Improving Entity Linking by Modeling Latent Relations between Mentions

Презентацию подготовил Чернявский Антон, 151

Named entity linking (named entity disambiguation)

Paris is the capital of France

Name entity recognition — пытаемся определить к какому <u>классу</u> (личность, организация, географическая локация и т.д.) относится именованная сущность.

Named entity linking (named entity disambiguation)

Paris is the capital of France

Чему соответствует в базе знаний

Отношения между упоминаниями (mentions)

- Наиболее популярное coreference. Два упоминания являются кореферентными, если они ссылаются на одну и ту же сущность
- Определение других и их использование сложная задача
- Для нахождения часто используются созданные вручную правила
- Однако в некоторых языках нет экспертов, способных определить такие правила

Использование отношений между упоминаниями

Применение Named Entity Linking

- Важный аспект понимания естественного языка
- Улучшает качество Information Retrieval систем
- Предварительная предобработка для Question Answering, Information Extraction

Формальная постановка задачи

- Документ D содержит mentions m_1, m_2, \ldots, m_n
- Им требуется сопоставить $e_1, e_2, ..., e_n \in KB$ (базы знаний)
- В случае отсутствия искомой сущности в базе знаний $e_k = NILL$

Предварительная эвристика candidate selection оставляет для каждого упоминания набор $C_i=(e_{1i},...\ e_{il_i})$

Локальные методы

Игнорируют связи (coherence) между решениями, опираясь только на локальный контекст

- c_i локальный контекст m_i
- $\Psi(e_i, c_i)$ функция локальной оценки
- $\forall i \in \{1, ..., n\}$ $e_i^* = \underset{e_i \in C_i}{\operatorname{argmax}} \Psi(e_i, c_i)$

Глобальные методы

Помимо локальной информации использует coherency, измеряющуюся функцией $\Phi(E,D)$, где $E=(e_1,\dots,e_n)$

$$E^* = \underset{E \in C_1 \times \dots \times C_n}{\operatorname{argmax}} \sum_{i=1}^n \Psi(e_i, c_i) + \Phi(E, D) =$$

$$= \underset{E \in C_1 \times \dots \times C_n}{\operatorname{argmax}} \sum_{i=1}^n \Psi(e_i, c_i) + \sum_{i \neq j} \Phi(e_i, e_j, D)$$

<u>Недостаток</u>: NP-сложная задача (можно *приближенно* решать декомпозицией по e_i)

Representation learning (возможные подходы)

- 1. Косинусное сходство между названиями и контекстами
- 2. Использование эмбеддингов

$$\Psi(e_i, c_i) = \mathbf{e}_i^T \mathbf{B} f(c_i)$$

$$\Phi(e_i, e_j, D) = \frac{1}{n-1} \mathbf{e}_i^T \mathbf{R} \mathbf{e}_j$$

 $\mathbf{e}_i \in \mathbb{R}^d$ — эмбеддинг e_i

 $\mathbf{B}, \mathbf{R} \in \mathbb{R}^{d \times d}$ – диагональные матрицы

 $f(c_i)$ – attention к контексту

Multi-relational models (общий вид)

- Пусть существует K различных отношений
- Каждое присваиваем паре $\left(m_i, m_j\right)$ с коэффициентом $lpha_{ijk} \geq 0$

$$\Phi(e_i, e_j, D) = \sum_{k=1}^K \alpha_{ijk} \, \Phi_k(e_i, e_j, D)$$

Multi-relational models (общий вид)

- Пусть существует K различных отношений
- Каждое присваиваем паре $\left(m_i, m_j \right)$ с коэффициентом $lpha_{ijk} \geq 0$

$$\Phi(e_i, e_j, D) = \sum_{k=1}^K \alpha_{ijk} \, \Phi_k(e_i, e_j, D)$$

$$\Phi_k(e_i, e_j, D) = \mathbf{e}_i^T \mathbf{R}_k \mathbf{e}_j$$

$$\alpha_{ijk} = \frac{1}{Z_{ijk}} \exp \left\{ \frac{f^T(m_i, c_i) D_k f(m_j, c_j)}{\sqrt{d}} \right\}$$

Коэффициент нормализации

normalize over relations: $\alpha_{ij1} + \alpha_{ij2} + \alpha_{ij3} = 1$

Интуиция: $lpha_{ijk}$ – вероятность k-го отношения для пары $\left(m_i, m_j
ight)$

$$\Phi(e_i, e_j, D) = \sum_{k=1}^K \alpha_{ijk} \mathbf{e}_i^T \mathbf{R}_k \mathbf{e}_j = \mathbf{e}_i^T \mathbf{R}_{ij} \mathbf{e}_j$$
, где $\mathbf{R}_{ij} = \sum_{k=1}^K \alpha_{ijk} R_k$

Коэффициент нормализации

normalize over mentions:

$$\alpha_{i12} + \alpha_{i22} + \dots + \alpha_{ij2} + \dots + \alpha_{in2} = 1$$

Интуиция: для каждого m_i ищем m_j связанное отношением k (схоже с multihead attention)

Ment-norm vs. rel-norm

Ment-norm:

- 1) Если $lpha_{ijk}$ маленький для всех k, значит упоминания не связаны
- 2) Если $lpha_{ijk}$ велик для нескольких k, значит упоминания связаны несколькими отношениями

Rel-norm:

- 1) none-relation отсутствие связи
- 2) Регулируем относительные вероятности за счет none-relation

Ment-norm vs. rel-norm

Главный недостаток ment-norm:

Модель использует все К отношений даже в тех случаях, когда некоторые отношения неприменимы.

"West Germany" ни с чем не связана кореференцией

Ment-norm vs. rel-norm

Решение проблемы: mention padding

Можно добавить mention m_{pad} связанное с сущностью e_{pad} . За счет него модель может смещать свою вероятностную массу.

Реализация

$$\alpha_{ijk} = \frac{1}{Z_{ijk}} \exp \left\{ \frac{f^{T}(m_i, c_i) D_k f(m_j, c_j)}{\sqrt{d}} \right\}$$

Графовые модели

$$P(w, x, y, z) = P(w)P(x)P(y|w)P(z|w, x)$$

$$P(w, x, y, z) = \frac{1}{Z} f_{wx}(w, x) f_{xz}(x, z) f_{yz}(y, z) f_{wy}(w, y)$$

$$P(x_1, x_2, ..., x_N, y_1, y_2, ..., y_N) = \prod_{(i,j)} \Psi(x_i, x_j) \prod_p \Phi(x_p, y_p)$$

Belief propagation

- В случае графов без циклов дает точное решение
- Иначе "loopy" ВР находит приблизительное решение
- Итеративный процесс передачи сообщений между вершинами
- В sum-product оцениваются маргинальные вероятности
- В max-product оцениваются MAP для всего MRF

Реализация

$$E^* = \underset{E \in C_1 \times \dots \times C_n}{\operatorname{argmax}} \sum_{i=1}^n \Psi(e_i, c_i) + \sum_{i \neq j} \Phi(e_i, e_j, D)$$

Реализуется, как CRF:

$$q(E|D) \propto \exp \left\{ \sum_{i=1}^{n} \Psi(e_i, c_i) + \sum_{i \neq j} \Phi(e_i, e_j, D) \right\}$$

Для оценки max-marginal вероятностей max-product loopy Belief Propagation

$$\hat{q}_i(e_i|D) \approx \max_{\substack{e_1, \dots e_{i-1}, \\ e_{i+1}, \dots, e_n}} q(E|D)$$

Реализация

Для каждого m_i : $\hat{p}(e|m_i)$ – вероятность выбора e, обуславливаясь только на m_i Финальная оценка: $\rho_i(e)=g(\hat{q}_i(e|D),\hat{p}(e|m_i))$

Пусть e^* – ground truth. Функция потерь по параметрам θ :

$$h(m_i, e) = \max(0, \gamma - \rho_i(e^*) + \rho_i(e))$$

$$L(\theta) = \sum_{D \in \mathcal{D}} \sum_{m_i \in D} \sum_{e \in C_i} h(m_i, e) + \lambda_1 \sum_{i,j} dist(R_i, R_j) + \lambda_2 \sum_{i,j} dist(D_i, D_j)$$

Candidate selection

- 1) Выбираются top-30 по $\hat{p}(e|m_i)$
- 2) По эмбеддингам ${m w}$ слов ${m w}$ контекста d_i упоминания m_i (окно из 50 слов) из них выбирается top-4 по $e^T \sum_{{m w} \in d_i} {m w}$
- 3) Дополнительно выбираем top-3 по $\hat{p}(e|m_i)$

Результаты

Methods	Aida-B
Chisholm and Hachey (2015)	88.7
Guo and Barbosa (2016)	89.0
Globerson et al. (2016)	91.0
Yamada et al. (2016)	91.5
Ganea and Hofmann (2017)	92.22 ± 0.14
rel-norm	92.41 ± 0.19
ment-norm	93.07 ± 0.27
ment-norm $(K=1)$	92.89 ± 0.21
ment-norm (no pad)	92.37 ± 0.26
	micro-F1 scores

Найденные отношения

Источники

[1] Phong Le and Ivan Titov, "Improving Entity Linking by Modeling Latent Relations between Mentions", ACL 2018, https://arxiv.org/pdf/1804.10637.pdf

[2] James Coughlan, "A Tutorial Introduction to Belief Propagation", http://www.computerrobotvision.org/2009/tutorial-day/crv09-belief-propagation-v2.pdf