Problema 2.-

Sean ABC un triángulo isósceles con $\angle BAC = 100^\circ$. La bisectriz del ángulo $\angle CBA$ corta al lado AC en el punto D. Demostrar que BD + DA = BC.

Solución de Florentino Damián Aranda Ballesteros. Córdoba.

Prolongando BA y trazando la recta simétrica de BC respecto del lado AC determinamos el triángulo BCF donde $\angle BFC = 60^{\circ}$. Sea el punto E donde la bisectriz BD corta al lado CF. De esta forma el punto D sería el incentro del triángulo BCF.

El cuadrilátero ADEF es inscriptible ya que $\angle AFE + \angle ADE = 180^\circ$. Por tanto, las cuerdas $AD\ y\ DE$ son de igual longitud. Y como quiera que el triángulo BEC es isósceles, entonces BE = BC.

En definitiva,
$$BE = BC \rightarrow BE = BD + DE = BD + DA = BC$$
. cqd

