Machine learning: Business case Présentation Business: "Rossmann Store Sales"

Présenté par :

Ahmed BEJAOUI Aymen DABGHI Aymen MEJRI

Med Rostom GHARBI

Salma JERIDI

Plan

- 1. Contexte et objectifs
- 2. Présentation des données & insight métier
- 3. Méthodologie & Résultats du projet Data Science
- 4. Recommandations & Next steps

1.Contexte et objectifs

Contexte

- Rossmann est une entreprise et une chaîne allemande de distribution de drogueries créée en 1972 par Dirk Roßmann.
- Rossmann a plus de 3000 magasins en 7 pays européens différents : Allemagne, Albanie, Pologne, République tchèque, Turquie et Hongrie.
- Effectif: 51 000 personnes.
- Chiffre d'affaires : 9 000 000 000 euros en 2017.
- Concurrents principaux : DM-Drogerie Markt et Schlecker.

 Prévoir la vente quotidienne sur les 1115 magasins Rossman situés dans toute l'Allemagne, 6 semaines à l'avance.

Impact de cette solution:

- Meilleure gestion des horaires du personnel.
- Prévoir suffisamment de temps pour que les directeurs des magasins se concentrent sur les clients et leurs équipes.
- Augmenter l'efficacité des employés.

Présentation des données linsight métier

Présentation des données

Dans ce problème, on dispose de 3 datasets:

- **Train_set**: Représente l'historique des données de ventes quotidiennes de 1115 magasins à partir du 01/01/2013 au 31/07/2015. Cette partie des données compte environ 1 million d'entrées et comprend de multiples variables explicatives qui pourraient avoir un impact sur la vente.
- Store_set : Représente des informations supplémentaires sur les magasins.
- **Test_set** : Représente des données similaires à la Train_set (à l'exception de "customers" et "sales") pour les 6 semaines suivantes.

DATA

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1017209 entries, 0 to 1017208 Data columns (total 9 columns): Store 1017209 non-null int64 DayOfWeek 1017209 non-null int64 1017209 non-null datetime64[ns] Date Sales 1017209 non-null int64 Customers 1017209 non-null int64 1017209 non-null int64 0pen 1017209 non-null int64 Promo StateHoliday 1017209 non-null object SchoolHoliday 1017209 non-null int64

Tain_set

<class 'pandas.core.frame.DataFrame'> RangeIndex: 41088 entries, 0 to 41087 Data columns (total 8 columns): 41088 non-null int64 Id Store 41088 non-null int64 DayOfWeek 41088 non-null int64 41088 non-null datetime64[ns] Date 41077 non-null float64 0pen 41088 non-null int64 Promo StateHoliday 41088 non-null object SchoolHoliday 41088 non-null int64

Test_set

RangeIndex: 1115 entries, 0 to 1114 Data columns (total 10 columns): 1115 non-null int64 Store StoreType 1115 non-null object Assortment 1115 non-null object 1112 non-null float64 CompetitionDistance CompetitionOpenSinceMonth 761 non-null float64 CompetitionOpenSinceYear 761 non-null float64 Promo2 1115 non-null int64 Promo2SinceWeek 571 non-null float64 Promo2SinceYear 571 non-null float64 PromoInterval 571 non-null object

<class 'pandas.core.frame.DataFrame'>

Types de magasins

Les magasins de type 'a' dominent en terme de présence sur le marché et de ventes réalisées ...

Types de magasins

Par contre, ce sont les magasins de type 'b' qui possèdent la quantité de ventes moyenne et le nombre de clients moyens par magasin les plus élevés!

1. Types de magasins

Cependant, la moyenne des dépenses des clients révèlent autre chose ...

2. Jours de la semaine

Comportement inverse pendant les dimanches

3. Promotions

Les ventes et les promotions sont fortement corrélées.

la vente moyenne est 30% plus importante lorsque le magasin propose une promotion

3. Promotions

Les promotions augmentent les ventes. Mais les magasins qui ne participent pas à des promotions consécutives engendrent plus de profit!

3. Promotions

Promo2 n'a pas vraiment un impact significatif sur les ventes, ce qui confirme encore notre hypothèse.

4. Compétition

Plus la compétition est proche, plus les ventes sont élevées ?!

5. Vacances scolaires

25.06% du total des ventes réalisées en 19.35% du nombre des jours d'ouverture

Pour finir ...

- Les magasins du type 'a' sont les plus présents sur le marché et ils réalisent le plus des ventes.
- Les magasins du type 'b', malgré leur nombres réduits, attirent le plus de clients et réalisent le plus de ventes en moyenne.
- Les magasins du type 'd' ont la moyenne de dépenses des clients la plus élevée, c'est grâce au type 'c' de produits qu'ils vendent le plus.
- Pendant les dimanches, le nombre des clients augmentent remarquablement, mais sans effet clair sur les ventes (Phénomène de window-shopping).
- Lancer des promos dans les magasins les moins performants avec une Competitiondistance moins élevée.
- Les magasins ouverts pendant les vacances scolaires sont bien performants.

3. Méthodologie

Choix du modèle et des paramètres

Modèle choisi : XGBRegressor

- La méthode de la détermination des paramètres: Estimation Bayesienne :
 - Une approche rapide
 - Une approche précise

Stratégie de validation

Technique adoptée:

 Effectuer une validation croisée en divisant notre donnée en des paquets d'une durée de 2 mois Choix du loss: RMSE (Root Mean Square Error)

Justification:

- Pénaliser davantage les grandes erreurs de prédiction.
- ---> Contrainte de stockage.
- Sensible au changement de distribution entre le training et le test.
- ---> facilite la détection du changement de distribution après la mise en production de l'algorithme.

Stratégie de maintenance

Maintenance automatique

Maintenance à la demande du client:

- Introduction de nouveaux produits.
- Changement de stratégie (exemple: expansion à l'international).

4. Recommandations & Next steps

Recommandations au niveau des variables explicatives :

Fournir des données sur :

- Les différents prix des différents produits.
- La localisation du magasin (Ville, Population, ...).
- Le nombre d'employés de chaque magasin.
- Le stock de chaque magasin.
- La météo.

Recommandations au niveau des variables explicatives :

Analyses de sentiments des différents clients sur les différents magasins :

Recommandations au niveau des variables explicatives :

Prendre en considération les horaires d'affluence fourni par Google Maps :

Recommandations au niveau de modèle

Algorithm 1 : FIND_CHANGE

```
1: for i = 1 ... k do
      c_0 \leftarrow 0
      Window<sub>1,i</sub> \leftarrow first m_{1,i} points from time c_0
       Window<sub>2,i</sub> \leftarrow next m_{2,i} points in stream
 5 end for
 6: while not at end of stream do
       for i = 1 \dots k do
          Slide Window<sub>2,i</sub> by 1 point
          if d(\text{Window}_{1,i}, \text{Window}_{2,i}) > \alpha_i then
             c_0 \leftarrow \text{current time}
10:
11:
             Report change at time c_0
             Clear all windows and GOTO step 1
12:
          end if
13:
       end for
14:
15: end while
```

Détection des différents changements dans la distribution des données

Next Steps

- Appliquer l'algorithme de détection de changements de distribution des variables explicatives et re-entrainer le modèle en cas de besoin.
- Essayer d'avoir plus de variables explicatives qui pourront être importants pour la prédiction des ventes des différents magasins.
- Tester le nouveau modèle après avoir fait les différents changements mentionnés ci-dessus et le comparer avec l'ancien modèle.

96

Merci pour votre attention. "