30 Settembre 1999 – ORE 14:00 ESAME DI MATEMATICA APPLICATA 2 Alberto Berretti e Francesco Pappalardi

- 1. (20 punti) Si dia una stima per il numero di operazioni bit necessarie per calcolare l'inversa di una matrice 4×4 in cui tutte le componenti sono < N.
- 2. (20 punti) Si calcoli

$$62400^{5461} \pmod{61345}$$

utilizzando il metodo dei quadrati successivi.

- 3. (30 punti) Supponiamo si voglia implementare RSA per spedire il messaggio *FINEMA* utilizzando una sola trasmissione.
 - (a) Quale è il valore minimo del modulo RSA n che è necessario scegliere?
 - (b) Dare un esempio di una possibile scelta di n.
 - (c) Implementare RSA utilizzando come esponente di codifica e=33 (Questo implica che n dovrà essere scelto in modo opportuno).
 - (d) Calcolare l'esponente di decodifica d.
- 4. (30 punti) Si fattorizzi il polinomio

$$f(x) = x^9 + x^3 + x$$

su \mathbb{F}_2 .

- (a) Quanti elementi ha il campo di spezzamento \mathbb{K} di f(x).
- (b) Determinare un polinomio irriducibile $g(x) \in \mathbb{F}_2[x]$ tale che il suo campo di spezzamento sia \mathbb{K} .
- (c) Sia α una radice di g(x). Calcolare se esiste il logaritmo discreto in base α di $\alpha + 1$.
- N.B. È consentito l'uso di una calcolatrice non scientifica. Tempo concesso 120 minuti.