# PC-basierende Systeme

# HIMA OPC-Server 3.0 Rev. 2





#### Achtung:

Wartungsarbeiten an Versorgungs-, Signal- und Datenleitungen dürfen nur von qualifiziertem Personal unter Berücksichtigung aller ESD-Schutzmaßnahmen durchgeführt werden. Bei der direkten Berührung dieser Leitungen muß das Wartungspersonal elektrostatisch entladen sein!

#### **Wichtiger Hinweis**

Alle in diesem Handbuch genannten HIMA-Produkte sind mit dem HIMA-Warenzeichen geschützt. Dies gilt gegebenenfalls, soweit nicht anders vermerkt, auch für andere genannte Hersteller und deren Produkte.

Technische Änderungen vorbehalten.

Alle technischen Angaben und Hinweise in diesem Handbuch wurden mit größter Sorgfalt erarbeitet und unter Einschaltung wirksamer Kontrollmaßnahmen zusammengestellt. Trotzdem sind Fehler nicht ganz auszuschließen. HIMA sieht sich deshalb veranlaßt, darauf hinzuweisen, daß weder eine Garantie noch die juristische Verantwortung oder irgend eine Haftung übernommen werden kann für die Folgen, die auf fehlerhafte Angaben zurückgehen. Für die Mitteilung eventueller Fehler ist HIMA jederzeit dankbar.

#### Lieferbedingungen

Maßgebend für unsere Lieferungen und Leistungen sind die "Allgemeinen Lieferbedingungen für Erzeugnisse und Leistungen der Elektroindustrie".

Etwaige Beanstandungen können nur anerkannt werden, wenn sie uns innerhalb von 14 Tagen nach Eintreffen der Ware gemeldet werden.

Unsere in besonderer Liste genannten Preise gelten ab Werk, ausschließlich Verpackung. Preisänderungen bleiben vorbehalten.

| 1 | Übersicht/Aufbau 1                  |                                        |  |
|---|-------------------------------------|----------------------------------------|--|
| 2 | System                              | anforderungen2                         |  |
| 3 | Installation des HIMA OPC-Servers 2 |                                        |  |
| 4 | Registr                             | ierung unter Windows 7                 |  |
|   | 4.1 HK                              | EY_CLASSES_ROOT7                       |  |
|   |                                     | EY_LOCAL_MACHINE\SOFTWARE\HIMA OPC-Sei |  |
|   | 4.2.1                               | Schlüssel ENNT7                        |  |
|   | 4.2.2                               | Schlüssel FILES8                       |  |
|   | 4.2.3                               | Schlüssel OPC9                         |  |
|   | 4.2.4                               | Schlüssel USER9                        |  |
|   | 4.2.5                               | Schlüssel Window9                      |  |
|   | 4.2.6                               | Schlüssel Help9                        |  |
|   | 4.2.7                               | Schlüssel AutoConfig10                 |  |
| 5 | Deinsta                             | Illieren 10                            |  |
| 6 | HIMA O                              | PC-Server und HIMA PES 12              |  |

|    | 6.1 | Hai        | dwareaufbau 12                                    |
|----|-----|------------|---------------------------------------------------|
|    |     | 6.1.1      | Einkanaliger Betrieb13                            |
|    |     | 6.1.2      | Redundante Betrieb14                              |
|    | 6.2 | Koı        | nfiguration im PES14                              |
|    |     | 6.2.1      | Bestimmung IP-adresse15                           |
|    |     | 6.2.2      | Variablendefinition15                             |
|    |     | 6.2.3      | Variablenliste für den HIMA OPC server17          |
| 7  | HIN | MA O       | PC Server und HIMA PLANAR 4 - 19                  |
|    | 7.1 | Haı        | dwareaufbau19                                     |
|    | 7.2 | Koı        | nfiguration in PLANAR 4 19                        |
|    |     | 7.2.1      | Bestimmung der IP-Adresse auf der 80102, 80107 19 |
| 8  | HIN | Matri      | x, ALLXml Parametrierung 21                       |
|    | 8.1 | Koı        | nfiguration in ELOP II Factory 21                 |
| 9  | Ne  | <b>w</b> - | 29                                                |
| 10 | Op  | en -       | 30                                                |

| 11 | Save  | ÷ 30                                |
|----|-------|-------------------------------------|
| 12 | Save  | e as 30                             |
| 13 | Print | t 31                                |
| 14 | DCO   | M-Config 32                         |
| 15 | Opti  | ons 35                              |
|    | 15.1  | Config file 35                      |
|    | 15.2  | HIPRO 36                            |
|    | 15.3  | Log 37                              |
|    | 15.4  | Gui 38                              |
| 16 | Exit  | 38                                  |
| 17 | Inse  | rt 40                               |
|    | 17.1  | Hinzfügen eines OPC Server 40       |
|    | 17.2  | Hinzufügen einer Buscom Resource 41 |
|    | 17.3  | Add PLANAR4 Rack 42                 |

| 17.4 Hinzu | fügen von PLANAR4 Baugruppen 43        |
|------------|----------------------------------------|
| 17.4.1 V   | ariblendefinition44                    |
| 17.4.1.1   | 4fach Eingabebaugruppe 12100 44        |
| 17.4.1.2   | 2fach Eingabebaugruppe 13110, (Ex)i 45 |
| 17.4.1.3   | 4fach Ausgabebaugruppe 2210045         |
| 17.4.1.4   | Ausgabebaugruppe 22120 46              |
| 17.4.1.5   | Ausgabebaugruppe 22121 46              |
| 17.4.1.6   | 2fach Relaisverstärker 32100 47        |
| 17.4.1.7   | 2fach Relaisverstärker 32101 48        |
| 17.4.1.8   | 2fach Relaisverstärker 3210249         |
| 17.4.1.9   | 2fach Relaisverstärker 3210349         |
| 17.4.1.10  | 4fach Relaisverstärker 32110 50        |
| 17.4.1.11  | 4fach UND 42100 51                     |
| 17.4.1.12  | 8fach UND 42110 52                     |
| 17.4.1.13  | Elementkombination 42200 53            |
| 17.4.1.14  | 8fach ODER 42300 54                    |
| 17.4.1.15  | 4fach Sperrelement 42400 55            |
| 17.4.1.16  | 4fach Auswahlelement 42500 56          |
| 17.4.1.17  | Zeitverzögerungselement 52100 57       |

|    | 17.4.1.18 4fach Zeitverzögerungselement 52110 57             |
|----|--------------------------------------------------------------|
|    | 17.4.1.19 Grenzwertgeber 62100 58                            |
|    | 17.4.1.20 4fach Sicherungsbaugrupppe 90100 59                |
|    | 17.4.1.21 2fach Bypassbaugrupppe 90300 59                    |
|    | 17.5 Hinzufügen von Variableneigenschaften 60                |
|    | 17.5.1 OPC_Quality und deren Prioritätsreihenfolge62         |
|    | 17.5.2 Verhalten beim Schreiben von Werten 63                |
|    | 17.5.3 HIMA Item Properties HIPRO63                          |
|    | 17.5.4 HIMA Items Properties Planar 4 (62100) 63             |
|    | 17.5.5 Deadband64                                            |
|    | 17.5.6 Skalierung von Prozesswerten65                        |
|    | 17.5.7 Darstellung von Werten in Binär- bzw. Hex-Format - 65 |
| 18 | Update 65                                                    |
| 19 | Remove 66                                                    |
| 20 | Properties 66                                                |
|    | 20.1 OPC Server Property 66                                  |

|    | 20.2 | Buscom Resource Property 67 |
|----|------|-----------------------------|
|    | 20.3 | PLANAR4 Property 67         |
|    | 20.4 | Item Property 68            |
| 21 | Test | 69                          |
| 22 | Run  | 69                          |
| 23 | Susp | oend 70                     |
| 24 | Hide | · 71                        |
| 25 | Mini | mize 71                     |
| 26 | Norr | nal 71                      |
| 27 | Maxi | imize 71                    |
| 28 | Clea | r message window 71         |
| 29 | Onli | ne Help 73                  |
| 30 | Abo  | ut 73                       |

| 31 | Was   | ist OPC? 75                                  |
|----|-------|----------------------------------------------|
| 32 | Vort  | eile 75                                      |
| 33 | Verv  | wendete OPC Standards 76                     |
| 34 | PES   | Systeme, H41q/H51q 77                        |
|    | 34.1  | Vorbereitungen in ELOP II-NT 77              |
|    | 34.2  | Hardware-Einstellungen der F 8625, F 8627 79 |
| 35 | PLA   | NAR 4 80                                     |
| 36 | Kon   | figuration im HIMA OPC-Server 80             |
|    | 36.1  | OPC-Server 80                                |
|    | 36.2  | Einfügen einer PES Ressource 83              |
|    | 36.3  | Einfügen der PLANAR4 Ressource 83            |
| 37 | Allge | emeine Hinweise 85                           |

Übersicht/Aufbau HIMA OPC Server

# **HIMA OPC Server**

# 1 Übersicht/Aufbau

Der HIMA OPC-Server dient als Übertragungsschnittstelle zwischen HIMA PES H41q/H51q, HIMatrix, dem HIMA Planar4 System und Fremdsystemen, die über eine OPC-Schnittstelle verfügen.

Die Anbindung des HIMA OPC-Servers an die HIMA Systeme erfolgt über Ethernet. Der HIMA OPC-Server kann redundant an die HIMA PES H41q/H51q angekoppelt werden, da er zwei Ethernetkarten verwalten kann.

Weitere Informationen entnehmen sie bitte dem Kapitel Kopplung HIMA OPC-Server und HIMA PES oder Kopplung HIMA OPC-Server und HIMA PLANAR 4.



Schema OPC-Server mit Ressourcen und OPC-Clients

# 2 Systemanforderungen

Der HIMA OPC-Server benötigt ein Rechnersystem mit folgenden Mindestanforderungen

- Pentium II 350 Mhz
- 128 MB RAM
- 10 MB freie Festplattenkapazität
- Betriebssystem Windows NT4 mit Servicepack 4 oder höher, Windows 2000 oder Windows XP
- Netzwerkkarten: je nach Ausbau biszu 4, konfiguriert f
  ür TCP/IP
- Microsoft Internet Explorer ab Version 5.0 f
  ür Online Hilfe

Bei Einsatz von Windows 2000 wird empfohlen Media Sense zu deaktivieren. Media Sense kann über einen Eintrag in der Windows Registratur deaktiviert werden. Hierbei handelt es sich um den Schlüssel: HKEY\_LOCAL\_MACHINE\System\CurrentControlSet\Services\Tcpip\Parameters\DisableDHCPMediaSense [REG\_DWORD] 0 oder nicht vorhanden heißt Media Sense aktiv, 1 heißt Media Sense deaktiviert.

### 3 Installation des HIMA OPC-Servers

Um den HIMA OPC-Server auf ihrem Rechner zu installieren, benötigen sie die Administrator-Rechte.

Öffnen sie den Windows NT Explorer, wechseln sie in das Verzeichnis des HIMA OPC-Servers und starten sie das Installationsprogramm HOS\_GER.EXE.



Startbild der HIMA OPC-Server Installation

Bestätigen sie nun mit der Taste **Weiter** um die Installation fort zusetzen oder brechen sie mit der Taste **Abbrechen** die Installation ab.

Den Abbruch der Installation müssen sie jedoch nochmals bestätigen.



#### Installationsabbruch

Durch betätigen der Taste **Resume** gelangen sie zurück, mit **Exit Setup** brechen sie die Installation ab.

Wird die Installation weiter ausgeführt so werden die Lizenzbedingungen angezeigt.



Lizenzbedingungen

Bestätigen sie die Lizenzvereinbarung durch Betätigen der Taste **Ja**. Mit der Taste **Zurück** gelangen sie einen Schritt zurück. Mit **Nein** brechen sie die Installation ab (siehe oben)

Jetzt müssen sie ihre Seriennummer eingeben, die sie der mitgelieferten Lizenz entnehmen können.



#### Seriennummer

In dem Feld **Name** tragen sie bitte ihren Rechnernamen ein und in dem Feld **Firma** ihren Firmennamen. Diese Einträge werden soweit vorhanden aus ihrer Rechnerkonfiguration übernommen. Ein Eintrag ist somit normalerweise nicht erforderlich. In dem Feld **Seriennr.** müssen sie ihre Seriennummer eintragen. Diese finden sie auf der mitgelieferten Lizenz. Bestätigen sie ihre Seriennummer mit der Taste **Weiter**. Mit der Taste **Zurück** gelangen sie einen Schritt zurück. Mit **Abbrechen** brechen sie die Installation ab (siehe oben).

Legen sie jetzt ihren Installationspfad fest.



Zielordner

Mit **Weiter** übernehmen sie den Standardinstallationspfad, mit der Taste **Zurück** gelangen sie einen Schritt zurück. Mit **Abbrechen** brechen sie die Installation ab (siehe oben)

Bei Betätigen der Taste **Durchsuchen** erhalten sie die Möglichkeit den von ihnen gewünschten Installationspfad auszuwähen bzw. einzugeben.



Installationspfad

In dem Fenter **Pfad** können sie den gewünschten Installationspfad direkt eingeben. Im Fenster **Verzeichnisse** können sie ein bereits vorhandenes Verzeichnis auswählen.

Mit **OK** bestätigen sie das Installationsverzeichnis und kommen wieder einen Schritt zurück. Mit **Abbrechen** kommen sie wieder einen Schritt zurück, wobei die Eingabe unwirksam bleibt,

Neben dem Installationsverzeichnis, werden bei der Installation noch die Unterverzeichnisse **Bin, Config, Help** und **Log** angelegt

Das Verzeichnis **Bin** beinhaltet die folgenden Programmdateien:

- ennt.exe
- himaopcs.exe
- p4info.dll
- gt-mt302.dll

Das Verzeichnis **HELP** enthält die Hilfedateien, **LOG** ist vorbereitet zur Ablage der Informationsdatei des HIMA OPC-Servers.

Jetzt erfolgt die Auswahl des Programm-Ordners.

Tragen Sie im Fenster **Programmordner**, den von ihnen gewünschten Namen ein oder wählen sie aus dem Fenster **Vorhandene Ordner** eine bereits bestehenden aus.



Programmordner

Bestätigen sie den Namen mit **Weiter**, gehen sie einen Schritt zurück mit **Zurück** oder brechen sie die Installation mit **Abbrechen** ab.

Nun wird der HIMA OPC-Server installiert und sie bekommen die Möglichkeit den HIMA OPC-Server direkt zu starten, hierzu müssen sie **HIMA OPC-Server jetzt starten** anwählen.



Mit **Beenden** wird die Installation beendet und je nach Auswahl der HIMA OPC-Server gestartet oder zur Windows Oberfläche zurückgekehrt.

# 4 Registrierung unter Windows

#### **Nur zur Info**

Damit die OPC-Clients den HIMA OPC-Server kennen sind Eintragungen in der Windows Registratur notwendig. Die Eintragungen werden durch das Installationsprogramm ausgeführt

# 4.1 HKEY\_CLASSES\_ROOT

| Schlüssel                                     | Wert                                   |
|-----------------------------------------------|----------------------------------------|
| \HIMA.OPCServer.3                             | HIMA OPC-Server                        |
| \HIMA.OPCServer.3\CLSID                       | CLSID of HIMA OPC-Server (ID)          |
| \HIMA.OPCServer.3\CLSID\ID                    | HIMA OPC-Server                        |
| \HIMA.OPCSer-<br>ver.3\CLSID\ID\ProgID        | HIMA.OPCServer.3                       |
| \HIMA.OPCSer-<br>ver.3\CLSID\ID\LocalServer32 | Installationsverzeichnis \HIMAOPCS.EXE |
| \HIMA.OPCServer.3\OPC                         |                                        |
| \HIMA.OPCServer.3\OPC\Vendor                  | HIMA Paul Hildebrandt GmbH +<br>Co KG  |

Tabelle 1: HKEY\_CLASSES\_ROOT

# 4.2 HKEY\_LOCAL\_MACHINE\SOFTWARE\HIMA OPC-Server\3.x\

#### 4.2.1 Schlüssel ENNT

| Wertname       | Wert                                                                                                                       |
|----------------|----------------------------------------------------------------------------------------------------------------------------|
| Location       | Installationsverzeichnis \bin                                                                                              |
| Executablename | ENNT.EXE                                                                                                                   |
| Nodeld         | ID nummer HIMA OPC-Server,<br>Standardwert: 107                                                                            |
| Channels       | 0 = ungültig<br>1 = Kanal 1 wird benutzt<br>2 = Kanal 2 wird benutzt<br>3 = beide Kanäle werden benutzt<br>Standardwert: 3 |

Tabelle 2: ENNT

| Wertname          | Wert                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TokenDeliverDelay | Mindesttokenumlaufzeit<br>Standardwert: 10 ms                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DdTimeout         | Haltezeit der Daten, wenn keine<br>Aktualisierung mehr erfolgt, z.B.<br>aufgrund eines Verbindungsverlu-<br>stes. Quality wird direkt auf BAD<br>gesetzt. Wert 0 bedeutet, dass<br>der letzte gültige Wert gehalten<br>wird.<br>Standardwert: 2000 ms                                                                                                                                                                                                                        |
| ConfigTimeout     | Überwachungszeit bei Konfigurationsnachrichten Werden Konfigurationmeldungen an ENNT übergeben müssen diese innerhalb dieser Zeit durch ENNT quittiert werden. Erfolgt die Quittierung nicht wird der Vorgang abgebrochen und ENNT stellt die Kommunikation zu den angeschlossenen Systemen ein. Sollen Onlineänderungen durchgeführt werden ist zu prüfen, ob die eingestellte Zeit ausreichend ist. Bei Problemen kann diese Zeit verlängert werden. Standardwert: 5000 ms |

Tabelle 2: ENNT

Mit Hilfe des TokenDeliverDelay kann die Auslastung des PCs beeinflusst werden. Höhere Umlaufzeiten verringert die Auslastung des PCs.

# 4.2.2 Schlüssel FILES

| Wertname    | Wert                                                  |
|-------------|-------------------------------------------------------|
| Logfilesize | Grösse des Logfiles<br>Standardwert: 64               |
| Logfile     | Name des Logfiles<br>Standardwert:\log\hoslog.txt     |
| Backupfile  | Name des Backupfiles<br>Standardwert:\log\hoslog2.txt |
| CfgFile     | Konfigurationfile Standardwert:\config\hoscfg.txt     |

Tabelle 3: Files

#### 4.2.3 Schlüssel OPC

| Wertname          | Wert                                        |
|-------------------|---------------------------------------------|
| changeless_update | 0 = inaktiv<br>1 = aktiv<br>Standardwert: 0 |

Tabelle 4: OPC

Wird der Wert auf 1 gesetzt, so wird erzwungen, dass der HIMA OPC Server alle Werte einer Gruppe in der eingestellten Update Rate an den Client liefert.

#### 4.2.4 Schlüssel USER

| Wertname | Wert         |
|----------|--------------|
| Name     | Benutzername |
| Company  | Firmenname   |
| Serial   | Seriennummer |

Tabelle 5: User

#### 4.2.5 Schlüssel Window

| Wertname   | Wert                                                                              |
|------------|-----------------------------------------------------------------------------------|
| ShowWindow | 0 = Fenster wird nicht angezeigt<br>1 = Fenster wird angezeigt<br>Standardwert: 1 |
| Showlcon   | 0 = Icon ist nicht sichtbar<br>1 = Icon ist sichtbar<br>Standardwert: 1           |

Tabelle 6: Window

#### 4.2.6 Schlüssel Help

| Wertname  | Wert                                               |
|-----------|----------------------------------------------------|
| Directory | Verzeichnis der Hilfedateien<br>Standardwert:\help |

Tabelle 7: Help

HIMA OPC Server Deinstallieren

#### 4.2.7 Schlüssel AutoConfig

| Wertname               | Wert                                                                                                                                                                                                                                                                                                                                                  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LinkTimeout            | Allgemeiner Verbindungstimeout in ms. Nach 3-maligen überschreiten wird die Verbindung als fehlerhaft eingestuft und der ErrorLinkTimeout wird gültig. Treten viele Verbindungsverluste auf, aufgrund der Komplexität des Netzes kann dieser Wert erhöht werden.  Standardwert: 16 ms                                                                 |
| ErrorLinkTimeout       | Dieser Wert wird benutzt, wenn<br>eine Verbindung als fehlerhaft<br>gekennzeichnet ist. Sieh oben.<br>Standardwert: 3 ms                                                                                                                                                                                                                              |
| AloneIntertokenTimeout | Nur von Bedeutung wenn der OPC Server einziger Knoten in der Tokengruppe ist, z.B. Passive Mode. Dieser Wert kann zur Reduzierung der Rechnerlast genutzt werden. Höhere Werte reduzieren die Last, sorgen aber für eine geringere Geschwindigkeit des Datenverkehrs. Der Wert sollte 2 mal dem Alone-TokenaliveTimeout entsprechen Standwert: 100 ms |
| AloneTokenaliveTimeout | Nur von Bedeutung, wenn der OPC Server einziger Knoten in der Tokengruppe ist. Dieser Wert entspricht der Aktualisierungsrate des OPC Servers. Gemeinsam mit dem AloneIntertokenTimeout kann hiermit die Rechnerlast und die Geschwindigkeit des Datenverkehrs beeinflusst werden. Standardwert: 50 ms                                                |

Tabelle 8: AutoConfig

Diese Werte werden verwendet, wenn der OPC Server die Autokonfiguration verwendet. Dies ist der Fall bei PLANAR 4 und bei der Nutzung des ELOP II Ressource-Files für die H41q/H51q - Systeme.

# 5 Deinstallieren

Um den HIMA OPC-Server zu deinstallieren öffnen Sie aus der Systemsteuerung die Softwareeigenschaften (Hinzufügen/Entfernen)

Deinstallieren HIMA OPC Server



Systemsteuerung



Eigenschaften Software

Nach der Auswahl den HIMA OPC-Servers betätigen sie die Taste **Hinzufügen/Entfernen**.



Bestätigen

Um den HIMA OPC-Server zu deinstallieren bestätigen sie mit **Ja**, mit **Nein** wird die Deinstallation abgebrochen.

Die Unterverzeichnisse LOG und CONFIG werden bei der Deinstallation nicht gelöscht, da hier vom Anwender erstellte Dateien enthalten sind.

# 6 HIMA OPC-Server und HIMA PES

#### 6.1 Hardwareaufbau

Der HIMA OPC-Server wird über ein Netzwerk an das HIMA PES angeschlossen.

Für dieses Netzwerk benötigen sie in dem Rechner, auf dem der HIMA OPC-Server läuft und eine Netzwerkkarte, die für TCP/IP konfiguriert ist. Der HIMA OPC-Server kann die Adressen 192.168.0.215 bis 192.168.0.222 verwenden.

HIMA OPC-Server, die die IP-Adressen 192.168.0.215,...217,...219 und ...221 nutzen, kommunizieren über Kanal 1. Die HIMA OPC-Server, die die IP-Adressen 192.168.0.216, ...218, ...220 und ...222 nutzen, kommunizieren über Kanal 2.

Der HIMA OPC-Server und safe**ethernet** können parallel betrieben werden. Wird nur die Kommunikation über den HIMA OPC-Server betrieben und es ist auch keine sicherheitsgerichtete Kommunikation vorhanden, sind alle Ressourcen in den Passive Mode zu setzen.

#### Siehe auch Eigenschaften der Ressource.

Falls sicherheitsgerichtete Kommunikation existiert, aber nicht über diese Karte abgearbeitet werden soll, kann dies mit Hilfe des Kommunikationsbausteins HK-COM-3 parametriert werden.

Beim Einsatz der Kommunikationsbaugruppe F 8627 mit Betriebssystemen ab Version 3x können bis zu 14 OPC Server eingesetzt werden. Die gültigen IP-Adressen reichen bis 192.168.0.242. Bei Einsatz dieser Baugruppe wird empfohlen den Direct Mode und Passive Mode zu nutzen.

#### 6.1.1 Einkanaliger Betrieb



Einkanaliger Betrieb

Im einkanaligen Betrieb benötigt der HIMA OPC-Server eine Netzwerkkarte. Wenn OPC-Clients ebenfalls über Ethernet auf den OPC-Server zugreifen, ist eine zweite Netzwerkkarte erforderlich.

Bei Anschluss mehrerer HIMA PES, ist eine Kommunikation zwischen den HIMA PES über safe**ethernet** vorzusehen (Einsatz F 8625) bzw. der Passive Mode der F 8627 und des HIMA OPC-Servers zu nutzen. Der Passive Mode wird auf der F 8627 mit dem Schalter S1/8 gesetzt. S1/8 = OFF bedeutet, dass der Passive Mode eingeschaltet ist. Die sicherheitsgerichtete Kommunikation einer F 8627 kann mit dem Baustein HK-COM-3 abgeschaltet werden.

#### 6.1.2 Redundante Betrieb



Redundanter Betrieb

Im redundanten Betrieb benötigt der HIMA OPC-Server zwei Netzwerkkarten. Wenn OPC-Clients ebenfalls über Ethernet auf den OPC-Server zugreifen, ist eine dritte Netzwerkkarte erforderlich.

Im redundanten Betrieb müssen die Kommunikationskarten innerhalb der HIMA PES über das HSR-Kabel miteinander verbunden sein.

# 6.2 Konfiguration im PES

Die Konfiguration des Datenaustausches erfolgt mit ELOP-II-NT. Sie unterteilt sich in die Bestimmung der IP-Adresse und in die Definition der Varibalen, die über OPC ausgetauscht werden.

#### 6.2.1 Bestimmung IP-adresse

Die IP-Adresse bestimmt sich durch die 7. und 8. Stelle des Ressourcenamens (mögliche Zahlen: 01 bis 64), sowie durch die Stellung des ersten Schalters des 2. Schalterbrettes auf der F 8625/27.

Die IP-Adresse berechnet sich wie folgt:

letzten zwei Ziffern der Ressource x 2 + 1 für Baugruppe 1 (S 2/1 = ON), entspricht Kanal 1

letzten zwei Ziffern der Ressource x 2 + 2 für Baugruppe 2 (S 2/1 = OFF), entspricht Kanal 2

Die F 8625/27 kann somit in dem Adressbereich 192.168.0.3 bis 192.168.0.130 konfiguriert werden.

#### Note:

Der Ressourcename muss genau 8 Zeichen lang sein.

#### 6.2.2 Variablendefinition

Um die Variablen für den Datenaustausch mit dem HIMA OPC-Server zu definieren, öffnen sie die Programminstanz. Die Programminstanz finden sie in der Ressource. Das Symbol der Programminstanz ist durch ein I gekennzeichnet.



Programinstanze

In der Variablendefinition wählen sie die Seite BUSCOM an und bestimmen dort, was mit dieser Variable geschehen soll.



Buscom

#### **BUSCOM**

- Export: Variable wird vom HIMA OPC-Server gelesen
- Import: Variable wird vom HIMA OPC-Server beschrieben
- Import/Export: Variable wird vom HIMA OPC-Server geschrieben und gelesen

Es werden für alle BUSCOM-Variablen Adressen vergeben. Die Adressvergabe kann automatisch oder manuell erfolgen, wobei jede Adressvergabe auf der Basisadresse aufsetzt.

Die Einstellung der Basisadresse finden sie in den Eigenschaften der Ressource. Auf dem Blatt BUSCOM stelle sie die Basisadressen für Import, Export und Import/Export getrennt ein.

Bei der automatischen Adressvergabe erfolgt die Adressierung in alphabetischer Reihenfolge. Bei Änderungen ist immer nicht reloadbarer Code zu erzeugen, damit die Adressierung neu festgelegt wird.

Um die Relativadresse manuell vorzugeben, selektieren sie "Relative Adresse vorgeben" und tragen sie die gewünschte Relativadresse ein. Die Adresse ergibt sich dann aus Basisadresse + Relativadresse.

#### Hinweis:

Bei der manuellen Adressvergabe sollten sie aus Performance-Gründen darauf achten, dass keine Adresslücken entstehen.

Empfohlen ist die automatische Adressvergabe, wobei bei Änderungen immer nicht reloadbarer Code erzeugt werden muss.

#### 6.2.3 Variablenliste für den HIMA OPC server

Der HIMA OPC-Server benötigt die BUSCOM-Liste der Ressource. Um die BUSCOM-Liste zu erzeugen, wählen sie **Dokumentation** der Ressource und dann die **Res-doku (generiert)**.



Context Menü der Ressource

In der **Res-doku (generiert)** wählen sie die Seite BUSCOM an. Um nur die BUSCOM-Variablen in eine Liste zu exportieren rufen sie das Kontextmenü dieser Seite auf und wählen dort **In Datei Exportieren**.

#### Hinweis:

Verwenden sie keine Siemens 3964R Kommunikation, wenn sie OPC einsetzen.

Beim Exportieren ist darauf zu achten, dass keine Filter gesetzt sind.



RES Doku generiert

Legen sie nun fest wohin die Liste gespeichert werden soll.



Dateiauswahl

Die nun erzeugte Liste hat folgendes Aussehen und wird vom HIMA OPC-Server ohne weitere Änderung verwendet.



Buscomliste für den HIMA OPC-Server

Zur Übertragung können die Typen BOOL, UINT und REAL verwendet werden.

#### 7 HIMA OPC Server und HIMA PLANAR 4

#### 7.1 Hardwareaufbau

Der HIMA OPC-Server wird über ein Netzwerk an das HIMA PLANAR4 System angeschlossen.

Für dieses Netzwerk benötigen sie in dem Rechner, auf dem der HIMA OPC-Server läuft, eine Ethernet-Karte, die auf TCP/IP konfiguriert ist. Der HIMA OPC-Server kann die Adressen 192.168.0.215 bis 192.168.0.222 benutzen.

Server IDs größer 110 sind nicht zulässig

Die Schnittstelle der Ethernet-Karte des OPC-Servers wird über ein Twisted-Pair Kabel (RJ-45 Stecker) mit einem HUB verbunden, dieser wiederum mit den 10BaseT Schnittstellen der 80102 bzw. 80107 (RJ-45 Stecker) in den einzelnen PLANAR4 Baugruppenträgern.

# 7.2 Konfiguration in PLANAR 4

In jedem PLANAR4 Baugruppenträger kommt die Baugruppe 80102 bzw. 80107 als Kopplungsbaugruppe zum Einsatz. Die Baugruppe sellt alle Informationen, der in dem Baugruppenträger eingesetzten Baugruppen zur Verfügung

Die IP-Adresse des PLANAR4 Baugruppenträger wird auf der Kommunikationsbaugruppe eingestellt.

#### 7.2.1 Bestimmung der IP-Adresse auf der 80102, 80107

Mit dem Schalterbrett 1 und dessen DIP-Schalter 2 bis 8 stellen sie die ID-Nummer der Kommunikationsbaugruppe ein, aus welcher die IP-Adresse ermittelt wird. Die Einstellung der ID-Nummer erfolgt binärcodiert von 1 bis 126, wobei Schalter 8 dem niederwertigsten Bit entspricht (2<sup>0</sup>).



Schalterstellungen auf der Baugruppe 80102, 80107

Die IP-Adresse berechnet sich wie folgt:

ID-Nummer x 2 + Kanalnummer

Die Kanalnummer wird mit dem Schalter S100/8 eingestellt. Siehe auch Baugruppenbeschreibung.

Es ergeben sich somit immer ungerade IP-Adressen. Mögliche IP-Adressen liegen im Breich: 192.168.0.3 bis 192.168.0.254

Dem HIMA OPC-Server ist die ID-Nummer bekannt zu machen.

Die Schalter finden sie auf der Baugruppe wie unten dargestellt:



Für die Ethernet-Kommunikation muss auch Schalter 6 von S100 auf OFF stehen.

# 8 HIMatrix, ALLXml Parametrierung

Der HIMA OPC-Server wird über ein Netzwerk an die HIMatrix Systeme angeschlossen. Hierbei wird das vorhandene Kommunikationsnetzwerk der HIMatrix-Systeme verwendet.

Die im Rechner benötigte Netzwerkkarte muss für TCP/IP konfiguriert sein.

Die Konfiguration des gesamten Netzwerks erfolgt in ELOP II - Factory. Hier wird auch die benötigte XML-Datei erzeugt. Diese Datei muss nur noch im HIMA OPC-Server eingelesen werden.

#### Achtung:

Eine Mischung von HIMA H41q/H51q, PLANAR4 und HIMatrix ist derzeit noch nicht möglich.

Bei Verwendung die ALLXml Parametrierung ist eine Parametrierung über die Oberfläche des HIMA OPC-Servers nicht mehr möglich.

### 8.1 Konfiguration in ELOP II Factory

Zunächst wird der OPC Server in der Konfiguration, in welcher er später laufen soll hinzugefügt. Hierfür selektieren Sie die Konfiguration und drükken die rechte Maustast, danach wählen Sie Neu und fügen den OPC Server hinzu.



Hinzufügen des OPC Servers

Nun müssen Sie das Netzwerk konfigurieren. Öffnen Sie die Eigenschaften der Netzwerkverbindungen (Netzwerkkarte) und geben Sie die IP-Adresse und die Subnet Maske, der für den OPC Server vorgesehenen Netzwerkkarte ein.



Konfiguration der Netzwerkkarte

Jetzt können die Steuerungen für die OPC Kommunikation konfiguriert werden. Öffnen Sie den Editor der Ressource und fügen Sie die Steuerungen über Drag&Drop dem OPC Server hinzu.



**PES Konfiguration** 

Nun müssen Sie die Signale für die OPC Kommunikation bestimmen. Hierfür gibt es zwei Möglichkeiten, das Fenster für die Signalverbindungen zu öffnen. Entweder Sie selektieren die Ressource im Ressourceneditor und betätigen die Schaltfläche OPC-Signale verbinden,



Ressourceneditor

oder Sie öffnen die OPC-Signalzuordnung über die Protokolle.



Protokolle, Signale verbinden

Die Signale werden via Drag & Drop aus der Signalliste hinzugefügt.



Zufügen von OPC Signalen

Jetzt muss das Kommunikationsnetzwerk konfiguriert werden. Hierfür legen Sie eine Tokengruppe für die Steuerung und eine andere Tokengruppe für die OPC-Kommunikation an.



Tokengruppe

Öffnen Sie den Knoteneditor und fügen Sie der Tokengruppe, die für den OPC-Server gedacht ist, den OPC-Server zu (Drag & Drop).



Knoteneditor





Eigenschaften der Tokengruppe

Nun muss noch der Code für den OPC-Server generiert werden.



#### Codegenerator starten

Das Ergebnis den Codegenerators ist ein XML-File, welches die komplette Konfiguration des HIMA OPC-Servers beinhaltet. Das File befindet sich im Projektverzeichnis von ELOP II Factory.

06.04.2003 16:19:15.941, Info: [ OPC-Server ] OPC-Server Konfiguration liegt unter: C:\ELOP-Projekte\HIMatrix\_H51q\OPC\_Link.L2P\OPC.L2C\OPC-Server\opc.xml 06.04.2003 16:19:15.971, Info: [ OPC-Server ] Codegenerierung beendet, Warnungen: 0, Fehler: 0.

XML-File

Das File ist mit dem HIMA OPC-Server zu öffnen.

# Einsatz des HIMA OPC-Servers



Programmoberfläche

Der HIMA OPC-Server verfügt über folgende Menüpunkte:

- File
- Edit
- Mode
- Window
- Help

Bei Verwendung der ALLXml-Parametrierung sind die Menüpunkte zur Paremetrierung des HIMA OPC-Servers nicht nutzbar. Auch ein Abspeichern ist nicht möglich. Die Quick-Access-Leiste verfügt über folgende Funktionen:



- New/Neu
- Open/Öffnen
- Save/Sichern
- Print configuration/Drucken der Konfiguration
- Options/Optionen
- Insert/Einfügen
- Update/Aktualisieren
- Remove/Entfernen
- Property/Eigenschaften
- Test mode/Test
- Connect/Verbinden
- Disconnect/Trennen
- Hide/Verstecken
- Product info/Produktinfo

Das Fenster des HIMA OPC-Servers ist in Bereiche unterteilt. Ein Breich zeigt den Konfigurationsbaum, der zweite den Inhalt der angewählten Ressource und der dritte Bereich zeigt Informationen und Fehlermeldungen des HIMA OPC-Servers.

New Menü File

# Menü File

Das Menü File beinhaltet die Funktionen New, Open, Save, Save as, Print, DCOM-Config, Options und Exit.



Menü File

#### 9 New

Mit der Funktion **New** schliessen sie die aktuell geöffnete Konfiguration und legen eine Neue an. Dieser Vorgang muss bestätigt werden, wenn die alte Konfiguration nicht gespeichert wurde.



Konfiguration sichern

Um eine neue Konfiguration anzulegen und die alte nochmals zu sichern bestätigen sie mit der Taste **Yes**, um die alte Konfiguration ohne erneutes sichern zu schliessen, betätigen sie die Taste **No** und um den Vorgang abzubrechen die Taste **Cancel**.

Menü File Open

# 10 Open

Öffnet eine bestehende Konfiguration. Es öffnet sich ein Fenster um die gewünschte Konfiguration auszuwählen.



Auswahl der Konfigurationsdatei

Wählen sie das Verzeichnis und die Konfigurationsdatei aus. Mit Öffnen wird die Konfiguration geöffnet mit **Abbrechen** wird der Vorgang abgebrochen. Bei Öffnen erfolgt Abfrage wie oben.

# 11 Save

Speichert die aktuelle Konfiguration in die gewählte Konfigurationsdatei. Die Auswahl der Konfigurationsdatei erfolgt in den Optionen des HIMA OPC-Servers.

# 12 Save as

Nach Auswahl des Verzeichnisses wird die aktuelle Konfiguration in die Datei **root.txt** gespeichert. Ausserdem werden alle Konfigurationsdateien gespeichert. Ein Speichern direkt in die Root des Laufwerks ist nicht möglich. Es muss immer ein Unterverzeichnis gewählt werden.

Print Menü File



Auswahl des Verzeichnisses

## 13 Print

Druckt die aktuelle Konfiguration des HIMA OPC-Servers. Bevor der Ausdruck gestartet wird müssen sie noch anwählen, welche Informationen sie benötigen.



Print

Menü File DCOM-Config

Subscriber druckt die Konfigurationsdatei. Die Konfigurationsdatei enthält alle Resourcenamen und Server sowie deren Ablage.

Planar4 Modules druckt die Konfigurationsdatei des Planar4 Baugruppenträgers. Sie enthält alle Planar4 Baugruppen und deren Bezeichnung. Die Bezeichnung der Baugruppen muss eindeutig sein.

Variables druckt die Liste aller Variablen. Der Liste können sie den Variablennamen, den Datentyp, die Zugriffsrechte und die Beschreibung entnehmen.

OPC-Properties druckt die zu den Variablen gehörigen Eigenschaften.

Treffen sie ihre Auswahl und starten sie den Ausdruck mit OK.

# 14 DCOM-Config

Öffnet die Windows NT DCOM-Konfiguration.



DCOM Konfiguration

Falls es bei der Kommunikation zwischen HIMA OPC-Server und OPC-Client zu Schwierigkeiten kommt, können sie über die Eigenschaften des HIMA OPC-Server spezifische Einstellungen vornehmen.

DCOM-Config Menü File



Eigenschaften des HIMA OPC-Server

Der HIMA OPC-Server muss auf dem Rechner laufen, auf dem er installiert wurde..



Sicherheitseinstellungen

Menü File DCOM-Config

Falls der OPC-Client auf einem anderen Rechner läuft, stellen sie sicher, dass der Benutzer des OPC-Client das Recht hat auf den OPC-Server zuzugreifen.



Identität

Options Menü File

# 15 Options

Die Optionen können über Options oder über die Properties der Root geöffnet werden

Mit der Taste **Ok** übernehmen sie die Änderungen und schliessen den Dialog.

**Cancel** macht die Änderungen seit dem letzten Übernehmen rückgängig und schliesst den Dialog.

Apply übernimmt die Änderungen, lässt aber den Dialog geöffnet.

Die Online-Hilfe können sie mit der Taste HELP aufrufen.

Dies Funktionalität gilt überall im Dialog.

# 15.1 Config file



Root Eigenschaften

Auf der Seite **Config file** legen sie das Verzeichnis und den Namen der Konfigurationsdatei des HIMA OPC-Servers fest. Unter Benutzung der Taste **Search** können sie ein Verzeichnis auswählen.

Dies ist nur gültig für H41q/H51q und PLANAR4.

