

Description

The VSM35N03 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 30V, I_D = 35A$ $R_{DS(ON)} < 15m\Omega @ V_{GS} = 10V$
- High density cell design for ultra low Rdson
- Fully characterized Avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible Power Supply

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM35N03-T2	VSM35N03	TO-252	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	30	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	35	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	35	А	
Pulsed Drain Current	I _{DM}	24.8	А	
Maximum Power Dissipation	P _D	45	W	
Derating factor		0.36	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	225	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	$^{\circ}$ C	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	R _{eJC}	2.8	°C/W
---	------------------	-----	------

Electrical Characteristics (T_c=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	•		•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	30	33	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =30V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	·					
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1	1.5	2.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	10	14	mΩ
Forward Transconductance	g Fs	V _{DS} =5V,I _D =20A	-	26	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	., .=.,,	-	938	-	PF
Output Capacitance	Coss	V_{DS} =15V, V_{GS} =0V,	-	142	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	99	-	PF
Switching Characteristics (Note 4)	•		•			
Turn-on Delay Time	t _{d(on)}		-	10	-	nS
Turn-on Rise Time	t _r	V _{DD} =15V,I _D =20A	-	8	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{GEN} =1.8 Ω	-	30	-	nS
Turn-Off Fall Time	t _f		-	5	-	nS
Total Gate Charge	Qg	\/ -4F\/ -20A	-	22	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS}=15V,I_{D}=20A,$ $V_{GS}=10V$	-	4.2	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} -10V	-	4.8	-	nC
Drain-Source Diode Characteristics	·					
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =25A	-	0.85	1.2	V
Diode Forward Current (Note 2)	Is		-	-	35	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 20A	-	20	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	23	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C, V_{DD}=15V,V_G=10V,L=0.5mH, Rg=25 Ω

Test circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit:

3) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics (Curves)

Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Rdson On-Resistance Normalized

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance