SEQUENCE LISTING Yayon, Avner Rom, Eran Thomassen-Wolf, Elisabeth Borges, Eric <120> ANTIBODIES THAT BLOCK RECEPTOR PROTEIN TYROSINE KINASE ACTIVATION, METHODS OF SCREENING AND USES THEREOF <130> 81408-4400 <140> US 10/734,661 <141> 2003-12-15 <150> us 60/299,187 <151> 2001-06-20 <150> PCT/IL02/00494 <151> 2002-06-20 106 <160> <170> PatentIn version 3.2 <210> <211> 806 <212> PRT <213> Homo sapiens <300> np_000133 <308> <309> 2001-02-21 (1)..(806)<313> <400> Met Gly Ala Pro Ala Cys Ala Leu Ala Leu Cys Val Ala Val Ala Ile 1 5 10 15 Val Ala Gly Ala Ser Ser Glu Ser Leu Gly Thr Glu Gln Arg Val Val 20 25 30 Gly Arg Ala Ala Glu Val Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln 35 40 45 Leu Val Phe Gly Ser Gly Asp Ala Val Glu Leu Ser Cys Pro Pro 50 60 Gly Gly Gly Pro Met Gly Pro Thr Val Trp Val Lys Asp Gly Thr Gly 65 70 75 80 Leu Val Pro Ser Glu Arg Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg 100 105 110

Page 1

Leu Thr Gln Arg Val Leu Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Gly Asp Asp Glu Asp Glu Asp Glu Ala Glu Asp Thr 130 135 140 Gly Val Asp Thr Gly Ala Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp 145 150 155 160 Lys Lys Leu Leu Ala Val Pro Ala Ala Asn Thr Val Arg Phe Arg Cys
165 170 175 Pro Ala Ala Gly Asn Pro Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly 180 185 190 Arg Glu Phe Arg Gly Glu His Arg Ile Gly Gly Ile Lys Leu Arg His 195 200 205 Gln Gln Trp Ser Leu Val Met Glu Ser Val Val Pro Ser Asp Arg Gly 210 215 220 Asn Tyr Thr Cys Val Val Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr 225 230 235 240 Tyr Thr Leu Asp Val Leu Glu Arg Ser Pro His Arg Pro Ile Leu Gln 245 250 255 Ala Gly Leu Pro Ala Asn Gln Thr Ala Val Leu Gly Ser Asp Val Glu 260 265 270 Phe His Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile Gln Trp Leu 275 280 285 Lys His Val Glu Val Asn Gly Ser Lys Val Gly Pro Asp Gly Thr Pro 290 295 300 Tyr Val Thr Val Leu Lys Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu 305 310 315 320 Leu Glu Val Leu Ser Leu His Asn Val Thr Phe Glu Asp Ala Gly Glu 325 330 335 Tyr Thr Cys Leu Ala Gly Asn Ser Ile Gly Phe Ser His His Ser Ala 340 350 Trp Leu Val Val Leu Pro Ala Glu Glu Glu Leu Val Glu Ala Asp Glu Page 2

Ala Gly Ser Val Tyr Ala Gly Ile Leu Ser Tyr Gly Val Gly Phe Phe 370 380 Leu Phe Ile Leu Val Val Ala Ala Val Thr Leu Cys Arg Leu Arg Ser 385 390 395 400 Pro Pro Lys Lys Gly Leu Gly Ser Pro Thr Val His Lys Ile Ser Arg 405 410 415 Phe Pro Leu Lys Arg Gln Val Ser Leu Glu Ser Asn Ala Ser Met Ser 420 425 430 Ser Asn Thr Pro Leu Val Arg Ile Ala Arg Leu Ser Ser Gly Glu Gly Pro Thr Leu Ala Asn Val Ser Glu Leu Glu Leu Pro Ala Asp Pro Lys 450 455 460 Trp Glu Leu Ser Arg Ala Arg Leu Thr Leu Gly Lys Pro Leu Gly Glu 465 470 475 480 Gly Cys Phe Gly Gln Val Val Met Ala Glu Ala Ile Gly Ile Asp Lys 485 490 495 Asp Arg Ala Ala Lys Pro Val Thr Val Ala Val Lys Met Leu Lys Asp 500 505 510 Asp Ala Thr Asp Lys Asp Leu Ser Asp Leu Val Ser Glu Met Glu Met 515 520 525 Met Lys Met Ile Gly Lys His Lys Asn Ile Ile Asn Leu Leu Gly Ala 530 540 Cys Thr Gln Gly Gly Pro Leu Tyr Val Leu Val Glu Tyr Ala Ala Lys 545 550 555 560 Gly Asn Leu Arg Glu Phe Leu Arg Ala Arg Arg Pro Pro Gly Leu Asp 565 570 575 Tyr Ser Phe Asp Thr Cys Lys Pro Pro Glu Glu Gln Leu Thr Phe Lys 580 585 590 Asp Leu Val Ser Cys Ala Tyr Gln Val Ala Arg Gly Met Glu Tyr Leu

81408-4400 sequence listing.txt Ala Ser Gln Lys Cys Ile His Arg Asp Leu Ala Ala Arg Asn Val Leu 620

Val Thr Glu Asp Asn Val Met Lys Ile Ala Asp Phe Gly Leu Ala Arg 625 630 635 640

Asp Val His Asn Leu Asp Tyr Tyr Lys Lys Thr Thr Asn Gly Arg Leu 645 650 655

Pro Val Lys Trp Met Ala Pro Glu Ala Leu Phe Asp Arg Val Tyr Thr 660 665 670

His Gln Ser Asp Val Trp Ser Phe Gly Val Leu Leu Trp Glu Ile Phe 675 680 685

Thr Leu Gly Gly Ser Pro Tyr Pro Gly Ile Pro Val Glu Glu Leu Phe 690 695 700

Lys Leu Leu Lys Glu Gly His Arg Met Asp Lys Pro Ala Asn Cys Thr 705 710 715 720

His Asp Leu Tyr Met Ile Met Arg Glu Cys Trp His Ala Ala Pro Ser 725 730 735

Gln Arg Pro Thr Phe Lys Gln Leu Val Glu Asp Leu Asp Arg Val Leu 740 745 750 740

Thr Val Thr Ser Thr Asp Glu Tyr Leu Asp Leu Ser Ala Pro Phe Glu 755 760 765

Gln Tyr Ser Pro Gly Gly Gln Asp Thr Pro Ser Ser Ser Ser Gly 770 780

Asp Asp Ser Val Phe Ala His Asp Leu Leu Pro Pro Ala Pro Pro Ser 785 790 795 800

Ser Gly Gly Ser Arg Thr 805

2 32 <210>

<211> <212> DNA

Artificial Sequence

<220>

artificial primer <223>

<400> 2

acgtgctagc tgagtccttg gggacggagc ag

55
60
20
80
40
00
60
20
80
40
00
60
20
80
40
00
60
20
80
40
47

Page 5

<210> 5 <211> 5695 DNA EXPRESSION VECTOR pCEP-PU/AC7 <400> gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg 60 ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120 cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180 240 ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 300 gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 360 tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 420 cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt 480 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540 600 atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg 660 actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 720 780 aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 840 ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagc 900 960 gtttaaactt aagcttggta ccgagctcgg atccccgtcg tgcatctatc gaaggtcgtg gagatcccga ggagcccaaa tcttgtgaca aaactcacac atgcccaccg tgcccagcac 1020 ctgaactcct ggggggaccg tcagtcttcc tcttcccccc aaaacccaag gacaccctca 1080 tgatctcccg gacccctgag gtcacatgcg tggtggtgga cgtgagccac gaagaccctg 1140 aggtcaagtt caactggtac gtggacggcg tggaggtgca taatgccaag acaaagccgc 1200 gggaggagca gtacaacagc acgtaccggg tggtcagcgt cctcaccgtc ctgcaccagg 1260 actggctgaa tggcaaggag tacaagtgca aggtctccaa caaagccctc ccagcccca 1320 tcgagaaaac catctccaaa gccaaagggc agccccgaga accacaggtg tacaccctgc 1380 ccccatcccg ggatqagctg accaagaacc aggtcagcct gacctgcctg gtcaaaggct 1440 tctatcccag cgacatcgcc gtggagtggg agagcaatgg gcagccggag aacaactaca 1500 agaccacgcc tcccgtgctg gactccgacg gctccttctt cctctacagc aagctcaccg 1560 tggacaagag caggtggcag caggggaacg tcttctcatg ctccgtgatg catgaggctc 1620

tgcacaacca ctacacgcag aagagcctct ccctgtctcc gggtaaatga tctagagggc

Page 6

1680

ccgtttaaac	ccgctgatca	gcctcgactg	tgccttctag	ttgccagcca	tctgttgttt	1740
gcccctcccc	cgtgccttcc	ttgaccctgg	aaggtgccac	tcccactgtc	ctttcctaat	1800
aaaatgagga	aattgcatcg	cattgtctga	gtaggtgtca	ttctattctg	gggggtgggg	1860
tggggcagga	cagcaagggg	gaggattggg	aagacaatag	caggcatgct	ggggatgcgg	1920
tgggctctat	ggcttctgag	gcggaaagaa	ccagctgggg	ctctaggggg	tatccccacg	1980
cgccctgtag	cggcgcatta	agcgcggcgg	gtgtggtggt	tacgcgcagc	gtgaccgcta	2040
cacttgccag	cgccctagcg	cccgctcctt	tcgctttctt	cccttccttt	ctcgccacgt	2100
tcgccggctt	tccccgtcaa	gctctaaatc	ggggcatccc	tttagggttc	cgatttagtg	2160
ctttacggca	cctcgacccc	aaaaaacttg	attagggtga	tggttcacgt	agtgggccat	2220
cgccctgata	gacggttttt	cgccctttga	cgttggagtc	cacgttcttt	aatagtggac	2280
tcttgttcca	aactggaaca	acactcaacc	ctatctcggt	ctattcttt	gatttataag	2340
ggattttggg	gatttcggcc	tattggttaa	aaaatgagct	gatttaacaa	aaatttaacg	2400
cgaattaatt	ctgtggaatg	tgtgtcagtt	agggtgtgga	aagtccccag	gctccccagg	2460
caggcagaag	tatgcaaagc	atgcatctca	attagtcagc	aaccaggtgt	ggaaagtccc	2520
caggctcccc	agcaggcaga	agtatgcaaa	gcatgcatct	caattagtca	gcaaccatag	2580
tcccgcccct	aactccgccc	atcccgcccc	taactccgcc	cagttccgcc	cattctccgc	2640
cccatggctg	actaatttt	tttatttatg	cagaggccga	ggccgcctct	gcctctgagc	2700
tattccagaa	gtagtgagga	ggcttttttg	gaggcctagg	cttttgcaaa	aagctcccgg	2760
gagcttgtat	atccattttc	ggatctgatc	agcacgtgtt	gacaattaat	catcggcata	2820
gtatatcggc	atagtataat	acgacaaggt	gaggaactaa	accatggcca	agttgaccag	2880
tgccgttccg	gtgctcaccg	cgcgcgacgt	cgccggagcg	gtcgagttct	ggaccgaccg	2940
gctcgggttc	tcccgggact	tcgtggagga	cgacttcgcc	ggtgtggtcc	gggacgacgt	3000
gaccctgttc	atcagcgcgg	tccaggacca	ggtggtgccg	gacaacaccc	tggcctgggt	3060
gtgggtgcgc	ggcctggacg	agctgtacgc	cgagtggtcg	gaggtcgtgt	ccacgaactt	3120
ccgggacgcc	tccgggccgg	ccatgaccga	gatcggcgag	cagccgtggg	ggcgggagtt	3180
cgccctgcgc	gacccggccg	gcaactgcgt	gcacttcgtg	gccgaggagc	aggactgaca	3240
cgtgctacga	gatttcgatt	ccaccgccgc	cttctatgaa	aggttgggct	tcggaatcgt	3300
tttccgggac	gccggctgga	tgatcctcca	gcgcggggat	ctcatgctgg	agttcttcgc	3360
ccaccccaac	ttgtttattg	cagcttataa	tggttacaaa	taaagcaata	gcatcacaaa	3420
tttcacaaat	aaagcatttt	tttcactgca	tictagttgt	ggtttgtcca	aactcatcaa	3480
tgtatcttat	catgtctgta	taccgtcgac	ctctagctag	agcttggcgt	aatcatggtc	3540

atagctgttt	cctgtgtgaa	attgttatcc	gctcacaatt	ccacacaaca	tacgagccgg	3600
aagcataaag	tgtaaagcct	ggggtgccta	atgagtgagc	taactcacat	taattgcgtt	3660
gcgctcactg	cccgctttcc	agtcgggaaa	cctgtcgtgc	cagctgcatt	aatgaatcgg	3720
ccaacgcgcg	gggagaggcg	gtttgcgtat	tgggcgctct	tccgcttcct	cgctcactga	3780
ctcgctgcgc	tcggtcgttc	ggctgcggcg	agcggtatca	gctcactcaa	aggcggtaat	3840
acggttatcc	acagaatcag	gggataacgc	aggaaagaac	atgtgagcaa	aaggccagca	3900
aaaggccagg	aaccgtaaaa	aggccgcgtt	gctggcgttt	ttccataggc	tccgccccc	3960
tgacgagcat	cacaaaaatc	gacgctcaag	tcagaggtgg	cgaaacccga	caggactata	4020
aagataccag	gcgtttcccc	ctggaagctc	cctcgtgcgc	tctcctgttc	cgaccctgcc	4080
gcttaccgga	tacctgtccg	cctttctccc	ttcgggaagc	gtggcgcttt	ctcaatgctc	4140
acgctgtagg	tatctcagtt	cggtgtaggt	cgttcgctcc	aagctgggct	gtgtgcacga	4200
acccccgtt	cagcccgacc	gctgcgcctt	atccggtaac	tatcgtcttg	agtccaaccc	4260
ggtaagacac	gacttatcgc	cactggcagc	agccactggt	aacaggatta	gcagagcgag	4320
gtatgtaggc	ggtgctacag	agttcttgaa	gtggtggcct	aactacggct	acactagaag	4380
gacagtattt	ggtatctgcg	ctctgctgaa	gccagttacc	ttcggaaaaa	gagttggtag	4440
ctcttgatcc	ggcaaacaaa	ccaccgctgg	tagcggtggt	ttttttgttt	gcaagcagca	4500
gattacgcgc	agaaaaaaag	gatctcaaga	agatcctttg	atcttttcta	cggggtctga	4560
cgctcagtgg	aacgaaaact	cacgttaagg	gattttggtc	atgagattat	caaaaaggat	4620
cttcacctag	atccttttaa	attaaaaatg	aagttttaaa	tcaatctaaa	gtatatatga	4680
gtaaacttgg	tctgacagtt	accaatgctt	aatcagtgag	gcacctatct	cagcgatctg	4740
tctatttcgt	tcatccatag	ttgcctgact	ccccgtcgtg	tagataacta	cgatacggga	4800
gggcttacca	tctggcccca	gtgctgcaat	gataccgcga	gacccacgct	caccggctcc	4860
agatttatca	gcaataaacc	agccagccgg	aagggccgag	cgcagaagtg	gtcctgcaac	4920
tttatccgcc	tccatccagt	ctattaattg	ttgccgggaa	gctagagtaa	gtagttcgcc	4980
agttaatagt	ttgcgcaacg	ttgttgccat	tgctacaggc	atcgtggtgt	cacgctcgtc	5040
gtttggtatg	gcttcattca	gctccggttc	ccaacgatca	aggcgagtta	catgatcccc	5100
catgttgtgc	aaaaaagcgg	ttagctcctt	cggtcctccg	atcgttgtca	gaagtaagtt	5160
ggccgcagtg	ttatcactca	tggttatggc	agcactgcat	aattctctta	ctgtcatgcc	5220
atccgtaaga	tgcttttctg	tgactggtga	gtactcaacc	aagtcattct	gagaatagtg	5280
tatgcggcga	ccgagttgct	cttgcccggc	gtcaatacgg	gataataccg	cgccacatag	5340
cagaacttta	aaagtgctca	tcattggaaa	acgttcttcg	gggcgaaaac	tctcaaggat	5400
cttaccgctg	ttgagatcca	gttcgatgta	acccactcgt Page		gatcttcagc	5460

atcttttact	ttcaccagcg	tttctgggtg	agcaaaaaca	ggaaggcaaa	atgccgcaaa	5520
aaagggaata	agggcgacac	ggaaatgttg	aatactcata	ctcttccttt	ttcaatatta	5580
ttgaagcatt	tatcagggtt	attgtctcat	gagcggatac	atatttgaat	gtatttagaa	5640
aaataaacaa	ataggggttc	cgcgcacatt	tccccgaaaa	gtgccacctg	acgtc	5695

- <210> 6 <211> 235 <212> PRT
- <213> SYNTHETIC
- <220>
- <221> misc_feature
- <223> Fc domain of Immunoglobulin
- <400> 6
- Asp Pro Glu Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$
- Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro 20 25 30
- Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr 35 40 45
- Cys Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn 50 60
- Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg 75 80
- Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val 85 90 95
- Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser 100 105 110
- Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys 115 120 125
- Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp 130 135 140
- Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe 145 150 155 160
- Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Page 9

Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe
180 185 190

Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly 195 200

Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr 210 215 220

Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 225 230 235

<210> 7 <211> 1078 <212> DNA

<213> Homo sapiens

<220>

<221> mutation

<222> (1046)..(1048)

<223> BASE PAIRS ENCODING THANATOPHORIC DYSPLASIA (TD) SUBSTITUTION IN FGFR3

<400> tgagtccttg gggacggagc agcgcgtcgt ggggcgagcg gcagaagtcc cgggcccaga 60 120 gcccggccag caggagcagt tggtcttcgg cagcggggat gctgtggagc tgagctgtcc cccgccggg ggtggtccca tggggcccac tgtctgggtc aaggatggca cagggctggt 180 gccctcggag cgtgtcctgg tggggcccca gcggctgcag gtgctgaatg cctcccacga 240 300 ggactccgqq gcctacagct gccggcagcg gctcacgcag cgcgtactgt gccacttcag 360 tgtgcgggtg acagacgctc catcctcggg agatgacgaa gacggggagg acgaggctga ggacacaggt gtggacacag gggcccctta ctggacacgg cccgagcgga tggacaagaa 420 gctgctggcc gtgccggccg ccaacaccgt ccgcttccgc tgcccagccg ctggcaaccc 480 540 cactccctcc atctcctggc tgaagaacgg cagggagttc cgcggcgagc accgcattgg aggcatcaag ctgcggcatc agcagtggag cctggtcatg gaaagcgtgg tgccctcgga 600 660 ccgcggcaac tacacctgcg tcgtggagaa caagtttggc agcatccggc agacgtacac 720 gctggacgtg ctggagcgct ccccgcaccg gcccatcctg caggcggggc tgccggccaa 780 ccagacggcg gtgctgggca gcgacgtgga gttccactgc aaggtgtaca gtgacgcaca 840 gccccacatc cagtggctca agcacgtgga ggtgaacggc agcaaggtgg gcccggacgg 900 cacaccctac gttaccgtgc tcaagacggc gggcgctaac accaccgaca aggagctaga 960 ggttctctcc ttgcacaacg tcacctttga ggacgccggg gagtacacct gcctggcggg Page 10

