EDA Project Presentation

Identify commute stations for a start-up company by analyzing MTA dataset

Kristy Yang 2021 Sep

Introduction

- Motivation: To help a food service business to identify stations with potential customers or clients. The business offers lunch for people at work, sales through either food truck or nearby/fast delivery. The company will set up warehouses and food trucks in non-residential areas with nearby subway traffic shows a commute pattern.
- Objectives and goals: To find stations show a commute pattern that morning exits number is more than morning entries, but evening entries number is more than exits.
- Final result: Through EDA, I can successfully recognize a few stations which satisfy the company's requirements.

2

Methodology

Data

- Three month data from MTA website: 202106,202107,202108.
- Variables(columns used): C/A,UNIT,SCP,STATION,DATE,TIME,ENTRIES and EXITS.

df	. head	()									
	C/A	UNIT	SCP	STATION	LINENAME	DIVISION	DATE	TIME	DESC	ENTRIES	EXITS
0	A002	R051	02-00-00	59 ST	NQR456W	ВМТ	08/21/2021	00:00:00	REGULAR	7622548	2607689
1	A002	R051	02-00-00	59 ST	NQR456W	ВМТ	08/21/2021	04:00:00	REGULAR	7622561	2607697
2	A002	R051	02-00-00	59 ST	NQR456W	ВМТ	08/21/2021	08:00:00	REGULAR	7622573	2607718
3	A002	R051	02-00-00	59 ST	NQR456W	ВМТ	08/21/2021	12:00:00	REGULAR	7622604	2607766
4	A002	R051	02-00-00	59 ST	NQR456W	BMT	08/21/2021	16:00:00	REGULAR	7622715	2607802

Methodology

Metrics

• Compare exits number with entry number in the morning and Evening for each station.

Tools

- Pandas for data manipulation
- Matplotlib and Seaborn for plotting
- SQL is used for data ingestion and Storage
- SQLAlchemy for importing data into python

Methodology

Data Processing and Algorithm

- 1. Clean data: check/transfer data types, deal with duplicates, correct conspicuous errors.
- 2. Assign each record a TIME_SLOT value according to TIME. We only focus on morning (records between 06:00 and 11:00) and evening (records between 16:00 and 20:00) traffic in our analysis.
- 3. Calculate traffic in the mornings and evenings for each station. The total traffic value help to identify busy stations and non-busy stations.
- 4. Find the stations with commute pattern. (Defined as in average, exits number larger than entries in the morning, but opposite in the evening)
- 5. Combine the results of step3 and step 4, use different algorithm to recommend stations depending on the startup's requirements.

Scenario 1: If startup company prefers large traffic volume

From the 20 busiest stations in the mornings and evenings, we select those with a commute pattern. Stations are: ['96 ST', '34 ST-HERALD SQ', '59 ST', 'FULTON ST', '23 ST', 'PATH NEW WTC', 'CANAL ST', '59 ST COLUMBUS']

Scenario 1: If startup company prefers large volume traffic

- Insight:
 - Most of those stations has a vague commute pattern.
 - For many stations with super large traffic, the peak exits happen in the afternoon. This information means there are might be extra potential customers for the food startup company.

Scenario 2: If startup company focus on commute traffic only

- Method 1
 - Calculate the ratio of morning exits to the daily exits of each commute stations.
 Select 20 stations with highest ratios and save as list 1.
 - Calculate the ratio of evening entries to the daily entries of each commute stations.
 Select 20 stations with highest ratios and save as list 2.
 - Obtain intersection of list 1 and list 2.
- Insight
 - Very clear commute pattern
 - Traffic volumes are not among the largest.

Scenario 2: If startup company focus on commute traffic only

Method 1 Result: {'5 AV/53 ST', 'PATH NEW WTC', '68ST-HUNTER CO', '5 AV/59 ST', 'TWENTY THIRD ST', 'THIRTY THIRD ST'}

Scenario 2: If startup company focus on commute traffic only

- Method 2
 - Calculate the average value of difference between exits and entries in the morning of each commute stations. Select 20 stations with highest average and save as list 1.
 - Calculate the average value of difference between entries and exits in the evening of each commute stations. Select 20 stations with highest average and save as list 2.
 - Obtain intersection of list 1 and list 2
- Insight
 - Vague commute pattern
 - Diversified traffic volumes, man stations have exits peaks in the afternoon.

Scenario 2: If startup company focus on commute traffic only

Method 2 result: Stations are:

{'5 AV/53 ST', '47-50 STS ROCK', '42 ST-BRYANT PK', '5 AV/59 ST', '23 ST', 'LEXINGTON AV/53', '59 ST COLUMBUS', 'CHAMBERS ST', 'WALL ST', '77 ST', '96 ST', '59 ST', '72 ST-2 AVE', 'PATH NEW WTC'}

Scenario 2: If startup company focus on commute traffic only

• Obtain the list of stations with both high ratio and high difference value

	Evening	Morning
STATION		
5 AV/53 ST	1245.538462	-3694.538462
5 AV/59 ST	1183.439560	-1639.230769
ATH NEW WTC	4348.846154	-5304.758242

Conclusion

Recommendations:

- {'PATH NEW WTC', '5 AV/59 ST', '5 AV/53 ST'}
- Future work if time allows:
 - 1. Dig deep into weekdays and weekends and identify any big pattern difference.
 - 2. For stations with gigantic traffic, might need to use extra data to help a further and though investigation.