Funciones de forma Lagrangianas Generación de funciones usando matrices

ClaudioVZ

Estudiante de Ingeniería Civil Facultad de Ciencias y Tecnología Universidad Mayor de San Simón

26 de julio de 2013

Resumen

El presente trabajo describe los pasos para generar funciones de forma bidimensionales y tridimensionales mediante multiplicación matricial.

Notación

- $\blacksquare \ l^{(1)}$ Función de forma unidimensional Lagrangiana
- ullet $l^{(2)}$ Función de forma bidimensional Lagrangiana
- ullet $l^{(3)}$ Función de forma trididimensional Lagrangiana

1. Funciones de forma unidimensionales

1.1. Definición

Las funciones de forma Lagrangianas [1] son polinomios con dominio $-1 \le x \le 1$, la fórmula para generarlos es la siguiente:

$$l_j^{(n)} = \prod_{i=0, i \neq j}^k \frac{x - x_i}{x_j - x_i}$$

1.2. Ejemplo $l^{(1)}$

Función de forma Lagrangiana unidimensional de 2 nodos:

$$l_1^{(1)} = -\frac{1}{2}\xi + \frac{1}{2}$$

$$l_2^{(1)} = \frac{1}{2}\xi + \frac{1}{2}$$

Función de forma Lagrangiana unidimensional de 3 nodos:

$$l_1^{(1)} = \frac{1}{2}\xi^2 - \frac{1}{2}\xi$$

$$l_2^{(1)} = -\xi^2 + 1$$

$$l_3^{(1)} = \frac{1}{2}\xi^2 + \frac{1}{2}\xi$$

$$l_2^{(1)} = -\xi^2 + 1$$

$$l_3^{(1)} = \frac{1}{2}\xi^2 + \frac{1}{2}\xi$$

2. Funciones de forma bidimensionales

2.1. Método

Las $l^{(2)}$ se generar a partir de $l^{(1)}$, multiplicando matrices:

$$\begin{bmatrix} l^{(1)} \end{bmatrix} \begin{bmatrix} l^{(1)} \end{bmatrix}^T = \begin{bmatrix} l^{(2)} \end{bmatrix}$$

En donde $\left[l^{(1)}\right]$ es una matriz columna con j-elementos, $\left[l^{(1)}\right]^T$ es una matriz fila con j-elementos y $\left[l^{(2)}\right]$ es una matriz cuadrada.

Si recorremos los elementos que forman parte de la matriz $[l^{(2)}]$, uno a uno desde $l_1^{(2)}$ hasta $l_n^{(2)}$ forman una espiral, si graficamos las funciones que forman la matriz en el orden anterior observamos que el punto (ξ, η) en el que la función vale 1 también hace un recorrido en espiral.

2.2. Ejemplo $l^{(2)}$

Elemento rectangular de 4 nodos:

$$\begin{bmatrix} l_1^{(1)} \\ l_2^{(1)} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}\xi + \frac{1}{2} \\ \frac{1}{2}\xi + \frac{1}{2} \end{bmatrix}$$

$$\begin{bmatrix} l_1^{(1)} \\ l_2^{(1)} \end{bmatrix} \begin{bmatrix} l_1^{(1)} & l_2^{(1)} \end{bmatrix} = \begin{bmatrix} l_1^{(2)} & l_4^{(2)} \\ l_2^{(2)} & l_3^{(2)} \end{bmatrix}$$

$$l_1^{(2)} = \frac{1}{4}\xi^2\eta^2 - \frac{1}{4}\xi^2\eta - \frac{1}{4}\xi\eta^2 + \frac{1}{4}\xi\eta$$

$$l_2^{(2)} = -\frac{1}{2}\xi^2\eta^2 + \frac{1}{2}\xi^2\eta + \frac{1}{2}\eta^2 - \frac{1}{2}\eta$$

$$l_3^{(2)} = \frac{1}{4}\xi^2\eta^2 - \frac{1}{4}\xi^2\eta + \frac{1}{4}\xi\eta^2 - \frac{1}{4}\xi\eta$$

 $l_4^{(2)} \ = \ -\frac{1}{2}\xi^2\eta^2 + \frac{1}{2}\xi^2 - \frac{1}{2}\xi\eta^2 + \frac{1}{2}\xi$

