Hand Gestures Recognition Using 3D LiDAR Sensor

Team Members:

- Shruti Dilip Kavishwar,
- Xin Wen,
- Emily Weng,
- Jiani Ma,
- Feven Belay Araya

Instructors

- Prof. Henry Chang
- Prof. Alex Yang

CONTENT

09

01	Introduction
<i>02</i>	1st Approach –Gesture Kit & Al Model with User Selection
<i>03</i>	Basic Logic and Test Accuracy
<i>04</i>	2rd Approach - 3D Convolutional Neural Network Al model
<i>05</i>	Basic Logic and Test Accuracy
<i>06</i>	3nd Approach - STMicroelectronic Merged Solution
<i>07</i>	Basic Logic and Test Accuracy
08	Comparison of Test Accuracy

4th Approach - Prompt Based (using GPT API)

Introduction

Objective:

 Explore and evaluate diverse technologies for enhancing user interaction via gesture recognition.

Approaches and Tools:

 Implement GestureEVK and advanced CNN models with GUI integration for real-time application.

Goals:

- Evaluate the effectiveness and accuracy of each approach.
- Identify the best methods for robust and accurate gesture recognition.

Three Approaches of Gestures Recognition

First Approach

Gesture Kit & Hand
Posture Al Model
with User Selection

Second Approach

3D Convolutional Neural Network Al Model

Third Approach

STMicroelectronic Merged Solution

First Approach

- Gesture Kit and Hand Posture Al Model with User Selection

Dynamic Gestures:

Palm Up Palm Left
Palm Down Palm Right

Tap Double

Static Gestures:

Palm Thumbs Up
Stop Thumbs Down

Heart Cross

Fist

First Approach – Basic Concept

- Use software GestureKit to recognize dynamic gestures and HandPosture Al Model to recognize static gestues
- Combined two softwares using User
 Selection Buttons Dynamic and Static,
 to switch between two softwares.

First Approach – Process

User Selection

Hand Posture Widget

Dynamic Gestures Detection

First Approach – Specification

Distance: The test subject is positioned at arm's length from the sensor. Hand gestures are performed 15 cm away from the sensor.

Duration: Each gesture demonstration lasts approximately 2 seconds.

Interval: There is a 3-second interval between demonstrations.

TEST ACCURACY

Dynamic Gestures	****
Dynamic	
palm up	88.00%
palm down	99.00%
palm left	97.00%
palm right	96.00%
tap	95.00%
palm backward	92.00%

Static Gestures	****	
Static		
thumb up	98.00%	
tumb down	95.00%	
heart	93.00%	
stop	95.00%	
cross	99.00%	
fist	92.00%	

3D CNN AI Model - Basic Logic and Process

3D CNN Al Model - Gesture Categories

Dynamic Gestures:

Palm Up

Palm Left

Palm Forward

Palm Down

Palm Right

Palm Backward

Static Gestures:

Thumbs Up Thumbs Down

Guidelines For Performing Gestures

Gesture	Distance (cm)	Specifications
Palm Up	10~30	Move upward steadily. Centered entry and exit.
Palm Down	10~30	Move downward steadily. Centered entry and exit.
Palm Left	10~30	Move left steadily, no vertical movement.
Palm Right	10~30	Move right steadily, no vertical movement.
Palm Forward	10~30	Push forward steadily, no swaying.
Palm Backward	10~30	Pull backward steadily, no swaying.
Thumbs Up	25~35	Stationary, thumb up. Tilt hand slightly to sensor for clear heatmap. Left hand preferred.
Thumbs Down	25~35	Stationary, thumb down.

TEST ACCURACY

Dynamic Gestures	****	
Gestures	Accuracy	
palm right	94.00%	
palm left	93.00%	
palm up	96.00%	
palm down	95.00%	
palm forward	98.00%	
palm down	98.00%	

STMicroelectronic Merged Solution

Limitation of First approach = Motivation for third approach

In reality we would want both the static and dynamic gestures to be recognized without any user intervention or user having to select which gesture they would want to perform. Having this in mind we have implemented a merged solution **using** the state of the art solution.

STMicroelectronics Merged Solution

Logic

Sensors feeds data to Static and Dynamic models

```
If dynamic
gesture == True{
parse }
Else{ Parse static }
```

STATIC 0 == No Gesture / Idle If STATIC != 0 then parse

- Static Gestures are like images. Every frame in a video/feed will have a static gesture predicted.
- Dynamic Gesture is predicted only when the model detects change in motion
- So for this solution is a simplified solution using both static and dynamic models.

STMicroelectronic Merged Solution

Dynamic Gesture Recognition Algorithm

Static Gesture
Al Model

Merged Solution

STMicrocontroller Merged Solution

Dynamic Gestures:

_eft

Forward

Double Tap

Down

Right

Backward

Static Gestures:

Flat Hand

Thumbs Up

Heart

BreakTime

Thumbs Down

Cross Hands

Fist

Comparison of Test Accuracy

Approach	Dynamic Gestures Accuracy (Avg)	Static Gestures Accuracy (Avg)	Key Strengths	Limitations
User Selection	~70%	~85%	Easy integration with GUI	Manual calibration needed
3D CNN Al Model	~95%	~87%	Advanced motion tracking high accuracy	Further improvements
STMicroelectronics Merged Solution	~80%	~90%	Advanced motion tracking	Higher computational complexity

Fourth Approach

Prompt Based Gesture Recognition (using GPT API)

Prompt Based Gesture Recognition

This project implements a gesture recognition system that uses real-time data from sensors to identify hand gestures. It combines:

- Sensor Data Collection
- Data Preprocessing and Analysis using pattern recognition methods
- Gesture Prediction with Prompt based solution
- Tkinter-Based GUI for Visualization

Prompt Based Gesture Recognition

Key Components

- 1. Data Parsing and Frame Handling
 - a. Collects and parses raw sensor data into 8x8 frames.
- 2. Preprocessing
 - a. Extract meaningful features from collected frames
 - i. Mean, Std deviation, max, min distances
 - ii. Center of gravity
- 3. Real-Time Data Collection and Processing
 - a. Connects to serial port to collect and preprocess frames in real-time
- 4. Gesture Detection with Trends
 - a. Analyzes trends in CoG values for gesture prediction
 - b. Recognizes motion based on slopes
 - c. Identifies static and proximity-based gestures
- 5. GPT Integration

Prompt Based Gesture Recognition

Highlights

- 1. Real-Time Gesture Analysis: Efficient frame collection and preprocessing pipeline
- 2. Trends and Al Refinement: Combines statistical analysis with GPT for high accuracy

Example Gestures

- 1. Upward motion: Detected when CoG moves significantly upward
- 2. Palm Forward: Identified based on proximity to the sensor.
- 3. Static Gesture: Small fluctuations with clear trends

THANKS

2D&3D CNN AI Models - Basic Logic and Process

2D_CNN
Spatial Only

Preprocess

3D_CNN
Both Spatial
and Temporal

Motion Detection

route input to appropriate model

Evaluate

Static Gestures
Prediction

Dynamic Gestures Prediction

TEST ACCURACY

Gestures	Accuracy
palm right	91.00%
palm left	83.00%
palm up	100.00%
palm down	91.00%
palm forward	71.00%
palm down	88.00%

Presentation slides:

1. Project of Gesture Recognition

By: name

- 2. 3 Approaches of Gesture Recognition:
 - a. STMicroelectronics' STSW-IMG035_EVK and STM32CubeAl combined source code with $\mbox{\rm GUI}$
 - b. STMicroelectronics' STSW-IMG035_EVK and STM32CubeAl with Prompt
 - c. 3D CNN & 2D CNN Model

- 3. Combined source code with GUI
- 4. Real-time test accuracy

STMicroelectronics' STSW-IMG035 EVK and STM32CubeAI with Prompt