Network structure

I. Makarov & L.E. Zhukov

BigData Academy MADE from Mail.ru Group

Social Network Analysis and Machine Learning on Graphs

Network structure

Typical network structure

Core-periphery structure of a network

image from J. Leskovec, K. Lang, 2010

Graph cores

Definition

A k-core is the largest subgraph such that each vertex is connected to at least k others in subset

Every vertex in k-core has a degree $k_i > k$

(k+1)-core is always subgraph of k-core The core number of a vertex is the highest order of a core that contains this vertex

k-core decomposition

V. Batageli, M. Zaversnik, 2002

• If from a given graph $G=(V,\,E)$ recursively delete all vertices, and lines incident with them, of degree less than k, the remaining graph is the k-core.

K-cores

Zachary karate club: 1,2,3,4 - cores

k-cores

k-cores: 1:1458, 2:594, 3:142, 4:12, 5:6

k-shells: 1:864-red, 2:452-pale green, 3:130-green, 5:6-blue, 6:6-purple

Definition

A *clique* is a complete (fully connected) subgraph, i.e. a set of vertices where each pair of vertices is connected.

Cliques can overlap

- A maximal clique is a clique that cannot be extended by including one more adjacent vertex (not included in larger one)
- A maximum clique is a clique of the largest possible size in a given graph

Graph clique number is the size of the maximum clique

image from D. Eppstein

Maximum cliques

Maximal cliques:

Clique size: 2 3 4 5 Number of cliques: 11 21 2 2

Zachary, 1977

Computational issues:

- Finding click of fixed given size $k O(n^k k^2)$
- Finding maximum clique $O(3^{n/3})$
- But in sparse graphs...

Network communities

Definition

Network communities are groups of vertices such that vertices inside the group connected with many more edges than between groups.

- Community detection is an assignment of vertices to communities.
- Will consider non-overlapping communities
- Graph partitioning problem

Network communities

What makes a community (cohesive subgroup):

- Mutuality of ties. Almost everyone in the group has ties (edges) to one another
- Compactness. Closeness or reachability of group members in small number of steps, not necessarily adjacency
- Density of edges. High frequency of ties within the group
- Separation. Higher frequency of ties among group members compared to non-members

Wasserman and Faust

Community density

- Graph G(V, E), n = |V|, m = |E|
- Community set of nodes S n_s -number of nodes in S, m_s - number of edges in S
- Graph density

$$\rho = \frac{m}{n(n-1)/2}$$

community internal density

$$\delta_{int} = \frac{m_s}{n_s(n_s - 1)/2}$$

external edges density

$$\delta_{ext} = \frac{m_{ext}}{n_s(n - n_s)}$$

• community (cluster): $\delta_{int} > \rho$, $\delta_{ext} < \rho$

Modularity

 Compare fraction of edges within the cluster to expected fraction in random graph with identical degree sequence

$$Q=\frac{1}{4}(m_s-E(m_s))$$

Modularity score

$$Q = \frac{1}{2m} \sum_{ij} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \delta(c_i, c_j), = \sum_{u} \left(\frac{m_u}{m} - \left(\frac{k_u}{2m} \right)^2 \right)$$

 m_u - number of internal edges in a community u, k_u - sum of node degrees within a community

• Modularity score range $Q \in [-1/2, 1)$, single community Q = 0

Modularity

• The higher the modularity score - the better are communities

from A.L. Barabasi 2016

Heuristic approach

Focus on edges that connect communities.

Edge betweenness -number of shortest paths $\sigma_{st}(e)$ going through edge e

$$C_B(e) = \sum_{s \neq t} \frac{\sigma_{st}(e)}{\sigma_{st}}$$

Construct communities by progressively removing edges

Newman-Girvan, 2004

Algorithm: Edge Betweenness

Input: graph G(V,E)Output: Dendrogram

repeat

For all $e \in E$ compute edge betweenness $C_B(e)$; remove edge e_i with largest $C_B(e_i)$;

until edges left;

If bi-partition, then stop when graph splits in two components (check for connectedness)

Hierarchical algorithm, dendrogram

best: clusters = 6, modularity = 0.345

Lecture outline

- Network cores
- 2 Cliques
- Network communities
- Graph paritioning
- Spectral optimization
 - Min cut
 - Normalized cut
 - Modularity maximization
- Multilevel spectral
- Overlapping communities
- Multi-level optimization
- Random walk methods

Network communities

Definition

Network communities are groups of vertices such that vertices inside the group connected with many more edges than between groups.

