第2节 三角恒等式的常见变形 (★★☆)

内容提要

本节归纳三角恒等式的常见变形.

- 1. 恒等变换: 除了三角恒等变换公式,还需注意三角形内角和为 π ,例如, $\sin(A+B)=\sin(\pi-C)=\sin C$, $\cos(A+B)=\cos(\pi-C)=-\cos C$.
- 2. 正弦定理边角互化及外接圆半径 R:
- ①齐次的边与内角正弦值互化: $a = b \Leftrightarrow \sin A = \sin B$;
- ②分式转化: $\frac{a}{b} = \frac{\sin A}{\sin B}$;
- ③涉及外接圆半径: $2R = \frac{a}{\sin A}$.
- 3. 余弦定理及其推论:
- ①涉及 $b^2+c^2-a^2$, b^2+c^2 这类含边的平方的结构,考虑利用余弦定理及其推论;
- ②等式中有 $\cos A$,且边化角不易,可考虑将 $\cos A$ 换成 $\frac{b^2+c^2-a^2}{2bc}$,角化边处理;
- ③涉及 $a\pm b$ 和ab的关系,考虑将余弦定理配方,即 $c^2=(a\pm b)^2-2ab(\cos C\pm 1)$.

典型例题

类型 1: 正弦定理边角互化

【例 1】(2021•北京卷节选)在 ΔABC 中, $c=2b\cos B$, $C=\frac{2\pi}{3}$,求 B.

解: (等式 $c = 2b\cos B$ 左右两侧有齐次的边,结合要求的是角,所以考虑边化角)

因为 $c=2b\cos B$,所以 $\sin C=2\sin B\cos B$,故 $\sin C=\sin 2B$,又 $C=\frac{2\pi}{3}$,所以 $\sin 2B=\sin\frac{2\pi}{3}=\frac{\sqrt{3}}{2}$,

由
$$C = \frac{2\pi}{3}$$
 可得 $0 < B < \frac{\pi}{3}$,故 $0 < 2B < \frac{2\pi}{3}$,所以 $2B = \frac{\pi}{3}$,故 $B = \frac{\pi}{6}$.

【反思】当所给等式左右两侧有齐次的边或内角正弦值时,可考虑用正弦定理边角互化;类似的,像 b 和

 $\frac{\sin A}{\sin B}$ 这类齐次分式,也可用正弦定理来互化.

【变式 1】在 $\triangle ABC$ 中,内角 A, B, C 的对边分别为 a, b, c, 若 $\cos C = \frac{b}{a} - \frac{c}{2a}$,则 A =_____.

解析: 等式 $\cos C = \frac{b}{a} - \frac{c}{2a}$ 右侧为两个边的齐次分式,要求的是角,可以考虑将分式边化角,

因为 $\cos C = \frac{b}{a} - \frac{c}{2a}$,所以 $\cos C = \frac{\sin B}{\sin A} - \frac{\sin C}{2\sin A}$,两端乘以 $2\sin A$ 得: $2\sin A\cos C = 2\sin B - \sin C$ ①,

接下来可考虑拆右侧的 $\sin B$ 或 $\sin C$, 左边是 $2\sin A\cos C$, 所以拆 $\sin B$ 会出现与左边相同的项,

 $\sin B = \sin[\pi - (A+C)] = \sin(A+C) = \sin A \cos C + \cos A \sin C,$

代入式①可得 $2\sin A\cos C = 2\sin A\cos C + 2\cos A\sin C - \sin C$, 整理得: $2\cos A\sin C - \sin C = 0$ ②,

又 $0 < C < \pi$, 所以 $\sin C > 0$, 对②约去 $\sin C$ 得: $2\cos A - 1 = 0$, 故 $\cos A = \frac{1}{2}$, 结合 $0 < A < \pi$ 知 $A = \frac{\pi}{3}$.

答案: $\frac{\pi}{3}$

【**反思**】变形时可以考虑利用三角形内角和为 π ,拆掉像 $\sin B$ 这种单独的项,拆 $\sin B$ 的标志是等式的其余项中有 $\sin A\cos C$ 或 $\cos A\sin C$.

【变式 2】在 ΔABC 中,角 A, B, C 的对边分别为 a, b, c,若 $A=\frac{\pi}{3}$, a=3 , $\sin B + \sin C = 2\sin B\sin C$, $\frac{1}{b} + \frac{1}{c}$ 的值.

解:(已知边a和角A,可利用正弦定理求出外接圆直径2R,再用它进行边角转化)

因为
$$a=3$$
, $A=\frac{\pi}{3}$,所以 ΔABC 的外接圆直径 $2R=\frac{a}{\sin A}=\frac{3}{\sin \frac{\pi}{3}}=2\sqrt{3}$,

(要求的是 $\frac{1}{b} + \frac{1}{c}$ (边),已知的是 $\sin B + \sin C = 2\sin B \sin C$ (角),故将已知向目标转化,用正弦定理角化边)

由正弦定理,
$$\frac{b}{\sin B} = \frac{c}{\sin C} = 2R = 2\sqrt{3}$$
, 所以 $\sin B = \frac{b}{2\sqrt{3}}$, $\sin C = \frac{c}{2\sqrt{3}}$,

代入
$$\sin B + \sin C = 2\sin B \sin C$$
 可得 $\frac{b}{2\sqrt{3}} + \frac{c}{2\sqrt{3}} = 2 \cdot \frac{b}{2\sqrt{3}} \cdot \frac{c}{2\sqrt{3}}$, 所以 $b + c = \frac{\sqrt{3}}{3}bc$,

两端同除以 bc 可得 $\frac{1}{b} + \frac{1}{c} = \frac{\sqrt{3}}{3}$.

【反思】可以发现,即使是非齐次的边或内角正弦值,在已知了外接圆半径 R 的条件下,也可用 $a=2R\sin A$ 来边化角,用 $\sin A=\frac{a}{2R}$ 来角化边,其它边角同理.

类型 II: 余弦定理边角互化

【例 2】在 $\triangle ABC$ 中,角 A, B, C 的对边分别为 a, b, c, 已知 $a^2+c^2=b^2+2$, $\sin B=\frac{3}{5}$,求 $\triangle ABC$ 的面积.

解: (涉及 $a^2+c^2-b^2$, 考虑余弦定理推论) 因为 $a^2+c^2=b^2+2$, 所以 $a^2+c^2-b^2=2$,

由余弦定理推论,
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{2}{2ac} = \frac{1}{ac}$$
 ①,

(要求面积,由于已知 $\sin B$,所以只需求 ac ,可由 $\sin B$ 求出 $\cos B$,代入式①来算)

因为
$$\sin B = \frac{3}{5}$$
,结合式①可得 $\cos B > 0$, 所以 $\cos B = \sqrt{1 - \sin^2 B} = \frac{4}{5}$,

代入式①可得
$$\frac{1}{ac} = \frac{4}{5}$$
,故 $ac = \frac{5}{4}$,所以 $S_{\triangle ABC} = \frac{1}{2}ac\sin B = \frac{1}{2} \times \frac{5}{4} \times \frac{3}{5} = \frac{3}{8}$.

【反思】出现像 $a^2+c^2-b^2$ 这种结构,是运用余弦定理及其推论的标志.

【变式 1】在 $\triangle ABC$ 中,角 A, B, C 的对边分别为 a, b, c, 已知 $c-b=a\cos B-b\cos A$, 求 A.

