Compare with plaintext

- Tensorflow library
- IBM library

Tensorflow library

ext

IBM library

MNIST dataset	Accuracy	MNIST dataset	Accuracy
Plaintext	0.92	Plaintext	0.92
DP (ϵ = 5)	0.74	DP (<i>ϵ</i> = 5)	0.42
DP/Plaintext	80 %	DP/Plaintext	46 %

DP ($\epsilon = 5$	5)	0.74	0.74		DP (ϵ = 5	5)		0.42			
DP/Plain	intext 80 %		DP/Plaintext		46 %						
APS dataset	Accuracy	Recall	Precision	AUC	APS dataset	Accuracy	Reca	II	Precision	AUC	
Plaintext	0.98	0.31	0.71	0.66	Plaintext	0.99	0.64	l	0.82	0.82	
DP $(\epsilon = 6)$	0.97	0.19	0.31	0.58	DP $(\epsilon = 5)$	0.88	0.42	<u>)</u>	0.06	0.65	
DP/plaint	99 %	61 %	44 %	88 %	DP/plaint	88 %	66 %	6	7 %	79 %	

ext

Accuracy vs Epsilon with Tensorflow library

Accuracy	ϵ
0.8	991217
0.78	234
0.76	11.7
0.74	4.9
0.64	0.8
0.44	0.4

Which one to choose?: as high accuracy as possible && as low ϵ as possible

Train with IBM library

Evaluate Differential Privacy in Practice (*)

- Naïve Differential Privacy and Relaxed Differential Privacy: (ϵ)-DP, (ϵ , δ)-DP
 - Relaxed DP: result in lower noise added, hence it can get lower ϵ and good utility (accuracy) but also come with additional privacy risk

	Loss	# exposed	ϵ
ϵ -DP	0.1	328	500
(ϵ,δ) –DP	0.09	329	10

Where # exposed is the number of individuals (out of 10000) exposed by membership inference attack

- Conclusion: privacy does not come for free, the thing matter is how much noise we added in.
- Reference: https://arxiv.org/pdf/1902.08874.pdf