Tarea 05: distribución muestral y Bootstrap

Dalia Camacho

Parte A: Distribución muestral

Consideramos la base de datos primaria, y la columna de calificaciones de español 30 de primaria (esp. 3).

```
library(tidyverse)
library(knitr)
primarias <- read_csv("primarias.csv")
set.seed(66454)</pre>
```

Seleccina una muestra de tamaño n = 10, 100, 1000. Para cada muestra calcula media y el error estándar de la media usando el principio del plug-in: $\hat{\mu} = \bar{x}$ y $\hat{se}(\bar{x}) = \hat{\sigma}_{p_n}/\sqrt(n)$.

Ahora aproximaremos la distribución muestral, para cada tamaño de muestra n: i) Simula 10,000 muestras aleatorias

ii) Calcula la media en cada muestra

```
for(i in c(10,100,1000)){
    assign(paste0("means_",i),
          unlist(lapply(1:10000, function(j){mean(sample_n(primarias,i)$esp3)})))
}
```

iii) Realiza un histograma de la distribución muestral de las medias (las medias del paso anterior)

Distribución muestral de la media

iv) Aproxima el error estándar calculando la desviación estándar de las medias del paso ii)

```
SE_estimado <- c(sd(means_10), sd(means_100), sd(means_1000))
df <- cbind(df, SE_estimado)</pre>
```

Calcula el error estándar de la media para cada tamaño de muestra usando la información **poblacional** (ésta no es una aproximación), usa la fórmula: $se_p(\bar{x}) = \sigma_p/\sqrt{n}$

```
SD <- sd(primarias$esp3)
SE <- c(SD/sqrt(10), SD/sqrt(1000))
df <- cbind(df, SE)</pre>
```

¿Cómo se comparan los errores estándar correspondientes a los distintos tamaños de muestra?

kable(df)

n	mu_plug	se_plug	$SE_estimado$	SE
10	579.2580	19.282156	21.184118	21.098200
100	580.2323	6.567649	6.503316	6.671837
1000	574.8605	2.071742	1.756416	2.109820

Al aumentar el tamaño de muestra el error estándar disminuye, debido a que la variabilidad de la media disminuye

Parte B: Bootstrap correlación.

Nuevamente trabaja con los datos primaria, selecciona una muestra aleatoria de tamaño 100 y utiliza el principio del plug-in para estimar la correlación entre la calificación de $y = \operatorname{español} 3$ y la de $z = \operatorname{español} 6$: $\widehat{corr}(y,z) = 0.9$. Usa bootstrap para calcular el error estándar de la estimación.

i) Tomamos la muestra que calculamos en la primera parte de la tarea y estimamos la correlación con el principio del plug-in.

```
cor_plug <- cor(Muestra_100$esp3, Muestra_100$esp6)</pre>
```

Con el principio del plug-in la correlación para la muestra es: 0.7996801.

ii) Usamos bootstrap para estimar el error estándar

```
Sim_cor <- 10000 %>%
rerun(sample_n(Muestra_100, replace = TRUE, size = 100)) %>%
map_dbl(~ cor(.x$esp3, .x$esp6))
estES <- sd(Sim_cor)</pre>
```

El error estándar para muestras de tamaño 100 es aproximadamente 0.0433653.