Supplementary File 1

May 2022

Supplementary File 1 for "Rapid literature mapping on the recent use of machine learning for wildlife imagery"

Supplementary methods

Benchmarking set of papers

We used a set of 10 manually-located relevant papers from our scoping searches as a benchmark set during search string development. This benchmarking set was used for benchmarking precision of search strings for Scopus database to ensure that most of the relevant can be captured while minimising the number of irrelevant hits.

References of articles in the benchmarking set:

- 1. Whytock, R.C., Swiezewski, J., Zwerts, J.A., Bara-Slupski, T., Koumba Pambo, A.F., Rogala, M., Bahaa-el-din, L., Boekee, K., Brittain, S., Cardoso, A.W., Henschel, P., Lehmann, D., Momboua, B., Kiebou Opepa, C., Orbell, C., Pitman, R.T., Robinson, H.S., Abernethy, K.A. Robust ecological analysis of camera trap data labelled by a machine learning model (2021) Methods in Ecology and Evolution, 12 (6), pp. 1080-1092. DOI: 10.1111/2041-210X.1357
- 2. Norouzzadeh, M.S., Morris, D., Beery, S., Joshi, N., Jojic, N., Clune, J. A deep active learning system for species identification and counting in camera trap images (2021) Methods in Ecology and Evolution, 12 (1), pp. 150-161. DOI: 10.1111/2041-210X.13504
- 3. Villon, S., Mouillot, D., Chaumont, M., Subsol, G., Claverie, T., Villeger, S. A new method to control error rates in automated species identification with deep learning algorithms (2020) Scientific Reports, 10 (1), art. no. 10972. DOI: 10.1038/s41598-020-67573-7
- Ferreira, A.C., Silva, L.R., Renna, F., Brandl, H.B., Renoult, J.P., Farine, D.R., Covas, R., Doutrelant, C. Deep learning-based methods for individual recognition in small birds (2020) Methods in Ecology and Evolution, 11 (9), pp. 1072-1085. DOI: 10.1111/2041-210X.13436
- 5. Patel, A., Cheung, L., Khatod, N., Matijosaitiene, I., Arteaga, A., Gilkey, J.W., Jr. Revealing the unknown: Real-time recognition of galápagos snake species using deep learning (2020) Animals, 10 (5), art. no. 806. DOI: 10.3390/ani10050806
- Cheng, K., Cheng, X., Wang, Y., Bi, H., Benfield, M.C. Enhanced convolutional neural network for plankton identification and enumeration (2019) PLoS ONE, 14 (7), art. no. e0219570. DOI: 10.1371/journal.pone.0219570
- 7. Tabak, M.A., Norouzzadeh, M.S., Wolfson, D.W., Sweeney, S.J., Vercauteren, K.C., Snow, N.P., Halseth, J.M., Di Salvo, P.A., Lewis, J.S., White, M.D., Teton, B., Beasley, J.C., Schlichting, P.E., Boughton, R.K., Wight, B., Newkirk, E.S., Ivan, J.S., Odell, E.A., Brook, R.K., Lukacs, P.M., Moeller, A.K., Mandeville, E.G., Clune, J., Miller, R.S. Machine learning to classify animal species in camera trap images: Applications in ecology (2019) Methods in Ecology and Evolution, 10 (4), pp. 585-590. DOI: 10.1111/2041-210X.13120
- 8. Willi, M., Pitman, R.T., Cardoso, A.W., Locke, C., Swanson, A., Boyer, A., Veldthuis, M., Fortson, L. Identifying animal species in camera trap images using deep learning and citizen science (2019) Methods in Ecology and Evolution, 10 (1), pp. 80-91. DOI: 10.1111/2041-210X.13099
- 9. Norouzzadeh, M.S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M.S., Packer, C., Clune, J. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning (2018) Proceedings of the National Academy of Sciences of the United States of America, 115 (25), pp. E5716-E5725. DOI: 10.1073/pnas.1719367115

10. Gomez Villa, A., Salazar, A., Vargas, F. Towards automatic wild animal monitoring: Identification of animal species in camera-trap images using very deep convolutional neural networks (2017) Ecological Informatics, 41, pp. 24-32. DOI: 10.1016/j.ecoinf.2017.07.004

DOI-based Scopus search string for retrieving articles in the benchmarking set: ((DOI ($10.3390/\mathrm{ani}10050806$) OR DOI ($10.1038/\mathrm{s}41598-020-67573-7$) OR DOI (10.1111/2041-210x.13576) OR DOI (10.1111/2041-210x.13099) OR DOI (10.1111/2041-210x.13504) OR DOI (10.1111/2041-210x.13120) OR DOI (10.1111/2041-210x.13436) OR DOI ($10.1073/\mathrm{pnas}.1719367115$) OR DOI ($10.1016/\mathrm{j.ecoinf}.2017.07.004$) OR DOI ($10.1371/\mathrm{journal.pone}.0219570$))

Search string development for Scopus database:

- 1. Returning 27,730 hits, 9/10 sensitivity: (TITLE-ABS-KEY ((*automatic* OR "machine learning" OR "computer learning" OR "deep learning" OR "neural network*" OR "random forest*" OR "convolutional neural" OR "convolutional network*" OR "learning algorithm*" OR "Support Vector*") AND (image* OR camera* OR video* OR vision) AND (*wild* OR population* OR environment* OR biodiversity OR ecolog*))) AND PUBYEAR > 2016
- 2. Returning 7,074 hits, 9/10 sensitivity: (TITLE-ABS-KEY ((*automatic* OR "machine learning" OR "computer learning" OR "deep learning" OR "neural network*" OR "random forest*" OR "convolutional neural" OR "convolutional network*" OR "learning algorithm*" OR "Support Vector*") AND (image* OR camera* OR video* OR vision) AND (*wild* OR population* OR "species identif*" OR (behav* AND within/ 5 classif*)) AND PUBYEAR > 2016
- 3. Returning 3,331 hits, 9/10 sensitivity:

 (TITLE-ABS-KEY ((*automatic* OR "machine learning" OR "computer learning" OR "deep learning" OR "neural network*" OR "random forest*" OR "convolutional neural" OR "convolutional network*" OR "learning algorithm*" OR "Support Vector*") AND (image* OR camera* OR video* OR vision) AND (*wild* OR population* OR "species identif*" OR (behav* AND within/ 5 classif*)) AND NOT ("natural language" OR acoust* OR vocal* OR clinical* OR industr* OR agricult* OR farm* OR leaf OR husbandry OR food* OR tissue* OR cell* OR cultur* OR forest* OR hydrolog* OR engineer* OR "oxygen species" OR molec* OR bacteria* OR microb* OR chemi* OR spectrom* OR brain* OR drug*))) AND PUBYEAR > 2016
- 4. Returning 2,451 hits, 9/10 sensitivity:

 (TITLE-ABS-KEY ((*automatic* OR "machine learning" OR "computer learning" OR "deep learning" OR "neural network" OR "random forest*" OR "convolutional neural" OR "convolutional network" OR "learning algorithm*" OR "Support Vector*") AND (image* OR camera* OR video* OR vision) AND (*wild* OR population* OR "species identif*" OR (behavio* AND within/ 5 classif*) OR (behavio* AND within/ 5 recogn*)) AND NOT ("natural language" OR acoust* OR vocal* OR clinical* OR industr* OR agricult* OR farm* OR leaf OR husbandry OR food* OR tissue* OR cell* OR cultur* OR forest* OR hydrolog* OR engineer* OR "oxygen species" OR molec* OR bacteria* OR microb* OR chemi* OR spectrom* OR brain* OR drug* OR patient* OR cancer* OR smoking OR disease OR diabet* OR scan* OR "X-ray" OR "health care" OR participant* OR emotion* OR speech OR proceedings))) AND PUBYEAR > 2016
- 5. Returning 2,853 hits, 10/10 sensitivity:

 (TITLE-ABS-KEY ((*automatic* OR "machine learning" OR "computer learning" OR "deep learning" OR "neural network*" OR "random forest*" OR "convolutional neural" OR "convolutional network*" OR "learning algorithm*" OR "Support Vector*") AND (image* OR camera* OR video* OR vision) AND (*wild* OR population* OR "species identif*" OR "species label*" OR "species richness" OR (behavio* AND within/ 10 classif*) OR (behavio* AND within/ 10 recogn*)) AND

NOT ("natural language" OR accelomet* OR clinical* OR industr* OR agricult* OR farm* OR leaf OR husbandry OR food* OR tissue* OR cell* OR cultur* OR "tree growth" OR hydrolog* OR engineer* OR "oxygen species" OR molec* OR bacteria* OR microb* OR chemi* OR spectrom* OR brain* OR drug* OR patient* OR cancer* OR smoking OR disease OR diabet* OR scan* OR "X-ray" OR "health care" OR participant* OR emotion* OR employee* OR speech OR proceedings))) AND PUBYEAR > 2016

6. Returning 2,051 hits, 9/10 sensitivity:

(TITLE-ABS-KEY ((*automatic* OR "machine learning" OR "computer learning" OR "deep learning" OR "neural network*" OR "random forest*" OR "convolutional neural" OR "convolutional network*" OR "learning algorithm" OR "Support Vector") AND (image* OR camera* OR video* OR vision) AND (animal* OR population* OR "species identif*" OR "species label*" OR "species richness" OR (behavio* AND within/ 10 classif*) OR (behavio* AND within/ 10 recogn*)) AND NOT ("natural language" OR "sign language" OR accelomet* OR clinical* OR industr* OR agricult* OR farm* OR leaf OR husbandry OR food* OR tissue* OR cell* OR cultur* OR wildfire* OR "tree growth" OR forestry OR hydrolog* OR engineer* OR "oxygen species" OR molec* OR bacteria* OR microb* OR chemi* OR spectrom* OR brain* OR drug* OR patient* OR cancer* OR smoking OR disease OR diabet* OR landsat* OR sentinel OR satellite* OR "land cover" OR "land use" OR "vegetation map*" OR galax* OR "Google Earth" OR scan* OR "X-ray" OR "health care" OR participant* OR emotion* OR employee* OR speech OR proceedings))) AND PUBYEAR > 2016

Literature search

We run a search in Scopus on 2021/10/10 using a pre-piloted search string (for details on the development including validation set refer a dedicated Notion notebook):

(TITLE-ABS-KEY ((*automatic* OR "machine learning" OR "computer learning" OR "deep learning" OR "neural network" OR "random forest" OR "convolutional neural" OR "convolutional network" OR "learning algorithm*" OR "Support Vector*") AND (image* OR camera* OR video* OR vision) AND (*wild* OR population* OR "species identif*" OR "species label*" OR "species richness" OR (behavio* AND within/ 10 classif*) OR (behavio* AND within/ 10 recogn*)) AND NOT ("natural language" OR "sign language" OR accelomet* OR clinical* OR industr* OR agricult* OR farm* OR leaf OR husbandry OR food* OR tissue* OR cell* OR cultur* OR wildfire* OR "tree growth" OR forestry OR hydrolog* OR engineer* OR "oxygen species" OR molec* OR bacteria* OR microb* OR chemi* OR spectrom* OR brain* OR drug* OR patient* OR cancer* OR smoking OR disease OR diabet* OR landsat* OR sentinel OR satellite* OR "land cover" OR "land use" OR "vegetation map*" OR galax* OR "Google Earth" OR scan* OR "X-ray" OR "health care" OR participant* OR emotion* OR employee* OR speech OR proceedings)) AND PUBYEAR > 2016

Retrieved bibliographic records were then downloaded and screened for inclusion.

Inclusion criteria at the title and abstract screening phase

Following PICO framework, we included articles if all criteria below were fulfilled:

- **Population:** wild or semi-wild vertebrate species (exclude domestic or farmed animals, invertebrates, museum specimens).
- Intervention / Innovation: use of computer vision machine learning algorithms (include neural-network type methods, such as deep learning, CNN), support vector, random forest) for automated or semi-automated processing of image data (e.g. from camera traps, video tracking, thermal imaging) at a scale where individual animals are visible (include aerial and drone images (exclude images gathered from satellites, biologing, X-ray, MRI images or equivalent *).

- Comparator / Context: images taken in the wild or semi-wild (includes zoo enclosures, excludes lab-based or agricultural/aquaculture/pet studies).
- Outcomes: analyses focus on animal / species individual recognition/classification or animal behaviour recognition/classification.
- Additional criteria: studies published in last 5 years (2017-2021), peer-reviewed (including full-text conference proceedings).

*Note: Aerial and drone images are used to capture images of medium to large vertebrates, such as birds and ungulates; however, satellite images are only useful for huge mammals such as elephants and whales and require different processing pipelines. Biologging image-based studies attach small cameras to animals to record their movements and activities only and usually require capturing the animals before releasing them back in the wild. X-ray and MRI images are typically used in a laboratory setting or at sub-individual scale and were excluded.

Abstract screening procedure and results

We used Rayyan QCRI software to screen unique bibliographic records downloaded from Scopus. Thre researchers (ML, JT, RF) independently performed the screening assessing titles abstracts and keywords of each article. This screening resulted in 225 articles included for full-text assessment and data extraction.

Inclusion criteria at full-text screening

- Full text available
- Full-text studies should fulfill the same criteria as defined for the title and abstract screening phase

Full text screening and data extraction

Out of the 225 papers included, we obtained full-text for 215 papers.

For data extraction we used a two-part custom questionnaire implemented as a Google Form (Table S1). To pilot the form, we randomly selected 14 papers for independent screening aand extraction by three researchers (ML, JT, RF). We resolved disagreements by discussion until consensus was reached, and we refined the questionnaire form before the main round of full-text screening and data extraction.

One researcher (ML) performed full-text screening and data extraction for the remaining 195 papers. Second researcher (RF) cross-checked 58 of these papers for accuracy and to potentially resolve cases where information provided in the papers was unclear. We used GoogleSheet to record data checks and any additional comments. There, we also recoded whether a given paper was used in the pilot rounds, and if it was included or excluded from the final dataset, with a note on the main reson for exclusion.

Table S1 - full-text assessment and data extraction form

Question	Answer options
Paper's title:	[text]
First author's family name:	[text]
Publication year:	[number]
Journal name:	[text]
Article doi:	[text]
C1. Peer-reviewed empirical study	[yes; no; unsure/other]
C2. Is full text available in English?	[yes; no; unsure/other]

Question	Answer options
C3. Population: wild or semi-wild vertebrate species?	[yes; no; unsure/other]
C4. Intervention / Innovation: use of computer vision machine	[yes; no; unsure/other]
learning algorithms (for automated or semi-automated processing of	
image data at a scale where individual animals are visible)?:	
C5. Comparator / Context: are the studied animals in the wild or semi-wild?	[yes; no; unsure/other]
C6. Outcomes: focus on animal / species individual recognition /	[yes; no; unsure/other]
classification or animal behaviour recognition / classification?:	
Q1. Number of studied species	[number]
Q2. Study species (Latin name)	[text]
Q3. Studied species group:	[mammals; birds; reptiles;
	amphibians; fishes; other/unclear]*
Q4. Used image type source:	[camera trap or surveillance camera
	(fixed); aerial (including drone);
	hand camera (or mobile phone
	camera); other/unclear]*
Q5. Study context or setting:	[wild; semi-wild; unclear/other]*
Q6. Location country/region:	[text]
Q7. Location details:	[text]
Q8. Algorithm type:	[Neural Network; Random forest;
	Gradient boosting model; Support
	Vector Machines; Rule-based
	learners; Decision trees; K-Nearest
	Neighbour; unclear/other]*
Q9. Outcome type:	[counting individuals (at given
	time); individual recognition
	(re-identification); species
	recognition/classification
	(class/object detection); behaviour
	detection (at given time); tracking
	(following through space);
	behaviour classification (changes
010 A	over time); unclear/other]*
Q10. Analysis code	[yes; no; unclear/other]

Note: * indicates plural variables (i.e. more than one answer option can be chosen).

Each question in the data extraction form (**Table S1**) was followed by a dedicated comment field used to record any additional details, including relevant quotes from the paper. We excluded any papers that were coded as "no" at questions C1 to C6 (full-text screening questions - whether the paper fulfills our inclusion criteria), i.e. these papers were not subject to any further data extraction and analyses.

After data extraction additional data were added to the GoogleSheet, as follows:

- Q7_coordinates: latitude and longitude of the study location, as in the paper or from Google Maps, if not reported
- Q7_location_unclear: 0 = "clear" (location at least at the level of national park, state, province, city, or equivalent reported in the article or inferred from the data set name); 1 = "unclear", location either not reported or cannot be assigned to a specific location (e.g., global data, broad regions such as Arctic, Northern Atlantic, Africa, America)
- Pilot: whether study was used in the piloting phase
- Checked: whether record was cross-checked by an indpendent researcher

- Checking comments: any comments from data extraction checking
- Changed: whether record was changed after cross-checking
- Changed_comment: how record was changed after cross-checking
- Included: whether study was included in the final data set for extraction
- Exclusion reason: main reason for excluding study from the final data set for extraction, if excluded
- Journal category: based on the journal title and Scimago Journal & Country Rank (https://www.scimagojr.com/). The following journals were categorised as multidisciplinary: "Scientific Reports", "Science Advances", "Proceedings of the National Academy of Sciences of the United States of America". The following journals had "ecology" in SUBJECT AREA AND CATEGORY information, or in their title and were thus classified as "ecology": "Behavioral Ecology and Sociobiology", "Ethology", "Global Ecology and Conservation", "Integrative Zoology", "Mammal Study", "Wildlife Society Bulletin", "Journal of Coastal Research", "Condor", "Methods in Ecology and Evolution", "Environmental Monitoring and Assessment", "Remote Sensing in Ecology and Conservation", "Ornis Fennica", "Ecology and Evolution", "European Journal of Wildlife Research", "Frontiers in Marine Science", "Conservation Biology", "Animals", "Ecological Informatics". The remaining journals were classified as computer science / technology".

Supplementary Results

This section contains additional tables and plots complementing results presented in the main text of the manuscript.

```
rawdata <- read_excel(here("data", "mapping_dataset_reconciled.xlsx"), sheet = 1)
# dim(rawdata) #225 rows 47 columns</pre>
```

Table S2 List of articles excluded at full-text screening, with main reasons for exclusion.

```
#table(rawdata$"exclusion_reason") #table of exclusion reasons for the excluded studies
#remove included studies and select a few relevant columns
rawdata_excl <- rawdata %>% filter(Included == "0") %>%
  select(c("First author's family name:", "Paper's title:",
           "Journal name: ", "Publication year: ", "Exclusion reason"))
#dim(rawdata_excl) #16 articles, 6 columns
#names(rawdata excl)
names(rawdata_excl) <- c("First_author", "Title", "Journal", "Year", "Exclusion_reason")</pre>
#shorten one of the exclusion resons type
rawdata_excl$Exclusion_reason <-</pre>
  recode(rawdata_excl$Exclusion_reason,
         "not focusing on animal / species individual recognition /
         classification or animal behaviour recognition / classification" = "wrong outcome type")
#make a table of excluded studies
kbl(rawdata_excl,
    format = "latex",
   align = "l",
   booktabs = TRUE,
   longtable = TRUE,
   linesep = "") %>%
  column_spec(1, width = "1.5cm") %>%
  column_spec(2, width = "5cm") %>%
  column spec(3, width = "3cm") %>%
  kable_styling(latex_options = c("hold_position", "repeat_header"), font_size = 6)
```

Elorko Narwhal (Monodon monoceros) detection by infrared flukeprints from aerial survey imagery Illich Integrating towed underwater video and multibeam acoustics for marine benthic habitat mapping and fish population estimation Jia Neural Architecture Search Based on Model Statistics for Wildlife Identification Kalafi Comparison of fully automated and semi-automated methods for species (Sepublic) identification Kellenberger AIDE: Accelerating image-based ecological surveys with interactive machine learning Comput. Vis. Pattern Recogn. Workshops Ecospin. Workshops 2021 not using machine learning on animal / species individual recognition / class of the control of the Franklin species individual recognition / class of the control of the Franklin species individual recognition / class of the control of the Franklin species individual recognition / class of the control of the Franklin species individual recognition / class of the control of the Franklin species individual recognition / class of the control of the Franklin species individual recognition / class of the control of the Franklin species individual recognition / class of the control of the Franklin species individual recognition / class of the control of the Franklin species individual recognition / class of the control of the Franklin species individual recognition / class of the control of the Franklin species individual recognition / class of the control of the Franklin species individual recognition / class of the control of the Franklin species individual recognition / class of the control of the Franklin species individual recognition / class of the control of the Franklin species individual recognition / class of the control of the Franklin species individual recognition / class of the control of the Franklin species individual recognition / class of the control of the Franklin species individual recognition / class of the control of the Franklin species individual recognition / class of the control of the Franklin species individual recogn	$First_author$	Title	Journal	Year	Exclusion_reason
Internation Internation of colorations and colorations are consistent as chainings and management of the results of the coloration of	Adam		Sustainability	2021	not empirical
Revoluting the Use of Drones Equipped with Thermal Storoge as an Effective Willist Society Bulletin Soci	Baralle	Individual identification of cheetah (Acinonyx jubatus) based on close-range remote sensing: First steps of a new	Remote Sensing	2021	analysing footprints, not animals
Brocker Brocker A latent capture history model for fighted and contained and con	Beaver	Evaluating the Use of Drones Equipped with Thermal Sensors as an Effective	Wildlife Society Bulletin	2020	not using machine learning
Brack Section errors in wilding abundance Section	Borchers	A latent capture history model for digital	Biometrics	2020	not wild or semi-wild vertebrate species
Solution Solution population comits and size distributions for videos in Control (Solution) Solution S	Brack	Detection errors in wildlife abundance estimates from Unmanned Aerial Systems (UAS) surveys: Synthesis, solutions, and	G.	2018	not empirical
Colaba Reliability of marine faund elections in dono-based motioning (mone-based motioning) (mone-based motion	Bruijning	obtain population counts and size		2018	not wild or semi-wild vertebrate species
Cunha Filtering empty camera trap images in embedded systems	Colefax	Reliability of marine faunal detections in		2019	not using machine learning
Floots Narwhal (Mondom monocoroo) detection Ecosphere 2021 not using machine learning 1 1 1 1 1 1 1 1 1	Cunha	Filtering empty camera trap images in	IEEE Comput. Soc. Conf. Comput. Vis. Pattern	2021	not focusing on animal $/$ species individual recognition $/$ class:
Integrating towed underwater video and multibeam accounts for marine benthic habitat mapping and fish population extination Ja Neural Architecture Search Based on Model (Statistics for Wildlife Identification (Institute) Polis Biological (Czech 2018 Not wild or semi-wild vertebrate species Polis Biological (Czech 2018 Not wild or semi-wild vertebrate species Polis Biological (Czech 2018 Not wild or semi-wild vertebrate species Polis Biological (Czech 2018 Not wild or semi-wild vertebrate species Polis Biological (Czech 2018 Not wild or semi-wild vertebrate species Polis Biological (Czech 2018 Not wild or semi-wild vertebrate species Polis Biological (Czech 2018 Not wild or semi-wild vertebrate species Polis Biological (Czech 2018 Not wild or semi-wild vertebrate species Polis Biological (Czech 2018 Not wild or semi-wild vertebrate species Polis Biological (Czech 2018 Not wild or semi-wild vertebrate species Polis Biological (Czech 2018 Not wild or semi-wild vertebrate species Polis Biological (Czech 2018 Not wild or semi-wild vertebrate species Polis Biological (Czech 2018 Not wild or semi-wild vertebrate species Polis Biological (Czech 2018 Not wild or semi-wild vertebrate species Polis Biological (Czech 2018 Not wild or semi-wild vertebrate species Polis Biological (Czech 2018 Not wild or semi-wild vertebrate species Polis Biological (Czech 2018 Not polis Bio	Florko	by infrared flukeprints from aerial survey		2021	not using machine learning
Ralafi Comparison of fully automated and semi-automated methods for species (equilibria) and constitute (constitution) for fully automated methods for species (equilibria) (elemtification) (election, classification, tracking, and action recognition (election action recognition) (election action recognition) (election action recognition) (election and classification) (election election election and classification) (election election electron electron electronics (electronics, communications and classification of electronics) (electronics, communications and classification of multiple electronics) (electronics) (e	Ilich	Integrating towed underwater video and multibeam acoustics for marine benthic habitat mapping and fish population	Geosciences (Switzerland)	2021	not focusing on animal $/$ species individual recognition $/$ classic
Semi-automated methods for species Republic Methods in Ecology and identification Methods in Ecology and surveys with interactive mencine learning Evolution Surveys with interactive mencine learning Surveys with interactive mencine Surveys with interactive mencine learning Surveys with interactive mencine Surveys with interactive mencine learning Surveys with interactive mencine Surveys with interactive men	Jia			2020	no full-text
Kim Intelligent intrusion detection system Annals of Nuclear Energy 2018 not focusing on animal/species individual recognition / class featuring a virtual fence, active intruder detection, classification tracking, and action recognition EICE Transactions on 2021 no full-text	Kalafi	semi-automated methods for species		2018	not wild or semi-wild vertebrate species
Featuring a virtual fence, active intruder detection, classification (classification tracking, and action recognition and classification (classification) Electronics, and classification (communications and communications and president communications and co	Kellenberger			2020	not wild or semi-wild vertebrate species
Lee	Kim	Intelligent intrusion detection system featuring a virtual fence, active intruder detection, classification, tracking, and	Annals of Nuclear Energy	2018	not focusing on animal $/$ species individual recognition $/$ class:
Marcano Connectivity Connectiv	Lee	Backbone alignment and cascade tiny object detecting techniques for dolphin	Fundamentals of Electronics, Communications and	2021	no full-text
Popucki Conference on Consumer Conferenc	-	vision techniques in fish population	Marine and Freshwater	2021	not empirical
Maheswari generation and classification of multiple species of wild animals using convolutional neural networks McInnes A new model study species: high accuracy of discrimination between individual freckled hawkfish (Paracirrhites forsteri) using natural markings Nayab Wildlife monitoring in zoological parks Nilssen Active Learning for the Classification of Species in Underwater Images from a Fixed to monitor Africa, Āós remarkable biodiversity Peng Implementation of Smart Animal Tracking System Based on Artificial Intelligence Technique Proceedings of SPIE - The Camera trap images Methodology for mammal classification in came	Łopucki	adapters: Camera-traps study of Apodemus agrarius behaviour and new approaches to		2020	not using machine learning
McInnes A new model study species: high accuracy of discrimination between individual freckled hawkfish (Paracirrhites forsteri) using natural markings International Journal of using RASPBERRYPI and machine learning a learning in zoological parks arising RASPBERRYPI and machine learning arising RASPBERRYPI and machine learning arising recent Technology and Engineering arising Raspectatory arising Rasp	Maheswari	Identification and classification of multiple species of wild animals using convolutional		2020	no full-text
Nayab Wildlife monitoring in zoological parks International Journal of using RASPBERRYPI and machine learning Recent Technology and Engineering Nilssen Active Learning for the Classification of Species in Underwater Images from a Fixed Observatory Vision Workshop (ICCVW) Pardo Snapshot Safari: A large-scale collaborative to monitor Africa, Äôs remarkable biodiversity Peng Implementation of Smart Animal Tracking System Based on Artificial Intelligence Technique Electronics - Taiwan (ICCE-TW) Pulido Methodology for mammal classification in camera trap images International Journal of EEE International Society for International Society Society International Society for International Society for International Society Society International Society International Society Society International Society International Society Society International Soc	McInnes	A new model study species: high accuracy of discrimination between individual freckled hawkfish (Paracirrhites forsteri)	Journal of Fish Biology	2020	not using machine learning
Nilssen Active Learning for the Classification of IEEE/CVF International Species in Underwater Images from a Fixed Observatory Vision Workshop (ICCVW) Pardo Snapshot Safari: A large-scale collaborative to monitor Africa,Äôs remarkable Science biodiversity Peng Implementation of Smart Animal Tracking System Based on Artificial Intelligence Conference on Consumer Technique Electronics - Taiwan (ICCE-TW) Pulido Methodology for mammal classification in Proceedings of SPIE - The camera trap images IEEE International Society for SPIE - The camera trap images International Society for International Society for SPIE - The camera trap images	Nayab	Wildlife monitoring in zoological parks	Recent Technology and	2019	not empirical
Pardo Snapshot Safari: A large-scale collaborative to monitor Africa,Äôs remarkable biodiversity Peng Implementation of Smart Animal Tracking System Based on Artificial Intelligence Technique (ICCE-TW) Pulido Methodology for mammal classification in camera trap images South African Journal of 2021 not empirical not empirical 2020 n	Nilssen	Species in Underwater Images from a Fixed	IEEE/CVF International Conference on Computer Vision Workshop	2017	not wild or semi-wild vertebrate species
Peng Implementation of Smart Animal Tracking System Based on Artificial Intelligence Conference on Consumer Electronics - Taiwan (ICCE-TW) Pulido Methodology for mammal classification in camera trap images Implementation of Smart Animal Tracking IEEE International Society for 12020 not empirical	Pardo	to monitor Africa, Äôs remarkable	South African Journal of	2021	not empirical
camera trap images International Society for	Peng	Implementation of Smart Animal Tracking System Based on Artificial Intelligence	Conference on Consumer Electronics - Taiwan	2020	not empirical
	Pulido		International Society for	2017	no full-text

(continued)

First_author	Title	Journal	Year	Exclusion_reason
Ravoor	Deep Learning Methods for Multi-Species Animal Re-identification and Tracking a Survey	Computer Science Review	2020	not empirical
Sullivan	Automated detection, tracking, and counting of gray whales	Proceedings of SPIE - The International Society for Optical Engineering (Proceedings of SPIE)	2020	no full-text
Tariq	Snow leopard recognition using deep convolution neural network	ACM's International Conference Proceedings Series (ICPS)	2018	no full-text
Teto	Automatically identifying of animals in the wilderness: Comparative studies between CNN and C-Capsule Network	ACM's International Conference Proceedings Series (ICPS)	2019	no full-text
Uwanuakwa	Traffic Warning System for Wildlife Road Crossing Accidents Using Artificial Intelligence	International Conference on Transportation and Development	2020	no full-text
Vishnuvardhan	Automatic detection of flying bird species using computer vision techniques	Journal of Physics: Conference Series (JPCS)	2019	not empirical
Wang	Classification of Wildlife Based on Transfer Learning	ACM International Conference Proceeding Series (ICPS)	2020	no full-text
Yu	AniWatch: Camera trap data processor for deep learning-based automatic identification of wildlife species	Asian Conference on Remote Sensing (ACRS)	2018	no full-text
Zhuang	Wildfish: A large benchmark for fish recognition in the wild	Proceedings of the ACM Multimedia Conference (MM)	2018	no full-text

```
#kable_styling(full_width = T)
```

Table S3 List of included articles with key bibliographic information.

```
#remove 4 excluded studies and remove all columns with "Comment", "checked" and first 2 columns
rawdata_incl <- rawdata %>% filter(Included == "1") %>%
  select(c("First author's family name:", "Paper's title:", "Journal name:", "Publication year:"))
#make a table of included studies
names(rawdata_incl) <- c("First_author", "Title", "Journal", "Year")</pre>
#make a table of included studies
kbl(rawdata_incl,
   format = "latex",
   align = "1",
   booktabs = TRUE,
   longtable = TRUE,
   linesep = "") %>%
  column_spec(1, width = "1.5cm") %>%
  column_spec(2, width = "8cm") %>%
  column_spec(3, width = "5cm") %>%
  kable_styling(latex_options = c("hold_position", "repeat_header"), font_size = 6)
```

First_author	Title	Journal	Year
Afan	Drone Monitoring of Breeding Waterbird Populations: The Case of	Drones	2018
Akcay	the Glossy Ibis Automated bird counting with deep learning for regional bird	Animals	2020
Allken	distribution mapping A real-world dataset and data simulation algorithm for automated fish	Geoscience Data Journal	2021
Alqaralleh	species identification Reliable Multi-Object Tracking Model Using Deep Learning and Energy Efficient Wireless Multimedia Sonson Nativorks	IEEE Access	2020

First_author	Title	Journal	Year
Amir	Image classification for snake species using machine learning techniques	Advances in Intelligent Systems and Computing	2017
Arshad	Where is my Deer?-Wildlife Tracking and Counting via Edge Computing and Deep Learning	Proceedings of IEEE Sensors	2020
Atanbori	Classification of bird species from video using appearance and motion features	Ecological Informatics	2018
Bain	Count, crop and recognise: Fine-grained recognition in the wild	Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019	2019
Banupriya	Animal detection using deep learning algorithm	Journal of Critical Reviews	2020
Beery Ben Tamou	Recognition in Terra Incognita Transfer Learning with deep Convolutional Neural Network for Underwater Live Fish Recognition	Lecture Notes in Computer Science 2018 IEEE International Conference on Image Processing, Applications and Systems (IPAS)	2018 2018
Bogucki Borowicz	Applying deep learning to right whale photo identification Social Sensors for Wildlife: Ecological Opportunities in the Era of Camera Ubiquity	Conservation Biology Frontiers in Marine Science	2019 2021
Bouma	Individual Common Dolphin Identification Via Metric Embedding Learning	International Conference on Image and Vision Computing New Zealand	2019
Bowley	Detecting wildlife in uncontrolled outdoor video using convolutional neural networks	Proceedings of the IEEE International Conference on e-Science	2017
Bowley	Toward using citizen scientists to drive automated ecological object detection in aerial imagery	Proceedings of the IEEE International Conference on e-Science	2017
Bowley	Detecting wildlife in unmanned aerial systems imagery using convolutional neural networks trained with an automated feedback loop	Lecture Notes in Computer Science	2018
Brust	Towards automated visual monitoring of individual gorillas in the wild	Proceedings of the EEE/CVF International Conference on Computer Vision Workshop (ICCVW)	2017
Butgereit	On Safari with TensorFlow: Assisting Tourism in Rural Southern Africa Using Machine Learning	International Conference on Advances in Big Data, Computing and Data Communication Systems, icABCD	2018
Carl	Automated detection of European wild mammal species in camera trap images with an existing and pre-trained computer vision model	European Journal of Wildlife Research	2020
Castro	Humpback Whale's Flukes Segmentation Algorithms	Communications in Computer and Information Science	2021
Chamidullin Cheema	A deep learning method for visual recognition of snake species Automatic Detection and Recognition of Individuals in Patterned Species	CEUR Workshop Proceedings Lecture Notes in Computer Science	2021 2017
Chehrsimin Cheng	Automatic individual identification of Saimaa ringed seals Detection Features as Attention (Defat): A Keypoint-Free Approach to Amur Tiger Re-Identification	IET Computer Vision Proceedings - International Conference on Image Processing, ICIP	$2018 \\ 2020$
Choudhury	Detection of one-horned rhino from green environment background using deep learning	Journal of Green Engineering	2020
Clapham	Automated facial recognition for wildlife that lack unique markings: A deep learning approach for brown bears	Ecology and Evolution	2020
Corcoran	Evaluating new technology for biodiversity monitoring: Are drone surveys biased?	Ecology and Evolution	2021
Corcoran	New technologies in the mix: Assessing N-mixture models for abundance estimation using automated detection data from drone surveys	Ecology and Evolution	2020
Corcoran	Automated detection of koalas using low-level aerial surveillance and machine learning	Scientific Reports	2019
Concoran	Modelling wildlife species abundance using automated detections from drone surveillance	International Congress on Modelling and Simulation - Supporting evidence-based decision making: the role of modelling and simulation MODSIM 2019	2019
Coro	An intelligent and cost-effective remote underwater video device for fish size monitoring	Ecological Informatics	2021
Corregidor- Castro	Counting breeding gulls with unmanned aerial vehicles: Camera quality and flying height affects precision of a semi-automatic counting method	Ornis Fennica	2021
Curtin	Deep Learning for Inexpensive Image Classification of Wildlife on the Raspberry Pi	IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)	2019
Datar	Detection of Birds in the Wild using Deep Learning Methods	IEEE International Conference for Convergence in Technology (I2CT),	2018
Dawkins	An open-source platform for underwater image $\&$ video analytics	IEEE Winter Conference on Applications of Computer Vision (WACV)	2017
De Arruda	Recognition of Endangered Pantanal Animal Species using Deep Learning Methods	Proceedings of the International Joint Conference on Neural Networks	2018
Deep	Underwater Fish Species Recognition Using Deep Learning Techniques	International Conference on Signal Processing and Integrated Networks (SPIN)	2019
Delplanque	Multispecies detection and identification of African mammals in aerial imagery using convolutional neural networks	Remote Sensing in Ecology and Conservation	2021
Ditria	Deep learning for automated analysis of fish abundance: the benefits of training across multiple habitats	Environmental Monitoring and Assessment	2020

First_author	Title	Journal	Year
Dlamini	Automated Identification of Individuals in Wildlife Population Using Siamese Neural Networks	International Conference on Soft Computing & Machine Intelligence (ISCMI)	2020
Dlamini	Comparing class-aware and pairwise loss functions for deep metric learning in wildlife re-identification	Sensors	2021
Duggan	An approach to rapid processing of camera trap images with minimal	Ecology and Evolution	2021
Eikelboom	human input Improving the precision and accuracy of animal population estimates with aerial image object detection	Methods in Ecology and Evolution	2019
Elias	Where's the bear?- Automating wildlife image processing using IoT and edge cloud systems	IEEE/ACM Fifth International Conference on Internet-of-Things Design and	2017
Falzon	ClassifyMe: A field-scouting software for the identification of wildlife in camera trap images	Implementation (IoTDI) Animals	2020
Fan Fang	Multi-Background Island Bird Detection Based on Faster R-CNN A Detection Algorithm of Giant Panda in Wild Video Image Based on Wavelet-SSD Network	Cybernetics and Systems IEEE Transactions on Systems, Man, and Cybernetics: Systems	$2020 \\ 2020$
Favorskaya	Selecting informative samples for animal recognition in the wildlife	Smart Innovation, Systems and Technologies	2019
Favorskaya	Animal species recognition in the wildlife based on muzzle and shape features using joint CNN	Procedia Computer Science	2019
Feng	Action recognition using a spatial-temporal network for wild felines	Animals	2021
Feng	A novel hierarchical coding progressive transmission method for WMSN wildlife images	Sensors (Switzerland)	2019
Feng	High-Efficiency Progressive Transmission and Automatic Recognition of Wildlife Monitoring Images with WISNs	IEEE Access	2019
Ferreira Ferreira	Deep learning-based methods for individual recognition in small birds Dashcam based wildlife detection and classification using fused data	Methods in Ecology and Evolution Proceedings of the International Conference	$2020 \\ 2020$
Francis	sets of digital photographic and simulated imagery Counting mixed breeding aggregations of animal species using drones: Lessons from waterbirds on semi-automation	on Information Fusion Remote Sensing	2020
Gabriel	Wildlife detection and recognition in digital images using YOLOv3: Extended abstract	Proceedings of the IEEE Cloud Summit Conference	2020
Gao	CycleGAN-Based Image Translation for Near-Infrared Camera-Trap Image Recognition	Lecture Notes in Computer Science	2020
Gavali	Bird Species Identification using Deep Learning on GPU platform	International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE)	2020
Ghosh	Amur Tiger Detection for Wildlife Monitoring and Security	Communications in Computer and Information Science	2021
Gomez	Towards automatic wild animal monitoring: Identification of animal species in camera-trap images using very deep convolutional neural networks	Ecological Informatics	2017
Gorkin	Sharkeye: Real-time autonomous personal shark alerting via aerial surveillance	Drones	2020
Granados	Classifying False Alarms in Camera Trap Images using Convolutional Neural Networks	International Conference on Computer Science and Computational Intelligence (ICCSCI)	2020
Gray	Drones and convolutional neural networks facilitate automated and accurate cetacean species identification and photogrammetry	Methods in Ecology and Evolution	2019
Gray	A convolutional neural network for detecting sea turtles in drone imagery	Methods in Ecology and Evolution	2019
Guo	Varied channels region proposal and classification network for wildlife image classification under complex environment	IET Image Processing	2020
Hahn- Klimroth	Deep learning-based pose estimation for African ungulates in zoos	Ecology and Evolution	2021
Hans	On-road deer detection for advanced driver assistance using convolutional neural network	International Journal of Advanced Computer Science and Applications	2020
Harjoseputro	MobileNets: Efficient Convolutional Neural Network for Identification of Protected Birds	International Journal on Advanced Science, Engineering and Information Technology	2020
Hayes	Drones and deep learning produce accurate and efficient monitoring of large-scale seabird colonies	Condor	2021
Hj	Photo identification of sea turtles using alexnet and multi-class SVM	Frontiers in Artificial Intelligence	2020
Hsu	Dolphin Recognition with Adaptive Hybrid Saliency Detection for Deep Learning Based on DenseNet Recognition	IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)	2019
Ibraheam	Animal Species Recognition Using Deep Learning	Advances in Intelligent Systems and Computing	2020
Islam	Bird species classification from an image using VGG-16 network	ACM's International Conference Proceedings Series (ICPS)	2019
Islam	Identification of Wild Species in Texas from Camera-trap Images using Deep Neural Network for Conservation Monitoring	Annual Computing and Communication Workshop and Conference (CCWC)	2020
Islam	Herpetofauna Species Classification from Images with Deep Neural Network	Intermountain Engineering, Technology and Computing (IETC)	2020
Jalal	Fish detection and species classification in underwater environments using deep learning with temporal information	Ecological Informatics	2020
Jamil	Deep Learning and Computer Vision-based a Novel Framework for Himalayan Bear, Marco Polo Sheep and Snow Leopard Detection	International Conference on Information Science and Communication Technology (ICISCT)	2020

First_author	Title	Journal	Yea
Jasko	Animal detection from traffic scenarios based on monocular color vision	International Conference on Intelligent Computer Communication and Processing (ICCP)	201
Jawad Jones	Deep Learning Technologies to Mitigate Deer-Vehicle Collisions Processing citizen science- and machine-annotated time-lapse imagery	Studies in Computational Intelligence Scientific Data	202 202
Jose	for biologically meaningful metrics Genus and Species-Level Classification of Wrasse Fishes Using Multidomain Features and Extreme Learning Machine Classifier	International Journal of Pattern Recognition and Artificial Intelligence	202
Kabani	Improving Right Whale recognition by fine-tuning alignment and using wide localization network	Conference on Electrical and Computer Engineering (CCECE)	201
Kellenberger	Half a percent of labels is enough: Efficient animal detection in UAV imagery using deep CNNs and active learning	IEEE Transactions on Geoscience and Remote Sensing	20
Kellenberger	Fast animal detection in UAV images using convolutional neural networks	Dig Int Geosci Remote Sens Symp (IGARSS)	20
Kierdorf	What Identifies A Whale by Its Fluke? On the Benefit of Interpretable Machine Learning for Whale Identification	The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Archives)	20
Kishore	Deep CNN Based Automatic Detection and Identification of Bengal Tigers	Communications in Computer and Information Science (CCIS)	20
Kong	Feature cascade underwater object detection based on stereo segmentation	Journal of Coastal Research	20
Kupyn	Fast and efficient model for real-time tiger detection in the wild	International Conference on Computer Vision Workshop (ICCVW)	20
Labao	Cascaded deep network systems with linked ensemble components for underwater fish detection in the wild	Ecological Informatics	20
atupapua	Performance evaluation of convolutional neural networks and optimizers on wildlife animal classification	International Journal of Advanced Trends in Computer Science and Engineering	20
ee	Beluga whale detection in the Cumberland Sound Bay using convolutional neural networks	Canadian Journal of Remote Sensing	20
ee	Feasibility analyses of real-time detection of wildlife using uav-derived thermal and rgb images	Remote Sensing	20
i	Enhanced Bird Detection from Low-Resolution Aerial Image Using Deep Neural Networks	Neural Processing Letters	20
i	ATRW: A Benchmark for Amur Tiger Re-identification in the Wild	ACM International Conference on Multimedia (ACM Multimedia)	20
ili	Gait Recognition of Amur Tiger Based on Deep Learning	Journal of Physics: Conference Series (JPCS)	20
in iu	Learning niche features to improve image-based species identification Towards Efficient Machine Learning Methods for Penguin Counting in Unmanned Aerial System Imagery	Ecological Informatics IEEE OES Autonomous Underwater Vehicle Symposium (AUV)	20 20
oos	Towards automatic detection of animals in camera-trap images	European Signal Processing Conference (EUSIPCO)	20
u	Turtle species identification design based on CNN	Journal of Physics: Conference Series (JPCS)	20
Ianasa	Wildlife surveillance using deep learning with YOLOv3 model	International Conference on Communication and Electronics Systems (ICCES)	20
Iannocci	Leveraging social media and deep learning to detect rare megafauna in video surveys	Conservation Biology	20
Mathur	Crosspooled FishNet: transfer learning based fish species classification model	Multimedia Tools and Applications	20
IcCarthy	Drone-based thermal remote sensing provides an effective new tool for monitoring the abundance of roosting fruit bats	Remote Sensing in Ecology and Conservation	20
Io Ioallem	Large-scale automatic species identification An explainable deep vision system for animal classification and detection in trail-camera images with automatic post-deployment retraining	Lecture Notes in Computer Science Knowledge-Based Systems	20
Moskvyak	Learning Landmark Guided Embeddings for Animal Re-identification	IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)	20
Aunian (Intelligent System for Detection of Wild Animals Using HOG and CNN in Automobile Applications	International Conference on Information, Intelligence, Systems and Applications (IISA)	20
Munian	Design and Implementation of a Nocturnal Animal Detection Intelligent System in Transportation Applications	International Conference on Transportation and Development	20
Iurugaiyan	Fish species recognition using transfer learning techniques	International Journal of Advances in Intelligent Informatics	20
laddaf-Sh	Design and Implementation of an Assistive Real-Time Red Lionfish Detection System for $\mathrm{AUV/ROVs}$	Complexity	20
Vakhatovich	Applications of classical and deep learning techniques for polar bear detection and recognition from aero photography	Communications in Computer and Information Science	20
Vepovinnykh	Identification of Saimaa Ringed Seal Individuals Using Transfer Learning	Lecture Notes in Computer Science	20
Vguyen	Animal recognition and identification with deep convolutional neural networks for automated wildlife monitoring	IEEE International Conference on Data Science and Advanced Analytics (DSAA)	20
Nipko	Identifying Individual Jaguars and Ocelots via Pattern-Recognition Software: Comparing HotSpotter and Wild-ID	Wildlife Society Bulletin	20
Norouzzadeh	A deep active learning system for species identification and counting in camera trap images	Methods in Ecology and Evolution	20

First_author	Title	Journal	Yea
Vorouzzadeh	Automatically identifying, counting, and describing wild animals in	Proceedings of the National Academy of	201
Okafor	camera-trap images with deep learning Comparative study between deep learning and bag of visual words for	Sciences of the United States of America IEEE Symposium Series on Computational	201
3110101	wild-animal recognition	Intelligence (IEEE SSCI)	20.
Otani	Potency of Individual Identification of Japanese Macaques (Macaca fuscata) Using a Face Recognition System and a Limited Number of Learning Images	Mammal Study	202
Padubidri	Counting sea lions and elephants from aerial photography using deep learning with density maps	Animal Biotelemetry	202
Palencia	Innovations in movement and behavioural ecology from camera traps: Day range as model parameter	Methods in Ecology and Evolution	202
Parham	Animal population censusing at scale with citizen science and photographic identification	AAAI Spring Symposium Series Technical Reports	20
Park	Marine Vertebrate Predator Detection and Recognition in Underwater Videos by Region Convolutional Neural Network	Lecture Notes in Computer Science	20
Patel	Revealing the unknown: Real-time recognition of Galapagos snake species using deep learning	Animals	20
ena	Hammerhead Shark Species Monitoring with Deep Learning	Communications in Computer and Information Science	20
Pena	Tracking Hammerhead Sharks with Deep Learning	IEEE Colombian Conference on Applications in Computational Intelligence	20
Picek	Overview of SnakeCLEF 2021: Automatic snake species identification with country-level focus	CEUR Workshop Proceedings	20
Pramunendar	New workflow for marine fish classification based on combination features and CLAHE enhancement technique	International Journal of Intelligent Engineering and Systems	20
Pramunendar	Fish classification based on underwater image interpolation and back-propagation neural network	International Conference on Science and Technology (ICST)	20
ramunendar	A robust image enhancement techniques for underwater fish classification in marine environment	International Journal of Intelligent Engineering and Systems	20
tagib	PakhiChini: Automatic bird species identification using deep learning	World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4)	20
eno	Exploiting species-distinctive visual cues towards the automated photo-identification of the Risso's dolphin Grampus griseus	IEEE International Workshop on Metrolog for the Sea; Learning to Measure Sea Health Parameters (MetroSea)	
tey tohilla	Detecting animals in African Savanna with UAVs and the crowds GPU based Re-trainable Pruned CNN design for Camera Trapping at the Edge	Remote Sensing of Environment	
tum	$\label{eq:FishDeTec:} Fish DeTec: A Fish Identification Application using Image Recognition \\ Approach$	International Journal of Advanced Computer Science and Applications	20
aqib	Real-Time Drone Surveillance and Population Estimation of Marine Animals from Aerial Imagery	International Conference Image and Vision Computing New Zealand	20
axena	An Animal Detection and Collision Avoidance System Using Deep Learning	Lecture Notes in Electrical Engineering	20
ayed	An Automated Fish Species Identification System Based on Crow Search Algorithm	Advances in Intelligent Systems and Computing	20
chindler chneider	Saving costs for video data annotation in wildlife monitoring Three critical factors affecting automated image species recognition	Ecology and Evolution	20 20
chneider	performance for camera traps Deep learning object detection methods for ecological camera trap	Conference on Computer and Robot Vision (CRV)	20
chneider	data Similarity Learning Networks for Animal Individual	IEEE Winter Conference on Applications of	20
chofield	Re-Identification-Beyond the Capabilities of a Human Observer Chimpanzee face recognition from videos in the wild using deep learning	Computer Vision Workshops (WACVW) Science Advances	20
hahinfar	How many images do I need? Understanding how sample size per class affects deep learning model performance metrics for balanced designs	Ecological Informatics	20
hepley	in autonomous wildlife monitoring U-infuse: Democratization of customizable deep learning for object detection	Sensors	20
hepley	Automated location invariant animal detection in camera trap images using publicly available data sources	Ecology and Evolution	20
hi	Amur tiger stripes: individual identification based on deep convolutional neural network	Integrative Zoology	20
hukla	A hybrid approach to tiger re-identification	IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)	20
hukla ingh	Primate Face Identification in the Wild Animal Localization in Camera-Trap Images with Complex Backgrounds	Lecture Notes in Computer Science Proc IEEE Southwest Symp Image Anal Interpret	20 20
Sinha	Exploring bias in primate face detection and recognition	Lecture Notes in Computer Science	20
ong	CNN Based Wildlife Recognition with Super-Pixel Segmentation for Ecological Surveillance	Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, CYBER	20
tavelin	Applying object detection to marine data and exploring explainability of a fully convolutional neural network using principal component analysis	Ecological Informatics	20

First_author	Title	Journal	Ye
Suhas	Performance analysis of SVM with quadratic kernel and logistic	Compusoft	20
Surender	regression in classification of wild animals Automatic Identification of Bird Species from the Image Through the Approaches of Segmentation	Lecture Notes in Networks and Systems	20
Swarup	Giant panda behaviour recognition using images	Global Ecology and Conservation	20
Γabak	Improving the accessibility and transferability of machine learning algorithms for identification of animals in camera trap images:	Ecology and Evolution	20
	MLWIC2		
Γabak	Machine learning to classify animal species in camera trap images: Applications in ecology	Methods in Ecology and Evolution	20
Гатои Геkeli	Underwater live fish recognition by deep learning Elimination of useless images from raw camera-trap data	Lecture Notes in Computer Science Turkish Journal of Electrical Engineering and Computer Sciences	20 20
Γhangarasu	Recognition of animal species on camera trap images using machine learning and deep learning models	International Journal of Scientific and Technology Research	20
l'imm -	Large-scale ecological analyses of animals in the wild using computer vision	IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops	20
Torney	A comparison of deep learning and citizen science techniques for counting wildlife in aerial survey images	Methods in Ecology and Evolution	20
Trnovszky	Animal recognition system based on convolutional neural network	Advances in Electrical and Electronic Engineering	20
Jeano	Automatically detecting and tracking free-ranging Japanese macaques in video recordings with deep learning and particle filters	Ethology	20
Jlhaq	Automated detection of animals in low-resolution airborne thermal imagery	Remote Sensing	20
Illoa	Hammerhead shark detection using regions with convolutional neural networks	IEEE ANDESCON, ANDESCON	20
aca- Castano	Multispectral camera design and algorithms for python snake detection in the Florida Everglades	Proceedings of SPIE - The International Society for Optical Engineering	2
asmatkar /	Snake species identification and recognition	(Proceedings of SPIE) IEEE Bombay Section Signature Conference (IBSSC)	2
erma	Wild Animal Detection from Highly Cluttered Images Using Deep	International Journal of Computational	2
Villon	Convolutional Neural Network A Deep learning method for accurate and fast identification of coral reef fishes in underwater images	Intelligence and Applications Ecological Informatics	2
Villon	A new method to control error rates in automated species identification with deep learning algorithms	Scientific Reports	2
Vang	New approach for detection of giant panda head in wild environment	Acta Technica CSAV (Ceskoslovensk Akademie Ved)	2
Vang	Study on Freshwater Fish Image Recognition Integrating SPP and DenseNet Network	IEEE Int. Conf. Mechatronics Autom., ICMA	2
Vang	Learning deep features for giant panda gender classification using face images ${}^{\circ}$	IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)	2
Vang	Grouping Feature Learning for Giant Panda Face Recognition	IEEE Transactions on Systems, Man, and Cybernetics: Systems	2
Vang	Giant Panda Identification	IEEE Transactions on Image Processing	20
Vei Vhytock	Zilong: A tool to identify empty images in camera-trap data Robust ecological analysis of camera trap data labelled by a machine	Ecological Informatics Methods in Ecology and Evolution	20 20
Villi	learning model Identifying animal species in camera trap images using deep learning	Methods in Ecology and Evolution	2
Villiams	and citizen science Deep learning analysis of nest camera video recordings reveals temperature-sensitive incubation behavior in the purple martin	Behavioral Ecology and Sociobiology	2
Lie	(Progne subis) An integrated wildlife recognition model based on multi-branch	Applied Sciences (Switzerland)	2
ζu	aggregation and squeeze-and-excitation network Underwater fish detection using deep learning for water power	International Conference on Computer	2
	applications	Science and Computational Intelligence (ICCSCI)	
ang	An Adaptive Automatic Approach to Filtering Empty Images from Camera Traps Using a Deep Learning Model	Wildlife Society Bulletin	2
/u	A strong baseline for tiger Re-ID and its bag of tricks	IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)	2
/u	Animal detection in highly cluttered natural scenes by using faster $\operatorname{R-CNN}$	International Journal of Recent Technology and Engineering	20
Zhang	Omni-supervised joint detection and pose estimation for wild animals	Pattern Recognition Letters	20
Zhao	Image-Based Recognition of Individual Trouts in the Wild	European Workshop on Visual Information Processing (EUVIP)	20
Zhu	Towards Automatic Wild Animal Detection in Low Quality Camera-Trap Images Using Two-Channeled Perceiving Residual Pyramid Networks	IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)	2
Zotin	Animal detection using a series of images under complex shooting conditions	The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Archives)	20

