Yvonne Lee: MSDS 664 Week 6

Assignment #6

To do a time series analysis on the data, I had cleaned up the data first. I removed the unnecessary columns, removed an empty row, fixed a column name, and removed commas.

```
medianSalesPrice <- read.csv("C:/Users/ylee_/Desktop/medianSalesPrice.csv")</pre>
```

```
drops <- c("X","X.1","X.2","X.3","X.4")
medianSalesPrice <- medianSalesPrice[, !(names(medianSalesPrice) %in% drops)]</pre>
```

head(medianSalesPrice)

ïPeriod <chr></chr>	United <chr></chr>	Northeast <chr></chr>	Midwest <chr></chr>	South <chr></chr>	West <chr></chr>
1					
2 1963Q1	17,800	20,800	17,500	16,800	18,000
3 1963Q2	18,000	20,600	17,700	15,800	18,900
4 1963Q3	17,900	19,600	17,800	15,900	19,000
5 1963Q4	18,500	20,600	19,100	15,800	19,500
6 1964Q1	18,500	20,300	18,700	16,500	19,600
6 rows					

library(dplyr)

```
## Warning: package 'dplyr' was built under R version 4.0.5
```

```
##
## Attaching package: 'dplyr'
```

```
## The following objects are masked from 'package:stats':
##
## filter, lag
```

```
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
```

```
medianSalesPrice <- medianSalesPrice %>% rename(Period = 'ï..Period')
medianSalesPrice <- medianSalesPrice[-1,]</pre>
```

head(medianSalesPrice)

Period <chr></chr>	United <chr></chr>	Northeast <chr></chr>	Midwest <chr></chr>	South <chr></chr>	West <chr></chr>
2 1963Q1	17,800	20,800	17,500	16,800	18,000
3 1963Q2	18,000	20,600	17,700	15,800	18,900
4 1963Q3	17,900	19,600	17,800	15,900	19,000
5 1963Q4	18,500	20,600	19,100	15,800	19,500
6 1964Q1	18,500	20,300	18,700	16,500	19,600
7 1964Q2	18,900	19,800	19,800	16,800	20,100

library(zoo)

```
## Warning: package 'zoo' was built under R version 4.0.4
```

```
##
## Attaching package: 'zoo'
```

```
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
```

```
x <- medianSalesPrice$Period
medianSalesPrice$Period <- as.yearqtr(sub("(..)", "\\1 ", x), format = "Q%q %Y")</pre>
```

```
medianSalesPrice$United <- as.numeric(gsub(",","",medianSalesPrice$United))
medianSalesPrice$Northeast <- as.numeric(gsub(",","",medianSalesPrice$Northeast))
medianSalesPrice$Midwest <- as.numeric(gsub(",","",medianSalesPrice$Midwest))
medianSalesPrice$South <- as.numeric(gsub(",","",medianSalesPrice$South))
medianSalesPrice$West <- as.numeric(gsub(",","",medianSalesPrice$West))</pre>
```

```
head(medianSalesPrice)
```

	Period	United	Northeast	Midwest	South	West
	<yearqtr></yearqtr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
2	<na></na>	17800	20800	17500	16800	18000
3	<na></na>	18000	20600	17700	15800	18900
4	<na></na>	17900	19600	17800	15900	19000
5	<na></na>	18500	20600	19100	15800	19500
6	<na></na>	18500	20300	18700	16500	19600
7	<na></na>	18900	19800	19800	16800	20100

I then created a time series object with the Northeast column and plotted it.

medianSalesPrice.ts <- ts(medianSalesPrice\$Northeast, frequency = 4, start = 1963)</pre>

medianSalesPrice.ts

##	(tr1)	Qtr2	Qtr3	Qtr4
## 19	63 26	9800	20600	19600	20600
## 19	64 26	300	19800	20200	21400
## 19	965 21	1000	21900	21200	23100
## 19	966 23	3700	23700	23700	23400
## 19	967 23	800	25400	25600	27500
## 19	968 26	600	26900	27800	29900
## 19	969 31	L500	32100	31300	30500
## 19	970 32	2000	33100	26800	29200
## 19	71 31	1000	30500	30900	31300
## 19	972 31	L900	31100	29400	33800
## 19	973 35	100	38400	36900	38600
## 19	974 38	3600	39500	40700	44000
## 19	975 44	1000	43400	44400	44400
## 19	76 45	700	46300	48400	50200
## 19	77 50	900	53200	49300	52000
## 19	78 56	800	55400	57800	60700
## 19	979 65	500	65800	66500	67100
## 19	980 65	400	67900	71900	71400
## 19	81 71	L300	84000	73700	71100
## 19	982 69	9900	81600	81300	76800
## 19	983 77	7800	81000	84100	84900
## 19	984 82	2700	94200	91200	86600
## 19	985 89	9800	99800	108800	105700
## 19	86 121	L500	121000	125000	131500
## 19	87 139	9000	145000	139900	142000
## 19	988 149	9000	145000	153000	155000
## 19	989 168	3500	144900	165700	161400
## 19	990 150	9000	159900	158000	167000
## 19		3900	150000	155200	169000
		5900	175000	170000	165000
## 19	93 156	9000	175000	155000	162600
## 19	994 159	9900		165000	
## 19	95 179	9900	179900	179900	
## 19		9000	199700		200000
		1400	189000		195000
		5000	200000		
		5500	214700		
			239500		
		2800	255200		
		1200	261100	255400	287100
		3100	279900	259400	290000
		2000	290300		357400
		5800	325700		370300
				380500	
		300	304900		
		5900	352500		300700
		1800	272500		
		7400	348700		
		200	289100		
				385700	
## 26	376	300	373200	320100	421400

```
## 2014 339800 361900 453900 398600

## 2015 456800 397800 383700 501900

## 2016 417100 454100 434000 403700

## 2017 566500 472200 445800 496500

## 2018 437500 453300 503700 519700

## 2019 480300 453500 543400 469500

## 2020 512100 441000 449500 508100

## 2021 511700 543800 502300
```

plot(medianSalesPrice.ts, xlab="Quarters in the Years", ylab="Average Sales Price", main="Average
e Sale Prices of Houses Sold in the Northeast")

Average Sale Prices of Houses Sold in the Northeast

The plot shows an increase in average price as time goes on.

```
library(tseries)

## Warning: package 'tseries' was built under R version 4.0.5

## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo

adf.test(medianSalesPrice.ts)
```

```
##
## Augmented Dickey-Fuller Test
##
## data: medianSalesPrice.ts
## Dickey-Fuller = -1.5766, Lag order = 6, p-value = 0.7539
## alternative hypothesis: stationary
```

With a hypothesis that states the time series is stationary and a null stating that is it not stationary, the adf.test() shows a p-value that is above 0.05. This means we fail to reject the null hypothesis and that the data may not have a time-dependent structure.

```
Box.test(medianSalesPrice.ts, type="Ljung-Box")

##
## Box-Ljung test
##
## data: medianSalesPrice.ts
## X-squared = 223.37, df = 1, p-value < 2.2e-16</pre>
```

The box.text() supports rejecting the null hypothesis.

```
median.stl <- stl(medianSalesPrice.ts, s.window = "periodic")

plot(median.stl)</pre>
```


library(forecast)

Warning: package 'forecast' was built under R version 4.0.5

median.holt <- HoltWinters(medianSalesPrice.ts,gamma=FALSE)
plot(forecast(median.holt))</pre>

Forecasts from HoltWinters


```
Box.test(medianSalesPrice.ts, type="Ljung-Box")

##
## Box-Ljung test
##
## data: medianSalesPrice.ts
## X-squared = 223.37, df = 1, p-value < 2.2e-16</pre>
```

The forecasting shows that prices will only continue to increase in the future.

Between 2017 and 2018 seems to be the peak of home prices in the Northeast. Although it was still a gradual increase in prices, there was a dip in prices between 2003 and 2004 and a small dip around 2008.

References:

Coghlan, A. (n.d.). Using R for time series analysis¶. Using R for Time Series Analysis - Time Series 0.2 documentation. Retrieved November 30, 2021, from https://a-little-book-of-r-for-time-series.readthedocs.io/en/latest/src/timeseries.html (https://a-little-book-of-r-for-time-series.readthedocs.io/en/latest/src/timeseries.html).

Ralph. (2013, January 11). Seasonal trend decomposition in R: R-bloggers. R. Retrieved November 30, 2021, from https://www.r-bloggers.com/2013/01/seasonal-trend-decomposition-in-r/ (https://www.r-bloggers.com/2013/01/seasonal-trend-decomposition-in-r/).

Zach. (2021, May 25). Augmented dickey-fuller test in R (with example). Statology. Retrieved November 30, 2021, from https://www.statology.org/dickey-fuller-test-in-r/ (https://www.statology.org/dickey-fuller-test-in-r/).