WHAT DRIVES INVESTORS' PORTFOLIO CHOICES? SEPARATING RISK PREFERENCES FROM FRICTIONS

Taha Choukhmane MIT Sloan Tim de Silva Stanford GSB

Berkeley Psychology & Economics

September 2nd, 2025

MOTIVATING EXAMPLE

- Suppose we observe an investor with wealth not participating in stock market
- What can we say about this investor?

MOTIVATING EXAMPLE

- Suppose we observe an investor with wealth not participating in stock market
- What can we say about this investor?
- 1. prefers safe assets to stocks, due to...
 - loss-aversion (Gomes 2005)
 - disappointment-aversion (Ang et al. 2005)
 - ambiguity-aversion (Epstein and Wang 1994)
 - news-utility (Pagel 2018)
 - rank-dependence (Chapman and Polkovnichenko 2009)
 - narrow framing (Barberis et al. 2006)
 - background risk (Benzoni et al. 2007; Catherine 2019)
 - disaster risk (Fagereng et al. 2017)
 - pessimistic beliefs (Briggs et al. 2021)
 - lack of trust (Guiso et al. 2008)

MOTIVATING EXAMPLE

- Suppose we observe an investor with wealth not participating in stock market
- What can we say about this investor?
- 1. prefers safe assets to stocks, due to...
 - loss-aversion (Gomes 2005)
 - disappointment-aversion (Ang et al. 2005)
 - ambiguity-aversion (Epstein and Wang 1994)
 - news-utility (Pagel 2018)
 - rank-dependence (Chapman and Polkovnichenko 2009)
 - narrow framing (Barberis et al. 2006)
 - background risk (Benzoni et al. 2007; Catherine 2019)
 - disaster risk (Fagereng et al. 2017)
 - pessimistic beliefs (Briggs et al. 2021)
 - lack of trust (Guiso et al. 2008)

2. prefers stocks, but faces frictions such as...

 per-period participation costs (Vissing-Jørgensen 2002; Fagereng et al. 2017; Briggs et al. 2021)

- one-time adjustment or participation costs

(Haliassos and Michaelides 2003: Gomes and Michaelides 2005: Abel et al. 2013)

Preferences or frictions?

- Separating risk preferences from frictions is important
 - positive: distinguishing between theories or calibrating models
 - normative: welfare effects of nudging people to hold more stocks (e.g. TDFs)
- Problem: hard to do so because with frictions, observed choices # preferences!

• This paper: separately identify preferences & frictions as drivers of portfolio choice

Our findings

- 1. Cross-sectional: difficult to separate frictions from risk preferences
 - the life cycle of participation from SCF is consistent with **both**:
 - high risk-aversion + small participation or adjustment costs
 - low risk-aversion + large participation or adjustment costs
- 2. Quasi-experiment: investors' portfolio choices differ from their preferences
 - non-parametric framework + variation in 401(k) default asset allocations give:
 - ≈ 94% of investors prefer stock market participation absent frictions
 - average preferred stock share is $\approx 76\%$ and declines over the life cycle
- 3. **Structural model**: evidence consistent with RRA ≈ 2.5 and adjustment cost $\approx \$160$
 - √ quasi-experimental variation useful for identifying structural preference parameters

OUTLINE

- 1 Identification Challenge
- 2 Empirical Results
- 3 STRUCTURAL LIFE CYCLE MODEL
- **4** Conclusion

OUTLINE

- IDENTIFICATION CHALLENGE
- 2 Empirical Results
- 3 STRUCTURAL LIFE CYCLE MODEL
- OCCUSION

RRA IN LIFE CYCLE PORTFOLIO CHOICE

Paper	Friction	Estimate	
Fagereng et al. (2017)	per-period cost	14.4	
Dahlquist et al. (2018)	one-time cost	14	
Fagereng et al. (2017)	per-period cost	11.8	•
Catherine (2020)	none	11.6	_
Fagereng et al. (2017)	per-period cost	11	_
Cocco et al. (2005)	none	10	•
Reher and Sokolinski (2021)	per-period cost	9.1	•
Catherine (2020)	per-period cost	8.2	•
Catherine (2020)	none	6.9	•
Catherine (2020)	per-period cost	6.2	_
Calvet et al. (2020)	none	5.24	•
Gomes and Michaelides (2005)	one-time cost	5	•
Campanale et al. (2015)	one-time cost	5	•
Benzoni et al. (2007)	none	5	•
Gomes et al. (2009)	one-time cost	4	•
Briggs et al. (2021)	one-time cost	3.1	•
Briggs et al. (2021)	one-time cost	2.4	-
Average		7.82	0 1 2 3 4 5 6 7 8 9 10 11 1 Estimated Coefficient of Relative Risk Aversion

