Logik

Aussagenlogik

Aussage Satz/Formel entweder wahr oder falsch: ..-form" bei zu wenig Infos.

Theoreme sind wahre Aussagen.

Junktoren

Negation $\neg A$	"Nicht"	(!, ~,	>)
--------------------------	---------	--------	---	---

Konjunkt.
$$\mathcal{A} \wedge \mathcal{B}$$
 "und" (&&, \Rightarrow)

Disjunkt.
$$A \lor B$$
 "oder" (II, \Rightarrow)

Implikat.
$$\mathcal{A} \Rightarrow \mathcal{B}$$
 "Wenn, dann" " \mathcal{B} " $(\rightarrow$, if)

 $\mathcal{A} \Rightarrow \mathcal{B}$ " \mathcal{A} hinreichend"

 $\mathcal{B} \Rightarrow \mathcal{A} ... \mathcal{A}$ notwendig"

Äquiv. $\mathcal{A} \Leftrightarrow \mathcal{B}$ "Genau dann, wenn" $(\leftrightarrow, \equiv, ==, \implies)$

Wahrheitswertetabelle mit 2ⁿ Zeilen für n Atome. Konstruktionssystematik: Frequenz pro Atom verdoppeln.

\mathcal{A}	\mathcal{B}	$\neg \mathcal{A}$	$\mathcal{A} \wedge \mathcal{B}$	$\mathcal{A} \vee \mathcal{B}$	$\mathcal{A}\Rightarrow\mathcal{B}$	$\mathcal{A} \Leftrightarrow \mathcal{B}$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Äquivale	Äquivalente Formeln ⇔					
$A \wedge B$	$B \wedge A$	Kommutativ				
$A \vee B$	$B \lor A$	Rommutativ				
$A \wedge (B \wedge C)$	$(A \wedge B) \wedge C$	Assoziativ				
$A \vee (B \vee C)$	$(A \lor B) \lor C$	ASSOZIALIV				
$A \wedge (B \vee C)$	$(A \wedge B) \vee (A \wedge C)$	Distributiv				
$A \vee (B \wedge C)$	$(A \lor B) \land (A \lor C)$	Distributiv				
$A \wedge A$	A	Idempotenz				
$A \vee A$	A	idempotenz				
$\neg \neg A$	A	Involution				
$\neg(A \land B)$	$\neg A \lor \neg B$	De-Morgan				
$\neg(A \lor B)$	$\neg A \land \neg B$	DE-MORGAN				
$A \wedge (A \vee B)$	A	Absorption				
$A \vee (A \wedge B)$	A	Absorption				
$A \Rightarrow B$	$\neg A \lor B$					
$\neg(A \Rightarrow B)$	$A \wedge \neg B$	Elimination				
$A \Leftrightarrow B$	$(A \Rightarrow B) \land (B \Rightarrow A)$					

Klassische Tautologien

 $A \vee \neg A$

 $A \wedge (A \Rightarrow B) \Rightarrow B$

 $(A \wedge B) \Rightarrow A$

 $A \Rightarrow (A \lor B)$

Häufige Fehler

Beweistechniken

nommen

surdum)

Negation (DE-MORGAN)

 $\neg \exists x F(x) \Leftrightarrow \forall x \neg F(x)$

 $\neg \forall x F(x) \Leftrightarrow \exists x \neg F(x)$

• $\exists x (P(x) \Rightarrow Q(x)) \not\Rightarrow \exists x P(x)$

nen wahre und falsche Aussagen folgen.

 $\neg B$.

Fallunters. Aufteilen, lösen, zusammen-

schränkung der Allgemeinheit"

 $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$

führen. O.B.d.A = "Ohne Be-

Angenommen $A \wedge \neg B$, zeige

Kontradiktion. (Reductio ad ab-

 $A \Leftrightarrow B \Leftrightarrow C \Leftrightarrow \cdots$

1. Anfang: Zeige $F(n_0)$.

Starke Induktion: Angenommen

 $n \in \mathbb{N}$.

 $=A \Rightarrow B \Rightarrow C \Rightarrow \cdots \Rightarrow A$

2. **Schritt:** Angenommen F(n)

(Hypothese), zeige

F(n+1) (Behauptung

 $F(k) \quad \forall n_0 \leq k \leq$

Direkt $A \Rightarrow B$ Angenommen

A, zeige B.

(Kontraposition).

Widerspruch $(\neg A \Rightarrow \bot) \Rightarrow A$

Ring (Transitivität der Implikation)

Induktion $F(n) \quad \forall n > n_0 \in \mathbb{N}$

• $\neg \exists x \exists y P(x, y) \Leftrightarrow \forall x \neg \exists y P(x, y)$

• $U = \emptyset^{\mathbb{C}}$ nicht notwendig

Axiomatik

Axiome als wahr angenommene Aussagen: an Nützlichkeit gemessen.

Anspruch, aber nach GÖDELS Unvollständigkeitssatz nicht möglich:

- Unabhängig
- Vollständig
- Widerspruchsfrei

Prädikatenlogik

Quantoren Innerhalb eines Univer-

Existenzg. ∃ "Mind. eines"

Individuum ∃! ..Genau eines"

Allq. ∀ "Für alle"

Quantitative Aussagen

Erfüllbar $\exists x F(x)$

Widerlegbar $\exists x \neg F(x)$

Tautologie $\top = \forall x F(x)$ (alle Schlussregeln)

Kontradiktion $\bot = \forall x \neg F(x)$

-	Häufige	Fehler

Bezeichnung

Modus ponens

Abschwächung

Oder: Ange-

zeige

Ausgeschlossenes Drittes

- Nicht voraussetzen, was zu beweisen ist
- Äguival, von Implikat, unterscheiden (Zweifelsfall immer Implikat.)

Abzählbar $\exists f_{\mathsf{surj.}} : \mathbb{N} \to M$

- Endliche Mengen, Ø. N. Z. O
- $M_{\text{abz.}} \wedge N_{\text{abz.}} \Rightarrow (M \cup N)_{\text{abz.}}$ $(=\{m_1,n_1,m_2,n_2,\dots\})$
- $M_{abz} \wedge N \subseteq M \Rightarrow N_{abz}$

- $f(1) = 0, \mathbf{r}_{11}r_{12}r_{13}r_{14}\dots$ $f(2) = 0, r_{21} \mathbf{r}_{22} r_{23} r_{24} \dots$
- $f(3) = 0, r_{31}r_{32} \mathbf{r}_{33} r_{34} \dots$
- $f(4) = 0, r_{41}r_{42}r_{43} \mathbf{r}_{44} \dots$

(CANTORS Diagonalargumente)

Naive Mengenlehre

Mengen Zusammenfassung Objekte "Elemente".

Element $x \in M$ "enthält"

Leere M. $\emptyset = \{\}$

Universum U

Achtung: Aus falschen Aussagen kön-Einschränkung $\{x \mid F(x)\}$

Relationen

Mächtigkeit

$$|M| egin{cases} = n & ext{endlich} \ \geq \infty & ext{unendlich} \ = |N| \Leftrightarrow \exists f_{ ext{bijekt.}}: M o N \end{cases}$$

Kardinalität ÄK. für Gleichmächtigkeit

$$|M| \leq |N| \Leftarrow \exists f_{\mathsf{injekt.}} : M \to N$$

- $M \subset N \Rightarrow |M| < |N|$
- ullet $|M| \leq |N| \Leftrightarrow \exists f_{\mathsf{surj.}}: N o M$ Sei Indexmenge I und Menge

Operationen

Schnitt $M \cap N \Leftrightarrow \{x \mid x \in M \land x \in A\}$ N (= \emptyset ,,disjunkt")

$$\textbf{Diff.}\ M \setminus N \Leftrightarrow \{x \mid x \in M \land x \notin N\}$$

Komplement
$$M^{\complement}$$
 $\{x \mid x \notin M\}$

Alle logischen Äquivalenzen gelten auch für die Mengenoperationen.

Häufige Fehler

• $\forall M : \emptyset \subseteq M$, nicht $\forall M : \emptyset \in M$

Quantitative Relationen

 $M_i \quad \forall i \in I.$

$$\bigcup_{i \in I} M_i := \{x \mid \exists i \in I : x \in M_i\}$$
$$\bigcap_{i \in I} M_i := \{x \mid \forall i \in I : x \in M_i\}$$

Neutrale Elemente

- $\bigcup_{i \in \emptyset} M_i = \emptyset$ (",hinzufügen")
- $\bigcap_{i \in \emptyset} M_i = U$ ("wegnehmen")

Potenzmenge

$$\begin{split} \mathcal{P}(M) := & \{ N \mid N \subseteq M \} \\ |\mathcal{P}(M)| = & 2^{|M|} \quad (\in / \not \in \mathsf{bin\"{a}r}) \end{split}$$

Auswahlaxiom (AC)

Für Menge \mathcal{X} nicht-leerer Mengen:

$$\exists c: \mathcal{X} \to \bigcup \mathcal{X}$$

$$\forall X \in \mathcal{X} : c(X) \in X$$

Nutzung kennzeichnen!

Relationen

Kartesisches Produkt

$$X_1 \times \cdots \times X_n := \{(x_1, \cdots, x_n) \mid x_1 \in X_1, \cdots, x_n \in X_n\}$$

Relation \sim von/auf M nach N ist Teilmenge $R \subseteq M \times N$. $(R' \subseteq N \times P)$

$$m \sim n \Leftrightarrow (m, n) \in R$$

 \equiv Reflexiv $\forall x \in M : (\mathbf{x}, \mathbf{x}) \in R$ $\Leftrightarrow id_M \subseteq R$

Irreflexiv $\forall x \in M : (x, x) \notin R$ $\Leftrightarrow \operatorname{id}_M \cap R = \emptyset$

- \equiv Sym. $\forall (x, y) \in R : (y, x) \in R$ $\Leftrightarrow R \subseteq R^{-1}$
- \prec Antis. $\forall x, y : ((x, y) \in R \land (y, x) \in$ $R) \Rightarrow \mathbf{x} = \mathbf{v}$ $\Leftrightarrow R \cap R' \subseteq \mathsf{id}_M$

- \equiv Transitiv $\forall \mathbf{x}, y, \mathbf{z} : ((x, y) \in R \land$ $(y,z) \in R$ \Rightarrow $(\mathbf{x},\mathbf{z}) \in R$ $\Leftrightarrow R; R \subseteq R$
- **Vollst.** $\forall x, y \in M : (x, y) \in R \vee$ $(y,x) \in R$ $\Leftrightarrow R \cup R^{-1} = M \times M$

Spezielle Relationen

Inverse Relation R^{-1} mit $R \in M \times$ $\{(n,m) \in N \times M \mid (m,n) \in R\}$

Komposition R; R mit $R' \in N \times P :=$ $\{(m,p)\in M\times P\mid \exists n\in N:$ $(m,n) \in R \land (n,p) \in R'$

Leere Relation Ø

Identität $id_M := \{(m, m) \mid m \in M\}$ (=)

All relation $M \times M$

Äquivalenzrelation \equiv reflexiv, sym- Urbilder $f^{-1}(Y') = \{x \in X \mid f(x) \in X \mid f(x) \in X \mid f(x) \in X \mid f(x) \in X \}$ metrisch und transitiv. (Gleichheit***)

Äquivalenzklasse $[m]_{=}$ auf M, Vertreter $m \in M$.

$$[m]_{\equiv} := \{x \in M \mid m \equiv x\}$$

$$\Leftrightarrow [m]_{\equiv} = [x]_{\equiv}$$

Zerlegung $\mathcal{N} \subseteq \mathcal{P}(M)$ von M.

- $\emptyset \notin \mathcal{N}$
- $M = \bigcup \mathcal{N}$
- $N \cap N' = \emptyset$ $(N, N' \in \mathcal{N} : N \neq N')$
- (Korrespondiert zur ÄR.)

Quotient (\mathbf{M}/\equiv) Sei \equiv ÄR. auf M. (ist Zerlegung)

$$(M/\equiv):=\{[m]_{\equiv}\mid m\in M\}$$

• (Korrespondiert zur ÄK.)

Ordnungsrelation ≺ reflexiv, antisymmetrisch, transitiv

Untere Schranken $m \in \downarrow X$ $\forall x \in X : m \prec x$ Kleinstes $\min_{\prec} X \in X$

Totale Ordnung + vollständig (Trichotomie)

Abbildungen

Abbildung f von X (Definitionsb.) nach Y (Werteb.) ordnet jedem $x \in X$ eindeutig ein $y \in Y$ zu.

Totalität $\forall x \in X \exists y \in Y : f(x) = y$ Eindeutigkeit $\forall x \in X \forall a, b \in Y$: $f(x) = a \land f(x) = b \Rightarrow a = b$

$$\mathbf{f}:X\to Y$$

Bilder $f(X') = \{f(x) \mid x \in$ X' $X' \subseteq X$

Y'} $Y' \subseteq Y$

Graph $gr(f) := \{(x, f(x)) \mid x \in X\}$

Identität

$$id_A: A \to A$$
 $id_A(a) := a \quad \forall a \in A$

Umkehrfunktion $f^{-1}: Y \to X$ wenn f bijektiv und $(f \circ f^{-1})(y) = y$ bzw. $f; f^{-1} = \operatorname{id}_X \wedge f^{-1}; f = \operatorname{id}_X$ Für die Relation f^{-1} gilt:

- $x \in f^{-1}(\{f(x)\})$
- $f(f^{-1}(\{y\})) = \{y\}$ falls fsurjektiv

Eigenschaften

Injektiv $\forall x_1, x_2 \in X$: $x_1 \neq x_2 \Leftrightarrow f(x_1) \neq f(x_2)$

Surjektiv $\forall y \in Y \exists x \in X : \mathbf{v} = \mathbf{f}(\mathbf{x})$

Bijektiv/Invertierbar wenn injektiv und surjektiv

Cantor-Schröder-Bernstein

$$\left. egin{aligned} f: M & \to N \\ g: N & \to M \end{aligned}
ight.$$
 injekt. $\Rightarrow \exists B_{ ext{blickt.}}: M & \to N \end{cases}$

Fixpunkt f(m) = mSei $X\subseteq Y\subseteq M$, $f:M\to N$

- $f(X) \subseteq f(Y)$ (Monotonie)
- $M \setminus Y \subset M \setminus X$
- $M \setminus (M \setminus X) = X$

Knaster-Tarski-Lemma Sei $X \subseteq Y \subseteq$ $M \Rightarrow f(X) \subseteq f(Y)$ (monoton), dann hat $f: \mathcal{P}(M) \to \mathcal{P}(M)$ einen Fixpunkt

Verkettung $f \circ q : A \to C$

$$(f \circ g)(a) = f(g(a))$$
 (der Reihenfolge nach)

Analysis

Reelle Zahlen R

Angeordnete Körper

(Gilt auch für \mathbb{Z} und \mathbb{Q})

Körperaxiome $(\mathbb{R}, +, *)$ $a, b, c \in \mathbb{R}$

Addition $(\mathbb{R},+)$

Assoziativität

a + (b+c) = (a+b) + c

Kommutativität

a+b=b+a

Neutrales Element Null a+0=a $0\in\mathbb{R}$

Inverses .. Negativ"

 $a + (-a) = 0 \quad (-a) \in \mathbb{R}$

Multiplikation $(\mathbb{R}, *)$

Assoziativität a*(b*c) = (a*b)*c Brüche Kommutativität a * b = b * a

Neutrales Element Eins $a * 1 = a \quad 1 \in \mathbb{R} \setminus \{0\}$

Inverses "Kehrwert" $a*(a^{-1})=1$ $a \neq 0, (a^{-1}) \in \mathbb{R}$

Distributivität

$$\mathbf{a} * (b+c) = \mathbf{a} * b + \mathbf{a} * c$$

Totale Ordnung

Transitivität

$$a < b \land b < c \Rightarrow a < c$$

Trichotomie Entweder

$$a < b \text{ oder } a = b \text{ oder } b < a$$

 $\Rightarrow Irreflexivit ext{at } (a < b \Rightarrow a \neq b)$

Addition

$$a < b \Rightarrow a + c < b + c$$

Multiplikation

$$a < b \Rightarrow a * c < b * c \quad 0 < c$$

Bei Additiver oder Multiplikativer Inversion dreht sich die Ungleichung.

Archimedes Axiom

$$\forall x \in \mathbb{R} \exists n \in \mathbb{N} : n > x$$
$$n > \frac{1}{x}$$

Teilbarkeit

 $a|b \Leftrightarrow \exists n \in \mathbb{Z} : b = a * n$

 $(\Rightarrow \sqrt{2} \notin \mathbb{Q}$, da mit $\frac{a}{\hbar} = \sqrt{2}$ nicht teilerfremd)

Häufige Fehler

- Nicht durch Null teilen/kürzen
- Nicht -x < 0 annehmen
- Multiplikation mit negativen Zahlen kehrt Ungleichungen

Operationen

- \bullet $\frac{a}{b} * \frac{c}{d} = \frac{ac}{bd}$
- \bullet $\frac{a}{a} + \frac{b}{a} = \frac{a+b}{a}$

Wurzeln $b^n = a \Leftrightarrow b = \sqrt[n]{a}$

- $\bullet \quad \sqrt[n]{\sqrt[m]{a}} = \sqrt[n*m]{a}$
- $\sqrt[n]{a} < \sqrt[n]{b}$ $0 \le a < b$
- $\bullet \quad \sqrt[n+1]{a} < \sqrt[n]{a} \quad 1 < a$
- $\sqrt[n]{a} < \sqrt[n+1]{b}$ 0 < a < 1

$$\sqrt[n]{a^n} = |a| \quad a \in \mathbb{R}$$

Potenzen $a^{\frac{x}{y}} = \sqrt[y]{a^x}$

- $\bullet \ a^{\mathbf{x}} * b^{\mathbf{x}} = (a * b)^{\mathbf{x}}$
- $\bullet \ a^x * a^y = a^{x+y}$
- $\bullet \ (a^x)^y = a^{x*y}$

Dezimaldarstellung

 $\begin{array}{ll} \textbf{Gauss-Klammer} & [y] := \max\{k \in \mathbb{Z} \mid k \leq y\} = \lfloor y \rfloor \end{array}$

$$[y] = k \Leftrightarrow k \leq y < k+1$$

Existenz $\forall x \geq 0 \exists ! (a_n)_{n \in \mathbb{N}} \text{ mit }$

- $a_n \in \{0, \dots, 9\} \quad \forall n \in \mathbb{N}$
- $\bullet \ \, \sum_{i=0}^{n} \frac{a_{i}}{10^{i}} \, \leq x \ \, < \ \, \sum_{i=0}^{n} \frac{a_{i}}{10^{i}} \, + \\ \frac{1}{10^{n}} \ \, \forall n \in \mathbb{N}_{0}$

Die Umkehrung gilt mit Lemma:

$$x = \sum_{n=0}^{\infty} \frac{a_n}{10^n}$$

Lemma $x \geq 0$, $(a_n)_{n \in \mathbb{N}}$ Dezi. von x

$$\neg(\exists N \in \mathbb{N} \forall n \ge N : a_n = 9)$$

 $x \in \mathbb{Q} \Leftrightarrow (a_n)_{n \in \mathbb{N}}$ periodisch

Intervalle

Sei $A \subseteq \mathbb{R}, A \neq \emptyset, a_0 \in A$.

Geschlossen
$$[a;b]:=\{x\in\mathbb{R}\mid a\leq x\leq b\}$$
 ("Ecken sind mit enthalten")

Kleinstes/Größtes Element

 $\begin{array}{l}
\mathbf{Minimum} \ \min(A) := a_0 \\
\Leftrightarrow \forall a \in A : \mathbf{a}_0 \le a
\end{array}$

Maximum
$$\max(A) := a_0$$

 $\Leftrightarrow \forall a \in A : \mathbf{a} \le a_0$
 $(\nexists^{\min}/_{\max}(a;b))$

Beschränktheit A heißt

Oben beschränkt
$$\exists s \in \mathbb{R} \forall a \in A: \mathbf{a} \leq s$$

Unten beschränkt $\exists s \in \mathbb{R} \forall a \in A: s \leq a$

Vollständigkeit

Infimum (klein) $\inf(A)$:= $\max\{s \in \mathbb{R} \mid \forall a \in A : s \leq a\}$

Supremum (groß)
$$\sup(A)$$

:= $\min\{s \in \mathbb{R} \mid \forall a \in A : \mathbf{a} \le s\}$

Vollständigkeitsaxiom $\exists \sup(A)$.

Untere Schranken	m	in A	max		Obere Schranken		
	inf	~ ~	V V -]	sup		$\overline{\mathbb{R}}$	

Folgen

 $\begin{array}{ll} \textbf{Folge} \ (\mathbf{a_n})_{\mathbf{n} \in \mathbb{N}} & \text{in A ist eine Abb. } f: \\ \mathbb{N} \to A \ \text{mit } a_n = f(n). \end{array}$

Geometrische Folge
$$a_{n+1} = a_n * q$$

 $a_n = q^n \quad q \in \mathbb{R}$

Rekursion a_n ist auf a_{n-1} definiert.

$$a_{n+1} = F(n, a_n) \quad \forall n \in \mathbb{N}$$

 $F: A \times \mathbb{N} \to A$

$$\exists p_1, \dots, p_n \in \mathbb{P} : n = \mathbf{p_1} * \dots * \mathbf{p_n}$$

Summen und Produkte

Summe $\sum_{i=1}^{n} i = 1 + 2 + \cdots + n$

Produkt
$$\prod_{i=1}^{n} i = 1 * 2 * 3 * \cdots * n$$

Fakultät
$$n! = \prod^n i \ (0! = 1)$$

Gaussche Summe $n \in \mathbb{N}$

$$\sum_{i=1}^{n} i = \frac{n * (n+1)}{2}$$

Geom. Summe $q \in \mathbb{R} \setminus \{0\}, n \in \mathbb{N}_0$

$$\sum_{i=0}^{n} q^{i} = \frac{1 - q^{n+1}}{1 - q}$$

Bernoulli Unglei. $n \in \mathbb{N}_0, x \ge -1$

$$(1+x)^n \ge 1 + nx$$

Binom. Koeff. $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

- Rechnen: $\frac{n>k}{0<(n-k)}$
- $\bullet \ \binom{n}{0} = \binom{n}{n} = 1$
- $\bullet \ \binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$

 $\mbox{ Binomischer Satz } \quad n \in \mathbb{N}$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} * a^{n-k} b^k$$

Grenzwerte

$$\mathbf{Betrag} \quad |x| := \left\{ \begin{array}{ccc} x & 0 \le x \\ - & x & x < 0 \end{array} \right.$$

$$\mathbf{Lemma} \ |x*y| = |x|*|y|$$

 $\ \, \textbf{Dreiecksungleichung} \ \, |x+y| \leq |x|+|y|$

Konvergenz

Sei $(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}, a\in\mathbb{R}$.

$$a_n \xrightarrow{n \to \infty} a \Leftrightarrow$$

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \in \mathbb{N} n \ge n_0 :$$

$$|\mathbf{a_n} - \mathbf{a}| \le \epsilon$$

$$(a - \epsilon \le a_n \le a + \epsilon)$$

•
$$a_n \xrightarrow{n \to \infty} a \Leftrightarrow \lim_{n \to \infty} a_n = a$$

Beschränkt + monoton \Rightarrow konvergent:

$$\lim_{n \to \infty} a_n = \begin{cases} \inf\{a_n \mid n \in \mathbb{N}\} & (a_n)_{\text{fall.}} \\ \sup\{a_n \mid n \in \mathbb{N}\} & (a_n)_{\text{steig.}} \end{cases}$$

Nullfolgen $\lim_{n\to\infty} a_n = 0$

- $\lim_{n\to\infty} \frac{1}{n^k} = 0$ $k \in \mathbb{N}$
- $\lim_{n\to\infty} nq^n = 0$

Folgen gegen 1

- $\lim_{n\to\infty} \sqrt[n]{a} = 1$ a>0
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$

Bestimmt Divergent

$$a_n \xrightarrow{n \to \infty} \infty \Leftrightarrow$$

$$\forall R > 0 \exists n \ge n_0 \in \mathbb{N} : a_n \ge R$$

$$a_n \xrightarrow{n \to \infty} -\infty \Leftrightarrow$$

$$\forall R < 0 \exists n > n_0 \in \mathbb{N} : a_n \le R$$

$$\lim_{n\to\infty}q^n\begin{cases}=0&(-1;1)\\=1&=1\\\geq\infty&>1\\\operatorname{div}.&\leq-1\end{cases}$$

Monotonie

Monoton fallend

$$a_n \geq a_{n+1} \quad \forall n \in \mathbb{N}$$

Monoton steigend

$$a_n \leq a_{n+1} \quad \forall n \in \mathbb{N}$$

Beschränktheit

$$\exists k > 0 \forall n \in \mathbb{N} : |\mathbf{a}_{\mathbf{n}}| \le \mathbf{k}$$

- Konvergent ⇒ beschränkt
- Unbeschränkt \Rightarrow divergent

Grenzwertsätze

$$\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b$$

- $a_n \xrightarrow{n \to \infty} a \wedge a_n \xrightarrow{n \to \infty} b$ $\Rightarrow a = b \text{ (Max. einen Grenzw.)}$
- $a = 0 \land (b_n)_{beschr.}$ $\Leftrightarrow \lim_{n \to \infty} a_n b_n = 0$
- $a_n \le b_n \Leftrightarrow a \le b \pmod{<}$

$$\bullet \lim_{n \to \infty} \begin{cases} a_n \pm b_n = a \pm b \\ a_n * b_n = a * b \\ a_n * c = a * c \\ \sqrt[k]{a_n} = \sqrt[k]{a} \\ |a_n| = |a| \end{cases}$$

Einschachtelungssatz

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = a$$

$$\forall n \ge N \in \mathbb{N} : \mathbf{a_n} \le \mathbf{c_n} \le \mathbf{b_n}$$

$$(\exists) \lim_{n \to \infty} c_n = \mathbf{a}$$

Spezielle Folgen

Teilfolge streng mnt. Folge $(b_k)_{n \in \mathbb{N}}$ mit $(n_k)_{k \in \mathbb{N}}$, sodass $b_k = \mathbf{a_{nk}} \quad \forall k \in \mathbb{N}$.

$$\lim_{n \to \infty} a_n = a \Rightarrow \lim_{n \to \infty} a_{nk} = a$$

(da n_k mnt. steigend)

$$\forall (a_n)_{n\in\mathbb{N}} \exists (a_{n\,k})_{k\in\mathbb{N}_{mnt}}$$

(nicht streng!)

 ${\bf H\ddot{a}ufungspunkt} \quad h \ {\rm mit \ einer \ Teilfolge}$

$$\lim_{n \to \infty} a_{nk} = h$$

• $\lim_{n\to\infty} a_n = a \Leftrightarrow \exists ! : h = a$

Bolzano-Weierstraß

 $(a_n)_{n \in \mathbb{N}_{heschr}} \Rightarrow \exists h_{H"auf}$.

(Beschränkte Teilfolgen besitzen mind, einen Häufungspunkt)

Cauchy-Folge

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n, m \ge n_0 :$$

 $|a_n - a_m| \le \epsilon$

(Konv. ohne bekannten Grenzwert)

Vollständigkeit von ℝ

$$(a_n)_{n\in\mathbb{N}_{\mathrm{CAUCHY}}}\Leftrightarrow \exists \lim_{n\to\infty} a_n$$

$$(\exists \lim_{n \to \infty} a_n \Rightarrow (a_n)_{n \in \mathbb{N}_{\text{CAUCHY}}}$$

$$\Rightarrow (a_n)_{n \in \mathbb{N}_{\text{beschr.}}}$$

$$\Rightarrow \exists h \quad \text{(BW)}$$

$$\Rightarrow \lim_{n \to \infty} a_n = h)$$

Stetigkeit

Berührungspunkt $D \subseteq \mathbb{R}, a \in \mathbb{R}$

$$\begin{array}{c} a \text{ BP. von } D \\ \Leftrightarrow \exists (x_n)_{n\in\mathbb{N}} \text{ in } D: x_n \xrightarrow{n\to\infty} a \\ \Leftrightarrow \forall \delta > 0 \exists x \in D: |x-a| \leq \delta \end{array}$$

Grenzwert gegen Stelle $f:D \rightarrow$ $\mathbb{R}, y \in \mathbb{R}, a$ BP. von D

$$\begin{split} \lim_{x \to a} f(x) &= y \\ \Leftrightarrow \forall (x_n)_{n \in \mathbb{N}} \text{ in } D: \\ x_n \xrightarrow{n \to \infty} a \Rightarrow f(x_n) \xrightarrow{n \to \infty} y \\ \Leftrightarrow \forall \epsilon > 0 \exists \delta > 0 \forall x \in D: \\ |x - a| &\leq \delta \Rightarrow |f(x) - y| &\leq \epsilon \end{split}$$

(Grenzwertsätze gelten analog)

Stetig an Stelle f stetig bei a

$$\begin{split} \lim_{x \to a} f(x) &= f(a) \\ \Leftrightarrow \forall (x_n)_{n \in \mathbb{N}} \text{ in } D: \\ x_n \xrightarrow{n \to \infty} a \Rightarrow f(x_n) \xrightarrow{n \to \infty} f(a) \\ \Leftrightarrow \forall \epsilon > 0 \exists \delta > 0 \forall x \in D: \\ |x - a| &\leq \delta \Rightarrow |f(x) - f(a)| \leq \epsilon \end{split}$$

(U.A. stetig: Summen, Produkte, Quotienten, Verkettungen stetiger Fkt. und Polynome)

Einseitiger Grenzwert $x_0^{<}/_{>}a \in D$

$$\lim_{x \nearrow / \searrow a} f(x) = y$$

$$\Leftrightarrow \forall (x_n)_{n \in \mathbb{N}} \text{ in } D:$$

$$(x_n \xrightarrow{n \to a} a \land \forall n : \mathbf{x_n}^{<} / > \mathbf{a})$$

$$\Rightarrow f(x_n) \xrightarrow{n \to \infty} y$$

$$\Leftrightarrow \lim_{x \to a} f(x) = y \land x_0^{<} / > a \in D$$

Grenzwert gegen ∞ *D* unbeschränkt

$$\lim_{x \to \infty} f(x) = y$$

$$\Leftrightarrow \forall (x_n)_{n \in \mathbb{N}} \text{ in } D:$$

$$x_n \xrightarrow{n \to \infty} \infty \Rightarrow f(x_n) \xrightarrow{n \to \infty} y$$

$$\Leftrightarrow \forall \epsilon > 0 \exists x_0 \in \mathbb{R} \forall x \in D:$$

$$x \ge x_0 \Rightarrow |f(x) - y| \le \epsilon$$

Grenzwert $= \infty$

$$\lim_{x \to a} f(x) = \infty$$

$$\Leftrightarrow \forall (x_n)_{n \in \mathbb{N}} \text{ in } :$$

$$x_n \xrightarrow{n \to \infty} a \Rightarrow f(x_n) \xrightarrow{n \to \infty} \infty$$

$$\Leftrightarrow \forall R > 0 \exists \delta > 0 \forall x \in D :$$

$$|x - a| \le \delta \Rightarrow f(x) \ge R$$

Lemma
$$f(a) > \eta \Rightarrow \forall x \exists \delta > 0 \in D \cap [a - \delta, a + \delta] : f(x) > \eta$$

Zwischenwert $[a;b] \subseteq \mathbb{R}, f:[a;b] \rightarrow$ \mathbb{R} stetig, $f(a) \neq f(b)$

Konvergenzkriterien

Cauchy

$$\Leftrightarrow (\sum_{k=1}^{n} a_k)_{n \in \mathbb{N}} \text{ CAUCHY}$$

$$(\sum_{k=1}^{\infty} a_k)_{\text{konv.}}$$

$$\Leftrightarrow \forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n > m > n_0 :$$

$$|\sum_{k=m+1}^{n} a_k| \leq \epsilon$$

$$(\sum_{n=1}^{\infty} a_n)_{\mathsf{konv.}} \Rightarrow \lim_{n \to \infty} a_n = 0$$

$$\lim_{n \to \infty} a_n \neq 0 \Rightarrow (\sum_{n \to \infty} a_n)_{\mathsf{div.}}$$

Beschränkt $a_n \geq 0 \ (\Rightarrow mnt.) \ \forall n \in \mathbb{N}$

$$(\sum_{n=1}^{\infty} a_n)_{\textit{beschr.}} \Leftrightarrow (\sum_{n=1}^{\infty} a_n)_{\textit{konv.}}$$

$$(\sum_{n=1}^{\infty} b_n)_{\text{konv.}} \Leftrightarrow (\sum_{n=1}^{\infty} a_n)_{\text{konv}}$$

Quotient $a_n > 0 \quad \forall n \in \mathbb{N}$

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n} \begin{cases} <1\to (\sum_{n=1}^\infty a_n)_{\mathsf{konv.}} \mathsf{Korollar} \\ >1\to (\sum_{n=1}^\infty a_n)_{\mathsf{div.}} \end{cases} \bullet \mathrm{ex}$$

Wurzel $a_n \geq 0 \quad \forall n \in \mathbb{N}$

$$\lim_{n o\infty}\sqrt[n]{a_n}igg\{<1 o(\sum_{n=1}^\infty a_n)_{\mathsf{konv.}}\ >1 o(\sum_{n=1}^\infty a_n)_{\mathsf{div.}}$$

Absolut

$$(\sum_{n=1}^{\infty} |a_n|)_{\text{konv.}} \Rightarrow (\sum_{n=1}^{\infty} a_n)_{\text{konv.}}$$

$$|\sum_{n=1}^{\infty} a_n| \le \sum_{n=1}^{\infty} |a_n|$$

(Dreiecksungleichung)

Leibniz $(a_n)_{n\in\mathbb{N}}$ mnt. Nullfolge

$$(\sum_{n=1}^{\infty} (-1)^n * a_n)_{\mathsf{konv.}}$$

Grenzwert $a_n, b_n \geq 0 \quad \forall n \in \mathbb{N}$

$$\lim_{n o \infty} rac{a_n}{b_n} > 0 \Rightarrow$$

$$(\sum_{n=1}^{\infty} a_n)_{\text{konv.}} \Leftrightarrow (\sum_{n=1}^{\infty} b_n)_{\text{konv.}}$$

Exponential funktion

$$\exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{x!} = e^x$$

$$\exp(x) * \exp(y) = \exp(x + y)$$

Cauchy-Produkt

$$(\sum_{n=1}^{\infty}b_n)_{\mathrm{konv.}}\Leftrightarrow (\sum_{n=1}^{\infty}a_n)_{\mathrm{konv.}} \qquad (\sum_{n=0}^{\infty}a_n)(\sum_{n=0}^{\infty}b_n)=\sum_{n=0}^{\infty}\sum_{k=0}^{n}a_kb_{n-k}$$

$\bullet \exp(x) > 0$

- \bullet $\frac{1}{\exp(x)} = \exp(-x)$
- $x < y \Rightarrow \exp(x) < \exp(y)$
- $\bullet \exp(r * x) = (\exp(x))^r$
- $\bullet \exp(r) = e^r$

$$\exp_a(x) := \exp(x * \log a) = a^x$$

- $a > 1 \Rightarrow$ strng. mnt. steigend
- $0 < a < 1 \Rightarrow \text{strng. mnt. fallend}$
- $0 < a \neq 1 \Rightarrow \exp_a : \mathbb{R} \to \mathbb{R}$ bijektiv

Eigenschaften stetiger Funktionen

$$f(a) < c < f(b)$$

$$\Rightarrow \exists \xi \in (a; b) : f(\xi) = c$$

Satz

$$\begin{split} f:[a;b] &\to \mathbb{R} \text{ stetig} \\ &\Rightarrow f \text{ beschränkt} \\ &\Rightarrow \exists^{\min}/_{\max} \{f(x) \mid x \in [a;b]\} \end{split}$$

Satz Sei I Intervall. $I, J \subseteq \mathbb{R}$. $f: I \rightarrow$ J stetig, strg. mnt (\Rightarrow injektiv), **Notwendig** surjektiv

$$\Rightarrow J$$
 Intervall $\Rightarrow f$ bijektiv $\Rightarrow f^{-1}: J \rightarrow I$ stetig

Reihen

Reihe $(s_n)_{n\in\mathbb{N}}=\sum_{k=1}^\infty a_k$ mit Gliedern $(a_k)_{k\in\mathbb{N}}.$

nte Partialsumme $s_n = \sum_{k=1}^n a_k$

Grenzwert ebenfalls $\sum_{k=1}^\infty a_k$, falls s_n Majorante $0 \leq \mathbf{a_n} \leq \mathbf{b_k}$ $\forall n \in \mathbb{N}$ konvergiert

Spezielle Reihen

Geom.
$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q} \quad q \in (-1;1)$$

Harmon.
$$\sum_{k=1}^{\infty} \frac{1}{k}$$
 divergent

Allg. Harmon.
$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$$
 konvergiert $\forall \alpha > 1$

Lemma

$$\begin{split} \bullet \ \, \sum_{k=1}^{\infty} a_k, \, \sum_{k=1}^{\infty} b_k \text{ konvergent} \\ - \ \, \sum_{k=1}^{\infty} \mathbf{a_k} \ \, + \sum_{k=1}^{\infty} \mathbf{b_k} \ \, = \\ - \ \, \sum_{k=1}^{\infty} (\mathbf{a_k} + \mathbf{b_k}) \\ - \ \, \mathbf{c} * \sum_{k=1}^{\infty} \mathbf{a_k} = \sum_{k=1}^{\infty} \mathbf{c} * \mathbf{a_k} \end{split}$$

- $\bullet \ \exists N \in \mathbb{N} : \ (\sum_{k=N}^{\infty} a_k)_{\text{konv.}} \ \Rightarrow$ $(\sum_{k=1}^{\infty} a_k)_{\text{konv.}}$ (Es reicht spätere Glieder zu betrachten)
- $(\sum_{k=1}^{\infty} a_k)_{\text{konv.}}$ $\begin{array}{ll} \Rightarrow \ \forall N \in \mathbb{N} : (\sum_{k=N}^{\infty} a_k)_{\text{konv.}} \\ \Rightarrow \lim_{N \to \infty} \sum_{k=N}^{\infty} a_k = 0 \end{array}$

Logarithmen

$$\log = \exp^{-1}: \mathbb{R}^+ \to \mathbb{R}$$

- $\log 1/x = -\log x$
- $\log x/y = \log x \log y$
- $\bullet \ \log x^r = r * \log x$

$$\log(x * y) = \log x + \log y$$

$$\log_a x = \frac{\log x}{\log a} = \exp_a^{-1}$$

Trigonometrische Funktionen

$$\sin x := \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$

$$\cos x := \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$$

(beide absolut konvergent, $0^0 := 1$)

- $|\sin/\cos x| \le 1$
- $\bullet \ \sin -x = -\sin x$
- $\bullet \cos -x = \cos x$

- $\sin 2x = 2\sin(x)\cos(x)$
- $\bullet \ \cos 2x = \cos^2 x \sin^2 x$
- $\bullet \sin^2 x + \cos^2 x = 1$
- $\sin x \sin y$ $2\cos(\frac{x+y}{2})\sin(\frac{x-y}{2})$
- $\bullet \cos x \cos y \\ 2\sin(\frac{x+y}{2})\sin(\frac{y-x}{2})$

$$\pi:\cos\frac{\pi}{2}=0$$

- $\sin/\cos(x+2\pi) = \sin/\cos x$
- $\sin/\cos(x+\pi) = -\sin/\cos x$

- $\sin/\cos(x+\frac{\pi}{2}) = \cos/\sin x$
- $\sin x = 0 \quad \forall k \in \mathbb{Z} : x = k\pi$
- $\cos x = 0 \quad \forall k \in \mathbb{Z} : x = (2k + 1) * \frac{\pi}{2}$

$$\tan x := \frac{\sin x}{\cos x}$$

Differenzierbarkeit

 $D\subseteq\mathbb{R},\ f:D\to\mathbb{R},\ a\in D$ BP von $D\setminus\{a\}$

 $\mbox{\bf Differenzierbar} \quad \mbox{an der Stelle a, falls} \\$

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} =: f'(x)$$
$$= \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$$

- $\bullet \ \, {\rm Differenzierbar} \,\, {\rm bei} \,\, a \Rightarrow {\rm stetig} \,\, {\rm bei} \,\, a \\$
- (f+g)'(a) = f'(a) + g'(a)
- $\bullet (c * f)'(a) = c * f'(a)$

Algorithmen auf Datenstrukturen

Algorithmus Handlungsvorschrift aus endlich vielen Einzelschritten zur Problemlösung.

- Korrektheit (Test-based dev.)
- Terminierung (TOURING)
- Effizienz (Komplexität)

Formen (High to low) Menschl. Sprache, Pseudocode, Mathematische Ausdrücke, Quellcode, Binärcode

Divide & Conquer

Divide Zerlegen in kleinere Teilprobleme

Conquer Lösen der Teilprobleme mit gleicher Methode (rekursiv)

Merge Zusammenführen der Teillösungen

Effizienz

Raum/Zeit-Tradeoff: Zwischenspeichern vs. Neuberechnen

Programmlaufzeit/-allokationen	Komplexität
Einfluss äußerer Faktoren	Unabh.
Konkrete Größe	Asymptotische Schätzung

Inputgröße n Jeweils

- ullet Best-case C_B
- Average-case
- Worst-case C_W

Asymptotische /Speicherkomplexität

Groß-O-Notation Kosten $C_f(n)$ mit $g: \mathbb{N} \to \mathbb{R} \exists c > 0 \exists n_0 > 0 \forall n \geq n_0$

Untere Schranke
$$\Omega(f)$$

 $C_f(n) > c * g(n)$

Obere Schranke O(f) $C_f(n) \le c * q(n)$

(Beweis: g und c finden)

Groß-O	Wachstum	Klasse	
O(1)	Konstant		
$O(\log n)$	Logarithmisch		
O(n)	Linear		bar
$O(n \log n)$	Nlogn		lösbar
$O(n^2)$	Quadratisch	Data and all of k	
$O(n^3)$	Kubisch	Polynomiell $O(n^k)$	
$O(2^n)$	Exponentiell	Exponentiell $O(\alpha^n)$	
O(n!)	Fakultät		hart
$O(n^n)$			

Rechenregeln

Elementare Operationen, Kontrollstr. $\in O(1)$

Mastertheorem $a \ge 1$, b > 1, $\Theta \ge 0$

$$T(n) = a * T(\frac{n}{b}) + \Theta(n^k)$$

$$\Rightarrow \begin{cases} \Theta(n^k) & a < b^k \\ \Theta(n^k \log n) & a = b^k \\ \Theta(n^{\log_b a}) & a > b^k \end{cases}$$

Floor/Ceiling Runden

Zeit-

Floor $\lfloor x \rfloor$ nach unten

Ceiling $\lceil x \rceil$ nach oben

Suchverfahren

 $\begin{array}{lll} \textbf{Lineare} & \textbf{Liste} & \text{endlich}, & \text{geordnete} \\ (\text{nicht sortierte}) & \text{Folge} & n & \text{Elemente} \\ L := \left[a_0, \ldots, a_n\right] & \text{gleichen Typs}. \end{array}$

Sequenziell
$$C_A(n)=rac{1}{n}*\sum^n i=rac{n+1}{2}\in O(n)$$
Algorithm: Sequential Search
Input: Liste L , Predikat x

Agorithm: Sequential Search Input: Liste L, Predikat x Output: Index i von x for $i \leftarrow 0$ to L.len-1 d if x = L[i] then i = L[i] return i = L[i] end end return -1

Auswahlproblem Finde *i*-kleinstes Element in unsortierter Liste $\in \Theta(n)$

```
\begin{aligned} & \text{Algorithm: } i\text{-Smallest Element} \\ & \text{Input: Unsortierte Liste } L, \text{ Level } i \\ & \text{Output: Kleinstes Element } x \\ & p \leftarrow L[L.len-1] \\ & \text{for } k = 0 \text{ to } L.len-1 \text{ do} \\ & \text{ if } L[k]  p \text{ then} \\ & \mid P \text{ ush } (L_{>}, L[k]) \\ & \text{ end} \end{aligned} & \text{ if } L_{<}.len = i-1 \text{ then} \\ & \text{ return } p \\ & \text{ if } L_{<}.len > i-1 \text{ then} \\ & \text{ return } i\text{-Smallest Element } L_{<} \\ & \text{ if } L_{>}.len < i-1 \text{ then} \\ & \text{ return } i\text{-Smallest Element } (L_{>}, L[k]) \\ & \text{ end} \end{aligned}
```

Sortierte Listen

```
Binär C_W(n) = \lfloor \log_2 n \rfloor + 1, C_A(n) \stackrel{n \to \infty}{pprox} \log_2 n \in O(\log n)
```

```
Algorithm: Binary Search Input: Sortierte Liste L, Predikat x Output: Index i von x if L.len = 0 then | return - 1 else | m \leftarrow \lfloor \frac{L.len}{2} \rfloor if x = L[m] then | return m if x < L[m] then | return Binary Search [L[0], \ldots, L[m-1]] if x > L[m] then | return Binary Search [L[0], \ldots, L[m-1]] if x > L[m] then | L[m] then | return m + 1 + Binary Search | L[m+1], \ldots, L[L.len - 1]] end
```

Sprung Kosten Vergleich *a*, Sprung *b* mit optimaler Sprungweite:

$$m = \left\lfloor \sqrt{\left(\frac{a}{b}\right) * n} \right\rfloor$$

$$C_A(n) = \frac{1}{2}(\lceil \frac{n}{m} \rceil * a + mb) \in O(\sqrt{n})$$

```
\begin{aligned} & \textbf{Algorithm: Jump Search} \\ & \textbf{Input: Sortierte Liste } L, \text{Predikat } x \\ & \textbf{Output: Index } i \text{ von } x \\ & m \leftarrow \lfloor \sqrt{n} \rfloor \\ & \text{while } i < L.\text{len do} \\ & i \leftarrow i + m \\ & \text{if } x < L[i] \text{ then} \\ & & \text{return Search} \\ & & \text{end} \end{aligned}
```

return -1

- k-Ebenen Sprungsuche $\in O(\sqrt[k]{n})$
- ullet Partitionierung in Blöcke m mög lich

Exponentiell $\in O(\log x)$

Algorithm: Exponential Search Input: Sortierte Liste L, Predikat xOutput: Index i von x $\begin{array}{ccc} \text{while } x > L[i] \text{ do} \\ & i \leftarrow 2*i \end{array}$ return Search $[L \mid i/2 \mid, \ldots, L[i-1]]$

Unbekanntes n möglich

Interpolation $C_A(n)$ $\log_2 \log_2 n$, $C_W(n) \in O(n)$

Algorithm: Searchposition

Input: Listengrenzen [u, v]Output: Suchposition p $\text{return } \lfloor u + \frac{x - L[u]}{L[v] - L[u]}(v - u) \rfloor$

Algorithm: Interpolation Search

Input: Sortierte Liste $[L[u], \ldots, L[v]]$, Predikat xOutput: Index i von xif $x < L[u] \lor x > L[v]$ then return -1 $p \leftarrow Searchposition(u, v)$ if x = L[p] then return p if x > L[p] then return Interpolation Search(p+1,v,x)return Interpolation Search(u, p-1, x)

Häufigkeitsordnungen mit Zugriffswahrscheinlichkeit p_i : $C_A(n) =$

Frequency-count Zugriffszähler Element

Transpose Tausch mit Vorgänger

Move-to-front

Verkettete Listen

Container Jedes Element p ist in der Form $p \rightarrow | (\text{key}) | \text{value} | \text{next} |$. Index ist seq. Suche $\in O(n)$

Löschen $\in O(1)$

Algorithm: Delete

return p

Input: Zeiger p auf Vorgänger des löschendes Elements if $p \neq \emptyset \land p \rightarrow \textit{next} \neq \emptyset$ then $p \to \text{next} \leftarrow (p \to \text{next}) \to \text{next}$

desh. sehr dvnamisch

Suchen
$$C_A(n) = \frac{n+1}{2} \in O(n)$$

Algorithm: Search Linked List Input: Verkettete Liste L, Predikat xOutput: Zeiger p auf x $p \,\leftarrow\, L\,.\mathsf{head}\,\, \mathsf{while}\,\, p \,\rightarrow\, \mathit{value} \neq x\,\, \mathsf{do}$ $p \leftarrow p \rightarrow \text{next}$

Doppelt Verkettet Zeiger auf Vorgän- Eigenschaften ger (key) | value | prev | next

- Bestimmung des Vorgängers (bei Einfügen, Löschen) $\in O(1)$ statt O(n)
- Höherer Speicheraufwand

1 + Skip

- Zeiger auf Ebene i zeigt zu nächstem 2^i Element
- Suchen $\in O(\log n)$

(Perfekt) Einfügen, Löschen $\in O(n)$ (Vollst. Reorga.)

Randomisiert Höhe zufällig (keine vollst. Reorga.) $P(h) = \frac{1}{2h+1}$: Einfügen, Löschen $\in \mathbf{O}(\log \mathbf{n})$

Spezielle Listen

pro **ADT** "Abstrakte Datentypen"

Stack $S = | TOP, \cdots Operationen nur$ auf letztem Element $\in O(1)$

Queue $Q = || \text{HEAD}, \cdots, \text{TAIL Vorne}|$ Löschen, hinten einfügen $\in O(1)$

Priority Queue
$$P = \begin{bmatrix} p_0 & p_1 & \cdots & p_n \\ a_0 & a_1 & \cdots & a_n \end{bmatrix}$$

Jedes Element \bar{a} hat Priorität p: Entfernen von Element mit höchster (MIN) Priorität

Sortierverfahren

Sortierproblem

Gegeben (endliche) Folge von Schlüsseln (von Daten) $(K_i)_{i \in I}$

Gesucht Bijektive Abbildung $\pi:I\to$ $K_{\pi(i+1)} \quad \forall i \in I$

mit Optimierung nach geringen

- Schlüsselvergleichen C
- \bullet Satzbewegungen M

Ordnung Allgemein vs. speziell: Ordnung wird nur über Schlüsselvergleiche hergestellt

Relation Stabil vs. instabil: Vorherig relative Reihenfolge bleibt erhalten

Speicher In situ vs. ex situ: Zusätzlicher Speicher notwendig

Lokal Intern vs. extern: Alles im RAM oder Mischung vorsortierter externer Teilfolgen

Ordnung $\forall x, y \in X$

Reflexiv $x \le x$

Antisym. $x \le y \land y \le x \Rightarrow x = y$

Transitiv $x \le y \land y \le z \Rightarrow x = z$

Total (Vollständig) $x < y \lor y < x$

(ohne Total: "Halbordnung")

Grad der Sortierung

Anzahl der Inversionen Anzahl kleinerer Nachfolger für jedes Element:

$$\begin{split} &\operatorname{inv}(L) := |\{(i,j) \mid \\ &0 \leq i < j \leq n-1, \\ &L[i] \geq L[j]\}| \end{split}$$

Anzahl der Runs Ein Run ist eine sortierte Teilliste, die nicht nach links oder rechts verlängert werden kann. Die Anzahl der Runs ist:

$$\begin{aligned} & \operatorname{runs}(L) := |\{i \mid \\ & 0 \leq i < n-1, \\ & L[i+1] < L[i]\}| + 1 \end{aligned}$$

I (Permutation), sodass $K_{\pi(i)} \leq$ Längster Run Anzahl der Elemente der längsten sortierten Teilliste:

$$\begin{aligned} \operatorname{las}(L) &:= \max\{r.\operatorname{len} \mid \\ r \text{ ist Run in } L\} \end{aligned}$$

$$\operatorname{rem}(L) &:= L.\operatorname{len} - \operatorname{las}(L)$$

Einfache Sortierverfahren $O(n^2)$

Selection Entferne kleinstes Element in unsortierter Liste und füge es sortierter Liste an.

```
Algorithm: Selectionsort
Input: Liste L
Output: Sortierte Liste L
 for i \leftarrow 0 to L.len - 2 do
       for j \leftarrow i+1 to L.len-1 do
            if L[i] < L[\mathit{min}] then
                   min ←
      end
      if min \neq i then
            Swap L[\min], L[i]
end
if L . len = 0 then
      return
```

Insertion Verschiebe erstes Element aus unsortierter Liste von hinten durch sortierte Liste, bis das vorgehende Element kleiner ist.

```
Algorithm: Insertionsort
Innut: Liste L.
Output: Sortierte Liste L.
for i \leftarrow 1 to L \cdot len - 1 do
        if L[i] < L[i-1] then
                 temp \leftarrow L[i]
                 j \leftarrow i
                 \begin{array}{l} \text{while } temp < L[j-1] \land j > 0 \text{ do} \\ \mid \quad L[j] \leftarrow L[j-1] \end{array}
                         j - -
                 end
                 L[j] \leftarrow temp
```

Bubble Vertausche benachbarte Elemente, durchlaufe bis nichts vertauscht werden muss. Achtung: Die hinteren Elemente können im Durchlauf ignoriert werden!

```
Algorithm: Bubblesort
Input: Liste L
Output: Sortierte Liste L
i \leftarrow L len
swanned ← 1
 while swapped do
         swapped \leftarrow 0
         for j \leftarrow 0 to i-2 do
                 \begin{array}{c|c} \text{if } L[j] > L[j+1] \text{ then} \\ | & \text{Swap } L[j], \, L[j+1] \end{array}
                          swapped \leftarrow 1
        end
end
```

Verbesserte Sortierverfahren $O(n \log n)$

Shell Insertionsort, nur werden Elemente nicht mit Nachbarn getauscht, sondern in t Sprüngen h_i , die kleiner werden (Kamm). Im letzten Schritt dann Insertionsort ($h_t = 1$); somit Sortierung von grob bis fein, also Reduzierung der Tauschvorgänge.

```
Algorithm: Shellsort
Input: Liste L, Absteigende Liste von Sprunggrößen H
Output: Sortierte Liste L
       for i \leftarrow h to L.len - 1 do
               temp \leftarrow L[i]
               for j \leftarrow i; temp < L[j-h] \land j \ge h;
                j \leftarrow j - h \text{ do} \\ L[j] \leftarrow L[j - h]
              L[j] \leftarrow \mathsf{temp}
```

Quick Rekursiv: Pivot-Element in der Mitte, Teillisten L_{\leq} , $L_{>}$, sodass $\forall l_{\leq} \in$ $L_{\leq} \forall l_{\geq} \in L_{\geq} : l_{\leq} < x < L_{\geq}$. Zerlegung: Durchlauf von Links bis L[i] > xund von Rechts bis $L[j] \le x$, dann tauschen.

```
Algorithm: Quicksort
Input: Liste L. Indices l. r
Output: L. sortiert zwischen L und a
if l > r then
i \leftarrow l
j \leftarrow r
\mathsf{piv} \leftarrow L[\lfloor \frac{l + r}{2} \rfloor]
       while L[i] < \mathit{piv} do
        | i + +
       end
       while L[j] > piv do
       if i < j then
              Swap L[i], L[j]
while i < j
Quicksort (L, l, j)
Quicksort (L, i, r)
```

Turnier Liste also Binärbaum, bestimme $\min(L)$ durch Austragen des Turniers, entferne Sieger und wiederhole von Siegerpfad aus.

Heap Stelle Max-Heap (größtes Element in der Wurzel) her, gib Wurzel aus und ersetze mit Element ganz rechts in unterster Ebene.

```
Algorithm: Max-Heapify
Input: Liste L, Index i der MHE widerspricht und
        \forall i > i erfüllen MHE
Output: Liste L mit MHE \forall i > i
l \leftarrow 2i + 1
 r \leftarrow 2i + 2
if l < L . len \wedge L[l] > L[i] then
       largest \leftarrow l
        \mathsf{largest} \leftarrow i
if r < L.len \wedge L[r] > L[largest] then
       largest \leftarrow r
if largest \neq i then
        Swap L[i], L[largest]
        Max-Heapify \hat{L}, largest
Algorithm: Build-Max-Heap
 Input: Liste L
Output: Liste L mit MHE
for i \leftarrow \lfloor \frac{L.\mathit{len}}{2} \rfloor - 1 to 0 do \parallel Max-Heapify L,i
```

```
Algorithm: Heapsort
Input: Liste {\cal L}
Output: Sortierte Liste L
Build-Max-Heap L
for i \leftarrow L.len - 1 to 1 do
     Swap L[0], L[i]
     Max-Heapify L, 0
```

Merge Zerlege Liste in k Teile, sortiere Adiese (mit Mergesort) und verschmelze die sortierten Teillisten (merge).

```
Algorithm: 2-Merge
Input: Liste L mit L[l \dots m-1] und L[m \dots r]
        sortiert, Indices l, m, r
Output: Liste L mit L[l \dots r] sortiert
k \leftarrow m
for i \leftarrow 0 to r - l do
         \begin{array}{c} \leftarrow \text{ot} \ i - i \text{ of } \\ \text{if } \ k > r \lor (j < m \land L[j] \le L[k]) \text{ then} \\ \mid B[i] \leftarrow L[j] \\ j \leftarrow j + 1 \end{array} 
                  B[i] \leftarrow L[k]
                  k \leftarrow k + 1
        \leftarrow 0 to r - 1 do
        L[l+i] \leftarrow B[i]
```

Input: Liste L. Indices l. rOutput: Liste L mit $L[l \dots r]$ sortiert return

 $m \leftarrow \lfloor \frac{l+r+1}{2} \rfloor$ Mergesort L, l, m-1Mergesort L, m, rMerge L, l, m, r

Algorithm: Rekursives 2-Mergesort

Iteratives 2-Mergesort

```
Algorithm: Iteratives 2-Mergesort
Input: Liste L
Output: Sortierte Liste L
for k \leftarrow 2; k < n; k \leftarrow k * 2 do
      for i \leftarrow 0; i + k < n; i \leftarrow i + k do
             Merge L, i, \min(i + k - 1, n - 1),
end
Merge L, 0, n-1, \frac{k}{2}
```

Natürliches Mergesort Verschmelzen von benachbarten Runs (Ausnutzen der Vorsortierung)

Untere Schranke allgemeiner Sortierverfahren

Jedes allgemeine Sortierverfahren benötigt im Worst- und Average-case Schlüsselvergleiche von mindestens:

$$\Omega(n \log n)$$

(Siehe Pfadlänge auf Entscheidungsbaum)

Spezielle Sortierverfahren O(n)

Distribution Abspeichern der Freguenz jedes Elementes k auf F[k]; Ausgeben jedes Index F[k] mal.

Lexikographische Ordnung < $= \{a_1, \ldots, a_n\}$ ein Alphabet. dass sich mit gegebener Ordnung $a_1 < \cdots < a_n$ wie folgt auf dem Lexikon $A* = \bigcup_{n \in \mathbb{N}_0} A^n$ fortsetzt:

$$v = (v_1, \dots, v_p) \le w = (w_1, \dots, w_q)$$

$$\Leftrightarrow \forall 1 \le i \le p : v_i = w_i \quad p \le q$$

$$\forall 1 \le j \le i : v_j = w_j \quad v_i < w_i$$

Fachverteilen Sortieren von n k-Tupeln in k Schritten: Sortieren nach letztem Element, vorletzem usw.

Große Datensätze sortieren

Indirekt Liste von Zeigern Z[i] = i auf die eigentlichen Listenelemente. Schlüsselvergleiche mit L[Z[i]], Satzbewegungen nur als Zeigertausch in Z. Anschließend linear kopieren.

Extern Zerlegen in m Blöcke, sortieren im Hauptspeicher (Run) der mind. m+1Blöcke groß ist, verschmelzen der Runs (m-Wege-Merge).

Ausgeglichenes 2-Wege-Mergesort

Daten auf Band n, sortieren von Block $r_1 < n$ auf zweites Band und r_2 auf drittes Band, löschen des ersten Bandes und Merge 2rabwechselnd auf erstes (neues $2r_1$) und viertes Band (neues $2r_2$) und wiederholen.

Replacement Selectionsort Lese r < n Elemente auf Priority-Queue $\mathcal{Q}.$ Falls $x = \min(Q) \ge \text{letztem Ele-}$ ment auf zweiten Band, schreibe x aus, sonst schreibe Q auf Band. Wiederhole auf dritten Band und dann merge.

کھ.

