Name: Jenny Petrova

Problem Set 11

Due Date: 11/19 at 11:35 AM

(P.1) Show that if $X_n \stackrel{\mathcal{L}_p}{\to} X$ $(p \ge 1)$ then $X_n \stackrel{D}{\to} X$.

Proof. If $X_n \stackrel{\mathcal{L}_p}{\to} X$, then by Definition 17.2 we know

$$\lim_{n \to \infty} \mathbb{E}|X_n - X|^p = 0. \tag{1}$$

Let $\epsilon > 0$. Then we can apply Markov's Inequality to the random variable $|X_n - X|^p$ to show

$$\frac{\mathbb{E}|X_n - X|^p}{\epsilon} \ge \mathbb{P}(|X_n - X| > \epsilon).$$

Then from equation (1) we show

$$\frac{1}{\epsilon} \lim_{n \to \infty} \mathbb{E}|X_n - X|^p \ge \lim_{n \to \infty} \mathbb{P}(|X_n - X| > \epsilon) = 0.$$
 (2)

Thus by Definition 17.3, equation (2) implies $X_n \stackrel{P}{\to} X$. To prove convergence in distribution, we must show $F_n(x)$ converges to F(x) at every point x where F(x) is continuous. For any $\varepsilon > 0$, we have

$$F_n(x) = \mathbb{P}(X_n \le x)$$

$$= \mathbb{P}(X_n \le x, X_n \le x + \epsilon) + \mathbb{P}(X_n \le x, X \ge x + \epsilon)$$

$$\le \mathbb{P}(X_n \le x + \epsilon) + \mathbb{P}(|X_n - X| \ge \epsilon)$$

$$= F(x + \epsilon) + \mathbb{P}(|X_n - X| \ge \epsilon)$$

and

$$F(x - \epsilon) = \mathbb{P}(X_n \le x - \epsilon)$$

$$= \mathbb{P}(X_n \le x - \epsilon, X_n \le x) + \mathbb{P}(X_n \le x - \epsilon, X_n \ge x)$$

$$\le F_n(x) + \mathbb{P}(|X_n - X| \ge \epsilon)$$

Combining these inequalities, we get

$$F(x+\epsilon) - \mathbb{P}(|X_n - X| \ge \epsilon) \le F_n(x) \le F(x+\epsilon) + \mathbb{P}(|X_n - X| \ge \epsilon).$$

Since $X_n \stackrel{P}{\to} X$ we know $\mathbb{P}(|X_n - X| \ge \epsilon) \to 0$ as $n \to \infty$. Therefore by taking the limit we get

$$F(x+\epsilon) \le F_n(x) \le F(x+\epsilon).$$

Since ϵ is arbitrary and F(x) is continuous at x by assumption, it follows that $F_n(x) \to F(x)$ as $n \to \infty$. Therefore by Theorem 18.4 we can conclude $X_n \stackrel{D}{\to} X$.

(P.2) Consider a probability space $(\mathbb{R}, \mathcal{B}, \mathbb{P}_{\theta})$ indexed by a parameter $\theta \in \Theta$ and assume that \mathbb{P}_{θ} admits densities (with respect to the either the counting measure or the Lebesgue measure) in a parametric family $\{f_{\theta} : \theta \in \Theta\}$. Let $(X_n)_{n \in \mathbb{Z}^+}$ be a sequence of random variables whose induced probability distributions are given by \mathbb{P}_{θ_n} for a sequence $(\theta_n)_{n \in \mathbb{Z}^+}$ of points in Θ . If $\theta_n \to \theta$ as $n \to \infty$, what can be said about the sequence $(X_n)_{n \in \mathbb{Z}^+}$?

Proof. Let us define each density in the parametric family as $f_{\theta}(x) = f_{X|\Theta}(x|\theta)$, the conditional probability density function of X given parameter $\theta \in \Theta$. If $f_{\theta}(x)$ is continuous in θ , and $\theta_n \to \theta$ as $n \to \infty$, then for every x we have

$$\lim_{n \to \infty} f_{\theta_n}(x) = \lim_{n \to \infty} f_{X|\Theta}(x|\theta_n) = f_{X|\Theta}(x|\theta) = f_{\theta},$$

which implies pointwise convergence of the density functions. Then the sequence of probability distributions induced by density functions also converge, i.e.

$$\lim_{n \to \infty} \mathbb{P}_{\theta_n}(A) = \lim_{n \to \infty} \int_A f_{X|\Theta}(x|\theta_n) \, dx = \int_A f_{X|\Theta}(x|\theta) \, dx = \mathbb{P}_{\theta}(A)$$

for any measurable set A. By the Portmanteau Theorem, the above equation is equivalent to $X_n \stackrel{D}{\to} X$. Therefore it can be said that the sequence of random variables $(X_n)_{n \in \mathbb{Z}^+}$ converges in distribution to the random variable X.

(P.3) Let $(U_n)_{n\in\mathbb{Z}^+}$ be a sequence of independent and identically distributed Uniform(0,1) random variables, i.e.,

$$\mathbb{P}(U_i \le x) = x, \quad x \in [0, 1].$$

Show that $\prod_{i=1}^n U_i^{1/n}$ converges almost surely and give the precise limit. Next, center and scale $(\prod_{i=1}^n U_i^{1/n})_{n\in\mathbb{Z}^+}$ and show the resulting sequence converges in distribution to a non-degenerate limit, giving the precise distribution. Hint: You want to refresh your memory on the delta method.

Proof. First, note that the density function for $U_i \sim \text{Uniform}(0,1)$ taking values in the range [0,1] is

$$f_{U_i}(x) = \begin{cases} 1 \text{ if } 0 \le x \le 1\\ 0 \text{ otherwise.} \end{cases}$$

For simplicity, let us set $Z_n = \prod_{i=1}^n U_i^{1/n}$. We can take the logarithm of Z_n and simplify

$$\ln(Z_n) = \ln\left(\prod_{i=1}^n U_i^{1/n}\right) = \frac{1}{n} \sum_{i=1}^n \ln(U_i).$$

By the Strong Law of Large Numbers know

$$\frac{1}{n} \sum_{i=1}^{n} \ln(U_i) \stackrel{a.s.}{\to} \mathbb{E}[\ln(U_i)]$$

as $n \to \infty$. Applying the density function, we solve

$$\mathbb{E}[\ln(U_i)] = \int_0^1 \ln(x)(1) \, dx = [x \ln(x) - x]_0^1 = (0 - 1) - (\lim_{x \to 0^+} x \ln(x) - 0) = -1.$$

Therefore

$$\ln(Z_n) \stackrel{a.s.}{\to} -1$$

as $n \to \infty$, which implies

$$Z_n \stackrel{a.s.}{\to} e^{-1}$$
.

Next, since $ln(U_i)$ are i.i.d., then by the Central Limit Theorem we have

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}\ln(U_i) - \mathbb{E}[\ln(U_i)]\right) \stackrel{D}{\to} \mathcal{N}(0,\sigma^2),$$

where $\sigma^2 := Var(\ln(U_i))$. We simply for the variance to get

$$Var(\ln(U_i)) = \mathbb{E}[\ln(U_i)^2] - (\mathbb{E}[\ln(U_i)])^2$$
$$= \int_0^1 (\ln(x))^2 dx - (-1)^2$$
$$= 2 - 1 = 1$$

Then

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}\ln(U_i)+1\right) = \sqrt{n}\left(\ln(Z_n)+1\right) \xrightarrow{D} \mathcal{N}(0,1),$$

meaning the sequence converges to a Normal distribution. This satisfies the assumption for the Delta-Method. Let $x = \ln(Z_n)$. Then $e^x = Z_n$ and we use the first order approximation of a Taylor series to show

$$e^x \approx e^{-1} + e^{-1}(x+1).$$

We substitute $x = \ln(Z_n)$ to get

$$Z_n \approx e^{-1} + e^{-1}(\ln(Z_n) + 1).$$

Now, we can use the fact that $Z_n \stackrel{a.s.}{\to} e^{-1}$ and the above approximation to center and scale Z_n :

$$\sqrt{n}(Z_n - e^{-1}) = \sqrt{n}(e^{-1} + e^{-1}(\ln(Z_n) + 1) - e^{-1}) = e^{-1}\sqrt{n}(\ln(Z_n) + 1).$$

It follows from the Delta Method that

$$e^{-1}\sqrt{n}(\ln(Z_n)+1) \stackrel{D}{\to} \mathcal{N}(0,(e^{-1})^2).$$

Therefore

$$\sqrt{n} \left(\ln(Z_n) + 1 \right) \stackrel{D}{\to} \mathcal{N}(0, 1) \text{ implies } \sqrt{n} (Z_n - e^{-1}) \stackrel{D}{\to} \mathcal{N}(0, e^{-2}),$$

hence the sequence $Z_n = \prod_{i=1}^n U_i^{1/n}$ converges to a normal distribution with mean 0 and variance e^{-2} .