Menü File Options

#### **15.2 HIPRO**



**Blatt HIPRO** 

In Abhängigkeit von der verfügbaren IP-Adresse müssen sie die entsprechende Node ID bestimmen. Siehe Tabelle. Node IDs größer 110 dürfen nur beim Einsatz der F 8627 ab Betriebssystem Version 3x genutzt werden.

| Node ID | IP Adresse             |
|---------|------------------------|
| 107     | 192.168.0.215, Kanal 1 |
| 107     | 192.168.0.216, Kanal 2 |
| 108     | 192.168.0.217, Kanal 1 |
| 108     | 192.168.0.218, Kanal 2 |
| 109     | 192.168.0.219, Kanal 1 |
| 109     | 192.168.0.220, Kanal 2 |
|         |                        |
| 120     | 192.168.0.241, Kanal 1 |
| 120     | 192.168.0.242, Kanal 2 |

Tabelle 9: Node IDs des HIMA OPC servers

Ausserdem müssen sie den Kanal anwählen, mit dem der OPC-Server arbeiten soll.

#### Hinweis:

Bei Verwendung von HUBs in einem Segment dürfen nur Ethernetkarten betrieben werden, die dem gleichen Kanal zu geordnet sind.

Options Menü File

#### 15.3 Log



#### Blatt Log

Geben sie das Verzeichnis und den Namen der Logdatei im Fenster Log file ein, die zugehörige Backupdatei geben sie im Fenter Backup file ein. Im Fenster Size of files bestimmen sie die Grösse der Logdatei.

Der HIMA OPC-Server schreibt alle Informationen und Fehler in diese Logdatei. Wenn die maximale Grösse erreicht wird, kopiert der HIMA OPC-Server alles in die Backupdatei öffnet die Logdatei neu.

#### Informationen:

- HIMA OPC-Server started, Version 2.0.12
- Assigned IP address 192.xxx.xxx.xxx for HIPRO channel x
- HIMA OPC-Server stopped
- Available IP-Address on system 192.xxx.xxx.xxx

#### Fehler:

- Configuration aborted: Server node ID not found in OPC-Ressources
  - Server ID wurde nicht gefunden
- No IP-address for node ID found für Node-ID wurde keine IP-Adresse gefunden
- Ennt failed
   Kommunikationsprogramm ennt wurde angehalten
- Initialize of HIPRO-driver failed, switched into testmode
   There is no valid IP-address
   Initialisierung des HIPRO-Treibers fehlgeschlagen, OPC-Server läuft im Testbetrieb. Keine gültige IP-Adresse vorhanden

Menü File Exit

#### 15.4 Gui



Blatt Gui

Wählen sie **Show windows on startup**, wenn die Bedienoberfläche des HIMA OPC-Servers nach dem Start angezeigt werden soll. Wählen sie **Show icon in taskbar**, wenn das Programmicon des HIMA OPC-Servers in der Taskleiste angzeigt werden soll.

# 16 Exit

Mit Exit wird der HIMA OPC-Server geschlossen.

Exit Menü Edit

# Menü Edit

Hier finden sie folgende Funktionen:



- Insert
- Update
- Remove
- Properties

Die Funktionen werden in Abhängigkeit von der Anwahl im Projektbaum freigeschaltet.

#### 17 Insert

Wählen sie **Insert** um einen neuen OPC Server, eine neue Ressource oder einen neuen PLANAR4 Baugruppenträger hinzuzufügen. Hierfür muss die Projektroot angewählt sein.

Haben sie einen PLANAR4 Baugruppenträger angewählt können sie eine neue Baugruppe hinzufügen. Bei Anwahl einer Variablen kann eine zusätzliche Variableneigenschaft hinzugefügt werden.

#### 17.1 Hinzfügen eines OPC Server

Wählen sie die Projektroot an und führen sie die Funktion **Insert** aus. Die folgenden Anzeige erscheint:



Fenster insert

Markieren sie OPC Server und bestätigen sie mit **OK**. Der neue OPC Server wird hinzugefügt und das Fenster bleibt geöffnet. Wenn sie die Eingabe Abbrechen wollen, so betätigen sie die Taste **Cancel**. Das Fenster wird geschlossen ohne ein weiteres Objekt hinzuzufügen. Mit **Apply** wird das gewählte Objekt zugefügt, das Fenster bleibt aber für weitere Aktivitäten geöffnet. **Help** öffnet die Online-Hilfe.

Den Namen und die ID-Nummer können sie in den Eigenschaften des Objektes verändern.

Es müssen immer alle im Netzwerk verfügbaren HIMA OPC-Server eingefügt werden, sodaß alle HIMA OPC-Server in einem Netzwerk immer die gleiche Konfiguration haben.



Eigenschaften des OPC-Server

Hier müssen sie die ID-Nummer eintragen, die in den Optionen des HIMA OPC-Servers festgelegt ist

## 17.2 Hinzufügen einer Buscom Resource

Markieren sie die Projektroot und fügen über die Funktion **Insert** eine neue Ressource hinzu. Siehe oben.

Um die Definitionsdateien, Id-Nummer und den Ressourcenamen zu bestimmen öffnen sie die Eigenschaften.



Eigenschaften der buscom resource

Im Fenster **Name** tragen sie den gewünschten Namen für die Ressource ein.

Die ID-Nummer wird im Fenster **Node ID** angegeben. Diese ID-Nummer muss mit der 7. und 8. Stelle des Ressourcenamens, der in ELOP II-NT benutzt wird übereinstimmen.

Im Fenster **Description File** geben sie das Verzeichnis und den Namen für das Konfigurationsdatei an. Mit **Search** können sie eine Datei auswählen. Wird keine Datei angegeben, verwendet der HIMA OPC-Server den Namen aus dem Ressourcenamen.

Das Fenster **Property File** dient dem Eintrag der Eigenschaftsdatei. Falls kein Namen eingetragen wird, benutzt der HIMA OPC-Server den ressourcenamen und ergänzt diesen mit \_prop. Mit **Search** können sie eine Datei auswählen.

Im Fenster **Update File** tragen sie die von ELOP II-NT generierte Exportdatei ein. Diese Datei enthält alle definierten Buscomvariablen. Siehe auch Kapitel Konfiguration im PES.

Vorgang für alle im Netzwerk verfügbaren Systeme wiederholen.

**Passive Mode** muss gewählt werden, wenn nur eine Kommunikation zwischen der Steuerung und dem OPC Server stattfindet. Dies ist nur möglich beim Einsatz der Karte F 8627.

#### 17.3 Add PLANAR4 Rack

Markieren sie die Projektroot und fügen über die Funktion **Insert** eine neue PLANAR4 Rack hinzu. Siehe oben.

Um die Definitionsdateien, Id-Nummer und den Namen zu bestimmen öffnen sie die Eigenschaften.



Eigenschaften der PLANAR4 Ressource

Tragen sie im Fenster **Name** die Bezeichnung ein.

Wählen sie im Fenster **Node-ID** die ID-Nummer. Die ID-Nummer muss mit der auf der Baugruppe 80102 eingestellten übereinstimmen. Siehe auch.

Tragen sie im Fenster **description File** bitte Verzeichnis und Name der Konfigurationsdatei ein.

#### 17.4 Hinzufügen von PLANAR4 Baugruppen

Markieren sie die PLANAR4 Ressource und führen sie die Funktion **Insert** aus.



Baugruppe hinzufügen

Eine Baugruppe kann mit einem Doppelklick oder durch Anwahl und **OK** oder Anwahl und **Apply** hinzugefügt werden. Je nach Vorgehensweise bleibt das Fenster geöffnet (Doppelklick, Apply) oder wird geschlossen.



Eigenschaften der Baugruppen

Öffnen sie die Eigenschaften und nehmen sie dort die Einträge für Namen und Steckplatz vor (**Slot Number**)

Desweiteren können sie die Konfigurationdatei eingeben. Erfolgt kein Eintrag wird der Baugruppennamen benutzt.

Die Variablen werden automatisch hinzugefügt.

#### 17.4.1 Variblendefinition

Eine Definition der Variablen ist nicht notwendig. Die möglichen Variablen sind durch die eingesetzte Baugruppe definiert. Im folgenden finden Sie die zur Verfügung gestellten Informationen.

Hierbei werden folgende Abkürzungen und Begriffe verwandt: U: Spannungsüberwachung Betriebsspannung zu niedrig

FB: Baugruppenfehler FL: Leitungsfehler

**UL: Fehler Kontaktspannung** 

NoResponse: Baugruppe nicht vorhanden ComErr: Keine Kommunikation zur Baugruppe

Ready: Baugruppe vorhanden und Kommunikation OK

#### 17.4.1.1 4fach Eingabebaugruppe 12100

mit Leitungsdiagnose

| Name       | Тур            | Wert/Beschreibung |
|------------|----------------|-------------------|
| Signature  | WORD / VT_I4   | 11h, 17 dezimal   |
| NoResponse | BOOL / VT_BOOL | TRUE              |
| ComErr     | BOOL / VT_BOOL | TRUE              |
| Ready      | BOOL / VT_BOOL | TRUE              |
| FB         | BOOL / VT_BOOL | TRUE              |
| FL         | BOOL / VT_BOOL | TRUE              |
| z22        | BOOL / VT_BOOL | Y1, Ausgang z22   |
| d22        | BOOL / VT_BOOL | Y2, Ausgang d22   |
| z24        | BOOL / VT_BOOL | Y3, Ausgang z24   |
| d24        | BOOL / VT_BOOL | Y4, Ausgang d24   |

Tabelle 10: Daten 12100

## 17.4.1.2 2fach Eingabebaugruppe 13110, (Ex)i

mit Leitungsdiagnose

| Name       | Тур            | Wert/Beschreibung |
|------------|----------------|-------------------|
| Signature  | WORD / VT_I4   | 12h, 18 dezimal   |
| U          | BOOL / VT_BOOL | TRUE              |
| NoResponse | BOOL / VT_BOOL | TRUE              |
| ComErr     | BOOL / VT_BOOL | TRUE              |
| Ready      | BOOL / VT_BOOL | TRUE              |
| FB         | BOOL / VT_BOOL | TRUE              |
| FL         | BOOL / VT_BOOL | TRUE              |
| z22        | BOOL / VT_BOOL | Y1, Ausgang z22   |
| d22        | BOOL / VT_BOOL | Y2, Ausgang d22   |

Tabelle 11: Daten 13110

#### 17.4.1.3 4fach Ausgabebaugruppe 22100

Ausgänge 25 V = / 3 W

| Name       | Тур            | Wert/Beschreibung |
|------------|----------------|-------------------|
| Signature  | WORD / VT_I4   | 21h, 33 dezimal   |
| U          | BOOL / VT_BOOL | TRUE              |
| NoResponse | BOOL / VT_BOOL | TRUE              |
| ComErr     | BOOL / VT_BOOL | TRUE              |
| Ready      | BOOL / VT_BOOL | TRUE              |
| FB         | BOOL / VT_BOOL | TRUE              |
| UL         | BOOL / VT_BOOL | TRUE              |
| z2         | BOOL / VT_BOOL | Eingang z2        |
| d2         | BOOL / VT_BOOL | Eingang d2        |
| z4         | BOOL / VT_BOOL | Eingang z4        |
| d4         | BOOL / VT_BOOL | Eingang d4        |
| z6         | BOOL / VT_BOOL | Eingang z6        |
| d6         | BOOL / VT_BOOL | Eingang d6        |
| z8         | BOOL / VT_BOOL | Eingang z8        |

Tabelle 12: Daten 22100

| Name | Тур            | Wert/Beschreibung |
|------|----------------|-------------------|
| d8   | BOOL / VT_BOOL | Eingang d8        |
| d14  | BOOL / VT_BOOL | Y1, Ausgang d14   |
| d16  | BOOL / VT_BOOL | Y2, Ausgang d16   |
| d18  | BOOL / VT_BOOL | Y3, Ausgang d18   |
| d20  | BOOL / VT_BOOL | Y4, Ausgang d20   |

Tabelle 12: Daten 22100

## 17.4.1.4 Ausgabebaugruppe 22120

Ausgang 25 V = / 24 W

| Name       | Тур            | Wert/Beschreibung  |
|------------|----------------|--------------------|
| Signature  | WORD / VT_I4   | 22h, 34 dezimal    |
| U          | BOOL / VT_BOOL | TRUE               |
| NoResponse | BOOL / VT_BOOL | TRUE               |
| ComErr     | BOOL / VT_BOOL | TRUE               |
| Ready      | BOOL / VT_BOOL | TRUE               |
| FB         | BOOL / VT_BOOL | TRUE               |
| FL         | BOOL / VT_BOOL | TRUE               |
| UL         | BOOL / VT_BOOL | TRUE               |
| z2         | BOOL / VT_BOOL | Eingang z2         |
| d2         | BOOL / VT_BOOL | Eingang d2         |
| z4         | BOOL / VT_BOOL | Eingang z4         |
| d4         | BOOL / VT_BOOL | Eingang d4         |
| d10        | BOOL / VT_BOOL | Selbsthaltung, d10 |
| d18        | BOOL / VT_BOOL | Y0, Ausgang d18    |

Tabelle 13: Daten 22120

## 17.4.1.5 Ausgabebaugruppe 22121

Ausgang 60 V = / 24 W

| Name       | Тур            | Wert/Beschreibung |
|------------|----------------|-------------------|
| Signature  | WORD / VT_I4   | 23h, 35 dezimal   |
| U          | BOOL / VT_BOOL | TRUE              |
| NoResponse | BOOL / VT_BOOL | TRUE              |

Tabelle 14: Daten 22121

| Name   | Тур            | Wert/Beschreibung    |
|--------|----------------|----------------------|
| ComErr | BOOL / VT_BOOL | TRUE                 |
| Ready  | BOOL / VT_BOOL | TRUE                 |
| FB     | BOOL / VT_BOOL | TRUE                 |
| FL     | BOOL / VT_BOOL | TRUE                 |
| UL     | BOOL / VT_BOOL | TRUE                 |
| z2     | BOOL / VT_BOOL | Eingang z2           |
| d2     | BOOL / VT_BOOL | Eingang d2           |
| z4     | BOOL / VT_BOOL | Eingang z4           |
| d4     | BOOL / VT_BOOL | Eingang d4           |
| d10    | BOOL / VT_BOOL | Selbsthalteschaltung |
| d18    | BOOL / VT_BOOL | Y0, Ausgang d18      |

Tabelle 14: Daten 22121

## 17.4.1.6 2fach Relaisverstärker 32100

Schaltspannung 24 V =

| Name       | Тур            | Wert/Beschreibung |
|------------|----------------|-------------------|
| Signature  | WORD / VT_I4   | 31h, 49 dezimal   |
| U          | BOOL / VT_BOOL | TRUE              |
| NoResponse | BOOL / VT_BOOL | TRUE              |
| ComErr     | BOOL / VT_BOOL | TRUE              |
| Ready      | BOOL / VT_BOOL | TRUE              |
| FB         | BOOL / VT_BOOL | TRUE              |
| FL         | BOOL / VT_BOOL | TRUE              |
| UL         | BOOL / VT_BOOL | TRUE              |
| z16        | BOOL / VT_BOOL | Eingang z16       |
| d16        | BOOL / VT_BOOL | Eingang d16       |
| z18        | BOOL / VT_BOOL | Eingang z18       |
| d18        | BOOL / VT_BOOL | Eingang d18       |
| z20        | BOOL / VT_BOOL | Eingang z20       |
| d20        | BOOL / VT_BOOL | Eingang d20       |
| z22        | BOOL / VT_BOOL | Eingang z22       |
| d22        | BOOL / VT_BOOL | Eingang d22       |

Tabelle 15: Daten 32100

| Name | Тур            | Wert/Beschreibung            |
|------|----------------|------------------------------|
| z24  | BOOL / VT_BOOL | Selbsthalteschaltung, z24    |
| d4   | BOOL / VT_BOOL | Relaiskontakt, d4            |
| d24  | BOOL / VT_BOOL | Selbsthalteschaltung,<br>d24 |
| d10  | BOOL / VT_BOOL | Relaiskontakt, d10           |

Tabelle 15: Daten 32100

## 17.4.1.7 2fach Relaisverstärker 32101

Schaltspannung 48/60 V =, 60 V ~

| Name       | Тур            | Wert/Beschreibung           |
|------------|----------------|-----------------------------|
| Signature  | WORD / VT_I4   | 32h, 50 dezimal             |
| U          | BOOL / VT_BOOL | TRUE                        |
| NoResponse | BOOL / VT_BOOL | TRUE                        |
| ComErr     | BOOL / VT_BOOL | TRUE                        |
| Ready      | BOOL / VT_BOOL | TRUE                        |
| FB         | BOOL / VT_BOOL | TRUE                        |
| FL         | BOOL / VT_BOOL | TRUE                        |
| UL         | BOOL / VT_BOOL | TRUE                        |
| z16        | BOOL / VT_BOOL | Eingang z16                 |
| d16        | BOOL / VT_BOOL | Eingang d16                 |
| z18        | BOOL / VT_BOOL | Eingang z18                 |
| d18        | BOOL / VT_BOOL | Eingang d18                 |
| z20        | BOOL / VT_BOOL | Eingang z20                 |
| d20        | BOOL / VT_BOOL | Eingang d20                 |
| z22        | BOOL / VT_BOOL | Eingang z22                 |
| d22        | BOOL / VT_BOOL | Eingang d22                 |
| z24        | BOOL / VT_BOOL | Selbsthalteschaltung<br>z24 |
| d4         | BOOL / VT_BOOL | Relaiskontakt, d4           |
| d24        | BOOL / VT_BOOL | Selbsthalteschaltung<br>d24 |
| d10        | BOOL / VT_BOOL | Relaiskontakt, d10          |

Tabelle 16: Daten 32101

#### 17.4.1.8 2fach Relaisverstärker 32102

Schaltspannung 110 V =, 127 V ~

| Name       | Тур            | Wert/Beschreibung            |
|------------|----------------|------------------------------|
| Signature  | WORD / VT_I4   | 33h, 51 dezimal              |
| U          | BOOL / VT_BOOL | TRUE                         |
| NoResponse | BOOL / VT_BOOL | TRUE                         |
| ComErr     | BOOL / VT_BOOL | TRUE                         |
| Ready      | BOOL / VT_BOOL | TRUE                         |
| FB         | BOOL / VT_BOOL | TRUE                         |
| FL         | BOOL / VT_BOOL | TRUE                         |
| UL         | BOOL / VT_BOOL | TRUE                         |
| z16        | BOOL / VT_BOOL | Eingang z16                  |
| d16        | BOOL / VT_BOOL | Eingang d16                  |
| z18        | BOOL / VT_BOOL | Eingang z18                  |
| d18        | BOOL / VT_BOOL | Eingang d18                  |
| z20        | BOOL / VT_BOOL | Eingang z20                  |
| d20        | BOOL / VT_BOOL | Eingang d20                  |
| z22        | BOOL / VT_BOOL | Eingang z22                  |
| d22        | BOOL / VT_BOOL | Eingang d22                  |
| z24        | BOOL / VT_BOOL | Selbsthalteschaltung, z24    |
| d4         | BOOL / VT_BOOL | Relaiskontakt, d4            |
| d24        | BOOL / VT_BOOL | Selbsthalteschaltung,<br>d24 |
| d10        | BOOL / VT_BOOL | Relaiskontakt, d10           |

Tabelle 17: Daten 32102

#### 17.4.1.9 2fach Relaisverstärker 32103

Schaltspannung 220 V =, 230 V ~

| Name      | Тур            | Wert/Beschreibung |
|-----------|----------------|-------------------|
| Signature | WORD / VT_I4   | 31h, 49 dezimal   |
| U         | BOOL / VT_BOOL | TRUE              |

Tabelle 18: Daten 32103

| Name       | Тур            | Wert/Beschreibung           |
|------------|----------------|-----------------------------|
| NoResponse | BOOL / VT_BOOL | TRUE                        |
| ComErr     | BOOL / VT_BOOL | TRUE                        |
| Ready      | BOOL / VT_BOOL | TRUE                        |
| FB         | BOOL / VT_BOOL | TRUE                        |
| FL         | BOOL / VT_BOOL | TRUE                        |
| UL         | BOOL / VT_BOOL | TRUE                        |
| z16        | BOOL / VT_BOOL | Eingang z16                 |
| d16        | BOOL / VT_BOOL | Eingang d16                 |
| z18        | BOOL / VT_BOOL | Eingang z18                 |
| d18        | BOOL / VT_BOOL | Eingang d18                 |
| z20        | BOOL / VT_BOOL | Eingang z20                 |
| d20        | BOOL / VT_BOOL | Eingang d20                 |
| z22        | BOOL / VT_BOOL | Eingang z22                 |
| d22        | BOOL / VT_BOOL | Eingang d22                 |
| z24        | BOOL / VT_BOOL | Selbsthalteschaltung, z24   |
| d4         | BOOL / VT_BOOL | Relaiskontakt, d4           |
| d24        | BOOL / VT_BOOL | Selbsthalteschaltung<br>d24 |
| d10        | BOOL / VT_BOOL | Relaiskontakt, d10          |

Tabelle 18: Daten 32103

## 17.4.1.10 4fach Relaisverstärker 32110

| Name       | Тур            | Wert/Beschreibung |
|------------|----------------|-------------------|
| Signature  | WORD / VT_I4   | 35h, 53 dezimal   |
| U          | BOOL / VT_BOOL | TRUE              |
| NoResponse | BOOL / VT_BOOL | TRUE              |
| ComErr     | BOOL / VT_BOOL | TRUE              |
| Ready      | BOOL / VT_BOOL | TRUE              |
| FB         | BOOL / VT_BOOL | TRUE              |
| z22        | BOOL / VT_BOOL | Eingang z22       |
| d22        | BOOL / VT_BOOL | Eingang d22       |

Tabelle 19: Daten 32110

| Name | Тур            | Wert/Beschreibung |
|------|----------------|-------------------|
| z24  | BOOL / VT_BOOL | Eingang z24       |
| d24  | BOOL / VT_BOOL | Eingang d24       |
| K1   | BOOL / VT_BOOL | Kontakt Relais 1  |
| K2   | BOOL / VT_BOOL | Kontakt Relais 2  |
| К3   | BOOL / VT_BOOL | Kontakt Relais 3  |
| K4   | BOOL / VT_BOOL | Kontakt Relais 4  |

Tabelle 19: Daten 32110

#### 17.4.1.11 4fach UND 42100

| Name       | Тур            | Wert/Beschreibung |
|------------|----------------|-------------------|
| Signature  | WORD / VT_I4   | 41h, 65 dezimal   |
| U          | BOOL / VT_BOOL | TRUE              |
| NoResponse | BOOL / VT_BOOL | TRUE              |
| ComErr     | BOOL / VT_BOOL | TRUE              |
| Ready      | BOOL / VT_BOOL | TRUE              |
| FB         | BOOL / VT_BOOL | TRUE              |
| z2         | BOOL / VT_BOOL | Eingang z2        |
| d2         | BOOL / VT_BOOL | Eingang d2        |
| z4         | BOOL / VT_BOOL | Eingang z4        |
| d4         | BOOL / VT_BOOL | Eingang d4        |
| z6         | BOOL / VT_BOOL | Eingang z6        |
| d6         | BOOL / VT_BOOL | Eingang d6        |
| z8         | BOOL / VT_BOOL | Eingang z8        |
| d8         | BOOL / VT_BOOL | Eingang d8        |
| z10        | BOOL / VT_BOOL | Eingang z10       |
| d10        | BOOL / VT_BOOL | Eingang d10       |
| z12        | BOOL / VT_BOOL | Eingang z12       |
| d12        | BOOL / VT_BOOL | Eingang d12       |
| z14        | BOOL / VT_BOOL | Eingang z14       |
| d14        | BOOL / VT_BOOL | Eingang d14       |
| z16        | BOOL / VT_BOOL | Eingang z16       |

Tabelle 20: Daten 42100

| Name | Тур            | Wert/Beschreibung |
|------|----------------|-------------------|
| d16  | BOOL / VT_BOOL | Eingang d16       |
| z18  | BOOL / VT_BOOL | Eingang z18       |
| d18  | BOOL / VT_BOOL | Eingang d18       |
| z20  | BOOL / VT_BOOL | Eingang z20       |
| d20  | BOOL / VT_BOOL | Eingang d20       |
| z22  | BOOL / VT_BOOL | Y1, Ausgang z22   |
| d22  | BOOL / VT_BOOL | Y2, Ausgang d22   |
| z24  | BOOL / VT_BOOL | Y3, Ausgang z24   |
| d24  | BOOL / VT_BOOL | Y4, Ausgang d24   |

Tabelle 20: Daten 42100

## 17.4.1.12 8fach UND 42110

| Name       | Тур            | Wert/Beschreibung |
|------------|----------------|-------------------|
| Signature  | WORD / VT_I4   | 42h, 66 dezimal   |
| U          | BOOL / VT_BOOL | TRUE              |
| NoResponse | BOOL / VT_BOOL | TRUE              |
| ComErr     | BOOL / VT_BOOL | TRUE              |
| Ready      | BOOL / VT_BOOL | TRUE              |
| FB         | BOOL / VT_BOOL | TRUE              |
| z2         | BOOL / VT_BOOL | Eingang z2        |
| d2         | BOOL / VT_BOOL | Eingang d2        |
| z4         | BOOL / VT_BOOL | Eingang z4        |
| d4         | BOOL / VT_BOOL | Eingang d4        |
| z6         | BOOL / VT_BOOL | Eingang z6        |
| d6         | BOOL / VT_BOOL | Eingang d6        |
| z8         | BOOL / VT_BOOL | Eingang z8        |
| d8         | BOOL / VT_BOOL | Eingang d8        |
| z10        | BOOL / VT_BOOL | Eingang z10       |
| d10        | BOOL / VT_BOOL | Eingang d10       |
| z12        | BOOL / VT_BOOL | Eingang z12       |
| d12        | BOOL / VT_BOOL | Eingang d12       |

Tabelle 21: Daten 42110

| Name | Тур            | Wert/Beschreibung |
|------|----------------|-------------------|
| z14  | BOOL / VT_BOOL | Eingang z14       |
| d14  | BOOL / VT_BOOL | Eingang d14       |
| z16  | BOOL / VT_BOOL | Eingang z16       |
| d16  | BOOL / VT_BOOL | Eingang d16       |
| z18  | BOOL / VT_BOOL | Y1, Ausgang z18   |
| d18  | BOOL / VT_BOOL | Y2, Ausgang d18   |
| z20  | BOOL / VT_BOOL | Y3, Ausgang z20   |
| d20  | BOOL / VT_BOOL | Y4, Ausgang d20   |
| z22  | BOOL / VT_BOOL | Y5, Ausgang z22   |
| d22  | BOOL / VT_BOOL | Y6, Ausgang d22   |
| z24  | BOOL / VT_BOOL | Y7, Ausgang z24   |
| d24  | BOOL / VT_BOOL | Y8, Ausgang d24   |

