Iris data

scaling data with 0 mean remaning the standar diviation

Στατιστικα

NN 4:30:3 with Sigmoid activation

```
NN_Sigmoid(
  (linear_stack): Sequential(
     (0): Linear(in_features=4, out_features=30, bias=True)
     (1): Sigmoid()
     (2): Linear(in_features=30, out_features=3, bias=True)
    )
)
Number of learnable parameters' sets: 4
torch.Size([30, 4])
torch.Size([30])
torch.Size([3])
```



```
Precision, Recall, Confusion matrix, in testing
              precision
                           recall f1-score support
                  1.000
                            1.000
                                      1.000
                  0.667
                            1.000
                                      0.800
                  1.000
                            0.636
                                      0.778
                                      0.867
  macro avg
                  0.889
                            0.879
                                      0.859
                  0.911
                                      0.865
weighted avg
                            0.867
 [ 0 8 0]
[ 0 4 7]]
```

NN with 4:30:3 with Relu activation

```
NN_ReLU(
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear_stack): Sequential(
    (0): Linear(in_features=4, out_features=30, bias=True)
    (1): ReLU()
    (2): Linear(in_features=30, out_features=3, bias=True)
    )
  )
  Number of learnable parameters' sets: 4
  torch.Size([30, 4])
  torch.Size([30])
  torch.Size([3, 30])
  torch.Size([3])
```


Confusion map and statistics for best outcome

Precision, Re	call, Confus	ion matri	x, in testi	ing
	precision	recall	f1-score	support
0	1.000	1.000	1.000	5
1	0.929	1.000	0.963	13
2	1.000	0.917	0.957	12
accuracy			0.967	30
macro avg	0.976	0.972	0.973	30
weighted avg	0.969	0.967	0.967	30
[[5 0 0] [0 13 0] [0 1 11]]				

My NN 4:20:10:3 with Relu

```
My_NN_Relu(
   (linear_stack): Sequential(
        (0): Linear(in_features=4, out_features=20, bias=True)
        (1): ReLU()
        (2): Linear(in_features=20, out_features=10, bias=True)
        (3): ReLU()
        (4): Linear(in_features=10, out_features=3, bias=True)
        )
        (dropout): Dropout(p=0.1, inplace=False)
    )
Number of learnable parameters' sets: 6
torch.Size([20, 4])
torch.Size([20])
torch.Size([10, 20])
torch.Size([10, 20])
torch.Size([10])
```


Add Learning rate Scheduler

Precision, R	ecall, Confu	ısion matri	x, in trai	ning	
	precision	recall	f1-score	support	
0	0.933	1.000	0.966	42	
1	1.000	0.949	0.974		
2	1.000	0.974	0.987		
				400	
accuracy			0.975	120	
macro avg					
weighted avg	0.977	0.975	0.975	120	
[[42 0 0] [2 37 0] [1 0 38]]					

Precision,	Recall, Con	fusion matr	ix, in test	ting
	precisio	n recall	f1-score	support
	0 1.00	1.000	1.000	
	1 0.84	1.000	0.917	11
	2 1.00	0.818	0.900	11
accurac			0.933	30
macro av	g 0.94	9 0.939	0.939	30
weighted av	g 0.94	4 0.933	0.933	30
[[8 0 0] [0 11 0] [0 2 9]				

Precision, R	ecall, Confu	sion matri	x, in train	ning
	precision	recall	f1-score	support
0	0.976	1.000	0.988	
1	0.977	0.977	0.977	
2	0.971	0.944	0.958	36
accuracy			0.975	120
macro avg	0.975	0.974	0.974	120
weighted avg	0.975	0.975	0.975	120
[[41 0 0] [0 42 1] [1 1 34]]				

Precision, Rec	all, Confus	ion matri	x, in test	ing
	precision	recall	f1-score	support
ø	1.000	1.000	1.000	
1	1.000	1.000	1.000	
2	1.000	1.000	1.000	14
accuracy			1.000	30
macro avg	1.000	1.000	1.000	30
weighted avg	1.000	1.000	1.000	30
[[9 0 0]				
[0 7 0]				
[0 0 14]]				

Adam with wreigth decay

Precision,	Recal	.1, Confus	ion matri	x, in trair	ning
	pr	ecision	recall	f1-score	support
		0.956	1.000	0.977	43
		0.909	0.750	0.822	40
		0.786	0.892	0.835	37
accura	cy			0.883	120
macro a	vg	0.883	0.881	0.878	120
weighted a	vg	0.888	0.883	0.882	120
[[43 0 0]				
[1 30 9]				
[1 3 33]]				

Precision,	Recall	., Confusi	ion matrix	x, in testi	ng
	pre	cision	recall	f1-score	support
	0	1.000	1.000	1.000	
		1.000	0.800	0.889	10
		0.867	1.000	0.929	13
accura	cy			0.933	30
macro a	vg	0.956	0.933	0.939	30
weighted a	vg	0.942	0.933	0.932	30
[[700					
[082					
[0 0 13	11				

Scaler:

We indrodused a standar deviation scaler standardize features of the data set by scaling to unit variance and removing the mean using column summary statistics on the samples in the training set .This methode helps with data faraway from center that otherwise would contribute very small amount to the change.

Sigmoid vs Relu:

Because sigmoid compres back propagations adjustments needs more repetions-epoch to reach a optimum solution. If we let epoche be bigger the network woud give a good solution because the data are very small and the network has one hidden layer. Although the data and the networks layout thre is a difference with Relu activation function producing betters results in average.

Std "with momentum:

By introducing a momentun in optimizer we overcome the small "hills" by not following the gradience all the time like a heavy ball

Sceduler:

Scheduler slowly decrease learning rate when the system does not move a lot. With that addition we can "reach deeper" in lower minimums sometimes .if the learning rate is too hight tha step accordingly would be to long and we would not reach the tru minimus.

Std vs Adam:

Adam method inroduse two optimisations:

- Adaptive Gradient Algorithm (AdaGrad) that maintains a per-parameter learning rate that improves performance on problems with sparse gradients (e.g. natural language and computer vision problems).
- Root Mean Square Propagation (RMSProp) that also maintains per-parameter learning rates that are adapted based on the average of recent magnitudes of the gradients for the weight (e.g. how quickly it is changing). This means the algorithm does well on online and non-stationary problems (e.g. noisy).

Source: Gentle Introduction to the Adam Optimization Algorithm for Deep Learning - MachineLearningMastery.com

Without all the optimizations on NN Sigmoid 30:

Precision, Re	call, Confus	ion matri	x, in train	ning
	precision	recall	f1-score	support
Ø	0.000	0.000	0.000	35
1	0.000	0.000	0.000	42
2	0.361	1.000	0.531	43
accuracy			0.358	120
macro avg	0.120	0.333	0.177	120
weighted avg	0.129	0.358	0.190	120
[[0 1 34]				
[0 0 42]				
[0 0 43]]				

After epoch 10000

With 10x times the epoch the network cant even reach the worst case of the nectorks above

Precision, Reca	ll, Confus	ion matri	x, in train	ning
F	recision	recall	f1-score	support
0	1.000	1.000	1.000	38
1	1.000	0.475	0.644	40
2	0.667	1.000	0.800	42
accuracy			0.825	120
macro avg	0.889	0.825	0.815	120
weighted avg	0.883	0.825	0.811	120
[[38 0 0]				
[0 19 21]				
[0 0 42]]				

			IOII Maci I.	x, in testi	.iig	
	pre	cision	recall	f1-score	support	
		1.000	1.000	1.000	12	
		1.000	0.600	0.750	10	
		0.667	1.000	0.800		
accura				0.867	30	
macro a	vg	0.889	0.867	0.850	30	
weighted a	vg	0.911	0.867	0.863	30	
[[12 0 0]]					
[064]]					
[0 0 8]]]					