

-1-

DaimlerChrysler AG

Selbstzündende Brennkraftmaschine

Die Erfindung betrifft eine selbstzündende Brennkraftmaschine, bei der Kraftstoff mittels einer Einspritzdüse mit mehreren Einspritzbohrungen in einen Brennraum eingespritzt wird.

Bei direkteinspritzenden Brennkraftmaschinen mit Selbstzündung werden zur Gestaltung einer lastabhängigen Kraftstoffeinspritzung Einspritzdüsen eingesetzt, bei denen die Gestaltung des Einspritzverlaufs durch einen entsprechenden Aufbau der Einspritzdüse gesteuert wird. Hierdurch soll die Gemischaufbereitung im Brennraum und somit die Emissionsbildung im Abgas verbessert werden. Weiterhin kann die Funktionsweise einer nachgeschalteten Abgas-nachbehandlung optimiert werden.

Aus der DE 19953932 A1 ist ein Verfahren bekannt, bei dem eine kombinierte homogen/heterogene Betriebsweise eines Verbrennungsmotors für die Erzielung mittlerer und höherer Leistungen vorgeschlagen wird. Dabei sollen mit einer Einspritzstrategie sowohl eine frühe homogene Gemischbildung im Kompressionshub als auch eine darauffolgende heterogene Gemischbildung um den oberen Totpunkt ermöglicht werden, wobei die Kraftstoffeinspritzung bei der homogenen Gemischbildung mit einem geringeren Einspritzdruck als bei der heterogenen Gemischbildung erfolgt, um ein Auftragen von Kraftstoff auf die kalten Brennraumwände zu vermeiden. Es hat sich dennoch gezeigt, dass trotz der oben vorgeschlagenen Maßnahmen weiterhin erhöhte Abgas-

-2-

emissionen auftreten. Es müssen daher weitere Maßnahmen getroffen werden, mit denen die Abgasemissionen minimiert werden.

Der Erfindung liegt die Aufgabe zugrunde, eine Brennkraftmaschine mit Selbstzündung bereitzustellen, mit der die Gemischbildung sowie die Verbrennung im Brennraum verbessert werden. Dies wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.

Die erfindungsgemäße Brennkraftmaschine zeichnet sich dadurch aus, dass Kraftstoff mittels einer Düsennadel aufweisenden Einspritzdüse mit mehreren Einspritzbohrungen in einen zwischen einem Kolben und einem Zylinderkopf gebildeten Brennraum in Form mehrerer Kraftstoffstrahlen als eine Haupteinspritzung und gegebenenfalls als eine Vor- und/oder Nacheinspritzung eingespritzt wird, wobei die Einspritzbohrungen der Einspritzdüse in mindestens zwei unterschiedlichen, getrennt ansteuerbaren Lochreihen angeordnet sind, und ein Betriebshub der Düsennadel mittels der Steuereinheit in Abhängigkeit von einer Kolbenstellung (ϕ) und/oder von einem Betriebspunkt der Brennkraftmaschine (1) einstellbar ist.

Demnach kann eine gezielte Einspritzung des Kraftstoffes zur Veränderung der Strahllänge im Brennraum in Abhängigkeit von den Kolbenstellung im Zylinder vorgenommen werden, wodurch die Vermischung des eingespritzten Kraftstoffs mit der Brennraumluft insbesondere während der Vor- und Nacheinspritzung vor Erreichen der Zylinderwand stattfindet. Eine Benetzung der Zylinderwand mit Kraftstoff kann hierdurch weitgehend vermieden werden.

-3-

Gemäß einer Ausgestaltung der Erfindung weisen die Lochreihen der Einspritzdüse unterschiedliche Spritzlochkegelwinkel auf. Dadurch kann der Kraftstoff, insbesondere bei einer Vor- bzw. bei einer Nacheinspritzung unter einem steileren Einspritzwinkel als während der Haupteinspritzung in den Brennraum eingebracht werden. Somit kann die Strahllänge im Brennraum in Abhängigkeit von der Entfernung zwischen der Einspritzdüse und dem Kolben angepasst werden, so dass eine Veränderung der Strahllänge zur Optimierung der Gemischbildung hierdurch gewährleistet bzw. ermöglicht wird.

In einer weiteren Ausgestaltung der Erfindung sind während der Haupteinspritzung eine erste Lochreihe der Einspritzdüse und während der Vor- und/oder der Nacheinspritzung eine zweite Lochreihe aktiviert, wobei der Spritzlochkegelwinkel der ersten Lochreihe größer ist als der Spritzlochkegelwinkel der zweiten Lochreihe. Dabei wird der Kraftstoff während der Haupteinspritzung um einen oberen Totpunkt mit einem flachen Spritzlochkegelwinkel durch die erste Lochreihe, vorzugsweise zwischen 140° und 160° eingespritzt. Dagegen wird der Kraftstoff bei einer frühen und/oder einer späten Kraftstoffeinspritzung unter einem steilen Einsspritzkegelwinkel, z.B. zwischen 60° und 160° , durch die vorzugsweise unterhalb der ersten Lochreihe angeordnete zweite Lochreihe in den Brennraum eingespritzt. Hierdurch wird im Brennraum eine optimale Strahllänge während eines Einspritzvorgangs ermöglicht. Erfindungsgemäß umfasst ein Einspritzvorgang je nach Betriebspunkt eine Haupteinspritzung und bei Bedarf eine Vor- und/oder einer Nacheinspritzung.

Gemäß einer weiteren Ausgestaltung der Erfindung ist ein Kraftstoffeinspritzdruck in Abhängigkeit von der Kolben-

-4-

stellung (ϕ) und/oder einem Betriebspunkt einstellbar. Hierdurch kann weiterhin die Strahlänge des in den Brennraum eingebrachten Kraftstoffes beeinflusst werden.

