Table 1. Full EFCs with a maximum power density (P_{max}) greater than 1 mW cm⁻²

Glucose/O ₂ EFCs								
Bioanode	Biocathode	Note	P _{max} (mW cm ⁻	OCV (V)	Stability	Ref.		
CF/GDH/DI/VK ₃ /NADH (1.5 mm thick); MET; 400 mM glucose	CF/K ₃ [Fe(CN) ₆]/BOD; MET; Air-breathing	Two- compartment	1.45	0.8	Continuous operation over 2 h	1		
MWCNTs-PEDOT yarn/Os polymer(I)/GOx; MET; 60 mM glucose	MWCNTs-PEDOT yarn/Os polymer(II)/BOD; MET; O ₂ -saturated	One- compartment	2.18	0.7	83% remaining after 24 h	2		
HPC/AQ2S/DI/NAD/GDH; MET; 800 mM glucose	CF/K ₃ [Fe(CN) ₆]/BOD; MET; Air-breathing	Two-compartment	1	0.8	Can be used for > 10 cycles	3		
GCE/MWCNTs/NQ-4-LPEI/GDH; MET; Stirred 100 mM glucose	CP/anthracene-MWCNTs/BOD; MET; Air-equilibrated	One- compartment	2.3	0.86	Potential decreased from 0.86 to 0.71 V after 24 h operation	4		
MWCNTs/NQ/GOx/catalase; MET; 50 mM glucose	MWCNTs/Laccase; DET; O ₂ -saturated	One- compartment	1.54	0.76	60% decrease over 7 days' storage	5		
MWCNTs/GOx/catalase(3 mm thick); MET; 50 mM glucose	MWCNTs/Laccase; DET	One- compartment	1.3	0.95	Stable for 1 month	6		
	H ₂ /O ₂ El	FCs						
Bioanode	Bio-/cathode	Note	P _{max} (mW cm ⁻	OCV (V)	Stability	Ref.		
CNF/Aquifex aeolicus hydrogenase; DET; H ₂ -saturated	CNF/B. pumilus BOD; DET; O ₂ -saturated	Two- compartment	1.5 at 60 °C	1.06	Decreased by 60% at 0.5 V after 24 h	7		
WPCC/KB/[NiFe] hydrogenase; DET;	WPCC/KB/Mv BOD; DET;	Dual gas- diffusion type;	6.1	1.12	n/a	8		

H ₂ diffusion electrode	Air-breathing	One-					
CMC/E. coli Hydrogenase-1; DET	CMC/Mv BOD; DET	compartment In a 78% H2– 22% air mixture; One-	1.67 (per anode area)	1.068	Retained 90% output after continuously	9	
CF/CNTs/Aquifex aeolicus hydrogenase; DET;	CF/CNTs/Bp BOD; DET; O ₂ -saturated	compartment Two- compartment	1.7 at 50 °C	1.02	working for 24 h 5% loss after 17 h operation	10	
H ₂ -saturated WPCC/KB/Dv [NiFe]-hydrogenase; DET; 100% H ₂	WPCC/KB/Mv BOD; DET; 100% O ₂	Dual gas- diffusion; One-	8.4	1.14	n/a	11	
Carbon cloth/ <i>Dv</i> [NiFe]-hydrogenase/viologen-polymer; MET; 100% H ₂	Carbon cloth/Mv BOD; DET; 100% O ₂	compartment Dual gas- diffusion; One- compartment	3.6	1.13	Retained 46% output after 24 h continuous operation	12	
	Fructose/O ₂ E	FCs			•		
Bioanode	Bio-/cathode	Note	P _{max} (mW cm ⁻	OCV (V)	Stability	Ref.	
CP/CCG/FDH; DET; 500 mM fructose	CP/KB/Mv BOD; DET; Air-breathing	DET-type EBFC; One- compartment	2.6	0.79	n/a	13	
CNTs/FDH; DET; 200 mM fructose	CNTs/laccase; DET; O ₂ -saturated	One- compartment	1.8	0.77	Retained 84% output after 24 h continuous operation	14	
GCE/MWCNTs/CPPy/FDH; DET; 100 mM fructose	GCE/MWCNTs/CPPy/ABTS/laccas e; MET; O ₂ -saturated	One- compartment	2.1	0.59	60% loss after 1 week operation	15	
Formate/O ₂ EFCs							
Bioanode	Bio-/cathode	Note	P _{max} (mW cm ⁻	OCV (V)	Stability	Ref.	
NG/AuNPs/FoDH;	NG/AuNPs/Laccase;	One-	1.96	0.95	Not directly	16	

5 mM NAD ⁺ and 50 mM formic	compartment;		measured			
acid WPCC/KB/viologen-functionalized polymer/FoDH; MET; 300 mM formate	0.5 mM ABTS WPCC/KB/Mv BOD/ABTS; MET; O ₂ diffusion electrode	One- compartment; Thick electrode	12	0.78	n/a	17
200 mm Tomate	Sucrose/O ₂	EFCs				
Bioanode	Bio-/cathode	Note	P _{max} (mW cm ⁻	OCV (V)	Stability	Ref.
Carbon felt/CNTs/TTF/GOx/FDH/MUT/IN V; MET; 50 mM sucrose	Carbon felt/CNTs/ABTS/BOD; MET; O ₂ -saturated	Deep oxidation of sucrose	2.9	0.69	Bioanode displayed good stability for 0.5 h	18
	Ethanol/O ₂	EFCs				
Bioanode	Bio-/cathode	Note	P _{max} (mW cm ⁻	OCV (V)	Stability	Ref.
MDB/AuNPs/gel/ADH; MET; 1 mM NAD ⁺ and 1 mM ethanol	AuNPs/gel/laccase; DET; Air-equilibrated	One- compartment;	1.56	0.86	80% loss after 36 days	19
PAN nanofiber/Au/Super-P/ADH/NAD+/DI//VK ₃ ; MET; ~69 mM ethanol	PAN nanofiber/Au/Super-P/laccase/ABTS; MET; O ₂ -saturated	Two-compartment	1.6	0.99	Pronounced loss of NAD ⁺	20

Abbreviations: CF: Carbon fiber; GDH: glucose dehydrogenase; DI: diaphorase; VK₃: vitamin K₃; NADH: β-Nicotinamide adenine dinucleotide disodium salt (reduced form); BOD: bilirubin oxidase; MET: mediated electron transfer; MWCNTs: multi-walled carbon nanotubes; PEDOT: poly(3,4-ethylenedioxythiophene); Os polymer(I): poly(*N*-vinylimidazole)-[Os(4,4'-dimethoxy-2,2'-bipyridine)₂])^{+/2+}; Os polymer(II): poly(acryl amide)-poly(*N*-vinylimidazole)-[Os(4,4'-dichloro-2,2'-bipyridine)₂])^{+/2+}; HPC: hierarchical porous carbon; AQ2S: anthraquinone-2-sulfonate; NQ-4-LPEI: naphthoquinone(NQ)-modified linear polyethyleneimine; CP: carbon paper; CNF: carbon nanofibers; WPCC: water proof carbon paper; KB: Ketjen black; CMC: compacted mesoporous carbon; CCG: carbon cryogel; CPPy: cellulose/polypyrrole composite; NG: nitrogen-doped graphene; FoDH: formate dehydogenase; ABTS: 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate); CNTs: carbon nanotubes; TTF: tetrathiafulvalene; GOx: glucose oxidase; FDH: fructose dehydrogenase; MUT: mutarotase; INV: invertase; MDB: Meldola's blue; AuNPs: gold nanoparticles; PAN: polyacrylonitrile.

References

- (1) Sakai, H.; Nakagawa, T.; Tokita, Y.; Hatazawa, T.; Ikeda, T.; Tsujimura, S.; Kano, K. A High-Power Glucose/Oxygen Biofuel Cell Operating under Quiescent Conditions. *Energy Environ. Sci.* **2009**, *2* (1), 133.
- (2) Kwon, C. H.; Lee, S.-H.; Choi, Y.-B.; Lee, J. A.; Kim, S. H.; Kim, H.-H.; Spinks, G. M.; Wallace, G. G.; Lima, M. D.; Kozlov, M. E. et al. High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns. *Nat. Commun.* **2014**, *5*, 3928.
- (3) Fujita, S.; Yamanoi, S.; Murata, K.; Mita, H.; Samukawa, T.; Nakagawa, T.; Sakai, H.; Tokita, Y. A repeatedly refuelable mediated biofuel cell based on a hierarchical porous carbon electrode. *Sci. Rep.* **2014**, *4*, 4937.
- (4) Milton, R. D.; Hickey, D. P.; Abdellaoui, S.; Lim, K.; Wu, F.; Tan, B.; Minteer, S. D. Rational Design of Quinones for High Power Density Biofuel Cells. *Chem. Sci.* **2015**, *6* (8), 4867.
- (5) Reuillard, B.; Le Goff, A.; Agnes, C.; Holzinger, M.; Zebda, A.; Gondran, C.; Elouarzaki, K.; Cosnier, S. High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix. *Phys. Chem. Chem. Phys.* **2013**, *15* (14), 4892.
- (6) Zebda, A.; Gondran, C.; Le Goff, A.; Holzinger, M.; Cinquin, P.; Cosnier, S. Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. *Nat. Commun.* **2011**, *2*, 370.
- (7) de Poulpiquet, A.; Ciaccafava, A.; Gadiou, R.; Gounel, S.; Giudici-Orticoni, M. T.; Mano, N.; Lojou, E. Design of a H₂/O₂ Biofuel Cell based on Thermostable Enzymes. *Electrochem. Commun.* **2014**, *42* (Supplement C), 72.
- (8) Xia, H.-q.; So, K.; Kitazumi, Y.; Shirai, O.; Nishikawa, K.; Higuchi, Y.; Kano, K. Dual gas-diffusion membrane- and mediatorless dihydrogen/air-breathing biofuel cell operating at room temperature. *J. Power Sources* **2016**, *335* (Supplement C), 105.
- (9) Xu, L.; Armstrong, F. A. Optimizing the power of enzyme-based membrane-less hydrogen fuel cells for hydrogen-rich H2–air mixtures. *Energy Environ. Sci.* **2013**, *6* (7), 2166.
- (10) Mazurenko, I.; Monsalve, K.; Infossi, P.; Giudici-Orticoni, M.-T.; Topin, F.; Mano, N.; Lojou, E. Impact of Substrate Diffusion and Enzyme Distribution in 3D-Porous Electrodes: A Combined Electrochemical and Modelling Study of a Thermostable H₂/O₂ Enzymatic Fuel Cell. *Energy Environ. Sci.* **2017**, *10* (9), 1966.
- (11) So, K.; Kitazumi, Y.; Shirai, O.; Nishikawa, K.; Higuchi, Y.; Kano, K. Direct electron transfer-type dual gas diffusion H2/O2 biofuel cells. *J. Mater. Chem. A* **2016**, *4* (22), 8742.
- (12) Szczesny, J.; Marković, N.; Conzuelo, F.; Zacarias, S.; Pereira, I. A. C.; Lubitz, W.; Plumeré, N.; Schuhmann, W.; Ruff, A. A gas breathing hydrogen/air biofuel cell comprising a redox polymer/hydrogenase-based bioanode. *Nat. Commun.* **2018**, *9* (1), 4715.
- (13) So, K.; Kawai, S.; Hamano, Y.; Kitazumi, Y.; Shirai, O.; Hibi, M.; Ogawa, J.; Kano, K. Improvement of a direct electron transfer-type fructose/dioxygen biofuel cell with a substrate-modified biocathode. *Phys. Chem. Chem. Phys.* **2014**, *16* (10), 4823.
- Miyake, T.; Yoshino, S.; Yamada, T.; Hata, K.; Nishizawa, M. Self-regulating enzyme-nanotube ensemble films and their application as flexible electrodes for biofuel cells. *J. Am. Chem. Soc.* **2011**, *133* (13), 5129.
- (15) Kizling, M.; Stolarczyk, K.; Tammela, P.; Wang, Z.; Nyholm, L.; Golimowski, J.; Bilewicz, R. Bioelectrodes based on pseudocapacitive cellulose/polypyrrole composite improve performance of biofuel cell. *Bioelectrochem.* **2016**, *112*, 184.
- (16) Gai, P.; Ji, Y.; Chen, Y.; Zhu, C.; Zhang, J.; Zhu, J.-J. A nitrogen-doped graphene/gold nanoparticle/formate dehydrogenase bioanode for high power output membrane-less formic acid/O2 biofuel cells. *Analyst* **2015**, *140* (6), 1822.
- (17) Sakai, K.; Kitazumi, Y.; Shirai, O.; Takagi, K.; Kano, K. High-Power Formate/Dioxygen Biofuel Cell Based on Mediated Electron Transfer Type Bioelectrocatalysis. *ACS Catal.* **2017**, *7* (9), 5668.

- Handa, Y.; Yamagiwa, K.; Ikeda, Y.; Yanagisawa, Y.; Watanabe, S.; Yabuuchi, N.; Komaba, S. Fabrication of Carbon-Felt-Based Multi-Enzyme Immobilized Anodes to Oxidize Sucrose for Biofuel Cells. *ChemPhysChem* **2014**, *15* (10), 2145.
- (19) Deng, L.; Shang, L.; Wen, D.; Zhai, J.; Dong, S. A membraneless biofuel cell powered by ethanol and alcoholic beverage. *Biosens*. *Bioelectron*. **2010**, *26* (1), 70.
- (20) Selloum, D.; Chaaya, A. A.; Bechelany, M.; Rouessac, V.; Miele, P.; Tingry, S. A highly efficient gold/electrospun PAN fiber material for improved laccase biocathodes for biofuel cell applications. *J. Mater. Chem. A* **2014**, *2* (8), 2794.