

虎牙应用监控指标设计实践

刘基正 虎牙直播 SRE平台研发

目录 CONTENT

介1 分布式应用监控原理剖析

分布式微服务集群如何进行应用监控, 进程内部监控以及跨进程监控原理 ○ マ 可观测指标设计与关联

应用指标监控的设计方案以及调用请求 关联、各指标之间的关联分析方法

72 无侵入的数据采集

数据采集方法的选型,如何做到业务代码无侵入,数据采集可拓展?

04 落地效果展示

应用指标监控的实际落地效果,以及各 个独立场景下的监控分析流程实践

分布式应用监控模型分析

ADD RELATED TITLE WORDS

无侵入数据采集方案选型

ADD RELATED TITLE WORDS

清洗分析出各项应用监控指标

- 1. 依赖完善的日志规范与业研发人员埋点
- 2. 日志数据量较大,平台维护成本高

端口探测

对端口指标进行拉取达到监控目的

- 1. 监控能力较弱,主要探测进程存活状态
- 2. 依赖业务研发人员研发指标获取端口

网络包监控

在不改造应用的前提下获取应用指标

- 1. 无法探知进程内部关联关系
- 2. 网络包数据量大,维护成本高

SDK与插件化

通过AOP技术或框架改造完成不 侵入业务代码的埋点监控

优势:

- 1. 业务代码无侵入,模块化插件体系,灵活可拓展
- 2. 指标数据应用内聚合, 服务端压力小
- 3. SDK暴露监控接口,业务可自定义监控

无侵入数据采集与请求关联

ADD RELATED TITLE WORDS

通过插件实现应用监控数据采集,并且完成上下游请求关联,以及跨进程请求关联

无侵入数据采集-插件支持情况

ADD RELATED TITLE WORDS

类别	插件	监控组件		
НТТР	sdk-okhttp	okhttp3		
	sdk-httpclient	apache httpclient (4.x) 支持BIO&NIO聚合与明细采集,细化到底层socket		
Redis	sdk-redis-jedis			
	sdk-redis-lettuce	redis-lettuce (springboot 2.x默认redis客户端实现)		
MySQL	sdk-mysql	兼容mysql驱动实现(包括8版本)		
feign	sdk-feign	供Camden、Dalston、Edgware spring cloud版本使用		
	sdk-openfeign	供Finchley、Greenwich、Hoxton 及以上 spring cloud 版本使用		
ES	sdk-elasticsearch	elasticsearch client(5.x & 6.x)		
其他	sdk-vertx	支持vertx-web,vertx-client,vertx-jdbc		
	sdk-grpc			
	sdk-netty			
	sdk-thrift			
	springboot / mvc	springboot 1.5.0+		
	可扩展的个性化插件			

目前已覆盖90%虎牙Java平台框架 用户SDK插件使用率72%

可观测指标设计 - 应用性能指标

ADD RELATED TITLE WORDS

指标包括基础的调用指标以及请求处理负载状况指标,并能够进行上下游请求关联。

- √ 调用请求数QPS

- 线程状态分布

可观测指标设计 - 应用线程状态模型

问题:如何做应用层线程模型的抽象,体现应用监控价值?

应用层线程状态模型

直观表达Web线程池运行状态

- 线程池容量 web容器线程池配置的容量大小 (MAX_THREADS)
- 当前线程数 web容器当前已创建线程数量 (CURRENT_THREADS)
- 任务执行中 正在执行业务逻辑的线程数 (ACTIVE_THREADS)
- 任务等待中 正在等待任务的空闲线程个数 (CURRENT_THREADS ACTIVE_THREADS)
- 任务执行阻塞中 执行任务过程中等待资源就绪线程数 (TIMED_WAITING + WAITING 任务等待中数值)

可观测指标设计 - 线程负载率

ADD RELATED TITLE WORDS

问题: 如何计算应用服务的容量?

