

COMP7/8118 M50

Data Mining

Decision Tree: I

Xiaofei Zhang

Slides compiled from Jiawei Han and Raymond C.W. Wong's work

Decision Trees

- Decision tree
 - A flow-chart-like tree structure
 - Internal node denotes a test on an attribute
 - Branch represents an outcome of the test
 - Leaf nodes represent class labels or class distribution

Example of a Decision Tree

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

Another Example of Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Tree Classification Task

Test Set

Test Data

Refund	Marital Status		Cheat
No	Married	80K	?

Decision Tree Classification Task

Test Set

Tree Induction

- Finding the best decision tree (lowest training error) is NP-hard
- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ,SPRINT

General Structure of Hunt's Algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t , then t is a leaf node labeled as y_t
 - If D_t contains records with the same attribute values, then t is a leaf node labeled with the majority class y_t
 - If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets.
- Recursively apply the procedure to each subset.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Hunt's Algorithm

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
4	Yes	Married	120K	No
7	Yes	Divorced	220K	No
2	No	Married	100K	No
6	No	Married	60K	No
9	No	Married	75K	No
3	No	Single	70K	No
5	No	Divorced	95K	Yes
8	No	Single	85K	Yes
10	No	Single	90K	Yes

Hunt's Algorithm

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
4	Yes	Married	120K	No
7	Yes	Divorced	220K	No
2	No	Married	100K	No
6	No	Married	60K	No
9	No	Married	75K	No
3	No	Single	70K	No
5	No	Divorced	95K	Yes
8	No	Single	85K	Yes
10	No	Single	90K	Yes

Hunt's Algorithm

Income

>= 80K

Cheat

< 80K

Don't

Cheat

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
4	Yes	Married	120K	No
7	Yes	Divorced	220K	No
2	No	Married	100K	No
6	No	Married	60K	No
9	No	Married	75K	No
3	No	Single	70K	No
5	No	Divorced	95K	Yes
8	No	Single	85K	Yes
10	No	Single	90K	Yes

Constructing decision-trees (pseudocode)

```
GenDecTree(Sample S, Features F)
    If stopping_condition(S,F) = true then
    a. leaf = createNode()
    b. leaf.label= Classify(S)
         return leaf
     root = createNode()
     root.test_condition = findBestSplit(S,F)
3.
     V = {v | v a possible outcome of root.test_condition}
     for each value v \in V:
    a. S_v := \{s \mid root.test\_condition(s) = v \text{ and } s \in S\};
    b. child = GenDecTree(S<sub>v</sub>,F);
    c. Add child as a descent of root and label the edge (root -> child) as v
6. return root
```

Tree Induction

- Issues
 - How to Classify a leaf node
 - Assign the majority class
 - If leaf is empty, assign the default class the class that has the highest popularity.
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to Specify Test Condition?

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

Multi-way split: Use as many partitions as distinct values.

 Binary split: Divides values into two subsets – respects the order. Need to find optimal partitioning.

What about this split?

Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
 - Binary Decision: (A < v) or $(A \ge v)$
 - consider all possible splits and finds the best cut
 - can be more compute intensive

Splitting Based on Continuous Attributes

(i) Binary split

(ii) Multi-way split

How to determine the Best Split

Before Splitting: 10 records of class CO, 10 records of class C1

Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Creation of nodes with homogeneous class distribution is preferred
- Need a measure of node impurity:

C0: 5

C1: 5

Non-homogeneous,

High degree of impurity

C0: 9

C1: 1

Homogeneous,

Low degree of impurity

Measuring Node Impurity

- p(i|t): fraction of records associated with node t belonging to class i
 - Used in ID3 and C4.5

Entropy(t) =
$$-\sum_{i=1}^{c} p(i \mid t) \log p(i \mid t)$$

• Used in CART, SLIQ, SPRINT.

Gini
$$(t) = 1 - \sum_{i=1}^{c} [p(i | t)]^2$$

Classification error(
$$t$$
) = $1 - \max_{i} [p(i | t)]$

Gain

• Gain of an attribute split: compare the impurity of the parent node with the average impurity of the child nodes

$$\Delta = I(parent) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j)$$

- Maximizing the gain

 Minimizing the weighted average impurity measure of children nodes
- If I() = Entropy(), then Δ_{info} is called information gain

Example

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Gini =
$$1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$$

Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Gini =
$$1 - (1/6)^2 - (5/6)^2 = 0.278$$

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Gini =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

Entropy =
$$-(2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

Impurity measures

- All of the impurity measures take value zero (minimum) for the case of a pure node where a single value has probability 1
- All of the impurity measures take maximum value when the class distribution in a node is uniform.

Comparison among Splitting Criteria

For a 2-class problem:

Categorical Attributes

- For binary values split in two
- For multivalued attributes, for each distinct value, gather counts for each class in the dataset
 - Use the count matrix to make decisions

Multi-way sp	lit
--------------	-----

	CarType			
	Family Sports Luxu			
C1	1	2	1	
C2	4	1	1	
Gini	0.393			

Two-way split (find best partition of values)

	CarType		
	{Sports, Luxury}	{Family}	
C1	3	1	
C2	2	4	
Gini	0.400		

	CarType		
	{Sports}	{Family, Luxury}	
C1	2	2	
C2	1	5	
Gini	0.419		

Continuous Attributes

- Choices for the splitting value
 - Number of possible splitting values
 - = Number of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A < v and $A \ge v$
- Exhaustive method to choose best v
 - For each v, scan the database to gather count matrix and compute the impurity index
 - Computationally Inefficient! Repetition of work.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Continuous Attributes

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing impurity
 - Choose the split position that has the least impurity

	Cheat		No		No		N	0	Ye	s	Ye	s	Υe	s	N	0	N	0	N	0		No	
,		Taxable Income																					
Sorted Values	\longrightarrow	→ 60		70			75		85		90		95		100		120		125		220		
Split Positions	\rightarrow	5	5	65		7	2	2 80		8	7	92		9	97 1		10 1:		22 1		72 230		
		<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.420 0.400		0.375		0.3	0.343		0.417		0.400		<u>0.300</u>		0.343		0.375		0.400		0.420		

Splitting based on impurity

• Impurity measures favor attributes with large number of values

- A test condition with large number of outcomes may not be desirable
 - # of records in each partition is too small to make predictions

Splitting based on INFO

Figure 4.12. Multiway versus binary splits.

Gain Ratio

Splitting using information gain

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO} SplitINFO = -\sum_{i=1}^{k} \frac{n_{i}}{n} \log \frac{n_{i}}{n}$$

Parent Node, p is split into k partitions, n_i is the number of records in partition i

- Adjusts Information Gain by the entropy of the partition (SplitINFO).
 Higher entropy partition (large number of small partitions) is penalized!
- Used in C4.5
- Designed to overcome the disadvantage of impurity

Stopping Criteria for Tree Induction

• Stop expanding a node when all the records belong to the same class

 Stop expanding a node when all the records have similar attribute values