微分方程

习题 7-1

微分方程的基本概念

21. 试说出下列各微分方程的阶数:

(1)
$$x(y')^2 - 2yy' + x = 0$$
;

(2)
$$x^2y'' - xy' + y = 0$$
;

(3)
$$xy''' + 2y'' + x^2y = 0$$
;

(4)
$$(7x-6y) dx + (x+y) dy = 0$$
;

(5)
$$L \frac{\mathrm{d}^2 Q}{\mathrm{d}t^2} + R \frac{\mathrm{d}Q}{\mathrm{d}t} + \frac{Q}{C} = 0;$$
 (6) $\frac{\mathrm{d}\rho}{\mathrm{d}\theta} + \rho = \sin^2\theta.$

$$(6) \frac{\mathrm{d}\rho}{\mathrm{d}\theta} + \rho = \sin^2\theta$$

解 (1) 一阶;(2) 二阶;(3) 三阶;(4) 一阶;(5) 二阶;(6) 一阶.

2. 指出下列各题中的函数是否为所给微分方程的解:

(1)
$$xy' = 2y, y = 5x^2$$
;

(2)
$$y'' + y = 0$$
, $y = 3\sin x - 4\cos x$;

(3)
$$y'' - 2y' + y = 0$$
, $y = x^2 e^x$;

(4)
$$y'' - (\lambda_1 + \lambda_2)y' + \lambda_1\lambda_2y = 0, y = C_1e^{\lambda_1x} + C_2e^{\lambda_2x}$$
.

解 (1) 由
$$y = 5x^2$$
, 得 $y' = 10x$, $xy' = 10x^2 = 2y$, 故 $y = 5x^2$ 是所给微分方程的解.

(2) 由
$$y = 3\sin x - 4\cos x$$
, 得 $y' = 3\cos x + 4\sin x$, 进而得

$$y'' = -3\sin x + 4\cos x,$$

于是

$$y'' + y = (-3\sin x + 4\cos x) + (3\sin x - 4\cos x) = 0$$

故 $y = 3\sin x - 4\cos x$ 是所给微分方程的解.

(3) 由
$$y = x^2 e^x$$
, 得 $y' = 2x e^x + x^2 e^x = (2x + x^2) e^x$, 进而得
 $y'' = (2 + 2x) e^x + (2x + x^2) e^x = (2 + 4x + x^2) e^x$,

于是

$$y'' - 2y' + y = [(2 + 4x + x^2) - 2(2x + x^2) + x^2]e^x = 2e^x \neq 0$$

故 $y = x^2 e^x$ 不是所给微分方程的解.

(4) 由
$$y=C_1\mathrm{e}^{\lambda_1x}+C_2\mathrm{e}^{\lambda_2x}$$
,得 $y'=\lambda_1C_1\mathrm{e}^{\lambda_1x}+\lambda_2C_2\mathrm{e}^{\lambda_2x}$,进而得

$$y'' \; = \; \lambda_1^{\,2} C_1 \, \mathrm{e}^{\,\lambda_1 x} \; + \; \lambda_2^{\,2} C_2 \, \mathrm{e}^{\,\lambda_2 x} \; , \label{eq:y''}$$

于是

$$y'' - (\lambda_1 + \lambda_2)y' + \lambda_1\lambda_2y$$

$$= \lambda_1^2 C_1 e^{\lambda_1 x} + \lambda_2^2 C_2 e^{\lambda_2 x} - \lambda_1(\lambda_1 + \lambda_2) C_1 e^{\lambda_1 x} - \lambda_2(\lambda_1 + \lambda_2) C_2 e^{\lambda_2 x} + \lambda_1\lambda_2 C_1 e^{\lambda_1 x} + \lambda_1\lambda_2 C_2 e^{\lambda_2 x} = 0,$$

公 大学VIP

即

$$(D^3 + 3D^2 + 2D)x = -e^t.$$
 (3)

方程③对应齐次方程的特征方程为 $r(r^2+3r+2)=0$,有根 $r_1=0$, $r_2=-1$, $r_3=-2$. 而 $f(t)=-\mathrm{e}^t$, $\lambda=1$ 不是特征方程的根,故令 $x^*=A\mathrm{e}^t$ 是方程③的特解,代入③中并消去 e^t ,可得 $A=-\frac{1}{6}$,即 $x^*=-\frac{1}{6}\mathrm{e}^t$,于是方程③的通解为

$$x = C_1 + C_2 e^{-t} + C_3 e^{-2t} - \frac{1}{6} e^t.$$

又由方程①得

$$(D + 1)y = -(D + 1)^2x = -D^2x - 2Dx - x$$

= $-C_1 - C_3e^{-2t} + \frac{2}{3}e^t$,

即
$$y' + y = -C_1 - C_3 e^{-2t} + \frac{2}{3} e^t$$
,可解得

$$\begin{split} y &= \mathrm{e}^{-\int \! \mathrm{d}t} \bigg[\int \bigg(-C_1 - C_3 \mathrm{e}^{-2t} + \frac{2}{3} \mathrm{e}^t \bigg) \mathrm{e}^{\int \! \mathrm{d}t} \mathrm{d}t + C_4 \bigg] \\ &= \mathrm{e}^{-t} \bigg[\int \bigg(-C_1 \mathrm{e}^t - C_3 \mathrm{e}^{-t} + \frac{2}{3} \mathrm{e}^{2t} \bigg) \mathrm{d}t + C_4 \bigg] \\ &= -C_1 + C_3 \mathrm{e}^{-2t} + \frac{1}{3} \mathrm{e}^t + C_4 \mathrm{e}^{-t}. \end{split}$$

故方程组的通解为

$$\begin{cases} x = C_1 + C_2 e^{-t} + C_3 e^{-2t} - \frac{1}{6} e^{t}, \\ y = C_4 e^{-t} - C_1 + C_3 e^{-2t} + \frac{1}{3} e^{t}. \end{cases}$$