Pedro_Salvador_ADO_PEC1

Pedro Salvador Escribano

7/4/2020

Table of Contents

Objetivos: Que se pretende con este estudio. Materiales y Métodos. Aislamiento de células T, cultivo y activación: Extracción de RNA y lavado: Análisis por microarray: Procedimiento de análisis de los datos: Resultados. Discusión. Apéndice (Código utilizado para el análisis). Cargado de datos y consideraciones previas: Instalación previa de paquetes requeridos: Lectura de archivos CEL: Control de calidad de datos brutos: Normalización de los datos: Control de calidad de datos normalizados: Control de calidad de datos normalizados: Detección de lotes por Principal Variation Component Analysis:	2 2 3
Aislamiento de células T, cultivo y activación: Extracción de RNA y lavado: Análisis por microarray: Procedimiento de análisis de los datos: Resultados Discusión Apéndice (Código utilizado para el análisis) Cargado de datos y consideraciones previas: Instalación previa de paquetes requeridos: Lectura de archivos CEL: Control de calidad de datos brutos: Normalización de los datos: Control de calidad de datos normalizados:	2 3 3
Extracción de RNA y lavado: Análisis por microarray: Procedimiento de análisis de los datos: Resultados. Discusión. Apéndice (Código utilizado para el análisis). Cargado de datos y consideraciones previas: Instalación previa de paquetes requeridos: Lectura de archivos CEL: Control de calidad de datos brutos: Normalización de los datos: Control de calidad de datos normalizados:	2 3 5
Análisis por microarray: Procedimiento de análisis de los datos: Resultados. Discusión. Apéndice (Código utilizado para el análisis). Cargado de datos y consideraciones previas: Instalación previa de paquetes requeridos: Lectura de archivos CEL: Control de calidad de datos brutos: Normalización de los datos: Control de calidad de datos normalizados:	3 3
Procedimiento de análisis de los datos: Resultados. Discusión. Apéndice (Código utilizado para el análisis). Cargado de datos y consideraciones previas: Instalación previa de paquetes requeridos: Lectura de archivos CEL: Control de calidad de datos brutos: Normalización de los datos: Control de calidad de datos normalizados:	3 5
Resultados Discusión	5
Discusión	
Apéndice (Código utilizado para el análisis)	5
Cargado de datos y consideraciones previas: Instalación previa de paquetes requeridos: Lectura de archivos CEL: Control de calidad de datos brutos: Normalización de los datos: Control de calidad de datos normalizados:	
Instalación previa de paquetes requeridos: Lectura de archivos CEL: Control de calidad de datos brutos: Normalización de los datos: Control de calidad de datos normalizados:	5
Lectura de archivos CEL:	5
Control de calidad de datos brutos: Normalización de los datos: Control de calidad de datos normalizados:	6
Normalización de los datos:	6
Control de calidad de datos normalizados:	7
	9
Detección de lotes nor Principal Variation Component Analysis:	10
Detection de lotes por l'interpar variation component iniarysis.	11
Detección de genes mas variables:	13
Filtrado de genes menos variables:	14
Guardado de datos filtrados y normalizados:	14
Definición de la matriz de diseño:	14
Definición de comparaciones con matriz de contrastes:	15
Estimación del modelo y selección de genes:	15
Obtención de genes diferencialmente expresados:	15
Anotación génica:	17
Visualización de expresión diferencial:	18
Comparaciones múltiples:	20

Heatmaps	21
Significación biológica de los resultados:	24
Resumen de resultados:	31

https://github.com/pesales/PEC1_Pedro_Salvador/

Abstract.

Se ha observado una función inmunitaria alterada en los astronautas que regresan de misiones espaciales. En este estudio se ha encontrado como posibles causas, la alteración de rutas relacionadas con la señalización del interferón gamma, la degranulación de neutrófilos o la regulación transcripcional de p53.

Objetivos: Que se pretende con este estudio.

En este estudio se analiza la causa de la alteración de la función inmunitaria sufrida por los astronautas tras su regreso a la tierra. Para ello, se utiliza un modelo de gravedad alterada simulada con el que se simula la diferenciación de células inumitarias bajo estas condiciones atípicas. Se analiza las diferencias en la expresión génica de células T, tras su diferenciación en condiciones de gravedad normal (1g) o gravedad variante (vg).

Materiales y Métodos.

Aislamiento de células T, cultivo y activación:

Se aislaron leucocitos de sangre periférica de 3 donantes humanos mediante centrifugación de gradiente de densidad con Ficoll (Red Cross, Zurich, Suiza) y las células T fueron purifecadas usando columnas de alta afinidad para células T CD3⁺ (R&D Systems, Minneapolis, MN). Las células fueron resuspendidas en RPMI-1640 con un 10% de suero bovino fetal a 3-8 millones de células/ml. Una porción de estas células fue activada con 5μ g/ml de concavalina A (Sigma, St. Louis, MO) y 4μ g/ml de antucuerpo anti-CD28 (PharMingen, San Diego, CA) e incubada a 37° C durante 4 horas a 1g o en una Random positioning machine (RPM) (Dutch Space, Leiden, Países Bajos) rotando a 60° /s con controles inactivados.

