ISE 426 Optimization models and applications

Lecture 4 — September 9, 2013

- Linear programming: more examples
- ▶ Basic properties of LP problems

Reading: WV p. 56.

Homework #1 will be out after class! It is due **Tuesday**, **September 16.** Check the CourseSite.

LP example #3: Short term financial planning¹

- ▶ Your company makes tape recorders (TR) and radios (RD).
- ▶ Returns are:

TR: 100\$ (price) -50\$ (labor) -30\$ (raw m.)= 20\$ RD: 90\$ (price) -35\$ (labor) -40\$ (raw m.) = 15\$

▶ Raw material is sufficient to produce 100 TRs and 100 RDs

¹See Winston & Venkataramanan, page 82.

Assets	Liabilities
\$10,000	
\$3,000	
$$7,000^2$	
	\$10,000
	\$10,000 \$3,000

Before the end of the month,

- ▶ we will collect soon \$2,000 of accts.
- ▶ we will receive new inventory worth \$2000
- ▶ we must pay \$1,000 of loan and another \$1,000 for rental
- ▶ management: "on 09/30 cash has to be at least \$4,000"
- bank requires that assets / liability ratio be at least 2

⇒ How many TRs and RDs do we produce this month to maximize return?

 $^{^{2}}$ \$7000 = \$30 × 100 + \$40 × 100.

- ▶ return on each TR is \$20, RD is \$15
- suppose t is #TR and r is #RD
- ▶ Balance sheet in a month:

BS (09/30):	Assets	Liabilities
Cash	\$10,000	
	+\$2,000 - \$1,000 - \$1,000	
	-\$50t - \$35r	
Accts. recv.	\$3,000	
	-\$2,000 + \$100t + \$90r	
Inv. outst.	\$7,000	
	+\$2,000-\$30t - \$40r	
Bank loan		\$10,000
		+\$2,000 -\$1,000

- return on each TR is \$20, RD is \$15
- ightharpoonup suppose *t* is #TR and *r* is #RD
- ▶ Balance sheet in a month:

BS (09/30): Assets	Liabilities
Cash	\$10,000 - \$50t - \$35r	
Accts. rec	v. $\$1,000 + \$100t + \$90r$	
Inv. outst.	9,000 - 30t - 40r	
Bank loan	1	\$11,000

- ► Cash \geq \$4,000 means \$10,000 \$50t \$35r \geq \$4,000
- $\Rightarrow \$50t + \$35r \le \$6,000$
 - ► Ratio ≥ 2 means $\frac{\text{Cash + Accts. recv. + Inv. outst.}}{\text{Bank loan}} \geq 2$

$$\Rightarrow \frac{\$20,000 + \$20t + \$15r}{\$11,000} \ge 2$$

$$\Rightarrow \$20,000 + \$20t + \$15r \ge \$22,000$$

$$\Rightarrow \$20t + \$15r \ge \$2,000$$

LP example #4: Project selection⁴

We have 5 investment opportunities over a 2-year term.

- ▶ i.e., we'll invest in the same funds this and next year
- each has two cash outflows, for 2009 and for 2010, and
- ▶ a Net Present Value (NPV)³
- ▶ available cash: 40 M\$ this year, estimate 20 M\$ next year

Investment		1	2	3	4	5
(a_i) Cash outflow,	2009	11	53	5	5	29
(b_i)	2010	3	6	5	1	34
(v_i) NPV		13	16	16	14	39

What investment(s) get the **maximum** total NPV? What percentage of each?

³The amount by which the investment will increase the company's value.

⁴Winston&Venkataramanan, example 10, page 80.

LP example #4: Project selection

- ▶ **Variables:** for each opportunity 1, 2, . . . , 5, the percentage of investment: $x_i \in [0, 1] \forall i = 1, 2, ..., 5$
- ► Constraints: limited cash to expend in 2009 and in 2010:

$$\sum_{i=1}^{5} a_i x_i \le 40 \qquad \sum_{i=1}^{5} b_i x_i \le 20$$

▶ **Objective function:** the total NPV (to be maximized)

$$\sum_{i=1}^{5} v_i x_i$$

LP example #4: Project selection

Example: Transportation problem

- ➤ A large manufacturing company produces liquid nytrogen in five plants spread out in East Pennsylvania
- ► Each plant has a monthly production capacity

Plant	i	1	2	3	4	5
Capacity	p_i	120	95	150	120	140

- ▶ It has seven retailers in the same area
- Each retailer has a monthly demand to be satisfied

