Hypothesis Testing Single Sample Proportion

Testing a Population Proportion

In this section, we will test a claim regarding a population proportion.

Testing a Population Proportion

In this section, we will test a claim regarding a population proportion.

The sample proportion, \hat{p} is given by

$$\hat{p} = \frac{x}{n} = \frac{\text{number of observed successes}}{\text{sample size}}$$

Testing a Population Proportion

In this section, we will test a claim regarding a population proportion.

The sample proportion, \hat{p} is given by

$$\hat{p} = \frac{x}{n} = \frac{\text{number of observed successes}}{\text{sample size}}$$

with sample standard error

$$\sigma_{\hat{p}} = \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

The test statistic of the population proportion, z, can be found by calculating

$$z = \frac{\hat{p} - p}{\sqrt{p(1-p)/n}}$$

The test statistic of the population proportion, z, can be found by calculating

$$z = \frac{\hat{p} - p}{\sqrt{p(1 - p)/n}}$$

$$= \frac{\text{sample proportion - population proportion}}{\text{standard error}}$$

The test statistic of the population proportion, z, can be found by calculating

$$z = \frac{\hat{p} - p}{\sqrt{p(1 - p)/n}}$$

$$= \frac{\text{sample proportion - population proportion}}{\text{standard error}}$$

Significance Level	Critical Value
$\alpha = 0.01$	± 2.576
$\alpha = 0.05$	± 1.96
lpha = 0.10	± 1.645

The area of the rejection region is given by α , the significance level.

The area of the rejection region is given by α , the significance level.

Recall that the p-value is the probability of obtaining sample results as extreme (or more) than one we got.

The area of the rejection region is given by α , the significance level.

Recall that the p-value is the probability of obtaining sample results as extreme (or more) than one we got.

If our *p*-value is lower than α , then our results are **statistically significant**, and would not likely occur by chance if the null hypothesis were true.

The area of the rejection region is given by α , the significance level.

Recall that the p-value is the probability of obtaining sample results as extreme (or more) than one we got.

If our *p*-value is lower than α , then our results are **statistically significant**, and would not likely occur by chance if the null hypothesis were true.

Reminder, if the *p*-value $< \alpha$, we reject the null hypothesis.

Reject null

Confidence Interval Method

Confidence Interval Method

