A Convolutional Neural Network (CNN) for handwritten digit recognition on FPGA using HLS

Giacomo Boldini giacomo.boldini@studenti.unipr.it

University of Parma Master's Degree in Computer Science Embedded Systems

AA 2021/22

Project repository here [1]

Goals & Outline

Goals

- Creation of a NN for handwritten digit classification.
- Implementation of the NN on FPGA using HLS/Vivado.
- Prove that HW solutions is faster than SW (C) solutions.

Outline:

- 1 Python: Create and train NN model
- 2 C: NN implementation
- 3 Vitis/C++: NN synthesis and validation
- 4 Conclusions

The (C)NN model

CNN architecture choosed:

- image-processing task;
- no need of manual feature extraction: done automatically;
- less number of parameters than other NNs.

API: Python Keras/Tensorflow [2].

Model as simple as possible:

Training

TrainX shape = (60000, 28, 28)Training epochs = 10 (empiric)

Layers' trainable parameters:

Layer (type)	Output Shape	Param #
ZeroPadding2D	(30, 30, 1)	0
Conv2D	(28, 28, 8)	80
MaxPooling2D	(14, 14, 8)	0
Flatten	(1568)	0
Dense	(10)	15690
TOT		15770

Accuracy:

- validation set (20% of test set): 97.78%
- test set (#10000 samples): **98.070%**

Mean time for a prediction: \sim 35 ms

Training history:


```
void cnn(float img_in [IMG_ROWS] [IMG_COLS], float prediction[DIGITS])
  // Normalization and padding.
  float pad_img [PAD_IMG_ROWS] [PAD_IMG_COLS] = { 0 };
  normalization_and_padding(img_in, pad_img);
  // Convolution.
  float features [FILTERS][IMG_ROWS][IMG_COLS] = { 0 };
  convolutional_layer(pad_img, features);
  // Pooling.
  float pool_features [FILTERS] [POOL_IMG_ROWS] [POOL_IMG_COLS] = { 0 };
  max_pooling_layer(features, pool_features);
  // Flattening.
  float flat_array [FLAT_SIZE] = { 0 };
  flattening_layer(pool_features, flat_array);
  // Dense.
  dense_laver(flat_array, prediction):
```

C main() / testbench

• MNIST TestX samples: 10000 N: $100 \sim 250$

 $\bullet \ \, \text{Accuracy:} \ \, \frac{\text{correct predictions}}{\text{total predictions}} \qquad \qquad \text{Test successfull} \Leftrightarrow \text{Accuracy} \geq 95\%$

Mean time for a prediction:

- 0.82 ms O0 (\sim 40x faster than Python)
- **0.17 ms** O3 (~200x faster than Python)

Code optimizations for Vitis/FPGA

C implementation not optimized for Vitis/FPGA deployment.

CNN parallelism

- ONN creates implicit parallelism on filters.
- 2 CNN does not need all the data from the previous layer to start computing the output response for the current layer.

Optimize code:

- hls::stream [3] between functions: FIFO with blocking API read() and write().
 - 1 + new function dataflow_section(img1,img2,...,img8) that clones input image FILTER_NUMBER times.
 - 2 + sw chages: eg. convolution with sliding-window.

C simulation

Total predictions: 500.

Correct predictions: 98.20 % \rightarrow **OK**.

Average latency: 2.33 ms \rightarrow a little bit more than C.

Some bad classifications:

(images normalized and rounded)

Expected: 3

Got: 0: 0.000002 1: 0.000000 2: 0.001373

3: 0.213332 4: 0.000003

5: 0.000935 6: 0.000000 7: 0.000000

8: 0.783027

9: 0.001329

Expected: 4

Got: 0: 0.000000 1: 0.000045

2: 0.000020 3: 0.000661 4: 0.253086

4: 0.253086 5: 0.000059 6: 0.000414

7: 0.000036 8: 0.000321

9: 0.745357

Expected: 6

Got:

0: 0.735325 1: 0.000000 2: 0.000000

3: 0.000000 4: 0.000000

4: 0.000000 5: 0.000019

6: 0.264633 7: 0.000000

7: 0.000000 8: 0.000004

9: 0.000004 9: 0.000020

C synthesis I

Common parameters:

• Target device: xc7a200tfbg484-1

• Target clock period: **10ns** (clock freq.: 100 *MHz*)

Different "levels of optimization" (directives):

No directives

C synthesis II

Default directives

3 Dataflow directive

C synthesis III

Dataflow view:

(zoom on convolutional_layer)

Validation and implementation

C/RTL Cosimulation \rightarrow **OK**

Modules & Loops	Avg II	Max II	Min II	Avg Latency	Max Latency	Min Latency
✓ • cnn	6747	6747	6747	6746	6746	6746
> o cnn_Pipeline_pad_for_rows_pad_for_cols	6747	6747	6747	918	918	918
> o cnn_Pipeline_clone_for_rows_clone_for_cols	6747	6747	6747	901	901	901
> 🔣 dataflow_section	6747	6747	6747	4922	4922	4922

Total predictions: 100
Correct predictions: 99.00 %
Average latency: 0.290000 (ms)
*** C/RTL co-simulation finished: PASS ***

 \rightarrow prediction time: **0.067** ms

Implementation (Vivado)

	Verilog
SLICE	12940
LUT	26381
FF	38178
DSP	129
BRAM	224
URAM	0
LATCH	0
SRL	1007
CLB	0

	Verilog
CP required	10.000
CP achieved post-synthesis	8.123
CP achieved post-implementation	9.449

Timing met

Conclusions

Main goal reached: HW faster than SW - but not always.

As future works:

- small SW changes could improve parallelism;
- more targeted Vitis pragmas could improve performance;
- using fixed-point arithmetic could reduce area (* performance too);
- grid-search on NN architecture could increase accuracy (more performance) and reduce FPGA area (less price).

Thank you for your attention.

References

- [1] Github: HLS-CNN. [Project repository]. URL: https://github.com/FedericoSerafini/HLS-CNN.
- [2] Francois Chollet et al. Keras. 2015. URL: https://github.com/fchollet/keras.
- Vitis High-Level Synthesis User Guide: HLS Stream Library. [Online; visited june-2022]. URL: https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/HLS-Stream-Library.
- [4] Duda S. How to Implement a Convolutional Neural Network Using High Level Synthesis. Ed. by amiq.com. [Online; posted 14-December-2018]. 2018. URL: https://www.amiq.com/consulting/2018/12/14/how-to-implement-a-convolutional-neural-network-using-high-level-synthesis/.