

Physics-based animation

Tutorial: Finite Element Method (FEM)

Floyd M. Chitalu and Prof. Taku Komura

Lecture overview

- Discrete formulations (practice)
 - Energy and force discretization
 - Linear tetrahedral elements
 - Implementation

Energy and force discretization

 When modeling a deformable body on the computer we only store the values of the deformation map

$$\phi(\vec{X})$$

- ... on a finite number of points corresponding to the vertices of a discretization mesh.

$$\vec{X}_1, \vec{X}_2, \dots, \vec{X}_N$$

Discrete degrees of freedom

The respective deformed vertex locations

$$\vec{x}_i = \phi(\vec{X}_i), \ i = 1, 2, \dots, N$$

... are our discrete degrees of freedom.

We can also write

$$\mathbf{x} = (\vec{x}_1, \vec{x}_2, \dots, \vec{x}_N)$$

... which is a useful way to represent the aggregate state of our model.

The 1st step to discretiztion

 As a first step, we need to specify a method for reconstructing a continuous deformation map

$$\hat{\phi}$$

... from our discrete samples.

$$\vec{x}_i = \phi(\vec{X}_i)$$

The 1st step to discretiztion

 As a first step, we need to specify a method for reconstructing a continuous deformation map

$$\hat{\phi}$$

... from our discrete samples.

$$\vec{x}_i = \phi(\vec{X}_i)$$

 This comes down to a choice of an interpolation scheme.

One example of an interpolation scheme

- The tetrahedral mesh
 - If we use such a mesh to describe the deforming body, barycentric interpolation will extend the nodal deformations to the entire interior mesh

Interpolated deformation map

 At any rate, we denote the interpolated deformation map by

$$\hat{\phi}(\vec{X}; \mathbf{x})$$

 - ... which emphasizes that this interpolated deformation is dependent on the discrete state x

Defining a discrete energy

• For a hyperelastic material, the strain energy of any given deformation $\phi(X)$ is computed by integrating the energy density Ψ over the entire body Ω

$$E[\phi] := \int_{\Omega} \Psi(\mathbf{F}) d\vec{X}$$

• From this, we will define a discrete energy, expressed as a function of the DOFs **x**.

Defining a discrete energy

• We define a descrete energy by plugging the interpolated deformation $\hat{\phi}$ into the definition of the strain energy

$$E(\mathbf{x}) := E\left[\hat{\phi}(\vec{X}; \mathbf{x})\right] = \int_{\Omega} \Psi\left(\hat{\mathbf{F}}(\vec{X}; \mathbf{x})\right) d\vec{X}$$

 For our practical purposes today, we will look at how both the energy Ψ(F) and the interpolated map φ̂ are defined using tetrahedral meshes.

Discrete forces

- Assuming (for now) that we have defined the discrete energy E(x), we can then now compute the elastic forces associated with individual mesh nodes
- We do this by taking the (negative) gradient of the elastic energy w.r.t the corresponding DOF

$$\vec{f}_i(\mathbf{x}) = -\frac{\partial E(\mathbf{x})}{\partial \vec{x}_i}$$
 or $\mathbf{f} := (\vec{f}_1, \vec{f}_2, \dots, \vec{f}_N) = -\frac{\partial E(\mathbf{x})}{\partial \mathbf{x}}$

Discrete forces

• In practice, prior to computing each force, we first separate the energy integral into the contributions of individual elements Ω_e using:

$$E(\mathbf{x}) = \sum_{e} E^{e}(\mathbf{x}) = \sum_{e} \int_{\Omega_{e}} \Psi\left(\mathbf{\hat{F}}(\vec{X}; \mathbf{x})\right) d\vec{X}$$

 Thus, nodal forces can be computed by adding the contributions of all coincident elements:

$$\vec{f_i}(\mathbf{x}) = \sum_{e \in \mathcal{N}_i} \vec{f_i}^e(\mathbf{x})$$

$$\vec{f}_i^e(\mathbf{x}) = -\frac{\partial E^e(\mathbf{x})}{\partial \vec{x}_i}$$

Discrete forces

• For simplicity, we will compute the nodal forces on an element-by-element basis.

$$\hat{\phi}(\vec{X}) = \mathbf{A}_i \vec{X} + \vec{b}_i$$

For all $ec{X} \in \mathcal{T}_i$

$$\mathbf{F} = \partial \hat{\phi} / \partial \vec{X} = \mathbf{A}_i$$

$$\mathbf{F} = \partial \hat{\phi} / \partial \vec{X} = \mathbf{A}_i$$

NOTE: This is constant on each element, and as a consequence so will be any discrete strain measure and stress tensor.

