Министерство науки и высшего образования Российской Федерации

Санкт-Петербургский Политехнический университет Петра Великого
Институт энергетики
Высшая школа энергетического машиностроения

Отчёт по практической работе №2

по дисциплине «Теория автоматического регулирования» «Редуцирование модели САР паровой турбины до колебательного звена»

Выполнили:	
Студент гр.3231303/21201 п/г 2	 А. К. Дмитриев
Студент гр.3231303/21201 п/г 2	А. Д. Ярошевич
Принял:	
Доцент ВШЭМ	 В. А. Суханов

Реферат

В данной лабораторной работе проведено редуцирование модели системы автоматического регулирования (САР) паровой турбины до одного колебательного звена. Основная цель состояла в поиске параметров этого звена:

КЛЮЧЕВЫЕ СЛОВА: ПЕРЕХОДНЫЙ ПРОЦЕСС, КОЛЕБАТЕЛЬНОЕ ЗВЕНО.

СОДЕРЖАНИЕ

1	Описание исследуемой САР и исходные данные	. 4
2	Система уравнений, описывающих переходные процессы в исследуемой	
	САР и её перевод в программный вид	. 5
3	Методика исследования	. 8
4	Результаты численного моделирования	10
	4.1 Варьирование T_a	11
	4.2 Варьирование T_{π}	11
5	Анализ результатов численного моделирования	11
3	аключение	12

Введение

Цель работы состоит в редуцировании математической модели САР конденсационной паровой турбины без промежуточного перегрева и отбора пара до единичного колебательного звена. Работа проведена с помощью пакетов DifferentialEquations.jl и Plots.jl языка программирования Julia в среде Pluto.

Задача работы заключается в поиске значений параметров колебательного звена, при которых его переходная функция будет эквивалентна исходной переходной функции модели САР ПТУ.

Актуальность исследования заключается в упрощении математической модели, что позволит тратить меньше ресурсов на симуляцию.

1 Описание исследуемой САР и исходные данные

Объектами исследования являются система регулирования угловой скорости ротора паровой турбины без промежуточного перегрева пара, принципиальная схема которой изображена на рисунке 1.1, и колебательное звено.

1 — механизм управления; 2 — сервомотор (гидравлический усилитель); 3 — генератор; 4 — паровая ёмкость между регулирующим клапаном и соплами турбины; 5 — регулирующий клапан; 6 — ротор турбогенератора; 7 — датчик угловой скорости ротора; φ — относительное изменение угловой скорости ротора (величина, характеризующая ошибку регулирования); π — относительное изменение давление пара перед соплами турбины; ξ — относительное изменение положения регулирующего клапана

(или поршня сервомотора); η — относительное изменение положения выходной координаты элемента сравнения; $\nu_{\rm r}$ — относительное изменение нагрузки на генераторе;

 $\zeta_{\text{му}}$ — относительное изменение положения механизма управления Рисунок 1.1 — Принципиальная схема САР угловой скорости ротора

Исходные значения параметров САР указаны в таблицы 1.1.

Таблица 1.1 — Назначение промежутков варьирования

T_a	T_{π}	T_s	δ_{ω}
7	0.4	0.7	0.12

2 Система уравнений, описывающих переходные процессы в исследуемой САР и её перевод в программный вид

В работе рассматривается представление САР в виде линейной математической модели в стандартной форме:

$$\begin{cases} T_a \cdot \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \pi - \nu_{_{\Gamma}} \\ T_\pi \cdot \frac{\mathrm{d}\pi}{\mathrm{d}t} + \pi = \xi \\ T_s \cdot \frac{\mathrm{d}\xi}{\mathrm{d}t} + \xi = \eta \\ \eta = -\frac{\varphi}{\delta_{\omega}} + \zeta_{_{\mathrm{My}}} \end{cases}$$

где T_a — постоянная времени ротора;

 T_{π} — постоянная времени паровой ёмкости;

 T_s — постоянная времени сервомотора;

 δ_{ω} — величина, пропорциональная коэффициенту усиления разомкнутой системы;

 η — относительное изменение положения выходной координаты элемента сравнения;

 φ — относительное изменение угловой скорости ротора турбины и генератора. Характеризует ошибку регулирования;

 π — относииельное изменение давления пара в паровой ёмкости;

 ξ — относительное изменение положения регулирующего органа;

 $\zeta_{\text{му}}$ — относительное изменение положения механизма управления турбиной;

 $\nu_{\scriptscriptstyle \Gamma}$ — относительное изменение нагрузки на генераторе.

Эта система уравнений, подготовленная для анализа средствами DifferentialEquations.jl, записана в функции, приведённой на листинге 2.1.

$$\begin{split} W(s) &= \frac{\delta_{\omega}}{1 + \delta_{\omega} \cdot T_a \lambda \cdot (T_{\pi} \lambda + 1)(T_s \lambda + 1)} = \\ &= \frac{\delta_{\omega}}{1 + \delta_{\omega} \cdot T_a \lambda \cdot (T_{\pi} T_s \lambda^2 + (T_{\pi} + T_s) \lambda + 1)} = \\ &= \frac{1}{\frac{1}{\delta_{\omega}} + T_a T_{\pi} T_s \lambda^3 + T_a (T_{\pi} + T_s) \lambda^2 + T_a \lambda} = \end{split}$$

Колебательное звено также представлено его передаточной функцией:

$$W(s) = \frac{K}{T^2 \lambda^2 + 2\zeta T \lambda + 1}$$

где K — коэффициент усиления;

T — постоянная времени звена;

s — переменная Лапласса;

 ζ — величина затухания.

Листинг 2.1 — Функция, описывающая исследуемую САР

```
1
    function simulate system(;
2
        Ta = 7,
3
        T\pi = 0.4,
4
        Ts = 0.7,
5
        \delta\omega = 0.12,
        \eta r = t \rightarrow t \ge 2 ? -1 : 0.0,
6
7
        u0 = [0.0, 0.0, 0.0],
8
        tspan = (0.0, 30.0)
   )
9
         function system!(du, u, p, t)
10
             \varphi, \pi, \xi = u
11
12
             η = -φ / δω
             du[1] = (\pi - \eta r(t)) / Ta
13
             du[2] = (\xi - \pi) / T\pi
14
15
             du[3] = (\eta - \xi
                                 ) / Ts
16
        end
17
         prob = ODEProblem(system!, u0, tspan)
18
19
        solve(prob, Tsit5(), reltol=1e-6, abstol=1e-6)
20 end
```

Рассмотрим листинг 2.1 построчно:

- На строчках 2-9 задаются значения параметров САР $T_a, T_\tau, T_c, \delta_\omega$ согласно выданному варианту, а также закон зависимости внешнего воздействия от времени $\nu_{\scriptscriptstyle \Gamma}(t)$, начальные условия u0 и время симуляции;
- На строчках 10-16 описана собственно исследуемая система;
- На строчке 18 из уравнения, начальных условий и времени симуляции формулируется задача prob для решателя;
- На строчке 19 происходит решение системы уравнений с помощью выбранного решателя Tsit5() и выбранных коэффициентов точности для него;

Результат представляет из себя численную зависимость $\varphi(t)$ для одного режима САР.

3 Методика исследования

Таким образом, можно назначить промежутки для варьирования параметров САР. Для T_s , T_π и δ_ω промежутки произвольного размера назначены симметрично их исходным значениям из соображения наглядности. Для T_a промежуток назначен с учётом T_{a_k} , чтобы продемонстрировать потерю устойчивости системы. Назначенные промежутки указаны в таблице 3.2.

Параметр	Исходное значение	Промежуток
T_a	7c	2.125c - 10c
T_{π}	0.4c	0.4c-1c
T_s	0.7c	0.2c - 0.6c
δ_{ω}	0.12%	0.08% - 0.16%

Таблица 3.2 — Назначение промежутков варьирования

По итогам варьирования параметров САР и решения системы описывающих её уравнений получены трёхмерные графики в координатах, отражающих зависимость φ от t и варьируемого параметра САР, а также двумерные графики зависимости параметров переходного процесса от варьируемого параметра САР.

Для вычисления установившейся ошибки регулирования φ_0 производится визуальная оценка времени переходного процесса по полученным трёхмерным графикам, после чего берётся значение $\varphi(t)$ при t заведомо больше $t_{\rm n}$. Ответственная за это функция приведена на листинге 3.2.

Листинг 3.2 — Функция для вычисления $arphi_{\infty}$

```
1 function compute_static_errors(solutions)
2    static_errors = [sol[1,end] for sol in solutions]
3 end
```

Для поиска времени переходного процесса используется функция, приведённая на листинге 3.3. В ней при обратном ходе по времени происходит поиск значения времени, при котором значение $\varphi(t)$, отличается от φ_0 больше, чем на допуск 5%.

Листинг 3.3 — Функция для вычисления $t_{\rm n}$

```
1
   function find_settling_time(sol, phi_steady; tolerance=0.05)
2
        times = sol.t
3
        phi values = sol[1, :]
        lower = phi_steady * (1 - tolerance)
4
5
        upper = phi_steady * (1 + tolerance)
6
7
        # Идем с конца к началу
8
        for i in length(phi_values):-1:1
            if !(lower <= phi values[i] <= upper)</pre>
9
10
                return i < length(times) ? times[i+1] : times[end]</pre>
11
            end
12
        end
13
        return times[1]
14 end
```

Для вычисления максимальной динамической ошибки регулирования φ_{\max} используется функция, приведённая на листинге 3.4. В ней берётся наибольшее по модулю значение φ , так как $\varphi_0=0$.

Листинг 3.4 — Функция для вычисления φ_{\max}

```
1 function compute_dynamic_errors(sol)
2  maximum(abs.(sol[1, :]))
3 end
```

- 4 Результаты численного моделирования
- **4.1** Варьирование T_a
- **4.2** Варьирование T_π

5 Анализ результатов численного моделирования

Из анализа графиков зависимости времени переходного процесса $t_{\rm n}$ от варьируемых параметров САР следует, что:

- 1. Изменение $t_{\rm n}$ происходит ступенчато, что, как видно из объёмных графиков, связано с «горбами», возникающими при колебаниях и методом определения этой величины, связанной с допуском. Наивысшая точка «горба» находится в его середине, по мере его уменьшения или увеличения сначала проходить допуск будут его крайние точки, но не центр, а с прохождением центра «горба» в допуск в него попадает вся его длина;
- 2. При увеличении T_a и δ_ω величина времени переходного процесса падает, тогда как при увеличении T_s и T_π это значение растёт.

Из анализа графиков зависимости максимальной динамической ошибки регулирования φ_{\max} от варьируемых параметров САР следует, что:

- 1. С ростом T_{π}, T_{s} и δ_{ω} значение динамической ошибки регулирования растёт, тогда как с ростом T_{a} её значение падает;
- 2. При варьировании T_{π}, T_s и δ_{ω} значение максимальной динамической ошибки изменяется линейно, тогда как при варьировании T_a значение изменяется нелинейно. Скорость этого уменьшения уменьшается с ростом T_a .

Из анализа графиков зависимости статической ошибки регулирования φ_{∞} от варьируемых параметров САР следует, что:

- 1. При варьировании параметров T_s и T_π , а также T_a , исключив участок неустойчивости, значение φ_∞ остаётся неизменным и численно равным значению коэффициента обратной связи $\delta_\omega = 0.12$;
- 2. С ростом δ_ω значение φ_∞ линейно растёт.

Заключение

По итогам проведения численного моделирования изменения параметров переходного процесса при варьировании параметров САР конденсационной паровой турбины без промежуточного перегрева пара получено, что:

- Для уменьшения времени переходного процесса $t_{\rm n}$ следует увеличивать значения T_a и δ_ω и уменьшать значения T_s и T_π ;
- Для уменьшения максимальной динамической ошибки регулирования φ_{\max} следует увеличивать значение T_a и уменьшать значения T_π , T_s и δ_ω ;
- Для уменьшения статической ошибки регулирования φ_{∞} следует уменьшать величину δ_{ω} ;
- При уменьшении величины постоянной времени ротора T_a система может потерять устойчивость по Ляпунову.