Introduction

Finding the size of a vector. its angle, and projection

- Video: Modulus & inner 10 min
- Video: Cosine & dot product
- Video: Projection
- Practice Quiz: Dot product 6 questions

Changing the reference

- Video: Changing basis
- Practice Ouiz: Changing 5 questions
- Video: Basis, vector space, and linear independence
- ▶ Video: Applications of changing basis
- Practice Quiz: Linear dependency of a set of vectors 6 questions

Doing some real-world vectors examples

Congratulations! You passed!

TO PASS 80% or higher PRACTICE QUIZ • 15 MIN

Keep Learning

100%

Linear dependency of a set of vectors Linear dependency of a set of vectors

TOTAL POINTS 6

1. In the lecture vide of Sydnik Move essignmentarly dependent if it is possible to write one vector as a linear combination of the others. For example, the vectors ${f a},{f b}$ and ${f c}$ are linearly dependent if ${f a}=q_1{f b}+q_2{f c}$ where q_1 and q_2

1/1 point

Grade

Try again

Are the following vectors fife it for gradendent? TO PASS 80% or higher

100%

View Feedback We keep your highest score

Yes

O No

3 P P

✓ Correct

When there are two vectors we only need to check if one can be written as a scalar multiple of the other. We can see that the vectors are linearly dependent because $\mathbf{a} = \frac{1}{2}\mathbf{b}$.

2. We say that two vectors are linearly independent if they are *not* linearly dependent, that is, we cannot write one of the vectors as a linear combination of the others. Be careful not to mix the two definitions up!

1/1 point

Are the following vectors linearly independent?

$$\mathbf{a} = egin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\mathbf{b} = egin{bmatrix} 2 \\ 1 \end{bmatrix}$

- Yes
- O No

These vectors are linearly independent as one is not a scalar multiple of the other.

3. We also saw in the lectures that three vectors that lie in the same two dimensional plane must be linearly dependent. This 1/1 point tells us that $\mathbf{a},\,\mathbf{b}$ and \mathbf{c} are linearly dependent in the following diagram:

What are the values of q_1 and q_2 that allow us to write $\mathbf{a} = q_1 \mathbf{b} + q_2 \mathbf{c}$? Put your answer in the following codeblock:

- $\mbox{\#}$ Assign the correct values for q1 and q2 to write a as a linear combination of b and c

Reset

Good job!

4. In fact, an n-dimensional space can have as many as n linearly independent vectors. The following three vectors are three 1/1 point dimensional, which means that we must check if they are linearly dependent or independent.

Are the following vectors linearly independent?

$$\mathbf{a} = egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}$$
 , $\mathbf{b} = egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}$ and $\mathbf{c} = egin{bmatrix} 1 \ 0 \ 1 \end{bmatrix}$