

Proposta, Implementação e Avaliação de Técnica de Caracterização de Carga de Trabalho (*Workload*) de Máquinas Paralelas para Extração de Informações Utilizadas por um Escalonador Reconfigurável de Tarefas (RGSA)

Lesandro Ponciano dos Santos lesandrop@yahoo.com.br

Outubro de 2007

Projeto de Pesquisa

- Órgão financiador:
 - □ FIP PUC Minas 2007/1528
- Período de desenvolvimento:
 - □ fevereiro à dezembro de 2007

Equipe

 Bolsista: Lesandro Ponciano dos Santos Títulação: Graduando em Sistemas de Informação (PUC Minas em Guanhães)

 Orientador: Prof. Luís Fabrício W. Góes -Títulação: Mestre em Engenharia Elétrica (PUC Minas)

Sumário da Apresentação

- Introdução
 - Contexto
 - Definição do Problema
 - □ Definição do Objetivos
- Trabalhos Relacionados
- Técnica de Caracterização
- Estudo de Caso
- Conclusão
- Principais Referências

Contexto

- Aumento do desempenho das arquiteturas paralelas
 - Ex.: Cluster, Grid.
- Escalonador de Aplicações
 - Escalonamento sem Informação
 - Escalonamento com Informação
- O escalonamento com informação pode possibilitar maior desempenho do sistema computacional (Góes, 2004)

Contexto

- Escalonador Reconfigurável de Tarefas RGSA (Góes, 2004)
 - Possui um conjunto de políticas de escalonamento (configurações), é selecionada a que apresenta maior desempenho para cada carga de trabalho específica.
 - Para a seleção das políticas, ele utiliza informações sobre o dia, hora, tempo de submissão, número de processos e tempo de execução dos jobs ou tarefas

Contexto

- Obtenção de Informações
 - Meio não confiável
 - Informações Estimadas pelos Usuário (Lee, 2004)
 - Meio confiável
 - Caracterização de *logs* (Feitelson, 2002)

Problema

 Obtenção de informações confiáveis, por meio de caracterização de carga, para a seleção de políticas de escalonamento do RGSA

Objetivos

 Propor, Implementar e Avaliar uma técnica de caracterização de carga de trabalho de máquinas paralelas para extração de informações utilizadas por um Escalonador Reconfigurável de Tarefas (RGSA)

Trabalhos Relacionados

 Modelagem de Carga de Trabalho (Feitelson, 1995)

 Análise do log do supercomputador iPSC/860 (Feitelson, 2002)

 Algoritmo Reconfigurável de Escalonamento Paralelo de Tarefas (Góes, 2004)

Trabalhos Relacionados

- Relação com Feitelson (1995) e Feitelson (2002)
 - Utilização de carga de trabalho (Workload) para obtenção de informações confiáveis
- Relação com Góes (2004)
 - Técnica de Caracterização com o objetivo de prover informações confiáveis para o RGSA

Na Técnica de Caracterização considerou-se que cada job (tarefa) possui um tempo de submissão, tempo de execução, e número de processos, fatores utilizados pelo RGSA.

 Os jobs foram classificados e agrupados e classificados em função desses fatores

Classificação por Tempo de Submissão

Dias da semana de domingo à sábado

Horas do dia de 0 às 23

Assim, para cada dia da semana têm-se 24 classes de *jobs*, cada classe representa uma hora do dia

- Classificação dos jobs por Número de Processos e Tempo de Execução
 - Algoritmo

```
se job.n_processos ≤ mediana_n_processos
se job.tempo_exe ≤ mediana_tempo_exe
então job.classe = LL;
senão job.classe = LH;
```

senão se job.tempo_exe ≤ mediana_tempo_exe

então job.classe = HL; senão job.classe = HH;

	Número de	Tempo de
Classe	Processos	Execução
LL (Low-Low)	Baixo (L ow)	Baixo (Low)
LH (Low-High)	Baixo (L ow)	Alto (H igh)
HL (High-Low)	Alto (H igh)	Baixo (L ow)
HH (High-High)	Alto (H igh)	Alto (H igh)

Visão Geral das Classificações

Classificação por Número de Processos e Tempo de Execução

	Número de	Tempo de
Classe	Processos	Execução
LL (Low-Low)	Baixo (L ow)	Baixo (L ow)
LH (Low-High)	Baixo (L ow)	Alto (H igh)
HL (High-Low)	Alto (H igh)	Baixo (L ow)
HH (High-High)	Alto (H igh)	Alto (H igh)

job (tarefa)

Número de Processos

Tempo de Execução

Tempo de submissão

Classificação por Tempo de Subimissão

		DIA DA SEMANA						
			ß	T	0	Ø	တ	Ø
DIA	0					·	·	·
0	1							
A D								
HORA	22							
H(23						·	

Unindo-se as duas classificações tem-se:

		Dia da semana				
i	Intervalo (horas)	НН	HL	LL	LH	
1	LI1 - LS1	%HH1	%HL1	%LL1	%LH1	
2	LI2 - LS2	%HH2	%HL2	%LL2	%LH2	
•••	•••	•••	•••	•••	•••	
n	LIn - LSn	%HHn	%HLn	%LLn	%LHn	

 Atribui-se a cada hora do dia a percentagem de jobs contidos nas classes HH, HL, LL, LH

- De modo iterativo, une-se em um único grupo i as horas consecutivas em que a diferenças dos valores das percentagens forem menores que 10
- □ faz-se a média das percentagens
- □ forma-se limites inferiores e Ll*i* superiores LS*i* para o Grupo *i*

		Dia da semana				
i	Intervalo (horas)	нн	HL	LL	LH	
1	LI1 - LS1	%HH1	%HL1	%LL1	%LH1	
2	LI2 - LS2	%HH2	%HL2	%LL2	%LH2	
•••				•••	•••	
n	LIn - LSn	%HHn	%HLn	%LLn	%LHn	

- *log* SDSC-BLUE-2000-3
- Caracterização, geração do modelo, do ano 2001
 - 86.277*jobs*
 - Mediana do número de processos: 16
 - Mediana do tempo de execução: 229
- Verificação da caracterização com o 1º semestre de 2001
- Avaliação da caracterização com o 1º semestre de 2002

Através da técnica de caracterização, gera-se agrupamentos em função do *Tempo de* Submissão para todos os dias da semana

 Por limitações de tempo, nesta apresentação deste estudo de caso apresentaremos apenas os resultados obtidos para as sextas feiras

Caracterização do ano 2001

		SEXTAS-FEIRAS				
i	Intervalo	нн	HL	LL	LH	
0	0	38,27	27,08	22,02	12,64	
1	1	15,96	21,5	54,07	8,47	
2	[2-18]	28,57	21,24	34,12	16,07	
3	[19-20]	41,15	15,91	30,22	12,72	
4	[21-22]	33,59	7,87	44,33	14,22	
5	23	41,2	16,85	30,71	11,24	

Caracterização do ano 2001

Análise da caracterização do ano 2001

- Desvio Médio interno do agrupamento: 2,82
- Modelagem do dia em 6 grupos
- [2-18] 16 horas onde HH, HL, LL, LH mantém um comportamento pouco variável

Verificação da caracterização com o 1º semestre de 2001

Análise da Verificação

- A verificação mostra que o modelo é representativo, o desvio médio é de 6,49
- O comportamento instável, das classes após às
 18 h é semelhante nas duas análises
- O agrupamento das 5h às 18h segue o comportamento predito para 2h-18h

Avaliação da Caracterização como predição do 1º semestre de 2002

Análise da predição

- O desvio médio da predição é de: 8,48
- No primeiro semestre de 2002 LH mostra-se instável das 3 às 9 horas
- Após às 18 horas as classes apresentam uma instabilidade mais atenuada ao contrário de 2001
- Nas demais horas as cargas apresentam comportamentos semelhantes

Conclusões

- Propomos, Implementamos e Avaliamos uma Técnica de Caracterização baseada no agrupamento dos jobs pelo tempo de execução e pelo número de processos
- A técnica proposta apresentou resultados satisfatórios ao objetivo de fornecer dados confiáveis para o escalonador RGSA
- Apresentamos os principais resultados parciais da pesquisa, uma vez que essa ainda não foi concluída, atualmente estamos realizando testes com o escalonador RGSA

Referências

- □ FEITELSON, D., "Workload Modeling for Performance Evaluation", Performance Evaluation of Complex Systems: Techniques and Tools, pp. 114-141, 2002.
- □ FEITELSON, D. and Nitzberg, B. "Job characteristics of a production parallel scientific workload on the NASA Ames iPSC/860", Workshop on Job Scheduling Strategies for Parallel Processing, pp.337-360, 1995.
- □ GÓES, L.F. W., Martins, C. A. P. S., "Escalonamento Paralelo de Tarefas: Conceitos Simulação e Análise de Desempenho", Workshop de Computação de Alto Desempenho, 2004.
- □ LANL-CM5-1994-3 http://www.cs.huji.ac.il/labs/parallel/workload/logs.html

Referências

- Lee, C.B., et al. "Are user runtime estimates inherently inaccurate?", 10th Workshop on Job Scheduling Strategies for Parallel Processing, 2004.
- □ Góes, L. F. W., Martins, C. A. P. S., "Reconfigurable Gang Scheduling Algorithm", 10th Workshop on Job Scheduling Strategies for Parallel Processing, Lecture Notes in Computer Science, New York, 2004.

Perguntas?