THE SOUTH AFRICAN **MATHEMATICS OLYMPIAD**

FIRST ROUND 1999: JUNIOR SECTION: GRADES 8 AND 9

SOLUTIONS AND MODEL ANSWERS

PART A: (Each correct answer is worth 3 marks)

$$\frac{1+2+3+4}{1\times2\times5} = \frac{10}{10} = 1$$

2. ANSWER: E

If blanket is divided into triangles, there are 40 such equal triangles of which 10 of them are coloured.

Therefore
$$\frac{10}{40} = \frac{1}{4}$$

OR

In each small block there is one dark coloured block and 3 light coloured blocks.

Therefore $\frac{1}{4}$ blocks are coloured.

ANSWER: A **3.**

If the pattern is written out you get:

$$1+1=2$$
 $2+1=3$

$$3+1=4$$

$$4+1=5$$
 $5+1=6$

$$6+1=7$$

$$1 + 2 = 3$$

$$2 + 2 = 4$$

$$3+2=5$$

$$3+2=5$$
 $4+2=6$ $5+2=7$

$$6 + 2 = 8$$

$$1 + 3 = 4$$

$$2+3=5$$
 $3+3=6$ $4+3=7$ $5+3=8$ $6+3=9$

$$5 + 3 = 8$$

$$1+4=5$$

$$2+4=6$$

$$3+4=7$$

$$4 + 4 = 8$$

$$1+4=5$$
 $2+4=6$ $3+4=7$ $4+4=8$ $5+4=9$ $6+4=10$

$$6 + 4 = 10$$

$$1+5=6$$

$$1+5=6$$
 $2+5=\underline{7}$ $3+5=8$ $4+5=9$ $5+5=10$ $6+5+11$

$$1+5=6$$
 $2+5=1$ $3+5=8$ $1+5=7$ $2+6=8$ $3+6=9$

$$5+5=10$$

Frequency of numbers:

$$4+6=10$$
 $5+6=11$

The total of 7 was reached more

$$6 + 6 = 12$$

2 3:

9:

4

4: 3 5: 4 10: 3

6:

11: 2 12: 1

7:

5 6

than any other total.

4. ANSWER: E

$$\frac{3 \text{ min}}{13.6 \text{ sec}} = \frac{180 \text{ sec}}{13.6 \text{ sec}} = \pm 13 \text{ units}$$

13 units @ 30,9 cents per unit is approximately R4,00

5. ANSWER: E

$$AB + BC + CD + DA = 16$$

Or
$$2 \times AB + 2 \times BC = 16$$
.

Therefore
$$AB + BC = 8$$

Look at the adding combinations of 8, which gives you a product of 15 (AB X BC = 15 m^2) 3 + 5 = 8 and $3 \times 5 = 15$

PART B:

(Each correct answer is worth 5 marks)

6. ANSWER: B

In a 5-sided polygon you can draw 2 diagonal lines from one vertex to the other vertices. In a 6-sided polygon you can draw 3 lines, in a 7-sided polygon 4 lines etc. Every time there are 3 diagonals less than the number of sides, therefore for a 50 sided polygon you can draw 50 - 3 = 47 diagonal lines from one vertex to the other vertices.

7. ANSWER: D

Total number of learners in Grade 8 and 9 is $\frac{1}{10}$ of 20000000 = 20000000.

Each learner has books to the value of: R30 + R70 + R40 + R60 = R200.

Total cost for Education Department:

 $20000000 \times R200 = R4000000000 = R400 \text{ million}$

8. <u>ANSWER:</u> E

 $12 \sec \times 332 \text{ m} / \sec = 3984 \text{ m} \approx 4 \text{ km}$

9. ANSWER: C

There are 4 tyres on the car at a time. Total distance with four tyres together is $45\,000\,\mathrm{km} \times 4 = 180\,000\,\mathrm{km}$. Five tyres were used, therefore each tyre did $180\,000\,\mathrm{km} \div 5 = 36\,000\,\mathrm{km}$.

2

OR

Each tyre does $\frac{4}{5}$ of the total distance.

 $\frac{4}{5}$ of 45000 = 36000, therefore each tyre did 36 000 km.

10. ANSWER: C

Correct answers in Part A are worth 3 marks each, therefore she has $3 \times 3 = 9$ marks out of 100. Correct answers in Part B are worth 5 marks each, therefore she has another $7 \times 5 = 35$ marks out of 100. Therefore she has 44 marks and needs another 16 marks to get a total of 60 marks. Each correct answers in Part C is worth 7 marks, therefore she needs 3 more correct answers for Part C to give her another 21 marks and added to 44 she will then have 65 marks out of a possible 100, i.e. 65%. Two correct questions in Part C will only give her 14 with a total of 58%

OR

Part A: $3 \times 3 = 9$

Part B: $7 \times 5 = \underline{35}$

44

She needs 60% i.e. 60 marks

∴16 marks more needed

Part C $x \times 7 \ge 16$

 $\therefore \underline{x=3}$

 $\hat{OBC} = 58^{\circ}$ and $\hat{OCB} = 58^{\circ}$ because $\triangle OCB$ is isosceles, OC = OB, both are radii of circle,

centre O. $\hat{OCA} = \hat{OAC} = y$ because $\triangle OAC$ is

isosceles, OC = OA, both are radii of circle, centre O. Sum of angles of a triangle is 180° , therefore $\hat{OBC} + \hat{OCB} + \hat{OCA} + \hat{OAC} = 180^{\circ}$.

$$58^{\circ} + 58^{\circ} + y + y = 180^{\circ}$$

$$\therefore 2y = 180^{\circ} - 116^{\circ}$$

$$\therefore 2y = 64^{\circ}$$

$$\therefore y = 32^{\circ}$$

OR

In
$$\triangle OBC$$
, $OB = OC$ (radii) $\therefore \hat{B} = \hat{C} = 58^{\circ}$

In
$$\triangle OAC$$
, $OA = OC$ (radii) $\therefore \hat{A} = \hat{C} = y$

In
$$\triangle ABC$$
, $OA = OC$ (radii)

$$\therefore \hat{A} + \hat{B} + \hat{C} = 180^{\circ}$$
 (sum angles of Δ)

$$\therefore y + 58^{\circ} + y + 58^{\circ} = 180^{\circ}$$

$$\therefore 2y + 116^{\circ} = 180^{\circ}$$

$$\therefore 2y = 64^{\circ}$$

$$\therefore y = 32^{\circ}$$

12. ANSWER: A

A pen costs x cents and a ruler costs y cents. 2x + 3y = 190 also

x = y + 20. Substitute in first equation:

$$2(y+20)+3y=190$$

$$\therefore 5y + 40 = 190$$

$$\therefore 5y + 40 = 190$$

∴
$$5y = 150$$

$$\therefore y = 30$$

A ruler costs 30c and a pen (30c + 20c) = 50c.

2 rulers and 3 pens: $(2\times30c)+(3\times50c)=60c+150c=210c=R2,10$

13. ANSWER: C

The following years are divisible by 6: 1902, 1908, 1914, ...1998. $100 \div 6 = 16,67$, therefore starting with 1902 plus 16 increments gives you 1998. There are 17 years which are divisible by 6 from 1901 to 2000.

14. ANSWER: A

Length of ribbon:

=
$$(2 \times length) + (2 \times width) + (4 \times height) + (bow, knots and ends)$$

$$=(2\times20 \text{ cm})+(2\times15 \text{ cm})+(4\times10 \text{ cm})+(47 \text{ cm})$$

$$= 40 \text{ cm} + 30 \text{ cm} + 40 \text{ cm} + 47 \text{ cm} = 157 \text{ cm} = 1,57 \text{ m}$$

15. <u>ANSWER:</u> E

Area of inner circle: $\pi r^2 = \pi (1)^2 = \pi$

Area of outer ring = area of outer circle minus area of circle not part of ring.

$$\pi R_0^2 - \pi R_s^2 = \pi (3)^2 = \pi (2)^2 = 9\pi - 4\pi = 5\pi$$

[R_a: radius outer circle;

R_s: radius circle not part of outer ring]

 \therefore Area of outer ring is 5 times bigger than area of inner circle.

