Matemática I

Funções Reais de Variável Real

Anabela Pereira

Depart. de Matemática

Outubro de 2018

Generalidades de f.r.v.r.

Domínio e contradomínio

Zeros e sinal

Paridade e bijectividade (injectividade e sobrejectividade)

Monotonia e extremos

Concavidades e pontos de inflexão

Funções limitadas

Ponto de acumulação

Definição

Seja A subconjunto de \mathbb{R} e $a \in \mathbb{R}$. Diz-se que a é um **ponto de acumulação de** A se, qualquer que seja o valor $\varepsilon > 0$, no intervalo $]a - \varepsilon, a + \varepsilon[$ (**vizinhança de** a **com raio** ε), existe pelo menos um elemento de A <u>diferente de</u> a.

Notação: $A' \rightarrow$ conjunto dos pontos de acumulação de A. **Observações**:

- O ponto de acumulação a pode pertencer ao conjunto A ou não; exemplos: $\begin{cases} \text{ se } a=0 \text{ e } A=[0,2[\text{ , então } A'=[0,2]\text{ ;} \\ \text{ se } a=0 \text{ e } A=[0,2[\text{ , então } A'=[0,2]\text{ .} \end{cases}$
- Se $a \in A$ e a é um ponto isolado, então não é ponto de acumulação A; exemplo: se a=0 e $A=\{0\}\cup]1,2[$, então A'=[1,2].

Definição (**Limite segundo Cauchy**)

Sejam a um ponto de acumulação de D_f e $b \in \mathbb{R}$. Diz-se que f tende para b quando x tende para a, isto é,

$$\lim_{\substack{x \to a \\ \forall \delta > 0 \ \exists \varepsilon > 0 \ \forall x \in D_f \setminus \{a\} : |x - a| < \varepsilon \Rightarrow |f(x) - b| < \delta \\ \text{ou}} \\ \forall \delta > 0 \exists \varepsilon > 0 \forall x \in D_f \setminus \{a\} : a - \varepsilon < x < a + \varepsilon \Rightarrow b - \delta < f(x) < b + \delta$$

Lê-se:

qualquer que seja o número real $\delta>0$, existe um número real $\varepsilon>0$ tal que, para qualquer $x\in D_f\setminus \{a\}$, se x se aproxima de a numa vizinhança de raio ε , $|x-a|<\varepsilon$, então f aproxima-se de b numa vizinhança de raio δ , $|f(x)-b|<\delta$.

Limites Laterais

Limites laterais à direita (segundo Cauchy): Seja a um ponto de acumulação de $D_f \cap]a$, $+\infty[$. Diz-se que f tende para b quando x tende para a por valores superiores (ou, à direita de a), isto é,

$$\lim_{\substack{x \to a^+ \\ \forall \delta > 0 \ \exists \varepsilon > 0 \ \forall x \in D_f : \underbrace{0 < x - a < \varepsilon}_{\substack{x > a \land |x - a| < \varepsilon \\ \text{ou}}} \Rightarrow |f(x) - b| < \delta$$

$$0 \quad \forall \delta > 0 \quad \exists \varepsilon > 0 \quad \forall x \in D_f : a < x < a + \varepsilon \Rightarrow |f(x) - b| < \delta$$

Analogamente se define o limite por valores inferiores (ou, à esquerda de a), isto é,

$$\lim_{x \to a^{-}} f(x) = b \text{ sse}$$

$$\forall \delta > 0 \; \exists \; \varepsilon > 0 \; \forall x \in D_{f} : \; -\varepsilon < x - a < 0 \Rightarrow |f(x) - b| < \delta.$$

Limites Laterais

Observações:

- Se $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = b$ então $\lim_{x \to a} f(x) = b$;
- Se $\lim_{x \to a^-} f(x) \neq \lim_{x \to a^+} f(x) = b$ então não existe $\lim_{x \to a} f(x)$.

Proposição (Unicidade de Limite): O limite de uma função num ponto, quando existe, é único.

Limites infinitos ou quando x tende para minito

ntuntto dand

Vamos estender a definição de limite segundo Cauchy a $a=\pm\infty$ ou $b=\pm\infty$.

• Limite de f com $a = +\infty$ e $b \in \mathbb{R}$: seja f uma f.r.v.r., com D_f não limitado superiormente, e $b \in \mathbb{R}$,

$$\lim_{x \to +\infty} f(x) = b \quad \text{sse}$$

$$\forall \delta > 0 \ \exists M > 0 \ \forall x \in D_f : x > M \Rightarrow |f(x) - b| < \delta.$$

• Limite de f com $a=-\infty$ e $b\in\mathbb{R}$: seja f uma f.r.v.r., com D_f não limitado inferiormente, e $b\in\mathbb{R}$,

$$\lim_{x \to -\infty} f(x) = b \quad \text{sse}$$

$$\forall \delta > 0 \ \exists M < 0 \ \forall x \in D_f : x < M \Rightarrow |f(x) - b| < \delta.$$

Limites infinitos ou quando x tende para infinito.

• Limite de f com $a \in \mathbb{R}$ e $b = +\infty$: sejam f uma f.r.v.r. e a um ponto de acumulação de D_f ,

$$\lim_{\substack{x \to a \\ \forall L > 0 \ \exists \varepsilon > 0 \ \forall x \in D_f \ \backslash \{a\} : |x - a| < \varepsilon \Rightarrow f(x) > L}.$$

• Limite de f com $a \in \mathbb{R}$ e $b = -\infty$: sejam f uma f.r.v.r. e a um ponto de acumulação de D_f ,

$$\lim_{\substack{x \to a}} f(x) = -\infty \quad \text{sse}$$

$$\forall L < 0 \,\, \exists \varepsilon > 0 \,\, \forall x \in D_f \,\, \backslash \{a\} : |x - a| < \varepsilon \Rightarrow f(x) < L.$$

Limites infinitos ou quando x tende para infinito.

• Limite de f com $a = +\infty$ e $b = +\infty$: seja f uma f.r.v.r., com D_f não limitado superiormente,

$$\lim_{x \to +\infty} f(x) = +\infty \quad \text{sse}$$

$$\forall L > 0 \ \exists M > 0 \ \forall x \in D_f : x > M \Rightarrow f(x) > L.$$

• Limite de f com $a = -\infty$ e $b = -\infty$: seja f uma f.r.v.r., com D_f não limitado inferiormente,

$$\lim_{x \to -\infty} f(x) = -\infty \quad \text{sse}$$

$$\forall L < 0 \ \exists M < 0 \ \forall x \in D_f : x < M \Rightarrow f(x) < L.$$

Analogamente se definiriam os outros casos.

Propriedades dos limites finitos

Teorema (do Encaixe)

Sejam f, g e h f.r.v.r., definidas num intervalo I, e a pertencente ao interior de I. Se

$$f(x) \le g(x) \le h(x), \quad \forall x \in I \quad e$$

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = b,$$

então

$$\lim_{x\to a} g(x) = b.$$

Propriedades dos limites finitos

Proposição: Se f e g são f.r.v.r. com limite finito em a (para a finito ou infinito) e $k \in \mathbb{R}$, então:

$$\begin{split} &\lim_{x\to a} kf(x) = k \lim_{x\to a} f(x);\\ &\lim_{x\to a} \left[(f+g)(x) \right] = \lim_{x\to a} f(x) + \lim_{x\to a} g(x);\\ &\lim_{x\to a} \left[(f-g)(x) \right] = \lim_{x\to a} f(x) - \lim_{x\to a} g(x);\\ &\lim_{x\to a} \left[(f\times g)(x) \right] = \lim_{x\to a} f(x) \times \lim_{x\to a} g(x);\\ &\lim_{x\to a} \left[f(x) \right] = \left| \lim_{x\to a} f(x) \right|. \end{split}$$

(**nota:** |f| pode ter limite no ponto a e a função f não ter)

• se $\lim_{x \to a} g(x) \neq 0$, então

$$\lim_{x \to a} \left[\left(\frac{f}{g} \right) (x) \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}.$$

•

Propriedades dos limites infinitos

Sejam f, g f.r.v.r e a finito ou infinito, então:

Para a soma:

$$\mathbf{1.} \text{ se } \lim_{x \to a} f(x) = +\infty \text{ e } \lim_{x \to a} g(x) = +\infty, \lim_{x \to a} \left[\left(f + g \right) (x) \right] = +\infty;$$

$$\mathbf{2.} \text{ se } \lim_{x \to a} f(x) = -\infty \text{ e } \lim_{x \to a} g(x) = -\infty, \lim_{x \to a} \left[\left(f + g \right) (x) \right] = -\infty;$$

