

TEAM NAME Diandaru Suchrady

TEAM ID ID-21-0105

Institut Teknologi Bandung UNIVERSITY

CHAPTER I

Professionals Opinion

Before making any assumptions about the features contained in the dataset, the proper way to find a clue of whether a feature is considered necessary or not is by asking the professionals. According to Susi Sundari (2021), a senior property marketer, there are three factors of a customer's preference for buying a house:

1. Price

The price depends on the customer's budget.

2. Location

Customers are very likely to buy a house near their workplace, relatives, and their old residence.

3. House Shape

House shape affects the customer's interest.

Susi also stated that there is no correlation between customer's preferences and date of purchase. On the other hand, Dady Suchrady (2021), a public notary inferred that dates play a role in the event of house or property transactions. From his past experience, documents for transactions are usually done by the month of April, hence it is inferred that transactions mostly occur in the second semester of the year. In addition to that, many of Dady's clients have more budget during the second semester since they gain more income that time of the year (In Indonesia, when the government gives projects to companies, their employees may gain bonuses). Therefore, it can be assumed that there is a chance that a house with a higher price will have more demand in the second semester of a year.

Research Study

According to the results of a study conducted by Amrin Fauzi (2012) about what affects a consumer's decision in buying a house using a regression analysis, consumer's decision in buying a house depends with the rate of 64.2% on location, economic status, and lifestyle.

Himpunan Mahasiswa Statistika ITS (HIMASTA-ITS)

edung H Lantai III, Jl. Arief Rahman Hakim Kampus ITS Sukolilo Surabaya Email: eventhimastaits@gmail.com Contact Person: Catur (085155430660) Wanda (081327522030)

In another study with the same topic conducted by Sutianingsih (2010), quality of a building, pricing, location, and promotion determine the decision making of a housing consumer by 61.1% and the 38.9% is affected by other variables.

Assumptions

Since the test dataset 'Test.csv' does not contain the 'cnt' and 'dealing' columns, backed up by the decision to make the machine learning model to only evaluate categorical variables, the 'cnt' and 'dealing' columns are not to be included in the model construction. In addition, the 'buyer_id' will not be involved in the model to prevent any overfitting to happen since a buyer's identity is deemed irrelevant.

Decision

It is concluded that it is best to not include the 'cnt', 'dealing', and 'buyer_id' column. In the further process of preparing the dataset, data reduction and feature selection will be held to reduce the dimension of the dataset, so there is a chance of excluding other columns.

Himpunan Mahasiswa Statistika ITS (HIMASTA-ITS)

CHAPTER II

Preprocessing

Data Cleansing

In this process, firstly the information of the data must be seen.

Data	columns (total 24	columns):									
#	Column	Non-Null Count	Dtype	#	Column	Non-Null Count	Dtype	# Cc	olumn	Non-Null Count	Dtype
0	time_date	343583 non-null	object	8	mobile	343583 non-null	int64	16 de	estination_id	343583 non-null	int64
1	site	343583 non-null	int64	9	package	343583 non-null	int64	17 de	estination_type	343583 non-null	int64
2	continent_id	343583 non-null	int64	10	channel_id	343583 non-null			ealing	343583 non-null	int64
3	buyer_country	343583 non-null	int64	11	buying_date	342885 non-null				343583 non-null	int64
4	buyer_region	343583 non-null	int64	12	dealing_date	342885 non-null	object	20 re	egency_country	343583 non-null	int64
5	buyer_city	343583 non-null	int64	13	adults	343583 non-null	int64	21 re	egency_market	343583 non-null	int64
6	distance	145685 non-null	float64	14	children	343583 non-null	int64	22 cn	nt	343583 non-null	int64
7	buyer id	343583 non-null	int64	15	room	343583 non-null	int64	23 re	egency_cluster	343583 non-null	int64
								dtypes:	: float64(1), int	64(20), object(3)	

As the 'cnt', 'dealing', and the 'buyer_id' have been decided to be dropped, the dataset will remain the rest columns (21 columns).

From the data information, it is seen that the 'distance', 'buying_date', and 'dealing_date' contain null values. Since the majority of the data types are categorical, before deciding to drop the null values, it is best to check the class loss when the null values are dropped.

Following are the class numbers for each feature before and after dropping the null values:

Table 2.1. Class Value Counts of Each Feature

Column Name	Nothing to drop	Drop distance, buying_date, and dealing_date	Drop distance	Drop buying_date	Drop dealing_date
site	30	23	23	30	30
continent_id	5	5	5	5	5
buyer_country	155	17	17	155	155
buyer_region	653	182	182	653	653
buyer_city	7256	3073	3074	7249	7249
mobile	2	2	2	2	2
package	2	2	2	2	2
channel id	11	11	11	11	11
adults	10	10	10	10	10
children	9	8	8	9	9
room	9	8	8	8	8
destination id	9831	6636	6647	9811	9811
destination_type	8	8	8	8	8
regency continent	40	36	36	40	40
regency country	6	6	6	6	6
regency_market	179	157	157	179	179
regency_cluster	100	100	100	100	100

Himpunan Mahasiswa Statistika ITS (HIMASTA-ITS)

edung H Lantai III, Jl. Arief Rahman Hakim Kampus ITS Sukolilo Surabaya Email: eventhimastaits@gmail.com Contact Person: Catur (085155430660) Wanda (081327522030) Preventing the loss information in categorical features, it is decided to fill the null values and not drop the outliers.

Data Transformation

In the data transformation part, the distance column is grouped into 5 corresponding bins with the interval of every bins are as the following:

- 1. (0.0046, 326.593] labeled as 0
- 2. (326.593, 1100.383] labeled as 1
- 3. [(1100.383, 2808.036] labeled as 2
- 4. (2808.036, 11761.396]] labeled as 3
- 5. Null values labeled as -1

The date columns (time_date, buying_date, and dealing_date) are extracted to day, month, and year. This process results in all columns bening of categorical type.

Data Reduction

To reduce the burden of the model while fitting/training the dataset, feature selection should be conducted. Mutual information feature selection is chosen because the dataset's majority columns are categorical or numeric.

Graph 2.1. Feature score bar plot

Himpunan Mahasiswa Statistika ITS (HIMASTA-ITS)

edung H Lantai III, Jl. Arief Rahman Hakim Kampus ITS Sukolilo Surabaya Email: eventhimastaits@gmail.com Contact Person: Catur (085155430660) Wanda (081327522030) After running the feature selection, it is concluded that the chosen columns for the modelling process are 'site', 'continent_id', 'buyer_country', 'buyer_region', 'buyer_city', 'destination_id', 'regency_country', 'regency_market', and 'distance_bin'.

Data Balancing

In order to minimize overfitting in our model, we need to take a look at the frequency of each class in the target feature. A dominant class in the target feature may result in a model that assumes classes that have small frequencies as an insignificant class, thus making it less considered by the model. The following is the bar plot for the frequency distribution of the target class 'regency_cluster' of the dataset Train.csv

Graph 2.2. Target class frequency distribution

As seen on the bar chart, there is an imbalance between the distribution of class frequencies. Over-sampling is done to resolve this issue, that is extrapolating classes of the target attribute that have less entries using Synthetic Minority Over-sampling Technique for Nominal and Continuous (SMOTENC) and Synthetic Minority Over-sampling Technique for Nominal (SMOTEN) through scikit library. Thus, every class from the target attribute now has 8077 entries.

Himpunan Mahasiswa Statistika ITS (HIMASTA-ITS)

Modelling and Validation

An experiment is done to determine the best algorithm to predict the target attributes. The experiment compares the performance of Random Forest Classifier and the Decision Tree Classifier using the accuracy as a metric. Each of the algorithms will use both the entropy and gini function. The models evaluate the result using ten fold cross validation.

There are twelve combinations of model:

- 1. Random forest classification with entropy function splitting using the SMOTEN transformed dataset
- 2. Random forest classification with gini function splitting using the SMOTEN transformed dataset
- 3. Random forest classification with entropy function splitting using the SMOTENC transformed dataset
- 4. Random forest classification with gini function splitting using the SMOTENC transformed dataset
- 5. Random forest classification with entropy function splitting using the imbalanced dataset
- 6. Random forest classification with gini function splitting using the imbalance dataset
- 7. Decision tree classification with entropy function splitting using the SMOTEN transformed dataset
- 8. Decision tree classification with gini function splitting using the SMOTEN transformed dataset
- 9. Decision tree classification with entropy function splitting using the SMOTENC transformed dataset
- 10. Decision tree classification with gini function splitting using the SMOTENC transformed dataset
- 11. Decision tree classification with entropy function splitting using the imbalanced dataset
- 12. Decision tree classification with gini function splitting using the imbalanced dataset

Himpunan Mahasiswa Statistika ITS (HIMASTA-ITS)

Gedung H Lantai III, Jl. Arief Rahman Hakim Kampus ITS Sukolilo Surabaya Email: eventhimastaits@gmail.com Contact Person: Catur (085155430660) Wanda (081327522030)

CHAPTER III

The result of the experiment is as follows

Model	Accuracy
1	49.63 %
2	49.63 %
3	47.23 %
4	47.23 %
5	28.22 %
6	28.22 %
7	49.81%
8	49.77%
9	47.29%
10	47.19%
11	28.40%
12	28.38%

It can be inferred from the table that models trained with unbalanced dataset (5, 6, 11, 12) performed worse than models that were trained using balanced datasets either using SMOTEN or SMOTENC. This may be due to the overfitting of the model due to the dominance of some target attribute class that makes up a large percentage of the training dataset. It can also be concluded from the results that SMOTEN (1, 2, 7, 8) data balancing works better than SMOTENC (3, 4, 9, 10), meaning that it is better to assume all attributes in this dataset as categorical. Although only by a small percentage, the entropy function works better than the gini function in terms of feature selection.

Himpunan Mahasiswa Statistika ITS (HIMASTA-ITS)

dung H Lantai III, Jl. Arief Rahman Hakim Kampus ITS Sukolilo Surabaya Email: eventhimastaits@gmail.com Contact Person: Catur (085155430660) Wanda (081327522030)

CHAPTER IV

Conclusion

Based on the conducted experiment, it is found that the balance of the data greatly affects the performance of the model, therefore data balancing is a crucial part of data preprocessing. In addition, mutual information can be used to determine which categorical attributes are best to be put into the model which concludes that in this case, consumer preference in choosing the residence cluster is highly dependent on location represented by continent_id, buyer_country, buyer_region, buyer_city, destination_id, regency_country, and distance_bin.

Suggestion

More data preprocessing methods may be done to improve the performance of the model and the experiment may involve more varying algorithms.

Himpunan Mahasiswa Statistika ITS (HIMASTA-ITS)

Pedung H Lantai III, Jl. Arief Rahman Hakim Kampus ITS Sukolilo Surabaya Email: eventhimastaits@gmail.com Contact Person: Catur (085155430660) Wanda (081327522030)

