关于o2o优惠券使用的数据分析

1.分析背景

O2O行业天然关联数亿消费者,各类APP每天记录了超过百亿条用户行为和位置记录,因而成为大数据科研和商业化运营的最佳结合点之一。

以优惠券盘活老用户或吸引新客户进店消费是O2O的一种重要营销方式。然而随机投放的优惠券对多数用户造成无意义的干扰。个性化投放是提高优惠券核销率的重要技术,它可以让具有一定偏好的消费者得到真正的实惠,同时赋予商家更强的营销能力。

对用户在2016年1月1日至2016年6月30日之间真实线上线下消费行为进行分析,预测用户在2016年7月领取优惠券后15天以内的使用情况。

2.分析目的

- 2.1对用户进行分类
- 2.2建立优惠券使用预测模型
- 2.3对用户领券与最终消费的影响因素进行分析
- 3.数据处理
- 3.1数据理解

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

%matplotlib inline
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False

import warnings
warnings.filterwarnings("ignore")
```

In [2]:

```
df1=pd.read csv('D:\project\o2o优惠券使用预测\data\ccf offline stage1 train.csv')
df2=pd. read_csv('D:\project\o2o优惠券使用预测\data\ccf_online_stage1_train.csv')
df_test=pd.read_csv('D:\project\o2o优惠券使用预测\data\ccf_offline_stagel_test_revised.csv')
```

In [3]:

df1.head() #查看数据

Out[3]:

	User_id	Merchant_id	Coupon_id	Discount_rate	Distance	Date_received	Date
0	1439408	2632	NaN	NaN	0.0	NaN	20160217.0
1	1439408	4663	11002.0	150:20	1.0	20160528.0	NaN
2	1439408	2632	8591.0	20:1	0.0	20160217.0	NaN
3	1439408	2632	1078.0	20:1	0.0	20160319.0	NaN
4	1439408	2632	8591.0	20:1	0.0	20160613.0	NaN

In [4]:

df1. info() #查看数据类型

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1754884 entries, 0 to 1754883

Data columns (total 7 columns):

Column Dtype 0 User_id int64 1 Merchant_id int64 2 Coupon id float64 3 Discount_rate object float64 4 Distance Date_received float64 5 float64 dtypes: float64(4), int64(2), object(1)

memory usage: 93.7+ MB

In [5]:

df2. head()

Out[5]:

	User_id	Merchant_id	Action	Coupon_id	Discount_rate	Date_received	Date
0	13740231	18907	2	100017492	500:50	20160513.0	NaN
1	13740231	34805	1	NaN	NaN	NaN	20160321.0
2	14336199	18907	0	NaN	NaN	NaN	20160618.0
3	14336199	18907	0	NaN	NaN	NaN	20160618.0
4	14336199	18907	0	NaN	NaN	NaN	20160618.0

```
In [6]:
```

```
df2.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11429826 entries, 0 to 11429825
Data columns (total 7 columns):
#
     Column
                    Dtype
     User id
0
                    int64
     Merchant_id
 1
                    int64
 2
     Action
                    int64
 3
     Coupon_id
                    object
 4
     Discount_rate
                    object
 5
     Date received
                    float64
6
                    float64
     Date
dtypes: float64(2), int64(3), object(2)
memory usage: 610.4+ MB
```

3.2数据清洗

In [7]:

df1 线下数据清洗

In [8]:

```
#统计'User_id',其值为F_value,合成新表

#用户活跃次数

dfl_ID_F=pd. DataFrame({
    'User_id':np. array(dfl['User_id']. value_counts(). index). flatten(),
    'F_value':dfl['User_id']. value_counts(). values. flatten(),
})

#按原表顺序合并

dfl_F=pd. merge(pd. DataFrame(dfl['User_id']), dfl_ID_F, on='User_id')
dfl_F. head()
```

Out[8]:

	User_id	F_value
0	1439408	7
1	1439408	7
2	1439408	7
3	1439408	7
4	1439408	7

In [9]:

```
#统计'Coupon_id', 其值为C_value, 合成新表

#用户领券次数

df1_ID_C=pd. DataFrame({
        'User_id':np. array(df1. groupby('User_id')['Coupon_id']. count(). index). flatten(),
        'C_value':df1. groupby('User_id')['Coupon_id']. count(). values. flatten(),
})

#按原表顺序合并

df1_FC=pd. merge(df1_F, df1_ID_C, on='User_id')

df1_FC. head()
```

Out[9]:

	User_id	F_value	C_value
0	1439408	7	5
1	1439408	7	5
2	1439408	7	5
3	1439408	7	5
4	1439408	7	5

In [10]:

Out[10]:

	User_id	F_value	C_value	D_value
0	1439408	7	5	3
1	1439408	7	5	3
2	1439408	7	5	3
3	1439408	7	5	3
4	1439408	7	5	3

In [11]:

```
#去除重复的用户ID,得到最终的表格
FCD_off = df1_FCD.drop_duplicates(subset=['User_id'], keep='last')
FCD_off.head()
```

Out[11]:

	User_id	F_value	C_value	D_value
6	1439408	7	5	3
7	1832624	1	1	0
12	2029232	5	3	2
13	2747744	1	1	0
15	196342	2	1	1

In [12]:

df2 线上数据清洗

In [13]:

```
#统计'User_id',其值为F_value,合成新表

#用户活跃次数
df2_ID_F=pd. DataFrame({
    'User_id':np. array(df2['User_id']. value_counts(). index). flatten(),
    'F_value':df2['User_id']. value_counts(). values. flatten(),
})

#按原表顺序合并
df2_F=pd. merge(pd. DataFrame(df2['User_id']), df2_ID_F, on='User_id')
df2_F. head()
```

Out[13]:

	User_id	F_value
0	13740231	16
1	13740231	16
2	13740231	16
3	13740231	16
4	13740231	16

In [14]:

Out[14]:

	User_id	F_value	C_value
0	13740231	16	6
1	13740231	16	6
2	13740231	16	6
3	13740231	16	6
4	13740231	16	6

In [15]:

Out[15]:

	User_id	F_value	C_value	D_value
0	13740231	16	6	10
1	13740231	16	6	10
2	13740231	16	6	10
3	13740231	16	6	10
4	13740231	16	6	10

In [16]:

```
#去除重复的用户ID,得到最终的表格
FCD_on= df2_FCD. drop_duplicates(subset=['User_id'], keep='last')
FCD_on. head()
```

Out[16]:

	User_id	F_value	C_value	D_value
15	13740231	16	6	10
32	14336199	17	0	17
35	10539231	3	0	3
42	14438631	7	0	7
65	15034599	23	0	23

4.数据建模

4.1线下用户

In [17]:

```
# 用户活跃: F_value>3高活跃 否则低活跃
# 用户领券: C_value/F_value>1/2高领券 否则低领券
# 用户消费: D_value/F_value>1/2 and D_value>1高消费 否则低消费
# 重要客户: 高活跃高领券高消费 ,高活跃低领券高消费
# 价值客户: 低活跃高领券高消费,低活跃低领券高消费
# 保持客户: 高活跃高领券低消费,高活跃低领券低消费
# 发展客户: 低活跃低领券低消费,低活跃高领券低消费
```

In [18]:

```
df1['User_id'].value_counts().describe()
#用户活跃值,最大值264,最小值1,平均值3 75%的数据>=3
```

Out[18]:

count	539438. 000000					
mean	3. 253171					
std	4. 767551					
min	1.000000					
25%	1.000000					
50%	2. 000000					
75%	3.000000					
max	264. 000000					
Name:	User_id, dtype: float64					

In [19]:

```
df1.groupby('User_id')['Date'].count().describe()
#用户消费 75%的数据>=1
```

Out[19]:

```
count
         539438.000000
              1.440358
mean
              3.986049
std
              0.000000
min
25%
              0.000000
50%
              0.000000
75%
              1.000000
            196.000000
max
Name: Date, dtype: float64
```

In [20]:

```
#用户分类函数
#x:F_value y:C_value z:D_value
def UL1(x, y, z):
   if x>3:
       if y/x > 1/2:
          if z/x > 1/2 and z>1:
              return('重要客户')
          else:
              return('保持客户')
       else:
          if z/x > 1/2 and z>1:
              return('重要客户')
          else:
              return('保持客户')
   else:
       if y/x > 1/2:
          if z/x > 1/2 and z>1:
              return('价值客户')
          else:
              return('发展客户')
       else:
          if z/x > 1/2 and z>1:
              return('价值客户')
          else:
              return('发展客户')
```

In [21]:

 $FCD_{off['User_level'] = FCD_off. apply(lambda x: UL1(x['F_value'], x['C_value'], x['D_value']), axis=1) \\ FCD_{off. head()}$

Out[21]:

	User_id	F_value	C_value	D_value	User_level
6	1439408	7	5	3	保持客户
7	1832624	1	1	0	发展客户
12	2029232	5	3	2	保持客户
13	2747744	1	1	0	发展客户
15	196342	2	1	1	发展客户

In [22]:

#查看各类用户占比

FCD_off. groupby('User_level').count()

Out[22]:

	User_id	F_value	C_value	D_value
User_level				
价值客户	23225	23225	23225	23225
保持客户	71893	71893	71893	71893
发展客户	383843	383843	383843	383843
重要客户	60477	60477	60477	60477

In [23]:

#用户类型占比图

plt.bar(FCD_off.groupby('User_level').count().index,FCD_off.groupby('User_level').count()['User_id'] plt.show

Out[23]:

<function matplotlib.pyplot.show(*args, **kw)>

4.2线上用户

In [24]:

```
# 用户活跃: F_value>16 高活跃 否则低活跃
# 用户领券: C_value/F_value>1/2高领券 否则低领券
# 用户消费: D_value/F_value>1/2 and D_value>15高消费 否则低消费
# 重要客户: 高活跃高领券高消费 ,高活跃低领券高消费
# 价值客户: 低活跃高领券高消费,低活跃低领券高消费
# 保持客户: 高活跃高领券低消费,高活跃低领券低消费
# 发展客户: 低活跃低领券低消费,低活跃高领券低消费
```

In [25]:

```
df2['User_id'].value_counts().describe()
#用户活跃值,最大值5786,最小值1,平均值14.9 75%的数据>=16
```

Out[25]:

```
count
         762858.000000
             14. 982901
mean
             34.890628
std
min
              1.000000
25%
              3.000000
50%
              7.000000
75%
             16.000000
max
           5786.000000
```

Name: User_id, dtype: float64

In [26]:

```
df2.groupby('User_id')['Date'].count().describe()
#用户消费 75%的数据>=15
```

Out[26]:

count	762858.000000
mean	14. 123111
std	34. 512140
min	0.000000
25%	2.000000
50%	6.000000
75%	15.000000
max	5786.000000
Name:	Date, dtype: float64

In [27]:

```
#用户分类函数
#x:F_value y:C_value z:D_value
def UL2(x, y, z):
   if x>16:
       if y/x > 1/2:
          if z/x > 1/2 and z>15:
              return('重要客户')
          else:
              return('保持客户')
       else:
          if z/x > 1/2 and z>15:
              return('重要客户')
          else:
              return('保持客户')
   else:
       if y/x > 1/2:
          if z/x > 1/2 and z>15:
              return('价值客户')
          else:
              return('发展客户')
       else:
          if z/x > 1/2 and z>15:
              return('价值客户')
          else:
              return('发展客户')
```

In [28]:

```
FCD_on['User_level']=FCD_on.apply(lambda x:UL2(x['F_value'], x['C_value'], x['D_value']), axis=1) FCD_on.head()
```

Out[28]:

	User_id	F_value	C_value	D_value	User_level
15	13740231	16	6	10	发展客户
32	14336199	17	0	17	重要客户
35	10539231	3	0	3	发展客户
42	14438631	7	0	7	发展客户
65	15034599	23	0	23	重要客户

In [29]:

#查看各类用户占比

FCD_on. groupby('User_level').count()

Out[29]:

User_id	F_val	ue C_value	D_value
---------	-------	------------	---------

User_level				
价值客户	8405	8405	8405	8405
保持客户	9892	9892	9892	9892
发展客户	573150	573150	573150	573150
重要客户	171411	171411	171411	171411

In [30]:

#用户类型占比图

plt.bar(FCD_on.groupby('User_level').count().index,FCD_on.groupby('User_level').count()['User_id']) plt.show

Out[30]:

<function matplotlib.pyplot.show(*args, **kw)>

In [31]:

#从数据可以看出: 1.线上线下发展用户(消费次数少或者领券不消费)占比最多 # 2.线下领券消费与不领券消费用户区别不大。线上用户更倾向于领券消费,用户数量差值约174

5.数据分析

5.1线下用户优惠券使用情况

5.1.1用户领取优惠券并消费与门店距离分析

In [32]:

```
#查看最近门店距离分布
df1.groupby('Distance').count()[['User_id','Coupon_id','Date']]
```

Out[32]:

	User_id	Coupon_id	Date
Distance			
0.0	826070	348179	524743
1.0	227221	143871	91952
2.0	118413	81279	40619
3.0	76598	54944	23515
4.0	55085	40542	15830
5.0	41452	31010	11273
6.0	32483	24658	8428
7.0	25681	19682	6429
8.0	21436	16404	5417
9.0	17958	13961	4330
10.0	206484	172749	36231

In [33]:

```
plt. subplots_adjust(left=0.2, wspace=0.5, top=0.7) #调整位置
plt. subplot(121) #图一
plt. bar(df1. groupby('Distance'). count(). index, df1. groupby('Distance'). count()['User_id'], label="距离 plt. bar(df1. groupby('Distance'). count(). index, df1. groupby('Distance'). count()['Date'], label="消费")
plt. legend() #显示标签
plt. subplot(122) #图二
plt. bar(df1. groupby('Distance'). count(). index, df1. groupby('Distance'). count()['Date'], label="消费", c
plt. bar(df1. groupby('Distance'). count(). index, df1. groupby('Distance'). count()['Coupon_id'], label="领 plt. ylim((0, 860000))
plt. legend()
plt. show()
```


In [34]:

#门店距离用户越近,用户消费次数越多 #用户领券次数基本大于消费次数,但是在门店距离<500m的条件下,有1/3的用户不领券消费

5.1.2用户领取优惠券并消费与优惠率分析

In [35]:

#根据优惠率统计优惠领取次数和消费次数 dfl.groupby('Discount_rate').count()[['Coupon_id','Date']]

Out[35]:

	Coupon_id	Date
Discount_rate		
0.2	110	6
0.5	186	20
0.6	58	3
0.7	54	4
0.75	121	5
0.8	3441	635
0.85	649	43
0.9	8085	616
0.95	20568	2521
100:1	537	37
100:10	182554	5550
100:20	14297	1047
100:30	38196	1033
100:5	5053	314
100:50	1774	233
10:1	17842	4054
10:5	25925	3302
150:10	5325	121
150:20	17437	239
150:30	654	79
150:5	7	2
150:50	306	9
200:10	575	28
200:100	12	2
200:20	111046	1731
200:30	29327	272
200:5	57	3
200:50	5585	132
20:1	51705	8280
20:10	514	101
20:5	91013	12471
300:10	23	1
300:20	56	4

	Coupon_id	Date
Discount_rate		
300:30	28979	419
300:50	206	11
30:1	17654	2561
30:10	12692	371
30:20	24	1
30:5	270712	23368
50:1	3354	311
50:10	28452	1242
50:20	8203	485
50:30	9	1
50:5	47379	3073
5:1	2526	641

In [36]:

