

# SISTEMAS OPERATIVOS Práctica 3

**Nombre: Erwing Medina** 

Matricula: 201813581

1. Muestre el grafo de alocación de recursos que representa el estado del sistema.



2. ¿Existe alguna secuencia de asignación de recursos que haga que un conjunto o subconjunto de los procesos entren en interbloqueo?

SI P1 toma un recurso de R2 antes que sea reservado por P2, y si P4 Toma R3 antes que P2.

P1 nunca podrá tomar un Recurso de R2 ya que están ciendo bloqueados por P4 y P2.



- 3. Considerando un page size de 1KB, Cuáles son el page number y offset para las siguientes direcciones (El resultado colocar en número decimal)
  - a. 21205
  - b. 121357
  - c. 164250

$$1KB = 2^{10}B = > Off set Size = 10$$

Page Size = 
$$32 - 10 = 20$$

| Dirección | Binaria                       | Página | Offset |
|-----------|-------------------------------|--------|--------|
| 21205     | 00000000000000101001011010101 | 20     | 725    |
| 121357    | 00000000000011101101000001101 | 118    | 525    |
| 164250    | 00000000000101000000110011010 | 160    | 410    |

- 4. Considerando un espacio de direcciones lógicas de 2048 páginas con un page size de 4KB y una memoria física de 512 frames.
  - a. ¿Cuántos bits son requeridos en la dirección lógica?
  - b. ¿Cuántos bits son requeridos en la dirección física?



5. Aplicar los algoritmos de reemplazo (1) FIFO, (2) LRU, y (3) optimal OPT para los siguientes page-reference strings

a. 2, 6, 9, 2, 4, 2, 1, 7, 3, 0, 5, 2, 1, 2, 9, 5, 7, 3, 8, 5 b. 3, 1, 4, 2, 5, 4, 1, 3, 5, 2, 0, 1, 1, 0, 2, 3, 4, 5, 0, 1 c. 0, 1, 2, 3, 4, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4, 4, 3, 2, 1, 0

Indicar el número de fallos de página por cada algoritmo asumiendo la paginación por demanda con 3 frames.

#### **FIFO**

| Page<br>Ref | 2 | 6 | 9 | 2 | 4 | 2 | 1 | 7 | 3 | 0 | 5 | 2 | 1 | 2 | 9 | 5 | 7 | 3 | 8 | 5 |
|-------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1           | 2 |   |   |   | 4 |   |   | 7 |   |   | 5 |   |   |   | 9 |   |   | 3 |   |   |
| 2           |   | 6 |   |   |   | 2 |   |   | 3 |   |   |   | 1 |   |   | 5 |   |   | 8 |   |
| 3           |   |   | 9 |   |   |   | 1 |   |   | 0 |   |   |   | 2 |   |   | 7 |   |   | 5 |

## Fallos de página= 18;

### **Optimal**

| Page<br>Ref | 2 | 6 | 9 | 2 | 4 | 2 | 1 | 7 | 3 | 0 | 5 | 2 | 1 | 2 | 9 | 5 | 7 | 3 | 8 | 5 |
|-------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1           | 2 |   |   |   |   |   |   | 7 |   | 0 |   |   | 1 |   |   |   | 7 |   |   | 5 |
| 2           |   | 6 |   |   |   |   | 1 |   |   |   | 5 |   |   |   | 9 |   |   | 3 |   |   |
| 3           |   |   | 9 |   | 4 |   |   |   | 3 |   |   | 2 |   |   |   | 5 |   |   | 8 |   |

#### Referencias:

https://slideplayer.com/slide/1474291/

https://es.convertbinary.com/decimal-a-binario/