Bayesian Data Analysis, class 4b

Andrew Gelman

Chapter 5: Hierarchical models (part 1)

- ► Theory problem
- Computing problem
- Applied problem

- Theory problem
- Computing problem
- Applied problem

- Theory problem
- Computing problem
- Applied problem

- Theory problem
- Computing problem
- Applied problem

- Normal approximation to the posterior distribution from Cauchy data
- Second derivative, plotting the normal density
- ▶ \bar{y} does *not* have approx normal distribution, but $p(\theta|y)$ is approximately normal

- Normal approximation to the posterior distribution from Cauchy data
- Second derivative, plotting the normal density
- ▶ \bar{y} does *not* have approx normal distribution, but $p(\theta|y)$ is approximately normal

- Normal approximation to the posterior distribution from Cauchy data
- Second derivative, plotting the normal density
- ▶ \bar{y} does *not* have approx normal distribution, but $p(\theta|y)$ is approximately normal

- Normal approximation to the posterior distribution from Cauchy data
- Second derivative, plotting the normal density
- $ightharpoonup ar{y}$ does *not* have approx normal distribution, but $p(\theta|y)$ is approximately normal

Computing problem

▶ Poisson regression: check that posterior inferences are consistent with true parameter values

Computing problem

► Poisson regression: check that posterior inferences are consistent with true parameter values

- ▶ Basketball shooting again: θ_i is improvement in success probability for person i
- Prior distribution for mean and standard deviation of θ_i in the population
- Sidestepping causal questions

- ▶ Basketball shooting again: θ_i is improvement in success probability for person i
- ightharpoonup Prior distribution for mean and standard deviation of $heta_i$ in the population
- Sidestepping causal questions

- ▶ Basketball shooting again: θ_i is improvement in success probability for person i
- ightharpoonup Prior distribution for mean and standard deviation of $heta_i$ in the population
- Sidestepping causal questions

- ▶ Basketball shooting again: θ_i is improvement in success probability for person i
- ightharpoonup Prior distribution for mean and standard deviation of $heta_i$ in the population
- Sidestepping causal questions

- ► The rat tumor example
- The algebra of conjugate hierarchical models
- The hierarchical normal model
- The 8 schools example

- The rat tumor example
- The algebra of conjugate hierarchical models
- The hierarchical normal model
- ▶ The 8 schools example

- The rat tumor example
- ▶ The algebra of conjugate hierarchical models
- The hierarchical normal model
- The 8 schools example

- The rat tumor example
- ▶ The algebra of conjugate hierarchical models
- The hierarchical normal model
- ► The 8 schools example

- The rat tumor example
- ▶ The algebra of conjugate hierarchical models
- ► The hierarchical normal model
- ► The 8 schools example

Rat tumor data

Previous experiments:

0/20	0/20	0/20	0/20	0/20	0/20	0/20	0/19	0/19	0/19
0/19	0/18	0/18	0/17	1/20	1/20	1/20	1/20	1/19	1/19
1/18	1/18	2/25	2/24	2/23	2/20	2/20	2/20	2/20	2/20
2/20	1/10	5/49	2/19	5/46	3/27	2/17	7/49	7/47	3/20
3/20	2/13	9/48	10/50	4/20	4/20	4/20	4/20	4/20	4/20
4/20	10/48	4/19	4/19	4/19	5/22	11/46	12/49	5/20	5/20
6/23	5/19	6/22	6/20	6/20	6/20	16/52	15/47	15/46	9/24

Current experiment:

4/14

Rat tumor model

- ► The model:
 - $y \sim \text{Binomial}(n, \theta)$
 - $\triangleright \theta \sim \text{Beta}(\alpha, \beta)$
- ▶ Data: y = 4, n = 14
- ▶ Inference: $\theta|y \sim \text{Beta}(\alpha + 4, \beta + 10)$
- ightharpoonup Set α , β based on historical data
- Hierarchical model:

▶ Need to choose α , β

► The model:

- ▶ $y \sim \text{Binomial}(n, \theta)$
- \bullet $\theta \sim \text{Beta}(\alpha, \beta)$
- ▶ Data: y = 4, n = 14
- ▶ Inference: $\theta|y\sim \text{Beta}(\alpha+4,\beta+10)$
- ightharpoonup Set α, β based on historical data
- Hierarchical model

▶ Need to choose α , β

- ► The model:
 - ▶ $y \sim \text{Binomial}(n, \theta)$
 - \bullet $\theta \sim \text{Beta}(\alpha, \beta)$
- ▶ Data: y = 4, n = 14
- ▶ Inference: $\theta|y \sim \text{Beta}(\alpha + 4, \beta + 10)$
- \triangleright Set α , β based on historical data
- Hierarchical model:

▶ Need to choose α , β

- ► The model:
 - ▶ $y \sim \text{Binomial}(n, \theta)$
 - $\theta \sim \text{Beta}(\alpha, \beta)$
- ▶ Data: y = 4, n = 14
- ▶ Inference: $\theta|y \sim \text{Beta}(\alpha + 4, \beta + 10)$
- \blacktriangleright Set α , β based on historical data
- Hierarchical model

Need to choose α, β

- ► The model:
 - ▶ $y \sim \text{Binomial}(n, \theta)$
 - $\theta \sim \text{Beta}(\alpha, \beta)$
- ▶ Data: y = 4, n = 14
- ▶ Inference: $\theta | y \sim \text{Beta}(\alpha + 4, \beta + 10)$
- ▶ Set α , β based on historical data
- Hierarchical model:

Need to choose α, β

- ► The model:
 - ▶ $y \sim \text{Binomial}(n, \theta)$
 - $\theta \sim \text{Beta}(\alpha, \beta)$
- ▶ Data: y = 4, n = 14
- ▶ Inference: $\theta|y \sim \text{Beta}(\alpha + 4, \beta + 10)$
- ▶ Set α , β based on historical data
- Hierarchical model:

▶ Need to choose α . β

- ► The model:
 - ▶ $y \sim \text{Binomial}(n, \theta)$
 - $\theta \sim \text{Beta}(\alpha, \beta)$
- ▶ Data: y = 4, n = 14
- ▶ Inference: $\theta|y \sim \text{Beta}(\alpha + 4, \beta + 10)$
- Set α, β based on historical data
- ► Hierarchical model:
 - ▶ $y_j \sim \text{Binomial}(n_j, \theta_j)$, for j = 1, ..., 71▶ $\theta_1, ..., \theta_{71} \sim \text{Beta}(\alpha, \beta)$
- \triangleright Need to choose α , β

- ► The model:
 - ▶ $y \sim \text{Binomial}(n, \theta)$
 - $\theta \sim \text{Beta}(\alpha, \beta)$
- ▶ Data: y = 4, n = 14
- Inference: $\theta|y\sim \text{Beta}(\alpha+4,\beta+10)$
- Set α, β based on historical data
- Hierarchical model:
 - $y_j \sim \text{Binomial}(n_j, \theta_j), \text{ for } j = 1, \dots, 71$
 - \bullet $\theta_1, \ldots, \theta_{71} \sim \text{Beta}(\alpha, \beta)$
- Need to choose α, β

- ► The model:
 - ▶ $y \sim \text{Binomial}(n, \theta)$
 - $\theta \sim \text{Beta}(\alpha, \beta)$
- ▶ Data: y = 4, n = 14
- ▶ Inference: $\theta|y \sim \text{Beta}(\alpha + 4, \beta + 10)$
- Set α, β based on historical data
- ► Hierarchical model:
 - $y_j \sim \text{Binomial}(n_j, \theta_j)$, for $j = 1, \dots, 71$
 - \bullet $\theta_1, \ldots, \theta_{71} \sim \mathsf{Beta}(\alpha, \beta)$
- ▶ Need to choose α , β

- ► The model:
 - ▶ $y \sim \text{Binomial}(n, \theta)$
 - $\theta \sim \text{Beta}(\alpha, \beta)$
- ▶ Data: y = 4, n = 14
- ▶ Inference: $\theta|y \sim \text{Beta}(\alpha + 4, \beta + 10)$
- Set α, β based on historical data
- Hierarchical model:
 - $y_j \sim \text{Binomial}(n_j, \theta_j)$, for $j = 1, \dots, 71$
 - $\theta_1, \ldots, \theta_{71} \sim \mathsf{Beta}(\alpha, \beta)$
- ▶ Need to choose α , β

- ► The model:
 - ▶ $y \sim \text{Binomial}(n, \theta)$
 - $\theta \sim \text{Beta}(\alpha, \beta)$
- ▶ Data: y = 4, n = 14
- ▶ Inference: $\theta|y \sim \text{Beta}(\alpha + 4, \beta + 10)$
- Set α, β based on historical data
- Hierarchical model:
 - $y_j \sim \text{Binomial}(n_j, \theta_j)$, for $j = 1, \dots, 71$
 - $\theta_1, \ldots, \theta_{71} \sim \mathsf{Beta}(\alpha, \beta)$
- ▶ Need to choose α, β

5.2. Exchangeability and setting up hierarchical models

- lacktriangledown θ_1,\ldots,θ_J are exchangeable if $p(\theta_1,\ldots,\theta_J)$ is symmetric
- ▶ No information to distinguish the J cases
- "Exchangeable" is not the same as "identical"
- Consider the 71 rat tumor experiments
- Going beyond exchangeability
- Group-level predictors
- lacktriangle Going from the model to the probability density function, p(heta)

5.2. Exchangeability and setting up hierarchical models

- lacktriangledown θ_1,\ldots,θ_J are exchangeable if $p(\theta_1,\ldots,\theta_J)$ is symmetric
- No information to distinguish the J cases
- "Exchangeable" is not the same as "identical"
- ► Consider the 71 rat tumor experiments
- Going beyond exchangeability
- Group-level predictors
- lacktriangle Going from the model to the probability density function, $p(\theta)$

5.2. Exchangeability and setting up hierarchical models

- ▶ $\theta_1, \ldots, \theta_J$ are exchangeable if $p(\theta_1, \ldots, \theta_J)$ is symmetric
- ▶ No information to distinguish the *J* cases
- "Exchangeable" is not the same as "identical"
- ► Consider the 71 rat tumor experiments
- Going beyond exchangeability
- Group-level predictors
- lacktriangle Going from the model to the probability density function, p(heta)

- ▶ $\theta_1, \ldots, \theta_J$ are exchangeable if $p(\theta_1, \ldots, \theta_J)$ is symmetric
- ▶ No information to distinguish the *J* cases
- "Exchangeable" is not the same as "identical"
- Consider the 71 rat tumor experiments
- Going beyond exchangeability
- Group-level predictors
- lacktriangle Going from the model to the probability density function, p(heta)

- lacktriangledown θ_1,\ldots,θ_J are exchangeable if $p(\theta_1,\ldots,\theta_J)$ is symmetric
- ▶ No information to distinguish the *J* cases
- "Exchangeable" is not the same as "identical"
- Consider the 71 rat tumor experiments
- Going beyond exchangeability
- Group-level predictors
- ▶ Going from the model to the probability density function, $p(\theta)$

- ▶ $\theta_1, \ldots, \theta_J$ are exchangeable if $p(\theta_1, \ldots, \theta_J)$ is symmetric
- ▶ No information to distinguish the *J* cases
- "Exchangeable" is not the same as "identical"
- Consider the 71 rat tumor experiments
- Going beyond exchangeability
- Group-level predictors
- ▶ Going from the model to the probability density function, $p(\theta)$

- ▶ $\theta_1, \ldots, \theta_J$ are exchangeable if $p(\theta_1, \ldots, \theta_J)$ is symmetric
- ▶ No information to distinguish the *J* cases
- "Exchangeable" is not the same as "identical"
- Consider the 71 rat tumor experiments
- Going beyond exchangeability
- Group-level predictors
- ▶ Going from the model to the probability density function, $p(\theta)$

- lacktriangledown θ_1,\ldots,θ_J are exchangeable if $p(\theta_1,\ldots,\theta_J)$ is symmetric
- ▶ No information to distinguish the *J* cases
- "Exchangeable" is not the same as "identical"
- Consider the 71 rat tumor experiments
- Going beyond exchangeability
- Group-level predictors
- ▶ Going from the model to the probability density function, $p(\theta)$

- $p(\phi, \theta|y) \propto p(\phi)p(\theta|\phi)p(y|\theta, \phi)$
- ► Conditional on the hyperparameters is easy:

$$p(\theta|\phi,y) \propto p(\theta|\phi)p(y|\theta,\phi)$$

Marginal posterior distribution of the hyperparameters:

$$p(\phi|y) = \int p(\phi, \theta|y) d\theta$$
 $\propto p(\phi) \int p(\theta|\phi) p(y|\theta, \phi) d\theta$

▶ If you can do the integral, computation is direct:

- ► Conditional on the hyperparameters is easy:

$$p(\theta|\phi,y) \propto p(\theta|\phi)p(y|\theta,\phi)$$

Marginal posterior distribution of the hyperparameters:

$$p(\phi|y) = \int p(\phi, \theta|y) d\theta$$

$$\propto p(\phi) \int p(\theta|\phi) p(y|\theta, \phi) d\theta$$

▶ If you can do the integral, computation is direct:

- ► Conditional on the hyperparameters is easy:

$$p(\theta|\phi, y) \propto p(\theta|\phi)p(y|\theta, \phi)$$

Marginal posterior distribution of the hyperparameters:

$$p(\phi|y) = \int p(\phi, \theta|y) d\theta$$

$$\propto p(\phi) \int p(\theta|\phi) p(y|\theta, \phi) d\theta$$

▶ If you can do the integral, computation is direct:

- ► Conditional on the hyperparameters is easy:

$$p(\theta|\phi, y) \propto p(\theta|\phi)p(y|\theta, \phi)$$

Marginal posterior distribution of the hyperparameters:

$$p(\phi|y) = \int p(\phi, \theta|y)d\theta$$

$$\propto p(\phi) \int p(\theta|\phi)p(y|\theta, \phi)d\theta$$

▶ If you can do the integral, computation is direct:

 \triangleright Compute $p(\phi|v)$ on a grid of ϕ

- ► Conditional on the hyperparameters is easy:

$$p(\theta|\phi, y) \propto p(\theta|\phi)p(y|\theta, \phi)$$

$$p(\phi|y) = \int p(\phi, \theta|y)d\theta$$

$$\propto p(\phi) \int p(\theta|\phi)p(y|\theta, \phi)d\theta$$

- ▶ If you can do the integral, computation is direct:
 - ▶ Compute $p(\phi|y)$ on a grid of ϕ
 - ► For s = 1, ..., S:

- ► Conditional on the hyperparameters is easy:

$$p(\theta|\phi, y) \propto p(\theta|\phi)p(y|\theta, \phi)$$

$$p(\phi|y) = \int p(\phi, \theta|y)d\theta$$

$$\propto p(\phi) \int p(\theta|\phi)p(y|\theta, \phi)d\theta$$

- ▶ If you can do the integral, computation is direct:
 - ▶ Compute $p(\phi|y)$ on a grid of ϕ
 - ► For s = 1, ..., S:

- ► Conditional on the hyperparameters is easy:

$$p(\theta|\phi, y) \propto p(\theta|\phi)p(y|\theta, \phi)$$

$$p(\phi|y) = \int p(\phi, \theta|y)d\theta$$

$$\propto p(\phi) \int p(\theta|\phi)p(y|\theta, \phi)d\theta$$

- ▶ If you can do the integral, computation is direct:
 - ▶ Compute $p(\phi|y)$ on a grid of ϕ
 - ▶ For s = 1, ..., S:
 - ▶ Sample ϕ^s from grid
 - Sample θ^s from $p(\theta^s|\phi^s,y)$

- ► Conditional on the hyperparameters is easy:

$$p(\theta|\phi, y) \propto p(\theta|\phi)p(y|\theta, \phi)$$

$$p(\phi|y) = \int p(\phi, \theta|y)d\theta$$

$$\propto p(\phi) \int p(\theta|\phi)p(y|\theta, \phi)d\theta$$

- ▶ If you can do the integral, computation is direct:
 - ▶ Compute $p(\phi|y)$ on a grid of ϕ
 - ▶ For s = 1, ..., S:
 - ▶ Sample ϕ^s from grid
 - ► Sample θ^s from $p(\theta^s | \phi^s, y)$

