Opisi algoritama

Opisi algoritama

Zadatke, testne primjere i rješenja pripremili: Fabijan Bošnjak, Nikola Dmitrović, Marin Kišić, Josip Klepec, Daniel Paleka, Ivan Paljak, Tonko Sabolčec i Paula Vidas. Primjeri implementiranih rješenja su dani u priloženim izvornim kodovima.

Zadatak: Koeficijent

Pripremio: Nikola Dmitrović

Potrebno znanje: naredba učitavanja i ispisivanja

Nekoliko je različitih načina na koje možemo riješiti ovaj zadatak. Najjednostavniji način je ispis izraza oblika (N-1)+1. Uočite da ispis razmaka, koji Python obavezno dodaje, nije dozvoljen što nas dovodi do činjenice da u naredbi ispisa trebamo koristiti svojstva separatora sep.

Programski kod (pisan u Python 3):

```
N = int(input())
print(N-1,'+',1,sep = '')
# može i ovako...print(N-1,1,sep='+')
# ili ovako...print(str(N-1) + '+' + str(1))
```

Drugačije rješenje moglo je ići u smjeru kreiranja stringa oblika $1+1+\cdots+1$ s ukupno N jedinica.

Programski kod (pisan u Python 3):

```
N = int(input())
s = '1'
for i in range(N-1):
    s += '+1'
print(s)
```

Zadatak: Hajduk

Pripremio: Fabijan Bošnjak

Potrebno znanje: naredba ponavljanja, naredba odlučivanja

Odredimo najprije koliko je glasova dobio trener s oznakom 1, a koliko su glasova dobili ostali treneri. Ovo bismo mogli napraviti tako da, prilikom učitavanja, varijablu A povećamo za 1 ako smo učitali broj 1, a varijablu B povećavamo za 1 ako smo učitali broj različit od 1.

Sve što nam preostaje je odrediti je li trener s oznakom 1 osvojio barem polovicu glasova. Ovaj uvjet elegantno možemo provjeriti uspoređivanjem varijabli A i B. Naime, ako je $A \geq B$, tada je trener s oznakom 1 sigurno osvojio barem polovicu glasova.

Naravno, isti uvjet mogli smo provjeriti uspoređivanjem varijable As varijablom N (ukupnim brojem glasova), međutim, naivna implementacija ovog smjera razmišljanja mogla nas je koštati bodova. Matematički gledano, uvjet "trener 1 osvojio je barem polovicu glasova" odgovara izrazu $A \geq \frac{N}{2}$ kojeg bismo naivno u naš program mogli ukomponirati u obliku A >= N/2. Greška u dijelu podržanih programskih jezika se krije u činjenici da znak '/' označava tzv. cjelobrojno dijeljenje. Probajte sami pronaći primjer u kojem ovakva implementacija nije ispravna.

Problem cjelobrojnog dijeljenja rješavamo jednostavnom algebarskom manipulacijom pa umjesto A>=N/2 pišemo 2*A>=N. Na taj smo način izbjegli cjelobrojno dijeljenje.

Na kraju još valja upozoriti na rješenja koja se oslanjaju na "pravo dijeljenje", odnosno, na rad s decimalnim brojevima. U ovom zadatku to uglavnom neće biti problem, no načelno vam savjetujemo da izbjegavate rad s decimalnim brojevima ako je to moguće. Više o ovoj temi možete pročitati ovdje.

Zadatak: Preokret

Pripremio: Nikola Dmitrović

Potrebno znanje: naredba ponavljanja, rad s nizovima

Zadatak se sastoji od tri dijela. Za svakog natjecatelja po nešto. Krenimo redom. Da bi odrediti koliko je koji tim postigao golova dovoljno je učitavati zadane vrijednosti i brojati koliko se puta pojavio broj 1, a koliko broj 2.

Programski kod (pisan u Python 3):
N = int(input())
city = protivnik = 0
for i in range(N):
 gol = int(input())
 if gol == 1:
 city += 1
 else:
 protivnik += 1
print(city, protivnik)

Nastavimo dalje. Da bi odredili i koliko se puta dogodio neriješen rezultat trebamo pratiti kada je broj postignutih golova jednak, tj. kada će razlika postignutih golova biti jednaka nuli.

Programski kod (pisan u Python 3):

```
N = int(input())
city = protivnik = 0
nerijeseno = 1 # zbog 0:0
for i in range(N):
    gol = int(input())
    if gol == 1:
        city += 1
    else:
        protivnik += 1
    nerijeseno += (city == protivnik)
print(city, protivnik)
print(nerijeseno)
```

Za treći dio zadatka uočimo da se preokret sastoji od tri dijela. Prvo, jedan od timova gubi i počne postizati golove. Drugo, nakon niza postignutih golova dođe do neriješenog rezultata. Treće, tu ne stane već nastavi davati golove. Znači, razlika postignutih golova prvo pada do nule i onda nastavi rasti. Ili obrnuto, ovisno jel li City pravi preokret ili njegov protivnik. Jednu od implementacija rješenja možete pronaći u priloženim izvornim kodovima.

Zadatak: Grudanje

Pripremio: Marin Kišić

Potrebno znanje: prefiks sume, binarna pretraga

Za 14 bodova bilo je potrebano samo simulirati ono što piše u zadatku. Jednom for-petljom ćemo slovo po slovo označavati s '*'. Nakon toga ćemo drugom for-petljom proći po svim intervalima te za svaki interval trećom for-petljom provjeriti je li savršen.

Vremenska složenost ovog dijela je $\mathcal{O}(NQN) = \mathcal{O}(QN^2)$.

Za dodatnih 14 bodova bilo je potrebno poznavati ideju prefiks suma. Recimo da za svako slovo imamo niz pref u kojem će na poziciji i pisati broj tog slova od početka riječi do i-tog slova. Primjerice, za

riječ abcaab i slovo 'a', niz pref bio bi [1,1,1,2,3,3]. Niz pref nam je koristan jer sada možemo u $\mathcal{O}(1)$ odrediti kolko puta se to slovo pojavljuje u intervalu od L-tog slova do R-tog slova u riječi. Formula je pref[R] - pref[L-1].

Sad je ideja da prije prolaska po intervalima izračunamo niz pref za svako slovo. Zatim, kada prolazimo po intervalima ćemo, uz pomoć niza pref, za svako slovo odrediti kolko ga ima u trenutnom intervalu.

Vremenska složenost ovog dijela je $\mathcal{O}(N(N\Sigma * Q\Sigma)) = \mathcal{O}((N^2 + Q)\Sigma)$, gdje Σ označava veličinu abecede (u našem slučaju $\Sigma = 26$).

Za sve bodove bilo je potrebno primjetiti sljedeće: ako je riječ savršena nakon i-te grude, tada će onda biti savršena i nakon svake grude poslije i-te grude. To svojstvo nam omogućava da binarnom pretragom pronađemo prvu grudu nakon koje riječ postane savršena. Provjeru u binarnoj pretrazi radit ćemo kao i u prethodnoj parcijali (uz pomoć prefiks suma).

Vremenska složenost: $\mathcal{O}((N\Sigma + Q\Sigma)\log N) = \mathcal{O}((N\log N + Q)\Sigma).$

Zadatak: Drvca

Pripremili: Marin Kišić i Josip Klepec

Potrebno znanje:

Zadatak: Lampice

Pripremio: Tonko Sabolčec

Potrebno znanje:

Zadatak: Sob

Pripremili: Paula Vidas i Daniel Paleka

Potrebno znanje: matematika, pohlepni algoritmi

Uređeni par (a, b) zvat ćemo dobrim ako vrijedi a & b = a.

Prvi podzadatak možemo riješiti tako da $a \in A$ uparimo sa onim $b \in B$ za kojeg vrijedi $b \mod N = a$.

Drugi podzadatak možemo riješiti sljedećim algoritmom: Neka su $i_1 > i_2 > ... > i_k$ pozicije jedinica u binarnom zapisu od N. Uparit ćemo najmanjih 2^{i_1} elemenata skupova A i B tako da uparimo one a i b za koje vrijedi $a \equiv b \mod 2^{i_1}$. Zatim uzmemo sljedećih 2^{i_2} najmanjih elemenata i uparimo one koji su jednaki modulo 2^{i_2} , itd. Dokaz da su odabrani parovi dobri ostavljamo čitatelju za vježbu.

Treći podzadatak mogao se riješiti na više načina. Jedan mogući način je da napravimo bipartitni graf sa čvorovima iz skupova A i B te dodamo bridove između svih dobrih parova. Na dobivenom grafu napravimo algoritam za uparivanje na bipartitnom grafu (bipartite matching), na primjer u složenosti $\mathcal{O}(NE)$, pri čemu je E broj bridova u grafu. Primjetimo da broj bridova možemo ograničiti sa $E < 3^{10} = 59049$.

Drugi način koristi sljedeći pohlepni algoritam: Prolazimo kroz elemente skupa A od većih prema manjima i trenutni element uparimo sa najmanjim još neuparenim elementom skupa B s kojim ga smijemo upariti.

Ako pokrenemo taj algoritam na nekoliko primjera, možemo uočiti sljedeću pravilnost: Neka se najveći element skupa A, tj. N-1, upari sa $b\in B$. Tada se upare i N-1-t sa b-t za svaki $t\in\{1,2,...,b-M\}$. Nakon što maknemo uparene elemente dobili smo isti zadatak, sada za skupove $A'=\{0,1,...,N-1-(b-M)-1\}$ i $B'=\{b+1,b+2,...,M+N-1\}$. Ovo rješenje možemo implementirati u složenosti $\mathcal{O}(N)$.

Dokaz prethodne tvrdnje:

Neka je a = N - 1 (radi ljepših oznaka) i b, kao i prije, najmanji element skupa B za kojeg vrijedi a & b = a. Indeksom i ćemo označavati znamenku težine 2^i . Ako je b = M nemamo što za dokazivati,

pa pretpostavimo da je b>M i označimo k=b-M. Neka je i pozicija najmanje značajne jedinice u b. Očito mora biti $a_j=b_j=0$ za j< i. Kada bi bilo $a_i=0$ onda bi vrijedilo a & (b-1)=a pa b ne bi bio najmanji element od B koji se može upariti sa a. Dakle, $a_i=b_i=1$. Sada je očito da je (a-t,b-t) dobar par za $t\in\{1,2,...,2^i\}$. Ako je $k\leq 2^i$ gotovi smo, inače promatramo sljedeću najmanje značajnu jedinicu u b i induktivno ponavljamo isti postupak. Preostaje još pokazati da uvijek postoji neki $b\in B$ s kojim se a može upariti, no to ostavljamo čitateljici za vježbu.