	TP3 Pression - Sanna Blanchon	Pt		A	в с	D	Note	
I.	Régulation de pression simple boucle							
1	Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.	0,5	Α				0,5	
2	Régler votre maquette pour avoir une mesure de 50% pour une commande de 50%.	0,5	Α				0,5	
3	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	Α				3	
4	Déterminer un correcteur PI (avec Ti = τ) qui minimise le temps de réponse ainsi que le dépassement du système en boucle fermée, à l'aide du logiciel EASYREG. On donnera la réponse théorique obtenue.	2	А				2	
5	Donner pour ce réglage les valeurs théoriques du temps de réponse à ±5%, ainsi que la valeur du premier dépassement.	1,5	Α				1,5	
6	Déduire de la question 4 les valeurs de Xp, Ti et Td du régulateur mixte.	1	D				0,05	
7	Comparer les performances théoriques avec les performances réelles.	1	D				0,05	
II.	Supervision							
1	commande, la consigne et le mode de fonctionnement par l'intermédiaire d'Intouch. La mesure s'affichera en temps	3	С				1,05	
III.	Profil de consigne							
1	Ajouter un bouton "Start" sur la vue du superviseur.	0,5	D				0,025	
2	Proposer une solution qui réponde au cahier des charges.	3	D				0,15	
3	Implémenter votre solution sur le régulateur.	1	D				0,05	
4	Réaliser des mesures qui permettent la validation de votre solution.	3	D				0,15	
		Note: 9,025/20						

Tp3 pression

I. Régulation de pression simple boucle

1. Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.

PID PIC1

SORTIE VANNE V1

2. Régler votre maquette pour avoir une mesure de 50% pour une commande de 50%.

3. Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.

$$40\%PE = 3,68$$

$$28\% PE = 2,576$$

$$k = \Delta X/\Delta Y = 9,2/10 = 0,92$$

$$T=2,8(t1-t0)-1,8(t2-t0)=2,8(4,9-0)-1,8(5,2-0)$$

 $T=4,36s$

$$\Gamma$$
= 5,5(t2-t1) = 5,5 (5,2-4,9) = 1,65s

4. Déterminer un correcteur PI (avec Ti = τ) qui minimise le temps de réponse ainsi que le dépassement du système en boucle fermée, à l'aide du logiciel <u>EASYREG</u>. On donnera la réponse théorique obtenue.

A=0,2 xp= 100/0,2 = 500ti= Γ = 1,65s correcteur PI donc Td= 0 5. Donner pour ce réglage les valeurs théoriques du temps de réponse à $\pm 5\%$, ainsi que la valeur du premier dépassement.

Trep+/-5%= 15s

6. Déduire de la question 4 les valeurs de Xp, Ti et Td du régulateur mixte. $kr=T/\Gamma=4,36/1,65=2,64$

A=
$$\frac{0.83}{K}$$
 X(0.4+ $\frac{1}{Kr}$)
A= $\frac{0.83}{0.92}$ X(0.4+ $\frac{1}{2.64}$)
A=0.70
Xp= 100/0.7= 143

$$Td = \frac{T}{Kr + 2,5}$$

$$Td = \frac{4,36}{2,64 + 2,5}$$

$$Td = 0,85s$$

7. Comparer les performances théoriques avec les performances réelles.

Donc il est préférable de choisir le réglage théorique

II. Supervision

1. Réaliser la programmation du superviseur en respectant le synopsis ci-dessous. On devra pouvoir contrôler la commande, la consigne et le mode de fonctionnement par l'intermédiaire d'Intouch. La mesure s'affichera en temps réel.

III. Profil de consigne

<u>Cahier des charges</u>: On désire rajouter au fonctionnement normal, un fonctionnement "profil". Après un appui sur le bouton "Start", la consigne devra suivre le profil ci-dessous.

- 2. Proposer une solution qui réponde au cahier des charges. , on réalise un grafcet
 - 3. Implémenter votre solution sur le régulateur.

Je ne sais pas

4. Réaliser des mesures qui permettent la validation de votre solution.

Je ne sais pas