OUTLINE

- 1 Identification Challenge
- ② EMPIRICAL RESULTS

 DATA AND IDENTIFYING VARIATION
 ESTIMATING PREFERENCES
 PREFERENCES OVER THE LIFE CYCLE
- 3 STRUCTURAL LIFE CYCLE MODEL
- 4 Conclusion

Data and Identifying Variation

DATA DESCRIPTION

- 401(k) account-level data from a large US provider
 - covers workers at ≈ 600 retirement plans from 2006-2017
 - includes individual-level contributions, account balances, and asset allocations

DATA DESCRIPTION

- 401(k) account-level data from a large US provider
 - covers workers at ≈ 600 retirement plans from 2006-2017
 - includes individual-level contributions, account balances, and asset allocations
- Data limitation I: inclusion in the sample is not random
 - 1. need access to employer-sponsored DC plan
 - √ ≈ 67% of civilian workforce (Myers and Topelski 2020)
 - 2. must be with our provider
 - ✓ median age (41), income (\$34K), and average balance (\$70K) similar to US population

DATA DESCRIPTION

- 401(k) account-level data from a large US provider
 - covers workers at ≈ 600 retirement plans from 2006-2017
 - includes individual-level contributions, account balances, and asset allocations
- Data limitation I: inclusion in the sample is not random
 - 1. need access to employer-sponsored DC plan
 - \checkmark $\approx 67\%$ of civilian workforce (Myers and Topelski 2020)
 - 2. must be with our provider
 - \checkmark median age (41), income (\$34K), and average balance (\$70K) similar to US population
- Data limitation II: only observe 401(k) with current employer
 - 1. individuals may invest outside retirement accounts
 - \checkmark 85% of investments held in retirement accounts (SCF 2007-2016)
 - 2. individuals may invest differently in account with current employer
 - \checkmark keep track of current and previous 401(k) and outside savings in model

THE IDEAL EXPERIMENT

- Ideal experiment: give an investor an account with stocks ⇒ ↓ frictions
- Potential outcomes:
 - 1. investor sells stocks \Rightarrow prefers non-participation (e.g. loss aversion)
 - 2. investor keeps stocks \Rightarrow frictions (e.g. adjustment costs) matter

APPROXIMATING THE IDEAL EXPERIMENT

- Ideal experiment: give an investor an account with stocks ⇒ ↓ frictions
- Quasi-experiment #1: 6 firms changing 401(k) default asset allocation
 - control: 1,086 investors auto-enrolled into a money market fund
 - treatment: 1,321 investors auto-enrolled into a target date fund

APPROXIMATING THE IDEAL EXPERIMENT

- Ideal experiment: give an investor an account with stocks ⇒ ↓ frictions
- Quasi-experiment #1: 6 firms changing 401(k) default asset allocation
 - control: 1,086 investors auto-enrolled into a money market fund
 - treatment: 1,321 investors auto-enrolled into a target date fund
- Quasi-experiment #2: 191 firms changing from opt-in to AE with TDF default
 - control: 40,337 investors hired under opt-in
 - treatment: 52,400 investors auto-enrolled into a target date fund

APPROXIMATING THE IDEAL EXPERIMENT

- Ideal experiment: give an investor an account with stocks ⇒ ↓ frictions
- Quasi-experiment #1: 6 firms changing 401(k) default asset allocation
 - control: 1,086 investors auto-enrolled into a money market fund
 - treatment: 1,321 investors auto-enrolled into a target date fund
- Quasi-experiment #2: 191 firms changing from opt-in to AE with TDF default
 - control: 40,337 investors hired under opt-in
 - treatment: 52,400 investors auto-enrolled into a target date fund
- √ Note: experiments don't remove per-period costs ⇒ lower bound on impact of frictions

IDENTIFYING VARIATION: EXPERIMENT #1

Identifying variation: experiment #2

Observed Portfolio Choice Response

Observed Portfolio Choice Response

OBSERVED PORTFOLIO CHOICE RESPONSE: ROBUSTNESS

Portfolio choice response is not driven by

- peer effects: similar choices for employees hired multiple years pre-policy >
- survivorship bias: similar choices for employees across tenures in the job
- passive rebalancing: similar asset allocation for new contributions >

ESTIMATING PREFERENCES

	Investor Types		
401(k) Default			
Bonds			
Stocks			
Consistent Prefers Stocks			

	Investor Types		
401(k) Default	Type 1		
Bonds	Bonds		
Stocks	Stocks		
Consistent	Х		
Prefers Stocks	?		

	Investor Types		
401(k) Default	Type 1	Type 2	
Bonds	Bonds	Bonds	
Stocks	Stocks	Bonds	
Consistent	Х	✓	
Prefers Stocks	?	X	

	Investor Types		
401(k) Default	Type 1	Type 2	Type 3
Bonds	Bonds	Bonds	Stocks
Stocks	Stocks	Bonds	Stocks
Consistent	Х	✓	1
Prefers Stocks	?	Х	✓

	Investor Types		
401(k) Default	Type 1	Type 2	Type 3
Bonds	Bonds	Bonds	Stocks
Stocks	Stocks	Bonds	Stocks
Consistent Prefers Stocks	Х ?	✓ ×	√ ✓

- Distribution of three types in population reveals:
 - average preference for stocks ≈ # Type 2 vs. # Type 3
 - size of frictions ≈ # Type 1
- **Key challenge**: inferring preferences of passives ⇒ try different identifying assumptions

FORMAL FRAMEWORK

GOLDIN AND RECK (2020)

- Environment: investor i chooses portfolio at $t \ge 0$ after default set at t = 0
- Notation:
 - $D_i \in \{0,1\} = \mathsf{default}$
 - $Y_{it} \in \{0,1\}$ = observed participation, $\theta_{it} \in [0,1]$ = observed stock share
 - $Y_{it}^* \in \{0,1\}, \ \theta_{it}^* \in [0,1] =$ unobserved preferences
- Two types of people in population:
 - consistent = choices unaffected by frictions (bond-lovers & stock-lovers) $\Rightarrow C_{it} = 1$
 - inconsistent = choices affected by frictions (passives) $\Rightarrow C_{it} = 0$

IDENTIFYING ASSUMPTIONS

- A1 Frame separability: investors' preferences unaffected by default
- A2 Frame exogeneity: default chosen by firm is independent of investors' preferences
- A3 **Consistency principle**: participate under both defaults ⇒ prefer to participate
- A4 No defiers: there are no types that always choose opposite of default

Bounding Population Preferences

A1-A4
$$\Rightarrow$$
 at $\tau = 2$, $E(Y_{it}^*) \in [78\%, 95\%]$

Bounding Population Preferences

A1-A4
$$\Rightarrow$$
 at $\tau = 2$, $E(Y_{it}^*) \in [78\%, 95\%]$

A1-A4
$$\Rightarrow$$
 at $\tau = 2$, $E(\theta_{it}^*) \ge 58\%$

IDENTIFYING ASSUMPTIONS

- A1 Frame separability: investors' preferences unaffected by default
- A2 Frame exogeneity: default chosen by firm is independent of investors' preferences
- A3 Consistency principle: participate under both defaults ⇒ prefer to participate
- A4 No defiers: no people always choose opposite of default

$$\underbrace{E_{\tau}\left(\theta_{it}^{*}\right)}_{\text{population preferences}} = \underbrace{E_{\tau}\left(\theta_{it}^{*} \mid C_{it} = 1\right) - \text{constant} * \underbrace{cov_{\tau}\left(\theta_{it}^{*}, C_{it}\right)}_{\text{selection}}$$

IDENTIFYING ASSUMPTIONS

- A1 Frame separability: investors' preferences unaffected by default
- A2 Frame exogeneity: default chosen by firm is independent of investors' preferences
- A3 Consistency principle: participate under both defaults \Rightarrow prefer to participate
- A4 No defiers: no people always choose opposite of default

$$\underbrace{E_{\tau}\left(\theta_{it}^{*}\right)}_{\text{population preferences}} = \underbrace{E_{\tau}\left(\theta_{it}^{*} \mid C_{it} = 1\right)}_{\text{consistent preferences}} - \text{constant} * \underbrace{cov_{\tau}\left(\theta_{it}^{*}\right)}_{\text{selection}}$$

A5 Consistency independence: preferences consistent = inconsistent (with same tenure)

AVERAGE PREFERENCES

▶ test of A5 → by default → opt-in sample → # consistent

10

Preferences over the Life Cycle

Relaxing consistency independence

$$E_{\tau}\left(\theta_{it}^{*}\right) = \underbrace{E_{\tau}\left(\theta_{it}^{*} \mid C_{it} = 1\right)}_{\text{prior slide}} - \text{constant} * \underbrace{cov_{\tau}\left(\theta_{it}^{*}, C_{it}\right)}_{\text{selection}}$$

- Consistency independence (A5) might be violated due to age effects
 - A6 Conditional consistency independence: consistent & inconsistent have same preferences
 - 1. conditional on tenure at firm
 - 2. conditional on age when hired
- Replacing A5 with A6, can identify:
 - 1. average population preferences by conditioning on age + tenure
 - 2. **life cycle profiles** of average population preferences

Relaxing consistency independence

$$E_{\tau}\left(\theta_{it}^{*}\right) = \underbrace{E_{\tau}\left(\theta_{it}^{*} \mid C_{it} = 1\right)}_{\text{prior slide}} - \text{constant} * \underbrace{cov_{\tau}\left(\theta_{it}^{*}, C_{it}\right)}_{\text{selection}}$$

- Consistency independence (A5) might be violated due to age effects
 - A6 Conditional consistency independence: consistent & inconsistent have same preferences
 - 1. conditional on tenure at firm
 - 2. conditional on age when hired
- Replacing A5 with A6, can identify:
 - 1. average population preferences by conditioning on age + tenure
 - 2. **life cycle profiles** of average population preferences
- √ Results robust to conditioning on income as well

PARTICIPATION: CHOICES VS. PREFERENCES

PARTICIPATION: CHOICES VS. PREFERENCES

STOCK SHARE: CHOICES VS. PREFERENCES

STOCK SHARE: CHOICES VS. PREFERENCES

• Absent frictions, preferences look more consistent with textbook life cycle theory Merton (1971)

STOCK SHARE: CHOICES VS. PREFERENCES

• Absent frictions, preferences look more consistent with textbook life cycle theory Merton (1971)

Preference heterogeneity increases with age

Preference heterogeneity increases with age

Preference heterogeneity increases with age

MINIMAL PREFERENCE HETEROGENEITY BY INCOME

NO COHORT OR YEAR EFFECTS IN PREFERENCES

⇒ Year/cohort effects in choices might be driven by frictions changing!

OUTLINE

- IDENTIFICATION CHALLENGE
- 2 Empirical Results
- 3 STRUCTURAL LIFE CYCLE MODEL MODEL DESCRIPTION ESTIMATION AND MODEL FIT
- ONCLUSION

Model Description

Model Summary

We build a rich life cycle portfolio choice model with default effects

- 1. Three savings accounts: liquid savings and illiquid tax-exempt DC retirement account
 - liquid savings goes into liquid asset
 - retirement savings with current employer allocated between stocks and bonds
 - accumulated retirement savings with past employers
- 2. Adjustment costs: changing portfolio or contribution rate requires incurring utility cost
- 3. Asset allocation: can choose different portfolios for existing and new DC contributions
- 4. **Uncertainty:** about earnings and employment ⇒ value of delaying adjustments

Model: Adjustment costs

- Class of models can be represented via cost of adjusting from default (Masatlioglu and Ok 2005)
- Two adjustment costs:
 - k_{θ} = portfolio adjustment cost
 - k_s = retirement account contribution adjustment cost

flow utility =
$$u\left(c - k_{\theta} * 1_{\{\theta \neq \theta_d, \Theta \neq \Theta_d\}} - k_s * 1_{\{s^{dc} \neq s_d\}}\right)$$

- Adjustment costs could capture
 - real costs = filling out form, transaction costs, paying for professional advice
 - attention costs = cost of considering full menu of choices (Masatlioglu et al. 2012)
 - optimization costs = hassle cost of comparing different scenarios (Ortoleva 2013)
- Parismonious: same cost for all investors and periods

Model: environment

- Preferences: recursive Epstein-Zin-Weil to separate EIS and RRA
 - consumption adjusted for equivalence scale

• Employment states (*emp_t*):

- 1. employed for employer: income_t = $f(age_t) * AR1$ productivity shock^E_t
- 2. job-transition between employers: $income_t = f(age_t) * AR1$ productivity shock
- 3. unemployment: UI benefits = 40% replacement of last wage
- 4. retirement at age 65: SS benefits = 40% of average wage

• Financial assets:

- 1. Liquid asset: $1 + r(1 \tau_c)$
- 2. Risk-free bond: $R_f = 1 + r$
- 3. Risky stock: $\ln R_t = \ln R_f + \mu + \varepsilon_t$, $\varepsilon_t \sim N(0, \sigma^2)$

Model: Savings accounts

Liquid savings account:

$$L_{t+1} = (L_t + s_t^l) [1 + r(1 - \tau_c)], \quad L_t \ge 0$$

- DC retirement account:
 - new contributions subject to employer match up to cap with vesting risk
 - θ_t^j = share of new contributions in asset $j \in \{B, S\}$
 - Θ_t^j = share of existing savings in asset $j \in \{B, S\}$

$$A_{t+1} = A_t * \text{return}(\Theta_t^j) + \text{new contributions} * \text{return}(\theta_t^j)$$

- need to separate portfolio choices because of adjustment costs!
- Taxation:
 - taxes on wages and DC withdrawals, DC contributions tax-exempt
 - capital gains tax on liquid wealth returns, DC capital gains tax-free

Model: Defaults

Default portfolio shares:

$$\text{new contributions}: \quad \theta_{d,t}^j = \begin{cases} \text{default asset allocation}_e & \text{if } emp_t = JJ, \\ \theta_{t-1}^j & \text{else.} \end{cases}$$

existing assets: $\Theta_{d,t}^{j} = \Theta_{t-1}^{j} * adjustment for realized returns_{t}$

Default DC contribution rate:

$$s_{d,t} = \begin{cases} \text{default savings rate}_e & \text{if } emp_t = JJ, \\ s_{t-1}^{dc} & \text{else.} \end{cases}$$

Model: investors' problem

$$V(\mathbf{X}_{t}) = \max_{\mathbf{Y}_{t}} \left\{ (1 - \beta) n_{t} \left[\frac{c_{t} - \mathbf{k}_{\theta} * \mathbf{1}_{\left\{\theta_{t}^{j} \neq \theta_{d, t}, \Theta_{t}^{j} \neq \Theta_{d, t}\right\}} - \mathbf{k}_{s} * \mathbf{1}_{\left\{s_{t}^{dc} \neq s_{d, t}\right\}}}{n_{t}} \right]^{1 - \sigma} + \beta \left[m_{t} E_{t} V(\mathbf{X}_{t+1})^{1 - \gamma} \right]^{\frac{1 - \sigma}{1 - \gamma}} \right\}^{\frac{1}{1 - \sigma}}$$

Model: investors' problem

$$V(\boldsymbol{X_t}) = \max_{\boldsymbol{Y_t}} \left\{ (1 - \beta) n_t \left[\frac{c_t - k_\theta * 1_{\left\{\theta_t^j \neq \theta_{d,t}, \Theta_t^j \neq \Theta_{d,t}\right\}} - k_s * 1_{\left\{s_t^{dc} \neq s_{d,t}\right\}}}{n_t} \right]^{1 - \sigma} + \beta \left[m_t E_t V(\boldsymbol{X_{t+1}})^{1 - \gamma} \right]^{\frac{1 - \sigma}{1 - \gamma}} \right\}^{\frac{1}{1 - \sigma}}$$

10 state variables $X_t = \{age_t, emp_t, L_t, A_t, \eta_t, ten_t, ae_t, s_{d,t}, \theta_{d,t}, \Theta_{d,t}\}$:

- age_t: age in years
- L_t: liquid wealth
- η_t : labor productivity
- aet: average lifetime income
- $\Theta_{d,t}$: default risky share of existing balance

- *emp_t*: employment status
- A_t: DC retirement wealth
- tent: tenure in current job
- $s_{d,t}$: default contribution rate
- $\theta_{d,t}$: default risky share for new contributions

Model: investors' problem

$$V(\boldsymbol{X_t}) = \max_{\boldsymbol{Y_t}} \left\{ (1 - \beta) n_t \left[\frac{c_t - k_\theta * \mathbf{1}_{\left\{\theta_t^j \neq \theta_{d,t}, \boldsymbol{\Theta}_t^j \neq \boldsymbol{\Theta}_{d,t}\right\}} - k_s * \mathbf{1}_{\left\{s_t^{dc} \neq s_{d,t}\right\}}}{n_t} \right]^{1 - \sigma} + \beta \left[m_t E_t V(\boldsymbol{X_{t+1}})^{1 - \gamma} \right]^{\frac{1 - \sigma}{1 - \gamma}} \right\}^{\frac{1}{1 - \sigma}}$$

- 4 choice variables $Y_t = \{s_t^I, s_t^{dc}, \theta_t, \Theta_t\}$:
 - s_t^l : liquid savings next period
 - s_t^{dc} : DC contribution rate
 - $s_t^{dc} \ge 0$ when employed
 - $s_t^{dc} \le 0$ when unemployed/retired

- θ_t : risky share for new contributions
- Θ_t : risky share of existing balance

ESTIMATION AND MODEL FIT

ESTIMATION STRATEGY

- **Estimation**: SMM with optimal weighting matrix
- Moments (38):
 - response of stock market participation to default change = QE #1 (14)
 - stock share by age in first year under MM and TDF default = QE #1 (16)
 - contribution rates in first-year under opt-in and AE (8)
- Identification of preference parameters (5):
 - $\gamma =$ stock shares of consistent investors
 - k_{θ} = bunching at default 401(k) asset allocation
 - k_s = bunching at default 401(k) contribution rate
 - $\beta = \text{average level of 401(k) contributions}$
 - $\sigma = {\sf bunching}$ in contribution rates at match cap (Best et al. 2017)

ESTIMATION RESULTS

		Estimation			
Preference Parameter		(1)	(2)	(3)	(4)
Discount Factor	β	0.940			
		(0.001)			
Relative Risk Aversion	γ	2.54			
		(0.09)			
Elasticity of Intertemporal Substitution	σ^{-1}	0.253			
B (C) All (C)	,	(0.018)			
Portfolio Adjustment Cost	k_{θ}	\$156			
Contribution Adjustment Cost	k_s	(\$6.01) \$488			
Contribution Adjustment Cost	Ks	(\$16.60)			
Model Specification					
Preference Specification		EZW			
No Adjustment Costs					
Moments Targeted					
Participation (MM Default)		✓			
Participation (TDF Default)		✓			
Equity Share by Age (MM Default)		\checkmark			
Equity Share by Age (TDF Default)		\checkmark			
Contribution Rates (Opt-In)		✓			
Contribution Rates (AE at 3%)		√ 20			
Total Number of Moments		38			

Model fit i/iii

Quasi-experiment #1

Sample: employees hired within 12 months of MM to TDF change at 6 firms in QE #1

Model fit II/III

STOCK SHARE AGE PROFILE BY DEFAULT

Sample: employees hired within 12 months of MM to TDF change at 6 firms in QE #1

Model fit III/III

Contribution rates in first year of tenure

Sample: employees hired within 12 months of 3% AE adoption at 34 firms with 50% match up to 6%

ESTIMATION RESULTS

			Estimation	1
Preference Parameter		(1)		
Discount Factor	β	0.940		
		(0.001)		
Relative Risk Aversion	γ	2.54		
		(0.09)		
Elasticity of Intertemporal Substitution	σ^{-1}	0.253		
		(0.018)		
Portfolio Adjustment Cost	k_{θ}	\$156		
		(\$6.01)		
Contribution Adjustment Cost	k_s	\$488		
		(\$16.60)		
Model Specification				
Preference Specification		EZW		
No Adjustment Costs				
Moments Targeted				
Participation (MM Default)		✓		
Participation (TDF Default)		✓		
Equity Share by Age (MM Default)		✓		
Equity Share by Age (TDF Default)		✓		
Contribution Rates (Opt-In)		✓		
Contribution Rates (AE at 3%)		✓		
Total Number of Moments		38		

ESTIMATION RESULTS

			Estimation	
Preference Parameter		(1)	(2)	
Discount Factor	β	0.940	0.934	
		(0.001)	(0.001)	
Relative Risk Aversion	γ	2.54	2.81	
		(0.09)	(0.017)	
Elasticity of Intertemporal Substitution	σ^{-1}	0.253		
		(0.018)		
Portfolio Adjustment Cost	k_{θ}	\$156	\$194	
		(\$6.01)	(\$3.90)	
Contribution Adjustment Cost	k_s	\$488	\$522	
		(\$16.60)	(\$26.00)	
Model Specification				
Preference Specification		EZW	CRRA	
No Adjustment Costs				
Moments Targeted				
Participation (MM Default)		\checkmark	✓	
Participation (TDF Default)		✓	✓	
Equity Share by Age (MM Default)		✓	✓	
Equity Share by Age (TDF Default)		✓	✓	
Contribution Rates (Opt-In)		✓	✓	
Contribution Rates (AE at 3%)		✓	✓	
Total Number of Moments		38	38	

ESTIMATION RESULTS

			Estimation			
Preference Parameter		(1)	(2)	(3)		
Discount Factor	β	0.940	0.934	0.791		
		(0.001)	(0.001)	(0.004)		
Relative Risk Aversion	γ	2.54	2.81	18.94		
		(0.09)	(0.017)	(0.246)		
Elasticity of Intertemporal Substitution	σ^{-1}	0.253		0.481		
		(0.018)		(0.012)		
Portfolio Adjustment Cost	k_{θ}	\$156	\$194			
		(\$6.01)	(\$3.90)			
Contribution Adjustment Cost	k_s	\$488	\$522			
		(\$16.60)	(\$26.00)			
Model Specification						
Preference Specification		EZW	CRRA	EZW		
No Adjustment Costs				✓		
•						
Moments Targeted						
Participation (MM Default)		\checkmark	✓	✓		
Participation (TDF Default)		\checkmark	\checkmark			
Equity Share by Age (MM Default)		✓	✓	\checkmark		
Equity Share by Age (TDF Default)		✓	✓			
Contribution Rates (Opt-In)		✓	✓	✓		
Contribution Rates (AE at 3%)		\checkmark	\checkmark			
Total Number of Moments		38	38	19		

ESTIMATION RESULTS

		Estimation			
Preference Parameter		(1)	(2)	(3)	(4)
Discount Factor	β	0.940	0.934	0.791	0.960
		(0.001)	(0.001)	(0.004)	(0.001)
Relative Risk Aversion	γ	2.54	2.81	18.94	2.25
		(0.09)	(0.017)	(0.246)	(0.123)
Elasticity of Intertemporal Substitution	σ^{-1}	0.253		0.481	0.513
		(0.018)		(0.012)	(0.040)
Portfolio Adjustment Cost	k_{θ}	\$156	\$194		
		(\$6.01)	(\$3.90)		
Contribution Adjustment Cost	k_s	\$488	\$522		
		(\$16.60)	(\$26.00)		
Model Specification					
Preference Specification		EZW	CRRA	EZW	EZW
No Adjustment Costs			Citiot	\ \	
To Adjustment Costs				•	•
Moments Targeted					
Participation (MM Default)		✓	✓	✓	
Participation (TDF Default)		✓	✓		✓
Equity Share by Age (MM Default)		✓	✓	✓	
Equity Share by Age (TDF Default)		✓	✓		\checkmark
Contribution Rates (Opt-In)		✓	✓	\checkmark	
Contribution Rates (AE at 3%)		✓	\checkmark		✓
Total Number of Moments		38	38	19	19

OUTLINE

- IDENTIFICATION CHALLENGE
- 2 Empirical Results
- 3 STRUCTURAL LIFE CYCLE MODEL
- 4 Conclusion

SUMMARY

- Risk preferences central in economics + finance, but lack of consensus on specification
 - stock market non-participation often presented as evidence of first-order risk-aversion
- Our results: non-participation primarily driven by frictions not preferences
 - limited support for explanations of low participation based on first-order risk-aversion
- Frictions break mapping from observed choices → underlying preferences
 - caution against estimating behavioral models using cross-sectional moments
- Consistent with behavioral "biases" being optimal given cognitive constraints
 - see e.g. Woodford 2020, Puri 2022, Enke-Graeber 2024, Oprea 2024

IMPLICATIONS FOR DEFAULT DESIGN

- 1. Retirement investors are less risk-averse than previously thought
 - aggressive allocations are preferred by most workers, including low-income
- 2. On average, TDFs close to preferences of older workers, but are slightly high for young
- 3. One-size-fits-all defaults work better for young, but less well for older workers
 - preference heterogeneity increases substantially with age
- 4. Models to derive an optimal glide path should incorporate adjustment frictions
 - otherwise, risk aversion will be overestimated

IMPLICATIONS FOR DEFAULT DESIGN

- 1. Retirement investors are less risk-averse than previously thought
 - aggressive allocations are preferred by most workers, including low-income
- 2. On average, TDFs close to preferences of older workers, but are slightly high for young
- 3. One-size-fits-all defaults work better for young, but less well for older workers
 - preference heterogeneity increases substantially with age
- 4. Models to derive an optimal glide path should incorporate adjustment frictions
 - otherwise, risk aversion will be overestimated
- Work-in-progress: whose preferences should optimal defaults target?
 - e.g., should it target passive (younger/low-income) rather than average worker?

THANK YOU!

tdesilva@stanford.edu

www.timdesilva.me

- Abel, Andrew B., Janice Eberly, and Stavros Panageas (2013), "Optimal Inattention to the Stock Market With Information Costs and Transactions Costs." *Econometrica*, 81, 1455–1481.
- Ang, Andrew, Geert Bekaert, and Jun Liu (2005), "Why stocks may disappoint." *Journal of Financial Economics*. 76, 471–508.
- Barberis, Nicholas, Ming Huang, and Richard H. Thaler (2006), "Individual preferences, monetary gambles, and stock market participation: A case for narrow framing." *American Economic Review*, 96, 1069–1090.
- Benzoni, Luca, Pierre Collin-Dufresne, and Robert S. Goldstein (2007), "Portfolio choice over the life-cycle when the stock and labor markets are cointegrated." *Journal of Finance*, 62, 2123–2167. Briggs, Joseph, David Cesarini, Erik Lindqvist, and Robert Östling (2021), "Windfall gains and stock
- market participation." Journal of Financial Economics, 139, 57–83.

 Catherine, Sylvain (2019), "Labor market risk and the private value of Social Security." Social Science
- Research Network.
- Chapman, David A. and Valery Polkovnichenko (2009), "First-Order risk aversion, heterogeneity, and asset market outcomes." *Journal of Finance*, 64, 1863–1887.
- Epstein, Larry and Tan Wang (1994), "Intertemporal Asset Pricing under Knightian Uncertainty." *Econometrica*, 62, 283–322.

- Fagereng, Andreas, Charles Gottlieb, and Luigi Guiso (2017), "Asset Market Participation and Portfolio Choice over the Life-Cycle." *Journal of Finance*, 72, 705–750.
- Gomes, Francisco and Alexander Michaelides (2005), "Optimal life-cycle asset allocation: Understanding the empirical evidence." *Journal of Finance*, 60, 869–904.
- Gomes, Francisco J. (2005), "Portfolio choice and trading volume with loss-averse investors." *Journal of Business*, 78, 675–706.
- Guiso, Luigi, Paola Sapienza, and Luigi Zingales (2008), "Trusting the stock market." *Journal of Finance*, 63, 2557–2600.
- Haliassos, Michael and Alexander Michaelides (2003), "Portfolio Choice and Liquidity Constraints." *International Economic Review*, 44, 143–177.
- Masatlioglu, Yusufcan and Efe A. Ok (2005), "Rational choice with status quo bias." *Journal of Economic Theory*, 121, 1–29.
- Pagel, Michaela (2018), "A News-Utility Theory for Inattention and Delegation in Portfolio Choice." *Econometrica*, 86, 491–522.
- Vissing-Jørgensen, Annette (2002), "Limited asset market participation and the elasticity of intertemporal substitution." *Journal of Political Economy*, 110, 825–853.

