Score function estimator and variance reduction techniques

Wilker Aziz University of Amsterdam

May 16, 2018

Outline

- Recap
- Score function estimator
- 3 Variance reduction

Variational inference for belief networks

Generative model with NN likelihood

Jointly optimise generative model $p_{\theta}(x|z)$ and inference model $q_{\lambda}(z|x)$ under the same objective (ELBO)

Objective

$$\log p_{\theta}(x) \ge \underbrace{\mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x,Z)\right] + \mathbb{H}\left(q_{\lambda}(z|x)\right)}_{= \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|Z)\right] - \mathsf{KL}\left(q_{\lambda}(z|x) \mid\mid p(z)\right)}$$

Parameter estimation

$$\underset{\theta,\lambda}{\operatorname{arg max}} \ \mathbb{E}_{q_{\lambda}(z|x)}\left[\log p_{\theta}(x|Z)\right] - \operatorname{\mathsf{KL}}\left(q_{\lambda}(z|x) \mid\mid p(z)\right)$$

$$\frac{\partial}{\partial \theta} \left(\mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] - \overbrace{\mathsf{KL} \left(q_{\lambda}(z|x) \mid\mid p(z) \right)}^{\mathsf{constant wrt } \theta} \right)$$

$$\begin{split} & \frac{\partial}{\partial \theta} \left(\mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] - \overbrace{\mathsf{KL} \left(q_{\lambda}(z|x) \mid\mid p(z) \right)}^{\mathsf{constant wrt } \theta} \right) \\ & = \underbrace{\mathbb{E}_{q_{\lambda}(z|x)} \left[\frac{\partial}{\partial \theta} \log p_{\theta}(x|z) \right]}_{\mathsf{expected gradient } :)} \end{split}$$

$$\begin{split} &\frac{\partial}{\partial \theta} \left(\mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] - \overbrace{\mathsf{KL} \left(q_{\lambda}(z|x) \mid\mid p(z) \right)}^{\mathsf{constant wrt } \theta} \right) \\ &= \underbrace{\mathbb{E}_{q_{\lambda}(z|x)} \left[\frac{\partial}{\partial \theta} \log p_{\theta}(x|z) \right]}_{\mathsf{expected gradient } :)} \\ &\overset{\mathsf{MC}}{\approx} \frac{1}{K} \sum_{k=1}^{K} \frac{\partial}{\partial \theta} \log p_{\theta}(x|z^{(k)}) \\ z^{(k)} \sim q_{\lambda}(Z|x) \end{split}$$

$$\begin{split} &\frac{\partial}{\partial \theta} \left(\mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] - \overbrace{\mathsf{KL} \left(q_{\lambda}(z|x) \mid\mid p(z) \right)}^{\mathsf{constant wrt } \theta} \right) \\ &= \underbrace{\mathbb{E}_{q_{\lambda}(z|x)} \left[\frac{\partial}{\partial \theta} \log p_{\theta}(x|z) \right]}_{\mathsf{expected gradient } :)} \\ &\overset{\mathsf{MC}}{\approx} \frac{1}{K} \sum_{k=1}^{K} \frac{\partial}{\partial \theta} \log p_{\theta}(x|z^{(k)}) \\ z^{(k)} \sim q_{\lambda}(Z|x) \end{split}$$

Note: $q_{\lambda}(z|x)$ does not depend on θ .

$$\frac{\partial}{\partial \lambda} \left(\mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] - \overbrace{\mathsf{KL} \left(q_{\lambda}(z|x) \mid\mid p(z) \right)}^{\mathsf{analytical}} \right)$$

$$\begin{split} &\frac{\partial}{\partial \lambda} \left(\mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] - \overbrace{\mathsf{KL} \left(q_{\lambda}(z|x) \mid\mid p(z) \right)}^{\mathsf{analytical}} \right) \\ = &\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] - \underbrace{\frac{\partial}{\partial \lambda} \mathsf{KL} \left(q_{\lambda}(z|x) \mid\mid p(z) \right)}_{\mathsf{analytical computation}} \end{split}$$

$$\begin{split} &\frac{\partial}{\partial \lambda} \left(\mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] - \overbrace{\mathsf{KL} \left(q_{\lambda}(z|x) \mid\mid p(z) \right)}^{\mathsf{analytical}} \right) \\ = &\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] - \underbrace{\frac{\partial}{\partial \lambda} \mathsf{KL} \left(q_{\lambda}(z|x) \mid\mid p(z) \right)}_{\mathsf{analytical computation}} \end{split}$$

