

SOM Links

- SOM plot explains
 - http://www.mathworks.com/help/nnet/gs/cluster-data-with-a-self-organizing-map.html
- Cluster with Self-Organizing Map Neural Network (theory & how it works)
 - http://www.mathworks.com/help/nnet/ug/cluster-with-self-organizing-map-neural-network.html

- selforgmap()
 - http://www.mathworks.com/help/nnet/ref/selforgmap.html
- learnsomb() → Batch self-organizing map weight learning function
 - http://www.mathworks.com/help/nnet/ref/learnsomb.html

Self Organizing Map (SOM)

- Find clusters using SOM.
 - Neurons clustered into groups.

Grid of $x \times x$ neurons

SOM, Another View

http://www.pitt.edu/~is2470pb/Spring05/FinalProjects/Group1a/tutorial/som.html

0.5

1.5

2.5 2.5

Another SOM Application

Summarizing data before further processing, like classification.

Illustration of How SOM Works

- Randomly initialize weights of the neurons.
 - Or, set them to two largest **PCA** eigenvectors (learning is much faster).
- Training records are fed to the SOM one at a time.
- SOM learning makes neighboring neurons respond similarly to similar inputs.

Learning in SOM

- Determine the winner in the learning process.
 - Pick one neuron w/ weights **closest** to the input vector.
 - Move the weight vector \mathbf{w} of the winning neuron towards the input \mathbf{I} .
- After learning, neurons w/ similar weights tend to cluster on map.
- Query similar to instance-based learning, except on summary SOM.
 - Eager

SOM Reward and Penalty

- Not only move the weight vector \mathbf{w}_a of the winning neuron towards the input \mathbf{I} .
- But also move the weight vector $\mathbf{w_b}$ of the most different neuron away from \mathbf{I} .
 - Penalty (negative impact) on the most different node.

sel]	Inputs		rejected	
1	0	0	0	0	0
0	0	0	0	0 /	0
0	0	0	0	-1 ✓	0
0	1	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

3 +

Self Organizing Map

Visualizing SOM Neighborhood

1	0.5	0	0	0	0
0.5	0.5	0	-0.5	-0.5	-0.5
0.5	0.5	0.5	-0.5	-1	-0.5
0.5	1	0.5	-0.5	-0.5	-0.5
0.5	0.5	0.5	0	0	0
0	0	0	0	0	0

- Since vectors of the similar neighborhood are moved in the same direction, similar records tend to excite adjacent neurons.
- Therefore, SOM forms a semantic map where similar neurons are mapped close together and dissimilar apart.

Detailed SOM Algorithm

- 1. Randomize nodes' weight vectors in SOM
- 2. Take an input vector X_i

- 3. Check each node in the map
 - Use Euclidean distance to find all vectors in SOM that are within distance r from X_i
 - Denote the node that has the smallest distance as **B**est **M**atching **U**nit, BMU
- 4. Update nodes in neighbourhood of BMU by pulling them closer to input vector
 - All neighbors m_k of BMU move toward X_i as $m_k = m_k + \alpha (X_i m_k)$

$$m_k = m_k + \alpha (X_i - m_k)$$

- 5. Decrease α and r by c%, then repeat from 2
 - SOM performance depends on learning rate α and neighborhood threshold r

1	0.5	0	0	0	0
0.5	0.5	0	-0.5	-0.5	-0.5
0.5	0.5	0.5	-0.5	-1	-0.5
0.5	1	0.5	-0.5	-0.5	-0.5
0.5	0.5	0.5	0	0	0
0	0	0	0	0	0

SOM, First Example

```
    rng(3) % set random seed to get same result
    K = 200; % number of samples of each cluster
    q = 1.1; % offset of groups
    % define 4 clusters of input data
    X = [rand(1,K)-q rand(1,K)+q rand(1,K)+q rand(1,K)-q; rand(1,K)+q rand(1,K)-q rand(1,K)-q rand(1,K)-q rand(1,K)-q]';
```

```
% define net, <a href="http://www.mathworks.com/help/nnet/ug/cluster-with-self-organizing-map-neural-network.html">http://www.mathworks.com/help/nnet/ug/cluster-with-self-organizing-map-neural-network.html</a>
dimensions = [20 20];
topologyFcn = 'gridtop'; % Topologies (gridtop, hextop, randtop)
distanceFcn = 'linkdist'; % Distance Functions (dist, linkdist, mandist, boxdist)
coverSteps = 100; initNeighbor = 10;

net = selforgmap(dimensions, coverSteps, initNeighbor, ...
topologyFcn, distanceFcn);
[net, Y] = train(net, X');

You can watch training interactively.
```


Plot Weight Positions → plotsompos()

- Show input data as green dots.
- Plot weights to each neuron as a dot (i.e. blue-gray dots).
- Plot each neuron's neighboring (connecting) neurons.

Weight Positions for Y-Shape Clustering

- Cut connections w/ too long distance →
 - Still connected neurons become clusters.

Traverse the neuron connections based on their distance to its neighbors..

Code for Cutting Connections to Generate Connected Clusters


```
iw = net.IW{:};
pd = pdist(iw);
pdsq = triu(squareform(pd));

figure, scatter(iw(:,1), iw(:,2)),
hold on
pduu = pdsq;
pduu(find(pduu > Cut_TH))=0;
[rows cols] = find(pduu);
x1=[iw(rows, 1) iw(cols, 1)]';
y1=[iw(rows, 2) iw(cols, 2)]';
plot(x1,y1, 'k'), hold off
```


Another Example of Cutting Connections

knn Classification AFTER SOM Clustering

- For each <u>neuron</u> finds its class representation by knn search of <u>training data</u>, (i.e. k = 1).
- For each <u>test data</u> finds its class by another knn search of <u>neurons</u>, (i.e. k = 1).

- Clustering "MPG + Displacement" to Predict # of Cylinders, k = 1
 - Remember to do standardization!!!

Digits Recognition (Classification) using SOM

- Training dataset from <u>Machine Learning Repository of the Center for Machine Learning and Intelligent Systems</u>.
 - 1934 handwritten digits from 0 to 9 collected from a total of 30 people.
 - Each digit sample has been normalized to 32x32 binary image
 - See http://www.codeproject.com/Articles/793537/Self-organizing-Map-Implementation

Class	Number of Samples
0	189
1	198
2	195
3	199
4	186
5	187
6	195
7	201
8	180
9	204

Workflow and Basic Program

```
load digit som train; % 1024x1934
load digit_som_label; % 1x1934
                                                                                               Layer
                                                                                                                Output
                                                                            Input
% Each neuron has 1024 connections (inputs)
                                                                             1024
                                                                                                                  100
                                                                                                     100
net = selforgmap([10 10]);
net.trainParam.epochs = 50;
                                                                              input
                                                                                                              neurons
                                                                                                             Lbl 5, C 1, S 73, Err 0
net = train(net, train_data);
tmp_neuro_vecs = sim(net, train_data);
TrainRec LandOn NeuronNo = vec2ind(tmp_neuro_vecs);
                                                                                                             Lbl 6, C 1, S 78, Err 0
                                                                                                             Lbl 4, C 1, S 2, Err 0
```

- You can then check which digits land on which neurons for how many times.
- Then, perform prediction and test accuracy...

Results of Trained SOM

IW_Array = net.IW{1};
figure,
for i = 1 : 100,
 img=IW_Array(i,:);
 subplot(10, 10, i),
 imshow(reshape(img, [32 32]));
end

- Input weights on 10×10 SOM neurons.
 - Each neuron was trained by 1024 (32×32) input pixels from all trainings.

Different SOM Configurations on Digit Recognition

Each Neuron Represents Which Digit?

- Table shows frequency of training records w/ different labels hits each neuron.
- A neuron predicts the label with maximum hits (by training).
 - Confidence of the prediction = max_hit / total_hit
 - Confidence("neuron1 in predicting digit 2") = 65 / 68 = 96%

Classification **AFTER** SOM Clustering

• In this test, accuracy = 90%.

Cases for Incorrect Predictions

Gender Clustering

Input

3072

- MUCT Face DB www.milbo.org/muct
- Sample 36 female, 40 male.
 - Input 3072 gray-scale pixels.
 - Output SOM 2×1.
 - Average face? of different gender?

2×1 SOM output

Output

2

Identify Outliers, GMM, One Class SVM, How about SOM???

- Build **4** one-class SVM-RBF models.
 - RBF, outlier ϵ C3, but $P \downarrow \downarrow \downarrow$
 - GMM, outlier ϵ C2, but $P\uparrow\uparrow\uparrow$ w/ PDF \downarrow
 - RBF, outlier \in C3, but $P \downarrow \downarrow \downarrow$
 - GMM, outlier \in C1, but $P\uparrow\uparrow\uparrow$ w/ PDF \downarrow

Data Point = 0.5	2	RBF1	
P = 2.572e-06	5.3751e-05	0.00013274	1.1234e-06
Data Point = 1.0	2.5	RBF2	
P = 0.022418	0.98502	0.00017523	2.1481e-07
Data Point = 1.5	1.5	RBF3	
P = 0.0013203	0.0011747	0.99333	7.409e-07
Data Point = 5 5		RBF4	
P = 1.5639e-06	1.8047e-06	0.0003285	1.2992e-06

Data Point = 0.5	2	GMM Regularization = 0	
P = 0.0000 0.9868	0.0132	0.0000	0.0032
Data Point = 1.0 P = 0.0000 0.9999		0.0000	0.4794
Data Point = 1.5 P = 0.0000 0.0029		0.0005	0.4312
Data Point = 5 5 P = 1.0000 0.0000	0.0000	0.0000	0.0000

SOM Summary

- <u>Unsupervised</u> learning.
 - All other NNs discussed so far are supervised learning.
 - Use a neighborhood function to preserve topological properties of the input space.
 - Produce a low-dimensional (typically two-dimensional) map as a result.
 - Good for visualize high-D data in low-D, akin to multidimensional scaling.
 - Introduced by Finnish professor Teuvo Kohonen in 80s, as a **Kohonen map / NTWK**.
 - "Training" builds a map using inputs (a competitive process = vector quantization).
 - "Mapping" automatically classifies new unseen input vectors.
 - Usually arrange neurons is a two-dimensional grid.
 - Small SOM \approx *K*-means, larger SOM rearrange data in a totally different way.
 - https://en.wikipedia.org/wiki/Self-organizing_map

Classification Comparison

■ Remember you can do clustering first, <u>THEN</u> do classification

http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html#sphx-glr-auto-examples-classification-plot-classifier-comparison-py

Clustering Comparison

http://scikit-learn.org/stable/modules/clustering.html#dbscan

