CLAIMS

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

- 1. (Previously presented) A wireless receiver having a low-power listen mode, comprising:
 a first receiver path for decoding a preamble to a wireless data packet and a second receiver path for decoding a data packet payload,
 - a packet detection logic to identify data packets directed to the wireless receiver; and
 - a switching logic coupled to the packet detection logic to select the first receiver path or the second receiver path depending on whether the packet detection logic has identified a data packet directed to the wireless receiver,

wherein the first receiver path has a lower decoding resolution than the second receiver path.

- 2. (Previously presented) The wireless receiver of claim 1 wherein the second receiver path is separate from the first receiver path.
- 3. (Previously presented) The wireless receiver of claim 1 wherein the first receiver path requires less power to operate than the second receiver path.
- 4. (Canceled)
- 5. (Previously presented) The wireless receiver of claim 1 wherein the first receiver path comprises a 2-bit analog-to-digital converter.
- 6. (Previously presented) The wireless receiver of claim 1 wherein the second receiver path comprises an 8-bit analog-to-digital converter.

- 7. (Previously presented) The wireless receiver of claim 1 wherein the first receiver path uses barker-code detection to decode the preamble.
- 8. (Canceled)
- 9. (Previously presented) The wireless receiver of claim 7 wherein the switching logic selects the first receiver path until the data packet is identified and then selects the second receiver path to decode the data packet payload.
- 10. (Previously presented) A wireless receiver having a low-power listen mode, comprising:
 - a first analog front end and a second analog front end to receive a data packet, wherein the data packet comprises a preamble and a data packet payload;
 - a packet detection logic to identify whether the data packet is directed to the wireless receiver; and
 - a switching logic coupled to the packet detection logic to select the first analog front end or the second analog front end depending on whether the packet detection logic has identified the data packet as being directed to the wireless receiver,
 - wherein the first analog front end receives the preamble and the second analog front end receives the data packet payload,
 - wherein the first analog front end has a lower resolution than the second analog front end.
- 11. (Previously presented) The wireless receiver of claim 10 wherein the first analog front end requires less power to operate than the second analog front end.
- 12. (Canceled)
- 13. (Previously presented) The wireless receiver of claim 10 wherein the first analog front end comprises a 2-bit analog-to-digital converter.

14. (Previously presented) The wireless receiver of claim 10 wherein the second analog front end

comprises an 8-bit analog-to-digital converter.

15. (Previously presented) The wireless receiver of claim 10 wherein a first receiver path, coupled

to the first analog front end, uses barker-code detection to decode the preamble.

16. (Canceled)

17. (Previously presented) The wireless receiver of claim 10 wherein the switching logic selects

the first analog front end until the data packet is identified as being directed to the wireless receiver

and then selects the second analog front end to receive the data packet payload.

18. (Previously presented) A method for receiving data packets in a wireless receiver, comprising:

receiving radio frequency signals with a first receiver path;

decoding signals received through the first receiver path to detect a code in a preamble of a

received data packet;

upon detection of the code, switching to a second receiver path; and,

receiving a payload of the received data packet with the second receiver path,

wherein the first receiver path has a lower decoding resolution than the second receiver

path.

19. (Original) The method of claim 18 further comprising switching back to the first receiver path

when receiving of the payload is completed.

20. (Previously presented) The method of claim 18 wherein the first receiver path requires less

power than the second receiver path.

Page 4 of 7

Appl. No. 10/690,446 Amdt. Dated April 25, 2008 Reply to Office Action of January 28, 2008

21. (Currently amended) A wireless device that is adapted to receive data packets from another wireless device, comprising:

receiving means for receiving encoded information via a data packet, the receiving means comprising a first decoding means for decoding the preamble of the data packet, the receiving means further comprising a second decoding means for decoding the payload of the data packet, and

switching means for switching between the first and second <u>decoding</u> means, wherein the first decoding means has a lower decoding resolution than the second decoding means.

22. (Canceled)