PATENT ABSTRACTS OF JAPAN

(11)Publication number :

05-171014

(43)Date of publication of application : 09.07.1993

(51)Int_CL

COSL 67/02 C08J

(21)Application number: 03-343820

(71)Applicant: TORAY IND INC

(22)Date of filing: 26.12,1991 (72)Inventor: AOYAMA MASATOSHI

YOSHIDA MINORU SUZUKI MASARU

(54) POLYESTER COMPOSITION

(87) Abstract:

PURPOSE. To prepare a polyester compsn. which does not clog a polymer filter in the molding step and is useful for preparing a film or fiber excellent in abrasion resistance by compounding a specific arom, polyester with a particulate zirconium oxide.

CONSTITUTION: An arom, polyester obtd, by copolymerizing at least one compd. having a suifonic acid (or metal suifonate) group with other necessary comonomers (s.g. one obtd. from dimethyl 5sodiumsulfoisophthalate, dimethyl terephthalate, and athylene glycol) is compounded with a particulate zirconium oxide pref. having a mean particle diameter of 0.005-3µm, still pref. 0.005-0.2µ m.

リラーリアーリ日:サミ: 4 6 8 M、英し (株) 安安教機能 点質

Finer Rudhick 7077 033 819

(19)日本簡特許庁(JP) (12) d

(12) 公開特許公報(A)

(11)特許出題公開番号 特開平5-171014 (43)公開日 平成5年(1993)7月8日

(51)Int.CL ^s	識別級等	庁内整理番号	FI	拉斯基示的
COSL 87/0	ž.			the trightness will have
C08J 5/1	CFD	9267-4F		
C08K 3/2	KIR	7167-4.1		
D01F 8/8	3 0 2 Z	7199-3B		
	305 B	7199-3B		
			審查請求 未請求	請求項の数1(全10頁) 最終頁に続く
(21)出羅番号	特別中3-343820		(71)出題人	000003159
				東レ株式会社
(22)出版日	平成3年(1991)12	₹26H		東京都中央区日本機密町 2 丁目 2 巻 1 号
			(72)発明者	青山 雅俊
				静岡県三島市4845番地(町名,丁目表示な
				 東レ株式会社三島工場内
			(72)発明者	吉田 実
				静岡県三島市4845番地(町名。丁目表示な
				し) 東レ株式会社三島工場内
			(72)発明者	鈴木 勝
				静岡県三島市4845番地(町名。丁田表示な
				し) 東レ株式会社三島工場内

(54) 【発明の名称】 ポリエステル組成物

(57) 【藝約】

【構成】 少なくとも一つのスルホン酸基またはスルホン酸金属基基をもつ化合物を共産合してなる芳香族がリ エアルと酸化ジルコニウム粒子からなるポリエステル 組成物。

【効果】 粒子の分散性が優れ、成形時のポリマフィル タの目詰りがなく、耐寒純性に優れたフィルムまたは繊 維を製造しうるポリエステル組成物が待られる。

[特許請求の範囲]

【精水噴1】 少なくとも一つのスルホン酸基またはス ルホン酸金属塩基をもの化合物を共産合してなる労働族 ボリエステル(A)と酸化ジルコニウム粒子(B)とか らなるボリエステル組度物。

[発明の詳細な説明]

[0001]

【産業上の利用分野】本発明は、フィルムあるいは繊維 を製造するための改良されたボリエステル組成物に関す る。

【0002】さらに詳しくは、ポリマ中での酸化ジルコニウム粒子の分散性に優れたフィルムあるいは繊維を得るのに適したポリエステル組成物に関する。

100031

【従来の技術】一般に熱可限性ボリエステル、例えばボリエチレンテレフタレートは優れた力学特性を有しており、フィルム、繊維などの放発器として広く用いられている。通常、減ポリエステルは、成形品に基準性を付与する目的でボリエステル中に不活性無機粒子を含有をしめ、成形品の表面に凹凸を付サイン方法が行なわれている。このような不活性無機粒子としては複々あるが、一般に不活性無機粒子は成ポリエステルとの観光性に欠り、消弊系性に受るといった機関があった。

【0094】従来からこの問題を解決すべく、粒子の表面を掲の検討がたされており、例えば、特別昭63-2 21158号へ解や特別8059-280762号金 (コロイダルンリカ粒子表面をグリコール基で改賞す る)、特別昭65-312345号公領(コロイダルシ リカ粒子表面をカップリング和で設する)、特別86 2-2358535分級(残蝕カルシウム粒子をリン化 30

合物で表面処理する) などが擦塞されている。 【0005】しかしながら、このような公知の方法をも ってしても、磁気テープのように繰り返し摩擦使用され るような場合は、粒子の脱落を生じ、いまだ不十分であ る。また、もう一つの問題点として、ポリエステル中に 不活注無機粒子を添加する方法は、減粒子がポリエステ ル中で凝集してしまうという問鎖があった。ポリエステ ルの成形時には、該ポリエステルをポリマフィルタで濾 過することにより、組大粒子、凝集粒子などを除去する ことが一般的に行なわれているが、ポリエステル中の凝 40 集粒子が多く存在する場合、該ポリマフィルタの寿命が 短くなり、生産性を著しく低下させる結果となる。さら に、例えば酸ポリマフィルタで除去しまれない秘集粒子 がフィルム中に存在した場合、フィルム表面に粗大変紀 が形成され、コンデンサ用フィルムにおいては電気特性 に無影響を及ぼしたり、磁気テープ用フィルムにおいて はドロップアウトを引き起す原因となり、フィルム連動 を摂ねてしまう。

[00008]

【発明が解決しようとする課題】本発明は前記した従来 50

技術の問題点を解決し、耐寒耗性および粒子の分散性に 優れたフィルムあるいは繊維を得るのに適したポリエス テル組成物を提供することにある。

[0007]

【課題を解決するための手段】前記した本発明の目的 は、少なくとも一つのスルホン酸蒸またはスルホン酸金 環塩基をもつ化合物を共重合してたる芳香族ボリエステ ル (名)と酸化ジルコニウム粒子(B)からなるボリエ ステル和成物によって途波できる。

10 【0008】本発明における少なくとも一つのスルポン酸器またはスルホン酸金酸塩基をもつ化合物を共直合してなる労働酸対リエステル(A)とは、労働級ウルボン酸もしくはそのエステル形成性誘導体(a)およびグリコール(b)およびスルホン酸温またはスルホン酸金異塩基を少なくとも一つ有する化合物(c)を主成分とするものである。

【0010】また、グリコール破分(b)としては、エチレングリコール、ブチレングリコール、ジェテレング リコール、プロビレングリコール、ボリエテレングリコール、ホリエテレングリコール、スーシクロへキサンジメタノールなどが挙げ られ、なかでもエテレングリコールが検索しい。

【06.11】また、スルホン酸基単とはスルホン酸金属 塩基を少なくとも一つ有する化合物 (c) としては、5 ーナトリウムスルホイソフタル酸およびそのエステル形 成性誘導体、5-リチウムスルホイソフタル酸およびそ のエステル形成性誘導体、5-リチウムスルホレゾル シンなどが繋げられ、中でも5-ナトリウムスルホレゾル ソフタル酸およびそのエステル形成性誘導体、5-リチウ ムスルホイソフタル酸およびそのエステル形成性誘導体 が発生し、

【0012】なお、該化合物(c)の必要合業は、芳香 族ジカルボン酸もしくはそのエステル形成性結構体10 の重量部に対しての、1~30重量新であると、発明の 効果が十分発現し、また得られるボリエステルの治晶化 特性が維持され、成形性が良好となるので労ましい。 【0013】また、これらのボリエステルに対共適合成 分として、ネオペンテルグリコール、ボリアルキレング リコール、ローキシリレングルコールとびのボール点 分、アジピン酸、セパシン酸、フタル酸、イソフタル酸 などのジカルボン酸成分、トリメリット盤、ピロメリッ り・簡などの多常能ジカルボン酸成分。 中ネキシエトキ り・輸放との参考能ジカルボン酸成分。 シ安息香酸などのオキシカルホン酸成分などを共電合し てもかまわない。

【0014】本発明における酸化ジルコニウム粒子は、 例えば天然鉱物であるジルコサンドやバデライトから締 融によって不純物を搭散除去する方法(教式法)や。ア ルカリ溶融後水洗により不純物を除去する方法 (羅式 法)などによって得られる。

【0015】本発明で使用する酸化ジルコニウム粒子の 平均径は0,005~3μm、特に0,005~0,2 n mであるとフィルム製造時にフィルム破れが少なく。 フィルム表面担さが低く、電気特性が良好であるため好 ましい。

【0016】また、酸化ジルコニウム粒子の添加量とし では、熱可塑性ポリエステル100歳量部に対して0、 01~30 重量部が好ましく。0、05~5 重量部がさ らに好ましい。

【0017】本発明の熱可能性ポリエステル組成物は、 例えば酸化ジルコニウム粒子を目的とするポリエステル の出発原料であるグリコール溶媒で混合撹拌して分散ス ラリーとし、熱可塑性ポリエステルの反応差に添加する 20 aークロロフェノールを溶媒として2.5℃にて測定し 製造方法などで得ることができる。なお、この際の処理 方法は機律によらずとも、例えば超音波などによっても 構わなく、またサンドグラインダなどの媒体型ミルを用 いても構わない。ポリエステルへの割合にあたっては、 上記した重合反応系に直接添加する方法以外にも、例え ば酸化ジルコニウム粒子を溶酸状態のボリエステルへ練 り込む方法などでも可能である。前者の資金反応系に添 加する際の添加時期は任意であるが、エステル交換度応*

線圧上昇が2kg/cm² 未満

2kg/cm°以上5kg/cm°未満

5kg/cm"以上10kg/cm"未續

10kg/cm 以上

2級以上を合格とした。

【0023】D. フィルム物性

(1) 数面程さRa (um)

得られたポリエステル組成物を通常の方法で二種延伸フ ィルムとし、JISB-0601に郷じサーフコム表面 抱さ計を用い、針径2μm、荷錐70mg、瀬定基準長 0.025mm、カットオフロ、08mmの条件下で中 心線平均粗さ(Ra)を測定した。

[0024](2) フィルム表面欠点

Eで作成したフィルムをアルミニウム蒸着し、微分干渉 顕微鏡を用いて観察し、画像解析装置ルーゼックス50 O (日本レギュレーター製) で3μm以上の大きさの突 起数をカウントした。評価基準は次のとおりとした。 良好: 20個/cm 末瀬

不良 20個/cm 以上

[0025](3) 新羅純性

デープ走行性試験機TBT-300 [(株) 権限システ ム研究所襲]を使用し、25℃、50RHの雰囲気で2 50 部、5…ナトリウムスルホイソフタル輸ジメチル2番祭

* 前から重縮合反応の減圧開始前までの間が好ましい。後 者の練り込みの場合は、粒子を乾燥してポリエステルに 練り込む方法でも、スラリ状能で減圧しながら直接練り 込む方法でも構わない。

【0018】さらに、本発明のポリエステルには、ポリ エステルの製造時に通常用いられるリチウム、ナトリウ ム、カルシウム、マグネシウム、マンガン、亜鉛、アン チモン、ゲルマニウム、チタンなどの化合物の金属化合 物無媒、着色防止剤としてのリン化合物、酸化ジルコニ 10 ウム粒子以外の不断性粒子などを含んでいてもよい。

100191 【実施例】以下に実施例を挙げて本発明を詳細に説明す

る。なお、得られたポリエステルの各特性値測定は次の 方法に従って行なった。

[0020] A. 酸化ジルコニウム粒子の粒器 平均粒径は粒子の電子顕微鏡写真によって測定した50 体積%の点にあたる粒子等価球道径により求めた。 物係 球菌径とは粒子と同じ体瘤を有する球の直径である。 【0021】B、ポリマの線陸結度

te

【0022】C、ポリマ線圧

5 umフィルタを装着した押出機でポリマを押出して、 押出し置と譲圧の関係から単位濾過面積当たりの譲圧曲 線を作成し、ポリマ組成物100g通過時の議圧上界 (kg/cm / #100 g/7/n91 cm) から次のように判定した。

000面繰り返し牽行させた後、ガイド窓に付着した中

・色の削れ粉(白粉)を目視にて判定する。ここで、ガイ ド径は8mm がであり、ガイド材質はSUS27 (表面和 度0.2S), 巻き付け角は180°、テーブ単行速度 は3.3 cm/移である。評価基準は次のとおりであ ð.,

49 1級:白粉発生量は非常に少ない。

2級:白粉発生量が少ない。

3級:白粉発生量がやや多い。

4級:白粉発生量が非常に多い。

100261率縮例1

平均粒子径0.15 μmの酸化ジルコニウム粒子を10 重量部、エチレングリコール90素量部を混合して常温 下1時間ディソルバーで撹拌処理し、修化シルコニウム /エチレングリコールスラリーを得た。

【0027】 伸方、ジメチルテレフタレート100番輪

1977 522 8186

部、エチレンクリコール70重量部に、熱機として酢酸マグネンウム0.06重量部を加えてエステル交換反応を行なった後、反応生成物に先に類裂したスラリー2重 繋部と被撲の時化アンチェン0.03重量部 熱安に別としてトリメチルホスフェート0.03重量部 表別え、重縮令反応を行ない、降有執援0.620のポリエテレンテレフタレート組成的後を再ん。

【0028】このボリマを用いて漆過性テストと行なった結果は、漆圧上昇が1、5kg/cm² (1報)であり、良好な濾過特性を有していた。

【0029】このボリエチレンテレフタレート組成物を 290℃で溶験押出しし、その後90℃で接換それぞれ 3倍延伸し、さらにその後220℃で15秒熱処理し、 撃さ15μmのボリエチレンテレフタレート二軸延伸フ ルルムを得た。

【0030】このフィルムを評価したところ、Ram 0.03μm、割準軽性評価1級であり、新像純性に非 常に等れたフィルムを加かった。また、フィルムを適からま * は5個/cm² で、良好な表面形態を有していた。 【0031】実施例2、3

5一ナトリウムスルポイソフタル機ジメテルの地連合 量、含有する機化ジルコニウム粒子の平均粒子を変更え て、実練側1と同様にしてポリエステルを重合し、さら にその二機低伸フィルムを得た。変1にポリマ特性、フィルム特性を示した。得られたポリマの粒子分散性およ びフィルムの機能が出り返りであった。

[0032]比较例1~5

Piper Rugnici

10 5一寸トリウムスルホイソフタル酸ジメチルを共産合したポリエステルの代りにホモボリマーを用いるとか、あるいは酸ビルロニカーの紙でみ代りに認めませを用いるかした以外は、実施例1と同様にしてポリエステルならびに二種整件フィルムを得た、結果を表2に示した。しかしながら、粒子分散性と耐嫌純性を同時に満足するものは得られなかった。

[0033]

		実施例Ⅰ	赛趋资 2	実施例3
	粒子種	酸化ジルコニウム	酸化ジルコニウム	酸化ダルコニウム
粒子特性	粒 子 径 (gm)	0, 15	0. 05	0. 7
	海 加 囊	0. 28	0.40	0, 15
	共富合物	5ーナトリウムスルホ イソフタル酸ジメテル	5ーナトリウムスルホ イソフタル酸ジメテル	5ーナトリウムスルホ イソフタル酸ジメチル
共りマ特性	共 集 会 嚴*	2	3	10
	極限粘度	0. 620	0.610	0.620
	ポリマ憲圧評価	1 🙀	1 48	2 級
	表版組き(μm) Ra	0.010	0. 009	0. 025
フィルム特性	フィルム表面欠点評価	良 好	良 好	R If
	耐摩耗性評価	1 68	1 級	2 &

*1 テレフタル酸ジメチル100重量部に対する重量部

1221

The same of the sa	# *	等	# #	**	17 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(1) (1) (2) (3)	ギリマ湖氏影響	表 所 RB	フィルム特性 フィルム表面欠点評価	報母花代野協
		(m #)			4		lass	(mm)	CAN'ER A	See
77 25 20 20 20	微化ジルコニウム	0.15	0, 20	 #	ı	0.620	m.	0, 012	# *	28
表案	数代ケクン	0. 20	0, 20	## ~3	www	0.620	28	0, 015	*	3 8
供数据 3	* # 13 >>	1, 0	0.20	## 	***************************************	0. 520	88	0, 018	*	м Ж
抗療魔4	酸化チタン	0.20	0.30	ラーナトリウムス ルポイソンタル数 ジメチル	6	0,615	1.	0.015	庚 特	38
元 黎 第 5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0, 15	0.25	ラーナトリウムス ルキインフタル像 ジメチル	4	0. 620	-	0, 010	8	4

【0034】 【発病の効果】本発明のポリエステル組成物は、成形工

40 * ルムなどの成形物にした場合に耐薬秤性に優れた効果を 発揮する。

程におけるボリマフィルタの目話りがなく、しかもフィキ

[手統補正書]

【提出日】平成5年3月26日

[手縱續正1]

[辖正对条器镇名] 明細書

【補正対象項目名】発明の詳細な説明

[補正方法] 変更

【補正内容】 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、フィルムあるいは繊維 を製造するための改良されたボリエステル組成物に指す (6)

8- 12

8.

【0002】さらに詳しくは、ポリマ中での酸化ジルコ ニウム粒子の分散性に優れたフィルムあるいは繊維を巻 るのに適したポリニステル組成物に関する。

100031

●選択の技術!一般に熱可塑性ボリエステル、例えばボリエテレテレフタレートは優れた力学特性を有しておい、フェアル、総線などの形態あるとして広、月かられている。通常、該ボリエステルは、成形品に基準性を付与する目的でボリエステルやは不活性無機粒子を含者せしる。このような不活性無機粒子としては微々あるが、一般は不活性無縁粒子は飲がリエステルとの観和性に欠り、勘測時能に子させいた。

【0004】 能来からこの問題を解決すべ、松子の表 面処理の検討がなされており、例えば、特別略63-2 21158号公報や特別紹63-280763号公報 (コロイグルンリカ粒子表面をデリコール基で改賞する)、特開昭63-312345号公報(コロイダルン リカ粒子被面をカップリング初で改賞する)、特開昭6 2-2363533号公報(決蔵カルンウム粒子をリン化 合物で张面処理する)などが後案されている。

【0005】しかしながら、このような公知の方法をも ってしても、磁気テーブのように繰り返し摩擦使用され るような場合は、粒子の脱落を生じ、いまだ不十分であ る。また、もう一つの問題点として、ボリエステル中に 不活性無機粒子を添加する方法は、該粒子がポリエステ ル中で凝集してしまうという問題があった。ポリエステ ルの成形時には、該ボリエステルをポリマフィルタで纏 過することにより、租大粒子、凝集粒子などを除去する ことが一般的に行なわれているが、ポリエステル中の凝 集粒子が多く存在する場合、設ポリマフィルタの寿命が 類くなり、生産性を着しく低下させる結果となる。 さら に、例えば該ボリマフィルタで除虫しきれない軽蔑粒子 がフィルム中に存在した場合、フィルム要面に粗大突起 が形成され、コンデンサ用フィルムにおいては需要特件 に悪影響を及ぼしたり、磁気テーブ用フィルムにおいて はドロップアウトを引き起す原因となり、フィルム品質 を横ねてしまう。

ICCOST

【発明が解決しようとする機態】本発明は舶記した従来 技術の問題点を解決し、耐弊純性および粒子の分散性に 能れたフィルムあるいは議権を得るのに適したポリエス テル組成物を提供することにある。

[00007]

【繋縛を解決するための手段】 前記した本発明の目的 は、少なくとも一つのスルホン酸基またはスルホン酸金 属塩基をもつ化合物を共盛合してな方香藤ボリエステ ル (A) と酸化ジルコニクム粒子(B) からなるポリエ ステル組成物によって造成できる。 【6008】本発制における少なくとも一つのスルホン酸基またはスルホン酸金属塩原を七つ化合物を共廃合してなる芳物数サリエステル(3)とは、芳香原ンカルボン酸もしくはそのエステル形成性誘導体(3)およびグリコール(3)およびスルホン酸金属塩産や少なくとも一つ有する化合物(c)を主成分とするものである。

【り009】 芳春族ジカルポン酸もしくはそのエステル 形成性精神体 (a) の具体解としては、テレワタル館、 ス, 6ーナフタレンジカルポン酸、1, 2ービス (クロ ロフェノキシ) エタンー 4, 4' …ジカルボン酸、その エステル形式性誘導体としてテレフタル酸ジメチル、

2. 6ーナフタレンジカルボン酸ジメチル、1,2ービス(クロロフェノキシ)エタンー4,4′ージカルボン酸ジメチルなどが挙げられ、なかでもテレフタル酸もしくはテンフタル酸シメチルが安ましい。

【0010】また、グリコール成分(b)としては、ユ チレングリコール、ブチレングリコール、ジエチレング リコール、プロピレングリコール、ボリエチレングリカ ール、1、4ーシクロへキサンジメタノールなどが挙げ られ、なかでもエチレングリコールが探主しい。