(continued)

First_author	Title	Journal	Year
Zualkernan	Towards an IoT-based Deep Learning Architecture for Camera Trap Image Classification	IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT)	2020
Zuffi	Three-D safari: Learning to estimate zebra pose, shape, and texture from images 'in the wild' $$	Proceedings of IEEE International Conference on Computer Vision	2019

```
#kable_styling(full_width = T)
```

Preprocessing extracted data

Data cleaning before generating summaries and plotting.

```
#remove unnecessary columns
rawdata_incl <- rawdata %>%
  filter(Included == "1") %>%
  select(-starts_with("C")) %>%
  select(-c("Timestamp", "Respondent's initials:", "Pilot", "Included", "Exclusion reason"))
#replace column names with shorter variable names for rawdata_incl analyses
names(rawdata_incl) <- c("Title",</pre>
                 "Author",
                 "Year",
                 "Journal",
                 "DOI",
                 "Species_number",
                 "Study_species",
                 "Studied_species_type",
                 "Image_source_type",
                 "Study_setting",
                 "Location_country",
                 "Location_details",
                 "Location_coordinates",
                 "Location_unclear",
                 "Algorithm_type",
                 "Outcome_type",
                 "Analysis_code")
#unique(rawdata_incl$Journal)
# classify journals into comp.sci vs. ecology journals
rawdata_incl$Journal_discipline <-</pre>
  recode(rawdata_incl$Journal,
         "Behavioral Ecology and Sociobiology" = "ecology",
         "Ethology" = "ecology",
         "Global Ecology and Conservation" = "ecology",
         "Integrative Zoology" = "ecology",
         "Mammal Study" = "ecology",
         "Wildlife Society Bulletin" = "ecology",
         "Journal of Coastal Research" = "ecology",
         "Condor" = "ecology",
         "Methods in Ecology and Evolution" = "ecology",
         "Environmental Monitoring and Assessment" = "ecology",
```

```
"Remote Sensing in Ecology and Conservation" = "ecology",
   "Ornis Fennica" = "ecology",
   "Ecology and Evolution" = "ecology",
   "European Journal of Wildlife Research" = "ecology",
   "Frontiers in Marine Science" = "ecology",
   "Conservation Biology" = "ecology",
   "Animals" = "ecology",
   "Ecological Informatics" = "ecology",
   "Scientific Reports" = "multidisciplinary",
   "Science Advances" = "multidisciplinary",
   "Proceedings of the National Academy of Sciences of the United States of America" =
        "multidisciplinary",
   .default = "computer science / technology")
#table(rawdata_incl$Journal_discipline)
```

Supplementary data summaries and plots

Figure S1 Displaying annual counts of included articles.

```
count(rawdata_incl, Year) %>%
  mutate(class = factor(Year, levels = Year)) %>%
  ggplot(aes(x = class, y = n)) +
  geom_bar(stat = "identity", position = "dodge") +
  geom_text(aes(label = as.integer(scales::comma(n))), hjust = 0, nudge_y = 5) +
  scale_y_continuous(breaks = seq(0, 60, 10)) +
  labs(x = "", y = "Article count", title = "When it was published?")
```


Number of species / animal classes used Most data sets have prespecified number of animal species / classes present. Class can represent a species or a higher taxonomic group, such as genus, family, order, super-order, etc. (even "animals" can ba a class). Classes of non-animal objects (e.g. humans, vehicles) were not counted. When more than one dataset was used, the number was extracted for the biggest dataset.

A brief summary statistics on the number of animal species/classes per study.

```
## # A tibble: 1 x 6
## min max mean sd median n
## <dbl> <dbl> <dbl> <dbl> <dbl> <int>
## 1 1 16583 118. 1241. 3 179
```

Table S4 List of papers with > 100 species/animal classes.

```
#Filter studies and select a few relevant columns
rawdata_incl %>%
  filter(Species_number != "NA") %>%
  mutate(Species_number_NUM = as.integer(Species_number)) %>%
  filter(Species_number_NUM > 100) %>%
  select(c("Author", "Title", "Journal", "Year", "Studied_species_type", "Species_number")) ->
  rawdata_topspeciesnumbers
#make a table of included studies
kbl(rawdata_topspeciesnumbers,
    format = "latex",
    align = "1",
    booktabs = TRUE,
    longtable = TRUE,
    linesep = "") %>%
  column_spec(1, width = "1.5cm") %>%
  column_spec(2, width = "6cm") %>%
  column_spec(3, width = "3cm") %>%
  column_spec(4, width = "1cm") %>%
  column_spec(5, width = "2cm") %>%
  kable_styling(latex_options = c("hold_position", "repeat_header"), font_size = 6)
```

Author	Title	Journal	Year	Studied_species_t	yp&pecies_number
Chamidullin	A deep learning method for visual recognition of snake species	CEUR Workshop Proceedings	2021	reptiles	772
Gavali	Bird Species Identification using Deep Learning on GPU platform	International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE)	2020	birds	200
Li	Enhanced Bird Detection from Low-Resolution Aerial Image Using Deep Neural Networks	Neural Processing Letters	2019	birds	200
Мо	Large-scale automatic species identification	Lecture Notes in Computer Science	2017	mammals, birds, reptiles, amphibians, fishes, other	16583
Norouzzadeh	A deep active learning system for species identification and counting in camera trap images	Methods in Ecology and Evolution	2021	mammals, birds	270
Picek	Overview of SnakeCLEF 2021: Automatic snake species identification with country-level focus	CEUR Workshop Proceedings	2021	reptiles	772
Ragib	PakhiChini: Automatic bird species identification using deep learning	World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4)	2020	birds	200
Sayed	An Automated Fish Species Identification System Based on Crow Search Algorithm	Advances in Intelligent Systems and Computing	2018	fishes	260
Shahinfar	How many images do I need? Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring	Ecological Informatics	2020	mammals, birds	126
Surender	Automatic Identification of Bird Species from the Image Through the Approaches of Segmentation	Lecture Notes in Networks and Systems	2019	birds	200
Willi	Identifying animal species in camera trap images using deep learning and citizen science	Methods in Ecology and Evolution	2019	mammals, birds	139

Figure S2 Displaying total counts of papers by the settings in which animal images were taken. Note: a single study could be coded as using one or more categories of settings, e.g. mix of images from the wild and captive (semi-wild) animals.

```
#table(rawdata_incl$Study_setting, useNA = "always") #0 NA, need to split at comma
rawdata_incl$Study_setting <- recode(rawdata_incl$Study_setting,</pre>
                                      "unclear/other" = "other / unclear") #standarise wording
Study_setting_sep <- separate_rows(rawdata_incl,</pre>
                                   Study_setting, sep = ", ") #split rows with multiple values
Study_setting_sep$Study_setting <- as.factor(Study_setting_sep$Study_setting)
#table(Study setting sep$Study setting, useNA = "always")
Study setting sep %>%
  filter(!is.na(Study_setting)) %>%
  count(Study_setting) %>%
  arrange(n) %>%
  mutate(class = factor(Study_setting, levels = Study_setting)) %>%
  ggplot(aes(x = class, y = n)) +
  geom_bar(stat = "identity", position = "dodge") +
  geom_text(aes(label = as.integer(scales::comma(n))), hjust = 0, nudge_y = 1) +
  coord_flip() +
  scale_y_continuous(breaks = seq(0, 150, 10)) +
  labs(x = "", y = "Article count", title = "What types of settings were studied?",
       caption = "Note: some studies used more than one")
```

What types of settings were studied?

Note: some studies used more than one

Figure S3

Barplot of counts of a country or a larger region where animal images were collected. A single study could be coded as using images from one or more countries/regions. Some studies using images of captive animals kept in zoos likely across mutiple countries were coded as "global" (often images sourced from the Internet/social platforms).

Figure S4

A barplot of the counts of articles originating form a given country / larger region. "Global" are usually datasets based on images collected from the Internet or social media.

Most popular location country/region?

Note: some studies used more than one

Figure S5

Location coordinates representing either a specific location (green circles) or centroids of a broader region (orange circles) where animal images originated from. Darker circles indicate a larger number of studies for a given location. "Global" image datasets (e.g. gathered from the Internet or social media) are not shown.

```
#table(rawdata incl$Location unclear, useNA = "always")
# 1 = yes for 78 studies, 3 is NA (global or multi-location studies)
#table(is.na(rawdata incl$Location coordinates), useNA = "always")
# 133 have coordinates, 59 have no
#table(rawdata_incl$Study_setting, rawdata_incl$Location_unclear, useNA = "always")
# 97+7 wild/semi-wild have clear location
#table(is.na(rawdata_incl$Location_coordinates), rawdata_incl$Location_unclear, useNA = "always")
# 110 have coordinates and clear location, 56 of 78 with unclear location have no coordinates
\#table(is.na(rawdata_incl\$Location\_coordinates), rawdata_incl\$Study\_setting, useNA = "always")
# 116 of the wild-based studies has coordinates
# to plot dots at coordinates for wild-based studies only -
# first filter data and split coordinates column into longitude and latitude:
rawdata_incl %>% filter(Study_setting == "wild" | Study_setting == "wild, semi-wild") %>%
  filter(is.na(Location_coordinates) == FALSE) %>%
  separate(col = Location_coordinates, into = c("Latitude", "Longitude") , sep = ", ") ->
  coordinates_sep
coordinates_sep$Longitude <- as.numeric(coordinates_sep$Longitude)</pre>
coordinates_sep$Latitude <- as.numeric(coordinates_sep$Latitude)</pre>
coordinates_sep$Approximate_location <- recode(coordinates_sep$Location_unclear,</pre>
                                                "0" = "no", "1" = "ves")
map.world <- map_data("world")</pre>
#make a plot
ggplot() +
 geom_map(
   data = map.world, map = map.world,
   aes(long, lat, map id = region),
   color = "white", fill = "lightgray", size = 0.1
  ) +
  geom_point(
   data = coordinates sep,
   aes(Longitude, Latitude, color = Approximate_location), size = 4,
   alpha = 0.4, position = position jitter(width = 2, height = 2)
  ) +
  scale_colour_manual(values = c("darkgreen", "orange")) +
  theme(legend.position = "top")
```


Figure S6
Barplot of the main types of machine learning algorithms used in the included studies. A single study could be coded as using one or more types.

```
#table(rawdata_incl$Alqorithm_type, useNA = "always") #0 NA, need to split at comma
Algorithm_type_sep <- separate_rows(rawdata_incl, Algorithm_type, sep = ", ")</pre>
Algorithm_type_sep$Algorithm_type <- recode(Algorithm_type_sep$Algorithm_type,
                                            "unclear/other" = "other / unclear")
Algorithm_type_sep$Algorithm_type <- as.factor(Algorithm_type_sep$Algorithm_type)
Algorithm type sep %>%
  filter(!is.na(Algorithm_type)) %>%
  count(Algorithm_type) %>%
  arrange(n) %>%
  mutate(class = factor(Algorithm_type, levels = Algorithm_type)) %>%
  ggplot(aes(x = class, y = n)) +
  geom_bar(stat = "identity", position = "dodge") +
  geom_text(aes(label = as.integer(scales::comma(n))), hjust = 0, nudge_y = 1) +
  coord_flip() +
  scale_y_continuous(breaks = seq(0, 200, 50)) +
  labs(x = "", y = "Article count", title = "What types of algorithms were used?",
      caption = "Note: some studies used more than one")
```

What types of algorithms were used?

Note: some studies used more than one

Figure S7
Barplot of the main types of outcomes / purposes of analyses in the included studies. A single study could be coded as using one or more types.

```
#table(rawdata_incl$Outcome_type, useNA = "always") #1 NA, need to split at comma
Outcome type sep <- separate rows(rawdata incl, Outcome type, sep = ", ")
Outcome type sep$Outcome type <- recode(Outcome type sep$Outcome type,
                                         "unclear/other (add comment)" = "other / unclear")
Outcome_type_sep$Outcome_type <- as.factor(Outcome_type_sep$Outcome_type)</pre>
# berplot of article counts for different outcomes (separated)
Outcome_type_sep %>%
  filter(!is.na(Outcome_type)) %>%
  count(Outcome_type,) %>%
  arrange(n) %>%
  mutate(class=factor(Outcome_type, levels = Outcome_type)) %>%
  ggplot(aes(x = class, y = n)) +
  geom_bar(stat = "identity", position = "dodge") +
  geom text(aes(label = as.integer(scales::comma(n))), hjust = 0, nudge y = 1) +
  coord_flip() +
  scale_y_continuous(breaks = seq(0, 200, 50)) +
  labs(x = "", y = "Article count", title = "What types of outcomes were analysed?",
       caption = "Note: some studies used more than one")
```

What types of outcomes were analysed?

Note: some studies used more than one

Figure S8

Barplot of total counts of journals by discipline.

```
rawdata_incl %>%
  filter(!is.na(Journal_discipline)) %>%
  count(Journal_discipline) %>%
  arrange(n) %>%
  mutate(class = factor(Journal_discipline, levels = Journal_discipline)) %>%
  ggplot(aes(x = class, y = n, fill = Journal_discipline)) +
  geom_bar(stat = "identity", position = "dodge") +
  geom_text(aes(label = as.integer(scales::comma(n))), hjust = 0, nudge_y = 1) +
  coord_flip() +
  scale_y_continuous(breaks = seq(0, 200, 50)) +
  scale_fill_manual(values = c("#E57E7E", "#C3E57E", "#E5B17E")) +
  theme(legend.position = "none") +
  labs(x = "", y = "Article count", title = "What disciplines journals represent?")
```

What disciplines journals represent?

Bibliometric analyses

##

These analyses are based on the information extracted from bibliographic records downloaded from Scopus. Initial preprocessing and summaries using bibliometrix R package. Subsequently this data was combined with manually coded data from the full texts.

Load and export author affiliation country from bibliographic records (scopus_AI_1and2.bib).

```
bib <- convert2df(here("data", "scopus_AI_1and2.bib"), dbsource = "wos", format = "bibtex")

##

## Converting your wos collection into a bibliographic dataframe

##

##

## Warning:

## In your file, some mandatory metadata are missing. Bibliometrix functions may not work properly!

##

## Please, take a look at the vignettes:

## - 'Data Importing and Converting' (https://www.bibliometrix.org/vignettes/Data-Importing-and-Convert

## - 'A brief introduction to bibliometrix' (https://www.bibliometrix.org/vignettes/Introduction_to_bib)

##

## Missing fields: ID CR

## Done!</pre>
```

##
Generating affiliation field tag AU UN from C1: Done!

```
# Initial data cleaning and merging with manually coded data frame.
# Remove all non-alphanumeric, punctuation and extra white spaces in bib object
bib$TI2 <- gsub("[^[:alnum:] ]", "", bib$TI) %>% str_replace_all(.,"[ ]+", " ")
# Remove all non-alphanumeric, punctuation and extra white spaces in rawdata_incl object
rawdata_incl$TI2 <- str_to_upper(gsub("[^[:alnum:]]", "", rawdata_incl$Title)) %>%
  str replace all(.,"[]+", " ")
# Clean-up of 6 non-matching titles before merging -
# replace title TI2 in bib (not-matching) with TI2 from rawdata incl
bib[bib$TI2 %like% "MODELLING WILDLIFE SPECIES ABUNDANCE USING", "TI2"] <-
  rawdata_incl[rawdata_incl$TI2 %like% "MODELLING WILDLIFE SPECIES ABUNDANCE USING", "TI2"]
bib[bib$TI2 %like% "COUNTING BREEDING GULLS", "TI2"] <-
  rawdata_incl[rawdata_incl$TI2 %like% "COUNTING BREEDING GULLS", "TI2"]
bib[bib$TI2 %like% "COMPARING CLASSAWARE AND PAIRWISE LOSS FUNCTIONS", "TI2"] <-
  rawdata_incl[rawdata_incl$TI2 %like% "COMPARING CLASSAWARE AND PAIRWISE LOSS FUNCTIONS", "TI2"]
bib[bib$TI2 %like% "BELUGA WHALE DETECTION IN THE CUMBERLAND", "TI2"] <-
  rawdata_incl[rawdata_incl$TI2 %like% "BELUGA WHALE DETECTION IN THE CUMBERLAND", "TI2"]
bib[bib$TI2 %like% "REVEALING THE UNKNOWN REALTIME RECOGNITION OF", "TI2"] <-
  rawdata_incl[rawdata_incl$TI2 %like% "REVEALING THE UNKNOWN REALTIME RECOGNITION OF", "TI2"]
#Join the data frames
bib_title <- left_join(rawdata_incl, bib, by = "TI2")</pre>
results <- biblioAnalysis(bib_title, sep = ";") #this calculates the main bibliometric measures,
#sum(results$CountryCollaboration$SCP) #4only 3 multi-country papers out of 173 with data
```

Figure S9

A barplot of country assigned to each publication based on the affiliation country of the first author. Co-authorship type is based on country of all authors of a given publication. SCP indicates all authors were affiliated with the same country. MCP indicates international co-authorship.

Author collaboration type by country?

SCP: Single Country Publications, MCP: Multiple Country Publications