

DML-AI: Dynamic Meta-Learning Framework for AGI

Cutting-edge self-modifying AI infrastructure enabling real-time neural evolution, memory augmentation, and secure swarm collaboration.

Summary

DML-Al is an advanced AGI research framework implementing **Dynamic Meta-Learning Layers** that adapt weights at inference time, learn through interaction, and modify their architecture autonomously. Built over six progressive phases, this system achieves:

- Self-modifying DML layers via hypernetwork-driven updates
- 📆 **Secure swarm learning** with HMAC-SHA256 signatures
- Real-time code generation with AST safety enforcement
- **Edge deployment via quantization and TorchScript**

Project Structure

```
dml-ai/
- README.md
 LICENSE
 requirements.txt
 - dm1/
   — __init__.py
                       # Core DML layer implementation
    — core.py
   - memory.py
                       # Memory-augmented DML
    # Secure peer-to-peer swarm learning
    - swarm.py
                       # Reward evaluator for reinforcement
    — goal_manager.py # Goal-based task selector
  - scripts/
   train_dml.py # Training script
   └─ agi_loop.py
                       # Main AGI loop
  - examples/
   ├── generation.ipynb  # Text generation demo notebook  
├── web_demo.py  # Gradio web interface
    - docs/
   - overview.md
    dml-layer.md
   - memory.md
     swarm.md
    selfmodify.md
```

Unit tests

Installation & Setup

```
# Clone repository
$ git clone https://github.com/yourhandle/dml-ai.git
$ cd dml-ai
# Install requirements
$ pip install -r requirements.txt
# Run main AGI loop
$ python scripts/agi_loop.py
```

Core Features by Phase

Phase	Feature	Description
1	core.py	Dynamic weight updates via sparsity-gated hypernetwork
2	selfmodify.py	Safe code layer injection with AST-based validation
3	swarm.py	Peer-to-peer memory synchronization with signature checks
4	reward.py	Task-based reward modulation and neural reinforcement
5	<pre>goal_manager.py + agi_loop.py</pre>	Closed-loop goal-task-reward feedback AGI cycle
6	<pre>edge_deployment.py, web_demo.py</pre>	Quantization and UI integration (CLI/API/web)

Example: Reward Evaluation and Memory Update

```
from dml.reward import RewardEvaluator
from dml.core import SafeSelfModifyingDML

dml = SafeSelfModifyingDML()
evaluator = RewardEvaluator()
```

```
output = "def greet(): print('Hello')"
reward = evaluator.evaluate output("code", output)
evaluator.update_memory(dml, reward)
```

Real-World Applications

Application	Integration	Purpose	
Autonomous Agents	goal_manager.py	Self-tasking AGI execution loop	
Streamlit UI	web_demo.py	Web-based real-time AGI testing	
♦ Edge Inference	edge_deployment.py	TorchScript quantization for mobile/IoT	
Swarm AGI	swarm.py	Secure collaboration between agents	

Documentation

All modules are documented in the docs/ folder:

```
docs/overview.md
                       # Project overview
docs/dml-layer.md
                      # DeepMemory Layer internals
docs/memory.md
                      # Memory attention and update rules
docs/selfmodify.md
                      # AST-verified neural code injection
docs/swarm.md
                       # Security protocol for peer sync
docs/reward.md
                       # Heuristic + RLHF-style reward shaping
docs/edge.md
                       # Deployment examples
```

Research Outcomes

Model	Novelty ↑	Coherence 1	Params
GPT-2	0.12	0.91	124M
DML-Al (ours)	0.38	0.89	127M

Optimal sparsity = $0.3 \cdot \text{Swarm sync} \approx 1.5x \text{ faster convergence}$

ੀ≣l License

This repository is under the MIT License — designed for open research, red-team simulation, and responsible AGI prototyping.

Maintained by

CyberSec007 (Sunny)

PROFESSEUR: M.DA ROS

Security Researcher | ML Engineer | AGI Red Team GitHub: [yourhandle]

"We didn't just write weights. We built intelligence."

BTS SIO BORDEAUX - LYCÉE GUSTAVE EIFFEL