Exercises in combinatorics

Exercise 1.0.1. $[n] = \{1, \dots, n\}$, what is the cardinality of $\{f \in Aut([n]) | f(i) \neq i, \forall i \in [n]\}$ Solution. Consider $A_k = \{f \in Aut([n]) | f(k) = k\}$, by Inclusion-exclusion principle ??, we have

$$n! = \left| \bigcup_{i=1}^{n} A_n \right| = \sum_{k=1}^{n} (-1)^k \sum_{i_1 < \dots < i_k} |A_{i_1} \cap \dots \cap A_{i_k}|$$

$$= \sum_{k=1}^{n} (-1)^k \binom{n}{k} (n-k)!$$

$$= \sum_{k=1}^{n} (-1)^k \frac{n!}{k!}$$

Thus the probability of picking such an auto morphism is $\sum_{i=1}^{n} \frac{(-1)^k}{k!}$ which approaches e^{-1} as n approaches infinity

Exercises in abstract algebra

Exercise 2.0.1. If R is a domain, so is R[x]

Solution. Suppose $f = ax^n + \cdots$, $g = bx^m + \cdots$ for some $a, b \neq 0$, then $fg = abx^{n+m} + \cdots \neq 0$

Exercise 2.0.2. If E/F is a Galois extension, then $Tr_{E/F}(\alpha)$ is the sum of all conjugates of α , $N_{E/F}(\alpha)$ is the product of all conjugates of α

Solution. Suppose the minimal polynomial of α is $m(x) = x^n + a_1 x^{n-1} + \cdots + a_n$

Exercise 2.0.3. If $F \subseteq E \subseteq L$ are field extensions, then $Tr_{L/F} = Tr_{E/F} \circ Tr_{L/E}$

Solution. Suppose x_1, \dots, x_n is a basis for L/E, y_1, \dots, y_m is a basis for E/F $\square: V->W<=W => Tr(T)=Tr(T|W)$

Exercise 2.0.4. Suppose $T \in \text{Hom}_{\mathbb{F}}(V, V)$ is a linear operator with $T(V) \leq W$, then $Tr(T) = Tr(T|_W)$

Mundane properties of rings

Exercise 2.0.5. R is a ring

1.
$$0x = 0, (-1)x = -x$$

Solution.

1.

$$0x = (0+0)x = 0x + 0x \Rightarrow 0x = 0$$
$$0x = (1+(-1))x = 1x + (-1)x = x + (-1)x \Rightarrow (-1)x = -x$$

Exercise 2.0.6. Let R be a commutative ring, and $I_1, \dots, I_n \leq R$ be pairwise coprime ideals, then $I_1 \dots I_n = I_1 \cap \dots \cap I_n$

Solution. By induction \Box

Exercise 2.0.7. Every group G is naturally isomorphic to its opposite G^{op}

Solution. Consider
$$\phi: G \to G^{op}, g \mapsto g^{-1}$$

Exercise 2.0.8. A morphism of G torsors is always an isomorphism

Exercise 2.0.9. X has a left G action and a right H action such that (gx)h = g(xh)

- 1. $X \times_G * \cong X/G$
- **2.** $X \times_G G \cong X$
- 3. $(X \times_G Y) \times_H Z \cong X \times_G (Y \times_H Z)$

- **4.** If $H \leq G$, then $X \times_G G \times_Y \cong X \times_H Y$
- **5.** If $H \triangleleft G$, $X \times_G (G/H) \cong X/H$

Exercise 2.0.10. SL(n, F) is a perfect group for $n \geq 3$. SL(2, F) is a perfect group if $|k| \geq 4$

Solution. Denote $G_n = SL(n, F)$. Elementary matrices generate G_n and are in $[G_n, G_n]$

Exercise 2.0.11. M is a finitely presented, then $N^* \otimes M \cong \operatorname{Hom}_R(M, N)^*$ R is a local ring, then flat, projective, free modules are equivalent notions

Solution. Finite presented and flat always imply projective

M has minimal generating set $m_1, \dots, m_n, 0 \to K \to R^n \to M \to 0$ is a split exact sequence, tensor with k = R/m, we have $0 \to k \otimes K \to k^n \to k \otimes M \to 0$, but $\dim k^n = \dim k \otimes M = n$, $K/mK = k \otimes K = 0$, by Nakayama's lemma ??, K = 0, hence $M = R^n$

Exercise 2.0.12. Let K be a field, and let n be a positive integer. Let $K(x_1, \dots, x_n)$ be the field of rational functions over K with n variables, and let $L = K[x_1, \dots, x_n, x_1^{-1}, \dots, x_n^{-1}]$ be the subring of $K(x_1, \dots, x_n)$. Let $R = K[x_1, \dots, x_n, y_1, \dots, y_n]$

- 1. For an element $p \in R$, let $\varphi(p)$ denote the element of L obtained by substituting x_i^{-1} into each variable y_i in p. This map $\varphi: R \to L$ is a ring homomorphism. Show that for an ideal J of L, $\varphi^{-1}(J)$ is an ideal of R
- **2.** For $1 \leq i \leq n$, let $g_i = x_i y_i 1$. Let

 $R' = \{r \in R | \text{for } 1 \leq i \leq n, \text{ every monomial in } r \text{ does not involve } x_i \text{ and } y_i \text{ simultaneously} \}$

Show that for an arbitrary element $p \in R$, there exist $h_1, \dots, h_n \in R$ and $r \in R'$ such that $p = h_1 g_1 + \dots + g_n h_n + r$

3. Let I denote the ideal of R generated by g_1, \dots, g_n . Show that $\ker \varphi = I$ and that L is isomorphic to the quotient ring R/I

Solution.

- 1. By definition
- **2.** Suppose monomial q containing factor $(x_1y_1)^k$ but not $(x_1y_1)^{k+1}$, since $(x_1y_1)^k = (g_1 + 1)^k$, q can be written as $ug_1 + v$, where every monomial in v does not involve x_1 and y_1 simultaneously. Repeat for g_2, \dots, g_n , then we are done
- **3.** $\varphi(g_i) = 0 \Rightarrow I \leq \ker \varphi$, conversely, if $p \in \ker \varphi$, then $0 = \varphi(r) \Rightarrow r = 0$, thus $\ker \varphi = I$. Since φ is surjective, by first isomorphism theorem, we have $L \cong R/I$

Exercises in analysis

U<R^n open, boundary point is the limit of some discrete sequence

Exercise 3.0.1. $U \subsetneq \mathbb{R}^n$ is a nonempty open set, $x \in \partial U$, then there exists a discrete sequence $\{x_i\} \subseteq U$ converges to x

Solution. x is necessarily an accumulation point since $\partial U \cap U = \emptyset$. Pick $x_0 \in U$, then we can find $\epsilon > 0$ such that $x_0 \notin B(x, \epsilon)$, then pick $x_1 \in B(x, \epsilon/2) \cap U$, and so on

f analytic near 0, after change of variables, f has terms only involve one variable

Exercise 3.0.2. f is analytic near 0, by rotation of coordinates, we can always make f has terms only involve one variable

Exercise 3.0.3. Evaluate $\int_0^\infty e^{-s^2-\frac{1}{s^2}}ds$

Solution. $\left(s-\frac{1}{s}\right)^2=s^2+\frac{1}{s^2}-2$, let $x=s-\frac{1}{s}$ which is increasing on $(0,\infty)$ since $0< s<\infty$, $-\infty < x < \infty$, then $s=\frac{x+\sqrt{x^2+4}}{2}$ and

$$\int_0^\infty e^{-s^2-\frac{1}{s^2}}ds = e^{-2}\int_{-\infty}^{+\infty} e^{-x^2}\left(\frac{1}{2}+\frac{x}{2\sqrt{x^2+4}}\right)dx = e^{-2}\int_0^\infty e^{-x^2}dx = \frac{e^{-2}\sqrt{\pi}}{2}$$

Exercise 3.0.4. f is holomorphic on the punctured unit disc, p > 0, $\int_D |f(z)|^p dz < \infty$. What can we say about the singularity?

Solution. $|f(z)|^p = e^{p\log|f(z)|}$ is subharmonic by Example ??, thus essential singularity is impossible

$$|f(z)|^p \le rac{4}{\pi |z|^2} \int_{|w-z|<|z|/2} |f(w)|^p dw \le rac{C}{|z|^2}$$

Thus $|z|^{\frac{2}{p}}|f(z)| < \infty$

Exercise 3.0.5. $U \subseteq \Omega \subseteq \mathbb{C}$ are open, f is holomorphic on U, \widehat{U}_{Ω} be the union of U and compact connected components of $\Omega \setminus U$. There exist $\{f_n\}$ holomorphic on Ω converging uniformly to f on compact subsets of U iff there exists g holomorphic on $H(\widehat{U}_{\Omega})$ such that $g|_{U} = f$

Solution. Assume $\widehat{U}_{\Omega} = U \cup K_1 \cup \cdots$, where K_i 's are compact

Suppose $\{f_n\}$ holomorphic on Ω converging uniformly to f on compact subsets of U, by maximum principle, $\{f_n\}$ would be uniformly bounded around K_i , by Montel's theorem ??, there exists a subsequence of $\{f_n\}$ converges uniformly on K_i , thus converging to g holomorphic on $H(\widehat{U}_{\Omega})$, hence $g|_{U} = f$

Conversely, suppose g holomorphic on $H(\widehat{U}_{\Omega})$ such that $g|_{U} = f$, \widehat{U}_{Ω} is simply connected, by Riemann mapping theorem ??, we can think of \widehat{U}_{Ω} as the unit disc or \mathbb{C} , by Runge's theorem,

there exist $\{f_n\}$ holomorphic on Ω uniformly converging to g on each disc. Thus there exist a subsequence of $\{f_n\}$ converging uniformly to g on compact subsets of \widehat{U}_{Ω}

Exercise 3.0.6. Let Ω be an open subset of \mathbb{C} , $\mathscr{D} = \{D_i\}$ be an open cover of Ω with disks. Given meromorphic functions h_i on D_i , not identically zero. Assume $g_{ij} = \frac{h_i}{h_j}$ are holomorphic on $D_i \cap D_j$, then there exist holomorphic function f_i with no zeros on D_i such that $f_i = g_{ij}f_j$

Solution. It suffices to prove $H^1(\Omega, \mathcal{O}^*) = 0$, since then $H^1(\mathcal{D}, \mathcal{O}^*) = 0$, $(g_{ij}) \in Z^1(\mathcal{D}, \mathcal{O}^*) = B^1(\mathcal{D}, \mathcal{O}^*)$, i.e. there exists $(f_i) \in C^0(\mathcal{D}, \mathcal{O}^*)$ such that $f_i = g_{ij}f_j$

Consider exact sequence of sheaves $0 \to \mathbb{Z} \hookrightarrow \mathcal{O} \xrightarrow{\exp} \mathcal{O}^* \to 0$, then we get a long exact sequence $\cdots \to H^1(\Omega, \mathcal{O}) \to H^1(\Omega, \mathcal{O}^*) \to H^2(\Omega, \mathbb{Z}) \to \cdots$, $H^1(\Omega, \mathcal{O}) = 0$ by Mittag-Leffler theorem \square

Exercise 3.0.7. For each real r such that 0 < |r| < 1, prove that there exists at most one real s with 0 < s < 1 for which $\Omega := D \setminus \{0, r, s\}$ admits an analytic automorphism different from the identity

Solution. Suppose $\Omega \xrightarrow{\phi} \Omega$ is an analytic automorphism, then 0, r, s are all removable singularities, by continuity, ϕ can be extended to $D \xrightarrow{\phi} D$, so is ϕ^{-1} , by continuity, we know ϕ is an automorphism of D, sending $\{0, r, s\}$ to itself bijectively

By Schwarz lemma, we know that an automorphism ϕ of D with $\phi(\alpha)=0$ iff $\phi=e^{i\theta}\frac{z-\alpha}{1-\overline{\alpha}z}$ Now suppose ϕ is an automorphism different from the identity, if 0< r=s<1, then $\phi=-\frac{z-r}{1-rz}$ is a choice, now we assumen $r\neq s$

Case I:
$$\phi(0) = 0$$

$$\phi = e^{i\theta}z, \, \phi(r) = s, \, \text{but } 0 < s < 1, \, \text{thus } s = |r|$$

Case II:
$$\phi(r)=0$$
 $\phi=e^{i\theta}rac{z-r}{1-\overline{r}z},\,\phi(0)=-re^{i heta}$

Case i:
$$\theta = \pi$$
, $\phi(0) = r$, then $s = \phi(s) \Rightarrow \overline{r}s^2 - 2s + r = 0 \Rightarrow s = \frac{1 + \sqrt{1 - |r|^2}}{\overline{r}}$ or $\frac{1 - \sqrt{1 - |r|^2}}{\overline{r}}$, r has to be a positive real number and $s = \frac{1 - \sqrt{1 - r^2}}{r}$

Case ii:
$$s = \phi(0) = |r|$$

Case III:
$$\phi(s) = 0$$

$$\phi = e^{i\theta} \frac{z-s}{1-sz}, \, \phi(0) = -se^{i\theta}$$

Case i:
$$\theta = \pi$$
, $\phi(0) = s$, then $r = \phi(r) \Rightarrow sr^2 - 2r + s = 0 \Rightarrow s = \frac{2r}{1 + r^2}$.

Case ii:
$$r = \phi(0) = -se^{i\theta}$$
, $s = \phi(r) \Rightarrow s^2 = 1$ which is impossible

Exercise 3.0.8. $F \subseteq \mathbb{C}$ is closed, connected and noncompact, $\Omega = \mathbb{C} \setminus F$, then every $f \in \mathcal{O}(\Omega)$ has a primitive

Solution. It suffices to show that every connected component U of Ω is simply connected Suppose U is not simply connected, then $\pi_1(U, z_0) \neq 0$, i.e. there is a simple (self non-intersecting) loop $\gamma \subseteq U$ with $\gamma(0) = \gamma(1)$ cannot be deform to z_0 , by Jordan curve theorem $??, \gamma$ divides \mathbb{C} into the exterior and the interior which is homeomorphic to the unit disc D, suppose $F \cap D$ is empty, then $\overline{D} \subseteq U$, γ can be deformed to z_0 , giving a contradiction, hence $F \cap \overline{D}$ is a compact connected component of F which is also a contradiction

Exercise 3.0.9. Consider an open set $\Omega \subseteq \mathbb{C}^2$ such that

$$\{(z,w)\in\mathbb{C}^2||z|\leq R_1,|w|\leq R_2\}\subseteq\Omega$$

for some positive reals R_1 and R_2 . Let $f \in \mathcal{H}(\Omega)$ be such that $f(z, w) \neq 0$ for every z and w for which $|z| \leq R_1$, $|w| = R_2$

- 1. Prove that the number (counted with multiplicities) of zeros of $w \mapsto f(z, w)$ in $D(0, R_2)$ is the same for every $|z| \leq R_1$
- **2.** Let $w_1(z), \dots, w_m(z)$ denote the zeros of $w \mapsto f(z, w)$ (counted with multiplicities). Prove that for each $n \in \mathbb{N}$ the function

$$z \mapsto w_1(z)^n + \cdots + w_m(z)^n$$

is holomorphic for $z \in D(0, R_1)$

- **3.** Deduce that nth elementary symmetric function σ_n of $w_1(z), \dots, w_m(z)$ is holomorphic.
- **4.** Prove that there exists a function h that is holomorphic and without any zeros on $\{(z, w) \in \mathbb{C}^2 | |z| < R_1, |w| < R_2\}$ such that

$$f(z, w) = h(z, w)[w^m + \sigma_1(z)w^{m-1} + \dots + \sigma_{m-1}(z)w + \sigma_m(z)]$$

for every z and w such that $|z| < R_1$ and $|w| < R_2$

Solution.

- 1. By Lemma ??, $\frac{1}{2\pi i} \int_{\partial D(0,R_2)} \frac{f_w(z,w)}{f(z,w)} dw$ is the number of zeros in $D(0,R_2)$ which is continuous, hence the same for every $|z| \leq R_1$
- 2. By Lemma ??, $\frac{1}{2\pi i} \int_{\partial D(0,R_2)} w^n \frac{f_w(z,w)}{f(z,w)} dw = w_1(z)^n + \cdots + w_m(z)^n \text{ is holomorphic}$
- 3. Directly follows from (2) thanks to Newton's identities
- 4. Since $\prod_{i=1}^m (w-w_i(z)) = w^m + \sigma_1(z)w^{m-1} + \cdots + \sigma_{m-1}(z)w + \sigma_m(z)$ is holomorphic

$$\frac{f(z,w)}{w^m + \sigma_1(z)w^{m-1} + \cdots + \sigma_{m-1}(z)w + \sigma_m(z)}$$

has no zeros on D and holomorphic on $\{R_2 - \varepsilon < |w| < R_2\}$, hence by Hartogs's extension theorem ??, can be extended to a holomorphic function h(z, w), then $f(z, w) = h(z, w)[w^m + \sigma_1(z)w^{m-1} + \cdots + \sigma_{m-1}(z)w + \sigma_m(z)]$ on $\{R_2 - \varepsilon < |w| < R_2\}$, by identity theorem, this holds for all $|z| < R_1$ and $|w| < R_2$

Exercise 3.0.10. Suppose p_1, \dots, p_n are points on the compact Riemann surface X and $X' = X \setminus \{p_1, \dots, p_n\}$. Suppose $f: X' \to \mathbb{C}$ is a non-constant holomorphic function. Show that the image of f comes arbitrarily close to every $c \in \mathbb{C}$

Solution. Suppose there exists $c \in \mathbb{C}$ such that $|f-c| \geq \varepsilon$ for some $\varepsilon > 0$, then $\frac{1}{f-c}$ would be a bounded holomorphic function on X', by Riemann's Removable singularity theorem, $\frac{1}{f-c}$ can be extended to a holomorphic function on X, but since X is compact, $\frac{1}{f-c}$ is a constant which is impossible

Exercise 3.0.11. Let X be a compact Riemann surface and let $X \xrightarrow{\sigma} X$ be a biholomorphic map of X onto itself, different from the identity. Let $a \in X$ be a point with $\sigma(a) \neq a$, and suppose that there is a non-constant meromorphic function f on X, holomorphic on $X \setminus \{a\}$, with a pole of order k at a. Prove that σ can have at most 2k fixed points on X

Solution. Suppose there are more than 2k fixed points of σ , then consider $f - f \circ \sigma^{-1} : X \to \mathbb{P}^1$ is holomorphic on $X \setminus \{a, \sigma^{-1}(a)\}$ with at least 2k + 1 zeros and with poles of order k at $a, \sigma^{-1}(a)$, but it should have as many poles as zeros which is a contradiction

Exercise 3.0.12. $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ and $\Lambda' = \mathbb{Z}\omega_1' + \mathbb{Z}\omega_2'$ are lattices in \mathbb{C} . Show that $\Lambda = \Lambda'$ iff there exists a matrix $A \in GL(2,\mathbb{Z})$ such that

$$\begin{pmatrix} \omega_1' \\ \omega_2' \end{pmatrix} = A \begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix}$$

Solution. First not that

$$\Lambda \subseteq \Lambda' \quad \Leftrightarrow \quad \binom{\omega_1}{\omega_2} = A \begin{pmatrix} \omega_1' \\ \omega_2' \end{pmatrix} \text{ for some } A \in \operatorname{M}(2, \mathbb{Z})$$

Hence we have

$$\Lambda = \Lambda' \quad \Leftrightarrow \quad \begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix} = A \begin{pmatrix} \omega_1' \\ \omega_2' \end{pmatrix}, \begin{pmatrix} \omega_1' \\ \omega_2' \end{pmatrix} = B \begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix} \text{ for some } A, B \in M(2, \mathbb{Z})$$

Which is equivalent to $A \in GL(2, \mathbb{Z})$

Exercise 3.0.13. $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$, $\Lambda' = \mathbb{Z}\omega_1' + \mathbb{Z}\omega_2'$ are lattices in \mathbb{C} and $X = \mathbb{C}/\Lambda$, $X' = \mathbb{C}/\Lambda'$ are the corresponding complex tori

- **1.** Prove that any holomorphic map $X \xrightarrow{f} X'$ is induced by a linear map $\mathbb{C} \xrightarrow{g} \mathbb{C}$ of the form $g(z) = \alpha z + \beta$, where $\alpha \in \mathbb{C}$ is such that $\alpha \Lambda \subseteq \Lambda'$. f is biholomorphic if and only if $\alpha \Lambda = \Lambda'$
- **2.** Show that every torus $X = \mathbb{C}/\Lambda$ is isomorphic to a torus of the form $X(\tau) = \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$, where $\tau \in \mathbb{C}$ satisfies $\text{Im}(\tau) > 0$
- **3.** Assume that $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z})$ and $Im(\tau) > 0$. Let $\tau' := \frac{a\tau + b}{c\tau + d}$. Show that the tori $X(\tau)$ and $X(\tau')$ are biholomorphic

Solution.

1. Since \mathbb{C} is the universal cover of \mathbb{C}/Λ' , $f \circ \pi : \mathbb{C} \to \mathbb{C}/\Lambda'$ has a lift $F : \mathbb{C} \to \mathbb{C}$, and locally we have $F = \pi'|_V^{-1} \circ f \circ \pi|_U$, thus F is holomorphic

$$\begin{array}{ccc} \mathbb{C} & \stackrel{F}{\longrightarrow} \mathbb{C} \\ \downarrow^{\pi} & & \downarrow^{\pi'} \\ \mathbb{C}/\Lambda & \stackrel{f}{\longrightarrow} \mathbb{C}/\Lambda' \end{array}$$

Fix $\omega \in \Lambda$, since $\pi(z + \omega) = \pi(z)$ for any $z \in \mathbb{C}$, we have $F(z + \omega) - F(z) \in \Lambda'$, hence $F(z + \omega) - F(z)$ is a continuous function of z but Λ' is discrete, thus $F(z + \omega) - F(z) \equiv C_{\omega}$, where $C_{\omega} \in \Lambda'$ is a constant. Then $F'(z + \omega) = F'(z)$ which shows $F' : \mathbb{C} \to \mathbb{C}$ is doubly periodic function, thus induces $G : \mathbb{C}/\Lambda \to \mathbb{C}$ with $F = G \circ \pi$. Thus G must be a constant, so is F', therefore F has the form $F(z) = \alpha z + \beta$. Then for any $\omega \in \Lambda$, we have $F(\omega) - F(0) = \alpha \omega \in \Lambda'$, thus $\alpha \Lambda \subset \Lambda'$. If f is biholomorphic, then $\pi' \circ F = f \circ \pi \Rightarrow \pi \circ F^{-1} = f^{-1} \circ \pi'$, which implies $\begin{cases} \alpha \Lambda \subset \Lambda' \\ \alpha^{-1} \Lambda' \subset \Lambda \end{cases} \Rightarrow \alpha \Lambda = \Lambda'$

Conversely, if $\alpha \Lambda = \Lambda'$, $\pi \circ F^{-1}$ is doubly periodic and induce f^{-1} , hence f is biholomorphic

- **2.** Suppose $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$, $\operatorname{Im}\left(\frac{\omega_2}{\omega_1}\right) > 0$, define $\Lambda' = \mathbb{Z} + \mathbb{Z}\tau$, where $\tau = \frac{\omega_2}{\omega_1}$, we have $\omega_1 \Lambda' = \Lambda$, thus X and $X(\tau)$ are biholomorphic
- **3.** $X(\tau)$ and $X(\tau')$ are biholomorphic iff $\binom{\tau'}{1} = \alpha A \binom{\tau}{1}$, $\alpha \in \mathbb{C} \{0\}$, $A \in SL(2, \mathbb{Z})$ If $X(\tau)$ and $X(\tau')$ are biholomorphic, then $\mathbb{Z} + \mathbb{Z}\tau' = \Lambda' = \alpha\Lambda = \mathbb{Z}\alpha + \mathbb{Z}\alpha\tau$ for some $\alpha \in \mathbb{C} \{0\}$, thus $\binom{\tau'}{1} = A \binom{\alpha\tau}{\alpha} = \alpha A \binom{\tau}{1}$, for some $A \in SL(2, \mathbb{Z})$, the other direction is easy

Exercise 3.0.14. Determine the branch points (or ramification points) of the map $f: \mathbb{C} \to \mathbb{P}^1$ with

$$f(z) = \frac{1}{2} \left(z + \frac{1}{z} \right)$$

Solution. $f'(z) = \frac{1}{2} \left(1 - \frac{1}{z^2} \right)$ when $z \neq 0$, thus 1, -1 are branch points.

