[Total No. of Printed Pages—6

Seat	
No.	

[5668]-181

S.E. (Computer) (I Sem.) EXAMINATION, 2019

Time: Two Hours

Maximum Marks: 50

- Neat diagrams must be drawn wherever necessary.
 - Figures to the right indicate full marks. (ii)
 - Assume suitable data if necessary. (iii)
- Prove that the set of rational numbers is countably infinite. [3] 1. (a)
 - Show that for natural no. n: (*b*)

$$1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$$

(c)Let

$$X = \{1, 2, \dots, n\}$$

$$X = \{1, 2, \dots, n\}$$
 $R = \{(x, y) \mid x - y\}$

is divisible by 3. Show that R is equivalence relation. Draw the diagraph for R where n =[6]

P.T.O.

2. In a survey of 60 people: (a)

[3]

- read newsweek magazine
- read time 26
- read fortune
- 9 read both newsweek and fortune
- 11 read both newsweek and time
- 8 read both time and fortune
- 8 read no magazine at all.
- Find the no. of people who read all the three magazines.
- Find the no. of people who read exactly one magzine. (ii)
- $A = \{\phi, b\}$ construct the following sets : (*b*)
 - (i) $A - \phi$
 - $\{\phi\} A$ (ii)
 - (iii) $A \cup P(A)$

where P(A) is a power set.

(c) Let

$$A = \{1, 2, 3, 4, 5\}$$

Define the following relation R on A aRb if and only if a < b.

Find:

(i) R in roster form

(ii) Domain and range of R

(iii) Diagraph of R.

[3]

(1)		
(d)	Draw Hasse diagram representing the partial ordering:	
	$\{(a, b) \mid a \text{ divides } b\}$ on $\{1, 2, 3, 4, 6, 8, 12\}.$	
	Find two examples of chain and antichain.	[3]
3. (a)	The company has 10 members on its board of directors.	In
3. (<i>a</i>)		
	how many ways can they elect a president, a vice presiden	п,
	a secretary and a treasurer ?	[3]
(b)	Find 8th term in the expansion of $(x + y)^{13}$.	[3]
(c)	Can a simple graph exist with 15 vertices, each of degr	ee
	five ?	[3]
(d)	For which values of n_1 m are the following graph regular:	[3]
	(i) K_n	
	(ii) S_n	
	(iii) $G_{n, m}$.	,
	Or Or	
4. (a)	A box contains 6 white and 5 black balls. Find number	of
	ways 4 balls can be drawn from the box, if:	
	(i) Two must be white	
,	(ii) All of them must have same colour.	[3]
(<i>b</i>)	Expand $(3x - 4)^4$ using binomial theorem.	[3]
[5668]-181	3 P.T.	O.

3.

- (d) How many regions would there be in a plane graph with 10 vertices each of degree 3. [3]
- 5. (a) Construct a binary search tree:

 J, R, D, G, W, E, M, H, P, A, F, Q.
 - (b) Construct the binary tree with prefix codes representing: [4]
 - (i) a: 11, e: 0, t. 101, s: 100
 - (ii) a: 1010, e: 0, t: 11, s: 1011, n: 1001, i: 10001.
 - (c) Give the stepwise construction of minimum spanning tree using Kruskal's algorithm for the following graph. Obtain the total cost of minimum spanning tree. [5]

6. (a) Using the labelling procedure to find maximum flow in the transport network in the following figure. Determine the corresponding minimum cut. [7]

(b) Find fundamental cutsets and circuits of the following graph G_1 with respect to spanning tree T_1 . [4]

Define with example: (c)

[2]

- Level and height of a tree.
- Write properties of Binary operations. 7. (a)

- [5]
- Prove that the set 2 of all integers with binary operation (*b*) defined by

$$a * b = a+b+1 \quad \forall a, b \in 2$$

is an abelian group.

[5]

 $A = \{0, 1\}$. Is A closed under: (c)

[3]

- Multiplication (1)
- (2)Addition.
- $f: G \to G$, G is group with identity 'e' such that $f(a) \in e$ for 8. (a) all $a \in G$ prove that function f is homomorphism.
 - In the set R of real number. Decide whether the following (*b*) with t_{10} and x_{10} operation i.e. $R = \{A, t_{10}, x_{10}\}$ is a ring. [4] composition is associative $a, b, c \in \mathbb{R}$:
 - (c)

$$A = \{0, 2, 4, 6, 8\}$$