Kernenergetik

- Kernenergienutzung
- KernspaltungKettenreaktion im Kernreaktor
- Kernkraftwerke

Welche Bedeutung hat die Kernenergie?

- in Deutschland
- in Europa
- weltweit

Anteile der Energieträger an der Bruttostromerzeugung im Jahr 2012 in Deutschland

Kernenergie für die Grundlastsicherung 2012: 36 %

(Rest: Braunkohle 57 %, Laufwasser 7 %)

Lastverteilung

Elektroenergieerzeugung (absolut *) in Deutschland (in Mrd. kWh)

Kernkraftwerke in Europa

→ 187 Reaktoren in Kernkraftwerken in Betrieb

(Stand: 31.12.2011)

Land	Prozentsatz Kernenergie	Zahl der KKW-Blöcke	
Frankreich Slowakei Belgien Ukraine Ungarn Slovenien Schweiz Schweden Bulgarien Tschech. Rep. Finnland Spanien Rumänien Russland			
Großbritannien Deutschland Niederlande	18 18 4	18 9 1	

Kernkraftwerke weltweit

2012: - **68** KKW in **Errichtung** (+5 zu 2011)

- 2 KKW in Betrieb gegangen (je 1x China und Südkorea)
- 4 stillgelegt (2x GB, 1x CAN, 1x E)
- 100 KKW weltweit in fortgeschrittener Planung

Land	Anzahl	Bruttoleistung [MWel]
Argentinien	2	1.005
Armenien	2 1 7 2 2 17	408
Belgien	7	6.208
Brasilien	2	2.007
Bulgarien	.2	2.000
China		13.704
Deutschland	9	12.696
Finnland	4	2.820
Frankreich	58 46	65.880
Großbritannien	16	10.907
Indien Iran	20 1	4.780 1.000
Japan	51	46.628
Kanada	19	14.360
Korea (Süd)	23	21.654
Mexiko	2	1.610
Niederlande	2 1 3 2	515
Pakistan	3	787
Rumänien		1.412
Russland	33	25.242
Schweden	10	9.805
Schweiz	5	3.430
Slowakische Republik	4	1.950
Slowenien	4 1 7 2 6	727
Spanien	/	7.400
Südafrika Taiwan	2	1.888
Tschechische Republik		5.213 4.024
Ukraine	15	13.818
Ungarn	4	2.000
USA	104	106.915
Summe (31 Länder)	437	392.793

Vorzüge der Kernenergie:

- hohe Energiedichte des Urans (geringe Brennstoff- und Abfallvolumina)
- Energie"produktion" ohne CO₂ - Freisetzung
- Rohstoff Uran nur zur Kernenergieerzeugung sinnvoll einsetzbar (Schonung anderer Resourcen)
- Rohstoff Uran ist langzeitig verfügbar

Energie- und Spaltstoffumsatz

$$\frac{1g \text{ U}-235}{A} = \frac{N_L}{A} \text{ Atome} = \frac{6.02 \cdot 10^{23}}{235} \text{ Atome}$$

$$= \frac{6.02 \cdot 10^{23}}{235} \text{ Atome} \cdot 210 \frac{\text{MeV}}{\text{Atom}} \cdot 1.602 \cdot 10^{-19} \frac{\text{MWs}}{\text{MeV}} \cdot \frac{d}{86400 \text{ s}}$$

$$= 0.997 \text{ MWd}$$

1 g U-235 ≈ 1 MWd

Abbrand im Jahr bei Reaktor 1000 MW_{el} (3000 MW_{th}) :

 $3000 \, \text{MW} \cdot 330 \, \text{d} = 990000 \, \text{MWd}$

≈ 1 t U-235-Verbrauch/Jahr

≈ 1 t Spaltprodukte

≈ Würfel mit Kantenlänge 37 cm

Aber:

im frischen BE nur zu 3.5 % U-235 enthalten (Rest ist U-238)

