Лекция 1

Линейное программирование

(Конспект: Ф. Александров)

Замечание 1.1. Этот конспект взят из лекций осени 2001 года.

1.1 Метод внутренней точки

Предъявим способ решения общей задачи линейного программирования.

$$\min < c, x >,$$

$$Ax = b.$$
(1.1)

Постановка задачи. Будем решать задачу вида

$$\min \langle c, x \rangle \stackrel{?}{=} 0,$$

$$\Omega : \begin{cases} Ax = \mathbf{0}, \\ \sum_{i} x_{i} = 1, \\ x_{i} \geq 0 \end{cases}$$

$$(1.2)$$

причем известно, что $< c, x > \geqslant 0$ на Ω , и дана внутренняя точка $a \in \Omega$. Иначе говоря, надо выяснить, достигает ли < c, x > нуля на Ω , являющемся пересечением подпространства $\{x|Ax=\mathbf{0}\}$ с $\mathit{симплексом}$ $\{x|\sum_i x_i=1,\ x_i\geq 0\}$. Очевидно, что можно рассматривать только случай, когда $c\in\Omega$.

Задача 1.1. Доказать, что задачи 1.1 и 1.2 эквивалентны.

Указание. Ознакомившись с этой лекцией, проделать необходимые проективные преобразования для того, чтобы загнать все внутрь симплекса и сделать уравнение $Ax = \dots$ однородным. Добиться поиска конкретного минимума (именно, нуля) можно, комбинируя задачу 1.1 с двойственной.

Схема алгоритма.

Алгоритм 1.1 (Схема). Алгоритм итеративный, при каждом шаге от точки a переходим к $\phi(a)$, и так до тех, пока не подберемся достаточно близко к решению.

Возьмём исходную для алгоритма точку a. Если < c, a >= 0, то останавливаемся, искомая точка найдена. Иначе переходим к $\phi(a)$. Проверяем значение $< c, \phi(a) >$, потом $\phi^2(a), \phi^3(a), \dots$ Так постепенно "подбираемся" к решению. Количество переходов может быть большим, поэтому условия остановки будут приведены позднее.

Подобравшись "достаточно близко" к решению, отправимся, не увеличивая $< c, \cdot >$, к ближайшей вершине. В ней-то и будет решение.

Условия остановки. Очевидно, что решение задачи 1.2, если оно существует, то находится в вершине области Ω .

Лемма 1.1. Пусть a_* , b_* — вершины области Ω . Тогда

$$|\langle c, a_* \rangle - \langle c, b_* \rangle| > 2^{-kL},$$

zде L — общая длина входа алгоритма, k — вещественная константа.

Задача 1.2. Доказать лемму 1.1.

На основании этой леммы получаем признак того, что "подобрались" достаточно близко к решению. Если значение целевой функции $< c, \cdot >$ в точке a', полученной на данном шаге алгоритма, удовлетворяет неравенству

$$\langle c, a' \rangle \leqslant 2^{-kL},$$

то "доехав" от a' до ближайшей вершины (не увеличивая при этом $< c, \cdot >$), получим решение (опять же, если оно существует).

Пусть

$$f(x) = \sum_{i} \ln \left(\frac{\langle c, x \rangle}{x_i} \right).$$

На каждом шаге алгоритма будем вычислять f(a). Значение этой фунции должно на каждом шаге убывать на некоторую константу. Если на каком-то шаге убывает слабее, то это означает, что задача решения не имеет, завершаем алгоритм.

Функция перехода. Теперь предъявим функцию перехода ϕ . Есть $a=(a_1,...,a_n)^T$ — внутренняя точка области Ω , построим значение ϕ в этой точке. Рассмотрим матрицу

$$D_a = \begin{pmatrix} a_1 & 0 & \dots & 0 \\ 0 & a_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & a_{n-1} & 0 \\ 0 & \dots & 0 & a_n \end{pmatrix}$$

Преобразование

$$T(x) = \frac{D_a^{-1}x}{\langle e, D_a^{-1}x \rangle}, \quad e = (1, 1, \dots, 1)$$

переводит внутреннюю точку во внутреннюю, а вершину симплекса — в вершину;

$$T(a) = a_0 = (1/n, \dots, 1/n).$$

В преобразованных координатах наше подпространство имеет вид $\{x'|ADx'=\mathbf{0}\}$, а целевая функция $-< c', \cdot>$, где c'=Dc. Наконец, функция f выглядит так:

$$f'(x') = \sum_{i} \ln(\frac{\langle c', x' \rangle}{x'_i}) - \sum_{i} \ln a_i.$$

Далее, в симплекс вписываем шар $B(a_0,r)$ и рассмотрим шар $B(a_0,\alpha r)$, где $\alpha\in(0,1)$ — параметр алгоритма. Пересечение $B'=B(a_0,\alpha r)\cap\{x'|ADx'=0\}$ этого шара с подпространством дает содержащийся в множестве, по которому мы оптимизируем, шар меньшей размерности и того же радиуса, ибо наше подпространство содержит его центр: $ADa_0=\frac{1}{n}Aa=0$. В шаре оптимизировать очень просто: из точки a_0 сдвинемся на радиус этого шара в направлении вектора (-c'), получив точку a''.

Обратное к T(x) преобразование выглядит так:

$$T^{-1}(x) = \frac{Dx}{\langle e, Dx \rangle}.$$

Применив его к точке a'' (полученной только что сдвигом из a_0), найдём новую точку, которая и будет искомым $\phi(a)$. Всё, построение отображения ϕ закончили.

Доказательства. Наша цель — показать, что задача имеет решение тогда и только тогда, когда на каждом шаге значение функции f' будет убывать не менее, чем на некоторую константу. Тем самым мы ограничим количество шагов нашего алгоритма и получим оценку на время его работы. Начнем с того, что покажем, что наш шар меньшей размерности действительно содержит точку, в которой f' значительно меньше, чем в a_0 .

Лемма 1.2. Если задача (1.2) имеет решение, то $\exists b' \in B' : f'(b') \le f'(a_0) - \delta$, где $\delta := \ln(1 + \alpha) = \text{const.}$

Доказательство. Пусть x^* — точка $T(\Omega)$, в которой достигается $\min \langle c', x \rangle = 0$. Предъявим b': проведём отрезок, соединяющий a_0 и x^* . Пересечение этого отрезка и границы шара B' обозначим за b'.

Тогда $\exists \lambda \in (0,1): \langle c',b' \rangle = (1-\lambda) \langle c',a_0 \rangle + \lambda \langle c',x^* \rangle$. Но $\langle c',x^* \rangle = 0$, а значит,

$$\frac{\langle c', a_0 \rangle}{\langle c', b' \rangle} = \frac{1}{1 - \lambda},$$

$$f'(a_0) - f'(b') = \sum_{i} \ln \frac{\langle c', a_0 \rangle}{a_{0i}} - \sum_{i} \ln \frac{\langle c', b' \rangle}{b'_i} =$$

$$\sum_{i} \ln \left(\frac{\langle c', a_0 \rangle}{\langle c', b' \rangle} \frac{b'_i}{a_{0i}} \right) = \sum_{i} \ln \left(\frac{1}{1 - \lambda} \frac{(1 - \lambda)a_{0i} + \lambda x_i^*}{a_{0i}} \right) =$$

$$\sum_{i} \ln \left(1 + \frac{\lambda}{1 - \lambda} \frac{x_i^*}{a_{0i}} \right) \ge \ln \left(1 + \frac{\lambda}{1 - \lambda} \sum_{i \in [1..n]} \frac{x_i^*}{a_{0i}} \right) = \ln \left(1 + \frac{\lambda n}{1 - \lambda} \right).$$

Далее, так как $b' = (1 - \lambda)a_0 + \lambda x^*$, имеем

$$\lambda = \frac{\text{длина отрезка } a_0 b'}{\text{длина отрезка } a_0 x^*} = \frac{\alpha r}{\text{длина отрезка } a_0 x^*} \ge \frac{\alpha r}{R},$$

где R — радиус шара, описанного вокруг симплекса.

Факт 1.1. Пусть r — радиус вписанного в симплекс шара в \mathbb{R}^n , R — радиус описанного вокруг симплекса шара. Тогда

$$\frac{r}{R} = \frac{1}{n-1}.$$

Воспользовавшись фактом 1.1, получаем

$$\lambda \ge \frac{\alpha}{n-1}$$
.

Тогда

$$f'(a_0) - f'(b') \ge \ln\left(1 + \frac{\frac{\alpha n}{n-1}}{1 - \frac{\alpha}{n-1}}\right) = \ln\left(1 + \frac{\alpha n}{n-1 - \alpha}\right) \stackrel{n \to \infty}{\searrow} \ln(1 + \alpha).$$

Возьмём
$$\delta := \ln(1+\alpha)$$
.

