Équations de Hamilton-Jacobi Méthode de Fast-Marching généralisée

T. Schmoderer N. Rouxelin A. Quinquennel D. Stambouli

Département Génie Mathématiques INSA ROUEN

Présentation, 27 novembre 2017

Sommaire

- Méthode classique
 - Équation eikonal
 - La méthode fast-marching classique
 - Application
- Méthode généralisée
 - Re-définition du problème
 - L'algorithme
 - Application

Équation eikonal

- Soit un domaine $\Omega \subset \mathbb{R}^2$ et
- \bullet Γ_t la modélisation du mouvement du front (courbe fermée)
- Le mouvement est dans la direction normale $\overrightarrow{n_{x,t}}: \frac{\partial \Gamma_t}{\partial t} = c(x) \cdot \overrightarrow{n_{x,t}}$
- Avec la méthode *level-set* Γ_t représente la ligne de niveau 0 d'une fonction u dans \mathbb{R}^3

Équation eikonal

- Ω_t le domaine de R^2 délimité par Γ_t
- $\forall t \in \mathbb{R}_+, \ \forall x \in \mathbb{R}^2, x \in \Omega_t \Rightarrow u(x,t) > 0$ $x \in \Omega_t^c \Rightarrow u(x,t) < 0 \text{ et } u(\Gamma_t,t) \equiv 0$

•

$$\frac{\mathrm{d}u}{\mathrm{d}t}(x(t),t)=0,\forall x\in\Gamma_t$$

ullet Équation eikonal $rac{\partial u}{\partial t}(x,t)=c(x)\left|
abla_x u(x,t)
ight|$

La méthode fast-marching classique

- Cette méthode est valable seulement si la vitesse est positive
- Soit T(x) le temps d'arrivée du front au point x, on veut u(x,t)=T(x)+t
- L'équation eikonal devient donc : $1 = c(x) |\nabla T|$

Schéma numérique en T

- $x_{ij} := (i\Delta x, j\Delta x)$ $(i,j) \in \mathbb{Z}^2$ avec $\Delta x > 0$
- Soit $T_{i,j}$ l'approximation de T au point x_{ij}
- Approximation du gradient par un schéma différences finies

$$\bullet \ \max\left(\frac{T_{ij}-T_{i+1,j}}{\Delta x}, \frac{T_{ij}-T_{i-1,j}}{\Delta x}, 0\right)^2 + \max\left(\frac{T_{ij}-T_{i,j-1}}{\Delta x}, \frac{T_{i,j}-T_{i,j+1}}{\Delta x}, 0\right)^2 = \frac{1}{c_{ij}^2}$$

- frozen points : À l'instant t_n , on note Fr^n l'ensemble des points visités par le front dont la valeur de T est connue
- La narrow band : il s'agit du voisinnage des frozen points, c'est-à-dire les points non visités mais qui ont un voisin déhà visité. À l'instant t_n , on la note NB^n .
- Les points éloignés : ce sont tous les autres points du domaine

Algorithme

	<u>Initialisation</u>	
Matrice de passage :	$T_{ij}=0$	$\forall (i,j) \; tq \; (i\Delta x, j\Delta x) \in \Omega_0$
Temps :		n = 0
	<u>Boucle</u>	
1. Calculer \mathcal{T}_{ij}		$\forall (i,j) \in \mathit{NB}^n$
2. Mettre à jour Fr^{n+1} :	Accepter les (i, j)	$ tq T_{i,j} = \min_{(a,b)} T_{a,b} Frontière de Fr^{n+1} $
3. Mettre à jour NB^{n+1}	:	Frontière de Fr^{n+1}
4. Mettre à jour <i>n</i>	:	n = n + 1

Figure – Exemple 1 : front initial

Figure - Exemple 1: front final

Figure – Exemple 1 : front final vu du dessus

Figure – Exemple 2 : front initial

Figure – Exemple 2 : front final

Figure – Exemple 2 : front final vu du dessus

Re-définition du problème

 On vise à généraliser pour traiter les vitesses quelqconques : on introduit le champ θ

$$\left\{ \begin{array}{ll} \theta = 1 & \text{dans } \Omega_t \\ \theta = -1 & \text{dans } \Omega_t^c \end{array} \right.$$

- On ne parle plus de frozen points puisque le front peut passer plusieurs fois sur un point : un introduit une frozen region à l'itération n, notée Frⁿ
- On redéfinit la *narrow band* comme le voisinage de la *frozen region*, directement atteignable par le front, notée NB^n
- On définit les points utiles à un point $I \in NB^n$ comme les points $\in V(I)$ et $\in Fr^n$, notés $\mathcal{U}^n(I)$
- On note U^n l'ensemble des points utiles à NB^n

Re-définition du problème

Re-définition du problème

On introduit une régularisation de la vitesse :

$$\hat{c}_I^n \equiv \left\{ \begin{array}{ll} 0 & \text{si il existe } J \in V(I) \text{ tel que } c_I^n c_J^n < 0 \text{ et } |c_I^n| < |c_J^n| \\ c_I^n & \text{sinon} \end{array} \right.$$

• Pour s'assurer d'utiliser uniquement les points utiles à I pour le calcul de la valeur temporaire \tilde{T}_I^n , on introduit

$$T_{J\to I}^n = \begin{cases} T_J^n & \text{si } J \in \mathcal{U}^n(I) \\ +\infty & \text{sinon} \end{cases}$$

• L'algorithme repose sur la résolution de l'équation suivante $(I=(i_1,i_2)$

$$\max\left(0,\,\tilde{T}_{I}^{n-1}-T_{(i_{1}+1,i_{2})\to I}^{n-1},\,\tilde{T}_{I}^{n-1}-T_{(i_{1}-1,i_{2})\to I}^{n-1}\right)^{2}+$$

$$\max\left(0,\,\tilde{T}_{I}^{n-1}-\,T_{(i_{1},i_{2}+1)\to I}^{n-1},\,\tilde{T}_{I}^{n-1}-\,T_{(i_{1},i_{2}-1)\to I}^{n-1}\right)^{2}=\frac{(\Delta x)^{2}}{|\hat{c}_{I}^{n-1}|^{2}}$$

L'algorithme

Méthode fast-marching généralisée

Initialisation

Temps :
$$n = 1, t_0 = 0$$

$$\theta_0 \qquad \qquad : \quad \theta^0 = \left\{ \begin{array}{ll} 1 & \quad \text{si } x_I \in \Omega_0 \\ -1 & \quad \text{sinon} \end{array} \right.$$

$$T_0$$
 : $T_I^0 = \begin{cases} 0 & \text{si } I \in \mathcal{U}^0 \\ +\infty & \text{sinon} \end{cases}$

L'algorithme

Boucle

- 1. Calculer \tilde{T}_I^{n-1} : Résoudre l'équation $\forall I \in NB^{n-1}$
- 2. Calcul du temps : $\tilde{t}_n = \inf_{I \in NB^{n-1}} \tilde{T}_I^{n-1}$

Tronquer
$$\tilde{t}_n$$
: $t_n = \max(t_{n-1}, \min(\tilde{t}_n, t_{n-1} + \Delta t))$

$$\underline{\text{Si}}\ t_n=t_{n-1}+\Delta t\ \text{et}\ t_n<\tilde{t}_n$$
 : Revenir à 1 avec $n=n+1,\ \theta^n=\theta^{n-1}$ et $T^n=T^{n-1}$

3. Mettre à jour
$$NA^n:NA^n=\left\{I,\, \tilde{T}_I^{n-1}=\tilde{t}_n\right\}$$

4. Mettre à jour
$$\theta^n$$
: $\theta^n_I = \begin{cases} -\theta^{n-1}_I & \text{si } I \in NA^n \\ \theta^{n-1}_I & \text{sinon} \end{cases}$

5. Calcul de
$$T_I^n$$
: $T_I^n = \begin{cases} t_n & \text{si } I \in NA^n \text{ et } I \in \mathcal{U}^n \\ T_I^{n-1} & \text{si } I \in \mathcal{U}^{n-1} \setminus NA^n \text{ et } I \in \mathcal{U}^n \\ +\infty & \text{sinon} \end{cases}$

6. Mettre à jour n : n = n + 1

Démonstration

Bibliographie I

N.Forcadel, C.Le Guyader, C.Gout

Generalized fast marching method : applications to image segmentation.