Decision Tree and Random Forest

Exercise

Dinh-Thang Duong – TA

Outline

- > Review
- **Code Implementation**
- > Question

& Getting Started

Mileage	Has AC?	Age	Price
7.5	yes	3	8.5
6.0	no	2	9.2
9.0	yes	4	7.8
4.5	yes	1	10.0
6.8	no	3	8.9
8.0	yes	2	8.3
5.5	no	2	9.5

Car Price Prediction

Getting Started

& Getting Started

Mileage	Has AC?	Age	Price
7.5	yes	3	8.5
6.0	no	2	9.2
9.0	yes	4	7.8
4.5	yes	1	10.0
6.8	no	3	8.9
8.0	yes	2	8.3
5.5	no	2	9.5

To utilize exisiting dataset for this problem, we could use **Machine Learning**.

Machine Learning **learns** to map a set of features X to target value y based on existing dataset.

Features Target

& Getting Started

Decision Tree

Decision Tree: A supervised-learning machine learning algorithm that build a tree-based structure. It can perform both classification and regression tasks.

Decision Tree Terminologies

Decision Tree Terminologies

Decision Tree Terminologies

A general Decsion Tree may contain many conditions and outcomes.

Decision Tree Terminologies

Root Node: The initial condition (the first split) of the tree.

Decision Tree Terminologies

Internal Nodes (Branch Nodes): The conditions within the tree that receive inputs from previous node and produce output to new nodes.

Decision Tree Terminologies

Leaf Nodes (Terminal Nodes): The final decision of the tree. It does not make any further splits.

Decision Tree Terminologies

Mileage	Has AC?	Age	Price
7.5	yes	3	8.5
6.0	no	2	9.2
9.0	yes	4	7.8
4.5	yes	1	10.0
6.8	no	3	8.9
8.0	yes	2	8.3
5.5	no	2	9.5

Mileage	Has AC?	Age	Price
7.5	yes	3	8.5
6.0	no	2	9.2
9.0	yes	4	7.8
4.5	yes	1	10.0
6.8	no	3	8.9
8.0	yes	2	8.3
5.5	no	2	9.5

Mileage	Has AC?	Age	Price
4.5	yes	1	10.0
5.5	no	2	9.5
6.0	no	2	9.2
6.8	no	3	8.9
7.5	yes	3	8.5
8.0	yes	2	8.3
9.0	yes	4	7.8

Consider Mileage feature.

Sort the dataset by Mileage in ascending order

D.C.L.	11 4.63		D
Mileage	Has AC?	Age	Price
4.5	yes	1	10.0
5.5	no	2	9.5
6.0	no	2	9.2
6.8	no	3	8.9
7.5	yes	3	8.5
8.0	yes	2	8.3
9.0	yes	4	7.8

Calculate the average of each adjacent pair of Mileage:

- Pair 1: (4.5 + 5.5) / 2 = 5.0
- Pair 2: (5.5 + 6.0) / 2 = 5.75
- Pair 3: (6.0 + 6.8) / 2 = 6.4
- Pair 4: (6.8 + 7.5) / 2 = 7.15
- Pair 5: (7.5 + 8.0) / 2 = 7.75
- Pair 6: (8.0 + 9.0) / 2 = 8.5

Mileage	Has AC?	Age	Price
4.5	yes	1	10.0
5.5	no no	2	9.5
6.0	no	2	9.2
6.8	no	3	8.9
7.5	yes	3	8.5
8.0	yes	2	8.3
9.0	yes	4	7.8

How to determine the leaf node for this condition?

& Build a Regression Tree

Mileage	Has AC?	Age	Price
4.5	yes	1	10.0
5.5	no no	2	9.5
6.0	no	2	9.2
6.8	no	3	8.9
7.5	yes	3	8.5
8.0	yes	2	8.3
9.0	yes	4	7.8

Use the average value of Price that satisfying the condition in the dataset.

& Build a Regression Tree

Mileage	Has AC?	Age	Price
4.5	yes	1	10.0
5.5	5.0 no	2	9.5
6.0	no	2	9.2
6.8	no	3	8.9
7.5	yes	3	8.5
8.0	yes	2	8.3
9.0	yes	4	7.8

How to determine whether this tree is good enogh or not?

& Build a Regression Tree

How to determine whether this tree is good enogh or not? (Impurity Measurement)

=> Using the prediction of the tree to evaluate on training dataset.

Compare the predicted value and the true value.

=> Residual Sum of Squares
$$RSS = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

& Build a Regression Tree

Mileage	Has AC?	Age	Price
4.5	yes	1	10.0
5.5	no no	2	9.5
6.0	no	2	9.2
6.8	no	3	8.9
7.5	yes	3	8.5
8.0	yes	2	8.3
9.0	yes	4	7.8

Calculate the Residual Sum of Squares of the tree:

$$(10-10)^2 + (9.5-8.7)^2 + (9.2-8.7)^2 + (8.9-8.7)^2 + (8.5-8.7)^2 + (8.3-8.7)^2 + (7.8-8.7)^2 = 1.94$$

Build a Regression Tree: Consider each pair

We can plot the Residual Sum of Squares of each pair to 2D chart.

The objective is to find the threshold that have the minimum Residual Sum of Squares.

& Build a Regression Tree

Mileage	Has AC?	Age	Price
4.5	yes	1	10.0
5.5	no 5.75	2	9.5
6.0	no	2	9.2
6.8	no	3	8.9
7.5	yes	3	8.5
8.0	yes	2	8.3
9.0	yes	4	7.8

$$(10-9.75)^2 + (9.5-9.75)^2 + (9.2-8.54)^2 + (8.9-8.54)^2 + (8.5-8.54)^2 + (8.3-8.54)^2 + (7.8-8.54)^2 = 1.297$$

& Build a Regression Tree

Mileage	Has AC?	Age	Price
4.5	yes	1	10.0
5.5	no	2	9.5
6.0	no	2	9.2
6.8	5.4 no	3	8.9
7.5	yes	3	8.5
8.0	yes	2	8.3
9.0	yes	4	7.8

$$(10 - 9.57)^{2} + (9.5 - 9.57)^{2} + (9.2 - 9.57)^{2} + (8.9 - 8.375)^{2} + (8.5 - 8.375)^{2} + (8.3 - 8.375)^{2} + (7.8 - 8.375)^{2} = 0.9542$$

& Build a Regression Tree

Mileage	Has AC?	Age	Price
4.5	yes	1	10.0
5.5	no	2	9.5
6.0	no	2	9.2
6.8	no	3	8.9
7.5	7.15 yes	3	8.5
8.0	yes	2	8.3
9.0	yes	4	7.8

$$(10-9.4)^2 + (9.5-9.4)^2 + (9.2-9.4)^2 + (8.9-9.4)^2 + (8.5-8.2)^2 + (8.3-8.2)^2 + (7.8-8.2)^2 = 0.92$$

& Build a Regression Tree

Mileage	Has AC?	Age	Price
4.5	yes	1	10.0
5.5	no	2	9.5
6.0	no	2	9.2
6.8	no	3	8.9
7.5	yes	3	8.5
8.0	7.75 yes	2	8.3
9.0	yes	4	7.8

$$(10-9.22)^2 + (9.5-9.22)^2 + (9.2-9.22)^2 + (8.9-9.22)^2 + (8.5-9.22)^2 + (8.3-8.05)^2 + (7.8-8.05)^2 = 1.433$$

& Build a Regression Tree

Mileage	Has AC?	Age	Price
4.5	yes	1	10.0
5.5	no	2	9.5
6.0	no	2	9.2
6.8	no	3	8.9
7.5	yes	3	8.5
8.0	yes	2	8.3
9.0	yes	4	7.8

$$(10 - 9.067)^{2} + (9.5 - 9.067)^{2} + (9.2 - 9.067)^{2} + (8.9 - 9.067)^{2} + (8.5 - 9.067)^{2} + (8.3 - 9.067)^{2} + (7.8 - 7.8)^{2} = 2.0134$$

& Build a Regression Tree: RSS Visualization

With the chart, we now know that Mileage < 7.15 gives the smallest Residual Sum of Squares.

& Build a Regression Tree

Mileage	Has AC?	Age	Price
4.5	yes	1	10.0
5.5	no	2	9.5
6.0	no	2	9.2
6.8	no	3	8.9
7.5	yes	3	8.5
8.0	yes	2	8.3
9.0	yes	4	7.8

We also need to consider other features to find which one produce the least RSS.

To do that, apply the same step as for Mileage.

How about other features?

& Build a Regression Tree

$$(10-9.4)^2 + (9.5-9.4)^2 + (9.2-9.4)^2 + (8.9-9.4)^2 + (8.5-8.2)^2 + (8.3-8.2)^2 + (7.8-8.2)^2 = 0.92$$

$$(8.5 - 8.65)^{2} + (7.8 - 8.65)^{2} + (10 - 8.65)^{2} + (8.3 - 8.65)^{2} + (9.2 - 9.2)^{2} + (8.9 - 9.2)^{2} + (9.5 - 9.2)^{2} = 2.87$$

$$(10-10)^{2} + (9.2-8.7)^{2} + (8.3-8.7)^{2} + (9.5-8.7)^{2} + (8.9-8.7)^{2} + (8.5-8.7)^{2} + (7.8-8.7)^{2} = 1.94$$


```
1 import numpy as np
 2 import pandas as pd
 4 from sklearn.tree import DecisionTreeRegressor
 6 data = {
       'Mileage': [4.5, 5.5, 6.0, 6.8, 7.5, 8.0, 9.0],
      'Has AC': [1, 0, 0, 0, 1, 1, 1],
      'Age': [1, 2, 2, 3, 3, 2, 4],
       'Price': [10.0, 9.5, 9.2, 8.9, 8.5, 8.3, 7.8]
10
11 }
12
13 df = pd.DataFrame(data)
14 dataset arr = df.to numpy()
15 X, y = dataset arr[:, :-1], dataset arr[:, -1]
16
17 regressor = DecisionTreeRegressor(
18
     random state=1,
      max depth=1
19
20 ).fit(X, y)
```

```
Mileage <= 7.15
squared_error = 0.484
samples = 7
value = 8.886

squared_error = 0.165
squared_error = 0.087
samples = 4
value = 9.4
squared_error = 0.087
squared_error = 0.087
squared_error = 0.087
squared_error = 0.484
samples = 7
value = 8.2
```

Tree built from sklearn with only root node

Build a Regression Tree: Further expand the tree

In theory, we can further expand the tree by adding more internal node (conditions) to the tree.

A bigger tree might get better performance. But it might also subject to **overfitting** problem.

Therefore, it is crucial to appropriately choose optimal hyperparameters of the decision tree.

Ensemble Learning

Mileage	Has AC?	Age	Price
4.5	yes	1	10.0
5.5	no	2	9.5
6.0	no	2	9.2
6.8	no	3	8.9
7.5	yes	3	8.5
8.0	yes	2	8.3
9.0	yes	4	7.8

This prediction is unrealiable, how do we make sure that we receive a more stable result?

Consider the Car Price Prediction problem again

***** Ensemble Learning

If the result from 1 tree is not good...

Why don't we just use more trees?

Ensemble Learning

Ensemble Learning: A machine learning technique that combines the predictions from multiple individual models to produce a more accurate and robust prediction that any single model.

These are Decision Trees

A Random Forest

If the result from 1 tree is not good...

Why don't we just use more trees?

In previous example, there is an algorithm that uses multiple Decision Trees to produce a new single output called **Random Forest**.

A Random Forest

Random Forest: A supervised-learning machine learning algorithm that combines the output of multiple Decision Trees to reach a single outcome. It can perform both classification and regression tasks.

