Comprehensive Compendium of 3D Ultrasound Reconstruction Approaches

Notation and Definitions

- ullet $I(t):[0,T]
 ightarrow \mathbb{R}^{H imes W}$: 2D grayscale ultrasound image function
- P(t):[0,T] o SE(3): probe pose function
- $\{(I_i,P_i)\}_{i=1}^N$: discrete set of image-pose pairs
- $\Omega \subset \mathbb{R}^3$: 3D reconstruction space
- ullet $V:\Omega o\mathbb{R}$: reconstructed 3D volume
- $\mathcal{P}=\{(x,y,z,i)|(x,y,z)\in\mathbb{R}^3,i\in\mathbb{R}\}$: point cloud space

Approach 1: Neural Operator for 3D Volume Reconstruction

Formulation

$$\mathcal{G}: (L^2([0,T];\mathbb{R}^{H imes W}) imes C([0,T];SE(3))) o L^2(\Omega;\mathbb{R})$$

such that $\mathcal{G}(I,P)=V$, where $V:\Omega o\mathbb{R}$ is the reconstructed 3D volume.

- 1. Define neural networks:
 - ullet $\mathcal{E}: \mathbb{R}^{H imes W}
 ightarrow \mathbb{R}^d$ (image encoder)
 - $\mathcal{Q}: SE(3)
 ightarrow \mathbb{R}^d$ (pose embedder)
 - $\mathcal{F}: (\mathbb{R}^d imes \mathbb{R}^d)^N o L^2(\Omega;\mathbb{R})$ (integrator)
- 2. For each $\left(I_i,P_i\right)$ pair:
 - a. Compute $E_i = \mathcal{E}(I_i)$
 - b. Compute $Q_i = \mathcal{Q}(P_i)$
- 3. Integrate: $V = \mathcal{F}(\{E_i, Q_i\}_{i=1}^N)$
- 4. Define loss: $\mathcal{L} = lpha \|V V_{gt}\|_2^2 + eta (1 \mathrm{SSIM}(V, V_{gt}))$
- 5. Train using gradient descent:

$$heta \leftarrow heta - \eta
abla_{ heta} \mathcal{L}$$

Mermaid Chart

Approach 2: Neural Operator for Point Cloud Reconstruction

Formulation

$$\mathcal{G}: (L^2([0,T];\mathbb{R}^{H imes W}) imes C([0,T];SE(3))) o \mathcal{P}$$

Algorithm

- 1. Define neural networks:
 - ullet $\mathcal{E}: \mathbb{R}^{H imes W}
 ightarrow \mathbb{R}^d$ (image encoder)
 - ullet $\mathcal{Q}:SE(3)
 ightarrow\mathbb{R}^d$ (pose embedder)
 - ullet $\mathcal{F}: (\mathbb{R}^d imes \mathbb{R}^d)^N o \mathcal{P}$ (point cloud generator)
- 2. For each (I_i,P_i) pair:
 - a. Compute $E_i=\mathcal{E}(I_i)$
 - b. Compute $Q_i = \mathcal{Q}(P_i)$
- 3. Generate point cloud: $\{(x_k,y_k,z_k,i_k)\}_{k=1}^K=\mathcal{F}(\{E_i,Q_i\}_{i=1}^N)$
- 4. Define loss: $\mathcal{L} = d_{Chamfer}(\{(x_k, y_k, z_k, i_k)\}, \{(x_k^{gt}, y_k^{gt}, z_k^{gt}, i_k^{gt})\})$
- 5. Train using gradient descent:

$$heta \leftarrow heta - \eta
abla_{ heta} \mathcal{L}$$

Mermaid Chart

Approach 3: Optical Flow Minimization for Frame Alignment

Formulation

Find $\{T_i\}_{i=1}^N$, where $T_i \in SE(3)$, such that:

$$rg\min_{\{T_i\}} \sum_{i=1}^{N-1} \|\operatorname{OpticalFlow}(I_i \circ T_i, I_{i+1} \circ T_{i+1})\|_2^2$$

subject to $T_1 = I$ (identity transformation)

Algorithm

- 1. Initialize $\{T_i\}_{i=1}^N$ as identity transformations
- 2. For each iteration (max*iter):
 - a. For i=1 to N-1:
 - i. Compute optical flow: $F_i = \operatorname{OpticalFlow}(I_i \circ T_i, I*i+1 \circ T*i+1)$
 - ii. Estimate ΔT_i from F_i using least squares
 - iii. Update $T_i \leftarrow T_i \circ \Delta T_i$
 - b. Compute loss: $\mathcal{L} = \sum *i = 1^{N-1} \|F_i\|_2^2$
 - c. If $\mathcal{L} < \epsilon$ or iteration > max_iter, break
- 3. Reconstruct 3D points:

For each pixel (u, v) in each image I_i :

- a. Back-project to 3D: $(x,y,z)=T_i^{-1}K^{-1}(u,v,1)$
- b. Add $(x, y, z, I_i(u, v))$ to point cloud

Where K is the camera intrinsic matrix.

Mermaid Chart

Approach 4: Skewer-to-Curve Transformation

Formulation

Define S(s)=(0,0,sL), $s\in[0,1]$, L is skewer length. Find $C(s):[0,1]\to\mathbb{R}^3$ such that C(s)=(x(s),y(s),z(s))

Constraints

- 1. C(0) = (0,0,0) and $C(1) = (x_f,y_f,L)$
- 2. $\|C'(s)\| pprox L$ for all s
- 3. Minimize $\sum_{i=1}^{N-1}\|\operatorname{OpticalFlow}(I_i\circ T(s_i),I_{i+1}\circ T(s_{i+1}))\|_2^2$

Algorithm

- 1. Initialize C(s) = S(s)
- 2. For each iteration (max*iter):
 - a. Compute transformations: $T(s_i) = C(s_i) \circ S(s_i)^{-1}$, $s_i = i/(N-1)$
 - b. Calculate optical flow: $F_i = \operatorname{OpticalFlow}(I_i \circ T(s_i), I*i+1 \circ T(s*i+1))$
 - c. Update C(s):
 - i. Represent $C(s) = \sum *k = 1^K lpha_k \phi_k(s)$, where ϕ_k are basis functions
 - ii. Solve for $\{lpha_k\}$ to minimize $\sum \|F_i\|^2$ subject to constraints
 - d. If change in $C(s) < \epsilon$ or iteration > max_iter, break
- 3. Final reconstruction:

For each pixel (u,v) in each image I_i :

- a. Compute $s_i=i/(N-1)$
- b. Back-project to 3D: $(x,y,z)=T(s_i)^{-1}K^{-1}(u,v,1)$
- c. Add $(x,y,z,I_i(u,v))$ to point cloud

Mermaid Chart

Syntax error in text

mermaid version 10.9.0

Approach 5: Time as a Spatial Dimension

Formulation

Let $V_0:\Omega_4 \to \mathbb{R}$ be the initial 4D volume.

Find $T:\Omega_4 o\Omega_3$ such that $V(T(x,y,z,t))=V_0(x,y,z,t)$

Constraints

- 1. T is a diffeomorphism
- 2. Minimize variation of V along original t direction
- 3. Well-conditioned Jacobian of T

Algorithm

- 1. Initialize $T_0(x,y,z,t)=(x,y,z)$
- 2. For each iteration (max*iter):
 - a. Compute current reconstruction: $V_k(x,y,z) = V_0(T_k^{-1}(x,y,z))$
 - b. Calculate t-gradient: $G_k =
 abla_t V_k \circ T_k^{-1}$
 - c. Update T: $T*k+1=T*k-\lambda G_k$
 - d. Regularize T*k+1:
 - i. Smooth: $T_{k+1} = T_{k+1} * Gaussian Kernel$
 - ii. Enforce invertibility: $\det(
 abla T_{k+1}) > \epsilon$
 - e. If $\|T_{k+1} T_k\| < \delta$ or iteration > max_iter, break
- 3. Final reconstruction: $V(x,y,z)=V_0(T^{-1}(x,y,z))$

Mermaid Chart

Approach 6: Dense Matching for Ultrasound Frames

Formulation

For each pair (I_i,I_{i+1}) , find $F_i:\mathbb{R}^2 o\mathbb{R}^2$ such that: $I_i(x,y)pprox I_{i+1}(F_i(x,y))$ for all (x,y)

