EP0474313

Publication Title:

Nucleotide sequence coding for an outer membrane protein from Neisseria meningitidis and use of said protein in vaccine preparations

Abstract:

The present invention is concerned with a method for the isolation of a nucleotide sequence which codes for a protein having a molecular weight of about 64 000 daltons, which is located on the outer membrane of N. meningitidis, as well as with the recombinant DNA obtained therefrom, which is used for the transformation of a host microorganism. The technical object pursued with the invention is the identification of a nucleotide sequence coding for a highly conserved and common protein for the majority of pathogenic Neisseria strains, the production of this protein with a high level of purity and in commercially useful amounts using the recombinant way, so that it can be used in diagnostic methods and vaccine preparations with a broad immunoprotection spectrum.

Data supplied from the esp@cenet database - http://ep.espacenet.com

11 Publication number:

0 474 313 A2

EUROPEAN PATENT APPLICATION

(21) Application number: 91202291.0

⁽²²⁾ Date of filing: **06.09.91**

(a) Int. CI.5: **C12N 15/31**, A61K 39/095, C12P 21/08, C12N 15/62, C12N 15/53, C12N 15/54, A61K 39/295, C12N 1/21, //(C12N1/21,C12R1:19)

Priority: 07.09.90 CU 14590

43 Date of publication of application: 11.03.92 Bulletin 92/11

Ø Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI LU NL SE

7) Applicant: CENTRO DE INGENIERIA GENETICA Y BIOTECNOLOGIA 31 Street, '/156 & 190, Cubanacan Playa Havana(CU)

② Inventor: Rodriguez, Ricardo Silva Calle 15 No. 4209, entre 42 y 44, Playa La Habana(CU)

Inventor: Houssein Sosa, Manuel Selman

Paseo No. 126, entre 5ta y Calzada

Vedado, La Habana(CU) Inventor: Nieto, Gerardo Guillén

Linea No.6, Apto 4, entre N y O, Vedado

La Habana(CU)

Inventor: Herrera Martinez, Luis Saturnino

Calle 96, entre 3a y 3aA, Playa

La Habana(CU)

Inventor: Fernández Mas , Julio Ra I Calle 26 No.873 1-2,Apto 3, entre Conill

y45,Nuevo La Habana(CU)

Inventor: Novoa Pérez, Lidia Inés

Calle 184 No.3112, entre 31 y 33, Apto 49,

Playa

La Habana(CU)

Inventor: Grillo, Juan Morales

Compostela No.653, Apto 1, entre Luz y

Acosta

Habana Vieja, La Habana(CU)
Inventor: Morera Cordova, Vivian

Calle 184 No.3112, entre 31 y 33, Apto 39,

Playa

La Habana(CU)

Inventor: González Blanco, Sonia

Calle 184 No.3112, entre 31 y 33, Apto 42,

Playa

La Habana(CU)

Inventor: Santos, Beatriz Tamargo

Calle 202 No.29302, entre 293y295, Reparto

Calixto

Sánchez, Boyeros, La Habana(CU)

Inventor: del Valle Rosales, Jes s Augusto D'Strampes N.351, entre San Mariano y Vista

Alegre

La Vibora, La Habana(CU)

Inventor: Menéndez, Evelin Caballero

Calle 7 No.214, entre 2 y 4, Cayo de la Rosa

Bauta, La Habana(CU)

Inventor: Alvarez Acosta, Anabel

Calle 184 No.3112, entre 31 y 33, Apto 1,

Playa

La Habana(CU)

Inventor: Couzeau Rodriguez, Edelgis Calle 184 No.3112, entre 31 y 33, Apto 20,

Playa

La Habana(CU)

Inventor: Cruz Le n, Silian

Ave 47 No.11812, entre 118 y 120, Marianao

La Habana(CU)

Inventor: Musacchio Lasa, Alexis
Calle 128 No.7117, entre 71 y 73, Mariel

La Habana(CU)

(4) Representative: Smulders, Theodorus A.H.J.,

Ir. et al

Vereenigde Octrooibureaux, Nieuwe

Parklaan 97

NL-2587 BN Den Haag(NL)

Nucleotide sequence coding for an outer membrane protein from Neisseria meningitidis and use

of said protein in vaccine preparations.

The present invention is concerned with a method for the isolation of a nucleotide sequence which codes for a protein having a molecular weight of about 64 000 daltons, which is located on the outer membrane of N. meningitidis, as well as with the recombinant DNA obtained therefrom, which is used for the transformation of a host microorganism. The technical object pursued with the invention is the identification of a nucleotide sequence coding for a highly conserved and common protein for the majority of pathogenic Neisseria strains, the production of this protein with a high level of purity and in commercially useful amounts using the recombinant way, so that it can be used in diagnostic methods and vaccine preparations with a broad immunoprotection spectrum.

FIG. 1

The present invention is in the field of Genetic Engineering and Biotechnology. More in particular, the invention is related to a nucleotide sequence obtained from the pathogenic bacterium Neisseria meningitidis, which nucleotide sequence codes for a protein belonging to the outer membrane of said bacterium. Said protein is cloned and expressed in the host Escherichia coli. The characteristics of this protein as well as its capacity to induce immunologically active antibodies (bactericidal antibodies) in its natural host, allow its use in vaccine preparations against pathogenic strains of this microorganism.

The gram-negative bacterium N. meningitidis is responsable for one of every three cases of bacterial meningitidis in the world. It was described for the first time by Anton Weichselbaum in 1887 (I. DeVoe, 1982, Microbiol. Revs. 46: 162-190), and man (i.e. human beings) is its only natural host up to date.

In the first half of this century some essential aspects were found in relation to the metabolism and serological differentiation of this microorganism. The first unsuccessful attempts to obtain vaccine preparations were based on its capsular polysaccharide (E. Kabat et al., 1945, J. Exp. Med. 80: 299-307). According to the chemical composition of this capsular polysaccharide, the bacterium N. meningitidis is serogrouped in A, B, C, 29-E, H, I, K, L, W-135, X, Y or Z, and the major percentage of illness is caused by A, C, Y, W-135 and B. Non-encapsulated strains are not associated with the invasive disease.

Using different methods of purification of these polysaccharides (E. Gotschlich et al., 1969, J. Exp. Med. 129: 1349-1365) the four first polysaccharides (PS) showed to be good immunogens and inducers of bactericidal antibodies in humans (E. Gotschlich et al., 1969, J. Exp. Med. 129: 1367-1384). The presence of this kind of antibodies has been correlated previously with non-susceptibility to the infection (I. Goldschneider et al., 1969, J. Exp. Med. 129: 1307-1326). As of today mono-, bi- or tetravalent vaccines have been well studied for serotypes A, C and W-135 (F. Ambrosch et al., 1983, Bulletin of the WHO 61: 317-323; I. Vodopija et al., 1983, Infect. Immunol. 42: 599-604; M. Cadoz et al., 1985, Vaccine 3: 340-342; H. Peltola et al., 1985, Pediatrics 76: 91-96).

These vaccines have been licensed for their use in humans in different countries (Centers for Disease Control, 1985, Morbid. Mortal. Weekly Report 34: 255-259) and some of them are commercially available from different firms and producers (Connaught Laboratories, USA; Smith Kline-RIT, Belgium; Institute Merieux, France; Behringwerke Aktiengesellschaft, Germany; Istituto Sieroterapico e Vaccino genea Toscano "Sclavo", Italy; Swiss Serum and Vaccine Institute, Berne, Switzerland; among others).

However, the conventional vaccine against N. meningitidis serogroup C does not induce sufficient levels of bactericidal antibodies in children under 2 years old, which are the principal victims of this disease. It has been demonstrated that the titer of specific antibodies against N. meningitidis in children under four years of age, after three years of vaccination, is similar in vaccinated and in non-vaccinated ones (H. Kayhty et al., 1980, J. of Infect. Dis. 142: 861-868). Also, no memory response was found against N. meningitidis after 8 years of vaccination in young adults (N. Rautonen et al., 1986, J. of Immunol. 137: 2670-2675).

The polysaccharide corresponding to N. meningitidis serogroup B is poorly immunogenic (E. Gotschlich et al., 1969, J. Exp. Med. 129: 1349-1365) and induces a poor response of IgM of low specificity (W. Zollinger et al., 1979, J. Clin. Invest. 63: 836-848). There are different theories related to this problem, such as cross-reactivity between B polysaccharide and fetal brain structures, antigenic structures modified in solution and sensitivity to neuroaminidases (C. Moreno et al., 1985, Infect. Immun. 47: 527-533). Recently, a chemical modification of PS B was achieved, which induced a response in the host (H. Jennings et al., 1988, US Patent 4 727 136; F. Ashton et al., 1989, Microb. Pathogen. 6: 455-458), but safety of this vaccine in humans has not been demonstrated.

Due to the lack of an effective vaccine against N. meningitidis B, and because the risk of endemic infection is low and mainly restricted to children, a routine immunization with polysaccharides is not recommended (C. Frasch, 1989, Clin. Microbiol. Revs. 2: S134-S138) except in the case of an epidemic.

Since after the Second World War the disease was caused in most of the cases by N. meningitidis B, vaccines against serogroup B gained special significance.

Other outer membrane components of N. meningitidis include phospholipids, lipopolysaccharides (LPS or endotoxins), pili proteins and others. Different immunotypes of LPS have been described for N. meningitidis (W. Zollinger and R. Mandrell, 1977, Infect. Immun. 18: 424-433; C.M. Tsai et al., 1983, J. Bacteriol. 155: 498-504) and immunogenicity using non-toxic derivatives was assayed (H. Jennings et al., 1984, Infect. Immun. 43: 407-412) but their variability (H. Schneider et al., 1984, Infect. Immun. 45: 544-549) and pyrogenicity (when it is conjugated to lipid A) are limiting factors up to now.

The pili, structures needed to fix cells to nasopharingeal mucous membrane (D. Stephens et al., 1983, The J. Infect. Dis. 148: 369-376) have antigenic diversity among different strains (J. Greenblatt et al., 1988, Infect. Immun. 56: 2356-2362) with some common epitopes (D. Stephens et al., 1988, The J. Infect. Dis. 158: 332-342). Presently there are some doubts in relation to the effectiveness of a vaccine based on these structures. However some of these types of vaccine have been obtained, without known results related to

their use in humans (C. Brinton, 1988, US Patent 4 769 240).

