

104105

106

108

109

Figure 1. SGT on ZINC: Test MAE v.s. Batch Size (BS). # Training epochs are adjusted per batch-size for the same total update steps: 400 * BS/32. The first 10% epochs are in the warmup stage.

Figure 2. (Case Study of AdaRMSN) Visualization of Input and Pred data points. Ovefitting test on Auto-encoders of 2-dim ($Linear \rightarrow BN/RMSN/AdaRMSN \rightarrow Linear$): each model is trained 5000 epochs via AdamW without regularization. (together with Figure. 3)

Table 1. Performance on ZINC. GPS+sL₂: integrating sL₂ attention into GPS without changing other parts. (run 3 trials)

ZINC	GPS	$\mathbf{GPS+s}L_2$	SGT	
MAE (↓)	0.070 ± 0.004	0.0693 ± 0.0023	0.0566 ± 0.002	

Figure 3. (Case Study of AdaRMSN) Training curves of overfitting test. (together with Figure. 2)

Table 2. Comparison of peak GPU memory usage and per-epoch training time for GRIT and SGT. Dataset: Peptides-Structure (15K graphs); Model config.: 5 transformer layers, 96 channels, batch size 32. Hardware: a single Nvidia V100 GPU with 32GB memory, supported by 80 Intel Xeon Gold 6140 CPUs running at 2.30GHz

Model GPU Memory (GB)		Training Time (Sec/Epoch)		
GRIT	29.16	141.60		
SGT	25.07	100.68		
Improv.	~14.03%	${\sim}28.9\%$		

Table 3. Performance on PCMQM4Mv2 (over 3.7M graphs). The eval. pipeline follows Rampášek et al. (2022); no 3D-info included.

1	26
1	27
1	28

PCMQM4Mv2 Val MAE (↓) # Param. Graphormer 0.0864 48.3M **GPS** 0.0858 19.4M **GRIT** 0.0859 16.6M **SGT** 0.0856 17.6M

Table 4. Performance comparison across different models on various datasets. Best results are highlighted in bold. * indicates the difference to the best is not statistically significant (by two-tail T-test)

Model	ZINC MAE (\dagger)	SP-CIFAR Acc. (†)	SP-MNIST Acc. (†)	PATTERN W.Acc. (†)	CLUSTER W.Acc. (†)	Peptides-Struct MAE (↓)	Peptides-Func AP (†)
Exphormer	-	74.69 ± 0.125	98.55±0.037	86.74 ± 0.015	78.07 ± 0.037	$0.2481 {\pm} 0.0007$	0.6527 ± 0.0043
GEAET	-	76.634 ± 0.427	98.513 ± 0.086	86.993 ± 0.026	-	$0.2445{\pm}0.0013$	-
GEANet	0.193 ± 0.001	73.857 ± 0.306	98.315 ± 0.097	85.607 ± 0.038	77.013 ± 0.224	0.2512 ± 0.0003	0.6722 ± 0.0065
SGT	0.0566±0.002	78.560 ± 0.700	98.614 ± 0.096	$89.752 {\pm} 0.030$	80.027 ± 0.114	$0.2450{\pm}0.0017*$	$0.6961 {\pm} 0.0062$

Figure 4. Sanity check of Exp-SGT on a large-scale graph in OGBN-ArXiv (169,343 nodes). Use the same configuration as Exphormer and remove all regularizations to validate the trainability via an overfitting test.