Actively Secure Half-Gates with Minimum Overhead under Duplex Networks

Malicious Half-Gates as Sleek as Semi-Honest

Hongrui Cui¹ Xiao Wang² Kang Yang³ Yu Yu^{1,4}

- ¹ Shanghai Jiao Tong University
- ² Northwestern University
- ³ State Key Laboratory of Cryptology
- ⁴ Shanghai Qi Zhi Institute

Apr. 25, 2023 · Eurocrypt 2023

^{*} Some acknowledgments?

■ Garbled circuit is the canonical technique in constant round 2PC

Scheme	XOR	AND (bits)
Textbook Yao	8κ	8κ
Point&Permute	4κ	4κ
GRR3	3κ	3κ
GRR2	2κ	2κ
Free-XOR	0	3κ
fleXOR	$\{0,1,2\}\kappa$	2κ
Half-gates	Ο	2κ
Three-halves	0	$1.5\kappa+5$

 Garbled circuit is the canonical technique in constant round 2PC

Scheme	XOR	AND (bits)
Textbook Yao	8κ	8κ
Point&Permute	4κ	4κ
GRR3	3κ	3κ
GRR2	2κ	2κ
Free-XOR	0	3κ
fleXOR	$\{0,1,2\}\kappa$	2κ
Half-gates	O	2κ
Three-halves	0	$1.5\kappa + 5$

- How to boost GC to malicious security?
- AG [KRW17]: Use IT-MAC

Garbled circuit is the canonical technique in constant round 2PC

Scheme	XOR	AND (bits)
Textbook Yao	8κ	8κ
Point&Permute	4κ	4κ
GRR3	3κ	3κ
GRR2	2κ	2κ
Free-XOR	0	3κ
fleXOR	$\{0,1,2\}\kappa$	2κ
Half-gates	0	2κ
Three-halves	0	$1.5\kappa + 5$

- How to boost GC to malicious security?
- AG [KRW17]: Use IT-MAC

 Garbled circuit is the canonical technique in constant round 2PC

Scheme	XOR	AND (bits)
Textbook Yao	8κ	8κ
Point&Permute	4κ	4κ
GRR3	3κ	3κ
GRR2	2κ	2κ
Free-XOR	0	3κ
fleXOR	$\{0,1,2\}\kappa$	2κ
Half-gates	Ο	2κ
Three-halves	Ο	$1.5\kappa+5$

- How to boost GC to malicious security?
- AG [KRW17]: Use IT-MAC

[DILO22]

- Instantiate $\mathcal{F}_{\mathsf{pre}}$ using PCG
- \blacksquare Optimize Π_{online} to minimize comm.
- $lacksquare 2\kappa + 8
 ho + O(1)$ bits/AND in $\mathcal{F}_{\mathsf{COT}}$ -hybrid
- $lacksquare 2\kappa + 4
 ho + O(1)$ bits/AND in $\mathcal{F}_{\mathsf{DAMT}}$ -hybrid

 Garbled circuit is the canonical technique in constant round 2PC

Scheme	XOR	AND (bits)
Textbook Yao	8κ	8κ
Point&Permute	4κ	4κ
GRR3	3κ	3κ
GRR2	2κ	2κ
Free-XOR	0	3κ
fleXOR	$\{0,1,2\}\kappa$	2κ
Half-gates	Ο	2κ
Three-halves	Ο	$1.5\kappa+5$

- How to boost GC to malicious security?
- AG [KRW17]: Use IT-MAC

[DILO22]

- Instantiate $\mathcal{F}_{\mathsf{pre}}$ using PCG
- \blacksquare Optimize Π_{online} to minimize comm.
- $lacksquare 2\kappa + 8
 ho + O(1)$ bits/AND in $\mathcal{F}_{\mathsf{COT}}$ -hybrid
- $lacksquare 2\kappa + 4
 ho + O(1)$ bits/AND in $\mathcal{F}_{\mathsf{DAMT}}$ -hybrid

Can we do better?

Our Contributions

Authenticated garbling with one-way comm. as small as semi-honest half-gates

2PC	Ro	ounds	Communication per AND gate		
2. 0	Prep.	Online	one-way (bits)	two-way (bits)	
Half-gates	1	2	2κ	2κ	
HSS-PCG	8 2		$8\kappa+11$ (4.04 $ imes$)	$16\kappa+22$ (8.09 $ imes$)	
KRRW-PCG	4	4	$5\kappa + 7$ (2.53×)	$8\kappa+14$ (4.05 $ imes$)	
DILO	7 2		$2\kappa + 8 ho + 1$ (2.25 $ imes$)	$2\kappa+8 ho+5$ (2.27 $ imes$)	
This work	8	3	$2\kappa + 5$ ($pprox 1 imes$)	$4\kappa+10$ (2.04 $ imes$)	
This work+DILO	8	2	$2\kappa + 3\rho + 2$ (1.48×)	$2\kappa + 3\rho + 4 (\approx 1.48 \times)$	

Contribution 1: Π_{cpre} with 2-bit comm. per AND gate

Contribution 2: Consistency checking via dual execution

$$\Lambda_k := \lambda_k \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j)$$

$$\Lambda_k := \lambda_k \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j)$$

$$\Lambda_k := \lambda_k \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j)$$

$$\Lambda_k := \lambda_k \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j)$$

$$\Lambda_k := \lambda_k \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j)$$

۸ _i	۸	Masked $L_{k, \Lambda_{k}}$
0 0 1 1	0 1 0 1	$ \begin{array}{l} L_{k,0} \oplus (\lambda_i \cdot \lambda_j \oplus \lambda_k) \Delta_{A} \\ L_{k,0} \oplus (\lambda_i \cdot \bar{\lambda}_j \oplus \lambda_k) \Delta_{A} \\ L_{k,0} \oplus (\bar{\lambda}_i \cdot \lambda_j \oplus \lambda_k) \Delta_{A} \\ L_{k,0} \oplus (\bar{\lambda}_i \cdot \bar{\lambda}_j \oplus \lambda_k) \Delta_{A} \end{array} $

- controls garbling so it can $\ lacktrian$ mount selective-failure attack on $\Lambda := z \oplus \lambda \Rightarrow$ Secret share $\lambda := a \oplus b$
 - \blacksquare garble a different circuit without detection \Rightarrow enforce AND correlation by IT-MAC, equality check, etc.

۸ _i	۸	Masked $L_{k, \Lambda_{k}}$
0 0 1 1	0 1 0 1	$L_{k,0} \oplus (\lambda_{i} \cdot \lambda_{j} \oplus \lambda_{k}) \Delta_{A}$ $L_{k,0} \oplus (\lambda_{i} \cdot \bar{\lambda}_{j} \oplus \lambda_{k}) \Delta_{A}$ $L_{k,0} \oplus (\bar{\lambda}_{i} \cdot \lambda_{j} \oplus \lambda_{k}) \Delta_{A}$ $L_{k,0} \oplus (\bar{\lambda}_{i} \cdot \bar{\lambda}_{j} \oplus \lambda_{k}) \Delta_{A}$

controls garbling so it can $\ lacktrian$ mount selective-failure attack on $\Lambda := z \oplus \lambda \Rightarrow$ Secret share $\lambda := a \oplus b$

> garble a different circuit without detection ⇒ enforce AND correlation by IT-MAC, equality check, etc.

needs preprocessing information to complete garbling

samples gets
$$\mathbf{a}$$
, $\hat{\mathbf{a}}$, $M[\hat{\mathbf{a}}]$, $M[\hat{\mathbf{a}}]$, $K[\hat{\mathbf{b}}]$, $K[\hat{\mathbf{b}}]$ gets \mathbf{b} , $\hat{\mathbf{b}}$, $K[\hat{\mathbf{a}}]$, $M[\hat{\mathbf{b}}]$, $M[\hat{\mathbf{b}}]$

s.t.
$$\hat{a}_k \oplus \hat{b}_k = (a_i \oplus b_i) \cdot (a_j \oplus b_j)$$

۸ _i	۸	Masked $L_{k, \Lambda_{k}}$
0 0 1 1	0 1 0 1	$L_{k,0} \oplus (\lambda_i \cdot \lambda_j \oplus \lambda_k) \Delta_A$ $L_{k,0} \oplus (\lambda_i \cdot \bar{\lambda}_j \oplus \lambda_k) \Delta_A$ $L_{k,0} \oplus (\bar{\lambda}_i \cdot \lambda_j \oplus \lambda_k) \Delta_A$ $L_{k,0} \oplus (\bar{\lambda}_i \cdot \bar{\lambda}_j \oplus \lambda_k) \Delta_A$

- controls garbling so it can \blacksquare mount selective-failure attack on $\Lambda := z \oplus \lambda \Rightarrow$ Secret share $\lambda := a \oplus b$
 - garble a different circuit without detection ⇒ enforce AND correlation by IT-MAC, equality check, etc.

needs preprocessing information to complete garbling samples gets a gets a
$$M[\mathbf{a}]$$
, $K[\mathbf{b}]$, $K[\mathbf{b}]$ gets b $K[\mathbf{a}] = \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{b} \end{bmatrix}$, $K[\mathbf{b}]$ gets b $K[\mathbf{a}] = \begin{bmatrix} \mathbf{b} \\ \mathbf{b} \end{bmatrix}$, $M[\mathbf{b}] = \begin{bmatrix} \mathbf{b} \\ \mathbf{b} \end{bmatrix}$, $M[\mathbf{b}] = \begin{bmatrix} \mathbf{b} \\ \mathbf{b} \end{bmatrix}$ s.t. $\hat{a}_k \oplus \hat{b}_k = (a_i \oplus b_i) \cdot (a_j \oplus b_j)$

controls garbling so it can

mount selective-failure a	ttack on $\Lambda := z \oplus \lambda \Rightarrow$ Secret sha	are
$\lambda := a \oplus b$		

۸ _i	۸	Masked $L_{k,\Lambda_{\c k}}$
0 0 1	0 1	$ \begin{array}{c} L_{k,0} \oplus (\lambda_i \cdot \lambda_j \oplus \lambda_k) \Delta_{A} \\ L_{k,0} \oplus (\lambda_i \cdot \bar{\lambda}_j \oplus \lambda_k) \Delta_{A} \\ L_{k,0} \oplus (\bar{\lambda}_i \cdot \lambda_j \oplus \lambda_k) \Delta_{A} \end{array} $
1	1	$L_{k,0} \oplus (\bar{\lambda}_i \cdot \bar{\lambda}_j \oplus \lambda_k) \Delta_{A}$

garble a different circuit without detection \Rightarrow enforce AND correlation by IT-MAC, equality check, etc.

needs preprocessing information to complete garbling samples
$$gets a M[a]$$
, $N[b]$ $gets a M[a]$, $N[b]$

$$\Delta_{\mathsf{A}}, \Delta_{\mathsf{B}}$$
 $\Delta_{\mathsf{A}}, \Delta_{\mathsf{B}}$ \mathbf{g} \mathbf{g}

samples
$$\begin{bmatrix} \mathbf{a} & \mathbf{b} & \mathbf{b} & \mathbf{b} & \mathbf{b} \\ \mathbf{a} & \mathbf{b} & \mathbf{b} & \mathbf{b} \end{bmatrix}$$
, $\mathbf{b} & \mathbf{b} & \mathbf$

Free-XOR GC
$$\Rightarrow$$
 $|\Delta_{\mathsf{A}}| = \kappa \approx 128$

controls garbling so it can

mount selective-failure attack on $\Lambda := z \oplus \lambda \Rightarrow$ Secret share
$\lambda := a \oplus b$

garble a different circuit without detection \Rightarrow enforce AND correlation by IT-MAC, equality check, etc.

$$\Delta_{\mathsf{A}}, \Delta_{\mathsf{B}}$$
 δ_{B} δ_{B}

samples gets a
$$M[\mathbf{a}]$$
, $K[\mathbf{b}]$ \oplus $K[\mathbf{b}]$, $K[\hat{\mathbf{b}}]$ \oplus $K[\mathbf{a}]$, $K[\hat{\mathbf{b}}]$ \oplus $K[\mathbf{a}]$, $K[\hat{\mathbf{b}}]$ \oplus $K[\mathbf{a}]$ \oplus $K[\mathbf{a}]$ \oplus $K[\mathbf{b}]$ \oplus \emptyset \oplus

Λį	\wedge_j	Alice's GC	Bob's GC
0 0 1 1	0 1 0 1	$\begin{array}{c} L_{k,0} \oplus K[\Lambda_{00}] \\ L_{k,0} \oplus K[\Lambda_{01}] \\ L_{k,0} \oplus K[\Lambda_{10}] \\ L_{k,0} \oplus K[\Lambda_{11}] \end{array}$	$M[\Lambda_{00}]$ $M[\Lambda_{01}]$ $M[\Lambda_{10}]$ $M[\Lambda_{11}]$

_	Λ_i	Λ_j	Alice's AuthGC	Bob's AuthGC
•	0 0 1	0 1 0	$ \begin{array}{c} L_{k,0} \oplus M[\Lambda_{00}] \\ L_{k,0} \oplus M[\Lambda_{01}] \\ L_{k,0} \oplus M[\Lambda_{10}] \end{array} $	Κ[Λ ₀₀] Κ[Λ ₀₁] Κ[Λ ₁₀]
	1	1	$L_{k,0} \oplus M[\Lambda_{11}]$	K[Λ ₁₁]

$$\Lambda_{k} \cdot \Delta_{B} := \lambda_{k} \cdot \Delta_{B} \oplus (\Lambda_{i} \oplus \lambda_{i}) \cdot (\Lambda_{j} \oplus \lambda_{j}) \cdot \Delta_{B}$$
$$= \lambda_{k} \cdot \Delta_{B} \oplus ... \oplus (\hat{a}_{k} \oplus \hat{b}_{k}) \cdot \Delta_{B}$$

Free-XOR GC
$$\Rightarrow$$
 $|\Delta_{\mathsf{A}}| = \kappa \approx 128$

IT-MAC Soundness
$$\Rightarrow$$
 $|\Delta_{\rm B}|=
hopprox 40$

KRRW18: Distributed Half-Gates Garbling + Equality Checking

- $lacksquare G_{k,0} = \mathsf{H}(\mathsf{L}_{i,0}) \oplus \mathsf{H}(\mathsf{L}_{i,1}) \oplus \lambda_j \cdot \Delta_\mathsf{A}$
- lacksquare $G_{k,1} = \mathsf{H}(\mathsf{L}_{i,0}) \oplus \mathsf{H}(\mathsf{L}_{i,1}) \oplus \lambda_i \cdot \Delta_\mathsf{A} \oplus \mathsf{L}_{i,0}$
- $\blacksquare \ \mathsf{L}_{k,0} = \mathsf{H}(\mathsf{L}_{i,0}) \oplus \mathsf{H}(\mathsf{L}_{j,0}) \oplus (\lambda_k \oplus \lambda_i \lambda_j) \cdot \Delta_\mathsf{A}$

Eval:
$$H(L_{i,\Lambda_{i}}) \oplus \Lambda_{i} \cdot G_{k,0} \oplus H(L_{j,\Lambda_{i}}) \oplus \Lambda_{j} \cdot G_{k,1} \oplus L_{i,\Lambda_{i}}$$

$$= H(L_{i,0}) \oplus \Lambda_{i}\lambda_{j} \cdot \Delta_{A} \oplus H(L_{j,0}) \oplus \Lambda_{j}(\lambda_{i} \oplus \Lambda_{i}) \cdot \Delta_{A}$$

$$= L_{k,0} \oplus \Lambda_{k} \cdot \Delta_{A} = L_{k,\Lambda_{k}}$$

$$\begin{split} \Lambda_k \cdot \Delta_\mathsf{A} &:= \lambda_k \cdot \Delta_\mathsf{A} \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j) \cdot \Delta_\mathsf{A} \\ &= \underbrace{(\lambda_k \oplus \lambda_i \lambda_j) \cdot \Delta_\mathsf{A}}_{\text{already shared}} \oplus \underbrace{\Lambda_i \lambda_j \cdot \Delta_\mathsf{A}}_{G_{k,0}} \oplus \underbrace{\Lambda_j (\Lambda_i \oplus \lambda_i) \cdot \Delta_\mathsf{A}}_{G_{k,1}} \end{split}$$

With \mathcal{F}_{pre} $G_{k,0}, G_{k,1}, L_{k,0}$ are already shared \Rightarrow Evaluator can get $\{\Lambda_w, L_{w,\Lambda_w}\}$ with $2\kappa + 1$ bits amortized comm.

KRRW18: Distributed Half-Gates Garbling + Equality Checking

- lacksquare $G_{k,0} = \mathsf{H}(\mathsf{L}_{i,0}) \oplus \mathsf{H}(\mathsf{L}_{i,1}) \oplus \lambda_j \cdot \Delta_{\mathsf{A}}$
- lacksquare $G_{k,1} = \mathsf{H}(\mathsf{L}_{j,0}) \oplus \mathsf{H}(\mathsf{L}_{j,1}) \oplus \lambda_i \cdot \Delta_\mathsf{A} \oplus \mathsf{L}_{i,0}$
- $\blacksquare \ \mathsf{L}_{k,0} = \mathsf{H}(\mathsf{L}_{i,0}) \oplus \mathsf{H}(\mathsf{L}_{j,0}) \oplus (\lambda_k \oplus \lambda_i \lambda_j) \cdot \Delta_\mathsf{A}$

$$\begin{split} \Lambda_k \cdot \Delta_{\mathsf{A}} &:= \lambda_k \cdot \Delta_{\mathsf{A}} \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j) \cdot \Delta_{\mathsf{A}} \\ &= \underbrace{(\lambda_k \oplus \lambda_i \lambda_j) \cdot \Delta_{\mathsf{A}}}_{\mathsf{already shared}} \oplus \underbrace{\Lambda_i \lambda_j \cdot \Delta_{\mathsf{A}}}_{G_{k,0}} \oplus \underbrace{\Lambda_j (\Lambda_i \oplus \lambda_i) \cdot \Delta_{\mathsf{A}}}_{G_{k,1}} \end{split}$$

Eval:
$$H(L_{i,\Lambda_{i}}) \oplus \Lambda_{i} \cdot G_{k,0} \oplus H(L_{j,\Lambda_{i}}) \oplus \Lambda_{j} \cdot G_{k,1} \oplus L_{i,\Lambda_{i}}$$

$$= H(L_{i,0}) \oplus \Lambda_{i}\lambda_{j} \cdot \Delta_{A} \oplus H(L_{j,0}) \oplus \Lambda_{j}(\lambda_{i} \oplus \Lambda_{i}) \cdot \Delta_{A}$$

$$= L_{k,0} \oplus \Lambda_{k} \cdot \Delta_{A} = L_{k,\Lambda_{k}}$$

With \mathcal{F}_{pre} $G_{k,0}, G_{k,1}, L_{k,0}$ are already shared \Rightarrow Evaluator can get $\{\Lambda_w, L_{w,\Lambda_w}\}$ with $2\kappa + 1$ bits amortized comm.

