I226 Computer Networks

Chapter 5

Network Layer II

Assoc. Prof. Yuto Lim

Objectives of this Chapter

- Provide an understanding what are the internetworking devices available for creating a network
- Offer the knowledge of spanning tree algorithm and its operation
- Explain the difference between the bridge and the router
- Give the difference between the router and the switch
- Give an explanation of LAN and its details

Outline

- Elements of a Network
- Networking Devices
 - Repeater
 - Bridge
- Internetworking Devices
 - Router
 - Gateway
- Local Area Network Examples
 - Ethernet LAN

Elements of a Network

- 3 networks forming an internetwork
 - Communication links
 - Buffers to hold packets when contention for communications link
 - Network set of nodes (hosts, routers, gateways) within a single administrative domain (department, company)

Elements of a Network (cont.)

- Internetwork: a collection of interconnected networks
- Active network elements: hardware running protocols
 - Host hardware running applications which use network (e.g., A)
 - Router hardware (often without application level functions) routing packets from input line to output line (e.g., C)
 - Gateway a router connected directly to two or more networks (e.g., B and D)

pg. 5/41

What are Connecting Devices?

- Connecting devices are products used to unite and separate networks, consist of
 - Networking devices
 - Internetworking devices
- As computer networks grow in size and complexity, both the networking and internetworking devices that used to connect them also grow
- Purposes of connecting devices
 - Allow a greater number of nodes to be connected to the network
 - Extend the distance over which a network can extend
 - Localize traffic on the network
 - Merge existing networks
 - Isolate network problems so that internetworking device can be diagnosed more easily

pg. 6/41

Connecting Devices

Figure: Connecting devices and the OSI model

Example

Repeater

- Repeater (regenerator, not an amplifier) is an electronic device that operates on only the physical layer of the OSI model
 - Signals that carry information within a network can travel a fixed distance before attenuation endangers the integrity of the data
- It extends the physical length of a network
- No network function has been changed
- Location is matter

<u>Hub</u>

- Hub that is very common networking device actually is a multiport repeater
- The term hub is used instead of repeater when referring to the device that serves as the center of a star topology network
- Hubs do not isolate collision domains: node may collide with any node residing at any segment in LAN
- Advantages
 - Simple
 - Inexpensive device
 - Multi-tier providesgraceful degradationExtends maximum
 - Extends maximum distance between node pairs (100 m per Hub)

Bridge

- Divide a large network into smaller segment
- Isolating and controlling the link problems (e.g., congestion)
- Regenerate signal + Checking Physical Address and forward only to the specified segment
- Advantages
 - Isolates collision domains resulting in higher total max throughput, and does not limit the no. of nodes nor geographical coverage
 - Can connect different type
 Ethernet since it is a store and forward device
 - Transparent: no need for any change to hosts LAN adapters

Multiport Bridge

pg. 12/41

Networks Without Bridges

Networks With Bridges

Bridge: Forwarding, Frame Filtering

- Forwarding
 - How to know on which LAN segment to forward frame?
- Bridge filters frames
 - Same-LAN-segment frames not forwarded onto other LAN segments
- Bridge learns which hosts can be reached through which interfaces: maintain filtering tables
 - When frame received, bridge "learns" location of sender: incoming LAN segment
 - Records sender location in filtering table
- Filtering table entry
 - Entry content (Node LAN Address, Bridge Interface, Time Stamp)
 - Stalé entries in filtering table dropped (TTL can be 60 minutes)

pg. 15/41

Bridge Operation

```
bridge procedure (in MAC, in port, out MAC)
/*learning*/
Set filtering table (in MAC) to in port;
lookup in filtering table (out MAC) receive out port;
/*no entry found for destination*/
if (out port not valid)
/*forward on all but the interface on which the frame arrived*/
then flood;
/*destination is on LAN on which frame was received*/
if (in port = out port)
then drop the frame;
/*entry found for destination*/
Otherwise (out port is valid)
then forward the frame on interface indicate:
```

pg. 16/41 © Y. Lim

Bridge Learning: Example

- Suppose C sends frame to D, D replies back with frame to C
- C sends frame, bridge has no info about D, so floods to both LANs
 - bridge notes that C is on port 1
 - frame ignored on upper LAN
 - frame received by D
- D generates reply to C, sends
 - bridge sees frame from D
 - bridge notes that D is on interface 2
 - bridge knows C on interface 1, so selectively forwards frame out via interface 1

pg. 17/41 © Y. Lim

Bridge: Incorrect learning

- What will happen with loops?
 - □ Frame looping happen ⇒ address A is keep changing

Spanning Tree Concepts

- Allow a path between every LAN without causing loops (loop-free environment)
- Bridges communicate with special configuration messages (BPDUs) and standardized by IEEE 802.1D
- Each bridge is assigned a unique identifier, a broadcast address for bridges on a LAN
- A unique port identifier for all ports on all bridges
 - MAC address
 - Bridge ID + port number
- Bridge with the lowest bridge ID value is elected root bridge
- One root bridge chosen among all bridges, every other bridge calculates a path to the root bridge

pg. 19/41

Spanning Tree Concepts (cont.)

- Path cost
 - Cost associated with each port on each bridge, default is 1
 - Cost associated with transmission onto the LAN connected to the port
 - Can be manually or automatically assigned
 - Can be used to alter the path to the root bridge
- Root port
 - Port on each bridge that is on the path towards the root bridge
 - Root port is part of the lowest cost path towards the root bridge
 - If port costs are equal on a bridge, the port with the lowest ID becomes root port
- Root path cost
 - Minimum cost path to the root bridge
 - Cost starts at the root bridge
 - Each bridge computes root path cost independently based on their view of the network
- Designated bridge
 - Only one bridge on a LAN at one time is chosen the designated bridge
 - This bridge provides the minimum cost path to the root bridge for the LAN
 - Only the designated bridge passes frames towards the root bridge

pg. 20/41

Spanning Tree Algorithm

- Step 1: Determine root bridge among all bridges
- Step 2: Each bridge determines its root port
 - Port in the direction of the root bridge
- Step 3: Determine the designated bridge on each LAN
 - Bridge which accepts frames to forward towards root bridge
 - Frames are sent on the root port of the designated bridge

Example

Algorithm operation:

- 1. Picks a root
- 2. For each LAN, picks a designated bridge that is closest to the root
- All bridges on a LAN send frames towards the root via the designated bridge

Example (cont.)

Router

- Router that acts like stations on a network connects 2 or more networks
- Definition (Goal):
 - Learning how to get from here to there
 - Process of discovering, selecting, and employing paths from one place to another (or to many others) in a network
- To perform routing, each network must have a unique network number
- Router determines to send the data from network A to network B out its port with the IP address B5

Routing Principle

- Goal: arriving at the destination
- Considerations ...
 - Direct route (shortest)
 - Reliable route
 - Cheap route
 - Safe route
 - Scenic route

Bridge vs. Router

- Both store-and-forward devices
- Bridge does well in small (few hundred hosts) while router used in large networks (thousands of hosts)

Device	Bridge	Router
OSI model	Link layer devices	 Network layer devices (examine network layer headers)
Operation	 It maintains filtering tables, implement filtering, learning and spanning tree algorithms 	 It maintains routing tables, implement routing algorithms
Advantage	processing	 Arbitrary topologies can be supported, cycling is limited by TTL counters (and good routing protocols) Provide firewall protection against broadcast storms
Disadvantage	 Topologies are restricted with bridges: a spanning tree must be built to avoid cycles Bridges do not offer protection from broadcast storms (endless broadcasting by a host will be forwarded by a bridge) 	 Require IP address configuration (not plug and play) Require higher processing

pg. 26 / 41

Ethernet Switches

- Layer 2 (frame) forwarding, filtering using LAN addresses
- Switching: A-to-B and A'-to-B' simultaneously, no collisions
- Large number of interfaces
- Often: individual hosts, starconnected into switch
 - Ethernet, but no collisions
- Cut-through switching: frame forwarded from input to output port without awaiting for assembly of entire frame
 - slight reduction in latency
- Combinations of shared/dedicated, 10/100/1000 Mbps interfaces

Switch vs. Router

- Routers deal with IP packets, switches deal with Ethernet frames
 - A router looks at the IP packet destination and checks its <u>routing table</u> to decide where to forward the packet
- Some differences:
 - IP packets travel inside Ethernet frames
 - IP networks can be logically segmented into subnets
 - Switches do not know about IP, they only deal with Ethernet frames
- Routers do not forward Ethernet broadcasts
 - Switches reduce the collision domain
 - Routers reduce the broadcast domain
- This becomes really important when trying to design hierarchical, scalable networks that can grow sustainably

Gateway

- Gateway potentially in all seven layers of OSI model
 - It is a protocol converter
- Gateway can accept packet formatted for one protocol (e.g., AppleTalk) and convert it to a packet formatted for another protocol (e.g., TCP/IP) before forwarding it
- Gateway is generally software installed within a router

Figure: A gateway connecting an SNA network (IBM) to a Netware network (Novell)

Local Area Networks

- Local Area Network (LAN) is a data communication system that allows a number of independent devices to communicate directly with each other in a limited geographical area
- LANs can be connected to form a Metropolitan Area Network (MAN) or a Wide Area Network (WAN)
- Examples of LAN:

 - Ethernet (IEEE802.3)
 Token Ring (IEEE802.5)
 - Fiber Distributed Data Interface, FDDI (IEEE802.8)
- Most popular local area networking today is **Ethernet**. Most network administrator building a network from scratch use Ethernet as a fundamental technology
- Token ring technology is widely used in IBM networks
- FDDI networks are popular for campus LANs and are usually built to support high bandwidth needs for backbone connectivity

pg. 30/41

Ethernet

- Developed by Xerox, and extended by DEC, Intel and Xerox
- 2 categories
 - Baseband specifies a digital signal (i.e., Manchester encoding)
 - Broadband specifies an analog signal (i.e., PSK encoding)
- Access Method: CSMA/CD
 - Multiple Access: Multiple users access to a single line
 - Carrier Sense: A device listens to the line before it transmits
 - Collision Detection: Extremely high voltage indicates a collision

Typical Ethernet

StarLAN

pg. 33 / 41

Switched Ethernet

Only station E receives the frame, so the rest of the media is free for another transmission.

Thick Ethernet: 10BASE5

Thin Ethernet: 10BASE2

Twisted Pair Ethernet: 10 BASE-T

Ethernet: Physical Configurations

	10BASE5	10BASE2	10BASE-T	10BASE-F
Transmission medium	Coaxial cable (50 ohm)	Coaxial cable (50 ohm)	Unshielded twisted pair	850-nm optical fiber pair
Signaling technique	Baseband (Manchester)	Baseband (Manchester)	Baseband (Manchester)	Manchester/On- off
Topology	Bus	Bus	Star	Star
Maximum segment length (m)	500	185	100	500
Nodes per segment	100	30	-	33
Cable diameter	10 mm	5 mm	0.4 to 0.6 mm	65.5/125 µm

Note:

10 = data rate in Mbps 2 = thinner 50 ohm coaxial cable

BASE = baseband T = unshielded twisted pair cable

5 = coaxial cable 50 ohm F = fiber optic cable

pg. 38/41

© Y. Lim

Fast Ethernet

- 10/100 Mbps rate; latter called "Fast Ethernet"
- Nodes connected to hubs or switches in a "star topology"
- Max distance from node to Hub is 100 meters based on electrical properties of TP
- Smart hubs
 - Disconnect "jabbering adapter" versus 10Base2

Gigabit Ethernet

- Use standard Ethernet frame format
- Allows for point-to-point links and shared broadcast channels
- In shared mode, CSMA/CD is used
 - Short distances required to be efficient
- Full-duplex at 1 Gbps for point-to-point links
- Usually serves as a backbone
- 4 implementations
 - 1000Base-SX, 1000Base-LX: Optical fiber, 550-5000 m
 - 1000Base-CX (STP)1000Base-T (UTP):25 m

Announcement

- Next is Chapter 6 Transport Layer
- 09:00 ~ 10:40 on 31 October (Monday)

pg. 41 / 41