Université Clermont Auvergne Clermont Auvergne INP ISIMA

Do Duy Dao

QUBO for Track Finding

M2 Internship Project

Major: Computer of Science

(Course: ICS Master 2)

Supervisors: Prof. Philippe LACOMME

Dr. Hervé KERIVIN

Dr. Bogdan VULPESCU

Contents

1	Track particle finding problem	1
	1.1 Problem definition	1

Chapter 1

Track particle finding problem

1.1 Problem definition

Track finding is a combinatorial optimization problem, given a set of signals in space, reconstructing particle trajectories subject to smoothness constraints [Peterson, 1989]. **Idea:**

Data:

- *L*: number of layers
- $l, 1 \le l \le L$: layer l, and generate plane $(x, y, z)^l$
- $d_{i,j}$: distance between 2 layers i, j
- $H_l, 0 \le l \le L$: number of hits for layer l
- h_l : set of hits for layer l
- T: number of tracks

Variables:

- $t, 1 \le t \le T$: track t
- $p_l^t = (x, y, z)_l^t = (x_l^t, y_l^t, z_l^t)$: particle p of track t in layer l with coordinates in 3D space corresponding to $(x, y, z)_l^t$

Let $\overrightarrow{v_{l,l+1}^{i,j}}$ is the vector from p_l^i to p_{l+1}^j :

$$\overrightarrow{v_{l,l+1}^{i,j}} = \overrightarrow{(p_l^i, p_{l+1}^j)}
= \left((x_{l+1}^j - x_l^i), (y_{l+1}^j - y_l^i), (z_{l+1}^j - z_l^i) \right)
= \left((x_{l+1}^j - x_l^i), (y_{l+1}^j - y_l^i), d_{l+1,l} \right)
= \left(dx_{l+1,l}^{j,i}, dy_{l+1,l}^{j,i}, dz_{l+1,l} \right)$$
(1.1)

We want to calculate the angle of 2 vectors $\overrightarrow{v_{l-1,l}^{i,j}}, \overrightarrow{v_{l,l+1}^{i,j}}$.

Formulation:

$$\begin{split} & \operatorname{Min} \sum_{i=1}^{T} \sum_{j=1}^{T} \sum_{k=1}^{T} \sum_{l=2}^{L-1} \cos(\overrightarrow{v_{l-1,l}^{i,j}}, \overrightarrow{v_{l,l+1}^{j,k}}) \\ &= \operatorname{Min} \sum_{i=1}^{T} \sum_{j=1}^{T} \sum_{k=1}^{T} \sum_{l=2}^{L-1} \frac{\overrightarrow{v_{l-1,l}^{i,j}} \bullet \overrightarrow{v_{l,l+1}^{j,k}}}{\left| \overrightarrow{v_{l-1,l}^{i,j}} \right| \cdot \left| \overrightarrow{v_{l,l+1}^{j,k}}} \\ &= \operatorname{Min} \sum_{i=1}^{T} \sum_{j=1}^{T} \sum_{k=1}^{T} \sum_{l=2}^{L-1} \frac{\overrightarrow{(p_{l-1}^{i}, p_{l}^{j})} \bullet (p_{l}^{j}, p_{l+1}^{k})}{\left| \overrightarrow{(p_{l-1}^{i}, p_{l}^{j})} \right| \cdot \left| \overrightarrow{(p_{l}^{i}, p_{l+1}^{k})} \right|} \\ &= \operatorname{Min} \sum_{i=1}^{T} \sum_{j=1}^{T} \sum_{k=1}^{T} \sum_{l=2}^{L-1} \frac{dx_{l,l-1}^{j,i} dx_{l+1,l}^{k,j} + dy_{l,l-1}^{j,i} dy_{l+1,l}^{k,j} + dz_{l,l-1} dz_{l+1,l}}{\sqrt{(dx_{l,l-1}^{j,i})^{2} + (dy_{l,l-1}^{j,i})^{2} + (dz_{l,l-1})^{2}} \sqrt{(dx_{l+1,l}^{k,j})^{2} + (dz_{l+1,l})^{2}}} \end{split}$$

Where: • is scalar product

Constraints:

1. The angle between 2 vectors must be greater than 0 and less than or equal to π :

$$-1 \le cos(\overrightarrow{v_{l-1,l}^{i,j}}, \overrightarrow{v_{l,l+1}^{j,k}}) < 1, \forall l = 2, ..L-1, \forall i, j, k = 1, ..., T$$

2. Only one vector from a particle of track i in layer l to a particle of track j in layer l+1:

$$\sum_{i=1}^{T} |\overrightarrow{v_{l,l+1}^{i,j}}| = 1, \forall i = 1, ..., T, \forall l = 1, ... L - 1$$

3. Only one particle for a track:

$$\sum_{l=1}^{L} p_l^i = 1, \forall i = 1, ..., T$$

4. Number of particles for a layer:

$$p_{l}^{i} \in h_{l}, \sum_{i=1}^{T} p_{l}^{i} = H_{l}, \forall l = 1, ..., L$$

Idea 2:

Data:

- L: number of layers
- $l, 1 \le l \le L$: layer l, and generate plane $(x, y, z)^l$
- $d_{i,j}$: distance between 2 layers i, j
- $H_l, 0 \le l \le L$: number of hits for layer l
- h_l : set of hits for layer l
- T: number of tracks

Variables:

- $t, 1 \le t \le T$: track t
- $p_l^t = (x, y, z)_l^t = (x_l^t, y_l^t, z_l^t)$: particle p of track t in layer l with coordinates in 3D space corresponding to $(x, y, z)_l^t$

Let:

- $d(p_l^i, p_{l+1}^j)$ is a distance from particle p_l^i to p_{l+1}^j .
- $(p_l^i+1)^*$ is a projection of p_l^i onto layer l+1.

• $\alpha_{l,l+1}^{i,j}$ is an angle between vector from p_l^i to p_{l+1}^j and vector from p_l^i to $(p_l^i)^*$.

$$\alpha_{l,l+1}^{i,j} = \arccos\left(\frac{d(p_l^i, (p_{l+1}^i)^*)}{d(p_l^i, p_{l+1}^j)}\right)$$

$$= \arccos\left(\frac{z_{l+1}^i - z_l^j}{d(p_l^i, p_{l+1}^j)}\right)$$

$$= \arccos\left(\frac{z_{l+1} - z_l}{d(p_l^i, p_{l+1}^j)}\right)$$

$$= \arccos\left(\frac{z_{l+1} - z_l}{\sqrt{(x_l^i - x_{l+1}^j)^2 + (y_l^i - y_{l+1}^j)^2 + (z_l^i - z_{l+1}^j)^2}}\right)$$
(1.3)

Target: Minimize all angles $\alpha_{l,l+1}^{i,j}$:

$$Min \sum_{i=1}^{T} \sum_{j=1}^{T} \sum_{l=2}^{L-1} arccos\left(\frac{z_{l+1} - z_{l}}{d(p_{l}^{i}, p_{l+1}^{j})}\right)$$
(1.4)

Constraints:

1. The angle between 2 vectors must be greater than 0 and less than or equal to $\frac{\pi}{2}$:

$$0 < \leq arccos\left(\frac{z_{l+1} - z_{l}}{d(p_{l}^{i}, p_{l+1}^{j})}\right) \leq \frac{\pi}{2}, \forall l = 1, ... L - 1, \forall i, j = 1, ..., T$$

2. Only one vector $(\overrightarrow{p_l^i, p_{l+1}^j})$ from a particle of track i in layer l to a particle of track j in layer l+1:

$$\sum_{i=1}^{T} |(\overrightarrow{p_{l}^{i}, p_{l+1}^{j}})| = 1, \forall i = 1, ..., T, \forall l = 1, ..., L-1$$

3. Only one particle for a track:

$$\sum_{l=1}^{L} p_{l}^{i} = 1, \forall i = 1, ..., T$$

4. Number of particles for a layer:

$$p_l^i \in h_l, \sum_{i=1}^{T} p_l^i = H_l, \forall l = 1, ..., L$$

Bibliography

[Peterson, 1989] Peterson, C. (1989). Track finding with neural networks. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 279(3):537–545.