Tanget and Normal

1 Tangent And Normal

1.1 Introuction

Let equation of a curve be y = f(x).

And its first derevative be $\frac{dy}{dx} = \frac{d}{dx}(f(x))$.

Slope of Tangent:

- at point P: $\frac{dy}{dx}$
- parallel to x-axis: $\frac{dy}{dx}(x_1, y_1) = 0$
- parallel to y-axis: $\frac{dy}{dx}(x_1, y_1) = \infty$

Slope of Normal: at point $P = \frac{-1}{\frac{dy}{dx}}$ or $\frac{-dx}{dy}$

1.2 Equations

 $y - y_1 = m(x - x_1)$ where (x_1, y_1) is the point of tangent and normal.

For Tangent:
$$y - y_1 = \left(\frac{dy}{dx}\right)_P (x - x_1)$$

For Normal:
$$y - y_1 = \frac{-1}{\left(\frac{dy}{dx}\right)_P}(x - x_1)$$

2 Angle between two curves

2.1 Angle of Intersection

let
$$C_1 = y = f(x)$$
 and $C_2 = y = (x)$.
 $PT_1 = \text{tangent to } C_1 \text{ and } PT_2 = \text{tangent to } C_2$.

Then,

$$m_1 = \tan \psi_1 = \text{slope of tangent of } y = f(x) \text{ at } P = \left(\frac{dy}{dx}\right)_{C_1}$$

$$m_2 = \tan \psi_2 = \text{slope of tangent of } y = g(x) \text{ at } P = \left(\frac{dy}{dx}\right)_{C_2}$$

$$\phi = \psi_1 - \psi_2$$
or,
$$\tan \phi = \frac{\tan \psi_1 - \tan \psi_2}{1 - \tan \psi_1 \tan \psi_2}$$
or,
$$\tan \phi = \frac{\left(\frac{dy}{dx}\right)_{C_1} - \left(\frac{dy}{dx}\right)_{C_2}}{1 + \left(\frac{dy}{dx}\right)_{C_1} \left(\frac{dy}{dx}\right)_{C_2}}$$

Note: The other angle between tangents = $180^{\circ} - \theta$

2.2 Orthogonal Curves

3 Subtangent and Subnormal