Lógica Computacional

Aula Teórica 15: Dedução Natural em Primeira Ordem

Ricardo Gonçalves

Departamento de Informática

3 de novembro de 2023

Quantificador Universal: é fácil eliminar

Eliminação do quantificador Universal

Se todos os indivíduos do universo satisfazem uma certa propriedade, então cada um em particular satisfaz essa propriedade.

$$\frac{\mathcal{D}}{\frac{\forall_x \, \varphi}{[\varphi]_t^x}} \, (\forall_E)$$

t livre para x em φ .

Eliminação do Quantificador Universal

A seguinte árvore não é uma derivação de $\{\forall_x \exists_y (x < y)\} \vdash \exists_y (y < y)$

$$\frac{\forall_x \exists_y (x < y)}{\exists_y (y < y)} (\forall_E)$$

O problema é que y não é livre para x em $\exists_{y}(x < y)$.

Eliminação do Quantificador Universal

$$\{\forall_x (P(x) \to Q(x)), P(a)\} \vdash Q(a)$$

$$\frac{\forall_x \left(P(x) \to Q(x)\right)^1}{P(a) \to Q(a)} \stackrel{(\forall_E)}{\longrightarrow} P(a)^2}{Q(a)} (\to_E)$$

Introdução do Quantificador Existencial

Regra de introdução

Se um indivíduo de dado universo satisfaz uma propriedade, então existe algum indivíduo do universo que satisfaz essa propriedade.

$$\frac{\mathcal{D}}{\left[\varphi\right]_{t}^{x}} \left(\exists_{I}\right)$$

t livre para x em φ .

Introdução do Quantificador Existencial

A seguinte árvore não é uma derivação de $\{\forall_x Eq(x,x)\} \vdash \exists_y \forall_x Eq(y,x)$

$$\frac{\forall_x Eq(x,x)}{\exists_y \forall_x Eq(y,x)} (\forall_E)$$

O problema é que x não é livre para y em $\forall_x Eq(y,x)$.

Introdução do quantificador Existencial

$$\{\forall_x (P(x) \to Q(x)), P(a)\} \vdash \exists_x Q(x)$$

$$\frac{\forall_x (P(x) \to Q(x))^1}{P(a) \to Q(a)} (\forall_E) \qquad P(a)^2} \underbrace{\frac{Q(a)}{\exists_x Q(x)} (\exists_I)}_{(\exists_I)} (\exists_I)$$

Quantificador Universal: como introduzir?

Já introduzimos as duas regras mais simples:

- Eliminação do Universal
- Introdução do Existencial

Faltam as duas regras com condições mais complicadas:

- Introdução do Universal
- Eliminação do Existencial

Quantificador Universal

Regra de introdução

Se um indivíduo arbitrário de dado universo goza de certa propriedade, então qualquer indivíduo goza também dessa propriedade.

$$\frac{\mathcal{D}}{\frac{\left[\varphi\right]_{y}^{x}}{\forall_{x}\,\varphi}}\left(\forall_{I}\right)$$

Onde:

- **1** y não ocorre livre nas hipóteses abertas de \mathcal{D} ;
- $\mathbf{2}$ se $x \neq y$ então $y \notin VL(\varphi)$

Quantificador Universal: como introduzir?

$$\{\forall_y (P(y) \to Q(y)), \forall_y P(y)\} \vdash \forall_x Q(x)$$

$$\frac{\forall_{y} \left(P(y) \to Q(y)\right)^{1}}{P(x) \to Q(x)} (\forall_{E}) \quad \frac{\forall_{y} P(y)^{2}}{P(x)} (\forall_{E}) \\ \frac{Q(x)}{\forall_{x} Q(x)} (\forall_{I})$$

x é uma entidade arbitrária porque não ocorre nas hipóteses

Quantificador Universal: condições

$$\frac{\forall_x (P(x) \to Q(x))^1}{P(x) \to Q(x)} (\forall_E) \qquad P(x)^2}{\frac{Q(x)}{\forall_x Q(x)} (\forall_I)} (\to_E)$$

Esta árvore não é uma prova: a variável x na hipótese P(x) representa uma entidade concreta (apesar de desconhecida), pelo que não pode ser abstraida.

Quantificador Universal: como introduzir?

E se há variáveis livres nas hipóteses fechadas?

$$\frac{\neg P(x)^{3}}{\exists_{x} \neg P(x)} (\exists_{I}) \qquad \neg \exists_{x} \neg P(x)^{2}} (\neg_{E})$$

$$\frac{\bot}{P(x)} (\forall_{I})$$

$$\forall_{x} P(x) (\forall_{I})$$

É uma prova válida para $\{\neg \exists_x \neg P(x)\} \vdash \forall_x P(x)$ porque x apenas aparece livre numa hipótese fechada!

Quantificador Universal: como introduzir?

Podemos abstrair usando outra variável.

Se temos Q(y) e y é arbitrário então podemos concluir $\forall_x Q(x)$.

$$\{\forall_x \forall_y P(x,y)\} \vdash \forall_y \forall_x P(y,x)$$

$$\frac{\frac{\forall_{x}\,\forall_{y}\,P(x,y)^{1}}{\forall_{y}\,P(z,y)}\,(\forall_{E})}{\frac{P(z,x)}{\forall_{x}\,P(z,x)}\,(\forall_{I})}\\ \frac{\neg\forall_{x}\,P(z,x)}{\forall_{y}\,\forall_{x}\,P(y,x)}\,(\forall_{I})$$

Quantificador Universal: condições

Caso em que a condição:

 $oldsymbol{0}$ y não ocorre livre nas hipóteses abertas de $\mathcal D$ não é satisfeita.

$$\frac{(y \le 3)^1}{\forall_x (x \le 3)} \, (\forall_I)$$

Esta árvore não é uma prova: y ocorre livre na hipótese em aberto (1).

