Problem 1. Consider the differential one form $\omega = f dx + g dy$. Show that the following are equivalent

- a. $\oint_L \omega = 0$ for any closed loop L
- b. $\int_{C} \omega$ is independent of path *C* from X_0 to X_1
- c. $\omega = d\phi$ for some function $\phi(x, y)$

Proof. To show this equivalency, I will show that $a \Longrightarrow b \Longrightarrow c \Longrightarrow a$. First, assume that $\oint_L \omega = 0$ for any closed loop L. Also notice that in \mathbb{R}^n , $n \ge 2$ there exists at least two paths, C_1 and C_2 , from a point X_0 to X_1 . Which means there is one path, C_1 , from C_2 0 to C_2 1 and another path, C_3 2. This forms a closed loop C_3 3 to C_4 4 and the path, C_4 5 to C_4 6 to C_4 7 to C_4 8 to C_4 9 to C_4 9. So it must be true that,

$$0 = \oint_{L} \omega = \int_{C_{1}} \omega + \int_{-C_{2}} \omega = \int_{C_{1}} \omega - \int_{C_{2}} \omega = 0$$

Which implies that

$$\int_{C_1} \omega = \int_{C_2} \omega$$

This shows that $a \Longrightarrow b$.

Now I show that $b \Longrightarrow c$. To do this I assume that $\int_C \omega$ is independent of path where C is some curve. Now I define a special curve, C_1 from X_0 to X_3 . Let C_2 be any path from X_0 to X_1 and let C_3 be a path from X_1 to X_3 such that the x component of C_3 does not change. Note that $C_1 = C_2 + C_3$. The work done by a point on this curve, can be described as $\omega = f(x,y)dx + g(x,y)dy$. Now, let $\phi = \int_C \omega$. It follows that

$$\frac{\partial \phi}{\partial x} = \frac{\partial}{\partial x} \int_{C_1} \omega = \frac{\partial}{\partial x} \left(\int_{C_2} f dx + g dy + \int_{X_1}^{X_3} f dx + g dy \right)$$

and since C_3 is not changing in the x direction this implies that

$$\int_{X_1}^{X_3} f dx + g dy = 0$$

which means that

$$\frac{\partial \phi}{\partial x} = \frac{\partial}{\partial x} \left(\int_{C_2} f dx + g dy + 0 \right) \xrightarrow{F.T.C} \frac{\partial \phi}{\partial x} = f(x, y).$$

Now consider another special, but different curve, C_4 , from X_0 to X_3 . Let C_5 be any path from X_0 to X_2 . Now, let C_6 be a path from X_2 to X_3 such that the y direction does not change. Note that $C_4 = C_5 + C_6$. The work done by a point on this curve can also be described as ω . Now, I look at $\frac{\partial \phi}{\partial y}$ from this new curve. That is,

$$\frac{\partial \phi}{\partial y} = \frac{\partial}{\partial y} \left(\int_{C_5} f dx + g dy + \int_{X_2}^{X_3} f dx + g dy \right)$$

and since the y component on C_6 is constant, this means that

$$\frac{\partial \phi}{\partial y} = \frac{\partial}{\partial y} \left(\int_{C_5} f dx + g dy + 0 \right) \stackrel{F.T.C}{\Longrightarrow} \frac{\partial \phi}{\partial y} = g$$

Finally, I have shown that $\frac{\partial \phi}{\partial x} = f$ and $\frac{\partial \phi}{\partial y} = g$. Since this is true, and by the definition of $d\phi(x,y)$, that, $d\phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy$, by substitution I show that,

$$d\phi = fdx + gdy = \omega \implies \int_C \omega = \int_C d\phi.$$

Since ω is differentiable, $\int_C d\phi = \phi$ exists. This shows that $b \Longrightarrow c$.

Finally, to show that $c \Longrightarrow a$, I assume that $\omega = d\phi$ for some $\phi(x, y)$. Since,

$$\int_{C} \omega = \int_{C} d\phi = \phi(X_1) - \phi(X_0)$$

where C is a path from X_0 to X_1 . When C is a closed loop, L from X_0 to X_0 , then

$$\oint_L \omega = \oint_{X_0} d\phi = \phi(X_0) - \phi(X_0) = 0.$$

This shows that $c \Longrightarrow a$.

Since $a \Longrightarrow b \Longrightarrow c \Longrightarrow a$, this proves that all three statements are equivalent.

Problem 2. Suppose that \vec{F} is a conservative vector field and that $\vec{F} = -\nabla \phi$. Consider a particle of mass m moving along a path C from point X_0 to X_1 . Show that

$$\phi(X_0) + \frac{1}{2}mv^2\Big|_{X_0} = \phi(X_1) + \frac{1}{2}mv^2\Big|_{X_0}$$

Solution:

Using the true statement that $-\int_C \vec{F} \cdot d\vec{X} = -\int_C \vec{F} \cdot d\vec{X}$ and that

$$-\int_{C} \vec{F} \cdot d\vec{X} = -\int_{C} m\vec{a} \cdot d\vec{X}$$

$$= -m \int_{C} \frac{d\vec{v}}{dt} \cdot d\vec{X} = \int_{C} d\vec{v} \cdot \frac{d\vec{X}}{dt}$$

$$= -m \int_{C} \vec{v} \cdot d\vec{v} = -m \left(\frac{1}{2} v^{2} \Big|_{X_{1}} - \frac{1}{2} v^{2} \Big|_{X_{0}} \right)$$

and

$$-\int_{C} \vec{F} \cdot d\vec{X} = -\int_{C} \nabla \phi \cdot d\vec{X}$$
$$= -\int_{X_{0}}^{X_{1}} d\phi = -(\phi(X_{1}) - \phi(X_{0}))$$

then

$$-(\phi(X_1) - \phi(X_0)) = -m\left(\frac{1}{2}v^2\Big|_{X_1} - \frac{1}{2}v^2\Big|_{X_0}\right)$$

$$\implies \phi(X_0) + \frac{1}{2}mv^2\Big|_{X_0} = \phi(X_1) + \frac{1}{2}mv^2\Big|_{X_1}$$

where
$$ec{F} = egin{bmatrix} rac{\partial \phi}{\partial x_1} \ dots \ rac{\partial \phi}{\partial x_n} \end{bmatrix}$$
 .

Problem 3. In a PTQ, we showed that the electric field \vec{E} located at P = (x, y, z) generated by two point charges, one of charge -1 coulombs located at (0,0,0) and the other of charge +1 coulombs located at the point (1,2,3) is given by

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \left(\frac{1}{((x-1)^2 + (y-2)^2 + (z-3)^2)^{\frac{3}{2}}} \begin{bmatrix} x-1\\y-2\\z-3 \end{bmatrix} - \frac{1}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} \begin{bmatrix} x\\y\\z \end{bmatrix} \right)$$

Show that the work done by \vec{E} to move the particle from point A to point B is independent of path.

Solution:

Since the work done by the particle moving along the path in the field is

$$\int_{C} \vec{E} \cdot d\vec{X}$$

it is clear that since \vec{E} is only a function of x, y and z, that the computation of \vec{E} has nothing to do with the path. For example, if there are two curves C_1 and C_2 that go from (0,0,0) to (x,y,z) then it is true that

$$\int_{C_1} \vec{E} \cdot d\vec{X} = \int_{(0,0,0)}^{(x,y,z)} \vec{E} \cdot d\vec{X}$$

and

$$\int_{C_2} \vec{E} \cdot d\vec{X} = \int_{(0,0,0)}^{(1,2,3)} \vec{E} \cdot d\vec{X}$$

So, clearly $\int_{C_1} \vec{E} \cdot d\vec{X} = \int_{C_2} \vec{E} \cdot d\vec{X}$ for any and all paths C_1 and C_2 . Therefore it is path independent.

Problem 4. Suppose \vec{T} is a unit tangent vector to the curve C, $\vec{r} = \vec{r}(u)$. Show that the work done in moving a particle in a force field \vec{F} along C is given by $\int_C \vec{F} \cdot \vec{T} ds$ where s is the arc length.

Solution:

By using the fact that

$$\vec{T} = \frac{rac{d\vec{r}}{dt}}{\left|rac{d\vec{r}}{dt}
ight|} = rac{rac{d\vec{r}}{dt}}{rac{ds}{dt}}$$

and the work done on a particle in \vec{F} along C is

$$\int_{C} \vec{F} \cdot d\vec{r}$$

So, by substitution I get

$$\int_{C} \vec{F} \cdot \vec{T} ds = \int_{C} \vec{F} \frac{\frac{d\vec{r}}{dt}}{\left| \frac{ds}{dt} \right|} ds = \int_{C} \vec{F} \cdot d\vec{r}.$$

This shows that the work done by moving a particle in a force field \vec{F} along C is given by $\int_C \vec{F} \cdot d\vec{r}$.