CANopen 中 Timer.h 和 can.h 与库头文件中的重名了,需要修改 CANopen 中的文件名,而且 CANopen 源文件中引用该头文件的地方也需要修改过来,改名加一个 CANopen 前缀。 driverlib.lib 文件可能需要更新,之前遇到没有 CANbitset()函数吧!更新一下就可以了。

要用 ICDI 设置断点调试,需要对工程进行设置,之前是自己新建的工程,默认是选择左边的 Use Simulator, 至少调试时提示不能写某地址吧!选择右边的后就可以调试了,得记住!

Use Simulate Limit Speed		Stellaris ICDI	Settings
✓ Load Applica nitialization File:		Load Application at Sta Initialization File:	
Bestern Debi	Edit.		Edit
	g Session Settings ints	Restore Debug Session S	
	Vindows & Performance Analyzer	▼ Watch Windows	TOOLDOX
✓ Memory	Display	✓ Memory Display	
CPU DLL:	Parameter:	Driver DLL: Paramete	er: I
SARMCM3.DLI		SARMCM3.DLL	
Dialog DLL:	Parameter:	Dialog DLL: Paramete	er:
DLM.DLL	-oLM3S8962	TLM.DLL PLM3S8	1002

Keil 里全局查找 Message 时,在.h 文件中没有找到,其实是由 Message 的定义的吗,估计没有包含进入工程吧! 我们只是包含了 h 文件的目录,并没有将其加入工程; 这个真需要注意!可以将头文件添加进工程

需要实现的函数

setTimer()

getElapsedTime()

UNS8 canSend(CAN_PORT notused, Message *m)注意,之前原形弄错了,致使浪费了一点调试时间,程序不能发送心跳报文,

当然还有定时器中断以及 CAN 接收中断处理,

row_number 和 last_timer_raw 都是 16 位无符号整型,last_timer_raw = -1; row_number=0; if (row_number == (TIMER_HANDLE)last_timer_raw + 1) last_timer_raw++; 这里必须要进行强制类型转换,否则右边为 65536,经过测试确认的。

编译错误:

- 1. SDO 中发现 SDO_BLOCK_SIZE 常量未定义,在 SDO.c 中增加定义#define SDO_BLOCK_SIZE 10
- 2. CO Data 结构体中用到了未定义的 ObjDict obj100C, 故在对象字典中增加定义
- 3. Link 错误:比如未实现 void setTimer(TIMEVAL value); TIMEVAL getElapsedTime(void); 等

等。这个是因为没有实现上述函数,其实实现这几个函数是移植的关键: 在

SDO 测试结果截图, 读取对象字典对象索引 0x1017 的第 1 个数据,

```
/* index 0x1017 : Producer Heartbeat Time. */
                               UNS16 ObjDict obj1017 = 0x2710; /* 10000 */
                               ODCallback_t ObjDict_Index1017_callbacks[] =
                                   NULL,
                                };
                               subindex ObjDict Index1017[] =
                                   { RW, uint16, sizeof (UNS16), (void*)&ObjDict obj1017 }
                                1;
 发送格式: 正常发送 ▼ 6 每次发送单帧 C 每次发送 10 帧 F 帧ID每发送一帧递增
    选择CAN路数: 1
                             帧类型: 标准帧 ▼ 帧ID: 00000601 数据: 40 17 10 00 00 00 00
                                                                                                        发送
     启动CAN 复位CAN
                             帧格式: 数据帧
                                              ▼ 发送次数: 1 次 每次发送间隔: 1000
                                                                                                 ms
                                                                                                         停止
                                                                帧格式 帧类型 数据长度 数据
序号
          传输方向 第几路CAN 时间标识
                                                   帧ID
                                 0x00bdee44
0x00be3782
                                                0x00000701
                                                                            标准帧
标准帧
标准帧
                                                                0x01
                                                0x00000701
0x00000701
                                                                                     0x01
                                                                            标准帧
标准帧
                                 0x00bec9fe
0x00bf133c
00000094
                                                0x00000701
                                                                                     0x01
000000095
000000096
                                 0x00bf5c7a
0x00bfa5b8
                                                0x00000701
0x00000701
                                                                            标准帧
标准帧
                                                                                     0x01
0x01
00000097
00000098
                                 0x00bfeef6
0x00c03834
                                                0x00000701
0x00000701
                                                                            (标标标标标标标标标标标标标格准准准准准准准准准准准准准准准准准准准准准
                                                                                     0x01
0x01
                                 0x00c08172
0x00c0cb46
                                                0x00000701
0x00000701
                                                                                     0x01
0x01
                                 0x00c11484
0x00c15dc2
                                                0x00000701
0x00000701
                                 0x00cla700
无
0x00cle198
                                                0x00000701
0x00000601
                                                                                     0x01
                                                                                              40 17 10 00 00 00 00 00 00
4b 17 10 00 10 27 00 00
05
                                                                                     0x08
0x08
                                                0x00000581
                                  0x00c2397c
                                                0x00000701
                                                                                     0x01
                                                                            你标准帧 标准性帧 标准性帧
00000108
00000109
                                  0x00c282ba
0x00c2cbf8
                                                0x00000701
0x00000701
                                                                                     0x01
0x01
00000110
00000111
                                  0x00e31536
0x00e35f0a
                                                0x00000701
0x00000701
                                                                                     0x01
0x01
```

23 00 18 01 01 02 00 00//改写索引 0x1800 子索引 0x01 即 TPDO1 对应的帧 ID 为 0x00000201 40 00 18 01 00 00 00 00 //读取索引 0x1800 子索引 0x01 即 TPDO1 对应的帧 ID 下图测试结果显示正确实现了 SDO 读写功能

0x01

0x00000701

序号	传输方向	第几路CAN	时间标识	帧ID	帧格式	帧类型	数据长度	数据
00000301	接收		0x03c993ea	0x00000202	数据帧	标准帧	0x01	33
00000302	接收		0x03c9ae48	0x00000701	数据帧	标准帧	0x01	05
00000303	接收		0x03c9f786	0x00000701	数据帧	标准帧	0x01	05
00000304	接收		0x03ca40c4	0x00000701	数据帧	标准帧	0x01	05
00000305	接收		0x03ca8a02	0x00000701	数据帧	标准帧	0x01	05
00000306	接收		0x03cad3d6	0x00000701	数据帧	标准帧	0x01	05
00000307	接收		0x03cb1d14	0x00000701	数据帧	标准帧	0x01	05
00000308	接收		0x03cb6652	0x00000701	数据帧	标准帧	0x01	05
00000309	发送		无	0x00000601	数据帧	标准帧	0x08	40 00 18 01 00 00 00 00
00000310	接收		0x03cbaae0	0x00000581	数据帧	标准帧	0x08	43 00 18 01 02 02 00 00
00000311	接收		0x03cbaf90	0x00000701	数据帧	标准帧	0x01	05
00000312	接收		0x03cbf8ce	0x00000701	数据帧	标准帧	0x01	05
00000313	接收		0x03cc420c	0x00000701	数据帧	标准帧	0x01	05
00000314	接收		0x03cc8b4a	0x00000701	数据帧	标准帧	0x01	05
00000315	发送		无	0x00000601	数据帧	标准帧	0x08	23 00 18 01 01 02 00 00
00000316	接收		0x03ccacb0	0x00000581	数据帧	标准帧	0x08	60 00 18 01 00 00 00 00
00000317	接收		0x03ccd488	0x00000701	数据帧	标准帧	0x01	05
00000318	接收		0x03ed1de6	0x00000701	数据帧	标准帧	0x01	05
00000319	接收		0x03cd6704	0x00000701	数据帧	标准帧	0x01	05
00000320	接收		0x03cdb0d8	0x00000701	数据帧	标准帧	0x01	05
00000321	发送		无	0x00000601	数据帧	标准帧	0x08	40 00 18 01 00 00 00 00
00000322	接收		0x03ede71e	0x00000581	数据帧	标准帧	0x08	43 00 18 01 01 02 00 00
00000323	接收		0x03cdfa16	0x00000701	数据帧	标准帧	0x01	05
00000324	接收		0x03ce4354	0x00000701	数据帧	标准帧	0x01	05
00000325	发送		无	0x00000080	数据帧	标准帧	0x08	40 00 18 01 00 00 00 00
00000326	接收		0x03ce7c2a	0x00000201	数据帧	标准帧	0x01	47
00000327	接收		0x03ce8c92	0x00000701	数据帧	标准帧	0x01	05
00000328	接收	1	0x03ced5d0	0x00000701	数据帧	标准帧	0x01	05
00000329	接收	1	0x03cf1f0e	0x00000701	数据帧	标准帧	0x01	05

To read the data 0xd0d1... in the server node object dictionary, the client node sends :

The client request:

	600 + Serv NodeId	0	40	Index	Sub index	00	00	00	00
	The serve	r re	esponds	(if success)	:				
ata length = 1 byte	580 + Serv NodeId	0	4F	Index	Sub index	dl	x	x	x
	The serve	r re	esponds	(if success)	:	3 3	X : t	ındefin	ed. Shou
ata length = 2 bytes	580 + Serv NodeId	0	4B	Index	Sub index	d1	d0	x	x
	The serve	r re	esponds	(if success)	:		X : t	ındefin	ed. Shou
ata length = 3 bytes	580 + Serv NodeId	0	47	Index	Sub index	d2	d1	d0	x
	The serve	т ге	esponds	(if success)	:		X : u	ındefin	ed. Soul
ata length = 4 bytes	580 + Serv NodeId	0	43	Index	Sub index	d3	d2	dl	d0