Zusammenfassung - Robotik

Julian Shen

25. Mai 2023

1 Mathematische Grundlagen

Kinematik ist die reine geometrische Beschreibung von Bewegung eines Manipulators oder Roboters. Das essentielle Konzept ist die **Position**.

Statik behandelt Kräfte und Momente, die sich auf einen ruhenden Mechanismus auswirken. Das essentielle Konzept ist die **Steifigkeit**.

Dynamik analysiert die Kräfte und Momente, die durch Bewegung und Beschleunigung eines Mechanismus und einer zusätzlichen Last entstehen.

Terminologie:

Kinematische Kette ist eine Menge an Gliedern, die durch Gelenke verbunden sind.

Freiheitsgrade (DoF) ist die Anzahl unabhängiger Parameter, die zur kompletten Spezifikation der Lage eines Objekts benötigt werden, z.B. Starrkörper hat in 2D 3 DoF und in 3D 6 DoF.

Starrkörperbewegungen werden durch zwei Eigenschaften charakterisiert:

- 1. Distanz zweier beliebiger Punkte ist konstant
- 2. Orientierungen im Körper bleiben erhalten

SO(3) und SE(3):

- SO(3): Spezielle Orthogonale Gruppe, die Rotationen repräsentiert
- SE(3): Spezielle Euklidische Gruppe, die Transformationen repräsentiert
- Elemente aus SO(3) werden als reale 3×3 orthogonale Matrizen R (Zeilen- und Spaltenvektoren orthonormal) beschrieben und erfüllen

$$R^{\top}R = 1$$
 mit $\det(R) = 1$

• Elemente aus SE(3) sind von der Form (\mathbf{p}, R) mit $\mathbf{p} \in \mathbb{R}^3$ und $R \in SO(3)$ und beschreiben Verknüpfungen von Rotationen und Translationen

Euklidischer Raum: Vektorraum \mathbb{R}^3 mit dem Skalarprodukt.

- Punkt ${\bf a}$ im euklidischen Raum wird durch Vielfache der Einheitsvektoren ${\bf e_x}, {\bf e_y}, {\bf e_z}$ beschrieben
- Wir benutzen rechtsdrehende Koordinatensysteme

Lineare Abbildungen (Transformationen), die den euklidischen Raum auf sich selbst abbilden, nennt man Endomorphismen:

$$\phi(\cdot) \colon \mathbb{R}^3 \to \mathbb{R}^3$$

• Endomorphismen können durch quadratische Matrizen repräsentiert werden:

$$\phi(\mathbf{a}) = A \cdot \mathbf{a}, \qquad A \in \mathbb{R}^{3 \times 3}$$

• A beschreibt einen Basiswechsel zwischen den originalen Basisvektoren $\mathbf{e_x}, \mathbf{e_y}, \mathbf{e_z}$ und den neuen Basisvektoren $\mathbf{e_x'}, \mathbf{e_y'}, \mathbf{e_z'}$:

$$A = (\mathbf{e}'_{\mathbf{x}} \quad \mathbf{e}'_{\mathbf{y}} \quad \mathbf{e}'_{\mathbf{z}}) \cdot (\mathbf{e}_{\mathbf{x}} \quad \mathbf{e}_{\mathbf{y}} \quad \mathbf{e}_{\mathbf{z}})^{-1}$$

Bijektive Endomorphismen nennt man Isomorphismen.

- Eigenschaften:
 - 1. Winkel bleiben erhalten
 - 2. Längen bleiben erhalten
 - 3. Händigkeit beleibt erhalten
- Eine spezielle Art von Isomorphismen ist die Rotationsgruppe SO(3)

Rotationsgruppe SO(3):

- SO(3) ist nicht kommutativ: $A \cdot B \cdot \mathbf{x} \neq B \cdot A \cdot \mathbf{x}$ mit $\mathbf{x} \in \mathbb{R}^3$ und $A, B \in SO(3)$
- Für alle $R \in SO(3)$ ist $R^{-1} = R^{\top}$, die Inverse kann also leicht berechnet werden

Rotationen in 2D:

- Rotation in der xy-Ebene um (0,0) ist eine **lineare Transformation**
- Rotationsmatrix: $R_{\alpha}(\mathbf{x}) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \mathbf{x} \text{ mit } RR^{\top} = R^{\top}R = I \text{ und } \det(R) = 1$
- Rotation um einen Punkt $\mathbf{c} \neq (0,0)$ ist keine lineare Transformation. Verschiebe dafür die Ebene um $-\mathbf{c}$, rotiere und verschiebe wieder um $+\mathbf{c}$ zurück:

$$R_{\mathbf{c},\alpha} = R_{\alpha}(\mathbf{x} - \mathbf{c}) + \mathbf{c} = R_{\alpha}(\mathbf{x}) + (-R_{\alpha}(\mathbf{c}) + \mathbf{c})$$

• $R_{\mathbf{c},\alpha}$ ist eine nichtlineare Transformation und heißt **affine Transformation**. Sie unterscheidet sich von R_{α} nur durch das Addieren einer Konstante

Rotationen in 3D:

• Eine 2D Rotation in der xy-Ebene ist eine 3D Rotation um die z-Achse:

$$R_{\mathbf{z},\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix}$$

• Rotationen können verkettet werden: $\phi_{\mathbf{z},\gamma}\left(\phi_{\mathbf{y},\beta}\left(\phi_{\mathbf{x},\alpha}(\mathbf{a})\right)\right), \quad \mathbf{a} \in \mathbb{R}^3$

Probleme mit Rotationsmatrizen:

- Redundanz: Neun Werte für eine Rotationsmatrix
- Probleme im Bereich des maschinellen Lernens

Eulerwinkel:

- Es ist möglich jede Rotation durch drei Rotationen um jeweils eine Rotationsachse darzustellen
- Euler-Konvention: z x' z" (lokale Drehung, Drehung verändert Achsen) oder x y z (globale Drehung, Drehung um feste Achsen)
- Winkel α, β, γ sind **Eulerwinkel** und beschreiben den Grad der Drehungen

- Vorteile: Kompakter und aussagekräftiger als Rotationsmatrizen
- Nachteil:
 - Nicht eindeutig: In der Euler-Konvention $\mathbf{x} \mathbf{y}' \mathbf{z}''$ beschreiben die Eulerwinkel $(45^{\circ}, -90^{\circ}, 45^{\circ})$ und und $(30^{\circ}, -90^{\circ}, 60^{\circ})$ die gleiche Rotation
 - Nicht kontinuierlich: Kleine Änderung in der Orientierung können zu großen Änderungen der Eulerwinkel führen
 - Gimbal Lock: Bei bestimmten Winkeln werden zwei Achsen voneinander abhängig ⇒ Ein Freiheitsgrad geht verloren