

Independent Set (I.S.) is NP-Complete

Topics

- Independent Set
 - Definition
 - Decision Problem
 - Verification Problem
- 3-SAT and 3-CNF
- Proving Independent Set Problem is NP-Complete
 - Will use 3-SAT to Independent Set Reduction in proof

Independent Set

 independent set of a graph G is a subset S of vertices such that there is no edge between vertices in S

Each drawing shows a graph G with an independent set highlighted

Independent Set Problems

Independent Set Decision Problem: Given a graph G, does G contain an independent set with k vertices?

Independent Set Verification Problem: Given a graph G, an integer k, and a set of vertices I, is I an independent set of G with exactly k vertices?

Goal: prove an unknown problem is in NP-Complete

- To prove an unknown (decision) problem U is in NP-Complete must:
 - Prove U = NP
 - state U as a verification problem and provide an algorithm that verifies it in polynomial time)
 - 2. Prove it is in NP-Hard
 - o given a problem H that is assumed to be in NP-complete, provide a reduction from H to U in polynomial time. Written $H \leq_P U$
 - ☐ the reduction is an "if and only if" (must prove in both directions)
 - A problem H is polynomial-time reducible to problem U, if any algorithm that can solve U can be used to solve H such that the increase in time is no more than polynomial

Part 1: Independent Set Verification Solvable in Polynomial Time

Independent Set Verification Problem: Given a graph G, an integer k, and a set of vertices I, is I an independent set of G with exactly k vertices?

Proof Sketch: Independent set means vertices in the set do not share an incident edge.

- For each vertex $v \in I$, verify that it is not adjacent to any other vertex $u \in I$. This can be done in polynomial time by examining vertex v's adjacency list...explain this.
- Count the number of vertices in I and make sure it is equal to k.
- If both of the above hold, then I is an independent set of G otherwise it is not.

Part 2: Independent Set is in NP-Hard

• We'll do this by showing a problem in NP-Complete. "Known" problem, the 3-SAT problem is reducible to the "unknown" problem Independent Set

$$H \leq_P U$$

 $3SAT \leq_P I.S.$

Boolean Formula

- Boolean Formula Example: $x_1 \land (x_2 \lor (\overline{x_2} \land x_3)) \land x_4$
- Parts of Boolean Formula
 - Disjunction symbol (or):
 - Conjunction symbol (and): Λ
 - Boolean variables: x_1, x_2, x_3
 - Literals: a Boolean variable or its negation. $\overline{x_2}$, x_2 where $\overline{x_2}$ is the negation of x_2
 - clause: a disjunction of Boolean literals, or the Boolean literal itself.
 3 examples

$$x_1 \vee x_2 \vee \overline{x_3}$$

$$\overline{x_1}$$

$$x_1 \vee \overline{x_3}$$

Formula in 3-CNF

• Boolean formula in 3-Conjunctive Normal Form (3-CNF): a conjunction of clauses with each clause having exactly 3 literals. 2 examples follow

$$x_1 \lor x_2 \lor \overline{x_3}$$
 $(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3)$

 Boolean formula is satisfiable if there is a truth assignment to the Boolean variables that make the formula true

```
example 1: x_1 \lor \overline{x_2} \lor \overline{x_3} assigning x_1 = true is a satisfying assignment assigning x_1 = false, x_2 = x_3 = true is not satisfying
```

example 2:
$$(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3)$$
 assigning $x_1 = x_2 = x_3 = true$ is a satisfying assignment assigning $x_1 = x_2 = true$, $x_3 = false$ is not satisfying

3-SAT (decision) Problem

- 3-SAT Decision Problem: Given a Boolean formula in 3-CNF, does it have a satisfying assignment?
- Known to be in NP-Complete

Famous Theorem by Samuel Cook: 3-SAT is NP-Complete

- Why we can use reductions Cook (and Levin) proved independently as the first problem to be in NP-Complete
- Reductions are transitive (so can reduce one problem in NP-Complete to unknown problem and state transitively all other problems reducible to it

Transitivity of Reducibility

- If $A \rightarrow B$ and $B \rightarrow C$, then $A \rightarrow C$.
 - An input x for A can be converted to x' for B, such that x is in A if and only if x' is in B. Likewise, for B to C.
 - Convert x' into x" for C such that x' is in B iff x" is in C.
 - Hence, if x is in A, x' is in B, and x" is in C.
 - Likewise, if x" is in C, x' is in B, and x is in A.

Theorem: Independent Set is in NP-Complete

Theorem: Independent Set (decision) Problem is in NP-Complete

- Independent Set is in NP verification problem is solvable in polynomial time
- 2. Independent Set is in NP-Hard. Show/prove $3SAT \leq_P I.S$.

Independent Set is in NP-Hard

Claim:

If 3-SAT is not solvable in polynomial time, then Independent Set is not solvable in polynomial time.

Proof by Contraction: Assume there is a polynomial time algorithm A to decide Independent Set, which, given a graph G, an integer k, returns whether G has an independent set of size k.