线程负载率算法:

1. 总容量时间 = 时间周期 * 线程数

180s = 60s * 3t

2. 总实际时间 = sum(uri1 时延) + sum(uri2 时延)

= sum(300ms, 500ms, 200ms, n) + sum(50ms, 21ms, 10ms, n)

= 150,000ms + 10,000ms

= 150s + 10s

3. 线程负载率 = 总实际时间 / 总容量时间

uri1: 83.33 = 150s / 180s uri2: 5.55 = 10s / 180s

总负载: 88.88 = 83.33(uri1) + 5.55(uri2)

示例:

请求URI	负载率	请求量	平均耗时
/sendGift	83.33%	200次	700ms
/sendGift 调用 /payMoney	70.00%	200次	600ms
/sendGift 调用 /mysql/db_gift/insert	13.33%	80次	100ms
/getGiftList	5.55%	500次	30ms
/getGiftList 调用 /redis/get	5.50%	500次	28ms

可观测指标设计 - 指标阈值告警与聚合

ADD RELATED TITLE WORDS

建设指标阈值告警能力,并能够聚合相同上下游服务告警,直观展示错误影响面

× 错误详情 RPC紹时 33.34%(多讲程丰调) 2022-11-28 17:40:06 至 2022-11-28 17:45:15 /getUser1 调用 /getUser2 sim-client 调用 sim-first(10.66.109.165:8001) 主调服务: 实例IP: 端口 超时率(%) 章 请求数 35.92 1037 sim-client: 10.66.111.101: 8000 sim-client: 10 116 18 223: 8000 1005 sim-client: 10.66.97.74: 8000 31.98 910 981 RPC超时统计 11-28 17:42:26 RPC超时 RPC其他错误 0 11-28 17:40:08 11-28 17:41:06 11-28 17:42:06 11-28 17:43:06 11-28 17:44:06 11-28 17:45:06

可观测指标关联分析

ADD RELATED TITLE WORDS

通过关联指标趋势分析,输出相关联指标,快速定位问题。

查询出趋势相接近的关联指标, 定位问题

关联指标查询

分析结果: 请求调用突增 -> CPU使用率上升 -> 请求耗时增加

落地效果展示-应用指标设置

ADD RELATED TITLE WORDS

主/被调 请求数QPS、请求成功率、耗时区间P99、P95 等基础应用监控指标, 并打通进程内请求关联

入口请求/control/baseConf 指标

下游发起的 Mysal、Redis或者其他服务的远程调用请求指标

将入口请求与下游请求指标关联

落地效果展示-应用指标设置

ADD RELATED TITLE WORDS

抽象出线程状态分布、线程负载率指标,以反映服务应用请求负载情况,有效监控应用的请求处理能力

线程负载率高 产生告警事件

落地效果展示-日常监控场景展示

ADD RELATED TITLE WORDS

不合理场景1:应用并发访问量突增,服务高载

当前线程数接近线程池容量,并全都在执行中

/getUser调用请求耗时突增

相关ip容器Cpu已经满载

落地效果展示-日常监控场景展示

ADD RELATED TITLE WORDS

不合理场景2: 个别请求耗时高占用线程

该请求的调用量并不高,每分钟533次

下游/getUser调用请求线程负载率高位

已创建线程数远不达最大线程容量,并都在执行任务

落地效果展示-日常监控场景展示

ADD RELATED TITLE WORDS

不合理场景3: Mysql连接池过小引起并发瓶颈

2 /getConnection耗时过高

/getConnection线程负载率过高,数十倍于实际CURD操作

线程多数运行阻塞中,等待获取资

落地效果展示-上下游关联排障场景

ADD RELATED TITLE WORDS

A服务告警: /hyMobileSendSms接口下游调用 B服务的/getSmsCode接口成功率下降

结论:数据库出现异常导致服务B接口成功率降低,进一步影响上游服务A请求成功率下降

了 下游B服务的/getSmsCode接口对应时间段耗时增高 主要由下游访问DB的操作导致

观察B服务的调用成功率,下游访问DB的操作成功率下降

Q&A

分享团队: 虎牙SRE平台

团队职责:负责虎牙应用发布、监控、告警、资源等核心平台建设,专注于虎牙整体"可观测性"标准设计和实践落地。

团队负责人: 匡凌轩

团队成员: 刘基正、李奇会、曾勇明、杨皓、邹磊、唐颖杰、曹序娜

非常感谢您的观看

► huya底牙 | ::DataFun.

