Solutions for Homework Assignment #3

Answer to Question 1.

a. The basic reasoning is as follows: Let A_1 , A_2 , and A_3 be the first third, middle third, and last third of A. After the first recursive call (which sorts A_1 and A_2) A_2 contains elements that are greater than or equal to the elements in A_1 . Thus, after the second recursive call (which sorts A_2 and A_3), A_3 contains elements that are greater than or equal to the elements in A_2 and therefore also in A_3 . i.e., it contains the largest one-third of the elements of A in sorted order. The third recursive call sorts the remaining elements in A_1 and A_2 , all of which are smaller than the elements in A_3 .

We can make this argument more rigorous by using complete induction on the length n of $A[\ell..r]$, i.e. $n = r - \ell + 1$, to prove that the algorithm correctly sorts subarrays of length n, for every $n \ge 1$. (As suggested, you may assume for simplicity that n is a power of 3, though we will not do so in this proof.)

Suppose the algorithm sorts $A[\ell..r]$ when the length of $A[\ell..r]$ is strictly less than n. We will prove that it also sorts $A[\ell..r]$ when the length of $A[\ell..r]$ is equal to n.

If n = 1 or n = 2 this is immediate from lines 1–2 or lines 3–4, respectively.

If $n \geq 3$, let $t = \lceil 2(r - \ell + 1)/3 \rceil$, $A_1 = A[\ell..r - t]$ (the first third of A), $A_2 = A[r - t + 1..\ell + t - 1]$ (the middle third of A), and $A_3 = A[\ell + t..r]$ (the final third of A). Also, denote by A^1 , A^2 , and A^3 the content of A after the first, second, and third recursive call respectively (line 8, 9, and 10). So A_i^j denotes the content of the i-th third of A after the j-th recursive call.

It is easy to see that the lengths of the subarrays $A[\ell..\ell+t-1]$ and A[r-t+1..r] are strictly less than n, and so by the induction hypothesis, the three recursive calls correctly sort the relevant subarrays.

By the properties of sorting, it is obvious that:

for all
$$x$$
 in A_2^1 and all y in A_1^1 , $x \ge y$ (1)

for all
$$x$$
 in A_3^2 and all y in A_2^2 , $x \ge y$ (2)

Now we show that

for all
$$x$$
 in A_3^2 and all y in A_1^2 , $x \ge y$ (3)

To see this, let x be in A_3^2 and y be in A_1^2 . Since the second recursive call does not affect the first third of A, y is also in A_1^1 . There are two cases:

Case 1. No z in A_2^1 is in A_2^2 . (In other words, the sorting done by the second recursive call caused every element in the middle third of A to move to the last third.) Therefore, x is one of the values that were in A_2^1 . Thus, by (1), $x \ge y$.

Case 2. Some z in A_2^1 is in A_2^2 . (In other words, the sorting done by the second recursive call caused some element in the middle third of A to remain there.) By (2), $x \ge z$ (since z is in A_2^2). By (1), $z \ge y$ (since z is also in A_2^1). Therefore $x \ge y$.

By (2) and (3), after the second recursive call, A_3 contains the largest third of the elements of A, in sorted order. Thus, the third recursive call, which does not affect A_3 , sorts the remaining two-thirds of the elements of A in A_1 and A_2 . Thus, after the third recursive call all of A is sorted.

b. The recurrence equation that describes the running time of WEIRDSORT (A, ℓ, r) when $r - \ell + 1 = n$ is T(n) = 3T(2n/3) + c, since there are three recursive calls, each on input 2/3 the size of the original, and a constant amount additional work. In terms of the parameters of the Master Theorem, we have a = 3, b = 3/2, and d = 0. Since $a > b^d$, the third case of the Master Theorem applies, and we have $T(n) = \Theta(n^{\log_b a}) = \Theta(n^{2.71})$ ($\log_b a = \log_{1.5} 3 = \ln 3 / \ln 1.5 \approx 2.71$).

c. The running time of Bubblesort is $\Theta(n^2)$. So, Weirdsort is much worse than even the simple quadratic sorting algorithms such as Bubblesort — let alone the $\Theta(n \log n)$ ones such as Mergesort or Heapsort. Bad idea!

Answer to Question 2. Suppose A[1..n] is an array of distinct integers. Our algorithm for finding a local minimum of A[1..n] is based on the following:

Lemma 1 For any k such that $1 \le k < n$,

- (a) if none of the integers in A[1..k] is a local minimum of the array A[1..n], then A[1..k + 1] is sorted in decreasing order;
- (b) if none of the integers in A[k+1..n] is a local minimum of the array A[1..n], then A[k..n] is sorted in increasing order.

PROOF. We use induction on k to prove (a); the proof of (b) is similar.

For the basis, when k = 1, we note that if A[1] < A[2] then A[1] is a local minimum. (The case k = 1 is simply the contrapositive of this statement.)

For the induction step, assume that the claim holds for $k \ge 1$, and suppose that k+1 < n and that none of the integers in A[1..k+1] is a local minimum of A[1..n]. We must show that A[1..k+2] is sorted in decreasing order. By the induction hypothesis, since none of the integers in A[1..k] is a local minimum, A[1..k+1] is sorted in decreasing order. It remains to show that A[k+1] > A[k+2]. Suppose, for contradiction, that A[k+1] < A[k+2]. Since A[1..k+1] is sorted in decreasing order, A[k+1] > A[k+1]. But then A[k+1] is a local minimum of A[1..n], contrary to the assumption that none of the integers in A[1..k+1] are.

If A[k] < A[k+1] then A[1..k+1] is certainly not sorted in decreasing order; similarly, if A[k] > A[k+1] then A[k..n] is not sorted in increasing order. Thus, the (contrapositive of the) above lemma implies:

Corollary 2 For any k such that $1 \le k < n$

- (a) if A[k] < A[k+1] then some integer in A[1..k] is a local minimum of the array A[1..n];
- (b) if A[k] > A[k+1] then some integer in A[k+1..n] is a local minimum of the array A[1..n].

This leads us to the following divide-and-conquer algorithm, for finding a local minimum in $A[\ell, r]$, where $1 \le \ell \le r \le n$.

```
FINDLOCALMIN(A, \ell, r)

if \ell = r then return A[\ell]

m := \lfloor (\ell + r)/2 \rfloor

if A[m] < A[m+1] then return FINDLOCALMIN(A, \ell, m)

else return FINDLOCALMIN(A, m+1, r)
```

The fact that this algorithm is correct, i.e., it returns a local minimum of $A[\ell, r]$ follows by a straightforward (complete) induction, using the above Corollary. To find a local minimum of the entire array A[1..n], we simply call FINDLOCALMIN(A, 1, n).

The running time T(k) of FINDLOCALMIN (A, ℓ, r) , where $k = \ell - r + 1$, is given by the following recurrence (for simplicity we assume that k is a power of 2):

$$T(k) = \begin{cases} T(k/2) + 1, & \text{if } k > 1 \\ 1, & \text{if } k = 1 \end{cases}$$

In terms of the parameters of the Master Theorem, here we have a=1, b=2, and d=0, so $a=b^d$, and the applicable case of the theorem yields $T(k)=\Theta(k^d\log k)=\Theta(\log k)$. Therefore, the running time for the call FINDLOCALMIN(A,1,n) is $\Theta(\log n)$, as wanted.