I. Introduction to Acids & Bases

A. Properties

ACIDS

- · electrolytes
- · sour taste
- · turn litmus red
- react with metals to form H_2 gas
- vinegar, milk, soda, apples, citrus fruits

BASES

- electrolytes
- bitter taste
- · turn litmus blue
- slippery feel (denature protein)
- ammonia, lye, antacid, baking soda

- · Arrhenius In aqueous solution...
 - Acids form hydronium ions (H₃O⁺)

$$HCI + H_2O \rightarrow H_3O^+ + CI^-$$

acid

- · Arrhenius In aqueous solution...
 - Bases form hydroxide ions (OH-)

$$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$$

base

- Brønsted-Lowry
 - Acids are proton (H+) donors.
 - Bases are proton (H+) acceptors.

$$HCI + H_2O \rightarrow CI^- + H_3O^+$$
 acid base conjugate base conjugate acid

$$H_2O + HNO_3 \rightarrow H_3O^+ + NO_3^-$$

B A CA CB

$$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$$
B

CA

CB

· Amphoteric - can be an acid or a base.

Give the conjugate base for each of the following:

$$HF \rightarrow F^{-}$$

$$H_{3}PO_{4} \rightarrow H_{2}PO_{4}^{-}$$

$$H_{3}O^{+} \rightarrow H_{2}O$$

Polyprotic - an acid with more than one H⁺

Give the conjugate acid for each of the following:

Br
$$\rightarrow$$
 HBr
HSO₄ \rightarrow H₂SO₄
 $CO_3^{2-} \rightarrow$ HCO₃ \rightarrow

- · Lewis
 - Acids are electron pair acceptors.
 - Bases are electron pair donors.

C. Strength

- · Strong Acid/Base
 - 100% ionized in water
 - strong electrolyte

Strong Acids

HCI

HNO₃

H₂SO₄

HBr

HI

HCIO₄

Strong Bases

NaOH

KOH

Ca(OH)₂

Ba(OH)₂

C. Strength

- · Weak Acid/Base
 - does not ionize completely
 - weak electrolyte

HF CH_3COOH H_3PO_4 H_2CO_3 HCN

NH₃

II. pH

Acids & Bases

рН	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Colour	R	ED	ORA	NGE	YELI	.ow	GR	EEN		BLU	JE	PUR	LE-V	OLET
strength	Stroi	ACI	DS	1	Wea		Neu- tral		ak –	ALK	ALIS		Stı >	ong

The colors of solutions with universal indicator

A. Ionization of Water

$$H_2O + H_2O \longrightarrow H_3O^+ + OH^-$$

$$K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$$

A. Ionization of Water

• Find the hydroxide ion concentration of 3.0×10^{-2} M HCl.

$$[H_3O^+][OH^-] = 1.0 \times 10^{-14}$$

 $[3.0 \times 10^{-2}][OH^-] = 1.0 \times 10^{-14}$
 $[OH^-] = 3.3 \times 10^{-13} \text{ M}$

Acidic or basic? Acidic HCL

pouvoir hydrogène (Fr.)
"hydrogen power"

pH of Common Substances

What is the pH of 0.050 M HNO₃?

pH =
$$-log[H_3O^+]$$

pH = $-log[0.050]$
pH = 1.3

Acidic or basic? Acidic

 What is the molarity of HBr in a solution that has a pOH of 9.6?

pH + pOH = 14 pH =
$$-\log[H_3O^+]$$

pH + 9.6 = 14 4.4 = $-\log[H_3O^+]$
pH = 4.4 $-4.4 = \log[H_3O^+]$

Acidic $[H_3O^+] = 4.0 \times 10^{-5} \text{ M HBr}$

Teacher resources for acid/base unit

- http://educ.queensu.ca/~science/main/con cept/chem/c10/c10main.htm
- <u>www.docbrown.info/page03/AcidsBasesSa</u> <u>littshtrtm</u>