

APUNTES

Clase del 28 de Abril

Compiladores e Interpretes

Profesor: Francisco Torres

Isaac Campos

Contenido

Clase 28 de Abril del 2017	3
Notas de inicio de la clase:	3
Análisis Sintáctico	4
Traducción dirigida por sintaxis	4
Gramáticas libres de contexto	5
Avram Noam Chomsky	5
Lenguajes no regulares	6
Jerarquía de Chomsky	7
Gramática libre de contexto	7
Definición formal	8
Derivación	8
Notación	9
Derivación de w	9
Definiciones	. 10
Más definiciones	. 12
Fiemplos de CEG	12

Clase 28 de Abril del 2017

Notas de inicio de la clase:

El profesor actualizó el desglose con las correcciones que se aplicaron en el examen.

Se les recuerda que:

- habrá quiz el miércoles 3 de mayo.
- El proyecto 2 se entrega y revisa el viernes 5 de mayo

Se realiza un breve resumen del tema de la clase anterior sobre Análisis Sintáctico:

- Tipos de parsing
- Errores de sintaxis
- Triple R
 - o Reportar
 - o Recuperar
 - o Reparar

Análisis Sintáctico

Traducción dirigida por sintaxis

- La organización más usual en compiladores
- El parser dirige todo el proceso
 - Invoca un scanner cada vez que necesita un token
- Su trabajo podría terminar al generar código intermedio o, inclusive, podría generar lenguaje máquina.
- El parser es el cliente del scanner "getToken()".
- El parser puede invocar rutinas semánticas en las partes apropiadas.
- En Bison, por ejemplo, las rutinas se llaman dentro de "{}".
- Nuestro proyecto 2 se relaciona con esto.

Gramáticas libres de contexto

Avram Noam Chomsky

- Lingüista filósofo, Científico Social, USA 1928
- "Padre de la linguistica"
- Profesor emérito MIT
- Una de las figuras cultural más importante de tiempos recientes
- Entre los autores más citados
- Posiciones políticas antibélicas y de izquierda

^{*}Opinion general: el profe se parece a Chomsky

Lenguajes no regulares

- El pumping lemma nos permitió demostrar que algunos lenguajes no son regulares
- Sea L el lenguaje sobre ∑={a,b} definido como {aⁿbⁿ | n≥0}.
- ¿Podrán ser generados y reconocidos por algún mecanismo?
- ¿Cómo se relacionan entre sí los lenguajes?
 - o Por medio de la **Jerarquía de Chomsky**.

Jerarquía de Chomsky

Nota: Todos los lenguajes regulares son libres de contexto, pero no todos los lenguajes libres de contexto son lenguajes regulares.

Gramática libre de contexto

Definición formal

Una gramática libre de contexto (CFG) es un cuarteto

$G = (V, \Sigma, P, S)$, donde:

- **V** es un conjunto finito de no terminales.
- \sum es un conjunto finito de terminales.
- **P** es un conjunto finito de reglas.
- **S** ∈ **V** es el símbolo inicial.
- $V \cap \Sigma = \emptyset$ (terminales y no terminales son conjuntos disjuntos).
- $P \subseteq V \times (V \cup \Sigma)^*$
- Las reglas tienen un único no terminal a la izquierda, una hilera de terminales y no terminales a la derecha. A la derecha podría estar ε .

Derivación

- Sean A, B y C hileras tomadas de (V^U∑)*.
- Si se tiene una hilera w de la forma ATB y hay una regla en la gramática de la forma T -> C, entonces w se puede reescribir como ACB.
- Decimos que w deriva de la hilera ACB y se denota como w⇒ ACB.
- Se puede derivar varias veces (mientras haya no terminales).

^{*}Puede haber combinaciones de terminales y no terminales incluido épsilon

- Para aplicar una regla solo interesa la presencia del no terminal que se va a expandir. El contexto que lo rodea no importa.
- Gramática libre de contexto.

Notación

- Un paso de derivación: $w \Rightarrow v$.
- Uno o más pasos de derivación: $w \Rightarrow {}^{+}v$.
- Cero o más pasos de derivación: w ⇒*v.

Derivación de w

- Sea G=(V, Σ ,P,S) una CFG y sea w \in (V $\cup \Sigma$)*.
- El conjunto de hileras derivables de w se define recursivamente como:
- w es derivable de w.

- Si v=ATB es derivable desde w y T->C ∈ P entonces ACB es derivable desde w.
- Todas y únicamente las hileras construidas aplicando el paso 2 son derivables desde w.