- Conditional on the hyperparameters is easy:

$$p(\theta|\phi, y) \propto p(\theta|\phi)p(y|\theta, \phi)$$

$$p(\phi|y) = \int p(\phi, \theta|y)d\theta$$

$$\propto p(\phi) \int p(\theta|\phi)p(y|\theta, \phi)d\theta$$

- ▶ If you can do the integral, computation is direct:
 - Compute $p(\phi|y)$ on a grid of ϕ
 - ▶ For s = 1, ..., S:
 - Sample ϕ^s from grid
 - ▶ Sample θ^s from $p(\theta^s|\phi^s,y)$

► The model:

$$> y_j \sim \text{Binomial}(n_j, \theta_j)$$

$$> \theta_j \sim \text{Beta}(\alpha, \beta)$$

$$≤ \text{What are the assumptions?}$$

Conditional posterior density

$$p(\theta|\alpha, \beta, y) \propto \prod_{j=1}^{J} \theta_j^{\alpha+y_j-1} (1-\theta_j)^{\beta+\eta_j-y_j-1}$$

Joint posterior density

$$\rho(\theta, \alpha, \beta | y) \propto \rho(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta_j^{\alpha - 1} (1 - \theta_j)^{\beta - 1} \prod_{j=1}^{J} \theta_j^{y_j} (1 - \theta_j)^{n_j - y_j}$$

lacktriangle Marginal posterior density (integrate out the *J*-dimensional heta)

$$p(\alpha, \beta|y) \propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta) \Gamma(\alpha+y_j) \Gamma(\beta+n_j-y_j)}{\Gamma(\alpha) \Gamma(\beta)} \frac{\Gamma(\alpha+\beta+n_j)}{\Gamma(\alpha+\beta+n_j)}$$

- ▶ The model:
 - ▶ $y_j \sim \text{Binomial}(n_j, \theta_j)$
 - \bullet $\theta_j \sim \text{Beta}(\alpha, \beta)$
 - ▶ What are the assumptions?
- Conditional posterior density

$$p(\theta|\alpha, \beta, y) \propto \prod_{j=1}^{J} \theta_j^{\alpha+y_j-1} (1-\theta_j)^{\beta+\eta_j-y_j-1}$$

Joint posterior density

$$p(\theta, \alpha, \beta | y) \propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta_j^{\alpha - 1} (1 - \theta_j)^{\beta - 1} \prod_{j=1}^{J} \theta_j^{y_j} (1 - \theta_j)^{n_j - y_j}$$

lacktriangle Marginal posterior density (integrate out the J-dimensional heta)

$$p(\alpha, \beta|y) \propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta) \Gamma(\alpha+y_j) \Gamma(\beta+n_j-y_j)}{\Gamma(\alpha) \Gamma(\beta)} \frac{\Gamma(\alpha+\beta+n_j)}{\Gamma(\alpha+\beta+n_j)}$$

- ► The model:
 - ▶ $y_j \sim \text{Binomial}(n_j, \theta_j)$
 - \bullet $\theta_j \sim \text{Beta}(\alpha, \beta)$
 - ▶ What are the assumptions?
- ► Conditional posterior density:

$$p(\theta|\alpha, \beta, y) \propto \prod_{j=1}^{J} \theta_j^{\alpha+y_j-1} (1-\theta_j)^{\beta+n_j-y_j-1}$$

Joint posterior density

$$p(\theta, \alpha, \beta | y) \propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta_j^{\alpha - 1} (1 - \theta_j)^{\beta - 1} \prod_{j=1}^{J} \theta_j^{y_j} (1 - \theta_j)^{n_j - y_j}$$

$$\rho(\alpha, \beta|y) \propto \rho(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha+y_j)\Gamma(\beta+\eta_j-y_j)}{\Gamma(\alpha+\beta+\eta_j)}$$

- ► The model:
 - $y_j \sim \text{Binomial}(n_j, \theta_j)$
 - $\theta_j \sim \text{Beta}(\alpha, \beta)$
 - ▶ What are the assumptions?
- ► Conditional posterior density

$$p(\theta|\alpha, \beta, y) \propto \prod_{j=1}^{J} \theta_j^{\alpha+y_j-1} (1-\theta_j)^{\beta+n_j-y_j-1}$$

Joint posterior density:

$$p(\theta, \alpha, \beta | y) \propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta_j^{\alpha - 1} (1 - \theta_j)^{\beta - 1} \prod_{j=1}^{J} \theta_j^{y_j} (1 - \theta_j)^{n_j - y_j}$$

lacktriangle Marginal posterior density (integrate out the J-dimensional heta)

$$\rho(\alpha, \beta|y) \propto \rho(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha+y_j)\Gamma(\beta+\eta_j-y_j)}{\Gamma(\alpha+\beta+\eta_j)}$$

- ► The model:
 - ▶ $y_j \sim \text{Binomial}(n_j, \theta_j)$
 - $\theta_j \sim \text{Beta}(\alpha, \beta)$
 - ▶ What are the assumptions?
- ► Conditional posterior density:

$$p(\theta|\alpha, \beta, y) \propto \prod_{j=1}^{J} \theta_j^{\alpha+y_j-1} (1-\theta_j)^{\beta+n_j-y_j-1}$$

Joint posterior density:

$$p(\theta, \alpha, \beta|y) \propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta_j^{\alpha-1} (1-\theta_j)^{\beta-1} \prod_{j=1}^{J} \theta_j^{y_j} (1-\theta_j)^{n_j-y_j}$$

$$p(\alpha, \beta|y) \propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha+y_j)\Gamma(\beta+n_j-y_j)}{\Gamma(\alpha+\beta+n_j)}$$

