Autómatas finitos no deterministas (AFnD)

Elvira Mayordomo

Universidad de Zaragoza

1 de octubre de 2012

Contenido de este tema

- Introducción y ejemplos de autómatas finitos no deterministas
- Definición de autómata finito no determinista
- Equivalencia de AFD y AFnD (autómatas finitos deterministas y no deterministas)
- Método para convertir un AFnD en AFD

Recordad los autómatas finitos deterministas

- La computación del autómata con entrada 011 es (q_0, q_0, q_1, q_1) que me dice la secuencia de estados por los que pasa con entrada 011
- ► Cada entrada me da exactamente una computación. Tengo siempre como mucho una opción desde un estado si leo un símbolo ← Esto se llama determinismo

Primer ejemplo de autómata finito no determinista

- Desde q₁ con el símbolo 1 hay dos opciones posibles
- ▶ Desde q_2 hay una posibilidad de moverse sin leer ningún símbolo (la marcada como ϵ)

Cómo funciona el autómata con entrada 010

Cómo funciona el autómata con entrada 010

- lacktriangle Puede seguir la computación (q_1,q_1,q_1,q_1)
- ▶ Puede seguir (q_1, q_1, q_2, q_3)
- Puede seguir $(q_1, q_1, q_2, q_3, q_4)$

¿Cuál es la buena? Todas son posibles ¿Acepta 010? Sí, porque alguna de las computaciones posibles lleva a estado final (q_4)

Con entrada 010110

Acepta porque una de las posibles computaciones termina en q_4

Con entrada 01

Rechaza porque ninguna de las posibles computaciones termina en estado final

¿Qué lenguaje acepta?

Las cadenas con un 1 que no sea el último símbolo

¿Qué lenguaje acepta este?

Las cadenas que tienen 1 como antepenúltimo símbolo

Las cadenas que tienen 1 como último, penúltimo o antepenúltimo símbolo

Dos últimos ejemplos

$$(aa)^* + (aaa)^*$$

Dos últimos ejemplos

 $(a + ba^*ba)^*$, las cadenas que tienen un número par de bs y después de cada b par tienen una a, y la cadena vacía

Definición formal de autómata finito NO determinista

Definición

Un autómata finito no determinista (AFD) es $M = (Q, \Sigma, \delta, q_0, F)$ tal que

- Q es el conjunto finito de estados
- Σ es el alfabeto de entrada
- ▶ $q_0 \in Q$ es el estado inicial
- ▶ $F \subseteq Q$ es el conjunto de los estados finales.
- ▶ $\delta: Q \times (\Sigma \cup \epsilon) \rightarrow \mathcal{P}(Q)$ es la función de transición $\delta(q, a) = R$ quiere decir que si estoy en el estado q y leo el símbolo a puedo ir a cualquiera de los estados $q' \in R$

Notación: $\mathcal{P}(Q)$ es el conjunto de subconjuntos de Q

Representado un autómata

▶ Lo más usual es la representación gráfica

Representado un autómata

► También podemos indicar quiénes son los estados, estado inicial, estados finales y tabla de transición

$$Q = \{q_1, q_2, q_3, q_4\}$$

$$F = \{q_4\}$$

δ	0	1	ϵ
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	Ø	$\{q_3\}$
q ₃	$\{q_4\}$	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	Ø

Computación de un autómata no determinista

Dado un AFnD $M = (Q, \Sigma, \delta, q_0, F)$

- ▶ Una computación de M con entrada $w = w_1 ... w_n$ es $(r_0, r_1, ..., r_m)$ que cumple:
 - $w = y_1 \dots y_m \text{ con } y_i \in \Sigma \cup \epsilon$
 - ▶ r₀ es el estado inicial
 - $r_{i+1} \in \delta(r_i, y_{i+1})$
- ▶ Una computación aceptadora de M con entrada w es una computación (r_0, r_1, \ldots, r_m) de M con entrada w que cumple $r_m \in F$

Ejemplo de computación

Si M es este autómata

- (q_1, q_1, q_1, q_1) es una computación de M con entrada 010
- $(q_1, q_1, q_2, q_3, q_4)$ es una computación aceptadora de M con entrada 010

Lenguaje aceptado por un autómata no determinista

Formalmente, dado un AFnD $M=(Q,\Sigma,\delta,q_0,F)$ el lenguaje aceptado por M es L(M) definido como

$$L(M) = \{ w \mid \text{ existe una computación}$$

aceptadora de M con entrada $w \}$

Autómatas finitos deterministas y no deterministas

- Vamos a ver que los AFD y AFnD aceptan los mismos lenguajes
- La ventaja de los AFnD es que pueden ser mucho más pequeños/simples (Buscar un AFnD que acepte las cadenas de longitud múltiplo de 2 o múltiplo de 3)
- La ventaja de los AFD es que son más fáciles de analizar y simplificar

Equivalencia de AFD y AFnD

Teorema

Dado un autómata finito no determinista (AFnD) M, existe un autómata finito determinista (AFD) M' tal que L(M) = L(M').

Demostración de la equivalencia de AFD y AFnD

- La veremos en la pizarra (y hay un resumen en la web)
- De la demostración sacaremos un método que usaremos para convertir AFnD en AFD
- ▶ Primero trataremos un caso más fácil y luego el general

Método para determinizar (AFnD sin ϵ -transiciones)

- 1. Construir una tabla con columnas una por cada $a \in \Sigma$.
- 2. En la primera fila escribir $\{q_0\}$ y en la columna a escribir $\delta(\{q_0\},a)$, es decir, todos los estados a los que puedo llegar desde q_0 con entrada a.
- 3. Copiar las casillas de la fila anterior como principio de nuevas filas.
- 4. Para cada fila R pendiente, rellenar la fila R escribiendo en cada columna a $\delta(R,a)$, es decir, todos los estados a los que puedo llegar desde algún estado de R con entrada a.
- 5. Copiar las casillas de la fila anterior como principio de nuevas filas.
- 6. Repetir los pasos 4 y 5 hasta que no queden filas por rellenar.

Ejemplo de determinizar (AFnD sin ϵ -transiciones)

	0	1
$\{q_1\}$	$\{q_1\}$	$\{q_1,q_2\}$
$\{q_1,q_2\}$	$\{q_1,q_3\}$	$\{q_1,q_2,q_3\}$
$\{q_1,q_3\}$	$\{q_1,q_4\}$	$\{q_1,q_2,q_4\}$
$\{q_1,q_2,q_3\}$	$\{q_1,q_3,q_4\}$	$\{q_1, q_2, q_3, q_4\}$
$\{q_1,q_4\}$	$\{q_1\}$	$\{q_1,q_2\}$
$\{q_1,q_2,q_4\}$	$\{q_1,q_3\}$	$\{q_1,q_2,q_3\}$
$\{q_1,q_3,q_4\}$	$\{q_1,q_4\}$	$\{q_1,q_2,q_4\}$
$\{q_1, q_2, q_3, q_4\}$	$\{q_1,q_3,q_4\}$	$\{q_1, q_2, q_3, q_4\}$

Ejemplo de determinizar (AFnD sin ϵ -transiciones)

Ejemplo de determinizar (AFnD sin ϵ -transiciones)

Es útil cambiar los nombres de los estados

Método para determinizar (AFnD con ϵ -transiciones)

- 1. Construir una tabla con columnas una por cada $a \in \Sigma$.
- 2. En la primera fila escribir el inicial $I = E(\{q_0\})$, es decir, todos los estados a los que puedo llegar desde q_0 con ϵ^* .
- 3. En la primera fila, en la columna a escribir $\bigcup_{r\in I} E(\delta(r,a))$, es decir, todos los estados a los que puedo llegar desde I con entrada $a\epsilon^*$.
- 4. Copiar las casillas de la fila anterior como principio de nuevas filas.
- 5. Para cada fila R pendiente, rellenar la fila R escribiendo en cada columna a, $\bigcup_{r \in R} E(\delta(r,a))$, es decir, todos los estados a los que puedo llegar desde algún estado de R con entrada $a\epsilon^*$.
- 6. Copiar las casillas de la fila anterior como principio de nuevas filas.
- 7. Repetir los pasos 5 y 6 hasta que no queden filas por rellenar.

Ejemplo de determinizar (AFnD con ϵ -transiciones)

	а	Ь
{1,3}	{1,3}	{2}
{2}	{2,3}	{3}
{2,3}	{1,2,3}	{3}
{3}	{1,3}	Ø
{1, 2, 3}	{1,2,3}	{2,3}
Ø	Ø	Ø

Ejemplo de determinizar (AFnD con ϵ -transiciones)

	а	b
{1,3}	{1,3}	{2}
{2}	{2,3}	{3}
{2,3}	{1, 2, 3}	{3}
{3}	{1,3}	Ø
$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{2,3\}$
Ø	Ø	Ø

Teorema

▶ (Recordad la definición) Un lenguaje A es regular si existe un AFD M con A = L(M).

► Teorema

Un lenguaje A es regular si existe un AFnD N con A = L(N).

¿Qué hemos aprendido?

- Para cada AFnD (autómata no determinista) existe un AFD (autómata determinista) que acepta el mismo lenguaje
- ► Así que para ver que existe un AFD que reconoce un lenguaje basta con encontrar un AFnD
- Por tanto para saber si un lenguaje es regular basta con encontrar un autómata no determinista que lo reconozca

¿Qué hemos aprendido?

- En prácticas vimos como convertir cada AFD en un AFD mínimo que hace lo mismo
- ► El AFD mínimo es único
- ► Para saber si dos AFnD A₁ y A₂ hacen lo mismo (reconocen el mismo lenguaje) basta con
 - ► Convertirlos a AFDs M₁ y M₂
 - ▶ Minimizar M_1 y M_2 , convirtiéndolos en N_1 y N_2
 - Si N₁ y N₂ son el mismo autómata entonces A₁ y A₂ hacen lo mismo

Bibliografía

- ▶ Sipser (2a edición), páginas 47 a 58 (en sección 1.2) .
- ► Kelley, secciones 2.5, 2.6 y 2.7.