

TRABAJO INTEGRADOR ARBOLES Y ARBOLES BINARIOS

Alumnos:

David Gutierrez COM 15 Mauro Cesar Valitutto COM 22

ARBOLES

Los árboles son estructuras de datos fundamentales que permiten representar relaciones jerárquicas de forma eficiente. A diferencia de otras estructuras lineales como listas o arreglos, los árboles reflejan relaciones del tipo padre-hijo, siendo ideales para modelar sistemas de organización jerárquica, toma de decisiones y búsqueda estructurada.

VENTAJAS Y UTILIDADES

APLICACIONES PRACTICAS

ELEMENTOS

RAIZ

NODOII NTERNO

HOJA

PADRE
HERMANO
HIJO

RECORRIDO DE LOS ARBOLES

PREORDEN

Existen varias formas de recorrer un árbol. Las tres formas más comunes comunes son preorden, inorden y postorden.

INORDEN

POSTORDEN

PROPIEDADES

01. LONGITUD DE CAMINO Y PROFUNDIDAD

02. NIVEL Y ALTURA

03. GRADO Y ORDEN

04. PESO

ÁRBOLES BINARIOS Y ÁRBOLES BINARIOS DE BÚSQUEDA (ABB)

Un árbol binario restringe cada nodo a tener como máximo dos hijos: izquierdo y derecho.

El Árbol Binario de Búsqueda (ABB):) es un árbol binario cuyos nodos almacenan elementos comparables mediante ≤ y donde todo nodo cumple la propiedad de ordenación Todo nodo es mayor que los nodos de su subárbol izquierdo, y menor que los

nodos de su subárbol derecho.

CASO PRÁCTICO: IMPLEMENTACIÓN DE UN ÁRBOL BINARIO DE BÚSQUEDA (

Objetivo

- Implementar en Python un árbol binario de búsqueda utilizando listas anidadas que permita:
- ·Insertar valores respetando el orden del ABB.
- Realizar un recorrido inorden para mostrar los valores ordenados.
- Buscar un valor y mostrar los pasos realizados.

```
["D",[],[]],
["E",[],[]]
```