Hileras derivables desde $w=\{v \mid w \Rightarrow^* v\}$.

Ejemplo:

Sea G definida como:

E -> E + E

E -> E * E

E -> a

 $E \rightarrow b$

- Hileras derivables de abba:
 - o {abba}.
- Hileras derivables de *EaE:
 - {*EaE, *aaa, *E+EaE, *E+E+EaE*E, ...}.

0

Definiciones

Sea $G=(V, \Sigma, P, S)$ una CFG:

- Una hilera $w \in (V \cup \Sigma)^*$ es una forma sentencial de G, si y solo sí $S \Rightarrow^* w$.
- Una hilera w ∈ ∑* es una sentencia de G,
 sí y solo sí S⇒*w.

- El lenguaje G, denotado como L(G) es el conjunto $\{v \mid v \in \sum^* y \ S \Rightarrow^* v \}$.
- El lenguaje G es el conjunto de todas las sentencias de G.
- Lenguaje: conjunto de sentencias.

NOTAS:

- * Toda sentencia es una forma sentencia, pero no toda forma sentencia es una sentencia
- * Épsilon no puede ser no terminal
- * El Lenguaje vacío si no tiene como parar, ocupa reglas que detengan la derivación

Sergio: ¿Cómo se hacían los compiladores cuando no existía eso?

Profe: A machetazo.

Ejemplo

Sea G definida como:

• Formas senténciales de G:

Sentencias de G:

Más definiciones

- Una derivación es leftmost (más izquierda), si siempre se reemplaza el no terminal que esté más a la izquierda en la hilera actual.
- Una derivación es rightmost (más derecha), si siempre se reemplaza el no terminal que esté más a la derecha en la hilera actual.

Ejemplo de derivación leftmost

Sea G definido como:

E -> E + E	E ⇒ E *E ⇒
E -> E * E	E +E*E ⇒ b+ E *E ⇒
E -> a	b+ E *E*E ⇒ b+a* E *E ⇒
E -> b	b+a*a*E ⇒ b+a*a*b

Ejemplo de derivación rightmost

E -> E + E	Е
E -> E * E	$\Rightarrow E^*E \Rightarrow E+E^*E \Rightarrow$
E -> a	E+E*E+E ⇒ E+E*E+b ⇒
E -> b	E+E*E+E+b ⇒ E+E*E+b+b ⇒
	E+E*a+b+b ⇒ E+a*a+b+b ⇒
	b+a*a+b+b

Ejemplos de CFG

Definición

Un conjunto de hileras es un lenguaje libre de contexto si es completamente generado por una gramática libre de contexto $G=(V, \Sigma, P, S)$, además G no genera hileras que no pertenezcan al lenguaje.

Ejemplo 1

Presente una CFG que genere el lenguaje de hileras de 1 o más "a"

Solución:

A -> aA

A -> a

Ejemplo 2

Presente una CFG que genere el lenguaje de hileras de 0 o más "a"

Solución:

 $A \rightarrow aA$

A -> ε

Ejemplo 3

Presenta una CFA que genere el lenguajes de hileras sobre Σ ={0,1} que terminen en 1 En este ejercicio

Solución:

S->A1

A -> 0A

A -> 1A

A-> ε

Ejemplo 4

Presente una CFG que genere el lenguaje de hileras sobre Σ ={0,1} que empiecen con 0 y terminen con 1

Solución:

S -> 0E1

E -> 0E

E -> 1E

E ->ε

Ejemplo 5

Presente una CFA que genere el lenguaje {aⁿ b^m|a>0, m>0}

Solución:

S -> AB

 $A \rightarrow aA \mid a$

 $B \rightarrow bB|b$

Ejemplo 6

Presente una CFA que genere el lenguaje {aⁿ b^m|a≥0, m≥0}

Solución:

S -> AB

 $A \rightarrow aA | \varepsilon$

 $B \rightarrow bB \mid \varepsilon$

Ejemplo 7

Sea G definida como:

S -> aSa

S -> aBa

B -> bB

B -> b

¿Cuál es el lenguaje de G?

Solución:

 ${a^nb^ma^m, n>0, m>0}$

Ejemplo 8

Presente una CFG que genere el lenguaje $\{a^nb^mc^md^{2n} \mid n \ge 0, m>0\}$

De este ejercicio dependía que todos fuéramos a almorzar (excepto el profe, él se podía ir y nos dejaba encerrados), Ariana lo resolvió de una manera muy elegante.

Solución:

S -> aSbb

S ->B

B->bBc

B -> bc