MSPR 1 Overview and Introduction to Matlab MED7 & SMC 7, Copenhagen, 2015

Dr. Hendrik Purwins

Overview

- Basic operations
- Vectors
- Plots
- Reading/writing data from/to files

References:

- https://www.mathworks.com/help/pdf_doc/matlab/ getstart.pdf
- Demo videos in Matlab

Matlab

• help

Variables

```
a = 10 % assign the number 10 to variable a b = a^2 % take the square of a
```

Even though a and b are assigned I can make them anything I want.

```
a = 'hello'
```

We have a triangle including a 90 degree angle and the two shortest sides are lengths a=3 and b=4. What is the length of the hypotenuse c? Pythagoras says:

$$c^2 = a^2 + b^2 \Rightarrow c = \sqrt{a^2 + b^2}$$

Calculate by hand and implement in Matlab.

Vectors

```
b = [1; 2; 3] % make a 3x1 column vector
b = [1, 2, 3] % make a 1x3 row vector
b = [1 2 3] % the commas can be left off too
b = b' % take transpose to make 3x1 vec.
c = b*2 % multiply each element by 2

b.*c % element-wise multiply
b'*c % inner (dot) product
b*c' % outer product
```

Mind the differences!

How to Run Code

Type the skript name into the command line or

Mark code, right mouse click, 'Evaluate Selection'

Matrices

Column vectors are nx1 matrices, having n rows and 1 column. A nxm matrix has n rows and m columns.

```
B = [1 2 3 4; 5 6 7 8; 9 10 11 12]
B*5
B+5
```

Vectors

There are quick ways to create vectors and matrices.

We can see the value of a specific element of t by using index numbers

```
t(1,4) % Value of t in first row, fourth column t(4,1) % Oops. t only has 2 rows, not 4. t(0,1) % Oops. Indicies in MATLAB start at 1 not 0.
```

To find the values in an entire column use the colon (:).

```
t(:,4) % Return values for all rows in the fourth column t(2,:) % Return values of second row for all columns
```

Index into matrices by row then column.

Indexing in MATLAB starts at 1.

Plotting data hasn't been so easy!

```
x = -1:0.01:1; % <--- semi colon suppresses
 output
y = x^2;
plot(y)
plot(x, y, 'b') % Now the axes are
 marked
hold on;
plot(x, x.^3, 'r');
legend('x^2','x^3') % add a legend
xlabel('x'); % add an x-label
ylabel('y'); % add a y-label
title('x^2 and x^3'); % add a title
```

Initial spread of a virus, nuclear chain reaction, savings at constant interest rate, computer processing power all follow exponential growth.

Mathematically:

$$y(t) = a \cdot e^{\lambda t} \tag{1}$$

for initial value a time t and growth factor λ

- e is the Euler constant e = 2.718281828459...
- Plot the function in the range of
 -2 until 2 in steps of 0.1

Plot the function

$$e^{-x^2}$$

for x in the range of -4 and 4 in steps of 00.1.

Reading Text / Binary

```
x =textread('series.txt'); %Read text
save('series.mat', 'x'); % save
  variable as binary
clear
load series.mat % reload variable x
```

Readin with textscan

```
fid = fopen('data1');
data = textscan(fid,'%s %f','delimiter',',');
fclose(fid);
%f: float
%s: string
```

The Iris Data Set I

- Data set introduced by Sir Ronald Fisher in 1936 as an example of discriminant analysis
- Edgar Anderson collected data to quantify morphological variations of three Iris flower species

Iris setosa

Iris versicolor

Iris virginica

http://en.wikipedia.org/wiki/Iris_flower_data_set

The Iris Data Set II

For the 50 samples per each species 4 morphological features are measured

- sepal length
- sepal width
- petal length
- petal width

Data set is a 'classical' data set to demonstrate classification and clustering algorithms.

http://en.wikipedia.org/wiki/Sepal

- Download iris data from the UCL machine learning repository
- Read in iris data with textscan.
- Plot sepal length vs petal length in a scatter plot
- How can you interprete the data?
- Plot histograms of sepal length and of petal width
- Plot a bivariate histogram using hist3 with petal length and petal width.

PRTools

http://www.37steps.com/software/
Put into your matlab path!
[data{3} data{4}]: feature vector
data{5}: class labels
z=prdataset([data{3} data{4}], data{5}, 'featlab', ...
['Sepal Length'; 'Sepal Width '; 'Petal Length'; 'Petal Width '],...
'name', 'Fisher Iris');
%strings behind 'featlab' need all to have the same the same length!
For plotting with class labels:

figure(1); scatterd(z);

- Do scatter plots of all combination of 2 features in the data. Select the one that separates best the data.
- Interprete the data!

Reading/Playing/Writing Sounds!

CLASS ASSIGNMENT

Load the bass.wav into Matlab. Cut out the first bass note from the sound file, plot it

(Time in seconds vs. Amplitude) and play it from Matlab.

Reading Images!

```
imagedata = imread('knit.jpg');
whos % A 'whos' command reveals size information:
imfinfo('knit.jpg') % Here it says 'BitDepth: 8'.

imagesc(imagedata);
imagesc(fliplr(imagedata)); % flips images right/left
colormap('gray');
```

Creating For-Loops and Functions

```
function y=poly(x,c)
  y=0;
  for i=1:length(c),
   y=c(i)*x.^(i-1);
  end
x=[-2:0.1:2]
c=[0 \ 0 \ 2 \ 1];
y=poly(x,c);
figure
plot(x, y)
```

- Create a function
- fak(n)
- That calculates n*(n-1)....*2

Creating Multioutput Functions

```
function [add, sub, mul, div] = math(a, b)
    if (nargin ~=2)
       disp('Usage: [add, sub, mul, div] = math(a,b)'); return;
    end
    % Otherwise continue
    if (nargout >= 1)
       add = a + b;
    elseif (nargout >= 2)
       sub = a - b;
    elseif (nargout >= 3)
       mul = a*b;
    elseif (nargout >= 4)
       div = a/b;
    end
    % If nargout == 0 then just display results!
    if (nargout == 0)
       add = a + b; sub = a - b; mul = a*b; div = a/b;
       fprintf('add = %4.2f\n', add);
       fprintf('sub = %4.2f\n', sub);
       fprintf('mul = %4.2f\n', mul);
       fprintf('div = %4.2f\n', div);
    end
```

How to Look at High-Dimensional Data?

- Linear Algebra
- Principal Component Analysis

References

• Bob Sturm's MSPR lecture 2012