Electric field strength spectroscopy in dielectric barrier discharges

Ernst-Moritz-Arndt University Greifswald

Author: Philipp Hacker Supervisor: Dr. S. Nemschokmichal, Examiner: Prof. Dr. Meichsner R. Tschiersch

Report for an internship at the Low-temperature Plasma Physics group of Prof. Dr. Meichsner, submitted in fulfillment of the requirements for the degree

Master of Science

in the

Low-temperature Plasma Physics group Institute of Physics

\mathbf{T}	able of Contents		3	Results	2
0	Abstract	1		3.1 Integrated spectrum	2 2
1	Introduction 1.1 Dielectric barrier discharges	2 2		3.3 Line ratios	4 6
	1.2 Temporal development of the electric field stregnth	2	4	Conclusion	6
			5	Acknowledgments	6
2	Experimentel set up	2		5.1 References	6
	2.1 Discharge configurations	2			
	2.2 Optical emission spectroscopy	2	6	Appendix	6

0 Abstract

1 Introduction

- 1.1 Dielectric barrier discharges
- 1.2 Temporal development of the electric field strenth
- 2 Experimentel set up
- 2.1 Discharge configurations
- 2.2 Optical emission spectroscopy
- 3 Results

3.1 Integrated spectrum

Text.

Figure 1: Integrated photomultiplier current via discharge time. Indicated are the majoring peaks, which will be target of our investigation. The spectrum reaches from 580 nm to 730 nm.

Text.

3.2 Spatial temporal resolved intensities

Text.

Figure 2: Photomultiplier current via discharge time and wavelength. The current derrives from the intensity of the full exit slit of the discharge chamber.

Figure 3: (a): Spatial temporal resolved line emission from 706 66 nm at sine wave discharge duty form. (b): Profile at square wave duty form. (c): Discharge current, gap and applied voltage via time. The graph of the applied voltage resembles a temporal highly resoluted sine wave of 5 kHz. (d): Discharge characteristics for a square wave.

3.3 Line ratios

Figure 4: (a): Line ratio from the division of the intensity values of the emission at 667 96 nm and 728 31 nm. (b): Line ratio of 706 66 nm/587 65 nm. (c): (d):

- 3.4 Stark spectroscopy
- 4 Conclusion
- ${\bf 5}\quad {\bf Acknowledgments}$
- 5.1 References

References

6 Appendix