SQLskills Immersion Event

IEPTO2: Performance Tuning and Optimization

Module 1: Creating a Foundation for Tuning and Optimizing

Erin Stellato Erin@SQLskills.com

Overview

- How we approach tuning and optimization
- Server, instance, and database settings
- Checking system health
- Methods for analyzing performance

© SQLskills, All rights reserve

Start with what you know

1. What is the problem?

- We are experiencing turbulence with our SQL Server instance.
- There is an out of control query for one client on one database that impacts all other clients on the instance – it uses up all the threads available and causes problems with application blocking.
- We discovered a DBCC error.
- We just upgraded to SQL Server 2016 from SQL Server 2008R2 and we're having high CPU issues.
- We want to implement partitioning to help with performance.
- What is the performance impact of having OLTP and reporting on the same server?
- We have a server that is not functioning well, after the last reboot it started acting differently. We need to get it back to normal.
- Queries are running slow/queries are blocking.
- The system is down.

© SQLskills, All rights reserv

Start with what you know

1. What is the problem?

- Facts vs. opinion
- Ask the question: "What problem are you trying to solve?"
- Get as specific as possible here whatever is defined as the problem is what you have to try and fix (scope is very important)

2. What does the system look like when there is not a problem?

- What is CPU typically?
- What does memory use/available memory look like?
- What are typical disk latency numbers?
- What are the usual waits?
- How long does it take for the top 20 queries to execute?
- Are there metrics for other regularly-scheduled processes?
- What are durations for maintenance tasks?
- Typical health of HA/DR components?

Do you have baseline data?

© SQLskills, All rights reserved.

Start with what you know

- 1. What is the problem?
 - □ Facts vs. opinion
 - Ask the question: "What problem are you trying to solve?"
 - Be as specific as possible here whatever is defined as the problem is what you have to try and fix (scope is very important)
- 2. What does the system look like when there is not a problem?
 - A.k.a. "Does a baseline exist?"
- 3. What do you know about the system's configuration?
- 4. What will define success/project completion?
 - Again, be as specific as possible, and put it in writing.

-

SQLskills, All rights reserved

Overview

- How we approach tuning and optimization
- Server, instance, and database settings
- Checking system health
- Methods for analyzing performance

6

Server Settings

- Physical server or VM?
- Number of sockets and logical processors
 - □ If VM, are these as expected?
 - NUMA configuration (physical and VM)
 - automatic soft-NUMA disabled
- Memory
- Volume partition alignment
- Lock Pages in Memory
- Instant File Initialization
- Power Management
- BIOS settings
 - Hardware virtualization support, Intel Turbo Boost, Intel HT

7

SQLskills, All rights reserved

Instance Settings (1)

- SQL Server version and Edition
- max server memory (MB) and min server memory (MB)
- CPU affinity mask
 - □ Do the NUMA nodes and logical processors match what you see in msinfo32?
- priority boost
- optimize for ad hoc workloads
- cost threshold for parallelism
- max degree of parallelism
- backup checksum
- backup compression
- remote admin connections
- Trace flags

8

SQLskills, All rights reserved

Instance Settings (2)

- Is anything set that is not expected?
 - Ad Hoc Distributed Queries
 - blocked process threshold (s)
 - clr enabled
 - □ fill factor (%)
 - Ole Automation Procedures
 - scan for startup procs
 - xp_cmdshell

ç

SQLskills, All rights reserved

Database Settings (1)

- Collation
- Recovery model
- Compatibility level
- Auto close
- Auto create incremental statistics
- Auto create statistics
- Auto shrink
- Auto update statistics
- Auto update statistics asynchronously

10

Database Settings (2)

- Legacy Cardinality Estimation
- Max DOP
- Parameter sniffing
- Query Optimizer fixes
- Delayed Durability
- RCSI
- Parameterization
- Indirect checkpoints
- Page verify
- Query Store
- tempdb configuration

11

© SQLskills, All rights reserve

Database Settings (3)

- Identity cache
- Interleaved Execution for multi-statement table-valued functions
- Batch mode memory grant feedback
- Batch mode adaptive joins

12

Database Settings (4)

- T-SQL Scalar UDF inlining
- Automatically elevate supported operations to resumable
- Row mode memory grant feedback
- Batch mode on rowstore
- Deferred compilation for table variables
- Accelerated plan forcing
- Lightweight query profiling
- Display error message: String or binary data would be truncated
- Collect last query plan statistics
- Determine whether row-level security affects execution plan cardinality

13

SQLskills, All rights reserved

Additional Database Settings in Azure SQL DB

- Automatically elevate supported operations to online
- Optimize for ad hoc workloads
- Collect execution statistics for natively compiled T-SQL modules
- Automatically drop temporary tables
- Configure pause duration for resumable index activity
- Wait for Sch-M lock on a low priority queue for asynchronous statistics updates

Overview

- How we approach tuning and optimization
- Server, instance, and database settings
- Checking system health
- Methods for analyzing performance

15

© SQLskills, All rights reserve

What Does a Healthy SQL Server Look Like?

- Supports a given workload within resource limits and query performance meets business-defined SLAs
- Maintenance tasks execute regularly and successfully
- Architecture can meet defined RTO and RPO for all databases
- Has every option set according to best practices
- Running the latest build of SQL Server available
- All performance counters and other metrics within "standard" values

16

SQLskills, All rights reserved.

How to Check System Health

- It starts with a review of system configuration
 - May find potential problems and easy wins here
- Examine resource use
 - □ CPU, Memory, Disk, SQL Server counters
 - Just because values are outside "standards" does not mean there's a problem
- Start digging into what's running and how it's running
- Can you boil down performance problems to a few simple things?
 - Specifically, not the CAUSE, but how it manifests

17

SQLskills, All rights reserved

Options for Checking Settings

- All instance and database-level settings can be checked using system views or DBCC commands, or manually
- Server-level information can be verified with PowerShell (using WMI or CMI) or manually
- The only time you should be investigating whether a setting has the optimal value is the first time you see a server
- Re-checking a system, or checking settings as part of troubleshooting, should just be validation
- This is why you need a baseline

1Ω

Checking Settings Quickly

- A scripted solution is the easiest, fastest, and most reliable way to check settings of interest
- There are many free scripts and tools available to do this
 - Use them as they are
 - Customize to fit your needs
 - Write your own as an exercise in scripting
 - What you create depends on what's important to you
- Beyond checking, you need to validate that settings haven't changed recently
 - Capture on a regular basis in an "admin" database and compare
 - Custom scripts
 - A combination of Audit and Extended Events

10

© SQLskills, All rights reserve

Demo

Checking system health

Overview

- How we approach tuning and optimization
- Server, instance, and database settings
- Checking system health
- Methods for analyzing performance

21

SQLskills, All rights reserved

Troubleshooting vs. Tuning

- Troubleshooting = I need to find the problem
- Tuning = I need to fix the problem
- The same information is gathered whether you're troubleshooting or tuning

22

Troubleshooting First Steps

- Description of problem from customer/users
 - Be wary of their perception
 - Focus on facts
 - Try to avoid assumptions (this can be hard!)

23

© SQLskills, All rights reserve

Troubleshooting Basics

- Don't assume Symptom = Root Cause
 - Troubleshooting is not an exact science, and the same symptoms can result from many root causes
- Don't do 'knee-jerk' troubleshooting
 - DBCC FREEPROCCACHE
 - UPDATE statistics
 - Rebuild indexes
 - Failover or reboot
- If you do any of those and they "work", don't do it again
 - You didn't solve the problem you didn't even define it; you just made it go away
- Work through the data to see what may be the root cause
 - You may have to let performance suffer to find the problem
 - You control how long the system suffers

24

SQLskills, All rights reserved.

Diagnostic Data Collection (1)

- Data collection should include multiple sources to facilitate root cause identification and validation from multiple sources
- Good starting points:
 - Wait statistics
 - □ This is always where we start
 - Adam Machanic's who_is_active SP
 - Query DMVs directly if having memory issues
 - Performance Monitor collection of performance counters for hardware, the Windows OS, and SQL Server
- Can you confirm that the problem is with SQL Server and not another application?
 - Sometimes you are working to prove the issue is not due to the database
 - $\ \ \square$ As much as you try to pinpoint the root issue, you also identify what is not the problem

25

SQLskills, All rights reserved

Diagnostic Data Collection (2)

- Can you identify blocking?
- Is the problem contained to a specific database?
- More advanced collection
 - Glenn Berry's DMV Diagnostics script
 - Buffer and plan cache usage
 - Index statistics
 - File statistics
 - Extended Events
 - CPU, reads, writes, duration
 - Query Store

© SQLskills, All rights r

Sources of Data

- PerfMon
- DMVs
- Query plans
- Extended Events/Trace
- DBCC commands
- SQL Server ERRORLOG
- Third-party tools
- Vendor tools for storage, VMware, etc.
- Windows System and Application logs
- CU/SP release notes

27

SQLskills, All rights reserve

Additional Considerations

- What's sharing resources/storage?
- Has maintenance been running, and as expected?
 - Backups, statistics, index fragmentation, DBCC CHECKDB
- What features are in use?
- Impact of HA and/or DR architecture
- The data itself
- Database schema/design
 - Filegroups
 - Files
 - Normalization
 - Data types
 - Indexes
 - Constraints

28

SQLskills, All rights reserved

Methodology for Tuning and Optimizing

- Define the problem
- Define the goal
- Capture appropriate metrics related to the problem
 - Represent "typical" performance
 - If you don't do this first, how can you quantify improvement?
- Begin tuning
 - This is an iterative process
 - Capture the same metrics again throughout
- When finished, capture the EXACT SAME metrics again
 - This seems really obvious, but it's extremely easy to get distracted

20

© SQLskills, All rights reserve

Key Takeaways

- When troubleshooting and tuning, start with specific, measurable facts about the problem
 - "The database is slow" is not specific or measurable
- Baselines are essential when investigating a performance issue
 - At a minimum, establish methods for capturing server, instance, and database settings on a regular basis
- Don't knee-jerk when troubleshooting
 - Having a library of scripts available creates a methodical process to follow, even when it seems like everything is on fire
- There is a lot of data available in SOL Server
 - Understand where data is located and how to find it
 - Use multiple data sources to corroborate a finding

30

SQLskills, All rights reserved.

Additional Resources

- Pluralsight courses
 - SQL Server 2017: Diagnosing Configuration Issues with DMVs
 - $\hbox{$\stackrel{\hbox{$\tt https://www.pluralsight.com/courses/sqlserver-diagnosing-configuration-issues-dmv}}$
 - SQL Server 2017: Diagnosing Performance Issues with DMVs
 - https://app.pluralsight.com/library/courses/sqlserver-2017-diagnosingperformance-issues-dmvs/
 - SQL Server: Installing and Configuring SQL Server 2016
 - https://bit.ly/2yoRNyX
 - SQL Server 2014 DMV Diagnostic Queries Part 1
 - https://bit.ly/2qMfKdA
 - SQL Server 2014 DMV Diagnostic Queries Part 2
 - https://bit.ly/2qGJbNO
 - SQL Server 2014 DMV Diagnostic Queries Part 3
 - https://bit.ly/2J7nZIG

31

SQLskills, All rights reserved

Review

- How we approach tuning and optimization
- Server, instance, and database settings
- Checking system health
- Methods for analyzing performance

