Counting points, counting fields, and heights on stacks.

David Zureick-Brown

Emory University
Slides available at http://www.mathcs.emory.edu/~dzb/slides/

JMM Special Session on Arithmetic Statistics

January 18, 2019

Batyrev-Manin-Malle

Let K be a number field or function field of a curve.

Let $X \hookrightarrow \mathbb{P}^N_K$ be a projective variety.

Conjecture (Batyrev-Manin)

There exists a nonempty open subscheme $U \subset X$ and constants a, b, c such that

$$N_U(B) \sim cB^a (\log B)^b$$
.

Let $G \subset S_n$ be a transitive subgroup.

Conjecture (Malle)

There exists constants a, b, c such that

$$N_{G,K}(B) \sim cB^a (\log B)^b$$
.

Bat-Man for stacks

- ullet Let ${\mathscr X}$ be a proper Artin stack with finite diagonal.
- ② Let $V \in \text{Vect } \mathscr{X}$ be a (Northcott) vector bundle.

Conjecture (Ellenberg–Satriano–ZB)

There exists a non-empty open substack $\mathscr{U}\subset\mathscr{X}$ and constants a,b,c such that

$$N_{\mathscr{U},V}(B) \sim cB^a (\log B)^b$$
.

Why bother?

$$BG = [\operatorname{\mathsf{Spec}}\nolimits \mathbb{Z}/G]$$

$$BG(K) \leftrightarrow L \supset K$$
 with $Gal(L/K) \cong G$

Question

Is there an intrinsic notion of height on BG?

99 problems

There does not exist an embedding $\mathscr{X} \hookrightarrow \mathbb{P}^N$.

The coarse space of BG is a point.

- **①** Vect $BG \cong \text{Rep } G \Rightarrow$
- ② Pic BG is torsion \Rightarrow
- ht_V cannot be additive

99 problems

Let R be a DVR with fraction field K.

Problem

 $\mathscr{X}(R) \to \mathscr{X}(K)$ is not surjective

One must deal with non-tame Artin stacks.

Geometric heights

- Let K = k(C), where C is a smooth proper curve over k.
- Let X be a proper variety over C.
- Let $L \in \text{Pic } X$.
- Let $x \in X(K)$,
- with extension $\overline{x} \colon C \to X$

$$ht_L(x) := deg \overline{x}^* L$$

(Also true for varieties over number fields if ${\it L}$ is metrizied and deg is the Arakelov degree.)

Tuning stacks

Let \mathscr{X} be a proper Artin stack with finite diagonal over C (either a smooth proper curve over a field or Spec \mathcal{O}_K , with function field K). Let $x \in \mathcal{X}(K)$.

Theorem

There exists a stack ${\mathcal C}$ an a commutative diagram

such that π is a birational moduli space morphism.

We call such a C a **tuning stack** for x, and we call a terminal such C a "universal" tuning stack.

BG redux

- Vect $BG \cong \operatorname{Rep} G$
- $p: \star \to BG$
- Let $V = p_* \mathcal{O}_*$
- (corresponds to the regular representation of *G*)

Let $x \in BG(\mathbb{Q})$ be a rational point, corresponding to a G-extension $L \supset \mathbb{Q}$.

Proposition

$$ht_V(x) = \frac{\Delta_L}{2}$$

BG redux: $H \subset G$

- Vect $BG \cong \operatorname{Rep} G$
- $p: BH \rightarrow BG$
- Let $V = p_* \mathcal{O}_{BH}$
- (corresponds to the permutation representation of G on G/H)

Let $x \in BG(\mathbb{Q})$ be a rational point, corresponding to a G-extension $L \supset \mathbb{Q}$.

Proposition

$$\operatorname{ht}_V(x) = \frac{\Delta_{L^H}}{2}$$

Bat-Man for stacks

- ullet Let ${\mathscr X}$ be a proper Artin stack with finite diagonal.
- ② Let $V \in \text{Vect } \mathscr{X}$ be a (Northcott) vector bundle.

Conjecture (Ellenberg–Satriano–ZB)

There exists a non-empty open substack $\mathscr{U}\subset\mathscr{X}$ and constants a,b,c such that

$$N_{\mathscr{U},V}(B) \sim cB^a (\log B)^b$$
.

Thanks

Thank you!