Homework 5

Problem 1. Fill in the blanks with either true (\checkmark) or false (\times)

f(n)	g(n)	f = O(g)	$f = \Omega(g)$	$f = \Theta(g)$
$2n^3 + 3n$	$100n^2 + 2n + 100$	×	✓	×
$50n + \log n$	$10n + \log \log n$	✓	✓	✓
$50n \log n$	$10n \log \log n$	×	✓	X
$\log n$	$\log^2 n$	✓	×	×
n!	5 ⁿ	×	✓	X

Problem 2. 1. Find two functions f(x) and g(x) such that $f(x) \neq O(g(x))$ and $g(x) \neq O(f(x))$.

2. Furthermore, we say a function $h : \mathbb{R} \to \mathbb{R}$ is monotonically increasing if it satisfies the property ' $x \le y \Rightarrow h(x) \le h(y)$ '. Find two monotonically increasing functions f(x) and g(x) such that $f(x) \ne O(g(x))$ and $g(x) \ne O(f(x))$.

(Please give the detailed proof that your functions satisfy the requirements.)

Solution.

- 1. $f(x) = \cos x$ and $g(x) = \sin x$. If f(x) = O(g(x)), that is, $\cos x = O(\sin x)$. By the definition of O notation, we have there exits a constant x_0 and a constant C, such that, for any $x \ge x_0$, there will be $|\cos x| \le C \cdot \sin x$. Suppose we choose $x_1 \ge x_0$, and $\cos x_1 \ne 0$, since $|\cos x_1| \le C \cdot \sin x_1$, when $x_2 = x_1 + \pi \ge x_0$, we have $|\cos x_1| \le -C \cdot \sin x_1$. However this can not be true, since $\cos x_1 \ne 0$. Thus $f(x) \ne O(g(x))$. We can prove $g(x) \ne O(f(x))$ in a similar way.
- 2. $f(x) = e^{x+\sin x}$ and $g(x) = e^{x+\cos x}$. First, since $(x+\sin x)' = 1+\cos x \ge 0$, thus $x+\sin x$ is monotonically increasing, then it would be easy to say f(x) is also monotonically increasing. We can prove g(x) is monotonically increasing in a similar way. Second, if f(x) = O(g(x)), then by definition, we have there exits a constant x_0 and a constant C, such that, for any $x \ge x_0$, there will be $|e^{x+\sin x}| \le C \cdot e^{x+\cos x}$, similar as (1), we can prove it is not true, thus $f(x) \ne O(g(x))$, again we can prove $g(x) \ne O(f(x))$.

Problem 3. Prove that

- (a) $\left(1+\frac{1}{n}\right)^n \leq e \text{ for all } n \geq 1.$
- (b) $\left(1 + \frac{1}{n}\right)^{n+1} \ge e \text{ for all } n \ge 1.$
- (c) Using (a) and (b), conclude that $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$.

Proof.

(a) A well known inequality is that $1 + x \le e^x$, if we let $x = \frac{1}{n}$, we have $\left(1 + \frac{1}{n}\right)^n \le \left(e^{1/n}\right)^n = e$.

- (b) $\left(1 + \frac{1}{n}\right)^{n+1} = \left(\frac{n+1}{n}\right)^{n+1} = \left(\frac{1}{1 \frac{1}{n+1}}\right)^{n+1} \ge \left(e^{\frac{1}{n+1}}\right)^{n+1} = e.$
- (c) From (a), (b) we can see that $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n \le e$ and $e \le \lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^{n+1}$. Since

$$\lim_{n \to +\infty} \frac{\left(1 + \frac{1}{n}\right)^n}{\left(1 + \frac{1}{n}\right)^{n+1}} = \lim_{n \to +\infty} \frac{1}{1 + \frac{1}{n}} = 1$$

Thus $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n \le e \le \lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^{n+1} = \lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n$, so $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$.

Problem 4. *Prove* Bernoulli's inequality: for each natural number n and for every real $x \ge -1$, we have $(1 + x)^n \ge 1 + nx$.

Proof. We prove this statement by induction on n.

Basis step. n = 0, for every real $x \ge -1$, we have $(1 + x)^0 = 1 \ge (1 + 0 \times x) = 1$. **Induction hypothesis.** Assume when n = k, we have $(1 + x)^k \ge 1 + kx$ for every $x \ge -1$.

Proof of induction step. When n = k + 1, since $x \ge -1$, we have $(1 + x) \ge 0$ and $(1 + x)^{k+1} = (1 + x)(1 + x)^k \ge (1 + x)(1 + kx) = 1 + (k + 1)x + kx^2 \ge 1 + (k + 1)x$. Thus, we can say $(1 + x)^n \ge 1 + nx$ for each natural number n and for every real $x \ge -1$.

Problem 5. Prove that for n = 1, 2, ..., we have

$$2\sqrt{n+1}-2 < 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \le 2\sqrt{n} - 1.$$

Proof. We can prove this statement by induction on n.

1. We first prove $2\sqrt{n+1} - 2 < 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}}$

Basis step. When n = 1, we have $2\sqrt{2} - 2 < 1$, which is true.

Induction hypothesis. Assume when n = k the statement is true, that is,

 $2\sqrt{k+1}-2<1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{k}}.$ **Proof of induction step.** When n=k+1, by induction hypothesis, we have $1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}>2\sqrt{k+1}-2+\frac{1}{\sqrt{k+1}}.$ Thus, we just need to prove that $2\sqrt{k+2} - 2 < 2\sqrt{k+1} - 2 + \frac{1}{\sqrt{k+1}}$, that is, $2\sqrt{k+2} < 2\sqrt{k+1} + \frac{1}{\sqrt{k+1}}$.

$$2\sqrt{k+2} < 2\sqrt{k+1} + \frac{1}{\sqrt{k+1}} \iff 2\sqrt{(k+2)(k+1)} < 2(k+1) + 1$$

 $\iff 4(k^2 + 3k + 2) < 4k^2 + 12k + 9$
 $\iff 8 < 9$

Thus, we can say $2\sqrt{n+1} - 2 < 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}}$ is right.

2. Then, we prove $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{n}} \le 2\sqrt{n} - 1$.

Basis step. When n = 1, we have $1 \le 2\sqrt{1} - 1 = 1$, which is true.

Induction hypothesis. Assume when n = k the statement is true, that is,

1 + $\frac{1}{\sqrt{2}}$ + $\frac{1}{\sqrt{3}}$ + \cdots + $\frac{1}{\sqrt{k}}$ $\leq 2\sqrt{k} - 1$. **Proof of induction step.** When n = k + 1, by induction hypothesis, we have $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} \leq 2\sqrt{k} - 1 + \frac{1}{\sqrt{k+1}}$. Thus we just need to prove $2\sqrt{k} - 1 + \frac{1}{\sqrt{k+1}} \le 2\sqrt{k+1} - 1$, that is, $2\sqrt{k} + \frac{1}{\sqrt{k+1}} \le 2\sqrt{k+1}$. Since

$$2\sqrt{k} + \frac{1}{\sqrt{k+1}} \le 2\sqrt{k+1} \quad \Longleftrightarrow \quad 2\sqrt{k(k+1)} + 1 \le 2(k+1)$$

$$\iff \quad 4(k^2 + k) \le 4k^2 + 4k + 1$$

$$\iff \quad 0 < 1$$

Thus, we can say $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{n}} \le 2\sqrt{n} - 1$ is right.

From 1 and 2, we can say the statement is true.

Problem 6.

- a) Show that the product of all primes p with $m is at most <math>\binom{2m}{m}$.
- b) Using a), prove the estimate $\pi(x) = O(\frac{x}{\ln x})$, where $\pi(x)$ denote the number of primes not exceeding the number x.

Solution.

- a) For all primes p with $m , we have <math>p \mid 2m!$, and we also have $p \nmid m!$, thus $p \nmid (m!)^2$. Since $2m! = \binom{2m}{m} \times (m!)^2$, so we have For all primes p with $m , we have <math>p \mid \binom{2m}{m}$, that is, the product of all primes p with $m is at most <math>\binom{2m}{m}$.
- b) For any x, we say there will be a natural number k, such that $2^{k-1} < x \le 2^k$. From a) we know $\prod_{m , where p denotes the number is a prime. Thus, we have <math>\sum_{m . Since <math>\binom{2m}{m} \le 2^{2m}$ and $\sum_{m . So we now have <math>(\pi(2m) \pi(m)) \ln m \le 2m \ln 2$, that is, $\pi(2m) \pi(m) \le 2 \ln 2 \frac{m}{\ln m}$. If $m = 2^h$, we have $\pi(2^{h+1}) \pi(2^h) \le \frac{2^{h+1}}{h}$. It is easy to know $\pi(2^{h+1}) \le 2^h$, thus we have $(h+1)\pi(2^{h+1}) h\pi(2^h) \le 3 \cdot 2^h$. So $\sum_{h=0}^{k-1} ((h+1)\pi(2^{h+1}) h\pi(2^h)) = k\pi(2^k) \le \sum_{h=0}^{k-1} 3 \cdot 2^h = 3 \cdot 2^k$. Thus, $\pi(2^k) \le 3 \cdot \frac{2^k}{k}$, since $2^{k-1} < x \le 2^k$, we have $\pi(x) \le \pi(2^k) \le 3 \cdot \frac{2^k}{k}$, so $\pi(x) = O(\frac{x}{\ln x})$.