

## Setting up your ML application

Train/dev/test sets

#### Applied ML is a highly iterative process

Idea # layers # hidden units learning rates activation functions Experiment Code

NLP, Vision, Speech, Structural dortan Ads Search Security logistic ...

#### Train/dev/test sets



#### Mismatched train/test distribution

Corts

Training set: Dev/test sets: Cat pictures from? Cat pictures from users using your app webpages -> Make sure des al test come from some distibution. tran / der

tran / der

There is the second of the second in the second

Not having a test set might be okay. (Only dev set.)



## Setting up your ML application

#### Bias/Variance

#### Bias and Variance







#### Bias and Variance Cat classification







Optul (Bayes) error: 1/8 to 15.1/.

**6.** ≥. €. ervina un Elucy inoges

#### High bias and high variance





## Setting up your ML application

## Basic "recipe" for machine learning

Basic "recipe" for machine learning

nertwork (training data publimene) (NN archiotectur Search High vonance?.
(Des set putornone) (NN architectus seal) varione)



## Regularizing your neural network

#### Regularization

#### Logistic regression

raquilaizarlin parameter

 $\min_{w,b} J(w,b)$ 

J(w,b) = 1 = 1 (NW) + 2m ||w||\_2

$$||\omega||_2^2 = \sum_{j=1}^{N_x} \omega_j^2 = \omega^T \omega \leq$$

$$\frac{\lambda}{2m} \sum_{j=1}^{N_x} |w_j| = \frac{\lambda}{2m} ||w||_1$$

#### How does regularization prevent overfitting?









How does regularization prevent overfitting?



## Regularizing your neural network

Why regularization reduces overfitting

#### How does regularization prevent overfitting?



#### How does regularization prevent overfitting?





## Regularizing your neural network

# Dropout regularization

#### Dropout regularization





Implementing dropout ("Inverted dropout") -> [13]= np. random. rand (a3. shape To], a3. shape Ti]) < keep-prob a3 = np. multiply (a), d3) # 23 x= 23 -> (a3 /= 08 keep-prob) C 50 units. 20 10 units shut off 2 = W(4) (3) + b 14) To reduced by 20.1.

### Making predictions at test time



/= keap-pols



## Regularizing your neural network

# Understanding dropout

#### Why does drop-out work?

Intuition: Can't rely on any one feature, so have to spread out weights. Shrink weights.





## Regularizing your neural network

# Other regularization methods

#### Data augmentation







## Setting up your optimization problem

#### Normalizing inputs

#### Normalizing training sets



#### Why normalize inputs?

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$









## Setting up your optimization problem

# Vanishing/exploding gradients

# Vanishing/exploding gradients

Single neuron example



vorardi. Xovier initiation 1



## Setting up your optimization problem

Numerical approximation of gradients

#### Checking your derivative computation



## Checking your derivative computation





# Setting up your optimization problem

## Gradient Checking

#### Gradient check for a neural network

Take  $W^{[1]}$ ,  $b^{[1]}$ , ...,  $W^{[L]}$ ,  $b^{[L]}$  and reshape into a big vector  $\theta$ .  $\mathcal{J}(\omega^{(1)}, b^{(1)}, \dots, \omega^{(L)}, b^{(L)}) = \mathcal{J}(\theta)$ 

Take  $dW^{[1]}$ ,  $db^{[1]}$ , ...,  $dW^{[L]}$ ,  $db^{[L]}$  and reshape into a big vector  $d\theta$ .

Is do the gradet of J(0)?

### Gradient checking (Grad check)

for each i:

$$\frac{1}{2} = \frac{1}{2} =$$



# Setting up your optimization problem

Gradient Checking implementation notes

### Gradient checking implementation notes

- Don't use in training — only to debug

- If algorithm fails grad check, look at components to try to identify bug.

- Remember regularization.

- Doesn't work with dropout.

- Run at random initialization; perhaps again after some training.



# Mini-batch gradient descent

# Batch vs. mini-batch gradient descent

Vectorization allows you to efficiently compute on m examples.

## Mini-batch gradient descent

Formal peop on X sts.

Arg = Prob on (Sers) } leaguiser implementation (1200 examples)

A TW = 9 TW (2 TW)

Compute cost  $J^{EE}_{=} = \frac{1}{1000} \stackrel{\text{des}}{=} J(y^{(i)}, y^{(i)}) + \frac{\lambda}{2.1000} \stackrel{\text{E}}{=} ||W^{(1)}||_F^2$ .

W:= W - ddw (2), btl) = btl) - albter

stop of grabit dect veg XIII YIts. (as ifmel soo)

Backprop to compart gradules cort JEE2 (usy (XEE2))

"I epoch" pass through training set.



deeplearning.ai

# Optimization Algorithms

Understanding mini-batch gradient descent

### Training with mini batch gradient descent

Batch gradient descent



Mini-batch gradient descent



### Choosing your mini-batch size

> If mini-both size = m: Borth godul desed. (X ?!) = (X,Y) > It mini-both size = 1: Stochasta graph deseal. Every example is it our (X !!! Y !!) = (x(1), y(1)) ... (x',y') mini-both.