35

50

Recently, the attention has switched to the other proteins of the outer membrane of this bacterium. There are many immunological types of these protein complexes.

The strains of N. meningitidis are subdivided in serotypes according to the presence of specific epitopes in the majoritary protein P1/P2 and in subtypes according to other epitopes in protein P1 (C. Frasch et al., 1985, Rev. Infect. Dis. 7: 504-510).

There are several published articles and patent applications concerning vaccines based on cocktails of these proteins, with previous selective removal of endotoxins using biocompatible detergents. The immunogenicity of these cocktails in animals and humans has been demonstrated (W. Zollinger et al., 1979, J. Clin. Invest. 63: 836-848; C. Frasch and M. Peppler, 1982, Infect. Immun. 37: 271-280; E. Beuvery et al., 1983, Infect. Immun. 40: 369-380; E. Rosenqvist et al., 1983, NIPH Annals 6: 139-149; L. Wang and C. Frasch, 1984, Infect. Immun. 46: 408-414; C. Moreno et al., 1985, Infect. Immun. 47: 527-533; E. Wedege and L.

Froholm, 1986, Infect. Immun. 51: 571-578; C. Frasch et al., 1988, The J. Infect. Dis. 158: 710-718; M. Lifely. and Z. Wang, 1988, Infect. Immun. 56: 3221-3227; J. Poolman et al., 1988, In J. Poolman et al (Eds), Gonococci and Meningococci, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 159-165; E. Rosenqvist et al., 1988, J. Clin. Microbiol. 26: 1543-1548), including results in massive field trials e.g. Capetown, South Africa in 1981 (C. Frasch, 1985, Eur. J. Clin. Microbiol. 4: 533-536); Iquique, Chile, 1987 (W. Zollinger, 1988, Proceedings of the Sixth International Pathogenic Neisseria Conference. Callaway Gardens Conference Center) and Cuba 1986 and 1988 (G. Sierra, 1988, Proceedings of the Sixth International Pathogenic Neisseria Conference. Callaway Gardens Conference Center). However, with the exception of the last case, the bactericidal antibodies induced by these preparations were restricted to the same serotype strains or related ones.

One of these vaccines is referred to in US patent 4,601,903 which is restricted to one of the Neisseria types producing meningitis (serotype 2), with a high incidence, but also other serotypes have been isolated with high frequency from patients, such as serotypes 4 (Cuba from 1981 to 1983, H. Abdillahi et al., 1988, Eur. J. Clin. Microbiol. Infect. Dis. 7: 293-296; Finland from 1976 to 1987, H. Kayhty et al., 1989, Scand. J. Infect. Dis. 21: 527-535); 8 (Australia from 1971 to 1980, F. Ashton et al., 1984, Can. J. Med. Biol. 30: 1289-1291) and 15 (Norway from 1982 to 1984, L. Froholm et al., 1985, Proceedings of the Fourth International Symposium on Pathogenic Neisseria. American Society for Microbiology; Chile from 1985 to 1987, S. Ruiz et al., 1988, Proceedings of the Sixth International Pathogenic Neisseria Conference. Callaway Gardens Conference Center) as well as strains of undefined serotype (F. Ashton et al., 1980, Can. J. Microbiol. 26: 1480-1488; Australia from 1971 to 1980, F. Ashton et al., 1984, Can. J. Med. Biol. 30: 1289-1291; Finland from 1976 to 1987, H. Kayhty et al., 1989, Scan. J. Infect. Dis. 21: 527-535).

The Cuban vaccine achieved in 1988 by the Centro Nacional de Biopreparados (European Patent Application. No. 301 992) has proven to be very effective. It is based on a high molecular weight antigenic complex. It possesses a broad range of cross-reactivity with other strains and produces and maintains bactericidal antibodies in the immunized host.

However, the methods employed to obtain this type of vaccine start with the multiplication in an appropriate culture of a microorganism which is highly pathogenic, with the associated biological risk of handling directly the bacteria. Moreover, this kind of preparation contains lipopolysaccharides, a contaminant that, although it may increase the product's effectiveness, shows at the same time undesirable secondary effects because of its powerful pyrogenicity. Also, its variation in minor antigenic components, which form part of the preparation, cannot be controlled in the different batches, which makes it difficult to follow important parameters related to the reactogenicity and immunogenicity.

For this reason, there is increasing interest in the identification of nucleotide sequences coding for highly conserved proteins in all strains, and even more so the identification of inducer proteins of bactericidal antibodies common to the majority of pathogenic Neisseria, in order to obtain vaccine preparations with a broad spectrum of protection.

There are different proteins with high molecular weight which are present in low amounts in the outer membrane of N. meningitidis when this microorganism is grown in conventional culture media but have a strong response in affected individuals (J. Black et al., 1986, Infect. Immun. 54: 710-713; L. Aoun et al., 1988, Ann. Inst. Pasteur/ Microbiol. 139: 203-212) and/or increase their response under special culture conditions (J. van Putten et al., 1987, Antoine van Leeuwenhoek 53: 557-5564; A. Schryvers and L. Morris, 1988, Molecular Microbiol. 2: 281-288 and Infect. Immun. 56: 1144-1149). Some of these proteins are highly conserved among the different strains, in particular those related to the acquisition of iron by the microorganism, that have become interesting vaccine candidates (L. Mocca et al., 1988, Proceedings of the Sixth International Pathogenic Neisseria Conference. Callaway Gardens Conference Center; C. Frasch,

1989, Clin. Microbiol. Revs. 2: S134-S138).

In addition to pure proteins obtained from the micro-organism or strains of related species (e.g. 37 kD protein, T. Mietzner and S. Morse, 1987, US Patent 4 681 761), several related genes have been cloned and expressed. Among these proteins are the following:

- protease IgAl (J. Koomey and S. Falkow, 1984, Infect. Immun. 43: 101-107);
 - protein P1 (A. Barlow et al., 1987, Infect. Immun. 55: 2734-2740, and 1989, Molec. Microbiol. 3: 131-139); protein P5a (T. Kawula et al., 1988, Infect. Immun. 56: 380-386);
 - protein P5c (T. Olyhoek and M. Achtman, 1988, Proceedings of the Sixth International Pathogenic N. Conference. Callaway Gardens Conference Center);
- protein P4 (K. Klugman et al., 1989, Infect. Immun. 57: 2066-2071);
 - protein P2 (K. Murakami et al., 1989, Infect. Immun. 57: 2318-2323);
 - and from N. gonorrhoeae, which code for proteins with cross-reactivity with their corresponding proteins from N. meningitidis:
 - antigen H.8 (W. Black and J.G. Cannon, 1985, Infect. Immun. 47: 322-325);
- macromolecular complex (W. Tsai and C. Wilde, 1988, Proceedings of the Sixth International Pathogenic Neisseria Conference. Callaway Gardens Conference Center);
 - 37 kDa protein, repressed in the presence of iron (S. Berish et al., 1988, Proceedings of the Sixth International Pathogenic Neisseria Conference. Callaway Gardens Conference Center).

The use of these proteins as active vaccine preparation has not been reported or the bactericidal tests of antibodies induced against them were negative, such as in the case of mouse monoclonal antibodies against H.8 (J. Woods et al., 1987, Infect. Immun. 55: 1927-1928).

Up to the moment, the protein P1 located in the outer membrane of N. meningitidis is one of the best characterized and studied antigens. This protein presents no variability within the same strain. However, there are more than 17 types of proteins P1 in Neisseria which have differences in three variable regions, this being the basis of the classification of N. in different subtypes. This protein is very immunogenic in humans (W.D. Zollinger and R.E. Mandrell, 1983, Med. Trop. 43:143-147), eliciting protective antibodies (E. Wedege and L.O. Froholm, 1986, Infect. Immun. 51: 571-578; K. Saukkonen et al, 1987, Microb. Pathogen. 3:261-267), that give it a special importance in vaccine preparations.

Some subtypes of proteins P1 have been cloned in E. coli, starting from genomic libraries (A.K. Barlow et al., 1989, Molec. Microb. 3:131-139) or using the PCR technique (S. Butcher et al., VIIth International Congress of Neisseria, R.C. Seid, Patent Application WO 90/06696; Brian Mc Guinness et al., 1990, J. Exp. Med. 171:1871-1882, M.C.J. Maiden et al., VIIth International Conference of Neisseria, Berlin, Sept. 9-14, 1990, and 1991, Molec. Microb. 3:727; J. Suker et al., VIIth International Conference of Neisseria, Berlin, Sept. 9-14, 1990). However, up to now, there is no genetic construction able to produce this protein with high levels of expression. Only low levels of expression (D.A. White et al., 1990, Molec. Microb. 4:769:776) or its expression in Bacillus subtilis fused to the outer membrane protein A of E. coli (omp A) (E. Wahlstrom et al., VIIth International Congress of Neisseria, September 9-14, 1990, Berlin) have been reported.

It can be affirmed that up to the moment no antigen has been isolated which is common to all types and serogroups of N. meningitidis and is able to produce bactericidal antibodies. For this reason, an antigen of this kind, conjugated or fused to other proteins or polysaccharides of immunological interest, would be relevant as a candidate for bivalent vaccine preparations.

This invention is related to a nucleotide sequence coding for a protein having a molecular weight of about 64 kilodaltons. This sequence has been found in all N. meningitidis serotypes and serogroups tested, as verified by nucleic acid hybridization, Western-bloting, Dot-blot and ELISA.

A technical object of this invention is the identification of a nucleotide sequence which codes for a highly conserved protein and is common to the majority of pathogenic strains of Neisseria (named P64k), in order to obtain the protein by a recombinant way with a high grade of purity and in commercially useful quantities, so that it can be employed in diagnostic methods and as an integrating part of a vaccine preparation of broad spectrum of protection.

On the level of genetic information (DNA and RNA), the invention provides a recombinant polynucleotide, comprising a nucleotide sequence coding for a protein P64k of Neisseria meningitidis, said protein P64k essentially having the amino acid sequence shown in SEQ ID NO:1. In a preferred embodiment said nucleotide sequence coding for the protein P64k of N. meningitidis essentially consists of the nucleotide sequence shown in SEQ ID NO:1. The recombinant polynucleotide may further comprise a nucleotide sequence of a cloning or expression vector.

