ATIVIDADES

1.1 Faça as operações utilizando o prompt de comando do Octave e complete a tabela

Operação	Resposta
12.6987+ 91.3376	104.04
63.2359 X 9.7540	616.80
27.84 ^{54.68}	9.8745e+78
e ^{0.15}	1.1618
log ₂ (970)	9.9218
a = 957+ 485.37	a = 1442.4
b = (957+ 485.37) X (35.8 + 7.8)	b = 6.2887e + 04
$c = [(957 + 485.37) \times (35.8 + 7.8)]^{-41.57}$	c = 3.3399e-200
$d = \{[(957 + 485.37) \times (35.8 + 7.8)]^{-41.57}\}x-29.2207$	d = -9.7593e-199
cos(90°)	0
sen(45°)	0.7071
$\sqrt{15.57}$	3.9459

1.2 Faça as operações com vetores e matrizes utilizando o prompt de comando do Octave e complete a tabela.

Termos		Operação	Resultado
A=[10.7773 -15.5478]	B = [-25.7740 -24.3132]	A+B	-14.997 -39.861
		A-B	36.5513 8.7654
		Multiplica de B por A elemento a elemento	-277.77 378.02
		Divisão de B por A elemento a elemento	-0.4181 0.6395
A = [32.8 22.3 - 32.3]	B = [-45.0 11.8 31.3]	Divida o elemento A(2,1) pelo elemento A(1,1)	-0.6280
-20.6 45.3 -19.4 46.8 40.2 18.2	46.5 - 26.5 1.0 6.1 - 29.5 5.4	Divida o elemento A(3,1) pelo elemento A(1,1)	1.4268
		Multiplique a divisão do elemento A(2,1) e elemento A(1,1) por todos os elementos da linha 1 da matriz A e some com todos os elementos da segunda linha.	-18.400 54.095 23.686
		Multiplique a divisão do elemento B(3,2) e elemento B(1,1) por todos os elementos da linha 1 da matriz A e some com todos os elementos da segunda	68.002 -11.881 -20.174 -2223.85 901.95 -632.19
		linha de B. A*B ^T	854.32 -2177.75 -1566.77
		Crie o vetor com os	-1061.98 1129.10 -802.14
		valores [100.0 100.1 100.2 1000]	[100:0.1:1000]

Você trabalha em uma empresa que monta peças para trator. No motor deste tratores são utilizados 3 tipos de aços carbono diferentes SAE 1020,8620 e 5115. São produzidas peças para 3 tratores diferentes retroescavadeira, escavadeira e trator de esteira. Estes tratores utilizam os tipos de aço conforme tabela abaixo

	102	8620	5115	x1000
	0			
Retroescavadeira	0,5	1	0,1	
Escavadeira	3	5	0,3	
Esteira	4	7	0,8	

- A) Se sua empresa produz 20 retroescavadeira, 30 escavadeira e 5 tratores de esteira por mês. Qual a quantidade de cada tipo de aço deverá ser comprada no mês?
- B) Sabendo que o preço por unidade dos aços, está de acordo com a tabela abaixo quanto será gasto por mês em material?

Aço	Preço
1020	5,00
8620	20,00
5115	15,00

- C) Quanto será gasto para construir cada tipo de trator?
- 1.4 Faça os gráficos que se pede abaixo..
 - a. y = [1 : 10]
 - b. $x = [-31.4724 40.5792 \ 37.3013 41.3376] e y = x^2 + 4$
 - c. cos no intervalo de -10 até 10
 - d. $x = [-45.7507 46.4889 34.2387 47.0593] e y = e^{x-40}$
- 1.5 Usando o Octave utilize a quantidade de algarismos significativos indicado e diga qual foi a ordem do erro de arredondamento.
 - a. $\frac{\sqrt{5}+3}{0,3541}$, 5 algarismos Resposta:_____
 - b. $\frac{e^3 + \ln(5)}{sen(3) + tg(0,5)}$ 4 algarismos Resposta:_____
 - c. log_35 , 3 algarismos Resposta:_____
 - d. $\sqrt[3]{3,16}$, 5 algarismos Resposta:
- 1.6 Utilize a séria de Maclaurin para calcular o valor do sen(x) com o x e a quantidade de termos pedida.

Para determinar a série de Maclaurin deve-se seguir os seguintes passos:

- 1° Calculam-se as derivadas sucessivas para a função no caso sen(x) no ponto x = 0, então teremos:
- $f(x) = sen(x) \rightarrow f(0) = 0$
- $f'(x) = cos(x) \rightarrow f'(0) = 1$
- $f''(x) = -sen(x) \rightarrow f''(0) = 0$
- $f'''(x) = -\cos(x) \rightarrow f'''(0) = -1 \dots$
- 2º → Substituem-se os valores na fórmula de Maclaurin e então teremos:

$$f(x) = f(0) \frac{x}{1!} + f'(0) \frac{x^2}{2!} + f''(0) \frac{x^3}{3!} + \dots + \frac{x^n}{n!} f^{(n)}(0)$$

a.	Calcule o sen(2) usando os 6 primeiros termos da série da fórmula obtida o	deixando	o
	resultado com todas as casas decimais.		

Resp	osta:								

b. Calcule direto o sen(2).

Resposta:____

- c. Compare os resultados obtidos. Qual é a ordem dos erros obtidos?
- 1.7 A função $y = \sqrt[3]{x}$ pode ser aproximada pela fórmula:

$$f(x) = \frac{2}{3} + \frac{x}{3} - \frac{1}{9}(x-1)^2 + \frac{5}{81}(x-1)^3 - \frac{10}{243}(x-1)^4 + \frac{22}{729}(x-1)^5$$

A fórmula foi obtida do polinômio de Taylor cuja forma geral é:

$$f(x)=f(a)+\frac{(x-a)^1}{1!}f'(a)+\frac{(x-a)^2}{2!}f''(a)+...+\frac{(x-a)^n}{n!}f^{(n)}(a)$$

Para obter a fórmula foi considerado a=1, calculadas as derivadas sucessivas no ponto 1, substituídas no polinômio de Taylor e foram feitas algumas simplificações.

Para verificar a presença do erro de truncamento preencha a tabela anotando os valores com 6 algarismos significativos

Х	$y = \sqrt[3]{x}$	$f(x) = \frac{2}{3} + \frac{x}{3} + \dots$	y-f(x)
0,7			
0,8			
0,9			
1,0			
1,1			

Preencha novamente a tabela:

Х	$y = \sqrt[3]{x}$	$f(x) = \frac{2}{3} + \frac{x}{3} + \dots$	y-f(x)
10,3			
10,8			
11,3			

A aproximação melhorou ou piorou?

ATIVIDADES

- 2.1 Para cada função abaixo faça um *script* que mostre o gráfico da função para o intervalo e o número de pontos desejados
 - a. $Y=2x^2+1$, [-8 20], 100 pontos
 - b. $Y=\cos^2(x)+\sin^2(x)$, [-12 14], 50 pontos
 - c. $Y = e^{x^3+5}$, [-20 -2], 10 pontos
 - d. $Y = \log_3(x^5 + 2)$, [10 11], 200 pontos
 - e. $Y = \cos(3x^3 + \pi) + x^3$, [1 13], 50 pontos
- 2.2Faça um *script* que leia a partir do tecado dois números e imprima uma mensagem com o maior e o texto "O maior número é: ".
- 2.3 Faça uma função que receba do usuário um número inteiro positivo e gere a sequência de Fibonacci com esta quantidade de números e retorne um vetor com a sequência.
- 2.4 Faça uma função onde o usuário entrará pelo teclado, três números diferentes (você deverá verificar se os números são mesmo diferentes) você deverá organizá-los em ordem crescente. Então solicitar que o usuário digite mais um número qualquer, diferente dos outros três digitados (você deverá verificar se são mesmo diferentes). Retorne um vetor com os quatro números em ordem decrescente.

Decomposição de Cholesky

A decomposição de Cholesky surgiu da necessidade de um algoritmo mais eficiente para solução de sistemas lineares já que tanto o método de decomposição LU quanto o método de Gauss possui um custo computacional bastante alto. Este método então surgiu da observação que quando a matriz dos coeficientes é simétrica (A=A^T) e definida positiva (vAv^T>0) é possível fazer uma decomposição de acordo com a Equação 4

$$A = LL^T$$

Equação 4 - Decomposição de Cholesky

Onde a matriz L é obtida de acordo com a

$$l_{jj} = \sqrt{a_{jj} - \sum_{k=1}^{j-1} l_{jk}^2}, j = 1, 2, ..., n.$$

Equação 5 - Diagonal principal da de decomposição de Cholesky L

$$l_{ij} = \frac{a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk}}{l_{jj}}, j = 1, 2, ..., n - 1e i = j+1, j+2, ..., n$$

Equação 6 - Termos inferiores da matriz L de Cholesky

O sistema que utiliza a decomposição de Cholesky ficará da forma mostrada na Equação 7.

$$L^T x = y$$
$$Ly = b$$

Equação 7 - Sistema linear de Cholesky

Decomposição LDL^T

Na decomposição de Cholesky as condições de utilização são muito rígidas já que a matriz tem que ser simétrica e definida positiva. A matriz precisa ser definida positiva para garantir que todos os termos da diagonal principal da matriz L seja reais, já que eles dependem de uma raiz quadrada. Uma solução para se flexibilizar as condições de utilização da decomposição de Cholesky é fazer com que a diagonal principal não dependa da raiz quadrada, então surgiu a decomposição LDLT que a matriz dos coeficientes precisa ser apenas simétrica.

ATIVIDADES

- 3.1 Implemente o algoritmo de substituições sucessivas e retroativas.
- 3.2 Resolva os sistemas abaixo utilizando os algoritmos implementados no item anterior.

a)
$$\begin{cases} 2x - 3y = -1 \\ 5y = 4 \end{cases}$$
b)
$$\begin{cases} 4x - 5y + 2z = 1 \\ 3y - z = 5 \\ 2z = -2 \end{cases}$$
c)
$$\begin{cases} 4x + y - 4z + w = 0,5 \\ -2y + 8z - 3w = 7 \\ 9z - 4w = 3 \\ -10w = 30 \end{cases}$$

3.3 Faça as operações que se pede sobre as matrizes utilizando o Octave.

a)
$$A = \begin{bmatrix} 3 & 5 \\ -2 & 4 \end{bmatrix}$$

i) Divida o elemento da segunda linha e primeira coluna pelo elemento da primeira linha primeira coluna executando o comando abaixo no Octave.

$$m21 = -A(2,1)/A(1,1)$$

- ii) Multiplique toda a primeira linha pelo valor retornado utilizando o comando L1 = m21*A(1,:)
- iii) Some a segunda linha com o resultado do item anterior utilizando o comando. A(2,:) = L1 + A(2,:)
- iv) O que se observa do resultado?

b)
$$A = \begin{bmatrix} 2 & 1 & -3 \\ 4 & -2 & 5 \\ 1 & 2 & -7 \end{bmatrix}$$

- i) L=eye(3) → Cria uma matriz identidade 3x3
- ii) L(2,1)=A(2,1)/A(1,1) → O elemento L(2,1) da matriz L recebe o resultado da divisão.
- iii) L(3,1)=A(3,1)/A(1,1) → O elemento L(3,1) da matriz L recebe o resultado da divisão.
- iv) A(2,:)=-L(2,1)*A(1,:)+A(2,:)
- v) A(3,:)=-L(3,1)*A(1,:)+A(3,:)
- vi) L(3,2)=A(3,2)/A(2,2)
- vii) A(3,:)=-L(3,2)*A(2,:)+A(3,:)
- viii) Qual foi o resultado encontrado?
- 3.4 Faça o escalonamento das matrizes abaixo utilizando o Octave.

a)
$$\begin{bmatrix} 3 & 1 & 4 \\ 8 & 1 & 2 \\ 2 & 5 & 6 \end{bmatrix}$$
b)
$$\begin{bmatrix} -10 & 2 & 4 & 6 \\ 5 & -8 & 4 & 1 \\ 3 & 9 & 12 & 5 \\ -4 & 0 & 5 & 2 \end{bmatrix}$$

3.5 Utilizando o dispositivo prático encontre o sistema triangular inferior e resolva os sistemas abaixo com e sem pivotação parcial utilizando apenas 3 algarismos significativos na resposta. Determine o erro absoluto utilizando a fórmula:

$$\frac{\left\|\left|x-x^{otimo}\right|\right\|_{\infty}}{\left\|\left|x^{otimo}\right|\right\|_{\infty}}$$

Onde x* é o valor exato da resposta ou aproximado utilizando 6 algarismos significativos.

a)
$$\begin{cases} 5x - 2y + 2z = 2\\ 3x + 2y + 4z = -1\\ 4x - 3y + z = 3 \end{cases}$$

b)
$$\begin{cases} x+y+z=2\\ x-2y-2z=-1\\ 2x+y+z=3 \end{cases}$$

c)
$$\begin{cases} x+y+6z=11\\ x+1,5y+2z=4,5\\ 6x+2y+0,5z=14 \end{cases}$$

d)
$$\begin{cases} 3x+2y+6z=1\\ 12x+8y+24z=4\\ 6x+4y+5z=10 \end{cases}$$

e)
$$\begin{cases} 4x+5y+7z=5\\ 2x+4y+3z=3\\ 6x+3y+8z=8 \end{cases}$$

f)
$$\begin{cases} 3x_1 + 7x_2 + 8x_3 + x_4 = 3\\ 4x_1 + 5x_2 + 2x_3 + 8x_4 = 8\\ 6x_1 + 3x_2 + 2x_3 + 5x_4 = 5\\ 2x_1 + 4x_2 + x_3 + 3x_4 = 9 \end{cases}$$

g)
$$\begin{cases} x_1 + 2x_2 - 3x_3 = 4 \\ 3x_1 - x_2 + 5x_3 = 2 \\ 4x_1 + x_2 + 2x_3 = -2 \end{cases}$$

h)
$$\begin{cases} x_1 + x_2 + x_3 = 2 \\ 2x_1 + 3x_2 + 2x_3 = 5 \\ 2x_1 + 3x_2 + 2x_3 = (\sqrt{3} + 1) \end{cases}$$

i)
$$\begin{cases} 3x_1 + x_2 + 5x_3 = 7 \\ x_1 + 10x_2 + 2x_3 = 3 \\ 5x_1 + 2x_2 + 11x_3 = 5 \end{cases}$$

$$\text{j)} \quad \begin{cases} 12x_1 - 5x_2 + 4x_3 - x_4 + 8x_5 - 7x_6 = 0 \\ -5x_1 + 25x_2 + 7x_3 - 4x_4 + 9x_5 - 32x_6 = -3 \\ 4x_1 + 7x_2 - 6x_3 + 3x_4 - 3x_5 + 4x_6 = 14 \\ -x_1 - 4x_2 + 3x_3 + 17x_4 + 5x_5 + 2x_6 = 6 \\ 8x_1 + 9x_2 - 3x_3 + 5x_4 + x_5 + 15x_6 = 4 \\ -7x_1 - 32x_2 + 4x_3 + 2x_4 + 15x_5 + 23x_6 = 3 \end{cases}$$

$$\begin{cases} -3x_1 - 24x_2 + 5x_3 - 17x_4 = -152 \\ -24x_1 + 5x_2 - 2x_3 + 4x_4 = 31 \\ 5x_1 - 2x_2 + 3x_3 - 8x_4 = 64 \\ -17x_1 + 4x_2 - 8x_3 + x_4 = 11 \end{cases}$$

$$\begin{cases}
20 x_1 - 7 x_2 - 9 x_3 - 2 x_4 + 2 x_5 = 92 \\
-7 x_1 + 14 x_2 + 6 x_3 + 2 x_4 - 5 x_5 = 63 \\
-9 x_1 + 6 x_2 + 25 x_3 + 4 x_4 - 3 x_5 = -235 \\
-2 x_1 + 2 x_2 + 4 x_3 + 6 x_4 - 4 x_5 = 94 \\
2 x_1 - 5 x_2 - 3 x_3 - 4 x_4 + 13 x_5 = -61
\end{cases}$$

- 3.6 Implemente os métodos de decomposição LU, Cholesky e LDL[™] em Octave e resolva os sistemas lineares do exercício anterior, com todos os métodos que forem possíveis. O método implementado deve receber como entrada as matrizes dos coeficientes e dos termos independentes e fornecer o vetor resultado, o erro e o determinante da matriz dos coeficientes, o programa deverá avaliar ainda se o sistema tem solução e se a solução é única. Compare os resultados.
- 3.7 Utilize os algoritmos implementados e implemente um algoritmo para inversão de matrizes. Inverta as matrizes que são possíveis inverter. O programa deverá determinar quais matrizes são possíveis de inverter.

ATIVIDADES

4.1 Implemente os algoritmos de Jacobi, Gauss-Seidel. Verifique a condição de convergência e resolva os sistemas abaixo, com o(s) método(s) que é garantida a convergência. A solução deverá ter um erro máximo de 10⁻⁴ ou o número máximo de 100 iterações.

a)
$$\begin{cases} 7x_1 + x_2 + 5x_3 = 7 \\ x_1 + 10x_2 + 2x_3 = 3 \\ 5x_1 + 20x_2 + 11x_3 = 5 \end{cases}$$

b)
$$\begin{cases} 4x_1 + x_2 + 5x_3 + 3x_4 = 5 \\ 4x_1 + 5x_2 + 2x_3 + x_4 = 7 \\ 7x_1 + 6x_2 + 10x_3 + 5x_4 = 6 \\ 3x_1 + 9x_2 + x_3 + 5x_4 = 3 \end{cases}$$

c)
$$\begin{cases} 5x_1 + 3x_2 + x_3 = 10 \\ 1,5x_1 + 10x_2 + x_3 = 2 \\ 0,7x_1 + 2,3x_2 + 2x_3 = 5 \end{cases}$$

d)
$$\begin{cases} 21x_1 + 12x_2 + 5x_3 = 17 \\ 4x_1 + 45x_2 + 13x_3 = 11 \\ 9x_1 + 14x_2 + 32x_3 = 21 \end{cases}$$

e)
$$\begin{cases} 0.3x_1 + 0.07x_2 + 0.1x_3 = 0.15 \\ 0.014x_1 + 0.05x_2 + 0.0023x_3 = -1.4 \\ 0.09x_1 + 0.05x_2 + 0.18x_3 = -0.31 \end{cases}$$

- 4.2 Compare os resultados para solução dos sistemas de cada método.
- 4.3 Implemente o algoritmo de sobre relaxação sucessiva e resolva os sistemas acima. Faça um algoritmo que testes vários ômegas diferentes e retorne o melhor resultado.

AULA PRÁTICA 5 - Análise de erros na solução de sistemas lineares

OBJETIVO

✓ Determinar a qualidade da solução de um sistema linear baseado na análise do erro da solução

INTRODUÇÃO

Quando uma pequena variação em qualquer uma das matrizes do sistema linear causa uma grande diferença na solução deste sistema dizemos que o sistema é malcondicionado. Através do número de condição, que é baseado em uma das normas da matriz de termos independentes, é possível determinar se o sistema é ou não malcondicionado.

ATIVIDADES

5.1 Faça um algoritmo que determine se o sistema é malcondicionado (obs.: não pode ser utilizada a função cond do Octave). Resolva os sistemas que não são malcondicionados pelos métodos de decomposição ou iterativos. Utilize o método mais barato computacionalmente que produza uma solução com um erro máximo de 10⁻⁴. Some 0,01 e determine a diferença entre as duas soluções utilizando a fórmula:

$$\frac{\left\| \left\| x - x_{+0,01} \right\|_{\infty}}{\left\| x_{+0,01} \right\|_{\infty}}$$

a)
$$\begin{cases} 3,250x_1+1,625x_2+1.083x_3+0,8125x_4=3,520\\ 1,625x_1+1,083x_2+0,8125x_3+0,6500x_4=4,496\\ 1,083x_1+0,8125x_2+0,6500x_3+0,5417x_4=4,008\\ 0,8125x_1+0,6500x_2+0,5417x_3+0,4643x_4=3,490 \end{cases}$$

b)
$$\begin{cases} -3x_1 - 24x_2 + 5x_3 - 17x_4 = -152 \\ -24x_1 + 5x_2 - 2x_3 + 4x_4 = 31 \\ 5x_1 - 2x_2 + 3x_3 - 8x_4 = 64 \\ -17x_1 + 4x_2 - 8x_3 + x_4 = 11 \end{cases}$$

c)
$$\begin{cases} 3x_1 + 1.5x_2 + x_3 + 0.75x_4 = 32 \\ 1.5x_1 + x_2 + 0.75x_3 + 0.6x_4 = 16.2 \\ x_1 + 0.75x_2 + 0.6x_3 + 0.5x_4 = 10.85 \\ 0.75x_1 + 0.6x_2 + 0.5x_3 + 0.43x_4 = 8.16 \end{cases}$$

d)
$$\begin{cases} 0.01x_1 + 0.4x_2 + 0.125x_3 + x_4 = 2.0685 \\ 0.4x_1 + 0.25x_2 + 2x_3 + 0.32x_4 = -0.085 \\ 0.125x_1 + 2x_2 + 0.5x_3 + 1.02x_4 = 2.4425 \\ x_1 + 0.32x_2 + 1.02x_3 + 0.045x_4 = -0.1424 \end{cases}$$

e)
$$\begin{cases} 3x_1 + 4x_2 = 1 \\ -9x_1 - 12x_2 = 4 \end{cases}$$

5.2 Implemente o software para construção da matriz de Hilbert. Multiplique a matriz criada pelo algoritmo por 4, 8 e 7,45. Verifique o número de condição para as matrizes resultante dos produtos. Multiplique a linha 1 pelos mesmos fatores e repita a verificação. Descreva o que você observou.