练习4.3.1:

对于文法S→SS+|S|a,指出下列最右句型归约时使用的句标

一个句柄是指在最右句型 (right-sentential form) 中最左边的最简子结构,它对应于某个产生式的右部。从左到右,优先考虑最右边的含有非终结符的子串,如果没有非终结符则考虑最左边的终结符子串。

结果如下:

1.aa*a++a+

该句型的句柄为最左边的终结符a

2.SSa*+

该句型的句柄为a

3.SS*+

句柄为S*

练习4.3.2:

对于文法S → S S + | S * | a

1.增广该文法,构成SLR项目集和状态转化图。

增广文法:

```
S'-> S
S -> S S + | S* | a**
```

SLR项目集:

\${I_0}\$:

```
S' -> .S

S -> .SS+

S -> .S*

S -> .a**
```

\${I_1}\$:

S' -> S.	
S -> S.S+	
S -> S.*	
S -> .a**	

\${I_2}\$:

```
S -> a.**
```

\${I_3}\$:

```
S -> SS.+
```

\${I_4}\$:

```
S -> S*.
```

\${I_5}\$:

```
S -> a*.*
```

\${I_6}\$:

```
S -> a**.
```

\${I_7}\$:

```
S -> SS+.
```


状态转换图如下:

2.计算这些项目集的GTO函数,给出这个文法的语法分析表

GOTO函数如下:

```
GOTO(I0, S) = I1

GOTO(I0, a) = I2

GOTO(I1, S) = I3

GOTO(I1, *) = I4

GOTO(I1, a) = I2

GOTO(I3, +) = I7

GOTO(I2, *) = I5

GOTO(I5, *) = I6
```

对产生式进行编号:

```
    S'->S
    S → SS+
    S → S*
    S → a**
```

语法分析表

状态	ACTION	-	-	-	GOTO
	a	+	*	\$	S
0	s2				1
1	s2		s4	acc	3
2			s5		
3		s7			
4	r3	r3	r3	r3	
5				s6	
6	r4	r4	r4	r4	
7	r2	r2	r2	r2	

3.这个文法是不是SLR文法? 为什么?

构造语法分析表时无冲突,所以该文法是SLR文法。

练习4.3.3

对于文法S → S S + | S * | a

1.构造规范 LR 项目集和状态转化图

规范LR项目集:

\${I_0}\$:

```
S' -> .S , $
S -> .SS+ , $/a/*
S -> .S* , $/a/*
S -> .a** , $/a/*
```

\${I_0}\$时, X=S:

\${I_1}\$:

```
S' -> S. , $
S -> S.S+ , $/a/*
S -> .SS+ , +/a/*
S -> .S* , +/a/*
S -> .a** , +/a/*
S -> S.* , $/a/*
```

\${I_0}\$时, X=a:

\${I_2}\$:

S -> a.** , \$/a/*

\${I_1}\$时, X=S:

\${I_3}\$:

S -> SS.+ , \$/a/*
S -> S.S+ , +/a/*
S -> .SS+ , +/a/*
S -> .S* , +/a/*
S -> .a** , +/a/*
S -> S.* , +/a/*

\${I_1}\$时, X=a:

\${I_4}\$:

S -> a.** , +/a/*

\${I_2}\$时, X=*:

\${I_5}\$:

S -> a*.* , \$/a/*

\${I_5}\$时, X=*:

\${I_6}\$:

S -> a**. , \$/a/*

\${I_3}\$时, X=+:

\${I_7}\$:

S -> SS+. , \$/a/*

\${I_1}\$时, X=*:

\${I_8}\$:

```
S -> S*., $/a/*
```

\${I_3}\$时, X=*:

\${I_{10}}\$:

\${I_3}\$时, X=S:

\${I_9}\$:

\${I_{4}}\$时, X=*:

\${I_{11}}\$:

\${I_{11}}\$时, X=*:

\${I_{12}}\$:

\${I_{13}}\$:

1. 构建语法分析表

对产生式进行编号:

- 1. S'->S
- 2. S → SS+
- 3. $S \rightarrow S^*$
- 4. S \rightarrow a**

语法分析表

状态	ACTION	-	-	-	GOTO
	а	+	*	\$	S
0	s2				1
1	s4		s8	acc	3

状态	ACTION	-	-	-	GOTO
2			s5		
3	s4	s7	s10		9
4			s11		
5				s6	
6	r4		r4	r4	
7	r2		r2	r2	
8	r3		r3	r3	
9	s4	S13	s10		9
10	r3	r3	r3		
11			s12		
12	r4	r4	r4		
13	r3	r3	r3	•	

1. 构建 LALR 项目集族

\${I_0}\$:

```
S' -> .S , $
S -> .SS+ , $/a/*
S -> .S* , $/a/*
S -> .a** , $/a/*
```

\${I_1}\$:

\${I_{24}}\$:

\${I_{39}}\$:

```
S -> SS.+ , $/+/a/*
S -> S.S+ , +/a/*
S -> .SS+ , +/a/*
S -> .S* , +/a/*
S -> .a** , +/a/*
S -> S.* , +/a/*
```

\${I_{511}}\$:

\${I_{612}}\$:

\${I_{{713}}}:

\${I_{810}}\$: