

Arquitectura de ordenadores

Aritmética con enteros multiplicación sin signo

Carlos M. Vallez Fernández

carlos.vallez@u-tad.com

2022-2023

Introducción

Ejercicio para Multiplicar 1011 (11) x 1101 (13)

n = 4 bits

Aplicando el algoritmo de **suma-desplazamiento**

Multiplicar 1011 (11) x 1101 (13)

- n = 4 bits 11 es el multiplicando y 13 el multiplicador
- 1. Se inicializan dos registros Q y M con el multiplicador y el multiplicando.
- 2. Se inicializa un registro A a 0 y un registro de un único bit C a 0.

С	А	Q	М
0	0000	1101	1011

• Multiplicar 1011 (11) x 1101 (13)

n = 4 bits

3. Si Q₀ es 1:

1. Se suma A + M y se almacena en A. Si hay acarreo, se anota en C.

С	А	Q	М
0	0000	1101	1011
0	1011	1101	1011

• Multiplicar 1011 (11) x 1101 (13)

n = 4 bits

3. Si Q₀ es 1:

2. Se desplazan todos los bits de C, A y Q una posición hacia la derecha

С	А	Q	M
0	0000	1101	1011
0	1011	1101	1011
0	0101	1110	1011

• Multiplicar 1011 (11) x 1101 (13)

n = 4 bits

4. Si Q_0 es 0, sólo se realiza desplazamiento de C, A y Q.

С	А	Q	M
0	0000	1101	1011
0	1011	1101	1011
0	0101)	1110	1011
0	•0010	1111	1011

Multiplicar 1011 (11) x 1101 (13)

n = 4 bits

3. Si Q₀ es 1:

1. Se suma A + M y se almacena en A. Si hay acarreo, se anota en C.

С	А	Q	М
0	0000	1101	1011
0	1011	1101	1011
0	0101	1110	1011
0	0010	1111	1011
0	1101	1111	1 011

• Multiplicar 1011 (11) x 1101 (13)

n = 4 bits

3. Si Q₀ es 1:

2. Se desplazan todos los bits de C, A y Q una posición hacia la derecha..

С	А	Q	M
0	0000	1101	1011
0	1011	1101	1011
0	0101	1110	1011
0	0010	1111	1011
0	1101	111	1 011
0	0110	1111	1 011

Multiplicar 1011 (11) x 1101 (13)

n = 4 bits

3. Si Q₀ es 1:

1. Se suma A + M y se almacena en A. Si hay acarreo, se anota en C.

С	А	Q	М
0	0000	1101	1011
0	1011	1101	1011
0	0101	1110	1011
0	0010	1111	1011
0	1101	1111	1011
0	0110	1111	1011
1	0001	1111	1011

Multiplicar 1011 (11) x 1101 (13)

n = 4 bits

3. Si Q0 es 1:

2. Se desplazan todos los bits de C, A y Q una posición hacia la derecha.

С	А	Q	/ M
0	0000	1101	1011
0	1011	1101	1011
0	0101	1110	1011
0	0010	1111	1011
0	1101	1111	1011
0	0110	1111	1011
1	0001	1111	1011
0	1000	1111	1011

• El resultado del producto es la concatenación de A y Q.

	1000 1111 =	= 143	
С	A	Q	М
0	0000	1101	1011
0	1011	1101	1011
0	01 <mark>0</mark> 1	1110	1011
0	0010	1111	1011
0	1101	1111	1011
0	0110	1111	1011
1	0001	1111	1011
0	1000	1111	1011

Multiplicar 1101 (13) x 1011 (11)

n = 4 bits 13 es el multiplicando y 11 el multiplicador

- 1. Se inicializan dos registros Q y M con el multiplicador y el multiplicando.
- 2. Se inicializa un registro A a 0 y un registro de un único bit C a 0.

С	А	Q	М
0	0000	1011	1101
0	1101	1011	1101
0	0110	1101	1101
1	0011	1101	1101
0	1001	1110	1101
0	0100	1111	1101
1	0001	1111	1101
0	1000	1111	1101

