

Linguagem Do Banco de Dados

Prof. Sergio Luiz

Conteúdo

- 1. Operações de Conjuntos;
- 2. Operação de Union;
- 3. Valores Nulo;
- 4. Composição de Relações;
- 5. SQL Joins;
- 6. Criando Banco de Dados Joins;
- 7. Inner Join;
- 8. Left Join;
- 9. Rght Join;
- 10. Outer Join;
- 11. Praticando Uso de JOIN;
- 12. Junção por Nome de Coluna.

Prof. Sergio Luiz

Operações de Conjuntos

Os operadores SQL-92 union, intersect except operam relações correspondem às operações de união (∪), interseção (∩) e diferença (-) da álgebra relacional, e portanto, as relações participantes devem ser compatíveis, ou seja, apresentar mesmo conjunto de atributos esquema).

Operações de Conjuntos

A SQL-89 possui diversas restrições para o uso de <u>union</u>, <u>intersect</u> e <u>except</u>. Certos produtos não oferecem suporte para essas operações.

A Operação de União - (∪)

Una todas as tuplas da relação "Colaborador" para as quais:

O valor do atributo "Nr_Depto" seja igual a 120 com as tuplas da relação "Colaborador" cujo o valor do atributo "Nr_Depto" seja igual a 600.

A Operação de União - (∪)


```
select Nome_Completo, Salario, Nr_Depto from
Colaborador where Nr_Depto = 120
union
select Nome_Completo, Salario, Nr_Depto from
Colaborador where Nr_Depto = 671
```

Nome_Completo	Salario	Nr Depto
Reeves,Roger	22935.00	120
Stansbury, Willie	39224.00	120
Bennet, Ann	22935.00	120
Papadopoulos, Chris	89655.00	671
Fisher, Pele	81810.00	671

Valores Nulos

O valor *null* indica a ausência de informação sobre o valor de um atributo.

Sendo assim, pode-se usar a palavrachave *null* como predicado para testar a existência de valores nulos.

Valores Nulos


```
select Nome_Completo from Colaborador where
Nr_Depto is null
```

Nome Completo

Valores Nulos

O predicado *not null* testa a <u>ausência de</u> <u>valores nulos</u>.

```
select Nome_Completo from Colaborador where
Nr Depto is not null
```

```
Nome_Completo
Parker,Bill
Young,Bruce
Nordstrom,Carol
Papadopoulos,Chris
Sutherland,Claudia
Bishop,Dana
Glon,Jacques
```

Composição de Relações

Além de fornecer o mecanismo básico do produto cartesiano para a composição das tuplas de uma relação disponível, o SQL também oferece diversos outros mecanismos composição de relações como junções condicionais e as junções naturais, assim como várias formas de junções externas

Composição de Relações

Junção Interna (ou junção condicional):

inner join

Junção Externa à Esquerda:

left outer join

Junção Externa à Direita: right outer join

Junção Externa Total:

full outer join

Muitos desenvolvedores têm a dificuldade de saber qual resultado é retornado por cada JOIN no SQL e, portanto, quando devem utilizar cada um.

Para facilitar esse entendimento, os próximos SLIDES trarão uma representação gráfica, baseada na Teoria dos Conjuntos, muito conhecida na matemática.

Nas imagens, seguintes temos a representação de duas tabelas (A e B) <u>e</u> <u>o</u> resultado esperado por <u>CADA TIPO</u> <u>DE JOIN</u> (a área em vermelho representa os registros retornados pela consulta).

LEFT JOIN A B

SELECT <SELECT LIST>
FROM TABELA_A
LEFT JOIN TABELA_B
ON A.Key = B.Key

SELECT <SELECT LIST>
FROM TABELA_A
LEFT JOIN TABELA_B
ON A.Key = B.Key
WHERE B.Key IS NULL

SELECT <SELECT LIST>
FROM TABELA_A
INNER JOIN TABELA_B
ON A.Key = B.Key

SELECT <SELECT LIST>
FROM TABELA_A
RIGHT JOIN TABELA_B
ON A.Key = B.Key

RIGHT JOIN

IS NULL

SELECT <SELECT LIST> FROM TABELA A **RIGHT JOIN TABELA B** ON A.Key = B.Key WHERE A.Key IS NULL

SELECT <SELECT LIST>
FROM TABELA_A
FULL OUTER JOIN TABELA_B
ON A.Key = B.Key

SELECT <SELECT LIST>
FROM TABELA_A
FULL OUTER JOIN TABELA_B
ON A.Key = B.Key
WHERE A.Key IS NULL
OR B.Key IS NULL

Nesses slides analisaremos cada **JOIN** individualmente, com base em exemplos, e veremos seus resultados.

Assim, poderemos comparar seu funcionamento e decidir quando devemos usar cada um.

Para demonstrar o funcionamento dos métodos de **junção** (**joins**), precisaremos **criar duas tabelas** entre as quais deve haver algum relacionamento para que **possamos** "**cruzar**" **os dados**.

Como o objetivo criaremos apenas duas tabelas contendo uma coluna Nome, que será comum entre elas.

O script do próximo SLIDE cria essa estrutura.


```
CREATE TABLE Tabela_A
(
Nome varchar(50) NULL
)
```

```
CREATE TABLE Tabela_B
(
Nome varchar(50) NULL
)
```


Em seguida, precisaremos adicionar nas tabelas recém criadas alguns dados que nos permitam colocar à prova as junções.

Sendo assim, vamos inserir, com o script do próximo SLIDE alguns registros de forma que haja nomes que estão presentes apenas em uma tabela, e também nomes que sejam comuns às duas.


```
INSERT INTO Tabela_A
VALUES

('Fernanda'),

('Josefa'),

('Luiz'),

('Fernando');
```

```
INSERT INTO Tabela_B
VALUES
('Carlos'),
('Manoel'),
('Luiz'),
('Fernando');
```

INNER JOIN

O INNER JOIN é o método de junção mais conhecido e, como ilustra a figura abaixo, retorna os registros que são comuns às duas tabelas.

Exemplo de consulta com esse tipo de join

SELECT a.Nome, b.Nome
FROM Tabela_A as A
INNER JOIN Tabela_B as B
on a.Nome = b.Nome

LEFT JOIN

O LEFT JOIN, tem como resultado todos os registros que estão na tabela A (mesmo que não estejam na tabela B) e os registros da tabela B que são comum a tabela A, veja como ilustra a figura abaixo.

Ex. de consulta com esse tipo de left join

SELECT a.Nome, b.Nome
FROM Tabela_A as A
LEFT JOIN Tabela_B as B
on a.Nome = b.Nome

Nome	Nome
Luiz	Luiz
Fernando	Fernando
Fernanda	NULL
Josefa	NULL

RIGHT JOIN

O RIGHT JOIN, conforme mostra a figura abaixo, têm como resultado todos os registros que estão na tabela B (mesmo que não estejam na tabela A) e os registros da tabela A que são comum a tabela B.

Ex. de consulta com esse tipo de right join

SELECT a.Nome, b.Nome
FROM Tabela_A as A
RIGHT JOIN Tabela_B as B
on a.Nome = b.Nome

OUTER JOIN

O OUTER JOIN, (também conhecido por Full Outer Join ou Full Join), conforme mostra a figura abaixo, têm como resultado todos os registros que estão na tabela A e todos os registros da tabela B.

Ex. de consulta com esse tipo de right join

SELECT a.Nome, b.Nome
FROM Tabela_A as A
FULL OUTER JOIN Tabela_B as B
on a.Nome = b.Nome

PRATICANDO o APRENDIDO

Junção por Nome de Coluna

Exercícios

Digamos que você seja um fabricante de jogos de xadrez que tem uma tabela de estoque na qual monitora seu estoque de peças brancas e outra que monitora as peças pretas.

As tabelas contem os dados a seguir:

	BRAN	CA
Peca	Qtde	Material
Rei	502	Carvalho
Rainha	398	Carvalho
Torre	1020	Carvalho
Bispo	985	Carvalho
Cavaleiro	950	Carvalho
Peão	431	Carvalho

	PRET	Α
Peca	Qtde	Material
Rei	502	Ébano
Rainha	397	Ébano
Torre	1020	Ébano
Bispo	985	Ébano
Cavaleiro	950	Ébano
Peão	453	Ébano

Para cada tipo de peça, o numero de peças brancas deve corresponder ao numero de peças pretas.

Se não houver correspondência, significa que algumas peças foram roubadas ou perdidas e você precisa aperfeiçoar a segurança.

Uma junção natural compara todas as colunas com o mesmo nome para verificar a igualdade.

Nesse caso, <u>é produzida uma tabela</u> resultante sem linhas, pois nenhuma linha da coluna Material na tabela Branca corresponde a uma linha na coluna Material da tabela Preta.

Essa tabela resultante não ajuda a determinar se esta faltando algum produto.

Em vez de usar uma junção natural, use uma junção por nome de coluna para excluir a coluna Material do exame. Ela pode ter a forma a seguir:

DESAFIOI

Resulta nessa consulta

Peca	Qtde	Material	Material
Rei	502	Carvalho	Ébano
Torre	1020	Carvalho	Ebano
Bispo	985	Carvalho	Èbano
Cavaleiro	950	Carvalho	Ebano

Peca	Qtde	Material	Material
Rei	502	Carvalho	Èbano
Torre	1020	Carvalho	Ebano
Bispo	985	Carvalho	Èbano
Cavaleiro	950	Carvalho	Ebano

O que você percebeu nessa consulta?

Está faltando a RAINHA e os PEÕES, indicando a falta desses tipos de peças em algum lugar.

##