

2021 Isfahan University Of Technology Collegiate Programming Contest

Problem H. Sepahan Keshvar

As you might know, Sepahan Keshvar has been the most developed country for centuries. Recently there was a new discovery in Sepahan-Labs. Narges found out that there is another Sepahan Keshvar in another parallel universe. She noticed that both of these countries are connected and have n states, connected by n-1 bidirectional roads. Although the states are same in both universes, the roads might be different.

As a reward, Narges wants to know for any arbitrary state, what is the most important state she can reach in both universes if she is allowed only to use the first x roads in the first universe and the first y roads in the second one.

Input

The first line includes two integers n and q, the number of Sepahan Keshvar's states and the number of queries respectively. $(1 \le n, q \le 2 \times 10^5)$

In the next n-1 lines, you are given roads of the first universe. In each line two numbers u and v are given, meaning that there is a road between states u and v.

After that, in n-1 lines you are given roads of the second universe. In each line two numbers u and v are given, meaning that there is a road between states u and v.

The next q lines consist of queries. In each of these lines, you are given three integers v, x, and y; v is a given state, the initial state in both universes.

Output

for each query, print the state with greatest number Narges can reach if she is only allowed to use the first x roads in the first universe and the first y roads in the second one, starting from the state number y.

2021 Isfahan University Of Technology Collegiate Programming Contest

Examples

test	answer
7 7	1
1 2	7
3 1	3
3 7	4
5 6	5
4 7	6
3 6	7
1 6	
7 5	
3 4	
2 4	
4 7	
6 5	
1 2 5	
2 6 5	
3 3 4	
4 4 4	
5 2 1	
6 2 6	
7 3 3	