

Trabalho 7 - Parte II

Nome: Gabriel Alessi Posonski RA: 2259583

1 Introdução

Este é um relatório contendo as respostas solicitadas no Trabalho 7 - Parte II. O trabalho tem como objetivo usar o treinamento de uma rede *Multilayer Perceptron* (MLP) para estimar os pesos nas notas de provas e trabalhos de turmas de Algoritmos na Universidade Tecnológica Federal do Paraná (UTFPR). A base de dados utilizada foi fornecida na disciplina de Inteligência Artificial e contém notas de diversos alunos ao longo de vários semestres.

2 Metodologia

Essa seção descreve os parâmetros e dados utilizados para a obtenção dos resultados.

2.1 Preparação dos Dados

- Dataset Original: 196 amostras com variáveis PROVA1, PROVA2, TRABALHO e SITU-AÇÃO.
- Normalização: MinMaxScaler aplicado às variáveis de entrada (intervalo [0,1]).
- Balanceamento: RandomUnderSampler reduzindo para 134 amostras (67 aprovados, 67 reprovados).
- Divisão: Holdout estratificado 2/3 treino (89 amostras) e 1/3 teste (45 amostras)

Configurações Testadas			
Configuração Arquitetura Descrição		Descrição	
1	(5,)	1 camada oculta com 5 neurônios	
2	(10,)	1 camada oculta com 10 neurônios	
3	(5, 3)	2 camadas ocultas (5 e 3 neurônios)	
\parallel 4	(10, 5)	2 camadas ocultas (10 e 5 neurônios)	

2.2 Parâmetros de Treinamento

• Épocas testadas: 30, 50, 100

• Solver: Adam

• Learning rate: 0.01

• Total de experimentos: 12 (4 configurações \times 3 épocas)

3 Resultados

	Tabela com Resultados por configuração						
	Configuração	Arquitetura	Épocas	Acurácia Treino (%)	Acurácia Teste (%)	Convergiu	
1	1	(5,)	30	59.55	51.11	Não	
2	1	(5,)	50	76.40	73.33	Não	
3	1	(5,)	100	85.39	80.00	Não	
4	2	(10,)	30	78.65	73.33	Não	
5	2	(10,)	50	91.01	91.11	Não	
6	2	(10,)	100	97.75	95.56	Não	
7	3	(5,3)	30	50.56	48.89	Não	
8	3	(5,3)	50	50.56	48.89	Sim	
9	3	(5,3)	100	50.56	48.89	Sim	
10	4	(10,5)	30	86.52	86.67	Não	
11	4	(10,5)	50	92.13	91.11	Não	
12	4	(10,5)	100	94.38	91.11	Não	

Melhores acurácias de Teste					
	Configuração	Arquitetura	Épocas	Acurácia (%)	
6	2	(10,)	100	95.56	
5	2	(10,)	50	91.11	
11	4	(10,5)	50	91.11	
12	4	(10,5)	100	91.11	
10	4	(10,5)	30	86.67	

3.1 Análise dos Resultados

Analisando os principais resultados, tem-se:

Configuração 2 (10,) - Vencedora

- Melhor resultado geral: 95,56% de acurácia no conjunto de teste após 100 épocas.
- Progressão consistente: A acurácia aumentou de forma constante com o número de épocas: 73,33% (30 épocas) \rightarrow 91,11% (50 épocas) \rightarrow 95,56% (100 épocas).
- Capacidade de aprendizado: Demonstrou forte capacidade de aprendizado ao longo do tempo, superando todas as outras configurações.
- Overfitting moderado: A diferença entre a acurácia de treino e teste foi de apenas 2,19%, considerado um valor aceitável.

Configuração 4 (10,5) - Segundo Lugar

- Resultado: Atingiu 91,11% de acurácia no teste tanto com 50 quanto com 100 épocas.
- Estabilização precoce: A performance não melhorou com o aumento de épocas, indicando um possível platô no aprendizado.

- Complexidade excessiva: Apesar de apresentar mais camadas, a arquitetura não superou o desempenho da Configuração 2.
- Overfitting mais acentuado: O aumento da complexidade resultou em uma diferença maior entre treino e teste.

Configuração 1 (5,) - Terceiro Lugar

- Resultado: Obteve 80,00% de acurácia no teste após 100 épocas.
- Limitação de capacidade: O número reduzido de neurônios provavelmente limitou a modelagem de padrões mais complexos.
- **Progressão linear**: Houve melhoria constante com o aumento de épocas, embora insuficiente frente às demais configurações.
- Underfitting: Indicativo de que a rede não conseguiu aprender suficientemente bem os padrões dos dados.

Configuração 3 (5,3) - Resultado Insatisfatório

- Resultado: Obteve apenas 48,89% de acurácia em todas as épocas testadas.
- Convergência prematura: A rede parou de aprender após 50 épocas, sem progresso posterior.
- Performance abaixo do acaso: A acurácia foi inferior à de uma escolha aleatória (50%), sugerindo problemas sérios na arquitetura.
- Arquitetura inadequada: A configuração provavelmente é demasiadamente restrita para a tarefa em questão.

Análise do Impacto das Épocas

Tabela 1: Acurácia no conjunto de teste em função do número de épocas

Épocas	Config. 1	Config. 2	Config. 3	Config. 4
30	51,11%	$73,\!33\%$	$48,\!89\%$	$86,\!67\%$
50	73,33%	91,11%	48,89%	91,11%
100	80,00%	$95{,}56\%$	48,89%	91,11%

3.1.1 Importância das variáveis

A importância das variáveis foi determinada analisando os pesos da matriz de conexão entre a camada de entrada e a primeira camada oculta do modelo MLP vencedor. Para cada variável de entrada (Prova 1, Prova 2 e Trabalho), calcula-se a média dos valores absolutos de todos os pesos que conectam essa variável aos 10 neurônios da camada oculta. Os valores resultantes foram então normalizados proporcionalmente para somar 10 pontos, facilitando a interpretação em termos percentuais. Concluiu-se através do treinamento vencedor que os pesos de cada método avaliativo são:

• Prova 1: Peso 3,12 (31,2% de importância).

- \bullet Prova 2: Peso 3,98 (39,8% de importância).
- Prova 3: Peso 2,9 (29% de importância).

4 Conclusão

A análise comparativa das quatro configurações demonstra que o número de neurônios na camada oculta impacta fortemente a capacidade de aprendizado da MLP. A Configuração 2 (10,) mostrou-se a mais eficiente, equilibrando capacidade de generalização com baixo overfitting, e apresentando um crescimento consistente da acurácia com o número de épocas. A Configuração 4, apesar de mais complexa, não apresentou ganho em performance, sugerindo que redes mais profundas nem sempre são vantajosas para este problema. A Configuração 1 evidenciou limitação por simplicidade, enquanto a Configuração 3 falhou completamente em aprender os padrões esperados, reforçando a importância de uma boa escolha arquitetural.

Com o valor das importâncias das variáveis, pode-se concluir que o valor mais próximo do real peso das atividades avaliativas são:3,12 para a prova 1, 3,98 para a prova 2 e 2,9 para o trabalho, totalizando 10. Com esse trabalho, foi possível compreender melhor o funcionamento da MLP e sua capacidade de geração de modelos preditivos. A utilização de dados reais trouxe também reflexões sobre como se deve tratar a informação antes de inseri-la em um treinamento de prendizagem de máquina.