In einer weiteren Ausgestaltung der Erfindung ist ein Betriebshub der Düsenadel der Einspritzdüse derart einstellbar, dass eine instabile kaviterende Strömung in den Einspritzbohrungen der Einspritzdüse gebildet wird. Vorzugsweise wird der Kraftstoff während der Vor- und/oder der Nacheinspritzung in Form von kleinen Teilmengen getaktet vorgenommen. Demnach kann durch die variable Einstellung des Betriebshubs der Düsenadel der Einspritzdüse bei jeder in den Brennraum eingespritzten Teilmenge der Vor- bzw. der Nacheinspritzung die Zerstäubung des jeweiligen Kraftstoffstrahls im Brennraum verstärkt werden, so dass eine Kraftstoffwandlagerung im Zylinder, die z.B. bei kleinerem Gasdruck und niedrigerer Temperatur im Zylinder stetig steigt, minimiert wird. Somit wird erfindungsgemäß die Reichweite jeder Teilmenge bis zu einer Brennraumwand begrenzt sowie ein verstärktes Aufbrechen und Verdampfen des Einspritzstrahls bzw. der Teilmenge, insbesondere mit zunehmend späterem Einspritzbeginn erzielt.

Gemäß einer weiteren Ausgestaltung der Erfindung ist im Brennraum der Brennkraftmaschine eine Drallbewegung einstellbar. Vorzugsweise wird eine erzeugte Kraftstoffwolke eines Kraftstoffstrahls (17) mittels der im Brennraum eingestellten Drallbewegung, insbesondere während einer getaktet vorgenommenen Kraftstoffeinspritzung, versetzt oder seitlich verschoben. Hierdurch kann, z.B. die gebildete Kraftstoffwolke einer Teilmenge bei der Durchdringung des Brennraums, insbesondere in Richtung einer Zylinderwand seitlich verschoben werden. Die Kraftstoff-

-5-

strahlen bzw. die Kraftstofftröpfchen werden während deren Ausbreitung somit von der Zylinderwand weg bewegt bzw. weiter entfernt, so dass sie sich mit der Brennraumluft insbesondere während der Vor- und Nacheinspritzung vor Erreichen der Zylinderwand vermischen oder verdampfen. Somit wird eine Kraftstoffwandanlagerung im Zylinder weitgehend verhindert. Ist im Brennraum keine Drallbewegung vorhanden, dann breitet sich der Kraftstoffstrahl entlang einer Spritzlochmittelachse aus und trifft die Zylinderwand aufgrund der kurzen Weglänge bis zur Zylinderwand. Weiterhin bilden dabei die vorangehenden bzw. die zuerst aus der Einspritzdüse austretenden Strahlpakete einen Strahlkanal aus, der beschleunigtes Eindringen der nachfolgenden Strahlpakete bzw. Teilmengen durch einen Windschatteneffekt zur Folge hat, sodass in Abwesenheit von einer Drallbewegung im Brennraum ein Auftreffen von Kraftstoff auf die Zylinderwand wahrscheinlicher wird.

In einer Ausgestaltung der Erfindung ist der Betriebshub der Düsenadel derart eingestellt, dass innerhalb der Einspritzdüse ein effektiver Strömungsquerschnitt zwischen der Düsenadel und einem Düsenadelsitz etwa das 0,8 bis 1,2-fache eines effektiven Strömungsquerschnittes der Summe aller Einspritzbohrungen beträgt. Dadurch kann eine gewünschte Drosselwirkung im Sitz der Düsenadel gezielt erreicht werden, die eine instabile kaviterende Strömung in den Einspritzbohrungen der Einspritzdüse bewirkt.

In einer weiteren Ausgestaltung der Erfindung weist der Kolben eine Kolbenmulde auf, die tellerförmig ausgebildet ist, wobei sich ein Vorsprung aus der Mitte der Kolbenmulde in Richtung der Einspritzdüse erstreckt. Durch die

-6-

tellerartige Grundform treten in der Kolbenmulde keine enge Radien an der Oberfläche oder Querschnittssprünge im Kolbenboden auf, so dass im Betrieb der Brennkraftmaschine, falls auf die Mulde Kraftstofftröpfchen auftreffen, diese schnell verdampfen.

Gemäß einer weiteren Ausgestaltung der Erfindung weist die Kolbenmulde vom Kolbenboden aus zunächst einen flachen Einlauf mit einer geringen Krümmung und ab dem Bereich der maximalen Muldentiefe eine bis in den Kolbenmuldenvorsprung reichende stärkere Krümmung auf. Dies verhindert eine Kraftstoffanlagerung im Bereich des Kolbenbodens und erzielt somit eine Minimierung von Abgasemissionen. Vorzugsweise weist der Kolbenmuldenvorsprung einen Kegelwinkel in einem Bereich von 90° bis 160° auf.

Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt. Es zeigen:

Fig. 1 einen schematischen Querschnitt durch eine Brennkraftmaschine mit Selbstzündung,

Fig. 2 einen schematischen Querschnitt durch eine Einspritzdüse mit zwei unterschiedlich ansteuerbaren Lochreihen mit unterschiedlichen Spritzlochkegelwinkeln,

Fig. 3 eine schematische Darstellung von eingespritzten Kraftstoffstrahlen durch eine Einspritzdüse nach Fig. 2,

-7-

Fig. 4 eine schematische Anordnung der Einspritzdüse nach Fig. 2 oberhalb einer Kolbenmulde der Brennkraftmaschine gemäß Fig. 1,

Fig. 5 eine schematische Darstellung einer Querschnittsansicht der Kolbenmulde gemäß Fig. 4,

Fig. 6 eine schematische Darstellung von getakteten Einspritzstrahlen mit und ohne Drall,

Fig. 7 ein Diagramm zum Verlauf der getakteten Kraftstoffeinspritzung nach Fig. 6,

Fig. 8 eine schematische Darstellung einer Drosselwirkung im Düsenloch einer Mehrlochdüse zur Bildung einer instabilen kaviterenden Strömung,

Fig. 9 eine schematische Darstellung einer Kraftstoffeinspritzung in den Brennraum der Brennkraftmaschine nach Fig. 1 mit unterschiedlichen Spritzlochkegelwinkeln.

Fig. 1 zeigt eine Brennkraftmaschine 1, bei der eine Kurbelwelle 2 durch einen in einem Zylinder 9 geführten Kolben 5 über eine Pleuelstange 4 angetrieben wird. Zwischen dem Kolben 5 und einem Zylinderkopf 10 wird im Zylinder 9 ein Brennraum 8 gebildet, der eine in den Kolbenboden 7 eingelassene Kolbenmulde 6 umfasst.

