1) RTS $m^2 \nmid n^2 \Rightarrow m \nmid n$ STS $m \mid n \Rightarrow m^2 \mid n^2$ by contrapositive. Let $m = \prod_i p_i$ where p_i is the *i*-th prime factor of *m*. Now take $m^2 = \left(\prod_i p_i\right)^2 = \prod_i \left(p_i^2\right) = \prod_i p_i \cdot p_i \text{ . This shows that } p_i \mid m \Rightarrow p_i^2 \mid m^2 \text{ , and therefore that } p_i^2 \nmid m^2 \Rightarrow p_i \nmid m$.

2)

Ι,					
	S	t	r	step	euclid
	1	0	-5083		-5083=-4*1656+1541
	0	1	1656		1656=1*1541+115
	1	4	1541		1541=13*115+46
	-1	-3	115		115=2*46+23
	14	43	46		46=2*23
	-29	-89	23		

- 3) Prove $\forall a: \forall b: \forall c, c > 0 \Rightarrow \gcd(ac, bc) = c \cdot \gcd(a, b)$. Let the multiset of prime factors of n be denoted n^* (for example $60^* = [2,2,3,5]$). Note that $n = \prod_i n_i^*$. For convenience, we will define $1^* = \emptyset$. Now, let a, b and c be integers, with c > 0. $ac = a^* \cup c^*$, and $bc = b^* \cup c^*$. The \gcd function finds the greatest common divisor between two numbers, which by definition is the intersection of prime factors between the two numbers. Thus, we can view \gcd as $\gcd(x,y) = \prod_i [x^* \cap y^*]_i$. Therefore, $\gcd(ac,bc)^* = (a^* \cup c^*) \cap (b^* \cup c^*) = c^* \cup (a^* \cap b^*)$. This last result can be rewritten as $\gcd(ac,bc)^* = c^* \cup \gcd(a,b)^*$, and multiplying through this (to get $\gcd(ac,bc)$), we get $\gcd(ac,bc) = \left(\prod_i c_i^*\right) \left(\prod_j \gcd(a,b)^*\right) = c \cdot \gcd(a,b)$, by definition. Therefore $\forall a: \forall b: \forall c,c > 0 \Rightarrow \gcd(ac,bc) = c \cdot \gcd(a,b)$.
- 4) RTS gcd(ab,c) = gcd(b,c) if gcd(a,c) = 1. If gcd(a,c) = 1, then $gcd(a,c)^* = a^* \cap c^* = 1^* = \emptyset$. $gcd(ab,c)^* = (a^* \cup b^*) \cap c^*$ $(a^* \cup b^*) \cap c^* = (a^* \cap c^*) \cup (b^* \cap c^*)$ $(a^* \cap c^*) \cup (b^* \cap c^*) = \emptyset \cup (b^* \cap c^*) = b^* \cap c^*$ as shown above, therefore $gcd(ab,c)^* = b^* \cap c^* = gcd(b,c)^*$, which of course shows gcd(ab,c) = gcd(b,c).

However, $gcd(ab, c) = gcd(a, c) \cdot gcd(b, c)$ is not true in general. Take a = 12, b = 8, c = 24 . gcd(ab, c) = gcd(96,24) = 24 , but $gcd(12,24) \cdot gcd(8,24) = 12 \cdot 8 = 96$.

5) $gcd(a,b)=gcd(2a+b,3a+2b)\Rightarrow \exists x:\exists y:ax+by=(2a+b)x+(3a+2b)y$. Using this, we can expand either side of the equation as ax+by=2ax+bx+3ay+2by. Gathering like terms, this simplifies to ax+by=a(2x+3y)+b(x+2y). We can then rewrite this as gcd(x,y)=gcd(2x+3y,x+2y)=gcd(y,x)=gcd(2y+x,3y+2x). Therefore gcd(a,b)=gcd(2a+b,3a+2b).