Variateur de Graham *★ ★ ★

D'après ressources de Michel Huguet.

C2-09

Pas de corrigé pour cet exercice.

Soit le schéma suivant.

On note
$$\overrightarrow{AJ} = -L\overrightarrow{i_0} + \frac{d_3}{2}\overrightarrow{j_2}$$
 et $\overrightarrow{KJ} = -\ell\overrightarrow{i_2} + \frac{d_2}{2}\overrightarrow{j_2}$.

Soit $\Re = \left(A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0}\right)$ un repère lié au bâti $\mathbf{0}$ du variateur. L'arbre moteur $\mathbf{1}$ et l'arbre récepteur $\mathbf{3}$ ont une liaison pivot d'axe $\left(A, \overrightarrow{i_0}\right)$ avec le bâti $\mathbf{0}$. On pose $\Omega(1/0) = \omega_1 \overrightarrow{i_0}$ et $\Omega(3/0) = \omega_3 \overrightarrow{i_0}$.

Soit $\Re_1 = \left(A; \overrightarrow{i_0}, \overrightarrow{j_1}, \overrightarrow{k_1}\right)$ et $\Re_2 = \left(B; \overrightarrow{i_2}, \overrightarrow{j_2}, \overrightarrow{k_1}\right)$ deux repères liés respectivement à $\mathbf{1}$ et $\mathbf{2}$ tels que \overrightarrow{AB} ait même direction que $\overrightarrow{j_1}$. On pose $\alpha = \left(\overrightarrow{i_1}, \overrightarrow{i_2}\right)$ constant.

Le satellite **2** a une liaison pivot d'axe $(\overrightarrow{B}, \overrightarrow{i_2})$ avec **1**. **2** est un tronc de cône de révolution d'axe $(\overrightarrow{B}, \overrightarrow{i_2})$ de demi angle au sommet α . On pose $\Omega(S_2/S_1) = \omega \overrightarrow{i_2}$.

 $^{^{\}ast}\cdot$ Les éventuelles erreur de texte font partie intégrante de la difficulté :).

La génératrice de **2** du plan $(O, \overrightarrow{i_0}, \overrightarrow{j_1})$ la plus éloignée de l'axe $(O, \overrightarrow{i_0})$ est parallèle à $\overrightarrow{i_0}$. Notons d sa distance à l'axe $(O, \overrightarrow{i_0})$

2 roule sans glisser au point I, sur une couronne **4**, immobile par rapport à **0** pendant le fonctionnement. Le réglage du rapport de variation s'obtient en déplaçant **4** suivant l'axe $(O, \overrightarrow{i_0})$.

Soit K le centre de la section droite du tronc de cône passant par I. On pose $\overrightarrow{BI} = \lambda j_2$. À l'extrémité de $\mathbf{2}$ est fixée une roue dentée de n dents, d'axe $(B, \overrightarrow{i_2})$, qui engrène avec une couronne dentée intérieure d'axe $(A, \overrightarrow{i_0})$, de n_2 dents, liée à $\mathbf{3}$.

Question 1 Tracer le graphe des liaisons.

Question 2 En exprimant que **2** roule sans glisser sur **4** au point I, déterminer ω en fonction de ω_1 , d et λ .

Question 3 Quelle relation obtient-on entre ω_1 , ω_3 et ω en exprimant l'engrènement des deux roues dentées? (c'est à dire que **2** et **3** roulent sans glisser l'un sur l'autre en J).

Question 4 En déduire le rapport de variation $\frac{\omega_3}{\omega_1}$ du mécanisme en fonction de λ , d_2 , d_3 et d.

Question 5 Tracer la courbe représentative du rapport de variation $\frac{\omega_3}{\omega_1}$ du mécanisme en fonction de λ , sachant que $\frac{n}{n_3} = \frac{d_1}{d_3}$, d = 55 mm et que λ varie entre $\lambda_{\min} = 12$ mm et la valeur $\lambda_{\max} = 23$ mm.

Corrigé voir 1.