解法 1: (题干给了一个边角等式,考虑的方向不外乎边化角,或者角化边,先试试边化角)

因为 $c-b=a\cos B-b\cos A$,所以 $\sin C-\sin B=\sin A\cos B-\sin B\cos A$ ①,

(注意到右边有 $\sin A\cos B$ 和 $\sin B\cos A$,所以拆左边的 $\sin C$,能和右边统一)

 $\mathbb{X}\sin C = \sin[\pi - (A+B)] = \sin(A+B) = \sin A\cos B + \cos A\sin B$,

代入式①可得 $\sin A \cos B + \cos A \sin B - \sin B = \sin A \cos B - \sin B \cos A$, 整理得: $2\cos A \sin B - \sin B = 0$,

因为 $0 < B < \pi$,所以 $\sin B > 0$,从而 $2\cos A - 1 = 0$,故 $\cos A = \frac{1}{2}$,结合 $0 < A < \pi$ 可得 $A = \frac{\pi}{3}$.

解法 2: (也可以考虑用余弦定理推论,将 $\cos B$ 和 $\cos A$ 进行角化边,寻找边的关系)

因为
$$c-b=a\cos B-b\cos A$$
,所以 $c-b=a\cdot \frac{a^2+c^2-b^2}{2ac}-b\cdot \frac{b^2+c^2-a^2}{2bc}$,整理得: $b^2+c^2-a^2=bc$,

所以
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{bc}{2bc} = \frac{1}{2}$$
, 结合 $0 < A < \pi$ 可得 $A = \frac{\pi}{3}$.

【反思】像 $c-b=a\cos B-b\cos A$ 这类边角等式,考虑的方向不外乎边化角,寻找角的关系;或者角化边,寻找边的关系,在选择方法时,应先预判计算量.

【变式 2】在 $\triangle ABC$ 中,角 A, B, C 的对边分别为 a, b, c,已知 $a = \sqrt{5}$, $\cos A = \frac{5}{6}$, $\triangle ABC$ 的面积为 $\frac{\sqrt{11}}{4}$,

则 ΔABC 的周长为 (

(A)
$$4+\sqrt{5}$$
 (B) $2\sqrt{5}+\sqrt{2}$ (C) $5+\sqrt{5}$ (D) $\sqrt{5}+2\sqrt{2}$

解析: 已知 a,所以要求周长,只需求出 b+c,先翻译面积这个条件. 由于 A 已知,为了不引入新的未知数,用 $S=\frac{1}{2}bc\sin A$ 算面积,

因为
$$0 < A < \pi$$
,所以 $\sin A > 0$,又 $\cos A = \frac{5}{6}$,所以 $\sin A = \sqrt{1 - \cos^2 A} = \frac{\sqrt{11}}{6}$,

从而
$$S_{\triangle ABC} = \frac{1}{2}bc\sin A = \frac{\sqrt{11}}{12}bc = \frac{\sqrt{11}}{4}$$
,故 $bc = 3$ ①,

求出了bc,结合已知边a和角A,可用余弦定理沟通b+c和bc,

由余弦定理,
$$a^2 = b^2 + c^2 - 2bc\cos A$$
,将 $a = \sqrt{5}$, $\cos A = \frac{5}{6}$ 代入整理得: $b^2 + c^2 - \frac{5}{3}bc = 5$ ②,

由②可得 $(b+c)^2 - \frac{11}{3}bc = 5$,将①代入可求得b+c=4,所以 ΔABC 的周长为 $4+\sqrt{5}$.

答案: A

【反思】将余弦定理 $a^2 = b^2 + c^2 - 2bc\cos A$ 配方,可沟通 b + c 和 bc ,这是给出 A 和 a 时常用的处理方法.

类型III:综合应用

【例 3】在 $\triangle ABC$ 中,角 A, B, C 的对边分别为 a, b, c, 若 $a\cos A = b\cos B$, $a^2 + b^2 - ab = c^2$, a = 2 , 则 $\triangle ABC$ 的面积为(

(A)
$$\frac{\sqrt{3}}{2}$$
 (B) 1 (C) $\sqrt{3}$ (D) 2

解析: 题干给出 $a^2 + b^2 - ab = c^2$ 这个式子, 联想到余弦定理推论,

$$a^2 + b^2 - ab = c^2 \Rightarrow a^2 + b^2 - c^2 = ab$$
, 所以 $\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{ab}{2ab} = \frac{1}{2}$, 结合 $0 < C < \pi$ 可得 $C = \frac{\pi}{3}$,

再看 $a\cos A = b\cos B$, 左右都有边,可用正弦定理边化角,

 $a\cos A = b\cos B \Rightarrow \sin A\cos A = \sin B\cos B \Rightarrow \sin 2A = \sin 2B$, 要分析 A, B 的关系,需先研究角的范围,

因为
$$C = \frac{\pi}{3}$$
,所以 $A + B = \pi - C = \frac{2\pi}{3}$,从而 A , B 都在 $(0, \frac{2\pi}{3})$ 上,故 $2A$, $2B$ 都在 $(0, \frac{4\pi}{3})$ 上,

结合 $\sin 2A = \sin 2B$ 可得 2A = 2B 或 $2A + 2B = \pi$ (如图),

若
$$2A + 2B = \pi$$
 ,则 $A + B = \frac{\pi}{2}$,与 $A + B = \frac{2\pi}{3}$ 矛盾,舍去,所以 $2A = 2B$,故 $A = B = \frac{\pi}{3}$,

从而 $\triangle ABC$ 是边长为 2 的正三角形,所以 $S_{\triangle ABC} = \frac{1}{2} \times 2 \times 2 \times \sin 60^{\circ} = \sqrt{3}$.

答案: C

【变式】(2022・全国乙卷)记 ΔABC 的内角 A, B, C的对边分别为 a, b, c, 已知 $\sin C \sin (A-B) = \sin B \sin (C-A)$.

- (1) 证明: $2a^2 = b^2 + c^2$;

解: (1) (观察结构,可发现所给等式中 $\sin C$, $\sin B$ 不易操作,故尝试把 $\sin(A-B)$ 和 $\sin(C-A)$ 展开)

由 $\sin C \sin(A - B) = \sin B \sin(C - A)$ 可得 $\sin C (\sin A \cos B - \cos A \sin B) = \sin B (\sin C \cos A - \cos C \sin A)$,

所以 $\sin C \sin A \cos B - \sin C \cos A \sin B = \sin B \sin C \cos A - \sin B \cos C \sin A$,

(观察发现左侧和右侧有相同的项 $\sin C\cos A\sin B$, 其余两项也可提公因式 $\sin A$, 故移项调整)

从而 $\sin C \sin A \cos B + \sin B \cos C \sin A = \sin C \cos A \sin B + \sin B \sin C \cos A$,

故 $\sin A(\sin C\cos B + \cos C\sin B) = 2\sin B\sin C\cos A$,所以 $\sin A\sin(B+C) = 2\sin B\sin C\cos A$ ①,

又 $\sin(B+C) = \sin(\pi-A) = \sin A$,代入①可得 $\sin^2 A = 2\sin B \sin C \cos A$,

(化到此处,从角的层面来看已是最简了,考虑到我们要证明的是关于边的等式,所以将角全部化边)

所以
$$a^2 = 2bc \cdot \frac{b^2 + c^2 - a^2}{2bc}$$
, 整理得: $2a^2 = b^2 + c^2$.

(2)(结合第(1)问结论可求得 b^2+c^2 ,于是用余弦定理再建立一个边的方程,通过配方来计算b+c) 将 a = 5 代入 $2a^2 = b^2 + c^2$ 可得: $b^2 + c^2 = 50$ ②,

由余弦定理, $a^2 = b^2 + c^2 - 2bc\cos A$,将式②和 $\cos A = \frac{25}{31}$ 代入可得 $25 = 50 - \frac{50}{31}bc$,所以 $bc = \frac{31}{2}$,

由②可得 $b^2+c^2=(b+c)^2-2bc=(b+c)^2-31=50$,从而b+c=9,故 ΔABC 的周长为a+b+c=14.

【总结】从本节的几道例题可以看出,三角恒等式变形的核心是边角转化,用正弦定理来边角转化的特征 是"齐次",用余弦定理来边角转化的特征是"形式".

强化训练

- 1. (2022•福建漳州模拟改•★)在 $\triangle ABC$ 中,内角 A, B, C 的对边分别为 a, b, c, 且 $\sqrt{3}a\cos B = b\sin A$, 则 B= (

- (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$
- 2. (2022 •福建闽侯模拟 •★★) 在 $\triangle ABC$ 中,内角 A, B, C 的对边分别为 a, b, c, 且 $b = a \cos C$,则 $\triangle ABC$ 是 (
- (B) 直角三角形 (C) 等腰直角三角形 (D) 等边三角形 (A) 等腰三角形
- 3. $(2023 \cdot 江西模拟 \cdot ★★)在 △ABC 中,角 A,B,C 的对边分别为 a,b,c,且 b cos C + c sin B = a ,则$ $B = \underline{\hspace{1cm}}$.
- 4. $(2022 \cdot 海南琼海模拟 \cdot ★★)在 △ABC 中,内角 A,B,C 的对边分别为 a,b,c,若 <math>c^2 = (a-b)^2 + 6$, $C = \frac{\pi}{3}$,则 $\triangle ABC$ 的面积为(
- (A) 3 (B) $\frac{9\sqrt{3}}{2}$ (C) $\frac{3\sqrt{3}}{2}$ (D) $3\sqrt{3}$

5.(2021 •全国乙卷 ★★)记 Δ*ABC* 的内角 *A*, *B*, *C* 的对边分别为 *a*, *b*, *c*, 面积为 $\sqrt{3}$, $B=60^{\circ}$, $a^2+c^2=3ac$, 则 $b=__$.

- 7. (2022•安徽宣城模拟•★★★) 在 Δ*ABC* 中,内角 *A*, *B*, *C* 的对边分别为 *a*, *b*, *c*,若 $A = \frac{\pi}{3}$, b = 2,

$$c=3$$
,则
$$\frac{a-2b+2c}{\sin A-2\sin B+2\sin C}$$
 的值等于 ()

- (A) $\sqrt{21}$ (B) $\frac{2\sqrt{21}}{3}$ (C) $\frac{4\sqrt{7}}{3}$ (D) $\frac{4\sqrt{3}}{3}$
- 8. (2022 •黑龙江期末节选 •★★) 在 $\triangle ABC$ 中,内角 A, B, C 的对边分别为 a, b, c, 且 $b\sin\frac{B+C}{2}=a\sin B$, 求 A.
- 9. (2022 •江苏南京模拟节选 •★★)在 $\triangle ABC$ 中,内角 A, B, C 的对边分别为 a, b, c, 且 $\frac{\sin B + \sin C}{\sin A \sin C} = \frac{a}{b-c}$, 求 B.
- 10. (2022・安徽芜湖模拟节选・ $\star\star\star$)在 ΔABC 中,内角 A,B,C 的对边分别为 a,b,c,已知

$$\cos C + \sqrt{3}\sin C = \frac{a+c}{b}, \quad \Re B.$$

11. $(2022 \cdot 河北邢台模拟节选 \cdot \star \star \star \star)$ 已知 $2\sqrt{3}(\cos^2 C - \cos^2 A) = (a-b)\sin B$,且 ΔABC 外接圆的半径为 $\sqrt{3}$,求 C.

12. $(2022 ext{ •安徽模拟改 •★★★})$ 在 ΔABC 中,内角 A, B, C 的对边分别为 a, b, c, $\cos A\sin B = (2 - \cos B)\sin A$, $\cos B = \frac{1}{4}$, ΔABC 的周长为 10, 求 b.

《一数•高考数学核心方法》