Graph partitioning problem

Graph partitioning

Combinatorial problem:

 Number of ways to divide network of n nodes in 2 groups (bi-partition):

$$\frac{n!}{n_1!n_2!}, \quad n=n_1+n_2$$

 Dividing into k non-empty groups (Stirling numbers of the second kind)

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{n} (-1)^{j} C_{k}^{j} (k-j)^{n}$$

Number of all possible partitions (n-th Bell number):

$$B_n = \sum_{k=1}^n S(n,k)$$

$$B_{20} = 5,832,742,205,057$$

Community detection

- Consider only sparse graphs $m \ll n^2$
- Each community should be connected
- Combinatorial optimization problem:
 - optimization criterion
 - optimization method
- Exact solution NP-hard (bi-partition: $n = n_1 + n_2$, $n!/(n_1!n_2!)$ combinations)
- Solved by greedy, approximate algorithms or heuristics
- Recursive top-down 2-way partition, multiway partiton
- Balanced class partition vs communities

Graph cut

Optimization criterion: graph cut

Graph G(E, V) partition: $V = V_1 + V_2$

Graph cut

$$Q=cut(V_1,V_2)=\sum_{i\in V_1,j\in V_2}e_{ij}$$

Ratio cut:

$$Q = \frac{cut(V_1, V_2)}{||V_1||} + \frac{cut(V_1, V_2)}{||V_2||}$$

Normalized cut:

$$Q = \frac{cut(V_1, V_2)}{Vol(V_1)} + \frac{cut(V_1, V_2)}{Vol(V_2)}$$

Quotient cut (conductance):

$$Q = \frac{cut(V_1, V_2)}{\min(Vol(V_1), Vol(V_2))}$$

where: $Vol(V_1) = \sum_{i \in V_1, i \in V} e_{ij} = \sum_{i \in V_1} k_i$

Optimization methods

- Greedy optimization:
 - Local search [Kernighan and Lin, 1970], [Fidducia and Mettheyses, 1982]
- Approximate optimization:
 - Spectral graph partitioning [M. Fiedler, 1972], [Pothen et al 1990], [Shi and Malik, 2000]
 - Multicommodity flow [Leighton and Rao, 1988]
- Heuristics algorithms:
 - Multilevel graph partitioning (METIS) [G. Karypis, Kumar 1998]
- Randomized algorithms:
 - -Randomized min cut [D. Karger, 1993]

Graph cuts

- Let $V = V^+ + V^-$ be partitioning of the nodes
- \bullet Let $\mathbf{s} = \{+1, -1, +1, \ldots -1, +1\}^{T}$ indicator vector

$$s(i) = \begin{cases} +1: & \text{if } v(i) \in V^+ \\ -1: & \text{if } v(i) \in V^- \end{cases}$$

• Number of edges, connecting V^+ and V^-

$$cut(V^{+}, V^{-}) = \frac{1}{4} \sum_{e(i,j)} (s(i) - s(j))^{2} = \frac{1}{8} \sum_{i,j} A_{ij} (s(i) - s(j))^{2} =$$

$$= \frac{1}{4} \sum_{i,j} (k_{i} \delta_{ij} s(i)^{2} - A_{ij} s(i) s(j)) = \frac{1}{4} \sum_{i,j} (k_{i} \delta_{ij} - A_{ij}) s(i) s(j)$$

$$cut(V^{+}, V^{-}) = \frac{1}{4} \sum_{i,j} (D_{ij} - A_{ij}) s(i) s(j)$$

Graph cuts

• Graph Laplacian: $L_{ij} = D_{ij} - A_{ij}$, where $D_{ii} = diag(k_i)$

$$\mathsf{L}_{ij} = \left\{ \begin{array}{l} \mathsf{k}(i) \,, & \text{if } i = j \\ -1 \,, & \text{if } \exists \; \mathsf{e}(i,j) \\ 0 \,, & \text{otherwise} \end{array} \right.$$

• Laplacian matrix 5x5:

$$L = \begin{pmatrix} 1 & -1 & & & \\ -1 & 2 & -1 & & & \\ & -1 & 2 & -1 & & \\ & & -1 & 2 & -1 \\ & & & -1 & 1 \end{pmatrix}$$

$$1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$$

Graph cuts

- Graph Laplacian: L = D A
- Graph cut:

$$Q(s) = cut(V^+, V^-) = \frac{1}{4} \sum_{i,j} L_{ij} s(i) s(j) = \frac{s^T L s}{4}$$

• Minimal cut:

$$\min_{s} Q(s)$$

Balanced cut constraint:

$$\sum_{i} s(i) = 0$$

Integer minimization problem, exact solution is NP-hard!

Spectral method - relaxation

- Discrete problem → continuous problem
- Discrete problem: find

$$\min_{s} (\frac{1}{4} s^T L s)$$

under constraints: $s(i) = \pm 1$, $\sum_i s(i) = 0$;

• Relaxation - continuous problem: find

$$\min_{\mathbf{x}}(\frac{1}{4}\mathbf{x}^{T}\mathsf{L}\mathbf{x})$$

under constraints: $\sum_{i} x(i)^{2} = n$, $\sum_{i} x(i) = 0$

- Given x(i), round them up by s(i) = sign(x(i))
- Exact constraint satisfies relaxed equation, but not other way around!

Spectral method - computations

Constraint optimization problem (Lagrange multipliers):

$$Q(x) = \frac{1}{4}x^{T}Lx - \lambda(x^{T}x - n), \quad x^{T}e = 0$$

• Eigenvalue problem:

$$Lx = \lambda x$$
, $x \perp e$

Solution:

$$Q(\mathsf{x}_\mathsf{i}) = \frac{n}{4}\lambda_\mathsf{i}$$

• First (smallest) eigenvector:

Le = 0,
$$\lambda = 0$$
, $x_1 = e$

- Looking for the second smallest eigenvalue/eigenvector λ_2 and x_2
- Minimization of Rayleigh-Ritz quotient:

$$\min_{\mathsf{x} \perp \mathsf{x}_1} (\frac{\mathsf{x}^\mathsf{T} \mathsf{L} \mathsf{x}}{\mathsf{x}^\mathsf{T} \mathsf{x}})$$

Spectral graph theory

- $\lambda_1 = 0$
- Number of $\lambda_i = 0$ equal to the number of connected components
- $0 \le \lambda_2 \le 2$ $\lambda_2 = 0$, disconnected graph $\lambda_2 = 1$, totally connected
- Graph diameter (longest shortest path)

$$D(G) >= \frac{4}{n\lambda_2}$$

Spectral graph partitioning algorithm

```
Algorithm: Spectral graph partitioning - normalized cuts
Input: adjacency matrix A
Output: class indicator vector s
compute D = diag(deg(A));
compute L = D - A;
solve for second smallest eigenvector:
min cut: Lx = \lambdax:
normalized cut : Lx = \lambda Dx:
set s = sign(x_2)
```


Eigenvalues: $\lambda_1=$ 0, $\lambda_2=$ 0.2, $\lambda_3=$ 0.25 ...

Spectral ordering

Cut metrics

Optimization criterion: modularity

Modularity:

$$Q = \frac{1}{2m} \sum_{ij} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \delta(c_i, c_j)$$

where n_c - number of classes and

$$\delta(c_i,c_j) = \left\{ egin{array}{ll} 1: & ext{if} & c_i = c_j \\ 0: & ext{if} & c_i
eq c_j \end{array}
ight. ext{- kronecker delta}$$

[Maximization!]

Spectral modularity maximization

- Direct modularity maximization for bi-partitioning, [Newman, 2006]
- Let two classes $c_1=V^+$, $c_2=V^-$, indicator variable $s=\pm 1$

$$\delta(c_i,c_j)=\frac{1}{2}(s_is_j+1)$$

Modularity

$$Q = \frac{1}{4m} \sum_{ij} \left(A_{ij} - \frac{k_i k_j}{2m} \right) (s_i s_j + 1) = \frac{1}{4m} \sum_{i,j} B_{ij} s_i s_j$$

where

$$B_{ij} = A_{ij} - \frac{k_i k_j}{2m}$$

M. Newman, 2006

Spectral modularity maximization

• Qudratic form:

$$Q(s) = \frac{1}{4m} s^T B s$$

- Integer optimization NP, relaxation $s \to x$, $x \in R$
- Keep norm $||x||^2 = \sum_i x_i^2 = x^T x = n$
- Quadratic optimization

$$Q(x) = \frac{1}{4m} x^T Bx - \lambda (x^T x - n)$$

Eigenvector problem

$$Bx_i = \lambda_i x_i$$

Approximate modularity

$$Q(x_i) = \frac{n}{4m} \lambda_i$$

• Modularity maximization - largest $\lambda = \lambda_{max}$

Modularity maximization

Algorithm: Spectral modularity maximization: two-way partition

Input: adjacency matrix A

Output: class indicator vector s

compute k = deg(A);

compute $B = A - \frac{1}{2m}kk^T$;

solve for maximal eigenvector $Bx = \lambda x$;

 $\mathsf{set}\ \mathsf{s} = \mathit{sign}(\mathsf{x}_{\mathit{max}})$

Multilevel spectral

recursive partitioning

Multilevel spectral

Lecture outline

- Network cores
- 2 Cliques
- Network communities
- Graph paritioning
- Spectral optimization
 - Min cut
 - Normalized cut
 - Modularity maximization
- Multilevel spectral
- Overlapping communities
- Multi-level optimization
- Random walk methods

Community detection

image from W. Liu, 2014

Overlapping communities

Palla, 2005

Overlapping communities

Palla, 2005

k-clique community

- k-clique is a clique (complete subgraph) with k nodes
- *k*-clique community a union of all *k*-cliques that can be reached from each other through a series of adjacent *k*-cliques
- two k-cliques are said to be adjacent if they share k-1 nodes.

Adjacent 4-cliques

k-clique percolation

- Find all maximal cliques
- Create clique overlap matrix
- Threshold matrix at value k-1
- Communities = connected components

Palla, 2005

k-clique percolation

k-clique percolation

$$k = 4$$

$$k = 5$$

Palla, 2005

Multi-resolution scalable method

2 mln mobile phone network V. Blondel et.al., 2008

"The Louvain method"

- Heuristic method for greedy modularity optimization
- Find partitions with high modularity
- Multi-level (multi-resolution) hierarchical scheme
- Scalable

Modularity:

$$Q = \frac{1}{2m} \sum_{i,j} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \delta(c_i, c_j)$$

Algorithm

- Assign every node to its own community
- Phase I
 - For every node evaluate modularity gain from removing node from its community and placing it in the community of its neighbor
 - Place node in the community maximizing modularity gain
 - repeat until no more improvement (local max of modularity)
- Phase II
 - Nodes from communities merged into "super nodes"
 - Weight on the links added up
- Repeat until no more changes (max modularity)

Communities and random walks

 Random walks on a graph tend to get trapped into densely connected parts corresponding to communities.

Walktrap community

Walktrap

- Consider random walk on graph
- At each time step walk moves to NN uniformly at random $P_{ij} = \frac{A_{ij}}{d(i)}$, $P = D^{-1}A$, $D_{ii} = diag(d(i))$
- ullet P_{ij}^t probability to get from i to j in t steps, $t \ll t_{ extit{mixing}}$
- ullet Assumptions: for two i and j in the same community P_{ij}^t is high
- if i and j are in the same community, then $\forall k$, $P_{ik}^t \approx P_{jk}^t$
- Distance between nodes:

$$r_{ij}(t) = \sqrt{\sum_{k=1}^{n} \frac{(P_{ik}^{t} - P_{jk}^{t})^{2}}{d(k)}} = ||D^{-1/2}P_{i}^{t} - D^{-1/2}P_{j}^{t}||$$

Walktrap

Computing node distance r_{ij}

- Direct (exact) computation: $P_{ij}^t = (P^t)_{ij}$ or $P_i^t = P^t p_i^0$, $p_i^0(k) = \delta_{ik}$
- Approximate computation (simulation):
 - Compute K random walks of length t starting form node i
 - Approximate $P_{ik}^t \approx \frac{N_{ik}}{K}$, number of walks end up on k

Distance between communities:

$$P_{Cj}^t = \frac{1}{|C|} \sum_{i \in C} P_{ij}^t$$

$$r_{C_1C_2}(t) = \sqrt{\sum_{k=1}^n \frac{(P_{C_1k}^t - P_{C_2k}^t)^2}{d(k)}} = ||D^{-1/2}P_{C_1}^t - D^{-1/2}P_{C_2}^t||$$

Walktrap

Algorithm (hierarchical clustering)

- Assign each vertex to its own community $S_1 = \{\{v\}, v \in V\}$
- Compute distance between all adjacent communities r_{CiCi}
- Choose two "closest" communities that minimizes (Ward's methods):

$$\Delta\sigma(C_1, C_2) = \frac{1}{n} \left(\sum_{i \in C_3} r_{iC_3}^2 - \sum_{i \in C_1} r_{iC_1}^2 - \sum_{i \in C_2} r_{iC_2}^2 \right)$$

and merge them $S_{k+1}=(S_k\setminus\{C_1,C_2\})\cup C_3$, $C_3=C_1\cup C_2$

update distance between communities

After n-1 steps finish with one community $S_n = \{V\}$

Walktrap

Community detection algorithms

Author	Ref.	Label	Order
Eckmann & Moses	(Eckmann and Moses, 2002)	EM	$O(m(k^2))$
Zhou & Lipowsky	(Zhou and Lipowsky, 2004)	ZL	$O(n^3)$
Latapy & Pons	(Latapy and Pons, 2005)	LP	$O(n^3)$
Clauset et al.	(Clauset et al., 2004)	NF	$O(n \log^2 n)$
Newman & Girvan	(Newman and Girvan, 2004)	NG	$O(nm^2)$
Girvan & Newman	(Girvan and Newman, 2002)	GN	$O(n^2m)$
Guimerà et al.	(Guimerà and Amaral, 2005; Guimerà et al., 2004)	SA	parameter dependent
Duch & Arenas	(Duch and Arenas, 2005)	DA	$O(n^2 \log n)$
Fortunato et al.	(Fortunato et al., 2004)	FLM	$O(m^3n)$
Radicchi et al.	(Radicchi et al., 2004)	RCCLP	$O(m^4/n^2)$
Donetti & Muñoz	(Donetti and Muñoz, 2004, 2005)	DM/DMN	$O(n^3)$
Bagrow & Bollt	(Bagrow and Bollt, 2005)	BB	$O(n^3)$
Capocci et al.	(Capocci et al., 2005)	CSCC	$O(n^2)$
Wu & Huberman	(Wu and Huberman, 2004)	WH	O(n+m)
Palla et al.	(Palla et al., 2005)	PK	$O(\exp(n))$
Reichardt & Bornholdt	(Reichardt and Bornholdt, 2004)	RB	parameter dependent

Author	Ref.	Label	Order
Girvan & Newman	(Girvan and Newman, 2002; Newman and Girvan, 2004)	GN	$O(nm^2)$
Clauset et al.	(Clauset et al., 2004)	Clauset et al.	$O(n \log^3 n)$
Blondel et al.	(Blondel et al., 2008)	Blondel et al.	O(m)
Guimerà et al.	(Guimerà and Amaral, 2005; Guimerà et al., 2004)	Sim. Ann.	parameter dependent
Radicchi et al.	(Radiochi et al., 2004)	Radicchi et al.	$O(m^4/n^2)$
Palla et al.	(Palla et al., 2005)	Cfinder	$O(\exp(n))$
Van Dongen	(Dongen, 2000a)	MCL	$O(nk^2), k < n$ paramete
Rosvall & Bergstrom	(Rosvall and Bergstrom, 2007)	Infomod	parameter dependent
Rosvall & Bergstrom	(Rosvall and Bergstrom, 2008)	Infomap	O(m)
Donetti & Muñoz	(Donetti and Muñoz, 2004, 2005)	DM	$O(n^3)$
Newman & Leicht	(Newman and Leicht, 2007)	EM	parameter dependent
Ronhovde & Nussinov	(Ronhovde and Nussinov, 2009)	RN	$O(m^{\beta} \log n), \beta \sim 1.3$

Summary

Lectures 1-5 Descriptive Network Analysis

- Network characteristics:
 - Power law node degree distribution
 - Small diameter
 - High clustering coefficient (transitivity)
- Network models:
 - Random graphs
 - Preferential attachment
 - Small world
- Centrality measures:
 - Degree centrality
 - Closeness centrality
 - Betweenness centrality
- Link analysis:
 - Page rank
 - HITS

Summary

Lectures 1-5 Descriptive Network Analysis

- Structural equivalence
 - Vertex equivalence
 - Vertex similarity
- Assortative mixing
 - Assortative and disassortative networks
 - Mixing by node degree
 - Modularity
- Network structures:
 - Cliques
 - k-cores
- Network communities:
 - Graph partitioning
 - Overlapping communities
 - Heuristic methods
 - Random walk based methods

- Finding and evaluating community structure in networks, M.E.J. Newman, M. Girvan, Phys. Rev E, 69, 2004
- Modularity and community structure in networks, M.E.J. Newman, PNAS, vol 103, no 26, pp 8577-8582, 2006
- S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.
- S. Fortunato. Community detection in graphs, Physics Reports, Vol. 486, Iss. 3–5, pp 75-174, 2010

- M. Fiedler. Algebraic connectivity of graphs, Czech. Math. J, 23, pp 298-305, 1973
- A. Pothen, H. Simon and K. Liou. Partitioning sparse matrices with eigenvectors of graphs, SIAM Journal of Matrix Analysis, 11, pp 430-452, 1990
- Bruce Hendrickson and Robert Leland. A Multilevel Algorithm for Partitioning Graphs, Sandia National Laboratories, 1995
- Jianbo Shi and Jitendra Malik. Normalized Cuts and Image Segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, N 8, pp 888-905, 2000
- M.E.J. Newman. Modularity and community structure in networks.
 PNAS Vol. 103, N 23, pp 8577-8582, 2006
- B. Good, Y.-A. de Montjoye, A. Clauset. Performance of modularity maximization in practical contexts, Physical Review E 81, 046106, 2010

- G. Palla, I. Derenyi, I. Farkas, T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society, Nature 435 (2005) 814?818.
- P. Pons and M. Latapy, Computing communities in large networks using random walks, Journal of Graph Algorithms and Applications, 10 (2006), 191-218.
- V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks, J. Stat. Mech. P10008 (2008).
- J. Leskovec, K.J. Lang, A. Dasgupta, and M.W. Mahoney. Statistical properties of community structure in large social and information networks. In WWW 08: Procs. of the 17th Int. Conf. on World Wide Web, pages 695-704, 2008.

- M.A Porter, J-P Onella, P.J. Mucha. Communities in Networks, Notices of the American Mathematical Society, Vol. 56, No. 9, 2009
- S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1), pp 27-64, 2007.
- S. Fortunato. Community detection in graphs, Physics Reports, Vol. 486, Iss. 3-5, pp 75-174, 2010