【0011】また、スルホン酸素素ではスルホン酸金属 塩基を少なくとも一つ有する化合物 (c) としては、5 一ナトリウムスルホイソフタル酸およびそのエステル形 放性誘導体、5-リチウムスルホイソフタル酸およびそ のエステル形成生誘導体、5-ナトリウムスルホレソル シンなどが振行られ、中でも5-ナトリウムスルホレソル フタル酸およびそのエステル形成性誘導体、5-リチウ ムスルホイソフタル酸およびそのエステル形成性誘導体、5-リチウ が好ました。

【0012】なお、酸化合物(c)の共廃合量は、秀香 築ジカルボン酸もしくはそのエステル形成性誘導体10 の 展厳部に対して0.1~30重磁管であると、受勢の 必果が十分発現し、また得られるボリエステルの結晶化 特性が維持され、成形性が良好となるので好ましい。

【0013】また、これらのボリュステルには共産合成 分として、ネオペンテルグリコール、ポリアルキレング リコール、p…キシリレングルコールなどのジオール域 分、アジピン酸、セバシー酸、フタル酸、イソフタル酸 などのジカルボン酸成分、トリメリット酸、ピロメリッ ト酸などの多容能ジカルボン酸成分。pーポキシエトキ シ安息若酸などのオキシカルボン酸成分などを共産合し てもかまわない。

【9014】 本発明における酸化シルコニウム粒子は、 適常、天然に施するジルコニウム鉱石、すなわちジルコ ン砂やパッデリ石などから得ることができる。その欧は は、例えば上述のジルコン砂を搭触し、オキン塩化ジル コニウムを経て、水酸化ジルコニウムの造成により得る 方法などが延げられる。

【0015】 本発明で使用する酸化ジルコニウム粒子の

平均循は9.005~3 µm、特に0,005~0,2 μmであるとフィルム製造時にフィルム繊れが少なく。 フィルム表面組さが低く、電気特性が良好であるため好 生しむ

【0016】また、酸化ジルコニウム粒子の添加量とし では、熱可燃性ポリエステル100重量的に対して0. 01~30重量部が好ましく、0.05~5重量部がさ らに好ましい。

【0017】本発明の熱可擦性ポリエステル組成物は、 例えば酸化ジルコニウム粒子を目的とするポリエステル の出発原料であるグリコール溶媒で混合撹拌して分散ス ラリーとし、熱可燃性ボリエステルの反応系に添加する 製造方法などで得ることができる。なお、この際の処理 方法は推律によらずとも、例えば結音波などによっても 構わなく、またサンドグラインダなどの媒体型ミルを用 いても構わない。ポリエステルへの配合にあたっては、 上記した重合反応系に直接添加する方法以外にも、例え ば酸化ジルコニウム粒子を溶融状態のポリエステルへ被 り込む方法などでも可能である。前者の業合反応系に終 加する際の添加時期は任意であるが、エステル交換反応 前から重縮合反応の減圧開始前までの間が好ましい。後 者の練り込みの場合は、粒子を乾燥してポリエステルに 練り込む方法でも、スラリ状態で減圧しながら直接練り 込む方法でも構わない。 【0018】さらに、本発明のポリエステルには、ポリ

エステルの製造時に通常用いられるリチウム、ナトリウ ム、カルシウム、マグネシウム、マンガン、亜鉛、アン チモン、ゲルマニウム、チタンなどの化合物の金属化合 物触媒、着色防止剤としてのリン化合物、酸化ジルコニ ウム粒子以外の不活性粒子などを含んでいてもよい。本 発明の轍化ジルコニウム粒子以外の不活性粒子として * 瀬圧上昇が2kg/cm² 未満

2kg/cm 以上5kg/cm 未濟

5kg/cm 以上10kg/cm 未濟 10kg/cm UL

2級以上を合格とした。

【0024】D、フィルム特性 (I) 表面粗さRa (um)

得られたボリエステル組成物を通常の方法で二輪延伸フ ィルムとし、JISB-0601に準じサーフコム表面 組る針を用い、針径2μm、荷重70mg、棚定基準長 0.025mm、カットオフ0、08mmの条件下で中 心線平均組さ(Ra)を測定した。

【0025】(2) フィルム表面欠点

Eで作成したフィルムをアルミニウム蒸着し、微分子等 顕微鏡を用いて観察し、顕像解析装置ルーゼックス50 ○ (日本レギュレーター製)で3 g m以上の大きさの窓 起数をカウントした。評価基準は次のとおりとした。 良好:20個/cm2 末識

