Лабораторная работа №16

Имитационное моделирование

Серёгина Ирина Андреевна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	15

Список иллюстраций

3.1	Модель первой стратегии обслуживания	8
3.2	Отчёт модели первой стратегии обслуживания	9
3.3	Модель второй стратегии обслуживания	10
3.4	Отчёт модели второй стратегии обслуживания	10
3.5	Модель первой стратегии обслуживания с 4 КПП	12
3.6	Модель первой стратегии обслуживания с 4 КПП	12
3.7	Отчёт модели первой стратегии обслуживания с 4 КПП	13
3.8	Отчёт модели первой стратегии обслуживания с 4 КПП	13
3.9	Модель второй стратегии обслуживания с 3 КПП	14
3.10	Отчёт модели второй стратегии обслуживания с 3 КПП	14

Список таблиц

3.1	Сравнение стратегий	11	Ĺ
-----	---------------------	----	---

1 Цель работы

Реализовать с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.

2 Задание

- 1. Реализовать с помощью gpss модель с двумя очередями
- 2. Реализовать с помощью gpss модель с одной очередью
- 3. Изменить модели, чтобы определить оптимальное число пропускных пунктов.

3 Выполнение лабораторной работы

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением μ . Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [a,b]. Предлагается две стратегии обслуживания прибывающих автомобилей:

- 1) автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска;
- 2) автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска. Исходные данные: $\mu=1$, 75 мин, a=1 мин, b=7 мин.

Целью моделирования является определение: – характеристик качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего времени пребывания автомобиля на пункте пропуска; – наилучшей стратегии обслуживания автомобилей на пункте пограничного контроля; – оптимального количества пропускных пунктов. В качестве критериев, используемых для сравнения стратегий обслуживания автомобилей, выберем: – коэффициенты загрузки системы; – максимальные и средние длины очередей; – средние значения времени ожидания обслуживания. Для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими пропускными пунктами, имеем следующую модель (рис. 3.1).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
TEST LE Q$Other1,Q$Other2,Obs1_2 ; длина оч. 1<= длине оч. 2
TEST E Q$Other1,Q$Other2,Obsl_1 ; длина оч. 1= длине оч. 2
TRANSFER 0.5,Obsl_1,Obsl_2 ; длины очередей равны,
; выбираем произв. пункт пропуска
; моделирование работы пункта 1
Obsl 1 QUEUE Other1 ; присоединение к очереди 1
SEIZ\overline{E} punktl ; занятие пункта 1
DEPART Other1 ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE punktl ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 2
Obsl_2 QUEUE Other2 ; присоединение к очереди 2
SEIZE punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2 ; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Рис. 3.1: Модель первой стратегии обслуживания

Получаю отчёт (рис. 3.2).

суббота, мая 24, 2025 17:02:46									
	START T	TME	PMI	TIME	BIOCKS	FACILITIES	STODACES		
						2			
						_	-		
	NAME				ALUE				
	OBSL_1 OBSL_2				5.000				
	OBSL_2			1 1000	1.000				
	OTHERT								
	OTHER2				1.000				
	PUNKT1			1000	3.000				
	PUNKT2			1000	2.000				
LABEL		LOC	BLOCK TYPE	EN EN		NT CURRENT C			
		1	GENERATE TEST		5853	0	-		
		2	TEST		5853	0	0		
		3	TEST TRANSFER QUEUE SEIZE DEPART		4162	0 0 387 0 0	0		
		4	TRANSFER		2431	0	0		
OBSL_1		5	QUEUE		2928	387	0		
		6	SEIZE		2541	0	0		
		7	DEPART		2541	0	0		
		8	ADVANCE RELEASE		2541	1			
		9	RELEASE			0	0		
		10	TERMINATE QUEUE		2540	0 388	0		
OBSL_2					2925	300	U		
		12	SEIZE		2537	0	0		
		13	DEPART ADVANCE		2537	0	0		
		14	ADVANCE		2537	1	0		
		15	RELEASE		2536	0			
		16	TERMINATE		2536	0			
		17	GENERATE TERMINATE		1	0			
		18	IERMINAIE		1	U	0		
FACILITY	E	NTRIES	UTIL. A	VE. TIM	E AVAIL.	OWNER PEND	INTER RETRY 0 0	DELAY	
PUNKT2		2537	0.996	3.9	57 1	5078 0	0 0	388	
PUNKT1		2541	0.997	3.9	55 1	5079 0	0 0	387	
OHEHE		MAY C	ONT ENTRY	ENTRY (0) BUE CO	NIT NIE TIM	E NIE (O)	DETDY	
OTHER		202 1	ONI. ENIRI	ENIKI (U	107.00	ONI. AVE.IIM	E AVE.(-0) 7 646.758	KEIKI	
							3 647.479		
OINEK2		393 .	2925	12	10/.11	. 011.82	5 047.479	U	
FEC XN	PRI	BDT	ASSEN	1 CURRE	NT NEXT	PARAMETER	VALUE		
5855	0	10081.1	102 5855	0	1				
5079	0	10083.	517 5079	8	9				
5078	0	10083.8	308 5078 300 5856	14	15				
5856	0	20160.0	000 5856	0	17				

