È una tecnica che può essere applicata per provare asserzioni generali per insiemi di interi positivi, per sequenze associate ad interi.

Usata per provare asserzioni con *dominio Z*⁺ della forma: ∀n *P(n)*

Consiste di due nassi:

- 1. Base: La proposizione P(1) è vera;
- 2. *Passo di induzione*: fissato un intero positivo n, l'implicazione $P(n) \rightarrow P(n+1)$ è vera. (L'assunzione P(n) è chiamata *ipotesi induttiva*) Si conclude perciò che $\forall n P(n)$.

Nota:

- Dalla Base so che P(1) è vera;
- Dal Passo di induzione so che P(1) → P(2) è vera (perché P(1) è vera)
- Dal Passo di induzione so che P(2) → P(3) è vera (perché P(2) è vera)
- ...
- Quindi P(n) è vera ∀n∈Z+

Esempio:

Provare che la somma dei primi n interi positivi dispari è n^2 , cioè $1+3+5+7+....+(2n-1) = n^2$

In questo caso P(n): $1+3+5+7+....+(2n-1) = n^2$

Base:

Mostrare che P(1) è vera: Banale: 1=1²

Passo Induttivo:

Mostrare che **se** P(n) è vera **allora** P(n+1) è vera, per un qualunque fissato n

Supponiamo che P(n) è vera: $1+3+5+7+....+(2n-1) = n^2$

Mostriamo che P(n+1) è vera: $\underbrace{1+3+5+7+....+(2n-1)+(2n+1)}_{n^2} = (n+1)^2$

4.1 CORRETTEZZA DELL'INDUZIONE MATEMATICA

Supponiamo che P(1) è vera, allora P(n) \rightarrow P(n+1) è vera per tutti gli interi positivi, quindi vogliamo provare che \forall n P(n) è vera.

Per contraddizione, assumiamo che c'è almeno un intero positivo m tale che P(m) è falsa.

S = insieme di tutti gli interi positivi n per i quali P(n) è falsa.

Così S $\neq \emptyset$

Proprietà del buon-ordinamento: ogni insieme non vuoto di interi positivi ha almeno un elemento.

S ha almeno un elemento, diciamo k, con k > 1. (Nota che k ≠1 poichè P(1) è vera)

Sia k il più piccolo intero in S tale che P(k) è falsa

Questo implica che k - 1 > 0 e P(k - 1) è vera

Ma $P(k - 1) \rightarrow P(k)$ è vera, per ipotesi

Siamo arrivati ad una contraddizione → ∀n P(n) è vera

Esempio1:

Proviamo che n < 2ⁿ per tutti gli interi positivi n

 $\underline{\text{Dim.}} \quad P(n): \quad n < 2^n \qquad \qquad \text{per ogni intero } n \geq 1$

- Base: P(1): 1 < 2¹ (ovvio)
- Passo di induzione: Mostrare che

se P(n) è vera allora P(n+1) è vera per tutti gli n

- Supponiamo P(n): n < 2ⁿ è vera
- Mostriamo che P(n+1): n+1 < 2ⁿ⁺¹ è vera
- $n + 1 < 2^n + 1$ (per ipotesi induttiva) $< 2^n + 2^n$ = $2 2^n = 2^{n+1}$

Esempio2:

Proviamo che n³ – n è divisibile per 3, per ogni intero positivo n

<u>Dim.</u> P(n): $n^3 - n$ è divisibile per 3 per ogni intero $n \ge 1$

- Base: P(1): $1^3 1 = 0$ è divisibile per 3 (ovvio)
- Passo di induzione: Mostrare che

se P(n) è vera allora P(n+1) è vera per tutti gli n

- Supponiamo P(n): n³ n è divisibile per 3 (ipotesi induttiva)
- Mostriamo che P(n+1): (n+1)³ (n+1) è divisibile per 3
- $(n+1)^3 (n+1) = n^3 + 3n^2 + 3n + 1 n 1 =$
- $(n^3 n) + 3n^2 + 3n = (n^3 n) + 3(n^2 + n)$ divisibile per 3
 divisibile per 3
 divisibile per 3

4.2 INDUZIONE MATEMATICA (GENERALIZZAZIONE)

Si può usare l'induzione matematica anche quando si vuole provare che

P(n) è vera n = b, b+1, b+2, ... dove b è un intero.

I due passi dell'induzione diventano:

- Base: La proposizione P(b) è vera.
- *Passo di induzione*: fissato un intero $n \ge b$, l'implicazione $P(n) \rightarrow P(n+1)$ è vera.

Nota che **b** può essere negativo, zero o positivo.

Esempio1:

Proviamo che $n^2 < 2^n$ per tutti gli interi $n \ge 5$

P(n): $n^2 < 2^n$ Dim. per ogni intero n ≥ 5

- Base: P(5) è vera , infatti 25 = 5² < 2⁵ = 32 (ovvio)
- Passo di induzione: Mostrare che

se P(n) è vera allora P(n+1) è vera per n ≥ 5

- Supponiamo P(n): n² < 2ⁿ è vera ipotesi induttiva
- Mostriamo che P(n+1): $(n+1)^2 < 2^{n+1}$ è vera
- $(n+1)^2 = n^2 + 2n + 1 < n^2 + 2n + n$ (perché $n \ge 5 > 1$) $= n^2 + 3n < n^2 + n = n^2 + n^2$ (perché $n \ge 5 > 3$) $= 2 n^2 < 2 2^n = 2^{n+1}$ (per ipotesi induttiva)

