总复习

赵银亮 2025 ¹论域{¹¹中心概念{符号,字母表,符号串,语言,问题},¹²图灵机模型{状态,当前状态,输入串,当前输入符号,状态转换规则,初始状态,接受状态,UTM},¹³Chomsky体系{形式文法,形式语言},¹⁴编译过程{词法分析,语法分析,语义分析,代码优化,代码生成,编译遍},¹⁵编译程序{源语言,中间语言,机器语言,源程序,中间表示,可执行程序,前端,后端},¹⁶主文法,¹⁷主符号系统{Lisp表,属性表,符号表,实用函数,命名惯例}},

²正则语言{²¹识别器{DFA^[12]{Q, Σ, v, q_0 , F, 完全形,最简形,简化型,最小形},NFA^[211]{ v_N , ε转移,ω,ε闭集,活动状态集,ε-NFA,g-NFA},RE^[11]{语言表达式,原子语言,语言运算,语言模式}},²²判定性质{ \tilde{v} [^{211-2]},模式匹配[^{213]},PATH[],线索穷举树},²³等价性质[^{21]}{子集法[^{21]},填表法[^{211]},划分法[^{211]},去除ε转移[^{212]},去除无用状态[^{21]},消除中间状态[^{2127,213]},构建中间状态[^{2127,213]}},²⁴封闭性,²⁵泵引理},

 3 CFL $\{^{31}$ 识别器 $\{$ CFG $[^{13]}\{$ 变元,终结符,初始符号,产生式,候选式,子文法 $\}$,PDA $[^{212]}\{\Gamma, Z_0, \delta, N, P, D\}\}$, 32 判定性质 $\{^{11}\}\{$ 句型,句子,直接推导,最左推导,最右推导,确定性 $\}$,归约 $[^{311}\}\{$ 直接归约,可归约串,确定性 $\}$,语法树 $[^{311}\}\{$ 产物,短语,直接短语,句柄 $\}$,移动 $[^{312}\}\{$ 瞬时描述,性质,确定性 $\}\}$, 33 等价性质 $[^{31}]\{$ 文法修剪 $[^{311}]\{a,g,\bar{e},\bar{u},\bar{a},\bar{r},\bar{e}\}$,P2N $[^{312,324]}$,N2P $[^{312,324]}$, U N2C, U C2N $\{^{31}\}\{$ 之火性 $\{$ 定义,来源 $\{$ 优先级,结合性,悬空else $\}$,固有歧义性 $\}\}$, 41 问法记号 $\{$ 一符一种,全体一种 $\}$, $^{42}\sigma$ -DFA $[^{21}]\{$ $\{$ L, ψ ,事实优先级, \mathbb{L} ,前缀最大化 $\}$,

U85目标代码{指令系统, 92C指令模板, U库{堆区管理, 预定义函数}}, U优化{寄存器分配, 代码优化, 873栈帧优化{显示表

,参数传递优化}}, R 离散数学, R 数据结构, R 程序设计 C , R 汇编语言 R 11编码言 R 2基础专业知识。

关于主文法

- \triangleright P \rightarrow Ď Š
- $\triangleright \check{D} \rightarrow \varepsilon \mid \check{D} D$;
- $D \to T d \mid T d[\check{I}] \mid T d(\check{A})\{\check{D} \check{S}\}$
- $ightharpoonup T \rightarrow int | float | void$
- \Rightarrow $\check{I} \rightarrow i \mid \check{I}$, i
- \Rightarrow Å \rightarrow ϵ | Å A;
- \rightarrow A \rightarrow T d | T d[] + T d[\check{I}] + T d(\check{T}) | T d()
- ▶ 对形参更改:有数组原型和函数原型,无形参数组和函数签名。

关于主文法(续)

- \triangleright Š \rightarrow S | Š; S
- $Arr S
 ightharpoonup d = E \mid d[\check{E}] = E \mid if (B) S \mid if (B) S else S \mid while (B) S \mid return E \mid {\check{S}} \mid d(\check{R})$
- \triangleright E \rightarrow i | f | d | d[Ě] | E o E | u E | (E) | d(Ř)
- \triangleright $\check{E} \rightarrow E \mid \check{E}, E$
- \triangleright B \rightarrow B \land B | B \lor B | ! B | (B) | E r E | E
- $\triangleright \check{R} \rightarrow \varepsilon | \check{R} R$,
- $ightharpoonup R
 ightharpoonup E \mid d[] \mid d()$
- ▶ 对算术运算符即有全集一种即o也有一符一种即+-*/, 对关系运算符类似。
- ▶ 对布尔运算也有&&和||

NFA转DFA

- 已知NFA如图所示,试完成以下3个小题。
 - (1) 写出与该NFA等价的正则表达式;
 - (2) 将该NFA等价地转换为DFA;
 - (3) 判断所得DFA是否为最小,给出理由。

将DFA转为RE

a(d+ud*c)*e +b(d+cd*u)*e +a(d+ud*c)*ud*g +b(d+cd*u)*cd*e

填表法/划分法 反证如状态4和5 等价即得结论

σ -DFA(\mathcal{L})、 \mathbb{L} 、 ψ

- (1) 消除文法歧义性
- (2)消除文法的无用符号S→AB|ε A→BC|a C→b
- ▶ 消去无产出变元得 S→ε A→a C→b
- ▶ 消去不可达变元得最终结果 S→ε
 - (3) 消除文法的ε-产生式 $S \rightarrow AD|b$ $A \rightarrow aA|ε$ $D \rightarrow b|ε$
- ▶ 最终结果是 S→AD|D|A|b A→aA|a D→b
- ▶ 另解: 把D代入S中得 S→Ab|A|b A→aA|a
- ▶ 另解:继续代入,把A代入S中得 S→aAb|aA|b A→aA|a
 - (4) 消除文法的单位产生式 $E \rightarrow T | iT T \rightarrow F | Ti F \rightarrow i | (E)$
- 结果是 E→i|(E)|Ti|iT T→i|(E)|Ti F→i|(E)
- ▶ 注: 同一变元得候选式次序随意写; F产生式也可省略;

- (5) 消除文法的左递归产生式 Ă→A|ĂA; A→Td|Td[Ĭ] Ĭ→i|Ĭ,i
- 最终结果是 Ă→A | A;Ă A→Td|Td[Ĭ] Ĭ→i|i,Ĭ
- ▶ 另一结果 Ă→AĂ' Ă'→;AĂ'| ε A→Td|Td[Ĭ] Ĭ→iĬ' Ĭ'→,Ĭ'|ε
- ▶ 另一结果 Ă→A|AĂ' Ă'→;AĂ' 。。。
- ▶ 注: Ă和Ĭ的产生式都有左递归, 都要消除;
 - (6) 消除文法的可回溯性
- ▶ 引入变元提取公共前缀

(7) 修剪为LL(1)文法

- ▶ 确定修剪方案包括划分为多个子文法
- ▶ 对各子文法进行必要修剪
- ▶ 合并各子文法修剪结果并去除无用符号
- ▶ 判断所得结果是否满足LL(1)文法的条件

计算首符集和FOLLW集

- ▶ 给定文法,写出每个变元的首符集和FOLLOW集 (注意明确计算方法,计算过程不要有遗漏)
- ▶ 检查该文法是不是满足LL(1)文法的条件
 - 同一变元的各个候选式的首符集两两不相交
 - 每个变元的首符集和FOLLOW集不相交(注意前提是首符集包含ε)
 - 注意: 应该说明检查了什么, 而不是简单地是或否。

预测分析表

- ▶ CFG (V, T, P, S)是LL(1)文法,它的预测分析表M满足,对于任意(A, γ)∈P,
 - (1) 如果a∈FIRST(γ)那么M[A, a]=(A, γ)且
 - (2) 如果 $\epsilon \in FIRST(\gamma)$ 且 $a \in FOLLOW(A)$ 那么 $M[A, a] = (A, \gamma)$

CFG判定性质

- ▶ 语法树
- ▶ 推导
- ▶ 最左推导
- ▶最右推导
- ▶ 规范归约
- ▶ 相关概念术语:产物、根、内节点、双亲结点、孩子结点、 子树、句型、句子、短语、直接短语、句柄
- ▶ 语法树与文法对应关系
- ▶ 文法歧义性

PDA

- ▶ 瞬时描述ID(<状态>,<剩余串>,<栈内容>)
- ▶ 移动: 0到多步直接移动,其中直接移动 定义为, ID $(q, ax, X\alpha)$ \vdash ID $(p, x, \gamma\alpha)$ 当且仅当 (p, γ) \in $\delta(q, a, X)$
- ▶ 判定性质: $ID(q_0, w, Z_0) \vdash_P ID(q_f, \varepsilon, \eta)$ 或 $ID(q_0, w, Z_0) \vdash_N ID(q_f, \varepsilon, \varepsilon)$
- 例, $(q_0,000111,Z_0)$ ト $(q_0,00111,XZ_0)$ ト $(q_0,0111,XXZ_0)$ ト $(q_0,111,XXXZ_0)$ ト $(q,11,XXZ_0)$ ト $(q,11,XXZ_0)$ ト $(q,11,XZ_0)$ ト(q,1,1,1)
- ▶ 其他移动线索

