

RFFM6406

2.5V to 4.2V, ISM Band, 1 1/2W, 408MHz to 455MHz Transmit/Receive Module

The RFFM6406 is a single-chip front end module (FEM) for applications in the 400MHz ISM Band. The RFFM6406 addresses the need for aggressive size reduction for typical portable equipment RF front-end design and greatly reduces the number of components outside of the core chipset, thus minimizing the footprint and assembly cost of the overall solution. The RFFM6406 contains an integrated 1 1/2 Watt PA, SP2T antenna switch, integrated Tx harmonic filter, LNA with bypass mode, and matching components. The RFFM6406 is packaged in a 28-pin, 6.0mm x 6.0mm x 0.975mm over-molded laminate package with backside ground which greatly minimizes next level board space and allows for simplified integration.

Functional Block Diagram

Ordering Information

RFFM6406SB	5-piece bag
RFFM6406SQ	25-piece bag
RFFM6406SR	Standard 100-piece reel
RFFM6406TR13	Standard 2500-piece reel
RFFM6406PCK-410	Fully assembled eval board + 5 loose pieces

Package: LGA, 28-pin, 6.0mm x 6.0mm x 0.975mm

Features

- Integrated 50Ω Input/Output Match
- Tx Output Power: 32dBm
- Separate Tx/Rx 50Ω Transceiver Interface
- Integrated PA + filtering and PA Bypass Mode and LNA with Bypass Mode

Applications

- 400MHz ISM Bands
- Single Chip RF Front End Module
- Wireless Automatic Metering
- Portable Battery Powered Equipment
- Smart Energy

Absolute Maximum Ratings

Parameter	Rating	Unit
Voltage	5.25	V
Storage Temperature Range	-40 to +150	°C
Operating Temperature Range	-40 to +70 (100% Duty Cycle)	°C
	+70 to +85 (≤80% Duty Cycle)	°C
Receive RF Input Power (SAW2)	+25	dBm
Transmit RF Input Power (PA Enabled)	+15	dBm
Transmit RF Input Power (PA Bypass)	+20	dBm
Receive RF Input Power (ANT)	+33	dBm
T/R Port Load VSWR in Transmit Mode	10:1	
ESD, HBM	500	V
ESD, CDM	500	V
Moisture Sensitivity Level	MSL3	

Caution! ESD sensitive device.

RFMD Green: RoHS status based on EU Directive 2011/65/EU (at time of this document revision), halogen free per IEC 61249-2-21, < 1000ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

Nominal Operating Parameters

Parameter	Specification			Unit	Condition	
Parameter	Min	Тур	Max	Oilit	Condition	
Frequency	408		455	MHz		
RF Port Impedance		50		Ω		
Leakage Current					$V_{CC}Tx1 = 4.2V$, $V_{CC}Tx2 = 4.2V$, $V_{DD} = 4.2V$, $V_{CC}Rx = 4.2V$, $V_{APC} = 0.0V$, $EN = 0.0V$, $TR = 0.0V$,	
V_{DD}		0.05	0.15	μΑ		
V _{CC} TX		0.05	0.40	μΑ		
V _{cc} RX		0.05	0.40	μΑ		
Operating Voltages						
V _{CC} TX1/2	2.5	3.9	4.2	V		
V _{CC} RX	2.5	3.3	4.2	V		
V_{DD}	2.5	3.9	4.2	V		
Tx Output Power Control (V _{APC})	0.00	2.25	2.50	V	V _{APC} operates such that the transmitter output power is saturated at a level lower than 1.9V and minimal variation in output power of the device occurs above that level	
Transmit High Power Mode					$V_{CC}Tx1$ = 3.9V, $V_{CC}Tx2$ = 3.9V, V_{DD} = 3.9V, V_{APC} = 2.3V, EN = 1.8V, T_R = 1.8V, BYP = 0.2V, Measured Path=TX to ANT, Temperature = 25°C	
Nominal Power	30.0	31.0	31.5	dBm	$P_{IN} = +3.5 dBm$, Temp = 25°C	
	30.0	31.0	31.5	dBm	$P_{IN} = +1.5$ dBm, Temp = -30°C	
	30.0	31.0	31.5	dBm	$P_{IN} = +4.5 dBm$, Temp = 60° C	
Saturated Power	32.0	32.5		dBm	P _{IN} = +10.0dBm, Temp = 25°C	
	32.0	32.5		dBm	P _{IN} = +10.0dBm, Temp = -30°C	
	31.5	32.2		dBm	P _{IN} = +10.0dBm, Temp = 60°C	
Input Return Loss	12			dB		
Output Return Loss Small Signal		7		dB		

Doromotor	Specification			Heite	Condition		
Parameter	Min	Тур	Max	Unit	Condition		
Transmit High Power Mode					$V_{CC}Tx1 = 3.9V, V_{CC}Tx2 = 3.9V, V_{DD} = 3.9V, V_{APC} = 2.3V, EN = 1.8V, T_{R} = 1.8V, BYP = 0.2V,$		
J					Measured Path=TX to ANT, Temperature = 25°C		
Nominal Power	30.0	31.0	31.5	dBm	$P_{IN} = +3.5 dBm$, Temp = 25°C		
	30.0	31.0	31.5	dBm	P _{IN} = +1.5dBm, Temp = -30°C		
	30.0	31.0	31.5	dBm	P _{IN} = +4.5dBm, Temp = 60°C		
Saturated Power	32.0	32.5		dBm	P _{IN} = +10.0dBm, Temp = 25°C		
	32.0	32.5		dBm	P _{IN} = +10.0dBm, Temp = -30°C		
	31.5	32.2		dBm	P _{IN} = +10.0dBm, Temp = 60°C		
Input Return Loss	12			dB			
Output Return Loss Small Signal		7		dB			
Operating Current		770	1000	mA	$P_{OUT} = 31.0 dBm, I_{CC} TX1 + I_{CC} TX2$		
Worst-Case Operating Current, 6:1 VSWR			1200	mA	I _{CC} TX1 + I _{CC} TX2, Over Temperature, at nominal power input drive		
Quiescent Current		80		mA	I_{CC} TX1 + I_{CC} TX2, RF = Off		
			35	μA	I APC, RF = Off		
I _{DD}			15	mA	P _{OUT} = 31.0dBm		
I _{APC}		30	60	μA	P _{OUT} = 31.0dBm		
Second Harmonic		-45	-30	dBc	P _{OUT} = 31.0dBm		
Third - Tenth Harmonic			-60	dBc	P _{OUT} = 31.0dBm		
Gain	25.0			dB	$V_{CC}Tx1$, $V_{CC}Tx2 = 3.9V$, PIN = +6dBm		
	22.0			dB	$V_{CC}Tx1$, $V_{CC}Tx2$ = 2.7V, PIN = +6dBm		
Output Power Variation	-0.4		-0.4	dB	Over frequencies and voltage		
Module PAE		40	911	%	$V_{CC}Tx1$, $V_{CC}Tx2 = 3.9V$, $P_{OUT} = 31dBm$ (takes into account filter and switches)		
PA PAE		62		%	V _{CC} Tx1, V _{CC} Tx2 = 3.9V, P _{OUT} = 31dBm (Excludes losses of module filter and switches)		
Power on RX Port (Pin 18)			-20	dBm	P _{OUT} = 31.0dBm		
Transmit Bypass Mode					VccTx1 = 3.9V, VccTx2 = 3.9V, V _{DD} = 3.9V, V _{APC} = 0.0V, EN = 1.8V, T _R = 1.8V, BYP = 1.8V, Measured Path=TX to ANT, Temperature = 25°C		
Insertion Loss		2.5	3.0	dB			
Input P1dB	26	30		dBm			
Input IP3	43	45		dBm			
Input Return Loss	15			dB			
Output Return Loss	15			dB			
Second Harmonic Attenuation	30			dB	Second Harmonic Insertion Loss		
Third - Tenth Harmonic Attenuation	50			dB	Third-Tenth Harmonic Insertion Loss		
					$V_{CC}Tx1 = 3.3V$, $V_{CC}Tx2 = 3.3V$, $V_{DD} = 3.3V$, $V_{CC}Rx = 3.3V$,		
Receive Mode					V _{APC} = 0.0V, EN = 1.8V, T _R = 0.2V, BYP = 0.2V, Measured Path = SAW2 to RX, Temperature = 25°C		
IP1dB	-12			dBm			
Gain	14	15	16	dB			
Operating Current	4	5	7	mA			
I _{DD}		1		mA			
Noise Figure		1.9	2.7	dB			
IIP3	1	3	5	dBm			

Parameter	Specification			Unit	Condition	
raidilletei	Min	Тур	Max	Unit	Condition	
Receive Mode					V _{CC} Tx1 = 3.3V, V _{CC} Tx2 = 3.3V, V _{DD} = 3.3V, V _{CC} Rx = 3.3V, V _{APC} = 0.0V, EN = 1.8V, T _R = 0.2V, BYP = 0.2V, Measured Path = SAW2 to RX, Temperature = 25°C	
Input Return Loss	10			dB		
Output Return Loss	10			dB		
Receive Bypass Mode					$V_{CC}Tx1 = 3.3V$, $V_{CC}Tx2 = 3.3V$, $V_{DD} = 3.3V$, $V_{CC}Rx = 3.3V$, $V_{APC} = 0.0V$, $EN = 1.8V$, $T_R = 0.2V$, $BYP = 1.8V$, Measured Path = SAW2 to RX, Temperature = 25°C	
Insertion Loss		2		dB		
I _{DD} Quiescent		200		μΑ		
IP1dB		19		dBm		
IIP3	42	44		dBm		
Input Return Loss	7.5			dB		
Output Return Loss	7			dB		
Antenna Switch					Measured ANT to SAW1, RX & RX BYPASS Modes	
Insertion Loss		0.5	0.6	dB		
Input Return Loss	15.5	16.0		dB		
Output Return Loss	15.5	16.0		dB		
Isolation						
Isolation	30			dB	ANT to SAW1, module in Transmit Bypass Mode	
	50			dB	ANT to SAW1, module in Transmit High Power Mode	
Logic					EN, TR, BYP	
Control Logic HIGH	1.6		4.0	V	Max Control Logic High = V _{DD} ± 0.5VDC	
Control Logic LOW		0.2	0.3	V		
Control Logic HIGH Current			0.4	μΑ		
Control Logic LOW Current		0.1		μΑ		

Switch Control Truth Table

Operating Mode	TR	EN	ВҮР	PA	LNA
	(Pin2)	(Pin3)	(Pin4)		
Transmit	High	High	Low	ON	OFF
Transmit Bypass	High	High	High	OFF	OFF
Receive	Low	High	Low	OFF	ON
Receive Bypass	Low	High	High	OFF	OFF
Shutdown	Х	Low	Х	OFF	OFF

Application Schematic

Pin Out

Package Outline and Branding Drawing (Dimensions in millimeters)

PCB Patterns

Pin Names and Descriptions

Pin	Name	Description
1	GND	Ground
2	TR	Digital Input: Transmit/Receive
3	EN	Digital Input: Shutdown Mode
4	BYP	Digital Input: RX Bypass Mode
5	VAPC	Analog Input
6	GND	Ground
7	ANT	Antenna Switch Common Port, internally matched to 50Ω , DC Blocked
8	GND	Ground
9	GND	Ground
10	SAW1	Receive side of antenna switch, internally matched to $50\Omega,$ DC Blocked
11	GND	Ground
12	GND	Ground
13	SAW2	RX and RX bypass input port, internally matched to 50Ω , DC Blocked
14	NC	Not internally connected/open
15	GND	Ground
16	NC	Not internally connected/open
17	VCC_RX	3.3V power supply
18	RX	Receive output, internally matched to 50Ω , DC Blocked
19	GND	Ground
20	TX	TX and TX bypass input port, internally matched to 50W, DC Blocked
21	GND	Ground
22	GND	Ground
23	VDD	3.9V power supply
24	VCC_TX1	3.9V power supply
25	NC	Not internally connected/open
26	VCC_TX2	3.9V power supply
27	GND	Ground
28	GND	Ground
Pkg Base	GND	Electrical Ground connection. The back side of the package should be connected to the ground plane through as short a connection as possible, e.g., PCB vias under the device are recommended.