For simplicity of notation, we will write

$$\phi(\vec{X}) = \mathbf{F}\vec{X} + \vec{b}$$

 In practice, it is possible to determine F directly from the locations of the tetrahedron vertices, without involving any reasoning related to barycentric interpolation

First, we observe that each vertex must satisfy

$$\vec{x}_i = \phi(\vec{X}_i)$$

... or

$$\begin{cases}
\vec{x}_{1} = \mathbf{F}\vec{X}_{1} + \vec{b} \\
\vec{x}_{2} = \mathbf{F}\vec{X}_{2} + \vec{b} \\
\vec{x}_{3} = \mathbf{F}\vec{X}_{3} + \vec{b} \\
\vec{x}_{4} = \mathbf{F}\vec{X}_{4} + \vec{b}
\end{cases} \Rightarrow
\begin{cases}
\vec{x}_{1} - \vec{x}_{4} = \mathbf{F} (\vec{X}_{1} - \vec{X}_{4}) \\
\vec{x}_{2} - \vec{x}_{4} = \mathbf{F} (\vec{X}_{2} - \vec{X}_{4}) \\
\vec{x}_{3} - \vec{x}_{4} = \mathbf{F} (\vec{X}_{3} - \vec{X}_{4})
\end{cases}$$

First, we observe that each vertex must satisfy

$$\vec{x}_i = \phi(\vec{X}_i)$$

... or

$$\begin{cases}
\vec{x}_{1} = \mathbf{F}\vec{X}_{1} + \vec{b} \\
\vec{x}_{2} = \mathbf{F}\vec{X}_{2} + \vec{b} \\
\vec{x}_{3} = \mathbf{F}\vec{X}_{3} + \vec{b} \\
\vec{x}_{4} = \mathbf{F}\vec{X}_{4} + \vec{b}
\end{cases} \Rightarrow
\begin{cases}
\vec{x}_{1} - \vec{x}_{4} = \mathbf{F}(\vec{X}_{1} - \vec{X}_{4}) \\
\vec{x}_{2} - \vec{x}_{4} = \mathbf{F}(\vec{X}_{2} - \vec{X}_{4}) \\
\vec{x}_{3} - \vec{x}_{4} = \mathbf{F}(\vec{X}_{3} - \vec{X}_{4})
\end{cases}$$

Eliminate 'b' by subtracting x4 from x1, x2 and x3.

 ... we can then group the last three (vector) equations as a single matrix equation

$$\left\{
\begin{array}{l}
\vec{x}_1 - \vec{x}_4 = \mathbf{F} \left(\vec{X}_1 - \vec{X}_4 \right) \\
\vec{x}_2 - \vec{x}_4 = \mathbf{F} \left(\vec{X}_2 - \vec{X}_4 \right) \\
\vec{x}_3 - \vec{x}_4 = \mathbf{F} \left(\vec{X}_3 - \vec{X}_4 \right)
\end{array}
\right\}$$

$$\begin{bmatrix} \vec{x}_1 - \vec{x}_4 & \vec{x}_2 - \vec{x}_4 & \vec{x}_3 - \vec{x}_4 \end{bmatrix} = \begin{bmatrix} \mathbf{F} \left(\vec{X}_1 - \vec{X}_4 \right) & \mathbf{F} \left(\vec{X}_2 - \vec{X}_4 \right) & \mathbf{F} \left(\vec{X}_3 - \vec{X}_4 \right) \end{bmatrix}$$
$$\begin{bmatrix} \vec{x}_1 - \vec{x}_4 & \vec{x}_2 - \vec{x}_4 & \vec{x}_3 - \vec{x}_4 \end{bmatrix} = \mathbf{F} \begin{bmatrix} \vec{X}_1 - \vec{X}_4 & \vec{X}_2 - \vec{X}_4 & \vec{X}_3 - \vec{X}_4 \end{bmatrix}$$

$$\left[\begin{array}{cccc} \vec{x}_1 - \vec{x}_4 & \vec{x}_2 - \vec{x}_4 & \vec{x}_3 - \vec{x}_4 \end{array} \right] &= \left[\begin{array}{cccc} \mathbf{F} \left(\vec{X}_1 - \vec{X}_4 \right) & \mathbf{F} \left(\vec{X}_2 - \vec{X}_4 \right) & \mathbf{F} \left(\vec{X}_3 - \vec{X}_4 \right) \end{array} \right]$$

$$\left[\begin{array}{ccccc} \vec{x}_1 - \vec{x}_4 & \vec{x}_2 - \vec{x}_4 & \vec{x}_3 - \vec{x}_4 \end{array} \right] &= \left[\begin{array}{ccccc} \mathbf{F} \left[\begin{array}{ccccc} \vec{X}_1 - \vec{X}_4 & \vec{X}_2 - \vec{X}_4 & \vec{X}_3 - \vec{X}_4 \end{array} \right]$$

• ... which represents $\mathbf{D}_s = \mathbf{F}\mathbf{D}_m$ where

$$\mathbf{D}_s := \begin{bmatrix} x_1 - x_4 & x_2 - x_4 & x_3 - x_4 \\ y_1 - y_4 & y_2 - y_4 & y_3 - y_4 \\ z_1 - z_4 & z_2 - z_4 & z_3 - z_4 \end{bmatrix}$$

$$\mathbf{D}_{s} := \begin{bmatrix} x_{1} - x_{4} & x_{2} - x_{4} & x_{3} - x_{4} \\ y_{1} - y_{4} & y_{2} - y_{4} & y_{3} - y_{4} \\ z_{1} - z_{4} & z_{2} - z_{4} & z_{3} - z_{4} \end{bmatrix} \qquad \mathbf{D}_{m} := \begin{bmatrix} X_{1} - X_{4} & X_{2} - X_{4} & X_{3} - X_{4} \\ Y_{1} - Y_{4} & Y_{2} - Y_{4} & Y_{3} - Y_{4} \\ Z_{1} - Z_{4} & Z_{2} - Z_{4} & Z_{3} - Z_{4} \end{bmatrix}$$

Computing F

$$\mathbf{F} = \mathbf{D}_s \mathbf{D}_m^{-1}$$
 ... or $\mathbf{F}(\mathbf{x}) = \mathbf{D}_s(\mathbf{x}) \mathbf{D}_m^{-1}$

Constant strain energy

 Since **F** is constant over the linear tetrahedron, the strain energy of this element reduces to

$$E_i = \int_{T_i} \Psi(\mathbf{F}) d\vec{X} = \Psi(\mathbf{F}_i) \int_{T_i} d\vec{X} = W \cdot \Psi(\mathbf{F}_i) \text{ or } E(\mathbf{x}) = W \cdot \Psi(\mathbf{F}(\mathbf{x}))$$

Discrete nodal forces

- The constant strain energy function is then used to derive the contribution of element to the elastic forces on its vertices $\vec{f}_k^i = -\partial E_i(\mathbf{x})/\partial \vec{x}_k$
- Computing the forces on all four vertices comes down to

$$\mathbf{H} = \begin{bmatrix} \vec{f}_1 & \vec{f}_2 & \vec{f}_3 \end{bmatrix} = -W\mathbf{P}(\mathbf{F})\mathbf{D}_m^{-T} \qquad \qquad \vec{f}_4 = -\vec{f}_1 - \vec{f}_2 - \vec{f}_3$$

Implementation

Gist: "How to compute of all elastic forces in a tetrahedral mesh".

Implementation

```
1: procedure Precomputation(\mathbf{x}, \mathbf{B}_m[1 \dots M], W[1 \dots M])
               for each \mathcal{T}_e = (i, j, k, l) \in \mathcal{M} do
                                                                                                          \triangleright M is the number of tetrahedra
                    \mathbf{D}_{m} \leftarrow \begin{bmatrix} X_{i} - X_{l} & X_{j} - X_{l} & X_{k} - X_{l} \\ Y_{i} - Y_{l} & Y_{j} - Y_{l} & Y_{k} - Y_{l} \\ Z_{i} - Z_{l} & Z_{j} - Z_{l} & Z_{k} - Z_{l} \end{bmatrix}
  3:
                      \mathbf{B}_m[e] \leftarrow \mathbf{D}_m^{-1}
                      W[e] \leftarrow \frac{1}{6} \det(\mathbf{D}_m)
                                                                                                  \triangleright W is the undeformed volume of \mathcal{T}_e
               end for
  7: end procedure
  8: procedure ComputeElasticForces(\mathbf{x}, \mathbf{f}, \mathcal{M}, \mathbf{B}_m[], W[])
               \mathbf{f} \leftarrow \mathbf{0}
                                                                                                                         \triangleright \mathcal{M} is a tetrahedral mesh
  9:
               for each \mathcal{T}_e = (i, j, k, l) \in \mathcal{M} do
10:
                     \mathbf{D}_{s} \leftarrow \begin{bmatrix} x_{i} - x_{l} & x_{j} - x_{l} & x_{k} - x_{l} \\ y_{i} - y_{l} & y_{j} - y_{l} & y_{k} - y_{l} \\ z_{i} - z_{l} & z_{j} - z_{l} & z_{k} - z_{l} \end{bmatrix}
11:
           \mathbf{F} \leftarrow \mathbf{D}_s \mathbf{B}_m[e]
12:
         \mathbf{P} \leftarrow \mathbf{P}(\mathbf{F})
13:
                                                                                                                      ▶ From the constitutive law
         \mathbf{H} \leftarrow -W[e]\mathbf{P} \left(\mathbf{B}_m[e]\right)^T
14:
                     \vec{f_i} += \vec{h_1}, \ \vec{f_j} += \vec{h_2}, \ \vec{f_k} += \vec{h_3}
                                                                                                                                            \triangleright \mathbf{H} = \left[ ec{h}_1 \ ec{h}_2 \ ec{h}_3 
ight]
                      \vec{f}_1 += (-\vec{h}_1 - \vec{h}_2 - \vec{h}_3)
16:
               end for
17:
18: end procedure
```

Getting started

 A template will be provided to you on by Monday.

References

- Bonet, J., & Wood, R. (2008). Nonlinear Continuum Mechanics for Finite Element Analysis (2nd ed.). Cambridge: Cambridge University Press.
- Eftychios Sifakis and Jernej Barbic. 2012. FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction. In ACM SIGGRAPH 2012 Courses (SIGGRAPH '12).
- Theodore Kim and David Eberle. 2020. Dynamic deformables: implementation and production practicalities. In ACM SIGGRAPH 2020 Courses (SIGGRAPH '20)