Tabelle 21: Daten 42110

#### 17.4.1.13 Elementkombination 42200

| Name       | Тур            | Wert/Beschreibung |
|------------|----------------|-------------------|
| Signature  | WORD / VT_I4   | 46h, 70 dezimal   |
| U          | BOOL / VT_BOOL | TRUE              |
| NoResponse | BOOL / VT_BOOL | TRUE              |
| ComErr     | BOOL / VT_BOOL | TRUE              |
| Ready      | BOOL / VT_BOOL | TRUE              |
| FB         | BOOL / VT_BOOL | TRUE              |
| z2         | BOOL / VT_BOOL | Eingang z2        |
| d2         | BOOL / VT_BOOL | Eingang d2        |
| z4         | BOOL / VT_BOOL | Eingang z4        |
| d4         | BOOL / VT_BOOL | Eingang d4        |
| z6         | BOOL / VT_BOOL | Eingang z6        |
| d6         | BOOL / VT_BOOL | Eingang d6        |
| z8         | BOOL / VT_BOOL | Eingang z8        |
| d8         | BOOL / VT_BOOL | Eingang d8        |
| z10        | BOOL / VT_BOOL | Eingang z10       |

Tabelle 22: Daten 42200

| Name | Тур            | Wert/Beschreibung   |
|------|----------------|---------------------|
| d10  | BOOL / VT_BOOL | Eingang d10         |
| z12  | BOOL / VT_BOOL | Eingang z12         |
| d12  | BOOL / VT_BOOL | Eingang d12         |
| z14  | BOOL / VT_BOOL | Eingang z14         |
| d14  | BOOL / VT_BOOL | Eingang d14         |
| z16  | BOOL / VT_BOOL | Eingang z16         |
| d16  | BOOL / VT_BOOL | Eingang d16         |
| z18  | BOOL / VT_BOOL | Y1, Ausgang z18     |
| d18  | BOOL / VT_BOOL | Y2, Ausgang d18     |
| z20  | BOOL / VT_BOOL | Y3, Ausgang z20     |
| d20  | BOOL / VT_BOOL | Y4, Ausgang d20     |
| z22  | BOOL / VT_BOOL | Y5, Ausgang z22     |
| d22  | BOOL / VT_BOOL | Y6, Ausgang d22     |
| z24  | BOOL / VT_BOOL | not Y7, Ausgang z24 |
| d24  | BOOL / VT_BOOL | Y7, Ausgang d24     |

Tabelle 22: Daten 42200

## 17.4.1.14 8fach ODER 42300

| Name       | Тур            | Wert/Beschreibung |
|------------|----------------|-------------------|
| Signature  | WORD / VT_I4   | 43h, 67 dezimal   |
| U          | BOOL / VT_BOOL | TRUE              |
| NoResponse | BOOL / VT_BOOL | TRUE              |
| ComErr     | BOOL / VT_BOOL | TRUE              |
| Ready      | BOOL / VT_BOOL | TRUE              |
| FB         | BOOL / VT_BOOL | TRUE              |
| z2         | BOOL / VT_BOOL | Eingang z2        |
| d2         | BOOL / VT_BOOL | Eingang d2        |
| z4         | BOOL / VT_BOOL | Eingang z4        |
| d4         | BOOL / VT_BOOL | Eingang d4        |
| z6         | BOOL / VT_BOOL | Eingang z6        |
| d6         | BOOL / VT_BOOL | Eingang d6        |

Tabelle 23: Daten 42300

| Name | Тур            | Wert/Beschreibung |
|------|----------------|-------------------|
| z8   | BOOL / VT_BOOL | Eingang z8        |
| d8   | BOOL / VT_BOOL | Eingang d8        |
| z10  | BOOL / VT_BOOL | Eingang z10       |
| d10  | BOOL / VT_BOOL | Eingang d10       |
| z12  | BOOL / VT_BOOL | Eingang z12       |
| d12  | BOOL / VT_BOOL | Eingang d12       |
| z14  | BOOL / VT_BOOL | Eingang z14       |
| d14  | BOOL / VT_BOOL | Eingang d14       |
| z16  | BOOL / VT_BOOL | Eingang z16       |
| d16  | BOOL / VT_BOOL | Eingang d16       |
| z18  | BOOL / VT_BOOL | Ausgang z18       |
| d18  | BOOL / VT_BOOL | Ausgang d18       |
| z20  | BOOL / VT_BOOL | Ausgang z20       |
| d20  | BOOL / VT_BOOL | Ausgang d20       |
| z22  | BOOL / VT_BOOL | Ausgang z22       |
| d22  | BOOL / VT_BOOL | Ausgang d22       |
| z24  | BOOL / VT_BOOL | Ausgang z24       |
| d24  | BOOL / VT_BOOL | Ausgang d24       |

Tabelle 23: Daten 42300

# **17.4.1.15 4fach Sperrelement 42400** sicherheitsgerichtet, AK 1...7, SIL4

| Name       | Тур            | Wert/Beschreibung |
|------------|----------------|-------------------|
| Signature  | WORD / VT_I4   | 44h, 68 dezimal   |
| U          | BOOL / VT_BOOL | TRUE              |
| NoResponse | BOOL / VT_BOOL | TRUE              |
| ComErr     | BOOL / VT_BOOL | TRUE              |
| Ready      | BOOL / VT_BOOL | TRUE              |
| FB         | BOOL / VT_BOOL | TRUE              |
| d2         | BOOL / VT_BOOL | Eingang d2        |
| d4         | BOOL / VT_BOOL | Eingang d4        |
| d6         | BOOL / VT_BOOL | Eingang d6        |

Tabelle 24: Daten 42400

| Name | Тур            | Wert/Beschreibung   |
|------|----------------|---------------------|
| d8   | BOOL / VT_BOOL | Eingang d8          |
| d18  | BOOL / VT_BOOL | Y1, Ausgang d18     |
| z18  | BOOL / VT_BOOL | not Y1, Ausgang z18 |
| d20  | BOOL / VT_BOOL | Y2, Ausgang d20     |
| z20  | BOOL / VT_BOOL | not Y2, Ausgang z20 |
| d22  | BOOL / VT_BOOL | Y3, Ausgang d22     |
| z22  | BOOL / VT_BOOL | not Y3, Ausgang z22 |
| d24  | BOOL / VT_BOOL | Y4, Ausgang, d24    |
| z24  | BOOL / VT_BOOL | not Y4, Ausgang z24 |

Tabelle 24: Daten 42400

## 17.4.1.16 4fach Auswahlelement 42500

| Name       | Тур            | Wert/Beschreibung |
|------------|----------------|-------------------|
| Signature  | WORD / VT_I4   | 45h, 69 dezimal   |
| U          | BOOL / VT_BOOL | TRUE              |
| NoResponse | BOOL / VT_BOOL | TRUE              |
| ComErr     | BOOL / VT_BOOL | TRUE              |
| Ready      | BOOL / VT_BOOL | TRUE              |
| FB         | BOOL / VT_BOOL | TRUE              |
| z2         | BOOL / VT_BOOL | Eingang z2        |
| d2         | BOOL / VT_BOOL | Eingang d2        |
| z4         | BOOL / VT_BOOL | Eingang z4        |
| z6         | BOOL / VT_BOOL | Eingang z6        |
| d6         | BOOL / VT_BOOL | Eingang d6        |
| z8         | BOOL / VT_BOOL | Eingang z8        |
| z10        | BOOL / VT_BOOL | Eingang z10       |
| d10        | BOOL / VT_BOOL | Eingang d10       |
| z12        | BOOL / VT_BOOL | Eingang z12       |
| z14        | BOOL / VT_BOOL | Eingang z14       |
| d14        | BOOL / VT_BOOL | Eingang d14       |
| z16        | BOOL / VT_BOOL | Eingang z16       |

Tabelle 25: Daten 42500

| Name | Тур            | Wert/Beschreibung       |
|------|----------------|-------------------------|
| z22  | BOOL / VT_BOOL | Y1, Ausgang z22         |
| z18  | BOOL / VT_BOOL | Diskrepanz, z18         |
| d22  | BOOL / VT_BOOL | Y2, Ausgang d22         |
| d18  | BOOL / VT_BOOL | Diskrepanz, Ausgang d18 |
| z24  | BOOL / VT_BOOL | Y3, Ausgang z24         |
| z20  | BOOL / VT_BOOL | Diskrepanz, Ausgang z20 |
| d24  | BOOL / VT_BOOL | Y4, Ausgang d24         |
| d20  | BOOL / VT_BOOL | Diskrepanz, Ausgang d20 |

Tabelle 25: Daten 42500

## 17.4.1.17 Zeitverzögerungselement 52100

sicherheitsgerichtet AK 1...6, SIL3

| Name       | Тур            | Wert/Beschreibung  |
|------------|----------------|--------------------|
| Signature  | WORD / VT_I4   | E1h, 225 dezimal   |
| U          | BOOL / VT_BOOL | TRUE               |
| NoResponse | BOOL / VT_BOOL | TRUE               |
| ComErr     | BOOL / VT_BOOL | TRUE               |
| Ready      | BOOL / VT_BOOL | TRUE               |
| FB         | BOOL / VT_BOOL | TRUE               |
| FL         | BOOL / VT_BOOL | TRUE               |
| d2         | BOOL / VT_BOOL | Eingang d2         |
| d4         | BOOL / VT_BOOL | Eingang d4         |
| Duration   | WORD / VT_I4   | Zeit               |
| d24        | BOOL / VT_BOOL | Y, Ausgang d24     |
| d22        | BOOL / VT_BOOL | not Y, Ausgang d22 |

Tabelle 26: Daten 52100

## 17.4.1.18 4fach Zeitverzögerungselement 52110

| Name      | Тур            | Wert/Beschreibung |
|-----------|----------------|-------------------|
| Signature | WORD / VT_I4   | 51h, 81 dezimal   |
| U         | BOOL / VT_BOOL | TRUE              |

Tabelle 27: Daten 52110

| Name       | Тур            | Wert/Beschreibung |
|------------|----------------|-------------------|
| NoResponse | BOOL / VT_BOOL | TRUE              |
| ComErr     | BOOL / VT_BOOL | TRUE              |
| Ready      | BOOL / VT_BOOL | TRUE              |
| FB         | BOOL / VT_BOOL | TRUE              |
| d2         | BOOL / VT_BOOL | Eingang d2        |
| d4         | BOOL / VT_BOOL | Eingang d4        |
| d6         | BOOL / VT_BOOL | Eingang d6        |
| d8         | BOOL / VT_BOOL | Eingang d8        |
| d18        | BOOL / VT_BOOL | Y1, Ausgang d18   |
| d20        | BOOL / VT_BOOL | Y2, Ausgang d20   |
| d22        | BOOL / VT_BOOL | Y3, Ausgang d22   |
| d24        | BOOL / VT_BOOL | Y4, Ausgang d24   |

Tabelle 27: Daten 52110

# 17.4.1.19 Grenzwertgeber 62100

| Name          | Тур            | Wert/Beschreibung     |
|---------------|----------------|-----------------------|
| Signature     | WORD / VT_I4   | F1h, 241 dezimal      |
| U             | BOOL / VT_BOOL | TRUE                  |
| NoResponse    | BOOL / VT_BOOL | TRUE                  |
| ComErr        | BOOL / VT_BOOL | TRUE                  |
| Ready         | BOOL / VT_BOOL | TRUE                  |
| FB            | BOOL / VT_BOOL | TRUE                  |
| FL            | BOOL / VT_BOOL | TRUE                  |
| CurrentValue1 | WORD / VT_I4   | Wert 1                |
| CurrentValue2 | WORD / VT_I4   | Wert 2                |
| d18           | BOOL / VT_BOOL | Grenzwertausgang 1.1, |
| d20           | BOOL / VT_BOOL | Grenzwertausgang 1.2  |
| d22           | BOOL / VT_BOOL | Grenzwertausgang 2.1  |
| d34           | BOOL / VT_BOOL | Grenzwertausgang 2.2  |
| z16           | BOOL / VT_BOOL | Alarmausgang, z16     |
| LimitValue1_1 | WORD / VT_I4   | unterer Grenzwert 1   |

Tabelle 28: Daten 62100

| Name          | Тур          | Wert/Beschreibung   |
|---------------|--------------|---------------------|
| LimitValue1_2 | WORD / VT_I4 | oberer Grenzwert 1  |
| LimitValue2_1 | WORD / VT_I4 | unterer Grenzwert 2 |
| LimitValue2_2 | WORD / VT_I4 | oberer Grenzwert 2  |

Tabelle 28: Daten 62100

#### 17.4.1.20 4fach Sicherungsbaugrupppe 90100

Sicherungsüberwachung und LED-Anzeige

| Name       | Тур            | Wert/Beschreibung |
|------------|----------------|-------------------|
| Signature  | WORD / VT_I4   | 91h, 145 dezimal  |
| U          | BOOL / VT_BOOL | TRUE              |
| NoResponse | BOOL / VT_BOOL | TRUE              |
| ComErr     | BOOL / VT_BOOL | TRUE              |
| Ready      | BOOL / VT_BOOL | TRUE              |
| FB         | BOOL / VT_BOOL | TRUE              |
| FL         | BOOL / VT_BOOL | TRUE              |
| F1-L       | BOOL / VT_BOOL | TRUE F1 OK        |
| F2-L       | BOOL / VT_BOOL | TRUE F2 OK        |
| F3-L       | BOOL / VT_BOOL | TRUE F3 OK        |
| F4-L       | BOOL / VT_BOOL | TRUE F4 OK        |
| d4         | BOOL / VT_BOOL | Kontaktausgang F1 |
| d8         | BOOL / VT_BOOL | Kontaktausgang F2 |
| d12        | BOOL / VT_BOOL | Kontaktausgang F3 |
| d16        | BOOL / VT_BOOL | Kontaktausgang F4 |

Tabelle 29: Daten 90100

## 17.4.1.21 2fach Bypassbaugrupppe 90300

LED-Anzeige

| Name       | Тур            | Wert/Beschreibung |
|------------|----------------|-------------------|
| Signature  | WORD / VT_I4   | 92h, 146 dezimal  |
| U          | BOOL / VT_BOOL | TRUE              |
| NoResponse | BOOL / VT_BOOL | TRUE              |
| ComErr     | BOOL / VT_BOOL | TRUE              |

Tabelle 30: Daten 90300

| Name  | Тур            | Wert/Beschreibung   |
|-------|----------------|---------------------|
| Ready | BOOL / VT_BOOL | TRUE                |
| FB    | BOOL / VT_BOOL | TRUE                |
| z2    | BOOL / VT_BOOL | Signal 1            |
| z4    | BOOL / VT_BOOL | Signal 2            |
| S11   | BOOL / VT_BOOL | Schalter 1          |
| S21   | BOOL / VT_BOOL | Schalter 2          |
| d2    | BOOL / VT_BOOL | Ausgang Signal 1    |
| z6    | BOOL / VT_BOOL | Schalterstellung 1  |
| z8    | BOOL / VT_BOOL | Signal 1 gebrückt   |
| z10   | BOOL / VT_BOOL | Sammelsignal Brücke |
| d4    | BOOL / VT_BOOL | Ausgang Signal 2    |
| d6    | BOOL / VT_BOOL | Schalterstellung 2  |
| d8    | BOOL / VT_BOOL | Signal 2 gebrückt   |
| d10   | BOOL / VT_BOOL | Sammelsignal Brücke |

Tabelle 30: Daten 90300

## 17.5 Hinzufügen von Variableneigenschaften

Markieren sie ein Item und führen sie die Funktion Insert aus.



