PREDICTIONS AND MODELS

Pierre-Alexandre Balland

The final exam will reward your creative mind

- The final exam will reward your creative mind
- Use data science to solve a real world problem (no geography needed)

- The final exam will reward your creative mind
- Use data science to solve a real world problem (no geography needed)
- It can be a business, environmental, social problem

- The final exam will reward your creative mind
- Use data science to solve a real world problem (no geography needed)
- It can be a business, environmental, social problem
- You can go beyond this class

- The final exam will reward your creative mind
- Use data science to solve a real world problem (no geography needed)
- It can be a business, environmental, social problem
- You can go beyond this class
- You need to create a pitch deck and convince us that this is a good idea (design + presentation skills)

- The final exam will reward your creative mind
- Use data science to solve a real world problem (no geography needed)
- It can be a business, environmental, social problem
- You can go beyond this class
- You need to create a pitch deck and convince us that this is a good idea (design + presentation skills)
- Groups of 3 students max!

- The final exam will reward your creative mind
- Use data science to solve a real world problem (no geography needed)
- It can be a business, environmental, social problem
- You can go beyond this class
- You need to create a pitch deck and convince us that this is a good idea (design + presentation skills)
- Groups of 3 students max!
- 10 days to prepare your pitch (deadline on November 4)

- The final exam will reward your creative mind
- Use data science to solve a real world problem (no geography needed)
- It can be a business, environmental, social problem
- You can go beyond this class
- You need to create a pitch deck and convince us that this is a good idea (design + presentation skills)
- Groups of 3 students max!
- 10 days to prepare your pitch (deadline on November 4)
- Delivery: video (5 minutes 5 slides)

Welcome

AirBed&Breakfast

Book rooms with locals, rather than hotels.

Problem

Price is an important concern for customers booking travel online.

Hotels leave you disconnected from the city and its culture.

No easy way exists to book a room with a local or become a host.

A web platform where users can rent out their space to host travelers to:

SEARCH BY CITY → REVIEW LISTINGS → BOOK IT!

Import data

Import data -> Clean

Import data -> Clean -> Transform

Import data -> Clean -> Transform -> Visualize

Import data -> Clean -> Transform -> Visualize -> Model

Import data -> Clean -> Transform -> Visualize -> Model -> Communicate

Key issues

https://www.amazon.science/the-history-of-amazons-recommendation-algorithm

The economy as a two-mode network

Algorithm's workflow

Econ. systems as 2-mode networks

Non-spatial units (economic sectors, jobs, rock band, species, sports...

Spatial units (cities, eco-systems, states, neighborhoods...)

2-mode adjacency matrix

Algorithm's workflow

Compute co-occurences between non-sp. units

$$\begin{array}{c|c}
ABCD \\
1 & 1 & 1 & 0 \\
2 & 0 & 1 & 1 & 0 \\
3 & 0 & 1 & 1 & 0 \\
4 & 0 & 0 & 1 & 1 \\
5 & 0 & 0 & 0 & 1
\end{array}$$

How many times B and C co-occur in the same spatial unit?

Compute co-occurences between non-sp. units

How many times B and C co-occur in the same spatial unit? = in how many spatial unites do B and C co-exist?

Compute co-occurences between non-sp. units

How many times B and C co-occur in the same spatial unit? = in how many spatial unites do B and C co-exist? Response = 3 (in 1,2, and 3)

Now using matrix calculus

Find the matrix of co-occurences between all non-spatial units

Transpose the matrix

$$\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Transpose the matrix

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Reminder

- For matrix multiplication, the number of columns of the first matrix must equal the number of **rows** of the second matrix
- The product of this matrix multiplication will have the same number of **rows** as the first matrix, and the same number of **columns** as the second matrix

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

1*1+0*0+0*0+0*0+0*0 = 1

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$1*1+0*1+0*1+0*0+0*0=1$$

Multiply t(M) by M

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 3 & 3 & 0 \\ 1 & 3 & 4 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

1*1+1*1+1*1+0*1+0*0 = 3

A matrix of co-occurences

$$\begin{pmatrix}
1 & 1 & 1 & 0 \\
1 & 3 & 3 & 0 \\
1 & 3 & 4 & 1 \\
0 & 0 & 1 & 2
\end{pmatrix}$$

A matrix of co-occurences (diag = 0)

$$\begin{pmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 3 & 0 \\
1 & 3 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

Algorithm's workflow

Normalize co-occurences

(0	1	1	0	1
1	0	3	0	
1	3	0	1	
0	0	1	0	

observed co-occurences
expected co-occurences

Normalizing co-occurences: relatedness

$$if \quad \frac{observed \quad co-occurences}{expected \quad co-occurences} \ > 1 \ --> \ related$$

Product space & relatedness

Hidalgo et al. (2007), Science

Algorithm's workflow

The density of related technologies

$$D_{i,c,t} = \frac{\sum_{i} x_{i} \varphi_{ij}}{\sum_{i} \varphi_{ij}} \times 100$$

City (MSA)	Tech. class (3 digits)	Density (%)
New-York	428	10
New-York	524	100
Los Angeles	428	80
Los Angeles	524	0

The **Density Index** measures the relatedness of a new technology to the pre-existing set of technologies produced in this particular city.

Relatedness density

Algorithm's workflow

 $Entry_{i,c,t} = \beta_1 Density_{i,c,t-1} + \beta_2 City_{c,t-1} + \beta_3 Techno_{i,t-1} + \phi_c + \psi_i + \alpha_t + \varepsilon_{i,c,t}$

Entry_{i,c,t} = 1 if a technology i that did not belong to the portfolio of the city c in time t-1 enters its technology space in time t.

Dependent variable is: Entry	y _t Model 1 Rel. density	Model 2 City variables	Model 3 Tech. variables	Model 4 Full model	Model 5 Full model (F.E.)
Relatedness density _{t-1}	0.00515979**			0.00373407**	0.00271463**
	(0.00012770)			(0.00014135)	(0.00016884)
Log (Employment) _{t-1}		0.04934166**		0.03611889**	0.04633250**
		(0.00286818)		(0.00247147)	(0.00782869)
Population density _{t-1}		0.00001106		0.00002520**	-0.00021341**
		(0.00000997)		(0.00000843)	(0.00003836)
Inventive capacity _{t-1}		0.07718815**		0.03883926**	-0.08487966**
		(0.01294204)		(0.0078352020)	(0.01505564)
Tech. Specialization _{t-1}		-0.00089296**		-0.00047160**	0.00005120
		(0.00011548)		(0.00009315)	(0.00011022)
MSA growth rate _{t-1}		0.04443962**		0.04032813**	0.00865397**
		(0.00355534)		(0.00353667)	(0.00298386)
Log (Income per employee)	t-1	-0.07584685**		-0.10127439**	0.00368879
		(0.00441610)		(0.00538561)	(0.01663469)
Log (Nb. Inventors) _{t-1}			0.02658895**	0.02324554**	0.00159990
			(0.00197752)	(0.00183672)	(0.00246612)
Tech. concentration _{t-1}			-0.00102840**	-0.00010693	0.00041990 *
			(0.00014936)	(0.00011541)	(0.00016760)
Date established _{t-1}			-0.00056684**	-0.00042520**	-0.00330620**
			(0.00007012)	(0.00005456)	(0.00017699)
Tech. growth rate _{t-1}			0.01423964**	0.02183910**	0.01141729**
			(0.00233334)	(0.00285492)	(0.00260757)
Constant	0.09258502**	0.09296771**	0.09019069**	0.08909252**	0.11108572**
	(0.00194271)	(0.00378306)	(0.00398429)	(0.00183778)	(0.01040890)
City F.E.	No	No	No	No	Yes
Technology F.E.	No	No	No	No	Yes
Period F.E.	No	No	No	No	Yes
R ²	0.11	0.04	0.02	0.13	0.16
N	748,458	653,660	656,618	572,550	572,550