Relatório 1º projeto ASA 2019/2020

Grupo: tp003

Aluno(s): Catarina Sousa (93695) e Nelson Trindade (93743)

Descrição do Problema e da Solução

<u>Problema:</u> Assumindo que os alunos partilham resumos, formas de estudo e soluções com os seus amigos, o professor da disciplina em questão considerou que a nota dos alunos devia ter em conta as notas dos seus amigos. Então, foi-nos proposto que desenvolvêssemos um algoritmo otimizado que alterasse as notas previamente obtidas pela nota máxima das relações sociais de cada aluno.

<u>Solução</u>: Para representar o grafo e as suas conexões utilizámos listas de adjacências. A nossa solução baseia-se em utilizar o algoritmo de Tarjan para identificar as SCC do grafo e garantir que os filhos independentes (se existirem) são verificados antes dos seus predecessores. Criámos uma função que, no momento do Pop do algoritmo de Tarjan, atua de modo a alterar a nota máxima dos vértices das SCCs, se necessário.

A função verifica três casos:

- Se o SCC possuir apenas um elemento:
- 1. E o seu outdegree for diferente de 0:
 - -O algoritmo de Tarjan garante que as suas ligações já foram verificadas previamente, logo troca a sua nota com a nota máxima dos filhos, se necessário;
- 2. E o seu outdegree for igual 0 (o aluno não tem relações sociais):
 - -Não acontece nada, porque não é possível a sua nota vir a ser alterada;
 - Se o SCC possuir mais do que um elemento:
 - -Obtém o máximo das notas dos vértices pertencentes à SCC (juntamente com os seus vértices-filho) e troca para a maior obtida;

Análise Teórica

- 1. Leitura dos dados de entrada: na função que lê o input, temos dois for's:
 - Um para colocar no grafo os vértices (armazenando o espaco necessário) $\rightarrow \Theta(V)$;
 - Outro para fazer as conexões entre os vértices $\rightarrow \Theta(E)$.

Assim, complexidade da leitura dos dados de entrada é Θ(V+E).

- 2. Aplicação do algoritmo de Tarjan:
 - Inicialização dos valores de tempo de descoberta e do valor de low de cada vértice → Θ(V);
 - Chamada de uma função recursiva auxiliar que encontra os SCCs do grafo → Θ(V);
 - Lista de adjacências de cada vértice percorrida 1 vez $\rightarrow \Theta(E)$;
 - Chamada da função que troca o valor das notas das SCCs → O(V);

Assim, a complexidade da aplicação do algoritmo de Tarjan é 3*O(V) + O(E) = O(V+E).

Relatório 1º projeto ASA 2019/2020

Grupo: tp003

Aluno(s): Catarina Sousa (93695) e Nelson Trindade (93743)

3. Aplicação da função que troca a nota das SCCs:

- -Se a SCC possuir apenas um elemento e o seu outdegree for igual a 0, a função retorna $\rightarrow \Theta(1)$;
- Se a SCC possuir apenas um elemento e o seu outdegree for diferente de 0, percorre a sua lista de adjacências e troca a sua nota para a maior nota dos vértices-filho $\rightarrow \Theta(E)$;
- Se a SCC possuir mais do que um elemento, percorre para cada vértice a sua lista de adjacências para obter a nota máxima → Θ(V + E);
- Percorre todos os vértices da SCC para alterar a nota para a máxima obtida previamente, se necessário $\rightarrow \Theta(V)$:

Assim, a complexidade desta função é 2*O(V) + 2*O(E) = O(V+E).

4. Apresentação dos dados:

- Percorre os vértices do grafo e retorna para a linha de comandos a nota de cada $um \rightarrow \Theta(V)$;

Concluímos assim que, teoricamente, a complexidade global da nossa solução é O(V+E).

Avaliação Experimental dos Resultados

Efetuámos vários testes, com grafos gerados pelo gerador fornecido pelo professor. Gerámos grafos, tal que V+E = 100000, 250000, 500000, 750000 e 1000000. Como pode ser visto na tabela e no gráfico a seguir representados, calculámos a média do tempo para cada instância e obtivemos o gráfico correspondente aos valores obtidos experiencialmente.

V+E	Média de Milissegundos
100 000	57
250 000	151
500 000	316
750 000	486
1 000 000	653

Fig.1 – Tabela de complexidade da solução

Fig.2 – Gráfico de complexidade da solução

Após uma análise cuidada do gráfico obtido, concluímos que a nossa solução aproxima-se à análise teórica previamente feita, uma vez que o gráfico corresponde a uma função linear.