 $\delta(q_0, 0, Z_0) = \{(q_0, XZ_0)\}$ $\delta(q_0, 0, X) = \{(q_0, XX)\}$ $\delta(q_0, 1, X) = \{(q, \varepsilon)\}$ $\delta(q, 1, X) = \{(q, \varepsilon)\}$ $\delta(q, \varepsilon, Z_0) = \{(q_f, Z_0)\}$

是否为DPDA?例7.3的图7-5不是DPDA

$$\forall q \in Q, a \in \Sigma, X \in \Gamma \cdot (|\delta(q, a, X)| + |\delta(q, a, \varepsilon)| + |\delta(q, \varepsilon, X)| = 1$$
$$\land \delta(q, \varepsilon, \varepsilon) = \emptyset)$$

$$\forall q \in Q \cdot (|\delta(q, \varepsilon, \varepsilon)| = 1 \rightarrow (\forall a \in \Sigma, X \in \Gamma \cdot \delta(q, a, X) = \delta(q, \varepsilon, X) = \delta(q, a, \varepsilon) = \emptyset))$$

$$\delta(q_0, 0, \varepsilon) = \{q_0, 0\}$$
 $\delta(q_0, 1, \varepsilon) = \{q_0, 1\}$
 $\delta(q_0, \varepsilon, \varepsilon) = \{q_1, \varepsilon\}$
 $\delta(q_1, 0, 0) = \{q_1, \varepsilon\}$
 $\delta(q_1, 1, 1) = \{q_1, \varepsilon\}$
 $\delta(q_1, \varepsilon, Z_0) = \{q_2, Z_0\}$

- ▶ 规范归约模拟器
- ▶ 给定文法构建itemDFA(也称识别活前缀DFA): 初始状态为ω[S'→.S]; 转移函数为υ(q, X)=p,如果 p=ωU[A→ρ.Xη]∈q•[A→ρX.η] ω含义为: ω[A→ρ.Nη]={[A→ρ.Nη]}Uω{[N→.γ]|(N,γ)∈P}, 其中ρ和η为任意文法符号串。 注意不关心是否标注接受状态,即含有完全项目的状态。
- ► 概念术语:右句型、句柄、活前缀、有效项目、增广文法 文法项目、初始项目、完全项目、移进项目
- ▶ SLR(1)文法,默认冲突消解规则、额外冲突消解规则。
- ▶ SLR(1)分析表。

写出itemDFA

- ①构建itemNFA并转itemDFA;
- ②直接写出itemDFA;
- ▷ 初始状态为ω[S'→.S]; 转移函数 为υ(q, X)=p, 如果 p=ω{[A→ρX.η] | [A→ρ.Xη]∈q}
- $\qquad \omega[A \rightarrow \rho.N\eta] = \{ [A \rightarrow \rho.N\eta] \} \cup \omega\{ [X \rightarrow .\gamma] | (N,\gamma) \in P \}$

CFG G: $X \rightarrow (X) X \rightarrow ()$

或G增广文法: S'→X X→(X) X→()

状态1移进归约冲突

消解规则; tok为

冲突消解

- \triangleright FOLLOW(S)={#,),(,e} FIRST(S)={(, e}
- ▶ tok为(则移进,为#或)则用ε候选式进行归约

语义分析与中间代码生成

- ▶ 例对于下列程序试完成:
 - (1) 写出该程序的符号表
- (2) 当foo(3)活动结束但还未结束之时刻的栈快照,假定按字编址,且栈底单元地址为500,并假设a数组在执行之前已初始化。

```
int x;

int a[2, 3]; //a[i,j]=j-i

int foo(int x;){x=x+a[0,2]; return x};

int g(int r(); int y; int b[];){

    if(y<=x \( b[3] \))y=g(r(), r(x,), b[],) else y=r(y,);

    return y};

x=1;

g(foo(), x, a[],)
```