Extracción de RNA y lavado:

Se aisló el RNA usando isotiocianato de guanidinio y se lavó con columnas RNeasy® MinElute (Qiagen, Valencia, CA). La concentración y pureza de ARN se determinaron midiendo la absorbancia a 260 y 280 nm con un GeneQuant (Pfizer, Nueva York, NY); Se corrieron $0.3~\mu g$ de ARN total en un gel desnaturalizante al 1%, o se cargaron 100

ng de ARN total en el bioanalizador 2100 (Agilent, Palo Alto, CA) para verificar la integridad del ARN.

Análisis por microarray:

Se utilizó el Human Genome Focus Array (Affymetrix, Santa Clara, CA), compuesto por 8,796 conjuntos de sondas correspondientes a genes bien anotados de la base de datos RefSeq de NCBI; 1,8 μ g de ARN total fueron alicuotados para lasíntesis de para la síntesis de ADNc usando cebador oligo-(dT) purificado por HPLC (Affymetrix) y transcriptasa inversa 200 U SuperScriptTM II (Invitrogen, Carlsbad, CA). Diez microlitros del ADNc se dividieron en alícuotas para la transcripción in vitro y el marcado de biotina usando BioArrayTM high yieldTM RNA transcription labeling kit (Enzo, New York, NY).. La reacción se incubó durante 10h a 37°C. Después de la fragmentación de cRNA, las muestras fueron se llevaron al Gladstone Institute Genomics Core. Diez microgramos del cRNA marcado se hibridaron a una concentración final de 0,05 μ g/ μ l en arrays Focus a 45°C durante 16 h. Los arrays se tiñeron usando Fluidics Station 400 (Affymetrix) y se escanearon usando un escáner GeneArray® (Affymetrix).

Procedimiento de análisis de los datos:

Se siguió el procedimiento general de análisis de datos porcedentes de experimentos por microarray:

Identificar que grupos hay y a qué grupo pertenece cada muestra.

Los archivos CEL de las muestras con número de acceso GSM24817, GSM29564, GSM29565, GSM29566, GSM29567, GSM29568, GSM29569, GSM29570, GSM29571, GSM29572, GSM29573, y GSM29574, con número de acceso de serie GSE170 se obtuvieron de http://www.ncbi.nlm.nih.gov/geo/browse/?view=series. Se identificó el grupo al que pertenecía cada una de las muestras y se creó el archivo targets.csv. Los archivos CEl y CSV fueron cargados dentro de la carpeta data.

Control de calidad de los datos crudos

Los datos fueron cargados en la variable rawData y clasificados según el archivo targets en los diferentes grupos. El control de calidad de estos datos se almacenó en la carpeta "QCDir.Raw", dentro de la carpeta de resultados. Dentro de esta carpeta se generó el archivo "index.html" que contiene la información del control de calidad. Se observaron discrepancias entre los datos que justificaron la posterior normalización de los datos. Se visualizó mediente un boxplot para la variabilidad de la intensidad de la señal entre muestras normalizadas. También se buscaron relaciones entre las muestras con un análisis de componentes principales en el que, a priori, no se detectaban relaciones fuertes entre las mismas.

Normalización

Se procedió a la normalización de los datos en la variable eset_rma.

Control de calidad de los datos normalizados

El control de calidad de estos datos se almacenó en la carpeta "QCDir.Norm", dentro de la carpeta de resultados. Dentro de esta carpeta se generó el archivo "index.html" que contiene la información del control de calidad. Tras la normalización de los datos, las diferencias entre arrays habían sido mitigadas. La variabilidad de la intensidad de la señal entre muestras normalizadas se visualizó mediente un boxplot. También se buscaron relaciones entre las muestras con un análisis de componentes principales en el que, a priori, no se detectaban relaciones fuertes entre las mismas.

Identificación de genes diferencialmente expresados

Partiendo de los datos normalizados, se filtraron los genes menos variables y se guardaron en la variable eset_filtered. Se definió la matriz de diseño y la matriz de contrastes. Se obtuvo la lista de genes que se expresan de manera diferente cuando se activan en función de si la gravedad es constante o variable (topTab_VGVSGTREATED) y la lista de genes que se expresan de manera diferente en función de si la gravedad es constante o variable antes de activarse (topTab_VGVSGNONTREATED).

Anotación de los resultados

La anotación de los genes se hizo utilizando el paquete de anotación hgfocus.db, correspondiente al micorarray utilizado. Se obtuvo a lista anotada de genes que se expresan de manera diferente cuando se activan en función de si la gravedad es constante o variable (topAnnotated_VGVSGTREATED) y la lista anotada de genes que se expresan de manera diferente en función de si la gravedad es constante o variable antes de activarse (topAnnotated_VGVSGNONTREATED).

Comparación entre distintas comparaciones (si hay más de una comparación, ver que genes han sido seleccionados en más de una comparación)

Se representó mediante un diagrama de Venn y mediante volcano Plots, los genes que estaban representados en cada una de las comparaciones. También se realizaron Heatmaps para visualizar el agrupamiento de las muestras según estos resultados.

Análisis de significación biológica ("Gene Enrichment Analysis")

Se agrupó los genes diferencialmente expresados dentro de funciones y rutas moleculares conocidas y se representó las principales de estas funciones que se encontraban alteradas en cada una de las comparaciones(ReactomePA.Results.VGVSGTREATED) y ReactomePA.Results.VGVSGNONTREATED).

Resultados.

Como resultado de este análisis se ha obtenido listas de genes y funciones diferencialmente expresadas en cada una de las comparaciones. Una lista detallada de estos resultados puede ser consultada en el último punto del apéndice, resumen de resultados.

