CS 412: Homework #1

Due on Friday Sept. 30th

Kurt Rudolph rudolph9

We model the users in a social network as a data cube. Suppose each user has 10 dimensions of information, such as age, gender, city and income. Assume a base cuboid of 10 dimensions contains three base cells: (1) $(b1, b2, a3, a4, a5, \ldots, a9, a10)$: $count = 10, (2)(b1, a2, b3, a4, a5, \ldots, a9, a10)$: count = 20, and $(3)(a1, b2, b3, a4, a5, \ldots, a9, a10)$:count=50, where $a_i! = b_i, a_i! = a_j$, etc. The count measure of the cube means the number of users who satisfy such information.

(1) How many nonempty cuboids will a full data cube contain?

Solution

$$2^{10} - 1 = 1023$$

(2) How many nonempty aggregate (i.e., non-base) cells will a full cube contain?

Solution

$$totalCells - (overlappingCells * overlappingTimes)$$

$$= totalCells - (overlapTwiceCells * 2 + overlapOnceCells * 1 + baseCells)$$

$$= 3 * 2^{10} - (2^7 * 2 + 2^7 * 3 * 1 + 3) = 2429$$

(3) How many nonempty aggregate cells will an iceberg cube contain if the condition of the iceberg cube is " $count \ge 70$ "?

Solution

Since one base cell has count = 20 and one base cell has count = 70 we simply need to compute the number of instances where subsets of these two base cells overlap, using our calculations from the previous problem we find:

$$27*2+27*3*1=135$$

(4) How many closed cells are in the full cube?

Solution

There are 4, the three base cell and $(*, *, *, a4, a5, \ldots, a9, a10)$.

Given the following base cuboid with count as the measure.

tid	Α	В	С	D	E	count
1	a1	b1	с1	d1	e1	1
2	a2	b1	c1	d1	e1	5
3	a2	b2	c2	d1	e1	10
4	a2	b2	c2	d1	e2	100

(1) Briefly outline the major steps to compute Shell-Fragment cube (refer to VLDB04 paper High-Dimensional OLAP: A Minimal Cubing Approach), suppose we divide the 5 dimensions into 2 shell fragments: AB and CDE.

Solution

(2) Briefly describe how to compute subcube query (a2,b2,*,*,? : count())

Solution

Given a database of five transactions $(min_support = 2)$:

T1	a1, a2, a3, a4, a5, a6, a7, a8, a9, a10
T2	a1, a2, a3, a4, a5, a6, a7, a8
Т3	a1, a2, a3, a4, a5
T4	a6, a7, a8
T5	a100, a101, a102, a103

(1) How many frequent patterns?

Solution

(2) What is the set of frequent closed patterns (list both pattern and support)?

Solution

(3) What is the set of frequent max-patterns (list both pattern and support)?

Solution

(4) Show an example association rule that matches $(a1, a2, a3, a4, itemX) - > (itemY)[min_support = 2, min_confidence = 70\%]$

Solution

(5) For association rule a1-j.a6, compute the following measures: confidence, lift, kulc.

Solution

(6) Among the above three measures, which ones are null-invariant?

Solution

Given a database of four transactions ($min_support = 2$):

T1	A, B, C, D, E
T2	A, B, D, J
Т3	B, F, K, S
T4	D, G, H, P

(1) Show the major steps to find the frequent patterns using Apriori.

Solution

(2) Show the major steps to find the frequent patterns using FP-Growth (no need to draw the trees).

Solution

(3) Compare the three algorithms: Apriori, FP-growth and ECLAT, by concisely discussing the major differences.

Solution