Octave for Machine Learning

Thursday, August 2, 2018 6:50 PM

Octave Basics

Description	Command	result
To make code readable PS1('>> ') takes out default 'octave:1' and replaces with '>>' to make code readable	PS1('>> ')	>>
To Exit or Quit	exit quit	Either one of them exit the octave instance
>> % Basic operations		
addition	>> 3+5	8
subtraction	>> 3-5	-2
multiplication	>> 3*5	15
division	>> 3/5	0.60000
power	>> 2^6	64
>> % Logical operations		
false	>> 1 ==2	1
True	>> 1 ~=2	0
AND	>> 1 && 0	0
OR	>> 1 0	1
??? Not sure yet	>> xor(1,0)	1
>> % Variables		
Assigning	>> a = 3	3
semicolon suppress the printing output if we need output we need to specifically check	>> a = 3; a	3
	Display(a)	a = 3
	>> b = 'hi'	b = hi
evaluate if it is true and if it is it will prin	>> c = (3>=1);	c = 1
	>> a = pi; % display() or disp() both are say. It will display or provide output >> display(a) >> disp(a)	a = 3.1416 3.1416
	>> disp(a) >> disp(sprintf('only two decimals: %0.2f',a))	only two decimals: 3.14
	>> disp(sprintf('display six decimals:%0.6f', a))	display six decimals:3.141593
	>> a a = 3.1416 >> format short	a = 3.1416
	>> format long >> a	a = 3.141592653589793

>> % Matrices and		
Vectors		
Matrix	>> A = [1,2;3,4;5,6] % semicolon ';' indicates next row of the matrix	A = 1 2 3 4 5 6
	>> A = [1,2; > 3,4; > 5,6]	A = 1 2 3 4 5 6
vector	>> v = [1;2;3]	v = 1 2 3
	>> v1 = [1 2 3]	v1 = 1 2 3
Size - Get dimension of the matrix A were m = rows and ne = columns	>> [m,n] = size(A)	m = 3 n = 2
% You could also store it this way	>> szA = size(A)	szA = 3 2
	>> size(szA)	ans =
	>> szv = size(v)	szv = 3 1
	>> size(szv)	ans =
Index - % Now let's index into the 3nd row 2nd column of matrix A	>> A = [1,2;3,4;5,6] >> A(3,2)	A = 1 2 3 4 5 6 ans = 6
Pick entire row	>> A(2,:)	ans =
: means fetch entire row / column		3 4
Pick entire column	>> A(:,2)	ans = 2 4 6
Picking specific rows - pick row 1 and 3	>> A([1 3], :)	ans = 1 2 5 6
Assigning new values to rows or columns	>> A(:, 2) = [10;11;12]	A = 1 10 3 11

		5 12
Append a new column vector	>> A = [A, [100;101;102]]	A =
to the write		4 40 400
		1 10 100 3 11 101
		5 12 102
	>> A(:)	ans =
into a single vector		1
		1 3
		5
		2
		4 6
		100
		101
		102
Concatenating two matrices	>> A = [1 2;3 4;5 6]	A =
		1 2 3 4
		5 6
	>> B = [11,12;13,14;15,16]	B =
		11 12 13 14
		15 16
	>> C = [A B]	C =
	(OR)	1 2 11 12
	>> C = [A, B]	3 4 13 14 5 6 15 16
		C =
		1 2
	>> C = [A; B]	3 4
		5 6 11 12
		13 14
		15 16
0 0	>> v = 1:2:10	v =
increments	>> u = 4.6.	1 3 5 7 9
	>> v = 1:6; >> v	v = 1 2 3 4 5 6
Length- usually used in	>> length(v)	ans = 3
vectors. It gives longest		
dimension		
same number matrix / vector	>> ones(2,3)	1 1 1 1 1 1
	>> 2*ones(2,3)	2 2 2
	>> 2 Uties(2,3)	2 2 2
	>> v = zeros(1,4)	v =
		0 0 0 0
random number generation	>> v = rand(1,3)	V =
		4.036444337557339e-001
		6.236177331018921e-001 2.862962755786958e-001

		-3.558743052605708e-001 3.629663240380411e-001 -3.7891695593 42462e-002
histogram of v with hist command	hist(v)	50 - 50 -
Identical matrix	>> I = eye(3)	I = Diagonal Matrix 1 0 0 0 1 0 0 0 1
Help	Help commond Help eye Help help	
Addition and Scalar Multiplication	>> A = [1,2,4;5,1,3]; >> B = [1,3,4;1,1,1]; >> s = 2; % contstant 's' A B	A = 1 2 4 5 1 3 B = 1 3 4 1 1 1 s=2
Addition	add_AB = A+B >> A+1	add_AB = 2 5 8 6 2 4 ans = 2 3 5 6 2 4
Subtraction	sub_AB = A-B	sub_AB = 0 -1 0 4 0 2
multiplication	>> Mult_As = A*s	Mult_As = 2 4 8 10 2 6
division	>> div_As = A /s	div_As = 5.000000000000000e-001 1.000000000000000e+000 2.000000000000000e+000 2.5000000000000000e+000 5.000000000000000e+000 1.50000000000000000e+000
	add_As = A+s	add_As = 3 4 6 7 3 5
Matrix Vector multiplication	>> A = [1, 2, 3; 4, 5, 6; 7, 8, 9]	A = 1 2 3 4 5 6 7 8 9

	>> v = [1;1;1]	v = 1
		1 1
	A*v	6 15
		24
Matrix Matrix multiplication	>> A = [1,2;3,4;5,6];	A = 1 2
		3 4
	>> B = [11,12;13,14;15,16]	5 6 B=
	>> b - [11,12,13,14,13,10]	11 12
		13 14 15 16
	>> C = [1 1;2 2]	C =
		1 1 2 2
	>> A*C	ans =
		5 5
		11 11 17 17
Element wise multiplication	>> A.*B	ans =
		11 24 39 56
		75 96
Element wise squaring	>> A.^2	ans = 1 4
		9 16
Reciprocal	>> 1./A	25 36 ans =
•	22 1./1	1.000000000000000e+000
		5.00000000000000e-001 3.333333333333333e-001
Log	>> Log(A)	2.500000000000000e-001
		2.00000000000000e-001 1.666666666666667e-001
		ans =
Exponentiation	>> Exp(A)	0.00000000000000e+000 6.931471805599453e-001
		1.098612288668110e+000
	>> abs(A)	1.386294361119891e+000 1.609437912434100e+000
Absolute value: gives non negative values	>> dus(A)	1.791759469228055e+000
		ans =
	>> -A % -1 * A	2.718281828459045e+000 7.389056098930650e+000
Negative		2.008553692318767e+001
		5.459815003314424e+001 1.484131591025766e+002
		4.034287934927351e+002
		ans = 1 2
		3 4
		5 6 ans =
		-1 -2

		-3 -4 -5 -6
Matrix multiplication	>> A = [1,2;4,5]	A = 1 2
	>> B = [1,1;0,2]	4 5
	>> I = eye(2)	B = 1 1 0 2
		I = Diagonal Matrix 1 0 0 1
	AI = IA	AI = 1 2 4 5 IA = 1 2 4 5
	AB is not equal to BA	AB = 1 5 4 14 BA =
		5 7 8 10
Inverse and Transpose	>> A = [1,2;4,5]	A = 1 2 4 5
	A'	trans = 1 4 2 5
	>> inv(A)	A_inv =
	(OR) >> pinv(A)	-1.666666666666667e+000 6.6666666666666666e-001 1.333333333333333333333333333333
	Inv(A) *A	000 -3.3333333333333e-001 1.000000000000000e+000
		1.110223024625157e-016 0.0000000000000000e+000 1.0000000000000000e+000
True or false	>> a = [1 15 2 0.5] >> a<3	a = 1.00000 15.00000 2.00000 0.50000 ans = 1 0 1 1
Find - it will find the index where equation holds good	>> find(a<3)	ans = 1 3 4
Sum(a)	>> sum(a)	ans = 18.500
prod(a)	>>prod(a)	ans = 15
Floor(a) - rounds down	>> floor(a)	ans = 1 15 2 0

Ceil(a) - rounds up	>> ceil(a)	ans = 1 15 2 1
Rand	>> rand(3)	ans = 0.124186 0.964188 0.085185 0.544257 0.214253 0.409160 0.121604 0.974376 0.081557
Max per column	>> max(A, [], 1) (OR) >>max(A)	ans = 8 9 7
Max per row	>> max(A, [], 2)	ans = 8 7 9
Max value in the matrix	>> max(max(A)) OR >> max(A(:))	ans = 9
Magic() - to create n by n magic square where sum of each row/ column/ diagonal sum up to same value	>> magic(3)	ans = 8 1 6 3 5 7 4 9 2
Moving data		
current directory	>> pwd	ans = C:\Users\HOME
Change directory	>> cd 'C:\Users\HOME\octave_test' >> pwd	ans = C:\Users\HOME\octave_test
List directory	Is	Volume in drive C is OS Volume Serial Number is 6AEA-E7CE Directory of C:\Users\HOME\octave_test [.] [] 0 File(s) 0 bytes 2 Dir(s) 410,966,540,288 bytes free
Add path to the Octave	>>addpath('C:\Users\Home\octave_test') >>cd 'C:\'	
Remove path to octave	>> rmpath ('C:\Users\Home\octave_test')	
Load data into octave	>> load featuresX.dat >> load ('priceY.dat') >> load ex1data1.txt	
Who - shows what all variables that are in memory in octave	>> who	Variables in the current scope: A AI A_inv BA IA a add_As b dimA div_As n sub_AB szv v w AB A_21 B I Mult_As add_AB ans c dimv m s szA trans v1
Whos - gives the details of the variables	>> whos	Variables in the current scope: Attr Name Size Bytes Class ===================================

