TUTORIAL 10

7CCMCS04 A. ANNIBALE AND G. SICURO

ℰ Problem 10.1 Consider the reaction of annihilation

$$A + A \rightarrow \emptyset$$

and let us study the probability law of the number N_t of particles at time t.

a. Explain why the master equation for the probability $P_n(t) = \mathbb{P}[N_t = n]$ can be written as

$$\dot{P}_n(t) = \frac{1}{2V} (\xi^2 - 1) n(n-1) P_n(t)$$

where the action of the raising operator \mathcal{E} on a function of n is

$$\mathcal{E}f(n) = f(n+1)$$

and the prefactor V^{-1} , is needed to recover the proper rate equation for the density $\rho(t)$ of particles.

b. Assume that fluctuations of n about the deterministic value ρV are small so that we can write

$$n = V\rho + \sqrt{V}\eta$$

where η is a stochastic variable. We also write $P_n(t) = \Pi(\xi, t)$. By considering the effect that ξ has on n deduce its effect on η and η^2 , hence deduce that

$$\mathcal{E} = 1 + \frac{1}{\sqrt{V}} \frac{\partial}{\partial \eta} + \frac{1}{2V} \frac{\partial^2}{\partial \eta^2} + \dots$$

 \mathbf{c} . By observing that derivatives are taken with n held constant, show that

$$\dot{P}_n = \frac{\partial \Pi}{\partial t} - \sqrt{V} \dot{\rho} \frac{\partial \Pi}{\partial \eta}$$

d. Perform an expansion of the master equation in inverse powers of the volume and show that orders \sqrt{V} give

$$\dot{\rho} = -\rho^2$$

and orders V^0 gives the Fokker-Planck equation

$$\frac{\partial \Pi}{\partial t} = 2\rho \frac{\partial (\eta \Pi)}{\partial \eta} + \rho^2 \frac{\partial^2 \Pi}{\partial \eta^2}$$

Date: February 13, 2025.

2

e. Use the Fokker-Planck equation to find the equation for the first two moments $M_k = \int d\eta \eta^k \Pi(\xi, t)$, with k = 1, 2. Solve them and use the results to show that the relative fluctuation is

$$\frac{\sqrt{\mathrm{Var}[\mathsf{N}_t]}}{\mathbb{E}[\mathsf{N}_t]} = \sqrt{\frac{2}{3}\frac{1+t-(1+t)^{-2}}{V}}.$$

Reflect on the behavior of the relative fluctuations with time and with n.

 \nearrow Problem 10.2 Consider a system of N particles of a single species X which evolve stochastically. Each X particle decays with unit rate

$$X \to 0$$
 with rate 1

- **a.** Write the Master equation for the probability density $P_n(t)$ to have $N_t = n$ particles X at time t and calculate the average number of particles $\mathbb{E}[N_t] = \sum_{n=1}^{\infty} n \, P_n(t)$ at time t.
- **b.** Assume that a decay occurs at time t and let us call T the time to wait until the next event. Calculate the probability $\mathbb{P}[\tau \leq \mathsf{T} \leq \tau + \mathrm{d}\,t | \mathsf{N}_t = n]$ that, given $\mathsf{N}_t = n$, the next decay occurs in the time interval $[t + \tau, t + \tau + \mathrm{d}\,t)$, in the limit $\mathrm{d}\,t \to 0$. Hence show that the probability density of the waiting times T between successive events, given the number n of particles, is $\rho_n(t) = n\,\mathrm{e}^{-n\tau}$.

Hint: It is convenient to partition the time interval τ in many small intervals of duration $\Delta \to 0$ and use $1 - x \simeq e^{-x}$ for $x \to 0$.

- ${\bf c.}$ One can simulate this system via the following Gillespie algorithm:
 - 1 Initialize time and number of particles: t = 0, n = N;
 - 2 While n > 0 do:
 - 2.1 Generate a random number $r \in (0,1)$;
 - 2.2 Set $\tau = \frac{1}{n} \ln \frac{1}{r};$
 - 2.3 Update time and number of particles: $t = t + \tau$; n = n 1; Justify this algorithm.

Hint: You may find useful to note that $\int_0^\infty d\tau \, n \, e^{-n\tau} = 1$.

d. Assume that the system evolves in a large volume V. By carrying out a Kramers–Moyal expansion of the master equation in inverse powers of V, show that the Fokker-Planck equation for the evolution of the distribution q(x,t) of the concentration $X_t = N_t/V$ of particles, is

$$\partial_t q(x,t) = \frac{\partial}{\partial x} [xq(x,t)] + \frac{1}{2V} \frac{\partial^2}{\partial x^2} [xq(x,t)]$$

- **e.** Use the Fokker-Planck equation for q(x,t) to derive the equation of motion for the average concentration $\mathbb{E}[X_t] = \int dx \, x \, q(x,t)$ and for the fluctuations about the average $\sigma^2(t) = \mathrm{Var}[X_t]$ and solve them for the initial condition $X_0 = N/V$.
- **ℰ** Problem 10.3 Solve the heat equation

$$\frac{\partial p(x,t)}{\partial t} = D \frac{\partial^2 p(x,t)}{\partial x^2}$$

with absorbing boundary conditions in 0 and L.