(P.4) Consider sequences of independent Bernoulli random variables $(X_{n,m})_{m\in\{1,...,n\}}$ $(n\in\mathbb{Z}^+)$ such that each $X_{n,m} \sim Bernoulli(n^{-1})$. Show that the sum $S_n = \sum_{m=1}^n X_{n,m}$ converges in distribution to a random variable S_{∞} as $n \to \infty$ and give the limiting distribution of S_{∞} . In other words, S_n is a sum of n independent and identically distributed $Bernoulli(n^{-1})$ random variables.

Proof. If $S_n = \sum_{m=1}^n X_{n,m}$ is the sum of n i.i.d. Bernoulli random variables, then this defines a Binomial distribution. Hence $S_n \sim \text{Binomial}(n, n^{-1})$ such that

$$\mathbb{P}(S_n = k) = \binom{n}{k} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{n-k}$$

for k = 0, 1, ..., n. We expand the above equation and simplify:

$$\mathbb{P}(S_n = k) = \frac{n!}{k!(n-k)!} \cdot \frac{1}{n^k} \cdot \left(1 - \frac{1}{n}\right)^{n-k}$$

$$= \frac{n(n-1)\cdots(n-k-1)}{k!} \cdot \frac{1}{n^k} \cdot \left(1 - \frac{1}{n}\right)^{n-k}$$

$$= \frac{1}{k!} \left(1 - \frac{1}{n}\right)^n \frac{\left(1 - \frac{1}{n}\right)\cdots\left(1 - \frac{k-1}{n}\right)}{\left(1 - \frac{1}{n}\right)^k}$$

Taking the limit as $n \to \infty$, we get

$$\lim_{n \to \infty} \mathbb{P}(S_n = k) = \frac{1}{k!} e^{-1}.$$

Notice that the above solution is simply the probability mass function of the Poisson distribution with parameter $\lambda = 1$. Then

$$\lim_{n \to \infty} \mathbb{P}(S_n = k) = \mathbb{P}(S_\infty = k),$$

where $S_{\infty} \sim \text{Poisson}(1)$. By Theorem 18.9, it immediately follows from the above equation that $S_n \stackrel{D}{\to} S_{\infty}$. And we have shown that the limiting distribution of S_{∞} is a Poisson(1) distribution.

(P.5) True or False: Consider a sequence of random variables $(X_n)_{n\in\mathbb{Z}^+}$ and X defined on a common measurable space (Ω, \mathcal{A}) . Assume that the induced probability distributions for the sequence $(X_n)_{n\in\mathbb{Z}^+}$ admit density functions $(f_n)_{n\in\mathbb{Z}^+}$ with respect to a given and fixed reference measure and denote the density function of X by f. Evaluate the statement "If $X_n \stackrel{D}{\to} X$, then $f_n \to f$ " where for full credit, you must rigorously defend your answer. If the statement is true prove it; if the statement is false, demonstrate that it is false and outline conditions under which it would be true.

Proof. The statement is false. Consider the following counterexample: Suppose the sequence $(X_n)_{n\in\mathbb{Z}^+}$ of random variables admit density functions

$$f_n(x) = (1 + \cos(2\pi nx))\mathbb{1}_{(0,1)}$$

defined on [0, 1]. Then the corresponding distribution functions are

$$F_n(x) = \int_0^x f_n(x) dx = \int_0^x (1 + \cos(2\pi nx)) \mathbb{1}_{[0,1]} = x + \frac{\sin(2\pi nx)}{2\pi nx}$$

for each $n \in \mathbb{N}$. If we take the limit as $n \to \infty$, then the term $\frac{\sin(2\pi nx)}{2\pi nx} \to 0$, hence

$$F_{X_n}(x) \to F(x) = x$$

for all $x \in [0,1]$. Thus by Theorem 18.4 we have that $X_n \stackrel{D}{\to} X$. Note that the distribution converges to a Uniform(0,1) distribution, where

$$F(x) = \begin{cases} 0 \text{ if } x < 0\\ x \text{ if } 0 \le x \le 1\\ 1 \text{ if } x > 1 \end{cases}$$

However, since the density function $f_n(x)$ is an oscillating function, then it does not converge. Therefore $X_n \stackrel{D}{\to} X$ does not imply $f_n \to f$. For the statement to be true, we would need $f_n(x)$ to be continuous, bounded and converge pointwise to a function f on [0,1]. Then by Dominated Convergence Theorem, we would have that $\mathbb{E}f_n \to \mathbb{E}f$. Thus Corollary 18.1 would allow us to directly show $X_n \stackrel{D}{\to} X$ implies $\mathbb{E}f_n \to \mathbb{E}f$ implies $f_n \to f$.