EPITA

Mathématiques

Partiel

Janvier 2021

Durée : 3 heures

Nom:
Prénom :
Classe:
NOTE:
Le barème indiqué est sur 30 points qui seront ramenés à 20 par une règle de trois.
Consignes:
 Documents et calculatrices interdits. Répondre directement sur les feuilles jointes, dans les espaces prévus. Aucune autre feuille ne sera corrigée.

— Ne pas écrire au crayon de papier.

Exercice 1 (6 points)

A et B jouent avec un jeu de 32 cartes au jeu suivant :

A tire une main de 5 cartes au hasard dans le jeu, puis B tire une carte au hasard parmi les 5 cartes de la main de A.

B gagne s'il tire un valet. On appelle Ω l'univers des possibles.

Si les probabilités trouvées s'expriment avec des combinaisons ou des	s arrangements, il ne vous est pas demandé de les calculer
---	--

a. Déterminer la probabilité que la main tirée par ${\bf A}$ contienne exactement 3 valets.

b. Déterminer la probabilité que la main tirée par A contienne exactement 3 valets et 3 piques.

c. Soit $k \in [0, 4]$. On appelle V_k l'évènement : "La main tirée par A contient exactement k valet(s)". Rappeler, sans la démontrer, ce que signifie l'affirmation : $\{V_0, V_1, V_2, V_3, V_4\}$ forment une partition de Ω .

Dans les questions d. et e., seule la formule théorique est attendue et pas d'application numérique.

d. On appelle BV l'évènement : "B tire un valet". En utilisant la partition ci -dessus, écrire la formule des probabilités totales pour P(BV).

e. À l'aide de la formule de Bayes, exprimer la probabilité qu'il y ait eu exactement 3 valets parmi les 5 cartes tirées par A, sachant que B tire un valet.

Exercice 2 (3 points)

Soient $(\Omega, \mathscr{P}(\Omega), P)$ un espace probabilisé, et X et Y deux variables aléatoires finies définies sur Ω .

1. X suit une loi binomiale de paramètres n=10 et $p=\frac{1}{4}$. Déterminer son espérance, sa variance ainsi que P(X=3) sous forme de fraction simplifiée.

2. Y suit une loi uniforme sur $[\![1,10]\!].$ Déterminer son espérance.

Exercice 3 (3 points)

En utilisant le petit théorème de Fermat dont vous rappellerez l'énoncé, déterminer le reste de la division euclidienne de 2021³⁶² par 19.

Exercice 4 (5 points)

On appelle (E) l'équation : «630x - 195y = 30; $(x, y) \in \mathbb{Z}^2 \times ...$

1. A l'aide de l'algorithme d'Euclide, déterminer une solution particulière de (E).

2. En utilisant le lemme de Gauss, déterminer l'ensemble des solutions de (E).						

Exercice 5 (3 points)

Soit $n \in \mathbb{N}^*$.

1. Montrer que (X-1)(X-2) divise $P(X) = n((X-1)^{n+1} - X) + ((X-1)^n - X) + (n+1)$.

2. Montrer que -1 est racine de $Q(X) = (2n+1)X^{2n+3} + (2n+3)X^{2n+2} + (2n+3)(X+1) - 2$.

Exercice 6 (3 points)

On considère le polynôme $R(X) = X^4 + 3X^3 + 3X^2 - X - 6$.

1. Montrer que 1 et -2 sont racines de R.

Exercice 7 (4 points)

 $\text{Soient } (u_n)_{n \in \mathbb{N}} \text{ et } (v_n)_{n \in \mathbb{N}} \text{ deux suites définies par : } \left\{ \begin{array}{c} u_0 = 1 \\ \forall n \in \mathbb{N}, \quad u_{n+1} = \frac{4u_n + v_n}{5} \end{array} \right. \text{ et } \left\{ \begin{array}{c} v_0 = 0 \\ \forall n \in \mathbb{N}, \quad v_{n+1} = \frac{u_n + 4v_n}{5} \end{array} \right.$

1. Soit $(w_n)_{n\in\mathbb{N}}$ définie par : $\forall n\in\mathbb{N}, w_n=u_n-v_n$. Montrer que (w_n) est géométrique, déterminer w_n en fonction de n, déterminer son signe et sa limite en $+\infty$.

2. Montrer que (u_n) et (v_n) sont adjacentes.

Exercice 8 (3 points)

Comparer les couples suivants, à l'aide des comparateurs de Landau \sim , = o(.), en citant toutes les comparaisons possibles. Justifiez vos réponses.

1. $u_n = n^2 + 3n$ et $v_n = 2n^2 + 3$

 $2. u_n = n^2 \quad \text{et} \quad v_n = n\sin(n)$

3. $u_n = \ln(n) + e^n + n$ et $v_n = \ln(n^2) + e^n + 2$