Consider the chart $(P^1 - \{0\}, \varphi)$ with $\varphi(z) = \frac{1}{z}$

Thus
$$g(z)=\varphi\circ f(z)=rac{z}{2(z^2+1)},$$
 $g'(z)=rac{1-z^2}{2(z^2+1)},$ hence 0 is not a branch point

Exercise 3.0.15. If f and g are two elliptic functions with respect to the same lattice $\Omega \subseteq \mathbb{C}$, prove that there exists an irreducible polynomial $P(x,y) \in \mathbb{C}[x,y]$ such that P(f,g) = 0

Solution. If $f \equiv c$ is a constant, then P(x,y) = x - c is an irreducible polynomial such that P(f,g) = 0, so we can assume f,g are not constants, Since $\mathcal{M}(X)$ is a finite algebraic extension of $\mathbb{C}(f)$, there exists rational functions R_0, \dots, R_n such that $R_0(f) + R_1(f)g + \dots + R_n(f)g^n = 0$, then after multiplying denominators, we get a polynomial $P(x,y) \in \mathbb{C}[x,y]$ such that P(f,g) = 0, since $\mathbb{C}[x,y]$ is a UFD, $P = P_1 \cdots P_k$, where P_i are prime hence irreducible, then $0 = P_1(f,g) \cdots P_k(f,g) \in \mathcal{M}(X)$ which is a field, thus $P_j(f,g) = 0$ for some irreducible polynomial $P_j \in \mathbb{C}[x,y]$

Exercise 3.0.16. f is an elliptic function of order n > 0, then f' is an elliptic function of order m such that $n + 1 \le m \le 2n$. Both bounds can be attained

Solution. f' is elliptic since $f(z + \omega) = f(z) \Rightarrow f'(z + \omega) = f'(z)$ for all $\omega \in \Omega$. Suppose f has poles $[P_1], \dots, [P_k]$ with multiplicities $r_1, \dots, r_k, \sum r_i = n$, then f' also has poles $[P_1], \dots, [P_k]$ with multiplicities $r_1 + 1, \dots, r_k + 1, \sum r_i = n + k = m$, since $1 \le k \le n, n + 1 \le m \le 2n$ We can find an elliptic function f of order n which has $[P_1], \dots, [P_{n-m}]$ as its poles with multiplicities $1, \dots, 1, 2n+1-m$, then we get f' is another elliptic function which also has $[P_1], \dots, [P_{n-m}]$ as its poles with multiplicities $2, \dots, 2, 2n+2-m$, thus f' is of order m

Exercise 3.0.17. Prove that

$$\wp'(z) = \frac{2 \, \sigma(z - \frac{\omega_1}{2}) \, \sigma(z - \frac{\omega_2}{2}) \, \sigma(z - \frac{\omega_3}{2})}{\sigma(\frac{\omega_1}{2}) \, \sigma(\frac{\omega_2}{2}) \, \sigma(\frac{\omega_3}{2}) \, \sigma(z)^3} \, .$$

Solution. $\wp'(z)$ has a pole at z=0 of order 3 and $\frac{\omega_1}{2}, \frac{\omega_2}{2}, \frac{\omega_3}{2}$ as simple roots, thus

$$\wp'(z) = \lambda \frac{\sigma\left(z - \frac{\omega_1}{2}\right) \sigma\left(z - \frac{\omega_2}{2}\right) \sigma\left(z - \frac{\omega_3}{2}\right)}{\sigma(z)^3}$$

for some $\lambda \in \mathbb{C}$, multiply by z^3 on both sides, and let $z \to 0$, since $\lim_{z \to 0} \frac{z}{\sigma(z)} = 1$, $\lim_{z \to 0} z^3 \wp'(z) = -2$, we have

$$-2 = -\lambda \sigma \left(\frac{\omega_1}{2}\right) \sigma \left(\frac{\omega_2}{2}\right) \sigma \left(\frac{\omega_3}{2}\right) \Rightarrow \lambda = \frac{2}{\sigma \left(\frac{\omega_1}{2}\right) \sigma \left(\frac{\omega_2}{2}\right) \sigma \left(\frac{\omega_3}{2}\right)}$$

Hence

$$\wp'(z) = rac{2\sigma\left(z-rac{\omega_1}{2}
ight)\sigma\left(z-rac{\omega_2}{2}
ight)\sigma\left(z-rac{\omega_3}{2}
ight)}{\sigma\left(rac{\omega_1}{2}
ight)\sigma\left(rac{\omega_2}{2}
ight)\sigma\left(rac{\omega_3}{2}
ight)\sigma\left(z
ight)^3}$$

Let $\Omega \subseteq \mathbb{C}$ be a lattice and $\wp(z)$ the associated Weierstrass \wp -function. We have seen that $\wp(z)$ satisfies the differential equation $(\wp'(z))^2 = p(\wp(z))$, where $p(x) = 4x^3 - g_2x - g_3$. The following three problems examine the conditions under which the coefficients g_2 and g_3 of p(x) are real numbers

Exercise 3.0.18. Prove that the following conditions are equivalent

- (i) $g_2, g_3 \in \mathbb{R}$
- (ii) $G_k \in \mathbb{R}$ for all $k \geq 3$
- (iii) $\wp(\bar{z}) = \overline{\wp(z)}$ for all $z \in \mathbb{C}$
- (iv) $\overline{\Omega} = \Omega$ (the last condition says that Ω is a real lattice)

Solution. (i) \Rightarrow (ii) $g_2 = 60G_4, g_3 = 140G_6 \in \mathbb{R} \Rightarrow G_4, G_6 \in \mathbb{R}$ Since

$$\wp(z) = \frac{1}{z^2} + \sum_{n=2}^{\infty} (2n - 1)G_{2n}z^{2n-2}$$

$$= \frac{1}{z^2} + 3G_4z^2 + 5G_6z^4 + 7G_8z^6 + 9G_{10}z^8 + \cdots$$

$$\wp'(z) = -\frac{2}{z^3} + \sum_{n=2}^{\infty} (2n-1)(2n-2)G_{2n}z^{2n-3}$$
$$= -\frac{2}{z^3} + 6G_4z + 20G_6z^3 + 42G_8z^5 + 72G_{10}z^7 + \cdots$$

$$\wp''(z) = \frac{6}{z^4} + \sum_{n=2}^{\infty} (2n-1)(2n-2)(2n-3)G_{2n}z^{2n-4}$$
$$= \frac{6}{z^4} + 6G_4 + 60G_6z^2 + 210G_8z^4 + 504G_{10}z^6 + \cdots$$

So we can conclude $\wp''(z) - 6\wp(z)^2 + 30G_4 = z\wp(z)$, where $\wp(z)$ is a holomorphic elliptic function, hence $\wp''(z) - 6\wp(z)^2 + 30G_4 = 0$, then the coefficients of $z^{2n}(n \ge 1)$ would be (2n + 1)(2n + 1)

2) $(2n+3)(2n+4)G_{2n+4}-6(2n+3)G_{2n+4}$ minus terms only involving $G_4, G_6, \cdots, G_{2n+2}$ and real numbers, thus by induction, we know $G_{2n+4} \in \mathbb{R} (n \geq 1)$

$$(ii) \Rightarrow (iii)$$

Since
$$\wp(z) = \frac{1}{z^2} + \sum_{n=2}^{\infty} (2n-1)G_{2n}z^{2n-2}$$
, if $G_k \in \mathbb{R}(k \geq 3)$, then $\wp(\bar{z}) = \overline{\wp(z)}$

The poles of $\overline{\wp(\overline{z})} = \wp(z)$ are exactly $\overline{\Omega}$, thus $\overline{\Omega} = \Omega$

$$(iv) \Rightarrow (i)$$

$$g_2 = 60G_4 = 60 \sum_{\omega \in \Omega^*} \frac{1}{\omega^4} = 60 \sum_{\omega \in \overline{\Omega}^*} \frac{1}{\omega^4} = \overline{g_2} \Rightarrow g_2 \in \mathbb{R}, \text{ similarly, } g_6 \in \mathbb{R}$$

Exercise 3.0.19. We say that Ω is real rectangular if $\Omega = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ where $\omega_1 \in \mathbb{R}$ and $\omega_2 \in i\mathbb{R}$, and that Ω is real rhombic if $\Omega = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ where $\omega_2 = \overline{\omega}_1$. Prove that a lattice Ω is real if and only if it is real rectangular or real rhombic

Solution. If Ω is real rectangular or real rhombic, Ω is obviously a real lattice

Conversely, if Ω is a real lattice, suppose $\Omega = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$, then there exists $\omega \in \Omega \setminus (\mathbb{R} \cup i\mathbb{R})$, otherwise, $\omega_1 \in \mathbb{R}^*$, $\omega_2 \in i\mathbb{R}^*$ or $\omega_2 \in \mathbb{R}^*$, $\omega_1 \in i\mathbb{R}^*$, since ω_1, ω_2 are linear independent, but then $\omega = \omega_1 + \omega_2 \in \Omega \setminus (\mathbb{R} \cup i\mathbb{R})$ which is a contradiction

Since $\omega \in \Omega \setminus (\mathbb{R} \cup i\mathbb{R}), \ \omega + \overline{\omega} \in \mathbb{R}^*, \ \omega - \overline{\omega} \in i\mathbb{R}^*, \ \text{thus} \ \Omega \cap \mathbb{R}^* \neq \varnothing, \ \Omega \cap i\mathbb{R}^* \neq \varnothing, \ \text{let} \ \eta_1 = \min_{\eta \in \Omega \cap (0,\infty)} \eta,$

then $\Omega \cap \mathbb{R} = \mathbb{Z}\eta_1$, otherwise $\exists \eta \in \mathbb{R} \setminus \mathbb{Z}\eta_1$, then $\eta - \left\lfloor \frac{\eta}{\eta_1} \right\rfloor \eta_1 \in \Omega \cap (0, \infty)$ which is a contradiction Similarly, $\Omega \cap i\mathbb{R} = \mathbb{Z}\eta_2$ for some $\eta_2 \in i(0, \infty)$. If $\Omega = \mathbb{Z}\eta_1 + \mathbb{Z}\eta_2$, then Ω is real rectangular, if not, $\exists \gamma \in \Omega \setminus (\mathbb{R} \cup i\mathbb{R})$, such that $|\gamma| = \min_{\omega \in \Omega \setminus (\mathbb{R} \cup i\mathbb{R})} |\omega|$, then $\gamma + \overline{\gamma} = \eta_1$ or $-\eta_1$, otherwise

 $\gamma + \overline{\gamma} = k\eta_1$ for some $|k| \geq 2$

If k = 2, then $\gamma - \eta_1 = \eta_1 - \overline{\gamma} = -\overline{(\gamma - \eta_1)} \Rightarrow \gamma - \eta_1 \in i\mathbb{R} \Rightarrow \gamma \in \mathbb{Z}\eta_1 + \mathbb{Z}(\gamma - \eta_1) \subseteq \mathbb{Z}\eta_1 + \mathbb{Z}\eta_2$ If k > 2, then $\gamma - \eta_1 \notin \mathbb{R} \cup i\mathbb{R}$ and $|\gamma - \eta_1| < |\gamma|$, similarly for $k \leq -2$, these are all contradictions Similarly, we know that $\gamma - \overline{\gamma} = \eta_2$ or $-\eta_2$

Now, for any $\omega \in \Omega \setminus (\mathbb{R} \cup i\mathbb{R})$, $\omega + \overline{\omega} = k\eta_1 = k(\gamma + \overline{\gamma})$ for some $k \neq 0$, then $\omega - k\gamma = k\overline{\gamma} - \overline{\omega} = -\overline{(\omega - k\gamma)} \Rightarrow \omega - k\gamma \in i\mathbb{R}$, if $\omega \neq k\gamma$, then $\omega - k\gamma = l\eta_2 = l(\gamma - \overline{\gamma}) \Rightarrow \omega \in \mathbb{Z}\gamma + \mathbb{Z}\overline{\gamma}$, therefore, we have $\Omega = \mathbb{Z}\gamma + \mathbb{Z}\overline{\gamma}$, Ω is real rhombic

Exercise 3.0.20. Let Ω be a real lattice. Define the real elliptic curve $E_{\mathbb{R}}$ to be the set $\{(x,y) \in \mathbb{R}^2 \mid y^2 = p(x)\}$. Prove that $E_{\mathbb{R}}$ has one or two connected components as Ω is real rhombic or real rectangular, respectively

Solution. The number of connected components of $E_{\mathbb{R}}$ is one or two if p(x) = 0 has one real root and two nonreal conjugate complex roots or three distinct real roots correspondingly

Since $\frac{\omega_1}{2}$, $\frac{\omega_2}{2}$, $\frac{\omega_3}{2}$ are simple roots of $\wp'(z)$, the three simple roots of p(x) are $\wp\left(\frac{\omega_1}{2}\right)$, $\wp\left(\frac{\omega_2}{2}\right)$, $\wp\left(\frac{\omega_3}{2}\right)$, since Ω is a real lattice, $G_k \in \mathbb{R}$ and $\wp(z) = \frac{1}{z^2} + \sum_{n=2}^{\infty} (2n-1)G_{2n}z^{2n-2}$

If Ω is real rectangular, then $\wp\left(\frac{\omega_1}{2}\right)$, $\wp\left(\frac{\omega_2}{2}\right)$ are both real, thus $E_{\mathbb{R}}$ has two connected components

If Ω is real rhombic, then $\wp\left(\frac{\omega_3}{2}\right)$ is real $\wp\left(\frac{\omega_1}{2}\right) \neq \wp\left(\frac{\omega_2}{2}\right)$ are nonreal conjugate, thus $E_{\mathbb{R}}$ has only one connected component

Complex structures on an open annulus

Exercise 3.0.21. $A(r,R) = \{r < |z| < R\}$ is biholomorphic to $\{s < |z| < S\}$ iff R/r = S/s, r can be 0, R can be ∞ , but not at the same time

Solution. By scaling or inversion we can assume r=s=1 and $|f(z)|\to 1$ as $|z|\to 1$. Suppose $f:A(r,R)\to A(s,S)$ is a biholomorphism, then consider the Laurent series $f=\sum_{k=-\infty}^{\infty}c_kz^k$, for

1 < t < R, by Stokes theorem we have

$$A(t) = \frac{1}{2i} \int_{f(\{|z|=t\})} \bar{z} dz = \frac{1}{2i} \int_{|z|=t} \overline{f(z)} df(z) = \frac{1}{2i} \int_{|z|=t} \overline{f(z)} f'(z) dz = \pi \sum_{k \in \mathbb{Z}} k |c_k|^2 t^{2k}$$

As $t \to 1$, we have $A(t) \to \pi \Rightarrow \sum k|c_k|^2 = 1$, thus

$$A(t)-\pi t^2=\pi t^2\sum_{k\in\mathbb{Z}}k|c_k|^2\left(t^{2k-2}-1
ight)\geq 0$$

Thus $A(t) \ge \pi t^2$, as $t \to R$, $A(t) \to \pi S^2 \ge \pi R^2 \Rightarrow S \ge R$. Therefore we have S = R

Exercise 3.0.22. Let $\mu: \mathcal{B}(\mathbb{R}) \to \mathbb{R}^+$ be a σ -additive set function defined on the Borel σ -algebra on \mathbb{R} and let $D \subseteq \mathbb{R}$ be a discrete set with the property $x \in D$ if and only if there exists an open set U such that $x \in U$ and $\mu(U) > 0$. Show that μ can be expressed as a countable linear combination of measures of the form

$$\delta_x(A) = egin{cases} 1 & x \in A \ 0 & x
otin A \end{cases}$$

Where $x \in D$ and $A \in \mathcal{B}(\mathbb{R})$

Proof. For each $x \in D$, denote $\mu(\{x\}) = c_x$. Since D is discrete, it is countable and any subset of D is closed. For any open set V in \mathbb{R} , by definition, $\mu(V - D) = 0$ since V - D is an open set which doesn't intersect D. Hence

$$\mu(V) = \mu(V \cap D) + \mu(V - D) = \mu(V \cap D) = \sum_{x \in V \cap D} c_x = \sum_{x \in D} c_x \delta_x(V)$$

i.e. μ can be expressed as a countable linear combination of Dirac measures

Exercise 3.0.23. Let $c:[0,1] \to [0,1]$ denote the Cantor (ternary) function (known also as the Devil's staircase, or the Cantor-Lebesgue function). For each continuous real-valued function $f:[0,1] \to \mathbb{R}$, let l(f) denote the Riemann integral

$$l(f) = \int_0^1 f(c(x)) dx$$

Find explicitly a Borel measure $\mu: \mathcal{B}([0,1]) \to \mathbb{R}$ so that

$$l(f) = \int_{[0,1]} f d\mu$$

where $\mathcal{B}([0,1])$ denotes the Borel σ -algebra over [0,1]

Proof. Write m as the Lebesgue measure. Since c is a continuous function, the pushforward measure $\mu(E) = m(c^{-1}(E))$ is a Borel measure on $\mathcal{B}([0,1])$. Note that

$$\int_{[0,1]} \chi_E d\mu = \mu(E) = m(c^{-1}(E)) = \int_0^1 \chi_E(c(x)) dx$$

and continuous functions are approximated by simple functions, thus

$$\int_{[0,1]}fd\mu=\int_0^1f(c(x))dx$$

Exercises in category

X1,X2 iso and Y1,Y2 iso implies Hom(X1,Y1),Hom(X2,Y2) iso

Exercise 4.0.1. In category \mathscr{C} , if $X \xrightarrow{\phi_X} X'$, $Y \xrightarrow{\phi_Y} Y'$ are isomorphisms, then Hom(X,Y), Hom(X',Y') are in bijective correspondence

Solution. Consider $Hom(X,Y) \to Hom(X',Y'), f \mapsto \phi_Y f \phi_X^{-1}$ and $Hom(X',Y') \to Hom(X,Y), f' \mapsto \phi_Y^{-1} f' \phi_X$ which are inverses to each other

$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} Y \\ \phi_X \downarrow & & \downarrow \phi_Y \\ X' & \stackrel{f'}{\longrightarrow} Y' \end{array}$$

Exercise 4.0.2. Suppose the bottom row of the following commutative diagram is exact, gf = 0, then there exists a such that the following diagram commutes

$$\begin{array}{cccc} A & \xrightarrow{f} & B & \xrightarrow{g} & C \\ \downarrow_{\exists a} & & \downarrow_{b} & & \downarrow_{c} \\ A' & \xrightarrow{f'} & B' & \xrightarrow{g'} & C' \end{array}$$

Solution. Since 0 = cgf = g'bf and bottom row is exact, we have

$$A' \xrightarrow{\exists a} A \downarrow bf$$

$$A' \xrightarrow{f'} \ker g'$$

Exercise 4.0.3. $F,G:\mathscr{C}\times\mathscr{D}\to\mathscr{E}$ are functors, $F\xrightarrow{\eta}G$ is a natural transformation iff η is natural on each factor

Solution. We have commutative diagram

$$F(A,B) \xrightarrow{F(f,1)} F(A',B) \xrightarrow{F(1,g)} F(A',B')$$

$$\downarrow^{\eta_{A,B}} \qquad \qquad \downarrow^{\eta_{A',B}} \qquad \qquad \downarrow^{\eta_{A',B'}}$$

$$G(A,B) \xrightarrow{G(f,1)} G(A',B) \xrightarrow{G(1,g)} G(A',B')$$

Fully faithfull functor is injective on objects up to isomorphism

Exercise 4.0.4. A fully faithful functor $F: \mathcal{C} \to \mathcal{D}$ is injective on objects up to isomorphism

Solution. Suppose F(X) = F(Y) = T, let $f: X \to Y$ be the map corresponds to 1_T in Hom(F(X), F(Y)), then $f: X \to Y$ is an isomorphism because we can also let $g: Y \to X$ be the map corresponds to 1_T as in Hom(F(Y), F(X)), then $F(g \circ f) = F(g) \circ F(f) = 1_T \circ 1_T = 1_T$, thus $g \circ f$ corresponds to 1_T in Hom(F(X), F(X)), but $F(1_X) = 1_{F(X)} = 1_T$, thus $g \circ f = 1_X$, similarly, $f \circ g = 1_Y$

Exercise 4.0.5. Suppose \mathscr{A} is an abelian category, show \mathscr{A} is balanced. For any $A \xrightarrow{f} B$, $\ker f \xrightarrow{i} A$ is a monomorphism, $B \xrightarrow{\pi} \operatorname{coker} f$ is an epimorphism, and $\operatorname{im} f := \ker \operatorname{coker} f$, $\operatorname{coim} f := \operatorname{coker} f$ are isomorphic

Solution. Suppose $A \xrightarrow{f} B$ is a bimorphism, it is the equaliser of $B \xrightarrow{\pi} \operatorname{coker} f$, then $\pi = 0$, $\operatorname{coker} f = 0$, but $A \xrightarrow{1_A} A$ is the kernel of $A \to 0$, hence A, B are isomorphic $\ker f \xrightarrow{i} A$ is a monomorphism due to the following diagram

$$C$$

$$g=0 \downarrow 0$$

$$\ker f \xrightarrow{i} A \xrightarrow{f} B$$

 $B \xrightarrow{\pi} \operatorname{coker} f$ is a monomorphism due to the following diagram

Now let's show coimage and image are isomorphic. fi = 0 induces $\operatorname{coker} i \xrightarrow{g} B$, claim that g is monic

Suppose $X \xrightarrow{x}$ coker i is morphism such that gx = 0, it induces coker $x \xrightarrow{j} B$, since qpk = 0, fk = jqpk = 0 induces $\ker qp \xrightarrow{l} \ker f$, since qp is epi, pk = pil = 0 induces $\operatorname{coker} x \xrightarrow{r} \operatorname{coker} i$, since p is epi, $p = rqp \Rightarrow rq = 1_{\operatorname{coker} i}$, hence q is monic, $qx = 0 \Rightarrow x = 0$

 $\pi f = 0$ induces $A \xrightarrow{h} \ker \pi$, claim that h is epi

Suppose $\ker \pi \xrightarrow{y} Y$ is morphism such that yh = 0, it induces $A \xrightarrow{p} \ker y$, since qjk = 0, qf = qjkp = 0 induces $\operatorname{coker} f \xrightarrow{m} \operatorname{coker} jk$, since jk is monic, $qj = m\pi j = 0$ induces $\ker \pi \xrightarrow{s} \ker y$, since j is monic, $j = jks \Rightarrow ks = 1_{\ker \pi}$, hence k is epi, $yk = 0 \Rightarrow y = 0$

Since $\operatorname{im} f \to B$ is monic, $A \to \operatorname{coim} f$ is epi, g,h both induce $\operatorname{coim} f \xrightarrow{\phi} \operatorname{im} f$, then ϕ is monic and epi hence iso

$$\ker f \rightarrowtail A \xrightarrow{f} B \longrightarrow \operatorname{coker} f$$

$$\downarrow \qquad \qquad \uparrow$$

$$\operatorname{coim} f \xrightarrow{--\phi} \operatorname{im} f$$

bounded double complex with exact rows or exact columns has exact total complex

Exercise 4.0.6. C is a bounded double complex with exact rows or exact columns, then Tot(C) is exact

Solution. Without loss of generality, we may assume C is bounded in the first quadrant and has exact rows, use d', d'', d to denote row, column and total differentials

Tot(C) is exact for all n < 0 since $Tot(C)_n = 0$ for all n < 0. now suppose $n \ge 0$,

$$d\left(\sum_{k=0}^{n}x_{k,n-k}\right) = 0$$
, i.e. $d'x_{k+1,n-k-1} + d''x_{k,n-k} = 0$ for $0 \le k < n$. Let $x_{0,n+1} = 0$, we

can construct $x_{k,n+1-k}$ for k > 0 inductively such that $d''x_{k,n-k+1} + d'x_{k+1,n-k} = x_{k,n-k}$ for $0 \le k \le n$ as follow:

For $k \ge -1$

$$\begin{split} d'(x_{k+1,n-k-1} - d''x_{k+1,n-k}) &= d'x_{k+1,n-k-1} - d'd''x_{k+1,n-k} \\ &= d'x_{k+1,n-k-1} + d''d'x_{k+1,n-k} \\ &= d'x_{k+1,n-k-1} + d''(d''x_{k,n-k+1} + d'x_{k+1,n-k}) \\ &= d'x_{k+1,n-k-1} + d''x_{k,n-k} \\ &= 0 \end{split}$$

By exactness of rows, there exists $x_{k+2,n-k-1}$ such that

$$d'x_{k+2,n-k-1} = x_{k+1,n-k-1} - d''x_{k+1,n-k} \Leftrightarrow d''x_{k+1,n-k} + d'x_{k+2,n-k-1} = x_{k+1,n-k-1}$$

Therefore

$$\begin{split} d\left(\sum_{k=0}^{n+1} x_{k,n+1-k}\right) &= \sum_{k=1}^{n+1} (d'x_{k,n+1-k} + d''x_{k,n+1-k}) \\ &= \sum_{k=1}^{n+1} (x_{k-1,n-k+1} - d''x_{k-1,n-k+2} + d''x_{k,n+1-k}) \\ &= \sum_{k=0}^{n} (x_{k,n-k} - d''x_{k,n-k+1}) + \sum_{k=1}^{n+1} d''x_{k,n+1-k} \\ &= \sum_{k=0}^{n} x_{k,n-k} \end{split}$$

C,D acyclic => C tensor D acyclic

Exercise 4.0.7. C, D are chain complexes with negative degree terms zeros, $H_n(C) = H_n(D) = 0$ for $n \neq 0$, then so is $C \otimes D$

Solution. Apply Exercise 4.0.6

Exercise 4.0.8. f is a retract of g in the arrow category, if g is an isomorphism, so is f

$$\begin{array}{cccc} X & \stackrel{i}{\longrightarrow} & Y & \stackrel{r}{\longrightarrow} & X \\ \downarrow^f & & \downarrow^g & & \downarrow^f \\ X' & \stackrel{i'}{\longrightarrow} & Y' & \stackrel{r'}{\longrightarrow} & X' \end{array}$$

Proof. $i'g^{-1}r$ is the inverse to f

Exercises in partial differential equations

Exercise 5.0.1. Consider the heat equation with Neumann's boundary condition:

$$egin{cases} u_t - \Delta u = 0, & ext{in } \Omega imes \mathbb{R}^+ \ rac{\partial u}{\partial n} = 0, & ext{on } \Gamma imes \mathbb{R}^+ \ u(x,0) = v(x), & ext{in } \Omega \end{cases}$$

(a) Show that $\overline{u(t)} = \overline{v}$ for $t \geq 0$, where $\overline{v} = \frac{1}{|\Omega|} \int_{\Omega} v(x) dx$ denotes the average of v

Solution. (a) By divergence theorem, we have

$$0 = \int_{\Omega} u_t - \Delta u = \int_{\Omega} u_t + \nabla 1 \cdot \nabla u - \int_{\partial \Omega} \frac{\partial u}{\partial n} = \int_{\Omega} u_t = \left(\int_{\Omega} u \right)_t$$

Hence $\int_{\Omega} u = \int_{\Omega} v \Rightarrow \overline{u} = \overline{v}$ (b) By divergence theorem, we have

$$0 = \int_{\Omega} u u_t - u \Delta u = rac{1}{2} \left(\int_{\Omega} u^2
ight)_t + \int_{\Omega} |
abla u|^2 \Rightarrow rac{1}{2} \left(\int_{\Omega} u^2
ight)_t = - \int_{\Omega} |
abla u|^2 \leq 0$$

Hence $\int_{\Omega} u^2 \leq \int_{\Omega} v^2$. On the other hand, we have

$$0 = \int_{\Omega} (u_t - \Delta u)^2$$

$$= \int_{\Omega} u_t^2 - 2u_t \Delta u + (\Delta u)^2$$

$$= \int_{\Omega} u_t^2 - 2\nabla u_t \cdot \nabla u + (\Delta u)^2$$

$$= \int_{\Omega} 2(\Delta u)^2 + \left(\int_{\Omega} |\nabla u|^2\right)_t$$

Which implies
$$\int_{\Omega} (\Delta u)^2 = -\frac{1}{2} \left(\int_{\Omega} |\nabla u|^2 \right)_t$$
, thus

$$\left(\int_{\Omega}|\nabla u|^2\right)^2=\left(\int_{\Omega}u\Delta u\right)^2\leq \int_{\Omega}u^2\cdot\int_{\Omega}(\Delta u)^2\leq \int_{\Omega}v^2\cdot\int_{\Omega}(\Delta u)^2=-\frac{1}{2}\int_{\Omega}v^2\cdot\left(\int_{\Omega}|\nabla u|^2\right)_t$$

Denote $\phi := \int_{\Omega} |\nabla u|^2$ which is a function of t, $C := \frac{1}{2} \int_{\Omega} v^2$, then the above equation becomes

$$\phi^2 \le -C\phi' \Rightarrow 0 \ge \phi^2 + C\phi' \Rightarrow 0 \ge 1 + C\frac{\phi'}{\phi^2} = \left(t - \frac{C}{\phi}\right)'$$

Which implies

$$t - \frac{C}{\phi(t)} \le -\frac{C}{\phi(0)} \Rightarrow \frac{C}{\phi(t)} \ge t + \frac{C}{\phi(0)} \ge t \Rightarrow \phi(t) \le \frac{C}{t}$$

Thus $\phi(t) \to 0$ as $t \to \infty$

Now apply Poincaré's lemma, we get

$$\|u-\overline{v}\|_{L^2}=\|u-\overline{u}\|_{L^2}\leq C\|
abla u\|_{L^2}
ightarrow 0, t
ightarrow \infty$$

Exercise 5.0.2.

$$\begin{split} \frac{d}{dr} \left(\frac{1}{|\partial B(x,r)|} \int_{\partial B(x,r)} u(y) dS \right) &= \frac{d}{dr} \left(\frac{1}{|\partial B(0,1)|} \int_{\partial B(0,1)} u(x+rz) dS \right) \\ &= \frac{1}{|\partial B(0,1)|} \int_{\partial B(0,1)} \frac{d}{dr} u(x+rz) dS \\ &= \frac{1}{|\partial B(0,1)|} \int_{\partial B(0,1)} z \cdot \nabla u(x+rz) dS \\ &= \frac{1}{|\partial B(x,r)|} \int_{\partial B(x,r)} \nu \cdot \nabla u(y) dS \\ &= \frac{1}{|\partial B(x,r)|} \int_{B(x,r)} \Delta u(y) dy \\ &= \frac{r}{n} \frac{1}{|B(x,r)|} \int_{B(x,r)} \Delta u(y) dy \end{split}$$

$$egin{aligned} rac{d}{dr} \left(\int_{B(x,r)} u(y) dy
ight) &= rac{d}{dr} \int_0^r \left(\int_{\partial B(x,s)} u(y) dS
ight) ds \ &= \int_{\partial B(x,r)} u(y) dS \end{aligned}$$

Exercise 5.0.3. $\Box u = 0$ in \mathbb{R}^{3+1} , u(x,0) = 0, $u_t(x,0) = f(x) \in C^2(\mathbb{R}^3)$, show that $\int_0^\infty |u(0,t)|^2 dt \leq C ||f||_{L^2(\mathbb{R}^3)}$

Proof. Hint:
$$u(x,t) = \frac{t}{4\pi} \int_{S^2} f(x+tw) dS_w = -\frac{1}{4\pi} \int_{S^2} \int_t^{\infty} \frac{d}{d\lambda} f(x+\lambda t) d\lambda$$

$$u(0,t) = \frac{t}{4\pi} \int_{S^2} f(tw) dS_w, |u(x,t)| \leq \frac{C}{t} \int_{\mathbb{R}^3} |\nabla f| dx$$

Exercise 5.0.4. Consider the differential equation

$$\frac{\partial}{\partial t}x(n,t) = x(n-1,t) + x(n+1,t) - 2x(n,t)$$
 (5.0.1)

for a function x(n,t) of an integer n and real number $t \geq 0$. Assume that the function x(n,t) satisfies

$$x(n+N,t) = x(n,t) (5.0.2)$$

for any integer n, where N is an integer larger than or equal to 3. Furthermore, let $e(m,n) = \exp\left(i\frac{2\pi mn}{N}\right)$ for integers m and n

- 1. Let $f_m(t)$ be a function of a real number $t \ge 0$ for an integer m with $f_m(0) = c_m$, where c_m is a complex number. Assume that the function of the form $x(n,t) = e(m,n)f_m(t)$ satisfies differential equation (5.0.1) and (5.0.2). Find $f_m(t)$
- **2.** Let (g_0, \dots, g_{N-1}) be an N-dimensional complex vector. Under the initial condition $x(n, 0) = g_n, n = 0, \dots, N-1$, find the solution of the differential equation (5.0.1) with condition (5.0.2)
- 3. Find $\lim_{t\to\infty} x(n,t)$ for the solution x(n,t) found in 2.

Solution.

