The burgeoning charcoal industry in Africa and its influence on air quality and climate

Published in ES&T: https://doi.org/10.1021/acs.est.0c03754

NCAR Africa Workshop 11 March 2021

Eloise A Marais (e.marais@ucl.ac.uk)
http://maraisresearchgroup.co.uk/

The Burgeoning Charcoal Industry in Africa

Charcoal Production in 2014 [Gg]

Data are from the UN (http://data.un.org/Explorer.aspx)

[Bockarie et al., 2020]

[Ahrends et al., 2010]

Contributes Outdoor and Indoor Air Pollution

... during charcoal production with earth kilns

[https://blog.worldagroforestry.org/]

... and during charcoal use for cooking

 $PM_{2.5} > 400 \mu g m^{-3}$

[https://envirofit.org/]

WHO guideline: 10 μg m⁻³

Mapping Charcoal Industry Activities (Fuel Use)

Charcoal Activities and Pollutant Emissions

Total and Relative Emissions

Comparison to Open Fires

Inventory (GFED4) carbon emissions [g C m⁻² year⁻¹]

CH₄: 4.6 Tg

BC: 0.81 Tg C

CO: 136 Tg

OC: 5.6 Tg C

Spatial Distribution of Emissions

Apply reported emission factors of air pollutants to mapped activities

Black carbon emissions at 0.1° × 0.1° grid for 2014 [tonnes per year]

Uganda

Emissions on a trajectory to double by 2030

Quantify Impact on Air Quality and Short-Term Climate

Coupled 3D atmospheric chemistry and radiative transfer models

To find out more about GEOS-Chem: http://acmg.seas.harvard.edu/geos/index.html

Total and Charcoal Industry Surface PM_{2.5} and Ozone

PM_{2.5} and Ozone from All Sources

PM_{2.5} and Ozone from the Charcoal Industry

Peaks in urban areas in East, West and Central Africa, as expected from spatial distribution of emissions

 $PM_{2.5} > 0.8 \ \mu g \ m^{-3}$ in East Africa has serious health implications

Increase in surface ozone is small (at most 0.8 ppbv)

Total and Charcoal Industry Surface PM_{2.5} and Ozone

Shortwave cooling

Due mostly to scattering by organic aerosols

Localized effect, peaking in dense urban areas

Continent mean: -30 mW m-2

Greater response than 10% reduction in biomass burning emissions of -4 mW m⁻² [Naik et al., 2007]

Long- and short-wave heating

By 2100 The Largest Cities in the World Will be in 2010 Africa 2100

Image source: http://edge.ensia.com/here-come-the-megacities/

Data source: https://journals.sagepub.com/doi/pdf/10.1177/0956247816663557

