Introduction to Data Analysis

John Myles White

September 8, 2013

Step 1: Get data

Sources:

- Spreadsheets
 - Excel
 - CSV
- Databases
 - MySQL
 - SAS
- System logs

Step 2: Translate unstructured data into tabular data

Good data is tabular data

Tabular Data

Year	Category	Value
2001	В	21.47114
2001	С	18.42930
2006	С	32.38368
?	В	59.11655
?	А	59.11655

Lots of data is not provided in tabular form

Social Graphs

Two possible tabular representations:

- ► Edge list
- Adjacency matrix

Edge List

Out	In
Alice	Carol
Bob	Carol

Adjacency Matrix

	Alice	Bob	Carol
Alice	0	0	1
Bob	0	0	1
Carol	0	0	0

Text Corpora

- ▶ Document 1: "I am a phrase"
- ▶ Document 2: "This is a phrase and that is too"
- ▶ Document 3: "This phrase not"

Two possible tabular representations:

- ► Word counts
- Word occurrences

Word counts

ı	am	a	phrase	this	is	and	that	too	not
1	1	1	1	0	0	0	0	0	0
0	0	1	1	1	2	1	1	1	0
0	0	0	1	1	0	0	0	0	1

Word occurrences

I	am	a	phrase	this	is	and	that	too	not
1	1	1	1	0	0	0	0	0	0
0	0	1	1	1	1	1	1	1	0
0	0	0	1	1	0	0	0	0	1

Sounds

Sounds

```
119000x1 Array{Float64,2}:
0.00451674
0.00534074
0.00589007
...
0.00787378
0.00787378
```

Images


```
julia> int(img.data)
400x325 Array{Int64,2}:
133 133 132 131
                     133 135 135
                                      132
                                                     62
133 134 134 133
                      133
                           133
                                133
                                      132
                                                           65
                                                                                69
                                                62
                                                     63
                                                                67
                                                                      69
                                                                           69
133 134 135
                      134
                                      134
                 135
                           132
                                133
                                                     64
                                                           66
                                                                      71
                                                                           69
                                                                                 69
133
     133 135
                 136
                      135
                           133
                                133
                                      135
                                                     63
                                                                      70
                                                                           70
                                                                                70
                                                62
                                                           66
                                                                69
135
     134
           135
                 136
                      137
                           135
                                 134
                                      135
                                                61
                                                     63
                                                           66
                                                                66
                                                                      69
                                                                           71
                                                                                71
      136
                                                     62
                                                                                 71
137
           136
                 136
                      137
                           136
                                134
                                      134
                                                61
                                                           65
                                                                65
                                                                      67
                                                                           71
                 136
                                                           65
                                                                     68
                                                                                71
137
      137
           137
                      136
                           136
                                135
                                      134
                                                62
                                                     62
                                                                66
                                                                           71
136
      138
           138
                 136
                      135
                           137
                                137
                                      136
                                                                           70
                                                                                70
                                                     63
                                                           65
                                                                67
                                                                      69
139
      138
           138
                 138
                      137
                           136
                                 135
                                      135
                                                65
                                                     67
                                                           67
                                                                65
                                                                      69
                                                                                 69
     139
           138
                 138
                      137
                           136
                                135
                                      136
                                                64
                                                           68
                                                                67
                                                                      79
                                                                           71
                                                                                71
140
                                                     66
207
                           210
                                               173
                                                    173
                                                         172
                                                               171
                                                                               170
      209
           209
                 208
                      209
                                 211
                                      210
                                                                    171
                                               175
                                                    175
                                                          172
                                                               171
                                                                               171
208
           209
                 209
                      210
                           210
                                 209
                                      208
                                                                    170
                                                                          171
209
      209
           208
                 208
                      209
                           209
                                 209
                                      209
                                               172
                                                    171
                                                         171
                                                               170
                                                                    169
                                                                               170
                                               172
                                                    171
                                                          171
210
           208
                 207
                      208
                           209
                                 210
                                      210
                                                               170
                                                                    170
                                                                          170
                                                                               170
209
      208
           208
                                      210
                                                   171
                                                          170
                                                               179
                                                                               169
                 207
                      208
                           209
                                 209
                                               172
                                                                    169
                                                                          169
           208
                           208
208
      208
                 208
                      208
                                 208
                                      208
                                               170
                                                    169
                                                          168
                                                               169
                                                                    169
                                                                               168
206
      207
           208
                 209
                      208
                           208
                                 207
                                      207
                                               170
                                                    170
                                                          169
                                                               169
                                                                    168
                                                                               167
                                                                          167
206
      207
           208
                 208
                      207
                           207
                                 206
                                      206
                                               169
                                                    168
                                                          166
                                                               166
                                                                    164
                                                                               162
207
      207
           208
                207
                     206
                           206
                                 206
                                      206
                                               164 162
                                                         161
                                                              160
                                                                    157
                                                                         154
                                                                               154
```

