CSM Week 5 Review

Abstract Data Types

Abstract Data Types (ADT) are blueprints for data structures. They contain methods and types that would define a data structure (which is why ADT's are interfaces!). Here are the ADT's we went over this week:

	List	Set	Мар
Ordered	Yes	No	keys: No, values: No
Repeats	Yes	No	keys: No, values: Yes
Data structures	LinkedList ArrayList	HashSet TreeSet	HashMap TreeMap

Amortized Analysis

Amoritzed runtime, also known as *average runtime*, is defined as the cost per operation, evaluated over a sequence of operations. It is also written in terms of θ **notation**. Intuitively, think of it as the cost that occurs the most often in a sequence of operations.

Example (taken from CS 61B Fall 2017 Guerrilla Section 3)

```
public class SQueue {
    private Stack inStack;
    private Stack outStack;

public SQueue () {
        inStack = new Stack ();
        outStack = new Stack ();
}

public void enqueue (int item ) {
        inStack . push ( item );
}

public int dequeue () {
        if ( outStack . isEmpty () ) {
            while (! inStack . isEmpty () ) {
                outStack . push ( inStack.pop() );
            }
        }
        return outStack . pop ();
}
```

What is the amortized time to dequeue an item from an SQueue containing N elements?

Best case: $\theta(1)$

The best case occurs when outStack is not empty. We would not go into the if-statement and while loop. It would simply take $\theta(1)$ to pop an element from the stack!

Worst case: $\theta(N)$

The worst case occurs when the outStack is empty and we must fill it with N elements. This occurs the first time we call dequeue and happens only **once**.

Amortized Runtime: $\theta(1)$

We setup the equation below because the runtime of the sequence of calls to $\theta(1)$ is $\theta(N) + \theta(1) + \theta(1) + \dots$, which is simplified to $\theta(N)$.

We then divide this by the number of operations, which is N + 1 (1 operation/call to dequeue to add the element to the outStack and N calls to dequeue to pop the N elements). This also simplifies to N.

$$\frac{\theta(N)}{N}$$
 = $\theta(1)$ amortized runtime!