2019-09-16

Contents

1				5
1.1	 	 	 	5
2				11

4 CONTENTS

Chapter 1

1.1

```
R Python,
                  Stata.
                 R > R -
###
                   \mathbf{R}
                                RStudio.
           RStudio Mac OS Windows.
#####
                      RStudio Windows / Mac OS:
                               \mathbf{R}
  1.
           Windows:
                          "Download R for Windows" "base" "Download
    R 3.x.x for Windows".
                        "Download R for (Mac) OS X" "Latest Release"
          Mac OS:
  • "R 3.x.x".
  2.
                  RStudio
                                                   (
```

6 CHAPTER 1.

Figure 1.1:

RStudio

#####

- 1. New file -
- 2. New project -
- 3. Open file -
- 4. Console ,
- 5. Files , . .

1.1.

7. Viewer -

-

Python > Python -

. Python Jupyter Notebook.

#####

1. Anaconda

2. Anaconda Navigator,

Jupyter Notebook. Navigator.bb

#####

8 CHAPTER 1.

1.1.

Figure 1.2: Stata

6. Command -

10 CHAPTER 1.

Chapter 2

R

```
library(tidyverse) #
library(skimr) #
                  summary
library(rio) #
               .dta
library(car) #
library(tseries) #
library(sjPlot) #
df = import("us-return.dta")
\# skim_with(numeric = list(hist = NULL, p25 = NULL, p75 = NULL)) \#
skim(df) #
Skim summary statistics
n obs: 2664
n variables: 22
-- Variable type:character -----
variable missing complete n min max empty n_unique
        0 2664 2664 0 6 2544 31
-- Variable type:numeric -----
variable missing complete n mean sd p0 p25 p50
     A 2544 120 2664 60.5 34.79 1 30.75 60.5
  BOISE 2544
               120 2664 0.017 0.097 -0.27 -0.045 0.015
```

```
CITCRP
              2544
                        120 2664
                                   0.012
                                            0.081
                                                   -0.28
                                                            -0.037
                                                                     0.011
    CONED
              2544
                        120 2664
                                   0.019
                                            0.05
                                                   -0.14
                                                            -0.012
                                                                     0.019
                        120 2664 -0.0011
                                                   -0.6
   CONTIL
              2544
                                           0.15
                                                            -0.051
                                                                     0
   DATGEN
              2544
                        120 2664
                                   0.0075
                                                   -0.34
                                                            -0.072
                                           0.13
                                                                     0.017
                        120 2664
                                                   -0.36
      DEC
              2544
                                   0.02
                                            0.099
                                                            -0.051
                                                                     0.024
    DELTA
              2544
                        120 2664
                                   0.012
                                            0.096
                                                   -0.26
                                                            -0.053
                                                                     0.013
   GENMIL
              2544
                        120 2664
                                   0.017
                                            0.065
                                                   -0.15
                                                            -0.026
                                                                     0.011
   GERBER
                        120 2664
                                   0.016
                                                   -0.29
              2544
                                            0.088
                                                            -0.036
                                                                     0.015
                        120 2664
                                                   -0.19
              2544
                                   0.0096
                                           0.059
                                                            -0.029
                                                                     0.002
      IBM
                        120 2664
   MARKET
              2544
                                   0.014
                                            0.068
                                                   -0.26
                                                            -0.013
                                                                     0.012
    MOBIL
              2544
                        120 2664
                                   0.016
                                            0.08
                                                   -0.18
                                                            -0.032
                                                                     0.013
    MOTOR
              2544
                        120 2664
                                   0.018
                                            0.097
                                                   -0.33
                                                            -0.053
                                                                     0.017
                        120 2664
    PANAM
              2544
                                   0.0035
                                           0.13
                                                   -0.31
                                                            -0.065
                                                                     0
     PSNH
              2544
                        120 2664 -0.0042
                                           0.11
                                                   -0.48
                                                            -0.049
                                                                     0
   rkfree
              2544
                        120 2664
                                   0.0068
                                           0.0022 0.0021
                                                            0.0052
                                                                     0.0066
                        120 2664
                                   0.0068
                                           0.0022 0.0021
                                                            0.0052
   RKFREE
              2544
                                                                     0.0066
    TANDY
              2544
                        120 2664
                                   0.025
                                            0.13
                                                   -0.25
                                                            -0.058
                                                                     0.022
   TEXACO
              2544
                        120 2664
                                   0.012
                                            0.08
                                                   -0.19
                                                            -0.037
                                                                     0.01
    WEYER
              2544
                        120 2664
                                   0.0096
                                           0.085
                                                   -0.27
                                                            -0.049
                                                                    -0.002
     p75
            p100
                      hist
 90.25
         120
  0.07
           0.38
  0.064
           0.32
  0.045
           0.15
  0.058
           0.97
  0.078
           0.53
  0.075
           0.39
  0.063
           0.29
  0.06
           0.19
  0.065
           0.23
  0.05
           0.15
  0.062
           0.15
  0.057
           0.37
  0.084
           0.27
  0.074
           0.41
  0.043
           0.32
  0.0078
           0.013
  0.0078
           0.013
  0.094
           0.45
  0.048
           0.4
  0.06
           0.27
df = rename(df, n = A, date = B) #
df = na.omit(df) #
        CAPM:)
                                       MOTOR.
```

```
df = mutate(df, y = MOTOR - RKFREE, x = MARKET - RKFREE)
ols = lm(y \sim x, data = df)
summary(ols)
Call:
lm(formula = y ~ x, data = df)
Residuals:
              1Q Median
     \mathtt{Min}
                                3Q
                                          Max
-0.168421 -0.059381 -0.003399 0.061373 0.182991
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.005253 0.007200 0.730 0.467
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.07844 on 118 degrees of freedom
Multiple R-squared: 0.3569, Adjusted R-squared: 0.3514
F-statistic: 65.48 on 1 and 118 DF, p-value: 5.913e-13
plot(ols)
```

