D.S.复习提纲

第1章:

数据,数据结构,基本类型,抽象数据类型,Java语言的面向对象编程、<u>递归的概念与实现</u>。

• 主要能用递归思想写出算法

例子: ppt----- 递归例1 求n!

作业------ 例2 求数组中的最大值

例3 求数组元素的平均值

例2,例3如果用链表来实现呢?

复习例题----例4 统计二叉树中的叶结点个数例5 交换每个结点的左子女和右子女

例1. 求n!

factorial function f(n)=n!

$$f(n)$$
 $\begin{cases} 1 & n \le 1 \text{ (base) //递归终结条件} \\ n*f(n-1) & n > 1 \text{ (recursive component) //递归部分} \end{cases}$

```
f(5)=5*f(4)=5*4f(3)=5*4*3f(2)=5*4*3*2f(1)=120
static long factorial (int n)
{ if (n <= 1)
    return 1;
    else return n* factorial(n-1)
}
```

```
例2. 求数组中的最大值
public static int findMax(int[] a, int n){
    //n表示n个元素,它们在数组a中
       if(n==1)
           return a [0];
        else{
            int temp=findMax(a,n-1);
            return temp>a [n-1]?temp:a [n-1];
int max(int a[],int n)
{ if(n = = 1) return a[0];
   int m = max(a,n-1);
   if (m > a[n-1])
        return m;
   else
        return a[n-1];
```

}

例2. 求数组中的最大值

```
如果用链表来实现表:
求链表中的最大值
int GetMaxInt( ListNode f )
{ if(f.link = NULL) return f.data;
  else
    { int i = GetMaxInt(f.link);
       if (i > f.data) return i;
       else return f.data;
或 else return (f. data) > (GetMaxInt(f. link))?f. data:
```

GetMaxInt(f.link);

```
例3. 求数组元素的平均值
float average(int a[],int n)
\{ if(n = 1) \}
    return a[0];
  else
     return (average(a,n-1)*(n-1)+a[n-1])/n;
如果用链表:
float Average(ListNode f, int n)
 if(f.link = = NULL) return f.data;
  else return (Average (f.link, n-1) * (n-1) + f.data) / n;
```

```
例4. 统计叶子结点个数
int leafNum (BinTreeNode <Type> * root)
{
    if (root == NULL) return 0;
    if (root->leafchild == NULL && root->rightchild == NULL)
        return 1;
    else return leafNum(root-> leftchild) + leafNum(root-> rightchild);
```

}

例5. 交换左右子树

```
void Swapchild ( BinTreeNode * p )
\{ \text{ if } (p = NULL) \text{ return } ; \}
  BinTreeNode * temp = p -> left;
  p \rightarrow left = p \rightarrow right;
  p \rightarrow right = temp;
  Swapchild (p ->left);
  Swapchild (p ->right);
```

第2章 算法分析

最佳、最差和平均情况下的复杂度差异; 大O、 Ω 和 θ 符号

- 1)分析某个语句的执行次数(频度)
- 2)分析某个程序段执行的时间复杂度(用大O表示,要求写出推导过程)

第2章 算法分析

```
例2. x = 0; y = 0;
   for (int i = 1; i \le n; i++)
        for (int j = 1; j \le i; j++)
            for (int k = 1; k \le j; k++)
                x = x+y;
      次数为: n*(n+1)*(n+2)/6
例3. int x = 91; int y = 100;
     while(y>0)
      if(x>100) \{ x = 10; y = ; \}
       else x++;
      1100次
```

第3章 表、栈和队列

表、栈和队列的(基本概念,顺序存储结构,链式存储结构,应用),

 表:

 逻辑-----(e₁, e₂,e_n)

 物理-----数组实现

 链表实现------单链表

 循环链表

 双向链表

操作-----查找、插入、删除等

ppt----多项式相加 约瑟夫问题 用链表实现 双链表的插入、删除

例题----逆转链表等题

第3章 表

```
例1. 逆转链表(假设不带表头结点)
public void inverse( ListNode f )
{ if (f = NULL) return; }
  ListNode p = f. link; pr = NULL;
  while (p! = NULL)
 {f.link = pr;}
    pr = f;
    f = p;
    p = p \cdot link;
  f. link = pr;
```

第3章

例2. 设有如下结构的循环链表和可利用空间表

请在常数时间内实现将L链表中的所有结点归还到可利用空间表

 $\overline{ListNode\ p} = \overline{L.link};$

L.link = Avail;

Avail = p;

栈、队列

定义-----栈的定义,队列的定义 机内实现-----数组 (循环队列) 单链表

应用

栈-----对表达式求值。中缀----后缀----对后缀表达式求值 递归函数的实现。

PPT: 第4章中用非递归实现中序,后序遍历(在第4章中讲)队列---循环队列的补充题:已知队尾元素的位置与元素的个数,求队头元素的位置。

中缀到后缀:

(a+b)*((c-d)/2*e)----→ ab+cd-2/e** 用了什么栈? 对后缀表达式求值: 用了什么栈

例2. 队列---循环队列的补充题 已知队尾元素的位置与元素的个数, 求队头元素的位置。

先用实例来分析,然后归结到一般情况。

合并: front=(rear-length+1+m)%m

特殊矩阵的压缩存储

Arrays and Matrix

1. One-dimensional array

1D-array is a limited sequence composed of n $(n \ge 0)$ elements which are of the same data type.

For example:

Location of the element

$$Loc(a[i])=Loc(a[0])+i$$

Two-dimensional arrays are composed of n rows and m columns.

$$A[n][m] = \begin{pmatrix} a_{00} & a_{01} & a_{02} \dots a_{0 \text{ m-1}} \\ a_{10} & a_{11} & a_{12} \dots a_{1 \text{ m-1}} \\ a_{20} & a_{21} & a_{22} \dots a_{2 \text{ m-1}} \\ \dots & \dots & \dots & \dots \\ a_{n-10} & a_{n-11} a_{n-12} \dots a_{n-1 \text{ m-1}} \end{pmatrix}$$

There are three ways to implement a 2D array

1) mapping the 2D-array to a 1D-array

		3300
$(a_{00} \ a_{01} \ a_{02}, \ldots, a_{0 \text{ m-1}})$		a ₀₁
		•••
$\begin{vmatrix} a_{10} & a_{11} & a_{12} & \dots & a_{1 \text{ m-1}} \end{vmatrix}$		a _{0 m-1}
$\begin{vmatrix} a_{20} & a_{21} & a_{22} & \dots & a_{2 \text{ m-1}} \end{vmatrix}$	Row major	a ₁₀
	order	a ₁₁
•••••		
$(a_{n-10} \ a_{n-11} a_{n-12} a_{n-1 \ m-1})$		••••
		a _{n-1 m-1}

Location mapping:

- a) row-major order
 - Loc(a[i][j])=Loc(a[0][0])+[i*m+j]*l
- b) column-major order

$$Loc(a[i][j])=Loc(a[0][0])+[j*n+i]*l$$

An 3D-Array:

int $a[m_1][m_2][m_3]$

Location mapping

 $Loc(a[i][j][k])=Loc(a[0][0][0])+i*m_2*m_3+j*m_3+k$

- A square matrix has the same number of rows and columns.
- Some special forms of square matrix that arise frequently are:
- Diagonal. M(i,j)=0 for i!=j;
- Tridiagonal. M(i,j)=0 for|i-j|>1;
- Lower triangular. M(i,j)=0 for i<j;
- Upper triangular. M(i,j)=0 for i>j;
- Symmetric.M(i,j)=M(j,i);

For example:

2 0 0 0 2 1 0 0 0 1 0 0 3 1 3 0 0 0 4 0 0 5 2 7

0 0 0 6 0 0 9 0 2 0 0 0

5 1 0 0

0 3 1 0

4 2 7 0

(a)Diagonal (b) Tridiagonal © Lower Triangular

2 1 3 0

0 1 3 8

 $0 \quad 0 \quad \overline{1} \quad \overline{6}$

0 0 0 0 2 4 6 0

4 1 9 5

6 9 4 7

0 5 7 0

(d) Upper Triangular (e) Symmetric

1)Lower Triangular

$$\begin{pmatrix} a_{11} \\ a_{21} a_{22} \\ a_{31} a_{32} a_{33} \\ \dots \\ a_{n1} a_{n2} \dots a_{nn} \end{pmatrix}$$

Location mapping in row-major order:

2) Upper Triangular

$$a_{11} a_{12} \dots a_{1n}$$
 $a_{22} \dots a_{2n}$
 a_{nn}

Location mapping in row-major order: Loc(a(i,j))=Loc(a(1,1))+ $\sum_{k=1}^{i-1}$ (n-k+1)+j-i]*l

3) Tridiagonal

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} \\ a_{32} & a_{33} & a_{34} \\ & & & \\ &$$

Location mapping in row-major order:

$$Loc(a(i,j))=Loc(a(1,1))+[(i-1)*3-1+(j-i+1)]*1$$

1. Definition:

An m*n matrix is said to be sparse if "many" of its elements are zero.

number of zero elements>>number of non-zero elements

An example of sparse matrix:

```
\left(\begin{array}{cccccccc}
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 6 & 0 & 0 & 7 & 0 \\
0 & 0 & 0 & 9 & 0 & 0 \\
0 & 4 & 5 & 0 & 0 & 0
\end{array}\right)
```

- 2. Array representation
- The nonzero entries of an sparse matrix may be mapped into a 1D array in row major order.
- The structure of each element is:

row	col	value
-----	-----	-------

For example:

3. Linked Representation

例子:	五列					
	0	0	11	0	0)
四行	12	0	0	0	0	
	0	-4	0	0	0	
	0	0	0	0	0	

习题:

- 设有一个n*n的对称矩阵A,如下图(a)所示。为了节约存储,可以只存对角线及对角线以上的元素,或者只存对角线或对角线以下的元素。前者称为上三角矩阵,后者称为下三角矩阵。我们把它们按行存放于一个一维数组B中,如图(b)和图(c)所示。并称之为对称矩阵A的压缩存储方式。试问:
- 1) 存放对称矩阵A上三角部分或下三角部分的一维数组B有多少元素?
- 2) 若在一维数组B中从0号位置开始存放,则如图(a)所示的对称矩阵中的任一元素a_{ij}在只存上三角部分的情形下(图(b))应存于一维数组的什么下标位置?给出计算公式。
- 3) 若在一维数组B中从0号位置开始存放,则如图(a)所示的对称矩阵中的任一元素a_{ij}在只存下三角部分的情况下*(图(c))应存于一维数组的什么下标位置?给出计算公式。

$$\begin{pmatrix} a_{00} \ a_{01} \dots a_{0 \ n-1} \\ a_{10} \ a_{11} \dots a_{1 \ n-1} \\ \vdots \\ a_{n-10} \ a_{n-11} \dots a_{n-1n-1} \end{pmatrix} \begin{pmatrix} a_{00} \ a_{01} \dots a_{0n-1} \\ a_{11} \dots a_{1n-1} \\ \vdots \\ a_{n-1n-1} \end{pmatrix} \begin{pmatrix} a_{00} \\ a_{10} \\ \vdots \\ a_{n-10} \\ a_{n-11} \dots a_{n-1n-1} \\ \vdots \\ a_{n-1n-1} \end{pmatrix} \begin{pmatrix} a_{00} \\ a_{10} \\ \vdots \\ a_{n-10} \\ \vdots \\ a_{n-1n-1} \end{pmatrix}$$