1020

caattctatt gggttttctc atcactctgc gtggctggtg gtgctgccag ccgaggagga

1078 gctggtggag gctgacgagg cgggctgtgt gtatgcacac catcaccatc accattaa <210> 9 <211> <212> PRT Artificial Sequence <220> <223> CDR domain from phage library <400> Asp Phe Leu Gly Tyr Glu Phe Asp Tyr 1<210> <211> 9 <212> PRT <213> Artificial Sequence <220> <223> CDR domain from phage library <400> Gln Ser Tyr Asp Tyr Ser Ala Asp Tyr 1 <210> 10 <211> 17 <212> PRT <213> Artificial Sequence <220> <223> CDR domain from phage library <400> 10 Tyr Tyr Gly Ser Ser Leu Tyr His Tyr Val Phe Gly Gly Phe Ile Asp 10 15 Tyr <210> 11 <211> <212> PRT <213> Artificial Sequence <220> <223> CDR domain from phage library <400> 11

Gln Ser His His Phe Tyr Glu

```
81408-4400 sequence listing.txt
                 5
1
<210>
<211>
<212>
       20
       PRT
<213>
       Artificial Sequence
<220>
<223>
       CDR domain from phage library
<400>
       12
Tyr His Ser Trp Tyr Glu Met Gly Tyr Tyr Gly Ser Thr Val Gly Tyr 1 5 10 15
Met Phe Asp Tyr 20
<210> 13
<211>
      8
<212> PRT
<213> Artificial Sequence
<220>
      CDR domain from phage library
<223>
<400>
       13
Gln Ser Tyr Asp Phe Asp Phe Ala
1
<210>
<211>
       14
       10
<212>
       PRT
<213> Artificial Sequence
<220>
<223>
       CDR domain from phage library
<400>
Asp Asn Trp Phe Lys Pro Phe Ser Asp Val 1 5 10
<210> 15
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223>
       CDR domain from phage library
<400>
      15
Gln Gln Tyr Asp Ser Ile Pro Tyr 5
```

```
81408-4400 sequence listing.txt
<210>
       16
<211>
       10
<212>
       PRT
<213>
       Artificial Sequence
<220>
      CDR domain from phage library
<223>
<400> 16
Val Asn His Trp Thr Tyr Thr Phe Asp Tyr 10
       17
<210>
<211>
<212>
       PRT
<213> Artificial Sequence
<220>
<223>
       CDR domain from phage library
<400>
       17
Gln Gln Met Ser Asn Tyr Pro Asp
5
<210>
       18
<211>
      17
<212> PRT
<213> Artificial Sequence
<220>
<223>
      CDR domain from phage library
<400>
       18
Gly Tyr Trp Tyr Ala Tyr Phe Thr Tyr Ile Asn Tyr Gly Tyr Phe Asp 10 15
Asn
<210> 19
<211>
<212>
<213>
       PRT
      Artificial Sequence
<220>
<223>
       CDR domain from phage library
<400>
       19
Gln Ser Tyr Asp Asn Asn Ser Asp Val
5
<210>
       20
<211> 18
<212> PRT
```

```
81408-4400 sequence listing.txt
<213> Artificial Sequence
<220>
       CDR domain from phage library
<223>
<400>
Thr Trp Gln Tyr Ser Tyr Phe Tyr Tyr Leu Asp Gly Gly Tyr Tyr Phe 1 5 10 15
Asp Ile
<210> 21
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223>
       CDR domain from phage library
<400>
       21
Gln Gln Thr Asn Asn Ala Pro Val
1
<210> 22
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> CDR domain from phage library
<400> 22
Asn Met Ala Tyr Thr Asn Tyr Gln Tyr Val Asn Met Pro His Phe Asp 1 10 15
Tyr
<210> 23
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223>
       CDR domain from phage library
<400>
Gln Ser Tyr Asp Tyr Phe Lys Leu 5
<210> 24
<211> 8
```

```
81408-4400 sequence listing.txt
<212> PRT
<213> Artificial Sequence
<220>
<223> CDR domain from phage library
<400> 24
Ser Tyr Tyr Pro Asp Phe Asp Tyr 5
<210> 25
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
       CDR domain from phage library
<223>
<400> 25
Gln Ser Tyr Asp Gly Pro Asp Leu Trp
5
<210> 26
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223>
       CDR domain from phage library
<400> 26
Gly Gly Gly Trp Val Ser His Gly Tyr Tyr Tyr Leu Phe Asp Leu 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
<210> 27
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223>
       CDR domain from phage library
<400> 27
Phe Gln Tyr Gly Ser Ile Pro Pro 1
<210>
       28
<211>
       17
<212>
       PRT
<213>
      Artificial Sequence
<220>
<223>
       CDR domain from phage library
<400>
       28
```

Page 15

Ser Met Asn Ser Thr Met Tyr Trp Tyr Leu Arg Arg Val Leu Phe Asp His 29 <210> <211> 9 <212> PRT <213> Artificial Sequence <220> <223> CDR domain from phage library <400> 29 Gln Ser Tyr Asp Met Tyr Met Tyr Ile <210> 30 <211> 27 <212> DNA <213> Artificial Sequence <220> polynucleotide sequence of CDR domain from phage library <223> <400> 27 gattttcttg gttatgagtt tgattat <210> 31 <211> 27 <212> <213> Artificial Sequence <220> <223> polynucleotide sequence of CDR domain from phage library <400> 31 cagagctatg actattctgc tgattat 27 <210> <211> 51 <212> DNA <213> Artificial Sequence <220> <223> polynucleotide sequence of CDR domain from phage library <400> tattatggtt cttctcttta tcattatgtt tttggtggtt ttattgatta t 51 <210> 33 <211> 21 <212> DNA <213> Artificial Sequence

Page 16

<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400> cagtct	33 catc atttttatga g	21
<210> <211> <212> <213>	34 60 DNA Artificial Sequence	
<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400> tatcat	34 tctt ggtatgagat gggttattat ggttctactg ttggttatat gtttgattat	60
<210> <211> <212> <213>	35 24 DNA Artificial Sequence	
<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400> cagagc	35 tatg actttgattt tgct	24
<210> <211> <212> <213>	36 30 DNA Artificial Sequence	
<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400> gataat	36 tggt ttaagccttt ttctgatgtt	30
<210> <211> <212> <213>	37 24 DNA Artificial Sequence	
<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400> cagcag	37 tatg attctattcc ttat	24
<210> <211> <212> <213>	38 30 DNA Artificial Sequence	
<220> <223>	polynucleotide sequence of CDR domain from phage library Page 17	

	38 catt ggacttatac ttttgattat	30
<210> <211> <212> <213>	39 24 DNA Artificial Sequence	
<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400> cagcaga	39 atgt ctaattatcc tgat	24
<210> <211> <212> <213>	40 51 DNA Artificial Sequence	
<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400> ggttat	40 tggt atgcttattt tacttatatt aattatggtt attttgataa t	51
<210> <211> <212> <213>	41 27 DNA Artificial Sequence	
<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400> cagagc	41 tatg acaataattc tgatgtt	27
<210> <211> <212> <213>	42 45 DNA Artificial Sequence	
<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400> ggtggt	42 ggtt gggtttctca tggttattat tatctttttg atctt	45
<210> <211> <212> <213>	43 24 DNA Artificial Sequence	
<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400> tttcag	43 tatg gttctattcc tcct	24

<210> <211> <212> <213>	44 54 DNA Artificial Sequence	
<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400> acttgg	44 cagt attcttattt ttattatctt gatggtggtt attattttga tatt	54
<210> <211> <212> <213>	45 24 DNA Artificial Sequence	
<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400> cagcaga	45 acta ataatgctcc tgtt	24
<210> <211> <212> <213>	46 51 DNA Artificial Sequence	
<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400> aatatg	46 gctt atactaatta tcagtatgtt aatatgcctc attttgatta t	51
<210> <211> <212> <213>	47 24 DNA Artificial Sequence	
<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400> cagagc	47 tatg actatttaa gctt	24
<210> <211> <212> <213>	48 51 DNA Artificial Sequence	
<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400> tctatga	48 aatt ctactatgta ttggtatctt cgtcgtgttc tttttgatca t	51
<210>	49	

```
81408-4400 sequence listing.txt
<211>
       27
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       polynucleotide sequence of CDR domain from phage library
<400>
                                                                             27
cagagctatg acatgtataa ttatatt
<210>
       .50
<211>
       24
<212>
       DNA
<213>
       Artificial Sequence
<220>
       polynucleotide sequence of CDR domain from phage library
<223>
<400> 50
tcttattatc ctgattttga ttat
                                                                             24
<210>
       51
<211>
       27
<212>
       DNA
<213>
       Artificial Sequence
<220>
       polynucleotide sequence of CDR domain from phage library
<223>
<400>
cagagctatg acggtcctga tctttgg
                                                                             27
<210>
       52
<211>
       5020
<212>
<213>
       Artificial Sequence
<220>
<223>
       polynucleotide sequence of cloning vector
<300>
<301>
       Knappik et al
       Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with
<302>
       trinucleotides.
       J Mol Biol
<303>
<304>
       296
<305>
<306>
       57-86
       2000-02-11
<307>
       pubmed/10656818
<308>
       2000-02-11
<309>
       (1)..(5020)
<313>
<400>
atcqtqctqa cccaqccqcc ttcaqtqaqt ggcgcaccag gtcaqcgtgt gaccatctcq
                                                                             60
tgtagcggca gcagcagcaa cattggcagc aactatgtga gctggtacca gcagttgccc
                                                                            120
gggacggcgc cgaaactgct gatttatgat aacaaccagc gtccctcagg cgtgccggat
                                                                            180
```

Page 20

cgttttagcg gatc	caaaag cggcaccago	gcgagccttg	cgattacggg	cctgcaaagc	240
gaagacgaag cgga	attatta ttgccagago	tatgacatgc	ctcaggctgt	gtttggcggc	300
ggcacgaagt ttaa	accgttc ttggccagco	gaaagccgca	ccgagtgtga	cgctgtttcc	360
gccgagcagc gaag	gaattgc aggcgaacaa	agcgaccctg	gtgtgcctga	ttagcgactt	420
ttatccggga gccg	gtgacag tggcctggaa	ggcagatagc	agccccgtca	aggcgggagt	480
ggagaccacc acac	cctcca aacaaagcaa	caacaagtac	gcggccagca	gctatctgag	540
cctgacgcct gago	agtgga agtcccacag	aagctacagc	tgccaggtca	cgcatgaggg	600
gagcaccgtg gaaa	aaaaccg ttgcgccgac	tgaggcctga	taagcatgcg	taggagaaaa	660
taaaatgaaa caaa	agcacta ttgcactggo	actcttaccg	ttgctcttca	ccctgttac	720
caaagcccag gtgc	aattga aagaaagcgg	cccggccctg	gtgaaaccga	cccaaaccct	780
gaccctgacc tgta	acctttt ccggatttag	cctgtccacg	tctggcgttg	gcgtgggctg	840
gattcgccag ccgc	cctggga aagccctcga	gtggctggct	ctgattgatt	gggatgatga	900
taagtattat agca	accagcc tgaaaacgcg	tctgaccatt	agcaaagata	cttcgaaaaa	960
tcaggtggtg ctga	actatga ccaacatgga	cccggtggat	acggccacct	attattgcgc	1020
gcgttctcct cgtt	tatcgtg gtgcttttga	ttattggggc	caaggcaccc	tggtgacggt	1080
tagctcagcg tcga	accaaag gtccaagcgt	gtttccgctg	gctccgagca	gcaaaagcac	1140
cagcggcggc acgg	gctgccc tgggctgcct	ggttaaagat	tatttcccgg	aaccagtcac	1200
cgtgagctgg aaca	agcgggg cgctgaccag	cggcgtgcat	acctttccgg	cggtgctgca	1260
aagcagcggc ctgt	tatagcc tgagcagcgt	tgtgaccgtg	ccgagcagca	gcttaggcac	1320
tcagacctat attt	tgcaacg tgaaccataa	accgagcaac	accaaagtgg	ataaaaaagt	1380
ggaaccgaaa agcg	gaattcg actataaaga	tgacgatgac	aaaggcgcgc	cgtggagcca	1440
cccgcagttt gaaa	aaatgat aagcttgaco	tgtgaagtga	aaaatggcgc	agattgtgcg	1500
acatttttt tgtc	ctgccgt ttaattaaag	9999999999	gccggcctgg	gggggggtgt	1560
acatgaaatt gtaa	aacgtta atattttgtt	aaaattcgcg	ttaaattttt	gttaaatcag	1620
ctcattttt aacc	caatagg ccgaaatcgg	caaaatccct	tataaatcaa	aagaatagac	1680
cgagataggg ttga	agtgttg ttccagtttg	gaacaagagt	ccactattaa	agaacgtgga	1740
ctccaacgtc aaag	gggcgaa aaaccgtcta	tcagggcgat	ggcccactac	gagaaccatc	1800
accctaatca agtt	tttttgg ggtcgaggtg	ccgtaaagca	ctaaatcgga	accctaaagg	1860
gagcccccga ttta	agagctt gacggggaaa	gccggcgaac	gtggcgagaa	aggaagggaa	1920
gaaagcgaaa ggag	gcgggcg ctagggcgct	ggcaagtgta	gcggtcacgc	tgcgcgtaac	1980
caccacaccc gccg	gcgctta atgcgccgct	acagggcgcg	tgctagacta	gtgtttaaac	2040

81408-4400 sequence listing.txt cggaccgggg gggggcttaa gtgggctgca aaacaaaacg gcctcctgtc aggaagccgc ttttatcggg tagcctcact gcccgctttc cagtcgggaa acctgtcgtg ccagctgcat cagtgaatcg gccaacgcgc ggggagaggc ggtttgcgta ttgggagcca gggtggtttt tcttttcacc agtgagacgg gcaacagctg attgcccttc accgcctggc cctgagagag

2100

2160

2220

2280

2340 ttgcagcaag cggtccacgc tggtttgccc cagcaggcga aaatcctgtt tgatggtggt cagcggcggg atataacatg agctgtcctc ggtatcgtcg tatcccacta ccgagatgtc 2400 2460 cgcaccaacg cgcagcccgg actcggtaat ggcacgcatt gcgcccagcg ccatctgatc 2520 gttggcaacc agcatcgcag tgggaacgat gccctcattc agcatttgca tggtttgttg 2580 aaaaccggac atggcactcc agtcgccttc ccgttccgct atcggctgaa tttgattgcg 2640 agtgagatat ttatgccagc cagccagacg cagacgcgcc gagacagaac ttaatgggcc 2700 agctaacagc gcgatttgct ggtggcccaa tgcgaccaga tgctccacgc ccagtcgcgt accgtcctca tgggagaaaa taatactgtt gatgggtgtc tggtcagaga catcaagaaa 2760 2820 taacgccgga acattagtgc aggcagcttc cacagcaata gcatcctggt catccagcgg 2880 atagttaata atcagcccac tgacacgttg cgcgagaaga ttgtgcaccg ccgctttaca 2940 ggcttcgacg ccgcttcgtt ctaccatcga cacgaccacg ctggcaccca gttgatcggc 3000 gcgagattta atcgccgcga caatttgcga cggcgcgtgc agggccagac tggaggtggc aacgccaatc agcaacgact gtttgcccgc cagttgttgt gccacgcggt taggaatgta 3060 3120 attcagctcc gccatcgccg cttccacttt ttcccgcgtt ttcgcagaaa cgtggctggc 3180 ctggttcacc acgcgggaaa cggtctgata agagacaccg gcatactctg cgacatcgta taacgttact ggtttcacat tcaccaccct gaattgactc tcttccgggc gctatcatgc 3240 3300 cataccgcga aaggttttgc gccattcgat gctagccatg tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc cataggctcc gccccctga 3360 cgagcatcac aaaaatcgac gctcaagtca gaggtggcga aacccgacag gactataaag 3420 3480 ataccaggcg tttccccctg gaagctccct cgtgcgctct cctgttccga ccctgccgct 3540 taccggatac ctgtccgcct ttctcccttc gggaagcgtg gcgctttctc atagctcacg ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag ctgggctgtg tgcacgaacc 3600 3660 ccccgttcag cccgaccgct gcgccttatc cggtaactat cgtcttgagt ccaacccggt 3720 aagacacgac ttatcgccac tggcagcagc cactggtaac aggattagca gagcgaggta tgtaggcggt gctacagagt tcttgaagtg gtggcctaac tacggctaca ctagaagaac 3780 3840 agtatttggt atctgcgctc tgctgtagcc agttaccttc ggaaaaagag ttggtagctc 3900 ttgatccggc aaacaaacca ccgctggtag cggtggtttt tttgtttgca agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc ttttctacgg ggtctgacgc 3960 Page 22

```
tcagtggaac gaaaactcac qttaaqqqat tttqqtcaqa tctaqcacca qqcqtttaaq
                                                                     4020
ggcaccaata actgccttaa aaaaattacg ccccqccctq ccactcatcg cagtactgtt
                                                                     4080
gtaattcatt aagcattctg ccgacatgga agccatcaca aacggcatga tgaacctgaa
                                                                     4140
tcgccagcgg catcagcacc ttgtcgcctt gcgtataata tttgcccata gtgaaaacgg
                                                                     4200
gggcgaagaa gttgtccata ttgqctacqt ttaaatcaaa actqqtqaaa ctcacccaqq
                                                                     4260
gattggctga gacgaaaaac atattctcaa taaacccttt agggaaatag gccaggtttt
                                                                     4320
caccgtaaca cgccacatct tgcgaatata tgtgtagaaa ctgccggaaa tcgtcgtggt
                                                                     4380
attcactcca gagcgatgaa aacgtttcag tttgctcatg gaaaacggtg taacaagggt
                                                                     4440
gaacactatc ccatatcacc agctcaccgt ctttcattgc catacggaac tccgggtgag
                                                                     4500
cattcatcag gcgggcaaga atgtgaataa aggccggata aaacttgtgc ttattttct
                                                                     4560
ttacggtctt taaaaaggcc gtaatatcca gctgaacggt ctggttatag gtacattgag
                                                                     4620
caactgactg aaatgcctca aaatgttctt tacgatgcca ttgggatata tcaacqqtqq
                                                                     4680
tatatccagt gattttttc tccattttag cttccttagc tcctgaaaat ctcgataact
                                                                     4740
caaaaaatac gcccggtagt gatcttattt cattatqqtq aaaqttqqaa cctcacccqa
                                                                     4800
Cgtctaatgt gagttagctc actcattagg caccccaggc tttacacttt atgcttccgg
                                                                     4860
ctcgtatgtt gtgtggaatt gtgagcggat aacaatttca cacaggaaac agctatgacc
                                                                     4920
atgattacga atttctagat aacgagggca aaaaatgaaa aagacagcta tcqcqattqc
                                                                     4980
agtggcactg gctggtttcg ctaccgtagc gcaggccgat
                                                                     5020
<210>
       53
```

```
<211>
       4151
<212>
       DNA
       Artificial Sequence
<213>
<220>
<223>
       polynucleotide sequence of cloning vector
<300>
<301>
       knappik et al
<302>
       Fully synthetic human combinatorial antibody libraries (HuCAL)
       based on modular consensus frameworks and CDRs randomized with
       trinucleotides.
<303>
       i mol biol
<304>
       296
<305>
<306>
       57-86
       2000-02-11
<307>
<308>
       pubmed/10656818
<309>
       2000-02-11
       (1)..(4151)
<313>
```

