

OHT

yany

Problen

Related Wor

Problem Definition

Methods

Theoretica Analysis

Experiments

Online Transfer with Heterogeneous Source

Yan Yuguang

South China University of Technology

May 11, 2015

Problem Online Multi-transfer Learning

OHT

yany

Problem

Related Wo

Problem

Method

Theoretica Analysis

Evnorimon

The goal is to learn some prediction function $f(\mathbf{x}_t)$ on a target domain in an online fashion from a sequence of instances $\{(\mathbf{x}_t, y_t | t=1, 2, \cdots, T\}$ in data space $\mathcal{X} \times \mathcal{Y}$.

Homogeneous source domain:

$$\mathcal{X} = \mathcal{X}^k, \mathcal{Y} = \mathcal{Y}^k$$

■ Heterogeneous source domain:

$$\mathcal{X} \cap \mathcal{X}^k = \emptyset, \mathcal{Y} = \mathcal{Y}^k$$

co-occurrence information (?, ?)

Related Work Heterogeneous Transfer

OHT

yany

Proble

Related Work

Problem

Method

Theoretical Analysis

Experiments

■ Build text features for image ¹

- annotation-based probabilistic latent semantic analysis ²
- Construct representation for image using common semantic view between image and text data ³
- Co-transfer via transition probability ^{4 5}

Above-mentioned studies require prior training data in the source and target domains.

In our problem setting, all the instance in the target domain arrive sequentially.

¹Building text features for object image classification (?, ?)

²Heterogeneous Transfer Learning for Image Clustering via the Social Web (?, ?)

³Heterogeneous Transfer Learning for Image Classification (?, ?)

 4 Co-Transfer Learning via Joint Transition Probability Graph Based Method (?,?)

⁵Cotransfer Learning Using Coupled Markov-Chains with Restart (2, ?)

Related Work Online Learning

OHT

yany

Related Work

Definiti

Method

Theoretical Analysis

Experiments

Only a few works consider transfer learning in an online fashion.

- Ensemble learning method for online homogeneous transfer ^{6 7}
- Multi-view method for online heterogeneous transfer

Zhao et al. assume that the feature space of the source domain is a subset of that of the target domain.

In our problem setting, the feature spaces of the source and target domains do not share any common subset (e.g. image and text).

⁶OTL: A Framework of Online Transfer Learning (?, ?)

⁷Online Transfer Learning (?, ?)

Problem Definition

OH

yany

Probler

D. I. . 1347

Problem Definition

Methods

Theoretica Analysis

Experiments

test

Methods Heterogeneous Knowledge Transfer

OHT

yany

Problen

Related Wor

Problem Definition

Methods

Theoretical Analysis

Experiments

Similarity between \mathbf{x}_t and each instance in the heterogeneous source domain

$$Sim_t(j) = \sum_{i} Sim_t^{(1)}(i)Sim^{(2)}(i,j)$$

Weighted K nearest neighbor classifier

$$h_t^s(\mathbf{x}_t) = \sum_{i \in N} \frac{Sim_t(i)}{\sum_{i \in N} Sim_t(i)} y_i$$

where N is the set of identifiers of K nearest neighbors in the heterogeneous source domain.

Online Heterogeneous Transfer Algorithms

OHT

yany

Probl

Related We

Problem Definition

Methods

Theoretical Analysis

Experiments

```
Algorithm 1 Online Heterogeneous Transfer Algorithm 1 (OHT1)
```

```
aggressiveness parameter C >
Input:
      0
                  \eta = \frac{1}{2}
                  heterogeneous source data
Output:
                 \mathbf{v} = \mathbf{0}, \ w_1^s \in (0,1), \ w_1 \in
       (0,1), where w_1^s + w_1 = 1
  1: for t=1 to T do
             receive instance: \mathbf{x}_t \in \mathcal{X}
            normalize: \theta_t^s = \frac{w_t^s}{w_t^s + w_t}, \theta_t =
             \frac{w_t}{w_t^s + w_t}
             predict:
  4.
             sign\left(\theta_t^s \Omega(h_t^s(\mathbf{x}_t)) + \theta_t \Omega(\mathbf{v}_t)\right)
             \mathbf{x}_t) -\frac{1}{2})
  5:
             receive correct label: y_t \in \mathcal{Y}
```

compute:

6:

Algorithm 2 Online Heterogeneous Transfer Algorithm 2 (OHT2)

```
aggressiveness parameter C >
Input:
                 discount parameter \alpha \in (0,1)
                   heterogeneous source data
Output:
                    \mathbf{v} = \mathbf{0}, \ w_1^s \in (0,1), \ w_1 \in
       (0,1), where w_1^s + w_1 = 1
  1: for t = 1 to T do
             receive instance: \mathbf{x}_t \in \mathcal{X}
             normalize: \theta^s_t = \frac{w^s_t}{w^s_t + w_t}, \theta_t =
              \frac{w_t}{w_t^s + w_t}
             predict:
  4:
             \operatorname{sign}\left(\theta_{t}^{s}\operatorname{sign}(h_{t}^{s}(\mathbf{x}_{t}))\right)
             \theta_t \operatorname{sign}(\mathbf{v}_t \cdot \mathbf{x}_t)
             receive correct label: y_t \in \mathcal{Y}
             compute:
```

 $u^s = u^s = I(y_t h_t^s(\mathbf{x}_t) \leq \overline{\emptyset})^{19}$

Theoretical Analysis $Hedge(\beta)$ Algorithm

OHT

yany

FIODIEIII

Related Wo

Problem Definition

Method

Theoretical Analysis

Experiments

At t-th trial, $\mathbf{Hedge}(\beta)$ algorithm synthesizes opinions from different experts based on a weight vector \mathbf{weight}_t , and updates the weight vector using rule

$$weight_{t+1}^i = weight_t^i \cdot \beta^{loss_t^i}$$

where $\beta \in [0,1]$ and $loss_t^i \in [0,1]$.

