مثال معادلهٔ م+cos x = 0 نقط یک ریشه در (۱٫۰) دارد. مقدار تقریبی ریشه را به روش دو بخشی حساب کنید.

جدول زیر محاسبات مربوط را نشان می دهد.

$$a=-1$$
 , $b=0$, $f(a)=-0/49$, $f(b)=1$

n	a	ь	$x_n = \frac{a+b}{\gamma}$	ولامت f(a) f(x _n)
1	-1	•	/۵	_
۲	-1	- 0/04	- ·/v۵	+
٣	- ·/vo	- •/۵	- 0/970	
۴	- 0/V۵	- 0/970	0/9040	·
۵	- 0/V۵	- ·/۶۸۷0 4	- 0/1110	_
۶	- 0/V۵	- ·/VIAVO	- 0/174710	+
٧	- 0/VTFTV0 <	- 0/1110	- 0/7780870	ń

توجه کنید که a و b در هر سطر با توجه به سطر قبل و علامت f(a) f(x_n) تعیین می شود و همواره a<b.

همگرایی روش دوبخشی

با توجه به نحوهٔ به دست آمدن Xn ها به روش دوبخشی داریم:

$$|x_1 - \alpha| < \frac{b-a}{r}$$

$$|x_{\gamma}-\alpha|<\frac{\frac{b-a}{\gamma}}{\gamma}=\frac{b-a}{\gamma^{\gamma}}$$

همچنین با توجه به اینکه طول بازهٔ $[a,x_1]$ برابر $\frac{b-a}{7}$ است داریم:

بنابراین، پس از n تکرار، نتیجه می شود:

$$\bullet \le (x_n - \alpha) < \frac{b - a}{r^n}$$

چون:
$$\circ = \lim_{n \to \infty} \frac{1}{r^n}$$
 در نتیجه: $\circ = \lim_{n \to \infty} \frac{b-a}{r^n}$ پس، بنابر قضیهٔ فشار

$$\lim_{n\to\infty}|x_n-\alpha|=\bullet$$

كه نتيجه مي دهد:

$$\lim_{n\to\infty} x_n = \alpha$$

بنابراین، روش دوبخشی همیشه همگراست. یعنی، دنبالهٔ {x_n} که به این روش ساخته می شود حتماً به α همگراست.

نامساوی $\frac{b-a}{\gamma^n} < |x_n-\alpha| > 0$ یک کران بالا برای خطای x_n به دست می دهد، تو جه کنید که این کران بالا، یعنی $\frac{b-a}{\gamma^n}$ ، قبل از محاسبهٔ x_n قبل از محاسبهٔ x_n قبل از محاسبهٔ x_n بنابراین، $\frac{b-a}{\gamma^n}$ را یک کران خطای پیشین برای x_n می نامند. از این نامساوی سرعت همگرایی x_n به x_n را نیز می توان پیش بینی کرد، این سرعت متناسب با سرعت همگرایی دنبالهٔ $\{\frac{1}{\gamma^n}\}$ به صفر است. با توجه به اینکه ۱۰۰۰ x_n داریم:

$$\frac{L_{1} \circ}{I} \simeq \circ \circ \circ I = I \circ_{-L}$$

بنابراین، بعد از هر ۱۰ تکرار سه رقم به ارقام درست جواب اضافه میشود، و این نشان میدهد که روش دوبخشی کند است .

مثال

تقریبی از ریشهٔ مثبت معادلهٔ ۲ – x^{r} (x)= x^{r}) یعنی $\alpha=\sqrt{\gamma}$ ، را به روش دوبخشی چنان حساب کنید که داشته باشیم $|x_{n}-\alpha|<1$

 $|x_n-lpha|<rac{b-a}{\gamma^n}=rac{1}{\gamma^n}$ و b-a=1 است داریم b-a=1 است داریم b-a=1 است داریم a=1 است a=1 اس

اولین nکه در نامساوی بالا صدق میکند ۷است. پس، باید تا 🗷 حساب کنیم.

n	Э	ь	$x_n = \frac{a+b}{7}$	f(a)f(x _n) علامت
١	١	۲	1/0	-
۲	١	1/0	1/10	+
٣	1/10	1/0	1/20	+
۴	1/2/0	1/0	1/4740	-
۵	1/4/0	1/4770	1/4.870	+
۶	1/40970	1/4400	1/471140	-
٧	1/4-570	1/471440	1/4140870	

معیارهای توقف

برای توقف محاسبهٔ x_n ها، نه فقط در روش دوبخشی بلکه در سایر روش های تکراری که بعداً معرفی خواهند شد، معیارهایی وجود دارد که در این قسمت بررسی میکنیم.

الف) اگر عدد مفروض و کوچکی باشد، x_n ها را تا جایی حساب میکنیم که $z > |f(x_n)|$. $f(x_n) = \infty$ یعنی، به محض اینکه $z > |f(x_n)|$ عملیات را متوقف میکنیم. دلیل این است که $z = |f(x_n)|$ حال اگر $z = |f(x_n)|$ خیلی کوچک باشد می توان نتیجه گرفت که $z = |f(x_n)|$ خیلی به $z = |f(x_n)|$ نتیجه گرفت که $z = |f(x_n)|$ نزدیک است.

- ب اگر $\alpha > |x_n x_{n-1}| < \epsilon$ عملیات را متوقف و α را به عنوان تقریبی از α می پذیریم. به عبارت دیگر، وقتی اختلاف دو تقریب متوالی بسیار کوچک باشد ادامهٔ روش معقول به نظر نمی آید.
- ϵ گاهی خواسته می شود که عملیات را وقتی متوقف کنیم که خطای مطلق x_n از ϵ کوچکتر باشد یعنی، وقتی که ϵ ϵ از ϵ .

جون مقدار α معلوم نیست از نامساوی کران بالای خطا استفاده میکنیم و قرار می دهیم ب

$$\frac{b-a}{\gamma^n} \le \varepsilon$$
 $\gamma^n \ge \frac{b-a}{\varepsilon}$ که از آن نتیجه می شود:

سپس n را کوچکترین عدد طبیعی اختیار میکنیم که در نامساوی زیر صدق کند:

$n \ge \log_{\gamma} \frac{b-a}{\varepsilon}$

در این صورت، اگر x_n راحساب کنیم خطای مطلق آن از 3کو چکتر خواهد بود·

د)گاهی خواسته می شود که پس از m تکرار (m معلوم است)، عملیات متوقف و xm به عنوان تقریبی از a پذیرفته شود.

الگوريتم روش دوبخشي

$$f(a_0)f(b_0) \leq 0$$
. فرض کنید $f(x)$ یک تابع پیوسته و

For
$$n = 0, 1, 2, ...$$

$$m = \frac{a_n + b_n}{2}$$

If
$$f(a_n)f(m) < 0$$
, then set $a_{n+1} = a_n$, $b_{n+1} = m$

$$a_{n+1} = m, \quad b_{n+1} = b_n$$

Then f(x) = 0 has a real root in the interval $[a_{n+1}, b_{n+1}]$.