

CIPHER

API 参考

文档版本 02

发布日期 2015-07-28

版权所有 © 深圳市海思半导体有限公司 2014-2015。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任 何形式传播。

商标声明

(上) 、HISILICON、海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产 品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不 做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用 指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市海思半导体有限公司

地址: 邮编: 518129 深圳市龙岗区坂田华为基地华为电气生产中心

网址: http://www.hisilicon.com

客户服务电话: +86-755-28788858

客户服务传真: +86-755-28357515

客户服务邮箱: support@hisilicon.com

前言

i

概述

CIPHER 是海思数字媒体处理平台提供的数据加解密模块,它提供了 DES、3DES 和 AES 三种加解密算法,主要用于对音视频码流进行加解密。

□ 说明

本文以 Hi3516A 描述为例,未有特殊说明,Hi3516D、Hi3521A、Hi3531A 与 Hi3516A 完全一致。

未有特殊说明, Hi3520DV300 与 Hi3521A 完全一致。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
Hi3516A	V100
Hi3516D	V100
Hi3521A	V100
Hi3520D	V300
Hi3531A	V100

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 软件开发工程师

符号约定

在本文中可能出现下列标志,它们所代表的含义如下。

符号	说明
企 危险	表示有高度潜在危险,如果不能避免,会导致人员死亡或严重伤害。
警告	表示有中度或低度潜在危险,如果不能避免,可能导致人员轻微或中等伤害。
注意	表示有潜在风险,如果忽视这些文本,可能导致设备损坏、数据丢失、设备性能降低或不可预知的结果。
◎━━ 窍门	表示能帮助您解决某个问题或节省您的时间。
□ 说明	表示是正文的附加信息,是对正文的强调和补充。

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

文档版本 02 (2015-07-28)

第二次版本发布,产品版本中添加 Hi3521A、Hi3520DV300 和 Hi3531A

文档版本 01 (2014-12-20)

第一次正式版本发布,在产品版本中增加 Hi3516D

文档版本 00B01 (2014-09-14)

第一次临时版本发布

目录

前	前	i
	··· [概述	
	1.1 概述	
	1.2 使用流程	1
	1.3 注意事项	1
2	2 API 参考	3
	3 数据类型	
4	L 错误码	14

表格目录

表 4-1 CIPHER 模块的错误码14

1 概述

1.1 概述

CIPHER 是海思数字媒体处理平台提供的数据加解密模块,它提供了 DES、3DES 和 AES 三种加解密算法,主要用于对音视频码流进行加解密。

1.2 使用流程

对数据进行加解密的过程如下:

- 步骤 1. 打开 CIPHER 设备。调用接口 HI UNF CIPHER Open 完成。
- 步骤 2. 创建一路 CIPHER,并获取 CIPHER 句柄。调用接口 HI_UNF_CIPHER_CreateHandle 完成。
- 步骤 3. 配置 CIPHER 控制信息,包含密钥、初始向量、加密算法、工作模式等信息。调用接口 HI_UNF_CIPHER_ConfigHandle 完成。
- 步骤 4. 对数据进行加解密。调用接口 HI_UNF_CIPHER_Encrypt 或 HI_UNF_CIPHER_Decrypt 分别完成加密或解密。
- 步骤 5. 销毁 CIPHER 句柄。调用接口 HI_UNF_CIPHER_DestroyHandle 完成。
- 步骤 6. 关闭 CIPHER 设备。调用接口 HI_UNF_CIPHER_Close 完成。
 - ----结束

1.3 注意事项

- 一次加解密操作的数据长度必须小于 1MB。如果数据长度大于或等于 1M,请拆分成两部分进行处理。
- CIPHER 使用用户配置的 HI_UNF_CIPHER_BIT_WIDTH_E 值为块进行分块加密。
- 创建一路 CIPHER,配置属性之后(假设配置的工作模式需要使用 IV 向量),后面多次调用加解密接口时,IV 向量会依次轮流使用。

例如:用户需依次加密数据 0,数据 1。向量为 a,b,c,d。用户加密完数据 0 之后,数据 0 的最后一个分块数据使用了 IV 向量中的 b 进行加密处理;此时,用户再加密数据 1 时,数据 1 的第一个分块数据将会使用 IV 向量 c 进行加密,然后依次为 d,a,b,c,d...。