Рис. 3.2: Отчёт модели первой стратегии обслуживания

Теперь составляю модель для второй стратегии обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются освободившимся пропускным пунктом (рис. 3.3).

```
punkt STORAGE 2

GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

QUEUE Other;

ENTER punkt,1;

DEPART Other;

ADVANCE 4,3;

LEAVE punkt,1;

TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования

GENERATE 10080; генерация фиктивного транзакта,

; указывающего на окончание рабочей недели

; (7 дней х 24 часа х 60 мин = 10080 мин)

TERMINATE 1; остановить моделирования

START 1; запуск процедуры моделирования
```

Рис. 3.3: Модель второй стратегии обслуживания

Получаю отчёт (рис. 3.4).

Рис. 3.4: Отчёт модели второй стратегии обслуживания

Теперь составляю сравнительную таблицу.

Таблица 3.1: Сравнение стратегий

Показатель	стратегия 1	стратегия 2		
	пункт 1	пункт 2	в целом	
Поступило автомобилей	2928	2925	5853	5719
Обслужено автомобилей	2540	2536	5076	5049
Коэффициент загрузки	0,997	0,996	0,9965	1
Максимальная длина	393	393	786	668
очереди				
Средняя длина очереди	187,098	187,114	374,212	344,466
Среднее время ожидания	644,107	644,823	644,465	607,138

Сравнив результаты моделирования двух систем, можно сделать вывод о том, что первая модель позволяет обслужить большее число автомобилей. Однако мы видим, что разница между обслуженными и поступившими автомобилями меньше для второй модели – значит, продуктивность работы выше. Также для второй модели коэффициент загрузки равен 1 – значит ни один из пунктов не простаивает.

Далее необходимо изменив модели, определить оптимальное число пропускных пунктов (от 1 до 4) для каждой стратегии при условии, что: – коэффициент загрузки пропускных пунктов принадлежит интервалу [0, 5; 0, 95]; – среднее число автомобилей, одновременно находящихся на контрольно -пропускном пункте, не должно превышать 3; – среднее время ожидания обслуживания не должно превышать 4 мин

После нескольких поставленных экспериментов я выяснила, что для первой стратегии оптимальное количество КПП - 4 (рис. 3.5), (рис. 3.6).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
TRANSFER 0.5,a,b
      TRANSFER 0.5, Obsl 1, Obsl 2
     TRANSFER 0.5, Obsl 3, Obsl 4
; Моделирование работы пункта 1
Obsl_1 QUEUE Other1
       SEIZE punktl
       DEPART Other1
       ADVANCE 4,3
       RELEASE punktl
       TERMINATE
; Моделирование работы пункта 2
Obsl 2 QUEUE Other2
       SEIZE punkt2
       DEPART Other2
       ADVANCE 4,3
       RELEASE punkt2
       TERMINATE
; Моделирование работы пункта 3
Obsl 3 QUEUE Other3
       SEIZE punkt3
       DEPART Other3
       ADVANCE 4,3
       RELEASE punkt3
       TERMINATE
```

Рис. 3.5: Модель первой стратегии обслуживания с 4 КПП

```
; Моделирование работы пункта 4
Obsl_4 QUEUE Other4
SEIZE punkt4
DEPART Other4
ADVANCE 4,3
RELEASE punkt4
TERMINATE

; задание условий остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Рис. 3.6: Модель первой стратегии обслуживания с 4 КПП

