

Лекция 3. Деревья

Алгоритмы и структуры данных

Любимов Яков

План лекции «Деревья»

- 1. Определения, примеры деревьев
- 2. Представление в памяти
- 3. Обходы дерева в глубину, в ширину
- 4. Двоичные деревья поиска
- 5. Декартовы деревья
- б. АВЛ-деревья
- 7. Красно-черные деревья
- 8. Использование деревьев

Определения деревьев

Определение 1. Дерево (свободное) — непустая коллекция вершин и ребер, удовлетворяющих определяющему свойству дерева.

Вершина (узел) – простой объект, который может содержать некоторую информацию.

Ребро – связь между двумя вершинами.

Путь в дереве — список отдельных вершин, в котором следующие друг за другом вершины соединяются ребрами дерева.

Определяющее свойство дерева — существование только одного пути, соединяющего любые два узла.

Определение 2 (равносильно первому). Дерево (свободное) — неориентированный связный граф без циклов.

Определения деревьев

Определение 3. Дерево с корнем —

дерево, в котором один узел выделен и назначен «корнем» дерева.

Существует только один путь между корнем и каждым из других узлов дерева.

Определение 4. Высота (глубина) дерева с корнем — количество вершин в самом длинном пути от корня.

Обычно дерево с корнем рисуют с корнем, расположенным сверху. Узел у располагается под узлом х (а х располагается над у), если х располагается на пути от у к корню.

Определения деревьев

Определение 5. Каждый узел (за исключением корня) имеет только один узел, расположенный над ним. Такой узел называется **родительским.**

Узлы, расположенные непосредственно под данным узлом, называются его дочерними узлами.

Узлы, не имеющие дочерних узлов называются листьями.

Примеры деревьев

Генеалогическое дерево

Примеры деревьев

Файловая система

Примеры деревьев

Орг. структура компании

Синтаксический или семантический разбор предложения.

Число вершин и ребер

Утверждение 1.

Любое дерево (с корнем) содержит листовую вершину.

Доказательство.

Самая глубокая вершина является листовой.

Утверждение 2.

Дерево, состоящее из N вершин, содержит N-1 ребро.

Доказательство.

По индукции.

База индукции. N = 1. Одна вершина, ноль ребер. Шаг индукции. Пусть дерево состоит из N + 1 вершины. Найдем листовую вершину. Эта вершина содержит ровно 1 ребро. Дерево без этой вершины содержит N вершин, а по предположению индукции N – 1 ребро. Следовательно, исходное дерево содержит N ребер, Ч.Т.Д.

Виды деревьев

Определение ба.

Двоичное (бинарное) дерево — это дерево, в котором степени вершин не превосходят 3.

Определение 6б.

Двоичное (бинарное) дерево с корнем— это дерево, в котором каждая вершина имеет не более двух дочерних вершин.

Виды деревьев

Определение 7а.

N-арное дерево — это дерево, в котором степени вершин не превосходят N+1.

Определение 76.

N-арное дерево с корнем — это дерево, в котором каждая вершина имеет не более N дочерних вершин.

Структуры данных

Определение 8. СД «Двоичное дерево» — представление двоичного дерева с корнем. Узел — структура, содержащая данные и указатели на левый и правый дочерний узел. Также может содержать указатель на родительский узел.


```
// Узел двоичного дерева
с данными типа int.
struct CBinaryNode {
   int Data;
   CBinaryNode* Left;
   CBinaryNode* Right;
   CBinaryNode* Parent;
};
```

Структуры данных

Определение 9. СД «N-арное дерево» — представление N-арного дерева с корнем. Узел — структура, содержащая данные, указатель на следующий родственный узел и указатель на первый дочерний узел. Также может содержать указатель на родительский узел.


```
// Узел дерева с
произвольным ветвлением
struct CTreeNode {
   int Data;
   CTreeNode * Next;
   CTreeNode * First;
   CTreeNode * Parent;
};
```

Обход дерева в глубину

Определение 10.

Пошаговый перебор элементов дерева по связям между узлами-предками и узлами-потомками называется обходом дерева.

Определение 11.

Обходом двоичного дерева в глубину (DFS) называется процедура, выполняющая в некотором заданном порядке следующие действия с поддеревом:

- * просмотр (обработка) узла-корня поддерева,
- * рекурсивный обход левого поддерева,
- * рекурсивный обход правого поддерева.

DFS – Depth First Search.

Обход дерева в глубину

- Прямой обход (сверху вниз, pre-order). Вначале обрабатывается узел, затем посещается левое и правые поддеревья.
 Порядок обработки узлов дерева на рисунке: E, D, B, A, C, H, F, G.
- Обратный обход (снизу вверх, post-order). Вначале посещаются левое и правое поддеревья, а затем обрабатывается узел. Порядок обработки узлов дерева на рисунке: A, C, B, D, G, F, H, E.
- Поперечный обход (слева направо, in-order).
 Вначале посещается левое поддерево, затем узел и правое поддерево.
 Порядок обработки узлов дерева на рисунке: A, B, C, D, E, F, G, H.

Обход дерева в глубину

Задача. Вычислить количество вершин в дереве.

<u>Решение.</u> Обойти дерево в глубину в обратном порядке. После обработки левого и правого поддеревьев вычисляется число вершин в текущем поддереве.

Реализация:

```
// Возвращает количество элементов в поддереве.
int Count( CBinaryNode* node )
{
   if( !node )
      return 0;
   return Count( node->Left ) + Count( node->Right ) + 1;
};
```

Обход дерева в ширину

Определение 12.

Обход двоичного дерева в ширину (BFS) — обход вершин дерева по уровням (слоям), начиная от корня. BFS – Breadth First Search.

Используется очередь, в которой хранятся вершины, требующие просмотра. За одну итерацию алгоритма:

Порядок обработки узлов дерева на рис.: E, D, H, B, F, A, C, G.

^{*} если очередь не пуста, извлекается вершина из очереди,

^{*} посещается (обрабатывается) извлеченная вершина,

^{*} в очередь помещаются все дочерние.

Обход дерева в ширину

Двоичные деревья поиска

Определение 13. Двоичное дерево поиска (binary search tree, BST) — это двоичное дерево, с каждым узлом которого связан ключ, и выполняется следующее дополнительное условие:

 Ключ в любом узле X больше или равен ключам во всех узлах левого поддерева X и меньше или равен ключам во всех узлах правого поддерева X.

Операции:

- 1. Поиск по ключу (Find)
- 2. Поиск минимума, максимума
- 3. Вставка/Удаление
- 4. Обход в порядке возрастания/убывания

Алгоритмы

Поиск по ключу.

<u>Дано:</u> указатель на корень дерева X и ключ K.

Задача: проверить, есть ли узел с ключом К в дереве, и если да, то вернуть указатель на этот узел.

Алгоритм: Если дерево пусто, сообщить, что узел не найден, и остановиться.

Иначе сравнить К со значением ключа корневого узла Х.

- Если K == X, выдать ссылку на этот узел и остановиться.
- Если К > X, рекурсивно искать ключ К в правом поддереве X.
- Если K < X, рекурсивно искать ключ K в левом поддереве X.

Время работы: O(h), где h – глубина дерева.

Поиск минимального ключа.

Дано: указатель на корень непустого дерева Х.

Задача: найти узел с минимальным значением ключа.

<u>Алгоритм</u>: Переходить в левый дочерний узел, пока такой существует.

Время работы: O(h), где h – глубина дерева.

Добавление узла.

Делается аналогично поиску. С той лишь разницей, что спуск идет до конца. При нахождении свободного места, происходит вставка

Алгоримы. Двоичные дервья поиска

Удаление узла.

<u>Дано:</u> указатель на корень дерева X и ключ K.

Задача: удалить из дерева узел с ключом К (если такой есть).

Алгоритм: Если дерево пусто, остановиться.

Балансировка

Все перечисленные операции с деревом поиска выполняются за O(h), где h-глубина дерева.

Глубина дерева может достигать п.

Необходима балансировка.

Типы балансировок:

Самобалансирующиеся деревья.

Случайная балансировка:

Декартовы деревья.

Гарантированная балансировка:

- АВЛ-деревья,
- Красно-черные деревья.

«Амортизированная» балансировка:

• Сплэй-деревья.

Декартово дерево – это структура данных, объединяющая в себе двоичное дерево поиска и двоичную кучу.

Декартово дерево — двоичное дерево, в узлах которого хранятся пары (x, y), где x— это ключ, а y— это приоритет. Все x и все y являются различными. Если некоторый элемент дерево содержит пару (K, P), то y всех элементов в левом поддереве x < K, а в правом x > K, приоритеты и в левом, и в правом поддереве меньше P(y < P)

Таким образом, декартово дерево является двоичным деревом поиска по \boldsymbol{x} , и кучей по \boldsymbol{y}

Основные операции:

- Split (по ключу К, на выходе 2 дерева (<=K, >K)
- Merge (позволяет слить 2 дерева в одно)


```
Split:
// Разрезание декартового дерева по ключу.
void Split(Node* node, int key,
           Node*& left, Node*& right)
  if(node) {
    left = right = nullptr;
  } else if(node->Key <= key) {</pre>
    Split(node->Right, key,
          node->Right, right);
    left = node;
  } else {
    Split(node->Left, key,
          left, node->Left);
    right = node;
```

```
Merge:
// Слияние двух декартовых деревьев.
Node* Merge(Node* left, Node* right)
  if(!left || !right)
    return left == 0 ? right : left;
  if(left->Priority > right->Priority) {
    left->Right = Merge(left->Right, right);
    return left;
 } else {
    right->Left = Merge(left, right->Left);
    return right;
```

Вставка

Добавляется элемент (х, у), где х – ключ, а у – приоритет.

Элемент (x, y) – это декартово дерево из одного элемента. Для того чтобы его добавить в наше декартово дерево Т, очевидно, нужно их слить. Но Т может содержать ключи как меньше, так и больше ключа x, поэтому сначала нужно разрезать Т по ключу x.

Реализация №1.

- I. Разобьём наше дерево по ключу x, который мы хотим добавить, на поддеревья T_1 и T_2 .
- 2. Сливаем первое дерево $T_{\mathbf{1}}$ с новым элементом.
- 3. Сливаем получившиеся дерево со вторым T_2 .

Вставка

Реализация №2.

- 1. Сначала спускаемся по дереву (как в обычном бинарном дереве поиска по х), но останавливаемся на первом элементе, в котором значение приоритета оказалось меньше у.
- 2. Теперь разрезаем поддерево найденного элемента на T_1 и T_2 .
- 3. Полученные T_1 и T_2 записываем в качестве левого и правого сына добавляемого элемента.
- 4. Полученное дерево ставим на место элемента, найденного в первом пункте.

В первой реализации два раза используется Merge, а во второй реализации слияние вообще не используется.

Удаление.

Удаляется элемент с ключом х.

<u>Реализация №1.</u>

- 1. Разобьём дерево по ключу х, который мы хотим удалить, на T_1 и T_2 .
- 2. Теперь отделяем от первого дерева T_1 элемент х, разбивая по ключу $x-\varepsilon$.
- 3. Сливаем измененное первое дерево T_1 со вторым T_2 .

Удаление.

Реализация №2.

- 1. Спускаемся по дереву (как в обычном двоичном дереве поиска по х), ища удаляемый элемент.
- 2. Найдя элемент, вызываем слияние его левого и правого сыновей.
- 3. Результат процедуры ставим на место удаляемого элемента.

В первой реализации два раза используется Split, а во второй реализации разрезание вообще не используется.

Определение. АВЛ-дерево — сбалансированное двоичное дерево поиска. Для каждой его вершины высоты её двух поддеревьев различаются не более чем на 1.

Изобретено Адельсон-Вельским Г.М. и Ландисом Е.М. в 1962г.

https://habrahabr.ru/post/150732/ - здесь все хорошо написано, кроме удаления.

Специальный балансирующие операции:

- Малое левое вращение
- Малое правое вращение
- Большое левое вращение
- Большое правое вращение

Теорема. Высота АВЛ-дерева $h = O(\log n)$.

<u>Идея доказательства.</u> В АВЛ-дереве высоты h не меньше F_h узлов, где F_h – число Фибоначчи. Из формулы Бине следует, что

$$n \ge F_h = \frac{\phi^h - (-\phi)^{-h}}{\phi - (-\phi)^{-1}} \ge C\phi^h,$$

где $\phi = (1 + \sqrt{5})/2$ – золотое сечение.

• Малое правое вращение

Используется, когда:

- h(T1) = h(T3) + 2
- $h(T2) \le h(T1)$.

После операции:

- а. высота дерева останется прежней, если h(C) = h(R),
- b. высота дерева уменьшится на 1, если h(C) < h(R).

Большое левое вращение

Используется, когда:

- h(T3) = h(T1) + 2
- h(T3) > h(T4)

После операции:

• высота дерева уменьшается на 1.

Вставка элемента

- Проходим по пути поиска, пока не убедимся, что ключа в дереве нет.
- 2. Включаем новую вершину как в стандартной операции вставки в дерево поиска.
- 3. "Отступаем" назад от добавленной вершины к корню. Проверяем в каждой вершине сбалансированность. Если разность высот поддеревьев равна 2 выполняем нужное вращение.

Время работы = $O(\log n)$.