Attachment Residence Reccomendation Data Analysis In [112... import pandas as pd import numpy as np import matplotlib.pyplot as plt # df = pd.read_csv('https://raw.githubusercontent.com/rdyzakya/DAC/master/Train.csv?token=ANMX7UVSDMRT7YXXECIV3KLA7T7TW') In [113... df = pd.read_csv('Train.csv') Check data information #delete unnecessary column In [114... del df['Unnamed: 0'] #check information df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 343583 entries, 0 to 343582 Data columns (total 24 columns): Column Non-Null Count -----0 time_date 343583 non-null object 343583 non-null int64 1 site 343583 non-null int64 2 continent_id 343583 non-null int64 buyer_country buyer_region 343583 non-null int64 343583 non-null int64 buyer_city 145685 non-null float64 distance 343583 non-null int64 buyer_id 343583 non-null int64 mobile 343583 non-null int64 9 package 10 channel_id 343583 non-null int64 buying_date 342885 non-null 11 object dealing_date 12 342885 non-null 343583 non-null int64 adults 13 children 343583 non-null int64 14 343583 non-null int64 room destination_id 343583 non-null int64 16 343583 non-null int64 17 destination_type 18 343583 non-null int64 dealing regency_continent 343583 non-null int64 19 20 regency_country 343583 non-null int64 343583 non-null int64 21 regency_market 343583 non-null int64 22 cnt 23 regency_cluster 343583 non-null int64 dtypes: float64(1), int64(20), object(3)memory usage: 62.9+ MB Drop cnt, dealing, buyer_id to match the Test.csv In [115... #since Test.csv doesn't have cnt and dealing it's best to drop it #and drop the buyer_id as the buyer_id isn't needed for the modelling df = df.drop(labels=['cnt', 'buyer_id', 'dealing'], axis=1) There are null values in the distance, buying_date, dealing_date, before dropping any null values, check class loss in the categoric variables #checking the unique values of each columns In [116... def check_classloss(df,nclabel=[],dropped_label=[]): df2 = df.dropna(subset=dropped_label) df2 = df2.drop(labels=nclabel,axis=1) uni_len = {} for col in df2.columns: uni_len[col] = len(df2[col].unique()) return uni_len drop_nothing = check_classloss(df,['distance','time_date','buying_date','dealing_date'],[]) In [117... drop_allna = check_classloss(df,['distance','time_date','buying_date','dealing_date'],['distance','buying_date','dealing_date']) drop_distance = check_classloss(df,['distance','time_date','buying_date','dealing_date'],['distance']) drop_bdate = check_classloss(df,['distance','time_date','buying_date','dealing_date'],['buying_date'])
drop_ddate = check_classloss(df,['distance','time_date','buying_date','dealing_date'],['dealing_date']) In [118... #if drop nothing drop_nothing Out[118... {'site': 30, 'continent_id': 5, 'buyer_country': 155, 'buyer region': 653, 'buyer_city': 7256, 'mobile': 2, 'package': 2, 'channel_id': 11, 'adults': 10, 'children': 9, 'room': 9, 'destination id': 9831, 'destination_type': 8, 'regency_continent': 40, 'regency_country': 6, 'regency_market': 179, 'regency_cluster': 100} #drop distance, buying_date, dealing_date In [119... drop_allna Out[119... {'site': 23, 'continent_id': 5, 'buyer_country': 17, 'buyer_region': 182, 'buyer_city': 3073, 'mobile': 2,
'package': 2, 'channel_id': 11, 'adults': 10, 'children': 8, 'room': 8, 'destination_id': 6636, 'destination_type': 8, 'regency_continent': 36, 'regency_country': 6, 'regency_market': 157, 'regency_cluster': 100} #drop distance only In [120... drop_distance Out[120... {'site': 23, 'continent_id': 5, 'buyer_country': 17, 'buyer_region': 182, 'buyer_city': 3074, 'mobile': 2,
'package': 2, 'channel_id': 11, 'adults': 10, 'children': 8, 'room': 8, 'destination_id': 6647, 'destination_type': 8, 'regency_continent': 36, 'regency_country': 6, 'regency_market': 157, 'regency_cluster': 100} In [121... #drop buying_date drop_bdate Out[121... {'site': 30, 'continent_id': 5, 'buyer_country': 155, 'buyer_region': 653, 'buyer_city': 7249, 'mobile': 2, 'package': 2, 'channel_id': 11, 'adults': 10, 'children': 9, 'room': 8, 'destination_id': 9811, 'destination_type': 8, 'regency_continent': 40, 'regency_country': 6, 'regency_market': 179, 'regency_cluster': 100} #drop dealing_date In [122... drop_ddate Out[122... {'site': 30, 'continent_id': 5, 'buyer_country': 155, 'buyer_region': 653, 'buyer_city': 7249, 'mobile': 2, 'package': 2, 'channel_id': 11, 'adults': 10, 'children': 9, 'room': 8, 'destination_id': 9811, 'destination_type': 8, 'regency_continent': 40, 'regency_country': 6, 'regency_market': 179, 'regency_cluster': 100} **Data Transformation** since there are class losses in the categoric features if the distance/buying_date/dealing_date is dropped hence, decides to fill the null values #extracting the dates for filling the null values In [125... #changing data types df['time_date'] = pd.to_datetime(df['time_date']) df['buying_date'] = pd.to_datetime(df['buying_date']) df['dealing_date'] = pd.to_datetime(df['dealing_date']) #time_date df['day_time_date'] = df['time_date'].dt.day df['month_time_date'] = df['time_date'].dt.month df['year_time_date'] = df['time_date'].dt.year #buying_date df['day_buying_date'] = df['buying_date'].dt.day df['month_buying_date'] = df['buying_date'].dt.month df['year_buying_date'] = df['buying_date'].dt.year #dealing_date df['day_dealing_date'] = df['dealing_date'].dt.day df['month_dealing_date'] = df['dealing_date'].dt.month df['year_dealing_date'] = df['dealing_date'].dt.year #drop the dates df = df.drop(labels=['time_date', 'buying_date', 'dealing_date'], axis=1) Fill Null Values df['distance_bin'] = pd.qcut(df['distance'], q=4, labels=[0, 1, 2, 3]) In [126... df['distance_bin'] = df['distance_bin'].cat.add_categories(-1) df['distance_bin'] = df['distance_bin'].fillna(value=-1) df['distance_bin'] = df['distance_bin'].astype(int).astype('category') #to bin the distance in Test.csv distance_bin = pd.qcut(df['distance'], q=4).unique() #fill null values with -1 df = df.fillna(value=-1) **Feature Selection** In [128... #define the x columns and y column x_cols = df.columns.to_list() y_col = 'regency_cluster' x_cols.remove('regency_cluster') x_cols.remove('distance') from sklearn.feature_selection import SelectKBest In [130... from sklearn.feature_selection import chi2 from sklearn.feature_selection import mutual_info_classif from sklearn.feature_selection import f_classif def create_fs(xtrain,ytrain,method): fs = SelectKBest(score_func=method, k='all') fs.fit(xtrain,ytrain) return fs def print_fs_score(x_cols,fs): for i in range(len(fs.scores_)): print('Feature %s: %f' % (x_cols[i], fs.scores_[i])) In [131... #create feature selection using mutual information fs_mi = create_fs(df[x_cols], df[y_col], mutual_info_classif) print("Feature score for mutual information feature selection\n") In [132... print_fs_score(x_cols,fs_mi) Feature score for mutual information feature selection Feature site: 0.126481 Feature continent_id: 0.106386 Feature buyer_country: 0.167690 Feature buyer_region: 0.234650 Feature buyer_city: 0.511225 Feature mobile: 0.000000 Feature package: 0.030740 Feature channel_id: 0.016649 Feature adults: 0.023396 Feature children: 0.012530 Feature room: 0.004241 Feature destination_id: 1.416510 Feature destination_type: 0.032782 Feature regency_continent: 0.003482 Feature regency_country: 0.427398 Feature regency_market: 0.758817 Feature day_time_date: 0.004808 Feature month_time_date: 0.007425 Feature year_time_date: 0.007240 Feature day_buying_date: 0.008460 Feature month_buying_date: 0.014674 Feature year_buying_date: 0.009268 Feature day_dealing_date: 0.010553 Feature month_dealing_date: 0.009297 Feature year_dealing_date: 0.009055 Feature distance_bin: 0.105644 In [134... #plotting the feature selection result fig,ax = plt.subplots(figsize=(20,6)) plt.bar(x_cols,fs_mi.scores_) plt.xticks(rotation=45) plt.title('Feature Score') plt.show() Feature Score 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 #select certain columns chosen from the feature selection df2 = df[['site','continent_id','buyer_country','buyer_region','buyer_city','destination_id','regency_country','regency_market','distance_bin','reg #changing the datatypes into categories for col in df2.columns: df2[col] = df2[col].astype('category') #make sure there are no class loss in the way of preprocessing In [23]: check_classloss(df2,[],[]) Out[23]: {'site': 30, continent_id': 