

S-109A Introduction to Data Science

Harvard University
Summer 2018
Instructors: Pavlos Protopapas, Kevin Rader

Project: FIFA World Cup 2018 - Predictions

Goal: To be able to predict outcome of FIFA World Cup 2018 for: Round-16, Quater Finals, Semi Finals, and Final match(es)

Sections

Exploratory Data Analysis (EDA)

- Visualize: Game & Game Results Distributions
- Visualize: Top 20 Winners & Loosers (All Time)
- Visualize: Top 20 Winners & Loosers (Last 10 years)
- Visualize: Distribution of Team Rankings, and Rank Difference, grouped by Game Results

Data Transformation

- Add Feature: FIFA Team Ranks
- Add Feature: Year Weight
- Add Feature: FIFA World Cup Points
- Add Feature: FIFA World Cup Participations
- Add Feature: Team's overall player strength
- Add Quadratic Terms
- Normalize Predictors
- Build Train & Test Datasets

Building Models

- Logistic Regression
- Linear Discriminant Analysis
- Quadratic Discriminant Analysis
- K-Nearest Neighbors
- Decision Tree Classifier
- Random Forest Classifier
- AdaBoost Classifier
- Neural Network
- Stacking Baged Models (Bootstrapped n=25)
- Model Comparision
- Final Predictions

Note: Webscrapping process and methods are included in the supplemental notebook: nb_webscrape.ipynb

Exploratory Data Analysis (EDA)

In this section we will load and analyze two datasets - international match results: international_results.csv, and players data: PlayerAttributeData.csv, PlayerPersonalData.csv, PlayerPlayingPositionData.csv, CompleteDataset.csv. We will also add new features to these datasource from additional datasets build via web-scraping (detailed in supplemental notebook).

```
In [7]: # import the necessary libraries
        %matplotlib inline
        import numpy as np
        import scipy as sp
        import matplotlib as mpl
        import matplotlib.cm as cm
        import matplotlib.pyplot as plt
        from matplotlib.lines import Line2D
        import pandas as pd
        from pandas import Series
        import random
        import time
        from sklearn.preprocessing import MinMaxScaler
        from sklearn.linear model import LogisticRegression
        from sklearn.linear model import LogisticRegressionCV
        from sklearn.discriminant analysis import LinearDiscriminantAnalysis
        from sklearn.discriminant analysis import QuadraticDiscriminantAnalysi
        from sklearn.preprocessing import PolynomialFeatures
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.model selection import cross val score
        from sklearn.metrics import accuracy score
        from sklearn.metrics import r2 score
        from sklearn.model selection import KFold
        from sklearn.model selection import GridSearchCV
        from sklearn.model selection import train test split
        from sklearn.decomposition import PCA
        from sklearn.utils import resample
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.ensemble import AdaBoostClassifier
        from sklearn.linear model import LogisticRegressionCV
        from sklearn.model selection import StratifiedKFold
        from keras.models import Sequential
        from keras.layers import Dense
        from keras.layers import regularizers
        from PIL import Image
        from PIL import ImageFont
        from PIL import ImageDraw
        from matplotlib.pyplot import imshow
```

Loading and analyzing datasets.

In [8]: df_matches = pd.read_csv("datasets/fifa/international_results.csv")
 print("df_matches: ", df_matches.shape)
 print(df_matches.dtypes)
 df_matches.head(10)

df_matches: (39654, 9)date object home team object away_team object int64 home_score away_score int64 tournament object object city country object neutral bool

dtype: object

Out[8]:

	date	home_team	away_team	home_score	away_score	tournament	city	С
0	1872- 11-30	Scotland	England	0	0	Friendly	Glasgow	Sc
1	1873- 03-08	England	Scotland	4	2	Friendly	London	Er
2	1874- 03-07	Scotland	England	2	1	Friendly	Glasgow	Sc
3	1875- 03-06	England	Scotland	2	2	Friendly	London	Er
4	1876- 03-04	Scotland	England	3	0	Friendly	Glasgow	Sc
5	1876- 03-25	Scotland	Wales	4	0	Friendly	Glasgow	Sc
6	1877- 03-03	England	Scotland	1	3	Friendly	London	Er
7	1877- 03-05	Wales	Scotland	0	2	Friendly	Wrexham	w
8	1878- 03-02	Scotland	England	7	2	Friendly	Glasgow	Sc
9	1878- 03-23	Scotland	Wales	9	0	Friendly	Glasgow	Sc

The international results.csv dataset has 39,654 observations, and 9 variables -

- · date: when the match is held
- home team: name of the home team
- away team: name of the away team
- home score: number of goals made by the home_team
- away score: number of goals made by the away_team
- tournament: name of the tournament, ex: FIFA World Cup
- city: where the game is held
- country: where the game is held.
- neutral: False, if game venue is not in home_team's city/ country. True, otherwise.

Add Feature: Year, Net Score, and Game Result

In the section below, we are adding few additional variables —

- neutral: changed datatype to numeric binary (from boolean binary).
- year: when the game is held.
- net score: home_score minus the away_score
- result: of the game from home_team prespective.
 - 0: Lost,
 - 1: Won,
 - 2: Draw

```
In [9]:
        def get game result(data row):
             \hbox{\it """} A function which returns the result of the match
            for a given match observation
            Inputs: data row of international results.csv dataset
            Returns:
                 0: home team lost the match
                 1: home team won the match
                 2: match is a draw
            if data_row["home_score"] > data_row["away_score"]:
                 return 1
            elif data row["home score"] < data row["away score"]:</pre>
                 return 0
            else:
                 return 2
        def get net score(data row):
             """A function which returns the net score of the game,
             given as: home_score - away_score
            Inputs: data row of international results.csv dataset
            Returns: net score = home score - away score
            return data_row["home_score"] - data_row["away_score"]
        df_matches.neutral = df_matches.neutral.astype(int)
        df matches['year'] = pd.to datetime(df matches['date']).dt.year
        df_matches['net_score'] = df_matches.apply(get_net_score, axis=1)
        df matches['result'] = df matches.apply(get game result, axis=1)
```

Out[10]:

	date	year	home_team	away_team	home_score	away_score	net_score	res
30188	2008- 06-14	2008	Puerto Rico	Honduras	2	2	0	2
22354	2000- 01-20	2000	Malta	Qatar	2	0	2	1
9153	1975- 01-31	1975	Malawi	Mauritius	1	1	0	2
27481	2005- 06-21	2005	Australia	Tunisia	0	2	-2	0
24328	2001- 11-21	2001	Ethiopia	Zambia	1	2	-1	0
25169	2003- 02-12	2003	Israel	Armenia	2	0	2	1
31288	2009- 07-23	2009	USA	Honduras	2	0	2	1
1309	1930- 09-21	1930	Norway	Denmark	1	0	1	1
27295	2005- 03-29	2005	Ireland	China	1	0	1	1
14157	1986- 06-28	1986	France	Belgium	4	2	2	1

Visualize: Game & Game Results Distributions

```
fig, ax = plt.subplots(1,2, figsize=(20,9))
In [11]:
         ax[0].set title("Distribution of matches over the years", fontsize=18)
         ax[0].margins(0.02)
         ax[0].hist(df_matches["year"], bins=50, color="lightblue", label="matc
         h year")
         ax[0].set_xlabel("Match Year", fontsize=14)
         ax[0].set_ylabel("Observations ($n$)", fontsize=14)
         ax[0].legend(loc=2, fontsize=14)
         results = list(df matches.groupby("result").agg({
             'date': 'count'
         })["date"])
         lbl results = ["Loss", "Win", "Draw"] # 0: loose, 1: win, 2: draw
         colors = plt.cm.Blues(np.linspace(1, 0, 3))
         ax[1].set title("Distribution of match results", fontsize=18)
         ax[1].margins(0.02)
         ax[1].pie(results, labels=lbl_results, colors=colors, autopct='%.1f%%'
         , textprops={'fontsize': 14})
         ax[1].legend(loc=3, fontsize=14)
```

Out[11]: <matplotlib.legend.Legend at 0x1a4622a7f0>

From the plots above we can see that —

- data is significantly skewed over the year variable. The volume of data available between 1990 2018 (18 years) is far greater than the volume of data available between 1880 1990 (110 years).
 This trend could be for many reasons (1) more games being played in recent years, (2) more data
 being captured & recorded for the games being played. We'll keep this trend in mind, while working
 with this dataset to build our learning models.
- data is also skewed over the result variable. There are far more observations with result=win,
 compared to combined observations of result=loss, and result=draw. As result variable will be our
 outcome variable, we would have preferred if the volume of data was balanced between these three
 levels of result variable. We'll have to keep this trend in mind, while working with this dataset to
 build our learning models.

