O Método do Ponto Fixo

Márcio Antônio de Andrade Bortoloti

Cálculo Numérico

Departamento de Ciências Exatas e Tecnológicas - DCET Universidade Estadual do Sudoeste da Bahia

Sumário

Introdução

Definição de Ponto Fixo

O Método do Ponto Fixo

Convergência

Ordem de Convergência

Exemplo

Introdução

Introdução

Definição (Ponto Fixo de uma Função) Um ponto fixo de uma função f é um número p tal que f(p)=p.

O Método do Ponto Fixo

O Método do Ponto Fixo (Existência)

Teorema

Seja $f:[a,b]\to\mathbb{R}$ contínua com $f(a)\leq a$ e $f(b)\geq b$. Existe ao menos um ponto $c\in[a,b]$ tal que f(c)=c.

Prova:

- Defina a função $\phi:[a,b]\to\mathbb{R}$ dada por $\phi(x)=x-f(x)$.
- Note que ϕ é contínua em [a, b].
- Note que $\phi(a) = a f(a) \ge 0$ e $\phi(b) = b f(b) \le 0$.
- Pelo Teorema do Valor Intermediário existe $c \in [a, b]$ tal que $\phi(c) = 0$.
- Logo, para esse caso $0 = \phi(c) = f(c) c$, de onde segue que f(c) = c.

O Método do Ponto Fixo

- Seja $f:[a,b]\to\mathbb{R}$ uma função contínua. Suponha que f possui somente um zero em [a,b], ou seja, a equação f(x)=0 possui somente uma solução em [a,b].
- O Método do Ponto Fixo consiste em encontrar uma função $\phi:[a,b]\to\mathbb{R}$ tal que $\phi(x)=x$ e com isso, construir uma sequência x_n de pontos da forma $x_n=\phi(x_{n-1})$, para um dada ponto inicial.
- A função ϕ é chamada função de iteração.
- A construção da sequência se dá da seguinte forma

Exemplo de Funções de Iteração

Suponha que estamos interessados em buscar a solução da equação

$$x^3 + 2x^2 + x - 1 = 0.$$

Podemos enumerar algumas funções de iteração para resolver a equação acima:

- 1. $x = (1 x 2x^2)^{1/3}$, nesse caso $\phi(x) = (1 x 2x^2)^{1/3}$;
- 2. $x = (x^2 + 2x + 1)^{-1}$, nesse caso $\phi(x) = (x^2 + 2x + 1)^{-1}$;
- 3. $x=\sqrt{\frac{1-x}{2+x}}$, nesse caso $\phi(x)=\sqrt{\frac{1-x}{2+x}}$, desde que a expressão no radical tenha sentido;
- 4. $x = x + \alpha(x^3 + 2x^2 + x 1)$, $\alpha \in \mathbb{R}$, nesse caso $\phi(x) = x + \alpha(x^3 + 2x^2 + x 1)$.

Propriedades

Definicão

Uma função de iteração ϕ para um problema f(x) = 0 tem a forma geral

$$\phi(x) = x + A(x)f(x),$$

onde $A(\xi) \neq 0$ com ξ a raíz de f(x) = 0.

Teorema

Seja $f:[a,b] \to \mathbb{R}$ uma contínua. Seja $\phi:[a,b] \to \mathbb{R}$ a função de iteração associada ao problema de determinar x tal que f(x) = 0. Então $f(\xi) = 0$ se e somente se $\phi(\xi) = \xi$.

Prova:

- (\Longrightarrow) Seja ξ tal que $f(\xi)=0$.
 - Da definição de função de iteração tem-se

$$\phi(\xi) = \xi + A(\xi)f(\xi)$$

Propriedades

• De onde tem-se $\phi(\xi) = \xi$

$$(\longleftarrow)$$

$$\xi = \phi(\xi) = \xi + A(\xi)f(\xi).$$

• De onde segue que

$$A(\xi)f(\xi) = 0.$$

 $\bullet \ \ \mathsf{Como} \ A(\xi) \neq 0 \ \mathsf{tem\text{-se}} \ f(\xi) = 0.$

Teorema

Seja ξ uma raíz da equação f(x)=0, isolada em um intervalo $I\ni \xi$, centrado em ξ . Seja ϕ uma função de iteração para a equação f(x)=0. Se

- 1. $\phi \in \mathcal{C}^1(I)$,
- 2. $|\phi'(x)| \leq M < 1$ para todo $x \in I$,
- 3. $x_0 \in I$,

então a sequência x_n gerada pela iteração $x_n = \phi(x_{n-1})$ converge para ξ .

Prova:

Vamos mostrar que se $x_0 \in I$ então $x_n \in I$ para todo $n \in \mathbb{N}$.

- Como ξ é uma raíz de f(x)=0 tem-se $f(\xi)=0$
- Já foi estabelecido que $f(\xi)=0$ se e somente se $\phi(\xi)=\xi$.
- Para todo $n \in \mathbb{N}$ tem-se $x_{n+1} = \phi(x_n)$.
- Logo $x_{n+1} \xi = \phi(x_n) \phi(\xi)$.
- Como ϕ é diferenciável em I, pelo Teorema do Valor Médio, se $x_n \in I$, existe c_n entre x_n e ξ tal que

$$\phi'(c_n)(x_n - \xi) = \phi(x_n) - \phi(\xi).$$

- Portanto temos $x_{n+1} \xi = \phi(x_n) \phi(\xi) = \phi'(c_n)(x_n \xi)$ para todo $n \in \mathbb{N}$.
- Assim $x_{n+1} \xi = \phi'(c_n)(x_n \xi)$
- Logo, para todo $n \in \mathbb{N}$ tem-se

$$|x_{n+1} - \xi| = |\phi'(c_n)| |(x_n - \xi)| < |x_n - \xi|$$

- Agora, nota-se que, se $x_0 \in I$ então, do fato $|x_{n+1} \xi| < |x_n \xi|$ para todo $n \in \mathbb{N}$ tem-se $|x_1 \xi| < |x_0 \xi|$ de onde segue $x_1 \in I$.
- Assim, indutivamente, conclui-se que, se $x_0 \in I$ então $x_n \in I$ para todo $n \in \mathbb{N}$.

Agora vamos mostrar que

$$\lim_{n \to \infty} x_n = \xi.$$

Nota-se que

$$|x_{1} - \xi| = |\phi(x_{0}) - \phi(\xi)| = |\phi'(c_{0})| |x_{0} - \xi| \le M |x_{0} - \xi|,$$

$$|x_{2} - \xi| = |\phi(x_{1}) - \phi(\xi)| = |\phi'(c_{1})| |x_{1} - \xi| \le M^{2} |x_{0} - \xi|,$$

$$\cdots = \cdots$$

$$|x_{n} - \xi| = |\phi(x_{n-1}) - \phi(\xi)| = |\phi'(c_{n-1})| |x_{n-1} - \xi| \le M^{n} |x_{0} - \xi|,$$

Logo

$$0 \le \lim_{n \to \infty} |x_n - \xi| \le \lim_{n \to \infty} M^n |x_0 - \xi| = |x_0 - \xi| \lim_{n \to \infty} M^n$$

• Como 0 < M < 1 segue que

$$\lim_{n \to \infty} M^n = 0.$$

• E portanto

$$\lim_{n \to \infty} |x_n - \xi| = 0$$

ou seja,

$$\lim_{n \to \infty} x_n = \xi.$$

Definição

Seja x_n uma sequência gerada por algum método iterativo que converge para ξ . Seja $e_n=x_n-\xi$ o erro cometido na iteração n. Se existirem os reais $p\geq 1$ e c>0 tais que

$$\lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^p} = c$$

então p é chamado de ordem de convergência desse método e c é a constante assintótica de erro.

Se

$$\lim_{n \to \infty} \frac{e_{n+1}}{e_n} = c$$

 $\operatorname{com} 0 \leq |c| < 1$ então a convergência é pelo menos linear.

Teorema

O Método do Ponto Fixo converge linearmente.

Prova:

- Já sabemos que $x_{n+1} \xi = \phi'(c_n)(x_n \xi)$ com c_n entre x_n e ξ .
- Logo

$$\lim_{n \to \infty} \frac{x_{n+1} - \xi}{x_n - \xi} = \lim_{n \to \infty} \phi'(c_n)$$

$$= \phi'(\lim_{n \to \infty} c_n)$$

$$= \phi'(c^*)$$

$$= C$$

Observações:

- A convergência do processo iterativo será tanto mais rápida quanto menor for o valor de ϕ' .
- Se o módulo da derivada $|\phi'(x)|$ for maior que 1 para todo $x\in I$ a iteração $x_n=\phi(x_{n-1})$ divergirá.
- ullet Da definição de ordem de convergência, podemos afirmar que para n suficientemente grande teremos

$$|e_{n+1}| = c|e_n|^p$$
 e $|e_n| = c|e_{n-1}|^p$

Segue então que

$$\frac{|e_{n+1}|}{|e_n|} = \frac{c|e_n|^p}{c|e_{n-1}|^p} = \left|\frac{e_n}{e_{n-1}}\right|^p$$

De onde obtem-se

$$p = \frac{\log |e_{n+1}| - \log |e_n|}{\log |e_n| - \log |e_{n-1}|}$$

Vamos resolver a equação

$$e^x - 4x = 0.$$

Nota-se que essa equação possui uma raiz no intervalo $\left[0,1\right]$ e outra no intervalo $\left[2,3\right]$.

Vamos usar a função de iteração

$$\phi(x) = \frac{e^x}{4}$$

com $x_0 = 1$ para determinar a raíz em [0, 1].

• Inicialmente, nota-se que

$$\phi'(x) = \frac{e^x}{4}$$

• Para $x \in [0,1]$ tem-se

$$\frac{1}{4} < \phi'(x) < \frac{e}{4} < 1.$$

• Assim, o método do ponto fixo com a função de iteração e o x_0 acima deverá convergir.

Comportamento do Método do Ponto Fixo para o Problema Anterior

n	x_n	C	p	e_n
1	0.6795704571E+00	0.0000000000E+00	-	0.3204295429E+00
2	0.4932575123E+00	0.000000000E+00	-	0.1863129448E+00
3	0.4094105450E+00	0.4500329666E+00	-	0.8384696727E-01
4	0.3764824614E+00	0.3927164535E+00	0.8542444327E+00	0.3292808362E-01
5	0.3642874957E+00	0.3703515161E+00	0.9409693922E+00	0.1219496569E-01
6	0.3598720003E+00	0.3620752608E+00	0.9777532884E+00	0.4415495383E-02
7	0.3582864902E+00	0.3590786618E+00	0.9918858595E+00	0.1585510174E-02
8	0.3577188734E+00	0.3580026068E+00	0.9970783036E+00	0.5676167752E-03
9	0.3575158838E+00	0.3576173690E+00	0.9989529675E+00	0.2029896177E-03
10	0.3574433191E+00	0.3574796002E+00	0.9996254267E+00	0.7256464739E-04
11	0.3574173823E+00	0.3574303505E+00	0.9998660802E+00	0.2593680735E-04
12	0.3574081122E+00	0.3574127472E+00	0.9999521308E+00	0.9270145570E-05
13	0.3574047989E+00	0.3574064555E+00	0.9999828906E+00	0.3313209871E-05
14	0.3574036148E+00	0.3574042069E+00	0.9999938850E+00	0.1184155146E-05
15	0.3574031916E+00	0.3574034032E+00	0.9999978144E+00	0.4232210791E-06
16	0.3574030403E+00	0.3574031159E+00	0.9999992188E+00	0.1512605324E-06
17	0.3574029862E+00	0.3574030135E+00	0.9999997214E+00	0.5406097009E-07
18	0.3574029669E+00	0.3574029768E+00	0.9999999002E+00	0.1932155164E-07
19	0.3574029600E+00	0.3574029615E+00	0.9999999584E+00	0.6905579775E-08
20	0.3574029576E+00	0.3574029654E+00	0.1000000011E+01	0.2468074689E-08

Vamos agora encontrar a segunda raíz, ou seja, a que está no intervalo [2,3].

• Nota-se que se tomarmos $x_0=3.0$ com a função de iteração usada anteriormente, ou seja, $\phi(x)=e^x/4$, teremos o seguinte resultado

n	x_n		
1	0.5021384231E+01		
2	0.3790525928E+02		
3	0.7244108526E+16		
4	+Infinity		

- A sequência contruída pela função de iteração dada diverge.
- Isso ocorre pois $1 < \frac{e^2}{4} < \phi'(x)$ para $x \in [2,3]$.
- É necessário utilizar outra função de iteração.

- Vamos construir uma função de iteração que possa ser utilizada pelo método para encontrar a raíz de $f(x)=4x-e^x=0$ no intervalo [2,3].
- ullet Para isso vamos observar que queremos resolver $4x-e^x=0$
- Vamos multiplicar $\rho > 0$ em ambos os lados e obter

$$\rho(4x - e^x) = 0$$

.

• Vamos somar x em ambos os lados e obter

$$x + \rho(4x - e^x) = x$$

• Temos então, uma candidata a função de iteração

$$\phi(x) = x + \rho(4x - e^x), \quad \text{para } \rho > 0.$$

- Vamos agora determinar ρ . Isso será feito de forma que ϕ satisfaça a condição $|\phi'(x)| < 1$ para todo $x \in [2,3]$.
- Para isso, nota-se que

$$\phi'(x) = 1 + \rho(4 - e^x).$$

Assim, temos que ter

$$|1 + \rho(4 - e^x)| < 1$$

• De outro modo

$$-1 < 1 + \rho(4 - e^x) < 1$$

• Ou equivalentemente

$$-2 < \rho(4 - e^x) < 0$$

• Agora, como $|\phi'(x)| < 1$ em [2,3], temos para 2 < x < 3 que

$$e^{2} < e^{x} < e^{3}$$

$$-e^{3} < -e^{x} < -e^{2}$$

$$4 - e^{3} < 4 - e^{x} < 4 - e^{2}$$

$$\rho(4 - e^{3}) < \rho(4 - e^{x}) < \rho(4 - e^{2})$$

 \bullet Agora, basta encontrar $\rho>0$ tal que

$$-2 < \rho(4 - e^3) < \rho(4 - e^x) < \rho(4 - e^2) < 0$$

- $\bullet\,$ Da última desigualdade qualquer $\rho>0$ pode ser utilizado.
- Da primeira desigualdade temos

$$0 < \rho < \frac{2}{e^3 - 4} \approx 0.12$$

Assim, utilizando a função de iteração $\phi(x)=x+\rho(4x-e^x)$, com $\rho=0.1$ e $x_0=3$ obtemos os seguintes resultados

n	x_n	C	p	e_n
1	0.2191446308E+01	0.000000000E+00	-	0.8085536923E+00
2	0.2173210278E+01	0.0000000000E+00	-	0.1823603012E-01
3	0.2163849814E+01	0.5132950091E+00	-	0.9360463248E-02
4	0.2158931313E+01	0.5254548849E+00	0.1036385265E+01	0.4918501139E-02
5	0.2156316251E+01	0.5316787432E+00	0.1018639877E + 01	0.2615062504E-02
6	0.2154917339E+01	0.5349439930E+00	0.1009786894E+01	0.1398911978E-02
7	0.2154166573E+01	0.5366785839E+00	0.1005201718E+01	0.7507660991E-03
8	0.2153762956E+01	0.5376060670E+00	0.1002782176E+01	0.4036164098E-03
9	0.2153545769E+01	0.5381037040E+00	0.1001493012E+01	0.2171874851E-03
10	0.2153428841E+01	0.5383712009E+00	0.1000802618E+01	0.1169274872E-03
11	0.2153365874E+01	0.5385151316E+00	0.1000431882E+01	0.6296722115E-04
12	0.2153331960E+01	0.5385926168E+00	0.1000232510E+01	0.3391368041E-04
13	0.2153313693E+01	0.5386343428E+00	0.1000125209E+01	0.1826707296E-04
14	0.2153303854E+01	0.5386568159E+00	0.1000067437E+01	0.9839683358E-05
15	0.2153298553E+01	0.5386689206E+00	0.1000036324E+01	0.5300331614E-05
16	0.2153295698E+01	0.5386754409E+00	0.1000019566E+01	0.2855158469E-05
17	0.2153294160E+01	0.5386789532E+00	0.1000010540E+01	0.1538013775E-05
18	0.2153293332E+01	0.5386808452E+00	0.1000005677E+01	0.8284985604E-06
19	0.2153292885E+01	0.5386818642E+00	0.1000003058E+01	0.4462971490E-06
20	0.2153292645E+01	0.5386824128E+00	0.1000001646E+01	0.2404124251E-06