Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Sistemas Elétricos de Automação e Energia ENG10026 Robótica A

Parâmetros de Denavit-Hartenberg

Prof. Walter Fetter Lages 20 de outubro de 2016

1 Regras Básicas

- 1. \hat{Z}_{i-1} está ao longo do eixo a junta i.
- 2. \hat{X}_i é normal a \hat{Z}_{i-1} .
- 3. \hat{Y}_i completa o sistema.

2 Atribuição dos Sistemas de Coordenadas

Sistema de coordenadas da base: Estabeleça o sistema de coordenadas da base $\{\hat{X}_0, \hat{Y}_0, \hat{Z}_0\}$ na base de apoio do robô, com o eixo \hat{Z}_0 sobre o eixo da junta 1 e apontando para o "ombro" do robô. Os eixos \hat{X}_0 e \hat{Y}_0 podem ser convenientemente estabelecidos, desde que formando um sistema ortonormal.

Sistemas de coordenadas das juntas: Eixo da junta: Alinhe \hat{Z}_i com o eixo da junta i+1 (rotacional ou prismática).

Origem do sistema i: Localize a origem do sistema i na intersecção de \hat{Z}_i e \hat{Z}_{i-1} ou na intersecção da normal comum a \hat{Z}_i e \hat{Z}_{i-1} e o eixo \hat{Z}_i .

Eixo \hat{X}_i : $\hat{X}_i = \pm (\hat{Z}_{i-1} \times \hat{Z}_i) / \|\hat{Z}_{i-1} \times \hat{Z}_i\|$ ou sobre a normal comum entre \hat{Z}_{i-1} e \hat{Z}_i se eles forem paralelos.

Eixo \hat{Y}_i : $\hat{Y}_i = +(\hat{Z}_i \times \hat{X}_i)/\|\hat{Z}_i \times \hat{X}_i\|$, para completar o sistema.

Sistema de coordenadas da garra: Usualmente a n-ésima junta é rotacional. Alinhe \hat{Z}_n na mesma direção que \hat{Z}_{n-1} e apontando para fora do robô. Alinhe \hat{X}_n de forma que seja normal a \hat{Z}_{n-1} e a \hat{Z}_n . \hat{Y}_n completa o sistema.

Parâmetros das juntas e elos: d_i : é o deslocamento da origem do sistema i-1 à intersecção dos eixos \hat{Z}_{i-1} e \hat{X}_i , medida sobre o eixo \hat{Z}_{i-1} . É a variável de junta, se a junta i for prismática.

 a_i : é o deslocamento da intersecção de \hat{Z}_{i-1} e \hat{X}_i à origem do sistema i, medida sobre o eixo \hat{X}_i .

 θ_i : é o deslocamento angular em torno de \hat{Z}_{i-1} , medido de \hat{X}_{i-1} à \hat{X}_i . É a variável de junta se a junta i for rotacional.

 α_i : é o deslocamento angular em torno de \hat{X}_i , medido de \hat{Z}_{i-1} à \hat{Z}_i .

Figura 1: Parâmetros de Denavit-Hartenberg.

3 Transformação entre Frames a partir dos Parâmetros de Denavit-Hartenberg

Da definição dos parâmetros de Denavit-Hartenberg, pode-se perceber que um ponto P_i , expresso no sistema de coordenadas i, pode ser expresso no sistema de coordenadas i-1 fazendo-se a seguinte sequência de transformações:

1. Rotação de um ângulo θ_i em torno de \hat{Z}_{i-1} , para alinhar \hat{X}_{i-1} com \hat{X}_i .

$$T_{z,\theta_i} = \begin{bmatrix} \cos\theta_i & -\sin\theta_i & 0 & 0\\ \sin\theta_i & \cos\theta_i & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(1)

2. Translação de d_i ao longo de \hat{Z}_{i-1} para fazer \hat{X}_{i-1} coincidir com \hat{X}_i .

$$T_{z,d_i} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (2)

3. Translação de a_i ao longo de \hat{X}_i para fazer as origens e os eixos x coincidentes.

$$T_{x,a_i} = \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (3)

4. Rotação de um ângulo α_i em torno de \hat{X}_i , para fazer os dois sistemas tornarem-se coincidentes.

$$T_{x,\alpha_i} = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & \cos\alpha_i & -\sin\alpha_i & 0\\ 0 & \sin\alpha_i & \cos\alpha_i & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(4)

Logo,

$$^{i-1}T_{i} = T_{z,d_{i}}T_{z,\theta_{i}}T_{x,a_{i}}T_{x,\alpha_{i}} = \begin{bmatrix} cos\theta_{i} & -cos\alpha_{i}sen\theta_{i} & sen\alpha_{i}sen\theta_{i} & a_{i}cos\theta_{i} \\ sen\theta_{i} & cos\alpha_{i}cos\theta_{i} & -sen\alpha_{i}cos\theta_{i} & a_{i}sen\theta_{i} \\ 0 & sen\alpha_{i} & cos\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(5)$$

e portanto,

$$\begin{bmatrix} i^{-1}T_i \end{bmatrix}^{-1} = {}^{i}T_{i-1} = \begin{bmatrix} \cos\theta_i & \sin\theta_i & 0 & -a_i \\ -\cos\alpha_i \sin\theta_i & \cos\alpha_i \cos\theta_i & \sin\alpha_i & -d_i \sin\alpha_i \\ \sin\alpha_i \sin\theta_i & -\sin\alpha_i \cos\theta_i & \cos\alpha_i & -d_i \cos\alpha_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (6)

Referências

[1] K. S. Fu, R. C. Gonzales, and C. S. G. Lee. *Robotics Control, Sensing, Vision and Intelligence*. Industrial Engineering Series. McGraw-Hill, New York, 1987.

A Exercícios

- 1. Para cada um dos manipuladores abaixo:
 - (a) Atribua os sistemas de coordenadas segundo as convenções de Denavit-Hartenberg.
 - (b) Faça a tabela dos parâmetros de Denavit-Hartenberg
 - (c) Obtenha as matrizes de transformação homogênea

Figura 2: AdeptOne.

Figura 3: Puma 260.

Figura 4: Puma 560.

Figura 5: Barrett WAM.

2. Compare a tabela de parâmetros de Denavit-Hartemberg obtida para o manipulador Barrett WAM no item 1b com a tabela "oficial"do fabricante, mostrada na tabela 1.

Tabela 1: Parâmetros de Denavit-Hartemberg do Manipulador Barrett WAM, segundo o fabricante.

i	a_i	α_i	d_i	θ_i
1	0	$-\pi/2$	0	θ_1
2	0	$\pi/2$	0	$ heta_2$
3	0.045	$-\pi/2$	0.55	θ_3
4	-0.045	$\pi/2$	0	θ_4
5	0	$-\pi/2$	0.3	$ heta_5$
6	0	$\pi/2$	0	θ_6
7	0	0	0.06	θ_7
T	0	0	0	

3. Ajuste os eixos atribuídos para o manipulador Barrett WAM, de forma que os parâmetros de Denavit-Hartemberg passem a ter os valores mostrados na Tabela 1.