

Problem

Can we predict how delayed flights will be one week in advance?

Data

- 15 million records of US flights in 2018 and 2019
- Information about carrier, flight number, tail number, planned departure / arrival time, origin / destination, actual delays

Additional Sources

- NOAA NWS Climate Prediction
 Center
- Government Source
- Historical forecasts, not historical weather records
- Exhaustive coverage
- Easily accessible and free

Goal

• Use machine learning to find patterns in the data and predict future delays

Approach

Features based on Flight Date

Arrival Delay by Mean Monthly Arrival Delay

Features based on Departure/Arrival Time

Features based on Origin/Destination City

Features based on Airport Id

Features based on Flight Routes

Correlation Coefficient = 0.27

Dimensionality Reduction

Training Models

	MAE_test	MAE_train	RMSE_test	RMSE_train	R2_test	R2_train	ADJR2_test	ADJR2_train
linear	15.221647	15.392797	36.407460	34.151856	0.492709	0.485384	0.492709	0.485384
ridge	15.221711	15.392862	36.407493	34.151856	0.492708	0.485384	0.492708	0.485384
polynomial	15.197644	15.355645	36.486101	34.140478	0.490516	0.485727	0.490516	0.485727
lasso	15.370936	15.545292	36.493779	34.166493	0.490301	0.484943	0.490301	0.484943
sgd	15.309494	15.750729	36.497936	34.245050	0.490185	0.482572	0.490185	0.482572
r_forest	18.072724	18.122804	39.210367	35.901627	0.411593	0.431301	0.411593	0.431301
g_boost	15.522921	15.364055	39.487800	33.617242	0.403237	0.501370	0.403237	0.501370
voting_r	15.691872	15.270631	39.558562	33.401120	0.401096	0.507760	0.401096	0.507760
xgb	15.983414	15.201328	43.680043	33.057213	0.269799	0.517845	0.269799	0.517845
d_tree	16.588934	15.123663	45.439398	32.918182	0.209792	0.521892	0.209792	0.521892

What's Next

Check Tailnumber against the FAA's Registry

Examine how different types of airplanes impact delays

Integrating the CPC's Hurricane Season Outlook

Examine the impact of extreme weather conditions

Fine Tuning our Hyper-Parameters

Lessons Learned

Don't automatically drop outliers - only if they clearly don't make sense Multiple dimensions
presenting the same
information in different
ways weakens model
performance

Split into train / test set before feature engineering

Thank you!