Discusión.

Los resultados aportados por este estudio deben ser interpretados con cautela, pues únicamente se ha utilizado un tipo celular para este experimento. Sería necesario completar este estudio con los diferentes tipos celulares pertenecientes al sistema inmunitario para obtener una visión global del estado del mismo en el individuo en condiciones de gravedad alterada.

Apéndice (Código utilizado para el análisis).

Cargado de datos y consideraciones previas:

Crear un directorio donde se almacenará todos los datos del análisis, incluidos datos brutos, intermedios y resultados:

```
> setwd("C:/Users/peri8/Google Drive/Master UOC/Análisis de datos
ómicos/PEC1/Estudio_gravedad")
> dir.create("data")
> dir.create("results")
```

Cargar el archivo que describe los datos:

```
> # Tras compiar los datos .CEL y target (que contienen la información de
grupos y covariables de los diferentes archivos) se carga el archivo
targets:
> targets <- read.csv2("./data/targets.csv", header = TRUE, sep = ";")
> knitr::kable(
+ targets, booktabs = TRUE,
+ caption = 'Content of the targets file used for the current
analysis')
```

Content of the targets file used for the current analysis

FileName	Group	Gravity	Activation	ShortName
GSM24817.CEL	1G.0H	1G	0H	1G.0H.2
GSM29567.CEL	1G.0H	1G	0H	1G.0H.4
GSM29571.CEL	1G.0H	1G	0H	1G.0H.5
GSM29564.CEL	1G.4H	1G	4H	1G.4H.2

```
GSM29568.CEL 1G.4H
                    1 G
                            4H
                                      1G.4H.4
GSM29572.CEL 1G.4H
                    1G
                            4H
                                      1G.4H.5
GSM29565.CEL VG.0H VG
                            0H
                                      VG.0H.2
GSM29569.CEL VG.0H VG
                            0H
                                      VG.0H.4
GSM29573.CEL VG.0H VG
                            0H
                                      VG.0H.5
GSM29566.CEL VG.4H VG
                            4H
                                      VG.4H.2
                                      VG.4H.4
GSM29570.CEL VG.4H VG
                            4H
GSM29574.CEL VG.4H VG
                            4H
                                      VG.4H.5
```

Instalación previa de paquetes requeridos:

```
> if (!requireNamespace("BiocManager", quietly = TRUE))
      install.packages("BiocManager")
> BiocManager::install()
> install.packages("knitr")
> install.packages("colorspace")
> install.packages("gplots")
> install.packages("ggplot2")
> install.packages("ggrepel")
> install.packages("htmlTable")
> install.packages("prettydoc")
> install.packages("devtools")
> install.packages("BiocManager")
> BiocManager::install("oligo")
> BiocManager::install("pd.mogene.2.1.st")
> BiocManager::install("arrayQualityMetrics")
> BiocManager::install("pvca")
> # NOT NEEDED UNTIL ANALYSES ARE PERFORMED
> BiocManager::install("limma")
> BiocManager::install("genefilter")
> BiocManager::install("hgfocus.db")
> BiocManager::install("annotate")
> BiocManager::install("org.Mm.eg.db")
> BiocManager::install("ReactomePA")
> BiocManager::install("reactome.db")
> BiocManager::install("org.Mm.eg.db")
> BiocManager::install("org.Mm.egPATH")
```

Lectura de archivos CEL:

```
> my.targets@data$ShortName->rownames(pData(rawData))
> colnames(rawData) <-rownames(pData(rawData))</pre>
> head(rawData)
ExpressionFeatureSet (storageMode: lockedEnvironment)
assayData: 1 features, 12 samples
  element names: exprs
protocolData
  rowNames: 1G.0H.2 1G.0H.4 ... VG.4H.5 (12 total)
  varLabels: exprs dates
  varMetadata: labelDescription channel
phenoData
  rowNames: 1G.0H.2 1G.0H.4 ... VG.4H.5 (12 total)
  varLabels: Group Gravity Activation ShortName
  varMetadata: labelDescription channel
featureData: none
experimentData: use 'experimentData(object)'
Annotation: pd.hg.focus
```

Control de calidad de datos brutos:

```
> library(arrayQualityMetrics)
> arrayQualityMetrics(rawData, outdir = file.path("./results",
"QCDir.Raw"), force=TRUE)
```

Tras esto se creará una carpeta "QCDir.Raw", dentro de la carpeta de resultados. Dentro de esta carpeta hay que buscar un archivo"index.html" que contiene la información del control de calidad. Si las muestras no tienen mas de una marca, son aptas para continuar con el análisis y los problemas que presentan son pequeños. En caso contrario hay que proceder a la normalización de los datos.

Mediante un PCA se visualizan las relaciones enntre muestras:

```
> library(ggplot2)
> library(ggrepel)
> plotPCA3 <- function (datos, labels, factor, title, scale,colores, size</pre>
= 1.5, glineas = 0.25) {
  data <- prcomp(t(datos),scale=scale)</pre>
  # plot adjustments
  dataDf <- data.frame(data$x)</pre>
   Group <- factor
   loads <- round(data$sdev^2/sum(data$sdev^2)*100,1)</pre>
   # main plot
    p1 <- ggplot(dataDf,aes(x=PC1, y=PC2)) +
      theme_classic() +
      geom_hline(yintercept = 0, color = "gray70") +
      geom vline(xintercept = 0, color = "gray70") +
      geom point(aes(color = Group), alpha = 0.55, size = 3) +
      coord_cartesian(xlim = c(min(data$x[,1])-5,max(data$x[,1])+5)) +
      scale_fill_discrete(name = "Group")
```

Principal Component Analysis for: Raw data

Visualization of the two first Principal Components for raw data

Se realiza un boxplot para ver la variabilidad de la intensidad de la señal entre muestras:

```
> boxplot(rawData, cex.axis=0.5, las=2, which="all",
+ col = c(rep("red", 3), rep("blue", 3), rep("green", 3),
rep("yellow", 3)),
+ main="Distribution of raw intensity values")
```

Distribution of raw intensity values

Boxplot for arrays intensities (Raw Data)

Normalización de los datos:

```
> eset_rma <- rma(rawData)

Background correcting

Normalizing

Calculating Expression
```

Control de calidad de datos normalizados:

```
> arrayQualityMetrics(eset_rma, outdir = file.path("./results",
"QCDir.Norm"), force=TRUE)
```

Se crea una carpeta dentro de resultados que contiene el control de calidad de los datos normalizados. El archivo index.html contiene el report.

Visualizo el PCA con los datos normalizados

```
> plotPCA3(exprs(eset_rma), labels = targets$ShortName, factor =
targets$Group,
+ title="Normalized data", scale = FALSE, size = 3,
+ colores = c("red", "blue", "green", "yellow"))
```

Principal Component Analysis for: Normalized data

Visualization of first two principal components for normalized data

Visualizo un boxplot para ver la variabilidad de la intensidad de la señal entre muestras normalizadas:

```
> boxplot(eset_rma, cex.axis=0.5, las=2, which="all",
+ col = c(rep("red", 3), rep("blue", 3), rep("green", 3),
rep("yellow", 3)),
+ main="Boxplot for arrays intensity: Normalized Data")
```

Boxplot for arrays intensity: Normalized Data

Distribution of intensities for normalized data

Detección de lotes por Principal Variation Component Analysis:

```
> #load the library
> library(pvca)
> pData(eset_rma) <- targets
> #select the threshold
> pct_threshold <- 0.6
> #select the factors to analyze
```

```
> batch.factors <- c("Gravity", "Activation")
> #run the analysis
> pvcaObj <- pvcaBatchAssess (eset_rma, batch.factors, pct_threshold)

> #plot the results
> bp <- barplot(pvcaObj$dat, xlab = "Effects",
+ ylab = "Weighted average proportion variance",
+ ylim= c(0,1.1),col = c("mediumorchid"), las=2,
+ main="PVCA estimation")
> axis(1, at = bp, labels = pvcaObj$label, cex.axis = 0.55, las=2)
> values = pvcaObj$dat
> new_values = round(values , 3)
> text(bp,pvcaObj$dat,labels = new_values, pos=3, cex = 0.5)
```

PVCA estimation

Relative importance of the different factors -genotype, temperature and interactionaffecting gene expression

Detección de genes mas variables:

Aquí se mostrarán aquellos genes cuya desviación estandard esté por encima del 90 y 95% de todas las desviaciones estandard

Distribution of variability for all genes

Vertical lines represent 90% and 95% percentiles

Values of standard deviations allong all samples for all genes ordered from smallest to biggest

Filtrado de genes menos variables:

Guardado de datos filtrados y normalizados:

```
> print(filtered$filter.log)
$numDupsRemoved
[1] 120

$numLowVar
[1] 6078

$numRemoved.ENTREZID
[1] 559

$feature.exclude
[1] 10
> eset_filtered <-filtered$eset
> write.csv(exprs(eset_rma), file="./results/normalized.Data.csv")
> write.csv(exprs(eset_filtered),
file="./results/normalized.Filtered.Data.csv")
> save(eset_rma, eset_filtered, file="./results/normalized.Data.Rda")
```

Definición de la matriz de diseño:

```
> if (!exists("eset filtered")) load
(file="./results/normalized.Data.Rda")
> library(limma)
> designMat<- model.matrix(~0+Group, pData(eset filtered))</pre>
> colnames(designMat) <- c("G.NONTREATED", "G.TREATED", "VG.NONTREATED",</pre>
"VG.TREATED")
> print(designMat)
   G.NONTREATED G.TREATED VG.NONTREATED VG.TREATED
1
               1
                          0
                                         0
2
               1
                          0
                                         0
                                                      0
3
                                         0
               1
                          0
                                                      0
4
               0
                                         0
                                                      0
                          1
5
               0
                          1
                                         0
                                                      0
6
               0
                          1
                                         0
                                                      0
7
               0
                                                      0
                          0
                                         1
8
```

```
9
                          0
10
               0
                          0
                                         0
                                                      1
11
                          0
                                         0
                                                      1
12
                                                      1
attr(,"assign")
[1] 1 1 1 1
attr(,"contrasts")
attr(,"contrasts")$Group
[1] "contr.treatment"
```

Definición de comparaciones con matriz de contrastes:

```
> cont.matrix <- makeContrasts (VGVSGTREATED = VG.TREATED-G.TREATED,</pre>
                                 VGVSGNONTREATED = VG.NONTREATED-
G.NONTREATED,
                                 INT = (VG.TREATED-G.TREATED) -
(VG.NONTREATED-G.NONTREATED),
                                 levels=designMat)
> print(cont.matrix)
               Contrasts
Levels
                VGVSGTREATED VGVSGNONTREATED INT
  G.NONTREATED
                            0
                                            -1
  G.TREATED
                           -1
                                                -1
                                             0
  VG.NONTREATED
                            0
                                             1
                                                -1
                            1
 VG.TREATED
                                             0
```

Estimación del modelo y selección de genes:

```
> library(limma)
> fit<-lmFit(eset_filtered, designMat)
> fit.main<-contrasts.fit(fit, cont.matrix)
> fit.main<-eBayes(fit.main)
> class(fit.main)

[1] "MArrayLM"
attr(,"package")
[1] "limma"
```

Obtención de genes diferencialmente expresados:

Para la primera comparación: Genes que se expresan de manera diferente cuando se activan en función de si la gravedad es constante o variable.

```
> topTab_VGVSGTREATED <- topTable (fit.main, number=nrow(fit.main),
coef="VGVSGTREATED", adjust="fdr")
> head(topTab_VGVSGTREATED)
```

	logFC	AveExpr	t	P.Value	adj.P.Val	В
201909_at	4.45088	5.702507	5.73326	0.000017	0.034411	-
	0		0	0	9	1.47085

Para la segunda comparación: Genes que se expresan de manera diferente en función de si la gravedad es constante o variable antes de activarse

```
> topTab_VGVSGNONTREATED <- topTable (fit.main, number=nrow(fit.main),
coef="VGVSGNONTREATED", adjust="fdr")</pre>
```

>	head(topTab	_VGVSGNONTREATED)
---	-------	--------	-------------------

	logFC	AveExpr	t	P.Value	adj.P.Val	В
200873_s_at	-	5.792393	-	0.0001380	0.2794921	-
	2.578050		4.774253			3.112913
203665_at	-	6.076885	-	0.0008729	0.6797011	-
	3.059741		3.955459			3.414116
201068_s_at	-	6.041268	-	0.0012187	0.6797011	-
	1.880674		3.808148			3.473264
202768_at	-	5.230130	-	0.0013420	0.6797011	-
	2.240810		3.765617			3.490599
217911_s_at	-	6.470501	-	0.0028412	0.9851903	-
	1.951585		3.433439			3.629645
211506_s_at	-	4.216521	-	0.0039740	0.9851903	-
	2.005053		3.283863			3.694131

Para la tercera comparación (INT): Genes que se comportan diferente entre la comparación 1 y 2:

```
> topTab_INT <- topTable (fit.main, number=nrow(fit.main), coef="INT",
adjust="fdr")
> head(topTab_INT)
```

	logFC	AveExpr	t	P.Value	adj.P.Val	В
208894_at	3.316861	4.856287	4.410808	0.0003117	0.6314486	-4.511859
200910_at	3.247301	5.702287	3.857743	0.0010892	0.8427838	-4.524011
200873_s_at	2.900146	5.792393	3.797685	0.0012480	0.8427838	-4.525417
201068_s_at	2.542602	6.041268	3.640521	0.0017810	0.9020803	-4.529175
211506_s_at	2.967051	4.216521	3.436126	0.0028241	0.9599724	-4.534221
210125_s_at	2.460431	6.111311	3.338135	0.0035193	0.9599724	-4.536700

Anotación génica:

```
> annotatedTopTable <- function(topTab, anotPackage)</pre>
    topTab <- cbind(PROBEID=rownames(topTab), topTab)</pre>
    myProbes <- rownames(topTab)</pre>
    thePackage <- eval(parse(text = anotPackage))</pre>
    geneAnots <- select(thePackage, myProbes, c("SYMBOL", "ENTREZID",</pre>
"GENENAME"))
    annotatedTopTab<- merge(x=geneAnots, y=topTab, by.x="PROBEID",
by.y="PROBEID")
+ return(annotatedTopTab)
+ }
> topAnnotated_VGVSGTREATED <- annotatedTopTable(topTab_VGVSGTREATED,</p>
+ anotPackage="hgfocus.db")
> topAnnotated VGVSGNONTREATED <-</p>
annotatedTopTable(topTab VGVSGNONTREATED,
+ anotPackage="hgfocus.db")
topAnnotated INT <- annotatedTopTable(topTab INT,</p>
+ anotPackage="hgfocus.db")
> write.csv(topAnnotated VGVSGTREATED,
file="./results/topAnnotated VGVSGTREATED.csv")
> write.csv(topAnnotated_VGVSGNONTREATED,
file="./results/topAnnotated VGVSGNONTREATED.csv")
> write.csv(topAnnotated INT, file="./results/topAnnotated INT.csv")
    PROBEID SYMBOL ENTREZID
GENENAME
     117 at HSPA6
                        3310
                                   heat shock protein family A (Hsp70)
member 6
2 200001 at CAPNS1
                         826
                                                         calpain small
subunit 1
                       11224
                                                           ribosomal
3 200002 at RPL35
protein L35
4 200004 at EIF4G2
                        1982 eukaryotic translation initiation factor 4
gamma 2
                                               Parkinsonism associated
5 200006_at PARK7
                       11315
deglycase
```

Visualización de expresión diferencial:

Differentially expressed genes VGVSGTREATED

Volcano plot. Genes que se expresan de manera diferente cuando se activan en función de si la gravedad es constante o variable. Se muestran los nombres de los 4 más variables (i.e. cuatro primeros genes en topTable)

```
> library(hgfocus.db)
> geneSymbols <- select(hgfocus.db, rownames(fit.main), c("SYMBOL"))
> SYMBOLS<- geneSymbols$SYMBOL
> volcanoplot(fit.main, coef=2, highlight=4, names=SYMBOLS,
```

```
main=paste("Differentially expressed genes",
colnames(cont.matrix)[2], sep="\n"))
abline(v=c(-1,1))
```

Differentially expressed genes VGVSGNONTREATED

Volcano plot. Genes que se expresan de manera diferente en función de si la gravedad es constante o variable antes de activarse. Se muestran los nombres de los 4 más variables (i.e. cuatro primeros genes en topTable)

Differentially expressed genes INT

Volcano plot. Genes que se comportan diferente entre la comparación 1 y 2. Se muestran los nombres de los 4 más variables (i.e. cuatro primeros genes en topTable)

Comparaciones múltiples:

```
> library(limma)
> res<-decideTests(fit.main, method="separate", adjust.method="none",</pre>
p.value=0.1, lfc=1)
> sum.res.rows<-apply(abs(res),1,sum)</pre>
> res.selected<-res[sum.res.rows!=0,]</pre>
> print(summary(res))
       VGVSGTREATED VGVSGNONTREATED
                                        INT
Down
                  10
                                    98
                                         29
NotSig
                1951
                                 1910 1856
Up
                  65
                                    18
                                       141
```

```
> vennDiagram (res.selected[,1:3], cex=0.9)
> title("Genes in common between the three comparisons\n Genes selected
with FDR < 0.1 and logFC > 1")
```

Genes in common between the three comparisons Genes selected with FDR < 0.1 and logFC > 1

Venn diagram showing the genes in common between the three comparisons performed

Heatmaps

```
> probesInHeatmap <- rownames(res.selected)
> HMdata <- exprs(eset_filtered)[rownames(exprs(eset_filtered)) %in%
probesInHeatmap,]
> geneSymbols <- select(hgfocus.db, rownames(HMdata), c("SYMBOL"))
> SYMBOLS<- geneSymbols$SYMBOL
> rownames(HMdata) <- SYMBOLS
> write.csv(HMdata, file = file.path("./results/data4Heatmap.csv"))
```

```
> my_palette <- colorRampPalette(c("blue", "red"))(n = 299)</pre>
> library(gplots)
> heatmap.2(HMdata,
            Rowv = FALSE,
            Colv = FALSE,
+
            main = "Differentially expressed genes \n FDR < 0,1, logFC</pre>
+
>=1",
            scale = "row",
+
            col = my_palette,
+
            sepcolor = "white",
+
            sepwidth = c(0.05, 0.05),
            cexRow = 0.5,
            cexCol = 0.9,
            key = TRUE,
            keysize = 1.5,
            density.info = "histogram",
            ColSideColors = c(rep("red",3),rep("blue",3), rep("green",3),
rep("yellow",3)),
            tracecol = NULL,
            dendrogram = "none",
+
            srtCol = 30)
```


Differentially expressed genes FDR < 0,1, logFC >=1

Heatmap for expression data without any grouping

```
> heatmap.2(HMdata,
            Rowv = TRUE,
+
            Colv = TRUE,
            dendrogram = "both",
            main = "Differentially expressed genes \n FDR < 0,1, logFC</pre>
+
>=1",
            scale = "row",
+
            col = my_palette,
+
            sepcolor = "white",
            sepwidth = c(0.05, 0.05),
            cexRow = 0.5,
            cexCol = 0.9,
            key = TRUE,
            keysize = 1.5,
            density.info = "histogram",
```

```
+ ColSideColors = c(rep("red",3),rep("blue",3), rep("green",3),
rep("yellow",3)),
+ tracecol = NULL,
+ srtCol = 30)
```


Heatmap for expression data grouping genes (rows) and samples (columns) by their similarity

