

Shortest paths

Single-source shortest paths (or single-destination)

depending on the assumptions:

Dijkstra's algorithm $O(|S|^2)$

or $O(|S| + |A| \cdot \log |S|)$

Bellman-Ford algorithm $O(|A| \cdot |S|)$

All-pairs shortest paths

Floyd-Warshall algorithm

 $O(|S|^3)$

Problem

Weighted graph: G = (S, A, v) where $v : A \rightarrow \mathbb{R}$ (weight/cost)

Source : $s \in S$

Problem: for all $t \in S$, compute

 $\delta(s, t) = \min \{ v(c) ; c \text{ path from } s \text{ to } t \} \cup \{+\infty\}$

Example:

Costs δ :

Properties of shortest paths

Proposition 1 (existence):

for all $t \in S$, $\delta(s, t) > -\infty$ **iff** the graph does not have a cycle of cost < 0 reachable from s

Proposition 2: a shortest path cannot contain cycles of positive or negative cost

Proposition 3: if there exists a shortest path from *s* to *t*, then there exists one with no more than |S|-1 edges

Trees of shortest paths

Trees rooted at s representing shortest paths

Main properties

Property 1: G = (S, A, v)let c be a shortest path from p to rand q be the node preceding r in c. Then $\delta(p, r) = \delta(p, q) + v(q, r)$.

Property 2: A subpath of a shortest path is a shortest path

Property 3: G = (S, A, v) let c be a path from p to r and q be the node preceding r in c. Then $\delta(p, r) \le \delta(p, q) + v(q, r)$.

Relaxation

Compute $\delta(s,t)$ by successive approximations

```
t \in S d(t) = estimate (from above) of \delta(s, t)
```

 $\pi(t)$ = predecessor of t on

a path from s to t of cost d(t)

Initialization of d and π

INIT

for all
$$t \in S$$
 do { $d(t) \leftarrow \infty$; $\pi(t) \leftarrow \text{nil}$; } $d(s) \leftarrow \mathbf{0}$;

Relaxation of the edge (q, r)

RELAX
$$(q, r)$$

if $d(q) + v(q, r) < d(r)$
then $\{d(r) \leftarrow d(q) + v(q, r) ; \pi(r) \leftarrow q;\}$

Relaxation (cont)

Proposition:

the property « for all $t \in S$, $d(t) \ge \delta(s, t)$ » is an invariant of **relax**

Proof by induction on the number of executions of relax

Dijkstra's algorithm

```
Assumption: v(p, q) \ge 0 for all edges (p, q)
begin
       INIT;
       Q \leftarrow S;
      while Q \neq \emptyset do {
            q \leftarrow \min_d(Q) ; Q \leftarrow Q - \{q\} ;
             for all r successor of q do
                    RELAX(q, r);
end
Greedy algorithm
```

Example

$$Q = \{ s, a, b, c, d \}$$

$$\pi(s) = \text{nil}$$

$$\pi(a) = \text{nil}$$

$$\pi(b) = \text{nil}$$

$$\pi(c) = \text{nil}$$

$$\pi(d) = \text{nil}$$

$$Q = \{ a, b, c, d \}$$

$$\pi(s) = \text{nil}$$

$$\pi(a) = s$$

$$\pi(b) = \text{nil}$$

$$\pi(c) = s$$

$$\pi(d) = \text{nil}$$

Example (cont)

$$Q = \{ a, b, c, d \}$$

$$\pi(s) = \text{nil}$$

$$\pi(a) = s$$

$$\pi(b) = \text{nil}$$

$$\pi(c) = s$$

$$\pi(d) = \text{nil}$$

$$Q = \{ b, c, d \}$$

$$\pi(s) = \text{nil}$$

$$\pi(a) = s$$

$$\pi(b) = a$$

$$\pi(c) = a$$

$$\pi(d) = \text{nil}$$

Example (cont)

$$Q = \{ b, c, d \}$$

$$\pi(s) = \text{nil}$$

$$\pi(a) = s$$

$$\pi(b) = a$$

$$\pi(c) = a$$

$$\pi(d) = \text{nil}$$

$$Q = \{ b, d \}$$

$$\pi(s) = \text{nil}$$

$$\pi(a) = s$$

$$\pi(b) = a$$

$$\pi(c) = a$$

$$\pi(d) = c$$

Example (cont)

$$Q = \{b, d\}, Q = \{d\} \text{ then } Q = \emptyset$$

 $\pi(s) = \text{nil}$
 $\pi(a) = s$
 $\pi(b) = a$
 $\pi(c) = a$
 $\pi(d) = c$

Correctness of Dijkstra's algorithm

Proposition: After the execution of Dijkstra's algorithm on a graph G = (S, A, v), $d(t) = \delta(s, t)$ for all $t \in S$.

Proof by contradiction: let $d(t) \neq \delta(s, t)$

Implementation

With adjacency matrix

time $O(|S|^2)$

With adjacency lists

Q : priority queue

if implemented by binary heaps:

|S| building a heap of |S| elements: O(|S|)

|S| operations MIN_d : $O(|S| \cdot \log |S|)$

|A| operations **RELAX** : $O(|A| \cdot \log |S|)$

total time $O((|S|+|A|) \cdot \log |S|)$

time can be improved to $O(|S| \cdot \log |S| + |A|)$ using Fibonacci heaps

Breadth-first, Dijkstra, Best-first and A*

- **BFT** explores *the whole graph* and finds shortest paths to all nodes under assumption that all moves have equal cost. It uses a *queue*.
- **Dijkstra's alg** explores the whole graph and finds shortest paths to all nodes taking into account different move costs. It uses a priority queue.
- **Best-first** search finds a path to a target node by exploring the frontier nodes that are estimated to be closer to the target (h(t))
- A^* search finds a path to a target node by exploring the frontier nodes that have the maximal sum of distance from the source (f(t)) and estimated distance to the target (h(t))

http://www.redblobgames.com/pathfinding/a-star/introduction.html

see Pearl, J. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, 1984

Bellman-Ford Algorithm

No condition on weights: for all edges (p, q), $v(p, q) \in \mathbb{R}$

```
begin
      INIT;
      Q \leftarrow S;
      for i \leftarrow 1 to |S|-1 do
           for each (q, r) \in A do
                 RELAX(q, r);
      for each (q, r) \in A do
           if d(q) + v(q, r) < d(r) then
                 return « negative cost cycle detected »
           else
                 retour « minimal costs computed »
end
Time complexity: O(|S| \cdot |A|)
```

Example 1

Step 1: relaxing all edges in the following order: (s,a) (s,c) (a,b) (a,c) (b,d) (c,a) (c,b) (c,d) (d,b) (d,s)

Example 1 (cont)

Step 2: relaxing all edges in the following order:
$$(s,a)(s,c)(a,b)(a,c)(b,d)(c,a)(c,b)(c,d)(d,b)(d,s)$$

Example 1 (cont)

Step 3: relaxing all edges in the following order:
$$(s,a)(s,c)(a,b)(a,c)(b,d)(c,a)(c,b)(c,d)(d,b)(d,s)$$

Example 1 (cont)

Step 4: relaxing all edges in the following order: (s,a) (s,c) (a,b) (a,c) (b,d) (c,a) (c,b) (c,d) (d,b) (d,s)

relaxation still possible ⇒ cycle of negative cost

Example 2

Step 1: relaxing all edges in the following order: (s,a)(s,c)(a,b)(a,c)(b,d)(c,a)(c,b)(c,d)(d,b)(d,s)

Example 2 (cont)

Step 2: relaxing all edges in the following order: (s,a) (s,c) (a,b) (a,c) (b,d) (c,a) (c,b) (c,d) (d,b) (d,s)

no more possible relaxation ⇒ costs correctly computed

Why Bellman-Ford algorithm is correct?

because, if there is no negative-cost cycle, every node has a cycle-free shortest path with at most |S|-1 edges

$$((s_0, s_1), (s_1, s_2), ..., (s_{k-1}, s_k))$$
 with $s_0 = s$ and $s_k = t$, $k \le |S| - 1$

At iteration i, we will relax (among other edges) (s_{i-1}, s_i) . This guarantees the shortest path value for all nodes. No relaxation will be possible anymore.

If there exists a negative-cost cycle, one of the edge along the cycle must be possible to relax (prove).

Shortest paths in Directed Acyclic Graphs

No condition on edge cost (as DAG has no cycle)

Idea: perform topological sort and process nodes in order

```
begin INIT; for all q \in S in topological order do for all r successor of q do RELAX(q, r);
```

Time: O(|S| + |A|)

end

Why the algorithm is correct?

Example

Topological order

c, s, a, b, d

Computing costs Processing a Processing **b** -6