```
plt.plot(df1.groupby('Discount_rate').count().index, df1.groupby('Discount_rate').count()['Coupon_id'
plt.plot(df1.groupby('Discount_rate').count().index, df1.groupby('Discount_rate').count()['Date'], lab
plt.legend()
plt.show()
```


5.1.3用户领券时间与消费时间分析

In [37]:

```
#提取出领券并消费的用户
dfl_days=dfl.dropna(axis=0)[['User_id','Date_received','Date']]
```

In [38]:

```
#把日期由float转为datetime
pd. to_datetime(df1. dropna(axis=0)['Date_received'], format='%Y%m%d')
pd. to_datetime(df1. dropna(axis=0)['Date'], format='%Y%m%d')
#相减获得用户领券到消费的时间差
df1_days['days']=(pd. to_datetime(df1. dropna(axis=0)['Date'], format='%Y%m%d')-pd. to_datetime(df1. dropna(ays. groupby('days'). count()
```

Out[38]:

	User_id	Date_received	Date
days			
0.0	4949	4949	4949
1.0	7229	7229	7229
2.0	6253	6253	6253
3.0	4940	4940	4940
4.0	4652	4652	4652
69.0	1	1	1
70.0	1	1	1
71.0	1	1	1
92.0	1	1	1
96.0	1	1	1

71 rows × 3 columns

In [39]:

plt.bar(df1_days.groupby('days').count().index,df1_days.groupby('days').count()['User_id'])plt.xlim(-1,15)

Out[39]:

(-1.0, 15.0)

In [40]:

#领券后1-2天內消费的客户最多,随着时间增长,消费次数降低

5.1线上用户优惠券使用情况

5.1.1用户领取优惠券并消费与优惠率分析

In [41]:

```
#根据优惠率统计优惠领取次数和消费次数
df2.groupby('Discount_rate').count()[['Coupon_id','Date']]
```

Out[41]:

	Coupon_id	Date
Discount_rate		
1000:10	291	35
1000:100	4135	478
1000:20	1013	167
1000:30	908	91
1000:300	456	48
800:20	1010	128
800:30	297	20
800:50	6732	550
800:500	5	5
fixed	131546	131546

64 rows × 2 columns

In [42]:

```
plt.plot(df2.groupby('Discount_rate').count().index, df2.groupby('Discount_rate').count()['Coupon_id'plt.plot(df2.groupby('Discount_rate').count().index, df2.groupby('Discount_rate').count()['Date'], labplt.legend()
plt.show()
```


In [43]:

#一些优惠活动确实会刺激用户消费,但是限时低价活动消费次数最高

5.1.2用户领券时间与消费时间分析

In [44]:

```
#提取出领券并消费的用户
df2_days=df2.dropna(axis=0)[['User_id','Date_received','Date']]
df2_days.head()
```

Out[44]:

	User_id	Date_received	Date
273	10131831	20160128.0	20160128.0
274	10131831	20160128.0	20160128.0
279	10131831	20160117.0	20160117.0
280	10131831	20160117.0	20160117.0
748	12518031	20160306.0	20160306.0

In [45]:

```
#把日期由float转为datetime
pd. to_datetime(df2. dropna(axis=0)['Date_received'], format='%Y%m%d')
pd. to_datetime(df2. dropna(axis=0)['Date'], format='%Y%m%d')
#相减获得用户领券到消费的时间差
df2_days['days']=(pd. to_datetime(df2. dropna(axis=0)['Date'], format='%Y%m%d')-pd. to_datetime(df2. dropna(df2_days. groupby('days').count()
```

Out[45]:

	User_id	Date_received	Date
days			
0.0	192809	192809	192809
1.0	8478	8478	8478
2.0	3381	3381	3381
3.0	2402	2402	2402
4.0	1377	1377	1377
155.0	1	1	1
158.0	3	3	3
162.0	3	3	3
164.0	1	1	1
171.0	2	2	2

147 rows × 3 columns

In [46]:

plt.bar(df2_days.groupby('days').count().index,df2_days.groupby('days').count()['User_id'])plt.xlim(-1,15)

Out[46]:

(-1.0, 15.0)

In [47]:

#线上用户领取优惠券当天消费最高