

Tema 4 (I)

Location and Routing problems

Problemas de localización y rutas

Eva Vallada Regalado

Departamento de Estadística e Investigación Operativa Aplicadas y Calidad

Resolvética

- Localización
- 2. Rutas

Al final de este tema serás capaz de...

- … plantear problemas en los que se quiere ubicar una o varias instalaciones cumpliendo ciertos criterios.
- ... construir modelos de programación matemática para su resolución.
- ... utilizar el Solver de Excel para la resolución de problemas de programación matemática.

Introducción

- Localización de un servidor
- 2. Problema de cobertura
- 3. Localización de varios servidores

- Decidir dónde localizar nuevas instalaciones
- Centralizado (economías de escala) versus descentralizado (cercanía al cliente)
- Factores a considerar:
 - Factores macroeconómicos
 - Calidad y coste de la mano de obra
 - Coste de la instalación
 - Disponibilidad de infraestructuras
 - Localización de otras instalaciones
- ...

1. Localización de un servidor

- El problema de Weber (Alfred Weber) es uno de los problemas más famosos en la teoría de localización.
- Consiste en encontrar el punto del plano que minimiza la suma de los costes de transporte desde dicho punto hasta un conjunto de puntos ya ubicados en el plano.
- En su versión original, las distancias a los puntos ya ubicados están ponderadas.
- Fue propuesto en el Siglo XVIII, y tiene multitud de variantes.

Fuente:

https://people.hofstra.edu/geotrans/eng/ ch2en/conc2en/weberlocationtriangle.ht ml

Formulación problema de Weber

- Dado un conjunto de instalaciones existentes $A = \{a_1, \dots, a_n\} \subset R^2$.
- Cada instalación $a_i \in A$ tiene asociado un peso w_i .
- El problema por tanto consiste en
 - o min $\sum_i w_i d(x, a_i)$, $x \in \mathbb{R}^2$
 - \circ Siendo $d(x, a_i)$ la distancia del punto a ubicar x a a_i .

Ejemplo del problema de Weber

2

3

Nodo 1: (0; 0)

Nodo 2: (0; 3)

Nodo 3: (3; 2,5)

Solución: Servidor en (0,758903;

2,099665)

min
$$\sqrt{(X-0)^2 + (Y-0)^2} + \sqrt{(X-0)^2 + (Y-3)^2} + \sqrt{(X-3)^2 + (Y-2,5)^2}$$

s.a. $(X,Y) \in \mathbb{R}^2$

El problema del centro o modelo

minimax

- Es similar al problema de Weber, pero minimizando la máxima distancia entre la instalación a ubicar y el conjunto de instalaciones ya ubicadas.
- El problema por tanto consiste en
 - o min $\max_{i} \{ w_i d(x, a_i) \}$, $x \in \mathbb{R}^2$
 - \circ Siendo $d(x, a_i)$ la distancia del punto a ubicar x a a_i .
- Es un problema minimax, cuya formulación utilizando programación matemática no es inmediata
- $\min r, s. a. \{r \ge d(x, a_i) \ \forall i, x \in \mathbb{R}^2 \}$

Ejemplo del problema del centro

$$r = 1,979496$$

min

s.a.
$$\sqrt{(X-0)^2 + (Y-0)^2} \le Z$$

$$\sqrt{(X-0)^2 + (Y-3)^2} \le Z$$

$$\sqrt{(X-3)^2 + (Y-2,5)^2} \le Z$$

$$(X,Y) \in \mathbb{R}^2$$

Problema Centro 3,5 2,5 2 1,5 1 0,5 0 0 0,5 1 1,5 2 2,5 3 3,5

Weber versus Centro

Problema de cobertura

- Consiste en encontrar subconjuntos que cubran una cierta región de interés a mínimo coste.
- Dada una región de interés R, y n conjuntos $C = \{a_1, a_2, ..., a_n\}$, de tal forma que su unión cubra R, encontrar el subconjunto de C que cubre R a mínimo coste.

 A partir de los conjuntos en C, la región de interés R se divide en m subregiones diferentes, que se obtienen al intersecar los conjuntos de C.

Parámetros

- Sea $q_{ij}=1$ si el conjunto a_j cubre la subregión R_i , cero en caso contrario.
- Sea c_i el coste incurrido cuando se utiliza el conjunto a_i .

$$\min \sum_{j} c_j x_j$$

$$s.t.: \sum_{j} q_{ij} x_j \ge 1, i = 1, ..., m$$

$$x_j \in \{0,1\}$$

• Variable binaria $x_j = 1$ si se usa el conjunto a_j .

Modelar y resolver el ejemplo anterior

Localización de instalaciones: problema de la mediana

- Determinar la localización y tamaño óptimos de una serie de instalaciones, elegidas de entre un conjunto de ubicaciones potenciales, que producen un determinado producto.
- Es una extensión del problema del transporte.
- Las demandas y ubicaciones de los clientes son conocidas
 - lacksquare b_1, b_2, \dots, bn : Demandas de los n clientes
 - $\mathbf{a}_1, a_2, \dots, a_m$: Capacidad de producción de cada una de las m instalaciones que se pueden construir
 - $f_1, f_2, ..., f_m$: Coste de construcción de cada una de las m instalaciones
 - $lackbox{ } c_{ij}:$ Coste de transportar una unidad de producto desde la instalación i al cliente j

Modelización del problema

Variables:

- x_{ij} : Número de unidades transportadas desde la instalación i al cliente j, $i=1,2,\ldots,m, j=1,2,\ldots,n$
- y_i : Variable binaria, toma valor 1 si la instalación i es construida, cero en caso contrario, i=1,2,...,m.
- Función objetivo: $\min \sum_{i} (f_i y_i + \sum_{j} c_{ij} x_{ij})$
- Restricciones
 - O Demandas de los clientes: $\sum_i x_{ij} \ge b_i$, j = 1, ..., n.
 - Producción en las instalaciones: $\sum_i x_{ij} \le a_i y_i$, i = 1, ..., m.

Se pueden incorporar muchas otras restricciones: incompatibilidad entre instalaciones, costes no lineales, limitaciones en el transporte, ...

Actividad Seminario 1

- La compañía Surgerisim tiene un contrato por los próximos 30 años con el Ministerio de Salud por el cual provee de camas a diferentes distritos hospitalarios en España. Esos distritos están localizados en Valencia, Barcelona, Madrid, Bilbao y Sevilla. Para fabricar esos colchones, la compañía va a abrir dos fábricas, a elegir entre las siguientes posibles localizaciones: Zaragoza, Granada, Cuenca y Castellón.
- El coste de enviar una cama desde cada posible fábrica hasta cada distrito hospitalario (en Euros), la capacidad de producción de cada fábrica (en unidades), el coste total de construcción y mantenimiento en los 30 años (en miles de euros), así como la demanda esperada de cada distrito hospitalario por año (en unidades), vienen especificadas en la siguiente tabla:

	Val	Bar	Mad	Bil	Sev	Capacidad anual	Coste miles €	en
Zar	15	15	15	30	40	1500	300	
Gra	25	40	20	50	15	1200	250	
Cue	10	20	10	35	30	1100	230	
Cas	5	10	20	20	35	1300	270	
Demand	300	500	600	250	325			
anual								

Suponiendo que no hay más costes en el problema, ¿qué fábricas hay que construir y cuántas camas hay que enviar desde cada fábrica a cada distrito, para que el coste total de los próximos 30 años sea mínimo?

