Laboratorio di Ricerca Operativa

Considera la seguente rete, composta da 10 nodi e 12 archi:

Ogni arco è caratterizzato da un valore del tempo che si impiega a percorrerlo e da un valore del rischio associato riportati nella seguente tabella:

Arco	Tempo	Rischio
(1,3)	1	1
(2,3)	1	1
(2,3) (3,4)	5	0
(3,6)	7	1
(3,8)	1	6
(4,5)	1	1
(6,7)	4	7

(5,8)	2	0
(7,8)	1	1
(8,9)	1	1
(8,10)	1	1
(1,9)	10	5

Si vuole determinare lo shortest path tra i nodi 1 e 9 in modo che sia minimizzato sia il tempo di percorrenza che il rischio.

- 1) Formula matematicamente il problema con un modello di PL bi-obiettivo;
- 2) Risolvi il modello con il metodo ϵ -constrained; quante e quali soluzioni Pareto ottime ottieni?
- 3) Rappresenta graficamente, con un tool a scelta, la frontiera di Pareto ottenuta. Quali tra i punti non dominati si potrebbero ricavare con il Teorema di Geoffrion?