4.1 Phép chia Euclid	25					
	4.2 Thuật toán Euclid	26					

 $M \dot{\mathcal{U}} C L \dot{\mathcal{U}} C$ 3

	4.3	Thuật toán Euclid mở rộng $\ \ldots \ \ldots \ \ldots$	27
5	Hàn	n Euler	3 0
_	5.1		30
	5.2		31
	5.3		32
	5.4		33
	5.4	Dịnh lý Fermat nhỏ	აა
6	Hàn		35
	6.1	Hàm Möbius	35
	6.2	Tính chất hàm Möbius	36
	6.3	Công thức nghịch đảo Möbius	36
II	r ı	Toán trừu tượng	39
7	Lý t	huyết nhóm	40
•	7.1	·	$\frac{10}{40}$
	7.2		41
	–		
	7.3		42
	7.4	Normal Subgroup	43
8	Gro	up homomorphism	44
	8.1	Đồng cấu nhóm	44
	8.2	Các loại homomorphism	45
	8.3		45
9	Nhó	om hoán vị	48
	9.1	•	48
10		U	5 0
	10.1	Vành	50
			51
11	Lý t	huyết trường	53
	-		53

MŲC LŲC	4
---------	---

	Trường hữu hạn $GF(p)$	54 55
11.0	Truong nuu nan $OT(p)$	99
12 Tác	động nhóm	58
12.1	Tác động nhóm	58
12.2	Bổ đề Burnside	60
	Ví dụ bài toán đếm sử dụng bổ đề Burnside	61
12.4	Chỉ số chu trình	63
12.5	Định lý Polya	64
IV I	Dại số Boolean	68
13 Mở	đầu đại số Boolean	69
	Hàm Boolean	69
13.2	Đa thức Zhegalkin	71
13.3	Cách tìm đa thức Zhegalkin từ bảng chân trị	72
	13.3.1 Phương pháp tam giác	72
	13.3.2 Phương pháp Möbius	73
	Các hàm boolean và tính chất	74
	Trọng số của hàm boolean	75
	Biến đổi Fourier	76
13.7	Biến đổi Walsh-Hadamard	77
V H	anh học	78
14 Phé	sp biến hình	79
	Phép dời hình	79
	Phép dời hình theo vector	80
	Phép đối xứng qua tâm cố định	80
	Phép quay quanh tâm cố định	80
15 Ba	đường Conic	82
	Ellipse	82

$M \dot{U} C \ L \dot{U} C$	5
-----------------------------	---

		J F	84 85
VI	£	Dại số tuyến tính	37
16	Nhắ	c lại các khái niệm cơ bản	88
	16.1	Hạng của ma trận	88
	16.2	Tổ hợp tuyến tính	88
			89
	16.4	Cơ sở và số chiều của không gian vector	90
:	16.5	Không gian vector con	92
17]	Khô	ong gian vector	94
			94
			95
		~ ~ ~	96
VI	I '	Toán rời rạc	97
18	Qua	n hệ hai ngôi	98
	18.1	Quan hệ hai ngôi	98
			99
			00
VI	II	Giải tích 10)3
19	Giới	han 10	04
			04
			05
	19.3		06
			07
			08

 $M\dot{V}CL\dot{V}C$ 6

19.6 Cực trị		108
20 Đường cong elliptic 20.1 Mở đầu về đường cong elliptic		110 110 111
IX Tổ hợp	1	16
21 Đại cương tổ hợp 21.1 Quy tắc cộng và quy tắc nhân		
X Lời giải cho bài tập trong một số sách	1	21
22 Abstract Algebra 22.1 Groups (chương 3)	• • • •	122 122 125 126 127
23 Intro to Math-Crypto 23.1 Chapter 2		1 29 129 145 155 156
XI Lịch sử toán học	1	67
25 Euclid	1	170
26 Georg Cantor	1	172

 $M\dot{U}CL\dot{U}C$ 7

	26.1 Dẫn nhập	172 174 175
XI	II Mật mã học	178
27	AES	179
	27.1 Substitute Bytes	180
	27.1.1 Substitute Bytes	180
	27.1.2 Inverse Sub Bytes	181
	27.1.3 Ý nghĩa của Substitute Bytes	181
	27.2 Shift Rows	181
	27.2.1 Shift Rows	181
	27.2.2 Inverse Shift Rows	181
	27.2.3 Ý nghĩa	182
	27.3 Mix Columns	182
	27.3.1 Mix Columns	182
	27.3.2 Inverse Mix Columns	183
	27.3.3 Ý nghĩa	183
	27.4 Add Round Key	183
	27.4.1 Add Round Key	183
	27.4.2 Ý nghĩa	184
	27.5 Expand Key	184
	27.5.1 Expand Key	184
	27.5.2 Ý nghĩa của Expand Key	185
	27.6 Kết luận	185
2 8	Magma	187
	28.1 Key schedule	187
	28.2 Round function	188
29	Kuznyechik	191
	29.1 Mã hóa	191

$M \dot{\mathcal{U}} C \ L \dot{\mathcal{U}} C$	8

29.2 Thuật toán sinh khóa con	30	Tiny	DES							197
			-							

Phần I Đại số

Chương 1

Đại cương về tập hợp

1.1 Tập hợp

Một tập hợp (set) bao gồm các phần tử khác nhau. Để biểu diễn tập hợp ta có hai cách.

- 1. Liệt kê. Ví dụ $A = \{1, 2, 3, 4\}, B = \{a, b, c\}$
- 2. Sử dụng tính chất đặc trung. Ví dụ $A = \{a \in \mathbb{N}^*, a < 5\}.$

 $\mathring{\mathrm{O}}$ đây hai cách biểu diễn tập hợp A là giống nhau.

Định nghĩa 1.1 (Tập hợp rỗng). Tập hợp rỗng không chứa phần tử nào, ký hiệu là \emptyset .

Định nghĩa 1.2 (Tập hợp con). Xét tập hợp A. Tập hợp B được gọi là **tập hợp con** của tập A nếu mọi phần tử của B đều nằm trong A. Nói cách khác với mọi $b \in B$ thì $b \in A$. Ta ký hiệu $B \subset A$.

Như vậy, tập hợp rỗng là con của mọi tập hợp.

Dễ thấy rằng mọi tập hợp là tập hợp con của chính nó. Do đó tập con này được gọi là tập con tầm thường (trivial subset). Để ký hiệu một tập con có thể bằng tập chứa nó ta viết $B \subseteq A$. Trong

trường hợp B là tập con của A nhưng không bằng A ta có thể viết $B \subseteq A$.

1.2 Toán tử trên tập hợp

Chúng ta xem xét 3 toán tử cơ bản trên tập hợp là giao, hợp và hiệu của hai tập hợp. Để biểu diễn các toán tử này ta có thể dùng biểu đồ Venn.

Định nghĩa 1.3 (Giao của hai tập hợp). Giao của hai tập hợp A và B là tập hợp các phần tử thuộc cả A và B.

$$A \cap B = \{x : x \in A \text{ và } x \in B\} \tag{1.1}$$

Hình 1.1: Phép giao hai tập hợp

Hình 1.1 là biểu đồ Venn tương ứng của phép giao hai tập hợp. Khi giao của hai tập hợp A và B là rỗng thì ta nói hai tập rời nhau. Ký hiệu $A \cap B = \emptyset$.

Định nghĩa 1.4 (Hợp của hai tập hợp). Hợp của hai tập hợp A và B là tập hợp các phần tử thuộc A hoặc B.

$$A \cup B = \{x : x \in A \text{ hoặc } x \in B\}$$
 (1.2)

Hình 1.2 là biểu đồ Venn tương ứng của phép hợp hai tập hợp.

Định nghĩa 1.5 (Hiệu của hai tập hợp). Hợp của hai tập hợp A và B là tập hợp các phần tử thuộc A nhưng không thuộc B.

$$A \backslash B = \{ x : x \in A \text{ và } x \notin B \}$$
 (1.3)

Hình 1.3 là biểu đồ Venn tương ứng của hiệu hai tập hợp.

Hình 1.2: Phép hợp hai tập hợp

Hình 1.3: Phép hiệu hai tập hợp

1.3 Lực lượng của tập hợp

Để chỉ số lượng phần tử của một tập hợp ta dùng khái niệm lực lượng của tập hợp.

Ký hiệu lực lượng của tập hợp A là |A|.

Khi một tập hợp có vô số phần tử, ta gọi đó là tập vô hạn. Ngược lai ta gọi là tập hữu han.

Ví dụ. Các tập hợp số thông dụng \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} là các tập vô hạn. Tập hợp $A = \{1, 2, 3, 4, 5\}$ là tập hữu hạn có 5 phần tử. Ký hiệu |A| = 5.

Từ biểu đồ Venn chúng ta cũng có thể tìm được công thức tính lực lượng của tập $A \cup B$.

Dựa vào hình ta có thể suy ra công thức sau

$$|A \cup B| = |A| + |B| - |A \cap B| \tag{1.4}$$

Hình 1.4: Nguyên lý bù trừ cho hai tập hợp

Chương 2

Đại số cơ bản

2.1 Ánh xạ

Cho 2 tập hợp X và Y. Ánh xạ f biến một phần tử $x \in X$ thành một và chỉ một phần tử $y \in Y$.

Ta ký hiệu

$$f: X \to Y, \ f(x) = y$$

Khi đó, X được gọi là tập nguồn (domain) và Y là tập đích (image).

Ánh xạ có 3 loại:

- Đơn ánh (Injection): Hai phần tử khác nhau của tập nguồn cho hai ảnh khác nhau. Tức là với mọi $x_1, x_2 \in X$ mà $x_1 \neq x_2$, thì $f(x_1) \neq f(x_2)$
- Toàn ánh (Surjection): Mọi phần tử $y \in Y$ đều có ít nhất một phần tử $x \in X$ mà f(x) = y. Nói cách khác với mỗi phần tử trong Y ta đều tìm được phần tử thuộc X biến thành nó
- Song ánh (Injection): Nếu ánh xạ đó vừa là đơn ánh, vừa là toàn ánh

Nhận xét. Dựa vào định nghĩa và hình vẽ, ta có thể rút ra kết luận như sau

- Đối với đơn ánh, do mọi phần tử của X đều có ảnh ở Y, tuy nhiên có thể có phần tử ở Y không do phần tử nào của X biến thành (trong hình là 5). Do đó |X| ≤ |Y|
- Đối với toàn ánh, mọi phần tử của Y đều có nguồn gốc xuất xứ, tuy nhiên có thể có phần tử của X không biến thành y nào của Y (trong hình là e). Do đó $|X| \ge |Y|$
- Đối với song ánh, do là kết hợp giữa đơn ánh và toàn ánh, khi đó dấu đẳng thức xảy ra, |X| = |Y|

Hình 2.1: Đơn ánh

2.2 Hàm số

Khi 2 tập nguồn và đích của ánh xạ là 2 tập hợp số, ta có hàm số.

Ví dụ. Hàm số $f: \mathbb{R} \to \mathbb{R}$ với $y = f(x) = x^3 + x + 1$. Ở đây $X \equiv \mathbb{R}$ và $Y \equiv \mathbb{R}$.

Hình 2.2: Toàn ánh

Lưu ý rằng tập nguồn và đích không nhất thiết là tập hợp số cơ bản (\mathbb{Q}, \mathbb{R}) mà cũng có thể là tích Descartes của chúng.

Ví dụ. Hàm số $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ với z = f(x, y) = x + y + xy. Ở đây $X \equiv \mathbb{R}, Y \equiv \mathbb{R}$ và $Z \equiv \mathbb{R}$.

Chúng ta còn một cách gọi khác cho đơn ánh, toàn ánh, song ánh trong tiếng Anh.

đơn ánh	injection	one-to-one map
toàn ánh	surjection	onto map
song ánh	bijection	one-to-one and onto map

Bảng 2.1: Thuật ngữ tiếng Anh cho ánh xạ

Ví dụ. Hàm số $f: \mathbb{R} \to \mathbb{R}$ cho bởi $y = f(x) = x^3$ là song ánh.

Chứng minh. Ta thấy nếu $f(x_1) = f(x_2)$, tương đương $x_1^3 = x_2^3$ nên $x_1 = x_2$. Do đó f là đơn ánh.

Hình 2.3: Song ánh

Với mọi $y=x^3\in\mathbb{R}$, do căn bậc 3 luôn tồn tại nên ta có $x=\sqrt[3]{y}$. Nghĩa là luôn tồn tại x để f(x)=y với mọi $y\in\mathbb{R}$. Do đó f là toàn ánh.

Kết luân f là song ánh.

2.3 Đồng biến và nghịch biến

Định nghĩa 2.1. Xét hàm số f(x) xác định trên khoảng (a,b). Ta nói f(x) đồng biến (tăng) trên (a,b) nếu với mọi $x_1, x_2 \in (a,b)$ mà $x_1 < x_2$ ta có $f(x_1) < f(x_2)$.

Tương tự f(x) nghịch biến (giảm) trên (a,b) nếu với mọi $x_1, x_2 \in (a,b)$ mà $x_1 < x_2$ ta có $f(x_1) > f(x_2)$. Lưu ý ở các so sánh trên dấu bằng có thể xảy ra. Khi đó hàm số được gọi là tăng $kh \hat{o} ng \ nghiêm$ ngặt (hoặc giảm $kh \hat{o} ng \ nghiêm \ ngặt$).

Nếu hàm số đồng biến (hoặc nghịch biến) trên khoảng xác định nào đó thì ta nói hàm số đơn điệu trên khoảng đó.

Đồ thị của hàm số khi đồng biến sẽ đi lên (theo chiều từ trái sang phải), và đi xuống nếu nghịch biến.

Ví dụ. Khảo sát sự biến thiên của hàm số $f(x) = x^2 + 3$.

Để khảo sát sự biến thiên, một cách làm đơn giản theo định nghĩa là ta xét $x_1 < x_2$ và so sánh $f(x_1)$ với $f(x_2)$.

Ta có
$$f(x_1) - f(x_2) = x_1^2 + 3 - x_2^2 - 3 = (x_1 - x_2)(x_1 + x_2)$$

Do $x_1 < x_2$, nên với $x_1, x_2 > 0$ thì $x_1 + x_2 > 0$ và $x_1 - x_2 < 0$. Suy ra $f(x_1) - f(x_2) < 0$ và từ đó $f(x_1) < f(x_2)$. Như vậy f(x) đồng biến trên $(0, +\infty)$.

Tương tự, khi $x_1, x_2 < 0$ thì $x_1 + x_2 < 0$. Khi đó $f(x_1) > f(x_2)$ nên f(x) nghịch biến trên $(-\infty, 0)$.

Để thể hiện sự biến thiên của hàm số ta sử dụng bảng biến thiên. Đối với hàm số $y = x^2 + 3$ ở trên bảng biến thiên có dạng:

Hình 2.4: Bảng biến thiên hàm số $y = x^2 + 3$

Ta đã chứng minh được hàm số nghịch biến trên $(-\infty, 0)$ và đồng biến trên $(0, +\infty)$, giá trị f(0) = 3 nên bảng biến thiên thể hiện sự tăng giảm trên các khoảng. Dựa vào bảng biến thiên ta có thể hình dung ra dạng của đồ thị hàm số.

2.4 Đồ thi hàm số

Để biểu diễn sự phụ thuộc của biến y theo biến x, hay nói cách khác là biểu diễn hàm số y = f(x) ta có thể dùng đồ thi.

Đồ thị được vẽ trên hệ tọa độ Descartes Oxy. Bảng biến thiên cho ta thấy tính đơn điệu trên các khoảng xác định, và đồ thị sẽ cho ta thấy rõ hơn đô "cong" của những đường cong.

Ví dụ. Với hàm số $y=x^2+3$ ở trên. Đồ thị hàm số có dạng như sau:

Hình 2.5: Đồ thị hàm số $y = x^2 + 3$

Ví dụ. Với hàm số $y = \frac{1}{x}$. Ta thấy rằng hàm số không xác định tại x = 0. Khảo sát sự biến thiên như bên trên ta thấy hàm số nghịch biến ở 2 khoảng xác định là $(-\infty,0)$ và $(0,+\infty)$. Đồ thị hàm số có dạng như sau:

Hình 2.6: Đồ thị hàm số $y = \frac{1}{x}$

Từ đồ thị của 2 hàm số trên ta thấy rằng mặc dù cùng là nghịch biến trên $(-\infty,0)$ nhưng nghịch biến của $y=x^2+3$ nhìn "nhẹ nhàng" hơn. Trong khi đồ thị $y=\frac{1}{x}$ thì ban đầu "nhẹ nhàng", sau thì như "rơi tự do".

Chương 3

Một số loại hàm số

Một số hàm số có tính chất đặc biệt giúp chúng ta tiết kiệm công sức trong chứng minh, tính toán.

3.1 Hàm chẵn và hàm lẻ

Xét hàm số y = f(x) xác định trên miền D có tính đối xứng, nghĩa là với mỗi phần tử dương x thì có phần tử âm -x hoặc ngược lại. Khi đó

Định nghĩa 3.1. Hàm số y = f(x) được gọi là hàm số chẵn nếu với mọi $x \in D$ ta có f(-x) = f(x).

Ví dụ như hàm số $y=x^2+3$ ở trên là một hàm chẵn vì với mọi $x\in\mathbb{R},\,f(x)=x^2+3=(-x)^2+3=f(-x).$ Dễ thấy rằng hàm chẳn đối xứng qua trục tung. Dựa vào tính chất này, trong lúc khảo sát hoặc tính toán đôi khi ta chỉ cần quan tâm một bên trục tung, bên kia tương tự (tính tích phân chẳng hạn).

Định nghĩa 3.2. Hàm số y = f(x) được gọi là hàm số lẻ nếu với mọi $x \in D$ ta có f(-x) = -f(x).

Ví dụ như hàm số $y=\frac{1}{x}$ ở trên là một hàm lẻ vì với mọi $x\in (-\infty,0)\cup (0,+\infty), \ f(-x)=\frac{1}{-x}=-\frac{1}{x}=-f(x).$ Dễ thấy rằng hàm lẻ đối xứng qua gốc tọa độ O.

3.2 Hàm cộng tính

Xét hàm số y = f(x) xác định trên miền D.

Định nghĩa 3.3. Hàm số y = f(x) được gọi là cộng tính nếu với mọi $x, y \in D$ ta có f(x + y) = f(x) + f(y).

Ví dụ. Hàm số y = 2x trên \mathbb{R} là hàm cộng tính vì với mọi $x, y \in \mathbb{R}$, ta có f(x+y) = 2(x+y) = 2x + 2y = f(x) + f(y).

Hàm cộng tính có vai trò quan trọng trong giải tích, sẽ được trình bày ở phần Giải tích phía sau.

3.3 Hàm nhân tính

Tương tự hàm cộng tính, ta định nghĩa hàm nhân tính.

Định nghĩa 3.4. Hàm số y = f(x) được gọi là hàm nhân tính nếu với mọi $x, y \in D$ ta có $f(xy) = f(x) \cdot f(y)$.

Hàm nhân tính quan trọng được sử dụng trong số học là phi-hàm Euler về số lượng các số nguyên tố cùng nhau với số nguyên dương n. Hàm Euler được trình bày ở phần Số học. Nếu một hàm số học là nhân tính thì chúng ta chỉ cần quan tâm giá trị của hàm số đó tại các số nguyên tố là đủ.

3.4 Hàm tuần hoàn

Xét hàm số y = f(x) xác định trên miền D.

Định nghĩa 3.5. Hàm số y = f(x) được gọi là hàm tuần hoàn nếu tồn tại số T sao cho f(x+T) = f(x) với mọi $x \in D$.

Nói cách khác, hàm số sẽ lặp lại sau một đoạn nhất định.

Số T nhỏ nhất thỏa mãn f(x+T)=f(x) được gọi là **chu kỳ** của hàm tuần hoàn. Vì sao lai là nhỏ nhất?

Ta thấy rằng, nếu f(x+T)=f(x) với mọi $x\in D$, ta thay x bởi x+T thì thu được f(x+T+T)=f(x+T), hay f(x+2T)=f(x+T). Suy ra f(x+2T)=f(x+T)=f(x). Như vậy thì sau 2T hàm số cũng lặp lại đúng trạng thái đó. Tương tự cho 3T, 4T, Nên số T nhỏ nhất thỏa mãn đẳng thức f(x+T)=f(x) sẽ là chu kỳ.

Ví dụ. Hàm số $y=\sin(x)$ là hàm tuần hoàn với chu kỳ $T=2\pi$. Do đó chúng ta chỉ cần khảo sát hàm số trong khoảng $(-\pi,\pi)$ thôi là đủ.

Phần II Số học

Chương 4

Mở đầu về số học

Số học xuất hiện từ xa xưa, từ những bước đi đầu tiên của con người. Tuy nhiên số học lại mang vẻ bí ẩn khó tưởng, sự phức tạp vượt ra phạm vi số học. Nhà toán học vĩ đại Gauss từng nói Toán học là vua của các môn khoa học, và số học là nữ hoàng. Hay một trong 23 bài toán thế kỷ của Hilbert về sự phi mâu thuẫn của số học, người ta đã chứng minh được rằng không thể chứng minh sự phi mâu thuẫn của số học chỉ bằng các lý thuyết về số học.

4.1 Phép chia Euclid

Đây là nền tảng, cơ sở của số học. Từ khi biết tới phép chia hai số nguyên, ta có thể tìm thương và số dư. Nói theo toán học, nếu ta có 2 số nguyên dương a và b, thì tồn tại cặp số q, r sao cho a=qb+r với 0 < r < b.

Khi đó, a gọi là số bị chia, b gọi là số chia, q là thương (q trong quotient) và r là số dư (r trong remainder).

Đặc biệt là sự tồn tại của cặp số q và r là duy nhất. Thật vậy, nếu ta giả sử tồn tại 2 cặp số (q_1, r_1) và (q_2, r_2) đều thỏa đẳng thức

trên, nghĩa là

$$a = q_1b + r_1, \quad a = q_2b + r_2$$

Trừ 2 đẳng thức vế theo vế ta có $(q_1-q_2)b+(r_1-r_2)=0$. Tương đương $(r_2-r_1)=(q_1-q_2)b$, mà $0\leq r_1, r_2< b$ nên $-b< r_2-r_1< b$. Như vậy chỉ có thể xảy ra trường hợp $r_2-r_1=0$ hay $r_2=r_1$, kéo theo $q_1=q_2$.

4.2 Thuật toán Euclid

Dựa trên phép chia Euclid, ta có một thuật toán hiệu quả để tìm ước chung lớn nhất giữa hai số a và b.

Ký hiệu $\gcd(a,b)$ là ước chung lớn nhất của a và b. Chúng ta thực hiện đệ quy như sau:

$$\gcd(a,b) = \begin{cases} a, & \text{n\'eu} \, b = 0\\ \gcd(b,a \bmod b), & \text{n\'eu} \, b \neq 0 \end{cases}$$

Điểm quan trọng ở thuật toán Euclid là thuật toán chắc chắn sẽ dừng sau một số hữu hạn bước, và kết quả sẽ là ước chung lớn nhất của 2 số a và b.

Chứng minh. Đặt $r_0=a$ và $r_1=b$. Theo thuật chia Euclid ta có các số q_0 và r_2 sao cho $r_0=r_1q_0+r_2$ với $0\leq r_2< r_1$. Thuật toán Euclid hoạt động như sau:

$$r_0 = r_1 q_0 + r_2$$

$$r_1 = r_2 q_1 + r_3$$

$$r_2 = r_3 q_2 + r_4$$

$$\dots = \dots$$

$$r_i = r_{i+1} q_i + r_{i+2}$$

$$\dots = \dots$$

$$r_k = r_{k+1} q_k + 0$$

$$r_{k+1} = 0$$

Ta thấy rằng ở mỗi bước, r_{i+2} luôn nhỏ hơn r_{i+1} . Do đó cuối cùng sẽ bằng 0, và khi đó ta có ước chung lớn nhất.

4.3 Thuật toán Euclid mở rộng

Định nghĩa 4.1 (Phương trình Diophantos). Cho trước các số nguyên a, b và c. Phương trình Diophantus là phương trình có dạng

$$ax + by = c$$

với x, y là các số nguyên.

Ví dụ. Giải phương trình 5x + 3y = 1.

Ta có $y=\frac{1-5x}{3}=\frac{1-2x-3x}{3}=\frac{1-2x}{3}-x$. Như vậy nếu $y\in\mathbb{Z}$ thì $\frac{1-2x}{3}\in\mathbb{Z}$, nghĩa là 1-2x chia hết cho 3. Vậy 1-2x=3k với $k\in\mathbb{Z}$.

Tiếp tục, 1-2x=3k, suy ra $x=\frac{1-3k}{2}=\frac{1-k-2k}{2}=\frac{1-k}{2}-k$. Do x nguyên nên tương tự $\frac{1-k}{2}$ cũng nguyên, hay 1-k=2t, tương đương với k=1-2t.

Thay ngược lại ta có $x = \frac{1-3k}{2} = \frac{1-3(1-2t)}{2} = -1+3t$. Tiếp tục thay vào để tìm y thì $y = \frac{1-5x}{3} = \frac{1-5(-1+3t)}{3} = 2-5t$.

Như vậy nghiệm của phương trình là tất cả các nghiệm (x,y) mà $x=-1+3t,\ y=2-5t$ với $t\in\mathbb{Z}.$

Ở đây chúng ta đã thực hiện phép chia có dư liên tiếp để tìm nghiệm. Nói cách khác ta đã thực hiện thuật toán Euclid ở bên trên để làm giảm độ phức tạp ở mỗi bước giải. Tổng quát ta có thuật toán Euclid mở rộng để tìm ước chung lớn nhất $\gcd(a,b)$ của hai số a,b, và **một** nghiệm của phương trình $ax+by=\gcd(a,b)$.

Ở ví dụ trên, ta thấy rằng (-1,2) là một nghiệm của phương trình 5x+3y=1. Khi đó ta có thể suy ra tất cả nghiệm (họ nghiệm) của phương trình có dạng (-1+3t,2-5t) với $t\in\mathbb{Z}$.

 $\mathring{\text{O}}$ thuật toán trên, r_0 , r_1 và r_2 hoạt động như thuật toán Euclid chuẩn. $\mathring{\text{O}}$ mỗi bước q là thương của phép chia hai số nguyên và ta sử

Algorithm 1 Thuật toán Euclid mở rộng

```
Require: a, b \in \mathbb{Z}

Ensure: \gcd(a, b), x, y

r_0 \leftarrow a, r_1 \leftarrow b, r_2 \leftarrow 0

x_0 \leftarrow 1, x_1 \leftarrow 0, x_2 \leftarrow 0

y_0 \leftarrow 0, y_1 \leftarrow 1, y_2 \leftarrow 0

while r_1 \neq 0 do

q \leftarrow r_0 \text{ div } r_1

r_2 \leftarrow r_0 - q * r_1, r_0 \leftarrow r_1, r_1 \leftarrow r_2

x_2 \leftarrow x_0 - q * x_1, x_0 \leftarrow x_1, x_1 \leftarrow x_2

y_2 \leftarrow y_0 - q * y_1, y_0 \leftarrow y_1, y_1 \leftarrow y_2

end while

return r_0, x_0, y_0
```

dụng q đó để tính x_0 và y_0 mới. Kết quả cuối cùng (r_0, x_0, y_0) lần lượt là ước chung lớn nhất, và hai số x, y thỏa mãn $ax_0 + yb_0 = r_0$.

Tại sao chúng ta lại có $(x_0, x_1) = (1, 0)$ và $(y_0, y_1) = (0, 1)$? Nói cách khác, làm sao biết thuật toán hoạt động đúng?

Mục đích của chúng ta là tìm các số (x,y) sao cho $ax + by = \gcd(a,b)$. Khi đó, dựa trên thuật toán Euclid cơ bản ở trên, ta xây dựng dãy số $\{x_n\}$ và $\{y_n\}$ sao cho ở mọi bước thứ n ta đều có

$$ax_n + by_n = r_n (4.1)$$

Ta có $r_i = r_{i+1}q_i + r_{i+2}$. Từ q_i ở mỗi bước ta tính được

$$x_i = x_{i+1}q_i + x_{i+2}, \quad y_i = y_{i+1}q_i + y_{i+2}$$
 (4.2)

Thay vào 4.1 ta được

$$a(x_{i+1}q_i + x_{i+2}) + b(y_{i+1}q_i + y_{i+2}) = r_i$$
(4.3)

Tương đương với

$$(ax_{i+1} + by_{i+1})q_i + (ax_{i+2} + bx_{i+2}) = r_i$$

Mà $ax_{i+1}+by_{i+1}=r_{i+1}$ và $ax_{i+2}+by_{i+2}=r_{i+2}$. Suy ra $r_{i+1}q_i+r_{i+2}=r_n$, đúng với thuật toán Euclid chuẩn ban đầu. Nghĩa là thuật toán hoạt động đúng. Bây giờ ta cần chọn (x_0,x_1) và (y_0,y_1) vì chúng ta đã đặt $r_0=a$ và $r_1=b$. Ở bước thứ 0,

$$r_0 = a = ax_0 + by_0$$

và ở bước thứ 1,

$$r_1 = b = ax_1 + by_1$$

Đễ thấy ở bước 0 ta chọn (1,0) và ở bước 1 ta chọn (0,1) là được.

Chương 5

Hàm Euler

5.1 Hàm Euler

Định nghĩa 5.1 (Phi hàm Euler). Cho số nguyên dương n. Số lượng các số dương nhỏ hơn n và nguyên tố cùng nhau với n được ký hiệu bởi $\phi(n)$ và gọi là ϕ hàm Euler. Nghĩa là

$$\phi(n) = |\{a : (a, n) = 1\}|$$

Hàm Euler có ý nghĩa quan trọng trong lý thuyết số, công cụ giúp chúng ta giải các vấn đề về số mũ trong modulo.

Sau đây chúng ta xem xét hệ thặng dư đầy đủ và hệ thặng dư thu gọn.

Với số nguyên dương n, ta định nghĩa:

Định nghĩa 5.2 (Hệ thặng dư đầy đủ). Hệ thặng dư đầy đủ của n là tập $\{0, 1, \dots, n-1\}$.

Nói cách khác, hệ thặng dư đầy đủ của n là các số dư có thể có khi chia một số bất kì cho n.

Định nghĩa 5.3 (Hệ thặng dư thu gọn). Hệ thặng dư thu gọn của n là tập các số a mà $1 \le a < n$ và (a, n) = 1. Số lượng các số a như vậy là $\phi(n)$.

Nhận xét. Hệ thặng dư thu gọn của n gồm $\phi(n)$ phần tử là

$$\{a_1, a_2, \ldots, a_{\phi(n)}\}\$$

Nhận xét. Nếu n là số nguyên tố thì $\phi(n) = n - 1$

5.2 Tính chất hàm Euler

Nhận xét. Với (m,n)=1 thì

$$\phi(mn) = \phi(m)\phi(n)$$

Chứng minh. Ta viết các số từ 1 tới mn thành bảng như sau

Hàng r gồm các phần tử dạng rm+k với $0 \le r \le n-1$ và $1 \le k \le m$. Ta thấy rằng nếu (rm+k,m)=1 thì (k,m)=1.

Do đó trên mỗi hàng có $\phi(m)$ phần tử nguyên tố cùng nhau với m.

Tiếp theo, trên các hàng vừa tìm được, do (m,n)=1 nên để (rm+k,n)=1 thì (r,n)=1. Nghĩa là có $\phi(n)$ hàng như vậy.

Tổng kết lại, ta có $\phi(m)\phi(n)$ phần tử trong bảng nguyên tố cùng nhau với mn. Do đó có điều phải chứng minh.

Do tính chất này nên hàm Euler là hàm nhân tính.

Nhận xét. Cho số nguyên dương n. Khi đó

$$\sum_{d|n} \phi(d) = n$$

Chứng minh. Giả sử phân tích thừa số nguyên tố của n là

$$n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$$

Khi đó mỗi ước d của n đều có dạng $p_1^{f_1}p_2^{f_2}\dots p_k^{f_k}$ với $0\leq f_i\leq e_i$ với $i=1,2,\dots,k$.

Như vậy

$$\sum_{d|n} \phi(d) = \sum_{0 \le f_i \le e_i} \phi\left(p_1^{f_1} p_2^{f_2} \dots p_k^{f_k}\right) = \phi\left(p_1^{f_1}\right) \phi\left(p_2^{f_2}\right) \dots \phi\left(p_k^{f_k}\right)$$

Một dạng biểu thức đơn giản là (1+x)(1+y) = 1+x+y+xy hay với 3 biến là (1+x)(1+y)(1+y) = 1+x+y+z+xy+yz+xyz. Tổng quát cho k biến ở trên thì biểu thức tương đương với

$$\sum_{0 \le f_i \le e_i} \phi(p_1^{f_1}) \phi(p_2^{f_2}) \dots \phi(p_k^{f_k}) = (1 + \phi(p_1) + \phi(p_1^2) + \dots + \phi(p_1^{e_1})) \times (1 + \phi(p_2) + \phi(p_2^2) + \dots + \phi(p_2^{e_2})) \times \dots \times (1 + \phi(p_k) + \phi(p_k^2) + \dots + \phi(p_k^{e_k}))$$

Ở đây ta rút gọn dễ dàng với $i=1,2,\ldots,k$:

$$1 + \phi(p_i) + \phi(p_i^2) + \dots + \phi(p_i^{e_i})$$

=1 + p_i - 1 + p_i^2 - p_i + \dots + p_i^{e_i} - p_i^{e_i-1}
= p_i^{e_i}

Như vậy mỗi tổng $1+\phi(p_i)+\dots$ bằng chính $p_i^{e_i}$. Nhân chúng lại với nhau ta có lại n.

5.3 Định lý Euler

Định lý 5.1 (Định lý Euler). Cho số nguyên dương n. Với mọi số nguyên a mà (a,n)=1 thì

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

Chứng minh. Giả sử $S = \{a_1, a_2, \dots, a_{\phi(n)}\}$ là hệ thặng dư thu gọn của n. Ta sẽ chứng minh rằng nếu a là số sao cho (a, n) = 1 thì tập hợp

$$\{aa_1, aa_2, \dots, aa_{\phi(n)}\}\$$

là hoán vị của tập S.

Thật vậy, giả sử $aa_i \equiv aa_j \pmod{n}$ với $1 \leq i, j \leq \phi(n)$ và $i \neq j$. Do (a, n) = 1 nên tồn tại nghịch đảo $a' \pmod{n}$, nhân a' cho 2 vế ta còn $a_i \equiv a_j \pmod{n}$.

Nói cách khác, nếu $a_i\not\equiv a_j\pmod n$ thì $aa_i\not\equiv aa_j\pmod n.$ Suy ra tập

$$\{aa_1, aa_2, \dots, aa_{\phi(n)}\}\$$

là hoán vi của S.

Ta nhân tất cả phần tử của S thì sẽ bằng tích phần tử của tập trên

$$aa_1 \cdot aa_2 \dots aa_{\phi(n)} \equiv a_1 \cdot a_2 \dots a_{\phi(n)} \pmod{n}$$

Đặt $I = a_1 \cdot a_2 \dots a_{\phi(n)}$ thì phương trình trên tương đương với

$$a^{\phi(n)}I \equiv I \pmod{n}$$

Mà (I,n)=1 do là tích các số nguyên tố cùng nhau với n nên rút gon 2 vế ta được

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

Ta có điều phải chứng minh.

5.4 Định lý Fermat nhỏ

Định lý 5.2 (Định lý Fermat nhỏ). Cho số nguyên tố p. Với mọi số nguyên a thì

$$a^p \equiv a \pmod{p}$$

Khi
$$(a, p) = 1$$
 thì

$$a^{p-1} \equiv 1 \pmod{p}$$

Nhận xét. Khi (a,p)=1 thì định lý Fermat là hệ quả trực tiếp từ định lý Euler.

Chương 6

Hàm Möbius

August Ferdinand Möbius là nhà toán học người Đức, đóng góp nổi tiếng của ông là dải Möbius. Tuy nhiên ở đây chúng ta xem xét một hàm số học mang tên ông. Hàm Möbius đóng vai trò quan trọng trong việc tính các đại lượng liên quan tới số học.

6.1 Hàm Möbius

Định nghĩa 6.1. Hàm Möbius của số nguyên dương n được định nghĩa như sau:

$$\mu(n) = \begin{cases} 1, & \text{n\'eu } n = 1\\ (-1)^k, & \text{n\'eu } n = p_1 p_2 \dots p_k - p_i \text{ là s\'en nguyên t\'e}\\ 0, & \text{trong các trường hợp còn lại} \end{cases}$$
(6.1)

Điều này có nghĩa là, nếu n là tích của các số nguyên tố bậc 1 thì $\mu(n) = (-1)^k$ với k là số lượng số nguyên tố trong tích. Như vậy, nếu tồn tại số nguyên tố p sao cho $p^2|n$ thì $\mu(n) = 0$.

6.2 Tính chất hàm Möbius

- 1. Nếu $(n_1, n_2) = 1$ thì $\mu(n_1, n_2) = \mu(n_1)\mu(n_2)$
- 2. $\sum_{d|n} \mu(d) = 0 \text{ v\'oi } n = p_1 p_2 \dots p_k$

Chứng minh. Với tính chất 1, ta dễ thấy rằng do n_1 và n_2 nguyên tố cùng nhau nên trong cách phân tích thừa số nguyên tố của chúng sẽ chứa các số nguyên tố khác nhau. Khi đó $\mu(n_1)$ và $\mu(n_2)$ không bị phụ thuộc nhau và có thể tách thành phép nhân như trên.

Với tính chất 2, chúng ta lần lượt chọn d là tổ hợp của 0, 1, 2, ..., k số nguyên tố.

- Nếu d=1 thì $\mu(d)=1$
- Nếu $d = p_i$ thì $\mu(d) = (-1)^1 = -1$ với $i = \overline{1, k}$
- Nếu $d = p_i p_j$ với $i \neq j$ thì $\mu(d) = (-1)^2 = 1$
- Tương tự như vậy, nếu d là tích của t số nguyên tố thì $\mu(d)=(-1)^t$

Ở mỗi trường hợp trên, do d là tổ hợp của t số nguyên tố $(0 \le t \le k)$ nên số cách chọn số nguyên tố p_i ở mỗi trường hợp là C_k^t . Cộng chúng lại

$$\sum_{d|n} \mu(d) = 1 - C_k^1 + C_k^2 - \ldots + (-1)^k C_k^k = 0$$

theo nhị thức Newton. Từ đó ta có điều phải chứng minh. \Box

6.3 Công thức nghịch đảo Möbius

Giả sử ta có hai hàm f và g từ $\mathbb{N} \to \mathbb{Z}$. Khi đó hai cách biểu diễn sau là tương đương.

$$f(n) = \sum_{d|n} g(d) \Leftrightarrow g(n) = \sum_{d|n} f(d)\mu(\frac{n}{d})$$
 (6.2)

Nghĩa là nếu chúng ta có hai hàm số f và g thỏa phương trình đầu (biểu diễn f theo g) thì chúng ta cũng sẽ tìm được cách biểu diễn g theo f.

Chứng minh. Với d|n, đặt $d' = \frac{n}{d} \Rightarrow d = \frac{n}{d'}$. Suy ra $f(d) \cdot \mu\left(\frac{n}{d}\right) = f\left(\frac{n}{d'}\right) \cdot \mu(d')$. Sau đó lấy tổng lại thì

$$\sum_{d|n} f(d) \cdot \mu\left(\frac{n}{d}\right) = \sum_{d|n} f\left(\frac{n}{d'}\right) \cdot \mu(d') = \sum_{d|n} f\left(\frac{n}{d}\right) \cdot \mu(d)$$

Ở đây lưu ý rằng nếu d là ước của n thì $d' = \frac{n}{d}$ cũng là ước của n. Do đó ta hoàn toàn có thể thay thế d' bởi d trong tổng trên.

Vì
$$f(n) = \sum_{d|n} g(d)$$
 nên

$$\sum_{d|n} f\left(\frac{n}{d}\right) \cdot \mu(d) = \sum_{d|n} \mu(d) \sum_{d' \mid \frac{n}{d}} g(d')$$
 (6.3)

Dễ thấy rằng do d|n và $d'|\frac{n}{d}$ nên tồn tại k, l sao cho kd=n và $ld'=\frac{n}{d}$. Khi đó n=ldd' và kd=n. Suy ra d'|n và $d|\frac{n}{d'}$.

Tương tư như trên, ta có thể thay thế d bởi d' và ngược lại

(6.3) =
$$\sum_{d'|n} g(d') \sum_{d|\frac{n}{d'}} \mu(d)$$

mà $\sum_{a\mid p}\mu(a)=0$ nếu $p\neq 1$ và bằng 1 với p=1. (đã chứng minh ở

trên), nên từ đây suy ra

$$\sum_{d'\mid n}g(d')\sum_{d\mid \frac{n}{d'}}\mu(d)=\sum_{d'\mid n}g(d')\cdot 1 \, (\mathrm{khi}\ n=d')=g(n)$$

Tương tự ta cũng có công thức nghịch đảo Möbius đối với phép nhân

$$f(n) = \prod_{d|n} g(d) \Leftrightarrow g(n) = \prod_{d|n} f(d)^{\mu\left(\frac{n}{d}\right)}$$
 (6.4)

Liên hệ với hàm Euler

Nếu ta chọn f(n)=n và $g(n)=\phi(n)$ thì theo công thức nghịch đảo Möbius ta có $\phi(n)=\sum_{d|n}d\cdot\mu\left(\frac{n}{d}\right)$ do ta đã biết $\sum_{d|n}\phi(d)=n$

Phần III Toán trừu tượng

Chương 7

Lý thuyết nhóm

Câu chuyện bắt đầu vào một ngày khi mình vẫn còn sống ngày tháng tươi đẹp.

Cho tới khi học **lý thuyết nhóm** thì đời bớt đẹp hơn tí. Để bắt đầu mình cần hiểu nhóm là gì.

7.1 Nhóm

Định nghĩa 7.1 (Nhóm (Group)). Một tập hợp G và toán tử 2 ngôi \star trên G tạo thành một nhóm nếu:

- 1. Tồn tại phần tử $e \in G$ sao cho với mọi $g \in G$ thì $g \star e = e \star g = g$. Khi đó e được gọi là **phần tử đơn vị** của G.
- 2. Với mọi $g \in G$, tồn tại $g' \in G$ sao cho $g \star g' = g' \star g = e$. Khi đó g' được gọi là **phần tử nghịch đảo** của g.
- 3. Tính kết hợp: với mọi $a,b,c\in G$ thì $a\star(b\star c)=(a\star b)\star c.$

Định nghĩa 7.2 (Nhóm Abel). Nếu nhóm G có thêm tính giao hoán, tức là với mọi $a,b\in G$ thì $a\star b=b\star a$ thì G gọi là nhóm giao hoán hay nhóm Abel

Lý thuyết nhóm thuộc toán trừu tượng, và nó trừu tượng thật. Tuy nhiên khi học về nó mình dần hiểu hơn về cách toán học vận hành và phát triển.

Ví dụ. Xét tập hợp số nguyên \mathbb{Z} và phép cộng 2 số nguyên.

- 1. Phần tử đơn vị là 0 vì với mọi $a \in \mathbb{Z}$ thì a + 0 = 0 + a = a
- 2. Với mọi $a \in \mathbb{Z}$, phần tử nghịch đảo là -a vì a + (-a) = (-a) + a = 0
- 3. Phép cộng số nguyên có tính kết hợp do đó thỏa mãn điều kiện về tính kết hợp

Như vậy $(\mathbb{Z}, +)$ tạo thành nhóm. Lưu ý do phép cộng 2 số nguyên có tính giao hoán nên đây cũng là nhóm Abel.

Ví dụ. Xét tập hợp số hữu tỉ khác $0 \mathbb{Q}^*$ và phép nhân 2 số hữu tỉ. Ta thấy do $a, b \in \mathbb{Q}^*$ nên tích $a \cdot b$ cũng khác 0, do đó cũng thuộc \mathbb{Q}^* .

- 1. Phần tử đơn vị là 1 vì với mọi $a \in \mathbb{Q}^*$ thì $a \cdot 1 = 1 \cdot a = a$
- 2. Với mọi $a \in \mathbb{Q}^*$, phần tử nghịch đảo là $\frac{1}{a}$ vì $a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$
- 3. Phép nhân 2 số hữu tỉ có tính giao hoán do đó thỏa mãn điều kiện về tính kết hợp

Tương tự như nhóm \mathbb{Z} , +, nhóm (\mathbb{Q}^* , ·) cũng là nhóm Abel.

7.2 Nhóm con

Định nghĩa 7.3 (Nhóm con (Subgroup)). Cho nhóm (G,\star) . Tập hợp $H\subset G$ được gọi là nhóm con của G nếu với mọi $a,b\in H$ thì $a\star b\in H$

Nghĩa là toán tử \star đóng với các phần tử trong H.

Ví dụ. Xét nhóm $(\mathbb{Z},+)$ như trên. Ta xét tập con gồm các số chẵn của nó

$$2\mathbb{Z} = \{\dots, -4, -2, 0, 2, 4, \dots\}$$

Ta thấy rằng tổng 2 số chẵn vẫn là số chẵn, nghĩa là phép cộng số nguyên đóng trên $2\mathbb{Z}$. Do đó $(2\mathbb{Z}, +)$ là nhóm con của $(\mathbb{Z}, +)$.

Như vậy mọi tập hợp có dạng $n\mathbb{Z}$ đều là nhóm con của $(\mathbb{Z}, +)$.

7.3 Coset

Định nghĩa 7.4 (Coset). (tạm dịch - lớp $k\hat{e}$) Cho nhóm G và nhóm con H của G.

Coset trái của H đối với phần tử $g \in G$ là tập hợp

$$gH = \{gh : h \in H\}$$

Tương tư, coset phải là tập hợp

$$Hg = \{hg : h \in H\}$$

Từ đây nếu không nói gì thêm ta ngầm hiểu là coset trái. Ví dụ với nhóm con $2\mathbb{Z}$ của \mathbb{Z} , ta thấy rằng

- 1. Nếu $g\in\mathbb{Z}$ là lẻ thì khi cộng với bất kì phần tử nào của $2\mathbb{Z}$ ta có số lẻ
- 2. Nếu $g\in\mathbb{Z}$ là chẵn thì khi cộng với bất kì phần tử nào của $2\mathbb{Z}$ ta có số chẵn

Nói cách khác, coset của $2\mathbb{Z}$ chia tập \mathbb{Z} thành

$$0 + 2\mathbb{Z} = \{\dots, -4, -2, 0, 2, 4, \dots\}$$

$$1 + 2\mathbb{Z} = \{\dots, -3, -1, 1, 3, \dots\}$$

Trực quan mà nói, 2 coset trên rời nhau.

Nhận xét. Hai coset bất kì hoặc rời nhau, hoặc trùng nhau.

Chứng minh. Nếu hai coset rời nhau thì không có gì phải nói. Ta chứng minh trường hợp còn lại.

Giả sử $g_1H \cap g_2H \neq \emptyset$. Như vậy tồn tại $h_1, h_2 \in H$ mà $g_1h_1 = g_2h_2$.

Do $h_1^{-1} \in H$, ta có $g_1 = g_2 h_2 h_1^{-1}$, nghĩa là $g_1 \in g_2 H$.

Mà mọi phần tử trong g_1H có dạng g_1h nên $g_1h = g_2h_2h_1^{-1}h$. Do H là nhóm con của G nên $h_2h_1^{-1}h \in H$. Từ đó $g_1H \subseteq g_2H$. Tương tự ta cũng có $g_2H \subseteq g_1H$. Vậy $g_1H = g_2H$.

7.4 Normal Subgroup

Định nghĩa 7.5 (Normal Subgroup). (tạm dịch - nhóm con chuẩn tắc) Nhóm con H của G được gọi là normal subgroup nếu với mọi $g \in G$ ta có coset trái trùng với coset phải.

$$gH = Hg \ \forall g \in G$$

Nếu H là normal subgroup của G ta ký hiệu $H \triangleleft G$. Khi đó, với mọi $a,b \in G$ thì (aH)(bH) = (ab)H.

Định nghĩa 7.6 (Quotient Group). (tạm dịch - nhóm thương, hay Factor Group - nhóm nhân tử). Với nhóm G và normal subgroup của nó là H. Quotient Group được ký hiệu là G/H và được định nghĩa là tập hợp các coset tương ứng với normal subgroup H.

$$G/H = \{gH : g \in H\}$$

Ta thấy rằng điều này chỉ xảy ra nếu H là normal subgroup.

Ví dụ. Với nhóm $\mathbb Z$ và normal subgroup của nó là $2\mathbb Z$. Ta thấy $\mathbb Z/2\mathbb Z=\{0+2\mathbb Z,1+2\mathbb Z\}$

Chương 8

Group homomorphism

Đồng cấu nhóm (group homomorphism) đóng vai trò quan trọng trong lý thuyết nhóm. Nhờ nó chúng ta có thể chuyển việc tính toán trên nhóm này sang nhóm khác (thường là dễ tính toán hơn).

8.1 Đồng cấu nhóm

Định nghĩa 8.1 (Homomorphism). Xét hai nhóm (G, \star) và (H, \star) và một ánh xạ $f: G \to H$. Ánh xạ f được gọi là **homomorphism** nếu với mọi g_1, g_2 thuộc G ta có $f(g_1 \star g_2) = f(g_1) * f(g_2)$.

Do g_1 , g_2 là các phần tử thuộc G nên toán tử giữa chúng là \star . Trong khi đó $f(g_1)$, $f(g_2)$ là các phần tử thuộc H nên toán tử giữa chúng là \star .

Từ định nghĩa chúng ta có thể rút ra một số nhận xét sau:

Nhận xét. Chúng ta có một số nhận xét quan trọng sau

- 1. Gọi e_G là phần tử đơn vị của G và e_H là phần tử đơn vị của H. Khi đó $f(e_G)=e_H$
- 2. Với mọi phần tử $g \in G$, nếu g^{-1} là nghịch đảo của nó trong G thì $f(g^{-1}) = f(g)^{-1}$

Chứng minh. Việc chứng minh không quá phúc tạp.

- 1. Nếu e_G là phần tử đơn vị của G thì với mọi $g \in G$ ta có $g \star e_G = e_G \star g = g$. Ta lấy f cả 3 vế và theo định nghĩa homomorphism thu được $f(g \star e_G) = f(e_G \star g) = f(g) \Rightarrow f(g) * f(e_G) = f(e_G) * f(g) = f(g)$. Đẳng thức trên đúng với mọi $g \in G$ nên đúng với mọi f(g), suy ra $f(e_G)$ là phần tử đơn vị trong nhóm (H,*) và do đó $f(e_G) = e_H$
- 2. Từ việc tìm ra phần tử đơn vị, ta cũng chứng minh được tính chất nghịch đảo trên.

8.2 Các loại homomorphism

Tương tự như ánh xạ, chúng ta có các loại homomorphism sau

Định nghĩa 8.2 (Monomorphism). Ánh xạ được gọi là đơn cấu (monomorphism) nếu nó là ánh xạ one-to-one (đơn ánh). Nói cách khác, với mọi $g_1 \neq g_2$ và $g_1, g_2 \in G$, thì $f(g_1) \neq f(g_2)$

Định nghĩa 8.3 (Epimorphism). Ánh xạ được gọi là toàn cấu (epimorphism) nếu nó là ánh xạ onto (toàn ánh). Nói cách khác, với mọi $h \in H$ thì tồn tại $g \in G$ mà f(g) = h.

Định nghĩa 8.4 (Isomorphism). Ánh xạ được gọi là đẳng cấu (isomorphism) nếu nó là ánh xạ one-to-one và onto (song ánh). Nói cách khác, ánh xạ này vừa là đơn cấu, vừa là toàn cấu.

8.3 Hạt nhân và ảnh

Xét một homomorphism f từ nhóm (G,\star) tới nhóm (H,\star) . Ta nói

Định nghĩa 8.5 (Kernel). Hạt nhân (kernel) của f là tập hợp các phần tử của G cho ảnh là e_H , ký hiệu là Kerf. Nói cách khác

$$\operatorname{Ker} f = \{g \in G, f(g) = e_H\} \tag{8.1}$$

Như vậy $\operatorname{Ker} f$ là tập con của G.

Nhận xét. K = Ker f là normal subgroup của G.

Để chứng minh, ta thấy rằng theo định nghĩa homomorphism, với $g_1, g_2 \in K$ thì $f(g_1) = f(g_2) = e_H$.

Ta có $f(g_1 \star g_2) = f(g_1) * f(g_2) = e_H * e_H = e_H$. Như vậy $g_1 \star g_2 \in K$ nên K là nhóm con của G.

Tiếp theo để chứng minh K là normal subgroup, ta chứng minh $gKg^{-1}=K$ với mọi $g\in G$.

Do $gKg^{-1} = \{g \star k \star g^{-1} : k \in K\}$, lấy f mỗi phần tử bên trong ta có

$$f(g \star k \star g^{-1}) = f(g) * f(k) * f(g^{-1}) = f(g) * e_H * f(g^{-1}) = f(g) * f(g^{-1})$$

, mà theo tính chất của homomorphism thì $f(g^{-1}) = f(g)^{-1}$ nên $f(g\star k\star g^{-1}) = f(g)\star f(g)^{-1} = e_H$ nên $g\star k\star g^{-1}\in K$ với mọi $g\in G$, với mọi $k\in K$. Do đó $gKg^{-1}=K$ và ta có điều phải chứng minh.

Định nghĩa 8.6 (Image). Ảnh (image) của f là tập hợp tất cả giá trị nhận được khi biến các phần tử thuộc G thành phần tử thuộc H. Nói cách khác

$$Img f = \{ f(g), g \in G \}$$

$$(8.2)$$

Như vậy $\operatorname{Img} f$ là tập con của H.

Dựa trên hai khái niệm này, chúng ta có một định lý quan trọng trong lý thuyết nhóm là Định lý thứ nhất về sự đẳng cấu (First isomorphism theorem).

Định lý 8.1 (First isomorphism theorem). Với hai nhóm (G,\star) và (H,*). Xét homomorphism $f:G\to H$. Khi đó Imgf đẳng cấu (isomorphism) với nhóm thương $G/\mathrm{Ker} f$.

Chứng minh. Gọi G, H là hai nhóm và homomorphism $f: G \to H$. Đặt $K = \mathrm{Ker} f$. Ta xét biến đổi

$$\theta: \operatorname{Img} f \to G/K, f(q) \to qK$$

với $g \in G$.

Ta cần chứng minh biến đổi này là ánh xạ xác định (well-defined, nghĩa là tuân theo quy tắc ánh ánh xạ, mỗi phần tử tập nguồn biến thành **một và chỉ một** phần tử tập đích), là homomorphism, là đơn ánh và là toàn ánh.

Đầu tiên ta chứng minh ánh xạ xác định. Giả sử ta có $g_1K = g_2K$, do g_1 và g_2 thuộc cùng coset nên $g_1^{-1}g_2 \in K$, hay $f(g_1^{-1}g_2) = e_H$. Với f là homomorphism, ta có

$$f(g_1^{-1}g_2) = f(g_1^{-1})f(g_2) = f(g_1)^{-1}f(g_2) = e_H$$

Suy ra $f(g_1) = f(g_2)$. Như vậy nếu $f(g_1) = f(g_2)$ thì $\theta(f(g_1)) = \theta(f(g_2))$.

Tiếp theo ta chứng minh θ là homomorphism. Do K là normal subgroup của G nên với mọi g_1, g_2 thuộc G thì $g_1g_2K = (g_1K)(g_2K)$.

Do
$$f(g_1g_2) = f(g_1)f(g_2)$$
 nên

$$\theta(f(g_1g_2)) = g_1g_2K = (g_1K)(g_2K) = \theta(f(g_1))\theta(f(g_2))$$

Suy ra θ là homomorphism.

Để thấy với mọi $g \in G$ ta đều tìm được f(g) và gK tương ứng. Do đó θ là toàn ánh.

Để chứng minh θ là đơn ánh, giả sử $g_1K = g_2K$ ta có $g_1^{-1}g_2 \in K$ nên $f(g_1^{-1}g_2) = e_H$. Suy ra $f(g_1^{-1})f(g_2) = e_H \Rightarrow f(g_1)^{-1}f(g_2) = e_H \Rightarrow f(g_1) = f(g_2)$. Như vậy θ là đơn ánh.

Kết luận, θ là song ánh. Định lý thứ nhất về sự đẳng cấu được chứng minh. \Box

Chương 9

Nhóm hoán vị

Nhóm hoán vị đóng vai trò quan trọng trong lý thuyết nhóm cũng như nhiều hướng khác của toán học.

9.1 Nhóm hoán vi

Xét tập hợp $\{1, 2, ..., n\}$. Ta gọi S_n là tập tất cả hoán vị của tập hợp trên. Như vậy S_n có n! phần tử.

Ta ký hiệu mỗi phần tử của S_n là $\sigma = (\sigma(1), \sigma(2), \ldots, \sigma(n))$. Như vậy, lấy hoán vị gốc là $(1, 2, \ldots n)$, mỗi hoán vị đều có thể được biểu diễn bằng hai hàng như sau

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$
 (9.1)

Điều đó có nghĩa là hai cách biểu diễn sau là tương đương

$$\sigma = (\sigma(1), \sigma(2), \dots, \sigma(n)) = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$
(9.2)

Ta định nghĩa toán tử trên S_n . Với hai hoán vị σ và τ , hoán vị $\sigma \star \tau$ là vị trí của σ theo τ . Nói cách khác, nếu $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_n)$ và $\tau = (\tau_1, \tau_2, \dots, \tau_n)$ thì $\sigma \star \tau = (\sigma_{\tau_1}, \sigma_{\tau_2}, \dots, \sigma_{\tau_n})$.

Nhóm S_n và toán tử như trên tạo thành một nhóm và được gọi là **nhóm hoán vị**.

Ví dụ. Xét nhóm hoán vị S_5 .

Gọi x=(4,3,1,2,5) và y=(5,1,4,3,2). Khi đó, đặt $z=x\star y$ thì

$$z_1 = x_{y_1} = x_5 = 5,$$

$$z_2 = x_{y_2} = x_1 = 4,$$

$$z_3 = x_{y_3} = x_4 = 2,$$

$$z_4 = x_{y_4} = x_3 = 1,$$

$$z_5 = x_{y_5} = x_2 = 3$$

Như vậy $z = x \star y = (5, 4, 2, 1, 3)$.

Nhận xét. Trong một hoán vị, khi biểu diễn trên hai hàng thì thứ tự viết không quan trọng, miễn là đảm bảo i tương ứng với $\sigma(i)$ trên từng cột.

Ví dụ. Xét hoán vị $\sigma = (4, 3, 1, 2, 5)$ thuộc S_5 .

Ta có $\sigma(1)=4,\,\sigma(2)=3,\,\sigma(3)=1,\,\sigma(4)=2$ và $\sigma(5)=5.$ Như vậy

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix} = \begin{pmatrix} 3 & 4 & 5 & 1 & 2 \\ 1 & 2 & 5 & 4 & 3 \end{pmatrix}$$

Chương 10

Lý thuyết vành

10.1 Vành

Định nghĩa 10.1 (Vành (Ring)). Cho tập hợp R, trên đó ta định nghĩa 2 toán tử $c\hat{\rho}ng$ và $nh\hat{a}n$.

Khi đó, $(R, +, \times)$ tạo thành vành nếu

- (R, +) là nhóm Abel
- (R, \times) có tính kết hợp với phép nhân. Với mọi $a, b, c \in R$ thì $a \times (b \times c) = (a \times b) \times c$
- Tính phân phối của phép cộng và phép nhân. Với mọi $a,b,c\in R$ thì $(a+b)\times c=a\times c+b\times c$

Tóm lại, $(R, +, \times)$ là vành nếu nó là nhóm Abel đối với phép cộng và có tính kết hợp với phép nhân.

Lưu ý. Phép nhân ở đây không nhất thiết có phần tử đơn vị, hay phần tử nghịch đảo như trong định nghĩa nhóm. Trong trường hợp này (R, \times) gọi là semigroup (nửa nhóm).

Định nghĩa 10.2 (Vành với đơn vị - Ring with identity). Nếu có phần tử $1_R \neq 0_R \in R$ sao cho với mọi $r \in R$ ta đều có

$$1_R \times r = r \times 1_R = r$$

thì 1_R được gọi là phần tử đơn vị đối với phép nhân.

Ta thường ký hiệu 0_R là phần tử đơn vị của phép cộng (R, +) và gọi là **phần tử trung hòa**. Khi đó phần tử nghịch đảo của phép cộng gọi là **phần tử đối** và được ký hiệu là -a nếu là đối của phần tử a.

Và 1_R là **phần tử đơn vị** đối với phép nhân (R, \times) .

Định nghĩa 10.3 (Vành giao hoán - Commutative ring). Nếu ta có tính giao hoán đối với phép nhân, nghĩa là với mọi $a, b \in$ đều thỏa

$$a \times b = b \times a$$

thì ta nói là vành giao hoán (không cần nói rõ là phép nhân vì phép cộng bắt buộc phải giao hoán theo định nghĩa vành rồi).

10.2 Ideal

Định nghĩa 10.4 (Ideal). Xét vành $(R, +, \times)$. Một tập con I của R được gọi là $ideal\ trái$ nếu

- (I, +) là nhóm con của (R, +)
- với mọi $r \in R$, với mọi $x \in I$ thì $rx \in I$

Ta định nghĩa tương tự với ideal phải, khi đó $xr \in I$. Từ đây về sau nếu không nói gì thêm nghĩa là mình xét ideal trái.

Định nghĩa 10.5 (Ideal chính - Principal ideal). Nếu I = aR với a là phần tử nào đó trong R thì I được gọi là principal ideal.

Nói cách khác, nếu có một phần tử trong R "sinh" ra được I thì I là principal.

Định nghĩa 10.6 (Ideal cực đại - Maximal ideal). Nếu I là một ideal của R và không tồn tại tập con I' mà $I \subset I' \subset R$ (tập con thực thụ) thì I được gọi là maximal ideal.

Hệ quả 10.1. Xét vành số nguyên \mathbb{Z} . Khi đó mọi ideal của \mathbb{Z} đều là principal.

Chứng minh. Giả sử ideal I của \mathbb{Z} có phần tử dương nhỏ nhất là n. Theo định nghĩa của ideal thì với mọi $q \in \mathbb{Z}$ ta có $qn \in I$.

Nếu phần tử $a \in I$, theo phép chia Euclid ta có a = qn + r với $0 \le r < n$, mà $a \in I$ và $qn \in I$ nên $r = a - qn \in I$. Tuy nhiên phần tử dương nhỏ nhất thuộc I là n, do đó r = 0.

Nói cách khác mọi phần tử $a \in I$ đều có dạng qn với $q \in \mathbb{Z}$. Vậy mọi ideal đều là principal.

Hệ quả 10.2. Ideal I của \mathbb{Z} là maximal khi và chỉ khi $I=n\mathbb{Z}$ với n là số nguyên tố.

Chứng minh. Ta chứng minh chiều thuận, chiều ngược tương tự. Sử dụng phản chứng, ta giả sử n là hợp số. Khi đó $n=n_1n_2$ $(n_1 \ge n_2 > 1)$.

Khi đó $n\mathbb{Z} \subset n_1\mathbb{Z} \subset \mathbb{Z}$, suy ra ideal không phải maximal. Ta có điều phải chứng minh.

Chương 11

Lý thuyết trường

11.1 Trường

Định nghĩa 11.1 (Trường - Field). Cho tập hợp F và hai toán tử 2 ngôi trên F là phép cộng + và phép nhân ×. Khi đó $(F,+,\times)$ là trường nếu

- $(F, +, \times)$ là vành giao hoán với đơn vị
- Với mọi phần tử $f \neq 0_F$, tồn tại nghịch đảo f^{-1} của f đối với phép nhân. Nghĩa là $f \times f^{-1} = f^{-1} \times f = 1_F$

Nói cách khác, (F, \times) là nhóm Abel. Trên trường ta thực hiện được 4 phép tính cộng, trừ, nhân, chia.

Ví dụ. Tập hợp số thực $\mathbb R$ là một trường. Tập hợp các số phức $\mathbb C$ là một trường. Tập hợp các số hữu tỷ dạng $a+b\sqrt{2}$ cũng là một trường.

Những trường trên được gọi là **trường vô hạn** vì có vô số phần tử.

Ngược lại, chúng ta cũng có các **trường hữu hạn**.

Định lý 11.1. Gọi R là vành giao hoán với đơn vị. Khi đó, nếu I là ideal của R thì R/I là trường khi và chỉ khi I là maximal ideal.

Chứng minh. Ta chứng minh điều kiện cần và điều kiện đủ.

- 1. Điều kiện cần. Ta có I là maximal ideal. Ta thấy rằng $a+I \neq 0 \Leftrightarrow a \not\in I$. Vì nếu $a \in I$ thì tồn tại $-a \in I$. Theo định nghĩa vành thì aR cũng là ideal nên I+aR là ideal, mà $a \not\in I$ và $a \in I+aR$ suy ra $I \subset I+aR$. Ta lại có I là maximal nên I+aR=R, do đó tồn tại $n \in I$ và $b \in R$ sao cho n+ab=1. Tóm lại là tồn tại nghịch đảo của phép nhân, do đó R/I là trường.
- 2. Điều kiện đủ. Với R/I là trường. Ta giả sử I không là maximal ideal. Khi đó tồn tại I' sao cho $I \subset I' \subset R$. Khi đó tồn tại phần tử $a \in I'$ và $a \not\in I$ mà $a+I \neq 0$. Do đó (a+I)(b+I)=1+I suy ra tồn tại $n \in I \subset I'$ sao cho ab=1+n. Do $a,b \in I'$ nên $1 \in I'$, từ đó $1 \in R$ nên I' không phải maximal. Ta có điều phải chứng minh.

11.2 Trường hữu hạn GF(p)

Cho p là số nguyên tố. Khi đó tập hợp các số dư khi chia cho p cùng với phép công và nhân modulo p tao thành trường.

Chứng minh. Xét tập hợp các số dư khi chia cho p là

$$S = \{0, 1, \dots, p - 2, p - 1\}$$

Ta thấy rằng với mọi $a,b\in S$ thì $a+b\pmod p$ và $a\cdot b\pmod p$ đều thuộc S.

- Vì $0 + a = a + 0 = a \pmod{p}$ với mọi $a \in S$ nên 0 là phần tử đơn vi của phép công.
- Với mọi $a \in S$, ta có $(p-a) + a = a + (p-a) \equiv 0 \pmod{p}$ nên phần tử nghich đảo của a đối với phép công là $p-a \in S$.
- Phép cộng modulo có tính kết hợp
- Phép công modulo có tính giao hoán

Như vậy (S, +) là nhóm Abel.

Tiếp theo, ta thấy rằng phép cộng và nhân có tính phân phối trên modulo. Đồng thời phép nhân modulo cũng có tính kết hợp. Do đó $(S, +, \cdot)$ là vành.

- Phần tử đơn vị của phép nhân là 1
- Phép nhân modulo có tính giao hoán
- Do mọi phần tử thuộc S đều nguyên tố cùng nhau với p nên luôn tồn tại nghich đảo của phần tử khác 0 trong S

Kết luận: $(S, +, \cdot)$ là trường.

Ta thường ký hiệu trường này là GF(p) (GF là viết tắt của Galois Field để tưởng nhớ người có đóng góp quan trọng trong lý thuyết nhóm).

Trong mật mã học GF(p) thường được sử dụng vì những tính toán của 2 quá trình ngược nhau là mã hóa và giải mã phải cho ra đúng giá trị ban đầu. Nói cách khác việc tính toán không được vượt ra ngoài một tập hợp nào đó. Việc lựa chọn trường GF(p) cũng từ đó mà hiệu quả.

Tuy nhiên để đảm bảo an toàn thông tin, số nguyên tố p được chọn khá lớn (khoảng 256 bit). Việc này làm chậm tốc độ tính toán, cài đặt phức tạp (đa số các ngôn ngữ lập trình chỉ hỗ trợ kiểu dữ liệu cơ bản 2, 4, 8 byte, nên cần định nghĩa kiểu dữ liệu mới để tính toán trên 32 byte).

Chúng ta có một ý tưởng ổn áp hơn ở phần sau.

11.3 Trường hữu hạn $GF(p^n)$

Xét các đa thức với hệ số nguyên

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0$$

Ta thấy rằng phép cộng và nhân 2 đa thức tạo thành một vành giao hoán với đơn vị. Thêm nữa vành này có vô số phần tử. Ta cần một phương án để số phần tử là hữu han, và đồng thời là trường.

Với p là số nguyên tố và n là số nguyên dương. Mình xét các đa thức có bậc tối đa là n-1 với hệ số nằm trong tập hợp các số dư khi chia cho p. Như vậy mình có p^n đa thức như vậy.

Ví dụ. Với p = 3 và n = 2. Khi đó các đa thức có thể có là 0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2

Tương tự với việc modulo cho một số nguyên tố, ở đây mình xét phép cộng và nhân trên modulo một đa thức tối giản (irreducible polynomial) có bậc n (vì khi modulo một đa thức bậc bất kì cho đa thức bậc n ta có đa thức bậc nhỏ hơn n). Đồng thời hệ số của đa thức từ phép cộng và nhân cũng được modulo p (nằm trong GF(p)).

Với trường hợp p=3 và n=2 ở trên mình có thể chọn đa thức modulo là $m(x)=x^2+2x+2$. Khi đó bảng phép nhân (phép cộng khá đơn giản nên mình không viết) 2 đa thức bậc nhỏ hơn 2 trong modulo m(x) là

Ta thấy rằng bảng phép nhân đối xứng qua đường chéo chính. Điều này chứng minh phép nhân có tính giao hoán. Thêm nữa ở mỗi hàng hoặc cột khác 0 đều có 9 phần tử khác nhau.

	0	1	2	x	x+1
0	0	0	0	0	0
1	0	1	2	x	x+1
2	0	2	1	2x	2x+2
x	0	2x	x+1	2x	2x+1
x+1	0	x+1	2x+2	2x+1	2
x+2	0	x+2	2x+1	1	x
2x	0	2x	x	2x+2	x+2
2x+1	0	2x+1	x+2	2	2x
2x+2	0	2x+2	x+1	x+2	1

(a) Nửa đầu bảng nhân

	x+2	2x	2x + 1	2x+2
0	0	0	0	0
1	x+2	2x	2x + 1	2x+2
2	2x+1	x	x+2	x+1
x	1	2x+2	2	x+2
x+1	x	x+2	2x	1
x+2	2x+2	2	x+1	2x
2x	2	x+1	1	2x+1
2x+1	x+1	1	2x+2	x
2x+2	2x	2x + 1	x	2

(b) Nửa sau bảng nhân

Bảng 11.1: Bảng nhân trên $GF(3^2)$

Chương 12

Tác động nhóm

Tác động nhóm (Group Action) cho phép chúng ta đếm những cấu hình tổ hợp mà việc vét cạn rồi loại bỏ sẽ tốn nhiều công sức cũng như sai sót.

12.1 Tác động nhóm

Cho tập hợp M và nhóm G. Ta nói G tác động trái lên M với ánh xạ:

$$\alpha: G \times M \to M$$

thỏa mãn 2 tiên đề sau:

- Identity: $\alpha(e, m) = m$ với mọi $m \in M$
- Compatibility: $\alpha(g, \alpha(h, m)) = \alpha(gh, x)$

Ta thường ký hiệu $\alpha(g,m)$ bởi g(m) hay thậm chí đơn giản hơn là gm. Ký hiệu gm sẽ được sử dụng từ đây về sau.

Khi đó 2 tiên đề trên tương đương với:

• Identity: em=m với mọi $m\in M$

• Compatibility: g(hm) = (gh)m với mọi $m \in M$ và $g, h \in G$

Định nghĩa 12.1 (Stabilizer). (tạm dịch - nhóm con ổn đinh). Với phần tử $m \in M$, tập hợp các phần tử $g \in G$ mà gm = m được gọi là nhóm con ổn định của nhóm G. Ta ký hiệu

$$G_m = \{g \in G : gm = m\}$$

Định nghĩa 12.2 (Orbit). (tạm dịch - $qu\tilde{y}$ đạo) của phần tử $m \in M$ là tập hợp

$$G(m) = \{gm : g \in G\}$$

Nhận xét. Hai orbit của hai phần tử bất kì hoặc rời nhau, hoặc trùng nhau.

Chứng minh. Giả sử ta có $m_1, m_2 \in M$ mà $G(m_1) \cap G(m_2) \neq \emptyset$.

Khi đó tồn tại $g_1,g_2\in G$ để $g_1m_1=g_2m_2$. Suy ra $m_1=g_1^{-1}g_2m_2$.

Mà mọi phần tử trong $G(m_1)$ có dạng gm_1 nên $gm_1 = gg_1^{-1}g_2m_2$ nên $G(m_1) \subseteq G(m_2)$.

Chứng minh tương tự ta cũng có $G(m_2) \subseteq G(m_1)$ nên $G(m_1) \equiv G(m_2)$.

Hệ quả 12.1. Tập hợp M là giao của các orbit rời nhau. Giả sử ta có t orbit rời nhau $G(m_1), G(m_2), \ldots, G(m_t)$ thì

$$M = G(m_1) \cup G(m_2) \cup \ldots \cup G(m_t)$$

Ví dụ. Cho nhóm S_3 có 6 phần tử (1)(2)(3), (1)(2,3), (2)(1,3), (3)(1,2), (1,2,3), (1,3,2).

Xét tập hợp $M = \{1, 2, 3\}$. Khi đó, xét từng hoán vị trên, ta có:

$$G_1 = \{(1)(2)(3), (1)(2,3)\}$$

và

$$G(1)=\{1,2,3\}$$

Ta nhận thấy G(1) = G(2) = G(3), và $|G| = 6 = |G_1| \cdot |G(1)|$

Hay nói cách khác, $|G(m)| = [G:G_m]$ với G_m là stabilizer của phần tử m và $[G:G_m]$ là subgroup index của $G_m \subset G$, và bằng $\frac{|G|}{|G_m|}$ nếu là nhóm hữu hạn.

Định nghĩa 12.3. Hai phần tử $m, n \in M$ được gọi là *có quan hệ* với nhau dưới tác động của nhóm G nếu tồn tại phần tử $g \in G$ sao cho m = qn. Ta ký hiệu là $m\tilde{G}n$.

Nhận xét. Quan hệ được định nghĩa như trên là quan hệ tương đương.

 $\mathit{Chứng\ minh}.$ Ta cần chứng minh quan hệ trên có tính phản xạ, đối xứng và bắc cầu.

- 1. Tác động nhóm phải thỏa mãn em=m với mọi $m\in M.$ Do đó có tính phản xạ.
- 2. Với mọi m, n mà $m\tilde{G}n$ thì tồn tại $g \in G$ mà m = gn. Do tồn tại $g^{-1} \in G$, nhân cho 2 vế ta có $g^{-1}m = n$, nghĩa là $n\tilde{G}m$. Vậy quan hệ này có tính đối xứng.
- 3. Nếu $m\tilde{G}n$ và $n\tilde{G}p$ thì tồn tại 2 phần tử $g_1,g_2\in G$ mà $m=g_1n$ và $n=g_2p$. Suy ra $m=g_1g_2p$, tương đương $m\tilde{G}p$, do đó có tính bắc cầu.

12.2 Bổ đề Burnside

Các trạng thái khác nhau của tập hợp M có thể là tương dương nhau nếu chúng nằm trong cùng lớp tương đương dưới tác động của nhóm G.

Bổ đề Burnside cho phép chúng ta tính được số trạng thái khác nhau (hay cấu hình khác nhau) mà chúng ta dễ bị nhầm lẫn hoặc bỏ sót trong quá trình vét cạn.

Bài tập về bổ đề Burnside và định lý Polya được tham khảo tại [1].

Bổ đề 12.1 (Bổ đề Burnside). Với nhóm G tác động lên tập hợp M, ta có:

$$t_G = \frac{1}{|G|} \sum_{g \in G} |M^g|$$

trong đó, t_G là số lớp tương đương của tập M dưới tác động của nhóm G

 $|M^g|$ là số điểm bất động của tập M dưới tác động của phần tử g, nghĩa là $M^g = \{m \in M : gm = m\}$.

12.3 Ví dụ bài toán đếm sử dụng bổ đề Burnside

Ví dụ. Cho hình tứ diện đều. Ta tô 4 đỉnh của nó bằng 3 màu xanh, đỏ, vàng. Hỏi có bao nhiêu cách tô như vậy?

Ta cần lưu ý một điều, 2 cách tô là tương đương nhau (giống nhau) nếu tồn tại một phép quay các đỉnh biến cách tô này thành cách tô kia.

Hình 12.1: Phép quay trục tạo bởi trung điểm hai cạnh đối nhau

Như hình trên ta thấy nếu chọn trục quay là đường thẳng nối trung điểm 2 canh đối diên (2 điểm xanh lá) thì đỉnh trên và đỉnh

dưới đổi chỗ cho nhau (xanh và vàng), đỉnh trái và đỉnh phải đổi chỗ cho nhau (xanh và đỏ).

Ta giải bài này như sau:

Đầu tiên ta đánh số các đỉnh của tứ diện (như hình)

Hình 12.2: Đánh số hình

Ta có 3 trường hợp biến đổi sau:

<u>Trường hợp 1</u>. Giữ nguyên 1 đỉnh và trục quay là đường thẳng đi qua đỉnh đó và tâm của mặt đối diện.

Khi đó phép quay (ngược chiều đồng hồ) tương ứng hoán vị (1)(2,3,4) (quay 60 độ) và (1)(2,4,3) (quay 120 độ).

Do ta chọn 1 đỉnh cố định thì ta có 4 cách chọn, và với mỗi cách chọn đỉnh cố định ta có thể quay 2 cách nên ta có tổng là 8 hoán vị.

<u>Trường hợp 2</u>. Ta chọn trung điểm 2 cạnh đối nhau và nối lại thành trục quay như hình trong ví dụ. Khi đó tương ứng với hoán vị (1,4)(2,3).

Ta có $\frac{C_4^2}{2!} = 3$ hoán vị.

Trường hợp 3. Hoán vị đồng nhất (1)(2)(3)(4).

Tóm lại, tập hợp M ở đây là tập hợp 4 đỉnh của tứ diện, và nhóm tác động lên M là nhóm con 12 phần tử của S_4 .

Như vậy, ví dụ với hoán vị (1)(2,3,4), nếu ta muốn sau phép

Hình 12.3: Trường hợp 1

quay giữ nguyên trạng thái (hay nói cách khác là tìm M^g) thì ta tô màu đỉnh 1 tùy ý, đỉnh 2-3-4 chung màu (cũng tùy ý).

Suy ra ta có $3 \cdot 3$ cách tô. Tương tự với các hoán vị dạng (1,4)(2,3).

Như vậy $t_G = \frac{1}{12}(1 \cdot 3^4 + 8 \cdot 3^2 + 3 \cdot 3^2) = 15$ cách tô màu khác nhau.

Tổng quát, nếu có k màu thì số lớp tương đương là

$$t_G = \frac{1}{12}(1 \cdot k^4 + 8 \cdot k^2 + 3 \cdot k^2) = \frac{1}{12}(k^4 + 11k^2)$$

12.4 Chỉ số chu trình

Với mỗi hoán vị trong tập G (theo định lý Cayley thì mọi nhóm hữu hạn đều isomorphism với nhóm con nào đó của nhóm hoán vị), ta viết dưới dạng các chu trình độc lập

$$\underbrace{(g_1)(g_2)\dots(g_{t_1})}_{t_1}\underbrace{(g_{j_1}g_{j_2})(g_{j_3}g_{j_4})\dots}_{t_2}$$

Nếu ta viết hoán vị dưới dạng các chu trình rời nhau, ta gọi

 t_1 là số chu trình có độ dài 1

 t_2 là số chu trình có độ dài 2

... tương tự

 t_n là số chu trình có độ dài n

Khi đó, chỉ số chu trình của hoán vị ứng các biến z_1, z_2, \dots, z_n là

$$I_q(z_1, z_2, \dots, z_n) = z_1^{t_1} z_2^{t_2} \dots z_n^{t_n}$$

Ví dụ. Xét hoán vị $(1,2,3)(4)(5)(6,7) \in S_7$

Ta có 2 chu trình độ dài 1, 1 chu trình độ dài 2 và 1 chu trình độ dài 3. Không có chu trình độ dài 4, 5, 6, 7.

Do đó chỉ số chu trình là

$$I_g(z_1, z_2, z_3) = z_1^2 z_2^1 z_3^1$$

Nhận xét. Bất kì hoán vị nào thuộc S_n đều thỏa $1 \cdot t_1 + 2 \cdot t_2 + \dots + n \cdot t_n = n$.

Định nghĩa 12.4 (Cyclic index). (tạm dịch - chi số chu trình) của nhóm G là

$$P_G(z_1, z_2, \dots, z_n) = \frac{1}{G} \sum_{g \in G} I_g(z_1, z_2, \dots, z_n)$$

Nhìn lại ví dụ về tứ diện bên trên, các đỉnh nằm trong cùng chu trình cần được tô cùng màu. Như vậy mỗi z_i tương ứng với một màu.

Từ đó, với ví dụ trên

$$P_G(z_1, z_2, z_3) = \frac{1}{12} (z_1^4 + 8z_1z_3 + 3z_2^2)$$

Cho mỗi $z_i = 3$ ta có kết quả phép tính theo bổ đề Burnside.

12.5 Định lý Polya

Định lý Polya là một mở rộng cho bổ đề Burnside, cho phép chúng ta đếm số lớp tương đương thỏa mãn điều kiện nhất định (về số lương phần tử nhất đinh nhân trang thái nhất đinh).

Ví dụ với hình tứ diện như trên nhưng ta thêm điều kiện tô 2 đỉnh màu vàng, 1 đỉnh màu đỏ và 1 đỉnh màu xanh (không tô tổng quát nữa).

Ta ký hiệu tập R là tập hợp các trạng thái có thể nhận của mỗi phần tử $m \in M$.

$$R = \{r_1, r_2, \dots, r_c\}$$

Ở ví dụ trên thì $R = \{\text{đỏ}, \text{xanh}, \text{vàng}\}.$ Ta thay mỗi z_i trong chỉ số chu trình bằng tổng $\sum_{x \in R} r^i$.

Ví dụ. Giả sử ta tô màu 4 đỉnh tứ diện với 2 màu $R = \{r_1, r_2\}$.

Với z_1 ta thay bằng $r_1 + r_2$ Với z_2 ta thay bằng $r_1^2 + r_2^2$ Với z_3 ta thay bằng $r_1^3 + r_2^3$ Khi đó P_G tương đương với

$$\frac{1}{12} \left[(r_1 + r_2)^4 + 8 \cdot (r_1 + r_2)(r_1^3 + r_2^3) + 3 \cdot (r_1^2 + r_2^2)^2 \right]$$

Khai triển ra (lưu ý là ở đây không có tính giao hoán phép nhân)

Mình thấy rằng có 16 cấu hình khác nhau tương ứng 16 cách tô 2 màu cho 4 đỉnh. Tương tự

$$(r_1 + r_2)(r_1^3 + r_2^3) = r_1^4 + r_1r_2^3 + r_2r_1^3 + r_2^4$$

= $r_1r_1r_1 + r_1r_2r_2r_2 + r_2r_1r_1r_1 + r_2r_2r_2r_2$

và cuối cùng

$$(r_1^2 + r_2^2)^2 = r_1^4 + r_1^2 r_2^2 + r_2^2 r_1^2 + r_2^4$$

= $r_1 r_1 r_1 r_1 + r_1 r_1 r_2 r_2 + r_2 r_2 r_1 r_1 + r_2 r_2 r_2 r_2$

Việc không có tính giao hoán với phép nhân làm biểu thức cồng kềnh và phức tạp. Do đó mình thêm một tập hợp W là vành giao hoán, và xét ánh xạ $w: R \mapsto W$ với $w(r_i) = w_i$.

Khi đó nếu thay r_i bởi w_i vào bên trên biểu thức sẽ rất đẹp

$$P_G(w_1, w_2) = \frac{1}{12} \left[(w_1 + w_2)^4 + 8(w_1 + w_2)(w_1^3 + w_2^3) + 3(w_1^2 + w_2^2)^2 \right]$$

Khai triển và thu gon ta có

$$P_G(w_1, w_2) = \frac{1}{12} \left[12w_1^4 + 12w_1^3w_2 + 12w_1^2w_2^2 + 12w_1w_2^3 + 12w_2^4 \right]$$

= $w_1^4 + w_1^3w_2 + w_1^2w_2^2 + w_1w_2^3 + w_2^4$

 $\mathring{\text{O}}$ đây, định lý Polya nói rằng, số mũ của w_i thể hiện số lượng phần tử của tập M nhận giá trị r_i , và hệ số trước mỗi toán hạng là số lớp tương đương tương ứng với số lượng phần tử của tập M nhận các giá tri r_i .

Nói cách khác:

- \bullet có 1 lớp tương đương mà 4 đỉnh nhận màu r_1
- \bullet có 1 lớp tương đương mà 3 đỉnh nhận màu r_1 và 1 đỉnh nhận màu r_2
- \bullet có 1 lớp tương đương mà 2 đỉnh nhận màu r_1 và 2 đỉnh nhận màu r_2
- \bullet có 1 lớp tương đương mà 1 đỉnh nhận màu r_1 và 3 đỉnh nhận màu r_2
- cuối cùng là 1 lớp tương đương mà 4 đỉnh nhận màu r_2 .

Quay lại vấn đề tô 4 đỉnh tứ diện với 3 màu xanh, đỏ, vàng. Tìm số cách tô 2 đỉnh màu vàng, 1 đỉnh màu đỏ và 1 đỉnh màu xanh.

Đặt
$$w(\text{vàng}) = x, \, w(\text{đỏ}) = y \text{ và } w(\text{xanh}) = z$$
 Ta có

$$P_G = \frac{1}{12} \left[(x+y+z)^4 + 8 \cdot (x+y+z)(x^3+y^3+z^3) + 3 \cdot (x^2+y^2+z^2)^2 \right]$$

Như vậy đề bài tương ứng việc tìm hệ số của hạng tử x^2yz trong biểu thức trên. Mình tính ra kết quả là 1.

Phần IV Đại số Boolean

Chương 13

Mở đầu đại số Boolean

Boolean (hay luận lý) chỉ giá trị đúng hoặc sai của mệnh đề nào đó. Theo cách hiểu cơ bản, boolean gồm 2 giá trị 0 hoặc 1 (sai hoặc đúng).

13.1 Hàm Boolean

Hàm boolean f đối với các biến x_1, x_2, \ldots, x_n là hàm số nhận giá trị trong \mathbb{F}_2^n và trả về giá trị thuộc \mathbb{F}_2 .

Nghĩa là $f: \mathbb{F}_2^n \mapsto \mathbb{F}$

Ta ký hiệu hàm boolean n biến là $f(x_1, x_2, \dots, x_n)$.

Do $x_i \in \mathbb{F}_2$ nên ta có 2^n vector (bộ số) (x_1, x_2, \dots, x_n) . Giá trị của hàm f lại nằm trong tập $\{0, 1\}$ nên ứng với mỗi vector có thể có 2 giá trị của hàm boolean, và ta có 2^n vector nên số lượng hàm boolean có thể có là 2^{2^n} .

Một số toán tử boolean hay dùng: đối, AND, OR, XOR, NAND, NOR, kéo theo, tương đương.

Để biểu diễn hàm boolean chúng ta dùng bảng chân trị. Bảng chân trị tương ứng với các toán tử boolean trên là:

		AND	OR	XOR	NAND	NOR
x_1	x_2	$x_1 \cdot x_2$	$x_1 \vee x_2$	$x_1 \oplus x_2$	$x_1 x_2$	$x_1 \downarrow x_2$
0	0	0	0	0	1	1
0	1	0	1	1	1	0
1	0	0	1	1	1	0
1	1	1	1	0	0	0

Bảng 13.1: Các toán tử AND, OR, XOR, NAND, NOR

Toán tử đối làm đổi giá trị của hàm bool (0 thành 1 và 1 thành 0). Ký hiệu \overline{x} .

x	\overline{x}
0	1
1	0

(a) Toán tử đối

x_1	x_2	$x_1 \to x_2$	$x_1 \sim x_2$
0	0	1	1
0	1	1	0
1	0	0	0
1	1	1	1

(b) Toán tử kéo theo và tương đương

Bảng 13.2: Các toán tử đối, kéo theo, tương đương

Toán tử tương đương còn chỉ sự tương đương của hai mệnh đề logic. Khi hai biểu thức logic có cùng bảng chân trị thì hai mệnh đề đó tương đương nhau. Do đó ta có thể viết một số kết quả như sau (từ các bảng chân trị cơ bản trên):

- $x_1|x_2 \sim \overline{x_1 \cdot x_2}$. Ở đây ta đổi dấu từng giá trị hàm boolean $x_1 \cdot x_2$
- $x_1\downarrow x_2\sim \overline{x_1\vee x_2}$. Tương tự ta đổi dấu từng giá trị hàm boolean $x_1\vee x_2$

13.2 Da thức Zhegalkin

Định nghĩa 13.1 (Đa thức Zhegalkin). Với hàm boolean n biến $f(x_1, x_2, ..., x_n)$, đa thức Zhegalkin tương ứng với hàm bool đó là cách biểu diễn đa thức đó dưới dạng tổng các tích như sau

$$f(x_1, x_2, \dots, x_n) = a_0 \oplus a_1 x_1 \oplus a_2 x_2 \oplus a_3 x_1 x_2 \oplus \dots \oplus a_k x_1 x_2 \dots x_n$$

$$(13.1)$$
với $a_i \in \{0, 1\}$. Ta thấy rằng có n biến, do đó có 2^n hệ số a_i $(k = 2^n)$.

Khi đó ta nói hàm boolean f được biểu diễn ở dang chuẩn tắc dai số (algebraic normal form).

Ví dụ. Cho hàm bool $f(x,y) = x \vee y$. Ta có bảng chân trị sau

x	y	f(x,y)
0	0	0
0	1	1
1	0	1
1	1	1

Bảng chân trị này tương đương với đa thức Zhegalkin

$$f(x,y) = x \oplus y \oplus xy$$

Định nghĩa 13.2 (Bậc của đa thức Zhegalkin). Tương tự như bậc của một đa thức đại số thông thường, bậc của đa thức Zhegalkin là bậc của hạng tử chứa nhiều đơn thức x_i nhất. Ký hiệu là deg(f).

Ví dụ. Xét hàm boolean $f(x,y,z)=1\oplus x\oplus yz\oplus xyz$. Khi đó deg(f)=3 vì hạng tử chứa nhiều đơn thức nhất là xyz có 3 đơn thức.

Xét hàm boolean $f(x, y, z) = 1 \oplus z \oplus zy \oplus xy$. Khi đó deg(f) = 2 vì hạng tử chứa nhiều đơn thức nhất là zy (cũng có thể xét xy).

13.3 Cách tìm đa thức Zhegalkin từ bảng chân trị

Ta có nhiều phương pháp để tìm đa thức Zhegalkin của một hàm boolean từ bảng chân trị.

13.3.1 Phương pháp tam giác

Ở hàng đầu ta viết các phần tử bảng chân trị từ trái sang phải. Với n biến sẽ có 2^n ô. Hàng thứ hai có 2^n-1 ô. Phần tử dưới sẽ bằng XOR của 2 phần tử ngay trên nó (tạo thành tam giác). Tiếp tục như vậy tới khi ta có hàng cuối chỉ có 1 ô.

Hình 13.1: Phương pháp tam giác

Khi đó, tương ứng với các biến, nếu biến đó là 1 thì hạng tử chứa biến đó, 0 thì không ghi. Ở ví dụ trên, nếu (x,y)=(0,0) thì không có gì (phần tử 1), (x,y)=(0,1) tương ứng với hạng tử y trong đa thức Zhegalkin, (x,y)=(1,0) tương ứng hạng tử x. Cuối cùng (x,y)=(1,1) tương ứng hạng tử xy.

Hệ số trước mỗi hạng tử là phần tử đầu tiên bên trái theo bảng kim tư tháp. Như vậy đa thức Zhegalkin là:

$$f(x,y) = 0 \cdot 1 \oplus 1 \cdot y \oplus 1 \cdot x \oplus 1 \cdot xy = x \oplus y \oplus xy$$

Đa thức Zhegalkin đóng vai trò quan trọng trong nhiều lĩnh vực, bao gồm cả toán học, vật lý, khoa học máy tính, vì AND và XOR là

hai toán tử đại số cơ bản, do đó biểu diễn đa thức Zhegalkin được gọi là dạng chuẩn tắc đại số như ở trên đề cập.

Một ví dụ khác của đa thức Zhegalkin với hàm 3 biến $x,\,y$ và z như hình sau:

x	y	z	f	1
0	0	0	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0	0	1	1	\xrightarrow{x} 1 0 0 1 0 1 0
0	1	0	1	yz 1 0 1 1 1 1
0	1	1	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1	0	0	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1	0	1	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1	1	0	1	$\begin{array}{c c} xy & \hline & 0 & 1 \\ \hline & xyz & \hline \end{array}$
1	1	1	1	$\xrightarrow{wgz} \xrightarrow{1}$

Như vậy ứng với hàm boolean f thì đa thức Zhegalkin là:

$$f(x, y, z) = z \oplus yz \oplus x \oplus xz \oplus xyz$$

13.3.2 Phương pháp Möbius

Phương pháp này cho phép chúng ta tính hệ số đa thức Zhegalkin như phương pháp tam giác nhưng nhanh hơn và đỡ sai sót hơn.

Đầu tiên chúng ta chia đôi bảng chân trị thành hai nửa trái phải. Nửa trái giữa nguyên, mỗi phần tử ở nửa phải được XOR (cộng modulo 2) với phần tử tương ứng ở nửa trái.

Giả sử với hàm f(x,y)=(0,1,1,1) như trên. Bước 1, ta giữ nguyên 2 phần tử đầu 0 và 1. Phần tử thứ ba (mới) bằng phần tử thứ ba (cũ) XOR với phần tử đầu $(0\oplus 1=1)$. Phần tử thứ tư (mới) bằng phần tử thứ tư (cũ) XOR với phần tử thứ hai $(1\oplus 1=0)$.

Tiếp theo, chúng ta xử lý như trên cho 2 phần tử bên nửa trái (2 phần tử bên nửa phải xử lý tương tư).

Như vậy ta có kết quả là (0,1,1,1), tương ứng với các hạng tử 1, y, x, xy (như trên). Vậy đa thức Zhegalkin là $f(x,y) = x \oplus y \oplus xy$.

13.4 Các hàm boolean và tính chất

Định nghĩa 13.3 (Hàm boolean Affine). Xét hàm boolean n biến $f(x_1, x_2, ..., x_n)$. Khi đó f được gọi là hàm boolean Affine nếu nó có dạng

$$f(x_1, x_2, \dots, x_n) = a_0 \oplus a_1 x_1 \oplus a_2 x_2 \oplus \dots \oplus a_n x_n$$
 (13.2)

Khi $a_0 = 0$ thì ta gọi là hàm boolean tuyến tính (linear).

Ta thấy rằng chỉ có các hạng tử dạng $a_i x_i$ xuất hiện trong biểu diễn đa thức Zhegalkin tương ứng của hàm boolean đó. Hay nói cách khác hàm boolean là Affine khi deg(f) = 1.

Ví dụ. Hàm boolean $f(x,y) = x \oplus y$ là hàm boolean Affine và cũng tuyến tính. Hàm boolean $f(x,y) = x \oplus xy$ không là hàm boolean Affine.

Tiếp theo ta sẽ xét sự so sánh của hai vector và hàm boolean đơn điệu.

Định nghĩa 13.4 (Vector so sánh được). Xét hai bộ n số (vector) $\bar{a} = (a_1, a_2, \ldots, a_n)$ và $\bar{b} = (b_1, b_2, \ldots, b_n)$ $(a_i, b_i \in \{0, 1\})$. Ta nói \bar{a} so sánh được nhỏ hơn \bar{b} nếu với mọi $i = 1, 2, \ldots, n$ ta có $a_i \leq b_i$. Ký hiệu $\bar{a} \prec \bar{b}$.

Ví dụ. Ta có $(1,0,0) \prec (1,0,1)$, còn (1,0,0) và (0,1,0) thì không so sánh được (vị trí thứ 1 và thứ 2).

Định nghĩa 13.5 (Hàm boolean đơn điệu). Hàm boolean n biến $f(x_1, x_2, \ldots, x_n)$ được gọi là hàm boolean đơn điệu (monotone) nếu với mọi bộ n số $(a_1, a_2, \ldots, a_n) \prec (b_1, b_2, \ldots, b_n)$ thì ta có

$$f(a_1, a_2, \dots, a_n) \le f(b_1, b_2, \dots, b_n)$$
 (13.3)

Ví dụ. Xét hàm boolean f(x,y) = (0,1,0,1).

Ta thấy rằng:

- $(0,0) \prec (0,1)$ và $f(0,0) = 0 \le 1 = f(0,1)$
- $(0,0) \prec (1,0)$ và $f(0,0) = 0 \le 0 = f(1,0)$
- $(0,0) \prec (1,1)$ và $f(0,0) = 0 \le 1 = f(1,1)$
- \bullet (0,1) và (1,0) không so sánh được nên bỏ qua
- $(0,1) \prec (1,1)$ và $f(0,1) = 1 \le 1 = f(1,1)$
- $(1,0) \prec (1,1)$ và $f(1,0) = 0 \le 1 = f(1,1)$

Vây đây là hàm đơn điệu.

13.5 Trọng số của hàm boolean

Định nghĩa 13.6 (Trọng số hàm boolean). *Trọng số* (weight) của hàm boolean n biến $f(x_1, x_2, ..., x_n)$ là số lượng giá trị 1 của hàm f. Ký hiệu là w(f).

Ví dụ. Hàm boolean f(x,y) = (0,1,0,1) có trọng số w(f) = 2. Hàm boolean f(x,y,z) = (1,0,1,1,1,0,0,1) có trọng số w(f) = 5.

Một số tính chất của trọng số:

- 1. $0 \le w(f) \le 2^n$
- 2. $w(f \oplus 1) = 2^n w(f)$
- 3. Nếu h cũng là một hàm boolean từ \mathbb{F}_2^n tới \mathbb{F}_2 thì

$$w(f \oplus h) = w(f) + w(h) - 2w(fh)$$

4. Giá trị w(f) nhận giá trị lẻ khi và chỉ khi deg(f) = n

13.6 Biến đổi Fourier

Với mỗi vector $a = (a_1, \dots, a_n) \in \mathbb{F}_2^n$, ta ký hiệu (a, x) là hàm sau:

$$(a,x) = a_1x_1 + a_2x_2 + \ldots + a_nx_n \tag{13.4}$$

Mỗi hàm boolean sẽ được biểu diễn dưới dạng duy nhất với

$$f(x) = 2^{-n} \sum_{a \in \mathbb{F}_2^n} C_a(-1)^{(a,x)}$$
(13.5)

Trong đó

$$C_a = C_a(f) = \sum_{x \in \mathbb{F}_n^n} f(x)(-1)^{(a,x)}$$
(13.6)

Khi đó, tập hợp $\{C_a(f), a \in \mathbb{F}_2^n\}$ được gọi là **phổ Fourier** (spectre) Fourier của hàm boolean f(x).

Ví dụ. Xét hàm boolean $f(x_1, x_2) = (1, 0, 0, 1)$. Xét a = (0, 0). Ta có:

- Với $x = (0,0), f(x) = 1, (a,x) = 0 \cdot 0 + 0 \cdot 0 = 0.$
- Với x = (0,1), f(x) = 0, $(a,x) = 0 \cdot 0 + 0 \cdot 1 = 0$
- Với $x = (1,0), f(x) = 0, (a,x) = 0 \cdot 1 + 0 \cdot 0 = 0$
- Với $x=(1,1), \ f(x)=1, \ (a,x)=0\cdot 1+0\cdot 1=0$

Suy ra $C_a = 1 \cdot (-1)^0 + 0 \cdot (-1)^0 + 0 \cdot (-1)^0 + 1 \cdot (-1)^0 = 2$ khi a = (0,0).

Tương tự, ta có các giá trị C_a sau:

- Với $a = (0,1), C_a = 0$
- Với $a = (1,0), C_a = -1$
- Với $a = (1,1), C_a = 1$

13.7 Biến đổi Walsh-Hadamard

Với mỗi hàm boolean f(x) ta định nghĩa một hàm tương ứng như sau:

$$f^*(x) = (-1)^{f(x)}$$

Ta định nghĩa (a, x) như trên, khi đó hàm $f^*(x)$ sẽ có dạng

$$f^*(x) = 2^{-n} \sum_{a \in \mathbb{F}_2^n} z_a (-1)^{(a,x)}$$
(13.7)

Trong đó

$$z_a = z_a(f) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) + (a,x)}$$
(13.8)

Tập hợp $\{z_a(f), a \in \mathbb{F}_2^n\}$ được gọi là **phổ Walsh** (spectre) của hàm f(x). Các giá trị z_a được gọi là hệ số Walsh.

Các hệ số Walsh liên hệ với nhau bởi công thức

$$\sum_{a \in \mathbb{F}_{2}^{n}} z_{a}(f) z_{a+d}(f) = \begin{cases} 2^{2n}, & d = 0\\ 0, & d \neq 0 \end{cases}$$
 (13.9)

Trường hợp d=0 được gọi là $d\mathring{a}ng$ thức Parcel

$$\sum_{a \in \mathbb{F}_2^n} z_a^2 = 2^{2n} \tag{13.10}$$

Phần V **Hình học**

Chương 14

Phép biến hình

Trong thực tế chúng ta hay gặp các vấn đề về việc di dời một hình nào đó sang một vị trí khác trong mặt phẳng, không gian và phải đảm bảo giữ nguyên một số quan hệ nhất định. Trong đó cơ bản nhất và được ứng dụng rộng rãi là phép dời hình và phép đồng dạng.

14.1 Phép dời hình

Định nghĩa 14.1 (Phép dời hình). Phép dời hình từ hình \mathcal{H} thành hình \mathcal{H}' là một ánh xạ f biến mỗi điểm thuộc hình \mathcal{H} thành điểm thuộc hình \mathcal{H}' sao cho khoảng cách giữa 2 điểm bất kì trong \mathcal{H} bảo toàn khi qua \mathcal{H}' .

Nói cách khác, với mọi điểm $A, B \in \mathcal{H}$, ánh xạ f biến A thành A' và B thành B' $(A', B' \in \mathcal{H}')$ thì A'B' = AB.

Chúng ta thường thấy việc dời hình theo vector (dời theo 1 hướng nhất định), đối xứng qua trục, đối xứng qua tâm, quay quanh tâm hoặc trục nào đó.

14.2 Phép dời hình theo vector

Phép dời hình theo vector $\vec{v} \neq \vec{0}$ biến điểm A thành điểm A' sao cho $\overrightarrow{AA'} = \vec{v}$.

Dễ thấy đây là phép dời hình vì với mọi A,B biến thành A',B' ta có $\overrightarrow{A'B'} = \overrightarrow{A'A} + \overrightarrow{AB} + \overrightarrow{BB'}$ mà ta có $\overrightarrow{A'A} = -\overrightarrow{v} = -\overrightarrow{BB'}$ nên $\overrightarrow{A'B'} = \overrightarrow{AB}$. Vector bằng nhau thì độ dài cũng bằng nhau. Ta có điều phải chứng minh.

14.3 Phép đối xứng qua tâm cố định

Cho điểm cố định O. Phép đối xứng tâm O biến điểm A thành điểm A' sao cho $\overrightarrow{OA} = -\overrightarrow{OA'}$. Nói cách khác O là trung điểm đoạn thẳng AA'.

14.4 Phép quay quanh tâm cố định

Cho điểm cố định O. Phép quay (mặc định là ngược chiều đồng hồ) quanh tâm O theo một góc cố định φ biến điểm A thành điểm A' sao cho $(\overrightarrow{OA}, \overrightarrow{OA'}) = \varphi$.

Trên mặt phẳng chúng ta có thể biểu diễn phép quay dưới hệ tọa đô như sau.

Giả sử vector \overrightarrow{OA} có độ dài là r và hợp với trục Ox một góc α . Khi đó, giả sử tọa độ của $\overrightarrow{OA}=(x,y)$ thì ta có

$$x = r \cos \alpha$$
$$y = r \sin \alpha$$

Nếu ta quay vector này quanh gốc tọa độ, ngược chiều kim đồng hồ một góc φ thì thực ra góc (mới) hợp bởi vector $\overrightarrow{OA'}$ và trục Ox

là $\alpha + \varphi$. Do đó

$$x' = r\cos(\alpha + \varphi)$$
$$y' = r\sin(\alpha + \varphi)$$

Khi khai triển ra,

$$x' = r \cos \alpha \cos \varphi - r \sin \alpha \sin \varphi = x \cos \varphi - y \sin \varphi$$
$$y' = r \sin \alpha \cos \varphi + r \cos \alpha \sin \varphi = y \cos \varphi + x \sin \varphi$$

Như vậy viết dưới dạng ma trận

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Đễ thấy, phép quay bảo toàn khoảng cách từ tâm O tới điểm đó. Nghĩa là OA = OA'.

Chương 15

Ba đường Conic

Ba đường Conic bao gồm ellipse, hyperbol và parabol.

15.1 Ellipse

Định nghĩa 15.1 (Ellipse). Đường ellipse là tập hợp các điểm sao cho tổng khoảng cách từ nó tới 2 điểm cố định là 1 hằng số.

Nghĩa là, với 2 điểm cố định F_1, F_2 , tập hợp các điểm M sao cho $MF_1 + MF_2 = 2a$ với a là hằng số tạo thành đường ellipse.

Ở trên hệ tọa độ, nếu ta chọn F_1 và F_2 nằm trên Ox và đối xứng qua Oy, tức là $F_1=(-c,0)$ và $F_2=(c,0)$, thì các điểm M=(x,y) nằm trên ellipse thỏa

$$MF_1 + MF_2 = \sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a$$

Tương ứng với biển đổi thành phương trình

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1$$

Đặt $b^2 = a^2 - c^2$ thì phương trình của ellipse trở thành

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Phương trình này gọi là phương trình chính tắc.

Hình 15.1: Ellipse với phương trình $\frac{x^2}{25} + \frac{y^2}{9} = 1$

Trong phương trình

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

thì a là khoảng cách từ tâm tới 2 biên trái hoặc phải, nên a là độ dài bán trục lớn.

Tương tự, b là **độ dài bán trục nhỏ** (khoảng cách từ tâm tới 2 biên trên dưới).

Từ cách đặt $b^2 = a^2 - c^2$ tương đương $c^2 = a^2 - b^2$ thì c gọi là **tiêu cự** của ellipse.

Các điểm F_1, F_2 gọi là **tiêu điểm** của ellipse.

Với ví dụ trên $\frac{x^2}{25} + \frac{y^2}{9} = 1$ thì a = 5, b = 3. Suy ra c = 4 (lưu ý là a, b > 0 và $c \ge 0$).

Các đỉnh nằm ở các tọa độ (-a,0),(a,0),(0,b),(0,-b). Các tiêu điểm nằm ở (-c,0),(c,0).

Nhận xét. Khi c=0, tức là 2 tiêu điểm trùng nhau, ta có đường tròn.

Tâm sai của ellipse là $e = \frac{c}{a} < 1$

15.2 Hyperbol

Định nghĩa 15.2 (Hyperbol). Đường hyperbol là tập hợp các điểm sao cho giá trị tuyết đối hiệu số khoảng cách từ nó tới 2 điểm cố định là 1 hằng số.

Nghĩa là, với 2 điểm cố định F_1, F_2 , tập hợp các điểm M sao cho $|MF_1-MF_2|=2a$ với a là hằng số tạo thành đường hyperbol.

Ở trên hệ tọa độ, nếu ta chọn F_1 và F_2 nằm trên Ox và đối xứng qua Oy, tức là $F_1=(-c,0)$ và $F_2=(c,0)$, thì các điểm M=(x,y) nằm trên hyperbol thỏa

$$|MF_1 - MF_2| = |\sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2}| = 2a$$

Tương ứng với biển đổi thành phương trình

$$\frac{x^2}{a^2} - \frac{y^2}{a^2 - c^2} = 1$$

Đặt $b^2 = a^2 - c^2$ thì phương trình của hyperbol trở thành

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Đường hyperbol cắt trục Ox tại 2 điểm $A_1 = (-a,0)$ và $A_2 =$ (a, 0).

Tiêu điểm của hyperbol ở $F_1=(-c,0)$ và $F_2=(c,0)$. Đường hyperbol có 2 tiệm cận là đường thẳng $y=\frac{b}{a}x$ và $y=\frac{b}{a}x$ $-\frac{b}{a}x$.

Tâm sai của hyperbol là $e = \frac{c}{a} > 1$.

Parabol 15.3

Định nghĩa 15.3 (Parabol). Đường parabol là tập hợp các điểm cách đều một điểm cố định và một đường thẳng cố định.

Hình 15.2: Parabol với phương trình $y = -x^2 + 4$

Nghĩa là, với 1 điểm cố đinh F và đường thẳng cố đinh (d), parabol là tập hợp các điểm M sao cho MF = d(M,d) với d(M,d)là khoảng cách từ M tới đường thẳng (d).

Phép dời tọa độ cho phép ta dời một hình parabol có đỉnh ở bất kì điểm nào về gốc tọa độ.

Tức là, không mất tính tổng quát, ta chỉ cần xét các parabol dạng $y=ax^2$ là đủ.

Điểm cố định ở trên được gọi là **tiêu điểm**. Đường thẳng cố định ở trên gọi là **đường chuẩn**.

Parabol có tính đối xứng nên tiêu điểm nằm trên Oy. Đặt tọa đô của nó là F=(0,f).

Đường chuẩn nằm ngang nên ta có parabol là các điểm M=(x,y) sao cho

 $MF = \sqrt{x^2 + (y - f)^2}$ và d(M, d) = y + f (trường hợp M trùng với đỉnh nên điều kiện của parabol xảy ra tương đương với M cách đều tiêu điểm và đường chuẩn, nghĩa là đường chuẩn có dạng y = -f).

Do đó $\sqrt{x^2+(y-f)^2}=y+f.$ Bình phương và biến đổi ta thư gọn được

$$f = \frac{1}{4a}$$

Thường thì ta đặt p = f, khi đó phương trình parabol trở thành

$$x^2 = 4py$$

Đây là dạng chính tắc của parabol với trục đối xứng dọc. Tâm sai của parabol là $e=\frac{c}{a}=1$.

Phần VI Đại số tuyến tính

Chương 16

Nhắc lại các khái niệm cơ bản

16.1 Hạng của ma trận

Định nghĩa 16.1 (Hạng của ma trận). Cho ma trận $M_{m\times n}$ có m hàng và n cột. **Hạng** của ma trận M là cấp của ma trận vuông con lớn nhất của M có định thức khác 0.

 $K \acute{y}$ hiệu. Hạng (hay rank) của ma trận \boldsymbol{M} được ký hiệu là $r = \mathrm{rank}(\boldsymbol{M})$

Nhận xét. Nếu r là hạng của ma trận $M_{m\times n}$ thì $r \leq \min(m,n)$

16.2 Tổ hợp tuyến tính

Xét tập hợp các vector $\{\boldsymbol{v}_1,\boldsymbol{v}_2,\ldots,\boldsymbol{v}_d\}$ trên \mathbb{R} .

Định nghĩa 16.2 (Tổ hợp tuyến tính). Với vector x bất kì thuộc \mathbb{R} , nếu tồn tại các số thực $\alpha_1, \alpha_2, \ldots, \alpha_d \in \mathbb{R}$ sao cho

$$\boldsymbol{x} = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \ldots + \alpha_d \boldsymbol{v}_d$$

thì x được gọi là **tổ hợp tuyến tính** của các vector v_i , $i = 1, 2, \ldots, d$.

Ta thấy rằng vector không $\mathbf{0}$ là tổ hợp tuyến tính của mọi tập các vector \mathbf{v}_i .

Bây giờ ta xét tổ hợp tuyến tính

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_d \mathbf{v}_d = \mathbf{0}$$

Định nghĩa 16.3 (Độc lập tuyến tính). Tập hợp các vector v_1 , v_2 , ..., v_d được gọi độc lập tuyến tính nếu chỉ có duy nhất trường hợp $\alpha_1 = \alpha_2 = \ldots = \alpha_d = 0$ thỏa tổ hợp tuyến tính trên.

Định nghĩa 16.4 (Phụ thuộc tuyến tính). Tập các vector là phụ thuộc tuyến tính nếu không độc lập tuyến tính. Nói cách khác tồn tại ít nhất 1 phần tử $\alpha_i \neq 0$.

16.3 Không gian vector

Xét tập hợp các vector $\mathcal{V} \subset \mathbb{R}^n$.

Ta định nghĩa hai phép tính cộng và nhân trên các vector này sao cho

- Phép cộng: Với mọi $x,y\in\mathcal{V}$ thì $x+y\in\mathcal{V}$
- Phân nhân vô hướng: Với mọi $\alpha \in \mathbb{R}$ và $\pmb{x} \in \mathcal{V}$ thì $\alpha \pmb{x} \in \mathcal{V}$

Nói cách khác, phép cộng 2 vector và phép nhân vô hướng 1 số với vector cho kết quả vẫn nằm trong không gian vector đó.

Đồng thời, phép cộng và phép nhân vô hướng phải thỏa mãn các tính chất sau

- 1. Tính giao hoán với phép cộng: với mọi $x,y\in\mathcal{V},\,x+y=y+x$
- 2. Tính kết hợp với phép cộng: với mọi $x,y,z\in\mathcal{V},\,x+(y+z)=(x+y)+z$
- 3. Phần tử đơn vị của phép cộng: tồn tại vector không $\mathbf{0}$ sao cho với mọi $x \in \mathcal{V}, \ \mathbf{0} + x = x + \mathbf{0} = x$

- 4. Phần tử đối của phép cộng: với mọi $x \in \mathcal{V}$, tồn tại phần tử $x' \in \mathcal{V}$ sao cho x + x' = x + x' = 0
- 5. Phần tử đơn vị của phép nhân vô hướng: tồn tại số thực 1 sao cho với mọi ${m x} \in {\mathcal V}$ thì $1 \cdot {m x} = {m x}$
- 6. Tính kết hợp của phép nhân vô hướng: với mọi $\alpha, \beta \in \mathbb{R}$, với mọi $x \in \mathcal{V}$ thì $\alpha(\beta x) = (\alpha \beta)x$
- 7. Tính phân phối giữa phép cộng và nhân: với mọi $\alpha \in \mathbb{R}$, với mọi $x, y \in \mathcal{V}$ thì $\alpha(x + y) = \alpha x + \alpha y$
- 8. Tính phân phối giữa phép nhân vô hướng: với mọi $\alpha, \beta \in \mathbb{R}$, với mọi $\mathbf{x} \in \mathcal{V}$ thì $(\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x}$

16.4 Cơ sở và số chiều của không gian vector

Nếu trong không gian vector \mathcal{V} tồn tại các vector độc lập tuyến tính $v_1, v_2, ..., v_d$ mà tất cả các vector trong \mathcal{V} có thể biểu diễn dưới dạng tổ hợp tuyến tính của các vector v_i trên, thì tập hợp các vector

$$\{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_d\}$$

được gọi là \mathbf{co} sở của không gian vector \mathcal{V} .

Khi đó,

$$oldsymbol{x} = \sum_{i=1}^d lpha_i oldsymbol{v}_i \quad orall oldsymbol{x} \in \mathcal{V}$$

Số lượng phần tử của tập hợp các vector đó (ở đây là d) gọi là **số chiều (dimension)** của không gian vector \mathcal{V} . Ta ký hiệu dim $\mathcal{V} = d$. Ta còn ký hiệu

$$\mathcal{V} = \operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_d\}$$

và nói là không gian vector $\mathcal V$ được span (hay được sinh) bởi các vector $\boldsymbol v_i$.

Ta thấy rằng có thể có nhiều cơ sở cho cùng một không gian vector.

Định lý 16.1. Mọi cơ sở của không gian vector $\mathcal V$ đều có số phần tử bằng dim $\mathcal V$

Từ đó ta có điều kiện cần và đủ để một tập hợp vector là cơ sở của không gian vector.

Giả sử ta có v_1 , v_2 , ..., v_d là một cơ sở của không gian vector \mathbb{R}^n . Khi đó nếu hệ vector w_1 , w_2 , ..., w_d cũng là một hệ cơ sở khi và chỉ khi tồn tại ma trận khả nghịch A sao cho $W = A \cdot V$.

Chứng minh. Ta viết các vector v_i dưới dạng \mathbb{R}^n .

$$\mathbf{v}_1 = (v_{11}, v_{12}, \dots, v_{1n})$$

 $\mathbf{v}_2 = (v_{21}, v_{22}, \dots, v_{2n})$
 $\dots = (\dots, \dots, \dots)$
 $\mathbf{v}_d = (v_{d1}, v_{d2}, \dots, v_{dn})$

Tương tự là các vector w_i .

$$\mathbf{w}_1 = (w_{11}, w_{12}, \dots, w_{1n})$$

 $\mathbf{w}_2 = (w_{21}, w_{22}, \dots, w_{2n})$
 $\dots = (\dots, \dots, \dots)$
 $\mathbf{w}_d = (w_{d1}, w_{d2}, \dots, w_{dn})$

Do v_i là một cơ sở của \mathbb{R}^n , mọi vector trong \mathbb{R}^n được biểu diễn dưới dạng tổ hợp tuyến tính của các v_i .

Khi đó ta viết các w_i dưới dạng tổ hợp tuyến tính của v_i .

$$\mathbf{w}_1 = \alpha_{11}\mathbf{v}_1 + \alpha_{12}\mathbf{v}_2 + \ldots + \alpha_{1d}\mathbf{v}_d$$

$$\mathbf{w}_2 = \alpha_{21}\mathbf{v}_1 + \alpha_{22}\mathbf{v}_2 + \ldots + \alpha_{2d}\mathbf{v}_d$$

$$\ldots = \ldots$$

$$\mathbf{w}_d = \alpha_{d1}\mathbf{v}_1 + \alpha_{d2}\mathbf{v}_2 + \ldots + \alpha_{dd}\mathbf{v}_d$$

Điều này tương đương với

$$\begin{pmatrix} w_{11} & w_{12} & \dots & w_{1n} \\ w_{21} & w_{22} & \dots & w_{2n} \\ \dots & \dots & \dots & \dots \\ w_{d1} & w_{d2} & \dots & w_{dn} \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1d} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2d} \\ \dots & \dots & \dots & \dots \\ \alpha_{d1} & \alpha_{d2} & \dots & \alpha_{dd} \end{pmatrix}$$

$$\times \begin{pmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & v_{2n} \\ \dots & \dots & \dots & \dots \\ v_{d1} & v_{d2} & \dots & v_{dn} \end{pmatrix}$$

Nếu \mathbf{w}_i cũng là cơ sở của \mathcal{V} , thì các vector \mathbf{v}_i cũng phải biểu diễn được dưới dạng tổ hợp tuyến tính của \mathbf{w}_i . Nói cách khác, ma trận (α_{ij}) khả nghịch.

16.5 Không gian vector con

Cho không gian vector $\mathcal{V} \subset \mathbb{R}^n$ với phép cộng hai vector và phép nhân vô hướng. Một tập con L của \mathcal{V} được gọi là không gian vector con nếu:

- Với mọi $\boldsymbol{x},\,\boldsymbol{y}$ thuộc $L,\,\boldsymbol{x}+\boldsymbol{y}\in L$
- Với mọi $\alpha \in \mathbb{R}$, với mọi $\boldsymbol{x} \in L$, $\alpha \boldsymbol{x} \in L$

Nói cách khác, phép cộng và phép nhân vô hướng đóng trong không gian vector con.

Nhận xét. Trên \mathbb{R}^n , hệ phương trình tuyến tính thuần nhất có thể sinh ra một không gian vector con của \mathbb{R}^n .

Ví dụ. Xét hệ phương trình tuyến tính sau:

Biến đổi ma trận

$$\begin{pmatrix} 1 & 3 & 5 & 7 \\ 2 & 0 & 4 & 2 \\ 3 & 2 & 8 & 7 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 5 & 7 \\ 0 & -6 & -6 & -12 \\ 0 & -7 & -7 & -14 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 5 & 7 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Như vậy hệ tương đương với

$$x_1 + 3x_2 + 5x_3 + 7x_4 = 0$$
, $x_2 + x_3 + 2x_4 = 0$

Ta chọn $x_3, x_4 \in \mathbb{R}$ tự do, khi đó x_1 và x_2 được biểu diễn theo x_3 và x_4

$$x_1 = -2x_3 - x_4, \quad x_2 = -x_3 - 2x_4$$
 (16.2)

Mọi vector trong không gian tuyến tính khi đó có dạng

$$(x_1, x_2, x_3, x_4) = (-2x_3 - x_4, -x_3 - 2x_4, x_3, x_4)$$

= $x_3 \cdot (-2, -1, 1, 0) + x_4 \cdot (-1, -2, 0, 1)$

Ở đây ta thấy x_3, x_4 nhận giá trị tùy ý trong \mathbb{R} , và mọi vector trong không gian nghiệm là tổ hợp tuyến tính của hai vector (-2, -1, 1, 0) và (-1, -2, 0, 1). Suy ra hai vector này là cơ sở của không gian nghiệm, và dim $\mathcal{V} = 2$.

Chương 17

Không gian vector

Phần này định nghĩa tổng quát của không gian vector.

17.1 Không gian vector

Xét tập hợp các vector $\mathcal V$ trên trường $\mathbb F$.

Ta định nghĩa hai phép tính cộng và nhân trên các vector này sao cho

- Phép cộng là một ánh xạ $\mathcal{V} \times \mathcal{V} \to \mathcal{V}$ sao cho với mọi $x,y \in \mathcal{V}$ thì $x+y \in \mathcal{V}$
- Phân nhân vô hướng là ánh xạ $\mathbb{F} \times \mathcal{V} \to \mathcal{V}$ sao cho với mọi $\alpha \in \mathbb{F}$ và $\mathbf{x} \in \mathcal{V}$ thì $\alpha \mathbf{x} \in \mathcal{V}$

Nói cách khác, phép cộng 2 vector và phép nhân vô hướng 1 số với vector cho kết quả vẫn nằm trong không gian vector đó.

Đồng thời, phép cộng và phép nhân vô hướng phải thỏa mãn các tính chất sau

1. Tính giao hoán với phép cộng: với mọi $x,y\in\mathcal{V},\,x+y=y+x$

- 2. Tính kết hợp với phép cộng: với mọi $x,y,z\in\mathcal{V},\,x+(y+z)=(x+y)+z$
- 3. Phần tử đơn vị của phép cộng: tồn tại vector không $\mathbf{0} \in \mathcal{V}$ sao cho với mọi $x \in \mathcal{V}, \ \mathbf{0} + x = x + \mathbf{0} = x$
- 4. Phần tử đối của phép cộng: với mọi $x \in \mathcal{V}$, tồn tại phần tử $x' \in \mathcal{V}$ sao cho x + x' = x + x' = 0
- 5. Phần tử đơn vị của phép nhân vô hướng: tồn tại phần tử $1_F \in \mathbb{F}$ sao cho với moi $\boldsymbol{x} \in \mathcal{V}$ thì $1_F \cdot \boldsymbol{x} = \boldsymbol{x}$
- 6. Tính kết hợp của phép nhân vô hướng: với mọi $\alpha, \beta \in \mathbb{F}$, với mọi $x \in \mathcal{V}$ thì $\alpha(\beta x) = (\alpha \beta)x$
- 7. Tính phân phối giữa phép cộng và nhân: với mọi $\alpha \in \mathbb{F}$, với mọi $x, y \in \mathcal{V}$ thì $\alpha(x + y) = \alpha x + \alpha y$
- 8. Tính phân phối giữa phép nhân vô hướng: với mọi $\alpha, \beta \in \mathbb{F}$, với mọi $\mathbf{x} \in \mathcal{V}$ thì $(\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x}$

Ta thấy rằng không gian vector xét ở chương trước xác định trên trường \mathbb{R} . Khi đó $\mathcal{V} = \mathbb{R}^n$ và $\mathbb{F} \equiv \mathbb{R}$.

17.2 Cơ sở và số chiều của không gian vector

Tương tự, ta cũng có khái niệm cơ sở và số chiều của không gian vector.

Nếu trong không gian vector $\mathcal V$ tồn tại các vector độc lập tuyến tính $v_1,\ v_2,\ ...,\ v_d$ mà tất cả các vector trong $\mathcal V$ có thể biểu diễn dưới dạng tổ hợp tuyến tính của các vector v_i trên, thì tập hợp các vector

$$\{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_d\}$$

được gọi là \mathbf{co} sở của không gian vector \mathcal{V} .

Khi đó,

$$oldsymbol{x} = \sum_{i=1}^d lpha_i oldsymbol{v}_i \quad orall oldsymbol{x} \in \mathcal{V}$$

Số lượng phần tử của tập hợp các vector đó (ở đây là d) gọi là **số chiều (dimension)** của không gian vector \mathcal{V} . Ta ký hiệu dim $\mathcal{V} = d$. Ta còn ký hiệu

$$\mathcal{V} = \operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_d\}$$

và nói là không gian vector $\mathcal V$ được span (hay được sinh) bởi các vector v_i .

Ta thấy rằng có thể có nhiều cơ sở cho cùng một không gian vector.

Định lý 17.1. Mọi cơ sở của không gian vector $\mathcal V$ đều có số phần tử bằng dim $\mathcal V$

17.3 Ví dụ về không gian vector

Xét không gian vector \mathbb{R}^2 .

Ta biết rằng mọi điểm M=(x,y) là tổ hợp tuyến tính của 2 vector $\vec{i}=(1,0)$ và $\vec{j}=(0,1)$. Nghĩa là $(x,y)=x\cdot(1,0)+y\cdot(0,1)$. Như vậy \vec{i} và \vec{j} là cơ sở của \mathbb{R}^2 và dim $\mathbb{R}^2=2$.

Cơ sở $\{\vec{i}, \vec{j}\}$ được gọi là **cơ sở chính tắc** của \mathbb{R}^2 . Bây giờ xét 2 vector (1, 2) và (3, 4).

Ta thấy rằng $(1,2)=1\cdot(1,0)+2\cdot(0,1)$ và $(3,4)=3\cdot(1,0)+4\cdot(0,1)$. Viết dưới dạng ma trận là

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

mà ma trận $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ khả nghịch. Vậy (1,2) và (3,4) cũng là một cơ sở của \mathbb{R}^2 .

Nhận xét. Ta thấy rằng trên \mathbb{R}^n luôn có hệ cơ sở chính tắc. Như vậy, hệ vector trên \mathbb{R}^n là cơ sở khi và chỉ khi chúng độc lập tuyến tính, hay nói cách khác là khi viết các hàng thành ma trận thì ma trận có định thức khác 0, hoặc rank ma trận bằng n.

Phần VII Toán rời rạc

Chương 18

Quan hệ hai ngôi

18.1 Quan hệ hai ngôi

Định nghĩa 18.1 (Quan hệ hai ngôi). Xét hai tập hợp A và B. Ta gọi R là một quan hệ hai ngôi trên A và B nếu $R \subset A \times B$. Trong đó $A \times B$ là tích Descartes của hai tập hợp.

Nếu phần tử $(a,b) \in R$ với $a \in A$ và $b \in B$ thì ta nói a **có quan** hệ với b và ký hiệu aRb.

Khi $A \equiv B$ thì ta nói R là quan hệ hai ngôi trên A. Đây cũng là yếu tố quan trong cho các khái niêm về sau.

Ví dụ. Xét hai tập hợp $A = \{1, 2, 3, 4\}$ và $B = \{a, b, c\}$. Khi đó tích Descartes

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c), (3, a), (3, b), (3, c), (4, a), (4, b), (4, c)\}$$

Giả sử $R = \{(1, a), (3, b), (4, c)\}$ thì 1 quan hệ với a do $(1, a) \in R$, hay 1Ra. Tuy nhiên 1 không có quan hệ với b do $(1, b) \notin R$.

Sau đây ta định nghĩa các loại quan hệ hai ngôi.

Định nghĩa 18.2. Cho R là quan hệ hai ngôi trên tập A. Ta nói

- 1. R phản xạ (reflexive) nếu với mọi $x \in A$ thì $(x, x) \in R$
- 2. R đối xúng (symmetric) nếu $(x,y) \in R$ thì $(y,x) \in R$
- 3. R phản xứng (antisymmetric) nếu $(x,y) \in R$ thì $(y,x) \notin R$. Hay nói cách khác nếu $(x,y) \in R$ và $(y,x) \in R$ thì x=y
- 4. R bắc cầu (transitive) nếu $(x,y) \in R$ và $(y,z) \in R$ thì $(x,z) \in R$

18.2 Quan hệ tương đương

Quan hệ tương đương đóng vai trò quan trọng trong toán rời rạc, đặc biệt là lý thuyết nhóm. Nhờ quan hệ tương đương ta có thể chia (phân bố) một tập hợp rời rạc thành các tập con mà chỉ cần một phần tử đại diện cho tập con đó là đủ để tính toán.

Sau đây ta định nghĩa quan hệ tương đương.

Định nghĩa 18.3 (Quan hệ tương đương). Cho R là quan hệ trên tập A. Khi đó R được gọi là **quan hệ tương đương** nếu R phản xạ, đối xứng và bắc cầu.

Ta có thể ký hiệu xRy với R là quan hệ tương đương bằng cách viết $x\sim y$ hoặc $x\widetilde{R}y$.

Tiếp theo ta định nghĩa lớp tương đương chứa phần tử x và tập thương.

Định nghĩa 18.4 (Lớp tương đương). Cho R là quan hệ tương đương trên tập A. Khi đó với $x \in A$, ta định nghĩa lớp tương đương chứa phần tử x là

$$C(x) = \{ y \in A, \, yRx \} = \bar{x}$$

Định nghĩa 18.5 (Tập thương). Tập hợp các lớp tương đương như trên tạo thành tập thương.

$$A/R = \{\bar{x}, \, x \in A\}$$

Ví dụ. Xét số nguyên dương n. Với số nguyên x và y, ta nói x có quan hệ với y nếu n|(x-y), hay $x \equiv y \mod n$.

Quan hệ trên là quan hệ tương đương vì

- a) n|0 = x x (tính phản xạ)
- b) $n|(x-y) \Rightarrow n| (x-y) = y x$ (tính đối xứng)
- c) n|(x-y) và n|(y-z) thì n|(x-y+y-z)=(x-z) (tính bắc cầu)

Từ đó ta có thể phân tập $\mathbb Z$ thành các lớp tương đương

$$\overline{0} = \{\dots, -2n, -n, 0, n, 2n, \dots\}$$

$$\overline{1} = \{\dots, -2n+1, -n+1, 1, n+1, 2n+1, \dots\}$$

$$\vdots$$

$$\overline{n-1} = \{\dots, -n-1, -1, n-1, 2n-1, 3n-1, \dots\}$$

Ta ký hiệu quan hệ $x \equiv y \mod n$ là $n\mathbb{Z}$. Như vậy tập thương của chúng ta là $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$.

18.3 Quan hệ thứ tự

Định nghĩa 18.6 (Quan hệ thứ tự). Xét quan hệ R trên tập A. Ta nói R là quan hệ thứ tự nếu R phản xạ, phản xứng và bắc cầu.

Định nghĩa 18.7. Cho tập hợp A và quan hệ R trên A là quan hệ thứ tự. Nếu xRy thì ta ký hiệu $x \prec y$. Khi đó (A, \prec) được gọi là **tập có thứ tự**.

Tiếp theo là một số định nghĩa quan trọng về tập hợp có thứ tự.

Định nghĩa 18.8. Với (A, \prec) và $x, y \in A$, ta định nghĩa:

- 1. Nếu $x \prec y$, ta nói y là trội của x, hay là x được trội bởi y
- 2. y là **trội trực tiếp** của x nếu không tồn tại z sao cho $x \prec z$ và $z \prec y$

Định nghĩa 18.9. Xét (A, \prec) . Ta gọi

- 1. x và y thuộc A được gọi là **so sánh được** nếu $x \prec y$ hoặc $y \prec x$
- 2. nếu với mọi $x, y \in A$, x và y so sánh được thì (A, \prec) được gọi là **quan hệ thứ tự toàn phần**. Ngược lại thì gọi là **quan hệ** thứ tự bán phần

Để biểu diễn sự so sánh trong một tập hợp, ta sử dụng biểu đồ Hasse.

Định nghĩa 18.10. Biểu đồ Hasse của (A, \prec) với A là tập hữu hạn bao gồm

- 1. Tập điểm mỗi điểm biểu diễn một phần tử của A
- 2. Tập cung vẽ một cung từ x tới y nếu y là trội trực tiếp của x

Ví dụ. Xét tập $U_{12} = \{1, 2, 3, 4, 6, 12\}$ với quan hệ xRy được định nghĩa x là ước của y.

Theo đó, biểu đồ Hasse của quan hệ trên là

Hình 18.1: Biểu đồ Hasse của U_{12}

Trong một tập có thứ tự ta có các khái niệm quan trọng sau (và nhiều lý thuyết hay lĩnh vực khác cũng nhắc tới).

Định nghĩa 18.11. Xét quan hệ thứ tự (A, \prec) .

- 1. Phần tử $M \in A$ được gọi là
 - (a) Tối đại nếu $M \prec x$ thì x = M
 - (b) Cưc đại (lớn nhất) nếu với mọi $x \in A$ thì $x \prec M$

- 2. Phần tử $m \in A$ được gọi là
 - (a) Tối tiểu nếu $x \prec m$ thì x = m
 - (b) Cực tiểu (nhỏ nhất) nếu với mọi $x \in A$ thì $m \prec x$

Chúng ta có một số nhận xét sau

- 1. Phần tử cực đại nếu có là duy nhất. Tương tự cho cực tiểu.
- 2. Nếu n là phần tử tối đại duy nhất thì nó cũng là cực đại. Tương tự cho tối tiểu.

Trong ví dụ U_{12} ở trên thì 1 là tối tiểu và cũng là cực tiểu, và 12 là tối đại và cũng là cực đại.

Phần VIII Giải tích

Chương 19

Giới hạn

19.1 Giới hạn của dãy số

Định nghĩa 19.1 (Giới hạn hữu hạn của dãy số). Cho dãy số $\{a_n\}$. Ta nói dãy $\{a_n\}$ có giới hạn hữu hạn L nếu với mọi $\varepsilon > 0$, tồn tại $n_0 \in \mathbb{N}$ sao cho với mọi $n \geq n_0$ thì

$$|a_n - L| < \varepsilon$$

Ký hiệu: $\lim_{n\to\infty} a_n = L$

Nói cách khác, trên trục số với điểm L, nếu ta chọn một đường tròn bán kính ε tùy ý, thì mọi số hạng của dãy số kể từ số hạng n_0 nào đó trở đi đều nằm trong đường tròn này. Thông thường ε rất nhỏ.

Ví dụ. Xét dãy số cho bởi công thức $a_n = \frac{1}{n}$.

Ta chứng minh dãy số có giới hạn hữu hạn là 0.

Với mọi $\varepsilon > 0$ tùy ý, ta cần chứng minh tồn tại số $n_0 \ge 1$ sao cho với mọi $n \ge n_0$ thì $|a_n - 0| < \varepsilon$.

Hay nói cách khác $a_{n_0} < \varepsilon$.

Tương đương với $\frac{1}{n_0} < \varepsilon \Leftrightarrow n_0 > \frac{1}{\varepsilon}$ Vậy ta chỉ cần chọn n_0 thỏa bất đẳng thức trên (luôn tìm được). Kết luận: $\lim_{n\to\infty} a_n = 0$

Định nghĩa 19.2 (Dãy số có giới hạn vô cực). Cho dãy số $\{a_n\}$. Ta nói dãy số có giới hạn ở dương vô cực nếu với mọi M>0, tồn tại $n_0\in\mathbb{N}$ sao cho với mọi $n\geq n_0$ thì $a_n>M$.

Nói cách khác, nếu ta chọn một số M rất lớn bất kì, thì mọi số hạng của dãy số kể từ một số hạng nào đó trở đi luôn lớn hơn M. Đinh nghĩa về dãy số có giới han ở âm vô cực cũng tương tự.

19.2 Giới han của hàm số

Định nghĩa của hàm số theo kiểu Cauchy (hay còn được gọi là ngôn ngữ $\delta-\varepsilon$) là kiểu định nghĩa phổ biến được giảng dạy trong nhà trường.

Định nghĩa 19.3 (Giới hạn hữu hạn của hàm số). Xét hàm số f(x). Ta nói hàm số có giới hạn hữu hạn L khi x tiến tới x_0 , nếu với mọi $\varepsilon > 0$, tồn tại $\delta > 0$ sao cho với mọi x mà $|x - x_0| < \delta$ thì $|f(x) - L| < \varepsilon$.

Ký hiệu:
$$\lim_{x \to x_0} f(x) = L$$

Một cách hình ảnh, tương tự như giới hạn dãy số, lần này ta nhìn trên 2 trục của mặt phẳng tọa độ Oxy. Với mọi quả cầu bán kính ε tâm L (dành cho f(x)) ta luôn chọn được quả cầu bán kính δ tâm x_0 (dành cho x). Lúc này khi x nằm trong quả cầu tâm x_0 bán kính δ thì f(x) tương ứng sẽ nằm trong quả cầu tâm L bán kính ε .

Ta có thể thấy ở đây x tiến về x_0 (khá giống định nghĩa giới hạn hàm số) và f(x) tương ứng tiến về L.

Tương tự ta cũng có giới hạn hàm số ở vô cực

Định nghĩa 19.4 (Giới hạn hàm số ở vô cực). Với hàm số f(x), ta nói hàm số có giới hạn tại dương vô cực khi x tiến về x_0 nếu với

mọi M>0, tồn tại $\delta>0$ sao cho với mọi x mà $|x-x_0|<\delta$ thì f(x)>M

Ký hiệu:
$$\lim_{x \to x_0} f(x) = +\infty$$

Định nghĩa 19.5 (Giới hạn một bên). Ta nói hàm số f(x) có giới hạn phải L tại x_0 khi x tiến về bên phải x_0 nếu với mọi $\varepsilon > 0$, tồn tại $\delta > 0$ sao cho với mọi $0 < x - x_0 < \delta$ thì $|f(x) - L| < \varepsilon$.

Ký hiệu:
$$\lim_{x \to x_0^+} f(x) = L$$

Nghĩa là chúng ta chỉ xét giới hạn khi x tiến tới x_0 từ bên phải $x > x_0$. Tương tự cho giới hạn trái.

Lưu ý rằng trong nhiều trường hợp, mặc dù cùng tiến tới x_0 nhưng giới hạn trái và giới hạn phải có thể không bằng nhau.

Ví dụ. Xét hàm số $y = \frac{1}{x}$. Ta thấy hàm số không xác định tại x = 0, và giới hạn trái và phải khác nhau:

$$\lim_{x \to 0^+} = +\infty, \quad \lim_{x \to 0^-} = -\infty$$

19.3 Tính liên tục của hàm số

Cho hàm số f(x) xác định trên miền D và x_0 là một điểm thuộc D.

Định nghĩa 19.6 (Hàm số liên tục tại một điểm). Ta nói hàm số f(x) liên tục tại x_0 nếu

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Định nghĩa tương tự cho liên tục trái và liên tục phải (ta lấy giới hạn một bên).

Như vậy, có 3 khả năng hàm số không liên tục tại một điểm.

- 1. Hàm số không xác định tại x_0
- 2. Hàm số xác định tại x_0 nhưng giới hạn tại đó không bằng $f(x_0)$

3. Giới hạn trái và giới hạn phải không bằng nhau

Nếu hàm số không liên tục tại x_0 ta gọi hàm số bị **gián đoạn** tai x_0 .

19.4 Đạo hàm

Định nghĩa 19.7 (Đạo hàm). Cho hàm số f(x) xác định trên miền D và x_0 là điểm thuộc D. Ta nói hàm số f(x) có đạo hàm tại x_0 (hoặc khả vi tại x_0) nếu tồn tại giới hạn hữu hạn

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Ví dụ. Xét hàm số $f(x) = x^2 + 1$ trên \mathbb{R} . Tìm đạo hàm tại $x_0 \in \mathbb{R}$. Ta có $f(x) - f(x_0) = x^2 + 1 - (x_0^2 + 1) = (x - x_0)(x + x_0)$. Khi đó $\frac{f(x) - f(x_0)}{x - x_0} = x + x_0$ nên ta có

$$\lim_{x \to x_0} (x + x_0) = 2x_0$$

Nếu hàm số khả vi trên mọi điểm thuộc khoảng (đoạn) nào đó thì ta nói hàm số khả vi trên khoảng (đoạn) đó và ký hiệu là f'(x).

Với ví dụ trên, ta thấy giới hạn tồn tại với mọi $x_0 \in \mathbb{R}$ nên ta có thể thay x_0 bởi x và có f'(x) = 2x với $f(x) = x^2 + 1$.

Nhận xét. Từ định nghĩa ta thấy rằng nếu f(x) khả vi tại x_0 thì nó cũng liên tục tại x_0 . Lưu ý là chiều ngược lại không đúng. Ví dụ với hàm số y = |x|, hàm số liên tục tại x = 0 nhưng giới hạn (đạo hàm) phải là 1, còn giới hạn (đạo hàm) trái là -1.

Về mặt hình ảnh, khi hàm số khả vi tại một điểm thì đồ thị sẽ "trơn", không gấp khúc tại điểm đó.

19.5 $m \acute{Y}$ nghĩa cơ học của đạo hàm

Xét một chất điểm (vật lý) chuyển động. Quãng đường chuyển động của chất điểm được biểu diễn bởi hàm số theo thời gian. Ta đã biết vận tốc là đặc trưng chuyển động của chất điểm trong một đơn vị thời gian (phản ánh chất điểm chuyển động nhanh hay chậm). Nếu đặt Δs là độ biến thiên tọa độ của chất điểm trong khoảng thời gian Δt , thì vận tốc là $v = \frac{\Delta s}{\Delta t}$.

Vận tốc tức thời đặc trưng cho sự nhanh chậm của chuyển động. Ta không thể khảo sát vận tốc tại 1 điểm vì chất điểm chuyển động chứ không đứng yên. Do đó một ý tưởng đơn giản là chúng ta khảo sát trong một khoảng thời gian cực nhỏ, khi $\Delta t \to 0$, khi đó vận tốc gần như đúng tại một thời điểm nên gọi là vận tốc tức thời.

Do đó ta có hàm số v=s'(t) biểu diễn vận tốc theo thời gian, với s(t) là hàm số biểu diễn chuyển động của chất điểm theo thời gian.

19.6 Cực trị

Đầu tiên chúng ta cần một định lý về tính đơn điệu của hàm số khả vi.

Định lý 19.1. Xét hàm số f(x) khả vi trên khoảng (a,b). Nếu f'(x) > 0 với mọi $x \in (a,b)$ thì f(x) đồng biến trên (a,b).

Tương tự, f'(x) < 0 với mọi $x \in (a,b)$ thì f(x) nghịch biến trên (a,b).

Định nghĩa 19.8 (Cực tiểu của hàm số). Xét hàm số f(x) liên tục trên khoảng (a,b). Điểm $(x_0,f(x_0))$ được gọi là **cực tiểu** của hàm số f(x) nếu tồn tại một lân cận U chứa x_0 nằm trong khoảng (a,b) sao cho với mọi $x \in U$ thì $f(x) \geq f(x_0)$.

Định nghĩa 19.9 (Cực đại của hàm số). Xét hàm số f(x) liên tục trên khoảng (a,b). Điểm $(x_0,f(x_0))$ được gọi là **cực đại** của hàm

số f(x) nếu tồn tại một lân cận U chứa x_0 nằm trong khoảng (a,b) sao cho với mọi $x\in U$ thì $f(x)\leq f(x_0)$.

Theo định nghĩa cực tiểu thì chỉ cần tồn tại lân cận chứa x_0 mà $f(x) \geq f(x_0)$ thì điểm đó là cực tiểu. Như vậy một hàm số có thể có nhiều cực tiểu, tương tự cũng có thể có nhiều cực đại.

Lưu ý rằng cực đại và cực tiểu không phải điểm chỉ giá trị lớn nhất hay giá trị nhỏ nhất của hàm số. Nó chỉ lớn nhất hoặc nhỏ nhất trong vùng lân cận đó theo định nghĩa, nên người ta còn gọi là cực tri đia phương.

Chương 20

Đường cong elliptic

Đường cong elliptic (elliptic curve) rất nổi tiếng trong toán học. Đây là công cụ giúp các nhà toán học giải quyết bài toán lớn Định lý cuối cùng của Fermat. Trong mật mã học, đường cong elliptic là một trong những tiêu chuẩn bảo mật về mã hóa và chữ ký điện tử. Chương này khảo sát những đặc trưng cơ bản đường cong elliptic và ứng dụng trong mật mã học.

20.1 Mở đầu về đường cong elliptic

Đường cong elliptic là tập hợp các điểm (x,y) trên mặt phẳng Oxy thỏa mãn phương trình $y^2=x^3+ax+b$, với $a,b\in\mathbb{R}$ và $4a^3+27b^2\neq 0$.

Ví dụ với phương trình $y^2=x^3+8$, đồ thị được biểu diễn ở hình 20.1.

Ví dụ với phương trình $y^2=x^3-x$, đồ thị được biểu diễn ở hình 20.2.

Hoặc đối với phương trình $y^2=x^3-3x+3$ thì đồ thị được biểu diễn ở hình 20.3.

Ta thấy rằng, đường cong elliptic đối xứng qua trục hoành.

Hình 20.1: Elliptic $y^2 = x^3 + 8$

20.2 Phép cộng các điểm trên elliptic

Phương trình và đồ thị của đường cong elliptic đã được trình bày ở trên. Tuy nhiên chúng ta quan tâm tới mối liên hệ giữa các điểm trên elliptic, cụ thể là phép "cộng" 2 điểm.

Ta thêm một điểm trừu tượng vào tập hợp các điểm trên đường cong elliptic và gọi là **điểm vô cực**. Điểm vô cực được ký hiệu là \mathcal{O} .

Khi đó, với điểm P=(x,y) bất kì trên elliptic, điểm đối xứng của nó qua trục hoàng là P'=(x,-y) và ta định nghĩa $P+P'=\mathcal{O}$. Tiếp theo ta định nghĩa phép cộng hai điểm.

Giả sử $P=(x_P,y_P)$ và $Q=(x_Q,y_Q)$ là hai điểm trên elliptic. Ta có hai trường hợp:

- 1. Nếu $P \neq Q$, ta vẽ đường thẳng đi qua P và Q. Đường thẳng này cắt elliptic tại điểm thứ ba là S. Ta lấy R đối xứng với S qua trục hoành. Khi đó R cũng nằm trên elliptic và P+Q=R;
- 2. Nếu $P \equiv Q$, ta vẽ tiếp tuyến với elliptic tại điểm P. Tiếp tuyến

Hình 20.2: Elliptic $y^2 = x^3 - x$

này cắt elliptic tại điểm thứ hai là S. Tương tự ta lấy R đối xứng với S qua trục hoành. Khi đó P+Q=2P=R.

Khi đó, tập hợp các điểm trên elliptic cùng với điểm vô cực, và phép cộng hai điểm được định nghĩa như trên tạo thành một nhóm.

Để chứng minh đây là nhóm, ta cần chuyển các khái niệm hình học kia sang đại số để tính toán và chứng minh.

Phép cộng hai điểm khác nhau

Đầu tiên ta thiết lập công thức phép cộng giữa hai điểm cho trường hợp $P \neq Q$. Giả sử $P = (x_P, y_P)$ và $Q = (x_Q, y_Q)$.

Phương trình đường thẳng đi qua P và Q là

$$y = \frac{y_Q - y_P}{x_Q - x_P}(x - x_P) + y_P \tag{20.1}$$

Thay y vào phương trình đường cong elliptic ta có

Hình 20.3: Elliptic $y^2 = x^3 - 3x + 3$

$$\left[\frac{y_Q - y_P}{x_Q - x_P}(x - x_P) + y_P\right]^2 = x^3 + ax + b \tag{20.2}$$

Đặt $k = \frac{y_Q - y_P}{x_Q - x_P}$. Khi đó phương trình tương đương với

$$(kx - kx_P + y_P)^2 = x^3 + ax + b$$

Khai triển và chuyển vế ta có

$$x^3 - k^2 x^2 + \dots = 0 (20.3)$$

Ta chỉ cần quan tâm hệ số trước x^2 . Bởi vì ta biết rằng đường thẳng PQ cắt elliptic tại 3 điểm P, Q, S, nên phương trình bậc 3 này có 3 nghiệm phân biệt là x_P , x_Q và x_S nên theo theo định lý Vieta ta có

$$x_P + x_Q + x_S = k^2$$

Như vậy ta có hoành độ điểm S

$$x_S = k^2 - x_P - x_Q (20.4)$$

Thay x_S vào 20.1, ta có tung độ điểm S

$$y_S = k(x_S - x_P) + y_P (20.5)$$

Mà R đối xứng với S qua trục hoành, như vậy $x_R = x_S$ và $y_R = -y_S$. Như vậy kết quả của phép cộng là

$$x_R = k^2 - x_P - x_Q$$

$$y_R = k(x_P - x_R) - y_P$$

$$\text{v\'oi } k = \frac{y_Q - y_P}{x_Q - x_P}.$$

Phép cộng hai điểm giống nhau

Trong trường hợp hai điểm giống nhau, ta vẽ tiếp tuyến tiếp xúc với elliptic đi qua điểm đó. Giả sử ta muốn vẽ tiếp tuyến tại điểm $P = (x_P, y_P)$, khi đó từ phương trình elliptic $y^2 = x^3 + ax + b$ ta vi phân hai vế thu được

$$2y \, dy = (3x^2 + a) \, dx \tag{20.6}$$

Ta biết rằng hệ số góc của đường tiếp tuyến là đạo hàm hàm số tại điểm đó, hay nói cách khác là dy/dx. Như vậy hệ số góc tiếp tuyến tại điểm P là

$$k = \frac{dy}{dx} = \frac{3x_P^2 + a}{2y_P}$$
 (20.7)

và như vậy phương trình đường tiếp tuyến là

$$y = k(x - x_P) + y_P (20.8)$$

Thực hiện tương tự như bên trên, ta có đường tiếp tuyến cắt elliptic tại hai điểm phân biệt, trong đó có một điểm tiếp xúc nên trong phương trình hoành độ giao điểm điểm tiếp xúc là nghiệm bội hai. Nói cách khác, theo định lý Vieta thì

$$x_P + x_P + x_S = k^2$$

Suy ra hoành độ điểm S là

$$x_S = k^2 - 2x_P (20.9)$$

, và tung độ điểm S là

$$y_S = k(x_S - x_P) + y_P (20.10)$$

Cuối cùng, tọa độ điểm R = P + P là

$$x_R = k^2 - 2x_P$$
$$y_R = k(x_P - x_S) - y_P$$

Tổng kết

Để cộng hai điểm $P=(x_P,y_P)$ và $Q=(x_Q,y_Q)$ ta có ba trường hợp sau:

- 1. $x_Q=x_P$ và $y_Q=-y_P$, nói cách khác là đối xứng qua trục hoành, thì ta có $P+Q=\mathcal{O}$
- 2. $x_P \neq x_Q$, đặt $k=\frac{y_Q-y_P}{x_Q-x_P}$ thì tọa độ điểm R=P+Q là $x_R=k^2-x_P-x_Q$ và $y_R=k(x_P-x_R)-y_P$
- 3. $x_P=x_Q$ và $y_P=y_Q$, khi hai điểm trùng nhau, đặt $k=\frac{3x_P^2+a}{2y_P}$, thì tọa độ điểm R=2P là $x_R=k^2-2x_P$ và $y_R=k(x_P-x_R)-y_P$

Phần IX Tổ hợp

Chương 21

Đại cương tổ hợp

Chúng ta có hai quy tắc đếm, và những công thức đếm khác đều được sinh ra cũng như tuân theo hai quy tắc này. Đó là quy tắc cộng và quy tắc nhân.

