INDIAN INSTITUTE OF TECHNOLOGY BHILAI CS203: Theory of Computation I

Tutorial Sheet 4

• Solve the following problems before the Tutorial.

- 1. Construct a transition system (i.e., NFA or DFA) corresponding to the regular expressions
 - (a) $(ab + c^*)^*b$
 - (b) a + bb + bab * a
- 2. Represent the following sets by regular expression:
 - (a) $\{0, 1, 2\}$ where $\Sigma = \{0, 1, 2\}$
 - (b) $\{1^{2n+1}|n>0\}$ where $\Sigma=\{1\}$
 - (c) $\{w \in \{a, b\}^* | w \text{ has only one } a\}$
 - (d) The set of all strings over $\{0,1\}$ which has at most two zeros.
 - (e) $\{a^2, a^5, a^8, \dots\}$ where $\Sigma = \{a\}$
 - (f) $\{a^n|n \text{ is divisible by 2 or 3 or } n=5\}$
 - (g) The set of all strings over $\{a, b, c\}$ beginning with a and ending not with a or c.
- 3. Find a DFA for each of the following regular languages.

Then convert the DFA into an equivalent regular expression.

- (a) $\{ w \mid w \text{ is any string not in } a^*b^* \}$
- (b) $\{ w \mid w \text{ does not end with } ab \}$
- (c) $\{ w \mid w \text{ is starts with } ab \text{ or has a substring } bba \}$
- (d) $\{ w \mid w \text{ is starts with } ab \text{ and has a substring } bba \}$
- (e) $\{ w \mid w \text{ is starts with } ab \text{ or not has a substring } bba \}$
- (f) $\{ w \mid w \text{ is starts with } ab \text{ and not a substring } bba \}$
- (g) $\{w \mid w \text{ starts with } a \text{ and has odd length or starts with } b \text{ and of even length}\}$
- (h) $\{ w \mid w \text{ contains neither substring } ba \text{ nor } ab \}$
- (i) $\{ w \mid \text{in } w, \text{ every a is immediately followed by } bb \}$
- 4. Prove by Pumping Lemma that the following languages are not regular.
 - (a) $\{a^n b^n | n \ge 0\}$
 - (b) $\{a^p | p \text{ is a prime}\}$
 - (c) $\{a^q | q \text{ is a perfect square}\}$
 - (d) $\{a^nba^mba^pba^q | n, m, p \ge 1 \text{ and } q \equiv nm \pmod{p}\}$
 - (e) $\{a^n b^m a^p b^q | n + m = p + q \text{ and } p, q, m, n \ge 0\}$
 - (f) $\{a^{pq} | p, q \text{ are primes}\}$
 - (g) $\{w \in \{a+b\}^* | |w|_0 = |w|_1 \}$
 - (h) $\{ww | w \in \{a+b\}^* \}$
 - (i) $\{w | w \in \{a+b\}^* \text{ and } w = w^R \}$
- 5. Prove by Pumping Lemma that the following languages are not regular.
 - (a) $\{a^n b^n | n \ge 0\}$
 - (b) $\{a^p | p \text{ is a prime}\}$
 - (c) $\{a^q | q \text{ is a perfect square}\}$
 - (d) $\{a^nba^mba^pba^q | n, m, p \ge 1 \text{ and } q \equiv nm \pmod{p}\}$
 - (e) $\{a^n b^m a^p b^q | n + m = p + q \text{ and } p, q, m, n \ge 0\}$

- (f) $\{a^{pq} | p, q \text{ are primes}\}$
- (g) $\{w \in \{a+b\}^* | n_a(w) = n_b(w) \}$
- (h) $\{ww | w \in \{a+b\}^* \}$
- (i) $\{w | w \in \{a+b\}^* \text{ and } w = w^R \}$
- (j) $\{a^n b^m a^n | m, n \ge 0\}$
- (k) $\{a^n b^m | m \neq n\}$
- (1) $\{w|w \in \{a,b\}^* \text{ is not palindrome }\}$
- (m) $\{wtw|w, t \in \{a, b\}^+\}$
- 6. Give context-free grammars that generate the following languages.
 - (a) $L = \{w \in \{0, 1\} | w = w^R \text{ and } |w| \text{ is even } \}.$
 - (b) $L = \{w \in \{0, 1\}^* | \text{ the length of } w \text{ is odd and the middle symbol is } 0 \}.$
 - (c) $L = \{a^i b^j c^k | i, j, k \ge 0, \text{ and } i = j \text{ or } i = k \}.$
 - (d) ϕ .
 - (e) $L = \{a^i b^j c^k d^l | i, j, k, l \ge 0 \text{ and } i + j = k + l \}.$
 - (f) $L = \{a^m b^n | 3m \le 5n \le 4m\}.$
 - (g) $L = \{w \in \{a+b\}^* | \text{ each prefix of } w \text{ has at least as many } a\text{'s as } b\text{'s } \}.$ (h) $L = \{a^mb^n | m \ge n\}.$

 - $\overline{\text{(i)}} L = \{a^m b^n | m \le n\}.$