Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Информатика Лабораторная работа №6

Работа с системой компьютерной вёрстки ТЕХ

Вариант: 86

Выполнил: Герасимов Артём Кириллович Группа: P3108

Преподаватель: Малышева Татьяна Алексеевна

пересекает ось Oz в различных точках. При $\phi = \pi$ образующая параллельна оси Oz.

Таким образом, пересекаться могут только такие пары образующих, которые лежат в одной вертикальной плоскости; иными словами, если одной из пересекающихся образующих соответствует угол ϕ , то другой соответствует угол ϕ + π . Пусть положение точки пересечения этих образующих определяется значениями λ_1, λ_2 параметра λ . Тогда из (1)

$$\begin{cases} x = (R + \lambda_1 \cos \frac{\phi}{2}) \cos \phi = \\ = -(R - \lambda_2 \sin \frac{\phi}{2}) \cos \phi, \\ y_1 = (R + \lambda_1 \cos \frac{\phi}{2}) \sin \phi = \\ = -(R - \lambda_2 \sin \frac{\phi}{2}) \sin \phi, \\ z = \lambda_1 \sin \frac{\phi}{2} = \lambda_2 \cos \frac{\phi}{2}. \end{cases}$$

Из этих выражений следует, что $\lambda_1,$ λ_2 удовлетворяют системе уравнений

$$\begin{cases} R + \lambda_1 \cos \frac{\phi}{2} = -R + \lambda_2 \sin \frac{\phi}{2}, \\ \lambda_1 \sin \frac{\phi}{2} = \lambda_2 \cos \frac{\phi}{2}, \end{cases}$$

откуда при $(\phi \neq \frac{\pi}{2}, \frac{3\pi}{2})$ находим $\lambda_1 = -2R\frac{\cos\frac{\phi}{2}}{\cos\phi}$. Подставив найденное значение λ_1 , в уравнения (1), получим координаты точки самопересечения:

$$x = -R, y = -R \operatorname{tg} \phi, z = -R \operatorname{tg} \phi.$$

Отсюда видно, что при изменении ϕ точка самопересечения поверхности Мёбиуса движется вдоль прямой, которая лежит в плоскости x=-R и описывается уравнением z=y. Таким образом, линия самопересечения является прямой (но не является образующей!). Отрезок этой прямой изображен на обложке. Внимательно изучив заставку, вы найдете линию самопересечения и на ней.

Почему же лист Мёбиуса не распадается при разрезе?

Теперь нетрудно ответить и на этот вопрос. Рассмотрите на рисунке 4 (и на обложке) край ленты Мёбиуса, т.е. линию $\lambda=\pm 1$. Присмотритесь: этот край не распадается на пару замкнутых кривых, как было бы в случае неперекрученной полоски, а представляет собой одну непрерывную кривую. Наш разрез не касался края, и поэтому край (а значит и вся полоска) после разреза будет оставаться целым куском.

Как объяснить другие сюрпризы?

Можно считать, что второй разрез осуществляется по линии $\lambda=\frac{1}{2}$ (рис. 6). Координаты точек на этой линии описываются (при $\phi\in[0,2\pi]$) уравнениями

$$\begin{cases} x = (R = \frac{1}{2}\cos\frac{\phi}{2})\cos\phi, \\ y = (R + \frac{1}{2}\cos\frac{\phi}{2})\sin\phi, \\ z = \frac{1}{2}\sin\frac{\phi}{2}. \end{cases}$$

Очевидно, разрез делит нашу полоску на две части, которые можно условно назвать внешней и внутренней, причем внутренняя часть является такой же, только более узкой, полоской листа Мёбиуса. Что же представляет собой внешняя часть?

Продолжение см. стр. 59

Е. Габович

Задача коммивояжера

«Пользуйтесь услугами Аэрофлота!» Два автомобилиста, инженер А. Невский и экономист Б. Литейный, решили съездить в Закавказье, посетить Баку и Тбилиси, заехать в Москву, Киев и Горький, а затем вернуться в родной Ленинград. Начали обсуждать маршрут путешествия. Невский посмотрел на карту и предложил такую последовательность посещения городов:

 $\mathcal{J} \to M \to \Gamma \to B \to T \to K \to \mathcal{J}$ Литейный же. достав атлас автомобильных дорог, выписал расстояния между нужными им городами в табличку (см. таблицу 1) и подсчитал

длину предложенного маршрута: 696+410+2937+579+1863+1207= = 7692 км. «Длинновато! - сказал он. - Расстояние аэрофлотское! А нельзя ли короче? Уверен ли ты, что этот маршрут является кратчайшим?»

Уверенности такой у Невского не было. Более того, объяснить, почему он решил ехать именно так, Невский не мог. Просто интуиция подсказывала ему, что такой маршрут, если и

Таблица 1

Город	Л	M	K	Б	T	Γ
Ленинград	-	696	1207	3223	2797	1106
Москва	696	-	858	2527	2101	410
Kuee	1207	858	-	2283	1863	1268
Баку	3223	2527	2283	-	579	2937
Тбилиси	2797	2101	1863	579	-	2511
Горький	1106	410	1286	2937	2511	-