San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Mathematical Preliminaries

(Part 2)

Lecture 03 Day 03/31

CS 154
Formal Languages and Computability
Fall 2019

Agenda of Day 03

- Waiting List Enrollment ...
- Announcement
- Summary of Lecture 02
- Lecture 03: Teaching ...
 - Covering one slide from the past
 - Mathematical Preliminaries (Part 2)

Announcement

- Our first quiz will be next Thursday!
- Some of the questions are true/false and multiple choice.
- So, please have Scantron 882 E.
- If you forget, no problem at all! I'll sell it at:

Summary of Lecture 02: We learned ...

Sets

- A set is ...
 - a collection of objects.
- A list is ...
 - a collection of ordered objects.
- A set is known when its boundary is clearly defined.
- Three methods to represent sets ...
 - Roster method
 - Venn diagram
 - Set builder
- Universal set of a set is ...
 - the set containing all possible elements under consideration.

- The power set of the set S is ...
 - ... the set of all subsets of S.
 - It is denoted by 2^s.
 - $|2^{S}| = 2^{|S|}$
- A set is called finite if ...
 - ... its size is a natural number.
- A set is called infinite if ...
 - ... we cannot express its size by a natural number.

Any question?

Empty Set Representation by Set Builder

- How to represent empty set by set builder?
- We know: $A B = \{x : x \in A \text{ AND } x \notin B\}$
- Substitute A for B: A A = {x : x ∈ A AND x ∉ A}
- \therefore $\phi = \{x : False\}$
- So, to represent empty set, just put any false statement in the description part of the set builder.
- For example, the following sets represent empty sets:
- {x : x is the 8th day of week}
- {x : x ∉ U}

Mathematical Preliminaries

Recap from Math 42

Cartesian Products

Motivation

- Recall that in sets, order of elements does NOT matter.
- But in practice, we do need ordered collections.
- As we said before, in computer science we use "Lists" for ordered collections.

The question is how we can mathematically model lists?

Introduction

- Mathematicians defined a new mathematical structure called "n-tuple".
- It is denoted by (a₁, a₂, ..., a_n) where a_i's are objects.
 - A special case of n-tuple is 2-tuple aka ordered-pair (a₁, a₂).
- We use a mathematical operation called Cartesian product to create n-tuples.

 This operation is named after the great French philosopher, mathematician, and physicist René Descartes (1596-1650).

Cartesian Products

Definition

- Let A and B be two sets.
- The Cartesian product of A and B is the set of all ordered-pairs (a , b), where a ∈ A and b ∈ B.
- Cartesian product of A and B is denoted by A x B.

Set Builder Definition

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

Note that (a , b) is the pattern of the elements.

Cartesian Products: Examples

Example 25

• Let $A = \{0, 1\}$, $B = \{3, 6, 9\}$; $A \times B = ?$

Solution

• $\{0, 1\} \times \{3, 6, 9\} = \{(0, 3), (0, 6), (0, 9), (1, 3), (1, 6), (1, 9)\}$

Example 26

- Let $Q = \{q_0, q_1\}, \Sigma = \{a, b\}; Q \times (\Sigma \cup \{\lambda\}) = ?$
 - "λ" is pronounced "lambda".

(1)

Cartesian Products: Properties

What is the result of the following Cartesian product?

$$A = \{1, 2\}$$
, $B = \phi$; $A \times B = ?$
 $A \times B = \phi$

– In fact, the result of Cartesian product would be ϕ if one of the sets is ϕ .

- How can you prove it?
- Does Cartesian product have commutative property?
- Is this a true statement: A x B = B x A
- In general, No! A x B ≠ B x A
- But in the following special cases, they are equal:

$$A \times B = B \times A$$
 iff $(A = B) \vee (A = \phi) \vee (B = \phi)$

Cartesian Products Extension

We can extend the idea to n sets to produce n-tuple:

$$S_1 \times S_2 \times ... \times S_n = \{(x_1, x_2, ..., x_n) : x_1 \in S_1, ..., x_n \in S_n\}$$

Homework

Mathematical Preliminaries

Recap from Math 42

Functions

Introduction

- In many situations in real life, there is a relationship between two sets.
- For example, we assign a letter grade to each student of a class.

This relationship is an example of the concept of function.

① Functions

Definition

- Let D and R be two sets.
- A function g from D to R is a rule that assigns (or maps) to the elements of D a "unique element" of R.
- The set D is called the "domain" of g.
- The set R is called the "range" of g.

The function g from D to R is denoted by: g: D → R

Functions: Naming Convention

We usually name a function by lower-case letters
 (English or Greek) such as f, g, h, δ (pronounce "delta"), etc.

Example 27

S = {John, Tom, Marry, Ted, Adam, Eve}, G = {A, B, C, D, F}

We can name this function "h".

$$h:S\to G$$

Functions: Algebraic Notation

Example 27 (cont'd)

What is the rule of this function in algebraic notation?

$$S = \{John, Tom, Marry, Ted, Adam, Eve\}, G = \{A, B, C, D, F\}$$

$$h:S\to G$$

 We can translate the Venn Diagram into algebraic notation like this:

Functions: Notes

- h(Ted) = ?
- h(Ted) = Undefined

- So, it is possible to have some elements in the domain that is NOT mapped to any value of the range. (e.g. Ted in the domain)
- Also, it is possible to have some elements in the range that is NOT assigned by any value of the domain. (e.g. D in the range)

Functions: Notes

Is it possible for Marry to have two grades at the same time?

 Absolutely, NO.
 In this universe, it cannot happen.

- That's why, in the definition of function, we said elements of the domain are uniquely mapped to an element of the range.
- In other words, if there is a mapping, it should be unique.

Functions as Sets

Example 27 (cont'd)

- The above relations can be represented by a set of ordered-pairs:
- H = {(John, A), (Tom, C), (Marry, B), (Adam, A), (Eve, F)}
- And the universal set for H is S x G that contains all possible relations between S's members and G's members.
- U = S x G = {(John, A), (John, B), ..., (John, F), (Tom, A), ..., (Tom, F), ..., (Ted, A), ..., (Ted, F), ..., (Eve, F)}

Functions: Example

Example 28: Mixing Cartesian Product and Function

- Let $Q = \{q_0, q_1, q_2\}$, $\Sigma = \{a, b\}$, $\delta : Q \times \Sigma \rightarrow Q$
- What is the domain and range of δ?
- Domain: $Q \times \Sigma = \{q_0, q_1, q_2\} \times \{a, b\} = \{(q_0, a), (q_0, b), (q_1, a), (q_1, b), (q_2, a), (q_2, b)\}$
- Range: {q₀, q₁, q₂}
- The rule of δ is shown in the following Venn diagram.
- Write the rule of δ by using algebraic notation.

$$\begin{cases} \delta(q_0, a) = q_0 \\ \delta(q_0, b) = q_1 \\ \delta(q_1, b) = q_2 \\ \delta(q_2, b) = q_2 \end{cases}$$

Total Function

Definition

A function is called total if all of its domain elements are defined.

Example 29

 The following function is total because all domain elements are defined.

Partial Function

Definition

 A function is called partial if at least one of its domain's elements is undefined.

Example 30

- The following function is partial because f(8) = Undefined
- Note that one example is enough to make a function partial.

Functions

Homework

24

- Let $Q = \{q_0, q_1\}$, $\Sigma = \{a\}$, $\Gamma = \{x\}$.
- The function δ is defined as:

$$\delta: Q \times \{\Sigma \cup \{\lambda\}\} \times \Gamma \to Q$$

- What is the domain and range of δ?
- Represent the universal set of δ as a set of quadruples (4-tuple).

Write the algebraic notation of the following function:

$$\begin{cases} f(0) = ? \\ f(1) = ? \\ f(2) = ? \\ f(3) = ? \end{cases}$$

- Sometimes, we can find a pattern between the elements of domain and range.
- What is the pattern of the above example?
- f(x) = ?

- Write a simple Java method to implement the function of HW #2.
- Hint: the argument of the method is the domain and whatever it's returning is range.

- What is the range and domain of the following Java code?
- public int g(int x, int z) { return 2*x + z; }

Mathematical Preliminaries

Recap from Math 42

Graphs

Graphs Definition

Definition

- A graph is a mathematical construct consisting of two sets:
 - A non-empty and finite set of vertices (aka nodes, states) $V = \{v_1, v_2, ..., v_n\}$
 - A finite set of edges $E = \{e_1, e_2, \dots, e_m\}$
 - Each edge connects two vertices.

Example 31

- $V = \{v_1, v_2, v_3\}$
- $E = \{e_{13}, e_{23}\}$

Directed Graphs

- If the direction of the edges matters, then we call the graph directed graph (aka digraph).
- The edges are shown by ordered-pair (start-vertex, end-vertex).
 - In this course, we only use directed graphs.

Example 32

Draw a digraph with the following specifications:

$$V = \{V_1, V_2, V_3\}, E = \{(V_1, V_3), (V_3, V_1), (V_3, V_2), (V_3, V_3)\}$$

Graphs Terminologies

① Walk

- A sequence of edges like (v_i, v_j), (v_j, v_k), ..., (v_m, v_n), is called a walk from v_i to v_n.
 - Note that the end vertex of e_i is the start vertex of e_{i+1}.
 - In other words, in a walk we cannot jump!

Example 33

- Each of the following sequences are a walk from v₁ to v₃:
 - Walk 1: (v_1, v_3)
 - Walk 2: (v_1, v_3) , (v_3, v_3)
 - Walk 3: $(v_1, v_3), (v_3, v_1), (v_1, v_3)$

_ ...

Length of Walks

It is the total number of edges traversed.

Example 33 (cont'd)

- Walk 1: (v₁, v₃); length = 1
- Walk 2: $(v_1, v_3), (v_3, v_3)$; length = 2
- Walk 3: $(v_1, v_3), (v_3, v_1), (v_1, v_3)$; length = 3

Path

A walk that no edges are repeated.

Example 34

Which one is a path?

- Walk 1: (v₁, v₃)

 \checkmark - Walk 2: $(v_1, v_3), (v_3, v_3)$

 \times - Walk 3: $(v_1, v_3), (v_3, v_1), (v_1, v_3)$

Simple Path

- A path that no vertices are repeated.
 - In other words, no vertex should be visited more than once.

Example 35

- Which one is a simple path?
- ✓ Walk 1: (v₁, v₃)
- \times Walk 2: $(v_1, v_3), (v_3, v_3)$
- \times Walk 3: $(v_1, v_3), (v_3, v_1), (v_1, v_3)$

Loop

An edge from a vertex to itself.

Example 36

Which one is a loop?

 \checkmark - Walk 1: (v_3, v_3)

Is there any other loop in this graph?

Cycle

- A walk from a vertex (called base) to itself with no repeated edges.
- Recall that: Walk + No repeated edges = path
- Rewording: A cycle is a path from a vertex (called base) to itself.

Example 37

Which one is a cycle?

 \times - Walk 1: $(v_1, v_3), (v_3, v_1), (v_1, v_3), (v_3, v_1)$

 \checkmark - Walk 2: $(v_1, v_3), (v_3, v_1)$

 \checkmark - Walk 3: $(v_1, v_3), (v_3, v_3), (v_3, v_1)$

(1) S

Simple Cycle

- A cycle that no vertices other than the base is repeated.
 - Note that the walk starts from the base and ends to the base.
 - During the walk, the base should not be repeated too.

 In other words, in a simple cycle, all vertices (except the base) and the edges are visited uniquely.

Example 38

Which one is a simple cycle?

 \times - Walk 1: $(v_1, v_3), (v_3, v_1), (v_1, v_3), (v_3, v_1)$

 \checkmark - Walk 2: $(v_1, v_3), (v_3, v_1)$

 \times – Walk 3: $(v_1, v_3), (v_3, v_3), (v_3, v_1)$

One-Dimensional Projection of a Walk

 One-dimensional projection (or just projection) is another way of representing a walk.

Example 39

- Represent the following walk as a one-dimensional projection.
- Walk from v_1 to v_2 : $(v_1, v_3), (v_3, v_1), (v_1, v_3), (v_3, v_2)$

The length of this walk (= the number of edges) is clearly shown.

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Kenneth H. Rosen, "Discrete Mathematics and Its Applications, 7th ed.," McGraw Hill, New York, United States, 2012
- Sipser, Michael, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790