

日本国特許庁 JAPAN PATENT OFFICE

REC'D 18 NOV 2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 9月30日

出 願 番 号 Application Number:

人

特願2003-341430

[ST. 10/C]:

[JP2003-341430]

出 願
Applicant(s):

武田薬品工業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年11月 4日

n, 11]

特許庁長官 Commissioner, Japan Patent Office

```
【書類名】
             特許願
             B03177
【整理番号】
【提出日】
             平成15年 9月30日
【あて先】
             特許庁長官殿
             C07D233/04
【国際特許分類】
【発明者】
             大阪府箕面市半町4丁目12-25-202
  【住所又は居所】
  【氏名】
             久保 惠司
【発明者】
             大阪府交野市星田4丁目10-13-302
  【住所又は居所】
  【氏名】
             黒板 孝信
【発明者】
             大阪府池田市鉢塚3丁目5-21-C
  【住所又は居所】
  【氏名】
             川村 正起
【発明者】
             兵庫県尼崎市武庫之荘2丁目9-14
  【住所又は居所】
  【氏名】
             坂本 博輝
【特許出願人】
  【識別番号】
             000002934
             武田薬品工業株式会社
  【氏名又は名称】
【代理人】
  【識別番号】
              100114041
  【弁理士】
  【氏名又は名称】
              高橋 秀一
【選任した代理人】
  【識別番号】
              100106323
   【弁理士】
   【氏名又は名称】
              関口 陽
【手数料の表示】
   【予納台帳番号】
              005142
              21,000円
   【納付金額】
【提出物件の目録】
   【物件名】
              特許請求の範囲 1
   【物件名】
              明細書 1
              要約書 1
   【物件名】
               9909276
   【包括委任状番号】
```

0203423

【包括委任状番号】

【書類名】特許請求の範囲

【請求項1】

式(I)

【化1】

$$R \longrightarrow X \longrightarrow S(0) \xrightarrow{a} X' \longrightarrow Y \longrightarrow Y' \longrightarrow N \xrightarrow{A} \longrightarrow Z^1 \longrightarrow Z^2 \longrightarrow Z^3 \longrightarrow B$$
 (1)

〔式中、Rは置換されていてもよい環状の炭化水素基または置換されていてもよい複素環基を示し、Xは結合手または置換されていてもよい二価の鎖状の炭化水素基を示し、X'は結合手または-N (R^5) - (R^5 は水素原子、置換されていてもよい炭化水素基、エステル化もしくはアミド化されたカルボキシル基またはアシル基を示す)を示し、Yは置換されていてもよい二価の炭化水素基を示し、Y'は結合手または-C (=O) - を示し、環Aは置換されていてもよい含窒素複素環を示し、 Z^1 および Z^3 はそれぞれ独立して結合手または置換されていてもよい二価の鎖状の炭化水素基を示し、 Z^2 は結合手または-N (R^6) - (R^6 は水素原子、置換されていてもよい炭化水素基またはアシル基を示す)を示し、Bは式

【化2】

 $(R^1$ および R^2 はそれぞれ独立して水素原子、ハロゲン原子、置換されていてもよい炭化水素基、置換されていてもよいアルコキシ基、エステル化もしくはアミド化されていてもよいカルボキシル基、アシル基または置換されていてもよいアミノ基を示し、 R^3 は水素原子、置換されていてもよい炭化水素基、エステル化もしくはアミド化されていてもよいカルボキシル基またはアシル基を示し、 R^4 は置換されていてもよい炭化水素基を示し、 R^2 は R^1 または R^4 と、 R^3 は R^4 とそれぞれ互いに結合して置換されていてもよい環を形成していてもよい)で表される基を示し、 R^6 は R^1 、 R^2 、 R^3 または R^4 と互いに結合して置換されていてもよい環を形成していてもよく、 R^4 と互いに結合して置換されていてもよい環を形成していてもよく、 R^5 は R^5 に表される化合物またはその塩。

【請求項2】

請求項1記載の化合物のプロドラッグ。

【請求項3】

Rがハロゲン原子、 C_{1-6} アルキル、 C_{2-6} アルケニル、 C_{2-6} アルキニル、置換されていてもよいアミノ、ニトロ、シアノ、置換されていてもよいアミジノおよびエステル化もしくはアミド化されていてもよいカルボキシルから選ばれた置換基で置換されていてもよいアリール基である請求項1記載の化合物。

【請求項4】

Rがハロゲン原子、 C_{1-6} アルキル、 C_{2-6} アルケニル、 C_{2-6} アルキニル、置換されていてもよいアミノ、ニトロ、シアノ、置換されていてもよいアミジノおよびエステル化もしくはアミド化されていてもよいカルボキシルから選ばれた置換基で置換されていてもよい複素環基である請求項1記載の化合物。

【請求項5】

Rがハロゲン原子で置換されていてもよいナフチルである請求項1記載の化合物。

【請求項6】

Xが結合手であり、X、が結合手であり、Yが置換されていてもよい C_{1-3} アルキレンであり、Y、が-C(=O) -である請求項1記載の化合物。

【請求項7】

 Z^1 および Z^2 が結合手であり、 Z^3 が置換されていてもよい C_{1-3} アルキレンである請求項1記載の化合物。

【請求項8】

環Aが置換されていてもよいピペラジン環または置換されていてもよいピペリジン環である請求項1記載の化合物。

【請求項9】

環Aが式

【化3】

[式中、環A' はさらに置換基を有していてもよい。] または式

【化4】

〔式中、環A"はさらに置換基を有していてもよい。〕で表される環である請求項1記載の化合物。

【請求項10】

R⁵ が水素原子である請求項1記載の化合物。

【請求項11】

aが2である請求項1記載の化合物。

【請求項12】

 $N_{-}(4_{-}((4_{-}(3_{-}((6_{-}) - 2_{-} + 7_{-} + N) + 2_{-} + N)) - 3_{-} + 2_{-$

【請求項13】

式 (II)

【化5】

$$HN A - Z^1 - Z^2 - Z^3 - B \qquad (II)$$

[式中の記号は請求項1記載と同意義を示す。] で表される化合物またはその塩。

【請求項14】

請求項1または2記載の化合物を含有することを特徴とする医薬。

【請求項15】

抗血液凝固剤である請求項14記載の医薬。

【請求項16】

活性化血液凝固第X因子阻害剤である請求項14記載の医薬。

【請求項17】

心筋梗塞、脳血栓症、深部静脈血栓症、肺血栓塞栓症または手術中・術後の血栓塞栓症の 予防・治療剤である請求項14記載の医薬。

【書類名】明細書

【発明の名称】チアゾリン誘導体およびその用途

【技術分野】

[0001]

本発明は活性化血液凝固第X因子(FXa)を阻害して抗凝固作用ならびに抗血栓作用を有する、動脈および静脈の血栓閉塞性疾患、炎症、癌などの予防および治療に有用な新規チアゾリン誘導体、その製造方法および用途に関する。

【背景技術】

[0002]

心筋梗塞、脳血栓症等の予防および治療には血栓の形成を抑制することが重要であり、血栓抑制剤として抗トロンビン剤、血小板凝集阻害剤等の研究開発が種々行われている。しかしながら、血小板凝集阻害剤はもちろん、抗トロンビン剤も抗凝固作用と共に血小板の凝集を抑制することから、これらの薬剤は副作用として出血傾向等を示し、その安全性に問題がある。一方、FXa阻害剤は、特異的に凝固因子のみを阻害するため安全な抗凝固剤になると考えられている。

これまで、FXa阻害作用を有する化合物が、例えば特許文献1~12および非特許文献1等に開示されている。

[0003]

【特許文献1】特開平7-112970号公報

【特許文献2】特開平5-208946号公報

【特許文献3】国際公開第96/16940号パンフレット

【特許文献4】国際公開第96/40679号パンフレット

【特許文献5】国際公開第96/10022号パンフレット

【特許文献6】国際公開第97/21437号パンフレット

【特許文献7】国際公開第99/26919号パンフレット

【特許文献8】国際公開第99/33805号パンフレット

【特許文献9】国際公開第00/09480号パンフレット

【特許文献10】国際公開第01/44172号パンフレット

【特許文献11】国際公開第02/06234号パンフレット

【特許文献12】米国特許出願公開第2002/0045616号パンフレット

【非特許文献1】「ジャーナル・オブ・メディシナル・ケミストリー、1998年,

第41巻、p. 3357」

【発明の開示】

【発明が解決しようとする課題】

[0004]

従来のFXa阻害剤と比べて、薬効、経口吸収性、作用持続性などに優れ、かつ副作用の少ない、血栓症治療薬として有用な新規化合物の開発が望まれている。

【課題を解決するための手段】

[0005]

本発明者らは、FXaに対し選択性が高く強力な阻害作用を有するチアゾリン誘導体が 経口投与で持続的かつ十分な効果を発揮でき、動脈および静脈の血栓閉塞性疾患、炎症お よび癌の予防および治療に有用であると考えて、鋭意研究を重ねてきた。

その結果、下記式 (I) で表される新規チアゾリン誘導体またはその塩〔以下、化合物 (I) と称することがある〕が選択的で強力なFXa阻害作用を有し、安全性が高く、経口投与で持続的かつ十分な効果を発揮することを見い出し、本発明を完成するに至った。

[0006]

すなわち、本発明は、

(1)式(I)

[式中、Rは置換されていてもよい環状の炭化水素基または置換されていてもよい複素環基を示し、Xは結合手または置換されていてもよい二価の鎖状の炭化水素基を示し、X'は結合手または-N (R^5) - (R^5 は水素原子、置換されていてもよい炭化水素基、エステル化もしくはアミド化されたカルボキシル基またはアシル基を示す)を示し、Yは置換されていてもよい二価の炭化水素基を示し、Y'は結合手または-C (=O) - を示し、環Aは置換されていてもよい含窒素複素環を示し、 Z^1 および Z^3 はそれぞれ独立して結合手または置換されていてもよい二価の鎖状の炭化水素基を示し、 Z^2 は結合手または-N (R^6) - (R^6 は水素原子、置換されていてもよい炭化水素基またはアシル基を示す)を示し、Bは式

【化7】

 $(R^1$ および R^2 はそれぞれ独立して水素原子、ハロゲン原子、置換されていてもよい炭化水素基、置換されていてもよいアルコキシ基、エステル化もしくはアミド化されていてもよいカルボキシル基、アシル基または置換されていてもよいアミノ基を示し、 R^3 は水素原子、置換されていてもよい炭化水素基、エステル化もしくはアミド化されていてもよいカルボキシル基またはアシル基を示し、 R^4 は置換されていてもよい炭化水素基を示し、 R^2 は R^1 または R^4 と、 R^3 は R^4 とそれぞれ互いに結合して置換されていてもよい環を形成していてもよい)で表される基を示し、 R^6 は R^1 、 R^2 、 R^3 または R^4 と互いに結合して置換されていてもよい環を形成していてもよく、 R^5 は R^5 に R^5 または R^5 に R^5 に

- (2) 前記(1) 記載の化合物のプロドラッグ;
- (3) Rがハロゲン原子、 C_{1-6} アルキル、 C_{2-6} アルケニル、 C_{2-6} アルキニル、置換されていてもよいアミノ、ニトロ、シアノ、置換されていてもよいアミジノおよびエステル化もしくはアミド化されていてもよいカルボキシルから選ばれた置換基で置換されていてもよいアリール基である前記(1)記載の化合物;
- (4) Rがハロゲン原子、 C_{1-6} アルキル、 C_{2-6} アルケニル、 C_{2-6} アルキニル、置換されていてもよいアミノ、ニトロ、シアノ、置換されていてもよいアミジノおよびエステル化もしくはアミド化されていてもよいカルボキシルから選ばれた置換基で置換されていてもよい複素環基である前記(1)記載の化合物;
- (5) Rがハロゲン原子で置換されていてもよいナフチルである前記 (1) 記載の化合物:
- (6) Xが結合手であり、X¹が結合手であり、Yが置換されていてもよい C_{1-3} アルキレンであり、Y¹が-C(=O)-である前記(1)記載の化合物;
- (7) Z^1 および Z^2 が結合手であり、 Z^3 が置換されていてもよい C_{1-3} アルキレンである前記(1)記載の化合物;
- (8) 環Aが置換されていてもよいピペラジン環または置換されていてもよいピペリジン環である前記(1)記載の化合物;
- (9) 環Aが式

[式中、環A'はさらに置換基を有していてもよい。] または式【化9】

〔式中、環A"はさらに置換基を有していてもよい。〕で表される環である前記(1)記載の化合物:

- (10) R⁵ が水素原子である前記(1)記載の化合物;
- (11) aが2である前記(1)記載の化合物;
- (12) N-(4-((4-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル)-1-ピペラジニル)メチル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン、4-((4-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル)-1-ピペラジニル)メチル)-3-メチル-1,3-チアゾール-2(3H)-イミン、N-(5-(1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル)-4-ピペリジニル)メチル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン、5-(1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル)-4-ピペリジニル)-3-メチル-1,3-チアゾール -2(3H)-イミン、2-(2-((1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル)-4-ピペリジニル)イミノ)-1,3-チアゾール-3(2H)-イル)エタノールからなる群から選ばれた化合物もしくはその塩またはそのプロドラッグ;

(13)式(II)

【化10】

$$\overline{HNA} - Z^1 - Z^2 - Z^3 - B$$
 (π)

[式中の記号は請求項 1 記載と同意義を示す。] で表される化合物またはその塩;

- (14) 前記(1) または(2) 記載の化合物を含有することを特徴とする医薬;
- (15) 抗血液凝固剤である前記(14) 記載の医薬;
- (16) 活性化血液凝固第 X 因子阻害剤である前記(14)記載の医薬;
- (17) 心筋梗塞、脳血栓症、深部静脈血栓症、肺血栓塞栓症または手術中・術後の血栓 塞栓症の予防・治療剤である前記(14)記載の医薬;などに関する。

[0007]

前記式中、Rは置換されていてもよい環状の炭化水素基または置換されていてもよい複素環基(好ましくは、置換されていてもよいアリール基または置換されていてもよい芳香族複素環基を示す。

Rで示される「置換されていてもよい環状の炭化水素基」における「環状の炭化水素基」としては、例えば、脂環式炭化水素基、アリール基等が挙げられ、なかでもアリール基等が好ましい。

環状の炭化水素基の例としての「脂環式炭化水素基」としては、例えば、シクロアルキル基、シクロアルケニル基、シクロアルカジエニル基等の飽和又は不飽和の脂環式炭化水素基が挙げられる。

ここで、「シクロアルキル基」としては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル等の C_{3-9} シクロアルキル等が挙げられる。

「シクロアルカジエニル基」としては、例えば、2,4-シクロペンタジエン-1-イル、2,4-シクロヘキサジエン-1-イル等の C_{4-6} シクロアルカジエニル基等が挙げられる。

環状の炭化水素基の例としての「アリール基」としては、単環式又は縮合多環式芳香族 炭化水素基が挙げられ、例えば、フェニル、ナフチル、アントリル、フェナントリル、ア セナフチレニル等のC₆₋₁₄アリール基等が好ましく、中でもフェニル、1ーナフチル 、2ーナフチル等が特に好ましい。

また、環状の炭化水素基の例としては、1,2-ジヒドロナフチル、1,2,3,4-テトラヒドロナフチル、インデニル、ジヒドロベンゾシクロヘプテニル、フルオレニルなどのように、上記した脂環式炭化水素基および芳香族炭化水素基を構成する環から選ばれる同一または異なった2~3個の環(好ましくは2種以上の環)の縮合から誘導される二環式または三環式炭化水素基などが挙げられる。

[0008]

Rで示される「置換されていてもよい複素環基」における「複素環基」としては、例えば、環系を構成する原子(環原子)として、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし3種(好ましくは1ないし2種)を少なくとも1個(好ましくは1ないし3個、さらに好ましくは1ないし2個)含む芳香族複素環基、飽和あるいは不飽和の非芳香族複素環基(脂肪族複素環基)等が挙げられる。

該「芳香族複素環基」としては、例えば、フリル、チエニル、ピロリル、オキサゾリル 、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、1.2. **3-オキサジアゾリル、1,2,4-オキサジアゾリル、1,3,4-オキサジアゾリル、フ** ラザニル、1,2,3ーチアジアゾリル、1,2,4ーチアジアゾリル、1,3,4ーチアジア ゾリル、1,2,3ートリアゾリル、1,2,4ートリアゾリル、テトラゾリル、ピリジル、 ピリダジニル、ピリミジニル、ピラジニル、トリアジニル等の5ないし6員の芳香族単環 式複素環基、および、例えば、ベンゾフラニル、イソベンゾフラニル、ベンゾ〔b〕チエ ニル、インドリル、イソインドリル、1H-インダゾリル、ベンズイミダゾリル、ベンゾ オキサゾリル、1.2ーベンゾイソオキサゾリル、ベンゾチアゾリル、ベンゾピラニル、 1,2ーベンゾイソチアゾリル、1Hーベンゾトリアゾリル、キノリル、イソキノリル、 シンノリニル、キナゾリニル、キノキサリニル、フタラジニル、ナフチリジニル、プリニ ル、ブテリジニル、カルバゾリル、 α - カルボリニル、 β - カルボリニル、 γ - カルボリ ニル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサ チイニル、チアントレニル、フェナトリジニル、フェナトロリニル、インドリジニル、ビ ロロ〔1,2-b〕ピリダジニル、ピラゾロ〔1,5-a〕ピリジル、イミダゾ〔1,2a] ピリジル、イミダゾ〔1,5-a] ピリジル、イミダゾ〔1,2-b] ピリダジニル、 イミダゾ[1,2-a]ピリミジニル、1,2,4-トリアゾロ[4,3-a]ピリジル、1. 2 . 4 ートリアゾロ〔4 . 3 ーb〕ピリダジニル等の8~16員(好ましくは、10~1 2員)の芳香族縮合複素環基(好ましくは、前記した5ないし6員の芳香族単環式複素環 基1~2個(好ましくは、1個)がベンゼン環1~2個(好ましくは、1個)と縮合した 複素環または前記した5ないし6員の芳香族単環式複素環基の同一または異なった複素環 2~3個(好ましくは、2個)が縮合した複素環、より好ましくは前記した5ないし6員 の芳香族単環式複素環基がベンゼン環と縮合した複素環、とりわけ好ましくはインドリル 、ベンゾフラニル、ベンゾ〔b〕チエニル、ベンゾピラニル等)等が挙げられる。

該「非芳香族複素環基」としては、例えば、オキシラニル、アゼチジニル、オキセタニル、チェタニル、ピロリジニル、テトラヒドロフリル、チオラニル、ピペリジル、テトラヒドロピラニル、モルホリニル、チオモルホリニル、ピペラジニル等の $3\sim8$ 員(好ましくは $5\sim6$ 員)の飽和あるいは不飽和(好ましくは飽和)の非芳香族単環式複素環基(脂肪族単環式複素環基)、1, 3-ジヒドロイソインドリル等のように前記した非芳香族単環式複素環基 $1\sim2$ 個(好ましくは、1 個)がベンゼン環 $1\sim2$ 個(好ましくは、1 個)が

[0009]

Rで示される「置換されていてもよい環状の炭化水素基」および「置換されていてもよ い複素環基」における置換基としては、例えば、置換されていてもよいアルキル、置換さ れていてもよいアルケニル、置換されていてもよいアルキニル、置換されていてもよいア リール、置換されていてもよいシクロアルキル、置換されていてもよいシクロアルケニル 、置換されていてもよい複素環基、置換されていてもよいアミノ、置換されていてもよい イミドイル(例えば、式-C (U') = N – U(式中、Uは水素原子、置換されていても よい炭化水素基、カルボン酸由来のアシル基、置換されていてもよいアミノ基、置換され ていてもよいチオール基又は置換されていてもよい水酸基を示し、U'は水素原子、置換 されていてもよい水酸基、置換されていてもよい炭化水素基又はカルボン酸由来のアシル 基を示す(Uは好ましくは水素原子を示す))で表される基等)、置換されていてもよい T アミジノ(例えば、式-C(NT'T') = N-T(式中、T, T) およびT' はそ れぞれ水素原子、置換されていてもよい炭化水素基又はカルボン酸由来のアシル基を示す (Tは好ましくは水素原子を示す))で表される基等)、置換されていてもよい水酸基、 置換されていてもよいチオール基、エステル化もしくはアミド化されていてもよいカルボ キシル、置換されていてもよいチオカルバモイル、置換されていてもよいスルファモイル 基、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素等、好ましくは塩素、臭素等)、シ アノ、ニトロ、アシル基(カルボン酸由来のアシル、スルホン酸由来のアシル、スルフィ ン酸由来のアシル)等が挙げられ、これらの任意の置換基は置換可能な位置に1ないし5 個(好ましくは1ないし3個)置換していてもよい。また、Rで示される「置換されてい てもよい環状の炭化水素基」および「置換されていてもよい複素環基」は、オキソ基また はチオキソ基を有していてもよく、例えば、Rがベンゾピラニルである場合、Rはベンゾ - α - ピラニル、ベンゾーγ - ピラニルなどを形成していてもよい。

[0010]

Rで示される「置換されていてもよい環状の炭化水素基」および「置換されていてもよ い複素環基」における置換基としての「置換されていてもよいアリール」における「アリ ール」としては、例えば、フェニル、ナフチル、アントリル、フェナントリル、アセナフ チレニル等のC6-14アリール等が挙げられる。ここで、アリールが有していてもよい 置換基としては、低級アルコキシ基(例、メトキシ、エトキシ、プロポキシ等のCュ- 6 アルコキシ等)、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素等)、低級アルキル(例、メチル、エチル、プロピル等のC1-6アルキル等)、低級アルケニル(例、ビニル 、アリル等のC2-6アルケニル等)、低級アルキニル(例、エチニル、プロパルギル等 のC₂₋₆アルキニル等)、置換されていてもよいアミノ、置換されていてもよい水酸基 、シアノ基、置換されていてもよいアミジノ、カルボキシ、低級アルコキシカルボニル基 (例、メトキシカルボニル、エトキシカルボニル等のC1-6アルコキシカルボニル等) 、置換されていてもよいカルバモイル基(例、5ないし6員の芳香族単環式複素環基(例 、ピリジニルなど)で置換されていてもよいC_{1 - 6} アルキルまたはアシル(例、ホルミ ル、C 2 - 6 アルカノイル、ペンゾイル、ハロゲン化されていてもよいC 1 - 6 アルコキ シカルボニル、ハロゲン化されていてもよいC1-6アルキルスルホニル、ベンゼンスル ホニル等)で置換されていてもよいカルバモイル基、1-アゼチジニルカルボニル、1-ピロリジニルカルボニル、ピペリジノカルボニル、モルホリノカルボニル、チオモルホリ ノカルボニル(硫黄原子は酸化されていてもよい)、1-ピペラジニルカルボニル等)等 が挙げられ、これらの任意の置換基は置換可能な位置に1ないし3個置換していてもよい

Rで示される「置換されていてもよい環状の炭化水素基」および「置換されていてもよい複素環基」における置換基としての「置換されていてもよいアリール」における置換基

としての「置換されていてもよいアミノ」、「置換されていてもよい水酸基」および「置換されていてもよいアミジノ」としては、後述するRで示される「置換されていてもよい環状の炭化水素基」および「置換されていてもよい複素環基」における置換基としての「置換されていてもよい水酸基」および「置換されていてもよいアミジノ」と同様の基などが挙げられる。

[0011]

Rで示される「置換されていてもよい環状の炭化水素基」および「置換されていてもよい複素環基」における置換基としての「置換されていてもよいアルキル」における「アルキル」としては、例えば、メチル、エチル、n-プロピル、1 イソプロピル、1 ーブチル、イソプチル、1 を 1 を 1 で

Rで示される「置換されていてもよい環状の炭化水素基」および「置換されていてもよい複素環基」における置換基としての「置換されていてもよいアルケニル」における「アルケニル」としては、例えば、ビニル、アリル、イソプロペニル、2ーメチルアリル、1ープロペニル、2ーメチルー1ープロペニル、1ーブテニル、3ーメチルー2ーブテニル、3ーメチルー2ーブテニル、1ーペンテニル、2ーペンテニル、3ーペンテニル、4ーペンテニル、4ーメチルー3ーペンテニル、1ーへキセニル、2ーヘキセニル、3ーヘキセニル、4ーヘキセニル、5ーヘキセニル等のC2ー6アルケニル等が挙げられる。ここで、アルケニルの置換基としては、前記した「置換されていてもよいアリール」におけるアリールが有していてもよい置換基と同様な数の同様の基、およびオキソ基、チオキソ基などが挙げられる。

Rで示される「置換されていてもよい環状の炭化水素基」および「置換されていてもよい複素環基」における置換基としての「置換されていてもよいアルキニル」における「アルキニル」としては、例えば、エチニル、1-プロピニル、2-プロピニル、1-プチニル、2-プロピニル、3-ペンチニル、4-ペンチニル、3-ペンチニル、2-ペンチニル、3-ペンチェル、3-ペンチニル、3-ペンチェル、3-ペン

$[0\ 0\ 1\ 2\]$

Rで示される「置換されていてもよい環状の炭化水素基」および「置換されていてもよい複素環基」における置換基としての「置換されていてもよいシクロアルキル」における「シクロアルキル」としては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル等のC3-7シクロアルキル等が挙げられる。ここで、シクロアルキルの置換基としては、前記した「置換されていてもよいアリール」が有していてもよい置換基と同様な数の同様の基、およびオキソ基、チオキソ基などが挙げられる。

Rで示される「置換されていてもよい環状の炭化水素基」および「置換されていてもよい複素環基」における置換基としての「置換されていてもよいシクロアルケニル」における「シクロアルケニル」としては、例えば、シクロプロペニル、シクロプテニル、シクロペンテニル、シクロへキセニル等の C_3-6 シクロアルケニル等が挙げられる。ここで、置換されていてもよいシクロアルケニルの置換基としては、前記した「置換されていてもよいアリール」におけるアリールが有していてもよい置換基と同様な数の同様な基、およびオキソ基、チオキソ基などが挙げられる。

[0013]

Rで示される「置換されていてもよい環状の炭化水素基」および「置換されていてもよ 出証特2004-3099284 い複素環基」における置換基としての「置換されていてもよい複素環基」における「複素 環基」としては、Rで示される「置換されていてもよい複素環基」における複素環基と同 様の基などが挙げられる。

該「置換されていてもよい複素環基」における複素環基が有していてもよい置換基としては、前記した「置換されていてもよいアリール」におけるアリールが有していてもよい置換基と同様な数の同様な基、およびオキソ基、チオキソ基などが挙げられる。

[0014]

Rで示される「置換されていてもよい環状の炭化水素基」および「置換されていてもよ い複素環基」における置換基としての「置換されていてもよいアミノ」、「置換されてい てもよいイミドイル」、「置換されていてもよいアミジノ」、「置換されていてもよい水 酸基」および「置換されていてもよいチオール基」における置換基としては、例えば、ハ ロゲン原子(例、フッ素、塩素、臭素、ヨウ素等)およびハロゲン化されていてもよいC 1-6 アルコキシ (例、メトキシ、エトキシ、トリフルオロメトキシ、2,2,2ートリ フルオロエトキシ、トリクロロメトキシ、2,2,2ートリクロロエトキシ等)から選ば れた置換基で置換されていてもよい低級アルキル(例、メチル、エチル、プロピル、イソ プロピル、ブチル、イソブチル、tertーブチル、ペンチル、ヘキシル等のC1-6アルキ ル等)、アシル(С1-6アルカノイル(例、ホルミル、アセチル、プロピオニル、ピバ ロイル等)、ベンゾイル、C₁₋₆アルキルスルホニル(例、メタンスルホニル等)、ベ ンゼンスルホニル等) 、ハロゲン化されていてもよいC1-6アルコキシカルボニル(例 、メトキシカルボニル、エトキシカルボニル、トリフルオロメトキシカルボニル、2,2 , 2-トリフルオロエトキシカルボニル、トリクロロメトキシカルボニル、2, 2, 2-トリクロロエトキシカルボニル等)、フェニルで置換されていてもよいC1-6アルコキ シカルボニル(例、ベンジルオキシカルボニル等)、複素環基(Rで示される「置換され ていてもよい複素環基」における「複素環基」と同様な基など)等が挙げられるが、置換 基としての「置換されていてもよいアミノ」における「アミノ」は、置換されていてもよ いイミドイル (例、С1-6 アルキルイミドイル (例、ホルミルイミドイル、アセチルイ ミドイルなど)、C1-6アルコキシイミドイル、C1-6アルキルチオイミドイル、ア ミジノ等)、1~2個のC1-6アルキルで置換されていてもよいアミノなどで置換され ていてもよく、また、2個の置換基が窒素原子と一緒になって環状アミノを形成する場合 もあり、この様な場合の環状アミノとしては、例えば、1-アゼチジニル、1-ピロリジ ニル、ピペリジノ、チオモルホリノ、モルホリノ、1-ピペラジニルおよび4位に低級ア ルキル(例、メチル、エチル、プロピル、イソプロピル、ブチル、t-ブチル、ペンチル 、ヘキシル等のC1-6アルキル等)、アラルキル(例、ベンジル、フェネチル等のC1 - 1 o アラルキル等)、アリール(例、フェニル、1-ナフチル、2-ナフチル等のC6 _{- 1 ο} アリール等)等を有していてもよい1-ピペラジニル、1-ピロリル、1-イミダ ゾリル等の3~8員(好ましくは5~6員)の環状アミノなどが挙げられる。

[0015]

Rで示される「置換されていてもよい環状の炭化水素基」および「置換されていてもよい複素環基」における置換基としての「エステル化もしくはアミド化されていてもよいカルボキシル」としては、遊離のカルボキシル、エステル化されたカルボキシル、アミド化されたカルボキシルが挙げられる。

該「エステル化されたカルボキシル」としては、例えば、低級アルコキシカルボニル、 アリールオキシカルボニル、アラルキルオキシカルボニル等が挙げられる。

該「低級アルコキシカルボニル」としては、例えば、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、イソプトキシカルボニル、secーブトキシカルボニル、tertープトキシカルボニル、ペンチルオキシカルボニル、イソペンチルオキシカルボニル、ネオペンチルオキシカルボニル等の C_{1-6} アルコキシカルボニル等が挙げられ、中でもメトキシカルボニル、エトキシカルボニル、プロポキシカルボニル等の C_{1-3} アルコキシカルボニル等が好ましい。

該「アリールオキシカルボニル」としては、例えば、フェノキシカルボニル、1-ナフ

トキシカルボニル、2-ナフトキシカルボニル等の C_{7-12} アリールオキシカルボニル 等が好ましい。

該「アラルキルオキシカルボニル」としては、例えば、ベンジルオキシカルボニル、フェネチルオキシカルボニル等の C_{7-10} アラルキルオキシカルボニル等(好ましくは、 C_{6-10} アリールー C_{1-4} アルコキシーカルボニルなど)が好ましい。

該「アリールオキシカルボニル」、「アラルキルオキシカルボニル」は置換基を有していてもよく、その置換基としては、前記したN-モノ置換カルバモイルの置換基の例としてのアリール、アラルキルの置換基として挙げたものと同様のものが同様な数用いられる

[0016]

該「アミド化されたカルボキシル」としては、無置換のカルバモイルのほか、N-モノ置換カルバモイルおよびN,N-ジ置換カルバモイルが挙げられる。

該「Nーモノ置換カルバモイル」としては、例えば、低級アルキル(例、メチル、エチ ル、プロピル、イソプロピル、ブチル、イソブチル、tert-ブチル、ペンチル、ヘキシル 等のC₁₋₆アルキル等)、低級アルケニル(例、ビニル、アリル、イソプロペニル、プ ロペニル、ブテニル、ペンテニル、ヘキセニル等のC2-6アルケニル等)、シクロアル キル(例、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等のCa-6 シクロアルキル等)、アリール(例、フェニル、1ーナフチル、2ーナフチル等のС6 - 1 o アリール等)、アラルキル(例、ベンジル、フェネチル等のC 7 - 1 o アラルキル 、好ましくはフェニルーCュ-4アルキル等)、アリールアルケニル(例、シンナミル等 の C_{8-10} アリールアルケニル、好ましくはフェニルー C_{2-4} アルケニル等)、複素 環基(例えば、前記したRで示される「置換されていてもよい複素環基」における「複素 環基」と同様の基など)、1~2個のC1-6アルキルで置換されていてもよいアミノ等 が挙げられる。該低級アルキル、低級アルケニル、シクロアルキル、アリール、アラルキ ル、アリールアルケニル、複素環基は置換基を有していてもよく、その置換基としては、 例えば、水酸基、置換されていてもよいアミノ(該アミノは、例えば、低級アルキル (例 、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、tert-ブチル、ペン チル、ヘキシル等のС1-6アルキル等)、アシル(例、ホルミル、アセチル、プロピオ ニル、ピバロイル等の C_{1-6} アルカノイル、ベンゾイル等)、カルボキシル、 C_{1-6} ーアルコキシカルボニル等の1又は2個を置換基として有していてもよい。]、ハロゲン 原子(例えば、フッ素、塩素、臭素、ヨウ素等)、ニトロ基、シアノ基、1ないし5個の ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素等)で置換されていてもよい低級ア ルキル、1ないし5個のハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素等)で置換 されていてもよい低級アルコキシ等が挙げられる。該低級アルキルとしては、例えば、メ チル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、t ertープチル、ペンチル、ヘキシル等のC₁₋₆アルキル等が挙げられ、特にメチル、エ チル等が好ましい。該低級アルコキシとしては、例えば、メトキシ、エトキシ、n-プロ ポキシ、イソプロポキシ、nーブトキシ、イソプトキシ、secーブトキシ、tertーブトキ シ等のC1-6アルコキシ等が挙げられ、特にメトキシ、エトキシ等が好ましい。また、 これらの置換基は、同一または異なって1または2ないし3個(好ましくは1または2個)置換しているのが好ましい。

該「N, N-ジ置換カルバモイル」としては、窒素原子上に 2 個の置換基を有するカルバモイル基を意味し、該置換基の一方の例としては上記した「N-モノ置換カルバモイル」における置換基と同様のものが挙げられ、他方の例としては、例えば、低級アルキル(例、メチル、エチル、プロピル、イソプロピル、ブチル、tert-ブチル、ペンチル、ヘキシル等の C_{1-6} アルキル等)、 C_{3-6} シクロアルキル(例、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等)、 C_{7-10} アラルキル(例、ベンジル、フェネチル等、好ましくはフェニル- C_{1-4} アルキル等)等が挙げられる。また、 2 個の置換基が窒素原子と一緒になって環状アミノを形成する場合もあり、この様な場合の環状アミノカルバモイルとしては、例えば、1-アゼチジニルカルボニル、1-ピロリジニ

ルカルボニル、ピペリジノカルボニル、モルホリノカルボニル、チオモルホリノカルボニ ル (硫黄原子は酸化されていてもよい)、1-ピペラジニルカルボニルおよび4位に低級 アルキル(例、メチル、エチル、プロピル、イソプロピル、ブチル、tert-ブチル、ペン チル、ヘキシル等のC1-6アルキル等)、アラルキル(例、ベンジル、フェネチル等の С - - 1 0 アラルキル等)、アリール(例、フェニル、1 - ナフチル、2 - ナフチル等の С 6 – 1 0 アリール等)等を有していてもよい 1 – ピペラジニルカルボニル等の 3 ~ 8 員 (好ましくは5~6員)の環状アミノカルボニルなどが挙げられる。

Rで示される「置換されていてもよい環状の炭化水素基」および「置換されていてもよ い複素環基」における置換基としての「置換されていてもよいチオカルバモイル」および 「置換されていてもよいスルファモイル」における置換基としては、前記した「置換され ていてもよいカルバモイル」における置換基と同様のものなどが挙げられる。

[0017]

Rで示される「置換されていてもよい環状の炭化水素基」および「置換されていてもよ い複素環基」における置換基としてのアシルとしては、カルボン酸由来のアシル、スルホ ン酸由来のアシル、スルフィン酸由来のアシルなどが挙げられる。

該「カルボン酸由来のアシル」としては、水素原子または前記した「Nーモノ置換カル バモイル」が窒素原子上に1個有する置換基とカルボニルとが結合したものなどが挙げら れるが、好ましくは、ホルミル、アセチル、プロピオニル、ピバロイル等のCi-6アル カノイル、ベンゾイル等が挙げられる。

該「スルホン酸由来のアシル」としては、前記した「N-モノ置換カルバモイル」が窒 素原子上に1個有する置換基とスルホニルとが結合したものなどが挙げられるが、好まし くは、メタンスルホニル、エタンスルホニル等のC1-6アルキルスルホニル、ベンゼン スルホニル、トルエンスルホニル等が挙げられる。

該「スルフィン酸由来のアシル」としては、前記した「N-モノ置換カルバモイル」が 窒素原子上に1個有する置換基とスルフィニルとが結合したものなどが挙げられるが、好 ましくは、メタンスルフィニル、エタンスルフィニル等のC1-6アルキルスルホニル等 が挙げられる。

[0018]

Rとしては、ハロゲン原子、 C_{1-6} アルキル、 C_{2-6} アルケニル、 C_{2-6} アルキニル、置換 されていてもよいアミノ、ニトロ、シアノ、置換されていてもよいアミジノおよびエステ ル化もしくはアミド化されていてもよいカルボキシルから選ばれた置換基で置換されてい てもよいアリール基;またはハロゲン原子、Cı-6アルキル、Cı-6アルケニル、 Cı-6アル キニル、置換されていてもよいアミノ、ニトロ、シアノ、置換されていてもよいアミジノ およびエステル化もしくはアミド化されていてもよいカルボキシルから選ばれた置換基で 置換されていてもよい複素環基が好ましい。

なかでも、Rとしては、置換されていてもよいアリールが好ましく、なかでも、ハロゲ ン原子またはC2-4 アルケニル(好ましくは、ハロゲン原子)で置換されていてもよい アリール(好ましくは、フェニル、1-ナフチル、2-ナフチル等のC6-14 アリール 等)が好ましい。

また、Rとしては、置換されていてもよい複素環基が好ましく、なかでも、ハロゲン原 子で置換されていてもよい複素環基(好ましくは、インドリル、ベンゾフラニル、ベンゾ チエニル、ベンゾピラニル等、さらに好ましくはインドリル)が好ましい。

とりわけ、Rとしては、ハロゲン原子で置換されていてもよいナフチルが好ましい。

[0019]

前記式中、Xは結合手または置換されていてもよい二価の鎖状の炭化水素基を示す。

Xで示される「置換されていてもよい二価の鎖状の炭化水素基」における「二価の鎖状 の炭化水素基」としては、例えば、C1-6アルキレン(例えば、メチレン、エチレン、トリ メチレン、テトラメチレン等)、C2-6アルケニレン(例えば、ビニレン、プロピレン、1 -または2-プテニレン、プタジエニレン等) およびC2-8アルキニレン (例えば、エチニレ ン、1-または2-プロピニレン、1-または2-ブチニレン等) 等が挙げられる。

Xで示される「置換されていてもよい二価の鎖状の炭化水素基」における「二価の鎖状の炭化水素基」が有していてもよい置換基としては、例えば、前記したRで示される「置換されていてもよい環状の炭化水素基」の「環状の炭化水素基」が有していてもよい置換基と同様の基などが挙げられ、これらの置換基は置換可能な任意の位置に1ないし3個置換していてもよい。

Xとしては、例えば、結合手または C_{1-6} アルケニレンなどが好ましく、なかでも、結合手がより好ましい。

[0020]

前記式中、X は結合手または-N (R^5) -を示し、ここで R^5 としては、水素原子、置換されていてもよい炭化水素基、エステル化もしくはアミド化されたカルボキシル基またはアシル基などが挙げられる。

R⁵で示される「置換されていてもよい炭化水素基」における「炭化水素基」としては、例えば、アルキル、アルケニル、アルキニル、アリール、シクロアルキル、シクロアルケニル、アラルキルなどが挙げられる。

該アルキル、アルケニル、アルキニル、アリール、シクロアルキルおよびシクロアルケニルとしては、それぞれ、前記したRで示される「置換されていてもよい環状の炭化水素基」における置換基としての「置換されていてもよいアルキル」、「置換されていてもよいアルケニル」、「置換されていてもよいアリール」、「置換されていてもよいシクロアルキル」および「置換されていてもよいシクロアルケニル」おけるアルキル、アルケニル、アルキニル、アリール、シクロアルキルおよびシクロアルケニルと同様の基などが挙げられる。

該アラルキルとしては、例えばベンジル、フェネチル、 $3-フェニルプロピル、<math>4-フェニルプチルなどのフェニル-C_{1-6}$ アルキル基および、例えば(1-ナフチル)メチル、2-(1-ナフチル) エチル、2-(2-ナフチル) エチルなどのナフチルー C_{1-6} アルキル基などの C_{7-16} アラルキル基などが挙げられる。

 R^5 で示される「置換されていてもよい炭化水素基」における置換基としては、前記したRで示される「置換されていてもよい環状の炭化水素基」における置換基と同様の基などが挙げられ、なかでも、低級アルキル(例、メチル、エチル、プロピル等の C_{1-6} アルキル等)、低級アルケニル(例、ビニル、アリル(allyl)等の C_{2-6} アルケニル等)、低級アルキニル(例、エチニル、プロパルギル等の C_{2-6} アルキニル等)、置換されていてもよいアミノ、置換されていてもよい水酸基、ハロゲン原子、シアノ基、置換されていてもよいアミジノ、カルボキシ、低級アルコキシカルボニル(例、メトキシカルボニル、エトキシカルボニル等の C_{1-6} アルコキシカルボニル等)、置換されていてもよいカルバモイル基(例、 C_{1-6} アルキルまたはアシル(例、ホルミル、 C_{2-6} アルカノイル、ベンゾイル、ハロゲン化されていてもよい C_{1-6} アルキルスルホニル、ベンゼンスルホニル等)で置換されていてもよいカルバモイル基等)またはオキソ基などが好ましく、これらの置換基は置換可能な任意の位置に1ないし3個置換していてもよい。

R⁵ で示される「エステル化もしくはアミド化されたカルボキシル基」としては、Rで示される「置換されていてもよい環状の炭化水素基」における置換基としての「エステル化もしくはアミド化されたカルボキシル基」と同様の基などが挙げらる。

R⁵ で示されるアシル基としては、Rで示される「置換されていてもよい環状の炭化水素基」における置換基としてのアシル基と同様の基などが挙げられる。

 R^5 としては、水素原子、置換されていてもよい低級アルキル(例えば、カルバモイル、アミノ、水酸基またはハロゲン原子などで置換されていてもよい、メチル、エチル、プロピル等の C_{1-6} アルキル等)、置換されていてもよい低級アルケニル(例えば、カルバモイル、アミノ、水酸基またはハロゲン原子などで置換されていてもよい、ビニル、アリル(allyl)等の C_{2-6} アルケニル等)、置換されていてもよい低級アルキニル(例えば、カルバモイル、アミノ、水酸基またはハロゲン原子などで置換されていてもよい、エチニル、プロパルギル等の C_{2-6} アルキニル等)などが好ましく、なかでも、水素原子

またはカルバモイルで置換されていてもよい C_{1-6} アルキル(特に、水素原子)が好ましい。

また、 R^5 はXにおける二価の鎖状の炭化水素基が有する置換基または環Aの置換基と結合して環を形成していてもよい。環としては、後述する R^2 が R^1 または R^4 と、 R^3 が R^4 と互いに結合して形成する「環」と同様の環などが挙げられる。

[0021]

X'としては結合手が好ましい。

[0022]

前記式中、Yは置換されていてもよい二価の炭化水素基(好ましくは置換されていてもよい二価の鎖状の炭化水素基)を示す。

Yで示される「置換されていてもよい二価の炭化水素基」における「二価の炭化水素基」としては、「二価の鎖状の炭化水素基」、「二価の環状の炭化水素基」、およびこれらの組み合わせからなる二価の炭化水素基などが挙げられる。

該「二価の鎖状の炭化水素基」としては、例えば、前記したXで示される「置換されていてもよい二価の鎖状の炭化水素基」における「二価の鎖状の炭化水素基」と同様の基などが挙げられる。

該「二価の環状の炭化水素基」としては、例えば、前記したRで示される「置換されていてもよい環状の炭化水素基」における「環状の炭化水素基」の任意の水素原子を1個除去して形成される「二価の環状の炭化水素基」などが挙げられるが、なかでも2価のアリール基、とりわけフェニレン基などが好ましく、該フェニレン基としては、1,2ーフェニレン、1,3ーフェニレンまたは1,4ーフェニレンなどが挙げられる。

Yで示される「置換されていてもよい二価の炭化水素基」における二価の炭化水素基が有していてもよい置換基としては、例えば、前記したRで示される「置換されていてもよい環状の炭化水素基」における置換基と同様の基などが挙げられるが、なかでも、低級アルキル(例、メチル、エチル、プロピル等の C_{1-6} アルキル等)、低級アルケニル(例、エチニル、プロパルギル等の C_{2-6} アルケニル等)、低級アルキニル(例、エチニル、プロパルギル等の C_{2-6} アルキニル等)、置換されていてもよいアミノ、置換されていてもよいアミノ、カルボキシ、低級アルコキシカルボニル(例、メトキシカルボニル、エトキシカルボニル等の C_{1-6} アルコキシカルボニル等)、置換されていてもよいカルバモイル基(例、 C_{1-6} アルキルまたはアシル(例、ホルミル、 C_{2-6} アルカノイル、ベンゾイル、ハロゲン化されていてもよい C_{1-6} アルコキシカルボニル、バンゼンスルホニル等)で置換されていてもよいカルバモイル基等)またはオキソ基等が好ましく、これらの置換基は置換可能な任意の位置に1 ないし3 個置換していてもよい。

Yとしては、置換されていてもよい二価の鎖状の炭化水素基が好ましく、なかでも置換されていてもよい C_{1-6} アルキレン(特にエチレンなど)が好ましい。

[0023]

前記式中、Y'は結合手またはー(=〇)-(カルボニル)を示す。

Y'としては-(=O)-が好ましい。

[0024]

式(I)で表される化合物としては、Xが結合手であり、X'が結合手であり、Yが置換されていてもよい C_{1-3} アルキレンであり、Y'が-C(=O)-である化合物が好ましい。

[0025]

前記式中、環Aは置換されていてもよい含窒素複素環を示す。

環Aで示される「置換されていてもよい含窒素複素環」における「含窒素複素環」としては、前記したRで示される「置換されていてもよい複素環基」を構成する「複素環」として例示されたものの中で、少なくとも1個の窒素原子を含有するものなど、例えば環系を構成する原子(環原子)として、少なくとも1個の窒素原子を含有し、さらに酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし3種(好ましくは1ないし

2種)を1ないし3個(好ましくは1ないし2個)含有していてもよい含窒素芳香族複素 環、飽和あるいは不飽和の含窒素非芳香族複素環(含窒素脂肪族複素環)等が挙げられる が、含窒素脂肪族複素環(含窒素非芳香族複素環)等が好ましく用いられる。

環Aで示される「置換されていてもよい含窒素複素環」における「含窒素複素環」としては、「単環の5~12員含窒素複素環」が好ましい。

該「含窒素脂肪族複素環」としては、例えばアゼチジン、ピロリジン、ピペリジン、モルホリン、チオモルホリン、ピペラジン、ホモピペラジン等の3~8員(好ましくは5~6員)の飽和あるいは不飽和(好ましくは飽和)の単環の含窒素脂肪族複素環などのように、前記したRとしての芳香族単環式複素環基および芳香族縮合複素環基を構成する「芳香族複素環」として例示されたものの中で、少なくとも1個の窒素原子を含有する「含窒素芳香族複素環」の一部又は全部の二重結合が飽和した含窒素脂肪族複素環基などが挙げられるが、なかでも、ピペラジン、ピペリジンなどが好ましく用いられる。

環Aで示される「置換されていてもよい含窒素複素環」における「含窒素複素環」が有していてもよい置換基としては、前記したRで示される「置換されていてもよい複素環基」における「複素環基」が有していてもよい置換基と同様の基などが挙げられ、これらの任意の置換基は置換可能な位置に1ないし5個(好ましくは、1ないし3個)置換していてもよい。

[0026]

環Aとしては置換されていてもよいピペラジン環または置換されていてもよいピペリジン環が好ましく、なかでも、式(I)における式

【化11】

が、式

【化12】

〔式中、環A'はさらに置換基を有していてもよい。〕または式

【化13】

[式中、環A"はさらに置換基を有していてもよい。]であることが好ましい。

[0027]

前記式中、 Z^1 および Z^3 はそれぞれ独立しては結合手または置換されていてもよい二 価の鎖状の炭化水素基を示す。

 Z^1 および Z^3 でそれぞれ示される「置換されていてもよい二価の鎖状の炭化水素基」における「二価の鎖状の炭化水素基」としては、Xで示される「置換されていてもよい二価の鎖状の炭化水素基」における「二価の鎖状の炭化水素基」と同様の基などが挙げられる。

 Z^1 および Z^3 でそれぞれ示される「置換されていてもよい二価の鎖状の炭化水素基」における置換基としては、Xで示される「置換されていてもよい二価の鎖状の炭化水素基」における置換基と同様な数の同様の基などが挙げられる。

 Z^1 および Z^3 としては、それぞれ、結合手またはメチレン、エチレン、トリメチレン、テトラメチレンなどの C_{1-6} アルキレンなどが好ましい。

[0028]

前記式中、 Z^2 は結合手または $-N(R^6)$ -を示し、ここで R^6 は水素原子、置換さ

れていてもよい炭化水素基またはアシル基を示す。

R⁶で示される「置換されていてもよい炭化水素基」における「炭化水素基」としては、例えば、前記したR⁵で示される「置換されていてもよい炭化水素基」における「炭化水素基」と同様の基などが挙げられる。

 R^6 で示される「置換されていてもよい炭化水素基」における置換基としては、前記した R^5 で示される「置換されていてもよい炭化水素基」における置換基と同様な数の同様の基などが挙げられる。

 R^6 で示されるアシル基としては、 R^5 で示されるアシル基と同様の基などが挙げられる。

Z² としては、結合手などが好ましい。

[0029]

式 (I) で表される化合物としては、 Z^1 および Z^2 が結合手であり、 Z^3 が置換されていてもよい C_{1-3} アルキレンである化合物が好ましい。

[0030]

前記式中、Bは式

【化14】

で表される基を示し、ここで、 R^1 および R^2 はそれぞれ独立して水素原子、ハロゲン原子、置換されていてもよい炭化水素基、置換されていてもよいアルコキシ基、エステル化もしくはアミド化されていてもよいカルボキシル基、アシル基または置換されていてもよいアミノ基を示し、 R^3 は水素原子、置換されていてもよい炭化水素基、エステル化もしくはアミド化されていてもよいカルボキシル基またはアシル基を示し、 R^4 は置換されていてもよい炭化水素基を示し、 R^2 は R^1 または R^4 と、 R^3 は R^4 とそれぞれ互いに結合して置換されていてもよい環を形成していてもよい。

[0031]

 R^1 、 R^2 、 R^3 、 R^4 で示される「置換されていてもよい炭化水素基」における「炭化水素基」としては、それぞれ、例えば、前記した R^5 で示される「置換されていてもよい炭化水素基」における「炭化水素基」と同様の基などが挙げられ、該「炭化水素基」が有していてもよい置換基としては、前記した R^5 で示される「置換されていてもよい炭化水素基」における置換基と同様な数の同様の基などが挙げられる。

 R^1 、 R^2 で示される「置換されていてもよいアルコキシ基」のアルコキシ基としては、 C_{1-6} の低級アルコキシ基(例、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ、イソプロポキシ等)が挙げられる。

 R^1 、 R^2 で示される「置換されていてもよいアルコキシ基」におけるアルコキシ基が有していてもよい置換基としては、前記した R^5 で示される「置換されていてもよい炭化水素基」における置換基と同様な数の同様の基などが挙げられる。

 R^1 、 R^2 、 R^3 で示されるアシル基としては、Rで示される「置換されていてもよい環状の炭化水素基」における置換基としてのアシル基と同様の基などが挙げられる。

 R^1 、 R^2 、 R^3 で示される「エステル化もしくはアミド化されていてもよいカルボキシル基」としては、前記したRで示される「置換されていてもよい環状の炭化水素基」における置換基としての「エステル化もしくはアミド化されていてもよいカルボキシル」と同様の基などが挙げられる。

[0032]

 R^2 が R^1 または R^4 と、 R^3 が R^4 とそれぞれ互いに結合して形成していてもよい 「出証特 2 0 0 4 - 3 0 9 9 2 8 4

置換されていてもよい環」における「環」は、同素環または複素環のいずれであってもよい。

該「同素環または複素環」には、例えば、(i) 炭素原子以外に窒素原子、硫黄原子および酸素原子から選ばれた1種または2種のヘテロ原子を、好ましくは1個ないし3個含む芳香族複素環または非芳香族複素環、および(ii)炭素原子からなる環状炭化水素(同素環)などが含まれる。

該「芳香族複素環」としては、例えば、炭素原子以外に、窒素原子、酸素原子および硫 黄原子から選ばれたヘテロ原子を1個ないし3個含む5ないし6員の芳香族複素環(例え ば、ピリジン、ピラジン、ピリミジン、ピリダジン、ピロール、イミダゾール、ピラゾー ル、トリアゾール、チオフェン、フラン、チアゾール、イソチアゾール、オキサゾールお よびイソオキサゾール環など)などが挙げられる。

該「非芳香族複素環」としては、例えば、炭素原子以外に、窒素原子、酸素原子および硫黄原子から選ばれたヘテロ原子を1個ないし3個含む5ないし9員(好ましくは5または6員)の非芳香族複素環(例えば、テトラヒドロピリジン、ジヒドロピリジン、テトラヒドロピリダジン、ジヒドロピラン、ジヒドロピラジン、テトラヒドロピリメジン、テトラヒドロピリグジン、ジヒドロピラン、ピペリジン、ピペラジン、ヘキサヒドロピリミジン、ヘキサヒドロピリグジン、テトラヒドロピラン、モルホリン、ピロリジン、ピラゾリン、イミグゾリジン、チアゾリン、イソチアゾリン、オキサゾリン、イソオキサゾリン、ピラゾリジン、テトラヒドロチオフェン、テトラヒドロフラン、テトラヒドロチアゾール、テトラヒドロイソチアゾール、テトラヒドロオキサゾール、テトラヒドロイソキサゾール、テトラヒドロイソキサゾール、テトラヒドロイソキサゾール、テトラヒドロイソキサゾール、テトラヒドロイソキサゾール、テトラヒドロイソキサゾール、テトラヒドロイソキサゾール、テトラヒドロイソキサゾール、テトラヒドロイソキサゾール、テトラヒドロイソキサゾール、テトラヒドロイソキサゾール、テトラヒドロイソキサゾール、テトラヒドロイソキサゾール、テトラヒドロイソキサゾール、テトラヒドロイソキャゾール、テトラヒドロイソキャゾール、テトラヒドロイソキャゾール、テトラヒドロイソキャゾール、テトラヒドロイソキャゾール、テトラヒドロイソキャゾール、テトラヒドロイソキャゾール、テトラヒドロイソキャゾール、テトラヒドロイソキャゾール、テトラヒドロイソキャゾールでは15年によりには1950年によります。

該「環状炭化水素(同素環)」としては、例えば、3ないし10員(好ましくは、5ないし9員、より好ましくは5または6員)の環状炭化水素などが挙げられ、例えば、ベンゼン、 C_{3-10} シクロアルケン(例えば、シクロブテン、シクロペンテン、シクロヘキセン、シクロへプテン、シクロオクテンなど)、 C_{3-10} シクロアルカン(例えば、シクロブタン、シクロペンタン、シクロヘキサン、シクロへプタン、シクロオクタンなど)などが挙げられる。シクロアルケンとしては、 C_{5-6} シクロアルケン(例えば、シクロペンテン、シクロヘキセンなど)などが好ましく、シクロアルカンとしては C_{5-6} シクロアルカン(例えば、シクロアルカン(例えば、シクロヘキサン、シクロペンタンなど)などが好ましい。

 R^2 が R^1 または R^4 と、 R^3 が R^4 と互いに結合して形成する「環」としては、例えば、炭素原子以外に窒素原子を 1 個ないし 2 個(好ましくは 2 個)含む 5 ないし 9 員(好ましくは 5 または 6 員)の非芳香族複素環が好ましく、なかでも、テトラヒドロピリジン、テトラヒドロピラジン、テトラヒドロピロール、テトラヒドロイミダゾールなどがより好ましい例として挙げられる。

 R^2 が R^1 または R^4 と、 R^3 が R^4 と 互いに結合して形成する「置換されていてもよい環」における置換基としては、前記した R で示される「置換されていてもよい複素環基」における置換基と同様の基などが挙げられ、これらの任意の置換基は置換可能な位置に 1 ないし 5 個(好ましくは、 1 ないし 3 個)置換していてもよい。該「置換されていてもよい環」における置換基としては、なかでも、 C_{1-6} アルキル基、水酸基およびオキソ基などが好ましい。

[0033]

 R^6 は R^1 、 R^2 、 R^3 または R^4 と互いに結合して置換されていてもよい環を形成していてもよく、環としては R^2 が R^1 または R^4 と互いに結合して形成する「環」と同様の環などが挙げられる。該「置換されていてもよい環」における置換基としては、前記したRで示される「置換されていてもよい複素環基」における置換基と同様の基などが挙げられ、これらの任意の置換基は置換可能な位置に1ないし5 個(好ましくは、1ないし3 個)置換していてもよい。

[0034]

前記式中、aは0,1または2(好ましくは2)を示す。

[0035]

式 (I) で表される化合物としては、N-(4-((4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-1-ピペラジニル)メチル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン、<math>4-((4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-1-ピペラジニル)メチル)-3-メチル-1,3-チアゾール-2(3H)-イミン、<math>N-(5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-4-ピペリジニル)メチル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン、<math>5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-4-ピペリジニル)スルホニル)プロパノイル)-4-ピペリジニル)スルホニル)プロパノイル)-4-ピペリジニル)スルホニル)プロパノイル)-4-ピペリジニル)イミノ)-1,3-チアゾール-3(2H)-イル)エタノールなど、またはこれらの塩などが好ましく用いられる。

[0036]

式(I)で表される化合物(以下、化合物(I)と略記することがある)の塩としては、薬理学的に許容しうる塩等が挙げられ、例えば、トリフロロ酢酸、酢酸、乳酸、コハク酸、マレイン酸、酒石酸、クエン酸、グルコン酸、アスコルビン酸、安息香酸、メタンスルホン酸、pートルエンスルホン酸、ケイ皮酸、フマル酸、ホスホン酸、塩酸、硝酸、臭化水素酸、ヨウ化水素酸、スルファミン酸、硫酸等の酸との酸付加塩、例えば、ナトリウム、カリウム、マグネシウム、カルシウム等の金属塩、例えば、トリメチルアミン、トリエチルアミン、ピリジン、ピコリン、Nーメチルピロリジン、Nーメチルピペリジン、Nーメチルモルホリン等の有機塩等が挙げられる。

化合物(I)の光学的に活性な形態が必要とされる場合、例えば、光学的に活性な出発物質を使用して、あるいは従来の方法を使用する該化合物のラセミ形態の分割によって得ることができる。

[0037]

化合物(I)のプロドラッグは、生体内における生理条件下で酵素や胃酸等による反応 により化合物(Ⅰ)に変換する化合物、すなわち酵素的に酸化、還元、加水分解等を起こ して化合物(I)に変化する化合物、胃酸等により加水分解などを起こして化合物(I) に変化する化合物をいう。化合物(I)のプロドラッグとしては、化合物(I)のアミノ 基がアシル化、アルキル化、りん酸化された化合物(例えば、化合物(I)のアミノ基が エイコサノイル化、アラニル化、ペンチルアミノカルボニル化、(5-メチルー2-オキ ソー1.3-ジオキソレンー4ーイル) メトキシカルボニル化、テトラヒドロフラニル化 、ピロリジルメチル化、ピバロイルオキシメチル化、tert-ブチル化された化合物な ど)、化合物(I)の水酸基がアシル化、アルキル化、りん酸化、ほう酸化された化合物 (例えば、化合物(I)の水酸基がアセチル化、パルミトイル化、プロパノイル化、ピバ ロイル化、サクシニル化、フマリル化、アラニル化、ジメチルアミノメチルカルボニル化 された化合物など)、あるいは、化合物(I)のカルボキシル基がエステル化、アミド化 された化合物(例えば、化合物(I)のカルボキシル基がエチルエステル化、フェニルエ ステル化、カルボキシメチルエステル化、ジメチルアミノメチルエステル化、ピバロイル オキシメチルエステル化、エトキシカルボニルオキシエチルエステル化、フタリジルエス テル化、(5-メチル-2-オキソー1,3-ジオキソレン-4-イル)メチルエステル 化、シクロヘキシルオキシカルボニルエチルエステル化、メチルアミド化された化合物な ど)等が挙げられる。これらの化合物は自体公知の方法によって化合物(I)から製造す ることができる。

また、化合物 (I) のプロドラッグは、広川書店1990年刊「医薬品の開発」第7巻分子設計163頁から198頁に記載されているような、生理的条件で化合物 (I) に変化するものであってもよい。

化合物(I)は、同位元素(例、 3H , 14 C, 35 S, 125 Iなど)などで標識されていてもよい。

[0038]

化合物(I)又はその塩は、例えば、以下に示す方法A~Gで製造することができる。 以下の反応式に記載された各化合物は、反応を阻害しないのであれば、塩を形成していて もよく、かかる塩としては、化合物(I)の塩と同様なものなどが挙げられる。

[式中、L¹は脱離基(例えばハロゲン原子(例、フッ素、塩素、臭素、ヨウ素等)あるいはスルホン酸の反応性誘導体(例、スルホン酸エステル、活性スルホン酸アミド(例、1,2,4-トリアゾリド、イミダゾリド等)、4級アミンスルホニル体(例、N-メチルピロリジニウム塩等)、ビススルホニルイミド(例、N-フェニルビススルホニルイミド等)等)を形成する基等)を、他の記号は前記と同意義を示す。〕で表される化合物(IV)又はその塩と、式(III)

〔式中、環A''、は環原子として少なくとも2個の窒素原子を有する置換されていてもよい含窒素複素環を示し、他の記号は前記と同意義を示す。〕で表される化合物(III)又はその塩とを反応させることによって化合物(I')を製造することができる。化合物(III)又は(IV)の塩としては、前記した化合物(I)と酸付加塩を形成する酸との酸付加塩が挙げられる。

本反応は一般に溶媒中で行われ、反応を阻害しない溶媒が適宜選択される。このような溶媒としては、アルコール類(例、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、tertーブタノール等)、エーテル類(例、ジオキサン、テトラヒドロフラン、ジエチルエーテル、tertーブチルメチルエーテル、ジイソプロピルエーテル、エチレングリコールージメチルエーテル、エチレングリコールージメチルエーテル、エチレングリコールージメチルエーテル、エチレングリコールーモノメチルエーテル等)、エステル類(例、ギ酸エチル、酢酸エチル、酢酸 nープチル等)、カルボン酸類(例、ギ酸、酢酸、プロピオン酸等)、ハロゲン化炭化水素類(例、ジクロロメタン、クロロホルム、四塩化炭素、トリクロロエチレン、1,2ージクロロエタン、クロロベンゼン等)、炭化水素類(例、nーヘキサン、ベンゼン、トルエン等)、アミド類(例、ホルムアミド、N,Nージメチルホレムアミド、N,Nージメチルアセトアミド等)、ケトン類(例、アセトン、メチルエチルケトン、メチルイソブチルケトン等)、ニトリル類(例、アセトニトリル、プロピオニトリル等)等のほか、ジメチルスルホキシド、スルホラン、ヘキサメチルホスホルアミド、水等が単独又は混合溶媒として用いられる。

本反応は必要により塩基の存在下に行ってもよく、そのような塩基としては、例えば水酸化リチウム、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等の無機塩基、例えば、ギ酸ナトリウム、酢酸ナトリウム、酢酸カリウム等の C_{1-6} 低級脂肪酸のアルカリ金属塩、例えばトリエチルアミン、トリ(n-プロピル)アミン、トリ(n-ブチル)アミン、ジイソプロピルエチルアミン、シクロヘキシルジメチルアミン、ピリジン、ルチジン、 $\gamma-$ コリジン、N,N-ジメチルアニリン、N-メチルピペリジン、N-メチルピロリジン、N-メチルモルホリン等の3級アミンが用いられる。

反応は化合物 (III) に対して化合物 (IV) を $0.5\sim5$ 当量、好ましくは $0.8\sim2$ 当量を用いる。

反応温度は-20~200℃、好ましくは0~170℃である。

反応時間は化合物 (III) 又は (IV) の種類、溶媒の種類、反応温度等により異なるが、通常約1分ないし約72時間、好ましくは約15分ないし約24時間である。

【化24】

$$R^{6}$$
, \parallel Z^3 B

〔式中、 R^6 'は置換されていてもよい鎖状の炭化水素基を示し、他の記号は前記と同意義を示す。〕で表される化合物(IV')又はその塩と化合物(III)又はその塩とを反応させることによって、化合物(I'')を製造することができる。化合物(IV')又は(III)の塩としては、前記した化合物(I)と酸付加塩を形成する酸との酸付加塩が挙げられる

本法は化合物 (IV') 又はその塩と化合物 (III) 又はその塩 (無機塩、有機塩等) から 出証特 2 0 0 4 - 3 0 9 9 2 8 4

イミンを形成した後に、還元することによって、化合物(I'')を製造することができる。イミンの形成には、必要により酸触媒の存在下に行ってもよく、そのような酸触媒としては、塩酸、硫酸、カルボン酸類(例、ギ酸、酢酸、プロピオン酸等)、スルホン酸類(メタンスルホン酸、エタンスルホン酸、ペンゼンスルホン酸、トルエンスルホン酸、カンファースルホン酸等)等が用いられ、還元剤には、NaBH4、LiBH4等が用いられる。また、本法は化合物(IV')又はその塩と化合物(III)又はその塩(無機塩、有機塩等)とを、上記の酸の存在下、NaBH(OAc)3, NaCNBH3を用いることによっも、化合物(I'')を製造することができる。

本反応は一般に溶媒中で行われ、反応を阻害しない溶媒が適宜選択される。このような溶媒としては、アルコール類(例、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、tertーブタノール等)、エーテル類(例、ジオキサン、テトラヒドロフラン、ジエチルエーテル、tertーブチルメチルエーテル、ジイソプロピルエーテル、エチレングリコールージメチルエーテル、エチレングリコールージメチルエーテル、エチレングリコールーモノメチルエーテル等)、エステル類(例、ギ酸エチル、酢酸エチル、酢酸 n ーブチル等)、ハロゲン化炭化水素類(例、ジクロロメタン、クロロホルム、四塩化炭素、トリクロロエチレン、1,2ージクロロエタン、クロロベンゼン等)、炭化水素類(例、n ーへキサン、ベンゼン、トルエン等)、アミド類(例、ホルムアミド、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド等)、ニトリル類(例、アセトニトリル、プロピオニトリル等)等のほか、ジメチルスルホキシド、スルホラン、ヘキサメチルホスホルアミド、水等が単独又は混合溶媒として用いられる。

反応は化合物 (III) に対して化合物 (IV') $0.5\sim5$ 当量、好ましくは $0.8\sim2$ 当量である。

反応温度は-50~150℃、好ましくは-20~100℃である。

反応時間は化合物 (III) 又は (IV') の種類、溶媒及び塩基の種類、反応温度等により 異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし約48時間で ある。

[0047]

<u>方法C</u>

式(V)

【化25】

R-X-S(O)a-X'-Y-COOH

[式中の記号は前記と同意義を示す。]で表される化合物(V)又はその塩と式(II) 【化26】

$$NH \overbrace{A - Z^1 - Z^2 - Z^3 - B}$$

〔式中の記号は前記と同意義を示す。〕で表される化合物 (II) を反応させることにより 化合物 (I''') を製造することができる。

本法は化合物 (II) 又はその塩と遊離酸 (V) 又はその塩 (無機塩、有機塩等) あるいはその反応性誘導体 (例えば酸ハライド、エステル、酸アジド、酸無水物、混合酸無水物、活性アミド、活性エステル、活性チオエステル等) とを反応させることにより行われる。化合物 (II) の塩としては、前記した化合物 (I) と酸付加塩を形成する酸として述べたものとの酸付加塩が挙げられる。

化合物 (V) に用いられる無機塩としてはアルカリ金属塩(例えばナトリウム塩、カリウム塩等)、アルカリ土類金属塩(例えばカルシウム塩等)等が、有機塩としては例えばトリメチルアミン塩、トリエチルアミン塩、tertーブチルジメチルアミン塩、ジベンジルメチルアミン塩、ベンジルジメチルアミン塩、N,Nージメチルアニリン塩、ピリジン塩、キノリン塩等が用いられる。また酸ハライドとしては例えば酸クロライド、酸プロマイド等が、エステルとしては例えばメチル、エチル等の低級アルキルエステル類が、混合酸

無水物としてはモノC1-4アルキル炭酸混合酸無水物(例えば遊離酸(V)とモノメチ ル炭酸、モノエチル炭酸、モノイソプロピル炭酸、モノイソブチル炭酸、モノtert-ブチ ル炭酸、モノベンジル炭酸、モノ(p-ニトロベンジル)炭酸、モノアリル炭酸等との混 合酸無水物)、Cı-6脂肪族カルボン酸混合酸無水物(例えば遊離酸(V)と酢酸、シ アノ酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、イソ吉草酸、ピバル酸、トリフルオ 口酢酸、トリクロロ酢酸、アセト酢酸等との混合酸無水物)、Cィー11芳香族カルボン 酸混合酸無水物(例えば遊離酸(V)と安息香酸、p-トルイル酸、p-クロロ安息香酸 等との混合酸無水物)、有機スルホン酸混合酸無水物(例えばメタンスルホン酸、エタン スルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等との混合酸無水物)等が、 活性アミドとしては含窒素複素環化合物とのアミド(例えば遊離酸(V)とピラゾール、 イミダゾール、ベンゾトリアゾール等との酸アミドで、これらの含窒素複素環化合物はC 1-6 アルキル (例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル 、secーブチル、tertーブチル等)、Cı-6アルコキシ(例えばメトキシ、エトキシ、 プロポキシ、イソプロポキシ、ブトキシ、tert-ブトキシ等)、ハロゲン原子(例えばフ ッ素、塩素、臭素等)、オキソ、チオキソ、С1-6アルキルチオ(例えばメチルチオ、 エチルチオ、プロピルチオ、ブチルチオ等)等で置換されていてもよい)等が挙げられる

活性エステルとしては、例えば有機リン酸エステル(例えばジエトキシリン酸エステル、ジフェノキシリン酸エステル等)のほかp-ニトロフェニルエステル、2, 4 - ジニトロフェニルエステル、シアノメチルエステル、ペンタクロロフェニルエステル、N-ヒドロキシサクシンイミドエステル、N-ヒドロキシフタルイミドエステル、1-ヒドロキシベンゾトリアゾールエステル、6 - クロロー1-ヒドロキシベンゾトリアゾールエステル、1-ヒドロキシー1 H-2-ピリドンエステル等が挙げられる。活性チオエステルとしては芳香族複素環チオール化合物〔これらの複素環は C_{1-6} アルキル(例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル等)、 C_{1-6} アルコキシ(例えばメトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、tert-ブトキシ等)、Nロゲン原子(例えばフッ素、塩素、臭素等)、 C_{1-6} アルキルチオ(例えばメチルチオ、エチルチオ、プロピルチオ、ブチルチオ等)等で置換されていてもよい〕とのエステル〔例、2-ピリジルチオールエステル、2-ベンゾチアゾリルチオールエステル〕等が挙げられる。

本反応は一般に溶媒中で行われ、必要により塩基又は縮合剤(例、カルボジイミド類(DCC、WSC、DIC等)、りん酸誘導体(例、シアノりん酸ジエチル、DPPA、BOP-C1等)、塩化4-(4,6-ジメトキシー1,3,5-トリアジン-2-イル)-4-メチルモルフォリニウム(DMTMM:クニシマら、テトラヘドロン、1999、55、13159)等)の存在下に行われる。このような溶媒としては、エーテル類(例、ジオキサン、テトラヒドロフラン、ジエチルエーテル、tertープチルメチルエーテル、ジイソプロピルエーテル、エチレングリコールージメチルエーテル等)、エステル類(例、ギ酸エチル、酢酸エチル、酢酸nープチル等)、ハロゲン化炭化水素類(例、ジクロロメタン、クロロホルム、四塩化炭素、トリクロロエチレン、1,2-ジクロロエタン、クロロベンゼン等)、炭化水素類(例、n-ヘキサン、ベンゼン、トルエン等)、アミド類(例、ホルムアミド、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド等)、ニトリル類(例、アセトニトリル、プロピオニトリル等)等のほか、スルホラン、ヘキサメチルホスホルアミド、水等が単独又は混合溶媒として用いられる。塩基としては、前記した方法Aで述べた塩基が用いられる。

反応は化合物 (V) に対して化合物 (II) 0. $5\sim5$ 当量、好ましくは $0.8\sim2$ 当量である。

反応温度は-50~150℃、好ましくは-20~100℃である。

反応時間は化合物(V)又は(II)の種類、溶媒及び塩基の種類、反応温度等により異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし約48時間である。

【0048】 <u>方法D</u> 式 (VI) 【化27】

$R-X-S(O)_a-X'-Y-L^2$

〔式中、 L^2 は式 (IV) の L^1 と同様の脱離基を、また他の記号は前記と同意義を示す。〕 で表される化合物 (VI) 又はその塩と化合物 (II) 又はその塩とを反応させることにより化合物 ($I^{\prime\prime\prime\prime}$) を製造することができる。

[0049]

本法の反応は一般に溶媒中で行われ、反応を阻害しない溶媒が適宜選択される。このような溶媒としては、前記した方法Aで述べた溶媒と同様のものなどが用いられる。

また本反応は塩基の存在下に行ってもよく、そのような塩基としては、例えば水素化カリウム、水素化ナトリウム等の水素化アルカリ金属類、例えばリチウムエトキシド、リチウムtertープトキシド、ナトリウムメトキシド、ナトリウムエトキシド、カリウムtertープトキシド等の炭素数 1 ないし 6 の金属アルコキシド類、例えば水酸化リチウム、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の無機塩基、例えばトリエチルアミン、トリ(n-プロピル)アミン、トリ(n-ブチル)アミン、ジイソプロピルエチルアミン、シクロヘキシルジメチルアミン、ピリジン、ルチジン、 $\gamma-$ コリジン、N, N-ジメチルアニリン、N-メチルピのリジン、N-メチルピロリジン、N-メチルモルホリン等の 3 級アミンが用いられる。

反応は化合物 (VI) に対して化合物 (II) を $0.5 \sim 10$ 当量、好ましくは $0.8 \sim 3$ 当量を用いる。

反応温度は-30~250℃、好ましくは-10~150℃である。

反応時間は化合物 (VI) 又は (II) の種類、溶媒の種類、反応温度等により異なるが、通常約1分ないし約72時間、好ましくは約15分ないし約24時間である。

[0050]

方法E

式 (Ia)

【化28】

$$R - X - S - X' - Y - Y' - NA - Z^1 - Z^2 - Z^3 - B$$

[式中、記号は前記と同意義を示す。]で表される化合物 (Ia) 又はその塩を酸化することにより、式 (I) において a が 1 または 2 である化合物を製造することができる。

本酸化反応は酸化剤の存在下に行われる。ここで酸化剤としては、酸素、過酸化水素、例えば過安息香酸、m-クロロ過安息香酸、過酢酸等の有機過酸、例えば過塩素酸リチウム、過塩素酸銀、過塩素酸テトラプチルアンモニウム等の過塩素酸塩、例えば過ヨウ素酸ナトリウム等の過ヨウ素酸塩、過ヨウ素酸、二酸化マンガン、四酢酸鉛、例えば過マンガン酸カリウム等の過マンガン酸塩、例えばヨウ素、臭素、塩素等のハロゲン、Nープロモコハク酸イミド、N-クロロコハク酸イミド、塩化スルフリル、クロラミンT等が挙げられる。

本反応は一般に溶媒中で行われ、反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えばアルコール類(例、メタノール、エタノール、プロパノール、イソプロパノール、プタノール、tertープタノール等)、エーテル類(例、ジオキサン、テトラヒドロフラン、ジエチルエーテル、tertープチルメチルエーテル、ジイソプロピルエーテル、エチレングリコールージメチルエーテル等)、エステル類(例、ギ酸エチル、酢酸エチル、酢酸ロープチル等)、カルボン酸類(例、ギ酸、酢酸、プロピオン酸等)、ハロゲン化炭化水素類(例、ジクロロメタン、クロロホルム、四塩化炭素、トリクロロエチレ

ン、1,2-ジクロロエタン、クロロベンゼン等)、炭化水素類(例、n-ヘキサン、ベンゼン、トルエン等)、アミド類(例、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等)、ケトン類(例、アセトン、メチルエチルケトン、メチルイソブチルケトン等)、ニトリル類(例、アセトニトリル、プロピオニトリル等)等のほか、スルホラン、ヘキサメチルホスホルアミド、水等が単独又は混合溶媒として用いられる。

本反応は塩基の存在下に行うこともできる。そのような塩基としては、例えば水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどの水酸化アルカリ金属、水酸化マグネシウム、水酸化カルシウムなどの水酸化アルカリ土類金属、炭酸ナトリウム、炭酸カリウムなどの炭酸アルカリ金属、炭酸水素ナトリウム、炭酸水素カリウムなどの炭酸水素アルカリ金属などの無機塩基が用いられる。

反応は化合物(Ia)に対して酸化剤は $0.1\sim20$ 当量、好ましくは約 $0.4\sim10$ 当量、塩基は $0.1\sim20$ 当量、好ましくは $0.4\sim10$ 当量が用いられる。

また本反応は必要により酸の存在下に行ってもよく、そのような酸としては、塩酸、臭化水素酸、硫酸、リン酸、過塩素酸等の鉱酸類、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、カンファースルホン酸等のスルホン酸類、ギ酸、酢酸、プロピオン酸、トリフルオロ酢酸等の有機酸が用いられる。これら酸の使用量は化合物(Ia)に対して0.1~20当量、好ましくは0.5~10当量である。

反応温度は約-10℃~約250℃、好ましくは約-5℃~約150℃である。 反応時間は化合物 (Ia)、塩基又は溶媒の種類、反応温度等により異なるが、通常約 1分間~約50時間、好ましくは約5分間~約24時間である。

[0051]

方法F

式 (VII)

【化29】

$$R - X - S(0) = X' - Y - Y' - NA - Z^1 - Z^2 - Z^3 - B'$$

〔式中、B'は式

(式中の記号は前記と同意義を示す)で表される基を示し、他の記号は前記と同意義を示す。〕で表わされる化合物(VII)と、式(VIII)

【化31】

L^3-R^4

[式中、 L^3 は脱離基(例えば、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素等)、 $1\sim3$ 個のハロゲン原子で置換されていてもよい C_{1-6} アルキルスルホニルオキシ基(例、メタンスルホニルオキシ、エタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ等)、置換基を有していてもよいアリールスルホニルオキシ基(例、ベンゼンスルホニルオキシ、p-トルエンスルホニルオキシ、p-プロモベンゼンスルホニルオキシ等)等)を、他の記号は前記と同意義を示す。〕で表わされる化合物(VIII)とを反応させることにより化合物(I)を製造することができる。

本法は化合物 (VII) と化合物 (VIII) とを反応させることにより行われる。 本反応は一般に溶媒中で行われ、反応を阻害しない溶媒が適宜選択される。このような 溶媒としては、前記した方法Dで述べた溶媒と同様のものなどが用いられる。

反応は化合物 (VII) に対して化合物 (VIII) $0.5\sim5$ 当量、好ましくは $0.8\sim2$ 当量である。

反応温度は-50~150℃、好ましくは-20~100℃である。

反応時間は化合物 (VII) 又は (VIII) の種類、溶媒及び塩基の種類、反応温度等により異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし約48時間である。

[0052]

方法G

式(IX)

【化32】

$R-X-S(O)_a-M$

〔式中、Mは水素原子、アルカリ金属、アルカリ土類金属または脱離基(例えば、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素等)を、他の記号は前記と同意義を示す。〕で表される化合物(IX)又はその塩と、式(X)

【化33】

$$X'' - Y - Y' - N A - Z^1 - Z^2 - Z^3 - B$$

〔式中、X',はYと結合する炭素原子から最も離れた位置の炭素原子が不飽和結合を有するアルケニルまたはTルキニル(好ましくは、 C_2 - 8 アルケニルまたは C_2 - 8 アルキニル)、あるいはYと結合する炭素原子から最も離れた位置の炭素原子が脱離基(例、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素等)、 $1 \sim 3$ 個のハロゲン原子で置換されていてもよい C_1 - 6 アルキルスルホニルオキシ基(例、メタンスルホニルオキシ、エタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ等)、置換基を有していてもよいTリールスルホニルオキシ基(例、ベンゼンスルホニルオキシ、D-トルエンスルホニルオキシ、D-ブロモベンゼンスルホニルオキシ等)または水酸基など)を有するアルキル(好ましくは、D-8 アルキル)を示し、他の記号は前記と同意義を示す。〕で表される化合物を反応させることにより化合物(D-8 変費することができる。

本法は一般に溶媒中で行われ、必要により塩基の存在下に行われる。このような溶媒、 塩基としては前記した方法Aで述べた溶媒、塩基と同様のものなどが用いられる。

反応は化合物 (X) に対して化合物 (IX) 0.5~3当量、好ましくは 0.8~2当量である。

反応温度は-50~150℃、好ましくは-20~120℃である。

反応時間は化合物 (IX) 又は (X) の種類、溶媒及び塩基の種類、反応温度等により 異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし約24時間で ある。

[0053]

上記各反応で用いる原料化合物(II)、(III)、(VI)および(X)は、例えば、以下の方法により合成することができる。

〔式中、 P^1 はアミノ基の保護基を、他の記号は前記と同意義を示す。〕で表される化合物(XI)又はその塩と、

式 (XII)

【化39】

X"-Y-COOH

〔式中の記号は前記と同意義を示す。〕で表わされる化合物(XII)又はそれらの塩と を反応させて、

式 (XIV)

【化40】

〔式中の記号は前記と同意義を示す。〕においてY'が一(C=O) -である化合物を製造する。

本法は、前述の方法Cと同様の方法で行うことができる。

反応は化合物 (XI) に対して化合物 (XII) 0.5~5当量、好ましくは 0.8~2 当量である。

反応温度は-50~150℃、好ましくは-20~100℃である。

反応時間は化合物(XI)又は(XII)の種類、溶媒及び塩基の種類、反応温度等により異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし約48時間である。

[0058]

方法I

化合物(XI)又はその塩と、

式(XIII)

【化41】

$$X''-Y-L^2$$

〔式中の記号は前記と同意義を示す。〕で表わされる化合物(XIII)又はそれらの塩とを反応させて、

式(XIV)

【化42】

[式中の記号は前記と同意義を示す。] においてY'が結合手である化合物を製造する。 本法は、前述の方法Dと同様の方法で行うことができる。

反応は化合物 (XI) に対して化合物 (XIII) $0.5\sim5$ 当量、好ましくは $0.8\sim2$ 当量である。

反応温度は $-50\sim150$ ℃、好ましくは $-20\sim100$ ℃である。

反応時間は化合物 (XI) 又は (XIII) の種類、溶媒及び塩基の種類、反応温度等により異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし約48時間である。

[0059]

方法 J

化合物(XI)又はその塩と、

式(V)

【化43】

R-X-S(O)a-X'-Y-COOH

〔式中の記号は前記と同意義を示す。〕で表わされる化合物(V)又はそれらの塩とを反応させて、

式(XV)

【化44】

〔式中の記号は前記と同意義を示す。〕においてY'が-(C=O)-である化合物を製造する。

本法は、前述の方法Cと同様の方法で行うことができる。

反応は化合物 (XI) に対して化合物 (V) 0.5~5当量、好ましくは 0.8~2当量である。

反応温度は-50~150℃、好ましくは-20~100℃である。

反応時間は化合物 (XI) 又は (V) の種類、溶媒及び塩基の種類、反応温度等により 異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし約48時間で ある。

[0060]

方法K

化合物(XI)又はその塩と、

式(VI)

【化45】

$R-X-S(O)_a-X'-Y-L^2$

〔式中の記号は前記と同意義を示す。〕で表わされる化合物 (VI) 又はそれらの塩とを 反応させて、

式(XV)

【化46】

[式中の記号は前記と同意義を示す。] において Y'が結合手である化合物を製造する。 本法は、前述の方法Dと同様の方法で行うことができる。

反応は化合物 (XI) に対して化合物 (VI) $0.5\sim5$ 当量、好ましくは $0.8\sim2$ 当量である。

反応温度は-50~150℃、好ましくは-20~100℃である。

反応時間は化合物(XI)又は(VI)の種類、溶媒及び塩基の種類、反応温度等により異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし約48時間である。

[0061]

方法L

化合物(XIV)又はその塩と、

式(IX)

【化47】

$R-X-S(O)_a-M$

〔式中の記号は前記と同意義を示す。〕で表わされる化合物 (IX) 又はその塩とを反応させて、

式(XV)

【化48】

[式中の記号は前記と同意義を示す。] で表わされる化合物 (XV) を製造する。

本法は、前述の方法Gと同様の方法で行うことができる。

反応は化合物 (XIV) に対して化合物 (IX) $0.5\sim5$ 当量、好ましくは $0.8\sim2$ 当量である。

反応温度は-50~150℃、好ましくは-20~100℃である。

反応時間は化合物 (XIV) 又は (IX) の種類、溶媒及び塩基の種類、反応温度等により異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし約48時間である。

[0062]

方法M

化合物 (XV) 又はその塩のアミノ基の保護基 (P¹) を除去することにより、

式(III)

【化49】

〔式中、記号は前記と同意義を示す。〕で表わされる化合物 (III) 又はその塩を製造することができる。

アミノ基の保護基の除去方法としては、例えばティ.ダブル.グリーンら、"プロテクティブ グループ イン オーガニック シンセシス"、1991、ウイリー アンド サンズ、インク、ニューヨーク (T. W. Green et al. "Protective Groups in Organic Synthes is"、John Wiley & Sons、Inc. New York) などに記載の方法またはそれに準じた方法によって行うことができる。例えば酸、塩基、還元、紫外光、酢酸パラジウム等を使用する方法等が用いられる。

反応温度は-50~150℃、好ましくは-20~100℃である。

反応時間は化合物 (XV) の種類、溶媒及び塩基の種類、反応温度等により異なるが、 通常約1分間ないし約100時間、好ましくは約15分間ないし約48時間である。

[0063]

方法L'

式(IX)

【化50】

 $R-X-S(O)_a-M$

[式中の記号は前記と同意義を示す。] で表される化合物(IX)又はその塩と、

式(XIII')

【化51】

 $X''-Y-L^3$

〔式中、 L^3 はカルボキシル基に誘導できる官能基(例えば、アルコキシカルボニル基、シアノ、置換基を有してもよいカルバモイル等)を示し、他の記号は前記と同意義を示す。〕で表わされる化合物(XIII')又はそれらの塩とを反応させて、

式(XVI)

【化52】

$R-X-S(O)_a-X'-Y-L^3$

〔式中の記号は前記と同意義を示す。〕で表わされる化合物(XVI)を製造する。 本法は、前述の方法Gと同様の方法で行うことができる。

反応は化合物 (IX) に対して化合物 (XIII') 0.5~5当量、好ましくは 0.8~2当量である。

反応温度は−50~150℃、好ましくは−20~100℃である。

反応時間は化合物 (IX) 又は (XIII') の種類、溶媒及び塩基の種類、反応温度 等により異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし約4 8時間である。

[0064]

方法N

式(XVI)

【化53】

$R-X-S(O)_a-X'-Y-L^3$

[式中、記号は前記と同意義を示す。] で表わされる化合物 (XVI) 又はそれらの塩から、

式(V)

【化54】

R-X-S(O)a-X'-Y-COOH

[式中の記号は前記と同意義を示す。] で表わされる化合物 (V) を製造する。本法において、L³ (カルボキシル基に誘導できる官能基) は酸加水分解 (例、塩酸、臭化水素酸、硫酸等を用いる)、アルカリ加水分解 (例、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等を用いる)等の反応により行われる。なお、反応溶媒、反応時間、反応温度、反応時間は方法Aで説明された反応溶媒、反応時間、反応温度、反応時間又はそれに準ずる方法によって行われる。

反応温度は-50~150℃、好ましくは-20~100℃である。

反応時間は化合物 (XVI) の種類、溶媒及び塩基の種類、反応温度等により異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし約48時間である。

[0065]

方法0

化合物(IX)又はその塩と、式(XVII)

【化55】

$X''-Y-COOP^2$

[式中、 P^2 は C_{1-6} アルキル(例えば、メチル、エチル、プロピル、tert-ブチル、アリル等)またはアラアルキル(ベンジル、フェネチル等)等を示し、他の記号は前記と同意義を示す。〕で表される化合物(XVII)又はその塩を反応させることにより式(XVIII)

【化56】

$R-X-S(O)_a-X'-Y-COOP^2$

[式中の記号は前記と同意義を示す。]で表わされる化合物 (XVIII)を製造する。 本法は、前述の方法Gと同様の方法で行うことができる。

反応は化合物 (IX) に対して化合物 (XVII) $0.5\sim5$ 当量、好ましくは $0.8\sim2$ 当量である。

反応温度は-50~150℃、好ましくは-20~100℃である。

反応時間は化合物 (IX) 又は (XVII) の種類、溶媒及び塩基の種類、反応温度等により異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし約48時間である。

[0066]

方法P

<u>グレー</u> 化合物 (XVIII) 又はその塩を加水分解等することによって、化合物 (V) 又はそ の塩を製造することができる。

本法において、エステルCOOP² の加水分解は酸加水分解(例、塩酸、臭化水素酸、硫酸等を用いる)、アルカリ加水分解(例、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等を用いる)等の反応により行われる。なお、反応溶媒、反応時間、反応温度、反応時間は方法Aで説明された反応溶媒、反応時間、反応温度、反応時間又はそれに準ずる方法によって行われる。

反応温度は-50~150℃、好ましくは-20~100℃である。

反応時間は化合物 (XVIII) の種類、溶媒及び塩基の種類、反応温度等により異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし約48時間である。

[0067]

方法Q

化合物 (XI) 又はその塩と、化合物 (IV) 又はその塩とを反応させて、式 (XIX)

【化57】

〔式中の記号は前記と同意義を示す。〕で表わされる化合物(XIX)を製造する。

本法は、前述の方法Aと同様の方法で行うことができる。

反応は化合物(XI)に対して化合物(IV) $0.5\sim5$ 当量、好ましくは $0.8\sim2$ 当量である。

反応温度は-50~150℃、好ましくは-20~100℃である。

反応時間は化合物 (XI) 又は (IV) の種類、溶媒及び塩基の種類、反応温度等により異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし約48時間である。

[0068]

方法R

化合物(XI)又はその塩と、化合物(IV')又はその塩とを反応させて、式(XIX)において Z^1 が一CH(R^6 ') – であり、 Z^2 が結合手である化合物を製造する。

本法は、前述の方法Bと同様の方法で行うことができる。

反応は化合物(XI)に対して化合物(IV') $0.5\sim5$ 当量、好ましくは $0.8\sim2$ 当量である。

反応温度は-50~150℃、好ましくは-20~100℃である。

反応時間は化合物 (XI) 又は (IV') の種類、溶媒及び塩基の種類、反応温度等により異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし約48時間である。

[0069]

方法S

化合物(XI)又はその塩と、

式(IV'')

【化58】

$L^{1}-Z^{1}-Z^{2}-Z^{3}-B'$

〔式中の記号は前記と同意義を示す。〕で表わされる化合物 (IV'') 又はその塩とを反応させて、

式(XIX')

【化59】

[式中の記号は前記と同意義を示す。] で表される化合物 (XIX') を製造する。

本法は、前述の方法Aと同様の方法で行うことができる。

反応は化合物(XI)に対して化合物(IV') $0.5\sim5$ 当量、好ましくは $0.8\sim2$ 当量である。

反応温度は $-50\sim150$ ℃、好ましくは $-20\sim100$ ℃である。

反応時間は化合物 (XI) 又は (IV'') の種類、溶媒及び塩基の種類、反応温度等により異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし約48時間である。

[0070]

<u>方法工</u>

化合物(XI)又はその塩と、

式 (IV''')

【化60】

〔式中の記号は前記と同意義を示す。〕で表される化合物(IV''')又はその塩とを反応させて、式(X I X')において Z^1 が $-C H (R^6$ ')-であり、 Z^2 が結合手である化合物を製造する。

本法は、前述の方法Bと同様の方法で行うことができる。

反応は化合物 (XI) に対して化合物 (IV''') $0.5 \sim 5$ 当量、好ましくは $0.8 \sim 2$ 当量である。

反応温度は-50~150℃、好ましくは-20~100℃である。

反応時間は化合物 (XI) 又は (IV''') の種類、溶媒及び塩基の種類、反応温度等により異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし約48時間である。

[0071]

方法U

化合物(XIX)又はその塩と化合物(VIII)とを反応させることにより、化合物(XIX)又はその塩を製造することができる。

本反応における反応条件、反応溶媒、反応時間等は方法Fにおける化合物(VII)と化合物(VIII)との反応で説明された反応条件等又はそれに準ずる方法によって行われる。

[0072]

<u>方法 V</u>

化合物 (XIX) 又はその塩の環Aを構成する窒素原子上の保護基 (P^1) を除去することにより、

式(XX)

【化61】

〔式中の記号は前記と同意義を示す。〕で表される化合物(XX)又はその塩を製造することができる。

本反応における反応条件、反応溶媒、反応時間等は方法Mにおける化合物(XV)の脱保護反応で説明された反応条件等又はそれに準ずる方法によって行われる。

[0073]

方法H'

式 (X) において Y'が-(C=O) -である化合物を製造する。

本法は、前述の方法Cと同様の方法で行うことができる。

反応は化合物(II)に対して化合物(XII) $0.5\sim5$ 当量、好ましくは $0.8\sim2$ 当量である。

反応温度は-50~150℃、好ましくは-20~100℃である。

反応時間は化合物(II)又は(XII)の種類、溶媒及び塩基の種類、反応温度等により異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし約48時間である。

[0074]

方法 I'

化合物(II)又はその塩と化合物(XIII)又はそれらの塩とを反応させて、式(X)においてY'が結合手である化合物を製造する。

本法は、前述の方法Dと同様の方法で行うことができる。

反応は化合物 (II) に対して化合物 (XIII) $0.5\sim5$ 当量、好ましくは $0.8\sim2$ 当量である。

反応温度は $-50\sim150$ ℃、好ましくは $-20\sim100$ ℃である。

反応時間は化合物(II)又は(XIII)の種類、溶媒及び塩基の種類、反応温度等により異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし約48時間である。

[0075]

方法H',

式(XIX'')

【化62】

〔式中の記号は前記と同意義を示す。〕で表される化合物(X I X'')又はその塩と化合物(X I I)又はそれらの塩とを反応させて、式(X')

【化63】

においてY'が一(C=O)ーである化合物を製造する。

本法は、前述の方法Cと同様の方法で行うことができる。

反応は化合物(XIX')に対して化合物(XII) 0.5~5 当量、好ましくは 0.8~2 当量である。

反応温度は−50~150℃、好ましくは−20~100℃である。

反応時間は化合物(XIX'')又は(XII)の種類、溶媒及び塩基の種類、反応温度等により異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし約48時間である。

[0076]

<u>方法</u> I ''

化合物(XIX')又はその塩と化合物(XIII)又はそれらの塩とを反応させて、式(X')においてY'が結合手である化合物を製造する。

本法は、前述の方法Dと同様の方法で行うことができる。

反応は化合物(XIX')に対して化合物(XIII) $0.5\sim5$ 当量、好ましくは $0.8\sim2$ 当量である。

反応温度は $-50\sim150$ ℃、好ましくは $-20\sim100$ ℃である。

反応時間は化合物(XIX'')又は(XIII)の種類、溶媒及び塩基の種類、反応 温度等により異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし 約48時間である。

[0077]

方法U'

化合物(X')又はその塩と化合物(VIII)を反応させることにより、化合物(X)又はその塩を製造することができる。

本反応における反応条件、反応溶媒、反応時間等は方法Fにおける化合物(VII)と化合物(VIII)との反応で説明された反応条件等又はそれに準ずる方法によって行われる。

[0078]

また、他の原料化合物 (IV)、 (IV')、 (VI)、 (VIII) および (IX)

出証特2004-3099284

は自体公知の方法又はそれに準ずる方法によって製造することができる。

前記本発明の各反応によって化合物が遊離の状態で得られる場合には、常法に従って塩に変換してもよく、また塩として得られる場合には、常法に従って遊離体又はその他の塩に変換することもできる。

ここで、塩としては、反応に支障を来たさないものであれば、何れのものでもよいが、 例えば、化合物 (I) で用いられる塩と同様なものなどが挙げられる。

このようにして得られる化合物(I)は、反応混合物から自体公知の手段、例えば抽出、濃縮、中和、濾過、再結晶、カラムクロマトグラフィー、薄層クロマトグラフィー等の手段を用いることによって、単離、精製することができる。

化合物(I)の塩は、それ自体公知の手段に従い、例えば化合物(I)に無機酸又は有機酸を加えることによって製造することができる。

化合物(I)に光学異性体が存在し得る場合、これら個々の光学異性体及びそれら混合物のいずれも当然本発明の範囲に包含されるものであり、所望によりこれらの異性体をそれ自体公知の手段に従い光学分割もしくは個別に製造することもできる。

また、化合物(I)又はその塩は水和物であってもよく、水和物及び非水和物のいずれも本発明の範囲に包含されるものである。

[0079]

本発明の化合物(I)又はその塩は、低毒性で安全であり、FXaを阻害し、抗凝固作用を有するので、動物とりわけ哺乳動物(例えばヒト、サル、ネコ、ブタ、ウマ、ウシ、マウス、ラット、モルモット、イヌ、ウサギ等)の各種動脈及び静脈血栓症、例えば、心筋梗塞、脳梗塞、深部静脈血栓症、肺血栓塞栓症、閉塞性動脈硬化症、エコノミークラス症候群、手術中・術後の血栓塞栓症、、ならびに次のような疾患の予防又は治療に有用であり、中でも虚血性脳梗塞(特に、心房細動等による心原性脳塞栓症や動脈硬化の進展又は血液凝固系亢進に起因した虚血性脳梗塞)、深部静脈血栓症、肺血栓塞栓症等の予防又は治療に使用することが好ましい。

脳:

脳梗塞、虚血性脳血管障害、心房細動や心不全並びに弁膜症などに起因した脳塞栓症、急性虚血性脳卒中、急性期脳血栓症、くも膜下出血後の脳血管攣縮、アルツハイマー病、一過性脳虚血発作(TIA)、混合痴呆、脳血管性痴呆、無症候性/多発性脳梗塞、ラクナ梗塞等の予防・治療、脳梗塞の予後改善・二次発症予防、頭蓋外及び内動脈バイパス術後の血栓予防・治療、脳梗塞(とりわけ虚血性脳血管障害)に対する血栓溶解剤との併用又は補助的使用、脳梗塞発症予防におけるアスピリンなどの抗血小板薬との併用療法等。

心臓:

急性心筋梗塞などの急性冠動脈疾患、心筋梗塞、虚血性冠動脈疾患、不安定狭心症、心筋症、急性心不全、うっ血性慢性心不全、弁膜症等の予防・治療、狭心症など急性冠動脈疾患の予後改善・二次発症予防、人工弁又は人工心臓置換術後の血栓予防・治療、ステント留置又はPTCA(経皮的冠動脈血管形成術)施行又はアテレクトミー等冠動脈インターベンション後の血管再閉塞及び狭窄の予防・治療、冠動脈バイパス術後の血管再閉塞及び狭窄の予防・治療、急性冠動脈疾患に対する血栓溶解剤との併用又は補助的使用、心筋梗塞発症予防におけるアスピリンなど抗血小板薬との併用療法等。

末梢:

深部静脈血栓症、慢性動脈閉塞症、閉塞性動脈硬化症、バージャー病など末梢循環不全、 凍傷後の末梢循環不全、動脈瘤、静脈瘤、成人性呼吸促迫症候群、急性腎不全、慢性腎疾 患(例えば糖尿病性腎症、慢性糸球体腎炎、IgA腎症等)、糖尿病性の循環障害、疼痛 、神経障害、糖尿病性網膜症など糖尿病性合併症等の予防・治療、深部静脈血栓症の予後 改善・二次発症予防、人工股関節全置換術(THA)・人工膝関節全置換術(TKA)を含む関 節手術後の深部静脈血栓症・肺血栓塞栓症の予防・治療、脊椎手術を含む整形外科・形成 外科・一般外科手術後の深部静脈血栓症・肺血栓塞栓症の予防・治療、末梢血管バイパス 術又は人工血管・大静脈フィルター留置後の血栓予防・治療、ステント留置又はPTA(経皮的血管形成術)施行又はアテレクトミー等末梢血管インターベンション後の血管再閉 塞及び狭窄の予防・治療、急性内科疾患に伴う深部静脈血栓症・肺血栓塞栓症の予防・治療、深部静脈血栓症及び肺血栓塞栓症に対する血栓溶解剤との併用又は補助療法、閉塞性動脈硬化症など末梢循環不全治療におけるアスピリンなど抗血小板薬との併用療法等。 その他:

肺塞栓症、急性肺塞栓症、エコノミークラス症候群、透析による血小板減少・血液凝固系亢進・補体活性化、大手術時の血小板減少、血小板減少性紫斑病、動脈硬化の進展・癌転移・全身性炎症反応症候群(SIRS)又は膵炎・癌・白血病・大手術・敗血症患者などで発症する播種性血管内凝固症候群(DIC)、阻血又は虚血又は血液の鬱滞による肝機能障害などの各種臓器障害、ショック又はDICの進行によって生じる各種臓器不全(例えば、肺不全、肝不全、腎不全、心不全等)、全身性エリテマトーデス、膠原病、甲状腺機能亢進症、産褥麻痺などの予防・治療、移植時の拒絶反応抑制、移植時の臓器保護又は機能改善、血液体外循環時の灌流血液の凝固防止、ヘパリン投与に起因した血小板減少症発症時の代替療法的使用、褥創や創傷治癒の促進、各種ホルモン補充療法時の血液過凝固反応の亢進抑制、ワルファリンを含むクマリン系薬剤耐性又は禁忌患者への代替療法的使用、血液製剤又は血液凝固因子含有製剤投与時の過凝固反応の亢進抑制等。

[0800]

本発明の化合物(I)又はその塩はそのままあるいは薬理学的に許容される担体を配合し、経口的又は非経口的に投与することができる。

化合物(I) 又はその塩を含有する本発明の製剤は、経口投与する場合の剤形としては、例えば錠剤(糖衣錠、フィルムコーティング錠を含む)、丸剤、顆粒剤、散剤、カプセル剤(ソフトカプセル剤、マイクロカプセル剤を含む)、シロップ剤、乳剤、懸濁剤等が挙げられ、また、非経口投与する場合の剤形としては、例えば注射剤、注入剤、点滴剤、坐剤等が挙げられる。また、適当な基剤(例、酪酸の重合体、グリコール酸の重合体、酪酸-グリコール酸の共重合体、酪酸の重合体とグリコール酸の重合体との混合物、ポリグリセロール脂肪酸エステル等)と組合わせ徐放性製剤とすることも有効である。

本発明製剤中の化合物 (I) 又はその塩の含有量は、製剤の形態に応じて相違するが、通常、製剤全体に対して2ないし85重量%、好ましくは5ないし70重量%である。

化合物(I)又はその塩を上記の剤形に製造する方法としては、当該分野で一般的に用いられている公知の製造方法を適用することができる。また、上記の剤形に製造する場合には、必要に応じて、その剤形に製する際に製剤分野において通常用いられる賦形剤、結合剤、崩壊剤、滑沢剤、甘味剤、界面活性剤、懸濁化剤、乳化剤等を適宜、適量含有させて製造することができる。

例えば、化合物 (I) 又はその塩を錠剤に製する場合には、賦形剤、結合剤、崩壊剤、 滑沢剤等を含有させて製造することができ、丸剤及び顆粒剤に製する場合には、賦形剤、 結合剤、崩壊剤等を含有させて製造することができる。また、散剤及びカプセル剤に製す る場合には賦形剤等を、シロップ剤に製する場合には甘味剤等を、乳剤又は懸濁剤に製す る場合には懸濁化剤、界面活性剤、乳化剤等を含有させて製造することができる。

[0081]

賦形剤の例としては、乳糖、白糖、ブドウ糖、でんぷん、蔗糖、微結晶セルロース、カンゾウ末、マンニトール、炭酸水素ナトリウム、リン酸カルシウム、硫酸カルシウム等が 挙げられる。

結合剤の例としては、5ないし10重量%デンプンのり液、10ないし20重量%アラビアゴム液又はゼラチン液、1ないし5重量%トラガント液、カルボキシメチルセルロース液、アルギン酸ナトリウム液、グリセリン等が挙げられる。

崩壊剤の例としては、でんぷん、炭酸カルシウム等が挙げられる。

滑沢剤の例としては、ステアリン酸マグネシウム、ステアリン酸、ステアリン酸カルシウム、精製タルク等が挙げられる。

甘味剤の例としては、プドウ糖、果糖、転化糖、ソルビトール、キシリトール、グリセリン、単シロップ等が挙げられる。

界面活性剤の例としては、ラウリル硫酸ナトリウム、ポリソルペート80、ソルビタン

モノ脂肪酸エステル、ステアリン酸ポリオキシル40等が挙げられる。

懸濁化剤の例としては、アラビアゴム、アルギン酸ナトリウム、カルボキシメチルセルロースナトリウム、メチルセルロース、ベントナイト等が挙げられる。

乳化剤の例としては、アラビアゴム、トラガント、ゼラチン、ポリソルベート80等が挙げられる。

更に、化合物(I)又はその塩を上記の剤形に製造する場合には、所望により、精製分野において通常用いられる着色剤、保存剤、芳香剤、矯味剤、安定剤、粘稠剤等を適量、適量添加することができる。

[0082]

化合物(I)又はその塩を含有する本発明の製剤は、安定かつ低毒性で安全に使用することができる。その1日の投与量は患者の状態や体重、化合物の種類、投与経路等によって異なるが、例えば血栓症の患者に経口投与する場合には、成人(体重約60kg)1日当りの投与量は有効成分(化合物(I)又はその塩)として約1ないし1000mg、好ましくは約3ないし500mg、さら好ましくは約5ないし300mgであり、これらを1回または2ないし3回に分けて投与することができる。

本発明の化合物(I)又はその塩を非経口的に投与する場合は、通常、液剤(例えば注 射剤)の形で投与する。その1回投与量は投与対象、対象臓器、症状、投与方法などによ っても異なるが、例えば注射剤の形にして、通常体重1kgあたり約0.01mg~約1 00mg、好ましくは約0.01~約50mg、より好ましくは約0.01~約20mg を静脈注射により投与するのが好都合である。注射剤としては、静脈注射剤のほか、皮下 注射剤、皮内注射剤、筋肉注射剤、点滴注射剤などが含まれ、また持続性製剤としては、 イオントフォレシス経皮剤などが含まれる。かかる注射剤は自体公知の方法、すなわち、 本発明の化合物(I)又はその塩を無菌の水性液もしくは油性液に溶解、懸濁または乳化 することによって調製される。注射用の水性液としては生理食塩水、ブドウ糖やその他の 補助薬を含む等張液(例えば、Dーソルビトール、Dーマンニトール、塩化ナトリウムな ど)などがあげられ、適当な溶解補助剤、例えばアルコール(例えばエタノール)、ポリ アルコール(例えばプロピレングリコール、ポリエチレングリコール)、非イオン性界面 活性剤(例えばポリソルベート80、HCO-50)などと併用してもよい。油性液とし ては、ゴマ油、大豆油などがあげられ、溶解補助剤として安息香酸ベンジル、ベンジルア ルコールなどと併用してもよい。また、緩衝剤(例えば、リン酸緩衝液、酢酸ナトリウム 緩衝液)、無痛化剤(例えば、塩化ベンザルコニウム、塩酸プロカインなど)、安定剤(例えば、ヒト血清アルプミン、ポリエチレングリコールなど)、保存剤(例えば、ベンジ ルアルコール、フェノールなど) などと配合してもよい。調製された注射液は、通常、ア ンプルに充填される。

本発明の製剤は、適宜、血栓溶解剤(例、TPA、ヘパリン、ウロキナーゼ等)、アルツハイマー治療薬(例えばアバン、カラン等)、コレステロール治療薬(例、シンバスタチン、プラバスタチン等のHMG-CoA還元酵素阻害薬等)、TG低下薬(例、クロフィブラート等)、AII拮抗薬(例、カンデサルタン シレキセチル、ロサルタン等)、抗血小板薬(例、クロピドグレル、アブシキシマブ、アスピリン等)、Ca拮抗薬(例、カルスロット、アムロジピン等)、ACE阻害薬(例、エナラプリル、カプトプリル等)、β遮断薬(例、メトプロロール、カルベジロール等)、抗不整脈薬(例、プロカインアミド等)等の薬剤(以下、併用薬剤と略記する)と組み合わせて用いることができる。該併用薬剤は、低分子化合物であってもよく、また高分子の蛋白、ポリペプチド、抗体であるか、あるいはワクチン等であってもよい。この際、本発明の化合物と併用薬剤の投与形態は、特に限定されず、投与時に、本発明の化合物と併用薬剤とが組み合わされていればよい。このような投与形態としては、例えば、(1)本発明の化合物と併用薬剤とを同時に製剤化して得られる単一の製剤の投与、(2)本発明の化合物と併用薬剤とを別々に製剤化して得られる2種の製剤の同一投与経路での同時投与、(3)本発明の化合物と併用薬剤とを別々に製剤化して得られる2種の製剤の同一投与経路での時間差をおいての投与、剤とを別々に製剤化して得られる2種の製剤の同一投与経路での時間差をおいての投与、

(4) 本発明の化合物と併用薬剤とを別々に製剤化して得られる2種の製剤の異なる投与

経路での同時投与、(5)本発明の化合物と併用薬剤とを別々に製剤化して得られる2種の製剤の異なる投与経路での時間差をおいての投与(例えば、本発明の化合物→併用薬剤の順序での投与、あるいは逆の順序での投与)などが挙げられる。併用薬剤の投与量は、臨床上用いられている用量を基準として適宜選択することができる。また、本発明の化合物と併用薬剤の配合比は、投与対象、投与ルート、対象疾患、症状、組み合わせなどにより適宜選択することができる。例えば投与対象がヒトである場合、本発明の化合物1重量部に対し、併用薬剤を0.01ないし100重量部用いればよい。

【発明の効果】

[0083]

本発明の化合物(I)またはその塩は、優れたFXa阻害作用を有し、出血の副作用も少なく、また経口吸収しうる抗血液凝固剤として有用であり、血栓や梗塞に基づく各種疾病の予防・治療に有利に用いられる。

【発明を実施するための最良の形態】

[0084]

本発明はさらに下記の実施例、製剤例及び実験例で詳しく説明されるが、これらの例は 単なる実例であって本発明を限定するものではなく、また本発明の範囲を逸脱しない範囲 で変化させてもよい。

実施例のカラムクロマトグラフィーにおける溶出はTLC(Thin Layer Chromatography, 薄層クロマトグラフィー)による観察下に行なわれた。TLC観察においては、TLCプレートとしてメルク(Merck)社製の60F254または富士シリシア化学社製のNHを、展開溶媒としてはカラムクロマトグラフィーで溶出溶媒として用いられた溶媒を、検出法としてUV検出器を採用した。カラム用シリカゲルは同じくメルク社製のキーゼルゲル60(70ないし230メッシュ)またはキーゼルゲル60(230ないし400メッシュ)を用いた。カラム用塩基性シリカゲルは富士シリシア化学社製の塩基性シリカNH-DM1020(100ないし200メッシュ)を用いた。NMRスペクトルは内部又は外部基準としてテトラメチルシランを用いてバリアンGemini 200型スペクトロメーターで測定し、化学シフトをδ値で、カップリング定数を形で示した。IRスペクトルは島津FTZR-8200型スペクトロメーターで測定した。混合溶媒において()内に示した数値は各溶媒の容量混合比である。また溶液における%は溶液100ml中のg数を表わす。また参考例、実施例中の記号は次のような意味である。

```
s : シングレット (singlet)
d : ダプレット (doublet)
```

t : トリプレット (triplet) q : クワルテット (quartet)

dd :ダブル ダブレット (double doublet)

m :マルチプレット (multiplet)

br :プロード (broad)

brs : プロード シングレット (broad singlet)
brd : ブロード ダプレット (broad doublet)
J : カップリング定数 (coupling constant)

WSC :水溶性カルボジイミド THF :テトラヒドロフラン DMF :ジメチルホルムアミド

DMF :ジメチルホルムアミド DMSO:ジメチルスルホキシド

HOBt: 1-ヒドロキシベンズトリアゾール

[0085]

実施例1

3-((1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)メチル) -5,6-ジヒドロイミダゾ[2,1-b][1,3]チアゾール塩酸塩

【化64】

1a) 4–(5,6–ジヒドロイミダゾ[2,1–b][1,3]チアゾール–3–イルメチル)ピペリジン–1–カルボン酸tert–ブチル臭素酸塩

4-(2-オキソプロピル) ピペリジン<math>-1-カルボン酸tert-ブチル(1.0~g)と5,5-ジプロモバルビツール酸(1.2~g)をエーテル(30~ml)に溶解し、一晩かき混ぜた。析出した結晶をろ去し、ろ液を濃縮した。残留物にエチレンチオウレア(0.46~g)およびエタノール(30~ml)を加え、一晩還流した。析出した結晶をろ取し、題記化合物(0.55~g)を淡黄色結晶として得た

NMR (CDC1₃) δ : 1.02-1.21 (2H, m), 1.45 (9H, s), 1.66-1.91 (3H, m), 2.20 (1H, d, J = 6.9), 2.61-2.80 (2H, m), 3.73 (2H, t, J = 9.3), 4.07-4.13 (2H, m), 4.22 (2H, t, J = 9.3), 5.23 (1H, s).

1b) $3-((1-(3-((6-\rho uu-2-+ 7+\nu)) x u x = \nu)) プロパノイル) ピペリジン-4-イル) メチル)-5,6-ジヒドロイミダゾ[2,1-b] [1,3]チアゾール$

実施例1a)で得られた化合物 (0.55~g)をトリフロロ酢酸 (10~ml) に溶解し、室温で1時間かき混ぜた。溶媒を濃縮後、残留物にジクロロメタン (20~ml)、トリエチルアミン (0.38~ml)を加え、氷冷下で、3-((6-クロロ-2-ナフチル)スルホニル)プロピオン酸 <math>(0.4~g)、(0.23~g)、WSC (0.29~g)を加え室温で16時間かき混ぜた。反応液を炭酸カリウム水溶液でアルカリ性にした後、クロロホルムで抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物を塩基性シリカゲルカラムで精製して題記化合物 (0.13~g) を白色粉末として得た。

NMR (CDCl₃) δ : 1.08-1.22 (1H, m), 1.78-1.93 (3H, m), 2.25-2.31 (2H, m), 2.53-2. 69 (1H, m), 2.90-3.15 (4H, m), 3.59-3.85 (2H, m), 3.80-3.95 (3H, m), 4.32 (2H, t, J = 9.2), 4.55-4.62 (1H, m), 5.40 (1H, s), 7.66 (1H, dd, J = 2.2, 8.8), 7.95-8 .05 (4H, m), 8.55 (1H, s).

1c) 3-((1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-ピペリジン-4-イル)メチル)-5,6-ジヒドロイミダゾ[2,1-b][1,3]チアゾール塩酸塩

実施例1b)で得られた化合物(0.23 g)を塩化水素のエーテル溶液で処理することにより、題記化合物(0.16 g)を白色結晶として得た。

NMR (DMSO-d₆) δ : 0.65-0.91 (1H, m), 0.96-1.22 (2H, m), 1.43-4.79 (3H, m), 2.30-2.47 (2H, m), 2.60-2.79 (2H, m), 2.84-3.12 (1H, m), 3.52-3.68 (2H, m), 3.69-3.89 (1H, m), 4.07-4.40 (5H, m), 6.49 (1H, s), 7.96-7.73 (1H, m), 7.93-7.97 (1H, m), 8.17-8.28 (3H, m), 8.61 (1H, s), 9.78 (1H, s).

[0086]

実施例2

【化65】

2a) 4–(5,6–ジヒドロイミダゾ[2,1–b][1,3]チアゾール–3–イル) ピペリジン–1–カルボン酸 tert–ブチル臭素酸塩

4-アセチルピペリジン-1-カルボン酸tert-ブチル(1.0~g)と5,5-ジブロモバルビツール酸(1.2~g)をエーテル(30~ml)に溶解し、一晩かき混ぜた。析出した結晶をろ去し、ろ液を濃縮した。残留物にエチレンチオウレア(0.46~g)およびエタノール(30~ml)を加え、一晩還流した。析出した結晶をろ取し、題記化合物(0.55~g)を淡黄色結晶として得た。

NMR (CDC1₃) δ : 1.12-1.58 (2H, m), 1.45 (9H, s), 1.68-2.05 (3H, m), 2.60-2.88 (2 H, m), 3.76 (2H, t, J = 9.2), 4.05-4.15 (2H, m), 4.22 (2H, t, J = 9.2), 5.23 (1H, s).

2b) 3-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-5,6-ジヒドロイミダゾ[2,1-b][1,3]チアゾール

実施例2a)で得られた化合物 (0.50~g)をトリフロロ酢酸 (10~ml) に溶解し、室温で1時間かき混ぜた。溶媒を留去し、残留物にジクロロメタン (20~ml) とトリエチルアミン (0.38~ml) を加え、氷冷下に3-((6-クロロ-2-ナフチル) スルホニル) プロピオン酸 (0.4~g)、HOBt (0.2~3~g) およびWSC (0.29~g) を加え室温で16時間かき混ぜた。反応液を炭酸カリウム水溶液でアルカリ性にした後、クロロホルムで抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物を塩基性シリカゲルカラムで精製して題記化合物 (0.16~g) を白色粉末として得た。

NMR (CDC1₃) δ : 1.21-1.61 (2H, m), 1.85-1.99 (2H, m), 2.33-2.50 (1H, m), 2.55-2. 62 (2H, m), 2.83-2.91 (2H, m), 3.01-3.13 (1H, m), 3.51-3.59 (1H, m), 3.77 (2H, t, J = 9.2), 3.88-3.95 (1H, m), 4.22 (2H, t, J = 9.2), 4.55-4.62 (1H, m), 5.23 (1H, s), 7.58 (1H, dd, J = 1.8, 8.8), 7.86-7.95 (4H, m), 8.46 (1H, s).

[0087]

実施例3

【化66】

3a) 1-(3-((6-クロロ-2-ナフチル)スルホニル)プロピオニル)ピペラジン 1-ピペラジンカルボン酸tert-ブチル(5.0 g)をジクロロメタン(20 ml)に溶解し、トリエチルアミン(3.8 ml)を加え、氷冷下で3-((6-クロロ-2-ナフチル)スルホニル)プロピオン酸(8.0 g)、HOBt(4.5 g)およびWSC(5.7 g)を加え室温で16時間かき混ぜた。反応液を炭酸カリウム水溶液でアルカリ性にした後、クロロホルムで抽出、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去して、残留物をトリフロロ酢酸(25 ml)に溶解し、室温で1時間かき混ぜた。反応液を濃縮後、炭酸カリウム水溶液でアルカリ性にし、クロロホルムで抽出した。抽出液を無水硫酸マグネシウムで乾燥し、溶媒を濃縮して題記化合物(8.7 g)を淡褐色油状物として得た。

NMR (CDCl₃) δ : 2.77 (2H, t, J = 5.1), 2.83-2.88 (4H, m), 3.42 (2H, t, J = 9.2), 3.48-3.58 (4H, m), 7.57 (1H, dd, J = 2.1, 9.0), 7.90-7.94 (4H, m), 8.46 (1H, s)

. 3b) $3-((4-(3-((6-\rho uu-2-+ フチル) スルホニル) プロパノイル) ピペラジン-1-イル) メチル) -5,6-ジヒドロイミダゾ[2,1-b] [1,3]チアゾール$

実施例3a)で得られた化合物(1.0 g)をDMF(30 ml)に溶解し、炭酸カリウム(0.75 g)と3-クロロメチル-5,6-ジヒドロイミダゾ[2,1-b][1,3]チアゾール塩酸塩(0.58 g)を加え、70 で4時間かき混ぜた。溶媒を留去後、残留物を水に注ぎ込み、クロロホルム-メタノールの混合液で抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物を塩基性シリカゲルカラムで精製して題記化合物(0.81 g)を無色粉末として得た。

NMR (CDC1₃) δ : 2.24-2.37 (2H, m), 2.79-2.89 (2H, m), 3.06 (2H, s), 3.35-3.47 (6 H, m), 3.76 (2H, t, J = 9.2), 4.14 (2H, t, J = 9.2), 7.51 (1H, dd, J = 1.8, 8.8), 7.85-7.90 (4H, m), 8.41 (1H, s).

[0088]

実施例4

1-(3-((6-) - 2-) + 7+ 2) + (5, 6-) + (5, 6-) + (5, 6-) + (6-)

【化67】

4a) 4-(3-((6- ρ ロロ-2-+フチル)チオ)プロピル)-3-オキソピペラジン-1-カルボン酸ter t-ブチル

3-オキソピペラジン-1-カルボン酸tert-ブチル(2.0~g)DMF(30~ml)に溶解し、水素化ナトリウム(0.5~g)を加え、氷冷下で2-クロロ-6-((3-クロロプロピル)チオ)ナフタレン(2.7~g) を加え、60 で 3 時間かき混ぜた。反応液を水に注ぎ込み、クロロホルムで抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物をシリカゲルカラムで精製して題記化合物(4.0~g)を淡褐色油状物として得た。

NMR (CDC1₃) δ : 1.48 (9H, s), 1.92–1.99 (2H, m), 3.05 (2H, t, J = 6.8), 3.34 (2 H, t, J = 5.8), 3.57 (2H, t, J = 6.8), 3.64 (2H, t, J = 5.8), 4.09 (2H, s), 7.40–7.46 (2H, m), 7.68–7.79 (4H, m).

4b) 4-(3-((6-クロロ-2-ナフチル)スルホニル)プロピル)-3-オキソピペラジン-1-カルボン酸tert-プチル

実施例4a)で得られた化合物(4.0 g)を酢酸エチル(50 ml)に溶解し、5℃以下で3-クロロ過

安息香酸(7.4 g)を加え、1時間かき混ぜた。反応液を炭酸カリウム水溶液に注ぎ込み、クロロホルムで抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、題記化合物(2.6 g)を白色結晶として得た。

NMR (CDC1₃) δ : 1.48 (9H, s), 2.04-2.12 (2H, m), 3.18-3.23 (2H, m), 3.36 (2H, t, J = 8.0), 3.54 (2H, t, J = 10.5), 3.66 (2H, t, J = 8.0), 4.06 (2H, s), 7.61 (1 H, dd, J = 2.7, 13.8), 7.92-7.99 (4H, m), 8.48 (1H, s).

4c) 1-(3-((6-クロロ-2-ナフチル)スルホニル)プロピル)-2-ピペラジノン

実施例4b)で得られた化合物(2.6 g)をトリフロロ酢酸(15 ml)に溶解し、室温で1時間かき混ぜた。溶媒を留去し、残留物を炭酸カリウム水溶液に注ぎ込んだ。クロロホルムで抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、題記化合物(2.4 g)を褐色油状物として得た。

NMR (CDCl₃) δ : 2.01-2.08 (2H, m), 3.07 (2H, t, J = 4.6), 3.18-3.23 (2H, m), 3.3 1 (2H, t, J = 4.6), 4.48-4.52 (4H, m), 7.58-7.60 (1H, m), 7.90-7.97 (4H, m), 8.4 6 (1H, s).

4d) $1-(3-((6-\rho \Box \Box -2-\tau) + \nu)))))) -4-(5,6-) \lor \lor \lor \Box (2,1-))] (1.3] + \nu) -4-(5,6-) \lor \lor \lor \Box (2,1-))$

実施例4c)で得られた化合物(1.0 g)をDMF(30 ml)に溶解し、炭酸カリウム(0.75 g)と3-クロロメチル-5,6-ジヒドロイミダゾ[2,1-b][1,3]チアゾール塩酸塩(0.58 g)を加え、 70° で4時間かき混ぜた。溶媒を留去後、残留物を水に注ぎ込んだ。クロロホルム-メタノールの混合液で抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物を塩基性シリカゲルカラムで精製して題記化合物(0.31 g)を淡黄色粉末として得た。

NMR (DMSO-d₆) δ : 1.81-1.98 (2H, m), 3.42-3.98 (12H, m), 4.33-4.38 (2H, m), 4.51 -4.55 (2H, m), 7.05 (1H, s), 7.82-7.87 (1H, m), 8.07-8.11 (1H, m), 8.26-8.42 (3H, m), 8.74 (1H, s), 9.84 (1H, brs).

[0089]

実施例 5

N-((2Z)-4-((4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペラジン-1-イル)メチル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン

【化68】

実施例3a)で得られた1-(3-((6-クロロ-2-ナフチル)スルホニル)プロピオニル)ピペラジン (2.5 g)とN-((2Z)-4-クロロメチル-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン塩酸塩(2.2 g)から実施例3b)と同様にして、題記化合物(2.5 g)を無色粉末として得た。

NMR (CDC1₃) δ : 2.44-2.55 (4H, m), 2.93-3.01 (2H, m), 3.11 (3H, s), 3.34 (2H, s), 3.46 (3H, s), 3.53-3.70 (6H, m), 5.84 (1H, s), 7.71 (1H, dd, J = 1.8, 8.8), 8.04-8.08 (4H, m), 8.58 (1H, s).

[0090]

実施例6

 $N_{-}((2Z)-4-((4-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペラジン-1-イル) メチル)-3-プロピル-1, 3-チアゾール-2(3H)-イリデン)-N-プロピルアミン$

実施例3a)で得られた1-(3-((6-クロロ-2-ナフチル)スルホニル)プロピオニル)ピペラジン (2.0 g)と<math>N-(4-クロロメチル-3-プロピル-1,3-チアゾール-2(3H)-イリデン)-N-プロピルアミン塩酸塩(1.6 g)から実施例3b)と同様にして、題記化合物(1.5 g)を淡黄色結晶として得た。

NMR (CDCl₃) δ : 1.01-1.11 (6H, m), 1.72-1.83 (4H, m), 2.43-2.55 (4H, m), 2.97 (2 H, t, J = 7.6), 3.14 (3H, t, J = 7.0), 3.37 (2H, s), 3.53-3.70 (6H, m), 3.86 (3H, t, J = 7.8), 5.76 (1H, s), 7.61 (1H, dd, J = 1.4, 8.8), 8.04-8.08 (4H, m), 8.5 8 (1H, s).

[0091]

実施例7

【化70】

NMR (CDCl₃) δ : 0.99-1.09 (6H, m), 1.37-1.76 (8H, m), 2.44-2.53 (4H, m), 2.97 (2 H, t, J = 7.4), 3.17 (2H, t, J = 7.0), 3.31 (2H, s), 3.53-3.70 (6H, m), 3.90 (3H, t, J = 8.2), 5.76 (1H, s), 7.61 (1H, dd, J = 1.4, 8.8), 8.04-8.08 (4H, m), 8.5 9 (1H, s).

[0092]

実施例8

N-((2Z)-4-((4-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペラジン-1-イル) メチル)-3-エチル-1, 3-チアゾール-2(3H)-イリデン)-N-エチルアミン

【化71】

実施例3a)で得られた1-(3-((6-クロロ-2-ナフチル)スルホニル)プロピオニル)ピペラジン (1.5~g) とN-(4-クロロメチル-3-エチル-1,3-チアゾール-2(3H)-イリデン)-N-エチルアミン塩酸塩(1.0~g)から実施例3b)と同様にして、題記化合物(0.51~g)を白色結晶として得た

NMR (CDCl₃) δ : 1.31-1.40 (6H, m), 2.46-2.53 (4H, m), 2.93-2.99 (2H, m), 3.22 (2 H, q, J = 7.0), 3.25-3.35 (2H, m), 3.53-3.70 (6H, m), 3.99 (2H, q, J = 6.6), 5.7 8 (1H, s), 7.70 (1H, dd, J = 1.4, 8.8), 8.04-8.13 (4H, m), 8.58 (1H, s).

[0093]

実施例9

N-((2Z)-4-((4-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペラジン-1-イル) メチル)-3-イソプロピル-1, 3-チアゾール-2(3H)-イリデン)-N-イソプロピルアミン

【化72】

NMR (CDCl₃) δ : 1.23-1.27 (12H, m), 1.36-1.49 (2H, m), 2.45-2.54 (4H, m), 2.93-2 .96 (2H, m), 3.25 (2H, s), 3.55-3.70 (7H, m), 4.41-4.58 (1H, m), 5.67 (1H, s), 7 .68-7.73 (1H, m), 8.04-8.13 (4H, m), 8.58 (1H, s).

[0094]

実施例10

N-((2Z)-4-((1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)メチル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン

【化73】

10a) 4-(((2Z)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル) ピペリジン-1-カルボン酸tert-ブチル臭素酸塩

4-(2-オキソプロピル) ピペリジン<math>-1-カルボン酸tert-ブチル(1.0~g)と5,5-ジブロモバルビツール酸(1.2~g)をエーテル(30~ml)に溶解し、一晩かき混ぜた。析出した結晶をろ去し、ろ液を濃縮した。残留物にN,N'-ジメチルチオウレア(0.46~g)およびエタノール(30~ml)を加え、一晩還流した。析出した結晶をろ取し、題記化合物(0.60~g)を淡黄色油状物として得た。

NMR (CDCl₃) δ : 1.01–1.15 (2H, m), 1.28 (9H, s), 1.62–1.72 (3H, m), 2.31–2.34 (2 H, m), 2.62–2.78 (3H, m), 2.98 (3H, s), 3.02 (2H, d, J = 4.5), 3.23 (3H, s), 5.5 2 (1H, s).

10b) N-((2Z)-4-((1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)メチル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン

実施例10a)で得られた化合物 (1.2 g) を濃塩酸 (5 ml) に溶解し、室温で1時間かき混ぜた。溶媒を留去し、残留物にジクロロメタン (50 ml) とトリエチルアミン (0.87 ml) を加えた。この溶液へ氷冷下で3-((6-2) クロロー2-ナフチル (50 ml) スルホニル (50 ml) プロピオン酸 (0.92 g) 、HOBt (50 ml) およびWSC (50 ml) を加え、室温で16時間かき混ぜた。反応液を炭酸カリウム水溶液でアルカリ性にした後、クロロホルムで抽出し、抽出液を無水硫酸マグネシウムで乾燥した。反応液を留去し、残留物を塩基性シリカゲルカラムで精製して題記化合物 (0.31 g) を無色粉末として得た。

NMR (CDC1₃) δ : 0.94-1.16 (1H, m), 1.61-1.77 (3H, m), 2.26 (1H, d, J = 6.6), 2.3 9-2.48 (1H, m), 2.77-2.84 (3H, m), 3.17 (3H, s), 3.47-3.61 (2H, m), 3.75-3.80 (1 H, m), 4.12-4.46 (1H, m), 5.46 (1H, s), 7.51 (1H, dd, J = 1.8, 8.8), 7.83-7.90 (4H, m), 8.41 (1H, s).

[0095]

実施例11

N-((2Z)-4-((4-(3-((5-クロロ-インドール-2-イル)スルホニル)プロパノイル)ピペラジン-1-イル)メチル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン

【化74】

11a) 4-(((2Z)-3-メチル-2-メチルイミノ-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル) ピペラジン-1-カルボン酸tert-ブチル

ピペラジン-1-カルボン酸tert-ブチル(2.5 g)をアセトニトリル(50 ml)に溶解し、炭酸カ リウム(3.7 g)とN-(4-クロロメチル-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-メチ ルアミン塩酸塩(3.2 g)を加え、4時間還流かき混ぜた。溶媒を留去し、残留物に炭酸水素 カリウム水溶液を加え、クロロホルムで抽出し、抽出液を無水硫酸マグネシウムで乾燥し た。溶媒を留去し、残留物を塩基性シリカゲルカラムで精製して題記化合物(4.3 g)を褐 色油状物質として得た。

NMR (CDC1₃) δ : 1.43 (9H, s), 2.35-3.36 (3H, m), 2.97 (3H, s), 2.31 (2H, s), 3.3 3 (3H, s), 3.36-3.40 (4H, m), 5.69 (1H, s).

11b) N-((2Z)-4-((4-(3-((5-クロロ-インドール-2-イル)スルホニル)プロパノイル)ピペ ラジン-1-イル)メチル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン 実施例11a)で得られた化合物(1.5 g)を濃塩酸(5 ml)に溶解し、室温で1時間かき混ぜた。 反応液を濃縮後、残留物にジクロロメタン(50 ml)とトリエチルアミン(1.3 ml)を加え、 氷冷下で(3-((1-tert-ブトキシカルボニル-5-クロロ-2-インドール)スルホニル)プロピオ ン酸(1.8 g)、HOBt(0.77 g)およびWSC(0.96 g)を加え、室温で16時間かき混ぜた。反応液 を炭酸カリウム水溶液でアルカリ性にした後、クロロホルムで抽出し、抽出液を無水硫酸 マグネシウムで乾燥した。溶媒を留去し、残留物を塩基性シリカゲルカラムで精製した。 生成物を濃塩酸(5 ml)で処理して、題記化合物(0.31 g)を白色結晶として得た。

NMR (CDC1₃) δ : 2.36-2.47 (4H, m), 2.93 (2H, t, J = 7.6), 3.09 (3H, s), 3.29 (2H , s), 3.43 (3H, s), 3.48-3.58 (4H, m), 3.76 (2H, t, J = 7.6), 5.84 (1H, s), 7.20 (1H, s), 7.33-7.49 (3H, m), 7.75 (1H, d, J = 1.4).

[0096]

実施例12

4-((4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペラジン-1-イル)メチル) -3-メチル-1,3-チアゾール-2(3H)-イミン塩酸塩

【化75】

12a) 4-((4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペラジン-1-イル)メ チル)-1,3-チアゾール-2-アミン

実施例3a)で得られた1-(3-((6-クロロ-2-ナフチル)スルホニル)プロピオニル)ピペラジン (1.5 g)と4-クロロメチル-1,3-チアゾール-2-アミン塩酸塩(0.76 g)から実施例3b)と同様 にして、題記化合物(0.51 g)を白色結晶として得た。

NMR (CDCl₃) δ : 2.37 (2H, t, J = 5.1), 2.44 (2H, t, J = 5.1), 2.84 (2H, t, J = 7 .8), 3.38 (2H, s), 3.45-3.57 (6H, m), 4.92 (2H, brs), 6.31 (1H, s), 7.58 (1H, dd , J = 2.1, 9.0), 7.90-7.95 (4H, m), 8.45 (1H, s).

12b) 4-((4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペラジン-1-イル)メ チル)-3-メチル-1,3-チアゾール-2(3H)-イミン塩酸塩

実施例11a)で得られた化合物(0.5 g)をDMF(1.0 ml)に溶解し、ヨウ化メチル(0.13 ml)を 室温で加え、80℃で一晩かき混ぜた。反応液を水に注ぎ込み、クロロホルムとメタノール の混合液で抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物を 塩基性シリカゲルカラムで精製した。生成物を塩化水素のエーテル溶液(5 ml)で処理して 、題記化合物(0.23 g)を白色結晶として得た。

NMR (CDC1₃) δ : 2.28-2.41 (4H, m), 2.78-2.86 (2H, m), 3.15 (2H, s), 3.30 (3H, s) , 3.34-3.55 (6H, m), 5.57 (1H, s), 7.55 (1H, dd, J=1.8, 8.8), 7.87-7.92 (4H, m)). 8.43 (1H, s).

[0097]

実施例13

(22)-4-((4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペラジン-1-イル)メ チル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-カルボン酸エチル 【化76】

(22)-3,4-ジメチル-2-メチルイミノ-2,3-ジヒドロ-1,3-チアゾール-5-カルボン酸エチル(2.8 g)を1,2-ジクロロエタン(30 ml)に溶解し、AIBN(0.1 g)、NBS(2.3 g)を加え、1時間 還流した。反応液を炭酸カリウム水溶液でアルカリ性にした後、クロロホルムで抽出し、 抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、得られた(22)-4-プロモメチ ル-3-メチル-2-メチルイミノ-2,3-ジヒドロ-1,3-チアゾール-5-カルボン酸エチル(1.5 g) と実施例3a)で得られた1-(3-((6-クロロ-2-ナフチル)スルホニル)プロピオニル)ピペラジ ン(1.5 g)から実施例3b)と同様にして、題記化合物(0.14 g)を白色粉末として得た。NMR (CDCl_3) δ : 1.28 (3H, t, J = 7.2), 2.39-2.48 (4H, m), 2.79 (2H, t, J = 7.8), 2.96 (3H, s), 3.37 (3H, s), 3.38-3.53 (4H, m), 3.81 (2H, s), 4.19 (2H, q, J = 7.2), 7.52 (1H, dd, J = 1.8, 8.8), 7.86-7.91 (4H, m), 8.41 (1H, s). 【0098】

実施例14

N-((2Z)-4-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-ピペリジン-4-イル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン

【化77]

14a) 4-((2Z)-3-メチル-2-メチルイミノ-2,3-ジヒドロ-1,3-チアゾール-4-イル) ピペリジン-1-カルボン酸tert-ブチル臭素酸塩

4-アセチルピペリジン-1-カルボン酸tert-ブチル(2.0~g)、5,5-ジブロモバルビツール酸(2.4~g)をエーテル(30~ml) に溶解し、一晩かき混ぜた。析出した結晶をろ去し、ろ液を濃縮した。残留物にN,N'-ジメチルチオウレア(0.95~g)およびエタノール(30~ml)を加え、一晩還流した。析出した結晶をろ取し、題記化合物(0.16~g)を淡黄色結晶として得た。NMR $(CDCl_3)$ δ : 1.11-1.15(2H, m), 1.45(9H, s), 1.68-1.67(3H, m), 2.31-2.34(2H, m), 2.62-2.68(2H, m), 2.98(3H, s), 3.02(2H, d, J = 4.5), 3.23(3H, s), 5.52(1H, s).

14b) $N_{-}((2Z)-4-(1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4- イル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-<math>N$ -メチルアミン

実施例14a)で得られた化合物 (1.2~g)を 1 N塩酸に溶解し、1時間かき混ぜた。反応液を炭酸カリウム水溶液でアルカリ性にした後、クロロホルムで抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物にジクロロメタン (50~ml) とトリエチルアミン(1.6~ml) を加え、氷冷下で3-((6-2) クロロー2-1 フェールのフロピオン酸 (1.7~g)、(0.97~g) およびWSC (1.2~g) を加え、室温で16時間かき混ぜた。反応液を炭酸カリウム水溶液でアルカリ性にした後、クロロホルムで抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物を塩基性シリカゲルカラムで精製して題記化合物 (0.1~6~g) を白色粉末として得た。

NMR (CDCl₃) δ : 1.36-1.51 (2H, m), 1.94-2.11 (2H, m), 2.60-2.72 (2H, m), 2.93-3.02 (2H, m), 3.04 (3H, s), 3.12-3.25 (1H, m), 3.33 (3H, s), 3.61-3.69 (2H, m), 3.98-4.05 (1H, m), 4.66-4.72 (1H, m), 5.54 (1H, s), 7.64 (1H, dd, J = 1.8, 8.8), 8.00-8.04 (4H, m), 8.55 (1H, m).

[0099]

実施例15

N-((2Z)-5-((4-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペラジン-1-イル) カルボニル) -3, 4-ジメチル-1, 3-チアゾール-2(3H) -イリデン)-N-メチルアミン

【化78】

(2Z)-3,4-ジメチル-2-メチルイミノ-2,3-ジヒドロ-1,3-チアゾール-5-カルボン酸(0.6~g)をジクロロメタン(30~m1)に溶解し、トリエチルアミン(0.14~m1)を加え、氷冷下で1-(3-(6-)クロロ-2-ナフチル(0.42~g) およびWSC(0.57~g)を加え、室温で16時間かき混ぜた。反応液を炭酸カリウム水溶液でアルカリ性にした後、クロロホルムで抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物を塩基性シリカゲルカラムで精製して題記化合物(0.13~g)を白色粉末として得た。

NMR (CDC1₃) δ : 2.21-2.38 (2H, m), 2.24 (3H, s), 2.86-2.93 (2H, m), 2.99 (3H, s), 3.27 (3H, s), 3.27-3.30 (2H, m), 3.50-3.64 (6H, m), 7.58 (1H, dd, J=1.8, 8.4), 7.91-7.97 (4H, m), 8.47 (1H, s).

[0100]

実施例16

 $N_{-}((2Z)-4-((4-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペラジン-1-イル) メチル)-3-エチル-1, 3-チアゾール-2(3H)-イリデン)-N-メチルアミン$

【化79】

16a) 4-((4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペラジン-1-イル)メチル)-N-メチル-1,3-チアゾール-2-アミン

実施例3a)で得られた $1-(3-((6-\rho DD-2-t DF))$ スルホニル)プロピオニル)ピペラジン (1.5 g)と $4-\rho DD$ $4-\rho DD$

NMR (CDC1₃) δ : 2.37 (2H, t, J = 5.1), 2.46 (2H, t, J = 5.1), 2.82-2.87 (2H, m), 2.95 (3H, t, J = 5.1), 3.40 (2H, s), 3.45-3.57 (6H, m), 5.15-5.16 (1H, m), 6.30 (1H, s), 7.58 (1H, dd, J = 1.5, 8.7), 7.90-7.95 (4H, m), 8.45 (1H, s).

16b) $N_{-}((2Z)_{-4-}((4_{-}(3_{-}((6_{-}クロロ_{-2-}+7チル)スルホニル)プロパノイル)ピペラジン<math>-1$ -イル)メチル) -3_{-} エチル-1, 3_{-} チアゾール-2(3H)-イリデン) $-N_{-}$ メチルアミン

実施例11a)で得られた化合物(0.5 g)をDMF(1.0 ml)に溶解し、ヨウ化エチル(0.21 ml)を室温で加え、80 $\mathbb C$ で一晩かき混ぜた。反応液を水に注ぎ込み、クロロホルムとメタノール

の混合液で抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物を 塩基性シリカゲルカラムで精製して題記化合物(0.04 g)を無色粉末として得た。

NMR (CDC1₃) δ : 1.22 (3H, t, J = 6.9), 2.31-2.41 (4H, m), 2.81-2.86 (2H, m), 2.9 6 (3H, s), 3.20 (2H, s), 3.40-3.56 (6H, m), 3.85 (2H, q, J = 6.9), 5.68 (1H, s), 7.55 (1H, dd, J = 1.8, 8.8), 7.86-7.93 (4H, m), 8.44 (1H, s.).

[0101]

実施例17

1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-4-(((2Z)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル)ピペラジン-2-カルボン酸メチル【化80】

17a) 4-(3-((6-クロロ-2-ナフチル)スルホニル)プロピオニル)ピペラジン-1,3-ジカルボン酸1-tert-ブチル 3-メチル

ピペラジン-1,3-ジカルボン1-tert-ブチル 3-メチル (特表平3-232864) (5.0 g)をジクロロメタン(20 ml)に溶解し、トリエチルアミン(3.8 ml)を加え、氷冷下で3-((6-クロロ-2-ナフチル)スルホニル)プロピオン酸(8.0 g)、HOBt(4.5 g)およびWSC(5.7 g)を加え、室温で16時間かき混ぜた。反応液を炭酸カリウム水溶液でアルカリ性にした後、クロロホルムで抽出、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去して、題記化合物(8.7 g)を淡褐色油状物として得た。

NMR (CDC1₃) δ : 1.38 (9H, s), 2.85-3.01 (4H, m), 3.65 (3H, m), 3.50-3.61 (4H, m), 3.97-4.15 (1.3H, m), 4.25-4.34 (0.7H, m), 4.48-4.70 (0.7H, m), 4.92-4.96 (1.3H, m), 7.59 (1H, dd, J = 2.1, 9.0), 7.90-7.94 (4H, m), 8.46 (1H, s).

17b) 1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-4-(((2Z)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル)ピペラジン-2-カルボン酸メチル

実施例17a)で得られた化合物 (2.4 g) を濃塩酸 (15 ml) に溶解し、室温で1時間かき混ぜた。反応液を炭酸カリウム水溶液でアルカリ性にした後、クロロホルムで抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物をDMF (30 ml) に溶解し、炭酸カリウム (0.84 g) とN-(4-クロロメチル-3-メチル-1, 3-チアゾール-2(3H)-イリデン)-N-メチルアミン塩酸塩 (0.65 g) を加え、70で4時間かき混ぜた。溶媒を留去し、残留物を水に注ぎ込みクロロホルム-メタノールの混合液で抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物を塩基性シリカゲルカラムで精製して題記化合物 (0.98 g) を白色粉末として得た。

NMR (CDCl₃) δ : 1.91-2.32 (2H, m), 2.64-3.10 (2H, m), 2.99 (3H, s), 3.18-3.35 (1 H, m), 3.24 (3H, s), 3.31-3.63 (5.6H, m), 3.65 (3H, s), 3.70 (0.6H, s), 4.22-4.3 0 (0.4H, m), 4.32-4.48 (0.4H, m), 5.13 (1H, s), 5.74 (1H, s), 7.57 (1H, dd, J = 2.1, 8.0), 7.91-7.95 (4H, m), 8.46 (1H, s).

[0102]

実施例18

【化81】

18a) 塩化3-((6-クロロ-2-ナフチル)スルホニル)プロピオニル

 $3-((6-\rho \Box \Box -2-\tau \Box + \nu) Z \nu \pi \Box \nu)$ プロピオン酸(14.9 g)、塩化チオニ $\nu(4.4 ml)$ およびDMF(2滴)をトルエン(100 ml)に加え、1.5時間還流した。溶媒を減圧留去し、残留物をエーテルとヘキサンで洗浄して題記化合物(15.5 g)を褐色固体として得た。

NMR (CDC1₃) δ : 3.35-3.44 (2H, m), 3.49-3.57 (2H, m), 7.62 (1H, dd, J = 2.0, 8.0), 7.87-8.00 (4H, m), 8.48 (1H, s).

18b) $2-(1-(3-((6-\rho \Box \Box -2- + 7 + \nu))$ スルホニル) プロピオニル) ピペリジン-4-イル) エタノール

水冷した2-(4-ピペリジル)エタノール(3.70 g)と炭酸水素ナトリウム(2.03 g)の水(50 ml)-THF(50 ml)溶液へ実施例18a)で得られた化合物(7.57 g)を少量ずつ加えた。反応混合物を0℃で1時間かき混ぜた後、THFを減圧留去し、酢酸エチルで抽出した。抽出液を水洗後、無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物をシリカゲルカラムで精製して題記化合物(6.18 g)を褐色油状物として得た。

NMR (CDCl₃) δ : 1.01-1.13 (2H, m), 1.45-1.56 (2H, m), 1.67-1.81 (2H, m), 2.45-2. 57 (1H, m), 2.80-2.90 (2H, m), 2.93-3.06 (1H, m), 3.52-3.60 (2H, m), 3.66-3.83 (3H, m), 4.44-4.50 (1H, m), 7.59 (1H, dd, J = 1.8, 8.8), 7.93-7.97 (4H, m), 8.47 (1H, s).

18c) 1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-4-(2-ヨードエチル)ピペリジン

実施例18b)で得られた化合物 (6.18 g)の酢酸エチル(100 ml)溶液へ、氷冷下で塩化メタンスルホニル(1.4 ml)を加え、0Cで1.5時間かき混ぜた。反応液を水洗後、無水硫酸マグネシウムで乾燥し、溶媒を留去した。残留物をアセトニトリル(100 ml)に溶解し、ヨウ化ナトリウム(11.3 g)を加えて室温で24時間かき混ぜた。溶媒を減圧留去し、水を加え、酢酸エチルで抽出した。抽出液を水洗後、無水硫酸マグネシウムで乾燥した。溶媒を留去した後、残留物をシリカゲルカラムで精製して題記化合物(5.58 g)を得た。

NMR (CDC1₃) δ : 0.90-1.23 (2H, m), 1.60-1.84 (5H, m), 2.46-2.58 (1H, m), 2.82-2. 90 (2H, m), 2.95-3.08 (1H, m), 3.20 (2H, t, J = 6.7), 3.51-3.60 (2H, m), 3.79 -3 .86 (1H, m), 4.46-4.53 (1H, m), 7.60 (1H, dd, J = 1.8, 8.8), 7.92-7.97 (4H, m), 8.48 (1H, s).

18d) 3-(2-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル) エチル)-1,3-チアゾール-2(3H)-イミン

1,3-チアゾール-2-アミン(0.12 g)をDMF(0.5 ml)に溶解し、実施例18c)で得られた化合物(0.6 g)を室温で加え、80℃で一晩かき混ぜた。反応液を水に注ぎ込み、クロロホルムとメタノールの混合液で抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物を塩基性シリカゲルカラムで精製して題記化合物(0.11 g)を白色粉末として得た

NMR (CDCl₃) δ : 0.82-1.13 (2H, m), 1.38-1.84 (6H, m), 2.36-2.48 (1H, m), 2.74-2. 98 (3H, m), 3.45-3.54 (2H, m), 3.61-3.76 (3H, m), 4.35-4.42 (1H, m), 5.68 (1H, d, J = 5.2), 6.29 (1H, d, J = 5.2), 7.52 (1H, dd, J = 1.8, 8.8), 7.86-7.90 (4H, m), 8.40 (1H, s).

[0103]

実施例 19

, 4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-1-(((2Z)-3-メチル-2-(メチル イミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル)-2-ピペラジノン

【化82】

3-オキソピペラジン-1-カルボン酸tert-ブチル(1.5 g)をDMF(50 ml)に溶解し、水素化ナ トリウム(0.3 g)を加え、氷冷下でN-(4-クロロメチル-3-メチル-1,3-チアゾール-2(3H)-イリデン)--N-メチルアミン塩酸塩(1.6 g)を加え、80℃で3時間かき混ぜた。溶媒を留去 し、残留物を水に注ぎ込み、クロロホルムで抽出し、抽出液を無水硫酸マグネシウムで乾 燥した。溶媒を留去し、粗生成物の淡褐色油状物質の1-(((2Z)-3-メチル-2-(メチルイミ ノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル)-2-ピペラジノン(1.7 g)を得た。これ を濃塩酸(5 ml)に溶解し、室温で1時間かき混ぜた。反応液を濃縮後、残留物をジクロロ メタン(30 ml)に溶解し、トリエチルアミン(1.4 ml)を加え、氷冷下で3-((6-クロロ-2-ナ フチル)スルホニル)プロピオン酸(1.5 g)、HOBt(0.84 g)およびWSC(1.0 g)を加え室温で1 6時間かき混ぜた。反応液を炭酸カリウム水溶液でアルカリ性にした後、クロロホルムで 抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物を塩基性シリ カゲルカラムで精製して題記化合物(0.25 g)を無色粉末として得た。

NMR (CDCl₃) δ : 2.51-2.84 (2H, m), 2.90 (3H, s), 3.12 (3H, s), 3.16-3.26 (2H, m), 3.46-3.50 (2H, m), 3.52-3.74 (2H, m), 4.12-4.15 (2H, m), 4.34-4.39 (2H, m), 5.7 6 (1H, s), 7.51 (1H, dd, J = 2.2, 8.8), 7.83-7.91 (4H, m), 8.40 (1H, s).

[0104]

実施例20

4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-1-(((2Z)-3-メチル-2-(メチル イミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル)ピペラジン-2-カルボン酸メチル 【化83】

ピペラジン-1,3-ジカルボン酸1-tert-ブチル 3-メチル(1.5 g) をDMF(50 ml)に溶解し、 炭酸カリウム(1.7 g)とN-(4-クロロメチル-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N -メチルアミン塩酸塩 (1.4 g)を加え、80℃で一晩かき混ぜた。溶媒を留去し、残留物を 水に注ぎ込みクロロホルム-メタノールの混合液で抽出し、抽出液を無水硫酸マグネシウ ムで乾燥した。溶媒を留去し、淡褐色油状物質の4-(((2Z)-3-メチル-2-(メチルイミノ)-2 ,3-ジヒドロ-1,3-チアゾール-4-イル)メチル)-3-オキソピペラジン-1-カルボン酸tert-ブ チル(1.2 g)を得た。これをトリフロロ酢酸(10 ml)に溶解し、室温で1時間かき混ぜた。 ジクロロメタン(50 ml)に溶解し、トリエチルアミン(0.87 ml)を加え、氷冷下で3-((6-ク ロロ-2-ナフチル)スルホニル)プロピオン酸(0.97 g)、HOBt(0.53 g)およびWSC(0.65 g)を 加え、室温で16時間かき混ぜた。反応液を炭酸カリウム水溶液でアルカリ性にした後、ク ロロホルムで抽出、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、留物を塩 基性シリカゲルカラムで精製して題記化合物(1.8 g)を白色粉末として得た。 NMR (CDC1₃) δ : 2.38-2.52 (1H, m), 2.83-2.91 (3.7H, m), 2.94 (3H, s), 3.23-3.40

(3.7H, m), 3.29 (3H, s), 3.48-3.66 (6.3H, m), 4.06-4.29 (1H, m), 4.77-4.96 (0.3H, m), m), 5.71 (0.3H, s), 7.73 (0.7H, s), 7.49-7.55 (1H, m), 7.88-7.94 (4H, m), 8.43 (1H, m).

[0105]

実施例21

(2Z)-4-((4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペラジン-1-イル)メ チル)-N,3-ジメチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-カルボキサミド

【化84】

(2Z)-N, 3, 4-トリメチル-2-(メチルイミノ)-2, 3-ジヒドロ-1, 3-チアゾール-5-カルボキサ ミド(2.0 g)から実施例13と同様にして、題記化合物(0.54 g)を白色粉末として得た。 NMR (CDCl₃) δ : 2.39-2.51 (4H, m), 2.72-2.87 (5H, m), 2.94 (3H, s), 3.32 (3H, s) , 3.40-3.53 (6H, m), 5.24 (2H, s), 6.44-6.69 (1H, m), 7.52 (1H, dd, J=2.2, 8.8), 7.80-7.91 (4H, m), 8.40 (1H, s).

[0106]

実施例22

(22)-4-((4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペラジン-1-イル)メ

チル)-N, N, 3-トリメチル-2-(メチルイミノ)-2, 3-ジヒドロ-1, 3-チアゾール-5-カルボキサ ミド

【化85】

(2Z)-N, N, 3, 4-テトラメチル-2-(メチルイミノ)-2, 3-ジヒドロ-1, 3-チアゾール-5-カルボ キサミド(2.0 g)から実施例13と同様にして、題記化合物(0.27 g)を白色粉末として得た

NMR (CDC1₃) δ : 2.31-2.42 (4H, m), 2.70-2.78 (2H, m), 2.93 (3H, s), 2.97 (6H, s) , 3.32 (3H, s), 3.35-3.51 (8H, m), 7.52 (1H, dd, J = 2.2, 8.8), 7.84-7.90 (4H, m)), 8.39 (1H, s).

[0107]

実施例 2 3

1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-4-(((2Z)-3-メチル-2-(メチル イミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル)ピペラジン-2-カルボン酸tert-ブ チル

【化86】

$$CI$$
 O
 S
 O
 H_3C
 CH_3
 CH_3

23a) 4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペラジン-1,3-ジカルボ ン酸 tert-プチル

ピペラジン-1,3-ジカルボン酸ジ-tert-ブチル (Wu, Guoshengら、Enantiomer 6, 343-345 , (2001)) (4.1 g) をジクロロメタン(50 ml)に溶解し、トリエチルアミン(4.0 ml)を加 え、氷冷下で3-((6-クロロ-2-ナフチル)スルホニル)プロピオン酸(4.3 g)、HOBt(2.4 g) およびWSC(3.0 g)を加え、室温で16時間かき混ぜた。反応液を炭酸カリウム水溶液でアル カリ性にした後、クロロホルムで抽出、抽出液を無水硫酸マグネシウムで乾燥した。溶媒 を留去し、残留物をシリカゲルカラムで精製して題記化合物(5.0 g)を得た。

NMR (CDCl₃) δ: 1.43 (9H, s), 1.46 (9H, s), 2.84-3.11 (4H, m), 3.51-3.61 (4H, m)

, 3.92-4.17 (1.3H, m), 4.25-4.35 (0.3H, m), 4.47-4.72 (0.7H, m), 4.93-4.96 (1.3H, m), 7.58 (1H, dd, J=2.1, 9.0), 7.93-7.97 (4H, m), 8.48 (1H, s).

23b) 1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-4-(((2Z)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル)ピペラジン-2-カルボン酸ter <math>t-ブチル

実施例23a)で得られた化合物(5.0 g)をジクロロメタン(50 ml)に溶解し、氷冷下でテトラメチルシリルトリフレート(1.9 g)を加え、30分かき混ぜた。反応液を炭酸カリウム水溶液でアルカリ性にした後、クロロホルムで抽出、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物をDMF(50 ml)に溶解し、炭酸カリウム(2.4 g)とN-(4-クロロメチル-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン塩酸塩(1.9 g)を加え、80℃で一晩かき混ぜた。溶媒を留去後、残留物を水に注ぎ込みクロロホルムで抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物をシリカゲルカラムで精製して題記化合物(4.2 g)を白色粉末として得た。

NMR (CDCl₃) δ : 1.34 (9H, s), 2.04-2.17 (2H, m), 2.79-2.88 (3H, m), 2.98 (3H, s), 3.23 (2H, s), 3.27 (3H, s), 3.38-3.64 (6.2H, m), 4.20-4.32 (0.8H, m), 4.95 (1H, s), 5.74 (1H, s), 7.58 (1H, dd, J = 2.2, 8.0), 7.87-8.00 (4H, m), 8.45 (1H, s)

[0108]

実施例24

 $1-(3-((6-\rho \mu \nu -2-\tau \nu + \nu -2-(\nu + \nu -2-(\nu$

実施例23b)で得られた $1-(3-((6-\rho \Box D-2-+ J+ D+D) Z)$ スルホニル)プロパノイル)-4-(((2Z) -3- J+D-2-(J+D) Z) -2 スチルー(2-J+D) Z (2-J+D Z (2-J+D Z) と次にでは、定点で1時間かき混ぜた。反応液を濃縮後、残留物から水をトルエン(30 ml)との共沸により除去し、題記化合物(4.2 g)を白色粉末として得た。

NMR (CDC1₃) δ : 2.03-2.42 (2H, m), 2.57-2.78 (2H, m), 2.80-2.97 (2H, m), 3.00 (3 H, s), 3.11-3.43 (2H, m), 3.61 (3H, s), 3.63-3.86 (2H, m), 3.95-4.09 (1H, m), 4.86 (2H, s), 7.11 (1H, s), 7.74 (1H, dd, J = 1.8, 8.6), 7.96-8.03 (1H, m), 8.15-8 .31 (3H, m), 8.64-8.66 (1H, m).

実施例25

1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-N-(2-ヒドロキシエチル)-4-(((出証特2004-3099284 27)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル)ピペラジ ン-2-カルボキサミド

【化88】

実施例24で得られた1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-4-(((2Z)-3 -メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル)ピペラジン-2-カルボン酸(0.4 g) をDMF(20 ml)に溶解し、トリエチルアミン(0.2 ml)を加え、氷冷下で 2-エタノールアミン(0.04 g)、HOBt(0.12 g)およびWSC(0.16 g)を加え、室温で16時間か き混ぜた。反応液を炭酸カリウム水溶液でアルカリ性にした後、クロロホルムで抽出、抽 出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物を塩基性シリカゲルカラ ムで精製して題記化合物(0.21 g)を白色粉末として得た。

NMR (CDC1₃) δ : 1.82-2.20 (2H, m), 2.77-2.86 (2H, m), 2.95 (3H, s), 3.05-3.45 (4 H, m), 3.29 (3H, s), 3.49-3.80 (4.8H, m), 4.42-4.44 (0.6H, m), 5.12-5.15 (0.6H, m), 5.52-5.55 (2H, m), 5.78 (1H, s), 7.05-7.08 (0.6H, m), 7.29-7.32 (0.4H, m), 7 .59 (1H, dd, J = 1.8, 8.7), 7.86-7.98 (4H, m), 8.47 (1H, s).

[0109]

実施例26

1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-N-(2-ヒドロキシエチル)-4-(((2Z)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル)ピペラジ ン-2-カルボキサミド

【化89】

アミノアセチルアミド $(0.08~\mathrm{g})$ から実施例25と同様にして、題記化合物 $(0.19~\mathrm{g})$ を白色結 晶として得た。

NMR (CDC1₃) δ : 1.26-1.28 (2H, m), 2.04-2.22 (2H, m), 2.70-2.99 (2H, m), 2.94 (3 H, s), 3.10-3.26 (2H, m), 3.27 (3H, s), 3.36-3.93 (6.6H, m), 4.01-4.18 (6.4H, m) , 4.42 (0.4H, br), 5.14 (0.6H, br), 5.75 (1H, s), 6.00-6.08 (0.4H, m), 6.18-6.30 (0.6H, m), 7.57-7.60 (1H, m), 7.88-7.98 (4H, m), 8.46 (1H, s).

[0110]

実施例 2 7

N-(2-(7セチルアミノ)エチル)-1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-4-(((2Z)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル)ピ ペラジン-2-カルボキサミド

【化90】

N-アセチルエチレンジアミン(0.08~g)から実施例25と同様にして、題記化合物(0.15~g)を白色結晶として得た。

NMR (CDC1₃) δ : 1.93-2.20 (2H, m), 2.78-2.93 (2H, m), 2.95 (3H, s), 3.10-3.33 (7 H, m), 3.25 (3H, s), 3.59-3.70 (3.4H, m), 4.38 (0.4H, br), 5.04 (0.6H, br), 5.45 -5.68 (1.6H, m), 5.78 (1H, s), 7.22 (1H, br), 7.53 (1H, br), 7.57 (1H, dd, J = 1 .8, 8.7), 7.91-7.98 (4H, m), 8.48 (1H, s).

[0111]

実施例 2 8

【化91】

メチルアミン塩酸塩(0.05 g)から実施例25と同様にして、題記化合物(0.23 g)を白色結晶として得た。

NMR (CDC1₃) δ : 1.96-2.22 (2H, m), 2.71-2.89 (5H, m), 2.99 (3H, s), 3.11-3.28 (3 H, m), 3.31 (3H, s), 3.37-3.85 (4.4H, m), 4.02-4.13 (0.4H, m), 4.36-4.53 (0.6H, m), 5.15 (0.6H, s), 5.78 (1H, s), 6.41 (0.6H, br), 6.71 (0.4H, br), 7.58-7.61 (1 H, m), 7.87-7.97 (4H, m), 8.45 (1H, s).

[0112]

実施例 2 9

 $N_{-}((2Z)_{-4-}((4_{-}(3_{-}((6_{-})DD_{-2-}+D+N)ZN+D)))))$ プロパノイル) $-3_{-}(4_{-}+D+D+D+D+D)$ ルカルボニル) ピペラジン -1_{-} イル) メチル) -3_{-} メチル-1, 3_{-} チアゾール $-2(3H)_{-}$ イリデン) $-N_{-}$ メチルアミン

【化92】

モルホリン(0.07 g)から実施例25と同様にして、題記化合物(0.09 g)を白色結晶として得 た。

NMR (CDC1₃) δ : 217-2.45 (2H, m), 2.62-3.19 (4H, m), 3.06 (3H, s), 3.33 (3H, s), 3.34-3.74 (12.2H, m), 4.00-4.22 (1.4H, m), 4.72-4.79 (0.4H, m), 5.23-5.24 (1H, m), 5.84 (1H, s), 7.66 (1H, dd, J = 1.8, 8.8), 7.98-8.05 (4H, m), 8.54 (1H, s). [0113]

実施例30

(2Z)-5-ブロモ-4-((4-(3-((6-クロロ-2-ナフチル)スルホニル) プロパノイル) ピペラジン-1-イル)メチル)-3-メチル-1,3-チアゾール-2(3H)-イリデンカルバミン酸tert-ブチル 【化93】

$$CI$$
 N
 N
 H_3C
 CH_3
 H_3C
 CH_3

30a) 3,4-ジメチル-1,3-チアゾール-2(3H)-イリデンカルバミン酸tert-プチル 4-メチル-1,3-チアゾール-2-アミン(10 g)をDMF(20 ml)に溶解し、室温でヨウ化メチル(6 .5 ml)を加え、80℃で2時間かき混ぜた。反応液を濃縮し、得られた黄色の結晶をジクロ ロメタン(100 ml)に溶解した。この溶液ヘトリエチルアミン(12 ml)を加え、室温で二炭 酸ジ-tert-ブチル(20 ml)を加え、室温で16時間かき混ぜた。反応液を水に注ぎ込み、ク ロロホルムで抽出、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、題記化合 物(8.0 g)を白色結晶として得た。

NMR (CDCl₃) δ : 1.67 (9H, s), 2.36 (3H, d, J = 1.4), 3.70 (3H, s), 6.29 (3H, d, J = 1.4).

30b) 5-プロモ-3, 4-ジメチル-1, 3-チアゾール-2(3H)-イリデンカルバミン酸+ tert-プチル 実施例+30a)で得られた化合物+3.0 g)を四塩化炭素+50 ml)に溶解し、室温で+4 AIBN+1 g) および+80 Cで1時間かき混ぜた。反応液を炭酸カリウム水溶液に注ぎ込み、クロロホルムで抽出、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去して、題記化合物+2.9 g)を白色結晶として得た。

NMR (CDCl₃) δ : 1.55 (9H, s), 2.26 (3H, s), 3.62 (3H, s).

30c) (2Z)-5-ブロモ-4-((4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペラジン-1-イル)メチル)-3-メチル-1,3-チアゾール-2(3H)-イリデンカルバミン酸tert-ブチル

実施例30b)で得られた化合物5-ブロモ-3,4-ジメチル-1,3-チアゾール-2(3H)-イリデンカルバミン酸tert-ブチル(2.9 g)を1,2-ジクロロエタン(50 ml)に溶解し、室温でAIBN(0.1 g)およびNBS(1.7 g)を加え、80℃で3時間かき混ぜた。反応液を炭酸カリウム水溶液に注ぎ込み、クロロホルムで抽出、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、褐色油状物質の5-ブロモ-3-ブロモメチル-4-メチル-1,3-チアゾール-2(3H)-イリデンカルバミン酸tert-ブチル(3.1 g)を得た。この化合物と実施例3a)で得られた1-(3-((6-クロロ-2-ナフチル)スルホニル)プロピオニル)ピペラジン(1.0 g)をDMF(30 ml)に溶解し、炭酸カリウム(0.75 g)を加え、70℃で4時間かき混ぜた。溶媒を留去し、残留物を水に注ぎ込みクロロホルム-メタノールの混合液で抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物を塩基性シリカゲルカラムで精製して題記化合物(1.2 g)を白色粉末として得た。

NMR (CDC1₃) δ : 1.56 (9H, s), 2.38-2.49 (4H, m), 2.83-2.91 (2H, m), 3.41-3.60 (8 H, m), 3.73 (3H, s), 7.50 (1H, dd, J = 2.2, 8.8), 7.92-7.97 (4H, m), 8.47 (1H, s).

[0114]

実施例31

5-プロモ-4-((4-(3-((6-)クロロ-2-ナフチル) スルホニル) プロパノイル) ピペラジン-1-イル) メチル)-3-メチル-1, 3-チアゾール-2(3H)-イミン

【化94】

実施例30c)で得られた(2Z)-5-プロモ-4-((4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペラジン-1-イル)メチル)-3-メチル-1,3-チアゾール-2(3H)-イリデンカルバミン酸 tert-プチル(1.2 g)をトリフロロ酢酸(10 ml)に溶解し、室温で1時間かき混ぜた。溶媒を留去し、残留物を炭酸カリウム水溶液に注ぎ込みクロロホルム-メタノールの混合液で抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物を塩基性シリカゲルカラムで精製して題記化合物(0.07 g)を淡褐色粉末として得た。

NMR (CDCl₃) δ : 2.39 (2H, t, J = 5.1), 2.47 (2H, t, J = 5.1), 2.86 (2H, t, J = 7)

.8), 3.28 (2H, s), 3.36 (3H, s), 3.43-3.59 (6H, m), 7.58 (1H, dd, J = 1.8, 8.4), 7.91-7.95 (4H, m), 8.46 (1H, s).

[0115]

実施例32

 $N_{-}((2Z)-4-((4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペラジン-1-イル$)メチル)-3,5-ジメチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン

【化95】

実施例3a)で得られた1-(3-((6-クロロ-2-ナフチル)スルホニル)プロピオニル)ピペラジン (1.0 g)とN-(4-クロロメチル-3,5-ジメチル-1,3-チアゾール-2(3H)-イリデン)-N-メチル アミン塩酸塩(0.8 g)から実施例3と同様にして、題記化合物(0.39 g)を白色粉末として 得た。

NMR (CDC1₃) δ : 2.11 (3H, s), 2.35 (2H, t, J = 5.4), 2.42 (2H, t, J = 5.4), 2.86 (2H, t, J = 7.8), 3.00 (3H, s), 3.21 (2H, s), 3.36 (3H, s), 3.42-3.58 (6H, m),7.59 (1H, dd, J = 1.8, 8.7), 7.88-7.95 (4H, m), 8.47 (1H, s).

[0116]

実施例33

(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-4-(((2Z)-3-メチル-2-(メチル イミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル)ピペラジン-2-イル)酢酸エチル 【化96】

33a) 4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-3-(2-エトキシ-2-オキソ エチル)ピペラジン-1-カルボン酸tert-ブチル

3-(2-エトキシ-2-オキソエチル)ピペラジン-1-カルボン酸tert-プチル(0.9 g)をジクロロ メタン(20 ml)に溶解し、トリエチルアミン(0.92 ml)を加え、氷冷下で3-((6-クロロ-2-ナフチル)スルホニル)プロピオン酸(1.0 g)、HOBt(0.55 g)およびWSC(0.65 g)を加え、室・ 温で16時間かき混ぜた。反応液を炭酸カリウム水溶液でアルカリ性にした後、クロロホル

ムで抽出、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去して、題記化合物(1.1 g)を淡褐色油状物として得た。

NMR (CDCl₃) δ : 1.15 (3H, t, J = 7.2), 1.39 (9H, s), 2.42-2.98 (6H, m), 3.18-3.3 4 (0.3H, m), 7.48-7.56 (1H, m), 7.81-7.94 (4H, m), 8.31-8.43 (1H, m).

33b) (1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-4-(((2Z)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル)ピペラジン-2-ンル)酢酸エチル

実施例33a)で得られた化合物 (1.1 g)をトリフロロ酢酸 (10 ml) に溶解し、室温で1時間かき混ぜた。溶媒を留去し、残留物を炭酸カリウム水溶液でアルカリ性にした後、クロロホルムで抽出、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物をDMF (20 ml) に溶解し、炭酸カリウム (0.55 g) とN-(4-クロロメチル-3-メチル-1,3-チアゾール-2 (3H)-イリデン)-N-メチルアミン塩酸塩 (0.42 g) を加え、70 で4時間かき混ぜた。溶媒を留去後、残留物を水に注ぎ込みクロロホルム-メタノールの混合液で抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物を塩基性シリカゲルカラムで精製して題記化合物 (0.32 g) を白色粉末として得た。

NMR (CDC1₃) δ : 1.18 (3H, t, J = 7.2), 1.83-2.13 (3H, m), 2.41-2.48 (0.5H, m), 2.62-2.91 (5H, m), 2.99 (3H, s), 3.02-3.27 (3H, m), 3.34 (3H, s), 3.47-3.62 (2H, m), 3.96-4.06 (2H, m), 4.34-4.38 (1H, m), 4.90-4.94 (0.5H, m), 5.73 (1H, s), 7.55-7.60 (1H, m), 7.82-7.96 (4H, m), 8.46-8.48 (1H, m).

[0117]

実施例 3 4

【化97】

34a) 2-(2-エトキシ-2-オキソエチル)ピペラジン-1,4-ジカルボン酸1-アリール 4-tert-ブチル

 $3-(2-x++)-2-x+yx+\nu)$ ピペラジン-1-カルボン酸tert-ブチル(5.5~g)をジクロロメタン(50~ml)に溶解し、トリエチルアミン(6.3~ml)を加え、氷冷下でクロロ蟻酸アリール(2.4~g)を氷冷下加え、室温で1時間かき混ぜた。反応液を炭酸カリウム水溶液でアルカリ性にした後、クロロホルムで抽出、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去して、題記化合物(6.1~g)を淡褐色油状物として得た。

NMR (CDCl₃) δ: 1.39 (9H, s), 2.63-3.10 (2H, m), 3.21-3.38 (2H, m), 3.69 (3H, s), 3.81-4.10 (2H, m), 4.50-4.71 (4H, m), 5.16-5.31 (2H, m), 5.77-6.02 (1H, m). 34b) 2-((3-モルホリン-4-イル)-1,2,4-オキサジアゾール-5-イル)ピペラジン-1,4-ジカルボン酸1-アリール 4-tert-ブチル

モルホリン-4-カルボキサミド オキシム(2.1 g)を無水THF(50 ml)に溶解し、4Aモレキュラーシープスパウダー(4.0 g)を加え、室温で3時間かき混ぜた後、水素化ナトリウム(0.57 g)を加え、60℃で20分間かき混ぜた。この反応液へ実施例34a)で得られた化合物(4.2 6 g)を加え、1時間還流した。反応液を濃縮して、残留物をシリカゲルカラムで精製して題記化合物(1.3 g)を淡褐色油状物として得た。

NMR (CDCl₃) δ : 1.38 (9H, s), 2.57 (4H, t, J = 4.5), 2.81-3.03 (1H, m), 3.24-3.4 7 (2H, m), 3.67 (2H, s), 3.72 (4H, t, J = 4.5), 3.98-4.18 (2H, m), 4.58-4.74 (3H, m), 5.19-5.40 (2H, m), 5.53-5.63 (1H, m), 5.80-5.99 (1H, m).

34c) N-((2Z)-4-((4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-3-((3-(4-モ

 ν ホリニル) $_{-1,2,4-}$ オキサジアゾー ν $_{-5-}$ イル)メチル)ピペラジン $_{-1-}$ イル)メチル) $_{-3-}$ メチル $_{-1,3-}$ チアゾー ν $_{-2(3H)}$ -イリデン) $_{-N-}$ メチルアミン

実施例34b)で得られた化合物(1.3 g)をTHF(20 ml)に溶解し、1,3-ジメチルバルビツール 酸(1.9 g)、テトラキス(トリフェニルホスフィン)パラジウム (0.3 g)を加え、反応容器 を窒素で置換し室温で一晩かき混ぜた。反応液を炭酸カリウム水溶液でアルカリ性にした 後、クロロホルムで抽出、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残 留物をジクロロメタン(20 ml)に溶解し、トリエチルアミン(0.92 ml)を加え、氷冷下で3-((6-クロロ-2-ナフチル) スルホニル) プロピオン酸 (1.0 g)、HOBt (0.55 g) およびWSC (0.65 g) (0.65 g) ない (0.65g)を加え、室温で16時間かき混ぜた。反応液を炭酸カリウム水溶液でアルカリ性にした 後、クロロホルムで抽出、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去して、 淡褐色油状物質の4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-3-((3-(4-モ ルホリニル)-1,2,4-オキサジアゾール-5-イル)メチル)ピペラジン-1-カルボン酸tert-ブ チル(2.3 g)を得た。これをトリフロロ酢酸(15 ml)に溶解し、室温で1時間かき混ぜた。 反応液を濃縮後、残留物を炭酸カリウム水溶液でアルカリ性にした後、クロロホルムで抽 出、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物をDMF(30 ml)に溶 解し、炭酸カリウム(1.0 g)とN-(4-クロロメチル-3-メチル-1,3-チアゾール-2(3H)-イリ デン)-N-メチルアミン塩酸塩 (0.77 g)を加え、70℃で4時間かき混ぜた。溶媒を留去後、 残留物を水に注ぎ込みクロロホルム-メタノールの混合液で抽出し、抽出液を無水硫酸マ グネシウムで乾燥した。溶媒を留去し、残留物を塩基性シリカゲルカラムで精製して題記 化合物(0.19 g)を白色粉末として得た。

NMR (CDC1₃) δ : 2.09-2.19 (1H, m), 2.39-2.61 (5H, m), 2.84-2.89 (1H, m), 2.96 (3 H, s), 3.01 (3H, s), 3.06-3.30 (3H, m), 3.49-3.61 (5H, m), 3.64-3.78 (5H, m), 5.73 (1H, s), 5.86 (1H, s), 7.58 (1H, dd, J = 2.4, 9.0), 7.88-7.96 (4H, m), 8.48 (1H, s).

[0118]

実施例 3 5

((2Z)-4-((4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペラジン-1-イル)メチル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル)メタノール【化98】

35a) 4-(((2Z)-5-ホルミル-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル)ピペラジン-1-カルボン酸tert-プチル

実施例11a)で得られた4-(((2Z)-3-メチル-2-メチルイミノ-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル)ピペラジン-1-カルボン酸tert-プチル(1.0 g)をTHF (20 ml)に溶解し、-70℃でn-プチルリチウム(4.6 ml; 1.6Mヘキサン溶液)を加え、30分間かき混ぜた。反応液にDMF(1.0 ml)を加え、-70℃で1時間かき混ぜた後、0℃で塩化アンモニウム水溶液を加えた。酢酸エチルで抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、題記化合物(1.1 g)を淡褐色油状物として得た。

NMR (CDC1₃) δ : 1.46 (9H, s), 2.40-2.52 (4H, m), 3.06 (3H, s), 3.42-3.45 (4H, m), 3.49 (3H, s), 3.67 (2H, s), 9.75 (1H, s).

35b) 4-(((2Z)-5-ヒドロキシメチル-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル) ピペラジン-1-カルボン酸<math>tert-ブチル

実施例35a)で得られた化合物 (1.1 g)をメタノール (15 ml)とクロロホルム (15 ml)の混合液に溶解し、0Cで水素化ホウ素ナトリウム (0.18 g)を加え、室温で1時間かき混ぜた。反応液を炭酸カリウム水溶液でアルカリ性にした後、クロロホルムで抽出、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し題記化合物 (1.1 g)を淡褐色結晶として得た。NMR (CDC1_3) δ : 1.45 (9H, s), 2.39–2.44 <math>(4H, m), 2.99 (3H, s), 3.34 (3H, s), 3.34 (4H, m), 4.49 (2H, s).

35c) ((2Z)-4-((4-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペラジン-1-イル) メチル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル) メタノール

実施例35b)で得られた化合物 (1.1 g)を濃塩酸 (10 m1) に溶解し、室温で1時間かき混ぜた。反応液を濃縮後、残留物を飽和重曹水 (15 m1) とクロロホルム (15 m1) の混合液に溶解し、0 で塩化3-((6-2) のロー2-ナフチル) スルホニル) プロピオニル (1.1 g) を加え、室温で2時間かき混ぜた。反応液を水に注ぎ込みクロロホルム-メタノールの混合液で抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物を塩基性シリカゲルカラムで精製して題記化合物 (0.50 g) を白色粉末として得た。

NMR (CDC1₃) δ : 2.38 (2H, t, J = 5.1), 2.46 (2H, t, J = 5.1), 2.86 (2H, t, J = 8.1), 2.99 (3H, s), 3.32 (2H, s), 3.33 (3H, s), 3.44 (2H, t, J = 5.1), 3.50-3.57 (4H, m), 4.48 (2H, s), 7.58 (1H, dd, J = 2.1, 9.0), 7.90-7.96 (4H, m), 8.45 (1H, s).

[0119]

実施例36

 $N_-((2Z)-4_-((4_-(3_-((6_-クロロ-2_-ナフチル) スルホニル) プロパノイル) ピペラジン-1_-イル)メチル)-5_-((ジメチルアミノ)メチル)-3_メチル-1,3_チアゾール-2(3H)-イリデン)-N_-メチルアミン$

【化99】

36a) 4-(((2Z)-5-((ジメチルアミノ)メチル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドル-1,3-チアゾール-4-イル)メチル)ピペラジン-1-カルボン酸tert-プチル

実施例35a)で得られた4-(((2Z)-5-ホルミル-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル)ピペラジン-1-カルボン酸tert-プチル(1.0 g)とtert1 ルアミンTHF溶液(2.6 ml)を1,2-ジクロロエタン(50 ml)と酢酸(0.18 ml)の混合液に溶解し、tert0 でトリアセトキシ水素化ホウ素ナトリウム(0.84 g)を加え、室温で一晩かき混ぜた。反応液を炭酸カリウム水溶液でアルカリ性にした後、クロロホルムで抽出、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、題記化合物(1.1 g)を淡褐色結晶として得た。

NMR (CDCl₃) δ : 1.46 (9H, s), 1.70-1.79 (2H, m), 2.25 (6H, s), 2.35-2.40 (4H, m), 3.01 (3H, s), 3.27 (2H, s), 3.36 (3H, s), 3.40-3.50 (4H, m), 3.74 (2H, s).

36b) $N_{-}((2Z)_{-4-}((4_{-}(3_{-}((6_{-}クロロ_{-2-}+7+\nu)))) スルホニル) プロパノイル) ピペラジン-1 - イル) メチル) - 5_{-}((ジメチルアミノ) メチル) - 3_メチル-1, 3_チアゾール-2(3H) - イリデン) - N_-メチルアミン$

実施例36a)で得られた化合物 (1.1 g)を濃塩酸 (10 ml) に溶解し、室温で1時間かき混ぜた。反応液を濃縮後、残留物を飽和重曹水 (15 ml) とクロロホルム (15 ml) の混合液に溶解し、0 で塩化3-((6-) ロロ-2-ナフチル) スルホニル) プロピオニル (0.89 g) を加え、室温で2時間かき混ぜた。反応液を水に注ぎ込みクロロホルム-メタノールの混合液で抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物を塩基性シリカゲルカラムで精製して題記化合物 (0.22 g) を白色粉末として得た。

NMR (CDC1₃) δ : 2.25 (6H, s), 2.34-2.43 (4H, m), 2.83-2.91 (2H, m), 3.00 (3H, d, J = 1.8), 3.24-3.27 (2H, m), 3.28 (2H, s), 3.34 (3H, d, J = 1.8), 3.44-3.59 (6H, m), 7.60 (1H, dd, J = 1.4, 8.8), 7.92-7.97 (4H, m), 8.47 (1H, s).

[0120]

実施例37

N-((2Z)-4-((4-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペラジン-1-イル) メチル)-3-メチル-5-(4-モルホリニルメチル)-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン

【化100】

37a) 4-(((2Z)-3-メチル-2-(メチルイミノ)-5-(モルホリン-4-イル)メチル-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル)ピペラジン-1-カルボン酸tert-ブチル

実施例35a)で得られた4-(((2Z)-5-ホルミル-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル)ピペラジン-1-カルボン酸tert-ブチル(1.0 g)とモリホリン(0.36 ml)を1,2-ジクロロエタン(50 ml)と酢酸(0.18 ml)の混合液に溶解し、0Cでトリアセトキシ水素化ホウ素ナトリウム(0.84 g)を加え、室温で一晩かき混ぜた。反応液を炭酸カリウム水溶液でアルカリ性にした後、クロロホルムで抽出、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、題記化合物(1.2 g)を淡褐色結晶として得た。

NMR (CDC1₃) δ : 1.46 (9H, s), 2.35-2.40 (4H, m), 2.43-2.47 (4H, m), 3.01 (3H, s), 3.27 (2H, s), 3.35 (3H, s), 3.37-3.42 (4H, m), 3.69-3.71 (4H, m), 3.74 (2H, s)

37b) $N_{-}((2Z)_{-4-}((4_{-}(3_{-}((6_{-})DD_{-2-}+DF_{-}))ZN_{+}+N))^2DN_{-1})^2DN_{-1}$ $-4_{-}(4_{-}(3_{-}((6_{-})DD_{-2-}+DF_{-}))-1,3_{-}+PV_{-1}-N_{-2}(3H)_{-1}-N_{-2}+$

実施例37a)で得られた化合物 (1.2 g)を濃塩酸 (10 ml) に溶解し、室温で1時間かき混ぜた。反応液を濃縮後、残留物を飽和重曹水 (15 ml) とクロロホルム (15 ml) の混合液に溶解し、0 で塩化3-((6-) クロロー2-ナフチル (15 ml) スルホニル (15 ml) プロピオニル (0.89 g) を加え、室温で2時間かき混ぜた。反応液を水に注ぎ込みクロロホルム-メタノールの混合液で抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物を塩基性シリカゲルカラムで精製して題記化合物 (0.22 g) を白色粉末として得た。

NMR (CDCl₃) δ : 2.18-2.44 (8H, m), 2.84-2.92 (2H, m), 3.01 (3H, s), 3.28 (2H, s), 3.35 (3H, s), 3.35-3.40 (2H, m), 3.43-3.55 (6H, m), 3.68-3.73 (4H, m), 7.60 (1 H, dd, J = 1.4, 8.8), 7.92-7.97 (4H, m), 8.48 (1H, s).

[0121]

実施例38

((2Z)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メタノール

【化101】

38a) 4-(((2E)-4-ホルミル-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-1-カルボン酸tert-ブチル

4-(((2E)-3-3+N-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル)メチル)ピペリジン-1-カルボン酸<math>tert-ブチル(2.2 g)から実施例35a)と同様にして、題記化合物(2.7 g)を得た。

NMR (CDCl₃) δ : 1.48 (9H, s), 1.63-1.87 (4H, m), 2.70-2.86 (2H, m), 3.04 (3H, s), 3.38-3.48 (1H, m), 3.56 (3H, s), 4.22-4.49 (2H, m), 9.77 (1H, s).

38b) 4-(((2E)-4-ヒドロキシメチル-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル)メチル)ピペリジン-1-カルボン酸tert-ブチル

実施例38a)で得られた化合物(2.7 g)から実施例35b)と同様にして、題記化合物(1.6 g)を得た。

NMR (CDCl₃) δ : 1.47 (9H, s), 1.52-1.72 (4H, m), 2.68-2.82 (2H, m), 2.96 (3H, s), 3.18-3.29 (1H, m), 3.33 (3H, s), 4.15-4.21 (2H, m), 4.43 (2H, s).

38c) ((2Z)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メタノール

実施例38b)で得られた化合物(1.6 g)から実施例35c)と同様にして、題記化合物(0.06 g)を無色粉末として得た。

NMR (CDC1₃) δ : 1.47-1.84 (5H, m), 2.48-2.60 (1H, m), 2.85-3.25 (3H, m), 2.93 (3 H, s), 3.30 (3H, s), 3.52-3.60 (2H, m), 3.87-3.93 (1H, m), 4.41 (2H, s), 4.53-4. 60 (1H, m), 7.59 (1H, dd, J = 2.0, 8.8), 7.88-7.98 (4H, m), 8.48 (1H, s).

[0122]

実施例39

N-((2Z)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-4-((ジメチルアミノ)メチル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン

【化102】

39a) 4-(((2E)-4-((ジメチルアミノ)メチル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル)メチル) ピペリジン-1-カルボン酸<math>tert-プチル

実施例38a)で得られた4-(((2E)-4-ホルミル-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル)メチル)ピペリジン-1-カルボン酸<math>tert-ブチル(0.9~g)と1Mジメチルアミンthr溶液(2.6~ml)から実施例36a)と同様にして、題記化合物(1.1~g)を白色粉末として得た。

NMR (CDC1₃) る: 1.47 (9H, s), 1.53–1.95 (4H, m), 2.22 (6H, s), 2.69–2.89 (3H, m), 2.98 (3H, s), 3.15 (2H, s), 3.33 (3H, s), 3.74 (2H, s), 4.17–4.23 (2H, m). 39b) N-((2Z)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-4-((ジメチルアミノ)メチル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン

実施例39a)で得られた化合物(1.1 g)と塩化3-((6-クロロ-2-ナフチル)スルホニル)プロピオニル(0.89 g)から実施例36b)と同様にして、題記化合物(0.43 g)を白色粉末として得た

NMR (CDC1₃) δ : 1.47-1.70 (5H, m), 2.22 (6H, s), 2.49-2.61 (1H, m), 2.86-2.94 (2 H, m), 2.98 (3H, s), 3.01-3.09 (1H, m), 3.14 (2H, s), 3.34 (3H, s), 3.53-3.61 (2 H, m), 3.88-3.95 (1H, m), 4.58-4.64 (1H, m), 7.59 (1H, dd, J = 1.8, 8.8), 7.88-7 .98 (4H, m), 8.48 (1H, s).

[0123]

実施例 4 0

N-((2Z)-4-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-5-((ジメチルアミノ)メチル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン

【化103】

$$\begin{array}{c} H_3C \\ N-CH_3 \\ S \\ O \\ O \\ O \\ CH_3 \end{array}$$

40a) 4-((2Z)-5-ホルミル-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-出証特2004-3099284 イル)ピペリジン-1-カルボン酸tert-ブチル

実施例14a)で得られた4-((2Z)-3-メチル-2-メチルイミノ-2,3-ジヒドロ-1,3-チアゾール-4-イル)ピペリジン-1-カルボン酸tert-ブチル臭素酸塩(2.2 g)から実施例35a)と同様にして、題記化合物(2.4 g)を得た。

NMR (CDC1₃) δ : 1.49 (9H, s), 1.90-2.00 (4H, m), 2.73-2.79 (2H, m), 3.05 (3H, s), 3.14-3.25 (1H, m), 3.47 (3H, s), 4.31-4.37 (2H, m), 9.88 (1H, s).

40b) 4-((2Z)-5-((ジメチルアミノ)メチル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル) ピペリジン-1-カルボン酸tert-ブチル

実施例40a)で得られた化合物(0.75 g)と1MジメチルアミンTHF溶液(2.2 ml)から実施例39 a)と同様にして、題記化合物(0.5 g)を得た。

NMR (CDCl₃) δ : 1.49 (9H, s), 1.64-2.09 (4H, m), 2.26 (6H, s), 2.72-2.81 (3H, m), 2.99 (3H, s), 3.31 (3H, s), 3.32 (2H, s), 4.22-4.28 (2H, m).

40c) N-((2Z)-4-(1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4-イル)-5-((ジメチルアミノ) メチル)-3-メチル-1, 3-チアゾール-2(3H)-イリデン)-N-メチルアミン

実施例40b)で得られた化合物(0.5 g)と塩化3-((6-クロロ-2-ナフチル)スルホニル)プロピオニル<math>(0.43 g)から実施例36b)と同様にして、題記化合物(0.11 g)を白色粉末として得た

NMR (CDC1₃) δ : 1.76-1.94 (4H, m), 2.05-2.20 (1H, m), 2.24 (6H, s), 2.50-2.59 (1 H, m), 2.83-3.13 (3H, m), 2.98 (3H, s), 3.29 (2H, s), 3.30 (3H, s), 3.48-3.60 (2 H, m), 3.97-4.01 (1H, m), 4.69-4.73 (1H, m), 7.58 (1H, dd, J = 1.4, 8.8), 7.89-7 .96 (4H, m), 8.47 (1H, s).

[0124]

実施例41

 $N_{-}(((2Z)-4-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル)メチル)-2-メトキシ-<math>N_{-}$ メチルエチルアミン

【化104】

$$H_3C$$
 O
 S
 O
 CH_3
 CH_3
 CH_3
 CH_3

41a) $4-((2Z)-5-(((2-メトキシエチル)(メチル)アミノ)メチル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)ピペリジン-1-カルボン酸tert-プチル実施例40a)で得られた<math>4-((2Z)-5-ホルミル-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)ピペリジン-1-カルボン酸tert-プチル(0.75 g)と2-メトキシ-N-メチルエチルアミン(0.23 g)から実施例39a)と同様にして、題記化合物(0.5 g)を得た。NMR (CDC13) <math>\delta$: 1.48 (9H, s), 1.64-1.95 (4H, m), 2.30 (3H, s), 2.61 (2H, t, J=5.8), 2.71-2.82 (3H, m), 2.98 (3H, s), 3.31 (3H, s), 3.36 (3H, s), 3.46 (2H, s), 3.52 (2H, t, J=5.8), 4.17-4.32 (2H, m).

41b) N-(((2Z)-4-(1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4-(1-()-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル) メチル)-2-メトキシ-N-メチルエチルアミン

実施例41a)で得られた化合物(0.5 g)と塩化3-((6-クロロ-2-ナフチル)スルホニル)プロピオニル<math>(0.43 g)から実施例36b)と同様にして、題記化合物(0.17 g)を白色粉末として得た

NMR (CDC1₃) δ : 1.72-2.12 (5H, m), 2.28 (3H, s), 2.49-2.61 (3H, m), 2.86-3.13 (3 H, m), 2.98 (3H, s), 3.29 (3H, s), 3.34 (3H, s), 3.43 (2H, s), 3.48-3.59 (4H, m), 3.96-4.00 (1H, m), 4.68-4.73 (1H, m), 7.59 (1H, dd, J = 1.4, 8.8), 7.89-7.96 (4H, m), 8.48 (1H, s).

[0125]

実施例42

(27)-5-(1-(3-((6-)000-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2,3,4,5-テトラヒドロ-6H-ピロロ[3,4-d][1,3]チアゾール-6-オン

【化105】

42a) 4-((((2Z)-5-(エトキシメトキシ)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル)アミノ)ピペリジン-1-カルボン酸ベンジル

実施例13)の合成中間体として得られた(2Z)-4-ブロモメチル-3-メチル-2-メチルイミノ-2,3-ジヒドロ-1,3-チアゾール-5-カルボン酸エチル(3.0~g)と4-アミノピペリジン-1-カルボン酸ベンジル(3.3~g)をDMF(50~ml)に溶解し、炭酸カリウム(3.8~g)を加え、70℃で4時間かき混ぜた。溶媒を留去し、残留物を水に注ぎ込みクロロホルム-メタノールの混合液で抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物をシリカゲルカラムで精製して題記化合物(3.1~g)を淡黄色結晶として得た。

NMR (CDCl₃) δ : 1.22-1.46 (2H, m), 1.33 (3H, t, J=7.4), 1.62-1.99 (3H, m), 2.61-2.82 (1H, m), 2.86-3.00 (1H, m), 3.01 (3H, s), 3.42 (3H, s), 4.05 (2H, s), 4.05 (2H, q, J=7.4), 5.12 (2H, s), 7.34-7.37 (5H, m).

42b) 4-((2Z)-3-メチル-2-(メチルイミノ)-6-オキソ-2,3,4,6-テトラヒドロ-5H-ピロロ[3,4-d][1,3]チアゾール-5-イル) ピペリジン-1-カルボン酸ベンジル

実施例42a)で得られた化合物 (3.1 g)と水酸化ナトリウム (0.59 g)をメタノール (30 ml) ー水 (10 ml) に溶解し、80 \mathbb{C} で30分間かき混ぜた。反応液を 1 N塩酸で酸性とし、溶媒を留去した。残留物をDMF (50 ml) に溶解し、トリエチルアミン (0.87 ml) を加え、氷冷下でHOBt (1.0 g) とWSC (1.4 g) を加え、室温で16時間かき混ぜた。反応液を炭酸カリウム水溶液でアルカリ性にした後、クロロホルムで抽出、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物を塩基性シリカゲルカラムで精製して題記化合物 (1.4 g) を褐色油状物として得た。

NMR (CDC1₃) δ : 1.52-1.71 (2H, m), 1.79-1.85 (2H, m), 2.00-2.28 (1H, m), 2.81-3. 04 (2H, m), 3.03 (3H, s), 3.29 (3H, s), 4.07 (2H, s), 4.29-4.35 (2H, m), 5.13 (2 H, s), 7.36-7.38 (5H, m).

42c) (2Z)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イ

 ν)-3-メチル-2-(メチルイミノ)-2,3,4,5-テトラヒドロ-6H-ピロロ[3,4-d][1,3]チアゾー ν -6-オン

実施例42b)で得られた化合物 (1.4 g)を臭化水素酸の酢酸溶液 (10 ml) に溶解し、室温で1時間かき混ぜた。析出した結晶をろ取、飽和重曹水 (15 ml) とクロロホルム (15 ml) の混合液に溶解し、0 で塩化3-((6-クロロ-2-ナフチル) スルホニル) プロピオニル (1.1 g) を加え、室温で2時間かき混ぜた。反応液を水に注ぎ込みクロロホルム-メタノールの混合液で抽出し、抽出液を無水硫酸マグネシウムで乾燥した。溶媒を留去し、残留物を塩基性シリカゲルカラムで精製して題記化合物 (1.2 g) を白色結晶として得た。

NMR (CDCl₃) δ : 1.51-1.61 (2H, m), 1.81-2.05 (2H, m), 2.58-2.70 (1H, m), 2.84-2. 98 (2H, m), 3.03 (3H, s), 3.12-3.18 (1H, m), 3.28 (3H, s), 3.50-3.67 (2H, m), 3.93-3.99 (1H, m), 4.07 (2H, s), 4.14-4.41 (1H, m), 4.66-4.74 (1H, m), 7.61 (1H, d d, J = 1.4, 8.8), 7.89-7.98 (4H, m), 8.49 (1, s).

[0126]

実施例 4 3

1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-4-(((2Z)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)メチル)ピペラジン-2-カルボン酸tert-ブチル

【化106】

43a) 4-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペラジン-1, <math>3-ジカルボン酸ジtert-プチル

 $3-((6-\rho \Box \Box -2- \tau) \pi)$ スルホニル) プロパン酸(0.33 g)、0.33 g)、0.33 g)、0.33 g) 0.33 g)およびWSC(0.33 g)をアセトニトリル(0.33 g)をアセトニトリル(0.35 g)をアセトニトリル(0.35 g)を加えて15分間かき混ぜた後、ピペラジン0.35 g)を加え、室温で15時間かき混ぜた。反応液を減圧濃縮し、残留物を酢酸エチルと炭酸カリウム水溶液で希釈した。有機層を分取し、無水硫酸ナトリウムで乾燥した。溶媒を留去し、残留物をシリカゲルカラムで精製して題記化合物(0.35 g)を無色粉末として得た。

NMR (CDCl₃) δ : 1.42-1.47 (18H, m), 2.80-4.94 (11H, m), 7.60 (1H, dd, J = 2.0, 8 .8), 7.89-7.97 (4H, m), 8.47 (1H, s).

43b) 1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペラジン-2-カルボン酸tert-プチル

実施例43a)で得られた化合物 (0.57~g) をジクロロメタン (10~ml) に溶解し、0 \mathbb{C} に冷却しながらトリメチルシリルトリフルオロメタンスルホネート (0.27~g) を加え、0 \mathbb{C} で一時間かき混ぜた。反応液に飽和重曹水を加えてアルカリ性にした後、有機層を分取した。有機層を無水硫酸ナトリウムで乾燥し、溶媒を減圧留去して題記化合物 (0.42~g) を無色粉末として得た。

NMR (CDC1₃) δ : 1.43 (9H, m), 2.60-4.89 (11H, m), 7.59 (1H, dd, J = 1.8, 2.0), 7.89-7.96 (4H, m), 8.48 (1H, s).

 NMR (CDCl₃) δ : 1.35 (9H, m), 1.90-6.00 (19H, m), 7.59 (1H, dd, J = 9.0, 2.0), 7.92-7.97 (4H, m), 8.47 (1H, s).

実施例43c)で得られた化合物(0.14 g)を濃塩酸(3 ml)に溶解し、室温で1時間かき混ぜた。反応液を減圧濃縮し、残留物から水をトルエンとの共沸により除去した。得られた残留物をDMF(10 ml)に溶解し、HOBt-NH3複合体(53 mg)、WSC(66 mg)およびトリエチルアミン(0.14 g)を加え、室温で15時間かき混ぜた。反応液を減圧濃縮し、残留物を飽和重曹水と酢酸エチルで希釈した。有機層を分取し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、残留物を塩基性シリカゲルカラムで精製して題記化合物(50 mg)を無色粉末として得た。

NMR (CDCl₃) δ : 1.96-6.36 (22H, m), 7.61 (1H, dd, J = 8.9, 1.9), 7.88-7.98 (4H, m), 8.47 (1H, s).

[0127]

実施例 4 4

【化107】

44a) 4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペラジン-1,3-ジカルボン酸 3-メチル 1-tert-ブチル

ピペラジン-1,3-ジカルボン酸 3-メチル 1-tert-ブチル(2.80 g)から実施例43a)と同様にして、題記化合物(1.00 g)を無色粉末として得た。

NMR (CDCl₃) δ : 1.44-1.45 (9H, m), 2.70-5.03 (14H, m), 7.57-7.61 (1H, m), 7.88-7 .96 (4H, m), 8.46 (1H, s).

44b) 1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-4-(5,6-ジヒドロイミダゾ[2,1-b][1,3]チアゾール-3-イルメチル)ピペラジン-2-カルボン酸メチル

実施例44a)で得られた化合物 (0.50~g)を濃塩酸 (3~ml) に溶解し、室温で3時間かき混ぜた。反応液を減圧濃縮し、残留物から水をトルエンとの共沸により除去した。得られた残留物をDMF (5~ml) に溶解し、3-(クロロメチル)-5, 6-ジヒドロイミダゾ[2,1-b][1,3] チアゾール塩酸塩 <math>(0.24~g) および炭酸カリウム (0.32~g) を加え、100 で24時間かき混ぜた。反応液を減圧濃縮し、残留物を飽和重曹水と酢酸エチルで希釈した。有機層を分取し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、残留物を塩基性シリカゲルカラムで精製して題記化合物 (40~mg) を無色粉末として得た。

NMR (CDCl₃) δ : 2.63-5.13 (21H, m), 7.59 (1H, dd, J = 8.8, 1.8), 7.91-7.96 (4H, m), 8.47 (1H, s).

[0128]

実施例 4 5

N-((2Z)-4-((4-(3-((4-プロモフェニル)スルホニル)プロパノイル)-1-ピペラジニル)メチル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-<math>N-メチルアミン

【化108】

実施例11a)で得られた化合物 (1.5 g) と3-((4-プロモフェニル) スルホニル) プロパン酸 (0.72 g) から実施例11b) と同様にして、題記化合物 (0.72 g) を白色結晶として得た。

NMR (CDC1₃) δ : 1.56-1.77 (2H, m), 1.88-2.05 (2H, m), 2.61 (3H, s), 2.66-2.70 (1 H, m), 2.76-2.99 (2H, m), 3.15-3.25 (1H, m), 3.38-3.59 (2H, m), 3.98 (1H, d, J = 14.1), 4.15-4.21 (1H, m), 4.27 (2H, s), 4.73 (1H, d, J = 13.5), 6.71 (1H, t, J = 1.7), 7.71-7.80 (4H, m).

[0129]

実施例 4 6

【化109】

46a) 4-((2Z)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル) ピペリジン-1-カルボン酸 tert-プチル

4-(1-プロモ-2-オキソエチル)ピペリジン-1-カルボン酸tert-プチル(WO 0059502: 21.0 g)とN,N'-ジメチルチオ尿素(6.0 g)のエタノール溶液(300 ml)を加熱還流した。反応液を濃縮し、残留物を酢酸エチルと水に溶解して水層を分取した。水層を炭酸カリウム水溶液で塩基性にして、クロロホルムで抽出した。抽出液を無水硫酸ナトリウムで乾燥後、溶媒を留去して題記化合物を(12.2 g)淡黄色固体として得た。

NMR (CDCl₃) δ : 1.47 (9H, s), 1.46–1.55 (2H, m), 1.83–1.87 (2H, m), 2.55 (1H, m), 2.78 (2H, m), 2.98 (3H, s), 3.23 (3H, s), 4.14 (2H, br), 6.17 (1H, s).

46b) N-((2Z)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン

実施例46a)で得た化合物(0.55 g)に濃塩酸(4 ml)を加え、かき混ぜた。発泡終了後、エタノールで希釈し濃縮した。残留物にトリエチルアミン(0.49 ml)とDBU(0.54 ml)を加え、アセトニトリル(10 ml)に溶解した。この溶液を3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸(0.53 g)、WSC(0.50 g)およびHOBt(0.40 g)のアセトニトリルけん濁液(10 ml)に加え、12時間かき混ぜた。反応液を濃縮し、残留物をクロロホルムと飽和重曹水に溶解して有機層を分取した。溶媒を留去し、残留物をシリカゲルクロマトグラフィーにより精製して題記化合物(0.61 g)を無色固体として得た。

NMR (CDC1₃) δ : 1.36-1.54 (2H, m), 1.86-1.94 (2H, m), 2.57-2.68 (2H, m), 2.86-2.92 (2H, m), 2.98 (3H, s), 3.11 (1H, m), 3.25 (3H, s), 3.53-3.60 (2H, m), 3.88 (1 H, d, J = 14.4), 4.53 (1H, d, J = 14.4), 6.18 (1H, s), 7.59 (1H, dd, J = 7.8, 8.7), 7.90-8.00 (4H, m), 8.48 (1H, s).

[0130]

実施例 4 7

2-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-5,6-ジ

ヒドロイミダゾ[2,1-b][1,3]チアゾール 【化110】

47a) 4-(5,6-ジヒドロイミダゾ[2,1-b][1,3]チアゾール-2-イル)ピペリジン-1-カルボン酸 tert-ブチル

4-(1-プロモ-2-オキソエチル)ピペリジン-1-カルボン酸tert-プチル(2.0 g)とエチレンチオ尿素(0.79 g)からDMFを溶媒に用い実施例46a)と同様にして、題記化合物(1.46 g)を得た。

NMR (CDC1₃) δ : 1.36-1.56 (2H, m), 1.46 (9H, s), 1.78-1.94 (2H, m), 2.47 (1H, m), 2.71-2.85 (2H, m), 3.42-3.55 (2H, m), 3.62 (2H, m), 4.14 (2H, br), 5.91 (1H, s).

実施例47a)で得た化合物(0.50 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸(0.53 g)から実施例46b)と同様にして、題記化合物(0.18 g)を白色固体として得た。

NMR (CDC1₃) δ : 1.40-1.46 (2H, m), 1.76-2.20 (2H, m), 2.60 (1H, m), 2.71 (1H, m), 2.81-2.90 (2H, m), 3.11 (1H, m), 3.49-3.65 (2H, m), 3.89 (1H, br), 4.10 (2H, t, J = 9.4), 4.29 (2H, t, J = 9.4), 4.59 (1H, br), 6.46 (1H, s), 7.59 (1H, dd, J = 2.0, 8.8), 7.87-7.99 (4H, m), 8.48 (1H, s).

[0131]

実施例48

【化111】

48a) 4-(6,7-ジヒドロ-5H-[1,3]チアゾロ[3,2-a]ピリミジン-2-イル)ピペリジン-1-カルボン酸 tert-ブチル

4-(1-プロモ-2-オキソエチル)ピペリジン-1-カルボン酸tert-プチル(3.0 g)とプロピレンチオ尿素(0.90 g)からDMFを溶媒に用い実施例46a)と同様にして、題記化合物(1.28 g)を得た。

NMR (CDC1₃) δ : 1.36-1.56 (2H, m), 1.46 (9H, s), 1.78-1.94 (4H, m), 2.47 (1H, m), 2.75 (2H, t, J = 12.0), 3.44 (2H, t, J = 5.4), 3.62 (2H, t, J = 5.4), 4.14 (2H, br), 5.91 (1H, s).

実施例48a)で得た化合物(0.50 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸(0.50 g)から実施例46b)と同様にして、題記化合物(0.18 g)を白色固体として得た。

NMR (CDC1₃) δ : 1.25-1.52 (2H, m), 1.52-1.98 (2H, m), 2.52-2.65 (2H, m), 2.87 (2 H, dd, J = 6.3, 9.7), 3.08 (1H, m), 3.42-3.50 (2H, m), 3.50-3.61 (2H, m), 3.63-3 .71 (2H, m), 3.84 (1H, d, J = 13.6), 4.52 (1H, d, J = 13.6), 5.94 (1H, s), 7.59 (1H, dd, J = 1.9, 8.6), 7.88-7.98 (4H, m), 8.47 (1H, s).

[0132]

実施例 4 9

N-((2Z)-5-((1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)メチル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン

【化112】

49a) 4-(2-ブロモ-3-オキソプロピル)ピペリジン-1-カルボン酸 tert-ブチル

4-(3-3+2)プロピル)ピペリジン-1-3ルボン酸 tert-ブチル(J. Wityakら、J. Med. Che m., 40, 50 (1997): 27.6 g)のジエチルエーテル溶液へジブロモバルビツール酸(17.0 g)を加え、12時間かき混ぜた。不溶物をろ去、ろ液をジエチルエーテルで希釈し、飽和重曹水と飽和食塩水で順次洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を留去して、題記化合物(31.8 g)を淡黄色粘性油状物として得た。

NMR (CDC1₃) δ : 1.07-1.27 (2H, m), 1.46 (9H, s), 1.64-1.94 (5H, m), 2.65-2.78 (2 H, m), 4.05 (2H, br), 4.25 (1H, m), 9.45 (1H, s).

49b) 4-(((2Z)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル)メチル) ピペリジン-1-カルボン酸 tert-ブチル

実施例49a)で得た化合物(2.0 g)とN,N'-ジメチルチオ尿素(0.55 g)から実施例46a)と同様にして、題記化合物(0.56 g)を得た。

NMR (CDC1₃) δ : 1.06-1.16 (2H, m), 1.45 (9H, s), 1.60 (1H, m), 1.68 (2H, d, J = 15.0), 2.36 (2H, d, J = 6.9), 2.68 (2H, t, J = 12.6), 2.98 (3H, s), 3.21 (3H, s), 4.10 (2H, br), 6.17 (1H, s).

49c) N-((2Z)-5-((1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)メチル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン

実施例49b)で得た化合物(0.44 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸(0.40 g)から実施例46b)と同様にして、題記化合物(0.46 g)を淡黄色固体として得た。

NMR (CDCl₃) δ : 0.95-1.10 (2H, m), 1.62-1.82 (3H, m), 2.35 (2H, d, J = 6.9), 2.4 9 (1H, t, J = 10.5), 2.83-2.89 (2H, m), 2.98 (3H, s), 2.99 (1H, t, J = 10.5), 3. 22 (3H, s), 3.50-3.61 (2H, m), 3.81 (1H, d, J = 13.2), 4.48 (1H, d, J = 13.2), 6 .17 (1H, s), 7.58 (1H, dd, J = 1.8, 8.7), 7.88-7.95 (4H, m), 8.47 (1H, s).

[0133]

実施例50

【化113】

50a) 4-(6,7-ジヒドロ-5H-[1,3]チアゾロ[3,2-a]ピリミジン-2-イルメチル)ピペリジン-1 -カルボン酸 tert-ブチル

実施例49a)で得た4-(2-プロモ-3-オキソプロピル) ピペリジン<math>-1-カルボン酸 tert-プチル (2.0 g)とプロピレンチオ尿素(0.61 g)からDMFを溶媒に用いて実施例46a)と同様にして、題記化合物(0.46 g)を得た。

NMR (CDC1₃) δ : 1.01-1.15 (2H, m), 1.45 (9H, s), 1.52 (1H, m), 1.66-1.87 (5H, m), 2.31 (2H, d, J = 7.2), 2.67 (2H, m), 3.73 (2H, t, J = 9.3), 4.11 (2H, m), 4.16 (2H, t, J = 9.3), 6.17 (1H, s).

50b) 2-((1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)メ

チル)-6.7-ジヒドロ-5H-[1,3]チアゾロ[3,2-a]ピリミジン

実施例50a)で得た化合物(0.45~g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸(0.40~g)から実施例46b)と同様にして、題記化合物(0.08~g)を淡黄色固体として得た。 NMR $(CDC1_3)$ δ : 0.89-1.15 (2H, m), 1.66-1.87 (5H, m), 2.34 (2H, d, J=6.8), 2.47 (1H, m), 2.98 (1H, s), 3.47-3.67 (4H, m), 3.71-3.87 (3H, m), 4.47 (1H, d, J=13.5), 6.09 (1H, s), 7.60 (1H, dd, J=1.9, 8.6), 7.88-7.98 (4H, m), 8.47 (1H, s)

[0134]

実施例51

【化114】

51a) 4-(5,6-ジヒドロイミダゾ[2,1-b][1,3]チアゾール-2-イルメチル)ピペリジン-1-カルボン酸 tert-ブチル

実施例49a)で得た4-(2-プロモ-3-オキソプロピル)ピペリジン-1-カルボン酸 tert-ブチル (2.0~g)とエチレンチオ尿素(0.54~g)からDMFを溶媒に用いて実施例46a)と同様にして、題記化合物(0.41~g)を得た。

NMR (CDC1₃) δ : 1.01-1.15 (2H, m), 1.45 (9H, s), 1.52 (1H, m), 1.69 (2H, d, J = 12.6), 2.31 (2H, d, J = 7.2), 2.67 (2H, m), 3.73 (2H, t, J = 9.3), 4.11 (2H, m), 4.16 (2H, t, J = 9.3), 6.17 (1H, s).

実施例51a)で得た化合物(0.43 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸(0.40 g)から実施例46b)と同様にして、題記化合物を(0.09 g)淡黄色固体として得た。

NMR (CDC1₃) δ : 0.93-1.17 (2H, m), 1.57-1.83 (3H, m), 3.30 (2H, d, J = 6.6), 2.4 8 (1H, t, J = 12.8), 2.81-2.89 (2H, m), 2.99 (1H, t, J = 12.8), 3.51-3.60 (2H, m), 3.69-3.86 (3H, m), 4.10-4.20 (2H, m), 4.49 (1H, d, J = 12.8), 6.19 (1H, s), 7.59 (1H, dd, J = 1.8, 10.8), 7.88-7.97 (4H, s), 8.47 (1H, s).

[0135]

実施例 5 2

N-((2Z)-5-(1-(3-((5-クロロ-1H-インドール-2-イル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-1, 3-チアゾール-2(3H)-イリデン)-N-メチルアミン 2 塩酸塩

【化115】

52a) 5-クロロ-2-((3-(4-((2Z)-3-メチル-2-(メチルイミノ)-2, 3-ジヒドロ-1, 3-チアゾール-5-イル)-1-ピペリジニル)-3-オキソプロピル)スルホニル)-1H-インドール-1-カルボン酸 tert-ブチル

NMR (DMSO-d₆) δ: 1.12-1.34 (2H, m), 1.64 (9H, s), 1.75-1.92 (2H, m), 2.61 (1H,

m), 2.69-2.82 (2H, m), 2.90-3.02 (5H, m), 3.58 (1H, s), 3.62-3.81 (2H, m), 3.84 (1H, br), 4.23 (1H, br), 7.15 (1H, d, J=1.3), 7.33 (1H, dd, J=2.1, 8.9), 7.5 2 (1H, d, J=8.9), 7.77 (1H, d, J=2.1).

52b) $N_{-}((2Z)_{-5-}(1_{-}(3_{-}((5_{-})_{-})_{-1}H_{-})_{-1}V_{-})_{-1}V_{-})_{-1}V_$

NMR (DMSO-d₆) δ : 1.09 (1H, m), 1.43 (1H, m), 1.77-1.93 (2H, m), 2.59 (1H, m), 2.69-2.82 (2H, m), 2.90-3.02 (5H, m), 3.60 (1H, s), 3.62-3.74 (2H, m), 3.84 (1H, br), 4.23 (1H, br), 7.15 (1H, d, J = 1.3), 7.33 (1H, dd, J = 2.1, 8.9), 7.52 (1H, d, J = 8.9), 7.77 (1H, d, J = 2.1), 10.10 (1H, d, J = 4.3), 12.62 (1H, d, J = 1.3).

[0136]

実施例 5 3

6-クロロ $_{-}$ N $_{-}$ (2 $_{-}$ (4 $_{-}$ ((2Z) $_{-}$ 3 $_{-}$ メチル $_{-}$ 2 $_{-}$ (メチルイミノ) $_{-}$ 2,3 $_{-}$ ジヒドロ $_{-}$ 1,3 $_{-}$ チアゾール $_{-}$ 5 $_{-}$ イル) $_{-}$ 1 $_{-}$ ピペリジニル) $_{-}$ 2 $_{-}$ オキソエチル) $_{-}$ 2 $_{-}$ ナフタレンスルホンアミド

【化116】

NMR (DMSO-d₆) δ : 1.04(1H, m), 1.31 (1H, m), 1.64-1.80 (2H, m), 2.52-2.67 (2H, m), 2.82 (3H, s), 2.97 (1H, m), 3.12 (3H, s), 3.69-3.84 (3H, m), 4.13 (1H, d), 6.58 (1H, s), 7.64 (1H, dd, J = 2.1, 8.6), 7.89 (1H, s), 8.09 (1H, d, J = 8.6), 8.13-8.23 (2H, m), 8.48 (1H, s).

[0137]

実施例 5 4

2-(((6-クロロ-2-ナフチル)スルホニル)(2-(4-((2Z)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル)-1-ピペリジニル)-2-オキソエチル)アミノ)アセトアミド

【化117】

N-(2-アミノ-2-オキソエチル)-N-((6-クロロ-2-ナフチル)スルホニル) グリシン(0.34 g) と実施例46a) で得た4-((2Z)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル) ピペリジン-1-カルボン酸 tert-ブチル(0.30 g) から実施例46b) と同様にして、題記化合物(0.30 g)を無色固体として得た。

NMR (DMSO-d₆) δ : 1.18 (1H, m), 1.47 (1H, m), 1.72-1.86 (2H, m), 2.59-2.74 (2H, m), 2.82 (3H, s), 3.08 81H, m), 3.13 (3H, s), 3.77-3.91 (3H, m), 4.24-4.37 (3H, m), 6.65 (1H, s), 7.14 81H, s), 7.68 (1H, dd, J = 1.8, 8.8), 7.88-8.01 (2H, m), 8.11 (1H, m), 8.17-8.25 (2H, m), 8.56 (1H, d, J = 1.3).

[0138]

実施例 5 5

N-((2Z)-5-(1-(3-(((E)-2-(4-クロロフェニル) ビニル) スルホニル) プロパノイル) ピペリジン-4-イル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン

【化118】

NMR (CDC1₃) δ : 1.30–1.57 (2H, m), 1.83–1.99 (2H, m), 2.57–2.70 (2H, m), 2.81–2. 94 (2H, m), 2.98 (3H, s), 3.11 (1H, m), 3.24 (3H, s), 3.41–3.56 (2H, m), 3.88 (1 H, d, J = 13.0), 4.58 (1H, d, J = 13.0), 6.14 (1H, s), 6.85 (1H, d, J = 15.5), 7 .38–7.48 (4H, m), 7.53 (1H, d).

[0139]

実施例 5 6

N-((2Z)-5-(1-(3-((7-クロロ-2H-クロメン-3-イル)スルホニル)プロパノイル) ピペリジン-4-イル)-3-メチル-1, 3-チアゾール-2(3H)-イリデン)-N-メチルアミン

【化119】

 $3-((7-\rho \Box \Box -2H-\rho \Box J) Z) Z) プロパン酸(0.30 g) と実施例46a) で得た4 <math>-((2Z)-3-J+\nu-2-(J+\nu) Z) -2, 3-J+\nu Z) -2, 3-J+\nu Z) -2, 3-J+\nu Z) -2, 3-J+\nu Z) -3) と実施例46b) と同様にして、題記化合物(0.30 g)を無色固体として得た。$

NMR (CDCl₃) δ : 1.41-1.50 (2H, m), 1.84-1.99 (2H, m), 2.58-2.70 (2H, m), 2.80-2. 91 (2H, m), 2.98 (3H, s), 3.12 (1H, m), 3.25 (3H, s), 3.41-3.55 (2H, m), 3.87 (1 H, d, J = 13.6), 4.58 (1H, d, J = 13.6), 5.03 (2H, s), 6.16 (1H, s), 6.90-6.98 (2H, m), 7.10 (1H, d, J = 8.1), 7.32 (1H, s).

[0140]

実施例 5 7

(2Z)-5-(1-(3-((6- ρ ロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-1,3-チアゾール-2(3H)-イリデンカルバミン酸アリル

【化120】

57a) 4-(2-アミノ-1, 3-チアゾール-5-イル) ピペリジン-1-カルボン酸 tert-プチル 4-(1-プロモ-2-オキソエチル) ピペリジン-1-カルボン酸tert-プチル(8.0 g)とチオ尿素(2.4 g)から実施例46a)と同様にして、題記化合物(3.9 g)を淡黄色固体として得た。 NMR (CDCl₃) δ : 1.45 (9H, s), 1.46-1.66 (2H, m), 1.91 (2H, d, J = 11.8), 2.80 (3 H, m), 4.15 (2H, d, J = 14.2), 4.81 (2H, s), 6.76 (1H, s).

57b) 4-(2-イミノ-3-メチル-2,3-ジヒドロ-1,3-チアゾール-5-イル)ピペリジン-1-カルボン酸 tert-ブチル

実施例57a)で得た化合物(1.0 g)のDMF溶液(5.0 ml)にヨウ化メチル(0.44 ml)を加え、80 $\mathbb C$ で2時間かき混ぜた。反応液を濃縮し、残留物をクロロホルムと飽和重曹水に溶解させ、15分かき混ぜた。有機層を分取し、無水硫酸ナトリウムで乾燥した。溶媒を留去し、残留物をシリカゲルカラムで精製して、題記化合物(0.52 g)を淡黄色固体として得た。NMR (CDCl₃) δ : 1.33-1.53 (2H, m), 1.46 (9H, s), 1.80 (2H, d, J = 12.0), 2.49 (1 H, m), 2.75 (2H, t, J = 11.4), 3.23 (3H, s), 4.14 (2H, d, J = 12.8), 6.05 (1H, s).

· 57c) 4-((2Z)-2-(((アリルオキシ)カルボニル)イミノ)-3-メチル-2,3-ジヒドロ-1,3-チア ゾール-5-イル)ピペリジン-1-カルボン酸 tert-ブチル

実施例57b)で得られた化合物 (0.47~g)のジクロロメタン溶液 (10~ml)に氷冷下、トリエチルアミン (0.23~ml)とクロロギ酸アリル (0.18~ml)を加え、1時間かき混ぜた。反応液に氷片を加え15分かき混ぜた後、反応液をクロロホルムと飽和重曹水で希釈した。有機層を分取し、無水硫酸ナトリウムで乾燥した。溶媒を留去し、題記化合物 (0.60~g) を白色固体として得た。

NMR (CDC1₃) δ : 1.46 (9H, s), 1.48-1.89 (2H, m), 1.91 (2H, bd, J = 9.0), 2.67-2. 88 (3H, m), 3.60 (3H, s), 4.15 (2H, br), 4.69 (2h, m), 5.21 (1H, m), 5.35 (1H, m), 6.03 (1H, m), 6.52 (1H, s).

57d) (2Z)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-1,3-チアゾール-2(3H)-イリデンカルバミン酸アリル

実施例57c)で得た化合物(0.68 g)を 4 N塩化水素ジオキサン溶液(10 ml)に溶解し、6時間かき混ぜた。反応液を飽和重曹水で中和し、クロロホルムで抽出した。溶媒を留去した後、残留物にトリエチルアミン(0.50 ml)を加え、アセトニトリル(10 ml)に溶解した。この溶液を3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸(0.53 g)、WSC(0.51 g)および H 0Bt(0.41 g)のアセトニトリルけん濁液(10 ml)に加え、12時間かき混ぜた。反応液を濃縮し、残留物をクロロホルムと飽和重曹水に溶解した。有機層を分取し、無水硫酸ナトリウムで乾燥た。溶媒を留去し、残留物をシリカゲルクロマトにより精製して題記化合物(0.8 g)を無色固体として得た。

NMR (CDC1₃) δ : 1.41–1.53 (2H, m), 1.91–2.06 (2H, m), 2.64 (1H, m), 2.75 (1H, m), 2.88 (2H, t, J = 8.6), 3.14 (1H, m), 3.56 (2H, t, J = 8.6), 3.61 (3H, s), 3.92 (1H, d, J = 13.4), 4.56 (1H, d, J = 134), 4.70 (2H, m), 5.23 (1H, m), 5.36 (1H, m), 6.02 (1H, m), 6.52 (1H, s).

[0 1 4 1]

実施例 5 8

5-(1-(3-((6-クロロ-2-ナフチル)スルホニル) プロパノイル) ピペリジン-4-イル)-3-メチル-1,3-チアゾール-2(3H)-イミン

【化121】

実施例57d)で得た(2Z)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-1,3-チアゾール-2(3H)-イリデンカルバミン酸アリル(0.60 g)のTHF溶液に1,3-ジメチルバルビツール酸(0.25 g)とテトラキス(トリフェニルホスフィン)パラジウム(0.06 g)を加え、アルゴン雰囲気下12時間かき混ぜた。不溶物をろ去、ろ液を濃縮した。残留物をシリカゲルカラムで精製して、題記化合物(0.32 g)を淡黄色固体として得た。

NMR (CDC1₃) δ : 1.28-1.50 (2H, m), 1.82-1.94 (2H, m), 2.55-2.64 (2H, m), 2.85-2.

90 (2H, m), 3.08 (1H, t, J = 12.6), 3.23 (3H, s), 3.52-3.58 (2H, m), 3.87 (1H, d, J = 13.5), 4.51 (1H, d, J = 13.5), 6.03 (1H, s), 7.58 (1H, dd, J = 1.8, 8.8), 7.88-7.95 (4H, m), 8.47 (1H, s).

[0142]

実施例 5 9

(2Z)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-エチル-1,3-チアゾール-2(3H)-イリデンカルバミン酸アリル

【化122】

59a) 4-(3-エチル-2-イミノ-2,3-ジヒドロ-1,3-チアゾール-5-イル) ピペリジン-1-カルボン酸 tert-ブチル

実施例57a)で得た4-(2-アミノ-1,3-チアゾール-5-イル)ピペリジン-1-カルボン酸 tert-ブチル(1.0~g)とヨウ化エチル(0.73~ml)から実施例57b)と同様にして、題記化合物(0.48~g)を得た。

NMR (CDC1₃) δ : 1.24 (3H, t, J = 7.4), 1.33-1.54 (2H, m), 1.46 (9H, s), 1.80 (2H, d, J = 12.0), 2.49 (1H, m), 2.75 (2H, t, J = 11.4), 4.14 (2H, d, J = 12.8), 4. 11 (2H, q, J = 7.4), 6.05 (1H, s).

59b) 4-((2Z)-2-(((アリルオキシ)カルボニル)イミノ)-3-エチル-2,3-ジヒドロ-1,3-チアゾール-5-イル) ピペリジン-1-カルボン酸 tert-ブチル

実施例59a)で得た化合物(0.48 g)から実施例57c)と同様にして、題記化合物(0.60 g)を得た。

NMR (CDCl₃) δ : 1.26 (3H, t, J = 7.4), 1.47 (9H, s), 1.47–1.63 (2H, m), 1.92 (2H, d, J = 11.2), 2.67–2.87 (3H, m), 4.11 (2H, q, J = 7.4), 4.17 (2H, br), 4.69 (2H, m), 5.21 (1H, d, J = 12.0), 5.35 (1H, d, J = 17.2), 6.03 (1H, m), 6.56 (1H, s).

59c) (2Z)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-エチル-1,3-チアゾール-2(3H)-イリデンカルバミン酸アリル

NMR (CDC1₃) δ : 1.36 (3H, s, J = 7.2), 1.39-1.55 (2H, m), 1.92-2.05 (2H, m), 2.6 4 (1H, m), 2.76 (1H, m), 2.89 (2H, t, J = 8.0), 3.14 (1H, t, J = 12.8), 3.57 (2H, t, J = 8.0), 3.82 (1H, d, J = 13.2), 4.10 (2H, q, J = 7.2), 4.70 (2H, m), 5.22 (1H, m), 5.35 (1H, m), 6.03 (1H, m), 6.55 (1H, s), 7.60 (2H, dd, J = 2.2, 8.8), 7.89-7.94 (4H, m), 8.49 (1H, s)

[0143]

実施例60

5-(1-(3-((6-) - 2-) + 7+ 2) - 3-) + 3-(1-(3-((6-) - 2-) + 7+ 2) + 3-) + 3-(1-(3-((6-) - 2-) + 7+ 2) + 3-) + 3-(1-(3-((6-) - 2-) + 7+ 2) + 3-) + 3-(1-(3-((6-) - 2-) + 7+ 2) + 3-) + 3-(1-(3-((6-) - 2-) + 7+ 2) + 3-) + 3-(1-(3-((6-) - 2-) + 7+ 2) + 3-) + 3-(1-(3-((6-) - 2-) + 7+ 2) + 3-) + 3-(1-(3-((6-) - 2-) + 7+ 2) + 3-) + 3-(1-(3-((6-) - 2-) + 7+ 2) + 3-) + 3-(1-(3-((6-) - 2-) + 7+ 2) + 3-(1-(3-((6-) - 2-) + 7+ 2) + 3-((3-((6-) - 2-) + 2) + 3-((6-) - 2-((

【化123】

実施例59c)で得た(2Z)-5-(1-(3-((6- ρ ロロ-2-+ フチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-エチル-1,3-チアゾール-2(3H)-イリデンカルバミン酸アリル(0.50~g)から実施例58)と同様にして、題記化合物(0.33~g)を得た。

NMR (CDCl₃) δ : 1.29 (3H, t, J = 7.2), 1.24-1.44 (2H, m), 1.80-1.96 (4H, m), 2.5 0-2.65 (2H, m), 2.78-2.93 (2H, m), 3.08 (1H, m), 3.48-3.62 (2H, m), 3.71 (2H, q, J = 7.2), 3.85 (1H, d, J = 13.6), 4.53 (1H, d, J = 13.6), 6.10 (1H, s), 7.59 (1 H, dd, J = 1.9, 8.6), 7.88-7.97 (4H, m), 8.47 (1H, s).

[0144]

実施例 6 1

N-((2Z)-5-(1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4-イル) -3-メチル-1, 3-チアゾール-2(3H)-イリデン) アセトアミド

【化124】

NMR (CDCl₃) δ : 1.40-1.59 (2H, m), 1.93-2.06 (2H, m), 2.29 (3H, s), 2.64 (1H, t, J = 12.9), 2.81 (1H, m), 2.89 (2H, m), 3.13 (1H, t, J = 12.9), 3.56 (2H, m), 3.67 (3H, s), 3.90 (1H, d, J = 12.3), 4.56 (1H, d, J = 12.3), 6.55 (1H, s), 7.58 (1H, dd, J = 1.8, 8.7), 7.88-7.95 (4H, m), 8.47 (1H, s).

[0145]

実施例 6 2

 $N_{-}((2Z)-5-(1-(3-((6-\rho uu-2-t yu) x u x = u)) プロパノイル) ピペリジン-4-イル) -3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-プロピルアミン$

【化125】

62a) 4-(2-(プロピルアミノ)-1,3-チアゾール-5-イル)ピペリジン-1-カルボン酸 tert-ブチル

4-(1-プロモ-2-オキソエチル)ピペリジン-1-カルボン酸tert-プチル(6.45 g)とN-プロピルチオ尿素(2.0 g)から実施例46a)と同様にして、題記化合物(1.24 g)を淡黄色固体として得た。

NMR (CDC1₃) δ : 0.98 (3H, t, J = 7.2), 1.47 (9H, s), 1.50-1.72 (4H, m), 1.92 (2H, m), 2.80 (3H, m), 3.20 (2H, t, J = 7.2), 4.15 (2H, d, J = 14.2), 5.23 (1H, s), 6.78 (1H, s).

62b) 5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-N-プロピル-1,3-チアゾール-2-アミン

実施例62a)で得た化合物(1.27 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸(1.2 g)から実施例46b)と同様にして、題記化合物(1.74 g)を得た。

NMR (CDC1₃) δ : 1.37-1.60 (2H, m), 1.91-2.04 (2H, m), 2.63 (1H, t, J = 12.9), 2.83-2.91 (3H, m), 3.11 (1H, t, J = 12.9), 3.53-3.60 (2H, m), 3.87 (1H, d, J = 14.1), 4.51 (1H, d, J = 14.1), 4.80 (2H, s), 6.74 (1H, s), 7.57 (1H, dd, J = 1.8, 8.2), 7.88-7.95 (4H, m), 8.47 (1H, s).

62c) N-((22)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-N-プロピルアミン

実施例62b)で得た化合物(0.50 g)とヨウ化メチル(0.61 ml)から実施例57b)と同様にして、題記化合物(0.28 g)を得た。

NMR (CDCl₃) δ : 0.97 (3H, t, J = 7.2), 1.35-1.50 (2H, m), 1.63-1.73 (2H, m), 1.8 4-1.96 (2H, m), 2.57-2.65 (2H, m), 2.88 (2H, dd, J = 6.6, 9.9), 3.01 (2H, t, J = 7.2), 3.09 (1H, t, J = 12.3), 3.22 (3H, s), 3.53-3.59 (1H, m), 3.86 (1H, d, J = 12.9), 4.51 (1H, d, J = 12.9), 6.11 (1H, s), 7.58 (1H, dd, J = 1.8, 8.1), 7.88-7.95 (4H, m), 8.46 (1H, s).

[0 1 4 6]

実施例 6 3

N-((2Z)-5-(1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4-イル) -3-エチル-1, 3-チアゾール-2(3H)-イリデン)-N-メチルアミン

【化126】

63a) 4-(2-(メチルアミノ)-1,3-チアゾール-5-イル) ピペリジン-1-カルボン酸 tert-ブチル

4-(1-ブロモ-2-オキソエチル) ピペリジン-1-カルボン酸tert-ブチル(6.45~g) eventoral N-メチルチオ尿素(1.53~g)から実施例46a と同様にして、題記化合物(1.74~g)を淡黄色固体として得た。

NMR (CDCl₃) δ : 1.47 (9H, s), 1.57 (2H, m), 1.92 (2H, dd, J = 14.9), 2.80 (3H, m), 2.95 (3H, s), 4.15 (2H, d, J = 13.6), 5.23 (1H, s), 6.80 (1H, s).

実施例63a)で得た化合物(1.74 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸(1.66 g)から実施例46b)と同様にして、題記化合物(2.36 g)を淡黄色固体として得た。

NMR (CDCl₃) δ : 1.37-1.61 (2H, m), 1.91-2.04 (2H, m), 2.63 (1H, t, J = 13.2), 2.83-2.92 (3H, m), 2.95 (3H, s), 3.12 (1H, t, J = 13.2), 3.52-3.60 (2H, m), 3.85 (1H, d, J = 13.5), 4.53 (1H, d, J = 13.5), 4.94 (1H, s), 6.78 (1H, s), 7.58 (1H, dd, J = 1.8, 7.8), 7.88-7.95 (4H, m), 8.47 (1H, s).

63c) N-((2Z)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-エチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン

実施例63b)で得た化合物(0.50 g)とヨウ化エチル(0.21 ml)から実施例57b)と同様にして、題記化合物(0.29 g)を淡黄色固体として得た。

NMR (CDC1₃) δ : 1.25 (3H, t, J = 7.2), 1.35–1.53 (2H, m), 1.84–1.99 (2H, m), 2.5 6–2.67 (2H, m), 2.88 (2H, t, J = 7.0), 2.97 (3H, s), 3.10 (1H, m), 3.48 (2H, t, J = 7.0), 3.68 (2H, q, J = 7.2), 3.88 (1H, d, J = 13.2), 4.52 (1H, d, J = 13.2), 6.20 (1H, s), 7.59 (1H, dd, J = 2.2, 9.2), 7.88–7.97 (4H, m), 8.48 (1H, s).

[0147]

実施例 6 4

2-((2Z)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-2-(メチルイミノ)-1,3-チアゾール-3(2H)-イル)エタノール

【化127】

実施例63b)で得た5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-N-メチル-1,3-チアゾール-2-アミン<math>(0.60~g)と2-ヨードエタノール(0.20~ml)から実施例57b)と同様にして、題記化合物(0.36~g)を淡黄色固体として得た。

NMR (CDCl₃) δ : 1.36-1.51 (2H, m), 1.85-1.98 (2H, m), 2.56-2.68 (2H, m), 2.86-2.89 (2H, m), 2.92 (3H, s), 3.10 (1H, m), 3.53-3.59 (2H, m), 3.81-3.91 (5H, m), 4.54 (1H, d, J= 14.8), 6.16 (1H, s), 7.58 (1H, dd, J= 1.8, 7.8), 7.88-7.95 (4H, m), 8.47 (1H, s).

[0148]

実施例 6 5

【化128】

65a) 5-(1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4-イル)-1, 3-チアゾール-2-アミン

実施例57a)で得た4-(2-アミノ-1, 3-チアゾール-5-イル) ピペリジン-1-カルボン酸 tert-ブチル(1.83 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸(1.93 g)から実施例46b)と同様にして、題記化合物(0.86 g)を淡黄色固体として得た。

NMR (CDCl₃) δ : 1.37-1.60 (2H, m), 1.91-2.04 (2H, m), 2.63 (1H, t, J = 12.9), 2.83-2.91 (3H, m), 3.11 (1H, t, J = 12.9), 3.53-3.60 (2H, m), 3.87 (1H, d, J = 14.1), 4.51 (1H, d, J = 14.1), 4.80 (2H, s), 6.74 (1H, s), 7.57 (1H, dd, J = 1.8, 8.2), 7.88-7.95 (4H, m), 8.47 (1H, s).

実施例65a)で得た化合物(0.50 g)とヨードアセトアミド(0.24 g)から実施例57b)と同様にして、題記化合物(0.24 g)を淡黄色固体として得た。

NMR (CDCl₃) δ : 1.32-1.51 (2H, m), 1.82-1.95 (2H, m), 2.54-2.63 (2H, m), 2.85-2. 90 (2H, m), 3.08 (1H, t, J = 11.7), 3.52-3.58 (2H, m), 3.87 (1H, d, J = 13.8), 4 .27 (2H, s), 4.53 (1H, d, J = 13.8), 5.35 (1H, s), 6.18 (1H, s), 7.25 (1H, s), 7 .58 (1H, dd, J = 1.8, 8.8), 7.88-7.95 (4H, m), 8.47 (1H, s).

[0149]

実施例66

2-(((2Z)-5-(1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4-イル)-3-メチル-1, 3-チアゾール-2(3H)-イリデン) アミノ) エタノール

【化129】

66a) N-(2-((tert-プチルジメチルシリル)オキシ)エチル)チオ尿素

 $2-((\text{tert-} \vec{\tau} + \nu) \vec{\tau} + \nu \vec{\tau} + \nu \vec{\tau} + \nu) \vec{\tau} + \nu \vec{\tau}$

NMR (CDC1₃) δ : 0.02 (6H, s), 0.83 (9H, s), 1.74 (1H, s), 3.28 (2H, br), 3.68-3.73 (2H, m), 6.05 (1H, br), 6.56 (1H, br), 6.98 (1H, br).

66b) 4-(2-((2-ヒドロキシエチル)アミノ)-1,3-チアゾール-5-イル) ピペリジン-1-カルボン酸 tert-ブチル

実施例66a)で得られた化合物 (2.34 g) と4-(1-プロモ-2-オキソエチル) ピペリジン-1-カルボン酸tert-プチル (4.6 g) から実施例47a) と同様にして、題記化合物 (1.52 g) を得た。NMR $(CDC1_3)$ δ : 1.46 (9H, s), 1.46-1.60 (2H, m), 1.90 (2H, d, J=11.4), 2.74-2. 83 (3H, m), 3.46 (2H, t, J=5.4), 3.81 (2H, t, J=5.4), 4.43 (1H, m), 6.75 (1H)

, s). 66c) 2-((5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-1,3-チアゾール-2-イル)アミノ)エタノール

実施例66b)で得た化合物(1.26 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸(1.15 g)から実施例46b)と同様にして、題記化合物(1.37 g)を得た。

NMR (CDC1₃) δ : 1.31-1.62 (2H, m), 1.88-2.03 (2H, m), 2.62 (1H, t, J = 12.6), 2.80-2.93 (3H, m), 3.11 (1H, t, J = 12.6), 3.45 (2H, t, J = 5.4), 3.53-3.61 (2H, m), 3.81 (2H, t, J = 5.4), 3.84 (1H, d, J = 13.4), 4.51 (1H, d, J = 13.4), 5.55 (1H, br), 6.74 (1H, s), 7.58 (1H, dd, J = 2.0, 7.8), 7.88-7.96 (4H, m), 8.47 (1H, s).

66d) 2-(((2Z)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)アミノ)エタノール

実施例66c)で得た化合物(1.0 g)とヨウ化メチル(0.25 ml)から実施例57b)と同様にして、 題記化合物(0.75 g)を得た。

NMR (CDC1₃) δ : 1.35-1.51 (2H, m), 1.82-1.98 (2H, m), 2.55-2.69 (2H, m), 2.88 (2 H, dd, J = 6.3, 9.7), 3.09 (1H, m), 3.15 (2H, t, J = 5.3), 3.25 (3H, s), 3.51-3.64 (2H, m), 3.82 (2H, t, J = 5.3), 3.86 (1H, d, J = 13.8), 4.53 (1H, d, J = 13.8), 6.18 (1H, s), 7.59 (1H, dd, J = 2.0, 8.8), 7.89-7.98 (4H, m), 8.48 (1H, s). [0 1 5 0]

実施例 6 7

(2Z)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-カルバルデヒド

【化130】

67a) 4-((2Z)-4-ホルミル-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル) ピペリジン-1-カルボン酸 tert-プチル

実施例46a)で得られた4-((2Z)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル)ピペリジン-1-カルボン酸 tert-プチル(5.0 g)のTHF溶液(75 ml)にn-ブチルリチウム(24 ml, 1.6 Mへキサン溶液)を - 78 $\mathbb C$ で加えた。反応液を15分間かき混ぜた後、DMF(5 ml)を加え、さらに30分かき混ぜた。反応液に飽和塩化アンモニウム水溶液を加えた後、酢酸エチルと飽和重曹水の混合液に注ぎ込んだ。有機層を分取し、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を留去し、残留物をシリカゲルカラムで精製し

て題記化合物(3.45 g)を黄色固体として得た。

NMR (CDC1₃) δ : 1.48 (9H, s), 1.55-1.76 (2H, m), 1.84 (2H, d, J = 11.7), 2.78 (2 H, m), 3.04 (3H, s), 3.43 (1H, m), 3.57 (3H, s), 4.25 (2H, br), 9.77 (1H, s). 67b) (2Z)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-カルバルデヒド 実施例67a)で得た化合物(1.07 g) と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸から実施例46b)と同様にして、題記化合物(1.89 g)を淡黄色固体として得た。 NMR (CDC1₃) δ : 1.55-1.73 (2H, m), 1.86-1.97 (2H, m), 2.61 (1H, m), 2.88-2.96 (2 H, m), 3.03 (3H, s), 3.16 (1H, m), 3.48-3.59 (3H, m), 3.55 (3H, s), 3.97 (1H, d, J = 13.5), 4.67 (1H, d, J = 13.5), 7.59 (1H, dd, J = 1.8, 9.0), 7.89-7.96 (4H, m), 8.47 (1H, s), 9.76 (1H, s).

[0151]

実施例 68

(22)-5-(1-(3-((6- ϕ ロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-カルボン酸

【化131】

実施例67b)で得た(22)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-カルバルデヒド(0.20 g)のtert-ブチルアルコール・水・2-メチル-2-ブテン(40 ml,5:4:1)溶液に亜塩素酸ナトリウム(0.21 g)とリン酸二水素ナトリウム(0.28 g)を加え、12時間かき混ぜた。反応液を濃縮し、残留物をクロロホルムと飽和食塩水に溶解した。クロロホルム層を分取し、無水硫酸ナトリウムで乾燥した。溶媒を留去して、題記化合物(0.19 g)を無色固体として得た。

NMR (CDC1₃) δ : 1.38-1.69 (2H, m), 1.96-2.14 (2H, m), 2.60 (1H, m), 2.83-3.01 (3 H, m), 3.19 (3H, s), 3.21 (1H, m), 3.53-3.61 (2H, m), 3.88 (3H, s), 3.96 (1H, s), 4.64 (1H, d, J = 10.4), 7.60 (1H, dd, J = 1.8, 9.2), 7.92-7.98 (4H, m), 8.48 (1H, s).

[0152]

実施例 6 9

(2Z)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-カルボキサミド

【化132】

実施例68)で得た(2Z)-5-(1-(3-((6- ϕ ロロ-2-+フチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-カルボン酸(0.21 g)のジクロロメタン溶液(20 ml)にWSC(0.11 g)とHOBt-NH3複合体(0.09 g)を加え、12時間かき混ぜた。反応液をクロロホルムで希釈し、飽和重曹水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去し、残留物をシリカゲルカラムで精製して題記化合物を(0.07 g)無色固体として得た。

NMR (CDC1₃) δ : 1.46-1.59 (2H, m), 1.77-1.91 (2H, m), 2.55 (1H, m), 2.86-2.91 (2 H, m), 2.99 (3H, s), 3.08 (1H, m), 3.18 (1H, m), 3.29 (3H, s), 3.53-3.58 (2H, m), 3.89 (1H, d, J = 14.1), 4.59 (1H, d, J = 14.1), 5.78 (2H, br), 7.58 (1H, dd, J = 1.8, 8.7), 7.88-7.96 (4H, m), 8.47 (1H, s).

[0153]

実施例70

(22)-5-(1-(3-((6- ρ ロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4-イル)-N-(2-ヒドロキシエチル)-3-メチル-2-(メチルイミノ)-2, 3-ジヒドロ-1, 3-チアゾール-4-カルボキサミド

【化133】

実施例68) で得た(2Z)-5-(1-(3-(6- ρ ロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-カルボン酸(0.20 g)、WSC(0.11 g)、 HOBt(0.09 g) および2-アミノエタノール(0.05 ml)から実施例69)と同様にして、題記化合物(0.08 g)を得た。

NMR (CDCl₃) δ : 1.47-1.90 (4H, m), 2.53 (1H, m), 2.85-2.90 (2H, m), 2.98 (3H, s), 3.02-3.18 (2H, m), 3.25 (3H, s), 3.53-3.62 (4H, m), 3.81 (2H, t, J = 5.1), 3.8 7 (1H,, d, J = 14.1), 4.59 (1H,, d, J = 14.1), 6.27 (1H, br), 7.59 (1H, dd, J = 1.8, 8.7), 7.89-7.97 (4H, m), 8.48 (1H, s).

[0154]

実施例71

【化134】

実施例68)で得た(2Z)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-カルボン酸(0.20 g)、WSC(0.11 g)、HOBt(0.09 g)およびプロピルアミン(0.05 ml)から実施例69)と同様にして、題記化合物(0.05 g)を得た。

NMR (CDC1₃) δ : 0.99 (3H, t, J = 6.9), 1.40-1.86 (4H, m), 2.52 (1H, m), 2.85-2.9 0 (2H, m), 2.98 (3H, s), 2.98-3.20 (3H, m), 3.23 (3H, s), 3.36 (2H, q, J = 6.9), 3.55-3.60 (2H, m), 3.87 (1H, d, J = 14.1), 4.60 (1H, d, J = 14.1), 5.78 (1H, br), 7.60 (1H, dd, J = 1.8, 7.8), 7.80-7.97 (4H, m), 8.48 (1H, s).

[0155]

実施例72

1-((2Z)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル) -3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)エタノール

【化135】

72a) 4-((2Z)-4-(1-ヒドロキシエチル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル) ピペリジン-1-カルボン酸 tert-ブチル

実施例46a)で得られた4-((2Z)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル)ピペリジン-1-カルボン酸 tert-ブチル<math>(1.0~g)とアセトアルデヒド(0.36~ml)から実施例67a)と同様にして、題記化合物(0.38~g)を得た。

NMR (CDC1₃) δ : 1.39-1.83 (4H, m), 1.47 (9H, s), 1.51 (d, J = 6.6), 2.73 (2H, m), 2.95 (1H, m), 2.97 (3H, s), 3.41 (3H, s), 4.17 (2H, m), 5.03 (1H, q, J = 6.6). 72b) 1-((2Z)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)エタノール 実施例72a)で得た化合物 <math>(0.38 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸 <math>(0.32 g)から実施例46b)と同様にして、題記化合物 (0.37 g)を得た。

NMR (CDC1₃) δ : 1.38-1.69 (2H, m), 1.96-2.14 (2H, m), 2.60 (1H, m), 2.83-3.01 (3 H, m), 3.19 (3H, s), 3.21 (1H, m), 3.53-3.61 (2H, m), 3.88 (3H, s), 3.96 (1H, s), 4.64 (1H, d, J = 10.4), 7.60 (1H, dd, J = 1.8, 9.2), 7.92-7.98 (4H, m), 8.48 (1H, s).

[0156]

実施例 7 3

1-((2Z)-5-(1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4-イル) -3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル) エタノン

【化136】

実施例72b)で得た1-((2Z)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)エタノール(0.20 g)のジクロロメタン溶液(4 ml)にDess-Martin試薬 (0.19 g) を加え、2時間かき混ぜた。反応液をクロロホルムで希釈し、飽和重曹水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去し、残留物をシリカゲルカラムで精製して題記化合物を無色固体(0.10 g)として得た。

NMR (CDC1₃) δ : 1.39-1.52 (2H, m), 1.83-1.96 (2H, m), 2.45 (3H, s), 2.56 (1H, m), 2.81-2.95 (2H, m), 3.02 (3H, s), 3.09-3.21 (2H, m), 3.33 (3H, s), 3.50-3.65 (2H, m), 3.90 (1H, d, J = 12.8), 4.59 (1H, d, J = 12.8), 7.60 (1H, dd, J = 2.0, 8.8), 7.89-7.98 (4H, m), 8.48 (1H, s).

[0157]

実施例74

 $(2E)_{-}((2Z)_{-}5_{-}(1_{-}(3_{-}((6_{-}クロロ-2_{-}+7+1))$ スルホニル) プロパノイル) ピペリジン -4_{-} イル) -3_{-} メチル -2_{-} (メチルイミノ) -1, 3_{-} チアゾリジン -4_{-} イリデン) アセトニトリル

【化137】

74a) 4-((2Z, 4E)-4-(シアノメチレン)-3-メチル-2-(メチルイミノ)-1,3-チアゾリジン-5-イル) ピペリジン-1-カルボン酸 tert-ブチル

カリウムtert-ブトキシド(1.4 g)のDME溶液(40 ml)にイソシアン酸(p-1)ルスルホニル)メチル(1.3 g)を-78 $\mathbb C$ で加え、15分かき混ぜた。反応液に実施例(20 ml)で得た化合物(2.0 g)のDME溶液(20 ml)を加え、反応混合物を室温に昇温し、(20 ml)0 を加え、反応混合物を室温に昇温し、(20 ml)0 を加え,(20 ml)0 を加え。反応液を急に (20 ml)0 を加え。反応液を含めた (20 ml)0 を加え。反応液を含めた (20 ml)0 を加え。 反応液を急縮し、残留物をクロロホルムに溶解した。 クロロホルム溶液を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去し、残留物をシリカゲルカラムで精製して題記化合物(0.85 g)0 を淡黄色固体として得た。

NMR (CDC1₃) δ : 1.18-1.69 (4H, m), 1.45 (9H, s), 2.48 (1H, m), 2.63-2.79 (2H, m), 3.11 (3H, s), 3.14 (3H, s), 4.08-4.20 (2H, m), 4.39 (1H, d, J = 0.9), 4.56 (1H, d, J = 3.6).

74b) (2E)-((2Z)-5-(1-(3-((6- ϕ ロロ-2-+フチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-<math>1,3-チアゾリジン-4-イリデン)アセトニトリル 実施例74a)で得た化合物(0.55~g) と3-((6- ϕ ロロ-2-+フチル)スルホニル)プロパン酸から実施例46b)と同様にして、題記化合物(0.74~g)を得た。

NMR (CDC1₃) δ : 1.26-1.43 (3H, m), 1.76 (1H, m), 2.47-2.62 (2H, m), 2.83-2.90 (2 H, m), 3.04-3.15 (7H, m), 3.51-3.56 (2H, m), 3.87 (1H, m), 4.41 (1H, d, J = 2.1), 4.60 (1H, m), 4.67 (1H, d, J = 3.3), 7.59 (1H, dd, J = 1.8, 8.8), 7.88-7.96 (4 H, m), 8.46 (1H, s).

[0158]

実施例75

2-((2Z)-5-(1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4-イル) -3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル) アセトアミド 【化 1 3 8】

75a) 4-((2Z)-4-(2-アミノ-2-オキソエチル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル) ピペリジン-1-カルボン酸 tert-ブチル

実施例74a)で得た4-((2Z,4E)-4-(シアノメチレン)-3-メチル-2-(メチルイミノ)-1,3-チアゾリジン-5-イル)ピペリジン-1-カルボン酸 tert-ブチル(0.30 g)のDMS0溶液(6.0 ml)に0℃で炭酸カリウム(0.1 g)と30%過酸化水素水溶液(1 ml)を加え、30分かき混ぜた。反応液を酢酸エチルで希釈し、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を留去し、残留物をヘキサンで結晶化し、題記化合物(0.32 g)を無色固体として得た。

NMR (CDC1₃) δ : 1.47 (9H, s), 1.56-1.71 (4H, m), 2.70-2.79 (3H, m), 2.99 (3H, s), 3.23 (3H, s), 3.44 (2H, s), 4.19 (2H, br), 5.67 (2H, d, J = 19.5).

75b) $2-((2Z)-5-(1-{3-((6-クロロ-2-ナフチル)}スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)アセトアミド 実施例75a)で得た化合物(0.32 g) と<math>3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸から実施例46b)と同様にして、題記化合物(0.43 g)を無色固体として得た。$

NMR (DMSO-d₆) δ : 1.06-1.19 (1H, m), 1.32-1.46 (1H, m), 1.57-1.72 (2H, m), 2.44-

2.54 (3H, m), 2.63-2.77 (2H, m), 2.82 (3H, s), 2.99 (2H, t, J = 11.7), 3.10 (3H, s), 3.60-3.66 (2H, m), 3.82 (1H, d, J = 12.6), 4.27 (1H, d, J = 12.), 7.09 (1H, s), 7.54 (1H, s), 7.72 (1H, dd, J = 2.1, 8.7), 7.98 (1H, dd, J = 2.1, 8.7), 8.1 7 (1H, d, J = 9.0), 8.24-8.31 (2H, m), 8.63 (1H, s).

[0159]

実施例 7 6

【化139】

実施例74b)で得た化合物(0.3 g)のトルエン溶液(10 ml)にアジ化トリメチルスズ(0.35 g)を加え、24時間過熱還流した。反応液にメタノール(2 ml)を加え、1時間かき混ぜた。反応液を濃縮し、残留物をシリカゲルカラムで精製して題記化合物(0.14 g)を無色固体として得た。

NMR (CDCl₃) δ : 1.45–1.54 (2H, m), 1.97–2.12 (2H, m), 2.64 (1H, m), 2.84–2.93 (3 H, m), 3.17 (3H, s), 3.31 (1H, m), 3.55–3.60 (2H, m), 3.67 (3H, s), 3.94 (1H, d, J = 12.3), 4.21 (1H, d, J = 4.5), 4.68 (1H, d, J = 12.3), 7.60 (1H, dd, J = 1.8, 8.7), 7.89–7.98 (4H, m), 8.45 (1H, s).

[0160]

実施例 7 7

(2Z)-5-(1-(3-((6- ρ ロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-カルボン酸メチル

【化140】

77a) 4-((2Z)-4-(メトキシカルボニル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル) ピペリジン-1-カルボン酸 tert-ブチル

実施例46a)で得られた $4-((2Z)-3-3+\nu-2-(3+\nu-1)-2,3-3+\nu-1,3-4+\nu-1,3-$

NMR (CDC1₃) δ : 1.40-1.84 (4H, m), 1.47 (9H, s), 2.75 (2H, t, J = 12.2), 3.00 (3 H, s), 3.39 (3H, s), 3.39 (1H, m), 3.89 (3H, s), 4.17 (2H, m).

77b) (22)-5-(1-(3-((6- ϕ ロロ-2-+7+ ν) スルホニル) プロパノイル) ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2, 3-ジヒドロ-1, 3-チアゾール-4-カルボン酸メチル実施例77a) で得られた化合物(0.24~g)と3-((6- ϕ ロロ-2-+7+ ν) スルホニル) プロパン酸から実施例46b) と同様にして、題記化合物(0.26~g)を無色固体として得た。

NMR (CDC1₃) δ : 1.43-1.56 (2H, m), 1.82-1.94 (2H, m), 2.51-2.59 (1H, m), 2.87-2. 92 (2H, m), 3.00 (3H, s), 3.10 (1H, m), 3.39 (3H, s), 3.47 (1H, m), 3.53-3.59 (2 H, m), 3.90 (3H, s), 3.91 (1H, d, J = 13.5), 4.62 (1H, d, J = 13.5), 7.60 (1H, d)

d, J = 2.1, 8.7), 7.90-7.97 (4H, m), 8.49 (1H, s).

[0161]

実施例 7 8

(2Z)-5-(1-(3-((6- ρ ロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-カルボン酸プチル

【化141】

78a) 4-((2Z)-4-(ブトキシカルボニル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル) ピペリジン-1-カルボン酸 tert-ブチル

実施例46a)で得られた $4-((2Z)-3-3+3+\nu-2-(3+3)-2,3-3+5+\nu-1,3-4+\nu-1,$

NMR (CDCl₃) δ : 0.96 (3H, t, J = 7.5), 1.26 (2H, t, J = 7.5), 1.47 (9H, s), 1.44 -1.83 (6H, m), 2.73 (2H, t, J = 12.3), 3.00 (3H, s), 3.39 (3H, s), 3.39 (1H, m), 4.25-4.34 (2H, m), 4.29 (2H, t, J = 7.5).

NMR (CDCl₃) δ : 0.98 (3H, t, J = 7.4), 1.38-1.70 (4H, m), 1.67-1.90 (4H, m), 2.5 3 (1H, m), 2.87-2.99 (2H, m), 3.00 (3H, s), 3.08 (1H, m), 3.39 (3H, s), 3.53-3.5 8 (3H, m), 3.92 (2H, d, J = 13.8), 4.27 (2H, t, J = 6.7), 4.63 (1H, d, J = 13.8), 7.60 (1H, dd, J = 2.1, 8.8), 7.89-7.98 (4H, m), 8.48 (1H, s).

[0162]

実施例 7 9

【化142】

79a) $4-((2Z)-4-(ヒドロキシ(1,3-チアゾール-2-イル)メチル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル) ピペリジン-1-カルボン酸 tert-プチル 実施例46a) で得られた<math>4-((2Z)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル) ピペリジン-1-カルボン酸 tert-プチル(0.47 g) とチアゾール-2-カルバルデヒド(0.26 g) から実施例67a) と同様にして、題記化合物(0.10 g) を淡黄色固体として得た。NMR (CDCl₃) <math>\delta$: 1.47 (9H, s), 1.52-1.87 (4H, m), 2.70 (2H, br), 2.91 (1H, m), 2.96 (3H, s), 3.06 (3H, s), 4.21 (2H, s), 6.09 (1H, s), 7.38 (1H, d, J=1.2), 7.78 (1H, d, J=1.2).

79b) $((2Z)_{-5-}(1_{-}(3_{-}((6_{-}) - 2_{-} + 7_{-} + 7_{-})))$ $((3Z)_{-5-}(1_{-}(3_{-}((6_{-}) - 2_{-} + 7_{-})))$ $((3Z)_{-5-}(1_{-}((6_{-}) - 2_{-} + 7_{-})))$

-2-イル)メタノール

実施例79a)で得た化合物(0.10 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸から実施例46b)と同様にして、題記化合物(0.11 g)を淡黄色固体として得た。

NMR (CDCl₃) δ : 1.51-1.91 (4H, m), 2.51 (1H, m), 2.83-2.96 (5H, m), 2.99-3.12 (5 H, m), 3.50-3.60 (2H, m), 3.88 (1H, d, J = 13.5), 6.07 (1H, s), 7.39 (1H, d, J = 3.2), 7.59 (1H, dd, J = 1.9, 8.7), 7.75 (1H, d, J = 7.2), 7.88-7.98 (4H, m), 8.48 (1H, s).

[0 1 6 3]

実施例80

((2Z)-5-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2, 3-ジヒドロ-1, 3-チアゾール-4-イル) (3-メチル-1H-ピラゾール-5-イル) メタノール

【化143】

80a) 5-メチル-1-トリチル-1H-ピラゾール-3-カルバルデヒド

5-メチル-1H-ピラゾール-3-カルバルデヒド(A. Werner o Tetrahedron, 51, 4779 (1995): 1.1 g)のアセトニトリル溶液(20 ml)にトリエチルアミン(1.5 ml)とクロロトリフェニルメタン(3.1 g)を加え、12時間かき混ぜた。反応液を濃縮し、残留物をクロロホルムに溶解した。この溶液を飽和重曹水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去し、残留物をシリカゲルカラムで精製して題記化合物(1.9 g)を無色固体として得た。

NMR (CDCl₃) δ : 1.54 (3H, s), 6.66 (1H, s), 7.09-7.17 (6H, m), 7.25-7.34 (9H, m), 9.83 (1H, s).

80b) 4-((2Z)-4-(ヒドロキシ(3-メチル-1-トリチル-1H-ピラゾール-5-イル)メチル)-3-メチル-2-(メチルイミノ)-2, 3-ジヒドロ-1, 3-チアゾール-5-イル)ピペリジン-1-カルボン酸 tert-プチル

実施例80a)で得た化合物(0.53 g)と実施例46a)で得た $4-((2Z)-3-3+\nu-2-(3+\nu-2)-2,3-2-(3+\nu-2)-2,$

NMR (CDC1₃) δ : 1.47 (9H, s), 1.57-1.80 (4H, m), 2.65-2.78 (2H, m), 2.98 (1H, m), 2.99 (3H, s), 3.28 (3H, s), 4.17 (2H, m), 5.80 (1H, s), 5.88 (1H, s), 7.01-7.1 4 (6H, m), 7.26-7.30 (9H, m).

80c) ((2Z)-5-(1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)(3-メチル-1H-ピラゾール-5-イル)メタノール

実施例80a)で得た化合物(0.36 g) と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸から実施例46b)と同様にして、題記化合物(0.07 g)を淡黄色固体として得た。

NMR (CDCl₃) δ : 1.49-1.89 (4H, m), 2.29 (3H, d, J = 3.8), 2.51 (1H, m), 2.81-2.9 5 (2H, m), 2.96 (3H, s), 3.00-3.13 (5H, m), 3.49-3.62 (2H, m), 3.89 (1H, m), 4.5 6 (1H, m), 5.79 (1H, J = 7.4), 5.94 (1H, s), 7.60 (1H, dd, J = 2.0, 8.8), 7.88-7 .98 (4H, m), 8.48 (1H, s).

[0164]

実施例81

((2Z)-5-(1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2, 3-ジヒドロ-1, 3-チアゾール-4-イル) (2-チエニル) メタノール

81a) 4-((2Z)-4-(ヒドロキシ(2-チエニル)メチル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル) ピペリジン-1-カルボン酸 tert-ブチル

実施例46a)で得られた $4-((2Z)-3-3+3+\nu-2-(3+3)-2,3-3+\nu-1,3-4+\nu-1,3-4+\nu-1)-2$, $3-3+\nu-1,3-4+\nu$

81b) ((2Z)-5-(1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)(2-チエニル) メタノール

実施例81a)で得られた化合物 (0.25 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸から実施例46b)と同様にして、題記化合物 (0.03 g)を淡黄色固体として得た。

NMR (CDCl₃) δ : 1.59-1.80 (4H, m), 2.51 (1H, m), 2.81-2.94 (2H, m), 2.97 (3H, s), 3.00-3.15 (5H, m), 3.50-3.65 (2H, m), 3.90 (1H, m), 4.57 (1H, m), 6.14 (1H, s), 6.82 (1H, s), 6.98 (1H, m), 7.31 (1H, s), 7.60 (1H, dd, J = 1.8, 8.8), 7.89-7.98 (4H, m), 8.48 (1H, s).

[0165]

実施例82

【化145】

82a) 4-((2Z)-4-(ヒドロキシ(3-チエニル)メチル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル) ピペリジン-1-カルボン酸 tert-ブチル

実施例46a)で得られた $4-((2Z)-3-3+3+\nu-2-(3+3)-2,3-3+\nu-1,3-4+\nu-1,3-4+\nu-1,3-4+\nu-1,3-4+\nu-1,3-4+\nu-1,3-4-\nu-1,3-4-\nu-1,3-4-\nu-1,3-4-\nu-1,3-4-\nu-1,3-5-1,3-5-1,1-1,3-5-1,3-$

82b) ((2Z)-5-(1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4-イル)-3-メチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-4-イル)(3-チエニル) メタノール

実施例82a)で得られた化合物(0.20 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン

酸から実施例46b)と同様にして、題記化合物(0.02 g)を淡黄色固体として得た。

NMR (CDCl₃) δ : 1.59-1.72 (4H, m), 2.50 (1H, m), 2.85-2.94 (2H, m), 2.98 (3H, s), 2.96-3.13 (5H, m), 3.50-3.62 (2H, m), 3.90 (1H, m), 4.62 (1H, m), 5.98 (1H, s), 6.92 (1H, br), 7.20 (1H, s), 7.33 (1H, m), 7.60 (1H, dd, J = 1.8, 8.8), 7.89-7.98 (4H, m), 8.48 (1H, s).

[0166]

実施例83

N-((2Z)-3-(2-(1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4-イル) エチル)-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン

【化146】

実施例18c)で得た1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-4-(2-ヨードエチル)ピペリジン(0.52 g)とN-メチル-1,3-チアゾール-2-アミン(0.27 g)から実施例57b)と同様にして、題記化合物<math>(0.27 g)を得た。

NMR (CDCl₃) δ : 1.00-1.18 (2H, m), 1.58-1.84 (5H, m), 2.48 (1H, t, J = 12.9), 2. 81-2.88 (2H, m), 2.98 (3H, s), 2.98 (1H, t, J = 12.9), 3.52-3.58 (2H, m), 3.79 (3H, m), 4.44 (1H, d, J = 13.5), 5.96 (1H, d, J = 5.1), 6.52 (1H, d, J = 5.1), 7. 57 (1H, dd, J = 2.1, 7.8), 7.88-7.95 (4H, m), 8.46 (1H, s)

[0167]

実施例 8 4

N-((2Z)-3-(2-(1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4-イル) エチル)-5-メチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン

【化147】

84a) N,5-ジメチル-1.3-チアゾール-2-アミン

2-プロモプロピオンアルデヒド(R. PewsらSynthetic Commun., 15, 977-84 (1985): 8.7 g) ν とN-メチルチオウレア(5.7 g) から実施例46a) と同様にして、題記化合物(1.48 g) を得た。

NMR (CDCl₃) δ : 2.29 (3H, s), 2.95 (3H, s), 5.02 (1H, br), 6.75 (1H, s).

84b) N-((2Z)-3-(2-(1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4-イル) エチル)-5-メチル-1、3-チアゾール-2(3H)-イリデン)-N-メチルアミン

実施例84a)で得た化合物(0.26 g)と実施例18c)で得た1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-4-(2-ヨードエチル)ピペリジン(0.52 g)から実施例57b)と同様にして、題記化合物(0.24 g)を得た。

NMR (CDCl₃) δ : 1.00-1.16 (2H, m), 1.56-1.60 (3H, m), 1.70-1.84 (2H, m), 2.13 (3 H, s), 2.49 (1H, m), 2.81-2.89 (2H, m), 2.95 (3H, s), 2.96 (1H, m), 3.52-3.58 (2 H, m), 3.68-3.80 (3H, m), 4.43 (1H, d, J = 13.5), 6.18 (1H, s), 7.59 (1H, dd, J = 1.8, 8.3), 7.88-7.95 (4H, m), 8.45 (1H, s).

[0168]

実施例 8 5

 $N_{-}((2Z)-3-(2-(1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4-イル) エチル)-4-メチル-1, 3-チアゾール-2(3H)-イリデン)-N-メチルアミン【化148】$

85a) N. 4-ジメチル-1. 3-チアゾール-2-アミン

ブロモアセトン(25 g)とN-メチルチオウレア(20 g)から実施例46a)と同様にして、題記化合物(9.4 g)を得た。

NMR (CDC1₃) δ : 2.23 (3H, s), 2.94 (3H, s), 6.04 (1H, s), 6.28 (1H, br).

85b) $N_{-}((2Z)_{-3-}(2_{-}(1_{-}(3_{-}((6_{-}クロロ_{-2-}+7+))) スルホニル) プロパノイル) ピペリジン -4_イル) エチル)_4_メチル_1,3_チアゾール_2(3H)_イリデン)_N_メチルアミン$

実施例85a)で得た化合物(0.26 g)と実施例18c)で得た1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-4-(2-ヨードエチル)ピペリジン(0.52 g)から実施例57b)と同様にして、題記化合物(0.06 g)を得た。

NMR (CDC1₃) δ : 1.06-1.14 (2H, m), 1.60-1.86 (5H, m), 2.08 (3H, s), 2.49 (1H, t, J = 12.3), 2.84-2.87 (2H, m), 2.95 (3H, s), 2.97 (1H, m), 3.53-3.56 (2H, m), 3.70-3.81 (3H, m), 4.44 (1H, d, J = 13.2), 5.51 (1H, s), 7.58 (1H, dd, J = 1.8, 7.8), 7.88-7.95 (4H, m), 8.46 (1H, s).

[0169]

実施例 8 6

 $N_{-}((2Z)-3_{-}((1_{-}(3_{-}((6_{-}\rho uu_{-}2_{-}+7+u))\lambda u + u))))$ プロパノイル) ピペリジン -4_{-} イル) メチル)-1, 3_{-} チアゾール-2(3H)-イリデン)-N-メチルアミン

【化149】

86a) 1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-4-(ヨードメチル)ピペリ

4-(3-ドメチル)ピペリジン-1-カルボン酸 tert-ブチル(A. VillalobosらJ. Med. Chem. 37, 2721 (1994): 3.3 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸(3.0 g)から実施例46b)と同様にして、題記化合物(4.0 g)を得た。

NMR (DMSO-d6) δ : 0.65-0.89 (2H, m), 1.62-1.78 (3H, m), 2.40 (1H, m), 2.67 (2H, t, J = 7.8), 2.90 (1H, m), 3.15 (2H, d, J = 6.2), 3.59 (2H, t, J = 7.8), 3.76 (1H, d, J = 14.0), 4.17 (1H, d, J = 14.0), 7.72 (1H, dd, J = 2.2, 9.0), 7.97 (1H, dd, J = 2.2, 8.8), 8.17 (1H, d, J = 8.8), 8.19-8.25 (2H, m), 8.63 (1H, s).

実施例86a)で得た化合物(0.50 g)とN-メチル-1, 3-チアゾール-2-アミン(0.23 g)から実施例57b)と同様にして、題記化合物(0.06 g)を得た。

NMR (CDC1₃) δ : 0.94-1.16 (2H, m), 1.63-1.77 (2H, m), 2.10 (1H, m), 2.49 (2H, t, J = 11.0), 2.84 (2H, dd, J = 6.6, 10.4), 2.95 (3H, s), 2.99 (1H, t, J = 11.0), 3.51-3.65 (4H, m), 3.81 (1H, d, J = 13.4), 4.48 (1H, d, J = 13.4), 5.87 (1H, d, J = 4.8), 6.41 (1H, d, J = 4.8), 7.59 (1H, dd, J = 1.8, 8.8), 7.92-7.97 (4H, m),

8.47 (1H, s). [0 1 7 0]

実施例87

3-((1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)メチル) -1,3-チアゾール-2(3H)-イミン

【化150】

実施例86a)で得た1-(3-((6-2) - 2-(1) - 2-

NMR (CDCl₃) δ : 0.98-1.28 (2H, m), 1.65-1.79 (2H, m), 2.10 (1H, m), 2.51 (1H, t, J = 13.2), 2.82-2.87 (2H, m), 3.00 (1H, t, J = 13.2), 3.45-3.62 (4H, m), 3.83 (1H, d, J = 13.8), 4.49 (1H, d, J = 13.8), 5.74 (1H, d, J = 4.8), 6.29 (1H, d, J = 4.8), 7.58 (1H, dd, J = 1.8, 7.8), 7.88-7.95 (4H, m), 8.46 (1H, s).

[0171]

実施例 8 8

 $1-(3-((6-\rho uu-2-t y+v) x u x - u) y u x - u) - N-((2z)-3-x + u-1, 3-t y y - u-2(3H)-4 y y y - 2 x - 2 x + 2 x - 2 x + 2 x - 2 x + 2 x - 2 x + 2 x + 2 x - 2 x +$

【化151】

88a) 4-((アミノカルボノチオイル)アミノ)ピペリジン-1-カルボン酸 tert-ブチル 4-アミノピペリジン-1-カルボン酸 tert-ブチル(2.7 g)から実施例66a)と同様にして、題記化合物(2.8 g)を淡黄色固体として得た。

NMR (CDC1₃) δ : 1.26-1.45 (2H, m), 1.45 (9H, s), 1.98-2.08 (2H, m), 2.90 (2H, t, J = 9.8), 3.98-4.10 (3H, m), 6.10 (2H, s), 6.74 (1H, d, J = 7.2).

88b) 4-(1,3-チアゾール-2-イル)アミノピペリジン-1-カルボン酸 tert-ブチル

実施例88a)で得た化合物(1.0 g)とクロロアセトアルデヒド(1.13 ml, 40%水溶液)から実施例46a)と同様にして、題記化合物(0.88 g)を淡黄色固体として得た。

NMR (CDC1₃) δ : 1.33-1.49 (2H, m), 1.46 (9H, s), 2.06 (2H, m), 2.92 (2H, m), 3.5 6 (1H, m), 4.02 (2H, bd, J = 10.5), 4.95 (1H, br), 5.71 (1H, d, J = 4.8), 6.72 (1H, d, J = 4.8).

88c) 1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル)-N-(1,3-チアゾール-2-イル)-4-ピペリジンアミン

実施例88b) で得た化合物 (0.88 g) と $3-((6-\rho \Box \Box -2-t \Box + \nu)$ スルホニル) プロパン酸 (0.86 g) から実施例46b) と同様にして、題記化合物 (1.19 g) を淡黄色固体として得た。

NMR (DMSO-d₆) δ : 1.12-1.40 (2H, m), 1.82-1.94 (2H, m), 2.56 (1H, m), 2.72-2.78 (3H, m), 3.10 (1H, m), 3.59-3.75 (2H, m), 3.99 (1H, d, J = 14.1), 6.58 (1H, d, J = 3.6), 6.98 (1H, d, J = 3.6), 7.50 (1H, d, J = 7.5), 7.72 (1H, d, J = 1.8, 8.1), 7.97 (1H, dd, J = 1.8, 8.1), 8.17 (1H, d, J = 8.1), 8.24-8.28 (2H, m), 8.63 (1H, s).

88d) 1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-N-((2Z)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-4-ピペリジンアミン

実施例88c)で得た化合物(0.50 g)とヨウ化メチル(0.13 ml)から実施例57b)と同様にして、題記化合物(0.15 g)を無色固体として得た。

NMR (CDC1₃) δ : 1.58 (2H, m), 1.82 (2H, m), 2.88 (2H, t, J = 6.6), 2.93 (1H, m), 3.10–3.25 (5H, m), 3.56 (2H, t, J = 6.6), 3.76 (1H, m), 4.05 (1H, m), 5.84 (1H, d, J = 4.2), 6.44 (1H, d, J = 4.2), 7.58 (1H, dd, J = 1.8, 7.8), 7.88–7.96 (4H, m), 8.47 (1H, s).

[0172]

実施例89

【化152】

89a) 4-((4-メチル-1,3-チアゾール-2-イル)アミノ) ピペリジン-1-カルボン酸 tert-ブチル

実施例88a)で得た4-(チオウレイド)ピペリジン-1-カルボン酸 tert-ブチル(0.69~g)とプロモアセトン(0.34~ml)から実施例46a)と同様にして、題記化合物(0.79~g)を淡黄色固体として得た。

NMR (CDC1₃) δ: 1.33-1.49 (2H, m), 1.46 (9H, s), 2.06 (2H, m), 2.22 (3H, s), 2.9 2 (2H, m), 3.56 (1H, m), 4.02 (2H, d, J = 10.5), 4.95 (1H, br), 6.07 (1H, s). 89b) 1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-N-(4-メチル-1,3-チアゾール-2-イル)-4-ピペリジンアミン

実施例89a)で得た化合物(0.79 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸(0.80 g)から実施例47b)と同様にして、題記化合物(0.76 g)を淡黄色固体として得た。

NMR (CDCl₃) δ : 1.25-1.46 (2H, m), 2.06-2.21 (2H, m), 2.22 (3H, s), 2.80-2.91 (3 H, m), 3.20 (1H, m), 3.53-3.68 (3H, m), 3.79 (1H, d, J = 9.4), 4.32 (1H, d, J = 9.4), 4.87 (1H, d, J = 4.8), 6.05 (1H, s), 7.58 (1H, dd, J = 1.4, 9.0), 7.88-7.9 5 (4H, m), 8.46 (1H, s).

89c) 1-(3-((6- ρ ロロ-2-+フチル)スルホニル)プロパノイル)-N-((2Z)-3, 4-ジメチル-1, 3-+アゾール-2(3H)-+イリデン)-4-+ピペリジンアミン

実施例89b)で得た化合物(0.65 g)とヨウ化メチル(0.17 ml)から実施例57b)と同様にして、題記化合物(0.42 g)を淡黄色固体として得た。

NMR (CDCl₃) δ : 1.38-1.64 (2H, m), 1.88-2.01 (2H, m), 2.36 (3H, s), 2.66 (2H, t, J = 8.1), 2.92 (2H, m), 3.15 (1H, m), 3.46 (3H, s), 3.57 (2H, m), 3.93 (1H, brd, J = 14.4), 4.57 (1H, brd, J = 14.4), 6.61 (1H, s), 7.60 (1H, dd, J = 1.8, 7.8), 7.90-7.97 (4H, m), 8.48 (1H, s).

[0173]

実施例90

1-(3-((6-)202-2-) - 2

【化153】

90a) 4-((5-メチル-1,3-チアゾール-2-イル)アミノ)ピペリジン-1-カルボン酸 tert-プチ 出証特2004-3099284 ル

実施例88a)で得た4-(チオウレイド)ピペリジン-1-カルボン酸 tert-ブチル(5.2 g)と2-ブロモプロピオンアルデヒド(2.8 g)から実施例46a)と同様にして、題記化合物(2.0 g)を淡黄色固体として得た。

NMR (CDC1₃) δ : 1.33-1.49 (2H, m), 1.46 (9H, s), 2.06 (2H, m), 2.28 (3H, s), 2.9 2 (2H, m), 3.56 (1H, m), 4.02 (2H, brd, J = 10.5), 4.95 (1H, br), 5.71 (1H, s). 90b) $1-(3-((6-\rho \Box \Box -2- + \neg + \nu) \cup -1, 3- + \nu) \cup -1, 3- + \nu)$ $-\nu -2-4\nu -4-2\nu \cup -4-2\nu \cup -1$

実施例90a)で得た化合物(1.8 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸(1.77 g)から実施例46b)と同様にして、題記化合物(2.84 g)を淡黄色固体として得た。

NMR (CDCl₃) δ : 1.25-1.47 (2H, m), 2.03-2.21 (2H, m), 2.28 (3H, s), 2.77-2.91 (3 H, m), 3.19 (1H, m), 3.54 (2H, m), 3.69 (1H, br), 3.80 (1H, d, J = 13.2), 4.87 (1H, br), 6.71 (1H, s), 7.60 (1H, dd, J = 1.8, 8.7), 7.88 -7.95 (4H, m), 8.46 (1H, s).

90c) $1-(3-((6-\rho \, \Box \, \Box -2- \, \tau \, \mathcal{I} \, \mathcal{I}) - N-((2Z)-3, 5- \, \mathcal{I} \, \mathcal{I} \, \mathcal{I} \, \mathcal{I} \, \mathcal{I} \, \mathcal{I} \, \mathcal{I}) - N-((2Z)-3, 5- \, \mathcal{I} \, \mathcal$

実施例90b)で得た化合物(0.80 g)とヨウ化メチル(0.42 ml)から実施例57b)と同様にして、題記化合物(0.43 g)を淡黄色固体として得た。

NMR (CDCl₃) δ : 1.40-1.88 (4H, m), 2.10 (3H, s), 2.88 (2H, dd, J = 6.8, 9.0), 2. 96-3.12 (2H, m), 3.15-3.27 (4H, m), 3.51-3.65 (2H, m), 3.76 (1H, m), 4.10 (1H, m), 6.13 (1H, s), 7.59 (1H, dd, J = 2.0, 8.8), 7.89-7.98 (4H, m), 8.48 (1H, s).

[0174]

実施例 9 1

2-((2Z)-2-((1-(3-((6-クロロ-2-ナフチル)スルホニル) プロパノイル) ピペリジン-4-イル)イミノ)-1,3-チアゾール-3(2H)-イル)アセトアミド

【化154】

実施例88c)で得た1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-N-(1,3-チアゾール-2-イル)-4-ピペリジンアミン(0.50 g)とヨードアセトアミド(0.40 g)から実施例57b)と同様にして、題記化合物(0.61g)を淡黄色固体として得た。

NMR (CDCl₃) δ : 1.39-1.62 (2H, m), 1.72-1.90 (2H, m), 2.89 (2H, t, J = 7.2), 3.0 6 (1H, m), 3.15-3.33 (2H, m), 3.57 (2H, t, J = 7.2), 3.71 (1H, m), 3.97 (1H, m), 4.31 (2H, s), 5.54 (1H, br), 5.98 (1H, d, J = 4.6), 6.58 (1H, d, J = 4.6), 7.08 (1H, br), 7.60 (1H, dd, J = 2.2, 9.2), 7.88-7.98 (4H, m), 8.49 (1H, s).

[0175]

実施例 9 2

2-((2Z)-2-((1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)イミノ)-1,3-チアゾール-3(2H)-イル)エタノール

【化155】

実施例88c)で得た1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-N-(1,3-チアゾール-2-イル)-4-ピペリジンアミン(0.6 g)と2-ヨードエタノール(0.2 ml)から実施例57b)と同様にして、題記化合物を(0.25 g)白色固体として得た。

NMR (CDC1₃) δ : 1.41-1.62 (2H, m), 1.72-1.87 (2H, m), 2.79-2.90 (2H, m), 3.03 (1 H, m), 3.23-3.33 (2H, m), 3.53-3.59 (2H, m), 3.64-3.72 (1H, m), 3.85-3.91 (5H, m), 5.90 (1H, d, J = 5.1), 7.58 (1H, dd, J = 1.8, 7.8), 7.89-7.95 (4H, m), 8.47 (1H, s).

[0176]

実施例 9 3

【化156】

実施例88c)で得た化合物(0.47 g)と1-プロモ-2-メトキシエタン(0.19 ml)およびヨウ化カリウム(0.33 g)から実施例57b)と同様にして、題記化合物(0.21 g)を白色固体として得た

NMR (CDC1₃) δ : 1.53-1.85 (4H, m), 2.82-2.94 (2H, m), 3.01 (1H, m), 3.21-3.35 (2 H, m), 3.34 (3H, s), 3.52-3.66 (4H, m), 3.73 (1H, m), 3.86 (2H, t, J = 4.8), 3.9 5 (1H, m), 5.81 (1H, d, J = 4.7), 6.58 (1H, d, J = 4.7), 7.59 (1H, dd, J = 2.0, 8.8), 7.89-7.98 (4H, m), 8.48 (1H, s).

[0177]

実施例 9 4

((2Z)-2-((1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)イミノ)-5-メチル-1,3-チアゾール-3(2H)-イル)酢酸塩酸塩

【化157】

CI CH2COOH

94a) ((2Z)-2-((1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4-イル) イミノ)-5-メチル-1,3-チアゾール-3(2H)-イル) 酢酸 tert-ブチル

実施例90b)で得た1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-N-(5-メチル-1,3-チアゾール-2-イル)-4-ピペリジンアミン(0.90 g)とブロモ酢酸t-ブチル(1.01 ml)およびヨウ化カリウム(0.63 g)から実施例57b)と同様にして、題記化合物(0.68 g)を白色固体として得た。

NMR (CDC1₃) δ : 1.44 (9H, s), 1.46-1.72 (4H, m), 2.09 (3H, s), 2.87 (2H, t, J = 7.8), 3.01 (1H, m), 3.29 (2H, m), 3.54 (2H, t, J = 7.8), 3.67 (1H, m), 3.84 (1H, m), 4.21 (2H, s), 6.13 (1H, s), 7.58 (1H, dd, J = 1.8, 8.7), 7.89-8.00 (4H, m), 8.47 (1H, s).

94b) ((2Z)-2-((1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)イミノ)-5-メチル-1,3-チアゾール-3(2H)-イル)酢酸塩酸塩

実施例94a)で得た化合物(0.40 g)のTHF溶液(10 ml)に濃塩酸(5 ml)を加え、12時間かき混ぜた。反応液を濃縮し、残留物をジエチルエーテルで洗浄して題記化合物(0.38 g)を無色固体として得た。

NMR (DMSO-d₆) δ : 1.45 (1H, m), 1.60 (1H, m), 1.83-1.98 (2H, m), 2.28 (3H, s), 2 .64 (1H, m), 2.68-2.83 (2H, m), 3.14 (1H, m), 3.57-3.69 (3H, m), 3.88 (1H, d, J = 14.5), 4.22 (1H, d, J = 14.5), 5.01 (2H, s), 7.24 (1H, s), 7.74 (1H, dd, J = 2 .2, 8.8), 8.00 (1H, dd, J = 1.9, 8.8), 8.17-8.31 (3H, m), 8.65 (1H, d, J = 1.9), 10.00 (1H, br).

[0178]

実施例 9 5

1-((2Z)-2-((1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル

)イミノ)-3-メチル-2, 3-ジヒドロ-1, 3-チアゾール-5-イル)エタノール【化158】

95a) 4-(((2Z)-3-メチル-1,3-チアゾール-2(3H)-イリデン)アミノ)ピペリジン-1-カルボン酸 tert-ブチル

実施例88b)で得た4-(1,3-チアゾール-2-イルアミノ)ピペリジン-1-カルボン酸 tert-ブチル(5.0 g)とヨウ化メチル(2.18 ml)から実施例57b)と同様にして、題記化合物(4.2 g)を淡黄色固体として得た。

NMR (CDC1₃) δ : 1.46 (9H, s), 1.51-1.85 (4H, m), 2.82-3.08 (3H, m), 3.26 (3H, s), 3.96 (2H, br), 5.83 (1H, d, J = 4.8), 6.45 (1H, d, J = 4.8).

95b) 4-(((2Z)-5-(1-ヒドロキシエチル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)アミノ)ピペリジン-1-カルボン酸 tert-ブチル

実施例95a)で得られた化合物 (1.0 g) とアセトアルデヒド(0.5 ml) から実施例67a) と同様にして、題記化合物 (0.18 g) を得た。

NMR (CDCl₃) δ : 1.46 (9H, s), 1.47 (3H, d, J = 6.3), 1.50-1.59 (2H, m), 1.67-1.7 8 (2H, m), 2.86-3.02 (2H, m), 3.21 (3H, s), 3.96 (2H, br), 4.75 (1H, q, J = 6.3), 6.36 (1H, s).

実施例95b)で得られた化合物 (0.18~g)に濃塩酸 (2~m1) を加え、かき混ぜた。発泡終了後、エタノールを加え濃縮した。残留物にDBU (0.16~m1)、トリエチルアミン (0.15~m1) およびN -トリメチルシリルアセトアミド (0.28~g) を加えアセトニトリル (5~m1) に溶解した。この溶液を3-((6-クロロ-2-ナフチル) スルホニル) プロパン酸 (0.16~g)、WSC (0.15~g) およびHO Bt (0.12~g) のアセトニトリルけん濁液 (5~m1) に加え、12時間かき混ぜた。反応液を濃縮し、残留物をクロロホルムと飽和重曹水に溶解した。有機層を分取し、無水硫酸ナトリウムで乾燥した。溶媒を留去し、残留物をシリカゲルカラムで精製して題記化合物 (0.07~g) を無色固体として得た。

NMR (CDCl₃) δ : 1.46 (3H, s, J = 6.2), 1.48-1.80 (4H, m), 2.88 (2H, t, J = 7.8), 2.92-3.29 (3H, m), 3.21 (3H, s), 3.56 (2H, t, J = 7.8), 3.81 (1H, m), 4.10 (1H, m), 4.75 (1H, q, J = 6.2), 6.38 (1H, s), 7.59 (1H, dd, J = 1.8, 9.0), 7.88-7.97 (4H, m), 8.48 (1H, s).

[0179]

実施例96

((2Z)-2-((1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4-イル) イミノ)-3-メチル-2,3-ジヒドロ-1,3-チアゾール-5-イル) メタノール

【化159】

96a) 4-(((2Z)-5-ホルミル-3-メチル-1,3-チアゾール-2(3H)-イリデン)アミノ)ピペリジン-1-カルボン酸 tert-プチル

実施例95a)で得た化合物(5.0 g)とDMF(4 ml)から実施例67a)と同様にして、題記化合物(4.6 g)を淡黄色固体として得た。

NMR (CDCl₃) δ : 1.47 (9H, s), 1.27-1.81 (4H, m), 2.97-3.14 (3H, m), 3.41 (3H, s), 3.91 (2H, br), 7.43 (1H, s), 9.46 (1H, s).

96b) 4-(((2Z)-5-(ヒドロキシメチル)-3-メチル-1,3-チアゾール-2(3H)-イリデン)アミノ)ピペリジン-1-カルボン酸 tert-ブチル

実施例96a)で得た化合物 (1.0 g)のエタノール溶液 (10 ml) に水素化ホウ素ナトリウム (0.2 3 g) を加え、30分かき混ぜた。反応液を濃縮し、残留物をシリカゲルカラムで精製して題記化合物 (0.98 g) を無色固体として得た。

NMR (CDCl₃) δ : 1.46 (9H, s), 1.48-1.59 (2H, m), 1.69-1.80 (2H, m), 2.86-3.02 (3 H, m), 3.22 (3H, s), 3.94 (2H, br), 4.45 (2H, s), 6.42 (1H, s).

96c) ((2Z)-2-((1-(3-((6-)pup-2-+pup) + pup) + pup +

実施例96b)で得た化合物(0.98 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸(0.91 g)から実施例95c)と同様にして、題記化合物(0.33 g)を無色固体として得た。

NMR (DMSO-d₆) δ : 1.18 (1H, m), 1.36 (1H, m), 1.56 (1H, m), 1.66 (1H, m), 2.65-2 .79 (2H, m), 2.82-2.97 (2H, m), 3.11 (3H, s), 3.18 (1H, m), 3.59-3.72 (3H, m), 3 .86 (1H, m), 4.23 (2H, d, J = 5.3), 5.10 (1H, t, J = 5.6), 6.77 (1H, s), 7.73 (1 H, dd, J = 2.2, 8.8), 7.99 (1H, dd, J = 1.7, 8.8), 8.23-8.32 (2H, m), 8.65 (1H, s).

[0180]

実施例 9 7

(2Z)-2-((1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)イミノ)-3-メチル-2,3-ジヒドロ-1,3-チアゾール-4-カルボン酸エチル

【化160】

97a) 4-((4-(エトキシカルボニル)-1,3-チアゾール-2-イル)アミノ)ピペリジン-1-カルボン酸 tert-ブチル

実施例88a)で得た4-(チオウレイド)ピペリジン-1-カルボン酸 tert-ブチル(3.0 g)とプロモピルビン酸エチル(2.18 ml)から実施例46a)と同様にして、題記化合物(0.41 g)を得た

NMR (CDCl₃) δ : 1.37 (3H, t, J = 6.9), 1.46 (9H, s), 1.39-1.47 (2H, m), 2.04-2.0 9 (2H, m), 2.96 (2H, m), 3.53 (1H, m), 4.00 (2H, bd, J = 12.0), 4.35 (2H, q, J= 6.9), 5.22 (1H, d, J = 8.4), 7.41 (1H, s).

97b) 2-((1-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル) ピペリジン-4-イル) アミノ)-1,3-チアゾール-4-カルボン酸エチル

実施例97a)で得た化合物(0.46 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸(0.39 g)から実施例46b)と同様にして、題記化合物(0.44 g)を無色固体として得た。

NMR (CDCl₃) δ : 1.29-1.50 (5H, m), 2.05-2.20 (2H, m), 2.81-2.91 (2H, m), 3.22 (1 H, m), 3.53-3.58 (2H, m), 3.68 (1H, m), 3.81 (1H, d, J = 14.4), 4.31-4.36 (3H, m), 5.17 (1H, d, J = 8.1), 7.41 (1H, s), 7.59 (1H, dd, J = 2.1, 8.7), 7.88-7.96 (4H, m), 8.46 (1H, s).

97c) (2Z)-2-((1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)イミノ)-3-メチル-2,3-ジヒドロ-1,3-チアゾール-4-カルボン酸エチル

実施例97b)で得た化合物 (0.44 g)とヨウ化メチル(0.12 ml)から実施例57b)と同様にして、題記化合物 (0.21 g)を得た。

NMR (CDCl₃) δ : 1.35 (3H, t, J = 7.2), 1.47-1.81 (4H, m), 2.84-2.96 (2H, m), 3.08 (1H, m), 3.19-3.33 (2H, m), 3.54 (3H, s), 3.51-3.60 (2H, m), 3.77 (1H, m), 3.9

7 (1H, m), 4.29 (2H, q, J = 7.2), 6.91 (1H, s), 7.59 (1H, dd, J = 1.8, 8.8), 7.9 0-8.01 (4H, m), 8.48 (1H, s).

[0181]

実施例 9 8

(2Z)-2-((1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)イミノ)-N, 3, 4-トリメチル-2, 3-ジヒドロ-1, 3-チアゾール-5-カルボキサミド

【化161】

98a) 4-((4-メチル-5-(メチルカルバモイル)-1,3-チアゾール-2-イル) アミノ) ピペリジン-1-カルボン酸 tert-ブチル

実施例88a)で得た4-(チオウレイド)ピペリジン-1-カルボン酸 tert-ブチル(1.5 g)と2-クロロ-N-メチル-3-オキソブタンアミド(1.0 g)から実施例46a)と同様にして、題記化合物(1.4 g)を得た。

NMR (CDC1₃) δ : 1.39-1.49 (2H, m), 1.46 (9H, s), 2.03-2.10 (2H, m), 2.49 (3H, s), 2.81-2.95 (5H, m), 3.51 (1H, m), 4.03 (2H, brd, J = 12.8), 5.32 (1H, d, J = 6. 6), 5.48 (1H, br).

98b) 2-((1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)アミノ)-N,4-ジメチル-1,3-チアゾール-5-カルボキサミド

実施例98a)で得た化合物(1.4 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸(1.2 g)から実施例46b)と同様にして、題記化合物(1.8 g)を得た。

NMR (CDC1₃) δ : 1.30-1.49 (2H, m), 2.01-2.19 (2H, m), 2.48 (3H, s), 2.77-2.94 (3 H, m), 2.93 (3H, d, J = 4.8), 3.19 (1H, t, J = 14.1), 3.52-3.61 (2H, m), 3.69 (1 H, m), 3.81 (1H, d, J = 14.1), 4.37 (1H, d, J = 14.1), 5.51 (1H, d, J = 7.2), 5.55 (1H, d, J = 4.8), 7.59 (1H, dd, J = 1.8, 7.8), 7.88-7.97 (4H, m), 8.47 (1H, s).

98c) (2Z)-2-((1-(3-((6- ρ ロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)イミノ)-N, 3, 4-トリメチル-2, 3-ジヒドロ-1, 3-チアゾール-5-カルボキサミド

実施例98b)で得た化合物(0.8 g)とヨウ化メチル(0.25 ml)から実施例57b)と同様にして、題記化合物(0.48 g)を得た。

NMR (DMSO-d₆) δ : 1.18 (1H, m), 1.41 (1H, m), 1.58 (1H, m), 1.70 (1H, m), 2.44 (3H, s), 2.63 (3H, d, J = 4.5), 2.68-2.79 (2H, m), 2.86-3.00 (2H, m), 3.17 (1H, m), 3.21 (3H, s), 3.59-3.73 (3H, m), 3.86 (1H, s, J = 13.0), 7.45 (1H, m), 7.73 (1H, dd, J = 2.2, 8.8), 7.98 (1H, m), 8.17 (1H, d, J = 8.8), 8.24-8.32 (2H, m), 8.65 (1H, d, J = 1.5).

[0182]

実施例 9 9

((2Z)-2-((1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)イミノ)-3-メチル-2,3-ジヒドロ-1,3-チアゾール-4-イル)メタノール

【化162】

99a) 4-((4-((アセチルオキシ)メチル)-1,3-チアゾール-2-イル)アミノ)ピペリジン-1-カ 出証特2004-3099284 ルボン酸 tert-ブチル

実施例88a)で得た4-(チオウレイド)ピペリジン-1-カルボン酸 tert-ブチル(7.2 g)と酢酸 3-ブロモ-2-オキソプロピル(5.0 g)から実施例46a)と同様にして、題記化合物(3.5 g)を 得た。

NMR (CDCl₃) δ : 1.39-1.48 (2H, m), 1.46 (9H, s), 2.05-2.11 (2H, m), 2.95 (2H, t, J = 7.8), 3.53 (1H, m), 4.02 (2H, br), 4.95 (2H, s), 5.04 (1H, d, J = 5.2), 6.4 7 (1H, s).

99b) 4-((4-(ヒドロキシメチル)-1,3-チアゾール-2-イル)アミノ)ピペリジン-1-カルボン 酸 tert-ブチル

実施例99a)で得た化合物(1.0 g)とヨウ化メチル(0.35 ml)から実施例57b)と同様にして、 題記化合物(0.92 g)を得た。

NMR (CDC1₃) δ : 1.46 (9H, s), 1.50-1.61 (2H, m), 1.73-1.83 (2H, m), 2.91-3.05 (3 H, m), 3.32 (3H, s), 3.94 (2H, br), 4.39 (2H, d, J = 5.7), 5.82 (1H, s).

99c) ((2Z)-2-((1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)イミノ)-3-メチル-2,3-ジヒドロ-1,3-チアゾール-4-イル)メタノール

実施例99b)で得た化合物(0.33 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸(0. 27 g)から実施例95c)と同様にして、題記化合物(0.13 g)を得た。

NMR (CDC1₃) δ : 1.46-1.88 (4H, m), 2.88 (2H, t, J = 6.9), 3.04 (1H, m), 3.10-3.3 0 (2H, m), 3.32 (3H, s), 3.55 (2H, t, J = 6.9), 3.76 (1H, m), 4.05 (1H, m), 4.40(2H, s), 5.83 (1H, s), 7.58 (1H, dd, J = 1.8, 8.4), 7.89-7.96 (4H, m), 8.47 (1H, s), s).

[0183]

実施例100

N-((1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)メチル) -N-((2Z)-3-メチル-1,3-チアゾール-2(3H)-イリデン)アミン

【化163】

100a) 4-((チオウレイオド)メチル)ピペリジン-1-カルボン酸 tert-プチル 4-(アミノメチル)ピペリジン-1-カルボン酸 tert-プチル(10 g)とイソチオシアン酸ベン

ゾイル(6.3 ml)から実施例66a)と同様にして、題記化合物(9.0 g)を得た。

NMR (CDC1₃) δ : 1.07-1.23 (2H, m), 1.45 (9H, s), 1.65-1.89 (3H, m), 2.62-2.77 (2 H, m), 4.03-4.17 (2H, m), 6.03-6.18 (2H, br).

100b) 4-((1,3-チアゾール-2-イル)アミノメチル)ピペリジン-1-カルボン酸 tert-ブチル 実施例100a)で得た化合物(3.0 g)とクロロアセトアルデヒド(3.3 ml, 40%水溶液)から実 施例46a)と同様にして、題記化合物(1.4 g)を得た。

NMR (CDC1₃) δ : 1.12-1.27 (2H, m) 1.45 (9H, s), 1.73-1.86 (3H, m), 2.69 (2H, m), 3.18 (2H, d, J = 6.6), 4.11 (2H, m), 5.73 (1H, br), 6.47 (1H, d, J = 3.6), 7.09(1H. d. J = 3.6).

100c) N-((1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル) メチル)-1,3-チアゾール-2-アミン

実施例100b)で得た化合物(1.26 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸(1 .27 g)から実施例46b)と同様にして、題記化合物(1.72 g)を得た。

NMR (CDC1₃) δ : 1.05-1.23 (2H, m), 1.76-1.95 (3H, m), 2.51 (1H, m), 2.85 (2H, m) , 2.97 (1H, m), 3.19 (2H, d, J = 3.9), 3.54 (2H, m), 3.85 (1H, d, J= 13.8), 4.51 (1H, d, J = 13.8), 5.44 (1H, br), 6.48 (1H, d, J = 3.6), 7.09 (1H, d, J = 3.6),

出証特2004-3099284

7.59 (1H, dd, J = 1.8, 8.7), 7.88 (4H, m), 8.46 (1H, s).

100d) N-((1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル) ピペリジン-4-イル) メチル)-N-((2Z)-3-メチル-1, 3-チアゾール-2(3H)-イリデン) アミン

実施例100c)で得た化合物(0.80 g)とヨウ化メチル(0.42 ml)から実施例57b)と同様にして、題記化合物(0.31 g)を得た。

NMR (CDCl₃) δ : 1.06-1.22 (2H, m), 1.73-1.82 (2H, m), 2.53 (1H, m), 2.82-2.96 (4 H, m), 3.02 (1H, m), 3.27 (3H, s), 3.49-3.62 (2H, m), 3.87 (1H, d, J = 13.5), 4. 47 (1H, d, J = 13.5), 5.85 (1H, d, J = 4.9), 6.48 (1H, d, J = 4.9), 7.59 (1H, dd, J = 1.9, 8.6), 7.89-8.01 (4H, m), 8.47 (1H, s).

[0184]

実施例 1 0 1

6-クロロ-N-(2-(4-(((2Z)-3-メチル-1,3-チアゾール<math>-2(3H)-イリデン)アミノ)-1-ピペリジニル)-2-オキソエチル)-2-ナフタレンスルホンアミド

【化164】

101a) 6-クロロ-N-(2-オキソ-2-(4-(1,3-チアゾール-2-イルアミノ)-1-ピペリジニル) エチル)-2-ナフタレンスルホンアミド

実施例88b)で得た4-(1,3-チアゾール-2-イル)アミノピペリジン-1-カルボン酸 tert-ブチル(0.57 g)とN-((6-クロロ-2-ナフチル)スルホニル)グリシン(0.6 g)から実施例46b)と同様にして、題記化合物(0.7 g)を得た。

NMR (CDCl₃) δ : 1.14-1.42 (2H, m), 1.78-1.96 (2H, m), 2.75 (1H, t, J = 11.0), 3. 00-3.12 (2H, m), 3.62-4.01 (4H, m), 6.59 (1H, d, J = 3.6), 6.98 (1H, d, J = 3.6), 7.53 (1H, d, J = 7.0), 7.68 (1H, dd, J = 2.2, 7.0), 7.86-7.94 (2H, m), 8.10 -8 .23 (2H, m), 8.49 (1H, s).

101b) 6-クロロ-N-(2-(4-(((2Z)-3-メチル-1, 3-チアゾール-2(3H)-イリデン)アミノ)-1-ピペリジニル)-2-オキソエチル)-2-ナフタレンスルホンアミド

実施例101a)で得た化合物(0.7 g)とヨウ化メチル(0.19 ml)から実施例57b)と同様にして、題記化合物(0.29 g)を得た。

NMR (DMSO-d₆) δ : 1.20 (1H, m), 1.39 (1H, m), 1.55-1.72 (2H, m), 2.80-2.92 (2H, m), 3.13 (1H, m), 3.13 (3H, s), 3.61 (1H, m), 3.78-3.90 (3H, m), 6.18 (1H, br), 6.91 (1H, br), 7.68 (1H, dd, J = 2.2, 8.8), 7.84 (1H, t, J = 5.6), 7.92 (1H, dd, J = 1.9, 8.8), 8.10 (1H, d, J = 8.0), 8.17-8.24 (3H, m), 8.49 (1H, s).

[0185]

実施例102

【化165】

102a) $2-(((6-\rho -2-\tau -2-\tau -1) -1) -1- 2-(4-(1,3-\tau -2-\tau -1) -1- 2-\tau -1) -1- 2-\tau -1)$

実施例88b)で得た4-(1,3-チアゾール-2-イル)アミノピペリジン-1-カルボン酸 tert-ブチル $(0.57~\mathrm{g})$ とN-(2-アミノ-2-オキソエチル)-N-((6-クロロ-2-ナフチル)スルホニル)グリ

シン(0.71 g)から実施例46b)と同様にして、題記化合物(0.62 g)を得た。

NMR (CDC1₃) δ : 1.21-1.42 (2H, m), 1.89-2.05 (2H, m), 2.86 (1H, m), 3.16 (1H, m), 3.72-3.82 (4H, m), 4.10 (1H, m), 4.36 (1H, d, J = 2.8), 6.61 (1H, d, J = 3.6), 7.00 (1H, d, J = 3.6), 7.16 (1H, br), 7.58 (1H, s, J = 6.8), 7.70 (1H, dd, J = 1.8, 8.8), 7.93 (1H, dd, J = 1.8, 8.8), 8.02 (H, br), 8.10 (1H, d, J = 8.8), 8.2 (0-8.25 (2H, m), 8.55 (1H, s).

102b) $2-(((6-\rho \Box \Box -2-\tau) \neg + \nu) \neg + \nu) (2-(4-(((2Z)-3-) \neg + \nu -1, 3-\tau) \neg + \nu -2 (3H) \neg + \nu) \neg + \nu) \neg + \nu -1 \neg + \nu -$

実施例102a)で得た化合物(0.62 g)とヨウ化メチル(0.15 ml)から実施例57b)と同様にして、題記化合物(0.27 g)を得た。

NMR (DMSO-d₆) δ : 1.28-1.58 (2H, m), 1.68-1.84 (2H, m), 2.93-3.08 (2H, m), 3.15-3.30 (4H, m), 3.75 (1H, m), 3.83 (2H, s), 4.03 (1H, m), 4.36 (2H, s), 7.14 (1H, s), 7.70 (1H, dd, J = 2.0, 9.0), 7.94 (1H, dd, J = 1.9, 8.8), 8.11 (1H, d, J = 8.8), 8.19-8.27 (2H, m), 8.56 (1H, s).

[0186]

実施例103

【化166】

103a) 5-クロロ-2-((3-オキソ-3-(4-(1,3-チアゾール-2-イルアミノ)-1-ピペリジニル)プロピル)スルホニル)-1H-インドール-1-カルボン酸 tert-プチル

実施例88b)で得た4-(1,3-チアゾール-2-イルアミノ)ピペリジン-1-カルボン酸 tert-ブチル(0.57 g)と3-((1-tert-ブトキシカルボニル)-5-クロロ-1H-インドール-2-イル)スルホニルプロパン酸(0.77 g)から実施例46b)と同様にして、題記化合物(0.64 g)を得た。

NMR (CDC1₃) δ : 1.39-1.64 (2H, m), 1.74 (9H, s), 2.03-2.20 (2H, m), 2.90-3.03 (3 H, m), 3.25 (1H, m), 3.62 (1H, m), 3.84 (1H, d, J = 14.2), 3.95-4.10 (2H, m), 4.29 (1H, d, J = 14.2), 6.49 (1H, d, J = 3.6), 7.08 (1H, d, J = 3.6), 7.37-7.52 (2 H, m), 7.66 (1H, m), 8.00 (1H, d, J = 8.8).

103b) 5-クロロ-2-((3-(4-(((2Z)-3-メチル-1,3-チアゾール-2(3H)-イリデン)アミノ)-1-ピペリジニル)-3-オキソプロピル)スルホニル)-1H-インドール-1-カルボン酸 tert-ブチル

実施例103a)で得た化合物(0.64 g)とヨウ化メチル(0.14 ml)から実施例57b)と同様にして、題記化合物(0.32 g)を得た。

NMR (CDC1₃) δ : 1.45-1.64 (2H, m), 1.64 (9H, s), 1.75-1.87 (2H, m), 2.90 (2H, t, J = 6.6), 2.99 (1H, m), 3.04-3.31 (2H, m), 3.25 (3H, s), 3.68 (2H, t, J = 6.6), 3.78 (1H, m), 4.08 (1H, m), 5.84 (1H, d, J = 4.8), 6.45 (1H, d, J = 4.8), 7.13 (1H, s), 7.31 (1H, dd, J = 1.8, 8.7), 7.40 (1H, d, J = 8.7), 7.68 (1H, d, J = 1.8).

103c) 1-(3-((5-クロロ-1H-インドール-2-イル)スルホニル)プロパノイル)-N-((2Z)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-4-ピペリジンアミン 2 塩酸塩

実施例103b)で得た化合物(0.32 g)から実施例52b)と同様にして、題記化合物(0.30 g)を得た。

NMR (DMSO-d₆) δ : 1.48 (1H, m), 1.69 (1H, m), 1.86-2.01 (2H, m), 2.63 (1H, m), 2.68-2.82 (2H, m), 3.12 (1H, m), 3.40-3.50 (3H, m), 3.67 (3H, s), 3.87 (1H, d, J = 13.5), 4.25 (1H, d, J = 13.5), 7.10-7.18 (2H, m), 7.34 (1H, dd, J = 2.1, 8.6),

7.48-7.61 (2H, m), 7.80-7.91 (1H, m), 9.70 (1H, d, J = 7.7), 12.63 (1H, s). [0 1 8 7]

実施例104

N-((2Z)-5-((4-(3-((6-クロロ-2-ナフチル) スルホニル) プロパノイル)-1-ピペラジニル) メチル)-3,4-ジメチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン

【化167】

104a) N-((2Z)-3,4-ジメチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン 実施例85a) で得たメチル<math>(4-メチル-1,3-チアゾール-2-イル)アミン(8.0~g)とヨウ化メチル(7.8~ml)から実施例57b)と同様にして、題記化合物(2.8~g)を茶褐色粘性油状物として得た。

NMR (CDC1₃) δ: 2.08 (3H, s), 2.99 (3H, s), 3.23 (3H, s), 5.53 (1H, s). 104b) (2Z)-3,4-ジメチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-カルバルデヒド

実施例104a)で得た化合物(1.0 g)とDMF(1.0 ml)から実施例67a)と同様にして、題記化合物(0.76 g)を得た。

NMR (CDC1₃) δ : 2.49 (3H, s), 3.06 (3H, s), 3.38 (3H, s), 9.71 (1H, s).

実施例104b)で得た化合物(0.34 g)と実施例3a)で得た1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペラジン(0.73 g)の1,2-ジクロロエタン溶液(10 ml)に酢酸(0.14 ml)とトリアセトキシ水素化ホウ酸ナトリウム(0.64 g)を加え、12時間かき混ぜた。反応液をクロロホルムで希釈し、飽和重曹水で洗浄、無水硫酸ナトリウムで乾燥した。溶媒を留去し、残留物をシリカゲルカラムで精製して題記化合物(0.76 g)を得た。

NMR (CDC1₃) δ : 2.04 (3H, s), 2.36 (2H, t, J = 5.0), 2.44 (2H, t, J = 5.0), 2.87 (2H, dd, J = 7.0, 8.0), 3.00 (3H, s), 3.25 (3H, s), 3.35 (2H, s), 3.46 (2H, t, J = 5.0), 3.50-3.60 (4H, m), 7.60 (1H, dd, J = 1.8, 8.8), 7.92-7.98 (4H, m), 8.4 8 (1H, s).

[0188]

実施例105

2-((4-(3-((6-)-1-2-+7+1)), 2+1), 2+1)) プロパノイル)-1-ピペラジニル)メチル)-3- -メチル-5, 6-ジヒドロイミダゾ[2, 1-b] [1, 3] チアゾール

【化168】

105a) 3-メチル-5,6-ジヒドロイミダゾ[2,1-b][1,3]チアゾール

プロモアセトン(25.0 g)とエチレンチオ尿素(12.4 g)から実施例46a)と同様にして、題記化合物(15.0 g)を得た。

NMR (CDC1₃) δ : 2.11 (3H, s), 4.27-4.38 (4H, m), 6.55 (1H, s).

105b) 3-メチル-5,6-ジヒドロイミダゾ[2,1-b][1,3]チアゾール-2-カルバルデヒド 実施例105a)で得た化合物(1.0 g)とDMF(1.0 ml)から実施例67a)と同様にして、題記化合物(1.17 g)を得た。

NMR (CDC1₃) δ : 2.40 (3H, s), 3.90 (2H, dd, J = 8.0, 9.6), 4.35 (2H, dd, J = 8.0 , 9.6), 9.57 (1H, s).

105c) 2-((4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-1-ピペラジニル)メ チル)-3-メチル-5,6-ジヒドロイミダゾ[2,1-b][1,3]チアゾール

実施例105b)で得た化合物(0.34 g)から実施例104c)と同様にして、題記化合物(0.34 g)を 得た。

NMR (CDC1₃) δ : 2.07 (3H, s), 2.33-2.49 (4H, m), 2.80-2.94 (2H, m), 3.33 (2H, s) , 3.43-3.59 (6H, m), 4.04 (2H, t, J=9.4), 4.30 (2H, t, J=9.4), 7.60 (1H, dd, J = 1.8, 8.8, 7.88-7.98 (4H, m), 8.47 (1H, s).

[0189]

実施例106

2-((4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-1-ピペラジニル)メチル)-3 -メチル-6,7-ジヒドロ-5H-[1,3]チアゾロ[3,2-a]ピリミジン

【化169】

106a) 3-メチル-6,7-ジヒドロ-5H-[1,3]チアゾロ[3,2-a]ピリミジン

ブロモアセトン(25.0 g)とプロピレンチオ尿素(15.0 g)から実施例46a)と同様にして、題 記化合物(17.9 g)を得た。

NMR (CDC1₃) δ : 1.84-1.96 (2H, m), 1.99 (3H, s), 3.45 (2H, t, J = 5.8), 3.66 (2H) . t, J = 5.8), 5.33 (1H, m).

106b) 3-メチル-6,7-ジヒドロ-5H-[1,3]チアゾロ[3,2-a]ピリミジン-2-カルバルデヒド 実施例106a)で得た化合物(7.0 g)とDMF(7.0 ml)から実施例67a)と同様にして、題記化合 物(5.84 g)を得た。

NMR (CDCl₃) δ : 1.98 (2H, dt, J = 5.6, 6.0), 2.37 (3H, s), 3.53 (2H, t, J = 5.6) , 3.78 (2H, t, J = 6.0), 9.71 (1H, s).

106c) 2-((4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-1-ピペラジニル)メ チル)-3-メチル-6,7-ジヒドロ-5H-[1,3]チアゾロ[3,2-a]ピリミジン

実施例106b)で得た化合物(0.55 g)から実施例104c)と同様にして、題記化合物(0.51 g)を 得た。

NMR (CDCl₃) δ : 2.05 (3H, s), 2.35 (2H, t, J = 5.1), 2.44 (2H, t, J = 5.1), 2.85 (2H, t, J = 8.1), 3.34 (2H, s), 3.44 (2H, t, J = 5.1), 3.49-3.58 (8H, m), 3.77 (2H, t, J = 5.1), 7.59 (1H, dd, J = 2.1, 8.7), 7.88-7.96 (4H, m), 8.46 (1H, s).

[0190]

実施例107

N-((2Z)-5-((4-(3-((5-クロロ-1H-インドール-2-イル)スルホニル)プロパノイル)-1-ピペ ラジニル)メチル)-3,4-ジメチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン2塩酸 塩

【化170】

107a) 4-(((2Z)-3,4-ジメチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-イル) メチル)-1-ピペラジンカルボン酸 tert-プチル

実施例104b)で得た(2Z)-3,4-ジメチル-2-(メチルイミノ)-2,3-ジヒドロ-1,3-チアゾール-5-カルバルデヒド(0.41 g)とピペラジン-1-カルボン酸 tert-ブチル(0.45 g)から実施例1 04c)と同様にして、題記化合物(0.64 g)を無色固体として得た。

NMR (CDCl₃) δ : 1.46 (9H, s), 2.04 (3H, s), 2.39 (4H, t, J = 5.1), 2.99 (3H, s), 3.24 (3H, s), 3.35 (2H, s), 3.43 (4H, t, J = 5.1).

107b) 5-クロロ-2-((3-(4-(((2Z)-3, 4-ジメチル-2-(メチルイミノ)-2, 3-ジヒドロ-1, 3-チアゾール-5-イル)メチル)ピペラジン-1-イル)-3-オキソプロピル)スルホニル)-1H-インドール-1-カルボン酸 tert-プチル

実施例107c)で得た化合物(0.34 g)と3-((1-tert-プトキシカルボニル)-5-クロロ-1H-インドール-2-イル)スルホニルプロパン酸(0.39 g)から実施例46b)と同様にして、題記化合物(0.40 g)を得た。

NMR (CDCl₃) δ : 1.73 (9H, s), 2.05 (3H, s), 2.32 -2.46 (4H, m), 2.91 (2H, t, J = 7.6), 3.00 (3H, s), 3.24 (3H, s), 3.35 (2H, s), 3.44-3.58 (4H, m), 4.04 (2H, t, J = 7.6), 7.44 (1H, dd, J = 2.2, 9.0), 7.51 (1H, s), 7.65 (1H, d, J = 2.2), 8.0 0 (1H, d, J = 9.0).

107c) N-((2Z)-5-((4-(3-((5-クロロ-1H-インドール-2-イル)スルホニル)プロパノイル)-1-ピペラジニル)メチル)-3,4-ジメチル-1,3-チアゾール-2(3H)-イリデン)-N-メチルアミン2塩酸塩

実施例107a)で得た化合物(0.40 g)から実施例7b)と同様にして、題記化合物(0.38 g)を得た。

NMR (DMSO-d₆) δ : 2.34 (3H, s), 2.77-2.92 (4H, m), 2.97-3.13 (5H, m), 3.32-3.69 (6H, m), 4.04 (1H, m), 4.30 (1H, m), 4.47 (2H, s), 7.16 (1H, s), 7.35 (1H, dd, J = 2.1, 8.6), 7.51-7.66 (2H, m), 7.81 (1H, s), 10.57 (1H, br), 12.67 (1H, br).

[0191]

実施例108

 $4-(3-((6-\rho uu-2-+ \tau \tau + \nu) \lambda u + \lambda u) \tau u + \lambda u) - N-((2Z)-3- \lambda \tau u + \lambda u) - N-((2Z)-3- \lambda \tau u - \lambda u) - N-((2Z)-3- \lambda \tau u) -$

【化171】

108a) 4-(チオウレイド)ピペラジン-1-カルボン酸 tert-ブチル

4-アミノピペラジン-1-カルボン酸 tert-ブチル(WO 0214271: 2.0 g)とイソチオシアン酸ベンゾイル(1.34 ml)から実施例66a)と同様にして、題記化合物(2.34 g)を得た。

NMR (CDC1₃) δ : 1.46 (9H, s), 2.56 (2H, m), 2.99 (4H, m), 4.08 (2H, br), 6.41 (1 H, br), 7.03 (1H, Br), 7.32 (1H, s).

108b) 4-(1,3-チアゾール-2-イル)アミノピペラジン-1-カルボン酸 tert-ブチル

実施例108a)で得た化合物(2.3 g)とクロロアセトアルデヒド(2.2 ml, 40%水溶液)から実施例46a)と同様にして、題記化合物(1.83 g)を得た。

NMR (CDCl₃) δ : 1.47 (9H, s), 2.83 (4H, br), 3.55 (4H, br), 6.61 (1H, d, J = 3.6), 7.15 (1H, d, J = 3.6).

108c) $4-(3-((6-\rho u u-2-+ \tau \tau + \nu) \tau u + \nu) \tau u \tau \tau \tau \nu) \tau u \tau \tau \nu) -N-1, 3-チアゾール-2-イルピペラジン-1-アミン$

実施例108b)で得た化合物(1.83 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸(1.92 g)から実施例46b)と同様にして、題記化合物(2.42 g)を得た。

NMR (CDCl₃) δ : 2.80-2.92 (6H, m), 3.53-3.67 (6H, m), 6.18 (1H, br), 6.63 (1H, d, J = 3.6), 7.16 (1H, d, J = 3.6), 7.59 (1H, dd, J = 2.1, 9.0), 7.88-7.96 (4H, m), 8.47 (1H, s).

108d) 4-(3-((6-クロロ-2-+フチル)スルホニル)プロパノイル)-N-((2Z)-3-メチル-1,3-チアゾール-2(3H)-イリデン)-1-ピペラジンアミン

実施例108c)で得た化合物(0.50 g)とヨウ化メチル(0.10 ml)から実施例57b)と同様にして

、題記化合物(0.42 g)を得た。

NMR (CDC1₃) δ : 2.68-2.74 (4H, m), 2.86-2.91 (2H, m), 3.28 (3H, s), 3.50-3.59 (4 H, m), 5.88 (1H, d, J = 4.5), 6.41 (1H, d, J = 4.5), 7.59 (1H, dd, J = 1.5, 7.8) 7.90-7.97 (4H, m), 8.48 (1H, s).

[0192]

実施例109

2-((2Z)-2-((4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-1-ピペラジニル)イミノ)-1,3-チアゾール-3(2H)-イル)エタノール

【化172】

実施例108c)で得た4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-N-(1,3-チア ゾール-2-イル)ピペラジン-1-アミン(0.50 g)と2-ヨードエタノール(0.28 ml)から実施例 57b)と同様にして、題記化合物(0.28 g)を得た。

NMR (CDC1₃) δ : 2.70 (4H, m), 2.87 (2H, t, J = 8.2), 3.52-3.60 (6H, m), 3.88 (4H) , s), 5.92 (1H, d, J = 4.4), 6.43 (1H, d, J = 4.4), 7.59 (1H, dd, J = 1.8, 8.8), 7.93-7.97 (4H, m), 8.48 (1H, s).

[0193]

実施例110

2-((2Z)-2-((4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-1-ピペラジニル) イミノ)-1,3-チアゾール-3(2H)-イル)アセトアミド

【化173】

実施例108c)で得た4-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)-N-(1,3-チア ゾール-2-イル)ピペラジン-1-アミン(0.50 g)と2-ヨードアセトアミド(0.30 g)から実施 例57b)と同様にして、題記化合物(0.25 g)を得た。

NMR (CDC1₃) δ : 2.66-2.76 (4H, m), 2.87 (2H, t, J = 7.8), 3.53-3.58 (6H, m), 4.3 0 (2H, s), 5.36 (1H, br), 5.98 (1H, d, J = 5.1), 6.52 (1H, d, J = 5.1), 6.95 (1H , br), 7.58 (1H, dd, J = 2.1, 7.8), 7.89-7.96 (4H, m), 8.46 (1H, s).

[0194]

実施例111

(3Z)-7-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-(メチルイミノ)-6,7-ジヒドロ[1,3]チアゾロ[3,4-a]ピラジン-8(5H)-オン

【化174】

111a) 2-(メチルアミノ)-1,3-チアゾール-4-カルボン酸エチル

プロモピルビン酸エチル(10 g)とN-メチルチオ尿素から実施例46a)と同様にして、題記化 合物(6.42 g)を淡黄色固体として得た。

NMR (CDCl₃) δ : 1.37 (3H, t, J = 7.1), 3.01 (3H, d, J = 4.9), 4.35 (2H, q, J = 7.1) .1), 6.48 (1H, br), 7.40 (1H, s).

111b) 4-((2-ヒドロキシエチル)((2-(メチルアミノ)-1,3-チアゾール-4-イル)カルボニル)アミノ)ピペリジン-1-カルボン酸 tert-ブチル

実施例111a)で得た化合物 (2.00 g) のエタノール溶液 (10 ml) に 1 N 水酸化ナトリウム水溶液 (10 ml) 加え、24時間かき混ぜた。反応液を塩酸で中和し、濃縮した。残留物をアセトニトリル (10 ml) にけん濁し、WSC (1.45 g) とHOBt (1.16 g) を加えた。反応液に4-((2-EF) PF) ロキシエチル) アミノ) ピペリジン-1- カルボン酸 (1.24 g) 、(1.24 g)

NMR (CDCl₃) δ : 1.46 (9H, s), 1.72-1.90 (4H, m), 2.74 (2H, br), 3.99 (3H, d, J = 5.2), 3.60 (2H, m), 3.78 (2H, m), 4.18-4.24 (3H, m).

111c) 4-((3Z)-3-(メチルイミノ)-8-オキソ-5,6-ジヒドロ[1,3]チアゾロ[3,4-a]ピラジン-7(8H)-イル)ピペリジン-1-カルボン酸 tert-ブチル

実施例111b)で得た化合物 (0.80 g) と2,6-ルチジン (0.54 ml) のジクロロメタン溶液 (20 ml) に-40 $\mathbb C$ でトリフルオモメタンスルホン酸無水物 (0.38 ml) を加えた。反応液を1時間かけて室温まで昇温し、反応液をクロロホルムと飽和重曹水に注ぎ込んだ。クロロホルム層を分取し、無水硫酸ナトリウムで乾燥した。溶媒を留去し、残留物をシリカゲルカラムで精製して題記化合物化合物 (0.34 g) を淡黄色固体として得た。

NMR (CDC1₃) δ : 1.47 (9H, s), 1.55-1.70 (4H, m), 2.76-2.89 (2H, m), 3.01 (3H, s), 3.49 (2H, t, J = 5.2), 3.84 (2H, t, J = 5.2), 4.24 (1H, d, J = 12.2), 4.71 (1H, m), 6.91 (1H, s).

111d) (3Z)-7-(1-(3-((6-クロロ-2-ナフチル)スルホニル)プロパノイル)ピペリジン-4-イル)-3-(メチルイミノ)-6,7-ジヒドロ[1,3]チアゾロ[3,4-a]ピラジン-8(5H)-オン

実施例111c)で得た化合物(0.34 g)と3-((6-クロロ-2-ナフチル)スルホニル)プロパン酸から実施例46b)と同様にして、題記化合物(0.34 g)を無色固体として得た。

NMR (CDCl₃) δ : 1.51-1.83 (4H, m), 2.62 (1H, t, J = 11.7), 2.80-2.95 (2H, m), 3.00 (3H, s), 3.18 (1H, t, J = 11.7), 3.43-3.48 (2H, m), 3.50-3.63 (2H, m), 3.81-3.83 (2H, m), 3.96 (1H, d, J = 14.1), 4.68 (1H, d, J = 14.1), 4.80 (1H, m), 6.91 (1H, s), 7.60 (1H, dd, J = 1.8, 8.7), 7.88-7.95 (4H, m), 8.47 (1H, s).

[0195]

製剤例1

本発明における式(I)で表される化合物またはその塩を有効成分として含有するFXa阻害剤(例、深部静脈血栓症治療剤、心原性脳梗塞治療剤など)は、例えば、次のような処方によって製造することができる。

なお、以下の処方において活性成分以外の成分(添加物)は、日本薬局方、日本薬局方外 医薬品規格または医薬品添加物規格における収載品などを用いることができる。

1. カプセル剤

(1)	実施例12で得られた化合物	120mg
(2)	ラクトース	2 1 0 m g
(3)	微結晶セルロース	2 7 m g
(4)	ステアリン酸マグネシウム	3 m g
	1 カプヤル	3 6 0 m a

(1)、(2)と(3)および(4)の1/2を混和した後、顆粒化する。これに残りの

(4)を加えて全体をゼラチンカプセルに封入する。

2. カプセル剤

(1)	実施例83で得られた化合物	$120\mathrm{mg}$
(2)	ラクトース	$210 \mathrm{mg}$
(3)	微結晶セルロース	$27 \mathrm{mg}$
(4)	ステアリン酸マグネシウム	3 m g
	1 カプヤル	3 6 0 m a

(1)、(2)と(3)および(4)の1/2を混和した後、顆粒化する。これに残りの

ページ: 106/

- (4) を加えて全体をゼラチンカプセルに封入する。
- 3. 錠剤
- (1) 実施例12で得られた化合物 120mg
- (3) コーンスターチ 54mg
- (4) 微結晶セルロース10.5 mg
- (5) ステアリン酸マグネシウム1.5 mg1錠360 mg

(1)、(2)、(3)、(4)の2/3および(5)の1/2を混和した後、顆粒化する。残りの(4)および(5)をこの顆粒に加えて錠剤に加圧成型する。

4. 錠剤

- (1) 実施例 8 3 で得られた化合物 1 2 0 m g
- $(2) \, \exists \, \rho \, \mathsf{h} \mathsf{A} \qquad \qquad 1 \, \mathsf{7} \, \mathsf{4} \, \mathsf{m} \, \mathsf{g}$
- $(3) \quad \exists \lambda \lambda \beta f \qquad \qquad 54 \text{ mg}$
- (4) 微結晶セルロース 10.5 mg
- (5) ステアリン酸マグネシウム 1.5 mg

1錠 360mg

(1)、(2)、(3)、(4)の2/3および(5)の1/2を混和した後、顆粒化する。残りの(4)および(5)をこの顆粒に加えて錠剤に加圧成型する。 製剤例2

日局注射用蒸留水50mlに実施例12で得られた化合物50mgを溶解した後、日局注射用蒸留水を加えて100mlとする。この溶液を滅菌条件下でろ過し、次にこの溶液1mlずつを取り、滅菌条件下、注射用バイアルに充填し、凍結乾燥して密閉する。

[0196]

実験例1

(1) ヒト活性化血液凝固第 X 因子 (F X a) 阻害作用

実験方法:96穴マイクロプレートに0.145M食塩及び2mM塩化カルシウム含有0.05Mトリス塩酸緩衝液(pH8.3)225 μ l、試料(試験化合物をジメチルスルフォキシドに溶解)5 μ l及びヒトFXa(0.3unit/ml)10 μ lを加えて37 $\mathbb C$ で約10分間反応させた後、基質(3mM, S-2765)10 μ lを添加して $37\mathbb C$ で10分間反応させた。次いで、50%酢酸水25 μ lを加えて反応を停止させた後、分光光度計により405nmの吸光度の変化を測定し、FXa作用を50%阻害する濃度($1C_{50}$)を算出した。

[0197]

- (2) In vitro凝固時間測定法
- (2-1) 外因系凝固時間 (PT) 測定法:

PT試薬(DIAGNOSTICA STAGO)を用い、自動血液凝固時間測定装置(STA compact, DIAGNO STICA STAGO)により測定した。ヒト正常血漿(新鮮ヒト血漿FFP,積水化学工業)97 μ 1 に薬物3 μ 1を添加し、37 $\mathbb C$ で4分間予備加温した。上記血漿50 μ 1に対し、ウサギ脳由来組織トロンボプラスチン溶液を100 μ 1添加した後、凝固までの時間を測定した。薬物はジメチルスルホキシド(DMSO)に溶解して使用した。凝固時間2倍延長濃度は、薬物の代わりにDMSOを添加したときの凝固時間をもとに算出した。

(2-2) 内因系凝固時間 (APTT) 測定法:

STA-APTT-LT (DIAGNOSTICA STAGO) を用い、自動血液凝固時間測定装置により測定した。ヒト正常血漿 97μ 1に薬物 3μ 1を添加した。血漿 50μ 1に対し活性部分トロンボプラスチン溶液を 50μ 1添加し、37℃で4分間予備加温した。 $25\,$ mmo1/1 のCaCl2溶液 50μ 1を添加して、凝固までの時間を測定した。薬物はDMSOに溶解して使用した。凝固時間2倍延長濃度は(2-1)と同様に算出した。

(2-3) トロンビン凝固時間(TT) 測定法:

フィブリノーゲン試薬 (DIAGNOSTICA STAGO) を用い、自動血液凝固時間測定装置によ

[0198]

(3) Ex vivo 凝固時間測定法 (マウス)

(3-1) 静脈内投与:

雄性ICRマウス(25 - 35g, 日本クレア)を使用した。ペントバルビタール(50 mg/kg , i.p.)麻酔下にて、尾静脈より薬物を5 ml/kgの容量で単回投与した。投与5分後に、腹部大動脈もしくは心臓より3.8%クエン酸ナトリウム(チトラール,山之内製薬)1/10容にて0.8 ml採血し、3000rpmで15分間遠心し血漿を得た。上記血漿50 μ 1に対し、ウサギ脳由来組織トロンボプラスチン溶液を100 μ 1添加した後、凝固までの時間を測定した。凝固時間はPT試薬(DIAGNOSTICA STAGO)を用い、自動血液凝固時間測定装置(STA compact)により測定した。薬物はジメチルアセトアミドと1/10 N塩酸と生理食塩液を混合した溶液に溶解して使用し、対照群には薬物の代わりにジメチルアセトアミドと1/10 N塩酸と生理食塩液を混合した溶液を投与した。薬物の活性は、対照群の凝固時間に対する薬物投与群の凝固時間の比(%)で示した。

(3-2) 経口投与:

雄性ICRマウス(25 - 35g, 日本クレア)を使用した。12時間以上絶食したマウスに薬物を5 ml/kgの容量にて強制経口投与した。投与1時間後にペントバルビタール(50mg/kg, i.p.)麻酔下にて腹部大動脈より採血した。薬物は0.5%メチルセルロースに懸濁して使用し、対照群には薬物の代わりに0.5%メチルセルロースを投与した。その他は(3-1)と同様に行った。

[0199]

(4) In vivo抗血栓作用測定法

(4-1) ラット動静脈シャント法:

Umetsu らの方法(Thromb. Haemostas., 39, 74-73, (1978))に準じた。雄性SD系ラット(200-350g,日本クレア)を用い、ペントバルビタール(50 mg/kg, i.p.)麻酔下にて、左頚静脈と右頚静脈との間に、絹糸を装着したポリエチレンチューブの体外循環路を作成した。血液凝固を防ぐため、予めチューブ内にヘパリン(50U/ml)を含む生理食塩水を満たした。血液を15分間循環させ、その間に絹糸に付着した血栓の湿重量を測定した。薬物の投与は経口あるいは静脈内投与にて行った。経口投与の場合、薬物は0.5%メチルセルロースに懸濁して絶食下で投与(2m1/kg)し、対照群には薬物の代わりに0.5%メチルセルロースを投与した。静脈内投与の場合は薬物は生理食塩水に溶解して尾静脈より1m1/kgの容量で投与し、対照群には薬物の代わりに生理食塩水を投与した。薬物の活性は対照群の血栓湿重量に対する薬物投与群の湿重量の比(%)で算出した。

(4-2) ラット腹部大静脈部分結紮モデル

雄性SD系ラット(200-400g、日本クレア)を使用した。ペントバルビタール(50mg/kg, i.p.)麻酔下にて腹部大静脈を丁寧に剥離した後、腹部大静脈の腎静脈分岐部およびその1cm下流の所に糸をかけ、間にある分枝をすべて結紮した。左大腿静脈よりバルーンカテーテル(Fogarty 2F、Baxter)を挿入し、2本の糸の間を200-300m1の空気で膨らませたバルーンで3回傷害した。バルーンカテーテルを抜き、腎静脈分岐部にかけた糸を26Gの針と一緒に結んだ後、針を取り除くことで部分結紮を作成した。30分後、も51本の糸を結び、2本の糸の間にできた血栓を丁寧に摘出し、血栓の湿重量を風防付き分析天秤(BP110S、Satorius)により測定した。薬物の投与は経口あるいは静脈内投与にて(4-1)と同様に行った。薬物の活性は(4-1)と同様にして算出した。

(4-3) ラット深部静脈血栓症 (DVT) モデル

雄性SD系ラット(200-350g,日本クレア)を用いた。ペントバルビタール(50 mg/kg, i.p.)麻酔下にて、左大腿静脈にポリエチレンチューブを挿入した。ポリエチレンチュー

[0200]

実験結果

表1に実験例1 (1) で求めた IC_{50} 値を示す。これより、本発明の化合物は優れた FXa 阻害作用を示すことが明らかである。

【表1】

実施例番号	IC ₅₀ (nM)	実施例番号	IC ₅₀ (nM)
5	57	12	22
38	11	. 44	14 .
46	30	58	.60
68	8.3	77	9.4
83	6.7	92	47

【産業上の利用可能性】

[0201]

本発明の化合物(I)またはその塩は、優れたFXa阻害作用を有し、出血の副作用も少なく、また経口吸収しうる抗血液凝固剤として有用であり、血栓や梗塞に基づく各種疾病の予防・治療に有利に用いられる。

【書類名】要約書

【要約】

【課題】 血栓症治療薬として有用なチアゾリン誘導体を提供する。 【解決手段】式(I)

【化1】

$$R \longrightarrow X \longrightarrow S(0) \xrightarrow{a} X' \longrightarrow Y \longrightarrow Y' \longrightarrow N \xrightarrow{A} \longrightarrow Z^1 \longrightarrow Z^2 \longrightarrow Z^3 \longrightarrow B$$
 (1)

〔式中、Rは置換されていてもよい環状の炭化水素基または置換されていてもよい複素環基を示し、Xは結合手または置換されていてもよい二価の鎖状の炭化水素基を示し、Xは結合手または-N (R^5) - を示し、Yは置換されていてもよい二価の炭化水素基を示し、Y は結合手または-C (= 0) - を示し、環Aは置換されていてもよい含窒素複素環を示し、 Z^1 および Z^3 はそれぞれ独立して結合手または置換されていてもよい二価の鎖状の炭化水素基を示し、 Z^2 は結合手または-N (R^6) - を示し、Bは式

[11:2]

で表される基を示し、 R^6 は R^1 、 R^2 、 R^3 または R^4 と互いに結合して置換されていてもよい環を形成していてもよく、a は0 、1 または2 を示す。〕で表される化合物またはその塩。

【選択図】なし

特願2003-341430

出願人履歴情報

識別番号

[000002934]

1. 変更年月日

1992年 1月22日

[変更理由]

住所変更

住 所

大阪府大阪市中央区道修町四丁目1番1号

氏 名 武田薬品工業株式会社