Aufgabe 2: Merkmalsextraktion II (Spektralanalyse)

In dieser Übung soll zunächste die Spektralanalyse der Merkmalsextraktion für den Spracherkenner implementiert werden.

Implementierung der Spektralanalyse

Im ersten Teil der Merkmalsextraktion soll eine Spektralanalyse in Form einer Kurzzeit-Fourier-Transformation (STFT) implementiert werden. Hierzu werden neben der Funktionen aus Aufgabe 1 zwei weitere Funktionen benötigt, die in der Datei feature_extraction.py der recognizer Bibliothek implementiert werden sollen.

2.1 Implementieren Sie eine Funktion

```
def compute_absolute_spectrum(frames):
```

in der Datei feature_extraction.py, die aus einem Array frames mit Signalrahmen, wie er von make_frames() zurückgegeben wird, den nicht-redundanten Teil des Betragsspektrums als zweidimensionales Array im Datentyp float zurück gibt. Die erste Arraydimension soll hierbei nicht verändert werden.

Hilfreiche Funktionen: numpy.fft.rfft()

2.2 Implementieren Sie eine Funktion

. . .

in der Datei feature_extraction.py, die eine Audiodatei audio_file einliest, auf Werte zwischen -1 und 1 normalisiert und die STFT berechnet und zurück gibt. Nutzen Sie dazu die in den vorherigen Aufgabe implementierten Funktionen.

Die angegebenen Werte sind dabei die Default-Werte, die allerdings bei einem Funktionsaufruf entsprechend überschrieben werden. Die Rahmenlänge window_size und der Rahmenvorschub hop_size sind in Sekunden angegeben. Ignorieren Sie für die aktuelle Übung zunächst die Variablen feature_type, n_filters, fbank_fmin, fbank_fmax und num_ceps.

Signaldarstellung als Spektrogramm

Öffnen Sie die Datei uebung2.py und schreiben Sie hier ein Skript, welches mithilfe der zuvor implementierten Funktionen die Audiodatei TEST-MAN-AH-3033951A.wav im Unterordner data einliest und als Spektrogramm in dB darstellt. Die x-Achse sollte hierbei in Sekunden und die y-Achse in Hz angegeben werden. Fügen Sie auch eine entsprechende Achsenbeschriftung und colorbar hinzu. Das Ergebnis sollte in etwa so wie in Abbildung 2 aussehen. Verwenden Sie hierbei eine Rahmenlänge von 25 ms und einen Rahmenvorschub von 10 ms. Nutzen Sie für die Berechnung des Spektrogramms die zuvor implementierte Funktion compute_features() Es ist üblich, das Spektogram logarithmisch darzustellen: 20 log 10(...).

Hinweise: https://matplotlib.org/api/_as_gen/matplotlib.pyplot.imshow.html

Nutzen Sie matplotlib.pyplot.show(), damit der Plot angezeigt wird und aspect='auto', innerhalb des Plot-Befehls, damit die Achsen an die veränderte Skalierung angepasst werden.

Figure 1: Spektogramm für TEST-MAN-AH-3033951A.wav