

Sistemas Operacionais -Conceitos Básicos

Ernesto Massa

(slides fornecidos pela Prentice Hall e adaptados para esta disciplina)

Introdução

Capítulo 1

- O que é um sistema operacional
- História dos sistemas operacionais
- Conceitos sobre sistemas operacionais
- Chamadas ao sistema
- Estrutura de sistemas operacionais

Relembrando...

Componentes de um Sistema Computacional:

Sistema bancário	Reserva de passagens aéreas	Visualizador Web	Programas de aplicação
Compiladores	Editores	Interpretador de comandos	Programas
Sistema operacional			do sistema
Linguagem de máquina			
Microarquitetura			Hardware
Dispositivos físicos			

Relembrando...

Multiprogramação:

Conceitos sobre Sistemas Operacionais

- Programa:
 - Componentes:
 - Código executável;

Entidade Passiva.

- Processo:
 - Componentes:
 - Código executável;
 - Valor das variáveis do programa (dados);
 - Dispositivos alocados;
 - Pilhas;
 - Registradores, etc.
 - Entidade Ativa.

Conceitos sobre Sistemas Operacionais

System Call's

- Interface entre os processos e o S.O.;
- Disponíveis diretamente em linguagem de montagem;
- Incorporadas ao compilador nas linguagens de alto nível;
- Chamadas feitas diretamente: C, C++;
- Passagem de parâmetros:
 - Registradores;
 - Memória;
 - Pilhas do Sistema;

Sistemas Operacionais Monolíticos

- Os procedimentos do S.O. não estão estruturados de uma forma específica.
- O Sistema Operacional é formado por uma coleção de procedimentos com interface e funcionalidades bem definidas;
- Qualquer procedimento pode fazer chamadas a qualquer procedimento;

Modo **Usuário**

System

Call 3

Modo

Estrutura de Sistemas Operacionais

 Modelo simples de estruturação de um sistema monolítico

Sistemas Operacionais em Camadas

- Camadas com funções específicas;
- Cada camada utiliza os serviços da camada inferior e fornece serviços à camada superior;
- Camadas inferiores são máquinas estendidas;
- A hierarquia de níveis protege as camadas mais internas;
- Prejudica a performance do sistema;

Estrutura do sistema operacional THE

Camada	Função		
5	O operador		
4	Programas do usuário		
3	Gerenciamento de entrada/saída		
2	Comunicação operador-processo		
1	Gerenciamento da memória e do tambor magnético		
0	Alocação de processador e multiprogramação		

Máquinas Virtuais

- Permitem o compartilhamento do mesmo hardware por diversos S.O.
- Implementa apenas a função de multiprogramação;
 - É uma imagem perfeita do hardware real;
- Complexidade:
 - Modos Monitor e Usuário virtuais;
- Benefícios:
 - VM totalmente isoladas;
 - Redes virtuais;
 - Compartilhamento de dispositivos;
 - Ambiente de testes;

Máquinas Virtuais

- Exemplo da utilização desta arquitetura pela linguagem Java:
 - Independência do Hardware
 - Portabilidade;

Estrutura do VM/370 com o CMS

- Kernel menor possível;
- Serviços disponibilizados como Servidores no modo usuário;
- Solicitação de serviços através de mensagens;
- A principal tarefa do Microkernel é prover a troca de mensagens entre processos;
- S.O. de maior portabilidade e mais confiável;
- Filosofia ideal para sistemas distribuídos;

Estrutura de Sistemas Operacionais

O modelo cliente-servidor

 O modelo cliente-servidor em um sistema distribuído