julia> [

Step 3: Do something with your tabular data

Two classes of operations

- ► Reduce the size of tables
- ▶ Fill in tables

Data reductions

- Summary statistics
- Dimensionality reduction
- Clustering

Summary Statistics

AAPL	INTC	GOOG
616.76	23.94	757.00
623.00	21.73	743.10
601.34	19.16	713.32
599.34	20.85	723.24

Mean AAPL	Mean INTC	Mean GOOG
610.11	21.42	734.17

Dimensionality Reduction

AAPL	INTC	GOOG		DJI
616.76	23.94	757.00		13603.14
623.00	21.73	743.10	├	13614.14
601.34	19.16	713.32		13632.14
599.34	20.85	723.24		13589.14

Clustering

AAPL	INTC	goog		Market
616.76	23.94	757.00		Bull
623.00	21.73	743.10		Bull
601.34	19.16	713.32		Bear
599.34	20.85	723.24		Bear

Filling in data

- Regression
- Classification

Regression

Year	Timbre1	Timbre2
2001	49.94357	21.47114
2001	48.73215	18.42930
2006	44.16614	32.38368
2011	51.85726	?

Classification

IsSpam	MentionsViagra	MentionsNigeria
Yes	No	Yes
?	Yes	Yes
No	No	No
Yes	Yes	No

Let's dig in to details now

Summary statistics

Two main categories:

- Summarize the "typical" value
- Summarize variability around typical values

Summary Statistics

AAPL	INTC	GOOG
616.76	23.94	757.00
623.00	21.73	743.10
601.34	19.16	713.32
599.34	20.85	723.24

Mean AAPL	Mean INTC	Mean GOOG
610.11	21.42	734.17

Typical value summaries

- Mean
- Median
- Mode
- Midrange

The mean of a vector is the average

$$x \leftarrow c(9, 9, 10, 11, 9, 10, 11)$$

 $mean(x) # => 9.857143$
 $sum(x) / length(x) # => 9.857143$

The median of a vector is the center of the sorted values

```
median(x) # => 10
sort(x)[ceiling(length(x) / 2)] # => 10
```

The mode of a vector is the most frequently occurring value

```
mode <- function(x)
{
    T <- table(x)
    return(names(T)[which(T == max(T))])
}
mode(x)</pre>
```

The midrange of a vector lies halfway between its bounds

```
midrange <- function (x)
{
    return(min(x) + (max(x) - min(x)) / 2)
}
midrange(x)</pre>
```

Why are these four summaries special?

They minimize different errors when approximating data

```
squared.error <- function(s)
{
    return(sum(abs(x - s)^2))
}
grid <- seq(min(x), max(x), by = 0.01)
plot(grid, sapply(grid, squared.error))</pre>
```



```
absolute.error <- function(s)
{
    return(sum(abs(x - s)))
}
grid <- seq(min(x), max(x), by = 0.01)
plot(grid, sapply(grid, absolute.error))</pre>
```



```
zero.one.error <- function(s)
{
    return(sum(abs(x != s)))
}
grid <- seq(min(x), max(x), by = 0.01)
plot(grid, sapply(grid, zero.one.error))</pre>
```



```
max.error <- function(s)
{
    return(max(abs(x - s)))
}
grid <- seq(min(x), max(x), by = 0.01)
plot(grid, sapply(grid, max.error))</pre>
```


Summary statistics summarized

- Mean: Minimizes squared error
- ► Median: Minimizes absolute error
- Mode: Minimizes zero-one error
- Midrange: Minimizes max error

Homework Problems

- ▶ Prove the claims made about summary statistics are correct
 - Nested problem: relearn any rusty math
- Make those summary statistics work on huge data sets
 - ► Compute the mean without storing vector in memory
 - ► Compute the median without storing vector in memory
 - Compute mode without maintaing list of unique items

Variability summaries

- ► Range: Min-Max
- Standard Deviation / Variance
- Median Absolute Deviation
- ► Inter-Quantile Range (IQR)

```
min(x) # => 9
max(x) # => 11
range(x) #=> c(9, 11)
```

sd(x) # => 0.8997354var(x) # => 0.8095238

```
my.var <- function(x)
{
    return(sum(abs(x - mean(x))^2) / (length(x) - 1))
}</pre>
```

Why divide by length(x) - 1?