I - I - I			
	$\mathbf{Hedge}(\beta)$	OHT1	OHT2
	$loss_t^i$	$\ell_t^s = (\Omega(h_t^s(\mathbf{x}_t)) - \Omega(y_t))^2$	$\ell_t^s = I(y_t h_t^s(\mathbf{x}_t) \le 0)$
		$\ell_t = (\Omega(\mathbf{v}_t \cdot \mathbf{x}_t) - \Omega(y_t))^2$	$\ell_t = I(y_t(\mathbf{v}_t \cdot \mathbf{x}_t) \le 0)$
	β	$\beta = \exp\{-\eta\}$	$\beta = \alpha$

OHT algorithms obey the rule of $\mathbf{Hedge}(\beta)$ algorithm.

Theoretical Analysis Proposition

OHT

yany

Proble

Related Wo

Problem Definition

Method

Theoretical Analysis

Experiments

Proposition

Given loss $\ell^s_t \in [0,1]$, $\ell_t \in [0,1]$ and decay factor $\beta \in (0,1)$, for any sequence of loss vectors $\{(\ell^s_t,\ell_t)|t=1,2,\cdots T\}$, we have

$$\sum_{t=1}^{T} (\theta_t^s \ell_t^s + \theta_t \ell_t) \le \frac{1}{1-\beta} \min \left(\Delta^s, \Delta \right)$$

where
$$\Delta^s = \ln(\frac{1}{w_1^s}) + (\ln\frac{1}{eta})\sum_{t=1}^T \ell_t^s$$
 and

$$\Delta = \ln(\frac{1}{w_1}) + (\ln \frac{1}{\beta}) \sum_{t=1}^{T} \ell_t$$

Theoretical Analysis

OHT

yany

Proble

Related Wo

Problem

Methods

Theoretical Analysis

Experiments

Theorem

Let M be the number of mistakes made by OHT1 algorithm, then we have

$$M \le \frac{4}{1-\beta} \min(\Delta^s, \Delta)$$

where $\Delta^s = \ln(\frac{1}{w_1^s}) + (\ln \frac{1}{\beta}) \sum_{t=1}^T \ell_t^s$ and

$$\Delta = \ln(\frac{1}{w_1}) + (\ln \frac{1}{\beta}) \sum_{t=1}^{T} \ell_t.$$

Theorem

Let M be the number of mistakes made by OHT2 algorithm, then we have

$$M \le \frac{2}{1-\beta} \min(\Delta^s, \Delta)$$

Experiments Dataset

OHT

yany

Problem

Related Wor

Problem Definitio

Method

Theoretica

Experiments

NUS-WIDE dataset

- Target domain: Image
- Heterogeneous source: Text
- Co-occurrence data: co-occurred image-tag pairs

Experiments Baseline Methods

OHT

yany

riobieiii

Related Wo

Problem Definitio

Method:

Theoretica Analysis

Experiments

Passive-Aggressive algorithms
 Do not exploit knowledge from the source domain

- Kernel function
 Gaussian Kernel
- Number of nearest neighbors K = 100

Experiments Results

OHT

vanyo

Problen

Problem

Markend

Theoretica

Experiments

Experiments Results

OH.

vany

Drobler

Problem

Methods

Theoretica Analysis

Experiments

(a) Task 2

Experiments Significant Test

OHT

yany

Problem

Related Wo

Problem Definition

Method

Theoretical Analysis

Experiments

Paired *t*-test ($\alpha = 0.01$)

OHT1 vs. PA: 44/0/1

■ OHT2 vs. PA: 42/2/1

Cohen's d value (d > 0.8 : large promotion, 0.2 < d < 0.8 : middle promotion)

■ OHT1: 41/3

■ OHT2: 40/3

Experiments Parameters and Running Time

OHT

yany

Problem

Related Wo

Problem

Method

Theoretica

Experiments

Figure : (a) The average rate of mistakes under varying values of K. (b) The average running time of different algorithms when all instances in heterogeneous source are considered.

Conclusion and Future Works

OHT

yany

Problem

Related Wo

Problem Definition

Method

Theoretical Analysis

Experiments

■ We explore online heterogeneous transfer learning problem.

- We explore drilling netter generation serves the demains using
- We construct a connection across the domains using co-occurrence data, and apply the ensemble strategy to train a classifier.
- We offer the theoretical analysis of our algorithms.
- Experimental results show the effectiveness of our algorithms.

Future works:

- applications with other types of data
- multiple source domains

ОНТ

vanv

Problen

Related Wo

Problem

Method

Theoretica

Experiment

THANK YOU FOR YOUR ATTENTION!