Visualize: Top 20 Winners & Loosers (All Time)

```
In [12]: fig, ax = plt.subplots(1,2, figsize=(20,9))
         # 0: loose, 1: win, 2: draw
         df_winners = df_matches[df_matches.result==1].groupby(["home_team"]).a
         gg({
              'date': 'count'
         }).copy()
         df winners.columns = ["count"]
         df winners = df winners.reset index()
         df winners = df winners.sort values(by="count", ascending=False).copy(
         )
         ax[0].set title("Top 20 winning teams (All Time)", fontsize=18)
         ax[0].margins(0.02)
         ax[0].barh(df winners[:20]["home team"], df winners[:20]["count"], col
         or="#add8e6", label="wins")
         ax[0].set xlabel("Team", fontsize=14)
         ax[0].set ylabel("Number of wins", fontsize=14)
         ax[0].legend(loc=1, fontsize=14)
         df looser = df matches[df matches.result==0].groupby(["home team"]).ag
         g({
              'date':'count'
         }).copy()
         df looser.columns = ["count"]
         df looser = df looser.reset index()
         df looser = df looser.sort values(by="count", ascending=False).copy()
         ax[1].set title("Top 20 loosing teams (All Time)", fontsize=18)
         ax[1].margins(0.02)
         ax[1].barh(df looser[:20]["home team"], df looser[:20]["count"], color
         ="#add8e6", label="loss")
         ax[1].set xlabel("Team", fontsize=14)
         ax[1].set ylabel("Number of wins", fontsize=14)
         ax[1].legend(loc=1, fontsize=14)
```

Out[12]: <matplotlib.legend.Legend at 0x1a53fd6860>

The plot above shows the -

- top-20 teams (left-plot) of all time: Brazil, Argentina, Germany, England, Mexico, ...
- bottom-20 teams (right-plot) of all time: Luxembourg, Finland, Switzerland, Norway, Malta, ...

Visualize: Top 20 Winners & Loosers (Last 10 years)

```
In [13]: fig, ax = plt.subplots(1,2, figsize=(20,9))
         # 0: loose, 1: win, 2: draw
         df winners = df matches[(df matches.result==1) & (df matches.year>=200
         8)].groupby(["home_team"]).agg({
             'date':'count'
         }).copy()
         df winners.columns = ["count"]
         df winners = df winners.reset index()
         df winners = df winners.sort values(by="count", ascending=False).copy(
         )
         ax[0].set title("Top 20 winning teams (Last 10 years)", fontsize=18)
         ax[0].margins(0.02)
         ax[0].barh(df_winners[:20]["home_team"], df_winners[:20]["count"], col
         or="#c1cdc1", label="wins")
         ax[0].set xlabel("Team", fontsize=14)
         ax[0].set ylabel("Number of wins", fontsize=14)
         ax[0].legend(loc=1, fontsize=14)
         df_looser = df_matches[(df_matches.result==0) & (df_matches.year>=2008
         )].groupby(["home team"]).agg({
             'date':'count'
         }).copy()
         df looser.columns = ["count"]
         df looser = df looser.reset index()
         df looser = df looser.sort values(by="count", ascending=False).copy()
         ax[1].set_title("Top 20 loosing teams (Last 10 years)", fontsize=18)
         ax[1].margins(0.02)
         ax[1].barh(df_looser[:20]["home_team"], df_looser[:20]["count"], color
         ="#c1cdc1", label="loss")
         ax[1].set xlabel("Team", fontsize=14)
         ax[1].set ylabel("Number of wins", fontsize=14)
         ax[1].legend(loc=1, fontsize=14)
```


The plot above shows the —

- top-20 teams (left-plot) for last 10 years: Mexico, Egypt, USA, Japan, Spain, ...
- bottom-20 teams (right-plot) for last 10 years: Luxembourg, Andorra, Malta, Qatar, San Marino, ...

From the data above we can see that there is a significant change in both top & bottom team orders within last 10 years. We see the top 4 teams of all time: Brazil, Argentina, Germany, England, do not show up in top 5 teams for last 10 years. What could be the reason for this?

Data Transformation - adding new features

Add Feature: FIFA Team Ranks

Let's add FIFA team ranking to our dataset —

- ranking: data scraped from FIFA website.
 - home rank: ranking of the home_team in the given year
 - away rank: ranking of the away_team in the given year
 - Note: If no data available for given team for a given year, average rank (over the years) for that team will be applied

Out[15]:

	date	year	team	rank
53970	2016-12-22	2016	Bermuda	187
14443	2000-10-11	2000	Sri Lanka	150
17477	2002-01-16	2002	Korea DPR	139
1396	1994-05-17	1994	Senegal	55
9063	1998-07-15	1998	Brunei Darussalam	176
1821	1994-07-21	1994	Liberia	136
18698	2002-08-14	2002	Sri Lanka	142
36433	2009-11-20	2009	British Virgin Islands	192
15148	2001-02-14	2001	Greece	43
42603	2012-06-06	2012	Kazakhstan	141

Out[16]:

	year	team	rank
3079	2008	Moldova	97
4450	2015	Cayman Islands	205
4087	2013	Iraq	98
2800	2007	Cyprus	82
2196	2004	Faroe Islands	137
717	1996	Wales	82
1731	2002	Aruba	189
31	1993	Chinese Taipei	161
4279	2014	Germany	2
3640	2011	England	8

```
III [I/]. | WOL GOO_HOMO_LUMA(WWGW_LOW).
             """A function which returns the rank of the home_team
             for the given year
             Inputs: data row of international results.csv dataset
             Returns: rank
             .....
             rank = df_grouped_ranking[(df_grouped_ranking["year"]==data_row["y
         ear"]) & (df_grouped_ranking["team"]==data row["home team"])]["rank"]
             if len(rank) > 0:
                 # apply exact rank
                 return list(rank)[0]
             else:
                 # apply average rank
                 ranks=list(df grouped ranking[(df grouped ranking["team"]==dat
         a_row["home_team"])]["rank"])
                 if len(ranks) > 0:
                     return int(round(np.mean(ranks)))
                 else:
                     return df grouped ranking["rank"].max()
         def get_away_rank(data row):
             """A function which returns the rank of the away_team
             for the given year
             Inputs: data row of international results.csv dataset
             Returns: rank
             rank = df grouped ranking[(df grouped ranking["year"]==data row["y
         ear"]) & (df grouped ranking["team"]==data row["away team"])]["rank"]
             if len(rank) > 0:
                 # apply exact rank
                 return list(rank)[0]
             else:
                 # apply average rank
                 ranks=list(df grouped ranking[(df grouped ranking["team"]==dat
         a row["away team"])]["rank"])
                 if len(ranks) > 0:
                     return int(round(np.mean(ranks)))
                 else:
                     return df grouped ranking["rank"].max()
         def get rank diff(data row):
             """A function which returns the difference in home_team and
             away team rankings
             Inputs: data row of international results.csv dataset
             Returns: rank difference (home rank - away rank)
             return data row["home rank"] - data row["away rank"]
```

```
df_matches['home_rank'] = df_matches.apply(get_home_rank, axis=1)
df_matches['away_rank'] = df_matches.apply(get_away_rank, axis=1)
df_matches['rank_diff'] = df_matches.apply(get_rank_diff, axis=1)
```



```
df matches:
             (39654, 15)
date
              object
               int64
year
home team
              object
              object
away team
home_rank
               int64
away rank
               int64
rank_diff
               int64
home score
               int64
away_score
               int64
               int64
net score
result
               int64
tournament
              object
              object
city
country
              object
neutral
               int64
dtype: object
```