Показав, что точка с маленьким значением f' действительно имеется, покажем, что в точке, к которой переходит наш алгоритм, значение тоже не слишком велико.

Лемма 1.3. Пусть b' - mочка, минимизирующая целевую функцию $\langle c', \cdot \rangle$ на B'. Тогда $f'(b') \leq f'(a_0) - \delta'$, где $\delta' = \text{const.}$

Доказательство. Обозначим точку b', полученную в лемме 1.2, как $b_{1,2}$.

$$f'(a_0) - f'(b') = f'(a_0) - f'(b_{1,2}) + f'(b_{1,2}) - f'(b') \stackrel{\text{лемма } 1.2}{\geq} \delta + f'(b_{1,2}) - f'(b')$$

Пусть

$$\widetilde{f}(x) = n \ln \frac{\langle c', x \rangle}{\langle c', a_0 \rangle}.$$

Тогда

$$f'(a_{0}) - f'(b') \geq \qquad (1.3)$$

$$\widetilde{f}(b_{1,2}) - \widetilde{f}(b') + \qquad \qquad \left(f'(b_{1,2}) - \left(f'(a_{0}) + \widetilde{f}(b_{1,2})\right)\right) - \qquad \qquad \left(f'(b') - \left(f'(a_{0}) + \widetilde{f}(b')\right)\right),$$

причем

$$f'(x) - \left(f'(a_0) + \widetilde{f}(x)\right) = \sum_{i} \ln \frac{\langle c', x \rangle}{x_i} - \sum_{i} \ln \frac{\langle c', a_0 \rangle}{a_{0i}} - n \ln \frac{\langle c', x \rangle}{\langle c', a_0 \rangle} = \sum_{i} \ln \frac{a_{0i}}{x_i}$$
(1.4)

Задача 1.3. Доказать: $\forall x \in B(a_0, \alpha r)$ в \mathbb{R}^n

$$\left| \sum_{1 \le i \le n} \ln \frac{a_{0i}}{x_i} \right| \le \frac{\beta^2}{2(1-\beta)}, \quad \text{где } \beta = \alpha \sqrt{\frac{n}{n-1}}.$$

Пользуясь этим результатом и равенством (1.4), получаем из (1.3):

$$f'(a_0) - f'(b') \geq \ln(1+\alpha) - \frac{\beta^2}{1-\beta} = \ln(1+\alpha) - \frac{\alpha^2 n}{(n-1)(1-\alpha\sqrt{\frac{n}{n-1}})} \xrightarrow{n\to\infty} \alpha - \frac{\alpha^2}{2} - \frac{\alpha^2}{1-\alpha} > 0.$$

Из леммы 1.3 вытекает, что если f' не уменьшается на каком-то шаге алгоритма, то задача решения не имеет.

Если же мы хотим найти внутреннюю точку, в которой значение целевой функции достаточно мало для того, чтобы найти решение (см. схему алгоритма), сколько итераций должен произвести алгоритм? Это будет ясно из следующей леммы.

Лемма 1.4. Пусть x — точка, найденная c помощью алгоритма 1.1 за k шагов,

$$k = O(n(q + \ln n))$$
 \Rightarrow $\frac{\langle c, x \rangle}{\langle c, a_0 \rangle} \le 2^{-q}$.

Доказательство.

$$\begin{split} \sum_{i} \ln \frac{< c, x>}{x_{i}} \leq \sum_{i} \ln \frac{< c, a_{0}>}{a_{0i}} - k\delta \\ n \ln \frac{< c, x>}{< c, a_{0}>} \leq \sum_{i} \ln x_{i} - \sum_{i} \ln a_{0i} - k\delta \leq n \ln n - k\delta \\ \ln \frac{< c, x>}{< c, a_{0}>} \leq \ln n - \frac{k}{n}\delta \quad \Rightarrow \quad \frac{< c, x>}{< c, a_{0}>} \leq \frac{n}{e^{\frac{k}{n}\delta}} = \frac{n}{e^{O(\delta(q + \ln n))}} \leq \frac{1}{e^{const \cdot \delta q}} \end{split}$$

Легко видеть, что тем самым необходимое количество итераций полиномиально от длины входа, т.е., мы предъявили полиномиальный алгоритм для задачи линейного программирования. Если аккуратно разобраться с вычислениями на каждом шаге (упражнение по линейной алгебре), можно убедиться, что трудоёмкость алгоритма составляет $O\left(n^{3.5} \cdot p(L)\right)$, где p(L) — полином от общей длины входа алгоритма.