GD5102 Techniques for Data Analysis

Assignment 01: Correlation & Regression

Report submission date: <u>09-Sep-2020</u>

Data, Material & Instruction

O Data: File Project.dat consists of the following variables: Lat (deg), Lon (deg), Gradient of Sea Surface Height Δ SSH (m), Gradient of Geoid Undulation Δ UND (m), Gradient of Dynamic Topography Δ DOT(m)

o Material: PPT slides, some e-books

Submission: Before 09-Sep-2020, 00:00:00

To : <u>course.dudy@gmail.com</u>

Subject: GD5102-TAD

File : NIM_A01_FirstName_LastName.pdf (insert your matlab-script to the report)

Tasks A

- 1. Use the autocorrelation functions [auto_correlation.m]. Plot at the same frame the spatial autocorrelation functions of variables Δ SSH, Δ UND and Δ DOT. Analyze (as much as you can) the autocorrelation pattern of each variable & possible relation among the variables. Can you guess which variable is dominated by long wavelength and which is by random pattern?
- 2. Use the cross-correlation functions [cross_correlation.m]. Plot at the same frame the spatial cross-correlation functions between Δ SSH- Δ UND and Δ SSH- Δ DOT variables. Analyze (as much as you can) the cross-correlation pattern of each pair. Can you guess which pair is highly correlated and which is not?
- 3. Create Matlab scripts to generate scatter plots between Δ SSH- Δ UND and Δ SSH- Δ DOT. Do the regression analysis to quantify the correlation level and bias of each pair. Interpret your results.

Tasks B

- 1. Select your own data set and repeat the task A. How well can you understand the behavior of your data? [The selected data set should be very close to your thesis work].
- 2. Discuss general applications of correlation and regression in geoscience data analysis. How could they possibly be helpful in accomplishing your thesis work?