Bei der Drehung einer Kurbel 3 der Kurbelwelle 2 auf einem Kurbelkreis 11 im Uhrzeigersinn verkleinert sich der Brennraum 8, wobei die in ihm eingeschlossene Luft verdichtet wird. Der Ladungswechsel im Brennraum 8 erfolgt

-8-

über nicht dargestellte Gaswechselventile und Gaskanäle im Zylinderkopf 10.

Mit dem Erreichen eines oberen Totpunktes 12 der Kurbel 3, nachfolgend mit OT bezeichnet, ist das Ende der Verdichtung erreicht. Die aktuelle Lage des Kolbens 5 zum Zylinderkopf 10 wird durch den Kurbelwinkel ϕ in Bezug auf den oberen Totpunkt 12 bestimmt.

Eine Einspritzdüse 13 mit mehreren Einspritzbohrungen 21 ist im Zylinderkopf 10 zentral angeordnet. Die Einspritzbohrungen sind jeweils um einen Winkel von 30° bis 80° zur Düsenachse geneigt. Der Spritzlochkegelwinkel beträgt ca. 60° bis 160° , vorzugsweise 80° bis 140° . Es kann sich prinzipiell um eine konventionelle und damit kostengünstige Lochdüse vom Typ Sitzloch, Mini-Sackloch oder Sackloch handeln. Die Einspritzdüse 13 wird über eine Signalleitung 15 und einen Aktuator 14, beispielsweise einen Piezo-Aktuator, von einer elektronischen Steuereinheit 16, der Motorsteuerung, angesteuert. Die aus der Einspritzdüse austretenden Einspritzstrahlen sind mit 17 bezeichnet.

Der Kraftstoff wird von einer Einspritzpumpe 18 in mehreren Druckstufen zur Verfügung gestellt, wobei ein Steuerventil 20, zweckmäßigerweise ein elektronisch ansteuerbares Magnetventil, den jeweiligen maximalen Druck in der Kraftstoffleitung 19 begrenzt. Bevorzugt wird mittels eines geeigneten Einspritzsystems der Einspritzdruck angepasst. Dabei kann ein nadelhubgesteuertes Einspritzsystem mit einer entsprechenden Druckmodulation verwendet werden.

-9-

Erfnungsgemäß weist die Einspritzdüse 13 vier bis vierzehn Einspritzbohrungen 21 auf, welche vorzugsweise in einer oder zwei Lochreihen über dem Umfang verteilt angeordnet sind. Vorzugsweise ist die Einspritzdüse 13 als eine innenöffnende Koaxial-Variodüse ausgebildet, die zwei unterschiedlich ansteuerbare Lochreihen L_{R1} und L_{R2} aufweist. Vorzugsweise wird eine Einspritzdüse verwendet, welche mit variabel schaltbaren Einspritzlochreihen gemäß Fig. 2 als eine Koaxial-Variodüse der Firma Bosch in Verbindung mit einer direkten Piezoansteuerung ausgebildet ist.

Die erste Lochreihe L_{R1} weist vorzugsweise einen Spritzlochkegelwinkel α_1 zwischen 140° und 180° auf. Die dient zur Darstellung eines konventionellen Magerbetriebs und ist oberhalb der zweiten Lochreihe L_{R2} gemäß Fig. 2 angeordnet. Die zweite Lochreihe weist einen kleineren Spritzlochkegelwinkel α_2 , vorzugsweise zwischen 60° und 140° auf. Sie dient insbesondere zur Gestaltung einer Fettverbrennung mit einer Nacheinspritzung und gegebenenfalls einer Voreinspritzung. Durch die Ansteuerung der zweiten Lochreihe L_{R2} mit dem kleineren Einsspritzkegelwinkel α_2 wird eine freie Strahllänge z.B. bei einer späten Nacheinspritzung, beispielsweise bei 70°KW bis 90°KW nach OT gemäß Fig. 3, rechtes Bild, verlängert. Somit trifft der Kraftstoffstrahl 17 nicht auf die Zylinderwand sondern wird in Richtung der Kolbenmulde 6 bzw. auf den Kolbenboden 7 gerichtet.

Die Einspritzdüse 13 weist eine in Fig. 8 dargestellte Düsenadel 13a auf, die mit einem nicht dargestellten Steuerelement verbunden ist. Durch die Ansteuerung der Düsenadel 13a durch das Steuerelement wird sie bewegt, um die Einspritzdüse 13 zu öffnen bzw. zu schließen. Da-

-10-

bei wird ein bestimmter Betriebshub h während einer Betriebsstellung betriebspunktabhängig und/oder in Abhängigkeit von dem Kurbelwinkel φ eingestellt. Ein Kraftstoffdurchfluss kann dann in Abhängigkeit vom Betriebshub h und einer Öffnungszeit bzw. einer Taktdauer sowie vom eingestellten Kraftstoffeinspritzdruck bestimmt bzw. verändert werden.

Gemäß Fig. 4 ist die Einspritzdüse 13 oberhalb einer im Kolbenboden 7 eingelassenen Kolbenmulde 6 angeordnet, die im Brennraum 8 der Brennkraftmaschine 1 mittig angeordnet ist. Die Kolbenmulde 6 ist tellerförmig gestaltet, wobei sich in der Mitte der Kolbenmulde 6 ein Vorsprung als eine Kolbenmuldenspitze 6a befindet. Die Kolbenmuldenspitze 6a ist durch einen Muldenboden 6b umrandet, wobei die Muldenspitze 6a in Richtung der Einspritzdüse 13 hinausragt. Durch die tellerförmige Ausbildung der Kolbenmulde 6 ist gewährleistet, dass in einem konventionellen Magerbetrieb mit einer Haupteinspritzung um den oberen Tropunkt OT gemäß Fig. 3, linkes Bild, keine Überfettung des Gemisches in der Kolbenmulde auftritt.

Die Kolbenmulde 6 weist gemäß Fig. 5 am Rand als Übergang zum Kolbenboden 7 einen Radius R1 auf, der bevorzugt zwischen drei und sieben mm beträgt. Die äußeren Bereiche des Muldenbodens 6b sind mit einem Kugelradius R2 zwischen 40 mm und 50 mm ausgebildet. Der Übergang von der Kolbenmuldenspitze 6a zum Kolbenmuldenboden 6b weist eine Krümmung mit einem Radius R3 von etwa 16 bis 24 mm auf. Die Kolbenmuldenspitze 6a befindet sich in etwa gegenüber der Einspritzdüse 13. Die Tiefe der Kolbenmulde 6 nimmt vom Rand der Kolbenmulde 6 bis hin zum Kolbenmuldenboden 6b zu. Die Kolbenmuldenspitze 6a erstreckt sich gegenüber der Einspritzdüse 13 derart, dass sie annähernd unterhalb

-11-

des Kolbenbodens 7 angeordnet bleibt. Der Abstand d1 zwischen dem oberen Punkt der Kolbenmuldenspitze 6a und dem Kolbenboden beträgt etwa 3 mm bis 10 mm, wobei d1 bevorzugt zwischen 5 mm und 8 mm ausgebildet sein kann. Die Muldenbodentiefe d2 beträgt etwa 15 mm bis 20 mm. Die tellerartige Muldengrundform weist im Randbereich der Kolbenmulde 6 einen abgerundeten Übergang zum Kolbenboden, um Ansammlungen des Kraftstoffs zu vermeiden.

Die Kolbenmuldenspitze 6a ist kegelartig mit einem Muldenkegelwinkel β im Bereich von 90° bis 130° ausgebildet und ist mit einer abgerundeten Spitze mit einem Radius R4 von etwa 3 bis 7 mm ausgeführt. Der Kraftstoffkegelwinkel α und die Lage der Kolbenmuldenspitze 6a wirken derart zusammen, dass die Ausbreitung der Kraftstoffstrahlen durch die Kolbenmuldenspitze 6a nicht gestört wird. Somit ist gewährleistet, dass die Kraftstoffstrahlen annähernd bei jeder Kolbenstellung im Zylinder im Bereich der Kolbenmulde 6 treffen.

Bei der Haupteinspritzung wirkt sich die Kolbenmuldenform sehr vorteilhaft, so dass für die heterogene Verbrennungsphase eine thermische NO-Bildung deutlich vermindert wird, da die Sauerstoffkonzentration durch einen vorangegangenen homogenen Verbrennungsanteil durch die Voreinspritzung reduziert wird. Bei einer späten Kraftstoffnacheinspritzung, z.B. 80° KW nach OT, wird der Kraftstoff unter einem steilen Einspritzwinkel von 60° bis 140° durch die untenliegende Lochreihe L_{R2} in den Brennraum 8 eingebracht, wodurch sich die freie Strahllänge gemäß Fig. 5 und Fig. 3, rechtes Bild, verlängert.

Werden die Vor- und die Nacheinspritzung getaktet vorgenommen, dann wirkt sich die erfindungsgemäße Brennraum-

-12-

konfiguration, d.h. die Ausgestaltung der Einspritzdüse 13 sowie der Kolbenmuldenform und deren Anordnung im Brennraum 8, zur Verhinderung einer Benetzung der Brennraumwände mit Kraftstoff sehr positiv aus, da die Einspritzdüse 13 im Bereich einer Zylindermittelachse im Zylinderkopf 10 und die im Kolbenboden 7 angeordnete Kolbenmulde 6 gegenüberliegend angeordnet sind.

Erfnungsgemäß wird die Bildung einer Drallbewegung im Brennraum 8 als eine weitere Maßnahme zur Reduzierung der Benetzung der Brennraumwände mit Kraftstoff vorgesehen, welche sich insbesondere bei getakteter Kraftstoffeinspritzung bei der vorliegenden Brennraumkonfiguration auf den Betrieb der Brennkraftmaschine positiv auswirkt. Liegt im Brennraum 8 kein Drall vor, dann nehmen die eingespritzten Kraftstoffteilmengen eines Kraftstoffstrahls einen entsprechenden Verlauf gemäß Fig. 6, rechtes Bild, wo ein Sektor des Brennraums 8 schematisch dargestellt ist, in dem sich ein getakteter Einspritzstrahl aus einer Einspritzbohrung entlang einer Spritzloch- bzw. Strahlmittelachse 25 in Richtung der Zylinderwand ausbreitet. Gemäß Fig. 7 ist eine Taktfolge dargestellt, mit der beispielsweise drei Kraftstoffteilmengen T_1 , T_2 , und T_3 in den Brennraum eingespritzt werden. Erfnungsgemäß kann die Taktung als eine zwei- bis achtfache Taktung vorgenommen werden.

Gemäß Fig. 6, linkes Bild, werden bei getakteter Einspritzung die Flugbahn der einzelnen Kraftstoffteilmengen T_{1D} , T_{2D} und T_{3D} deutlich von der Strahlmittelachse 25 abgelenkt, wenn die Ladungsbewegung im Brennraum 8 einen Drall aufweist. Dagegen treffen gemäß Fig. 6, rechtes Bild, die Kraftstoffteilmengen aufgrund der kürzeren Weglänge zur Zylinderwand auf die Brennraumwand auf. Liegt

-13-

im Brennraum 8 eine Drallbewegung vor, dann verlängert sich die freie Strahlänge bis zur Zylinderwand im Vergleich zum Verlauf der Flugbahn der einzelnen Kraftstoffteilmengen T_1 , T_2 und T_3 , rechtes Bild. Eine Kraftstoffwandanlagerung kann dadurch weitgehend vermieden werden.

Dementsprechend ist es zweckmäßig, zusätzlich einen zuschaltbaren variablen Drall im Brennraum 8 der Brennkraftmaschine 1 auszubilden, so dass eine Gemischwolke einer Einspritzteilmenge insbesondere bei einer Voreinspritzung und/oder bei einer Nacheinspritzung durch eine angepasste Drallbewegung der Ladung im Brennraum unterstützt und gleichzeitig die Strahleindringtiefe reduziert wird. Die Strahlkeule bzw. die Gemischwolke eines Einspritztaktes wird demnach durch die Drallströmung so weit gedreht, dass bei einem nachfolgenden Einspritztakt die neu gebildeten Strahlkeulen nicht in die Gemischwolke der vorangegangenen Einspritzteilmenge eindringen. Hierdurch werden örtliche Überfettungen sowie die Strahleinringtiefen verringert, wodurch weniger Rußpartikel gebildet werden.

