Signature-based Gröbner basis computations for approximate input

Vasily Galkin galkin-vv@yandex.ru

Moscow State University Faculty of Mechanics and Mathematics Department of Higher Algebra

Main goals

Signature-based Gröbner basis computation algorithms: application to solving polynomial systems with inexact input data in \mathbb{C} .

- Definitions
- Problems of application
- 3 Known methods
- Inexact zero
 - Approximate arithmetic instead of floats
 - Non-invertible approximate elements classification
 - Examples
- New ideas
 - Strict modular method for approximate Gröbner basis
 - Strict modular method for approximate linear system
 - No-restart TSV method for signature-based algorithms
 - "Strict modular" and "no-restart TSV" methods: system solving

Definitions Signature-based algorithms

- Compute Gröbner basis G for ideal generated by given polynomials $I = (f_1, \dots, f_n)$ in polynomial ring P
- Are one of the most effective algorithms for Gröbner basis computation
- Track signature of every polynomial p, corresponding to "highest" element of input-representation

$$p = \sum_{i=1}^{n} q_i f_i$$

 Using signature-based rules maintain an ordered queue of polynomials to process

Definitions Polynomial systems with inexact input data

- Arises from different areas (statistics, video analytics, etc.)
- Formulated as a set of polynomial equations $f_i = 0$ with approximate number coefficients

Definitions

Approximate (complex) number is a pair $(c, \varepsilon), c \in \mathbb{C}, \varepsilon \in \mathbb{R}$ Specialization of complex number a is $\hat{a} \in \mathbb{C}$, $|\hat{a} - c| < \varepsilon$

Requirements for approximate Gröbner basis used to solve polynomial system: a set G of polynomials with approximate coefficients satisfying following:

The approximate Gröbner basis $GB(f_i)$ should have specialization $GB(f_i)$ equal to exact Gröbner basis $GB\left(\widehat{f_{i}}\right)$ for any specialization $\widehat{f_{i}}$ of input data f_{i} .

The root of problems: test for equality to zero

- Algorithm branching points: is a = 0 in $f = ax^2 + by^2$? formal determine HM(f): is it x^2 or y^2 ? practical can we reduce polynomial $x^3 + xy$ by f?
- Branching points in signature-based algorithms are unavoidable:
 - need test coefficients of non-reducible highest monomials (HC)
 - specific polynomial selection is required for correctness
- Approximated numbers having zero specialization
 - may be input data coefficients
 - may appear as a result of inexact computations
 - don't allow comparison with zero with boolean result

Gröbner basis algorithms dealing with approximate data in $\ensuremath{\mathbb{R}}$

- Comprehensive Gröbner basis computation
 - treat coefficients as symbols and use symbolic computation
 - slow arithmetic with huge symbolic expressions
- Exact Gröbner basis computation in Q
 - selects some Q-specialization of approximate number
 - slow arithmetic with huge denominators
 - solves task only for single specialization
- Approximate Gröbner basis computation using numeric or modular methods for zero-comparison
 - result correctness is not guaranteed even for single specialization
- Approximate Gröbner basis computation changing monomial order to skip HC zero-comparison (TSV, etc.)
 - requires restart from scratch of signature-based algorithms

Addition
$$(c_1, \varepsilon_1) + (c_2, \varepsilon_2) = (c_1 + c_2, \varepsilon_1 + \varepsilon_2)$$

Multiplication $(c_1, \varepsilon_1) \times (c_2, \varepsilon_2) = (c_1 c_2, \varepsilon_1 |c_2| + \varepsilon_2 |c_1| + \varepsilon_1 \varepsilon_2)$
Subtraction based on addition and multiplication by -1:

$$(c_1, \varepsilon_1) - (c_2, \varepsilon_2) = (c_1 - c_2, \varepsilon_1 + \varepsilon_2)$$

Inversion defined only for numbers not having zero specialization, or equivalently satisfying $|c| - \varepsilon > 0$:

$$\frac{1}{(c,\varepsilon)} = \left(\frac{1}{c}, \frac{\varepsilon}{|c|(|c|-\varepsilon)}\right)$$

- Track all possible specializations
- Slower than floating point arithmetic only by a constant factor

