Name: Matrix number:

c)

Q-learning is a variant of making an agent experience an environment without knowing the model behind it (learning without knowledge of the MDP). With Q-learning the explicit learning of the *policy* is omitted, instead the *policy* is learned directly.

The following formula applies:

$$Q_{k+1}(s_t, a_t) < -Q_k(s_t, a_t) + \alpha [R(s, a) + \gamma \max(Q_k(s_{t+1}, a)) - Q_k(s_t, a_t))]$$

where α is the *learning rate* and γ is the *discount factor*. In this example, let the reward matrix R be given as:

\sim							
state/action	Α	В	$\mid C \mid$	D	E	F	
/ A	-	-	-	-	0	-	
S B	-	-	-	0	-	100	
$^{\mathrm{C}}$	-	-	-	0	-	-	
D	-	0	0	-	0	-	
${ m E}$	0	_	-	0	-	100	
\mathbf{F}	-	0	-	-	0	100	

As can be easily seen, there are 6 states S = A, B, C, D, E, F and the actions A that allow an agent to move from a state S_1 to a state S_2 (e.g. from A to E or from D to B,C or E). The example could be a building with rooms, and doors that allow an agent to transition from one room to another.

Apply the Q-learning algorithm step by step. Calculate the following values (k denotes the respective episodes) with $\alpha=1$ and $\gamma=0.8$. An episode ends when the goal (=goal state) is reached:

$$Q_{k=1}(B,F) = O + 1 (100 + 0.8(0 - 0))$$

$$Q_{k=2}(D,B) = 100 + (0 + 0.8(100 - 100))$$

$$Q_{k=3}(C,D) = 100 + (0 + 0.8(100 - 0))$$

$$Q_{k=4}(E,D) = 180 + (0 + 0.8(0 - 0))$$

What does the Q - matrix look like after the 4 episodes?

$$Q =$$

Worksheet

