

ATIVIDADE 2 - PROJETO DE DECODIFICADOR C-2 PARA DISPLAY DE 7-SEGMENTOS

CURSO: TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS DISCIPLINA: ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

PERÍODO LETIVO: 2022-02

PROFESSOR: FELIPE MARTIN SAMPAIO

OBJETIVO DA ATIVIDADE

 Desenvolver um circuito lógico (utilizando o simulador Logisim) para decodificação de números binários de entrada (4 bits), utilizando a representação de números com sinal em complemento de 2 (C-2), para que sejam apresentados de forma gráfica em displays de 7 segmentos (Figura 1).

ESPECIFICAÇÃO DO CIRCUITO LÓGICO

- Entradas: Número binário de 4 (quatro) bits: **A** (bit mais significativo), **B**, **C**, **D** (bit menos significativo).
- <u>Saídas:</u> Saídas para o acendimento dos segmentos dos displays:
 - Display para o número: a, b, c, d, e, f, g, h
 - o Display para o sinal: sin
- A lógica de comportamento das saídas, em função das entradas, será expressa de acordo com a representação de números com sinal em C-2, expressa na Figura 2.

PASSOS PARA O DESENVOLVIMENTO

Passo 1: Construir a tabela-verdade para a especificação do comportamento do circuito lógico, utilizando o modelo da Figura 2. Seguir a especificação das conexões da Figura 1b e a representação dos números em C-2 apresentada na Figura 1c.

<u>Passo 2:</u> Para cada uma das saídas, realizar o processo de síntese das expressões lógicas simplificadas a partir da técnica de Mapas de Karnaugh.

<u>Passo 3:</u> Projetar o circuito lógico "Decodificador Display 7-Segmentos" no simulador Logisim utilizando, como base, as expressões lógicas do Passo 2.

<u>Passo 4:</u> Realizar a simulação do funcionamento do circuito lógico utilizando um display de 7 segmentos disponível na biblioteca de componentes do simulador Lógico (Figura 1a).

ENTREGAS E PRAZOS

- O roteiro DEVE ser desenvolvido de forma INDIVIDUAL.
- O que deve ser entregue:
 - Tabela-verdade construída para a especificação do funcionamento do circuito
 - Demonstração do processo de síntese das expressões lógicas por meio dos Mapas de Karnaugh para cada uma das saídas
 - o Arquivo .circ com o projeto do circuito lógico
- Prazo de entrega: até o dia 27 de setembro de 2022.

Figura 1: Especificação do circuito para o projeto utilizando o simulador Logisim.

OBS: tabela-verdade e expressões lógicas obtidas a partir dos Mapas de Karnaugh estão na próxima página.

ALUNO: PEDRO HENRIQUE BROGLIATO

Α	В	С	D	а	b	С	d	е	f	g	sin	C-2
0	0	0	0	1	1	1	1	1	1	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	1
0	0	1	0	1	0	1	1	0	1	1	0	2
0	0	1	1	1	0	0	1	1	1	1	0	3
0	1	0	0	0	1	0	0	1	1	1	0	4
0	1	0	1	1	1	0	1	1	0	1	0	5
0	1	1	0	1	1	1	1	1	0	1	0	6
0	1	1	1	1	0	0	0	1	1	0	0	7
1	0	0	0	1	1	1	1	1	1	1	1	-8
1	0	0	1	1	0	0	0	1	1	0	1	-7
1	0	1	0	1	1	1	1	1	0	1	1	-6
1	0	1	1	1	1	0	1	1	0	1	1	-5
1	1	0	0	0	1	0	0	1	1	1	1	-4
1	1	0	1	1	0	0	1	1	1	1	1	-3
1	1	1	0	1	0	1	1	0	1	1	1	-2
1	1	1	1	0	0	0	0	1	1	0	1	-1

Figura 2: Tabela-verdade preenchida com o comportamento do circuito.

Síntese das expressões lógicas obtidas por meio dos Mapas de Karnaugh:

