Data mining & Machine Learning

CS 373 Purdue University

Dan Goldwasser dgoldwas@purdue.edu

Today's Lecture

More Supervised Learning!

- Decision Trees Wrap Up
- Evaluation and model selection
- Probabilistic Classification using the Naïve Bayes algorithm
 - A Generative model (huh?)
 - Can be used for classification, ranking and assigns output probabilities
 - Naturally deals with binary and multiclass classification
 - Really easy to understand and implement. Too Easy. (huh?)
 - Works annoyingly well!

Predictive Modeling

- Data representation:
 - **Training set**: Paired attribute vectors and class labels $\langle y(i), x(i) \rangle$
- Task: estimate a predictive function f(x;9)=y
 - Assume that there is a function y=f(x) that **maps** data instances (x) to class labels (y)
- Construct a model that approximates the mapping
 - Classification: if y is categorical
 - Regression: if y is real-valued

Classification

- In its simplest form, a classification model defines a decision boundary (h) and labels for each side of the boundary
- Input: x={x₁,x₂,...,x_n} is a set of attributes, function f assigns a label y to input x, where y is a discrete variable with a finite number of values

Classification output

- Different classification tasks can require different kinds of output
 - Each requires progressively more accurate models (e.g., a poor probability estimator can still produce an accurate ranking)
- Class labels Each instance is assigned a single label
 - Model only need to decide on crisp class boundaries
- Ranking Instances are ranked according to their likelihood of belonging to a particular class
 - Model implicitly explores many potential class boundaries
- **Probabilities** Instances are assigned class probabilities p(y|x)
 - Allows for more refined reasoning about sets of instances

Probabilistic classification

- Model the underlying probability distributions
 - Posterior class probabilities: p(y|x)
 - Class-conditional and class prior: p(x|y) and p(y)
- Maps from inputs x to class label y indirectly through posterior class distribution p(y|x)
- Examples:
 - Naive Bayes classifier, logistic regression, probability estimation trees

Analyzing Supervised Learning Algorithms

 Similar to our previous discussions, supervised learning algorithms can be analyzed according to:

- Model/hypothesis space(knowledge representation)
- Scoring function
- Search procedure

Parametric vs. non-parametric models

Parametric

- Particular functional form is assumed (e.g., Binomial)
- Number of parameters is fixed in advance
- Examples: Naive Bayes, perceptron

Non-parametric

- Few assumptions are made about the functional form
- Model structure is determined from data
- Examples: classification tree, nearest neighbor

Classification tree

Perceptron

$$f(x) = \begin{cases} 1 & \sum_{j=1}^{\infty} w_j x_j > 0 \\ 0 & \sum_{j=1}^{\infty} w_j x_j \le 0 \end{cases}$$

Model space:

weights w, for each of j attributes

Example model:

Naïve Bayes classifiers

Classification as probability estimation

- Instead of learning a function f that assigns labels
- Learn a conditional probability distribution over the output of function f

•
$$P(f(x) | x) = P(f(x) = y | x_1, x_2, ..., x_p)$$

- Can use probabilities for the other two tasks
 - Classification
 - Ranking

$$P(Y|\mathbf{X}) = \frac{P(\mathbf{X}|Y)P(Y)}{P(\mathbf{X})}$$

Bayes rule

$$= \frac{P(\mathbf{X}|Y)P(Y)}{[P(\mathbf{X}|Y=+)P(Y=+)] + [P(\mathbf{X}|Y=-)P(Y=-)]}$$

 $\propto P(\mathbf{X}|Y)P(Y)$

Denominator: normalizing factor to make probabilities sum to 1 (can be computed from numerators)

- P(y) the <u>prior probability</u> of a label y
 Reflects *background knowledge*; before data is observed. If no information - uniform distribution.
- P(x) The probability that <u>this sample</u> of the Data is observed.
 (No knowledge of the label)
- P(x|y): The probability of observing the sample x, given that the label y is the target (*Likelihood*)
- P(y|x): The **posterior probability** of v. The probability that v is the target, given that D has been observed.

$$P(Y|\mathbf{X}) = \frac{P(\mathbf{X}|Y)P(Y)}{P(\mathbf{X})}$$

$$P(Y|\mathbf{X}) = \frac{P(\mathbf{X}|Y)P(Y)}{P(\mathbf{X})}$$

Check your intuition:

P(y|x) increases with P(y) and with P(x|y)

P(y|x) decreases with P(x)

• The learner considers a set of <u>candidate labels</u>, and attempts to find <u>the most probable</u> one $y \in Y$, given the observed data.

 Such maximally probable assignment is called <u>maximum a</u> <u>posteriori</u> assignment (<u>MAP</u>); Bayes theorem is used to compute it:

$$y_{MAP} = argmax_{y \in Y} P(y|x) = argmax_{y \in Y} P(x|y) P(y)/P(x)$$

=
$$\operatorname{argmax}_{y \in Y} P(x|y) P(y)$$

Since P(x) is the same for all $y \in Y$

- How can we compute P(v |D)?
 - Basic idea: represent input as a set of features (e.g., BoW features)

$$y_{MAP} = argmax_{y \in Y} P(y|x) = argmax_{y \in Y} P(y|x_1, x_2, ..., x_n)$$

$$y_{MAP} = \operatorname{argmax}_{y \in Y} P(x_1, x_2, ..., x_n | y) P(y) / P(x_1, x_2, ..., x_n) =$$

$$= \operatorname{argmax}_{y \in Y} P(x_1, x_2, ..., x_n | y) P(y)$$

$$y_{MAP} = argmax_{y \in Y} P(x_1, x_2, ..., x_n | y) P(y)$$

- Given training data we can estimate the two terms
 - Estimating P(y) is **easy**. For each value v count how many times it appears in the training data.

Question: Assume binary x_i 's. How many parameters does the model require?

- However, it is not feasible to estimate $P(x_1,...,x_n \mid y)$
 - In this case we have to estimate, for each target value, the probability of each instance (most of which will not occur)
- In order to use a Bayesian classifiers in practice, we need to make assumptions that will allow us to estimate these quantities.

NB: Independence Assumptions

Conditional Independence:

Assume feature probabilities are independent given the label

$$P(x_i|y_j) = P(x_i|x_{i-1}; y_j)$$

$$P(Y|\mathbf{X}) \propto P(\mathbf{X}|Y)P(Y)$$
 Bayes rule

$$\propto \prod_{i=1}^m P(X_i|Y) P(Y)$$
Naive assumption

Question: How many parameters do we need to estimate now?

Is assuming independence a problem?

 $Y=XOR(X_1,X_2)$

X_1	X_2	$P(Y=0 X_1,X_2)$	$P(Y=1 X_1,X_2)$
0	0	1	0
0	1	0	1
1	0	0	1
1	1	1	0

Is assuming independence a problem?

- Let's consider the spam classification problem
- Is NB an appropriate model to use?
 - Does the conditional independence assumption hold for this problem?

- However NB is frequently (and successfully) used for spam detection!
- Why does it succeed?

Inductive bias – Naïve Bayes version

- An acute version of overfitting occurs when we try to estimate P(Y|X) = P(Y) P(X|Y) directly
- It requires learning 2ⁿ parameters, **essentially one parameter** for each input instance.
 - This is overfitting at its worst just memorizing the data
- We encountered this problem before in decision trees Trees that have n intermediate nodes only memorize the data.
 - How did we solve it for decision trees?
- Similarly making independence assumptions is a way to control the complexity of the model space and prevent overfitting.

NBC learning

$$\begin{split} P(BC|A,I,S,CR) &= \frac{P(A,I,S,CR|BC)P(BC)}{P(A,I,S,CR)} \\ &= \frac{P(A|BC)P(I|BC)P(S|BC)P(CR|BC)P(BC)}{P(A,I,S,CR)} \\ &\propto P(A|BC)P(I|BC)P(S|BC)P(CR|BC)P(BC) \end{split}$$

income student credit_rating buys_computer <=30 high no no <=30 high excellent no no 31...40 high fair no yes >40 medium no fair yes >40 low yes fair yes >40 low excellent yes no 31...40 low yes excellent yes <=30 medium no no <=30 low ves fair yes >40 medium fair ves yes <=30 medium ves excellent yes 31...40 medium excellent no yes 31...40 high yes yes excellent no

NBC parameters = CPDs+prior

CPDs: P(A BC)

P(I BC)

P(S BC)

P(CR BC)

Prior:P(BC)

Score function

Likelihood

- Let $D = \{x(1), ..., x(n)\}$
- Assume the data D are independently sampled from the same distribution: $p(X|\theta)$
- The likelihood function represents the probability of the data as a function of the model parameters:

$$L(\theta|D) = L(\theta|x(1), ..., x(n))$$

$$= p(x(1), ..., x(n)|\theta)$$

$$= \prod_{i=1}^{n} p(x(i)|\theta)$$

If instances are independent, likelihood is product of probs

Likelihood (cont')

- Likelihood is not a probability distribution
 - Gives relative probability of data given a parameter
 - Numerical value of L is not relevant, only the ratio of two scores is relevant, e.g.,:

$$rac{L(heta_1|D)}{L(heta_2|D)}$$

- Likelihood function: allows us to determine unknown parameters based on known outcomes
- Probability distribution: allows us to predict unknown outcomes based on known parameters

NBCs: Likelihood

 NBC likelihood uses the NBC probabilities for each data instance (i.e., probability of the class given the attributes)

$$L(heta|D) = \prod_{i=1}^n p(y_i|\mathbf{x}_i; heta)$$
 General likelihood $\propto \prod_{i=1}^n p(\mathbf{x}_i|y_i; heta)p(y_i| heta)$ Bayes rule $\propto \prod_{i=1}^n \prod_{j=1}^p p(x_{ij}|y_i; heta)p(y_i| heta)$ Naive assumption

Search

Maximum likelihood estimation

- Most widely used method of parameter estimation
- ullet "Learn" the best parameters by finding the values of $oldsymbol{ heta}$ that maximizes likelihood:

$$\hat{\theta}_{MLE} = \arg\max_{\theta} L(\theta)$$

Often easier to work with loglikelihood:

$$l(\theta|D) = log L(\theta|D)$$

$$= log \prod_{i=1}^{n} p(x(i)|\theta)$$

$$= \sum_{i=1}^{n} log p(x(i)|\theta)$$

Likelihood surface

MLE for multinomials

- Let $X \in \{1, ..., k\}$ be a discrete random variable with k values, where $P(X=j)=\theta_j$
- Then P(X) is a multinomial distribution:

$$P(X|\theta) = \prod_{j=1}^{\kappa} \theta_j^{I(X=j)}$$

where I(X=j) is an indicator function

• The likelihood for a data set D=[x₁, ..., x_N] is:

$$P(D|\theta) = \prod_{n=1}^{N} \prod_{j=1}^{k} \theta_j^{I(x_n=j)} = \prod_j \theta_j^{N_j}$$

 The ML estimates for each parameter are: (using Lagrange multipliers)

$$\hat{\theta}_j = \frac{N_j}{N}$$

In this case, MLE can be determined analytically by counting

Learning CPDs from examples

			Xı	
		Low	Medium	High
	Yes	10	13	17
Y	No	2	13	0

P[X₁ = Low | Y = Yes] =
$$\frac{10}{(10+13+17)}$$

P[Y = No] = $\frac{(2+13)}{(2+13+10+13+17)}$

NBC learning

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

 Estimate prior P(BC) and conditional probability distributions P(A | BC), P(I | BC), P(S | BC), P(CR | BC) independently with maximum likelihood estimation

P(BC)

BC	θ
yes	9/14
no	5/14

P(A | BC)

BC	A	θ
	<=30	2/9
yes	3140	4/9
	> 40	3/9
	<= 30	3/5
no	3140	0/5
	> 40	2/5

P(I | BC)

BC	I	θ
	high	2/9
yes	med	4/9
	low	3/9
	high	2/5
no	med	2/5
	low	1/5

P(S | BC)

BC	S	θ
yes	yes	6/9
	no	3/9
no	yes	1/5
	no	4/5

P(CR | BC)

BC	CR	θ
yes	exc	3/9
	fair	6/9
no	exc	4/5
	fair	1/5

NBC prediction

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no
3140	high	no	excellent	?

 What is the probability that a new person will buy a computer?

$$\begin{split} P(BC = yes | A = 31..40, I = high, S = no, CR = exc) \\ &\propto P(A = 31..40 | BC = yes) P(I = high | BC = yes) \\ &P(S = no | BC = yes) P(CR = exc | BC = yes) P(BC = yes) \end{split}$$

P(BC)

BC	θ
yes	9/14
no	5/14

P(A | BC)

BC	A	θ
	<=30	2/9
yes	3140	4/9
	> 40	3/9
	<= 30	3/5
no	3140	0/5
	> 40	2/5

P(I | BC)

BC	I	θ
	high	2/9
yes	med	4/9
	low	3/9
	high	2/5
no	med	2/5
	low	1/5

P(S | BC)

BC	S	θ
yes	yes	6/9
	no	3/9
no	yes	1/5
	no	4/5

P(CR | BC)

BC	CR	θ
yes	exc	3/9
	fair	6/9
no	exc	4/5
	fair	1/5

Zero counts are a problem

- If an attribute value does not occur in training example, we assign zero probability to that value
- How does that affect the conditional probability P[f(x) | x]?
- It equals 0!!!
- Why is this a problem?
- Adjust for zero counts by "smoothing" probability estimates

Smoothing: Laplace correction

 X_I

 Low
 Medium
 High

 Yes
 10
 13
 17

 No
 2
 13
 0

$$P[X_1 = High | Y = No] =$$

$$\frac{0}{(2+13+0)+3}$$

Laplace correction

Numerator: **add 1**Denominator: **add k**,

where k=number of possible values of X

Adds uniform prior

Naive Bayes classifier

 Simplifying (naive) assumption: attributes are conditionally independent given the class

Strengths:

- Easy to implement
- Often performs well even when assumption is violated
- Learning is really fast! (why?)

Weaknesses:

- Class conditional assumption produces skewed probability estimates
- Dependencies among variables cannot be modeled

NBC learning

Model space

- Parametric model with specific form

 (i.e., based on Bayes rule and assumption of conditional independence),
- Models vary based on parameter estimates in CPDs

Search algorithm

 MLE optimization of parameters (convex optimization results in exact solution)

Scoring function

Likelihood of data given NBC model form

Example question: Compare NBC to DT to KNN

Hypothesis space

What type of functions are used? Which one is more expressive?

Scoring function

How is each model scored?

Search

- Which search procedure is used?
- Are we guaranteed to find the optimal model?
- What is the complexity of the search procedure?

Numerical Stability

Recall: NB classifier:

$$\frac{1}{1} \sum_{i=1}^{m} P(X_i|Y)P(Y)$$

- Multiplying probabilities can get us into problems!
- Imagine computing the probability of 2000 independent coin flips
- Most programming environments: (.5)²⁰⁰⁰=0

Numerical Stability

- Our problem: Underflow Prevention
- Recall: log(xy) = log(x) + log(y)
- better to sum logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.

$$c_{NB} = \underset{c_j \in C}{\operatorname{argmax}} \log P(c_j) + \sum_{i \in \textit{positions}} \log P(x_i \mid c_j)$$