		AD 3::3	ا داد د
			double
			double double
		_	2 double
		_	double
			double
			ouble
			double
			48
		double	
			ouble
			48
		double	
			18
		double	
			char
		b 1x2 2 c	har
			gical
			double
		dimv 1x2 16	double
		div_As 2x3 48	8 double
		m 1x1 8 d	double
		n 1x1 8 d	ouble
		s 1x1 8 do	ouble
		sub_AB 2x3 4	18
		double	
		szA 1x2 16	double
		szv 1x2 16	double
			double
			double
			double
		w 1x10 80	double
Clear - will delete the variable	>> clear A	Variables in the current scope:	
from the memory	>> who		
		AB A_21 B I Mult_As	add_AB
		ans c dimv m s sz	A
		trans v1	
		AI A_inv BA IA a ad	ld_As b
		dimA div_As n sub_AB szv	' V
		w	
	>> clear	% will show nothing, as everything	g is
	>> who	cleared	
Load file to octave	>> load ex1data1.txt		
	>> who	Variables in the current scope:	
	· · · · · · · · · · · · · · · · · · ·	variables in the carrent scope.	
		ex1data1	
	>> whos	Variables in the current scope:	
	- W1103	variables in the current scope.	
		Attr Name Size E	Bytes
		Class	,
			=====
		=====	
			1552
		double	
		Total is 194 elements using 1552 b	ovtes
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	,

	>> vector1 = ex1data1(:,1); >> v = vector1(1:5)	v = 6.110100000 5.527700000 8.518599999 7.003200000 5.859800000	000000 999999 000000	
	whos	Variables in the		:
		Attr Name Class	Size	Bytes
		===== A	3x2	48
		double ans double	3x1	24
		ex1data1 double	97x2	1552
		s d <mark>ouble</mark>	10x1	80
		v double vector1	5x1 97x1	40 776
		double	monts using 2F	:20 bytes
Save to file	>> save hello.mat v; >> Is	Total is 315 elements using 2520 bytes Volume in drive C is OS Volume Serial Number is 6AEA-E7CE Directory of C:\Users\HOME\octave_test		
				octave_test
		[.] [] 2 File(s 2 Dir(s free	ex1data1.txt s) 1,603 by) 410,971,734,	rtes
	>> save hello.txt v -ascii % save as text (ASCII) >> ls	Volume in driv Volume Serial	re C is OS Number is 6AE	A-E7CE
		Directory of C:\Users\HOME\octave_t		octave_test
		[.] [] hello.txt 3 File(s 2 Dir(s	ex1data1.tx s) 1,693 by) 410,972,196,	rtes
Plotting Data				
Use vector range and equations and plot the graphs	>> t = [0:0.01:0.98]; >> y1 = sin(2*pi*4*t); >> y2 = cos(2*pi*4*t); >> plot(t, y1); >> hold on; >> plot(t, y2, 'r') >> xlabel('time') >> ylabel('value') >> title('my plot')	0.5 - 0.5 - 0.5 -	my plot	

While	>>i = 1; >>while i<5, > v(i) = 100; > i = i+1; > end;	V = 100 100 100 100 32 64 128 256 512 1024
	>>i = 1; >>while true, > v(i) = 999; > i=i+1; > if i ==5, > break; > end; > end;	v = 999 999 999 999 32 64 128 256 512 1024
If	<pre>>>if v(1) ==1, > disp('the value is one'); > elseif v(1) = 999, > disp('the value is 999'); > else > disp('the value is something else'); > end;</pre>	The value is 999
Function	>>pwd >>cd ' C:\Users\Home\octave_test' >>pwd %make sure the file is created as this function y = squareThisNumber() y = x^2; >>square(5)	<pre>ans = C:\Users\Home ans = C:\Users\Home\octave_test ans = 25</pre>
	<pre>>>[a,b] = squareAndCube(5) function [y1],y2[] = squareAndCubeThisNumber(x) y1 = x^2; y2 = x^3;</pre>	a = 25 b = 125
Cost function	>>X = [1 1;1 2; 1 3] >>y = [1;2;3]	X = 1 1 1 2 1 3 y = 1 2
	>>theta = [0;1]	3 theta = 0 1
	>>j = costFunctionJ(X, y, theta)	m = 3

