

Hyperparameter tuning

Tuning process

Hyperparameters

Try random values: Don't use a grid

deeplearning.ai

Hyperparameter tuning

Using an appropriate scale to pick hyperparameters

Picking hyperparameters at random

Appropriate scale for hyperparameters

Andrew Ng

deeplearning.ai

Hyperparameters tuning

Hyperparameters tuning in practice: Pandas vs. Caviar

Re-test hyperparameters occasionally

- NLP, Vision, Speech, Ads, logistics,

- Intuitions do get stale. Re-evaluate occasionally.

Babysitting one model

Panda <

Training many models in parallel

Caviar <

Andrew Ng

Batch Normalization

Normalizing activations in a network

Normalizing inputs to speed up learning

Implementing Batch Norm some intermediate salves in NN μ: m ≥ 2⁽ⁱ⁾

Batch Normalization

Fitting Batch Norm into a neural network

Adding Batch Norm to a network

Working with mini-batches

Batch Normalization

Why does Batch Norm work?

Learning on shifting input distribution

Why this is a problem with neural networks?

Batch Normalization

Batch Norm at test time

Batch Norm at test time

$$\mu = \frac{1}{m} \sum_{i} z^{(i)}$$

$$\sigma^{2} = \frac{1}{m} \sum_{i} (z^{(i)} - \mu)^{2}$$

$$Z_{\text{norm}}^{(i)} = \frac{z^{(i)} - \mu}{\sqrt{\sigma^{2} + \varepsilon}}$$

$$\tilde{z}^{(i)} = \gamma z_{\text{norm}}^{(i)} + \beta$$

Multi-class classification

Softmax regression

Recognizing cats, dogs, and baby chicks

Softmax layer

Programming Frameworks

Deep Learning frameworks

Deep learning frameworks

- Caffe/Caffe2
- CNTK
- DL4J
- Keras
- Lasagne
- mxnet
- PaddlePaddle
- TensorFlow
- Theano
- Torch

Choosing deep learning frameworks

- Ease of programming (development and deployment)
- Running speed
- Truly open (open source with good governance)

Programming Frameworks

TensorFlow

Motivating problem


```
Code example
                                                   × To][6]*62
   import numpy as np
   import tensorflow as tf
   coefficients = np.array([[1], [-20],
   w = tf.Variable([0], dtype=tf.float32)
   x = tf.placeholder(tf.float32, [3,1])
   cost = x[0][0]*w**2 + x[1][0]*w + x[2][0]
   train = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
   init = tf.global variables initializer()
   session = tf.Session()
                                       with tf.Session() as session:
                                           session.run(init) ←
   session.run(init)
                                           print(session.run(w)) <</pre>
   print(session.run(w))
   for i in range (1000):
        session.run(train, feed dict={x:coefficients})
```

print(session.run(w))