

FET

Ve311 Electronic Circuits (Fall 2020)

Dr. Chang-Ching Tu

- - FET = Field effect Transistor
 - CMOS Technology keeps on reducing t_{ox} and L_{eff} (Moore's Law).
 - Substrate (Body) of NMOS is generally connected to ground.
 - See Chapter 17 for the introduction of CMOS fabrication technology.

Latest: TSMC 5 nm FinFET Technology

NMOS and PMOS can share one p-Sub.

- CMOS = Complementary MOS (afabrication technology)
- · Substrate (Body) of NMOS is generally connected to ground.
- N-well (Body) of PMOS is generally connected to V_{DD}.

Layout

PMOS

depletion regron.

- V_G = 0 V
- No current flow

- As V_G increases from zero, holes in psubstrate are repelled, leaving negative ions (ionized boron dopants) behind to form a <u>depletion region</u>.
- Positive charges are mirrored at the gate.
- No charge carriers (electrons or holes) in the channel, so no current flow.

 Higher V_G further increases the width of the <u>depletion region</u>.

- When V_G reaches a sufficiently positive value, a channel of electrons (<u>inversion</u> <u>layer</u>) is formed beneath the gate oxide.
- Electrons flow from "source" to "drain".
 Equivalently, current flows from "drain" to "source".
- The value of V_G at which the inversion layer forms is the <u>threshold voltage (V_{TH})</u>.
- If V_G rises further, the charges in the depletion region remain relatively constant, whereas the charges in the inversion layer increase rapidly.

Area = A & thickness = tox (sitticon) 60: 8.85×10 8/m Gr: 3.9

I-V Characteristics for NMOS (Triode)

I-V Characteristics for NMOS (Triode)

$$\int_{x=0}^{x=L_{eff}} I_{D} \cdot dx = \int_{V(0)=0}^{V(L)=V_{DS}} \mu_{n} C_{ox} W[V_{GS} - V_{TH} - V(x)] \cdot dV(x)$$

I_D: constant along channel

$$I_{D} = \mu_{n} C_{ox} \frac{W}{L_{off}} [(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^{2}]$$

$$I_{D} = 350 \frac{V}{\text{Leff}} \left[(V_{GS} - V_{TH})V_{DS} - \frac{1}{2}V_{DS}^{2} \right]$$

$$\frac{1}{5}\mu M = \frac{W}{\text{Leff}} \left[(V_{GS} - V_{TH})V_{DS} - \frac{1}{2}V_{DS}^{2} \right]$$

I-V Characteristics for NMOS (Triode)

$$\begin{split} I_{D} &= \mu_{n} C_{ox} \frac{W}{L_{eff}} [(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} {V_{DS}}^{2}] \\ I_{D,max} &= \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L_{eff}} (V_{GS} - V_{TH})^{2} \quad \textit{V}_{DS} = \textit{V}_{GS} \cdot \textit{V}_{TH} \end{split}$$

- For digital circuit, MOSFET, as a switch, usually operates in deep triode region.
- This is why reducing t_{ox} and L_{eff} can improve speed.

I-V Characteristics for NMOS (Saturation)

- In reality, for V_{DS} > V_{GS} V_{TH}, I_D becomes relatively constant.
- $V_{DS} = V_{GS} V_{TH}$ is the minimum value for the NMOS to operate in saturation region.

I-V Characteristics for NMOS (Saturation)

$$\int_{x=0}^{x=L'} I_{D} \cdot dx = \int_{V(0)=0}^{V(L')=V_{GS}-V_{TH}} \mu_{n} C_{ox} W[V_{GS}-V_{TH}-V(x)] \cdot dV(x)$$

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^2$$
L': the point at which Q_d drops to zero

I_D: constant along channel

 $V_{GS} - V_{TH}$: the overdrive voltage

Electron velocity ($v = I_D / Q_d$) becomes tremendously high at the pinch off point $(Q_d \rightarrow 0)$, such that electrons shoot through the depletion region and arrive at the drain terminal.

