الجمهورية الجزائرية الديمقراطية الشعبية

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: الرياضيات و التقني رياضي

اختبار في مادة: العلوم الفيزيائية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2012

المدة: أربع ساعات ونصف

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول

التمرين الأول: (03,5 نقاط)

اقترح أستاذ على تلامذته تعيين سعة مكثفة C بطريقتين مختلفتين: الطريقة الأولى: شحن المكثفة بتيار مستمر ثابت الشدة.

الطريقة الثانية: تفريغ المكثفة في ناقل أومي.

لهذا الغرض تمَّ تحقيق التركيب المقابل.

أولاً: المكثفة في البداية فارغة. نضع في اللحظة t = 0 البادلة K في الوضع (1)، فتشحن المكثفة بالمولد G الذي يعطى تيار ا ثابتا شدته بواسطة جهاز ExAO تمكنًا من مشاهدة المنحنى i=0,31~mAالبياني لتطور التوتر u_{AB} بين طرفي المكثفة بدلالة الزمن t(الشكل-1أ).

أ- أعط عبارة التوتر u_{AB} بدلالة شدة التيار i المار في الدارة ، وسعة المكثفة C و الزمن t.

ب- جد قيمة C سعة المكثفة .

ثاتياً: عندما يصبح التوتر بين طرفي المكثفة مساويا إلى القيمة نضع البادلة K في الوضع (2) نضع البادلة $U_0 = 1.6V$ R=I $K\Omega$ ، فيتم تفريغ المكثفة في ناقل أومى مقاومته t=0

. u_{AB} التفاضلية التي يحققها -1

 $u_{AB} = U_0 e^{\frac{1}{\tau}}$: المأ أن حلها

ب- أثناء تفريغ المكثفة، سمح جهاز ExAO من متابعة تطور التوتر الكهربائي u_{AB} بين طرفي المكثفة بدلالة الزمن t. بواسطة برمجية مناسبة تمكنًا من الحصول على المنحنى البياني (الشكل-1ب).

C الذارة ، ثم استنتج قيمة سعة المكثفة C الدارة ، ثم استنتج قيمة سعة المكثفة

التمرين الثاني: (03 نقاط)

-1 التفاعل بين الدوتريوم و التريتيوم ينتج نواة 4 ونيترون وتحرير طاقة.

E, (MeV /nucléon)

$$E_{\ell}$$
 النواة الربط النووي E_{ℓ} للنواة عبارة طاقة الربط النووي E_{ℓ}

ب- الطاقة المحررة
$$|\Delta E|$$
 بدلالة طاقات الربط النووى تعطى بالعبارة:

$$|\Delta E| = |E_{\ell}({}_{2}^{4}He) - E_{\ell}({}_{1}^{2}H) - E_{\ell}({}_{1}^{3}H)|$$

احسب قيمة هذه الطاقة المحررة مقدرة بـ MeV.

المعطيات:

النواة	² ₁ H	³ H	⁴ ₂ He
طاقة الربط (MeV)	2,22	8,48	28,29

التمرين الثالث: (03,5 نقطة)

تتكون دارة كهربائية (الشكل-3) مما يلي:

$$E=6,0V$$
 مولد توترمستمر قوته المحركة الكهربائية

- قاطعة X.

$$r=10~\Omega$$
 و مقاومتها L و مقاومتها $r=10~\Omega$

.
$$R=200~\Omega$$
 ناقل أومي مقاومته

ExAO في اللحظة t=0 نغلق القاطعة K ، فبو اسطة ال

 u_{BC} و u_{AB} يمكن معاينة التوتر الكهربائي

(الشكل-4) و (الشكل-5).

1-ما هو الجهاز الذي يمكن وضعه بدلا من ExAO

لتسجيل المنحنيات البيانية السابقة؟

.
$$\frac{di}{dt}$$
 و $i(t)$ بدلالة u_{AB} عبارة عبارة -2

. i(t) بدلالة u_{BC} عبارة عبارة -3

الشكل- 4

. برتر u_{BC} و u_{AB} له الموافق له u_{BC} و برتر u_{BC} برتر -4

-اكتب المعادلة التفاضلية التي تحققها شدة التيار الكهربائي i(t) مع إعطاء حل لها.

 I_0 جد عبارة شدة التيار الكهربائي الأعظمي-6

الذي يجتاز الدارة عند الوصول الى النظام الدائم،

ثم احسب قيمته .

7-جد قيمة ثابت الزمن au بطريقتين مختلفتين مع الشرح.-8احسب L ذاتية الوشيعة.

التمرين الرابع: (03,75 نقطة)

في فبراير 2012، هبت عاصفة ثلجية على شمال شرق الجزائر، فاستعملت الطائرات المروحية للجيش الوطني الشعبي لإيصال المساعدات للمتضررين خاصة في المناطق الجبلية منها.

أو لا:

تطير المروحية على ارتفاع ثابت h من سطح الأرض بسرعة أفقية ثابتة قيمتها $v_0 = 50m \cdot s^{-1}$. $v_0 = 50m \cdot s^{-1}$ يسقط في اللحظة t = 0 انطلاقا من النقطة O مبدأ الإحداثيات وبالسرعة الابتدائية الأفقية $v_0 = 0$ ليرتطم بسطح الأرض في النقطة $v_0 = 0$ (الشكل $v_0 = 0$).

ندرس حركة G في المعلم المتعامد و المتجانس G ندرس حركة المرتبط بسطح الأرض الذي نعتبره غاليليا، نهمل أبعاد الصندوق و تؤثر عليه قوة وحيدة هي قوة ثقله.

1- بتطبيق القانون الثاني لنيوتن جد:

z(t) و x(t) و الزمنيتين أ- المعادلتين الزمنيتين

z(x) ب- معادلة المسار

ج- إحداثيتي نقطة السقوط M.

د- الزمن اللازم لوصول الصندوق إلى الأرض.

الشكل-6

<u>ثانياً:</u>

لكي لا تتلف المواد الغذائية عند الارتطام بسطح الأرض، تم ربط الصندوق بمظلة تمكنه من النزول شاقولياً ببطء. تبقى المروحية على نفس الارتفاع h السابق في النقطة O ، ليترك الصندوق يسقط شاقوليا دون سرعة ابتدائية في اللحظة t=0 (الشكلt=0). يخضع الصندوق لقوة احتكاك الهواء نعبر عنها بالعلاقة t=0 حيث: t=0 مع إهمال دافعة أرخميدس خلال السقوط.

الشكل-7

1- جد المعادلة التفاضلية التي تحققها سرعة مركز عطالة الصندوق.

t سرعة مركز عطالة الصندوق بدلالة الزمن -2 سرعة مركز عطالة الصندوق بدلالة الزمن -2

أ- جد السرعة الحدية ٧.

t=10s و t=0s و التسارع في اللحظتين: t=10 و و t=0

m=150~kg الصندوق و المظلة h=405~m ، $g=9.8~m\cdot s^{-2}$

التمرين الخامس: (02,75 نقطة)

 $\Theta Zn \left| Zn^{2+} \right| \left| Cu^{2+} \right| Cu \oplus :$ نحقق عمود دانيال

E = 1,10 V القوة المحركة الكهربائية:

R=20 سم بشكل تخطيطي عمود دانيال موصولا بناقل أومي مقاومته R=20، موضحا عليه جهة التيار الكهربائي و اتجاه حركة الالكترونات و الشوارد.

2-اكتب المعادلتين النصفيتين للأكسدة و الإرجاع، ثم استنتج معادلة التفاعل المنمذج للتحول الذي يحدث أثناء اشتغال العمود.

3- ماذا يحدث للمسريين عند حالة التوازن ؟

4- احسب شدة التيار الذي يجتاز الدارة.

1- احسب Q كمية الكهرباء التي ينتجها العمود بC بعد ساعتين من الاشتغال.

التمرين التجريبي: (03,5 نقطة)

تؤخذ كل المحاليل في 25°C.

الإيبوبروفين حمض كربوكسيلي صيغته الجزيئية الإجمالية $C_{13}H_{18}O_2$ ، دواء يعتبر من المضادات للالتهابات، شبيه بالأسبرين، مسكن للآلام و مخفض للحرارة .تباع مستحضرات الإيبوبروفين في الصيدليات على شكل مسحوق في أكياس تحمل المقدار mg يذوب في الماء. في كل هذا النشاط نرمز لحمض الإيبوبروفين ب $M(RCOOH) = 206g \cdot mol^{-1}$. $RCOO^{-1}$

 S_0 في بيشر به ماء فنحصل على محلول مائي معلى محلول مائي نركيزه المولى c_0 و حجمه $v_0 = 500$

. $c_0 \approx 0{,}002 \; mol \cdot L^{-1}$: تأكد من أن-1

pH=3.5 القيمة S_0 المحلول المحلول عطى قياس المحلول المحل

أ- تحقق باستعانتك بجدول التقدم أن تفاعل حمض الإيبوبروفين مع الماء محدود.

ب-اكتب كسر التفاعل Q_r لهذا التحول.

$$Q_{r,eq} = rac{x_{max} \cdot { au_f}^2}{V_0 \cdot (1 - { au_f})}$$
 : الشكل على الشكل عند التوازن تكتب على الشكل Q_r عند التوازن تكتب على الشكل

 au_{max} عنه بـ عنه بـ مسبة التقدم النهائي للتفاعل و au_{max} : التقدم الأعظمي و يعبر عنه بـ au_f

د-استنتج قيمة ثابت التوازن ٨.

ثانیاً: للتحقق من صحة المقدار المسجل علی الکیس ، نأخذ S_b من محلول مائی $V_b = 100,0~mL$ حجما $V_b = 100,0~mL$ من محلول مائی $V_b = 100,0~mL$ لهیدروکسید الصودیوم $V_b = 100,0~mL$ ترکیزه المولی $V_b = 100,0~mL$ ترکیزه محلولی $V_b = 100,0~mL$ الکیس فنحصل علی محلول مائی $V_b = 100,0~mL$ (نعتبر أن حجم المحلول $V_b = 100,0~mL$ و نضعه المحلول $V_b = 100,0~mL$ من المحلول $V_b = 100,0~mL$ و نضعه فی بیشر و نعایره بمحلول حمض کلور الهیدروجین ترکیزه المولی $V_b = 100,0~mL$ المولی $V_b = 100,0~mL$ المولی $V_b = 100,0~mL$ معادلة تفاعل المعایرة هی :

$$H_{3}O^{+}(aq)+HO^{-}(aq)=2H_{2}O\left(\,\ell\right)$$

1-ارسم بشكل تخطيطي عملية المعايرة.

E عرف نقطة التكافؤ، ثم حدّد إحداثيتي هذه النقطة -2

 $+ 0^{-}$ التي تمت معايرتها $+ 0^{-}$ التي تمت معايرتها

4-جد كمية المادة الأصلية لشوار د $(aq)^{-1}HO^{-1}$ ، ثم استنتج تلك التي تفاعلت مع الحمض RCOOHالمتواجد في الكيس. m كتلة حمض الإيبويروفين المتواجدة في الكيس، ماذا تستنتج؟

الموضوع الثاتي

التمرين الأول: (03 نقاط)

نسكب في بيشر حجما $V_1=50mL$ من محلول يود البوتاسيوم $K^+(aq)+I^-(aq)$ تركيزه المولي $V_1=50mL$ تركيزه المولي بيشر حجما $V_1=50mL$ تركيزه البوتاسيوم $C_1=3,2\times 10^{-1}mol\cdot L^{-1}$ تركيزه البوتاسيوم $V_2=50mL$ من محلول بيروكسوديكبريتات البوتاسيوم $V_2=30mL$ تركيزه المولي $V_2=0,20mol\cdot L^{-1}$ وأن الثنائيتين المشاركتين في التفاعل هما: $V_2=0,20mol\cdot L^{-1}$

- 1- اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث.
 - 2- أنشئ جدو لا لتقدم التفاعل، ثم عين المتفاعل المحد.
- ين أن التركيز المولمي لثنائي اليود المتشكل ($I_{2}(aq)$ في كل لحظة t يعطى بالعلاقة:-3

$$V = V_1 + V_2$$
 = $I_2(aq) = \frac{c_1 V_1}{2 V} - \frac{[I^-(aq)]}{2}$

-4 سمحت إحدى طرق متابعة التحول الكيميائي بحساب التركيز المولي لشوارد اليود $I^{-}(aq)$ كل $I^{-}(aq)$ في المزيج التفاعلي ودوّنت النتائج في الجدول التالي:

t (min)	0	5	10	15	20	-25
$[I^{-}(aq)](10^{-2} mol \cdot L^{-1})$	16,0	12,0	9,6	7,7	6,1	5,1
$[I_2(aq)](10^{-2} mol \cdot L^{-1})$	لط علي					

أ-أكمل الجدول، ثم ارسم المنحنى البياني f(t) = f(t) على ورقة ميليمترية ترفق مع ورقة الإجابة. $t_{1/2}$ عرق زمن نصف التفاعل $t_{1/2}$ ، ثم عيّن قيمته.

t = 20 min ، ثم استنتج سرعة اختفاء شوارد اليود في نفس اللحظة t = 20 min

التمرين الثاني: (03,25 نقطة)

1-النشاط الإشعاعي ظاهرة عفوية لتفاعل نووي.

- أ- البيكرال هي وحدة القياس المستعملة في النشاط الإشعاعي ، عرّف البيكرال.
- . γ عفكك نواة الإيريديوم ^{192}Ir يعطي نواة البلاتين ^{192}Pt المشعة أيضا. يصاحب هذا التفكك إصدار للإشعاع
 - اكتب معادلة تفكك نواة الإيريديوم، موضّحا النمط الإشعاعي الموافق لهذا التحول النووي.
 - فسر إصدار الإشعاع ٧ خلال هذا التحول.
 - . A = 3, 4×10^{14} Bq من الإيريديوم هو I g من الإيريديوم هو النشاط الإشعاعي لـ
 - جد عدد أنوية الإيريديوم N الموجودة في m=1g من العينة.
 - احسب $t_{1/2}$ نصف العمر للإيريديوم.

2- إن الاندماج النووي هو مصدر الطاقة كما في الشمس و النجوم. تحدث تفاعلات متسلسلة في الشمس والتي $4^{1}_{1}H \rightarrow {}^{4}_{2}He + 2^{0}_{1}e$ يمكن نمذجتها بالمعادلة التالية:

MeV لهذا التفاعل بوحدة الكتل الذرية u وكذا الطاقة المحررة لتشكل نواة الهيليوم ب Δm $c=3\times 10^8 m/s$: الفراغ: $u=1.66\times 10^{-27} kg$ ، سرعة الضوء في الفراغ: $u=1.66\times 10^{-27} kg$

 $1eV = 1.6 \times 10^{-19} J$ ، $N_A = 6.02 \times 10^{23} \, mol^{-1}$: ثابت أفو غادرو

النواة	⁴ He	1 ₁ p	$\frac{1}{0}n$	0 1e
الكتلة بــ (u)	4,0015	1,0073	1,0087	0,0005

التمرين الثالث: (03,5 نقطة)

نحقق الدارة الكهربائية (الشكل-1) المكونة من:

- . $E=2\ V$ مولد توتر كهربائي ثابت قوته المحركة الكهربائية -
 - . $R=100~\Omega$ ناقل أومى مقاومته -
 - . r وشیعهٔ ذاتیتها L ومقاومتها -
 - قاطعة K

1- نغلق القاطعة X-1

أ- اكتب العلاقة التي تربط التوتر الكهربائي بين طرفي الوشيعة $u_b(t)$ والتوتر الكهربائي بين طرفي E و $u_R(t)$ المقاومة

 $u_{B}(t)$ بدلالة شدة التيار الكهربائي i(t) ، ثم بدلالة $u_{b}(t)$ ، برائة $u_{b}(t)$

 $u_{R}(t)$ الله التفاضلية التي يحققها $u_{R}(t)$ للدارة.

2- يعطى حل المعادلة التفاضلية بالشكل التالي:

و m يوابت يطلب تعيينها. B، $u_R(t) = A + Be^{-mt}$

3- يسمح تجهيز الـ ExAO بمتابعة التطور الزمنى لشدة التيار الكهربائي i(t) المار في الدارة فنحصل على

المنحنى البياني (الشكل-2).

لتكن 10 شدة التيار الكهربائي الأعظمي في النظام الدائم.

 I_0 أ-جد العبارة الحرفية للشدة

 $t\left(\mathbf{s}
ight)$. r مقاومة الوشيعة الشدة، I_{0} ، ثم استنتج مقاومة الوشيعة

 τ المناب عبارة ثابت الزمن τ للدارة وبين بالتحليل البعدي أن τ متجانس مع الزمن.

د - جد بیانیا قیمهٔ τ ، ثم استنتج قیمهٔ ذاتیهٔ الوشیعهٔ L

i(mA)

التمرين الرابع: (5,03 نقطة)

نحضر محلولاً مائياً S_1 حجمه V=200~mL حجمه S_1 بتركيز مولي البنزويك $C_6H_5\,COOH$ بتركيز مولي

 $pH_1=3.1$ هذا المحلول فنجده $c_1=1.00 imes 10^{-2}~mol \cdot L^{-1}$

أ- اكتب معادلة تفاعل حمض البنزويك مع الماء.

ب- أنشئ جدو لا لتقدم هذا التفاعل.

 au_{If} ج- احسب نسبة التقدم النهائي au_{If} لهذا التفاعل . ماذا تستنتج؟

 $C_6H_5COOH(aq)/C_6H_5COO^-(aq)$ د - اكتب عبارة ثابت الحموضة K_{al}

هـ - أثبت أن $K_{al}=c_{l} imes rac{ au_{lf}^{2}}{1- au_{lf}}$: معطى بالعلاقة: $K_{al}=c_{l} imes 1$ ، ثم احسب قيمته.

 S_i من المحلول S_i و نمدّده 10 مرات بالماء فنحصل على محلول S_i لحمض البنزويك -2 بتركيز مولي c_i ، ثم نقيس D هذا المحلول فنجده D هذا المحلول فنجده D هذا المحلول فنجده D

 $.c_{1}^{'} = 1,00 \times 10^{-3} \ mol \cdot L^{-1}$:أبنت أن

 au_{-} احسب القيمة الجديدة لنسبة التقدم النهائي au_{2f} لتفاعل حمض البنزويك مع الماء.

ج- ما هو تأثير تخفيف المحاليل على نسبة التقدم النهائي؟

التمرين الخامس: (03,25 نقطة)

يتصور العلماء في الرحلات المستقبلية نحو كوكب المريخ M وضع محطة لأجهزة الاتصالات مع الأرض على أحد أقمار هذا الكوكب، مثلا على القمر فوبوس (P) Phobos).

 $\cdot G = 6,67 \times 10^{-11} \ N \cdot m^2 \cdot kg^{-2}$ المعطيات: - ثابت التجاذب الكوني: - ثابت التجاذب الكوني:

- $r=9,38 imes10^3~km~:P$ و القمر $M=9,38 imes10^3~km$
 - $\cdot m_{_{P}}$: Phobos و كتلة المريخkg : مناة المريخ $m_{_{M}}=6,44 imes10^{23}$
 - $T_{M} = 24h \, 37 \, m \, in \, 22 \, s$ دور حركة دوران المريخ M حول نفسه

نفرض أن هذه الأجسام كروية الشكل وكتلها موزعة بانتظام على حجومها وأن حركة هذا القمر دائرية وتنسب إلى مرجع غاليلي مبدؤه O مركز كوكب المريخ (الشكل-3).

الشكل -3

P القوة التي يطبقها الكوكب M على القمر فوبوس -1

2- أ- بتطبيق القانون الثاني لنيوتن، بين أن حركة مركز عطالة هذا القمر دائرية منتظمة.

P استنتج عبارة سرعة دوران القمر P حول المريخ.

 m_M و G ، r عبارة دور حركة القمر T_p حول المريخ بدلالة المقادير G ، G

4- اذكر نص القانون الثالث لكبلر و بيّن أن النسبة:

$$T_{p}$$
 قيمة نثم استنتج قيمة $\frac{T_{p}^{2}}{r^{3}} = 9,21 \times 10^{-13} \, \mathrm{s}^{2} \cdot m^{-3}$

مدارها $T_{\rm S}$ ما قيمة $T_{\rm S}$ دور المحطة في مدارها S لتكون مستقرة بالنسبة للمريخ؟ ما قيمة $T_{\rm S}$ دور المحطة في مدارها حينئذ؟

التمرين التجريبي: (03,5 نقاط)

1 - لغرض حساب زاوية الميل α لمستو يميل عن الأفق. قام فوج من التلاميذ بقذف جسم صلب (S) كتلته

في اللحظة 0=1 من النقطة 0 بسرعة m=1~kg

x ______ (S) ______ على الشكل - 4 - الشكل - 4

 u_0 نحو الأعلى وفق خط الميل الأعظم لمستو أملس (الشكل-4).

باستعمال تجهيز مناسب ، تمكن التلاميذ من دراسة حركة مركز عطالة (S) والحصول على أحد مخططات السرعة v = f(t) التالية :

أ- بتطبيق القانون الثاني لنيوتن، ادرس طبيعة حركة الجسم (S) بعد لحظة قذفه من O . - من بين المخططات الأربعة (1), (2), (3) و (4)، ما هو المخطط الموافق لحركة الجسم (3)? برر.

- احسب قيمة الزاوية α.

t=2s و t=0 و المسافة المقطوعة بين اللحظتين: t=2s

f في الحقيقة يخضع الجسم أثناء انزلاقه على المستوي المائل إلى قوة احتكاك شدتها ثابتة f

أ- أحص و مثل القوى الخارجية المؤثرة على الجسم (S).

ب-ادرس حركة مركز عطالة (S)، ثم استنتج العبارة الحرفية لتسارع حركته.

f=1,8N جاحسب قيمة التسارع من أجل

 $g=9.8 \text{ m}\cdot S^2$ يعظي: