Exploratory Data Analysis (EDA)

1. Collection and Data Overview

Understanding the Dataset

- Dataset Structure:
 - Rows → Represent individual observations.
 - Columns → Represent features (variables).
- Data Types:
 - Numerical (Continuous/Discrete) → Age, Salary, Temperature.
 - Categorical (Nominal/Ordinal) → Gender, Rating, Size (S/M/L).
 - DateTime → Timestamps, Events over time.

Implications:

- Numerical variables allow mathematical operations and statistical modeling.
- Categorical variables require encoding before use in ML models.
- Date-time variables need conversion into meaningful components (year, month, day, etc.).

Checking Dataset Properties in Python

```
import pandas as pd

df = pd.read_csv("data.csv") # Load dataset
print(df.head()) # View first 5 rows
print(df.shape) # (rows, columns)
print(df.info()) # Data types and non-null counts
print(df.describe()) # Summary statistics for numerical columns
```

2. Handling Dates (Introduction)

- Date-time columns often need transformation for analysis.
- Convert a date column to datetime type:

```
df['date'] = pd.to_datetime(df['date'])
```

Extract important components:

```
df['year'] = df['date'].dt.year
df['month'] = df['date'].dt.month
df['day'] = df['date'].dt.day
```

★ Why it's important?

• Helps in **trend analysis**, seasonality detection, and time-based grouping.

3. Missing Values Analysis

Check missing values:

```
print(df.isnull().sum()) # Count missing values in each column
print(df.isnull().mean() * 100) # Percentage of missing values
```

★ Why does missing data occur?

• Human error, data corruption, or improper data collection.

4. Imputation (Introduction & Simple Techniques)

Handling missing values depends on data type and missing percentage.

• **Drop missing values** (if they are very few):

```
df.dropna(inplace=True)
```

• Impute with mean/median/mode:

df['age'].fillna(df['age'].mean(), inplace=True) # For numerical data
df['category'].fillna(df['category'].mode()[0], inplace=True) # For cate

gorical data

• Forward/Backward fill (for time series data):

```
df.fillna(method='ffill', inplace=True) # Forward fill df.fillna(method='bfill', inplace=True) # Backward fill
```

★ Why is imputation important?

• Missing values **affect statistical calculations and ML models**, so they must be handled carefully.

5. Descriptive Statistics and Interpretation

- Used to summarize and understand the distribution of data.
- Common functions:

```
print(df.describe()) # Summary statistics (mean, std, min, max, etc.)
print(df.median()) # Median of numerical columns
print(df.var()) # Variance
print(df.skew()) # Skewness (symmetry of data)
print(df.kurt()) # Kurtosis (sharpness of peak)
```

★ Key Insights from Statistics:

- Mean ≠ Median → Indicates skewness.
- High variance → Data is spread out.
- High kurtosis → Data has many extreme values.

6. Data Visualization

(a) Univariate Scatter Plots (for outlier detection & distribution)

```
import matplotlib.pyplot as plt
import seaborn as sns
plt.scatter(df.index, df["age"])
```

```
plt.title("Univariate Scatter Plot")
plt.show()
```

★ Use case: Detects outliers or clusters in data.

(b) Frequency Plots

Histograms (show distribution of a numerical variable)

```
df["age"].hist(bins=20)
plt.title("Histogram of Age")
plt.xlabel("Age")
plt.ylabel("Frequency")
plt.show()
```

✓ Use case: Identifies data distribution shape and spread.

Distribution Plots – KDE (Kernel Density Estimation)

```
sns.kdeplot(df["age"], shade=True)
plt.title("KDE Plot of Age")
plt.show()
```

✓ Use case: Smoothed version of histogram, useful for seeing probability distributions.

(c) Box Plots (Detecting Outliers)

```
sns.boxplot(x=df["age"])
plt.title("Box Plot of Age")
plt.show()
```

★ Interpretation:

- Median (middle line) Central tendency.
- Box (IQR: Q1 to Q3) Spread of data.
- Whiskers Range within 1.5x IQR.
- Outliers (dots outside whiskers) Extreme values.

7. Outliers (Introduction & Importance of Stats to Interpret Plots)

Outliers are values that **significantly differ** from the rest of the data.

- ★ Why are outliers important?
 - They skew statistical analysis and affect ML model performance.

Detecting Outliers

- Using Boxplot
- Using Z-score:

```
from scipy import stats
df_outliers = df[(np.abs(stats.zscore(df["age"])) > 3)]
```

Using IQR Method:

```
Q1 = df["age"].quantile(0.25)
Q3 = df["age"].quantile(0.75)
IQR = Q3 - Q1
df_outliers = df[(df["age"] < (Q1 - 1.5 * IQR)) | (df["age"] > (Q3 + 1.5 * I
QR))]
```

8. Relevance of Statistics in Interpreting Plots

- **✓ Histograms & KDE Plots** → Identify normal/skewed distribution.
- **Box Plots** \rightarrow Identify outliers & data spread.
- extstyle ex
- \bigvee Descriptive Statistics \rightarrow Help validate interpretations from visualizations.

Final Summary

Topic	Key Takeaway
Data Overview	Rows, columns, data types, and their implications
Handling Dates	Convert to datetime, extract year/month/day

Topic	Key Takeaway
Missing Values	Detect and handle using imputation
Descriptive Statistics	Mean, median, variance, skewness, kurtosis
Univariate Plots	Histograms, KDE plots, box plots
Outliers	Use box plots, Z-score, and IQR to detect anomalies
Stats & Plots	Visual tools + statistical measures = better data insights