IOT LAB MANUAL

EXPERIMENT NO: 1

- 1. Using raspberry pi
- a. Calculate the distance using a distance sensor.
- b. Basic LED functionality.

AIM:

Using raspberry pi

- a. Calculate the distance using a distance sensor.
- b. Basic LED functionality.

PROGRAM:

A. Use a Raspberry Pi to calculate the distance using a distance sensor:

- · Connect the distance sensor to the Raspberry Pi's GPIO pins.
- Install the required libraries and packages (e.g., RPi.GPIO, pigpio, time, etc.).
- Write a script in Python to read the sensor data and calculate the distance using a formula based on the sensor's specifications.
- Use the formula to convert the sensor data into a distance value and display
 the output on the screen or send it to a remote server for storage and
 processing.
- · Run the script on the Raspberry Pi to get the distance measurements.

Here's an example code that demonstrates this process:

import RPi.GPIO as GPIO
import time

Set the GPIO mode
GPIO.setmode(GPIO.BCM)

Define the GPIO pin for the sensor
TRIG = 23
ECHO = 24

Set up the GPIO pins for the sensor
GPIO.setup(TRIG, GPIO.OUT)
GPIO.setup(ECHO, GPIO.IN)

Set the trigger pin to low
GPIO.output(TRIG, False)

Wait for the sensor to settle

Page 1

III-II B.TECH CSE (IoT) IoT LAB MANUAL

time.sleep(2) # Send a 10uS pulse to trigger the sensor GPIO.output(TRIG, True) time.sleep(0.00001) GPIO.output(TRIG, False) # Measure the pulse duration while GPIO.input(ECHO)==0: pulse_start = time.time() while GPIO.input(ECHO)==1: pulse_end = time.time() # Calculate the distance pulse_duration = pulse_end - pulse_start distance = pulse_duration * 17150 distance = round(distance, 2) # Display the distance print("Distance:",distance,"cm") # Clean up the GPIO pins GPIO.cleanup()

OUTPUT: