ΜΑΣ029 - Στοιχεία Γραμμικής Άλγεβρας Εαρινό εξάμηνο 2021

Ασκήσεις 5ου Κεφαλαίου

1. Έστω τα διανύσματα
$$\mathbf{u} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 6 \\ -2 \\ 3 \end{bmatrix}$. Να υπολογιστούν τα παρακάτω. i) $\mathbf{u} \cdot \mathbf{u}$ ii) $\mathbf{v} \cdot \mathbf{u}$ iii) $\frac{1}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}$ iv) $\frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{x} \cdot \mathbf{x}} \mathbf{x}$

- **2.** Έστω διανύσματα $\mathbf{y}, \mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ έτσι ώστε το \mathbf{y} είναι κάθετο στα \mathbf{u} και \mathbf{v} .
 - i) Να δειχθεί ότι το \mathbf{y} είναι κάθετο στο $\mathbf{u} + \mathbf{v}$.
 - ii) Να δειχθεί ότι το y είναι κάθετο σε κάθε διάνυσμα $w \in \text{Span}\{u,v\}.$
- **3.** Να δειχθεί ότι το σύνολο των \mathbf{u}_i αποτελεί ορθογώνια βάση του \mathbb{R}^2 ή του \mathbb{R}^3 και στη συνέχεια να εκφράσετε το \mathbf{x} ως γραμμικό συνδυασμό τους.

i)
$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 9 \\ -7 \end{bmatrix}$
ii) $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -1 \\ 4 \\ 1 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 8 \\ -4 \\ -3 \end{bmatrix}$.

- **4.** Έστω $\mathbf{y} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ και $\mathbf{u} = \begin{bmatrix} 4 \\ -7 \end{bmatrix}$. Να εκφράσετε το \mathbf{y} ως άθροισμα δύο κάθετων διανυσμάτων που το πρώτο να είναι στο Span $\{\mathbf{u}\}$ και το δεύτερο κάθετο στο \mathbf{u} .
- **5.** Έστω $\mathbf{u} \in \mathbb{R}^n$, $\mathbf{u} \neq \mathbb{O}$ και $L = \operatorname{Span}\{\mathbf{u}\}$. Να δείξετε ότι η απεικόνιση $T(\mathbf{x}) = \operatorname{proj}_L \mathbf{x}$ είναι γραμμική.
- **6.** Έστω $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ και $\mathbf{y} = \begin{bmatrix} -1 \\ 4 \\ 3 \end{bmatrix}$. Αφού δείξετε ότι το $\{\mathbf{u}_1, \mathbf{u}_2\}$ είναι ορθογώνιο σύνολο, βρείτε την ορθογώνια προβολή του \mathbf{y} πάνω στο $\mathrm{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$.
- 7. Έστω $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 5 \\ 1 \\ 4 \end{bmatrix}$ και $\mathbf{y} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$. Αν $W = \mathrm{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$ να γράψετε το \mathbf{y} σαν άθροισμα ενός διανύσματα στο W και ενός διανύσματος κάθετου στο W.
- **8.** Τα παρακάτω σύνολα είναι βάσεις υποχώρου W. Να τα μετατρέψετε σε ορθογώνιες βάσεις χρησιμοποιώντας την μέθοδο Gram-Schmidt. Στην συνέχεια, να τις μετατρέψετε σε ορθοκανονικές βάσεις.

1

i)
$$\begin{bmatrix} 2 \\ -5 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix}$ ii) $\begin{bmatrix} 1 \\ -4 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 7 \\ -7 \\ -4 \\ 1 \end{bmatrix}$

9. Να βρεθεί ορθογώνια βάση για τον χώρο στηλών του πίνακα

$$\begin{bmatrix} 3 & -5 & 1 \\ 1 & 1 & 1 \\ -1 & 5 & -2 \\ 3 & -7 & 8 \end{bmatrix}.$$