Aleo.	Stabil	Mem.		Schlüsselvergleiche			Satzbewegungen		
ugo.	Stabil	Mem.	C_B	C_A	C_W	M_B	M_A	M_W	
ielection	×	1	$\frac{n(n-1)}{2}$	n(n-1)	$\frac{n(n-1)}{2}$	3(n - 1)	3(n-1)	3(n-1)	_
nsertion	/	1	n-1	$\stackrel{n\to\infty}{\approx} \frac{n(n-1)}{s} + n - \ln n$	$\frac{m(m-1)}{2}$	2(n - 1)	$\frac{n^2+3n-4}{4} + n - 1$	$\frac{n^2+3n-4}{2}$	O(m ²)
Bubble	/	1	$\frac{n(n-1)}{2}$	n(n-1)	$\frac{n(n-1)}{2}$	0	$\frac{3n(n-1)}{4}$	$\frac{3n(n-1)}{2}$	0
				Best-case	Avera	ge-case	Worst-ca	ie	
ibell	×	- 1					-		
Quick	×	$\log n$		$n \log n$		log n	n ²		8
Turnier	×	2n-1		nlogn		log n	nlogn		O(n log n)
leap	×	1	nlogn		$n \log n$		nlogn		કે
derge	/	n		$n \log n$	n)	log n	nlogn		
			Untere	Schranke $\Omega(n \log n)$ für al	Igemeine	Sortierverf	ahren		
Distribution	-/	n	n			n	n logn, r	2	O(n)

Bäume

- Verallg. Listen: Elevon ment/Knoten kann mehrere Nachfolger haben
- Darstellung von Hierarchien

Ungerichteter Graph (V, E) mit einer Menge Knoten V und Kanten $E \subseteq$

Baum Ungerichteter Graph mit

Einfach keine Schleife oder Doppelkanten (v) (w)

Zusammenhängend Für jede zwei Kno-Kanten die sie verbindet

Azyklisch kein Zyklus (Cycle)

Orientierter Wurzelbaum Alle Knoten sind Wurzel ihrer disjunkten Unterbäume und haben verschiedene Werte gleichen Typs. (Im Nachfolgenden einfach nur "Baum")

Darstellungsarten

Graph

Array $[a, b, c, \emptyset, \emptyset, d, e]$

Klammer (a, (b), (c, (d), (e)))

Größen

Ordnung Max. Anzahl von Kindern jedes Knoten eines Baums

Tiefe Anzahl Kanten zwischen einem Knoten und Wurzel

Stufe Alle Knoten gleicher Tiefe

Höhe Max. Tiefe +1

Eigenschaften

Geordnet Kinder erfüllen Ordnung von links nach rechts

Vollständig Alle Blätter auf gleicher Stufe, jede Stufe hat max. Anzahl von Kindern

Binärbäume

Geordneter, orientierter Wurzelbaum der Ordnung 2.

Strikt Jeder Knoten hat 0 oder 2 Kinder (Kein Knoten hat genau 1 Kind).

Vollständig Jeder Knoten außer der letzten Stufe hat genau 2 Kinder.

Fast Vollständig Vollständig, Blätter können rechts fehlen.

ten gibt es genau eine Folge von Ausgeglichen Vollständig, aber Blätter auf letzten 2 Stufen

2 Binärbäume heißen

Ähnlich selbe Struktur

Äguivalent Ähnlich und selbe Knoten

Größen

- Für i Stufen max. 2i Knoten
- Höhe von $\log_2 n + 1$

Speicherung

Menge $\{\{a,b,c,d,e\},\{b\},\{c,d,e\},\{d\},\{Verkettet \mid Zeiger Links \mid Knoten \mid Zeiger Rechts\}\}$

nach rechts, oben nach unten, leere Elemente für fehlende Knoten (ineffizient für degenerierte Bäume)

Traversierung

- W Verarbeite Wurzel
- L Durchlaufe linken Unterbaum
- R Durchlaufe rechten Unterbaum

Konvention erst links, dann rechts:

- WLR Preorder
- LWR Inorder
- LRW Postorder

Implementation rekursiv oder linear mit eigenem Stack (effizienter)

Gefädelte Binärbäume

Zeiger "Faden" in Knoten zeigt auf nächsten Knoten nach Durchlauford-

Nachteil: Zusätzlicher Speicheraufwand teilweise redundant; Lösung: Nur Null-Zeiger (Blätter) sind Fäden

rFaden zeigt auf Nachfolgerknoten

IFaden zeigt auf Vorgängerknoten

Binäre Suchbäume

Natürliche binäre Suchbäume

$$B_l < B_x < B_r$$

Suchen rekursiv oder mit Durchlaufalg. $\in O(\ln n)$

ullet Für n Knoten genau n-1 Kanten **Einfügen** dort wo Suche terminiert

ullet Vollständiger B. mit n Knoten hat $oldsymbol{\mathsf{L\"oschen}}$ mit zwei nicht-leeren Unterbäumen: Hochziehen des größten Wertes im linken oder kleinsten Wert im rechten Unterbaum (Alt: Als gelöscht markieren)

Balancierte Binärbäume

Grundoperationen auf ausgeglichene Bi-Knoten | Index Links | Index Rechts härbäume kosten am wenigsten. Herstellung der Ausgeglichenheit in O(n)

> **Balancefaktor** von Knoten x $BF(x) := h(B_l(x)) - h(B_r(x))$

k-Balanciert $\forall x \in B : |BF(x)| < k$

Feldbaum Sequenz

Sequenziell Lesen vollst. Baum links

AVL-Baum 1-balancierter Suchbaum

Herstellung der Ausgeglichenheit durch Rotationen

- $BF(u) = -2, BF(v) \in \{0, -1\}$: Einfachrotation Links(u)
- $BF(u) = +2, BF(v) \in \{0, -1\}$: Einfachrotation Rechts(u)
- BF(u) = -2, BF(v) = +1: Doppelrotation $Rechts(\mathbf{v}) + Links(\mathbf{u})$
- BF(u) = +2, BF(v) = -1: Doppelrotation $Links(\mathbf{v}) + Rechts(\mathbf{u})$

Für jeden AVL-Baum T der Höhe hgilt:

- $|T| \geq F_h$ (Fibonacci)
- $h \leq \frac{\log_2(n\sqrt{5}+1)}{\log_2(\frac{1+\sqrt{5}}{2})}$

Fibonacci-Bäume B_0 ist leerer Baum, B_1 ist einzelner Knoten, B_h $BUILD(B_{h-1}, x, B_{h-2})$ für $h \ge 2$

(Maximal unbalancierter AVL-Baum der Höhe h)

Gewichtsbalancierte Binärbäume

Wurzelbalance $ho(B) = \frac{n_l+1}{n+1} \ \text{mit} \ n$ Knoten und n_l Knoten im linken Unterbaum

Gewichtsbalanciert (BB)

 \forall Unterbaum $B': \alpha \leq \rho(B') \leq$

- $\alpha = 1/2$: Vollst. Binärbaum
- $\alpha < 1/2$: Zunehmend weniger ausgeglichen
- $\alpha = 0$: Keine Einschränkung

Mehrwegbäume

externe Daten ("Seiten")

Binärer *m*-Wege-Suchbäume

- m-ter Ordnung (max. m Kinder)
- \bullet Knoten mit max. $b \leq$ m-1 sortierten Einträgen: $\mathbf{P}_0|K_1|P_1|\dots|K_b|P_b$
- Werte im Unterbaum: K_i < $B_{P_i} < K_{i+1}$

B-Bäume der Klasse t ist (fastausgeglichener) 2t-Wege-Suchbaum

- Blätter der Wurzel gleich weit ent-
- ullet Alle Knoten außer Wurzel min. t-1, max. 2t-1 Werte und min. t, max. 2t Kinder (außer Blätter)
- Wurzel min. 1, max. 2t 1 Werte (oder B. leer) und min. 2, max. 2t Kinder (oder Blatt)

Für n Knoten ist Höhe $h \leq 1 +$

Suchen Finde größten Index im Knoten $x \leq K_i$, suche in P_i

Einfügen Teilen voller (2t-1) Knoten bei Suche, einfügen im Blatt

> Teilen (Elternknoten ist nicht voll, da vorher geteilt) Mittlerer Wert in Elternknoten, Werte links davon in linken Unterbaum

Löschen Verschieben o. Verschmelzen zu kleiner (t-1) Knoten bei Suche, dann entfernen

> Verschieben Kleinster Wert (ganz vorne) im rechten Unterbaum in Knoten ziehen. Knoten in linken Unterbaum rechts anfügen (und umgekehrt, je nach dem welcher Baum größer ist)

> Verschmelzen Beide Bäume zu klein, also t-1 zu einem Unterbaum zusammenfügen (2t-2)

B*-Bäume B-Baum Variante mit Da-Breiter Baum als Indexstruktur für große ten in den Blättern. Blätter sequenziell verkettet; Standard in DBS

Binäre B-Bäume Alternative zu AVL-Bäumen

Digitale Suchbäume

Blattschlüssel = Zeichenkette/Wort des Pfads von Wurzel zu Blatt

Für max. Schlüssellänge l und Schlüsselteillänge k ist Höhe = l/k + 1

m-äre Tries Knoten enthalten (Null-Zeiger für jeden Teilschlüssel der Länge k in $m = |\Sigma|^k$; Schlechte Speichernutzung, desh. Kompression des Knoten

PATRICIA-Tree

Präfix-/Radix-Baum

Exkurs Lineare Algebra

Matrixmul. $(m \times n)(n \times p) = (m \times p)$

$$(AB)_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}$$

(Reihe \times Spalte)