

MEEF Mathématiques - UPVD & UM M1 - Semestre 7 Année universitaire 2020-2021

Problème n°4 - Durée 5h

Consignes spécifiques au distanciel :

- Numériser (éviter les photos) votre production sous une résolution **acceptable**. Fichiers souhaités : pdf (de préférence) et images. **Merci de ne pas multiplier les fichiers inutilement.**
- **Etudiant(e) UPVD** : Envoyer le tout sans message texte à florent.nacry@gmail.com avec l'objet :

PB4-MEEF-PRENOM NOM

Etudiant(e) UM: Déposer votre fichier sur l'espace prévu Moodle.

— Début/Fin de l'épreuve : lundi 2 Novembre 13h00-18h00 (19h40 si tiers-temps).

Le sujet est constitué d'un exercice et d'un problème indépendant.

Notations et rappels.

- (i) Dans tout le sujet, la lettre \mathbb{K} désigne indifféremment le corps \mathbb{Q} , \mathbb{R} ou \mathbb{C} .
- (ii) On note $\mathbb{K}[X]$ l'ensemble des **polynômes** à coefficients dans \mathbb{K} en l'indeterminée X. Pour $n \in \mathbb{N}$, on note $\mathbb{K}_n[X]$ les éléments de $\mathbb{K}[X]$ de **degré inférieur** ou égal à n.
- (iii) Soient E, F deux \mathbb{K} -espaces vectoriels. Une application $f: E \to F$ est dite **linéaire** lorsque

$$f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$$
 pour tout $x, y \in E$, pour tout $\lambda, \mu \in \mathbb{K}$.

Si F = E, une application linéaire de E dans F = E est appelée **endomorphisme** de E. Si $F = \mathbb{K}$, une application linéaire de E dans $F = \mathbb{K}$ est appelée **forme linéaire** sur E. Une application linéaire bijective est appelée **isomorphisme**.

(iv) Soit $f: E \to E$ un endomorphisme d'un K-espace vectoriel E. Pour chaque $n \in \mathbb{N}$, on note

$$f^n = \underbrace{f \circ \dots \circ f}_{n-\text{fois}},$$

avec la convention $f^0 = \operatorname{Id}_E$, où Id_E désigne l'application identité de E. Etant donné un polynôme $P = \sum_{k=0}^n a_k X^k$ (avec $n \in \mathbb{N}$ et $a_0, \ldots, a_n \in \mathbb{K}$) on peut associer à l'endomorphisme ci-dessus f un nouvel endomorphisme noté $P(f): E \to E$ défini par

$$P(f)(x) = \sum_{k=0}^{n} a_k f^k(x)$$
 pour tout $x \in E$.

(v) Pour une matrice carrée A de taille $n \geq 1$, on note $\det(A) \in \mathbb{K}$ son **déterminant** et $\mathcal{X}_A = \det(A - XI_n) \in \mathbb{K}_n[X]$ son **polynôme caractéristique**, avec I_n la matrice identité de taille n. De manière analogue, si f est un endormorphisme d'un \mathbb{K} -espace vectoriel de dimension finie $n \geq 1$, on note $\det(f) \in \mathbb{K}$ son déterminant et $\mathcal{X}_f \in \mathbb{K}_n[X]$ son polynôme caractéristique.

Corrigé

Exercice.

- 1. Puisque $\mathcal{X}_f(f)$ est un endomorphisme de E, on a $\mathcal{X}_f(f)(0_E) = 0_E$.
- 2. L'inclusion $x \in E \setminus \{0_E\}$ garantit que la famille $(x) = (f^0(x))$ est libre dans E, i.e., $1 \in \Lambda$. D'autre part, nous savons que le cardinal d'une famille libre de E est majoré par la dimension de E sur \mathbb{K} , à savoir n. On conclut que Λ est une partie non vide et majorée de $\mathbb{N}^* \subset \mathbb{N}$.
- 3. Puisque Λ est une partie non vide et majorée de \mathbb{N} , elle admet un plus grand élément noté m. Cet entier m étant un élément de Λ , nous avons bien sûr

$$(x, f(x), \dots, f^{m-1}(x)) \in l(E).$$

D'autre part, si la famille $(x, f(x), \dots, f^{m-1}(x), f^m(x))$ est libre dans E, alors $m+1 \in \Lambda$ et ceci contredit le fait que m est le plus grand élément de Λ . On a donc bien

$$(x, f(x), \dots, f^{m-1}(x), f^m(x)) \notin l(E).$$

4. Le caractère lié de la famille $(x, f(x), \ldots, f^{m-1}(x), f^m(x))$ obtenu ci-dessus nous donne l'existence de $(\lambda_0, \ldots, \lambda_m) \in \mathbb{K}^{m+1} \setminus \{0_{\mathbb{K}^{m+1}}\}$ tel que

$$\sum_{k=0}^{m} \lambda_k f^k(x) = 0_E,$$

ou de manière équivalente,

$$\lambda_m f^m(x) = -\sum_{k=0}^{m-1} \lambda_k f^k(x).$$

La liberté de la famille $(x, f(x), \dots, f^{m-1}(x))$ entraı̂ne évidemment $\lambda_m \neq 0$ et il suffit alors de poser pour chaque $k \in \{1, \dots, m-1\}$ $a_k = -\lambda_m^{-1} \lambda_k$ pour aboutir à

$$f^{m}(x) = \sum_{k=0}^{m-1} a_k f^k(x).$$

En notant $P = \sum_{k=0}^{m-1} a_k X^k - X^m$, nous observons que $P(f) = \sum_{k=0}^{m-1} a_k f^k - f^m$ puis

$$P(f)(x) = \sum_{k=0}^{m-1} a_k f^k(x) - f^m(x) = 0_E.$$

5. (a) Suivons l'énoncé en développant selon la dernière colonne de la matrice

$$C_P - X \mathbf{I}_m = \begin{pmatrix} -X & \dots & 0 & a_0 \\ 1 & \ddots & \vdots & a_1 \\ 0 & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & -X & a_{m-2} \\ 0 & \dots & 0 & 1 & a_{m-1} - X \end{pmatrix}.$$

8

Il vient sans difficultés

$$\det(C_P - XI_m) = (-1)^{m+1} a_0 \det \begin{pmatrix} 1 & -X & 0 & \dots & 0 \\ 0 & 1 & -X & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & 1 & -X \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} + (-1)^{m+2} a_1 \det \begin{pmatrix} -X & 0 & 0 & \dots & 0 \\ 0 & 1 & -X & & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & & 0 & 1 & -X \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} +$$

. . .

$$+ (-1)^{2m-1} a_{m-1} \det \begin{pmatrix} -X & 0 & 0 & \dots & 0 \\ 1 & -X & 0 & & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & & 1 & -X & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

$$+ (-1)^{2m} (a_{m-1} - X) \det \begin{pmatrix} -X & 0 & 0 & \dots & 0 \\ 1 & -X & 0 & & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & & 1 & -X & 0 \\ 0 & 0 & \dots & 1 & -X \end{pmatrix}.$$

Ceci justifie l'égalité attendue pour $\mathcal{X}_{C_P}(X)$.

(b) En exploitant l'égalité ci-dessus et le fait que le déterminant d'une matrice triangulaire vaut le produit de ses termes diagonaux, on obtient avec $k_m = (-1)^{m+1}$

$$\mathcal{X}_{C_P}(X) = (a_{m-1} - X)(-X)^{m-1} + \sum_{k=0}^{m-2} (-1)^{m+1-k} a_k (-X)^k$$

$$= (-X)^m + \sum_{k=0}^{m-1} (-1)^{m+1-k} a_k (-X)^k$$

$$= (-1)^{m+1} \left(-X^m + \sum_{k=0}^{m-1} (-1)^{-k} a_k (-X)^k \right) = k_m P(X).$$

- 6. (a) La famille $\mathcal{B} = (x, f(x), \dots, f^{m-1}(x))$ est une famille libre de E de cardinal $m = n = \dim E$: c'est donc une base de E.
 - (b) Pour obtenir la matrice de l'endomorphisme f dans la base \mathcal{B} , il suffit d'utiliser la première

égalité donnée par la Question 4 :

$$f(x) \quad f^{2}(x) \quad \dots \quad f^{m-1}(x) \quad f^{m}(x)$$

$$x \quad 0 \quad \dots \quad 0 \quad a_{0}$$

$$f(x) \quad 1 \quad \ddots \quad \vdots \quad a_{1}$$

$$0 \quad \ddots \quad \ddots \quad \vdots \quad \vdots$$

$$\vdots \quad \ddots \quad \ddots \quad 0 \quad a_{m-2}$$

$$f^{m-1}(x) \quad 0 \quad \dots \quad 0 \quad 1 \quad a_{m-1}$$

(c) Etant donné un endomorphisme $g: E \to E$, on **rappelle** que pour toute paire $(\mathcal{B}, \mathcal{B}')$ de bases de E, on a l'égalité

$$\det \operatorname{Mat}_{\mathcal{B}}(g) = \det \operatorname{Mat}_{\mathcal{B}'}(g),$$

où $\operatorname{Mat}_{\mathcal{B}}(g)$ (resp. $\operatorname{Mat}_{\mathcal{B}'}(g)$) désigne la matrice de g relativement à la base \mathcal{B} (resp. à la base \mathcal{B}'). Cette valeur commune à toutes les bases de E est appelé déterminant de g, noté $\det(g)$. On a donc

$$\mathcal{X}_f(X) = \det(f - X \operatorname{Id}_E) = \det(C_P - X \operatorname{I}_m) = \mathcal{X}_{C_P}(X),$$

où Id_E désigne l'identité de E.

(d) De l'égalité entre polynômes $\mathcal{X}_{C_P}(X) = (-1)^{m+1}P(X)$ obtenue plus haut, nous déduisons l'égalité entre endomorphismes de E

$$\mathcal{X}_{C_P}(f) = (-1)^{m+1} P(f).$$

Cette égalité entre endomorphismes donne en particulier l'égalité entre vecteurs de E

$$\mathcal{X}_{C_P}(f)(x) = (-1)^{m+1} P(f)(x).$$

Il reste à évoquer l'égalité $P(f)(x) = 0_E$ pour conclure que $\mathcal{X}_f(f)(x) = \mathcal{X}_{C_P}(f)(x) = 0_E$, i.e., l'endomorphisme $\mathcal{X}_f(f)$ est nul sous réserve que m = n.

7. (a) La famille $(x, f(x), \ldots, f^{m-1}(x))$ est une famille libre de E qui n'est toutefois pas une base de E puisque son cardinal est égal à $m < n = \dim E$. Le théorème de la base incomplète nous dit alors que nous pouvons compléter cette famille en une base de E, i.e., nous pouvons trouver n - m vecteurs de E, notés e_{m+1}, \ldots, e_n , tels que

$$\mathcal{B} = (x, f(x), \dots, f^{m-1}(x), e_{m+1}, \dots, e_n)$$

est une base de E.

(b) La Question 4 ci-dessus nous assure (dans le même esprit que la Question 6(b)) que la matrice de l'endomorphisme f dans la base \mathcal{B} est de la forme

$$f(x) \quad f^{2}(x) \quad \dots \quad f^{m-1}(x) \quad f^{m}(x) \quad e_{m+1} \quad \dots \quad e_{n}$$

$$x \quad f(x) \quad \begin{cases} 0 & \dots & 0 & a_{0} & * & * & * \\ 1 & \ddots & \vdots & a_{1} & * & * & * \\ 0 & \ddots & \ddots & \vdots & \vdots & * & * & * \\ \vdots & \ddots & \ddots & 0 & a_{m-2} & * & * & * \\ f^{m-1}(x) & 0 & \dots & 0 & 1 & a_{m-1} & * & * & * \\ e_{m+1} & \vdots & \vdots & * & * & * & * & * \\ \vdots & \vdots & \vdots & * & * & * & * & * \\ e_{n} & \vdots & \vdots & * & * & * & * & * \end{cases},$$

où (comme il est d'usage) la notation * désigne un scalaire quelconque. Ceci revient bien sûr à dire que cette même matrice s'écrit comme demandé, à savoir :

$$\left(\begin{array}{cc} C_P & A \\ 0 & B \end{array}\right),$$

où $A \in M_{m,n-m}(\mathbb{K})$ et $B \in M_{n-m}(\mathbb{K})$.

(c) De ce qui précède, on déduit

$$\mathcal{X}_f(X) = \det \begin{pmatrix} C_P - X \mathbf{I}_m & A \\ 0 & B - X \mathbf{I}_{n-m} \end{pmatrix} = \det(C_P - X \mathbf{I}_m) \det(B - X \mathbf{I}_{n-m}) = \mathcal{X}_{C_P}(X) \mathcal{X}_B(X)$$

en particulier, $\mathcal{X}_{C_P}(X) \mid \mathcal{X}_f(X)$.

(d) Il résulte de (c) ci-dessus

$$\mathcal{X}_f(f) = (\mathcal{X}_B \mathcal{X}_{C_P})(f) = (\mathcal{X}_B(f) \circ \mathcal{X}_{C_P}(f)),$$

d'où l'on tire

$$\mathcal{X}_f(f)(x) = \mathcal{X}_B(f)(\mathcal{X}_{C_P}(f)(x)) = \mathcal{X}_B(f)(k_m P(f)(x)) = \mathcal{X}_B(f)(0_E) = 0_E.$$

On conclut que $\mathcal{X}_f(f)$ est l'endomorphisme nul de E lorsque m < n: le théorème de Cayley-Hamilton est donc démontré.

1 Base duale

1. La fonction nulle $\mathbf{0}_{\mathcal{F}(E;\mathbb{K})}$ est evidemment un élément de E^* . Soient $x^*, y^* \in E^*$, $\lambda, \mu \in \mathbb{K}$ fixés. Nous allons montrer que $z^* := \lambda x^* + \mu y^*$ qui est évidemment un élément de $\mathcal{F}(E;\mathbb{K})$ est linéaire, i.e., $\lambda x^* + \mu y^* \in E^*$. Fixons donc $u, v \in E$ et $\alpha, \beta \in \mathbb{K}$ et notons $w = \alpha u + \beta v$. La définition de la loi + sur $\mathcal{F}(E;\mathbb{K})$ permet d'écrire

$$z^{\star}(\alpha u + \beta v) = (\lambda x^{\star} + \mu y^{\star})(w) = \lambda x^{\star}(w) + \mu y^{\star}(w)$$

tandis que la linéarité de x^* et y^* donnent

$$\lambda x^{\star}(w) + \mu y^{\star}(w) = \alpha(\lambda x^{\star}(u) + \mu y^{\star}(u)) + \beta(\lambda x^{\star}(v) + \mu y^{\star}(v)).$$

Par définition de la loi + sur $\mathcal{F}(E;\mathbb{K})$, nous avons

$$\alpha(\lambda x^{\star}(u) + \mu y^{\star}(u)) + \beta(\lambda x^{\star}(v) + \mu y^{\star}(v)) = \alpha z^{\star}(u) + \beta z^{\star}(v).$$

Il reste alors à combiner ces trois égalités pour aboutir à

$$z^{\star}(\alpha u + \beta v) = \alpha z^{\star}(u) + \beta z^{\star}(v).$$

On conclut que E^* est un sous-espace vectoriel de $\mathcal{F}(E;\mathbb{K})$.

2. (a) Montrons que la fonction b_k^{\star} est linéaire. Fixons $x, y \in E$ et $\lambda, \mu \in \mathbb{K}$. Puisque $\mathcal{B} = (b_1, \ldots, b_n)$ est une base du \mathbb{K} -espace vectoriel E, les égalités

$$\lambda x + \mu y = \sum_{l=1}^{n} [\lambda x + \mu y]_{l,\mathcal{B}} b_l = \sum_{l=1}^{n} (\lambda [x]_{l,\mathcal{B}} + \mu [y]_{l,\mathcal{B}}) b_l$$

entraînent immédiatement que

$$[\lambda x + \mu y]_{l,\mathcal{B}} = \lambda [x]_{l,\mathcal{B}} + \mu [y]_{l,\mathcal{B}}$$
 pour tout $l \in \{1,\ldots,n\}$.

Il reste alors à observer que

$$b_k^{\star}(\lambda x + \mu y) = b_k^{\star}(\sum_{l=1}^n [\lambda x + \mu y]_{l,\mathcal{B}}b_l) = [\lambda x + \mu y]_{k,\mathcal{B}}$$

et

$$\lambda b_k^{\star}(x) + \mu b_k^{\star}(y) = \lambda b_k^{\star}(\sum_{l=1}^{n} [x]_{l,\mathcal{B}} b_l) + \mu b_l^{\star}(\sum_{l=1}^{n} [y]_{l,\mathcal{B}} b_l) = \lambda [x]_{k,\mathcal{B}} + \mu [y]_{k,\mathcal{B}}$$

pour conclure que b_k^{\star} est linéaire.

(b) Par définition de $b_1^{\star}, \dots, b_n^{\star}$, on a pour tout $k, l \in \{1, \dots, n\}$

$$\langle b_k^{\star}, b_l \rangle_{E^{\star}, E} = \begin{cases} 1 & \text{si } k = l, \\ 0 & \text{sinon.} \end{cases}$$

Supposons qu'il existe une famille $(\varphi_1, \dots, \varphi_n)$ de E^* telle que pour tout $k, l \in \{1, \dots, n\}$

$$\langle \varphi_k, b_l \rangle_{E^{\star}, E} = \begin{cases} 1 & \text{si } k = l, \\ 0 & \text{sinon.} \end{cases}$$

Il suffit d'observer que pour chaque $k \in \{1, ..., n\}$

$$\langle b_k^{\star}, x \rangle_{E^{\star}, E} = [x]_{k,\beta}$$

et

$$\langle \varphi_k, x \rangle_{E^{\star}, E} = \left\langle \varphi_k, \sum_{l=1}^n [x]_{l, \mathcal{B}} b_l \right\rangle_{E^{\star}, E} = \sum_{l=1}^n [x]_{l, \mathcal{B}} \left\langle \varphi_k, b_l \right\rangle_{E^{\star}, E} = [x]_{k, \mathcal{B}}$$

pour aboutir à $b_k^{\star} = \varphi_k$, i.e., $(b_1^{\star}, \dots, b_n^{\star}) = (\varphi_1, \dots, \varphi_n)$. (c) Soient $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ tels que $\sum_{k=1}^n \lambda_k b_k^{\star} = 0_{E^{\star}}$. Les égalités valides pour chaque $l \in \mathbb{K}$

$$0_{\mathbb{K}} = \left\langle \sum_{k=1}^{n} \lambda_k b_k^{\star}, b_l \right\rangle_{E^{\star}E} = \sum_{k=1}^{n} \lambda_k \left\langle b_k^{\star}, b_l \right\rangle_{E^{\star}, E} = \lambda_l$$

montrent que la famille $(b_1^{\star}, \dots, b_n^{\star})$ est libre.

(d) Soit $\varphi \in E^*$. Les égalités suivantes valables pour chaque $x \in E$

$$\langle \varphi, x \rangle_{E^{\star}, E} = \left\langle \varphi, \sum_{k=1}^{n} [x_{k}]_{k, \mathcal{B}} b_{k} \right\rangle_{E^{\star}, E}$$

$$= \sum_{k=1}^{n} [x_{k}]_{k, \mathcal{B}} \left\langle \varphi, b_{k} \right\rangle_{E^{\star}, E}$$

$$= \sum_{k=1}^{n} \left\langle \varphi, b_{k} \right\rangle_{E^{\star}, E} \left\langle b_{k}^{\star}, x \right\rangle_{E^{\star}, E}$$

$$= \left\langle \sum_{k=1}^{n} \left\langle \varphi, b_{k} \right\rangle_{E^{\star}, E} b_{k}^{\star}, x \right\rangle_{E^{\star}, E}$$

nous assurent que

$$\varphi = \sum_{k=1}^{n} \langle \varphi, b_k \rangle_{E^{\star}, E} b_k^{\star}.$$

- (e) Les questions (c) et (d) ci-dessus montrent que $(b_1^{\star}, \dots, b_n^{\star})$ est une famille libre et génératrice de E^{\star} , i.e., est une base de E^{\star} . Ceci nous dit en particulier que E^{\star} est de dimension n sur \mathbb{K} .
- (f) L'égalité désirée s'obtient en écrivant

$$\begin{split} \langle \varphi, x \rangle_{E^{\star}, E} &= \left\langle \sum_{k=1}^{n} \langle \varphi, b_{k} \rangle_{E^{\star}, E} \, b_{k}^{\star}, x \right\rangle_{E^{\star}, E} \\ &= \sum_{k=1}^{n} \langle \varphi, b_{k} \rangle_{E^{\star}, E} \, \langle b_{k}^{\star}, x \rangle_{E^{\star}, E} \\ &= \sum_{k=1}^{n} \langle \varphi, b_{k} \rangle_{E^{\star}, E} \, [x]_{k, \mathcal{B}} \\ &= \sum_{k=1}^{n} [\varphi]_{k, \mathcal{B}^{\star}} [x]_{k, \mathcal{B}} \\ &= [\varphi]_{\mathcal{B}^{\star}} \times ([x]_{\mathcal{B}})^{T}. \end{split}$$

2 Exemples

1. La fonction nulle $\mathbf{0}: [a,b] \to \mathbb{R}$ est évidemment un élément de $C([a,b],\mathbb{R})$. D'autre part, étant données deux fonctions $f,g:[a,b] \to \mathbb{R}$ continues sur [a,b] et deux réels λ,μ , nous savons que la combinaison linéaire $\lambda f + \mu g$ est encore continue sur [a,b]. Tout ceci justifie que $C([a,b],\mathbb{R})$ est un sous-espace vectoriel des fonctions de [a,b] dans \mathbb{R} , noté $\mathcal{F}([a,b];\mathbb{R})$.

Le fait que $\mathcal{R}: C([a,b],\mathbb{R}) \to \mathbb{R}$ soit une forme linéaire découle de la linéarité de l'intégration au sens de Riemann, i.e., de l'égalité

$$\int_{a}^{b} (\alpha \varphi + \beta \psi)(t)dt = \alpha \int_{a}^{b} \varphi(t)dt + \beta \int_{a}^{b} \psi(t)dt$$

pour toutes fonctions $\varphi, \psi : [a, b] \to \mathbb{R}$ Riemann intégrables sur [a, b] et pour tout réel α, β .

2. Soient $\lambda, \mu \in \mathbb{R}$. De l'égalité évidente

$$\lambda(a+ib) + \mu(a'+ib') = (\lambda a + \mu a') + i(\lambda b + \mu b')$$

valide pour tout $a, b, a', b' \in \mathbb{R}$, on tire

$$\Re(\lambda z + \mu z') = \lambda \Re(z) + \mu \Re(z')$$
 pour tout $z, z' \in \mathbb{C}$.

Cette dernière égalité montre que $\Re(\cdot): \mathbb{C} \to \mathbb{R}$ est une forme linéaire sur le \mathbb{R} -espace vectoriel \mathbb{C} . D'autre part, en remarquant que

$$\Re(i^2) = -1 \neq 0 = i\Re(i),$$

nous voyons que la partie réelle n'induit pas une forme linéaire sur le \mathbb{C} -espace vectoriel \mathbb{C} .

3. (a) Soit $k \in \{1, ..., n\}$. L'inclusion $b_k^{\star} \in (\mathbb{R}^n)^{\star}$ et le fait que $(e_1^{\star}, ..., e_n^{\star})$ soit une base du \mathbb{R} espace vectoriel $(\mathbb{R}^n)^{\star}$ nous assurent en particulier de l'existence et l'unicité d'une famille $(p_{k,l})_{1 < l < n}$ de réels telle que

$$b_k^{\star} = p_{k,1}e_1^{\star} + \ldots + p_{k,n}e_n^{\star}.$$

(b) Soient $k, l \in \{1, ..., n\}$. En évaluant la k-ième égalité de la question précédente en b_l , il vient

$$\langle b_k^{\star}, b_l \rangle_{E^{\star}, E} = p_{k,1} \langle e_1^{\star}, b_l \rangle_{E^{\star}, E} + \ldots + p_{k,n} \langle e_n^{\star}, b_l \rangle_{E^{\star}, E}.$$

En vertu de la Question 2(b), ce qui précède s'écrit encore

$$p_{k,1}[b_l]_{1,\mathcal{C}} + \ldots + p_{k,n}[b_l]_{n,\mathcal{C}} = \begin{cases} 1 & \text{si } k = l, \\ 0 & \text{sinon.} \end{cases}$$

La relation matricielle attendue en découle.

(c) La matrice

$$\begin{pmatrix} [b_1]_{1,\mathcal{C}} & \dots & [b_n]_{1,\mathcal{C}} \\ \vdots & & \vdots \\ [b_1]_{n,\mathcal{C}} & \dots & [b_n]_{n,\mathcal{C}} \end{pmatrix}$$

est une matrice de passage (et donc inversible!) : plus précisément, c'est la matrice de l'application $\mathrm{Id}_{\mathbb{R}^n}: \mathbb{R}^n \to \mathbb{R}^n$ où l'ensemble/espace vectoriel de départ \mathbb{R}^n est muni de la base \mathcal{B} et où l'ensemble/espace vectoriel d'arrivée \mathbb{R}^n est muni de la base \mathcal{C} . Pour $k \in \{1, \ldots, n\}$, sa k-ième colonne exprime les coordonnées de b_k dans la base canonique \mathcal{C} . Cette matrice est inversible d'inverse la matrice de l'application $\mathrm{Id}_{\mathbb{R}^n}: \mathbb{R}^n \to \mathbb{R}^n$ où l'ensemble/espace vectoriel de départ \mathbb{R}^n est muni de la base \mathcal{C} et où l'ensemble/espace vectoriel d'arrivée \mathbb{R}^n est muni de la base \mathcal{B} : pour $k \in \{1, \ldots, n\}$, la k-ième colonne de cette matrice exprimera alors les coordonnées de e_k dans la base \mathcal{B} .

(d) Un calcul élémentaire montre que

$$\det \left(\begin{array}{ccc} 1 & 1 & 3 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{array} \right) = 2 \neq 0.$$

Ceci confirme que (b_1, b_2, b_3) est une base de \mathbb{R}^3 . Toujours de manière élémentaire, on montre que

$$\begin{pmatrix} 1 & 1 & 3 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 2 & -3 \\ -2 & -2 & 6 \\ 1 & 0 & -1 \end{pmatrix}$$

Il suffit alors d'appliquer la question précédente pour obtenir que la base duale $(b_1^{\star}, b_2^{\star}, b_3^{\star})$ de (b_1, b_2, b_3) est donnée par $b_1^{\star} = \frac{1}{2}(e_1^{\star} + 2e_2^{\star} - 3e_3^{\star}), b_2^{\star} = \frac{1}{2}(-2e_1^{\star} - 2e_2^{\star} + 6e_3^{\star})$ et $b_3^{\star} = \frac{1}{2}(e_1^{\star} - e_3^{\star})$.

