<u>HIP 4</u>

A wire bent to make the shape of an L .15 m on each side is charged to 50mC.

a) Derive an analytical function that finds the potential everywhere.

b) Create a VPython program that uses numerical integration to calculate the potential at positions one cm apart everywhere within a space 20cm by 20 cm large that contains the charged wire.

```
GlowScript 3.1 VPython
## Electric potential of a bent charged wire ##
## Constants ##
k=1/(4*pi*8.85*10**-12) #C2/N*m2
Q=50*10**-6 # C
L=15 #Cm
n=30
dq=Q/n #C
step=1
Ix=0
ly=0
## Position of interest ##
iPos=vec(Ix,Iy,0)
## Numerical calculator for electric potential in wire along the x-axis ##
def dVxWire(A):
          dVx=0
          dx=0
          while dx<=L:
          dVx=dVx+((k*dq)/mag(A-vec(dx,0,0)))
          dx=dx+step
          return(dVx)
## Numerical calculator for electric potential in wire along the y-axis ##
def dVyWire(A):
          dVy=0
          dy=0
          while dy<=L:
          dVy=dVy+((k*dq)/mag(A-vec(0,dy,0)))
          dy=dy+step
          return(dVy)
## Nested loop that moves the interested position along the positive x axis and ##
##positive y axis, finding the electric potential at that point##
for x in range(0,20,step):
         rate(100000000)
          for y in range(0,20,step):
          rate(100000000)
         iPos=vec(Ix,Iy,0)
          ePot=dVxWire(iPos)+dVyWire(iPos)
          box(pos=iPos+vec(0,0,ePot/2),size=vec(1,1,(ePot)),color=color.yellow)
          print("Position: ",iPos," Electric Potential: ",ePot)
          ly=0
          Ix=Ix+step
```

```
1 GlowScript 3.1 VPython
 2 ## Electric potential of a bent charged wire ##
 3 ## Constants ##
 4 k=1/(4*pi*8.85*10**-12) #C2/N*m2
 5 Q=50*10**-6 # C
 6 L=15 #Cm
 7 n=30
 8 dq=Q/n #C
 9 step=1
10 Ix=0
11 Iy=0
12
13
14 ## Position of interest ##
15 iPos=vec(Ix, Iy, 0)
16
17
18
19 ## Numerical calculator for electric potential in wire along the x-axis ##
20 def dVxWire(A):
21
       dVx=0
22
       dx=0
23
    while dx<=L:
24
           dVx=dVx+((k*dq)/mag(A-vec(dx,0,0)))
25
           dx=dx+step
26
27
       return(dVx)
28
29
30 ## Numerical calculator for electric potential in wire along the y-axis ##
31 def dVyWire(A):
32
       dvy=0
33
       dy=0
34
       while dy<=L:
35
           dVy=dVy+((k*dq)/mag(A-vec(0,dy,0)))
36
           dy=dy+step
37
       return(dVy)
38
39
40 ## Nested loop that moves the interested position along the positive x axis and ##
41 ##positive y axis, finding the electric potential at that point##
42 for x in range (0, 20, step):
43
       rate (100000000)
44
       for y in range(0,20,step):
45
           rate(1000000000)
           iPos=vec(Ix, Iy, 0)
46
            ePot=dVxWire(iPos)+dVyWire(iPos)
47
48
           box(pos=iPos+vec(0,0,ePot/2),size=vec(1,1,(ePot)),color=color.yellow)
49
           Iy=Iy+step
           print("Position: ",iPos," Electric Potential: ",ePot)
50
       Iy=0
51
52
       Ix=Ix+step
53
54
```



```
Position: < 4, 10, 0 >
                        Electric Potential: 6.34968e+4 J/C
Position: < 4, 11, 0 >
                        Electric Potential: 6.08174e+4 J/C
Position: < 4, 12, 0 >
                        Electric Potential: 5.79543e+4 J/C
Position: < 4, 13, 0 >
                        Electric Potential: 5.48393e+4 J/C
                        Electric Potential: 5.14452e+4 J/C
Position: < 4, 14, 0 >
Position: < 4, 15, 0 >
                        Electric Potential: 4.78262e+4 J/C
Position: < 4, 16, 0 >
                        Electric Potential: 4.41417e+4 J/C
Position: < 4, 17, 0 >
                        Electric Potential: 4.06061e+4 J/C
                        Electric Potential: 3.73836e+4 J/C
Position: < 4, 18, 0 >
Position: < 4, 19, 0 > Electric Potential: 3.45386e+4 J/C
Position: < 5, 0, 0 >
                       Electric Potential: Infinity J/C
                       Electric Potential: 1.13009e+5 J/C
Position: < 5, 1, 0 >
Position: < 5, 2, 0 >
                       Electric Potential: 9.44013e+4 J/C
Position: < 5, 3, 0 >
                       Electric Potential: 8.44369e+4 J/C
Position: < 5, 4, 0 >
                       Electric Potential: 7.78853e+4 J/C
Position: < 5, 5, 0 >
                       Electric Potential: 7.30934e+4 J/C
Position: < 5, 6, 0 >
                       Electric Potential: 6.93123e+4 J/C
Position: < 5, 7, 0 >
                       Electric Potential: 6.61371e+4 J/C
Position: < 5, 8, 0 >
                       Electric Potential: 6.33213e+4 J/C
Position: < 5, 9, 0 >
                       Electric Potential: 6.07008e+4 J/C
Position: < 5, 10, 0 > Electric Potential: 5.8158e+4 J/C
Position: < 5, 11, 0 > Electric Potential: 5.56043e+4 J/C
Position: < 5, 12, 0 > Electric Potential: 5.29732e+4 J/C
Position: < 5, 13, 0 > Electric Potential: 5.02232e+4 J/C
Position: < 5, 14, 0 >
                        Electric Potential: 4.73466e+4 J/C
Position: < 5, 15, 0 >
                        Electric Potential: 4.43814e+4 J/C
```

c) Use your results in part a and part b to conduct a reasonableness test. To test the reasonableness I will exam the point at P = (.05, .05) m The calculation done numerically gives a result of V=7.30934 x 10^4 J/C The calculation done analytically gives a result of V=6.97 x 10^6 J/C

$$V_{tot} = \frac{\lambda}{4\pi\epsilon_{s}} \left(\int_{0}^{L} \frac{1}{\sqrt{1.05^{2} + (y-.05)^{2}}} + \int_{0}^{L} \frac{1}{\sqrt{1.05^{2} + (x-.05)^{2}}} \right)$$

$$V_{tot} = \frac{\lambda}{4\pi\epsilon_{s}} \cdot \left(2 \cdot \left| \frac{1}{\sqrt{1.05^{2} + (y-.05)^{2}}} \right| \cdot \left| \frac{1}{\sqrt{1.05^{2} + (x-.05)^{2}}} \right| \cdot \left| \frac{1}{\sqrt{1.05^{2} + (x-.05)^{2}}} \right|$$

$$V_{tot} = 6.97 \times 10^{6} \frac{\pi}{C} \text{ at point P}$$

GORY	PLARY (1.5)	MPLISHED (1)	LOPING (0.5)	GENT (0)
Statement and ion	arning tool for our class is written	plem is clearly presented for reader in n words.	olem is directly copied or is hard	p into some calculation
	etch could be dropped into a novel as it stands.	a clear sketch, larger than a credit the problem set up with important and data noted	some sketch of the problem	etch?
Tools	ate physics tools are correlated vercise in textbook quality and	ate physics tools are correlated to the . Appropriate tools include: pictures, poservational laws utilized, etc	nysics tools are correlated to the	e a few equations written.
n Solution tation	is very clearly presented with g asides or annotations	is complete and clearly presented no significant intuitive demands on the	solution I have to read between	es version of solution with only nts present
	ution can serve as solution	is larger than a credit card, tion is fluid, notation used is clear.	gure the path of your solution with	read it.
		correctly given	ions & quantities are presented s	nits at the results
n			close	ot reasonable
ant Figures		Sig Figs	ffort to use correct significant	he number from the calculator
nableness	s more than one type of ableness check.	ne clear rationale for appropriateness of tion in the setting	that the answer is reasonable but isn't given any evidence	ission
Graded			е	ut your self-assessment is from mine by at least two steps.