

همطراحی سختافزار نرمافزار

جلسه بیستویکم: سنتز توأم-زمانبندی ۳

ارائهدهنده: آتنا عبدی

a_abdi@kntu.ac.ir

مباحث این جلسه

- سنتز توام در روال همطراحی سختافزار و نرمافزار
 - زمانبندی (Scheduling)
 - رویکردهای زمانبندی پویا
 - ناهنجاریها و مشکلات زمانبندی

الگوریتمهای زمانبندی

- الگوریتمهای ایستا مناسب برای زمانبندهای سختافزاری
 - الگوريتمهاي ASAP و ALAP
 - الگوريتم List scheduling
 - الگوريتمهاي پويا
 - الگوريتم RMS
 - الگوريتم EDF

الگوریتمهای زمانبندی پویا

- دو روش رایج در حیطه زمانبندی پویا و مناسب سیستمهای بیدرنگ
 - RMS: Rate Monotonic Scheduling •
 - تعیین اولویتها بهصورت ثابت و ایستا
 - EDF: Earliest Deadline First
 - تعیین اولویتها بهصورت پویا

الگوريتم زمانبندي EDF

- روش زمانبندی با اولویت پویا و بهینه: Earliest Deadline First
 - تعیین اولویت وظایف به صورت برخط و در حین اجرا با آمدن وظایف
 - وظیفهای اولویت بیشتر دارد که موعدش نزدیک تر باشد
 - مناسب برای سیستمهای تکپردازندهای
 - پیچیدهتر از RMS
 - اولویت، امکان قطع کردن اجرای جاری را فراهم می کند

الگوريتم زمانبندي EDF (مثال)

	J_1	J_2	J_3	J_4	J_5
a_i	0	0	2	3	6
C_i	1	2	2	2	2
d_i	2	5	4	10	9

 a_i : ith-taks's arrival time

الگوریتمهای زمانبندی RM و EDF (مقایسه)

Ti	s _i	d _i	pi	e _i
T1	0	50	50	25
T2	0	80	80	35

Rate-monotonic scheduling: misses deadlines

Earliest-Deadline-First scheduling:

ملاحظات پیادهسازی زمانبندی

- منابع مشترک و مدیریت دسترسی
- ایجاد چالشهایی مانند وارونگی اولویتها
 - وابستگی دادهها
 - محدود کردن اجرای موازی
 - سوئيچ کردن بين پروسهها
- زمان کمی دارد ولی تخمین آن سخت است

وارونگی اولویت

- وظیفه با اولویت پایین تر مانع اجرای وظیفه با اولویت بالا می شود
 - در مواقعی که نیاز به دسترسی به منبع مشترک است
 - وظیفه با اولویت کمتر، زودتر دسترسی به منبع مشترک پیدا می کند
 - در نظر گرفتن مکانیزمهای دسترسی به منبع مشترک و قفل کردن
 - منتظر ماندن وظیفه با اولویت بالا و از دست رفتن موعد آن
 - علت مشکل: مکانیزمهای دسترسی به منبع مشترک

راهکار مشکل وارونگی اولویت

- ارثبری اولویت (Priority Inheritance)
- وظیفهای که برای دسترسی به یک منبع بلوک شده اولویتش را به منبع میدهد
 - وظیفهای که منبع را در اختیار دارد اولویت آن را می گیرد
 - این وظیفه اجرا را ادامه داده و متوقف نمی شود
 - منبع مشترک، سریعتر آزاد می گردد
 - پس از آزاد شدن منبع، اولویتها به حالت قبل برمی گردد.

وارونگی اولویتها در زمانبندی

وابستگیهای دادهای

- عامل تاثیرگذار دیگر، مسئله وابستگی دادهای بین وظایف است
 - توانایی زمانبندی و اجرای موازی وظایف محدود میشود
 - محدود شدن تصمیمات زمانبندی
 - اعمال محدودیت بر زمانبندی

Dependency Order

- Context Switching Time: در متوقف کردن وظایف پیش می آید و زمان بین دو اجراست
 - ذخیره وضعیت پروسه فعلی و بارگذاری وضعیت پروسه جدید
 - وابسته بودن تخمین این زمان به میزان اطلاعات، ترتیب اجرا و شیوه ذخیرهسازی
 - تاثیر گذار بودن زمان این جابجائی و سوئیچ کردن بر زمانبندی
 - اضافه شدن این عملیات به زمان اجرا و دشوارتر کردن زمانبندی
 - افزایش محدودیت

زمان سوئیچ کردن بین پروسهها

زمانبندی در سیستمهای چندپردازندهای

- الگوریتمها و مسائل بیان شده تا به اینجا در بستر سیستمهای تکپردازندهای بود
 - دشوارتر شدن مسئله در بستر سیستمهای چندپردازندهای
 - دخیل شدن فرایند تخصیص وظایف به منبع پردازشی و اهمیت آن
 - ادغام شدن تخصیص با زمانبندی یا درنظر گرفتن مجزا
 - امکان اجرای موازی چندین وظیفه روی پردازندههای مختلف و بهبود کارایی
 - زمان اجرا برابر با طولانی ترین مسیر روی کل پردازندهها

زمانبندی در سیستمهای چندپردازندهای

زمانبندی قطعی مبتنی بر ILP

- مسئله زمانبندی با هدف کمینه کردن تاخیر و رعایت محدودیت منابع پردازشی
 - پیچیدگی زیاد و NP-hard
 - روشهای مکاشفهای
 - روش قطعی مبتنی بر مدل برنامهریزی صحیح خطی
 - مشخص کردن متغیرهای تصمیم مسئله
 - مشخص کردن تابع هدف
 - مشخص کردن محدودیتها