Algorithm

- 1. For each pair (I_i, I_{i+1}) :
 - a. Initialize $F_i(x,y) = (x,y)$
 - b. For iteration = 1 to max*iter:
 - i. Compute error: $E_i(x,y) = I_i(x,y) I * i + 1(F * i(x,y))$
 - ii. Estimate update: $\Delta F_i = \mathrm{NCC}(E_i, I*i+1)$
 - iii. Update: $F_i(x,y) \leftarrow F_i(x,y) + \lambda \Delta F_i(x,y)$
 - iv. Regularize: $F_i = \text{BilateralFilter}(F_i)$
 - v. If $\|\Delta F_i\| < \epsilon$, break
- 2. Accumulate: $T_i = F_1 \circ F_2 \circ ... \circ F_{i-1}$
- 3. Reconstruct:

For each voxel (x, y, z) in V:

- a. Find i such that $z \in [i\Delta z, (i+1)\Delta z]$
- b. Compute $(x',y')=T_i^{-1}(x,y)$
- c. Set $V(x,y,z)=I_i(x^\prime,y^\prime)$

Where NCC is Normalized Cross-Correlation.

Mermaid Chart

Approach 7: Visual SLAM Inspired Reconstruction

Formulation

Simultaneously estimate:

- 1. Map $M:\Omega o\mathbb{R}$ (3D tissue structure)
- 2. Trajectory au:[0,T] o SE(3) (probe poses)

Optimize $rg \min_{M, au} \sum_{i=1}^N \|I_i - \operatorname{Proj}(M, au(t_i))\|^2 + \lambda R(M, au)$

Where Proj is the projection function and R is a regularization term.

Algorithm

- 1. Initialize M_0 as empty map, au_0 as identity trajectory
- 2. For each frame I_i , i=1 to N:
 - a. Feature extraction: $F_i = \mathrm{FAST}(I_i)$
 - b. Feature matching: $M_i = \operatorname{Match}(F_i, F_{i-1})$
 - c. Pose estimation: $\Delta au_i = ext{PnP}(M_i, M_{i-1})$
 - d. Update trajectory: $au_i = au_{i-1} \circ \Delta au_i$
 - e. Update map:

For each matched feature f in M_i :

- i. If f is new, triangulate and add to M
- ii. Else, update existing point in M via Kalman filter
- f. Local bundle adjustment:

Optimize
$$rg \min_{M', au'} \sum_{j=i-k}^i \|I_j - \operatorname{Proj}(M', au'(t_j))\|^2$$

Update M and au with optimized M' and au'

3. Global optimization:

Optimize
$$rg \min_{M, au} \sum_{i=1}^N \|I_i - \operatorname{Proj}(M, au(t_i))\|^2 + \lambda R(M, au)$$

Where FAST is Features from Accelerated Segment Test, and PnP is Perspective-n-Point algorithm.

Mermaid Chart

Approach 8: Large Point Cloud Construction

Formulation

Given a sequence of frames $\{I_i\}_{i=1}^N$ and initial pose estimates $\{P_i\}_{i=1}^N$, construct a dense point cloud $\mathcal{C}=\{(x_j,y_j,z_j,i_j)\}_{j=1}^M$

- 1. Initialize empty point cloud $\mathcal{C} = \{\}$
- 2. For each frame I_i , i=1 to N:
 - a. Extract features: $F_i = \operatorname{SIFT}(I_i)$
 - b. If i>1:

- i. Match features: $M_i = \text{FlannMatcher}(F_i, F_{i-1})$
- ii. Refine pose: $P_i = ICP(P_i, P_{i-1}, M_i)$
- c. Project frame to 3D:

For each pixel (u, v) in I_i :

- i. Depth estimation: $d = \text{EstimateDepth}(I_i, u, v)$
- ii. Back-project: $(x, y, z) = P_i^{-1} K^{-1}(u, v, d)$
- iii. Add $(x,y,z,I_i(u,v))$ to ${\mathcal C}$
- 3. Voxel grid filter: $C = VoxelGrid(C, voxel_size)$
- 4. Statistical outlier removal: $\mathcal{C} = \mathrm{SOR}(\mathcal{C}, k, \alpha)$

Where SIFT is Scale-Invariant Feature Transform, ICP is Iterative Closest Point, SOR is Statistical Outlier Removal.

