

SHIVAM KUMARAN

SC17B122

ASTRONOMY AND ASTROPHYSICS

IIST

KSHITIJ SUNIL

SC17B026

DEPT OF AEROSPACE

IIST

PROBLEM STATEMENT

Data received From Astrophysical sources **Contains Important Information** What kind of data we • Spectrum • Energy vs Flux What kind of information • Source properties • Type of phenomenon Medium properties • Deep Learning Deep Learning • Regression to fit a theocratical model on observed spectrum • Estimate parameters

PROBLEM EXAMPLE

X-ray spectra from x-ray binary MAXI J1820+070. Obtained from SWIFT/XRT Energy band - 0.3-7.0keV

HOW WE CURRENTLY DO IT

- Based on the suspected model
 - Need to find parameters for that model
- Use XSPEC tool For model fitting
 - Grid search
 - Chi-sq minimization
 - ML estimate
- Problems
 - Slow technique
 - Fine hand-tuning of parameter required
 - Local Maxima problem

MOTIVATION

X-ray spectra from x-ray binary MAXI J1820+070. Obtained from two satellites MAXI/GSC and SWIFT/BAT Credit - Shidatsu et al.

- Broad-Band Spectral Fitting
 - Data is not available in all bands
 - Simultaneous fitting is required
 - Fit separate Model to each band
 - Doesn't make sense
 - Source is same
 - Interpolation is needed
 - Common techniques lacks
 - Information distribution information

MOTIVATION

X-ray spectra from x-ray binary MAXI J1820+070. Obtained from two satellites SWIFT/UVOT and SWIFT/XRT

WORKFLOW

DATA GENERATION

SOXS: Simulated Observations of X-ray Sources

SOXS is a software suite which creates simulated X-ray observations of astrophysical sources © Copyright 2018, Lynx Science Support Office.

Source Model

$$s = n * (E(1+z))^{-\alpha}$$

- Powerlaw
- Parameters
 - Z, redshift
 - [0.1, 2.5] 1000 Normal distribution
 - Alpha ,Photon index
 - [0.5, 2.5] Normal distribution
 - Norm (n) = 1e-7 (fixed)
- Energy range 0.3-7.0keV
- Energy bins = 128
- Output Vector
 - 128 dimension vector
- No of Spectrum generated 10000
- Normalized data

REGRESSION MODEL – TRAINING DATA

Outputs obtained corresponding to 128 input energy channels from the power law model 10,000 such output datasets are artificially generated

2 parameters for power law model for each instance

Log normalization done for input data

Table 3.1: Data Overview

Input data vector length	128
Target data vector length	2
Number of instances	10000

Table 3.2: Architecture tuning (Loss function: MSE)

Architecture	Training error (MSE)	Testing error (MSE)
128-64-64-32-32-2	3.56e-05	3.48e-05
128-64-64-64-64-2	1.29	1.285
128-32-32-32-32-2	2.581	2.578
128-64-64-2	3.12e-4	3.124e-4
128-32-32-2	1.29	1.294
128-64-32-2	6.34e-4	6.33e-4

Table 3.3: Architecture tuning (Loss function: MAE)

Architecture	Training error (MSE)	Testing error (MSE)
128-64-64-32-32-2	1.29	1.28
128-64-64-64-64-2	9.55e-4	9.77e-4
128-32-32-32-32-2	1.29	1.30
128-64-64-2	9.68e-4	9.58e-4
128-32-32-2	1.42e-4	1.40e-4
128-64-32-2	2.58	2.584

REGRESSION MODEL TRAINING

- Train test split: 80-20%
- Train validation split: 80-20%
- ADAM Optimizer with a learning rate of 0.001
- ReLu Activated Layers
- Architecture tuning done
- Loss functions: MAE and MSE
- Testing and Training errors calculated using MSE

FINAL REGRESSION NETWORK

- Architecture: 128-64-64-32-32-2
- ReLu activated layers
- Total trainable parameters: 15,618
- ADAM Optimizer with learning rate of 0.001
- MSE Loss function

PREDICTION ON ACTUAL EXPECTED DATA

WORKFLOW

AUTO-ENCODER

NETWORK STRUCTURE

- ADAM Optimizer with learning rate of 0.001
- MSE loss function
- ReLu activated layers
- Training validation split : 70-30%

DENOISING AUTO-ENCODER

NETWORK STRUCTURE

- ADAM Optimizer with learning rate of 0.001
- MSE loss function
- ReLu activated layers
- Training validation split : 70-30%

PERFORMANCE STUDY METHODOLOGY

- Original training and test data
 - Use encoder reconstructed output
 - Find training and testing loss
 - Predict the parameter on original test data and reconstructed test data
 - Find prediction loss
- Simulate gap in the data
- Fill this gap with random noise
- Find reconstruction loss
- Predict parameter on:
 - Full-band data
 - Missing data
 - Noise-filled data
 - Reconstructed data
 - Find prediction loss

RECONSTRUCTION PERFORMANCE ON FULL-BAND DATA

Auto-Encoder

Reconstruction LOSSES

- On reconstructed data
 - Training 1.2022e-05
 - Testing 1.1786e-05

Denoising Auto-Encoder

Denoising Auto-Encoder Reconstruction LOSSES

- · On reconstructed data
 - Training 0.000637
 - Testing 0.000650

RECONSTRUCTION PERFORMANCE ON MISSING-BAND DATA

Auto-Encoder

Reconstruction LOSSES

- On reconstructed data
 - Training 0.0224
 - Testing 0.03268

Denoising Auto-Encoder

Reconstruction LOSSES

- · On reconstructed data
 - Training 0.02024
 - Testing 0.0244

PARAMETER PREDICTION PERFORMANCE ON MISSING-BAND RECONSTRUCTED DATA

Auto-Encoder

Parameter estimation LOSSES

- On Missing data
 - Testing 3.23

Parameter estimation LOSSES

- On reconstructed data
 - Test dataset—3.18

Denoising Auto-Encoder

Parameter estimation LOSSES

- On Missing data
 - Testing 3.23

Parameter estimation LOSSES

- On reconstructed data
 - Test dataset 0.392

MAKING DAE BETTER

IMPROVING RECONSTRUCTION

- Reconstruct data from band-missing data
- In the missing region of the bandmissing data add the generated data
- Do reconstruction on this data
- Estimate parameters
- Repeat this process again

PARAMETER PREDICTION PERFORMANCE ON MISSING-BAND RECONSTRUCTED DATA

Parameter estimation LOSSES

- On reconstructed data
 - Testing 0.3924

Parameter estimation LOSSES

- On reconstructed data
 - Testing 0.1474

PARAMETER PREDICTION PERFORMANCE ON MISSING-BAND RECONSTRUCTED DATA

Parameter estimation LOSSES

- On reconstructed data
 - Testing 0.1474

Parameter estimation LOSSES

- On reconstructed data
 - Testing 0.6819

CONCLUSION

AND FUTURE WORK SCOPE

- 1. Regression Neural network (Fully connected network) is designed for parameter estimation
- 2. Denoising Auto encoder successfully reconstructed data in the missing band.
- 3. DAE clearly shown much better performance on faithful reconstruction than simple autoencoder.
- 4. Performance improvement is achieved by using 2 phase of reconstruction

FUTURE SCOPE

- 1. Generalize the whole workflow for other models
- 2. Try other generative models
- 3. Create a software package to incorporate XSPEC model fitting algorithm

REFERENCES

- 1. Badr, W., 2019. Auto-Encoder: What Is It? And What Is It Used For?(Part 1). *Towards Data Science. Online:*https://towardsdatascience.com/auto-encoder-whatis-it-and-what-is-it-used-for-part-1-3e5c6f017726

 (Zugriff: 22.02. 2020).
- 2. Zhai, J., Zhang, S., Chen, J. and He, Q., 2018, October. Autoencoder and its various variants. In 2018 IEEE

 International Conference on Systems, Man, and Cybernetics (SMC) (pp. 415-419). IEEE.
- 3. Shidatsu, M., Nakahira, S., Yamada, S., Kawamuro, T., Ueda, Y., Negoro, H., Murata, K.L., Itoh, R., Tachibana, Y., Adachi, R. and Yatsu, Y., 2018. X-ray, Optical, and Near-infrared Monitoring of the New X-ray Transient MAXI J1820+ 070 in the Low/hard State. *The Astrophysical Journal*, 868(1), p.54.
- 4. Homan, J., Bright, J., Motta, S.E., Altamirano, D., Arzoumanian, Z., Basak, A., Belloni, T.M., Cackett, E.M., Fender, R., Gendreau, K.C. and Kara, E., 2020. A rapid change in X-ray variability and a jet ejection in the black hole transient MAXI J1820+ 070. *The Astrophysical Journal Letters*, 891(2), p.L29.