5, 'buyer_country': 155, 'buyer_region': 653, 'buyer_city': 7256, 'destination_id': 9831, 'regency_country': 6, 'regency_market': 179, 'distance_bin': 5, 'regency_cluster': 100} Check the balance of the target feature df2.regency_cluster.value_counts().plot(kind='bar',figsize=(20,6)) In [25]: Out[25]: <AxesSubplot:> 8000 7000 6000 5000 4000 3000 2000 1000 **Data Balancing** #class with least value counts valcnt = df2['regency_cluster'].value_counts() print("Class with the least value counts : " + str(valcnt[valcnt == valcnt.min()].index[0])) print("with the value counts : " + str(valcnt.min())) Class with the least value counts : 74 with the value counts: 324 #shuffle the dataset In [27]: df2 = df2.sample(frac=1, random_state=13519000) #get classes classes = df2['regency_cluster'].unique() #initial dataset df_balanced = df2.loc[df2['regency_cluster'] == valcnt[valcnt == valcnt.min()].index[0]] #trimming each class to 324 and concat to new dataframe for c in classes: **if** c != 74: trimmed_class = df2.loc[df2['regency_cluster'] == c][:valcnt.min()] df_balanced = pd.concat([df_balanced,trimmed_class]) check_classloss(df_balanced,[],[]) In [28]: Out[28]: {'site': 28, 'continent_id': 5, 'buyer_country': 126, 'buyer_region': 523, 'buyer_city': 4046, 'destination_id': 4187, 'regency_country': 6, 'regency_market': 151, 'distance_bin': 5, 'regency_cluster': 100} There are class loss if undersampling is chosen choosing oversampling rather than undersampling to prevent any class loss, so the model would handle all class in the features In [31]: # OVER SAMPLING from collections import Counter from imblearn.over_sampling import SMOTENC from imblearn.over_sampling import SMOTEN # shuffle the dataset dfnew = df2.copy()X = dfnew.loc[:, dfnew.columns != 'regency_cluster'].copy() $X = X.to_numpy()$ y = dfnew.loc[:, dfnew.columns == 'regency_cluster'].copy() y = y.to_numpy().flatten() print(f'Original dataset shape {X.shape}') In [32]: # Original dataset shape (jml row, jml colom) print(f'Original dataset samples per class {Counter(y)}') # Original dataset samples per class Counter({kelas1: jml, kelas2: jml}) Original dataset shape (343583, 9) Original dataset samples per class Counter({64: 8077, 62: 7486, 46: 7195, 5: 7041, 36: 6491, 82: 6445, 30: 6386, 91: 6277, 41: 6008, 58: 5850, 61: 5849, 81: 5649, 85: 5562, 29: 5503, 99: 5451, 59: 5414, 57: 5237, 48: 5057, 83: 5021, 25: 5009, 98: 4745, 2: 4671, 21: 4627, 78: 4582, 97: 4572, 1 2: 4561, 9: 4559, 37: 4346, 70: 4163, 40: 4124, 63: 4120, 11: 4051, 68: 3918, 42: 3778, 10: 3769, 65: 3732, 50: 3656, 16: 3649, 95: 3646, 15: 3626, 18: 3606, 6: 3510, 28: 3457, 47: 3426, 33: 3415, 56: 3408, 20: 3356, 17: 3324, 76: 3206, 90: 3192, 51: 3186, 8: 3169, 55: 3139, 77: 3091, 72: 3085, 1: 3058, 0: 2959, 44: 2922, 96: 2907, 67: 2819, 60: 2808, 3: 2778, 26: 2749, 38: 2690, 4: 2610, 69: 2604, 22: 2587, 43: 2548, 89: 2409, 39: 2373, 1 3: 2320, 73: 2221, 23: 2119, 84: 2071, 92: 2032, 52: 2029, 7: 2004, 32: 2001, 19: 1952, 14: 1935, 94: 1859, 86: 1847, 79: 1827, 93: 1804, 34: 1704, 49: 1688, 80: 1636, 31: 1634, 75: 1565, 87: 1503, 53: 1471, 54: 1450, 66: 1440, 35: 1435, 45: 1406, 71: 1197, 27: 998, 88: 920, 24: 897, 74: 324}) In [33]: # fitting using SMOTENC sm1 = SMOTENC(random_state=42, categorical_features=[0,1,2,3,4,5,6,7]) X_{res1} , $y_{res1} = sm1.fit_{resample}(X, y)$ print(f'Resampled dataset samples per class {Counter(y_res1)}') Resampled dataset samples per class Counter({98: 8077, 36: 8077, 99: 8077, 21: 8077, 50: 8077, 46: 8077, 77: 8077, 64: 8077, 91: 8077, 86: 8077, 5: 8077, 42: 8077, 18: 8077, 41: 8077, 59: 8077, 70: 8077, 87: 8077, 79: 8077, 17: 8077, 60: 8077, 53: 8077, 25: 8077, 62: 8077, 3: 8077, 78: 8077, 8 2: 8077, 45: 8077, 38: 8077, 61: 8077, 15: 8077, 26: 8077, 30: 8077, 85: 8077, 11: 8077, 0: 8077, 7: 8077, 92: 8077, 67: 8077, 22: 8077, 96: 8077, 81: 8077, 43: 8077, 23: 8077, 20: 8077, 19: 8077, 76: 8077, 72: 8077, 48: 8077, 10: 8077, 31: 8077, 29: 8077, 57: 8077, 35: 8077, 8: 8077, 16: 807 7, 95: 8077, 94: 8077, 58: 8077, 83: 8077, 47: 8077, 6: 8077, 24: 8077, 54: 8077, 39: 8077, 90: 8077, 13: 8077, 89: 8077, 32: 8077, 1: 8077, 49: 80 77, 68: 8077, 2: 8077, 12: 8077, 14: 8077, 