Diplomatura AACSyA 2018 - FaMAF - UNC Análisis y visualización de datos

Laboratorio Nº 2

Exploración de datos del Sistema

Nacional de Estadísticas sobre Ejecución

de la Pena – SNEEP

INFORME ANUAL 2016

Tabla de Contenido

INTRODUCCIÓN	2
EDAD DE LA POBLACIÓN DETENIDA.	3
SITUACIÓN LEGAL DE LA POBLACIÓN DETENIDA	4
ANÁLISIS DE LA VARIABLE AÑOS DE CONDENAS POR GÉNERO DE LA POBLACIÓN¶	5
CHI-CUADRADO DE VARIABLES CATEGÓRICAS	7
Análisis de las variables: Situación legal y Estado Civil	7
Análisis de las variables: Situación legal y Tipo de infracción	8
CHI-CHADDADO CON MHESTRA ALEATORIA DE DATOS	۵

Introducción

En el siguiente informe se hará una conclusión del análisis que se obtuvo de los datos pertenecientes al Sistema Nacional de Estadísticas sobre Ejecución de la Pena (SNEEP) del año 2016.

Analizaremos del conjunto de datos la edad de la población, sexo, tipo de condena, cantidad de años y la reincidencia teniendo en cuenta si participa o no en un programa educativo.

Edad de la Población detenida.

Para analizar la edad de la población se calcularon distintos estadísticos (media, mediana y moda) de los cual obtuvimos los siguientes resultados:

	Media	Mediana	Moda
Calculos Estadisticos	33.428054	31.0	24.0

Viendo el grafico que se muestra a continuación, determinamos que el valor de la Moda es el correcto, ya que muestra claramente que la edad de la población se centra en los 24 años.

Situación Legal de la Población detenida

Antes de hacer el análisis de los años de condena vemos primero el % que existe según la situación penal de la Población:

De la cual analizaremos solo los **Condenados** para hacer el análisis por años de condena.

Volvemos a concluir que el estadístico que muestra mejor la frecuencia de los datos es la Moda.

	Media	Mediana	Moda
Calculos Estadisticos	7.215239	6.0	4.0

Análisis de la variable años de condenas por género de la población¶

Relacionando Sexo y los años de condena de aquellos que tiene una situación legal **Condenado** vemos la siguiente distribución.

Sexo= Masculino

Sexo = Femenino

Sexo = Transexual

Si calculamos los estadísticos relacionando estas variables vemos que por género los valores son similares.

	Media	Mediana	Moda
Masculino	7.228325	6.0	4.0
Femenino	6.767699	5.0	4.0
Transexual	7.200000	5.0	4.0

Chi-Cuadrado de variables categóricas

Para hacer el cálculo de la relación de las variables utilizaremos las variables categóricas estado civil y situación legal de la población.

Las hipótesis son:

H0="las dos variables en estudio son independientes"

H1="las dos variables en estudio están relacionadas"

Análisis de las variables: Situación legal y Estado Civil

Para tener un análisis certero debemos calcular las frecuencias marginales ya que no tenemos la misma población para los casados y lo que están en concubinato.

La frecuencia esperada:

Recalculando nos queda

```
array([[3.42634928e+03, 4.34980610e+01, 3.15615266e+03],
        [3.34102667e+03, 4.24148766e+01, 3.07755845e+03],
        [2.14082192e+02, 2.71780822e+00, 1.972000000e+02],
        [6.17942558e+02, 7.84488121e+00, 5.69212560e+02],
        [3.10419178e+04, 3.94082192e+02, 2.85940000e+04],
        [4.28681490e+02, 5.44218119e+00, 3.94876329e+02]])
```

Observamos que para 10 grados de libertad (los correspondientes para nuestra tabla de contingencia => (6-1)*(3-1)=10)

```
Chi2 = 111.50175491453389
P-value = 2.6558791836114227e-19
DoF = 10
```

Para un analizar con el nivel de confianza del 90% vemos si aceptamos o rechazamos **H0**

```
def calc_conf(confianza):
    """
    Retorna el nivel de significancia.
    """
    return (100 - confianza) / 100

# Queremos confianza al 90%
if p < calc_conf(90):
    print("Rechazo H0 ==> Las Variables Estan Correlacionadas")
else:
    print("Acepto H0 ==> Las Variables Son Independientes")
```

Rechazo H0 ==> Las Variables Estan Correlacionadas

Análisis de las variables: Situación legal y Tipo de infracción

situacion_legal_descripcion tipo_infraccion_disciplinaria_descripcion	Condenado	Otros	Procesado	
Faltas graves	3385	21	2551	
Faltas leves	625	2	487	
Faltas media	2470	4	2495	
No cometió Infracción disciplinaria	27874	317	26592	

Calculando la frecuencia esperada nos queda

```
array([[3.06252006e+03, 3.06662077e+01, 2.86381373e+03], [5.72712330e+02, 5.73479191e+00, 5.35552878e+02], [2.55458489e+03, 2.55800548e+01, 2.38883506e+03], [2.81641827e+04, 2.82018946e+02, 2.63367983e+04]])
```

Observamos que para 6 grados de libertad (los correspondientes para nuestra tabla de contingencia => (4-1)*(3-1)=6)

Para un analizar con el nivel de confianza del 90% vemos si aceptamos o rechazamos **HO**

```
def calc_conf(confianza):
    """
    Retorna el nivel de significancia.
    """
    return (100 - confianza) / 100

# Queremos confianza al 90%
if p < calc_conf(95):
    print("Rechazo H0 ==> Las Variables Estan Correlacionadas")
else:
    print("Acepto H0 ==> Las Variables Son Independientes")
```

Rechazo H0 ==> Las Variables Estan Correlacionadas

Chi-Cuadrado con muestra aleatoria de datos

Se genera una muestra aleatoria de datos de las variables situación legal y tipo de infracción para ver el chi cuadrado con la muestra y obtenemos lo siguiente:

	Procesado	Condenado	Otros	row_totals
Faltas graves	45	0	36	81
Faltas leves	9	0	7	16
Faltas media	32	1	43	76
No cometió Infracción	417	8	402	827
col_totals	503	9	488	1000

Calculando la frecuencia esperada nos gueda

Y el Chi – Cuadrado obtenido es

```
def calc_conf(confianza):
    """
    Retorna el nivel de significancia.
    """
    return (100 - confianza) / 100

# Queremos confianza al 90%
if p_value < calc_conf(90):
    print("Rechazo H0 ==> Las Variables Estan Correlacionadas")
else:
    print("Acepto H0 ==> Las Variables Son Independientes")
```

Acepto H0 ==> Las Variables Son Independientes

Las variables son independientes y no como se podía observar no como veíamos con la población.