START OF APPENDIX

APPENDIX

SIMPLE MODEL

$$V(X_{t}) = \max_{c_{t}, \theta_{t} \in [0, 1]} \left\{ \frac{n_{t} \left(c_{t} / n_{t} - k * 1 \{ \theta_{t} \neq \theta_{d, t} \} - p * 1 \{ \theta_{t} > 0 \} \right)^{1 - \sigma}}{1 - \sigma} + \beta \left[(1 - m_{t+1}) E_{t} V(X_{t+1}) \right) \right] \right\}$$

state variables:
$$X_t = (age_t, w_t, A_t, \theta_{t-1})$$

$$\text{default portfolio share:} \quad \frac{\theta_{d,t}}{\theta_{t-1}} = \begin{cases} 0 & \text{if } age_t = 21\\ \theta_{t-1} * \frac{R_t}{(1-\theta_{t-1})R_t+\theta_{t-1}R_t} & \text{else} \end{cases}$$

budget constraint:
$$A_t = A_{t-1} \left[(1 - \theta_{t-1}) R_f + \theta_{t-1} R_t \right] + w_t - c_t$$

borrowing constraint: $A_t \ge 0$

income process:
$$\ln w_t = f(age_t) + \eta_t$$
, $\eta_t = \rho \eta_{t-1} + \nu_t$, $\nu_t \sim F(\cdot)$

return process: $\ln R_t = \ln R_f + \mu + \varepsilon_t$, $\varepsilon_t \sim \mathcal{N}(0, \sigma_r^2)$

VANGUARD TDF GLIDE PATH

Short-term TIPS

SUMMARY STATISTICS

	Our Sample 2006-2017			
	N = 18,	N = 18,398,750		
	Mean	Median		
Age	41.59	41.00		
Wage Income		33,854.40		
401(k) Balance	69,658.18	19,758.30		
Stock Market Participation in 401(k)	0.68	1.00		
Stock Share in 401(k)	0.53	0.73		

SCF SUMMARY STATISTICS

	All Households		Retirement Account Eligible	
	Mean	Median	Mean	Median
Age	44.45	45.00	44.09	45.00
Wage Income	47,235.74	34,006.39	59,546.96	43,722.50
Retirement Wealth	53,206.22	1,814.59	76,688.93	16,512.71
Investable Wealth	106,347.92	3,877.58	132,161.00	20,105.97
Ratio of Retirement to Investable Wealth	0.80	1.00	0.85	1.00
Stock Share of Retirement Wealth	0.29	0.00	0.42	0.40
Ratio of Equity Holdings in Retirement to Total	0.42	0.00	0.63	0.97
Stock Market Participation in Retirement Wealth	0.49	0.00	0.73	1.00
Stock Market Participation Outside Retirement	0.13	0.00	0.15	0.00
Stock Market Participation Only Outside Retirement	0.04	0.00	0.02	0.00

BALANCE CHECKS

MM to TDF sample

BALANCE CHECKS

OPT-IN TO TDF SAMPLE

TIMING OF CHANGES

OPT-IN TO TDF SAMPLE

OBSERVED PORTFOLIO CHOICE RESPONSE

PEER EFFECTS I/II

OBSERVED PORTFOLIO CHOICE RESPONSE

PEER EFFECTS II/II

Observed Portfolio Choice Response

Composition Change

Observed Portfolio Choice Response

Allocation of New Contributions - MM to TDF

Observed Portfolio Choice Response

Allocation of New Contributions - Opt-in to TDF

OBSERVED PORTFOLIO CHOICE RESPONSE

OPT-IN TO TDF SAMPLE

AVERAGE PREFERENCE ESTIMATES

OPT-IN TO TDF SAMPLE

Stock Market Participation in 401(k)

Stock Share in 401(k)

Testing consistency independence

- Challenge: can't directly measure $cov_{\tau}\left(\theta_{it}^{*}, C_{it}\right)$
- Informal test: compare choices of investors based when they become consistent
 - difference between active choices of early vs. late is informative about $cov_{\tau}(\theta_{it}^*, C_{it})$

Consistent preferences by default

MM to TDF sample

Preferences of Consistent

OPT-IN TO TDF SAMPLE

FRACTION OF CONSISTENT PEOPLE

Preferences of investors selling TDF

BOTH SAMPLES

FIRST-STAGE ESTIMATION

• Labor market parameters: estimated using SMD with SIPP data

Asset returns:

- risk-free rate = 2%
- equity premium (in levels) = 6.4% (CRSP VW)
- SD of log returns = 19% (CRSP VW)
- correlation with labor income = 0 (Campbell et al. 2001)

Other parameters:

- survival probabilities = US life tables
- equivalence scale = PSID
- employer match rate = 50%, match cap = 6%, vesting schedule = plan data
- income taxes = 2006 federal tax schedule, capital tax = 21%
- Social Security + Medicare = 2006 formulas
- UI replacement = 40%