因此在加解密时,必须要保证两次向量使用的一致性。重新配置 CIPHER 控制信息将设置 IV 向量从第一个开始使用。

● 建议每次加解密之前都进行配置 CIPHER 控制信息操作,以使每次加解密操作都将从 IV 向量起始位置开始执行。

2 API 参考

CIPHER 提供以下 API:

- HI_UNF_CIPHER_Open: 打开 CIPHER 设备。
- HI_UNF_CIPHER_Close: 关闭 CIPHER 设备。
- HI_UNF_CIPHER_CreateHandle: 创建一路 CIPHER,并获取 CIPHER 句柄。
- HI_UNF_CIPHER_DestroyHandle: 销毁某路 CIPHER。
- HI_UNF_CIPHER_ConfigHandle: 配置 CIPHER 控制信息。
- HI_UNF_CIPHER_Encrypt: 对数据进行加密。
- HI_UNF_CIPHER_Decrypt: 对数据进行解密。

HI_UNF_CIPHER_Open

【描述】

打开 CIPHER 设备。

【语法】

HI_S32 HI_UNF_CIPHER_Open(HI_VOID);

【参数】

无。

【返回值】

返回值	描述
0	成功。
非 0	参见错误码。

【需求】

- 头文件: hi_error_ecs.h、hi_type.h、hi_unf_ecs.h、priv_cipher.h
- 库文件: libhi_cipher.a

【注意】

无。

【举例】

无。

HI_UNF_CIPHER_Close

【描述】

关闭 CIPHER 设备。

【语法】

HI_S32 HI_UNF_CIPHER_Close(HI_VOID);

【参数】

无。

【返回值】

返回值	描述
0	成功。
非0	参见错误码。

【需求】

- 头文件: hi_error_ecs.h、hi_type.h、hi_unf_ecs.h、priv_cipher.h
- 库文件: libhi_cipher.a

【注意】

无。

【举例】

无。

HI_UNF_CIPHER_CreateHandle

【描述】

创建一路 CIPHER, 并获取 CIPHER 句柄。

【语法】

HI_S32 HI_UNF_CIPHER_CreateHandle(HI_HANDLE* phCipher);

【参数】

参数名称	描述	输入/输出
phCipher	CIPHER 句柄指针。	输出

【返回值】

返回值	描述
0	成功。
非 0	参见错误码。

【需求】

- 头文件: hi_error_ecs.h、hi_type.h、hi_unf_ecs.h、priv_cipher.h
- 库文件: libhi_cipher.a

【注意】

- phCipher 不能为空。
- 该句柄将用于数据加解密时的输入。
- 最大支持 7 路 cipher。
- 不支持单分组加解密

【举例】

无。

HI_UNF_CIPHER_DestroyHandle

【描述】

销毁一路 CIPHER。

【语法】

HI_S32 HI_UNF_CIPHER_DestroyHandle(HI_HANDLE hCipher);

【参数】

参数名称	描述	输入/输出
hCipher	CIPHER 句柄。	输入

【返回值】

返回值	描述
0	成功。
非0	参见错误码。

【需求】

- 头文件: hi_error_ecs.h、hi_type.h、hi_unf_ecs.h、priv_cipher.h
- 库文件: libhi_cipher.a

【注意】

支持重复销毁。

【举例】

无。

HI_UNF_CIPHER_ConfigHandle

【描述】

配置 CIPHER 控制信息。详细配置请参见结构体 HI_UNF_CIPHER_CTRL_S。

【语法】

HI_S32 HI_UNF_CIPHER_ConfigHandle(HI_HANDLE hCipher,
HI_UNF_CIPHER_CTRL_S* pstCtrl);

【参数】

参数名称	描述	输入/输出
hCipher	CIPHER 句柄。	输入
pstCtrl	控制信息指针。	输入

【返回值】

返回值	描述
0	成功。
非0	参见错误码。

【需求】

- 头文件: hi_error_ecs.h、hi_type.h、hi_unf_ecs.h、priv_cipher.h
- 库文件: libhi_cipher.a

【注意】

控制信息指针不能为空。

【举例】

无。

HI_UNF_CIPHER_Encrypt

【描述】

对数据进行加密。

【语法】

HI_S32 HI_UNF_CIPHER_Encrypt(HI_HANDLE hCipher, HI_U32 u32SrcPhyAddr,
HI_U32 u32DestPhyAddr, HI_U32 u32ByteLength);