[n practice: Someth in-bother ] al m



Stochastic

gradent

lessent

Lose speaking

from Vestoritation

In-bother (min-hoth size not too by/small) Fustest learnly.

· Vectoraution.

(N 2 000)

Pe

Make propor without

processory extire truly set.

Bostch
gradient desemb
(min; horter size = m)

Too long per iteration

### Choosing your mini-batch size

If small tray set: Use both graher desient.
(m < 2000) Typical minz-borth sizes! -> 64 , 128, 256, 512  $2^{2}$   $2^{8}$   $2^{3}$ Make Sure minitoral fit in CPU/GPU memoory. X Ex Y Ex 3



# Exponentially weighted averages

### Temperature in London

```
\theta_{1} = 40^{\circ}F + C \leftarrow
\theta_{2} = 49^{\circ}F 9°C
\theta_{3} = 45^{\circ}F
\vdots
\theta_{180} = 60^{\circ}F C \leftarrow
\theta_{181} = 56^{\circ}F
\vdots
```



## Exponentially weighted averages





Ve as capproximately

overop over

> 2 1-1-12 days

temperature.



Understanding exponentially weighted averages

### Exponentially weighted averages

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$



### Exponentially weighted averages

$$v_{t} = \beta v_{t-1} + (1 - \beta)\theta_{t}$$

$$v_{100} = 0.9v_{99} + 0.1\theta_{100}$$

$$v_{99} = 0.9v_{98} + 0.1\theta_{99}$$

$$v_{98} = 0.9v_{97} + 0.1\theta_{98}$$
...
$$v_{100} = 0.1 e_{100} + 0.9 e_{100} + 0.1 e_{100} + 0.1$$

### Implementing exponentially weighted averages

$$v_0 = 0$$
  
 $v_1 = \beta v_0 + (1 - \beta) \theta_1$   
 $v_2 = \beta v_1 + (1 - \beta) \theta_2$   
 $v_3 = \beta v_2 + (1 - \beta) \theta_3$   
...

$$V_{0} := 0$$
 $V_{0} := \beta v + (1-\beta) 0,$ 
 $V_{0} := \beta v + (1-\beta) 0_{2}$ 
 $\vdots$ 

$$\Rightarrow$$
  $V_0 = 0$ 

Kapeart  $\xi$ 

Cot part  $0_{\pm}$ 
 $V_0 := \beta V_0 + (1-\beta) 0_{\pm}$ 
 $3$ 



deeplearning.ai

# Optimization Algorithms

Bias correction in exponentially weighted average

#### Bias correction



$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$

$$v_0 = 0$$

$$v_1 = 0.98$$

$$v_1 = 0.98$$

$$v_1 = 0.98$$

$$v_2 = 0.98$$

$$v_1 + 0.02$$

$$v_2 = 0.98$$

$$v_1 + 0.02$$

$$v_2 = 0.98$$

$$v_1 + 0.02$$

$$v_2 = 0.98$$

$$v_2 = 0.98$$

$$v_3 + 0.02$$

$$v_4 = 0.02$$

$$v_4 = 0.02$$

$$\frac{1-\beta^{t}}{1-\beta^{t}}$$

$$t=2: 1-\beta^{t} = 1-(0.98)^{2} = 0.0396$$

$$\frac{1}{0.0396} = \frac{0.01960. + 0.020}{0.0396}$$



# Gradient descent with momentum

### Gradient descent example



Moneyen: On iteration t: Corpute DW, 26 Van= Blaw +



" Vo = B UGT (1-p) OE"

W= W- a Van deeplearning ai

### Implementation details

#### On iteration *t*:

Compute dW, db on the current mini-batch

$$W = W - \alpha v_{dW}, \ b = b - \alpha v_{db}$$

law /

Hyperparameters: 
$$\alpha, \beta$$

$$\beta = 0.9$$
Overlose on last 100 graduits



## RMSprop





# Adam optimization algorithm

### Adam optimization algorithm

### Hyperparameters choice:

$$\rightarrow$$
  $\alpha$ : needs to be tune  
 $\rightarrow$   $\beta$ ,: 0.9  $\rightarrow$  ( $d\omega$ )  
 $\rightarrow$   $\beta$ 2: 0.999  $\rightarrow$  ( $d\omega^2$ )  
 $\rightarrow$   $\Sigma$ : 10-8

Adam: Adaptiv moment estimation



**Adam Coates** 



# Learning rate decay

### Learning rate decay



### Learning rate decay

apoch = 1 pass throsh dort.

