Khôlles de Mathématiques - Semaine 30

Hugo Vangilluwen

8 juin 2024

Pour cette semaine, E est un ensemble fini de cardianl $n \in \mathbb{N}^*$ et (Ω, \mathbb{P}) désigne un espace probabilisé fini.

1 p-partage d'un ensemble E et leur dénombrement

Soit $p \in \mathbb{N}^*$. Un p-partage de E est un p-liste $(A_1, \ldots, A_p) \in \mathcal{P}(E)^p$ de parties de E (éventuellement vide), deux à deux disjointes qui recouvrent E c'est-à-dire telles que t:

$$\forall (i,j) \in [1;p], i \neq j \implies A_i \cap A_j = \emptyset \quad \text{et} \quad \bigcup_{i=1}^p A_i = E$$
 (1)

Soient $(n_1, \dots n_p) \in \mathbb{N}^p$ tels que $n = n_1 + \dots + n_p$ est un p-partage de E tel que

$$\forall (i,j) \in [1;p], |A_i| = n_i$$

Le nombre de p-partage de type (n_1, \ldots, n_p) est :

$$\frac{n!}{\prod_{i=1}^{p} n_i!} \tag{2}$$

 $D\acute{e}monstration$. Considérons les p-partages de type (n_1,\ldots,n_p) et appliquons le principe des choix successifs :

$$\begin{pmatrix}
A_1, & A_2, & A_3, & \dots, & A_p \\
\binom{n}{n_1} & \text{choix } \binom{n}{n_2} & \text{choix } \binom{n}{n_3} & \text{choix } \binom{n}{n_p} & \text{choix}
\end{pmatrix}$$

donc il y a

$$\frac{n!}{n_1!(n-n_1)!} \frac{(n-n_1)!}{n_2!(n-n_1-n_2)!} \frac{(n-n_1-n_2)!}{n_2!(n-n_1-n_2-n_3)!} \cdots \underbrace{\frac{(n-(n_1+\ldots+n_{p-1}))!}{n_p!(n_1+\ldots+n_p)!}}_{=0!}$$

Donc, au total, il y a $\frac{n!}{n_1!n_2!...n_p!}$ p-partages.

2 Une probabilité conditionnelle est une probabilité

Soit B un évènement de probabilité non nulle. L'application \mathbb{P}_B

$$\mathbb{P}_{B} \middle| \begin{array}{ccc} \mathcal{P}(\Omega) & \mapsto & [0;1] \\ A & \to & \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \end{array} \tag{3}$$

est une probabilité sur sur Ω .

 $D\'{e}monstration.$

- Soit $A \in \mathcal{P}(\Omega)$ fixé quelconque. On a $\emptyset \subset A \cap B \subset B$ donc par croissance de la probabilité, $0 = \mathbb{P}(\emptyset) \leqslant \mathbb{P}(A \cap B) \leqslant \mathbb{P}(B)$. En divisant par $\mathbb{P}(B) \neq 0$, $0 \leqslant \mathbb{P}_B(A) \leqslant 1$. Donc \mathbb{P}_B est bien définie.
- $\mathbb{P}_B(\Omega) = \frac{\mathbb{P}(\Omega \cup B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B)}{\mathbb{P}(B)} = 1$
- Soient $(A,A') \in \mathcal{P}(\Omega)^2$ fixés quel
conques tels que A et A' sont incompatibles.

$$\mathbb{P}_{B}(A \coprod A') = \frac{\mathbb{P}(B \cap (A \coprod A'))}{\mathbb{P}(B)}$$

$$= \frac{\mathbb{P}((B \cap A) \coprod (B \cap A'))}{\mathbb{P}(B)} \operatorname{car} (B \cap A) \cap (B \cap A') \subset A \cap A' = \emptyset$$

$$= \frac{\mathbb{P}(B \cap A) + \mathbb{P}(B \cap A')}{\mathbb{P}(B)}$$

$$= \mathbb{P}_{B}(A) + \mathbb{P}_{B}(A')$$

$$(4)$$

Ainsi, \mathbb{P}_B est bien une probabilité sur Ω .