4. (a) (i) La linéarité de Φ découle directement de l'égalité

$$(\lambda P + \mu Q)(x_k) = \lambda P(x_k) + \mu Q(x_k)$$

valable pour tout $k \in \{1, ..., m\}$, pour tout $P, Q \in \mathbb{R}[X]$ et pour tout $\lambda, \mu \in \mathbb{R}$.

(ii) Un polynôme à coefficients réels de degré inférieur ou égal à m ayant m+1 racines est nécessairement nul. Puisque Φ est linéaire son injectivité est équivalente à l'égalité $\ker \Phi = \{0\}$ elle-même équivalente à l'inclusion $\ker \Phi \subset \{0\}$. Etant donné $P \in \ker \Phi$, nous voyons que P est un polynôme à coefficients réels de degré au plus m et ayant au moins m+1 racines en vertu des égalités

$$P(x_0) = P(x_1) = \ldots = P(x_m) = 0.$$

On conclut que P est nul et que Φ est injective.

- (iii) L'application Φ est injective entre deux \mathbb{R} -espaces vectoriels de même dimension finie, elle est donc bijective.
- (iv) La bijectivité de Φ nous dit qu'il existe un et un seul $P \in \mathbb{R}_m[X]$ tel que

$$(f(x_1),\ldots,f(x_m))=\Phi(P),$$

i.e., il existe un unique $P \in \mathbb{R}_m[X]$ tel que

$$P(x_k) = f(x_k)$$
 pour tout $k \in \{0, \dots, m\}$.

(b) (i) Les polynômes L_0, \ldots, L_m sont chacun des produits de m polynômes à coefficients réels de degré 1 : ils sont donc des polynômes à coefficients réels de degré au plus m. D'autre part, on a tout de suite

$$L_k(x_l) = \begin{cases} 1 & \text{si } k = l, \\ 0 & \text{sinon.} \end{cases}$$

(ii) Puisque $\mathbb{R}_m[X]$ est de dimension m+1 sur \mathbb{R} , il suffit d'établir que (L_0,\ldots,L_m) est une famille libre de $\mathbb{R}_m[X]$ pour conclure qu'elle est une base de $\mathbb{R}_m[X]$. Soient $\lambda_0,\ldots,\lambda_m\in\mathbb{R}$ tels que $\sum_{k=0}^m \lambda_k L_k(X) = 0$. Cette égalité entre polynômes et la Question 4(b)(i) donnent tout de suite

$$\sum_{k=0}^{m} \lambda_k L_k(x_l) = \lambda_l = 0 \quad \text{pour tout } l \in \{0, \dots, m\}.$$

On conclut que la famille (L_0, \ldots, L_m) est libre.

- (iii) Pour obtenir l'égalité souhaitée, il suffit de remarquer que le polynôme $Q := \sum_{k=0}^{m} f(x_k) L_k(X)$ est de degré inférieur ou égal à m et satisfait $Q(x_l) = f(x_l)$ pour tout $l \in \{0, \ldots, m\}$.
- (iv) Soit $Q \in \mathbb{R}_m[X]$ et $k \in \{0, ..., m\}$. Puisque \mathcal{L} est une base de $\mathbb{R}_m[X]$, on peut écrire $Q(X) = \sum_{j=0}^m \lambda_j L_j(X)$ pour un certain $(\lambda_0, ..., \lambda_m) \in \mathbb{R}^{m+1}$. En évaluant cette expression en x_k , il vient $\lambda_k = Q(x_k)$, i.e., $L_k^*(Q) = Q(x_k)$.

3 Vers la représentation de Riesz

1. Pour $v \in E$, on note que le caractère linéaire de $f_v(\cdot) = \langle v, \cdot \rangle$ découle immédiatement de la bilinéarité du produit scalaire $\langle \cdot, \cdot \rangle$ de E. L'inclusion $f_v(\cdot) \in E^*$ permet alors de considérer l'application $\Phi : E \to E^*$ définie par

$$\Phi(v) := f_v \quad \text{pour tout } v \in E.$$

2. Soient $u, v \in E$, $\lambda, \mu \in \mathbb{R}$. Les égalités

$$\Phi(\lambda u + \mu v)(x) = \langle \lambda u + \mu v, x \rangle = \lambda \langle u, x \rangle + \mu \langle v, x \rangle = \lambda \Phi(u)(x) + \mu \Phi(v)(x) = (\lambda \Phi(u) + \mu \Phi(v))(x)$$
 valides pour chaque $x \in E$ nous disent que

$$\Phi(\lambda u + \mu v) = \lambda \Phi(u) + \mu \Phi(v).$$

La linéarité de Φ est établie.

Le caractère défini positif du produit scalaire $\langle \cdot, \cdot \rangle$ entraı̂ne immédiatement que $\ker \Phi = \{0_E\}$ ce qui est équivalent à l'injectivité de Φ . Il reste à invoquer dim $E = \dim E^*$ pour aboutir à la bijectivité de Φ .