97: 8077, 28: 8077, 63: 8077, 9: 8077, 40: 8077, 34: 8077, 66: 8077, 37: 8077, 80: 8077, 4: 8077, 51: 80 77, 56: 8077, 44: 8077, 93: 8077, 75: 8077, 73: 8077, 33: 8077, 84: 8077, 71: 8077, 65: 8077, 52: 8077, 74: 8077, 74: 8077, 55: 8077, 88: 8077, 69: 8077}) In [34]: # fitting using SMOTEN sm2 = SMOTEN(random_state=42) X_{res2} , $y_{res2} = sm2.fit_{resample}(X, y)$ print(f'Resampled dataset samples per class {Counter(y_res2)}') Resampled dataset samples per class Counter({98: 8077, 36: 8077, 99: 8077, 21: 8077, 50: 8077, 46: 8077, 77: 8077, 64: 8077, 91: 8077, 86: 8077, 5: 8077, 42: 8077, 18: 8077, 41: 8077, 59: 8077, 70: 8077, 87: 8077, 79: 8077, 17: 8077, 60: 8077, 53: 8077, 25: 8077, 62: 8077, 3: 8077, 78: 8077, 8 2: 8077, 45: 8077, 38: 8077, 61: 8077, 15: 8077, 26: 8077, 30: 8077, 85: 8077, 11: 8077, 0: 8077, 7: 8077, 92: 8077, 67: 8077, 22: 8077, 96: 8077, 81: 8077, 43: 8077, 23: 8077, 20: 8077, 19: 8077, 76: 8077, 72: 8077, 48: 8077, 10: 8077, 31: 8077, 29: 8077, 57: 8077, 35: 8077, 8: 8077, 16: 807 7, 95: 8077, 94: 8077, 58: 8077, 83: 8077, 47: 8077, 6: 8077, 24: 8077, 54: 8077, 39: 8077, 90: 8077, 13: 8077, 89: 8077, 32: 8077, 1: 8077, 49: 80 77, 68: 8077, 2: 8077, 12: 8077, 14: 8077, 97: 8077, 28: 8077, 63: 8077, 9: 8077, 40: 8077, 34: 8077, 66: 8077, 37: 8077, 80: 8077, 4: 8077, 51: 80 77, 56: 8077, 44: 8077, 93: 8077, 75: 8077, 73: 8077, 33: 8077, 84: 8077, 71: 8077, 65: 8077, 52: 8077, 74: 8077, 27: 8077, 55: 8077, 88: 8077, 69: 8077}) #balanced data In [35]: df3 = pd.DataFrame(X_res2,columns=['site','continent_id','buyer_country','buyer_region','buyer_city','destination_id','regency_country','regency_ma df3['regency_cluster'] = pd.Series(y_res2) #balanced data In [52]: df4 = pd.DataFrame(X_res1, columns=['site', 'continent_id', 'buyer_country', 'buyer_region', 'buyer_city', 'destination_id', 'regency_country', 'regency_ma df4['regency_cluster'] = pd.Series(y_res1) In [38]: #changing the datatypes into categories for col in df3.columns: df3[col] = df3[col].astype(int).astype('category') #changing the datatypes into categories for col in df4.columns: df4[col] = df4[col].astype(int).astype('category') In [39]: #plotting the bar df3['regency_cluster'].value_counts().plot(kind='bar',figsize=(20,6)) Out[39]: <AxesSubplot:> 8000 7000 6000 5000 4000 3000 2000 1000 check_classloss(df3,[],[]) In [40]: {'site': 30, Out[40]: 'continent_id': 5, 'buyer_country': 155, 'buyer_region': 653, 'buyer_city': 7256, 'destination_id': 9831, 'regency_country': 6, 'regency_market': 179, 'distance_bin': 5, 'regency_cluster': 100} Modelling x_cols = df3.columns.to_list() x_cols.remove('regency_cluster') y_col = 'regency_cluster' In [42]: # Import the model we are using from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import cross_val_score # Instantiate model with 30 decision trees using entropy rf1 = RandomForestClassifier(n_estimators = 30, random_state = 13519000, criterion='entropy') # rf1.fit(x_train, y_train) # Instantiate model with 30 decision trees using gini rf2 = RandomForestClassifier(n_estimators = 30, random_state = 13519000, criterion='entropy') # rf2.fit(x_train, y_train) **#SMOTENed** dataset In [48]: $df3_x = df3[x_cols].copy()$ $df3_y = df3[y_col].copy()$ **#SMOTENC-ed dataset** In [54]: $df4_x = df4[x_cols].copy()$ $df4_y = df4[y_col].copy()$ #imbalance dataset In [81]: $df2_x = df2[x_cols].copy()$ $df2_y = df2[y_col].copy()$ **Validation** In [50]: scores_entropy = cross_val_score(rf1, df3_x, df3_y, cv=10) scores_gini = cross_val_score(rf2, df3_x, df3_y, cv=10) print(scores_entropy) In [55]: [0.33892534 0.35124427 0.41281416 0.46211465 0.52484833 0.55373282 0.5688003 0.57953448 0.58427634 0.58718584] print(scores_gini) In [56]: [0.33892534 0.35124427 0.41281416 0.46211465 0.52484833 0.55373282 0.5688003 0.57953448 0.58427634 0.58718584] scores_entropy2 = cross_val_score(rf1, df4_x, df4_y, cv=10) In [68]: scores_gini2 = cross_val_score(rf2, df4_x, df4_y, cv=10) In [69]: print(scores_entropy2) $[0.35752136 \ 0.36668317 \ 0.40974372 \ 0.44803764 \ 0.49144484 \ 0.51259131$ 0.52536833 0.53549585 0.53793488 0.53909868] In [70]: print(scores_gini2) [0.35752136 0.36668317 0.40974372 0.44803764 0.49144484 0.51259131 0.52536833 0.53549585 0.53793488 0.53909868] scores_entropy3 = cross_val_score(rf1, df2_x, df2_y, cv=10) In [82]: scores_gini3 = cross_val_score(rf2, df2_x, df2_y, cv=10) print("Random Forest Classifier:") In [89]: print("Accuracy for using SMOTEN-ed dataset using entropy criterion:", scores_entropy.mean()*100, "%") print("Accuracy for using SMOTEN-ed dataset using gini criterion:", scores_gini.mean()*100, "%") Random Forest Classifier: Accuracy for using SMOTEN-ed dataset using entropy criterion: 49.63476538318684 % Accuracy for using SMOTEN-ed dataset using gini criterion: 49.63476538318684 % print("Random Forest Classifier:") print("Accuracy for using SMOTENC-ed dataset using entropy criterion:", scores_entropy2.mean()*100, "%") print("Accuracy for using SMOTENC-ed dataset using gini criterion:", scores_gini2.mean()*100, "%") Random Forest Classifier: Accuracy for using SMOTENC-ed dataset using entropy criterion: 47.23919772192646 % Accuracy for using SMOTENC-ed dataset using gini criterion: 47.23919772192646 % print("Random Forest Classifier:") print("Accuracy for using imbalance dataset using entropy criterion:", scores_entropy3.mean()*100, "%") print("Accuracy for using imbalance dataset using gini criterion:", scores_gini3.mean()*100, "%") Random Forest Classifier: Accuracy for using imbalance dataset using entropy criterion: 28.226368070840703 % Accuracy for using imbalance dataset using gini criterion: 28.226368070840703 % from sklearn.tree import DecisionTreeClassifier In [84]: dt1 = DecisionTreeClassifier(criterion='entropy', random_state=13519000) dt2 = DecisionTreeClassifier(criterion='gini', random_state=13519000) scores_entropy_dt1 = cross_val_score(dt1, df3_x, df3_y, cv=10) In [85]: scores_gini_dt1 = cross_val_score(dt2, df3_x, df3_y, cv=10) print("Decision Tree Classifier:") In [92]: print("Accuracy for using SMOTEN-ed dataset using entropy criterion:", scores_entropy_dt1.mean()*100, "%") print("Accuracy for using SMOTEN-ed dataset using gini criterion:", scores_gini_dt1.mean()*100, "%") Decision Tree Classifier: Accuracy for using SMOTEN-ed dataset using entropy criterion: 49.81775411662747 % Accuracy for using SMOTEN-ed dataset using gini criterion: 49.779868763154624 % scores_entropy_dt2 = cross_val_score(dt1, df4_x, df4_y, cv=10) In [87]: scores_gini_dt2 = cross_val_score(dt2, df4_x, df4_y, cv=10) print("Decision Tree Classifier:") In [93]: print("Accuracy for using SMOTENC-ed dataset using entropy criterion:", scores_entropy_dt2.mean()*100, "%") print("Accuracy for using SMOTENC-ed dataset using gini criterion:", scores_gini_dt2.mean()*100, "%") Decision Tree Classifier: Accuracy for using SMOTENC-ed dataset using entropy criterion: 47.297635260616566 % Accuracy for using SMOTENC-ed dataset using gini criterion: 47.1994552432834 % In [88]: scores_entropy_dt3 = cross_val_score(dt1, df2_x, df2_y, cv=10) scores_gini_dt3 = cross_val_score(dt2, df2_x, df2_y, cv=10) print("Decision Tree Classifier:") In [95]: print("Accuracy for using imbalance dataset using entropy criterion:", scores_entropy_dt3.mean()*100, "%") print("Accuracy for using imbalance dataset using gini criterion:", scores_gini_dt3.mean()*100, "%") Decision Tree Classifier: Accuracy for using imbalance dataset using entropy criterion: 28.409439088215382 % Accuracy for using imbalance dataset using gini criterion: 28.380333463333457 % **Predict** def prediction(model, df, xcols, ycol): In [105.. df_['distance_bin'] = pd.cut(df_.distance,[0.0046, 326.593, 1100.383, 2808.036, 11761.396],labels=[0,1,2,3]) df_['distance_bin'] = df_.distance_bin.cat.add_categories(-1) df_['distance_bin'] = df_.distance_bin.fillna(value=-1) $df_2 = df_[xcols]$ df_[ycol] = model.predict(df_2) return df_[['id',ycol]] submission = pd.read_csv('Test.csv') In [98]: del submission['Unnamed: 0'] #decision tree with SMOTEN-ed dataset and entropy criterion is chosen In [99]: #fit the model dt1.fit(df3_x,df3_y) Out[99]: DecisionTreeClassifier(criterion='entropy', random_state=13519000) In [106... #predict submission_result = prediction(dt1, submission, x_cols, y_col) #create csv file of the prediction submission_result.to_csv('DecisionTreeSubmission.csv')