

Knowledge Discovery in Databases

Erich Schubert, Michael Gertz

Winter Semester 2017/18

Part II

Foundations: Data, Probability, and Statistics

Foundations: Data, Probability, and Statistics Properties of Data

Structured Data

For data analysis, we often require structured data:

- Collection of data objects
- Objects are described by their attributes
- Attributes have a specific data type
- ▶ Distinguish: attribute (feature, dimension, variable) versus attribute value (characteristics)
 - ▶ one attribute → multiple attribute values e.g., currency in € or \$; height in meter, centimeter, or feet?
 - ightharpoonup different attributes \longrightarrow same attribute value e.g., customerID, age, count: int

E. Schubert, M. Gertz

Knowledge Discovery in Databases

Winter Semester 2017/18

Foundations: Data, Probability, and Statistics Properties of Data

Attribute Types

Nominal attributes (categorical attributes)

E.g., a category

- ▶ No order
- ▶ No arithmetics
- ► = and ≠

Special cases:

- binary: only two categories, e.g., employed / unemployed
- ▶ identifier: unique ID, e.g., customer number

Ordinal attributes

Ordered non-numeric data E.g., "high" / "medium" / "low" E.g., price, shoe size

- Ordered
- No arithmetics
- **▶** <, >, =, ≠

Special cases:

► Likert-type scale data: strongly disagree, disagree, neutral, agree, strongly agree

Numeric attributes

Quantitative / measureable

- Ordered
- ► Arithmetics: +, -, etc.
- **▶** <, >, =, ≠

Special cases:

- ▶ interval-scaled: measured on a scale with equal-size units (e.g., date, time)
- ratio-scaled: has an inherent zero point; a value is a multiple of another value (e.g., size, price)

E. Schubert, M. Gertz

Knowledge Discovery in Databases

Winter Semester 2017/18

Further Attribute Types

First proposed by Stevens [Ste46], but criticised (e.g., [VW93]), and extended [MT77]:

- Names (Categorical attributes)
- Grades (Ordinal attributes)
- ► Counted fractions bound by 0 and 1 (including percentage points)
- ► Counts (Non-negative integers)
- ► Amounts (Non-negative real numbers)
- ► Balances (any real number)

These types may require different handling.

Beware: often we can interpret an attribute in multiple ways! For a detailed discussion, see [Han96].

E. Schubert, M. Gertz	Knowledge Disco	very in Databases	Winter Semester 2017/18
	Foundations: Data, Probability, and Statistics	Properties of Data	2: 4 / 66

Nominal Attributes

Often categories (A/B/C), but can be numeric (zip codes!) or binary.

Numbers do not reflect a quantity (e.g., user number)

Appropriate statistics:

- ► Frequency counts
- ► Mode (most frequent value)
- Frequency tests, such as χ^2 test

Be careful: sometimes encoded with integers (1=red, 2=blue, ...)

Binary variables can often be considered ordinal (e.g., customer > no customer)

E. Schubert, M. Gertz	Knowledge Disco	very in Databases	Winter Semester 2017/18
	Foundations: Data, Probability, and Statistics	Properties of Data	2: 5 / 66

Ordinal Attributes

Values with defined order (High > Medium > Low; "on a scale of 1...5" questions).

But no meaningful arithmetic: High - Medium \neq Medium - Low

Appropriate statistics (additionally):

- ► Percentiles, quantiles, median
- Rank correlation (e.g., Spearman correlation)

Be careful: often encoded with numerical values!

If we sort the values, the rank can sometimes be considered ordinal.

Numeric Attributes: Interval Scale

Values where differences are comparable, but where zero is not special.

Example: Temperature in Celsius or Fahrenheit: 20C - 10C = 30C - 20C but $20C \neq 2 \cdot 10C$.

Appropriate statistics (additionally):

- ► Mean, Variance
- ► Pearson Correlation

Be careful: deciding whether differences are meaningful is not always easy. E.g., if a text contains a word 1 or 0 times, is this the same as 101 or 100 times?

 $x' = b \cdot x + c$ preserves the properties of this scale.

E. Schubert, M. Gertz	Knowledge Discov	very in Databases	Winter Semester 2017/18
	Foundations: Data, Probability, and Statistics	Properties of Data	2: 7 / 66

Numeric Attributes: Ratio Scale

Values where zero and multiples make sense.

Example: Weight, Height

Appropriate statistics (additionally):

- ► Geometric mean, harmonic mean
- Coefficient of variation

Be careful: $x' = b \cdot x + c$ no longer preserves these properties, except c = 0!

E. Schubert, M. Gertz	Knowledge Discovery in Databases	Winter Semester 2017/18
	Foundations: Data, Probability, and Statistics Properties of Data	2: 8 / 66

Discrete versus Continuous Attributes

Discrete Attribute

- finite or countably infinite set of values
- ► data type is typically integer
- examples: count, zipcode, customerID, ...

Continuous Attribute

- continuous values are real numbers
- often represented by finite number of digits
- ▶ data types: float, double, decimal
- examples: price, weight, temperature

E. Schubert, M. Gertz

Discrete versus Continuous Attributes /2

The Census report, like most such surveys, had cost an awful lot of money and didn't tell anybody anything they didn't already know - except that every single person in the Galaxy had 2.4 legs and owned a hyena.

Since this was clearly not true the whole thing eventually had to be scrapped.

- So Long, and Thanks For All the Fish, Douglas Adams

E. Schubert, M. Gertz Knowledge Discovery in Databases Winter Semester 2017/18

Foundations: Data, Probability, and Statistics Properties of Data

Record-oriented Data

Set of records with a fixed set of attributes

CustomerID	Debt	Income	Type of	Credit
			employment	rating
1	High	High	Self-employed	poor
2	High	High	Employee	poor
3	High	Low	Employee	poor
4	Low	Low	Employee	good
5	Low	Low	Self-employed	poor
6	Low	High	Self-employed	good
7	Low	High	Employee	good

E. Schubert, M. Gertz Knowledge Discovery in Databases Winter Semester 2017/18 Foundations: Data, Probability, and Statistics Properties of Data 2: 11/66

Text Data

Documents can be represented as vectors (bag-of-words model)

Term (word) represents element in vector

- ▶ 1 if term occurs in document, 0 if term does not occur in document
- ► Frequency of term occurrence

	DBMS	KDD	Mining	Data	Web
Document #1	3	2	0	1	0
Document #2	0	2	1	1	4
Document #3	0	0	2	4	3

E. Schubert, M. Gertz Knowledge Discovery in Databases Winter Semester 2017/18

Transactional Data

Special case of record-oriented data

Data record corresponds to a transaction consisting of a transaction ID and a set of elements (items)

Transaction ID	Items
1	milk, butter
2	milk, honey, butter
3	milk, bread, butter
4	milk, bread, honey

E. Schubert, M. Gertz Knowledge Discovery in Databases Winter Semester 2017/18

Foundations: Data, Probability, and Statistics Properties of Data 2: 13/66

Graph Data

Data is a single graph or a collection of graphs (labeled, directed, multirelational, ...)

Examples: social networks, Web link structure, molecules, ...

E. Schubert, M. Gertz Knowledge Discovery in Databases Winter Semester 2017/18

Sequence-based Data

Ordered sequence of elements, e.g., alerts, Web log entries, gen sequence, spatio-temporal data (location of a moving object over time), ...

Foundations: Data, Probability, and Statistics Properties of Data

```
194.145.89.65 - - [3/0ct/2015:14:57:21 +0200] "GET ... HTTP/1.0"  
194.145.89.65 - - [3/0ct/2015:14:57:21 +0200] "GET ... HTTP/1.0"  
195.36.75.26 - - [3/0ct/2015:14:58:54 +0200] "GET ... HTTP/1.0"  
195.37.152.250 - - [3/0ct/2015:15:02:55 +0200] "GET ... HTTP/1.1"  
195.37.152.250 - - [3/0ct/2015:15:02:55 +0200] "GET ... HTTP/1.1"  
193.51.91.2 - - [3/0ct/2015:15:06:20 +0200] "GET ... HTTP/1.0"  
65.54.188.64 - - [3/0ct/2015:15:07:13 +0200] "GET ... HTTP/1.0"  
84.168.66.17 - - [3/0ct/2015:15:12:02 +0200] "GET ... HTTP/1.1"  
84.168.66.17 - [3/0ct/2015:15:12:02 +0200] "GET ... HTTP/1.1"  
68.142.251.148 - - [3/0ct/2015:15:22:14 +0200] "GET ... HTTP/1.0"  
68.142.250.20 - - [3/0ct/2015:15:22:14 +0200] "GET ... HTTP/1.0"
```

ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCCCCGGGGCCACGGCCACCGCTGCCCTGCC CCTGGAGGGTGGCCCCACCGGCCGAGACAGCGAGCATATGCAGGAAGCGGCAGGAATAAGGAAAAGCAGC CTCCTGACTTTCCTCGCTTGGTGGTTTGAGTGGACCTCCCAGGCCAGTGCCGGGCCCCTCATAGGAGAGG

E. Schubert, M. Gertz Knowledge Discovery in Databases Winter Semester 2017/18

Data Quality

Data quality: "fitness for use"

- ▶ Subjective: dependent on the context, user, ...
- ▶ Multi-dimensional: different dimensions, data characteristics, ...
- ► Characteristics describe data quality problems

Tasks:

- Measuring data quality (assessment): estimate quality; improvement necessary? Cost-benefit analysis after improvements
- ▶ Data Cleaning: detection and removal of inconsistencies, contradictions, and errors in data with the goal to improve data quality

Data Quality Problems: Noise

Noise: random error or variance in measured variable

Charge-Coupled Device

E. Schubert, M. Gertz	Knowledge Disco	very in Databases	Winter Semester 2017/18
	Foundations: Data, Probability, and Statistics	Data Quality	2: 17 / 66

Data Quality Problems: Missing Values

Missing data at different levels of object description

- ▶ Instance level: values, data record, part of a relation, ...
- ► Schema level: attribute, ...

Problems specific to the instance level:

- ► Handling of null values: missing values, default value, value not applicable/meaningful?
- Refuse or replace (while maintaining distribution of data values)

CustomerID	Name	Email
123	Leo Pren	Т
125	Ann Joy	
126	Just Vorfan	

e.g., no email address e.g., email address not known

Data Quality Problems: Outliers

Outlier: value (observation) that is numerically distant from the rest of the data

Issues:

- ▶ Detection: distribution, "geometry", time series
- ▶ Interpretation: error in measurement or real / valid observation?

Data Quality Problems: Duplicates

Duplicate: data objects that represent the same real-world object

exact duplicate: trivial to determine using SQL

▶ but ...

CustomerID	Name	Address	
3346	Just Vorfan	Hafenstraße 12	
3346	Justin Forfun	Hafenstr. 12	
5252	Lilo Pause	Kuhweg 42	
5268	Lisa Pause	Kuhweg 42	
	Ann Joy	Domplatz 2a	
	Anne Scheu	Domplatz 28	

E. Schubert, M. Gertz Knowledge Discovery in Databases Winter Semester 2017/18

Foundations: Data, Probability, and Statistics Data Quality 2: 20 / 66

Summary Sections 1 and 2

- ► Get a good understanding of the type of data (record-oriented, text, transactional, ...) you want to analyse, mine, and explore
- ▶ Investigate the attribute types of data objects and appropriate transformations
- ▶ Be aware of data quality problems. Always investigate potential data quality problems!
- All of the above are tasks to accomplish before any data mining task