A Random Forest: Key idea

A Random Forest: Bootstrapping

Bootstrapping = Random sampling with replacement

We create new dataset by taking samples from original dataset (sampling) which can be duplicated.

AI VIETNAM All-in-One Course (TA Session)

Review

A Random Forest: Bootstrapping

Index	X1	X2	Х3	Υ
0				
1				
2				
3				
4				

Index	X1	Υ
1		
1		
4		
3		
4		

In Random Forest, we
also randomly select
features for
Bootstrap Datasets.

Bootstrap Dataset 1

Index	Х3	Υ
0		
3		
1		
4		
4		

Bootstrap Dataset 2

Original Dataset

Aggregating

***** Introduction

Code exercise description: Given <u>Housing.csv</u> dataset, train a Decision Tree and a Random Forest models to predict house price based on some input features about the house.

Step 1: Import necessary libraries

```
1 import numpy as np
 2 import pandas as pd
 3 import matplotlib.pyplot as plt
 5 from sklearn.ensemble import RandomForestRegressor
 6 from sklearn.tree import DecisionTreeRegressor
 7 from sklearn.preprocessing import OrdinalEncoder
 8 from sklearn.preprocessing import StandardScaler
 9 from sklearn.model selection import train test split
10 from sklearn.metrics import (
11
      mean absolute error,
12
      mean squared error
13)
```


scikit-learn (sklearn): An open-source library for Python language that features various classification, regression and clustering algorithms.

Step 1: Import necessary libraries

```
1 import numpy as np
 2 import pandas as pd
 3 import matplotlib.pyplot as plt
 5 from sklearn.ensemble import RandomForestRegressor
 6 from sklearn.tree import DecisionTreeRegressor
 7 from sklearn.preprocessing import OrdinalEncoder
 8 from sklearn.preprocessing import StandardScaler
 9 from sklearn.model selection import train test split
10 from sklearn.metrics import (
11
      mean absolute error,
12
      mean squared error
13)
```

sklearn.tree: The module includes decision tree-based models for classification and regression. (In this case we will use regression).

sklearn.ensemble: The module includes ensemble-based methods for classification, regression and anomaly detection. (In this case we will use regression).

Step 2: Load dataset

To read .csv file, we use pandas.read_csv():

```
1 dataset_path = './Housing.csv'
2 df = pd.read_csv(dataset_path)
3 df
```

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheating	airconditioning	parking	prefarea	furnishingstatus
0	13300000	7420	4	2	3	yes	no	no	no	yes	2	yes	furnished
1	12250000	8960	4	4	4	yes	no	no	no	yes	3	no	furnished
2	12250000	9960	3	2	2	yes	no	yes	no	no	2	yes	semi-furnished
3	12215000	7500	4	2	2	yes	no	yes	no	yes	3	yes	furnished
4	11410000	7420	4	1	2	yes	yes	yes	no	yes	2	no	furnished
540	1820000	3000	2	1	1	yes	no	yes	no	no	2	no	unfurnished
541	1767150	2400	3	1	1	no	no	no	no	no	0	no	semi-furnished
542	1750000	3620	2	1	1	yes	no	no	no	no	0	no	unfurnished
543	1750000	2910	3	1	1	no	no	no	no	no	0	no	furnished
544	1750000	3850	3	1	2	yes	no	no	no	no	0	no	unfurnished

545 rows × 13 columns

Step 3: Check missing values and get numerical features statistic

```
1 df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 545 entries, 0 to 544
Data columns (total 13 columns):
    Column
                       Non-Null Count
                                       Dtype
    price
                       545 non-null
                                       int64
 0
     area
                       545 non-null
                                       int64
    bedrooms
                       545 non-null
                                       int64
    bathrooms
                       545 non-null
                                       int64
                       545 non-null
    stories
                                       int64
    mainroad
                       545 non-null
                                       object
                                       object
                       545 non-null
    questroom
                       545 non-null
                                       object
    basement
                                       object
    hotwaterheating
                       545 non-null
    airconditioning
                                       object
 9
                      545 non-null
    parking
                                       int64
                       545 non-null
                                       object
    prefarea
                       545 non-null
    furnishingstatus 545 non-null
                                       object
```

