هوش مصنوعي تكليف سوم

تهیه کنندگان: ریحانه حلوائی 9626793 معین علی زرگرزاده 9631943 فاطمه ناد*ی* 9636753

$$\begin{cases} y^{(t)} = g(v^T h^{(t)} + r y^{(t-1)} + c) & for \ t > 1 \\ y^{(t)} = g(v^T h^{(t)} + c_0) & for \ t = 1 \end{cases}$$

$$\begin{cases} g(z) = 1 & for \ z > 1 \\ g(z) = 0 & for \ z \le 0 \end{cases}$$

وقتی یک می شود که x_1, x_2 همزمان صفر باشند. h_2 وقتی یک می شود که x_1, x_2 همزمان یک باشند.

اگر یکی از h_1 و یا h_2 مقدار یک داشت یعنی x_1 و x_2 برابرند.

مقدار y در صورتی باید یک شود مقادیر قبلی y (در زمان های قبلی) یک باشد هم چنین مقادیر الان x1 و x2 باهم برابر باشند، در این صورت زمانی که y را بررسی میکنیم میتوانیم بفهمیم که دو رشته ی x1 و x2 باهم برابرند یا نه.

$$\begin{bmatrix} h_1 \\ h_2 \end{bmatrix} = g(\begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix}, \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix})$$

$$\begin{cases} h_1 = g(w_{11}x_1 + w_{12}x_2 + b_1) \\ h_2 = g(w_{21}x_1 + w_{22}x_2 + b_2) \end{cases}$$

$$h_1 = g(w_{11}x_1 + w_{12}x_2 + b_1)$$

 $w_{11}x_1 + w_{12}x_2 + b_1$ مقدار \mathbf{x}_1 و \mathbf{y}_1 و \mathbf{y}_2 باید به گونه ای تنظیم شود که به از ای \mathbf{x}_1 و \mathbf{x}_2 مقدار \mathbf{y}_1 مقدار \mathbf{y}_2 مقدار مثانی شود:

X ₁	X 2	h ₁
0	0	1
0	1	0
1	0	0
1	1	0

$$if \begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases} : w_{11}x_1 + w_{12}x_2 + b_1 > 0 \rightarrow b_1 > 0 \mathbf{1}$$

$$if \begin{cases} x_1 = 0 \\ x_2 = 1 \end{cases} : w_{11}x_1 + w_{12}x_2 + b_1 < 0 \rightarrow w_{12} + b_1 < 0$$
 2

$$if \begin{cases} x_1 = 1 \\ x_2 = 0 \end{cases} : w_{11}x_1 + w_{12}x_2 + b_1 < 0 \rightarrow w_{11} + b_1 < 0$$
 3

$$if \begin{cases} x_1 = 1 \\ x_2 = 1 \end{cases} : w_{11}x_1 + w_{12}x_2 + b_1 < 0 \rightarrow w_{11} + w_{12} + b_1 < 0 \quad \mathbf{4}$$

با توجه به شرایط ۱ تا ۴ هر مقداری که این شرایط را برآورده کند میتوان جای w_{12} و w_{11} و w_{12} این شرایط را برآورده میکند. $w_{12}=-2$ و $w_{12}=-2$

X ₁	X 2	h ₂
0	0	0
0	1	0
1	0	0
1	1	1

با توجه به جدول و تابع $w_{21}x_1 + w_{22}x_2 + b_2$ به از ای $w_{21}x_1 + w_{22}x_2 + b_2$ باید مقدار مثبت و به از ای بقیه حالات منفی باشد.

$$if \begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases} : w_{21}x_1 + w_{22}x_2 + b_2 < 0 \rightarrow b_2 < 0$$

$$if \begin{cases} x_1 = 0 \\ x_2 = 1 \end{cases} : w_{21}x_1 + w_{22}x_2 + b_2 < 0 \rightarrow w_{22} + b_2 < 0 \quad \mathbf{6}$$

$$if \begin{cases} x_1 = 1 \\ x_2 = 0 \end{cases} : w_{21}x_1 + w_{22}x_2 + b_2 < 0 \rightarrow w_{21} + b_2 < 0 \quad \mathbf{7}$$

$$if \begin{cases} x_1 = 1 \\ x_2 = 1 \end{cases} : w_{21}x_1 + w_{22}x_2 + b_2 > 0 \rightarrow w_{21} + w_{22} + b_2 > 0 \quad \mathbf{8}$$

برای ارضای شرایط ۵ تا ۸ میتوان از مقادیر مقابل استفاده کرد:

$$\begin{cases} b_2 = -3 \\ w_{21} = 2 \\ w_{22} = 2 \end{cases}$$

در لحظه t=1 در صورتی مقدار y یک میشود که یکی از مقدایر t_1 یا t=1 بثد.

$$y = {}^{t=1} g(v_1 v_2]. \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} + c_0 = g(v_1 h_1 + v_2 h_2 + c_0)$$

برای لحظات بعدی مقدار $y^{(t)}$ در صورتی یک میشود که مقدار $y^{(t-1)}$ یک باشد همچنین یکی از مقادیر $y^{(t)}$ یا باشد

به این معنی است که در تمامی لحظات قبل از t-1 مقدار x_2 و x_3 برابر است $y^{(t-1)}$

$$y^{(t)} = g(v_1 v_2) \cdot \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} + ry^{(t-1)} + c = g(v_1 h_1 + v_2 h_2 + ry^{(t-1)} + c)$$

h ₁	h ₂	y ^(t-1)	y ^(t)
0	0	0	0
1	0	0	0
0	1	0	0
1	1	0	با توجه به تعریف h1 و h2 اتفاق نمی افتد
0	0	1	0
1	0	1	1
0	1	1	1
1	1	1	با توجه به تعریف h1 و h2 اتفاق نمیافتد

$$\rightarrow v_1h_1 + v_2h_2 + ry^{(t-1)} + c < 0 \rightarrow c < 0$$
 1

$$\rightarrow v_1 h_1 + v_2 h_2 + r y^{(t-1)} + c < 0 \rightarrow v_1 + c < 0$$
 2

$$ightharpoonup v_1 h_1 + v_2 h_2 + r y^{(t-1)} + c < 0 \rightarrow v_2 + c < 0$$
 3

$$\rightarrow v_1h_1 + v_2h_2 + ry^{(t-1)} + c < 0 \rightarrow r + c < 0$$
 4

$$\rightarrow v_1 h_1 + v_2 h_2 + r y^{(t-1)} + c > 0 \rightarrow v_1 + r + c > 0$$
 5

→
$$v_1h_1 + v_2h_2 + ry^{(t-1)} + c > 0 \rightarrow v_2 + r + c > 0$$
 6

روابط ۱ تا ۶ به ازای مقادیر رو به رو برقرار میباشند:

$$\begin{cases} c = -3 \\ v_1 = 2 \\ v_2 = 2 \\ r = 2 \end{cases}$$

$$y^{(t=1)} = g(2h_1 + 2h_2 + c_0)$$

h ₁	h ₂	y ^(t=1)
0	0	0
0	1	1
1	0	1
1	1	اتفاق نمىافتد

$$2h_1 + 2h_2 + c_0 > 0 \to 2 + c_0 > 0$$

$$ightharpoonup 2h_1 + 2h_2 + c_0 > 0 o 2 + c_0 > 0$$
 $ightharpoonup 2h_1 + 2h_2 + c_0 > 0 o 2 + c_0 > 0$ $ightharpoonup 2h_1 + 2h_2 + c_0 > 0 o 2 + c_0 > 0$