Homework exercises should be done individually (You should write the solution by yourself). Solutions must be submitted electronically as .pdf file before **11.59 pm on Wednesday, October 20**. No credit will be given to solutions obtained verbatim from the Internet or other sources.

1. Order the following functions according to their order of growth (from the lowest to the highest). If any two or more are of same order, indicate which.

$$f_{1}(n) = n^{2} + \log n \qquad f_{8}(n) = n^{12} + n^{10}$$

$$f_{2}(n) = \sqrt{n} \qquad f_{9}(n) = n^{12} \log n$$

$$f_{3}(n) = n - 1000 \qquad f_{10}(n) = n^{\frac{1}{3}} + \log n$$

$$f_{4}(n) = n \log n \qquad f_{11}(n) = (\log n)^{2}$$

$$f_{5}(n) = 2^{n} + n^{10} \qquad f_{12}(n) = 10^{15}$$

$$f_{6}(n) = n^{5} + 3^{n} \qquad f_{13}(n) = \frac{n}{\log n}$$

$$f_{7}(n) = n^{11} \cdot 2^{2 \log n} \qquad f_{14}(n) = \log \log n$$

2. What value is returned by the following algorithm? What is its basic operation? How many times is the basic operation executed? Give the worst-case running time of the algorithm using Big Oh notation.

MICHIGAN(n)

input: an integer n $r \leftarrow 0$ for i = 1 to n for j = i + 1 to n for k = i + j - 1 to n $r \leftarrow r + 1$ return r

3. Solve the following recurrence relation using recursion tree method.

$$T(n) = \begin{cases} 1 & \text{if } n \le 2\\ 4T(\frac{n}{2}) + n^2, & \text{if } n > 2 \end{cases}$$

4. Solve the following recurrence relation using recursion tree method.

$$T(n) = \begin{cases} 1 & \text{if } n \leq 2\\ T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + n, & \text{if } n > 2 \end{cases}$$

5. What does the following algorithm compute? What is its basic operation? How many

times is the basic operation executed? Give the worst-case running time of the algorithm using Big Oh notation.

```
ALASKA(\mathbf{A} = \left(\mathbf{a_{ij}}\right)_{\mathbf{nxn}})
input: an nxn matrix of real numbers \mathbf{r} \leftarrow \mathbf{0}
for \mathbf{i} = 1 to \mathbf{n}-2
for \mathbf{j} = \mathbf{i} + 1 to \mathbf{n}
if \mathbf{a_{ij}} \neq \mathbf{a_{ji}}
return false
return true
```

6. Solve the following recurrence relation using Master Theorem.

$$T(n) = \begin{cases} 1 & , & \text{if } n \leq 2\\ 2T\left(\frac{n}{2}\right) + n\log n, & \text{if } n > 2 \end{cases}$$

7. Solve the following recurrence relation using Master Theorem.

$$T(n) = \begin{cases} 1, & \text{if } n \le 2\\ 3T(\frac{n}{3}) + \sqrt{n}, & \text{if } n > 2 \end{cases}$$

8. What does the following recursive algorithm compute? Set up a recurrence relation for the running time of the algorithm and solve it using backward substitution.

```
SAMSUN(a_i, a_{i+1}, ..., a_j)
input: a sequence of integers
if i = j
return a_i
else
mid \leftarrow \lfloor (i+j)/2 \rfloor
temp1 \leftarrow SAMSUN(a_i, ..., a_{mid})
temp2 \leftarrow SAMSUN(a_{mid}, ..., a_j)
if temp1 \leq temp2
return temp1
else
return temp2
```