- → Gesamtabfall 30 x mehr
- → 30 t Abfall in abgebrannten BE
- → ca. 50 BE/Jahr

Nuklidanteile im Brennelement					
Natururan	99.3 % 0.7 %	U-238 U-235			
frisches Brennelement	96.5 % 3.5 %	U-238 U-235			
abgebranntes Brennelement	95.0 % 0.8 % 0.9 % 3.2 % 0.1 %	U-238 U-235 Pu Spaltprodukte übrige Aktiniden			

Energie- und Spaltstoffumsatz

$$\frac{1g \text{ U}-235}{A} = \frac{N_L}{A} \text{ Atome} = \frac{6.02 \cdot 10^{23}}{235} \text{ Atome}$$

$$= \frac{6.02 \cdot 10^{23}}{235} \text{ Atome} \cdot 210 \frac{\text{MeV}}{\text{Atom}} \cdot 1.602 \cdot 10^{-19} \frac{\text{MWs}}{\text{MeV}} \cdot \frac{d}{86400 \text{ s}}$$

$$= 0.997 \text{ MWd}$$

1 g U-235 ≈ 1 MWd

Zum Vergleich: Wieviel Braunkohlebriketts müsste man zur Erzeugung der gleichen Energiemenge verbrennen?

Heizwert BB: 4700 kcal / kg

Umrechnung: $1 \text{ Ws} = 2,388 \cdot 10^{-4} \text{ kcal}$

A in (F) $\frac{1 \text{ MWd}}{\text{(F)}} = 10^6 \cdot 24 \cdot 3600 \text{ Ws}$ = $10^6 \cdot 24 \cdot 3600 \cdot 2,388 \cdot 10^{-4} \text{ kcal}$ = $10^6 \cdot 24 \cdot 3600 \cdot 2,388 \cdot 10^{-4} \cdot (1/4700) \text{ kg BB}$ = 4390 kg BB = 4,39 t BB

→ ca. 50 BE/Jahr

3.2 % Spaltprodukte 0.1 % übrige Aktiniden

Betriebsabläufe in deutschen Kernkraftwerken 1998

Elektrische Leistung in Prozent

Philippsburg 2

Quelle:

Kernenergie in Deutschland Jahresbericht 1998 Deutsches Atomforum e.V.

Verfügbarkeit von Kraftwerken

entspricht bei 8760 Std./a einer durchschnittlichen Verfügbarkeit von:				
87 %				
78 %				
69 %				
43 %				
40 %				
37 %				
19 %				
13 %	Resultat: mit dem Ausstieg aus der Kernenergie werden die			
11 %	Kraftwerke mit der höchsten Verfügbarkeit und Versorgungs-			
11 %	sicherheit abgeschaltet			

Treibhausgas-Emissionen

Energieträger mit Lebenszyklus-Analyse

Quelle: atw **52**(2007)298

Weltweite Verteilung der Uranressourcen 2009

Förderwürdigkeit bis 130 US-\$ pro kg Natururan (97 % der Reserven in gezeigten 14 Staaten, restl. 3 % verteilen sich auf 19 weitere Staaten)

Reichweiten verschiedener Energieträger

Kernspaltung

2 bis 3 Spaltneutronen

Spaltstoff:

U-235

Pu-239 (aus U-238)

U-233 (aus Th-232)

U-236

2 Spaltbruchstücke

Spaltproduktverteilung

Aktivität nach 1 Jahr auf 1% abgesunken

Energiefreisetzung bei der Kernspaltung

Spaltprodukte	175 MeV
prompte Neutronen	5 MeV
prompte Gammastrahlung	7 MeV
ß-Strahlung aus Spaltprodukten	7 MeV
γ-Strahlung aus Spaltprodukten	6 MeV
Neutrino	10 MeV

gesamt

210 MeV

Vergleich: Verbrennen fossiler Energieträger (Kohle, Öl, Gas, Holz)