- ► The model:
 - ▶ $y_j \sim \text{Binomial}(n_j, \theta_j)$
 - $\theta_j \sim \text{Beta}(\alpha, \beta)$
 - ▶ What are the assumptions?
- ► Conditional posterior density:

$$p(\theta|\alpha,\beta,y) \propto \prod_{j=1}^J \theta_j^{\alpha+y_j-1} (1-\theta_j)^{\beta+n_j-y_j-1}$$

Joint posterior density:

$$p(\theta, \alpha, \beta | y) \propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta_j^{\alpha - 1} (1 - \theta_j)^{\beta - 1} \prod_{j=1}^{J} \theta_j^{y_j} (1 - \theta_j)^{n_j - y_j}$$

$$p(\alpha, \beta|y) \propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha+y_j)\Gamma(\beta+n_j-y_j)}{\Gamma(\alpha+\beta+n_j)}$$

- ▶ The model:
 - ▶ $y_j \sim \text{Binomial}(n_j, \theta_j)$
 - $\theta_j \sim \text{Beta}(\alpha, \beta)$
 - What are the assumptions?
- ► Conditional posterior density:

$$p(\theta|\alpha,\beta,y) \propto \prod_{j=1}^J \theta_j^{\alpha+y_j-1} (1-\theta_j)^{\beta+n_j-y_j-1}$$

Joint posterior density:

$$p(\theta, \alpha, \beta|y) \propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta_j^{\alpha-1} (1-\theta_j)^{\beta-1} \prod_{j=1}^{J} \theta_j^{y_j} (1-\theta_j)^{n_j-y_j}$$

$$p(\alpha, \beta|y) \propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha+y_j)\Gamma(\beta+n_j-y_j)}{\Gamma(\alpha+\beta+n_j)}$$

- ▶ The model:
 - $y_j \sim \text{Binomial}(n_j, \theta_j)$
 - $\theta_j \sim \text{Beta}(\alpha, \beta)$
 - What are the assumptions?
- ► Conditional posterior density:

$$p(\theta|\alpha,\beta,y) \propto \prod_{j=1}^J \theta_j^{\alpha+y_j-1} (1-\theta_j)^{\beta+n_j-y_j-1}$$

Joint posterior density:

$$p(\theta, \alpha, \beta|y) \propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta_j^{\alpha-1} (1-\theta_j)^{\beta-1} \prod_{j=1}^{J} \theta_j^{y_j} (1-\theta_j)^{n_j-y_j}$$

$$p(\alpha,\beta|y) \propto p(\alpha,\beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha+y_j)\Gamma(\beta+n_j-y_j)}{\Gamma(\alpha+\beta+n_j)}$$

- $ightharpoonup p(\theta|\alpha,\beta)$ already set
- $\triangleright p(\alpha, \beta) = ?$
- ▶ Reparameterize to $\operatorname{logit}(\frac{\alpha}{\alpha+\beta}) = \operatorname{log}(\frac{\alpha}{\beta})$ and $\operatorname{log}(\alpha+\beta)$
- Logit of prior mean, and prior "sample size"
- $ho p(\log(rac{lpha}{eta}),\,\log(lpha+eta)) \propto 1$ doesn't work (improper posterior)
- ightharpoonup Uniform on $[-10^{10},10^{10}] imes[-10^{10},10^{10}]$ wouldn't work either
- ▶ Instead, try $p(\frac{\alpha}{\alpha+\beta},(\alpha+\beta)^{-1/2})$ \propto
- Don't forget the Jacobian
- Noninformative prior distribution as placeholder

- ▶ $p(\theta|\alpha,\beta)$ already set
- $\triangleright p(\alpha, \beta) = ?$
- ▶ Reparameterize to $\operatorname{logit}(\frac{\alpha}{\alpha+\beta}) = \operatorname{log}(\frac{\alpha}{\beta})$ and $\operatorname{log}(\alpha+\beta)$
- Logit of prior mean, and prior "sample size"
- lacksquare $p(\log(rac{lpha}{eta}),\,\log(lpha+eta))\propto 1$ doesn't work (improper posterior)
- ightharpoonup Uniform on $[-10^{10},10^{10}] imes[-10^{10},10^{10}]$ wouldn't work either!
- ▶ Instead, try $p(\frac{\alpha}{\alpha+\beta},(\alpha+\beta)^{-1/2})$ \propto
- Don't forget the Jacobian
- Noninformative prior distribution as placeholder

- $p(\theta|\alpha,\beta)$ already set
- \triangleright $p(\alpha, \beta) = ?$
- ▶ Reparameterize to $\operatorname{logit}(\frac{\alpha}{\alpha+\beta}) = \operatorname{log}(\frac{\alpha}{\beta})$ and $\operatorname{log}(\alpha+\beta)$
- Logit of prior mean, and prior "sample size"
- $ightharpoonup p(\log(rac{lpha}{eta}),\,\log(lpha+eta))\propto 1$ doesn't work (improper posterior)
- ▶ Uniform on $[-10^{10}, 10^{10}] \times [-10^{10}, 10^{10}]$ wouldn't work either!
- ▶ Instead, try $p(\frac{\alpha}{\alpha+\beta},(\alpha+\beta)^{-1/2})$ \propto
- Don't forget the Jacobian
- Noninformative prior distribution as placeholder

- $p(\theta|\alpha,\beta)$ already set
- \triangleright $p(\alpha, \beta) = ?$
- Reparameterize to $\operatorname{logit}(\frac{\alpha}{\alpha+\beta}) = \operatorname{log}(\frac{\alpha}{\beta})$ and $\operatorname{log}(\alpha+\beta)$
- Logit of prior mean, and prior "sample size"
- ho $p(\log(rac{lpha}{eta}), \log(lpha + eta)) \propto 1$ doesn't work (improper posterior)
- ▶ Uniform on $[-10^{10}, 10^{10}] \times [-10^{10}, 10^{10}]$ wouldn't work either
- ▶ Instead, try $p(\frac{\alpha}{\alpha+\beta},(\alpha+\beta)^{-1/2}) \propto 1$
- Don't forget the Jacobian
- Noninformative prior distribution as placeholder

- ▶ $p(\theta|\alpha,\beta)$ already set
- \triangleright $p(\alpha, \beta) = ?$
- Reparameterize to $\operatorname{logit}(\frac{\alpha}{\alpha+\beta}) = \operatorname{log}(\frac{\alpha}{\beta})$ and $\operatorname{log}(\alpha+\beta)$
- Logit of prior mean, and prior "sample size"
- ▶ $p(\log(\frac{\alpha}{\beta}), \log(\alpha+\beta)) \propto 1$ doesn't work (improper posterior)
- ▶ Uniform on $[-10^{10}, 10^{10}] \times [-10^{10}, 10^{10}]$ wouldn't work either
- ▶ Instead, try $p(\frac{\alpha}{\alpha+\beta},(\alpha+\beta)^{-1/2}) \propto 1$
- Don't forget the Jacobian
- Noninformative prior distribution as placeholder

- $p(\theta|\alpha,\beta)$ already set
- \triangleright $p(\alpha, \beta) = ?$
- ▶ Reparameterize to $\operatorname{logit}(\frac{\alpha}{\alpha+\beta}) = \operatorname{log}(\frac{\alpha}{\beta})$ and $\operatorname{log}(\alpha+\beta)$
- Logit of prior mean, and prior "sample size"
- ▶ $p(\log(\frac{\alpha}{\beta}), \log(\alpha+\beta)) \propto 1$ doesn't work (improper posterior)
- ▶ Uniform on $[-10^{10}, 10^{10}] \times [-10^{10}, 10^{10}]$ wouldn't work either!
- ▶ Instead, try $p(\frac{\alpha}{\alpha+\beta},(\alpha+\beta)^{-1/2}) \propto 1$
- Don't forget the Jacobian
- Noninformative prior distribution as placeholder

- ▶ $p(\theta|\alpha,\beta)$ already set
- \triangleright $p(\alpha, \beta) = ?$
- ▶ Reparameterize to $\operatorname{logit}(\frac{\alpha}{\alpha+\beta}) = \operatorname{log}(\frac{\alpha}{\beta})$ and $\operatorname{log}(\alpha+\beta)$
- Logit of prior mean, and prior "sample size"
- ▶ $p(\log(\frac{\alpha}{\beta}), \log(\alpha+\beta)) \propto 1$ doesn't work (improper posterior)
- ▶ Uniform on $[-10^{10}, 10^{10}] \times [-10^{10}, 10^{10}]$ wouldn't work either!
- ▶ Instead, try $p(\frac{\alpha}{\alpha+\beta},(\alpha+\beta)^{-1/2}) \propto 1$
- Don't forget the Jacobian
- Noninformative prior distribution as placeholder

- ▶ $p(\theta|\alpha,\beta)$ already set
- \triangleright $p(\alpha, \beta) = ?$
- ▶ Reparameterize to $\operatorname{logit}(\frac{\alpha}{\alpha+\beta}) = \operatorname{log}(\frac{\alpha}{\beta})$ and $\operatorname{log}(\alpha+\beta)$
- Logit of prior mean, and prior "sample size"
- ▶ $p(\log(\frac{\alpha}{\beta}), \log(\alpha+\beta)) \propto 1$ doesn't work (improper posterior)
- ▶ Uniform on $[-10^{10}, 10^{10}] \times [-10^{10}, 10^{10}]$ wouldn't work either!
- ▶ Instead, try $p(\frac{\alpha}{\alpha+\beta},(\alpha+\beta)^{-1/2})\propto 1$
- Don't forget the Jacobian
- Noninformative prior distribution as placeholder

- $p(\theta|\alpha,\beta)$ already set
- \triangleright $p(\alpha, \beta) = ?$
- ▶ Reparameterize to $\operatorname{logit}(\frac{\alpha}{\alpha+\beta}) = \operatorname{log}(\frac{\alpha}{\beta})$ and $\operatorname{log}(\alpha+\beta)$
- Logit of prior mean, and prior "sample size"
- ▶ $p(\log(\frac{\alpha}{\beta}), \log(\alpha+\beta)) \propto 1$ doesn't work (improper posterior)
- ▶ Uniform on $[-10^{10}, 10^{10}] \times [-10^{10}, 10^{10}]$ wouldn't work either!
- ▶ Instead, try $p(\frac{\alpha}{\alpha+\beta},(\alpha+\beta)^{-1/2}) \propto 1$
- Don't forget the Jacobian
- Noninformative prior distribution as placeholder

- $p(\theta|\alpha,\beta)$ already set
- \triangleright $p(\alpha, \beta) = ?$
- ▶ Reparameterize to $\operatorname{logit}(\frac{\alpha}{\alpha+\beta}) = \operatorname{log}(\frac{\alpha}{\beta})$ and $\operatorname{log}(\alpha+\beta)$
- Logit of prior mean, and prior "sample size"
- ▶ $p(\log(\frac{\alpha}{\beta}), \log(\alpha+\beta)) \propto 1$ doesn't work (improper posterior)
- ▶ Uniform on $[-10^{10}, 10^{10}] \times [-10^{10}, 10^{10}]$ wouldn't work either!
- ▶ Instead, try $p(\frac{\alpha}{\alpha+\beta},(\alpha+\beta)^{-1/2})\propto 1$
- Don't forget the Jacobian
- Noninformative prior distribution as placeholder

Rat tumor model: first try

- Computed on grid
- Centered and scaled based on crude estimate and s.e.

