Dr. Andreas Stein

Dr. Francesca Bartolucci

Series 7

Throughout this exercise sheet, let $T \in (0, +\infty)$, $m \in \mathbb{N}$, let $(\Omega, \mathcal{F}, P, \mathbb{F}_{t \in [0,T]})$ be a stochastic basis, and let $W = (W^{(1)}, \dots, W^{(m)}) \colon [0, T] \times \Omega \to \mathbb{R}^m$ be a m-dimensional standard $(\Omega, \mathcal{F}, P, \mathbb{F}_{t \in [0,T]})$ -Brownian motion.

1. Consider the Heston model with stochastic volatility for the underlying S, that is for $t \in [0, T]$ the dynamics are given by the system of SDEs

$$dS_{t} = rS_{t} dt + \sqrt{V_{t}} S_{t} dW_{t}^{(1)},$$

$$dV_{t} = a(b - V_{t}) dt + \sigma_{v} \sqrt{V_{t}} \left(\rho dW_{t}^{(1)} + \sqrt{1 - \rho^{2}} dW_{t}^{(2)} \right),$$
(1)

with initial values $S_0 > 0$ and $V_0 > 0$. Here, $\rho \in [-1,1]$ and $r,a,b,\sigma_{\rm v} > 0$ are constants. For simplicity, we assume uncorrelatedness, i.e., $\rho = 0$. Then, we set the Heston parameters to $T=1, S_0=10, V_0=0.5, r=0.05, a=2, b=0.5,$ and $\sigma_{\rm v}=0.25.$

The truncated Euler-Maruyama scheme with step size $\Delta t = T/N$ for the approximation of the SDE (1) is given for n = 1, ..., N by the iteration

$$Y_{n}^{N} = Y_{n-1}^{N} + r Y_{n-1}^{N} \Delta t + \sqrt{\max(\overline{V}_{n-1}^{N}, 0)} Y_{n-1}^{N} \left(W_{t_{n}}^{(1)} - W_{t_{n-1}}^{(1)} \right),$$

$$\overline{V}_{n}^{N} = \overline{V}_{n-1}^{N} + a(b - \overline{V}_{n-1}^{N}) \Delta t + \sigma_{v} \sqrt{\max(\overline{V}_{n-1}^{N}, 0)} \left(W_{t_{n}}^{(2)} - W_{t_{n-1}}^{(2)} \right),$$
(2)

with initial values $Y_0^N = S_0$ and $\overline{V}_0^N = V_0$. Hence, the discrete volatility process \overline{V} is truncated at zero to avoid negative values in the square roots.

- (i) Implement the truncated Euler–Maruyama scheme and investigate the strong error as in Exercise 1 in Series 6. To do this, use the same parameters $M=10^5$ and $N_\ell=10\cdot 2^\ell$ for $\ell=0,1,...,4$. Report on the experimental rates of strong convergence in L^1 and L^2 . Use as an approximation of the exact solution a numerical solution of the SDE on the level $\ell=6$.
 - *Hint:* You may use the template EM_Heston.m and the solution EMMultiDim.m from Series 6.
- (ii) Repeat item (i) for the choice of parameters $T=1, S_0=10, V_0=0.5, r=0.05,$ a=1, b=0.5, and $\sigma_{\rm v}=2.$ Comment on the results.

2. Consider the SDE given by

$$dX_t = \mu_0 X_t dt + \sigma_0 X_t dW_t, \qquad t \in [0, T], \qquad X_0 = \xi, \tag{3}$$

where $\mu_0, \sigma_0 \in \mathbb{R}$ are constant and $\xi \in \mathcal{M}(\mathbb{F}_0, \mathcal{B}(\mathbb{R}^d))$ is such that $\xi \sim \mathcal{N}_{0,1}$.

(i) Investigate the weak convergence of the Euler–Maruyama scheme combined with the Richardson extrapolation method for the SDE (3) with parameters T=1, $\mu_0=0.5$, $\sigma_0=1$ and for the test function $f(x)=x^2$. To this end, compute the weak error

$$\mathbb{E}[f(X_T)] - \sum_{k=1}^{M} \left(2 \cdot f(Y_N^{N,k}) - f(Y_{N/2}^{N/2,k}) \right) \tag{4}$$

for each $N=N_\ell=10\cdot 2^\ell$ with $\ell\in\{0,1,\ldots,3\}$ and $M=10^7$. In equation (4), $Y_N^{N,k}$ denotes the k-th sample of the Euler-Maruyama approximation of X_T with stepsize $\Delta t=T/N$.

