Лабораторная работа №4

Косолапов Степан Эдуардович.

Российский университет дружбы народов, Москва, Россия

Докладчик

- Косолапов Степан Эдуардович
- студент группы НПИбд-01-20
- Российский университет дружбы народов
- https://github.com/stepaKosolapov

Вводная часть

Актуальность

• Необходимость навыков моделирования реальных математических задач, построение графиков.

Объект и предмет исследования

- Задача о гармонических колебаний
- Языки для моделирования:
 - Julia
 - OpenModelica

Постройте фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев

- 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы $\ddot{x} + 2x = 0$
- 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы $\ddot{x}+3\dot{x}+3x=0$
- 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы $\ddot{x}+4\dot{x}+4x\cos4t$

На итнтервале $t \in [0;44]$, шаг 0.05, $x_0 = 1.5, y_0 = 1.1$

Материалы и методы

- Языки для моделирования:
 - · Julia
 - · OpenModelica

Процесс выполнения работы

Колебания без затухания

В системе отсутствуют потери энергии (колебания без затухания) Получаем уравнение

$$\ddot{x} + \omega_0^2 x = 0$$

Переходим к двум дифференциальным уравнениям первого порядка:

$$\begin{cases} \dot{x} = y \\ \dot{y} = -\omega_0^2 x \end{cases}$$

Колебания с затуханием

В системе присутствуют потери энергии (колебания с затуханием) Получаем уравнение

$$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 x = 0$$

Переходим к двум дифференциальным уравнениям первого порядка:

$$\begin{cases} \dot{x} = y \\ \dot{y} = -2\gamma y - \omega_0^2 x \end{cases}$$

Графики

На систему действует внешняя сила. Получаем уравнение

$$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 x = F(t)$$

Переходим к двум дифференциальным уравнениям первого порядка:

$$\begin{cases} \dot{x} = y \\ \dot{y} = F(t) - 2\gamma y - \omega_0^2 x \end{cases}$$

Результаты работы

Результаты работы

- Рассмотрели три случая колебания.
- Построили графики для соответствующий случаев.

Вывод

Я рассмотрел и построил фазовые портреты гармонических колебаний без затухания, с затуханием и при действии внешней силы.