Problem

Let B be the language of all palindromes over {0,1} containing equal numbers of 0s and 1s. Show that B is not context free.

Step-by-step solution

Step 1 of 3

Let B be the language of all palindromes over $\{0, 1\}$ containing the equal numbers of 0's and 1's. To prove B is not a context free language by taking a contradiction. Assume that B is a context free language.

Since B is a context free language, then by pumping lemma, there is a number p (the pumping length) where, if s is any string in B of length at least p, then s may be divided into five pieces s = uvxyz satisfying the conditions

- 1. for each $i \ge 0$, $uv^i x y^i z \in A$,
- 2. |vy| > 0, and
- 3. $|vxy| \le p$.

Comment

Step 2 of 3

Case 1:

Now select a string $s = 0^n 1^{2n} 0^n$.

Clearly s is a member of B of length at least P.

Assume the value of n=2 for the string s.

$$s = 0^2 1^4 0^2$$

$$s = 00111100$$

The string s can be divided into uvxyz as follows:

$$\frac{00}{u} \frac{11}{v} \frac{1}{x} \frac{10}{v} \frac{0}{z}$$

Now apply the first condition of the pumping lemma.

for each $i \ge 0$, $uv^i x y^i z \in A$

For i = 2:

$$\frac{00}{u} \left(\frac{11}{v}\right)^2 \frac{1}{x} \left(\frac{10}{y}\right)^2 \frac{0}{z}$$

$$\frac{00}{u} \left(\frac{1111}{v}\right) \frac{1}{x} \left(\frac{1010}{y}\right) \frac{0}{z}$$

Assume the obtained string 00 1111 1 1010 0 as S^{\dagger} .

The obtained string s' is not a palindrome after applying the first condition of pumping lemma and $s' \notin B$. In the pumped string, the number of 0's and 1's is not equal.

So, the language B is not following the condition1 of the pumping lemma.

Comment

The same string is selected as $s = 0^n 1^{2n} 0^n$

Clearly S is a member of B of length at least p .

Assume the value of n=2 for the string s.

 $s=0^21^40^2$

s=00111100

The string s can be divided into uvxyz as follows:

$$\frac{0}{u} \ \frac{01}{v} \ \frac{11}{x} \ \frac{1}{y} \ \frac{00}{z}$$

Now apply the first condition of the pumping lemma.

for each $i \ge 0$, $uv^i x y^i z \in A$

For i=2:

$$\frac{0}{u} \left(\frac{01}{v}\right)^2 \frac{11}{x} \left(\frac{1}{y}\right)^2 \frac{00}{z}$$

$$\frac{0}{u} \left(\frac{0101}{v} \right) \frac{11}{x} \left(\frac{11}{y} \right) \frac{00}{z}$$

Assume the obtained string 0 0101 11 11 00 as $\,^s\,^{\, \circ}$.

The obtained string s' is not a palindrome after applying the first condition of pumping lemma and $s' \notin B$. In the pumped string, the number of 0's and 1's is not equal.

Hence, the assumption B is a context free language is wrong.

Therefore, by the two cases it can be proved that $\ B$ is not a context free language.

Comments (3)