Rat tumor model: first try

- Computed on grid
- Centered and scaled based on crude estimate and s.e.

Rat tumor model: first try

- Computed on grid
- ▶ Centered and scaled based on crude estimate and s.e.

Rat tumor model: contour plots and simulations

Rat tumor model: partial pooling

► The model:

$$\begin{array}{l} \mathbb{P} \ \, \vec{y}_j \sim \mathbb{N}(\theta_j, \sigma_j^2) \\ \mathbb{P} \ \, \theta_j \sim \mathbb{N}(\mu, \tau^2) \\ \mathbb{P} \ \, \text{What we the assumptions?} \end{array}$$

Conditional posterior density

$$\theta | \mu, \tau, y \sim \mathbb{N}\left(\frac{\frac{1}{\dots} - + \frac{1}{\dots} -}{\frac{1}{\dots} + \frac{1}{\dots}}, \frac{1}{\frac{1}{\dots} + \frac{1}{\dots}}\right)$$

- \blacktriangleright Average over marginal posterior density of μ, τ
- ightharpoonup Problems with simple point estimates of μ, τ

► The model:

- $ightharpoonup ar{y}_j \sim N(\theta_j, \sigma_i^2)$
- \bullet $\theta_j \sim N(\mu, \tau^2)$
- ▶ What are the assumptions?
- Conditional posterior density:

$$\theta|\mu,\tau,y \sim \mathbb{N}\left(\frac{\frac{1}{\dots} - + \frac{1}{\dots} -}{\frac{1}{\dots} + \frac{1}{\dots}}, \frac{1}{\frac{1}{\dots} + \frac{1}{\dots}}\right)$$

- ightharpoonup Average over marginal posterior density of μ, τ
- \triangleright Problems with simple point estimates of μ , τ

- ► The model:
 - $\bar{y}_j \sim N(\theta_j, \sigma_j^2)$
 - $\theta_i \sim N(\mu, \tau^2)$
 - ► What are the assumptions?
- Conditional posterior density:

$$\theta|\mu,\tau,y\sim\mathsf{N}\left(\frac{\frac{1}{\dots}\cdots+\frac{1}{\dots}\cdots}{\frac{1}{\dots}+\frac{1}{\dots}},\frac{1}{\frac{1}{\dots}+\frac{1}{\dots}}\right)$$

- Average over marginal posterior density of μ, τ
- \triangleright Problems with simple point estimates of μ . τ

- ► The model:
 - $\bar{y}_j \sim N(\theta_j, \sigma_j^2)$
 - \bullet $\theta_j \sim N(\mu, \tau^2)$
 - What are the assumptions?
- Conditional posterior density:

$$\theta|\mu,\tau,y\sim \mathsf{N}\left(\frac{\frac{1}{\dots}\cdots+\frac{1}{\dots}\cdots}{\frac{1}{\dots}+\frac{1}{\dots}},\frac{1}{\frac{1}{\dots}+\frac{1}{\dots}}\right)$$

- st Partial pooling (shrinkage) determined by au
- lacktriangle Average over marginal posterior density of μ, au
- ightharpoonup Problems with simple point estimates of μ, τ

- ► The model:
 - $ightharpoonup ar{y}_j \sim \mathsf{N}(\theta_j, \sigma_i^2)$
 - \bullet $\theta_j \sim \mathsf{N}(\mu, \tau^2)$
 - What are the assumptions?
- Conditional posterior density:

$$\theta|\mu,\tau,y\sim \mathsf{N}\left(\frac{\frac{1}{\dots}\cdots+\frac{1}{\dots}\cdots}{\frac{1}{\dots}+\frac{1}{\dots}},\frac{1}{\frac{1}{\dots}+\frac{1}{\dots}}\right)$$

- ightharpoonup Partial pooling (shrinkage) determined by au
- lacktriangle Average over marginal posterior density of μ, au
- ightharpoonup Problems with simple point estimates of μ, τ

- The model:
 - $ightharpoonup ar{y}_j \sim \mathsf{N}(heta_j, \sigma_j^2)$
 - \bullet $\theta_j \sim \mathsf{N}(\mu, \tau^2)$
 - What are the assumptions?
- Conditional posterior density:

$$\theta|\mu,\tau,y\sim \mathsf{N}\left(\frac{\frac{1}{\dots}\cdots+\frac{1}{\dots}\cdots}{\frac{1}{\dots}+\frac{1}{\dots}},\frac{1}{\frac{1}{\dots}+\frac{1}{\dots}}\right)$$

- ightharpoonup Partial pooling (shrinkage) determined by au
- lacktriangle Average over marginal posterior density of μ, au
- \triangleright Problems with simple point estimates of u, τ

- The model:
 - $ightharpoonup ar{y}_j \sim \mathsf{N}(heta_j, \sigma_j^2)$
 - \bullet $\theta_j \sim N(\mu, \tau^2)$
 - What are the assumptions?
- Conditional posterior density:

$$\theta|\mu,\tau,\mathbf{y}\sim\mathsf{N}\left(\frac{\frac{1}{\dots}\cdots+\frac{1}{\dots}\cdots}{\frac{1}{\dots}+\frac{1}{\dots}},\frac{1}{\frac{1}{\dots}+\frac{1}{\dots}}\right)$$

