Supplementary Material for "Less is More: A Small-Scale Learning Particle Swarm Optimization for Large-Scale Optimization"

Shuai Liu, Student Member, IEEE, Zi-Jia Wang, Senior Member, IEEE, Zheng Kou, Member, IEEE, Zhi-Hui Zhan, Fellow, IEEE, Sam Kwong, Fellow, IEEE, and Jun Zhang, Fellow, IEEE

TABLE S.I EXPERIMENTAL COMPARISON RESULTS OF SSLPSO WITH THE TOP ALGORITHMS OF THE CEC2010 AND CEC2012 COMPETITIONS

	SSLPSO	MA-SW-Chains	MOS	iDElsgo	CCGS
FUN	Mean±Std	Mean±Std	Mean±Std	Mean±Std	Mean±Std
f_1	$0.00E+00 \pm 0.00E+00$	2.10E-14 ± 1.99E-14 (+)	$0.00E+00 \pm 0.00E+00 (\approx)$	8.86E-20 ± 4.51E-20 (+)	1.83E-22 ± 3.68E-22 (+)
f_2	5.43E+02 ± 3.05E+01	8.10E+02 ± 5.88E+01 (+)	1.97E+02 ± 1.59E+01 (-)	1.25E-01 ± 3.45E-01 (-)	4.44E-02 ± 1.99E-01 (-)
f_3	4.53E-14 ± 3.61E-15	7.28E-13 ± 3.40E-13 (+)	1.12E+00 ± 1.00E+00 (+)	3.81E-12 ± 5.02E-12 (+)	1.91E-01 ± 4.49E-01 (+)
f_4	4.01E+10 ± 1.10E+10	3.53E+11 ± 3.12E+10 (+)	$1.91E+10 \pm 8.08E+09$ (-)	8.06E+10 ± 3.08E+10 (+)	1.79E+12 ± 7.62E+11 (+)
f_5	2.79E+08 ± 7.87E+06	1.68E+08 ± 1.04E+08 (-)	6.81E+08 ± 1.42E+08 (+)	9.72E+07 ± 1.44E+07 (-)	1.97E+07 ± 4.69E+06 (-)
f_6	4.00E-09 ± 7.04E-15	8.14E+04 ± 2.84E+05 (+)	$1.99E+07 \pm 5.67E+04 (+)$	1.70E-08 ± 4.03E-08 (+)	2.88E+06 ± 4.87E+05 (+)
f_7	2.90E-15 ± 1.32E-14	1.03E+02 ± 8.70E+01 (+)	$0.00\text{E} + 00 \pm 0.00\text{E} + 00$ (-)	1.31E-02 ± 6.82E-02 (+)	1.37E+02 ± 1.16E+02 (+)
f_8	$3.98E+02 \pm 5.76E+02$	$1.41E+07 \pm 3.68E+07 (+)$	$1.12E+06 \pm 1.79E+06 (+)$	3.15E+06 ± 3.27E+06 (+)	2.81E+07 ± 3.14E+07 (+)
f_9	6.17E+06 ± 5.91E+05	1.41E+07 ± 1.15E+06 (+)	$8.78E+06 \pm 1.01E+06 (+)$	3.11E+07 ± 5.00E+06 (+)	5.53E+07 ± 9.60E+06 (+)
f_{10}	6.69E+02 ± 4.43E+01	2.07E+03 ± 1.44E+02 (+)	$7.86E+03 \pm 2.43E+02 (+)$	2.64E+03 ± 3.19E+02 (+)	$4.74E+03 \pm 2.45E+03 (+)$
f_{11}	1.18E -13 \pm 2.95\text{E}-15	$3.80E+01 \pm 7.35E+00 (+)$	1.99E+02 ± 4.52E-01 (+)	2.20E+01 ± 1.53E+01 (+)	2.99E+01 ± 3.98E+00 (+)
f_{12}	5.45E+02 ± 3.11E+02	3.62E-06 ± 5.92E-07 (-)	$0.00\text{E} + 00 \pm 0.00\text{E} + 00$ (-)	$1.21E+04 \pm 2.04E+03 (+)$	5.35E+03 ± 4.39E+02 (+)
f_{13}	$1.39E+02 \pm 4.72E+01$	$1.25E+03 \pm 5.72E+02 (+)$	$1.36E+03 \pm 9.37E+02 (+)$	$7.11E+02 \pm 1.37E+02 (+)$	$1.51E+03 \pm 6.94E+02 (+)$
f_{14}	1.90E+07 ± 1.14E+06	3.11E+07 ± 1.93E+06 (+)	$1.82\text{E} + 07 \pm 1.18\text{E} + 06 \text{ (-)}$	1.69E+08 ± 2.08E+07 (+)	1.35E+08 ± 9.05E+06 (+)
f_{15}	1.01E+04 ± 6.62E+01	2.74E+03 ± 1.22E+02 (-)	$1.54E+04 \pm 5.36E+02 (+)$	5.84E+03 ± 4.48E+02 (-)	$1.74E+03 \pm 8.94E+01$ (-)
f_{16}	1.60E-13 ± 3.26E-15	9.98E+01 ± 1.40E+01 (+)	$3.97E+02 \pm 2.10E-01 (+)$	1.44E+02 ± 3.43E+01 (+)	3.11E+01 ± 5.22E+00 (+)
f_{17}	2.44E+04 ± 6.31E+03	$1.24\text{E}+00 \pm 1.25\text{E}-01$ (-)	$4.66\text{E}\text{-}05 \pm 6.24\text{E}\text{-}06 \text{ (-)}$	$1.02E+05 \pm 1.26E+04 (+)$	1.48E+04 ± 1.02E+03 (-)
f_{18}	$5.84E+02 \pm 1.18E+02$	$1.30E+03 \pm 4.36E+02 (+)$	$3.91E+03 \pm 2.18E+03 (+)$	$1.85E+03 \pm 3.18E+02 (+)$	$3.13E+03 \pm 1.01E+03 (+)$
f_{19}	1.51E+07 ± 1.11E+06	2.85E+05 ± 1.78E+04 (-)	$3.41\text{E}+04 \pm 2.63\text{E}+03$ (-)	2.74E+05 ± 2.12E+04 (-)	$5.93E+05 \pm 4.21E+04$ (-)
f_{20}	8.43E+02 ± 6.31E+00	1.07E+03 ± 7.29E+01 (+)	$8.31E+02 \pm 3.76E+02$ (-)	1.53E+03 ± 1.32E+02 (+)	$1.31E+03 \pm 2.14E+02 (+)$
+(SSLPSO is significantly better)		15	11	16	15
-(SSLPSO is significantly worse)		5	8	4	5
≈		0	1	0	0

1

Fig. S.1. Comparison of the convergence behavior of BLPSO with other comparison algorithms on the 1000-dimensional CEC2010 benchmark functions.

Fig. S.2. Comparison of the convergence behavior of BLPSO with other comparison algorithms on the 1000-dimensional CEC2013 benchmark functions.