Hints:

- You may modify the solution ErrorEMWeak.m from Exercise 2 in Series 6.
- Depending on your workstation this simulation might take two or three minutes.
- (ii) **Remark 4.4.2.** Let Y^N be the Euler-Maruyama approximation of X with $N \in \mathbb{N}$ time steps and let f be a smooth function with polynomially bounded derivatives. Let $M \geq 1$. We define the higher-order extrapolation A_M recursively via

$$A_0 := f(\overline{Y}_T^N), \quad A_m(N) := \frac{2^m A_{m-1}(2N) - A_{m-1}(N)}{2^m - 1}, \ m = 1, \dots, M.$$

Prove that for every $M \geq 1$

$$|\mathbb{E}[f(X_T)] - \mathbb{E}[A_M(N)]| \le CN^{-(M+1)}$$

for a C > 0 and large enough $N \in \mathbb{N}$.

Hints: You may use without proof the higher order expansions

$$\mathbb{E}[f(X_T)] - \mathbb{E}[f(\overline{Y}_T^N)] = \sum_{m=1}^{M} C_m N^{-m} + \mathcal{O}(N^{-(M+1)}),$$

for every $M \in \mathbb{N}$, where $C_1, \ldots, C_M \in \mathbb{R}$ are constants independent of N.

3. Let $g:(1,+\infty)\to\mathbb{R},\ x\mapsto x^{-3}$, and define the integral

$$\mu := \int_{1}^{+\infty} g(x) \mathrm{d}x.$$

In this exercise we estimate the value of μ by a Monte Carlo algorithm and we derive the corresponding confidence intervals.

(i) Let U be a $\mathcal{U}_{(0,1)}$ -distributed random variable. Determine a function $h:(0,1)\to\mathbb{R}$ such that

$$\mu = \mathbb{E}_P[h(U)]$$

and compute the value of μ .

- (ii) Write a MATLAB function MCEstimatorCI(h,N, alpha) with inputs h from item (i), $N \in \mathbb{N}$ and $\alpha \in [0,1]$ that generates N independent realizations $(U_i)_{i=1}^N$ of U and returns as outputs
 - 1. the sample mean E_N for the set $(h(U_i))_{i=1}^N$;
 - 2. the (unbiased) sample variance V_N for the set $(h(U_i))_{i=1}^N$;
 - 3. the (asymptotically valid) α -confidence interval $[a_N^{\text{Ch}}, b_N^{\text{Ch}}]$ centered at E_N based on the Chebyshev inequality;
 - 4. the (asymptotically valid) α -confidence interval $[a_N^{\text{CLT}}, b_N^{\text{CLT}}]$ centered at E_N based on the CLT.

For $N \in \{2^8, 2^9, \dots, 2^{16}\}$ plot in a logarithmic diagram the true value of μ , the estimate E_N , and the 95%-confidence intervals $[a_N^{\text{CLT}}, b_N^{\text{CLT}}]$ and $[a_N^{\text{Ch}}, b_N^{\text{Ch}}]$ on the y-axis, against the values of N on the x-axis.

- (iii) For $N \in \{2^8, 2^9, \dots, 2^{16}\}$ and $\alpha = 0.95$, run $M = 10^3$ times the MATLAB function MCEstimatorCI(h,N, alpha) from item (ii), and generate two plots containing:
 - 1. the values of $N^{-1/2}$, the average of $|E_N \mu|$ over all M, and the average of $\sqrt{V_N/N}$ over all M on the y-axis, against the values of N on the x-axis;
 - 2. the percentages of $\mu \in [a_N^{\text{CLT}}, b_N^{\text{CLT}}]$ and $\mu \in [a_N^{\text{Ch}}, b_N^{\text{Ch}}]$ over all M on the y-axis, against the values of N on the x-axis.

Comment on the results in the plots.

Hint: the Matlab function norminu() returns the inverse of the standard normal cumulative distribution function.

Due: 16:00 o'clock, Monday, 14th November 2022

Webpage: https://moodle-app2.let.ethz.ch/course/view.php?id=17423

Organisation: Francesca Bartolucci, HG G 53.2