Assignment RNAseq analysis, Systems Biology II, April, 2019

Mrinal Vashisth

in_class_ex_1

Log report from alignment of mouse rnaseq data to human reference

HISAT2 summary stats:

Total reads: 5000000

Aligned 0 time: 4230166 (84.60%)

Aligned 1 time: 361379 (7.23%)

Aligned >1 times: 408455 (8.17%)

Overall alignment rate: 15.40%

in_class_ex_2

plotting PCA for the given data

dataset_1

Mrinal Vashisth 22 April 2019

read the dataset into R

library(GEOquery) library(limma) #library(org.Mm.eg.db) library(org.Hs.eg.db)

for collapseBy

source("//home/manu/Documents/assignment/dataset_3_neuro/functions.r")

dir.create("cache")

res <- getGEO("GSE53890", AnnotGPL = TRUE, destdir="cache")[[1]] # info: Age effect on normal adult brain: frontal cortical region

Collapsing the data

for collapseBy

```
source("//home/student/deseq/functions.R")
str(experimentData(res)) str(pData(res)) head(fData(res)) res$Sex:ch1
res$condition <- gsub("\\+", "_", res$Sex:ch1) res$condition
res <- collapseBy(res, fData(res)$Gene symbol, FUN=median) res <-
res[!grepl("//", rownames(res)), ] res <- res[rownames(res) != "", ]</pre>
```

there is a lot of garbage there

```
summary(exprs(res.qnorm)) exprs(res.qnorm) <-
normalizeBetweenArrays(log2(exprs(res.qnorm)+1),
method="quantile") summary(exprs(res.qnorm))
res.qnorm.top12K <- res.qnorm res.qnorm.top12K <-
res.qnorm.top12K[head(order(apply(exprs(res.qnorm.top12K), 1,
mean), decreasing = TRUE), 12000), ]
res.design <- model.matrix(~0+condition,
data=pData(res.qnorm.top12K))
fit <- ImFit(res.qnorm.top12K, res.design)
fit2 <- contrasts.fit(fit, makeContrasts(conditionFemale-conditionMale,
levels=res.design))
fit2 <- eBayes(fit2) de <- topTable(fit2, adjust.method="BH",
number=Inf) head(de) library(data.table) de <- as.data.table(de,
keep.rownames=TRUE) de[entrez == "REST"]</pre>
```

FGSEA

```
de2 <- data.frame(de entrez,de t) colnames(de2) <- c('ENTREZ',
'stat')
library(fgsea)
ranks <- deframe(de2) head(ranks, 20)</pre>
```

Load the pathways into a named list

library(msigdbr)

m_df <- msigdbr(species = "Homo sapiens") m_df pathways <- split(m_df $human_gene_symbol, m_df$ gs_name)

filter the list to include only hallmark pathways

library(data.table)

```
pathways.hallmark <- m_df[m_df$gs_name %like% "HALLMARK_", ]
pathways.hallmark <- split(pathways.hallmark
  human_ene_symbol,pathways.hallmark gs name)</pre>
```

Show the first few pathways, and within those, show only the first few genes.

pathways.hallmark %>% head() %>% lapply(head)

running the fgsea algorithm on hallmark.pathways

```
\label{eq:fgseaRes} $$ $$ sea(pathways=pathways.hallmark, stats=ranks, nperm=1000) $$
```

fgseaResTidy <- fgseaRes %>% as_tibble() %>% arrange(desc(NES)) # ggplotting for hallmark pathways

```
pdf("fgseaResTidy.pdf", width = 100, height = 1000)
```

```
ggplot(fgseaResTidy, aes(reorder(pathway, NES), NES)) + geom_col(aes(fill=pval<0.05)) + coord_flip() + labs(x="Pathway", y="Normalized Enrichment Score", title="Hallmark pathways NES from GSEA") + theme_minimal()
```

dev.off()

let's look at all pathways and select for

pathways associated with brain in significance threshold

running the fgsea algorithm on all pathways

```
fgseaRes.all <- fgsea(pathways=pathways, stats=ranks, nperm=1000) number <- data.frame(grep("REST", fgseaRes.all fgseaRes.all, rownames(fgseaRes.all)\\ leadingEdge&colnames(number) <- c('row_number')REST <- subset&connumber) row number)
```

using tidy to view pretty results

fgseaResTidy <- REST %>% as_tibble() %>% arrange(desc(NES)) # Show in a nice table for all pathways fgseaResTidy %>% dplyr::select(leadingEdge, -ES, -nMoreExtreme) %>% arrange(padj) %>% DT::datatable()

ggplotting for all pathways

pdf("fgseaResTidy_REST.pdf", width=100, height=1000)

ggplot(fgseaResTidy, aes(reorder(pathway, NES), NES)) + geom_col(aes(fill=pval<0.05)) + coord_flip() + labs(x="Pathway", y="Normalized Enrichment Score", title="All pathways NES from GSEA") + theme_minimal()

dev.off()

We can see that two pathways are significant, associated with

ion channel activity

scale rows

xt<-t(as.matrix(res.qnorm.top12K)) xts<-scale(xt) xtst<-t(xts) xtst <-na.omit(xtst)

only grab top 1000 by p-value

h < -head(xtst, n = 1000L)

set layout options - adjust if labels get cut off

pdf("heatmap.pdf",width=500, height=500)

draw heatmap allowing larger margins and adjusting row label font size

heatmap(h)

output plot to file

dev.off()

install.packages('devtools')

```
library(devtools) # devtools::install_github("sinhrks/ggfortify")
library(ggfortify)
pdf('box_dataset1.pdf')
ggplot(stack(data.frame(t(xt))), aes(x = ind, y = values)) +
geom_boxplot()
dev.off()
```


Box plot of all samples

Heatmap of top 1000 genes

Expression analysis dataset_2 Mrinal Vashisth 22 April 2019 read the dataset into R library(GEOquery) library(limma) library(org.Mm.eg.db) library(org.Hs.eg.db)

for collapseBy

```
source("//home/manu/Documents/assignment/dataset_3_neuro/functio
ns.r")
dir.create("cache")
res <- getGEO("GSE28790", AnnotGPL = TRUE, destdir="cache")[[1]]
# info: SIRT1 impact on global gene expression in the brain</pre>
```

Collapsing the data

for collapseBy

```
source("//home/student/deseq/functions.R")
str(experimentData(res)) str(pData(res)) head(fData(res)) res$title
res$condition <- c("BSKO", "BSKO", "BSKO", "BSKO", "WT", "WT",
"WT", "WT") res$condition
res <- collapseBy(res, fData(res)$Gene symbol, FUN=median) res <-
res[!grepl("///", rownames(res)), ] res <- res[rownames(res) != "", ]</pre>
```

there is a lot of garbage there

```
fData(res) <- data.frame(row.names = rownames(res))
fData(res)$entrez <- row.names(fData(res))
fData(res) org.Mm.eg.db, keys = fData(res)
                                           entrez.
                 symbol<-mapIdsi
keytype="SYMBOL", column="ENTREZID" )
res.qnorm <- res
summary(exprs(res.qnorm)) exprs(res.qnorm) <-</pre>
normalizeBetweenArrays(log2(exprs(res.gnorm)+1),
method="quantile") summary(exprs(res.gnorm))
res.anorm.top12K <- res.anorm res.anorm.top12K <-
res.gnorm.top12K[head(order(apply(exprs(res.gnorm.top12K), 1,
mean), decreasing = TRUE), 12000), ]
res.design <- model.matrix(~0+condition,
data=pData(res.gnorm.top12K))
fit <- ImFit(res.gnorm.top12K, res.design)
```

```
fit2 <- contrasts.fit(fit, makeContrasts(conditionBSKO-conditionWT, levels=res.design))

fit2 <- eBayes(fit2) de <- topTable(fit2, adjust.method="BH", number=Inf) head(de)

library(data.table) de <- as.data.table(de, keep.rownames=TRUE) de[entrez == "Sirt2"] de[entrez == "Sirt4"] de[entrez == "Sirt7"]
```

FGSEA

```
de2 <- data.frame(de entrez,de t) colnames(de2) <- c('ENTREZ',
'stat')
library(fgsea)
ranks <- deframe(de2) head(ranks, 20)</pre>
```

Load the pathways into a named list

library(msigdbr)

```
m_df <- msigdbr(species = "Homo sapiens") m_df pathways <- split(m_df human_gene_symbol, m_df gs_name)
```

filter the list to include only hallmark pathways

library(data.table)

```
pathways.hallmark <- m_df[m_df$gs_name %like% "HALLMARK_", ]
pathways.hallmark <- split(pathways.hallmark
  human_ene_ymbol,pathways.hallmark gs name)</pre>
```

Show the first few pathways, and within those, show only the first few genes.

pathways.hallmark %>% head() %>% lapply(head)

running the fgsea algorithm on hallmark.pathways

fgseaRes <- fgsea(pathways=pathways.hallmark, stats=ranks, nperm=1000)

fgseaResTidy <- fgseaRes %>% as_tibble() %>% arrange(desc(NES)) # ggplotting for hallmark pathways

pdf("fgseaResTidy.pdf", width = 20, height = 20)

ggplot(fgseaResTidy, aes(reorder(pathway, NES), NES)) + geom_col(aes(fill=pval<0.05)) + coord_flip() + labs(x="Pathway", y="Normalized Enrichment Score", title="Hallmark pathways NES from GSEA") + theme_minimal()

dev.off()

We can see that two of the hallmark pathways are significant

let's look at all pathways and select for

pathways associated with SIRT in significance threshold

running the fgsea algorithm on all pathways

fgseaRes.all <- fgsea(pathways=pathways, stats=ranks, nperm=1000)

number <- data.frame(grep("Sirt",
fgseaRes.all\$leadingEdge)) #
colnames(number) <- c('row_number') # Sirt <subset(fgseaRes.all, rownames(fgseaRes.all)
%in% number\$row number)</pre>

using tidy to view pretty results

fgseaResTidy <- fgseaRes.all %>% as_tibble() %>% arrange(desc(NES)) # Show in a nice table for all pathways fgseaResTidy %>% dplyr::select(-leadingEdge, -ES, -nMoreExtreme) %>% arrange(padj) %>% DT::datatable()

ggplotting for all pathways

```
pdf("fgseaResTidy_all.pdf", width=20, height=500)
ggplot(fgseaResTidy, aes(reorder(pathway, NES), NES)) +
geom_col(aes(fill=pval<0.05)) + coord_flip() + labs(x="Pathway",
y="Normalized Enrichment Score", title="All pathways NES from
GSEA") + theme_minimal()
dev.off()</pre>
```

plot pca

```
df_12k <- data.frame(res.qnorm.top12K@assayData$exprs)
colnames(df_12k) <- c('BSKO', 'BSKO', 'BSKO', 'BSKO', 'WT', 'WT', 'WT',
'WT') p <- prcomp(na.omit(df_12k))
devtools::install_github("sinhrks/ggfortify") library(ggfortify)
ggplot2::autoplot(p, label = FALSE, shape = FALSE, loadings.label =
TRUE)
ggplot(stack(df_12k), aes(x = ind, y = values)) + geom_boxplot()</pre>
```

We can see that there are various activated pathways

SIRT1 is a NAD dependent deacetylase that provides coping

mechanism against nutritional changes in cell.

It is shown that by activation of genes encoding for

MAO-A (monoamine oxidase). SSRIs are inhibited.

SSRIs play a key role in uptake of serotonin and

thus manifestation of symptoms of depression.

In analysis we can see that indeed expression

of this gene is increased. Further, MAO-A inhibitors or SSRIs

(selective serotonin reuptake inhibitors)

normalise anxiety differences between wildtype and mutant animals.

From network analysis we can see the involvement

in Sleep Cycle. Perhaps a disrupted sleep cycle and

altered cell signalling response is promoting anxious behaviour in these mice.

PCA and box plot for the data.

transferred to be the second of the second o

Enriched pathways for Sirt gene.

Heatmap of the data.

Enriched hallmark pathways for Sirt gene.

dataset 3

Mrinal Vashisth 23 April 2019

read the dataset into R

library(GEOquery) library(limma) # library(org.Mm.eg.db)
library(org.Hs.eg.db)

for collapseBy

source("//home/manu/Documents/assignment/dataset_3_neuro/functions.r")

dir.create("cache")

to get the dataset uncomment the comment line below and execute

res <- getGEO("GSE19404", AnnotGPL = TRUE, destdir="cache")[[1]] # info: SIRT1 impact on global gene expression in the brain #

Collapsing the data

for collapseBy

res\$title

library(readr) annotate <- read_delim("~/Desktop/annotate", " ",
escape_double = FALSE, col_names = FALSE, trim_ws = TRUE)
View(annotate)</pre>

annotate <- t(annotate) res condition < -NULLres condition <- annotate res\$condition

res <- collapseBy(res, fData(res)\$Gene symbol, FUN=median) res <- res[!grepl("///", rownames(res)),] res <- res[rownames(res) != "",]

there is a lot of garbage there

```
fData(res) <- data.frame(row.names = rownames(res))
fData(res)$entrez <- row.names(fData(res))
fData(res) org.Mm.eg.db, keys = fData(res)
                                            entrez.
                 symbol<-mapIdsi
keytype="SYMBOL", column="ENTREZID" )
res.gnorm <- res
summary(exprs(res.anorm)) exprs(res.anorm) <-
normalizeBetweenArrays(log2(exprs(res.gnorm)+1),
method="guantile") summary(exprs(res.gnorm))
res.gnorm.top12K <- res.gnorm res.gnorm.top12K <-
res.gnorm.top12K[head(order(apply(exprs(res.gnorm.top12K), 1,
mean), decreasing = TRUE), 12000), ]
res.design <- model.matrix(~0+condition,
data=pData(res.gnorm.top12K))
intermediate <- data.frame(res.design) colnames(intermediate) <-
c("ATRT", "CNS", "Medulloblastoma", "Normal", "Pineoblastoma")
rm(res.design) res.design <- as.matrix(intermediate)
fit <- ImFit(res.gnorm.top12K, res.design)
fit2 <- contrasts.fit(fit, makeContrasts(ATRT-Normal, CNS-Normal.</p>
Medulloblastoma-Normal, Pineoblastoma-Normal, levels=res.design))
fit2 <- eBayes(fit2) de <- topTable(fit2, adjust.method="BH",
number=Inf) head(de)
library(data.table) de <- as.data.table(de, keep.rownames=TRUE)
entry <- function(){ item <-
data.frame("CDK4", "SEC61G", "TSPAN31", "LANCL2",
"EGFR", "APC", "ATM", "BMPR1A", "BRCA1",
"BRCA2", "CDK4", "CDKN2A", "CREBBP", "EGFR",
"EP300", "ETV6", "FHIT", "FLT3", "HRAS", "KIT",
"MET", "MLH1", "NTRK1", "PAX8", "PDGFRA",
"PRCC", "PRKAR1A", "PTEN", "RET", "STK11", "TFE3", "TP53", "WWOX")
item<- t(item) rownames(item) <- NULL
x < - for (i in item) \{ print(de[entrez == i]) \}
}
```

```
return(x)
}
entry()
```

FGSEA

install.packages('fgsea')

install.packages('tibble')

```
library(fgsea) library(tibble)
de2 <- data.frame(de entrez,de P.Value) colnames(de2) <-
c('ENTREZ', 'stat')
ranks <- deframe(de2) head(ranks, 20)</pre>
```

Load the pathways into a named list

install.packages('msigdbr')

```
library(msigdbr)
```

```
m_df <- msigdbr(species = "Homo sapiens") m_df pathways <- split(m_df human_qene_symbol, m_df gs_name)
```

filter the list to include only hallmark pathways

```
library(data.table)
```

```
pathways.hallmark <- m_df[m_df$gs_name %like% "HALLMARK_", ] pathways.hallmark <- split(pathways.hallmark human_gene_symbol,pathways.hallmark gs_name)
```

Show the first few pathways, and within those, show only the first few genes.

pathways.hallmark %>% head() %>% lapply(head)

running the fgsea algorithm on hallmark.pathways

fgseaRes <- fgsea(pathways=pathways.hallmark, stats=ranks, nperm=1000)

fgseaResTidy <- fgseaRes %>% as_tibble() %>% arrange(desc(NES)) # ggplotting for hallmark pathways

library(ggplot2) pdf("fgseaResTidy.pdf", width = 20, height = 20)

ggplot(fgseaResTidy, aes(reorder(pathway, NES), NES)) + geom_col(aes(fill=pval<0.05)) + coord_flip() + labs(x="Pathway", y="Normalized Enrichment Score", title="Hallmark pathways NES from GSEA") + theme_minimal()

dev.off()

We can sees seven significant hallmark pathways

let's look at all pathways and select for

pathways associated with genes of intrest in significance threshold

running the fgsea algorithm on all pathways

fgseaRes.all <- fgsea(pathways=pathways, stats=ranks, nperm=1000)

searching for the genes in pathway and appending the rownumbers

sink('numbers.txt')

```
options(max.print=2000) for(i in item){ print(grep(i, fgseaRes.all$leadingEdge)) }
sink()
```

we have to do a lot of cleaning of the data before importing it as csv

getting only unique values from all numbers

unique_vals <- data.frame(as.integer(unique(unlist(numbers))))
colnames(unique_vals) <- c('row_number') final <- subset(fgseaRes.all,
rownames(fgseaRes.all) %in% unique vals\$row number)</pre>

using tidy to view pretty results

install.packages('DT')

fgseaResTidy <- fgseaRes.all %>% as_tibble() %>% arrange(desc(NES))

Show in a nice table for all pathways

library(DT)

fgseaResTidy %>% dplyr::select(-leadingEdge, -ES, -nMoreExtreme) %>% arrange(padj) %>% DT::datatable()

ggplotting for all pathways

ggplot(fgseaResTidy, aes(reorder(pathway, NES), NES)) + geom_col(aes(fill=pval<0.05)) + coord_flip() + labs(x="Pathway", y="Normalized Enrichment Score", title="All pathways NES from GSEA") + theme minimal()

plot pca

df_12k <- data.frame(res.qnorm.top12K@assayData\$exprs)
colnames(df 12k) <- annotate p <- prcomp(na.omit(df 12k))</pre>

install.packages('devtools')

library(devtools) # devtools::install_github("sinhrks/ggfortify")
library(ggfortify)

ggplot2::autoplot(p, label = TRUE, shape = FALSE, loadings.label = TRUE)

 $ggplot(stack(df_12k), aes(x = ind, y = values)) + geom_boxplot()$

In the paper, authors identified similarities

in transcriptomes of distinct human brain tumor,

specifically glioblastomas of TCGA classical subtype and oligodendroglial tumors, Philips proferative gliomas and AT/RT.

PCA and box plot of the data

Pathway analysis for all 33 genes. A long list of \sim 5000 pathways.

Hallmark pathways