tctagataac gagggcaaaa aatgaaaaag acagctatcg cgattgcagt ggcactggct

60

81408-4400 sequence listing.txt 120 ggtttcgcta ccgtagcgca ggccgatatc gtgctgaccc agagcccggc gaccctgagc 180 ctgtctccgg gcgaacgtgc gaccctgagc tgcagagcga gccagagcgt gagcagcagc 240 tatctggcgt ggtaccagca gaaaccaggt caagcaccgc gtctattaat ttatggcgcg 300 agcagccgtg caactggggt cccggcgcgt tttagcggct ctggatccgg cacggatttt accctgacca ttagcagcct ggaacctgaa gactttgcgg tgtattattg ccagcagcat 360 420 tataccaccc cgccgacctt tggccagggt acgaaagttg aaattaaacg tacggtggct 480 gctccgagcg tgtttatttt tccgccgagc gatgaacaac tgaaaagcgg cacggcgagc 540 gtggtgtgcc tgctgaacaa cttttatccg cgtgaagcga aagttcagtg gaaagtagac 600 aacgcgctgc aaagcggcaa cagccaggaa agcgtgaccg aacaggatag caaagatagc acctattctc tgagcagcac cctgaccctg agcaaagcgg attatgaaaa acataaagtg 660 720 tatgcgtgcg aagtgaccca tcaaggtctg agcagcccgg tgactaaatc ttttaatcgt 780 ggcgaggcct gataagcatg cgtaggagaa aataaaatga aacaaagcac tattgcactg gcactcttac cgttgctctt cacccctgtt accaaagccg aagtgcaatt ggtggaaagc 840 900 ggcggcggcc tggtgcaacc gggcggcagc ctgcgtctga gctgcgcggc ctccggattt 960 acctttagca gctatgcgat gagctgggtg cgccaagccc ctgggaaggg tctcgagtgg 1020 gtgagcgcga ttagcggtag cggcggcagc acctattatg cggatagcgt gaaaggccgt tttaccattt cacgtgataa ttcgaaaaac accctgtatc tgcaaatgaa cagcctgcgt 1080 gcggaagata cggccgtgta ttattgcgcg cgttggggcg gcgatggctt ttatgcgatg 1140 1200 gattattggg gccaaggcac cctggtgacg gttagctcag cgtcgaccaa aggtccaagc 1260 gtgtttccgc tggctccgag cagcaaaagc accagcggcg gcacggctgc cctgggctgc ctggttaaag attatttccc ggaaccagtc accgtgagct ggaacagcgg ggcgctgacc 1320 1380 agcggcgtgc atacctttcc ggcggtgctg caaagcagcg gcctgtatag cctgagcagc 1440 gttgtgaccg tgccgagcag cagcttaggc actcagacct atatttgcaa cgtgaaccat 1500 aaaccgagca acaccaaagt ggataaaaaa gtggaaccga aaagcgaatt cgggggaggg 1560 agcgggagcg gtgattttga ttatgaaaag atggcaaacg ctaataaggg ggctatgacc 1620 gaaaatgccg atgaaaacgc gctacagtct gacgctaaag gcaaacttga ttctgtcgct actgattacg gtgctgctat cgatggtttc attggtgacg tttccggcct tgctaatggt 1680 1740 aatggtgcta ctggtgattt tgctggctct aattcccaaa tggctcaagt cggtgacggt 1800 gataattcac ctttaatgaa taatttccgt caatatttac cttccctccc tcaatcggtt 1860 gaatgtcgcc cttttgtctt tggcgctggt aaaccatatg aattttctat tgattgtgac aaaataaact tattccgtgg tgtctttgcg tttcttttat atgttgccac ctttatgtat 1920 gtattttcta cgtttgctaa catactgcgt aataaggagt cttgataagc ttgacctgtg 1980 Page 24

aagtgaaaaa	tggcgcagat	tgtgcgacat	tttttttgtc	tgccgtttaa	tgaaattgta	2040
aacgttaata	ttttgttaaa	attcgcgtta	aatttttgtt	aaatcagctc	atttttaac	2100
caataggccg	aaatcggcaa	aatcccttat	aaatcaaaag	aatagaccga	gatagggttg	2160
agtgttgttc	cagtttggaa	caagagtcca	ctattaaaga	acgtggactc	caacgtcaaa	2220
gggcgaaaaa	ccgtctatca	gggcgatggc	ccactacgag	aaccatcacc	ctaatcaagt	2280
tttttggggt	cgaggtgccg	taaagcacta	aatcggaacc	ctaaagggag	ccccgattt	2340
agagcttgac	ggggaaagcc	ggcgaacgtg	gcgagaaagg	aagggaagaa	agcgaaagga	2400
gcgggcgcta	gggcgctggc	aagtgtagcg	gtcacgctgc	gcgtaaccac	cacacçcgcc	2460
gcgcttaatg	cgccgctaca	gggcgcgtgc	tagccatgtg	agcaaaaggc	cagcaaaagg	2520
ccaggaaccg	taaaaaggcc	gcgttgctgg	cgtttttcca	taggctccgc	cccctgacg	2580
agcatcacaa	aaatcgacgc	tcaagtcaga	ggtggcgaaa	cccgacagga	ctataaagat	2640
accaggcgtt	tcccctgga	agctccctcg	tgcgctctcc	tgttccgacc	ctgccgctta	2700
ccggatacct	gtccgccttt	ctcccttcgg	gaagcgtggc	gctttctcat	agctcacgct	2760
gtaggtatct	cagttcggtg	taggtcgttc	gctccaagct	gggctgtgtg	cacgaacccc	2820
ccgttcagtc	cgaccgctgc	gccttatccg	gtaactatcg	tcttgagtcc	aacccggtaa	2880
gacacgactt	atcgccactg	gcagcagcca	ctggtaacag	gattagcaga	gcgaggtatg	2940
taggcggtgc	tacagagttc	ttgaagtggt	ggcctaacta	cggctacact	agaagaacag	3000
tatttggtat	ctgcgctctg	ctgtagccag	ttaccttcgg	aaaaagagtt	ggtagctctt	3060
gatccggcaa	acaaaccacc	gctggtagcg	gtggttttt	tgtttgcaag	cagcagatta	3120
cgcgcagaaa	aaaaggatct	caagaagatc	ctttgatctt	ttctacgggg	tctgacgctc	3180
agtggaacga	aaactcacgt	taagggattt	tggtcagatc	tagcaccagg	cgtttaaggg	3240
caccaataac	tgccttaaaa	aaattacgcc	ccgccctgcc	actcatcgca	gtactgttgt	3300
aattcattaa	gcattctgcc	gacatggaag	ccatcacaaa	cggcatgatg	aacctgaatc	3360
gccagcggca	tcagcacctt	gtcgccttgc	gtataatatt	tgcccatagt	gaaaacgggg	3420
gcgaagaagt	tgtccatatt	ggctacgttt	aaatcaaaac	tggtgaaact	cacccaggga	3480
ttggctgaga	cgaaaaacat	attctcaata	aaccctttag	ggaaataggc	caggttttca	3540
ccgtaacacg	ccacatcttg	cgaatatatg	tgtagaaact	gccggaaatc	gtcgtggtat	3600
tcactccaga	gcgatgaaaa	cgtttcagtt	tgctcatgga	aaacggtgta	acaagggtga	3660
acactatccc	atatcaccag	ctcaccgtct	ttcattgcca	tacggaactc	cgggtgagca	3720
ttcatcaggc	gggcaagaat	gtgaataaag	gccggataaa	acttgtgctt	atttttcttt	3780
acggtcttta	aaaaggccgt	aatatccagc	tgaacggtct	ggttataggt	acattgagca	3840

81408-4400 sequence listing.txt <210> 56 309 <211> <212> DNA <213> Artificial Sequence <220> polynucleotide sequence of a VL domain <223> <220> misc_feature (256)..(258) <221> <222> <223> NNN=ACT OR GTT <400> gatatcgtgc tgacccagag cccggcgacc ctgagcctgt ctccgggcga acgtgcgacc 60 120 ctgagctgca gagcgagcca gagcgtgagc agcagctatc tggcgtggta ccagcagaaa ccaggicaag caccgcgict attaatitat ggcgcgagca gccgigcaac iggggicccg 180 gcgcgtttta gcggctctgg atccggcacg gattttaccc tgaccattag cagcctggaa 240 300 cctgaagact ttgcgnnnta ttattgccag acctttggcc agggtacgaa agttgaaatt 309 aaacgtacg <210> 57 330 <211> <212> DNA <213> Artificial Sequence <220> polynucleotide sequence of a VL domain <223> <400> gatatcgtgc tgacccagag cccggcgacc ctgagcctgt ctccgggcga acgtgcgacc 60 ctgagctgca gagcgagcca gagcgtgagc agcagctatc tggcgtggta ccagcagaaa 120 ccaggtcaag caccgcgtct attaatttat ggcgcgagca gccgtgcaac tggggtcccg 180 gcgcgtttta gcggctctgg atccggcacg gattttaccc tgaccattag cagcctggaa 240 300 cctgaagact ttgcgactta ttattgccag cagatgtcta attatcctga tacctttggc cagggtacga aagttgaaat taaacgtacg 330 <210> 58 330 <211> <212> DNA <213> Artificial Sequence <220> <223> polynucleotide sequence of a VL domain <400> gatatcgtgc tgacccagag cccggcgacc ctgagcctgt ctccgggcga acgtgcgacc 60 ctgagctgca gagcgagcca gagcgtgagc agcagctatc tggcgtggta ccagcagaaa 120

