Ringtheorie: kurze Wiederholung

Themen

Unterringe

Ideale: maximale Ideale, Primideale

Faktorringe

Homomorphiesatz

Isomorphiesätze

Polynomalgebren

Integritätsringe

Faktorielle Ringe

Euklidische Ringe

Division mit Rest

Division min recs

Quotientenringe Quarakteristik

Teilbarkeit, Irreduzibilität

Chinesischer Restsatz

Einige wichtige Konzepte

Ringaxiome

Eine Menge R zusammen mit zwei Abbildungen $+: R \times R \to R, (r, s) \mapsto r + s$ und $\cdot: R \times R \to R, (r, s) \mapsto rs$, heißt Ring mit Einselement, wenn gilt:

- (a) Additive Gruppe: (R, +) ist abelsche Gruppe; neutrales Element sei 0, Inverses von $r \in R$ sei -r.
- (b) Multiplikatives Monoid: (R, \cdot) ist Monoid (nicht notwendigerweise Inverses); neutrales Element sei 1.
- (c) Distributivgesetz: Für alle $r, s, t \in R$ gilt: (r+s)t = rt + st und r(s+t) = rs + rt.
- Einheitengruppe: $R^{\times} = \{ \text{ invertierbare Elemente } \}$
- Kommutativer Ring: (R, \cdot) kommutativ
- Schiefkörper: $1 \neq 0$ und $R^{\times} = (R \setminus \{0\})$
- Körper: R kommutativ, $1 \neq 0$ und $R^{\times} = (R \setminus \{0\})$

Unterringe

Sei R ein Ring. Eine Teilmenge $S \subset R$ heißt Unterring, wenn S Untergruppe von (R, +) und Untermonoid von (R, \cdot) ist. Dann ist S bezüglich + und \cdot ein Ring.

S ist genau dann Unterring von R, wenn gilt $1 \in S$ und für alle $s, t \in S$ ist $s - t \in S$ und $st \in S$.

Ideale

Eine Teilmenge $A \subset R$ heißt Linksideal von R, wenn A Untergruppe von (R, +) ist, und für alle $a \in A$, $r \in R$ gilt $ra \in A$.

Genauso Rechtsideal/ beidseitiges Ideal.

— Beliebige Schnitte von Idealen: Ist $(A_i)_{i \in I}$ Familie von (Links-/Rechts-)Idealen, dann ist auch

$$\bigcap_{i\in I}A_i$$

(Links-/Rechts-)Ideal.

— Endliche Summen von Idealen: Sind $A_1, \dots A_n$ (Links-/Rechts-)Ideale, dann ist

$$A_1 + \ldots + A_n = \{ x \in R \mid \exists a_i \in A_i, 1 \le i \le n : x = a_1 + \ldots + a_n \}$$

(Links-/Rechts-)Ideal.

— Erzeugtes Ideal: Ist $X \subset R$ Teilmenge, dann ist

$$R(X) = \bigcap \{A \mid A \text{ Linksideal von } R \text{ mit } X \subset A\}$$

$$= \left\{ r \in R \mid \exists n \in \mathbb{N}_0, x_1, \dots, x_n \in X, r_1, \dots, r_n \in R : r = \sum_{i=1}^r r_i x_i \right\}$$

das kleinste Linksideal, das X enthält.

Sind $a_1, \ldots, a_r \in R$, dann

$$Ra_1 + \ldots + Ra_n = R(a_1, \ldots, a_n) = R(\{a_1, \ldots, a_n\}) = \left\{ r \in R \mid \exists r_1, \ldots, r_n \in R : r = \sum_{i=1}^n r_i a_i \right\}.$$

Ringhomomorphismen

Eine Abbildung $\varphi: R \to R'$ zwischen zwei Ringen heißt Ringhomomorphismus, falls $\varphi: (R, +) \to (R', +)$ Gruppenhomomorphismus ist, und $\varphi: (R, \cdot) \to (R', \cdot)$ Monoidhomomorphismus ist.

Bilder/Urbilder von Unterringen sind Unterringe.

Urbilder von Idealen sind Ideale. Ist ein Homomorphismus surjektive, so sind auch Bilder von Idealen Ideale.

Sei R ein kommutativer Ring. Ein Ring R' (mit Eins) heißt R-Algebra, wenn es einen Ringhomomorphismus $\varphi:R\to R'$ gibt mit $\operatorname{im}(\varphi)\subset Z(R')$. Man definiert dann eine Skalarmultiplikation von R auf R' durch

$$r.r' = \varphi(r)r'$$
 für $r \in R, r' \in R'$.

Eine Algebra ist gleichzeitig ein Ring und ein Vektorraum.

Faktorringe

R ein Ring, $A \subset R$ ein zweiseitiges Ideal.

Der Faktorring von R modulo A ist die Menge R/A der Nebenklassen additiven Nebenklassen r+A mit Addition

$$R/A \times R/A \rightarrow R/A, (r+A, s+A) \mapsto r+s+A$$

und Multiplikation

$$R/A \times R/A \to R/A, (r+A, s+A) \mapsto rs+A.$$

Die kanonische Projektion:

$$\pi: R \to R/A, r \mapsto r + A$$

ist ein surjektiver Ringhomomorphismus mit $\ker(\pi) = A$.

Sei $\varphi: R \to R'$ ein Ringhomomorphismus.

(a) Ist A Ideal von R mit $A \subset \ker(\varphi)$, dann gibt es genau einen Ringhomomorphismus $\varphi' : R/A \to R$ mit $\varphi = \varphi' \circ \pi$.

(b) (Homomorphiesatz) Es gibt genau einen injektiven Ringhomomorphismus $\varphi': R/\ker(\varphi) \to R'$ mit $\varphi = \varphi' \circ \pi$.

Insbesondere ist die Abbildung

$$\varphi: R/\ker(\varphi) \to \operatorname{im}(\varphi), r + \ker(\varphi) \mapsto \varphi(r)$$

ein Ringisomorphismus.

(c) (1. Isomorphiesatz) Sei $S \subset R$ ein Unterring, $A \subset R$ ein Ideal. Dann ist $S \cap A \subset S$ ein Ideal, $S + A \subset R$ Unterring, $A \subset S + A$ ein Ideal, und die Abbildung

$$S/S \cap A \rightarrow S + A/A, s + S \cap A \mapsto s + A$$

ein Ringisomorphismus.

(d) (2. Isomorphiesatz) Seien A, B Ideale von R mit $A \subset B$. Dann ist $B/A \subset R/A$ ein Ideal, und die Abbildung

$$R/B \rightarrow (R/A)/(B/A), r+B \mapsto (r+A)+B/A$$

ein Ringisomorphismus.

Polynomalgebren

Sei R ein komutativer Ring. Ein Polynom über R in einer Variablen ist ein formale Summe

$$f = a_n X^n + \ldots + a_1 X + a_0 = \sum_{i=0}^n a_i X^i$$

Die Variable X ist unabhängig von den Elementen des Rings.

$$R[X] = \left\{ f = \sum_{i \geqslant 0} a_i X^i \mid \text{fast alle } a_i = 0 \right\}$$

ist ein kommutativer Ring mit der "gewöhnlichen" Addition und Multipikation.

$$(\sum_{i\geqslant 0} a_i X^i) + (\sum_{i\geqslant 0} b_i X^i) = \sum_{i\geqslant 0} (a_i + b_i) X^i$$

$$(\sum_{i\geqslant 0} a_i X^i) \cdot (\sum_{i\geqslant 0} b_i X^i) = \sum_{i\geqslant 0} (\sum_{k+l=i} a_k b_l) X^i$$

mit additivem beziehungsweise multiplikativem Inversen

$$1_{R[X]} = 1X^0 = 1$$

 $0_{R[X]} = 0X^0 = 0$

Grad eines Polynoms $f \in R[X]$:

$$\deg(f) := \begin{cases} \infty & \text{falls } f = 0\\ \max\{n \in \mathbb{N}_0 : a_n \neq 0\} & \text{sonst} \end{cases}$$

Es gilt $deg(f \cdot g) \leq deg(f) + deg(g)$.

Rekursiv definiert man Polynomringe in mehreren Variablen:

$$R[X_1,\ldots,X_n] := R[X_1,\ldots,X_{n-1}][X_n].$$

Man betrachtet hier also Polynome in der Variablen X_n mit Koeffizienten in dem kommutativen Ring $R[X_1, \ldots, X_{n-1}]$.

Einsetzungshomomorphismus

Sei S eine kommutative R-Algebra, sei $n \in \mathbb{N}$ und $(s_1, \ldots, s_n) \in S^n$. Dann gibt es genau einen R-Algebren-Homomorphismus $\rho: R[X_1, \ldots, X_n] \to S$, mit $\rho(X_i) = s_i, 1 \leq i \leq n$.

$$R[X_1,\ldots,X_n] \xrightarrow{R} S$$

Man schreibt $\rho(f) = f(s_1, \ldots, s_n)$. (s_1, \ldots, s_n) heißt Nullstelle von f, falls $\rho(f) = f(s_1, \ldots, s_n) = 0$.

Division mit Rest in R[X]

Sei R ein kommutativer Ring, $0 \neq f \in R[X]$ ein Polynom, dessen höchster Koeffizient eine Einheit in R ist. Zu jedem $g \in R[X]$ gibt es dann eindeutig bestimmte Polynome $q, h \in R[X]$ mit g = qf + h und $\deg(h) < \deg(f)$.

Seien $f \in R[X], c \in R$.

- (a) Es gibt $g \in R[X]$ mit f = (X c)g + f(c).
- (b) c ist genau dann Nullstelle von f, wenn es $g \in R[X]$ gibt mit f = (X c)g.

Integritätsringe

Ein kommutativer Ring heißt Integritätsring oder Integritätsbereich, wenn $1 \neq 0$ und $(R \setminus \{0\}, \cdot)$ Untermonoid von (R, \cdot) ist, das heißt, wenn $1 \neq 0$ und für alle $r, s \in R \setminus \{0\}$ gilt $rs \neq 0$.

"Kürzungsregel": Ein kommutativer Ring R ist genau dann Integritätsbereich, wenn $1 \neq 0$ und für alle $r, s, t \in R$ mit rs = rt und $r \neq 0$ folgt s = t.

Für einen Integritätsbereich R gelten viele nützliche Eigenschaften.

- $R[X_1, \ldots, X_n]$ ist Integritätsring, für $f, g \in R[X_1, \ldots, X_n]$ gilt $\deg(fg) = \deg(f) + \deg(g)$.
- $-R[X_1,\ldots,X_n]^{\times}=R^{\times}.$
- Jedes Polynom $0 \neq f \in R[X]$ hat höchstens deg(f) Nullstellen.

Euklidische Ringe

Ein Integritätsring R heißt euklidisch, wenn es eine Abbildung $\delta: R \setminus \{0\} \to \mathbb{N}_0$ gibt, so daß gilt: Für alle $a, b \in R, b \neq 0$, gibt es $q, r \in R$ mit a = bq + r und wenn $r \neq 0$ ist, dann $\delta(r) < \delta(b)$. Eine solche Abbildung heißt euklidische Norm.

Ein Integritätsring R heißt Hauptidealring, wenn jedes Ideal von R Hauptideal ist. In einem euklidischen Ring ist jedes Ideal ein Hauptideal, das heißt, von einem Element erzeugt.

Merkregel: Es gelten folgende Inklusionen für kommutative Ringe:

Körper ⊂ Euklidische Ringe ⊂ Hauptidealringe ⊂ faktorielle Ringe ⊂ Integritätsringe

Quotientenringe

Idee: Man will eine multiplikativ abgeschlossene Teilmenge eines (kommutativen) Rings $S \subset R \setminus \{0\}$ invertieren.

Konstruktion: Definiere auf $R \times S$ eine Äquivalenzrelation:

$$(r,s) \sim (r',s')$$
 genau dann wenn es $t \in S$ gibt, so daß $(rs'-r's)t=0$.

Man setzt $R_S = R \times S / \sim$ und bezeichnet die Äquivalenzklasse von (r, s) mit $\frac{r}{s}$. Also gilt $\frac{r}{s} = \frac{r'}{s'}$ genau dann wenn es $t \in S$ gibt mit (rs' - r's)t = 0.

- Dies ist ein kommutativer Ring mit Null $\frac{0}{1}$ und Eins $\frac{1}{1}$.
- Kanonische Abbildung: $i: R \to R_S, r \mapsto \frac{r}{1}$ ist Ringhomomorphismus mit $\ker(i) = \{r \in R \mid \exists s \in S : rs = 0\}.$
- Für alle $s \in S$ ist $i(s) = \frac{s}{1}$ Einheit von R_S .
- Ist R ein Integritätsring, dann ist das t aus der Definition nicht notwendig, und i injektiv. Schreibe $r = \frac{r}{1}$.
- Universelle Eigenschaft: Ist T ein kommutativer Ring, $\varphi: R \to T$ Ringhomomorphismus mit $\varphi(S) \subset T^{\times}$, dann gibt es genau einen Ringhomomorphismus $\widetilde{\varphi}: R_S \to T$ mit $\widetilde{\varphi} \circ i = \varphi$, das heißt, das Diagramm

— Ideale: gegeben durch $(i(A)) = \{\frac{a}{s} : a \in A, s \in S\}, A \subset R$ Ideal.

Charakteristik

R Integritätsring.

Primring: $R_0 = \mathbb{Z} \cdot 1$ ist der kleinste Unterring von R.

Zwei Fälle sind möglich:

- (a) $R_0 \cong \mathbb{Z}$; genau dann, wenn $z1 \neq 0$ für alle $z \in \mathbb{Z} \setminus \{0\}$.
- (b) Es gibt eine Primzahl $p \in \mathbb{N}$ mit $R_0 \cong \mathbb{Z}/(p)$; p ist die kleinste natürliche Zahl $z \in \mathbb{N}$ mit z = 0.

K Körper.

Primkörper: K_0 ist der kleinste Unterkörper von K.

Zwei Fälle sind möglich:

- (a) $K_0 \cong \mathbb{Q}$; genau dann, wenn $z.1 \neq 0$ für alle $z \in \mathbb{Z} \setminus \{0\}$.
- (b) Es gibt eine Primzahl $p \in \mathbb{N}$ mit $K_0 \cong \mathbb{Z}/(p)$; p ist die kleinste natürliche Zahl $z \in \mathbb{N}$ mit z.1 = 0. Charakteristik von K:

$$\operatorname{char}(K) = \begin{cases} 0 & \text{falls für alle } 0 \neq z \in \mathbb{Z} : z.1 \neq 0 \\ p & \text{Primzahl, falls } p \text{ die kleinste natürliche Zahl ist mit } z.1 = 0 \end{cases}$$

Maximale Ideale

Sei R ein Ring. Ein (Links-/Rechts-/beidseitiges) Ideal $A \subset R$ heißt maximal, wenn $A \neq R$ ist und es kein (Links-/Rechts-/beidseitiges) Ideal $B \subset R$ gibt, mit $A \subsetneq B \subsetneq R$.

- Jedes (Links-/Rechts-/beidseitige) Ideal ist in einem maximalen enthalten.
- Jeder kommutative Ring $R \neq 0$ besitzt ein maximales Ideal.
- Sei R ein kommutativ, $A \subset R$ ein Ideal. A ist genau dann maximal, wenn R/A ein Körper ist.

Primideale

Sei R ein kommutativer Ring. Ein Ideal $P \subset R$ heißt Primideal, wenn $P \neq R$ und wenn für alle $r, s \in R$ gilt: ist $rs \in P$, dann ist $r \in P$ oder $s \in P$.

Äquivalent dazu:

- $R \setminus P$ ist multiplikativ abgeschlossen.
- R/P ist Integritätsbereich.

In einem kommutativen Ring ist jedes maximale Ideal auch Primideal.

Irreduzible Elemente, Primelemente

Sei R ein kommutativer Ring, $r, s \in R$.

Teiler: r|s, wenn $\exists t \in R \text{ mit } s = rt$, genau dann, wenn $(s) \subset (r)$.

Assoziiert: $r \sim s$, wenn r|s und s|r, genau dann, wenn (s) = (r).

Echter Teiler: $r \mid s, r \notin R^{\times}$ und r nicht zu s assoziiert ist, genau dann, wenn $(s) \subsetneq (r) \subsetneq R$.

Irreduzibel: r heißt irreduzibel oder unzerlegbar, wenn $r \notin R^{\times} \cup \{0\}$ und r keine echten Teiler hat,

Sei R Integritätsring. Ein Element $p \in R$ heißt Primelement, wenn $p \in R \setminus \{0\}$ und für alle $r, s \in R \setminus \{0\}$ gilt: falls $p \mid rs$, dann $p \mid r$ oder $p \mid s$, das heißt, wenn $p \neq 0$ und (p) Primideal ist. Sei R Integritätsring.

- Ist $p \in R$ ein Primelement, $p|r_1 \cdots r_n$, dann gibt es $1 \leq i \leq n$ so daß $p|r_i$.
- Jedes Primelement ist irreduzibel.
- Ist R sogar Hauptidealring, dann ist ein Element genau dann Primelement, wenn es irreduzibel ist.
- Die Zerlegung eines Elements in Primelemente ist eindeutig (bis auf Ordnung und Einheiten), falls sie existiert.

Faktorieller Ring: Ein Integritätsring heißt faktoriell, wenn jedes Element $r \in R \setminus (R^{\times} \cup \{0\})$ Produkt von Primelementen ist.

Äquivalent dazu:

- Jedes Element $r \in R \setminus (R^{\times} \cup \{0\})$ ist Produkt von irreduziblen Elementen, und je zwei solche Zerlegungen sind äquivalent.
- Es gibt eine Teilmenge $P \subset R \setminus \{0\}$ mit der Eigenschaft, daß es zu jedem Element $r \in R \setminus \{0\}$ eine eindeutig bestimmte Einheit $u_r \in R^{\times}$ und eine eindeutig bestimmte Familie $(\nu_p(r))_{p \in P}$ von Zahlen in \mathbb{N}_0 , fast alle Null, gibt, mit $r = u_r \prod_{p \in P} p^{\nu_p(r)}$.

kgV und ggT

Sei R Integritätsring und $r_1, \ldots, r_n, v, t \in R \setminus \{0\}$.

 $\mathbf{kgV}\ v$ heißt kleinstes gemeinsames Vielfaches von r_1,\ldots,r_n , wenn:

- (a) v ist Vielfaches der r_i , d.h. $r_i|v$ für alle $1 \le i \le n$
- (b) v teilt alle anderen Vielfachen der r_i , d.h. für alle $s \in R \setminus \{0\}$ mit $r_i \mid s$ für alle $1 \leqslant i \leqslant n$ folgt $v \mid s$.

 \mathbf{ggT} t heißt größter gemeinsamer Teiler der r_1, \dots, r_n , wenn:

- (a) t ist Teiler der r_i , d.h. $t|r_i$ für alle $1 \le i \le n$,
- (b) t wird von allen anderen Teilern der r_i geteilt, d.h. falls $s|r_i$ für alle $1 \le i \le n$, dann s|t.

Teilerfremd r_1, \ldots, r_n heißen teilerfremd bzw. relativ prim, wenn 1 ein ggT von ihnen ist.

Sei R ein Integritätsring, $r_1, \ldots, r_n, v, t \in R \setminus \{0\}$.

- (a) v ist genau dann ein kgV von r_1, \ldots, r_n , wenn $(v) = \bigcap_{i=1}^n (r_i)$.
- (b) Gilt $(t) = \sum_{i=1}^{n} (r_i) = (r_1, \dots, r_n)$, dann ist t ein ggT von r_1, \dots, r_n . Ist R Hauptidealring, gilt die Umkehrung: t ist genau dann ein ggT von r_1, \dots, r_n , wenn $(t) = (r_1, \dots, r_n)$.

Bekannte historische Resultate:

Lemma von Bezout Sei R Hauptidealring. r_1, \ldots, r_n sind genau dann teilerfremd, wenn es $s_1, \ldots, s_n \in R$ gibt, mit $\sum_{i=1}^n s_i r_i = 1$.

Lemma von Euklid Sei R faktoriell, $r, s, t \in R \setminus \{0\}$. Gilt $r \mid st$ und sind r und s teilerfremd, dann gilt $r \mid t$.

euklidischer Algorithmus Seien $r, s \in R \setminus \{0\}$. Dann gibt es $n \in \mathbb{N}_0$, und Folgen

$$r_{-1} = r, r_0 = s, r_1, \dots, r_n \in R \setminus \{0\}$$
 und $q_1, \dots, q_{n+1} \in R$

 $_{
m mit}$

$$\begin{array}{rcl} r & = & q_1s + r_1, & \delta(r_1) < \delta(s) \\ s & = & q_2r_1 + r_2, & \delta(r_2) < \delta(r_1) \\ & \vdots \\ \\ r_{n-2} & = & q_nr_{n-1} + r_n, & \delta(r_n) < \delta(r_{n-1}) \\ \\ r_{n-1} & = & q_{n+1}r_n \end{array}$$

Für $0 \neq c \in R$ gilt

$$c|r,s\Leftrightarrow c|s,r_1\Leftrightarrow c|r_1,r_2\Leftrightarrow\cdots\Leftrightarrow c|r_{n-2},r_{n-1}\Leftrightarrow c|r_n$$

Durch rekursives Einsetzen im Euklidischen Algorithmus erhält man $a, b \in R$ mit $r_n = ra + sb$.

Faktorielle Polynomringe

Sei R ein faktorieller Ring und K = Frac(R).

- R[X] und $R[X_1, X_2, \ldots, X_n]$ sind faktoriell.
- Ist $A \subset R$ ein Ideal, so ist

$$R[X]/AR[X] \to (R/A)[X], f + AR[X] \mapsto \overline{f}$$

ein R-Algebrenisomorphismus.

- $A \subset R$ ist Primideal $\Leftrightarrow AR[X] \subset R[X]$ ist Primideal. $p \in R$ ist ein Primelement in R, genau dann, wenn es Primelement in R[X] ist.
- $f \in R[X]$ heißt primitiv, wenn die Koeffizienten teilerfremd sind. Sind $f, g \in R[X]$ primitiv, so auch fg.
- Die Primelemente in R[X] sind die Primelemente in R und die primitiven irreduziblen Polynome.
- In K: Für $0 \neq f \in K[X]$ gibt es x in K und $\widetilde{f} \in R[X]$ primitiv mit $f = x\widetilde{f}$ (eindeutig bis auf Einheiten in R). \Rightarrow für Irreduziblität genügt es in R[X] zu arbeiten. Sei $f \in R[X] \setminus R$.
 - (a) Ist f nicht Produkt von nichtkonstanten Polynomen in R[X], dann ist f in K[X] irreduzibel.
 - (b) Ist f in R[X] irreduzibel, dann ist f auch in K[X] irreduzibel.
 - (c) Ist f primitiv und irreduzibel in K[X], dann ist f irreduzibel in R[X].
 - (d) Sind $f, g \in R[X]$, sei f primitiv. Gilt f|g in K[X], dann gilt f|g auch in R[X].
 - (e) Ist $f \in R[X]$ normiert, und und $g, h \in K[X]$ normiert mit f = gh, dann gilt $g, h \in R[X]$.

Irreduzibilitätskriterien

R Integritätsring.

Homomorphismus SeiR' ein weiterer Integritätsring, $f \in R[X] \setminus R$ primitiv, $\varphi : R[X] \to R'$, der nichtkonstante Faktoren von f auf Nichteinheiten abbildet. Ist $\varphi(f)$ irreduzibel, dann ist auch f irreduzibel. (Sehr allgemein, selten so verwendet.)

Automorphismus Sei $\varphi: R[X] \to R[X]$ ein Automorphismus, $f \in R[X] \setminus R$ primitiv. Ist $\varphi(f)$ irreduzibel, dann ist auch f irreduzibel. (Hilfreich, wenn man "den Trick sieht".)

Reduktionskriterium Seien $\mathfrak{P} \subset R$ ein Primideal, $\pi: R \to R/\mathfrak{P}$ der kanonische Homomorphismus, sei $f = \sum_{i=0}^{n} r_i X^i \in R[X] \backslash R$ primitiv mit $r_n \notin \mathfrak{P}$. Ist $\pi f \in (R/\mathfrak{P})[X]$ irreduzibel, dann ist auch f irreduzibel. (Sehr nützlich.)

Eisensteinkriterium Sei $0 \neq f = \sum_{i=0}^{n} r_i X^i \in R[X]$ primitiv, $p \in R$ ein Primelement mit $p \nmid r_n$ aber $p \mid r_j$ für alle $0 \leq j \leq n-1$, und $p^2 \nmid r_0$. Dann ist f in R[X] irreduzibel.

Chinesischer Restsatz

Allgemeine Version:

Seien A_1, \ldots, A_n paarweise fremde Ideale von R.

(a) Die Abbildung

$$R/A_1 \cdots A_n \rightarrow \prod_{i=1}^n R/A_i$$

 $r + A_1 \cdots A_n \mapsto (r + A_1, \dots, r + A_n)$

ist ein R-Algebrenisomorphismus.

(b) Die Abbildung

$$(R/A_1 \cdots A_n)^* \rightarrow \prod_{i=1}^n (R/A_i)^*$$

 $r + A_1 \cdots A_n \mapsto (r + A_1, \dots, r + A_n)$

ist ein Gruppenisomorphismus.

Bekanntere Version: R Hauptidealring (z.B. $R = \mathbb{Z}$) Seien $a_1, \ldots, a_n \in R \setminus \{0\}$ paarweise teilerfremd.

(a) Die Abbildung

$$R/(a_1 \cdots a_n) \rightarrow \prod_{i=1}^n R/(a_i)$$

 $r + (a_1 \cdots a_n) \mapsto (r + (a_1), \dots, r + (a_n))$

ist ein R-Algebrenisomorphismus.

(b) Die Abbildung

$$(R/(a_1 \cdots a_n))^* \rightarrow \prod_{i=1}^n (R/(a_i))^*$$
$$r + (a_1 \cdots a_n) \mapsto (r + (a_1), \dots, r + (a_n))$$

ist ein Gruppenisomorphismus.

Zu $b_1, \ldots, b_n \in R$ gibt es also $r \in R$ mit $r \equiv b_i \mod a_i$ für $1 \leqslant i \leqslant n$, und r ist modulo $a_1 \cdots a_n$ eindeutig bestimmt.

Beispiele

Beispiele: Ringe

- (a) \mathbb{Z} , \mathbb{Z} / \mathbb{Z} a für $a \in \mathbb{Z}$ sind kommutative Ringe. \mathbb{Z} ist Unterring von \mathbb{Q} , \mathbb{R} , \mathbb{C} . \mathbb{Q} ist Unterring von \mathbb{R} , \mathbb{C} .
- (b) Sei $d \in \mathbb{Z} \setminus \{0, 1\}$.

$$R = \{ a + b\sqrt{d} \mid a, b \in \mathbb{Q} \}$$

ist Unterring von C, sogar Körper.

$$S = \{ a + b\sqrt{d} \mid a, b \in \mathbb{Z} \}$$

ist Unterring von R.

- (c) Sei R ein Ring, $n \in \mathbb{N}$. Die Menge $R^{n \times n}$ der (n, n)-Matrizen mit Koeffizienten in R ist Ring bezüglich der üblichen Addition und Multiplikation von Matrizen. $(R^{n,n})^{\times} = \mathbf{GL}_n(R)$ ist die Gruppe der invertierbaren Matrizen in $R^{n \times n}$.
- (d) Sei R Ring. Dann ist das Zentrum

$$Z(R) = \{ r \in R \mid \forall s \in R : rs = sr \}$$

ein kommutativer Unterring von R

(e) Sei R ein kommutativer Ring, $n \in \mathbb{N}$. Dann ist $R^{n,n}$ eine R-Algebra bezüglich

$$\varphi: R \to R^{n,n}, r \mapsto \left(\begin{array}{cccc} r & 0 & \cdots & 0 \\ 0 & r & & \vdots \\ \vdots & & \ddots & \\ 0 & \cdots & & r \end{array}\right).$$

Die Skalarmultiplikation dazu ist $r.(r_{ij}) = (rr_{ij})$.

(f) Sei R ein Ring. Dann ist

$$\varphi: \mathbb{Z} \to R, z \mapsto z.1$$

ein Ringhomomorphismus mit im $(\varphi) \subset Z(R)$. Also ist R eine \mathbb{Z} -Algebra. Die Skalarmultiplikation dazu ist die von den abelschen Gruppen her bekannte.

Beispiele: Ideale

- (a) In einem Ring R sind $\{0\}$ und R selbst stets Ideale.
- (b) Sei R ein Ring, A (Links-/Rechts-)Ideal mit $R^{\times} \cap A \neq \emptyset$. Dann gilt A = R. Für Linksideal sieht man das wie folgt: Sei $a \in R^{\times} \cap A$. Dann gibt es $a' \in R$ so daß a'a = 1. Damit gilt für alle $r \in R$: $r = ra'a \in A$.
- (c) Sei R kommutativer Ring. R ist genau dann Körper, wenn $1 \neq 0$ und $\{0\}$ und R die einzigen Ideale von R sind.
- (d) Die Ideale von \mathbb{Z} sind genau die Untergruppen $\mathbb{Z}a$, für $a \in \mathbb{Z}$.

Beispiele: Integritätsringe

- (a) Z ist ein Integritätsbereich, Körper sind Integritätsbereiche.
- (b) Unterringe von Integritätsringen sind Integritätsringe. Insbesondere sind Unterringe von Körpern Integritätsringe.
- (c) Sei $n \in \mathbb{N}_0$. $\mathbb{Z}/n\mathbb{Z}$ ist genau dann Integritätsbereich, wenn n = 0 oder n Primzahl ist.
- (d) Ist R ein Integritätsbereich, so ist auch $R[X_1, \ldots X_n]$ ein Integritätsbereich.

Beispiele: Euklidische Ringe

- (a) \mathbb{Z} ist euklidisch bezüglich $\delta: \mathbb{Z} \to \mathbb{N}_0, z \mapsto |z|$.
- (b) Sei K ein Körper. K[X] ist euklidisch bezüglich $K[X] \setminus \{0\} \to \mathbb{N}_0$, $f \mapsto \deg(f)$.
- (c) $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} = \mathbb{Z} \oplus \mathbb{Z} i$ ist Unterring von \mathbb{C} , der \mathbb{Z} enthält; er heißt Ring der ganzen Gaußschen Zahlen. $\delta : \mathbb{Z}[i] \to \mathbb{N}_0$, $x = a + bi \mapsto x\overline{x} = a^2 + b^2$ ist euklidische Norm.

Beispiele: Hauptidealringe

- (a) \mathbb{Z} , $\mathbb{Z}[i]$, K[X] für einen Körper K sind Hauptidealringe, sogar euklidische Ringe.
- (b) $\mathbb{Z}[X]$ und K[X,Y] sind **keine** Hauptidealringe, also auch nicht euklidisch.

Beispiele: Quotientenringe

- (a) Ist R Integritätsring, dann ist $S=R\setminus\{0\}$ multiplikativ abgeschlossen. Dann ist $Frac(R):=R_S$ ein Körper (Quotientenkörper.
 - $\operatorname{Frac}(\mathbb{Z}) = \mathbb{Q}$
 - K ein Körper: $K(X_1, \ldots, X_n) = \operatorname{Frac}(K[X_1, \ldots, X_n])$, Körper der rationalen Funtionen
 - $\operatorname{Frac}(\mathbb{Z}[i]) = \mathbb{Q}[i] = \{a + bi \in \mathbb{C} \mid a, b \in \mathbb{Q}\}, \text{ es genügt } S = \mathbb{Z} \setminus \{0\} \text{ zu invertieren.}$
- (b) $s \in R$. $S = \{s^n \mid n \in \mathbb{N}_0\}$ ist genau dann multiplikativ abgschlossen, wenn $s^n \neq 0$ für alle $n \in \mathbb{N}$ ist, das heißt, wenn s nicht nilpotent ist. Dies ist in einem Integritätsring für alle $s \neq 0$ erfüllt.

$$R_S = \{ \frac{r}{s^k} \mid r \in R \}.$$

(c) Sei $p \in \mathbb{N}$ Primzahl. Dann ist $\mathbb{Z} \setminus (p)$ multiplikativ abgeschlossene Teilmenge von \mathbb{Z} .

$$\mathbb{Z}_S =: \mathbb{Z}_{(p)} = \left\{ \frac{r}{s} \mid r \in R, s \in S \right\} = \left\{ \frac{r}{s} \mid r, s \in R, p \nmid s \right\}.$$

Ideale: $B = \mathbb{Z}_{(p)} \cdot A$, wobei $A \subset \mathbb{Z}$ Ideal mit $A \cap \{\mathbb{Z} \setminus (p)\} = \emptyset$, also $A \subset (p)$.

In $\mathbb{Z}_{(p)}$ ist (p) maximal bezüglich Inkusion (das einzige Ideal mit dieser Eigenschaft). Ein solcher Ring heißt lokal, $\mathbb{Z}_{(p)}$ heißt Lokalisierung von \mathbb{Z} bei (p).

Beispiele: Maximale Ideale und Primideale

- (a) Die maximalen Ideale von \mathbb{Z} sind die Ideale (p), wobei p eine Primzahl ist. (Denn für $n \in \mathbb{N}_0$ gilt: (n) maximal genau dann, wenn $\mathbb{Z}/(n)$ Körper, genau dann, wenn n Primzahl.)
- (b) Sei K Körper, dann ist (X) = K[X]X maximales Ideal. (Denn $K[X]/X \to K, f + (X) \mapsto f(0) =$ konstanter Koeffizient von f ist Ringisomorphismus.)
- (c) Die Primideal von \mathbb{Z} sind (0) und die Ideale (p), p eine Primzahl. Das Ideal (0) ist nicht maximal.
- (d) Sei R kommutativer Ring. Das Ideal (0) ist genau dann Primideal, bzw. maximales Ideal, wenn R Integritätsring, bzw. Körper, ist.
- (e) Sei R Integritätsring. Dann ist (X) = R[X]X Primideal in R[X]. (Denn $R[X]/X \to R$, $f + (X) \mapsto f(0)$ ist Ringisomorphismus.)

Beispiele: Irreduzible Elemente

(a) Sei K ein Körper, R der Unterring von K[X] bestehend aus den Polynomen $f = \sum_{i=0}^n a_i X^i$, mit $a_1 = 0$. Es gilt $R = K[X^2, X^3]$. Außerdem gilt $R^\times = K^\times$. Die Elemente X^2 und X^3 sind in R irreduzibel: Sei $X^2 = fg$ mit $f, g \in R$, dann gilt $\deg(f), \deg(g) \in \{0, 2\}$, also $f \in R^\times$ oder $g \in R^\times$. Ebenso für X^3 .

Die Elemente X^2 und X^3 sind in R nicht prim: Es gilt $X^6 = X^2 \cdot X^2 \cdot X^2 = X^3 \cdot X^3$, und $X^2 \nmid X^3$ bzw. $X^3 \nmid X^2$. Also hat man zwei nicht-äquivalente Zerlegungen von X^6 in irreduzible Elemente gefunden.

Beispiele: Faktorielle Ringe

- (a) Jeder Hauptidealring R ist faktoriell.
- (b) \mathbb{Z} ist faktoriell, mit $\mathbb{Z}^{\times} = \{-1, +1\}$, $P = \{p \in \mathbb{N} \mid p \text{ prim}\}$ ist Transversale der Primelemente von \mathbb{Z} "modulo Einheiten". P ist unendlich.
- (c) Sei K Körper. Dann ist K[X] faktoriell mit $K[X]^{\times} = K^{\times}$, $P = \{f \in K[X] \mid f \text{ normiert und irreduzibel }\}$ ist eine Transversale der Primelemente "modulo Einheiten". P ist unendlich.
- (d) Ist R faktoriell, so auch R[X].

Beispiele: Irreduzibilität

- (a) R faktoriell, $K = \operatorname{Frac} R$. Ein Polynom $f \in R[X]$, das reduzibel in R[X] ist, aber irreduzibel in K[X]: Sei $p \in R$ prim $r \in R$ beliebig, dann ist f = pX - rp = p(X - r) nicht irreduzibel in R[X] (insbesondere nicht primitiv), aber irreduzibel in K[X], denn p ist invertierbar in K.
- (b) Sei R ein Integritätsring. Ein normiertes Polynom $f \in R[X]$ vom Grad 2 oder 3 ist genau dann irreduzibel, wenn es in R keine Nullstellen hat (Denn f ist genau dann reduzibel, wenn es einen Faktor X a mit $a \in R$ hat.) Dies ist nur der Fall für **normierte** Polynome. Gegenbeispiel: $6X^2 + 11X + 3 = (2X + 3)(3X + 1)$ ist reduziebel in $\mathbb{Z}[X]$ hat aber keine Nullstelle in \mathbb{Z} , nur in \mathbb{Q} .
- (c) Sei R faktoriell, $K = \operatorname{Frac}(R)$. Seien $a \in R$, $p \in R$ Primelement mit $p \mid a, p^2 \nmid a, n \in \mathbb{N}$. Dann ist $f = X^n a$ irreduzibel in R[X] nach Eisenstein, damit auch in K[X].
- (d) Sei K Körper, $n \in \mathbb{N}$. $f = X^n Y \in K[X,Y] = K[X][Y]$ ist trivialerweise irreduzibel, oder $f \in K[Y][X]$ ist irreduzibel nach (c), denn Y ist Primelement in K[Y].
- (e) Sei K Körper, $\operatorname{char}(K) \neq 2$. $f = X^2 + Y^2$ ist irreduzibel, da f als Polynom in K[Y] keine Nullstelle hat. $g = X^2 + Y^3 + Z^n \in K[X, Y, Z] = K[X, Y][Z]$ ist irreduzibel nach (c).