Deep Reinforcement Learning for Unsupervised Video Summarization with Diversity-Representativeness Reward

Kaiyang Zhou, Yu Qiao, Tao Xiang

What is video summarization?

Goal: to automatically summarize videos into keyframes or key-clips.

We want

- Diverse
- Representative

Application of video summarization

e.g. YouTube video preview

Search

Trending

Melania Trump Gives Her Own State Of The Union

The Late Show with Stephen C... 766K views • 17 hours ago

Michelle Obama Talks with Birthday Girl Ellen About

TheEllenShow

1M views • 12 hours ago

Vevo **⊘** 13M view

Unsupervised video summarization

Idea: to analyze correlations between frames in feature space

1. Feature extraction

- 2. Clustering
- 3. Keyframes extraction

Supervised video summarization

Idea: to exploit human labels

scores:
$$y = \{0.1, 0.8, 1.0, 0.2, \ldots\}$$
 keyframes: $y = \{0, 1, 1, 0, \ldots\}$
$$\xrightarrow{\text{Training}} \ \log = (y - w^T X)^2$$

$$\xrightarrow{\text{Inference}} \ p = w^T X'$$

feature vectors

Temporal relations are hard to capture by linear models.

Recurrent neural network with supervised learning

Idea: use RNN to capture temporal relations

- Collecting labels here is much more expensive than that of other tasks.
- Labels may not provide good supervision signals. (b/c labels are subjective)

Main idea

To mimic how humans summarize videos

Is summary diverse and representative?

Model

Diversity-representativeness reward

Diversity reward

$$R_{\text{div}} = \frac{1}{|\mathcal{Y}|(|\mathcal{Y}|-1)} \sum_{t \in \mathcal{Y}} \sum_{\substack{t' \in \mathcal{Y} \\ t' \neq t}} d(x_t, x_{t'})$$

Set of selected frames

Representativeness reward

$$R_{\text{rep}} = \exp(-\frac{1}{T} \sum_{t=1}^{I} \min_{t' \in \mathcal{Y}} ||x_t - x_{t'}||_2)$$

Optimization

Reward:

$$R = R_{\rm div} + R_{\rm rep}$$

Objective function:

$$J(\theta) = \mathbb{E}[R]$$

Approximate gradients via REINFORCE:

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T} (R_n - b) \nabla_{\theta} \log \pi_{\theta}(a_t | h_t)$$

Inference

Score prediction:

$$\{p_i\}_{i=1}^T = \text{RNN}(\{x_i\}_{i=1}^T)$$

Compute clip-level scores:

$$I(S_k) = \frac{1}{|S_k|} \sum_{i \in S_k} p_i$$

Select clips (0/1 Knapsack):

$$\arg\max_{\mu}\sum_{k}\mu_{k}I(S_{k}), \quad \sum_{k}\mu_{k}|S_{k}| \leq \gamma, \quad \mu_{k} \in \{0,1\}$$
Song et al. CVPR 2015.

Evaluation

Human summary

Metric: F-score = (2 x precision x recall) / (precision + recall)

Dataset	# videos	Length (mins)	Description	# annotators per video
SumMe	25	1-6	User videos	15-18
TVSum	50	2-10	YouTube videos	20

Quantitative Results

Table: Comparison with other unsupervised approaches.

Method	SumMe (%)	TVSum (%)	
Video-MMR	26.6	-	
Uniform sampling	29.3	15.5	
K-medoids	33.4	28.8	
Vsumm	33.7	-	
Web image	-	36.0	
Dictionary selection	37.8	42.0	
Online sparse coding	-	46.0	
Co-archetypal	-	50.0	
GAN _{dpp}	39.1 7 1	0 ₇ 51.7 ↑ 1 -	1 (
Ours	41.4	57.6	L

Quantitative Results

Table: Comparison with other supervised approaches.

SumMe (%)	TVSum (%)
39.4	_
39.7	-
40.9	-
37.6	54.2
38.6	54.7
41.7	56.3
41.4	57.6
	39.4 39.7 40.9 37.6 38.6 41.7

Quantitative Results

Table: Comparison with other supervised approaches.

Method	SumMe (%)	TVSum (%)
Interestingness	39.4	-
Submodularity	39.7	_
Summary transfer	40.9	_
Bi-LSTM	37.6	54.2
DPP-LSTM	38.6	54.7
GAN _{sup}	41.7	56.3
Ours	41.4	57.6
Ours (supervised)	42.1	58.1

For more experiments and details, please see our paper.

Qualitative Results

Video #10 in TVSUM

Summary

- 1. Proposed a label-free reward, i.e. diversity-representativeness reward.
- 2. Outperformed/competitive to other unsupervised/supervised ones.
- 3. Extended the unsupervised method to the supervised version.

Thanks! Any questions?