آموزش یادگیری عمیق Deep Learning

« آموزش شبکههای عصبی »

سعید محققی / دانشگاه شاهد / ۹۹ – ۱۳۹۸

آموزش شبكههاى عصبى

- ۱ آماده سازی دادههای آموزش
- ۲- انتخاب معماری مناسب شبکه
- ۳- الگوریتم آموزش و بهینهسازی
 - ۴- روشهای بهبود آموزش

اصول آماده سازی دادهها

- داده بیشتر = آموزش بهتر
- حذف دادههای ناقص و مخدوش
- پیش پردازش دادهها (یکسان سازی شرایط)
- استفاده از روشهای افزایش داده (Data augmentation)

- هدف
- حذف اطلاعات و تغییرات نامطلوب و مشابه سازی دادهها
 - مثال
- حذف تغییرات نور و یکسان سازی محدوده شدت روشنایی تصاویر
 - یکسان سازی مقیاس در دادههای عددی

- استاندارد کردن
- تغییر دادهها برای داشتن
- میانگین 0 و واریانس 1

$$x_{standardized} = \frac{(x - \text{mean}(x))}{\text{std}(x)}$$

- نرمالیزه کردن
- $oldsymbol{1}$ انتقال محدوده مقادیر دادهها به $oldsymbol{0}$

$$x_{normalized} = \frac{(x - \min(x))}{(\max(x) - \min(x))}$$

■ یکسانسازی هیستوگرام تصاویرِ (Histogram equalization)

افزایش دادهها

- ایجاد تغییرات بر روی دادههای فعلی و ایجاد دادههای جدید
- مثال: جابجایی / تغییر اندازه / چرخش / تغییر شکل و رنگ

انتخاب معماری شبکه

- تعداد لایهها و نورونها (فیلترها)
- 1. استفاده از معماری مدلهای آماده
- 2. شروع با تعداد كم ← افزايش، تا جايى كه نتيجه بهبود پيدا نكند. (يا برعكس!)
 - 3. الگوریتمهای جستجوی معماری (Neural Architecture Search)

انتخاب معماری شبکه

- نوع شبکه
- داده یک بعدی (سیگنال، بردار) ← شبکه FC یا =
 - داده چندبعدی (تصویر، تنسور) ← شبکه CNN
- داده وابسته به زمان (صوت، ویدیو، متن) ← شبکه RNN

أموزش شبكه

محاسبه خطا

■ عبور دادهها از شبکه و مقایسه با نتیجه مطلوب

محاسبه خطا

- انتخاب تابع هزینه = انتخاب نحوه محاسبه خطا
- نمونههای تابع هزینه (Cost / Loss function)
 - Mean squared -
 - Cross-entropy -
 - Hinge -
 - Dice -

Mean squared:
$$L(y, \tilde{y}) = \frac{1}{N} \sum_{i} (y_i - \tilde{y}_i)^2$$

(Optimization) بهینهسازی

- حرکت قدم به قدم به سمت کمترین مقدار خطا
- اصلاح و بهروزرسانی وزنها برای رسیدن به حداقل خطا

(Optimization) بهینهسازی

■ مقادیر مختلف تابع هزینه در حالت های مختلف ← تشکیل یک سطح ناهموار (Loss surface)

الگوريتم بهينهسازي

• آموزش کامل:

http://ruder.io/optimizing-gradient-descent/

■ الگوريتمها

- SGD -
- SGD + Momentum -
 - RMSprop -
 - Adagrad -
 - Adadelta -
 - Adam -
 - ... -

■ روش Back-propagation

$$\Delta W_2 = \frac{\partial L}{\partial W_2}$$

$$W_2' = W_2 - \alpha(\Delta W_2)$$

Learning rate

$$:W_2$$
 محاسبه گرادیان L نسبت به وزن \bullet

$$\cdot$$
 الگوریتم SGD اوریتم W_2 الگوریتم W_2 الگوریتم \bullet

■ روش Back-propagation

$$L(y, \tilde{y})$$

$$W_1$$
 اصلاح

$$\Delta W_1 = \frac{\partial L}{\partial W_1}$$

$$W_1' = W_1 - \alpha(\Delta W_1)$$

$$:W_1$$
 محاسبه گرادیان L نسبت به وزن L

$ullet$
اصلاح W_1 در جهت کاهش گرادیان W_1

■ روش Back-propagation

$$\mathbf{X}$$
 $\mathbf{f}(\mathbf{W}_0\mathbf{X})$ $\mathbf{H}\mathbf{I}$ $\mathbf{f}(\mathbf{W}_1'\mathbf{H}_1)$ $\mathbf{H}\mathbf{2}$ $\mathbf{f}(\mathbf{W}_2'\mathbf{H}_2)$ $\mathbf{L}(y,\tilde{y})$

$$\Delta W_0 = \frac{\partial L}{\partial W_0}$$

$$W_0' = W_0 - \alpha(\Delta W_0)$$

$$:W_0$$
 محاسبه گرادیان $m L$ نسبت به وزن •

$ullet$
اصلاح W_0 در جهت کاهش گرادیان W_0

■ روش Back-propagation

نرخ أموزش

■ اندازه گامها به سمت حداقل خطا

نرخ أموزش

روشهای بهبود آموزش

- Batch normalization
 - Dropout
 - Transfer learning ■

Batch Normalization

■ مزایا

- حفظ مقادیر خروجی لایهها در محدوده نرمال
 - جلوگیری از over-fitting
 - افزایش سرعت و دقت آموزش

Batch Normalization

Dropout

■ حذف تصادفی تعدادی از نورونها در هر تکرار آموزش

(a) Standard Neural Net

(b) After applying dropout.

■ مزایا:

- آموزش مستقل نورونها
- جلوگیری از Over-fitting

(Transfer Learning) انتقال یادگیری

- رفع مشکل کمبود دادههای آموزش
 - مراحل کار:
- أموزش شبكه با يك ديتاست بزرگ 1
- 2. انتقال وزنهای شبکه آموزش دیده به مدل جدید
 - 3. اصلاح جزئی آموزش با دادههای مورد نظر

انتقال یادگیری (Transfer Learning)

انتقال یادگیری (Transfer Learning)