Hinzufügen von Itemeigenschaften

Eine Eigenschaft kann mit einem Doppelklick oder durch Anwahl und OK

oder Anwahl und **Apply** hinzugefügt werden. Je nach Vorgehensweise bleibt das Fenster geöffnet (Doppelklick, Apply) oder wird geschlossen. Im folgenden eine Tabelle mit allen verfügbaren Item-Eigenschaften:

| PID  | Name                         | Datentyp | Beschreibung               | Art       |
|------|------------------------------|----------|----------------------------|-----------|
| 1    | CDT                          | VT_I2    | Datentyp                   | Dynamisch |
| 2    | VALUE                        |          | Item Wert                  | Dynamisch |
| 3    | QUALITY                      | VT_I2    | Item Qualität              | Dynamisch |
| 4    | TIME                         | VT_DATE  | Item Zeitstempel           | Dynamisch |
| 5    | RIGHTS                       | VT_I4    | Item Zugriffsrechte        | Dynamisch |
| 6    | SCANRATE                     | VT_R4    | Abtastrate                 | Dynamisch |
| 100  | UNIT                         | VT_BSTR  | Engineering Units          | Statisch  |
| 101  | DESC                         | VT_BSTR  | Beschreibung               | Statisch  |
| 102  | HIEU                         | VT_R8    | High EU                    | Statisch  |
| 103  | LOEU                         | VT_R8    | Low EU                     | Statisch  |
| 104  | HIRANGE                      | VT_R8    |                            | Statisch  |
| 105  | LORANGE                      | VT_R8    |                            | Statisch  |
| 106  | CLOSE                        | VT_BSTR  | Kontaktbezeich-<br>nung    | Statisch  |
| 107  | OPEN                         | VT_BSTR  | Kontaktbezeich-<br>nung    | Statisch  |
| 108  | TIMEZONE                     | VT_I4    | Zeitzone                   | Dynamisch |
| 201  | FGC                          | VT_I4    | Vordergrundfarbe           | Statisch  |
| 202  | BGC                          | VT_I4    | Hintergrundfarbe           | Statisch  |
| 203  | BLINK                        | VT_BOOL  |                            | Statisch  |
| 204  | ВМР                          | VT_BSTR  | Bitmap-Datei               | Statisch  |
| 205  | SND                          | VT_BSTR  | Sound-Datei                | Statisch  |
| 206  | HTML                         | VT_BSTR  | HTML-Datei                 | Statisch  |
| 207  | AVI                          | VT_BSTR  | AVI-Datei                  | Statisch  |
| 5100 | HIMA_CHANNEL_IN_<br>USE      | VT_BOOL  | Kanal in Betrieb           | Dynamisch |
| 5101 | HIMA_MODE                    | VT_BSTR  | Mode                       | Dynamisch |
| 5102 | HIMA_MODE_TEXT               | VT_BSTR  | Text für Mode              | Dynamisch |
| 5103 | HIMA_LIMIT_VALUE             | VT_I4    | Grenzwert in Pro-<br>mille | Dynamisch |
| 5104 | HIMA_LIMIT_VALUE_<br>PERCENT | VT_R4    | Grenzwert in %             | Dynamisch |

Tabelle 31: Item-Eigenschaften

| PID  | Name                           | Datentyp | Beschreibung                    | Art       |
|------|--------------------------------|----------|---------------------------------|-----------|
| 5105 | HIMA_VALUE_PERCE<br>NT         | VT_R4    | aktueller Wert in<br>Prozent    | Dynamisch |
| 5201 | HIMA_CONNECTION_<br>STATE      | VT_R4    | Verbindungsstatus               | Dynamisch |
| 5202 | HIMA_CONNECTION_<br>STATE_TEXT | VT_BSTR  | Text für Verbin-<br>dungsstatus | Dynamisch |
| 5300 | AS_BINARY                      | VT_BSTR  | Wert im binary-For-<br>mat      | Dynamisch |
| 5301 | AS_HEX                         | VT_BSTR  | Wert Hex                        | Dynamisch |
| 5302 | AS_TIME                        | VT_BSTR  | Zeit in ms                      | Dynamisch |
| 5400 | LOPROCESS                      | VT_R8    | min. Processwert                | Statisch  |
| 5401 | HIPROCESS                      | VT_R8    | max. Processwert                | Statisch  |
| 5402 | PROCESS_VALUE                  |          | Processwert                     | Dynamisch |

Tabelle 31: Item-Eigenschaften

Dynamische Werte werden aus den Daten des HIMA OPC-Servers ermittelt und können sich ändern. Statische Werte werden durch den Benutzerfestgelegt.

# 17.5.1 OPC\_Quality und deren Prioritätsreihenfolge

| OPC_Quality_   | Beschreibung                                 |
|----------------|----------------------------------------------|
| OUT_OF_SERVICE | Item oder Gruppe ist nicht aktiv             |
| CONFIG_ERROR   | Item wurde aus Konfiguration ent-<br>fernt   |
| NOT_CONNECTED  | Keine Verbindung zur Ressource               |
| CONFIG_ERROR   | Kommunikations-Konfiguration fehlerhaft      |
| COMM_FAILURE   | Kommunikation 80102 mit Baugruppen fehlehaft |
| CONFIG_ERROR   | Falsche PLANAR 4 Baugruppe                   |
| GOOD           | alles OK bzw. Testmode                       |

Tabelle 32: Quality

Insert Menü Edit

### 17.5.2 Verhalten beim Schreiben von Werten

| Quality              | HRESULT  | Fehlermeldung                      |
|----------------------|----------|------------------------------------|
| Konfigurationsfehler | C0041000 | item quality is config<br>error    |
| Kommunikationsfehler | C0041001 | item quality is comm failure       |
| Gerätefehler         | C0041002 | item quality is device failure     |
| keine Verbindung     | C0041003 | item quality is not con-<br>nected |
| Variable fehlt       | C0041004 | item is removed                    |
| alle anderen Fehler  | C0041005 | item quality is not good           |

Tabelle 33: Meldungen beim Schreiben von Werten

## 17.5.3 HIMA Item Properties HIPRO

| OPC_PROP_HIMA_<br>CONNECTION_STATE | OPC_PROP_HIMA_<br>CONNECTION_STATE_TEXT |
|------------------------------------|-----------------------------------------|
| 0                                  | keine Verbindung                        |
| 1                                  | Verbindung über Kanal 1                 |
| 2                                  | Verbindung über Kanal 2                 |
| 3                                  | Verbindung über beide Kanäle            |

**Tabelle 34: Connection state** 

### 17.5.4 HIMA Items Properties Planar 4 (62100)

| OPC_PROP_HIMA_CHANNEL_IN_USE |
|------------------------------|
| 0 = Kanal nicht aktiv        |
| 1 = Kanal aktiv              |

Tabelle 35: 62100 channel in use

Menü Edit Insert

| OPC_PROP_HIMA_MODE | OPC_PROP_HIMA_MODE_TEXT                          |
|--------------------|--------------------------------------------------|
| 0                  | actuating direction of the limit value: L (LOW)  |
| 1                  | actuating direction of the limit value: H (HIGH) |
| 4                  | positive gradient                                |
| 5                  | negative gradient                                |
| 6                  | absolute gradient                                |

Tabelle 36: 62100 mode

| OPC_PROP_HIMA_LIMIT_VALUE |
|---------------------------|
| limit value in 0.1 %      |

Tabelle 37: 62100 limit value

| OPC_PROP_HIMA_LIMIT_VALUE_PERCENT |  |
|-----------------------------------|--|
| limit value in %                  |  |

Tabelle 38: 62100 limit value in %

| OPC_PROP_HIMA_VALUE_PERCENT |  |
|-----------------------------|--|
| current value in %          |  |

Tabelle 39: 62100 current value

#### 17.5.5 Deadband

Es gibt zwei zusätzliche Eigenschaften für analoge Werte:

- OPC\_PROP\_HIEU
- OPC\_PROP\_LOEU

Dies sind die Grenzwerte für den Analogwert. Diese Werte werden genutzt um ein Deadband.

DEADBAND= (HIEU - LOEU) \* (DEADBAND der GROUP)/100

Ein neuer Analogwerd, wird nur angezeigt, wenn die Differenz des alten und neuen Wertes grösser als das berechnete Deadband ist.

Update Menü Edit

#### 17.5.6 Skalierung von Prozesswerten

Der HIMA OPC-Server kann Prozesswerte in EU (Engineering Units) umrechnen. Hierzu müssen die Grenzen des Prozesswertes (LOPROCESS und HIPROCESS), sowie die Grenzen des umgerechneten Wertes (LOEU und HIEU) angegeben werden. Die Umrechnung erfolgt linear. Sind HIPROCESS und LOPROCESS gleich 0, erfolgt keine Umrechnung. Die Umrechnung erfolgt in beide Richtungen. Der aktuelle Prozesswert kann über das Item PROCESS\_VALUE abgefragt werden.

Die Skalierung kann nicht für Time-Werte angewendet werden.

### 17.5.7 Darstellung von Werten in Binär- bzw. Hex-Format

Der HIMA OPC-Server kann die Datentypen VT\_I1, VT\_UI1, VT\_I2, VT\_UI2, VT\_I4 und VT\_UI4 binär oder hexadezimal als Text darstellen. Bei nicht unterstützen Datentypen erscheint ein Fragezeichen.

## 18 Update

Die Funktion Update kann nur im Zusammenhang mit der Buscom Ressource genutzt werden. Haben sich Änderungen in der Buscom Ressource ergeben, so kann über die Funktion die von ELOP II-NT exportierte Buscomdatei zum update des HIMA OPC-Servers genutzt werden. Tragen sie die neue Datei als Updatedatei in den Eigenschaften der Ressource ein und führen sie anschliessend die Funktion Update aus.



Eigenschaften der Ressource

Tragen sie hier den Namen der Exportdatei im Fenster **Update File** ein und verlassen sie die Eigenschaften wieder mit **OK.** 

Wenn neue Buscomvariablen hinzugefügten wurden oder gelöscht wurden, muss ein nicht reloadbarer Code in ELOP-II-NT erzeugt werden.

Menü Edit Remove

### 19 Remove

Mit Remove löschen sie das markierte Objekt. Bevor das Objekt gelöscht wird, erfolgt noch eine Rückfrage.



Bestätigung

## 20 Properties

### 20.1 OPC Server Property



**OPC Server Property** 

Hier legen sie Name und ID des HIMA OPC-Servers festlegen. Siehe auch Optionen.

Properties Menü Edit

## 20.2 Buscom Resource Property



Buscom Property, siehe oben

### 20.3 PLANAR4 Property



PLANAR4 Property, siehe oben

Menü Edit Properties



PLANAR4 Card Property

## 20.4 Item Property



Item Property

Hier können sie selbst die Beschreibung festlegen.

Test Menü Mode

# Menü Mode

### 21 Test

Setzt den HIMA OPC-Server in den Testmode. Zuvor muss dies aber bestätigt werden.



Bestätigung Testmodus

Yes für Testmodus, No um Vorgang abzubrechen.

Clients können auf den HIMA OPC-Server zugreifen, Server selbst hat aber keine Verbindung zu den Ressourcen.

## 22 Run

Verbindet den HIMA OPC-Server mit seinen Ressourcen.



Bestätigung Runmodus

Yes für Runmodus, No um Vorgang abzubrechen.

Menü Mode Suspend

# 23 Suspend

Beendet die Verbindung des HIMA OPC-Servers



Bestätigung

Yes für Trennen, No um Vorgang abzubrechen.

Hide Menü Window

# Menü Window

## 24 Hide

Das Fenster des HIMA OPC-Servers wird geschlossen, wobei aber das Icon in der Taskleiste sichtbar bleibt.

## 25 Minimize

Das Fenster des HIMA OPC-Servers wird geschlossen, wobei aber das Icon in der Taskleiste sichtbar bleibt. Ausserdem befindet sich eine Schaltfläche in der Taskleiste.

