### CS 381 - Spring 2021

Week 2, Lecture 1
Part 1

# The divide-and-conquer (DC) algorithm design paradigm

- 1. **Divide** the problem (instance) into subproblems.
- 2. Conquer the subproblems by solving them recursively.
- 3. Combine subproblem solutions.

### About D&C

- Running time is captured by a recurrence relation
  - E.g.  $T(n) \le 3T(\frac{n}{3}) + 4n^2$ 
    - break a problem of size n into 3 problems of size n/3 each
    - time for creating the subproblems and combining is  $O(n^2)$ .

#### Correctness

- of the recurrence: proof by induction, use Master theorem
- of the algorithm: inductive argument

**Naive algorithm:**  $\Theta(n)$  multiplications

Naive algorithm:  $\Theta(n)$  multiplications

Can we do better?

**Naive algorithm:**  $\Theta(n)$  multiplications

### Divide-and-conquer algorithm:

$$a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd} \end{cases}$$

Naive algorithm:  $\Theta(n)$  multiplications

### Divide-and-conquer algorithm:

$$a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd} \end{cases}$$

$$T(n) = T(n/2) + c \implies T(n) = \Theta(\log n)$$

### D&C algorithm for computing $a^n$

$$T(n) = T(n/2) + c \Rightarrow T(n) = \Theta(\lg n)$$



What are H(n) and W(n)?



$$H(n) = H(n/2) + \Theta(1)$$



$$H(n) = H(n/2) + \Theta(1)$$

$$= \Theta(\lg n)$$

$$W(n) = 2W(n/2) + \Theta(1)$$



$$H(n) = H(n/2) + \Theta(1)$$
  $W(n) = 2W(n/2) + \Theta(1)$   
=  $\Theta(\lg n)$  =  $\Theta(n)$ 

Drawing a complete binary tree on a grid with leaves on "one line" results in O(n log n) area.

Can we do better?

Drawing a complete binary tree on a grid with leaves on "one line" results in O(n log n) area.

Can we do better?

• Area needs to be at least n (i.e., area is  $\Omega(n)$ )





n = 7

### For $n = 2^k - 1$ and k odd

L(n) is the side length of the embedding

- L(1) = 1
- L(7) = 3• L(63) = 7

### H-tree drawing: Idea



### H-tree drawing: Idea



$$n = 2^k - 1$$
 and  $k$  odd:  
L(63) = 7

What is L(n)?

### H-tree drawing: Idea



$$n = 2^k - 1$$
 and  $k$  odd:  
L(63) = 7

$$L(n) = 2L(\frac{n+1}{4} - 1) + 1$$

$$= 2L(\frac{n-3}{4}) + 1$$

$$\approx 2L(n/4) + 1$$

$$= \Theta(\sqrt{n})$$

Area = 
$$\Theta(n)$$



## How to determine the closed form of a recurrence relation?

For example, T(n) = 4T(n/2) + n

#### General method

- (1) "Guess" the solution.(in closed exact form or in asymptotic form)
- (2) Prove correctness by induction.

If the guessed solution is incorrect, the induction will fall apart somewhere.

$$T(n) = 4T(n/2) + n (n = 2^k)$$
  
 $T(1) = 0$ 

$$T(n) = 4T(n/2) + n (n = 2^k)$$
  
 $T(1) = 0$ 

Claim:  $T(n) = O(n^3)$ 

$$T(n) = 4T(n/2) + n (n = 2^k)$$
  
 $T(1) = 0$ 

Claim: 
$$T(n) = O(n^3)$$

Induction Hypothesis:

Assume  $T(m) \le cm^3$  for all m < n,  $m = 2^r$ , for some constant c

$$T(n) = 4T(n/2) + n$$

$$\leq 4 c (n/2)^{3} + n$$

$$= cn^{3}/2 + n$$

$$= cn^{3} - (cn^{3}/2 - n)$$

$$\leq cn^{3}$$

Need to show  $cn^3/2 - n \ge 0$ . True for  $c\ge 2$ 

 $Is T(n) = \Theta(n^3)?$ 

$$T(n) = 4T(n/2) + n$$
 (n = 2<sup>k</sup>)  
 $T(1) = 0$ 

Claim: 
$$T(n) = \Omega(n^3)$$

$$T(n) = 4T(n/2) + n$$
 (n = 2<sup>k</sup>)  
 $T(1) = 0$ 

Claim: 
$$T(n) = \Omega(n^3)$$

Induction Hypothesis:

Assume  $T(k) \ge ck^3$  for all  $k \le n$ , for some constant c

$$T(n) = 4T(n/2) + n$$
  
 $\ge 4 c (n/2)^3 + n$   
 $= cn^3/2 + n$   
 $\ge cn^3$ 

Would need  $n \ge \frac{cn^3}{2}$  for some constant c - Not True!

$$T(n) = 4T(n/2) + n$$
 (n = 2<sup>k</sup>)  
 $T(1) = 0$ 

Claim: 
$$T(n) = \Omega(n^3)$$
 FALSE!

Induction Hypothesis:

Assume  $T(k) \ge ck^3$  for all  $k \le n$ , for some constant c

$$T(n) = 4T(n/2) + n$$
  
 $\ge 4 c (n/2)^3 + n$   
 $= cn^3/2 + n$   
 $\ge cn^3$ 

Would need  $n \ge \frac{cn^3}{2}$  for some constant c - Not True!

Show that  $T(n) = O(n^2)$ 

Claim:  $T(n) \le cn^2$ 

Show that  $T(n) = O(n^2)$ 

Claim:  $T(n) \le cn^2$ 

$$T(n) = 4T(n/2) + n \le cn^2$$
  
 $\le 4 c (n/2)^2 + n$   
 $= cn^2 + n$   
 $\le cn^2$  NO!

Wrong argument: we just

made the constant c larger

But ..  $T(n) = O(n^2)$ 

What went wrong?

To show  $O(n^2)$ , we need to subtract lower order terms in the IH!

Claim:  $T(n) \le c_1 n^2 - c_2 n$ , for some constants  $c_1$  and  $c_2$ 

Inductive hypothesis:  $T(k) \le c_1 k^2 - c_2 k$  for all  $k \le n$ 

$$T(n) = 4T(n/2) + n$$

$$\leq 4 (c_1(n/2)^2 - c_2(n/2)) + n$$

$$= c_1 n^2 - 2c_2 n + n$$

$$= c_1 n^2 - c_2 n - c_2 n + n$$

$$\leq c_1 n^2 - c_2 n$$

Need  $-c_2 n + n \le 0$ : true if  $c_2 \ge 1$ 

#### **Recursion Tree Method**

Use the recursion tree to determine the solution to a recurrence

- Tree represents a model of the cost of the recursive algorithm
- Getting an exact closed form can be messy
- Insight obtained from tree can give a good initial guess to be used in an induction

### Mergesort: T(n) = 2T(n/2) + cn

Prove O(n*log*n) by summing up total work using the recursion tree



$$T(n) = 4T(n/2) + n, n=2^k$$

Work done at each level

- Level 0: n
- Level 1: 2n (4 instances of size n/2 each)
- Level 2:  $4n (4^2 = 16 \text{ instances of size } n/4 \text{ each})$
- Level 3: 8n  $(4^3 \text{ instances of size n}/2^3 \text{ each})$
- at level i, there are 4<sup>i</sup> instances of size n/2<sup>i</sup> results in 2<sup>i</sup> n total work for level i



#### Total work done at all levels of the recursion tree

at level i of the tree

- there are 4<sup>i</sup> nodes, each doing work of size n/2<sup>i</sup>
- results in n2<sup>i</sup> total work for level i

$$\sum_{i=0}^{k} n \ 2^{i} = n(2^{k+1} - 1) = n(2n - 1) = 2n^{2} - n$$

This gives 
$$T(n) = \Theta(n^2)$$

### Recurrences of divide and conquer algorithms

Assume the basis is  $T(1) = \Theta(1)$ 

• 
$$T(n) = T(n/2) + c$$

• 
$$T(n) = T(n/2) + cn$$

• 
$$T(n) = 2T(n/2) + cn$$

• 
$$T(n) = 2T(n-1) + 1$$

• 
$$T(n) = 4T(n/2) + n$$

• 
$$T(n) = 2T(n/4) + 1$$

• 
$$T(n) = T(n/4) + T(n/2) + n^2$$

• 
$$T(n) = T(2n/3) + n$$

• 
$$T(n) = T(\sqrt{n}) + c$$

### Recurrences of divide and conquer algorithms

Assume the basis is  $T(1) = \Theta(1)$ 

• 
$$T(n) = T(n/2) + c$$

• 
$$T(n) = T(n/2) + cn$$
  $\Theta(n)$ 

• 
$$T(n) = 2T(n/2) + cn$$
  $\theta (n \log n)$ 

 $\Theta(\log n)$ 

• 
$$T(n) = 2T(n-1) + 1$$
  $\theta(2^n)$ 

• 
$$T(n) = 4T(n/2) + n$$
  $\theta(n^2)$ 

• 
$$T(n) = 2T(n/4) + n$$
  $\Theta(\sqrt{n})$ 

• 
$$T(n) = T(n/4) + T(n/2) + n^2$$
  $\Theta(n^2)$ 

• 
$$T(n) = T(2n/3) + n$$
  $\theta(n)$ 

• 
$$T(n) = T(\sqrt{n}) + c$$
  $\theta (\log \log n)$