Seminar 5

- 1. Justificati afirmatiile
 - a) $\frac{1}{n+1} < \ln(n+1) \ln n < \frac{1}{n}, \quad \forall n \in \mathbb{N}^*$
 - b) Sirul $c_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \ln n$ este convergent
 - c) Seria $\sum\limits_{n=1}^{\infty} \left(\frac{1}{\mathrm{e}}\right)^{1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}}$ este divergenta
 - d) Sirul $s_n = 1 \frac{1}{2} + \frac{1}{3} \ldots + \frac{(-1)^{n+1}}{n}$ are limita $\ln 2$.
- 2. Determinati multimea punctelor de acumulare A' pentru
 - a) $A = \left\{ \frac{1}{2^n} \middle| n \in \mathbb{N} \right\}$ b) $A = \mathbb{Q}$
- 3. Verificati daca functiile urmatoare isi ating valorile extreme si determinati aceste valori
 - a) $f: (-1,1) \to \mathbb{R}$ $f(x) = \ln \frac{1-x}{1+x}$
 - b) $f:[0,1] \to \mathbb{R}$ $f(x) = \begin{cases} \frac{1}{2}, x = 0 \\ x, x \in (0,1] \end{cases}$ c) $f:[-1,1] \to \mathbb{R}$ $f(x) = x\sqrt{1-x^2}$
- 4. (caracterizarea monotoniei cu ajutorul derivatei) Fie $f:(a,b)\to\mathbb{R}$ o functie derivabila pe (a, b). Au loc afirmatiile
 - a) f este crescatoare pe $(a,b) \iff f'(x) \ge 0, \forall x \in (a,b)$
 - b) f este decrescatoare pe $(a,b) \iff f'(x) \leq 0, \forall x \in (a,b)$
 - c) Daca $f'(x) > 0, \forall x \in (a,b) \implies$ f este strict crescatoare pe (a,b)
 - d) Daca $f'(x) < 0, \forall x \in (a,b) \implies$ f este strict descrescatoare pe (a,b)

In general, reciprocele afirmatiilor c) si d) nu sunt adevarate. Justificati.

- 5. Determinati punctele de extrem local ale functiilor de la exercitiul 3.
- 6. Folosind regula lui l'Hopital, calculati limitele
 - a) $\lim_{x \to 0} \frac{e (1+x)^{\frac{1}{x}}}{x}$
 - b) $\lim_{x \to \infty} \frac{x^{\alpha}}{e^x}$, $\alpha \in \mathbb{R}$

Exercitii suplimentare

- 1. Determinati multimea punctelor de acumulare A' pentru
 - a) $A = \left\{ \frac{n!}{3^n} \middle| n \in \mathbb{N} \right\}$
 - b) $A = (0,1) \setminus \mathbb{Q}$
- 2. Fie $A \subseteq \mathbb{R}$ un interval si $f: A \to A$ o functie avand urmatoarele proprietati
 - i) f este derivabila pe A
 - ii) $\exists q < 1$ astfel incat $|f'(x)| \leq q, \forall x \in A$
 - iii) $\exists a \in A \text{ astfel incat } f(a) = a.$

Definim recursiv sirul $x_{n+1} = f(x_n), \forall n \in \mathbb{N} \text{ si } x_0 \in A$. Justificati afirmatiile

- a) $|x_{n+1} a| \le q|x_n a|, \forall n \in \mathbb{N}$
- b) (x_n) este sir convergent si are limita a.
- 3. Determinati punctele de extrem local si valorile extreme ale functiilor

 - a) $f: [-1, 1] \to \mathbb{R}$ f(x) = |x| (1 x)b) $f: (0, \infty) \to \mathbb{R}$ $f(x) = \frac{|\ln x|}{\sqrt{x}}$
- 4. Folosind regula lui l'Hopital, calculati limitele
 - a) $\lim_{x \searrow 0} (\cos \sqrt{x})^{\frac{1}{x}}$
 - b) $\lim_{\alpha} x^{\alpha} \ln(\sin x)$, $\alpha > 0$

Regula lui l'Hopital. Fie $x_0 \in \mathbb{R}$, $V \subseteq \mathbb{R}$ o vecinatate a lui x_0 si $f, g : V \setminus \{x_0\} \to \mathbb{R}$ doua functii avand proprietatile:

- i) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0 \text{ (sau } +\infty)$
- ii) f, g sunt derivabile pe $V \setminus \{x_0\}$
- iii) $g'(x) \neq 0, \forall x \in V \setminus \{x_0\}$ iv) $\exists \lim_{x \to x_0} \frac{f'(x)}{g'(x)} = l \in \overline{\mathbb{R}}$

atunci $\exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = l$.