写出符号表

```
@table:(outer:NIL width:52 argc:0 arglist:NIL rtype:INT level:0 code:[t10=1; x=t10; PAR a; PAR x; PAR foo; t11=CALL g, 3] entry:(name:x type:INT offset:4) entry:(name:a type:ARRAY base:28 etype:INT dims:2 dim[0]:2 dim[1]:3) entry:(name:foo type:FUNC offset:36 mytab:foo@table) entry:(name:g type:FUNC offset:44 mytab: g@table) entry:(name:t10 type:TEMP offset:48) entry:(name:t11 type:TEMP offset:52))
```

foo@table:(outer:@table width:28 argc:1 arglist:(x) rtype:INT level:1 code:[t1=0; t2=t1*3; t3=t2+2; t4=t3*4; t5=a[t4] t6=x+t5; x=t6; RETURN x] entry:(name:x type:INT offset:4) entry:(name:t1 type:TEMP offset:8) ... entry:(name:t6 type:TEMP offset:28))

g@table:(outer:@table width:28 argc:3 arglist:(r y b) rtype:INT level:1) code:[IF y<=x THEN l1 ELSE l2; LABEL l1; t7=3; t8=b[t7]; IF t8!=0 THEN l3 ELSE l4; LABEL l3; PAR x; t9=CALL r,1; PAR b; PAR t9; PAR r; y=CALL g, 3; GOTO l5; LABEL l4; LABEL l2; PAR y; y=CALL r,1; RETURN y; LABEL l5;] entry:(name:r type:FUNPTT offset:8 rtype:INT) entry:(name:y type:INT offset:12) entry:(name:b type:ARRPTT offset: 16 etype:INT) entry:(name:t7 type:TEMP offset:20) ... entry:(name:t9 type:TEMP offset:28))

当foo(3)活动结束但还未结束之时刻的栈快照

```
500 < 访问链> NIL
499 <控制链>NIL
498 <返址>
497 \times 1
496 a[1,2] 1
495 a[1,1] 0
494 a[1,0] -1
493 a[0,2] 2
492 a[0,1] 1
491 a[0,0] 0
490 foo[1] 499
489 foo[0] foo@label
488 g[1]_
487 g[0] g@label
486 t10 1
485 t11
```

```
484 <参数3>491
483 <参数2>1
482 <参数1>477
481 <访问链>499
480 <控制链>499
479 <返址>
478 r[1] 499
477 r[0] r@label
476 y 1/5
475 a 491
474 t7 3
473 t8 -1
472 t9 3/5
```

当foo(3)活动结束但还未结束之时刻的栈快照

471 <参数3>491

470 <参数2>3

469 <参数1>464

468 <访问链>499

467 <控制链>480

466 <返址>

465 r[1] 499

464 r[0] r@label

463 y 3/5

462 a 491

461 t7

460 t8_

459 t9_

458 <参数1>3

457 <访问链>499

456 <控制链>467

455 <返址>

454 x 3/5

453 t1 0

452 t2 0

451 t3 2

450 t48

449 t5 2

448 t6 5

r[0]:foo@label y:1/5 a:&b t7:3 t8:-1 t9:3/5)
foo(1)@frame:(arg1:1 alink:@frame clink:g(foo,1,a)@frame raddr x:1 t1:0 t2:0 t3:2 t4:8

g(foo,3,a)@frame:(arg3: $\frac{1}{2}$ b arg2:3 arg1: $\frac{1}{2}$ r alink:@frame clink:g(foo,1,a)@frame raddr r[1]:@frame r[0]:foo@label y:3/5 a: $\frac{1}{2}$ b t7:_ t8:_ t9:_)

t5:2 t6:3)

foo(3)@frame:(arg1:3 alink:@frame clink:g(foo,1,a)@frame raddr x:1/5 t1:0 t2:0 t3:2 t4:8 t5:2 t6:5)
foo@code:[t1=0; t2=t1*3; t3=t2+2; t4=t3*4 t5=a[t4] t6=x+t5; x=t6; RETURN x]

g@code:[IF y<=x THEN l1 ELSE l2; LABEL l1; t7=3; t8=b[t7]; IF t8!=0 THEN l3 ELSE l4; LABEL l3; PAR x; t9=CALL r,1; PAR b; PAR t9; PAR r; y=CALL g, 3; GOTO l5; LABEL l4; LABEL l2; PAR y; y=CALL r,1; RETURN y; LABEL l5]

支线机

可执行代码构建

- ▶ callseq: 列出各项功能
- retseq: ...
- prologue: ...
- ▶ epilogue: ...
- ▶ name reference:局部名、非局部名、函数原型foo、数组元素 a[t]

▶ 答疑:线上即时答疑;线下临近安排届时通知

预视大家考试取得好成绩!