CMPE 220

Class 27 – Mobile Operating Systems

Types of Operating Systems

- Batch / Single-Process (early computers 1940s-50s)
- Multi-Programming Systems ("modern" computers last 1960s)
- Multi-Processor Systems
- Distributed Operating Systems
- Network Operating Systems
- Embedded Systems
- Real-Time Systems
- Cloud Systems
- Mobile Systems

What is a Mobile Operating System?

- An operating system for smartphones, tablets, smartwatches, smartglasses, or other non-laptop personal mobile computing devices
- Mobile operating systems combine features of a desktop computer operating system with other features useful for mobile or handheld use

Popularity of Mobile Operating Systems

- An estimated 6.84 billion mobile phones in use
- Compare to:
 - 2.5 billion computers (desktops, servers, laptops)
 - Windows
 - MacOS
 - Linux (multiple variants)
 - Cloud Operating Systems
 - 15.2 IoT devices
 - Linux
 - Dozens of dedicated operating systems

Mobile Operating Systems Market Share

Q1 2023	Worldwide Market Share
Android*	71%
iOS	29%
All others (combined): • Windows • Symbian • Ubuntu	< 1%

* Android Variants

- Each manufacturer produces their own customized version of Android
- Mostly variations in User Interface and pre-loaded apps

History: iOS

- First released by Apple Computer in June 2007
- Based on BSD Unix
- Originally called iPhone OS
- Renamed iOS (version 4) in April 2010 to expand support to iPad

History: Android

- Developed in 2003 by Android, Inc. as an operating system for cameras
- Based on Linux
- Purchased by Google in 2005
- First Android-based phone - the HTC Dream - shipped in September, 2008

Is Android Open Source?

- The core OS is developed and released by the Android Open Source Project – through a consortium managed by Google
- Most of the Android application software is not open source
- Most code comes from Google
- Google licenses its own version to hardware vendors
- Amazon Kindle operating system FireOS is based on the Android Open Source Project

The Android OS Release Pipeline

- New version of Android is "frozen" in open source
- Google releases a new version of its proprietary Android with Google apps
- Manufacturers "port" the system to their hardware
- Manufacturers release the new version
- Typical delay: several weeks to several months
 - Major releases take longer
- Security risk!

Update Rates

- Good statistics are hard to find, but iOS users are much more likely to be running the "current" OS
 - An estimated 60% or more of iPhone users are up-to-date
 - Less than 20% of Android users are up-to-date

Android Version	Market Share
13	12%
12	17%
11	23%
Older	49%

iOS Version	Market Share
16	61%
15	28%
14	3%
Older	8%

Problems Due to Slow Adoption

- Security Risks
 - Hackers target known vulnerabilities
- Slow feature adoption
 - App vendors don't take advantage of new features

Comparison of Operating Systems

- All provide a means of sharing resources across a communications network
- Network Operating System: access to remote resources is explicit
- Distributed Operating System: access to remote resources is implicit – programs may not know about locality of references
- Cloud Operating system: manages the operation, execution and processes of virtual machines, virtual servers and virtual infrastructure, as well as the back-end hardware and software resources.

Mobile OS Differences

File System

- Mass Storage
 - No disk drive
 - Solid-state storage (file system)
 - System doesn't need to deal with disk latency
 - Supports virtual memory

• RAM: 4-16 GB

• Mass Storage: 16GB – 1TB

Networking: OSI Versus TCP/IP Models

OSI Reference Model

Application

Presentation

Session

Transport

Network

Data Link

Physical

TCP/IP Model

Application

Transport

Internet

Network

- OSI model provides a clear distinction between application, presentation, and session services.
- TCP/IP groups these as a single Application layer
- In the OSI model, the data link layer and physical are separate layers.
- TCP/IP groups these as a single Network layer

Networking

Layer	Smartphone Implementation
Application	HTTP, HTTPS, POP, IMAP, SMTP, SMS, etc
Transport	UDP, TCP
Internet	IP
Network	Wifi Cellular

1/0

- Device I/O: keyboards, printers, etc
- Drivers:
 - Bluetooth
 - USB
- Camera
- Audio input & output
- Location services
- Touchscreen

User Interface

- Screen interface / Window system
- User Interface API
 - Event-driven framework

Power Management

- Charging
- Smart charging algorithms
- Charge monitoring
 - CPU throttling (Apple "scandal")
 - Task management
 - Instruction selection
- Battery monitoring
 - Health assessment and reporting

Additional Characteristics

- Resiliency and Availability the ability of a service to recover quickly from any disruption
- Critical Phone Service service disruptions can be life-threatening

Android Architecture

- Linux based
 - C/C++ OS Code
- Java Virtual Machine
 - Application Framework

Development

- Android SDK
- Java Virtual Machine (JVM)
- Multiple application frameworks
- Applications can be written in Kotlin, Java, and C++
- Kotlin is a modern, statically-typed language used by over 60% of Android developers

iOS Architecture

Development

- An object-oriented application framework
- Cocoa for iOS and MacOS
- Cocoa is written in Objective-C, C++, and C
- Applications are written in Swift and Objective C

Security

- Android is an open system
 - Applications may be distributed through the Google Play Store or private exchanges
 - Google inspects and verifies applications in Play Store
- iOS is a closed system
 - Applications <u>must</u> be distributed through the Apple Store
 - Apple inspects and verifies apps in App Store
- Security Implications
 - Theft of data

Estimated Prevalence of Malware

- Android: 0.25% to 4% of devices may have malware
- Apple: < 0.05% of devices may have malware
- In 2017, Nokia's 2017 **Threat Intelligence Report** revealed that:
 - 68 percent of all mobile devices infected with malware in the past year were running Android
 - 28 percent were running Microsoft Windows
 - 3 percent were running iOS

Privacy

- Apple restricts application tracking
 - Apps must <u>ask</u> users before tracking and reporting usage
 - Apple enforces tracking restrictions through the App Store
- Google currently has no restrictions on tracking
 - Restrictions if any cannot be enforced

Anti-malware

- Major vendors support aps on both Android and iOS
 - BitDefender
 - McAfee
 - Norton
 - SmartCleaner

