Übungsblatt LA 9

Computational and Data Science FS2025

Mathematik 2

Lernziele:

- Sie kennen die Begriffe Axiom, Skalarkörper, Vektorraum, Linearkombination, lineare Hülle, linear abhängig, linear unabhängig, erzeugend, Basis, Dimension und deren wichtigste Eigenschaften.
- > Sie können beurteilen, ob gegebene Mengen eine Vektorraumstruktur bilden.
- Sie können beurteilen, ob die Vektoren einer Teilmenge von \mathbb{R}^n linear abhängig, linear unabhängig oder erzeugend sind und ob sie eine Basis bilden.

1. Aussagen über Vektorräume

Welche der folgenden Aussagen sind wahr und welche falsch?

	0	wahr	falsch
		walli	iaistii
(a)	Der Vektorraum ist die fundamentale Struktur der linearen		
	Algebra.		
b)	Jeder Vektorraum basiert auf einem Skalarkörper.		
c)	In jedem Vektorraum ist eine Addition zwischen den Vektoren		
	definiert.		
d)	In jedem Vektorraum ist eine Multiplikation zwischen den		
	Vektoren definiert.		
e)	In jedem Vektorraum ist eine Multiplikation zwischen den		
′	Vektoren und den reellen Zahlen definiert.		

2. Vektorraumstrukturen

Welche der folgenden Strukturen bilden bezüglich der üblichen Addition und Multiplikation einen Vektorraum? Begründen Sie Ihre Antwort.

a)
$$(\mathbb{Z}; \mathbb{Q}; +;\cdot)$$

b) (
$$\mathbb{Z}$$
; \mathbb{R} ; +;·)

c)
$$(\mathbb{Q}^2; \mathbb{Q}; +;\cdot)$$

d) (
$$\mathbb{Q}^2$$
; \mathbb{R} ; +;·)

e) (
$$\mathbb{R}^3$$
; \mathbb{Q} ; +;·)

f) (
$$\mathbb{R}^3$$
; \mathbb{R} ; +;·)

g)
$$U \subset \mathbb{R}^3$$
 sei gegeben durch $U \coloneqq \{(x_1, x_2, x_3)^T \in \mathbb{R}^3 | 2x_1 + 4x_2 = 1\}$.

3. Vektorraumstrukturen II

Sei V der Vektorraum aller 3x3 Matrizen über \mathbb{R} . Prüfen Sie, ob die Mengen

- a) $V_1 := \{ A \in V | A \text{ ist symmetrisch, d. h. } a_{ij} = a_{ji} \forall i \neq j \},$
- b) $V_2 := \{ A \in V | a_{33} \neq 0 \},\$
- c) $V_3 := \{ A \in V | a_{ij} \in \mathbb{Q} \ \forall i, j = 1,2,3 \}$

eine Vektorraumstruktur haben.

4. Linear abhängig/unabhängig und erzeugend

Bestimmen Sie, ob die jeweiligen Vektoren linear unabhängig bzw. erzeugend sind. Bilden die gegebenen Vektoren eine Basis des jeweiligen \mathbb{R}^n ?

$$\mathsf{a})\left\{ \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1 \end{pmatrix} \right\}$$

$$\mathsf{b})\left\{ \binom{2}{-6}, \binom{-1}{3} \right\}$$

$$\mathbf{c})\left\{\!\!\left(\begin{matrix}1\\-1\\0\end{matrix}\right)\!,\!\left(\begin{matrix}3\\1\\2\end{matrix}\right)\!,\!\left(\begin{matrix}1\\1\\1\end{matrix}\right)\!\!\right\}$$

$$d) \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\} \qquad e) \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \begin{pmatrix} 5 \\ 6 \\ 7 \\ 8 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \\ 6 \\ 8 \end{pmatrix} \right\}$$

$$\mathbf{e}) \left\{ \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \begin{pmatrix} 5\\6\\7\\8 \end{pmatrix}, \begin{pmatrix} 2\\4\\6\\8 \end{pmatrix} \right\}$$

$$\mathsf{f})\left\{ \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix} \right\}$$

5. Basis

Für welche Werte von a bilden die folgenden Vektoren eine Basis des \mathbb{R}^3 ?

$$\mathsf{a}) \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ a \end{pmatrix}$$

b)
$$\begin{pmatrix} 6 \\ a \\ 7 \end{pmatrix}$$
, $\begin{pmatrix} -a \\ -1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 3 \\ a \\ 4 \end{pmatrix}$

6. Basis für lineare Hülle

Gegeben seien die Vektoren

$$\vec{u}_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ -1 \\ 1 \end{pmatrix}, \vec{u}_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \\ -1 \\ 2 \end{pmatrix}, \vec{u}_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \\ -2 \\ 3 \end{pmatrix}, \vec{u}_4 = \begin{pmatrix} 0 \\ 1 \\ -2 \\ 1 \\ 0 \end{pmatrix}.$$

a) Sind \vec{u}_1 , \vec{u}_2 , \vec{u}_3 , \vec{u}_4 linear unabhängig?

b) Bestimmen Sie eine Basis der linearen Hülle $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$.

7. Linearkombination und lineare Hülle

Gegeben seien die Vektoren

$$\vec{v}_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix}, \ \vec{v}_2 = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 2 \end{pmatrix}, \ \vec{v}_3 = \begin{pmatrix} 3 \\ -5 \\ 8 \\ 4 \end{pmatrix}, \ \vec{w} = \begin{pmatrix} 5 \\ \alpha \\ \beta \\ 8 \end{pmatrix}.$$

a) Für welche α, β ist \vec{w} eine Linearkombination der $\vec{v}_i, i = 1,2,3$? Bestimmen Sie die Koeffizienten der Linearkombination.

2

b) Sind die \vec{v}_1 , \vec{v}_2 , \vec{v}_3 linear unabhängig? Begründen Sie Ihre Antwort.

c) Bestimmen Sie eine Basis für die lineare Hülle $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \}$.