_		Xη	Χı	Хз	Xμ	sol.	_
	£	-5	۰۷	0	0	0	$\Rightarrow \frac{6}{3} = 4$
	又3	1	2	1	O	4	-> "/ = 4
\times_{Λ}	MA	11	43	0	1	2	-> ² / ₁ = 2

$$z' = \left[-5 - \left(-5 \cdot 1 \right)_{1} - 4 - \left(-5 \cdot \frac{1}{3} \right)_{1}, 0, 0 - \left(-5 \cdot 1 \right)_{1}, 0 - \left(-5 \cdot 2 \right) \right]_{1}$$
 C_{5}^{qc} $\left[0, -\frac{1}{3}, 0, 5, 10 \right]$

$$x_{3}^{2} = [1 - (1 - 1), 2 - (1 - 1/3), 1 - (1 - 0), 0 - (1 - 1), 4 - (1 - 2)], 0$$

$$[0, \frac{5}{3}, 1, -1, 2]$$

_		X	Χ̈́	Χs	Χ _η	506.	_
	2	0	-4/3	0	5	10	-
\times_2	MA	0	5/3	1	-1	2	$2:\frac{3}{3}=2.\frac{3}{5}=\frac{9}{5}$
	ا _۲ X	1	1/3	0	1	2	- -> 2: ⁵ /3 = 2.3/5 = ⁶ /5 -> 2: ¹ /3 = 2.3 = 6

$$\begin{array}{l} X_{2} = \left[O, 1, \frac{3}{5}, -\frac{3}{5}, \frac{6}{5} \right] \\ Z^{1} = \left[O - \left(-\frac{1}{7} /_{3}, 0 \right), -\frac{1}{7} /_{3} - \left(-\frac{1}{7} /_{3}, 1 \right), O - \left(-\frac{1}{7} /_{3}, \frac{3}{5} \right), 5 - \left(-\frac{1}{7} /_{5}, -\frac{3}{5} /_{5} \right) \right] \\ + \left[O - \left(-\frac{1}{7} /_{3}, \frac{6}{5} /_{5} \right) \right] = \left[O_{1}O, \frac{1}{7} /_{5}, \frac{18}{5} /_{5} \right] \\ \times_{1} - \left[1 - \left(\frac{1}{7} /_{3}, \frac{1}{2} /_{5} \right), \frac{1}{3} - \left(\frac{1}{7} /_{3}, 1 \right), 0 - \left(\frac{1}{7} /_{3}, \frac{1}{3} /_{5} \right), 1 - \left(\frac{1}{7} /_{5}, -\frac{3}{5} /_{5} \right), \frac{1}{7} \right] \\ = \left[1, 0, -\frac{1}{7} /_{5}, \frac{6}{5} /_{5}, \frac{8}{5} /_{5} \right] \\ = \left[1, 0, -\frac{1}{7} /_{5}, \frac{6}{5} /_{5}, \frac{8}{5} /_{5} \right] \\ = \left[1, 0, -\frac{1}{7} /_{5}, \frac{6}{5} /_{5}, \frac{8}{5} /_{5} \right] \\ = \left[1, 0, -\frac{1}{7} /_{5}, \frac{6}{5} /_{5}, \frac{8}{5} /_{5} \right] \\ = \left[1, 0, -\frac{1}{7} /_{5}, \frac{6}{5} /_{5}, \frac{8}{5} /_{5} \right] \\ = \left[1, 0, -\frac{1}{7} /_{5}, \frac{6}{5} /_{5}, \frac{8}{5} /_{5} \right] \\ = \left[1, 0, -\frac{1}{7} /_{5}, \frac{6}{5} /_{5}, \frac{8}{5} /_{5} \right] \\ = \left[1, 0, -\frac{1}{7} /_{5}, \frac{6}{5} /_{5}, \frac{8}{5} /_{5} \right] \\ = \left[1, 0, -\frac{1}{7} /_{5}, \frac{6}{5} /_{5}, \frac{8}{5} /_{5} \right] \\ = \left[1, 0, -\frac{1}{7} /_{5}, \frac{6}{5} /_{5}, \frac{8}{5} /_{5} \right] \\ = \left[1, 0, -\frac{1}{7} /_{5}, \frac{6}{5} /_{5}, \frac{8}{5} /_{5} \right] \\ = \left[1, 0, -\frac{1}{7} /_{5}, \frac{6}{5} /_{5}, \frac{8}{5} /_{5} \right] \\ = \left[1, 0, -\frac{1}{7} /_{5}, \frac{6}{5} /_{5}, \frac{8}{5} /_{5} \right]$$

2 min
$$z = 2x_1 + x_2 + 3x_3 + x_4$$

 $y_1 \rightarrow 3x_1 + x_2 = 2$
 $y_2 \rightarrow x_2 + 2x_3 = 4 \rightarrow y_1 = 3 + 0 = 0$
 $y_3 \rightarrow x_3 + 4x_4 = 5$
 $y_2 = 5 = 5$
 $y_3 = 5 = 5$
 $y_2 = 5 = 5$
 $y_3 = 5$
 $y_3 = 5 = 5$
 $y_3 = 5$

$$m_{3} \times W: 2g_{1} + 4g_{2} + 5g_{3}$$
 $X_{1} \rightarrow 3g_{1} \qquad \leq 2$
 $X_{2} \rightarrow g_{1} + g_{2} \qquad \leq 1$
 $X_{3} \rightarrow 2g_{2} + g_{3} \qquad \leq 3$
 $X_{4} \rightarrow 4g_{3} \qquad \leq 1$
 $X_{4} \rightarrow 4g_{3} \qquad \leq 1$

Controllare quali vincoli jono attivi. Trasp. i vincoli del duale in uguallianze, e si stastituiscono yu, ya, ya Con el soluzioni del duale.

$$y_1 + y_2 = 1$$

 $2y_2 + y_3 = 3$ 2 $y - 3 = y = 1$ ATTIW $x_2' + 0$
 $y_3 = 1$

Riscrivere i vincolà del primale, aggiungendo à vincoli non atrivi

$$\begin{cases} 3x_{1} + x_{2} = 2 \\ x_{2} + 2x_{3} = 4 \\ x_{3} + 4x_{4} = 5 \\ x_{4} = 0 \end{cases} \begin{cases} x_{1} = 0 \\ x_{2} = 2 \\ x_{2} + 2x_{3} = 4 \\ x_{3} + 4x_{4} = 5 \\ x_{3} + 4x_{4} = 5 \end{cases} \begin{cases} x_{1} = 0 \\ x_{2} = 2 \\ x_{3} = 4 \\ x_{4} = 4 \end{cases}$$

INTERVACLI DI AMMISSIBICITA

Aggiungere & ai termini noti di ciascun vincols

$$X_1 + 2X_2 \le G + \Delta$$
 Sech $X_1 + 2X_2 + S_1 = G + \Delta$
 $X_1 + {}^{1/3}X_2 \le 2 + \Delta$ $X_2 + S_2 = 2 + \Delta$

Scriviamo S1=S1-D, prendere i vincoli del tobleau e scriverli come uguastronze, sostituendo S1=S1-D

$$\begin{cases} X_2 + \frac{3}{5} (S_1 - \Delta) - \frac{3}{5} S_2 = \frac{6}{5} \end{cases}$$

$$\left(X_{1} - \frac{1}{5} (S_{1} - 5) + \frac{6}{5} S_{2} = \frac{8}{5} \right)$$

$$\begin{cases} X_2 + \frac{3}{5}S_1 - \frac{3}{5}S_2 - \frac{6}{5} + \frac{3}{5}\Delta \\ X_1 - \frac{1}{5}S_1 + \frac{1}{5}\Delta + \frac{6}{5}S_2 = \frac{8}{5} - \frac{1}{5}\Delta \end{cases}$$

Il termine noto deve essere positivo appinché sia ammissibile e offinale

$$\begin{cases} \frac{6}{3} + \frac{3}{3} + \frac{3}{5} + \frac{3}{5} = 0 \\ \frac{8}{5} - \frac{4}{5} = 0 \end{cases} \begin{cases} 6 + \frac{3}{3} + \frac{3}{5} = 0 \\ 8 - \frac{3}{5} = 0 \end{cases} \begin{cases} 6 + \frac{3}{3} + \frac{3}{5} = 0 \\ 8 - \frac{3}{5} = 0 \end{cases} \begin{cases} \frac{-2}{8} - \frac{3}{5} = 0 \\ \frac{8}{5} = 0 \end{cases} \begin{cases} \frac{-2}{8} - \frac{3}{5} = 0 \\ \frac{8}{5} = 0 \end{cases} \begin{cases} \frac{-2}{8} - \frac{3}{5} = 0 \end{cases} \begin{cases} \frac{-2}{8} - \frac{3}{5} = 0 \\ \frac{8}{5} = 0 \end{cases} \begin{cases} \frac{-2}{8} - \frac{3}{5} = 0 \end{cases} \end{cases} \begin{cases} \frac{-2}{8} - \frac{3}{5} = 0 \end{cases} \begin{cases} \frac{-2}{8} - \frac{3}{5} = 0 \end{cases} \begin{cases} \frac{-2}{8} - \frac{3}{5} = 0 \end{cases} \end{cases} \begin{cases} \frac{-2}{8} - \frac{3}{5} = 0 \end{cases} \begin{cases} \frac{-2}{8} - \frac{3}{5} = 0 \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases}$$

Adesso si fa Sz=Sz-A

$$\begin{cases} X_2 + \frac{3}{5}S_A - \frac{3}{5}(S_2 - \Delta) = \frac{6}{5} \\ X_A - \frac{1}{5}S_A + \frac{6}{5}(S_2 - \Delta) = \frac{8}{5} \end{cases}$$

$$\begin{cases} \frac{6}{3} - \frac{3}{5} \Delta > D \\ \frac{8}{5} + \frac{6}{5} \Delta > D \end{cases} \begin{cases} \frac{6-3}{5} \Delta > 0 \\ \frac{6-3}{5} \Delta > 0 \end{cases} \begin{cases} \frac{6}{5} - \frac{8}{6} \delta \end{cases}$$

Vedere gli intervolli di X1 eX2

$$\max z = (S + \Delta) \times_{\Lambda} + u \times_{2}$$
 $\max z = (S + \Delta) \times_{\Lambda} + u \times_{2}$
 $\max z = S \times_{\Lambda} + (u + \Delta) \times_{2}$
 $\max z = S \times_{\Lambda} + (u + \Delta) \times_{2}$
 $\max z = S \times_{\Lambda} + u \times_{2}$
 $\max z = S \times_{\Lambda} + u \times_{2}$
 $\limsup z = R_{z} + \Delta \cdot R_{z}$
 $\limsup z = S \times_{\Lambda} + u \times_{2}$
 $\limsup z = S \times_{2} + u \times_{2}$
 $\limsup z = S \times_{2} + u \times_{2}$
 $\limsup z = S \times_{2} + u \times_{2} + u \times_{2}$
 $\limsup z = S \times_{2} + u \times_{2} + u \times_{2} + u \times_{2}$
 $\limsup z = S \times_{2} + u \times_{2}$

Prender i volori di Si ed Szie verificare se sono 20 por verificare che la soluzione sio ottimo

$$\begin{cases} \frac{7}{6} - \frac{1}{6} \Delta \ge 0 & \text{ } \begin{cases} 7 - \Delta \ge 0 & \text{ } \\ 1875 + \frac{6}{5} \Delta \ge 0 & \text{ } \end{cases} & \text{ } \begin{cases} \frac{7}{6} - \frac{1}{6} \Delta \ge 0 & \text{ } \end{cases} & \text{ } \begin{cases} \frac{7}{6} - \frac{1}{6} \Delta \ge 0 & \text{ } \end{cases} & \text{ } \begin{cases} \frac{7}{6} - \frac{1}{6} \Delta \ge 0 & \text{ } \end{cases} & \text{ } \end{cases} & \text{ } \begin{cases} \frac{7}{6} - \frac{1}{6} \Delta \ge 0 & \text{ } \end{cases} & \frac{7}{6} \Delta \ge 0 & \text{ } \end{cases} & \frac{7}{6} - \frac{1}{6} \Delta \ge 0 & \text{ } \end{cases} & \frac{7}{6} \Delta \ge 0 & \text{ } \end{cases} & \frac{7}{6} \Delta \ge 0 & \text{ } \end{cases} & \frac{7}{6} \Delta \ge 0 & \text{ } \end{cases} & \frac{7}{6} \Delta \ge 0 & \text{ } \end{cases} & \frac{7}{6} \Delta \ge 0 & \text{ } \end{cases} & \frac{7}{6} \Delta \ge 0 & \text{ } \end{cases} & \frac{7}{6} \Delta \ge 0 & \text{ } \end{cases} & \frac{7}{6} \Delta \ge 0 & \text{ } \end{cases}$$

Per verificare soluzione ottimo, devous assere tutti pesitivi