答案:

- 1) $1+2+3+...+n = \frac{1}{2}*(1+n)*n$
- 2) loc(A[i,j]) = loc(B[0]) + (n+n-1+...+n-i+2+j-i)

$$\begin{cases} t = \frac{1}{2} * (2*n-i+1)*i + j-i & i <= j \\ t = \frac{1}{2} * (2*n-j+1)*j + i-j & i > j \end{cases}$$

$$\begin{cases} t = \frac{1}{2} * (2*n-i+2)*(i-1)+j-i \\ t = \frac{1}{2} * (2*n-j+2)*(j-1)+j-i \end{cases}$$

3) loc(A[i,j] = loc(B[0]) + (1+2+3+....+i-1+j-1)

$$\begin{cases} t = \frac{1}{2} * i * (i+1) + j & i >= j \\ t = \frac{1}{2} * j * (j+1) + i & i < j \end{cases} \begin{cases} t = \frac{1}{2} * i * (i-1) + j - 1 \\ t = \frac{1}{2} * j * (j-1) + i - 1 \end{cases}$$

对角线元素的地址: t = i*(i+3)/2

$$V_1$$
 V_2
 V_3

$$A(i,j) = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

$$V_1$$
 6
 10
 8
 12
 V_2
 V_3

$$A(i,j) = \begin{pmatrix} 0 & 8 & 12 & 6 \\ 8 & 0 & 7 & 10 \\ 12 & 7 & 0 & \infty \\ 6 & 10 & \infty & 0 \end{pmatrix}$$

第4章 树

- 1.二叉树的定义、性质
- 2.满二叉树与完全二叉树的概念
- 3.二叉树的机内存储:

数组表示(完全二叉树)、左---右拉链表示、cursor

递归

4. 先序、中序、后序遍历

~非递归

层次遍历-----用到队列

例1. 第4章中用非递归实现中序,后序遍历 Inorder, Postorder non-recursive algorithm

• Inorder non-recursive algorithm


```
template<class T>
  void InOrder(BinaryNode<T>* t)
  { if(t){ InOrder(t→Left);
         visit(t);
         InOrder(t→Right);
```

Inorder non-recursive algorithm

```
void Inorder(BinaryNode <T> * t)
{ Stack<BinaryNode<T>*> s(10);
  BinaryNode<T> * p = t;
  for (;;)
  { 1) while(p!=NULL)
      \{ s.push(p); p = p->Left; \}
   2) if (!s.IsEmpty())
      { p = s.pop(); }
        cout << p->element;
        p = p->Right;
      else return;
```

5. 利用先序、中序可唯一构造一棵树

先序: ABDCEGFHI

中序: DBAEGCHFI

利用中序、后序可唯一构造一棵树

手工画出一棵树

利用算法生成一棵树

Create BinaryTree recursive algorithm

preorder: ABDCEGFHI

inorder: DBAEGCHFI

- *6. 利用广义表表示来构造一棵树
 - 7. 应用

树的机内表示:

广义表表示、双亲表示、左子女---右兄弟表示

树的存储方式: 三种

•广义表表示: a(b(f,g),c,d(h,i,j),e)

•双亲表示法

a	b	f	g	••••	
0	1	2	2		

•左子女—右兄弟表示法

class TreeNode:

T data;

TreeNode *firstchild, *nextsibling;

class Tree:

TreeNode * root, *current;

树-----二叉树的转换

Forest --- Binary tree

• Forest — Binary tree

每棵树转为二叉树

 \mathbf{E}

把每棵二叉树根用右链相连

• Binary tree—— Forest

树与森林的遍历

树的遍历:深度优先遍历,广度优先遍历

• 深度优先遍历

先序次序遍历(先序)

访问树的根───按先序遍历根的第一棵子树,第二棵子树,等。

后序次序遍历(后序)

按后序遍历根的第一棵子树,第二棵子树,......等 ———— 访问树的根。

先根: ABEFCGKLDHIJM与 对应的二叉树的先序一致

后根: EFBKLGCHIMJDA与 对应的二叉树的中序一致

• 广度优先遍历

分层访问: ABCDEFGHIJKLM

森林的遍历

深度优先遍历

* 先根次序遍历 访问F的第一棵树的根 按先根遍历第一棵树的子树森林 按先根遍历其它树组成的森林

* 中根次序遍历 按中根遍历第一棵树的子树森林 访问F的第一棵树的根 按中根遍历其它树组成的森林

* 后根次序遍历 按后根遍历第一棵树的子树森林 按后根遍历其它树组成的森林 访问F的第一棵树的根

先根: ABEFCGDKIHJ

中根: EFBGCDAIJHK

后根: FEGDCBJHIKA

广度优先遍历(层次遍历)

AKBCDIHEFGJ

补充:

线索树

Thread Tree

1.Purpose:

2. Thread Tree Representation left Thread Tree and right Thread Tree

3. Thread Tree class

1.Purpose:

Thread Tree

Example:

Thread Tree

Inorder: DBAEGCHFJ root F

2. 机内如何存储

一个结点增加两个标记域:

	leftchild	lefttl	read	dat	a	rightth	read	rightchild	
lof4T	Throad — —	0 leftchild 指向左子女							
leftThread = =		1	leftchild 指向前驱(某线性序列)						
rightThre	tThread = =		righ	tchild	指	向右子。	女		
			righ	tchild	指	向后继			

Thread Tree

left threadTree

right threadTree

8. 哈夫曼树

哈夫曼树的构造 哈夫曼编码 扩充的二叉、三叉、....、t叉树

15, 3, 14, 2, 6, 9, 16, 17 构造扩充的三叉树。

第4.1章:二叉搜索树

- 1.二叉搜索树的概念
- 2.带索引的二叉搜索树的概念
- 3. AVL树----平衡的二叉搜索树
- 4. B-树

1.二叉搜索树的概念

二叉搜索树

Example:

二叉搜索树

主要操作:

查找、插入、删除

2.带索引的二叉搜索树的概念

- An indexed binary search tree is derived from an ordinary binary search tree by adding the field leftSize to each tree node.
- Value in Leftsize field=number of the elements in the node's left subtree +1

leftSize left	element	right
---------------	---------	-------

Example:


```
例子:
 写一递归函数实现在带索引的二叉搜索树(IndexBST)中查找第k个小
  的元素。
public Comparable findK(BinaryNode root, int k)
  if(root==null)return null;//空
  if( k< root. leftSize) //在左子树
      findK( root. left, k);
  else if( k>root. leftSize) //在右子树
      findK(root.right, k-root.leftSize);//注意减去
  else return root.element;
```

3.AVL树----平衡的二叉搜索树

Definition of an AVL tree:

- (1) is a binary search tree
- (2) Every node satisfies

 $|h_L-h_R| \le 1$ where h_L and h_R are the heights of T_L (left subtree) and T_R (right subtree), respectively.

例子

AVL Tree

- Height of an tree: the longest path from the root to each leaf node
- Balance factor bf(x) of a node x:
 height of right subtree of x height of left subtree of x

Each node: Left data Right balance(height)

AVL Tree

The height of an AVL tree with n elements is $O(log_2 n)$, so an n-element AVL search tree can be searched in $O(log_2 n)$ time.

AVL Tree

插入

左外侧, 右外侧-----一次旋转 左内侧, 右内侧-----二次旋转

AVL树的插入:

- 1. 首先要正确地插入
- 2. 找到有可能发生的最小不平衡子树
- 3. 判别插入在不平衡子树的外侧还是内侧
- 4. 根据3的判别结果,再进行单旋还是双旋

从空的AVL树建树的算法。一个例子:
7个关键码发生四种转动 A, Z, C, W, D, X, Y

• AVL树的删除:

方法: 与二叉搜索树的删除方法一样。

假设被删除结点为W,它的中序后继为X,则用X代替W,并删除X.所不同的是:删除X后,以X为根的子树高度减1,这一高度变化可能影响到从X到根结点上每个结点的平衡因子,因此要进行一系列调整。

· AVL树的算法分析

具有n个结点的平衡二叉树(AVL),进行一次插入或删除的时间最坏情况 $\leq O$ (log_2 n)

证明:实际上要考虑n个结点的平衡二叉树的最大高度

$$\leq (3/2) \log_2 (n+1)$$

设Th为一棵高度为h,且结点个数最少的平衡二叉树。

假设右子树高度为h-1 因结点个数最少,:.左子树高度 只能是h-2 这两棵左子树,右子树高度分别 为h-2, h-1,也一定是结点数最少的:

$$Oh = 0$$
 $Oh = 1$ $Oh = 2$ $Oh = 1$ $Oh = 2$ $Oh = 1$ $Oh = 2$ O

AVL Tree

例子:

对一棵空的AVL树,分别画出插入关键码为{ 16, 3, 7, 11, 9, 28, 18, 14, 15}后的AVL树。

4. B-树 (外查找)

B-Trees of order m

70年 R.Bayer提出的。

Definition: A B-tree of order m is an m-way search tree. If the B-tree is not empty, the corresponding extended tree satisfies the following properties:

- 1) the root has at least two children
- 2) all internal nodes other than the root have at least [m/2] children
- 3) all external nodes are at the same level

B-trees

example

a B-tree of order 7

B树的插入: (注意分支数的上界m)

- 一定只发生在外部结点的上一层。
- 1. 能插。按序插入
- 2. 不能插。将关键码按序插入后,把该结点分为两个结点,并把中间的关键码上提到父亲结点,可能引起再一次分裂,依次向上传递。可能引起树升高一层。

A B-Tree of order 7

不能插

Example:

A B-Tree of order 3

删除: (注意分支数的下界[m/2])

有两种情况:

- 1. 发生在外部结点的上一层(与插入情况一样)
 - 1) 能删则删
 - 2) 不能删(关键码要删除,但分支数也减少1)
 - a. 能借则借, 但要作关键码的适当调整;
 - b. 不能借,则与邻近的一个结点合并,相应的父结点的一个关键码要下放,如果引起父结点的不平衡,则还是能借则借,不能借,则合并,这样会引起更上一层的不平衡,依次传递上去,可能会引起树高降低一层。

Example: delete 379

Example: a B-Tree of order 7, delete 431

- 2. 删除发生在以上各层
- 删除它
- Replace it with the smallest key in the right subtree or the largest key in the left subtree
- 这样就变成1的情况

Delete 80, then replace it with 82 or 70, delete 82 or 70 at last

B-tree

例子:

1. 分别 delete 50,40 in the following 3阶B-树.

第5章: 散列

- 1.散列函数的选择
- 2.解决冲突的方法

开地址法:线性探查法

平方探查法

二次散列

链地址法

Hash Function

- 1. 散列函数的选择
 - 1. 计算简单
 - 2. 地址分布比较均匀

- Open Addressing
 - 1) linear Probing

If hash(key)=d and the bucket is already occupied then we will examine successive buckets d+1, d+2,.....m-1, 0, 1, 2,d-1, in the array

```
example
```

keys: Burke, Ekers, Broad, Blum, Attlee, Alton, Hecht, Ederly

hash(key) = ord(x) - ord(A')

x为取key第一个字母在字母表中的位置。例如:

hash(Attlee) = 0

$$H(Burke) = 1$$
, $H(Ekers) = 4$, $H(Broad) = 1$, $H(Blum) = 1$,

设散列表长
$$m = 26(0~25)$$

Attlee	Burke	Broad	Blum	Ekers	Alton	Ederly	Hecht	•••••	•••••	
1	1	2	3	1	6	3	1			

分析比较次数:

搜索成功的平均搜索长度

$$1/8*(1+1+2+3+1+1+6+3) = 18/8$$

* 搜索不成功的平均搜索长度

$$1/26*(9+8+7+6+5+4+3+2+1+1+1+....+1) = (9+8+7+6+5+4+3+2+18) = 62/26$$

2) Quadratic probing

If hash(k)=d and the bucket is already occupied then we will examine successive buckets d+1, $d+2^2$, $d+3^3$, in the array

example:

$$hash(k) = k \% 10;$$

3) Double Hashing

If $hash_1(k)=d$ and the bucket is already occupied then we will counting $hash_2(k)=c$, examine successive buckets d+c, d+2c, d+3c....., in the array

example:

Separate Chaining

0, 1, 4, 9, 16, 25, 36, 49, 64, 81 Hash(x) = x % 10

Chapter 5

例子:

设散列表为HT[13], 散列函数为

H(key) = key % 13。用线性开地址法解决冲突,对下列关键码序列 12,23,45,57,20,03,78,31,15,36:

- 1) 画出其散列表。
- 2) 计算等概率下搜索成功的平均搜索长度。
- 3) 如果采用链表散列解决冲突,画出该链表。

2010年统考题

综合应用题(10分)

将关键字序列(7, 8, 30, 11, 18, 9, 14) 散列存储到散列表中, 散列表的存储空间是一个下标从0开始的一个一维数组中, 散列函数为:

H(key) = (key*3) MOD T

处理冲突采用线性探测法,要求装载因子为0.7

问题:

- 1). 请画出所构造的散列表;
- 2). 分别计算等概率情况下,查找成功和查找不成功的平均查找长度.

注: 所谓查找不成功的平均查找长度是指: 在表中所有可能散列到的位置上,要插入新元素时为找到空桶的探查次数的平均值.

解答:

1). 由装载因子0.7, 数据总数7个,得到存储空间长度为10, 所以H(hey) = (key*3) MOD 10 (7, 8, 30, 11, 18, 9, 14)

散列表为:

0	1	2	3	4	5	6	7	8	9
30	7	14	11	8	18		9		
		1			_		1		

2). 查找成功的ASL=(1+1+1+1+1+2+1)/7=8/7 查找不成功的ASL=(7+6+5+4+3+2+1+2+1+1)/10=3.2

注: 所谓查找不成功的平均查找长度是指: 在表中所有可能散列到的位置 上,要插入新元素时为找到空桶的探查次数的平均值.

第6章:优先队列

- 1.优先队列的概念
- 2.优先队列的实现

用无序的线性表来实现 用堆来实现----堆的定义 初始化一个堆 堆排序

优先队列

1.优先队列的概念

- A priority queue is a collection of zero or more elements. Each element has a priority or value.
- Operations:
 - 1)find an element
 - 2)insert a new element
 - 3)delete an element

Heaps

2.优先队列的实现(用堆)

A max heap(min Heap)

- is A complete binary tree
- The value in each node is greater(less) than or equal to those in its children(if any).

Example of a max heap k={87,78,53,45,65,09,31,17,23}

Example of a min heap k={09,17,65,23,45,78,87,53,31}

考纲上的题:

判别以下序列是否是堆?如果不是,将它调整为最大堆。

- 1) { 100, 86, 48, 73, 35, 39, 42, 57, 66, 21 }
- 2) { 12, 70, 33, 65, 24, 56, 48, 92, 86, 33 }
- 3) { 103, 97, 56, 38, 66, 23, 42, 12, 30, 52, 06, 20 }
- 4) { 05, 56, 20, 23, 40, 38, 29, 61, 35, 76, 28, 100 }

Insertion

Example:

deletion

Initialize a nonempty max heap

有两种方法建堆:

- 将数据依次放入一棵完全二叉树,然后由下而上调,如下例.O(n)
- · 输入一个数据,就调整一下,即由上而下调. O(nlogn)

Example: {20,12,35,15,10,80,30,17,2,1}

Turn into max heap from these subtree roots

Create Heap time complexity:

初始建堆: n个结点, $K=\lfloor \log_2 n \rfloor$,从0层开始

i=0 第i层交换的最大次数为k-i 第i层有2ⁱ个结点

总交换次数:
$$\sum_{i=0}^{k-1} 2^{i} \cdot (k-i) = \sum_{j=1}^{k} j \cdot 2^{k-j} = \sum_{j=1}^{k} j(2^{k} \cdot 2^{-j})$$
 令k-i=j

$$=2^{k} \cdot \sum_{j=1}^{k} j \cdot 2^{-j} \le 2^{k} \cdot 2 \le 2^{\log n} \cdot 2 = 2n = O(n)$$

heap sort

Method:

- 1)initialize a max heap with the n elements to be sorted O(n)
- 2) each time we delete one element, then adjust the heap $O(log_2n)$

Time complexity is $O(n)+O(n*log_2n)=O(n*log_2n)$

heap sort

例子:

Example :{21,25,49,25*,16,08}

Chapter 6

设待排序的关键码序列为{12,2,16,30,28,10,16*,20,6,18},使用堆排序方法进行从小到大排序。写出建立的初始堆,以及调整的每一步。

- 各种排序方法的算法思想与时间复杂度的分析
 - 1.排序的有关概念 稳定性
 - 2.插入排序(直接插入排序,二分法插入排序, shell排序)
 - 3.交换排序(起泡排序,快速排序)
 - 4.选择排序(直接选择排序,堆排序)
 - 5.归并排序

1.排序的有关概念

内排序:对内存中的n个对象进行排序。

外排序:内存放不下,还要使用外存的排序。

排序算法的稳定性:

如果待排序的对象序列中,含有多个关键码值相等的对象, 用某种方法排序后,这些对象的相对次序不变的,则是稳定的,否 则为不稳定的。

例:	35	8 ₁	20	15	82	28
	8 ₁	8_{2}^{-}	15	20	28	35
独 字的						

稳定的

- 2. 插入排序(直接插入排序,二分法插入排序,表插入排序,shell排序)
- 直接插入排序

例子

```
V<sub>0</sub> i=1
8 3 2 5 9 1 6
3 8
2 3 8
2 3 5 8
```

算法分析

1)n个对象已有序

2) n个对象逆序

· 折半插入排序(Binary Insert Sort) 也称二分法插入排序

1.思想

0	1	2	3	4	5	6	7
28	13	72	85	39	41	6	20
6	13	28	39	41	72	85	20

算法分析

折半查找所需比较次数与初始排序无关,仅依赖于对象个数 比较次数: v_0 , v_1 , v_2 ,..., v_{i-1} , v_i ,..., v_{n-1}

- 设n=2k,插入第i个对象时,需要经过[log,i]+1
- 次关键码比较
- ::折半查找所需的关键码比较次数为:
- n-1
- $\Sigma(\lfloor \log_2 i \rfloor + 1) = \underline{1} + \underline{2} + \underline{2} + \underline{2} + \underline{3} + \underline{3} + \dots + \underline{3} + \underline{4} + \dots + \underline{4} + \underline{4} + \dots + \underline{k} + \underline{k} + \dots + \underline{k}$

•
$$i=1$$
 $2^{0} \uparrow 1 \ 2^{1} \uparrow 2 \ 2^{2} \uparrow 3 \ 2^{3} \uparrow 4 \ 2^{k-1} \uparrow k$

$$2^{3}$$
 4

$$2^{k-1}$$
 $\uparrow k$

$$=2^{0}+2^{1}+2^{2}+...+2^{k-1}$$

•
$$+2^{1}+2^{2}+...+2^{k-1}$$

$$+2^{2}+...+2^{k-1}$$

$$+2^{k-2}+2^{k-1}$$

$$+2^{k-1}$$

$$\sum_{i=1}^{k} (2^{k}-2^{i-1}) = k \cdot 2^{k} - \sum_{i=1}^{k} 2^{i-1} = k \cdot 2^{k} - 2^{k} + 1
= n \cdot \log_{2} n - n + 1 \approx
n \cdot \log_{2} n = O(n \cdot \log_{2} n)$$

稳定性:稳定

• 希尔排序

例子

gap=4

05 10 16 23 68 71 72 73 94

稳定性:不稳定

算法分析:与选择的缩小增量有关,但到目前还不知如何选择最好结果的缩小增量序列。

平均比较次数与移动次数大约n1.3左右。

3.交换排序(起泡排序,快速排序)

- 起泡排序
- 方法: 1) 从头到尾做一遍相邻两元素的比较,有颠倒则交换,记下交换的位置。一趟结束,一个或多个最大(最小)元素定位。
 - 2) 去掉已定位的的元素,重复1,直至一 趟无交换。

例子

4.算法分析

最小比较次数

有序: n-1次比较,移动次数为0

最大比较次数

5.稳定性 起泡排序是稳定的

- 快速排序(分划交换排序) 1962年Hoare提出的。
 - 1. 方法:
- 1)在n个对象中,取一个对象(如第一个对象——基准pivot),按该对象的关键码把所有≤ 该关键码的对象分划在它的左边。>该关键码的对象分划在它的右边。
- 2) 对左边和右边(子序列)分别再用快排序。

2. 例子

```
05 17 70 82
      55 42 94
                                100
46
   13
                  [94 55 70]
      05 42] 46
                                100]
   13
                            82
17
   13] 17 [42] 46 [94]
                     55 70
                             82
                               100]
[05]
          42
              46
                  [94
                      55 70 82
05
   13 17
                                100]
          42
                  [82
                      55 70] 94
05
   13
      17
              46
                                100]
          42
              46
                  [70]
                     55] 82 94 100
05
   13
      17
   13
      17 42
              46 55
                      70 82 94 100
05
```

- 3. 算法分析
 - 1) 最差的情况(当选第一个对象为分划对象时) 如果原对象已按关键码排好序

2) 最理想的情况 每次分划第一个对象定位在中间

可以证明Quicksort的平均计算时间也是O(nlog2n)