The invention also provides a transformed microorganism containing a recombinant polynucleotide as defined above, preferably a transformed microorganism which is capable of expressing the protein P64k of N. meningitidis. In a particularly preferred embodiment of the invention, the transformed microorganism is

an Escherichia coli strain, e.g. E. coli strain HB101, transformed with an expression vector containing a nucleotide sequence coding for the protein P64k of N. meningitidis, e.g. the expression vector pM-6.

The invention also provides a recombinant proteinaceous substance, comprising an amino acid sequence corresponding to the amino acid sequence of at least a part of a protein P64k of N. meningitidis, said protein P64k essentially having the amino acid sequence shown in SEQ ID NO:1. Said recombinant proteinaceous substance may essentially consist of protein P64k, or be a fusion protein or a protein/polysaccharide conjugate comprising the amino acid sequence of protein P64k of N. meningitidis.

The invention further provides a vaccine composition, comprising a recombinant protein as defined above, together with a suitable carrier, diluent or adjuvant. A particular embodiment of this invention provides a vaccine composition, comprising a lipoamide dehydrogenase or acetyl transferase capable of inducing antibodies which can bind a protein P64k of N. meningitidis, together with a suitable carrier, diluent or adjuvant.

In addition, the invention provides a monoclonal antibody, raised against a recombinant proteinaceous substance as defined above, or against a lipoamide dehydrogenase or acetyl transferase, and capable of binding a protein P64k of N. meningitidis.

The invention also provides a process for preparing a protein P64k of Neisseria meningitidis, or a fusion protein comprising protein P64k, said protein P64k essentially having the amino acid sequence shown in SEQ ID NO:1, comprising the steps of transforming a microorganism with an expression vector containing a nucleotide sequence coding for said protein P64k, or said fusion protein, culturing the transformed microorganism to obtain expression of said protein P64k, or said fusion protein, and isolating said expression product.

One novel aspect of this invention is the gene isolated from the N. meningitidis strain B:4:P1.15, which was named M-6 and has as a principal characteristic its stability in E. coli vectors. This gene does not produce adverse effects on the host, allowing to obtain yields of over 25 % of total protein (ratio of P64k to total protein from host strain). On the other hand, it has been demonstrated by Southern and Western Blot hybridizations (E. Southern, 1975, J. Mol. Biol. 98: 503-527 and W. Burnette, 1981, Anal. Biochem. 12: 195-203) that protein P64k is present in all the following studied strains of N. meningitidis:

N. meningitidis A

N. meningitidis B:1

N. meningitidis B:2

N. meningitidis B:4

N. meningitidis B:5

N. meningitidis B:8

N. meningitidis B:9

N. meningitidis B:11

N. meningitidis B:15

N. meningitidis B:4:P1.15

N. meningitidis C

N. meningitidis B:15:P1.16

N. meningitidis B:15:P1.16 (H 44/76)

N. meningitidis B:NT (121/85)

N. meningitidis B:NT (71/86)

N. meningitidis B:NT (210/86)

and also in N. mucosa, N. subflava and N. gonorrhoeae.

The protein is not present in N. cinerea, N. lactamica, N. sicca and N. flavescens, but these are not of interest because they are not pathogenic.

The protein having a molecular weight of about 64 kDa can be localized by electron microscopy in the outer membrane of N. meningitidis. Therefore, this antigen is an exposed antigen which is favorable for use in a vaccine preparation. The protein was recognized in Western blot immunoidentification experiments with sera from convalescents and individuals vaccinated with the conventional Cuban vaccine Va-Mengoc-BC (Centro Nacional de Biopreparados, Havana, Cuba). This aspect guarantees the immunogenicity of the antigen and at the same time confirms its presence within the high molecular weight protein fraction constituent of this vaccine, which is responsable of the lasting immune response to the disease.

Another novel aspect is that the protein, which is an object of this invention, produces antibodies with a broad bactericidal spectrum (different serogroupes, serotypes and subtypes), a characteristic which has not been reported previously for any protein from N. meningitidis.

This protein obtained in high levels in E. coli becomes an important candidate for the improvement of immunogenicity when expressed as a fusion protein with other proteins. It could also increase the

expression by conferring enhanced stability and suitability in the molecular structure during transcription and translation processes. Belonging to Neisseria, this protein can also be fused to other proteins from Neisseria in order to obtain vaccine preparations against this microorganism with increased immunogenicity. These fusion proteins are also objects of this invention.

On the other hand, surprisingly, it was found that the gene M-6 obtained from a genomic library of the strain N. meningitidis B:4:P1.15 showed a great homology with sequences of lipoamide-dehydrogenases and acetyl-transferases from other microorganisms and higher organisms. The presence of common antigenic determinants allows the use of these other related proteins as immunogens, able to confer protection by the induction of bactericidal antibodies which recognize the antigenic determinants common to protein P64k. Therefore, the use of these lipoamide-dehydrogenases and acetyl-transferases (not isolated from N. meningitidis) or derivatives therefrom such as peptides, fragments from enzymatic degradation, constructions of fusion with other proteins, or conjugation with proteins, polysaccharides or lipids, or insertion in complexes as liposomes or vesicles, etc., for vaccine purposes, are included in the scope of this invention.

An important object of this invention is the nucleotide sequence which codes for the M-6 gene (SEQ ID NO:1 of the Sequence Listing) whose product is the protein P64k.

This gene was derived from the genome of the strain B385 isolated in Cuba (N. meningitidis B:4:P1.15), by the construction of a genomic library in the phage EMBL 3.

The recombinant DNA including the gene M-6 constitutes another object of this invention, which includes the phage lambda, the plasmid pM-3 and the expression vector pM-6 for expression in bacteria.

In particular, for the intracellular expression in E. coli, the M-6 gene was cloned under the tryptophane promotor and using its own termination signal of transcription and a linkage fragment between M-6 and the cloning site Ncol which adds the following nucleotide sequence at the 5' end:

ATG CTA GAT AAA AGA (SEQ ID NO:2)

The N-terminal of the protein P64k encoded by the M-6 gene inserted in plasmid pM-6 which adds 5 aminoacids to the N-terminal of the original protein corresponds to:

MLDKRMALVELKVPDIGGHENVDII (SEQIDNO:3)

Another object of this invention are the microorganisms resulting from the transformation of E. coli strain HB 101 with the pM-6 vector, which are characterized by the expression of high levels of protein P64k, good viability and great stability.

The transformed clone of E. coli was denominated HBM64 (Fig. 2), and presents levels of expression of P64k higher than 25 % in relation to the total protein of the cell (Fig. 6).

The procedure described in the present invention, due to the levels of expression achieved for this product, allows to reach an optimal purity for use of this protein in humans.

On the other hand, the antigen obtained from the isolated sequence was very useful in the preparation of different types of potential vaccine preparations, like bivalent vaccines with a broad immunoprotective spectrum, e.g., protein-polysaccharide conjugates, fusion proteins, etc.

EXAMPLES: These examples intend to illustrate the invention, but not to limit the scope of this invention.

EXAMPLE 1:

40

15

For the isolation of genomic DNA from N. meningitidis B:4:P1.15, the cells were grown in Mueller-Hinton medium (OXOID, London). The biomass from a culture of 100 ml was resuspended in 8 ml of Tris (hydroxymethyl-aminomethane) 100 mM, EDTA (ethylenediamine tetraacetic acid) 1mM, pH 8. The cells were subjected to a treatment with lysozyme (10 mg/ml), followed by 200 µl of self-digested pronase (20 mg/ml) and 1.1 ml of 10% SDS. The mixture was incubated at 37 °C during 1 hour, then it was treated with phenolchloroform (v/v) and the remains of phenol were eliminated using 2-butanol. Finally, the DNA was precipitated with absolute ethanol and RNA was eliminated with ribonuclease A (Sigma, London).

The DNA of about 60 kb was subjected to a partial digestion with the enzyme Sau 3A, obtaining a population of fragments of about 15 kb. This majoritary fraction was isolated and purified by separation in agarose gel (T. Maniatis et al., 1982, Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Lab.: Cold Spring Harbor NY).

For the construction of the genomic library, the process described by Maniatis was essentially followed (T. Maniatis et al., 1982, Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Lab.: Cold Spring Harbor NY). Four μg of purified DNA were ligated with 8 μg of BamHl-digested EMBL-3. The ligation product was packed and the phages were finally plated on the E. coli strain C66P2.

The library was screened by immunoidentification (R. Young and R. Davis, 1983, PNAS USA 80: 1194-

1198) using rabbit serum obtained against a preparation of proteins belonging to the outer membrane of the strain N. meningitidis B:4:P1.15. The clones were analyzed by Western-blot (Burnette, 1981) and the expression of the P64k protein with a molecular weight of about 70 kDa was detected. The resulting recombinant phage was named 31. The Western blot was also made using a mixture of sera from convalescents of meningococcemia, free of antibodies from E. coli, obtaining the same result as that using hyperimmunized rabbit sera.

This experiment was repeated using sera from several healthy individuals, and the signal obtained was negative against the recombinant protein P64k.

EXAMPLE 2:

15

25

30

35

50

For subcloning in bacteria, the 17 kb insert corresponding to the phage isolated from the library was cloned in the plasmid pUC18 after separation from the phage's arms using the enzyme Sall. This resulted in the construction pM-1 (Fig. 2), that was subjected to restriction analysis (Fig. 3).

The fragment Sall-HindIII of about 6 kb was recloned in the plasmid pUC18 and the construction pM-2 was obtained (Fig. 2). In order to obtain a more exact localization of the gene coding for protein P64k deletions were carried out with the enzymes Clal, EcoRI and HincII. The complete fragment of the gene M-6 was finally localized as an EcoRI-HindIII insert corresponding to the construction pM-3 (Fig. 2).

In all constructions, the presence of the gene was confirmed by recognizing the protein by colony immunoidentification and Western Blot using hyperimmunized rabbit sera.

The sequence of the insert in pM-3 was determined by the method of Sanger (F. Sanger et al., 1977, PNAS USA 74: 5463-5467).

From the obtained sequence, the approximate molecular weight of the protein encoded by the gene was deduced.

In order to obtain a construction for high expression of the protein P64k, the plasmid pM-3 (Fig. 2) was linearized with the enzyme EcoRI and successive suppressions of the gene were carried out, incubating the sample with the nucleases ExoIII and S1.

The resulting fragments were separated from the rest of the vector pUC18 by cutting with the restriction enzyme HindIII and were cloned fused to a stabilizator fragment (European patent application EP-A-0 416 673), using an Xba-blunt adapter to conserve the Xbal site of the stabilizator gene:

The constructions in which the fused fragment coincided with the reading frame were selected by immunoidentification using hyperimmune rabbit sera.

The insert sequences were established using Sanger's Method (F. Sanger et al., 1977, PNAS USA 74: 5463-5467). From the obtained sequences the approximate molecular weight of the protein encoded by this gene was deduced.

The fusion region between the proteins was localized in the gene sequences. In the clone pILM-25 (Figure 4) the ATG of the gene predetermined by the sequence of the DNA insert isolated from the library, coincided with the fusion site.

The Ncol-Xbal fragment, corresponding to the stabilizing peptide coding sequence, was deleted from plLM-25, obtaining a non-fused protein expressed under the tryptophan promoter with it's original terminator from the N. Meningitidis B:4:P1.15, according to the pM-6 construction (Figure 1).

The pM-6 plasmid was transformed in different strains of E. coli like W3110, JA-221, HB-101, LE-392 and MC-1061, and the expression of P64k was compared. The best results were obtained in W3110, JA-221 and HB-101. These strains were chosen to scale up fermentation, and expression levels up to 25 % of total cell proteins were obtained.

55 EXAMPLE 3:

To confirm the correct expression of the cloned gene the N-terminal region of the intact protein was subjected to the Edman degradation method (P. Edman, 1950, Acta Chem. Scand. 4: 283-293). This

technique elucidates the sequence (primary structure) of this region in the molecule.

The P64k protein was desalted by gel filtration chromatography (PD-10, Pharmacia), eluted with water and monitored at 280 nm. The protein fraction was concentrated to 0.5 nM/ μ l. One μ l of this solution was applied to a PVDF (polyvinylidene difluoride, Millipore) filter, previously activated with methanol.

The Edman degradation was made using the Knauer's Automatic Sequencer, model 810, connected to a HPLC (High Performance Liquid Chromatography) system, so as to detect the phenylthiohydantoin derivatives of the aminoacids (PTH-aminoacids). The standard procedure of sequencing as recommended by the manufacturer of the equipment was followed. The separation of the PTH-aminoacids was performed in a reverse phase column C-18 (5 μ m), 250 mm x 2 mm (Merck), eluted with an acetonitrile gradient (B buffer) in sodium acetate (A buffer), prepared according to the manufacturers, with a 200 μ l/minute flow and at 42° C. The PTH-aminoacids were detected at 269 nm.

Data processing and registration were made in a Shimadzu model CR-6a automatic integrator, using a program for data processing by subtraction of two consecutive chromatograms, to facilitate the evaluation of the Edman degradation cycles. Sequence identification is obtained by the chromatographic evaluation of the corresponding analyzed cycle and confirmed by the chromatogram obtained by subtraction, allowing to determine 25 residues.

EXAMPLE 4:

To demonstrate that the protein P64k is recognized by the sera of individuals vaccinated with the Cuban Va-Mengoc-BC preparation (Centro Nacional de Biopreparados, Havana, Cuba.), a Western-Blot was made, with a mixture of 12 sera from adults (immunized with two doses of the Cuban vaccine) diluted in a solution containing defatted milk (Oxoid, London). The experiment included:

recombinant protein P64k, purified from E. coli HB-101 transformed with the pM-6 plasmid;

supernatant of the ultrasonic cell rupture of untransformed E. coli HB-101;

the reaction was revealed with a protein A-colloidal gold conjugate.

It was shown that the protein P64k is recognized by the pool of sera.

EXAMPLE 5:

30

20

The bactericidal test against B385 (B:4:P1.15) was made according to the procedure described by Larrick et al. (Scand. J. Immunol. 32, 1990, 121-128) with modifications. With this objective, a mixture was made of a) a suspension of bacteria, cultured under special conditions (1-5 colony forming units/1), b) Gey's balanced salt solution, c) rabbit sera (3 to 4 weeks) as a source of complement and d) pooled sera from mice, immunized against protein P64k in Aluminium Hydroxyde Gel, and inactivated at 56°C for 30 minutes. The immunization of mice was carried out according to an immunization scheme of 3 doses of 20 μ g each. The proportions used in the aforementioned mixture were 1:2:1:1 in a total volume of 125 μ l. The mixture was incubated at 37°C during 1 hour and plated in fresh Mueller Hinton Agar (Oxoid, London) supplemented with 5 % calf serum (CubaVet, Habana). The counting of surviving colonies was done after 18 hours of incubation of the plates in an atmosphere of 5 % CO₂ at 37°C.

The bactericidal titer was considered as the maximum serum dilution necessary to render a 50 % inhibition of bacterial growth, with respect to the same mixture without the test serum. It was found that 1:20 serum dilution still maintains its bactericidal activity. As negative controls (non bactericidal at 1:2 dilution) pooled sera from mice immunized with Aluminum Hydroxyde Gel, and pooled sera from mice immunized with cuban Hepatitis B recombinant vaccine, were used. The bactericidal effect was specific to the anti-P64k antibodies.

EXAMPLE 6:

50

55

The bactericidal test against different strains of N. meningitidis was made using:

- 1. An ammonium sulphate precipitate of the supernatant harvested from a culture of hybridoma cells secreting monoclonal antibodies specific against P64k (anti P64k)/Sample to analyze.
- 2.An ammonium sulphate precipitate of the supernatant harvested from hybridoma cells secreting monoclonal antibodies specific against the P1.15 protein present in N. meningitidis strain B385 (anti P1.15)/Positive control of the system.

The maximum dilutions tested were always 1:16. The maximum dilutions tested which had a bactericidal effect, according to the EXAMPLE 5, are indicated:

Strain	anti-P64k	anti-P1.15
B385	1:16	1:16
B:4:P1.15	1:16	1:16
B:14:P1.7	1:16	-
B:NT:NT	1:16	-
B:15:P1.15	1:8	-
B:15:P1.16	1:8	-
B:13	1:8	-
С	1:16	-
Α	1:16	-

As seen, the anti-P64k monoclonal antibodies have significant bactericidal titers against different serogroups (A, B and C), serotypes (4, 14, 13, 15 and NT) and subtypes (7, 15, 16 and NT) of bacteria.

EXAMPLE 7:

5

10

15

20

25

40

45

Fusion protein M-14 (P64k and P1.15)

In order to obtain a genetic construction for high expression that contained the variable epitopes of the P1.15 protein (Outer membrane protein from N. meninigitidis B:4:P1.15) fused to the P64k protein, the gene coding for P1.15 protein was cloned using the Polymerase Chain Reaction (PCR). The following region containing the variable immunodeterminants of P1.15:

L Q L T E P P S K S Q P Q V K V T K A K S R I R T K I S D F G S F I G F

was inserted in the Mlu I site of the gene M-6, encoding for P64k, after having been made blunt with the klenow fragment from DNA polymerase I. The sites for gene fusion of P1.15 with M-6 are the following:

Gly Asp Ala Leu Gln Leu

5'- GGC GAC GCG CTG CAG TTGA -3' (SEQ ID NO:8)

M-6 P1.15

EANAYE (SEQ ID NO:9)

Glu Ala Asn*Ala Tyr Glu

5'- GAA GCC AAC GCG TAC GAA -3' (SEQ ID NO:10) P1.15 M-6

10

*: N does not belong to any of the fusion proteins and was created by the genetic construction.

15

The resulting fusion protein (M-14) was expressed in E. coli using a plasmid vector under the tryptophan promoter, to levels higher than 10 % of total cell protein. The protein was recognized by bactericidal monoclonal antibodies, and anti-P1.15 and P64k polyclonal antibodies, in Western-Blot.

EXAMPLE 8:

Polysaccharide/P64k conjugation.

The protein P64k was conjugated with the polysaccharide from Haemophilus influenzae using the reductive amination method. The Haemophilus influenzae polysaccharide (Polyribosyl ribitol phosphate, PRP) was purified by the cold phenol method described by Frasch, 1990 (in: Bacterial Vaccines, 1990, Alan R. Liss, Inc., pp. 123-145). The final contamination of PRP with proteins or nucleic acids was less than 1 %. This polysaccharide was degraded using the method of Parikh et al. 1974 (Methods in Enzymol. 34B: 77-102) with sodium periodate in PRP (ratio 1 : 5 w/w) dissolved in 0.1 M sodium acetate (pH 4.5). The incubation was carried out in the dark during 30 minutes with stirring. The periodate excess was eliminated by addition of ribitol. Very low molecular weight compounds were eliminated by dialysis (Medicell International Ltd. Membrane, London). The resulting oligosaccharide had free aldehyde groups able to react with primary amines (e.g. lysine residues in proteins). The conjugate is obtained by mixing protein and polyssacharide in a 1 : 1 ratio (w/w), adding sodium cyanoborohydride and subjecting the mixture to an incubation, first for 48 hours at 4°C and later at 37°C for 24 hours. The high molecular weight complex which contains the resulting conjugate with protein-polysaccharide in a 1 : 2.3 ratio, can be separated from the non reactive contaminants by HPLC.

EXAMPLE 9:

40

50

Bivalent vaccine preparation against Hepatitis B virus and N. meningitidis.

In order to obtain a bivalent vaccine preparation, different quantities of protein P64k and Hepatitis B Surface Antigen (Vacuna Recombinante contra 1a Hepatitis B, Heber Biotec, Havana, Cuba) were mixed. The antigens were adjuvated with Aluminum Hydroxyde Gel, at 2mg/dose and inoculated in Balb/c mice having a body weight of 20 g in 3 dosis of 0.5 ml each. Different variants were assayed:

- 1. P64k 20 µg (P20)
- 2. HBsAg 20 μg (H20)
- 3. P64k 10 μ g + HBsAg 10 μ g (P10:H10)
- 4. P64K 15 μ g + HBsAg 5 μ g (P15:H5)
- 5. Placebo (Al(OH)₃)

Seven days after the immunization with the first doses, the second doses were applied. The third dose was given 14 days after the second. Seven days later, blood was taken and the serum of each immunized animal was separated. Antibody titers against P64k protein were measured in solid phase Enzyme Linked Immunosorbent Assay (ELISA), using P64k at 5 mg/ml to coat the polystyrene plate. The antibody titers against HBsAg were determined by a Commercial ELISA (Organon Teknika, Boxtel). Figure 5 shows the dynamics of antibody response against protein P64k, using sera diluted 1/10 000. The response against P64k is not interfered by the presence of the other antigen. Figure 6 shows the titers against HBsAg after each dosis. The titers against this protein are not diminished by the presence of P64k in the preparation.

High titers are obtained against both antigens in the same vaccine preparation.

EXAMPLE 10:

10

A software was created to search the EMBL (European Molecular Biology Laboratoty) Data Base and detect the homology between P64k and other proteins. As result of the search it was found that there is homology of one segment in the sequence of P64k with segments in the sequences of N. gonorrhoeae. This sequence was found as characteristic in both N. gonorrhoeae and N. meningitidis (F.F. Correia, S. Inouye and M. Inouye, 1988, J. Biol. Chem. 263, No. 25, 12194-12198).

Another region with high homology was found in two proteins of the Pyruvate Dehydrogenase Complex from E.coli K12:

a)Acetyltransferase from E. coli and the P64k outer membrane protein from N. meningitidis.

Homology exists between a segment comprising 100 amino acids, repeated at the beginning of the amino acid sequence of the Acetyltransferase ("Lipoyl Domain", including the "Lipoyl Binding Site" (P.E. Stephens et al., 1983,. Eur. J. Biochem. 133, 481-489)) and a region located in the first 111 amino acids of the P64k:

20	MALVELKVPDIGGHENVDIIAVEVNVGDTIAV - *- ***** - * * * *** -* VKEVNVPDIGG DEVEVTEVMVKVGDKVAA	(SEQ ID NO:11) (SEQ ID NO:12)
25	DDTLITLETDKATMDVPAEVAGVVKEVKVKVG	(SEQ ID NO:11) (cont)
	EQSLITVEGDKASMEVPAPFAGVVKELKVNVG	(SEQ ID NO:12) (cont)
30	DKISEGGLIVVVEAEGTAAAPKAESAAA	(SEQ ID NO:11) (cont)
	DKVKTGSLIMIFEVEGAAPAAAPAKQEAAAPA	(SEQ ID NO:12) (cont)
35	PRKKPLKCRWVPQAAQFGG * * * * * *	(SEQ ID NO:11) (cont)
	PAAKAEAPAAAPAAKAEGK	(SEQ ID NO:12) (cont)

where (*) indicates positions with the same amino acids and (-) indicates positions of conservative amino acid changes.

b) Lipoamide Dehydrogenase from E. coli and Outer Membrane P64k protein from N. meningitidis.

Homology exists between the Lipoamide Dehydrogenase from E. coli (a protein having 473 amino acids, P.E. Stephens et al., 1983, Eur. J. Biochem. 133, 481-489) and the protein P64k, specifically in a segment which represents almost the total protein, except the region with homology with the "lipoyl domain" from Acetyltransferase.

55

50

40

	1 SADAEYDVVVLGGGPGGYSAAFAAADEGLKVA	(SEQ ID NO:13)
5	******-***** ** ** STEIKTQVVVLGAGPAGYSAAFRCADLGLETV	(SEQ ID NO:14)
10	IVERYKTLGGVCLNVGCIPSKALLHNAAVIDE ****-********************************	(SEQ ID NO:13) (cont) (SEQ ID NO:14) (cont)
15	VRHLAANGIKYPEPALDIDMLRAYKDGVVSRL	(SEQ ID NO:13) (cont)
	AKALAEHGIVFGEPKTDIDKI TWKEKVINQL	(SEQ ID NO:14) (cont)
20	TG-FGRYGEKRKVDVIQGDGQFLDPHHLEVSL	(SEQ ID NO:13) (cont)
	TGGLAGMAKGRKVKVVNGLGKFTGANTLEVEG	(SEQ ID NO:14)(cont)
25	TAGDAYEQAAPTGEKKIVAFKNCIIAAGSRVT	(SEQ ID NO:13) (cont)
	ENGKTVINFDNAIIAAGSRPI	(SEQ ID NO:14) (cont)
30	KLPFIP-EDPRIIDSSGALALKEVPGKLLIIG	(SEQ ID NO:13) (cont)
	QLPFIPHEDPRIWDSTDALELKEVPERLLVMG	(SEQ ID NO:14) (cont)
35	GGIIGLEMGTVYSTLGSRLDVVEMMDGLMQGA	(SEQ ID NO:13) (cont)
	GGIIGLEMGTVYHALGSQIDVVEMFDQVIPAA	(SEQ ID NO:14) (cont)
40	DRDLVKVWQKQNEYRFDNIMVNTKTVAVEPKE	(SEQ ID NO:13) (cont)
	DKDIVKVFTKRISKKFN-LMLETKVTAVEAKE	(SEQ ID NO:14) (cont)
4 5	DGVYVTFEGANPPKEPQRYDAVLVAAGRAPNG	(SEQ ID NO:13) (cont)
	DGIYVTMEGKKAPAEPQRYDAVLVAIGRVPNG	(SEQ ID NO:14) (cont)
50	KLISAEKAGVAVTDRGFIEVDKQMRTNVPHIY	(SEQ ID NO:13) (cont)
50	KNLDAGKAGVEVDDRGFIRVDKQLRTNVPHIF	(SEQ ID NO:14) (cont)

	AIGDIVGQPMLAHKAVHEGHVAAENCAGTKAY	(SEQ ID NO:13) (cont)						
5	AIGDIVGQPMLAHKGVHEGHVAAEVIAGKKHY	(SEQ ID NO:14) (cont)						
Ü	FDAAVIPGVAYTSPEVAWVGETELSAKRPAGK	(SEQ ID NO:13) (cont)						
10	FDPKVIPSIAYTEPEVAWVGLTEKEAKEKGIS	(SEQ ID NO:14) (cont)						
	ITKANFPWAASGRAIANGCDKPFTKLIFDAET	(SEQ ID NO:13) (cont)						
15	YETATFPWAASGRAIASDCADGMTKLIFDKES	(SEQ ID NO:14) (cont)						
	GRIIGGGIVGPNGGDMIAKSALPSKLGCDAAD	(SEQ ID NO:13) (cont)						
20	HRVIGGAIVGTNGGELLGEIGLAIEMGCDAED	(SEQ ID NO:14) (cont)						
20	13-1							
	VGKTIHPRPTLGESIGMAAEVALGTCTDLPPQ	(SEQ ID NO:13) (cont)						
25	IALTIHAHPTLHESVGLAAEVFEGSITDLPNP	(SEQ ID NO:14) (cont)						
	KKK - MEN1pd	(SEQ ID NO:13) (cont)						
30	KAKKK - EC1pd	(SEQ ID NO:14) (cont)						

Where:

45

50

55

- |-1-|: Adenine binding site (FAD)
- |-2-|: Redox active disulphide region
 - |-3-|: Active site histidine

Strain deposits:

An E. coli HB-101 clone containing the plasmid pM-3 (a pUC18 plasmid containing the 4.1 kb DNA fragment from Neisseria meninigitidis, strain B:4:P1.15, cloned between the EcoRI and HindIII restriction sites), was deposited on August 30, 1991, with the Centraalbureau voor Schimmelcultures (CBS), Baarn, The Netherlands, and obtained deposit number CBS 485 .91.

SEQUENCE LISTING

5															
	SEQ	ID 1	NO:1												
	SEQ	UENC:	E TY	PE :	Nuc	leot	ide	with	cor	resp	ondi	ng ai	mino	acid	
10			E LE									_			
	STR	ANDE	DNES	s: s	ingl	е									
	TOP	OLOG	Y: L	inea	r										
15	MOL	ECUL	E TY	PE:	genoi	mic 1	DNA								
	ORI	GINA:	L SO	URCE	ORG	ANIS	M: N	. me	ning	itid	is g	roup	В		
	IMM	EDIA'	re e	XPER	IMEN'	TAL :	SOUR	CE:	Stra	in B	:4:P	1:15	iso	lated	in
00	Cub	a													
20	FEATURES: From 1 to 1830 bp mature protein PROPERTIES: Gene coding for P64k protein from outer membrane														
	PROPERTIES: Gene coding for P64k protein from outer membrane														
	PROPERTIES: Gene coding for P64k protein from outer membrane of N. meningitidis														
25															
										GAA Glu					42
	1		-	-	5					10		-1 -			
30	GAC	ATT	GGC	GGA	CAC	GAA	AAT	GTA	GAT	ATT	ATC	GCG	GTT	GAA	84
	Asp 15	Ile	Gly	Gly	His	Glu 20	Asn	Val	Asp	Ile	Ile 25	Ala	Val	Glu	
35										GAC Asp					126
		30		1	1101		35			1.01		40	Lou	110	
	ACT	TTG	GAA	ACC	GAT	AAA	GCG	ACT	ATG	GAC	GTA	ССТ	GCT	GAA	168
40	Thr	Leu	Glu	Thr	Asp	Lys	Ala	Thr	Met	Asp	Val	Pro	Ala	Glu	
			45					50					55		
										GTT					210
	vai	нта	GIY	60				vai	65	Val	гуѕ	vaı	GTĀ	Asp 70	
4 5	7 . 7. 7.	አ ጥር	m c m	C 3 3	CCT	CCTT	mm/c	a mm	CITIC	CTIC	CITIE	C 3 3	COM	C2.2	252
	Lys	Ile	Ser	Glu	Gly	Gly	Leu	Ile	Val	GTC Val	Val	Glu	Ala	GAA	252
					75					80					
50	GGC	ACG	GCA	GCC	GCT	CCT	AAA	GCC	GAA	TCG	GCT	GCC	GCC	CCG	294
	Gly 85	Thr	Ala	Ala	Ala	Pro 90	Lys	Ala	Glu	Ser	Ala 95	Ala	Ala	Pro	