Non-invertible approximate elements classification

Definitions

- symbolic zero corresponding computations in \mathbb{C} for any input data specialization give exact zero.
- input-inspired zero − C-computations for some but not all input data specializations give exact zero
- ullet computation-introduced zero $\mathbb C$ -computations for input data specializations never give exact zero

Example

$$f_{1} = y^{2}z + a$$

$$f_{2} = y^{2}z^{2} + xz + 1$$

$$f_{3} = y^{3}z + xy + 1$$

$$f_{4} = f_{2} - zf_{1} = xz - az + 1$$

$$f_{5} = f_{3} - yf_{1} = xy - ay + 1$$

$$f_{6} = zf_{5} - yf_{4} = (a - a)yz + z - y$$

 $HC(f_6)$ is symbolic zero.

Example

$$f_1 = y^2z + z^2 + az$$

 $f_2 = xyz$
 $f_3 = xy^2 + bx + 1$
 $f_4 = -(yf_2 - xf_1) = xz^2 + axz$
 $f_5 = (zf_3 - xf_1) + f_4 = ((b - a) + a)xz + z$

 $HC(f_5)$ may be input-inspired or computation-introduced zero. Concrete zero type depends on a and b values.

Strict modular method for approximate Gröbner basis

Main idea: compute in finite field and treat all zeros as symbolic.

- Initially selected prime module
 - known methods: prime is assumed to be "big enough"
 - strict method: initially selected prime used only to compute a hypothesis of the linear system form; rechecked later
- Result approximate coefficients come from linear system solution
 - avoid computation-introduced zeros arose from a a expressions
 - detect all symbolic zeros using modular computation (like known method)
 - allow to estimate correctness probability based on system properties and prime number
 - separately select prime module for every system to ensure required correctness probability

Strict modular method for approximate linear system

Zero-testings are needed during Gaussian elimination. Modular computations allows to detect all symbolic zeros but may detect superfluous ones leading to error. To solve a system with error probability $\leqslant 2\alpha$ we should randomly take a prime number from a set of at least N_p prime numbers greater than P_0 .

$$\bullet \ P_0 = \sqrt{\frac{\mathit{R2}^R\mathit{V}}{\alpha}}, \ \mathit{N_p} = \frac{\mathit{R2}^R\log_{\mathit{P_0}}2\mathit{Z_0}}{\alpha}$$

R number of rows in a system

V number of approximate coefficients in a system

 Z_0 maximal denominator of exact $\mathbb Q$ coefficient

Fact

Required number of bits is linear in the number of system rows. Method fails on input-inspired zeros.

No-restart TSV method for signature-based algorithms

TSV main idea: add monomial y and input polynomial $x_1^{j_1} \cdots x_m^{j_m} - y$ to avoid zero testing of $x_1^{j_1} \cdots x_m^{j_m}$ coefficient. Result is GB of extended ideal $I^e = (I, x_1^{j_1} \cdots x_m^{j_m} - y', \dots)$

- new polynomial
 - original TSV method: added with small signature and restart algorithm from scratch
 - no-restart TSV method: added with "just-before-current" signature and continue processing
- real-weighted order
 - real and monomial parameter for every input polynomial
 - added polynomial signatures can be configured by parameters
 - allows addition of polynomial with signature just before given
 - applies only for signature order independent algorithms

"Strict modular" and "no-restart TSV" methods: New ideas system solving

- Compute a Gröbner basis of extended ideal I^e with a signature-based algorithm using real-weighted order
 - Compute approximate result by strict modular method If it fails on non-invertible element, proceed by no-restart TSV
- 2 Using GB (I^e) and without using GB (I) determine one of:
 - **1** P/I is vector space; find it's basis B, normal form operator ϕ
 - ② *I* is not zero-dimensional; then the algorithm is inapplicable
- 3 Solve the system by "action matrix method" reformulated in terms of B and ϕ instead of GB (1).
 - Problems of known methods are avoided
 - arithmetic operations has predictable complexion
 - no restarts from scratch
 - all input data specializations are considered the probability of error strictly estimated
 - Open questions in complexity estimation are introduced
 - huge prime modules may appear
 - influence of real-weighted order on speed is unknown