Mode d'emploi

Stéphane Capdevielle

28 décembre 2021

Table des matières

1	nstallation et utilisation	1
	.1 Installation	1
	.2 Mise en place	1
	.3 Utilisation de latexmk	
2	Théorèmes	2
	.1 Théorèmes, propriétés, corollaires, lemmes	3
	.2 Définitions	
	.3 Commandes	4
	.4 Exercices	
3	Aacros	6
	.1 Mathématiques	6
	3.1.1 Macros	
	.2 Ensembles	
	3.2.1 Opérateurs	7
4	Python	7
5	ableaux de variation	9

1 Installation et utilisation

1.1 Installation

Copier le répertoire texlab n'importe où sur votre disque (la racine de votre project latex peut être une bonne idée). Dans ce manuel, ce répertoire sera copié dans C:, et ses fichiers sont donc accessibles dans C:\texlab.

Pour utiliser toutes les fonctionnalités de texlab, python doit être installé sur votre système, ainsi que le package pygments, que l'on peut installer avec la commande

```
pip install pygments
```

1.2 Mise en place

Pour utiliser texlab, il suffit de créer un document et de commencer son préambule comme suit :

```
\newcommand{\templatesroot}{C:/texlab}
\input{\templatesroot/templates/article}
```

1.3 Utilisation de latexmk

Pour utiliser latexmk, copier le dossier latexmk dans C:. Attention, l'option shell-escape sera passée à chaque compilation utilisant latexmk, ce qui constitue une potentielle faille de sécurité.

2 Théorèmes

Le style général des théorèmes est le suivant :

```
\text{begin{theorem}{}} \text{Voici un théorème merveilleux : $$1^2=\pth{-1}^2$$ \end{theorem} \text{Théorème 2.1} \text{Voici un théorème merveilleux : } 1^2=(-1)^2
```

Ils peuvent avoir des noms:

```
\begin{theorem}{Formule d'Euler}{}

Pour tout réel $x$: $$e^{ix} = \cos\pth{x} + i\sin\pth{x}$$$

\end{theorem}

Théorème 2.2 - Formule d'Euler

Pour tout réel x:

e^{ix} = \cos(x) + i\sin(x)
```

Ils peuvent être référencés :

```
begin{property}{}{cov}

Soient $X$ et $Y$ deux variables aléatoires discrètes, définies sur un même espace
probabilisé, et admettant un moment d'ordre $2$. Si $X$ et $Y$ sont
indépendantes, alors $\cov\pth{X,Y} = 0$.

la propriété \cref{properties:cov} permet de prouver que, si $X$ et $Y$ sont deux
variables aléatoires discrètes définies sur un même espace probabilisé et admettant
un moment d'ordre $2$, alors $X+Y$ admet une variance et $$V\pth{X+Y} = V\pth{X} +
V\pth{Y}$$
Propriété 2.3
Soient X et Y deux variables aléatoires discrètes, définies sur un même espace probabilisé, et admettant un moment d'ordre 2. Si X et Y sont indépendantes, alors Cov (X,Y) = 0.
```

La propriété Propriété 2.3 permet de prouver que, si X et Y sont deux variables aléatoires discrètes définies sur un même espace probabilisé et admettant un moment d'ordre 2, alors X+Y admet une variance et

$$V\left(X+Y\right) =V\left(X\right) +V\left(Y\right)$$

Voici les environnements de type théorème définis :

2.1 Théorèmes, propriétés, corollaires, lemmes

```
\begin{theorem}{}{}
      Ceci est un théorème.
3 \end{theorem}
      Théorème 2.4
      Ceci est un théorème.
| \begin{property}{}{}
      Ceci est une propriété.
3 \end{property}
      Propriété 2.5
      Ceci est une propriété.
  \begin{lemma}{}{}
      Ceci est un lemme
2
3 \end{lemma}
      Lemme 2.6
      Ceci est un lemme
 \begin{corollary}{}{}
      Ceci est un corollaire.
3 \end{corollary}
      Corollaire 2.7
      Ceci est un corollaire.
| \begin{proof}
      Ceci est sa démonstration.
3 \end{proof}
  ■ Démonstration. Ceci est sa démonstration.
```

2.2 Définitions

```
| \begin{definition}{}{}
| Ceci est une définition.
| definition|
```

Définition 2.8

Ceci est une définition.

2.3 Commandes

```
| begin{command}{}{}
| Ceci est une commande. |
| with the command of the command
```

2.4 Exercices

```
| \begin{exercise}{}{}
| Ceci est un exercice.
| \end{exercise}
| Exercice 2.10
| Ceci est un exercice.
```

```
begin{correction}

tt ceci est sa correction.

correction}

Correction. Et ceci est sa correction.
```

```
begin{example}{}{}

Ceci est un exemple.

**Exemple 2.11

Ceci est un exemple.
```

```
begin{method}{Montrer qu'une famille est libre}{}
       Test.
3 \end{method}
                                Méthode 2.13 : Montrer qu'une famille est libre
     Test.
| \begin{note}
       Commentaire.
  \end{note}
                                                                                             Commentaire
      Commentaire.
 \begin{note} [Note]
       Commentaire avec un titre
3 \end{note}
                                                                                                     Note
      Commentaire avec un titre
 \begin{subject}{}{}
       \begin{subjectexercise}{Cours}{}
            Ceci est un exercice de cours.
       \end{subjectexercise}
5 \end{subject}
                                                    Sujet 1
          Exercice 1.1 - Cours
          Ceci est un exercice de cours.
  Théorème 2.14
  Ceci est une équation
                                                    ax + b
                                                    \overline{5x+3}
                                    f(x) = \begin{array}{c} \\ \\ x \\ \end{array} \mapsto
                                                            \int x = \sin x > 0
```

sinon

3 Macros

3.1 Mathématiques

3.1.1 Macros

3.1.1 Macros		
\$\pth{\frac{ax+b}{cx+d}}\$	$\left(\frac{ax+b}{cx+d}\right)$	
<pre>\$\vabs{\frac{ax+b}{cx+d}}\$\$</pre>	$\left \frac{ax+b}{cx+d}\right $	
\$\itv{c}{c}{3}{4}\$	[3;4]	
\$\itv{o}{c}{3}{4}\$]3;4]	
\$\itv{c}{o}{\frac{3+\sqrt{15}}{5}}{4}\$	$\left[\frac{3+\sqrt{15}}{5};4\right[$	
1 \$\itv{o}{o}{3}{4}\$]3;4[
s\norm{u}\$	u	
1	\overrightarrow{AB}	
s\conj{a+ib}\$	$\overline{a+ib}$	
<pre>1 \$\comp{A}\$</pre>	\overline{A}	

3.2 Ensembles

1	\$\setN\$	N
1	\$\setZ\$	
1	\$\setD\$	
1	\$\setQ\$	Q
1	<pre>\$\setR\$</pre>	\mathbb{R}

