Table of Contents

- STAT 333 Course Note
- Table of Contents
- 1. Fundamental of Probability
 - 1.1 What's Probability
 - 1.1.1 Examples
 - Example 1
 - 1.2 Probability Models
 - 1.2.1 Examples
 - 1.2.1.1 Example 2
 - 1.2.2 Remark: why do we need the notion of event?
 - 1.3 Conditional Probability
 - 1.4 Independence
 - 1.5 Bayes' rule and law of total probability
 - 1.5.1 Bayes' rule
- 2 Random variables and distributions
 - 2.1 Random variables
 - 2.2 Discrete random variables and distributions
 - 2.2.1 Examples of discrete distributions
 - 1. Bemoulli distribution
 - 2.Binomial distribution
 - 3.Geometric distribution
 - 4. Poisson distribution
 - 2.3 Continuous random variables and distributions
 - 2.3.1 Example of continuous distribution
 - o 2.4 Joint distribution of r.v's
 - 2.5 Expectation
 - 2.5.1 Properties of expectation
 - 2.5.2 Definitions
 - o 2.6 Indicator
 - 2.6.1 Example
 - 2.6.1 Example 3
 - 2.7 Moment generating function
 - 2.7.1 Properties of mgf
 - 2.7.2 Joint mgf
 - 2.7.2.1 Properties of the joint mgf
- 3. Conditional distribution and conditional expectation
 - 3.1 Conditional distribution
 - 3.1.1 Discrete case
 - 3.1.1.1 Example
 - 3.1.2 Continuous case
 - 3.1.2.1 Example
 - **3.1.2.1. Example 2**
 - 3.2 Conditional expectation
 - 3.2.1 What is $\mathbb{E}(X|Y)$?
 - 3.2.2 Properties of conditional expectation
 - 3.3 Decomposition of variance (EVVE's low)
- 4. Stochastic Processes
 - 4.1 Markov Chain
 - 4.1.1 Simple Random Walk
 - 4.1.2 Markov Chain
 - 4.1.2.1 Discrete-time Markov Chain
 - Definition and Examples
 - Example: simple random walk

- 4.1.3 One-step transition probability matrix
 - Example 1 : simple random walk
 - Example 2: Ehrenfest's urn
 - Example 3: Gambler's ruin
 - Example 4: Bonus-Malus system
- 4.2 Chapman-Kolmogorov equations
 - 4.2.1 Conditional Law of total probability
 - 4.2.2 Distribution of X_n
- 4.3 Stationary distribution (invariant distribution)

1. Fundamental of Probability

1.1 What's Probability

1.1.1 Examples

- 1. Coin toss
 - "H" head
 - ∘ "T" tail
- 2. Roll a dice
 - \circ every number in the set: $\{1, 2, 3, 4, 5, 6\}$
- 3. Tomorrow weather
 - {sunny, rainy, cloudy,...}
- 4. Randomly pick a number in [0,1]

Although things are random, they are not haphazard/arbitrary. There are "patterns"

Example 1

If we repeat tossing a coin, then the fraction of times that we get a "H" goes to $\frac{1}{2}$ as the number of toss goes to infinity.

$$\frac{\#\ of\ "H"}{total\ \#\ of\ toss} = \frac{1}{2}$$

This number 1/2 reflects how "likely" a "H" will appear in one toss (if the experiment is not repeated)

1.2 Probability Models

The Sample space Ω is the set consisting of all the possible outcomes of a random experiment.

1.2.1 Examples

1. $\{H, T\}$ 2. $\{1, 2, 3, 4, 5, 6\}$ 3. $\{sunny, rainy, cloudy, ...\}$ 4. [0, 1]

An event $E\in\Omega$ is a subset of Ω

for which we can talk about "likelihood of happening"; for example

- in 2:
 - {getting an even number} = {2, 4, 6}
- in 4:
 - $\{the\ point\ is\ between\ 0\ and\ 1/3\}=[0,\frac{1}{3}]\ is\ an\ event$
 - $oolean \{the \ point \ is \ rational\} = Q \cap [0,1]$

We say an event E "happens", if the result of the experiment turns out to belong to E (a subset of Ω)

A probability P is a set function (a mapping from events to real numbers)

$$P: \xi \to R$$
 $E \to P(E)$

which satisfies the following 3 properties:

1.
$$\forall E \in \xi, 0 \leq P(E) \leq 1$$

2. $P(\Omega) = 1$

3. For

- \circ countably many disjoint events $E_1, E_2, ...,$ we have $P(U_{i=1}^\infty E_i) = \sum_{i=1}^\infty P(E_i)$
- \circ countable: \exists 1-1 mapping to natural numbers 1, 2, 3, ...

Intuitively, one can think the probability of an event as the "likelihood/chance" for the event happens. If we repeat the experiment for a large number of events, the probability is the fraction of time that the event happens

$$P(E) = \lim_{n \to \infty} \frac{\# \text{ of times the E happens in n trials}}{n}$$

1.2.1.1 Example 2

$$P(\{1\}) = P(\{2\}) = \dots = P(\{6\}) = \frac{1}{6}$$
 $E = \{\text{even number}\} = \{2, 4, 6\}$
 $\Rightarrow P(E) = P(\{2\} \cup P(\{4\})) \cup P(\{6\}) = \frac{1}{2}$

Properties of probability:

1.
$$P(E) + P(E^c) = 1$$

2.
$$P(\emptyset) = 0$$

3.
$$E_1 \subseteq E_2 \Rightarrow P(E_1) \leq P(E_2)$$

4.
$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$
 - $P(E_1 \cap E_2)$: E_1 and E_2 happen

1.2.2 Remark: why do we need the notion of event?

If the sample space Ω is **discrete**, then everything can has at most countable elements be built from the "atoms"

$$\Omega = \{w_1, w_2, \ldots\} \ P(w_1) = P_i \ P_i \in [0,1], \sum_{i=1}^{\infty} P_i = 1$$

Then for any event $E = \{w_1, i \in I\}$, $P(E) = \sum_{i \in I} P_i$

However, if the sample space Ω is continuous; e.g, [0,1] in Example 4, then such a construction can not be done for any $x \in [0,1]$ we get $P(\{x\} = 0 \text{ } (x: \text{the point is exactly } x)$

We can not get $P([0,\frac{1}{3}])$ by adding $P(\{x\})$ for $x\leq \frac{1}{3}$.

This is why we need the notion of event; and we define P as a set function from ξ to R rather than a function from Ω to R

To summarize: A **Probability Space** consists of a triplet (Ω, ξ, P) :

- Ω : sample space,
- ξ : collection of events
- P: probability

1.3 Conditional Probability

If we know some information, the probability of an event can be updated

Let E , F be two events P(F)>0

The conditional probability of E , given F is

$$P(E \mid F) = rac{P(E \cap F)}{P(F)}$$

Again, think probability as the long-run frequency:

$$P(E \cap F) = \lim_{n o \infty} rac{\#of \ times \ E \ and \ F \ happen \ in \ n \ trails}{n} \ P(F) = \lim_{n o \infty} rac{\#of \ times \ F \ happen \ in \ n \ trails}{n} \ \Rightarrow rac{P(E \cap F)}{P(F)} = \lim_{n o \infty} rac{\#of \ times \ E \ and \ F \ happen}{\#of \ times \ F \ happen} \ rac{\#of \ times \ F \ happen}{\#of \ times \ F \ happens}$$

By definition

$$P(E \cap F) = P(E \mid F) \cdot P(F)$$

1.4 Independence

Def: Two events E and F are said to be independent, if $P(E \cap F) = P(E) \cdot P(F)$; denoted as $E \perp \!\!\! \perp F$. **This is different rom disjoint.**

Assume P(F)>0, then $E\perp\!\!\!\perp F\Leftrightarrow P(E|F)=P(E)$; intuitively, knowing F does not change the probability of E.

Proof:

$$E \perp \!\!\!\perp F \Leftrightarrow P(E \cap F) = P(E) \cdot P(F)$$

 $\Leftrightarrow \frac{P(E \cap F)}{P(F)} = P(E)$
 $\Leftrightarrow P(E|F) = P(E)$

More generally, a sequence of events E_1, E_2, \ldots are called independent if for **any** finite index set I,

$$P(igcap_{i \in I} E_i) = \prod_{i \in I} P(E_i)$$

1.5 Bayes' rule and law of total probability

Theorem: Let F_1, F_2, \ldots be disjoint events, and $\bigcap_{i=1}^\infty F_i = \Omega$, we say $\{F_i\}_{i=1}^\infty$ forms a "partition" of the sample space Ω

Then
$$P(E) = \sum_{i=1}^{\infty} P(E|F_i) \cdot P(F_i)$$

Proof: Exercise

Intuition: Decompose the total probability into different cases.

$$P(E \cap F_2) = P(E|F_2) \cdot P(F_2)$$

1.5.1 Bayes' rule

$$P(F_i|E) = \frac{P(E|F_i) \cdot P(F_i)}{\sum_{j=1}^{\infty} P(E|F_j) \cdot P(F_j)}$$

Bayes' rule tells us how to find conditional probability by switching the role of the event and the condition.

Proof:

$$egin{aligned} P(F_i|E) &= rac{P(F_i \cap E)}{P(E)} & ext{definition of condition probability} \ &= rac{P(E|F_i)P(F_i)}{P(E)} \ &= rac{P(E|F_i)P(F_i)}{\sum_{i=1}^{\infty} P(E|F_i)P(F_i)} \end{aligned}$$
 law of total probability

2 Random variables and distributions

2.1 Random variables

 (Ω, ξ, P) : Probability space.

Definition: A random variable X (or r.v.) is a mapping from Ω to $\mathbb R$

$$X:\Omega o\mathbb{R} \ \omega o X(\omega)$$

A random variable transforms arbitrary "outcomes" into numbers.

X introduces a probability on R. For $A\subseteq R$, define

$$egin{aligned} P(X \in A) &:= P(\{X(\omega) \in A\}) \ &= P(\{\omega : X(\omega) \in A\}) \ &= P(X^{-1}(A)) \end{aligned}$$

From now on, we can often "forget" te original probability space and focus on the random variables and their distributions.

Definition: let X be a random variable. The **CDF**(cumulative distribution function) F of X is defined by

$$F(x) = P(X \le x) = P(X \in (-\infty, x])$$

 $X : \text{random variable}, x : \text{number}$

Properties of cdf:

- 1. F is non-decreasing. $F(x_1) \leq F(x_2), x_1 < x_2$
- 2. limits
 - $\circ \lim_{x \to -\infty} F(x) = 0$
 - $\circ \lim_{x \to \infty} F(x) = 1$
- 3. F(x) is right continuous
 - $\circ \ \ lim_{x\downarrow a}F(x)=F(a)$: x decreases to a (approaching from the right)
 - \circ Hint: $\{x \leq a\} = igcap_{i=1}^\infty \{X \leq a_i\}$ for $a_i \downarrow a$

2.2 Discrete random variables and distributions

A random variable X is called **discrete** if it only takes values in an **at most countable** set $\{x_1, x_2, \ldots\}$ (finite or countable).

The distribution of a discrete random variable is fully characterized by its probability mass function(p.m.f)

$$p(x) := P(X = x); x = x_1, x_2, \dots$$

Properties of pmf:

1.
$$p(x) \geq 0, \ \ \forall x$$

2.
$$\sum_{i} p(x_i) = 1$$

Q: what does the cdf of a discrete random variable look like?

2.2.1 Examples of discrete distributions

1. Bemoulli distribution

$$p(1) = P(X = 1) = p$$

 $p(c) = P(X = c) = 1 - p$
 $p(x) = 0$ otherwise

Denote $X \sim Ber(p)$

2.Binomial distribution

$$p(k) = P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

- $X \sim Bin(n,p)$ to choose k successes.
- ullet Binomial distribution is the distribution of number of successes in n independent trials; each having probability p of success.

3.Geometric distribution

$$p(k) = P(X = k) = (1 - p)^{k-1}p$$

 $(1-p)^{k-1}$: the first k-1 trials are all failures, p: success in k^{th} trial

- $X \sim Geo(p)$
- ullet X is the number of trials needed to get the first success in n independent trials with probability p of success each
- X has the memoryless property P(X>n+m|X>m)=P(x>n) $n,m=0,1,\ldots$

Memoryless property:

$$p(X > n + m|X > m) = P(X > n)$$

Proof:

$$P(X > k) = \sum_{j=k+1}^{\infty} P(X = j)$$

$$= \sum_{j=k+1}^{\infty} (1 - p)^{j-1} p$$

$$= (1 - p)^k p \cdot \frac{1}{1 - (1 - p)}$$

$$= (1 - p)^k$$

$$P(X > n + m | x > m) = \frac{P(X > n + m \bigcap X > m)}{P(X > m)}$$

$$= \frac{P(X > n + m)}{P(X > m)} = \frac{(1 - p)^{n+m}}{(1 - p)^m} = (1 - p)^n = P(X > n)$$

Intuition: The failures in the past have no influence on how long we still need to wait to get the first success in the future

4. Poisson distribution

$$p(k) = P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, k = 0, 1, 2, \dots, \lambda > 0$$

Other discrete distributions:

- · negative binomial
- · discrete uniform

2.3 Continuous random variables and distributions

Definition: A random variable X is called **continuous** if there exists a non-negative function f, such that for any interval [a,b], (a,b) or [a,b):

$$P(X \in [a,b]) = \int_a^b f(x) dx$$

The function f is called the *probability density function(pdf)* of X

Remark: probability density function(pdf) is not probability. P(X = x) = 0 if X is continuous. The probability density function f only gives probability when it is integrated.

If X is continuous, then we can get cdf by:

$$F(a)=P(X\in (-\infty,a])=\int_{-\infty}^a f(x)dx$$

hence, F(x) is continuous, and differentiable "almost everywhere".

We can take f(x) = F'(x) when the derivative exists, and f(x) =arbitrary number otherwise often to choose a value to make f have some continuity.

Property of pdf:

1.
$$f(x)\leq 0$$
 , $x\in R$
2. $\int_{-\infty}^{\infty}f(x)dx=1$
3. For $A\subseteq R$, $P(X\in A)=\int_{A}f(x)dx$

2.3.1 Example of continuous distribution

Exponential distribution

$$f(x) = egin{cases} \lambda e^{-\lambda x} &, x \geq 0 \ 0 &, x \leq 0 \ X \sim Exp(x) \end{cases}$$

Other continuous distributions:

- Normal distribution
- · Uniform distribution

Exercises:

1. Find the cdf of $X \sim Exp(x)$

$$egin{aligned} F(k) &= P(X \leq k) = \int_{-\infty}^k f(x) dx \ &= \int_0^k \lambda e^{-\lambda x} dx \ &= -e^{-\lambda x} \Big|_0^k \ &= -e^{-\lambda k} - (-e^0) \ &= 1 - e^{-\lambda k} \end{aligned}$$

2. Show that the exponential distribution has the memoryless property:

$$P(X > t + s | X > t) = P(X > s)$$

2.4 Joint distribution of r.v's

Let X and Y be two r.v's. defined on the same probability space (Ω, ξ, P)

For each $\omega\in\Omega$, we have at the same time $X(\omega)$ and $Y(\omega)$. Then we can talk about the joint behavior of X and Y

Two joint distribution of r.v's is characterized by joint cdf, joint pmf(discrete case) or joint pdf(continuous case).

• Joint cdf:

$$\circ F(x,y) = P(X < x, Y < y)$$

• Joint pmf:

$$f(x,y) = P(X = x, Y = y)$$

• joint pdf f(x,y) such that for a < b, c < d

$$\circ \ P(X,Y) \in (a,b] imes (c,d] = P(X \in (a,b], Y \in (c,d]) = \int_a^b \int_c^d f(x,y) dy dx$$

o Equivalently:

1.
$$F(x,y)=\int_{-\infty}^x\int_{-\infty}^yf(s,t)dtds$$
 and $f(x,y)=rac{\partial^2}{\partial x\partial y}F(x,y)$ 2. $P((X,Y)\in A)=\int\int_Af(x,y)dxdy$ for $A\subseteq R^2$

Definition: Two r.v's X and Y are called independent, if for all sets $A,B\subseteq R$,

$$P(X < A, Y < B) = P(X \in A) \cdot P(Y \in B)$$

($\{X \in A\}$ and $\{Y \in B\}$ are independent events)

Theorem: Two r.v's \boldsymbol{X} and \boldsymbol{Y} are

- 1. independent, if and only if
- 2. $F(x,y)=F_x(x)F_y(y); x,y\in R$; where F_x : cdf of x; F_y : cdf of y
- 3. $f(x,y)=f_x(x)f_y(y); x,y\in R$; where f is the joint pmf/pdf of X and Y; f_x , f_y are marginal pmf/pdf of X and Y, respectively

Proof:

1.⇒ 2.

If $X \perp \!\!\! \perp Y$, then by definition,

$$F(x,y) = P(X \in (-\infty,x], Y \in (-\infty,y])) = P(X \in (-\infty,x])) \cdot P(Y \in (-\infty,y])) = F_x(x)F_y(y)$$

2.⇒ 3.

Assume $F(x,y) = F_x(x) \cdot F_y(y)$,

$$egin{aligned} f(x,y) &= rac{\partial^2}{\partial x \partial y} F(x,y) = rac{\partial^2}{\partial x \partial y} F_x(x) F_y(y) \ &= (rac{\partial}{\partial x} F_x(x)) (rac{\partial}{\partial y} F_y(y)) \ &= f_x(x) f_y(y) \end{aligned}$$

3.⇒ 1.

Assume $f(x,y)=f_x(x)f_y(y)$; For $A,B\subseteq R$,

$$egin{aligned} P(X \in A, Y \in B) &= \int_{y \in B} \int_{x \in A} f(x,y) dx dy \ &= \int_{y \in B} \int_{x \in A} f_x(x) f_y(y) dx dy \ &= (\int_{x \in A} f_x(x) dx) (\int_{y \in B} f_y(y) dy) \ &= P(X \in A) P(Y \in B) \end{aligned}$$

2.5 Expectation

Definition: For a r.v X, the expectation of g(x) is defined as

$$\mathbb{E}(g(X)) = egin{cases} \sum_{i=1}^\infty g(x_i) P(X=x_i) & ext{ for discrete } X \ \int_{-\infty}^\infty g(x) f(x) dx & ext{ for continuous} X \end{cases}$$

Let X,Y be two r.v's; then the expectation of g(X,Y) is defined in a similar way.

$$\mathbb{E}(g(X,Y)) = \left\{ egin{aligned} \sum_i \sum_j g(x_i,y_j) P(X=x_i,Y=y_j) \ \int \int g(x_i,y_j) f(x,y) dx dy \end{aligned}
ight.$$

2.5.1 Properties of expectation

1. Linearity:expectation of
$$X$$
: $\mathbb{E}(X)=\left\{egin{align*} \sum_{-\infty}^{x}x_iP(X=x_i)\ \int_{-\infty}^{\infty}xf(x)dx \end{array}
ight.$, $g(X)=x$

$$\circ \ \mathbb{E}(ax+b) = a\mathbb{E}(x) + b$$

$$\circ \ \mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$$

2. If
$$X \perp\!\!\!\perp Y$$
 , then $\mathbb{E}(g(X)h(Y)) = \mathbb{E}(g(X)) \cdot \mathbb{E}(h(Y))$

o proof: (continuous case)

$$egin{aligned} \mathbb{E}(g(X)h(Y)) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)f(x,y)dxdy \ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)f_X(x)f_Y(y)dxdy \ &= \int_{-\infty}^{\infty} g(x)f_X(x) \cdot \int_{-\infty}^{\infty} h(y)f_Y(y)dy \end{aligned}$$

 \circ In particular, $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$ if $X \perp \!\!\! \perp Y$

2.5.2 Definitions

0

Definition: The expectation $\mathbb{E}(X^n)$ is called the n-th moment of X:

• 1st moment: $\mathbb{E}(X)$

• 2st moment: $\mathbb{E}(X^2)$

Definition: The variance of a r.v X is defined as:

$$Var(x) = \mathbb{E}((X - \mathbb{E}(X))^2)$$
 also denoted as σ^2, σ_x^2

Definition: the covariance of the r.v's X and Y is defined as:

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))]$$

Thus Var(X) = Cov(X,X)

Definition: the correlation between \boldsymbol{X} and \boldsymbol{Y} is defined as:

$$Cor(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

Fact: $Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$

Proof:

$$egin{aligned} Var(X) &= \mathbb{E}((X - \mathbb{E}(X))^2) \ &= \mathbb{E}(X^2 - 2X\mathbb{E}(X) + (\mathbb{E}(X))^2) \ &= \mathbb{E}(X^2) - 2\mathbb{E}(X\mathbb{E}(X)) + (\mathbb{E}(X))^2 \ &= \mathbb{E}(X^2) - 2(\mathbb{E}(X))^2 + (\mathbb{E}(X))^2 \ &= \mathbb{E}(X^2) - (\mathbb{E}(X))^2 \end{aligned}$$

Fact: $Cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$

Proof:

$$\begin{split} Cov(X,Y) &= \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] \\ &= \mathbb{E}[XY - X\mathbb{E}[Y] - Y\mathbb{E}[X] + \mathbb{E}[X]\mathbb{E}[Y]] \\ &= \mathbb{E}[XY] - \mathbb{E}[X\mathbb{E}[Y]] - \mathbb{E}[Y\mathbb{E}[X]] + \mathbb{E}[E]X]\mathbb{E}[Y]) \\ &= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] - \mathbb{E}[Y]\mathbb{E}[X] + \mathbb{E}[X]\mathbb{E}[Y] \\ &= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] \quad \blacksquare \end{split}$$

Variance and covariance are translation invariant. Variance is quadratic, covariance is bilinear.

$$Var(aX + b) = a^2 \cdot Var(X)$$
 $Cov(aX + b, cY + d) = ac \cdot Cov(X, Y)$

Proof: $Var(aX + b) = a^2 \cdot Var(X)$

$$\begin{split} Var(aX+b) &= \mathbb{E}((aX+b)^2) - (\mathbb{E}(aX+b))^2 \\ &= \mathbb{E}(a^2X^2 + 2abX + b^2) - (a\mathbb{E}(X) + b)^2 \\ &= a^2\mathbb{E}(X^2) + 2ab\mathbb{E}(X) + b^2 - a^2\mathbb{E}^2(X) - ab\mathbb{E}(X) - b^2 \\ &= a^2\mathbb{E}(X^2) - a^2\mathbb{E}^2(X) \\ &= a^2Var(X) \end{split}$$

Proof: Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

$$\begin{split} Var(X+Y) &= \mathbb{E}[(X+Y)^2] - E^2[X+Y] \\ &= \mathbb{E}[X^2 + XY + Y^2] - (\mathbb{E}[X] + \mathbb{E}[Y])^2 \\ &= \mathbb{E}[X^2] + \mathbb{E}[XY] + \mathbb{E}[Y^2] - E^2[X] - 2\mathbb{E}[X]\mathbb{E}[Y] - E^2[Y] \\ &= (\mathbb{E}[X^2] - E^2[X]) + (\mathbb{E}[Y^2] - E^2[Y]) + (\mathbb{E}[XY] - 2\mathbb{E}[X]\mathbb{E}[Y]) \\ &= Var(X) + Var(Y) + 2Cov(X, Y) \end{split}$$

If
$$X \perp \!\!\! \perp Y$$
 , then $Cov(X,Y) = 0$ and $Var(X+Y) = Var(X) + Var(Y)$

Proof:

$$Cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

we know:

$$X \perp\!\!\!\perp Y \Rightarrow \mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$$

Thus,
$$Cov(X,Y) = 0 \Rightarrow Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)$$

So we see independence \Rightarrow Covariance is 0: "uncorrelated"

the converse is not true.

$$Cov(X,Y) = 0 \Rightarrow independence$$

Remarks

We have $\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)$.

If $X \perp \!\!\! \perp Y$, we also have:

- $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$, and
- Var(X + Y) = Var(X) + Var(Y)

It's important to remember that the first result and the other two results are of very different nature. While $\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)$ is a property of expectation and holds unconditionally;

the other two,
$$\mathbb{E}(XY)=\mathbb{E}(X)\mathbb{E}(Y)$$
 and $Var(X+Y)=Var(X)+Var(Y)$, only hold if $X\perp\!\!\!\perp Y$.

It is more appropriate to consider them as properties of independence rather than properties of expectation and variance

2.6 Indicator

A random variable I is called an indicator, if

$$I(w) = egin{cases} 1 & \omega \in A \ 0 & \omega
otin A \end{cases}$$
 $E(I_A) = P(A)$

for some event A

For A given, I is also elevated as I_A

The most important property of indicator is its expectation gives the probability of the event $\mathbb{E}(I_A)=\mathbb{P}(A)$

Proof:

$$egin{aligned} \mathbb{P}(I_A=1) &= \mathbb{P}(\omega:I_A(\omega=1)) \ &= \mathbb{P}(\omega:\omega\in A) \ &= \mathbb{P}(A) \end{aligned}$$

$$\mathbb{P}(I_A=0)=1-\mathbb{P}(A)\Rightarrow \mathbb{E}(I_A)=1\cdot \mathbb{P}(A)+c\cdot (1-\mathbb{P}(A))=\mathbb{P}(A)$$

2.6.1 Example

we see $I_A \sim Ber(\mathbb{P}(A))$

Let $X \sim Bin(n,p)$, X is number of successes in n Bernoulli trials, each with probability p of success

$$\Rightarrow X = I_1 + \cdots + I_n$$

where I_1,\cdots,I_n are indicators for independent events. $I_i=1$ if th i the trial is a success. $I_i=0$ if the i th trial is a failure.

Hence I_i are $\mathsf{idd}(\mathsf{independent} \ \mathsf{and} \ \mathsf{identically} \ \mathsf{distributed})$ r.v's

$$\Rightarrow \mathbb{E}(X) = \mathbb{E}(I_1 + \dots + I_N)$$

$$= \mathbb{E}(I_1) + \dots + \mathbb{E}(I_n)$$

$$= p + \dots + p = n \cdot p$$

$$egin{aligned} Var(X) &= Var(I_1 + \dots + I_n) \ &= Var(I_1) + \dots + Var(I_n) \ &= n \cdot Var(I_i) \ &= n \cdot p(1-p) \end{aligned}$$

$$Var(I_1) = \mathbb{E}(I_1^2) - (\mathbb{E}(I_1))^2 = \mathbb{E}(I_1) - (\mathbb{E}(I_1))^2 = p - p^2 = p(1-p)$$

2.6.1 Example 3

Let X be a r.v. taking values in non-negative integers, then

$$\mathbb{E}(X) = \sum_{n=0}^{\infty} P(X > n)$$

Proof:

Note that $X = \sum_{n=0}^{\infty} I_n$ where $I_n = I_{x>n}.$ (x>n is an event)

$$\mathbb{E}(X) = \mathbb{E}(\sum_{n=0}^{\infty} I_n)$$
 $= \sum_{n=0}^{\infty} \mathbb{E}(I_n)$
 $= \sum_{n=0}^{\infty} P(X > n)$

In particular, let $X \sim Geo(p)$. As we have seen, $P(X>n)=(1-p)^n \Rightarrow$

$$\mathbb{E}(X) = \sum_{n=0}^{\infty} P(X > n)$$
$$= \sum_{n=0}^{\infty} (1 - p)^n$$
$$= \frac{1}{1 - (1 - p)} = \frac{1}{p}$$

2.7 Moment generating function

Definition: Let X be a r.v. Then the function $M(t) = \mathbb{E}(e^{tX})$ is called the *moment generating function(mgf)* of X, if the expectation exists for all $t \in (-h,h)$ for some h>0.

Remark: The mgf is not always well-defined. It is important to check the existence of the expectation.

2.7.1 Properties of mgf

- 1. Moment Generating Function generates moments
 - Theorem:
 - M(0) = 1
 - $M^{(k)}(0) = \mathbb{E}(X^k), k = 1, 2, \dots (M^{(k)} = \frac{d^k}{dt^k}M(t)|_{t=0})$
 - Proof:

$$egin{aligned} M(0) &= \mathbb{E}(e^{0\cdot X}) = \mathbb{E}(1) = 1 \ M^{(k)}(0) &= rac{d^k}{dt^k} \mathbb{E}(e^{t\cdot X)})|_{t=0} \ &= \mathbb{E}(rac{d^k}{dt^k} e^{tX}|_{t=0}) \ &= \mathbb{E}(X^k) \end{aligned}$$

 $\blacksquare \text{ As a result, we have: } M(t) = \sum_{k=0}^\infty \frac{M^{(k)}(0)}{k!} t^k = \sum_{k=0}^\infty \frac{E*X^k}{k!} t^k \text{ (a method to get moment of a r.v)} \\ 2. \ X \perp \!\!\!\perp Y \text{, with mgf's } M_x, M_y. \ \text{Let } M_{X+Y} \text{ be the mgf of } X+Y. \text{ then }$

$$M_{X+Y}(t) = M_X(t)M_Y(t)$$

o Proof:

$$egin{aligned} M_{X+Y}(t) &= \mathbb{E}(e^{t(X+Y)}) \ &= \mathbb{E}(e^{tx}e^{ty}) \ &= \mathbb{E}(e^{tx})\mathbb{E}(e^{ty}) \ &= M_X(t)M_Y(t) \end{aligned}$$

- 3. The mgf completely determines the distribution of a r.v.
 - $\circ \ M_X(t)=M_Y(t)$ for all $t\in (-h,h)$ for some h>0 , then $X\stackrel{d}{=}Y$. ($\stackrel{d}{=}$: have the same distribution)
 - \circ Example: Let $X \sim Poi(\lambda_1)$, $Y \sim Poi(\lambda_2)$. $X \perp \!\!\! \perp Y$. Find the distribution of X+Y
 - First, derive the mgf of a Poisson distribution.

$$egin{align*} M_X(t) &= \mathbb{E}(e^{tX}) \ &= \sum_{n=0}^\infty e^{tn} \cdot P(X=n) \ &= \sum_{n=0}^\infty e^{tn} \cdot rac{\lambda_1^n}{n!} e^{-\lambda_1} \ &= \sum_{n=0}^\infty rac{(e^t \cdot \lambda_1)^n}{n!} \cdot e^{-\lambda_1} \ &= \sum_{n=0}^\infty rac{(e^t \lambda_1)^n}{n!} \cdot e^{-t\lambda_1} \ &= M_X(t) = e^{e^t \lambda_1} e^{-t\lambda_1} \ &= e^{\lambda_1(e^t - 1)}, t \in \mathbb{R}.(e^{\lambda_1(e^t - 1)} \ ext{is mgf of } Poi(\lambda_1)) \ &= M_X(t) = e^{\lambda_2(e^t - 1)}. \end{split}$$

We know that

$$egin{aligned} M_{X+Y}(t) &= M_X(t) M_Y(t) \ &= e^{\lambda_1(e^t-1)} e^{\lambda_2(e^-1)} \ &= e^{(\lambda_1 + \lambda_2)(e^t-1)} \end{aligned}$$

This is the mgf of $Poi(\lambda_1 + \lambda_2)!$

Since the mgf uniquely determines the distribution $X+Y \sim Poi(\lambda_1 + \lambda_2)$

In general, if X_1, X_2, \dots, X_n independent, $X_i \sim Poi(\lambda_i)$, then $\sum X_i \sim Poi(\sum \lambda_i)$

2.7.2 Joint mgf

Definition: Let X,Y be r.v's. Then $M(t_1,t_2):=\mathbb{E}(e^{t_1X+t_2Y})$ is called the joint mgf of X and Y, if the expectation exists for all $t_1\in (-h_1,h_1)$, $t_2\in (-h_2,h_2)$ for some $h_1,h_2>0$.

