Assignment 1

Course name, Group N

Jon Doe 1	JD101	jondoe.1@email.com
Jon Doe 2	JD102	jondoe.2@email.com
Jon Doe 3	JD103	jondoe.3@email.com

Question 1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
Question 2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
2A • • •																
/B	_	_		_	-	_	_	_	_	_	_	_	_	_	_	

Question 1

Research has shown that in a certain language, the distribution of the number of letters in words in texts is close to Poisson with parameter 4.

Use the central limit theorem to approximate the probability that a text of 1000 words has more than 4100 letters. Explain explicitly what assumptions you are making to guarantee that this approximation can be used.

Answer: We follow the four steps:

- 1. We need to assume that subsequent words are i.i.d., and that their expectation and variance are bounded.
- 2. The lengths of words are Poisson with parameter 4, so that the mean and the variance are 4.
- 3. We are asked to compute the probability that a text of 1000 words has more than 4100 letters: $\mathbb{P}(S_{1000} > 4100)$, where S_{1000} is the number of letters in the text of 1000 words.

We rewrite this as

$$\mathbb{P}(S_{1000} > 4100) = \mathbb{P}\left(\frac{S_{1000} - 4100}{\sqrt{1000 \cdot 4}} > \frac{4100 - 4000}{\sqrt{1000 \cdot 4}}\right) \approx \mathbb{P}(Z_{1000} > 1.58112).$$

4. CLT approximation: We approximate

$$\mathbb{P}(S_{1000} > 4100) \approx \mathbb{P}(Z_{1000} > 1.58112) \approx \mathbb{P}(Z > 1.58112) \approx 0.0571.$$

1

Question 2

An urn contains 2 black and 3 white balls. We repeatedly draw a ball, and replace it with two balls of the same color. We assume that all balls are drawn with equal probability.

2A

Compute the probability of drawing first a black and then two white balls in the first three draws. Also compute the probability of first drawing two white balls and then the black ball.

Answer: Write BWW for the sequence of first a black and then two white balls in the first three draws (and similarly with WWB etc). Then

$$\mathbb{P}(BWW) = \mathbb{P}(B)\mathbb{P}(BW|B)\mathbb{P}(BWW|BW) = \frac{2}{5}\frac{3}{6}\frac{4}{7} = \frac{4}{35}.$$

2B

Compute the probability of drawing a white ball in the first draw. Also compute the probability of drawing a white ball in the first draw conditionally on drawing a black ball in the second draw. Give an interpretation of why these are different.

Answer: We start by noting that $\mathbb{P}(W) = \frac{3}{5}$. Further, let B_2 denote the event that we draw a black ball in the second draw. Then we need to compute the conditional probability $\mathbb{P}(W|B_2)$. We do this by writing

$$\mathbb{P}(W|B_2) = \frac{\mathbb{P}(WB)}{\mathbb{P}(B_2)} = \frac{\mathbb{P}(WB)}{\mathbb{P}(WB) + \mathbb{P}(BB)}.$$

Then we compute

$$\mathbb{P}(W|B_2) = \frac{\frac{3}{5}\frac{2}{6}}{\frac{3}{5}\frac{2}{6} + \frac{2}{5}\frac{3}{6}} = \frac{6}{12} = \frac{1}{2}.$$

This probability is smaller than $\mathbb{P}(W) = \frac{3}{5}$, since drawing the black ball in the second draw makes it more likely that we had drawn a black ball in the first draw.