Statistics in Julia

Julia has been used by mathematicians primarily over its history and therefore has a rich mathematic ecosystem

```
In [1]:
        using DataFrames, RDatasets
        iris = dataset("datasets", "iris");
In [2]:
        using Statistics, Printf
        for n in names(iris)[1:4]
            @printf("%s\t%0.3f\t%0.3f\n", string(n),
                mean(iris[!,n]), std(iris[!, n]), cov(iris[!, n], iris[!, :Species].refs
        ))
        end
        SepalLength
                       5.843
                               0.828
                                       0.531
        SepalWidth
                       3.057
                               0.436
                                       -0.152
        PetalLength
                       3.758
                              1.765
                                     1.372
        PetalWidth
                       1.199
                               0.762
                                       0.597
```

Distributions.jl

Used to generate data according to distributions (as seen in the previous section) or to fit distributions to data

In [3]: using Distributions

We can use Maximum Likelihood Estimation to fit a distribution

To compare the result, we can generate data from this distribution and calculate the mean squared error.

```
In [5]: y = rand(d, length(X));
mean((X .- y).^2)
```

Out[5]: 1.2584806167138878

GLM.jl

Generalized Linear Models for linear regression. We'll look at ordinary least squares regression

In [6]: using GLM

Out[7]:

6 rows × 6 columns

	SepalLength	SepalWidth	PetalLength	PetalWidth	Species	Sind
	Float64	Float64	Float64	Float64	Categorical	UInt8
1	5.1	3.5	1.4	0.2	setosa	0x01
2	4.9	3.0	1.4	0.2	setosa	0x01
3	4.7	3.2	1.3	0.2	setosa	0x01
4	4.6	3.1	1.5	0.2	setosa	0x01
5	5.0	3.6	1.4	0.2	setosa	0x01
6	5.4	3.9	1.7	0.4	setosa	0x01

Out[8]: StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Array{Float64,1}},GLM. DensePredChol{Float64,LinearAlgebra.Cholesky{Float64,Array{Float64,2}}},Array {Float64,2}}

Sind ~ 1 + SepalLength

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	Lower 95%	Upper 95%
(Intercept) SepalLength		0.29878 0.0506293	-8.44763 15.2918		-3.11441 0.674163	-1.93356 0.874262

T	
IN []:	