1 = 1 t decay-rote \* epoch-num

| Epoch | 2    |
|-------|------|
|       | 0.1  |
| 2     | 0.67 |
| 3     | 6.5  |
| 4     | O. 4 |
|       | -    |





### Other learning rate decay methods





# The problem of local optima

### Local optima in neural networks



#### Problem of plateaus



- Unlikely to get stuck in a bad local optima
- Plateaus can make learning slow



# Hyperparameter tuning

### Tuning process

#### Hyperparameters



#### Try random values: Don't use a grid





#### Coarse to fine





deeplearning.ai

# Hyperparameter tuning

Using an appropriate scale to pick hyperparameters

#### Picking hyperparameters at random

$$\rightarrow h^{Te1} = 50, \dots, 100$$

$$\frac{1}{50}$$

$$50$$

$$100$$

$$\rightarrow \#layes$$

$$\frac{1}{2}, \frac{3}{4}$$

#### Appropriate scale for hyperparameters

## Hyperparameters for exponentially weighted averages

$$\beta = 0.9 \dots 0.999$$

$$|-\beta| = 6.1 \dots 0.001$$

$$|-\beta| = 6.1 \dots 0.001$$

$$|-\beta| = 0.900 \rightarrow 0.9005 \rightarrow 0.9005 \rightarrow 0.9005$$

$$|-\beta| = 0.900 \rightarrow 0.9005 \rightarrow 0.9005 \rightarrow 0.9005$$

$$|-\beta| = 0.900 \rightarrow 0.9005 \rightarrow 0.9005 \rightarrow 0.9005$$



deeplearning.ai

# Hyperparameters tuning

Hyperparameters tuning in practice: Pandas vs. Caviar

#### Re-test hyperparameters occasionally



- NLP, Vision, Speech, Ads, logistics, ....

- Intuitions do get stale. Re-evaluate occasionally.

## Babysitting one model



Panda <

## Training many models in parallel



Caviar <



### Batch Normalization

Normalizing activations in a network

#### Normalizing inputs to speed up learning







#### Implementing Batch Norm





### Batch Normalization

# Fitting Batch Norm into a neural network

#### Adding Batch Norm to a network



#### Working with mini-batches



#### Implementing gradient descent

for t=1 .... num Mini Bortches Compute Cornal Pap on X EtJ. It eath hidden lay, use BN to report 2 Tell with 2 Tell. Update partes Wes: = Wi-adwind } Works w/ momente, RMSpap, Adam.



### Batch Normalization

# Why does Batch Norm work?

#### Learning on shifting input distribution



Why this is a problem with neural networks?



#### Batch Norm as regularization



- Each mini-batch is scaled by the mean/variance computed on just that mini-batch.
- This adds some noise to the values  $z^{[l]}$  within that minibatch. So similar to dropout, it adds some noise to each hidden layer's activations.
- This has a slight regularization effect.



### Batch Normalization

# Batch Norm at test time

#### Batch Norm at test time

$$\mu = \frac{1}{m} \sum_{i} z^{(i)}$$

$$\sigma^{2} = \frac{1}{m} \sum_{i} (z^{(i)} - \mu)^{2}$$

$$Z_{\text{norm}}^{(i)} = \frac{z^{(i)} - \mu}{\sqrt{\sigma^{2} + \varepsilon}}$$

$$\tilde{z}^{(i)} = \gamma z_{\text{norm}}^{(i)} + \beta$$

M, 
$$E^2$$
: estimate vary exponentially weighted average (across vaint-bootho).

X S13, X S11, X S13, ...

P S13[A] M S2[A] M F3 J[A] 

O1 O2 O3  $E^2$ 

R S11[A]  $E^2$ 

R S2[A]  $E^2$ 

R Norm =  $E^2$ 



## Multi-class classification

### Softmax regression

#### Recognizing cats, dogs, and baby chicks





#### Softmax layer



#### Softmax examples





## Multi-class classification

# Trying a softmax classifier

#### Understanding softmax

#### Loss function

#### Summary of softmax classifier





### Programming Frameworks

# Deep Learning frameworks

#### Deep learning frameworks

- Caffe/Caffe2
- CNTK
- DL4J
- Keras
- Lasagne
- mxnet
- PaddlePaddle
- TensorFlow
- Theano
- Torch

#### Choosing deep learning frameworks

- Ease of programming (development and deployment)
- Running speed
- Truly open (open source with good governance)



### Programming Frameworks

#### TensorFlow

#### Motivating problem

$$J(\omega) = \left[ \frac{\omega^2 - 10\omega + 25}{\omega - 5} \right]$$

$$(\omega - 5)^2$$

$$\omega = 5$$

#### Code example

```
× T07 [6] *62
import numpy as np
import tensorflow as tf
coefficients = np.array([[1], [-20],
w = tf.Variable([0], dtype=tf.float32)
x = tf.placeholder(tf.float32, [3,1])
cost = x[0][0]*w**2 + x[1][0]*w + x[2][0]
train = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
init = tf.global variables initializer()
session = tf.Session()
                                   with tf.Session() as session:
                                       session.run(init)
                                       print(session.run(w)
print(session.run(w))
for i in range (1000):
     session.run(train, feed dict={x:coefficients})
print(session.run(w))
```