Extended stream formats Variants of Productivity Computational Complexity

Proving Productivity, part 2

extended formats, variants of productivity, and complexity

Jörg Endrullis Clemens Grabmayer Dimitri Hendriks

Vrije Amsterdam — Universiteit Utrecht — Vrije Universiteit Amsterdam

The End of *Infinity*VU Amsterdam, December 15, 2009

- Extended stream formats
 - for a special class of stream functions (simulation by open pebbleflow nets)
 - for larger classes of stream specifications (using data-oblivious productivity)
- Productivity and variant definitions in TRSs
- Complexity of productivity and its variants

1. Extended stream formats

Variants of Productivity

3. Computational Complexity

1. Extended stream formats

A format for stream function specifications

Extended formats for stream specifications

- 2. Variants of Productivity
- 3. Computational Complexity

Deciding productivity via pebbleflow

Pure stream constant specification

Example

$$M \rightarrow zip(0:M,M)$$

stream layer

$$zip(x:\sigma,\tau)\to x:zip(\tau,\sigma)$$

data layer

Suppose that $nats \rightarrow 0:1:2:...$ Then it holds:

 $f(nats) \rightarrow 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:... =: a$

For all n: a(2n) = n, a(2n + 1) = a(n) (Sequence A025480)

$$f(\sigma) o zip(\sigma, f(\sigma))$$
 stream layer $zip(x:\sigma, au) o x: zip(au, \sigma)$ data layer

```
Suppose that nats \rightarrow 0:1:2:... Then it holds: f(nats) \rightarrow 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:... =: a For all n: a(2n) = n, a(2n+1) = a(n) (Sequence A025480).
```

$$f(\sigma) o zip(\sigma, f(\sigma))$$
 stream layer $zip(x:\sigma, au) o x: zip(au, \sigma)$ data layer

```
Suppose that nats \rightarrow 0:1:2:... Then it holds: f(nats) \rightarrow 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:... =: a For all n: a(2n) = n, a(2n+1) = a(n) (Sequence A025480).
```

$$f(\sigma) o zip(\sigma, f(\sigma))$$
 stream layer $zip(x:\sigma, au) o x: zip(au, \sigma)$ data layer

```
Suppose that nats \rightarrow 0:1:2:... Then it holds:

f(nats) \rightarrow 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:... =: a

For all n: a(2n) = n, a(2n+1) = a(n) (Sequence A025480).
```

$$f(\sigma) o zip(\sigma, f(\sigma))$$
 stream layer $zip(x:\sigma, au) o x: zip(au, \sigma)$ data layer

```
Suppose that nats \rightarrow 0:1:2:... Then it holds:

f(nats) \rightarrow 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:... =: a

For all n: a(2n) = n, a(2n+1) = a(n) (Sequence A025480).
```

$$f(\sigma) o zip(\sigma, f(\sigma))$$
 stream layer $zip(x:\sigma, au) o x: zip(au, \sigma)$ data layer

```
Suppose that nats \rightarrow 0:1:2:... Then it holds:

f(nats) \rightarrow 0:0:1:0:2:1:3:0:4:2:5:1:6:3:7:0:8:... =: a

For all n: a(2n) = n, a(2n+1) = a(n) (Sequence A025480).
```

Recognising productivity via pebbleflow

stream function spec

open pebbleflow net

Recognising productivity via pebbleflow

stream function spec

open pebbleflow net

gate

Let S be a specification for a stream function f.

- Try to transform S into a stream constant spec in PSF with stream parameters. If unsuccessful, answer: "sorry, don't know".
- Build the corresponding open pebbleflow net
- Collapse the pebbleflow net into a gate γ (*ProPro*-extension by Niels Rademaker using the I/O-list infimum operation).
- If either of the I/O-lists in the gate γ is finite, answer: "S is not productive for f"; else "S is productive for f".

Let S be a specification for a stream function f.

- Try to transform S into a stream constant spec in PSF with stream parameters. If unsuccessful, answer: "sorry, don't know".
- Build the corresponding open pebbleflow net.
- Collapse the pebbleflow net into a gate γ (*ProPro*-extension by Niels Rademaker using the I/O-list infimum operation).
- If either of the I/O-lists in the gate γ is finite, answer: " \mathcal{S} is not productive for f"; else " \mathcal{S} is productive for f".

$$f(\sigma_1, \sigma_2) \rightarrow zip(\sigma_1, zip(\sigma_2, g(\sigma_1)))$$

 $g(\sigma_1) \rightarrow zip(even(f(\sigma_1, \sigma_1)), g(\sigma_1))$

By introducing a new stream function $f_1(\sigma_1) := f(\sigma_1, \sigma_1)$, we obtain:

$$\begin{split} f(\sigma_1,\sigma_2) &\to \mathsf{zip}(\sigma_1,\mathsf{zip}(\sigma_2,g(\sigma_1))) \\ f_1(\sigma_1) &\to \mathsf{zip}(\sigma_1,\mathsf{zip}(\sigma_1,g(\sigma_1))) \\ g(\sigma_1) &\to \mathsf{zip}(\mathsf{even}(f_1(\sigma_1)),g(\sigma_1)) \end{split}$$

Now, by letting $M:=f(\sigma_1,\sigma_2),\,M_1:=f_1(\sigma_1),\,N:=g(\sigma_1),$ we obtain:

$$M \to zip(\sigma_1, zip(\sigma_2, N))$$

$$M_1 \to zip(\sigma_1, zip(\sigma_1, N))$$

$$N \to zip(even(M_1), N)$$

$$f(\sigma_1, \sigma_2) \rightarrow zip(\sigma_1, zip(\sigma_2, g(\sigma_1)))$$

 $g(\sigma_1) \rightarrow zip(even(f(\sigma_1, \sigma_1)), g(\sigma_1))$

By introducing a new stream function $f_1(\sigma_1) := f(\sigma_1, \sigma_1)$, we obtain:

$$f(\sigma_1, \sigma_2) \rightarrow zip(\sigma_1, zip(\sigma_2, g(\sigma_1)))$$

 $f_1(\sigma_1) \rightarrow zip(\sigma_1, zip(\sigma_1, g(\sigma_1)))$
 $g(\sigma_1) \rightarrow zip(even(f_1(\sigma_1)), g(\sigma_1))$

Now, by letting $M := f(\sigma_1, \sigma_2)$, $M_1 := f_1(\sigma_1)$, $N := g(\sigma_1)$, we obtain

$$M \rightarrow zip(\sigma_1, zip(\sigma_2, N))$$

 $M_1 \rightarrow zip(\sigma_1, zip(\sigma_1, N))$
 $N \rightarrow zip(even(M_1), N)$

$$f(\sigma_1, \sigma_2) \rightarrow zip(\sigma_1, zip(\sigma_2, g(\sigma_1)))$$

 $g(\sigma_1) \rightarrow zip(even(f(\sigma_1, \sigma_1)), g(\sigma_1))$

By introducing a new stream function $f_1(\sigma_1) := f(\sigma_1, \sigma_1)$, we obtain:

$$f(\sigma_1, \sigma_2) \rightarrow zip(\sigma_1, zip(\sigma_2, g(\sigma_1)))$$

 $f_1(\sigma_1) \rightarrow zip(\sigma_1, zip(\sigma_1, g(\sigma_1)))$
 $g(\sigma_1) \rightarrow zip(even(f_1(\sigma_1)), g(\sigma_1))$

Now, by letting $M := f(\sigma_1, \sigma_2)$, $M_1 := f_1(\sigma_1)$, $N := g(\sigma_1)$, we obtain:

$$M \rightarrow zip(\sigma_1, zip(\sigma_2, N))$$

 $M_1 \rightarrow zip(\sigma_1, zip(\sigma_1, N))$
 $N \rightarrow zip(even(M_1), N)$

How special is this class of stream functions?

Very restrictive. Their defining rules are of the form (simplified):

$$\begin{split} f_1(\sigma) &\to \textcolor{red}{C_1}[\sigma,f_1(\sigma),\ldots,f_n(\sigma)] \\ & \ldots \\ f_n(\sigma) &\to \textcolor{red}{C_n}[\sigma,f_1(\sigma),\ldots,f_n(\sigma)] \end{split}$$

where C_1, \ldots, C_n are stream contexts consisting of pure stream functions (like zip, even, ...).

