Progress and Trends of Facial Recognition

소프트웨어학과 창경현

Contents

- 1. Facial Recognition Technology Process
- 2. Transition of facial recognition algorithms
- 3. Latest facial recognition trends

1. Facial Recognition Technology Process

1. Facial Recognition Technology Process

Image Preprocessing

Extract facial features

1. Facial Recognition Technology Process

Extract facial features

2. Transition of facial recognition algorithms

Softmax Function classification purpose

2. Transition of facial recognition algorithms: DeepFace Freeze

Triplet loss

Figure 3. The **Triplet Loss** minimizes the distance between an *an-chor* and a *positive*, both of which have the same identity, and maximizes the distance between the *anchor* and a *negative* of a different identity.

$$||f(x_i^a) - f(x_i^p)||_2^2 + \alpha < ||f(x_i^a) - f(x_i^n)||_2^2,$$
(1)

$$\forall (f(x_i^a), f(x_i^p), f(x_i^n)) \in \mathcal{T}.$$
(2)

Triplet loss

Figure 3. The **Triplet Loss** minimizes the distance between an *an-chor* and a *positive*, both of which have the same identity, and maximizes the distance between the *anchor* and a *negative* of a different identity.

$$||f(x_i^a) - f(x_i^p)||_2^2 + \alpha < ||f(x_i^a) - f(x_i^n)||_2^2,$$
(1)

$$\forall (f(x_i^a), f(x_i^p), f(x_i^n)) \in \mathcal{T}.$$
(2)

Triplet selection

$$\underset{x_{i}^{p}}{\operatorname{argmax}_{x_{i}^{p}}} \left\| f(x_{i}^{a}) - f(x_{i}^{p}) \right\|_{2}^{2}$$

$$\underset{x_{i}^{n}}{\operatorname{argmin}_{x_{i}^{n}}} \left\| f(x_{i}^{a}) - f(x_{i}^{n}) \right\|_{2}^{2}$$

$$\left\| f(x_{i}^{a}) - f(x_{i}^{p}) \right\|_{2}^{2} < \left\| f(x_{i}^{a}) - f(x_{i}^{n}) \right\|_{2}^{2}$$

Angular margin based loss function Introduction of "angle"

Problems with softmax loss

1. Not enough discernment in the open-set face recognition problem where a new case may emerge

Problem with triplet loss

- 1. In large-scale dataset, the number of triplet combinations increases explosively.
- 2. Semi-hard sample mining is quite difficult (it is difficult to process hard positive and negative)

$$\begin{split} p_1 &= \frac{\exp(W_1^T x + b_1)}{\exp(W_1^T x + b_1) + \exp(W_2^T x + b_2)} \\ p_2 &= \frac{\exp(W_2^T x + b_2)}{\exp(W_1^T x + b_1) + \exp(W_2^T x + b_2)} \\ &\qquad \qquad \text{Equation 1} \\ P_1 &> P_2 \to \text{class 1} \\ P_1 &< P_2 \to \text{class 2} \end{split}$$

 $(W_1^T - W_2^T)x + (b_1 - b_2) = 0$

$$p_1 = \frac{\exp(W_1^T x + b_1)}{\exp(W_1^T x + b_1) + \exp(W_2^T x + b_2)}$$

$$p_2 = \frac{\exp(W_2^T x + b_2)}{\exp(W_1^T x + b_1) + \exp(W_2^T x + b_2)}$$
Equation 1
$$P_1 > P_2 \rightarrow \text{class 1}$$

$$P_1 < P_2 \rightarrow \text{class 2}$$

 $(W_1^T - W_2^T)x + (b_1 - b_2) = 0$

$$L_{i} = -\log\left(\frac{e^{W_{y_{i}}^{T}x_{i} + b_{y_{i}}}}{\sum_{j} e^{W_{j}^{T}x_{i} + b_{j}}}\right)$$

$$= -\log\left(\frac{e^{\|W_{y_{i}}\|\|x_{i}\|\cos(\theta_{y_{i},i}) + b_{y_{i}}}}{\sum_{j} e^{\|W_{j}\|\|x_{i}\|\cos(\theta_{j,i}) + b_{j}}}\right)$$

$$W_{i}^{T}x = \|W_{i}^{T}\|\|x\|\cos(\theta_{i})$$

$$\|x\|(\cos(\theta_{1}) - \cos(\theta_{2})) = 0$$

$$p_1 = \frac{\exp(W_1^T x + b_1)}{\exp(W_1^T x + b_1) + \exp(W_2^T x + b_2)}$$

$$p_2 = \frac{\exp(W_2^T x + b_2)}{\exp(W_1^T x + b_1) + \exp(W_2^T x + b_2)}$$
Equation 1

$$P_1 > P_2 \rightarrow \text{class } 1$$

 $P_1 < P_2 \rightarrow \text{class } 2$

$$(W_1^T - W_2^T)x + (b_1 - b_2) = 0$$

$$L_{i} = -\log\left(\frac{e^{W_{y_{i}}^{T}x_{i} + b_{y_{i}}}}{\sum_{j} e^{W_{j}^{T}x_{i} + b_{j}}}\right)$$

$$= -\log\left(\frac{e^{\|W_{y_{i}}\|\|x_{i}\|\cos(\theta_{y_{i},i}) + b_{y_{i}}}}{\sum_{j} e^{\|W_{j}\|\|x_{i}\|\cos(\theta_{j,i}) + b_{j}}}\right)$$

