INTRODUÇÃO À ÁLGEBRA BOOLEANA E NOÇÕES DE VALOR LÓGICO DAS PROPOSIÇÕES

ANÁLISE DO VALOR LÓGICO DAS PROPOSIÇÕES COMPOSTAS POR MEIO DA TABELA-VERDADE

Nas proposições compostas, não é simples verificar o seu valor lógico apenas olhando para elas. No entanto, através da construção da tabela-verdade isso é mais intuitivo, apesar do trabalho, que pode ser maior ou menor, dependendo do tamanho da proposição.

Determinar o valor lógico da proposição composta através da tabela-verdade nos fará conhecer conceitos novos. Ou seja, vamos identificar através do resultado da última coluna da tabela se a proposição composta é uma **tautologia**, uma **contradição** ou uma **contingência**.

Tautologia

Para compreender esse conceito, vamos considerar a seguinte proposição:

(p
$$\rightarrow$$
 q) \wedge p \rightarrow q

Vamos construir sua tabela-verdade. Veja que não é simples analisar o valor lógico dessa proposição (5ª coluna da tabela):

1 ^a	2 ^a	3 ^a	4 ^a	5 ^a
р	q	$p \rightarrow q$	$(b \rightarrow d) \lor b$	$(b \to d) \lor b \to d$
V	V	V	V	V
V	F	F	F	V
F	V	V	F	V
F	F	F	F	V

4a
$$2^a 4^a$$
 coluna \rightarrow 2a coluna $(p \rightarrow q) \land p \neq (p \rightarrow q) \land p \rightarrow q$

Na condicional, temos valor lógico falso somente quando o antecedente é verdadeiro e o consequente é falso. Nos demais casos, o valor lógico é verdadeiro.

Note que a última coluna da tabela-verdade tem, em todas as linhas, o valor lógico **V** (verdadeiro). Ou seja, não há nenhum valor lógico **F** (falso). Quando isso ocorre, estamos diante de uma **tautologia**.

Dizemos que uma proposição (simples ou composta) é uma tautologia se seu valor lógico é V, independentemente dos valores lógicos das proposições que a compõem.

Exemplo

(Fundação Carlos Chagas - Adaptado) Do ponto de vista lógico, verifique o valor lógico da seguinte afirmação:

"Na eleição para a prefeitura, o candidato A será eleito ou não será eleito." Solução:

Vamos verificar o valor lógico através da construção da tabela-verdade, mas antes devemos escrever essa proposição na linguagem simbólica.

Proposições simples:

- p: O candidato A será eleito.
- ~p: O candidato A n\u00e3o ser\u00e1 eleito.
- p v ~p: O candidato A será eleito **ou** não será eleito.

Tabela-verdade:

Como na última coluna temos em todas as linhas o valor lógico V (verdadeiro), então, temos uma tautologia e concluímos que a proposição é verdadeira.

Contradição

Para compreender esse conceito, vamos considerar a seguinte proposição:

$$(p \land q) \leftrightarrow (\sim p \lor \sim q)$$

Vamos construir sua tabela-verdade e analisar o resultado da última coluna da tabela.

1 ^a	2 ^a	3 ^a	4 ^a	5 ^a	6 ^a	7 ^a
р	q	рΛф	~p	~q	~p V ~q	(p ∧ q) ↔ (~p ∨ ~q)
٧	V	V	F	F	F	F
V	F	F	F	V	V	F
F	V	F	V	F	V	F
F	F	F	V	V	V	F

Lembre-se de que a bicondicional tem o valor lógico V (verdadeiro) sempre que as duas proposições são verdadeiras ou falsas. Nos demais casos, o valor lógico é F (falso).

Veja que a última coluna da tabela-verdade tem em todas as linhas o valor lógico **F** (falso). Ou seja, não há nenhum valor lógico **V** (verdadeiro). Quando isso ocorre, dizemos que estamos diante de uma **contradição**.

Dizemos que uma proposição é uma **contradição** se seu valor lógico é **F** (falso), independentemente dos valores lógicos das proposições que a compõem.

Contingência

Para compreender esse conceito, vamos considerar a seguinte proposição:

$$(p \lor \sim q) \leftrightarrow (\sim p \land q)$$

Vamos construir sua tabela-verdade e analisar o resultado da última coluna da tabela.

1 ^a 2 ^a 3 ^a	4 ^a	5 ^a	6 ^a	7 ^a

p	q	~p	~q	p∨~q	~p ∧ q	$(p \lor \sim q) \to (\sim p \land q)$
V	V	F	F	V	F	F
V	F	F	V	V	F	F
F	٧	V	F	F	V	V
F	F	V	V	V	F	F

Veja que a última coluna da tabela-verdade não apresenta em todas as linhas somente resultados V (verdadeiro) e nem apresenta somente resultados F (falso). Ou seja, quando, na última coluna da tabela encontramos os valores lógicos V e F, cada um pelo menos uma vez, isso significa que temos uma contingência ou indeterminação. Em outras palavras, a contingência é toda proposição composta que não é tautologia nem contradição.

ÁLGEBRA BOOLEANA

A álgebra booleana, também conhecida como álgebra de Boole, surgiu a partir da publicação de um trabalho de George Boole, matemático inglês, em 1854.

Esses valores também são chamados de **constantes booleanas** e podem ser representados pelos valores lógicos verdadeiro e falso. Normalmente, consideramos:

- 1 (um) verdadeiro
- 0 (zero) falso

Considera-se, na álgebra booleana:

- Variáveis booleanas (A, B, C, ...) que assumem os valores 1 ou 0, ou seja, verdadeiro ou falso, respectivamente.
- A partir das variáveis booleanas podemos construir uma expressão matemática que é chamada de expressão booleana. Essa expressão também assume apenas dois valores: 1 ou 0 (verdadeiro ou falso).

Exemplo

São tipos de expressões booleanas:

- a. S = (AB)x(B + C)
- b. S = A + BA

Operações na álgebra booleana

Operação de adição

- Operador: OR (ou).
- Essa operação equivale à operação p v q.
- Notação: A + B ou A OR B.

Operação de multiplicação

- Operador: AND (e).
- Essa operação equivale a operação p ∧ q.
- Notação: A · B ou A AND B.

Operação de complementação

Ela também pode ser chamada de inversão ou negação, pois trocará o valor lógico da variável booleana.

Exemplo

- Se A = 0 então Ā = 1
- Se A = 1 então \bar{A} = 0

Agora, conheceremos a tabela-verdade dos operadores **AND**, **OR** e **NOT** e a construção de algumas tabelas a partir das expressões booleanas. Clique nas barras para ver as informações.

TABELA-VERDADE: NOT

Seja a expressão S = Ā onde A é uma variável booleana.

Α	Ā
1	0
0	1

Veja que:

- Se a entrada for 1, a saída é 0
- Se a entrada for 0, a saída é 1

TABELA-VERDADE: AND

Seja a expressão S = A · B, onde A e B são variáveis boolenas.

Α	В	A · B
1	1	1
1	0	0
0	1	0
0	0	0

Observe que o resultado será 1 (verdadeiro) somente se as duas variáveis booleanas forem iguais a 1. Isso só ocorre na primeira linha da tabela-verdade. Nos demais casos, o resultado é 0 (falso).

TABELA-VERDADE: OR

Seja a expressão S = A + B, onde A e B são variáveis booleanas.

A	В	A + B
1	1	1
1	0	1
0	1	1
0	0	0

Usando **OR**, o resultado será 0 (falso) somente se as duas variáveis booleanas forem iguais a 0 (zero). Isso só ocorre na quarta linha da tabela-verdade. Nos demais casos, o resultado é 1 (verdadeiro).

Agora, podemos construir tabelas-verdade de outras expressões booleanas. Vejamos alguns exemplos:

Exemplo 1:

Construa a tabela-verdade da expressão booleana $S = (A \cdot B) \cdot (B + C)$.

Solução:

Vamos identificar inicialmente as variáveis booleanas.

$$S = (A \cdot B) \cdot (B + C)$$

Variáveis booleanas: A, B e C.

Lembre-se de que essa tabela possui $2^3 = 8$ linhas, pois possui 3 variáveis. Nas primeiras colunas, devemos colocar as variáveis A, B e C, com seus respectivos valores 1 ou 0. Em seguida, devemos seguir o mesmo procedimento realizado no módulo 2, para V ou F.

Α	В	С
1	1	1
1	1	0
1	0	1
1	0	0
0	1	1
0	1	0
0	0	1
0	0	0

Agora, vamos abrir uma coluna para a operação que está dentro do primeiro parêntese (A · B).

Α	В	С	(A · B)
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	0

A operação utilizada é **AND**. Nessa operação, o resultado será 1 (verdadeiro) somente se as duas variáveis booleanas forem iguais a 1, ou seja, A = 1 e B = 1. Nos demais casos, o resultado é 0 (falso).

Agora, vamos abrir a próxima coluna para a operação (B + C).

Α	В	С	(A · B)	(B + C)
1	1	1	1	1
1	1	0	1	1
1	0	1	0	1
1	0	0	0	0
0	1	1	0	1
0	1	0	0	1
0	0	1	0	1
0	0	0	0	0

A operação utilizada é **OR**. Nessa operação, o resultado será 0 (falso) somente se as duas variáveis booleanas forem iguais a 0 (zero), ou seja, A = 0 e B = 0. Nos demais casos, o resultado é 1 (verdadeiro).

Por último, abrimos a última coluna para a expressão completa $S = (A \cdot B) \cdot (B + C)$.

Α	В	С	(A · B)	(B + C)	$S = (A \cdot B) \cdot (B + C)$
1	1	1	1	1	1
1	1	0	1	1	1
1	0	1	0	1	0
1	0	0	0	0	0
0	1	1	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0
0	0	0	0	0	0

A operação utilizada é **AND**. Nessa operação, o resultado será 1 (verdadeiro) somente se as duas variáveis booleanas forem iguais a 1, ou seja, A = 1 e B = 1. Nos demais casos, o resultado é 0 (falso).

Exemplo 2:

Construa a tabela-verdade da expressão booleana $S = \bar{A} + B$.

Solução:

Vamos identificar, inicialmente, as variáveis booleanas.

$$S = \bar{A} + B$$

Variáveis booleanas: A e B.

Lembre-se de que essa tabela possui $2^2 = 4$ linhas, pois possui 2 variáveis. Nas primeiras colunas, devemos colocar as variáveis A e B, com seus respectivos valores 1 ou 0.

Α	В	Ā	S = Ā + B
1	1	0	1
1	0	0	0
0	1	1	1
0	0	1	1

Em S = \bar{A} + B a operação utilizada é **OR**. Nessa operação, o resultado será 0 (falso) somente se as duas variáveis booleanas forem iguais a 0 (zero), ou seja, A = 0 e B = 0. Nos demais casos, o resultado é 1 (verdadeiro).

Na álgebra booleana, também devemos ficar atentos aos parênteses e à ordem de precedência dos operadores.

- 1. 1º Parênteses
- 2. 2º Negação ou complementação
- 3. 3º Multiplicação lógica (A · B)
- 4. 4º Soma lógica (A + B)