# LINEAR PROGRAMMING PROBLEM

# LINEAR PROGRAMMING

- Linear programming deals with optimization (maximization or minimization) of a function of variables known as objective functions.
- It is subjected to a set of linear equalities and /or inequalities known as constraints.
- Linear programming is a mathematical technique which involves the allocation of limited resources in an optimal manner, the basis of a given criterion of optimally.

## FORMULATION OF LP PROBLEMS

The procedure for mathematical formulation of a LPP consist of the following steps

**Step 1:** To write down the decision variables of the problem

Step 2: To formulate the objective function to be optimized (maximized or minimized) as a linear function of the decision variables

#### Step 3:

To formulate the other conditions of the problem such as resource limitation, market constraints, interrelation between variable etc, as linear inequations or equations in terms of the decision variables Step 4: To ac

To add the non-negativity constraint from the considerations so that the negative values of the decision variables do not have any valid physical interpretation

The objective functions, the set of constraints and non-negative constraints form a Linear Programming Problem

## GENERAL FORM OF LP PROBLEM

The general LP problem with 'n' decision variables and 'm' constraints

can be stated in the following form

Find the values of decision variables  $x_1, x_2, \dots, x_n$  so as to

Optimize (max or min) 
$$Z = C_1x_1 + C_2x_2 + \cdots + C_nx_n$$
 (Objective function)

subject to the linear constraints

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n (\le, =, \ge)b_1$$
  
 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n (\le, =, \ge)b_2$  (constraints)

••••••

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mm}x_n (\leq, =, \geq) b_m$$
  
And  $x_1, x_2, \dots, x_n \geq 0$  (non-negativity constraints)

EX. A dealer sells two articles A and B. He earns Rs 2 and 3 when he sells one piece of A and B respectively. He buys these articles at the rate of Rs 1 and Rs 2 respectively in the morning and sells them out in the evening. He invests only 100 Rs. Write down the equations of his profit and other conditions

### **ANS:**

Maximize 
$$z = 2x_1 + 3x_2$$
  
Subject to  $x_1 + 2x_2 \le 100$   
and  $x_1 \ge 0, x_2 \ge 0$ 

# **EX 1.** Solve the following LPP by graphical method

Minimize 
$$Z = 20x_1 + 10x_2$$
  
Subject to  $x_1 + 2x_2 \le 40$ ,  
 $3x_1 + x_2 \ge 30$ ,  
 $4x_1 + 3x_2 \ge 60$ ,  
 $x_1, x_2 \ge 0$ 



| Corners Points | Value of $Z = 20x_1 + 10x_2$ |
|----------------|------------------------------|
| A(15,0)        | 300                          |
| B(40,0)        | 800                          |
| C(4, 18)       | 260                          |
| D(6, 12)       | 240 (Minimum value)          |

: The minimum value of Z occurs at D(6, 12)

Hence the optimal solution is

$$x_1 = 6, x_2 = 12$$

## GENERAL FORM OF LP PROBLEM

The general LP problem with  $^{\prime}n^{\prime}$  decision variables and  $^{\prime}m^{\prime}$  constraints

can be stated in the following form

Find the values of decision variables  $x_1, x_2, \dots, x_n$  so as to

Optimize (max or min) 
$$Z = C_1x_1 + C_2x_2 + \cdots + C_nx_n$$
 (Objective function)

subject to the linear constraints

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n (\le, =, \ge)b_1$$
  
 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n (\le, =, \ge)b_2$  (constraints)

••••••

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mm}x_n (\leq, =, \geq) b_m$$
  
And  $x_1, x_2, \dots, x_n \geq 0$  (non-negativity constraints)

## MATRIX FORM OF LPP

The linear programming problem can be expressed in the matrix form

as follows.

Maximize or Minimize Z = CX

Subject to 
$$AX \begin{pmatrix} \leq \\ = \\ \geq \end{pmatrix} b, X \geq 0$$

Where 
$$X = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}_{\substack{n \times 1 \\ n \times 1}}$$
,  $b = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{bmatrix}_{\substack{m \times 1 \\ m \times 1}}$ ,  $C = \begin{bmatrix} C_1 & C_2 & \dots & C_n \end{bmatrix}_{1 \times n}$  and  $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{2n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{ml} & a_{m2} & \dots & a_{mn} \end{bmatrix}_{m \times n}$ 

# IMPORTANT DEFINITION

1. Solution: Solution values of decision variables  $x_j (j = 1, 2, ..., n)$  which satisfy the constraints of a general LP model is called a solution to that LP model.

# IMPORTANT DEFINITION

**2. Feasible Solution:** Solution values of decision variables  $x_j$  (j = 1, 2, ..., n) which satisfy the constraints and non negativity condition of a general LP model are said to constitute the feasible solution to that LP model

3. Basic Solution: For a set of m equations in n variable (n > m), a solution obtained by setting (n - m) variables equal to zero and solving for remaining m equations in m variables is called a basic solution.

- Number of basic solution is  ${}^{n}C_{m} = {}^{n}C_{n-m}$
- The (n-m) variables whose values did not appear in this solution are called **non-basic** variables and the
- $\odot$  Remaining m variables are called **basic variables**

4. Basic Feasible Solution: A feasible solution to an LP problem which is also the basic solution is called the basic feasible solution. i.e. All basic variables assume non-negative values

Basic Feasible Solutions are of two types

- (1) Degenerate basic feasible solution: A basic feasible solution is called degenerate if at least one basic variable possesses zero value
- (2) Non degenerate basic feasible solution: A basic feasible solution is called non degenerate if all m basic variables are non zero and positive

5. Optimum basic feasible solution: A basic feasible solution which optimizes (maximizes or minimizes) the objective function of the given LP model is called on optimum basic feasible solution

6. Unbounded Solution: A solution which can increase or decrease the value of objective function of LP problem indefinitely, is called unbounded solution

7. Slack variables: If the constraints of a general LPP be  $\sum_{j=1}^{n} a_{ij} x_i \leq b_i$  (i=1,2,...,m) then non negative variables  $S_i$  which are introduces to convert the inequalities  $(\leq)$  to be equalities  $\sum_{j=1}^{n} a_{ij} x_i + S_i = b_i$  (i=1,2,...,m) are called slack variables.

**8. Surplus variables:** If the constraints of a general LPP be  $\sum_{j=1}^{n} a_{ij} x_i \ge b_i$   $(i=1,2,\ldots,m)$  then the non negative variables  $S_i$  which are introduced to convert the inequalities  $(\ge)$  to be equalities  $\sum_{j=1}^{n} a_{ij} x_i - S_i = b_i$   $(i=1,2,\ldots,m)$  are called surplus variables

**EX 1.** Find all the basic solutions to the following problem,

Maximize 
$$Z = x_1 + 3x_2 + 3x_3$$
 Subject to

$$x_1 + 2x_2 + 3x_3 = 4$$
 and  $2x_1 + 3x_2 + 5x_3 = 7$ .

Also find which of the basic solutions are

- (i) Basic feasible
- (ii) Non degenerate basic feasible and
- (iii) Optimal basic feasible

**Solution:** No of equation m = 2

No of variables n = 3

A basic solution can be obtained by setting any of the (n-m)=1 variable equal to zero and then solving the constraints equation.

The total no. of basic solution is  ${}^{n}C_{m} = {}^{3}C_{2} = 3$ 

| Sr. No.<br>of Basic<br>Solutio<br>n | Basic<br>Variable<br>S | Non<br>basic<br>Variable<br>s | Values of the basic variables given by the constraints equation | Values<br>of the<br>objectiv<br>e<br>function | Is the solution feasible ? (are all $x_j \ge 0$ ) | Is the solution non degenerate (are all basic variables > 0)? | Is the solution feasible & Optimal |
|-------------------------------------|------------------------|-------------------------------|-----------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|------------------------------------|
|                                     |                        |                               |                                                                 |                                               |                                                   |                                                               |                                    |
|                                     |                        |                               |                                                                 |                                               |                                                   |                                                               |                                    |
|                                     |                        |                               |                                                                 |                                               |                                                   |                                                               |                                    |

| Sr. No.<br>of Basic<br>Solutio<br>n | Basic<br>Variable<br>s | Non<br>basic<br>Variable<br>s | Values of the basic variables given by the constraints equation | Values<br>of the<br>objectiv<br>e<br>function | Is the solution feasible? (are all $x_j \ge 0$ ) | Is the solution non degenerate (are all basic variables > 0)? | Is the solution feasible & Optimal |
|-------------------------------------|------------------------|-------------------------------|-----------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|------------------------------------|
| 1                                   | $x_1, x_2$             | $x_3$                         | $x_1 + 2x_2 = 4$<br>$2x_1 + 3x_2 = 7$<br>$x_1 = 2, x_2 = 1$     | 5                                             |                                                  |                                                               |                                    |
|                                     |                        |                               |                                                                 |                                               |                                                  |                                                               |                                    |
|                                     |                        |                               |                                                                 |                                               |                                                  |                                                               |                                    |

| Sr. No.<br>of Basic<br>Solutio<br>n | Basic<br>Variable<br>s | Non<br>basic<br>Variable<br>s | Values of the basic variables given by the constraints equation | Values<br>of the<br>objectiv<br>e<br>function | Is the solution feasible? (are all $x_j \ge 0$ ) | Is the solution non degenerate (are all basic variables > 0)? | Is the solution feasible & Optimal |
|-------------------------------------|------------------------|-------------------------------|-----------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|------------------------------------|
| 1                                   | $x_1, x_2$             | $x_3$                         | $x_1 + 2x_2 = 4$ $2x_1 + 3x_2 = 7$ $x_1 = 2, x_2 = 1$           | 5                                             |                                                  |                                                               |                                    |
| 2                                   | $x_1, x_3$             | $x_2$                         | $x_1 + 3x_3 = 4$ $2x_1 + 5x_3 = 7$ $x_1 = 1, x_3 = 1$           | 4                                             |                                                  |                                                               |                                    |
|                                     |                        |                               |                                                                 |                                               |                                                  |                                                               |                                    |

| Sr. No.<br>of Basic<br>Solutio<br>n | Basic<br>Variable<br>s | Non<br>basic<br>Variable<br>s | Values of the basic variables given by the constraints equation | Values<br>of the<br>objectiv<br>e<br>function | Is the solution feasible? (are all $x_j \ge 0$ ) | Is the solution non degenerate (are all basic variables > 0)? | Is the solution feasible & Optimal |
|-------------------------------------|------------------------|-------------------------------|-----------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|------------------------------------|
| 1                                   | $x_1, x_2$             | $x_3$                         | $x_1 + 2x_2 = 4$ $2x_1 + 3x_2 = 7$ $x_1 = 2, x_2 = 1$           | 5                                             |                                                  |                                                               |                                    |
| 2                                   | $x_1, x_3$             | $x_2$                         | $x_1 + 3x_3 = 4$ $2x_1 + 5x_3 = 7$ $x_1 = 1, x_3 = 1$           | 4                                             |                                                  |                                                               |                                    |
| 3                                   | $x_2, x_3$             | $x_1$                         | $2x_1 + 3x_3 = 4$ $3x_2 + 5x_3 = 7$ $x_2 = -1, x_3 = 2$         | 3                                             |                                                  |                                                               |                                    |

| Sr. No.<br>of Basic<br>Solutio<br>n | Basic<br>Variable<br>s | Non<br>basic<br>Variable<br>s | Values of the basic variables given by the constraints equation | Values<br>of the<br>objectiv<br>e<br>function | Is the solution feasible? (are all $x_j \ge 0$ ) | Is the solution non degenerate (are all basic variables > 0)? | Is the solution feasible & Optimal |
|-------------------------------------|------------------------|-------------------------------|-----------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|------------------------------------|
| 1                                   | $x_1, x_2$             | $x_3$                         | $x_1 + 2x_2 = 4$ $2x_1 + 3x_2 = 7$ $x_1 = 2, x_2 = 1$           | 5                                             | Yes                                              | Yes                                                           | Yes                                |
| 2                                   | $x_1, x_3$             | $x_2$                         | $x_1 + 3x_3 = 4$ $2x_1 + 5x_3 = 7$ $x_1 = 1, x_3 = 1$           | 4                                             | Yes                                              | Yes                                                           | No                                 |
| 3                                   | $x_2, x_3$             | $x_1$                         | $2x_1 + 3x_3 = 4$ $3x_2 + 5x_3 = 7$ $x_2 = -1, x_3 = 2$         | 3                                             | No                                               | No                                                            | No                                 |

**EX 1.** Find all the basic solutions to the following problem,

Maximize 
$$z = 2x_1 - 2x_2 + 4x_3 - 5x_4$$
  
Subject to  $x_1 + 4x_2 - 2x_3 + 8x_4 = 2$ ,  $-x_1 + 2x_2 + 3x_3 + 4x_4 = 1$ ,  $x_1, x_2, x_3, x_4 \ge 0$ 

Also find which of the basic solutions are

- (i) Basic feasible
- (ii) Non degenerate basic feasible and
- (iii) Optimal basic feasible

**Solution:** No of equation m=2

No of variables n=4

A basic solution can be obtained by setting any of the (n-m)=2 variable equal to zero and then solving the constraints equation.

The total no. of basic solution is

$$^{n}C_{m} = {}^{4}C_{2} = 6$$

| Sr. No. of<br>Basic<br>Solution | Basic<br>Variables | Non basic<br>Variables | Values of the basic<br>variables given by the<br>constraints equation | Values of<br>the<br>objective<br>function | Is the solution feasible? (are all $x_j \ge 0$ ) | Is the solution non degenerate (are all basic variables > 0)? | Is the solution feasible & Optimal |
|---------------------------------|--------------------|------------------------|-----------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|------------------------------------|
|                                 |                    |                        |                                                                       |                                           |                                                  |                                                               |                                    |
|                                 |                    |                        |                                                                       |                                           |                                                  |                                                               |                                    |
|                                 |                    |                        |                                                                       |                                           |                                                  |                                                               |                                    |
|                                 |                    |                        |                                                                       |                                           |                                                  |                                                               |                                    |
|                                 |                    |                        |                                                                       |                                           |                                                  |                                                               |                                    |
|                                 |                    |                        |                                                                       |                                           |                                                  |                                                               |                                    |

| Sr. No. of<br>Basic<br>Solution | Basic<br>Variables                            | Non basic<br>Variables | Values of the basic<br>variables given by the<br>constraints equation | Values of<br>the<br>objective<br>function | Is the solution feasible? (are all $x_j \ge 0$ ) | Is the solution non degenerate (are all basic variables > 0)? | Is the solution feasible & Optimal |
|---------------------------------|-----------------------------------------------|------------------------|-----------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|------------------------------------|
| 1                               | <i>x</i> <sub>1</sub> , <i>x</i> <sub>2</sub> | $x_3, x_4$             | $x_1 + 4x_2 = 2$<br>$-x_1 + 2x_2 = 1$<br>$x_1 = 0, x_2 = 1/2$         | -1                                        | Yes                                              | No                                                            |                                    |
|                                 |                                               |                        |                                                                       |                                           |                                                  |                                                               |                                    |
|                                 |                                               |                        |                                                                       |                                           |                                                  |                                                               |                                    |
|                                 |                                               |                        |                                                                       |                                           |                                                  |                                                               |                                    |
|                                 |                                               |                        |                                                                       |                                           |                                                  |                                                               |                                    |
|                                 |                                               |                        |                                                                       |                                           |                                                  |                                                               |                                    |

| Sr. No. of<br>Basic<br>Solution | Basic<br>Variables                            | Non basic<br>Variables | Values of the basic<br>variables given by the<br>constraints equation | Values of<br>the<br>objective<br>function | Is the solution feasible? (are all $x_j \ge 0$ ) | Is the solution non degenerate (are all basic variables > 0)? | Is the solution feasible & Optimal |
|---------------------------------|-----------------------------------------------|------------------------|-----------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|------------------------------------|
| 1                               | <i>x</i> <sub>1</sub> , <i>x</i> <sub>2</sub> | $x_3, x_4$             | $x_1 + 4x_2 = 2$ $-x_1 + 2x_2 = 1$ $x_1 = 0, x_2 = 1/2$               | -1                                        | Yes                                              | No                                                            |                                    |
| 2                               | <i>x</i> <sub>1</sub> , <i>x</i> <sub>3</sub> | $x_2, x_4$             | $x_1 - 2x_3 = 2$ $-x_1 + 3x_3 = 1$ $x_1 = 8, x_3 = 3$                 | 28                                        | Yes                                              | yes                                                           |                                    |
|                                 |                                               |                        |                                                                       |                                           |                                                  |                                                               |                                    |
|                                 |                                               |                        |                                                                       |                                           |                                                  |                                                               |                                    |
|                                 |                                               |                        |                                                                       |                                           |                                                  |                                                               |                                    |
|                                 |                                               |                        |                                                                       |                                           |                                                  |                                                               |                                    |

| Sr. No. of<br>Basic<br>Solution | Basic<br>Variables                            | Non basic<br>Variables                        | Values of the basic<br>variables given by the<br>constraints equation | Values of<br>the<br>objective<br>function | Is the solution feasible? (are all $x_j \ge 0$ ) | Is the solution non degenerate (are all basic variables > 0)? | Is the solution feasible & Optimal |
|---------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|------------------------------------|
| 1                               | <i>x</i> <sub>1</sub> , <i>x</i> <sub>2</sub> | $x_3, x_4$                                    | $x_1 + 4x_2 = 2$ $-x_1 + 2x_2 = 1$ $x_1 = 0, x_2 = 1/2$               | -1.5                                      | Yes                                              | No                                                            |                                    |
| 2                               | <i>x</i> <sub>1</sub> , <i>x</i> <sub>3</sub> | $x_2, x_4$                                    | $x_1 - 2x_3 = 2$ $-x_1 + 3x_3 = 1$ $x_1 = 8, x_3 = 3$                 | 28                                        | Yes                                              | Yes                                                           |                                    |
| 3                               | $x_2, x_3$                                    | <i>x</i> <sub>1</sub> , <i>x</i> <sub>4</sub> | $4x_2 - 2x_3 = 2$ $2x_2 + 3x_3 = 1$ $x_3 = 0, x_2 = 1/2$              | -1                                        | Yes                                              | No                                                            |                                    |
|                                 |                                               |                                               |                                                                       |                                           |                                                  |                                                               |                                    |
|                                 |                                               |                                               |                                                                       |                                           |                                                  |                                                               |                                    |
|                                 |                                               |                                               |                                                                       |                                           |                                                  |                                                               |                                    |

| Sr. No. of<br>Basic<br>Solution | Basic<br>Variables                            | Non basic<br>Variables | Values of the basic<br>variables given by the<br>constraints equation | Values of<br>the<br>objective<br>function | Is the solution feasible? (are all $x_j \ge 0$ ) | Is the solution non degenerate (are all basic variables > 0)? | Is the solution feasible & Optimal |
|---------------------------------|-----------------------------------------------|------------------------|-----------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|------------------------------------|
| 1                               | <i>x</i> <sub>1</sub> , <i>x</i> <sub>2</sub> | $x_3, x_4$             | $x_1 + 4x_2 = 2$ $-x_1 + 2x_2 = 1$ $x_1 = 0, x_2 = 1/2$               | -1                                        | Yes                                              | No                                                            |                                    |
| 2                               | $x_1, x_3$                                    | $x_2, x_4$             | $x_1 - 2x_3 = 2$ $-x_1 + 3x_3 = 1$ $x_1 = 8, x_3 = 3$                 | 28                                        | Yes                                              | yes                                                           |                                    |
| 3                               | $x_2, x_3$                                    | $x_1, x_4$             | $4x_2 - 2x_3 = 2$ $2x_2 + 3x_3 = 1$ $x_3 = 0, x_2 = 1/2$              | -1                                        | Yes                                              | No                                                            |                                    |
| 4                               | $x_1, x_4$                                    | $x_2, x_3$             | $x_1 + 8x_4 = 2,$ $-x_1 + 4x_4 = 1$ $x_1 = 0, x_4 = 1/4$              | -1.25                                     | Yes                                              | No                                                            |                                    |
|                                 |                                               |                        |                                                                       |                                           |                                                  |                                                               |                                    |
|                                 |                                               |                        |                                                                       |                                           |                                                  |                                                               |                                    |

| Sr. No. of<br>Basic<br>Solution | Basic<br>Variables                            | Non basic<br>Variables | Values of the basic<br>variables given by the<br>constraints equation | Values of<br>the<br>objective<br>function | Is the solution feasible? (are all $x_j \ge 0$ ) | Is the solution non degenerate (are all basic variables > 0)? | Is the solution feasible & Optimal |
|---------------------------------|-----------------------------------------------|------------------------|-----------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|------------------------------------|
| 1                               | <i>x</i> <sub>1</sub> , <i>x</i> <sub>2</sub> | $x_3, x_4$             | $x_1 + 4x_2 = 2$ $-x_1 + 2x_2 = 1$ $x_1 = 0, x_2 = 1/2$               | -1.5                                      | Yes                                              | No                                                            |                                    |
| 2                               | $x_1, x_3$                                    | $x_2, x_4$             | $x_1 - 2x_3 = 2$ $-x_1 + 3x_3 = 1$ $x_1 = 8, x_3 = 3$                 | 28                                        | Yes                                              | Yes                                                           |                                    |
| 3                               | $x_2, x_3$                                    | $x_1, x_4$             | $4x_2 - 2x_3 = 2$ $2x_2 + 3x_3 = 1$ $x_3 = 0, x_2 = 1/2$              | -1                                        | Yes                                              | No                                                            |                                    |
| 4                               | <i>x</i> <sub>1</sub> , <i>x</i> <sub>4</sub> | $x_2, x_3$             | $x_1 + 8x_4 = 2,$ $-x_1 + 4x_4 = 1$ $x_1 = 0, x_4 = 1/4$              | -1.25                                     | Yes                                              | No                                                            |                                    |
| 5                               | $x_2, x_4$                                    | $x_1, x_3$             | $4x_2 + 8x_4 = 2$<br>$2x_2 + 4x_4 = 1$<br>Unbounded                   | _                                         | _                                                | _                                                             |                                    |
|                                 |                                               |                        |                                                                       |                                           |                                                  |                                                               |                                    |

| Sr. No. of<br>Basic<br>Solution | Basic<br>Variables                            | Non basic<br>Variables                        | Values of the basic<br>variables given by the<br>constraints equation | Values of<br>the<br>objective<br>function | Is the solution feasible? (are all $x_j \ge 0$ ) | Is the solution non degenerate (are all basic variables > 0)? | Is the solution feasible & Optimal |
|---------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|------------------------------------|
| 1                               | <i>x</i> <sub>1</sub> , <i>x</i> <sub>2</sub> | $x_3, x_4$                                    | $x_1 + 4x_2 = 2$ $-x_1 + 2x_2 = 1$ $x_1 = 0, x_2 = 1/2$               | -1                                        | Yes                                              | No                                                            |                                    |
| 2                               | <i>x</i> <sub>1</sub> , <i>x</i> <sub>3</sub> | $x_2, x_4$                                    | $x_1 - 2x_3 = 2$ $-x_1 + 3x_3 = 1$ $x_1 = 8, x_3 = 3$                 | 28                                        | Yes                                              | Yes                                                           |                                    |
| 3                               | $x_2, x_3$                                    | <i>x</i> <sub>1</sub> , <i>x</i> <sub>4</sub> | $4x_2 - 2x_3 = 2$ $2x_2 + 3x_3 = 1$ $x_3 = 0, x_2 = 1/2$              | -1                                        | Yes                                              | No                                                            |                                    |
| 4                               | $x_1, x_4$                                    | $x_2, x_3$                                    | $x_1 + 8x_4 = 2,$ $-x_1 + 4x_4 = 1$ $x_1 = 0, x_4 = 1/4$              | -1.25                                     | Yes                                              | No                                                            |                                    |
| 5                               | $x_2, x_4$                                    | <i>x</i> <sub>1</sub> , <i>x</i> <sub>3</sub> | $4x_2 + 8x_4 = 2$ $2x_2 + 4x_4 = 1$ Unbounded                         | _                                         | _                                                | _                                                             |                                    |
| 6                               | $x_3, x_4$                                    | <i>x</i> <sub>1</sub> , <i>x</i> <sub>2</sub> | $-2x_3 + 8x_4 = 2$ $3x_3 + x_4 = 12$ $x_3 = 0, x_4 = 1/4$             | -12.5                                     | Yes                                              | No                                                            |                                    |

| Sr. No. of<br>Basic<br>Solution | Basic<br>Variables                            | Non basic<br>Variables                        | Values of the basic<br>variables given by the<br>constraints equation | Values of<br>the<br>objective<br>function | Is the solution feasible? (are all $x_j \ge 0$ ) | Is the solution degenerate (are all basic variables > 0)? | Is the solution feasible & Optimal |
|---------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|------------------------------------|
| 1                               | <i>x</i> <sub>1</sub> , <i>x</i> <sub>2</sub> | $x_3, x_4$                                    | $x_1 + 4x_2 = 2$ $-x_1 + 2x_2 = 1$ $x_1 = 0, x_2 = 1/2$               | -1                                        | Yes                                              | No                                                        | No                                 |
| 2                               | $x_1, x_3$                                    | $x_2, x_4$                                    | $x_1 - 2x_3 = 2$ $-x_1 + 3x_3 = 1$ $x_1 = 8, x_3 = 3$                 | 28                                        | Yes                                              | Yes                                                       | Yes                                |
| 3                               | $x_2, x_3$                                    | <i>x</i> <sub>1</sub> , <i>x</i> <sub>4</sub> | $4x_2 - 2x_3 = 2$ $2x_2 + 3x_3 = 1$ $x_3 = 0, x_2 = 1/2$              | -1                                        | Yes                                              | No                                                        | No                                 |
| 4                               | $x_1, x_4$                                    | <i>x</i> <sub>2</sub> , <i>x</i> <sub>3</sub> | $x_1 + 8x_4 = 2,$ $-x_1 + 4x_4 = 1$ $x_1 = 0, x_4 = 1/4$              | -1.25                                     | Yes                                              | No                                                        | No                                 |
| 5                               | $x_2, x_4$                                    | <i>x</i> <sub>1</sub> , <i>x</i> <sub>3</sub> | $4x_2 + 8x_4 = 2$ $2x_2 + 4x_4 = 1$ Unbounded                         | _                                         | _                                                | _                                                         | _                                  |
| 6                               | $x_3, x_4$                                    | <i>x</i> <sub>1</sub> , <i>x</i> <sub>2</sub> | $-2x_3 + 8x_4 = 2$ $3x_3 + x_4 = 12$ $x_3 = 0, x_4 = 1/4$             | -1.25                                     | Yes                                              | No                                                        | No                                 |

Find all basic solutions to the following problem. Which of them are basic feasible, non-degenerate, infeasible basic and optimal feasible solutions?

Maximize 
$$z = 2x_1 + 3x_2$$
  
Subject to  $x_1 + 3x_2 \le 6$ ,  $3x_1 + 2x_2 \le 6$ ,  $x_1, x_2 \ge 0$ 

Solution: First we convert the given problem to standard form

Maximize 
$$z = 2x_1 + 3x_2 + 0S_1 + 0S_2$$
  
Subject to  $x_1 + 3x_2 + S_1 + 0S_2 = 6$ ,  $3x_1 + 2x_2 + 0S_1 + S_2 = 6$ ,  $x_1, x_2, S_1, S_2 \ge 0$ 

No of equation m=2

No of variables n=4

A basic solution can be obtained by setting any of the (n-m)=2 variable equal to zero and then solving the constraints equation.

The total no. of basic solution is

$$^{n}C_{m} = {}^{4}C_{2} = 6$$

|                                 |                                               | 1                      | 1                                                                                   |                                           |                                                  |                                                           |                                    |
|---------------------------------|-----------------------------------------------|------------------------|-------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|------------------------------------|
| Sr. No. of<br>Basic<br>Solution | Basic<br>Variables                            | Non basic<br>Variables | Values of the basic<br>variables given by the<br>constraints equation               | Values of<br>the<br>objective<br>function | Is the solution feasible? (are all $x_j \ge 0$ ) | Is the solution degenerate (are all basic variables > 0)? | Is the solution feasible & Optimal |
| 1                               | <i>x</i> <sub>1</sub> , <i>x</i> <sub>2</sub> | $S_1, S_2$             | $x_1 + 3x_2 = 6,$ $3x_1 + 2x_2 = 6$ $x_1 = \frac{6}{7}, \qquad x_2 = \frac{12}{7},$ | 48<br>7                                   | Yes                                              | Yes                                                       | No                                 |
| 2                               | $x_1, S_1$                                    | $x_2, S_2$             | $x_1 + S_1 = 6,3x_1 + 0S_1 = 6x_1 = 2, S_1 = 4$                                     | 4                                         | Yes                                              | Yes                                                       | No                                 |
| 3                               | $x_1, S_2$                                    | $x_2, S_1$             | $x_1 + 0S_2 = 6,$<br>$3x_1 + S_2 = 6$<br>$x_1 = 6,$ $S_2 = -12,$                    | 12                                        | Yes                                              | No                                                        | Yes                                |
| 4                               | $x_2, S_1$                                    | $x_1, S_2$             | $3x_2 + S_1 = 6,2x_2 + 0S_1 = 6x_2 = 3, S_1 = -3,$                                  | 9                                         | Yes                                              | No                                                        | No                                 |
| 5                               | $x_2, S_2$                                    | $x_1, S_1$             | $3x_{2} + 0S_{2} = 6,$ $2x_{2} + S_{2} = 6$ $x_{2} = 2, 	 S_{2} = 2$                | 6                                         | Yes                                              | Yes                                                       | No                                 |
| 6                               | $S_1, S_2$                                    | $x_1, x_2$             | $S_1 + 0S_2 = 6,$<br>$0S_1 + S_2 = 6$<br>$S_1 = 6,$ $S_2 = 6,$                      | 0                                         | Yes                                              | Yes                                                       | No                                 |

Is the solution  $x_1 = 1$ ,  $x_2 = 1/2$ ,  $x_3 = 0$ ,  $x_4 = 0$ ,  $x_5 = 0$  a basic solution of the following problem?

$$x_1 + 2x_2 + x_3 + x_4 = 2$$
,  
 $x_1 + 2x_2 + (1/2)x_3 + x_5 = 2$