Out[18]:

	year	home_team	away_team	home_rank	away_rank	rank_diff	home_score
10078	1977	Peru	Poland	64	44	20	1
10554	1978	Botswana	Mozambique	128	106	22	0
32495	2010	Guadeloupe	Antigua and Barbuda	209	131	78	1
39220	2017	Kenya	Rwanda	88	93	-5	2
23329	2000	Vietnam	Indonesia	99	99	0	2
30477	2008	United Arab Emirates	Korea DPR	99	94	5	1
20058	1997	Congo DR	Congo	82	98	-16	1
6804	1968	Suriname	French Guyana	146	209	-63	2
13001	1984	Morocco	Senegal	51	64	-13	2
13705	1985	Saudi Arabia	Qatar	61	89	-28	1

Visualize: Distribution of Team Rankings, and Rank Difference, grouped by Game Results

```
In [19]: fig, ax = plt.subplots(1,2, figsize=(20,9))
         home team = []
         away_team = []
         for cur pos, cur df in df matches.groupby("result"):
             home_team.append(cur_df[cur_df["year"]>=1993]["home_rank"].values)
             away team.append(cur df[cur df["year"]>=1993]["away rank"].values)
         # 0: loose, 1: win, 2: draw
         ax[0].set title("Distribution of team rankings vs game result", fonts
         ize=18)
         ax[0].violinplot(home_team, positions=[1,2.5,4.0])
         ax[0].violinplot(away team, positions=[1.5,3.0,4.5])
         ax[0].set xticks([1.25, 2.75, 4.25])
         ax[0].set_xticklabels(["Loss","Win","Draw"])
         ax[0].set_xlabel("Match Result", fontsize=14)
         ax[0].set ylabel("Team Ranking", fontsize=14)
         custom lines = [Line2D([0], [0], color="lightblue", lw=4), Line2D([0],
         [0], color="orange", lw=4)]
         ax[0].legend(custom lines, ['Home Team', 'Away Team'], loc=1, ncol=2,
         fontsize=14)
         diff0 = list(df matches[df matches.result==0]["rank diff"])
         diff1 = list(df matches[df matches.result==1]["rank diff"])
         diff2 = list(df matches[df matches.result==2]["rank diff"])
         ax[1].set title("Distribution of rankinng-difference vs game result",
         fontsize=18)
         ax[1].violinplot(diff0, positions=[1])
         ax[1].violinplot(diff1, positions=[2])
         ax[1].violinplot(diff2, positions=[3])
         ax[1].set xticks([1,2,3])
         ax[1].set xticklabels(["Loss", "Win", "Draw"])
         ax[1].plot([1,3],[0,0], lw=1, ls="dotted", c="black")
         ax[1].set_xlabel("Match Result", fontsize=14)
         ax[1].set ylabel("Ranking Difference", fontsize=14)
```


Add Feature: Year Weight

year wt: higher weightage to recent data, lower weightage to older data (on the scale of 0 to 2)

```
In [20]:
         # apply weight to year when match was played.
         # recent year(s) performance should be treated as more relevant (highe
         r weight)
         # compared to older year(s) performance (lower weight)
         df matches['year wt'] = df matches['year']
         min year = min(df matches["year"])
         max year = max(df matches["year"])
         range year = max year - min year
         weights = list(np.linspace(0,1,range year+2))
         for count, year in enumerate(range(min_year-1, max_year+1)):
             df matches["year wt"] = df matches["year wt"].replace(year, weight
         s[count])
         # rearranging columns
         colnames = ["date", "year", "year wt", "home team", "away team", "home rank
         ", "away rank", "rank diff", "home score",
                      "away_score", "net_score", "result", "tournament", "city", "cou
         ntry", "neutral"]
         df matches = df matches[colnames]
         print("df matches: ", df matches.shape)
         print(df matches.dtypes)
         df matches.sample(10)
```

df_matches: (39654, 16) object date year int64 year_wt float64 object home_team away_team object home_rank int64 away_rank int64 rank_diff int64 home_score int64 away_score int64 net_score int64 result int64 tournament object object city object country int64 neutral

dtype: object

Out[20]:

	date	year	year_wt	home_team	away_team	home_rank	away_rank	ran
2269	1940- 10-20	1940	0.469388	Germany	Bulgaria	6	52	-46
4748	1960- 10-14	1960	0.605442	Korea Republic	Vietnam Republic	49	209	-16
3278	1952- 05-11	1952	0.551020	Romania	Czechoslovakia	28	209	-18
16727	1992- 02-02	1992	0.823129	USA	Russia	25	27	-2
31896	2010- 05-26	2010	0.945578	Northern Ireland	Turkey	59	42	17
28676	2006- 11-20	2006	0.918367	Northern Cyprus	Tajikistan	209	141	68
2149	1939- 02-12	1939	0.462585	Portugal	Switzerland	12	35	-23
19732	1996- 09-01	1996	0.850340	Colombia	Chile	9	39	-30
32303	2010- 10-09	2010	0.945578	Rwanda	Benin	132	72	60
8977	1974- 07-03	1974	0.700680	Sweden	Yugoslavia	27	46	-19

Add Feature: FIFA World Cup Points

- home wc points: home_team's all time points for world cup games
- away_wc_points: away_team's all time points for world cup games

Out[21]:

	rank	team	points	matches	win	draw	lost	goal_for	goal_against	points_avg
0	1	Brazil	227	104	70	17	17	221	102	2.2
1	2	Germany	218	106	66	20	20	224	121	2.1
2	3	Italy	156	83	45	21	17	128	77	1.9
3	4	Argentina	140	77	42	14	21	131	84	1.8
4	5	Spain	99	59	29	12	18	92	66	1.7

```
def get home wc points(data row):
In [22]:
             wc points = df fifa wc ranking[df fifa wc ranking.team == data row
         ["home_team"]]["points"]
             if len(wc_points) > 0:
                 return list(wc_points)[0]
             else:
                 return 0
         def get away wc points(data row):
             wc_points = df_fifa_wc_ranking[df_fifa_wc_ranking.team == data_row
         ["away team"]]["points"]
             if len(wc_points) > 0:
                 return list(wc points)[0]
             else:
                 return 0
         df matches['home wc pts'] = df matches.apply(get home wc points, axis=
         df matches['away wc pts'] = df matches.apply(get away wc points, axis=
         df_matches.sample(5)
```

Out[22]:

	date	year	year_wt	home_team	away_team	home_rank	away_rank	rank_d
17905	1993- 10-05	1993	0.829932	Cyprus	Israel	75	71	4
15416	1989- 05-18	1989	0.802721	Peru	Venezuela	64	84	-20
34324	2012- 10-05	2012	0.959184	Burma	Brunei	209	209	0
33727	2012- 02-29	2012	0.959184	Guinea- Bissau	Cameroon	175	71	104
26261	2004- 03-31	2004	0.904762	Scotland	Romania	86	35	51

Add Feature: FIFA World Cup Participations

- home wc plays: home_team's world cup participations
- away wc plays: away_team's world cup participations

Out[23]:

	team	participations	years
0	Brazil	20	1930, 1934, 1938, 1950, 1954, 1958, 1962, 1966
1	Germany	18	1934, 1938, 1954, 1958, 1962, 1966, 1970, 1974
2	Italy	18	1934, 1938, 1950, 1954, 1962, 1966, 1970, 1974
3	Argentina	16	1930, 1934, 1958, 1962, 1966, 1974, 1978, 1982
4	Mexico	15	1930, 1950, 1954, 1958, 1962, 1966, 1970, 1978

```
In [24]: def get home wc plays(data row):
             wc plays = df fifa participations[df fifa participations.team == d
         ata_row["home_team"]]["participations"]
             if len(wc plays) > 0:
                 return list(wc_plays)[0]
             else:
                 return 0
         def get away wc plays(data row):
             wc_plays = df_fifa_participations[df_fifa_participations.team == d
         ata_row["away_team"]]["participations"]
             if len(wc_plays) > 0:
                 return list(wc_plays)[0]
             else:
                 return 0
         df matches['home wc plays'] = df matches.apply(get home wc plays, axis
         =1)
         df_matches['away_wc_plays'] = df_matches.apply(get_away_wc_plays, axis
         =1)
         df matches.sample(5)
```

Out[24]:

	date	year	year_wt	home_team	away_team	home_rank	away_rank	rank_d
10731	1979- 05-09	1979	0.734694	Denmark	Sweden	24	27	-3
20254	1997- 04-02	1997	0.857143	Scotland	Austria	37	47	-10
5017	1962- 03-28	1962	0.619048	Argentina	Mexico	7	16	-9
38447	2017- 03-22	2017	0.993197	Curaçao	El Salvador	209	99	110
18390	1994- 09-07	1994	0.836735	Georgia	Moldova	93	149	-56

```
In [25]: df_matches.to_pickle("datasets/matches_data.pkl")
```

Add Feature: Team's overall player strength

```
In [26]:
         df_players = pd.read_pickle("datasets/sofifa_players.pkl")
         df_players_grouped = df_players.groupby(["year","team"]).agg({"age":np
         .mean, "overall":np.mean}).copy()
         df_players_grouped = df_players_grouped.reset_index()
         df_players_grouped.columns = ["year","team","age_mean","overall_mean"]
         df_players_grouped["age_wt"] = df_players_grouped["age_mean"] - df_pla
         yers_grouped["age_mean"].mean()
         df_players_grouped["perf_wt"] = df_players_grouped["overall_mean"] - d
         f_players_grouped["overall_mean"].mean()
         df_matches.to_pickle("datasets/df_players_grouped.pkl")
         def get home player agewt(data row):
             age_wt = list(df_players_grouped[(df_players_grouped.year==data_ro
         w["year"])&(df players grouped.team==data row["home team"])]["age wt"]
             if len(age wt) > 0:
                 return age_wt[0]
             else:
                 return 0
         def get_away_player_agewt(data_row):
             age_wt = list(df_players_grouped[(df_players_grouped.year==data_ro
         w["year"])&(df_players_grouped.team==data_row["away_team"])]["age_wt"]
             if len(age wt) > 0:
                 return age_wt[0]
             else:
```

```
return 0
def get home player prfwt(data row):
    prf wt = list(df players grouped[(df players grouped.year==data ro
w["year"])&(df players grouped.team==data row["home team"])]["perf wt"
1)
    if len(prf wt) > 0:
        return prf wt[0]
    else:
        return 0
def get away player prfwt(data row):
    prf wt = list(df players grouped[(df players grouped.year==data ro
w["year"])&(df_players_grouped.team==data_row["away_team"])]["perf_wt"
1)
    if len(prf_wt) > 0:
        return prf wt[0]
    else:
        return 0
df matches['home p age wt'] = df matches.apply(get home player agewt,
axis=1)
df matches['away p age wt'] = df matches.apply(get away player agewt,
axis=1)
df matches['home p prf wt'] = df matches.apply(get home player prfwt,
axis=1)
df_matches['away_p_prf_wt'] = df_matches.apply(get away player prfwt,
axis=1)
df matches.sample(20)
```

Out[26]:

	date	year	year_wt	home_team	away_team	home_rank	away_rank	rank_d
34018	2012- 06-12	2012	0.959184	Bahrain	Kuwait	97	96	1
27083	2004- 12-17	2004	0.904762	Bahrain	Saudi Arabia	64	30	34
10103	1977- 07-03	1977	0.721088	Argentina	Yugoslavia	7	46	-39
13721	1985- 07-14	1985	0.775510	Fiji	Tahiti	155	163	-8
14095	1986- 05-28	1986	0.782313	China	Iran	209	209	0
14103	1986- 06-02	1986	0.782313	Russia	Hungary	27	62	-35
28883	2007- 03-24	2007	0.925170	Austria	Ghana	94	47	47

3543	1954- 03-21	1954	0.564626	Israel	Yugoslavia	60	46	14
30184	2008- 06-14	2008	0.931973	Malawi	Egypt	138	35	103
17474	1993- 04-13	1993	0.829932	Vietnam	Singapore	135	75	60
11854	1981- 09-23	1981	0.748299	Portugal	Poland	12	44	-32
36776	2015- 06-11	2015	0.979592	Spain	Costa Rica	9	42	-33
21007	1998- 02-16	1998	0.863946	South Africa	Namibia	36	81	-45
31985	2010- 06-16	2010	0.945578	Spain	Switzerland	2	26	-24
31474	2009- 10-10	2009	0.938776	France	Faroe Islands	9	185	-176
22786	2000- 05-23	2000	0.877551	Lebanon	Iraq	114	89	25
16260	1991- 02-20	1991	0.816327	France	Spain	9	6	3
24636	2002- 05-18	2002	0.891156	Czech Republic	Italy	21	9	12
33137	2011- 08-25	2011	0.952381	United Arab Emirates	Qatar	130	95	35
7154	1969- 09-24	1969	0.666667	Turkey	Switzerland	38	35	3

20 rows × 24 columns

Add Quadratic Terms, Normalize Predictors, Build Train & Test Datasets

```
In [27]: df_matches.to_pickle("datasets/matches_data.pkl")
    df_matches = pd.read_pickle("datasets/matches_data.pkl")
    df_matches["result"] = df_matches["result"].replace(2,0)
```

```
all_features = ['date', 'year', 'year_wt', 'home_team', 'away_team', '
home rank',
                'away rank', 'rank diff', 'home score', 'away score',
'net score',
                'result', 'tournament', 'city', 'country', 'neutral',
'home wc pts',
                'away wc pts', 'home wc plays', 'away wc plays', 'home
p age wt',
                'away_p_age_wt', 'home_p_prf_wt', 'away_p_prf_wt']
final features = ["year wt", "home team", "away team", "home rank", "away
rank",
                    "neutral", "home wc pts", "away wc pts", "home wc pla
ys",
                    "away wc plays", "home p age wt", "away p age wt",
                    "home p prf wt", "away p prf wt", "result"]
df final = df matches[df matches.year >= 2006][final features]
scaler = MinMaxScaler(copy=True, feature range=(0, 1)).fit(df final["h
ome rank"].values.reshape(-1,1))
df final["home rank"] = scaler.transform(df final["home rank"].values.
reshape(-1,1))
df final["home rank"] = abs(df final["home rank"]-1)
scaler = MinMaxScaler(copy=True, feature range=(0, 1)).fit(df final["a
way rank"].values.reshape(-1,1))
df final["away rank"] = scaler.transform(df final["away rank"].values.
reshape(-1,1))
df final["away rank"] = abs(df final["away rank"]-1)
scaler = MinMaxScaler(copy=True, feature range=(0, 1)).fit(df final["h
ome wc pts"].values.reshape(-1,1))
df_final["home_wc_pts"] = scaler.transform(df_final["home_wc_pts"].val
ues.reshape(-1,1))
scaler = MinMaxScaler(copy=True, feature range=(0, 1)).fit(df final["a
way wc pts"].values.reshape(-1,1))
df final["away_wc_pts"] = scaler.transform(df_final["away_wc_pts"].val
ues.reshape(-1,1))
scaler = MinMaxScaler(copy=True, feature range=(0, 1)).fit(df final["h
ome wc plays"].values.reshape(-1,1))
df final["home wc plays"] = scaler.transform(df final["home wc plays"]
.values.reshape(-1,1))
scaler = MinMaxScaler(copy=True, feature range=(0, 1)).fit(df final["a
way wc plays"].values.reshape(-1,1))
df final["away wc plays"] = scaler.transform(df final["away wc plays"]
.values.reshape(-1,1))
scaler = MinMaxScaler(copy=True, feature range=(-1, 1)).fit(df final["
home p age wt"].values.reshape(-1,1))
```

```
df final["home p age wt"] = scaler.transform(df final["home p age wt"]
.values.reshape(-1,1))
scaler = MinMaxScaler(copy=True, feature range=(-1, 1)).fit(df final["
away p age wt"].values.reshape(-1,1))
df_final["away_p_age_wt"] = scaler.transform(df final["away p age wt"]
.values.reshape(-1,1))
scaler = MinMaxScaler(copy=True, feature range=(-1, 1)).fit(df final["
home p prf wt"].values.reshape(-1,1))
df_final["home_p_prf_wt"] = scaler.transform(df_final["home_p_prf_wt"]
.values.reshape(-1,1))
scaler = MinMaxScaler(copy=True, feature range=(-1, 1)).fit(df final["
away p prf wt"].values.reshape(-1,1))
df final["away p prf wt"] = scaler.transform(df final["away p prf wt"]
.values.reshape(-1,1))
df final["home p age wt 2"] = df final["home p age wt"]**2
df_final["away_p_age_wt_2"] = df_final["away_p_age_wt"]**2
df final["home p prf wt 2"] = df final["home p prf wt"]**2
df_final["away_p_prf_wt_2"] = df_final["away_p_prf_wt"]**2
df final["home p age wt 3"] = df final["home p age wt"]**3
df final["away p age wt 3"] = df final["away p age wt"]**3
df final["home p prf wt 3"] = df final["home p prf wt"]**3
df_final["away_p_prf_wt_3"] = df_final["away_p_prf_wt"]**3
df final["home p age perf wt"] = df final["home p age wt"] * df final[
"home p prf wt"]
df final["away p age perf wt"] = df final["away p age wt"] * df final[
"away p prf_wt"]
df final = pd.get dummies(df final)
x df final = df final.drop(["result"], axis=1).copy()
y df final = df final["result"].copy()
X train, X test, y train, y test = train test split(x df final, y df f
inal, test_size=0.1, random_state=42)
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
```

```
(10571, 576) (1175, 576) (10571,) (1175,)
```

/Volumes/Data/ramandeepharjai/anaconda3/envs/ds/lib/python3.6/site-p ackages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype int64 was converted to float64 by MinMaxScaler. warnings.warn(msq, DataConversionWarning)

Building Models

- ### Single Models
 - Logistic Regression
 - Linear Discriminant Analysis
 - Quadratic Discriminant Analysis
 - K-Nearest Neighbors
 - Decision Tree Classifier
- ### Ensemble Models
 - Random Forest Classifier
 - AdaBoost Classifier
 - Stacking
- ### Neural Network

```
In [28]: # defining dictionary objects to store -
#     * tuned models
#     * predictions obtained from tuned models
#     * probabilities obtained from tuned models
#     * execution time to train the model

# uncomment below lines to build the dictionaries again
# models = {}
# probs = {}
# scores = {}
# exeTime = {}
```

Logistic Regression

```
In [32]: modelName = "logistic"
         # build parameters list to find best parameter values
         parameters = {
             'C':[.01, 1, 10, 100, 1000],
             'solver':['newton-cg', 'lbfgs', 'sag'],
             'fit intercept': [True, False]
         }
         # build base estimator model, and run GridSearchCV to find best model
         start time = time.time()
         model = LogisticRegression(penalty="12", max iter=1000)
         gs = GridSearchCV(estimator=model, param grid=parameters, cv=5, n jobs
         =4, verbose=1).fit(X train, y train)
         exe time = round((time.time() - start time)/60, 2)
         # compute scores, and probabilities
         train_score = round(accuracy_score(y_train, gs.predict(X_train)),4)
         test score = round(accuracy score(y test, gs.predict(X test)),4)
         train prob = gs.predict proba(X train)
         test prob = gs.predict_proba(X_test)
         # store model, score, and probabilities in a dictionary
         exeTime.update({modelName:exe time})
         scores.update({modelName:[train score,test score]})
         probs.update({modelName:[train prob,test prob]})
         models.update({modelName:gs.best estimator })
         # display scores and best model
         print("[Logistic Regression]")
         print("Execution time : {} minutes".format(exe time))
         print("Train Accuracy : {:>0.4f}".format(train score))
         print("Test Accuracy : {:>0.4f}".format(test score))
         print("\nBest Model:\n", gs.best_estimator_)
         [Logistic Regression]
         Execution time : 4.32 minutes
         Train Accuracy: 0.7409
         Test Accuracy : 0.7106
         Best Model:
          LogisticRegression(C=1, class weight=None, dual=False, fit intercep
         t=False,
                   intercept scaling=1, max iter=1000, multi class='ovr', n j
         obs=1,
                   penalty='12', random state=None, solver='lbfgs', tol=0.000
         1,
```

verbose=0, warm start=False)

Linear Discriminant Analysis

```
In [33]: modelName = "lda"
         # build parameters list to find best parameter values
         parameters = {
             'shrinkage':[.001, .01, .1, 1],
             'solver':['lsqr', 'eigen']
         }
         # build base estimator model, and run GridSearchCV to find best model
         start time = time.time()
         model = LinearDiscriminantAnalysis()
         gs = GridSearchCV(estimator=model, param grid=parameters, cv=5, n jobs
         =4, verbose=1).fit(X train, y train)
         exe time = round((time.time() - start time)/60, 2)
         # compute scores, and probabilities
         train score = round(accuracy score(y train, gs.predict(X train)),4)
         test score = round(accuracy score(y test, gs.predict(X test)),4)
         train prob = gs.predict proba(X train)
         test prob = gs.predict proba(X test)
         # store model, score, and probabilities in a dictionary
         exeTime.update({modelName:exe time})
         scores.update({modelName:[train score,test score]})
         probs.update({modelName:[train prob,test prob]})
         models.update({modelName:gs.best estimator })
         # display scores and best model
         print("[Linear Discriminant Analysis]")
         print("Execution time : {} minutes".format(exe time))
         print("Train Accuracy : {:>0.4f}".format(train score))
         print("Test Accuracy : {:>0.4f}".format(test score))
         print("\nBest Model:\n", gs.best estimator )
         # save dictionaries to disk
         np.save("datasets/dict_models.npy", models)
         np.save("datasets/dict scores.npy", scores)
         np.save("datasets/dict probs.npy", probs)
         np.save("datasets/dict exeTime.npy", exeTime)
```

```
Fitting 5 folds for each of 8 candidates, totalling 40 fits

[Parallel(n_jobs=4)]: Done 40 out of 40 | elapsed: 4.1s finishe d

[Linear Discriminant Analysis]

Execution time: 0.07 minutes

Train Accuracy: 0.7405

Test Accuracy: 0.7140

Best Model:

LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=0.1,

solver='lsqr', store covariance=False, tol=0.0001)
```

Quadratic Discriminant Analysis

```
In [36]: modelName = "qda"
         # build parameters list to find best parameter values
         parameters = {
             'reg param':[.001, .01, .1, 1]
         }
         # build base estimator model, and run GridSearchCV to find best model
         start time = time.time()
         model = QuadraticDiscriminantAnalysis()
         gs = GridSearchCV(estimator=model, param grid=parameters, cv=5, n jobs
         =4, verbose=1).fit(X train, y train)
         exe time = round((time.time() - start time)/60, 2)
         # compute scores, and probabilities
         train_score = round(accuracy_score(y_train, gs.predict(X_train)),4)
         test score = round(accuracy score(y test, gs.predict(X test)),4)
         train prob = gs.predict proba(X train)
         test prob = gs.predict proba(X test)
         # store model, score, and probabilities in a dictionary
         exeTime.update({modelName:exe time})
         scores.update({modelName:[train score,test score]})
         probs.update({modelName:[train prob,test prob]})
         models.update({modelName:gs.best estimator })
         # display scores and best model
         print("[Quadratic Discriminant Analysis]")
         print("Execution time : {} minutes".format(exe time))
         print("Train Accuracy : {:>0.4f}".format(train score))
         print("Test Accuracy : {:>0.4f}".format(test_score))
         print("\nBest Model:\n", qs.best estimator )
         # save dictionaries to disk
         np.save("datasets/dict models.npy", models)
         np.save("datasets/dict_scores.npy", scores)
         np.save("datasets/dict probs.npy", probs)
         np.save("datasets/dict exeTime.npy", exeTime)
         [Quadratic Discriminant Analysis]
         Execution time : 0.15 minutes
         Train Accuracy: 0.7086
         Test Accuracy : 0.6868
         Best Model:
          QuadraticDiscriminantAnalysis(priors=None, reg param=0.1,
                        store covariance=False, store covariances=None, tol=0
```

K-Nearest Neighbors

.0001)

```
In [37]: modelName = "knn"
         # build parameters list to find best parameter values
         parameters = {
             'n neighbors':[10, 20, 40, 60],
             'weights':['uniform','distance'],
             'algorithm':['ball tree','kd tree']
         }
         # build base estimator model, and run GridSearchCV to find best model
         start time = time.time()
         model = KNeighborsClassifier()
         gs = GridSearchCV(estimator=model, param grid=parameters, cv=5, n jobs
         =4, verbose=1).fit(X train, y train)
         exe time = round((time.time() - start time)/60, 2)
         # compute scores, and probabilities
         train score = round(accuracy score(y train, gs.predict(X train)),4)
         test score = round(accuracy score(y test, gs.predict(X test)),4)
         train prob = gs.predict proba(X train)
         test_prob = gs.predict_proba(X_test)
         # store model, score, and probabilities in a dictionary
         exeTime.update({modelName:exe time})
         scores.update({modelName:[train score,test score]})
         probs.update({modelName:[train prob,test prob]})
         models.update({modelName:gs.best estimator })
         # display scores and best model
         print("[K-Nearest Neighbors]")
         print("Execution time : {} minutes".format(exe time))
         print("Train Accuracy : {:>0.4f}".format(train_score))
         print("Test Accuracy : {:>0.4f}".format(test score))
         print("\nBest Model:\n", gs.best_estimator_)
         # save dictionaries to disk
         np.save("datasets/dict models.npy", models)
         np.save("datasets/dict_scores.npy", scores)
         np.save("datasets/dict probs.npy", probs)
         np.save("datasets/dict exeTime.npy", exeTime)
```

Decision Tree Classifier

```
In [38]: modelName = "dtc"
         # build parameters list to find best parameter values
         parameters = {
             'criterion':['gini','entropy'],
             'splitter':['best','random'],
             'max depth': [5,10,50,30,60]
         }
         # build base estimator model, and run GridSearchCV to find best model
         start time = time.time()
         model = DecisionTreeClassifier()
         gs = GridSearchCV(estimator=model, param grid=parameters, cv=5, n jobs
         =4, verbose=1).fit(X train, y train)
         exe time = round((time.time() - start time)/60, 2)
         # compute scores, and probabilities
         train score = round(accuracy score(y train, gs.predict(X train)),4)
         test score = round(accuracy score(y test, gs.predict(X test)),4)
         train prob = gs.predict proba(X train)
         test_prob = gs.predict_proba(X_test)
         # store model, score, and probabilities in a dictionary
         exeTime.update({modelName:exe time})
         scores.update({modelName:[train score,test score]})
         probs.update({modelName:[train prob,test prob]})
         models.update({modelName:gs.best estimator })
         # display scores and best model
         print("[Decision Tree Classifier]")
         print("Execution time : {} minutes".format(exe time))
         print("Train Accuracy : {:>0.4f}".format(train_score))
         print("Test Accuracy : {:>0.4f}".format(test score))
         print("\nBest Model:\n", gs.best_estimator_)
         # save dictionaries to disk
         np.save("datasets/dict models.npy", models)
         np.save("datasets/dict_scores.npy", scores)
         np.save("datasets/dict probs.npy", probs)
         np.save("datasets/dict exeTime.npy", exeTime)
```

```
Fitting 5 folds for each of 20 candidates, totalling 100 fits
[Parallel(n jobs=4)]: Done 42 tasks | elapsed:
                                                       3.0s
[Parallel(n jobs=4)]: Done 100 out of 100 | elapsed: 7.0s finishe
[Decision Tree Classifier]
Execution time : 0.12 minutes
Train Accuracy: 0.7034
Test Accuracy : 0.6689
Best Model:
DecisionTreeClassifier(class weight=None, criterion='entropy', max
depth=10,
           max features=None, max leaf nodes=None,
           min_impurity_decrease=0.0, min_impurity_split=None,
           min samples leaf=1, min samples split=2,
           min weight fraction leaf=0.0, presort=False, random stat
e=None,
           splitter='random')
```

Ensemble Methods

Random Forest Classifier

```
In [39]: modelName = "rfc"
         # build parameters list to find best parameter values
         parameters = {
             'n estimators':[20,40,80,100,200],
             'criterion':['gini','entropy'],
             'max depth': [5,10,50,30,60]
         }
         # build base estimator model, and run GridSearchCV to find best model
         start time = time.time()
         model = RandomForestClassifier(bootstrap=True)
         gs = GridSearchCV(estimator=model, param grid=parameters, cv=5, n jobs
         =4, verbose=1).fit(X train, y train)
         exe time = round((time.time() - start time)/60, 2)
         # compute scores, and probabilities
         train score = round(accuracy score(y train, gs.predict(X train)),4)
         test score = round(accuracy score(y test, gs.predict(X test)),4)
         train prob = gs.predict proba(X train)
         test_prob = gs.predict_proba(X_test)
         # store model, score, and probabilities in a dictionary
         exeTime.update({modelName:exe time})
         scores.update({modelName:[train score,test score]})
         probs.update({modelName:[train prob,test prob]})
         models.update({modelName:gs.best estimator })
         # display scores and best model
         print("[Random Forest Classifier]")
         print("Execution time : {} minutes".format(exe time))
         print("Train Accuracy : {:>0.4f}".format(train_score))
         print("Test Accuracy : {:>0.4f}".format(test score))
         print("\nBest Model:\n", gs.best_estimator_)
         # save dictionaries to disk
         np.save("datasets/dict models.npy", models)
         np.save("datasets/dict_scores.npy", scores)
         np.save("datasets/dict probs.npy", probs)
         np.save("datasets/dict exeTime.npy", exeTime)
```

```
Fitting 5 folds for each of 50 candidates, totalling 250 fits
[Parallel(n jobs=4)]: Done 42 tasks | elapsed:
                                                       6.4s
[Parallel(n_jobs=4)]: Done 192 tasks | elapsed: 1.5min
[Parallel(n jobs=4)]: Done 250 out of 250 | elapsed: 2.4min finishe
d
[Random Forest Classifier]
Execution time : 2.49 minutes
Train Accuracy: 0.9501
Test Accuracy : 0.6868
Best Model:
RandomForestClassifier(bootstrap=True, class weight=None, criterion
='entropy',
           max depth=30, max features='auto', max leaf nodes=None,
           min impurity decrease=0.0, min impurity split=None,
           min samples leaf=1, min samples split=2,
           min weight fraction leaf=0.0, n estimators=100, n jobs=1
           oob score=False, random state=None, verbose=0,
           warm start=False)
```

AdaBoost Classifier

```
In [41]: modelName = "ada"
         # build parameters list to find best parameter values
         parameters = {
             'learning rate':[0.001, 0.01, 0.1, 1],
             'n_estimators':[10,20,40,80,100]
         }
         # build base estimator model, and run GridSearchCV to find best model
         start time = time.time()
         rf model = RandomForestClassifier(bootstrap=True)
         model = AdaBoostClassifier(base estimator=rf model)
         gs = GridSearchCV(estimator=model, param grid=parameters, cv=5, n jobs
         =4, verbose=1).fit(X train, y train)
         exe time = round((time.time() - start time)/60, 2)
         # compute scores, and probabilities
         train score = round(accuracy score(y train, gs.predict(X train)),4)
         test score = round(accuracy score(y test, gs.predict(X test)),4)
         train prob = gs.predict proba(X train)
         test_prob = gs.predict_proba(X_test)
         # store model, score, and probabilities in a dictionary
         exeTime.update({modelName:exe time})
         scores.update({modelName:[train score,test score]})
         probs.update({modelName:[train prob,test prob]})
         models.update({modelName:gs.best estimator })
         # display scores and best model
         print("[Random Forest Classifier]")
         print("Execution time : {} minutes".format(exe time))
         print("Train Accuracy : {:>0.4f}".format(train_score))
         print("Test Accuracy : {:>0.4f}".format(test score))
         print("\nBest Model:\n", gs.best_estimator_)
         # save dictionaries to disk
         np.save("datasets/dict models.npy", models)
         np.save("datasets/dict_scores.npy", scores)
         np.save("datasets/dict_probs.npy", probs)
         np.save("datasets/dict exeTime.npy", exeTime)
```

```
Fitting 5 folds for each of 20 candidates, totalling 100 fits
[Parallel(n jobs=4)]: Done 42 tasks | elapsed: 3.5min
[Parallel(n jobs=4)]: Done 100 out of 100 | elapsed: 9.0min finishe
[Random Forest Classifier]
Execution time : 9.61 minutes
Train Accuracy: 0.9886
Test Accuracy : 0.6621
Best Model:
 AdaBoostClassifier(algorithm='SAMME.R',
          base estimator=RandomForestClassifier(bootstrap=True, clas
s weight=None, criterion='gini',
           max depth=None, max features='auto', max leaf nodes=None
           min_impurity_decrease=0.0, min_impurity_split=None,
           min samples leaf=1, min samples split=2,
           min weight fraction leaf=0.0, n estimators=10, n jobs=1,
           oob score=False, random state=None, verbose=0,
           warm start=False),
          learning rate=0.001, n estimators=100, random state=None)
```

Neural Network

```
In [48]: X = X train.copy(deep=True).reset index(drop=True)
         Y = y train.copy().values.reshape(-1,1)
         counter=1
         nn cvscores=[]
         kfold = StratifiedKFold(n splits=10, shuffle=True, random state=42)
         start time = time.time()
         for train, test in kfold.split(X, Y):
             print("KFold: {}".format(counter), end="\r")
             nn model = Sequential([
                 Dense(576, input shape=(576,), kernel initializer='normal', ac
         tivation='relu'),
                 Dense(144, kernel initializer='normal', activation='relu'),
                 Dense(36, kernel initializer='normal', activation='relu'),
                 Dense(9, kernel initializer='normal', activation='relu'),
                 Dense(1, kernel initializer='normal', activation='sigmoid')
             ])
             nn model.compile(loss='binary crossentropy', optimizer='adam', met
         rics=['accuracy'])
             mfit = nn model.fit(X.iloc[train], Y[train], epochs=50, validation
         _split=0.2, shuffle=True, verbose=0)
             nn scores = nn model.evaluate(X.iloc[test], Y[test], verbose=0)
             nn score = round(nn scores[1],4)
             nn cvscores.append(nn score)
             counter+=1
         end time = time.time()
         exe time = round((end_time - start_time)/60, 2)
         # compute scores, and probabilities
         nn train score = round(accuracy score(y train, nn model.predict classe
         s(X train)),4)
         nn test score = round(accuracy score(y test, nn model.predict classes(
         X test)),4)
         # store model, score, and probabilities in a dictionary
         exeTime.update({'nn':exe time})
         scores.update({'nn':[train score,test score]})
         # display scores and best model
         print("[Neural Network]")
         print("Execution time : {} minutes".format(exe_time))
         print("Train Accuracy : {:>0.4f}".format(nn_train_score))
         print("Test Accuracy : {:>0.4f}".format(nn_test_score))
         print(nn model.summary())
```

[Neural Network]

Execution time : 9.49 minutes

Train Accuracy : 0.8821
Test Accuracy : 0.6638

Layer (type)	Output Shape	Param #
dense_96 (Dense)	(None, 576)	332352
dense_97 (Dense)	(None, 144)	83088
dense_98 (Dense)	(None, 36)	5220
dense_99 (Dense)	(None, 9)	333
dense_100 (Dense)	(None, 1)	10

Total params: 421,003 Trainable params: 421,003 Non-trainable params: 0

None

Stacking - Baged Models (Bootstrapped n=25)

Stacking 25-bagged (Logistic, LDA, QDA, KNN, Decision Tree, Random Forest, and ADABoost) models, and taking a popular vote

```
In [43]: stacked results = pd.DataFrame()
         N = 25
         all results = {}
         for model in models.keys():
             counter = 1
             print("[{}]: computing bootstraped results...".format(model))
             train results=[]
             test results=[]
             for i in range(N):
                 X, y = resample(X train, y train)
                 fit = models[model].fit(X, y)
                 train results.append(round(accuracy score(y, fit.predict(X)),4
         ))
                 test results.append(round(accuracy score(y test, fit.predict(X
         test)),4))
                 colname = model + "." + str(counter)
                 stacked results[colname] = fit.predict(X test)
                 counter+=1
             all results.update({model:[train results, test results]})
         def popular vote(row):
             if row.mean() >= 0.5:
                 return 1
             else:
                 return 0
         stacked results["results"] = stacked results.apply(popular vote, axis=
         1)
         st train score = round(np.mean(train results),4)
         st test score = round(accuracy score(y test, stacked results["results"
         print("Train Accuracy : {:>0.4f}".format(st train score))
         print("Test Accuracy : {:>0.4f}".format(st test score))
         stacked results.sample(10)
```

```
[logistic]: computing bootstraped results...
[lda]: computing bootstraped results...
[qda]: computing bootstraped results...

/Volumes/Data/ramandeepharjai/anaconda3/envs/ds/lib/python3.6/site-p
ackages/sklearn/discriminant_analysis.py:682: UserWarning: Variables
are collinear
   warnings.warn("Variables are collinear")

[knn]: computing bootstraped results...
[dtc]: computing bootstraped results...
[rfc]: computing bootstraped results...
[ada]: computing bootstraped results...
Train Accuracy : 0.9944
Test Accuracy : 0.7013
```

Out[43]:

	logistic.1	logistic.2	logistic.3	logistic.4	logistic.5	logistic.6	logistic.7	logistic.{
884	0	0	0	0	0	0	0	0
1137	0	0	0	0	0	0	0	0
407	0	0	0	0	0	0	0	0
676	0	0	0	0	0	0	0	0
48	0	0	0	0	0	0	0	0
1043	0	0	0	0	0	0	0	0
892	0	0	0	0	0	0	0	0
858	1	1	1	1	1	1	1	1
531	1	1	1	1	1	1	1	1
793	1	1	1	1	1	1	1	1

10 rows × 176 columns

Model Comparision

```
all test results=[]
In [65]:
        test means=[]
        train means=[]
        print("|-----|")
        print("| {:<9} | {:>12} | ".format("model", "train (mean)", "t
        est (mean)"))
        print("|-----|")
        print("| {:<9} | {:>12} | ".format("stacking", st train score,
        st_test_score))
        print("| {:<9} | {:>12} | ".format("neural n.", nn train score
        , nn test score))
        for key in all results.keys():
            all test results.append(all results[key][1])
            trainmean = round(np.mean(all results[key][0]),4)
            testmean = round(np.mean(all results[key][1]),4)
            test means.append(testmean)
            train means.append(trainmean)
            print("| {:<9} | {:>12} | ".format(key, trainmean, testmea
        n))
        print("|-----|")
        test means.append(nn test score)
        test means.append(st test score)
        fig, ax = plt.subplots(1,1, figsize=(10,8))
        ax.set title("Prediction accuracy\nobtained from bootstrapping various
        models", fontsize=18)
        ax.boxplot(all test results)
        ax.plot(range(1,10), test means, marker="o", lw=1, ls="solid", c="red"
        , label="mean accuracy rate (test)")
        ax.set xlabel("Models", fontsize=14)
        ax.set ylabel("Accuracy (Bootstrapped, $n=25$)", fontsize=14)
        ax.set xticks(range(1,10))
        ax.set_xticklabels(['Logistic', 'LDA', 'QDA', 'D.Tree', 'R.Forest', 'A
        daBoost', 'KNN', 'Neural N', 'Stacking'], fontsize=12)
        ax.legend(loc=1, fontsize=14)
```

 model	train (mean)	 test (mean)
stacking	0.9944	0.7013
neural n.	0.8821	0.6638
logistic	0.7578	0.702
lda	0.7538	0.6999
qda	0.7343	0.6747
knn	0.9941	0.6514
dtc	0.725	0.6542
rfc	0.9685	0.667
ada	0.9944	0.6671
İ	· 	i

