Classification Decision Trees

Huiping Cao

Examples of a Decision Tree

Tid	Refund	Marital	Taxable	Cheat
		Status	Income	
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Refund: categorical

Marital Status: categorical

Taxable Income: continuous

Cheat: class

Training Data

Training Data

Training Data

Training Data

Training Data

Training Data

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Tree Classification Task

Example: Apply Model to Test Data

Test Data

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Decision Tree Classification Task

Decision Tree Induction

- How many trees? Exponential in the number of attributes
- Many Algorithms: reasonably accurate, suboptimal, reasonable amount of time
 - Hunt's Algorithm (basis of many others)
 - CART (Classification and Regression Trees), a book by Breiman et al.
 - ID3, C4.5 by Quinlan

Hunt's algorithm

- Let D_t be the set of training records that reach a node t
- $y = \{y_1, y_2, \cdots, y_c\}$ are class labels
- General procedure
 - If D_t contains records that belong to the same class y_t , then t is a leaf node labeled as y_t
 - If D_t contains records that belong to more than one class
 - Use an attribute test to split the data into smaller subsets
 - Recursively apply the procedure to each subset

Decision Tree Induction Algorithms - Design Issues

- How should the training records be split?
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Greedy strategy: split the records based on an attribute test that optimizes certain criterion
- When to stop splitting
 - Naive: (1) all the records have identical attribute values; or (2) all the records belong to the same class
 - Is there any better way? Early stop?

Specify the Attribute Test Condition?

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values

Binary split: Divides values into two subsets. Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

Multi-way split: Use as many partitions as distinct values

 Binary split: Divides values into two subsets. Need to find optimal partitioning and preserve the order among attribute values.

Splitting Based on Continuous Attributes

- Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
- Binary decision: (A < v) or $(A \ge v)$
 - Consider all possible splits and find the best cut
 - Can be more compute intensive

Splitting Based on Continuous Attributes – Example

Determine the best split

Before Splitting:

■ 10 records of class 0

■ 10 records of class 1

Which test condition is the best?

Determine the Best Split - Node Impurity

- Splitting criterion
 - Splitting attribute
 - Splitting point or splitting subset
 - Ideally, the resulting partitions at each branch are as "pure" as possible.
- Need a measure of node impurity
 - The smaller the degree of impurity, the more skewed the class distribution. The BETTER
 - Node with class distribution (0,1) has zero impurity.
 - Node with class distribution (0.5,0.5) has highest impurity.

Measures of Node Impurity

Gini Index

$$Gini(t) = 1 - \sum_{i=0}^{c-1} [p(i|t)]^2$$

p(i|t): the probability that an instance t in D_t belongs to class C_i , estimated by $\frac{n_i}{|D_t|}$, where n_i is the number of instances with class label C_i .

Entropy

$$Entropy(t) = -\sum_{i=0}^{c-1} p(i|t) log_2 p(i|t)$$

Log uses base 2: information is encoded in bits.

Classification error

Classification error(t) =
$$1 - \max_{i}[p(i|t)]$$

Determine the Best Split-Information Gain

- Gain: $\Delta = I(parent) \sum_{i=1}^{k} \frac{N(v_i)}{N} I(v_i)$
- Gain = M0 M12 vs M0 M34

Measures of Node Impurity - Gini

$$extit{Gini}(t) = 1 - \sum_{i=0}^{c-1} [p(i|t)]^2$$

p(i|t): the relative frequency of class i at node t.

- Maximum? $(1 \frac{1}{n_c})$ when records are equally distributed among all classes, implying least interesting information
- Minimum? (0.0) when all records belong to one class, implying most interesting information
- First used in CART, which allows only binary splitting

Measures of Node Impurity - Gini

C1	0	C1	1	C1	2		C1	3
C2	6	C2	5	C2	4]	C2	3

Gini?

$$1 - (\frac{0}{6})^2 - (\frac{6}{6})^2 = 0$$

$$1 - (\frac{1}{6})^2 - (\frac{5}{6})^2 = \frac{10}{36} = 0.278$$

$$1 - (\frac{2}{6})^2 - (\frac{4}{6})^2 = \frac{16}{36} = 0.444$$

0.5

Binary Attributes: Computing Gini Index

	Parent	N1	N2
C1	6	5	1
C2	6	2	4

- Gini(Parent) = 0.5
- $Gini(N1) = 1 (5/7)^2 (2/7)^2$
- $Gini(N2) = 1 (1/5)^2 (4/5)^2$
- Gini(Children) = 7/12 * Gini(N1) + 5/12 * Gini(N2)
- Gain = Gini(Parent) Gini(Children)

Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Two-way split (find best partition of values)

	CarType			
	{Sports, Luxury} {Family}			
C1	3	1		
C2	2	4		
Gini	0.400			

	CarType			
	{Sports}	{Family, Luxury}		
C1	2	2		
C2	1 5			
Gini	0.419			

Calculation example?

Categorical Attributes: Computing Gini Index

- Gini(family) = 1-(1/25)-(16/25)=(8/25)
- Gini(sports) = 1-(4/9)-(1/9)=(4/9)
- Gini(luxury) = 1/2
- Gini(all) = (5/10)*(8/25)+(3/10)*(4/9)+(2/10)*(1/2)=(4/25)+(2/15)+(1/10) = (24+20+15)/150 = 59/150 = 0.393

Continuous Attributes: Computing Gini Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values = Number of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A < v and $A \ge v$
- Simple method to choose best v
 - For each *v*, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work.

Continuous Attributes: Computing Gini Index

Tid	Refund	Marital	Taxable	Cheat
Hu	Refulla			Cileat
		Status	Income	
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Continuous Attributes: Computing Gini Index

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time update the count matrix and compute gini index
 - Choose the split position that has the least Gini index

	Cheat		No		No	,	N	0	Ye	s	Ye	s	Υe	es	N	0	N	О	N	lo		No	
•		Taxable Income																					
Sorted Values			60		70		7	5	85	,	90	•	9	5	10	00	12	20	13	25		220	
Split Positions -		5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	10	12	22	17	72	23	0
Op.		۳	^	"	^	<=	^	=	^	<=	۸	۳	^	"	۸	۳	^	"	۸	"	>	=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	20	0.4	00	0.3	75	0.3	43	0.4	117	0.4	100	<u>0.3</u>	00	0.3	43	0.3	375	0.4	100	0.4	20

Entropy

$$Entropy(t) = -\sum_{i=0}^{c-1} p(i|t)log_2 p(i|t)$$

- Measures homogeneity of a node.
 - Maximum $(log(n_c))$ when records are equally distributed among all classes implying least information
 - Minimum (0.0) when all records belong to one class, implying most information

Examples for Computing Entropy

$$Entropy(t) = -\sum_{i=0}^{c-1} p(i|t)log_2 p(i|t)$$

C1	0	C1	1		C1	2
C2	6	C2	5]	C2	_

Entropy?

- -0log 0 1log 1 = 0 (prob. is 0 means it does not happen, let 0log 0 = 0)
- $-\frac{1}{6}log(\frac{1}{6}) \frac{5}{6}log(\frac{5}{6}) = 0.65$
- $-\frac{2}{6}log(\frac{2}{6}) \frac{4}{6}log(\frac{4}{6}) = 0.92$

Splitting Based on Information Gain

Information Gain = Entropy(p) -
$$\sum_{j=1}^{k} \frac{N(v_j)}{N}$$
Entropy(v_j)

- Used in ID3
- Disadvantage: Tends to prefer splits that result in large number of partitions, each being small but pure.
- Consider partition on ID? *Entropy*(*children*) = 0

Splitting Based on Gain Ratio

$$Gain \ Ratio = \frac{Information \ Gain}{Split \ Info}$$

$$Split \ Info = \sum_{i=1}^{k} (\frac{n_{j}}{n} log(\frac{n_{j}}{n}))$$

- \blacksquare Parent node p is split into k partitions
- lacksquare n_j is the number of records in partition j
- Higher entropy partitioning (large number of small partitions) is penalized!
- Used in C4.5, successor of ID3
- Designed to overcome the disadvantage of Information Gain

Classification Error

$$Error(t) = 1 - max_i p(i|t)$$

- Measures misclassification error made by a node.
 - Maximum $(1 1/n_c)$ when records are equally distributed among all classes, implying least interesting information
 - Minimum (0.0) when all records belong to one class, implying most interesting information

Examples for Computing Classification Error

$$Error(t) = 1 - max_i p(i|t)$$

C1	0	C1	1	C1	2	C1	3
C2	6	C2	5	C2	4	C2	3

Classification Error?

- 1 max(0,1) = 0
- 1 max(1/6, 5/6) = 1 5/6 = 1/6
- $1 \max(2/6, 4/6) = 1 4/6 = 1/3$
- **0.5**

Comparison among Splitting Criteria

For a 2-class problem:

Stopping Criteria for Tree Induction

Stop expanding a node when all the records belong to the same class

Stop expanding a node when all the records have similar attribute values

■ Early termination: use threshold

Examples

- ID3: Use Entropy, Information gain
- C4.5: Use Entropy, Normalized Information Gain (Gain Ratio) Download the software from: http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz
- CART: Uses Gini Index, only binary splits

Which measure is the best?

- Time complexity of DT induction increases exponentially with tree height → shallower trees
- Shallow trees tend to have a large number of leaves and higher error rates

Example: C4.5

- Simple depth-first construction.
- Uses Information gain
- Sorts continuous attributes at each node.
- Needs entire data to fit in memory.
- Unsuitable for large datasets.
- Download the software from: http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz

DT Example (1)

RID	age	income	student	credit_rating	buys_computer
1	<= 30	high	no	fair	no
2	<= 30	high	no	excellent	no
3	31 · · · 40	high	no	fair	yes
4	> 40	medium	no	fair	yes
5	> 40	low	yes	fair	yes
6	> 40	low	yes	excellent	no
7	31 · · · 40	low	yes	excellent	yes
8	<= 30	medium	no	fair	no
9	<= 30	low	yes	fair	yes
10	> 40	medium	yes	fair	yes
11	<= 30	medium	yes	excellent	yes
12	31 · · · 40	medium	no	excellent	yes
13	31 · · · 40	high	yes	fair	yes
14	> 40	medium	no	excellent	no

Class label attribute: buys_computer

Preprocess age attribute:

■ <= 30: young

■ 31 · · · 40: middle_aged

■ > 40: senior

DT Example (2)

RID	age	income	student	credit_rating	buys_computer
1	young	high	no	fair	no
2	young	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	young	medium	no	fair	no
9	young	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	young	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

DT Example (3) - Information gain based on Gini Index

Number of classes:

- lacksquare C_1 : for yes, 9
- \blacksquare C_2 : for no. 5

$$Gini(D) = 1 - (\frac{9}{14})^2 - (\frac{5}{14})^2 = 0.459$$

Consider using attribute *income* as splitting attribute:

- D_1 : income is {low, medium} $Gini(D_1) = 1 - (\frac{6}{10})^2 - (\frac{4}{10})^2 = \frac{48}{100}$
- D_2 : income is {high} $Gini(D_2) = 1 - (\frac{2}{4})^2 - (\frac{2}{4})^2 = \frac{1}{2}$
- $Gini(children) = \frac{10}{14} * \frac{48}{100} + \frac{4}{14} * \frac{1}{2} = \frac{12}{35} + \frac{1}{7} = \frac{17}{35} = 0.486$
- Gain = Gini(D) Gini(children) = -0.027

DT Example (4) - Information gain based on Entropy

$$Entropy(D) = -\frac{9}{14}log_2(\frac{9}{14}) - \frac{5}{14}log_2(\frac{5}{14}) = 0.94$$

Compute the expected entropy for each attribute.

Start with attribute age.

Consider multi-split (i.e., 3-split). D_{young} : 2 yes, 3 no;

Avg
$$Entropy = 0.694$$

Calculation?

$$Gain(age) = 0.94 - 0.694 = 0.246$$

Compute gain for other attributes: Gain(income) = 0.029, Gain(student), etc.

DT Example (5) - Gain ratio

Consider attribute income.

- low: 4
- medium: 6
- high: 4

Split Info(D) =
$$-\frac{4}{14}log_2(\frac{4}{14}) - \frac{6}{14}log_2(\frac{6}{14}) - \frac{4}{14}log_2(\frac{4}{14}) = 0.926$$

Gain ratio(income) = $\frac{0.029}{0.926} = 0.031$

Building a decision tree - Python example

from sklearn import tree

Building a decision tree does not need to standardize the attribute values.

Prediction - Python example

- predict(self,X,check_input=True)
 Predict class (or regression value) for X.
- predict_proba(self,X,check_input=True)
 Predict class probabilities of the input samples X.

Decision Tree Based Classification - Advantages

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets

Decision Boundary

- Decision boundary: border line between two neighboring regions of different classes
- Decision boundary is parallel to axes because test condition involves a single attribute at-a-time.

Oblique decision tree

- Test condition may involve multiple attributes x + y < 1
- More expressive representation
- Finding optimal test condition is computationally expensive

Constructive induction

- Purpose: partition the data into homogeneous, non-rectangular regions.
- Composite attribute

Tree Replication

References

- Chapter 3: Introduction to Data Mining (2nd Edition) by Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar
- DecisionTreeClassifier:

```
https:
```

```
//scikit-learn.org/stable/modules/generated/
sklearn.tree.DecisionTreeClassifier.html
```