

KMP算法

进一步优化

关注和g【研途小时】获取后续课程完整更新

KMP算法

根据模式串T,求 出 next 数组

利用next数组进行匹配 (主串指针不回溯)

T = 'abaabc'

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1 0	1	2	2	3

KMP算法,最坏时间复杂度 O(m+n)

其中,求 next 数组时间复杂度 O(m) 模式匹配过程最坏时间复杂度 O(n)

```
int Index_KMP(SString S,SString T,int next[]){
   int i=1, j=1;
   while(i<=S.length&&j<=T.length){</pre>
       if(j==0||S.ch[i]==T.ch[j]){
           ++i;
                                 /继续比较后继字符
           ++j;
       else
           j=next[j];
                                //模式串向右移动
   if(j>T.length)
       return i-T.length;
                                //匹配成功
   else
       return 0;
```

手算求next数组的方法

根据模式串T,求 出 next 数组

T = 'abaabc'

next数组:

next[0] n	ext[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	10	1	2	2	3

 $if (j==0) {i++; j++}$

next[1]都无脑写 0 next[2]都无脑写 1

其他 next: 在不匹配的位置前,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前"能对上",或模式串 完全跨过分界线为止。此时 j 指向哪儿,next数组值就是多少

其中,求 next 数组时间复杂度 O(m) 模式匹配过程最坏时间复杂度 O(n)

模式串T: a b a a b c

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
12 II	0	1	1	2	2	3

模式串T: a b a a b c

1 2 3 4 5 6

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
12 II	0	1	1	2	2	3

模式串T: a b a a b c

1 2 3 4 5 6

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
12 II	0	1	1	2	2	3

模式串T:

a b a a b c

1 2 3 4 5 6

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
iv II	0	1	1	2	2	3

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	0	2	2	3

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	0	2	2	3

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	0	2	2	3

a b a a b c

1 2 3 4 5 6

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
12 14	0	1	0	2	2	3

模式串T:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
12 15	0	1	0	2	2	3

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	0	2	2	3

模式串T: a b a a b c

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	0	2	2	3

模式串T: a b a a b c

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	0	2	2	3

模式串T:

a b a a b c

1 2 3 4 5 6

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
12 14	0	1	0	2	2	3

模式串T:

a

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
iv II	0	1	0	2	2	3

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
114	0	1	0	2	1	3

模式串T: a b a a b c

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
THE STATE OF THE S	0	1	0	2	1	3

模式串T: a b a a b c

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	0	2	1	3

模式串T:

a b a b c

1 2 3 4 5 6

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
12 E	0	1	0	2	1	3

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
THE STATE OF THE S	0	1	0	2	1	3

模式串T: a b a a b c

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
12 14	0	1	0	2	1	3

模式串T: a b a a b c

1 2 3 4 5 6

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
THE STATE OF THE S	0	1	0	2	1	3

KMP算法的进一步优化

根据模式串T,求 出 next 数组

利用next数组进行匹配 (主串指针不回溯)

使用nextval数组

T = 'abaabc'

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	10	1	2	2	3

优化

nextval数组:

nextval[0]	nextval[1]	nextval[2]	nextval[3]	nextval[4]	nextval[5]	nextval[6]
	Ο	1	0	2	2 1	3

```
int Index_KMP(SString S,SString T,int next[]){
   int i=1, j=1;
   while(i<=S.length&&j<=T.length){</pre>
        if(j==0||S.ch[i]==T.ch[j]){
           ++i;
                                 /继续比较后继字符
           ++j;
       else
           j=next[j];
                                //模式串向右移动
   if(j>T.length)
        return i-T.length;
                                //匹配成功
   else
        return 0;
```

练习1:求nextval数组

模式串 T = ababaa

ababaa

```
nextval[1]=0;
for (int j=2; j<=T.length; j++) {
  if(T.ch[next[j]]==T.ch[j])
    nextval[j]=nextval[next[j]];
  else
    nextval[j]=next[j];
}</pre>
```

序号j	1	2	3	4	5	6 9
模式串	a	b	а	b	a	а
next[j]	0	1	1	2	3	4

练习1:求nextval数组

模式串 T = ababaa

ababaa

```
nextval[1]=0;
for (int j=2; j<=T.length; j++) {
  if(T.ch[next[j]]==T.ch[j])
    nextval[j]=nextval[next[j]];
  else
    nextval[j]=next[j];
}</pre>
```

序号j	1	2	3	4	5	6
模式串	а	b	a	b	a	a
next[j]	0	1	1	2	3	4

序号j	1	2	3	4	5	6
模式串	a	o b	а	b	а	a
nextval[j]	0	1	0	1	0	4

练习2:求nextval数组

模式串 T = aaaab

aaaab

```
nextval[1]=0;
for (int j=2; j<=T.length; j++) {
  if(T.ch[next[j]]==T.ch[j])
    nextval[j]=nextval[next[j]];
  else
    nextval[j]=next[j];
}</pre>
```

序号j	1	2	3	4	5
模式串	а	a	a	a	b
next[j]	0	1	2	3	4

练习2:求nextval数组

模式串 T = aaaab

aaaab

```
nextval[1]=0;
for (int j=2; j<=T.length; j++) {
  if(T.ch[next[j]]==T.ch[j])
    nextval[j]=nextval[next[j]];
  else
    nextval[j]=next[j];
}</pre>
```

序号j	1	2	3	4	5
模式串	а	a	a	a	b
next[j]	0	1	2	3	4

序号j	1	2	3	4	5
模式串	a	а	а	a	b
nextval[j]	· 0	0	0	0	4

序号j	1	2	3	4	5
模式串	а	a	a	a	b
next[j]	0	1	2	3	4

模式串T: a a a a b

1 2 3 4 5

序号j	1	2	3	4	5
模式串	а	a	a	a	b
next[j]	0	1	2	3	4

序号j	1	2	3	4	5
模式串	а	а	a	а	b
next[j]	0	1	2	3	4

序号j	1	2	3	4	5
模式串	а	а	a	a	b
next[j]	0	1	2	3	4

序号j	1	2	3	4	5
模式串	а	a	a	a	b
next[j]	0	1	2	3	4

模式串T:

a a a b b 1 2 3 4 5

序号j	1	2	3	4	5
模式串	a	a	a	a	b
next[j]	0	1	2	3	4

模式串T:

关注和g【研途小时】获取后续课程完整更新

序号j	1	2	3	4	5
模式串	а	a	a	a	b
next[j]	0	1	2	3	4

序号j	1	2	3	4	5
模式串	a	a	a	a	b
next[j]	0	1	2	3	4

序号j	~1	2	3	4	5
模式串	а	а	а	а	b
nextval[j]	0	0	0	0	4

关注和g【研途小时】获取后续课程完整更新

序号j	^ 1	2	3	4	5
模式串	a	а	а	a	b
nextval[j]	0	0	0	0	4

模式串T:

a a a b

序号j	1	2	3	4	5
模式串	а	a	a	a	b
nextval[j]	0	0	0	0	4

模式串T:

a a a a b

1 2 3 4 5

关注和g【研途小时】获取后续课程完整更新

序号j	1	2	3	4	5
模式串	a	a	a	а	b
nextval[j]	0	0	0	0	4

关注和g【研途小时】获取后续课程完整更新

补充学习: B站搜索"王道数据结构"-旧版 KMP

王道计算机考研 数据结构

441.0万播放·总弹幕数6.2万 2020-02-27 22:02:46

每天建模1小时,挑战接单 赚钱

广告 3D游戏兼职赚钱

视频	选集(37/90)	∷		自动	连播	Ń
P34	【旧版】	4.2_1_	串的朴	素模式	匹配算	法 11:33	
P35	【旧版】	4.2_2_	_KMP算	法(上)		16:31	
P36	【旧版】	4.2_3_	KMP算	法(下)		17:31	
P3	7 【旧览	反】4.2_	4_KN	【旧版】	4.2_3	_KMP算法	(下)
P38	【旧版】	5.1.1 核	的定义	.和基本	术语	15:17	U
P39	【旧版】	5.1.2 权	的性质	į		05:51	
P40	【旧版】	5.2_1_	二叉树	的定义	和基本	12:46	
P41	【旧版】	5.2_2_	二叉树	的性质		07:30	
P42	【旧版】	5.2_3_	二叉树	的存储	结构	10:45	
P43	【旧版】	5.3_1_	二叉树	的先中	后序遍	23:08	

2023徐涛考研政治精讲【 最新合集】 | B站独家

研政治徐涛

本章在408中的地位

考查内容 数据结构 [考查目标] 1. 掌握数据结构的基本概念、基本原理和基本方法。 2. 掌握数据的逻辑结构、存储结构及基本操作的实现,能够对 算法进行基本的时间复杂度与空间复杂度的分析。 3. 能够运用数据结构的基本原理和方法进行问题的分析与求 解,具备采用 C 或C++语言设计与实现算法的能力。 一、线性表 (一) 线性表的基本概念 (二) 线性表的实现 1. 顺序存储 2. 链式存储 (三)线性表的应用 二、栈、队列和数组 (一) 栈和队列的基本概念 (二) 栈和队列的顺序存储结构

- (三) 栈和队列的链式存储结构
- (四) 多维数组的存储
- (五) 特殊矩阵的压缩存储
- (六) 栈、队列和数组的应用
- 三、树与二叉树
- (一) 树的基本概念
- (二) 二叉树
- 1. 二叉树的定义及其主要特性
- 2. 二叉树的顺序存储结构和链式存储结构
- 3. 二叉树的遍历
- 4. 线索二叉树的基本概念和构造
- (三)树、森林
- 1. 树的存储结构
- 2. 森林与二叉树的转换
- 3. 树和森林的遍历
- (四) 树与二叉树的应用
- 1. 二叉搜索树
- 2. 平衡二叉树
- 3. 哈夫曼(Huffman)树和哈夫曼编码

四、图

- (一) 图的基本概念
- (二)图的存储及基本操作
- 1. 邻接矩阵法
- 2. 邻接表法
- 3. 邻接多重表、十字链表
- (三)图的遍历
- 1. 深度优先搜索
- 2. 广度优先搜索

IV 考查内容/ 5

本章在408中的地位

你好像没有任何牌面吧?

(四)图的基本应用

- 1. 最小(代价)生成树
- 2. 最短路径
- 3. 拓扑排序
- 4. 关键路径

五、查找

- (一) 查找的基本概念
- (二)顺序查找法
- (三) 分块查找法
- (四) 折半查找法
- (五) B 树及其基本操作、B⁺树的基本概念

(六)散列(Hash)表 (七)字符串模式匹配 (八)查找算法的分析及应用

六、排序

- (一) 排序的基本概念
- (二)插入排序
- 1. 直接插入排序
- 2. 折半插入排序
- (三) 起泡排序(Bubble Sort)
- (四)简单选择排序
- (五) 希尔排序(Shell Sort)
- (六) 快速排序
- (七) 堆排序
- (八) 二路归并排序(Merge Sort)
- (九)基数排序
- (十)外部排序
- (十一) 各种排序算法的比较

(十二)排序算法的应用

计算机组成原理

[考查目标]

1. 理解单处理器计算机系统中各部件的内部工作原理、组成结 构以及相互连接方式,具有完整的计算机系统的整机概念。

- 2. 理解计算机系统层次化结构概念,熟悉硬件与软件之间的界 面,掌握指令集体系结构的基本知识和基本实现方法。
- 3. 能够综合运用计算机组成的基本原理和基本方法,对有关计 算机硬件系统中的理论和实际问题进行计算、分析,对一些基本部件 进行简单设计;并能对高级程序设计语言(如 C 语言)中的相关问题 进行分析。

一、计算机系统概述

(一) 计算机系统层次结构

- 1. 计算机系统的基本组成
- 2. 计算机硬件的基本组成
- 3. 计算机软件和硬件的关系
- 4. 计算机系统的工作过程

(二) 计算机性能指标

吞吐量、响应时间, CPU 时钟周期、主频、CPI、CPU 执行时间, MIPS, MFLOPS, GFLOPS, TFLOPS, PFLOPS, EFLOPS, ZFLOPS.

二、数据的表示和运算

(一)数制与编码

1. 进位计数制及其相互转换

IV 考查内容 / 7

