MATH314 Advanced Discrete Mathematics

Dr. AbdulNaser Rashid

About this Course

- Give mathematical background you need for computer science.
- Topics: Number Theory and Cryptography, Induction and Recursion, Advanced Counting Techniques, Boolean Algebra, Modeling Computation.
- These will come up again and again and again in higher-level CS courses.

3 Textbook

- Textbook (optional): Discrete Mathematics and Its Applications by Kenneth Rosen.
- Textbook not a substitute for lectures:
 - Class presentation may not follow book
 - Skip many chapters and cover extra material

- A discrete mathematics course has more than one purpose:
 - Students should learn a particular set of mathematical facts and how to apply them;
 - More importantly, such a course should teach students how to think logically and mathematically.

Requirements?

- Weekly written homework assignments,
- One midterm exams: in-class, closedbook,
- Scheduled for week 8,
- Final exam on week 16
- No make-up exams given unless you have serious, documented medical emergency.

6 Grading?

- Final exam: 50% of final grade.
- Midterm: 30% of final grade
- Homework + QUIZES + Class Participations + Projects: 20% of final grade

Number Theory and Cryptography

Chapter 4

With Question/Answer Animations

Chapter Motivation

- Number theory is the part of mathematics devoted to the study of the integers and their properties.
- Key ideas in number theory include divisibility and the primality of integers.
- Representations of integers, including binary and hexadecimal representations, are part of number theory.
- Mumber theory has long been studied because of the beauty of its ideas, its accessibility, and its wealth of open questions.
- We'll use many ideas developed in Chapter 1 about proof methods and proof strategy in our exploration of number theory.
- Mathematicians have long considered number theory to be pure mathematics, but it has important applications to computer science and cryptography studied in Sections 4.5 and 4.6.

Chapter Summary

- Divisibility and Modular Arithmetic
- Integer Representations and Algorithms
- Primes and Greatest Common Divisors
- Solving Congruences
- Applications of Congruences
- Cryptography

Divisibility and Modular Arithmetic

Section 4.1

Section Summary

- Division
- Division Algorithm
- Modular Arithmetic

- The ideas that we will develop in this section are based on the notion of divisibility.
- Division of an integer by a positive integer produces a quotient and a remainder. Working with these remainders leads to modular arithmetic, which plays an important role in mathematics and which is used throughout computer science.
- We will discuss some important applications of modular arithmetic later in this chapter, including generating pseudorandom numbers, assigning computer memory locations to files, constructing check digits, and encrypting messages.

Division

Definition: If a and b are integers with $a \neq 0$, then : a divides b if there exists an integer c such that b = ac.

- When a divides b we say that a is a factor or divisor of b and that b is a multiple of a.
- The notation a | b denotes that a divides b.
- If a | b, then b/a is an integer.
- $\stackrel{\blacktriangleright}{}$ If a does not divide b, we write a \nmid b.

Example: Determine whether 3 | 7 and whether 3 | 12.

Properties of Divisibility

Theorem 1: Let a, b, and c be integers, where $a \neq 0$.

- j. If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$;
- ii. If a | b, then a | bc for all integers c;
- iii. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof: (i) Suppose $a \mid b$ and $a \mid c$, then it follows that there are integers s and t with b = as and c = at. Hence,

$$b + c = as + at = a(s + t)$$
. Hence, $a \mid (b + c)$

(Exercises 3 and 4 ask for proofs of parts (ii) and (iii).)

Corollary: If a, b, and c be integers, where a ≠0, such that a | b and a | c, then a | mb + nc whenever m and n are integers.

Can you show how it follows easily from (ii) and (i) of Theorem 1?

Division Algorithm

When an integer is divided by a positive integer, there is a quotient and a remainder.
 This is traditionally called the "Division Algorithm," but is really a theorem.

Division Algorithm: If a is an integer and d a positive integer, then there are unique integers q and r, with $0 \le r < d$, such that

a = dq + r (proved in Section 5.2).

- d is called the divisor.
- a is called the dividend.
- q is called the quotient.
- r is called the remainder.

Division Algorithm

Examples:

What are the quotient and remainder when 101 is divided by 11?

Solution: The quotient when 101 is divided by 11 is $9 = 101 \, \text{div} \, 11$, and the remainder is $2 = 101 \, \text{mod} \, 11$.

■What are the quotient and remainder when −11 is divided by 3?

Solution: The quotient when -11 is divided by 3 is -4 = -11 div 3, and the remainder is 1 = -11 mod 3. (Programming mod, %)

Congruence Relation

Definition: If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides a – b.

- The notation $a \equiv b \pmod{m}$ says that a is congruent to b modulo m.
- We say that $a \equiv b \pmod{m}$ is a congruence and that m is its modulus.
- Two integers are congruent mod *m* if and only if they have the same remainder when divided by *m*.
- If a is not congruent to b modulo m, we write $a \not\equiv b \pmod{m}$

Example: Determine whether 17 is congruent to 5 modulo 6 and whether 24 and 14 are congruent modulo 6.

Solution:

- $ightharpoonup 17 \equiv 5 \pmod{6}$ because 6 divides 17 5 = 12.
- $ightharpoonup 24 ≠ 14 \pmod{6}$ since 24 14 = 10 is not divisible by 6.

The Relationship between (mod m) and **mod** m Notations

- The use of "mod" in $a \equiv b \pmod{m}$ and $a \pmod{m} = b$ are different.
 - $□ a ≡ b \pmod{m}$ is a **relation** on the set of integers.
 - In a mod m = b, the notation mod denotes a function.
- The relationship between these notations is made clear in this theorem.
- **Theorem 3**: Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if :

a mod m = b mod m. (Proof in the exercises)

More on Congruences

- Theorem 4 provides a useful way to work with congruences.
- **Theorem 4**: Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that a = b + km.

Proof:

- If $a \equiv b \pmod{m}$, then (by the definition of congruence) $m \mid a b$. Hence, there is an integer k such that a b = km and equivalently a = b + km.
- Conversely, if there is an integer k such that a = b + km, then km = a b. Hence, $m \mid a b$ and $a \equiv b$ (mod m).

Congruences of Sums and Products

- Theorem 5 shows that additions and multiplications preserve congruences.
- Theorem 5: Let m be a positive integer.

```
If a \equiv b \pmod{m} and c \equiv d \pmod{m}, then a + c \equiv b + d \pmod{m} and ac \equiv bd \pmod{m}
```

Proof:

Because $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, by Theorem 4 there are integers s and t with b = a + sm and d = c + tm. Therefore,

$$b + d = (a + sm) + (c + tm) = (a + c) + m(s + t)$$
 and $b d = (a + sm) (c + tm) = ac + m(at + cs + stm).$

Hence, $a+c \equiv b+d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

Congruences of Sums and Products

Example:

Because $7 \equiv 2 \pmod{5}$ and $11 \equiv 1 \pmod{5}$, it follows from Theorem 5 that:

$$18 = 7 + 11 \equiv 2 + 1 = 3 \pmod{5}$$

 $77 = 7 \cdot 11 \equiv 2 \cdot 1 = 2 \pmod{5}$

- We must be careful working with congruences. Some properties we may expect to be true are not valid.
- For Example: Multiplying both sides of a valid congruence by an integer preserves validity.

If $a \equiv b \pmod{m}$ holds then $c \cdot a \equiv c \cdot b \pmod{m}$, where c is any integer, holds by Theorem 5 with d = c.

Adding an integer to both sides of a valid congruence preserves validity.

If $a \equiv b \pmod{m}$ holds then $c + a \equiv c + b \pmod{m}$, where c is any integer, holds by Theorem 5 with d = c.

 Dividing a congruence by an integer does not always produce a valid congruence.

Congruences of Sums and Products

- But, if ac ≡ bc (mod m), the congruence a ≡ b (mod m) may be false.
- Similarly, if a ≡ b (mod m) and c ≡ d (mod m), the congruence a^c ≡ b^d (mod m) may be false.
 (See Exercise 37.)
- **Example**: The congruence $14 \equiv 8 \pmod{6}$ holds. But dividing both sides by 2 does not produce a valid congruence since 14/2 = 7 and 8/2 = 4, but $7 \not\equiv 4 \pmod{6}$.

See Section 4.3 for conditions when division is ok.

Computing the **mod** *m* Function of Products and Sums

- We use the following corollary to Theorem 5, to show how to find the values of the **mod m** function at the sum and product of two integers using the values of this function at each of these integers.
- Corollary: Let m be a positive integer and let a and b be integers. Then

```
(a + b) (mod m) = ((a \text{ mod } m) + (b \text{ mod } m)) mod m
and
ab \text{ mod } m = ((a \text{ mod } m) \text{ (b mod } m)) \text{ mod } m.
(proof in text)
```

Arithmetic Modulo m

Definitions: Let \mathbb{Z}_m be the set of nonnegative integers less than m: $\{0,1,...,m-1\}$

- The operation $+_m$ is defined as $a +_m b = (a + b) \mod m$. This is addition modulo m.
- The operation \cdot_m is defined as $a \cdot_m b = (a \cdot b) \mod m$. This is multiplication modulo m.
- Using these operations is said to be doing arithmetic modulo m.

Example: Find $7 +_{11} 9$ and $7 \cdot_{11} 9$?

Solution: Using the definitions above:

$$7 +_{11} 9 = (7 + 9) \mod 11 = 16 \mod 11 = 5$$

$$7 \cdot_{11} 9 = (7 \cdot 9) \mod 11 = 63 \mod 11 = 8$$

Arithmetic Modulo m

- The operations $+_m$ and \cdot_m satisfy many of the same properties as ordinary addition and multiplication.
 - **Closure:** If a and b belong to \mathbf{Z}_m , then $a +_m b$ and $a \cdot_m b$ belong to \mathbf{Z}_m .
 - **Associativity:** If a, b, and c belong to \mathbf{Z}_m , then

$$(a +_m b) +_m c = a +_m (b +_m c)$$
 and $(a \cdot_m b) \cdot_m c = a \cdot_m (b \cdot_m c)$.

ightharpoonup Commutativity: If a and b belong to \mathbf{Z}_m , then

$$a +_m b = b +_m a$$
 and $a \cdot_m b = b \cdot_m a$.

Denotity elements: The elements 0 and 1 are identity elements for addition and multiplication modulo m, respectively. If a belongs to \mathbf{Z}_m , then

$$a +_m 0 = a$$
 and $a \cdot_m 1 = a$.