Quando abstraímos uma variável, ela tem de ser genérica.

Quantificador Universal: condições

Caso em que a condição:

 $\ \, \textbf{2} \ \, \text{se} \,\, x \neq y \,\, \text{então} \,\, y \notin VL(\varphi)$

não é satisfeita.

$$\frac{\frac{\forall_{y} (y \geq y)}{(y \geq y)}}{\forall_{x} (x \geq y)} (\forall_{I})}{(\forall_{I})}$$

$$\exists_{y} \forall_{x} (x \geq y)} (\exists_{I})$$

Esta árvore não é uma prova:

$$[(x \ge y)]_y^x = (y \ge y)$$
, mas y ocorre livre em $(x \ge y)$.

Quando abstraímos uma variável, devemos abstrair todas as suas ocorrências.

Quantificador Existencial: como eliminar?

Ideia

Se a partir de $\varphi(y)$ com y um elemento genérico, conseguirmos concluir ψ (que não depende y), então podemos concluir ψ a partir de $\exists \varphi(x)$.

Requisitos

- O indivíduo concreto que se assume ter a propriedade φ deve ser genérico: não pode estar (livre) nas hipóteses abertas.
- 2 a propriedade a concluir não depende do indivíduo.

Quantificador Existencial

Regra de eliminação

$$\begin{array}{ccc}
([\varphi]_y^x)^m \\
\mathcal{D}_1 & \mathcal{D}_2 \\
\exists_x \varphi & \psi \\
\hline
\psi & (\exists_E, m)
\end{array}$$

Onde:

- y não ocorre livre nem em ψ nem nas hipóteses abertas de \mathcal{D}_2 distintas de $[\varphi]_y^x$
- 2 se $x \neq y$ então y não ocorre livre em φ ;
- $oldsymbol{\circ}$ a marca m apenas fecha (eventualmente) hipóteses $[\varphi]_y^x$ em $\mathcal{D}_2.$

Eliminação do Existencial: Condições

A árvore seguinte não é uma prova de $\{\exists_x \, Par(x), \forall_x \, (Par(x) \rightarrow Par(sq(x)))\} \vdash \forall_x \, Par(sq(x))$

$$\frac{(\exists_{x} \operatorname{Par}(x))^{1}}{(\exists_{x} \operatorname{Par}(x))^{1}} \underbrace{\frac{(\forall_{x} (\operatorname{Par}(x) \to \operatorname{Par}(\operatorname{sq}(x))))^{2}}{\operatorname{Par}(x) \to \operatorname{Par}(\operatorname{sq}(x))}}_{(\forall_{I})} (\forall_{I})}_{(\forall_{I})} (\forall_{I})$$

O problema é que a variável x ocorre livre no nó Par(sq(x)).

Eliminação do Existencial: condições

A árvore seguinte não é uma prova de $\{P(a),Q(x)\} \vdash \exists_x (P(x) \land Q(x))$

$$\frac{P(a)^{1}}{\exists_{x} P(x)} \stackrel{(\exists_{I})}{(\exists_{I})} \frac{\frac{P(x)^{3} \quad Q(x)^{2}}{P(x) \land Q(x)}} \stackrel{(\land_{I})}{(\exists_{I})} \\ \exists_{x} \left(P(x) \land Q(x)\right)} \stackrel{(\exists_{I})}{(\exists_{E}, 3)}$$

O problema é que a variável x ocorre livre na hipótese aberta ${\cal Q}(x).$

Eliminação do Existencial: Condições

A árvore seguinte não é uma prova de $\{\exists_x (Par(x) \land (y=3))\} \vdash \exists_z (Par(z) \land (z=3))$

$$\frac{(\exists_x (Par(x) \land (y=3)))^1 \qquad \frac{(Par(y) \land (y=3))^2}{\exists_z (Par(z) \land (z=3))}}{\exists_z (Par(z) \land (z=3))} \stackrel{(\exists_I)}{(\exists_{E}, 2)}$$

Note-se que
$$Par(y) \wedge (y=3) = [Par(x) \wedge (y=3)]_y^x$$
.

O problema é que a variável y é diferente de x mas ocorre livre em $Par(x) \wedge (y=3)$.

Regras dos quantificadores

∀ - Eliminação

$$\frac{\mathcal{D}}{\frac{\forall_x \, \varphi}{[\varphi]_t^x}} \, (\forall_E)$$

- t livre para x em φ

∃ - Introdução

$$\frac{\mathcal{D}}{\frac{[\varphi]_t^x}{\exists_x \, \varphi}} \, (\exists_I)$$

- t livre para x em φ

∀ - Introdução

$$\frac{\mathcal{D}}{\frac{\left[\varphi\right]_{y}^{x}}{\forall_{x}\,\varphi}}\left(\forall_{I}\right)$$

- y não ocorre livre em hipóteses abertas de ${\mathcal D}$
- se $x \neq y$ então $y \not\in VL(\varphi)$

∃ - Eliminação

$$\begin{array}{ccc}
 & ([\varphi]_y^x)^m \\
\mathcal{D}_1 & \mathcal{D}_2 \\
 & \exists_x \varphi & \psi \\
 & \psi & (\exists_E, m)
\end{array}$$

- y não ocorre livre em ψ nem nas hipóteses abertas de \mathcal{D}_2 que não $[arphi]_{yy}^x$
- se $x \neq y$ então y não ocorre livre em φ
- a marca m apenas fecha (eventualmente) hipóteses $[\varphi]_n^x$ em \mathcal{D}_2

Exemplos

Prove, usando Dedução Natural, os seguintes resultados: