The gradient boosting decision tree approach – Mathematical illustration

Model estimation

The GBDT approach was originally proposed by Friedman (2001, 2002) and developed into R package by Ridgeway (2020) and Greenwell et al. (2020). Following the notations by Ridgeway (2020), (X_i, y_i) is the *i*th observation in the sample space S. X_i indicates the vector of independent variables and y_i is the dependent variable. X is the matrix of independent variables of all observations. S has N observations. Y is the loss function. In this study, Y is squared error loss.

Three important parameters need to be set before the initial step: tree depth K, learning rate λ , and the number of iterations T. $\hat{f}(X)$ is initialized as a constant, $\hat{f}(X) = argmin_{\rho} \sum_{i=1}^{N} \Psi(y_i, \rho)$. The steps below will be iterated for T times. For the tth time,

Step 1. Calculate the negative gradient z_i of the *i*th observation with Equation A1 below.

$$z_i = -\frac{\partial}{\partial f(\mathbf{X}_i)} \Psi(y_i, f(\mathbf{X}_i))|_{f(\mathbf{X}_i) = \hat{f}(\mathbf{X}_i)}$$
(A1)

Step 2. Friedman (2002) found that fitting decision trees with randomly selected subsample from the original sample provides better performance. In addition, he suggested this proportion to be 0.5. Therefore, $0.5 \times N$ observations are randomly selected from the original sample space.

Step 3. Fit a decision tree with *K* terminal nodes using the randomly selected observations from Step 2.

Step 4. Calculate the optimal prediction ρ_k for the kth terminal node of the fitted decision tree in Step 3 using Equation A2.

$$\rho_k = \operatorname{argmin}_{\rho} \sum_{\mathbf{x}_i \in S_k} \Psi(y_i, \hat{f}(\mathbf{X}_i) + \rho)$$
(A2)

where S_k is the set of observations categorized in the kth terminal node of the fitted decision tree.

Step 5. Update $\hat{f}(X)$ with Equation A3.

$$\hat{f}(\mathbf{X}) \leftarrow \hat{f}(\mathbf{X}) + \lambda \rho_{k(\mathbf{X})} \tag{A3}$$

where k(X) indicates the index of the terminal node of the fitted decision tree where the observations are located.

Relative importance

Equation A4 below is to calculate the total variance reduction \hat{f}_j^2 by the independent variable x_j (Ridgeway 2020).

$$\hat{J}_j^2 = \sum_{\text{splits on } x_j} I_t^2 \tag{A4}$$

where I_t^2 is the variance reduction by splitting with x_j . Relative importance is calculated with Equation A5 below.

$$RI_j = \frac{\hat{J}_j^2}{\sum_j^M \hat{J}_j^2} \times 100\% \tag{A5}$$

where M is number of independent variables.

ALE estimation

Following the notations by Molnar (2020), x_j is the *j*th independent variable and is split into $k_j(x)$ intervals. We can use Equation A6 to estimate uncentered ALE for x_j .

$$\hat{f}_{j,ALE}(X) = \sum_{k=1}^{k_j(X)} \frac{1}{n_j(k)} \sum_{i:x_i^{(i)} \in N_j(k)} [f(z_{k,j}, \boldsymbol{x}_{\setminus j}^{(i)}) - f(z_{k-1,j}, \boldsymbol{x}_{\setminus j}^{(i)})]$$
(A6)

where $N_j(k)$ is the space of the kth interval. $n_j(k)$ is the number of observations in the kth interval. $z_{k,j}$ is the maximum value of x_j in $N_j(k)$. $z_{k-1,j}$ is the minimum value of x_j in $N_j(k)$. $x_{k-1,j}^{(i)}$ is the ith observation without x_j in $N_j(k)$. f(.,.) is the estimated GBDT model.

We, then, can use Equation A7 to calculate centered ALE for x_j . Note that the ALE calculated in this study is centered ALE.

$$\hat{f}_{j,ALE}(\mathbf{x}) = \hat{f}_{j,ALE}(\mathbf{x}) - \frac{1}{n} \sum_{i=1}^{n} \hat{f}_{j,ALE}(\mathbf{x}_{j}^{(i)})$$
(A7)

where n is the number of observations in the sample.

Reference

- Friedman, Jerome H. 2001. "Greedy function approximation: A gradient boosting machine." *The Annals of Statistics* 29 (5):1189-1232. doi: 10.1214/aos/1013203451.
- Friedman, Jerome H. 2002. "Stochastic gradient boosting." *Computational Statistics & Data Analysis* 38 (4):367-378. doi: 10.1016/s0167-9473(01)00065-2.
- Greenwell, Brandon, Bradley Boehmke, and Jay Cunningham. 2020. "gbm: Generalized Boosted Regression Models." https://cran.r-project.org/package=gbm.
- Molnar, Christoph. 2020. "Interpretable Machine Learning A Guide for Making Black Box Models Explainable." In: lulu.com. https://christophm.github.io/interpretable-ml-book/. Ridgeway, Greg. 2020. Generalized Boosted Models: A guide to the gbm package. 2007.