■ **b**-mask removes selective failure, now only need to check correct AND correlation

Check:

- \blacksquare Evaluator sends $\{\Lambda_w\}$ for all AND gates
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

Efficient COT/VOLE and Designated Verifier Zero Knowledge

- Efficient protocol for \mathcal{F}_{COT} , \mathcal{F}_{sVOLE} with sublinear comm. and linear comp. from LPN [YWL+20,CRR21,...]
- We refer the $\mathbb{F}_p=\mathbb{F}_2$ variant of $\mathcal{F}_{\mathsf{sVOLE}}$ as $\mathcal{F}_{\mathsf{COT}}$

Efficient COT/VOLE and Designated Verifier Zero Knowledge

- Efficient protocol for \mathcal{F}_{COT} , \mathcal{F}_{sVOLE} with sublinear comm. and linear comp. from LPN [YWL+20,CRR21,...]
- lacksquare We refer the $\mathbb{F}_p=\mathbb{F}_2$ variant of $\mathcal{F}_{\mathsf{sVOLE}}$ as $\mathcal{F}_{\mathsf{COT}}$

■ Efficient proof for deg-d relations on **u** [DIO21, YSWW21, ...]

Efficient COT/VOLE and Designated Verifier Zero Knowledge

- Efficient protocol for \mathcal{F}_{COT} , \mathcal{F}_{sVOLE} with sublinear comm. and linear comp. from LPN [YWL+20,CRR21,...]
- We refer the $\mathbb{F}_p=\mathbb{F}_2$ variant of $\mathcal{F}_{\mathsf{sVOLE}}$ as $\mathcal{F}_{\mathsf{COT}}$

Derandomization operation: Fix
$$\underline{\delta := x \oplus u} \quad \underline{\delta}$$

$$M[x] := M[u] \qquad K[x] := K[u] \oplus \delta \cdot \Delta$$

■ Efficient proof for deg-d relations on **u** [DIO21, YSWW21, ...]

- In DILO, those PCG correlations are called "simple correlations"
- \blacksquare Unfortunately, we still don't have a direct \mathcal{F}_{pre} PCG construction
- lacktriangle The closest is the $\mathcal{F}_{\mathsf{DAMT}}$ correlation generated from Ring-LPN, but with ho-time overhead

Garbler can only guess once

- Garbler can only guess once
- If **b** is uniformly random, then guessing leaks no information

- Garbler can only guess once
- If b is uniformly random, then guessing leaks no information
- If #Guess is too large, then abort happens overwhelmingly, if #Guess is too little, then we don't require much entropy from **b**

- Garbler can only guess once
- If b is uniformly random, then guessing leaks no information
- If #Guess is too large, then abort happens overwhelmingly, if #Guess is too little, then we don't require much entropy from **b**

DILO Oberservation 1

It suffices for **b** to be ρ -wise independent

- \blacksquare #Guess $\leq \rho$: Abort is input-independent
- **\blacksquare** #Guess $> \rho$: Abort is overwhelming

- Garbler can only guess once
- If b is uniformly random, then guessing leaks no information
- If #Guess is too large, then abort happens overwhelmingly, if #Guess is too little, then we don't require much entropy from **b**

DILO Oberservation 1

It suffices for **b** to be ρ -wise independent

- \blacksquare #Guess $\leq \rho$: Abort is input-independent
- \blacksquare #Guess $> \rho$: Abort is overwhelming

DILO Oberservation 2

We can construct ρ -wise independent **b** by linear expansion

$$oldsymbol{b}^* = oldsymbol{\mathsf{M}} oldsymbol{eta}^*$$

- For $L = O(\rho \cdot \log(\frac{n}{\rho}))$, a uniformly random **M** suffices
- We can encode \mathbf{b}^* in \mathcal{F}_{COT} global keys

DILO Implementation of $\mathcal{F}_{\mathsf{cpre}}$: Encoding \mathbf{b}^* as Global Keys

$$oldsymbol{\mathcal{F}_{\mathsf{pre}}}$$

samples
$$[\mathbf{a}], [\hat{\mathbf{a}}], [\mathbf{b}], [\hat{\mathbf{b}}]$$
 $\Delta_{\mathsf{A}}, \Delta_{\mathsf{B}}$

s.t.
$$\hat{a}_k \oplus \hat{b}_k = (a_i \oplus b_i) \cdot (a_j \oplus b_j)$$

= $a_i a_j \oplus a_i b_j \oplus a_j b_i \oplus b_i b_j$

DILO Implementation of $\mathcal{F}_{\mathsf{cpre}}$: Encoding \mathbf{b}^* as Global Keys

$$oxed{\mathcal{F}_{\mathsf{pre}}}$$

samples
$$[\mathbf{a}], [\hat{\mathbf{a}}], [\mathbf{b}], [\hat{\mathbf{b}}]$$
 $\Delta_{\mathsf{A}}, \Delta_{\mathsf{B}}$

s.t.
$$\hat{a}_k \oplus \hat{b}_k = (a_i \oplus b_i) \cdot (a_j \oplus b_j)$$

= $a_i a_j \oplus a_i b_j \oplus a_j b_i \oplus b_i b_j$

DILO Compression:

$$\mathbf{b} = \mathbf{M} \cdot \mathbf{b}^*, \mathbf{b}^* \in \mathbb{F}_2^L$$

suffices to compute $\mathbf{a} \otimes \mathbf{b}^*$

DILO Implementation of $\mathcal{F}_{\mathsf{cpre}}$: Encoding \mathbf{b}^* as Global Keys

COT can be extended to block COT, preserving PCG efficiency

DILO Implementation of $\mathcal{F}_{\mathsf{cpre}}$: Generating \hat{b}_k

DILO Implementation of $\mathcal{F}_{\mathsf{cpre}}$: Generating \tilde{b}_k

DILO Implementation of $\mathcal{F}_{\mathsf{cpre}}$: Generating \tilde{b}_k

 $\mathcal{F}_{\mathsf{DVZK}}$ Verify mult. correlations

DILO Implementation of $\mathcal{F}_{\mathsf{cpre}}$: Generating \hat{b}_k

- By linearlity on M and K, we can get $[\mathbf{b}^* \otimes \mathbf{a}]_{\mathsf{B}}$
- By linearlity on IT-MAC, we can get $[a_ib_i]_B$ for any i, j

$$_{\mathsf{B}}+\gamma,\Delta_{\mathsf{B}}+\gamma,\gamma$$

Define
$$[\tilde{b}_k]_{\mathsf{B}} := [\hat{a}_k \oplus a_i a_j \oplus a_i b_j \oplus a_j b_i]_{\mathsf{B}}$$