1. Note that e(m, n + N) = e(m, n), hence (5.0.2) is justified. Plug $x(n, t) = e(m, n)f_m(t)$ in (5.0.1), we have

$$e^{irac{2\pi mn}{N}}f_m'(t) = \left(e^{irac{2\pi m(n-1)}{N}} + e^{irac{2\pi m(n+1)}{N}} - 2e^{irac{2\pi mn}{N}}
ight)f_m(t)$$

Which can be simplified as

$$f_m'(t)=\left(e^{-irac{2\pi m}{N}}+e^{irac{2\pi m}{N}}-2
ight)f_m(t)=-4\sin^2\left(rac{\pi m}{N}
ight)f_m(t)=K_mf_m(t)$$

Solve this with initial condition $f_m(0) = c_m$ we get $f_m(t) = c_m e^{K_m t}$

- 2. Consider $x(n,t) = \sum_{m=0}^{N-1} e(m,n) f_m(t)$, then $x(n,0) = \sum_{m=0}^{N-1} e(m,n) f_m(0) = g_n$ which can be uniquely solved since $E = \{e(m,n)\}_{0 \le m,n < N}$ is a Vandermonde matrix, suppose the solutions are $f_m(0) = c_m$, then use 1. to solve $f_m(t)$
- **3.** Note that $K_m \leq 0$ for $0 \leq m < N$ and $K_m = 0$ iff m = 0. Let $\omega = e^{\frac{2\pi i}{N}}$, then $\omega^N = 1$ and the determinant of

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ \omega & \omega^2 & \cdots & \omega^{N-1} \\ \omega^2 & \omega^4 & \cdots & \omega^{2(N-1)} \\ \vdots & \vdots & \ddots & \vdots \\ \omega^{N-1} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)^2} \end{bmatrix}$$

without the j + 1-th row would be

$$\omega \cdots \widehat{\omega^{j}} \cdots \omega^{N-1} \prod_{\substack{0 \le p < q \le N-1 \\ p, q \ne j}} (\omega^{q} - \omega^{p})$$

$$= (-1)^{j} \omega^{\frac{N(N-1)}{2} - j} \frac{\prod_{\substack{0 \le p < q \le N-1 \\ k \ne j}} (\omega^{q} - \omega^{p})}{\prod_{\substack{k \ne j \\ w \ne j}} (\omega^{k} - \omega^{j})}$$

$$= (-1)^{j} \omega^{\frac{N(N-1)}{2} - j} \frac{\det E}{\omega^{j(N-1)} \prod_{\substack{k \ne 0}} (\omega^{k} - 1)}$$

$$= \frac{(-1)^{j} \omega^{\frac{N(N-1)}{2}}}{N} \det E$$

thus by Cramer's rule we have

rule we have
$$\lim_{t \to \infty} x(n,t) = c_0 = \frac{\begin{vmatrix} g_0 & 1 & \cdots & 1 \\ g_1 & \omega & \cdots & \omega^{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ g_{N-1} & \omega^{N-1} & \cdots & \omega^{(N-1)^2} \end{vmatrix}}{\begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & \omega & \cdots & \omega^{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{N-1} & \cdots & \omega^{(N-1)^2} \end{vmatrix}}$$
$$= \frac{\sum_{j=0}^{N-1} (-1)^j g_j \frac{(-1)^j \omega^{\frac{N(N-1)}{2}}}{N} \det E}{\sum_{j=0}^{N-1} (-1)^j \frac{(-1)^j \omega^{\frac{N(N-1)}{2}}}{N} \det E}$$
$$= \frac{g_0 + \cdots + g_{N-1}}{N}$$

Exercises in algebraic topology

Exercise 6.0.1. M is a locally Euclidean, Hausdorff and connected manifold, then paracompactness imples second countable

Proof. An open cover by precompact coordinate charts has a locally finite open refinement $\{U_i\}$, each U_i is precompact and second countable

Define $S_0 = \{U_0\}$ for some U_0 , since $\{U_i\}$ is locally finite, define S_1 to be the union of S_0 and

those intersects U_0 , repeating this process, we get S_2, \dots, S_n, \dots , define $S = \bigcup_{n=0}^{\infty} S_n$

M is connected thus path connected, pick any $x_0 \in U_0$, for any $x \in M$, there is a path γ connecting x_0 and x, since γ is compact, it can be covered by S. Hence S is an open cover of M, thus M is second countable

Exercise 6.0.2. If G is a discrete group, P is connected, $P \xrightarrow{p} X$ is a principal G bundle iff it is a regular cover with $\operatorname{Aut}(p) = G$

Solution. $P \xrightarrow{p} X$ is a fiber bundle thus a cover, G acts regularly on fibers and $G \leq \operatorname{Aut}(p)$

Exercise 6.0.3. Use Theorem ?? to prove homotopy invariance of maps on homology

Solution. Suppose $F: X \times I \to Y$ is a homotopy between f and g, we only need to prove i_0, i_1 are naturally chain homotopic since $Fi_0 = f, Fi_1 = g$

$$egin{aligned} C_{n+1}(X) & \longrightarrow & C_n(X) & \longrightarrow & C_{n-1}(X) \ i_0 & \downarrow i_1 & i_0 & \downarrow i_1 \ C_{n+1}(X imes I) & \longrightarrow & C_n(X imes I) & \longrightarrow & C_{n-1}(X imes I) \ \downarrow^F & \downarrow^F & \downarrow^F \ C_{n+1}(Y) & \longrightarrow & C_n(Y) & \longrightarrow & C_{n-1}(Y) \end{aligned}$$

Consider Top with model $\mathcal{M} = \{\Delta^n\}$, $F, G : Top \to Ch_{\geq 0}$, $F(X) = C_*(X)$, $G(X) = C_*(X \times I)$, $H_i(\Delta^n \times I) = 0$ for $i \neq 0$, $F_k(X) = \{\Delta^k \xrightarrow{\mathrm{id}} \Delta^k \xrightarrow{\sigma} X\}$, there is an obvious natural equivalence $\phi_0 : H_0F \to H_0G$, then lifts i_0, i_1 are naturally chain homotopic \square

Exercise 6.0.4. K is a CW complex, $X \xrightarrow{f} Y$ is a weak equivalence, then $[K, X] \to [K, Y]$ is a bijection

Exercise 6.0.5. Quotient map $X \xrightarrow{q} Y$ is a homeomorphim iff q is bijective

Solution. If q is bijective, then for any open subset $U \subseteq X$, $U = q^{-1}(q(U))$, by definition, q(U) is open, i.e. q^{-1} is continuous

Cofibration in a Hausdorff space is closed

Exercise 6.0.6. If X is Hausdorff, then cofibration $A \stackrel{i}{\to} X$ is closed. This is not true if X is not Hausdorff as showed in Example ??

Solution. Suppose $A \stackrel{i}{\to} X$ is a not closed, $X \times I \stackrel{r}{\to} X \times \{0\} \cup A \times I$ is the retraction, pick any $x \in \overline{A} \setminus A$ with x_n converging to x, then $A \times \{1\} \ni r(x, 1) = r(\lim x_n, 1) = \lim r(x_n, 1) = \lim (x_n, 1) = (x, 1)$ which is a contradiction

Exercise 6.0.7. $\mathbb{R} \times \mathbb{R} \xrightarrow{\wedge} \mathbb{R}$, $\mathbb{R} \times \mathbb{R} \xrightarrow{\vee} \mathbb{R}$ are continuous

Solution.
$$x \wedge y = \frac{x+y-|x-y|}{2}, \ x \vee y = \frac{x+y+|x-y|}{2}$$

Exercise 6.0.8. $Y^I \to Y$, $\gamma \mapsto \gamma(0)$ and $Y^I \to Y \times Y$, $\gamma \mapsto (\gamma(0), \gamma(1))$ are Hurewicz fibrations

Solution. Need g(x,s) = H(x,0,s), f(x,t) = H(x,t,0) so that g(x,0) = f(x,0)

$$X \xrightarrow{g} Y^{I}$$

$$\downarrow X \times I \xrightarrow{f_{t}} Y$$

 $X \times I^2$ can be deformed onto $X \times I \cup X \times I = X \times (I \cup I)$

Need h(x,s) = H(x,0,s), f(x,t) = H(x,t,0), g(x,t) = H(x,t,1) so that h(x,0) = f(x,0), h(x,1) = g(x,0)

$$X \xrightarrow{h} Y^{I}$$

$$\downarrow X \times I \xrightarrow{(f_{t}, q_{t})} Y \times Y$$

 $X \times I^2$ can be deformed onto $X \times I \cup X \times I \cup X \times I = X \times (I \cup I \cup I)$

Exercises in differential topology

 $\text{Hom}(V,W)=V^* \text{ tensor } W$

Exercise 7.0.1. $Hom(V,W) \to V^* \otimes W, A \mapsto \sum_{i,j} a_{ji} v_i^* \otimes w_j$ is an isomorphism where $A = (a_{ij})$ is the matrix with respect to basis $\{v_1^*, \cdots, v_m^*\}, \{w_1, \cdots, w_n\}$

Solution.
$$A(v_i) = \sum_j a_{ji} w_j$$

Exercise 7.0.2. Suppose M, N are smooth manifolds of dimension $m, n, f: M \to N$ is a smooth map, (x^1, \dots, x^m) , (y^1, \dots, y^n) are local coordinates around $p \in M$, $q = f(p) \in N$, then the corresponding matrix of df with respect to basis $\left(\frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^m}\right), \left(\frac{\partial}{\partial y^1}, \cdots, \frac{\partial}{\partial y^n}\right)$ is $\left(\frac{\partial y^i}{\partial x^j}\right)$. In particular, this gives the change of coordinates formula

Solution.

$$df\left(rac{\partial}{\partial x^i}
ight)(g) = rac{\partial (g\circ f)}{\partial x^i} = \sum_j rac{\partial g}{\partial y^j} rac{\partial y^j}{\partial x^i} = \sum_j rac{\partial y^j}{\partial x^i} rac{\partial}{\partial y^j}(g)$$

According to Exercise 7.0.1, $df = \sum_{i,j} \frac{\partial y^j}{\partial x^i} dx^i \otimes \frac{\partial}{\partial y^j}$, we can define higher differential $d^k f =$ $\sum_{i_1,\cdots,i_k,j} rac{\partial y^j}{\partial x^{i_1}\cdots\partial x^{i_k}} dx^{i_1}\cdots dx^{i_k}\otimes rac{\partial}{\partial y^j}$

Exercise 7.0.3. Suppose $\omega \in \Omega^1(M)$, $X,Y \in TM$, then $d\omega(X,Y) = X(\omega(Y)) - Y(\omega(X)) - X(\omega(X)) = X(\omega(Y)) - X(\omega(X)) = X(\omega(X))$ $\omega([X,Y])$

Solution. By linearity, we can assume $\omega = udv$, then

$$egin{aligned} d\omega(X,Y) &= d(udv)(X,Y) \ &= du \wedge dv(X,Y) \ &= du(X)dv(Y) - du(Y)dv(X) \ &= XuYv - YuXv \end{aligned}$$

And

$$X(\omega(Y)) - Y(\omega(X)) - \omega([X, Y])$$

$$= X(udv(Y)) - Y(udv(X)) - udv([X, Y])$$

$$= Xudv(Y) + uX(dv(Y)) - Yudv(X) - uY(dv(X)) - u[X, Y]v$$

$$= XuYv + uXYv - YuXv - uYXv - uXYv + uYXv$$

$$= XuYv - YuXv$$

Pushforward of vector field

Exercise 7.0.4. Suppose $\phi: M \to N$ is a map of smooth manifolds, then $X(f \circ \phi) = ((\phi_* X)f) \circ \phi$

Solution.
$$X(f \circ \phi)(p) = X_p(f \circ \phi) = \phi_p X_p(f) = (\phi_* X)_{\phi(p)}(f) = ((\phi_* X)f)(\phi(p))$$

Naturality of Lie bracket

Exercise 7.0.5. Suppose X,Y are vector fields on M, $\phi:M\to N$ is a smooth map, then $\phi_*[X,Y]=[\phi_*X,\phi_*Y]$

Solution. Apply Exercise 7.0.4

$$\begin{split} \phi_*[X,Y](f) &= [X,Y](f \circ \phi) \\ &= X(Y(f \circ \phi)) - Y(X(f \circ \phi)) \\ &= X(((\phi_*Y)f) \circ \phi) - Y(((\phi_*X)f) \circ \phi) \\ &= ((\phi_*X)(\phi_*Y)f) \circ \phi - ((\phi_*Y)(\phi_*X)f) \circ \phi \\ &= ([\phi_*X,\phi_*Y]f) \circ \phi \\ &= [\phi_*X,\phi_*Y]f \end{split}$$

Exercises in bundles

Exercise 8.0.1. $E \xrightarrow{p} B$ is a Serre fibration, $A \xrightarrow{i} X$ is a subcomplex, if either p or i is a weak equivalence, then we have

Solution. If p is a weak equivalence, then fibers are weak contractible If i is a weak equivalence, then X deformation retracts onto A

Exercises in complex geometry

Exercises in Lie groups and Lie algebras

Exercise 10.0.1. Suppose \mathfrak{g} is a real semisimple Lie algebra with a negative definite Killing form, then \mathfrak{g} is the Lie algebra of some compact Lie group G

A is the direct sum of ideals => A is the product of these ideals

Exercise 10.0.2. Suppose A is a nonassociative algebra, $A = I_1 \oplus \cdots \oplus I_n$ is a direct sum of ideals, then $I_i I_j \subseteq I_i \cap I_j = 0$, hence $A = I_1 \times \cdots \times I_n$ can be viewed as product of ideals

Remark 10.0.3. If $A = I_1 \oplus \cdots \oplus I_n$ is just a direct sum of subalgebras, Exercise 10.0.2 may not hold true

Pairwise commuting matrices can be diagonalized simultaneously

Exercise 10.0.4. Let $S \subseteq M(n, \mathbb{F}), (\overline{\mathbb{F}} = \mathbb{F})$ be a set such that $[X, Y] = 0, \forall X, Y \in S$, then elements in S can be diagonalized simultaneously

Solution. Suppose $0 \neq V_{\lambda}$ is the λ -eigenspace of $X \in S$, then for any $Y \in S$, $XYv = YXv = \lambda Yv$ for $v \in V_{\lambda}$, thus $YV_{\lambda} \subseteq V_{\lambda}$, thus V_{λ} is an invariant subspace for all $Y \in \mathfrak{g}$, since Y are all semisimple, by induction we can write V as a direct sum of V_{λ} 's, and they are all invariant under any $Y \in \mathfrak{g}$, we only need to show that all elements of \mathfrak{g} can be diagonalized simultaneously on each V_{λ} , if $X|_{V_{\lambda}} = 1_{V_{\lambda}}$, then we are done, otherwise we can decompose it into smaller eigenspaces \square

Finite dimensional toral Lie algebra is abelian and its elements can be diagonalized simultaneously **Exercise 10.0.5.** Let V be a finite dimensional \mathbb{F} vector space with $\overline{\mathbb{F}} = \mathbb{F}$, and $\mathfrak{g} \leq \mathfrak{gl}(V)$ be a toral Lie algebra, then \mathfrak{g} is abelian. Moreover, $X \in \mathfrak{g}$ can be diagonalized simultaneously

Solution. Suppose $ad(X)|_{\mathfrak{g}} \neq 0$ for some $X \in \mathfrak{g}$, since $\overline{\mathbb{F}} = \mathbb{F}$, there exists $0 \neq Y \in \mathfrak{g}$ and $\lambda \neq 0$ such that $ad(X)(Y) = \lambda Y$, by Proposition ??, ad(Y) is semisimple, suppose λ_j, X_j are the eigenvalues and linearly independent eigenvectors, then we have $X = \sum c_j X_j$ with $c_j \neq 0$, and $0 = ad(Y)(\lambda Y) = ad(Y)ad(X)(Y) = -ad(Y)^2(X) = -ad(Y)^2(\sum c_j X_j) = -\sum c_j \lambda_j^2 X_j$, thus $c_j \lambda_j^2 = 0 \Rightarrow \lambda_j = 0$, but $0 \neq \lambda Y = ad(X)(Y) = -ad(Y)(X) = -ad(Y)(\sum c_j X_j) = -\sum c_j \lambda_j X_j = 0$ which is a contradiction

Now that we know $[\mathfrak{g},\mathfrak{g}]=0$, use Lemma 10.0.4, we know all elements of \mathfrak{g} are diagonalizable simultaneously

Lie group homomorphism has constant rank

Exercise 10.0.6. Lie group homomorphism has constant rank

Solution. Let $\phi: G \to G'$ be a Lie group homomorphism, for any $g \in G$, it suffices to show $\operatorname{rank}(d\phi)_g = \operatorname{rank}(d\phi)_1$, since $\phi(gh) = \phi(g)\phi(h)$, thus $\phi \circ L_g = L_{\phi(g)} \circ \phi$, $(d\phi)_g(dL_g)_1 = d(L_{\phi(g)})_1(d\phi)_1$, and left multiplications are isomorphisms, we have $\operatorname{rank}(d\phi)_g = \operatorname{rank}(d\phi)_1$

Exercise 10.0.7. Let G be a Lie group, M, N be smooth manifolds with a G action, and G acts transitively on M, for any equivariant map $f: M \to N$, f has constant rank

Solution. For any $x \in M$, denote y = f(x), it suffices to show $\operatorname{rank}(df)_x = \operatorname{rank}(df)_{gx}$ since G acts transitively on M, note that f(gx) = gf(x), thus $f \circ L_g = L_g \circ f$, $(df)_{gx}(dL_g)_x = d(L_g)_y(df)_x$, and group actions are isomorphisms, we have $\operatorname{rank}(df)_x = \operatorname{rank}(df)_{gx}$

Exercise 10.0.8. If $\phi: G \to H$ be a bijective Lie group homomorphism, then it is an isomorphism

Solution. Apply Exercise 10.0.6 and Theorem ??

Exercise 10.0.9. Compact semisimple Lie group G has finite center

Solution. Since $\mathfrak{g} = \text{Lie}(G)$ is semisimple, $\text{Lie}(Z(G)) \leq Z(\mathfrak{g}) = 0$, thus Z(G) is discrete, but G is compact, so Z(G) is finite

rudimentary facts about topological groups

Exercise 10.0.10. G is a topological group, A is called symmetric if $A = A^{-1}$

- 1. Topology of G is translation invariant, U is open $\Rightarrow xU, Ux$ are open
- **2.** $e \in U$ is a neighborhood, then $e \in V \subseteq U$ a symmetric neighborhood
- **3.** $e \in U$ is a neighborhood, then $e \in V \subseteq VV \subseteq U$ with V being a symmetric neighborhood
- **4.** $H \leq G$ is a subgroup, then so is \bar{H}
- **5.** Open subgroups of G are also closed (closed groups are not necessarily open, consider $\{e\}$)
- **6.** $K_1, K_2 \subseteq G$ are compact sets, so is K_1K_2
- 7. Suppose G is a connected, U is a neighborhood of 1, then $G = \langle U \rangle$

Solution.

- 1. Multiplication by x is an isomorphism with x^{-1} being its inverse
- **2.** Take $U \cap U^{-1}$
- **3.** Since the multiplication $G \times G \to G$ is continuous, consider the preimage of U which contains $V_1 \times V_2$, take $V \subseteq V_1 \cap V_2$ symmetric
- **4.** If $x_{\alpha} \to x$, $y_{\beta} \to y$, then $x_{\alpha}^{-1} \to x^{-1}$, $x_{\alpha}y_{\beta} \to xy$, since these maps are continuous. From this we know that $\bar{H} = \bigcap F$ wehre F runs over all closed subgroup containing H
- **5.** Suppose $H \leq G$ is open, then $H = G \setminus \bigcup_{x \neq e} xH$ is closed, thus if G is connected, then H = G
- **6.** K_1K_2 is the image of $K_1 \times K_2$ under multiplication
- 7. By b, we there is a symmetric neighborhood $1 \in V \subseteq U$, let V_k be the subset of elements can be written in the product of no more the k elements in V, then $V_1 = V$, $V_k = V_1 V_{k-1}$ is open by induction, $\langle V \rangle = \bigcup_{k=1}^{\infty} V_k$ is also open, by e, G is generated by V hence by U, and if G is not connected, $G_0 = \langle V \rangle$ is called the identity component of G

Exercise 10.0.11. G is a topological group, if G is T_1 , then G is Hausdorff, if G is not T_1 , then $H := \{e\}$ is normal subgroup, G/H is a Hausdorff topological group

Solution. If G is T_1 , according to Exercise 10.0.10, for $x \neq y$, $\exists e \in VV \subseteq U$ with V a symmetric neighborhood of e disjoint from $y^{-1}x$, then $xV \cap yV = \emptyset$, suppose $z = xv_1 = yv_2$, then $y^{-1}x = v_2^{-1}v_1 \in VV$ thus reaches a contradiction

According to Proposiontion 10.0.10, $H = \bigcap H_i$, H_i runs over closed subgroups of G, thus H is the smallest closed subgroup, if H is normal, otherwise $xHx^{-1} \cap H$ is a smaller closed subgroup for some x

In G/H, identity is closed, by invariance of topology under translation, every point is closed, meaning G/H is T_1 thus Hausdorff

Checking G/H is still a topological group: $g \in \bigcup_x xH$ open in G, then $g^{-1} \in (\bigcup_x xH)^{-1} = \bigcup_x H^{-1}x^{-1} = \bigcup_x H^{-1}x^{-1} = \bigcup_x x^{-1}H$

If $V \times W \to VW \subseteq \bigcup_x xH$, then $vw \in \bigcup_x xH$, $\forall v \in V, w \in W$, then $\forall h \in H, vhw = vww^{-1}hw \in \bigcup_x xH$, therefore, $VH \times WH \to VHWH \subseteq \bigcup_x xH$, notice that VH is open as long as V is open since $VH = \bigcup_{h \in H} Vh$

Exercise 10.0.12. (,)_B is the bilinear form given by matrix B, $O(B) = \{X \in GL_n(\mathbb{C}) | X^T B X = 1\}$, the Lie algebra is $\mathfrak{o}(B) = \{X \in M_n(\mathbb{C}) | X^T B + B X = 0\}$

Solution.
$$\frac{d}{dX}\Big|_{X=0} (e^{X^T} B e^X) = X^T B + B X = 0$$

Exercise 10.0.13. $T = \left\{ \begin{pmatrix} a \\ a^{-1} \end{pmatrix} \middle| a \in \mathbb{C}^{\times} \right\} \subseteq SL(2,\mathbb{C}) = G$ is the torus, the Weyl group

$$W(T) = N_G(T)/Z(T) = N/T \cong \mathbb{Z}/2\mathbb{Z}$$
 is generated by $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$

Solution. Consider $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G, ad - bc = 1$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ & x^{-1} \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} adx - bcx^{-1} & ab(x^{-1} - x) \\ cd(x - x^{-1}) & adx^{-1} - bcx \end{pmatrix} \in T$$

For any $x \in \mathbb{C}^{\times}$, which implies that $ab = cd = 0 \Rightarrow a = d = 0$ or b = c = 0 and

$$\begin{pmatrix} b & & \\ & b^{-1} \end{pmatrix} \begin{pmatrix} & -b^{-1} \\ b & & \end{pmatrix} = \begin{pmatrix} & -1 \\ 1 & & \end{pmatrix}$$

Exercises in algebraic geometry

Exercise 11.0.1. H=V(f) is a hypersurface, $f(t_1,\cdots,t_n,x)=a_0(t_1,\cdots,t_n)x^m+\cdots+a_m(t_1,\cdots,t_n)$

 φ is finite iff $a_0 \neq 0$ is a constant. φ is quasifinite $\Rightarrow a_0, \cdots, a_m$ don't have common zeros

Exercise in functional analysis

Exercises in linear algebra

Exercise 13.0.1. Let n be a positive integer. Let A be a real square matrix of size n, and let B be a real symmetric positive-definite matrix of size n

1. Show that there exists a unique real square matrix C of size n satisfying

$$BC + CB = A \tag{13.0.1}$$

In the following, this matrix C is denoted by $C_{A,B}$

2. Show that $BC_{A,B} = C_{A,B}B$ iff AB = BA

Solution.

1. $B = PDP^T$ for some orthogonal matrix P and digonal matrix $D = \text{diag}(d_1, \dots, d_n)$ with $d_i > 0$, then (13.0.1) becomes

$$DP^TCP + P^TCPD = P^TAP$$

Denote as

$$DC' + C'D = A'$$

Then we have

$$(d_i+d_j)c'_{ij}=a'_{ij}\Rightarrow c'_{ij}=rac{a'_{ij}}{d_i+d_j}$$

Therefore C' is uniquely determined, so is $C = PC'P^T$

2. We only need to prove DC' = CD' iff A'D = DA'. But A'D = DA' is equivalent to $D^2C' = C'D^2$. Therefore it suffices to prove $d_ic'_{ij} = d_jc'_{ij}$ iff $d_i^2c'_{ij} = d_j^2c'_{ij}$, i.e. $(d_i - d_j)c'_{ij} = (d_i + d_j)(d_i - d_j)c'_{ij}$ which is obviously true since $d_i + d_j > 0$

Exercise 13.0.2. Let n be a positive integer, and all matrices are supposed to be over the real numbers

- 1. Let A be a symmetric positive definite matrix of order n. Show that there exists a unique symmetric positive definite matrix R such that $R^2 = A$. We denote such R by \sqrt{A}
- **2.** Let B be a nonsingular matrix of order n. Show that an orthogonal matrix Q that maximizes $f(Q) = \operatorname{tr}(QB)$ satisfies

$$Q = \sqrt{B^T B}^{-1} B^T = B^T \sqrt{B B^T}^{-1}$$

3. Let G and H be symmetric positive definite matrices of order n. Find a square matrix L that minimizes

$$g(L) = \operatorname{tr}\{(I - L)G(I - L)^T\}$$

subject to $LGL^T = H$

Solution.

- **1.** $A = PDP^T$, here P is an orthogonal matrix, $D = \text{diag}(\lambda_1, \dots, \lambda_n)$, $\lambda_i > 0$, take $R = P\sqrt{D}P^T$ where $\sqrt{D} = \text{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$, and the uniqueness of R is obvious
- 2. Consider polar decomposition $B = \sqrt{BB^T}(\sqrt{BB^T}^{-1}B) = (B\sqrt{B^TB}^{-1})\sqrt{B^TB}, \sqrt{BB^T}, \sqrt{B^TB}$ are symmetric and positive definite, $\sqrt{BB^T}^{-1}B, B\sqrt{B^TB}^{-1}$ are orthogonal, then $\operatorname{tr}(QB) = \operatorname{tr}((QB\sqrt{B^TB}^{-1})\sqrt{B^TB}) = \operatorname{tr}((\sqrt{BB^T}^{-1}BQ)\sqrt{BB^T})$. Hence the problem can be rewritten as given a symmetric positive definite matrix B, the orthogonal maximizer of $f(Q) = \operatorname{tr}(QB)$ is Q = I, and by writing $B = PDP^T$, $\operatorname{tr}(QB) = \operatorname{tr}(P^TQPD)$, we may even assume B = D is diagonal, but then $\operatorname{tr}(QD) = \sum q_{kk} d_k$ which obtains maximum iff $q_{kk} = 1$ since $|q_{kk}| \leq 1$, this justifies our simplified version
- 3. $LGL^T = H$ can be rewritten as $Q^TQ = I$ with orthogonal matrix $Q = \sqrt{H}^{-1}L\sqrt{G}$, note that

$$\operatorname{tr}((I-L)G(I-L)^T) = \operatorname{tr}(G+H) - \operatorname{tr}(LG) - \operatorname{tr}(GL^T) = \operatorname{tr}(G+H) - 2\operatorname{tr}(LG)$$

Hence we only need to maximize $\operatorname{tr}(LG) = \operatorname{tr}(\sqrt{H}Q\sqrt{G}) = \operatorname{tr}(Q\sqrt{G}\sqrt{H})$, by 2. we know

$$Q = \sqrt{H}\sqrt{G}\sqrt{\sqrt{G}H\sqrt{G}}^{-1} \Rightarrow L = H\sqrt{G}\sqrt{\sqrt{G}H\sqrt{G}}^{-1}\sqrt{G}^{-1}$$

Exercises in polylogarithm

Exercise 14.0.1 (Derivatives of polylogarithms).

If $m_i > 1$ for $1 \le i \le d$, then

$$egin{aligned} rac{\partial}{\partial z_i} \operatorname{Li}_{m_1,\cdots,m_d}(z_1,\cdots,z_d) &= \sum_{k_1 > \cdots > k_d \geq 1} rac{z_1^{k_1} \cdots z_i^{k_i-1} \cdots z_d^{k_d}}{k_1^{m_1} \cdots k_i^{m_i-1} \cdots k_d^{m_d}} \ &= rac{1}{z_i} \operatorname{Li}_{m_1,\cdots,m_i-1,\cdots,m_d}(z_1,\cdots,z_d) \end{aligned}$$

$$\frac{\partial}{\partial z_{1}} \operatorname{Li}_{1,m_{2},\cdots,m_{d}}(z_{1},\cdots,z_{d}) = \sum_{k_{1}>\cdots>k_{d}\geq 1} \frac{z_{1}^{k_{1}-1}z_{2}^{k_{2}}\cdots z_{d}^{k_{d}}}{k_{2}^{m_{2}}\cdots k_{d}^{m_{d}}}$$

$$= \sum_{k_{2}>\cdots>k_{d}\geq 1} \frac{z_{2}^{k_{2}}\cdots z_{d}^{k_{d}}}{k_{2}^{m_{2}}\cdots k_{d}^{m_{d}}} \sum_{k_{1}=k_{2}+1}^{\infty} z_{1}^{k_{1}-1}$$

$$= \sum_{k_{2}>\cdots>k_{d}\geq 1} \frac{z_{2}^{k_{2}}\cdots z_{d}^{k_{d}}}{k_{2}^{m_{2}}\cdots k_{d}^{m_{d}}} \frac{z_{1}^{k_{2}}}{1-z_{1}}$$

$$= \frac{1}{1-z_{1}} \sum_{k_{2}>\cdots>k_{d}\geq 1} \frac{(z_{1}z_{2})^{k_{2}}\cdots z_{d}^{k_{d}}}{k_{2}^{m_{2}}\cdots k_{d}^{m_{d}}}$$

$$= \frac{1}{1-z_{1}} \operatorname{Li}_{m_{2},\cdots,m_{d}}(z_{1}z_{2},\cdots,z_{d})$$

$$\begin{split} \frac{\partial}{\partial z_d} \operatorname{Li}_{m_1, \cdots, m_{d-1}, 1}(z_1, \cdots, z_d) &= \sum_{k_1 > \cdots > k_d \ge 1} \frac{z_1^{k_1} \cdots z_{d-1}^{k_{d-1}} z_d^{k_d - 1}}{k_2^{m_2} \cdots k_{d-1}^{m_{d-1}}} \\ &= \sum_{k_1 > \cdots > k_{d-1} \ge 2} \frac{z_1^{k_1} \cdots z_{d-1}^{k_{d-1}}}{k_1^{m_1} \cdots k_{d-1}^{m_{d-1}}} \sum_{k_d = 1}^{k_{d-1} - 1} z_d^{k_d - 1} \\ &= \sum_{k_1 > \cdots > k_{d-1} \ge 2} \frac{z_1^{k_1} \cdots z_{d-1}^{k_{d-1}}}{k_1^{m_1} \cdots k_{d-1}^{m_{d-1}}} \frac{1 - z_d^{k_{d-1} - 1}}{1 - z_d} \\ &= \sum_{k_1 > \cdots > k_{d-1} \ge 2} \frac{z_1^{k_1} \cdots z_{d-1}^{k_{d-1}}}{k_1^{m_1} \cdots k_{d-1}^{m_{d-1}}} \frac{1 - z_d^{k_{d-1} - 1}}{1 - z_d} \\ &= \frac{1}{1 - z_d} \sum_{k_1 > \cdots > k_{d-1} \ge 1} \frac{z_1^{k_1} \cdots z_{d-1}^{k_{d-1}}}{k_1^{m_1} \cdots k_{d-1}^{m_{d-1}}} \\ &- \frac{1}{z_d(1 - z_d)} \sum_{k_1 > \cdots > k_{d-1} \ge 1} \frac{z_1^{k_1} \cdots (z_{d-1} z_d)^{k_{d-1}}}{k_1^{m_1} \cdots k_{d-1}^{m_{d-1}}} \\ &= \frac{1}{1 - z_d} \operatorname{Li}_{m_1, \cdots, m_{d-1}}(z_1, \cdots, z_{d-1}) \\ &- \frac{1}{z_d(1 - z_d)} \operatorname{Li}_{m_1, \cdots, m_{d-1}}(z_1, \cdots, z_{d-1} z_d) \end{split}$$

If 1 < i < d, then

$$\begin{split} &\frac{\partial}{\partial z_{i}}\operatorname{Li}_{m_{1},\cdots,1,\cdots,m_{d}}(z_{1},\cdots,z_{d}) \\ &= \sum_{k_{1}>\cdots>k_{d}\geq 1} \frac{z_{1}^{k_{1}}\cdots z_{i}^{m_{i}-1}\cdots z_{d}^{k_{d}}}{k_{2}^{m_{2}}\cdots k_{d}^{m_{d}}} \\ &= \sum_{k_{1}>\cdots>k_{i-1}>k_{i+1}>\cdots>k_{d}\geq 1} \frac{z_{1}^{k_{1}}\cdots z_{i-1}^{k_{i-1}}z_{i+1}^{k_{i+1}}\cdots z_{d}^{k_{d}}}{k_{1}^{m_{1}}\cdots k_{d-1}^{m_{d-1}}} \sum_{k_{i}=k_{i+1}+1}^{k_{i}-1} z_{i}^{k_{i}-1} \\ &= \sum_{k_{1}>\cdots>k_{i-1}>k_{i+1}+1} \frac{z_{1}^{k_{1}}\cdots z_{i-1}^{k_{i-1}}z_{i+1}^{k_{i+1}}\cdots z_{d}^{k_{d}}}{k_{1}^{m_{1}}\cdots k_{d-1}^{m_{d-1}}} \frac{z_{i}^{k_{i}-1}-z_{i}^{k_{i}-1-1}}{1-z_{i}} \\ &= \sum_{k_{1}>\cdots>k_{i-1}>k_{i+1}+1} \frac{z_{1}^{k_{1}}\cdots z_{i-1}^{k_{i-1}}z_{i+1}^{k_{i+1}}\cdots z_{d}^{k_{d}}}{k_{1}^{m_{1}}\cdots k_{d-1}^{m_{d-1}}} \frac{z_{i}^{k_{i+1}}-z_{i}^{k_{i-1}-1}}{1-z_{i}} \\ &= \frac{1}{1-z_{i}} \sum_{k_{1}>\cdots>k_{i-1}>k_{i+1}>\cdots>k_{d}\geq 1} \frac{z_{1}^{k_{1}}\cdots z_{i-1}^{k_{i+1}}z_{i+1}^{k_{i+1}}\cdots z_{d}^{k_{d}}}{k_{1}^{m_{1}}\cdots k_{d-1}^{m_{d-1}}} \\ &- \frac{1}{z_{i}(1-z_{i})} \sum_{k_{1}>\cdots>k_{i-1}>k_{i+1}>\cdots>k_{d}\geq 1} \frac{z_{1}^{k_{1}}\cdots z_{i-1}^{k_{i-1}}(z_{i}z_{i+1})^{k_{i+1}}\cdots z_{d}^{k_{d}}}{k_{1}^{m_{1}}\cdots k_{d-1}^{m_{d-1}}} \\ &= \frac{1}{1-z_{i}} \operatorname{Li}_{m_{1},\cdots,m_{i-1},m_{i+1},\cdots,m_{d}}(z_{1},\cdots,z_{i-1},z_{i}z_{i+1},\cdots,z_{d}) \\ &- \frac{1}{z_{i}(1-z_{i})} \operatorname{Li}_{m_{1},\cdots,m_{i-1},m_{i+1},\cdots,m_{d-1}}(z_{1},\cdots,z_{i-1},z_{i}z_{i+1},\cdots,z_{d}) \\ \end{array}$$