Удаление элемента

- 1. Ищем вершину D, которую требуется удалить.
- 2. Проверяем, сколько поддеревьев в D:
 - Если D лист или D имеет одно поддерево, то удаляем D.
 - Если D имеет два поддерева, то ищем вершину M, следующую по значению после D. Как в стандартном алгоритме удаления из дерева поиска. Переносим значение из M в D. Удаляем M.
- 3. "Отступаем" назад от удаленной вершины к корню. Проверяем в каждой вершине сбалансированность. Если разность высот поддеревьев равна 2 выполняем нужное вращение.

Время работы = $O(\log n)$.

Красно-черные деревья

Красно-черное дерево — двоичное дерево поиска, в котором баланс осуществляется на основе "цвета" узла дерева, который принимает только два значения: "красный" и "чёрный".

Все листья дерева являются фиктивными и не содержат данных, но относятся к дереву и являются чёрными.

Для экономии памяти фиктивные листья делают одним общим фиктивным листом.

Изобретатель – Рудольф Байер (1972г).

Красно-черные деревья

Красно-черное дерево – двоичное дерево поиска, у которого каждому узлу сопоставлен дополнительный атрибут – цвет и для которого выполняются следующие свойства:

- Каждый узел промаркирован красным или чёрным цветом.
- Корень и конечные узлы (листья) дерева чёрные.
- У красного узла родительский узел чёрный.
- Все простые пути из любого узла х до листьев содержат одинаковое количество чёрных узлов.

Черная высота вершины х — число черных вершин на пути из х в лист, не учитывая саму вершину х.

Красно-черные деревья

Вставка

Вставляем вместо листа новый элемент красного цвета

- Если отец нового элемента **черный**, то ничего делать не надо.
- Если отец нового элемента **красный**, смотрим на «дядю»
 - «дядя» этого узла тоже красный. Тогда перекрашиваем «отца» и «дядю» в чёрный цвет, а «деда» в красный.
 - «дядя» **черный**. Просто выполнить перекрашивание отца в **черный** цвет нельзя, чтобы не нарушить постоянство чёрной высоты дерева по ветви с отцом. Нужны вращения
 - Предположим «дядя» правый сын нашего «дедушки «
 - Если добаленый узел был правым потомком «отца», то делаем большое правое вращение, иначе малое правое
 - Выполняем перекрашивание

Удаление

- При удалении красной вершины свойства дерева не нарушаются.
- Удаление **черной** вершины с потомком. Копируем данные из потомка. Удаляем его, он **красный**
- Удаление **черной** вершины без потомков. 5 различных случаев.

Сплей-дерево — это двоичное дерево поиска. Оно позволяет находить быстрее те данные, которые использовались недавно. Относится к разряду сливаемых деревьев. Сплей-дерево было придумано Робертом Тарьяном и Даниелем Слейтером в 1983 году

Эвристика:

Для того, чтобы доступ к недавно найденным данным был быстрее, надо, чтобы эти данные находились ближе к корню.

Zig

Текущий узел – сын корня. Делаем малый поворот.

ZigZig

Делается, если узел и родитель – оба правые или левые дети. Делаем два малых поворота.

ZigZag

Узел и предок разные дети своих родителей. Тоже два поворота.

Сплей-дерево. Операции

Вставка: вставляем элемент, как в обычном дерево поиска. После это вызываем **Splay** от вставленного элемента

Поиск: как в обычном дереве поиска. Найденному элементу делаем **Splay**. Возвращаем в ответе корень. Если элемент не найден, все равно делаем **Splay**, тому листу, до которого дошли.

Разделение (Split): Находим элемент, по которому нужно сделать разделение.Вызываем **Splay.** В левом поддереве будут все ключи меньшие, справа — большие.

Слияние (Merge): находим самый большой элемент в дереве, в котором ключи меньше. Делаем для него **Splay**. Очевидно, в результате получим дерево без правого поддерева, присоединяем к нему второе дерево

Удаление: делаем **Splay** от удаляемого элемента. Потом **Merge** его поддеревьев.

АТД «Ассоциативный массив»

Ассоциативный массив — абстрактный тип данных, позволяющий хранить пары вида «(ключ, значение)» и поддерживающий операции добавления пары, а также поиска и удаления пары по ключу.

- INSERT(ключ, значение).
- **FIND**(ключ). Возвращает значение, если есть пара с заданным ключом.
- **REMOVE**(ключ).

Обязательные три операции часто дополняются другими. Наиболее популярные расширения включают следующие операции:

- CLEAR удалить все записи.
- **EACH** «пробежаться» по всем хранимым парам
- **MIN** найти пару с минимальным значением ключа
- MAX найти пару с максимальным значением ключа

В последних двух случаях необходимо, чтобы на ключах была определена операция сравнения.

777

Спасибо за внимание.
Любимов Яков