Спецкурс "Обработка изображений. Часть 2: Линейные системы

А.В. Тузиков.

Объединенный институт проблем информатики
Национальной академии наук Беларуси
Факультет прикладной математики и информатики Белгосуниверситета
2024 г.

Оглавление

2	Линейные системы			3
	2.1	Линеі	йные пространственно-инвариантные системы	3
		2.1.1	Свертка и функция рассеяния точки	3
		2.1.2	Передаточная функция	4
		2.1.3	Преобразование Фурье	5
		2.1.4	Преобразование Фурье для операции свертки	6
		2.1.5	Обобщенные функции и единичные импульсы	7
		2.1.6	Частные производные и свертка	7
		2.1.7	Корреляция и энергетический спектр	
	2.2	Обраб	ботка дискретных изображений	10
		2.2.1	Пространственная дискретизация изображений	11
		2.2.2	Теорема отсчетов	12
		2.2.3	Дискретное преобразование Фурье	13
	2.3	Быст	рые алгоритмы дискретного преобразования Фурье	15
		2.3.1	Дискретное преобразование Фурье и обратное к нему	15
		2.3.2	Алгоритм быстрого преобразования Фурье	17
		2.3.3	Алгоритм Кули-Тьюки (1965)	20
		2.3.4	Алгоритм Кули-Тьюки по основанию 2	
	2.4	Китаі	йские теоремы об остатках	22
		2.4.1	Кольцо целых чисел	22
		2.4.2	Кольцо многочленов	24
		2.4.3	Алгоритм Гуда-Томаса быстрого преобразования Фурье	
			$(1960-1963) \dots \dots$	24
	2.5	Выде.	ленение границ на полутоновых изображениях	25
		2.5.1	Дифференциальные операторы	25
		2.5.2	Локальные операторы и шум	27
		2.5.3	Дискретные аппроксимации	28

Глава 2

Линейные системы

2.1 Линейные пространственно-инвариантные системы

Рассмотрим систему, которая при входных сигналах $f_1(x,y)$ и $f_2(x,y)$ дает выходные сигналы $g_1(x,y)$ и $g_2(x,y)$.

Система называется линейной, если для любых чисел α и β при входном сигнале $\alpha f_1(x,y) + \beta f_2(x,y)$ на ее выходе генерируется сигнал $\alpha g_1(x,y) + \beta g_2(x,y)$.

Большинство реальных систем имеют различные ограничения (ограничения по величине отклика, неотрицательные значения рассматриваемых данных) и поэтому не могут быть строго линейными.

Система называется пространственно-инвариантной, если для произвольных a и b реакция системы на смещенный входной сигнал f(x-a,y-b) есть смещенный выходной сигнал g(x-a,y-b).

На практике имеются ограничения, например, по площади и поэтому пространственная инвариантность справедлива только для ограниченных сдвигов. Имеются технические ограничения оптических зрительных систем, поэтому такие системы только ограниченно пространственно-инвариантны.

Простой пример линейной пространственно-инвариантной системы служит система, реализующая оператор дифференцирования.

2.1.1 Свертка и функция рассеяния точки

Рассмотрим систему, реакция которой на входной сигнал f(x,y) имеет вид

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x-\xi, y-\eta) h(\xi, \eta) d\xi d\eta.$$

Свертка линейна и пространственно-инвариантна. Обозначение $g=f\otimes h$. Можно ли для произвольной функции h(x,y) найти такой входной сигнал f(x,y), что

$$h(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x-\xi, y-\eta) h(\xi, \eta) d\xi d\eta.$$

Понятно, что функция f(x,y) равняется нулю во всех точках за исключением точки 0 и "бесконечности"в нуле. Такая функция называется $e \partial u h u u h u m n u m n d e n b m a функцией Дирака и обозначается <math>\delta(x,y)$. Для дельта функции предполагается выполнение условия $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x,y) dx dy = 1$. Это обобщенная функция, которую можно рассматривать как "предел"при $\epsilon \to 0$ последовательности квадратных импульсов $\delta_{\epsilon}(x,y)$ размером 2ϵ по осям x и y и высотой $\frac{1}{4\epsilon^2}$.

Фильтрующее свойство дельта-функции:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x - \xi, y - \eta) h(\xi, \eta) d\xi d\eta = h(x, y)$$
 (2.1)

Функцию h(x,y) называют функцией рассеяния точки или импульсной переходной функцией.

Можно доказать, что выход любой линейной пространственно-инвариантной системы образуется путем свертки входного сигнала. Действительно, используя фильтрующее свойство дельта-функции имеем

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi,\eta) \delta(x-\xi,y-\eta) d\xi d\eta,$$

что является "пределом" при $\epsilon \to 0$ ϵ -аппроксимации $f_\epsilon(x,y)$ функции f(x,y), т.е.

$$f_{\epsilon}(x,y) = 4\epsilon^2 \sum_{k} f(x_k, y_k) \delta_{\epsilon}(x - x_k, y - y_k).$$

Используя линейность системы, ее пространственную инвариантность и зная реакцию на единичный импульс, получаем в "пределе что реакцией системы на f(x,y) будет $f(x,y)\otimes h(x,y)$.

Импульсная переходная функция является исчерпывающей характеристикой линейной пространственно-инвариантной системы.

Свойства свертки

- 1. коммутативность, т.е. $a \otimes b = b \otimes a$;
- 2. ассоциативность, т.е. $(a \otimes b) \otimes c = a \otimes (b \otimes c)$. Поэтому каскад двух систем с импульсными переходными характеристиками h_1 и h_2 является системой с характеристикой $h_1 \otimes h_2$.

2.1.2 Передаточная функция

Собственной функцией системы называется функция, которая воспроизводится системой возможно только с изменением амплитуды. Так, в двумерной линейной пространственно-инвариантной системе входной сигнал f(x,y) =

 $e^{+i(ux+vy)}$ приводит к

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{+i(u(x-\xi)+v(y-\eta))} h(\xi,\eta) d\xi d\eta$$
$$= e^{+i(ux+vy)} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i(u\xi+v\eta)} h(\xi,\eta) d\xi d\eta$$
$$= e^{+i(ux+vy)} H(u,v).$$

Таким образом, комплексная экспонента является собственной функцией двумерной линейной пространственно-инвариантной системы (ЛПИС). Величина

$$H(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i(u\xi + v\eta)} h(\xi,\eta) d\xi d\eta$$

называется *передаточной функцией* двумерной системы. Для каждой частоты эта функция позволяет определить амплитуду и фазу реакции системы.

Комплексная экспонента $e^{+i(ux+vy)}$ имеет две синусоидальные гармоники $\cos(ux+vy)$ и $\sin(ux+vy)$. Максимумы и минимумы $\cos(ux+vy)$ лежат на параллельных прямых $ux+vy=k\pi$. Период этих гармоник равен $2\pi/\sqrt{u^2+v^2}$. Изображения гармоники $\sin(ux+vy)$ для некоторых значений u и v показаны на Рис. 2.1.

Рис. 2.1. Изображения гармоники $\sin(ux+vy)$ для $0 \le x, y \le 2\pi$ для различных значений u и v, начало координат находится в левом верхнкм углу: a) u=2, v=0; б) u=1, v=1; в) u=1, v=4.

2.1.3 Преобразование Фурье

Преобразованием Фурье функции f(x,y) называется функция F(u,v)

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi,\eta) e^{-i(u\xi + v\eta)} d\xi d\eta,$$

если интеграл существует. Обратное преобразование Фурье имеет вид

$$f(x,y) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{+i(ux+vy)} du dv.$$

Небольшая асимметрия в записи коэффициентов прямого и обратного преобразования Фурье используется для соответствия с системой, принятой в других книгах. Почти симметричность прямого и обратного преобразования Фурье дает возможность проводить аналогию в свойствах этих преобразований. Однако следует иметь ввиду, что f(x,y) действительная функция, а F(u,v) в общем случае комплексная функция.

Проблемы:

- преобразование Фурье существует не для всех функций;
- интегралы вычисляются по всей плоскости, а зрительные устройства дают более или менее приемлемые изображения только в ограниченной части плоскости, причем при компьютерной обработке используются только дискретные изображения.

2.1.4 Преобразование Фурье для операции свертки

Преобразование Фурье свертки $c=a\otimes b$ функций имеет вид

$$C(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} a(x-\xi,y-\eta)b(\xi,\eta)d\xi d\eta \right] e^{-i(ux+vy)} dxdy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} a(x-\xi,y-\eta)e^{-i(ux+vy)} dxdy \right] b(\xi,\eta)d\xi d\eta = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} a(x-\xi,y-\eta)e^{-i(u(x-\xi)+v(y-\eta))} dxdy \right] b(\xi,\eta)e^{-i(u\xi+v\eta)} d\xi d\eta = A(u,v)B(u,v),$$

где A(u,v) и (u,v) – преобразования Фурье функций a(x,y) и b(x,y) соответственно.

