LandSat Image Classification

Steven Bierer Metis Data Science Bootcamp, Seattle

LandSat Program

- Satellite images of Earth's surface
- LandSat 4 launched in 1982
- Multiple spectral bands
- Used in agriculture, ecology

Image data set

- Source: UC Irvine Machine Learning Repository
- 6435 labeled images
 - 3x3 grid of pixels (each 80m x 80m)

- Green, Red, Near IR, IR
- Magnitudes of 0 255
- Six labeled terrain types
 - Cotton Crop, Vegetation, Red Soil, Grey Soil, Damp Soil, Very Damp Soil

Classification training

- Cross-validation scoring based on accuracy
 - Weighted to offset class imbalance
- Principal components
 - 36 -> 7 features

0.4

0.6

False Positive Rate

8.0

1.0

0.0

0.2

Model	Transform	Parameter	Optimal Val.	Accuracy
KNN	None	# Neighbors	4	0.83
	PC		8	0.79
Logistic Reg.	None	C Value	0.1	0.74
	PC		10	0.73
Random Forest	None	# Estimators	100	0.84
	PC		100	0.83

0.99! (full training)

Cost-benefit heuristic

- Extra cost for misclassifying as cotton crop
- Extra cost for misclassifying <u>vegetation</u> with cotton crop
- Don't care about grey/damp soil confusions

class prediction] = argmax(benefit score - cost score)

Random Forest Results

Future considerations

- Rotation-invariant PCA
 - "Hu" Image Moments
- Larger image training set

- More sophisticated classifier
 - e.g. Deep Learning

Appendix

Statistics with cost-benefit adjustment

Statistics without cost-benefit adjustment

support	f1-score	recall	precision	
461.0	0.97	0.98	0.96	red soil
224.0	0.95	0.92	0.99	cotton crop
397.0	0.88	0.96	0.81	grey soil
211.0	0.55	0.54	0.57	damp soil
237.0	0.76	0.65	0.90	vegetation
470.0	0.82	0.83	0.81	very damp soil
2000.0	0.85	0.85	0.85	avg / total

-- Metric ---- Average Scores ----

Accuracy: 0.848
Precision: 0.840
Recall: 0.813
F1 Score: 0.822

	precision	recall	f1-score	support
red soil	0.97	0.97	0.97	461.0
cotton crop	0.96	0.96	0.96	224.0
grey soil	0.81	0.96	0.88	397.0
damp soil	0.65	0.49	0.56	211.0
vegetation	0.86	0.70	0.77	237.0
very damp soil	0.81	0.84	0.82	470.0
avg / total	0.85	0.85	0.85	2000.0

-- Metric ---- Average Scores ----

Accuracy: 0.855
Precision: 0.842
Recall: 0.820
F1 Score: 0.827

Training (blue) and test (red) class distributions

Classify based on "spectral signatures"

Weighted Accuracy

Random Forest on PCs

Spectral Magnitude Distributions

Correlation of spectral magnitudes at two pixels


```
COST = np.eye(6);
COST[1,1]=3;
                       # not-p-cotton gives extra penalty to "cotton"
BENEFIT = np.eye(6);
BENEFIT[1,4]=-2;
                         # p-cotton suppresses "vegetation"
BENEFIT[2,3]=0.3; BENEFIT[2,5]=0.2 # for p-greysoil, allow confusions with other "grey soil" types
BENEFIT[3,2]=0.3; BENEFIT[3,5]=0.2; # for p-dampsoil, allow confusions with other "grey soil" types
BENEFIT[5,2]=0.2; BENEFIT[5,3]=0.3; # for p-verygreysoil, allow confusions with other "grey soil" types
print(BENEFIT, '\n\n', COST)
            0. 0. 0. 0. ]
[[ 1.
           0. 0. -2. 0.]
 [ 0.
            1. 0.3 0. 0.21
 [ 0.
            0.3 1. 0. 0.2]
  0.
 [ 0.
            0.
                   0. 1. 0. ]
            0.2 0.3 0. 1.]]
 [ 0.
```

```
[[1. 0. 0. 0. 0. 0. 0.]
[0. 3. 0. 0. 0. 0.]
[0. 0. 1. 0. 0. 0.]
[0. 0. 0. 1. 0. 0.]
[0. 0. 0. 0. 1. 0.]
```