Nonparametric IV estimation of local average treatment effects with covariates

Markus Frölich

Universität St.Gallen, Bodanstrasse 8, SIAW, 9000 St. Gallen, Switzerland

June 7, 2022

Content

- Introduction
- 2 Model
- 3 Estimation
- Asymptotic Results

Journal of Econometrics

Volume 139, Issue 1, July 2007, Pages 35-75

Nonparametric IV estimation of local average treatment effects with covariates

Markus Frölich a, b ≥ 1 🖾 🕀

Show more V

- In many applications one wants to uncover the causal relationship between a variable D and an outcome Y, where the variable D is itself endogenous.
- If a variable Z exists that affects only D but not Y, then an exogenous variation in Z induces an exogenous variation in D and thus overcomes the endogeneity of D. Such a variable Z is called an instrumental variable.

- The LATE has been introduced by Imbens and Angrist (1994) and further been analysed in several papers. Most of the discussion on LATE focuses on the case where Z is a proper instrumental variable without conditioning on X.
- Nonparametric estimation of LATE with confounding covariates X has not been analysed until this paper was published.

- In this paper, nonparametric identification and estimation of LATE with covariates is analysed.
- A nonparametric estimator in the form of a ratio of two matching estimators is shown to be \sqrt{n} -consistnet and efficient.

Y	outcome variable
D	treatment variable
Z	instrument variable
X	covariates, $\dim(X)=k$
$Y_{i,Z_i}^{D_i}$	the observed value of Y_i
$Y_{i,z}^d$	the potential outcome of Y_i , usually $z \in \{0,1\}, d \in$
,	$\{0,1\}$
D_{i,Z_i}	the observed value of D_i
$D_{i,z}$	the potential outcome of D_i , usually $z \in \{0, 1\}$

According to the reaction of D on an external intervention on Z, the units i can be distinguished into different types. With D and Z binary, four types $\tau \in \{n, c, d, a\}$ are possible:

$\tau_i=n$	if $D_{i,0} = 0$ and $D_{i,1} = 0$	Never-taker
$\tau_i = c$	if $D_{i,0} = 0$ and $D_{i,1} = 1$	Complier
$\tau_i = d$	if $D_{i,0} = 1$ and $D_{i,1} = 0$	Defier
$\tau_i = a$	if $D_{i,0} = 1$ and $D_{i,1} = 1$	Always-taker

The impact of D on Y can at most be ascertained for the subpopulations of compliers and defiers.

Under certain assumptions given below, the LATE γ for the subpopulation of compliers

$$\gamma = \mathbf{E}[Y^1 - Y^0 \mid \tau = c]$$

is identified.

Define also the treatment effect for the compliers with characteristics x as

$$\gamma(x) = \mathbf{E}[Y^1 - Y^0 \mid X = x, \tau = c].$$

To identify the LATE γ , we assume that:

Assumption 1(Monotonicity). The subpopulation of defiers has probability measure zero: $P(D_{i,0} > D_{i,1}) = 0$.

Assumption 2(Existence of compliers). The subpopulation of compliers has positive probability: $P(D_{i,0} < D_{i,1}) > 0$.

Assumption 3(Unconfounded type). The relative size of the subpopulations always-takers, never-takers and compliers is independent of the instrument:for all $x \in \mathbf{Supp}(X)$

$$\mathbf{P}(\tau_i = t \mid X_i = x, Z_i = 0) = \mathbf{P}(\tau_i = t \mid X_i = x, Z_i = z) \text{ for } t \in \{a, n, c\}.$$

Assumption 4(Mean exclusion restriction). The potential outcomes are mean independent of the instrumental variable Z in each subpopulation: for all $x \in \mathbf{Supp}(X)$

$$E[Y_{i,Z_i}^0 | X_i = x, Z_i = 0, \tau_i = t] = E[Y_{i,Z_i}^0 | X_i = x, Z_i = 1, \tau_i = t]$$
 for $t \in \{n, c\}$,

$$E[Y_{i,Z_i}^1 | X_i = x, Z_i = 0, \tau_i = t] = E[Y_{i,Z_i}^1 | X_i = x, Z_i = 1, \tau_i = t]$$
 for $t \in \{a, c\}$.

Assumption 5(Common support). The support of X is identical in both subpopulations:

$$\mathbf{Supp}(X \mid Z=1) = \mathbf{Supp}(X \mid Z=0).$$

Theorem 1

(Identification of LATE). Under Assumptions 1-5 and supposing that $\mathbf{E}[Y] < \infty$, the LATE γ for the subpopulation of compliers is nonparametrically identified as

$$\gamma = \mathbb{E}\left[Y^{1} - Y^{0} \mid \tau = c\right] = \frac{\int (\mathbb{E}[Y \mid X = x, Z = 1] - \mathbb{E}[Y \mid X = x, Z = 0]) f_{x}(x) dx}{\int (\mathbb{E}[D \mid X = x, Z = 1] - \mathbb{E}[D \mid X = x, Z = 0]) f_{x}(x) dx}.$$
 (1)

And that for all x with $\mathbf{P}(\tau = c \mid X = x) > 0$ the treatment effect $\gamma(x)$ is identified as

$$\gamma(x) = \mathrm{E}\left[Y_{i,Z_i}^1 - Y_{i,Z_i}^0 \mid X_i = x, \tau_i = c\right] = \frac{\mathrm{E}[Y \mid X = x, Z = 1] - \mathrm{E}[Y \mid X = x, Z = 0]}{\mathrm{E}[D \mid X = x, Z = 1] - \mathrm{E}[D \mid X = x, Z = 0]}. \quad (2)$$

In this section nonparametric estimation of the LATE γ is discussed. Define the conditional mean functions

$$m_z(x) = \mathbf{E}[Y \mid X = x, Z = z] \text{ and } \mu_z(x) = \mathbf{E}[D \mid X = x, Z = z],$$

and let $\hat{m}_z(x)$ and $\hat{\mu}_z(x)$ be the corresponding nonparametric regression estimators. A nonparametric imputation estimator of γ is

$$\frac{\sum_{i}(\hat{m}_{1}(X_{i}) - \hat{m}_{0}(X_{i}))}{\sum_{i}(\hat{\mu}_{1}(X_{i}) - \hat{\mu}_{0}(X_{i}))},$$

where the expected values $\mathbf{E}[Y \mid X, Z]$ and $\mathbf{E}[D \mid X, Z]$ are imputed for each observation X_i .

Using the observed values Y_i and D_i as estimates of

$$\mathbf{E}[Y_i \mid X_i, Z = z] \text{ and } \mathbf{E}[D_i \mid X_i, Z = z],$$

whenever $z = Z_i$.

Gives LATE estimator $\hat{\gamma}$ as

$$\hat{\gamma} = \frac{\sum_{i:Z_i=1} (Y_i - \hat{m}_0(X_i)) - \sum_{i:Z_i=0} (Y_i - \hat{m}_1(X_i))}{\sum_{i:Z_i=1} (D_i - \hat{\mu}_0(X_i)) - \sum_{i:Z_i=0} (D_i - \hat{\mu}_1(X_i))}.$$
 (3)

The estimator $\hat{\gamma}$ corresponds to a ratio of two matching estimators.

To analyse the properties of $\hat{\gamma}$, it is useful to first derive the semiparametric efficiency bound for the estimation of the LATE γ .

Theorem 2

(Efficiency bound). The semiparametric variance bound for γ is

$$\mathcal{V} = \frac{1}{\Gamma^2} E \left[\frac{\sigma_{Y_1}^2(X) - 2\gamma \sigma_{Y_1 D_1}^2(X) + \gamma^2 \sigma_{D_1}^2(X)}{\pi(X)} + \frac{\sigma_{Y_0}^2(X) - 2\gamma \sigma_{Y_0 D_0}^2(X) + \gamma^2 \sigma_{D_0}^2(X)}{1 - \pi(X)} \right]
+ \frac{1}{\Gamma^2} E \left[\left(m_1(X) - m_0(X) - \gamma \mu_1(X) + \gamma \mu_0(X) \right)^2 \right],$$
(4)

where $\Gamma = \int (\mu_1(x) - \mu_0(x)) f_x(x) dx$ is the denominator in (1).

 $\sigma_{Y_z}^2(x), \sigma_{D_z}^2(x)$ and $\sigma_{Y_zD_z}^2(x)$ are the conditional variances and covariances in the Z=z subpopulation:

$$\sigma_{Y_{*}}^{2}(x) = \mathbf{Var}[Y | X = x, Z = 1],$$

$$\sigma_{Y_zD_z}^2(x) = \mathbf{Cov}[Y, D \mid X = x, Z = z].$$

Theorem 3

(Asymptotic normality of γ). Suppose that

- (i) the LATE γ is identified,
- (ii) $\{(Y_i, D_i, Z_i, X_i)\}_{i=1}^n$ are iid, $Z_i \in \{0, 1\}$ and $X_i \in \mathcal{R}^k$,
- $\mathrm{(iii)}\mathbf{E}\left[\,Y^{2}\,\right]<\infty,$
- (iv) the nonparametric estimator \hat{m}_1 of $m_1(x) = \mathbf{E}[Y \mid X = x, Z = 1]$ is asymptotically linear

$$\hat{m}_1(x) - m_1(x) = \frac{1}{n_1} \sum_{j:Z_j=1} \xi_1^m(Y_j, X_j, x) + b_1^m(x) + R_1^m(x),$$

where $n_z = \sum_{i=1}^n 1(Z_i = z)$, with the properties:

