激光打印机的基本结构和工作原理压

◆刘永利

(2)感光鼓的结构如图 6。显影辊的结构如图 7 所示。

图 6 感光鼓的结构图

图 7 显影辊的结构图

(3)当潜像的电场力大于墨粉和载体的亲和力时,墨粉颗粒会在光电导体表面显现出墨粉图像。载体和墨粉按一定的比例混合十分重要。如果墨粉所占比例过大,会造成最终打印浓度偏深、底灰大,且墨粉会从显影器中飞逸出来,污染机内构件。如果载体所占比例过大,最终打印浓度偏浅、偏淡,还会因为缺少墨粉而使载体暴露出来,互相摩擦而引起过早的疲劳。由于每种打印机所使用的墨粉含量都不尽相同,因此墨粉不能随意代用。

(4)定影辊

定影辊分定影上轧辊和定影下轧辊。定影上轧辊 也叫加热辊,它主要由陶瓷加热片、支架和定影膜构 成 如图 8 所示。

定影下轧辊也称为压力胶辊,它与定影上轧辊配合共同完成热压定影工作,其外形如图9所示。

图 9 定影下轧辊外形示意图

(5)热敏电阻

热敏电阻紧贴在定影上轧辊(加热辊)上,通过热感应方式来感知当前定影上轧辊的温度,以便通过逻辑电路控制加热灯的开关,从而实现对定影温度的恒定调节。

(6)加热灯

加热灯位于定影上轧辊的中间,如图 10 所示。其作用主要是将定影辊加热到定影所需的温度。

图 10 加热灯位置示意图

(7)清洁机构

清洁机构的主要作用是:将感光鼓表面上没有完全转印的残留墨粉清除掉,它可以分为毛刷式清洁机构和刮板式清洁机构两种。

3. 机械传动系统

机械传动系统主要负责完成打印纸张的传送工作。它主要由传动齿轮、光电感应器、搓纸轮、托纸板以及导轨等部分组成。由于激光打印机类型的不同,所采用的机械传动系统的具体结构也各不相同。目前常见的纸张传动方式主要有吸引式传动和摩擦式传动两种

(1)吸引式传动方式

(C)1994-2022 China Academic Journal Electronic Publis 吸引式传动方式主要是指采用吸引式电磁离合器 W.cnki.net 图 8 期定影上轧辊外形示意图

来控制走纸的传动方式。吸引式电磁离合器的基本结 构如图 11 所示。它由进纸凸轮、定位凸轮、托纸板、吸 引磁芯、电磁线圈、复位弹簧和回位弹簧等部件构成。 正常情况下,进纸凸轮被一铁制挡板限制,当发出走纸 信号后,电磁线圈流过电流,由于电磁感应,线圈所产 生的感应磁场吸引铁制挡板 进纸凸轮即被释放 带动 进纸凸轮旋转 即将一张打印纸送入打印轨道。然后, 电磁线圈电流消失 铁制挡板失去吸引力 在回位弹簧 的作用下恢复原先状态 挡住凸轮转动 这样即完成了 一个走纸过程。

图 11 吸引式电磁传动示意图

(2)摩擦式传动方式

摩擦式传动系统采用摩擦式电磁离合器,其结 构如图 12 所示。电磁离合器线圈通电后产生电磁 场 将位于离合器中间的联动叉向连轴器一侧推动,

图 12 摩擦式传动系统结构示意图

从而推动摩擦弹簧,使摩擦弹簧的一端正好插入连 轴器的对位孔中,进而带动搓纸轮旋转以完成走纸 过程。

4. 传感器

激光打印机中的传感器主要有热敏电阻传感器、 机械传感器和光电传感器三类传感器。

这种传感器通过小型热敏电阻,采用热感应方式

以实现最终感应控制。激光打印机在成像转印部分所 使用的传感器大都属于此类。

(2)机械传感器

激光打印机控制面板上的开关大都使用机械传感 器来实现操作控制。

(3)光电传感器

光电传感器由发光二极管和光敏二极管组成 .通 过其光电感应特性来判定是否导通,从而通知逻辑控 制电路发送指令以实现打印机的控制。如打印纸传感 器、送纸传感器以及出纸传感器等都属于此类传感器。

5. 电路系统

激光打印机的电路系统主要由接口电路、供电电 路、控制电路和驱动电路等几部分构成。

(1)接口电路

接口电路主要肩负着打印机与主机间的通信连接 任务。在数据传输方面 主要采用并行接口传输和串行 接口传输两种方式。接口电路除包括通信接口外,它还 有自己的微处理器和存储器。存储器可以细分为只读 存储器(ROM)和随机存储器(RAM) 相当于存放待打印 数据信息的数据缓冲器,它既能输入数据,又可以输出 数据。

(2)供电电路

供电电路负责提供打印机各部分的控制电压。 在激光打印机中,供电电路需要提供三种电压,即 交流电压、直流电压和高压。

交流电通常应用于定影机构,直流电压常见的 有 +24 V、±5 V 等 ,主要为各集成电路、检测电路及 扫描电机等部件提供电源。高压则主要在成像系统 中应用。与针式打印机中的电源电路相似 ,220 V 的 交流电通过整流、滤波以及变压等处理,输出符合 打印机需要的多路规格电压。

(3)控制电路

与其他类型打印机相似,控制电路主要由微处 理器、只读存储器、随机存储器、定时控制电路、直 流控制电路及 1 / 0 控制电路等部分构成。作为打 印机的核心电路,控制电路负责接口电路与主机 间的信息交换控制任务、接收交互面板发送的控 制信息以及由直流控制电路控制的定影、驱动等 操作。

(4)驱动电路

驱动电路主要包括:扫描驱动电路、主电机驱动电 路和纸驱动电路。扫描驱动电路是将接收的打印信息 经高频振荡器以产生激光束,并通过控制扫描电机的 旋转带动扫描镜工作,从而完成对感光鼓的扫描曝光

主电机驱动电路则主要负责驱动主电机旋转 配 (C)10分热敏电阻传感器 cademic Journal Electronic Pu向各传动齿轮的工作来实现打印运动ed.而纸驱动电路w.cnki.net 则主要用于驱动打印纸。 (完)