Esempio2:

Provare per induzione che per gli interi non negativi

$$1 + 2 + 2^2 + ... + 2^n = 2^{n+1} - 1$$

<u>Dim.</u> P(n): $1 + 2 + 2^2 + ... + 2^n = 2^{n+1} - 1$ per ogni intero n ≥ 0

- Base: P(0): $2^0 = 1 = 2^1 1$
- Passo di induzione: Supponiamo che P(n) è vera (ipotesi induttiva)
 - Mostriamo che P(n+1) è vera:

$$1 + 2 + 2^2 + ... + 2^n + 2^{n+1} =$$

$$= (1 + 2 + 2^2 + ... + 2^n) + 2^{n+1}$$

$$= 2^{n+1} - 1 + 2^{n+1}$$
 (per ipotesi induttiva)

$$= 2 2^{n+1} - 1$$

$$= 2^{n+2} - 1$$

Esempio3:

Provare per induzione che un insieme con n elementi ha 2ⁿ sottoinsiemi

Dim. P(n): "un insieme con n elementi ha 2ⁿ sottinsiemi'

- Base: Proviamo P(0)
 - Se un insieme ha 0 elementi allora esso è l'insieme vuoto
 - L'insieme vuoto ha 1 = 20 sottinsiemi (solo se stesso)
- Passo di induzione: Supponiamo che P(n) è vera (ipotesi induttiva).
 - Mostriamo che P(n+1) è vera:
 - Sia T un insieme con n+1 elementi
 - Sia a un qualunque elemento di T => T = S ∪ {a} dove |S|=n
 - I sottinsiemi di T possono essere ottenuti in questo modo:
 - * Per ogni sottinsieme X di S, ci sono 2 sottinsiemi di T, cioè X e X ∪ {a}
 - * Tali insiemi sono tutti distinti
 - * Quindi ci sono 2 sottinsiemi di T per ogni sottinsieme di S
 - * Il numero di sottinsiemi di T = 2 (il numero di sottinsiemi di S)

$$= 2 \frac{2^n}{2^{n+1}}$$

INDUZIONE FORTE		INDUZIONE REGOLARE	
 Passo base: Passo di induzione: 	$P(1)$ $[P(1) \land P(2) \land \land P(n)] \rightarrow P(n+1)$	 Passo base: Passo di induzione: 	$P(1) P(n) \rightarrow P(n+1)$

Esempio1:

Mostriamo che un intero positivo più grande di 1 è un primo o può essere scritto come il prodotto di primi.

P(n): un intero positivo n > 1 o è primo o può essere scritto come il prodotto di primi.

Dim.

- Base: P(2) è vera, infatti 2 = 2 (ovvio)
- Passo di induzione: Assumiamo vere P(2),, P(n) (ipotesi induttiva) Dimostriamo che P(n+1) è anch'essa vera

Distinguiamo 2 casi:

- 1. Se n+1 è esso stesso un numero primo allora P(n+1) è banalmente vera
- 2. Se n+1 è un numero composto allora n+1 = a * b

Dall'ipotesi induttiva P(a) e P(b) sono vere

Così n+1 può essere scritto come il prodotto di primi

Esempio2:

P(n): con n cerini per ciascuna delle due scatole, il giocatore che gioca per secondo può vincere.

- Base:
- il primo giocatore ha una sola scelta: togliere l'unico cerino da una delle due scatole
- il secondo giocatore vince togliendo l'unico ed ultimo cerino dalla seconda scatola
- Passo di induzione: Assumiamo che P(j) è vera ∀ j con 1≤j≤n Dimostriamo che P(n+1) è anch'essa vera
 - Supponiamo, allora, che ci sono n+1 cerini in ciascuna delle due scatole all'inizio del gioco
 - Sia x il numero di cerini che il primo giocatore elimina da una delle due scatole => in tale scatola rimangono n+1-x cerini
 - Se il secondo giocatore elimina esattamente x cerini dall'altra scatola => nell'altra scatola rimangono n+1-x cerini
 - → Ci ritroviamo con due scatole ciascuna avente n+1-x cerini Per ipotesi induttiva P(n+1-x) è vera, cioè il giocatore che gioca per secondo può vincere → P(n+1) è vera

4.4 SCHEMA PER LE DIMOSTRAZIONI PER INDUZIONE

Formula un predicato che descrive il problema in funzione di un intero n: Esprimi ciò che deve essere provato come $\forall n \ge b$, P(n):

individua P(n)

individuare sempre il **b** più adatto al problema

Suddividi la dimostrazione in:

BASE	IPOTESI	PASSO DI INDUZIONE
Mostrare che P(b) è vera	Esprimi in modo chiaro: "Assumiamo che P(n) è vera per un arbitrario n ≥ b".	Affermare ciò che si deve provare, scrivendo in maniera esplicita che cosa dice P(n+1).
	Assumanio che P(n) e vera per un arbitrario n' 2 b .	Provare P(n+1) facendo uso dell'ipotesi induttiva P(n).

Nota: Le dimostrazioni per induzione nascono da situazioni che non riflettono esattamente lo schema dato precedentemente, 2 cose sono sicure:

- P(n+1) deve essere provata vera, usando il fatto che P(m) è vera per un qualunque insieme di interi $m \le n$;
- La base deve provare la veridicità di P(.) per il più piccolo (talvolta più di uno) valore consentito ad n.