INTRODUCTION TO LLM

Speakers:

Anurag Mahajan

Saloni Redij

Hosts: Asmita Samuel,

Isha Shetye

University at Buffalo The State University of New York

Agenda

- Introduction and History of LLM
- Neural Networks and LLM (RNN, LSTMs, Transformers)
- Deep Dive Architecture of LLM models
- Live Demo on LLM using transformer
- > Types of LLM models
- Use cases
- ➤ Live Demo Basic usage of GPT 2
- Challenges
- Quiz
- > Q/A

What are Large Language Models?

Definition: Type of Artificial Intelligence that uses deep learning techniques to process, understand and generate human language.

Foundation: Built using deep learning and neural networks

Training: Utilizes vast amounts of text datasets from internet, books, blogs, etc.

Utility: Ability to perform diverse set of language tasks like chatbots, text summarization, translation and more.

History of LLMs

Neural Networks and LLM

Introduction to Neural Networks

Definition: System of connected nodes (neurons) inspired by the human brain

Commonly used in vision, speech and language tasks

Utility: Ability to perform diverse set of language tasks like chatbots, text summarization, translation and more.

From Traditional Neural Networks to LLMS

Issue → Traditional NNs work with fixed-size inputs → Not ideal for sequences

Solution: Use sequence-aware models

RNNs → capture previous state

LSTMs → handle longer dependencies

Transformers → attend to all positions

From Traditional Neural Networks to LLMS

Large Language Models are Deep Neural Networks

LLMs (like GPT, BERT) are deep neural networks with 100s of layers

WORKING OF LLMS

Pipeline

Tokenization

Converts text into numerical tokens (words, sub-words, or characters)

Examples using GPT-2 tokenizer and BERT

"unwatched" → "un", "watch", "ed" (sub-word)

```
"cats" → "cat", "s"
```

Tokenization

GPT-2's tokenizer treats spaces as meaningful and sometimes splits words in unusual ways at the byte level.

In BERT's tokenizer, ## indicates token is a subword

Embedding

Converts token IDs (e.g., 210 → "the") into dense vectors

These vectors capture semantic meaning (e.g., "king" and "queen" are clos

Embedding

Perform the following tasks

- ✓ Open the Embedding Projector tool at https://projector.tensorflow.org/
- ✓ In the right panel, enter the word atom in the Search field.
- ✓ Then click the word atom from the results below (under 4 matches).

Positional Encoding

Why Do We Need Position?

- ✓ Transformers Are Orderless
- ✓ Self-attention has no built-in order
- ✓ Example "Cats eat fish" ≠ "Fish eat cats"

Positional Encoding Matrix for the sequence 'I am a robot'

Architecture of LLM

- Based on Transformer architecture
 - Key component:
 - Embedding layer
- Self-attention mechanism
- Feed-forward neural networks
 - Encoder-decoder or decoder only designs
 - Billions of parameters

DEMO

TYPES OF LLM

Types of LLMs

Language
Representation
Models
(GPT, BERT,
Roberta)

Multimodal Models (DALL-E2) Zero-Shot Models (GPT-3)

Fine-Tuned
Models
(Medical chatbots)

Selfie Time!!!!!

USECASES

USECASES

Al Assistants

Semantic Search with embeddings

Text summarization

Sentiment analysis

Procurement management

DEMO

Prompt Engineering

Prompt Engineering with GPT-2

Q What is Prompt Engineering?

Crafting effective input prompts to guide the language model's output

☼ Why It Matters in GPT-2?

GPT-2 is not instruction-tuned.

Output depends heavily on prompt phrasing

No fine-tuning = Smart prompting is essential

Techniques:

Instructional Prompt: "Write a poem about summer."

Few-Shot Learning: Provide 1-2 examples in the prompt

A Challenges:

- · Requires prompt trial & error.
- Sensitive to slight wording changes
- Harder than with GPT-3+ models

Q Use Cases:

- Text completion
- Story generation
- Summarization
- Q&A
- · Code synthesis

CHALLENGES OF LLM

CHALLENGES

Hallucination → Making up facts

Bias → Reflecting societal stereotypes in training data

Compute costs → Training huge models requires massive hardware and energy

Ethics → Risk of misuse in misinformation, impersonation, etc.

QUIZ

References

- o https://cohere.com/blog/large-language
 - models?utm_source=google&utm_medium=cpc&utm_campaign=fy25_amer_1_awareness_paidsearch_22285080165_179273636361_7370
 93627743&utm_term={querystring}&gad_source=1&gclid=Cj0KCQjwna6_BhCbARIsALId2Z3_WHKixAhHFECaRxC0JFxGhy-Ix4XI-ItRlnmmI3u40-ZZ1rv8DJ0aArWQEALw_wcB
- https://www.eweek.com/artificial-intelligence/large-language-model/?ref=cohere-ai.ghost.io
- https://cohere.com/blog/say-hello-to-precision-how-rerankers-and-embeddings-boost-search?ref=cohere-ai.ghost.io& gl=1*mcqtq4* up*MQ..* gs*MQ..&gclid=Cj0KCQjwna6 BhCbARIsALId2Z3 WHKixAhHFECaRxC0JFxGhy-Ix4XI-ItRlnmmI3u40-ZZ1rv8DJ0aArWQEALw wcB
- o https://www.eweek.com/artificial-intelligence/large-language-model/?ref=cohere-ai.ghost.io
- https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/

Q & A