Соотношение

$$C(u, v) = A(u, v)B(u, v)$$

является основным доводом в пользу использования частотной области, так как операция свертки в пространственной области сводится к более экономичной операции произведения в частотной области. Из симметричности прямого и обратного преобразования Фурье следует, что преобразование Фурье произведения двух функций

$$d(x,y) = a(x,y)b(x,y)$$
 равно $D(u,v) = (1/4\pi^2)A(u,v) \otimes B(u,v)$.

Значение свертки в точке (x,y) = (0,0) равно

$$c(0,0) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} a(-\xi, -\eta)b(\xi, \eta)d\xi d\eta = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A(u, v)B(u, v)du dv.$$

Отметим, что преобразование Фурье функции a(-x, -y) есть $A^*(u, v)$, т.е. функция комплексно-сопряженная к A(u, v). Действительно,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} a(-\xi, -\eta) e^{-i(u\xi + v\eta)} d\xi d\eta = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} a(\xi, \eta) e^{+i(u\xi + v\eta)} d\xi d\eta =$$

$$\int_{-\infty}^{\infty} a(\xi, \eta) \cos(u\xi + v\eta) d\xi d\eta + i \int_{-\infty}^{\infty} a(\xi, \eta) \sin(u\xi + v\eta) d\xi d\eta =$$

$$A^*(u, v).$$

Поэтому имеем результат равенства энергий в пространственной и частотной области спектра (*теорема Рэлея*), т.е.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} a^2(\xi, \eta) d\xi d\eta = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |A(u, v)|^2 du dv.$$
 (2.2)

Дискретный аналог носит название теоремы Парсеваля.

2.1.5 Обобщенные функции и единичные импульсы

1. Отметим, что интеграл от одномерного единичного импульса есть одномерная ступенчатая функция

$$\int_{-\infty}^{x} \delta(t)dt = \begin{cases} 1 & \text{при } x > 0, \\ 1/2 & \text{при } x = 0, \\ 0 & \text{при } x < 0. \end{cases}$$

2. Преобразование Фурье единичного импульса (на основе фильтрующего свойства) равно

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(\xi, \eta) e^{-i(u\xi + v\eta)} d\xi d\eta = 1.$$

3. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(ua+vb)} du dv = 4\pi^2 \delta(a,b). \tag{2.3}$

2.1.6 Частные производные и свертка

Как связаны преобразование Фурье F(u,v) исходной функции f(x,y) и ее частных производных $\partial f/\partial x$ и $\partial f/\partial y$?

Имеем

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial f(x,y)}{\partial x} e^{-i(ux+vy)} dx dy = \int_{-\infty}^{\infty} e^{-ivy} \left[\int_{-\infty}^{\infty} \frac{\partial f(x,y)}{\partial x} e^{-iux} dx \right] dy.$$

Внутренний интеграл берется по частям:

$$\int_{-\infty}^{\infty} \frac{\partial f(x,y)}{\partial x} e^{-iux} dx = \left[f(x,y)e^{-iux} \right]_{-\infty}^{\infty} + (iu) \int_{-\infty}^{\infty} f(x,y)e^{-iux} dx$$

Если выполняется $f(x,y) \to 0$ при $x \to \pm \infty$, то имеем

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial f(x,y)}{\partial x} e^{-i(ux+vy)} dx dy = \int_{-\infty}^{\infty} (iu)e^{-iuy} \Big[\int_{-\infty}^{\infty} f(x,y)e^{-iux} dx \Big] dy = iuF(u,v).$$

Аналогично

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial f(x,y)}{\partial y} e^{-i(ux+vy)} dx = ivF(u,v).$$

Отсюда следует, что преобразование Фурье усиливает высокочастотные компоненты и подавляет низкочастотные компоненты входного изображения. В частности, постоянный тон либо составляющая с нулевой частотой полностью теряются.

 \mathcal{I} апласиан функции f(x,y) определяется как

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}.$$

Следовательно преобразование Фурье лапласиана равно

$$-(u^2+v^2)F(u,v).$$

Функцию $-(u^2+v^2)$ можно рассматривать как передаточную функцию лапласиана и эта функция обладает круговой симметрией.

Найдем импульсную переходную характеристику системы, выполняющей дифференцирование $\partial f/\partial x$ входного изображения, т.е.

$$\frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} iue^{i(ux+vy)} dudv \tag{2.4}$$

Принимая во внимание (2.3), имеем, что (2.4) эквивалентно нахождению $\partial \delta(x,y)/\partial x$. Эту производную можно рассматривать как предел последовательности функций

$$\delta_{x,\epsilon}(x,y) = \frac{1}{2\epsilon} \Big(\delta(x+\epsilon,y) - \delta(x-\epsilon,y) \Big).$$

Функция $\delta_{x,\epsilon}(x,y)$ называется $\partial ynnemom$ и представляет из себя два близко расположенных импульса противоположной полярности. Дифференцирование аналогично нахождению предела свертки

$$f(x,y) \otimes \delta_{x,\epsilon}(x,y) = \frac{f(x+\epsilon,y) - f(x-\epsilon,y)}{2\epsilon}.$$

Импульсная характеристика системы, реализующей лапласиан, представляет из себя предел последовательности функций, обладающих круговой симметрией, например

$$L_{\sigma}(x,y) = \frac{x^2 + y^2 - \sigma^2}{2\pi\sigma^6} e^{\frac{-(x^2 + y^2)}{2\sigma^2}}.$$

2.1.7 Корреляция и энергетический спектр

Bзаимная корреляция функций a(x,y) и b(x,y) определяется следующим образом

$$\varphi_{ab}(x,y) = a(x,y) * b(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} a(\xi - x, \eta - y) b(\xi, \eta) d\xi d\eta.$$

Отличие от свертки состоит в перемене местами аргументов, т.е.

$$a(x,y) \otimes b(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} a(x-\xi,y-\eta)b(\xi,\eta)d\xi d\eta.$$

Если b(x,y) = a(x,y), то корреляция называется автокорреляцией.

Свойства автокорелляции

- 1. симметричность, т.е. $\varphi_{aa}(-x, -y) = \varphi_{aa}(x, y);$
- 2. максимум в точке (0,0), т.е. $\varphi_{aa}(0,0) \ge \varphi_{aa}(x,y)$ для любых (x,y);
- 3. если $b(x,y) = a(x-x_0,y-y_0)$, то $\varphi_{ab}(x_0,y_0) \ge \varphi_{ab}(x,y)$ для любых (x,y). Максимум в точке (x_0,y_0) может быть не единственный, особенно если функция a(x,y) периодическая. Это свойство широко используется при поиске объектов на изображении по заданному эталону. При этом предполагается, что объекты изображения и эталон имеют одинаковый масштаб и ориентацию. Взаимная корреляция функций иллюстрируется на Рис. 2.2;
- 4. Если b(x,y) мало отличается от сдвинутой функции a(x,y), то величину сдвига можно оценить путем нахождения максимума φ_{ab} ;
- 5. Преобразования Фурье взаимных корреляций и автокорреляций Φ_{ab} и Φ_{aa} называют энергетическими спектрами (ЭС).

$$\Phi_{aa}(u,v) = |A(u,v)|^2 = A^*(u,v)A(u,v),$$

где $A^*(u,v)$ – комплексно-сопряженная к A(u,v) функция. Поэтому понятно, что Φ_{aa} действительная функция. Величина $\Phi_{aa}(u,v)\delta u\delta v$ для малых $\delta u, \delta v$ равна энергии изображения в прямоугольной области частотного диапазона изображения, ограниченной значениями $u, u + \delta u$ и $v, v + \delta v$. Этим объясняется происхождение термина энергетический спектр.

Свойства энергетического спектра

- ЭС не зависит от сдвига изображения, так как сдвиг влияет только на фазу преобразования Фурье. Если объект можно распознать по энергетическому спектру, то его можно распознать независимо от его положения на изображении;
- Энергетический спектр неоднозначно определяет функцию, ЭС может существовать даже, если преобразование Фурье функции не сходится.

Рис. 2.2. Взаимная корреляция изображений: а) исходное изображение; б) фрагмент изображения; в) взаимная корреляция изображения и фрагмента. Максимум взаимной корреляции соответствует положению фрагмента на исходном изображении.

2.2 Обработка дискретных изображений

Рассмотрим функцию, заданную в ограниченной прямоугольной области шириной W и высотой H. В этом случае преобразование Фурье имеет вид

$$F(u,v) = \int_{-H/2}^{H/2} \int_{-W/2}^{W/2} f(x,y)e^{-i(ux+vy)}dxdy,$$

Далее показывается, что функция, ограниченная в замкнутой области, содержит гораздо меньше информации, чем функция, не обладающая этим свойством.

Расширим функцию f(x,y) до периодической в обоих направлениях функции $\tilde{f}(x,y)$

$$\tilde{f}(x,y) = \left\{ \begin{array}{cc} f(x,y) & \text{при } |x| \leq W/2, \ |y| \leq H/2, \\ f(x-kW,y-lH) & \text{при } |x| > W/2, \ |y| > H/2, \end{array} \right.$$

где

$$k = \left[\frac{x + W/2}{W}\right], \quad l = \left[\frac{y + H/2}{H}\right].$$

Здесь [x] обозначает наибольшее целое, не превосходящее x. Найдем преобразование Фурье \tilde{F} функции \tilde{f}

$$\tilde{F}(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{f}(x,y)e^{-i(ux+vy)}dxdy$$

$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \int_{-H/2}^{H/2} \int_{-W/2}^{W/2} f(x,y)e^{-i(u(x-kW)+v(y-lH))}dxdy$$

$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} e^{iukW}e^{ivlH}F(u,v).$$

Можно доказать, что

$$\sum_{k=-\infty}^{\infty} e^{ikx} = 2\pi \sum_{k=-\infty}^{\infty} \delta(x - 2\pi k).$$

Поэтому

$$\tilde{F}(u,v) = 4\pi^2 \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(uW - 2\pi k) \delta(vH - 2\pi l) F(u,v)$$
$$= \frac{4\pi^2}{WH} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(u - \frac{2\pi k}{W}) \delta(v - \frac{2\pi l}{H}) F(u,v)$$

Понятно, что $\tilde{F}(u,v)$ равна нулю всюду за исключением дискретного набора частот $\{2\pi k/W,\ 2\pi l/H\}$. Таким образом для нахождения $\tilde{f}(x,y)$ достаточно знать F(u,v) только для этого дискретного набора частот. Знание значений F(u,v) для указанного дискретного набора частот (счетное множество значений) позволяет восстановить \tilde{f} , а затем простым отсечением участка для $|x| \leq W,\ |y| \leq H$ получить функцию f(x,y).

Можно считать, что $f(x,y) = \tilde{f}(x,y)w(x,y)$, где w(x,y) – функция выделения окна

$$w(x,y) = \left\{ \begin{array}{ll} 1 & \text{при } |x| \leq W/2, \ |y| \leq H/2, \\ 0 & \text{при } |x| > W/2, \ |y| > H/2 \end{array} \right.$$

Тогда преобразование Фурье функции f(x,y) есть свертка преобразований Фурье функций $\tilde{f}(x,y)$ и w(x,y). Последнее имеет следующий вид (см. Рис. 2.3)

$$\mathcal{W}(u,v) = WH \frac{\sin(uW/2)}{uW/2} \frac{\sin(vH/2)}{vH/2}.$$
(2.5)

Рис. 2.3. График функции (2.5) для $-2\pi \le u, v \le 2\pi, \ W = 2, \ H = 3.$

Таким образом, преобразование Фурье $\tilde{F}(u,v)$ периодической функции $\tilde{f}(x,y)$ с периодом по x равным W и периодом по y равным H является дискретным с шагом дискретизации $2\pi/W$ и $2\pi/H$ по переменным u и v соответственно. А преобразование Фурье F(u,v) функции f(x,y), заданной в ограниченной

прямоугольной области шириной W и высотой H, вычисляется в виде свертки дискретной функции $\tilde{F}(u,v)$ и функции $\mathcal{W}(u,v)$. Период затухания функции $\mathcal{W}(u,v)$ равен $4\pi/W$ и $4\pi/H$ по переменным u и v соответственно. Поэтому в свертке значения F(u,v) в дискретных узлах входят с коэффициентами чередующимимя по знаку и затухающими по величине по мере удаления от вычисляемой точки. В узлах дискретизации функции $\tilde{F}(u,v)$ и F(u,v) совпадают.

2.2.1 Пространственная дискретизация изображений

Предположим, что задано дискретное изображение

$$f(x,y) = wh \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f_{kl} \delta(x - kw, y - lh),$$

где w и h обозначают соответственно горизонтальный и вертикальный шаги решетки. Найдем преобразование Фурье функции f

$$F(u,v) = wh \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f_{kl} \delta(x - kw, y - lh) e^{-i(ux + vy)} dx dy$$
$$= wh \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f_{kl} e^{-i(ukw + vlh)}.$$

Получена периодическая функция с периодом по w равным $2\pi/w$ и периодом по h равным $2\pi/h$. Поэтому можно отбросить все значения F(u,v) для $|u| > \pi/w$ и $|v| > \pi/h$, так как они не нужны для восстановления функции f(x,y).

Найдем функцию f(x,y), которая имеет преобразование Фурье F(x,y), совпадающее с F(x,y) в указанной выше области и 0 вне ее, т.е.

$$\tilde{F}(u,v) = \left\{ \begin{array}{ll} F(u,v) & \text{при } |u| \leq \pi/w, \ |v| \leq \pi/h, \\ 0 & \text{при } |u| > \pi/w, \ |v| > \pi/h. \end{array} \right.$$

Обратное преобразование Фурье имеет вид

$$\tilde{f}(x,y) = \frac{1}{4\pi^2} \int_{-\pi/h}^{\pi/h} \int_{-\pi/w}^{\pi/w} F(u,v) e^{i(ux+vy)} du dv.$$

Эта функция определена для всех (x, y), но интерес представляют ее значения в точках решетки (x, y) = (kw, lh). Преобразуем ее к виду

$$\tilde{f}(x,y) = \frac{wh}{4\pi^2} \int_{-\pi/h}^{\pi/h} \int_{-\pi/w}^{\pi/w} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f_{kl} e^{-i(ukw+vlh)} e^{i(ux+vy)} dudv
= \frac{wh}{4\pi^2} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f_{kl} \int_{-\pi/h}^{\pi/h} \int_{-\pi/w}^{\pi/w} e^{i(u(x-kw)+v(y-lh))} dudv
= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f_{kl} \frac{\sin[\pi(x/w-k)]}{\pi(x/w-k)} \frac{\sin[\pi(y/h-l)]}{\pi(y/h-l)}$$

При (x,y) = (kw, lh) получаем f_{kl} . Между точками решетки функция $\tilde{f}(x,y)$ интерполируется с помощью ядра преобразования, равного произведению двух членов вида $\sin(x)/x$ и $\sin(y)/y$.

2.2.2 Теорема отсчетов

Как было показано ранее, функция с ограниченным частотным спектром полностью определяется отсчетами в узлах регулярной решетки (теорема отсчетов). Если F(u,v) = 0 при $|u| > \pi/w$ и $|v| > \pi/h$, то f(x,y) можно полностью восстановить по набору значений $f_{kl} = f(kw, lh)$, где k, l пробегают все целые числа. В этом случае справедлива интерполяционная формула

$$\tilde{f}(x,y) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f_{kl} \frac{\sin[\pi(x/w-k)]}{\pi(x/w-k)} \frac{\sin[\pi(y/h-l)]}{\pi(y/h-l)}.$$

Этот результат оправдывает пространственную дискретизацию изображения. В случае достаточно гладкой функции (в смысле ограниченности ее частотного спектра) никакая информация не теряется при дискретизации функции. Если δ – интервал прстранственной дискретизации функции, то функцию можно восстановить по дискретным значениям, если спектр функции не содержит частот, больших частоты $Ha\ddot{u}\kappa eucma$, равной π/δ .

2.2.3 Дискретное преобразование Фурье

Если изображение является дискретным и периодическим, то его спектр также является периодическим и дискретным. Если изображение задается значениями f_{kl} функции f(x,y) в точках $(kw,lh),\ k=0,1,\ldots,M-1,\ l=0,1,\ldots,N-1,$ то прямое преобразование Фурье можно записать в виде

$$F_{mn} = \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f_{kl} e^{-i2\pi (\frac{km}{M} + \frac{ln}{N})},$$

а обратное

$$f_{kl} = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} F_{mn} e^{+i2\pi(\frac{km}{M} + \frac{ln}{N})}.$$

Примеры выполнения дискретного преобразования Фурье для нескольких бинарных изображений показаны на Рис. 2.4.

Отметим, что рассматриваемое преобразование относится к изображению, которое периодично. При несовпадении значений яркости на левом (либо верхнем) и правом (соответственно нижнем) краях изображения функция яркости будет иметь разрыв. Этот разрыв приведет к появлению высокочастотных составляющих в Фурье-образе.

Существуют несколько способов борьбы с этим эффектом:

Рис. 2.4. Бинарные объекты изображения размера 256×256 и амплитуды |F(m,n)| их Фурье спектра. Для улучшения визуального отображения спектра частота (0,0) сдвинута в центр изображения, а величина амплитуды показана в логарифмической шкале.

- Первый состоит в зеркально переворачивании копий изображения относительно боковых граней (при продолжении изображения вправо и влево) перед подстыковкой. Аналогичное преобразование только относительно верхней и нижней граней выполняется при продолжении изображения вверх и вниз. Полученная функция является периодической и непрерывной, однако ее производная имеет разрывы в местах подстыковки. Кроме того эта функция четная и имеет период в два раза больший, чем полученная обычным копированием (без зеркального отображения) функция. Четность функции приводит к тому, что преобразование Фурье имеет только косинусные составляющие и называется косинусным преобразованием;
- Второй способ заключается в умножении функции на модулирующую функцию (или функцию выделения окна), обращающуюся в нуль на границе. Это приводит к согласованности подстыкованных частей изображения. Моделирующая функция должна быть настолько гладкой, чтобы не вносить искажения в результат. Приведем пример функции выделения окна

$$\frac{1}{2}\Big(1+\cos(\frac{2\pi x}{W})\Big)\frac{1}{2}\Big(1+\cos(\frac{2\pi y}{H})\Big)=\cos^2(\frac{\pi x}{W})\cos^2(\frac{\pi y}{H}).$$

Преобразование Фурье промодулированного изображения равно умноженной на $4\pi^2$ свертке преобразований Фурье исходного изображения и функции выделения окна. Преобразование Фурье приведенной выше функции выделения окна равно

$$\frac{1}{2} \Bigl(\frac{1}{2} \delta \bigl(\frac{2\pi}{W} - u \bigr) + \delta(u) + \frac{1}{2} \delta \bigl(\frac{2\pi}{W} + u \bigr) \Bigr) \times$$

$$\frac{1}{2} \left(\frac{1}{2} \delta \left(\frac{2\pi}{H} - v \right) + \delta(v) + \frac{1}{2} \delta \left(\frac{2\pi}{H} + v \right) \right).$$

Таким образом, каждое значение Фурье образа промодулированной функции представляет собой взвешенную сумму значений Фурье образа исходной функции с маской

$$\frac{1}{16} \left(\begin{array}{rrr} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{array} \right)$$

Одна из причин популярности дискретного преобразования Фурье (ДПФ) состоит в том, что известен быстрый алгоритм его вычисления. Алгоритм непосредственного вычисления вычисления ДПФ требует M^2N^2 умножений. Алгоритм быстрого преобразования Фурье (БПФ) требует $4MN\log_2 MN$ умножений. Это достигается за счет эффективного использования промежуточных результатов.

2.3 Быстрые алгоритмы дискретного преобразования Фурье

2.3.1 Дискретное преобразование Фурье и обратное к нему

Будем определять преобразование Фурье над произвольным коммутативным кольцом $(R,+,\cdot,0,1)$. Для простоты можно считать, что имеем кольцо комплексных чисел.

Элемент w из R, обладающий свойством

- 1. $w \neq 1$,
- $2. \ w^n = 1,$
- 3. $\sum_{j=0}^{n-1} w^{jp} = 0$, $1 \le p < n$

называется nримитивным корнем n-степени из 1. Элементы w^0, w^1, \dots, w^{n-1} называются корнями n-ой степени из 1.

Например, $w=e^{2\pi i/n}$, где $i=\sqrt{-1}$ является примитивным корнем n-ой степени из единицы в кольце комплексных чисел.

Пусть $a=(a_0,a_1,\ldots,a_{n-1})^t-n$ -мерный вектор из R. Предположим, что элемент n обладает в этом кольце обратным элементом и w – примитивный корень n-ой степени из единицы в этом кольце. Пусть A – такая $n\times n$ матрица, что $A[i,j]=w^{ij}$ для $0\leq i,j< n$, т.е.

$$A = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & w^1 & w^2 & \cdots & w^{n-1}\\ 1 & w^2 & w^4 & \cdots & w^{2(n-1)}\\ \vdots & \vdots & \vdots & \cdots & \vdots\\ 1 & w^{n-1} & w^{2(n-1)} & \cdots & w^{(n-1)(n-1)} \end{pmatrix}$$

 $\mathcal{A}искретным преобразованием Фурье вектора <math>a$ называется вектор

$$F(a) = Aa$$
,

i-ая компонента которого равна $\sum_{k=0}^{n-1} a_k w^{ik}$.

Лемма 1 Пусть R – коммутативное кольцо, w – примитивный корень n-ой степени из единицы и n как элемент кольца R имеет в нем обратный. Пусть A – такая $n \times n$ матрица, что $A[i,j] = w^{ij}, \ 0 \le i,j < n$. Тогда существует обратная матрица A^{-1} и ее (i,j)-ый элемент равен $\frac{1}{n}w^{-ij}$.

 $Oбратным \ ducкретным \ npeoбpaзoвaнием \ \Phi ypьe$ вектора a называется вектор

$$F^{-1}(a) = A^{-1}a,$$

i-ая компонента которого равна $\frac{1}{n} \sum_{k=0}^{n-1} a_k w^{-ik}, \ 0 \le i < n.$

Очевидно, что $F^{-1}(F(a)) = a$.

Преобразование Фурье тесно связано с поведением полиномов и их интерполяцией. Пусть $p(x) = \sum_{i=0}^{n-1} a_i x^i$ – полином (n-1)-ой степени. Его можно однозначно представить списком его коэффициентов $a_0, a_1, \ldots, a_{n-1}$ и списком его значений в n различных точках. Преобразование Фурье эквивалентно вычислению значений полинома в точках $w^0, w^1, \ldots, w^{n-1}$. Аналогично, обратное преобразование Фурье эквивалентно интерполяции (нахождению коэффициентов) полинома по его значениям в корнях n-ой степени из единицы.

Одно из основных приложений преобразования Фурье – вычислений свертки двух векторов. Пусть $a=(a_0,a_1,\ldots,a_{n-1})^t$ и $b=(b_0,b_1,\ldots,b_{n-1})^t$ – два вектора. Их $csepm \kappa o i$ называется вектор $c=a\otimes b$ такой, что

$$c_i = \sum_{j=0}^{n-1} a_j b_{i-j}, \quad i = 0, 1, \dots, 2n-2.$$

Полагаем $b_k = 0$, для k < 0 и $k \ge n$.

Произведение двух полиномов степени n-1

$$p(x) = \sum_{i=0}^{n-1} a_i x^i$$
 и $q(x) = \sum_{i=0}^{n-1} b_i x^i$

является полиномом степени 2n-2

$$p(x)q(x) = \sum_{i=0}^{2n-2} \left(\sum_{j=0}^{i} a_j b_{i-j}\right) x^i = \sum_{i=0}^{2n-2} c_i x^i,$$

коэффициенты которого – в точности компоненты свертки векторов коэффициентов полиномов p(x) и q(x).

Формула

$$a \otimes b = F^{-1}\Big(F(a)F(b)\Big)$$

иллюстрирует тот факт, что для нахождения свертки достаточно вычислить покомпонентное произведение значений двух полиномов в корнях n-ой степени из единицы, получив значения полинома произведения в этих точках. Обратное преобразование Фурье дает коэффициенты этого полинома (свертки) по его значениям

Проблема состоит в том, что произведение двух полиномов степени n-1 является полиномом степени 2n-2 и для его задания требуются значения в 2n-2 точках. Теорема 1 показывает, как можно преодолеть эту трудность.

Теорема 1 Пусть

$$a = (a_0, a_1, \dots, a_{n-1}, 0, \dots, 0)^t$$
 u $b = (b_0, b_1, \dots, b_{n-1}, 0, \dots, 0)^t -$

векторы размерности 2n, а

$$F(a) = (a'_0, a'_1, \dots, a'_{2n-1})^t$$
 u $F(b) = (b'_0, b'_1, \dots, b'_{2n-1})^t -$

их преобразования Фурье. Тогда

$$a \otimes b = F^{-1}\Big(F(a)F(b)\Big).$$

Определение 1 Пусть $a=(a_0,a_1,\ldots,a_{n-1})^t$ и $b=(b_0,b_1,\ldots,b_{n-1})^t$ – два п-мерных вектора. Циклической сверткой векторов a и b называется такой вектор $c=(c_0,\,c_1,\ldots,c_{n-1})^t$, что

$$c_i = \sum_{j=0}^{i} a_j b_{i-j} + \sum_{j=i+1}^{n-1} a_j b_{n+i-j}.$$

Циклическая свертка задает коэффициенты полинома $p(x)q(x) \mod (x^n-1)$ степени n-1.

Теорема 2 Пусть $a = (a_0, a_1, \ldots, a_{n-1})^t$ и $b = (b_0, b_1, \ldots, b_{n-1})^t$ — два n-мерных вектора, а w — примитивный корень n-ой степени из единицы, и элемент n имеет обратный. Тогда циклическая свертка векторов a и b равна

$$F^{-1}\Big(F(a)F(b)\Big).$$

2.3.2 Алгоритм быстрого преобразования Фурье

Очевидно, что преобразование Фурье вектора $a \in \mathbf{R}^n$ можно вычислить за $O(n^2)$ операций в предположении, что операция над элементами кольца выполняется за 1 шаг. Однако, если $n=2^k$, то вычисления можно выполнить за O(nlogn) шагов.

Пусть $n=2^k$. Вычисление вектора Aa эквивалентно вычислению значений полинома p(x) в точках $w^0, w^1, \ldots, w^{n-1}$. Но вычисление значения полинома в точке x=b эквивалентно нахождению остатка от деления p(x) на x-b (это следует из того, что p(x)=(x-b)q(x)+c, где c – константа). Тогда p(b)=c. Таким образом, нужно найти остатки от деления p(x) на каждый из полиномов $x-w^0, x-w^1, \ldots, x-w^{n-1}$. Пусть $c_0, c_1, \ldots, c_{n-1}$ – некоторая перестановка элементов $w^0, w^1, \ldots, w^{n-1}$. Определим полиномы $q_{l,m}(x)$, где $0 \le m \le k$, а l – кратное целое числа $2^m, 0 \le l \le 2^k - 1$,

$$q_{l,m}(x) = \prod_{j=l}^{l+2^m-1} (x - c_j).$$

Таким образом, $q_{0,k}(x)=(x-c_0)(x-c_1)\cdots(x-c_{n-1}),\ q_{l,0}(x)=x-c_l$ и в общем случае

$$q_{l,m}(x) = q_{l,m-1}(x)q_{l+2^{m-1},m-1}(x)$$

Цель состоит в вычислении остатка p(x) на $q_{l,0}(x)$ для каждого l. Для этого вычислим остатки от деления p(x) на $q_{l,m}(x)$, начиная с m=k-1 и кончая m=0.

Допустим, что уже вычислены полиномы $r_{l,m}(x)$, остающиеся от деления p(x) на $q_{l,m}(x)$. Поскольку $q_{l,m}(x) = q'(x)q''(x)$, где $q'(x) = q_{l,m-1}(x)$, $q''(x) = q_{l+2^{m-1},m-1}(x)$, то можно показать, что остаток от деления p(x) на q'(x) равен остатку от деления $r_{l,m}(x)$ на q'(x). Аналогичное справедливо и для q''(x).

Действительно, предположим, что

$$p(x) = h(x)q_{l,m}(x) + r_{l,m}(x),$$

Разделим обе части на q'(x) и получим, что остаток от деления от деления p(x) на q'(x) равен остатку от деления $r_{l,m}(x)$ на q'(x).

Таким образом, можно получить остатки от деления p(x) на q'(x) и q''(x), разделив на q'(x) и q''(x) соответственно полином $r_{l,m}(x)$ степени 2^m-1 , а не полином степени 2^k-1 . Этот метод выполнения делений сам по себе дает экономию времени. Но можно сделать еще больше. Выбрав подходящий порядок элементов $c_0, c_1, \ldots, c_{m-1}$ для степеней w, можно добиться, чтобы каждый полином $q_{l,m}(x)$ имел вид $x^{2^m}-w^s$ при некотором s. Деление на такие полиномы выполняется особенно просто.

Лемма 2 Пусть $n=2^k$ и w- примитивный корень степени n из единицы. Пусть $[d_0,d_1,\ldots,d_{k-1}]$ - двоичное представление целого числа j, где $j<2^k$, а rev(j) - целое число c двоичным представлением $[d_{k-1},d_{k-2},\ldots,d_0]$. Пусть $c_j=w^{rev(j)}$ и $q_{l,m}(x)=\prod_{j=l}^{l+2^m-1}(x-c_j)$. Тогда $q_{l,m}(x)=x^{2^m}-w^{rev(l/2^m)}$.

 \mathcal{A} оказательство. Рассмотрим индукцию по m. При m=0 имеем $q_{l,0}(x)=x-w^{rev(l)}$. Для проведения шага индукции при m>0 заметим, что

$$q_{l,m}(x) = q_{l,m-1}(x)q_{l+2^{m-1},m-1}(x) = (x^{2^{m-1}} - w^{rev(l/2^{m-1})})(x^{2^{m-1}} - w^{rev(l/2^{m-1}+1)}).$$

Здесь $l/2^{m-1}$ — четное число между 0 и 2^{k-1} . Тогда $w^{rev(l/2^{m-1}+1)}=w^{2^{k-1}+rev(l/2^{m-1})}=-w^{rev(l/2^{m-1})}$, так как $w^{2^{k-1}}=w^{n/2}=-1$. Следовательно, $q_{l,m}(x)=x^{2^m}-w^{2rev(l/2^{m-1})}=x^{2^m}-w^{rev(l/2^m)}$.

Лемма 3 Пусть $p(x) = \sum_{j=0}^{2t-1} a_j x^j$ и c – постоянная. Тогда остаток от деления p(x) на x^t-c равен $r(x) = \sum_{j=0}^{t-1} (a_j+ca_{j+t})x^j$.

Справедливость леммы следует из того, что p(x) можно представить в виде.

$$\left(\sum_{j=0}^{t-1} a_{j+t} x^{j}\right) (x^{t} - c) + r(x).$$

Следовательно остаток от деления произвольного полинома степени 2^t-1 на x^t-c можно найти за O(t) шагов.

Алгоритм 1 Быстрое преобразование Фурье

Вход: вектор $a = (a_0, a_1, \dots, a_{n-1})^t$, $n = 2^k$ для некоторого целого числа k. Выход: $F(a) = (b_0, b_1, \dots, b_{n-1})^t$, где $b_i = \sum_{j=0}^{n-1} a_j w^{ji}$, $0 \le i < n$.

Пусть $r_{0,k}(x) = \sum_{j=0}^{n-1} a_j x^j$. Будем обозначать через $r_{l,m}(x)$ остаток от деления полинома $r_{0,k}(x)$ на $q_{l,m}(x)$.

Пример 1 Если n=8, то список c_0, c_1, \ldots, c_7 есть $w^0, w^4, w^2, w^6, w^1, w^5, w^3, w^7$. Поэтому полиноми $q_{l,m}(x)$ равни соответственно:

1.
$$q_{0,3}(x) = x^8 - w^0$$
;

2.
$$q_{0,2}(x) = x^4 - w^0$$
, $q_{4,2}(x) = x^4 - w^4$;

3.
$$q_{0,1}(x) = x^2 - w^0$$
, $q_{2,1}(x) = x^2 - w^4$, $q_{4,1}(x) = x^2 - w^2$, $q_{6,1}(x) = x^2 - w^6$;

4.
$$q_{0,0}(x) = x - w^0$$
, $q_{1,0}(x) = x - w^4$, $q_{2,0}(x) = x - w^2$, $q_{3,0}(x) = x - w^6$, $q_{4,0}(x) = x - w^1$, $q_{5,0}(x) = x - w^5$, $q_{6,0}(x) = x - w^3$, $q_{7,0}(x) = x - w^7$.

Вначале вычисляются остатки $r_{0,2}(x)$ и $r_{4,2}(x)$ от деления p(x) на $q_{0,2}(x)$ и $q_{4,2}(x)$. Затем вычисляются остатки $r_{0,1}$ и $r_{2,1}$ от деления $r_{0,2}(x)$ на $q_{0,1}(x)$ и $q_{2,1}(x)$, а также остатки $r_{4,1}$ и $r_{6,1}$ от деления $r_{4,2}(x)$ на $q_{4,1}(x)$ и $q_{6,1}(x)$. На последнем шаге вычисляются $r_{0,0}$, $r_{1,0}$, $r_{2,0}$, $r_{3,0}$, $r_{4,0}$, $r_{5,0}$, $r_{6,0}$, $r_{7,0}$.

Рассмотрим шаги алгоритма.

1.
$$r_{0,3}(x) = \sum_{j=0}^{7} a_j x^j$$
;

2.
$$m = 2, l = 0.$$

 $(s = 0, w^0 = 1):$ $r_{0,2}(x) = (a_3 + a_7)x^3 + (a_2 + a_6)x^2 + (a_1 + a_5)x + (a_0 + a_4);$
 $(s = 0, w^{0+4}):$ $r_{4,2}(x) = (a_3 + w^4a_7)x^3 + (a_2 + w^4a_5)x + (a_0 + w^4a_4).$

3. m = 1, l принимает значения $0 \ u \ 4$.

$$(s=0,w^0): \qquad r_{0,1}(x) = (a_1+a_5+a_3+a_7)x + \\ (a_0+a_4+a_2+a_6); \\ (s=0,w^{0+4}): \qquad r_{2,1}(x) = (a_1+a_5+w^4a_3+w^4a_7)x + \\ (a_0+a_4+w^4a_2+w^4a_6); \\ (s=2,w^2): \qquad r_{4,1}(x) = (a_1+w^2a_3+w^4a_5+w^6a_7)x + \\ (a_0+w^2a_2+w^4a_4+w^6a_6); \\ (s=2,w^{2+4}): \qquad r_{6,1}(x) = (a_1+w^6a_3+w^4a_5+w^2a_7)x + \\ (a_0+w^6a_2+w^4a_4+w^2a_6).$$

4. m = 0, l принимает значения 0, 2, 4, 6.

$$(s=0,w^{0}): \qquad r_{0,0}(x)=a_{0}+a_{2}+a_{4}+a_{6}+a_{1}+\\ a_{3}+a_{5}+a_{7};\\ (s=0,w^{0+4}): \qquad r_{1,0}(x)=a_{0}+a_{2}+a_{4}+a_{6}+w^{4}a_{1}+\\ w^{4}a_{3}+w^{4}a_{5}+w^{4}a_{7};\\ (s=2,w^{2}): \qquad r_{2,0}(x)=a_{0}+w^{4}a_{2}+a_{4}+w^{4}a_{6}+\\ w^{2}a_{1}+w^{6}a_{3}+w^{2}a_{5}+w^{6}a_{7};\\ (s=2,w^{2+4}): \qquad r_{3,0}(x)=a_{0}+w^{4}a_{2}+a_{4}+w^{4}a_{6}+\\ w^{6}a_{1}+w^{2}a_{3}+w^{6}a_{5}+w^{2}a_{7};\\ (s=4,w^{1}): \qquad r_{4,0}(x)=a_{0}+w^{2}a_{2}+w^{4}a_{4}+w^{6}a_{6}+\\ w^{1}a_{1}+w^{3}a_{3}+w^{5}a_{5}+w^{7}a_{7};\\ (s=4,w^{1+4}): \qquad r_{5,0}(x)=a_{0}+w^{2}a_{2}+w^{4}a_{4}+w^{6}a_{6}+\\ w^{5}a_{1}+w^{7}a_{3}+w^{1}a_{5}+w^{3}a_{7};\\ (s=6,w^{3}): \qquad r_{6,0}(x)=a_{0}+w^{6}a_{2}+w^{4}a_{4}+w^{2}a_{6}+\\ w^{3}a_{1}+w^{1}a_{3}+w^{7}a_{5}+w^{5}a_{7};\\ (s=2,w^{3+4}): \qquad r_{7,0}(x)=a_{0}+w^{6}a_{2}+w^{4}a_{4}+w^{2}a_{6}+\\ w^{7}a_{1}+w^{5}a_{3}+w^{3}a_{5}+w^{1}a_{7}.$$

Теорема 3 Алгоритм 1 имеет временную сложность $O(n \log n)$.

Доказательство. Внутренний цикл выполняется $n/2^{m+1}$ раз, причем сложность каждого шага этого цикла равна $O(2^m)$. Таким образом, сложность внутреннего цикла равна O(n). Внешний цикл выполняется $\log n$ раз. Поэтому окончательная сложность алгоритма равна $O(n\log n)$.

2.3.3 Алгоритм Кули-Тьюки (1965)

Преобразование Фурье вектора $v = (v_0, v_1, \dots, v_{n-1})$

$$V_k = \sum_{i=0}^{n-1} w^{ik} v_i, \quad k = 0, 1, \dots, n-1,$$

требует для своего вычисления порядка n^2 сложений и n^2 умножений.

Предположим, что n = n'n''. Сделаем следующие замены индексов

$$i = i' + n'i''$$
, $i' = 0, 1, ..., n' - 1, i'' = 0, 1, ..., n'' - 1,$

$$k = n''k' + k'', \quad k' = 0, 1, \dots, n' - 1, \ k'' = 0, 1, \dots, n'' - 1.$$

Тогда

$$V_{n''k'+k''} = \sum_{i''=0}^{n''-1} \sum_{i'=0}^{n'-1} w^{(i'+n'i'')(n''k'+k'')} v_{i'+n'i''}.$$

Обозначим $w^{n'}=\gamma$ и $w^{n''}=\beta$ и, учитывая, что $w^{n'n''i''k'}=1$, имеем

$$V_{n''k'+k''} = \sum_{i'=0}^{n'-1} \beta^{i'k'} \left(w^{i'k''} \sum_{i''=0}^{n''-1} \gamma^{i''k''} v_{i'+n'i''} \right). \tag{2.6}$$

Определим двумерные переменные

$$v_{i',i''} = v_{i'+ni''}, \quad i' = 0, 1, \dots, n'-1, \ i'' = 0, 1, \dots, n''-1,$$

$$V_{k',k''} = V_{n''k'+k''}, \quad k' = 0, 1, \dots, n'-1, \ k'' = 0, 1, \dots, n''-1.$$

В терминах двумерных преобразований формула (2.6) преобразуется к виду

$$V_{k',k''} = \sum_{i'=0}^{n'-1} \beta^{i'k'} \left(w^{i'k''} \sum_{i''=0}^{n''-1} \gamma^{i''k''} v_{i',i''} \right). \tag{2.7}$$

Алгоритм вычисления отображает вектов v в $n'' \times n'$ матрицу. Вычисления состоят из n''-точечного дискретного преобразования Фурье каждого столбца, поэлементного умножения полученной таблицы соответственно на $w^{i''k''}$ и n'-точечного дискретного преобразования Фурье каждой строки.

При использовании формулы (2.7) число умножений M(n) и число сложений A(n) равны соответственно

$$M(n) = n'(n'')^2 + n''(n')^2 + n'n'' = n(n' + n'' + 1),$$

$$A(n) = n'n''(n'' - 1) + n''n'(n' - 1) = n(n' + n'' - 2).$$

Внешнее и внутренне преобразование Фурье могут быть вычислены в свою очередь с помощью быстрого алгоритма и тогда оценки сложности будут улучшены.

2.3.4 Алгоритм Кули-Тьюки по основанию 2

Предполагается, что $n=2^m$. Для представления БПФ-алгоритма длина 2^m представляется в виде $2\cdot 2^{m-1}$ или $2^{m-1}\cdot 2$. Если в алгоритме Кули-Тьюки полагается n'=2 и $n''=2^{m-1}$, то он называется БПФ-алгоритмом Кули-Тьюки

по основанию 2 с c прореживанием по времени. Учитывая, что $\beta=w^{n/2}=-1,$ имеем для $k=0,1,\dots,n/2-1$

$$V_k = \sum_{i=0}^{n/2-1} w^{2ki} v_{2i} + w^k \sum_{i=0}^{n/2-1} w^{2ki} v_{2i+1},$$

$$V_{k+n/2} = \sum_{i=0}^{n/2-1} w^{2ki} v_{2i} - w^k \sum_{i=0}^{n/2-1} w^{2ki} v_{2i+1}$$

Прореживание по времени разбивает множество компонент входного вектора на два подмножества: множество компонент с четными индексами и множество компонент с нечетными индексами. Множество компонент выходного вектора разбивается при этом на множество первых n/2 компонент (так как индексы выходного вектора нумеруются по столбцам) и множество вторых n/2 компонент.

БПФ-алгоритм Кули-Тьюки, в котором $n' = 2^{m-1}$ и n'' = 2 называется БПФ-алгоритмом Кули-Тьюки по основанию 2 с c прореживанием по частоте. Уравнения в этом случае имеют вид для $k' = 0, 1, \ldots, n/2 - 1$

$$V_{2k'} = \sum_{i'=0}^{n/2-1} (v_{i'} + v_{i'+n/2}) w^{2k'i'},$$

$$V_{2k'+1} = \sum_{i'=0}^{n/2-1} (v_{i'} - v_{i'+n/2}) w^{i'} w^{2k'i'}$$

Прореживание по частоте разбивает компоненты входного вектора на два подмножества, содержащие соответственно первые n/2 компонент и вторые n/2 компонент. Компоненты выходного вектора разбиваются на подмножество компонент с четными индексами и подмножество компонент с нечетными индексами.

Алгоритмы с прореживанием по времени и по частоте могут быть реализованы рекурствно, разбивая n/2 точечные множества аналогичным образом.

2.4 Китайские теоремы об остатках

2.4.1 Кольцо целых чисел

Теорема 4 Для заданного множества положительных попарно взаимно простых целых чисел m_0, m_1, \ldots, m_k и множества неотрицательных целых чисел $c_0, c_1, \ldots, c_k, \ c_i < m_i, \ i = 0, 1, \ldots, k,$ система уравнений

$$c_i = c \mod m_i, \quad i = 0, 1, \dots, k,$$

имеет не более одного решения c в интервале $0 \le c < \prod_{i=0}^k m_i$.

 \mathcal{A} оказательство. Предположим, что c и c' являются двумя лежащими в заданном интервале решениями. Тогда для любого $i=0,1,\ldots,k$ справедливо

$$c = q_i m_i + c_i,$$
 $c' = q'_i m_i + c_i$

и, следовательно, c-c' кратно m_i для каждого i, а так как все m_i взаимно просты, то c-c' кратно $\prod_{i=0}^k m_i$. Но число c-c' лежит в диапазоне от $-(\prod_{i=0}^k m_i)+1$ до $(\prod_{i=0}^k m_i)-1$. Единственным целым числом из этого диапазона, удовлетворяющим указанным выше свойством является 0, и поэтому c=c'.

Пример 2 Выберем в качестве модулей $m_0 = 3$, $m_1 = 4$, $m_2 = 5$ и положим $M = m_0 m_1 m_2 = 60$. Для заданного числа c из интервала $0 \le c < 60$, обозначим через $c_i = R_{m_i}[c]$, i = 0, 1, 2, остаток от деления c на m_i (вычет по модулю m_i). Китайская теорема об остатках утверждает, что между 60 числами из интервала [0, 59] и тройками (c_0, c_1, c_2) соответствующих вычетов существует взаимно однозначное соответствие. Предположим, например, что $c_0 = 2$, $c_1 = 1$, $c_2 = 2$. Тогда имеем следующие возможности.

$$c \in \{2, 5, 8, 11, 14, 17, 20, \dots, 59\},\ c \in \{1, 5, 9, 13, 17, 21, \dots, 57\},\ c \in \{2, 7, 12, 17, 22, \dots, 57\}.$$

 $E \partial u н c m в e n + u м p e m e n u e m c луж u m c = 17.$

Согласно следствию из теоремы Евклида в кольце целых чисел для любых s и t найдутся такие a и b, что

$$NOD[s, t] = as + bt,$$

где NOD[s,t] обозначает наибольший общий делитель чисел s и t.

Для заданного множества попарно взаимно простых чисел m_0, m_1, \ldots, m_k , используемых в качестве модулей (вычетов), положим

$$M = \prod_{i=0}^{k} m_i, \quad M_i = M/m_i.$$

Тогда $NOD[M_i, m_i] = 1$ и, следовательно, существуют такие целые N_i и n_i , что

$$N_i M_i + n_i m_i = 1, \quad i = 0, 1, \dots, k.$$

Теорема 5 Пусть $M = \prod_{i=0}^k m_i$ – произведение взаимно простых положительных чисел, $M_i = M/m_i$ и пусть для каждого i число N_i удовлетворяет равенству $N_i M_i + n_i m_i = 1$. Тогда единственным решением системы

$$c_i = c \mod m_i, \quad i = 0, 1, \dots, k,$$

является

$$c = \sum_{i=0}^{k} c_i M_i N_i \mod M.$$

Для иллюстрации теоремы 5 продолжим пример 2. Имеем $M=60,\ M_0=20,\ M_1=15, M_2=12.$ Нетрудно видеть, что $1=(-1)M_0+7m_0,\ 1=(-1)M_1+4m_1,\ 1=(-2)M_2+5m_2.$ Следовательно, $N_0M_0=-20,\ N_1M_1=-15,\ N_2M_2=-24.$ Поэтому $c=-103=17\mod 60.$

2.4.2 Кольцо многочленов

В кольце многочленов над некоторым полем китайская теорема об остатках имеет следующий вид.

Прямые уравнения

$$c^{i}(x) = R_{m^{i}(x)}[c(x)], \quad i = 0, 1, \dots, k,$$

где многочлены $m^i(x)$, $i=0,1,\ldots,k$, взаимно просты, и $R_{m^i(x)}[c(x)]$ обозначает вычет многочлена c(x) по модулю $m^i(x)$.

Обратные уравнения

$$c(x) = \sum_{i=0}^{k} c^{i}(x)M^{i}(x)N^{i}(x) \mod M(x),$$

где $M(x) = \prod_{i=0}^k m^i(x), \ M^i(x) = M(x)/m_i(x),$ и многочлены $N^i(x)$ являются решениями уравнения

$$N^{i}(x)M^{i}(x) + n^{i}(x)m^{i}(x) = 1.$$

2.4.3 Алгоритм Гуда-Томаса быстрого преобразования Фурье (1960-1963)

Пусть n' и n'' взаимно простые целые числа. Алгоритм использует отображение линейной последовательности из n=n'n'' целых чисел в $n'\times n''$ таблицу на основе китайской теоремы об остатках.

Входные индексы задаются вычетами

$$i' = i \mod n', \quad i'' = i \mod n''$$

Согласно китайской теореме об остатках существуют такие целые числа N' и N'', что выполняется равенство

$$i = i'N''n'' + i''N'n' \mod n$$
, где $N'n' + N''n'' = 1$.

Выходные индексы определяются следующим образом

$$k' = N''k \mod n', \quad k'' = N'k \mod n''$$

Справедливо,

$$k = n''k' + n'k'' \mod n.$$

Действительно,

$$k = \left(n''(N''k + Q_1n') + n'(N'k + Q_2n'')\right) \mod n'n'' = k(N''n'' + N'n') \mod n'n'' = k.$$

В новых обозначениях формула

$$V_k = \sum_{i=0}^{n-1} w^{ik} v_i,$$

преобразуется к виду

$$V_{n''k'+n'k''} = \sum_{i''=0}^{n''-1} \sum_{i'=0}^{n'-1} w^{(i'N''n''+i''N'n')(n''k'+n'k'')} v_{i'N''n''+i''N'n'}.$$

Поэтому имеем

$$V_{k',k''} = \sum_{i''=0}^{n''-1} \sum_{i'=0}^{n'-1} w^{(n'')^2 i'N''k'} w^{(n')^2 i''N'k''} v_{i',i''}$$

$$= \sum_{i''=0}^{n''-1} \sum_{i'=0}^{n'-1} \beta^{i'k'} \gamma^{i''k''} v_{i',i''},$$

где $\beta = w^{(n'')^2 N''}$ и $\gamma = w^{(n')^2 N'}$. Элементы β и γ являются простыми корнями из единицы соответственно степеней n' и n''.

Уравнение теперь записано в форме двумерного $n' \times n''$ -точечного преобразования Фурье: вначале выполняются одномерные n''-точечные преобразования Фурье для каждого столбца, а затем – n'-точечные преобразования Фурье для строк. Число умножений и сложений равны примерно n(n'+n''). Если длина преобразования разлагается в произведение простых множителей n_i , то описанная форма БПФ-алгоритма требует примерно $n\sum_i n_i$ умножений и столько же сложений.

2.5 Выделенение границ на полутоновых изображениях

2.5.1 Дифференциальные операторы

Простейшей моделью края является прямая, разделяющая две контрастные области (см. Рис. 2.5) с яркостями B_1 и B_2 .

Рассмотрим ступенчатую функцию

$$u(z) = \begin{cases} 1 & \text{при } z > 0, \\ 1/2 & \text{при } z = 0, \\ 0 & \text{при } z < 0, \end{cases}$$

Рис. 2.5. Идеальная граница в виде прямой, разделяющей две области постоянной яркости.

которая является интегралом от одномерного единичного импульса:

$$u(z) = \int_{-\infty}^{z} \delta(t)dt.$$

Предположим, что край располагается вдоль прямой $x \sin \theta - y \cos \theta + p = 0$. Тогда изображение можно записать в виде

$$E(x,y) = B_1 + (B_2 - B_1)u(x \sin \theta - y \cos \theta + p).$$

Найдем частные производные E(x, y).

$$\frac{\partial E}{\partial x} = (B_2 - B_1)\delta(x\sin\theta - y\cos\theta + p)\sin\theta,$$

$$\frac{\partial E}{\partial y} = -(B_2 - B_1)\delta(x\sin\theta - y\cos\theta + p)\cos\theta.$$

Вектор $(\partial E/\partial x, \partial E/\partial y)$ называется градиентом яркости. Градиент яркости представляет собой вектор, не зависящий от выбора системы координат, в том смысле, что он сохраняет свою величину и ориентацию по отношению к E, когда E поворачивается или сдвигается.

Рассмотрим квадрат градиента

$$\left(\frac{\partial E}{\partial x}\right)^2 + \left(\frac{\partial E}{\partial y}\right)^2 = \left((B_2 - B_1)\delta(x\sin\theta - y\cos\theta + p)\right)^2.$$

Этот оператор, не являясь линейным, обладает круговой симметрией и действует на края одинаково при любом их угловом расположении.

