Unit-V

Pulse Communications

Sampling

- It is process which converts continuous time continuous valued signal to discrete time continuous valued signal.
- □ Sampling rate, $f_s \ge 2f_m$ f_m – frequency of the signal to be sampled

Poor Sampling

Even Worse

Sampling Frequency = 1/3 X Wave Frequency

Higher Sampling Frequency

Getting Better

Good Sampling

Sampling Process

Contd...

From the definition of a delta function, we have

$$g(nT_s) \delta(t - nT_s) = g(t) \delta(t - nT_s)$$

$$g_{\delta}(t) = g(t) \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$$
$$= g(t) \delta_{T_s}(t)$$

 $\delta_{T_s}(t)$ is the Dirac comb or ideal sampling function

Contd...

$$F[\delta_{T_s}(t)] = f_s \sum_{m=-\infty}^{\infty} \delta(f - mf_s)$$

$$G_{\delta}(f) = G(f) * \left[f_s \sum_{m=-\infty}^{\infty} \delta(f - mf_s) \right]$$

$$G_{\delta}(f) = f_s \sum_{m=-\infty}^{\infty} G(f) * \delta(f - mf_s)$$

$$G_{\delta}(f) = f_s \sum_{m=-\infty}^{\infty} G(f - mf_s)$$

process of uniformly sampling a signal in the time domain results in a periodic spectrum in the frequency domain with a period equal to the sampling rate.

Contd..

$$G_{\delta}(f) = \sum_{n=-\infty}^{\infty} g(nT_s) \exp(-j2\pi n f T_s)$$

Sequence of samples | ideal low-pass | Analog signal g(t) |

Figure | Reconstruction filter.

Contd...

Sampling Theorem

- If a finite-energy signal g(t) contains no frequencies higher than W hertz, it is completely determined by specifying its ordinates at a sequence of points spaced 1/2W seconds apart.
- points spaced 1/2W seconds apart.

 If a finite energy signal g(t) contains no frequencies higher than W hertz, it may be completely recovered from its ordinates at a sequence of points spaced 1/2W seconds apart.

Aliasing or Foldover

- HF component in the spectrum of signal taking identity of a LF in the spectrum of its sampled version
- Pre-Alias Filter
- □ fs>2W
- □ Physically realizable reconstruction filter

Contd....

Types of Pulse Modulation

- □ Pulse Amplitude Modulation
- □ Pulse Width/Duration/Length Modulation
- □ Pulse Position Modulation

Pulse Amplitude Modulation

The amplitude of regularly spaced pulses are varied in proportion to the corresponding sample values of a continuous message signal

Rectangular pulse, spectrum, phase

PAM

- □ Derivation- generation
- □ Aperture Effect

PPM/PWM

- Definition
- Generation and detection- Refer Principles of Communication by Taub and Schilling or Communication Systems by Simon Haykins

PWM/PPM

PPM to PWM

Pulse Code Modulation (PCM)

In PCM, a message signal is represented by a sequence of coded pulses, which is accomplished by representing the signal in discrete form in both time and amplitude

Quantization

Process in which discrete-time continuous amplitude signal is converted to discretetime discrete amplitude signal

■Rounding off to the nearest Integer

□Types – Uniform

Non- Uniform

2:23:49 PM

Uniform Quantization

Encoding

Electrical representation of binary data

NRZ-Full symbol width RZ – Half symbol width

NRZ-Non-Return to Zero RZ- Return to Zero

(a) NRZ – Unipolar

1- presence of pulse0-absence of pulse

(b) RZ- Unipolar

• 1- presence of pulse for half symbol period 2:22:18 M -absence of pulse

Regenerative Repeaters

- Helps to control the effects of distortion and channel noise in PCM
- Reconstructing PCM signal from the transmitted signal
- Generates a clean pulse using equalization, timing, and decision making devices

Multiplexing

Definition

A no. of independent signals are combined into a composite signal suitable for transmission over a common channel

□ Types – TDM, FDM

Time Division Multiplexing

Frequency Division Multiplexing

Transmitter

- The signals from the N sources are shifted to another frequency range by modulation.
- Usually SSB/SC is preferred
- BPF filters are used to avoid any spill into the adjacent spectra.

Receiver

- Demodulation and BPF is done
- Filtered signals send to respective destinations

Block Diagram