In their defining rules:

- no consumption of data-elements from stream parameters
- consequently also no additional supply of consumed

1. Extended stream formats

A format for stream function specifications

Extended formats for stream specifications

- 2. Variants of Productivity
- 3. Computational Complexity

Extending PSF

Example (poor man's pat-mat)

```
T \rightarrow 0:1:f(tail(T))
\underline{f}(0:\sigma) \rightarrow 0:1:f(\sigma) stream layer
\underline{f}(1:\sigma) \rightarrow 1:0:f(\sigma)
tail(x:\sigma) \rightarrow \sigma
data layer
```

is a productive stream definition of the Thue-Morse stream:

```
T \rightarrow 0:1:1:0:1:0:0:1:1:0:0:1:1:0:\dots
```

Extending PSF

- In extended-pure specifications, the rules for stream functions allow:
 - a restricted form of exhaustive pattern matching
 - ▶ duplication of stream variables $f(\sigma) \rightarrow g(\sigma, \sigma)$.
 - additional supply in stream variables is allowed diff(x : y : σ) → xor(x, y) : diff(y : σ)
 - ▶ use of non-productive stream functions onlyread2($x : y : \sigma$) $\rightarrow x : y : idle(\sigma)$ idle(σ) $idle(\sigma) \rightarrow idle(\sigma)$
- In flat specifications, additional feature:
 - exhaustive pattern matching on constructors

Extending PSF

- In extended-pure specifications, the rules for stream functions allow:
 - a restricted form of exhaustive pattern matching
 - ▶ duplication of stream variables $f(\sigma) \rightarrow g(\sigma, \sigma)$.
 - additional supply in stream variables is allowed diff(x : y : σ) → xor(x, y) : diff(y : σ)
 - ▶ use of non-productive stream functions onlyread2($x : y : \sigma$) $\rightarrow x : y : idle(\sigma)$ idle(σ) $idle(\sigma) \rightarrow idle(\sigma)$
- ▶ In flat specifications, additional feature:
 - exhaustive pattern matching on constructors

Example (Pascal's triangle)

$$\begin{array}{c}
 P \to 0 : s(0) : g(P) \\
g(\underline{s(x)} : \underline{y} : \sigma) \to a(s(x), y) : g(y : \sigma) & stream layer \\
g(\underline{0} : \sigma) \to 0 : s(0) : g(\sigma) \\
a(x, s(y)) \to s(a(x, y)) \\
a(x, 0) \to x
\end{array}$$
data layer

is a productive stream specification of the Pascal's triangle:

New concepts and definitions

- ▶ stream specification formats: ext. pure ⊊ flat ⊊ friendly-nesting;
- data-oblivious rewriting;
- data-oblivious productivity.

Data-Oblivious Analysis

Example (Pascal's triangle)

$$P \to 0 : s(0) : g(P)$$

$$g(s(x) : y : \sigma) \to a(s(x), y) : g(y : \sigma)$$

$$g(0 : \sigma) \to 0 : s(0) : g(\sigma)$$

data abstracted we have:

$$\begin{aligned} \mathbf{P}' &\to \bullet : \bullet : \mathbf{g}(\mathbf{P}') \\ \mathbf{g}(\bullet : \bullet : \sigma) &\to \bullet : \mathbf{g}(\bullet : \sigma) \\ \mathbf{g}(\bullet : \sigma) &\to \bullet : \bullet : \mathbf{g}(\sigma) \end{aligned}$$

The data oblivious lower/upper bounds on the production of g are:

$$n \mapsto n - 1 / n \mapsto 2n$$

The lower bound implies productivity of P' follows; we say: P is data-obliviously productive. This implies productivity of P.

Data-Oblivious Productivity

$$\Pi_{\mathcal{S}}(t) := \sup\{n \in \overline{\mathbb{N}} \mid t \twoheadrightarrow s_1 : \ldots : s_n : r\}$$
 data-aware production of t .

Definition

The data-oblivious production range ($\subseteq \overline{\mathbb{N}}$) of a term t:

 $\overline{\underline{do}}_{\mathcal{S}}(t) := \text{ set of all productions of } t \text{ under outermost-fair }$ data-oblivious rewrite sequences starting at t

The d-o lower/upper bounds:

$$\underline{do}_{\mathcal{S}}(t) := \inf \overline{\underline{do}}_{\mathcal{S}}(t)$$
 $\overline{do}_{\mathcal{S}}(t) := \sup \overline{\underline{do}}_{\mathcal{S}}(t)$

A term *t* is data-obliviously productive if $\underline{do}_{S}(t) = \infty$.

Proposition (Data-oblivious productivity implies productivity)

$$\underline{do}_{\mathcal{S}}(t) \leq \Pi_{\mathcal{S}}(t) \leq \overline{do}_{\mathcal{S}}(t)$$

Stream specifications

For stream specifications we consider:

- ▶ $\{S, D\}$ -sorted, orthogonal, constructor TRSs $R = \langle \Sigma, R \rangle$
- \blacktriangleright Σ_S stream symbols and Σ_D data symbols

Definition (Stream Specification)

$$R_S$$
 stream layer R_D data layer

- **11** M_0 ∈ Σ_S with arity 0, the root of R.
- (Σ_D, R_D) is a terminating, *D*-sorted TRS, the data layer of *R*.
- 3 R is exhaustive

Flat stream spec's

R is called flat: in rules for stream functions, no nested occurrences of stream function rules on their right hand sides.

Theorem

For flat stream spec's we can decide data-oblivious productivity.

Extended-pure stream spec's

R is called extended-pure: the defining rules for a stream function all have the same data abstraction.

Example

```
\begin{array}{ll} \operatorname{inv}(0 : \sigma) \to 1 : \operatorname{inv}(\sigma) & \text{Non-example: } \operatorname{g}(0 : x : \sigma) \to x : x : \operatorname{g}(\sigma) \\ \operatorname{inv}(1 : \sigma) \to 0 : \operatorname{inv}(\sigma) & \operatorname{g}(1 : x : \sigma) \to x : \operatorname{g}(\sigma) \\ \operatorname{inv}(\bullet : \sigma) \to \bullet : \operatorname{inv}(\sigma) & \operatorname{g}(\bullet : \bullet : \sigma) \to \bullet : \bullet : \operatorname{g}(\sigma) \\ \operatorname{g}(\bullet : \bullet : \sigma) \to \bullet : \operatorname{g}(\sigma) & \\ \end{array}
```

Proposition

For pure stream spec's: productivity = data-oblivious productivity.

Theorem

We can decide productivity of extended-pure stream specifications.

Stream specification (friendly-nesting)

The convolution product \times is the stream operation $\times : \mathbb{R}^{\omega} \times \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$:

$$(\sigma \times \tau)(i) = \sum_{j=0}^{i} \sigma(j) \cdot \tau(i-j)$$
 (for all $i \in \mathbb{N}$)

Hence:
$$(x:\sigma')\times(y:\tau')=(x.y):(x\cdot\tau'+\sigma'\times(y:\tau'))$$

```
\begin{array}{c} \mathsf{nats} \to \mathsf{0} : \times (\mathsf{ones}, \mathsf{ones}) \\ \mathsf{ones} \to \mathsf{s}(\mathsf{0}) : \mathsf{ones} \\ \times (x : \sigma', y : \tau') \to \mathsf{m}(x, y) : \mathsf{add}(\mathsf{times}(\tau', x), \times (\sigma', y : \tau')) \\ \mathsf{times}(x : \sigma', y) \to \mathsf{m}(x, y) : \mathsf{times}(\sigma', y) \\ \mathsf{add}(x : \sigma', y : \tau') \to \mathsf{a}(x, y) : \mathsf{add}(\sigma', \tau') \\ \mathsf{a}(x, 0) \to x & \mathsf{a}(x, \mathsf{s}(y)) \to \mathsf{s}(\mathsf{a}(x, y)) \\ \mathsf{m}(x, 0) \to \mathsf{0} & \mathsf{m}(x, \mathsf{s}(y)) \to \mathsf{a}(\mathsf{m}(x, y), x) \end{array} \qquad \textit{data layer}
```

Stream specification (friendly-nesting)

The convolution product \times is the stream operation $\times : \mathbb{R}^{\omega} \times \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$:

$$\begin{aligned} (\sigma \times \tau)(0) &:= & \sigma(0).\tau(0) \\ (\sigma \times \tau)' &:= & \sigma(0) \cdot \tau' + \sigma' \times \tau \end{aligned}$$

Hence: $(x:\sigma')\times(y:\tau')=(x.y):(x\cdot\tau'+\sigma'\times(y:\tau'))$

```
\begin{array}{c} \mathsf{nats} \to 0 : \times (\mathsf{ones}, \mathsf{ones}) \\ \mathsf{ones} \to \mathsf{s}(0) : \mathsf{ones} \\ \times (x : \sigma', y : \tau') \to \mathsf{m}(x, y) : \mathsf{add}(\mathsf{times}(\tau', x), \times (\sigma', y : \tau')) \\ \mathsf{times}(x : \sigma', y) \to \mathsf{m}(x, y) : \mathsf{times}(\sigma', y) \\ \mathsf{add}(x : \sigma', y : \tau') \to \mathsf{a}(x, y) : \mathsf{add}(\sigma', \tau') \\ \mathsf{a}(x, 0) \to x & \mathsf{a}(x, \mathsf{s}(y)) \to \mathsf{s}(\mathsf{a}(x, y)) \\ \mathsf{m}(x, 0) \to 0 & \mathsf{m}(x, \mathsf{s}(y)) \to \mathsf{a}(\mathsf{m}(x, y), x) \end{array} \qquad \textit{data layer}
```

Stream specification (friendly-nesting)

The convolution product \times is the stream operation $\times : \mathbb{R}^{\omega} \times \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$:

$$(\sigma \times \tau)(0) := \sigma(0).\tau(0)$$

 $(\sigma \times \tau)' := \sigma(0) \cdot \tau' + \sigma' \times \tau$

Hence: $(\mathbf{x}:\sigma')\times(\mathbf{y}:\tau')=(\mathbf{x}.\mathbf{y}):(\mathbf{x}\cdot\tau'+\sigma'\times(\mathbf{y}:\tau'))$.

$$\begin{array}{c} \mathsf{nats} \to 0 : \times (\mathsf{ones}, \mathsf{ones}) \\ \mathsf{ones} \to \mathsf{s}(0) : \mathsf{ones} \\ \times (x : \sigma', y : \tau') \to \mathsf{m}(x, y) : \mathsf{add}(\mathsf{times}(\tau', x), \times (\sigma', y : \tau')) \\ \mathsf{times}(x : \sigma', y) \to \mathsf{m}(x, y) : \mathsf{times}(\sigma', y) \\ \mathsf{add}(x : \sigma', y : \tau') \to \mathsf{a}(x, y) : \mathsf{add}(\sigma', \tau') \\ \mathsf{a}(x, 0) \to x & \mathsf{a}(x, \mathsf{s}(y)) \to \mathsf{s}(\mathsf{a}(x, y)) \\ \mathsf{m}(x, 0) \to 0 & \mathsf{m}(x, \mathsf{s}(y)) \to \mathsf{a}(\mathsf{m}(x, y), x) \end{array} \qquad \textit{data layer}$$

Friendly-nesting stream spec's

Friendly-nesting stream specifications are extensions of flat ones with friendly (nesting) rules γ :

- $ightharpoonup \gamma$ consumes in each argument at most one stream element,
- it produces at least one stream element, and
- the defining rules of stream function symbols on the right hand side are friendly again.

Example

$$f(x:\sigma,\tau) \to x: x: g(f(\sigma,x:\tau))$$
$$g(x:\sigma) \to x: g(x:f(\sigma,\sigma))$$

Theorem (For friendly nesting stream specifications ...)

... we have a sufficient condition for (data-oblivious) productivity.

Map of stream specifications

Overview

Extended stream formats

2. Variants of Productivity

3. Computational Complexity

- zeros \rightarrow 0 : zeros
 - productive: there is only one maximal rewrite sequence: zeros → 0 : zeros → 0 : 0 : zeros → ... → 0 : 0 : 0 : ...
- zeros ightarrow 0 : id(zeros) id(σ) ightarrow σ
 - ▶ zeros → 0 : id(0 : id(0 : id(...)))
 - still productive, since for all max. outermost-fair rewrite sequences:
 zeros --> 0:0:0:...

Even for well-behaved spec's (orthogonal TRSs), productivity should be based on a fair treatment of outermost redexes.

- zeros \rightarrow 0 : zeros
 - productive: there is only one maximal rewrite sequence: zeros → 0 : zeros → 0 : 0 : zeros → ... → 0 : 0 : 0 : ...
- zeros \rightarrow 0 : id(zeros) id(σ) $\rightarrow \sigma$
 - zeros --- 0 : id(0 : id(0 : id(...)))
 - still productive, since for all max. outermost-fair rewrite sequences: zeros --> 0 : 0 : 0 : . . .

Even for well-behaved spec's (orthogonal TRSs), productivity should be based on a fair treatment of outermost redexes.

- zeros \rightarrow 0 : zeros
 - productive: there is only one maximal rewrite sequence: zeros → 0 : zeros → 0 : 0 : zeros → ... → 0 : 0 : 0 : ...
- zeros ightarrow 0 : id(zeros) id(σ) ightarrow σ
 - zeros --- 0 : id(0 : id(0 : id(...)))
 - ▶ still productive, since for all max. outermost-fair rewrite sequences: zeros → 0:0:0:...

Even for well-behaved spec's (orthogonal TRSs), productivity should be based on a fair treatment of outermost redexes.

- maybe \rightarrow 0 : maybe maybe \rightarrow sink sink \rightarrow sink
 - productive or not, dependent on the chosen strategy
 - 'weakly productive': maybe ->> 0:0:0:...
 - not 'strongly productive': e.g. maybe → sink → sink → . . .
- bitstream \rightarrow 0 : bitstream bitstream \rightarrow 1 : bitstream
 - productive independent of the strategy choser
 - 'weakly' and 'strongly productive
 - infinite normal forms not unique

- maybe \rightarrow 0 : maybe maybe \rightarrow sink sink \rightarrow sink
 - productive or not, dependent on the chosen strategy
 - 'weakly productive': maybe ->> 0:0:0:...
 - not 'strongly productive': e.g. maybe → sink → sink → . . .
- bitstream \rightarrow 0 : bitstream bitstream \rightarrow 1 : bitstream
 - productive independent of the strategy chosen
 - 'weakly' and 'strongly productive'
 - infinite normal forms not unique

Let R be a TRS.

A strategy for a rewrite relation \rightarrow_R is a relation $\leadsto \subseteq \rightarrow_R$ with the same normal forms as \rightarrow_R .

Definition

A term t is called productive w.r.t. a strategy \sim if all maximal \sim -rewrite sequences starting from t end in a constructor normal form.

Strong and weak productivity

Definition

A term t in a TRS R is called

- ▶ strongly productive: all maximal outermost-fair rewrite sequences starting from *t* end in a constructor normal form.
- weakly productive: if there exists a rewrite sequence starting from t that ends in a constructor normal form.

Definition of productivity in general TRSs

We think:

- For non-well-behaved spec's (non-orthogonal TRSs), productivity has to be defined relative to a given rewrite strategy.
- Strategy-independent variants (strong, weak productivity) are of limited general interest.
- ► Uniqueness of (infinite) normal form UN[∞] should be considered to be a separate property, independent of productivity. (In orthogonal TRSs, UN[∞] is guaranteed.)

Overview

Extended stream formats

Variants of Productivity

3. Computational Complexity

The arithmetical and analytical hierarchies


```
PRODUCTIVITY PROBLEM w.r.t. a family \mathcal S of computable strategies
```

Instance: Encodings of a finite TRS R, a strategy $\sim \in S(R)$,

and a term t in R.

Question: Is t productive w.r.t. \sim ?

We say that

▶ such a family S is admissible: if R is orthogonal, $S(R) \neq \emptyset$.

PRODUCTIVITY PROBLEM w.r.t. a family $\mathcal S$ of computable strategies

Instance: Encodings of a finite TRS R, a strategy $\sim \in S(R)$,

and a term t in R.

Question: Is t productive w.r.t. \sim ?

We say that:

▶ such a family S is admissible: if R is orthogonal, $S(R) \neq \emptyset$.

Theorem

For every family of admissible, computable strategies S, the productivity problem w.r.t. S is Π_2^0 -complete.

```
Proof.
```

Contained in Π_2^0 : a term t is productive w.r.t. \sim \in $\mathcal{S}(R)$ iff

 $\forall d \in \mathbb{N}. \ \exists n \in \mathbb{N}. \ \text{every } n\text{-step} \sim \text{-reduct of } i$

is a constructor normal form up to depth $d^-\}$ $\in \mathbb{N}_2^{\circ}$

 Π_2^s -complete: By reducing the totality problem for Turing-machines, which is Π_2^g -complete, to the productivity problem here.

Corollary

In orthogonal TRSs, productivity w.r.t. lazy (outermost-fair) evaluation is Π^0_- -complete.

Theorem

For every family of admissible, computable strategies S, the productivity problem w.r.t. S is Π_2^0 -complete.

```
Proof.
```

```
Contained in \Pi_2^0: a term t is productive w.r.t. \sim \in \mathcal{S}(R) iff \forall d \in \mathbb{N}. \exists n \in \mathbb{N}. every n-step \sim-reduct of t is a constructor normal form up to depth d \in \Pi_2^0
```

 Π_2^0 -complete: By reducing the totality problem for Turing-machines, which is Π_2^0 -complete, to the productivity problem here.

Corollary

In orthogonal TRSs, productivity w.r.t. lazy (outermost-fair) evaluation is Π_2^0 -complete.

Theorem

For every family of admissible, computable strategies S, the productivity problem w.r.t. S is $\prod_{i=1}^{0}$ -complete.

Proof.

```
Contained in \Pi_2^0: a term t is productive w.r.t. \sim \in \mathcal{S}(R) iff \forall d \in \mathbb{N}. \exists n \in \mathbb{N}. every n-step \sim-reduct of t is a constructor normal form up to depth d \in \Pi_2^0
```

 Π_2^0 -complete: By reducing the totality problem for Turing-machines, which is Π_2^0 -complete, to the productivity problem here.

Corollary

In orthogonal TRSs, productivity w.r.t. lazy (outermost-fair) evaluation is Π_2^0 -complete.

Strong and weak productivity

Theorem

The recognition problem for

- ► strong productivity is \$\pi\frac{1}{2}\$-complete;
- weak productivity is Σ -complete.

```
Proof (Idea).

Π¹-hardness (Σ¹-hardness): reducing the

– recognition problem for well-founded (for non-well-founded)

binary relations over N, which is Π¹-complete (Σ¹-complete), to the
```

Strong and weak productivity

Theorem

The recognition problem for

- ► strong productivity is \$\pi\$\cdot \cdot \cdot
- weak productivity is ∑¹-complete.

Proof (Idea).

```
\Pi_1^1-hardness (\Sigma_1^1-hardness): reducing the
```

- recognition problem for well-founded (for non-well-founded) binary relations over \mathbb{N} , which is Π_1^1 -complete (Σ_1^1 -complete), to the
- to the recognition problem of strong (weak) productivity.

Uniqueness of infinite normal form

Theorem

The problem of recognising, for TRSs R and terms t in R, whether t has a unique (finite or infinite) normal form is Π -complete.

Changes due to adding the condition uniqueness of normal form:

- (i) w.r.t. family of strategies:
 - ▶ uniqueness of normal forms w.r.t. \sim : Π_2^0 -complete.
 - ▶ uniqueness of normal forms generally: П¹-complete.
- (ii) strong productivity: □1-complete
- (iii) weak productivity: now $(\Pi_1^1 \cup \Sigma_1^1)$ -hard

Uniqueness of infinite normal form

Theorem

The problem of recognising, for TRSs R and terms t in R, whether t has a unique (finite or infinite) normal form is Π -complete.

Changes due to adding the condition uniqueness of normal form:

- (i) w.r.t. family of strategies:
 - ▶ uniqueness of normal forms w.r.t. \sim : Π_2^0 -complete.
 - ▶ uniqueness of normal forms generally: П₁-complete.
- (ii) strong productivity: □¹-complete
- (iii) weak productivity: now $(\Pi_1^1 \cup \Sigma_1^1)$ -hard

Complexity of productivity

Summary

- Extended stream formats
 - for a special class of stream functions (simulation by open pebbleflow nets)
 - for larger classes of stream specifications: flat, extended-pure, friendly-nesting (using data-oblivious productivity)
- Productivity and variant definitions in TRSs
 - productivity with respect to strategies
 - weak and strong productivity
- Complexity of productivity and its variants

The End of Infinity?

The End of Infinity? Yes, but the idea catches on ...

Infinity Groep BV, Toetsenbordweg 48, 1033 MZ Amsterdam

Realising Optimal Sharing (ROS)

NWO-Project (2009–2012/13) at Utrecht University linking:

- Dept. of Philosophy (Theor. Philosophy)
- Dept. of Computer Science (Functional Languages)

Aims

- ▶ Study optimal-sharing implementations of the λ -calculus
- Try to incorporate optimal-sharing techniques in the Utrecht Haskell Compiler (UHC)

People

- Phil: Vincent van Oostrom (principal investigator),
 CG (postdoc/3 years)
- CS: Doaitse Swierstra and Atze Dijkstra, Jan Rochel (PhD student)