Linguaggi e compilatori Corso di Laurea in Informatica

Mauro Leoncini

A.A. 2023/2024

Linguaggi e compilatori

- Linguaggi ed espressioni regolari
 - Linguaggi regolari
 - Espressioni regolari

Linguaggi e compilatori

- Linguaggi ed espressioni regolari
 - Linguaggi regolari
 - Espressioni regolari

Importanza dei linguaggi regolari

- Sono "pervasivi", presenti in molti ambiti dell'Informatica
- Ad esempio, tipici pattern di ricerca all'interno di documenti definiscono linguaggi regolari.
- Come tali, vengono utilizzati negli editor di testo ma anche in molti programmi di utilità disponibili in ambiente Unix/Linux (grep, sed, awk, ...)
- Rivestono un ruolo cruciale nei linguaggi di programmazione.
- Ad esempio, sono linguaggi regolari:
 - l'insieme degli identificatori (di funzione e di variabile);
 - l'insieme di tutte le costanti numeriche (integer o float).
- Sono comunque regolari tutti i linguaggi *finiti*, cioè costituiti da un numero finito di stringhe.

Definizione di linguaggio regolare

- Dato un alfabeto Σ cominciamo col definire $\underline{unitario}$ su Σ ogni linguaggio costituito da un singolo carattere di Σ
- Ad esempio, se $\Sigma = \{a, b, c\}$, i linguaggi unitari su Σ sono: $\{a\}$, $\{b\}$ e $\{c\}$.
- Un linguaggio L su un alfabeto $\Sigma = \{a_1, \ldots, a_n\}$ si dice <u>regolare</u> se può essere espresso usando un numero finito di operazioni di concatenazione, unione e chiusura riflessiva a partire dai suoi linguaggi unitari $\{a_1\}, \ldots, \{a_n\}$
- Più precisamente:
 - $\{\epsilon\}, \{\mathbf{a}_1\}, \dots, \{\mathbf{a}_n\}$ sono linguaggi regolari
 - se R_1 ed R_2 sono linguaggi regolari, allora $R_1 \cup R_2$ e R_1R_2 sono linguaggi regolari
 - ullet se R è un linguaggio regolare allora R^* è un linguaggio regolare

Mauro Leoncini L&C Anno Accademico 2023/24 5 / 20

Esempi di linguaggi regolari

- Sia Σ l'alfabeto ASCII e sia $x=x_1x_2\dots x_n$ una generica stringa di Σ^* . Il linguaggio $\{x\}$ è regolare in quanto esprimibile come concatenazione dei linguaggi unitari $\{x_1\}, \{x_2\}, \dots, \{x_n\}$
- Esempio: {C + +} è concatenazione dei linguaggi unitari {C}, {+} e
 {+}, {Python} è concatenazione dei linguaggi unitari {P}, {y}, {t},
 {h}, {o} e {n}
- Il linguaggio $\{x,y,z\}$, dove x,y e z sono stringhe sull'alfabeto ASCII è regolare perché esprimibile come unione dei linguaggi regolari $\{x\},\{y\}$, e $\{z\}$
- Esempio: $\{C++,Python\}$ è regolare perché unione di due linguaggi che sappiamo essere regolari
- Generalizzando gli esempi precedenti si dimostra facilmente come ogni linguaggio finito sia esprimibile come unione di concatenazioni di linguaggi unitari

Mauro Leoncini L&C Anno Accademico 2023/24 6/20

4日 (日本) (日本) (日本) (日本)

Altri esempi di linguaggi (regolari e non)

- $L = \{a^n | n > 0\}$ è regolare perché $L = \{a\}^*$
- Anche il linguaggio $L_{n,m} = \{a^n b^m | n, m \ge 0\}$ è regolare poiché $L_{n,m} = \{a\}^*\{b\}^*$, cioè è la concatenazione di due linguaggi regolari
- Il linguaggio $\{a\}^+ = \{a^n | n \ge 1\}$ è regolare perché $\{a\}^+ = \{a\}\{a\}^*$
- Il L^R è regolare se (e solo se) L è regolare.
- Il linguaggio $L_{n,n} = \{a^n b^n | n \ge 0\}$ non è regolare
- Il c.d. linguaggio delle repliche

$$L_{rep} = \{ \beta \in \Sigma^* | \beta = \alpha \alpha, \alpha \in \Sigma^* \}$$

non è regolare

• Il linguaggio $L_{mime} = \{a^n | n \text{ primo}\}$ non è regolare

4□ > 4個 > 4 = > 4 = > = 900

Linguaggi e compilatori

- Linguaggi ed espressioni regolari
 - Linguaggi regolari
 - Espressioni regolari

Espressioni regolari

- Le espressioni regolari su un alfabeto Σ sono un formalismo (cioè a loro volta sono linguaggi) per definire linguaggi regolari
- Introdurremo dapprima le espressioni regolari "pure" (e.r.), poi le espressioni come vengono comunemente usate in strumenti/applicazioni reali (da MS Word[®] a grep)
- Le espressioni regolari pure sono definite in modo matematicamente semplice e "pulito" ma sono però molto "ostiche" da utilizzare in pratica
- In concreto si usano espressioni regolari con una notazione molto estesa (in ambiente Linux si distingue fra Basic Regular Expression ed Extended Regular Expression)

