Exercise 11

11.1 Computing with encrypted messages (2 pts)

Consider the ElGamal encryption scheme for messages in a cyclic group $\mathbb G$ and the RSA encryption scheme with public key N for messages in $\mathbb Z_N^*$. Both schemes allow for computation on ciphertexts. This means that anyone can take two messages m_1 and m_2 encrypted under the same key and create a proper encryption of another message m_3 , using only the public key and the public parameters. Formally, there are operations \otimes and \oplus such that

$$\mathsf{Enc}(pk, m_1) \otimes \mathsf{Enc}(pk, m_2) = \mathsf{Enc}(pk, m_3),$$

where $m_3 = m_1 \oplus m_2$. For each of ElGamal and RSA, describe the operations \otimes and \oplus .

If such operations exist, an encryption scheme is called *malleable*, in the sense than an attacker can change an encrypted message in a controlled way. Malleable cryptosystems are *insecure* against *chosen-ciphertext attacks* and, hence, not suitable for practical use.

11.2 RSA parameters (3 pts)

- a) Explain why the RSA encryption exponent e must always be an odd number.
- b) Show that given an RSA modulus N and $\phi(N)$, it is possible to factor N easily. *Hint:* Formulate two equations in two unknowns.

11.3 Bad choice of prime factors (3 pts)

This problem explores the importance of properly choosing the two prime factors p and q of an RSA modulus. In particular, let N be an RSA modulus with $|N| = \lambda$, where λ is the security parameter,

- a) Suppose that p is "small," i.e., that $|p| = O(\log \lambda)$. Devise an efficient (in λ) algorithm, which factors N under this assumption, and state it in pseudo-code notation.
- b) Suppose that $|p-q| = O(\log \lambda)$, i.e., the two primes are "close" to each other. Devise an efficient (in λ) algorithm, which factors N under this assumption, and state it in pseudocode notation.

11.4 RSA oracle (2 pts)

Consider the textbook RSA encryption as presented in class, where Alice's public key is (N,e), her private key is d, the encryption $\mathsf{Enc}((N,e),m)$ returns ciphertext $m^e \operatorname{mod} N$ and decryption proceeds accordingly. Suppose Eve knows a ciphertext c and can ask Alice to decrypt any ciphertext $except\ c$ itself. How can Eve decrypt c nevertheless?