Chapitre 32

Espaces probabilisés finis

32	Espaces probabilisés finis
	32.19Exemple
	32.25 Exemple
	32.26Exemple
	32.28Définition implicite d'un espace probabilisé par la donnée d'une loi de variable aléatoire
	32.30Probabilité conditionnelle
	32.31 Formule des probabilités totales

32.19 Exemple

Exemple 32.19

Une urne contient 3 boules blanches et 5 boules noires. On en tire simultanément 4 boules. Avec quelle probabilité n'a-t-on tiré que des boules noires?

Sans perte de généralité, on peut numéroter les boules de 1 à 8, les 3 premières boules sont blanches et les 5 suivantes noires.

On note X la variable alétoire donnant la 4-combinaison des boules obtenues.

$$X \hookrightarrow \mathcal{U}(P_4[\![1,8]\!])$$

En notant A "on ne tire que des boules noires", on a :

$$A = (X \in P_4[4, 8])$$

$$P(A) = P(X \in P_4[4, 8])$$

$$= \frac{|P_4[4, 8]|}{|P_4[1, 8]|}$$

$$= \frac{\binom{5}{4}}{\binom{8}{4}}$$

32.25 Exemple

Exemple 32.25

On choisit un entier X au hasard entre -3 et 3. Quelle est la loi de la variable $X^2 + 1$?

$$X \hookrightarrow \mathcal{U}(\llbracket -3, 3 \rrbracket)$$
$$(X^2 + 1)(\omega) = \{1, 2, 5, 10\}$$

Et:

$$P(X^{2} + 1 = 1) = P(X = 0)$$

$$= \frac{1}{7}$$

$$P(X^{2} + 1 = 2) = P(X = -1) + P(X = 1)$$

$$= \frac{2}{7}$$

$$P(X^{2} + 1 = 5) = P(X = -2) + P(X = 2)$$

$$= \frac{2}{7}$$

$$P(X^{2} + 1 = 10) = P(X = -3) + P(X = 3)$$

$$= \frac{2}{7}$$

32.26 Exemple

Exemple 32.26

On choisit un entier X au hasard entre 1 et 2n. Quelle est la loi de $(-1)^X$?

$$X \hookrightarrow \mathcal{U}(\llbracket 1, 2n \rrbracket)$$

$$(-1)^X \hookrightarrow \{-1, 1\}$$

$$P((-1)^X = 1) = P(X \text{ pair})$$

$$= \frac{n}{2n}$$

$$= \frac{1}{2}$$

$$= P((-1)^X = -1)$$

32.28 Définition implicite d'un espace probabilisé par la donnée d'une loi de variable aléatoire

Théorème 32.28

Soit $E = \{x_1, \dots, x_r\}$ un ensemble et $p_1, \dots, p_r \in [0, 1]$ des réels pour lesquels $\sum_{i=1}^r p_i = 1$. Il existe alors un espace probabilisé (Ω, P) et une variable aléatoire X sur Ω , d'image E, pour lesquels pour tout $i \in [\![1, r]\!]$:

$$P(X = x_i) = p_i$$

$$\omega = E$$
 et $X = id$

On applique (32.12) pour avoir l'existence de P.

32.30 Probabilité conditionnelle

Théorème 32.30

Soit (Ω, P) un espace probabilisé fini et $B \in \mathcal{P}(\Omega)$ pour lequel P(B) > 0. Pour tout $A \in \mathcal{P}(\Omega)$, le réel

$$P(A \mid B) = P_B(A) = \frac{P(A \cap B)}{P(B)}$$

est appelé la probabilité conditionnelle de A sachant B. L'application P_B est alors une probabilité sur Ω , appelée sa probabilité conditionnelle sachant B.

$$P_B(\Omega) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

 $P_B(A \sqcup C) = \frac{P(B \cap (A \sqcup C))}{P(B)}$ $= \frac{P(B \cap A) \sqcup (B \cap C)}{P(B)}$ $= \frac{P(B \cap A)}{P(B)} + \frac{P(B \cap C)}{P(B)}$ $= P_B(A) + P_B(C)$

32.31 Formule des probabilités totales

Théorème 32.31

Soit (Ω, P) un espace probabilisé fini et $\{A_1, \ldots, A_n\}$ un système complet d'événements de Ω de probabilités strictement positives. Alors, pour tout $B \in \mathcal{P}(\Omega)$:

$$P(B) = \sum_{i=1}^{n} P_{A_i}(B) P(A_i)$$

Soit $B \in P(\Omega)$. On a :

$$P(B) = P(B \cap \Omega)$$

$$= P(B \cap \bigsqcup_{i=1}^{n} A_i)$$

$$= P(\bigsqcup_{i=1}^{n} (B \cap A_i))$$

$$= \sum_{i=1}^{n} P(B \cap A_i)$$

$$= \sum_{i=1}^{n} P(B \mid A_i) P(A_i)$$

Avec $P(A_i) > 0$ pour définir les probabilités conditionnelles.