Supplementary Material

Frontiers in Microbiology

Metabolomic analysis of *Aspergillus niger* isolated from the International Space Station reveals enhanced production levels of the antioxidant pyranonigrin A

Jillian Romsdahl¹, Adriana Blachowicz^{1,2}, Yi-Ming Chiang¹, Kasthuri Venkateswaran², and Clay C.C. Wang^{1,3*}

- ¹Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- ² Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA
- ³ Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089, United States

* Correspondence:

Clay C.C. Wang School of Pharmacy University of Southern California 1985 Zonal Ave Rm 406A Los Angeles, CA, 90089-9121 Phone: (323) 442, 1670

Phone: (323) 442-1670 Email: clayw@usc.edu

Table of Contents

- **Table S1.** Aspergillus niger strains used in this study.
- **Table S2.** Primers used in this study.
- **Table S3.** Comparison of *A. niger* PKS-NRPSs to pyranonigrin E-producing PKS-NRPS.
- **Figure S1.** Results of diagnostic PCR for JSC-093350089 mutant strains.
- Figure S2. Strategy for gene deletion via selection marker replacement.
- **Figure S3.** Strategy for *pyrG* deletion.
- **Figure S4.** Strategy for *kusA* reintegration.
- **Figure S5.** UV-Vis and ESIMS (positive or negative mode) spectra of compounds identified in this study.
- Figure S6. Verification of pyranonigrin A production in JSC-093350089.
- **Figure S7.** Individual secondary metabolite production of AlbA pathway SMs in JSC-093350089 compared to ATCC 1015.
- **Figure S8.** DAD total scan and MS extracted ion chromatogram at m/z 224 of extracts from JSC-093350089 WT and mutant strains pynA- and pyrA-.
- **Figure S9.** Comparison of gene distribution for pyranonigrin A biosynthesis cluster in *P. thymicola* and *A. niger*.

Table S1. Aspergillus niger strains used in this study

Strain #	Parent strain	Introduced mutation	Genotype	
ATCC 1015	ATCC 1015	WT	None (WT)	
JSC-093350089	JSC-093350089	WT	None (WT)	
CW12002	JSC-093350089	kusA- (An15g02700)	kusA::hph	
CW12003	CW12002	pyrG- (An12g03570)	kusA::hph; pyrG-	
CW12004	CW12003	<i>pynA</i> - (An11g00250)	kusA::hph; pyrG-; pynA::AfpyrG	
CW12005	CW12003	pyrA- (An18g00520)	kusA::hph; pyrG-; pyrA::AfpyrG	
CW12006	CW12003	albA- (An09g05730)	kusA::hph; pyrG-; albA::AfpyrG	
CW12007	CW12006	AfpyrG-	kusA::hph; pyrG-; albA-	
CW12008	CW12007	An18g00480-	kusA::hph; pyrG-; albA-; An18g00480::AfpyrG	
CW12009	CW12007	pyrC- (An18g00490)	kusA::hph; pyrG-; albA-; pyrC::AfpyrG	
CW12010	CW12007	<i>pyrB</i> - (An18g00500)	kusA::hph; pyrG-; albA-; pyrB::AfpyrG	
CW12011	CW12007	pyrE- (An18g00510)	kusA::hph; pyrG-; albA-; pyrE::AfpyrG	
CW12012	CW12007	pyrA- (An18g00520)	kusA::hph; pyrG-; albA-; pyrA::AfpyrG	
CW12013	CW12007	An18g00530-	kusA::hph; pyrG-; albA-; An18g00530::AfpyrG	
CW12014	CW12005	AfpyrG-	kusA::hph; pyrG-; pyrA-	
CW12015	CW12014	+ kusA	pyrG-; pyrA-; AfpyrG-kusA	

Table S2. Primers used in this study $(5' \rightarrow 3')$

kusA (An15g02700) deletion construct						
kusA_F1	GGCCGAGAACAAGAGAACCA					
kusA_F2	CGTTTCCGTTTCCTCGCTTG					
kusA_R3	CGGTGAGTTCAGGCTTTTTCATTAACCAGGAACAAGTGGGGC					
kusA F4	GTCCGAGGGCAAAGGAATAGGCCTGAGGACATGAGCTTGT					
kusA_R5	GTAGTGGCCGTGTCATGGAA					
kusA_R6	ACGACCACGAGAGGACTACA					
kusA_DFw	CATCACCGCATGCACTGTTG					
kusA_DRev	GCACGTGACGGAAGAAGTCT					
hph gene						
hph Fw	GCTGGAGCTAGTGGAGGTC					
hph Rev	CGGTCGGCATCTACTCTATT					
•						
pyrG (An12g03570) deletie						
PyrG_F1	TGTGCCAGTCAATTGTCCGA					
PyrG_F2	CTCCTCATCCACCGTCATCG					
PyrG_R3	CTTTGCAGGTGTGGCTGAACCGGTATTGATCCTGCAGGCT					
PyrG_F4	GTTCAGCCACACCTGCAAAG					
PyrG_R5	CTGTACCATCAGCGCTCCTC					
PyrG_R6	GCAAGCGAAGTATGGCAGTG					
Af_PyrG_Fw	CAATGCTCTTCACCCTCTTCG					
Af_PyrG_Rev	CTGAGAGGAGCACTGATGC					
111_1	0.10.10.10.01.00.10.10.0					
pynA (An11g00250) deletie	on constructs					
pynA_F1	ATCGCAGCAATTTCCATGCC					
pynA_F2	ACAAGGTGATGGTCCGGTTC					
pynA_R3	CGAAGAGGGTGAAGAGCATTGTTTGGGCCAAATTGCGAACC					
pynA_F4	GCATCAGTGCCTCCTCTCAGCTGAGGATGGGGGCAGAATC					
pynA_R5	CATTGCCTTCTCGACCCTGT					
pynA_R6	GGCTGCACTAAGCTGTGGTA					
A (A 10 00 52 0) 11 d						
pyrA (An18g00520) deletion constructs						
pyrA_F1	CATGTCCTATTCGACCCGGG					
pyrA_F2	TCGGTTCAGACCCCGAGTA CGAAGAGGGTGAAGAGCATTGGGGTGGTGAGGGAGAAAAG					
pyrA_R3	GCATCAGTGCCTCCTCTCAGAGCCTTGTTGTCGTCCACAA					
pyrA_F4						
pyrA_R5	TTCCACGACAGCCACATTGT					
pyrA_R6	CATCGGCCCATTTCTGCATG					
pyrA_R3_PyrG_recycle	TTGTGGACGACAACAAGGCTGGTGAGGGAGGAAAAG					
pyrA_F4_PyrG_recycle	AGCCTTGTTGTCGTCCACAA					
albA (An09g05730) deletion constructs						
albA_F1	AGTGCAGAGTCGAAC					
albA_F2	CAAATGAACCGGCCATGCTC					
albA_R3	TGACCTCCACTAGCTCCAGCCCTTCCACATCCGTGTCGAT					
_						

albA_F4 AATAGAGTAGATGCCGACCGATCAGTGCCCAATT

albA_R5 CCCTGAAACGGAAGGTCGAA albA_R6 CATCGCTAGAACGCAAAGCC

 $alba_R3_PyrG_recycle \qquad AATTGGGCATGGGCACTGATCCTTCCACATCCGTGTCGAT$

alba_F4_PyrG_recycle ATCAGTGCCCATGCCCAATT

An18g00480 deletion constructs

An18g00480_F1 TCGAACTGGACAGTGCTGAC An18g00480_F2 GATGGGAGGACACTATGCCG

An18g00480_R5 CTTGCCTTCTCCTATGCCCC
An18g00480_R6 TTGAAGACGTGGGGGAGTTG

pyrC (An18g00490) deletion constructs

pyrC_F1 GGTGCTACCGCTGGTATACC pyrC_F2 CGTATCCGAAGTACAGCGCT

pyrC_R5 GGTCCCCGAAAACTGGGTAG pyrC_R6 TCGGCAGTCATTCCAAACGA

pyrB (An18g00500) deletion constructs

pyrB_F1 CGGCCAAGAGGTGAGGATAC pyrB_F2 GTTGGCGAATTGGGCTCATC

pyrB_R5 TGACAGAGTGCGGAAAGACC pyrB_R6 TGACAAGGCCCTTCTTCGAC

pyrE (An18g00510) deletion constructs

pyrE_F1 GAAGCCAACTACCAGCGAGT pyrE_F2 GCTCACCTGACACTTCGACA

pyrE_R5 GTTGGTCTGGCGCATTCATC
pyrE_R6 CAGTCGTTGTTGGGGATCCA

An18g00530 deletion constructs

An18g00530_F1 CCCGTCAATTATCTCGCGGA An18g00530_F2 TGCACGACACTACTCAACCC

An18g00530_R3 CGAAGAGGGTGAAGAGCATTGACGGTCGTTGTCTCCC
An18g00530_F4 GCATCAGTGCCTCCTCTCAGTTGCTTGGAGCGAAGACGAT

An18g00530_R5 CAAGTTGCACGGAGGTAGGT An18g00530_R6 GCAAGACGCTGTTGACACTG

kusA (An15g02700) reintegration construct

kusA reint F1 AAAAGACCGTTCGTATCGCG

kusA_reint_R3CGAAGAGGGTGAAGAGCATTGCTTCCTTTCGGCGCTCTCTTkusA_reint_F4GTCCGAGGGCAAAGGAATAGGCCTGAGGACATGAGCTTGTkusA_reint_R6ACGACCACGAGAGGACTACA

 Table S3. Comparison of A. niger PKS-NRPSs to pyranonigrin E-producing PKS-NRPS

ATCC 1015 gene	CBS 513.88 gene	% Identity	% Subject Coverage
(JGI Designation)	(NCBI Designation)		
Aspni7:1128344	An18g00520	53.4	89.8
Aspni7:1188722	An08g03790	41.1	38.5
Aspni7:1112058	An11g06460	40.1	40.1
Aspni7:1170655	no homolog	41.2	36.6
Aspni7:1087173	no homolog	40.5	38.3
Aspni7:1122199	An02g08290	40.6	35.4
Aspni7:1099903	An14g01910	38.4	38.4
Aspni7:1115863	An14g04850	39.5	42.6

Figure S1. Results of diagnostic PCR for JSC-093350089 mutant strains.

Figure S2. Strategy for gene deletion via selection marker replacement.

Figure S3. Strategy for *pyrG* deletion.

Figure S4. Strategy for kusA reintegration.

Figure S5. UV-Vis and ESIMS (positive or negative mode) spectra of compounds identified in this study.

Figure S6. Verification of pyranonigrin A production in JSC-093350089. LC-MS profiles of pure pyranonigrin A (purchased from Enzo Life Sciences) and extract from JSC-093350089 following growth on glucose minimal media, as detected by UV total scan.

Figure S7. Quantification of *albA* pathway secondary metabolites showing percent change for metabolite production in JSC-093350089 compared to ATCC 1015. Significance was determined using Welch's t-test.

Figure S8. DAD total scan and MS extracted ion chromatogram at m/z 224 of extracts from JSC-093350089 WT and mutant strains pynA- and pyrA-. Highlighted peaks indicate pyranonigrin A production.

Cluster in P. thymicola

Figure S9. Comparison of gene distribution for pyranonigrin A biosynthesis cluster in *P. thymicola* and *A. niger*.