Homework 1

Introduction to Robotics

- 1. What are the degrees of freedom of a standard, four-wheel, hand-pushed lawnmower? Why are you still able to mow your entire lawn?
- 2. What are the maximum degrees of freedom for objects driving on the plane?
- 3. (a) Calculate the angle between vectors $(\cos 45^o, -\sin 45^o, 0)^T$ and $(\sin 45^o, \cos 45^o, 0)^T$.
 - (b) Provide a third vector that forms a coordinate system with the other two.
- 4. (a) Write out the entries of a rotation matrix ${}_{B}^{A}R$ assuming basis vectors X_{A} , Y_{A} , Z_{A} , and X_{B} , Y_{B} , Z_{B} .
 - (b) Express $\hat{X}_B = [0, 1, 0]^T$ in frame $\{A\}$.
 - (c) Write out the entries of rotation matrix ${}_A^BR$.
- 5. Consider a tri-cycle with two independent standard wheels in the rear and the stearable, actuated front-wheel. Assume r to be the radius of the front wheel and l be the distance between the front and rear axle. Chose a suitable coordinate system and use ϕ as the steering wheel angle and wheel-speed $\dot{\omega}$ (only the steared front-wheel is driven). Provide the forward kinematics of the mechanism.