In Fig. 8 ist eine schematische Darstellung der Einspritzdüse 13 vom Typ Sacklochdüse angegeben, wobei sich eine Düse vom Typ Sitzlochdüse verwenden kann. In der Einspritzdüse 13 gemäß Fig. 6 ist die Wirkung einer hervorgerufenen instabilen kaviterenden Strömung in einem Düsenloch 21 der Einspritzdüse 13 bei geringem Nadelhub h der Düsenadel 13a, d. h. bei teilweise geöffneter Einspritzdüse 13, und die dadurch erzielte Wirkung auf einen Ausbreitungswinkel α_3 des Einspritzstrahls 17 dargestellt.

-14-

Auf der rechten Seite in Fig. 8 ist die Einspritzdüse 13 nur teilweise geöffnet, wodurch eine Drosselung im Düsen- nadelssitz 22 erzielt wird. Durch diese Drosselung wird im Düsenloch 21 eine turbulente bzw. eine instabile kavitiere nde Strömung hervorgerufen, die zu einem großen Ausbreitungswinkel α_3 des Kraftstoffstrahls 17 führt. Im Vergleich zu einer voll geöffneten Einspritzdüse mit maximaler Hubeinstellung, wie auf der linken Seite der Fig. 8 dargestellt, ist der Ausbreitungswinkel α_3 durch die instabile kavitiere nde Strömung größer als ein Ausbreitungswinkel α_4 , der ohne eine solche Strömung bewirkt wird. Die instabile kavitiere nde Strömung ruft starke Fluktuationen der Düseninnenströmung 23 hervor, welche beim Kraftstoffaustritt aus dem Düsenloch 21 zu einem verstärkten Kraftstoffstrahlzerfall führen und somit zu einem großen Ausbreitungswinkel α_3 .

Der Kraftstoffstrahl mit dem Ausbreitungswinkel α_3 breitet sich im Brennraum mit einer intensiven Zerstäubung aus, und bewirkt somit eine bessere Homogenisierung sowie eine schnelle Kraftstoffverdampfung, so dass mehr Kraftstoff in einer Teilmenge der Voreinspritzung oder der Nacheinspritzung ohne eine nennenswerte Brennraumwandbe netzung eingespritzt werden kann. Dagegen wird bei der Einspritzdüse 13 mit der maximalen Hubeinstellung gemäß der linken Seite in Fig. 8 im inneren des Düsenlochs 21 auf der linken Seite eine zweiphasige Strömung 24 hervor gerufen, welche zu einem konventionellen Kraftstoffzer fall führt. Im Vergleich zu einer teilweise geöffneten Einspritzdüse ist der Ausbreitungswinkel α_4 kleiner als der Ausbreitungswinkel α_3 .

-15-

Eine gezielte Einstellung einer gewünschten Drosselwirkung im Sitz der Düsenadel kann mit einer geeigneten konstruktiven Maßnahme, z.B. durch einen 2-Federhalter an der Einspritzdüse das Verharren der Düsenadel auf einer Betriebshubstellung, die zwischen der vollständig geschlossenen bzw. geöffneten Position liegt, unterstützt werden. Alternativ kann diese Einstellung über eine mittels Piezostellglied direkt gesteuerte Düsenadel realisiert werden. Durch eine Erzielung einer Drosselwirkung im Einspritzdüsensitz mittels der Einstellung des Betriebshubs h und die betriebspunkt- und/oder kolbenstellungsabhängige Ansteuerung der Lochreihen wird eine Begrenzung bzw. eine Veränderung der Reichweite der einsgespritzten Kraftstoffstrahlen 17 erzielt.

Um einen möglichst großen Ausbreitungswinkel α_3 bei einer teilweise geöffneten Mehrloch-Einspritzdüse zu erzielen, sollte vorzugsweise die Ansteuerung derart erfolgen, dass der effektive Strömungsquerschnitt im Nadelsitz vorzugsweise etwa das 0,8 bis 1,2 -fache eines effektiven Strömungsquerschnittes der Summe aller Querschnitte der Einspritzbohrungen beträgt.

In Fig. 9 ist die Auswirkung einer Wahl kleinerer Spritzlochkegelwinkel, z.B. 60° anstelle 140° dargestellt. Hierdurch wird die freie Strahllänge bei einer späten Nacheinspritzung, z.B. 70° KW bis 90° KW nach OT verlängert. Der Kraftstoffstrahl wird dann nicht auf die Zylinderwand sondern auf die Kolbenoberfläche bzw. in Richtung der Kolbenmulde gerichtet.

Weitere Maßnahmen zur Optimierung der Gemischbildung beim Betrieb der Brennkraftmaschine 1 können durch eine betriebspunktabhängige Variation einer vorgenommenen

-16-

Taktung und/oder durch einer Veränderung des Kraftstofffeinspritzdruckes realisiert werden. Beispielsweise wird die Haupteinspritzung in einem Bereich zwischen 10°KW vor OT bis 40°KW nach OT bei einem höheren Einspritzdruck als während der Vor- und der Nacheinspritzung vorgenommen. Dabei wird während der Haupteinspritzung ein größerer Nadelhub h als bei der Voreinspritzung eingestellt. Die Einspritzung einer zusätzlichen Kraftstoffmenge in Form einer Nacheinspritzung kann insbesondere während einer Fettphase mittels einer 2- bis 8-fachen getakteten Einspritzung im Expansionshub während eines Intervalls von ca. 20° bis 150° KW nach OT vorgenommen werden. Die einzelnen Einspritztakte für die Einspritzung werden bezüglich Dauer, Einspritzdruck, Nadelhubverlauf und Wechselwirkung mit der Zylinderinnenströmung so angepasst, dass eine bestmögliche Gemischverteilung erzielt wird. Somit wird ein Kraftstoffauftrag auf die Zylinderwand weitgehend verhindert.

Die Nadelhubeinstellung wird während der Nacheinspritzung unterschiedlich vorgenommen, wobei sie vorzugsweise nachfolgend kleiner eingestellt wird. Dabei wird während der Nacheinspritzung bei veränderlichem Nadelhub ein konstanter Kraftstofffeinspritzdruck eingestellt, der vorzugsweise höher als der während der Voreinspritzung und kleiner als der während der Haupteinspritzung ist. Vorzugsweise wird die Taktung während der Nacheinspritzung derart vorgenommen, dass die erste Kraftstoffteilmenge der Nacheinspritzung größer ist als die nachfolgende Kraftstoffteilmenge.

Es ist zweckmäßig, dass während der Vor- und der Nacheinspritzung unterschiedliche Kraftstoffdruck-Änderungsraten eingestellt werden, da sowohl während der Vor- als auch

während der Nacheinspritzung im Brennraum 8 unterschiedliche Verbrennungsreaktionen stattfinden, die ungleiche Brennraumdruck- bzw. Temperaturverläufe hervorrufen. Beispielsweise wird ein kombinierter Homogen/Heterogen-Betrieb der Brennkraftmaschine mit 4-fach getakteter Voreinspritzung und ansteigender Taktdauer bei konstantem Einspritzdruck vorgenommen, bei dem die Düsennadel 13a bei einer unteren Hubstellung verharrt. Die Haupteinspritzung erfolgt dann bei einem erhöhten Einspritzdruck und einem maximal eingestellten Nadelhub h . Eine Nacheinspritzung mit abnehmender Taktdauer bei konstantem Einspritzdruck wird anschließend eingespritzt. Vorzugsweise wird die Taktung während der Nacheinspritzung derart vorgenommen, dass die erste Kraftstoffteilmenge der Nacheinspritzung größer ist als die nachfolgende Kraftstoffteilmenge.

Vorzugsweise beträgt die Gesamteinspritzmenge der Voreinspritzung vorzugsweise, insbesondere bei den o.g. Einspritzstrategien, im unteren Teillastbereich, d.h. bis zu 70% Last, etwa 20% bis 50% der Haupteinspritzmenge und im oberen Lastbereich, d.h. von 70% Last bis zur Vollast, etwa 10% bis 30% der Haupteinspritzmenge. Sie wird dabei so gewählt, dass klopfende Verbrennung sicher vermieden wird. Dieser homogenisierte Kraftstoffanteil verbrennt dann annähernd Ruß- und NOx-frei, erzeugt jedoch bereits einen erheblichen Anteil, der für die NOx-Reduktion am NOx-Speicher-Kat erforderlichen CO-Emission und liefert einen wichtigen Anteil zur Reduzierung des Luftverhältnisses.

Durch die erfindungsgemäße Brennraumkonfiguration in Verbindung mit der erfindungsgemäßen Einspritzdüse wird bei einer frühen bzw. späten Kraftstoffeinbringung eine ver-

-18-

stärkte Homogenisierung erzielt, so dass ein Kraftstoffauftrag an der Zylinderwand verhindert werden kann.

Gleichzeitig wirkt sich die vorgesehene Brennraumform sehr vorteilhaft auf die heterogene Gemischbildung bei der Haupteinspritzung. Ein kombinierter Homogen/Heterogen-Betrieb innerhalb eines Arbeitsspiels kann hierdurch mit einer konventionellen Mehrlochdüse gestaltet werden.

Die vorliegende Brennkraftmaschine 1 eignet sich insbesondere für ein kombiniertes homogen/heterogenes Brennverfahren mit Selbstzündung, so dass eine konventionelle Magerverbrennung, bekannt aus Dieselmotoren, sowie eine Fettverbrennung zur Optimierung einer nachgeschalteten Abgasnachbehandlungsanlage, die insbesondere für magerbetriebene Brennkraftmaschinen ausgelegt ist, durchgeführt werden kann. Die Brennkraftmaschine 1 wird üblicherweise weitgehend in einem Magerbetrieb und bei Bedarf zur Optimierung der nachgeschalteten Abgasreinigungsanlage in einem Fettbetrieb gefahren. Sowohl im Magerbetrieb als auch im Fettbetrieb der Brennkraftmaschine 1 kann die einzubringende Kraftstoffmenge durch eine betriebspunktabhängige Aufteilung als eine Vor- Haupt- und Nacheinspritzmenge in den Brennraum eingebracht werden. Im Betrieb der Brennkraftmaschine 1 werden Maßnahmen zur Vermeidung der Anlagerung von flüssigem Kraftstoff in Verbindung mit einer nach einer Haupteinspritzung vorgesehenen Nacheinspritzung oder mit einer vor der Haupteinspritzung vorgesehenen Voreinspritzung getroffen, so dass ein frühes Vermischen mit der im Brennraum befindlichen Verbrennungsluft stattfindet. Diese Maßnahmen können einzeln oder miteinander kombiniert vorgenommen werden, so dass jede denkbare Kombination dieser Maßnahmen bei Bedarf gewählt werden kann.

DaimlerChrysler AG

Patentansprüche

1. Brennkraftmaschine mit

- einer Steuereinheit (16) und einem zwischen einem Kolben (5) und einem Zylinderkopf gebildeten Brennraum (8) und einer Kraftstoffeinspritzvorrichtung mit einer Einspritzdüse (13), welche eine Düsenadel (13a) und mehrere Einspritzbohrungen (21) aufweist, wobei
- mittels der Einspritzdüse Kraftstoff in Form mehrerer Kraftstoffstrahlen (17) als eine Haupteinspritzung und gegebenenfalls als eine Vor- und/oder Nacheinspritzung in den Brennraum (8) eingespritzt wird,
- die Einspritzbohrungen (21) der Einspritzdüse (13) in mindestens zwei unterschiedlichen, getrennt ansteuerbaren Lochreihen angeordnet sind, und
- ein Betriebshub der Düsenadel mittels der Steuerseinheit in Abhängigkeit von einer Kolbenstellung (ϕ) und/oder von einem Betriebspunkt der Brennkraftmaschine (1) einstellbar ist.

2. Brennkraftmaschine nach Anspruch 1,
dadurch gekennzeichnet, dass
die Lochreihen der Einspritzdüse (13) unterschiedliche Spritzlochkegelwinkel (α) aufweisen.

3. Brennkraftmaschine nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass

-20-

während der Haupteinspritzung eine erste Lochreihe (LR₁) der Einspritzdüse (13) und während der Vor- und/oder der Nacheinspritzung eine zweite Lochreihe (LR₂) aktiviert sind, wobei der Spritzlochkegelwinkel der ersten Lochreihe (LR₁) größer ist als der Spritzlochkegelwinkel der zweiten Lochreihe (LR₂).

4. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Kraftstoffeinspritzdruck in Abhängigkeit von der Kolbenstellung (φ) und/oder einem Betriebspunkt einstellbar ist.
5. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Betriebshub der Düsennadel (13a) der Einspritzdüse derart einstellbar ist, dass eine instabile kaviterende Strömung in den Einspritzbohrungen (21) der Einspritzdüse (13) gebildet wird.
6. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Brennraum eine Drallbewegung einstellbar ist.
7. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine erzeugte Kraftstoffwolke eines Kraftstoffstrahls (17) mittels der im Brennraum eingestellten Drallbewegung, insbesondere während einer getaktet vorgenommenen Kraftstoffeinspritzung, versetzt oder seitlich verschoben wird.
8. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass

der Betriebshub der Düsenadel (13a) der Einspritzdüse (13) derart eingestellt ist, dass innerhalb der Einspritzdüse (13) ein effektiver Strömungsquerschnitt zwischen der Düsenadel (13a) und einem Düsenadelsitz (22) etwa das 0,8 bis 1,2-fache eines effektiven Strömungsquerschnittes der Summe aller Einspritzbohrungen beträgt.

9. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Spritzlochkegelwinkel zwischen den eingespritzten Kraftstoffstrahlen (17) zwischen 60° und 160° beträgt.
10. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Betriebshub der Düsenadel (13a) mittels einer Zweifederhalterung, einer piezogesteuerten Düsenadel oder einer Koaxial-Variodüse einstellbar ist.
11. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kolben eine Kolbenmulde aufweist, die tellerförmig ausgebildet ist, wobei sich ein Vorsprung aus der Mitte der Kolbenmulde in Richtung der Einspritzdüse erstreckt.
12. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kolbenmulde vom Kolbenboden aus zunächst einen flachen Einlauf mit einer geringen Krümmung und ab dem Bereich der maximalen Muldentiefe eine bis in den Kolbenmuldenvorsprung reichende stärkere Krümmung aufweist.

-22-

13. Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kolbenmuldenvorsprung einen Kegelwinkel in einem Bereich von 90° bis 140° aufweist.

1/5

Fig. 1

2/5

Fig. 2

Fig. 3

3/5

Fig. 4

Fig. 5

4/5

Fig. 6

Fig. 7

5/5

Fig. 8

Fig. 9

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/006879

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7	F02B1/12	F02M45/08
		F02B23/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7	F02B	F02M
		F02D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ^a	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 03/052259 A (ROBERT BOSCH GMBH) 26 June 2003 (2003-06-26) abstract; figures page 4, line 8 - page 5, line 15 page 10, line 31 - page 12, line 17 -----	1,4,5, 8-10
Y	EP 1 321 662 A (CATERPILLAR INC) 25 June 2003 (2003-06-25) abstract; figures column 1, paragraph 2 - column 2, paragraph 8 column 4, paragraph 12 - column 6, paragraph 15 column 16, line 26 - line 30 column 27, paragraph 60 - column 29, paragraph 64 -----	2,3,6,7, 11-13
Y	EP 1 321 662 A (CATERPILLAR INC) 25 June 2003 (2003-06-25) abstract; figures column 1, paragraph 2 - column 2, paragraph 8 column 4, paragraph 12 - column 6, paragraph 15 column 16, line 26 - line 30 column 27, paragraph 60 - column 29, paragraph 64 -----	2,3
A	column 1, paragraph 2 - column 2, paragraph 8 column 4, paragraph 12 - column 6, paragraph 15 column 16, line 26 - line 30 column 27, paragraph 60 - column 29, paragraph 64 -----	1,4-13
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

^a Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the International search report

29 October 2004

08.11.2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patenttaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Döring, M

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/006879

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	DE 199 53 932 A (DAIMLER CHRYSLER AG) 23 May 2001 (2001-05-23) cited in the application abstract; figures column 1, line 42 - last line column 2, line 15 - line 20 column 4, line 15 - column 5, line 1 column 5, line 59 - column 7, line 18 -----	6,7
A	US 2003/102390 A1 (CLARKE JOHN M ET AL) 5 June 2003 (2003-06-05) abstract; figures page 2, paragraph 23 - page 3, paragraph 25 -----	1-5,8-13
A	US 6 513 487 B1 (JORACH RAINER WERNER ET AL) 4 February 2003 (2003-02-04) abstract; figures column 5, line 40 - column 6, last line -----	1-13
A	WO 02/18775 A (RICARDO CONSULTING ENG LTD (GB); BEST CHRISTOPHER H (GB)) 7 March 2002 (2002-03-07) abstract; claims; figures page 9, line 5 - line 19 page 10, line 12 - line 32 page 11, line 20 - page 15, line 19 -----	1-13
A	US 2003/094517 A1 (KATO MASAAKI; DATE KENJI) 22 May 2003 (2003-05-22) abstract; figures page 3, paragraph 42 page 4, paragraph 52 page 4, paragraph 58 - page 5, paragraph 65 -----	1-13
A	PATENT ABSTRACTS OF JAPAN vol. 1997, no. 02, 28 February 1997 (1997-02-28) -& JP 8 254123 A (MITSUBISHI MOTORS CORP), 1 October 1996 (1996-10-01) abstract; figures -----	1-4,9-13
A	US 5 163 621 A (KATO MASAAKI ET AL) 17 November 1992 (1992-11-17) abstract; figures column 4, line 16 - column 5, line 26 -----	1,5,8
A	EP 1 217 186 A (INSTUT FRANCAIS DU PETROL) 26 June 2002 (2002-06-26) abstract; figures column 5, paragraph 30 - paragraph 33 column 6, paragraph 38 -----	1,11-13
	-/-	

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/006879

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DE 42 10 563 A (VOLKSWAGEN AG) 22 October 1992 (1992-10-22) abstract; figures column 3, line 7 - column 4, line 1 -----	1

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/006879

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 03052259	A	26-06-2003	DE WO	10162384 A1 03052259 A1		03-07-2003 26-06-2003
EP 1321662	A	25-06-2003	US EP JP	2003066509 A1 1321662 A1 2003161220 A		10-04-2003 25-06-2003 06-06-2003
DE 19953932	A	23-05-2001	DE US	19953932 A1 6505601 B1		23-05-2001 14-01-2003
US 2003102390	A1	05-06-2003		NONE		
US 6513487	B1	04-02-2003	DE EP	19916485 A1 1045136 A1		26-10-2000 18-10-2000
WO 0218775	A	07-03-2002	AU EP WO JP US	7572501 A 1313940 A1 0218775 A1 2004507660 T 2004055559 A1		13-03-2002 28-05-2003 07-03-2002 11-03-2004 25-03-2004
US 2003094517	A1	22-05-2003	JP DE	2003214299 A 10253139 A1		30-07-2003 26-06-2003
JP 8254123	A	01-10-1996		NONE		
US 5163621	A	17-11-1992	JP JP DE	2819702 B2 3182682 A 4039520 A1		05-11-1998 08-08-1991 04-07-1991
EP 1217186	A	26-06-2002	FR FR EP JP US	2818324 A1 2818325 A1 1217186 A2 2002227650 A 2002117146 A1		21-06-2002 21-06-2002 26-06-2002 14-08-2002 29-08-2002
DE 4210563	A	22-10-1992	DE GB	4210563 A1 2254886 A ,B		22-10-1992 21-10-1992

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/006879

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 F02B1/12 F02M45/08 F02B23/06

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 F02B F02M F02D

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ^a	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
2 X	WO 03/052259 A (ROBERT BOSCH GMBH) 26. Juni 2003 (2003-06-26) Zusammenfassung; Abbildungen Seite 4, Zeile 8 - Seite 5, Zeile 15 Seite 10, Zeile 31 - Seite 12, Zeile 17 -----	1,4,5, 8-10
17 Y	EP 1 321 662 A (CATERPILLAR INC) 25. Juni 2003 (2003-06-25) Zusammenfassung; Abbildungen Spalte 1, Absatz 2 - Spalte 2, Absatz 8 Spalte 4, Absatz 12 - Spalte 6, Absatz 15 Spalte 16, Zeile 26 - Zeile 30 Spalte 27, Absatz 60 - Spalte 29, Absatz 64 ----- -/-	2,3,6,7, 11-13 2,3 1,4-13

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

^a Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

29. Oktober 2004

08. 11. 2004

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Döring, M

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/006879

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie ^a	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
1 Y	DE 199 53 932 A (DAIMLER CHRYSLER AG) 23. Mai 2001 (2001-05-23) in der Anmeldung erwähnt A Zusammenfassung; Abbildungen Spalte 1, Zeile 42 - letzte Zeile Spalte 2, Zeile 15 - Zeile 20 Spalte 4, Zeile 15 - Spalte 5, Zeile 1 Spalte 5, Zeile 59 - Spalte 7, Zeile 18 -----	6,7
1 Y	US 2003/102390 A1 (CLARKE JOHN M ET AL) 5. Juni 2003 (2003-06-05) A Zusammenfassung; Abbildungen Seite 2, Absatz 23 - Seite 3, Absatz 25 -----	11-13
13 A	US 6 513 487 B1 (JORACH RAINER WERNER ET AL) 4. Februar 2003 (2003-02-04) Zusammenfassung; Abbildungen Spalte 5, Zeile 40 - Spalte 6, letzte Zeile -----	1-13
1 A	WO 02/18775 A (RICARDO CONSULTING ENG LTD (GB); BEST CHRISTOPHER H (GB)) 7. März 2002 (2002-03-07) Zusammenfassung; Ansprüche; Abbildungen Seite 9, Zeile 5 - Zeile 19 Seite 10, Zeile 12 - Zeile 32 Seite 11, Zeile 20 - Seite 15, Zeile 19 -----	1-13
2 A	US 2003/094517 A1 (KATO MASAAKI; DATE KENJI) 22. Mai 2003 (2003-05-22) Zusammenfassung; Abbildungen Seite 3, Absatz 42 Seite 4, Absatz 52 Seite 4, Absatz 58 - Seite 5, Absatz 65 -----	1-13
8 A	PATENT ABSTRACTS OF JAPAN Bd. 1997, Nr. 02, 28. Februar 1997 (1997-02-28) -& JP 8 254123 A (MITSUBISHI MOTORS CORP), 1. Oktober 1996 (1996-10-01) Zusammenfassung; Abbildungen -----	1-4,9-13
19 A	US 5 163 621 A (KATO MASAAKI ET AL) 17. November 1992 (1992-11-17) Zusammenfassung; Abbildungen Spalte 4, Zeile 16 - Spalte 5, Zeile 26 -----	1,5,8
3 A	EP 1 217 186 A (INSTUT FRANCAIS DU PETROL) 26. Juni 2002 (2002-06-26) Zusammenfassung; Abbildungen Spalte 5, Absatz 30 - Absatz 33 Spalte 6, Absatz 38 -----	1,11-13
3		-/-

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/006879

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ^a	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
2 A	DE 42 10 563 A (VOLKSWAGEN AG) 22. Oktober 1992 (1992-10-22) Zusammenfassung; Abbildungen Spalte 3, Zeile 7 - Spalte 4, Zeile 1 -----	1
3		

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/006879

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 03052259	A	26-06-2003	DE	10162384 A1		03-07-2003
			WO	03052259 A1		26-06-2003
EP 1321662	A	25-06-2003	US	2003066509 A1		10-04-2003
			EP	1321662 A1		25-06-2003
			JP	2003161220 A		06-06-2003
DE 19953932	A	23-05-2001	DE	19953932 A1		23-05-2001
			US	6505601 B1		14-01-2003
US 2003102390	A1	05-06-2003		KEINE		
US 6513487	B1	04-02-2003	DE	19916485 A1		26-10-2000
			EP	1045136 A1		18-10-2000
WO 0218775	A	07-03-2002	AU	7572501 A		13-03-2002
			EP	1313940 A1		28-05-2003
			WO	0218775 A1		07-03-2002
			JP	2004507660 T		11-03-2004
			US	2004055559 A1		25-03-2004
US 2003094517	A1	22-05-2003	JP	2003214299 A		30-07-2003
			DE	10253139 A1		26-06-2003
JP 8254123	A	01-10-1996		KEINE		
US 5163621	A	17-11-1992	JP	2819702 B2		05-11-1998
			JP	3182682 A		08-08-1991
			DE	4039520 A1		04-07-1991
EP 1217186	A	26-06-2002	FR	2818324 A1		21-06-2002
			FR	2818325 A1		21-06-2002
			EP	1217186 A2		26-06-2002
			JP	2002227650 A		14-08-2002
			US	2002117146 A1		29-08-2002
DE 4210563	A	22-10-1992	DE	4210563 A1		22-10-1992
			GB	2254886 A ,B		21-10-1992

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.