21.1 Quy tắc cộng và quy tắc nhân

Khi một công việc có thể thực hiện bằng một trong nhiều phương án, ta sử dụng quy tắc cộng. Ví dụ, nếu chúng ta muốn lấy một cây bút trong hộp có 3 cây bút đỏ, 4 cây bút xanh và 5 cây bút vàng, thì chúng ta có tất cả 3+4+5=12 cách lấy.

Khi một công việc được thực hiện trên nhiều công đoạn, ở mỗi công đoạn có nhiều phương án thì ta sử dụng quy tắc nhân. Ví dụ, nếu chúng ta đi từ thành phố A tới thành phố B, giữa đường đi ngang thành phố C. Từ A tới C có 4 con đường, từ C tới B có 3 con đường thì có tất cả $4\cdot 3=12$ con đường đi từ A tới B mà đi ngang qua C.

Nguyên lý bù trừ. Ở quy tắc cộng, khi các phương án rời nhau, thì ta cộng chúng lại. Tuy nhiên, khi các phương án có sự giao nhau thì chúng ta sử dụng nguyên lý bù trừ, hay còn gọi là quy tắc cộng

mở rộng.

Gọi A và B là hai tập hợp. Ký hiệu $|A \cup B|$ là số lượng phần tử của A hợp B và $|A \cap B|$ là số lượng phần tử của A giao B.

Khi đó

$$|A \cup B| = |A| + |B| - |A \cap B| \tag{21.1}$$

Sử dụng sơ đồ Venn để mô tả công thức trên:

Hình 21.1: Nguyên lý bù trừ cho hai tập hợp

Ta thấy rằng, khi chúng ta cộng số phần tử của hai tập hợp lại với nhau thì phần giao của chúng bị trùng. Do đó ta phải trừ đi một lần phần giao thì mới có hợp của hai tập hợp.

Ví dụ. Trong một lớp học có 20 học sinh. Trong đó có 13 học sinh biết chơi bóng chuyền, 15 học sinh biết chơi bóng bàn. Biết rằng không có học sinh nào không biết chơi cả bóng chuyền lẫn bóng bàn. Hỏi có bao nhiều học sinh biết chơi cả hai môn bóng chuyền và bóng bàn?

Giải. Đặt A là tập hợp các học sinh biết chơi bóng chuyền. Ta có |A|=13.

Đặt B là tập hợp các học sinh biết chơi bóng bàn. Ta có |B|=15. Do lớp học có 20 học sinh và học sinh nào cũng biết chơi hoặc bóng chuyền, hoặc bóng bàn, nên $|A \cup B|=20$.

Theo nguyên lý bù trừ, số lượng học sinh biết chơi cả hai bộ môn là $|A \cap B| = |A| + |B| - |A \cup B| = 13 + 15 - 20 = 8$.

Như vậy có 8 học sinh biết chơi cả hai môn.

Ta có thể có công thức bù trừ cho 3 tập hợp.

$$|A \cup B \cup C| = |A| + |B| + |C| - (|A \cap B| + |B \cap C| + |C \cap A|) + |A \cap B \cap C|$$
(21.2)

Trong trường hợp tổng quát cho n tập hợp $A_1, A_2, ..., A_n$ thì công thức bù trừ là:

$$|A_{1} \cup A_{2} \cup \ldots \cup A_{n}| = \sum_{i=1}^{n} |A_{i}|$$

$$- \sum_{1 \leq i_{1}, i_{2}, \leq n, i_{1} \neq i_{2}} |A_{i_{1}} \cap A_{i_{2}}|$$

$$+ \sum_{1 \leq i_{1}, i_{2}, i_{3}, i_{1} \neq i_{2} \neq i_{3} \neq i_{1}} |A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}| + \ldots$$

$$+ (-1)^{t-1} \sum_{1 \leq i_{1}, \ldots, i_{t}, i_{1} \neq \ldots \neq i_{t}} |A_{i_{1}} \cap \ldots \cap A_{i_{t}}| + \ldots$$

$$+ (-1)^{n-1} |A_{1} \cap \ldots \cap A_{n}|$$

$$(21.3)$$

21.2 Hoán vị, tổ hợp, chỉnh hợp

Xét một tập hợp n phần tử

$$A = \{a_1, a_2, \dots, a_n\}$$

Một cách xếp n phần tử này theo thứ tự là một hoán vị của tập hợp đó. Tập hợp có n phần tử thì số hoán vị là n!.

Chứng minh. Xét vị trí đầu tiên, ta có thể xếp một trong n phần tử vào vị trí này. Đối với vị trí thứ hai, vì ta đã xếp một phần tử vào

vị trí đầu nên ta còn n-1 phần tử có thể xếp vào vị trí thứ hai. Tương tự, với vị trí thứ ba ta có n-2 cách chọn. Cho tới vị trí cuối cùng (vị trí thứ n) ta còn đúng 1 phần tử.

Do đó, theo quy tắc nhân, số cách xếp n phần tử theo thứ tự là

$$n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1 = n!$$

Ví dụ, với tập $A = \{1,2,3\}$ thì ta có các hoán vị là $\{1,2,3\}$, $\{1,3,2\}$, $\{2,1,3\}$, $\{2,3,1\}$, $\{3,1,2\}$ và $\{3,2,1\}$.

Chính hợp là một trường hợp nhỏ hơn của hoán vị. Khi đó từ một tập hợp có n phần tử, ta lấy ra k phần tử và sắp k phần tử đó theo thứ tự. Khi đó với $k \le n$ thì số chính hợp là $\frac{n!}{(n-k)!}$.

Chứng minh. Vị trí đầu tiên ta có n cách chọn. Vị trí thứ 2 ta có n-1 cách chọn. Tương tự vậy, ta thấy rằng ở vị trí thứ i thì ta có n-i+1 cách chọn (chỉ số của vị trí và số cách chọn luôn có tổng bằng n+1).

Do đó, tới vị trí thứ k thì số cách chọn là n-k+1. Như vậy theo quy tắc nhân, số chỉnh hợp là

$$n \cdot (n-1) \cdots (n-k+1) = \frac{n \cdot (n-1) \cdots (n-k+1) \cdot (n-k) \cdot (n-k-1) \cdots 2 \cdot 1}{(n-k) \cdot (n-k-1) \cdots 2 \cdot 1} = \frac{n!}{(n-k)!}$$
(21.4)

Khi chúng ta lấy ra k phần tử từ n phần tử nhưng không sắp chúng theo thứ tự, ta có tổ hợp. Do đó ta cần chia cho số hoán vị của k phần tử. Như vậy số tổ hợp k phần tử từ tập hợp n phần tử là $\frac{n!}{(n-k)! \cdot k!}.$

Phần X

Lời giải cho bài tập trong một số sách

Chương 22

Abstract Algebra

Phần này giải các bài tập trong quyển **Abstract Algebra: Theory** and **Applications** ở [2]

22.1 Groups (chương 3)

- 7. Đặt $S = \mathbb{R} \setminus \{-1\}$ và định nghĩa toán tử 2 ngôi trên S là $a \star b = a + b + ab$. Chứng minh rằng (S, \star) là nhóm Abel
- Chứng minh. Giả sử tồn tại phần tử đơn vị e, khi đó $e\star s=s\star e=s$ với mọi $s\in S$. Nghĩa là e+s+es=s+e+se=s. Vậy e+se=0 mà $s\neq -1$ nên e=0
 - Với e=0, giả sử với mọi $s\in S$ có nghịch đảo s'. Do $s\star s'=s'\star s=e$ nên s+s'+ss'=s'+s+s's=e=0, tức là s'(1+s)=-s. Vậy $s'=\frac{-s}{1+s}$
 - Với mọi $a,b,c\in S,\ a\star(b\star c)=a\star(b+c+bc)=a+(b+c+bc)+a(b+c+bc)=a+b+c+ab+bc+ca+abc$ và $(a\star b)\star c=(a+b+ab)\star c=a+b+ab+c+c(a+b+bc)=a+b+c+ab+bc+ca+abc$. Như vậy $a\star(b\star c)=(a\star b)\star c$, tính kết hợp

39. Gọi G là tập các ma trận 2×2 với dang

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

với $\theta \in \mathbb{R}$. Chứng minh rằng G là subgroup của $SL_2(\mathbb{R})$

Chứng minh. Với $\theta_1, \theta_2 \in \mathbb{R}$, ta có

$$\begin{pmatrix} \cos\theta_1 & -\sin\theta_1 \\ \sin\theta_1 & \cos\theta_1 \end{pmatrix} \begin{pmatrix} \cos\theta_2 & -\sin\theta_2 \\ \sin\theta_2 & \cos\theta_2 \end{pmatrix}$$

$$= \begin{pmatrix} \cos\theta_1\cos\theta_2 - \sin\theta_1\sin\theta_2 & -\cos\theta_1\sin\theta_2 - \sin\theta_1\cos\theta_2 \\ \sin\theta_1\cos\theta_2 + \cos\theta_1\sin\theta_2 & -\sin\theta_1\sin\theta_2 + \cos\theta_1\cos\theta_2 \end{pmatrix}$$

$$= \begin{pmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) \end{pmatrix}$$

Suy ra định thức của tích 2 ma trận là

$$\det\left(\begin{pmatrix}\cos(\theta_1+\theta_2) & -\sin(\theta_1+\theta_2)\\ \sin(\theta_1+\theta_2) & \cos(\theta_1+\theta_2)\end{pmatrix}\right) = 1 \cdot 1 = 1$$

Như vậy phép nhân 2 ma trân có dang trên đóng trên $SL_2(\mathbb{R})$.

Phần tử đơn vị là
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 tương ứng với $\theta = 0$

Phần tử nghi
ch đảo là $\begin{pmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{pmatrix}$ suy ra từ công thức định thức ban nãy

Cuối cùng, phép nhân ma trân có tính kết hợp. Như vây G là subgroup của $SL_2(\mathbb{R})$

47. Đặt G là nhóm và $g \in G$. Chứng minh rằng

$$Z(G) = \{ x \in G : gx = xg \ \forall \ g \in G \}$$

là subgroup của G. Subgroup này gọi là **center** của G

Chứng minh. Giả sử trong G có 2 phần tử là x_1 và x_2 thuộc Z(G). Khi đó

 $x_1g = gx_1$ và $x_2g = gx_2$ với mọi $g \in G$. Xét phần tử x_1x_2 , ta có

$$(x_1x_2)g = x_1(x_2g) = x_1(gx_2) = (gx_1)x_2 = g(x_1x_2)$$

với mọi $g \in G$. Do đó $x_1x_2 \in Z(G)$ nên Z(G) là subgroup.

49. Cho ví dụ về nhóm vô hạn mà mọi nhóm con không tầm thường của nó đều vô han

Ví dụ tập $\mathbb Z$ và phép cộng số nguyên. Khi đó mọi nhóm con của $\mathbb Z$ có dạng $n\mathbb Z$ với $n\in\mathbb Z$. Ví dụ

 $2\mathbb{Z}=\left\{\cdots,-4,-2,0,2,4,\cdots\right\}\text{ với phần tử sinh là 2}\\ n\mathbb{Z}=\left\{\cdots,-2n,-n,0,n,2n,\cdots\right\}\text{ với phần tử sinh là }n$ 54. Cho H là subgroup của G và

$$C(H) = \{ g \in G : gh = hg \ \forall \ h \in H \}$$

Chứng minh rằng C(H) là subgroup của G. Subgroup này được gọi là **centralizer** của H trong G

Chứng minh. Gọi g_1 và g_2 thuộc C(H). Khi đó $g_1h = hg_1$ và $g_2h = hg_2$ với mọi $h \in H$ Xét phần tử g_1g_2 , với mọi $h \in H$ ta có

$$(g_1g_2)h = g_1(g_2h) = g_1(hg_2) = (g_1h)g_2 = (hg_1)g_2 = h(g_1g_2)$$

Như vậy $g_1g_2 \in C(H)$, từ đó C(H) là subgroup của G

22.2 Permutation Groups (chuong 5)

13. Đặt $\sigma = \sigma_1 \cdots \sigma_m \in S_n$ là tích của các cycle độc lập. Chứng minh rằng order của σ là LCM của độ dài các cycle $\sigma_1, \cdots, \sigma_m$.

Chứng minh. Đặt l_i là độ dài cycle σ_i $(i = 1, \dots m)$. Khi đó $\sigma_i^{k_i l_i}$ sẽ ở dạng các cycle độ dài 1 $(k_i \in \mathbb{Z})$.

Từ đó, $\sigma^{l} = \sigma_{1}^{l} \cdots \sigma_{m}^{l} = (1) \cdots (n)$ nếu $l = k_{1}l_{1} = \cdots k_{m}l_{m}$. Số l nhỏ nhất thỏa mãn điều kiện này là $\operatorname{lcm}(l_{1}, \cdots, l_{m})$ (đpcm)

23. Nếu σ là chu trình với độ dài lẻ, chứng minh rằng σ^2 cũng là chu trình

Chứng minh. Giả sử $\sigma = (g_1, g_2, \dots, g_{n-1}, g_n)$ với n lẻ. Khi đó $\sigma^2 = (g_1, g_3, \dots, g_n, g_2, g_4, \dots, g_{n-1})$ cũng là chu trình.

- 30. Cho $\tau = (a_1, a_2, \dots, a_k)$ là chu trình độ dài k.
- (a) Chứng minh rằng với mọi hoán vị σ thì

$$\sigma \tau \sigma^{-1} = (\sigma(a_1), \sigma(a_2), \cdots, \sigma(a_k))$$

là chu trình đô dài k.

(b) Gọi μ là chu trình độ dài k. Chứng minh rằng tồn tại hoán vị σ sao cho $\sigma\tau\sigma^{-1}=\mu$

 $\mathit{Chứng\ minh}$. Để chứng minh 2 mệnh đề trên ta cần chú ý một số điều.

- (a) Ta thấy rằng bất kì phần tử nào khác a_1, a_2, \cdots, a_k thì khi qua τ không đổi, do đó khi đi qua $\sigma\tau\sigma^{-1}$ thì chỉ đi qua $\sigma\sigma^{-1}$ và cũng không đổi. Nói cách khác các phần tử a_1, a_2, \cdots, a_k vẫn nằm trong chu trình nên ta có đpcm.
- (b) Từ câu (a), với $\mu = (b_1, b_2, \dots, b_k)$ thì ta chọn σ sao cho $b_i = \sigma(a_i)$.

22.3 Cosets (chương 6)

- 11. Gọi H là subgroup của nhóm G và giả sử $g_1,g_2\in G$. Chứng minh các mệnh đề sau là tương đương:
 - (a) $g_1 H = g_2 H$
 - (b) $Hg_1^{-1} = Hg_2^{-1}$
 - (c) $g_1H \subseteq g_2H$
 - (d) $g_2 \in g_1 H$
 - (e) $g_1^{-1}g_2 \in H$

Chứng minh. Từ (a) ra (b): Ta đã biết các coset là rời nhau hoặc trùng nhau, do đó với mọi $g_1h \in g_1H$, tồn tại $g_2h' \in g_2H$ mà $g_1h = g_2h'$. Suy ra $(g_1h)^{-1} = (g_2h')^{-1}$ hay $h^{-1}g_1^{-1} = h'^1g_2^{-1}$ (đpcm)

Từ (a) ra (c): Hiển nhiên

Từ (a) ra (d): Với mọi $g_1h \in g_1H$, tồn tại $g_2h' \in g_2H$ sao cho $g_1h = g_2h'$, hay $g_2 = g_1hh'^{-1}$, đặt $h'' = hh'^{-1}$ thì $h'' \in H$ (H là nhóm con) nên $g_1h'' \in g_1H$. Suy ra $g_2 \in g_1H$

Từ (a) ra (e): Tương tự, ta có $g_1h=g_2h'$, suy ra $hh'^{-1}=g_1^{-1}g_2\in H$

16. Nếu $ghg^{-1} \in H$ với mọi $g \in G$ và $h \in H$, chứng minh rằng right coset trùng với left coset

Chứng minh. Do $ghg^{-1} \in H$ nên tồn tại $h' \in H$ sao cho $ghg^{-1} = h'$. Tương đương gh = h'g với mọi $h \in H$ nên gH = Hg. Điều này đúng với mọi $g \in G$ nên các right coset trùng left coset.

17. Giả sử [G:H]=2. Chứng minh rằng nếu a,b không thuộc H thì $ab\in H$.

Chứng minh. Ta biết rằng 2 coset ứng với 2 phần tử g_1, g_2 bất kì là trùng nhau hoặc rời nhau.

Do đó với eH = H, ta suy ra 2 coset của G là H và $G \backslash H$.

Vì $a, b \notin H$ nên coset của chúng trùng nhau. Và nghịch đảo của a cũng nằm trong $G \backslash H$ vì nếu nghịch đảo của a nằm trong H thì a cũng phải nằm trong H.

Suy ra $a^{-1}H = bH$. Nghĩa là tồn tại 2 phần tử $h_1, h_2 \in H$ sao cho $a^{-1}h_1 = bh_2$, tương đương $h_1h_2^{-1} = ab \in H$ (đpcm).

21. Gọi G là cyclic group với order n. Chứng minh rằng có đúng $\phi(n)$ phần tử sinh của G

Chứng minh. Gọi g là một phần tử sinh của G. Khi đó g sinh ra tất cả phần tử trong G, hay nói cách khác các phần tử trong G có dạng g^i với $0 \le i < n$.

Như vậy một phần tử $h = g^i$ cũng là phần tử sinh của G khi và chỉ khi $\gcd(i,n) = 1$ và có $\phi(n)$ số i như vậy (đpcm).

22.4 Isomorphism (chương 9)

18. Chứng minh rằng subgroup của \mathbb{Q}^* gồm các phần tử có dạng $2^m 3^n$ với $m,n\in\mathbb{Z}$ là internal direct product tới $\mathbb{Z}\times\mathbb{Z}$

Chứng minh. Xét ánh xạ $\varphi: \mathbb{Q}^* \to \mathbb{Z} \times \mathbb{Z}, \ \varphi(2^m 3^n) = (m, n)$

Hàm này là well-defined vì với m cố định thì mỗi phần tử $2^m 3^n$ chỉ cho ra một phần tử (m, n). Tương tự với cố định n.

Hàm này là đơn ánh (one-to-one) vì với $m_1=m_2$ và $n_1=n_2$ thì $2^{m_1}3^{n_1}=2^{m_2}3^{n_2}$.

Hàm này cũng là toàn ánh vì với mỗi cặp (m,n) ta đều tính được $2^m 3^n$.

Vậy hàm φ là song ánh.

Thêm nữa,

$$\varphi(2^{m_1}3^{n_1} \cdot 2^{m_2}3^{n_2}) = \varphi(2^{m_1+m_2}3^{n_1+n_2})$$

$$= (m_1 + m_2, n_1 + n_2) = (m_1, n_1) + (m_2, n_2)$$

$$= \varphi(2^{m_1}3^{n_1})\varphi(2^{m_2}3^{n_2})$$

Vậy φ là homomorphism, và là song ánh nên là isomorphism. \Box
20. Chứng minh hoặc bác bỏ: mọi nhóm Abel có order chia hết bởi 3 chứa một subgroup có order là 3
Chứng minh. Gọi order của nhóm Abel là $n=3k$, và g là phần tử sinh của nhóm Abel đó. Như vậy $g^n=g^{3k}=e$. Nếu ta chọn $h=g^k$ thì $h^3=e$, khi đó subgroup được sinh bởi h có order 3 (đpcm).
21. Chứng minh hoặc bác bỏ: mọi nhóm không phải Abel có order chia hết bởi 6 chứa một subgroup có order 6
Chứng minh. Với S_3 có order là 6 nhưng không có nhóm con nào order 6 (nhóm con chỉ có order 1, 2 hoặc 3) (bác bỏ). \Box
22. Gọi G là group với order 20. Nếu G có các subgroup H và K với order 4 và 5 mà $hk=kh$ với mọi $h\in H$ và $k\in K$, chứng minh rằng G là internal direct product của H và K
Chứng minh. Ta chứng minh $H\cap K=\{e\}$. Giả sử tồn tại phần tử $m\in H\cap K$, khi đó do $m\in H$ nên $mk=km$ với mọi $k\in K$. Tuy

nhiên $m \in K$ do đó điều này xảy ra khi và chỉ khi m = e.

Như vậy $H \cap K = \{e\}.$

Chương 23

Intro to Math-Crypto

Quyển **An Introduction to Mathematical Cryptography** của Hoffstein [3] (lấy source từ 1 repo khá cũ đã đóng bụi của mình).

Lúc viết repo kia mình viết lời giải bằng tiếng Anh. Bây giờ chép lại qua đây lười dịch ra tiếng Việt :D

23.1 Chapter 2

- 2.3. Let g be a primitive root of \mathbb{F}_p
- (a) Suppose that x = a and x = b are both integer solutions to the congruence $g^x \equiv h \pmod{p}$. Prove that $a \equiv b \pmod{p-1}$. Explain why this implies that the map (2.1) on page 64 is well-defined
 - (b) Prove that $\log_g(h_1h_2) = \log_g(h_1) + \log_g(h_2)$ for all $h_1, h_2 \in \mathbb{F}_p^*$
 - (c) Prove that $\log_g(h^n) = n \log_g(h)$ for all $h \in \mathbb{F}_p^*$ and $n \in \mathbb{Z}$

Chứng minh. Bài này cần chứng minh mối quan hệ giữa các discrete logarithm.

(a) Because a and b are both solutions to the congruence $g^x \equiv h \pmod{p}$,

$$\begin{cases} g^a \equiv h \pmod{p} \\ g^b \equiv h \pmod{p} \end{cases}$$

$$\Rightarrow g^{-b} \equiv h^{-1} \pmod{p}$$

$$\Rightarrow g^a g^{-b} \equiv hh^{-1} \equiv 1 \pmod{p}$$

$$\Rightarrow g^{a-b} \equiv 1 \pmod{p}, \text{ but } g \text{ is primitive root of } \mathbb{F}_p$$

$$\Rightarrow \phi(p)|(a-b) \Leftrightarrow (p-1)|(a-b)$$

$$\Rightarrow a-b \equiv 0 \pmod{p-1}$$

$$\Rightarrow a \equiv b \pmod{p-1}$$
(b) Suppose that

(b) Suppose that

$$\begin{cases} h_1 \equiv g^{x_1} \pmod{p} \\ h_2 \equiv g^{x_2} \pmod{p} \end{cases}$$

$$\begin{array}{l} \Rightarrow x_1 = \log_g h_1 \text{ and } x_2 = \log_g h_2 \ (1) \\ \text{And } h_1 h_2 \equiv g^{x_1 + x_2} \ (\text{mod } p) \\ \Rightarrow x_1 + x_2 = \log_g (h_1 h_2) \ (2) \\ \text{From (1) and (2), } \log_g h_1 + \log_g h_2 = \log_g (h_1 h_2) \\ \text{(c) Same as (b).} \end{array}$$

2.5. Let p be an odd prime and let g be a primitive root modulo p. Prove that a has a square root modulo p if and only if its discrete logarithm $\log_a(a)$ modulo p-1 is even.

We have $g^{p-1} \equiv 1 \pmod{p}$.

(1) If a has square root modulo p, then there is b: $b \equiv a^2 \pmod{p}$

$$\Rightarrow \log_g a = \log_g(b^2) = 2\log_g b \pmod{p-1}$$

 $\Rightarrow \log_a a$ is even.

(2) If $\log_q a$ modulo p-1 is even

$$\Rightarrow \log_q a = 2\log_q b \pmod{p-1}$$
 with some $b \in \mathbb{F}_p$

$$\Rightarrow \log_a a = \log_a(b^2) \pmod{p-1}$$

$$\Rightarrow a \equiv b^2 \pmod{p-1}$$

 $\Rightarrow a$ has square root modulo p-1

2.10. The exercise describes a public key cryptosystem that requires Bob and Alice to exchange several messages. We illustrate the system with an example.

Bob and Alice fix a publicly known prime p=32611, and all of other numbers used are private. Alice takes her message m=11111, chooses a random exponent a=3589, and sends the number $u=m^a\pmod p=15950$ to Bob. Bob chooses a random exponent b=4037 and sends $v=u^b\pmod p=15422$ back to Alice. Alice then computes $w=v^{15619}\equiv 27257\pmod {32611}$ and sends w=27257 to Bob. Finally, Bob computes $w^{31883}\pmod {32611}$ and recovers the value 11111 of Alice's message.

- (a) Explain why this algorithm works. In particular, Alice uses the numbers a=3589 and 15619 as exponents. How are they related? Similarly, how are Bob's exponents b=4037 and 31883 related?
- (b) Formulate a general version of this cryptosystem, i.e., using variables, and show how it works in general.
- (c) What is the disadvantage of this cryptosystem over Elgamal? (*Hint*. How many times must Alice and Bob exchange data?)
- (d) Are there any advantages of this cryptosystem over Elgamal? In particular, can Eve break it if she can solve the discrete logarithm problem? Can Eve break it if she can solve the Diffie-Hellman problem?

Chứng minh. (a) We have $3589 \cdot 15619 \equiv 4073 \cdot 31883 \equiv 1 \pmod{p-1}$

```
(b) Alice chooses a and a' satisfy that aa' \equiv 1 \pmod{p-1} Bob chooses b and b' satisfy that bb' \equiv 1 \pmod{p-1} From this, we have aa' = k(p-1)+1 and bb' = l(p-1)+1 \Rightarrow v \equiv u^b \equiv (m^a)^b \equiv m^{ab} \pmod{p} \Rightarrow w \equiv v^{a'} \equiv (m^{ab})^{a'} \equiv m^{aa'b} \pmod{p} \Rightarrow w^{b'} \equiv m^{aa'bb'} \equiv m^{[k(p-1)+1]x[l(p-1)+1]} \equiv m^{D(p-1)+1} \equiv m \pmod{p} (mod p)
```

2.11. The group S_3 consists of the following six distinct elements

$$e, \sigma, \sigma^2, \tau, \sigma\tau, \sigma^2\tau$$

where e is the identity element and multiplication is performed using the rules

$$\sigma^3 = e$$
, $\tau^2 = e$, $\tau \sigma = \sigma^2 \tau$

Compute the following values in the group S_3 :

(a) $\tau \sigma^2$ (b) $\tau(\sigma \tau)$ (c) $(\sigma \tau)(\sigma \tau)$ (d) $(\sigma \tau)(\sigma^2 \tau)$

Is S_3 a commutative group?

Chứng minh. (a) $\tau \sigma^2 = \tau \sigma \sigma = \sigma^2 \tau \sigma = \sigma \sigma^2 \tau = \sigma^3 \tau = e \tau = \tau$

- (b) $\tau(\sigma\tau) = (\tau\sigma)\tau = \sigma^2\tau\tau = \sigma^2\tau^2 = \sigma^2e = \sigma^2$
- (c) $(\sigma\tau)(\sigma\tau) = \sigma(\tau\sigma)\tau = \sigma(\sigma^2\tau)\tau = \sigma^3\tau^2 = ee = e$
- (d) $(\sigma \tau)(\sigma^2 \tau) = (\sigma \tau)(\tau \sigma) = \sigma \tau^2 \sigma = \sigma e \sigma = \sigma^2$

 S_3 is not a commutative group because:

$$\sigma \tau = \sigma \tau$$
 but $\tau \sigma = \sigma^2 \tau$ (2 distinct elements in S_3)

2.12. Let G be a group, let $d \ge 1$ be an integer, and define a subset of G by

$$G[d] = \{ g \in G : g^d = e \}$$

- (a) Prove that if g is in G[d], then g^{-1} is in G[d]
- (b) Suppose that G is commutative. Prove that is g_1 and g_2 are in G[d], then their product $g_1 \star g_2$ is in G[d]
 - (c) Deduce that if G is commutative, then G[d] is a group.
- (d) Show by an example that is G is not a commutative group, then G[d] need not be a group. (*Hint*. Use Exercise 2.11.)

Chứng minh. (a) Because $g \star g^{-1} = e \Rightarrow g \star e \star g^{-1} = e$

$$\Rightarrow g \star g \star g^{-1} \star g^{-1} = e \Rightarrow g^2 \star (g^{-1})^2 = e$$

Do more d-2 times and we get $g^d \star (g^{-1})^d = e$

$$\Rightarrow e \star (g^{-1})^2 = e \Rightarrow (g^{-1})^2 = e \Rightarrow g^{-1} \in G[d]$$

(b) We have $g_1^d = e$ and $g_2^d = e$

Because G is commutative, $g_1^d \star g_2^d = (g_1 \star g_2)^d$

$$\Rightarrow (g_1 \star g_2)^d = e \star e = e \Rightarrow g_1 \star g_2 \in G[d]$$

(c) From (b), we have $\forall g_1, g_2 \in G[d]$, then $g_1 \star g_2 \in G[d]$ We easily see that $e \in G[d]$, so it is identity element of $G[d] \Rightarrow$ identity law.

From (a) we have inverse law.

With $a, b, c \in G[d]$, which means $a^d = b^d = c^d = e$, then $a^d \star (b^d \star c^d) = a^d \star (bc)^d$ (because G is commutative) $= (a \star b \star c)^d = (a \star b)^d \star c^d = (a^d \star b^d) \star c^d \Rightarrow$ associative law.

So, G[d] is a group.

- (d) Using exercise 2.11, $S_3[2] = \{\tau, \sigma\tau, \sigma^2, \tau, e\}$. Because $(\sigma\tau)\tau = \sigma\tau^2 = \sigma \notin S_3[2]$, $S_3[2]$ is not a group.
- 2.13. Let G and H be groups. A function $\phi: G \to H$ is called a (group) homomorphism if it satisfies

$$\phi(g_1 \star g_2) = \phi(g_1) \star \phi(g_2)$$
 for all $g_1, g_2 \in G$

(Note that the product $g_1 \star g_2$ uses the group law in the group G, while the product $\phi(g_1) \star \phi(g_2)$ uses the group law in the group H.)

(a) Let e_G be the identity element of G, let e_H be identity element of H, and the $g \in G$. Prove that

$$\phi(e_G) = e_H$$
 and $\phi(g^{-1}) = \phi(g)^{-1}$

- (b) Let G be a commutative group. Prove that the map $\phi: G \to G$ defined by $\phi(g) = g^2$ is a homomorphism. Give an example of a noncommutative group for which this map is not a homomorphism.
- (c) Same question as (b) for the map $\phi(g) = g^{-1}$

Chứng minh. (a)
$$\forall g \in G : g = g \star e = e \star g$$

$$\Rightarrow \phi(g) = \phi(g \star e_G) = \phi(e_G \star g)$$

$$\Rightarrow \phi(g) = \phi(g) \star \phi(e_G) = \phi(e_G) \star \phi(g)$$

Because $\phi(g) \in H$, $\phi(e_G)$ is identity element of $H \Leftrightarrow \phi(e_G) = e_H$ In group G, $g \star g^{-1} = e_G$

$$\Rightarrow \phi(g \star g^{-1} = \phi(e_G))$$

$$\Rightarrow \phi(g) \star \phi(g^{-1}) = \phi(e_G)$$

$$\Rightarrow \phi(g) \star \phi(g^{-1}) = e_H$$

$$\Rightarrow \phi(g^{-1}) = \phi(g)^{-1}$$
(b) $\phi: G \to G$, $\phi(g) = g^2$

$$\forall g_1, g_2 \in G$$
, $\phi(g_1 \star g_2) = (g_1 \star g_2)^2 = g_1^2 \star g_2^2$ (because G is commutative).

commutative).

And we have $g_1^2 \star g_2^2 = \phi(g_1) \star \phi(g_2)$, which means $\phi(g_1 \star g_2) =$ $\phi(g_1) \star \phi(g_2)$

 $\Rightarrow G$ is homomorphism.

Now we consider group in Exercise 2.11 and the map $\phi: G \to G$, $\phi(q) = q^2$

$$\Rightarrow \phi(e) = e^2 = e, \ \phi(\sigma) = \sigma^2, \ \phi(\tau) = \tau^2 = e, \ \phi(\sigma\tau) = (\sigma\tau)^2 = e$$
We have: $\phi(\sigma\tau) = e \neq \sigma^2 = \phi(\sigma)\phi(\tau)$

 \Rightarrow Therefore, G is not homomorphism.

(c)
$$\phi: G \to G$$
, $\phi(g) = g^{-1}$
 $\forall g_1, g_2 \in G$, $g_1g_1^{-1} = e$, $g_2g_2^{-1} = e$
 $\Rightarrow g_1g_1^{-1}g_2g_2^{-1} = e$, but G is commutative
 $\Rightarrow (g_1g_2)(g_1^{-1}g_2^{-1}) = e$

$$\Rightarrow (g_1g_2)(g_1^{-1}g_2^{-1}) = e$$

$$\Rightarrow g_1^{-1}g_2^{-1} = (g_1g_2)^{-1}$$

$$\Rightarrow \phi(g_1g_2) = (g_1g_2)^{-1} = g_1^{-1}g_2^{-1} = \phi(g_1)\phi(g_2)$$

 $\Rightarrow G$ is homomorphism.

Now we consider group in Exercise 2.11 and the map $\phi: G \to G$, $\phi(q) = q^{-1}$. We have

$$\sigma\sigma^{2} = e = \sigma^{2}\sigma = e, \quad \tau^{2} = e, \quad (\sigma\tau)^{2} = e, \quad (\sigma^{2}\tau)^{2} = e$$

$$\Rightarrow \phi(\sigma\tau) = \sigma\tau \quad \text{and} \quad \phi(\sigma) = \sigma^{2}, \ \phi(\tau) = \tau$$

$$\Rightarrow \phi(\sigma\tau) = \sigma\tau$$
 and $\phi(\sigma) = \sigma^2$, ϕ
 $\Rightarrow \phi(\sigma\tau) = \sigma\tau \neq \sigma^2\tau = \phi(\sigma)\phi(\tau)$

$$\Rightarrow \varphi(\sigma\tau) = \sigma\tau \neq \sigma^2\tau = \varphi(\sigma)$$

 $\Rightarrow G$ is not homomorphism.

2.14. Prove that each of the following maps is a group homomophism.

(a) The map $\phi: \mathbb{Z} \to \mathbb{Z}/N\mathbb{Z}$ that sends $a \in \mathbb{Z}$ to $a \mod N$ in $\mathbb{Z}/N\mathbb{Z}$.

 $\forall a, b \in \mathbb{Z},$

$$\phi(ab) = (ab) \pmod{N}$$

$$= (a \mod N)(b \mod N) \pmod{N}$$

$$= \phi(a)\phi(b)$$

 \Rightarrow homomorphism.

(b) The map
$$\phi: \mathbb{R}^* \to \operatorname{GL}_2(\mathbb{R})$$
 defined by $\phi(a) = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$ $\forall a, b \in \mathbb{R}^*, \ \phi(ab) = \begin{pmatrix} ab & 0 \\ 0 & (ab)^{-1} \end{pmatrix}$

And we have

$$\phi(a)\phi(b) = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} b & 0 \\ 0 & b^{-1} \end{pmatrix} = \begin{pmatrix} ab & 0 \\ 0 & a^{-1}b^{-1} \end{pmatrix}$$

It is clear that $(ab)^{-1} = a^{-1}b^{-1}$, so $\phi(ab) = \phi(a)\phi(b) \Rightarrow$ homomorphism.

(c) The discrete logarithm map $\log_g: \mathbb{F}_p^* \to \mathbb{Z}/(p-1)\mathbb{Z}$, where g is a primitive root modulo p

$$\phi(a) = x \text{ satisfying } g^x \equiv a \pmod{p}$$

 $\forall a,b \in \mathbb{F}_p^*, \ \phi(a) = x \colon g^x \equiv a \pmod{p} \text{ and } \phi(b) = y \colon g^y \equiv b \pmod{p}$

 $\Rightarrow \phi(a)\phi(b) = x + y$ (Because $x, y \in \mathbb{Z}/(p-1)\mathbb{Z}$, rule of group is addition modulo p-1)

And we have $g^{x+y} \equiv ab \pmod{p} \Rightarrow \phi(ab) = x+y$

- $\Rightarrow \phi(a)\phi(b) = \phi(ab)$
- \Rightarrow homomorphims.

2.15.

(a) Prove that $GL_2(\mathbb{F}_p)$ is a group. If A and B is 2 matrices in $GF_2(\mathbb{F}_p)$, then AB also in $GL_2(\mathbb{F}_p)$ (because result will be modulo 2)

Identity element is $E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ because AE = EA = A for all $A \in GL_2(\mathbb{F}_p)$

$$\forall A \in \mathrm{GL}_2(\mathbb{F}_p)$$
, because $det A \neq 0 \Rightarrow A$ has inverse in $\mathrm{GL}_2(\mathbb{F}_p)$
 $\forall A, B, C \in \mathrm{GL}_2(\mathbb{F}_p) : (AB)C = A(BC)$

Therefore, $GL_2(\mathbb{F}_p)$ is a group.

(b) Show that $GL_2(\mathbb{F}_p)$ is a noncommutative group for every prime p. Suppose we have $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in GL_2(\mathbb{F}_p)$ and $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \in GL_2(\mathbb{F}_p)$

Top left element of product AB is $(a_{11}b_{11} + a_{12}b_{21}) \pmod{p}$. Top left element of product BA is $(b_{11}a_{11} + b_{12}a_{21}) \pmod{p}$. If we choose $a_{12} \not\equiv b_{21}^{-1}a_{21}b_{21} \pmod{p}$, then $AB \not\equiv BA$, which means noncommutative. (c) Describe $\operatorname{GL}_2(\mathbb{F}_p)$ completely. That is, list its elements and describe the multiplication table. $A_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, $A_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $A_4 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $A_5 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $A_6 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

Multiplication table:

	A_1	A_2	A_3	A_4	A_5	A_6
A_1	A_3	A_5	A_1	A_6	A_2	A_4
A_2	A_4	A_6	A_2	A_5	A_1	A_3
A_3	A_1	A_2	A_3	A_4	A_5	A_6
A_4	A_2	A_1	A_4	A_3	A_6	A_5
A_5	A_6	A_4	A_5	A_2	A_3	A_1
A_6	A_5	A_3	A_6	A_1	A_4	A_2

(d) How many elements are there in the group $GL_2(\mathbb{F}_p)$?

First row u_1 is any vector but (0,0). We have $p^2 - 1$ ways. Second row u_2 is any vector but multiple of first vector. We have $p^2 - p$ ways (remove $0u_1$ to $(p-1)u_1$).

 \Rightarrow There are $(p^2-1)(p^2-p)$ elements. (e) How many elements are there in the group $GL_n(\mathbb{F}_p)$?

Similar to (d), we need first row u_1 is any vector but (0,0). We have $p^n - 1$ ways.

Second vector u_2 is any vector but a multiple of first row. We have $p^n - p$ ways.

Third vector u_3 is any vector but a linear combination of u_1 and u_2 . The number of $a_1u_1 + a_2u_2$ is the number of pair (a_1, a_2) and there is p^2 posibilities $(a_1, a_2 \in \mathbb{F}_p$. So third vector has $p^n - p^2$ ways.

In general, n-th vector is any vector but a linear combination of u_1 , $u_2, ..., u_{n-1}$, so there is $p^n - p^{n-1}$ ways.

 \Rightarrow There are $(p^n-1)(p^n-p)...(p^n-p^{n-1})$ elements.

2.17. shank bsgs.py

2.18. Solve each of the following simultaneous systems of congruences (or explain why no solutions exists).

(a)
$$x \equiv 3 \pmod{7}$$
 and $x \equiv 4 \pmod{9}$
 $N = 7 \times 9 = 63$
 $T_1 = 63/7 = 9$, $T_1^{-1} \mod{7} = 4$
 $T_2 = 63/9 = 7$, $T_2^{-1} \mod{9} = 4$
 $\Rightarrow x \equiv 3 \times 9 \times 4 + 4 \times 7 \times 4 \equiv 220 \equiv 31 \pmod{63}$
(b) $x \equiv 137 \pmod{423}$ and $x \equiv 87 \pmod{191}$
 $N = 423 \times 191 = 90793$
 $T_1 = N/423 = 191$, $T_1^{-1} \mod{423} = 392$
 $T_2 = N/191 = 423$, $T_2^{-1} \mod{191} = 14$
 $\Rightarrow x \equiv 137 \times 191 \times 392 + 87 \times 423 \times 14 \equiv 27209 \pmod{N}$
(c) Cannot calculate because $\gcd(451, 697) = 41 \neq 1$
(d) $x \equiv 5 \pmod{9}$, $x \equiv 6 \pmod{10}$ and $x \equiv 7 \pmod{11}$
 $N = 9 \times 10 \times 11 = 990$
 $T_1 = N/9 = 110$, $T_1^{-1} \mod{9} = 5$
 $T_2 = N/10 = 99$, $T_2^{-1} \mod{10} = 9$
 $T_3 = N/11 = 90$, $T_3^{-1} \mod{11} = 6$
 $\Rightarrow x \equiv 5 \times 110 \times 5 + 6 \times 99 \times 9 + 7 \times 90 \times 6 \equiv 986 \pmod{N}$
(e) $x \equiv 37 \pmod{43}$, $x \equiv 22 \pmod{49}$ and $x \equiv 18 \pmod{71}$
 $N = 43 \times 49 \times 71 = 149597$
 $T_1 = N/43 = 3479$, $T_1^{-1} \pmod{43} = 32$
 $T_2 = N/49 = 3053$, $T_2^{-1} \pmod{49} = 36$
 $T_3 = N/71 = 2107$, $T_3^{-1} \pmod{49} = 36$
 $T_3 = N/71 = 2107$, $T_3^{-1} \pmod{49} = 36$

 $\Rightarrow x \equiv 37 \times 3479 \times 32 + 22 \times 3053 \times 36 + 18 \times 2107 \times 37 \equiv 11733 \pmod{N}$

Code in: modular.py

2.19. Solve the 1700-year-old Chinese remainder problem from the Sun Tzu Suan Ching stated on page 84.

 $x\equiv 2\pmod 3,\, x\equiv 3\pmod 5$ and $x\equiv 2\pmod 7 \Rightarrow x\equiv 23\pmod {105}$

2.20. Let a, b, m, n be integers with gcd(m, n) = 1. Let

$$c \equiv (b - a) \cdot m^{-1} \pmod{n}$$

Prove that x = a + cm is a solution to

$$x \equiv a \pmod{m}$$
 and $x \equiv b \pmod{n}$

and that every solution to (1) has the form x=a+cm+ymn for some $y\in\mathbb{Z}$

2.21.

(a) Let a, b, c be positive integers and suppose that

$$a \mid c$$
, $b \mid c$, and $qcd(a,b) = 1$

Prove that $ab \mid c$

Because $a \mid c \Leftrightarrow c = ka$, $(k \in \mathbb{Z})$ and $b \mid c \Leftrightarrow c = lb$ $(l \in \mathbb{Z})$

$$\Rightarrow ka = lb$$
. But $gcd(a,b) = 1 \Rightarrow a \mid l \Leftrightarrow l = ma$, $(m \in \mathbb{Z})$

$$\Rightarrow c = lb = lma \Rightarrow ab \mid c$$

(b) Let x=c and x=c' be two solutions to the system of simultaneous congruences in the Chinese remainder theorem. Prove that

$$c \equiv c' \pmod{m_1 m_2 \dots m_k}$$

If $c \equiv c' (\equiv a_i) \pmod{m_i}$, then $c \equiv c' \pmod{m_1 m_2 ... m_k}$

2.23. Find square roots modulo the following composite moduli

- (a) 215
- (b) 2654
- (c) 1712, 2477, 3187, 1002

- (d) $(\pm 1 \cdot 317 \cdot 1 \pm 1 \cdot 124 \cdot 3 \pm 10 \cdot 28 \cdot 10) \pmod{868}$
- 2.24. Let p be an odd prime, let a be an integer that is not divisible by p, and let b is a square root of a modulo p. This exercise investigates the square root of a modulo powers of p
- (a) Prove that for some choise of k, the number b+kp is a square root of a modulo p^2 , i.e., $(b+kp)^2 \equiv a \pmod{p^2}$
- (b) The number b=537 is a square root of a=476 modulo the prime p=1291. Use the idea in (a) to compute a square root of 476 modulo p^2
- (c) Suppose that b is a square root of a modulo p^n . Prove that for some choice of j, the number $b+jp^n$ is a square root of a modulo p^{n+1}
- (d) Explain why (c) implies the following statements: If p is an odd prime and if a has a square root modulo p, then a has a square root modulo p^n for every power of p. Is this true if p = 2?
- (e) Use the method in (c) to compute the square root of 3 modulo 13^3 , given that $9^2 \equiv 3 \pmod{13}$

Chứng minh. (a) Let $f(b_n) = b_n^2 - a \pmod{p^n}$, with $b_1 = b \Rightarrow f(b_1) = b^2 - a \equiv 0 \pmod{p}$

We need to find b_2 , $f(b_2) = b_2^2 - a \equiv 0 \pmod{p^2}$

Which means, $f(b_1+kp) = (b_1+kp)^2 - a = b_1^2 + 2b_1kp + (kp)^2 - a \equiv 0 \pmod{p^2}$

 $\Leftrightarrow 2b_1k \equiv -(b_1^2 - a)/p \pmod{p^2}$ (because $b_1^2 - a \equiv 0 \pmod{p}$)

And because $2b_1 \not\equiv 0 \pmod{p^2}$, then exist k satisfying the equation

- (b) $k = -(b^2 a)/p \times (2b)^- 1 \pmod{p^2}$
- (c) We prove by induction that for each $n \geq 1$, there is a $b_n \in \mathbb{Z}$ such that

$$f(b_n) = b_n^2 - a \equiv 0 \pmod{p^n}$$
$$b_n = b \pmod{p^n}$$

The case n = 1 is trivial, using $b_1 = b$. If the inductive hypothesis holds for n, which means:

$$f(b_n) = b_n^2 - a \pmod{p^n}$$
$$b_n = b \pmod{p^n}$$

With b_{n+1} , $f(b_{n+1})=b_{n+1}^2-a\equiv 0\pmod{p^{n+1}}$. We write $b_{n+1}=b_n+p^nt_n$

$$\Rightarrow f(b_{n+1}) = b_n^2 + 2b_n p^n t_n + p^{2n} t_n^2 - a \equiv 0 \pmod{p^{n+1}}$$
$$\Rightarrow b_n^2 + 2b_n p^n t_n - a \equiv 0 \pmod{p^{n+1}}$$

(because $2n \ge n+1$)

$$\Rightarrow 2b_n t_n \equiv -(b_n^2 - a)/p^n \pmod{p^{n+1}}$$

(from (2)). Therefore, exists solution for t_n because we assumed that $2b_n \equiv 0 \pmod{p^n}$

$$\Rightarrow f(b_{n+1}) \equiv 0 \pmod{p^{n+1}}$$

, and $b_{n+1} \equiv b_n \pmod{p^n}$

This proof is used for $b+jp^n$ modulo p^n , not for p^{n+1} (d) Using induction we get that. If p=2, then any integers is right

2.31. Let R and S be rings. A functions $\phi: R \to S$ is called a $(ring)\ homomorphism$ if it satisfies

$$\phi(a+b) = \phi(a) + \phi(b)$$

and

$$\phi(a\star b)=\phi(a)\star\phi(b)$$

for all $a, b \in R$

(a) Let 0_R , 0_S , 1_R and 1_S denote the additive and multiplicative identities of R and S, respectively. Prove that

$$\phi(0_R) = 0_S, \ \phi(1_R) = 1_S, \ \phi(-a) = -\phi(a), \ \phi(a^{-1}) = \phi(a)^{-1},$$

where the last equality holds for those $a \in R$ that have a multiplicative inverse.

(b) Let p be a prime, and let R be a ring with the property that pa = 0 for every $a \in R$. (Here pa means to add a to itself p times.) Prove that the map

$$\phi: R \to R, \quad \phi(a) = a^p$$

is a ring homomorphism. It is called the Frobenius homomorphism.

Chứng minh. With $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(a \star b) = \phi(a) \star \phi(b)$ for all $a, b \in R$

(a) In
$$R, \forall a \in R : a + 0_R = 0_R + a = a$$

 $\Rightarrow \phi(a) = \phi(a + 0_R) = \phi(0_R + a)$
 $\Rightarrow \phi(a) = \phi(a) + \phi(0_R) = \phi(0_R) + \phi(a)$
Let $\phi(a) = b \in S$. Hence $b = b + \phi(0_R) = \phi(0_R) + b$
 $\Rightarrow \phi(0_R) = 0_S$
In $R, \forall a \in R : a \star 1_R = 1_R \star a = a$
 $\Rightarrow \phi(a \star 1_R) = \phi(1_R \star a) = \phi(a)$
 $\Rightarrow \phi(a) \star \phi(1_R) = \phi(1_R) \star \phi(a) = \phi(a)$
 $\Rightarrow \phi(1_R) = 1_S$
With $\phi(-a) = -\phi(a)$, we have in $R, a + (-a) = (-a) + a = 0_R$
 $\Rightarrow \phi(a + (-a)) = \phi((-a) + a) = \phi(0_R)$
 $\Rightarrow \phi(a) + \phi(-a) = \phi(-a) + \phi(a) = \phi(0_R) = 0_S$
 $\Rightarrow \phi(-a) = -\phi(a)$
With $\phi(a^{-1}) = \phi(a)^{-1}$, we have in $R, a \star a^{-1} = a^{-1} \star a = 1_R$
 $\phi(a \star a^{-1}) = \phi(a^{-1} \star a) = \phi(1_R)$
 $\Rightarrow \phi(a) \star \phi(a^{-1}) = \phi(a)^{-1}$
(b) $\phi: R \to R$, $\phi(a) = a^p$
 $\Rightarrow \phi(a + b) = (a + b)^p = \sum_{i=0} p\binom{p}{i} a^i b^{p-1}$
And we have $p \mid \binom{p}{i} = \frac{p!}{(p-i)!i!}$ (because p is prime)
 $\Rightarrow 1 \leq i \leq p - 1: \binom{p}{i} = 0$ (because $pa = 0$)
 $\Rightarrow \phi(a + b) = a^p + b^p = \phi(a) + \phi(b)$ (1)
 $\Rightarrow \phi(ab) = (ab)^p = a^p b^p = \phi(a)\phi(b)$ (2)

From (1) and (2) \Rightarrow ring homomorphism

2.32. Prove Proposition 2.41 We have $a_1 \equiv a_2 \pmod{m} \Rightarrow m \mid (a_1 - a_2)$ $\Rightarrow \exists k \in R : a_1 - a_2 = k \star m$ Similarly, $\exists l \in R : b_1 - b_2 = l \star m$ $\Rightarrow a_1 - a_2 + b_1 - b_2 = (k + l) \star m$ $\Leftrightarrow m \mid (a_1 + b_1 - (a_2 + b_2))$ $\Leftrightarrow a_1 + b_1 \equiv a_2 + b_2 \equiv m$ Similarly for $a_1 - b_1 \equiv a_2 - b_2 \pmod{m}$

$$\begin{cases} a_1 = a_2 + k \star m \\ b_1 = b_2 + k \star m \end{cases}$$

 $\Rightarrow a_1 \star b_1 = (a_2 + k \star m)(b_2 + k \star m) = a_2 \star b_2 + a_2 \star l \star m + k \star b_2 \star m + k \star l \star m^2$ $\Rightarrow m \mid (a_1 \star b_1 - a_2 \star b_2)$ $\Rightarrow a_1 \star b_1 \equiv a_2 \star b_2 \pmod{m}$

2.33. Prove Proposition 2.43

According to Exercise 2.32, if we have

$$\begin{cases} a' \in \bar{a} \Leftrightarrow a' \equiv a \pmod{m} \\ b' \in \bar{b} \Leftrightarrow b' \equiv b \pmod{m} \end{cases}$$

$$\Rightarrow \begin{cases} a' + b' \equiv a + b \pmod{m} \\ a' \star b' \equiv a \star b \pmod{m} \end{cases}$$

 $\Rightarrow a' + b' \in \overline{a + b}$ and $a' \star b' \in \overline{a \star b}$. Hence the set is **closed** We have $m \equiv 0 \pmod{m} \Rightarrow \forall a \in R, \overline{a} + \overline{m} = \overline{a + m} = \overline{a} = \overline{m + a} = \overline{m} + \overline{a}$

 \Rightarrow identity element is \overline{m}

Also, because R is ring, $m + (-x) \in R$, $x \in R$ $\forall a \in R, \overline{a} + \overline{m-a} = \overline{a+m-a} = \overline{m} = \overline{m-a} + \overline{a}$ $\Rightarrow \overline{m-a}$ is additive inverse of a

Easily see that
$$\overline{a} + (\overline{b} + \overline{c}) = \overline{a} + \overline{b} + \overline{c} = \overline{a+b+c} = \overline{a+b} + \overline{c} = (\overline{a} + \overline{b}) + \overline{c}$$
 associative

$$\forall a,b \in R, \overline{a} + \overline{b} = \overline{a+b} = \overline{b+a} = \overline{b} + \overline{a} \Rightarrow \mathbf{commutative}$$

We have
$$a \star 1 \equiv a \pmod{m} \forall a \in R$$

$$\Rightarrow \overline{a} \star \overline{1} = \overline{a \star 1} = \overline{a} = \overline{1 \star a} = \overline{1} \star \overline{a}$$

 \Rightarrow multiplicative identity is $\overline{1}$

$$\forall a, b, c \in R, a(bc) = (ab)c \pmod{m}$$

$$\Rightarrow \overline{a} \star (\overline{b} \star \overline{c}) = \overline{a} \star \overline{bc} = \overline{abc} = \overline{ab} \star \overline{c} = (\overline{a} \star \overline{b}) \star \overline{c} \Rightarrow \mathbf{associative}$$

And
$$\overline{a} \star \overline{b} = \overline{a \star b} = \overline{b \star a} = \overline{b} \star \overline{a} \Rightarrow \mathbf{commutative}$$

With
$$\overline{a} \star (\overline{b} + \overline{b}) = \overline{a} \star \overline{b + c} = \overline{a(b + c)} = \overline{ab + ac} = \overline{ab} + \overline{ac} = \overline{a} \star \overline{b} + \overline{a} \star \overline{c} \Rightarrow \textbf{distribute}$$

Hence, R/(m) is a ring

2.34. Let $\mathbb F$ be a field and let $\mathbf a$ and $\mathbf b$ be nonzero polynomials in $\mathbb F[x]$

(a) Prove that $deg(\mathbf{a} \cdot \mathbf{b}) = deg(\mathbf{a}) + deg(\mathbf{b})$

Let $a = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, with $a_i \in \mathbb{F}[x] \Rightarrow deg(\mathbf{a}) = n$

Let $b = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$, with $a_i \in \mathbb{F}[x] \Rightarrow deg(b) = m$

$$\Rightarrow deg(a \cdot b) = m + n = deg(a) + deg(b)$$

(b) Prove that **a** has a multiplicative inverse in $\mathbb{F}[x]$ if and only if \Im is in \mathbb{F} , i.e., if and only if \Im is a constant polynomial

With
$$\mathbf{a} = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Suppose that **a** has multiplicative inverse in $\mathbb{F}[x]$ **b** = $b_m x^m + b_{m-1} x^{m-1} + \cdots + b_1 x + b_0$

$$\Rightarrow \mathbf{ab} = \sum_{i=0}^{n} a_i x_i \sum_{j=0}^{m} b_j x^j = 1$$

$$\Rightarrow \sum_{i=0}^{n} \sum_{j=0}^{m} a_i b_j x^{i+j} = 1$$

Which means $a_0b_0 = 1$, other coefficients is 0, so **a** is constant polynomial

- (c) Prove that every nonzero element of $\mathbb{F}[x]$ can be factored into a product of irreducible polynomials. (Hint. Use (a), (b) and induction on the degree of the polynomial.)
- (d) Let R be ring ing $\mathbb{Z}/6\mathbb{Z}$. Give an example to show tha (a) is false for some polynomials **a** and **b** in R[x]

$$a = 2x^2 + 3x + 1, b = 3x + 2$$

$$\Rightarrow ab = x^2 + 3x + 2$$

$$deg(ab) = 2 < 3 = deg(a) + deg(b)$$

- 2.35, 2.36. Programming on Sagemath
- 2.37. Prove that the polynomial $x^3 + x + 1$ is irreducible in $\mathbb{F}_2[x]$ If $f(x) = x^3 + x + 1$ has any factor rather than 1 and itself, it must have degree less than 3. So we have $0, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x$ x+1,x but f(x) is not divided by any of them. Hence irreducible
 - 2.38. Programming on Sagemath
- 2.39. The field $\mathbb{F}_7[x]/(x^2+1)$ is a field with 49 elements, which for the moment we do note by \mathbb{F}_{49}

Using example 2.58, every element in $\mathbb{F}_7[x]/(x^2+1)$ has form f(x) = a + bx, so in \mathbb{F}_{49} it has form a + bi (here $i^2 = -1$)

- (a) Is 2+5x is a primitive root in \mathbb{F}_{49} ? No because $(2+5x)^8=1$
- (b) Is 2 + x is a primitive root in \mathbb{F}_{49} ? Yes
- (c) Is 1+x is a primitive root in \mathbb{F}_{49} ? No because $(1+x)^{24}=1$
- 2.41. Let \mathbb{F} is a finite field.
- (a) Prove that there is an integer $m \geq 1$ such that if we add 1 to itself m times,

$$\underbrace{1+1+\cdots+1}_{m \text{ ones}}$$

then we get 0. Note that here 1 and 0 are the multiplicative and additive identity elements of the field \mathbb{F} .

Because 1 is element of \mathbb{F} , then $\underbrace{1+1+\cdots+1}$ always is an element

Because 1 is element of
$$\mathbb{F}$$
, then $\underbrace{1+1+\cdots+1}_{n \text{ times}}$ always is an element of \mathbb{F} . And \mathbb{F} is finite field, so there is $m \geq 1$ such that $\underbrace{1+1+\cdots+1}_{m \text{ times}}$

equals to $0 (1, 1+1, 1+1+1, \dots \text{ cannot all be different})$

(b) Let m be the smallest positive integer with the property described in (a). Prove that m is prime. This prime is called the characteristic of the field \mathbb{F}

Suppose that m can be factor, so m = pq $(1 < p, q < m) \Rightarrow \underbrace{1 + 1 + \dots + 1}_{m \neq m} = 0$

$$\underbrace{(1+1+\cdots+1)}_{p \text{ times}} + \underbrace{(1+1+\cdots+1)}_{p \text{ times}} + \cdots + \underbrace{(1+1+\cdots+1)}_{p \text{ times}}$$

Because \mathbb{F} is a finite field, $\underbrace{1+1+\cdots+1}_{p \text{ times}} = a \in \mathbb{F}$

 $\Rightarrow q \cdot a = 0 \ (q > 1 \ \text{and} \ a \ \text{cannot be } 0 \ \text{because} \ m \ \text{is the smallest}$ number that satisfies $1 + 1 + \dots + 1 = 0$

 \Rightarrow contraction $\Rightarrow \mathbb{F}$ cannot be a field.

So m is a prime

23.2 Chapter 3

3.4. Euler's phi function $\phi(N)$ is the function defined by

$$\phi(N) = |\{0 \le k < N : \gcd(k, N) = 1\}|$$

$$\phi(p) = p - 1.$$

Consider the set $\{ai_1, ai_2, \ldots, ai_{\phi(N)}\}\$ is the set of numbers which are coprime with N, which means $\gcd(ai_j, N) = 1$. We prove that those elements are distinct.

Suppose that there are aj and ak, satisfying $aj \equiv ak \pmod{N}$ Because $\gcd(a, N) = 1 \Rightarrow j \equiv k \pmod{N}$. So every element is distinct.

Moreover, if $ai_j \equiv j_k \pmod{N}$, which means $j_k \neq 0$, so the set $\{ai_1, \ldots, ai_{\phi(N)}\}$ is a permutation of the set $\{i_1, \ldots, i_{\phi(N)}\}$

$$ai_1 \times ai_2 \times \cdots \times ai_{\phi(N)} \equiv i_1 \times i_2 \times \cdots \times i_{\phi(N)} \pmod{N}$$

Therefore
$$a^{\phi(N)} \equiv 1 \pmod{N}$$

3.5. Properties of Euler's phi function If p and q are distinct primes, how is $\phi(pq)$ related to $\phi(p)$ and $\phi(q)$?

We consider numbers from 1 to pq, there are pq elements

Notice that iq = jq if and only if i = q and j = p because p and q are distinct primes

Next, we subtract the number of divisors having factor p, there are q elements $(1 \times p, 2 \times p, \dots, q \times p)$

Next, we subtract the number of divisors having factor q, there are p elements $(1 \times q, 2 \times q, \dots, p \times q)$

Here we get pq - p - q elements, but remember that we have subtracted element pq twice, so we need to add 1

 $\Rightarrow \phi(pq) = pq - p - q + 1 = (p-1)(q-1) = \phi(p)\phi(q)$ If p is prime, what is the value of $\phi(p^2)$? How about $\phi(p^j)$?

From 1 to p^j there are p^j elements, we subtract the number of divisors having factor p, those are $\{1p, 2p, \cdots, p^{j-1}p\} \Rightarrow p^{j-1}$ numbers $\Rightarrow \phi(p^j) = p^j - p^{j-1}$ We write numbers from 1 to mn as matrix m rows and n columns

With number r that satisfies $\gcd(r,m)=1$, we get $\gcd(km+r,r)=1$ $(k=\overline{0,n-1})$. Here km+r is all numbers on r-th row, which means there are $\phi(m)$ rows, whose elements coprime with m

On those $\phi(m)$ rows, each row has $\phi(n)$ elements that coprime with n. Hence $\phi(m)\phi(n)=\phi(mn)$ From (b) we get $\phi(p_i)=p_i-1$

$$\Rightarrow \phi(N) = \phi(p_1)\phi(p_2)\cdots\phi(p_r)$$

$$= (p_1 - 1)(p_2 - 1)\cdots(p_r - 1)$$

$$= N\prod_{i=1}^r \left(1 - \frac{1}{p_i}\right)$$

3.6. Let N, c, and e be positive integers satisfying the conditions $\gcd(N,c)=1$ and $\gcd(e,\phi(N))=1$ Explain how to solve the congruence

$$x^e \equiv c \pmod{N}$$

assuming that you know the value of $\phi(N)$

Because of $\gcd(e, \phi(N)) = 1$, we can find an integers d satisfying that $ed \equiv 1 \pmod{\phi(N)}$ (using Extended Euclidean Algorithm) $\Rightarrow ed = k\phi(N) + 1$ with $k \in \mathbb{Z}$

And because of $gcd(N, c) = 1 \Rightarrow gcd(N, x) = 1$, and

$$c^d = \left(x^e\right)^d = x^{ed} = x^{k\phi(N)+1} = (x^k)^{\phi(N)}x$$

and we have known that $(x^k)^{\phi(N)} \equiv 1 \pmod{N}$ from Exercise 3.4. Therefore we get

$$c^d \equiv x \pmod{N}$$

, we finish finding solution

3.11. Alice chooses two large primes p and q and she publishes N = pq. It is assumed that N is hard to factor. Alice also chooses three random numbers g, r_1 , and r_2 modulo N and computes

$$g_1 \equiv g^{r_1(p-1)} \pmod{N}$$
 and $g_2 \equiv g^{r_2(q-1)} \pmod{N}$

Her public key is the triple (N, g_1, g_2) and her private key is the pair of primes (p, q).

Now Bob wants to send the message m to Alice, where m is a number modulo N. He chooses two random integers s_1 and s_2 modulo N and computes

$$c_1 \equiv mg_1^{s_1} \pmod{N}$$
 and $c_2 \equiv mg_2^{s_2} \pmod{N}$

Bob sends the ciphertext (c_1, c_2) to Alice.

Decryption is extreamly fast and essy. Alice uses the Chinese remainder theorem to solve the pair of congruences

$$x \equiv c_2 \pmod{p}$$
 and $x \equiv c_2 \pmod{q}$

Prove that Alice's solution x is equal to Bob's plaintext m First we have $c_1 \equiv mg_1^{s_1} \pmod{N} \equiv mg_1^{s_1} \pmod{p} \equiv m \pmod{p}$ (because $g_1^{s_1} = (g_1^{s_1r_1})^{(p-1)} \equiv 1 \pmod{p}$) Similarly, we have $c_2 \equiv m \pmod{q}$ The solution of congurences is

$$x \equiv c_1 q q' + c_2 p p' \pmod{N}$$

with
$$pp' + qq' = 1$$

 $\Rightarrow x \equiv mpp' + mqq' \equiv m(pp' + q)$

$$\Rightarrow x \equiv mpp' + mqq' \equiv m(pp' + qq') \equiv m \pmod{N}$$
We have

We have

$$g_1 \equiv g^{r_1(p-1)} \pmod{N} \equiv g^{r_1(p-1)} \pmod{p} \equiv 1 \pmod{p}$$

$$\Rightarrow p = \gcd(g_1 - 1, N)$$
. Similarly, $q = \gcd(g_2 - 1, N)$

From here we have recovered private keys

3.13. Find x, y such that:
$$xe_1 + ye_2 = 1 = gcd(e_1, e_2)$$

$$\Rightarrow m = c_1^x c_2^y = m^{e_1 x + e_2 y} = m \pmod{N}$$

3.14. Because 3, 11 and 17 are primes number, $a \equiv a^3 \pmod{3}$, $a \equiv a^{11} \pmod{11}$, $a \equiv a^{17} \pmod{17}$. We have system congruence

$$a \equiv a^3 \pmod{3}$$

 $a \equiv a^{11} \pmod{11}$
 $a \equiv a^{17} \pmod{17}$

Consider that $a^3 \equiv a \pmod 3$, $a^{3^2} \equiv a^3 \equiv a \pmod 3$, \cdots , $a^{3^i} \equiv a \pmod 3$. And $561 = 2 \cdot 3^5 + 2 \cdot 3^3 + 2 \cdot 3^2 + 3^1$, $a^{561} \equiv a^2 \cdot a^2 \cdot a^2 \cdot a \equiv a^9 \equiv a \pmod 3$.

Similarly, $a^{561} \equiv a \pmod{11}, \ a^{561} \equiv a \pmod{17}$. From system congruence:

$$a^{561} \equiv a \pmod{3}$$

 $a^{561} \equiv a \pmod{11}$
 $a^{561} \equiv a \pmod{17}$

Using CRT, $a^{561}=(187\cdot 1\cdot a+51\cdot 8\cdot a+33\cdot 16\cdot a)\pmod{561}=a\pmod{561}$ Suppose that n is even $(n\geq 4)$, we have

$$(n-1)^{n-1} = (-1)^{n-1} = -1 \pmod{n}$$

, but $a^{n-1} \equiv 1 \pmod{n}$ for all a, which is contrary. So n must be odd. Suppose that $n = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$ (p_i is odd prime). Because $a^{p^{e-1}(p-1)} \equiv 1 \pmod{p^e}$ and $a^{n-1} \equiv 1 \pmod{n}$, we have $a^{n-1} \equiv 1 \pmod{p^e}$.

 $\Rightarrow p^{e-1}(p-1) \mid (n-1) \Rightarrow p^{e-1} \mid (n-1)$, but $p^{e-1} \mid n$, which is contrary if $e \geq 2$. Hence e must be 1.

So $n = p_1 p_2 \cdots p_r$

3.37.

$$\left(a^{\frac{p-1}{2}}\right)^2 \equiv a^{p-1} \equiv 1 \pmod{p}$$

$$\Rightarrow \binom{a}{p} = \pm 1$$

$$\Rightarrow \left(a^{\frac{p-1}{2}} - 1\right) \left(a^{\frac{p-1}{2}} + 1\right) \equiv 0 \pmod{p}$$

 $\Rightarrow a^{\frac{p-1}{2}} \equiv \pm 1 \pmod{p}$

If a is quadratic residue, then $a \equiv b^2 \pmod{p}$

$$\Rightarrow a^{\frac{p-1}{2}} \equiv (b^2)^{\frac{p-1}{2}} = b^{p-1} \equiv 1 \pmod{p}$$

If $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$

Let g be generator modulo p, then $a \equiv g^m \pmod{p}$

If m is even $\Rightarrow a \equiv g^{2k} \pmod{p} \Rightarrow a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$

If m is odd $\Rightarrow a = g^{2k+1} \pmod{p} \Rightarrow a^{\frac{p-1}{2}} \equiv g^{(2k+1)\frac{p-1}{2}} \equiv g^{p-1}g^{\frac{p-1}{2}} \equiv g^{\frac{p-1}{2}} \not\equiv 1 \pmod{p}$, because p-1 is smallest number that $g^{p-1} \equiv 1 \pmod{p}$

From (a) and (b) $\binom{-1}{p} \equiv (-1)^{\frac{p-1}{2}} \pmod{p}$, if $p = 4k + 1 \Rightarrow (-1)^{\frac{p-1}{2}} \equiv (-1)^{2k} \equiv 1 \pmod{p}$

If
$$p = 4k + 3 \Rightarrow (-1)^{\frac{p-1}{2}} \equiv (-1)^{2k+1} \equiv -1 \pmod{p}$$

3.38. Prove that the three parts of the quadratic reciprocity theorem are equivalent to the following three concise formulas, where p and q are odd primes

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$$

With
$$p \equiv 1 \pmod{4} \Rightarrow \left(\frac{-1}{p}\right) = 1 = (-1)^{\frac{p-1}{2}} \pmod{p}$$

Similarly with $p \equiv 3 \pmod{4} \left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$

First we need a lemma (**Gauss lemma**): suppose p is an odd prime, and $a \in \mathbb{Z}$, gcd(a, p) = 1. Consider the set

$$a, 2a, 3a, \cdots, \frac{p-1}{2}a$$

If s of those residues are greater than $\frac{p}{2}$, then $\binom{a}{p} = (-1)^s$ Proof of lemma: Among smallest residues of

$$a, 2a, 3a, \cdots, \frac{p-1}{2}a$$

, suppose that

$$u_1, u_2, \cdots, u_s$$

are residues greater than $\frac{p}{2}$, and

$$v_1, v_2, \cdots, v_t$$

are residues smaller than $\frac{p}{2}$

Because $gcd(ja, p) = 1 \forall j, 1 \leq j \leq \frac{p-1}{2}$, all $u_i, v_j \neq 0 \Leftrightarrow u_i, v_j \in \{1, 2, \dots, p-1\}$. We will prove that, the set

$$\{p-u_1, p-u_2, \cdots, p-u_s, v_1, v_2, \cdots, v_t\}$$

is a permutation of $\{1, 2, \cdots, \frac{p-1}{2}\}$

It is clear that there are no 2 numbers u_i or 2 numbers v_j simultaneously congruent modulo p. Because if $ma \equiv na \pmod{p}$ and $\gcd(a,p)=1$, then $m \equiv n \pmod{p} \Rightarrow \text{contrast with } m,n \leq \frac{p-1}{2}$

Similarly, we see that there are no numbers $p-u_i$ congruent with v_j , so

$$\Rightarrow (p - u_1)(p - u_2) \cdots (p - u_s)v_1v_2 \cdots v_t \equiv \left(\frac{p - 1}{2}\right)! \pmod{p}$$

On the other hand,

$$u_1, u_2, \cdots, u_s, v_1, v_2, \cdots, v_t$$

are smallest residues of

$$a, 2a, 3a, \cdots, \frac{p-1}{2}$$

, so

$$\Rightarrow u_1 u_2 \cdots u_s v_1 v_2 \cdots v_t \equiv a^{\frac{p-1}{2}} \left(\frac{p-1}{2}\right)! \pmod{p}$$

So
$$(-1)^s a^{\frac{p-1}{2}} \left(\frac{p-1}{2}\right)! \equiv \left(\frac{p-1}{2}\right)! \pmod{p}$$

And because $\gcd(p, \left(\frac{p-1}{2}\right)!) = 1 \Rightarrow (-1)^s a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$

$$\Rightarrow a^{\frac{p-1}{2}} \equiv (-1)^s \pmod{p}$$
 and $\binom{a}{p} = a^{\frac{p-1}{2}}$

$$\Rightarrow \binom{a}{p} = (-1)^s \pmod{p}$$

Return to problem: using theorem above, we need to find the number of residues, which are greater than $\frac{p}{2}$ among $1 \cdot 2$, $2 \cdot 2$, \cdots , $\frac{p-1}{2} \cdot 2$. Therefore we only need to know which numbers are greater than $\frac{p}{2}$

$$\Rightarrow \text{ there are } s = \frac{p-1}{2} - \left[\frac{p}{4}\right] \Rightarrow \left(\frac{2}{p}\right) = (-1)^{\frac{p-1}{2} - \left[\frac{p}{4}\right]}$$

With $p \equiv 1, 3, 5, 7 \pmod{8}$, we have

$$\frac{p-1}{2} - \left[\frac{p}{4}\right] \equiv \frac{p^2 - 1}{8} \pmod{2}$$

$$\Rightarrow \left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}}$$

$$\left(\begin{smallmatrix} p \\ q \end{smallmatrix} \right) \left(\begin{smallmatrix} q \\ p \end{smallmatrix} \right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}$$

We need a lemma: Suppose p is an odd prime, a is odd and gcd(a, p) = 1, then $\left(\frac{a}{p}\right) = (-1)^{T(a, p)}$, with

$$T(a,p) = \sum_{j=1}^{\frac{p-1}{2}} \left[\frac{ja}{p} \right]$$

<u>Proof of lemma</u>: consider smallest residues of $a, 2a, 3a, \dots, \frac{p-1}{2} \cdot a$. As Gauss's lemma, $u_1, u_2, \dots, u_s, v_1, v_2, \dots, v_t$ are residues greater and less than $\frac{p}{2}$ respectively. According to Euclidean divisor:

$$ja = p \left[\frac{ja}{p} \right] + \text{remainder}$$

, remainder is u_i or v_j . We have such $\frac{p-1}{2}$ equations and add them together

$$\Rightarrow \sum_{j=1}^{\frac{p-1}{2}} ja = \sum_{j=1}^{\frac{p-1}{2}} p \left[\frac{ja}{p} \right] + \sum_{i=1}^{s} u_i + \sum_{j=1}^{t} v_j$$

As we pointed out in Gauss's lemma, the set $p-u_1,\ p-u_2,\ \cdots,\ p-u_s,\ v_1,\ v_2,\ \cdots,\ v_t$ is a permutation of the set $1,\ 2,\ \cdots,\ \frac{p-1}{2}$

$$\sum_{j=1}^{\frac{p-1}{2}} j = \sum_{i=1}^{s} (p - u_i) + \sum_{j=1}^{t} v_t = ps - \sum_{i=1}^{s} u_i + \sum_{j=1}^{t} v_t$$

$$\Rightarrow \sum_{j=1}^{\frac{p-1}{2}} ja - \sum_{j=1}^{\frac{p-1}{2}} j = \sum_{j=1}^{\frac{p-1}{2}} p \left[\frac{ja}{p} \right] - ps + 2 \sum_{i=1}^{s} u_i$$

From formula of T(a, p), $(a-1)\sum_{j=1}^{\frac{p-1}{2}}j=pT(a, p)-ps+2\sum_{i=1}^{s}u_i$ Because a, p are odd, $T(a, p)\equiv s\pmod{2}$. From Gauss's lemma we finish.