Elemento rectangular de 9 nodos:

$$\begin{bmatrix} l_1^{(1)} \\ l_2^{(1)} \\ l_3^{(1)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\xi^2 - \frac{1}{2}\xi \\ -\xi^2 + 1 \\ \frac{1}{2}\xi^2 + \frac{1}{2}\xi \end{bmatrix}$$

$$\begin{bmatrix} l_1^{(1)} \\ l_2^{(1)} \\ l_3^{(1)} \end{bmatrix} \begin{bmatrix} l_1^{(1)} & l_2^{(1)} & l_3^{(1)} \end{bmatrix} = \begin{bmatrix} l_1^{(2)} & l_8^{(2)} & l_7^{(2)} \\ l_2^{(2)} & l_9^{(2)} & l_6^{(2)} \\ l_3^{(2)} & l_4^{(2)} & l_5^{(2)} \end{bmatrix}$$

$$l_1^{(2)} = \frac{1}{4}\xi^2\eta^2 - \frac{1}{4}\xi^2\eta - \frac{1}{4}\xi\eta^2 + \frac{1}{4}\xi\eta$$

$$l_2^{(2)} = -\frac{1}{2}\xi^2\eta^2 + \frac{1}{2}\xi^2\eta + \frac{1}{2}\eta^2 - \frac{1}{2}\eta$$

$$l_3^{(2)} = \frac{1}{4}\xi^2\eta^2 - \frac{1}{4}\xi^2\eta + \frac{1}{4}\xi\eta^2 - \frac{1}{4}\xi\eta$$

$$l_4^{(2)} = -\frac{1}{2}\xi^2\eta^2 + \frac{1}{2}\xi^2 - \frac{1}{2}\xi\eta^2 + \frac{1}{2}\xi$$

$$l_5^{(2)} = \frac{1}{4}\xi^2\eta^2 + \frac{1}{4}\xi^2\eta + \frac{1}{4}\xi\eta^2 + \frac{1}{4}\xi\eta$$

$$l_6^{(2)} = -\frac{1}{2}\xi^2\eta^2 - \frac{1}{2}\xi^2\eta + \frac{1}{2}\eta^2 + \frac{1}{2}\eta$$

$$l_7^{(2)} = \frac{1}{4}\xi^2\eta^2 + \frac{1}{4}\xi^2\eta - \frac{1}{4}\xi\eta^2 - \frac{1}{4}\xi\eta$$

$$l_8^{(2)} = -\frac{1}{2}\xi^2\eta^2 + \frac{1}{2}\xi^2 + \frac{1}{2}\xi\eta^2 - \frac{1}{2}\xi$$

$$l_9^{(2)} = \xi^2\eta^2 - \xi^2 - \eta^2 + 1$$

3. Funciones de forma tridimensionales

3.1. Método

Las $l^{(3)}$ también se generar a partir de $l^{(1)}$, pero realizando una multiplicación con matrices 3D [2].

$$\left[l^{(1)}\right]\left[l^{(1)}\right]^T\left[l^{(1)}\right]^T=\left[l^{(3)}\right]$$

En donde $[l^{(1)}]$ es una matriz columna con j-elementos, $[l^{(1)}]^T$ es una matriz fila con j-elementos y $[l^{(3)}]$ es una matriz 3D cúbica.

3.2. Ejemplo $l^{(3)}$

Elemento hexaédrico de 8 nodos:

$$\begin{bmatrix} l_1^{(1)} \\ l_2^{(1)} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}\xi + \frac{1}{2} \\ \frac{1}{2}\xi + \frac{1}{2} \end{bmatrix}$$

$$\begin{bmatrix} l_1^{(1)} \\ l_2^{(1)} \end{bmatrix} \begin{bmatrix} l_1^{(1)} & l_2^{(1)} \end{bmatrix} \begin{bmatrix} l_1^{(1)} & l_2^{(1)} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} l_1^{(3)} & l_5^{(3)} \\ l_2^{(3)} & l_6^{(3)} \end{bmatrix} \begin{bmatrix} l_4^{(3)} & l_8^{(3)} \\ l_3^{(3)} & l_7^{(3)} \end{bmatrix} \end{bmatrix}$$

$$l_1^{(3)} = -\frac{1}{8}\xi\eta\zeta + \frac{1}{8}\xi\eta + \frac{1}{8}\xi\zeta - \frac{1}{8}\xi + \frac{1}{8}\eta\zeta - \frac{1}{8}\eta - \frac{1}{8}\zeta + \frac{1}{8}$$

$$l_2^{(3)} = \frac{1}{8}\xi\eta\zeta - \frac{1}{8}\xi\eta - \frac{1}{8}\xi\zeta + \frac{1}{8}\xi + \frac{1}{8}\eta\zeta - \frac{1}{8}\eta - \frac{1}{8}\zeta + \frac{1}{8}$$

$$l_6^{(3)} = -\frac{1}{8}\xi\eta\zeta - \frac{1}{8}\xi\eta + \frac{1}{8}\xi\zeta + \frac{1}{8}\xi - \frac{1}{8}\eta\zeta - \frac{1}{8}\eta + \frac{1}{8}\zeta + \frac{1}{8}$$

$$l_5^{(3)} = \frac{1}{8}\xi\eta\zeta + \frac{1}{8}\xi\eta - \frac{1}{8}\xi\zeta - \frac{1}{8}\xi - \frac{1}{8}\eta\zeta - \frac{1}{8}\eta + \frac{1}{8}\zeta + \frac{1}{8}$$

$$l_4^{(3)} = \frac{1}{8}\xi\eta\zeta - \frac{1}{8}\xi\eta + \frac{1}{8}\xi\zeta - \frac{1}{8}\xi - \frac{1}{8}\eta\zeta + \frac{1}{8}\eta - \frac{1}{8}\zeta + \frac{1}{8}$$

$$l_4^{(3)} = \frac{1}{8}\xi\eta\zeta - \frac{1}{8}\xi\eta + \frac{1}{8}\xi\zeta - \frac{1}{8}\xi\zeta - \frac{1}{8}\eta\zeta + \frac{1}{8}\eta - \frac{1}{8}\zeta + \frac{1}{8}$$

$$l_3^{(3)} = -\frac{1}{8}\xi\eta\zeta + \frac{1}{8}\xi\eta - \frac{1}{8}\xi\zeta + \frac{1}{8}\xi\zeta - \frac{1}{8}\eta\zeta + \frac{1}{8}\eta - \frac{1}{8}\zeta + \frac{1}{8}$$

$$\begin{array}{rcl} l_7^{(3)} & = & \frac{1}{8}\xi\eta\zeta + \frac{1}{8}\xi\eta + \frac{1}{8}\xi\zeta + \frac{1}{8}\xi + \frac{1}{8}\eta\zeta + \frac{1}{8}\eta + \frac{1}{8}\zeta + \frac{1}{8} \\ l_8^{(3)} & = & -\frac{1}{8}\xi\eta\zeta - \frac{1}{8}\xi\eta - \frac{1}{8}\xi\zeta - \frac{1}{8}\xi + \frac{1}{8}\eta\zeta + \frac{1}{8}\eta + \frac{1}{8}\zeta + \frac{1}{8} \end{array}$$

Elemento hexaédrico de 27 nodos:

$$\begin{bmatrix} l_1^{(1)} \\ l_2^{(1)} \\ l_3^{(1)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\xi^2 - \frac{1}{2}\xi \\ -\xi^2 + 1 \\ \frac{1}{2}\xi^2 + \frac{1}{2}\xi \end{bmatrix}$$

$$\begin{bmatrix} l_1^{(1)} \\ l_2^{(1)} \\ l_3^{(1)} \end{bmatrix} \begin{bmatrix} l_1^{(1)} & l_2^{(1)} & l_3^{(1)} \end{bmatrix} \begin{bmatrix} l_1^{(1)} & l_2^{(1)} & l_3^{(1)} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} l_1^{(3)} & l_{10}^{(3)} & l_{19}^{(3)} \\ l_2^{(3)} & l_{11}^{(3)} & l_{20}^{(3)} \\ l_3^{(3)} & l_{12}^{(3)} & l_{21}^{(3)} \end{bmatrix} \begin{bmatrix} l_8^{(3)} & l_{17}^{(3)} & l_{26}^{(3)} \\ l_8^{(3)} & l_{18}^{(3)} & l_{27}^{(3)} \\ l_4^{(3)} & l_{13}^{(3)} & l_{22}^{(3)} \end{bmatrix} \begin{bmatrix} l_7^{(3)} & l_{16}^{(3)} & l_{25}^{(3)} \\ l_6^{(3)} & l_{15}^{(3)} & l_{24}^{(3)} \\ l_5^{(3)} & l_{13}^{(3)} & l_{22}^{(3)} \end{bmatrix}$$

$$\begin{array}{lcl} l_{23}^{(3)} & = & \frac{1}{8}\xi^2\eta^2\zeta^2 + \frac{1}{8}\xi^2\eta^2\zeta + \frac{1}{8}\xi^2\eta\zeta^2 + \frac{1}{8}\xi^2\eta\zeta + \frac{1}{8}\xi\eta^2\zeta^2 + \frac{1}{8}\xi\eta^2\zeta + \frac{1}{8}\xi\eta\zeta^2 + \frac{1}{8}\xi\eta\zeta^2 \\ l_{24}^{(3)} & = & -\frac{1}{4}\xi^2\eta^2\zeta^2 - \frac{1}{4}\xi^2\eta^2\zeta - \frac{1}{4}\xi^2\eta\zeta^2 - \frac{1}{4}\xi^2\eta\zeta + \frac{1}{4}\eta^2\zeta^2 + \frac{1}{4}\eta^2\zeta + \frac{1}{4}\eta\zeta^2 + \frac{1}{4}\eta\zeta \\ l_{25}^{(3)} & = & \frac{1}{8}\xi^2\eta^2\zeta^2 + \frac{1}{8}\xi^2\eta^2\zeta + \frac{1}{8}\xi^2\eta\zeta^2 + \frac{1}{8}\xi^2\eta\zeta - \frac{1}{8}\xi\eta^2\zeta^2 - \frac{1}{8}\xi\eta^2\zeta - \frac{1}{8}\xi\eta\zeta^2 - \frac{1}{8}\xi\eta\zeta \\ l_{16}^{(3)} & = & -\frac{1}{4}\xi^2\eta^2\zeta^2 + \frac{1}{4}\xi^2\eta^2 - \frac{1}{4}\xi^2\eta\zeta^2 + \frac{1}{4}\xi^2\eta + \frac{1}{4}\xi\eta^2\zeta^2 - \frac{1}{4}\xi\eta^2 + \frac{1}{4}\xi\eta\zeta^2 - \frac{1}{4}\xi\eta \\ l_{15}^{(3)} & = & \frac{1}{2}\xi^2\eta^2\zeta^2 - \frac{1}{2}\xi^2\eta^2 + \frac{1}{2}\xi^2\eta\zeta^2 - \frac{1}{2}\xi^2\eta - \frac{1}{2}\eta^2\zeta^2 + \frac{1}{2}\eta^2 - \frac{1}{2}\eta\zeta^2 + \frac{1}{2}\eta \end{array}$$

Conclusiones

Se implementó la forma de cálculo en Python [3], usando IPython notebook [4], Numpy [5], Sympy [6], Matplotlib [7] y Mayavi [8]; también se realizo una tabla comparativa de los tiempos de ejecución de las funciones:

Elemento 1D		Elemento 2D		Elemento 3D	
2 nodos	0.003 seg.	4 nodos	0.021 seg.	8 nodos	0.060 seg.
3 nodos	0.003 seg.	9 nodos	0.006 seg.	27 nodos	0.014 seg.
4 nodos	0.055 seg.	16 nodos	0.345 seg.	64 nodos	4.637 seg.
5 nodos	0.074 seg.	25 nodos	0.469 seg.	125 nodos	7.197 seg.
6 nodos	0.167 seg.	36 nodos	1.530 seg.	216 nodos	57.337 seg.

Para generar elementos de mayor grado y reducir el tiempo de cálculo se optimizará el código y se usara Numba [9].

Se estudiarán las propiedades de las matrices $l^{(2)}$:

- Rango
- Traza
- Determinante

En el caso de las matrices $l^{(3)}$:

■ Hiperdeterminante

Los archivos del trabajo se encuentran en https://github.com/ClaudioVZ/Teoria-FEM-Python.

Referencias

- [1] O.C.Zienkiewicz; R.L.Taylor. El Método de los Elementos Finitos Volumen 1. McGrall-Hill; CIMNE. 1994.
- [2] ClaudioVZ Matrices 3D: Multiplicación. 2013.
- [3] Lenguaje de programación http://www.python.org/
- [4] Intérprete interactivo http://ipython.org/
- [5] Biblioteca de funciones matemáticas y operaciones con arreglos http://www.numpy.org/
- [6] Biblioteca para matemática simbólica http://sympy.org/en/index.html
- [7] Biblioteca para gráficos 2D y 3D http://matplotlib.org/
- [8] Biblioteca para gráficos 3D http://code.enthought.com/projects/mayavi/
- [9] Compilador jit especializado http://numba.pydata.org/