= Oxidation → ca. 30 eV pro Reaktion

Unterschied: **7 Zehnerpotenzen!**

Eigenschaften der Spaltneutronen:

- → E ≈ 2 MeV (schnell)
- → 99,36 % prompte Neutronen (10⁻⁹ s)
- → 0,64 % verzögerte Neutronen (≈ 1 min)

Moderatoreigenschaften

- gute Bremsung von Neutronen
- geringe Absorption von Neutronen

Moderator		mittlere Stoßzahl für eine Abbremsung von 1.75 MeV auf 0.025 eV	Neigung zum Einfang thermischer Neutronen in relativen Einheiten	
Wasserstoff	1 H	18	650	
Deuterium	2 1 H	25	1	
Beryllium	9 3 Be	86	7	
Kohlenstoff	¹² C	114	10	
Uran	²³⁸ U	2172	5600	

	H ₂ O	D ₂ O	Be	Graphit
Bremsver- mögen . ••s	1.53	0.170	0.178	0.061
Brems- verhältnis • • • • • • • • • • • • • • • • • • •	70	5200	162	235

Verzögerte Neutronen

i	1	2	3	4	5	6	
T ₂ /s	0,2	0,6	2,3	6,2	23	56	
$a_i = \beta_i / \beta$	0,042	0,115	0,395	0,196	0,219	0,033	$\Rightarrow \Sigma =$
Mutterkern	?	?	?	Br-89	J-137	Br-87	
n pro 10 ³ Spaltungen (U-235)	0,7	1,8	6,2	3,1	3,5	0,5	$\Rightarrow \Sigma =$

$$\Rightarrow \Sigma = 15.8$$

 \rightarrow 15.8/1000/2.47 = 0.64%

Prinzipaufbau eines Kernreaktors

- Kernbrennstoff
- Moderator (H₂O, D₂O, Graphit,PE)
- Reaktorgefäß
- **Reflektor** (H₂O, D₂O, Be, Graphit)
- Strahlenabschirmung (Schwerbeton)
- Regelstäbe (Cd, B, Hf, Sm)
- Neutronendetektoren
- Neutronenquelle (nur bei Forschungsreaktoren kleiner Leistung)

Aufbau des AKR

KKW mit Druckwasserreaktor

KKW mit Siedewasserreaktor

Sicherheitseinschluss im Containment

Reaktorgebäude des KKW ISAR 2

- 1 Stahlbetonhülle
- 2 Sicherheitsbehälter
- 3 Reaktorrundlaufkran
- 4 Reaktordruckbehälter
- 5 Steuerstabantriebe
- 6 Brennelementebecken
- 7 Lademaschine
- 8 Innenschild (biologisch)
- 9 Tragschild (biologisch)
- 10 Dampferzeuger
- 11 Hauptkühlmittelpumpe
- 12 Frischdampfleitung
- 13 Speisewasserleitung
- 14 Druckspeicher
- 15 Personenschleuse
- 16 Materialschleuse
- 17 Flutbecken
- 18 Nachwärmekühler
- 19 Sicherheitseinspeisepumpe

Kernkraftwerk Biblis

Reaktordruckbehälter

Oberteil

vor dem Einbau

Brennelement eines Druckwasserreaktors

- rechteckiges Stabbündel (16 x 16)
- Grundfläche 23 x 23 cm
- Masse ca. 750 kg
- knapp 5 m Höhe
- 236 Brennstäbe
- zusätzlich 20 Steuerstäbe (Cd)
- im Reaktor (z.B. Biblis A)
 befinden sich 193 dieser BE,
 d.h. 193 x 236 ~ 45500 Brennstäbe
- das sind 99,2 t Urangewicht

Quelle: Robert Gerwin, So ist das mit der Kernenergie, Econ-Verlag Düsseldorf/Wien, 1978

Umladung von Brenn-elementen

CASTOR-Behälter mit abgebrannten Brennelementen

Faszination des Cerenkov-Effektes

Vielen Dank für Ihre Aufmerksamkeit

