ใบริษัท นอร์ธเทอร์น ฟู้ด คอมเพล็กซ์ จำกัด

วิธีการปฏิบัติงาน	เรื่อง: วิธีการวัดเปอร์เซ็นต์ TN	หน้า 1 ของ 4
รหัสเอกสาร: WI-QC-31	วันที่ประกาศใช้: 26 มกราคม 2555	แก้ไขครั้งที่: 04
จัดทำโดย:	ทบทวนและอนุมัติโดย:	
พนักงานควบคุมคุณภาพ	หัวหน้าแผนกควบคุมคุณภาพ	

- 1. ผู้ปฏิบัติงาน พนักงานควบคุมคุณภาพ
- 2. คำนิยาม%TN หมายถึง ร้อยละของปริมาณในโตรเจนทั้งหมด(Total Nitrogen)
- 3 สารเคมีที่ใช้

3.1 สารช่วยย่อย TN

3.2 Conc. H₂SO₄

3.3 Grook soln.

3.4 30 % NaOH

3.5 1 / 10 N NaOH

- 4 ขั้นตคน
 - 4 1 วิธีการเตรียมสารเคมี
 - 4.1.1สารช่วยย่อย TN (Decompose Promoter)
 - ก.ชั่ง Potassium Sulphate (K_2SO_4) 450 กรัม(หมายเลข 20) และ Copper (II) Sulphate($CuSO_4$. $5H_2O$) 50 กรัม(หมายเลข 45)
 - ข.นำมาผสมกัน แล้วบดด้วยครกบดสาร
 - ค.ห่อด้วยกระดาษ ห่อละ 5.5 5.8 กรัม
 - ง. ระบุวันที่เตรียม และวันหมดอายุ โดยมีอายุการเก็บนาน 2 เดือนนับจากวันเตรียม
 - 4.1.2 1/10 N H₂SO₄
 - ก. ซั่ง Conc. H_2SO_4 9.9 กรัม(หมายเลข 52) ใส่ลงในปีกเกอร์ขนาด 100 มล.
 - ข. เทลงใน v. flask ขนาด 1 ลิตร ที่มีน้ำกลั่นอยู่แล้วประมาณครึ่งหนึ่ง
 - ค. ปรับปริมาตรให้ครบ 2 ลิตร ด้วยน้ำกลั่น
 - ง. เก็บในขวดใส
 - จ. ระบุวันที่เตรียม และวันหมดอายุ โดยมีอายุการเก็บนาน 2 เดือนนับจากวันเตรียม
 - 4.1.3 Grook soln.
 - ก. เท ethyl alcohol มา 100 มล. ใส่ลงในปีกเกอร์ขนาด 200 มล.
 - ข. เติม Methyl Red(หมายเลข 7) จนอิ่มตัว ให้เป็นสารละลาย A
 - ค. เทน้ำกลั่น 100 มล.ใส่ลงในปีกเกอร์ขนาด 200 มล.
 - ง. เติม Methylene Blue 1 กรัม(หมายเลข 8) แล้วคนให้ละลายให้เป็นสารละลาย B
 - จ. ปีเปต สารละลาย B มา 4 มล. ใส่ลงใน สารละลาย A
 - ฉ. วัดค่า pH และเทียบสีกับของเดิม จากนั้นลองนำไปทำBlank เทียบกับค่า Blank ของGrook solution เดิม

หน้าที่ 2

- ช. ถ้าสีอ่อนเกินไปให้เติม Methylene Blue 1%
- ซ. เก็บในขวดสีชา
- ณ. ระบุวันที่เตรียม และวันหมดอายุ โดยมีอายุการเก็บนาน 6 เดือนนับจากวันเตรียม

4.1.4 30% NaOH

- ก. เทน้ำกลั่น 1760 มล. ใส่ใน T. flask ขนาด 4 ลิตร
- ข. เท NaOH 1 กก. (หมายเลข 38) ลงไป(ต้องทำในตู้ดูดควัน)
- ค. เขย่าจนได้สารละลายใส
- ง. ทิ้งไว้ให้เย็น
- จ. เก็บในขวดใส
- ฉ. ระบุวันที่เตรียม และวันหมดอายุ โดยมีอายุการเก็บนาน 2 เดือนนับจากวันเตรียม

4 1 5 1/10 N NaOH

- 4 1 5 1 การเตรียม
 - ก. ชั่ง NaOH มา 8.42 กรัม ใส่ลงในปีกเกอร์ขนาด 200 มล.
 - ข. ค่อยๆละลายด้วยน้ำกลั่น ใส่ลงใน v. flask ขนาด 1 ลิตร
 - ค. ปรับปริมาตรให้ครบ 2 ลิตร
 - ง เก็บในขวดใส และคำนวณหาค่า Factor
 - จ. ระบุวันที่เตรียม และวันหมดอายุ โดยมีอายุการเก็บนาน 2 เดือนนับจาก วันเตรียม

4.1.5.2 การคำนวณค่า Factor

ก.หา Amido Factor(หมายเลข 9) โดยนำสาร Amido Sulfuric acid อบในDesicatorทิ้งไว้ 1 คืน

- ข. ชั่งน้ำหนัก 2.43xx กรัม(ค่าที่ได้ให้เป็น A)
 - ค. ล้างปีกเกอร์ด้วยน้ำกลั่น
 - ง. ปรับปริมาตรให้ครบ 250 มล. ใน V.flask
 - จ. ปีเปตมา 10 มล. ใส่ลงใน T.flask ขนาด 100 มล.
- ฉ. ไตเตรตกับ 1/10N NaOH ที่เตรียมไว้จนวัด pHได้ 7.00ปริมาตรที่วัดได้ให้
 เป็น B

คำนวณ Factor ของ 1/10N NaOH = (Amido Factor x 10) / B เมื่อ Amido Factor = (A x Purity ของ Amido) / 2.4273

ใบริษัท นอร์ธเทอร์น ฟู้ด คอมเพล็กซ์ จำกัด

หน้าที่ 3

4.2 การวัดค่า

- 4.2.1 ปีเปตตัวอย่างมา 1 มล. ใส่ลงในขวดย่อย TN.
- 4.2.2 ใส่สารช่วยย่อยTN. ลงไป 5 กรัม(หรือ 1 ห่อ)
- 4.2.3 เติม Conc. H₂SO₄ ลงไป 10 มล.
- 4.2.4 นำไปย่อยในตู้ควัน ใช้ความร้อน 400 450 °C นาน 1.5 ชม.(90 นาที)จนได้ของ เหลวสีเขียว
- 4.2.5 ปิดไฟแล้วตั้งทิ้งไว้ในตู้ควันให้เย็นประมาณ 20 นาที จะได้ของเหลวสีฟ้าใส
- 4.2.6 เติมน้ำกลั่นลงไป 60-80 มล.ด้วยกระบอกตวง
- 4.2.7 นำไปกลั่นด้วยชุดกลั่นโดย ปีเปต 1 / 10 N H_2SO_4 มา 20 มล.ใส่ลงในขวดรูปชมพู่ ขนาด 250 มล. แล้วหยด Grook soln. ประมาณ 12 15 หยด แล้วนำไปรองไว้ที่ ปลายทางออกของชุดกลั่น
- 4.2.8 เติม 30 % NaOH ลงไปในสารสีฟ้า ประมาณ28 30 มล.
- 4.2.9 กลั่นจนได้สารสีชมพูเพิ่มขึ้นมาประมาณ 100 มล.นำไปไตรเตรต กับ

1 / 10 N NaOH จนได้สีเขียว

4.3 การคำนวณ

 $% TN = (B - t) \times F \times 0.14$

เมื่อ ; B = Blank

t = ค่าที่ไตรเตรตได้

F = Factor ของ 1 / 10 N NaOH

หมายเหตุ 1. ถ้าเป็นตัวอย่างวัตถุดิบทางการเกษตร ให้ชั่งตามตาราง และให้บดตัวอย่าง ก่อนแล้วนำมาชั่งน้ำหนักด้วยเครื่องชั่งละเอียด แล้วห่อด้วยกระดาษชั่งสาร และบันทึก ค่าน้ำหนักที่ชั่งได้ไว้เพื่อนำมาคำนวณหา % TN

File: WI-QC-31 Issue date :26/01/12 Rev.04

หน้าที่ 4

รายการวัตถุดิบ	น้ำหนัก
ข้าวสาลี (Wheat)	0.5xxx
ถั่วเหลือง (Soy bean)	0.25xx
แป้งสาลี (Wheat Flour)	0.5xxx
กากเบียร์ (Malt Residue)	0.5xxx
กากเบียร์แห้ง (Dried Malt Residue)	0.5xxx
ข้าวบาร์เล่ย์ (Barley)	0.5xxx
ข้าวสาร (Rice)	1.0xxx
Wheat Gluten	0.25xx
แป้งข้าวสาร (Rice Flour)	0.5xxx

- การคำนวณกรณีตัวอย่างเป็นผงหรือของแข็ง (เช่นถั่วเหลือง และข้าวสาลี)
 TN = ((B-t) x F x 0.14) / น้ำหนักตัวอย่าง (กรัม)
- 3. การทำ Blank คือ การนำ $1/10~{
 m N~H_2~SO_4}$ ที่เตรียมไว้สำหรับรองรับที่ ปลายทางออกของชุดกลั่น มาไตเตรตกับ $1/10{
 m N~aOH}$ โดยตรง
- 4. กรณีที่กลั่นแล้วพบว่าสาร 1/10 N H_2 SO_4 กลายเป็นสีเขียวโดยที่ยังไม่ได้ ไตเตรตกับ 1/10 N NaOH แสดงว่าตัวอย่างนั้นมี %TN สูงเกิน 2 % ให้ เพิ่มสาร 1/10 N H_2 SO_4 อีก 20 มล. และการคำนวนใช้ค่า Blank คูณ 2
- 5. กรณีที่ค่าไตเตรตได้น้อยมาก (คือ ไม่ถึง 1 มล.)แสดงว่าตัวอย่างมี % TN ค่อนข้างมากซึ่งอาจจะทำให้ค่าที่ได้ไม่น่าเชื่อถือ ให้ทำใหม่โดยลดปริมาณ ตัวอย่างลงจากเดิมครึ่งหนึ่ง
- 6. ถ้าการทำ 2 ซ้ำ แล้วค่าที่ไตรเตรตได้มีค่าห่างกันเกิน 0.15 มล. ให้ทำซ้ำ อีก 1 ซ้ำ แล้วนำค่าที่ใกล้เคียงกัน 2 ค่ามาเฉลี่ย

<u>วิธีการวิเคราะห์หา TN</u> อ้างอิง ตามวิธีมาตรฐาน Analysis of Soy Sauce publish on 1985.Mar.1 by Institute of Japan Soy Sauce Research (SP-QC-58)