

APPRENTISSAGE DE REPRÉSENTATION

Vincent Guigue, inspiré des supports de Nicolas Baskiotis & Benjamin Piwowarski

Chaine de traitements

Facteur de performances: features > modèle

Promesse du deep-learning

- Apprendre des représentations continues de concepts discrets (+métrique continue)
 - Sémantique des mots, profils utilisateurs
- Apprendre des représentations compactes de concepts continus
 - Représentation des images, extraction de motifs dans les signaux

Optimiser les caractéristiques extraites pour une applications cibles

 $Deep/learning \Rightarrow$ Representation Learning

Pourquoi est ce que ça marche si bien sur des données complexes+sémantiques mais moins bien sur des données tabulaires?

Grinsztajn et al., NeurIPS 22 Why do tree-based models still outperform deep learning on tabular data?

Representation Learning

Apprentissage de représentation

- Domaines : recommandation, représentation de graphes, classification multi-labels multi-classes, audio, radar
- Appris en end-to-end, pré-appris et/ou fine-tuné
- Parfait pour la supervision est indirecte : similarité par triplet, contexte, . . .

Apprentissage de représentation

- Domaines : recommandation, représentation de graphes, classification multi-labels multi-classes, audio, radar
- Appris en end-to-end, pré-appris et/ou fine-tuné
- Parfait pour la supervision est indirecte : similarité par triplet, contexte, . . .
- Possibilité d'utiliser des auto-encoders

Outils

Deep LVQ

- LVQ = Learning vector quantization
- lacktriangle Idée \sim plus proche voisin
- \blacksquare + deep learning = apprendre la représentation des supports

Structurer l'espace appris

■ Variational AutoEncoder

Representation Learning

■ Reparameterization Trick

Structurer l'espace appris

- Variational AutoEncoder
- Reparameterization Trick

Applications (efficaces)

Representation learning & transfer

1 Apprendre la représentation

sur n'importe quel critère

2 Fine-tuner = apprendre un peu

Sur la tâche finale / sur peu de données etc...

Learning mechanism

OUTILS CONNEXES POUR LE

TP

• 0

■ Afin d'avoir des calculs rapides, il faut les séquences de longueurs fixes (batch)

sequence 1 sequence 2 sequence 3 sequence 4 sequence 5

truncation and zero-padding (post) at length=7

Triplet loss

■ Rapprocher ce qui se ressemble... (+ Eloigner autre chose)

A l'ancienne: Siamese network

Triplet loss

■ Rapprocher ce qui se ressemble... (+ Eloigner autre chose)

Applications (efficaces)

Les représentations de mots

■ Discret + semantic gap \Rightarrow Distance \Rightarrow Direction sémantique

Recommandation

- 2001-2010 : Apprendre des profils à partir de trace = factorisation matricielle
- Déjà un modèle de deep-learning?

Profils se ressemblent ⇒ prédisent les mêmes notes

Recommandation

- 2001-2010 : Apprendre des profils à partir de trace = factorisation matricielle
- Déjà un modèle de deep-learning?

Profils se ressemblent \Rightarrow prédisent les mêmes notes

Recommandation

- 2001-2010 : Apprendre des profils à partir de trace = factorisation matricielle
- Déjà un modèle de deep-learning?

Profils se ressemblent \Rightarrow prédisent les mêmes notes

Visualisation de données

- Auto-encodeur \Rightarrow 2D = visualisation de MNIST
- Passage au VAE (toujours non supervisé)

Visualisation de données

- Auto-encodeur \Rightarrow 2D = visualisation de MNIST
- Passage au VAE (toujours non supervisé)

- Convolution sur la transformée temps-fréquences
- Apprentissage d'embedding de musique
 - Pour la classification / recommandation
 - Pour la génération

Signal Processing

■ Séparation de sources