Out[65]: <matplotlib.legend.Legend at 0x1a5f3b7358>

Final Predictions

FIFA World-Cup 2018 - Round-16, Quater Final, Semi Final, and Final matches

```
In [66]:
         # load final dataset and tuned models
         models = np.load("datasets/dict models final.npy").item()
         df matches = pd.read pickle("datasets/matches data final.pkl")
         X test = pd.read pickle("datasets/X test.pkl")
         def design match data(teams):
                 home team = teams[0]
                 away team = teams[1]
                 X = pd.DataFrame(list(np.zeros((1,576))), columns=X test.colum
         ns)
                 # set predictors
                 X["year wt"]=1
                 X["home_rank"]=df_matches[(df_matches.home_team==home_team)&(d
         f matches.year==2018)].iloc[0]["home rank"]
                 X["away rank"]=df matches[(df matches.home team==away team)&(d
         f matches.year==2018)].iloc[0]["home rank"]
                 if home team != "Russia":
                     X["neutral"]=0
                 else:
                     X["neutral"]=1
                 X["home wc pts"]=df matches[(df matches.home team==home team)&
         (df matches.year==2018)].iloc[0]["home wc pts"]
                 X["away wc pts"]=df matches[(df matches.home team==away team)&
         (df_matches.year==2018)].iloc[0]["away_wc_pts"]
                 X["home wc plays"]=df matches[(df matches.home team==home team
         )&(df_matches.year==2018)].iloc[0]["home_wc_plays"]
                 X["away wc plays"]=df matches[(df matches.home team==away team
         )&(df matches.year==2018)].iloc[0]["away rank"]
                 home_p_age_wt = df_matches[(df_matches.home_team==home_team)&(
         df matches.year==2018)].iloc[0]["home p age wt"]
                 home_p_prf_wt = df_matches[(df_matches.home_team==home team)&(
         df matches.year==2018)].iloc[0]["home p prf wt"]
                 away p age wt = df matches[(df matches.home team==away team)&(
         df matches.year==2018)].iloc[0]["away p age wt"]
                 away p prf wt = df matches[(df matches.home team==away team)&(
         df matches.year==2018)].iloc[0]["away p prf wt"]
                 X["home_p_age_wt"]=home_p_age_wt
                 X["away p age wt"] = away p age wt
```

```
X["home_p_prf_wt"]=home_p_prf_wt
        X["away p prf wt"]=away p prf wt
        X["home p age wt 2"]=home p age wt**2
        X["away p age wt_2"]=away_p_age_wt**2
        X["home p prf wt 2"]=home p prf wt**2
        X["away p prf_wt_2"]=away_p_prf_wt**2
        X["home p age wt 3"]=home p age wt**3
        X["away_p_age_wt_3"]=away_p_age_wt**3
        X["home p prf wt 3"]=home p prf wt**3
        X["away p prf wt 3"]=away p prf wt**3
        X["home p age perf wt"]=home p age wt*home p prf wt
        X["away_p_age_perf_wt"]=away_p_age_wt*away_p_prf_wt
        # set dummy variables for home & away teams
        home_col = "home_team_" + home_team
        away_col = "away_team_" + away_team
        X[home col] = 1
        X[away col] = 1
        # return dataset
        return X
def predict outcome(match):
    X = design match data(match)
    p results = []
    for key in models.keys():
        p_results.append(models[key].predict(X)[0])
    return p results
def popular win(arr, boundry):
    if boundry==0: decision = 0.4
    if boundry==1: decision = 0.5
    if boundry==2: decision = 0.6
    if np.mean(arr) >= decision: return 0
    else: return 1
# FIFA World Cup 2018 - Round-16 Match line-up
round16 matches = [['Uruguay', 'Portugal'], ['France', 'Argentina'], ['B
razil','Mexico'], ['Japan','Belgium'],
                   ['Spain', 'Russia'], ['Denmark', 'Croatia'], ['Sweden
','Switzerland'], ['Colombia','England']]
round16 results = []
qfinal matches = []
qfinal results = []
sfinal matches=[]
sfinal_results=[]
final match=[]
final result=[]
msg="\{:<12\} : {:<8} -vs- {:<11} : {:<10} wins"
print("\nFINAL PREDICTIONS")
print("----\n")
```

```
# predict Round-16 outcome
for match in round16 matches:
    winner = match[popular win(predict outcome(match),0)]
    round16 results.append(winner)
    print(msg.format("Round 16", match[0], match[1], winner))
# predict Quater-Final outcome
print("\n")
qfinal matches = [[round16 results[0],round16 results[1]], [round16 re
sults[2],round16 results[3]],
                  [round16 results[4],round16 results[5]], [round16 re
sults[6],round16 results[7]]]
for match in qfinal matches:
    winner = match[popular win(predict outcome(match),2)]
    qfinal results.append(winner)
   print(msg.format("Quater Final", match[0], match[1], winner))
# predict Semi-Final outcome
print("\n")
sfinal matches = [[qfinal results[0],qfinal results[1]], [qfinal resul
ts[3],qfinal results[2]]]
for match in sfinal matches:
   winner = match[popular win(predict outcome(match),0)]
    sfinal results.append(winner)
    print(msg.format("Semi Final", match[0], match[1], winner))
# predict Final outcome
print("\n")
final_match = [[sfinal_results[0],sfinal_results[1]]]
for match in final match:
   winner = match[popular_win(predict_outcome(match),0)]
    final result.append(winner)
    print(msg.format("Final", match[0], match[1], winner))
# draw results graph
img = Image.open("fig/ALPEOs0.jpg")
draw = ImageDraw.Draw(img)
font = ImageFont.truetype("fig/Roboto-Regular.ttf", 20)
draw.text((150, 200),round16_results[0],(139,0,0),font=font)
draw.text((150, 365),round16_results[1],(139,0,0),font=font)
draw.text((150, 530),round16 results[2],(139,0,0),font=font)
draw.text((150, 700),round16_results[3],(139,0,0),font=font)
draw.text((770, 200),round16 results[4],(139,0,0),font=font)
draw.text((770, 365),round16 results[5],(139,0,0),font=font)
draw.text((770, 530),round16_results[6],(139,0,0),font=font)
draw.text((770, 700),round16 results[7],(139,0,0),font=font)
draw.text((280, 282),qfinal results[0],(139,0,0),font=font)
draw.text((280, 642),qfinal results[1],(139,0,0),font=font)
draw.text((630, 282),qfinal_results[2],(139,0,0),font=font)
draw.text((630, 642),qfinal results[3],(139,0,0),font=font)
draw.text((220, 465),sfinal results[0],(139,0,0),font=font)
draw.text((680, 465), sfinal results[1], (139,0,0), font=font)
```

```
draw.text((460, 465),final_result[0],(139,0,0),font=font)
img.save('fig/output.jpg')
img.show()
```

FINAL PREDICTIONS

Round 16	: : : : : : : : : : : : : : : : : : : :	Uruguay France Brazil Japan Spain Denmark Sweden Colombia	-VS- -VS- -VS- -VS- -VS- -VS-	Portugal Argentina Mexico Belgium Russia Croatia Switzerland England	: : : : : : : : : : : : : : : : : : : :	Uruguay France Brazil Belgium Russia Croatia Sweden England	wins wins wins wins wins wins wins wins
				-		-	
Quater Final Quater Final Quater Final Quater Final	: : :	Uruguay Brazil Russia Sweden	-VS- -VS- -VS-	France Belgium Croatia England	: : : :	France Belgium Croatia England	wins wins wins wins
Semi Final Semi Final	:	France England	-vs- -vs-	Belgium Croatia	:	France Croatia	wins wins
Final	:	France	-vs-	Croatia	:	France	wins

2018 WORLD CUP BRACKET ○ CBS SPORTS QUARTER QUARTER ROUND 16 SEMI FINALS SEMI FINALS ROUND 16 FINALS FINALS URUGUAY SPAIN Russia Uruguay FIFA WORLD CUP PORTUGAL RUSSIA **RUSSIA 2018** France Croatia FRANCE CROATIA France Croatia ARGENTINA DENMARK France Croatia France BRAZIL SWEDEN CHAMPION Sweden Brazil MEXICO SWITZERLAND

England

England

COLOMBIA

ENGLAND

Belgium

BELGIUM

JAPAN

Belgium