

инструкция по сервисному ОБСЛУЖИВАНИЮ ТЕЛЕФОНА C1150

Оглавление

1. Введение	5	4.13 Неисправность обнаружения SIM-карть	ıl 84
1.1 Назначение	5	4.14 Неисправность светодиодов индикации	1 87
1.2 Регламентирующие положения		4.15 Неисправность часов реального времен	ни 88
1.3 Список сокращений		5. Загрузка программного обеспечени	ия и
2. Рабочие характеристики	۵	калибровка	89
		5.1 Загрузка программного обеспечения	89
2.1 Аппаратные характеристики		5.2 Калибровка	
2.2 Технические характеристики	10	6. Блок-схема	
3. Краткая техническая информация	15	о. влок-схема	98
3.1 Приемопередатчик	15	7. Принципиальная схема	101
3.2 Усилитель мощности	21		
3.3 Тактовый генератор частоты 13 МГц	22	8. Расположение на печатной плате	105
3.4 Питание РЧ схем	22	O Musicalianua Mallia	107
3.5 Основной цифровой процессор НЧ часть	ı 23	9. Инженерно меню	
3.6 Основной аналоговый процессор с блоко		9.1 Проверка НЧ части [МЕНЮ 1] ··········· 9.2 Проверка РЧ тракта [МЕНЮ 2] ··········	
управления питанием		9.3 Заводской тест [MENU 3] ······	110
3.7 Память		9.4 Параметр трассировки [МЕНЮ 4]	
3.8 Дисплей и интерфейс		9.5 Таймер [МЕНЮ 5]	
3.9 Нажатия клавиш и сканирование сигнало		9.6 Заводской сброс [МЕНЮ 6]	···· 111
клавиатуры		9.7 Версия программного обеспечения	
3.10 Микрофон		[MEHIO 7]	111
3.11 Основной динамик		10. Tect «STAND ALONE»	112
3.12 Интерфейс гарнитуры		10.1 Введение	
		10.2 Метод настройки	
3.13 Динамик и схема MIDI		10.3 Методика тестирования	···· 113
3.14 Подсветка клавиатуры			445
3.15 Подсветка ЖК-дисплея		11. Автоматическая калибровка	
3.16 Виброзвонок	49	11.1 Описание	
4. Устранение неисправностей	50	11.2 Необходимое оборудование ·············· 11.3 Меню и настройки ······	
·		11.4 АРУ	
4.1 Неисправность приема сигнала		11.5 APM	
4.2 Неисправность передачи сигнала		11.6 АЦП	
4.3 Неисправность включения	66	11.7 Настройки	
4.4 Неисправность зарядного устройства	68	11.8 Как провести калибровкуп	117
4.5 Неисправность ЖКД	70	12. Сборочный чертеж и список	
4.6 Неисправность динамика	72	заменяемых деталей	119
4.7 Неисправность громкоговорителя	74	12.1 Сборочный чертеж	
4.8 Неисправность микрофона	76	·	118
4.9 Неисправность виброзвонка		12.2 Заменяемые компоненты «Механические компоненты»	121
4.10 Неисправности подсветки клавиатуры		<0сновные компоненты>	
4.11 Неисправность обнаружения SIM-карты		12.3 Принадлежности	
4.12 Неисправность гарнитуры			

1. ВВЕДЕНИЕ

1.1 Назначение

В данном руководстве приводится техническое описание и необходимая информация для выполнения ремонта, калибровки, а также для загрузки программного обеспечения этой модели телефона.

1.2 Регламентирующие положения

А. Безопасность

Коммутационное мошенничество, т. е. несанкционированное использование телекоммуникационной системы неуполномоченной стороной (например, лицами, не являющимися служащими компании, ее представителями, субподрядчиками, либо действующими от имени компании) может стать причиной представления необоснованных счетов за пользование телекоммуникационными услугами. Пользователи системы несут ответственность за безопасность собственной системы. Имеется определенный риск коммутационного мошенничества в отношении Вашей телекоммуникационной системы. Пользователи системы несут ответственность за программирование и конфигурирование своего оборудования с целью предотвращения несанкционированного использования системы. Изготовитель не может гарантировать защищенность данного изделия в отношении вышеупомянутых случаев, и его возможностей по предотвращению несанкционированного пользования телекоммуникационными услугами коммерческих линий связи путем получения доступа или подключения оборудования. Изготовитель не несет ответственности за любые расходы, понесенные в результате подобного несанкционированного пользования телекоммуникационными услугами.

В. Причинение ущерба

В случае если компания телефонной связи определит, что предоставленное клиенту оборудование является неисправным и его использование может нанести ущерб или нарушить работу телефонной сети связи, компания может временно приостанавливать оказание услуг телефонной связи на время необходимое для ремонта.

С. Изменения предоставляемых услуг.

Местная компания телефонной связи может вносить изменения в свое оборудование связи и изменять порядок его работы. При наличии оснований полагать, что такие изменения способны оказать воздействие на работу данного телефонного аппарата, либо его совместимость с телефонной сетью, компании телефонной связи следует заранее письменно уведомить об этих изменениях пользователя, предоставляя тем самым ему возможность предпринять необходимые меры с целью продолжения пользования услугами телефонной связи.

D. Ограничения на выполнение техобслуживания

Некоторые работы по техническому обслуживанию данной модели могут быть выполнены только предприятием-изготовителем, либо его уполномоченными представителями. Следует иметь в виду, что любые несанкционированные модификации либо ремонт могут повлечь изменение нормативного статуса системы и стать основанием для аннулирования всего периода гарантии.

1. ВВЕДЕНИЕ

Е. Уведомление о наличии излучения

Настоящее изделие соответствует действующим в стране законодательным нормативам в отношении высокочастотного излучения. Согласно этим положениям, необходимая информация должна быть предоставлена потребителю.

F. Иллюстрации

Иллюстрации в настоящем руководстве приведены исключительно для наглядности. Реальное оборудование может выглядеть несколько иначе.

G. Помехи и подавление сигнала

Телефон может создавать помехи в работе чувствительного лабораторного оборудования, медицинского оборудования и т.п. На работу самого телефона могут оказать влияние помехи, исходящие от машин и электродвигателей, не оборудованных устройствами подавления помех.

Н. Приборы, чувствительные к электростатическим разрядам

ВНИМАНИЕ

Платы, детали которых чувствительны к электростатическим разрядам, обозначены следующей пиктограммой . Ниже приведена информация о порядке работы с такими деталями:

- Выполняя замену плат системы, технические специалисты должны иметь закрепленную на кисти руки линию заземления;
- При выполнении работ на системной плате специалист должен стоять на антистатическом покрытии (также заземленном):
- Паяльник (соответствующий выполняемой работе) должен быть заземлен;
- Чувствительные к статическому электричеству детали следует хранить в защитной упаковке вплоть до их непосредственного использования:
- Перед отправкой на завод системные платы, а также электрически перепрограммируемые ПЗУ и им подобные детали необходимо упаковать указанным способом.

1.3 Список сокращений

В настоящем «Руководстве используются следующие сокращения:

APC	Автоматическая регулировка мощности	
BB	Низкочастотная часть	
BER	Частота ошибок по битам	
CC-CV	Постоянный ток-постоянное напряжение	
DAC	Цифро-аналоговый преобразователь (ЦАП)	
DCS	Система цифровой связи	
дБм	дБ на 1 милливатт (дБм)	
DSP	Цифровой сигнальный процессор	
EEPROM	Electrical Erasable Programmable Read-Only Memory	
ESD	Электростатический разряд	
FPCB	Гибкая печатная плата	
GMSK	Модуляция GMSK	
GPIB	Интерфейс общего назначения	
GSM	Глобальная система мобильной связи	
IPUI	Международный код абонента мобильной связи	
IF	Промежуточная частота (ПЧ)	
LCD	Жидкокристаллический дисплей (ЖКД)	
LDO	Стабилизатор напряжения	
LED	Светоизлучающий диод	
OPLL	Схема фазовой автоподстройки частоты (ФАПЧ)	
PAM	Усилитель мощности	

1. ВВЕДЕНИЕ

PCB	Печатная плата	
PGA	Усилитель с программируемым усилением	
PLL	Система фазовой автоподстройки частоты (система ФАПЧ)	
PSTN	Коммутируемая телефонная сеть общего пользования	
RF	Радиочастота (РЧ)	
RLR	Номинал громкости приема	
RMS	Среднеквадратичное действующее значение (СДЗ)	
RTC	Генератор импульсов реального времени	
SAW	Поверхностная акустическая волна (ПАВ)	
SIM	Модуль идентификации абонента	
SLR	Номинал громкости передачи	
SRAM	Статическое запоминающее устройство с произвольной выборкой	
PSRAM	Псевдостатическое запоминающее устройство с произвольной выборкой	
STMR	Противоместный эффект	
TA	Зарядное устройство	
TDD	Дуплекс временного разделения	
TDMA	Множественный доступ с временным разделением	
UART	Универсальный асинхронный интерфейс приема/передачи	
VCO	Генератор, управляемый напряжением (ГУН)	
VCTCXO	Термостабилизированный генератор, управляемый напряжением	
WAP	Протокол WAP (для распространения данных по Internet)	

2.1 Аппаратные характеристики

Наименование	Характеристики	Примечания
Стандартная батарея	Литий-полимер, 760 мА/ч; Габариты: 34 (В) х 42.5 (Ш) х 4.45 (Т) мм; Масса: 13.5 г.	
Потребляемый ток в дежурном режиме	В условиях минимального расхода электроэнергии (период опроса сети 9) сила тока в дежурном режиме не превышает 4 мА.	
Продолжительность разговора	До 3 часов (GSM, уровень передачи 5)	
Продолжительность работы в дежурном режиме	До 200 часов (период опроса сети: 9, уровень сигнала RSSI: -85 дБм)	
Продолжительность подзарядки	3.75 часа	
Чувствительность приемного устройства	GSM, EGSM: -105 дБм, DCS: -105 дБм	
Выходная мощность передатчика	GSM, EGSM: 33дБм (Уровень 5), DCS: 30дБм (Уровень 0)	
Совместимость GPRS	Класс 10	
Тип SIM-карты	Только 3В	
Дисплей	Основной ЖКД: 128 X 128 пикселей, 65000 цветов STN	
Индикация состояния и клавиатура	Контрастные пиктограммы. клавиатура: 0 - 9, #, *, навигационные кнопки «Вверх» и «Вниз», кнопки «Меню», «Сброс», «Отправить», и «Окончание»/ВКЛ, две программируемые клавиши (левая/правая)	
Антенна	Внутренняя	
Разъем гарнитуры	Есть	
Разъем для соединения с ПК	Есть	
Речевая кодировка	EFR/FR/HR	
Передача данных и факс	Есть	
Виброзвонок	Есть	
Громкая связь	Нет	
Диктофон	Есть	
Микрофон	Есть	
Громкоговоритель/динамик	Есть	
Зарядное устройство	Есть	
MIDI	16-голосая полифония	
Дополнительно	Комплект для передачи данных, компакт диск	

2.2 Технические характеристики

Nο	Наименование		Характеристики					
1	Диапазон частот	EGSM • TX: 890 + n x 0.2 ΜΓμ • RX: 935 + n x 0.2 ΜΓμ (n=1~124) EGSM • TX: 890 + (n-1024) x 0.2 ΜΓμ • RX: 935 + (n-1024) x 0.2 ΜΓμ (n=975~1024) DCS • TX: 1710 + (n-512) x 0.2 ΜΓμ						
2	Фазовая погрешность	RMS <	805 + (n-512) 5 градусов) градусов	х 0.2 МГц (r	1=512~88	5)		
3	Погрешность по частоте	< 0.1 пр	омилле					
		GSM , E Уровень		Допустимое отклонение	Уровень	Мощность	Допустимое отклонение	
		5	33 дБм	±2дБ	13	17 дБм	±3дБ	
		6	31 дБм	±3дБ	14	15 дБм	±3дБ	
		7	29 дБм	±3дБ	15	13 дБм	±3дБ	
		8	27 дБм	±3дБ	16	11 дБм	±5дБ	
		9	25 дБм	±3дБ	17	9 дБм	±5дБ	
		10	23 дБм	±3дБ	18	7 дБм	±5дБ	
		11	21 дБм	±3дБ	19	5 дБм	±5дБ	
4	Уровень мощности	12	19 дБм	±3дБ				
		DCS						
		Уровень	Мощность	Допустимое отклонение	Уровень	Мощность	Допустимое отклонение	
		0	30 дБм	±2дБ	8	14 дБм	±ЗдБ	
		1	28 дБм	±3дБ	9	12 дБм	±4дБ	
		2	26 дБм	±3дБ	10	10 дБм	±4дБ	
		3	24 дБм	±3дБ	11	8 дБм	±4дБ	
		4	22 дБм	±3дБ	12	6 дБм	±4дБ	
		5	20 дБм	±3дБ	13	4 дБм	±4дБ	
		6	18 дБм	±3дБ	14	2 дБм	±5дБ	
	I	7	16 дБм	±3дБ	15	0 дБм	±5дБ	

No	Наименование	Характеристики		
		GSM, EGSM		
		Смещение от несущей (кГц).	Макс.дБс	
		100	+0.5	
		200	-30	
		250	-33	
		400	-60	
		600 ~ 1,200	-60	
		1,200 ~ 1,800	-60	
		1,800 ~ 3,000	-63	
		3,000 ~ 6,000	-65	
5	Спектр РЧ на выходе	6,000	-71	
5	(из-за модуляции)	DCS		
		Смещение от несущей (кГц).	Макс.дБс	
		100	+0.5	
		200	-30	
		250	-33	
		400	-60	
		600 ~ 1,200	-60	
		1,200 ~ 1,800	-60	
		1,800 ~ 3,000	-65	
		3,000 ~ 6,000	-65	
		6,000	-73	
		GSM, EGSM		
	Спектр РЧ на выходе	Смещение от несущей (кГц).	Макс. дБм	
6	(из-за переходного процесса	400	-19	
U		600	-21	
	при коммутации)	1,200	-21	
l		1,800	-24	

No	Наименование	Характеристики			
		DCS			
	Спектр РЧ на выходе	Смещение от несущей (кГц)). Ma	акс. дБм.	
6		400		-22	
0	(из-за переходного процесса при коммутации)	600		-24	
	при коммутации)	1,200		-24	
		1,800		-27	
7	Помехи	Проводимость, излучение			
8	Частота ошибок по битам (ЧОБ)	GSM, EGSM BER (Класс II) < 2.439% @-102 дБм DCS BER (Класс II) < 2.439% @-100 дБм			
9	Точность информации об уровне приема	±3 дБ			
10	SLR	8 ±3 дБ			
		Частота (Гц)	Максимум (дБ)	Минимум (дБ)	
		100	-12	1	
		200	0	1	
		300	0	-12	
11	Частотная характеристика передачи	1,000	0	-6	
		2,000	4	-6	
		3,000	4	-6	
		3,400	4	-9	
		4,000	0	1	
12	RLR	2±3 дБ			
		Частота (Гц)	Максимум (дБ)	Минимум (дБ)	
		100	-12	1	
		200	0	1	
		300	2	-7	
		500	*	-5	
13	Частотная характеристика приема	1,000	0	-5	
		3,000	2	-5	
		3,400	2	-10	
		4,000	2		
		* Означает прямую между 300 Г качестве максимального уровн			

Nō	Наименование	Характеристики			
14	STMR	13±5 дБ			
15	Запас устойчивости	> 6 дБ			
		дБ ARL (дБ)	Соотношение уровня (дБ)		
		-35	17.5		
		-30	22.5		
10	Mayayyayyaay	-20	30.7		
16	Искажение сигнала	-10	33.3		
		0	33.7		
		7	31.7		
		10	25.5		
17	Искажение побочного тона	Трехступенчатое искажение < 10	0%		
18	Допустимое отклонение частоты (13 МГц) в сети	≤ 2.5промилле			
19	Допустимое отклонение (32.768 кГц)	≤ 30промилле			
20	Громкость звонка	Не менее 65 дБ при следующих характеристиках: 1. Звонок установлен в режим звонка.			
		2. Расстояние тестирования 50 с	M.		
21	Ток подзарядки	Быстрая зарядка: < 500 мА Медленная зарядка: < 60 мА			
		Кол-во делений индикатора приема	Мощность		
		5	-85 dBm ~		
		4	-90 dBm ~ -86 dBm		
22	Индикатор приема	3	-95 dBm ~ -91 dBm		
		2	-100 dBm ~ -96 dBm		
		1	-105 dBm ~ -101 dBm		
		0	~ -105 dBm		
		Кол-во делений индикатора приема	Напряжение		
		0	3.51 ~ 3.59 V		
23	Индикатор заряда батареи	1	3.60 ~ 3.68 V		
		2	3.69 ~ 3.80 V		
		3	3.81 ~ 3.88 V		
		4	3.89 V ~		
24	Предупреждение о разрядке	3.65 ± 0.03 В (В режиме разговора)			
	аккумулятора	3.50 ± 0.03 В (В режиме ожидания)			

Nο	Наименование	Характеристики	
25	Напряжение принудительного	3.35 ±0.03B	
26	Тип батареи	Стандартное напряжение = 3.7 В Напряжение полного заряда = 4.2 В Емкость: 760 мА/ч-	
27	Зарядное устройство	Импульсное зарядное устройство Входное напряжение: 100 ~ 240 В, 50/60 Гц Выходное напряжение: 5.2 В, 800 мА	

3. Краткая техническая информация

3.1 Приемопередатчик (SI4205-BM, U504)

Радиочастотная часть состоит из передающего и приемного устройства, генератора частоты, источника питания и ТГУНа.

Аего I представляет собой многодиапазонный высокочастотный приемопередатчик, предназначенный для обеспечения связи сотовых телефонов и беспроводных модемов форматов GSM/GPRS. Данное решение позволяет избавиться от необходимости использования промежуточной частоты (фильтр ПАВ ПЧ), трехдиапазонного внешнего малошумящего усилителя радиочастот передающего устройства, модуля генератора управляемого напряжением (ГУН), и других компонентов, используемых в стандартных схемах.

Рис. 3-1 Блок-схема приемного устройства

3. Краткая техническая информация

(1) Приемное устройство

Приемопередатчик Aero I использует архитектуру приемного устройства с низкой промежуточной частотой, что позволяет разместить на кристалле фильтр выбора каналов, устраняющий необходимость применения фильтров зеркальных частот и фильтра ПАВ ПЧ, которые являются элементами обычной супергетеродинной схемы.

А. Входной РЧ каскад

Радиочастотный входной каскад состоит из модуля антенного переключателя (FL400), двух фильтров ПАВ (FL401 и FL402) и двухдиапазонного малошумящего усилителя, интегрированного в приемопередатчик (U401). Принимаемые РЧ сигналы (GSM 925 МГц - 960 МГц и DCS 1805 МГц - 1880 МГц) подаются на антенный переключатель или антенный коммутатор.

Модуль антенного переключателя (FL400) служит для управления радиоканалами приема и передачи. Управляющие входные сигналы VC1 и VC2 от FL400 подаются на контроллер низкочастотной части для переключения радиотракта либо на прием, либо на передачу.

Логические уровни и токи показаны в таблице 3-1.

Табл. 3-1. Логические уровни и параметры токов

	VC1	VC2	Current
DCS Tx	0 V	2.5 ~ 3.0 V	10.0 mA max
GSM Tx	2.5 ~ 3.0 V	0 V	10.0 mA max
GSM / DCS Rx	0 V	0 V	< 0.1 mA

В SI4205 интегрированы три малошумящих усилителя с дифференциальными входами. Вход GSM поддерживает диапазон GSM 850 (869-849 МГц) или E-GSM 900 (925-960МГц). Вход DCS поддерживает диапазон DCS 1800 (1805-1880 МГц). Вход PCS поддерживает диапазон PCS 1900 (1930-1990 МГц).

Входы малошумящего усилителя согласованы с выходным сопротивлением 150 Ом фильтра ПАВ при помощи внешней согласующей LC-цепи. Коэффициент усиления малошумящего усилителя управляется битами LNAG[1:0] и LNAC[1:0] в регистре 05h (Рис. 3-2).

Рис. 3-2. Блок-схема приемного устройства микросхемы SI4205

В. Промежуточная частота (ПЧ) и демодуляция

Квадратурный смеситель с подавлением зеркальной частоты с помощью РЧ сигнала, поступающего с синтезатора частоты (гетеродина) преобразует входной РЧ сигнал в промежуточную частоту 100 кГц. Частота РЧ гетеродина находится в пределах от 1737.8 МГц до 1989.9 МГц, и делится на 2 внутри схемы для режимов GSM 850 и E-GSM 900. Выходной сигнал смесителя усиливается при помощи аналогового усилителя с программируемым коэффициентом усиления, который управляется при помощи битов AGAIN[2:0] в регистре 05h (Рис. 3-2). Квадратурный сигнал ПЧ оцифровывается с высоким разрешением при помощи аналогоцифрового преобразователя (АЦП).

Выходной сигнал аналого-цифрового преобразователя (АЦП) трансформируется при помощи цифрового 100 кГц квадратурного генератора и подается на низкочастотную часть. Цифровая обработка сигнала и БИХ-фильтры (с бесконечной импульсной характеристикой) применяются для выбора канала с целью устранения блокировки и помех.

Полоса пропускания частот БИХ-фильтра может быть установлена в один из двух режимов: узкополосный (CSEL = 1) или широкополосный (CSEL = 0). Узкополосный режим подключает фильтр разделения каналов, входящий в состав НЧ микросхемы. После выбора канала, цифровой сигнал усиливается при помощи цифрового усилителя с программируемым коэффициентом усиления, который управляется при помощи битов DGAIN [5:0] в регистре 05h.

Усиленный выходной цифровой сигнал проходит через цифро-аналоговый преобразователь (ЦАП), а затем, дифференцированный аналоговый сигнал подается на входы RXIP, RXIN, RXQP и RXQN для сопряжения с интегральными схемами НЧ части стандартного аналогового АЦП. Сигнал, поступающий в НЧ часть, не требует специальной обработки для компенсации искажений или расширения динамического диапазона.

По сравнению с прямым преобразованием, архитектура с низкой ПЧ в гораздо большей степени устойчива к смещениям постоянной составляющей, вызываемым самопреобразованием РЧ гетеродина, искажениями второго порядка от блокирующих элементов, и помехами 1/f.

(2) Передающее устройство

Передающее устройство состоит из повышающего преобразователя сигналов I/Q НЧ части, схемы фазовой автоподстройки частоты (ФАПЧ), и двух выходных буферов приводящих в действие внешние усилители мощности (УМ). Один буфер для диапазонов GSM 850 (824-849 МГц) и E-GSM 900 (880-915 МГц), а другой для стандартов DCS 1800 (1710-1785 МГц) и PCS 1900 (1850-1910МГц).

Рис. 3-3. Блок-схема передающего устройства микросхемы SI4205

А. Модулятор промежуточной частоты

Преобразователь сигнала низкочастотной части, входящий в состав микропроцессорного набора GSM, генерирует сигналы I и Q для модулятора вектора передачи. Этот модулятор обеспечивает более 40 дБс несущей частоты и подавлению зеркальных частот, и генерирует GMSK-модулированный сигнал. Программное обеспечение позволяет устранить дифференциальные смещения постоянной составляющей сигналов I/Q низкочастотной части, вызываемые некорректной работой цифро-аналоговых преобразователей (ЦАП).

Модулятор сигнала передачи является частью квадратурного модулятора. Квадратурный смеситель преобразует дифференцированые синфазные (TXIP, TXIN) и квадратурные (TXQP, TXQN) сигналы с повышением частоты при помощи гетеродина для создания SSB ПЧ сигнала, который затем фильтруется и используется для прямого соединения со схемой фазовой автоподстройки частоты (ФАПЧ).

ПЧ сигнал, генерируемый гетеродином, находится в пределах от 766 МГц до 896 МГц и делится на 2 для создания квадратурного сигнала гетеродина, предназначенного для квадратурного модулятора, результатом работы которого является ПЧ, находящаяся в пределах от 383 МГц до 448 МГц.

При работе с диапазоном E-GSM 900, для раздельного использования необходимы две разные ПЧ.

Поэтому при использовании диапазона E-GSM 900, ФАПЧ ПЧ должна быть запрограммирована для каждого канала в отдельности.

В. Схема фазовой автоподстройки частоты (ФАПЧ)

ФАПЧ состоит из смесителя с обратной связью, фазового детектора, контурного фильтра и интегрированного ГУН. Несущая частота ГУН находится между диапазонами DCS 1800 и PCS 1900, и выходной сигнал делится пополам между диапазонами GSM 850 и E-GSM 900. Частота, генерируемая гетеродином, находится между 1272 МГц и 1483 МГЦ. Для того, чтобы сделать возможным использование одного ГУН для РЧ гетеродина, применяется подача сигнала в верхней части диапазонов GSM 850 и E-GSM 900, и в нижней части диапазонов DCS 1800 и PCS 1900. Когда переключается диапазон, сигналы I и Q автоматически меняются местами.

Так же, эти сигналы можно поменять вручную, используя бит SWAP, находящийся в регистре 03h.

Фильтр нижних частот находящийся перед фазовым детектором ФАПЧ уменьшает гармоническую составляющую выходных сигналов прямоугольного модулятора и смесителя с обратной связью.

Частота отсечки для фильтров программируется с помощью битов FIF[3:0] в регистре 04h (Рис. 3-3), и должны быть установлены в значения, рекомендованные в описании регистра.

(3) Синтезатор частот

Si4205 RF1 То ф ÷ 130 RX/TX DET RF2 DIV2 RFUP XOUT N_{RF1}[15:0] Self N_{RF2}[15:0] XENI **RF PLL** ÷Ν **PDIB** Power PDN Control **PDRB** ÷Ν IF PLL SDI = Self $N_{IF}[15:0]$ Tune SDO 📑 Serial SCLK SDOSEL[4:0] ф SEN DET

Рис. 3-4. Блок-схема синтезатора частоты микросхемы SI4205

В приемопередатчик Aero I интегрированы две полные системы ФАПЧ, включающие в себя ГУН, параметрические диоды, резонаторы, контурные фильтры, делители

опорной частоты и делители частоты ГУН, фазовые детекторы. РЧ ФАПЧ использует два совмещенных ГУН. РЧ1 ГУН используется в режиме приема, а РЧ2 ГУН - в режиме передачи. ПЧ ФАПЧ используется только в режиме передачи. В каждый ГУН интегрирована подстроечная катушка индуктивности. Частоты РЧ и ПЧ устанавливаются программированием регистра N-Divider, NRF1, NRF2 и NIF. При установке регистра N-Divider в режим РЧ1 или РЧ2, автоматически выбирается соответствующий ГУН. Выходная частота каждого ФАПЧ рассчитывается по следующей формуле:

 $f_{out} = N \times f_{\emptyset}$

Бит DIV2 в регистре 31h управляет программируемым делителем на входе XIN, переключая несущую частоту в режим 13 МГц или 26 МГц. В режиме приема, частота обновления фазового детектора РЧ1 ФАПЧ (f_{\circ}), для диапазонов DCS 1800 и PCS 1900 должна быть запрограммирована на 100 кГц (f_{\circ} = 100 КГц), а для GSM 850 и E-GSM 900 - f_{\circ} = 200 кГц. В режиме передачи, частота обновления фазового детектора РЧ2 и ПЧ ФАПЧ постоянна (f_{\circ} = 200 кГц).

3.2 Усилитель мощности (SKY77325, U302)

Двухдиапазонный модуль усилителя мощности SKY77325 малой толщины (размер 1.2 мм) поддерживает стандарты GSM850/900, DCS1800, и PCS1900. Модуль также поддерживает пакетную передачу данных GPRS класса 12.

Модуль содержит два отдельных усилителя мощности для диапазонов GSM850/900 и DCS1800/PCS1900, с волновым сопротивлением 50 Ом и встроенный регулятор мощности с датчиком тока. ВіСМОЅ включает в себя цепь регулятора мощности и схему интерфейса. Усилитель мощности на гетеропереходном биполярном транзисторе для диапазонов GSM850/900 располагается на кристалле из арсенида галлия. Для диапазонов DCS1800 и PCS1900 используется другой усилитель мощности. Оба усилителя мощности подключены к одному блоку питания. Кристалл из арсенида галлия, кремния и пассивные компоненты располагаются на многоуровневой подложке. Сборка помещается в пластиковый корпус.

Входной и выходной порты SKY77325, содержат внутренние цепи согласования с нагрузкой в 50 Ом, вместо обычно используемых с такими модулями внешних компонентов. Использование малого тока (обычно 2.5мА) в усилителе мощности позволяет увеличить время работы телефона. SKY77325 содержит схему переключения диапазонов и управляется сигналом Band Select (BS). Сигнал Band Select (BS) может принимать два значения: логический 0, для диапазона GSM и логическая 1, для DCS/PCS.

На рисунке 3-5, изображено как контакт BS выбирает выход усилителя мощности (DCS/PCS OUT или GSM850/900 OUT), а аналоговое управление мощностью (VAPC) управляет выходной мощностью.

Контакты VBATT и VSENSE подключаются к внутреннему датчику тока и интерфейсу интегрированного усилителя мощности (iPAC™), который нечувствителен к изменению температуры, подаче питания и подаваемой мощности. Сигнал ENABLE включает усилитель мощности, что позволяет снизить расход энергии.

Рис. 3-5. Функциональная блок-схема

3.3 Тактовый генератор частоты 13 МГц (ТГУН, Х301)

The 13 MHz clock(X301) consists of a TCXO(Temperature Compensated Crystal Oscillator) which oscillates at a Тактовый генератор частоты 13 МГц (X301) состоит из термостабилизированного генератора, управляемого напряжением (ТГУН), выдающего частоту 13 МГц. Этот ТГУН используется Si4205, аналоговым процессором низкочастотной части (U102, AD6537B), цифровым процессором низкочастотной части (U101, AD6525) и набором микросхем MIDI (U401).

Рис. 3-6. Схема ТГУН

3.4 Питание РЧ схем (стабилизатор напряжения, U303)

РЧ схемы используют два стабилизатора. Один из них - MIC5255 (U303), а другой - один из выходов AD6537B (U102). MIC5255 (U303), подает напряжение на приемопередатчик (SI4205, U301). Один из выходов AD6537B обеспечивает питание ТГУН (X301). Усилитель мощности (SKY77325, U302) подключен к аккумулятору, так как использует питание повышенной мощности.

Таблица 3-2. Источники питания РЧ схем.

Стабилизатор	Напряжение	Питаемые элементы	Разрешающий сигнал
U303(VRF)	2.85 B	U301, U302	CLKON
U102(VVCXO)	2.75 B	X301	
Батарея(VBAT)	3.4 ~ 4.2 B	U302, U303	

Рис. 3-7. Схема стабилизатора напряжения

3.5 Цифровой центральный процессор (AD6525, U101)

Рисунок 3-8. Функциональная блок-схема внешнего интерфейса AD6525

3. Краткая техническая информация

- AD6525 процессор, разработанный компанией ADI.
- AD6537В содержит следующие модули:
- 1. Подсистема доступа к общей шине.
- EBUS, RBUS, PBUS, SBUS, DMABUS и IOBUS.
- 2. Подсистема цифрового процессора сигналов.
- Цифровой процессор сигналов ADI, сопроцессор Витерби, блок кодирования и система кэш-памяти/контроллера.
- 3. Подсистема основного блока управления (MCU).
- Центральный процессор ARM7TDMI, ПЗУ загрузчика, блок генератора тактовых импульсов и управления доступом.
- 4. Периферийная подсистема.
- Группа пользовательского интерфейса (MMI)
 - → Клавиатура, дисплей, подсветка, часы реального времени, устройство ввода/вывода общего назначения.
- Вспомогательная группа
 - → Следящий таймер, контроллер прерываний, таймер общего назначения.
- Группа системы GSM
- Интерфейс Блока прямого доступа к памяти (DMA) Сообщение между PBUS, RBUS и EBUS

3.5.1 Межэлементные соединения с внешними устройствами

А. Интерфейс блока часов реального времени.

Управляется с помощью внешнего кварцевого резонатора. Кварцевый резонатор генерирует 32,768 кГц.

В. Интерфейс модуля ЖКД

ЖК-дисплей управляется набором микросхем цифровой НЧ части, AD6525. Когда ЖКД работает, модуль ЖК-дисплея управляется AD6525 с помощью сигналов LCD_CS, LCD_RESET, ADD01, WR, DATA[00-15], LCD_ID, LCD_RESET.

Таблица 3-3. Описание управляющих сигналов ЖКД.

Сигнал	Описание
LCD_CS	Сигнал включения схемы запуска основного ЖКД. Схема запуска основного
	ЖКД имеет свой контакт для сигналов CS.
LCD_RESET	Этот сигнал служит для сброса модуля ЖКД.
(ADD1)RS	Этот сигнал разграничивает посылаемые на ЖКД модуль сигналы на
	графические и управляющие. (ADD1) RS может использовать16-битную
	параллельную шину данных. (ADD1)RS так же может использоваться для
	адресации флэш-памяти.
WR	Управление записью. Телефон не считывает данные с чипа ЖКД
DATA [00-15]	Линия параллельной передачи данных. Чип цветного ЖКД использует
	16-битный интерфейс.
2V8_VEXT	Напряжение 2.8В подается на схему запуска белой подсветки ЖКД.
LCD_DIM	Управляющий сигнал белой подсветки ЖКД.

3. Краткая техническая информация

С. Интерфейс РЧ

AD6525 осуществляет управление PЧ компонентами подачей команд PA_BAND, ANT_SW1, ANT_SW2, CLKON , PA_EN, S_EN, S_DATA, S_CLK, RF_PWR_DWN

Таблица 3-4. Описание управляющих сигналов интерфейса РЧ

GPO	Сигнал	Описание	Reset
17	PA_BAND	Выбор частотного диапазона РАМ	
9	ANT_SW1	Выбор диапазона антенным переключателем	
11	ANT_SW2	Выбор диапазона антенным переключателем	
-	CLKON	Включение/выключении РЧ стабилизатора.	
16	PA_EN	Включение/выключение усилителя мощности	
19	S_EN	Включение системы ФАПЧ	
20	S_DATA	Последовательные данные к системе ФАПЧ	
21	S_CLK	Тактовые импульсы системы ФАПЧ	
4	RF_PWER_DWN	Выключение питания	

D. Интерфейс SIM

Микросхема AD6525 является модулем SIM интерфейса. Во время звонка микросхема AD6525 периодически проверяет наличие SIM-карты в телефоне, однако в режиме ожидания проверка не происходит. Для связи с SIM-картой используются сигналы SIM_DATA, SIM_CLK, SIM_RST(GPIO_23).

Таблица 3-5. Описание управляющих сигналов интерфейса SIM.

Сигнал	Описание
SIM_DATA	Этот вывод получает и отправляет данные на SIM-карту. Данная модель
	поддерживает только SIM-карты с интерфейсом 3,0 B
SIMCLK	Тактовый генератор частоты 3,25 МГц.
SIM_RST(GPIO_23)	Сброс блока SIM

Рисунок 3-9. Интерфейс SIM

Е. Интерфейс клавиатуры

Имеет 5 вертикальных и 5 горизонтальных рядов. AD6525 определяет нажатую кнопку по сигналу прерывания

3.5.2 Архитектура AD6527

Рис. 3-10. **Архитектура AD6525**

Архитектура AD6525 изображена выше на рисунке 3-10. Схема AD6525 состоит из трех основных подсистем, соединенных между собой с помощью динамической и гибкой коммуникационной шины. Она так же включает в себя системную память (SRAM) и соединена с флэш-памятью, НЧ конвертером и терминалом MMI, SIM и USC (Universal System Connector).

Подсистема цифровой обработки сигналов (DSP) выполняет функции обработки речи, коррекции каналов, функцию кодека. Программы, используемые для выполнения таких задач, могут храниться во внешней флэшпамяти и по желанию могут быть динамически загружены в память DSP и кэш инструкций.

Подсистема микроконтроллера поддерживает все программное обеспечение GSM, включая 1, 2 и 3 уровни протоколов GSM, MMI и прикладное программное обеспечение, например, службы передачи данных, программное обеспечение для тестирования и настройки. Подсистема так же связана с системной памятью (SRAM), а так же содержит загрузочную память (boot ROM) со специальным программным обеспечением для инициализации внешней флэш-памяти с помощью встроенного последовательного интерфейса, соединяющего чип с внешней флэш-памятью.

Периферийная подсистема состоит из внешних системных устройств, таких как контроллер прерываний, часы реального времени, сторожевой таймер, блок управления питанием, а так же модуль синхронизации и управления.

Она так же включает периферийный интерфейс функций терминала: клавиатура, мониторинг батареи, радио часть и дисплей. Микроконтроллер, наряду с подсистемой цифровой обработки сигналов, подключен к периферийной подсистеме через периферийную шину (PBUS).

Для хранения программного обеспечения и других данных, микроконтроллер и подсистема цифровой обработки сигналов имеют доступ к встроенной системной памяти (SRAM) и внешней флэш-памяти. Системная память подключена через шину памяти (RBUS) и управляется арбитражной логикой шины.

Флэш-память подключена подобным способом через внешнюю шину памяти (EBUS)

3.6 Центральный аналоговый процессор с блоком управления питанием (AD6537B, U102)

AD6537B AD6525□ LEDs or□ Light Controllers AD6526 RF ADC CSPORT Crystal & DAC Ram DAC DAC GMSK DAC BSPORT Filter ADC SI4205 Filter ADC Transceiver Tone Filter DAC ASPORT Headhones or Headset Filter ADC Battery Charger B Voltage Regulators VCORE: 1.8V, 80mA VMEM: 1.8 or 2.8V, 150mA VMIC: 2.5V, 1mA VEXT: 2.8V, 170mA VVCXO: 2.75V, 10mA VSIM: 1.8 or 2.85V, 20mA VRTC: 1.8V, 200μA

Рис. 3-11. Функциональная блок-схема AD6537B

3. Краткая техническая информация

- AD6537B- процессор, разработанный компанией ADI.
- AD6537B состоит из

1. Передающая секция НЧ части

- Генерирует синфазные и квадратурные НЧ модулированные GMSK сигналы
- Цифровой модулятор GMSK, 10-битные ЦАП, восстанавливающие фильтры.

2. Принимающая секция НЧ части

• Два идентичных АЦП канала, обрабатывающих входные синфазные и квадратурные сигналы.

3. Вспомогательный участок

• 2 вспомогательных ЦАП - AFC DAC, IDAC, AUX ADC Проверка напряжения

• AUX ADC: Шесть10-битных каналов.

AFC DAC: 13 бит IDAC: 10 бит

4. Секция канала обработки речевого сигнала

- Получение аудио сигнала с микрофона Отправка аудио сигнала на динамик
- Осуществляет соединения таких внешних устройств как микрофон, динамик, наушник и гарнитура.

5. Управление системой электропитания

- 8 стабилизаторов напряжения расположены в AD6537B. VCORE, VMEM, VEXT, VSIM, VRTC, VABB, VMIC, VVCXO
- Блок заряда батареи

3.6.1 Передача сигнала в НЧ части

- 1. Передающая секция AD6537B создана для поддержки GMSK, как для одноканальных, так и для многоканальных приложений.
- 2. Канал передачи состоит из цифрового модулятора GMSK, согласованной пары 10-разрядных ЦАП и согласованной пары восстанавливающих фильтров.

Рисунок 3-12. Передающая секция НЧ части процессора AD6537B

3.6.2 Прием сигнала в НЧ части

- 1. Данный участок включает в себя два идентичных канала АЦП, обрабатывающие синфазные (I) и квадратурные (Q) входные сигналы НЧ части.
- 2. Каждый канал состоит из сглаживающего фильтра и фильтра с низкой пропускной способностью.

Рисунок 3-13. Секция приема сигнала в НЧ части процессора AD6537B

3.6.3 Вспомогательный участок

- 1. Эта секция включает в себя ЦАП автоматического управления частотой, буферы подачи опорного напряжения, вспомогательный АЦП, контроллеры подсветки.
- 2. Эта секция также включает в себя вспомогательный АЦП и буферы подачи опорного напряжения.
 - AFC DAC:13-битный
 - IDAC:10-битный
 - Вспомогательный АЦП обеспечивает:
 - Два дифференциальных входа для считывания температуры.
 - Дифференциальный вход для считывания тока зарядки
 - Несимметричный вход для измерения напряжения батареи
 - Несимметричный вход для определения типа батареи
 - Два несимметричных входа для обнаружения микрофона и переключателя гарнитуры, по одному для каждого аналогового звукового входного канала
 - Два внешних входа общего назначения
 - REF, REFOUT, REFCHG
 - Bxoды REFADC, REFADC/2 и AGND1 для измерения смещения и коэффициента усиления

Рисунок 3-14. Вспомогательный участок процессора AD6537B

3.6.4 Секция обработки звукового сигнала

- 1. Получает звуковой сигнал с микрофона. Телефон С1150 использует дифференциальную конфигурацию.
- 2. Посылает звуковой сигнал на громкоговоритель. Телефон С1150 использует дифференциальную конфигурацию.
- 3. Обеспечивает аудио кодек (кодирование/декодирование) при помощи ЦАП и АЦП. Также сюда входит контроллер громкости звука звонка, интерфейс микрофона, многоканальные аналоговые вход и выход.
- 4. Связывает между собой такие внешние устройства как главный микрофон, главный громкоговоритель и разъем гарнитуры с помощью портов AIN1N, AIN1P, AIN2N, AIN2P, AIN3N, AIN3P, AOUT1P, AOUT1N, OUT2P, AOUT2N, AOUT3P и AOUT3N.
 - AIN1P, AIN1N: Положительный/отрицательный вывод главного микрофона
 - AIN2P,AIN2N : Положительный/отрицательный вывод микрофона гарнитуры
 - AOUT1P, AOUT1N: Положительный/отрицательный вывод главного громкоговорителя
 - AOUT3P: Положительный/отрицательный вывод наушника гарнитуры

Рис. 3-15. Аудио секция процессора AD6537B

Рис. 3-16. Аудио секция телефона С1150

AD6537B CSFS Baseband Analog LDO Regulator VABB Control Serial Port CSDI CSDO VMIC 2.5V, 1mA Microphone LDO Regulator Digital Core LDO Regulator 1.8V, 80mA VVCXO 2.75V, 10mA VCXO LDO Regulator VOCRE Memory Interface LDO Regulator 1.8 or 2.8V, 150mA VMEM External Interface LDO Regulator VEXT 2.8V, 170mA VCHG Battery Charger SIM Interface LDO Regulator GATEDRIVE VSIM 1.8 or 2.85V, 20mA BATTYPE RTC LDO Regulator VRTC 1.8V, 200μA ISENSE KEYON VCXOEN KEYOUT Regulator Control DBBON RESET Power-On Reset Generator

3.6.5 Управление системой электропитания

Рисунок 3-17. Секция управления системой электропитания процессора AD6537B

1. Логическая схема последовательности включения питания

- 1. AD6535В управляет последовательностью включения питания.
- 2. Последовательность включения питания.
 - Если батарея установлена на место, то она подает питание на 8 стабилизаторов.
 - Затем, при обнаружении сигнала POWERONKEY, включается выход стабилизаторов.
 - Также поступает разрешающий сигнал REFOUT.
 - Генерируется сигнал сброса и посылается на AD6525.

Рисунок 3-17. Логическая схема электропитания AD6537B

2. Блок стабилизаторов

- 1. В AD6537В имеются 8 стабилизаторов.
 - VCORE : подается на ядро цифрового НЧ процессора и цифровое ядро процессора AD6537B(1.8B, 80мA)
 - VMEM : подается на внешнюю память и интерфейс внешней памяти цифрового НЧ процессора (1.8В или 2.8В, 150мА)
 - VEXT : подается на цифровой радио интерфейс и высоковольтный интерфейс (2.8B, 170мA)
 - VSIM : подается на цепи интерфейса SIM в цифровом процессоре и SIM-карте (1.8В или 2.85В, 20мА)
 - VRTC : подается на модуль часов реального времени (1.8 B, 20 мА)
 - VABB : подается на аналоговые части AD6537B
 - VMIC : подается на цепи интерфейса микрофона (2.5 B, 1 мА)
 - VVCXO : подается на генератор с кварцевой стабилизацией частоты (2.75 B, 10 мА)

Таблица 3-6. Описание стабилизаторов AD6537B

	Описание
VSIM	2.85B (Подается на SIM-карту)
VCORE	1.8B (Подается на цифровые процессоры AD6525 и AD6537B)
VRTC	1.8В (Подается на часы реального времени и батарею резервного питания)
VMIC	2.55В (Подается на систему ввода/вывода AD6525 и используется в качестве тока подмагничивания в микрофоне)
VTCXO	2.75В (Подается на ТГУН)
VMEM	2.8В (Подается на схему флэш-памяти)
VEXT	2.8В (Подается на ЖКД)

3. Блок зарядки батареи

- 1. Блок может быть использован для зарядки ионно-литиевых и/или никель-металлогидридных батарей. Аппаратура выполняет управление инициализацией зарядного устройства, процессом непрерывной подзарядки малым током, зарядкой ионно-литиевой батареи.
- 2. Процесс подзарядки
 - Проверка подключения зарядного устройства.
 - Если AD6537B определяет что зарядное устройство подключено, начинается зарядка постоянным током/постоянным напряжением.
 - Исключение: Если напряжение батареи ниже 3,2 В, то сначала начинается предварительная зарядка (режим зарядки слабым током).
 - Когда напряжение батареи достигает 3,2 В, начинается зарядка постоянным током/постоянным напряжением.
- 3. Используемые для подзарядки выводы
 - CHG DET: Прерывание AD6525 при подключенном зарядном устройстве.
 - CHG_EN: Управляющий сигнал от AD6525 для зарядки батарей Литий +.
 - EOC: Прерывание AD6525, подаваемое, когда батарея полностью заряжена.
 - GATEIN: Управляющий сигнал от AD6525 при зарядке никель-металлогидридной батареи. Не используется.
 - MVBAT: Делитель напряжения батареи. Напряжение делится в пропорции 1:2.3 и измеряется в AD6521 AUX_ADC
- 4. Зарядное устройство
 - Напряжение на входе: переменный ток 85 В 260 В, 50 60 Гц.
 - Напряжение на выходе: постоянный ток 5.2 В (0.2 В).
 - Выходной ток: макс. 850 мА (50 мА).

5. Батарея

- Ионно-литиевая батарея (макс. 4.2 В, номинальное 4.0 В)
- Стандартная батарея: Емкость 760 мА, усовершенствованный Литий-Полимерная

Рисунок 3-19 Блок зарядки батареи AD6537B

Рис. 3-20. Цепь зарядки

Для снижения времени ускоренной зарядки в систему добавлена дополнительная цепь (Схема предварительной зарядки).

Эта схема дополнительно подает на батарею телефона ток 50 мА.

Таким образом, схема ускоряет зарядку батареи.

3.7 Память (TH50VPF5783AASB, U201)

Рис. 3-21. Блок-схема модуля памяти

- 128Мбит флэш-память + 32Мбит
- 16-разрядная шина параллельно передаваемых данных
- ADD01 ADD22
- Два сигнала выбора (СЕ) микросхемы Флэш-памяти.
- флэш-памяти хранит данные РЧ калибровки, звуковые параметры, данные калибровки батареи и т.д.

3.8 Дисплей и интерфейс

	Формат основного ЖКД	128 x RGB x 128 точек
ĺ	Подсветка основного ЖКД	Белые светодиоды подсветки

Таблица 3-6. Описания ЖКД модуля.

Основной ЖКД С1150 поддерживает 65,536 цветов.

Используются следующие управляющие сигналы: LCD_CS (Запускается при включении чипом управляющей схемы ЖКД), WR, ADD01(RS) и LCD_RESET. DATA[00:15] контакты для передачи графической информации для вывода на ЖК-дисплее.

Рис. 3-22. Схема интерфейса ЖК-дисплея

3.9 Нажатия клавиш и сканирование сигналов клавиатуры

Срабатывание клавиш обеспечивается металлическим куполом, при нажатии создающим контакт между двумя концентрическими контактами клавиатурного слоя печатной платы. Клавиатура состоит из 24-х таких контактов (SW1-SW2,KB2~KB22), подключенных к матрице из 5 рядов и 5 колонок. К матрице не подключена кнопка питания (КВ101), которая подсоединена отдельно. Матрица подключена к микросхеме AD6525. Ее столбцы являются выходными каналами, в то время как ряды являются входными каналами и подключены через нагрузочные резисторы.

При нажатии клавиши, ряд и столбец соединяются в одной точке, заставляя ряд создавать прерывание. На предмет нажатия клавиши ряды и столбцы сканируются микросхемой AD6525.

Рис. 3-23. Схема клавиатуры С1150

3.10 Микрофон

Микрофон установлен на передней стороне корпуса телефона и подключен к основной плате. Звуковой сигнал проходит через контакты AIN1P и AIN1N микросхемы AD6537B. AD6537B формирует напряжение смещения (VMIC) для AIN1P. Сигналы AIN1P и AIN1N проходят аналого-цифровое преобразование в голосовом АЦП микросхемы AD6537B. Оцифрованная речь попадает в секцию DSP AD6525 для обработки (кодирование, интерливинг и т.д.).

Рис. 3-24. Микрофон

3.11 Основной динамик

Основной динамик управляется напрямую с помощью контактов AOUT1P и AOUT1N микропроцессора AD6537B. Коэффициент усиления определяется микропроцессором AD6537B. Динамик расположен на внутренней стороне корпуса и подключен к модулю ЖКД.

Рис. 3-25. Основной динамик

3.12 Интерфейс гарнитуры

Этот телефон использует 3-контактную гарнитуру с контактами Receiver+, Mic+, и GND. Эта гарнитура поддерживает только монозвук. Но большинство телефонов используют общий интерфейс.

Рис. 3-26. Интерфейс гарнитуры и разъема гарнитуры

3.13 Динамик и схема MIDI

В модели телефона С1150 не используется зуммер, но используется громкоговоритель и музыкальная схема, которая способна воспроизводить громкие и благозвучные мелодии.

• Управление музыкальной схемой.

2 GPIO предназначены для управления музыкальной схемой. Данные передаются на музыкальную схему.

Рис. 3-27. Динамик и схема MIDI

Этот телефон использует музыкальную схему компании Yamaha. Музыкальная схема YMU759В - это интегральная схема синтезатора, разработанная для мобильных телефонов и способная воспроизводить высококачественные мелодии, используя FM синтезатор и декодер ADPCM. Этот набор микросхем оборудован оригинальным FM синтезатором Yamaha, который позволяет прибору проигрывать до 16 голосов одновременно, с использованием различных инструментов, то есть 16-голосую полифонию. YMU759В включает звуковой усилитель с низким уровнем искажений и максимальной выходной мощностью 550 мВт при SPVDD = 3.6В.

3.14 Подсветка клавиатуры

Подсветка клавиатуры состоит из 10 голубых светодиодов, расположенных на основной плате. Подсветка клавиатуры управляется сигналом LIGHT3 схемы AD6537B.

Рис. 3-28. Подсветка клавиатуры

3.15 Подсветка ЖК-дисплея

Для подсветки ЖКД используется, генератор подкачки заряда, расположенный на основной плате, который управляется сигналом LCD_DIM из AD6525.

Рисунок 3-29. Схема подсветки основного ЖК-дисплея.

3.16 Виброзвонок

Виброзвонок находится в крышке телефона и подключен к модулю ЖК-дисплея. Виброзвонок управляется сигналом VIBRATOR (GPIO_0) из AD6525

Рис. 3-30. Виброзвонок

4. Устранение неисправностей

4.1 Неисправность приема сигнала

Точки проверки

RX Check Area

Рис. 4-1

(1) Проверки цепи стабилизатора

Точки проверки

Рис. 4-2

Схема включения

4. Устранение неисправностей

(2) Проверка цепи ТГУН

Точки проверки

Рис. 4-3

Последовательность проверки

Схема включения

График 4-1(а)

График 4-1(b)

(3) Проверка управляющего сигнала ФАПЧ.

Точки проверки

Рис. 4-4

Последовательность проверки

График 4-2(а)

График 4-2(b)

4. Устранение неисправностей

(4) Проверка антенного переключателя и антенного коммутатора

Точки проверки

Рис. 4-5

Схема включения

Антенный переключатель управляет режимом передачи GSM и DCS График 4-3

Таблица 4-1

Антенный переключатель	VC1	VC2
DCS Передача	0	1
EGSM Передача	1	0
EGSM, DCS Прием	0	0

4. Устранение неисправностей

(5) Проверка цепи фильтра ПАВ

Точки проверки

FL302 FL303

Рис. 4-6

Схема включения

(6) Проверка принимаемых сигналов I и Q

Точки проверки

Рис. 4-7

Схема включения

Осциллограмма

График 4-4

4.2 Неисправность передачи сигнала

Точки проверки

TX Check Area

Рис. 4-8

(1) Проверка цепи стабилизатора

Точки проверки

Рис. 4-9

Схема включения

4. Устранение неисправностей

(2) Проверка цепи ТГУН

Точки проверки

Рис. 4-10

Последовательность проверки

Осциллограмма

График 4-5(а)

График 4-5(b)

Схема включения

(3) Проверка управляющего сигнала ФАПЧ

Точки проверки

Рис. 4-11

Последовательность проверки

4. Устранение неисправностей

(4) Проверка антенного переключателя и антенного коммутатора

Точки проверки

Рис. 4-12

Схема включения

(4) Проверка антенного переключателя и антенного коммутатора

Последовательность проверки

Для тестирования: Необходим режим «Stand alone». Обратитесь к главе 11 (PL=7 для GSM, PL=2 для DCS)

Таблица 4-2

Антенный переключатель	VC1	VC2
DCS Передача	0	1
EGSM Передача	1	0
EGSM, DCS Прием	0	0

4. Устранение неисправностей

(5) Проверка управляющих сигналов усилителя мощности

Точки проверки

Рис. 4-1

Осциллограмма

График. 4-8

(6) Проверка передаваемых сигналов I и Q

Точки проверки

Осциллограмма

Схема включения

4.3 Неисправность включения.

Схема включения и Точки проверки

Рис. 4-15 Секция управления питанием AD6537B

4.4 Неисправность зарядного устройства.

Точки проверки

Рис. 4-16

Схема включения

Последовательность проверки

Подготовка: Подключите к телефону батарею и зарядное устройство

4.5 Неисправность ЖКД

Точки проверки

Проверить соединение

Рис. 4-17(а)

Если шлейф неисправен, управляющие сигналы дисплея не будут передаваться корректно.

Рис. 4-17(b)

Рис. 4-17(с)

Порядок проверки

4.6 Неисправность динамика

Точки проверки

Рис. 4-18

Схема включения

Последовательность проверки

Подготовка: После инициализации оборудования Agilent 8960, режим тестирования, EGSM и DCS

График 4-10

4.7 Неисправность громкоговорителя

Точки проверки

Рис. 4-19

Схема включения

Последовательность проверки

Подготовка: Подключить PIF к телефону, и включить питание. Войти в сервисный режим и установить режим «Melody On» в пункте «Buzzer» меню «BB test».

4.8 Неисправность микрофона

Точки проверки

Рис. 4-20

Схема включения

Последовательность проверки

Подготовка: После инициализации оборудования Agilent 8960, проверить режимы EGSM и DCS

Осциллограмма

График 4-11

4.9 Неисправность виброзвонка

Точки проверки

Рис.4-21(a) Рис.4-21(b)

Схема включения

Последовательность проверки

Подготовка: После инициализации Agilent 8960, проверить EGSM, подключить PIF кабель к телефону и включить телефон. Войти в сервисный режим, установить «Vibrator on» в пункте «Vibrator» меню «BB test».

4.10 Неисправности подсветки клавиатуры

Точки проверки

Схема включения

Рис. 4-22

Последовательность проверки

4.11 Неисправность откр./закр. крышки

Точки проверки

Рис. 4-2

Схема включения

Последовательность проверки

4.12 Неисправность обнаружения SIM-карты

Подготовка: Вставить SIM-карту в разъем J101. Подключить PIF к телефону и включить.

Точки проверки

Рис. 4-24

Схема включения

Последовательность проверки

4.13 Неисправность гарнитуры.

Рис. 4-25(a) Рис. 4-25(b)

Схема включения

Последовательность проверки

Неисправность принимающего канала гарнитуры

4. Устранение неисправностей

Неисправность определения гарнитуры

Неисправность передающего канала гарнитуры

4.14 Неисправность светодиодов индикации

Точки проверки

Рис. 4-26

Схема включения

Последовательность проверки

4.15 Неисправность часов реального времени

Точки проверки

Рис. 4-27

Схема включения

Последовательность проверки

5.1 Загрузка программного обеспечения

А. Схема соединений для загрузки программного обеспечения.

Рисунок 5-1 изображает схему соединений для загрузки программного обеспечения.

Рис. 5-1. Схема соединений для загрузки программного обеспечения.

В. Порядок загрузки программного обеспечения.

1. Войдите в программу загрузчика ПО ПК и выберите функцию «Erase» (Стирание). (Не отмечайте пункт OWCD)

2. Нажмите «Start» и дождитесь окончания стирания.

3. Измените адрес и размер (Адрес: 18000000, Размер: 0x800000), и нажмите «Start» и дождитесь окончания повторного стирания.

4. Нажмите «Write» (Запись) для начала загрузки и нажмите клавишу , чтобы выбрать ПО (AlchemyData.mot)

5. Выберите ПО

6. Подождите, пока закончится конвертирование из файла из формата МОТ в формат BIF (Не отмечайте пункт OWCD)

7. Нажмите «Start» и включите питание телефона, установив переключатель устройства JIG в положение ON (вкл.)(Переключатель 1)

8. Подождите заполнения строки состояния отправки данных(Sending Block)

9. Нажмите «Write» (Запись) для начала загрузки и нажмите клавишу ____ для выбора файла ПО (CodeData.mot)

10. Выберите ПО. Нажмите «Start» и включите питание телефона, установив переключатель устройства JIG в положение ON (вкл.)(Переключатель 1)

11. Подождите заполнения строки состояния отправки данных(Sending Block)

5.2 Калибровка.

А. Список необходимого оборудования для калибровки.

Таблица 5-1. Список необходимого для калибровки оборудования.

Необходимое для калибровки оборудование	Тип/Модель	Изготовитель
Измерительное устройство для	HP-8960	Agilent
радиотелефонного оборудования.	Aglietit	
Кабель RS-232 и устройство JIG.		LG
РЧ кабель.		LG
Источник питания.	HP-66311B	Agilent
Интерфейсная плата GPIB	HP-GPIB	Agilent
Программное обеспечение для		LG
калибровки и заключительного испытания.		
Тестовая SIM.		
ПК (для установки программного обеспечения)	Pentium II, не менее 300 МГц	

В. Схема подключения оборудования.

Рис. 5-2

Рис. 5-3 Вид устройства JIG сверху.

С. Выполнение операций с использованием JIG.

Таблица 5-2. Питание устройства JIG.

Источник питания	Описание
Подаваемое электропитание	Обычно 4,0 В
Зарядное устройство	Используйте зарядное устройство TA-20G (24-х контактное)

Таблица 5-3. Описание микропереключателя JIG.

№ переключателя	Наименование	Функциональная характеристика	
Переключатель 1	ADI-REMOTE	В положении ВКЛ телефон переходит в активное	
		состояние. Используется набор микросхем ADI.	
Переключатель 2 TI-REMOTE	TLDEMOTE	В положении ВКЛ телефон переходит в активное	
	TITLEMOTE	состояние. Используется набор микросхем TI.	
Переключатель 3	VBAT К телефону подается питание от батареи.		
Переключатель 4	PS	К телефону подается питание от источника питания.	

Таблица 5-4. Описание светодиодов JIG.

№ светодиода	Наименование	Функциональная характеристика
LED 1	Power	Подача питания на JIG.
LED 2	TA	Индикация уровня зарядки батареи телефона.
LED 3	UART	Индикация состояния передачи данных через порт UART.
LED 4	MON	Индикация состояния передачи данных через порт MON.

- 1. Выполнить соединение как указано на Рис. 5-2 (последовательный кабель RS232 соединяет порт COM компьютера с портом MON устройства JIG).
- 2. Подключить питание 4,0 В.
- 3. Установить 3-й и 4-й микропереключатели DIP в положение ON (ВКЛ).
- 4. Нажать кнопку включения питания телефона+ если используется дистанционное включение поставить 1-й переключатель DIP в положение ON (ВКЛ).

D. Процедура выполнения.

- 1. Выполнить соединение как указано на Рис. 5-2 (последовательный кабель RS232 соединяет порт COM компьютера с портом MON устройства JIG).
- 2. Включить питание ПК, загрузить операционную программу Windows 98 (Примечание: допускается работа в Windows 2000).
- 3. Запустить AUTOCAL.exe, на экране появится окно приложения AUTOCAL.

6. Блок схема

Примечания

7. Принципиальная схема

8. Расположение элементов на печатной плате

9. Инженерное меню.

А. Об инженерном меню.

Инженерное меню дает возможность специалисту по ремонту (техническому обслуживанию) проверить и протестировать основные функции аппарата.

В. Коды доступа.

Последовательность нажатия кнопок для входа в инженерное меню - 2945#*#. При нажатии «END» устройство возвращается из сервисного режима в обычный режим.

С. Использование кнопок.

Для выбора пунктов меню используются кнопки «Up» («Вверх») и «Down» («Вниз»), для перехода к очередным операциям - кнопка «Select» («Выбор»). При нажатии кнопки «Васк» происходит возврат к начальному меню проверки.

D. Структура инженерного меню

9.1 Проверка НЧ части (Меню 1).

Baseband Test

9.1.1 ЖКД.

- Contrast value: Меню для тестирования контрастности дисплея
- Contrast value [10-50]: значение контрастности изменяется клавишами вверх и вниз
- Sub LCD Contrast : This menu is to test Sub LCD contrast.
- Contrast Value [0-50]: Change this value by up and down key.

9.1.2 Подсветка.

Это меню предназначено для проверки подсветки ЖКД и подсветки кнопок.

- Backlight on: одновременно включена подсветка ЖКД и подсветка кнопок.
- Backlight off : одновременно выключена подсветка ЖКД и подсветка кнопок.
- Backlight value : служит для изменения яркости подсветки. При входе в меню на дисплее индицируется яркость подсветки дисплея на данный момент. Для настройки уровня яркости используются кнопки Влево/Вправо. Последнее установленное значение яркости подсветки сохраняется в памяти энергонезависимого ЗУПВ.

9.1.3 Сигнал вызова.

Данное меню предназначено для проверки музыкального сигнала вызова.

- Melody on : через громкоговоритель воспроизводится музыкальный сигнал.
- Melody off : музыкальный сигнал не воспроизводится.

9.1.4 Виброзвонок.

Это меню предназначено для проверки режима виброзвонка.

- Vibrator on : виброзвонок включен.
- · Vibrator off : виброзвонок выключен.

9.1.5 АЦП (Аналого-цифровой преобразователь).

Указывает параметр каждого АЦП.

- MVBAT ADC (АЦП батареи основного напряжения)
- AUX ADC (вспомогательный АЦП).
- TEMPER ADC (температурный АЦП)

9.1.6 Батарея.

• Bat Cal: Указывает значение калибровки батареи.

Следующие пункты меню индицируются на дисплее в приведенном порядке: BAT-LEV-4V, BAT-LEV-3-LIMIT, BAT-LEV-2-LIMIT, BAT-LEV-1-LIMIT, BAT-IDLE-LI MIT, BATINCALL-LIMIT, SHUT-DOWN-VOLTAGE, BAT-RECHARGE-LMT

• TEMP Cal: Указывает значение калибровки температуры.

Следующие пункты меню индицируются на дисплее в приведенном порядке:

TEMP-HIGH-LIMIT, TEMP-HIGH-RECHARGE-LMT, TEMP-LOW-RECHARGE-LMT, TEMP-LOW-LIMIT

9.1.7 Аудио.

Данное меню предназначено для установки регистра управления в микросхеме кодека речевого канала НЧ части. Фактическое значение может быть переписано, однако система возвращается к значению по умолчанию при выключении и включении телефона.

- VbControl1: установка значений регистра VbControl1.
- VbControl2: установка значений регистра VbControl2.
- VbControl3: установка значений регистра VbControl3.
- VbControl4: установка значений регистра VbControl4.
- VbControl5: установка значений регистра VbControl5.
- VbControl6: установка значений регистра VbControl6.

9.1.8 ЦАИ (Цифровой аудио-интерфейс).

Это меню предназначено для установки режима цифрового аудио-интерфейса для речевого транскодера и акустического тестирования.

• DAI AUDIO : Аудио режим ЦАИ.

• DAI UPLINK : тестирование речевого кодера.

• DAI DOWNLINK : тестирование речевого декодера.

• DAI OFF : выключение режима ЦАИ.

9.2 Проверка РЧ тракта (МЕНЮ 2).

Radio Frequency Test

9.2.1 Проверка степени поглощения.

This menu is to test the Specific Absorption Rate.

- SAR test On: Телефон непрерывно обрабатывает только передающий сигнал. Оборудование для настройки вызова не требуется.
- SAR Test Off : обработка передающего сигнала отключена.

9.3 Заводской тест (МЕНЮ 3).

Заводской тест предназначен для автоматического тестирования НЧ части. При выборе данного меню тестирование будет произведено автоматически, и по его завершении на дисплей будет выведено предшествующее меню.

9.3.1 Автоматическая проверка.

В течение определенного времени производится тестирование по порядку: ЖКД, светодиодов подсветки, виброзвонка, звонка, клавиатуры, микрофона и динамика.

9.3.2 Светодиоды индикации

Светодиоды индикации загораются на 1,5 секунды одновременно, затем выключаются.

9.3.3 Подсветка.

Подсветки ЖКД и клавиатуры включаются примерно на 1,5 секунды одновременно, затем выключаются.

9.3.4 Звуковой сигнал.

Данное меню предназначено для проверки громкости музыкального сигнала. Последовательность уровней громкости сигнала следующая: Уровень 1, Уровень 2, Уровень 3, Уровень 0 (без звука), Уровень 4, Уровень 5.

9.3.5 Виброзвонок.

Виброзвонок включается примерно на 1,5 секунды.

9.3.6 ЖК-дисплей.

Тестирование производится путем попиксельного заполнения основного экрана ЖКД

9.3.7 Клавиатура.

При появлении «всплывающего» сообщения «Press any key» («Нажмите любую кнопку»), Вы можете нажать любую кнопку, включая боковые, кроме кнопки «Soft Key 2». Если кнопка работает нормально, ее название отображается на экране. Тестирование происходит автоматически в течение 15 секунд, после чего на дисплей будет выведено предшествующее меню.

9.3.8 Проверка микрофона и громкоговорителя.

Звуковой сигнал длительностью 3 секунды, записывается в память и автоматически воспроизводится через динамик.

9.4 Параметр трассировки (МЕНЮ 4).

Это меню НЕ является необходимым ни для специалистов технического обслуживания, ни для пользователей.

9.5 Таймер (МЕНЮ 5).

Это меню предназначено для установки режима цифрового аудио интерфейса для проверки речевого транскодера и акустического тестирования.

- 1) Все звонки: Отображает общее время разговора. Пользователи не могут изменять этот параметр.
- 2) Сброс таймера: Сброс общего времени разговора на (00:00:00).
- 3) DAI DOWNLINK: Speech decoder test
- 4) DAI OFF: DAI mode off

9.6 Заводской сброс (МЕНЮ 6).

Этот пункт меню форматирует блок данных в флэш-памяти и возвращает телефон к заводским настройкам

Attention

- ① Функция возврата к заводским настройкам должна использоваться только в процессе производства.
- ② Специалисты сервисных центров не должны использовать эту функцию, так как это может повлечь утерю данных, таких как настройки, данные РЧ калибровки, и т.д. Эти данные невозможно восстановить.

9.7 Версия программного обеспечения (МЕНЮ 7).

Здесь отображается версия ПО, установленного в телефоне

10. Tect «STAND ALONE»

10.1 Введение

Данная инструкция объясняет, как проверить статус приемника и передатчика данной модели

А. Тест передающего устройства

Тест передатчика - проверка нормальной активации передатчика телефона

В. Тест приемного устройства

Тест приемника- проверка нормальной активации приемника телефона

10.2 Метод настройки

А. Последовательный порт

- а. Передвиньте курсор мыши на кнопку "Connect", нажмите правую кнопку мыши и выберите "Com setting".
- b. "Dialog Menu" выберите значения показанные ниже.
 - Порт: выберите нужный последовательный порт
 - Скорость передачи: 38400
 - Остальные параметры оставьте без изменений

В. Передатчик

1. Выбор канала

- Выберите один из диапазонов GSM или DCS, и один из каналов

2. Выбор значения АРУ

- а. Выберите любой уровень мощности или масштабный коэффициент.
- b. Уровень мощности
 - Введите подходящее значение для GSM (между 5~19) или для DCS (между 0~15)
- с. Масштабный коэффициент
 - 'Ramp Factor' показывается на экране
 - Вы можете регулировать форму импульса или ввести значения напрямую.

С. Приемник

1. Выберите канал

- Выберите один из диапазонов GSM или DCS, и один из каналов

2. Индекс усиления (0~ 26) и уровень RSSI

- Проверьте, что значение RSSI близко к -16дБм, при изменении значения коэффициента усиления (Gain Control Index) в пределах 0 ~ 26
- Телефон в нормальном состоянии должен показывает значение RSSI близкое к -16дБм.

10.3 Методика тестирования

- а. Выберите СОМ порт
- b. Выберите режим приема или передачи (Rx или Tx)
- с. Выберите диапазон и канал
- d. После выполнения всех предыдущих настроек нажмите кнопку connect
- e. Нажмите кнопку start

Рис. 10-1 Программа проверки оборудования

Рис. 10-2 Настройки проверки оборудования

Рис. 10-3 Настройка формы сигнала

11. Автоматическая калибровка

11.1 Описание

AutoCal (Auto Calibration - Автоматическая калибровка) это компьютерная программа, предназначенная для калибровки передающего и принимающего устройств, калибровки батареи с помощью Agilent 8960(инструмент настройки GSM) и Tektronix PS2521G(Программируемый источник питания). AutoCal создает калибровочные данные, соединяется с телефоном и измерительным оборудованием, а затем записывает эти данные в флэшпамять телефона GSM

11.2 Необходимое оборудование

- ПК или ноутбук с установленной операционной системой Microsoft Windows 98/ME/2000/XP
- Программа авто калибровки (Autocal.exe)
- GSM телефон
- LGE PIF JIG, последовательный кабель, кабель данных
- Agilent 8960(инструмент настройки)
- Tektronix PS2521G(Программируемый источник питания)

11.3 Меню и настройки

- Меню файл Очистить экран : очищает окно статуса калибровки
- Меню файл Сохранить экран : сохраняет содержимое окно статуса калибровки
- Меню файл Сохранить настройки: сохранение данных настроек в файл настроек (*.cal)
- Меню файл загрузить настройки: загрузка сохраненных настроек калибровки
- Меню файл Создать BIN: создание бинарного файла после завершения калибровки
- Меню файл BIN только BAT.cal : Создать только бинарный файл данных калибровки батареи после завершения калибровки
- Меню файл Создать и Записать BIN : Создать бинарный файл и, после завершения калибровки, загрузить во флэш-память телефона
- Меню Вид Инструменты : Показать/скрыть панель инструментов
- Меню Вид Статус: Показать/скрыть строку состояния
- Подключение подключения: подключите телефон к ПК. Данная процедура проверяет подключен ли ПК к "ag8960". После этого выполняется процедура синхронизации с телефоном. Если синхронизация прошла успешно, колонка состояния меняется на SETUP, иначе отключите телефон и попробуйте ещё раз с самого начала и также проверьте подключение полностью. Все изменения переходят в состояние SETUP..
- Подключения настройка портов: показывает диалог настройки COM портов и скорости передачи, которые вы можете изменять.
- GPIB подключение: подключает карту Ag8960 GPIB к ПК

Рис. 11-1 Программа авто калибровки

- Экран → Потери в кабеле: введите значение потерь РЧ кабеля для GSM и DCS
- Экран → GPIB(основной адрес) вводится SS(Ag8960) и PS(Tektronix PS2521G) GPIB адрес
- Экран → АЦП канал: Канал АЦП калибровки по умолчанию
- Экран Пункты авто калибровки: настройки калибровки по умолчанию для передатчика, приемника, АЦП и записи бинарного файла

11.4 APY

Данная процедура предназначена для калибровки приемника

Эта опция отображает корректные значения RSSI. Установите диапазон EGSM и нажмите кнопку Start, в окне результата отобразится правильное значение для каждого уровня мощности и кода усиления и для каждой частоты.

11.5 APM

Данная опция предназначена для калибровки передатчика

Используя эту опцию, вы можете измерить корректные значения коэффициент масштабирования и уровень мощности

11.6 АЦП

Данная процедура предназначена для калибровки батареи

Вы получите таблицу конфигурации батареи и таблицу температурной конфигурации.

11.7 Настройки

Проверьте последовательный порт и подключение кабеля. Выберите элемент автоматической калибровки. Вы можете провести калибровку одного конкретного элемента, отменив проверку всех остальных.

11.8 Как провести калибровку

- А. Подключите телефон к последовательному порту ПК, используя интерфейсный кабель
- В. Подключите оборудование Agilent 8960, программируемый источник питания и телефон.
- С. Установите правильный порт и скорость передачи
- D. Нажмите кнопку «Start». Программа AutoCal автоматически проведет процедуру калибровки
 - i. APY EGSM
 - ii. APY DCS
 - iii. APM EGSM
 - iv. APM DCS
 - v. АЦП
- Е. После завершения всех измерений, телефон автоматически перейдет в меню SETUP.
- F. Будет создан и записан в телефон файл .CAL с калибровочными данными, затем телефон перезапустится.

Note

12.1 Сборочный чертеж

49	VIBRATOR	1	SJMY0002802	PART
48	SPEAKER	1	SUSY0006207	PART
47	PAD MIC	1	MPBH0007501	PART
46	CAP MOBILE	1	MCCF0027501	PART
45	CAP EARJACK	1	MCCC0027601	PART
44	GASKET FORM 9X2.8	1	MGAD0093801	PART
43	BUMPER MIKE	1	MBHY0008501	PART
42	BUMPER	1	MBHY0008401	PART
41	FLEXIBLE PCB ASSY	1	SACY0037401	ASSEMBLY
40	LOCKER SIM	1	MLEY0000801	PART
39	LOCKER BATTERY	1	MLEA0025501	PART
38	SPRING LOCKER BATT	1	MSDB0003301	PART
37	COVER-REAR	1	MCJN0040701	PART
36	GASKET FORM 11X8.5	1	MGAD0094401	PART
35	ANTENNA GSM FIXED	1	SNGF0009501	PART
34	PCB GASKET FORM	1	MGAD0094701	PART
33	PCB ASSY MAIN	1	SAFY0144001	ASSEMBLY
32	KEYPAD ASSY	1	AKAZ0012601	ASSEMBLY
31	COVER FRONT	1	MCJK0046001	PART
30	PAD SIDEKEY	1	MPBZ0050701	PART
29	BUTTON SIDE	1	MBJL0011601	PART
28	TAPE SIDEKEY	1	MTAZ0085401	PART
27	STOPPER	1	MSGY0004901	PART
26	FILTER SPEAKER	1	MFBC0008101	PART
25	INSULATOR 10X4	1	MTAZ0092101	PART
24	HINGE FOLER	1	MHFD0003301	PART
23	PROTECTION FOLDER LOWER	1	MTAB0082701	PART
22	WINDOW ASSY LCD	1	AWAB0002701	ASSEMBLY
21	TAPE WINDOW LCD	1	MTAZ0093201	PART
20	CAP SCREW	2	MCCH0021501	PART
19	SCREW MACHINE	7	GMEY0002001	PART
18	FOLDER LOWER	1	MCJH0030201	PART
17		1	MMAA000601	PART
16	MAGNET PAD LCD	1	MPBG0038001	PART
15	PAD FPCB	1	MPBF0005601	PART
14	INSULATOR 15X6	2	MTAZ0087301	PART
	LCD ASSY	1	SVLY0018801	ASSEMBLY
13	GASKET FORM 4X8		MGAD0049601	PART
12	PAD FOLDER UPPER	2	MPBZ0099201	PART
11	GASKET FORM 6.7X9.2	1	MGAD0093701	
10	GASKET FORM 0.7X9.2 GASKET FORM 20X5.2	1	MGAD0093701	PART
9	INSERT	1	MICA0006001	PART
8	FOLDER UPPER	7	MCJJ0035901	PART
7	SHEET	1	MSAZ0028801	PART
6		1		PART
5	TAPE WINDOW LED	1	MTAZ0084001	PART
4	TAPE DECO FOLDER UPPER	1	MTAA0095401	PART
3	DECO FOLDER UPPER	1	MDAG0014901	PART
2	WINDOW LED	1	MWAD0006001	PART
1	PROTECTION FOLDER UPPER	1	MTAB0082901	PART

12.2 Заменяемые компоненты < Механические компоненты>

Примечание: Эта глава может быть использована для проверки соответствия деталей стандартам SBOM GCSC

No	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примеча ния
1		GSM(FOLDER)	TGFF0080201	Dual Band(900/1800) GSM/GPRS Phone	Black	
2	AAAY00	ADDITION	AAAY0119701	C1150 RUSSV	Silver	
2	APEY00	PHONE	APEY0231601		Black	
3	ACGG00	COVER ASSY,FOLDER	ACGG0062701		Black	
4	ACGH00	COVER ASSY, FOLDER(LOWER)	ACGH0036201		Black	
5	MCJH00	COVER,FOLDER(LOWER)	MCJH0030201		Without Color	18
5	MFBC00	FILTER,SPEAKER	MFBC0008101	C1300 CGRSV ELLIPSE 0.1t	Black	26
5	MMAA00	MAGNET,SWITCH	MMAA0000601	LG-G510,511,512 common use, DIA : 3.0mm+1.5t	Silver	17
5	MPBF00	PAD,FLEXIBLE PCB	MPBF0005601	C1300 CGRSV 26 X 5 X 3.5 t	Black	
5	MPBG00	PAD,LCD	MPBG0038001		Black	16
5	MTAZ00	TAPE	MTAZ0093201		Without Color	21
4	ACGJ00	COVER ASSY, FOLDER(UPPER)	ACGJ0047701		Black	
5	MCJJ00	COVER,FOLDER(UPPER)	MCJJ0035901		Black	7
5	MDAG00	DECO,FRONT	MDAG0014901	COOL GRAY	Gray	3
5	MGAD00	GASKET,SHIELD FORM	MGAD0093701	6.7X9.2	Gold	10
5	MGAD01	GASKET,SHIELD FORM	MGAD0049601	C1300 CGRSV 4 x 8 x 1.5 t	Gold	12
5	MGAD02	GASKET,SHIELD FORM	MGAD0093601	20x5.2	Gold	9
5	MICA01	INSERT,FRONT	MICA0006001	G7030,M1.4 x L2.5, Outside Diameter 2.0	Yellow	8
5	MPBZ00	PAD	MPBZ0099201		Black	11
5	MSAZ00	SHEET	MSAZ0028801		Milk	6
5	MTAA00	TAPE,DECO	MTAA0095401		Without Color	4
5	MTAB00	TAPE,PROTECTION	MTAB0082901	TAPE,PROTECTION UPPER	Without Color	1
5	MTAZ00	TAPE	MTAZ0084001	TAPE,LED	Without Color	5
4	ACGK00	COVER ASSY,FRONT	ACGK0057601		Black	
5	MBHY01	BUMPER	MBHY0008405	C1300 Black color (4.4 X 1.9)	Black	42
5	MBHY02	BUMPER	MBHY0008505	C1300 Black color (4.4 X 1.9, 5.2 Pl for MIKE)	Black	43
5	MBJL00	BUTTON,SIDE	MBJL0011601	C1300 CGRSV Chrome Plating	Silver	29
5	MCJK00	COVER,FRONT	MCJK0046001		Black	31

Nº	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примеча ния
5	MGAD01	GASKET,SHIELD FORM	MGAD0093801		Gold	44
5	MICA00	INSERT,FRONT	MICA0006001	G7030,M1.4 x L2.5, Outside Diameter 2.0	Yellow	
5	MPBZ01	PAD	MPBZ0050701	C1300 CGRSV 2.0 X 2.0 X 0.7t	Black	30
5	MPBZ02	PAD	MPBZ0105101	4.3 X4.3 X 1.2T	Without Color	
5	MSGY00	STOPPER	MSGY0004904	C1300 Black color (8.9 X 2.6)	Black	27
5	MTAZ00	TAPE	MTAZ0085401		Without Color	28
4	AWAB00	WINDOW ASSY,LCD	AWAB0009702	мат.нівз5м	Silver	22
5	BFAA00	FILM,INMOLD	BFAA0015901	C1100 EUASV Main Window Inmold Film	Silver	
5	MWAC00	WINDOW,LCD	MWAC0036602	MAT.HI835M	Silver	
4	GMEY00	SCREW MACHINE,BIND	GMEY0002001	1.4 mm,3 mm,MSWR3(BK) ,B ,+ ,HEAD t=0.6, HEAD d2.7		19
4	MCCH00	CAP,SCREW	MCCH0021501	C1300 CGRSV 3.1PI	Dark Gray	20
4	MHFD00	HINGE,FOLDER	MHFD0003301	5.8PI, 5kg	Without Color	24
4	MLAC00	LABEL,BARCODE	MLAC0003401	EZ LOOKS(user for mechanical)	Without Color	
4	MTAB01	TAPE,PROTECTION	MTAB0082701		Without Color	23
4	MTAZ01	TAPE	MTAZ0087301	INSULATOR	Without Color	14
4	MTAZ02	TAPE	MTAZ0092101	10x4.5	Blue	25
4	MWAD00	WINDOW,LED	MWAD0006001		Without Color	2
3	ACGM00	COVER ASSY,REAR	ACGM0058301		Black	
4	MCCC00	CAP,EARPHONE JACK	MCCC0027601		Black	45
4	MCJN00	COVER,REAR	MCJN0040701		Black	37
4	MGAD00	GASKET,SHIELD FORM	MGAD0093801		Gold	
4	MGAD01	GASKET,SHIELD FORM	MGAD0094401	11X8.5	Without Color	36
4	MLEA00	LOCKER,BATTERY	MLEA0025501		Black	39
4	MLEY00	LOCKER	MLEY0000801	SIM LOCKER	Silver	40
4	MPBF00	PAD,FLEXIBLE PCB	MPBF0005601	C1300 CGRSV 26 X 5 X 3.5 t	Black	15
4	МРВН00	PAD,MIKE	MPBH0007501	C1300 CGRSV 3.2 PI 0.8t	Black	47
4	MSDB00	SPRING,COIL	MSDB0003301	(2.0X2.5)pieX5.0LX0.3pie	Without Color	38
3	AKAZ00	KEYPAD ASSY	AKAZ0012601		Silver	32
3	GMEY00	SCREW MACHINE,BIND	GMEY0002001	1.4 mm,3 mm,MSWR3(BK) ,B ,+ ,HEAD t=0.6, HEAD d2.7		

Nº	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примеча ния
3	MCCF00	CAP,MOBILE SWITCH	MCCF0027501		Silver	46
3	MLAA00	LABEL,APPROVAL	MLAA0034101		Without Color	
3	MLAK00	LABEL,MODEL	MLAK0006901			
5	ADCA00	DOME ASSY,METAL	ADCA0017101	C1300 CGRSV D-Dimple 4.9 or 5.0 PI	White	
5	MGAD00	GASKET,SHIELD FORM	MGAD0094701		Gold	34
5	MLAB00	LABEL,A/S	MLAB0000601	HUMIDITY STICKER	Without Color	
5	MLAC00	LABEL,BARCODE	MLAC0003301	EZ LOOKS(use for PCB ASSY MAIN(hardware))	Without Color	

<Основные компоненты>

Примечание: Эта глава может быть использована для проверки соответствия деталей стандартам SBOM GCSC

Nº	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примеча ния
4	SACY00	PCB ASSY,FLEXIBLE	SACY0037401			41
5	SACB00	PCB ASSY, FLEXIBLE,INSERT	SACB0023901			
5	SACE00	PCB ASSY,FLEXIBLE,SMT	SACE0033101			
6	SACC00	PCB ASSY,FLEXIBLE,SMT BOTTOM	SACC0017601			
7	C1	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
7	LD1	DIODE,LED,CHIP	EDLH0003401	RED, GREEN ,ETC ,R/TP ,SIZE 1315 , GSM DUAL LED		
7	R2	RES,CHIP	ERHY0000172	68 ohm,1/16W ,F ,1005 ,R/TP		
7	R3	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	SACD00	PCB ASSY,FLEXIBLE,SMT TOP	SACD0025501			
7	C2	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
7	CN1	CONNECTOR,BOARD TO BOARD	ENBY0025801	34 PIN,0.4 mm,ETC , ,H=1.5, Header		
7	CN2	CONNECTOR,BOARD TO BOARD	ENBY0018701	41 PIN,0.3 mm,STRAIGHT , ,0.9t stacking height		
7	R1	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
7	R4	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	SPCY00	PCB,FLEXIBLE	SPCY0060401	POLYI ,0.4 mm,MULTI-4 ,C1150-FPCB-A		
4	SBCL00	BATTERY,CELL,LITHIUM	SBCL0001303	2 V,1 mAh,COIN ,SOLDER TYPE BACKUP BATTERY		
4	SJMY00	VIBRATOR,MOTOR	SJMY0002802	3 V,0.08 A,12*15 ,G5300 VIBRATOR (0.5t PAD)		49
4	SUSY00	SPEAKER	SUSY0006207	ASSY ,8 ohm,92 dB,17 mm,5T		48
4	SVLY00	LCD	SVLY0018801	128x128 ,35.78x39.7 ,65K CSTN, S6B33B2, TM		13
3	SAFY00	PCB ASSY,MAIN	SAFY0144001		Silver	33
4	SAFB00	PCB ASSY,MAIN,INSERT	SAFB0049501		Silver	
5	SUMY00	MICROPHONE	SUMY0003803	PIN ,42 dB,4*1.5 ,FPCB		
4	SAFF00	PCB ASSY,MAIN,SMT	SAFF0068301		Silver	
5	SAFC00	PCB ASSY,MAIN,SMT BOTTOM	SAFC0060201		Silver	
6	C101	CAP,TANTAL,CHIP	ECTH0001901	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
6	C102	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
6	C103	CAP,TANTAL,CHIP	ECTH0001901	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
6	C104	CAP,TANTAL,CHIP	ECTH0001901	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		

Nο	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примеча ния
6	C105	CAP,TANTAL,CHIP	ECTH0001901	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
6	C106	CAP,TANTAL,CHIP	ECTH0001901	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
6	C107	CAP,TANTAL,CHIP	ECTH0001901	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
6	C108	CAP,CERAMIC,CHIP	ECCH0000168	0.1 uF,16V,Z,Y5V,HD,1005,R/TP		
6	C110	CAP,CERAMIC,CHIP	ECCH0004903	1 uF,6.3V ,Z ,Y5V ,TC ,1005 ,R/TP		
6	C111	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C112	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C113	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C114	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C115	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C116	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
6	C117	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C118	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
6	C119	CAP,TANTAL,CHIP,MAKER	ECTZ0004202	10 uF,10V ,M ,STD ,2012 ,R/TP		
6	C120	CAP,CERAMIC,CHIP	ECCH0004903	1 uF,6.3V ,Z ,Y5V ,TC ,1005 ,R/TP		
6	C121	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C122	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
6	C123	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C134	CAP,CERAMIC,CHIP	ECCH0000276	1 uF,10V,Z,Y5V,HD,1608,R/TP		
6	C135	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C136	CAP,CERAMIC,CHIP	ECCH0000276	1 uF,10V,Z,Y5V,HD,1608,R/TP		
6	C137	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C138	CAP,CERAMIC,CHIP	ECCH0000165	68 nF,6.3V,K,X5R,HD,1005,R/TP		
6	C139	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C143	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C144	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C145	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C147	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C148	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C149	CAP,CERAMIC,CHIP	ECCH0007901	10 uF,4V ,M ,X5R ,TC ,1608 ,R/TP		
6	C150	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C153	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C154	CAP,CERAMIC,CHIP	ECCH0000128	100 pF,50V,J,NP0,TC,1005,R/TP		
6	C155	CAP,CERAMIC,CHIP	ECCH0000128	100 pF,50V,J,NP0,TC,1005,R/TP		

NΩ	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примеча ния
6	C156	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C160	CAP,CERAMIC,CHIP	ECCH0006201	4.7 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
6	C161	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C162	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C163	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C165	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C166	CAP,CERAMIC,CHIP	ECCH0000113	18 pF,50V,J,NP0,TC,1005,R/TP		
6	C168	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C169	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
6	C170	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C172	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C173	CAP,CERAMIC,CHIP	ECCH0001811	220000 pF,10V ,Z ,Y5V ,HD ,1005 ,R/TP		
6	C174	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
6	C175	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C201	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C202	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C203	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C204	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C205	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C206	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C207	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C208	CAP,CERAMIC,CHIP	ECCH0004903	1 uF,6.3V ,Z ,Y5V ,TC ,1005 ,R/TP		
6	C209	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C210	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C211	CAP,CERAMIC,CHIP	ECCH0000113	18 pF,50V,J,NP0,TC,1005,R/TP		
6	C212	CAP,CERAMIC,CHIP	ECCH0004903	1 uF,6.3V ,Z ,Y5V ,TC ,1005 ,R/TP		
6	C213	CAP,CERAMIC,CHIP	ECCH0004903	1 uF,6.3V ,Z ,Y5V ,TC ,1005 ,R/TP		
6	C214	CAP,CERAMIC,CHIP	ECCH0004903	1 uF,6.3V ,Z ,Y5V ,TC ,1005 ,R/TP		
6	C215	CAP,CERAMIC,CHIP	ECCH0004903	1 uF,6.3V ,Z ,Y5V ,TC ,1005 ,R/TP		
6	C216	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C217	CAP,CERAMIC,CHIP	ECCH0000113	18 pF,50V,J,NP0,TC,1005,R/TP		
6	C218	CAP,CERAMIC,CHIP	ECCH0004903	1 uF,6.3V ,Z ,Y5V ,TC ,1005 ,R/TP		
6	C219	CAP,CERAMIC,CHIP	ECCH0004903	1 uF,6.3V ,Z ,Y5V ,TC ,1005 ,R/TP		
6	C220	CAP,CERAMIC,CHIP	ECCH0006201	4.7 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		

Nō	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примеча ния
6	C221	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C222	CAP,CERAMIC,CHIP	ECCH0004903	1 uF,6.3V ,Z ,Y5V ,TC ,1005 ,R/TP		
6	C223	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C224	CAP,CERAMIC,CHIP	ECCH0000114	20 pF,50V,J,NP0,TC,1005,R/TP		
6	C225	CAP,CERAMIC,CHIP	ECCH0000104	3 pF,50V,C,NP0,TC,1005,R/TP		
6	C226	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		
6	C301	CAP,CERAMIC,CHIP	ECCH0000701	1.2 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		
6	C302	CAP,CERAMIC,CHIP	ECCH0000111	12 pF,50V,J,NP0,TC,1005,R/TP		
6	C303	CAP,CERAMIC,CHIP	ECCH0000113	18 pF,50V,J,NP0,TC,1005,R/TP		
6	C304	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C305	CAP,CERAMIC,CHIP	ECCH0000186	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C306	CAP,CERAMIC,CHIP	ECCH0000393	22 uF,6.3V ,M ,X5R ,HD ,2012 ,R/TP		
6	C307	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C308	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C309	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C310	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C311	CAP,CERAMIC,CHIP	ECCH0000186	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C312	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C313	CAP,CERAMIC,CHIP	ECCH0000179	22 nF,16V ,K ,X5R ,HD ,1005 ,R/TP		
6	C314	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C315	CAP,CERAMIC,CHIP	ECCH0000128	100 pF,50V,J,NP0,TC,1005,R/TP		
6	C317	CAP,CERAMIC,CHIP	ECCH0000101	.5 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		
6	C318	CAP,CERAMIC,CHIP	ECCH0000186	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C319	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C320	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		
6	C321	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
6	C323	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C324	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C325	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C326	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C327	CAP,CERAMIC,CHIP	ECCH0000102	1 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		
6	C328	CAP,CERAMIC,CHIP	ECCH0000102	1 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		
6	C329	CAP,CERAMIC,CHIP	ECCH0000102	1 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		
6	C330	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		

Nº	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примеча ния
6	C331	CAP,CERAMIC,CHIP	ECCH0000102	1 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		
6	C332	CAP,CERAMIC,CHIP	ECCH0000159	22 nF,16V,K,X7R,HD,1005,R/TP		
6	C333	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C334	CAP,CERAMIC,CHIP	ECCH0000128	100 pF,50V,J,NP0,TC,1005,R/TP		
6	C335	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
6	C336	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		
6	C337	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
6	C338	CAP,CERAMIC,CHIP	ECCH0000171	3.3 pF,16V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C343	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C344	CAP,TANTAL,CHIP	ECTH0001901	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
6	C345	CAP,CERAMIC,CHIP	ECCH0006201	4.7 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
6	C401	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C402	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C403	CAP,CERAMIC,CHIP	ECCH0000128	100 pF,50V,J,NP0,TC,1005,R/TP		
6	C404	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
6	C405	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C406	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
6	C407	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
6	C408	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
6	C409	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C410	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C411	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
6	C412	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
6	CN201	CONNECTOR,BOARD TO BOARD	ENBY0025701	34 PIN,0.4 mm,ETC , ,H=1.5, Socket		
6	CN202	CONNECTOR,I/O	ENRY0005301	3 PIN,0.5 mm,ETC , ,1.48Offset		
6	D101	DIODE,SWITCHING	EDSY0012101	US-FLAT ,30 V,1 A,R/TP ,2.5*1.25*0.6(t)		
6	D104	DIODE,SWITCHING	EDSY0005701	EMT3 ,80 V,4 A,R/TP ,		
6	D201	DIODE,SWITCHING	EDSY0012301	1-1E1A ,85 V,1 A,R/TP ,P=200mW, IFM=200mA		
6	FB1	FILTER,BEAD,CHIP	SFBH0007101	120 ohm,1005 ,Ferrite Bead		
6	FL301	FILTER,SEPERATOR	SFAY0003702	900 ,1800 ,1.3 dB,1.5 dB,30 dB,25 dB,4532 ,Antenna switch		
6	FL302	FILTER,SAW	SFSY0021301	942.5 MHz,2.0*1.4*0.68 ,SMD ,		
6	FL303	FILTER,SAW	SFSY0021302	1842.5 MHz,2.0*1.4*0.68 ,SMD ,		
6	FL304	FILTER,EMI/POWER	SFEY0007102	SMD ,5.6 V,SMD ,4ch. R-Varistor Array(400Ohm,25pF)		

Nō	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примеча ния
6	FL305	FILTER,EMI/POWER	SFEY0007102	SMD ,5.6 V,SMD ,4ch. R-Varistor Array(4000hm,25pF)		
6	FL306	FILTER,EMI/POWER	SFEY0007102	SMD ,5.6 V,SMD ,4ch. R-Varistor Array(400Ohm,25pF)		
6	FL307	FILTER,EMI/POWER	SFEY0007102	SMD ,5.6 V,SMD ,4ch. R-Varistor Array(400Ohm,25pF)		
6	FL308	FILTER,EMI/POWER	SFEY0007102	SMD ,5.6 V,SMD ,4ch. R-Varistor Array(400Ohm,25pF)		
6	J101	CONN,SOCKET	ENSY0001608	6 PIN,ETC ,5D ,2.54 mm,1.8T		
6	J102	CONN,JACK/PLUG, EARPHONE	ENJE0002301	3,5 PIN,G7000 EAR JACK 3 pole, 5 pin KSD		
6	L301	INDUCTOR,CHIP	ELCH0001403	1 nH,S ,1005 ,R/TP ,PBFREE		
6	L303	INDUCTOR,CHIP	ELCH0002715	27 nH,G ,1608 ,R/TP ,coil inductor		
6	L304	INDUCTOR,CHIP	ELCH0005006	33 nH,J ,1005 ,R/TP ,		
6	L305	INDUCTOR,CHIP	ELCH0002717	6.8 nH,J ,1608 ,R/TP ,coil inductor		
6	L306	INDUCTOR,CHIP	ELCH0005006	33 nH,J ,1005 ,R/TP ,		
6	Q103	TR,FET,P-CHANNEL	EQFP0004201	2.9*1.9*0.8(t) ,.7 W,20 V,-6 A,R/TP ,NDC652P upgrade(substitution) item, Pb free		
6	Q201	TR,BJT,ARRAY	EQBA0000406	SC-70 ,0.2 W,R/TP ,CDMA,Common use		
6	Q202	TR,BJT,ARRAY	EQBA0002701	EMT6 ,150 mW,R/TP ,NPN, PNP, 150 mA		
6	R104	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R107	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
6	R108	RES,CHIP	ERHY0001102	0.2 ohm,1/4W ,F ,2012 ,R/TP		
6	R109	RES,CHIP	ERHY0000230	330 ohm,1/16W,J,1005,R/TP		
6	R110	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP		
6	R121	RES,CHIP	ERHY0000152	82K ohm,1/16W,F,1005,R/TP		
6	R122	RES,CHIP	ERHY0000286	200K ohm,1/16W,J,1005,R/TP		
6	R124	RES,CHIP	ERHY0000512	10M ohm,1/16W,J,1608,R/TP		
6	R126	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R127	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R128	RES,CHIP	ERHY0000254	4.7K ohm,1/16W,J,1005,R/TP		
6	R130	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R131	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R132	RES,CHIP	ERHY0000247	2.2K ohm,1/16W,J,1005,R/TP		
6	R133	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	R135	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R136	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP		
6	R137	RES,CHIP	ERHY0000271	39K ohm,1/16W,J,1005,R/TP		
6	R139	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP		

Nō	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примеча ния
6	R140	RES,CHIP	ERHY0000247	2.2K ohm,1/16W,J,1005,R/TP		
6	R142	RES,CHIP	ERHY0000202	4.7 ohm,1/16W,J,1005,R/TP		
6	R143	RES,CHIP	ERHY0000202	4.7 ohm,1/16W,J,1005,R/TP		
6	R144	RES,CHIP	ERHY0000265	20K ohm,1/16W,J,1005,R/TP		
6	R149	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R150	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R201	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R202	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R203	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
6	R204	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R206	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
6	R207	RES,CHIP	ERHY0000273	47K ohm,1/16W,J,1005,R/TP		
6	R208	RES,CHIP	ERHY0000273	47K ohm,1/16W,J,1005,R/TP		
6	R209	RES,CHIP	ERHY0000273	47K ohm,1/16W,J,1005,R/TP		
6	R210	RES,CHIP	ERHY0000207	20 ohm,1/16W,J,1005,R/TP		
6	R211	RES,CHIP	ERHY0000273	47K ohm,1/16W,J,1005,R/TP		
6	R212	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
6	R213	RES,CHIP	ERHY0000226	220 ohm,1/16W,J,1005,R/TP		
6	R214	RES,CHIP	ERHY0000244	1.5K ohm,1/16W,J,1005,R/TP		
6	R215	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R216	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R217	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R218	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R219	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R220	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R221	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R222	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R224	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
6	R225	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
6	R226	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R227	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R228	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
6	R229	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
6	R230	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		

Nº	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примеча ния
6	R232	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R233	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R234	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R235	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R237	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R238	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R239	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R240	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
6	R241	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
6	R301	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R302	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R303	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R304	RES,CHIP	ERHY0004301	130 ohm,1/16W ,J ,1005 ,R/TP		
6	R305	RES,CHIP	ERHY0004301	130 ohm,1/16W ,J ,1005 ,R/TP		
6	R306	RES,CHIP,MAKER	ERHZ0000469	36 ohm,1/16W ,J ,1005 ,R/TP		
6	R307	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R308	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R309	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP		
6	R311	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R312	RES,CHIP	ERHY0000263	15K ohm,1/16W,J,1005,R/TP		
6	R313	RES,CHIP	ERHY0000214	51 ohm,1/16W,J,1005,R/TP		
6	R314	RES,CHIP	ERHY0000214	51 ohm,1/16W,J,1005,R/TP		
6	R315	RES,CHIP	ERHY0000214	51 ohm,1/16W,J,1005,R/TP		
6	R316	RES,CHIP	ERHY0000214	51 ohm,1/16W,J,1005,R/TP		
6	R401	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R402	RES,CHIP	ERHY0000271	39K ohm,1/16W,J,1005,R/TP		
6	R403	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
6	R404	RES,CHIP	ERHY0000284	150K ohm,1/16W,J,1005,R/TP		
6	R405	RES,CHIP	ERHY0000250	3.3K ohm,1/16W,J,1005,R/TP		
6	R406	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
6	R407	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R408	RES,CHIP	ERHY0000202	4.7 ohm,1/16W,J,1005,R/TP		
6	R409	RES,CHIP	ERHY0000202	4.7 ohm,1/16W,J,1005,R/TP		
6	SW1	SWITCH,TACT	ESCY0002501	12 V,0.05 A,HORIZONTAL ,220 G,G5200 TACK S/W		

Nō	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примеча ния
6	SW2	SWITCH,TACT	ESCY0002501	12 V,0.05 A,HORIZONTAL ,220 G,G5200 TACK S/W		
6	SW301	CONN,RF SWITCH	ENWY0002301	ANGLE ,SMD ,0.8 dB,		
6	U101	IC	EUSY0157001	LFBGA ,160 PIN,R/TP ,DIGITAL BASEBAND PROCESSOR, Pb Free		
6	U102	IC	EUSY0169301	148-TERMINAL BGA ,148 PIN,R/TP ,GSM ANALOG BASEBAND / TYPHOON B, Pb Free		
6	U105	IC	EUSY0077301	SC70-6 ,6 PIN,R/TP ,SPDT Analog switch		
6	U201	IC	EUSY0285101	FBGA73 ,73 PIN,ETC ,128M(130 NANO) NOR+32M PSRAM / BOTTOM BOOT / CE 2 / PB FREE		
6	U203	IC	EUSY0178201	TSOP JW12 ,12 PIN,R/TP ,Charge Pump For 4 White LED Driver		
6	U301	IC	EUSY0161301	8x8 LGA ,28 PIN,R/TP ,		
6	U302	PAM	SMPY0007201	35 dBm,53 %,0.8 A,-50 dBc,50 dB,6.0*8.0*1.2 ,SMD ,QUAD		
6	U303	IC	EUSY0118602	SOT23 ,5 PIN,R/TP ,2.85V/150mA Low Noise uCap LDO Regulator, PBFREE		
6	U401	IC	EUSY0098501	QFN ,32 PIN,R/TP ,		
6	U402	IC	EUSY0212701	12-Bump uSMD ,12 PIN,R/TP ,Dual SPDT Analog switch, Pb Free		
6	VA153	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR, Pb Free		
6	VA154	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR, Pb Free		
6	VA165	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
6	VA201	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR, Pb Free		
6	VA202	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR, Pb Free		
6	VA203	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
6	VA204	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
6	VA205	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR, Pb Free		
6	VA206	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
6	VA207	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
6	X101	X-TAL	EXXY0004601	.032768 MHz,20 PPM,7 pF,65000 ohm,SMD ,6.9*1.4*1.3 ,		
6	X301	VCTCXO	EXSK0003501	13 MHz,2.5 PPM,10 pF,SMD ,5.0*3.2*1.5 ,		
5	SAFD00	PCB ASSY,MAIN,SMT TOP	SAFD0058801		Silver	
6	C109	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C124	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C125	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C126	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		

Nō	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примеча ния
6	C127	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C128	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C129	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C130	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C131	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C132	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C133	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C140	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
6	C141	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C146	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C151	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C152	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C158	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C159	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		
6	C164	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C167	CAP,CERAMIC,CHIP	ECCH0000128	100 pF,50V,J,NP0,TC,1005,R/TP		
6	C171	CAP,CERAMIC,CHIP	ECCH0000128	100 pF,50V,J,NP0,TC,1005,R/TP		
6	FB2	FILTER,BEAD,CHIP	SFBH0000912	1000 ohm,1005 ,		
6	LD111	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
6	LD112	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
6	LD113	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
6	LD114	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
6	LD115	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
6	LD116	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
6	LD117	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
6	LD118	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
6	LD119	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
6	LD120	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
6	Q104	TR,BJT,ARRAY	EQBA0000406	SC-70 ,0.2 W,R/TP ,CDMA,Common use		
6	R101	RES,CHIP	ERHY0004101	49.9 ohm,1/10W ,F ,1608 ,R/TP		
6	R102	RES,CHIP	ERHY0000401	0 ohm,1/16W,J,1608,R/TP		
6	R103	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP		
6	R105	RES,CHIP	ERHY0000116	1.5K ohm,1/16W,F,1005,R/TP		
6	R106	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		

Nō	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примеча ния
6	R111	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R112	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R113	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R114	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R115	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R116	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R117	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R118	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R119	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R120	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R123	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP		
6	R125	RES,CHIP	ERHY0000247	2.2K ohm,1/16W,J,1005,R/TP		
6	R134	RES,CHIP	ERHY0000274	51K ohm,1/16W,J,1005,R/TP		
6	R145	RES,CHIP	ERHY0000296	1M ohm,1/16W,J,1005,R/TP		
6	R146	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R147	RES,CHIP	ERHY0000296	1M ohm,1/16W,J,1005,R/TP		
6	R148	RES,CHIP	ERHY0000291	330K ohm,1/16W,J,1005,R/TP		
6	U103	ıc	EUSY0200301	Leadless chip ,6 PIN,R/TP ,Hall S/W, Pb Free		
6	U104	IC	EUSY0077701	SC70-5 ,5 PIN,R/TP ,1.8V Low Voltage Comparator with Rail-to-Rail Input, Pb Free		
6	VA151	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR, Pb Free		
6	VA152	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR, Pb Free		
5	SPFY00	PCB,MAIN	SPFY0109301	FR-4 ,1.0 mm,BUILD-UP 8 ,C1150 Main PCB		
5	WSYY00	SOFTWARE	WSYY0291601	C1150P16-07-V10e-XXX-XX Oct 04 2005		
3	SNGF00	ANTENNA,GSM,FIXED	SNGF0009501	open_close 3.8:1_7.0:1 ,-4.0 dBd, ,GSM900/DCS1800 INTERNAL PIPA TYPE		35

12.3 Принадлежности

Примечание: Эта глава может быть использована для проверки соответствия деталей стандартам SBOM GCSC

No	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примеча ния
3	MHBY00	HANDSTRAP	MHBY0002101	T5100 RUSSV Square Coupling, Cow Leather	Metal Silver	
3	SRPPOO	BATTERY PACK,LI- POLYMER	SBPP0013101	3.7 V,720 mAh,1 CELL,PRISMATIC ,C1150 BATT(Black), H/P	Black	
3	SSAD00	ADAPTOR,AC-DC	SSAD0007828	100-240V ,60 Hz,5.2 V,800 mA,CE,CB,GOST ,EU PLUG(24P),STD		

Note