Производная единичного импульса называется $\partial ynnemom$ и обозначается δ' . Имеем

$$\frac{\partial^2 E}{\partial x^2} = (B_2 - B_1)\delta'(x\sin\theta - y\cos\theta + p)\sin^2\theta,$$

$$\frac{\partial^2 E}{\partial x \partial y} = -(B_2 - B_1)\delta'(x\sin\theta - y\cos\theta + p)\sin\theta\cos\theta,$$

$$\frac{\partial^2 E}{\partial y^2} = (B_2 - B_1)\delta'(x\sin\theta - y\cos\theta + p)\cos^2\theta.$$

Лапласиан изображения E(x,y)

$$\nabla^2 E(x,y) = \frac{\partial^2 E}{\partial x^2} + \frac{\partial^2 E}{\partial y^2} = (B_2 - B_1)\delta'(x\sin\theta - y\cos\theta + p)$$

и квадратичная вариация

$$\left(\frac{\partial^2 E}{\partial x^2}\right)^2 + 2\left(\frac{\partial^2 E}{\partial x \partial y}\right)\left(\frac{\partial^2 E}{\partial y \partial x}\right) + \left(\frac{\partial^2 E}{\partial y^2}\right)^2$$
$$= \left((B_2 - B_1)\delta'(x\sin\theta - y\cos\theta + p)\right)^2$$

также обладают круговой симметрией.

В этой идеализированной модели квадратичная вариация является квадратом лапласиана. Отметим, что из рассмотренных операторов только лапласиан имеет тот же знак при переходе через край изображения, что и перепад яркости. Кроме этого, только лапласиан является линейным оператором.

2.5.2 Локальные операторы и шум

На действие дифференциальных операторов серьезное влияние оказывает шум. Простые дифференциальные операторы значительно усиливают высокочастотные компоненты изображения, относящиеся в том числе и к шуму.

Фильтрацию шума можно реализовать сверткой, например с функцией Гаусса

$$h(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}.$$
 (2.8)

Эта функция обладает круговой симметрией. Передаточная функция системы, реализующей свертку с функцией Гаусса имеет вид

$$H(u, v) = e^{-\frac{1}{2}(u^2 + v^2)\sigma^2}.$$

Низкие частоты проходят через систему непогашенными, в то время как высокие частоты уменьшаются по амплитуде. Это особенно заметно для частот выше $1/\sigma$. Но σ – характерный размер функции Гаусса (рассеяния точки системы). Это пример зависимости между изменениями масштабов в частотной и пространственной области.

Подход Марра и Хилдрета выделения границ на нахождении лапласиана свертки изображения f(x,y) с функцией Гаусса h(x,y), заданной (2.8)

$$\nabla^2((h\otimes f)(x,y)) = ((\nabla^2 h)\otimes f)(x,y).$$

Лапласиан функции Гаусса равен

$$\nabla^2 h = -\frac{1}{2\pi\sigma^4} \left(1 - \frac{(x^2 + y^2)}{\sigma^2} \right) e^{-\frac{x^2 + y^2}{2\sigma^2}}.$$
 (2.9)

Таким образом, поиск на изображении изменений яркости состоит в предварительной фильтрации изображения с помощью $\nabla^2 h(x,y)$, пространственная постоянная которого выбирается таким образом, чтобы был обеспечен учет того масштабного уровня, к которому относятся искомые изменения яркости. Затем на отфильтрованном изображении отыскиваются точки нулевого уровня.

Рис. 2.6. Графики функции Гаусса (2.8) а) и лапласиана функции Гаусса (2.9) б).

2.5.3 Дискретные аппроксимации

Рассмотрим группу элементов изображения

$$\begin{array}{c|cccc} E_{i-1,j} & E_{i-1,j+1} \\ \hline E_{i,j} & E_{i,j+1} \\ \end{array}$$

Производные в центральной точке этой группы можно оценить следующим образом:

$$\frac{\partial E}{\partial x} \approx \frac{1}{2\epsilon} \Big((E_{i-1,j+1} - E_{i-1,j}) + (E_{i,j+1} - E_{i,j}) \Big)$$
$$\frac{\partial E}{\partial y} \approx \frac{1}{2\epsilon} \Big((E_{i-1,j} - E_{i,j}) + (E_{i-1,j+1} - E_{i,j+1}) \Big),$$

где ϵ – расстояние между центрами соседних элементов.

Квадрат градиента можно аппроксимировать следующим образом

$$\left(\frac{\partial E}{\partial x}\right)^2 + \left(\frac{\partial E}{\partial y}\right)^2 \approx \frac{1}{2\epsilon^2} \left((E_{i-1,j+1} - E_{i,j})^2 + (E_{i-1,j} - E_{i,j+1})^2 \right).$$

Выполнение этого преобразования для всего изображения позволяет усиливать края. Однако по квадрату градиента ничего нельзя сказать о направлении края. Так как вектор, направленный вдоль линии, имеет вид $(\cos \theta, \sin \theta)$, то нетрудно видеть, что градиент ортогонален краю.

Рассмотрим теперь группу элементов размером 3×3 :

Для оценки лапласиана в центральном пикселе используем следующие аппроксимации:

$$\frac{\partial^2 E}{\partial x^2} \approx \frac{1}{\epsilon^2} (E_{i,j+1} - 2E_{i,j} + E_{i,j-1}),$$

$$\frac{\partial^2 E}{\partial y^2} \approx \frac{1}{\epsilon^2} (E_{i-1,j} - 2E_{i,j} + E_{i+1,j}).$$

Поэтому имеем

$$\left(\frac{\partial^2 E}{\partial^2 x}\right) + \left(\frac{\partial^2 E}{\partial^2 y}\right) \approx \frac{1}{\epsilon^2} (E_{i-1,j} + E_{i,j-1} + E_{i+1,j} + E_{i,j+1} - 4E_{i,j}).$$

Теперь понятно, что нахождение лапласиана можно аппроксимировать сверткой изображения с окном (маской)

$$\frac{1}{\epsilon^2} \left[\begin{array}{c|ccc} & 1 & | & \\ \hline 1 & | & -4 & | & 1 \\ \hline & | & 1 & | & \end{array} \right]$$

Другая популярная наиболее точная аппроксимация лапласиана имеет следующий вид

$$\frac{1}{6\epsilon^2} \left[\begin{array}{c|ccc} 1 & 4 & 1 \\ \hline 4 & -20 & 4 \\ \hline 1 & 4 & 1 \end{array} \right]$$

На квадратной решетке трудно найти маску, которая аппроксимирует лапласиан и является симметричной. На гексагональной решетке такой проблемы не возникает и все 6 соседей образуют маску с одинаковыми весами

$$\frac{2}{3\epsilon^2} \left[\begin{array}{rrr} 1 & 1 & 1 \\ 1 & -\mathbf{6} & 1 \\ 1 & 1 \end{array} \right]$$

Оператор Робертса использует диагональные разности и окно размером 2×2 для аппроксимации модуля градиента по формуле

$$|E_{i-1,j} - E_{i,j+1}| + |E_{i-1,j+1} - E_{i,j}|$$

и использует окна

$$\begin{bmatrix} 1 & | & 0 \\ \hline \mathbf{0} & | & -1 \end{bmatrix} \quad \mathbf{u} \quad \begin{bmatrix} 0 & | & 1 \\ \hline -\mathbf{1} & | & 0 \end{bmatrix}.$$

Onepamop Превитта аппроксимирует модуль градиента следующим образом

$$|(E_{i+1,j-1} + E_{i+1,j} + E_{i+1,j+1}) - (E_{i-1,j-1} + E_{i-1,j} + E_{i-1,j+1})| + |(E_{i-1,j+1} + E_{i,j+1} + E_{i+1,j+1}) - (E_{i-1,j-1} + E_{i,j-1} + E_{i+1,j-1})|$$

Рис. 2.7. Применение дискретных операторов: а) исходное изображение; б) оператор Робертса; в) оператор Превитта; г) аппроксимация модуля градиента оператором Собеля; д) лапласиан.

и реализуется сверткой с окнами

$$\begin{bmatrix} -1 & | & -1 & | & -1 \\ \hline 0 & | & \mathbf{0} & | & 0 \\ \hline 1 & | & 1 & | & 1 \end{bmatrix} \quad \mathbf{u} \quad \begin{bmatrix} -1 & | & 0 & | & 1 \\ \hline -1 & | & \mathbf{0} & | & 1 \\ \hline -1 & | & 0 & | & 1 \end{bmatrix}.$$

 $One pamop\ Coбеля$ аппроксимирует частные производные поx и y сверткой соответственно с окнами

$$\frac{1}{4} \begin{bmatrix} \frac{-1 & | & 0 & | & 1}{-2 & | & \mathbf{0} & | & 2} \\ -1 & | & 0 & | & 1 \end{bmatrix} \quad \mathbf{u} \quad \frac{1}{4} \begin{bmatrix} \frac{1}{0} & | & 2 & | & 1 \\ \hline 0 & | & \mathbf{0} & | & 0 \\ \hline -1 & | & -2 & | & -1 \end{bmatrix}.$$

Использование масок Собеля позволяет аппроксимировать модуль градиента, а также направление вектора градиента в каждом пикселе изображения.

Применение различных операторов показано на Рис. 2.7.