The first term again requires approximation by sampling, but there is a problem

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right]$$

$$\begin{aligned} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] \\ &= \frac{\partial}{\partial \lambda} \int q_{\lambda}(z|x) \log p_{\theta}(x|z) dz \end{aligned}$$

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} [\log p_{\theta}(x|z)]$$

$$= \frac{\partial}{\partial \lambda} \int q_{\lambda}(z|x) \log p_{\theta}(x|z) dz$$

$$= \underbrace{\int \frac{\partial}{\partial \lambda} (q_{\lambda}(z|x)) \log p_{\theta}(x|z) dz}_{\text{not an expectation}}$$

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] \\ & = \frac{\partial}{\partial \lambda} \int q_{\lambda}(z|x) \log p_{\theta}(x|z) \mathrm{d}z \\ & = \underbrace{\int \frac{\partial}{\partial \lambda} (q_{\lambda}(z|x)) \log p_{\theta}(x|z) \, \mathrm{d}z}_{\text{not an expectation}} \end{split}$$

• MC estimator is non-differentiable: cannot sample first

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} [\log p_{\theta}(x|z)]$$

$$= \frac{\partial}{\partial \lambda} \int q_{\lambda}(z|x) \log p_{\theta}(x|z) dz$$

$$= \underbrace{\int \frac{\partial}{\partial \lambda} (q_{\lambda}(z|x)) \log p_{\theta}(x|z) dz}_{\text{not an expectation}}$$

- MC estimator is non-differentiable: cannot sample first
- Differentiating the expression does not yield an expectation: cannot approximate via MC

Wilker Aziz DGMs in NLP

Outline

- Recap
- Score function estimator
- 3 Variance reduction

Score function estimator

We can again use the log identity for derivatives

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} [\log p_{\theta}(x|z)]$$

$$= \frac{\partial}{\partial \lambda} \int q_{\lambda}(z|x) \log p_{\theta}(x|z) dz$$

$$= \underbrace{\int \frac{\partial}{\partial \lambda} (q_{\lambda}(z|x)) \log p_{\theta}(x|z) dz}_{\text{not an expectation}}$$

Score function estimator

We can again use the log identity for derivatives

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] \\ & = \frac{\partial}{\partial \lambda} \int q_{\lambda}(z|x) \log p_{\theta}(x|z) \mathrm{d}z \\ & = \underbrace{\int \frac{\partial}{\partial \lambda} (q_{\lambda}(z|x)) \log p_{\theta}(x|z) \, \mathrm{d}z}_{\text{not an expectation}} \\ & = \int q_{\lambda}(z|x) \frac{\partial}{\partial \lambda} (\log q_{\lambda}(z|x)) \log p_{\theta}(x|z) \, \mathrm{d}z \end{split}$$

Score function estimator

We can again use the log identity for derivatives

$$\begin{split} &\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] \\ &= \frac{\partial}{\partial \lambda} \int q_{\lambda}(z|x) \log p_{\theta}(x|z) \mathrm{d}z \\ &= \underbrace{\int \frac{\partial}{\partial \lambda} (q_{\lambda}(z|x)) \log p_{\theta}(x|z) \mathrm{d}z}_{\text{not an expectation}} \\ &= \int q_{\lambda}(z|x) \frac{\partial}{\partial \lambda} (\log q_{\lambda}(z|x)) \log p_{\theta}(x|z) \mathrm{d}z \\ &= \underbrace{\mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right]}_{\text{expected gradient :)} \end{split}$$

We can now build an MC estimator

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] \\ & = \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] \end{split}$$

We can now build an MC estimator

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] \\ & = \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] \\ & \stackrel{\mathsf{MC}}{\approx} \frac{1}{K} \sum_{k=1}^{K} \log p_{\theta}(x|z^{(k)}) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z^{(k)}|x) \\ & z^{(k)} \sim q_{\lambda}(Z|x) \end{split}$$