3. La Question 1 de cette partie garantit l'inclusion $\{f_v : v \in E\} \subset E^*$ tandis que la surjectivité de $\Phi(\cdot)$ nous assure de l'inclusion renversée $E^* \subset \{f_v : v \in E\}$. Nous concluons que

$$E^{\star} = \{ f_v : v \in E \} = \{ \langle v, \cdot \rangle : v \in E \}.$$

4. En appliquant ce qui précède au produit scalaire euclidien canonique de \mathbb{R}^n , on déduit

$$(\mathbb{R}^n)^* = \left\{ f \in \mathcal{F}(\mathbb{R}^n, \mathbb{R}) : \exists (x_1, \dots, x_n) \in \mathbb{R}^n, \forall (y_1, \dots, y_n) \in \mathbb{R}^n, f(y_1, \dots, y_n) = \sum_{i=1}^n x_i y_i \right\}$$

On rappelle que l'on peut définir un produit scalaire sur $M_n(\mathbb{R})$ en posant pour chaque $A, B \in M_n(\mathbb{R})$, $\langle A, B \rangle := \operatorname{tr}(A^T B)$. En appliquant une nouvelle fois la question précédente, on obtient

$$(M_n(\mathbb{R}))^* = \left\{ \Phi \in \mathcal{F}(M_n(\mathbb{R}), \mathbb{R}) : \exists A \in M_n(\mathbb{R}), \forall M \in M_n(\mathbb{R}), \Phi(M) = \operatorname{tr}(A^T M) \right\}.$$

En procédant par double inclusion, il est clair que ce dernier ensemble s'écrit encore

$$(M_n(\mathbb{R}))^* = \{ \Phi \in \mathcal{F}(M_n(\mathbb{R}), \mathbb{R}) : \exists B \in M_n(\mathbb{R}), \forall M \in M_n(\mathbb{R}), \Phi(M) = \operatorname{tr}(BM) \}.$$

4 Bidual algébrique

1. Soit $x \in E$. L'inclusion $J_x \in E^*$ provient de l'égalité

$$J_x(\lambda\varphi_1 + \mu\varphi_2) = (\lambda\varphi_1 + \mu\varphi_2)(x) = \lambda\varphi_1(x) + \mu\varphi_2(x) = \lambda J_x(\varphi_1) + \mu J_x(\varphi_2),$$

valide pour tout $\varphi_1, \varphi_2 \in E^*$ et $\lambda, \mu \in \mathbb{K}$.

2. Soient $x_1, x_2 \in E$ et $\lambda, \mu \in \mathbb{K}$. On observe sans difficultés que pour chaque $\varphi \in E^*$,

$$J(\lambda x_1 + \mu x_2)(\varphi) = \lambda J(x_1)(\varphi) + \mu J(x_2)(\varphi) = (\lambda J(x_1) + \mu J(x_2))(\varphi)$$

ce qui s'écrit encore

$$J(\lambda x_1 + \mu x_2) = (\lambda J(x_1) + \mu J(x_2)).$$

Cette dernière égalité traduit la linéarité de J.

3. Il suffit d'établir que ker $J \subset \{0_E\}$ pour conclure que J est injective. On peut supposer que E n'est pas réduit à zéro (sinon, il n'y a rien à établir). Puisque E est de dimension finie sur \mathbb{K} , nous pouvons choisir n vecteurs b_1, \ldots, b_n de E avec $n = \dim E$ tels que $\mathcal{B} = (b_1, \ldots, b_n)$ soit une base de E. Soit $x \in \ker J$. De l'égalité $J(x) = 0_{E^{**}}$, on déduit facilement que pour tout $k \in \{1, \ldots, n\}$

$$0_{\mathbb{K}} = J(x)(b_k^{\star}) = \langle b_k^{\star}, x \rangle_{E^{\star}, E} = [x]_{k, \mathcal{B}},$$

i.e., $x = 0_E$. On conclut que ker $J = \{0_E\}$.

4. Puisque $E^{\star\star}$ est le dual algébrique de E^{\star} qui est un \mathbb{K} -espace vectoriel de dimension finie sur \mathbb{K} , nous savons (d'après la Partie 1-Question 2. (e)) que

$$\dim E^{\star\star} = \dim E^{\star}.$$

Il résulte de ceci que l'application linéaire injective $J:E\to E^{\star\star}$ est en fait bijective, i.e., un isomorphisme de \mathbb{K} -espaces vectoriels.

5 Base antéduale

1. Pour chaque $k \in \{1, ..., n\}$, l'inclusion $\varphi_k^{\star} \in E^{\star \star}$ combiné au caractère bijectif de l'application $J: E \to E^{\star \star}$ nous dit qu'il existe un (et un seul) $b_k \in E$ tel que

$$J_{b_k} = \varphi_k^{\star}$$
.

2. Puisque $\mathcal{B} = (b_1, \ldots, b_n)$ est une famille de cardinal $n = \dim E$, il suffit d'établir que \mathcal{B} est libre pour montrer qu'elle est une base de E. Soient $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ tels que $\sum_{k=1}^n \lambda_k b_k = 0_E$. Il vient par linéarité de J et par construction de b_1, \ldots, b_n

$$J(\sum_{k=1}^{n} \lambda_k b_k) = \sum_{k=1}^{n} \lambda_k J(b_k) = \sum_{k=1}^{n} \lambda_k \varphi_k^* = 0_{E^{**}}.$$

Il reste alors à invoquer le caractère libre de $(\varphi_1^{\star}, \dots, \varphi_n^{\star})$ pour aboutir à $\lambda_1 = \dots = \lambda_n = 0_{\mathbb{K}}$.

3. La famille $(\varphi_1, \dots, \varphi_n)$ satisfait pour tout $k, l \in \{1, \dots, n\}$

$$\langle \varphi_l, b_k \rangle_{E^{\star}, E} = \langle J(b_k), \varphi_l \rangle_{E^{\star \star}, E^{\star}} = \langle \varphi_k^{\star}, \varphi_l \rangle_{E^{\star \star}, E^{\star}} = \begin{cases} 1 & \text{si } k = l, \\ 0 & \text{sinon.} \end{cases}$$

Il suffit alors de revenir à la Partie 1-Question 2.(b) pour conclure que $(\varphi_1, \ldots, \varphi_n)$ est la base duale de (b_1, \ldots, b_n) .

4. Soit (c_1, \ldots, c_n) une base anté-duale de $(\varphi_1, \ldots, \varphi_n)$. On note $\mathcal{B} = (b_1, \ldots, b_n)$. Pour $l \in \{1, \ldots, n\}$, nous voyons à travers l'égalité $c_l = \sum_{k=1}^n [c_l]_{k,\mathcal{B}} b_k$ que

$$\langle \varphi_k, c_l \rangle_{E^*, E} = [c_l]_{k, \mathcal{B}} = \begin{cases} 1 & \text{si } k = l, \\ 0 & \text{sinon} \end{cases}$$

et ceci traduit l'égalité $b_l = c_l$. En conséquence, la base $(\varphi_1, \ldots, \varphi_n)$ admet une unique base anté-duale, à savoir \mathcal{B} .

6 Hyperplans

- 1. C'est une conséquence directe du fait que le noyau de toute application linéaire entre deux \mathbb{K} -espaces vectoriels F et G est un sous-espace vectoriel de F.
- 2. Si E est le \mathbb{K} -espace vectoriel nul, il n'y a qu'une unique forme linéaire de E: la forme linéaire nulle. On conclut que le \mathbb{K} -espace vectoriel nul n'admet pas d'hyperplan vectoriel.
- 1. (a) Il suffit d'établir que $H \cap \mathbb{K}v \subset \{0_E\}$. Soit $x \in H \cap \mathbb{K}v$. On a d'une part $x = \lambda v$ pour un $\lambda \in \mathbb{K}$ et d'autre part

$$0_{\mathbb{K}} = \varphi(x) = \varphi(\lambda v) = \lambda \varphi(v).$$

En combinant ce qui précède à $\varphi(v) \neq 0$, on aboutit à $\lambda = 0_{\mathbb{K}}$, i.e., $x = 0_E$.

(b) L'inclusion désirée est une conséquence immédiate de la linéarité de φ qui permet d'écrire

$$\varphi(x - \frac{\varphi(x)}{\varphi(v)}v) = \varphi(x) - \frac{\varphi(x)}{\varphi(v)}\varphi(v) = 0_{\mathbb{K}}.$$

(c) L'inclusion obtenue à la question précédente entraîne

$$E \subset H + \mathbb{K}v$$
.

Notons que l'inclusion précédente est en fait une égalité puisque l'inclusion renversée est évidente. Enfin, l'égalité $H \cap \mathbb{K}v = \{0_E\}$ permet de conclure que H et $\mathbb{K}v$ sont supplémentaires dans E, i.e.,

$$E = H \oplus \mathbb{K}v.$$

2. Supposons qu'il existe $v \in E \setminus \{0_E\}$ tel que $E = H \oplus \mathbb{K}v$. On note ψ le projecteur de E sur $\mathbb{K}v$ parallèlement à H, autrement dit ψ est l'application de E dans $\mathbb{K}v$ satisfaisant

$$\psi(h + \lambda v) = \lambda v$$
 pour tout $(h, \lambda) \in H \times \mathbb{K}$.

On vérifie immédiatement que ψ est linéaire, non nulle et de noyau H. On conclut alors que H est un hyperplan vectoriel de E.

- 3. De la Question 1(c), nous déduisons que la dimension (relativement à \mathbb{K}) de tout hyperplan de E vaut n-1.
- 4. La fonction $\Phi: \mathbb{R}^3 \to \mathbb{R}$ définie par

$$\Phi(x,y,z) = x + y + z \quad \text{pour tout } (x,y,z) \in \mathbb{R}^3$$

est évidemment une forme linéaire non nulle de \mathbb{R}^3 . Son noyau qui n'est nul autre que H est donc un hyperplan de \mathbb{R}^3 . Il reste à voir que n'importe quel vecteur $v \in \mathbb{R}^3$ avec $v \notin H$ satisfait $\mathbb{R}^3 = H \oplus \mathbb{R}v$.

5. Seule l'implication \Rightarrow mérite d'être justifiée. Supposons donc que $H := \ker f = \ker g$. Puisque f n'est pas nulle, l'ensemble H est un hyperplan vectoriel de E. Le Lemme 1 nous dit alors qu'il existe $v \in E$ non nul tel que $E = H \oplus \mathbb{K}v$. Notons que $f(v) \neq 0$ et $g(v) \neq 0$ et posons $\lambda = \frac{f(v)}{g(v)}$. A présent, fixons $x \in E$ et écrivons $x = h + \mu v$ avec $h \in H$ et $\mu \in \mathbb{K}$. La linéarité de f et de g ainsi que la définition de H et de g donnent sans difficultés

$$f(x) = f(h + \mu v) = f(h) + \mu f(v) = \mu f(v) = \mu \lambda g(v) = \lambda (g(h) + \mu g(v)) = \lambda g(x)$$

et ceci traduit l'égalité désirée $f = \lambda g$.