3. sendo $b \in \mathbb{R}$,

$$\operatorname{se} \lim_{x \to a} f(x) = +\infty \operatorname{e} \lim_{x \to a} g(x) = b, \lim_{x \to a} \left[\left(f + g \right) (x) \right] = +\infty;$$

$$\operatorname{se} \lim_{x \to a} f(x) = -\infty \operatorname{e} \lim_{x \to a} g(x) = b, \lim_{x \to a} \left[\left(f + g \right) (x) \right] = -\infty.$$

Propriedades dos limites infinitos

Para o produto:

4. sendo $b \in \mathbb{R}^+$,

$$\begin{array}{l} \operatorname{se} \lim_{x \to a} f(x) = +\infty \ \operatorname{e} \lim_{x \to a} g(x) = b, \ \operatorname{ent\~ao} \lim_{x \to a} \left[\left(f \times g \right) (x) \right] = +\infty; \\ \operatorname{se} \lim_{x \to a} f(x) = -\infty \ \operatorname{e} \lim_{x \to a} g(x) = b, \ \operatorname{ent\~ao} \lim_{x \to a} \left[\left(f \times g \right) (x) \right] = -\infty; \end{array}$$

5. sendo $b \in \mathbb{R}^-$,

$$\begin{array}{l} \operatorname{se} \lim_{x \to a} f(x) = +\infty \ \operatorname{e} \lim_{x \to a} g(x) = b, \ \lim_{x \to a} \left[\left(f \times g \right) (x) \right] = -\infty; \\ \operatorname{se} \lim_{x \to a} f(x) = -\infty \ \operatorname{e} \lim_{x \to a} g(x) = b, \ \lim_{x \to a} \left[\left(f \times g \right) (x) \right] = +\infty; \end{array}$$

6.

$$\begin{array}{l} \mathrm{se}\, \lim_{x\to a} f(x) = +\infty \; \mathrm{e}\, \lim_{x\to a} g(x) = +\infty, \; \mathrm{ent\~ao}\, \lim_{x\to a} \left[\left(f\times g \right)(x) \right] = +\infty; \\ \mathrm{se}\, \lim_{x\to a} f(x) = -\infty \; \mathrm{e}\, \lim_{x\to a} g(x) = +\infty, \; \mathrm{ent\~ao}\, \lim_{x\to a} \left[\left(f\times g \right)(x) \right] = -\infty; \\ \mathrm{se}\, \lim_{x\to a} f(x) = -\infty \; \mathrm{e}\, \lim_{x\to a} g(x) = -\infty, \; \mathrm{ent\~ao}\, \lim_{x\to a} \left[\left(f\times g \right)(x) \right] = +\infty. \end{array}$$

Propriedades dos limites infinitos

Para o inverso e o quociente: seja g não nula numa vizinhança de a (excepto, eventualmente em a).

- 7. $\underset{x \to a}{\text{elim}} g(x) = \infty \text{ então } \lim_{x \to a} \frac{1}{g(x)} = 0;$
- **8.** se $\lim_{x \to a} g(x) = 0$ então $\lim_{x \to a} \frac{1}{g(x)} = \infty$;
- **9.** se $\lim_{x\to a} g(x) = \infty$ e $\lim_{x\to a} f(x)$ é finito, então $\lim_{x\to a} \frac{f(x)}{g(x)} = 0$;
- **10.** se $\lim_{x\to a} g(x) = 0$ e $\lim_{x\to a} f(x)$ é infinito ou finito *e diferente de zero*, $\lim_{x\to a} \frac{f(x)}{g(x)} = \infty$. (dependendo do sinal de f e g, poderemos averiguar se este limite é $+\infty$ ou $-\infty$)

Propriedades dos limites

Observações complementares:

Diz-se que f é um **infinitésimo** quando x tende para a se

$$\lim_{x\to a} f(x) = 0.$$

Proposição: Se f é um infinitésimo quando x tende para a e g é uma f.r.v.r. **limitada**. então $f \times g$ **é um infinitésimo** quando x tende para a.