Significación biológica de los resultados:

```
# select the genes to be included in the analysis
    whichGenes<-topTab["P.Value"]<0.15
    selectedIDs <- rownames(topTab)[whichGenes]</pre>
    # convert the ID to Entrez
    EntrezIDs<- select(hgfocus.db, selectedIDs, c("ENTREZID"))</pre>
    EntrezIDs <- EntrezIDs$ENTREZID</pre>
    listOfSelected[[i]] <- EntrezIDs</pre>
    names(listOfSelected)[i] <- names(listOfTables)[i]</pre>
+ }
> sapply(listOfSelected, length)
   VGVSGTREATED VGVSGNONTREATED
                                              INT
                             259
            207
                                              269
> library(ReactomePA)
> listOfData1 <- listOfSelected[1]</pre>
> comparisonsNames1 <- names(listOfData1)</pre>
> for (i in 1:length(listOfData1)){
    genesIn1 <- listOfData1[[i]]</pre>
    comparison1 <- comparisonsNames1[i]</pre>
    enrich.result1 <- enrichPathway(gene = genesIn1,</pre>
                                    pvalueCutoff = 0.05,
                                     readable = T,
                                     pAdjustMethod = "BH",
                                     organism = "human")
    cat("############################")
    cat("\nComparison1: ", comparison1,"\n")
    print(head(enrich.result1))
    if (length(rownames(enrich.result1@result)) != 0) {
    write.csv(as.data.frame(enrich.result1),
=paste0("./results/", "ReactomePA.Results.", comparison1, ".csv"),
               row.names = FALSE)
pdf(file=paste0("./results/", "ReactomePABarplot.", comparison1, ".pdf"))
      print(barplot(enrich.result1, showCategory = 15, font.size = 4,
              title = paste0("Reactome Pathway Analysis for ",
comparison1,". Barplot")))
    dev.off()
    pdf(file =
paste0("./results/", "ReactomePAcnetplot.", comparison1, ".pdf"))
      print(cnetplot(enrich.result1, categorySize = "geneNum",
schowCategory = 15,
   vertex.label.cex = 0.75))
```

```
dev.off()
    }
+ }
#####################################
Comparison1: VGVSGTREATED
                         ID
R-HSA-6798695 R-HSA-6798695
R-HSA-877300
             R-HSA-877300
R-HSA-8862803 R-HSA-8862803
R-HSA-8863678 R-HSA-8863678
R-HSA-5628897 R-HSA-5628897
R-HSA-3700989 R-HSA-3700989
Description
R-HSA-6798695
Neutrophil degranulation
R-HSA-877300
Interferon gamma signaling
R-HSA-8862803 Deregulated CDK5 triggers multiple neurodegenerative
pathways in Alzheimer's disease models
R-HSA-8863678
Neurodegenerative Diseases
R-HSA-5628897
TP53 Regulates Metabolic Genes
R-HSA-3700989
Transcriptional Regulation by TP53
              GeneRatio
                          BgRatio
                                        pvalue
                                                   p.adjust
                                                                   qvalue
                 26/168 480/10654 3.037643e-08 2.311646e-05 1.717067e-05
R-HSA-6798695
                  9/168 92/10654 1.377995e-05 3.703329e-03 2.750796e-03
R-HSA-877300
R-HSA-8862803
                  5/168 22/10654 1.946559e-05 3.703329e-03 2.750796e-03
                  5/168 22/10654 1.946559e-05 3.703329e-03 2.750796e-03
R-HSA-8863678
R-HSA-5628897
                  8/168 86/10654 6.038203e-05 7.899761e-03 5.867863e-03
R-HSA-3700989
                 17/168 365/10654 6.228458e-05 7.899761e-03 5.867863e-03
geneID
R-HSA-6798695
HBB/CTSS/TYROBP/BIN2/CD47/CSTB/LGALS3/LTA4H/ITGB2/IMPDH2/DDOST/PSAP/FCER1
G/PNP/NIT2/XRCC5/PTPN6/CPNE1/SERPINB6/CCT2/PKM/CTSB/GDI2/CYBA/PSMD11/IDH1
R-HSA-877300
HLA-DRA/HLA-DPB1/JAK1/IRF3/MT2A/GBP2/OAS3/PTPN6/STAT1
R-HSA-8862803
CAST/CAPNS1/PRDX2/CDC25B/LMNA
R-HSA-8863678
CAST/CAPNS1/PRDX2/CDC25B/LMNA
R-HSA-5628897
YWHAB/PRDX2/TXN/TXNRD1/TSC2/SCO2/RRAGA/YWHAZ
R-HSA-3700989
YWHAB/RPA1/ELOB/PLK3/SUPT16H/PRDX2/CCNH/BRD7/TXN/CNOT8/BCL2L14/BNIP3L/TXN
RD1/TSC2/SCO2/RRAGA/YWHAZ
```

```
Count
R-HSA-6798695
                 26
R-HSA-877300
                  9
R-HSA-8862803
                  5
                  5
R-HSA-8863678
R-HSA-5628897
                  8
R-HSA-3700989
                 17
> library(ReactomePA)
> listOfData2 <- listOfSelected[2]</pre>
> comparisonsNames2 <- names(listOfData2)</pre>
> for (i in 1:length(listOfData2)){
    genesIn2 <- listOfData2[[i]]</pre>
    comparison2 <- comparisonsNames2[i]</pre>
    enrich.result2 <- enrichPathway(gene = genesIn2,</pre>
                                   pvalueCutoff = 0.05,
                                   readable = T,
                                   pAdjustMethod = "BH",
                                   organism = "human")
    cat("############"")
    cat("\nComparison2: ", comparison2,"\n")
    print(head(enrich.result2))
    if (length(rownames(enrich.result2@result)) != 0) {
    write.csv(as.data.frame(enrich.result2),
=paste0("./results/", "ReactomePA.Results.", comparison2, ".csv"),
               row.names = FALSE)
+
pdf(file=paste0("./results/","ReactomePABarplot.",comparison2,".pdf"))
      print(barplot(enrich.result2, showCategory = 15, font.size = 4,
              title = paste0("Reactome Pathway Analysis for ",
comparison2,". Barplot")))
    dev.off()
    pdf(file =
paste0("./results/", "ReactomePAcnetplot.", comparison2, ".pdf"))
      print(cnetplot(enrich.result2, categorySize = "geneNum",
schowCategory = 15,
           vertex.label.cex = 0.75))
    dev.off()
    }
+ }
Comparison2: VGVSGNONTREATED
```

ID	Description
GeneRatio R-HSA-2262752 R-HSA-2262752	Cellular responses to stress
26/201	CETTUTAL LESPONSES LO SCIESS
R-HSA-449147 R-HSA-449147	Signaling by Interleukins
25/201	5-88 s) =co. =cs=5
R-HSA-8953897 R-HSA-8953897 Cellular	responses to external stimuli
26/201	·
R-HSA-202424 R-HSA-202424	Downstream TCR signaling
11/201	
R-HSA-202403 R-HSA-202403	TCR signaling
12/201	
	-specific processing proteases
15/201	n adjust gyalua
BgRatio pvalue R-HSA-2262752 479/10654 1.095326e-06	
·	0.0003873925 0.0002993396
R-HSA-8953897 493/10654 1.877463e-06	
	0.0003873925 0.0002993396
•	0.0003873925 0.0002993396
R-HSA-5689880 220/10654 1.744254e-05	
	0.00-57-50 10 0.00-55-55-55
geneID	
R-HSA-2262752	
PSMC2/BAG3/CXCL8/UBE2D3/NUP88/TXN/PS	MA3/NUP155/NPRL3/PSMF1/UBE2E1/EHMT2/V
CP/HSPA9/DNAJA1/PSMB2/CBX4/TXNRD1/CD	KN1A/PRDX1/HSP90AB1/FOS/CYBA/PSMB1/DC
TN3/HIF1A	
R-HSA-449147	
HMOX1/PSMC2/CXCL8/BCL6/HNRNPDL/FOXO3	/GSTO1/NFKB2/PSMA3/PSMF1/PIK3CA/SERPI
NB2/HSPA9/PSMB2/NFKBIA/CDKN1A/IL2/MY	C/MSN/FOS/CD4/PSMB1/INPP5D/HIF1A/TBK1
R-HSA-8953897	
	MA3/NUP155/NPRL3/PSMF1/UBE2E1/EHMT2/V
	KN1A/PRDX1/HSP90AB1/FOS/CYBA/PSMB1/DC
TN3/HIF1A	
R-HSA-202424	
PSMC2/HLA-DRA/PSMA3/PSMF1/PIK3CA/PSM	B2/NFKBIA/CD4/PSMB1/PRKCQ/INPP5D
R-HSA-202403	
PSMC2/HLA-	DTDN22 /CD4 /DCM24 /DDVCQ /TNDDCD
DRA/PSMA3/PSMF1/PIK3CA/PSMB2/NFKBIA/	LILN75/CD4/L2WRT/LKKCÓ/TNLL2D
R-HSA-5689880	EVDTA /MVC /TADAD /HCD14 /HCD16 /CMAD7 /TOM
M20/PSMB1/HIF1A	FKBIA/MYC/TADA3/USP14/USP16/SMAD7/TOM
M20/PSMBI/HIFIA Count	
R-HSA-2262752 26	
R-HSA-449147 25	
R-HSA-8953897 26	
R-HSA-202424 11	
R-HSA-202403 12	
R-HSA-5689880 15	
5005000	

```
cnetplot(enrich.result2, categorySize = "geneNum", schowCategory =
15,
vertex.label.cex = 0.75)
```


Network obtained from the Reactome enrichment analysis on the list obtained from the comparison between VG and 1G non activated

```
cnetplot(enrich.result1, categorySize = "geneNum", schowCategory =
15,
vertex.label.cex = 0.75)
```


Network obtained from the Reactome enrichment analysis on the list obtained from the comparison between VG and 1G non activated

First rows and columns for Reactome results on VGVSGTREATED.csv comparison

		GeneRa			
	Description	tio	BgRatio	pvalue	p.adjust
R- HSA- 67986 95	Neutrophil degranulation	26/168	480/106 54	3.03764253168 675e-08	2.3116459666136 2e-05
R- HSA- 87730 0	Interferon gamma signaling	9/168	92/1065 4	1.37799538771 663e-05	0.0037033289216 3295

R- HSA- 88628 03	Deregulated CDK5 triggers multiple neurodegener ative pathways in Alzheimer's disease models	5/168	22/1065 4	1.94655922293 453e-05	0.0037033289216 3295
R- HSA- 88636 78	Neurodegener ative Diseases	5/168	22/1065 4	1.94655922293 453e-05	0.0037033289216 3295

First rows and columns for Reactome results on VGVSGNONTREATED.csv comparison

	Descriptio	GeneRat			
	n	io	BgRatio	pvalue	p.adjust
R-HSA- 22627 52	Cellular responses to stress	26/201	479/106 54	1.095325723241 6e-06	0.00038739247843 0706
R-HSA- 44914 7	Signaling by Interleuki ns	25/201	461/106 54	1.827534655869 44e-06	0.00038739247843 0706
R-HSA- 89538 97	Cellular responses to external stimuli	26/201	493/106 54	1.877463168202 32e-06	0.00038739247843 0706
R-HSA- 20242 4	Downstre am TCR signaling	11/201	98/1065 4	2.191850222811 51e-06	0.00038739247843 0706

Resumen de resultados:

List of files generated in the analysis

List_of_Files

data4Heatmap.csv

normalized.Data.csv

normalized.Data.Rda

normalized.Filtered.Data.csv

QCDir.Norm

QCDir.Raw

ReactomePA.Results.VGVSGNONTREATED.csv

ReactomePA.Results.VGVSGTREATED.csv

ReactomePABarplot.VGVSGNONTREATED.pdf
ReactomePABarplot.VGVSGTREATED.pdf
ReactomePAcnetplot.VGVSGNONTREATED.pdf
ReactomePAcnetplot.VGVSGTREATED.pdf
topAnnotated_INT.csv
topAnnotated_VGVSGNONTREATED.csv
topAnnotated_VGVSGTREATED.csv