More generally, we can define $M(t_1,\ldots,t_n)=\mathbb{E}(exp(\sum_{i=1}^n t_iX_i))$ for r.v's X_1,\cdots,X_n , if the expectation exists for $\{(t_1,\cdots,t_n):t_i\in(-h_i,h_i),i=1,\cdots,n\}$ for some $\{h_i>0\},i=1,\cdots,n\}$

2.7.2.1 Properties of the joint mgf

1.
$$M_X(t)=\mathbb{E}(e^{tX})$$
 $=\mathbb{E}(e^{tX+0Y})$ $=M(t,0)$ $M_Y(t)=M(0,t)$

2. $rac{\partial^{m+n}}{\partial t_1^m \partial t_2^n} M(t_1,t_2)|_{(0,0)} = \mathbb{E}(X^m Y^n)$ the proof is similar to the single r.v. case

3. If
$$X \perp\!\!\!\perp Y$$
 , then $M(t_1,t_2) = M_X(t_1) M_Y(t_2)$

• Proof:

$$egin{aligned} M(t_1,t_2) &= \mathbb{E}(e^{t_1X+t_2Y}) \ (X \perp\!\!\!\perp Y) &= \mathbb{E}(e^{t_1X}e^{t_2Y}) \ &= \mathbb{E}(e^{t_1X}) \cdot \mathbb{E}(e^{t_2Y}) \ &= M_X(t_1) \cdot M_Y(t_2) \end{aligned}$$

- \circ **Remark**: Don't confuse this with the result $X \perp\!\!\!\perp Y \Rightarrow M_{X+Y}(t) = M_X(t) M_Y(t)$.
 - $lacksquare M_{X+Y}(t)
 ightarrow \mathsf{mgf} \ \mathsf{of} \ X+Y;$ single argument function t
 - $M(t_1,t_2)
 ightarrow$ joint mgf of (X,Y); two arguments t_1,t_2

3. Conditional distribution and conditional expectation

3.1 Conditional distribution

3.1.1 Discrete case

Definition Let X and Y be discrete r.v's. The conditional distribution of X given Y is given by:

$$P(X=x|Y=y)=rac{(P(X=x,Y=u))}{P(Y=y)}$$

 $P(X = x | Y = y) : f_{X|Y=y}(x).$ $f_{X|Y}(x|y) \leftarrow \text{conditional probability mass function}$

Conditional pmf is a legitimate pmf: given any y , $f_{X|Y=y}(x) \geq 0, orall x$

$$\sum_x f_{X|Y=y}(x) = 1$$

Note that given Y=y, as x changes, the value of the function $f_{X\mid Y=y}(x)$ is proportional to the joint probability.

$$f_{X|Y=y}(x) \propto P(X=x,Y=y)$$

This is useful for solving problems where the denominator P(Y=y) is hard to find.

3.1.1.1 Example

$$X_1 \sim Poi(\lambda_1), X_2 \sim Poi(\lambda_2). X_1 \perp \!\!\!\perp X_2, Y = X_1 + X_2$$

Q:
$$P(X_1 = k|Y = n)$$
 ?

Note
$$P(X_1 = k | Y = n) = f_{X_1 | Y = n}(k)$$

A: $P(X_1 = k | Y = n)$ can only be non-zero for $k = 0, \dots, n$ in this case,

$$egin{aligned} P(X_1 = k | Y = n) &= rac{P(X_1 = k, Y = n)}{P(Y = n)} \ &\propto P(X_1 = k, Y = n) \ &= P(X_1 = k, X_2 = n - k) \ &= e^{-\lambda_1} rac{\lambda_1^k}{k!} \cdot e^{-\lambda_2} rac{\lambda_2^{n-k}}{(n-k)!} \ &\propto (rac{\lambda_1}{\lambda_2})^k / k! (n-k)! \end{aligned}$$

we can get P(X=k|Y=n) by normalizing the above expression.

$$P(X_1=k,Y=n)=rac{(rac{\lambda_1}{\lambda_2})^k/k!(n-k)!}{\sum_{k=0}^n(rac{\lambda_1}{\lambda_k})^k/k!(n-k)!}$$

but then we will need to fine $\sum_{k=0}^n (\frac{\lambda_1}{\lambda_2})^k/k!(n-k)!$

An easier way is to compare $\sum_{k=0}^n (rac{\lambda_1}{\lambda_2})^k/k!(n-k)!$ with the known results for common distribution. In particular, if $X\sim Bin(n,p)$

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

 $\propto (\frac{p}{1 - p})^k / k! (n - k)!$

 $\Rightarrow P(X_1=k|Y=n)$ follows a binomial distributions with parameters n and p given by $rac{p}{1-p}=rac{\lambda_1}{\lambda_2}\Rightarrow p=rac{\lambda_1}{\lambda_1+\lambda_2}$

Thus, given $Y=X_1+X_2=n$, the conditional distribution of X_1 is binomial with parameter n and $\frac{\lambda_1}{\lambda_1+\lambda_2}$

3.1.2 Continuous case

Definition: Let X and Y be continuous r.v's. The conditional distribution of X given Y is given by

$$f_{X|Y}(x|y)=f_{X|Y=y}(x)=rac{f(x,y)}{f_Y(y)}$$

A conditional pdf is a legitimate pdf

$$f_{X|Y}(x|y)\geq 0 \qquad \quad x,y\in \mathbb{R} \ \int_{-\infty}^{\infty} f_{X|Y}(x|y) dx = 1, \quad y\in \mathbb{R}$$

3.1.2.1 Example

Suppose $X \sim Exp(\lambda)$, $Y|X = x \sim Exp(x) = f_{Y|X}(y|x) = xe^{-xy}, y = e \leftarrow$ conditional distribution of Y given X = x

Q: Find the condition pdf $f_{X|Y}(x|y)$

A:

$$egin{aligned} f_{X|Y}(x|y) &= rac{f(x,y)}{f_Y(y)} \ &\propto f(x,y) \ &= f_{Y|X}(y|x) \cdot f_X(x) \ &= xe^{-xy}\lambda e^{-\lambda x} \ &\propto xe^{-x(y+\lambda)}, \qquad x>0,y>0 \end{aligned}$$

Normalization (make the total probability 1)

$$f_{X|Y}(x|y) = rac{xe^{-x(y+\lambda)}}{\int_0^\infty xe^{-x(y+\lambda)}dx} \ \int_0^\infty xe^{-x(y+\lambda)}dx = (rac{1}{\lambda+y})^2 \leftarrow ext{integration by parts}$$

Thus, $f_{X|Y}(x|y)=(\lambda+y)^2xe^{-x(y+\lambda)}$, x>0.

This is a gamma distribution with parameters γ and $\lambda+y$

3.1.2.1. Example 2

Find the distribution of Z = XY.

Attention: the following method is wrong:

$$f_Z(z) = \int_0^\infty f_{Y|X}(rac{z}{x}|x) \cdot f_X(x) dx$$

If we want to directly work with pdf's, we will need to use the change of variable formula for multi-variables. The right formula have turns out to be

$$egin{aligned} f_Z(z) &= \int_0^\infty f_{X,Z}(x,z) dx = \int_0^\infty f_{Z|X}(z|x) f_X(x) dx \ &= \int_0^\infty f(x,rac{z}{x}) \cdot rac{1}{x} dx \ &= f_{Y|X}(rac{z}{x}|x) f_X(x) \cdot rac{1}{x} dx \end{aligned}$$

As an easier way is to use cdf, which gives probability rather than density:

$$egin{aligned} P(Z < z) &= P(XY \le z) \ &= \int_0^\infty P(XY \le z | X = x) f_X(x) dx \qquad ext{(law of total probability)} \ &= \int_0^\infty P(Y \le rac{z}{x} | X = x) \cdot f_X(x) dx \end{aligned} \ Y | X = x \sim Exp(x) \ &= \int_0^\infty (1 - e^{-x \cdot rac{z}{x}}) \cdot \lambda e^{-\lambda x} dx \ &= 1 - e^{-z} \int_0^\infty \lambda e^{-\lambda x} dx \ &= 1 - e^{-z} \Rightarrow Z \sim Exp(1) \end{aligned}$$

Notation $X,Y|\{Z=k\}\stackrel{iid}{\sim}\cdots$ means that given Z=k, X and Y are conditionally independent, and they follow certain distribution.

(the conditional joint cdf/pmf/pdf equals the predict of the conditional cdf's/pmf's/pdf's)

3.2 Conditional expectation

We have seen that conditional pmf/pdf are legitimate pmf/pdf. Correspondingly, a conditional distribution is nothing else but a probability distributions. It is simply a (potentially) different distribution, since it takes more information into consideration.

As a result, we can define everything which are previously defined for unconditional distributions also for conditional distributions.

In particular, it is natural to define the conditional expectation.

Definition. The conditional expectation of g(X) given Y=y is defined as

$$\mathbb{E}(g(X)|Y=y) = egin{cases} \sum_{i_1}^{\infty} g(x_i) P(X=x_u|Y=y) & \quad ext{if } X|Y=y ext{ is discrete} \ \int_{-\infty}^{\infty} g(x) f_{X|Y}(x|y) dx & \quad ext{if } X|X=y ext{ is continuous} \end{cases}$$

Fix y, the conditional expectation is nothing but the expectation taken under the conditional distribution.

3.2.1 What is $\mathbb{E}(X|Y)$?

Different ways to understand conditional expectation

- 1. Fix a value y , $\mathbb{E}(g(X)|Y=y)$ is a number
- 2. As y changes $\mathbb{E}(g(x)|Y=y)$ becomes a function of y (that each y gives a value): $h(y)=:\mathbb{E}(g(x)|Y=y)$
- 3. since y is actually random, we can define $\mathbb{E}(g(x)|Y)=h(Y)$. This is a random variable

$$\mathbb{E}(g(x)|Y))_{(\omega)} = \mathbb{E}(g(x)|Y = Y(\omega))$$

 $\omega \in \Omega$ this random variable takes value $\mathbb{E}(g(x)|Y=y)$ When Y=y

$$\Omega o \mathbb{R} \ h(Y)_{(\omega)} = h(Y(\omega))$$

3.2.2 Properties of conditional expectation

1. Linearity (inherited from expectation)

$$\mathbb{E}(aX+b|Y=y) = a\mathbb{E}(X|Y=y) + b$$
 $\mathbb{E}(X+Z|Y=y) = \mathbb{E}(X|Y=y) + \mathbb{E}(Z|Y=y)$

2. $\mathbb{E}(g(X,Y)|Y=y)=\mathbb{E}(g(X,y)|Y=y)\neq\mathbb{E}(g(X,y))$ when X and Y are not independent

Proof (Discrete):

$$\mathbb{E}(g(X,Y)|Y=y) = \sum_{x_i} \sum_{y_j} g(x_i,y_j) \cdot P(X=x_i,Y=y_j|Y=y)$$
 if $y_j \neq y$ $P(X=x_i,Y=y_j|Y=y) = egin{cases} 0 & ext{if } y_j
eq y \ P(X=x_i,Y=y_j|Y=y) = P(X=x_i|Y=y) & ext{if } y_j = y \end{cases}$

$$Arr \mathbb{E}(g(X,Y)|Y=y) = \sum_{x_i} g(x_i,y) \cdot P(X=x_i|Y=y)$$
 $= \mathbb{E}(g(X,y)|Y=y)$ $g(X,y)$ regarded as a function of x

In particular,

$$\mathbb{E}(g(X) \cdot h(Y)|Y = y) = h(y)\mathbb{E}(g(X)|Y = y)$$
$$\mathbb{E}(g(X) \cdot h(Y)|Y) = h(Y)\mathbb{E}(g(X)|Y)$$

3. If $X \perp Y$, then $\mathbb{E}(g(X)|Y=y) = \mathbb{E}(g(X))$

Fact: If $X \perp Y$, then conditional distribution of X given Y = y is the same as the unconditional distribution of X

Proof(Discrete):

$$egin{aligned} & ext{if } X \perp Y \ & P(X = x_i | Y = y_j) \ & = P(X = x_i | Y = y_j) / P(Y = y_j) \ & = P(X = x_i) P(Y = y_j) / P(Y = y_j) \ & = P(X = x_i) \end{aligned}$$

4. Law of iterated expectation (or double expectation): Expectation of conditionally expectation is its unconditional expectation

$$\mathbb{E}(\mathbb{E}(X|Y))) = \mathbb{E}(X)$$

 $\mathbb{E}(X|Y)$ is a r.v, a function of Y.

Proof(Discrete):

When
$$Y=y_j$$
 , the r.v. $\mathbb{E}(X|Y)=\mathbb{E}(X|Y=y_j)=\sum_{x_i}x_iP(X=x_i|Y=y_j)$. This happens with probability $P(Y=y_j)$
$$\mathbb{E}(\mathbb{E}(X|Y))=\sum_{y_j}(\sum_{x_i}x_iP(X=x_i|Y=y_j))P(Y=y_j)$$

$$=\sum_{x_i}\sum_{y_j}x_iP(X=x_i|Y=y_j)P(Y=y_j)$$

$$=\sum_{x_i}\sum_{y_j}P(X=x_i|Y=y_j)P(Y=y_j) \quad \text{ law of total probability}$$

$$=\sum_{x_i}x_iP(X=x_i)=\mathbb{E}(X)$$

Alternatively,

$$egin{aligned} \sum_{x_i} \sum_{y_j} x_i P(X=x_i|Y=y_j) P(Y=y_j) \ &= \sum_{x_i} \sum_{y_j} x_i P(X=x_i,Y=y_j) \ &= \mathbb{E}(X) \end{aligned} \qquad g(X,Y) = X ext{ at } (x_i,y_j)$$

Example:

Y: # of claims received by insurance company

X: some random parameter

$$Y|X \sim Poi(X), X \sim Exp(\lambda)$$

a)
$$\mathbb{E}(Y)$$
 ?
b) $P(Y=n)$?

a)

$$Y|X \sim Poi(X) \Rightarrow \mathbb{E}(Y|X=x) = x \Rightarrow \mathbb{E}(Y|X) = X$$

$$\therefore \mathbb{E}(Y) = \mathbb{E}(\mathbb{E}(Y|X))$$
$$= \mathbb{E}(X) = \frac{1}{\lambda}$$

b)

$$\begin{split} P(Y=n) &= \int_0^\infty P(Y=n|X=x) f_X(x) dx \\ &= \int_o^\infty \frac{e^{-x} x^n}{n!} \cdot \lambda e^{-\lambda x} dx \\ &= \frac{\lambda}{n!} \int_0^\infty x^n e^{-(\lambda+1)x} dx \\ &= \frac{\lambda}{(\lambda+1)^{n+1} n!} \int_0^\infty ((\lambda+1)x)^n e^{-(\lambda+1)x} d(\lambda+1)x \\ &= \frac{\lambda}{(\lambda+1)^{n+1} n!} \Gamma(n+1) & \Gamma(n+1) = n! \text{ ; formula for gamma function or integration by parts} \\ &= \frac{\lambda}{(\lambda+1)^{n+1}} = (\frac{1}{\lambda+1})^n \cdot \frac{1}{\lambda+1} \\ &\Rightarrow Y+1 \sim Geo(\lambda/(\lambda+1)) \end{split}$$

We verify that $\mathbb{E}(Y) = \frac{\lambda+1}{\lambda} - 1 = \frac{1}{\lambda}$

3.3 Decomposition of variance (EVVE's low)

Definition: The conditional variance of Y given X=x is defined as

$$Var(Y|X=x)=\mathbb{E}((Y-\mathbb{E}(Y|X=x))^2|X=x)$$
 $Var(Y|X)_{(\omega)}=Var(Y|X=X_{(\omega)})$ $Var(Y|X)_{(\omega)}\colon ext{a r.v, a function of } X$

The conditional variance is simply the variance taken under the conditional distribution

$$\Rightarrow V(Y|X=x) = \mathbb{E}(Y^2|X=x) - (\mathbb{E}(Y|X=x))^2$$

Thus

$$Var(Y) = \mathbb{E}(Var(Y|X)) + Var(\mathbb{E}(Y|X))$$

 $\mathbb{E}(Var(Y|X))$: "intra-group variance" $Var(\mathbb{E}(Y|X))$: "inter-group variance"

Proof:

$$RHS = E(E(Y^{2}|X) - (E(Y|X))^{2}) + E((E(Y|X))^{2}) - (E(E(Y|X)))^{2}$$

$$= E(E(Y^{2}|X)) - \frac{E((E(Y|X))^{2})}{E((E(Y|X))^{2})} + \frac{E((E(Y|X))^{2})}{E(E(Y|X))^{2}} - (E(E(Y|X)))^{2}$$

$$= E(Y^{2}) - (E(Y))^{2}$$

$$= Var(Y)$$

4. Stochastic Processes

- 1. sequence / family of random variables
- 2. a random function (hard to formulate)

Definition: A **stochastic process** $\{X_t\}_{t\in T}$ is a collection of random variables, defined on a common probability space.

T: index set. In most cases, T corresponds to time, and is either discrete $\{0,1,2,\cdots\}$ or continuous $[0,\infty)$

In discrete case, we writes $\{X_n\}_{n=0,1,2,\dots}$

This **state space** S os a stochastic process is the set of all possible value of $X_t, t \in T$

S can also be either discrete or continuous. In this course, we typically deal with **discrete** state space. Then we relabel the states so that $S=\{0,1,2,\cdots\}$ (countable state space) or $S=\{0,1,2,\cdots,M\}$ (finite state space)

Remark: As in the case of the joint distribution, we need the r.v's in a stochastic process to be defined on a common probability space, because we want to discuss their joint behaviours, i.t, how things change over time.

Thus, we can identify each point ω in the sample space Ω with a function defined on T and taking value in S. Each function is called a **path** of this stochastic process

Example Let X_0, X_1, \cdots be independent and identical r.v's following some distribution. Then $\{X_n\}_{n=0,1,2,\dots}$ is a stochastic process

Example Let $X_1, X_2, ...$ be independent and identical r.v.'s. $P(X_1=1)=p$, and $P(X_1=-1)=1-p$. Define $S_0=0, S_n=\sum_{i=1}^n X_i, n\leq 1$, e.g.

- $S_0 = 0$
- $S_1=X_1$
- $S_2 = X_1 + X_2$
-

Then $\{S_n\}_{n=0,1,\dots}$ is a stochastic process, with state space $S=\mathbb{Z}$ (integer)

Sn

4.1 Markov Chain

4.1.1 Simple Random Walk

 $\{S_n\}_{n=0,1,\dots}$ is called a "simple random walk". ($S_n=S_{n-1}+X_n$)

$$S_n = egin{cases} S_{n-1}+1 \ S_{n-1}-1 \end{cases}$$

Remark: Why we need the concept of "stochastic process"? Why don't we just look at the joint distribution of $(X_0, X_1, ..., X_n)$?

Answer: The joint distribution of a large number of r.v's is very complicated, because it does not take advantage of the special structure of T (time).

For example, simple random walk. The full distribution of $(S_0, S_1, ..., S_n)$ is complicated for n large. However, the structure is actually simple if we focus on the adjacent times:

$$S_{n+1} = S_n + X_{n+1}$$

 S_n : last value. X_{n+1} : related to Ber(p). They are independent

By introducing time into the framework, we can greatly simplify many things.

More precisely, we find that for simple random walk, $\{S_n\}_{n=0,1,\dots}$, if we know S_n the distribution of S_n+1 will not depend on the history $(S_0,...,S_{n-1})$. This is a very useful property

In general for a stochastic process $\{X_n\}_{n=0,1,\dots}$, at time n, we already know X_0,X_1,\dots,X_n , S_0 ; our best estimate of the distribution of X_{n+1} should be the conditional distribution:

$$X_{n+1}|X_n,...,X_n$$

given by:

$$P(X_{n+1} = x_{n+1} | X_n = x_n, ..., X_0 = x_0)$$

As time passes, the expression becomes more and more complicated \rightarrow impossible to handle.

However, if we know that this conditional distribution is actually the same as the conditional distribution only given X_n , then the structure will remain simple for any time. This motivates the notion of *Markov chain*.

4.1.2 Markov Chain

4.1.2.1 Discrete-time Markov Chain

Definition and Examples

Definition: A discrete-time Stochastic process $\{X_n\}_{n=0,1,\dots}$ is called a **discrete-time Markov Chain (DTMC)**, if its state space S is discrete, and it has the Markov property:

$$P(X_{n+1} = x_{n+1} | X_n = x_n, ..., X_o = x_o)$$

= $P(X_{n+1} = x_{n+1} | X_n = x_n)$

for all $n, x_0, ..., x_n, x_{n+1} \in S$

If $X_{n+1}|\{x_n=i\}$ does not change over time, $P(X_{n+1}=j|N_n=i)=P(X_1=j|X_0=i)$, then we call this Markov chain **time-homogeneous** (default setting for this course).

$$P(X_{n+1} = x_{n+1} | X_n = x_n, ..., X_0 = x_0)$$
 $X_{n+1} = x_{n+1}$: future; $X_n = x_n$: present(state) $= P(X_{n+1} = x_{n+1} | X_n = x_n)$ $X_{n-1} = x_{n-1}, ..., X_0 = x_0$: past(history)

Intuition: Given the present state, the past and the future are independent. In other words, the future depends on the previous results only through the current state.

Example: simple random walk

The simple random walk $\{S_n\}_{n=0,1,\dots}$ is a Markov chain

Proof:

Recall that $S_{n+1} = S_n + X_{n+1}$

$$egin{aligned} &P(S_{n+1}=s_{n+1}|S_n=s_n,...,S_0=s_0)\ &=0\ &=P(S_{n+1}=s_{n+1}|S_n=s_n) \end{aligned}$$

if $s_{n+1}
eq s_n \pm$

$$\begin{split} &P(S_{n+1}=s_n+1|S_n=s_n,...,s_0=0)\\ &=P(X_{n+1}|S_n=s_n,...,S_0=0)\\ &=P(X_{n+1}=1) & X_{n+1}\perp(X_1,...,X_n) \text{ hence also } (S_0,...,S_n) \end{split}$$

Similarly,

$$P(S_{n+1} = s_n + 1 | S_n = s_n)$$

= $P(X_{n+1} = 1 | S_n = s_n)$
= $P(X_{n+1} = 1)$
 $\Rightarrow P(S_{n+1} | S_n = s_n, ..., S_0 = s_0)$

Similarly,

$$egin{aligned} &P(S_{n+1}=s_n-1|S_n=s_n,...,S_0=0) \ &=P(S_{n+1}=s_n-1|S_n=s_n) \ &=P(X_{n+1}=-1) \ &\Rightarrow \{S_n\}_{n=0,1,...} ext{ is a DTMC } \ \blacksquare \end{aligned}$$

4.1.3 One-step transition probability matrix

For a time-homogeneous DTMC, define

$$P_{ij} = P(X_1 = j | X_0 = i)$$

= $P(X_{n+1} = j | X_n = i)$ $n = 0, 1, ...$

 P_{ij} : one step transition probability

The collection of $P_{ij}, i, j \in S$ governs all the one-step transitions of the DTMC. Since it has two indices i and j; it naturally forms a matrix $P = \{P_{ij}\}_{i,j \in S}$, called the **(one-setp) transition (probability) matrix** or **transition matrix**

Property of a transition matrix $P = \{P_{ij}\}_{i,j \in S}$:

$$egin{aligned} P_{ij} \geq 0 & orall i, j \in S \ & \sum_{j \in S} P_{ij} = 1 & orall i \in S &
ightarrow ext{ the row some of } P ext{ are all } 1 \end{aligned}$$

Reason:

$$\sum_{j \in S} P_{ij} = \sum_{j \in S} P(X_1 = j | X_0 = i)$$
 $= P(X_1 \in S | X_o = i)$
 $= 1$

Example 1: simple random walk

There will be 3 cases:

$$P_{i,i+1} = P(S_1 = i + 1 | S_0 = i) = P(X_1 = 1) = p$$

 $P_{i,i-1} = P(S_1 = i - 1 | S_0 = i) = P(X_1 = -1) = 1 - p =: q$
 $P_{i,j} = 0$ for $j \neq i \pm 1$

$$\Rightarrow (\text{infinite dimension})p = \begin{cases} \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & 0 & p & 0 & \dots & \dots & \dots \\ \dots & q & 0 & p & \dots & \dots & \dots \\ \dots & \dots & q & 0 & p & \dots & \dots \\ \dots & \dots & \dots & q & 0 & p & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \end{cases}$$

Example 2: Ehrenfest's urn

Two urns A, B, total M balls. Each time, pick one ball randomly(uniformly), and move it to the opposite urn.

$$X_n: \# ext{ of balls in } A ext{ after step } n$$

$$S = \{0, 1, ..., M\}$$
 $P_{ij} = P(X_1 = j | X_0 = j) \qquad (i ext{ balls in } A, M - i ext{ balls in } B)$
 $= \begin{cases} i/M & j = i - 1 \\ (M - i)/M & j = i + 1 \\ 0 & j \neq i \pm 1 \end{cases}$

Example 3: Gambler's ruin

A gambler, each time wins 1 with probability p, losses 1 with probability 1-p=q. Initial wealth $S_0=a$; wealth at time n: S_n . The gambler leaves if $S_n=0$ (losses all money) or $S_n=M>a$ (wins certain amount of money and gets satisfied)

This is a variant of the simple random walk, where we have absorbing barriers($P_{ii}=1$) at 0 and M

$$S = \{0,...,M\}$$

$$P_{ij} = \begin{cases} p & j = i+1, i = 1,...,M-1\\ q & j = i-1, i = 1,...,M-1\\ 1 & i = j = 0 \text{ or } i = j = M\\ 0 & \text{otherwise} \end{cases}$$

$$p = \begin{cases} 1 & 0 & ...\\ q & 0 & p & ...\\ ... & q & 0 & p & ...\\ ... & q & 0 & p & ...\\ ... & ... & q & 0 & p & ...\\ ... & ... & q & 0 & p & ...\\ ... & ... & q & 0 & p & ...\\ ... & ... & q & 0 & p & ...\\ ... & ... & q & 0 & p & ...\\ ... & ... & q & 0 & p & ...\\ ... & ... & 0 & 1 \end{cases}$$