81408-4400 sequence listing.txt	
ccaggtcaag caccgcgtct attaatttat ggcgcgagca gccgtgcaac tggggtcccg	180
gcgcgtttta gcggctctgg atccggcacg gattttaccc tgaccattag cagcctggaa	240
cctgaagact ttgcgactta ttattgccag cagactaata atgctcctgt tacctttggc	300
cagggtacga aagttgaaat taaacgtacg	330
<210> 59 <211> 324 <212> DNA <213> Artificial Sequence	
<220> <223> polynucleotide sequence of a VL domain	
<400> 59 gatatcgtga tgacccagag cccggatagc ctggcggtga gcctgggcga acgtgcgacc	60
attaactgca gaagcagcca gagcgtgctg tatagcagca acaacaaaaa ctatctggcg	120
tggtaccagc agaaaccagg tcagccgccg aaactattaa tttattgggc atccacccgt	180
gaaagcgggg tcccggatcg ttttagcggc tctggatccg gcactgattt taccctgacc	240
atttcgtccc tgcaagctga agacgtggcg gtgtattatt gccagacctt tggccagggt	300
acgaaagttg aaattaaacg tacg	324
<210> 60 <211> 345 <212> DNA <213> Artificial Sequence	
<220> <223> polynucleotide sequence of a VL domain	
<400> 60 gatatcgtga tgacccagag cccggatagc ctggcggtga gcctgggcga acgtgcgacc	60
attaactgca gaagcagcca gagcgtgctg tatagcagca acaacaaaaa ctatctggcg	120
tggtaccagc agaaaccagg tcagccgccg aaactattaa tttattgggc atccacccgt	180
gaaagcgggg tcccggatcg ttttagcggc tctggatccg gcactgattt taccctgacc	240
atttcgtccc tgcaagctga agacgtggcg gtgtattatt gccagcagta tgattctatt	300
ccttatacct ttggccaggg tacgaaagtt gaaattaaac gtacg	345
<210> 61 <211> 315 <212> DNA <213> Artificial Sequence	
<220> . <223> polynucleotide sequence of a VL domain	7
<400> 61 gatatcgcac tgacccagcc agcttcagtg agcggctcac caggtcagag cattaccatc Page 28	60

			•	3		
tcgtgt	acgg gtactagcag	cgatgtgggc	ggctataact	atgtgagctg	gtaccagcag	120
catccc	ggga aggcgccgaa	actgatgatt	tatgatgtga	gcaaccgtcc	ctcaggcgtg	180
agcaac	cgtt ttagcggatc	caaaagcggc	aacaccgcga	gcctgaccat	tagcggcctg	240
caagcg	gaag acgaagcgga	ttattattgc	caggacgtgt	ttggcggcgg	cacgaagtta	300
accgtt	cttg gccag					315
24.0						
<210> <211>	62 336					
<212> <213>	DNA Artificial Sequ	uence				
<220>						
<223>	polynucleotide	sequence of	f a VL doma [.]	in		
<400> gatato	62 gcac tgacccagcc	agcttcagtg	agcggctcac	caggtcagag	cattaccatc	60
tcgtgta	acgg gtactagcag	cgatgtgggc	ggctataact	atgtgagctg	gtaccagcag	120
catccc	ggga aggcgccgaa	actgatgatt	tatgatgtga	gcaaccgtcc	ctcaggcgtg	180
agcaac	cgtt ttagcggatc	caaaagcggc	aacaccgcga	gcctgaccat	tagcggcctg	240
caagcg	gaag acgaagcgga	ttattattgc	cagagctatg	acatgtataa	ttatattgtg	300
tttggc	ggcg gcacgaagtt	aaccgttctt	ggccag			336
210						
<210> <211>	63 330					
<212> <213>	DNA Artificial Sequ	uence				
<220>			_			
<223>	polynucleotide	sequence of	f a VL doma ⁻	in		
<400> gatatc	63 gcac tgacccagcc	agcttcagtg	agcggctcac	caggtcagag	cattaccatc	60
tcgtgta	acgg gtactagcag	cgatgtgggc	ggctataact	atgtgagctg	gtaccagcag	120
catccc	ggga aggcgccgaa	actgatgatt	tatgatgtga	gcaaccgtcc	ctcaggcgtg	180
agcaac	cgtt ttagcggatc	caaaagcggc	aacaccgcga	gcctgaccat	tagcggcctg	240
caagcg	gaag acgaagcgga	ttattattgc	cagtctcatc	atttttatga	ggtgtttggc	300
ggcggca	acga agttaaccgt	tcttggccag				330
<210>	64					
<211>	336					
<212> <213>	DNA Artificial Sequ	ience				
<220> <223>	nolymucleotido	saguence of	Fa W damas	in		
NLL37	polynucleotide	sequence of	Page			

100 54				
<400> 64 gatatcgcac tgacccagcc agcttcagtg agcggctcac caggtcagag cattaccatc	60			
tcgtgtacgg gtactagcag cgatgtgggc ggctataact atgtgagctg gtaccagcag	120			
catcccggga aggcgccgaa actgatgatt tatgatgtga gcaaccgtcc ctcaggcgtg	180			
agcaaccgtt ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg	240			
caagcggaag acgaagcgga ttattattgc cagagctatg acaataattc tgatgttgtg	300			
tttggcggcg gcacgaagtt aaccgttctt ggccag	336			
<210> 65 <211> 306 <212> DNA <213> Artificial Sequence				
<220> <223> polynucleotide sequence of a VL domain				
<400> 65	60			
gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc	60			
tcgtgtagcg gcgatgcgct gggcgataaa tacgcgagct ggtaccagca gaaacccggg	120			
caggcgccag ttctggtgat ttatgatgat tctgaccgtc cctcaggcat cccggaacgc	180			
tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa	240			
gacgaagcgg attattattg ccaggacgtg tttggcggcg gcacgaagtt aaccgttctt	300			
ggccag	306			
<210> 66 <211> 324 <212> DNA <213> Artificial Sequence				
<220> <223> polynucleotide sequence of a VL domain				
<400> 66				
gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc	60			
tcgtgtagcg gcgatgcgct gggcgataaa tacgcgagct ggtaccagca gaaacccggg	120			
caggcgccag ttctggtgat ttatgatgat tctgaccgtc cctcaggcat cccggaacgc	180			
tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa	240			
gacgaagcgg attattattg ccagagctat gactattta agcttgtgtt tggcggcggc				
acgaagttaa ccgttcttgg ccag	324			
<210> 67 <211> 327 <212> DNA <213> Artificial Sequence				

orioo 4400 Sequence 115ting. exc	
<220> <223> polynucleotide sequence of a VL domain	
<400> 67 gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc	60
tcgtgtagcg gcgatgcgct gggcgataaa tacgcgagct ggtaccagca gaaacccggg	120
	180
caggcgccag ttctggtgat ttatgatgat tctgaccgtc cctcaggcat cccggaacgc	
tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa	240
gacgaagcgg attattattg ccagagctat gactattctg ctgattatgt gtttggcggc	300
ggcacgaagt taaccgttct tggccag	327
<210> 68 <211> 324 <212> DNA <213> Artificial Sequence	
<220> <223> polynucleotide sequence of a VL domain	
<400> 68 gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc	60
tcgtgtagcg gcgatgcgct gggcgataaa tacgcgagct ggtaccagca gaaacccggg	120
caggcgccag ttctggtgat ttatgatgat tctgaccgtc cctcaggcat cccggaacgc	180
tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa	240
gacgaagcgg attattattg ccagagctat gactttgatt ttgctgtgtt tggcggcggc	300
acgaagttaa ccgttcttgg ccag	324
<210> 69 <211> 327 <212> DNA <213> Artificial Sequence	
<220> <223> polynucleotide sequence of a VL domain	
<400> 69 gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc	60
tcgtgtagcg gcgatgcgct gggcgataaa tacgcgagct ggtaccagca gaaacccggg	120
caggcgccag ttctggtgat ttatgatgat tctgaccgtc cctcaggcat cccggaacgc	180
tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa	240
gacgaagcgg attattattg ccagagctat gacggtcctg atctttgggt gtttggcggc	300
ggcacgaagt taaccgttct tggccag	327

81408-4400 sequence listing.txt <211> 332 <212> DNA <213> Artificial Sequence <220> polynucleotide sequence of a VH domain <223> <220> misc_feature <221> <222> (1)..(3)<223> NNN=GAA OR CAG <400> 70 60 nnngtgcaat tggttcagtc tggcgcggaa gtgaaaaaac cgggcagcag cgtgaaagtg 120 agctgcaaag cctccggagg cacttttagc agctatgcga ttagctgggt gcgccaagcc cctgggcagg gtctcgagtg gatgggcggc attattccga tttttggcac ggcgaactac 180 240 qcqcaqaaqt ttcagggccg ggtgaccatt accgcggatg aaagcaccag caccgcgtat atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgtgattgg 300 ggccaaggca ccctggtgac ggttagctca gc 332 <210> 71 <211> 357 <212> DNA Artificial Sequence <213> <220> polynucleotide sequence of a VH domain <223> <400> caggtgcaat tggttcagtc tggcgcggaa gtgaaaaaac cgggcagcag cgtgaaagtg 60 agctgcaaag cctccggagg cacttttagc agctatgcga ttagctgggt gcgccaagcc 120 cctgggcagg gtctcgagtg gatgggcggc attattccga tttttggcac ggcgaactac 180 gcgcagaagt ttcagggccg ggtgaccatt accgcggatg aaagcaccag caccgcgtat 240 atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgtgataat 300 tggtttaagc ctttttctga tgtttggggc caaggcaccc tggtgacggt tagctca 357 <210> 72 357 <211> <212> DNA <213> Artificial Sequence <220> polynucleotide sequence of a VH domain <223> <400> 72 caggtgcaat tggttcagtc tggcgcggaa gtgaaaaaac cgggcagcag cgtgaaagtg 60

agctgcaaag cctccggagg cacttttagc agctatgcga ttagctgggt gcgccaagcc cctqqqcaqq qtctcgaqtq qatgggcggc attattccga tttttggcac ggcgaactac

Page 32

120

180

gcgcagaagt ttcagggccg ggtgaccatt accgcggatg aaagcaccag caccgcgtat	240
atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgtgttaat	300
cattggactt atacttttga ttattggggc caaggcaccc tggtgacggt tagctca	357
<210> 73 <211> 372 <212> DNA <213> Artificial Sequence	
<220> <223> polynucleotide sequence of a VH domain	
<400> 73 caggtgcaat tggttcagtc tggcgcggaa gtgaaaaaac cgggcagcag cgtgaaagtg	60
agctgcaaag cctccggagg cacttttagc agctatgcga ttagctgggt gcgccaagcc	120
cctgggcagg gtctcgagtg gatgggcggc attattccga tttttggcac ggcgaactac	180
gcgcagaagt ttcagggccg ggtgaccatt accgcggatg aaagcaccag caccgcgtat	240
atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgtggtggt	300
ggttgggttt ctcatggtta ttattatctt tttgatcttt ggggccaagg caccctggtg	360
acggttagct ca	372
<210> 74 <211> 332 <212> DNA <213> Artificial Sequence	
<220> <223> polynucleotide sequence of a VH domain	
<220> <221> misc_feature <222> (1)(3) <223> NNN=GAA OR CAG	
<400> 74 nnngtgcaat tggttcagag cggcgcggaa gtgaaaaaac cgggcgcgag cgtgaaagtg	60
agctgcaaag cctccggata tacctttacc agctattata tgcactgggt ccgccaagcc	120
cctgggcagg gtctcgagtg gatgggctgg attaacccga atagcggcgg cacgaactac	180
gcgcagaagt ttcagggccg ggtgaccatg acccgtgata ccagcattag caccgcgtat	240
atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgtgattgg	300
ggccaaggca ccctggtgac ggttagctca gc	332
<210> 75	

<210> 75 <211> 378 <212> DNA

81408-4400 sequence listing.txt <213> Artificial Sequence <220> polynucleotide sequence of a VH domain <223> <400> 75 60 caqqtqcaat tqqttcaqaq cqqcqcqqaa gtqaaaaaac cggqcqcgag cqtgaaaqtq agctgcaaag cctccggata tacctttacc agctattata tgcactgggt ccgccaaqcc 120 cctgggcagg gtctcgagtg gatgggctgg attaacccga atagcggcgg cacgaactac 180 gcgcagaagt ttcagggccg ggtgaccatg acccgtgata ccagcattag caccgcgtat 240 atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgtaatatg 300 360 gcttatacta attatcagta tgttaatatg cctcattttg attattgggg ccaaggcacc 378 ctqqtqacqq ttaqctca <210> 76 378 <211> <212> DNA <213> Artificial Sequence <220> polynucleotide sequence of a VH domain <223> <400> caggtgcaat tggttcagag cggcgcggaa gtgaaaaaac cgggcgcgag cgtgaaagtg 60 120 agctgcaaag cctccggata tacctttacc agctattata tgcactgggt ccgccaagcc cctgggcagg gtctcgagtg gatgggctgg attaacccga atagcggcgg cacgaactac 180 gcgcagaagt ttcagggccg ggtgaccatg acccgtgata ccagcattag caccgcgtat 240 atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgttctatg 300 aattctacta tgtattggta tcttcgtcgt gttctttttg atcattgggg ccaaggcacc 360 378 ctggtgacgg ttagctca <210> 77 354 <211> <212> DNA <213> Artificial Sequence <220> polynucleotide sequence of a VH domain <223> <400> caggtgcaat tggttcagag cggcgcggaa gtgaaaaaac cgggcgcgag cgtgaaagtg 60 agctgcaaag cctccggata tacctttacc agctattata tgcactgggt ccgccaagcc 120 cctgggcagg gtctcgagtg gatgggctgg attaacccga atagcggcgg cacgaactac 180

gcgcagaagt ttcagggccg ggtgaccatg acccgtgata ccagcattag caccgcgtat

atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgtgatttt

240

300

cttggtt	tatg	agtttgatta	ttggggccaa	ggcaccctgg	tgacggttag	ctca	354
<210> <211> <212> <213>	78 378 DNA Arti	ficial Sequ	ience				
<220> <223>	poly	nucleotide	sequence of	f a VH domai	in		
<400> caggtge	78 caat	tggttcagag	cggcgcggaa	gtgaaaaaac	cgggcgcgag	cgtgaaagtg	60
agctgca	aaag	cctccggata	tacctttacc	agctattata	tgcactgggt	ccgccaagcc	120
cctggg	cagg	gtctcgagtg	gatgggctgg	attaacccga	atagcggcgg	cacgaactac	180
gcgcaga	aagt	ttcagggccg	ggtgaccatg	acccgtgata	ccagcattag	caccgcgtat	240
atggaad	ctga	gcagcctgcg	tagcgaagat	acggccgtgt	attattgcgc	gcgttattat	300
ggttct	tctc	tttatcatta	tgtttttggt	ggttttattg	attattgggg	ccaaggcacc	360
ctggtg	acgg	ttagctca					378
<210> <211> <212> <213>	79 378 DNA Arti	ficial Sequ	uence				
<220> <223>	роју	nucleotide	sequence of	f a VH doma [.]	in		
<400> caggtge	79 caat	tggttcagag	cggcgcggaa	gtgaaaaaac	cgggcgcgag	cgtgaaagtg	60
agctgc	aaag	cctccggata	tacctttacc	agctattata	tgcactgggt	ccgccaagcc	120
cctggg	cagg	gtctcgagtg	gatgggctgg	attaacccga	atagcggcgg	cacgaactac	180
gcgcag	aagt	ttcagggccg	ggtgaccatg	acccgtgata	ccagcattag	caccgcgtat	240
atggaa	ctga	gcagcctgcg	tagcgaagat	acggccgtgt	attattgcgc	gcgtggttat	300
tggtatgctt attttactta tattaattat ggttattttg ataattgggg ccaaggcacc 3						360	
ctggtgacgg ttagctca 378							378
<210> <211> <212> <213>	80 381 DNA Arti	ficial Sequ	uence				
<220> <223>	poly	nucleotide	sequence o	f a VH doma	in		
<400> caggtg	80 caat	tggttcagag	cggcgcggaa	gtgaaaaaac	cgggcgcgag	cgtgaaagtg	60

		81408_	4400 sequen	ce listing	+v+	
agctgcaaag cc	tccggata					120
cctgggcagg gt	ctcgagtg	gatgggctgg	attaacccga	atagcggcgg	cacgaactac	180
gcgcagaagt tt	cagggccg	ggtgaccatg	acccgtgata	ccagcattag	caccgcgtat	240
atggaactga gc	agcctgcg	tagcgaagat	acggccgtgt	attattgcgc	gcgtacttgg	300
cagtattctt at	ttttatta	tcttgatggt	ggttattatt	ttgatatttg	gggccaaggc	360
accctggtga cg	gttagctc	a				381
<210> 81 <211> 335 <212> DNA <213> Artifi	cial Sequ	ience				
<220> <223> polynu	cleotide	sequence of	F a VH domai	in		
<222> (1)(eature (3) (A OR CAG					
<400> 81 nnngtgcaat tg	aaagaaag	caacccaacc	ctggtgaaac	cgacccaaac	cctgaccctg	60
acctgtacct tt						120
cagccgcctg gg	aaagccct	cgagtggctg	gctctgattg	attgggatga	tgataagtat	180
tatagcacca gc	ctgaaaac	gcgtctgacc	attagcaaag	atacttcgaa	aaatcaggtg	240
gtgctgacta tg	accaacat	ggacccggtg	gatacggcca	cctattattg	cgcgcgtgat	300
tggggccaag gc	accctggt	gacggttagc	tcagc			335
<210> 82 <211> 390 <212> DNA <213> Artificial Sequence						
<220> <223> polynu	cleotide	sequence of	f a VH domai	in		
<400> 82 caggtgcaat tg	aaagaaag	cggcccggcc	ctggtgaaac	cgacccaaac	cctgaccctg	60
acctgtacct tt	tccggatt	tagcctgtcc	acgtctggcg	ttggcgtggg	ctggattcgc	120
cagccgcctg gg	aaagccct	cgagtggctg	gctctgattg	attgggatga	tgataagtat	180
tatagcacca gc	ctgaaaac	gcgtctgacc	attagcaaag	atacttcgaa	aaatcaggtg	240
gtgctgacta tg	accaacat	ggacccggtg	gatacggcca	cctattattg	cgcgcgttat	300
cattcttggt at	gagatggg	ttattatggt	tctactgttg	gttatatgtt	tgattattgg	360
ggccaaggca cc	ctggtgac	ggttagctca	Page	36		390

81408-4400 sequence listing.txt

```
<210>
       83
<211>
       341
<212>
      DNA
<213> Artificial Sequence
<220>
<223>
       polynucleotide sequence of a VH domain
<220>
<221>
       misc_feature
<222>
       (1)..(3)
<223>
       NNN=GAA OR CAG
<400>
                                                                       60
nnngtgcaat tgcaacagtc tggtccgggc ctggtgaaac cgagccaaac cctgagcctg
acctgtgcga tttccggaga tagcgtgagc agcaacagcg cggcgtggaa ctggattcgc
                                                                      120
cagtctcctg ggcgtggcct cgagtggctg ggccgtacct attatcgtag caaatggtat
                                                                      180
aacqattatq cqqtqaqcqt gaaaaqccqq attaccatca acccqqatac ttcqaaaaac
                                                                      240
cagtttagcc tgcaactgaa cagcgtgacc ccggaagata cggccgtgta ttattgcgcg
                                                                      300
cqtqattqqq gccaaggcac cctggtgacg gttagctcag c
                                                                      341
<210>
       84
<211>
       360
<212>
       DNA
<213>
      Artificial Sequence
<220>
<223>
      polynucleotide sequence of a VH domain
<400>
      84
caggtgcaat tgcaacagtc tggtccgggc ctggtgaaac cgagccaaac cctgagcctg
                                                                       60
acctgtgcga tttccggaga tagcgtgagc agcaacagcg cggcgtggaa ctggattcgc
                                                                      120
cagtctcctg ggcgtggcct cgagtggctg ggccgtacct attatcgtag caaatggtat
                                                                      180
                                                                      240
aacgattatg cggtgagcgt gaaaagccgg attaccatca acccggatac ttcgaaaaac
cagtttagcc tgcaactgaa cagcgtgacc ccggaagata cggccgtgta ttattgcgcg
                                                                      300
cgttcttatt atcctgattt tgattattgg ggccaaggca ccctggtgac ggttagctca
                                                                      360
       85
<210>
       109
<211>
<212>
       PRT
<213>
      Artificial Sequence
<220>
       polypeptide sequence of a VL domain
<223>
<400>
       85
Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln
```

Page 37

Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala 20 25 30

Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr 35 40 45

Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 60

Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu 65 70 75 80

Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Tyr Ser Ala Asp Tyr 85 90 95

Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
100 105

<210> 86

<211> 110

<212> PRT

<213> Artificial Sequence

5

<220>

<223> polypeptide sequence of a VL domain

<400> 86

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln 1 5 10 15

Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr $20 \hspace{1cm} 25 \hspace{1cm} 30$

Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35 40 45

Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe 50 60

Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65 70 75 80

Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser His His Phe Tyr 85 90 95

Glu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
100 105 110
Page 38

81408-4400 sequence listing.txt

```
<210>
        87
        108
<211>
<212>
        PRT
       Artificial Sequence
<220>
        polypeptide sequence of a VL domain
<223>
<400>
Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln
1 5 10 15
Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala 20 25 30
Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr 35 40 45
Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Asp Phe Ala Val
85 90 95
Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 100 105
<210>
       88
<211>
       115
<212>
<213>
       PRT
       Artificial Sequence
<220>
        polypeptide sequence of a VL domain
<223>
<400>
       88
Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15
Glu Arg Ala Thr Ile Asn Cys Arg Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30
Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45
Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
```

Page 39

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65 70 75 80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln 85 90 95

Tyr Asp Ser Ile Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile 100 105 110

Lys Arg Thr 115

<210> 89

<211> 110 <212> PRT

<213> Artificial Sequence

<220>

<223> polypeptide sequence of a VL domain

<400> 89

Asp Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly 10 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser 20 25 30

Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45

Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Val Pro Ala Arg Phe Ser 50 60

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu 65 70 75 80

Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Met Ser Asn Tyr Pro 85 90 95

Asp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr 100 105 110

<210> 90

<211> 112

<212> PRT

<213> Artificial Sequence

<220>

```
81408-4400 sequence listing.txt
```

<223> polypeptide sequence of a VL domain

<400> 90

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
10 15

Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr 20 25 30

Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35 40 45

Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe 50 60

Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65 70 75 80

Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Asn Asn 85 90 95

Ser Asp Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 100 105 110

<210> 91

<211> 109

<212> PRT

<213> Artificial Sequence

<220>

<223> polypeptide sequence of a VL domain

<400> 91

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ser Tyr 20 25 30

Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45

Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80

Glu Asp Phe Ala Val Tyr Tyr Cys Phe Gln Tyr Gly Ser Ile Pro Pro Page 41 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr 100 105

<210> 92

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<223> polypeptide sequence of a VL domain

<400> 92

Asp Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly 10 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser 20 25 30

Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45

Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Val Pro Ala Arg Phe Ser 50 60

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu 65 70 75 80

Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Thr Asn Asn Ala Pro 85 90 95

Val Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr 100 105 110

<210> 93

<211> 108

<212> PRT

<213> Artificial Sequence

<220>

<223> polypeptide sequence of a VL domain

<400> 93

Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 10 15

Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala 20 25 30

81408-4400 sequence listing.txt Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr
35 Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 60 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu 65 70 75 80 Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Tyr Phe Lys Leu Val 85 90 95 Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
100 105 <210> 94 <211> 112 <212> PRT <213> **Artificial Sequence** <220> <223> polypeptide sequence of a VL domain <400> Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln 1 5 10 15 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr 20 25 30 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35 40 45 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe 50 60 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65 70 75 80 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Met Tyr 85 90 95 Asn Tyr Ile Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 100 <210> 95 <211> 109 <212> PRT <213> Artificial Sequence

```
81408-4400 sequence listing.txt
<220>
<223>
        polypeptide sequence of a VL domain
<400>
Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln
10 15
Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala 20 25 30
Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr
35 40 45
Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Gly Pro Asp Leu Trp 85 90 95
Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
100 105
<210>
       96
<211>
        118
<212>
        PRT
<213>
       Artificial Sequence
<220>
<223>
        polypeptide sequence of a VH domain
<400>
```

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe 50 60

Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr 65 70 75 80

81408-4400 sequence listing.txt Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Asp Phe Leu Gly Tyr Glu Phe Asp Tyr Trp Gly Gln Gly Thr 100 105 110 Leu Val Thr Val Ser Ser 115 97 <210> <211> 126 <212> PRT <213> Artificial Sequence <220> polypeptide sequence of a VH domain <223> <400> Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 20 25 30 Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe 50 60 Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Tyr Tyr Gly Ser Ser Leu Tyr His Tyr Val Phe Gly Gly Phe 100 105 110

Ile Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120 125

<210> 98

<220>

<400> 98

<211> 130

<212> PRT

<213> Artificial Sequence

<223> polypeptide sequence of a VH domain

```
81408-4400 sequence listing.txt
```

Gln Val Gln Leu Lys Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln
10 15

Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser 20 25 30

Gly Val Gly Val Gly Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45

Trp Leu Ala Leu Ile Asp Trp Asp Asp Asp Lys Tyr Tyr Ser Thr Ser 50 60

Leu Lys Thr Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Val 65 70 75 80

Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95

Cys Ala Arg Tyr His Ser Trp Tyr Glu Met Gly Tyr Tyr Gly Ser Thr $100 \hspace{1cm} 105 \hspace{1cm} 110$

Val Gly Tyr Met Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val 115 120 125

Ser Ser 130

<210> 99

<211> 119

PRT

<212>

<213> Artificial Sequence

<220>
<223> polypeptide sequence of a VH domain

<400> 99

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr 20 25 30

Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe $50 \hspace{1cm} 55 \hspace{1cm} 60$

81408-4400 sequence listing.txt Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Asp Asn Trp Phe Lys Pro Phe Ser Asp Val Trp Gly Gln Gly 100 105 110 Thr Leu Val Thr Val Ser Ser 115 <210> 100 <211> 119 <212> PRT Artificial Sequence <220> <223> polypeptide sequence of a VH domain <400> 100 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr 20 25 30 Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45 Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe 50 60 Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Val Asn His Trp Thr Tyr Thr Phe Asp Tyr Trp Gly Gln Gly 100 105 110 Thr Leu Val Thr Val Ser Ser 115

<210> 101

<211> 126

<212> PRT

<213> Artificial Sequence

```
81408-4400 sequence listing.txt
<220>
<223>
        polypeptide sequence of a VH domain
        101
<400>
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30
Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45
Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe 50 60
Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr
65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Gly Tyr Trp Tyr Ala Tyr Phe Thr Tyr Ile Asn Tyr Gly Tyr 100 105 110
Phe Asp Asn Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120 125
<210>
        102
<211>
        124
<212>
        PRT
<213>
        Artificial Sequence
<220>
<223>
        polypeptide sequence of a VH domain
<400>
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr 20 25 30
Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45
```

Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe 50 60

81408-4400 sequence listing.txt Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Gly Gly Gly Trp Val Ser His Gly Tyr Tyr Leu Phe Asp 100 105 110 Leu Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120 103 <210> <211> 127 <212> PRT Artificial Sequence <220> <223> polypeptide sequence of a VH domain 103 <400> Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 20 25 30 Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45 Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe 50 60 Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Thr Trp Gln Tyr Ser Tyr Phe Tyr Tyr Leu Asp Gly Gly Tyr 100 105 110Tyr Phe Asp Ile Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120 125 <210> 104

<211> 126

<212> PRT

<213> Artificial Sequence

```
81408-4400 sequence listing.txt
<220>
<223>
        polypeptide sequence of a VH domain
        104
<400>
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 20 25 30
Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45
Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe 50 60
Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr
65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Asn Met Ala Tyr Thr Asn Tyr Gln Tyr Val Asn Met Pro His 100 \hspace{1cm} 105 \hspace{1cm} 110
Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120 125
<210>
        105
<211>
        126
<212>
        Artificial Sequence
<220>
<223>
        polypeptide sequence of a VH domain
<400>
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 20 25 30
```

Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe 50 60

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45 81408-4400 sequence listing.txt Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Ser Met Asn Ser Thr Met Tyr Trp Tyr Leu Arg Arg Val Leu $100 \hspace{1cm} 105 \hspace{1cm} 110$ Phe Asp His Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120 125 <210> 106 <211> 120 <212> PRT <213> Artificial Sequence <220> <223> polypeptide sequence of a VH domain 106 <400> Gln Val Gln Leu Gln Gln Ser Gly Pro Gly Leu Val Lys Pro Ser Gln 10 15 Thr Leu Ser Leu Thr Cys Ala Ile Ser Gly Asp Ser Val Ser Ser Asn 20 25 30 Ser Ala Ala Trp Asn Trp Ile Arg Gln Ser Pro Gly Arg Gly Leu Glu 35 40 45 Trp Leu Gly Arg Thr Tyr Tyr Arg Ser Lys Trp Tyr Asn Asp Tyr Ala 50 60 Gln Phe Ser Leu Gln Leu Asn Ser Val Thr Pro Glu Asp Thr Ala Val 85 90 95 Tyr Tyr Cys Ala Arg Ser Tyr Tyr Pro Asp Phe Asp Tyr Trp Gly Gln
100 105 110 Gly Thr Leu Val Thr Val Ser Ser