die geographische Länge von B wird in Sonneneinheiten gezählt : 1D = 121 . 12. 34. iiii) Mit den bekannten Werten für δ und ϕ_{B} (s.o.) wird dann aus (33a): W L'8909E = EU Damit wird aus (46) in 1. Näherung : . 9 = E1

ALID = low 41win 41sec : grunnfen Z (s.o.) wird aus (36) in erster Mäherung :

wie in 3.1.2. Mit diesen ersten Annahmen kann das Mäherungsverfahren , wie

in ${\rm I\!I}.{\rm A.l.}$ beschrieben , durchgeführt werden. Es ergibt sich :

"40 8E . S = SEY _II ,SZ . 99 = SEd

m T.882E6E6 = sea : briw .f.S.M zus (ol) tiM

y = Ou 23ww ISeec

Wit greem ϕ_{BS} and dem bekennten $\phi_{B} = 25$ ° 28° 32" wind durch die

 $\frac{1}{m} = \frac{\text{"II "TS ° E}}{m \text{ $T.88002E}} = \frac{\text{"El "A " El "P. M.}}{\text{Ed }}$: .2.1.4.M grunentä N

Jetzt kann $\Theta_{\rm b}$) mit diesen Werten aus (12a) mit dem \to Rechenprogramm

e^{P)} = -0 . 35, 30. bestimmt werden:

Winkellunktionen der Verbesserung enge Grenzen setzen. Der mit der nehmen, da technische Rundungstehler bei Benutzung der zahlreichen dieser Stelle nicht sinnvoll mehrere längere iterative Rechnungen vorzueinen zuverlässigen Wert für 🕁 zu erhalten. Es erscheint jedoch an trA eseib ius nerdene Vertenen iterativen Vertehren auf diese Art Anm. : Es müllte nun mit diesem Wert von $\Theta_{\rm D}$) die Höhe h $_{\rm B}$ verbessert berech-

jakeit deswegen an dieser Stelle genügen (Eine solche Verbesserung Höhe $h_B = 35058.7$ m berechnete Wert für $\Theta_{b,j}$ soll in seiner Genau-

würde auch nur 16" betragen).

Lichtweg SP_g ist , kann mit genügender Genauigkeit angenommen werden , von denen von P unterscheiden , und der Lichtweg SB etwa gleichlang dem serung 11. Da aber die geographischen Koordinaten von B sich nur wenig hier in gleicher Weise verfahren werden wie schon in M.3. (mit der Verbesbetinde sich in Bg., wo er die Sonne gerade untergehen sieht. Es müßte nun M.T.S.S. Zur Berechnung von $\Theta_{e,j}$ wird ebenfalls angenommen , der Beobachter

.90 ,EE . 0 - = (°A dati auch die entsprechenden Refraktionen gleichgroß sind. Also :

: mird dann : Der gesamte Refraktionswinkel für den Lichtstrahl auf dem Weg von 5 nach B_{D}

.9E ,90 . I - = 0

M.T.A. Mit O aus M.T.3. kann die "wahre" Zenitdistanz der Sonne in B_D berechnet