实验四

1. 直流无刷电机的启动与停止、方向控制等操作设置实验

S2	S3	S1	电机状态			
禁止	X	X	不转			
X	刹车	X	不转			
使能	运行	正转	正转, 799.8			
使能	运行	反转	反转, 783.8			

表 1 电机状态表

2. 直流无刷电机外接模拟信号源实现的模拟调速实验

S2	S3	S1	0.5 V	1 V	2 V	3 V	4 V	5 V
使能	运行	正转	198.8	801.5	1948	2940	3697	3797
使能	运行	反转	196.7	786.2	1907	2897	3718	3885

表 2 直流刷电机外接模拟信号源实现的模拟调速实验

3. 直流无刷电机 PWM 控制调速实验

S2	S3	S1	20%	30%	40%	50%	60%	70%	80%
使能	运行	正转	983.6	1427	1853	2258	2649	3822	3360
使能	运行	反转	964.8	1396	1812	2211	2597	2967	3321

4. 直流无刷电机开环与闭环控制参数测试实验

S2	S3	S1	SW7	0Nm	0.05N·m	0.1N·m	0.15N·m	0.2N·m
使能	运行	正转	OFF	498.3	501.3	503.1	505.6	506.1
使能	运行	反转	OFF	506.5	507.6	507.2	507.6	508.8
使能	运行	正转	ON	528.1	520.3	509.7	498.4	486.8
使能	运行	反转	ON	507.5	512.6	504.3	495.2	482.5

思考题

1. 引起直流无刷电机电磁转矩波动的原因是什么?

当直流无刷电机定子铁心有齿槽时,由于定子齿糟的存在,气隙不均匀,使气隙磁导不是常数,转子位置引起转矩波动.

2. 方向信号是如何影响直流无刷电机换相逻辑的?

方向信号决定了电机转动的方向,进而影响换相逻辑.直流无刷电机通过霍尔传感器检测转子位置,并根据转子位置和方向信号来决定何时切换定子绕组的通电方向.当方向信号改变时,换相逻辑会相应调整,使得定子绕组的电流反向,从而改变电机转动的方向.

- 3. 尝试修改仿真模型,获得某一转速下 360°电角度周期内,转子位置信号、感应电动势、定子绕组电流以及换相信号的波形,并分析直流无刷电动机如何获得电动电磁转矩和制动电磁转矩.
- 4. 直流无刷电机有几种换向方式? 在本次实验中采用了哪种?

直流无刷电机用电子换向装置代替机械换向装置,有以下几种换向方式:

- 1. 改接位置传感器的输出电压信号
- 2. 改变电枢电流方向

在本次实验中采用的是控制方向控制端口 F/R 的信号, 即改变位置传感器的输出电压信号.

- 5. 结合实验对比分析闭环和开环的优缺点.
- · 开环控制:
 - **▶ 优点**: 系统结构简单, 控制策略易于实现.
 - ► **缺点**: 缺乏反馈机制,不能自动调节,容易受到外部扰动影响.
- · 闭环控制:
 - ► **优点**:具有反馈机制,可以自动调节,控制精度高,抗扰动能力强.
 - ► **缺点**: 系统结构复杂, 控制策略实现难度较大, 需要更多的传感器和控制器件.