This gives correct result when averaging across data sets

mad(x) #=> 1.4826

```
my.mad <- function(x)
{
    return(1.4826 * median(abs(x - median(x))))
}</pre>
```

1.4826 makes estimate behave like standard deviation

IQR(x) # => 1.5

```
my.IQR <- function(x)
{
    return(diff(quantile(x, c(0.75, 0.25))))
}</pre>
```

Almost everything in data analysis reduces to these ideas

Break for questions

Dimensionality reduction

Dimensionality Reduction

AAPL	INTC	GOOG		DJI
616.76	23.94	757.00		13603.14
623.00	21.73	743.10		13614.14
601.34	19.16	713.32		13632.14
599.34	20.85	723.24		13589.14

Try to produce a lower-dimensional representation of data

Common forms:

- ▶ PCA Principal Components Analysis
- ► ICA Independent Components Analysis
- ▶ NMF Non-Negative Matrix Factorization

PCA computes a multivariate "mean"

```
stocks <- read.csv(file.path('data', 'stocks.csv'))
dates <- stocks[, 1]
pca <- princomp(stocks[, 2:ncol(stocks)])</pre>
```

```
library(ggplot2)
ggplot(comparison, aes(x = MarketIndex, y = DJI)) +
  geom_point() +
  geom_smooth(method = 'lm', se = FALSE)
```

```
alt.comparison <- melt(comparison, id.vars = 'Date')</pre>
names(alt.comparison) <- c('Date', 'Index', 'Price')</pre>
ggplot(alt.comparison,
       aes(x = Date.
            y = Price,
            group = Index,
            color = Index)) +
  geom_point() +
  geom_line()
```

Clustering

Replace each row with a category label

Common forms:

- k-Means
- ► Hierarchical clustering
- Spectral clustering

data(iris)

> head(iris)

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa

```
ggplot(iris,
    aes(x = Petal.Length,
    y = Petal.Width,
    color = Species)) +
  geom_point()
```


kmeans(iris[, 1:4], 3)

K-means clustering with 3 clusters of sizes 50, 62, 38

Cluster means:

```
Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.006000 3.428000 1.462000 0.246000
2 5.901613 2.748387 4.393548 1.433871
3 6.850000 3.073684 5.742105 2.071053
```

Clustering vector:

Species X1 X2 X3 X4 1 setosa 5.006 3.428 1.462 0.246 2 versicolor 5.936 2.770 4.260 1.326 3 virginica 6.588 2.974 5.552 2.026

Break for questions

Switch from summaries to filling in operations

Regression

Year	Timbre1	Timbre2
2001	49.94357	21.47114
2001	48.73215	18.42930
2006	44.16614	32.38368
2011	51.85726	?

A toy regression problem

Fahrenheit	Celsius
212°	100°
32°	0°

Solve in R

Results in R

```
> summary(lm.fit)
Call:
lm(formula = Fahrenheit ~ Celsius, data = df)
Residuals:
ALL 2 residuals are 0: no residual degrees of freedom!
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 32.0
                           NA
                                   NA
                                            NA
Celsius
                1.8
                           NA
                                   NA
                                            NA
Residual standard error: NaN on 0 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared:
                                                    NaN
F-statistic: NaN on 1 and 0 DF, p-value: NA
> predict(lm.fit, data.frame(Celsius = 40))
104
```

Solve variant in R

Results in R

```
Call:
lm(formula = Fahrenheit ~ Celsius, data = df)
Residuals:
 6.667 -13.333 6.667
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 25.3333 14.9071 1.699 0.3386
Celsius 1.8000 0.2309 7.794 0.0812 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 16.33 on 1 degrees of freedom
Multiple R-squared: 0.9838, Adjusted R-squared: 0.9676
F-statistic: 60.75 on 1 and 1 DF. p-value: 0.08123
> predict(lm.fit, data.frame(Celsius = 40))
97.33333
```

