Convex Functions

Mustaf Ahmed

May 17, 2025

Convex functions are important in optimization because they make optimization problems tractable and computationally efficient.

1 Convex Sets

Definition 1 (Convex Set). A set $C \in \mathbb{R}^n$ is convex if and only if for any two elements $x, y \in C$ and $\alpha \in [0, 1]$, we have

$$\alpha x + (1 - \alpha)y \in C$$

That is, in an intuitive sense, we can draw a line between any two points always be inside C; the geometry of C is such that it has no dents. Figure 1 illustrates an example of a convex set and an example of a non-convex set.

(a) Convex set C. The line segment connecting $x, y \in C$ is entirely within C.

(b) Non-convex set C'. Points $x, y \in C'$ are clearly inside the "horns". The segment x - y is not entirely within C'.

Figure 1: Illustrations of convex and non-convex sets.

1.1 Examples

1.1.1 Unit Ball

Theorem 1 (Unit Ball in \mathbb{R}^n is convex). $C = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$ is convex.

Proof. Let $x, y \in C$ and $\alpha \in [0, 1]$. We want that $\alpha x + (1 - \alpha)y \in C$. The condition is true if and only if $\|\alpha x + (1 - \alpha)y\| \le 1$

$$\|\alpha x + (1 - \alpha)y\| \le \|\alpha x\| + \|(1 - \alpha)y\|$$
 (by Triangle Inequality)

$$= \alpha \|x\| + (1 - \alpha)\|y\|$$
 (homogeneity)

$$\le \alpha(1) + (1 - \alpha)(1)$$
 (since $\|x\| \le 1, \|y\| \le 1$)

$$= \alpha + (1 - \alpha)$$

$$= 1$$