	CGC Arg	AAG Lys 100	AAG Lys	CCC Pro	CTA Leu	AAC Asn	GTG Val 105	CCG Pro	CTC Leu	CCT Pro	GCT Ala	CCG Pro 110	CAA Gln	GCC Ala	336
5	GCG Ala	CAA Gln	TTC Phe 115	GGC Gly	GGT Gly	TCT Ser	GCC Ala	GAT Asp 120	GCC Ala	GAG Glu	TAC Tyr	GAT Asp	GTG Val 125	GTC Val	378
10	GTA Val	TTG Leu	GGT Gly	GGC Gly 130	GGT Gly	CCC Pro	GGC Gly	GGT Gly	TAC Tyr 135	TCC Ser	GCT Ala	GCA Ala	TTT Phe	GCC Ala 140	420
15	GCT Ala	GCC Ala	GAT Asp	G AA Glu	GGC Gly 145	TTG Leu	AAA Lys	GTC Val	GCC Ala	ATC Ile 150	GTC Val	GAA Glu	CGT Arg	TAC Tyr	462
20	AAA Lys 155	ACT Thr	TTG Leu	GGC Gly	GGC Gly	GTT Val 160	TGC Cys	CTG Leu	AAC Asn	GTC Val	GGC Gly 165	TGT Cys	ATC Ile	CCT Pro	504
	TCC Ser	AAA Lys 170	GCC Ala	TTG Leu	TTG Leu	CAC His	AAT Asn 175	GCC Ala	GCC Ala	GTT Val	ATC Ile	GAC Asp 180	GAA Glu	GTG Val	546
25	CGC Arg	CAC His	TTG Leu 185	GCT Ala	GCC Ala	AAC Asn	GGT Gly	ATC Ile 190	AAA Lys	TAC Tyr	CCC Pro	GAG Glu	CCG Pro 195	GAA Glu	588
30	CTC Leu	GAC Asp	ATC Ile	GAT Asp 200	ATG Met	CTT Leu	CGC Arg	GCC Ala	TAC Tyr 205	AAA Lys	GAC Asp	GGC Gly	GTA Val	GTT Val 210	630
35	TCC Ser	CGC Arg	CTC Leu	ACG Thr	GGC Gly 215	GGT Gly	TTG Leu	GCA Ala	GGT Gly	ATG Met 220	GCG Ala	AAA Lys	AGC Ser	CGT Arg	672
40	AAA Lys 225	GTG Val	GAC Asp	GTT Val	ATC Ile	CAA Gln 230	GGC Gly	GAC Asp	GGG Gly	CAA Gln	TTC Phe 235	TTA Leu	GAT Asp	CCG Pro	714
	CAC His	CAC His 240	TTG Leu	GAA Glu	GTG Val	TCG Ser	CTG Leu 245	ACT Thr	GCC Ala	GGC Gly	GAC Asp	GCG Ala 250	TAC Tyr	GAA Glu	756
4 5	CAG Gln	GCA Ala	GCC Ala 255	CCT Pro	ACC Thr	GGC Gly	GAG Glu	AAA Lys 260	AAA Lys	ATC Ile	GTT Val	GCC Ala	TTC Phe 265	AAA Lys	798
50	AAC Asn	TGT Cys	ATC Ile	ATT Ile 270	GCA Ala	GCA Ala	GGC Gly	AGC Ser	CGC Arg 275	GTA Val	ACC Thr	AAA Lys	CTG Leu	CCT Pro 280	840

	TTC Phe	ATT Ile	CCT Pro	GAA Glu	GAT Asp 285	CCG Pro	CGC Arg	ATC Ile	ATC Ile	GAT Asp 290	Ser	AGC Ser	GGC Gly	GCA Ala	882
5	TTG Leu 295	Ala	CTG Leu	AAA Lys	GAA Glu	GTA Val 300	CCG Pro	GGC Gly	AAA Lys	CTG Leu	CTG Leu 305	ATT Ile	ATC Ile	GGC Gly	924
10	GGC Gly	GGC Gly 310	ATT Ile	ATC Ile	GGC Gly	CTC Leu	GAG Glu 315	ATG Met	GGT Gly	ACG Thr	GTT Val	TAC Tyr 320	AGC Ser	ACG Thr	9 6 6
15	CTG Leu	GGT Gly	TCG Ser 325	CGT Arg	TTG Leu	GAT Asp	GTG Val	GTT Val 330	GAA Glu	ATG Met	ATG Met	GAC Asp	GGC Gly 335	CTG Leu	1008
20					GAC Asp										1050
	CAA Gln	AAC Asn	GAA Glu	TAC Tyr	CGT Arg 355	TTT Phe	GAC Asp	AAC Asn	ATT Ile	ATG Met 360	GTC Val	AAC Asn	ACC Thr	AAA Lys	1092
25	ACC Thr 365	GTT Val	GCA Ala	GTT Val	GAG Glu	CCG Pro 370	AAA Lys	GAA Glu	GAC Asp	GGC Gly	GTT Val 375	TAC Tyr	GTT Val	ACC Thr	1134
30	TTT Phe	GAA Glu 380	GGC Gly	GCG Ala	AAC Asn	GCC Ala	CCT Pro 385	AAA Lys	GAG Glu	CCG Pro	CAA Gln	CGC Arg 390	TAC Tyr	GAT Asp	1176
3 5	GCC Ala	GTA Val	TTG Leu 395	GTT Val	GCC Ala	GCC Ala	GGC Gly	CGC Arg 400	GCG Ala	CCC Pro	AAC Asn	GGC Gly	AAA Lys 405	CTC Leu	1218
40					AAA Lys										1260
	TTC Phe	ATC Ile	GAA Glu	GTG Val	GAC Asp 425	AAA Lys	CAA Gln	ATG Met	CGT Arg	ACC Thr 430	AAT Asn	GTG Val	CCG Pro	CAC His	1302
4 5					GGC Gly										1344
50	CAC His	AAA Lys 450	GCC Ala	GTT Val	CAC His	GAA Glu	GGC Gly 455	CAC His	GTT Val	GCC Ala	GCC Ala	GAA Glu 460	AAC Asn	TGC Cys	1386

F										CGG Arg				GGC Gly	1428
5										TGG Trp					1470
10										AAA Lys 500					1512
15										GCG Ala					1554
20										TTT Phe					1596
										GGT Gly					1638
25	GAT Asp	ATG Met	ATC Ile	GCG Ala 550	AAG Lys	TCT Ser	GCC Ala	TTG Leu	CCA Pro 555	TCG Ser	AAA Lys	TGG Trp	GCT Ala	GCG Ala 560	1680
30	ACA Thr	CGT Arg	GCA Ala	GAC Asp	ATC Ile 565	GGC Gly	AAA Lys	ACC Thr	ATC Ile	CAC His 570	CCG Pro	CGC Arg	CCG Pro	ACC Thr	1722
35	TTG Leu 575	GGC Gly	GAA Glu	TCC Ser	ATC Ile	GGT Gly 580	ATG Met	GCG Ala	GCG Ala	GAA Glu	GTG Val 585	GCA Ala	TTG Leu	GGT Gly	1764
40										AAA Lys		TAA *			1800
	ATCC	GAC	TGAA	AATA	ACAG	CCGA	ATA A	GGT	TTAT	TT G	A				1836
45	SEQ	ID N	io: 2	:											
		ENCE													
	SEQU	IENCE	LEN	iGTH:	15	base	s								

55

50 ATGCTAGATA AAAGA

SEQ ID NO: 3

	SEQUENCE TYPE : Amino acid	
	SEQUENCE LENGTH: 25 amino acids	
	MOLECULE TYPE: Sequence N-terminal of P64k protein from oute	er
10	membrane of N. meningitidis	
	Mat. Tau Bar T. a. B. W. B.	
15	Met Leu Asp Lys Arg Met Ala Leu Val Glu Leu Lys Val Pro Asp 1 5 10 15	
	Ile Gly Gly His Glu Asn Val Asp Ile Ile	
	20 25	
20		
	SEQ ID NO: 4	
	SEQUENCE TYPE : Nucleotide	
	SEQUENCE LENGTH: 12 bases	
25		
	CTAGATAAAA GA	L 2.
	CEO ID NO. E	
30	SEQ ID NO: 5	
	SEQUENCE TYPE : Nucleotide SEQUENCE LENGTH: 8 bases	
	SEQUENCE LENGIH: o Dases	
35	TCTTTTAT	8
	SEQ ID NO: 6	
40	SEQUENCE TYPE : Amino acid	
	SEQUENCE LENGTH: 221 amino acids	
	MOLECULE TYPE: Sequence which includes variable regions of P1.15 protein	
<i>4</i> 5		
40	Leu Gln Leu Thr Glu Pro Pro Ser Lys Ser Gln Pro Gln Val Lys	
	1 5 10 15	
	Val Thr Lys Ala Lys Ser Arg Ile Arg Thr Gln Ile Ser Asp Phe 20 25 30	
50		
	Gly Ser Phe Ile Gly Phe Lys Gly Ser Glu Asp Leu Gly Glu Gly 35 40 45	
55	Leu Lys Ala Val Trp Gln Leu Glu Gln Asp Val Ser Val Ala Gly 50 55 60	
	20 00	

5	Gly	Gly	Ala	Thr	Gln 65	Trp	Gly	Asn	Arg	Glu 70	Ser	Phe	Val	Gly	Leu 75
	Ala	Gly	Glu	Phe	Gly 80	Thr	Leu	Arg	Ala	Gly 85	Arg	Val	Ala	Asn	Gln 90
10	Phe	Asp	Asp	Ala	Ser 95	Gln	Ala	Ile	Asp	Pro 100	Trp	Asp	Ser	Asn	Asn 105
	Asp	Val	Ala	Ala	Ser 110	Gln	Leu	Gly	Ile	Phe 115	Lys	Arg	His	Asp	Asp 120
15	Met	Pro	Val	Ser	Val 125	Arg	Tyr	Asp	Ser	Pro 130	Asp	Phe	Ser	Gly	Phe 135
20	Ser	Gly	Ser	Val	Gln 140	Phe	Val	Pro	Ile	Gln 145	Asn	Ser	Lys	Ser	Ala 150
20	Tyr	Thr	Pro	Ala	Tyr 155	His	Tyr	Thr	Arg	Gln 160	Asn	Asn	Ala	Asp	Val 165
25	Phe	Val	Pro	Ala	Val 170	Val	Gly	Lys	Pro	Gly 175	Ser	Asp	Val	Tyr	Val 180
	Ala	Gly	Leu	Asn	Tyr 185	Lys	Asn	Gly	Gly	Phe 190	Ala	Gly	Ser	Tyr	Ala 195
30	Phe	Lys	Tyr	Ala	Arg 200	His	Ala	Asn	Val	Gly 205	Arg	Asn	Ala	Phe	Glu 210
05	Leu	Phe	Leu	Leu	Gly 215	Ser	Thr	Ser	Asp	Glu 220	Ala				
35															
		ID N													
40		JENCE													
40		JENCE							ndin	·~ + ^	. +ba	. .			
		veen									, che	: Lus	sion	site	:
45		Asp							1.10	•					

	SEQ ID NO: 8													
	SEQUENCE TYPE : Nucleotide													
5	SEQUENCE LENGTH: 19 bases													
· ·	MOLECULE TYPE: Sequence corresponding to the fusion of													
	N-terminal from gene M-6 and from gene P1.15													
10	GGCGACGCGC TGCAGTTGA	19												
	SEQ ID NO: 9													
15	SEQUENCE TYPE : Amino acid													
	SEQUENCE LENGTH: 6 amino acids													
	MOLECULE TYPE: Sequence corresponding to the fusion site													
20	between C-terminal of P64k and P1.15													
	Glu Ala Asn Ala Tyr Glu													
	1 5													
0.5														
25	SEQ ID NO: 10													
	SEQUENCE TYPE : Nucleotide													
	SEQUENCE LENGTH: 18 bases													
30	MOLECULE TYPE: Sequence corresponding to the fusion of													
	C-terminal from gene M-6 and from gene P1.15													
	GAAGCCAACG CGTACGAA	18												
3 5		10												
	SEQ ID NO: 11													
	SEQUENCE TYPE : Amino acid													
40	SEQUENCE LENGTH: 111 amino acids													
	MOLECULE TYPE: p64k N-terminal comprising homology region													
	with "lypoil binding site" from E. coli Acetyl transferase													
	The state of the s													
<i>4</i> 5	Met Ala Leu Val Glu Leu Lys Val Pro Asp Ile Gly Gly His Glu													
	1 5 10 15													
	Asn Val Asp Ile Ile Ala Val Glu Val Asn Val Gly Asp Thr Ile													
50	20 25 30													
	Ala Val Asp Asp Thr Leu Ile Thr Leu Glu Thr Asp Lys Ala Thr													
	35 40 45													

	Met	Asp	Val	Pro	Ala 50	Glu	Val	Ala	Gly	Val 55	Val	Lys	Glu	Val	Lys 6 0
5	Val	Lys	Val	Gly	Asp 65	Lys	Ile	Ser	Glu	Gly 70	Gly	Leu	Ile	Val	Val 75
10	Val	Glu	Ala	Glu	Gly 80	Thr	Ala	Ala	Ala	Pro 85	Lys	Ala	Glu	Ser	Ala 90
70	Ala	Ala	Pro	Arg	Lys 95	Lys	Pro	Leu	Lys	Cys 100	Arg	Trp	Val	Pro	Gln 105
15	Ala	Ala	Gln	Phe	Gly 110	Gly									
20	SEQU SEQU MOLE	JENCI JENCI		PE :	: 112	2 ami	Lno a			' fro	om E.	. co.	li Ad	cetyl	L-
25	Val 1	Lys	Glu	Val	Asn 5	Val	Pro	Asp	Ile	Gly 10	Gly	Asp	Glu	Val	Glu 15
30	Val	Thr	Glu	Val	Met 20	Val	Lys	Val	Gly	Asp 25	Lys	Val	Ala	Ala	Glu 30
	Gln	Ser	Leu	Ile	Thr 35	Val	Glu	Gly	Asp	Lys 40	Ala	Ser	Met	Glu	Val 45
35	Pro	Ala	Pro	Phe	Ala 50	Gly	Val	Val	Lys	Glu 55	Leu	Lys	Val	Asn	Val 60
40	Gly	Asp	Lys	Val	Lys 65	Thr	Gly	Ser	Leu	Ile 70	Met	Ile	Phe	Glu	Val 75
	Glu	Gly	Ala	Ala	Pro 80	Ala	Ala	Ala	Pro	Ala 85	Lys	Gln	Glu	Ala	Ala 90
45	Ala	Pro	Ala	Pro	Ala 95	Ala	Lys	Ala	Glu	Ala 100	Pro	Ala	Ala	Ala	Pro 105
50	Ala	Ala	Lys	Ala	Glu 110	Gly	Lys								

--

	SEQ	ID	NO:	13											
5	SEQ	SEQUENCE TYPE : Amino acid													
	SEQ	UENC	E LE	NGTH	: 48	1 am:	ino a	acid	s						
	MOLECULE TYPE: P64k fragment comprising the homology region														
10		h Li										110111	0109	, 10	91011
			poum		o ciry (ar 09.	-1145	·							
	Ser 1	Ala	Asp	Ala	Glu 5	Tyr	Asp	Val	Val	Val 10	Leu	Gly	Gly	Gly	Pro 15
15	Gly	Gly	Tyr	Ser	Ala 20	Ala	Phe	Ala	Ala	Ala 25	Asp	Glu	Gly	Leu	Lys 30
20	Val	Ala	Ile	Val	Glu 35	Arg	Tyr	Lys	Thr	Leu 40	Gly	Gly	Val	Суз	Leu 45
	Asn	Val	Gly	Cys	Ile 50	Pro	Ser	Lys	Ala	Leu 55	Leu	His	Asn	Ala	Ala 60
25	Val	Ile	Asp	Glu	Val 65	Arg	His	Leu	Ala	Ala 70	Asn	Gly	Ile	Lys	Tyr 75
	Pro	Glu	Pro	Ala	Leu 80	Asp	Ile	Asp	Met	Leu 85	Arg	Ala	Tyr	Lys	Asp 90
30	Gly	Val	Val	Ser	Arg 95	Leu	Thr	Gly	Phe	Gly 100	Arg	Tyr	Gly	Glu	Lys 105
35	Arg	Lys	Val	Asp	Val 110	Ile	Gln	Gly	Asp	Gly 115	Gln	Phe	Leu	Asp	Pro 120
	His	His	Leu	Glu	Val 125	Ser	Leu	Thr	Ala	Gly 130	Asp	Ala	Tyr	Glu	Gln 135
40	Ala	Ala	Pro	Thr	Gly 140	Glu	Lys	Lys	Ile	Val 145	Ala	Phe	Lys	Asn	Cys 150
	Ile	Ile	Ala	Ala	Gly 155	Ser	Arg	Val	Thr	Lys 160	Leu	Pro	Phe	Ile	Pro 165
<i>4</i> 5	Glu	Asp	Pro	Arg	Ile 170	Ile	Asp	Ser	Ser	Gly 175	Ala	Leu	Ala	Leu	Lys 180
50	Glu	Val	Pro	Gly	Lys 185	Leu	Leu	Ile	Ile	Gly 190	Gly	Gly	Ile	Ile	Gly 195
	Leu	Glu	Met	Gly	Thr 200	Val	Tyr	Ser	Thr	Leu 205	Gly	Ser	Arg	Leu	Asp 210
55	Val	Val	Glu	Met	Met 215	Asp	Gly	Leu	Met	Gln 220	Gly	Ala	Asp	Arg	Asp 225

5	Leu	Val	Lys	Val	Trp 230	Gln	Lys	Gln	Asn	Glu 235	Tyr	Arg	Phe	Asp	Asn 240
	Ile	Met	Val	Asn	Thr 245	Lys	Thr	Val	Ala	Val 250	Glu	Pro	Lys	Glu	Asp 255
10	Gly	Val	Tyr	Val	Thr 260	Phe	Glu	Gly	Ala	Asn 265	Pro	Pro	Lys	Glu	Pro 270
	Gln	Arg	Tyr	Asp	Ala 275	Val	Leu	Val	Ala	Ala 280	Gly	Arg	Ala	Pro	Asn 285
15	Gly	Lys	Leu	Ile	Ser 290	Ala	Glu	Lys	Ala	Gly 295	Val	Ala	Val	Thr	Asp 300
20	Arg	Gly	Phe	Ile	Glu 305	Val	Asp	Lys	Gln	Met 310	Arg	Thr	Asn	Val	Pro 315
	His	Ile	Tyr	Ala	Ile 320	Gly	Asp	Ile	Val	Gly 325	Gln	Pro	Met	Leu	Ala 330
25	His	Lys	Ala	Val	His 335	Glu	Gly	His	Val	Ala 340	Ala	Glu	Asn	Cys	Ala 345
	Gly	Thr	Lys	Ala	Tyr 350	Phe	Asp	Ala	Ala	Val 355	Ile	Pro	Gly	Val	Ala 360
30	Tyr	Thr	Ser	Pro	Glu 365	Val	Ala	Trp	Val	Gly 370	Glu	Thr	Glu	Leu	Ser 375
35	Ala	Lys	Arg	Pro	Ala 380	Gly	Lys	Ile	Thr	Lys 385	Ala	Asn	Phe	Pro	Trp 390
	Ala	Ala	Ser	Gly	Arg 395	Ala	Ile	Ala	Asn	Gly 400	Cys	Asp	Lys	Pro	Phe 405
40	Thr	Lys	Leu	Ile	Phe 410	Asp	Ala	Glu	Thr	Gly 415	Arg	Ile	Ile	Gly	Gly 420
	Gly	Ile	Val	Gly	Pro 425	Asn	Gly	Gly	Asp	Met 430	Ile	Ala	Lys	Ser	Ala 435
45	Leu	Pro	Ser	Lys	Leu 440	Gly	Cys	Asp	Ala	Ala 445	Asp	Val	Gly	Lys	Thr 450
50	Ile	His	Pro	Arg	Pro 455	Thr	Leu	Gly	Glu	Ser 460	Ile	Gly	Met	Ala	Ala 465
	Glu	Val	Ala	Leu	Gly 470	Thr	Cys	Thr	Asp	Leu 475	Pro	Pro	Gln	Lys	Lys 480
55	Lys														

5	SEQ ID NO: 14 SEQUENCE TYPE: Amino acid SEQUENCE LENGTH: 472 bases MOLECULE TYPE: Segment of E. coli Lipoamide Dehydrogenase with homology to P64k protein														
	Ser 1	Thr	Glu	Ile	Lys 5	Thr	Gln	Val	Val	Val 10	Leu	Gly	Ala	Gly	Pro 15
15	Ala	Gly	Tyr	Ser	Ala 20	Ala	Phe	Arg	Cys	Ala 25	Asp	Leu	Gly	Leu	Glu 30
20	Thr	Val	Ile	Val	Glu 35	Arg	Tyr	Asn	Thr	Leu 40	Gly	Gly	Val	Cys	Leu 45
	Asn	Val	Gly	Cys	Ile 50	Pro	Ser	Lys	Ala	Leu 55	Leu	His	Val	Ala	Lys 60
25	Val	Ile	Glu	Glu	Ala 65	Lys	Ala	Leu	Ala	Glu 70	His	Gly	Ile	Val	Phe 75
	Gly	Glu	Pro	Lys	Thr 80	Asp	Ile	Asp	Lys	Ile 85	Thr	Trp	Lys	Glu	Lys 90
30	Val	Ile	Asn	Gln	Leu 95	Thr	Gly	Gly	Leu	Ala 100	Gly	Met	Ala	Lys	Gly 105
35	Arg	Lys	Val	Lys	Val 110	Val	Asn	Gly	Leu	Gly 115	Lys	Phe	Thr	Gly	Ala 120
	Asn	Thr	Leu	Glu	Val 125	Glu	Gly	Glu	Asn	Gly 130	Lys	Thr	Val	Ile	Asn 135
40	Phe	Asp	Asn	Ala	Ile 140	Ile	Ala	Ala	Gly	Ser 145	Arg	Pro	Ile	Gln	Leu 150
	Pro	Phe	Ile	Pro	His 155	Glu	Asp	Pro	Arg	Ile 160	Trp	Asp	Ser	Thr	Asp 165
4 5	Ala	Leu	Glu	Leu	Lys 170	Glu	Val	Pro	Glu	Arg 175	Leu	Leu	Val	Met	Gly 180
50	Gly	Gly	Ile	Ile	Gly 185	Leu	Glu	Met	Gly	Thr 190	Val	Tyr	His	Ala	Leu 195
· -	Gly	Ser	Gln	Ile	Asp 200	Val	Val	Glu	Met	Phe 205	Asp	Gln	Val	Ile	Pro 210
55	Ala	Ala	Asp	Lys	Asp 215	Ile	Val	Lys	Val	Phe 220	Thr	Lys	Arg	Ile	Ser 225

5	Lys	Lys	Phe	Asn	Leu 230	Met	Leu	Glu	Thr	Lys 235	Val	Thr	Ala	Val	Glu 240
	Ala	Lys	Glu	Asp	Gly 245	Ile	Tyr	Val	Thr	Met 250	Glu	Gly	Lys	Lys	Ala 255
10	Pro	Ala	Glu	Pro	Gln 260	Arg	Tyr	Asp	Ala	Val 265	Leu	Val	Ala	Ile	Gly 270
15	Arg	Val	Pro	Asn	Gly 275	Lys	Asn	Leu	Asp	Ala 280	Gly	Lys	Ala	Gly	Val 285
15	Glu	Val	Asp	Asp	Arg 290	Gly	Phe	Ile	Arg	Val 295	Asp	Lys	Gln	Leu	Arg 300
20	Thr	Asn	Val	Pro	His 305	Ile	Phe	Ala	Ile	Gly 310	Asp	Ile	Val	Gly	Gln 315
	Pro	Met	Leu	Ala	His 320	Lys	Gly	Val	His	Glu 325	Gly	His	Val	Ala	Ala 330
25	Glu	Val	Ile	Ala	Gly 335	Lys	Lys	His	Tyr	Phe 340	Asp	Pro	Lys	Val	Ile 345
	Pro	Ser	Ile	Ala	Tyr 350	Thr	Glu	Pro	Glu	Val 355	Ala	Trp	Val	Gly	Leu 360
30	Thr	Glu	Lys	Glu	Ala 365	Lys	Glu	Lys	Gly	Ile 370	Ser	Tyr	Glu	Thr	Ala 375
35	Thr	Phe	Pro	Trp	Ala 380	Ala	Ser	Gly	Arg	Ala 385	Ile	Ala	Ser	Asp	Cys 390
	Ala	Asp	Gly	Met	Thr 395	Lys	Leu	Ile	Phe	Asp 400	Lys	Glu	Ser	His	Arg 405
40	Val	Ile	Gly	Gly	Ala 410	Ile	Val	Gly	Thr	Asn 415	Gly	Gly	Glu	Leu	Leu 420
	Gly	Glu	Ile	Gly	Leu 425	Ala	Ile	Glu	Met	Gly 430	Cys	Asp	Ala	Glu	Asp 435
4 5	Ile	Ala	Leu	Thr	Ile 440	His	Ala	His	Pro	Thr 445	Leu	His	Glu	Ser	Val 450
50	Gly	Leu	Ala	Ala	Glu 455	Val	Phe	Glu	Gly	Ser 460	Ile	Thr	Asp	Leu	Pro 465
	Asn	Pro	Lys	Ala	Lys 470	Lys	Lys								

Claims

55

1. A recombinant polynucleotide, comprising a nucleotide sequence coding for a protein P64k of Neisseria

meningitidis, said protein P64k essentially having the amino acid sequence shown in SEQ ID NO:1.

- A recombinant polynucleotide according to claim 1, wherein said nucleotide sequence coding for the protein P64k of N. meningitidis essentially consists of the nucleotide sequence shown in SEQ ID NO:1.
- **3.** A recombinant polynucleotide according to claim 1 or 2, further comprising a nucleotide sequence of a cloning or expression vector.
- **4.** A transformed microorganism, containing a recombinant polynucleotide according to any of claims 1 to 3.
 - A transformed microorganism according to claim 4, which is capable of expressing the protein P64k of N. meningitidis.
- 6. A transformed microorganism according to claim 5, which is an Escherichia coli strain, e.g. E. coli strain HB101, transformed with an expression vector containing a nucleotide sequence coding for the protein P64k of N. meningitidis, e.g. the expression vector pM-6.
- 7. A recombinant proteinaceous substance, comprising an amino acid sequence corresponding to the amino acid sequence of at least a part of a protein P64k of N. meningitidis, said protein P64k essentially having the amino acid sequence shown in SEQ ID NO:1.
 - 8. A recombinant proteinaceous substance according to claim 7, which is a fusion protein or a protein/polysaccharide conjugate comprising the amino acid sequence of protein P64k of N. meningitidis.
 - 9. A vaccine composition, comprising a recombinant protein according to claim 7 or 8, together with a suitable carrier, diluent or adjuvant.
- 10. A vaccine composition, comprising a lipoamide dehydrogenase or acetyl transferase capable of inducing antibodies which can bind a protein P64k of N. meningitidis, together with a suitable carrier, diluent or adjuvant.
 - **11.** Monoclonal antibody, raised against a recombinant proteinaceous substance according to claim 7 or 8, or against a lipoamide dehydrogenase or acetyl transferase, and capable of binding a protein P64k of N. meningitidis.
 - 12. A process for preparing a protein P64k of Neisseria meningitidis, or a fusion protein comprising protein P64k, said protein P64k essentially having the amino acid sequence shown in SEQ ID NO:1, comprising the steps of transforming a microorganism with an expression vector containing a nucleotide sequence coding for said protein P64k, or said fusion protein, culturing the transformed microorganism to obtain expression of said protein P64k, or said fusion protein, and isolating said expression product.
- 45 13. A method for the isolation and expression of a gene which codes for a protein belonging to the outer membrane of N. meningitidis and its use in vaccine preparations, wherein the gene from the strain of N. meningitidis B:4:P1.15, identified as M-6, is obtained from the screening of a genomic library in the EMBL 3, and is cloned and expressed in a suitable host, coding for a protein of 64kDa belonging to the outer membrane of N. meningitidis which has bactericidal activity against different serogroups, serotypes and subtypes of N. meningitidis.
 - **14.** A nucleotide sequence obtained by the method of claim 13, characterized in that the sequence is corresponding with the M-6 gene and codes for the P64k protein, identified in the sequence listing with number 1.
 - **15.** A recombinant DNA according to claims 13 and 14, characterized in that it is a molecule which contains the M-6 gene which codes for P64k protein.

5

25

35

- **16.** A recombinant DNA according to claim 15, characterized in that it is a phage, a plasmid or an expression vector.
- 17. A recombinant DNA according to claims 15 and 16, characterized in that it is the phage EMBL 3, plasmid pM-1 and expression vector pM-6.

5

10

15

30

35

40

45

50

- **18.** A transformed microorganism according to the preceding claims, characterized in that it results from the transformation of a suitable host, carries the M-6 gene, expresses high levels of P64k protein and maintains good viability and cellular stability.
- 19. A transformed microorganism according to claim 18, characterized in that it is the clone HBM64 which is obtained from the transformation of E. coli host strain HB101 with the expression vector pM-6, and it presents high stability and viability and expression levels of P64k protein higher than 25 % of the total protein of the cell.
- 20. A recombinant protein obtained according to the preceding claims, characterized in that it essentially has the amino acid sequence shown in the sequence listing under SEQ ID NO:1.
- 21. Protein P64k according to preceding claims characterized in that it is the direct result of the expression of the M-6 gene as well as any peptide which has important immunological regions obtained by chemical synthesis or enzymatic degradation of P64k protein and its use in fusion proteins and polysaccharide protein conjugates for monovalent and multivalent vaccine preparations.
- 22. A vaccine preparation comprising protein P64k and at least one carrier, diluent or adjuvant used for vaccine preparations, as well as comprising any protein of Lipoamide dehydrogenase or Acetyl transferase from other organism or modification thereof, which is able to induce antibodies against the P64k protein.

FIG. 1

S. Sal I; E. EcoRV; Ec. EcoR I; C. Cla I; X. Xho I; H. Hind I II; K. Kpn I.

FIG. 3