4. 选择排序

方法: 1.直接选择排序

2.堆排序

• 直接选择排序

思想: 首先在n个记录中选出关键码最小(最大)的记录,然后与第一个记录(最后第n个记录)交换位置,再在其余的n-1个记录中选关键码最小(最大)的记录,然后与第二个记录(第n-1个记录)交换位置,直至选择了n-1个记录。

	0	1	2	3	4	5
例子:	21	25	49	25 *	16	<u>08</u>
	08	[25	49	25 *	<u>16</u>	21]
	08	16	[49	25 *	25	<u>21</u>]
	08	16	21	[<u>25</u> *	25	49]
	08	16	21	25 *	25	49]
	08	16	21	25*	25	49

算法分析: 比较次数n-1+n-2+...+1=n(n-1)/2=O(n2)

与原始记录次序无关。

稳定性 : 不稳定的。

堆排序(由J.W.J.Willman提出的)

1.思想:第一步,建堆,根据初始输入数据,利用 堆的调整算法FilterDown(),形成初始 堆。(形成最大堆) 第二步,一系列的对象交换和重新调整堆

2.例子: 书中的例子{21 25 49 25* 16 08} i= (n-1) /2 = [5/2] = 2、1、0进行FilterDown()

5 归并排序(merge sort)

一、归并:两个(多个)有序的文件组合成一个有序文件方法:每次取出两个序列中的小的元素输出之; 当一序列完,则输出另一序列的剩余部分 i

二、迭代的归并排序算法

1.方法:

```
n个长为1的对象两两合并,得n/2个长为2的文件 n/2个长为2..........得n/4个长为4的文件 : 2个长为n/2的对象两两合并,得 1个长为n的文件
```

```
の 1 2 3 4 5 6 7 8 9 10

2.例子:[21][25][49][25*][93][62][72][08][37][16][54] len=1
一趟

[21 25][25* 49][62 93][08 72][16 37][54] len=2
二趟

[21 25 25* 49][08 62 72 93][16 37 54] len=4
三趟

[08 21 25 25* 49 62 72 93][16 37 54] len=8
```

[08 21 25 25* 49 62 72 93][16 37 54] len=8
四趟
[08 16 21 25 25* 37 49 54 62 72 93] len=16
3.算法:
主程序(多趟)→ 一趟 → 多次merge

- 4.算法分析:合并趟数 $\log_2 n$,每趟比较n次,所以为 $O(n\log_2 n)$
- 5. 稳定性: 稳定。

复习例题---在O(n)时间内实现将负数排在所有非负数之前。

```
void sort ( float [ ] a, int n )
{    int i = 0 , j = n-1 ;
    while ( i != j )
    {       while ( a[j] >= 0.0 && i < j ) j--;
            while ( a[i] < 0 && i < j ) i++;
            float temp = a[i] ; a[i] = a[j]; a[j] = temp;
            j--; i++;
        }
}</pre>
```

考纲上的题目:

下列排序算法中,时间复杂度为 $O(nlog_2n)$ 且占有额外空间最少的是

A. 堆排序 B. 起泡排序

C. 快速排序

D. 希尔排序

第9章:图

- 1.无向图、有向图的有关概念
- 2.图的机内存储 邻接矩阵 邻接表
- 3.图的若干算法
 - 1) 图的遍历----DFS BFS
 - 2) 最小代价生成树---Prime算法 Kuscal算法
 - 3) 最短路径-----Dijkstra算法 Floyed算法
 - 4) 活动网络----AOV——拓扑排序 AOE——关键路径

2.图的机内存储 邻接矩阵 邻接表

1. Adjacency Matrix

$$G=(V,E), V=\{V_1,V_2,...,V_n\}$$

then the adjacency matrix of graph G:

$$A(i,j) = \begin{cases} 1 & \text{if } \langle i,j \rangle, \langle j,i \rangle \in E \text{ or } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

For example:

graph

$$V_{1} \qquad V_{4} \qquad A(i,j) = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

$$V_{2} \qquad V_{3} \qquad 1 \qquad 1 \qquad 0 \qquad 0$$

- 1) Adjacency matrix of graph is a symmetric matrix
- 2) $\sum_{j=1}^{n} A(i,j) = \sum_{j=1}^{n} A(j,i) = d_i$ (degree of vertex i)

$$A(i,j) = \begin{pmatrix} 0 & 8 & 12 & 6 \\ 8 & 0 & 7 & 10 \\ 12 & 7 & 0 & \infty \\ 6 & 10 & \infty & 0 \end{pmatrix}$$

A(i,j)

Digraph

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\sum_{j=1}^{n} \mathbf{A}(\mathbf{i},\mathbf{j}) = \mathbf{d}_{\mathbf{i}}^{\text{out}} \qquad \sum_{j=1}^{n} \mathbf{A}(\mathbf{j},\mathbf{i}) = \mathbf{d}_{\mathbf{i}}^{\text{in}}$$

Representation of networks, replace 1 with weights, others with ∞

$$A(i,j) = \begin{cases} W(i,j) & \text{if i!=j and } , \in E \text{ or } (i,j) \in E \\ \infty & \text{otherwise} \end{cases}$$

For example:除了邻接矩阵外,还要顶点信息表.

Representation of graphs and digraphs

2. Linked-adjacency Lists

reduce the storage requirement if the number of edges in the graph is small.

Representation of graphs and digraphs Digraph:

3

Node Table:

第9章:图

- 3.图的若干算法
 - 1) 图的遍历----DFS

BFS

DFS:

思想: 从图中某个顶点V0出发,访问它,然后选择一个V0邻接到的未被访问的一个邻接点V1出发深度优先遍历图,当遇到一个所有邻接于它的结点都被访问过了的结点U时,回退到前一次刚被访问过的拥有未被访问的邻接点W,再从W出发深度遍历,......直到连通图中的所有顶点都被访问过为止.

BFS:

思想:从图中某顶点V0出发,在访问了V0之后依次访问v0的各个未曾访问过的邻接点,然后分别从这些邻接点出发广度优先遍历图,直至图中所有顶点都被访问到为止.

2) 最小代价生成树---Prime算法 Kuscal算法

最小代价生成树(minimun-cost spanning tree)

问题的提出:如何找到一个网络的最小生成树,即各边权的总和为最小的生成树

Kuscal算法: 实现思想 具体实现

数据结构:邻接矩阵

堆、并查集----实现技巧

Prime算法: 实现思想 具体实现

数据结构: 邻接矩阵

辅助数据结构: 开辟两个附加数组

对于具体实现,还可以有其他一些实现方法

算法结构为:

□ n
 □ n
 □ 求最小的 n
 □ 修改 n

思考题: 这两种算法分别适合那种情况?

3) 最短路径-----Dijkstra算法 Floyed算法

两种算法:

- 1)边上权值为非负情况的从一个结点到其它各结点的最短路径(单源最短路径)(Dijkstra算法)
- 2)边上权值为非负情况的所有顶点之间的最短路径

- 1.含非负权值的单源最短路径(Dijkstra)
- 问题

如果按距离递增的顺序重新排列一下

	经过	终止	距离
$\mathbf{V_0}$		\mathbf{V}_1	10
$\mathbf{V_0}$		V_3	30
$\mathbf{V_0}$	$\mathbf{V_3}$	$\mathbf{V_2}$	50
$\mathbf{V_0}$	V_3 V_2	$\mathbf{V_4}$	60

此為值剱组:dist						
0	0					
1	10 0-1					
2	∞ 0-2	60 0-1-2	50 0-3-2			
3	30 0-3	30 0-3				
4	100 0-4	100 0-4	90 0-3-4	60 0-3-2-4		

听该估粉组、Jist

路径path

0				
1	0	0	0	0
2	-1	1	3	3
3	0	0	0	0
4	0	0	3	2

每次放由 v_0 到达该顶点的前一顶点

算法分析:

2.所有顶点之间的最短路径(floyed)

$$O(n^3)$$

例子:

$$A = \begin{bmatrix} 0 & \infty & 5 & \infty \\ 5 & 0 & \infty & 20 \\ \infty & 5 & 0 & 7 \\ \infty & 10 & \infty & 0 \end{bmatrix}$$

floyed算法: 在矩阵A上作n-1次迭代,设每次迭代结果分别为

$$A^{(0)},A^{(1)},A^{(2)},...A^{(n)}$$

```
A^{(0)}=源矩阵,认为v_i->v_j的直接弧为它们的min路径 A^{(1)}=A^{(1)}[i,j]=min(A^{(0)}[i,j], A^{(0)}[i,1]+A^{(0)}[1,j]) 此时 A^{(1)}[i,j]可能已换成v_i-v_j-v_j A^{(2)}=A^{(2)}[i,j]=min(A^{(1)}[i,j], A^{(1)}[i,2]+A^{(1)}[2,j]) 即考虑经过顶点2,它可能是 v_i-v_j, v_i-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-v_j-
```

4) 活动网络----AOV——拓扑排序 AOE——关键路径

> 用顶点表示活动的网络 (拓扑排序—topological sort)

算法思想:

- 1) 从图中选择一个入度为0的结点输出之。 (如果一个图中,同时存在多个入度为0的结点,则随便 输出那一个结点)
- 2) 从图中删掉此结点及其所有的出边。
- 3) 反复执行以上步骤: a) 直到所有结点都输出了,则算法结束
 - b)如果图中还有结点,但入度不为0,则说明有环路

算法分析: n个顶点,e条边 建立链式栈O(n) 每个结点输出一次,每条边被检查一次O(n+e) 所以为:O(n+n+e) 用边表示活动的网络(AOE网络, Activity On Edge Network)
 又称为事件顶点网络

顶点:表示事件(event)

事件——状态。表示它的入边代表的活动已完成,它的出边代表的活动可以开始,如下图 v_0 表示整个工程开始, v_4 表示 a_4 , a_5 活动已完成 a_7 , a_8 活动可开始。

有向边:表示活动。

边上的权——表示完成一项活动需要的时间

关键路径(critical path)

- 1)目的:利用事件顶点网络,研究完成整个工程需要多少时间加快那些活动的速度后,可使整个工程提前完成。
- 2)关键路径:具有从开始顶点(源点)→完成顶点(汇点)的最长的路径

算法分析: 按拓扑排序求Ve[i] 按逆拓扑排序求Vl[i] O(n+e) 求各活动e[k]和l[k] O(e)

1. 对下列无向图:

分别用Prim算法与Kruscal算法,从1号顶点开始,求出最小代价生成树(要求写出构造生成树的每一步)。

2. 对下列有向图:

用Dijkstra算法求从顶点A到其它各顶点的最短路径(写出运行结果)。

3.考纲上的题:

设无向图 G = (V, E), 其中 V = {1,2,3,4,5}, E = {(1,2,4),(2,5,5),(1,3,2),(2,4,4),(3,4,1),(4,5,3), (1,5,8)},每条边由一个三元组表示,三元组中前两个元素为与该边关联的顶点,第三个元素为该边的权。请写出图 G 中从顶点1到其余各点的用Dijkstra算法求解最短路径的求解过程。要求列出最短路径上的各顶点,并计算路径长度。