不良: 20健/cm² 以上

*は、炭酸カルシウム、酸化チタン、酸化ケイ素、リン酸 カルシウムなどの無機粒子、シリコーン、スチレンージ ビニルベンゼン共興合体、エチルビニルベンセン…ジビ ニルベンゼン共業合体などの架構高分子粒子、あるいは アルカリ金銭およびアルカリ土類金銭の少なくとも一種 とリンを構成成分の一部とするボリエステル報会反応系 で析出させた、いわゆる内部粒子などの不活性粒子が幸 げられる。

【0019】これらの粒子の粒子器は本発明の酸化ジル コニウム粒子よりも大きいことが好ましく。0.1~2 μmが好ましい。また、能加量は感可密性ポリエステル 100重量部に対して0.005~10重量部が好まし

100201

【実施例】以下に実施例を挙げて本発明を詳細に説明す る。なお、得られたポリエステルの各特性結果定はなの 方法に従って行なった。

【0021】A. 粒子の紋像

平均粒径は粒子の菓子類散像写真によって測定した60 体積%の点にあたる粒子等価器直径により束めた。等係 球直径とは粒子と同じ体積を有する球の直径である。 [0022] B. ポリマの極限結束

クロロフェノールを溶媒として25℃にて測定し 120

【0023】 C. ポリマ旅圧

から次のように判定した。

5 µmフィルタを装着した押出機でポリマを押出して、 押出し無と離圧の関係から単位濾過面積当たりの適圧曲 線を作成し、ポリマ組成物100g過過時の適圧上昇 (kg/cm /## 700 g/7/1/41 cm)

3 235

2.88

3 88

4 3

[0026](3) 耐燃耗性

テープ走行性試験機TBT-300 ((株) 樹品システ 4研究所製〕を使用し、25℃、50RHの雰囲気で2 000回繰り返し走行させた後、ガイド部に付着した白 色の削れ粉(白粉)を目拠にて判定する。ここで、ガイ ド径は8mmまであり、ガイド材質はSUS27 (液面箱 度0.25)、巻き付け角は180°、テープ進行速度 は3.3cm/移である。評価監測は次のとおりであ

1級:白粉髪生量は非常に少ない。

2級:白粉発生量が少ない。

3級:白粉発生量がやや多い。

4級:白粉拳生敵が非常に多い。

[0027] 実施例1

平均粒子径0.15gmの酸化ジルコニウム粒子を10 重量部、エテレングリコール90重量部を混合して常温 下1時間ディゾルバーで撹拌処理し、酸化ジルコニウム /エチレングリコールスラリーを得た。

【0028】他方、ジメチルテンフタレート100番番 節、8-ナトリウムスルホイソフタル酸ジメチル2重量 部、エチレングリコール70重量部に、無媒として酢酸 マグネシウム0.06激量部を加えてエステル交換反応 を行なった後、反応生成物に先に選製したスラリー2重 義部と無媒の酸化アンチモン 0.03重量額、および衝 数安定剤としてトリメチルホスフェート0.03重量部 を加え、重縮合反応を行ない、固有粘度 0,620のボ リエチレンテレフタレート組成物を得た。

【0029】このポリマを用いて濾過性テストと行なっ た結果は、篠圧上昇が1、5kg/cm² (1級)であ り、泉好な譲退物性を有していた。

【〇〇3〇】このボリエチレンテレフタレート組成物を 290℃で溶離押出しし、その後90℃で影権それぞれ 3倍延伸し、さらにその後220℃で15秒熱処理し、 厚さ 1.5 p to のポリエチレンテレフタレート 二輪延飾フ

* 0. 01 μm、謝摩耗性評価1級であり、耐摩耗性に非 常に優れたフィルムであった。また、フィルム装面欠点 は5個/cm゚で、良好な表面形態を有していた。

[0032] 実施例2~5

5ーナトリウムスルホイソフタル酸シメチルの共重合 量、含有する酸化ジルコニウム粒子の平均粒子径あるい は併用粒子を変える以外は、寒崩側1と御様に!エポロ エステルを重合し、さらにその二種鉱物フィルムを得 た。表1、2にポリマ特性、フィルム特性を示した。第 られたポリマの粒子分散性およびフィルムの樹塚靴性は 喜好であった.