Let $X_n \in \{1,2,3,4\}$ be the premium level for a customer at year n

$$Y_n \stackrel{iid}{\sim} Poi(\lambda)$$
: # of claims at year n

- $\begin{tabular}{ll} \bullet & \mbox{If } Y_n = 0 \mbox{ (no claims)} \\ & \circ & X_{n+1} = max(X_{n-1},1) \end{tabular}$
- ullet If $Y_n>0$ $\circ \ X_{n+1}=min(X_n+Y_n,4)$

Denote $a_k = P(Y_n = k), k = 0, 1, \dots$

$$p = egin{cases} a_0 & a_1 & a_2 & (1-a_0-a_1-a_2) \ a_0 & 0 & a_1 & (1-a_0-a_1) \ 0 & a_0 & 0 & (1-a_0) \ 0 & 0 & a_0 & (1-a_0) \ \end{cases}$$

4.2 Chapman-Kolmogorov equations

Q: Given the (one-step) transition matrix, $P=\{P_{ij}\}_{i,j\in S}$, how can we decide the n-step transition probability

$$egin{aligned} P_{ij}^{(n)} &:= P(X_n = j | X_0 = i) \ &= P(X_{n+m} = j | X_m = i), \quad m = 0, 1, ... \end{aligned}$$

As a special case, let us start with $P_{ij}^{(2)}$ and their collection $p^{(2)}=\{P_{ij}^{(2)}\}_{i,j\in S}$ (also a square matrix, same dimension as P)

Condition on what happens at time 1:

$$egin{aligned} P_{ij}^{(2)} &= P(X_2 = j | X_0 = i) \ &= \sum_{j \in S} P(X_2 = j | X_0 = i, X_1 = k) \cdot P(X_1 = k | X_0 = i) \end{aligned} \quad ext{conditional law of total probability}$$

4.2.1 Conditional Law of total probability

$$\begin{split} &P(X_2=j|X_0=i)\\ &=\sum_{k\in S}P(X_2=j,X_1=k|X_0=i)\\ &=\sum_{k\in S}\frac{P(X_2=j,X_1=k,X_0=i)}{P(X_0=i)}\\ &=\sum_{k\in S}\frac{P(X_2=j,X_1=k,X_0=i)}{P(X_1=k,X_0=i)}\cdot\frac{P(X_1=k,X_0=i)}{P(X_0=i)}\\ &=\sum_{k\in S}P(X_2=j|X_0=i,X_1=k)\cdot P(X_1=k|X_0=i) \end{split}$$

continue on $P_{ij}^{\left(2
ight)}$

$$egin{aligned} P_{ij}^{(2)} &= P(X_2 = j | X_0 = i) \ &= \sum_{j \in S} P(X_2 = j | X_0 = i, X_1 = k) \cdot P(X_1 = k | X_0 = i) \quad ext{conditional law of total probability} \ &= \sum_{k \in S} P(X_2 = j | X_1 = k) \cdot P(X_1 = k | X_0 = i) \ &= \sum_{k \in S} P(X_1 = j | X_0 = k) \cdot P(X_1 = k | X_0 = i) \ &= \sum_{k \in S} P_{ik} \cdot P_{kj} \ &= (P \cdot P)_{ij} \end{aligned}$$

Thus,
$$p^{(2)} = P \cdot P = p^2$$

Using the smae idea, for n, m = 0, 1, 2, 3...:

$$\begin{split} P_{ij}^{(n+m)} &= P(X_{n+m} = j | X_0 = i) \\ &= \sum_{k \in S} P(X_{n+m} = j | X_0 = i, X_m = k) \cdot P(X_m = k | X_0 = i) \\ &= \sum_{k \in S} P(X_{n+m} = j | X_m = k) \cdot P(X_m = k | X_0 = i) \quad \text{Markov property} \\ &= \sum_{k \in S} P(X_n = j | X_0 = k) \cdot P(X_m = k | X_0 = i) \\ &= \sum_{k \in S} p_{ik}^{(m)} \cdot P_{kj}^{(n)} \\ &= (p^{(m)} \cdot p^{(n)})_{ij} \\ &\Rightarrow p^{(n+m)} = p^{(m)} \cdot p^{(n)} \quad (*) \end{split}$$

By definition, $p^{(1)}=p$

•

$$ullet \; \; \Rightarrow p^{(n)} = p^n$$

Note:

• $n \operatorname{from} p^{(n)}$: n-step transition probability matrix

$$egin{aligned} \circ & p^{(n)} &= \{p^{(n)}_{ij}\}_{i,j \in S} \ & p^{(n)}_{ij} &= P(X_n = j|X_0 = i) \end{aligned}$$

• n from p^n : n-th power of the (one-step) transition matrix

$$egin{aligned} &\circ & p^n = p \cdot ... \cdot p \ & p = \{P_{ij}\}_{i,j \in S} \ & p_{ij} = P(X_1 = j | X_0 = i) \end{aligned}$$

(*) is called the **Chapman-Kolmogorov equations** (c-k equation). Entry-wise:

$$P_{ij}^{n+m} = \sum_{k \in S} P_{ik}^{(m)} P_{kj}^{(n)}$$

Intuition:

time

"Condition at time m (on X_m) and sum ${\sf p}$ all the possibilities"

4.2.2 Distribution of X_n

So far, we have seen transition probability $P_{ij}^{(m)} = P(X_n = j | X_0 = i)$. This is not the probability $P(X_n = j)$. In order to get this distribution, we need the information about which state the Markov chain starts with.

Let $\alpha_{0,i}=P(X_0=i)$. The row vector $\alpha_0=(\alpha_0,0,\alpha_0,1,...)$ is called the **initial distribution** of the Markov chain. This is the distribution of the initial state X_0

Similarly, we define distribution of X_n : $\alpha_n=(\alpha_n,0,\alpha_n,1,...)$ where $\alpha_{n,i}=P(X_n=i)$

Fact: $\alpha_n = \alpha_0 \cdot p^n$

Proof:

$$egin{aligned} lpha_{n,j} &= P(X_n = j) \ &= \sum_{i \in S} P(X_n = j | X_0 = i) \cdot P(X_0 = i) \ &= \sum_{i \in S} lpha_{0,i} \cdot P_{ij}^{(n)} \ &= (lpha_0 \cdot P^{(n)})_j = (lpha_0 \cdot p^n)_j \ &\Rightarrow lpha_n = lpha 0 \cdot p^n \end{aligned}$$

- α_n : distribution of X_n
- α_0 : initial distribution
- p^n : transition matrix

Remark: The distribution of a DTMC is completely determined by two things:

- the initial distribution $lpha_0$ (row vector), and
- the transition matrix p (square matrix)

4.3 Stationary distribution (invariant distribution)

Definition: A probability distribution $\pi = (\pi_0, \pi_1, ...)$ os ca;;ed a **stationary distribution**(invariant distribution) of the DTMC $\{X_n\}_{n=0,1,...}$ with transition matrix P, if :

1.
$$\underline{\pi}=\pi\cdot P$$
 2. $\sum_{i\in S}\pi_i=1(\Leftrightarrow\underline{\pi}\cdot\mathbf{1})$. (\mathbb{L} : a column of all 1's)

Why such $\underline{\pi}$ is called stationary/invariant distribution?

$$\sum_{i \in S} \pi_i = 1, \pi_i \geq 0, i = 0, 1, ... \Rightarrow ext{distribution}$$
 $\underline{\pi} = \pi \cdot P \Rightarrow ext{invariant/stationary}.$

Assume the MC starts from the initial distribution $lpha_0=\underline{\pi}.$ hen the distribution of X_1 is

$$\alpha_1 = \alpha_0 \cot P = \underline{\pi} \cdot P = \underline{\pi} = \alpha_0$$

The distribution of X_2 :

$$lpha_2 = lpha_0 \cdot P^2 = \underline{\pi} \cdot P \cdot P = \underline{\pi} \cdot P = \underline{(\pi)} = lpha_0$$

$$\dots \dots$$

$$lpha_n = lpha_0$$

Thus, if the MC starts from a stationary distribution, then its distribution will not change over time.