LANGUAGE MODEL BEATS DIFFUSION — TOKENIZER IS KEY TO VISUAL GENERATION

アブスト

- 。 MAGVIT-v2と呼ばれる動画、画像両方に対する一般的なトークンの辞書を用いた動画のTokenizerを提案
- 。 このTokenizerによって、LMが拡散モデルに対してImageNetやKineticsなどの 画像や動画生成のタスクに対して凌駕することを確認
- 。 その他にもVVCに匹敵する動画圧縮性能、行動認識タスクのための良い表現が 獲得できていることを確認した

イントロ

- 。 LLMは動画や画像を生成することができる
 - 画像のピクセルはvisual tokenizerによって離散トークンに圧縮される
 - その後、Transformerに入力され、言語のように扱われ、生成タスクとして処理される
 - 拡散モデルには生成タスクにおいて劣っていた
 - ImageNetにおける画像生成タスクでは、LLM系のSOTAモデルは SOTAの拡散モデルに比べて50%近くの性能しか出ていない
 - 本研究では、visual tokenizerが良い表現が獲得できていないことを理由としてあげている
 - 。 提案手法によって、同じデータ数、モデルサイズ、計算資源の条件下で、ImageNetにおける生成タスクでLMが拡散モデルを凌駕することを確認
- 動画と画像を離散トークンに圧縮するMAGVIT-v2を提案
 - VQVAEを使用しているMAGVITを改良

- lookup-free quantization method
 - 。 辞書において多くの単語を学習することができる
- tokenizerを修正することで、同じ辞書で画像と動画両方のトークンを 処理することができる
- 入力:動画(T=1だと画像)

$$\mathbf{V} \in \{\mathbb{R}^{T imes H imes W imes 3}\}$$

■ 離散トークン

$$\mathbf{X} = f(\mathbf{V}) \in \{1, 2, \cdots, K\}^{T' imes H' imes W'}$$

- Kはvisual tokenizerのcodebook(vocabulary) size
- Xはラスター走査によって1次元になり、Transformerに入力される

- LM for visual generation
 - the autoregressive LM
 - 前のトークンから次のトークンを予測する
 - the masked LM
 - 一部のトークンをマスクして、マスクしていないトークンから予測する
- Denoising Diffusion Model
 - 連続なトークン
- VQVAE

- CNN encoder + vector-quantization + CNN decoder
- 入力

$$\mathbf{V} \in \mathbb{R}^{T imes H imes W imes 3}$$

■ Encoderの出力

$$\mathbf{Z} = E(\mathbf{V}) \in \mathbb{R}^{T' imes H' imes W' imes d}$$

一つの埋め込みベクトルzはvector quantizer qにパスされて、辞書Cの中で一番距離が近いcに埋め込みされる

$$\mathbf{z} \in \mathbb{R}^d,\, \mathbf{c} \in \mathbb{R},\, \mathbf{C} \in \mathbb{R}^{K imes d}$$

$$q(z) = \mathbf{c}_i, ext{ where } i = \mathop{argmin}\limits_{j \in \{1, 2, \cdots, K\}} ||\mathbf{z} - \mathbf{c}_j||_2$$

- メソッド
 - Lookup-free quantizer (LFQ)
 - LMの生成精度はvisual tokenizerの再構成精度と比例しない
 - 辞書の埋め込み数(vocabulary)を増やすと再構成精度は向上する

• 一つの改善方法は、vocabularyを増やした際に辞書の埋め込み次元d を減らす

- LFQ
 - d=0にする

$\mathbf{C} \in \mathbb{R}^{K imes d}$ を整数集合の \mathbb{C} 、 $|\mathbb{C}| = K$ とする

- 。 これによって、上の図のようにvocabulary sizeを増やしても生成 精度も良くなる
- Visual Tokenizer Model Improvement
 - Joint image-video tokenization
 - MAGVITでは、3D CNNを使用しているため画像のtokenizeができなかった
 - Causal 3D CNNに変更

Causal Convolution

Introduced by Oord et al. in WaveNet: A Generative Model for Raw Audio

Causal convolutions are a type of convolution used for temporal data which ensures the model cannot violate the ordering in which we model the data: the prediction $p(x_{t+1}|x_1,\dots,x_t)$ emitted by the model at timestep t cannot depend on any of the future timesteps $x_{t+1},x_{t+2},\dots,x_T$. For images, the equivalent of a causal convolution is a masked convolution which can be implemented by constructing a mask tensor and doing an element-wise multiplication of this mask with the convolution kernel before applying it. For 1-D data such as audio one can more easily implement this by shifting the output of a normal convolution by a few timesteps.

