Unit 9: NP-Completeness

- Course contents:
 - Complexity classes
 - Reducibility and NP-completeness proofs
- Readings:
 - Chapter 34

Algorithm Design and Application by S.-Y. Fang

Complexity Classes

- Developed by S. Cook and R. Karp in early 1970.
- □ The class P: class of problems that can be solved in polynomial time in the size of input.
 - Size of input: size of encoded "binary" strings.
 - Edmonds: Problems in P are considered tractable.
 - Closed under addition, multiplication, composition, complement, etc.
- □ The class NP (Nondeterministic Polynomial): class of problems that can be verified in polynomial time in the size of input.
- □ The class NP-complete (NPC): Any NPC problem can be solved in polynomial time ⇒ All problems in NP can be solved in polynomial time.

Algorithm Design and Application by S.-Y. Fang

Verification Algorithm and Class NP

- □ **Verification algorithm:** a 2-argument algorithm *A*, where one argument is an input string x and the other is a binary string y (called a **certificate**). A verifies x if there exists ys.t. A answers "yes."
- Exp: The Traveling Salesman Problem (TSP)
 - **Instance:** a set of *n* cities, distance between each pair of cities, and a bound B.
 - Question: is there a route that starts and ends at a given city, visits every city exactly once, and has total distance ≤ B?
- Is TSP ∈ NP?
- Need to check a solution in polynomial time.
 - Guess a tour (certificate).
 - Check if the tour visits every city exactly once
 - Check if the tour returns to the start.
 - Check if total distance $\leq B$.
- □ All can be done in O(n) time, so TSP ∈ NP.

Decision & Optimization Problems

- Decision problems: those having yes/no answers.
 - MST: Given a graph G=(V, E) and a bound K, is there a spanning tree with a cost at most K?
 - TSP: Given a set of cities, distance between each pair of cities, and a bound B, is there a route that starts and ends at a given city, visits every city exactly once, and has total distance at most B?
- Optimization problems: those finding a legal configuration such that its cost is minimum (or maximum).
 - MST: Given a graph G=(V, E), find the cost of a minimum spanning tree of G.
 - TSP: Given a set of cities and the distance between each pair of cities, find the distance of a "minimum route" starts and ends at a given city and visits every city exactly once.

Algorithm Design and Application by S.-Y. Fang

Decision vs. Optimization Problems

- Could apply binary search on a decision problem to obtain solutions to its optimization problem.
- NP-completeness is associated with decision problems.
- c.f., Optimal solutions/costs, optimal (exact) algorithms
 - optimal ≠ exact in the theoretic computer science community.

Polynomial-time Reduction

- **Motivation:** Let L_1 and L_2 be two decision problems. Suppose algorithm A_2 can solve L_2 . Can we use A_2 to solve L_1 ?
 - E.g., maximum cardinality bipartite matching (L_1) vs. maximum flow (L_2)
- □ Polynomial-time reduction f from L_1 to L_2 : $L_1 \leq_P L_2$
 - f reduces input for L_1 into an input for L_2 s.t. the reduced input is a "yes" input for L_2 iff the original input is a "yes" input for L_1 .
 - $L_1 \leq_P L_2$ if \exists polynomial-time computable function $f: \{0, 1\}^* \to \{0, 1\}^* \text{ s.t. } \mathbf{x} \in \mathbf{L}_1 \text{ iff } \mathbf{f}(\mathbf{x}) \in \mathbf{L}_2, \ \forall \ \mathbf{x} \in \{0, 1\}^*.$
 - L₂ is at least as hard as L₁.
- f is computable in polynomial time.

A : Algorithm for L $x \in L_1$? (yes/no) answer for L2 on f(x, = answer for L1 on x

Significance of Reduction

- □ Significance of $L_1 \leq_{\mathbf{P}} L_2$:
 - ∃ polynomial-time algorithm for $L_2 \Rightarrow \exists$ polynomial-time algorithm for L_1 ($L_2 \in P \Rightarrow L_1 \in P$).
 - \nexists polynomial-time algorithm for $L_1 \Rightarrow \nexists$ polynomial-time algorithm for L_2 ($L_1 \notin P \Rightarrow L_2 \notin P$).
- $\square \leq_{P}$ is transitive, i.e., $L_1 \leq_{P} L_2$ and $L_2 \leq_{P} L_3 \Rightarrow L_1 \leq_{P} L_3$.

A 1: Algorithm for L1

L₁: system of difference constraint vs. L₂: SSSP

L₁: Bipartite cardinality matching vs. L₂: maximum flow

■ The Hamiltonian Circuit Problem (HC)

- **Instance:** an undirected graph G = (V, E).
 - Question: is there a cycle in G that includes every vertex exactly once?

Polynomial Reduction: HC ≤_P TSP

- TSP: The Traveling Salesman Problem
- Claim: HC ≤_P TSP.
 - 1. Define a function f mapping any HC instance into a TSP instance, and show that f can be computed in polynomial time.
 - Prove that G has an HC iff the reduced instance has a TSP tour with **distance** ≤ B ($x \in HC \Leftrightarrow f(x) \in TSP$).

Algorithm Design and Application by S.-Y. Fang

HC ≤_P TSP: Step 1

- 1. Define a reduction function f for $HC \leq_{P} TSP$.
 - Given an HC instance G = (V, E) with n vertices
 - Create a set of *n* cities labeled with names in *V*.
 - Assign distance between u and v

$$d(u,v) = \begin{cases} 1, & if (u,v) \in E, \\ 2, & if (u,v) \notin E. \end{cases}$$

- Set bound B = n.
- f can be computed in $O(V^2)$ time.

look for the difference between the two problems to make the reduction!!

HC ≤_P TSP: Step 2

- 2. G has an HC iff the reduced instance has a TSP with distance $\leq B$.
 - $x \in HC \Rightarrow f(x) \in TSP$.
 - Suppose the HC is $h = \langle v_1, v_2, ..., v_n, v_1 \rangle$. Then, h is also a tour in the transformed TSP instance.
 - The distance of the tour h is n = B since there are nconsecutive edges in E, and so has distance 1 in f(x).
 - Thus, $f(x) \in \mathsf{TSP}(f(x))$ has a TSP tour with distance $\leq B$).

$HC \leq_P TSP$: Step 2 (cont'd)

- 2. G has an HC iff the reduced instance has a TSP with distance ≤ B.
 - $f(x) \in \mathsf{TSP} \Rightarrow x \in \mathsf{HC}.$
 - Suppose there is a TSP tour with distance $\leq n = B$. Let it be <*V*₁, *V*₂, ..., *V*_n, *V*₁>..
 - Since distance of the tour $\leq n$ and there are n edges in the TSP tour, the tour contains only edges in E since all edge weights are equal to 1.
 - Thus, $\langle v_1, v_2, ..., v_n, v_1 \rangle$ is a Hamiltonian cycle ($x \in HC$).

NP-Completeness

- □ A decision problem L (a language $L \subseteq \{0, 1\}^*$) is NPcomplete (NPC) if
 - 1. $L \in NP$, and
 - 2. $L' \leq_{P} L$ for every $L' \in NP$.
- **NP-hard:** If *L* satisfies property 2, but not necessarily property 1, we say that *L* is **NP-hard**.
- □ Suppose $L \in NPC$.
 - If $L \in P$, then there exists a polynomial-time algorithm for every L' \in NP (i.e., P = NP).
 - If $L \notin P$, then there exists no polynomial-time algorithm for any L'∈ NPC (i.e., P ≠ NP).

Algorithm Design and Application by S.-Y. Fang

Proving NP-Completeness

- □ Five steps for proving that *L* is NP-complete:
 - 1. Prove $L \in NP$.
 - 2. Select a known NP-complete problem L'.
 - 3. Construct a reduction f transforming every instance of L' to an instance of L.
 - 4. Prove that $x \in L'$ iff $f(x) \in L$ for all $x \in \{0, 1\}^*$.
 - 5. Prove that f is a polynomial-time transformation.

Here we intend to show how difficult L is!! Cf. matching ≤ p maximum flow to show how easy matching is!!

Clique is NP-Complete

- \square A **clique** in G=(V, E) is a complete subgraph of G.
- The Clique Problem (Clique)
 - Instance: a graph G = (V, E) and a positive integer $k \le |V|$.
 - Question: is there a clique V ⊆ V of size ≥ K?
- □ Clique ∈ NP.

13

- Clique is NP-hard: 3SAT ≤_P Clique.
 - **Key:** Construct a graph G such that ϕ is satisfiable $\Leftrightarrow G$ has a clique of size k. $C_1 = x_1 \lor \neg x_2 \lor \neg x_3$

satisfying assignment: $\langle x1, x2, x3 \rangle = \langle x, 0, 1 \rangle$

Vertex-Cover is NP-Complete

- □ A vertex cover of G = (V, E) is a subset $V \subseteq V$ such that if $(w, v) \in E$, then $w \in V$ or $v \in V$.
- The Vertex-Cover Problem (Vertex-Cover)
 - Instance: a graph G = (V, E) and a positive integer $k \le |V|$.
 - **Question:** is there a subset $V \subset V$ of size $\leq k$ such that each edge in E has at least one vertex (endpoint) in V?
- □ Vertex-Cover ∈ NP.
- Vertex-Cover is NP-hard: Clique ≤_P Vertex-Cover.
 - **Key:** complement of $G: \overline{G} = (V, \overline{E}), \overline{E} = \{(w, v): (w, v) \notin E\}.$

Vertex-Cover is NP-Complete (cont'd)

- \Box G Has a Clique of Size $k \Rightarrow \bar{G}$ Has a Vertex Cover of size | **V**| - **k**.
 - _ Suppose that G has a clique $V \subseteq V$ with |V| = k.
 - Let (w, v) be any edge in \bar{E} ⇒ $(w, v) \notin E$ ⇒ at least one of w or vdoes not belong to V
 - So, $w \in V V$ or $v \in V V' \Rightarrow \text{edge } (w, v) \text{ is covered by } V V.$
 - Thus, V V forms a vertex cover of \bar{G} , and |V V| = |V| k.

Algorithm Design and Application by S.-Y. Fang

Vertex-Cover is NP-Complete (cont'd)

- \Box \bar{G} Has a Vertex Cover of size $|V| k \Rightarrow G$ Has a Clique of Size k.
 - Suppose that \bar{G} has a vertex cover $V \subseteq V$ with |V| = |V| k.
 - $\forall a, b \in V$, if $(a, b) \in \overline{E}$, then $a \in V$ or $b \in V$ or both.
 - So, $\forall a, b \in V$, if $a \notin V$ and $b \notin V$, $(a, b) \in E \Rightarrow V V$ is a clique, and |V| - |V| = k.

vertex cover $V - V' = \{w, z\}$