Interquartile Range

	sl_no	ssc_p	hsc_p	degree_p	etest_p	mba_p	salary
mean	108	67.3034	66.3332	66.3702	72.1006	62.2782	288655
median	108	67	65	66	71	62	265000
mode	1	62	63	65	60	56.7	300000
Q1:25%	54.5	60.6	60.9	61	60	57.945	240000
Q2:50%	108	67	65	66	71	62	265000
Q3:75%	161.5	75.7	73	72	83.5	66.255	300000
Q4:100%	215	89.4	97.7	91	98	77.89	940000
IQR	107	15.1	12.1	11	23.5	8.31	60000
1.5rule	160.5	22.65	18.15	16.5	35.25	12.465	90000
lesser	-106	37.95	42.75	44.5	24.75	45.48	150000
greater	322	98.35	91.15	88.5	118.75	78.72	390000
min	1	40.89	37	50	50	51.21	200000
max	215	89.4	97.7	91	98	77.89	940000

Formulas:

- IQR=Q3-Q1
- 1.5×IQR
- Lesser = $Q1 1.5 \times IQR$
- Greater = $Q3 + 1.5 \times IQR$

Calculations:

ssc_p

$$\circ$$
 IQR = 75.7 - 60.6 = 15.1

$$\circ$$
 1.5 × IQR = 1.5 × 15.1 = 22.65

$$\circ$$
 Lesser = $60.6 - 22.65 = 37.95$

$$\circ$$
 greater = 75.7 + 22.65 = 98.35

- o Min = 40.89 → 40.89 > 37.95 no low-end outlier.
- o Max = $89.4 \rightarrow 89.4 < 98.35$ no high-end outlier.

hsc_p

•
$$IQR = 73 - 60.9 = 12.1$$

•
$$1.5 \times IQR = 1.5 \times 12.1 = 18.15$$

• Lesser=
$$60.9 - 18.15 = 42.75$$

• greater=
$$73 + 18.15 = 91.15$$

• Min =
$$37 \rightarrow 37 < 42.75$$
 no low-end outlier.

•
$$Max = 97.7 \rightarrow 97.7 > 91.15$$
 high-end outlier.

degree_p

•
$$IQR = 72 - 61 = 11.0$$

•
$$1.5 \times IQR = 1.5 \times 11.0 = 16.5$$

• Lesser =
$$61 - 16.5 = 44.5$$

• greater =
$$72 + 16.5 = 88.5$$

• Min =
$$50 \rightarrow 50 > 44.5$$
 no low-end outlier.

• Max =
$$91 \rightarrow 91 > 88.5$$
 high-end outlier.

etest p

•
$$IQR = 83.5 - 60 = 23.5$$

•
$$1.5 \times IQR = 1.5 \times 23.5 = 35.25$$

• Lesser =
$$60 - 35.25 = 24.75$$

• Greater =
$$83.5 + 35.25 = 118.75$$

• Min =
$$50 \rightarrow 50 > 24.75$$
 no low-end outlier.

• Max =
$$98 \rightarrow 98 < 118.75$$
 no high-end outlier.

mba_p

•
$$IQR = 66.255 - 57.945 = 8.31$$

•
$$1.5 \times IQR = 1.5 \times 8.31 = 12.465$$

• Lesser =
$$57.945 - 12.465 = 45.48$$

• Greater =
$$66.255 + 12.465 = 78.72$$

- Min = $51.21 \rightarrow 51.21 > 45.48$ no low-end outlier.
- $Max = 77.89 \rightarrow 77.89 < 78.72$ no high-end outlier.

salary

- IQR = 300000 240000 = 60000
- $1.5 \times IQR = 1.5 \times 60000 = 90000$
- Lesser = 240000 90000 = 150000
- Greater = 300000 + 90000 = 390000
- $Min = 200000 \rightarrow 200000 > 150000$ no low-end outlier.
- $Max = 940000 \rightarrow 940000 > 390000$ high-end outlier exists.