Рис. 3.7: Отчёт модели первой стратегии обслуживания с 4 КПП

OBSL_2	11 QUEU		866	0	0
	12 SEIZ		866	0	0
	13 DEPA		366	0	0
	14 ADVA		866	0	0
	15 RELE	ASE 13	866	0	0
		INATE 13	866	0	0
OBSL_3	17 QUEU	E 13	378	0	0
	18 SEIZ	E 13	378	0	0
	19 DEPA	RT 13	378	0	0
	20 ADVA	NCE 13	378	0	0
	21 RELE	ASE 13	378	0	0
	22 TERM	INATE 13	378	0	0
OBSL 4	23 QUEU	E 14	113	0	0
-	24 SEIZ	E 14	113	0	0
	25 DEPA	RT 14	13	0	0
	26 ADVA	NCE 14	13	1	0
	27 RELE	ASE 14	112	0	0
	28 TERM	INATE 14	112	0	0
	29 GENE	RATE	1	0	0
		INATE	1	0	0
		L. AVE. TIME A			
PUNKT4	1413 0.	557 3.971	1 5623		0 0
PUNKT3	1378 0.	545 3.989			
PUNKT2	1366 0.		1 0		
PUNKT1	1465 0.	584 4.018	1 5621	0 0	0 0
OUEUE	MAY CONT	ENTRY ENTRY(0) A	UP CONT NO	E TIME N	TO / OL DETEN
OTHER4		1413 628			
OTHER3		1378 655		2.527	4.816 0
OTHER2			0.343	2.676	4.934 0
OTHER1	6 0	1366 625 1465 590	0.363	3.385	5.667 0
OTHERI	6 0	1405 590	0.492	3.385	5.00/ 0
FEC XN PRI		ASSEM CURRENT	NEXT PARA	METER V	ALUE
5624 0	10080.041		1		
5621 0	10080.398		9		
5623 0	10082.255	5623 26	27		
5625 0	20160.000	5625 0	29		

Рис. 3.8: Отчёт модели первой стратегии обслуживания с 4 КПП

Также после экспериментов я выяснила оптимальное количество КПП для

второй стратегии - 3 (рис. 3.9).

```
рunkt STORAGE 3 ; прибытие автомобилей

GENERATE (Exponential(1, 0, 1.75)) ; моделирование работы пункта 1

QUEUE Other ; присоединение к очереди 1

ENTER punkt ; занятие пункта 1

DEPART Other ; выход из очереди 1

ADVANCE 4,3 ; обслуживание на пункте 1

LEAVE punkt ; освобождение пункта 1

TERMINATE ; автомобиль покидает систему

; задание условий остановки процедуры моделирования

GENERATE 10080 ; генерация фиктивного транзакта,

; указывающего на окончание рабочей недели

; (7 дней х 24 часа х 60 мин = 10080 мин)

TERMINATE 1 ; остановить моделирование

START 1 ; запуск процедуры моделирования
```

Рис. 3.9: Модель второй стратегии обслуживания с 3 КПП

GPSS World Simulation Report - Untitled Model 2.2.1											
		суббо	та, м	ая 24,	2025	17:35	:07				
								ACILITIE			
	0	.000		1008	0.000	9)	0		1	
	NAMI	-				VALUE	,				
	OTHER	2			100	VALUE					
	PUNKT				100	00.00	10				
	FUNKI				100		, ,				
LABEL		LOC	BLOC	K TYPE	E	NTRY	COUNT	CURRENT	COUNT	RETRY	
		1	GENE	RATE E		568	3		0	0	
		2	QUEU.	E		568	3		0	0	
				R			3		0		
				RT		568	3		0	0	
		5	ADVA	NCE		568	3		3	0	
				E		568			0	0	
				INATE		568	80		0	0	
				RATE					0	0	
		9	TERM	INATE			1		0	0	
OUEUE		MAX C	ONT.	ENTRY I	ENTRY (0) AV	Æ.CON	T. AVE.T	IME	AVE. (-0)	RETRY
OTHER		12	0	5683	2521	,	1.063	1.	885	3.388	0
PUNKT		3	0	0	3	5683	3 1	2.243	0.74	8 0	0
FEC XN	PRI	BDT		ASSEM	CUPP	ENT	NEXT	PARAMET	ER '	VALUE	
	0							- PROPERTY I			
	0										
5685		10082.									
5684		10085.					6				
5686	0	20160.	000	5686	0		8				
2300	-						-				

Рис. 3.10: Отчёт модели второй стратегии обслуживания с 3 КПП

4 Выводы

Я реализовала с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.