# Problemas de empacotamento: uma abordagem inicial

#### Joaquim Gabriel Martins

Minicurso: Modelagem computacional de problemas de otimização

Universidade Estadual de Maringá - UEM

2 de agosto de 2023

### O que é empacotamento?

Considere que você possui n latas de cerveja, cada uma com um volume específico  $v_i$  (onde  $i=1,2,\ldots,n$ ), e caixas com capacidade para armazenar um volume máximo V. O objetivo é determinar a quantidade ideal de cervejas necessárias para preencher completamente uma caixa, otimizando o uso do espaço na caixa e minimizando o número de espaços vazios.

Podemos abordar esse problema como uma alocação de circunferências em uma caixa retangular, supondo que a altura da lata seja a mesma do tamanho da caixa. Dessa forma, buscamos encontrar a disposição mais eficiente das latas dentro da caixa, visando ocupar o espaço de forma otimizada e reduzindo ao máximo os espaços não preenchidos.

# O que é empacotamento?



Figura: Problema em 3D



Figura: Problema em 2D

## O que é empacotamento

Ao visualizarmos o problema pode-se pensar que de forma manual, isso é, de forma humana é algo trivial, entretanto e se tivermos várias latas de tamanhos diferentes e se quisermos levar também um pote de sorvete onde podemos desprezar a altura nessa caixa, o que faremos?

# O que é empacotamento?

Matematicamente podemos pensar como o seguinte problema

#### **Problema Fundamental**

Dadas uma faixa retangular de comprimento L>0 e largura W>0, e um número finito de círculos e polígonos, desejamos dispor estes itens dentro da faixa retangular sem que haja sobreposição

### Contenção de cícurlos

$$-x^{C} \leq -r,$$

$$x^{C} \leq W - r,$$

$$-y^{C} \leq -r,$$

$$y^{C} \leq L - r.$$
(1)

Essas desigualdades nos ajudam a delimitar a região em que o centro do círculo pode estar para que ele permaneça completamente dentro da faixa retangular.

### Contenção de circunferências

**Interpretação das Desigualdades:** Vamos entender o significado de cada desigualdade:

 $-x^C \le -r$ : A coordenada  $x^C$  do centro do círculo deve ser maior ou igual a r. Isso garante que o círculo não ultrapasse a borda esquerda da faixa retangular.

 $x^C \leq W - r$ : A coordenada  $x^C$  do centro do círculo deve ser menor ou igual a W - r. Isso garante que o círculo não ultrapasse a borda direita da faixa retangular.

 $-y^C \le -r$ : A coordenada  $y^C$  do centro do círculo deve ser maior ou igual a r. Isso garante que o círculo não ultrapasse a borda inferior da faixa retangular.

 $y^C \le L - r$ : A coordenada  $y^C$  do centro do círculo deve ser menor ou igual a L - r. Isso garante que o círculo não ultrapasse a borda superior da faixa retangular.

### Modelagem - Não-sobreposição de Círculos

Nesta parte do minicurso, abordaremos a restrição de não-sobreposição entre dois círculos. Suponhamos que tenhamos dois círculos, cada um com seu próprio centro  $(x^{C_1}, y^{C_1})$  e  $(x^{C_2}, y^{C_2})$ , e raios  $r_1$  e  $r_2$ , respectivamente.

### Restrição de Não-sobreposição:

A condição para que os dois círculos não se sobreponham é dada por:

$$(x^{C_1}-x^{C_2})^2+(y^{C_1}-y^{C_2})^2\geq (r_1+r_2)^2.$$

Essa equação nos diz que a distância entre os centros dos dois círculos, representada pela expressão  $(x^{C_1} - x^{C_2})^2 + (y^{C_1} - y^{C_2})^2$ , deve ser maior ou igual à soma dos quadrados dos raios  $r_1$  e  $r_2$ .

## Não sobreposição de Círculos

### Interpretação:

Podemos interpretar essa restrição como garantia de que não existe nenhum ponto que esteja contido em ambos os círculos. Se a desigualdade for satisfeita, os círculos não se sobrepõem e, portanto, mantêm uma distância segura entre si.

### Modelagem - Contenção de Circunferências



Figura: Contenção de circunferência.

### Representação de polígonos

#### Representação de Polígonos:

Para modelar polígonos, precisamos definir notações para representar seus respectivos vértices. Suponha que tenhamos um polígono convexo  $P_i$ . Sua representação pode ser dada da seguinte forma:

$$P_i = [(x_i^1, y_i^1), (x_i^2, y_i^2), \dots, (x_i^k, y_i^k)].$$

Ou seja, o polígono  $P_i$  possui k vértices numerados de 1 a k, e cada vértice é representado por um par ordenado  $(x_i^k, y_i^k)$ .

### Contenção de Polígonos

#### Observação: Polígonos Não Convexos

Quando lidamos com polígonos não convexos, podemos representá-los como a união de diversos polígonos convexos. Isso significa que um polígono não convexo  $P_i$  pode ser decomposto em várias partes, cada uma delas sendo um polígono convexo.

#### **Generalizando:**

De forma mais geral, podemos representar um polígono como:

$$(\mathbf{v}_{\mathbf{x}_{i_k}}^I, \mathbf{v}_{\mathbf{y}_{i_k}}^I), \text{ com } k = 1, \ldots, p_i, \text{ e } l = 1, \ldots, \mathbf{v}_{i_k},$$

onde  $v_{i_k}$  é o número de vértices da k-ésima componente convexa do polígono  $P_i$ .

### Modelagem - Não-sobreposição de Círculos

Nesta parte do minicurso, abordaremos a restrição de não-sobreposição entre dois círculos. Suponhamos que tenhamos dois círculos, cada um com seu próprio centro  $(x^{C_1}, y^{C_1})$  e  $(x^{C_2}, y^{C_2})$ , e raios  $r_1$  e  $r_2$ , respectivamente.

## Não sobreposição de Circunferências

#### Restrição de Não-sobreposição:

A condição para que os dois círculos não se sobreponham é dada por:

$$(x^{C_1}-x^{C_2})^2+(y^{C_1}-y^{C_2})^2\geq (r_1+r_2)^2.$$

Essa equação nos diz que a distância entre os centros dos dois círculos, representada pela expressão  $(x^{C_1} - x^{C_2})^2 + (y^{C_1} - y^{C_2})^2$ , deve ser maior ou igual à soma dos quadrados dos raios  $r_1$  e  $r_2$ .

## Modelagem - Não-sobreposição entre Polígonos

Para garantir que dois polígonos  $P_i$  e  $P_j$  não se sobreponham, é necessário que exista uma linha de separação entre eles, de modo que todos os vértices de  $P_i$  e  $P_j$  estejam em lados diferentes dessa linha.

#### Coordenadas dos Vértices:

Considerando um polígono  $P_i$  qualquer, as coordenadas do vértice I podem ser calculadas como:

$$X_{i}^{I} = v_{x_{i}}^{I} \cdot \cos(\theta_{i}) - v_{y_{i}}^{I} \cdot \sin(\theta_{i}) + x_{i}^{P_{i}}, \ Y_{i}^{I} = v_{x_{i}}^{I} \cdot \sin(\theta_{i}) + v_{y_{i}}^{I} \cdot \cos(\theta_{i}) + y_{x_{i}}^{P_{i}}$$

onde  $v_{x_i}^I$  e  $v_{y_i}^I$  representam as coordenadas do vértice I do polígono  $P_i$ , e  $\theta_i$  é o ângulo de rotação do polígono  $P_i$ .

### Não-sobreposição entre polígonos

#### Condição de Separação:

Os polígonos  $P_i$  e  $P_i$  estarão separados se e somente se:

$$Y_i^I-c_{i,j}\cdot X_i^I-d_{i,j}\geq 0$$
 para  $I=1,\ldots,v_i,\ Y_j^I-c_{i,j}\cdot X_j^I-d_{i,j}$   $\leq 0$  para

Essas condições asseguram que cada vértice de  $P_i$  esteja de um lado da linha de separação em relação a  $P_i$ , e vice-versa.

Vamos continuar com exemplos para reforçar nosso entendimento sobre a não-sobreposição de polígonos.

### Não-sobreposição entre Polígonos

Para garantir que dois polígonos  $P_i$  e  $P_j$  não se sobreponham, é necessário que exista uma linha de separação entre eles, de modo que todos os vértices de  $P_i$  e  $P_j$  estejam em lados diferentes dessa linha.

#### Coordenadas dos Vértices:

Considerando um polígono  $P_i$  qualquer, as coordenadas do vértice I podem ser calculadas como:

$$\begin{aligned} X_i^I &= v_{x_i}^I \cdot \cos(\theta_i) - v_{y_i}^I \cdot \sin(\theta_i) + x^{P_i}, \\ Y_i^I &= v_{x_i}^I \cdot \sin(\theta_i) + v_{y_i}^I \cdot \cos(\theta_i) + y^{P_i}, \end{aligned}$$

onde  $v_{x_i}^I$  e  $v_{y_i}^I$  representam as coordenadas do vértice I do polígono  $P_i$ , e  $\theta_i$  é o ângulo de rotação do polígono  $P_i$ .

### Frame Title

### Condição de Separação:

Os polígonos  $P_i$  e  $P_i$  estarão separados se e somente se:

$$egin{aligned} Y_i^I-c_{i,j}\cdot X_i^I-d_{i,j} &\geq 0 \quad \text{para } I=1,\ldots,v_i, \ Y_j^I-c_{i,j}\cdot X_j^I-d_{i,j} &\leq 0 \quad \text{para } I=1,\ldots,v_j. \end{aligned}$$

Essas condições asseguram que cada vértice de  $P_i$  esteja de um lado da linha de separação em relação a  $P_i$ , e vice-versa.

Vamos continuar com exemplos para reforçar nosso entendimento sobre a não-sobreposição de polígonos.

# Exemplo



Figura: Contenção de circunferência.

### Referências



PERALTA, J., ANDRETTA, M., OLIVEIRA, J. Packing Circles and Irregular Polygons using Separation Lines.

Proceedings of the 7th International Conference on Operations Research and Enterprise Systems (ICORES 2018), 71-77. 2018.



PERALTA, J., ANDRETTA, M., OLIVEIRA, J. F. Solving irregular strip packing problems with free rotations using separation lines. **Pesquisa Operacional**, v. 38, p. 195-214, 2018.