## Flat, smooth and étale morphisms

#### 1 Flat families

**Definition 1.** Let  $f: X \to Y$  be a morphism of schemes. For a point  $\xi \in X$ , we say that f is flat at  $\xi$  if the local ring  $\mathcal{O}_{X,\xi}$  is a flat  $\mathcal{O}_{Y,f(\xi)}$ -module via the induced map  $f_{\xi}^{\sharp}: \mathcal{O}_{Y,f(\xi)} \to \mathcal{O}_{X,\xi}$ . We say that f is flat if it is flat at every point  $\xi \in X$ .

**Definition 2.** Let X be Y-scheme via a morphism  $f: X \to Y$ , and let  $\mathcal{F}$  be a sheaf of  $\mathcal{O}_X$ -modules. We say that  $\mathcal{F}$  is flat over Y at  $\xi \in X$  if the stalk  $\mathcal{F}_{\xi}$  is a flat  $\mathcal{O}_{Y,f(\xi)}$ -module via the induced map  $f_{\xi}^{\sharp}: \mathcal{O}_{Y,f(\xi)} \to \mathcal{O}_{X,\xi}$ . We say that  $\mathcal{F}$  is flat over Y if it is flat over Y at every point  $\xi \in X$ .

**Proposition 3.** We have the following fundamental properties of flat morphisms:

- (a) open immersions are flat;
- (b) the composition of flat morphisms is flat;
- (c) flatness is preserved under base change;
- (d) a coherent sheaf  $\mathcal{F}$  on a noetherian scheme X is flat over X iff it is locally free.

Yang: To be checked.

**Proposition 4.** Let X be a regular integral scheme of dimension 1 and  $\mathcal{F}$  be a coherent sheaf on X. Then  $\mathcal{F}$  is flat over X iff it is torsion-free, i.e., for every non-zero-divisor  $s \in \mathcal{O}_{X,x}$ , the multiplication map

$$s: \mathcal{F} \to \mathcal{F}$$

is injective. Yang: To be checked.

**Proposition 5.** Let  $f: X \to Y$  be a flat morphism of schemes of finite type over a field **k**. Then for every point  $\xi \in X$ , we have

$$\dim_{\xi} X = \dim_{f(\xi)} Y + \dim_{\xi} X_{f(\xi)}.$$

Yang: To be checked.

**Theorem 6** (Miracle flatness). Let  $f: X \to Y$  be a morphism between noetherian schemes. Suppose that X is Cohen–Macaulay and that Y is regular. Then f is flat at  $\xi \in X$  iff  $\dim_{\xi} X = \dim_{f(\xi)} Y + \dim_{\xi} X_{f(\xi)}$ . Yang: To be checked.

**Theorem 7.** Let T be a integral noetherian scheme and  $f: X \to T$  be a projective morphism. Let  $\mathcal{F}$  be a coherent sheaf on X. Fix a relatively ample line bundle H on X over T. Then  $\mathcal{F}$  is flat over

Date: October 20, 2025, Author: Tianle Yang, My Homepage

T iff the Hilbert polynomials

$$P(X_t, \mathcal{F}_t, H_t)(n) = \chi(X_t, \mathcal{F}_t \otimes H_t^{\otimes n})$$

are independent of  $t \in T$ . Yang: To be checked.

Yang: To be added: deformation, algebraic families...

## 2 Base change and semicontinuity

**Theorem 8** (Grauert's theorem). Let  $f: X \to Y$  be a proper morphism of noetherian schemes, and let  $\mathcal{F}$  be a coherent sheaf on X which is flat over Y. Then for each integer  $i \geq 0$ , the sheaf  $R^i f_* \mathcal{F}$  is coherent on Y, and there exists an open subset  $U \subseteq Y$  such that for every point  $y \in U$ , the base change map

$$(R^if_*\mathcal{F})_y \otimes_{\mathcal{O}_{Y,Y}} k(y) \to H^i(X_y,\mathcal{F}_y)$$

is an isomorphism. Yang: To be checked.

**Theorem 9** (Cohomology and base change). Let  $f: X \to Y$  be a proper morphism of noetherian schemes, and let  $\mathcal{F}$  be a coherent sheaf on X which is flat over Y. For each integer  $i \geq 0$ , the following are equivalent:

(a) the base change map

$$(R^if_*\mathcal{F})_y \otimes_{\mathcal{O}_{Y,Y}} k(y) \to H^i(X_y,\mathcal{F}_y)$$

is an isomorphism for all points  $y \in Y$ ;

(b) the sheaf  $R^i f_* \mathcal{F}$  is locally free on Y.

Yang: To be checked.

**Theorem 10** (Semicontinuity of cohomology). Let  $f: X \to Y$  be a proper morphism of noetherian schemes, and let  $\mathcal{F}$  be a coherent sheaf on X which is flat over Y. Then for each integer  $i \geq 0$ , the function

$$h^i: Y \to \mathbb{Z}, \quad y \mapsto \dim_{k(y)} H^i(X_y, \mathcal{F}_y)$$

is upper semicontinuous on Y.

Yang: To be checked.

### 3 Smooth morphisms

**Definition 11.** Let  $f: X \to Y$  be a morphism of finite type between noetherian schemes. For  $\xi \in X$  with image  $\zeta = f(\xi) \in Y$ , set  $\overline{\zeta}: \operatorname{Spec} \overline{\kappa(\zeta)} \to Y$  to be the geometric point over  $\zeta$  and  $X_{\overline{\zeta}}$  be the geometric fiber over  $\zeta$ . We say that f is smooth at  $\xi$  if f is flat at  $\xi$  and the geometric fiber  $X_{\overline{\zeta}}$  is regular over  $\overline{\kappa(\zeta)}$  at every point lying over  $\xi$ . We say that f is smooth if it is smooth at every point

 $\xi \in X$ .

Yang: To be checked.

# 4 Étale morphisms

**Definition 12.** Let  $f: X \to Y$  be a morphism of finite type between noetherian schemes. We say that f is étale at  $\xi$  if f is smooth and finite at  $\xi$ . We say that f is étale if it is étale at every point  $\xi \in X$ .

Yang: To be checked.