Retailer	j	1	2	3	4	5	6	7
Demand	d_i	55	72	80	110	85	30	78

- ▶ transportation between any plant i and any retailer j has a cost of c_{ij} dollars per volume unit of nytrogen
- $ightharpoonup c_{ij}$ is **constant** and depends on the distance between i and j
- ⇒ find how much nitrogen to be transported from each plant to each retailer
 - ... while minimizing the total transportation cost

Transportation model

Variables: qty from plant i to retailer j: x_{ij} (non-negative)

Constraints:

- 1. capacity: $\sum_{j=1}^{7} x_{ij} \leq p_i \quad \forall i$
- 2. demand: $\sum_{i=1}^{5} x_{ij} \ge d_j \quad \forall j$

Objective function: total transportation cost, $\sum_{i=1}^{5} \sum_{j=1}^{7} c_{ij} x_{ij}$

Consider an LP problem with *m* constraints and **two variables**.

$$\begin{array}{llll}
\min & c_1 x_1 & +c_2 x_2 \\
& a_{11} x_1 & +a_{12} x_2 & \leq b_1 \\
& a_{21} x_1 & +a_{22} x_2 & \leq b_2 \\
& \vdots & & & \\
& a_{m1} x_1 & +a_{m2} x_2 & \leq b_m
\end{array}$$

- ▶ the objective function is associated with vector (c_1, c_2) in \mathbb{R}^2
- ▶ lines defined by $c_1x_1 + c_2x_2 = c_0$ correspond to solutions with the same objective function, c_0
- " \leq " and " \geq " constraints (i.e., *inequality* constraints) are associated with a half-plane of \mathbb{R}^2
- "=" constraints (or *equality* constraints) are associated with a line on the \mathbb{R}^2 plane.

min
$$x_1 + x_2$$

 $2x_1 + 3x_2 \ge 6$
 $-x_1 + 2x_2 \le 2$
 $5x_1 + x_2 \ge 10$

min
$$x_1 + x_2$$

 $2x_1 + 3x_2 \ge 6$
 $-x_1 + 2x_2 \le 2$
 $5x_1 + x_2 \ge 10$

min
$$x_1 + x_2$$

 $2x_1 + 3x_2 \ge 6$
 $-x_1 + 2x_2 \le 2$
 $5x_1 + x_2 \ge 10$

min
$$x_1 + x_2$$

 $2x_1 + 3x_2 \ge 6$
 $-x_1 + 2x_2 \le 2$
 $5x_1 + x_2 \ge 10$

min
$$x_1 + x_2$$

 $2x_1 + 3x_2 \ge 6$
 $-x_1 + 2x_2 \le 2$
 $5x_1 + x_2 \ge 10$

min
$$x_1 + x_2$$

 $2x_1 + 3x_2 \ge 6$
 $-x_1 + 2x_2 \le 2$
 $5x_1 + x_2 \ge 10$

min
$$x_1 + x_2$$

 $2x_1 + 3x_2 \ge 6$
 $-x_1 + 2x_2 \le 2$
 $5x_1 + x_2 \ge 10$

min
$$x_1 + x_2$$

 $2x_1 + 3x_2 \ge 6$
 $-x_1 + 2x_2 \le 2$
 $5x_1 + x_2 \ge 10$

min
$$x_1 + x_2$$

 $2x_1 + 3x_2 \ge 6$
 $-x_1 + 2x_2 \le 2$
 $5x_1 + x_2 \ge 10$

Remember the financial planning problem?

```
\max \begin{array}{l} \$20t \ +\$15r \\ \$50t \ +\$35r \le \$6,000 \\ \$20t \ +\$15r \ge \$2,000 \\ t \ \le 100 \\ r \le 100 \\ t, \ r \ge 0 \end{array}
```

Remember the financial planning problem?

Remember the financial planning problem?

Example: Infeasible problem

$$min x_1 + x_2
 x_1 - x_2 \ge 0
 x_1 + x_2 \le 2
 x_2 \ge 2$$

Example: Unbounded problem

Example: Multiple optima

min
$$x_1 + 3x_2$$

 $2x_1 - 2x_2 \ge -1$
 $x_1 - x_2 \le 1$
 $x_1 + 3x_2 \ge 6$

An LP problem can be...

Problems with two variables are easily classified as

- feasible and bounded (more than one optimum)
- unbounded
- ▶ infeasible