### 26 Normal

Das Fenster des HIMA OPC-Servers wird auf Standardgrösse geschaltet.

## 27 Maximize

Das Fenster des HIMA OPC-Servers wird auf Maximalgrösse gebracht.

# 28 Clear message window

Löscht alle Meldungen im Meldungsfenster des HIMA OPC-Servers.

Online Help Menu Help

# Menu Help

# 29 Online Help

Öffnet die Online-Hilfe.

## 30 About

Informationen des HIMA OPC-Servers



About

Menu Help About

Was ist OPC? Der OPC Standard

# **Der OPC Standard**

Internet: www.opcfoundation.org

### 31 Was ist OPC?

OPC steht für OLE for Process Control und basiert auf der von Microsoft entwickelten Technologie (COM/OLE) zum Austausch von Daten zwischen unterschiedlichen Applikationen.

Ziel ist es, ein einheitliches Softwareinterface zu schaffen, das auf der bekannten Microsoft Technologie aufbaut und somit für den Anwender einfach zu nutzen ist. Der Endausbau soll die Kommunikation zwischen den unterschiedlichsten Systemen der unterschiedlichsten Anbieter ermöglichen.

Hierfür wurde im September 1996 die OPC Foundation in den USA gegründet. Heute zählt die OPC Foundation bereits über 220 Mitglieder aus dem Bereich der Automatisierung.

### 32 Vorteile

OPC bietet eine einfache Verbindung von Applikationen der Fertigungsund Verfahrenstechnik. Über OPC lassen sich auf einfache Art und Weise Prozessleitsystem, Visualisierungssysteme, Steuerungen bis hin zu Feldgeräten miteinander koppeln um Daten auszutauschen.

OPC bietet ein Standardinterface für diesen Datenaustausch. Dies bedeutet zum Beispiel für den PES Hersteller, dass er einen OPC-Server zur Verfügung stellen muss, damit jeder beliebige andere Hersteller über einen OPC-Client auf den OPC-Server und dessen Daten zugreifen kann.

Somit kann ein Anlagenbetreiber frei zwischen den Anbietern von Hardware und Softwarekomponenten wählen und die funktionalen Kriterien in den Vordergrund stellen.

### 33 Verwendete OPC Standards

Der HIMA OPC-Server baut auf dem OPC Standard Version 2.0 auf. Als OPC-Schnittstelle stellt der HIMA OPC-Server die Funktionen des Custom-Interface zur Verfügung.

Über einen integrierten Wrapper werden alle Automation Interface Anfragen auf das Custom Interface umgeleitet.

Folgende OPC-Schnittstellen des COM-Custom-Interface werden von dem HIMA OPC-Server unterstützt:

- IOPCServer
- IOPCBrowseServerAddressSpace
- IOPCGroupStateMgt
- IOPCSyncIO
- IOPCAsynclO
- IDataobject
- IEnumOPCItemAttributes
- IAdviseSink (Interface of the OPC client)
- IOPCItemProperties
- IOPCAsynclO2
- IOPCCommon
- IOPCShutdown

# **Getting Started**

## 34 PES Systeme, H41q/H51q

### 34.1 Vorbereitungen in ELOP II-NT

Der Ressourcename in ELOP II-NT muss genau 8 Zeichen lang sein, wobei das 7. und das 8. Zeichen Ziffern sein müssen. Zahlen von 01 bis 64 sind möglich.



Ressourcename, Programminstanz

In der Programminstanz werden die Variablen für die OPC-Kommunikation festgelegt. Alle Variablen, die für die OPC-Kommunikation benötigt werden bekommen das Attribut BUSCOM:

- Export: wird vom OPC-Server gelesen
- Import: wird vom OPC-Server geschrieben
- Import/Export wird vom OPC-Server geschrieben und gelesen

Üblicherweise werden die Attribute Export für zu lesende Variablen und Import/Export für zu schreibende Variablen genutzt.



Variablendeklaration

Nach der Codegenerierung können die BUSCOM-Variablen aus der Ressource Dokumentation RES-Doku(generiert) in eine Datei exportiert werden. Diese Datei wird von dem HIMA OPC-Server gelesen.



RES-Doku generiert

Am einfachsten ist es die Datei direkt in das Config-Verzeichnis des HIMA OPC-Servers zu exportieren.



Configverzeichnis HIMA OPC-Server

## 34.2 Hardware-Einstellungen der F 8625, F 8627

Der Rechner auf dem der HIMA OPC-Server läuft wird über Ethernet an das HIMA PES-System angeschlossen. Hierfür wird eine Ethernetverbindung zwischen dem Rechner und einem HUB/Switch benötigt, sowie zwischen HUB/Switch und HIMA PES. Als Kommunikationsbaugruppe kommt die F 8625/27 in der HIMA PES zum Einsatz.

Die IP-Adresse der Baugruppe berechnet sich aus dem Ressourcenamen (7. und 8. Stelle) und der Kanaleinstellung des Schaltes 2/1 auf der Baugruppe selbst.

Getting Started PLANAR 4

Basis IP-Adresse ist 192.168.0.xxx, der fehlende Teil berechnet sich wie folgt:

letzte 2 Ziffern der Ressource X 2 + 1 (S 2/1 = ON, Kanal 1) letzte 2 Ziffern der Ressource X 2 + 2 (S 2/1 = OFF, Kanal 2)

HIMA OPC-Server die eine IP-Adresse des Kanal 1 verwenden, können auch nur mit F 8625/27 kommunizieren, die auf Kanal 1 eingestellt sind. Das gleiche gilt für Kanal 2. Ungerade = Kanal 1, Gerad = Kanal 2 Im redundanten Betrieb müssen die beiden Kommunikationsbaugruppen über das HSR-Kabel verbunden sein.

Beim Einsatz der F 8627 ist es möglich die sicherheitsgerichtete Kommunikation abzuschalten und die Karte in den Passive Mode zu setzen. Hierfür muss der Schalter 8 des Schalterbretts S1 auf OFF gesetzt werden. Dies ist nur möglich und zulässig, wenn der HIMA OPC-Server ab Version 3.2.0 genutzt wird und auch in den Passive Mode gesetzt ist.

### 35 PLANAR 4

Im PLANAR4 System muss auf der Baugruppe 80102 bzw. 80107 die Einstellung für die ID vorgenommen werden. Die ID-Nummer 1 bis 126 ist möglich.

Die Basis IP-Adresse lautet 192.168.0.xxx. Der fehlende Teil ergibt sich aus der ID:

ID-Nummer X 2 + 1 (Kanal 1) bzw. ID-Nummer X 2 + 2 (Kanal 2)

## 36 Konfiguration im HIMA OPC-Server

#### 36.1 OPC-Server

Der HIMA OPC-Server benötigt eine Ethernetkarte im Rechner für einen einfachen Anschluss an die HIMA Systeme bzw. zwei Ethernetkarten für einen redundanten Anschluss.

Bei einem redundanten Anschluss müssen die Ethernetkarten die gleiche ID haben. Siehe folgende Tabelle:

| Node ID | IP Adresse             |
|---------|------------------------|
| 107     | 192.168.0.215, Kanal 1 |
| 107     | 192.168.0.216, Kanal 2 |
| 108     | 192.168.0.217, Kanal 1 |
| 108     | 192.168.0.218, Kanal 2 |
| 109     | 192.168.0.219, Kanal 1 |
| 109     | 192.168.0.220, Kanal 2 |

Tabelle 40: Node IDs des HIMA OPC servers

| Node ID | IP Adresse             |
|---------|------------------------|
| 110     | 192.168.0.221, Kanal 1 |
| 110     | 192.168.0.222, Kanal 2 |
|         |                        |
| 120     | 192.168.0.241, Kanal 1 |
| 120     | 192.168.0.242, Kanal 2 |

Tabelle 40: Node IDs des HIMA OPC servers

Nur oben aufgeführte IP Adressen sind für die von dem HIMA OPC-Server genutzten Ethernetkarten möglich. Node IDs größer 110 können nur gemeinsam mit der Baugruppe F 8627 ab Betriebssystem Version 3x in den Systemen H41q/H51q genutzt werden.

Starten sie den HIMA OPC-Server und fügen sie einen OPC-Server ein (Funktion **Insert**)

Selektieren sie den OPC-Server und öffnen sie die **Properties** des HIMA OPC-Servers.



Properties OPC-Server

Im Feld **Name** legen sie den Namen des OPC-Servers fest. Mit der **Node\_Id** bestimmen sie die zu verwendenden IP-Adressen. Siehe Tabelle oben. Diese IP-Adresse müssen sie der Ethernet-Karte in ihrem System zuordnen.

Zur Konfiguration rufen sie Options auf.



#### Options

Auf der Seite HIPRO stellen sie die Node ID für die verfügbaren Ethernetkarten und deren IP-Adresse ein. Desweiteren legen sie die zu benutzenden Kanäle für den HIMA OPC-Server fest. Es können nur gültige Selektierungen vorgenommen werden.

Verlassen sie **Options** mit **Ok** und schliessen sie den HIMA OPC-Server und starten sie ihn wieder. Danach kann der HIMA OPC-Server auf die Ethernetkarten zugreifen.

### 36.2 Einfügen einer PES Ressource

Selektieren sie die Root und fügen sie über **Insert** eine neue Buscom Ressource ein. Danach selektieren sie die neue Ressource und rufen die **Properties** auf.



Properties Buscom Ressource

Im Feld **Name** geben sie den Namen für die Ressource ein. Üblicherweise wird man hier den Ressourcenamen aus ELOP II-NT verwenden. Der Name kann aber ganz frei gewählt werden.

Wählen sie im Feld **Node Id** die ID-Nummer der Ressource. Diese muss mit den Stellen 7 und 8 des Ressourcenamens in ELOP II-NT übereinstimmen.

In dem Feld **Update File** tragen sie das Verzeichnis und den Namen der aus ELOP II-NT exportierten Buscomdatei ein. Siehe oben.

Anschliessend verlassen sie die Eigenschaften mit OK und führen die Funktion **Update** aus. Wenn die Verbindung zur PES besteht wird der Datenaustausch gestartet.

**Passive Mode** ist zu wählen, wenn nur Kommunikation zum OPC Server stattfindet.

## 36.3 Einfügen der PLANAR4 Ressource

Selektieren sie die Root und fügen sie über **Insert** ein Planar4Rack ein Öffnen sie die **Properties** des Planar4 Racks.



Properties Planar 4 rack

In dem Feld **Name** tragen sie einen beliebigen Namen für das PLANAR4 rack ein. Im Feld **Node Id** selektieren sie die ID des PLANAR4 Baugruppenträgers. Dies ist die ID, die auf der Baugruppe 80102 eingestellt ist. Schliessen sie das Fenster wieder mit **Ok**.

Selektieren sie das Planar4 rack und führen sie die Funktion **Insert** aus. Nun können sie die einzelnen Baugruppen einfügen.



Einfügen der Planar4 Baugruppen

In den **Properties** der einzelnen Baugruppen legen sie den Namen und den Steckplatz fest. Die zu den Baugruppen gehörenden Variablen werden automatisch eingefügt. Falls Verbindung besteht wird die Kommunikation sofort aufgenommen. Die Kommunikation wird bei Neustart des HIMA OPC-Servers neu initialisiert.

Hinweis:

Nach einfügen neuer Ressourcen und Planar4 Baugruppen muss die Konfiguration gespeichert werden, damit beim nächsten Aufruf die gemachten Änderungen vorhanden sind.

## 37 Allgemeine Hinweise

- HIMA OPC-Server und mehrere HIMA PES
  Bei Einsatz der Baugruppe F 8625 muss ein sicherheits gerichteter
  Datenaustausch zwischen allen HIMA PES über safeethernet konfiguriert werden.
  - Beim Einsatz der Baugruppe F 8627 kann diese in den Passive Mode gesetzt werden. Schalter S1/8 auf OFF. Auch der HIMA OPC Server (Properties der Resource) ist für die entsprechende HIMA PES in den Passive Mode zu setzen. Möglich ab Version 2x
- Node IDs größer 110 können nur gemeinsam mit der Baugruppe F 8627 ab Betriebssystem Version 3x in den Systemen H41q/H51q genutzt werden.
- HIMA OPC-Server und Siemens Protokoll 3964R
   Ein paralleler Betrieb ist nicht möglich.

HIMA Paul Hildebrandt GmbH + Co KG Industrie-Automatisierung Dokumentation Postfach 1261

68777 Brühl

Betrifft:

| Absender:<br>Firma:        |   |
|----------------------------|---|
| Name:<br>Abt.:<br>Adresse: |   |
| Telefon:<br>Fax:           |   |
| Datum                      |   |
|                            | / |

### Sehr geehrte Leserin, sehr geehrter Leser,

Handbuch HIMA OPC-Server Version 3.0

wir geben uns alle Mühe, unsere Handbücher auf neuesten Stand zu halten und Fehler zu vermeiden. Falls Sie jedoch Fehler in diesem Handbuch gefunden haben oder Vorschläge zur Verbesserung, auch der HIMA-Produkte machen möchten, sind wir Ihnen dafür sehr dankbar. Verwenden Sie dazu einfach diese Seite oder eine Kopie davon, die Sie uns zusenden oder faxen. (Fax Nr. 06202 709 199)

| Ausgabe Oktober 2004 |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |

# HIMA ... die sichere Entscheidung.



HIMA Paul Hildebrandt GmbH + Co KG Industrie-Automatisierung Postfach 1261 • 68777 Brühl

Telefon: (06202) 7 09-0 • Fax: (06202) 7 09-1 07 E-mail: info@hima.com • Internet: www.hima.com