

Universidade de Brasília - UnB Gama

Relatório de Física 1 Experimental

Experimento I – Medidas e erros

Gustavo Alves Marocolo de Freitas - 211061823 João Víctor Costa Andrade - 211061977 Raquel Temóteo Eucaria Pereira da Costa - 202045268

Brasíia-DF, 4 de Julho de 2022

Objetivos

Determinar a densidade do material de uma placa.

Introdução Teórica

Afim de cumprir o objetivo já mencionado, foi necessário fazer 5 medidas distintas de cada lado da peça para obter uma maior precisão. Sobre esse assunto, os valores devem ser informados o grau de confiabilidade da medida junto aos algarismos significativos que o instrumento fornece como $X=(X_m\pm\Delta X)$ u, que também significa dizer que há prováveis intervalos de valores para $X,(X_m-\Delta X\leq X\leq X_m+\Delta X)$. Onde X_m representa os algarismos significativos, a média aritmética, ΔX é o que chamamos de erro experimental, representado pela soma do erro aleatório e instrumental, e u que é a unidade de medida. Ao analisar essa parte o ΔX , pode-se dizer que o erro aleatório é calculado através do desvio padrão da média, já o instrumental depende exatamente do instrumento utilizado, no caso do micrometro será calculado pela precisão/2, já a balança é o valor da própria precisão, pois ela é analógica

Material Utilizado

- Peça metálica retangular com furo;
- Micrômetro;
 - Precisão de 0,01 mm.
 - Função: medir 5x a espessura da peça.
- Paquímetro;
 - Precisão de 0.5 mm.
 - Função: medir 5x a altura, largura, profundidade e diâmetro do furo.
- Balança digital;
 - Precisão de 0,01 g.
 - Medir a massa e consequentemente o volume.
- Proveta.
 - Precisão de 10 ml.
 - Função: Calcular o volume.

Figura 1: Peça metálica

Procedimentos e registros dos dados

Para determinar a densidade do material, precisamos conhecer a massa e o volume do objeto.

1 Uso da balança para medir a massa da peça

Massa (g)	
Erro instrumental = 0.1 g	
$M_1 = 139,0$	
$M_2 = 140,0$	
$M_3 = 140,0$	
$M_4 = 140,0$	
$M_5 = 140,0$	

Tabela 1: Massa da peça

Para determinar o volume, como já introduzido, é necessário fazer medidas da espessura de cada lado da peça (profundidade, altura e largura) usando um instrumento devidamente apropriado, neste caso, o paquímetro para maior precisão. Para verificar se há irregularidade na peça, é necessário o ajuste do paquímetro em diferentes regiões do mesmo lado afim de observar se houve variação, sendo assim obterá o valor médio e o erro aleatório.

2 Uso do paquímetro para obter as dimensões

Lado X (mm)	Lado Y (mm)
Erro instrumental: 0,02mm	Erro instrumental: 0,02mm
X1 = 44,55	Y1 = 35,90
X2 = 44,60	Y2 = 36,00
X3 = 44,90	Y3 = 35,75
X4 = 45,00	Y4 = 36,55
X5 = 44,25	Y5 = 36,45

Tabela 2: altura e comprimento

Espessura (mm)	Diâmetro (mm)
Erro instrumental: 0,02mm	Erro instrumental: 0,02mm
Z1 = 12,45	D1 = 13,95
Z2 = 12,50	D2 = 13,90
Z3 = 12,65	D3 = 13,80
Z4 = 13,35	D4 = 13,55
Z5 = 12,50	D5 = 13,85

Tabela 3: Espessura e diâmetro

Análise de dados

1 Determinando a massa

Como previsto na introdução, a estrutura correta de expressar a massa seria $M = (M_m \pm \Delta M)$ u, constituído assim da massa média (M_m) e a soma do erro aleatório com o instrumental (ΔM) . Os cálculos foram feitos com os valores a seguir.

Valor	Erro	Erro	Erro	Resultado
médio	instrumental	aleatório	experimental	experimental
(g)	(g)	(g)	(g)	(g)
139,6	0,05	0,24	0,29	$(139 \pm 0.29) \text{ g}$

Tabela 4: Medida da massa

Expressão usada para calcular erro aleatório:

$$S_n = \sqrt{\frac{\sum (X_i - \bar{x})^2}{n - 1}}$$

Onde X_i são os valores individuais, \bar{x} é a média dos valores e n número de valores

1.1 Erro relativo

$$(E\% = |\Delta X|/X_m . 100\%) \longrightarrow |0,29|/139, 6 = 0,002\%$$

2 Determinando o volume

Na tabela abaixo, percebe-se os cálculos do: Valor médio, erro instrumental, erro aleatório, erro experimental e resultado experimental, que deve ser escrito como $X=(X_m\pm\Delta X)$ u, sendo X_m o valor médio, ΔX o erro experimental e "u" a unidade de medida descrita.

O valor médio é a média das 5 medições visualizadas com os instrumentos, o erro experimental é a soma do erro aleatório com o erro instrumental e o erro aleatório é calculado a partir da soma do Desvio padrão da média dada.

	Valor	Erro	Erro	Erro	Erro
	médio	instrumental	aleatório	exp.	experimental
	(g)	(g)	(g)	(g)	(g)
Comprimento(mm)	33,13	0,02	0,13	0,15	$(33,13 \pm 0,15)$
Largura(mm)	44,66	0,02	0,16	0,18	$(44,66 \pm 0,18)$
Espessura(mm)	12,69	0,02	0,17	0,19	$(12,69 \pm 0,19)$
Diâmetro(mm)	13,81	0,02	0,07	0,09	$(13,81 \pm 0,09)$

Tabela 5: Resultado do parâmetro da dimensão

Expressão usada para calcular erro aleatório:

$$\bar{\sigma} = \sqrt{\frac{\sum_{i=1}^{n} (\delta X_i)^2}{n(n-1)}}$$

2.1 Resultado da medida do Volume

Obtemos o Volume da peça medida por: V= $(V_m \pm \Delta V)$ u, onde V_m é o Volume Médio e ΔV o erro experimental. Na tabela abaixo visualizamos o cálculo:

$$V = (V_m \pm \Delta V) \text{ u} \longrightarrow V = (18.575, 45530, 6) mm^3$$

Tabela 6: Volume

2.2 Erro relativo

Calculamos o erro relativo a partir da seguinte fórmula:

$$(\mathrm{E\%} = (|\Delta V|/\mathrm{V}_m) \ge 100\%)$$

O resultado obtido foi:

$$E\% = 0.0285\%$$

Tabela 7: Erro Relativo

3 Determinando da densidade

Devido ao fato de ser uma medida indireta, m é calculada como a razão da massa média e volume médio. Já o erro experimental $\Delta \rho$ é calculado de forma diferente, utilizando uma regra.

$$\rho_m = \mathcal{M}_m / V_m$$

$$\Delta \rho = \rho_m [\Delta M / M_m + \Delta V / V_m]$$

$$\rho = \rho_m + \Delta \rho \longrightarrow (7, 50, 23).10^{-3} g/mm^3 (0, 00750, 00023) g/mm^3$$

Tabela 8: Densidade

3.1 Erro relativo

(E% = (
$$|\Delta V|/V_m$$
) x 100%) \longrightarrow |0,00023|/0,0075 = 0,003
Erro relativo do volume + erro relativo da massa
0.002 + 0.002 = 0.004

Análise de resultados

N° do grupo	Densidade
1	$7,675 * 10-3 \pm 1,077 * 10-4) \text{ g/mm}^3$
2	
3	

Tabela 9: Resultado da medida da massa

4 Conclusão

A partir do experimento, concluímos que a massa do objeto metálico é (139.8 ± 0.29) g, tem um volume de $(18.575.34 \pm 530.6)$ mm³, e a densidade do material é $(7.5 * 10-3 \pm 2.3 * 10-4)$. Depreende-se, portanto, que os resultados foram obtidos com uma adequada margem de precisão, dado os instrumentos e objetos utilizados para as medições.