Mermaid Chart

Approach 9: Parametric Curve with Inflection Points

Formulation

Find a parametric curve $C(s):[0,1] o \mathbb{R}^3$ with n inflection points, minimizing:

$$rg \min_{C} \sum_{i=1}^{N-1} \|\operatorname{OpticalFlow}(I_i \circ T(s_i), I_{i+1} \circ T(s_{i+1}))\|^2$$

subject to:

- 1. $C(0) = (0,0,0), C(1) = (x_f, y_f, z_f)$
- 2. $\|C'(s)\|pprox L$ for all s
- 3. $C^{\prime\prime}(s_k)=0$ for k=1,...,n (inflection points)

- 1. Initialize C(s) as a straight line
- 2. Define basis: $C(s) = \sum_{k=0}^K lpha_k B_k(s)$, where B_k are cubic B-splines
- 3. For iteration = 1 to max*iter:
 - a. Compute transformations: $T(s_i) = C(s_i) \circ S(s_i)^{-1}$, $s_i = i/(N-1)$
 - b. Calculate optical flow: $F_i = \operatorname{OpticalFlow}(I_i \circ T(s_i), I*i+1 \circ T(s*i+1))$

c. Formulate optimization problem:

$$\min*lpha*k\sum*i=1^{N-1}\|F_i\|^2$$
 subject to:

i.
$$C(0) = (0,0,0)$$
, $C(1) = (x_f,y_f,z_f)$

- ii. $\|C'(s)\|pprox L$ for sampled s
- iii. $C''(s_k) = 0$ for k = 1, ..., n
- d. Solve for $\{\alpha_k\}$ using constrained optimization (e.g., SQP)
- e. Update C(s) with new $\{\alpha_k\}$
- f. If change in $C(s) < \epsilon$, break
- 4. Final reconstruction:

For each pixel (u, v) in each image I_i :

- a. Compute $s_i = i/(N-1)$
- b. Back-project to 3D: $(x, y, z) = T(s_i)^{-1} K^{-1}(u, v, 1)$
- c. Add $(x, y, z, I_i(u, v))$ to point cloud

Where SQP is Sequential Quadratic Programming.

Mermaid Chart

Approach 10: Multi-Modal Data Fusion

Formulation

Given ultrasound images $\{I_i\}_{i=1}^N$, IMU data $\{A_i\}_{i=1}^N$, and pressure data $\{P_i\}_{i=1}^N$, estimate 3D volume V and probe trajectory τ .

Optimize:

$$rg \min_{V, au} \sum_{i=1}^{N} (\|I_i - \operatorname{Proj}(V, au(t_i))\|^2 + \lambda_1 \|\ddot{ au}(t_i) - A_i\|^2 + \lambda_2 \|P_i - f(au(t_i))\|^2)$$

Where f estimates pressure based on probe position.

- 1. Initialize V_0 as empty volume, au_0 as constant velocity trajectory
- 2. For each time step i=1 to N:
 - a. Image processing:

- i. Feature extraction: $F_i = \mathrm{SURF}(I_i)$
- ii. If i>1: Match features $M_i=\operatorname{Match}(F_i,F_{i-1})$
- b. IMU integration:
- i. Predict pose: $\hat{\tau}_i = \text{IntegrateIMU}(\tau_{i-1}, A_i)$
- c. Pressure-based correction:
- i. Estimate depth: $d_i = \text{EstimateDepth}(P_i)$
- ii. Correct z-component: $\hat{ au}_i(z) = d_i$
- d. Pose optimization:

Optimize
$$au_i = rg \min_{ au} (\|M_i - \operatorname{Project}(V_{i-1}, au)\|^2 + \| au - \hat{ au}_i\|^2)$$

- e. Volume update:
- i. Back-project I_i to 3D using au_i
- ii. Fuse with V_{i-1} using TSDF (Truncated Signed Distance Function)
- 3. Global optimization:

Optimize full cost function over all frames for V and au

Where SURF is Speeded Up Robust Features.

Mermaid Chart

