

XCMS differentiation

David L. Tabb, Ph.D.

dtabb1973@gmail.com

With many valuable slide contributions from H. Paul Benton and Gary Siuzdak, The Scripps Research Institute

Overview

Statistics for difference testing in biological mass spectrometry

 Experimental designs paired with statistical tests in XCMS.

"Masters of the x-axis"

- Mass spectrometers offer very high precision for m/z values, with FT mass analyzers varying well within 10 ppm for mass measurement.
- Intensity measurement, however, is far more variable, especially in low signal-to-noise ions.
- Intralaboratory variation for targeted quantitative experiments generally range up to 10% CV.

MS Intensity as quantitative data

3D volume reconstruction

Upper image from Cox (2008) *Nat. Biotech.* 26: 1367-1372.

Parametric vs. Nonparametric

- Parametric tests (such as Student's t-test)
 expect that data come from a specified
 distribution; if this is untrue, the p-value is not
 accurately estimated.
- Non-parametric tests (such as the Mann-Whitney/Wilcoxon U-test) do not rely upon distributional assumptions. For a given data set size, non-parametric tests are slightly less likely to achieve significant p-values.

Are these distributions different?

- Welch two-sample ttest yields p-value of 0.006355.
- Wilcoxon rank sum test yields p-value of 0.009484.
- Model samples 20
 replicates from normal
 distribution with
 mean=3 (A) or mean=4
 (B), std. dev.=1.

Student's t-test

- Created in 1908 by Gosset for monitoring beer quality at Guinness brewery in Dublin, Ireland.
- Compares difference between sample means to variance of samples to produce t statistic.
- Yields p-value that the difference between means would be at least this large by chance.
- Assumes Gaussian (normal) distribution of continuous values; counts are problematic.

Mann-Whitney-Wilcoxon U-test

- Imagine the values from A are blue marbles and the values from B are red marbles, with sizes representing their values.
- Sort the marbles by size. Do the colors separate? If so, the p-value is lower.
- This non-parametric alternative to t-test works best when many samples are available. Don't use this in a 3 vs. 3 test!

The curse of dimensionality

- Many tests evaluate differences for each ion independently. Using them on 1,000 ions is almost sure to yield "significance."
- Multiple testing correction by Bonferroni or Benjamini-Hochberg procedures adjusts these p-values to reflect many applications of test.
- Permuting column labels can help to estimate expected p-values from random data.

Test types in XCMS

- Two-cohort comparisons
- Paired comparisons
- Meta-analysis of disparate studies
- Multiple group comparisons

Table 1. Statistical Tests and Interactive Visualization Tools Implemented within the XCMS Online Platform for Univariate Analysis (One Variable at a Time)

univariate statistical analysis				
experimental design	parametric test (data follow normal distribution)	nonparametric alternative test (no assumption about data distribution)	visualization tools	
comparison of two independent groups	independent t test (Welch t test)	Mann-Whitney	interactive two-group cloud plot, box—whisker plots, extracted-ion chromatograms	
comparison of two dependent (paired or matched) groups	paired t test	Wilcoxon signed-rank		
comparison of ≥ three independent groups	one-way ANOVA with post-HOC	Kruskal-Wallis	interactive multigroup cloud plot, box—whisker plots, extracted-ion chromatograms	
comparison of ≥ three dependent (matched or related) groups	repeated measures ANOVA	Friedman		
	C_{outd} at al. Appl. C_{box} (2014) 00, 0021			

Gowda et al. *Anal. Chem*. (2014) 86: 6931

Paired comparisons

Label	Before	After
Patient A	5.3	5.5
Patient B	4.7	4.9
Patient C	5.7	5.9
Patient D	4.9	5.1
Patient E	5.0	5.2
Patient F	4.8	5.0
Patient G	3.6	3.8
Patient H	4.5	4.7
Patient I	6.1	6.3
Patient J	5.6	5.8

- Do not compare the "before" value for patient A to the "after" value for patient B.
- These are paired data, and using an unpaired test will miss the obvious difference between the two columns.

Volcano plots

- Standard visualization for significance and magnitude of change
- Items too close to the center don't change enough to matter.
- Items too close to the bottom do not give significant p-values.

XCMS Interactive Cloud Plot

https://xcmsonline.scripps.edu/

Larger radius → bigger fold change

Meta-analysis

- My experiment produced 147 putative differences, and prior experiments yielded 124 and 78 differences, respectively.
- How do these differential ions intersect among these three studies?
- Venn Diagrams are a standard way to show these overlaps, and XCMS can for visualize overlaps for more than three groups.

Multi-group comparison

- If you have three groups, it's not best to compare A to B, B to C, and then A to C.
- XCMS uses the univariate ANOVA (parametric) and Kruskal Wallis (nonparametric) tests for multi-group comparison (see next slide).
- To account for covariance among metabolites, XCMS can employ PCA to recognize significant metabolites among groups (two slides ahead).

Scale bar

X-axis PC options

1

Y-axis PC options

2

Loadings treshold

20

Scaling options

None / Unit_variance...

Takeaway messages

- XCMS is capable of more complex designs than cohort-A-vs-cohort-B comparisons.
- Keep in mind that when many statistical tests are performed, one must correct for it. Q-values from XCMS take multiple testing into account.
- Untargeted biomarker discovery experiments suffer more from multiple comparisons than do targeted experiments on sets of candidates.