Zadania do wykładów 7 i 8

Każde zadanie rozwiązać za pomocą metody SMT. Podpunkty (a), (b), (c) itd. należy traktować jak oddzielne zadanie.

- 1. (5 pkt.) Znajdź całkowite a oraz b, takie że funkcja $f: N_{12} \to N_{12}$ określona wzorem $f(x) = (ax + b) \mod 12$ jest bijektywna oraz $f^{-1} = f$.
- 2. (4 pkt.) Paczki pocztowe mają długość x_1 mm, szerokość x_2 mm oraz wysokość x_3 mm. Żadna z tych wartości nie może przekroczyć 4200. Dodatkowo, obwód paczki (wyznaczany ze wzoru $2(x_2+x_3)$) łącznie z jej długością nie może być większy niż 9200 mm. Określ optymalne wymiary paczki w pełnych milimetrach, zakładając, że naszym celem jest maksymalizacja jej objętości.
- 3. (3 pkt.) Znajdź najmniejszą sumę x + y + z takich trzech liczb całkowitych, żeby x > y > z > 0 oraz żeby wszystkie następujące liczby: x y, x + z, x z, y + z i y z były liczbami kwadratowymi.
- 4. (3 pkt.) Dla całkowitych $x, y \ge 30000$ znajdź najmniejszą sumę x + y, tak aby było spełnione równanie $x^2 + x + 1 = 3y^2$.
- 5. (4 pkt.) Znajdź liczby rzeczywiste dodatnie x i y spełniające warunki: y x < 2, 2x + 3y < 1 oraz $(0.2 y)/(1.3 x) \sin(x)/x < -1.1008$.
- 6. (4 pkt.) Ułamkiem łańcuchowym nazywamy wyrażenie

$$x = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cfrac{1}{a_4 + \cdots}}}}$$

gdzie a_0 jest liczbą całkowitą, a wszystkie pozostałe liczby a_i ($i \neq 0$) są całkowite dodatnie. Ze względów typograficznych równość tę zwyczajowo zapisuje się w następujący sposób:

$$x = [a_0; a_1, a_2, a_3, a_4, \dots].$$

Ponieważ znany jest algorytm szybkiego wyliczania przybliżeń x za pomocą kolejnych wartości a_i , ułamki łańcuchowe mają duże znaczenie w metodach numerycznych. Wiadomo na przykład, że $1+\sqrt{2}=[2;2,2,2,\ldots]$. Znajdź ułamek łańcuchowy dla $\sqrt{5}$.

- 7. (4 pkt.) Rozwiąż równanie $x^y \equiv 16779582829584320111 \mod 2^{64}$, zakładając, że $x \ge 2$ i $y \ge 2$ są liczbami całkowitymi.
- 8. (3 pkt.) Dodatnie liczby całkowite x_1, x_2, \dots, x_7 spełniają następujące warunki: $x_6 = 144$ oraz $x_{n+3} = x_{n+2}(x_{n+1} + x_n)$ dla n = 1, 2, 3, 4. Znajdź te liczby.
- 9. (4 pkt.) Ustaw na szachownicy osiem hetmanów w taki sposób, aby się wzajemnie nie atakowały.

10. (5 pkt.) Dany jest generator liniowy

$$X_{i+1} = 68909602460261 \cdot X_i \mod 2^{48}$$
.

Dla jakiej wartości X_0 uzyskamy największe k o tej własności, że X_j mod 47 = 42 dla j = 0, 1, ..., k.

- 11. (4 pkt.) Rozważmy macierz o wymiarach 3 × 3. Wypełnij ją liczbami od 1 do 9 w taki sposób, aby:
 - suma liczb w każdym wierszu, każdej kolumnie i na każdej z dwóch przekątnych była taka sama oraz
 - każda liczba była użyta dokładnie raz.
- 12. (3 pkt.) Wyznacz $\sqrt[3]{7}$ z dokładnością 100 cyfr po kropce dziesiętnej.
- 13. (5 pkt.) Załóżmy, że funkcja f(x, y) została zrealizowana za pomocą działań: dodawania, odejmowania i mnożenia, z wykorzystaniem argumentów: x, y oraz stałych: 0 i 1. Jeśli wiemy, że:

$$f(2,5) = 9,$$

$$f(3,1)=2,$$

$$f(2,2) = 3,$$

$$f(4,3) = 11,$$

to łatwo wyliczyć f(7,6) = 41, zauważając, że f(x,y) = xy - 1. Jaka funkcja kryje się za poniższym f?

$$f(2,3) = 8,$$

$$f(3,7) = 27,$$

$$f(4,5) = 32,$$

$$f(5,8) = 60,$$

$$f(6,7) = 72,$$

$$f(7,8) = ?,$$

14. (3 pkt.) Trzema różnymi liczbami naturalnymi spełniającymi równanie

$$x^2 + y^2 + z^2 = xyz$$

są x = 3, y = 6, z = 15. Znajdź trzy inne takie liczby naturalne, gdzie x < y oraz y < z.

15. (4 pkt.) W koszyku znajduje się *x* jabłek. Pięciu przyjaciół zgaduje, ile jest jabłek w koszyku. Podali oni następujące wartości: 22, 24, 29, 33, 38. Żaden z nich nie odgadł prawidłowej liczby. Pomylili się o 1, 8, 6, 3 i 8 (kolejność przypadkowa, tj. nie wiadomo, który z nich pomylił się o 1, który o 8 itd.). Wyznacz *x*.

- 16. (3 pkt. za każdy podpunkt) Dla każdego z poniższych problemów napisz program z wykorzystaniem biblioteki Z3.
 - (a) SET COVERING (https://en.wikipedia.org/wiki/Set_cover_problem)
 - (b) VERTEX COVER (https://en.wikipedia.org/wiki/Vertex_cover)
 - (c) KNAPSACK (https://en.wikipedia.org/wiki/Knapsack_problem)
 - (d) STREE (https://en.wikipedia.org/wiki/Minimum_degree_spanning_tree)
 - (e) DOMINATING SET (https://en.wikipedia.org/wiki/Dominating_set)
- 17. (5 pkt.) Dane są dwie zmienne, *x* oraz *y*, typu **ulong** (64 bitowy nieoznakowany typ całkowity). Wykaż, że następujący ciąg instrukcji:

```
x = x \text{ xor } y;

y = y \text{ xor } x;

x = x \text{ xor } y;
```

spowoduje zamianę wartości, tzn. że po ich wykonaniu w zmiennej y będzie początkowa wartość x, a w x będzie początkowa wartość y.