# Story-based Multi Aspect Emotion Analysis

Too Seng Wei 1161100643 Albert Quek
Supervisor

John See Su Yang Co-supervisor

Goh Hui Ngo Moderator

#### **Abstract**

This work study affective analysis in narrative story domain and emotion representation mapping from dimensional schema to the categorical schema using the state-of-the-art architecture and attention-mechanism.



# **Objectives**

- 1. Use of attention mechanism in Emotion Representation Mapping task and achieve state-of-the-art at mapping from complex VAD emotion to 8 category
- 2. Propose an architecture based on the state-of-the-art architecture to perform Affective Analysis(Both Dimensional Space and Categorical Space) in narrative story domain and declared as benchmark result.
- 3. Experiment the use of emotion representation mapping concept in affective analysis task

# **Background Study**



Valence = Positiveness Arousal = Strongness Dominance = Controllability



Self-Attention Mechanism

## Methodology

## Dataset

- EmoTales(Francisco et al., 2012).
- ERMDB(Obtained though merging multiple dataset)
- 4000 Stories Sentiment Analysis Dataset

#### **Data Augmentation method:**

- EDA (Wei & Zou (2019)
- PCA(Krizhevsky et al. (2012))

## **Proposed Model**

- 1. BERT-LSTM
  - BERT as a powerful feature extractor
  - LSTM as a recurrence-oriented decoder
- 2. Attention-ERM
- Attention helps to learn complicated
   VAD pattern
- 3. BERT-LSTM-ERM
- Utilized aforementioned
   Attention-ERM concept to helps
   in affective analysis



#### ERM FC Layer FC Layer → LSTM Cell → → LSTM Cell -→ LSTM Cell → LSTM Cell T[SEP] T[CLS] **BERT BERT** E[CLS] E[SEP] E[SEP] [CLS] Token<sub>1</sub> Sentence **BERT-LSTM BERT-LSTM-ERM**

#### Results

#### Result #1

| Model        | # of Attention Head | EmoTales | ERMDB  |               |         |  |
|--------------|---------------------|----------|--------|---------------|---------|--|
|              |                     | F1-score | mono   | cross         | Overall |  |
| MLP          | 0                   | 0.37     | 0.8386 | 0.8035(0.813) | 1.6516  |  |
| 1H-Attention | 1                   | 0.59     | 0.8307 | 0.8004        | 1.6420  |  |
| 2H-Attention | 2                   | 0.53     | 0.8228 | 0.8152        | 1.6333  |  |
| 4H-Attention | 4                   | 0.59     | 0.8223 | 0.8110        | 1.6380  |  |
| 8H-Attention | 8                   | 0.51     | 0.8196 | 0.8127        | 1.3234  |  |

The leverage of attention improve the performances of an MLP in ERM task and if only the VAD is representing a complex emotion. As a complex emotion relatively carry more information and attention are able to learn the nature of three fundamental dimensions of emotion.

## Result #2

|               | EmoTales   |          |            |        |        | 120 Stories<br>(Inference Only) |        |
|---------------|------------|----------|------------|--------|--------|---------------------------------|--------|
| Model         | 8 Category |          | VAD        |        |        | VAD                             |        |
|               | # of param | f1-score | # of param | MAE    | MSE    | MAE                             | MAE    |
| MLP           | 12,025k    | 0.1222   | 12,008k    | 0.1069 | 0.0191 | 0.1432                          | 0.0262 |
| Attention     | 20,431k    | 0.4424   | 20,430k    | 0.0923 | 0.0146 | 0.1163                          | 0.026  |
| Trans-LSTM    | 10,481k    | 0.4676   | 10,546k    | 0.0939 | 0.0147 | 0.1153                          | 0.0255 |
| BERT-LSTM     | 110,565k   | 0.5287   | 110,630k   | 0.0844 | 0.0124 | 0.1218                          | 0.0248 |
| BERT-LSTM-ERM | 110,779k   | 0.4784   | -          | -      | -      | -                               | -      |

In both categorical and dimensional emotion prediction task, BERT-LSTM achieve the best result. However, BERT-LSTM-ERM does not perform as good as expected. Our assumption is that the conversion from hidden state to VAD causes a loss of information and thus making the prediction of category lower.

### **Testset Sample**

| •                                                                     |          |           |
|-----------------------------------------------------------------------|----------|-----------|
| Test Sample                                                           | True     | Predicted |
| she gave him the mirror in his hand, and he saw there in the like-    | surprise | happiness |
| ness of the most beautiful maiden on earth                            |          |           |
| if that is the ladder by which one mounts, i too will try my fortune, | neutral  | neutral   |
| suddenly something amazing happened                                   | surprise | surprise  |
| we dare not obey your orders.                                         | fear     | fear      |
| the place burnt like fire, and the poison entered into his blood fear | sadness  | fear      |

## **Conclusions**

We believe that it could be interesting to experiment with other types of architecture in affective analysis in the narrative domain or any technique that able to fully utilize the nature of character personalities. As story narrative is usually made up with few characters(either fiction or non-fiction) with well design personalities. By understanding and interpret the personalities or characteristic of a character, it will be great bits of help in understanding the emotional context of a story.

# References

Francisco, V., Hervás, R., Peinado, F., & Gervás, P. (2012, Sep 01). Emotales: creating a corpus of folk tales with emotional annotations Wei, J., & Zou, K. (2019, November). EDA: Easy data augmentation techniques for boosting performance on text classification tasks. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks

