Теорема

Пусть функция y = f(x) непрерывна и строго монотонна на связном множестве X и $Y = \{y : y = f(x), x \in D(f)\}$. Тогда на множестве Y определена обратная к f(x) функция $f^{-1}(y)$, которая также непрерывна на Y .

Доказательство

1) Напомним, что $f^{-1}(y) = x$: f(x) = y — определение обратной функции.

Предположим для определенности, f(x) строго возрастает на X.

Если f(x) строго монотонна на X, то обратная функция $f^{-1}(y)$ существует,

т.к. тогда $\forall x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$

2) Покажем, что обратная функция $f^{-1}(y)$ строго монотонна.

Пусть f(x) монотонно возрастает . Тогда $\forall x_1, x_2 \in X, \ x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$

Надо доказать, что $\forall y_1, y_2 \in Y, y_1 < y_2 \Rightarrow f^{-1}(y_1) < f^{-1}(y_2)$

 $\forall y_1, y_2 \in Y \Rightarrow \exists x_1, x_2 \in X : f(x_1) = y_1, f(x_2) = y_2$

Предположив противное: $x_1 \ge x_2 \Rightarrow y_1 = f(x_1) \ge f(x_2) = y_2$

Получили противоречие с условием.

f(x) строго возрастает $\Rightarrow f^{-1}(y)$ строго возрастает и наоборот.

Покажем, что Y — связное множество.

Действительно, для $\forall y_1, y_2 \in Y$ рассмотрим отрезок $[y_1; y_2]$. $\exists x_1, x_2 \in X : y_1 = f(x_1), y_2 = f(x_2), y_1 < y_2$

Тогда по теореме "о прохождении непрерывной функцией заданной на отрезке через любое свое промежуточное значение" (теорема о промежуточных значениях) $\forall y \in [y_1; y_2] \ \exists x \in X : f(x) = y$, т.е.

 $\forall y_1, y_2 \in Y$ — образ и весь $[y_1; y_2]$ ⊆ Y в образе или в области значений функции f(x)

Тогда по теореме о непрерывности монотонной функции

(X и $Y = \{f(x)\}$ связные множества) $\Rightarrow f^{-1}(y)$ непрерывна