Return to problem: Consider pairs (x,y), where $1 \le x \le \frac{p-1}{2}$ and $1 \le y \le \frac{q-1}{2}$, there are $\frac{p-1}{2} \cdot \frac{q-1}{2}$ pairs. We divide those pairs into 2 groups, depending on the magnitude of px and qy.

Because p, q are two different primes, $px \neq qy, \forall (x, y)$

We consider pairs with qx > py. With every fixed element of x $(1 \le x \le \frac{p-1}{2})$, exist $\left[\frac{qx}{p}\right]$ elements y satisfying $1 \le y \le \frac{qx}{p}$.

Therefore, there are $\sum_{i=1}^{\frac{p-1}{2}} \left\lceil \frac{iq}{p} \right\rceil$ pairs. When qx < py, similarly, there

are $\sum_{j=1}^{\frac{q-1}{2}} \left[\frac{jp}{q}\right]$ pairs. Because there are $\frac{p-1}{2}\cdot\frac{q-1}{2}$ pairs, we have equation

$$\sum_{i=1}^{\frac{p-1}{2}} \left[\frac{iq}{p} \right] + \sum_{j=1}^{\frac{q-1}{2}} \left[\frac{jp}{q} \right] = \frac{p-1}{2} \cdot \frac{q-1}{2}$$

From definition of T(p,q), we have result

$$(-1)^{T(p,q)+T(q,p)} = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}$$

3.39 Let p be a prime satisfying $p \equiv 3 \pmod{4}$.

Let a be a quadratic residue modulo p. Prove that the number

$$b \equiv a^{\frac{p+1}{4}} \pmod{p}$$

has the property that $b^2 \equiv a \pmod{p}$. (*Hint*. Write $\frac{p+1}{2}$ as $1 + \frac{p-1}{2}$ and use Exercise 3.37.) This gives an easy way to take square roots modulo p for primes that are congruent to 3 modulo 4.

Chứng minh. Using Exercise 3.37, $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$ because a is quadratic residue modulo p. Therefore

$$b^2 \equiv a^{\frac{p+1}{2}} \equiv a^{1+\frac{p-1}{2}} \equiv a \cdot a^{\frac{p-1}{2}} \equiv a \cdot 1 \equiv 1 \pmod{p}$$

3.40. Let p be and odd prime, let $g \in \mathbb{F}_p^*$ be a primitive root, and let $h \in \mathbb{F}_p^*$. Write $p - 1 = 2^s m$ with m odd and $s \ge 1$, and write the binary expansion of $\log_g(h)$ as

$$log_q(h) = \epsilon_0 + 2\epsilon_1 + 4\epsilon_2 + 8\epsilon_3 + \cdots$$
 with $\epsilon_0, \epsilon_1, \dots \in \{0, 1\}$

Give an algorithm that generalizes Example 3.69 and allows you to rapidly compute $\epsilon_0, \epsilon_1, \dots, \epsilon_{s-1}$, thereby proving that the first s bits of the discrete logarithm are insecure.

3.41 Let p be a prime satisfying $p \equiv 1 \pmod{3}$. We say that a is a *cubic residue modulo* p if $p \nmid a$ and there is an integer c satisfying $a \equiv c^3 \pmod{p}$.

П

Algorithm 2 Algorithm to find s least significant bits of x in $g^x \equiv h \pmod{p}$

```
Require: g, h, p \ (p-1=2^s m)

Ensure: s least significant bits of x: g^x \equiv h \pmod{p}

Array \epsilon_0, \epsilon_1, \cdots, \epsilon_{s-1}

for i=0,\ldots,s-1 do

if h is quadratic residue then \epsilon_i=0, h=\sqrt{h} \pmod{p}

else if \epsilon_i=1 then h=\sqrt{g^{-1}h} \pmod{p}

end if

end for
```

Let a and b be cubic residues modulo p. Prove that ab is a cubic residue modulo p.

Chứng minh.
$$a \equiv x^3 \pmod{p}, \ y \equiv y^3 \pmod{p}$$
. Therefore
$$ab \equiv x^3y^3 = (xy)^3 \pmod{p}$$

case with quadratic residues) it is possible for none of a, b and ab to the a cubic residue modulo p

Let g be primitive root modulo p. Choose $a \equiv g^{3k+1} \pmod{p}$, $b \equiv g^{3k'+1} \pmod{p}$. Hence $ab \equiv g^{(3k+1)+(3k'+1)} \equiv g^{3(k+k')+2} \pmod{p}$, which is not cubic residue Let g be a primitive root modulo p. Prove that a is a cubic residue modulo p if and only if $3 \mid \log_g(a)$, where $\log_g(a)$ is the discrete logarithm of a to the base g.

<u>Proof of sufficient condition</u>: If a is a cubic residue modulo p, $3 \mid \log_g(a)$. Suppose $a \equiv c^3 \pmod 3$ and $c \equiv g^u = \pmod p$. Hence $a = g^3u \pmod p \Rightarrow 3 \mid \log_g(a)$

<u>Proof of necessary condition</u>: If $3|\log_g(a)$, a is a cubic residue modulo p. This is obviously. Suppose instead that $p \equiv 2 \pmod 3$. Prove that for every integer a there is an integer c satisfying $a \equiv c^3 \pmod p$. In other words, if $p \equiv 2 \pmod 3$, show that every number is a cube modulo p.

Return to problem: Because $p \equiv 2 \pmod{3} \Rightarrow \gcd(p-1,3) = 1$. Which means that exist element d such that $3d \equiv 1 \pmod{p-1}$. Hence, equation $x^3 \equiv a \pmod{p}$ has solution $a^d = x \pmod{p}$. So every number is a cube modulo p.

23.3 Chapter 4

```
4.1. d = 561517, N = 661643 sig = 206484
    4.2. S \text{ and } S"
    4.3. p = 212081, q = 128311
\Rightarrow d = 18408628619 \Rightarrow S = D^d \pmod{N} = 22054770669
    4.4. With c = m^{e_B} \pmod{N_B} and s = Hash(m)^{d_A} \pmod{N_A}
     \Rightarrow c^{d_B} = m^{e_B \cdot d_B} \pmod{N_B} = m \text{ and } s^{e_A} = Hash(m)^{d_A \cdot e_A}
(\text{mod } N_A) = Hash(m). Hence this method works
    4.5. A = g^a \pmod{p} = 2065 \ S_1 = g^k \pmod{p} = 3534
S_2 = (D - a \cdot S_1)K^{-1} \pmod{p-1} = 5888
\Rightarrow signature is (S_1, S_2) = (3534, 5888)
    4.6. A^{S_1} \cdot S_1^{S_2} \equiv g^{D} \pmod{p}
\Rightarrow (S_1^n, S_2^n) is valid signature.
    4.8. S_1 = S_1' = g^k \pmod{p}, from here Eve can know at first
glance that the same random element k is used S_2 = (D - aS_1)k^{-1}
\pmod{p-1}, S_2' = (D' - aS_1')k^{-1} \pmod{p-1}
\Rightarrow S_2 - S_2' \equiv (D - D')k^{-1} \pmod{p-1} \text{ (as } aS_1 = aS_2)
\Rightarrow k = (D - D')(S_2 - S_2')^{-1} \text{ (mod } p - 1)
Here we get D - aS_1 = S_2k \pmod{p-1}
\Rightarrow \begin{cases} a = (D - S_2 k) S_1 - 1 \pmod{p - 1} \\ a = (D' - S_2' k) S_1^{-1} \pmod{p - 1} \end{cases}
    4.9. p \equiv 1 \pmod{q}, 1 \leq a \leq q-1, A = g^a \pmod{p}, S_1 =
(g^k \bmod p) \bmod q, S_2 = (D + aS_1)k^{-1} \pmod q
    Verify: V_1 = D \cdot S_2^{-1} \pmod{q}, \ V_2 = S_1 S_2^{-1} \pmod{q}. We need to
prove that (q^{V_1} \cdot A^{V_2} \mod p) \mod q = S_1
```

Here we have

$$g^{V_1} \cdot A^{V_2} \equiv g^{D \cdot S_2^{-1}} \cdot g^{aS_1 S_2^{-1}} \pmod{p}$$
$$\equiv g^{(D+aS_1)S_2^{-1}} \pmod{p}$$
$$\equiv g^k \pmod{p}$$

$$\Rightarrow (g^{V_1}A^{V_2} \bmod p) \bmod q = S_1$$

4.10.
$$(p,q,g) = (22531,751,4488)$$
. Public key $A = 22476$ Not valid Not valid

4.11. $A = g^a \pmod{p}$. A = 31377, g = 21947, $p = 103687 \Rightarrow a = 602$

$$S_1 = (g^k \mod p) \mod q = 439$$

 $S_2 = (D + aS_1)k^{-1} \pmod{q} = 1259$

23.4 Chapter 7

7.43. $t = b_1b_2/\|b_1\|^2$ and $b_2^* = b_2 - tb_1$ $\Rightarrow b_2^* \cdot b_1 = b_1(b_2 - tb_1) = b_1b_2 - t\|b_1\|^2 = b_1b_2 - \frac{b_1b_2}{\|b_1\|^2} \cdot \|b_1\|^2 = 0$ Hence $b_2^* \perp b_1$ and b_2^* is the projection of b_2 onto the orthogonal complement of b_1

$$\begin{split} \|a-tb\|^2 &= (a-tb)^2 = a^2 - 2abt + t^2b^2 = \|a\|^2 + t^2\|b\|^2 - 2abt \geq 0 \\ \Leftrightarrow a-tb = 0 \Rightarrow t = \frac{ab}{\|b\|^2} \ 0 \ (a-tb) \cdot b = ab - t\|b\|^2 = ab - \frac{ab}{\|b\|^2} \cdot \|b\|^2 = 0. \end{split}$$
 Therefore $a-tb$ is the projection of a onto the orthogonal complement of b

7.45.

$$v_1 = (14, -47), v_2 = (-362, -131), 6 \text{ steps } v_1 = (14, -47), v_2 = (-362, -131), 6 \text{ steps } v_1 = (147, 330), v_2 = (690, -207), 7 \text{ steps}$$

7.46. W^{\perp} is the orthogonal complement of W in $V \Rightarrow \vec{z} \in W^{\perp}$, $\vec{z} \cdot \vec{y} = 0, \forall \vec{y} \in W$

With
$$\vec{z_1}, \vec{z_2} \in W^{\perp} \Rightarrow \vec{z_1} \cdot \vec{y} = \vec{z_2} \cdot \vec{y} = 0, \forall \vec{y} \in W$$

 $\Rightarrow (\vec{z_1} + \vec{z_2}) \cdot \vec{y} = 0 \Rightarrow \vec{z_1} + \vec{z_2} \in W^{\perp}$

$$\alpha \vec{z_1} \cdot \vec{y} = \alpha \cdot \vec{0} = 0 \Rightarrow \alpha \vec{z_1} \in W^{\perp}, \forall \alpha \in \mathbb{R}$$
 We have 2 methods

Algorithm 3 Gauss's latice reduction algorithm

```
while True do

if \|v_2\| < \|v_1\| then

swap v_1 and v_2

m \leftarrow \lfloor v_1 \cdot v_2 / \|v_1\|^2 \rfloor

end if

if m = 0 then

return (v_1, v_2)

end if

Replace v_2 with v_2 - mv_1

end while
```

First method: Show that $W \cup W^{\perp} = \{\vec{0}\}$. If \vec{u} belongs to both W and W^{\perp} , then $\langle u, u \rangle = 0 \Rightarrow \vec{u} = \vec{0}$.

Now denote $U = W + W^{\perp}$, we prove that W = V. We can choose an orthonormal basis in U and extend it to orthonormal basis in V. Thus, if $U \neq V$, there is an element \vec{e} in the basis of V orthonormal to U. Since U contains W, e is orthonormal to $U \Rightarrow \vec{e} \in W^{\perp}$. The latter is a subspace of W, therefore e is in W, which is contrary. Second method: Let $\{e_1, e_2, \cdots, e_k\}$ be an orthonormal basis of the subspace W. For each $v \in V$, let

$$\begin{split} P(v) &= \sum_{j=1}^k < v, e_j > e_j \\ \Rightarrow (\forall v \in V) : v &= \underbrace{P(v)}_{\in W} + \underbrace{(v - P(v))}_{\in W^{\perp}} \end{split}$$

The fact that $v - P(v) \in W^{\perp}$ is: if $j \in \{1, 2, \dots, k\}$ then

$$< v - P(v), e_j > = < v - \sum_{l=1}^k < v, e_l > e_l, e_j >$$

= $< v, e_j > - < v, e_j > = 0$

Since $\{e_1, \cdots, e_k\}$ is a basic of W, this prove that $v - P(v) \in W^{\perp}$ $\|v\|^2 = \langle v, v \rangle = (aw + bw')^2 = a^2w^2 + 2abww' + b^2w'^2 = a^2\|w\|^2 + 0 + b^2\|w'\|^2 = a^2\|w\|^2 + b^2|w'\|^2$

Chương 24

Internet-Olympiad Toán LB Nga 2023

Giải này mình cay vI nên ngồi chép lại bài giải. Haizz.

Bài 1. Ở công viên cho trò chơi, với 5 dollar chúng ta được chơi 3 lượt và được thưởng 1 viên kẹo. Nếu trả lại 2 lượt (không chơi) thì chúng ta được trả lại 3 dollar đồng thời thêm 1 viên kẹo nữa. Ở đây không có quy luật trao đổi khác. Một đứa trẻ vào chơi, chỉ mang mỗi dollar. Kết thúc trò chơi, lượng dollar giảm nhưng đứa trẻ có 50 viên kẹo (không còn lượt chơi sót lại). Hỏi đứa trẻ đã dùng bao nhiêu dollar cho trò chơi.

Giải. Đặt x là số dollar ban đầu đứa trẻ có, và y là số lượt 5 dollar mà đứa trẻ mua, tương đương y viên kẹo. Suy ra số lần chơi mà đứa trẻ bỏ lại 2 lượt là 50-y. Nếu chơi hết 3 lượt thì đứa trẻ mất 5 dollar, nếu chơi 1 lượt (trả lại 2) thì đứa trẻ mất 5-3=2 dollar. Theo giả thiết là không còn lượt chơi sót lại, như vậy số lần chơi hết 3 lượt phải bằng bù lại số lần bỏ 2 lượt. Nói cách khác 3y=2(50-y). Vậy y=20 và 50-y=30. Nghĩa là số lần đứa trẻ trả lại 2 lượt chơi là

CHƯƠNG 24. INTERNET-OLYMPIAD TOÁN LB NGA 2023160

 $3\cdot 30=90$ dollar, và số tiền trả là 5y=100.Như vậy để có 50 viên kẹo thì đứa trẻ cần 100-90=10dollar.

Bài 2. Gọi x_0 là cực tiểu địa phương của hàm số khả vi f(x) thỏa mãn $f'(x) = 1 - xf^2(x)$ với mọi x. Hỏi có thể xác định nó là cực đại hay cực tiểu không?

Giải. Có thể. Do x_0 là cực trị địa phương nên $f'(x_0) = 0$. Suy ra $f'(x_0) = 1 - x_0 f^2(x_0) = 0$ và dễ thấy $x_0 = 0$ không là nghiệm của phương trình. Vậy ta có $f^2(x_0) = \frac{1}{x_0} > 0$.

Từ $f'(x) = 1 - xf^2(x)$ ta đạo hàm 2 vế thu được $f''(x) = -f^2(x) - 2xf(x)f'(x)$. Do $f'(x_0) = 0$ nên $f''(x_0) = -f^2(x_0) - 2x_0f(x_0)f'(x_0) = -f^2(x_0) < 0$. Do đó x_0 là cực đại.

Bài 4. Có bao nhiều cách xếp 4 phần tử của 4 loại gạch khác nhau lên bảng 4x4 ô vuông sao cho ở mỗi hàng và mỗi cột có đúng 4 viên gạch thuộc 4 loại khác nhau?

Giải. Ta cố định hàng đầu tiên của bảng là 1-2-3-4.

1	2	3	4

Tiếp theo ta bỏ các phần tử vào cột đầu theo thứ tự

1	2	3	4
2			
3			
4			

Trong bảng 3×3 còn lại ta phân bố các phần tử 1 vào các hàng, ta có 6 cách xếp như sau:

1	2	3	4	1	2	3	4		1	2	3	4
2	1			2	1				2		1	
3		1		3			1		3	1		
4			1	4		1			4			1
1	2	3	4	1	2	3	4]	1	2	3	4
1 2	2	3	4	1	2	3	4		1	2	3	4
1 2 3	2	3	1	1 2 3	1	3	_		1 2 3	2	3	1

Ta thấy rằng các trường hợp 1, 2, 4 và 6 sẽ có cách xếp các phần tử còn lại vào thỏa mãn. Nhưng trường hợp 3 và 5 sẽ bị đụng độ và không xếp được. Như vậy có 4 cách xếp.

Với mỗi cách xếp, ta có thể hoán vị 3 phần tử ở cột đầu tiên (hàng đầu cố định, hoán vị từ hàng 2 tới 4) nên ta có 3! cách chọn. Với mỗi cách cố định hàng đầu ta có $4\cdot 3!$ cách chọn, và ta có 4! cách xếp hàng đầu tiên.

Như vậy kết quả là $4 \cdot 3! \cdot 4! = 576$.

Bài 5. Cho hàm f(x) thỏa mãn $f(x) + \frac{1}{2} \sin f(x) = x$ với mọi $x \in \mathbb{R}$. Tính tích phân $\int_0^{\pi} f(x) dx$.

Giải. Đặt t = f(x) thì dt = f'(x) dx. Sử dụng tích phân từng phần với u = f(x) và dv = dx ta có du = f'(x) dx và v = x, suy ra:

$$\int_0^{\pi} f(x) \, dx = x f(x) \Big|_0^{\pi} - \int_0^{\pi} x f'(x) \, dx$$

Từ giả thiết $f(x) + \frac{1}{2}\sin f(x) = x$, đạo hàm 2 vế ta có

$$f'(x) + \frac{1}{2}\cos f(x)f'(x) = 1$$

, tương đương với $f'(x) = \frac{2}{2 + \cos f(x)}$ mà $-1 \le \cos f(x) \le 1$ với mọi $x \in \mathbb{R}$ nên f'(x) > 0 với mọi $x \in \mathbb{R}$. Nghĩa là hàm đồng biến trên \mathbb{R} .

Từ đó, với mỗi $x \in \mathbb{R}$ tồn tại duy nhất f(x) tương ứng với nó. Ta thay x = 0 và f(x) = 0 vào phương trình thì thấy thỏa mãn. Như vậy f(0) = 0. Tương tự $f(\pi) = \pi$. Do đó $xf(x)\Big|_{0}^{\pi} = \pi^{2}$.

Cũng từ đó ta có $\int_0^\pi x f'(x)\,dx=\int_0^\pi x dt=\int_0^\pi (t+\frac{1}{2}\sin t)\,dt=\frac{\pi^2}{2}+1.$ Chốt lại

$$\int_0^{\pi} f(x) dx = \pi^2 - (\frac{\pi^2}{2} + 1) = \frac{\pi^2}{2} - 1$$

Bài 6. Trong không gian cho tam giác vuông cân ABC.

Gọi $A_1B_1C_1$ là hình chiếu của tam giác ABC lên mặt phẳng nào đó $(A_1,\,B_1,\,C_1$ lần lượt là hình chiếu của $A,\,B$ và C lên mặt phẳng đó). Biết rằng $A_1B_1C_1$ cũng là tam giác vuông cân. Tìm mọi giá trị có thể của tỉ số giữa độ dài cạnh góc vuông AB và cạnh góc vuông A_1B_1

Giải. Không mất tính tổng quát, ta chọn A_1 ở gốc tọa độ Oxyz, $B_1 = (1,0,0)$ và $C_1 = (0,1,0)$. Khi đó A_1 là hình chiếu của A lên mặt phẳng Oxy nên A = (0,0,1). Tương tự, B_1 là hình chiếu của B lên mặt Oxy nên B nằm trên đường thẳng qua B song song Oz, vậy B = (1,0,x). Tương tự C = (0,1,y).

Từ giả thiết AB và A_1B_1 là cạnh góc vuông, vậy $\angle A=90$ hoặc $\angle B=90.$

Ta có các vector $\overline{AB} = (1,0,x-1), \ \overline{AC} = (0,1,y-1), \ \overline{BC} = (-1,1,y-x).$ Tương tự $\overline{A_1B_1} = (1,0,0), \ \overline{A_1C_1} = (0,1,0), \ \overline{B_1C_1} = (-1,1,0).$

Trường hợp 1. Tam giác ABC vuông tại A. Khi đó $\overline{AB} \cdot \overline{AC} = 0$ và $|\overline{AB}| = |\overline{AC}|$. Tương đương với (x-1)(y-1) = 0 và $1 + (x-1)^2 = 1 + (y-1)^2$. Suy ra x = y = 1. Như vậy $\frac{AB}{A_1B_1} = 1$.

Trường hợp 2. Tam giác ABC vuông tại B. Khi đó $\overline{AB} \cdot \overline{BC} = 0$ và $|\overline{AB}| = |\overline{BC}|$. Tương đương với -1 + (x-1)(y-x) = 0 và $1 + (x-1)^2 = 2 + (y-x)^2$. Ta thấy x = 1 không là nghiệm của phương trình đầu, nên $y - x = \frac{1}{x-1}$. Thay vào phương trình thứ hai

và biến đổi ta có

$$1 + (x - 1)^{2} = 2 + \frac{1}{(x - 1)^{2}}$$
$$\Leftrightarrow (x - 1)^{4} - (x - 1)^{2} - 1 = 0$$
$$\Leftrightarrow (x - 1)^{2} = \frac{1 + \sqrt{5}}{2}$$

mà $AB=\sqrt{1+(x-1)^2}=\sqrt{1+\frac{1+\sqrt{5}}{2}}=\frac{1+\sqrt{5}}{2}$ và $A_1B_1=1$ nên tỉ số là $\frac{AB}{A_1B_1}=\frac{1+\sqrt{5}}{2}$

Như vậy có 2 đáp án thỏa mãn là 1 và $\frac{1+\sqrt{5}}{2}$.

Bài 7. Cho hai ma trận vuông A và B sao cho $B^2 = 0$ và $A^2B + BA^2 = 2A^3$. Chứng minh rằng với mỗi ma trận A như vậy thì $A^{12} = 0$.

Giải. Từ giả thiết $A^2B + BA^2 = 2A^3$, nhân hai vế của phương trình cho B vào bên trái thì ta có $BA^2B = 2BA^3$. Tương tự nếu nhân B vào bên phải thì $BA^2B = 2A^3B$. Như vậy $BA^3 = A^3B$.

Tiếp theo nhân hai vế $A^2B+BA^2=2A^3$ vào bên trái và bên phải cho A^2 thì $A^4B+A^2BA^2=2A^5$ và $A^2BA^2+BA^4=2A^5$. Như vây $A^4B=BA^4$.

Khi đó $A^5B=A\cdot A^4B=A\cdot BA^4=A\cdot BA^3\cdot A=A\cdot A^3B\cdot A=A^4B\cdot A=BA^4A=BA^5.$ Như vậy $A^5B=BA^5.$

Bình phương hai vế $A^2B + BA^2 = 2A^3$ ta có

$$4A^{6} = A^{2}BA^{2}B + A^{2}BBA^{2} + BA^{2}A^{2}B + BA^{2}BA^{2}$$
$$= A^{2}BA^{2}B + BA^{4}B + BA^{2}BA^{2}$$

mà $BA^4B=A^4BB=0$ nên $4A^6=A^2BA^2B+BA^2BA^2$. Tiếp theo, từ $A^2B+BA^2=2A^3$ ta có

$$A^{2}BA^{2}B = A^{2}B(2A^{3} - BA^{2}) = 2A^{2}BA^{3} - A^{2}B \cdot BA^{2}$$
$$= 2A^{2}A^{3}B - 0 = 2A^{5}B$$

, tương tự

$$BA^{2}BA^{2} = (2A^{3} - A^{2}B)BA^{2} = 2A^{3}BA^{2} - A^{2}B \cdot BA^{2}$$
$$= 2BA^{3} \cdot A^{2} - 0 = 2BA^{5}$$

Mà $A^5B=BA^5$ nên $4A^6=2A^5B+2BA^5=4A^5B$. Suy ra $A^6=A^5B$. Cuối cùng $A^{12}=A^6\cdot A^6=A^5B\cdot BA^5=0$. Điều phải chứng minh.

Bài 8. Cho ba số dương a, b, c sao cho $\sin a \cdot \sin b \cdot \sin c = \frac{3}{\pi} \cdot abc$. Chứng minh rằng $a + b + c > \frac{\pi}{6}$.

Giải. Do $a,\,b,\,c$ dương nên ta có thể chia 2 vế cho abc và có $\frac{\sin a}{a}\cdot\frac{\sin b}{b}\cdot\frac{\sin c}{c}=\frac{3}{\pi}.$

Xét hàm $f(x) = \ln(\frac{\sin x}{x})$. Do a, b, c dương nên vế trái cũng dương, do đó ta chỉ cần xét các số trong khoảng $(0, \frac{\pi}{2})$ là đủ. Khi đó, đặt

$$f(x) = \begin{cases} \ln\left(\frac{\sin x}{x}\right), & 0 < x < \frac{\pi}{2} \\ 0, & x = 0 \end{cases}$$

Từ giả thiết suy ra:

$$f(a) + f(b) + f(c) = \ln\left(\frac{\sin a}{a}\right) + \left(\frac{\sin b}{b}\right) + \left(\frac{\sin c}{c}\right)$$
$$= \ln\left(\frac{\sin a}{a} \cdot \frac{\sin b}{b} \cdot \frac{\sin c}{c}\right)$$
$$= \ln\left(\frac{3}{\pi}\right) = f\left(\frac{\pi}{6}\right)$$

Ta thấy $e^{f(x)}=\frac{\sin x}{x}$. Đạo hàm hai vế suy ra $e^{f(x)}f'(x)=\left(\frac{\cos x}{x}-\frac{\sin x}{x^2}\right)$. Vậy:

$$f'(x) = \left(\frac{\cos x}{x} - \frac{\sin x}{x^2}\right) \cdot \frac{x}{\sin x} = \cot x - \frac{1}{x}$$

Và đạo hàm cấp hai:

$$f''(x) = \frac{-1}{\sin^2 x} + \frac{1}{x^2}$$

mà trên khoảng $(0, \frac{\pi}{2})$ thì sin x < x nên f''(x) < 0 với mọi $x \in (0, \frac{\pi}{2})$. Do đó f'(x) nghịch biến tiến trên $(0, \frac{\pi}{2})$, và do $\frac{\sin x}{x}$ nghịch biến trên $(0, \frac{\pi}{2})$ nên f(x) cũng nghịch biến trên $(0, \frac{\pi}{2})$.

Không mất tính tổng quát giả sử $a \leq b \leq c$. Theo định lý Lagrange (khúc này hack não lắm!!!) thì tồn tại số $\xi_1 \in (0,a)$ sao cho $f(a) - f(0) = f'(\xi_1) \cdot (a - 0) \Leftrightarrow f(a) - f(0) = f'(\xi_1) \cdot a$. Tương tự tồn tại số $\xi_2 \in (a,a+b)$ sao cho $f(a+b) - f(b) = f'(\xi_2) \cdot (a+b-b) = f'(\xi_2) \cdot a$.

Do $\xi_1 < \xi_2$ và f'(x) nghịch biến nên $f'(\xi_1) > f'(\xi_2)$. Suy ra f(a) - f(0) > f(a+b) - f(b), hay f(a) + f(b) > f(a+b) + f(0).

Chứng minh tương tự ta cũng có f(a+b)+f(c)>f(a+b+c)+f(0). Như vậy $f\left(\frac{\pi}{6}\right)=f(a)+f(b)+f(c)>f(a+b)+f(0)+f(c)>f(a+b+c)+f(0)+f(0)>f(a+b+c)$. Do f(x) nghịch biến nên $a+b+c>\frac{\pi}{6}$ là điều cần chứng minh.

Bài 10. Cho đa thức với hệ số nguyên

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Biết rằng a_n là số lẻ, và $P_n(k)$, $P_n(k+1)$ là các số lẻ với k nào đó. Chứng minh rằng đa thức không có nghiệm hữu tỷ.

Chứng minh. Giả sử đa thức có nghiệm hữu tỷ $\frac{p}{q}$ với p và q nguyên tố cùng nhau (phân số tối giản). Khi đó $P_n(x) = \left(x - \frac{p}{q}\right) \cdot Q_{n-1}(x) = (qx-p)\left(\frac{1}{q}Q_{n-1}(x)\right)$. Do p và q nguyên tố cùng nhau nên $\frac{1}{q}Q_{n-1}(x)$ cũng là một đa thức hệ số nguyên. Ta nhận thấy rằng

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
$$= (qx - p) \left(\frac{a_n}{q} x^{n-1} + \dots + \frac{-a_0}{q} \right)$$

CHƯƠNG 24. INTERNET-OLYMPIAD TOÁN LB NGA 2023166

Ở đây ta có thể xét hệ số bậc cao nhất và thấp nhất, và từ đó suy ra $\frac{a_n}{q}$ và $\frac{a_0}{q}$ là các số nguyên.

Vậy với số nguyên m bất kì thì $\frac{P_n(m)}{qm-p}=N(m)$ cũng là một số nguyên. Mà từ giả thiết $a_n,\,P_n(k)$ và $P_n(k+1)$ là các số lẻ thì $qk-p=2m_1-1$ (số lẻ không thể chia hết cho số chẵn). Tương tự $q(k+1)-p=2m_2-1$. Trừ vế theo vế ta có $(2m_2-1)-(2m_1-1)=2(m_2-m_1)=q$. Như vậy q là số chẵn, tuy nhiên do $\frac{a_n}{q}$ là số nguyên và a_n là số lẻ nên q phải là số lẻ, mâu thuẫn.

Theo phản chứng, đa thức không có nghiệm hữu tỷ. \Box

Phần XI Lịch sử toán học

Trong lịch sử, từ xa xưa con người đã biết tính toán, sử dụng chúng cho công việc hằng ngày.

Chúng ta không biết ai là người đầu tiên phát minh ra lịch, cũng như cách tính toán để phân chia ruộng đất, tài sản trong các nền văn minh cổ. Những điều đó được đúc kết theo kinh nghiệm qua hàng chục, thậm chí hàng trăm năm tri thức con người.

Cho tới khi những nhân vật sau (và nhiều nhân vật tương tự khác) đi du lịch Ai Cập và phương đông (ý mình là đi du học).

Đầu tiên phải nhắc tới Euclid, người đã quá quen thuộc với học sinh phổ thông với tiên đề Euclid. Hệ tiên đề Euclid đề ra trở thành cơ sở cho hình học. Bộ sách *Elements* của ông được cho là bộ sách giáo khoa đầu tiên trên thế giới và những gì ghi trong đó khá giống với những gì được giảng dạy ở trường học chúng ta ngày nay.

Nhưng ông đã không lường trước được 1 điều: thế hệ sau đã "thêm mắm dặm muối" và biến đổi hình học của ông thành hình học Phi-Euclid. Từ đó mở ra những khả năng lớn hơn của toán học.

Pythagoras: định lý Pythagoras trong tam giác vuông có lẽ là định lý đầu tiên mà học sinh tiếp cận. Phát biểu rất đơn giản:

Định lý 24.1 (Định lý Pythagoras). Trong tam giác vuông, bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông.

Nói cách khác, tam giác có 2 cạnh góc vuông lần lượt là a và b, cạnh huyền độ dài là c thì

$$a^2 + b^2 = c^2$$

Thật ra trước thời Pythagoras rất lâu, người Ai Cập đã biết tới phương pháp này. Có nhiều bằng chứng về các cuộn giấy papyrus ghi lại các bộ số nguyên (a, b, c) mà $a^2 + b^2 = c^2$ được tìm thấy khi khai quật.

Tuy nhiên thời đó con người chỉ làm việc với các số nguyên, chính xác hơn là các số tự nhiên vì chúng "tự nhiên" xuất hiện trong đời sống.

Pythagoras là người đầu tiên nhắc tới **proof** (chứng minh) trong toán học. Một phát biểu, định lý chỉ đúng khi có một chứng minh đúng đắn cho nó. Các bước suy luân trong chứng minh dựa trên một

hệ tiên đề (axiom) cho trước. Các tiên đề này hiển nhiên đúng, từ đó các suy luận chính xác sẽ cho kết quả chính xác.

Cho tới khi Fermat phán:

Định lý 24.2 (Định lý cuối cùng của Fermat). Không tồn tại một cách phân tích tam thừa thành tổng 2 tam thừa, tứ thừa thành tổng 2 tứ thừa, hay tổng quát hơn

Với mọi số nguyên $n \geq 3$, không tồn tại bộ số nguyên (a,b,c) sao cho

$$a^n + b^n = c^n$$

Và cú lừa có lẽ là lớn nhất thời đại: "Tôi đã tìm được chứng minh cho mệnh đề kỳ diệu này nhưng lề sách quá chật không thể viết được".

Vâng, cái chứng minh kỳ diệu mà ông nói đã khiến các nhà toán học thiên tài bế tắc trong suốt hơn 300 năm, sử dụng nhiều công cụ phức tạp không có ở thời Fermat và hoàn thiện bởi bài báo 200 trang của Andrew Wiles.

Nghĩa là 200 lề sách cũng không viết đủ chứng minh cho định lý cuối cùng của Fermat!!!

Phần này mình làm vì đam mê tìm hiểu lịch sử toán. Ở đây ghi lại cuộc đời và công trình của các nhà toán học lớn trên thế giới suốt chiều dài lịch sử.

Phần này lấy cảm hứng từ quyển *Thiên tài và số phận* và *Định* lý cuối cùng của Fermat của thầy Lê Quang Ánh, thông tin tham khảo dựa trên nhiều nguồn (chủ yếu là quyển *Men of Mathematics* của E.T.Bell).

Tuy nhiên thông tin về cuộc đời của các nhà toán học đã có khá nhiều, mình sẽ trình bày theo cách hiểu của bản thân và đôi khi tập trung nhiều vào các công trình mức cơ sở.

Ngoại trừ phần lịch sử của nhà toán học, mình sẽ trình bày các định lý, khái niệm, ứng dụng của họ theo cách viết, cách trình bày của toán học hiện đại ngày nay để dễ tiếp cận.

Chương 25

Euclid

Lúc mình học cấp 2, tiên đề Euclid được học là một trong 5 tiên đề hình học của Euclid. Nội dung tiên đề đó như sau:

Tiên đề (Tiên đề Euclid). Qua một điểm nằm ngoài đường thẳng cho trước, ta vẽ được một và chỉ một đường thẳng song song với đường thẳng đã cho.

Trong hình học Euclid, hình được vẽ trên *mặt phẳng*. Ở đó, với 2 điểm phân biệt ta vẽ được duy nhất một đường thẳng đi qua 2 điểm đó.

Nếu chúng ta chỉ lấy phần ở giữa 2 điểm, ta có đoạn thẳng. Nếu ta lấy phần ở ngoài 2 điểm nhưng chỉ một phía (đường thẳng kéo dài 2 phía) ta có nửa đường thẳng (hay còn gọi là tia).

Chúng ta có 2 công cụ để vẽ hình: thước và compa. Từ 2 công cụ này ta có thể vẽ được rất nhiều hình dạng như chia đôi góc (phân giác), chia đôi cạnh (lấy trung điểm), vẽ đường tròn, đường thẳng.

Tuy nhiên chúng lại có giới hạn: không thể chia 3 góc, hay không thể vẽ được hình đa giác đều 7 cạnh.

Những bài toán nhìn có vẻ đơn giản nhưng phải tới nhiều thế hệ sau, con người mới tìm được cách chứng minh rằng một hình nào đó có dưng được bằng thước và compa hay không.

Tiên đề là những mệnh đề mà ta thừa nhận tính đúng đắn của nó không cần chứng minh. Tuy nhiên sự đúng đắn phải được kiểm nghiệm từ thực tiễn. Cơ sở của hình học Euclid gồm hệ các tiên đề làm nền móng cho các chứng minh toán học về sau.

Chương 26

Georg Cantor

Nhà toán học vĩ đại bị vùi lấp trong sự bảo thủ - L.Q. Dũng

26.1 Dẫn nhập

Con người luôn tìm tòi, học hỏi, sáng tạo để tiến lên. Tuy nhiên luôn tồn tại những định chế bảo thủ, cố chấp theo lối mòn kìm hãm sự phát triển của những thiên tài, những ý tưởng cách mạng. Cantor có lẽ đã sinh sai thời, hoặc những phát kiến của ông quá vượt trội so với thời đại, khiến những định chế cấp cao khó lòng chấp nhận.

Georg Cantor (1845-1918), người được thầy Lê Quang Ánh gọi là *người chế ngự vô cực*, là nhà toán học vĩ đại mà mình rất nể phục.

Khi học về tổ hợp, các phương pháp đếm ở phổ thông, thầy giáo bảo lớp mình "đếm" thử xem, số lượng phần tử của tập hợp $\mathbb N$ và $\mathbb Z$ cái nào nhiều hơn. Ban đầu ai cũng nghĩ rằng $\mathbb Z$ lớn hơn vì rõ ràng $\mathbb N$ là tập con của $\mathbb Z$. Tuy nhiên thầy đã giải thích như sau:

Chúng ta "móc nối" giữa một phần tử thuộc $\mathbb N$ và một phần tử thuộc $\mathbb Z$ theo quy tắc

Ta ghép một số chẵn của N với một và chỉ một số dương của
 Z. Ví dụ 0 → 0, 2 → 1, 4 → 2, và tương tự;

 Ta ghép một số lẻ của N với một và chỉ một số âm của Z. Ví dụ 1 → -1, 3 → -2, 5 → -3, và tương tự.

