Binary Heap を用いた Dijkstra 法の最悪ケースと Fibonacci Heap の計測

noshi91

2021年3月1日

1 概要

Binary Heap を用いた Dijkstra 法の最悪ケースに近いものを作成し、Fibonacci Heap, Binary Heap のそれぞれを用いた実装で速度を比較した。

2 実験コード

https://github.com/noshi91/blog/blob/master/codes/dijkstra_experiment.cpp

3 ケースの内容

Binary Heap を用いた Dijkstra 法で $\Theta(E\log(V))$ の時間計算量が掛かる、多重辺と自己ループを含まない重み付き有向グラフを 3 つ作成した。1 つ目は |V|=1500000, |E|=5999990、2 つ目は |V|=500000, |E|=10499769、3 つ目は |V|=50000, |E|=12497500 のケースである。

4 結果

自作した Fibonacci Heap を用いた $O(E+V\log(V))$ の実装、C++ 標準の std::priority_queue を用いた $O(E\log(V))$ の実装について、グラフの構築を除く実行時間を計測した。3 つ目のケースについては naive な $O(V^2)$ の実装についても計測した。15 回の実行の中央値を示す。

表 1 計測結果 (ms)

V	E	fibonacci_heap	std::priority_queue	naive
1500000	5999990	1127	1308	_
500000	10499769	518	1478	_
5000	12497500	252	1618	80

5 注意

- 計測として正式な手順を踏んでいるか分かりません。
- Fibonacci Heap の最悪ケースがよく分からなかったので Binary Heap の最悪ケースだけを計測しています。従って、Binary Heap が遅く見える結果になっています。