模拟电路与数字电路

第九章作业

9.2 分析如图所示组合电路的逻辑功能。

 $F = \overline{JH} = \overline{J} + \overline{H} = ED + AG = \overline{A}(B \oplus C) + A\overline{D} = \overline{A}(B \oplus C) + A\overline{B} \oplus \overline{C} = A \oplus B \oplus C$ 功能为 3 输入异或门。

9.3 试用与非门设计一个 8421BCD 码 N 的监视器。如果 N>=4, 监视器输出为 1, 否则为 0。

解: 真值表

751 - 7				
N=ABCD				Υ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
-	-	-	-	-

卡诺图:

逻辑表达式

$$Y = A + B = \overline{\overline{A}}\overline{\overline{B}}$$

逻辑图:

9.8 试用一片 4-16 线译码器 74154 和适当的门电路实现一下多输出逻辑函数。

(1) $F_1 = \bar{A}\bar{B}C + A\bar{C}D = \bar{A}\bar{B}C\bar{D} + \bar{A}\bar{B}CD + A\bar{B}\bar{C}D + AB\bar{C}D = \Sigma m(2,3,9,13)$

 $F_2 = \Sigma m(1,3,5,7,9)$

 $F_3 = \Pi M(0,1,4\sim10,13\sim15) = \Sigma m(2,3,11,12)$

 $(2)F_1 = \Pi M(1,3,4,5,7,8,9,10,12,14) = \Sigma m(0,2,6,11,13,15)$

 $F_2 = \Sigma m(2,7,10,13)$

 $F_3 = BC\overline{D} + A\overline{B}D = ABC\overline{D} + \overline{A}BC\overline{D} + A\overline{B}\overline{C}D + A\overline{B}CD = \Sigma m (6,9,11,14)$

图略

9.11 试用两片双 4 选 1 数据选择器 74153 和少许门电路,接成一个 16 选 1 数据选择器。

9.13 试用 4 选 1 数据选择器实现下面各函数

(3) $F(A, B, C, D) = \Sigma m(1,3,4,5,14,15) + \Sigma d(6,7,10,11,12)$

解:卡诺图

ABCD	00	01	11	10	
00	0	1	1)	0	ABD
01	1	1	Χ	X	-AB
11	Χ	0	1	1	-ABC
10	0	0	Χ	Χ	

$$F = \bar{A}\bar{B}D + \bar{A}B + ABC$$

9.14 试用 3 线-8 线译码器 74138 实现一位全加器。

解:全加器真值表。输入 x,y,ci 输出本位和 z=m1+m2+m4+m7. co=m3+m5+m6+m7

Z,CO。

Χ	Υ	Ci	Ζ	СО
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

9.16 试用 1 片双 4 选 1 数据选择器 74153 和少量门电路实现一位全减器。

解:全减器真值表。被减数 x.减数 y. 借位

输入 bi,本位差,借位输出 bo

Χ	Υ	bi	Ζ	bo
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$z=m1+m2+m4+m7=$$

$$\bar{x}\bar{y}b_i + \bar{x}y\bar{b}_i + x\bar{y}\bar{b}_i + xyb_i$$

$$bo=m1+m2+m3+m7=$$

$$\bar{x}\bar{y}b_i + \bar{x}y\bar{b}_i + \bar{x}yb_i + xyb_i$$

$$= \bar{x}\bar{y}b_i + \bar{x}y + xyb_i$$

9.17 试写出题图 9-17 所示电路的输出 F的最小项之和表达式。

$$s = a \oplus b \oplus 1 = a \oplus (\bar{b} \cdot 1 + b \cdot \bar{1}) = a \oplus \bar{b} = \bar{a}\bar{b} + ab$$

$$CO = (a \oplus b)CI + ab = \bar{a}b + a\bar{b} + ab = a + b$$

$$S \oplus cO = (\bar{a}\bar{b} + ab) \oplus (a + b) = (\bar{a}\bar{b} + ab) \oplus \overline{a}\bar{b} = (\bar{a}\bar{b} + ab)(\bar{a}\bar{b}) + \overline{a}\overline{b} + ab \cdot \overline{a}\bar{b}$$

$$= \overline{a}\overline{b} + \overline{a}\overline{b} + ab + \overline{a}\overline{b} = \overline{a}\overline{b} + \overline{a}\overline{b} + ab = \overline{a}\overline{b} + \overline{a}\overline{b} \cdot \overline{a}b = \overline{a}\overline{b} + \overline{a}\overline{b} = \overline{a}\overline{b} + \overline{a} + \overline{b} = \overline{a} + \overline{b} = \overline{a}b$$

$$D_0 = ab$$
, $D_1 = \overline{ab}$, $D_2 = a + b$, $D_3 = \overline{a + b} = \overline{a}\overline{b}$

$$F = ab\bar{c}\bar{d} + (\bar{a} + \bar{b})\bar{c}d + (a + b)c\bar{d} + \bar{a}\bar{b}cd = ab\bar{c}\bar{d} + \bar{a}\bar{c}d + \bar{b}\bar{c}d + ac\bar{d} + bc\bar{d} + \bar{a}\bar{b}cd$$

$$F = \Sigma m(12,1,5,1,9,10,14,6,14,3) = \Sigma m(1,3,5,6,9,10,12,14)$$

9.20 试用 4 位二进制数值比较器 7485 实现一个判断 8 位二进制数大于、等于或小于 156 的 逻辑电路。

解: (156) D=(1001 1100)B

B=1001 1100