Thật kỳ lạ, nếu theo quy tắc này, với mọi số thuộc \mathbb{N} ta luôn tìm được duy nhất một người bạn bên \mathbb{Z} . Ngược lại với mỗi số thuộc \mathbb{Z} ta cũng tìm ngược lại được một người đồng hành bên \mathbb{N} . Nói theo toán học thì đây là một song ánh. Như vậy hai tập hợp có số phần tử (lực lương) bằng nhau.

Về sau mình biết được người nghĩ ra phương pháp này là Cantor. Xét theo thời đó, đây là một phát kiến bất ngờ gây tiếng vang lớn thời đó.

Chúng ta học đếm từ nhỏ: đếm 1, 2, 3 viên bi; đếm 1, 2, 3 quả táo; vân vân. Khi một tập hợp có hữu hạn phần tử, ta đếm được số lượng phần tử của tập hợp đó. Nhưng nếu là một tập vô hạn thì sao? Chúng có đếm được không? Mà đếm là sao?

Chúng ta quay lại nguồn gốc toán học. Các con số đã được sử dụng từ xa xưa, nhất là các số tự nhiên bởi vì chúng ... tự nhiên xuất hiện. Chúng ta đếm số lượng viên bi, số lượng quả táo thông qua các số tự nhiên, mà tập hợp $\mathbb N$ là vô hạn. Chúng ta cứ đếm lên 1, rồi lại đếm lên 1, cứ như vậy mãi mãi. Như vậy có thể thấy tập $\mathbb N$ là tập vô han đếm được.

Cantor đã chỉ ra rằng, một tập hợp vô hạn gọi là đếm được nếu tồn tại một song ánh từ $\mathbb N$ tới nó. Ngược lại thì là tập không đếm được. Quay lại vấn đề về tập $\mathbb Z$ và $\mathbb N$ ban nãy thì song ánh từ $\mathbb Z$ tới $\mathbb N$ (nếu ϕ là song ánh thì ánh xạ ngược ϕ^{-1} cũng là song ánh) là:

$$f(z) = \begin{cases} 2z, & z \ge 0\\ -1 - 2z, & z < 0 \end{cases}$$

Bằng lý luận tương tự, tập hợp số hữu tỷ $\mathbb Q$ cũng là tập đếm được do có song ánh từ $\mathbb Z\times\mathbb N$ tới $\mathbb Q$ (tử số và mẫu số).

26.2 Cantor tiến xa

Bây giờ chúng ta xem xét tập \mathbb{R} , nơi hội tụ của vô số anh hào hữu tỷ, vô tỷ, siêu việt, v.v. Chúng ta không thể kiểm soát các số vô tỷ, đơn giản vì chúng không có cấu trúc đặc biệt gì cho chúng. Chẳng hạn như \mathbb{Z} rời rạc kéo dài về 2 phía, hoặc \mathbb{Q} là tích Descartes của \mathbb{Z} và \mathbb{N} . Cantor sẽ giúp chúng ta gỡ bỏ những rắc rối này.

Đầu tiên, Cantor chứng minh rằng tập \mathbb{R} là tương đương khoảng (0,1). Chúng ta dễ thấy hàm số $f:\mathbb{R}\to (0,1)$ cho bởi công thức $f(x)=\frac{e^x}{e^x+1}$ là song ánh. Như vậy công việc cần làm là chứng minh không tồn tại song ánh từ khoảng (0,1) tới \mathbb{N} nữa là xong. Khi đó (0,1) sẽ là tập không đếm được.

Cantor đưa ra hai phép chứng minh, cả hai đều chưa từng có và gây ra tiếng vang lớn thời đó.

Phương pháp đường chéo. Giả sử (0,1) là tập đếm được, như
g vậy tồn tại song ánh từ $\mathbb N$ tới (0,1). Cantor chứng minh toàn ánh không xảy ra.

Với mọi số tự nhiên n, ta xét các số thực khác nhau thuộc (0,1)

$$1 \to a_1 = 0.a_{11}a_{12} \dots a_{1n} \dots$$

$$2 \to a_2 = 0.a_{21}a_{22} \dots a_{2n} \dots$$

$$\dots$$

$$i \to a_i = 0.a_{i1}a_{i2} \dots a_{in} \dots$$

$$\dots$$

$$n \to a_n = 0.a_{n1}a_{n2} \dots a_{nn} \dots$$

Bây giờ ta chọn số $b = 0.b_1b_2...b_n...$ sao cho $b_i \neq a_{ii}$. Nghĩa là b khác a_i ở vị trí thứ i, từ đó $b \neq a_i$ với mọi a_i . Nhưng như vậy thì không có n nào là biến thành b. Vậy không tồn tại toàn ánh và như vậy ta có điều phải chứng minh.

Phương pháp dãy các khoảng kín bị chặn lồng vào nhau. Như trên, ta vẫn giả sử tập (0,1) đếm được. Khi đó tồn tại song ánh từ (0,1)

tới \mathbb{N} , và do vậy ta có thể liệt kê (một cách vô hạn) các phần tử của (0,1) như việc viết các số tự nhiên:

$$I = (0,1) = \{x_1, x_2, x_3, \ldots\}$$

Đầu tiên ta chọn một khoảng kín I_1 trong I sao cho $x_1 \notin I_1$. Sau đó ta chọn một khoảng kín I_2 trong I_1 sao cho $x_2 \notin I_2$. Cứ tiếp tục như vậy ta được dãy các khoảng kín lồng vào nhau

$$\dots I_n \subseteq I_{n-1} \subseteq \dots \subseteq I_2 \subseteq I_1 \subseteq I$$

sao cho $x_n \not\in I_n$ với mọi số tự nhiên n. Theo tính chất của dãy các khoảng kín bị chặn lồng vào nhau thì giao của tất cả I_k $(k=1,2,\ldots)$ khác rỗng. Hay nói cách khác tồn tại $\alpha \in I_n$ với mọi số tự nhiên n. Khi đó $\alpha \neq x_i$ với $i=1,2,\ldots,n$, nghĩa là α khác với mọi phần tử được liệt kê ở trên. Điều này vô lý vì $\alpha \in I_n$ nên $\alpha \in I$. Như vậy tập (0,1) là không đếm được.

Từ chứng minh trên ta có định lý Cantor:

Đinh lý 26.1. Tập hợp các số vô tỷ không đếm được.

26.3 Thiên tài và bi kịch

Như đầu bài đã nói, những phát kiến vượt quá thời đại thường bị những phe phái bảo thủ chống đối và kìm hãm phát triển. Người thầy cũ, cũng là gây nên vết thương đau đớn nhất cho Cantor là nhà toán học Leopold Kronecker (1823 - 1891).

Leopold Kronecker thường được biết đến với ký hiệu Leopold Kronecker trong thặng dư chính phương (như Legendre hay Jacobi). Ông là nhà toán học người Đức nổi tiếng là bảo thủ. Ông thậm chí còn cho rằng "Thượng Đế làm ra số nguyên, tất cả còn lại là do con người." . Theo cách nói của ông, những gì không được xây dựng trên cơ sở các số nguyên đều là lố bịch, vớ vẩn. Và giải tích tất nhiên là nạn nhân của định kiến này. Giải tích do Wierstrass tạo ra như cái gai trong mắt ông vì giải tích liên quan đến sư liên tục, tới những

thứ vô cùng nhỏ như trong ngôn ngữ $\delta-\varepsilon$ của Cauchy, điều mà Kronecker cũng thấy không ưa. Nhưng mà, thưa Kronecker tài ba, từ thời Pythargoras đã tìm ra số vô tỉ $\sqrt{2}$. Như vậy nếu ông từ chối lý thuyết tập hợp của Cantor, thì có phải ông vừa quăng sự phát triển toán học hàng thế kỷ về với gốc rễ của nó? Sự thật là đúng như vậy. Nếu phủ nhận lý thuyết tập hợp của Cantor cũng chính là phủ nhận sự tồn tại của các số vô tỉ (theo lời Cantor).

Nhưng thế lực của Kronecker lúc đó quá mạnh. Còn Cantor chỉ là giảng viên ở một trường đại học hạng hai, luôn muốn có nhiệm sở tại trung tâm khoa học của Đức - Đại học Berlin. Kronecker thậm chí còn dùng quyền lực gây ảnh hưởng lên các tòa soạn khiến các bài báo của Cantor không được đăng ở các tạp chí uy tín mà chỉ có thể đăng ở các tạp chí hạng thấp. Cuộc sống chật vật khó khăn, cộng thêm áp lực trong thời gian dài không thể chứng minh giả thiết về su liên tuc đã làm Cantor kiệt sức.

Hơn thế nữa, ông trời có vẻ rất thích đùa giỡn với những thiên tài. Năm 1899, người con trai út của ông - người con ông yêu thương nhất - đột ngột qua đời. Chấn động đó làm ông đột quy. Sau đó ông cứ nhập viện, xuất viện nhiều lần và cuối cùng rời nhiệm sở trong tình trạng gần như mất trí.

Tuy nhiên, chân lý của ông, lý thuyết của ông lúc này đã được đón nhận khắp mọi nơi sau chiến thắng của phe David Hilbert, người được gọi là nhà thông thái cuối cùng của thế kỷ 20. Lý thuyết của Cantor ban đầu đã được các nhà toán học tài năng thời đó ủng hộ như Dedekind, Wierstrass, Hilbert, Tuy nhiên phe bảo thủ của Kronecker quá mạnh nên sự giúp đỡ của họ cho Cantor không đủ để thắng phe bảo thủ. Và rồi cái gì cần tới cũng phải tới. Những suy luận đúng đắn, những lập luận chặt chẽ sẽ mang tới kết quả đúng đắn, dù nó có khó tin tới đâu đi nữa. Các nhà toán học cuối cùng cũng đi tới kết luận rằng lý thuyết tập hợp của Cantor là mũi tên vững chắc mở đường cho toán học phát triển.

Cantor đã ra đi mãi mãi tại bệnh viện vào ngày 6 tháng 1 năm 1918, để lại cho đời sau nhiều ý tưởng đột phá. Hilbert đã từng nói về lý thuyết của Cantor rằng "Đó là một sản phẩm trí tuệ tinh tế nhất của một thiên tài Toán học, một trong thành tựu cao cấp nhất

mà trí tuệ con người có thể đạt được." (Burton). Hilbert cũng nói thêm rằng "Không ai có thể ngăn cấm chúng ta bước vào thế giới kỳ diệu mà Cantor đã tạo ra." (Dunham).

Phần XII Mật mã học

Chương 27

AES

Phần này tham khảo chính từ [4].

AES biến đổi theo khối 128 bit, sử dụng mô hình mạng SPN.

Bốn phép biến đổi chính là Add Round Key, Substitute Bytes, Shift Rows và Mix Columns.

Quá trình giải mã sử dụng phép biến đối ngược của 4 phép biến đổi trên là Inverse Sub Bytes, Inverse Shift Rows, Inverse Mix Columns. Đối với Add Row Key bản thân là phép xor nên phép biến đổi ngược là chính nó.

AES hỗ trợ key với các kích thước: 128 bit, 192 bit và 256 bit. AES dùng hàm Expand Key để mở rộng khóa thành 44 word 32 bit với key 128 bit thành 11 cụm khóa con. Mỗi 4 word làm tham số cho một phép Add Row Key.

Mỗi block bản rõ 16 byte p_0, p_1, \dots, p_{15} được tổ chức dưới dạng một ma trận 4×4 (state)

$$\begin{pmatrix} p_0 & p_1 & p_2 & p_3 \\ p_4 & p_5 & p_6 & p_7 \\ p_8 & p_9 & p_{10} & p_{11} \\ p_{12} & p_{13} & p_{14} & p_{15} \end{pmatrix} \longrightarrow \begin{pmatrix} s_{00} & s_{01} & s_{02} & s_{03} \\ s_{10} & s_{11} & s_{12} & s_{13} \\ s_{20} & s_{21} & s_{22} & s_{23} \\ s_{30} & s_{31} & s_{32} & s_{33} \end{pmatrix}$$

- Các phép biến đổi Add Round Key, Substitute Bytes, Shift Rows, Mix Columns được thực hiện trên ma trận 4×4 này
- Các phép tính số học trong AES được thực hiện trong $GF(2^8)$ với đa thức tối giản là $f(x) = x^8 + x^4 + x^3 + x + 1$

27.1 Substitute Bytes

27.1.1 Substitute Bytes

Ta sử dụng một bảng tra cứu 16×16 (S-box).

<u>Bước 1</u> điền các số từ 0 tới 255 theo từng hàng

<u>Bước 2</u> thay thế mối byte trong bảng bằng nghịch đảo trong $GF(2^8)$. Quy ước $(00)^{-1} = 00$

<u>Bước 3</u> với mỗi byte trong bảng, ta ký hiệu 8 bit là $b_7b_6b_5b_4b_3b_2b_1b_0$. Thay thế mỗi b_i bằng b_i' như sau

$$b_i' = b_i \oplus b_{(i+4) \bmod 8} \oplus b_{(i+5) \bmod 8} \oplus b_{(i+6) \bmod 8} \oplus b_{(i+7) \bmod 8} \oplus c_i$$
với c_i là bit thứ i của số $0x63$.

Việc tính trên tương đương với phép nhân trên ma trận GF(2) là $B^\prime = XB + C$

Ma trận X là ma trận khả nghịch, do đó phép biến đổi S-box là song ánh (one-to-one và onto mapping).

Dựa vào bảng S-box, Substitute Bytes thực hiện như sau: mỗi byte trong ma trận state S dưới dạng thập lục phân là xy sẽ được thay bằng giá trị ở hàng x và cột y của S-box.

27.1.2 Inverse Sub Bytes

Ta cần xây dựng bảng Inverse Sub Bytes (IS-box).

Việc xây dựng bảng này giống với bảng S-box ở bước 1 và 2. Tại bước 3:

$$b_i = b'_{(i+2) \mod 8} \oplus b'_{(i+5) \mod 8} \oplus b'_{(i+7) \mod 8} \oplus d_i$$

với d_i là bit thứ i của số 0x05.

27.1.3 Ý nghĩa của Substitute Bytes

Bảng S-box dùng để chống lại known-plaintext và là bước duy nhất trong 4 bước không có quan hệ tuyến tính.

27.2 Shift Rows

27.2.1 Shift Rows

Trong Shift Rows, các dòng của ma trận state được biến đổi như sau:

- Dòng thứ nhất giữ nguyên
- $\bullet\,$ Dòng 2 dịch vòng trái 1 ô
- Dòng 3 dịch vòng trái 2 ô
- $\bullet\,$ Dòng 4 dịch vòng trái 3 ô

27.2.2 Inverse Shift Rows

Các dòng thứ 2, 3, 4 dịch phải tương ứng 1, 2, 3 ô.

27.2.3 Ý nghĩa

Xáo trộn các byte để tạo ra các cột cho Mix Columns.

27.3 Mix Columns

27.3.1 Mix Columns

Mix cols biến đổi từng cột của ma trận state một cách độc lập bằng phép nhân đa thức. Giả sử cột đầu tiên của ma trận state viết dưới dạng đa thức là

$$f(z) = s_{00}z^3 + s_{10}z^2 + s_{20}z + s_{30}$$

với $z \in GF(2^8)$

Khi đó f(z) sẽ được nhân với $a(z)=3z^3+z^2+z+2$ (tất cả hệ số, phép cộng và nhân thực hiện trên $GF(2^8)$) và sau đó modulo cho $n(z)=z^4+1$.

Bốn byte hệ số của kết quả sẽ thay thế cho 4 byte tương ứng trong cột. Nếu viết dưới dạng ma trận, ta có

$$\begin{bmatrix} s'_{00} \\ s'_{10} \\ s'_{20} \\ s'_{30} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{00} \\ s_{10} \\ s_{20} \\ s_{30} \end{bmatrix}$$

Lưu ý rằng các số 01, 02, 03 tuy viết dưới dạng thập phân nhưng khi tính toán phải ở dạng $GF(2^8)$. Việc sử dụng 1, 2, 3 giúp tăng tốc độ tính toán vì 1 và 2 chỉ cần phép dịch bit, còn 3 là xor của 1 và 2.

27.3.2 Inverse Mix Columns

Lúc này ma trận nghịch đảo có dạng

27.3.3 Ý nghĩa

Mỗi cột mới chỉ phụ thuộc cột ban đầu. Cùng với sự kết hợp Shift Rows sau 1 vài vòng biến đổi, 128 bit kết quả phụ thuộc vào tất cả 128 bit ban đầu. Từ đó tạo ra tính khuếch tán (diffusion).

27.4 Add Round Key

27.4.1 Add Round Key

128 bit của ma trận state được XOR với 128 bit của khóa con từng vòng (4 dword 32 bit). Phép biến đổi ngược của Add Round Key là chính nó.

27.4.2 Ý nghĩa

Sự kết hợp với khóa tạo ra tính làm rối (confusion).

27.5 Expand Key

27.5.1 Expand Key

Input của thao tác Expand Key là 16 byte (4 word) của khóa, sinh ra 1 mảng 44 word (176 byte) sử dụng cho 11 vòng AES, mỗi vòng 4 word.

Từ 4 word đầu vào $w_0w_1w_2w_3$, lần lặp đầu sinh ra $w_4w_5w_6w_7$,

lần lặp thứ hai sinh ra $w_8w_9w_{10}w_{11}, \ldots$

$$\begin{aligned} &\textbf{if } i \bmod 4 = 0 \textbf{ then} \\ & g \leftarrow SubWord(RotWord(w_{i-1})) \oplus Rcon[i/4] \\ & w_i = w_{i-4} \oplus g \\ & \textbf{else} \\ & w_i = w_{i-4} \oplus w_{i-1} \\ & \textbf{end if} \end{aligned}$$

Trong đó,

- RotWord dịch vòng trái 1 bit, nghĩa là $b_0b_1b_2 \rightarrow b_1b_2b_0$.
- SubWord thay mỗi byte trong word bằng bảng S-box
- Rcon là 1 mảng hằng số gồm 10 word tương ứng với 10 vòng AES. 4 byte của một phần tử Rcon[j] là RC[j], 0, 0, 0 với RC[j] là mảng 10 byte như sau

j	1	2	3	4	5	6	7	8	9	10
RC[j]	1	2	4	8	10	20	40	80	18	36

27.5.2 Ý nghĩa của Expand Key

Dùng để chống lại known-plaintext (giống Sub Bytes dùng S-box). Đặc điểm của Expand Key gồm:

- Biết một số bit của khóa hay khóa con không thể tính được các bit còn lại
- KHÔNG THỂ tính ngược
- Khuếch tán: mỗi bit của khóa chính tác động lên tất cả khóa con

27.6 Kết luận

Mã hóa AES đơn giản và có thể chạy trên các chip 8 bit. AES cung cấp 3 biến thể cho độ dài khóa là:

• 128 bit: 44 word 4 byte cho 10 vòng (11 lần ARK)

- $\bullet\,$ 192 bit: 52 word 4 byte cho 12 vòng (13 lần ARK)
- 256 bit: 60 word 4 byte cho 14 vòng (15 lần ARK)

Chương 28

Magma

Hệ mật mã Magma được chính phủ Xô Viết chọn làm chuẩn mã hóa. Cũng giống như hệ mật mã DES, Magma sử dụng mô hình Feistel cho các vòng mã hóa, được định nghĩa trong GOST 34.12-2015 và còn được đặt tên là GOST 28147-89.

Phần này tham khảo chính từ [5].

Độ dài khóa là 256 bit. Độ dài khối là 64 bit. Magma biến đổi trên 32 vòng để cho ra ciphertext.

Magma thực hiện biến đổi trên 32 vòng Feistel. Khối đầu vào 64 bit được chia thành 2 nửa trái phải, mỗi nửa 32 bit.

28.1 Key schedule

Khóa 256 bit được chia thành 8 cụm khóa con, mỗi khóa con 32 bit. Nếu ta ký hiệu 256 bit của khóa là $k_0k_1 \dots k_{254}k_{255}$ thì ta có các khóa con là

$$\underbrace{k_0 \dots k_{31}}_{K_0} \underbrace{k_{32} \dots k_{63}}_{K_1} \dots \underbrace{k_{224} \dots k_{255}}_{K_7}$$

Từ vòng 1 tới 24 sử dụng lần lượt các khóa K_0 , K_1 , ..., K_7 rồi lặp lại thứ tự đó.

Từ vòng 25 tới 32 sử dụng theo thứ tự ngược lại, từ K_7 , K_6 , ..., K_0 .

28.2 Round function

Như ta đã biết, trong mô hình Feistel, mỗi khối plaintext được chia thành 2 nửa trái phải (L_0, R_0) . Sau đó ở mỗi vòng biến đổi thì

$$L_{i+1} = R_i, \quad R_{i+1} = L_i \oplus f(R_i, K_i)$$

với $i = 0, 1, \dots$ và K_i là khóa con ở vòng i.

Hàm f của Magma khá đơn giản, bao gồm 3 động tác là cộng modulo 2^{32} , SBox và xoay 11 bit.

Đối với việc cộng modulo 2^{32} , ta xem block R_i và K_i như những số 32 bit, cộng chúng lại và modulo 2^{32} . Nghĩa là (R_i+K_i) mod 2^{32} .

Đặt $T_i = (R_i + K_i) \mod 2^{32}$. Như vậy T_i có 32 bit. Ta chia 32 bit này thành 8 cụm 4 bit. Ứng với mỗi cụm 4 bit chúng ta cho qua một hoán vị. Như vậy cần 8 hoán vị (SBox). SBox được sử dụng chung cho tất cả vòng.

Theo wiki thì SBox có thể bí mật. Tuy nhiên việc mã hóa và giải mã cần sử dụng SBox giống nhau. Do đó thiết bị mã hóa và giải mã có cùng cơ chế pseudo-random để sinh ra SBox giống nhau.

SBox được quy định theo tiêu chuẩn chính phủ Nga là

```
sbox = \begin{bmatrix} \\ [0xC, 0x4, 0x6, 0x2, 0xA, 0x5, 0xB, 0x9, \\ 0xE, 0x8, 0xD, 0x7, 0x0, 0x3, 0xF, 0x1], \\ [0x6, 0x8, 0x2, 0x3, 0x9, 0xA, 0x5, 0xC, \\ 0x1, 0xE, 0x4, 0x7, 0xB, 0xD, 0x0, 0xF], \\ [0xB, 0x3, 0x5, 0x8, 0x2, 0xF, 0xA, 0xD, \\ 0xE, 0x1, 0x7, 0x4, 0xC, 0x9, 0x6, 0x0], \\ [0xC, 0x8, 0x2, 0x1, 0xD, 0x4, 0xF, 0x6, \\ 0x7, 0x0, 0xA, 0x5, 0x3, 0xE, 0x9, 0xB], \\ [0x7, 0xF, 0x5, 0xA, 0x8, 0x1, 0x6, 0xD, \\ 0x0, 0x9, 0x3, 0xE, 0xB, 0x4, 0x2, 0xC], \\ 0x0, 0x9, 0x3, 0xE, 0xB, 0x4, 0x2, 0xC], \\ \end{cases}
```

 $\begin{bmatrix} 0 \times 5 \,,\, & 0 \times D \,,\, & 0 \times F \,,\, & 0 \times 6 \,,\, & 0 \times 9 \,,\, & 0 \times 2 \,,\, & 0 \times C \,,\, & 0 \times A \,,\, \\ & & 0 \times B \,,\, & 0 \times 7 \,,\, & 0 \times 8 \,,\, & 0 \times 1 \,,\, & 0 \times 4 \,,\, & 0 \times 3 \,,\, & 0 \times E \,,\, & 0 \times 0 \,] \,\,,\, \\ [0 \times 8 \,,\, & 0 \times E \,,\, & 0 \times 2 \,,\, & 0 \times 6 \,,\, & 0 \times 9 \,,\, & 0 \times 1 \,,\, & 0 \times C \,,\, \\ & & 0 \times F \,,\, & 0 \times 4 \,,\, & 0 \times B \,,\, & 0 \times 0 \,,\, & 0 \times D \,,\, & 0 \times A \,,\, & 0 \times 3 \,,\, & 0 \times 7 \,] \,,\, \\ [0 \times 1 \,,\, & 0 \times 7 \,,\, & 0 \times E \,,\, & 0 \times D \,,\, & 0 \times 0 \,,\, & 0 \times 5 \,,\, & 0 \times 8 \,,\, & 0 \times 3 \,,\, \\ & & 0 \times 4 \,,\, & 0 \times F \,,\, & 0 \times A \,,\, & 0 \times 6 \,,\, & 0 \times 9 \,,\, & 0 \times C \,,\, & 0 \times B \,,\, & 0 \times 2 \,] \,,\, \\ \end{aligned}$

Nếu T_i được viết dưới dạng 32 bit là $t_{31}t_{30}\dots t_1t_0$ thì SBox tương ứng của nó là

$$\underbrace{t_{31}\dots t_{28}}_{S_7}\underbrace{t_{27}\dots t_{24}}_{S_6}\dots\underbrace{t_7\dots t_4}_{S_1}\underbrace{t_3\dots t_0}_{S_0}$$

Nói cách khác, $t_{4i+3}t_{4i+2}t_{4i+1}t_{4i}$ dùng S_{7-i} với $i=0,1,2,\ldots,7$. Cuối cùng, việc xoay trái 11 bit (rot11) chỉ đơn giản là đưa 11 bit đầu về cuối và đưa 21 bit cuối lên đầu.

Để giải mã ta vẫn sử dụng round function như lúc mã hóa, chỉ cần viết với thứ tự ngược lại là được. Như vậy

$$R_i = L_{i+1}, \quad L_i = R_{i+1} \oplus f(L_{i+1}, K_i)$$

do $R_i = L_{i+1}$. Lưu ý rằng khóa con lúc này là 0 tới 7 cho 8 vòng đầu, và 7 về 0 (rồi lặp lại) cho 24 vòng sau.

Hình 28.1: Mô hình mã khối Magma

Chương 29

Kuznyechik

Kuznyechik là một thuật toán mã hóa khối, đối xứng như AES. Kuznyechik tiếng Nga là Кузнечик, có nghĩa là châu chấu. Tuy nhiên trong văn bản quốc tế thì chúng ta giữ nguyên tên gọi là hệ mã Kuznyechik.

Mã khối Kuznyechik biến đổi trên khối 128 bit, độ dài khóa là 256 bit, biến đổi trên 9 vòng. Kuznyechik sử dụng mô hình SPN tương tự như AES, trở thành chuẩn mã hóa của Nga và được định nghĩa trong GOST R 34.12-2015.

Một điểm đặc biệt là quá trình biến đổi qua các vòng sử dụng mạng SPN, tuy nhiên thuật toán sinh khóa con cho các vòng sử dụng mô hình Feistel.

Phần này tham khảo chính từ [6].

29.1 Mã hóa

Gọi k_i là khóa con của vòng thứ $i, i = 0, 1, \dots, 9$. Ta có các động tác biến đổi sau:

1. Hàm $X: \mathbb{F}_2^{128} \to \mathbb{F}_2^{128}$ biến đổi trên block 128 bit.

Ta chia block đầu vào thành 16 cụm 8 bit, ký hiệu

$$a = a_0 \|a_1\| \dots \|a_{14}\| a_{15}$$

với ký tự \parallel chỉ việc nối các chuỗi bit (concatenate). Tương tự k_i cũng được chia thành 16 cụm 8 bit. Khi đó,

$$X(k_i, a) = k_{i,0} \oplus a_0 || k_{i,1} \oplus a_1 || \dots || k_{i,14} \oplus a_{14} || k_{i,15} \oplus a_{15}$$
 (29.1)

Nói cách khác, chúng ta xor 128 bit của khối đầu vào và 128 bit của khóa con k_i .

2. Hàm $S: \mathbb{F}_2^{128} \to \mathbb{F}_2^{128}$.

Block đầu vào tiếp tục được chia thành 16 cụm 8 bit. Mỗi cụm sẽ đi qua một bảng tra cứu SBox (gọi là bảng π). Sau đó ta nối các kết quả với nhau.

$$S(a) = \pi(a_0) \|\pi(a_1)\| \dots \|\pi(a_{14})\| \pi(a_{15})$$
 (29.2)

Bảng π được định nghĩa sẵn và không tuyến tính, nên đây là bước không tuyến tính của thuật toán.

3. Hàm $L: \mathbb{F}_2^{128} \to \mathbb{F}_2^{128}$.

Block đầu vào vẫn được chia thành 16 cụm 8 bit. Tuy nhiên ở đây mỗi cụm 8 bit biểu diễn một đa thức trong trường $GF(2^8)$ với đa thức tối giản là $g(x) = x^8 + x^7 + x^6 + x + 1$. Những phép tính cộng và nhân sau đây cũng được thực hiện trên trường $GF(2^8)$ này.

$$\lambda(a) = 148a_{15} + 32a_{14} + 133a_{13} + 16a_{12} + 194a_{11} + 192a_{10} + a_9 + 251a_8 + a_7 + 192a_6 + 194a_5 + 16a_4 + 133a_3 + 32a_2 + 148a_1 + a_0$$
(29.3)

Tiếp theo, ta định nghĩa hàm $\Lambda:\mathbb{F}_2^{128}\to\mathbb{F}_2^{128}$ như sau

$$a = a_0 \|a_1\| \dots \|a_{14}\| a_{15} \to a_1 \|a_2\| \dots \|a_{15}\| \lambda(a) = \Lambda(a)$$

Hình 29.1: Hàm λ

Lưu ý rằng sau khi tính toán trên hàm λ , đa thức trên $GF(2^8)$ được chuyển trở lại thành cụm 8 bit sau đó mới nối vào dãy a_1 , a_2 , ..., a_{15} như mô tả ở hình 29.1.

Cuối cùng, hàm L ban đầu là thực hiện hàm Λ 16 lần.

$$L(a) = \underbrace{\Lambda(\dots \Lambda(a) \dots)}_{16 \text{ lần}}$$

Như vậy, phép biến đổi trên vòng thứ i với khóa con k_i là

$$R(k_i, a) = L(S(X(a)))$$
 (29.4)

với $i = 0, 1, \dots, 8$.

Ở vòng thứ 10 ta XOR với khóa con k_9 nữa: $X(k_9,a)$.

29.2 Thuật toán sinh khóa con

Để sinh khóa con cho 10 lần XOR, thuật toán Kuznyechik dùng mô hình Feistel. Đầu tiên ta định nghĩa hàm F(c,a). Với c bất kì thuộc \mathbb{F}_2^{128} và $a=a_0\|a_1$ thuộc \mathbb{F}_2^{256} . Hàm F(c,a) biến phần tử thuộc $\mathbb{F}_2^{128}\times\mathbb{F}_2^{256}$ thành phần tử thuộc \mathbb{F}_2^{256} bằng đẳng thức

$$F(c, a) = a_1 || a_0 \oplus R(c, a_1)$$

với hàm R được định nghĩa ở phương trình 29.4.

Với khóa đầu vào là $k \in \mathbb{F}_2^{256}$, mình ký hiệu ở dạng ghép 2 chuỗi 128 bit $k = k_0 || k_1$ với $k_0, k_1 \in \mathbb{F}_2^{128}$ là những khóa con mở đầu. Khi đó các khóa con cho 10 phép XOR là $k_0, k_1, ..., k_9$.

Thuật toán sinh khóa con được sử dụng như sau

$$k_{2i+2} || k_{2i+3} = F(c_{8i+7}, \dots, F(c_{8i}, k_{2i} || k_{2i+1}))$$
 (29.5)

với i=0,1,2,3. Thuật toán có thể mô tả ở hình 29.2. Theo đó, các số c_0,c_1,\ldots,c_7 được sử dụng để sinh khóa $k_2\|k_3$ từ $k_0\|k_1$. Tương tự, c_8,c_9,\ldots,c_{15} dược dùng để sinh khóa $k_4\|k_5$ từ khóa $k_2\|k_3$. Các số c_0,c_1,\ldots,c_{31} được định nghĩa trong tiêu chuẩn.

29.3 So sánh Kuznyechik với AES

Điểm giống nhau là cả hai thuật toán đều có phần tuyến tính và phần không tuyến tính. Về phần tuyến tính, đối với AES là các động tác Shift Rows, Mix Columns và Add Round Key, còn đối với Kuznyechik là hàm X và L bên trên. Về phần không tuyến tính đều là việc sử dụng một bảng tra cứu SBox của riêng thuật toán đó.

Điểm khác nhau đầu tiên là cách xây dựng ma trận tính toán. Nếu ta xem xét Shift Rows và Mix Columns dưới dạng phép nhân ma trận trên $GF(2^8)$ thì ta thấy rằng ma trận chứa nhiều số 0 nhất có thể. Điều này giúp tăng tốc độ tính toán. Về phần Kuznyechik, phép tính ở hàm λ cũng thực hiện trên $GF(2^8)$ nhưng không chứa bất kì số 0 nào. Điều này làm tăng độ phức tạp tính toán nhưng cũng làm tăng tính an toàn.

Điểm khác nhau tiếp theo là việc sinh khóa con. AES sử dụng thuật toán sinh khóa con từng vòng từ toàn bộ 256 bit ban đầu. Trong khi Kuznyechik sử dụng mô hình Feistel, theo đó với 256 bit ban đầu được sử dụng cho 2 vòng đầu, cứ mỗi hai khóa con sẽ sinh ra hai khóa con tiếp theo. Như vậy thuật toán sinh khóa con ít phức tạp hơn AES (Kuznyechik cần 5 lần sinh khóa còn AES 14 lần).

Vào thời điểm ngày 3 tháng 5 năm 2023 mình chưa đủ trình để đọc các tài liêu nâng cao về hai hệ mật mã này nên không thể đưa ra

đánh giá hay so sánh về độ an toàn giữa hai hệ mật mã. Tuy nhiên đây là hai tiêu chuẩn mã hóa đã qua rất nhiều vòng kiểm định, vậy nên theo góc nhìn của mình thì rất đáng để nghiên cứu. :D

Hình 29.2: Biến đổi từ khóa $k_0\|k_1$ thành $k_2\|k_3$

Chương 30

TinyDES

TinyDES là một phiên bản thu nhỏ của chuẩn mã hóa DES. Tiny-DES là mã hóa khối theo mô hình Feistel, kích thước khối là 8 bit, kích thước khóa cũng là 8 bit. Mỗi vòng khóa con có độ dài 6 bit.

Mã TinyDES khá đơn giản. Theo mô hình Feistel, khối đầu vào 8 bit được chia thành hai nửa trái phải 4 bit. Nửa phải sẽ đi qua các hàm Expand, SBox và PBox, sau đó XOR với nửa trái để được nửa phải mới. Còn nửa trái mới là nửa phải cũ. Tóm lại công thức mô hình Feistel là

$$L_{i+1} = R_i, \quad R_{i+1} = L_i \oplus F(R_i, K_{i+1})$$

với i = 1, 2, 3 tương ứng 3 vòng với đầu vào của khối là (L_0, R_0) . Chúng ta cần các động tác sau:

- 1. Expand: mở rộng và hoán vị R_i từ 4 bit lên 6 bit. Giả sử 4 bit của R_i là $b_0b_1b_2b_3$ thì kết quả sau khi Expand là $b_2b_3b_1b_2b_1b_0$;
- 2. SBox: gọi 6 bit đầu vào là $b_0b_1b_2b_3b_4b_5$. Khi đó ta tra cứu theo bảng SBox với b_0b_5 chỉ số **hàng**, $b_1b_2b_3b_4$ chỉ số **cột**. Nói cách khác bảng SBox có 4 hàng, 16 cột. Kết quả của SBox là một số 4 bit;
- 3. PBox: là hàm hoán vị 4 bit $b_0b_1b_2b_3$ thành $b_2b_0b_3b_1$

Hình 30.1: Một vòng TinyDES

Như vậy, hàm F của mô hình Feistel đối với mã TinyDES là

$$F(R_i, K_i) = PBox(SBox(Expand(R_i) \oplus K_{i+1}))$$

Để sinh khóa con cho 3 vòng, khóa ban đầu được chia thành hai nửa trái phải lần lượt là KL_0 và KR_0 . TinyDES thực hiện như sau:

- 1. Vòng 1: KL_0 và KR_0 được dịch vòng trái 1 bit để được KL_1 và KR_1 ;
- 2. Vòng 2: KL_1 và KR_1 được dịch vòng trái 2 bit để được KL_2 và KR_2 ;
- 3. Vòng 3: KL_2 và KR_2 được dịch vòng trái 1 bit để được KL_3 và KR_3 .

Khi đó, khóa K_i ở vòng thứ i (với i=1,2,3) là hoán vị và nén 8 bit của KL_i và KR_i lại thành 6 bit. Đặt 8 bit khi ghép $KL_i\|KR_i$ là $k_0k_1k_2k_3k_4k_5k_6k_7$, kết quả là 6 bit $k_5k_1k_3k_2k_7k_0$.

Tài liệu tham khảo

- [1] Ю.В. Таранников. Дискретная математика. Задачник. Учебное пособие для академического бакалавриата. Юрайт, 2016. ISBN 9785991662833.
- [2] Thomas Judson. Abstract Algebra. Theory and Applications. Stephen F. Austin State University, 2012.
- [3] Jeffrey Hoffstein, Jill Pipher, Joseph Silverman. An Introduction to Mathematical Cryptography. Springer, 2 edition, 2014. ISBN 978-0-387-77994-2.
- [4] William Stallings. Cryptography And Network Security: Principles and Practices. Prentice Hall, 4 edition, 2005. ISBN 978-0131873162.
- [5] С.Б. Гашков, Э.А. Применко, М.А. Черепнев. *Криптогра-фические методы защиты информации*. Publishing House Akademia, 2010. ISBN 978-5-7695-4962-5.
- [6] А.Б. Лось, А.Ю. Нестеренко, М.И. Рожков. *Криптографические методы защиты инфомации. Учебник.* Юрайт, 2 edition, 2018. ISBN 978-5-534-01530-0.