# Strain-Gage Low Noise Signal Conditioning

Kevin Egedy May 30, 2020



## Instrumentation Amplifier Specs

| Parameter                                                      | Specification | Unit |
|----------------------------------------------------------------|---------------|------|
| Supply voltage (VDD)                                           | 5             | V    |
| Peak-to-peak input signal amplitude (max)                      | 20            | mV   |
| Nominal strain gage resistance (R)                             | 1             | kΩ   |
| Peak-to-peak output amplitude (max)                            | 2             | V    |
| Signal-to-noise ratio ( $V_{id,rms} = 10 \text{mV}/\sqrt{2}$ ) | ≥ 77          | dB   |
| Signal bandwidth                                               | 1 – 5k        | Hz   |
| CMRR                                                           | 90            | dB   |
| Power dissipation ( $I_{DD} \times V_{DD}$ )                   | Optimize      | mW   |
| Cost                                                           | Optimize      | \$   |





## Strain-Gage Thevenin Eq. + Instrumentation Amp.

### Strain-Gauge



| Req   | 500   | Ω |
|-------|-------|---|
| $R_G$ | 10K   | Ω |
| $R_F$ | 49.9K | Ω |
| $R_1$ | 100K  | Ω |
| $R_2$ | 100K  | Ω |

#### **Ideal Sources**

5.0 V Single-ended power supply 2.5 V Single-ended power supply

### **Precision Amplifiers**

ADA4528:  $e_n = 5.6$ nV,  $i_n = 0.7$ pA



## DC Operation: 192 Resistor Series (0.1% tolerance)



| V(vp-)    | 2.5           | ٧ |
|-----------|---------------|---|
| V(vm-)    | 2.5           | ٧ |
| V(vop)    | 2.5           | ٧ |
| V(vom)    | 2.5           | ٧ |
| V(in-)    | 2.49999       | ٧ |
| V(in+)    | 2.49999       | ٧ |
| V(vout)   | 2.49998       | ٧ |
| $I(Rf_0)$ | -8.51778e-011 | Α |
| $I(Rf_1)$ | -8.51778e-011 | Α |
| I(Rg)     | 1.06581e-017  | Α |
| $I(R1_0)$ | -1.87986e-011 | Α |
| $I(R1_1)$ | 2.34496e-011  | Α |
| $I(R2_0)$ | -1.03976e-010 | Α |
| $I(R2_1)$ | 6.17282e-011  | Α |

## Front-End Frequency Response





### **Target**

$$\frac{2V_{p-p}}{20mV_{p-p}} = 100\frac{V}{V} = 40 {
m dB}$$
 of gain.

#### Actual

$$\frac{V_{out_1}}{V_{in}} \frac{V_{out_2}}{V_{out_1}} = (1 + 2\frac{R_F}{R_G}) \cdot (\frac{R_2}{R_1})$$

$$= (100.8) \cdot (1)$$

$$= 40.07 \text{ dB}$$

#### **CMMR**

CMMR<sub>1</sub> = 
$$1 + \frac{R_{fp} + R_{fm}}{R_G} = 40.07 \text{ dB}$$
  
CMMR<sub>2</sub> =  $\frac{A_{vd2} + 1}{4\epsilon} = \frac{2}{4(0.001)} = 53.98 \text{ dB}$   
CMMR<sub>1</sub> + CMMR<sub>2</sub> = 94.05 dB

## Input-Referred Noise Target



ADA4528:  $e_n = 5.6$ nV,  $i_n = 0.7$ pA

SNR = 
$$20 \log \frac{v_{s(rms)}}{v_{n(rms)}} \rightarrow 20 \log \frac{7.07 \text{mV}}{v_{n(rms)}} \ge 77 \text{dB}$$
  
 $v_{n,in(rms)} \le 1 \mu V$ 

$$v_{n,in({\rm rms})} = \sqrt{v_{n,in}^2 \cdot 5 {\rm KHz}} \le 1 \mu V$$
 
$$v_{n,in} \le \frac{1 \mu V}{\sqrt{5 {\rm KHz}}} \approx 1.41 \cdot 10^{-8} \frac{V}{\sqrt{{\rm Hz}}}$$

Integrated noise from 1Hz to 5kHz is 641.97 nV.



### **Noise Sources**

#### Strain-Gage Noise: 1.67 \* 10<sup>-17</sup> V<sup>2</sup>/Hz

$$R_{eq} = \frac{R}{2} = 500\Omega$$

$$e_{n_R}^2 = 4kTR_{eq}\Big|_{T=25C}$$

$$e_{n,\text{gage}}^2 = (i_{n_R}R_{eq})^2 + e_{n_R}^2 + (i_{n_P}R_{eq})^2 + e_{n_R}^2$$

$$e_{n,\text{gage}}^2 = 2(i_nR_{eq})^2 + 2e_{n_R}^2 \frac{V^2}{Hz}$$

#### Difference Amp Inverting: 8.32 \* 10<sup>-15</sup> V<sup>2</sup>/Hz

$$e_{n,out}^2 = (\frac{R_2}{R_1})^2 4kTR_1 + 4kTR_2 + (1 + \frac{R_2}{R_1})^2 e_n^2 + (i_n R_2)^2$$
  
$$e_{n,out}^2 = 4kTR_1 + 4kTR_2 + 4e_n^2 + (i_n R_2)^2$$

### ADA4528: $e_n = 5.6$ nV, $i_n = 0.7$ pA

#### Gain Stage: 3.69 \* 10<sup>-15</sup> V<sup>2</sup>/Hz

$$e_{n,out}^2 = 2[(\frac{R_f}{R_G})^2 4kTR_G + 4kTR_f]$$
  
 $e_{n,out}^2 = 2[(49.9)^2 4kTR_G + 4kTR_f]$ 

#### Difference Amp Non-Inverting: 8.23 \* 10<sup>-15</sup> V<sup>2</sup>/Hz

$$e_{n,out}^2 = (1 + \frac{R_2}{R_1})^2 4kTR_2 + (1 + \frac{R_2}{R_1})^2 (\frac{R_2}{R_1 + R_2})^2 4kTR_1$$

$$e_{n,out}^2 = (4)4kTR_2 + 4kTR_1$$