DOESN'T MATTER

Abstract. We achieve very little. More specifically, we consider the equations $a^2+b^2=c^2$ and

$$ax^2 + bx + c = 0,$$

yet manage to say nothing interesting about either.

External reference to Other File, Theorem 1

Oh hey, what's up. We could take x = y, or we could solve

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^2 = 1.$$
 (0.1)

Equation (0.1) is standard. See also [1].

Let's add one more equation:

$$\dim PGL_2(\mathbb{R}) = 3.$$

Check out my lemma:

Lemma 0.1. This is my lemma.

Proof. I said so.
$$\Box$$

By Lemma 0.1, whatever.

They say that lunch time only comes once a day. Be prepared.

1. This is a section

Theorem 1.1. This is a theorem in a section.

Test

Exercise 1. This is an exercise.

Proposition 1.2. This is a proposition.

FIGURE 1. The coadjoint orbit \mathcal{O}_{π} near τ . The dotted rectangle indicates the support of a.

References

[1] Paul D. Nelson. Bounds for standard L-functions. $arXiv\ e$ -prints, page arXiv:2109.15230, September 2021.