Channel-Length Modulation

$$I_{\rm D} = \frac{1}{2} \mu_{\rm n} C_{\rm ox} \frac{W}{L'} (V_{\rm GS} - V_{\rm TH})^2$$

$$L' = L_{eff} - \Delta L$$

$$\frac{1}{L'} = \frac{1}{L_{eff} - \Delta L} = \frac{1}{L_{eff}} \cdot \frac{1}{1 - \Delta L} \approx \frac{1}{L_{eff}} \cdot \left(1 + \frac{\Delta L}{L_{eff}}\right)$$

$$\begin{split} I_D &= \frac{1}{2} \mu_\text{n} C_\text{ox} \frac{W}{L_\text{eff}} (V_\text{GS} - V_\text{TH})^2 \bigg(1 + \frac{\Delta L}{L_\text{eff}} \bigg) \\ &= \frac{1}{2} \mu_\text{n} C_\text{ox} \frac{W}{L_\text{eff}} (V_\text{GS} - V_\text{TH})^2 (1 + \lambda V_\text{DS}) \end{split}$$

n=0 means don't consider channel-length modulation

Channel-Length Modulation

$$\mathbf{r_o} = \frac{\partial V_{DS}}{\partial I_D} = 1 / \frac{\partial I_D}{\partial V_{DS}}$$

$$= \frac{1}{\frac{1}{2} \mu_n C_{ox} \frac{W}{L_{ox}} (V_{GS} - V_{TH})^2 \cdot \lambda}$$

$$\approx \frac{1}{I_D \cdot \lambda}$$

D: Fourized phosphopous dopourts Usa = 0.8 V U00=5V 49 V n well P-substrate

NMOS vs PMOS

NMOS vs PMOS

when
$$U_{x} = 0$$

$$U_{DS} = 1V$$

$$V_{DS} = 1.9V$$

$$V_{DS} < V_{GS} = 0.7$$

$$V_{DS} < V_{GS} = 0.7$$

$$V_{DS} = 0.9V$$

$$V_{DS} = 0.9V$$

$$V_{GS} = 1.8V$$

V65-1111

NM03 VGS > VTH For VD8 = VOS-VTH MOS Vos MSat. Ges enco(10) (Vors-VTH) TEAL USG (VTH) (H7USD) (Cons-VTH) (HTVOS) ~ (VsatVard) Opiver Usp 20, (VEH) given Vas 1/20-1/TH V65-111

ID=?
$$D=?$$
 $V=0$
 $V=$

small-signa

$$g_{m} = \frac{d I_{o}}{d l_{ds}} = l_{m} cox \left(\frac{l_{o}}{l_{eff}}\right) (l_{ds} - l_{n}) (l_{n}) (l_{n})$$

$$= l_{m} cox \left(\frac{20 \times 10^{-6}}{2 \times 10^{-6} - 2 l_{p}}\right) (l_{n} - 0.7) (l_{n} - 1)$$

ID=?
$$id=?$$
 $V_{GS}=IV$
 $V_{DS}=IV$
 $V_{GS}=V_{TH}=0.3V$
 $V_{GS}=V_{TH}=0.3V$

small-signa

Transconductance

For the NMOS operating in the saturation region (V_{DS} ≥ V_{GS} – V_{TH}):

$$V_{G} = \frac{V_{D}}{V_{S}} \int I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L_{c}} (V_{GS} - V_{TH})^{2} (+ \gamma V_{DS})$$

ΔV_{GS} results in ΔI_D = gm × ΔV_{GS}.

$$gm = \frac{\partial I_D}{\partial V_{GS}} = \mu_n C_{ox} \frac{W}{L_{eff}} (V_{GS} - V_{TH}) (1/2)$$

$$= \sqrt{2\mu_n C_{ox} \frac{W}{L_{eff}} I_D} = \frac{2I_D}{V_{GS} - V_{TH}}$$

$$\frac{\partial I_D}{\partial V_{GS}} = \frac{2I_D}{V_{GS} - V_{TH}}$$

Transconductance

- For a given NMOS, gm changes according to the DC biasing condition.
- If a small signal is applied to a NMOS with defined biasing values, we assume the signal amplitude is small enough that the variation in gm is negligible.

Body Effect

$$\begin{aligned} V_{\text{TH}} &= |V_{\text{THO}}| + |\nabla \sqrt{|2\Phi_{\text{F}}|} + |V_{\text{BS}}| - \sqrt{|2\Phi_{\text{F}}|}) \text{ for PMB} \\ V_{\text{TH}} &= V_{\text{THO}} + \gamma(\sqrt{|2\Phi_{\text{F}}|} + |V_{\text{SB}}| - \sqrt{|2\Phi_{\text{F}}|}) \text{ for NMOS} \\ \Phi_{\text{F}} &= \frac{kT}{q} \ln \frac{N_{\text{sub}}}{n_{\text{i}}} \qquad \gamma = \frac{\sqrt{2q\epsilon_{Si}N_{\text{sub}}}}{C_{ox}} \end{aligned}$$

$$\int_{D} = \frac{1}{2} \mu_{\text{n}} C_{\text{ox}} \frac{W}{L'} (V_{\text{GS}} - V_{\text{TH}})^{2}$$

$$\text{Ignoted in We32.0}$$

Body Effect

$$\begin{aligned} \mathbf{gmb} &= \frac{\partial I_{D}}{\partial V_{SB}} = \frac{\partial I_{D}}{\partial V_{TH}} \cdot \frac{\partial V_{TH}}{\partial V_{SB}} \\ &= -\mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH}) \cdot \frac{\partial V_{TH}}{\partial V_{SB}} \\ &= -\mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH}) \cdot \frac{\gamma}{2} \frac{1}{\sqrt{|2\Phi_{F} + V_{SB}|}} \\ &= -\mathbf{gm} \cdot \mathbf{\eta} \end{aligned}$$

- V_{GS} increases, I_D increases.
- V_{SB} increases, V_{TH} increases and thus I_D decreases.

Small-Signal Model for NMOS

$$V_{d} = V_{D} + V_{d}$$

$$V_{g} = V_{G} + V_{g$$

Small-Signal Model for PMOS

$$V_{s} = V_{s} + v_{s}$$

$$V_{g} = V_{G} + V_{g$$

$$3V_{00} = 5V_{00} = 5V_{$$

Vosi > Vasi - VTHI

Example

Sketch I_D as a function of V_X increasing from $-\infty$ to 0. Assume $V_{THO} = 0.6 \text{ V}$, $\gamma = 0.4$

 $V^{1/2}$ and $2\Phi_F = 0.7 \text{ V}$.

Solution:

1.2 = 0.6 + 0.4(
$$\sqrt{0.7 - V_{X}}$$
 - $\sqrt{0.7}$), V_{X} = -4.76 V.

Layout

- W/L is chosen to determine gm. Minimum L is dictated by the process.
- Design rules: (1) Poly-Si extends beyond the channel area by some amount.
 (2) Enough n+, p+ or poly-Si area surrounding each via. (3) Enough distance between two vias. (4) Many others.

SPICE Model

NMOS Model PHI = 0.9LEVEL = 1 VTO = 0.7GAMMA = 0.45LD = 0.08e - 6UO = 350LAMBDA = 0.1NSUB = 9e+14 CJ = 0.56e - 3CJSW = 0.35e-11 TOX = 9e-9PB = 0.9MJSW = 0.2MJ = 0.45CGDO = 0.4e-9JS = 1.0e - 8related co parasitic capacitances will learn how to use these m PMOS Model PHI=0.8 1/04/3 GAMMA = 0.4LEVEL = 1 VTO = -0.8UO = 100 LD = 0.09e - 6LAMBDA = 0.2NSUB = 5e+14CJ = 0.94e - 3CJSW = 0.32e-11TOX = 9e-9PB = 0.9MJSW = 0.3MJ = 0.5CGDO = 0.3e-9JS = 0.5e - 8

- Simulators such as SPICE and Cadence need accurate models for each device.
- Above is the simplest MOS SPICE model, known as "Level 1," and provide typical values for each parameter corresponding to 0.5-µm technology.

VTO: threshold voltage with zero V_{SB} (unit: V)

GAMMA: body effect coefficient (unit: V^{1/2})

PHI: $2\Phi_F$ (unit: V)

TOX: gate oxide thickness (unit: m)

NSUB: substrate doping (unit: cm⁻³)

LD: source/drain side diffusion (unit: m)

UO: channel mobility (unit: cm²/V/s)

LAMBDA: channel-length modulation coefficient (unit: V^{-1})

CJ: source/drain bottom-plate junction capacitance per unit area (unit: F/m²)

CJSW: source/drain sidewall junction capacitance per unit length (unit: F/m)

PB: source/drain junction built-in potential (unit: V)

MJ: exponent in CJ equation (unitless)

MJSW: exponent in CJSW equation (unitless)

CGDO: gate-drain overlap capacitance per unit width (unit: F/m)

CGSO: gate-source overlap capacitance per unit width (unit: F/m)

JS: source/drain leakage current per unit area (unit: A/m²)

NMOS vs PMOS in Performance

- PMOS devices are quite inferior to NMOS in most CMOS technology.
- Lower mobility of holes (μ_pC_{ox} ≈ 0.5μ_nC_{ox}) yield lower current drive and conductance.
- NMOS exhibit higher output resistance, providing more ideal current sources and higher voltage gain.
- It is preferable to use NMOS rather than PMOS wherever possible.