1 df.describe()

	price	area	bedrooms	bathrooms	stories	parking
count	5.450000e+02	545.000000	545.000000	545.000000	545.000000	545.000000
mean	4.766729e+06	5150.541284	2.965138	1.286239	1.805505	0.693578
std	1.870440e+06	2170.141023	0.738064	0.502470	0.867492	0.861586
min	1.750000e+06	1650.000000	1.000000	1.000000	1.000000	0.000000
25%	3.430000e+06	3600.000000	2.000000	1.000000	1.000000	0.000000
50%	4.340000e+06	4600.000000	3.000000	1.000000	2.000000	0.000000
75%	5.740000e+06	6360.000000	3.000000	2.000000	2.000000	1.000000
max	1.330000e+07	16200.000000	6.000000	4.000000	4.000000	3.000000

Using pandas.DataFrame.info() and pandas.DataFrame.describe() to check missing values and get statistic of numerical features.

dtypes: int64(6), object(7)

memory usage: 55.5+ KB

AI VIETNAM All-in-One Course (TA Session)

Code Implementation

Step 4: Deal with categorical variables

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheating	airconditioning	parking	prefarea	furnishingstatus
0	13300000	7420	4	2	3	yes	no	no	no	yes	2	yes	furnished
1	12250000	8960	4	4	4	yes	no	no	no	yes	3	no	furnished
2	12250000	9960	3	2	2	yes	no	yes	no	no	2	yes	semi-furnished
3	12215000	7500	4	2	2	yes	no	yes	no	yes	3	yes	furnished
4	11410000	7420	4	1	2	yes	yes	yes	no	yes	2	no	furnished
													•••
540	1820000	3000	2	1	1	yes	no	yes	no	no	2	no	unfurnished
541	1767150	2400	3	1	1	no	no	no	no	no	0	no	semi-furnished
542	1750000	3620	2	1	1	yes	no	no	no	no	0	no	unfurnished
543	1750000	2910	3	1	1	no	no	no	no	no	0	no	furnished
544	1750000	3850	3	1	2	yes	no	no	no	no	0	no	unfurnished

545 rows x 13 columns

Categorical variable: A type of variable that represents distinct categories or groups. These variables often in the form of string.

Step 4: Deal with categorical variables

X1	X2	Υ	
12	5.5	yes	9.0
4	1.0	no	6.8
9	3.2	no	8.0
10	4.4	yes	8.5

X3 has unique values of ['yes', 'no']

Idea: Convert strings using integer number starting from 0.

=>

• 'yes': 1

• 'no': 0

X1	X2	Х3	Y
12	5.5	yes	9.0
4	1.0	no	6.8
9	3.2	no	8.0
10	4.4	yes	8.5

X1	X2	Х3	Υ	
12	5.5	1	9.0	
4	1.0	0	6.8	
9	3.2	0	8.0	
10	4.4	1	8.5	

Step 4: Deal with categorical variables

1. Check all features that are in form of string (object).

2. Check number of unique values for each feature that are in form of string (object).

```
1 categorical_cols = df.select_dtypes(
2         include=['object']
3 ).columns.to_list()
4 categorical_cols

['mainroad',
         'guestroom',
         'basement',
         'hotwaterheating',
         'airconditioning',
         'prefarea',
         'furnishingstatus']
```

Step 4: Deal with categorical variables

3. Apply OrdinalEncoder() for all categorical features.

Create an instance of OrdinalEncoder().

Apply OrdinalEncoder() to all categorical columns using fit transform().

Create a new DataFrame that only contains encoded categorical data.

Drop all categorical data in original dataframe.

Concatenate both DataFrames.

AI VIETNAM All-in-One Course (TA Session)

Code Implementation

Step 4: Deal with categorical variables

1 encoded df

	price	area	bedrooms	bathrooms	stories	parking	mainroad	guestroom	basement	hotwaterheating	airconditioning	prefarea	furnishingstatus
0	13300000	7420	4	2	3	2	1.0	0.0	0.0	0.0	1.0	1.0	0.0
1	12250000	8960	4	4	4	3	1.0	0.0	0.0	0.0	1.0	0.0	0.0
2	12250000	9960	3	2	2	2	1.0	0.0	1.0	0.0	0.0	1.0	1.0
3	12215000	7500	4	2	2	3	1.0	0.0	1.0	0.0	1.0	1.0	0.0
4	11410000	7420	4	1	2	2	1.0	1.0	1.0	0.0	1.0	0.0	0.0
540	1820000	3000	2	1	1	2	1.0	0.0	1.0	0.0	0.0	0.0	2.0
541	1767150	2400	3	1	1	0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
542	1750000	3620	2	1	1	0	1.0	0.0	0.0	0.0	0.0	0.0	2.0
543	1750000	2910	3	1	1	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
544	1750000	3850	3	1	2	0	1.0	0.0	0.0	0.0	0.0	0.0	2.0

545 rows × 13 columns

Step 5: Normalization

Using sklearn.preprocessing.StandardScaler() to scale all values in dataset.

```
1 normalizer = StandardScaler()
2 dataset_arr = normalizer.fit_transform(
3 | encoded_df
4 )
```

```
z=rac{x_i-\mu}{\sigma}
```

AI VIETNAM All-in-One Course (TA Session)

Code Implementation

❖ Step 6: Split X, y

	price	area	bedrooms	bathrooms	stories	parking	mainroad	guestroom	basement	hotwaterheating	airconditioning	prefarea	furnishingstatus
0	13300000	7420	4	2	3	2	1.0	0.0	0.0	0.0	1.0	1.0	0.0
1	12250000	8960	4	4	4	3	1.0	0.0	0.0	0.0	1.0	0.0	0.0
2	12250000	9960	3	2	2	2	1.0	0.0	1.0	0.0	0.0	1.0	1.0
3	12215000	7500	4	2	2	3	1.0	0.0	1.0	0.0	1.0	1.0	0.0
4	11410000	7420	4	1	2	2	1.0	1.0	1.0	0.0	1.0	0.0	0.0

- Dependent Variable: Price.
- Independent Variables: area, bedrooms, bathrooms, stories, parking, mainroad, guestroom, basement, hotwaterheating, airconditioning, prefarea, furnishingstatus.

```
1 X = dataset_arr[:, 1:]
2 y = dataset_arr[:, 0]
3
4 print(f'Independent Variables shape: {X.shape}')
5 print(f'Dependent Variable shape: {y.shape}')
Independent Variables shape: (545, 12)
Dependent Variable shape: (545,)
```

Step 7: Split train, val set

Step 8: Train models

For Random Forest:

```
1 regressor = RandomForestRegressor(
2     random_state=random_state
3 )
4 regressor.fit(X_train, y_train)
```

RandomForestRegressor

RandomForestRegressor(random_state=1)

For Decision Tree:

```
1 regressor = DecisionTreeRegressor(
2     random_state=random_state
3 )
4 regressor.fit(X_train, y_train)
```

DecisionTreeRegressor

DecisionTreeRegressor(random_state=1)

Step 9: Evaluation

Let trained model predict X of val, then calculating MAE and MSE:

```
1 y_pred = regressor.predict(X_val)
2
3 mae = mean_absolute_error(y_val, y_pred)
4 mse = mean_squared_error(y_val, y_pred)
5
6 print('Evaluation results on validation set:')
7 print(f'Mean Absolute Error: {mae}')
8 print(f'Mean Squared Error: {mse}')
```


Performance of Random Forest on Validation set.

Question

