Chapitre 1:

Systèmes de coordonnées

Plan

- I. Coordonnées cartésiennes
 - 1. Elément de longueur
 - 2. Elément de surface
 - 3. Elément de volume
- II. Coordonnées polaires
 - 1. Elément de longueur
 - 2. Elément de surface
- III. Coordonnées cylindriques
 - 1. Elément de longueur
 - 2. Elément de surface
 - 3. Elément de volume
- IV. Coordonnées sphériques
 - 1. Elément de longueur
 - 2. Elément de surface
 - 3. Elément de volume

A. Zellagui

 $W(F) = \overrightarrow{F} \cdot \overrightarrow{AB} = F \cdot \overrightarrow{AB} \cdot \overrightarrow{Col} \times \overrightarrow{Cdp} = \overrightarrow{F} \cdot \overrightarrow{Cdp} = \overrightarrow{Cdp}$

flux mognétique. $d\overline{D} = \overline{B} \cdot dS$ $\overline{D} = BS$ $\overline{D} \cdot \overline{D} = SB \cdot \overline{D} \cdot \overline{D} = SB \cdot \overline{D} \cdot \overline$

I. Coordonnées cartésiennes

- Variables: x, y, z
- Base: $(\vec{e}_x, \vec{e}_y, \vec{e}_z)$
- Notation d'un vecteur : $\vec{U} \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix}$
- Notation d'une fonction: f(x,y,z)

(Vecteur portion en cinematryme) (en coordonnées contesiente: box (en, ey, ez)

I.1 Elément de longueur dl

d1 = « longueur infinitésimale ».

A trois dimensions, $\overrightarrow{dl} \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix}$

2. Elément de surface dS

dS = surface infinitésimale

Dans le plan (xoy): ds=dx.dy

Dans le plan (yoz): dS2 = cly. d2

Dans le plan (xoz): $c(S_3 = c(x \cdot c)z$

cCZ=Shose x hauten

3. Elément de volume

dZ=Sbase x houseur dr.dy cl3 CLZ=claclyd3] en m3

II. Coordonnées polaires

- Variables: r, θ

- Base : $\overline{e_r}$, $\overline{e_\theta}$ ($\overline{e_r}$: vecteur radial, $\overline{e_\theta}$: vecteur tangentiel)

- Notation d'un vecteur : $\vec{U}\begin{pmatrix} u_r \\ u_\theta \end{pmatrix}(U_r)$: composante radiale et U_θ : composante tangentielle)

- Notation d'une fonction : $f(r,\theta)$.

II.2 Elément de surface dS

III. Coordonnées cylindriques

R=HM (H projection de M sur 03)=OM'(R>O)

- Variables: (r, θ, z) - Base: $(\overline{e_r}, \overline{e_\theta}, \overline{e_z})$ - Notation d'un vecteur: $\overrightarrow{U}\begin{pmatrix} U_r \\ U_\theta \\ U_z \end{pmatrix}$ $\begin{pmatrix} U_r = composante radiale \\ U_\theta = composante tangentielle \\ U_z = composante parallèle à <math>\overline{O_z}$

- Notation d'une fonction : $f(r, \theta, z)$

3 = OH (- 10 2 3 < too) (En, Eo, E3) bose mobile E) gorde la num direction des = 0 mais dei + 0 et cléo + 0

 $\underline{\mathrm{Base}}:(\overline{\varepsilon_r}\,,\,\overline{\varepsilon_\theta}\,,\,\overline{\varepsilon_z})$ est représentée en tout point M tel que :

relations entre les verteurs de la base.

= 3er + Ren

III.1 Elément de longueur dl

III.2 Elément de surface dS

III.3 Elément de volume dτ

6

IV. Coordonnées sphériques

- Variables : (r, θ, φ) avec θ « theta » le premier angle et φ « phi » le second angle
- Notation d'un Vecteur : $\vec{U} \begin{pmatrix} v_r \\ v_\theta \\ v_\phi \end{pmatrix}$
- Notation d'une fonction : $f(r, \theta, \varphi)$

G= (03,0M) (en portant de l'axe 03 vans 0M)

T= (0n,0M)

tel que M'= popletion

de Mour (seoy)

criente dans le gens thigs

S= n cos 0 = 0H

n = n sin 0. cos 9

y= r sin q sin 0

y= n sin 0. sin 9

 $\underline{Base}: (\overrightarrow{e_r}\,,\, \overline{e_\theta}\,,\, \overline{e_\varphi})$

- $\overline{\varepsilon_r}$: colinéaire à OM (dirigé de M vers l'extérieur)

- $\overrightarrow{e_{\theta}}$: perpendiculaire à $\overrightarrow{e_r}$ et appartient au plan (OM , \mathcal{O}_z)

- $\overline{e_{\varphi}}$: décrit la rotation de φ et forme un trièdre direct avec $(\overline{e_r}, \overline{e_{\theta}}), \overline{e_{\varphi}}$ perpendiculaire à $(\overline{e_r}, \overline{e_{\theta}})$.

IV.1 Elément de longueur

- Dans le plan (OM , O_z)
- Dans le plan (xoy),
- (OM, 03) des = dn des=(nsino)d4

IV.2 Elément de surface dS

(cor you la splin n) = (Rclo) x (nsin 6 d(9))

Al varie pres!!)

de volume els = allx dlz

IV.3 Elément de volume

cl Zash = cl Sapl adr = r2 ch sino do 14

