

Stream ciphers

Stream ciphers are semantically secure

Goal: secure PRG ⇒ semantically secure stream cipher

Stream ciphers are semantically secure

Thm: G:K $\rightarrow \{0,1\}^n$ is a secure PRG \Rightarrow stream cipher E derived from G is sem. sec.

 \forall sem. sec. adversary A , \exists a PRG adversary B s.t.

 $Adv_{SS}[A,E] \le 2 \cdot Adv_{PRG}[B,G]$

Proof: Let A be a sem. sec. adversary.

For b=0,1:
$$W_b := [$$
 event that b'=1 $]$.

$$Adv_{SS}[A,E] = | Pr[W_0] - Pr[W_1] |$$

Proof: Let A be a sem. sec. adversary.

For
$$b=0,1$$
: $W_b := [event that b'=1].$

$$Adv_{SS}[A,E] = \left[Pr[W_0] - Pr[W_1] \right]$$

For b=0,1: $R_b := [$ event that b'=1]

Proof: Let A be a sem. sec. adversary.

Claim 1:
$$|\Pr[R_0] - \Pr[R_1]| = Adv_{ss}[A, otp] = 0$$

Claim 2: $\exists B: |\Pr[W_b] - \Pr[R_b]| = Adv_{pRG}[B,G]$ for $b=g$?

$$Pr[W_0] Pr[R_b] Pr[W_1]$$

$$Adv_{pRG}[B,G] Adv_{pRG}[B,G]$$

$$\Rightarrow$$
 Adv_{SS}[A,E] = $|Pr[W_0] - Pr[W_1]| \le 2 \cdot Adv_{PRG}[B,G]$

Proof of claim 2:
$$\exists B: |Pr[W_0] - Pr[R_0]| = Adv_{PRG}[B,G]$$

Algorithm B:

$$Adv_{PRG}[B,G] = \begin{cases} P_{r} & \left[B(r)=1\right] - P_{r} \left[B(k(k))=1\right] \\ P_{r} & \left[B(k(k))=1\right] \end{cases} = \left[P_{r}\left[R_{o}\right] - P_{r}\left[N_{o}\right]\right]$$

Dan Boneh

End of Segment