DILO Implementation of $\mathcal{F}_{\mathsf{cpre}}$: Generating b_k

- By linearlity on M and K, we can get $[\mathbf{b}^* \otimes \mathbf{a}]_{\mathsf{B}}$
- By linearlity on IT-MAC, we can get $[a_ib_i]_B$ for any i, j

$$_{\mathsf{B}}+\gamma,\Delta_{\mathsf{B}}+\gamma,\gamma$$

 $Fix(\{a_ia_j\})$

 $\mathcal{F}_{\mathsf{DVZK}}$ Verify mult. correlations

$$\frac{\operatorname{Fix}(\Delta_{\mathsf{A}})}{\bullet}$$

Verify $\mathbf{b}^* \cdot \Delta_{\mathsf{B}}$ correlation $\mathcal{F}_{\mathsf{DVZK}}$

Define
$$[\tilde{b}_k]_{\mathsf{B}} := [\hat{a}_k \oplus a_i a_j \oplus a_i b_j \oplus a_j b_i]_{\mathsf{B}}$$

$$m_{k,1} := \mathsf{M}[ilde{b}_k]$$

- lacksquare Define $ilde{b}_k := (m_{k,1} \oplus \mathsf{K}[ilde{b}_k]) \cdot \Delta_\mathsf{R}^{-1}$
- Abort if $\tilde{b}_k \not\in \{0, 1\}$
- Compute $\hat{b}_k = b_i b_i \oplus \tilde{b}_k$

DILO Implementation of \mathcal{F}_{cpre} : Generating $[\hat{b}_k]_A$

It suffices to compute \tilde{b}_k since $[\hat{b}_k]_A = [\tilde{b}_k]_A \oplus [b_i b_i]_A$

Verify mult. correlation ($\mathcal{F}_{\mathsf{DVZK}}$

- $\begin{array}{l} \blacksquare \quad \tilde{b}_k = \hat{a}_k \oplus a_i a_j \oplus a_i b_j \oplus a_j b_i \\ \blacksquare \quad \mathsf{M}[\tilde{b}_k] \oplus \mathsf{K}[\tilde{b}_k] = (\hat{a}_k \oplus a_i a_j \oplus a_i b_j \oplus a_j b_i) \cdot \Delta_{\mathsf{A}} \end{array}$

DILO Implementation of $\mathcal{F}_{\mathsf{cpre}}$: Generating $[\tilde{b}_k]_{\mathsf{A}}$

lacksquare It suffices to compute $ilde{b}_k$ since $[\hat{b}_k]_{\mathsf{A}}=[ilde{b}_k]_{\mathsf{A}}\oplus[b_ib_j]_{\mathsf{A}}$

- $\bullet \tilde{b}_k = \hat{a}_k \oplus a_i a_j \oplus a_i b_j \oplus a_j b_i$
- $lacksquare \mathsf{M}[ilde{b}_k] \oplus \mathsf{K}[ilde{b}_k] = (\hat{a}_k \oplus a_i a_j \oplus a_i b_j \oplus a_j b_i) \cdot \Delta_\mathsf{A}$

Verify mult. correlation $\mathcal{F}_{\mathsf{DVZK}}$

$$F_{bCOT}$$
Fix $\left\{ \begin{array}{l} \{a_i a_j \Delta_A\} \\ \{\hat{a}_k \Delta_A\} \\ \mathbf{a} \Delta_A \end{array} \right\}$
Generate mask $\hat{a}_{k,2} \in \mathbb{F}_{2^\kappa}$

Locally comptue $[v_k]_{\mathsf{B}} := [\tilde{b}_k \cdot \Delta_{\mathsf{A}} \oplus \hat{a}_{k,2}]_{\mathsf{B}}$

DILO Implementation of \mathcal{F}_{cpre} : Generating $[b_k]_A$

It suffices to compute \tilde{b}_k since $[\hat{b}_k]_A = [\tilde{b}_k]_A \oplus [b_i b_i]_A$

- $\bullet \hat{b}_k = \hat{a}_k \oplus a_i a_i \oplus a_i b_i \oplus a_j b_i$
- $lacksquare \mathsf{M}[ilde{b}_k] \oplus \mathsf{K}[ilde{b}_k] = (\hat{a}_k \oplus a_i a_i \oplus a_i b_i \oplus a_i b_i) \cdot \Delta_\mathsf{A}$

Verify mult. correlation $\mathcal{F}_{\mathsf{DVZK}}$

> $\mathcal{F}_{\mathsf{bCOT}}$ Generate mask $\hat{a}_{k,2} \in \mathbb{F}_{2^k}$

Locally comptue $[v_k]_{\mathsf{B}} := [\hat{b}_k \cdot \Delta_{\mathsf{A}} \oplus \hat{a}_{k,2}]_{\mathsf{B}}$

 $m_{k,2} := M[v_k]$

Define $K[\tilde{b}_k] := \hat{a}_{k,2}$ Define $M[\tilde{b}_k] := (m_{k,2} \oplus K[v_k]) \cdot \Delta_B^{-1}$

By the linearity of IT-MAC, $[\hat{b}_k]_A := [b_i b_i]_A \oplus [\tilde{b}_k]_A$

KRRW Check:

- Evaluator sends $\{\Lambda_w\}$ for all AND gates
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

KRRW Check:

- Evaluator sends $\{\Lambda_w\}$ for all AND gates \bigwedge
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

KRRW Check:

- **Evaluator** sends $\{\Lambda_w\}$ for all AND gates \bigwedge
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

DILO-WRK Check

$$egin{aligned} \Lambda_k \cdot \Delta_{\mathsf{B}} &:= \lambda_k \cdot \Delta_{\mathsf{B}} \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j) \cdot \Delta_{\mathsf{B}} \ &= \lambda_k \cdot \Delta_{\mathsf{B}} \oplus \Lambda_i \Lambda_j \cdot \Delta_{\mathsf{B}} \oplus \Lambda_i \lambda_j \cdot \Delta_{\mathsf{B}} \oplus \Lambda_j \lambda_i \cdot \Delta_{\mathsf{B}} \oplus (\hat{a}_k \oplus \hat{b}_k) \cdot \Delta_{\mathsf{B}} \end{aligned}$$

KRRW Check:

- **Evaluator** sends $\{\Lambda_w\}$ for all AND gates \bigwedge
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