3.2.1 Opérateurs

4 Python

Pour utiliser python, il faut ajouter les lignes suivantes au préambule :

```
input{\templatesroot/imports/python/python}
begin{pycode}
import sys
sys.path.insert(0, '<chemin_vers_texlab>/imports/python')
} \end{pycode}
```

```
begin{pycode}
from sympy import Matrix, latex, symbols, S
from linear_algebra.linear_system import System
x,y,z = symbols('x y z')
A = Matrix(3,3,[1,2,3,4,5,6,7,8,9])
_{7} X = Matrix(3,1,[x,y,z])
Y = Matrix(3,1,[4,5,-5])
syst = System(A,X,Y)
11 \end{pycode}
              \begin{align*}
12
                   \py{syst.to_latex()} & \iff \pyc{syst.transvection(2,1,-4)}
13
                         \pyc{syst.transvection(3,1,-7)}
14
                         \py{syst.to_latex()} \\
15
                                               & \iff \pyc{syst.multiply(2, S(-1)/3)}
16
                         \pyc{syst.multiply(3,S(-1)/6)}
17
18
                         \py{syst.to_latex()} \\
                                                & \iff \pyc{syst.transvection(3,2,-1)}
19
                         \py{syst.to_latex()}
20
              \end{align*}
                     \begin{cases} x + 2y + 3z = 4 \\ 4x + 5y + 6z = 5 \\ 7x + 8y + 9z = -5 \end{cases} \iff \begin{cases} x + 2y + 3z = 4 \\ -3y - 6z = -11 \\ -6y - 12z = -33 \end{cases}
                                                          \iff \begin{cases} x + 2y + 3z = 4 \\ y + 2z = \frac{11}{3} \\ y + 2z = \frac{11}{2} \end{cases}
                                                           \iff \begin{cases} x + 2y + 3z = 4 \\ y + 2z = \frac{11}{3} \\ 0 = \frac{11}{6} \end{cases}
```

```
l \begin{pycode}
2 from sympy import Matrix, S
from linear_algebra.gauss_inversion import GaussInversion, ActionMode
5 A = Matrix([[1, 1], [1, -2]])
    g = GaussInversion(A)
    \end{pycode}
                 $$\begin{array}{c|c|c}
                        \py{latex(g.A, mat_delim="(")} & & \py{latex(g.B, mat_delim="(")} \\
                        \pyc{g.transvection(2, 1, -1)}\py{latex(g.A, mat_delim="(")} &
10
     \rightarrow \pth{C_{2}\leftarrow C_{2} - C_{1}} & \py{latex(g.B, mat_delim="(")} \\
                        \pyc{g.multiply(2, -S(1)/3)}\py{latex(g.A, mat_delim="(")} &
11
          \phi_{C_{2}}\left( \frac{-1}{3}C_{2} \right)  \\ \py{\latex(g.B, mat_delim="(")} \\
                        \pyc{g.transvection(1, 2, -1)}\py{latex(g.A, mat_delim="(")} \& \\
12
     \rightarrow \pth{C_{1}}\leftarrow C_{1} - C_{2}} & \py{latex(g.B, mat_delim="(")}
                 \end{array}$$
13

\begin{pmatrix}
1 & -2 \\
1 & 1 \\
0 & -3
\end{pmatrix}
\begin{pmatrix}
C_2 \leftarrow C_2 - C_1
\end{pmatrix}
\begin{pmatrix}
0 & 1 \\
1 & 0 \\
-1 & 1
\end{pmatrix}

\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
C_2 \leftarrow \frac{-1}{3}C_2
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
\frac{1}{3} & -\frac{1}{3}
\end{pmatrix}

\begin{pmatrix}
1 & 0 \\
\frac{1}{3} & -\frac{1}{3}
\end{pmatrix}

\begin{pmatrix}
1 & 0 \\
\frac{1}{3} & -\frac{1}{3}
\end{pmatrix}
```

```
1 \begin{pycode}
2 from sympy import Matrix, S
from linear_algebra.gauss_inversion import GaussInversion, ActionMode
  A = Matrix([[1, 1], [1, -2]])
  g = GaussInversion(A)
   \end{pycode}
             $$\py{g.to_latex()}$$
9
              $$\pyc{g.transvection(1, 2, -1)}\py{g.to_latex()}$$
10
              $$\pyc{g.switch(1, 2)}\py{g.to_latex()}$$
11
              $$\pyc{g.multiply(2, S(1)/3)}\py{g.to_latex()}$$
              $$\pyc{g.transvection(1, 2, S(2))}\py{g.to_latex()}$$
                                           \begin{cases} x_1 - 2x_2 = y_2 \\ x_2 = \frac{1}{3}y_1 - \frac{1}{3}y_2 \end{cases}
                                            \begin{cases} x_1 & = \frac{2}{3}y_1 + \frac{1}{3}y_2 \\ x_2 & = \frac{1}{3}y_1 - \frac{1}{3}y_2 \end{cases}
```

5 Tableaux de variation

Voir ce tutoriel.

```
| \begin{tikzpicture}
      \tkzTabInit[color]{\$x\$ / 1 , \$f'(x)\$ / 1, \$f\$ / 2} % Lignes (nom / taille)
      {$0$, $2$, $5$, $+\infty$}
      \t x=1 
      \tkzTabVar{+ / $13$, -DH / $4$, D- / $\frac{\pi}{12}$, + / 15 }
      \txTabVal{3}{4}{0.5}{\$\frac{\sqrt{333}}{2}$}{\$7$}
7 \end{tikzpicture}
                                                       \frac{\sqrt{333}}{2}
       x
               0
                               2
                                                5
                                                               +∞
     f'(x)
               0
               13
                                                                15
       f
```