$$W_{\mathbf{i}}^{\mathsf{T}} x = \parallel W_{\mathbf{i}}^{\mathsf{T}} \parallel \parallel x \parallel \cos(\theta i)$$

$$L_{\text{modified}} = \frac{1}{N} \sum_{i} -\log \Big(\frac{e^{\|\boldsymbol{x}_i\| \cos(\theta_{y_i,i})}}{\sum_{j} e^{\|\boldsymbol{x}_i\| \cos(\theta_{j,i})}} \Big)$$

$$L_{\text{ang}} = \frac{1}{N} \sum_{i} -\log \Big(\frac{e^{\|x_t\| \cos(m\theta_{y_t,i})}}{e^{\|x_t\| \cos(m\theta_{y_t,i})} + \sum_{j \neq y_t} e^{\|x_t\| \cos(\theta_{j,i})}} \Big)$$

Loss Function	Decision Boundary		
Softmax Loss	$(\boldsymbol{W}_1 - \boldsymbol{W}_2)\boldsymbol{x} + b_1 - b_2 = 0$		
Modified Softmax Loss	$\ \boldsymbol{x}\ (\cos\theta_1-\cos\theta_2)=0$		
A-Softmax Loss	$\ \boldsymbol{x}\ (\cos m\theta_1 - \cos \theta_2) = 0$ for class 1 $\ \boldsymbol{x}\ (\cos \theta_1 - \cos m\theta_2) = 0$ for class 2		

Figure 2: Comparison among softmax loss, modified softmax loss and A-Softmax loss. In this toy experiment, we construct a CNN to learn 2-D features on a subset of the CASIA face dataset. In specific, we set the output dimension of FC1 layer as 2 and visualize the learned features. Yellow dots represent the first class face features, while purple dots represent the second class face features. One can see that features learned by the original softmax loss can not be classified simply via angles, while modified softmax loss can. Our A-Softmax loss can further increase the angular margin of learned features.

$$L_{lmc} = \frac{1}{N} \sum_{i} -\log \frac{e^{s(\cos(\theta_{y_i,i})-m)}}{e^{s(\cos(\theta_{y_i,i})-m)} + \sum_{j \neq y_i} e^{s\cos(\theta_{j,i})}},$$
 Equation 3

Method	LFW	CALFW	CPLFW	
HUMAN-Individual	97.27	82.32	81.21	
HUMAN-Fusion	99.85	86.50	85.24	
Center Loss [36]	98.75	85.48	77.48	
SphereFace [15]	99.27	90.30	81.40	
VGGFace2 [3]	99.43	90.57	84.00	
MS1MV2, R100, ArcFace	99.82	95.45	92.08	

Table 5. Verification performance (%) of open-sourced face recognition models on LFW, CALFW and CPLFW.

3. Latest facial recognition trends

3. Latest facial recognition trends

Evaluation-oriented Knowledge Distillation for Deep Face Recognition

What is Knowledge distillation?

Experiments

Table 2. Verification comparison with SOTA methods on LFW, two pose benchmarks: CFP-FP and CPLFW, and two age benchmarks: AgeDB and CALFW.

Methods (%)	LFW	CFP-FP	CPLFW	AgeDB	CALFW
ResNet50	99.80	97.63	92.50	97.92	96.05
MobileFaceNet	99.52	91.66	87.93	95.82	95.12
FitNet (arxiv'14)	99.47	91.30	88.30	96.18	95.12
KD (NIPSW*14)	99.50	91.71	87.85	95.93	95.03
DarkRank (AAAI'18)	99.55	91.84	87.77	95.60	95.07
SP (ICCV' 19)	99.53	92.33	88.45	96.17	95.07
CCKD (ICCV' 19)	99.47	91.90	88.48	95.83	95.22
RKD (CVPR'19)	99.58	92.13	87.97	96.18	95.25
ShrinkTeaNet (arxiv'19)	99.47	91.97	88.52	96.00	94.98
TripletDistillation (ICIP'20)	99.55	93.14	88.03	95.53	94.97
MarginDistillation (arxiv'20)	99.61	92.01	88.03	96.55	95.13
EKD (Ours)	99.60	94.33	89.35	96.48	95.37

Teacher: Resnet50, trained by ArcFace

Student: MobileFaceNet or Resnet18

How will the model develop in the future?

3. Reference

[1] Yaniv Taigman, Ming Yang and Marc'Aurelio Ranzato, DeepFace: Closing the Gap to Human-Level Performance in Face Verification, *In IEEE Conf. on CVPR*, 2014

[2] Florian Schroff, Dmitry Kalenichenko and James Philbin, FaceNet: A Unified Embedding for Face Recognition and Clustering, *CVPR*, 2015

[3] Weiyang Liu 의 5일, SphereFace: Deep Hypersphere Embedding for Face Recognition, CVPR, 2017

[4] Hao Wang 외 7인, CosFace: Large Margin Cosine Loss for Deep Face Recognition, CVPR, 2018

[5] Jiankang Deng 외 5인, ArcFace: Additive Angular Margin Loss for Deep Face Recognition, CVPR, 2018

[6] Yuge Huang 외 3인, Evaluation-oriented Knowledge Distillation for Deep Face Recognition, CVPR, 2022

Thank you

