







### ÁREA ACADÉMICA: TECNOLOGÍAS DE LA INFORMACIÓN Y LA COMUNICACIÓN

#### PROGRAMA EDUCATIVO: DESARROLLO DE SOFTWARE MULTIPLATAFORMA

#### **PERIODO SEPTIEMBRE-DICIEMBRE 2023**

Metodología de la programación

Profesor: Barrón Rodríguez Gabriel

Unidad III: Examen teórico

Grupo: GDS0611

Integrante:

Ruiz Rivera Juan Diego

1223100452









| 1 El asalto en Macusani     | 1  |
|-----------------------------|----|
| Algoritmo terminado:        | 1  |
| 2 La Parranda 2             | 3  |
| Algoritmo terminado:        | 3  |
| 3 Creciente o Decreciente   | 5  |
| Algoritmo terminado:        | 5  |
| 4 Tazón de Fruta            | 7  |
| Algoritmo terminado:        | 7  |
| 5 Números vecinos           | 9  |
| Algoritmo terminado:        | 10 |
| 6 Conectados Galácticamente | 12 |
| Algoritmo terminado:        | 13 |
| 7 Aritmética o geométrica   | 15 |
| Algoritmo terminado:        | 15 |











### 1.- El asalto en Macusani



```
Algoritmo ElasaltodeMacusani

Definir n, clave, i Como Entero;

Escribir "Ingrese el número del papel ";

Leer n;

// Se utilizo el "ciclo para" con el fin de hacer la sumatoria de los numeros antecesores al dado.

// Se asigna a 0 la clave para comenzar desde ahi e ir sumando 1 a 1 hasta el limite que sera el valor ingresado.

clave 	 0;

Para i 	 1 Hasta n Con Paso 1 Hacer

clave 	 clave 	 clave + i;

FinPara

Escribir "La clave de la caja fuerte es:", clave;
```









```
*** Ejecución Iniciada. ***

Ingrese el número del papel

> 5

La clave de la caja fuerte es:15

*** Ejecución Finalizada. ***

*** Ejecución Iniciada. ***

La clave de la caja fuerte es:36

*** Ejecución Finalizada. ***
```

La entrada consiste en un solo numero n.

#### **Salida**

Debes devolver el numero que es la clave de la caja fuerte.

| Input | Output | Description                                |
|-------|--------|--------------------------------------------|
| 5     | 15     | Ya que la suma de 1+2+3+4+5 es igual a 15. |
| 8     | 36     | Ya que la suma de 1+2+7+8 es igual a 36    |









### 2.- La Parranda 2



```
Algoritmo LaParranda2

Definir TragosLucas, TragosSancho Como Entero;

Escribir "Ingrese la cantidad total de tragos: ";

Leer TragosLucas;

// Esto verifica si la cantidad total es par, calcula el resto de la division, si es igual a 0 es par y se maneja la condicion.

Si TragosLucas % 2 = 0 Entonces

TragosSancho + TragosLucas / 2;
Escribir "La cantidad de tragos que deben beber ambos es ", TragosSancho;

Sino
Escribir "La cantidad de tragos no se puede repartir de manera equitativa, nadie toma :(";

FinSi

FinAlgoritmo
```









```
*** Ejecución Iniciada. ***

Ingrese la cantidad total de tragos:

> 12

La cantidad de tragos que deben beber ambos es 6

*** Ejecución Finalizada. ***

La cantidad de tragos no se puede repartir de manera equitativa, nadie toma

*** Ejecución Finalizada. ***

*** Ejecución Finalizada. ***
```

La entrada consiste de un solo numero que puede ser par o impar.

#### Salida

Debes devolver la cantidad de tragos que deben beber ambos.

| Input | Output | Description                                                                                         |  |
|-------|--------|-----------------------------------------------------------------------------------------------------|--|
| 12    | 6      | Ya que la cantidad de tragos son 12 cada uno debera beber 6 para que esten iguales.                 |  |
| 3     | 0      | En este caso como el numero de tragos que no se puede dividir de manera equitativa no beberan nada. |  |











### 3.- Creciente o Decreciente



```
Algoritmo Creciente_Decreciente_Ninguno
       Definir num1, num2, num3 Como Entero;
       Escribir "Ingrese el primer número: ";
       Leer num1;
       Escribir "Ingrese el segundo número: ";
       Escribir "Ingrese el tercer número: ";
       Leer num3;
        // Verificación del orden con una condicional con el fin de tomar la decision del orden de los numeros dados
        Si num1 < num2 Y num2 < num3 Entonces
          Escribir "Creciente";
        Sino
           Si num1 > num2 Y num2 > num3 Entonces
               Escribir "Decreciente";
           Sino
               Escribir "Ninguno";
           FinSi
        FinSi
FinAlgoritmo
```









# Creciente, Decreciente o Ninguno

Dados tres números distintos decir si están en orden creciente, decreciente o ninguno.

| Input | Output      |
|-------|-------------|
| 1 2 3 | creciente   |
| 3 2 1 | decreciente |
| 2 1 3 | ninguno     |











### 4.- Tazón de Fruta



```
Algoritmo TazonFruta

Definir totalFrutas, paysDeMango Como Entero;

Escribir "Ingrese la cantidad total de frutas en el tazón:";

Leer totalFrutas;

// Se utiliza una asignacion al numero de pays dependiendo del total de frutas

// dividido entre 2 porque la cantidad de mangos siempre sera la mitad de frutas totales

// y entre 3 porque es la cantidad de mangos que se utilizan para 1 pays

// Se usa el operado "redon" para aproximar al entero mas cercano en dado caso de que el resultante

// de la division no sea un numero entero

paysDeMango ← redon(totalFrutas / 2 / 3);

Escribir "El número total de pays completos de mango que puedes hacer es:", paysDeMango;

FinAlgoritmo
```











```
*** Ejecución Iniciada. ***

Ingrese la cantidad total de frutas en el tazón:
> 26

El número total de pays completos de mango que puedes hacer es:4
*** Ejecución Iniciada. ***

Ingrese la cantidad total de frutas en el tazón:
> 12

El número total de pays completos de mango que puedes hacer es:4

*** Ejecución Iniciada. ***

Ingrese la cantidad total de frutas en el tazón:
> 12

El número total de pays completos de mango que puedes hacer es:2

*** Ejecución Finalizada. ***
```

Un entero que representa la cantidad total de fruta en el tazón.

### Salida

Un entero que representa el numero total de pays completos de mango que puedes hacer.

| Input | Output | Description                                                                           |
|-------|--------|---------------------------------------------------------------------------------------|
| 26    | 4      | Si tienes 26 frutas, tienes 13 mangos, los cuales hacen 4 pays, y deja un mango solo. |
| 12    | 2      |                                                                                       |











### 5.- Números vecinos











```
Algoritmo Numeros_Vecinos

Definir casosPrueba, casal, casa2 Como Entero;

Definir i Como Entero;

Escribir "Ingrese el número de casos de prueba:";

Leer casosPrueba;

// Se utiliza el ciclo para apara regresar a la cantidad de casos de prueba que se dan

// de esta forma se repetira el proceso dependiendo de los casos que nosotros queremos corroborar

Para i + 1 Hasta casosPrueba Con Paso 1 Hacer

Escribir "Ingrese el primer valor:";

Leer casal;

Escribir "Ingrese el segundo valor:";

Leer casa2;

// Manejamos las condicionales con el fin de obtener el resultado deseado, si las casas son casas son adyacentes o no

// comparando los valores dados

Si casal = casa2 - 1 o casal = casa2 + 1 o casal = 1 y casa2 = 100 o casal = 100 o casa2 = 1 Entonces

Escribir "Si, parece que se llevan bien";

Sino

Escribir "No, ni se topan";

FinSi

FinPara

FinAlgoritmo
```











```
*** Ejecución Iniciada. ***
Ingrese el número de casos de prueba:
> 1
Ingrese el primer valor:
> 2
Ingrese el primer valor:
> 2
Ingrese el segundo valor:
> 5
Ingrese el segundo valor:
> 1
Ingrese el primer valor

*** Ejecución Finalizada. ***

*** Ejecución Iniciada. ***

*** Ejecución Iniciada. ***

*** Ejecución Finalizada. ***

*** Ejecución Iniciada. ***

*** Ejecución Iniciada. ***

*** Ejecución Iniciada. ***

*** Ejecución Iniciada. ***

*** Ejecución Finalizada. ***

*** Ejecución Iniciada. ***

*** Ejecución Finalizada. ***
```

En la primeria línea un número entero T que indica el número de casos de prueba. En la segunda un numero A indicando primer valor y un número B indicando el segundo valor.

#### Salida

Escribe "SI" si el número de los vecinos es adyacente y escribe "NO" si el número de las casas de los vecinos no es adyacente.

| Input                        | Output         | Description                                                      |
|------------------------------|----------------|------------------------------------------------------------------|
| 1 2 5                        | NO             | 2 y 5 no son adyacentes.                                         |
| 1 100 1                      | SI             | 100 y 1 si son adyacente porque 1 es el principio y 100 el final |
| 3<br>1 100<br>45 78<br>57 58 | SI<br>NO<br>SI |                                                                  |











# 6.- Conectados Galácticamente











```
Algoritmo ConecatadosGalacticamente
    Definir numero1, numero2, suma1, suma2 como Entero;
    Escribir "Ingrese el primer número: ";
   Leer numero1;
   Escribir "Ingrese el segundo número: ";
   Leer numero2;
    suma1 ← 0;
    mientras numero1 > 0 Hacer
       suma1 ← suma1 + (numero1 mod 10);
       numero1 < trunc(numero1/10);</pre>
   FinMientras
    suma2 ← 0;
    mientras numero2 > 0 Hacer
      suma2 ← suma2 + (numero2 mod 10);
       numero2 < trunc(numero2/10);</pre>
    Si Abs(suma1 - suma2) \leq 15 Entonces
      Escribir suma1, " , ", suma2, " ¡Los números están Conectados Galacticamente!";
    Escribir suma1, " , ", suma2 , " Los números ni se topan.";
```









-Dos numeros enteros M y N. Puedes suponer que -10000  $\leq$  M,N  $\leq$  100000

#### Salida

Mostrar las sumas de los digitos de ambas cifras separados por una coma. En la siguiente linea en caso de que las sumas sean cercanas mostrar **Conectados Galacticamente**. De lo contrario mostrar **Ni se topan** 

| Input | Output                    |
|-------|---------------------------|
| 234   | 9,25                      |
| 8098  | Ni se topan               |
| 6456  | 21,15                     |
| 3246  | Conectados Galacticamente |











# 7.- Aritmética o geométrica



```
Algoritmo Aritmetica_Geometrica
        Definir primerTermino, segundoTermino, tercerTermino, diferencia, razon Como Real;
        Definir tipoSucesion Como Caracter;
        Escribir "Ingrese el primer término de la sucesión: ";
        Leer primerTermino:
        Escribir "Ingrese el segundo término de la sucesión: ";
        Leer segundoTermino;
        Escribir "Ingrese el tercer término de la sucesión: ";
       Leer tercerTermino:
        Si (segundoTermino - primerTermino) = (tercerTermino - segundoTermino) Entonces
           tipoSucesion ← "A"
           diferencia ← segundoTermino - primerTermino;
            Escribir "La sucesión es aritmética con diferencia:", diferencia;
        Sino Si (segundoTermino / primerTermino) = (tercerTermino / segundoTermino) Entonces
               tipoSucesion ← "G";
               razon 	 segundoTermino / primerTermino;
            Sino
               Escribir "La sucesión no es ni aritmética ni geométrica";
           FinSi
        FinSi
           Escribir "Tipo de sucesión:", tipoSucesion;
FinAlgoritmo
```









### ¿Aritmética o Geométrica?

Output

Una sucesión aritmética es una secuencia de números cada uno de los cuales se llama término, en la cual la diferencia entre un término y el anterior es una constante d, excepto el primer término que es dado, a d se llama diferencia. Por otro lado una sucesión geométrica es una secuencia de términos, en la cual la división entre un término y el anterior es una constante r, excepto el primer término que es dado, a r se llama razón. Dados los tres primeros términos de una sucesión determinar si es aritmética (A) o geométrica (G). Si es aritmética dar la diferencia (d) y si es geométrica dar la razón (r).

### **Ejemplos**

Input

|   |   |    |  | Garpar |
|---|---|----|--|--------|
| 3 | 8 | 13 |  | A 5    |
| 3 | 6 | 12 |  | G 2    |