MOTOR

est = cbind(Estimate = coef(ols), confint(ols))

linearHypothesis(ols, c("x = 1"))

Linear hypothesis test

use us-return.dta

```
Hypothesis:
x = 1
Model 1: restricted model
Model 2: y ~ x
 Res.Df
             RSS Df Sum of Sq
                                  F Pr(>F)
    119 0.73900
     118 0.72608 1 0.012915 2.0989 0.1501
            :)
                          H_0: S = 0, K = 3,
  S —
                    (Skewness), K —
                                                (Kurtosis)
jarque.bera.test(resid(ols))
    Jarque Bera Test
data: resid(ols)
X-squared = 1.7803, df = 2, p-value = 0.4106
H_0: \epsilon_i \sim N(\mu, \sigma^2)
shapiro.test(resid(ols))
    Shapiro-Wilk normality test
data: resid(ols)
W = 0.99021, p-value = 0.5531
set.seed(7)
newData = df
newData = mutate(newData, x = x + rnorm(n = n())) #
yhat = predict(ols, newdata = newData, se = TRUE)
2.0.0.1
```

end of do-file

summarize
ren A n
ren B date

Variable	Obs	Mean	Std. Dev.	Min	Max
A	120	60.5	34.78505	1	120
В	0				
MOBIL	120	.0161917	.0803075	178	.366
TEXACO	120	.0119417	.0797036	194	.399
IBM	120	.0096167	.059024	187	. 15
DEC	120	.01975	.0991438	364	.385
DATGEN	120	.0074833	.1275399	342	.528
CONED	120	.0185083	.0502719	139	.151
PSNH	120	0042167	.1094712	485	.318
WEYER	120	.0096333	.0850664	271	.27
BOISE	120	.016675	.0974882	274	.379
MOTOR	120	.0181583	.0972656	331	. 27
TANDY	120	.0250083	.127566	246	.454
PANAM	120	.0035167	.1318054	313	.406
DELTA	120	.0116917	.0959317	26	. 289
CONTIL	+ 120	0011	.1506992	6	.974
CITCRP	120	.0118583	.0809719	282	.318
GERBER	120	.0164	.0877379	288	. 234
GENMIL	120	.0165833	.0650403	148	.19
MARKET	120	.0139917	.0683532	26	.148
RKFREE	+ 120	.0068386	.0021869	.00207	.01255
rkfree	120	.0068386	.0021869	.00207	.01255

drop if n == .

gen y = MOTOR - RKFREE

gen x = MARKET - RKFREE

(2,544 observations deleted)

reg y x

Source | SS df MS Number of obs = 120

Model Residual	.402913404 .726081541 .12899494	1 . 118 .	.402913404 Prob .006153233 R-squ		F = red = squared =	0.3569	
	Coef.					Interval]	
x	.8481496 .0052529	.1048138	8.09 0.	.000	.6405898		
test x = 1 (1) x = 1 F(1, Pr	118) = 2 ob > F = 0	2.10 0.1501					
<pre>predict u_hat, predict y_hat</pre>	resid						
(option xb ass	umed; fitted	values)					
https://www.starsktest u_hat	ta.com/manual	s13/rsktest.pdf		, Stata .	-		
Skewness/Kurtosis tests for Normality							
Variable		Pr(Skewness)	Pr(Kurtos	sis) adj	joi: chi2(2)		
u_hat			0.1027	7	2.74	0.2539	
	R.						
swilk u_hat							
Shapiro-Wilk W test for normal data							
Variable	Obs	W	V	z	Prob>z		

u_hat | 120 0.99021 0.942 -0.133 0.55310

```
QQ -
qnorm u_hat
```stata
rvfplot, yline(0)
 (R
).
lvr2plot
"""
predict D, cooksd
predict standard, rstandard
graph twoway scatter standard y_hat [aweight=D], msymbol(oh) yline(0)
set seed 7
set obs 120
gen x_new = x+ 0.5 *rnormal()
gen y_hat_new = .8481496 * x_new + .0052529
number of observations (_N) was 120, now 120
2.0.0.2
 python
```

### Statsmodels.