DILO-WRK Check

$$\Lambda_k \cdot \Delta_{\mathsf{B}} := \lambda_k \cdot \Delta_{\mathsf{B}} \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j) \cdot \Delta_{\mathsf{B}} \quad \underbrace{\Lambda_i(a_j \oplus b_j)\Delta_{\mathsf{B}} = \Lambda_i b_j \Delta_{\mathsf{B}} \oplus \Lambda_i \mathsf{K}[a_j] \oplus \Lambda_i \mathsf{M}[a_j]}_{\mathsf{A}_{\mathsf{B}} \to \mathsf{A}_{\mathsf{B}} \to \mathsf{$$

$$=\lambda_k\cdot\Delta_{\mathsf{B}}\oplus \Lambda_i\Lambda_j\cdot\Delta_{\mathsf{B}}\oplus \Lambda_i\lambda_j\cdot\Delta_{\mathsf{B}}\oplus \Lambda_j\lambda_i\cdot\Delta_{\mathsf{B}}\oplus (\hat{a}_k\oplus\hat{b}_k)\cdot\Delta_{\mathsf{B}}$$

KRRW Check:

- Evaluator sends $\{\Lambda_w\}$ for all AND gates \bigwedge
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

DILO-WRK Check

$$\Lambda_k \cdot \Delta_{\mathsf{B}} := \lambda_k \cdot \Delta_{\mathsf{B}} \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j) \cdot \Delta_{\mathsf{B}} \quad \Big[\Lambda_i(a_j \oplus b_j) \Delta_{\mathsf{B}} = \Lambda_i b_j \Delta_{\mathsf{B}} \oplus \Lambda_i \mathsf{K}[a_j] \oplus \Lambda_i \mathsf{M}[a_j] \Big]$$

$$\Lambda_i(a_j \oplus b_j)\Delta_{\mathsf{B}} = \Lambda_i b_j \Delta_{\mathsf{B}} \oplus \Lambda_i \mathsf{K}[a_j] \oplus \Lambda_i \mathsf{M}[a_j]$$

$$=\lambda_k\cdot\Delta_{\mathsf{B}}\oplus\Lambda_i\Lambda_j\cdot\Delta_{\mathsf{B}}\oplus\Lambda_i\lambda_j\cdot\Delta_{\mathsf{B}}\oplus\Lambda_j\lambda_i\cdot\Delta_{\mathsf{B}}\oplus(\hat{a}_k\oplus\hat{b}_k)\cdot\Delta_{\mathsf{B}}$$

$$G_0 = \mathsf{H}(\mathsf{L}_{i,0}) \oplus \mathsf{H}(\mathsf{L}_{i,1}) \oplus a_j \cdot \Delta_A \oplus \mathsf{K}[b_j]$$

$$G_1 = H(L_{j,0}) \oplus H(L_{j,1}) \oplus a_i \cdot \Delta_A \oplus K[b_i] \oplus L_{i,0}$$

Use $G_{k,0}$, $G_{k,1}$ to recover L_{k,Λ_k} without checking

$$G'_{k,0} = \mathsf{H}'(\mathsf{L}_{i,0}) \oplus \mathsf{H}'(\mathsf{L}_{j,0}) \oplus \mathsf{M}[a_k] \oplus \mathsf{M}[\hat{a}_k]$$

$$\mathsf{G}'_{k,1} = \mathsf{H}'(\mathsf{L}_{i,0}) \oplus \mathsf{H}'(\mathsf{L}_{i,1}) \oplus \mathsf{M}[a_j]$$

$$\mathsf{G}'_{k,2} = \mathsf{H}'(\mathsf{L}_{j,0}) \oplus \mathsf{H}'(\mathsf{L}_{j,1}) \oplus \mathsf{M}[a_i]$$

Use $G'_{k,0}$, $G'_{k,1}$, $G'_{k,2}$ to recover Λ_k Abort if $M[\Lambda_k] \oplus K[\Lambda_k] \not\in \{0, \Delta_B\}$

$$\mathsf{L}_{k,0} = \mathsf{H}(\mathsf{L}_{i,0}) \oplus \mathsf{H}(\mathsf{L}_{j,0}) \oplus (a_k \oplus \hat{a}_k) \cdot \Delta_\mathsf{A} \oplus \mathsf{K}[b_k \oplus \hat{b}_k]$$

AuthGC

The overhead of DILO is $5\rho + 2$ bits per AND gate

The overhead of DILO is $5\rho + 2$ bits per AND gate

- Why not call $Fix(\tilde{b}_k)$ directly?
 - We need to detect against dishonest Fix() input

The overhead of DILO is $5\rho + 2$ bits per AND gate

$$egin{aligned} egin{pmatrix}
ho+1 ext{ bits} \cr Fix(\{a_ia_j\}) \cr m_{k,1} := M[ilde{b}_k] \cr \hline \end{pmatrix}$$

- Why not call $Fix(\tilde{b}_k)$ directly?
- We need to detect against dishonest Fix() input
- lacksquare lacksquare $[\mathsf{a}\Delta_\mathsf{A}]_\mathsf{B} \equiv [\mathsf{a}]_{\Delta_\mathsf{A}\cdot\Delta_\mathsf{B}}$

Dual Key Authentication

- $lacksquare \mathsf{M}[\mathsf{a}\Delta_\mathsf{A}] \oplus \mathsf{K}[\mathsf{a}\Delta_\mathsf{A}] = \mathsf{a}\overline{\Delta_\mathsf{A}\Delta_\mathsf{B}}$
- We denote it as $\langle \mathbf{a} \rangle$

The overhead of DILO is $5\rho + 2$ bits per AND gate

- Why not call $Fix(\tilde{b}_k)$ directly?
- We need to detect against dishonest Fix() input
- $[\mathbf{a}\Delta_{\mathsf{A}}]_{\mathsf{B}}\equiv [\mathbf{a}]_{\Delta_{\mathsf{A}}\cdot\Delta_{\mathsf{B}}}$ Dual Key Authentication

- $\mathsf{M}[\mathsf{a}\Delta_\mathsf{A}] \oplus \mathsf{K}[\mathsf{a}\Delta_\mathsf{A}] = \mathsf{a}\overline{\Delta_\mathsf{A}\Delta_\mathsf{B}}$
- We denote it as $\langle \mathbf{a} \rangle$
- Suppose we generate $\langle \tilde{b}_k \rangle$ and $\langle r \rangle$, $[r]_B$ (mask for $\stackrel{\bullet}{\bullet}$)

alls Fix (\tilde{b}_k) and checks $\sum_k \chi^k[\tilde{b}_k] \oplus [r] \oplus y = 0$

The overhead of DILO is $5\rho + 2$ bits per AND gate

$$ho + 1 ext{ bits}$$
 $Fix(\{a_ia_j\})$
 $m_{k,1} := M[\tilde{b}_k]$

- Why not call $Fix(\hat{b}_k)$ directly?
- We need to detect against dishonest Fix() input
- lacksquare lacksquare $[\mathsf{a}\Delta_\mathsf{A}]_\mathsf{B}\equiv [\mathsf{a}]_{\Delta_\mathsf{A}\cdot\Delta_\mathsf{B}}$

Dual Key Authentication

- $\mathsf{M}[\mathsf{a}\Delta_\mathsf{A}] \oplus \mathsf{K}[\mathsf{a}\Delta_\mathsf{A}] = \mathsf{a}\overline{\Delta_\mathsf{A}\Delta_\mathsf{B}}$
- We denote it as $\langle \mathbf{a} \rangle$
- Suppose we generate $\langle \tilde{b}_k \rangle$ and $\langle r \rangle$, $[r]_B$ (mask for $\stackrel{\bullet}{\bullet}$)

lacksquare can open $y:=\sum_k \chi^k\cdot \widetilde{b}_k\oplus r$ and convince

calls $\operatorname{Fix}(\tilde{b}_k)$ and checks $\sum_k \chi^k[\tilde{b}_k] \oplus [r] \oplus \mathsf{y} = 0$

If so we can reduce 4ρ bits to 1 bit

Our goal is to enerate $\langle \hat{b}_k \rangle := \langle \hat{a}_k \rangle \oplus \langle a_i a_i \rangle \oplus \langle a_i b_i \rangle \oplus \langle a_i b_i \rangle$

The compression technique allows encoding **b** in \mathcal{F}_{bCOT} global keys

The compression technique allows encoding **b** in \mathcal{F}_{bCOT} global keys

$$oxed{\mathcal{F}_{ ext{bCOT}}^2}$$
 $oxed{\mathsf{M}[\hat{\mathsf{a}}]} + oxed{\hat{\mathsf{a}}} imes [eta_0, \Delta_{\mathsf{B}}]$

The compression technique allows encoding **b** in \mathcal{F}_{bCOT} global keys

- $D_{A}[a_{i}b_{i}] \oplus D_{B}[a_{i}b_{i}] = a_{i}b_{i}\Delta_{A}\Delta_{B}$

$$oxed{\mathcal{F}_{ ext{bCOT}}^2}$$
 $oxed{\mathsf{M}[\hat{\mathsf{a}}]} + oxed{\hat{\mathsf{a}}} imes [eta_0, \Delta_{\mathsf{B}}]$

The compression technique allows encoding **b** in \mathcal{F}_{bCOT} global keys

The compression technique allows encoding **b** in \mathcal{F}_{bCOT} global keys

[DIO22] gives a modular way of proving equality under independent keys

$$oxedsymbol{\Pi_{\mathsf{Samp}}}\Delta_{\mathsf{A}}, \Delta_{\mathsf{B}} \leftarrow \$ ext{ s.t. } \mathsf{lsb}(\Delta_{\mathsf{A}}\Delta_{\mathsf{B}}) = 1$$

$$m_{k,1} = \text{ISD}(D_A[D_k])$$

$$\tilde{b}_k = m_{k,1} \oplus \operatorname{Isb}(\mathsf{D}_\mathsf{A}[\tilde{b}_k])$$

$$y := r + \sum_{k} \chi^{k} \cdot \tilde{b}_{k}$$

- Check $\{\beta_i\}$ consistency by $Fix(\Delta'_A)$
- Check $\mathbf{b}^*\Delta_B$, $\{a_ia_j\}$, $\{b_ib_j\}$ consistency by \mathcal{F}_{DVZK}
- Check $m_{k,1}$ consistency by CheckZero($\langle y \rangle y$)
- Check Fix (\hat{b}_k) consistency by CheckZero $([y]_B y)$

- Optimized $\mathcal{F}_{\mathsf{cpre}}$ + DILO-WRK = \longrightarrow \longrightarrow : $2\kappa + 3\rho + 2$ bits, \longrightarrow \longrightarrow : 2 bits
- How about optimizing one-way communication? Maybe dual execution?

■ Optimized \mathcal{F}_{cpre} + DILO-WRK = \longrightarrow \longrightarrow : $2\kappa + 3\rho + 2$ bits, \longrightarrow \longrightarrow : 2 bits

- Optimized \mathcal{F}_{cpre} + DILO-WRK = \longrightarrow \longrightarrow : $2\kappa + 3\rho + 2$ bits, \longrightarrow \longrightarrow : 2 bits
- How about optimizing one-way communication? Maybe dual execution?

■ Semi-honest GC + DualEx [HEK12, HsV20] : Check $z_w = z_w'$ for $w \in \mathcal{O}$

- Optimized \mathcal{F}_{cpre} + DILO-WRK = \longrightarrow \longrightarrow : $2\kappa + 3\rho + 2$ bits, \longrightarrow \longrightarrow : 2 bits
- How about optimizing one-way communication? Maybe dual execution?

Semi-honest GC + DualEx [HEK12, HsV20] : Check $z_w = z_w'$ for $w \in \mathcal{O}$

 $\mathcal{A} \text{ may} \begin{cases} \text{garble a different circuit } \mathcal{C}' \\ \text{use different input } \mathbf{x} \text{ or } \mathbf{y} \\ \text{launch selective failure} \end{cases} \Rightarrow \quad \blacksquare \text{ Even if we use a secure } \mathcal{F}_{\mathsf{EQ}}$

- Optimized \mathcal{F}_{cpre} + DILO-WRK = \longrightarrow \longrightarrow : $2\kappa + 3\rho + 2$ bits, \longrightarrow \longrightarrow : 2 bits
- How about optimizing one-way communication? Maybe dual execution?

$$\{\lambda_k,\mathsf{L}_{k,0},\mathsf{L}_{k,1}\}$$
 $\{\Lambda_k,\mathsf{L}_{k,\Lambda_k}\}$ for $k\in\mathcal{N}$

■ Optimized
$$\mathcal{F}_{cpre}$$
 + DILO-WRK = \longrightarrow \longrightarrow : $2\kappa + 3\rho + 2$ bits, \longrightarrow \longrightarrow : 2 bits

How about optimizing one-way communication? Maybe dual execution?

s.t.
$$\hat{a}_k \oplus \hat{b}_k = (a_i \oplus b_i) \cdot (a_j \oplus b_j)$$

$$\{\lambda_k,\mathsf{L}_{k,0},\mathsf{L}_{k,1}\}$$
 $\{\Lambda_k,\mathsf{L}_{k,\Lambda_k}\}$ for $k\in\mathcal{W}$ $\mathsf{L}_{k,\Lambda_k}=\mathsf{L}_{k,0}\oplus\Lambda_k\cdot\Delta_\mathsf{A}$

$$[\mathbf{a}'], [\hat{\mathbf{a}}'], [\hat{\mathbf{b}}'], [\hat{\mathbf{b}}'], \Delta'_{\mathsf{A}}, \Delta'_{\mathsf{B}} \leftarrow \$$$

$$\mathrm{s.t.} \ \hat{a}_k \oplus \hat{b}_k = (a_i \oplus b_i) \cdot (a_j \oplus b_j)$$

$$\{\lambda'_k, \mathsf{L}'_{k,0}, \mathsf{L}'_{k,1}\} \qquad \{\Lambda'_k, \mathsf{L}'_{k,\Lambda'_k}\} \ \text{for} \ k \in \mathcal{W}$$

$$\mathsf{L}'_{k,\Lambda'_k} = \mathsf{L}'_{k,0} \oplus \Lambda'_k \cdot \Delta'_{\mathsf{B}}$$

Color bits and wire masks are authenticated for every wire

[HK21] Garbled Sharing

This enables checking equality for every wire across two executions

[a],
$$[\hat{\mathbf{a}}]$$
, $[\mathbf{b}]$, $[\hat{\mathbf{b}}]$, Δ_{A} , $\Delta_{\mathsf{B}} \leftarrow \$$

s.t.
$$\hat{a}_k \oplus \hat{b}_k = (a_i \oplus b_i) \cdot (a_j \oplus b_j)$$

$$\{\lambda_k,\mathsf{L}_{k,0},\mathsf{L}_{k,1}\}$$

$$\{\Lambda_k, \mathsf{L}_{k,\Lambda_k}\}$$
 for $k \in \mathcal{W}$
 $\mathsf{L}_{k,\Lambda_k} = \mathsf{L}_{k,0} \oplus \Lambda_k \cdot \Delta_\mathsf{A}$

$$\left[\mathcal{F}_{\mathsf{cpre}}
ight]$$

$$[\mathbf{a}'], [\hat{\mathbf{a}}'], [\mathbf{b}'], [\hat{\mathbf{b}}'], \Delta_{\mathsf{A}}, \Delta_{\mathsf{B}} \leftarrow \$$$

s.t.
$$\hat{a}_k \oplus \hat{b}_k = (a_i \oplus b_i) \cdot (a_j \oplus b_j)$$

$$\{\lambda_k, \mathsf{L}_{k,0}, \mathsf{L}_{k,1}\} \qquad \{\Lambda_k, \mathsf{L}_{k,\Lambda_k}\} \text{ for } k \in \mathcal{W} \\ \mathsf{L}_{k,\Lambda_k} = \mathsf{L}_{k,0} \oplus \Lambda_k \cdot \Delta_\mathsf{A} \qquad \{\lambda_k', \mathsf{L}_{k,0}', \mathsf{L}_{k,1}'\} \qquad \{\Lambda_k', \mathsf{L}_{k,\Lambda_k'}'\} \text{ for } k \in \mathcal{W} \\ \mathsf{L}_{k,\Lambda_k'}' = \mathsf{L}_{k,0}' \oplus \Lambda_k' \cdot \Delta_\mathsf{B}'$$

Checks
$$(a_w \oplus b_w \oplus \Lambda_w) \cdot (\Delta_A \oplus \Delta_B) = (a_w' \oplus b_w' \oplus \Lambda_w') \cdot (\Delta_A \oplus \Delta_B)$$

$$V_w^A = (a_w \oplus a_w' \oplus \Lambda_w') \Delta_A \oplus \mathsf{M}_A[a_w] \oplus \mathsf{M}_A[a_w'] \oplus \mathsf{M}_A[\Lambda_w'] \oplus \mathsf{K}_A[b_w] \oplus \mathsf{K}_A[b_w'] \oplus \mathsf{K}_A[h_w'],$$

$$\mathsf{V}_\mathsf{w}^\mathsf{B} = (b_\mathsf{w} \oplus b_\mathsf{w}' \oplus \mathsf{\Lambda}_\mathsf{w}) \Delta_\mathsf{B} \oplus \mathsf{M}_\mathsf{B}[b_\mathsf{w}] \oplus \mathsf{M}_\mathsf{B}[b_\mathsf{w}'] \oplus \mathsf{M}_\mathsf{B}[\mathsf{\Lambda}_\mathsf{w}] \oplus \mathsf{K}_\mathsf{B}[a_\mathsf{w}] \oplus \mathsf{K}_\mathsf{B}[a_\mathsf{w}'] \oplus \mathsf{K}_\mathsf{B}[\mathsf{\Lambda}_\mathsf{w}'].$$

Conclusion

- Further optimization on the compression technique of [DILO22]
- Dual-key authentication and efficient generation
- Dual execution upon distribution garbling eliminates 1-bit leakage
- Malicious 2PC with one-way comm. of $2\kappa + 5$ bits, two way comm. of $2\kappa + 3\rho + 2$ bits

2PC	Rounds		Communication per AND gate	
	Prep.	Online	one-way (bits)	two-way (bits)
Half-gates	1	2	2κ	2κ
HSS-PCG	8	2	$8\kappa+11$ (4.04 $ imes$)	$16\kappa+22$ (8.09 $ imes$)
KRRW-PCG	4	4	$5\kappa+7$ (2.53 $ imes$)	$8\kappa+14$ (4.05 $ imes$)
DILO	7	2	$2\kappa + 8 ho + 1$ (2.25 $ imes$)	$2\kappa + 8\rho + 5$ (2.27 $ imes$)
This work	8	3	$2\kappa + 5$ ($pprox 1 imes$)	$4\kappa+10$ (2.04 $ imes$)
This work+DILO	8	2	$2\kappa + 3\rho + 2$ (1.48×)	$2\kappa + 3\rho + 4 \approx 1.48 \times$

Thanks for your listening

Merci beaucoup