[0033]比较例1~5

5-ナトリウムスルホイソフタル酸ジメチルを共業合し たボリエステルの代りにホモボリマーを用いるとか。あ るいは酸化ジルコニウム粒子の代りに他の粒子を用いる かした以外は、実施例1と間様にしてポリエステルたら びに二軸延伸フィルムを得た。結果を装るに示した。し かしながら、粒子分散性と耐摩耗性を飼時に潮足するも のは得られなかった。

[0084] [21]

イルムを絡た。

0031120	りフィルムを評価したとこ	5. Ra= *		
		実 龍 例 1	実施例2	突集例 3
	粒子種	数化ジルコニウム	酸化ジルコニウム	酸化ジルコニウム
粒子物性	粒 子 径 (μm)	0. 15	0, 05	0. 7
	悉加 雅	0. 20	0. 40	0. 15
	共業合物	5ーナトリウムスルホ イソフタル酸ジメテル	5ーナトリウムスルホ イソフクル微ジメチル	5ーナトリウムスルホ イソフタル酸ジメチル
ポリマ特性	共宣合量*	2 _	3	10
2. 2 4 44 EX	医取枯度	0.620	0.610	0. 620
	ポリマ線圧評価	1 &	1 &	2 🚜
	接両相き (μm) Ra	0. 010	0. 009	0. 025
フィルム特性	フィルム表面欠点評価	良好	良 许	A H
	耐摩托性評価	1 級	1 級	2 👯

*1 デレフタル酸ジメチル100重量額に対する重量部

	and the state of t	実施例4	実施例5
粒子特性1	粒子種	数化ジルコニウム	験化ジルコニウム
	拉子後 (pm)	0.30	0.40
***************************************	添加量	0.30	0, 40
粒子特性 2	粒子種	炭酸カルシウム	エチルビニルベンゼン・
			ジビニルベンゼン共働台
			体粒子
	粒子径 (μm)	0.60	0. 60
	フィルムへの添加量	0.10	0.10
ポリマ特性	共業合物	ラーナトリウムス	5ーナトリウムス
		ルホイソフタル酸	ルホイソフタル酸
		ジメチル	ジメチル
	共務合量料	1	1
	極限粘度	0.610	0.620
	ポリマ雄圧評価	2級	2装
フィルム特性	表面祖さRa (μm)	0.018	0.017
	フィルム変節欠点評価	良好	我好
	影摩耗性評価	1 88	1.86

*1 テレフタル酸ジメチル100重量部に対する重量部

[表3]

議化がカニニウム 職化チタン 7 (4m) 0.15 0.20 0.20 0.20 12 し 在 し 1 		The second section of the second sections and the second sections and the second secon	比较美工	庆校 第2	比較 概3	比较表名	花额线写
格 子 彦 (xun) 0.15 0.20		Þ	変化ジルコニウム	微化チタン	*	数化チタン	7 4 4 7
所面量 0,20 共産合業* 本産合業* 面限本度 0,620 切つを発酵 3 優 2 段 3 素面報等(Ann) 0,012 74 A-A-Xallayを結婚 不良不良。不良。不	华	*	0.15		1.0	0, 20	0, 15
状態合態。	***************************************	额		0, 20	0.20	0, 30	. 0, 25
英重合張*		\$25 413			# ·	5-ナトリウムス ルキイソフタル機 ジメチル	5ーナキリウムス ルポイソフタル機 ジメチル
施服 株成 0,620 0,620 (1,620 4) マ (1,620 4)	まりや他性	(M)	l	*****		6	4
#19-78/EPF 3 & 2 B		維	0, 620	0.620	0, 620	0.615	0. 620
表面程		44リマ酸圧解酶			æ	1 88	1 88
7.4 4 4 次		M M &	0, 012	0, 015	0.018	0, 015	0.010
	イルム特性	フォルム表面欠点評価			#	# #	- 14
3 歳 4		間摩耗性評儀	us e		4 &	38	4 %

[0035] 【発明の効果】本星朝のボリエステル組成物は、成形工 粋におけるポリマフィルタの目詰りがなく、しかもフィキ

*ルムなどの成形物にした場合に耐摩託性に優れた効果を 発揮する。

フロントベージの綴き

(51) int. C1. * DOIF 6/92

藏別記号 庁内整理番号 301 M 7199-3B Q 7199-3B

FI

技術表示協所