【参数】

参数名称	描述	输入/输出
hCipher	CIPHER 句柄。	输入
u32SrcPhyAddr	源数据(待加密的数据)的物理地址。	输入
u32DestPhyAddr	存放加密结果的物理地址。	输出
u32ByteLength	数据的长度(单位:字节)。	输入

【返回值】

返回值	描述
0	成功。
非0	参见错误码。

【需求】

- 头文件: hi_error_ecs.h、hi_type.h、hi_unf_ecs.h、priv_cipher.h
- 库文件: libhi_cipher.a

【注意】

- CIPHER 句柄必须已创建。
- 可多次调用。
- 数据的长度至少为 16 字节,且不能大于或等于 1024*1024 字节。

【举例】

无。

HI_UNF_CIPHER_Decrypt

【描述】

对数据进行解密。

【语法】

HI_S32 HI_UNF_CIPHER_Decrypt(HI_HANDLE hCipher, HI_U32 u32SrcPhyAddr,
HI_U32 u32DestPhyAddr, HI_U32 u32ByteLength);

【参数】

参数名称	描述	输入/输出
hCipher	CIPHER 句柄。	输入
u32SrcPhyAddr	源数据(待解密的数据)的物理地址。	输入
u32DestPhyAddr	存放解密结果的物理地址。	输出
u32ByteLength	数据的长度(单位:字节)。	输入

【返回值】

返回值	描述
0	成功。
非0	参见错误码。

【需求】

- 头文件: hi_error_ecs.h、hi_type.h、hi_unf_ecs.h、priv_cipher.h
- 库文件: libhi_cipher.a

【注意】

- CIPHER 句柄必须已创建。
- 可多次调用。
- 数据的长度至少为 16 字节,且不能大于或等于 1024x1024 字节。

【举例】

无。

3 数据类型

相关数据类型、数据结构定义如下:

- HI_HANDLE: 定义 CIPHER 的句柄类型。
- HI_UNF_CIPHER_WORK_MODE_E: 定义 CIPHER 工作模式。
- HI_UNF_CIPHER_ALG_E: 定义 CIPHER 加密算法。
- HI_UNF_CIPHER_KEY_LENGTH_E: 定义 CIPHER 密钥长度。
- HI_UNF_CIPHER_BIT_WIDTH_E: 定义 CIPHER 加密位宽。
- HI_UNF_CIPHER_CTRL_S: 定义 CIPHER 控制信息结构体。

HI_HANDLE

【说明】

定义 CIPHER 的句柄类型。

【定义】

typedef HI_U32 HI_HANDLE;

【成员】

无。

【注意事项】

无。

【相关数据类型及接口】

无。

HI_UNF_CIPHER_WORK_MODE_E

【说明】

定义 CIPHER 工作模式。

【定义】


```
typedef enum hiHI_UNF_CIPHER_WORK_MODE_E
{
    HI_UNF_CIPHER_WORK_MODE_ECB = 0x0,
    HI_UNF_CIPHER_WORK_MODE_CBC = 0x1,
    HI_UNF_CIPHER_WORK_MODE_CFB = 0x2,
    HI_UNF_CIPHER_WORK_MODE_OFB = 0x3,
    HI_UNF_CIPHER_WORK_MODE_CTR = 0x4,
    HI_UNF_CIPHER_WORK_MODE_BUTT = 0x5
};
```

【成员】

成员名称	描述	
HI_UNF_CIPHER_WORK_MODE_ECB	ECB (Electronic CodeBook) 模式	
HI_UNF_CIPHER_WORK_MODE_CBC	CBC (Cipher Block Chaining) 模式	
HI_UNF_CIPHER_WORK_MODE_CFB	CFB(Cipher FeedBack)模式	
HI_UNF_CIPHER_WORK_MODE_OFB	OFB(Output FeedBack)模式	
HI_UNF_CIPHER_WORK_MODE_CTR	CTR(Counter)模式	

【注意事项】

无。

【相关数据类型及接口】

无。

HI_UNF_CIPHER_ALG_E

【说明】

定义 CIPHER 加密算法。

【定义】

```
typedef enum hiHI_UNF_CIPHER_ALG_E
{
    HI_UNF_CIPHER_ALG_DES = 0x0,
    HI_UNF_CIPHER_ALG_3DES = 0x1,
    HI_UNF_CIPHER_ALG_AES = 0x2,
    HI_UNF_CIPHER_ALG_BUTT = 0x3
}HI_UNF_CIPHER_ALG_E;
```

【成员】

成员名称	描述
HI_UNF_CIPHER_ALG_DES	DES 算法
HI_UNF_CIPHER_ALG_3DES	3DES 算法
HI_UNF_CIPHER_ALG_AES	AES 算法

【注意事项】

无。

【相关数据类型及接口】

无。

HI_UNF_CIPHER_KEY_LENGTH_E

【说明】

定义 CIPHER 密钥长度。

【定义】

```
typedef enum hiHI_UNF_CIPHER_KEY_LENGTH_E
{
    HI_UNF_CIPHER_KEY_AES_128BIT = 0x0,
    HI_UNF_CIPHER_KEY_AES_192BIT = 0x1,
    HI_UNF_CIPHER_KEY_AES_256BIT = 0x2,
    HI_UNF_CIPHER_KEY_DES_3KEY = 0x2,
    HI_UNF_CIPHER_KEY_DES_2KEY = 0x3,
}
HI_UNF_CIPHER_KEY_LENGTH_E;
```

【成员】

成员名称	描述	
HI_UNF_CIPHER_KEY_AES_128BIT	AES 运算方式下采用 128bit 密钥长度	
HI_UNF_CIPHER_KEY_AES_192BIT	AES 运算方式下采用 192bit 密钥长度	
HI_UNF_CIPHER_KEY_AES_256BIT	AES 运算方式下采用 256bit 密钥长度	
HI_UNF_CIPHER_KEY_DES_3KEY	3DES 运算方式下采用 3 个 key	
HI_UNF_CIPHER_KEY_DES_2KEY	3DES 运算方式下采用 2 个 key	

【注意事项】

• AES 的密钥长度可以为 128bit, 192bit 或 256bit。

- 3DES 算法的密钥长度可以为 2 个或 3 个 key, 一个 key 指 DES 加密所用的密钥, 它的长度为 64bit。
- DES 算法该项无效。

【相关数据类型及接口】

无。

HI_UNF_CIPHER_BIT_WIDTH_E

【说明】

定义 CIPHER 加密位宽。

【定义】

```
typedef enum hiHI_UNF_CIPHER_BIT_WIDTH_E
{
    HI_UNF_CIPHER_BIT_WIDTH_64BIT = 0x0,
    HI_UNF_CIPHER_BIT_WIDTH_8BIT = 0x1,
    HI_UNF_CIPHER_BIT_WIDTH_1BIT = 0x2,
    HI_UNF_CIPHER_BIT_WIDTH_128BIT = 0x3,
}HI_UNF_CIPHER_BIT_WIDTH_E;
```

【成员】

成员名称	描述
HI_UNF_CIPHER_BIT_WIDTH_64BIT	64bit 位宽
HI_UNF_CIPHER_BIT_WIDTH_8BIT	8bit 位宽
HI_UNF_CIPHER_BIT_WIDTH_1BIT	1bit 位宽
HI_UNF_CIPHER_BIT_WIDTH_128BIT	128bit 位宽

【注意事项】

无。

【相关数据类型及接口】

无。

HI_UNF_CIPHER_CTRL_S

【说明】

定义 CIPHER 控制信息结构体。

【定义】

typedef struct hiHI_UNF_CIPHER_CTRL_S

【成员】

成员名称	描述	
u32Key[8]	密钥	
u32IV[4]	初始向量	
bKeyByCA	是否使用高安全 CA 加密或解密 KEY	
enAlg	加密算法	
enBitWidth	加密或解密的位宽	
enWorkMode	工作模式	
enKeyLen	密钥长度	

【注意事项】

ECB 模式、CTR 模式下不需要初始向量。

【相关数据类型及接口】

无。

4 错误码

CIPHER 提供的错误码如下。

表4-1 CIPHER 模块的错误码

错误代码	宏定义	描述
0x804D0001	HI_ERR_CIPHER_NOT_INIT	设备未初始化
0x804D0002	HI_ERR_CIPHER_INVALID_HANDLE	Handle 号无效
0x804D0003	HI_ERR_CIPHER_INVALID_POINT	参数中有空指针
0x804D0004	HI_ERR_CIPHER_INVALID_PARA	无效参数
0x804D0005	HI_ERR_CIPHER_FAILED_INIT	初始化失败
0x804D0006	HI_ERR_CIPHER_FAILED_GETHANDLE	获取 handle 失败
-1	HI_FAILURE	操作失败