Year: 2015/2016

Exercise Set #1

Principle of Induction: Let $n_0 \in \mathbb{N}$ and let P(n) be a property defined for any natural number $n \in \mathbb{N}, n \geq n_0$. Suppose that

- i) $P(n_0)$ is true,
- ii) $\forall k \geq n_0$, if P(k) is true, then P(k+1) is also true.

Then P(n) is true, $\forall n \geq n_0$.

- 1. Prove that $\forall n \in \mathbb{N}, n \geq 4$ we have that $n! \geq 2^n$. Then show that $\forall n \in \mathbb{N}^*, n! \geq 2^{n-1}$.
- 2. Prove that $\forall n \in \mathbb{N}^*$ we have that $4\sum_{n=1}^{n} m^3 = n^2(n+1)^2$.
- 3. Prove that $\forall n \in \mathbb{N}, n \geq 2$ we have that $\sum_{n=1}^{n} \frac{1}{\sqrt{m}} > \sqrt{n}$.
- 4. Prove that $\forall n \in \mathbb{N}^*, \exists m \in \mathbb{N}^* \text{ such that } m^2 \leq n < (m+1)^2$.
- 5. Prove that for any positive real numbers $a_1, a_2, \ldots, a_n > 0$ satisfying $a_1 \cdot a_2 \cdot \ldots \cdot a_n = 1$, we have that $a_1 + a_2 + \ldots + a_n \ge n$.
- 6. Let $a_1, a_2, \ldots, a_n > 0$. Prove that $H_n \leq G_n \leq A_n$, where

$$H_n = \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n}}$$
 (the harmonic mean),
$$G_n = \sqrt[n]{a_1 \cdot a_2 \cdot \ldots \cdot a_n}$$
 (the geometric mean),

$$G_n = \sqrt[n]{a_1 \cdot a_2 \cdot \ldots \cdot a_n}$$
 (the geometric mean)

$$A_n = \frac{a_1 + a_2 + \ldots + a_n}{n}$$
 (the arithmetic mean).

Hint: one solution consists in applying Exercise 5 for $\frac{a_i}{\sqrt[n]{a_1 \cdot a_2 \cdot \ldots \cdot a_n}}$ instead of a_i to get that

 $G_n \leq A_n$. This inequality considered for $\frac{1}{a_i}$ instead of a_i then yields $H_n \leq G_n$.

Remark: Equality holds in each of the above inequalities if and only if $a_1 = a_2 = \ldots = a_n$.

- 7. Using the inequality $G_n \leq A_n$, prove that $\forall x > 0, \forall n \in \mathbb{N}^*$,
 - i) $(1+x)^n \ge 1 + nx$.

Remark: Actually, the above inequality holds $\forall x \geq -1$. This inequality is known as Bernoulli's

ii)
$$\frac{x^n}{1+x+\ldots+x^{2n}} \le \frac{1}{2n+1}$$
.

- 8. Let $x, y \in \mathbb{R}$. Prove that
 - i) $|x+y| \le |x| + |y|$ (the triangle inequality),
 - ii) $||x| |y|| \le |x y|$.