We can now build an MC estimator

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] \\ & = \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] \\ & \stackrel{\mathsf{MC}}{\approx} \frac{1}{K} \sum_{k=1}^{K} \log p_{\theta}(x|z^{(k)}) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z^{(k)}|x) \\ & z^{(k)} \sim q_{\lambda}(Z|x) \end{split}$$

but

• magnitude of $\log p_{\theta}(x|z)$ varies widely

We can now build an MC estimator

$$\begin{split} &\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] \\ &= \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] \\ &\overset{\mathsf{MC}}{\approx} \frac{1}{K} \sum_{k=1}^{K} \log p_{\theta}(x|z^{(k)}) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z^{(k)}|x) \\ &z^{(k)} \sim q_{\lambda}(Z|x) \end{split}$$

but

- magnitude of $\log p_{\theta}(x|z)$ varies widely
- model likelihood does not contribute to direction of gradient

We can now build an MC estimator

$$\begin{split} &\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] \\ &= \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] \\ &\overset{\mathsf{MC}}{\approx} \frac{1}{K} \sum_{k=1}^{K} \log p_{\theta}(x|z^{(k)}) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z^{(k)}|x) \\ &z^{(k)} \sim q_{\lambda}(Z|x) \end{split}$$

but

- magnitude of $\log p_{\theta}(x|z)$ varies widely
- model likelihood does not contribute to direction of gradient
- too much variance to be useful

We can now build an MC estimator

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] \\ & = \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] \\ & \stackrel{\mathsf{MC}}{\approx} \frac{1}{K} \sum_{k=1}^{K} \log p_{\theta}(x|z^{(k)}) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z^{(k)}|x) \\ & z^{(k)} \sim q_{\lambda}(Z|x) \end{split}$$

but

- magnitude of $\log p_{\theta}(x|z)$ varies widely
- model likelihood does not contribute to direction of gradient
- too much variance to be useful

but

We can now build an MC estimator

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] \\ & = \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] \\ & \stackrel{\mathsf{MC}}{\approx} \frac{1}{K} \sum_{k=1}^{K} \log p_{\theta}(x|z^{(k)}) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z^{(k)}|x) \\ & z^{(k)} \sim q_{\lambda}(Z|x) \end{split}$$

but

- magnitude of $\log p_{\theta}(x|z)$ varies widely
- model likelihood does not contribute to direction of gradient
- too much variance to be useful

but fully differentiable!

sample more

sample more won't scale

- sample more won't scale
- use variance reduction techniques (e.g. baselines and control variates)

- sample more won't scale
- use variance reduction techniques (e.g. baselines and control variates)

excellent idea!

- sample more won't scale
- use variance reduction techniques (e.g. baselines and control variates)

```
excellent idea!
and now it's time for it!
```

Let us consider a latent factor model for topic modelling:

Let us consider a latent factor model for topic modelling:

• a document $x = (x_1, \dots, x_n)$ consists of n i.i.d. categorical draws from that model

Let us consider a latent factor model for topic modelling:

- a document $x = (x_1, \dots, x_n)$ consists of n i.i.d. categorical draws from that model
- the categorical distribution in turn depends on the binary latent factors $z = (z_1, \ldots, z_k)$ which are also i.i.d.

Let us consider a latent factor model for topic modelling:

- a document $x = (x_1, \dots, x_n)$ consists of n i.i.d. categorical draws from that model
- the categorical distribution in turn depends on the binary latent factors $z = (z_1, \ldots, z_k)$ which are also i.i.d.

$$z_j \sim \text{Bernoulli}(\phi)$$
 $(1 \le j \le k)$
 $x_i \sim \text{Categorical}(g_{\theta}(z))$ $(1 \le i \le n)$

Here ϕ specifies a Bernoulli prior and $g_{\theta}(\cdot)$ is a function computed by neural network with softmax output.

Example Model

At inference time the latent variables are marginally dependent. For our variational distribution we are going to assume that they are not (recall: mean field assumption).

Inference Network

The inference network needs to predict k Bernoulli parameters ψ . Any neural network with sigmoid output will do that job.

$$q_{\lambda}(z|x) = \prod_{i=1}^{k} \operatorname{Bern}(z_{i}|\psi_{i})$$
 where $\psi = f_{\lambda}(x)$ (2)

DGMs in NLP

inference model

inference model

inference model

inference model

Reparametrisation Gradient

generation model

inference model

Pros and Cons

- Pros
 - Applicable to all distributions
 - Many libraries come with samplers for common distributions

Pros and Cons

- Pros
 - Applicable to all distributions
 - Many libraries come with samplers for common distributions
- Cons
 - High Variance!

Outline

- Recap
- Score function estimator
- Variance reduction

Suppose we want to estimate $\mathbb{E}[f(Z)]$ and we know the expected value of another function $\psi(z)$ on the same support.

Suppose we want to estimate $\mathbb{E}[f(Z)]$ and we know the expected value of another function $\psi(z)$ on the same support.

Then it holds that

$$\mathbb{E}[f(Z)] = \mathbb{E}[f(Z) - \psi(Z)] + \mathbb{E}[\psi(Z)] \tag{3}$$

Suppose we want to estimate $\mathbb{E}[f(Z)]$ and we know the expected value of another function $\psi(z)$ on the same support.

Then it holds that

$$\mathbb{E}[f(Z)] = \mathbb{E}[f(Z) - \psi(Z)] + \mathbb{E}[\psi(Z)] \tag{3}$$

If $\psi(z) = f(z)$, and we estimate the expected value of $f(x) - \psi(x)$, then we have reduced variance to 0.

Suppose we want to estimate $\mathbb{E}[f(Z)]$ and we know the expected value of another function $\psi(z)$ on the same support.

Then it holds that

$$\mathbb{E}[f(Z)] = \mathbb{E}[f(Z) - \psi(Z)] + \mathbb{E}[\psi(Z)] \tag{3}$$

If $\psi(z) = f(z)$, and we estimate the expected value of $f(x) - \psi(x)$, then we have reduced variance to 0. In general

$$Var(f - \psi) = Var(f) - 2Cov(f, \psi) + Var(\psi)$$
 (4)

If f and ψ are strongly correlated and the covariance is greater than $Var(\psi)$, then we improve on the original estimation problem.

Greensmith et al. (2004)

Reducing variance of score function estimator

Back to the score function estimator

$$\mathbb{E}_{q_{\lambda}(z|x)}\left[\log p_{ heta}(x|z)rac{\partial}{\partial \lambda}\log q_{\lambda}(z|x)
ight]$$

Reducing variance of score function estimator

Back to the score function estimator

$$\mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right]$$

$$= \mathbb{E}_{q_{\lambda}(z|x)} \left[\underbrace{\log p_{\theta}(x|z) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x)}_{f(z)} - \underbrace{C(x) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x)}_{\psi(z)} \right]$$

$$+ \mathbb{E}_{q_{\lambda}(z|x)} \left[\underbrace{C(x) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x)}_{\psi(z)} \right]$$

The last term is very simple!

$$\mathbb{E}_{q_{\lambda}(z|x)}\left[C(x)\frac{\partial}{\partial\lambda}\log q_{\lambda}(z|x)\right]$$

20

$$\mathbb{E}_{q_{\lambda}(z|x)}\left[C(x)\frac{\partial}{\partial \lambda}\log q_{\lambda}(z|x)\right] = C(x)\mathbb{E}_{q_{\lambda}(z|x)}\left[\frac{\partial}{\partial \lambda}\log q_{\lambda}(z|x)\right]$$

$$\mathbb{E}_{q_{\lambda}(z|x)} \left[C(x) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] = C(x) \mathbb{E}_{q_{\lambda}(z|x)} \left[\frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right]$$
$$= C(x) \mathbb{E}_{q_{\lambda}(z|x)} \left[\frac{\partial}{\partial \lambda} q_{\lambda}(z|x) \right]$$

$$\mathbb{E}_{q_{\lambda}(z|x)} \left[C(x) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] = C(x) \mathbb{E}_{q_{\lambda}(z|x)} \left[\frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right]$$
$$= C(x) \mathbb{E}_{q_{\lambda}(z|x)} \left[\frac{\frac{\partial}{\partial \lambda} q_{\lambda}(z|x)}{q_{\lambda}(z|x)} \right] = C(x) \int \frac{q_{\lambda}(z|x)}{\frac{\partial}{\partial \lambda} q_{\lambda}(z|x)} \frac{\partial}{\partial \lambda} q_{\lambda}(z|x) \, dz$$

$$\mathbb{E}_{q_{\lambda}(z|x)} \left[C(x) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] = C(x) \mathbb{E}_{q_{\lambda}(z|x)} \left[\frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right]$$

$$= C(x) \mathbb{E}_{q_{\lambda}(z|x)} \left[\frac{\frac{\partial}{\partial \lambda} q_{\lambda}(z|x)}{q_{\lambda}(z|x)} \right] = C(x) \int \frac{q_{\lambda}(z|x)}{q_{\lambda}(z|x)} \frac{\frac{\partial}{\partial \lambda} q_{\lambda}(z|x)}{q_{\lambda}(z|x)} dz$$

$$= C(x) \int \frac{\partial}{\partial \lambda} q_{\lambda}(z|x) dz$$

$$\mathbb{E}_{q_{\lambda}(z|x)} \left[C(x) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] = C(x) \mathbb{E}_{q_{\lambda}(z|x)} \left[\frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right]$$

$$= C(x) \mathbb{E}_{q_{\lambda}(z|x)} \left[\frac{\frac{\partial}{\partial \lambda} q_{\lambda}(z|x)}{q_{\lambda}(z|x)} \right] = C(x) \int \frac{q_{\lambda}(z|x)}{q_{\lambda}(z|x)} \frac{\frac{\partial}{\partial \lambda} q_{\lambda}(z|x)}{q_{\lambda}(z|x)} dz$$

$$= C(x) \int \frac{\partial}{\partial \lambda} q_{\lambda}(z|x) dz = C(x) \frac{\partial}{\partial \lambda} \int q_{\lambda}(z|x) dz$$

DGMs in NLP

$$\mathbb{E}_{q_{\lambda}(z|x)} \left[C(x) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] = C(x) \mathbb{E}_{q_{\lambda}(z|x)} \left[\frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right]$$

$$= C(x) \mathbb{E}_{q_{\lambda}(z|x)} \left[\frac{\frac{\partial}{\partial \lambda} q_{\lambda}(z|x)}{q_{\lambda}(z|x)} \right] = C(x) \int \frac{q_{\lambda}(z|x)}{q_{\lambda}(z|x)} \frac{\frac{\partial}{\partial \lambda} q_{\lambda}(z|x)}{q_{\lambda}(z|x)} dz$$

$$= C(x) \int \frac{\partial}{\partial \lambda} q_{\lambda}(z|x) dz = C(x) \frac{\partial}{\partial \lambda} \int q_{\lambda}(z|x) dz$$

$$= C(x) \frac{\partial}{\partial \lambda} 1$$

$$\mathbb{E}_{q_{\lambda}(z|x)} \left[C(x) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] = C(x) \mathbb{E}_{q_{\lambda}(z|x)} \left[\frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right]$$

$$= C(x) \mathbb{E}_{q_{\lambda}(z|x)} \left[\frac{\frac{\partial}{\partial \lambda} q_{\lambda}(z|x)}{q_{\lambda}(z|x)} \right] = C(x) \int \frac{q_{\lambda}(z|x)}{q_{\lambda}(z|x)} \frac{\frac{\partial}{\partial \lambda} q_{\lambda}(z|x)}{q_{\lambda}(z|x)} dz$$

$$= C(x) \int \frac{\partial}{\partial \lambda} q_{\lambda}(z|x) dz = C(x) \frac{\partial}{\partial \lambda} \int q_{\lambda}(z|x) dz$$

$$= C(x) \frac{\partial}{\partial \lambda} 1 = 0$$

Back to the score function estimator

$$\mathbb{E}_{q_{\lambda}(z|x)}\left[\log p_{\theta}(x|z)\frac{\partial}{\partial \lambda}\log q_{\lambda}(z|x)\right]$$

Back to the score function estimator

$$\begin{split} &\mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] \\ &= \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) - C(x) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] \\ &+ \mathbb{E}_{q_{\lambda}(z|x)} \left[C(x) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] \end{split}$$

Back to the score function estimator

$$\begin{split} &\mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] \\ &= \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) - C(x) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] \\ &+ \mathbb{E}_{q_{\lambda}(z|x)} \left[C(x) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] \\ &= \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) - C(x) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] \end{split}$$

Back to the score function estimator

$$\begin{split} &\mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] \\ &= \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) - C(x) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] \\ &+ \mathbb{E}_{q_{\lambda}(z|x)} \left[C(x) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] \\ &= \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) - C(x) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] \\ &= \mathbb{E}_{q_{\lambda}(z|x)} \left[(\log p_{\theta}(x|z) - C(x)) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] \end{split}$$

C(x) is called a **baseline**

Baselines

Baselines can be constant

$$\mathbb{E}_{q_{\lambda}(z|x)} \left[(\log p_{\theta}(x|z) - C) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right]$$
 (5)

Williams (1992)

Baselines

Baselines can be constant

$$\mathbb{E}_{q_{\lambda}(z|x)}\left[\left(\log p_{\theta}(x|z) - C\right) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x)\right]$$
 (5)

or input-dependent

$$\mathbb{E}_{q_{\lambda}(z|x)}\left[\left(\log p_{\theta}(x|z) - \frac{C(x)}{\partial \lambda} \log q_{\lambda}(z|x)\right)\right] \tag{6}$$

Baselines

Baselines can be constant

$$\mathbb{E}_{q_{\lambda}(z|x)} \left[(\log p_{\theta}(x|z) - C) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right]$$
 (5)

or input-dependent

$$\mathbb{E}_{q_{\lambda}(z|x)}\left[\left(\log p_{\theta}(x|z) - \frac{C(x)}{\partial \lambda} \log q_{\lambda}(z|x)\right)\right] \tag{6}$$

or both

$$\mathbb{E}_{q_{\lambda}(z|x)} \left[\left(\log p_{\theta}(x|z) - C - C(x) \right) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x) \right] \tag{7}$$

Williams (1992)

Full power of control variates

If we design $C(\cdot)$ to depend on the variable of integration z, we exploit the full power of control variates, but designing and using those require more careful treatment

Learning baselines

Baselines are predicted by a regression model (e.g. a neural net).

One idea is to "centre the learning signal", in which case we train the baseline with an L_2 -loss:

$$\rho = \arg\min_{\rho} \left(C_{\rho}(x) - \log p(x|z) \right)^{2}$$

Gu et al. (2015)

24

Putting it together

Parameter estimation

$$rg \max_{ heta, \lambda} \; \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{ heta}(x|Z) \right] - \mathsf{KL} \left(q_{\lambda}(z|x) \; || \; p(z) \right)$$

Variance reduction

$$\arg\min_{\rho} \left(C_{\rho}(x) - \log p(x|z) \right)^2$$

Generative gradient

$$\mathbb{E}_{q_{\lambda}(z|x)}\left[\frac{\partial}{\partial \theta}\log p_{\theta}(x|z)\right]$$

Inference gradient

$$\mathbb{E}_{q_{\lambda}(z|x)}\left[\left(\log p_{\theta}(x|z) - C(x)\right) \frac{\partial}{\partial \lambda} \log q_{\lambda}(z|x)\right]$$

• Reparametrisation not available for discrete variables.

- Reparametrisation not available for discrete variables.
- Use score function estimator.

- Reparametrisation not available for discrete variables.
- Use score function estimator.
- High variance.

- Reparametrisation not available for discrete variables.
- Use score function estimator.
- High variance.
- Always use baselines for variance reduction!

26

Literature I

- David M. Blei, Michael I. Jordan, and John W. Paisley. Variational bayesian inference with stochastic search. In ICML, 2012. URL http://icml.cc/2012/papers/687.pdf.
- Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient estimates in reinforcement learning. Journal of Machine Learning Research, 5(Nov):1471–1530, 2004.
- Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wierstra. Deep autoregressive networks. In Eric P. Xing and Tony Jebara, editors, ICML, pages 1242-1250, 2014. URL http://proceedings.mlr.press/v32/gregor14.html.
- Shixiang Gu, Sergey Levine, Ilya Sutskever, and Andriy Mnih. Muprop: Unbiased backpropagation for stochastic neural networks. arXiv preprint arXiv:1511.05176, 2015.

Literature II

- Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. arXiv preprint arXiv:1402.0030, 2014.
- Rajesh Ranganath, Sean Gerrish, and David Blei. Black Box Variational Inference. In Samuel Kaski and Jukka Corander, editors. AISTATS. pages 814-822, 2014. URL http://proceedings.mlr.press/v33/ranganath14.pdf.
- Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine Learning*, 8(3-4): 229-256, 1992. URL https://doi.org/10.1007/BF00992696.