Quantum Approximate Optimization Algorithms - Knapsack Problem

Esther Wang
AEOP Undergraduate Apprentice

Knapsack Problem - Background

- Combinatorial optimization problem
 - Finding an optimal object from a finite set of objects
- Given a knapsack with a limited capacity
- Given a finite set of items
 - Weight
 - Value

Knapsack Problem - Background

- Determine a subset of items to include in the knapsack
 - Total weight is less than or equal to the capacity of the knapsack
 - Total value of the items is as large as possible
 - Example
 - 4kg (\$10) + 2kg (\$2) + 1kg (\$1) + 1kg (\$1)
 - \blacksquare = 8kg < 15kg
 - Total value is \$15, which is the max value

Knapsack Problem - Background

- Derived from a commonplace problem of packing the most valuable items without overloading the luggage
- Often appears in real-word decision-making processes
 - Example
 - Resource allocation problem
 - Given a set of non-divisible tasks
 - Under a fixed budget or time constraint

Knapsack Problem - Computational Complexity

- Decision problem form of knapsack
 - NP (non-deterministic polynomial-time)
 Complete
 - Brute-force algorithm by testing all possible cases to find the solution
 - Correctness of the solution can be verified in polynomial time
- Optimization problem form of knapsack
 - Not NP Complete
 - No known polynomial algorithm that can tell whether a given solution is optimal

Classical Solutions

- Classical Algorithms
 - Brute force recursion
 - Dynamic programming
 - Optimization method to solve a class of problems that have overlapping subproblems
 - Branch and bound
 - Algorithm that explores the entire search space to find the optimal solution
 - Hybridization of dynamic programming and branch and bound

Classical Solution - Dynamic Programming

Dynamic programming solution

```
def knapSack(w, wt, val, n):
    K = [[0 \text{ for } x \text{ in } range(w+1)] \text{ for } y \text{ in } range(2)]
    # We know we are always using the current row or
    # the previous row of the array/vector . Thereby we can
    # improve it further by using a 2D array but with only
    # 2 rows i%2 will be giving the index inside the bounds
    # of 2d array K
    for i in range(n + 1):
        for w in range(w + 1):
            if (i == 0 \text{ or } w == 0):
                 K[i % 2][w] = 0
             elif (wt[i - 1] <= w):
                 K[i % 2][w] = max(
                     val[i - 1]
                     + K[(i-1) % 2][w - wt[i-1]],
                     K[(i-1) % 2][w])
             else:
                 K[i \% 2][w] = K[(i - 1) \% 2][w]
    return K[n % 2][w]
```


Quantum Approximate Optimization Algorithm

- Algorithm that finds approximate solutions to combinatorial optimization problems
- Performs better than classical computers
- Use the quantum superposition states to compute solutions faster
 - Apply to many possible inputs simultaneously

Unitary Quantum Operators

$$|\beta, \gamma\rangle \equiv U(B, \beta_p)U(C, \gamma_p)....U(B, \beta_1)U(C, \gamma_1)|s\rangle$$

where $| \psi_0 >$ is a suitable initial state

- U(β,γ) Unitary is characterized by its parameters to prepare a quantum state
- Composed of $U(\beta)=e^{-i\beta HB}$ and $U(\gamma)=e^{-i\gamma HP}$ where H_B is the mixing Hamiltonian and H_B is the problem Hamiltonian
- Quantum state is prepared by applying the unitaries as alternating blocks applied p times
- Find the optimal parameters so that the quantum state encodes the solution

Knapsack Cost Function

$$C(X') = M(W_{max} - sum_{i=0}^{n-1} x_i w_i - S)^2 - sum_i^{n-1} x_i v_i$$

where $S = sum(2^{j} * y[j])$, j goes from n to n + log(W_{max}). M is a number large enough to dominate the sum of values.

The minimum value will be where the constraint is respected and the sum of the values are maximized.

Hamiltonian Operator

Hamiltonian mapped from the cost function

General function form:
$$H = H_A + H_B$$
,

Formula:
$$H_A = A \left(1 - \sum_{n=1}^W y_n \right)^2 + A \left(\sum_{n=1}^W n y_n - \sum_{\alpha} w_{\alpha} x_{\alpha} \right)^2$$

$$H_B = -B\sum_{\alpha} c_{\alpha} x_{\alpha}.$$

```
# QAOA
qins = QuantumInstance(backend=Aer.get_backend("aer_simulator"), shots=100)
meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, quantum_instance=qins))
result = meo.solve(qp)
print(result.prettyprint())
print("\nsolution:", prob.interpret(result))
print("\ntime:", result.min_eigen_solver_result.optimizer_time)

objective function value: 13.0
variable values: x_0=1.0, x_1=1.0, x_2=0.0, x_3=1.0, x_4=0.0
status: SUCCESS
solution: [0, 1, 3]
time: 1.8710551261901855
```

The Quantum Approximate Optimization Algorithm simulated on a specific knapsack problem with weights and values.

```
# intermediate QUBO form of the optimization problem
conv = QuadraticProgramToQubo()
qubo = conv.convert(qp)
print(qubo.prettyprint())

Problem name: Knapsack

Minimize
    26*c0@int_slack@0^2 + 104*c0@int_slack@0*c0@int_slack@1
    + 208*c0@int_slack@0*c0@int_slack@2 + 156*c0@int_slack@0*c0@int_slack@3
    + 104*c0@int_slack@1^2 + 416*c0@int_slack@1*co@int_slack@2
    + 312*c0@int_slack@1*c0@int_slack@3 + 416*c0@int_slack@2^2
    + 624*c0@int_slack@2*co@int_slack@3 + 234*co@int_slack@3^2
```

```
# qubit Hamiltonian and offset
op, offset = qubo.to_ising()
print(f"num qubits: {op.num_qubits}, offset: {offset}\n")
print(op)

num qubits: 9, offset: 1417.5

-258.5 * IIIIIIIII
- 388.0 * IIIIIIIIII
- 517.5 * IIIIIIIIII
- 647.0 * IIIIIIIIIII
```

Generating Hamiltonian and the result printing Pauli operators.

```
# op is our hamiltonian
# multiplying by parameter theta and finding the exponentiation
evo_time = Parameter('0')
evolution_op = (evo_time*op).exp_i()
print(evolution_op) # Note, EvolvedOps print as exponentiations
print(repr(evolution_op))

e^(-i*1.0*0 * (
    -258.5 * IIIIIIIIZ
```

approximate e^-iHt using two-gubit gates

- 130.0 * IIIZIIIII - 260.0 * IIZIIIIII Here are the expectation values $\langle \Phi_+|e^{iHt}He^{-iHt}|\Phi_+\rangle$ corresponding to the different values of the parameter

```
h_trotter_expectations.eval()

[(-0.5+0j),
    (-0.499999999980105+2.8422e-14j),
    (-0.500000000000568+5.6843e-14j),
    (-0.499999999993747+0j),
    (-0.4999999999920425+5.6843e-14j),
    (-0.499999999997726+2.8422e-14j),
    (-0.5000000000000284+0j),
    (-0.5000000000009948+0j)]
```

```
sampler = CircuitSampler(backend=Aer.get_backend('aer_simulator'))
# sampler.quantum_instance.run_config.shots = 1000
sampled_trotter_exp_op = sampler.convert(h_trotter_expectations)
sampled_trotter_energies = sampled_trotter_exp_op.eval()
print('Sampled Trotterized energies:\n {}'.format(np.real(sampled_trotter_energies)))

Sampled Trotterized energies:
  [ 27.2265625    31.84765625    31.84765625    -55.953125    64.1953125
    -18.984375    -62.88476563    -30.53710937]
```

Analyzing Results

```
print("variable order:", [var.name for var in result.variables])
for s in result.samples:
    print(s)
variable order: ['x 0', 'x 1', 'x 2', 'x 3', 'x 4']
SolutionSample(x=array([1., 1., 0., 1., 0.]), fval=13.0, probability=0.029900000000003, status=<OptimizationResult
Status.SUCCESS: 0>)
SolutionSample(x=array([0., 0., 1., 0., 1.]), fval=12.0, probability=0.036300000000001, status=<0ptimizationResultS
tatus.SUCCESS: 0>)
SolutionSample(x=array([1., 1., 1., 0., 0.]), fval=12.0, probability=0.0338, status=<0ptimizationResultStatus.SUCCES
S: 0>)
SolutionSample(x=array([0., 0., 1., 1., 0.]), fval=11.0, probability=0.0417, status=<0ptimizationResultStatus.SUCCES
SolutionSample(x=array([0., 1., 0., 0., 1.]), fval=11.0, probability=0.0255000000000002, status=<OptimizationResult
Status.SUCCESS: 0>)
SolutionSample(x=array([0... 1... 0... 1... 0.1), fval=10.0, probability=0.0324, status=<OptimizationResultStatus.SUCCES
SolutionSample(x=array([1., 1., 1., 1., 1.]), fval=25.0, probability=0.0221, status=<OptimizationResultStatus.INFEASI
BLE: 2>)
SolutionSample(x=array([0., 1., 1., 1., 1.]), fval=22.0, probability=0.0252, status=<OptimizationResultStatus.INFEASI
BLE: 2>)
SolutionSample(x=array([1., 0., 1., 1., 1.]), fval=21.0, probability=0.03919999999999, status=<OptimizationResultS
tatus.INFEASIBLE: 2>)
SolutionSample(x=array([1., 1., 0., 1., 1.]), fval=20.0, probability=0.0358, status=<OptimizationResultStatus.INFEASI
SolutionSample(x=array([1., 1., 1., 0., 1.]), fval=19.0, probability=0.02809999999999, status=<OptimizationResult
Status.INFEASIBLE: 2>)
SolutionSample(x=array([1., 1., 1., 1., 0.]), fval=18.0, probability=0.0331, status=<OptimizationResultStatus.INFEASI
BLE: 2>)
SolutionSample(x=array([0...0...1...1...1.]), fyal=18.0, probability=0.0218, status=<0ptimizationResultStatus_INFEASI
```

Analyzing Results

```
def get filtered samples(
    samples: List[SolutionSample],
    threshold: float = 0,
    allowed status: Tuple[OptimizationResultStatus] = (OptimizationResultStatus.SUCCESS,),
):
    res = []
    for s in samples:
        if s.status in allowed status and s.probability > threshold:
            res.append(s)
    return res
filtered samples = get filtered samples(
    result.samples, threshold=0.005, allowed status=(OptimizationResultStatus.SUCCESS,)
for s in filtered samples:
    print(s) # val for each configurations; this filters out low prob
SolutionSample(x=array([1., 1., 0., 1., 0.]), fval=13.0, probability=0.029900000000003, status=<0ptimizationResult
Status.SUCCESS: 0>)
SolutionSample(x=array([0., 0., 1., 0., 1.]), fval=12.0, probability=0.036300000000001, status=<OptimizationResultS
tatus.SUCCESS: 0>)
SolutionSample(x=array([1., 1., 1., 0., 0.]), fval=12.0, probability=0.0338, status=<OptimizationResultStatus.SUCCES
SolutionSample(x=array([0., 0., 1., 1., 0.]), fval=11.0, probability=0.0417, status=<OptimizationResultStatus.SUCCES
S: 0>)
SolutionSample(x=array([0., 1., 0., 0., 1.]), fval=11.0, probability=0.0255000000000000, status=<0ptimizationResult
Status.SUCCESS: 0>)
SolutionSample(x=array([0., 1., 0., 1., 0.]), fval=10.0, probability=0.0324, status=<OptimizationResultStatus.SUCCES
```

Analyzing Results

```
SolutionSample(x=array([1., 1., 0., 1., 0.]), fval=13.0, probability=0.029900000000003, status=<OptimizationResult
Status.SUCCESS: 0>)
SolutionSample(x=array([0., 0., 1., 0., 1.]), fval=12.0, probability=0.036300000000001, status=<0ptimizationResultS
tatus.SUCCESS: 0>)
SolutionSample(x=array([1., 1., 1., 0., 0.]), fval=12.0, probability=0.0338, status=<OptimizationResultStatus.SUCCES
SolutionSample(x=array([0., 0., 1., 1., 0.]), fval=11.0, probability=0.0417, status=<OptimizationResultStatus.SUCCES
SolutionSample(x=array([0., 1., 0., 0., 1.]), fval=11.0, probability=0.0255000000000000, status=<OptimizationResult
Status.SUCCESS: 0>)
SolutionSample(x=array([0., 1., 0., 1., 0.]), fval=10.0, probability=0.0324, status=<OptimizationResultStatus.SUCCES
SolutionSample(x=array([1., 0., 0., 0., 1.]), fval=10.0, probability=0.0263000000000004, status=<OptimizationResult
Status.SUCCESS: 0>)
SolutionSample(x=array([0., 1., 1., 0., 0.]), fval=9.0, probability=0.0272000000000002, status=<0ptimizationResultS
tatus.SUCCESS: 0>)
SolutionSample(x=array([1., 0., 0., 1., 0.]), fval=9.0, probability=0.0194, status=<OptimizationResultStatus.SUCCESS:
SolutionSample(x=array([1., 0., 1., 0., 0.]), fval=8.0, probability=0.0193999999999999, status=<0ptimizationResultS
tatus.SUCCESS: 0>)
SolutionSample(x=array([0., 0., 0., 0., 1.]), fval=7.0, probability=0.026200000000005, status=<OptimizationResultS
tatus.SUCCESS: 0>)
SolutionSample(x=array([1., 1., 0., 0., 0.]), fval=7.0, probability=0.0339, status=<OptimizationResultStatus.SUCCESS:
SolutionSample(x=array([0., 0., 0., 1., 0.]), fval=6.0, probability=0.024300000000002, status=<OptimizationResultS
tatus.SUCCESS: 0>)
SolutionSample(x=array([0., 0., 1., 0., 0.]), fval=5.0, probability=0.025300000000003, status=<OptimizationResultS
tatus.SUCCESS: 0>)
SolutionSample(x=array([0., 1., 0., 0., 0.]), fval=4.0, probability=0.025699999999997, status=<OptimizationResultS
tatus.SUCCESS: 0>)
SolutionSample(x=array([1., 0., 0., 0., 0.]), fval=3.0, probability=0.0375, status=<OptimizationResultStatus.SUCCESS:
SolutionSample(x=array([0., 0., 0., 0., 0.]), fval=0.0, probability=0.04229999999999, status=<OptimizationResultSt
atus.SUCCESS: 0>)
```


https://en.wikipedia.org/wiki/Knapsack_problem#:~:text=The%20knapsack%20problem%20is%20a,is%20as%20large%20as%20possible.

https://en.wikipedia.org/wiki/NP-completeness

https://giskit.org/documentation/stable/0.24/stubs/giskit.optimization.applications.ising.knapsack.html

https://qiskit.org/documentation/optimization/tutorials/09_application_classes.html#Knapsack-problem

https://www.frontiersin.org/articles/10.3389/fphy.2014.00005/full

https://qiskit.org/documentation/tutorials/operators/01_operator_flow.html

https://arxiv.org/pdf/1908.02210.pdf

https://arxiv.org/pdf/1411.4028.pdf