Probleme propuse * Setul 2

11. (sisteme) Aflați parametrul $a \in \mathbb{R}$ astfel încât $\frac{xy}{x+y} < 0$, unde (x,y) este o soluție oarecare a sistemului

$$\begin{cases} x^3 + y^3 - 2(x+y) = 25a \\ x^2 - xy + y^2 = 7. \end{cases}$$

- a) a < 0; b) a > 0; c) $a \in (0, \frac{\sqrt{7}}{5})$; d) $a \in (-\infty, -\frac{\sqrt{7}}{5}) \cup (\frac{\sqrt{7}}{5}, \infty)$; e) $a \in (-\infty, -\frac{\sqrt{7}}{5}) \cup (1, \infty)$; f) $a \in (-\infty, -\frac{\sqrt{7}}{5}) \cup (0, \frac{\sqrt{7}}{5})$.
- 12. (mulţimi) Fie $A = \{x + y\sqrt{2} \mid x, y \in \mathbb{Q}\}$ şi $\alpha = \sqrt[3]{99 70\sqrt{2}}$. Atunci
- a) $\alpha \notin A$; b) $\alpha \in A$; c) $\alpha^2 = 1$; d) $\alpha^3 = 1$; e) $\alpha < 0$; f) $\alpha > 1$.
- 13. (mulțimi) Numerele $\alpha, \beta \in \mathbb{R}$ au proprietatea că există $x_1, x_2 \in \mathbb{R}$ astfel încât $x_1x_2 = \alpha$ și $|x_1 x_2| = \beta$. Atunci
- a) $\alpha \ge \beta$; b) $4\alpha \beta^2 \le 0$; c) $\beta^2 + 4\alpha \ge 0$; d) $\beta^2 4\alpha \ge 0$; e) $\beta^2 \ge \alpha$; f) $\alpha = \beta$.
- 14. (şiruri) Să se determine $\lim_{n\to\infty} \frac{n(n^{1/n}-1)}{\ln n}$. a) 1; b) e; c) 1/e; d) e 1; e) 2; f) 1/2.
- **15.** (derivabilitate) Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0. \end{cases}$

Punctele de derivabilitate ale lui f sunt

- a) 0; b) \mathbb{R} ; c) nu există; d) $\mathbb{R} \setminus \{0\}$; e) $\mathbb{R} \setminus \{0, \frac{2}{\pi}\}$; f) $\mathbb{R} \setminus \mathbb{Q}$.
- **16.** (derivabilitate) Fie $f:[a,b] \to [\alpha,\beta]$ o funcție derivabilă, inversabilă, $f(a)=\alpha, f(b)=\beta,$ și $g:[\alpha,\beta] \to [\alpha,\beta]$
- [a,b] inversa sa. Atunci $I=\int_a^b f(x) dx + \int_a^\beta g(y) dy$ are valoarea
- a) $b\beta + a\alpha$; b) $b\beta a\alpha$; c) $a\beta + b\alpha$; d) $a\beta b\alpha$; e) $ab + \alpha\beta$; f) $ab \alpha\beta$.
- 17. (primitive) Să se determine F'(x) dacă $F(x) = \int_{0}^{b(x)} f(t) dt$ unde
- $b: [\alpha, \beta] \to [c, d]$ derivabilă pe (α, β) şi $f: [c, d] \to \mathbb{R}$ continuă pe [c, d].
- a) F'(x) = f(b(x)); b) F'(x) = f'(b(x)) f(c); c) F'(x) = f'(b(x));
- d) F'(x) = f(b(x))b'(x); e) F'(x) = f(b(x))b'(x) f(c); f) F'(x) = f'(b(x))b'(x).
- 18. (ecuații trigonometrice) Fie ecuațiile $6\sin^2 x + 3\sin x \cos x 5\cos^2 x = 2$ și $\tan^2 x + \cot^2 x = 2$. Câte soluții comune au aceste ecuații?
- a) nici una; b) o infinitate; c) două; d) toate; e) trei; f) patru.
- 19. (aplicații ale trigonometriei) În ce triunghi are loc relația $\frac{a+c}{b} = \operatorname{ctg} \frac{B}{2}$?
- a) echilateral; b) dreptunghic; c) oarecare; d) în nici un triunghi; e) isoscel;
- f) obtuzunghic.
- 20. (geometrie în spațiu) Se consideră cubul ABCDA'B'C'D'. Să se calculeze unghiul dintre dreptele AC și AB'.
- a) $\frac{\pi}{2}$; b) $\frac{\pi}{4}$; c) $\frac{7\pi}{12}$; d) $\frac{\pi}{3}$; e) $\frac{\pi}{5}$; f) $\frac{3\pi}{8}$.