

Options Pricing Group Project

<u>By:</u>
Himani Desai
Mridula Singhal
Pranay Bhaskar Mallipudi
Pratik Khadse
Shailendra Narwaria

Introduction

Examined European call option pricing data on the S&P 500 by regression and classification techniques to value an option

Furthermore, we have also built an **interactive dashboard** which generates the regression and classification results based on user input

Exploratory Data Analysis

New Variables

Cross Validation

Modeling Results

	method	cv score ≑ me	an cv r2 score \$	std score \$	r2 score on test data 🕏
	0 Linear Regression	[0.95258, 0.93119, 0.93918, 0.93387, 0.93426]	0.938218	0.007632	0.931445
	1 Decision tree	[0.99561, 0.99493, 0.99543, 0.9951, 0.99447]	0.995107	0.000398	0.995587
	2 Random Forest	[0.99721, 0.99751, 0.99819, 0.99749, 0.99805]	0.997688	0.000370	0.998012
	3 KNN Regressor	[0.98902, 0.99005, 0.99063, 0.98078, 0.98937]	0.987969	0.003637	0.992260
	4 Neural Network Regression	[0.99556, 0.99457, 0.9945, 0.9936, 0.99555]	0.994758	0.000735	0.995992
	5 XGBoost Regressor	[0.99847, 0.99802, 0.99833, 0.9978, 0.99863]	0.998249	0.000299	0.998754
	6 Support Vector Machine	[0.95235, 0.98125, 0.97862, 0.97526, 0.9838]	0.974256	0.011311	0.990714
	method	cv error	mean cv error	std cv error	error on test data
0	Logistic Regression	[0.09362, 0.05957, 0.08085, 0.10256, 0.12393]	0.09211	0.02149	0.093439
1	Decision tree	[0.09362, 0.05532, 0.05532, 0.10684, 0.11538]	0.08530	0.02544	0.089463
2	Random Forest	[0.0766, 0.04681, 0.0383, 0.0641, 0.11111]	0.06738	0.02560	0.071571
3	Knn Classifier	[0.08936, 0.05957, 0.05532, 0.05983, 0.08974]	0.07076	0.01542	0.069583
4	Linear Discriminant Analysis	[0.10213, 0.06383, 0.08085, 0.10256, 0.12393]	0.09466	0.02057	0.089463
5	Neural Network	[0.10213, 0.04255, 0.04681, 0.05983, 0.09402]	0.06907	0.02449	0.083499
6	XGBoost Classifier	[0.08085, 0.05532, 0.05106, 0.06838, 0.11111]	0.07334	0.02158	0.073559
7	Support Vector Machine	[0.10213, 0.05106, 0.0383, 0.06838, 0.10256]	0.07249	0.02618	0.081511

Validate: Learning Curves

Good fit

Loss train validation 3.5 2.5 2.0 1.5 1.0 0.5

Our Models

Example

Bad fit

Above & Beyond

Scalability and Production deployment

Interactive UI for Users

Conclusion

Highest Accuracy for regression problem is found in Random Forest Regressor

(above the 94% required)

Least error for classification problem is found in KNN Classifier

(below the required 8%)

Future Scope

F1-scores, Precision and Recall for Classification Model

SMOTE and LIME

Conclusion

- 1) Prediction accuracy or interpretation is more important?
- 2) Machine learning models may **outperform** Black-Scholes in terms of predicting option values?
- 3) No variable selection?
- 4) Use your model to predict option values for Tesla stocks? Why?

Thank You