

Saúl Alonso-Monsalve

ETHZ FASER meeting

7 August 2024

Dataset

- André's simulation:
 - FASERCAL, code at: https://github.com/rubbiaa/FASER.
 - ~60K events (~100 GB).
- Wrote a Python script to retrieve the events and convert them into NumPy arrays:
 - Code and instructions: https://github.com/rubbiaa/FASER/tree/main/Python io.
- Goal: use ML for the reconstruction (electromagnetic vs hadronic for now).
 - Implemented a simple net to test the feasibility of the method.
 - Keeping (per hit): track id, parent id, primary id, pdg, position (x, y, z), energy dep.
 - Plan to continue in this direction (together with Wissal).

Run: 200026 Event: 0 nu_mu CC Etrue:259.17 GeV

See André's talk on July 17.

Issues and considerations (I)

- Challenging ML problem:
 - Sparse 3D images: typical in neutrino physics.
 - If seen as "dense" images, most voxels are empty.

- Massive number of hits.
 - Number of hits per event up to 2.5M!

- Solution: Sparse Submanifold Convolutions.
 - Efficient for sparse images (both memory and time).
 - Ignore empty voxels!
 - MinkowskiEngine implementation from NVIDIA.

Dense convolution

Sparse convolution

Sparse convolution

Issues and considerations (II)

- Architecture: Sparse U-Net.
 - U-Nets are the state-of-the-art for semantic segmentation tasks.
 - Initially proposed for biomedical image segmentation
 (arxiv.org/pdf/1505.04597).

Model parameters:

- 5 encoder layers.
- 5 decoder layers.
- 36M parameters.
- 60% of the events used for training.
 - 10% for validation.
 - 30% for test (results in next slides).

Issues and considerations (III)

- For each hit (voxel), the net tries to predict one of the following labels:
 - **0: muonic** (PDGs: 13, -13, 14, -14).
 - 1: electromagnetic (PDGs: 11, -11, 22).
 - 2: hadronic (any other PDG).
- Before running the network, events must be voxelised.
 - For simplicity, I chose a voxel size of 1 mm³.
 - Some hits (with different PDG/ParentID) share the same coordinates.
 - For now, I'm ignoring those voxels.
 - I guess the solution is to sum their energy depositions and choose as true label the PDG from the particle that contributes the most to that hit.
- Made a cut on energy deposition to be >0.5 per hit.
 - Same as in André's code.
 - Unit?

Results

Confusion matrix:

	Pred muonic	Pred electromagnetic	Pred hadronic
True muonic	1,487,655	133,486	1,697,436
True electromagnetic	19,424	632,768,573	5,758,154
True hadronic	353,480	13,661,374	96,716,912

- Precision (purity, cols in table):
 - Muonic: 80%.
 - Electromagnetic: 98%.
 - Hadronic: 93%.

- Recall (efficiency, rows in table):
 - Muonic: 45%.
 - Electromagnetic: 99%.
 - Hadronic: 87%.

Event display (I)

Event display (II)

Event display (III)

Event display (IV)

Summary

- First attempt to use ML in FASERCAL simulation.
- Very promising results!
 - Room for improvement.
 - Should compare to simple energy deposition cut.
- Decide where to keep the ML code.
- Next steps?

Saúl Alonso-Monsalve

ETH Zurich
ETHZ FASER meeting
7 August 2024