Table of Contents

clear all

code begins

```
data=imread('cameraman.tif');
data=imnoise(data,'salt & pepper');
data=imnoise(data,'gaussian');
image=data;

data=im2double(data);
% Filter takes double the size of mask
masksize=2;
% Specifications of the filter
d=4;
[ro col]=size(data);
temp1=[];
graber=0;
akkumulator=[];
```

Main Module for Alpha Trimmed Mean Filter

```
for i=1:ro;
    for j=1:col;
        for m=-masksize:masksize;
            for n=-masksize:masksize;
                if (i+m>0 && i+m<ro && j+n>0 && j+n<col && ...
                         masksize+m>0 && masksize+m<ro && ...
                         masksize+n>0 && masksize+n<col)</pre>
                     temp1=[temp1 data(i+m,j+n)];
                end
            end
        end
        temp1=sort(temp1);
        lenth=length(temp1);
        for k=((d/2)-1):(lenth-(d/2))
            akkumulator=[akkumulator temp1(k)];
        end
```

% To keep indi

```
akkumulator=sum(akkumulator);
    reformedimage(i,j)=(akkumulator) / (25-d);

    akkumulator=[];
    temp1=[];

    end
end
figure;

subplot(1,2,1);
imshow(image);
title('Noisy Image');

subplot(1,2,2);
imshow(reformedimage);
title('Alpha Trimmed Filter Result');
```

Noisy Image

Alpha Trimmed Filter Result

Anisotropic diffusion

This method works on MATLAB 2018a

Conclusion

Alpha trimmed filtering performs well on removinf noise from the give noise of the image. Anisotropic diffusion also performs gallantly on the given image.

Published with MATLAB® R2014a