Отчет по заданию 1

Выполнил: Нозимов Дилшодхон Зафарович, 23151

Описание задания:

в качестве базиса полиномиального пространства использовались полиномы Чебышева, для реализации QR-алгоритма использовался метод отражений Хаусхолдера. Программа написана на языке Python.

Характеристики компьютера: 1,1 GHz 2-ядерный процессор Intel Core m3

Таблицы 1, 2, 3 показывают числа обусловленности, погрешность, время выполнения для двух методов — МНУ, QR-разложения для данных номер 2, 4, 5 соответственно. На рисунках 1, 2, 3 показаны графики данных и их приближения для степеней полинома 0, 1, 5 соответственно.

Таблица 1. Результаты численных экспериментов для данных № 2

N	$cond(A^TA)$	NRMSE (HY)	Время НУ (с)	cond(A)	NRMSE (QR)	Время QR (c)
0	1	2.87e-02	1.74e-04	1	2.87e-02	7.22
1	3.06e+02	1.14e-02	4.85e-04	1.75e+01	1.14e-02	1.69e+01
2	1.19e+05	6.72e-04	3.61e-04	3.45e+02	6.72e-04	2.84e+01
3	6.13e+07	6.69e-04	3.40e-04	7.83e+03	6.69e-04	4.59e+01
4	2.61e+10	6.66e-04	1.43e-03	1.62e+05	6.66e-04	6.92e+01
5	1.39e+13	4.41e-04	3.53e-03	3.73e+06	4.41e-04	9.05e+01
6	6.11e+15	2.52e-04	8.36e-03	7.80e+07	2.47e-04	9.62e+01
7	1.68e+17	2.41e-04	2.81e-03	1.80e+09	2.36e-04	8.57e+01
8	2.61e+17	2.53e-04	6.51e-03	3.78e+10	2.03e-04	9.77e+01
9	3.60e+17	2.38e-04	6.54e-03	8.71e+11	1.80e-04	2.83e+02
10	2.41e+17	2.37e-04	6.59e-03	1.83e+13	1.67e-04	2.63e+02

Рис. 1. Графики данных и их приближения: а) при степени полинома = 0, б) при степени полинома = 1, в) при степени полинома = 5

Таблица 2. Результаты численных экспериментов для данных № 4

N	$cond(A^TA)$	NRMSE (HY)	Время НУ (с)	cond(A)	NRMSE (QR)	Время QR (c)
0	1	3.31e-01	1.91e-04	1	3.32e-01	9.91e-02
1	1.92e+01	8.30e-02	1.29e-02	4.39e+00	8.30e-02	1.32e-01
2	4.32e+02	4.33e-15	2.54e-04	2.08e+01	3.06e-15	1.61e-01
3	1.50e+04	3.38e-14	1.89e-04	1.22e+02	2.51e-15	2.14e-01
4	4.48e+05	1.92e-13	2.73e-04	6.69e+02	2.12e-15	3.11e-01
5	1.42e+07	1.08e-12	1.83e-04	3.77e+03	1.87e-15	3.42e-01
6	4.46e+08	6.09e-12	2.30e-03	2.11e+04	2.50e-15	3.76e-01
7	1.43e+10	3.20e-11	2.15e-04	1.19e+05	2.21e-15	4.23e-01
8	4.58e+11	1.80e-10	2.52e-03	6.77e+05	2.38e-15	4.70e-01
9	1.48e+13	1.13e-09	3.34e-03	3.84e+06	2.13e-15	5.54e-01
10	4.65e+14	6.20e-09	3.05e-04	2.19e+07	2.03e-15	5.69e-01

Рис. 2. Графики данных и их приближения: а) при степени полинома = 0, б) при степени полинома = 1, в) при степени полинома = 5

Таблица 2. Результаты численных экспериментов для данных № 5

N	$cond(A^TA)$	NRMSE (HY)	Время НУ (с)	cond(A)	NRMSE (QR)	Время QR (c)
0	1	2.94e-01	3.84e-04	1	2.94e-01	1.04e-01
1	1.92e+01	2.76e-02	1.10e-03	4.39e+00	2.76e-02	1.37e-01
2	4.32e+02	2.32e-03	1.79e-04	2.08e+01	2.32e-03	1.63e-01
3	1.50e+04	1.46e-04	1.31e-03	1.22e+02	1.46e-04	2.12e-01
4	4.48e+05	7.32e-06	1.96e-04	6.69e+02	7.32e-06	2.71e-01
5	1.42e+07	3.06e-07	1.10e-03	3.77e+03	3.06e-07	4.82e-01
6	4.46e+08	1.09e-08	2.83e-04	2.11e+04	1.09e-08	6.36e-01
7	1.43e+10	3.43e-10	2.16e-04	1.19e+05	3.43e-10	4.71e-01
8	4.58e+11	5.71e-11	2.68e-04	6.77e+05	9.54e-12	5.36e-01
9	1.48e+13	2.95e-10	2.84e-04	3.84e+06	2.39e-13	5.51e-01
10	4.65e+14	8.99e-10	2.91e-04	2.19e+07	5.46e-15	5.97e-01

Рис. 3. Графики данных и их приближения: а) при степени полинома = 0, б) при степени полинома = 1, в) при степени полинома = 5

Вывод:

Числа обусловленности в методе НУ для матрицы А больше в квадрат раз, чем в методе QR разложения, т.к. при решении с помощью метода НУ число обусловленности матрицы А возводится в квадрат, т.к. считается $\operatorname{cond}(A^T A)$.

На данных номер 2 погрешность не убывает ниже 10e-4, т.к. данные экспериментальные и имеют шумы.

На данных номер 4 погрешность при QR не улучшается после полинома второй степени, т.к. сами данные это полином второй степени, а при методе НУ погрешность меняется из-за большого значения числа обусловленности.

На данных номер 5 погрешность уменьшается в зависимости от степени полинома, т.к. сами данные это значения гладкой функции.

Погрешность при методе НУ больше, чем в методе QR, т.к. числа обусловленности при методе НУ больше, чем в QR.