```
:)
plt.style.use('seaborn')
plt.rc('font', size=14)
plt.rc('figure', titlesize=15)
plt.rc('axes', labelsize=15)
plt.rc('axes', titlesize=15)
df = pd.read_stata('us-return.dta')
df.dropna(inplace=True) ## (
df.reset_index(drop=True, inplace=True)
df = df.rename(columns={'A':'n', 'B': 'date'})
df['y'] = df['MOTOR'] - df['RKFREE']
df['x'] = df['MARKET'] - df['RKFREE']
 :)
regr = smf.ols('y~x', data = df).fit()
regr.summary()
<class 'statsmodels.iolib.summary.Summary'>
 OLS Regression Results

Dep. Variable:
 y R-squared:
 0.357
Model:
 OLS Adj. R-squared:
 0.351
Method:
 Least Squares F-statistic:
 65.48
Date:
 , 16 2019 Prob (F-statistic):
 5.91e-13
Time:
 10:46:25 Log-Likelihood:
 136.18
No. Observations:
 120 AIC:
 -268.4
Df Residuals:
 118 BIC:
 -262.8
Df Model:
 1
Covariance Type:
 nonrobust

 coef std err t
 P>|t|
 Γ0.025

 0.007
 0.467
 0.0053
 0.730
Intercept
 -0.009
 0.020
 0.105 8.092
 0.000
 0.8481
 0.641
 1.056

Omnibus:
 2.684 Durbin-Watson:
 2.030
Prob(Omnibus):
 0.261 Jarque-Bera (JB):
 1.780
```

 Skew:
 -0.031
 Prob(JB):
 0.411

 Kurtosis:
 2.406
 Cond. No.
 14.6

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.



.

```
regr.conf_int()
 0
Intercept -0.009005 0.019511
 0.640590 1.055709
 F-test.
hypotheses = (x = 1)
regr.f_test(r_matrix = hypotheses)
<class 'statsmodels.stats.contrast.ContrastResults'>
<F test: F=array([[2.09891771]]), p=0.1500556415866233, df_denom=118, df_num=1>
W, p_value = shapiro(regr.resid)
\#pd.DataFrame(data = \{'W': [round(W,3)], 'p_value': [round(p_value,3)]\})
import random
random.seed(7)
newData = df['x'] + 0.5*np.random.normal(len(df))
prediction = regr.predict(newData)
 autoplot R.
fig_1 = plt.figure(1)
fig_1.axes[0] = sns.residplot(df['x'], df['y'],
 lowess=True,
 scatter_kws={'alpha': 0.6},
 line_kws={'color': 'red', 'lw': 2, 'alpha': 0.8})
fig_1.axes[0].set_title('Residuals vs Fitted')
fig_1.axes[0].set_xlabel('Fitted values')
fig_1.axes[0].set_ylabel('Residuals')
abs_resid = abs(regr.resid).sort_values(ascending=False)
abs_resid_top3 = abs_resid[:3]
for i in abs_resid_top3.index:
 fig_1.axes[0].annotate(i,
 xy=(regr.fittedvalues[i],
 regr.resid[i]))
```





```
fig_3 = plt.figure(3)
plt.scatter(regr.fittedvalues, np.sqrt(abs(norm_residuals)), alpha=0.5)
sns.regplot(regr.fittedvalues, np.sqrt(abs(norm_residuals)),
 scatter=False,
 ci=False,
 lowess=True,
 line_kws={'color': 'red', 'lw': 1, 'alpha': 0.6})
fig_3.axes[0].set_title('Scale-Location')
fig_3.axes[0].set_xlabel('Fitted values')
fig_3.axes[0].set_ylabel('$\sqrt{|Standardized Residuals|}$')
 !)
abs_sq_norm_resid = np.flip(np.argsort(np.sqrt(abs(norm_residuals)), 0))
abs_sq_norm_resid_top3 = abs_sq_norm_resid[:3]
for i in abs_sq_norm_resid_top3:
 fig_3.axes[0].annotate(i, xy=(regr.fittedvalues[i],
 np.sqrt(abs(norm_residuals)[i])))
```



```
leverage = regr.get_influence().hat_matrix_diag #
cook_dist = regr.get_influence().cooks_distance[0] #
fig_4 = plt.figure(4)
plt.scatter(leverage, norm_residuals, alpha=0.5)
sns.regplot(leverage, norm_residuals,
 scatter=False,
 ci=False.
 lowess=True,
 line_kws={'color': 'red', 'lw': 1, 'alpha': 0.8})
fig_4.axes[0].set_xlim(0, 0.20)
(0, 0.2)
fig_4.axes[0].set_ylim(-3, 5)
(-3, 5)
fig_4.axes[0].set_title('Residuals vs Leverage')
fig_4.axes[0].set_xlabel('Leverage')
fig_4.axes[0].set_ylabel('Standardized Residuals')
leverage_top3 = np.flip(np.argsort(cook_dist), 0)[:3]
```