Source: 🗅 WaveNet: A Generative Model for Raw Audio

(a) Causal architectures on UCF-101. FID is calculated on the first frame.

	#Params	FID↓	FVD↓
MAGVIT	39M	n/a	107.15
C-ViViT	90M	28.02	437.54
C-ViViT + MAGVIT	67M	13.52	316.70
MAGVIT-v2: Causal 3D CNN	58M	7.06	96.33

実験

- 。 データセット
 - 動画生成
 - Kinetics-600, UCF-101
 - 画像生成
 - ImageNet
 - Video Compression
 - MCL-JCV
 - Video Understanding
 - Kinetics-400, SSv2
- 。 動画/画像生成
 - MAGVITで使用されているMasked Language Modelを使用
 - 動画生成
 - UCF-101
 - 。 クラスを条件付けた生成
 - K600

。 5フレーム条件付けた動画予測

Table 1: **Video generation results**: frame prediction on Kinetics-600 and class-conditional generation on UCF-101. We adopt the evaluation protocol of MAGVIT.

Type	Method	K600 FVD↓	UCF FVD↓	#Params	#Steps
GAN	TrIVD-GAN-FP (Luc et al., 2020)	25.7 ± 0.7			1
Diffusion	Video Diffusion (Ho et al., 2022c)	16.2 ± 0.3		1.1B	256
Diffusion	RIN (Jabri et al., 2023)	10.8		411M	1000
\overline{AR} - \overline{LM} + \overline{VQ}	TATS (Ge et al., 2022)		$\bar{332}\pm 18$	$\overline{321M}$	1024
MLM + VQ	Phenaki (Villegas et al., 2022)	36.4 ± 0.2		227M	48
MLM + VQ	MAGVIT (Yu et al., 2023a)	9.9 ± 0.3	76 ± 2	306M	12
$\overline{\text{MLM} + \text{LFQ}}$	non-causal baseline	11.6±0.6		307M	12
MLM + LFQ	MAGVIT-v2 (this paper)	5.2 ± 0.2 4.3 ± 0.1	58 ±3	307M	12 24

■ 画像生成

ImageNet

Table 2: **Image generation results**: class-conditional generation on ImageNet 512×512 . Guidance indicates the classifier-free diffusion guidance (Ho & Salimans, 2021). * indicates usage of extra training data. We adopt the evaluation protocol and implementation of ADM.

Туре	Method	w/o g FID↓	guidance IS↑	w/ gı FID↓	uidance IS↑	#Params	#Steps
GAN	StyleGAN-XL (Sauer et al., 2022)			2.41	267.8	168M	1
Diff. + VAE*	DiT-XL/2 (Peebles & Xie, 2022)	12.03	105.3	3.04	240.8	675M	250
Diffusion	ADM+Upsample (Dhariwal & Nichol, 2021)	9.96	121.8	3.85	221.7	731M	2000
Diffusion	RIN (Jabri et al., 2023)	3.95	216.0			320M	1000
Diffusion	simple diffusion (Hoogeboom et al., 2023)	3.54	205.3	3.02	248.7	2B	512
Diffusion	VDM++ (Kingma & Gao, 2023)	2.99	232.2	2.65	278.1	2B	512
$\overline{MLM} + \overline{VQ}$	MaskGIT (Chang et al., 2022)	7.32	156.0			227M	12
MLM + VQ	DPC+Upsample (Lezama et al., 2023)	3.62	249.4			619M	72
MLM + LFQ	MAGVIT-v2 (this paper)	4.61 3.07	192.4 213.1	1.91	324.3	307M	12 64

Video Compression

- MCL-JCV
 - o 640×360
 - Elo score
 - 人の主観評価

Figure 6: Video compression rater study.

• LPIPS, PSNR, MS-SSIM

Figure 9: Video compression metrics, supplementary to Tab. 3.

- Video Understanding
 - 行動認識のために動画の表現を獲得できているか評価
 - 設定
 - using tokens as prediction targets for the transformer's output
 - using tokens as the input to the transformer

Table 4: **Video action recognition performance** (classification accuracy ↑ ×100).

Token as transformer's: Tokenizer	Output SSv2	SSv2	Input K400	K600
3D VQ-VAE MAGVIT (Yu et al., 2023a) MAGVIT-v2 (this paper)	64.13 67.22 67.38	57.34	44.44 72.29 75.34	74.65
Raw pixel HoG descriptor (Wei et al., 2022)	64.83 65.86	63.08 n/a		