Nonparametric Bayes

Omar Gutiérrez

@trinogz

June 15, 2015

Mostly based on **A Tutorial on Bayesian Nonparametric Models** by Samuel J. Gershman.

Outline

Introduction

- ▶ What we do in ML is fitting a model to the data
- ► That is, we adjust the values of certain parameters

Linear Regression

Figure 1: Linear Regression

Neural Networks

Figure 2: Perceptron

Hidden Markov Models

Figure 3: Hidden Markov Models

Bertrand Russell's Inductivist Turkey

Figure 4: A comparison of models

Bertrand Russell's Inductivist Turkey

Figure 5: A comparison of models

Bayesian Learning

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)} \quad (1)$$

Maximum Likelihood Estimation

$$h_{MAP} \equiv \underset{h \in H}{\operatorname{arg max}} P(h|D)$$

$$= \underset{h \in H}{\operatorname{arg max}} \frac{P(D|h)P(h)}{P(D)}$$

$$= \underset{h \in H}{\operatorname{arg max}} P(D|h)P(h)$$

$$h_{MLE} = \underset{h \in H}{\operatorname{arg max}} P(D|h)$$

$$(2)$$

Data is a mess

- ► The articles in Wikipedia
- ► The species in the planet
- ► The hashtags on Twitter

How the problem is sometimes addressed

- Let's start with the classic approach
- ► Let's do clustering
- Let's use Gaussian Mixture Models (GMM)
- We can fit several models and then compare them with some metric.

How we can alternatively approach the problem

- Another interesting approach is to use Bayesian Nonparametric (BNP) models
- ▶ BNP models will build a model than can adapt its complexity to the data

Bayesian nonparametric models

Chinese Restaurant Process

- Infinite number of tables
- ▶ A sequence of customers entering the restaurant and sitting down
- ▶ The first customer enters and sits at the first table
- The second customer enters and sits...
 - ▶ at the first table with probability $\frac{1}{1+\alpha}$ ▶ at the second table with probability $\frac{\alpha}{1+\alpha}$

What else can be done?

Figure 6: Digit recognition (datamicroscopes)

What else can be done?

Figure 7: Topic Modeling (datamicroscopes)

Recap: Bayesian parametric vs nonparametric models

- Traditional approach (finite)
 - ▶ The number of parameters θ (e.g. clusters) is prespecified
 - We have a prior distribution over parameters $P(\theta)$
 - ► For example, in the Gaussian mixture model, each cluster will be modelled using a parametric model (e. g. Gaussian)
- Bayesian nonparametric models
 - ▶ We assume that there is an **infinite** number of latent clusters
 - ▶ A finite number of clusters is *inferred* from data
 - ▶ The number of clusters grow as new data points are observed

Libraries in Python

- Sklearn
- Datamicroscopes

What else to learn?

- ▶ What is the β distribution?
- What is the Dirichlet distribution?
- Dirichlet process

References

- ► Machine Learning by Tom Mitchell
- ► A Tutorial on Bayesian Nonparametric Models by Samuel J. Gershman
- datamicroscopes library

Thank you Questions?