Anthony Huertas

Universidad Nacional de Ingeniería

Aplicación de Machine Learning, 2016

Outline

- **Introducción**
 - Conceptos Básicos
 - Aprendizaje Automatizado
 - Reconocimiento Facial
- Reconocimiento Facial usando Eigenfaces
 - Algoritmo de PCA
- 3 Eigenfaces
 - Imágenes faciales
 - Eigenfaces
- Reconocimiento Facial
 - Clasificación de las Imágenes Faciales.
 - Modelo del Algoritmo

00000

Matemática - Programación

- Álgebra Lineal
- Estadística y Probabilidades
- Optimización
- Programación

000000

Tipos de Aprendizaje Automatizado

000000

Aprendizaje No Supervisado

Aprendizaje Automatizado

Introducción

00000

Análisis de Componentes Principales (Aplicaciones)

000000

Análisis de Componentes Principales (Aplicaciones)

Reconocimiento Facial

Usos

Introducción

00000

- Criminología
- Redes Sociales
- Implementación para secciones de una imagen facial: ojos, boca, ...
- Huella digital

Modelo.

- **1NPUT:** ϕ_1, \ldots, ϕ_K (K datos *n* dimensionales).
- 2 Normalización de la media. $\Phi_i = \phi_i \overline{\phi}$
- SVD aplicado a los datos normalizados
 - Eigenvalores de la matriz de covarianza de los datos (Varianza explicada)
 - Eigenvectores de la matriz de covarianza de los datos
- Determinación del número de componentes principales
- Determinación de los componentes principales u₁,..., u_m (eigenvectores que mantienen mayor varianza de los datos).
- Patrones de clasificación:

$$[\Theta_1 \quad \dots \quad \Theta_K] = \begin{bmatrix} u_1^T \\ \vdots \\ u_m^T \end{bmatrix} [\Phi_1 \quad \dots \quad \Phi_K].$$

 Una imagen facial de tamaño m x n esta estructurada como una matriz de píxeles n x m dimensional o un vector de igual dimensión

Se tomarán K imágenes faciales y, para un mejor lenguaje matemátic, denominaremos "imagen facial" haciendo referencia a su matriz de píxeles correspondiente.

Código Python Imagen-> Escala de grises, ajuste de tamaño, matriz de píxeles

```
from PIL import Image import numpy as np def gray_size_pixel(imagen,pix_ancho=180,pix_largo=200): img = Image.open(imagen).convert('L') img = img.resize((pix_ancho,pix_largo), Image.ANTIALIAS) a=list(np.asarray(img)) a=np.array(a) return img, a
```

Definición. (Media Facial)

Sean $\phi_1, \phi_2, \dots, \phi_K$ imágenes faciales, definimos la media facial Ψ , como

$$\Psi = \frac{1}{K} \sum_{i=1}^{K} \phi_i \tag{1}$$

Definición. (Constraste Facial)

Sean Φ_1, \ldots, Φ_K imágenes faciales, con media facial Ψ , definimos los contrastes faciales como

$$\Phi_i = \phi_i - \Psi. \tag{2}$$

Introducción

Definición. (Eigenfaces)

Se denominan eigenfaces a los eigenvectores, de la matriz de covarianza de las imagenes faciales ϕ_1, \ldots, ϕ_K , que generan el subespacio de dimensión reducida usando el análisis de componentes principales.

Introducción

Definición. (Face-space)

Se denomina face-space al subespacio generado por los eigenfaces.

Introducción

Matriz de Covarianza.

$$C = rac{1}{K} egin{bmatrix} \Phi_1 & \Phi_2 & \dots & \Phi_K \end{bmatrix}_{(n \times m) \times K} egin{bmatrix} \Phi_1^T \ \Phi_2^T \ dots \ \Phi_K \end{bmatrix}_{K \times (n \times m)}$$

cuya dimensión es $(n \times m)^2$.

Matriz de Covarianza.

Teorema

Si v es un eigenvector, con valor propio $\lambda \neq 0$, de A^TA , luego Av es un eigenvector con el mismo valor propio λ de AA^T .

$$D = \frac{1}{K} \begin{bmatrix} \Phi_1^T \\ \Phi_2^T \\ \vdots \\ \Phi_K \end{bmatrix}_{K \times (n \times m)} \begin{bmatrix} \Phi_1 & \Phi_2 & \dots & \Phi_K \end{bmatrix}_{(n \times m) \times K}$$

Por tanto siendo $v_1, v_2, \ldots, v_{K'}$ ($K' \leq K$) eigenvectores de D, asociados a eigenvalores $\lambda_1, \ldots, \lambda_{K'}$ distintos de cero, los eigenvectores de C asociados a los mismo autovalores distintos de cero son $\{Av_1, Av_2, \ldots, Av_{K'}\}$ siendo $A = [\Phi_1, \ldots, \Phi_K]$. Denotemos $u_i = Avi$

Pérdida de Variabilidad

$$\sum_{i=1}^{K'} \lambda_i \quad \text{(Varianza total en } R^{K'}\text{)} \tag{3}$$

$$\sum_{i=1}^{n \times m} \lambda_i = \sum_{i=1}^{K'} \lambda_i \quad \text{(Varianza total en } R^{n \times m} \text{)} \tag{4}$$

Por tanto el porcentaje de varianza que se mantiene en el subespacio de dimensión $R^{K'}$ es

Varianza total en
$$R^K$$

Varianza total en $R^{n \times m} \times 100\% = 100\%$. (5)

Introducción

¿Podríamos entonces decir que los eigenvectores $\{u_1, u_2, \dots, u_{K'}\}$ son los eigenfaces?

En la práctica realizada por Sirivich y Kirby (1987), se observó que tomando los eigenvectores $u_1, u_2, \ldots, u_{115}$ de la matriz de covarianza de sus datos que mantengan el 100% de variabilidad, solo los primeros 40 eigenvectores fueron suficientes para una excelente representación pues se generaba una pérdida del 2% de variabilidad. Por este hecho, es útil el PCA para determinar el número de componentes principales que no genere pérdida de variabilidad significante, digamos no más del 2%

Sea ϕ imagen de entrada, ésta puede ser clasificada como

- Reconocimiento de una imagen facial:
- No reconocimiento de una imagen facial:
- Imagen no facial

De la imagen de entrada.

Normalizando:
$$\Phi = \phi - \Psi$$
. Dato transformado: $\Theta = \begin{bmatrix} u_1 & \\ u_2^T & \Phi \\ \vdots \\ u_{K'}^T & \Phi \end{bmatrix}$

De las K imágenes faciales.

Patrones de

clasificación:
$$[\Theta_1 \quad \dots \quad \Theta_K] = \begin{bmatrix} u_1' \\ \vdots \\ u_m^T \end{bmatrix} [\Phi_1 \quad \dots \quad \Phi_K]$$

Imagen facial- No facial

Nuestra verificación inicial es determinar si la imagen de entrada es facial o no lo es, esto es si el face-space la clasifica como tal

$$\varepsilon^2 = \|\Phi - \operatorname{proy}_F \Phi\|^2 \le \delta$$

donde $proy_F(\Phi) = \sum_{i=1}^{K'} (u_i \cdot \Phi) u_i$.

(a) El subespacio (b) El subespacio no clasifica el dato. clasifica el dato

Figure: Ejemplo de un subespacio bidimensional, caracterizando un dato tridimensional.

Reconocimiento Facial

determinaremos el patron Θ_i , que mejor clasifique a Θ , usando el mismo análisis anterior:

$$\epsilon^2 = \min\{\epsilon_i^2 : \|\Theta - \Theta_i\|^2 = \epsilon_i^2, i = 1, \dots, K'\}.$$

Dado este hecho, bajo medios empíricos, también se recomienda establecer un límite δ a esta cantidad

$$\epsilon^2 \le \delta$$

Por tanto si $\epsilon^2 < \delta$, el patrón Φ_i estableciéndose lo que denominamos reconocimiento facial, y por tanto la imagen facial ϕ matendría una alta relación con la imagen ϕ_i , debido a que se pierde muy poca variabilidad entre ellas. En caso contrario no se establece un reconocimiento facial.

Clasificación de las Imágenes Faciales.

Ajuste del límite para la clasificación

Figure: X: δ ;Y: Número de clasificaciones correctas. Tomándose 16 imágenes faciales, de las K imágenes faciales de entradas, pero variando su: (a) iluminación - (b) inclinación de su rostro - (c) tamaño de cabeza - (d) iluminación e inclinación - (e) iluminación y tamaño de cabeza - (f) inclinación y tamaño de cabeza.

Modelo del Algoritmo

Introducción

Entrenamiento

- Muestra de K de imágenes faciales, como datos de entrenamiento para el aprendizaje
- Aplicar PCA para obtener los eigenvectores de la matriz D determinan no más del 2% de pérdida de variabilidad.
 Estos eigenvectores serán llamados eigenfaces.
- Determinar los patrones de clasificación transformados.

Tarea de reconocimiento

- Imagen de entrada
- Dado un límite δ , verificar si se cumple:

$$\varepsilon^2 = \|\Phi - \operatorname{proy}_F \Phi\|^2 \le \delta$$

donde $proy_F(\Phi) = \sum_{i=1}^{K'} (u_i \cdot \Phi) u_i$.

- De cumplirse lo anterior se clasifica como una imagen facial, en caso contrario se clasifica como imagen no facial.
- Dado $\delta > 0$, verificar si se cumple:

$$\epsilon^2 = \min\{\epsilon_i^2 : \|\Theta - \Theta_i\|^2 = \epsilon_i^2, i = 1, \dots, K'\} \le \delta.$$

• De cumplirse lo anterior se determina un reconocimiento facial y el patrón Θ_i que la caracterize, indicará la alta relación entre ϕ con la imagen facial ϕ_i , a causa de la poca pérdida de variabilidad. De no cumplirse no existe un reconocimiento facial.

Tareas adicionales

- De clasificar la imagen de entrada como imagen facial, estableciéndose o no el reconocimiento facial, entonces implementarla en el modelo actualizando el conjunto de las K imágenes faciales de entrenamiento.
- De clasificar la imagen de entrada como imagen facial, no estableciéndose el reconocimiento facial, entonces adquirir su dato transformado e implementar en la lista de patron de clasificación.

- Cristopher, M. Bishop. Pattern Recognition and Machine Learning. Cambridge University, 2006.
- Alex Smola and S.V.N. Vishwanathan. Introduction to Machine Learning. Cambridge University, 2008.
- Arian Maleki and Tom Do. Review of Probability Theory. Standford University,
- Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical Learning. *Data Mining, Inference* and *Prediction*. Standford University, 2008.
- Arian Maleki and Tom Do. Probability Theory Review. Standford, 2014.
- Anderson, Sweeney y Williams. Estadística para Administración y Economía.