Espressioni regolari di base

• Le e.r. su un alfabeto Σ riflettono le costruzioni usate nella definizione dei linguaggi regolari su Σ

- Base ϵ è un'espressione regolare che denota il linguaggio composto dalla sola stringa vuota ϵ
 - per ogni $\mathbf{a} \in \Sigma$, \mathbf{a} è un'e.r. che denota il linguaggio unitario {a}

Ricorsione Se \mathcal{E} ed \mathcal{F} sono e.r. che denotano, rispettivamente, i linguaggi E ed F, allora la scrittura:

- $\mathcal{E}\mathcal{F}$ è un'e.r. che denota il linguaggio EF(concatenazione)
- $\mathcal{E}|\mathcal{F}$ (o anche $\mathcal{E}+\mathcal{F}$) è un'e.r. che denota il linguaggio $E \cup F$ (unione)
- ullet \mathcal{E}^* è un'e.r. che denota il linguaggio E^* (*chiusura* riflessiva)

Espressioni regolari

- Consideriamo poi un'ulteriore regola:
 - Parentesi. Se $\mathcal E$ è un'e.r., la scrittura $(\mathcal E)$ è un'e.r. equivalente alla prima, cioè che denota lo stesso insieme di stringhe che serve a forzare un ordine di composizione delle espressioni diverso da quello standard
- L'ordine standard prevede che la chiusura precede la concatenazione che precede unione
- Se pensiamo a concatenazione come moltiplicazione, chiusura come esponenziazione e unione come addizione, le regole di precedenza coincidono con quelle dell'aritmetica
- In generale, il linguaggio denotato da un'espressione regolare $\mathcal E$ potrà essere indicato scrivendo $L(\mathcal E)$

Esempi

• L'espressione regolare $0|1^*10$ su \mathcal{B} (interpretabile come $0|((1^*)10)$, in base alle regole di precedenza) denota il linguaggio $R_1 = \{0, 10, 110, 1110, \ldots\}$

- Il linguaggio R_1 è chiaramente differente dal linguaggio R_2 su \mathcal{B} definito dall'espressione regolare $(\mathbf{0}|\mathbf{1})^*\mathbf{10}$, che consiste di tutte le stringhe binarie che terminano con 10
- Posto $\Sigma = \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$, l'espressione regolare $\mathbf{a}(\mathbf{b}|\mathbf{c})^*\mathbf{a}$ denota il linguaggio R_3 su Σ costituito dalle stringhe che iniziano e terminano con il carattere a e che non contengono altre a
- La scrittura $(1|01)^*(0|1|01)$ denota il linguaggio delle stringhe su \mathcal{B} di lunghezza almeno 1 che non contengono due caratteri 0 consecutivi

Tanti 1 quanti vuoi

Problemi pratici

- Nelle regole di composizione delle e.r. non esiste la possibilità di esprimere la negazione di un carattere a
- Con ciò intendiamo "tutti i caratteri dell'alfabeto escluso a"
- Si provi a scrivere un'e.r. pura, sull'alfabeto ASCII per denotare tutte le stringhe che <u>non terminano</u> con 1.
- Allo stesso modo non esiste un operatore per indicare una potenza finita di un insieme di stringhe.
- Si provi qui a scrivere un'espressione regolare pura per il semplice linguaggio $\{a^i|0\leq i\leq 30\}$
- Le "estensioni" che andremo ora a vedere, e che mirano a rendere le e.r. utilizzabili in concreto, caratterizzano le c.d. espressioni regolari estese secondo lo standard POSIX (Portable Operating System Interface for Unix)

Metacaratteri e regole aggiuntive

- Come sappiamo, i simboli dell'alfabeto sono detti anche caratteri
- Nella descrizione formale del linguaggio si usano però anche altri simboli, che non fanno parte dell'alfabeto.
- Nel caso delle e.r., esempi di simboli usati per scopi descrittivi sono le parentesi e i simboli * e |
- Tali simboli sono detti metacaratteri
- Nelle e.r. estese (definite, ad es. sull'alfabeto ASCII) esistono metacaratteri che denotano opportuni sotto-insiemi di caratteri dell'alfabeto. Ad esempio:
 - la scrittura [:alpha:] denota l'insieme dei caratteri alfabetici (rispetto al locale corrente)
 - [:digit:] denota l'insieme delle cifre decimali
 - [:alnum:] denota l'insieme dei caratteri alfabetici e numerici (le cifre)
- Dagli esempi si evince che un metacarattere è un simbolo astratto

Mauro Leoncini L&C Anno Accademico 2023/24 14/20

Metacaratteri e regole aggiuntive

- Le parentesi quadre sono metacaratteri.
- Caratteri e metacaratteri inclusi fra parentesi quadre si intendono in or
- Ad esempio [_[:alnum:]] denota il l'insieme dei caratteri alfanumerici <u>unito</u> il "trattino basso" (<u>underscore</u>)
- Il simbolo ^come primo carattere all'interno di una coppia di parentesi quadre denota l'insieme dei caratteri dell'alfabeto, ad esclusione dei simboli che seguono
- Ad esempio [^[:alnum:]] denota l'insieme di tutti i caratteri che non sono alfanumerici
- Altri metacaratteri importanti servono a specificare potenze di insiemi:
 - ullet la scrittura \mathcal{E} ? denota l'insieme $\{oldsymbol{\epsilon}\}\cup L(\mathcal{E})$
 - la scritture $\mathcal{E}\{m,n\}$ denota l'insieme

 $L(\mathcal{E})^m \cup L(\mathcal{E})^{m+1} \cup \ldots \cup L(\mathcal{E})^n$

Metacaratteri e regole aggiuntive

Il simbolo * conserva il significato che ha nelle espressioni pure

$$\mathcal{E}^* = \bigcup_{i=0}^{\infty} L(\mathcal{E})^i$$

• Poiché $L^+ = LL^*$, l'operatore di chiusura (non riflessiva) è ammesso nelle e.r. estese e si intende che

$$\mathcal{E}^+ = \mathcal{E}\mathcal{E}*$$

- Se è definito un ordinamento fra i caratteri dell'alfabeto, allora si possono utilizzare convenzioni specifiche per denotare intervalli di caratteri. Ad esempio, la scrittura [a - f] denota i caratteri compresi fra a ed f
- Con alfabeto ASCII e locale C una definizione alternativa di [[: alnum :]] è quindi [0 - 9A - Za - z]

Problemi di matching

- I programmi C++ che abbiamo visto alla fine di un precedente set di slide sono esempi di programmi decisori di linguaggi
- Il decisore ci permette cioè di definire un linguaggio esattamente come l'insieme di tutte e sole le stringhe per cui il decisore risponde True (o Yes)
- Nella pratica, molti problemi che coinvolgono le espressioni regolari sono posti in modo diverso (ma con un pressoché identico "substrato" algoritmico)
- Solitamente, dunque, i programmi guidati da e.r. ricevono in input una stringa di testo e un'espressione regolare e devono trovare, nel testo, le occorrenze di detta espressione regolare
- Ad esempio, questo è il caso delle funzioni di ricerca di molti text editor "classici" o di altre utlity come grep e sed

Problemi di matching

- Il caso del front-end di compilatori ed interpreti è ancora diverso (come poi vedremo abbondantemente)
- In questo caso il programma (analizzatore lessicale o lexer) riceve in input il testo (il programma da compilare/eseguire) e un insieme di espressioni regolari.
- Essenzialmente il lexer deve "dire" quale espressione regolare descrive un opportuno prefisso (che non è sempre il primo) del testo ancora da analizzare.
- Ad esempio, se l'input ancora da esaminare fosse

```
formula = 2*x**2
```

il prossimo match trovato dal lexer dovrebbe essere formula (un caso di identificatore) piuttosto che for (un caso di parola chiave)

Qualche esercizio di prova

ASK - SOLUZIONI

ullet Scrivere un'e.r. per il linguaggio sull'alfabeto $\{a,b,c\}$ così definito

$$\{\mathbf{a}^n \mathbf{b}^m \mathbf{c}^k | m = 0 \Rightarrow k = 3\}$$

- Scrivere un'e.r. per il linguaggio sull'alfabeto {a,b}, delle stringhe contenenti al più due a
- Scrivere un'e.r. per il linguaggio sull'alfabeto {a,b}, delle stringhe contenenti un numero dispari di b
- Scrivere un'e.r. per il linguaggio L sull'alfabeto $\{a,b\}$, definito ricorsivamente nel modo seguente:
 - $\bullet \in L$;
 - 2 Se $x \in L$ allora anche $abax \in L$ e $xaa \in L$

Inoltre, solo stringhe ottenibili in questo modo appartengono a L.

Ancora qualche esercizio

- Scrivere un'e.r. per il linguaggio sull'alfabeto {a,b,c}, costituito dalle stringhe in cui ogni occorrenza di b è seguita da almeno un'occorrenza di c
- Descrivere nel modo più semplice possibile, in Italiano, il linguaggio corrispondente alla seguente espressione regolare: $((\mathbf{a}|\mathbf{b})^3)^*(\mathbf{a}|\mathbf{b})$
- Si dica qual è la stringa più corta che non appartiene al linguaggio descritto dall'espressione regolare $\mathbf{a}^*(\mathbf{ab})^*\mathbf{b}^*$
- \bullet Si scriva un'espressione regolare per definire il linguaggio delle stringhe sull'alfabeto $\{0,1\}$ che non contengono tre 1 di fila
- Scrivere un'espressione regolare per localizzare tutti gli url di un file html