Theorem 3

(A)
$$\mathbf{E}[\xi_1^m(Y_j, X_j, x) \mid X = x, Z_j = 1] = 0;$$

(B)
$$\mathbf{E}\left[\xi_{1}^{m}(Y_{j}, X_{j}, x)^{2} \mid Z_{j} = 1, Z_{i} = 0\right] = o(n);$$

(C)
$$\frac{1}{\sqrt{n_0}} \sum_{i:Z_i=0} b_1^m(X_i) = o_p(1);$$

(D)
$$\frac{1}{\sqrt{n_0}} \sum_{i: Z_i = 0} R_1^m(X_i) = o_p(1);$$

(E)E
$$[\xi_1^m(Y_j, X_j, X_i) \mid Y_j, X_j, Z_j = 1, Z_i = 0] = (Y_j - m_1(X_j)) \frac{f_{x|z=0}(X_j)}{f_{x|z=1}(X_j)} + o_p(1),$$

and analogously for \hat{m}_0 , $\hat{\mu}_1$, $\hat{\mu}_0$. Then the estimator (3) of the LATE γ is asymptotically normally distributed

$$\sqrt{n}(\hat{\gamma} - \gamma) \to N(0, \mathcal{Y}),$$
 (5)

where \mathscr{V} is given by (4).

Theorem4 shows that local polynomial regression satisfies the conditions of **Theorem3**.

Theorem 4

(Efficiency of local polynomial regression). Consider the assumptions:

- $(1)m_1(x), m_0(x), \mu_1(x)$ and $\mu_0(x)$ are \bar{p} -times continuously differentiable with \bar{p} th derivative Hölder continuous, where $\bar{p} > k$ and $k = \dim(X)$,
- (2) the bandwidth sequence h_{n_1} satisfies $n_1 h_{n_1}^k / \ln n_1 \to \infty$ and $n_1 h_{n_1}^{2\bar{p}} \to 0$,
- (3)the Kernel function K is symmetric, commpact and Lipschitz continuous,
- (4)the density $f_{x|z=1}$ of X is \bar{p} -times continuously differentiable with its \bar{p} th derivative Hölder continuous,
- (5a) the Kernel function K has moments of order 1 through \bar{p} equal to zero, (5b) the Kernel function K has moments of order 1 through $\bar{p}-1$ equal to zero,
- $(6)m_1(x), m_0(x), \mu_1(x)$ and $\mu_0(x)$ are estimated at an interior point of $\mathbf{Supp}(X\mid Z=1),$

Theorem 4a.

If Assumptions 1-4 and 5a are satisfied, local polynomial regression of order \bar{p} satisfies the conditions of **Theorem3**.

Theorem 4b.

If Assumptions 1-4 and 5b and 6 are satisfied, local polynomial regression of order $0 \le p < \bar{p}$ satisfies the conditions of **Theorem3**.

There are two alternative approaches to matching on X: matching on the propensity score and weighting by the propensity score.

Propensity scored based estimators can also be constructed for the estimation of γ , with $\pi(x) = \mathbf{P}(Z=1 \mid X=x)$ as the propensity score. By noting that

$$\mathbf{E}[YZ/\pi(x)] = \int (1/\pi(x))\mathbf{E}[YZ \mid X = x] f_x(x) dx = \int m_1(x) f_x(x) dx.$$

The LATE can be written as

$$\gamma = \frac{\mathbf{E} [YZ/\pi(x) - Y(1-Z)/(1-\pi(x))]}{\mathbf{E} [DZ/\pi(x) - D(1-Z)/(1-\pi(x))]},$$
 (6)

and estimated by the propensity score weighting estimator

$$\hat{\gamma}_{\pi w} = \frac{\sum_{i} (Y_i Z_i / \pi(X_i) - Y_i (1 - Z_i) / (1 - \pi(X_i)))}{\sum_{i} (D_i Z_i / \pi(X_i) - D_i (1 - Z_i) / (1 - \pi(X_i)))}.$$
 (7)

To derive the propensity score matching estimator, note that the LATE can also be written as

$$\gamma = \frac{\int (m_{\pi 1}(\rho) - m_{\pi 0}(\rho)) \cdot f_{\pi}(\rho) d\rho}{\int (\mu_{\pi 1}(\rho) - \mu_{\pi 0}(\rho)) \cdot f_{\pi}(\rho) d\rho}$$
(8)

where

$$m_{\pi 1}(\rho) = \mathbf{E}[Y \mid \pi(X) = \rho, Z = 1] \text{ and } \mu_{\pi 1}(\rho) = \mathbf{E}[D \mid \pi(X) = \rho, Z = 1],$$

 f_{π} is the density function of $\pi(x)$ in the population.

The propensity score matching estimator is

$$\hat{\gamma}_{\pi m} = \frac{\sum_{i} (\hat{m}_{\pi 1}(\pi_{i}) - \hat{m}_{\pi 0}(\pi_{i}))}{\sum_{i} (\hat{\mu}_{\pi 1}(\pi_{i}) - \hat{\mu}_{\pi 0}(\pi_{i}))},\tag{9}$$

where $\pi_i = \pi(X_i)$.

Theorem 5

(Efficiency bound with knowledge of propensity score). Suppose that the propensity score $\pi(x)$ is known. The semiparametric variance bound for γ is \mathscr{V} , where \mathscr{V} is given by (4).

For the propensity score matching estimator, to acess efficiency consider first the situation where the propensity score $\pi(x)$ is known. Provided that the conditions of **Theorem3** is satisfied with X replaced by $\pi(x)$, the asymptotic variance of propensity score matching with respect to the known propensity score π is

$$V_{\pi m} = \frac{1}{\Gamma^2} E \left[\frac{\sigma_{\pi Y_1}^2(\pi) - 2\gamma \sigma_{\pi Y_1 D_1}^2(\pi) + \gamma^2 \sigma_{\pi D_1}^2(\pi)}{\pi} + \frac{\sigma_{\pi Y_0}^2(\pi) - 2\gamma \sigma_{\pi Y_0 D_0}^2(\pi) + \gamma^2 \sigma_{\pi D_0}^2(\pi)}{1 - \pi} \right] + \frac{1}{\Gamma^2} E \left[(m_{\pi 1}(\pi) - m_{\pi 0}(\pi) - \gamma \mu_{\pi 1}(\pi) + \gamma \mu_{\pi 0}(\pi))^2 \right],$$
(10)

where

$$\begin{split} \sigma_{\pi\,Y_1}^2(\rho) &= \mathbf{Var}\left[\,Y\,|\,\,\pi(X) = \rho, Z = 1\right],\\ \sigma_{\pi\,Y_1\,D_1}^2(\rho) &= \mathbf{Cov}\left[\,Y, D\mid \pi(X) = \rho, Z = 1\right]. \end{split}$$

Theorem 6

(Inefficiency of propensity score matching). The difference between the asymptotic variance when matching on the known propensity score and the asymptotic variance when matching on X is non-negative and given by

$$V_{\pi m} - \mathscr{V} = \frac{1}{\Gamma^2} E\left[\frac{1-\pi}{\pi} \operatorname{Var}\left(m_1(X) - \gamma \mu_1(X) \mid \pi\right) + \frac{\pi}{1-\pi} \operatorname{Var}\left(m_0(X) - \gamma \mu_0(X) \mid \pi\right) \right] + \frac{2}{\Gamma^2} E\left[\operatorname{Cov}\left(m_1(X) - \gamma \mu_1(X), m_0(X) - \gamma \mu_0(X) \mid \pi\right) \right] \geqslant 0.$$
(11)

Generally, $V_{\pi m} - \mathcal{V}$ is strictly positive unless the support of the propensity score $\pi(x)$ contains only values where both variances are zero or where

$$\sqrt{(\operatorname{Var}(m_{1}(X) - \gamma \mu_{1}(X) \mid \pi))/(\operatorname{Var}(m_{0}(X) - \gamma \mu_{0}(X) \mid \pi))} - \pi(1 + \sqrt{(\operatorname{Var}(m_{1}(X) - \gamma \mu_{1}(X) \mid \pi))/(\operatorname{Var}(m_{0}(X) - \gamma \mu_{0}(X) \mid \pi))}) = 0.$$
(12)