

National University of Computer & Emerging Sciences Islamabad

FAST School of Computing

Fall-2024

Islamabad Campus

MT1004 – Linear Algebra Homework # 13

- 1. Let $\langle p, q \rangle = p(x_0)q(x_0) + p(x_1)q(x_1) + p(x_2)q(x_2) + p(x_3)q(x_3)$ be an evaluation inner product on \mathbb{P}_3 for the vectors $\mathbf{p} = p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ and $\mathbf{q} = q(x) = b_0 + b_1x + b_2x^2 + b_3x^3$ at $x_0 = -3$, $x_1 = -1$, $x_2 = 1$, and $x_3 = 3$.
- (a) Find best approximation of $p(x) = x^2$ onto the subspace $\mathbb{P}_1 = \text{Span}\{1, x\}$.
- (b) Write an orthogonal basis of $\mathbb{P}_2 = \text{Span}\{1, x, x^2\}$ using the results from (a).
- **2.** Construct an orthonormal basis for $M_{2\times 2}$ with respect to the inner product $\langle A,B\rangle=\operatorname{tr}(A^TB)$ by applying the Gram-Schmidt Process to the basis $\{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix},\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix},\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}\}$.
- **3.** Find the Fourier approximation to the function f(x) = x 1 on the interval $(-\pi,\pi)$. (Hint: Use $f(x) \approx a_0 + \sum_{k=1}^n a_k \cos kx + b_k \sin kx$ where $a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$, $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx$, $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx$.)

Questions listed below are for practice only. Do NOT submit.

- 1. Determine which of the four inner product axioms do not hold and give a specific example in each case.
- (a) In \mathbb{P}_2 , define $\langle p(x), q(x) \rangle = p(1)q(1)$.
- (b) In $M_{2\times 2}$, define $\langle A, B \rangle = \det(AB)$.
- 2. Let $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = 3u_1v_1 + 5u_2v_2$ be a weighted Euclidean inner product on \mathbb{R}^2 for the vectors $\boldsymbol{u} = (u_1, u_2)$ and $\boldsymbol{v} = (v_1, v_2)$. Find a matrix that generates it. (Hint: Express the given inner product as $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \boldsymbol{u}^T A \boldsymbol{v}$.)