Indeterminações

Os símbolos seguintes são designados por símbolos de indeterminação:

$\boxed{(+\infty)-(+\infty)}$	$(+\infty) + (-\infty)$	$0 \times (+\infty)$
$0 \times (-\infty)$	00	8
00	∞^0	1∞

Limites notáveis

Alguns limites notáveis ou de referência:

$$\begin{split} &\lim_{x\to 0}\frac{\text{sen}x}{x}=1\\ &\lim_{x\to 0}\frac{\text{e}^x-1}{x}=1\\ &\lim_{x\to 0}\frac{\ln(x+1)}{x}=1\\ &\lim_{x\to +\infty}\frac{\text{e}^x}{x}=+\infty \qquad \text{(caso geral }\lim_{x\to +\infty}\frac{\text{e}^x}{x^p}=+\infty \text{ }(p\in\mathbb{N})\text{)}\\ &\lim_{x\to +\infty}\frac{\ln x}{x}=0 \qquad \text{(caso geral }\lim_{x\to +\infty}\frac{\ln x}{\sqrt[p]x}=0 \text{ }(p\in\mathbb{N})\text{)} \end{split}$$

Funcões Contínuas

Consideremos $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ uma função real de variável real (f.r.v.r.) e a um ponto de acumulação de D_f que pertence a D_f .

- Diz-se que f é contínua em a se $\lim_{x\to a} f(x) = f(a)$.
- Diz-se que f é contínua à esquerda em a se $\lim_{x \to a^-} f(x) = f(a)$.
- Diz-se que f é contínua à direita em a se $\lim_{x \to a^+} f(x) = f(a)$.
- Diz-se que a f é contínua no intervalo [a, b] se f é contínua em qualquer ponto de]a, b[, contínua à direita em a e contínua à esquerda em b.
- Diz-se que f é contínua se f é contínua em qualquer ponto do seu domínio.

Funções Contínuas

Da definição de limite segundo Cauchy, resulta que f **é contínua em** a, isto é,

$$\lim_{x \to a} f(x) = f(a)$$
 sse

$$\forall \delta > 0 \ \exists \varepsilon > 0 \ \forall x \in D_f : |x - a| < \varepsilon \Longrightarrow |f(x) - f(a)| < \delta$$

Nota: São consideradas contínuas em todo o seu domínio as seguintes funções:

polinomiais, racionais, com raízes, trigonométricas, exponenciais e logarítmicas.

Propriedades das Funções Contínuas

Proposição: Se f, g são funções contínuas em a e $k \in \mathbb{R}$, então:

- ullet as funções kf, f+g, f-g, f imes g e |f| são contínuas em a;
- se $g(a) \neq 0$, as funções $\frac{1}{g}$ e $\frac{f}{g}$ são contínuas em a.

Proposição: Se f é uma função contínua em a e g é contínua em f(a), então $g \circ f$ é contínua em a.

Prolongamento por Contínuidade

Sendo f e g duas funções com domínios D_f e D_g , diz-se que g **é** um prolongamento de f (ou que f **é** uma restrição de g) se

$$D_f \subsetneq D_g$$
 e $\forall x \in D_f$, $f(x) = g(x)$.

Proposição: Seja $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ e *a* um ponto de acumulação de D_f , com $a \notin D_f$.

- f é prolongável por continuidade a a sse existe (e é finito) $\lim_{x \to a} f(x)$.
- ullet Neste caso, ullet prolongamento por continuidade de f a a é a função

$$g:D_f\cup\{a\} o\mathbb{R}$$

definida por

$$g(x) = \begin{cases} f(x) & \text{, se } x \in D_f \\ \lim_{x \to a} f(x) & \text{, se } x = a \end{cases}$$

Teoremas Fundamentais

Teorema (de Bolzano)

Seja $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ uma função contínua em [a,b], com a < b. Então, para qualquer k estritamente compreendido entre f(a) e f(b), existe pelo menos um $c \in]a,b[$ tal que f(c)=k, isto \acute{e} , $\exists c \in]a,b[$: f(c)=k.

Corolário (1)

Se f é contínua no intervalo [a,b] e não se anula em algum ponto de [a,b], então em todos os pontos de [a,b] a função f tem o mesmo sinal.

Corolário (2)

Se f é contínua no intervalo [a,b] e $f(a) \times f(b) < 0$ então f tem pelo menos um zero em [a,b[, isto é, $\exists c \in]a,b[$: f(c)=0

Teoremas Fundamentais

Teorema (de Weierstrass)

Qualquer função contínua num intervalo [a, b] (fechado e limitado) tem máximo e mínimo nesse intervalo.

