Chapitre III

LES CRISTAUX IONIQUES

Les cristaux ioniques se présentent sous forme de deux réseaux décalés l'un par rapport à l'autre : le réseau des cations et le réseau des anions. La stabilité du cristal ionique est assurée par des interactions électrostatiques et conditionnée par des facteurs stériques et énergétiques:

> Facteurs énergétiques

La stabilité du cristal ionique exige que l'édifice solide possède l'énergie la plus faible possible, ce qui se traduit par la mise en contact du plus grand nombre possible d'ions de signe opposé, l'ensemble restant électriquement neutre.

- L'énergie réticulaire (ou énergie de réseau) de la structure ionique peut être calculée en tenant compte des différentes interactions électrostatiques entre les ions constituant le cristal.
- L'énergie réticulaire peut aussi être déduite de données thermodynamiques expérimentales, moyennant la réalisation d'un cycle de Born Haber.

> Facteurs stériques

Les ions, assimilés à des sphères rigides, peuvent, au mieux, être tangents entre eux. Des limites de stabilité géométriques sont ainsi déduites en écrivant que les ions de charges opposées se touchent suivant certaines directions. Dans le cas des composés ioniques de type MX les limites de stabilité stérique pour les différents types de coordinence sont résumées au tableau suivant:

Type structural	Condition d'existence	Coordinence
CsCl	$0.732 \leq r^+/r^- < 1$	8-8
NaCl	$0.414 \leq r^{+}/r^{-} \leq 0.732$	6-6
ZnS	$0.225 \leq r^+/r^- \leq 0.414$	4-4

 r^+/r^- est le rapport des rayons ioniques du cation (M^{z+}) et de l'anion X^{z-} .

Nous allons considérer quelques édifices ioniques comportant des ions simples et nous étudierons la stéréochimie des structures cubiques les plus importantes correspondant à des composés de formule MX ou MX₂, M étant un élément métallique qui donne le cation et X un élément non métallique qui donne l'anion.

Les solides étudiés seront supposés parfaits, c'est-à-dire que les ions seront supposés parfaitement sphériques. Ce qui revient à négliger la déformation des ions sous l'effet des autres ions du réseau.

Le caractère covalent partiel qui peut apparaître sera également négligé. Cela revient à prendre pour longueur de la liaison ionique la somme des rayons ioniques du cation et de l'anion: $\mathbf{d} = \mathbf{r}^+ + \mathbf{r}^-$.

III-1- La liaison ionique

Liaison covalente pure Liaison covalente polarisée Liaison ionique

Dans une liaison covalente pure (molécule symétrique) la probabilité de présence du doublet de liaison est la même autour de chaque atome (le nuage électronique est symétrique).

Lorsque les atomes liés sont différents, la probabilité de présence du doublet est plus élevée au voisinage de l'atome le plus électronégatif (le nuage électronique est dissymétrique).

Lorsque l'un des deux atomes liés est fortement électronégatif (ex: le chlore) et l'autre fortement électropositif (ex: le sodium) le doublet reste essentiellement localisé au voisinage de l'atome le plus électronégatif (le chlore): la liaison peut alors être représentée à l'aide d'un atome de sodium ayant perdu un électron (ion Na⁺) et d'un atome de chlore ayant capté un électron (Cl⁻). C'est le modèle de la liaison ionique

Ce modèle a été confirmé expérimentalement par la technique de diffraction des rayons X pour certains cristaux: les cartes de densité électronique autour des noyaux des deux atomes liés ont été établies (Figure III-1). Sur la base de ces cartes des calculs ont permis de déterminer le nombre total d'électrons autour de chaque atome. Pour NaCl les résultats obtenus dans la limite des erreurs d'expérience sont: 10 électrons autour de Na et 18 autour de Cl. Ce qui correspond bien au transfert:

$$Na \rightarrow Na^+ + 1e^- \text{ et } Cl + 1e^- \rightarrow Cl^-$$

Figure III-1: Densité de la distribution électronique $\rho(e-/\hat{A}^3)$ dans le plan de base de NaCl d'après des études aux rayons X

L'interaction entre les deux ions formés est due essentiellement à l'attraction électrostatique entre deux charges opposées. Les ions formés ont souvent la configuration du gaz rare le plus proche dans la classification périodique; ils ont 8 électrons sur la couche externe (ns² np⁶).

Ce modèle, construit pour l'étude de la liaison ionique, n'est qu'approché; le plus souvent le pourcentage de liaison covalente n'est pas nul. Il permet cependant d'étudier, avec une bonne approximation l'énergie des liaisons présentes en utilisant les lois simples de l'électrostatique.

III-2- Stéréochimie de quelques structures cubiques de type MX

Les anions étant plus volumineux que les cations, ce sont eux qui imposent le type d'empilement, les cations se logent dans les interstices du réseau anionique.

III-2-1- Structure type chlorure de césium CsCl

* Description de la structure

Figure III-2: Maille élémentaire de CsCl

Dans cette structure (Figure III-2), les anions Cl⁻ forment un réseau cubique simple (CS ou CP): ils occupent les sommets d'un cube d'arête a. Les cations Cs⁺ occupent le centre du cube. Cette structure correspond à deux réseaux cubiques simples se déduisant l'un de l'autre par une translation de type (1/2 1/2 1/2).

Coordonnées réduites

Origine sur l'anion : Origine sur le cation :

Cl⁻: (000) $\text{Cr}: (1/2 \ 1/2 \ 1/2)$ Cs⁺: (1/2 1/2 1/2) $\text{Cs}^+: (000)$

Nombre de motifs

La maille élémentaire comporte 8 anions Cl⁻ comptant chacun pour 1/8 et un ion Cs⁺: le nombre de motifs ou groupements formulaires CsCl par maille est donc: z=1.

Coordinence

Chaque cation Cs^+ est entouré par 8 anions Cl^- situés à la même distance $a\sqrt{3}/2$. De même chaque anion Cl^- est entouré par 8 cations Cs^+ à la même distance $a\sqrt{3}/2$. L'indice de coordination est donc égal à 8 pour Cs^+ et pour Cl^- . On dit aussi que c'est une coordination 8-8.

Compacité

La compacité se calcule de la même façon que pour les cristaux métalliques avec le volume du motif égal à la somme des volumes des ions Cs⁺ et Cl⁻ qui le constituent.

$$C = \frac{z V_{\text{motif}}}{V_{\text{maille}}} = \frac{4\pi}{3} \frac{x^{3} + x^{3}}{a^{3}}$$

z: nombre de motifs par maille. r⁺ et r⁻: rayons des ions Cs⁺ et Cl⁻. Vmotif: volume du motif CsCl. Vmaille: volume de la maille cubique de paramètre a.

Masse volumique

$$\rho = \underline{m_{maille}}$$

$$V_{maille}$$

$$\rho = \frac{z M_{\text{motif}}}{N V_{\text{maille}}} = \frac{M_{\text{CsCl}}}{N a^3}$$

 m_{maille} : masse d'une maille

 M_{motif} , M_{CsCl} : masse molaire du motif CsCl

N: nombre d'Avogadro

Projection de la maille CsCl sur le plan xy

Exemples: Ce type de structure existe pour CsCl, CsBr, CsI, TlCl...

III-2-2- Structure type chlorure de sodium NaCl

* Description de la structure

Dans cette structure, les ions Cl⁻ constituent un réseau cubique à faces centrées (CFC): ils occupent les sommets et les centres des faces d'un cube d'arête a. Les ions Na⁺ occupent les sites octaédriques du réseau cad le centre du cube et les milieux des arêtes du cube.

Figure III-3: Maille élémentaire de NaCl

Cette structure correspond à deux réseau CFC d'arête a: l'un anionique et l'autre cationique, se déduisant l'un de l'autre par une translation de: $(1/2\ 00)(0\ 1/2\ 0)$ ou $(0\ 01/2)$ cad de a/2 selon une arête du cube.

Coordonnées réduites

Origine sur l'anion:

CI⁻: (000) (1/2 1/2 0) (1/2 0 1/2) (0 1/2 1/2) Na^+ : (1/2 1/2 1/2) (1/2 0 0) (0 1/2 0) (0 0 1/2)

Origine sur le cation:

CI: (1/2 1/2 1/2) (0 0 1/2) (1/2 0 0) (0 1/2 0) Na^+ : (000) (1/2 1/2 0) (1/2 0 1/2) (0 1/2 1/2)

Nombre de groupements formulaires

La maille type NaCl comprend :

- 8 anions Cl⁻ aux sommets du cube, chacun comptant pour 1/8 et 6 Cl⁻ aux centres des faces, chacun comptant pour 1/2, soit 4 anions Cl⁻.
- 12 cations Na⁺ aux milieux des arêtes, chacun comptant pour 1/4 et un ion Na⁺ au centre du cube, soit 4 cations Na⁺.

Dans cette maille il y a donc 4 motifs ou groupements formulaires NaCl.

Coordinence

Chaque cation Na⁺ est entouré de 6 anions Cl⁻ situés à la même distance a/2. De même chaque anion Cl⁻ est entouré par 6 cations Na⁺ à la même distance a/2. L'indice de coordination est donc 6 pour les cations Na⁺ et 6 pour les anions Cl⁻: coordination 6-6.

Compacité

$$C = \frac{z \ V_{motif_}}{V_{maille}} = 4 \ \frac{4\pi}{3} \ \frac{\overset{3}{r^{+} + r^{-}}}{\overset{3}{a^{3}}} \qquad \qquad z: \text{ nombre de motifs par maille.} \\ r^{+} \text{ et } \vec{r} \text{ : les rayons des ions Na}^{+} \text{ et Cl}^{-}.$$

z: nombre de motifs par maille.

Masse volumique

$$\rho = \frac{z M_{motif}}{N V_{maille}} = \frac{4 M_{NaCl}}{N a^3}$$

M_{NaCl}: masse molaire du motif NaCl

N: nombre d'Avogadro

Projection de la maille NaCl sur le plan xy

Maille origine sur l'anion

Exemples

Cette structure se rencontre dans de nombreux composés:

- tous les halogénures alcalins (sauf CsCl, CsBr, CsI);
- AgF, AgCl;
- -les oxydes, sulfures, séléniures, tellurures d'alcalino-terreux;
- MnO, MnS, MnSe;
- FeO, CoO, NiO, CdO;
- PbS, SnS...

III-2-3- Structure type ZnS blende

* Description de la structure

Figure III-4: Maille élémentaire de ZnS blende

La blende est la variété cubique du sulfure de zinc ZnS. Dans cette structure (Figure III-4) les ions S²-forment un réseau cubique à faces centrées (CFC). Dans ce réseau les ions Zn²+ occupent un site tétraédrique sur deux cad les centres de la moitié des 8 petits cubes d'arête a/2 délimités par 4 anions S²- les plus proches, en quinconce.

Coordonnées réduites

Origine sur l'anion:

 S^{2} : (0 0 0) (1/2 1/2 0) (1/2 0 1/2) (0 1/2 1/2)

Zn²⁺: (3/4 1/4 1/4) (1/4 3/4 1/4) (1/4 1/4 3/4) (3/4 3/4 3/4)

Si on fait une translation de type (1/4 1/4) on obtient les nouvelles coordonnées :

Origine sur le cation:

 S^{2} : (1/4 1/4 1/4) (3/4 3/4 1/4) (3/4 1/4 3/4) (1/4 3/4 3/4)

 \mathbf{Zn}^{2+} : (0 1/2 1/2) (1/2 0 1/2) (1/2 1/2 0) (0 0 0)

L'examen de ces nouvelles coordonnées montre que les ions Zn^{2+} forment aussi un réseau CFC. La structure ZnS blende peut donc être décrite par deux réseaux CFC, l'un constitué par les anions S^{2-} , l'autre par les cations Zn^{2+} , décalés l'un de l'autre de 1/4 selon la diagonale du cube cad par une translation de type $(1/4\ 1/4\ 1/4)$.

Nombre de motifs

La maille élémentaire ZnS blende comprend:

- 8 anions S^{2-} aux sommets du cube, chacun comptant pour 1/8 et $6 S^{2-}$ aux centres des faces, chacun comptant pour 1/2, soit 4 anions S^{2-} .
- 4 cations Zn²⁺chacun comptant pour 1.

Le nombre de motifs ou groupements formulaires ZnS par maille est donc z = 4.

Coordinence

Chaque cation Zn^{2+} est entouré par 4 anions S^{2-} situés à la même distance $a\sqrt{3}/4$. De même chaque anion S^{2-} est entouré par 4 cations Zn^{2+} à la même distance $a\sqrt{3}/4$.

L'indice de coordination est donc 4 pour Zn²⁺ et 4 pour S²⁻: coordination 4-4.

Compacité

$$C = \underbrace{z \, V_{motif}}_{V_{maille}} = 4 \, \underbrace{\frac{4\pi}{3}}_{3} \, \underbrace{\frac{r_{+} \, + \, r_{-}}{r_{+} \, + \, r_{-}}}_{3} \qquad \qquad \text{z: le nombre de motifs ZnS par maille.} \\ r_{+} \, \text{et } r_{-} \text{: les rayons des ions Zn}^{2+} \, \text{et S}^{2-}.$$

Masse volumique

$$\rho = \underbrace{z \ M_{motif}}_{N \ V_{maille}} = \underbrace{4 \ M_{ZnS}}_{N \ a^3}$$

M_{ZnS}: masse molaire du motif ZnS *N*: nombre d'Avogadro

Projection de la maille ZnS sur le plan xy

Maille origine sur l'anion

Exemples

Les composés qui cristallisent avec le même type structural que ZnS blende sont nombreux, comme exemples: ZnO, ZnS, ZnSe, CdS, CuCl, CuBr, SiC, SnSi, GaP, InSb...

III-2-4- Structure type nickeline NiAs

* Description de la structure

La différence d'électronégativité entre Ni et As étant $\Delta \chi = 0.2$, le degré d'ionicité de la liaison Ni-As est inférieur à 2%: la liaison est quasiment covalente pure.

NiAs cristallise avec une maille hexagonale. Les atomes d'arsenic forment un réseau HC dont tous les sites octaédriques sont occupés par les atomes de nickel. Une translation de type (2/3 1/3 1/4) conduit à la représentation de la maille origine sur Ni suivante :

Figure III-5: Maille élémentaire de NiAs

Coordonnées réduites

Origine sur l'arsenic: **As:** (0 0 0) (2/3 1/3 1/2) **Ni**: (1/3 2/3 1/4) (1/3 2/3 3/4)

Origine sur le nickel: **As:** (2/3 1/3 1/4) (1/3 2/3 3/4) **Ni**: (0 0 1/2) (0 0 0)

Nombre de motifs

La maille élémentaire de NiAs comprend deux atomes de nickel et deux atomes de As, le nombre de groupements formulaires NiAs par maille est donc: z=2.

Coordinence

Chaque atome de nickel est entouré de 6 atomes As formant les sommets d'un octaèdre. Chaque atome d'arsenic est entouré de 6 atomes Ni formant les sommets d'un prisme à base triangulaire. L'indice de coordination est donc 6 pour les deux atomes Ni et As.

Compacité

$$C = \frac{z \ V_{motif}}{V_{maille}} = 2 \frac{4\pi}{3} \frac{r + ^3 + r - ^3}{a^2 c \sin 120^{\circ}}$$
 z: le nombre de motifs par maille.
r+ et r-: les rayons des ions Ni²⁺ et As²⁻.

Masse volumique

$$\rho = \underbrace{z \ M_{\text{motif}}}_{N \ V_{\text{maille}}} = \underbrace{\frac{2 \ M_{\text{NiAs}}}{N \ a^2 c \ sin 120^{\circ}}}_{N \ a^2 c \ sin 120^{\circ}} \qquad \underbrace{M_{\text{motif}} = M_{\text{NiAs}}}_{N: \ le \ nombre \ d'Avogadro}$$

Exemples

De nombreux sulfures, séléniures, tellures, arséniures et antimoniures des éléments de transition cristallisent avec la structure type NiAs.

Pr. N. EL JOUHARI

III-2-5- Structure type ZnS wurtzite

* Description de la structure

Figure III-6: Maille élémentaire de ZnS wurtzite origine sur As

La wurtzite est la variété hexagonale de ZnS. Le rapport r+/r- est identique à celui de la blende donc en accord avec la coordinence 4-4. Les ions S²⁻ forment un réseau HC et les ions Zn²⁺ occupent la moitié des sites tétraédriques.

Les cations Zn^{2+} forment un réseau HC analogue à celui des anions S^{2-} mais décalé par une translation de type (0 0 5/8).

Coordonnées réduites

Origine sur l'anion:

 S^2 : (0 0 0) (2/3 1/3 1/2) Zn^{2+} : (0 0 3/8) (2/3 1/3 7/8)

Origine sur l'anion:

 \mathbf{S}^{2} : $(0\ 0\ 5/8)\ (2/3\ 1/3\ 1/8)$ \mathbf{Zn}^{2+} : $(0\ 0\ 0)\ (2/3\ 1/3\ 1/2)$

Nombre de motifs

La maille élémentaire de ZnS wurtzite comprend 2 cations Zn^{2+} et 2 anions S^{2-} , le nombre groupements formulaires ZnS par maille est donc: z=2.

Coordinence

La coordinance des deux ions est la même. L'indice de coordination est 4 pour Zn^{2+} et 4 pour S^{2-} : coordination 4-4.

Compacité

$$C = \underbrace{z \ V_{motif}}_{V_{maille}} = \underbrace{2 \ 4\pi}_{3} \ \underbrace{r +^{3} + r -^{3}}_{a^{2}c \ sin120^{\circ}}$$
 z: le nombre de motifs par maille.
$$r + \text{ et } r - \text{: les rayons des ions } Zn^{2+} \text{ et } S^{2-}.$$

Pr. N. EL JOUHARI

Masse volumique

$$\rho = \frac{z M_{\text{motif}}}{N V_{\text{maille}}} = \frac{2 MZnS}{N a^2 c \sin 120^{\circ}}$$

$$M_{\text{motif}} = M(ZnS): \text{ la masse molaire de ZnS}$$

$$N: \text{ le nombre d'Avogadro}$$

Exemples

La structure wurtzite est fortement covalente et caractérise de nombreux composés comme BeO, ZnO, ZnS, ZnTe, CdS, CdTe, GaP, InSb, AlN, GaN,InN.

III-3- Stéréochimie de quelques structures de type MX₂

III-3-1- Structure type fluorine CaF₂ et anti fluorine

* Description de la structure fluorine CaF₂

Les rayons ioniques des ions Ca^{2+} et F^- étant: $r(Ca^{2+})=1.12\text{Å}$ et $r(F^-)=1.31\text{Å}$, le rapport r+/ r-=0.855 Å appartient au domaine de stabilité du type structural CsCl $(0.732 \le r+/$ $r-\le 1)$. Or si la structure CaF_2 était de type CsCl, la maille élémentaire contiendrait un anion F^- (sommets de la maille) et un cation Ca^{2+} (centre de la maille): la neutralité électrique ne serait alors pas respectée.

Comme il y a autant de sites cubiques que d'anions F constituant un réseau cubique simple et que la neutralité électrique implique la présence de 2 fois plus d'atomes de fluore que d'atomes de calcium, le taux d'occupation de ces sites par les cations Ca²⁺ doit être de 50% seulement: les cations Ca²⁺ occuperaient la moitié des sites de coordinence 8 formés par les anions F.

En effet l'analyse par diffraction des RX a montré que la structure fluorine CaF₂ dérive de CsCl (Fig.III-7): elle peut être décrite par une maille cubique d'arête a dans laquelle les ions F⁻ occupent les sommets, les centres des faces, les milieux des arêtes et le centre du cube: soit un réseau cubique simple (CP) d'arête a/2. Les cations Ca²⁺ occupent les centres de la moitié des petits cubes d'arête a/2 en quinconce.

Figure III-7: Mailles élémentaires de la fluorine CaF2

Coordonnées réduites

Origine sur l'anion:

F: (000) (1/2 1/2 0) (1/2 0 1/2) (0 1/2 1/2)

 $(1/2\ 0\ 0)\ (0\ 1/2\ 0)\ (0\ 0\ 1/2)\ (1/2\ 1/2\ 1/2)$

Ca²⁺: (1/4 1/4 1/4) (3/4 3/4 1/4) (3/4 1/4 3/4) (1/4 3/4 3/4)

Si on fait une translation de type (3/4 3/4) on obtient les nouvelles coordonnées :

Origine sur le cation:

F⁻: (3/4 3/4 3/4) (1/4 1/4 3/4) (1/4 3/4 1/4) (3/4 1/4 1/4)

(1/4 3/4 3/4) (3/4 1/4 3/4) (3/4 3/4 1/4) (1/4 1/4 1/4)

Ca²⁺: (000) (1/2 1/2 0) (1/2 0 1/2) (0 1/2 1/2)

L'examen de ces nouvelles coordonnées montre que la structure fluorine peut aussi être décrite par un réseau cubique dans lequel les cations Ca²⁺ sont situés aux sommets et aux centres des faces d'un cube d'arête a cad un réseau CFC. Les anions F⁻ occupent les centres des 8 petits cubes d'arête a/2 (Fig.III-7).

Les deux réseaux se déduisent l'un de l'autre par une translation de type (3/4 3/4 3/4).

Nombre de groupements formulaires

La maille comprend 4 cations Ca^{2+} et 8 anions F. Il y a donc 4 motifs ou groupements formulaires CaF_2 par maille.

Coordinence

Chaque cation Ca^{2+} est entouré de 8 anions F- situés à la même distance $a\sqrt{3}/4$. Chaque anion F⁻ est entouré de 4 cations Ca^{2+} situés à la même distance $a\sqrt{3}/4$.

Les indices de coordination sont donc 8 pour les cations Ca²⁺ et 4 pour les anions F⁻: coordination 8-4.

Compacité

$$C = \frac{m \ V_{motif}}{V_{maille}} = 4 \frac{4\pi}{3} \frac{{}^{3} \ {}^{3}}{a^{3}}$$

m: nombre de motifs par maille. r+ et r-: rayons des ions Ca²⁺ et F⁻.

Masse volumique

$$\rho = \underline{\frac{\text{m Mmotif}}{N \text{ Vmaille}}} = \underline{\frac{4 \text{ M}_{\text{CaF2}}}{N \text{ a}^3}}$$

M_{CaF2}: la masse molaire du motif CaF₂ *N*: le nombre d'Avogadro

Projection de la maille CaF₂ sur le plan xy

Exemples:

Ce type de structure existe dans CaF₂, SrF₂, BaF₂, SrCl₂, SnF₂, PbF₂, CeO₂...

* Structure antifluorine

Il existe une structure antifluorine qui correspond à des solides de type M₂X: elle dérive de la structure fluorine par permutation des positions des anions et des cations. C'est le cas des oxydes, des sulfures, séléniures, tellurures de lithium, sodium, potassium ainsi que Cu₂S, Cu₂Se...

$Exemple : K_2O (Fig.III-10)$

Les anions O²⁻ remplacent les cations Ca²⁺ dans la structure fluorine constituant ainsi un réseau CFC.

Les cations K⁺ remplacent les anions F⁻ occupant tous les sites tétraédriques cad le centre de tous les petits cubes d'arête a/2: ils forment ainsi un réseau cubique simple de paramètre de maille a/2.

La coordinance du cation K^+ est donc égale à 4, celle de l'anion O^{2-} est égale à 8: c'est une coordination 4-8.

La structure, avec 8 cations K^+ et 4 anions O^{2-} par maille comporte donc 4 motifs K_2O par maille.

III-3-2- Structure type rutile TiO₂

* Description de la structure

TiO₂ présente trois variétés allotropiques: l'anastase (quadratique), la brookite (orthorombique) et la rutile (quadratique). La variété rutile est stable dans les conditions de référence.

La différence d'électronégativité entre les deux éléments, titane et oxygène est $\Delta \chi = 1.9$, soit un degré d'ionicité de la liaison Ti-O de 59%.

La structure de type rutile cristallise avec une maille quadratique de paramètres $a=4.59 \text{\AA}$ et $c=2.96 \text{\AA}$.

Coordonnées réduites

Ti⁴⁺: (0 0 0) (1/2 1/2 1/2)

 O^{2-} : \pm (u u 0) \pm (1/2-u u+1/2 1/2) avec u=0.30

Figure III-8- Structure Rutile

La structure rutile peut être décrite comme un empilement régulier d'octaèdres $[TiO_6]^{n-}$ s'associant par arêtes communes pour former des chaînes infinies dans la direction de l'axe oz. Ces chaînes sont liées entre elles par les sommets libres restants. Les distances Ti-Ti sont: 2.96 Å à l'intérieur des chaînes et 3.567 Å entre les chaînes.

Nombre de motifs

La maille élémentaire de TiO₂ rutil **y** contient :

2Ti: 1 à lorigine + 1 au centre de la maille.

4 O: 2 à l'intérieur de la maille + 2 sur les 2 bases.

 \Rightarrow Le nombre de motifs TiO₂ par maille est donc: z=2.

Coordinence

 Ti^{4+} occupe le centre d'un octaèdre déformé délimité par 6 O^{2-} : 4 à la distance d_1 =1.94Å et 2 à la distance d_2 =1.98Å.

 O^{2-} est entouré de 3 cations Ti^{4+} situés dans le plan (110) de la maille. D'où: $[Ti^{4+}]=4+2=6$ et $[O^{2-}]=3$.

Exemples

La structure type rutile est très importante dans la nature: les fluorures divalents MF_2 (M=Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn), les oxydes tétravalents MO_2 (M=Ge, Sn, Ti, V, Cr, Mn, Ru, Os, Ir,...) et certains oxyfluorures trivalents désordonnés comme VOF ou FeOF.

* Remarque

La structure trirutile de formule AB_2O_6 (A=Mg, Fe, Co, Ni, Zn, et B=Nb, Sb, Ta) résulte de substitutions cationiques par des ions différents mais de tailles comparables. Les cations A^{2+} et B^{5+} occupent de façon ordonnée et respectivement 1/3 et 2/3 des positions cationiques d'une chaîne infinie d'octaèdres: la maille reste quadratique mais le paramètre c est le triple de celui de la maille rutile.

Maille trirutile de ZnSb₂O₆

Exemple: l'ordonozite ZnSb₂O₆

Dans cette structure : Les cations sont ordonnés.

Nombre de motifs/maille=2

Coordinance des cations=6

Coordinence de l'oxygène=3 avec **2 Zn** et **1Sb** comme proches voisins.

Pr. N. EL JOUHARI

III-3-3- Structure type cristobalite SiO₂

* Description de la structure

La silice SiO₂ possède plusieurs variétés allotropiques. La variété haute température cristobalite montre de fortes relations structurales avec le diamant. La maille est cubique (a=3.567Å), le silicium occupe les mêmes positions que le carbone dans la structure diamant. Un atome d'oxygène s'insère entre 2 atomes Si de telle façon que la coordinence de Si est égale à 4 (4 distances Si-O égales à 1.55Å).

Cette structure peut être décrite par un réseau de tétraèdres SiO₄ liés par les sommets.

Figure III-9 a: Projection de la maille cristobalite sur le plan xoy. b: Représentation polyédrique

Coordonnées réduites

Si: (000) (1/2 1/2 0) (1/2 0 1/2) (0 1/2 1/2) (1/4 1/4 1/4) (3/4 3/4 1/4) (3/4 1/4 3/4) (1/4 3/4 3/4)

O: (1/8 1/8 1/8) (3/8 3/8 1/8) (3/8 1/8 3/8) (1/8 3/8 3/8) (5/8 5/8 1/8) (7/8 7/8 1/8) (5/8 7/8 3/8) (7/8 5/8 3/8) (5/8 1/8 5/8) (7/8 3/8 5/8) (5/8 3/8 7/8) (7/8 1/8 7/8) (1/8 5/8 5/8) (3/8 7/8 5/8) (3/8 5/8 7/8) (1/8 7/8 7/8)

Nombre de motifs

 $z = n(SiO_2) = 8 \text{ motifs/maille}$

Coordinence

[Si] = 4 et [O] = 2

Remarque: Dans les composés A_xB_y étudiés ici, il existe une relation fondamentale entre les coordinences des deux ions: $\mathbf{x}[\mathbf{A}] = \mathbf{y}[\mathbf{B}]$.

Pr. N. EL JOUHARI

UNIVERSITE MOHAMMED V, FACULTE DES SCIENCES, DEPARTEMENT DE CHIMIE **Filière:** SMC4, **module**: M22, CRISTALLOGRAPHIE ET CRISTALLOCHIMIE I

III-4- Rayons ioniques et structures

Les rayons ioniques de tous les éléments du tableau périodique ont été déterminés par différentes méthodes et pour diverses coordinances. Ils ont été classés par Shannon et Prewit.

La méthode la plus précise pour déterminer les rayons des ions est celle basée sur la mesure par diffraction des rayons X, des densités électroniques autours des noyaux des atomes liés: les rayons des ions se mesurent alors par la distance des noyaux au minimum de densité électronique.

Exemple: NaCl

Figure III-10: Détermination des rayons ioniques de Na^+ et Cl^- à partir des courbes de densités électroniques $\rho(Na^+)$ et $\rho(Cl^-)$.

Les rayons ioniques ainsi déterminés sont: r(Na⁺)=1.12 Å et r(Cl⁻)=1.69 Å.

* Rayons ioniques et structures

Tableau III-1: Conditions de stabilité des trois structures MX étudiées

Type structural	Condition d'existence	Coordinence
CsCl NaCl ZnS Blende	$\begin{array}{cccc} 0.732 \leq r + / r - < 1 \\ 0.414 \leq r + / r - \leq 0.732 \\ 0.225 \leq r + / r - \leq 0.414 \end{array}$	8-8 6-6 4-4

Pour les solides ioniques MX, les limites de stabilité (r+/r-) pour les trois structures CsCl, NaCl et ZnS Blende ne sont pas toujours respectées, les valeurs expérimentales montrent des anomalies en particulier pour la structure blende.

Ces anomalies peuvent s'expliquer par la variation du rayon ionique avec l'indice de coordination: le rayon ionique augmente avec la coordinance de l'ion. Par exemple pour l'ion Na⁺, on trouve les valeurs suivantes des rayons cristallins (meilleure approche que le rayon ionique).

Coordinence	4	6	8
rNa+ (A°)	1.13	1.16	1.32

D'autre part, les cristaux ont été supposés purement ioniques ce qui est loin d'être le cas pour certains cristaux à caractère covalent très marqué.

Tableau III-2: Valeurs de r+/r- pour les halogénures alcalins

	Li	Na	K	Rb	Cs
F	0.44	0.70	0.98	0.92	0.80
Cl	0.33	0.52	0.73	0.82	0.93
Br	0.31	0.49	0.68	0.76	0.87
Ι	0.28	0.44	0.62	0.69	0.78

Exemple: LiI (r+/r-=0.28)

D'après les limites de stabilité (Tableau III-2) LiI devrait cristalliser avec une structure type ZnS blende or sa structure est de type NaCl.

Cette anomalie provient du caractère covalent marqué de la liaison Zn-S: le caractère ionique de cette liaison est faible (21% pour une différence d'électronégativité $\Delta\chi=0.93$).

Tableau III-3: Différence d'électronégativité $\Delta\chi$ et caractère ionique I_{MX} de la liaison M-X dans les cristaux MX_n étudiées

MX _n	$\Delta \chi = \chi_{\rm X} - \chi_{\rm M}$	I _{MX} en (%)
CsCl	2.37	75
NaCl	2.23	71
ZnS blende	0.93	21
CaF ₂	2.98	89

Le pourcentage ionique I_{MX} de la liaison M-X est calculé par la relation de Pauling: I_{MX} =100 $\left\{ exp\left[-\frac{(\chi_M-\chi_X)^2}{4}\right] \right\}$

III-5- Détermination de l'énergie réticulaire des cristaux ioniques

Définition

L'énergie réticulaire Eret d'un solide ionique est l'enthalpie molaire standard ΔH° de la réaction de dissociation du solide en ions gazeux :

$$MX(s) \rightarrow M^{+}(g) + X^{-}(g)$$
 Eret = ΔH°

Les réactions de dissociation étant endothermiques, Eret est positif (Eret > 0).

Rq: Certains auteurs définissent Eret comme étant l'enthalpie molaire standard de la réaction inverse de la dissociation **cad**: Eret = $-\Delta H^{\circ}$.

L'énergie réticulaire peut être déterminée par diverses méthodes en particulier:

- La méthode de l'énergie potentielle électrostatique.
- La méthode du cycle de Born-Haber.

III-5-1- Détermination par la méthode électrostatique

Un cristal ionique est formé d'anions et de cations, chaque ion est donc soumis à un champ électrostatique créé par tous les autres ions du réseau. Il possède donc une énergie potentielle d'origine électrostatique.

La formation d'un édifice ionique stable implique un équilibre entre les forces attractives et les forces répulsives. L'énergie de cohésion doit donc tenir compte de deux termes:

- i) un terme coulombien (Ep), résultant des interactions entre charges électriques supposées ponctuelles.
- ii) un terme électronique (Erep) dû à la répulsion entre les nuages électroniques des ions.

i) Calcul de Ep

Soient deux charges ponctuelles q1 et q2 distantes de r. La force d'interaction électrostatique est:

$$F = \frac{1}{4\pi\epsilon_0} \quad \frac{q_1q_2}{r}$$

L'énergie potentielle d'interaction (ep) entre les deux charges, correspond au travail nécessaire pour amener le deux charges de l'infini à leur distance d'équilibre d dans le cristal:

$$e_p = -\int F dr = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{d} = q_1 V_2$$

 $V_2 = 1$ \underline{q}_2 : potentiel électrostatique crée sur q_1 par la charge q_2 placé à la distance d. $4\pi\epsilon_0$ d

Lorsque q1 et q2 sont de signes opposés, la force coulombienne F est une force attractive, l'énergie potentielle ep est négative: le système est stabilisé car son énergie diminue.

Un cristal étant constitué d'une infinité d'ions, l'énergie potentielle due à l'interaction entre un ion A de charge q1 et tous les autres ions de charge qi situées à la distance di de A est Ep:

$$Ep = q1 (V2 + V3 + + Vi + + Vn)$$

$$\begin{split} Ep &= q1 \sum_{i=2}^{\infty} Vi & Avec & Vi &= \underline{1} \quad \underline{qi} \\ &= \underline{1} \quad 4\pi\epsilon_0 \quad d \end{split}$$

$$Ep &= \underline{1} \quad 4\pi\epsilon_0 \quad \underline{q} \quad \underline{q}$$

Application

Soit un composé AB de structure type NaCl. Les ions présents étant A^{z+} et B^{z-}. Les charges nettes des ions sont donc: +ze pour les cations et -ze pour les anions.

Considérons le cation A^{z+} placé au centre du réseau décrit par une maille cubique d'arête a :

il est entouré de:

- 6 anions B^z- à la distance d=a/2;
- 12 cations A^{z+} à la distance $d\sqrt{2}$;
- 8 anions B^{z-} à la distance $d\sqrt{3}$;
- 6 cations A^{z+} à la distance 2d...

$$Ep(A) = \frac{1}{4\pi\epsilon_0} ze \left[-\frac{6ze}{d} + \frac{12ze}{d\sqrt{2}} - \frac{8ze}{d\sqrt{3}} + \frac{6ze}{2d} - \dots \right]$$

$$Ep(A) = -\frac{1}{4\pi\epsilon_0} \frac{z^2e^2}{d} \left[\frac{6}{\sqrt{1}} - \frac{12}{\sqrt{2}} + \frac{8}{\sqrt{3}} - \frac{6}{\sqrt{4}} + \dots \right]$$

Le terme
$$\left(\frac{6}{\sqrt{1}}, \frac{12}{\sqrt{2}}, \frac{8}{\sqrt{3}}, \frac{6}{\sqrt{4}}, \frac{6}{\sqrt{4}}, \frac{12}{\sqrt{4}}\right)$$
 constitue une série convergente.

On l'appelle constante de Madelung (M). Elle dépend uniquement de la géométrie du cristal. Sa valeur est la même pour tous les cristaux de même type:

Type de réseau	CsCl	NaCl	ZnS	CaF2
M	1.7627	1.7476	1.6381	5.039

$$Ep(A) = - 1 \frac{z^2 e^2}{4 \pi \epsilon_0} M$$

De la même façon on peut calculer Ep(B). Comme pour les cristaux type NaCl les cations A^{z+} et les anions B^{z-} possèdent exactement le même environnement:

Ep(B) = Ep(A) =
$$-\frac{1}{4\pi\epsilon_0} \frac{z^2e^2}{d}M$$

Comme l'interaction entre deux ions figure à la fois dans Ep(A) et dans Ep(B), l'énergie potentielle coulombienne pour le cristal AB est donc:

De façon générale, dans un cristal de formule A_xB_y, les charges sont différentes: +ze pour le cation et -z'e pour l'anion, l'énergie potentielle coulombienne s'écrit alors:

Ep
$$(A_x B_y) = - \frac{1}{4\pi\epsilon_0} \frac{zz'e^2}{d} M$$

ii) calcul de Erep

Il existe plusieurs modèles pour déterminer l'énergie de répulsion, en particulier:

- le modèle de Born-Landé: $Erep = Bd^{-n}$ - le modèle de Born-Mayer: $Erep = Be^{-d/p}$

n: constante

B: constante d'intégration

p: s'exprime en fonction du coefficient de compressibilité de la structure

Soit Etot l'énergie potentielle totale: Etot = Ep + Erep.

* Avec le modèle de Born-Landé, l'énergie potentielle totale de NaCl s'écrit:

$$E_{tot} = - \underbrace{e^2 M}_{4\pi\epsilon_0 d} + \underbrace{B}_{d^n}$$

Variation de l'énergie avec la distance d entre deux ions

B peut être éliminé si l'on remarque qu'à l'équilibre cette énergie passe par un minimum quand d→di (di: distance internucléaire d'équilibre). Donc:

$$\begin{pmatrix} \frac{dE_{tot}}{dd} \end{pmatrix}_{d\to di} = \frac{e^2 M}{4\pi\epsilon_0 d_i^2} - \frac{n B}{d_i^{n+1}} = 0$$
d'où:
$$B = \frac{e^2 M d_i^{n-1}}{4\pi\epsilon_0 n}$$

En remplaçant B dans l'expression de Etot de NaCl:

Etot =
$$-\frac{e^2 M}{4\pi\epsilon_0 di} \begin{pmatrix} 1 - \underline{1} \\ n \end{pmatrix}$$

Dans les conditions standard de références (P°=1bar, T=298.15K) la valeur de Etot calculée pour une mole, correspond à l'enthalpie de cristallisation (ΔH°cris) du cristal.

$$\Delta H^{\circ} cris = - \underbrace{\frac{e^2 M N}{4\pi \epsilon_o di}} \begin{bmatrix} 1 - \underline{1} \\ n \end{bmatrix}$$

n est le facteur de Born-Landé. Sa valeur dépend de la configuration des gaz rares adoptée par les ions de la structure:

Configuration de l'ion	Не	Ne	Ar	Kr	Xe
n	5	7	9	10	12

L'expression de l'enthalpie de cristallisation peut être généralisée pour un cristal formé par des cations A^{z+} et des anions $B^{z^{2}-}$:

$$\Delta H^{\circ} cris = -\frac{z z' e^2 M N}{4\pi \epsilon_0 di} \left(1 - \frac{1}{n} \right)$$

* Avec le modèle de Born-Mayer un calcul analogue donne:

$$\Delta H^{\circ} cris = -\frac{z \ z' \ e^{2} \ \mathit{M} \ \mathit{N}}{4\pi\epsilon_{o} di} \left(1 - \frac{\rho}{di}\right)$$

D'où l'énergie réticulaire: **Eret** = $-\Delta H^{\circ}$ **cris**:

* Relation de Born-Landé: Eret =
$$\frac{z z' e^2 M N}{4\pi\epsilon_0 di} \begin{pmatrix} 1 - \frac{1}{n} \end{pmatrix}$$

* Relation de Born-Mayer: Eret =
$$\frac{z z' e^2 M N}{4\pi\epsilon_0 di} \begin{pmatrix} 1 - \rho \\ di \end{pmatrix}$$

Exemple: NaCl

$$z = z' = 1$$
, $M = 1.75$, $a = 5.638 \text{Å}$, $d_i = a/2$, $e = 1.610^{-19} \text{C}$

 Na^{+} a la configuration de Ne et Cl⁻ celle de Ar: n = (7 + 9)/2 = 8

D'où Eret =
$$753 \text{ kj.mol}^{-1}$$

III-5-2-Détermination par la méthode thermodynamique: cycle de Born-Haber

L'énergie réticulaire Eret peut être déterminée en utilisant un cycle thermodynamique, le cycle de Born-Haber.

Exemple: NaCl

Soit le cycle thermodynamique ou cycle de Born-Haber :

Loi de Hess:

CsCl

$$\Delta Hret = -\Delta H^{\circ}_{f}(NaCl) + \Delta H^{\circ}_{sub}(Na) + 1/2 E_{Cl\text{-}Cl} + E_{ion}(Na) - A_{Cl} = \textbf{788 kj.mol-1}$$

 $\Delta H^{\circ}_{f}(NaCl)$: enthalpie standard de formation de NaCl= -411kj.mol-1 $\Delta H^{\circ}_{sub}(Na)$: enthalpie standard de sublimation de Na =109kj.mol-1

 E_{Cl-Cl} : énergie de liaison Cl-Cl = 240kj.mol-1

 $E_{ion}(Na)$: énergie d'ionisation de Na = 496kj.mol-1

A_{Cl}: affinité électronique de Cl = 348kj.mol-1

CsBr

Tableau III-4: Energie réticulaire de quelques solides ioniques

676	654	620	751		
NI E	N. CI	TZOL	C 0	EO	A (CI
NaF	NaCl	KCl	CaO	FeO	AgCl
926	786	717	3401	3865	915

TICI

ZnO	AgI
3971	889

CaF ₂	SrF ₂	SrCl ₂	BaF ₂	PbF ₂
2630	2492	2156	2352	2522

CsI