Projet d'étude

4 ModIA

UFs "Analyse de données" & "Eléments de modélisation statistique" Intervenantes : Cathy Maugis-Rabusseau et Béatrice Laurent-Bonneau

2024-2025

Organisation du projet et documents à rendre

- Le projet sera réalisé par groupe de 3 étudiant-e-s. La constitution des groupes sera donnée lors de la première séance.
- 6 séances de 2h30 sont dédiées dans votre emploi du temps au travail du projet. L'une de nous sera présente lors de chacune de ces séances pour répondre à vos questions.
- Livrables : vous devrez rendre (en déposant sous Moodle) au plus tard le **jeudi 30 janvier 2025** minuit les 2 documents suivants :
 - 1. un fichier Rmarkdown (nom1-nom2-nom3-Rapport.Rmd) contenant les codes R et générant le rapport au format pdf.
 - 2. un rapport au format .pdf (nom1-nom2-nom3-Rapport.pdf) généré par la compilation du fichier .Rmd précédent.
 - Attention: le rapport est limité à 25 pages, figures incluses.
- Un dossier "ModeleRapport", disponible sur Moodle, vous donne un exemple avec des consignes pour la rédaction de votre rapport. Il est important d'en prendre connaissance dès la première séance!

Evaluation du projet

Pour chaque UF, la note de projet compte pour un tiers de la note finale de l'UF. Elle sera issue de l'évaluation des critères suivants :

Critère	UF EMS	UF AD
Utilisation pertinente des méthodes d'exploration de données		X
Utilisation pertinente de méthodes de clustering adaptées à la question		X
traitée		
Utilisation pertinente de l'analyse discriminante linéaire		X
Choix des modélisations ML et MLG adaptées à la question traitée	X	
Ecriture mathématique des modèles considérés	X	
Choix des procédures de tests adaptées à la question traitée	X	
Utilisation de méthodes de sélection de variables	X	
Aller-retour exploration \leftrightarrow modélisation	X	X
Analyse (\neq lecture!) des résultats obtenus	X	X
Choix et rendu des graphiques illustratifs	X	X
Rédaction d'un document en Rmarkdown		X
Programmation en R	X	X
Rédaction générale du document	X	X
Bonus pour des choix originaux adaptés	X	X

Jeu de données étudié

On observe pour G = 1615 gènes d'une plante modèle les valeurs suivantes :

$$Y_{gtsr} = \log_2(X_{gtsr} + 1) - \log_2(X_{gt_0} + 1)$$

où

- X_{gtsr} est la mesure d'expression du gène $g \in \{G1, \dots, G1615\}$ pour le traitement $t \in \{T1, T2, T3\}$ pour le réplicat $r \in \{R1, R2\}$ et au temps $s \in \{1h, 2h, 3h, 4h, 5h, 6h\}$
- X_{qt_0} est l'expression du gène g pour un traitement de référence t_0

Dans la suite, on dira qu'un gène g est sur-exprimé si $Y_{gtsr} > 1$, sous-exprimé si $Y_{gtsr} < -1$ et non-exprimé sinon. A noter que le traitement T3 est une combinaison des traitements T1 et T2. Des explications plus précises du contexte seront données lors de la première séance.

Questions à aborder

Dans votre rapport final, vous devez avoir abordé par une/des méthodes adaptées les questions suivantes :

- Analyse descriptive du jeu de données
 - Faites quelques statistiques descriptives du jeu de données, étudiez les corrélations entre les différentes variables.
 - Analyse des variables Tt_sH_Rr
 - Visualisez les variables Tt_sH_Rr dans un espace de faible dimension (interprétez en particulier selon l'aspect réplicat biologique, l'effet traitement et l'effet temps)
 - Faites un clustering pour regrouper les Tt_-sH_-Rr en classes homogènes.
 - Analyse des gènes
 - Visualisez les données dans un espace de faible dimension
 - Réalisez un clustering des gènes ayant des profils d'expression similaires (co-exprimés) dans les différentes conditions et comparez.
- Etude de la différence entre les deux réplicats.
 - Les lois de probabilités associées aux valeurs observées pour les deux réplicats sont-elles significativement différentes? Même question en se concentrant sur chaque traitement pris séparément.
 - Etudier l'effet combiné du temps et du traitement sur la différence des réplicats à l'aide d'un modèle linéaire

Dans la suite, on se concentre sur la moyenne des deux réplicats.

- Etude de la dynamique de l'expression des gènes :
 - Peut-on prévoir l'expression des gènes à 6h à partir de celle observée à 1h et du traitement considéré? Commenter la qualité de l'ajustement et la visualiser graphiquement.
 - Reprendre la question précédente en remplaçant 1h par 3h et comparer les résultats obtenus dans les deux cas.
- Etude de l'expression des gènes pour le traitement T3 à 6h :
 - Quelles sont les variables prédictives pour le traitement T3 à 6h parmi les différents temps observés pour les traitements T1 et T2?
 - Peut-on prédire les gènes sur-exprimés (codés 1) et les gènes sous-exprimés (codés 0) à 6h pour le traitement T3 à partir des observations pour les traitements T1 et T2 et les heures 1 à 3 pour ces mêmes gènes?
- Le caractère sur exprimé/sous exprimé/non exprimé des gènes à 6h dépend-il du traitement? Même question si on se limite aux traitements T2 et T3.