Observação: Em qualquer um destes resultados, as condições são apenas condições suficientes; não são condições necessárias.

Teorema (continuidade da função inversa)

Se $f:I\subset\mathbb{R}\to\mathbb{R}$ é uma função contínua e estritamente monótona em I, então:

- f é invertível em I;
- f^{-1} é estritamente monótona;
- f^{-1} é contínua.

Observação: O facto de f ser estritamente monótona em I garante que f é injectiva em I.

Função Seno e sua inversa Arco Seno

Considere-se a função seno, definida por:

$$f: \mathbb{R} \to [-1,1]$$
$$x \to \operatorname{sen} x$$

Esta função é contínua em $\mathbb R$ mas não é injectiva. Para a inverter vamos considerar a sua restrição principal $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ onde a função seno é contínua e estritamente crescente.

Função Seno e sua inversa Arco Seno

- é contínua
- é estritamente crescente
- é impar
- tem zero em x = 0

f^{-1} :	[-1, 1]	\rightarrow	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
	X	\longrightarrow	arcsen x

- é contínua
- é estritamente crescente
- é impar
- tem zero em x = 0

Função Coseno e sua inversa Arco Coseno

Considere-se a função coseno, definida por:

$$f: \mathbb{R} \to [-1,1]$$
$$x \to \cos x$$

Esta função é contínua em $\mathbb R$ mas não é injectiva. Para a inverter vamos considerar a sua restrição principal $[0,\pi]$ onde a função coseno é contínua e estritamente decrescente.

Função Coseno e sua inversa Arco Coseno

f :	$[0,\pi]$	\longrightarrow	[-1, 1]
	X	\longrightarrow	cos x
é co	ntínua		
é estrit. decrescente			
tem zero em $x = \frac{\pi}{2}$			

$f^{-1}:$	[-1, 1]	\rightarrow	$[0,\pi]$
	X	\rightarrow	arccos x
é contínua			
é estrit. decrescente			
tem zero em $x=1$			

Função Tangente e sua inversa Arco Tangente

Considere-se a função tangente, definida por:

$$f: \mathbb{R} \setminus \{x : x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\} \to \mathbb{R}$$

$$x \to \operatorname{tg} x = \frac{\operatorname{sen} x}{\cos x}$$

Para a inverter a tangente vamos considerar a sua restrição principal $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ onde a função é contínua e estritamente crescente.

Função Tangente e sua inversa Arco Tangente

$f:]-\frac{\pi}{2},\frac{\pi}{2}[$	\rightarrow	\mathbb{R}
X	\longrightarrow	tg x
é contínua		

é estrit. crescente tem zero em x = 0

Função Cotangente e sua inversa Arco Cotangente

Considere-se a função cotangente, definida por:

$$f: \mathbb{R} \setminus \{x : x \neq k\pi, k \in \mathbb{Z}\} \to \mathbb{R}$$

$$x \to \cot g x = \frac{\cos x}{\sin x} = \frac{1}{\operatorname{tg} x}$$

Para inverter a cotangente vamos considerar a sua restrição principal $]0, \pi[$ onde a função é contínua e estritamente decrescente.

Função Cotangente e sua inversa Arco Cotangente

† :]0, π [\longrightarrow	IK
	X	\longrightarrow	cotg x
é co	ntínua		
é estrit. decrescente			
tem zero em $x = \frac{\pi}{2}$			

f^{-1} :	\mathbb{R}	\rightarrow]0, π[
	X	\longrightarrow	arccotg x
é contínua			
é estrit. decrescente			
não tem zero			

Fórmulas Trigonométricas

Algumas fórmulas trigonométricas:

•
$$\operatorname{sen}^2 \alpha + \cos^2 \alpha = 1$$

•
$$\operatorname{sen}^2 \alpha = \frac{1}{2} \left(1 - \cos \left(2\alpha \right) \right)$$

$$\bullet \ \cos^2\alpha = \tfrac{1}{2} \left(1 + \cos\left(2\alpha\right) \right)$$

•
$$\operatorname{sen}(\alpha \pm \beta) = \operatorname{sen}\alpha \cos\beta \pm \cos\alpha \operatorname{sen}\beta$$

•
$$\cos(\alpha \pm y) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

•
$$tg^2 \alpha = 1 - \sec^2 \alpha$$
 (com $\sec \alpha = \frac{1}{\cos \alpha}$)