Classification

IsSpam	MentionsViagra	MentionsNigeria
Yes	No	Yes
?	Yes	Yes
No	No	No
Yes	Yes	No

A toy classification problem

IsSpam	MentionsViagra	MentionsNigeria
Yes	No	Yes
Yes	Yes	Yes
No	No	No
Yes	Yes	No

Convert categories to numbers

IsSpam	MentionsViagra	MentionsNigeria
1	0	1
1	1	1
0	0	0
1	1	0

Solve in R

Results in R

```
qlm(formula = IsSpam ~ MentionsViagra + MentionsNigeria, family = binomial()
= "logit"),
   data = df
Deviance Residuals:
        1
 1.197e-05 2.110e-08 -1.197e-05 1.197e-05
Coefficients:
                Estimate Std. Error z value Pr(>|z|)
(Intercept) -23.36 71664.47
MentionsViagra 46.72 101348.81
MentionsNigeria 46.72 101348.81
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 4.4987e+00 on 3 degrees of freedom
Residual deviance: 4.2978e-10 on 1 degrees of freedom
AIC: 6
Number of Fisher Scoring iterations: 23
```

Solve variant in R

Results in R

```
qlm(formula = IsSpam ~ MentionsViagra + MentionsNigeria, family = binomial(link
= "logit"),
   data = df
Deviance Residuals:
1.0519
         0.8234 -1.0519 1.0519 -1.5789
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
(Intercept)
               -0.3025
                           1.7188 -0.176
                                             0.860
MentionsViagra 0.6050 1.9060 0.317
                                            0.751
MentionsNigeria 0.6050
                           1.9060
                                    0.317
                                             0.751
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 6.7301 on 4 degrees of freedom
Residual deviance: 6.4907 on 2 degrees of freedom
AIC: 12,491
Number of Fisher Scoring iterations: 4
```

Richer case study

- Predict web site popularity
- Predict book sales for O'Reilly's books

Web Data

Rank	Site	Category
1	facebook.com	Social
2	youtube.com	Online
3	yahoo.com	Web
4	live.com	Search

Web Data

UniqueVisitors	Reach	PageViews
880000000	47.2	9.1e+11
800000000	42.7	1.0e+11
660000000	35.3	7.7e+10
550000000	29.3	3.6e+10

Web Data

HasAdvertising	InEnglish	TLD
Yes	Yes	.com

Load and Check Web Data

Page Views vs Visitors

```
ggplot(top.1000.sites, aes(x = PageViews, y = UniqueVisitor
geom_point()
ggsave(file.path("images", "page_views_vs_visitors.pdf"))
```

Page Views vs Visitors

Log Page Views vs Log Visitors

Log Page Views vs Log Visitors

Visual Linear Regression

Visual Linear Regression

Simple Linear Regression

Simple Linear Regression

Min 1Q Median 3Q Max

-2.1825 -0.7986 -0.0741 0.6467 5.1549

Call:

Residuals:

```
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.83441 0.75201 -3.769 0.000173 ***
log(UniqueVisitors) 1.33628 0.04568 29.251 < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 '
Residual standard error: 1.084 on 998 degrees of freedom
Multiple R-squared: 0.4616, Adjusted R-squared: 0.4611
F-statistic: 855.6 on 1 and 998 DF, p-value: < 2.2e-16
```

lm(formula = log(PageViews) ~ log(UniqueVisitors), data = f

Super-Charged Linear Regression

Super-Charged Linear Regression

```
Call:
```

```
lm(formula = log(PageViews) ~ HasAdvertising + log(UniqueV:
InEnglish, data = top.1000.sites)
```

Residuals:

Min 1Q Median 3Q Max -2.4283 -0.7685 -0.0632 0.6298 5.4133

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.94502 1.14777 -1.695 0.09046 .

HasAdvertisingYes 0.30595 0.09170 3.336 0.00088 ***
log(UniqueVisitors) 1.26507 0.07053 17.936 < 2e-16 ***
InEnglishNo 0.83468 0.20860 4.001 6.77e-05 ***
InEnglishYes -0.16913 0.20424 -0.828 0.40780

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 '

Measuring Predictive Power

```
lm.fit <- lm(log(PageViews) ~ HasAdvertising,</pre>
              data = top.1000.sites)
summary(lm.fit)$r.squared
[1] 0.01073766
lm.fit <- lm(log(PageViews) ~ log(UniqueVisitors),</pre>
              data = top.1000.sites)
summary(lm.fit)$r.squared
[1] 0.4615985
lm.fit <- lm(log(PageViews) ~ InEnglish,</pre>
              data = top.1000.sites)
summary(lm.fit)$r.squared
[1] 0.03122206
```

Correlation and Causation

```
x <- 1:10
y <- x^2

cor(x, y)
[1] 0.9745586

coef(lm(scale(y) ~ scale(x)))[2]
[1] 9.745586e-01</pre>
```

- Regularization
- Cross-Validation
- ► Text Regression
- Optimization