- ightharpoonup Partial pooling (shrinkage) determined by au
- lacktriangle Average over marginal posterior density of μ, au
- ▶ Problems with simple point estimates of μ , τ

- The model:
 - $ightharpoonup ar{y}_j \sim \mathsf{N}(\theta_j, \sigma_i^2)$
 - \bullet $\theta_j \sim \mathsf{N}(\mu, \tau^2)$
 - What are the assumptions?
- Conditional posterior density:

$$\theta|\mu,\tau,y\sim\mathsf{N}\left(\frac{\frac{1}{\dots}\cdots+\frac{1}{\dots}\cdots}{\frac{1}{\dots}+\frac{1}{\dots}},\frac{1}{\frac{1}{\dots}+\frac{1}{\dots}}\right)$$

- ightharpoonup Partial pooling (shrinkage) determined by au
- ▶ Average over marginal posterior density of μ, τ
- ▶ Problems with simple point estimates of μ, τ

- The model:
 - $ightharpoonup ar{y}_j \sim \mathsf{N}(heta_j, \sigma_j^2)$
 - \bullet $\theta_j \sim \mathsf{N}(\mu, \tau^2)$
 - What are the assumptions?
- Conditional posterior density:

$$\theta | \mu, \tau, y \sim \mathsf{N}\left(\frac{\frac{1}{\dots} \cdots + \frac{1}{\dots} \cdots}{\frac{1}{\dots} + \frac{1}{\dots}}, \frac{1}{\frac{1}{\dots} + \frac{1}{\dots}}\right)$$

- ightharpoonup Partial pooling (shrinkage) determined by au
- Average over marginal posterior density of μ, τ
- ▶ Problems with simple point estimates of μ, τ

- ▶ Pre-test, randomized treatment, post-test on each of 8 schools
- ► Inferences from separate regressions

School	Estimated treatment effect, y_j	Standard error of effect estimate, σ_j
A	28	15
В	8	10
\mathbf{C}	-3	16
D	7	11
\mathbf{E}	-1	9
\mathbf{F}	1	11
\mathbf{G}	18	10
Η	12	18

- Separate estimates
- ▶ Pooled estimate

- ▶ Pre-test, randomized treatment, post-test on each of 8 schools
- ▶ Inferences from separate regressions:

School	Estimated treatment effect, y_j	Standard error of effect estimate, σ_j
A	28	15
В	8	10
\mathbf{C}	-3	16
D	7	11
\mathbf{E}	-1	9
\mathbf{F}	1	11
G	18	10
Η	12	18

- Separate estimates
- ▶ Pooled estimate

- ▶ Pre-test, randomized treatment, post-test on each of 8 schools
- ▶ Inferences from separate regressions:

School	Estimated treatment effect, y_j	Standard error of effect estimate, σ_j
A	28	15
В	8	10
\mathbf{C}	-3	16
D	7	11
\mathbf{E}	-1	9
\mathbf{F}	1	11
\mathbf{G}	18	10
H	12	18

- Separate estimates
- Pooled estimate

- ▶ Pre-test, randomized treatment, post-test on each of 8 schools
- ▶ Inferences from separate regressions:

School	Estimated treatment effect, y_j	Standard error of effect estimate, σ_j
A	28	15
В	8	10
\mathbf{C}	-3	16
D	7	11
\mathbf{E}	-1	9
\mathbf{F}	1	11
G	18	10
Η	12	18

- Separate estimates
- ▶ Pooled estimate

- ▶ Pre-test, randomized treatment, post-test on each of 8 schools
- ▶ Inferences from separate regressions:

School	Estimated treatment effect, y_j	Standard error of effect estimate, σ_j
A	28	15
В	8	10
$^{\mathrm{C}}$	-3	16
D	7	11
\mathbf{E}	-1	9
\mathbf{F}	1	11
G	18	10
Η	12	18

- Separate estimates
- Pooled estimate

- ► All assignments are at http://www.stat.columbia.edu/ ~gelman/bda.course/homeworks.pdf
 - Theory problem: Exchangeable models and conditional independence
 - Computing problem: Simulation of a discrete stochastic process
 - Applied problem. Fitting and checking a stochastic learning model.

- ► All assignments are at http://www.stat.columbia.edu/~gelman/bda.course/homeworks.pdf
 - ▶ Theory problem: Exchangeable models and conditional independence
 - Computing problem: Simulation of a discrete stochastic process
 - Applied problem: Fitting and checking a stochastic learning model

- All assignments are at http://www.stat.columbia.edu/ ~gelman/bda.course/homeworks.pdf
 - ► Theory problem: Exchangeable models and conditional independence
 - Computing problem: Simulation of a discrete stochastic process
 - Applied problem: Fitting and checking a stochastic learning model

- All assignments are at http://www.stat.columbia.edu/ ~gelman/bda.course/homeworks.pdf
 - ► Theory problem: Exchangeable models and conditional independence
 - Computing problem: Simulation of a discrete stochastic process
 - Applied problem: Fitting and checking a stochastic learning model

- All assignments are at http://www.stat.columbia.edu/ ~gelman/bda.course/homeworks.pdf
 - ► Theory problem: Exchangeable models and conditional independence
 - Computing problem: Simulation of a discrete stochastic process
 - Applied problem: Fitting and checking a stochastic learning model