2019-2020 学年第二学期期末综合大作业

《高等数学 AII》(A 套题)

(2019 级电子信息工程学院、计算机学院、物流管理与工程学院物 流工程专业、建筑与城乡规划学院、阿里云大数据应用学院、航空工 程学院各专业)

	持分照	/ 十十 晒 井	_	.1、日云	后 小 晒	2	/\	++-	1.5	/\	\
_,	堪工越	(本大题共)	小觑,	母小逖	3	丌,	廾	15	T)

2. 设z = f(x + y, xy), 其中 f 具有连续的一阶偏导数,则dz =

3. 设
$$z = e^{xy}$$
,则 $\frac{\partial^2 z}{\partial x \partial y} =$ ______.

4. $\oint_{-xy}^{-xy}^{-2} dy - yx^{-2} dx = ______,$ 其中 L 是圆周 $x^{-2} + y^{-2} = 4$ (方向为逆时针方向).

5. 幂级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n^2}$$
 的收敛域为______.

二、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)

1. 曲面
$$z = x^2 + y^2$$
 在点(1.1.2) 处的法线方程为()

(A)
$$\frac{x-1}{2} = \frac{y-1}{2} = z-2$$
.

(B)
$$\frac{x-1}{2} = \frac{y-1}{2} = 2-z$$
.

(C)
$$\frac{x+1}{2} = \frac{y+1}{2} = z+2$$

(C)
$$\frac{x+1}{2} = \frac{y+1}{2} = z+2$$
. (D) $\frac{x+1}{-2} = \frac{y+1}{-2} = z+2$.

2. 函数 $f(x,y) = \ln \sqrt{x^2 + y^2}$ 在点(1,1) 处方向导数的最大值为(

(A)
$$\frac{1}{2}$$
. (B) $\sqrt{2}$. (C) 2. (D) $\frac{\sqrt{2}}{2}$.

3.设z = z(x, y) 是由方程 $e^z = x^2y + 2z$ 所确定的隐函数,则 $\frac{\partial z}{\partial r} = ($

(A)
$$\frac{2xy}{e^z-2}$$
. (B) $-\frac{2xy}{e^z-2}$. (C) $\frac{e^z-2}{2xy}$. (D) $-\frac{e^z-2}{2xy}$.

4.下列级数中,发散的级数是()

(A)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$$
. (B) $\sum_{n=1}^{\infty} \sin \frac{\pi}{n^2}$. (C) $\sum_{n=1}^{\infty} \cos \frac{1}{n^2}$. (D) $\sum_{n=1}^{\infty} \ln(1 + \frac{1}{n^2})$.

5. 设 $f(x) = x^3, x \in [-\pi, \pi)$,则 f(x) 的傅里叶系数 $a_n = ($

(A)
$$-\frac{4}{n^2\pi}$$
. (B) $\frac{4}{n^2\pi}$. (C) $\frac{2}{n^2\pi}[(-1)^n - 1]$. (D) 0.

三、计算题(10 分)设 $z = u^2 e^v$, 而 $u = x \sin y, v = xy$, 求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$.

四、计算题(10分)求函数 $f(x,y) = 2x^3 + 2y^3 - 3x^2 - 3y^2 - 12x + 1$ 的极值.

五、计算题(10 分)计算二重积分 $\iint_D xy \, d\sigma$, 其中 D 是由曲线 $y = x^2$ 与 $x = y^2$ 所围成的闭区域.

六、计算题(10分)将函数 $f(x) = \frac{1}{x^2 + 3x + 2}$ 展开成关于 x - 1 的幂级数.

七、计算题(10 分)计算 $I = \iint_{\Sigma} x \, \mathrm{d}y \, \mathrm{d}z + y \, \mathrm{d}z \, \mathrm{d}x + (z+1) \, \mathrm{d}x \, \mathrm{d}y$,其中 Σ 为上半球面

$$x^{2} + y^{2} + z^{2} = 1$$
 ($z \ge 0$) 的上侧.

八、综合题(10分)

已知曲线积分 $\int_L y \varphi(x) dx + \varphi(x) dy$ 在整个 x O y 面内与路径无关,其中 $\varphi(x)$ 在 $(-\infty,+\infty)$ 内可导,且 $\varphi(0)=1$,

- (1) 求函数 $\varphi(x)$;
- (2) 计算曲线积分 $\int_{(0,0)}^{(1,1)} y \varphi(x) dx + \varphi(x) dy$.

九、综合题(10分)

请根据本学期《高等数学 AII》所学课程内容,归纳、总结《高等数学 AII》课程的知识结构,梳理各类积分之间的关联。(注意:可以采用思维导图或直接用文字形式,要求简洁清晰,逻辑顺畅,结构完整,条理分明。)