Greedy algorithm

A greedy algorithm always makes the choice that looks best at the moment. That is, it makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution.

Spanning Tree

 Spanning tree of a graph is a tree that spans over all the nodes of the graph

 A spanning tree of minimum weight is called a minimum spanning tree.

For, 4 nodes: total number of possible spanning trees = 16

For, 4 nodes: total number of possible spanning trees = 16 In general, for n nodes: number of possible spanning trees = n^{n-2}

Minimum Spanning Tree (Kruskal's Algorithm)

```
Input: Graph G = (V, E) and the weight(cost) on the edges E
begin
  T = \emptyset
  while (T contains less than (n-1) edges and E is not empty do)
  begin
               choose an edge (v, w) from E of lowest cost
               delete (v, w) from E.
               if (v, w) does not create a cycle in T then
                      add (v, w) to T
               else
                      discard (v, w)
   end
```


Edges ordered by weight:

Edges ordered by weight:

Edges selected in the spanning tree T:

$$e1 = (a, f)$$

$$e2 = (c, d)$$

$$e3 = (b, g)$$

$$e4 = (b, c)$$

$$e5 = (d, e)$$

$$e6 = (e, f)$$

Minimum Spanning Tree

Theorem:

Any spanning tree $T = \{e_1, e_2, ..., e_{n-1}\}$ constructed by Kruskal's algorithm is an optimal tree.

Proof (by contradiction): Let T be the Spanning tree constructed by Kruskal's algorithm. By contradiction, assume that T is not an optimal tree and let S be an optimal tree such that W(T)>W(S).

- Let e be the edge with smallest weight in T that is not in S.
- 2. Add edge e to S. This will create a cycle C, and C contains e.
 - Cycle C contains an edge e', where e' is not in T

If we remove e' from S and add edge e to that, we get a spanning tree S' where

- (i) $W(e) \le W(e')$ otherwise kruskal's algorithm would have chosen e instead of e' to create T.
- (ii) S' is now one edge closer to T than S.
- 3. W(S') = W(S) + W(e) W(e') therefore $W(S') \leq W(S)$.
- 4. We can now repeat from step 1 until S' = T
- Process terminates with S' = T and $W(T) \le W(S)$. This contradicts our initial assumption, that there can be another MST, S with less weight than T.

Informal description of the algorithm:

- 1. Start by selecting an arbitrary vertex, include it into the current MST.
- 2. Grow the current MST by the following approach: Pick the node closest to one of the nodes already in the current MST and Insert it into the current MST.
- 3. Repeat step 2 (until all vertices are in the MST tree).

Initialization

- a. Pick a vertex r to be the root
- b. Set D(r) = 0, parent(r) = null
- c. For all vertices $v \in V$, $v \neq r$, set $D(v) = \infty$
- d. Insert all vertices into priority queue Q, using distances as the keys

е	а	b	С	d
0	8	8	8	∞

Vertex Parent
e -

Prim's Algorithm (cont...)

While Q is not empty:

- Select the next vertex u to add to the tree u = Q.deleteMin()
 - 2. Update the weight of each vertex w adjacent to u which is not in the tree (i.e., $w \in Q$)

 If weight(u,w) < D(w),
 - a. parent(w) = u
 - b. D(w) = weight(u,w)
 - c. Update the priority queue to reflect new distance for w

The MST initially consists of the vertex e, and we update the distances and parent for its adjacent vertices

<u>Vertex</u>	Parent
е	-
b	е
С	е
d	е

а	С	b
2	4	5

<u>Vertex</u>	Parent
е	-
b	е
С	d
d	е
а	d

а	С	b
2	4	5

<u>Vertex</u>	Paren [*]
е	-
b	е
С	d
d	е
a	d

c b **4 5**

Paren
-
е
d
е
d

The final minimum spanning tree

<u>Vertex</u>	<u>Parent</u>
е	-
b	е
С	d
d	е
а	d

We run prim's algorithm starting at vertex A:

A is connected to nodes B and D. The edge with smallest cost is (A,D).

Example from Wikipedia: prim's algorithm

We run prim's algorithm starting at vertex A:

Now:

BD and BA have the same weight 2, so BD is chosen arbitrarily.

Let's run prim's algorithm starting at vertex A:

Now:

BD and BA have the same weight 2, so BD is chosen arbitrarily.

Let's run prim's algorithm starting at vertex A:

Finally: DC is the next edge to be added to the tree.

We run prim's algorithm starting at vertex A:

And we have the resulted minimum spanning tree as:

Prim's algorithm (Example)

Let a be the root of the tree. Find MST of the above graph using prim's algorithm.