

Electrical and Computer Engineering Department

SP.TOP: Machine Learning - ENCS5396

Assignment #1

Submission deadline: 6.5.2022

1. Binary Decision Trees [15]

Consider the following set of training examples

Outlook	Temperature	Wind	Enjoy Sport
Sunny	High	Weak	-
Sunny	High	Strong	-
Overcast	High	Weak	-
Rain	Low	Weak	+
Rain	Low	Weak	+
Rain	Low	Strong	+
Overcast	Low	Strong	+
Sunny	High	Strong	+
Sunny	Low	Weak	+
Overcast	High	Strong	-
Rain	High	Strong	-

Construct a binary decision tree using the information gain for attribute selection. Write down all your calculation steps as well as the final result tree.

2. K-NN [15]

Consider the data.csv file, a modified dataset from the UCI machine learning repository. It has 9 attributes and a binary target attribute for the prediction value.

• The first line contains a sequence of attribute type declarations of the form:

$$a_1$$
: T_1 , a_2 : T_2 , ..., a_9 : T_9 , a_{10} : T_{10}

where a_i is the id of attribute I and T_i is its type (1 \leq i \leq 10). All attributes have one of the following types:

- "n": numerical
- "c": categorial with at least three attribute values
- "b" and "t" (target): binary with attribute values "yes" and "no" In the data.csv file, the first line looks like this:

a:n, b:c, c:c, d:n, e:b, f:b, g:c, h:c, i:b, j:t
The last attribute "j" is the target attribute and is binary.

• Each subsequent line describes a labelled example, e.g., 24, bb, cc, 3, yes, no, gb, hc, yes, yes 33, bd, cc, 5, yes, no, gb, hd, yes, no

Tasks:

- (a) Design a distance function for this dataset.
- (b) Select 5 instances at random and calculate for each one the k nearest neighbors for k = 1, 2, 3
- (c) Select parameter $k \in \{1, 2, 3, 4, 5\}$ by using 10-fold cross validation.