Machine Learning

Assignment 11.2

Submitted By: Ranji Raj

January 22, 2021

Reinforcement Learning

• Learning is only done based on the **performance feedback**.

$$s_0 \stackrel{a_0}{\xrightarrow{r_0}} s_1 \stackrel{a_1}{\xrightarrow{r_1}} s_2 \stackrel{a_2}{\xrightarrow{r_2}} \dots$$

Figure 1: Learning process in RL

Learning process

- An agent observes an **environment** (or a **process**).
- At each time step, t the agent obtains a state, s_t .
- For this state the agent selects an **action**, a_t .
- At the following time step **reward**, r_{t+1} is procured.

Learning task

A control policy, $\pi: S \to A$, which maximizes the expected sum of rewards $E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + ...]$, with future rewards discounted exponentially by their delay.

Learning goal

Choose actions that maximize in,

$$R = \frac{1}{T} \sum_{t=1}^{T} r_t \qquad \text{(Episodic process)}$$

$$R = r_0 + \gamma r_1 + \gamma^2 r_2 + \ldots = \sum_{t=1}^{\infty} \gamma^t r_t, \qquad 0 \le \gamma < 1 \qquad \text{(Continuous process)}$$

Comparing supervised/unsupervised/semi-supervised/RL

Supervised learning	Unsupervised learning
T: Assign labels/classes to instances	T: Assign similar instances to same cluster
E: Classify/predict output from input data	E: Learns inherent structures from data
P: Scores indicated by confusion matrix, SSE	P: Internal and external cluster validity measures
Classification: Naive Bayes,	Clustering: (k-Means,
Logistic regression,	Fuzzy-C-Means,
Decision Tree,	Hierarchical agglomerative clustering),
Perceptron,	LVQ(batch),
Neural Networks,	Topic modeling,
kNN, LVQ	Neural Networks(autoencoders)
Regression: Linear regression,	Association rules: Apriori algorithm,
Locally weighted regression,	Eclat,
Regression Tree	Frequent pattern-growth

Table 1: Supervised vs. Unsupervised learning

Active learning	Reinforcement learning
T: Interactive query labeling	T: Learn the optimal policy
E: Classify output from input data	E: Performance feedback
P: Scores indicated by accuracy	P: Discounted rewards
Query-by-committee, Density weighting, Variance reduction	Q-Learning, Value iteration, SARSA, A3C DQN

Table 2: Semi-Supervised vs. RL