

30-764

Redes de Computadores I

MSc. Fernando Schubert

AGENDA

Métricas

Como Ocorrem Perdas e Atrasos?

- Pacotes são enfileirados nos buffers de um elemento encaminhador (ex. roteador)
 - Taxa de chegada ao elemento encaminhador é maior do que a capacidade de encaminhamento
 - Enlace de saída tem largura de banda menor que a necessária
 - Congestionamento na rede do enlace de saída
 - Problemas no hardware do encaminhador
- Caso os pacotes sejam enfileirados:
 - Eles devem esperar a vez

Como Ocorrem Perdas e Atrasos?

- 1. Processamento do nó
 - Processamento de bits errados
 - Identificação do enlace de saída

- 2. Enfileiramento
 - Tempo de espera no enlace de saída até a transmissão
 - Depende do nível de congestionamento do roteador

- 3. Atraso de transmissão
 - R=largura de banda do enlace (bits/s)
 - L=comp. do pacote (bits)
 - tempo para enviar os bits no enlace = L/R

- 4. Atraso de propagação
 - d=comprimento do enlace
 - s=vel. de propagação no meio (~2x108 m/s)
 - atraso de propagação=d/s

Atraso por Nó

- dproc= atraso de processamento
 - Tipicamente de poucos microsegs ou menos
- dfila= atraso de enfileiramento
 - Depende do congestionamento
- dtrans= atraso de transmissão
 - L/R, significativo para canais de baixa velocidade
- dprop= atraso de propagação
 - Poucos microsegs a centenas de msegs

$$d_{n\acute{o}} = d_{proc} + d_{fila} + d_{trans} + d_{prop}$$

Atraso de Enfileiramento

- Considerando que:
 - R=larg.de banda do enlace (bits/s)
 - L=compr. do pacote (bits)
 - a=tx. média de chegada de pacotes
- Intensidade de tráfego = La/R
 - La/R ~ 0: Pequeno atraso de enfileiramento
 - La/R 1: Grande atraso
 - La/R > 1: Chega mais "trabalho" do que a capacidade de atendimento, atraso médio infinito!

Jitter

- Variação do atraso dos pacotes de um mesmo fluxo de dados
 - Prejudicial principalmente para aplicações multimídia, ex. streaming de video
 - Players: Removem jitter com armazenamento em buffer

Tempo de Ida e Volta

- Calcular atraso fim-a-fim é complexo
 - Requer sincronismo de relógios entre origem e destino
- Tempo de ida e volta (RTT Round Trip Time)
 - Tempo que um pacote leva para chegar no destino e voltar até a origem
 - Calculado somente pelo nó de origem
 - Problema de sincronismo é evitado.

Tempo de Ida e Volta (RTT)

Atraso fim-a-fim ≅ RTT/2– Ida e volta podem passar por caminhos diferentes

Jitter

- Variação do atraso dos pacotes de um mesmo fluxo de dados
 - Prejudicial principalmente para aplicações multimídia, ex. streaming de video
 - Players: Removem jitter com armazenamento em buffer

Jitter

- Variação do atraso dos pacotes de um mesmo fluxo de dados
 - Prejudicial principalmente para aplicações multimídia, ex. streaming de video
 - Players: Removem jitter com armazenamento em buffer

Traceroute/Tracert

- Fornece medições de RTT da fonte até cada um dos roteadores ao longo do caminho até o destino
 - Envia três pacotes que alcançarão o roteador no caminho até o destino
 - O roteador devolverá um pacote de erro até o transmissor
 - O transmissor calcula o intervalo de tempo decorrido entre a transmissão e a chegada da resposta

Perda de Pacotes

- Fila (buffer) anterior a um enlace possui capacidade finita
- Quando um pacote chega numa fila cheia, o pacote é descartado (perdido)
- O pacote perdido pode ser retransmitido pelo nó anterior, pelo sistema origem, ou não ser retransmitido

Perda de Pacotes

Vazão (Throughput)

- Taxa na qual os bits são transferidos entre o transmissor e o receptor
 - Dada em bits/unidade de tempo
 - Instantânea: taxa num certo instante de tempo
 - Média: taxa num intervalo de tempo

Vazão

Vazão

R_s < R_c: Qual é a vazão média fim-a-fim?

R_s > R_c: Qual é a vazão média fim-a-fim?

Vazão

R_s < R_c: Qual é a vazão média fim-a-fim?

ATIVIDADE

Wireshark Lab do livro do Kurose - WIFI

https://github.com/TimorYang/Computer-Networking-Keith-Ross/blob/main/book/Computer%20Networking_%20A%20Top-Down%20Approach%2C%20Global%20Edition%2C%208th%20Edition.pdf

https://gaia.cs.umass.edu/kurose_ross/wireshark.php