Problem set-|| Hints and Answers

- 1. a. Ans: $y = (C_1 + C_2 x)e^{2x} + C_3 e^{-x}$
 - b. Ans: $y(x) = C_1 e^x + C_2 e^{2x}$
 - c. Ans: $y(x) = C_1 \cos ax + C_2 \sin ax$
 - d. Ans: $y(x) = e^x (C_1 \cos \sqrt{3}x + C_2 \sin \sqrt{3}x)$
 - e. Ans: $(A + Bx)\cos x + (C + Dx)\sin x$
 - f. Ans: $y(x) = (C_1 + C_2 x + C_3 x^2) \cos x + (C_4 + C_5 x + C_6 x^2) \sin x + \{(C_7 + C_8 x) \cos \frac{\sqrt{3}x}{2} + (C_9 + C_{10} x) \sin \frac{\sqrt{3}}{2} x\} e^{-\frac{1}{2}x}$
 - g. Ans: $y = C_1 + xC_2 + e^x(C_3 + xC_4 + C_5x^2)$
 - h. Ans $y = Ae^{mx} + Be^{-mx} + C\cos mx + D\sin mx$
 - i. Ans $y = (A + Bx + Cx^2)e^{2x} + De^{-x}$
- 2. a. Ans: $x(t) = 4e^t 2e^{2t}$
 - b) Ans: $y(x) = e^{-2x}(\cos x + 2\sin x)$
 - c) Ans: $y(x) = e^x (4\cos 3x \sin 3x)$
 - d) Ans: The general solution is $y(t) = C_1 e^{-2t} + c_2 e^{4t}$ and the solution is depend on the co-efficient of C_2 only since $e^{-2t} \to \infty$ as $t \to \infty$
 - e) Ans $:y(x) = \frac{14}{33}e^{-4x} + \frac{13}{15}e^{2x} \frac{16}{55}e^{7x}$
 - f) Ans $y(x) = e^{-\frac{x}{2}} (\cos \frac{\sqrt{3}}{2} x + \sqrt{3} \sin \frac{\sqrt{3}}{2} x)$
- 3. a. Ans: $y = Ae^{3x} + Be^{2x} + xe^{3x}$
 - b. Ans: $y = Ae^x + Be^{-2x} \frac{x}{2}e^x + \frac{1}{12}e^{-x}$
 - c. Ans $:Ae^{2x} + Be^{-2x} + \frac{e^x}{-3} + \frac{1}{13}\sin 3x$
 - d. Ans: $y = Ae^x + (B + Cx)e^{-x} \frac{1}{25}(2\sin 2x + \cos 2x)$
 - e. Ans: $y = Ae^{2x} + Be^{-2x} \frac{x}{3}\sin hx \frac{2}{9}\cos hx$
 - f. Ans: $y = Ae^{2x} + Be^{-2x} \frac{1}{4}x^2 \frac{1}{8}$
 - g. Ans: $y = C_1 \cos 2x + C_2 \sin 2x + \frac{1}{5}e^x \frac{1}{5}\sin 3x + \frac{1}{4}x^2 \frac{1}{8}$
 - h. Ans: $y = (A + Bx)e^x e^x(x \sin x + 2\cos x)$
 - i. Ans $y = Ae^{-2x} + Be^{-3x} + \frac{e^{-2x}}{-8} [2\cos 2x + 4\sin 2x]$
 - j. Ans: $A\cos x + B\sin x + \log(\sin x)\sin x x\cos x$
 - k. Ans $Ae^{-x} + e^{\frac{x}{2}}(B\cos{\frac{\sqrt{3}}{2}}x + C\sin{\frac{\sqrt{3}}{2}}x) + \frac{1}{730}(\sin{3x} + 27\cos{3x}) \frac{1}{2} \frac{1}{4}(\cos{x} \sin{x})$
- 4. a. Ans: Calculate $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ in term of $\frac{dy}{dz}$ and $\frac{d^2y}{dz^2}$ and put in the given differential equation.
 - b. Ans: Differentiate $(x-a)^2 + (y-b)^2 = r^2$ twice and try to remove the constant a and b. [(a,b)is center of the circle]

c. Ans: If u and v be two function that possess two continuous derivative on the interval I and such that $W(u,v,x) \neq 0$ for all $x \in I$. Then the equation $\det H = 0$ is a linear homogenous second order differential equation for which u, v are solution, where H consider as the below matrix.

$$H = \begin{bmatrix} y & y^{'} & y^{''} \\ u & u^{'} & u^{''} \\ v & v^{'} & v^{''} \end{bmatrix}$$