...Explain the algorithm that is to be used for the transformation (next slides)

... then prove the reduction (in both directions)

Compare Independent Set and NP-Hard

Algo for 3-SAT

Input: a Boolean formula in 3-CNF

Output: true if the formula is satisfiable, false otherwise

...Explain the algorithm that is to be used for the transformation (next slides)

... then prove the reduction (in both directions)

Explaining the Transformation Algorithm: Transforming 3-CNF formula from 3-SAT problem to an I.S.

- for each clause, form a clique with the literals
- For each clique, if a vertex that represents a literal has its negation represented in another clique, place an edge between them (since assigning true to one negatives the other in 3-CNF, thus, means there is a conflict)

Questions	3-SAT	Independent Set
What is selected?	Boolean variables that are true	vertices that are in the IS
What are the requirements?	each clause is true	vertices in IS I cannot be adjacent
What are the constraints?	if x_1 = true then $\overline{x_1}$ = false	I = k (size of IS is k)

15

Idea: Use 3-SAT Graph to form I.S.

Independent Set – cannot choose adjacent vertices to be in it

clause 1 clause 2 clause 3
$$(x_1 \lor x_3 \lor \overline{x_4}) \land (\overline{x_1} \lor x_2 \lor x_4) \land (x_2 \lor x_3 \lor \overline{x_4})$$

Independent Set can be formulated as follows:

- choose x_1 from clique 1, then cannot pick $x_3 or \overline{x_4}$ in clique 1, or x_1 in clique 2
- choose x_4 from clique 2, then cannot pick \overline{x}_1 or x_2 in clique 2, or \overline{x}_4 in cliques 1 or 3
- choose x_3 from clique 3, then cannot pick $x_2 or \overline{x_4}$ in clique 3

Aside: notice, assigning $x_1 = x_4 = x_3 = true$ satisfies the 3-CNF formula

Theorem: Independent Set is in NP-Complete

Theorem: Independent Set (decision) Problem is in NP-Complete

- Independent Set is in NP verification problem is solvable in polynomial time
- 2. Independent Set is in NP-Hard. Show/prove $3SAT \leq_P I.S$.

Recall: Independent Set is in NP-Hard

Claim:

If 3-SAT is not solvable in polynomial time, then Independent Set is not solvable in polynomial time.

Proof by Contraction: Assume there is a polynomial time algorithm A to decide Independent Set, which, given a graph G, an integer k, returns whether G has an independent set of size k.

...Explain the algorithm that is to be used for the transformation (next slides)

... then prove the reduction (in both directions)

Prove $3SAT \leq_P I.S. (\rightarrow)$

(\rightarrow) If the 3-CNF Boolean formula is satisfiable, then the graph has an independent set I of size |I| = k

Proof:

- If the formula is satisfiable, there is at least one variable per clause that is true. Pick one vertex per clique corresponding to one of the *true* literals in the clause to put in the independent set. Since only one vertex is chosen from the clique, there is no edge within the same clique.
- Also, there is no edge across cliques because in a valid truth assignment, if Boolean variable x is chosen and set to true, its complement will not be chosen in another clique. (aside: you can only assign one value to a variable)

Prove $3SAT \leq_P I.S. (\rightarrow)$

(\rightarrow) If the 3-CNF Boolean formula is satisfiable, then the graph has an independent set I of size |I| = k

Proof:

- If the formula is satisfiable, pick one vertex per clique corresponding to one of the *true* literals in the clause. Since only one vertex is chosen from the clique, there is no edge within the same clique.
- Also, there is no edge across cliques because in a valid truth assignment, if Boolean variable x is chosen and set to true, it will not be also be set false or vice versa. (aside: you can only assign one value to a variable)

Aside:

- This tells us that if the output of algorithm A returns true, the formula is satisfiable (>>).
- BUT, if the formula is NOT satisfiable, algorithm A could return true or false! We have not shown that algorithm A correctly returns false if the formula is not satisfiable. So, we must prove the converse direction (←)

Prove $3SAT \leq_P I.S. (\leftarrow)$

(\leftarrow) If a Graph has an independent set of size k, then the formula is satisfiable.

Proof:

- Independent Set I has at most 1 vertex per clique since the clique has incident edges for all pairs of vertices in the clique.
- Since |I| = k, I has exactly one vertex per clique.
- Take the corresponding literal that is represented by this vertex to be true.
- The Boolean formula is satisfied because there is one true literal per clause.
- The truth assignment is consistent because if a literal is chosen, its compliment is not chosen.

Recall: Independent Set is in NP-Hard

Claim:

If 3-SAT is not solvable in polynomial time, then Independent Set is not solvable in polynomial time.

Proof by Contraction: Assume there is a polynomial time algorithm A to decide Independent Set, which, given a graph G, an integer k, returns whether G has an independent set of size k.

...Explain the algorithm that is to be used for the transformation (next slides) \checkmark

... then prove the reduction (in both directions)

Theorem: Independent Set is in NP-Complete

Theorem: Independent Set (decision) Problem is in NP-Complete

- Independent Set is in NP verification problem is solvable in polynomial time
- 2. Independent Set is in NP-Hard. Show/prove $3SAT \leq_P I.S.$

Thank You!

Questions?