PART C: (Each correct answer is worth 7 marks)

16. ANSWER: D

T W O + <u>T W O</u> = F O U R

therefore

TW7 + <u>TW7</u>

= F7U 4 F has to be 1, therefore T has to be 8

therefore:

8 W 7 + <u>8 W 7</u>

= <u>17 U 4</u> **W** has to be bigger than 4 because I have to carry 1 to add to 8+8 to get 17. Possibilities are therefore 5, 6, 7, 8 or 9. It cannot be 5 because 5+5+1=11, and **U** cannot be 1 as **F** is already 1. It can also not be 7 or 8 because **O** and **T** are 7 and 8 respectively, neither can 9 work, for 9+9+1=19, and **W** and **U** cannot both be 9. We are left with only one possibility, namely 6. If tested, it works.

867+ 867= 1734

U, represents the digit 3.

17. ANSWER: B

Write down the factors of 84, 70 and 30:

$$84 = 2 \times 2 \times 3 \times 7$$
; $70 = 2 \times 5 \times 7$; $30 = 2 \times 3 \times 5$

We now look for common factors because we have common edges where the faces meet. Between 84 and 70, common factors are 2; 7 and 14. If the length of the common edge between areas 84 cm² and 70 cm² is 14 cm, the other side length of 84 cm² has to be 6 cm and that of 70 cm² has to be 5 cm. $5 \times 6 = 30$, which give the area of 30 cm^2 .

Volume = $L \times B \times H$ = $14 \times 5 \times 6$ = 420 cm^3 **OR**

 $(Volume)^{2} = Area A \times Area B \times Area C \qquad OR \quad l \times b = 84; \quad b \times h = 70; \quad h \times l = 30$ $= 84 \text{ cm}^{2} \times 70 \text{ cm}^{2} \times 30 \text{ cm}^{2} \qquad \therefore l \times b \times b \times h \times h \times l = 84 \times 70 \times 30$

 $= 176400 \,\mathrm{cm}^6 \qquad \qquad \therefore (l \times b \times h) \times (l \times b \times h) = 176400$

Volume = $420 \,\mathrm{cm}^3$ \therefore Volume = $420 \,\mathrm{cm}^3$

18. ANSWER: B

Take radius of big circle as R

Take radii of small circles as r_1 ; r_2 ; r_3 ; r_4 and r_5 . Circumference of big circle:

$$2\pi R = 30 \text{ cm}$$

Circumference of 5 small circles:

$$2\pi r_1 + 2\pi r_2 + 2\pi r_3 + 2\pi r_4 + 2\pi r_5$$

$$=2\pi(r_1+r_2+r_3+r_4+r_5)$$

$$= 2\pi R = 30 \text{ cm}$$

Therefore the sum of circumferences of the 5 smaller circles is the same as the circumference of the big circle and equal to 30 cm.

19. ANSWER: A

The possible weights are:

Therefore there are 13 different weights one can weigh.

20. ANSWER: B

Complete triangles as indicated in the figure. There are 7 triangles (Δ 's AOC, BOD, COE, DOF, EOG, FOA, GOB) which give a sum of $7 \times 180^{\circ} = 1260^{\circ}$. However, $2 \times 360^{\circ} = 720^{\circ}$ (2 rotations - angles formed at O) has to be subtracted from the total which give us the answer of $1260^{\circ} - 720^{\circ} = 540^{\circ}$

 \hat{A} , \hat{B} , \hat{C} , \hat{D} , \hat{E} , \hat{F} , and \hat{G} are the exterior angles of the heptagon. They have a total value of $2\times360^{\circ}$ or $4\times180^{\circ}$. So the remaining angles,

$$\hat{A}$$
, \hat{B} , \hat{C} , \hat{D} , \hat{E} , \hat{F} , and \hat{G} have a sum of $7 \times 180^{\circ} - 4 \times 180^{\circ} = 3 \times 180^{\circ} = 540^{\circ}$.

In general: In an n-pointed star the angle sum at the points is $(n-4)\times180^{\circ}$ for $n \ge 5$.

