CHEM 1A03: Intro. Chemistry I

Water & Aqueous Chemistry

Ch.5: Reactions in Aqueous Solutions

Water: A Vital Natural Resource!

Significance of Water: Energy, Health & Environment

"No single measure would do more to reduce disease and save lives in the developing world than bringing safe water & adequate sanitation to all."

UN Secretary-General Kofi Annan, 2003 International Year of Freshwater

"Water is probably the only natural resource to touch all aspects of human civilization —from agricultural and industrial development to the cultural & religious values embedded in society."

Koichiro Matsuura, Director-General, UNESCO

Water: An Enigmatic Medium!

Unique Macroscopic Properties Essential to Life

- 1. Unusually high boiling point (b.p.) of liquid water at STP: bp = 100°C at 1 atm (Sea level) → T,P-dependent
- 2. Density of ice (0.92 g/mL) < liquid water (1 g/mL) at 0°C: Ice expands with freezing: Lower packing density
- en.wikipedia.org/wiki/
- 3. High specific heat capacity of water (74 J/mol·K at STP): Absorbs thermal heat for storage/distribution/release
- 4. Water dissolves a variety of solutes as a solvent:

 Strong solvation properties for most polar molecules/ions

en.wikipedia.org/wiki/Snowflak

41 Anomalies of Water: http://www.lsbu.ac.uk/water/anmlies.html

iClicker Question #1

Which intermolecular force accounts for water's unusual high b.p.?

- (a) Ion-dipole
- (b) Dipole-dipole
- (c) H-bonding
- (d) Van der Waals
- (e) none of the above

Hydrogen bonds: possible because

of water's extreme polarity

Solute Solvation by Water

- Solubilization of polar/ionic solutes: Hydration
- Energetically favorable H₂O-solute interactions:
 H-bonding (dipole-dipole) with solutes (O-H, N-H, C=O)
 +/- ion-dipole forces

Properties of Water Vital for Molecular Behaviour

Ion Hydration, Sodium Pumps & Ion Transport

Sodium Ion

Solubility, Toxicity & Bioaccumulation

Dichlorodiphenyl-trichloroethane (DDT)

Protein Folding, Activity & Drug Binding

Human Serum Albumin (HSA)

Auto-ionization of Water

Water auto-ionization: Water is amphoteric & conductive

$$2H_2O(1) \stackrel{K_w}{\rightleftharpoons} H_3O^+(aq) + OH^-(aq)$$

Water acts as acid & base with itself!

$$K_{\rm w} = [{\rm H_3O^+}][{\rm OH^-}] = 1 \times 10^{-14} (25^{\circ}{\rm C})$$

Why isn't [H₂O] included in equilibrium expression?

Purified De-ionized Water:

pH = $-log[H_3O^+] = 7.0$ Low conductivity since $[H_3O^+] \& [OH^-] = 0.1 \mu M$

Solute Properties & Electrolytes

Degree of ionization of an electrolyte in aqueous solution!

Solutes as Electrolytes

1. Strong electrolyte (Ionic)

Sodium Chloride:

$$NaCl(aq) \longrightarrow Na^{+}(aq) + Cl^{-}(aq)$$

Intravenous supply of electrolytes

2. Weak electrolyte (Weakly Ionic)

Acetic Acid: Vinegar (5-8% w)

Preservative/Sour

$$pK_a = 4.8$$
 Conductive ions
 $CH_3COOH (aq) + H_2O (1)$ $CH_3COO^- (aq) + H_3O^+ (aq)$

3. Non-electrolyte (Neutral)

Ethanol: Vodka (> 40% v)

$$CH_3CH_2OH$$
 $pK_a = 16 \rightarrow No ionization$

Spirit, Depressant & Diuretic

iClicker Question #2

Which of the following would be the strongest conductor of electricity?

- (a) NaBr (aq, 1M)
- (b) CH₃OH (I)
- (c) CH₃COOH (aq, 1M)
- (d) $(NH_4)_2SO_4$ (aq, 1M)
- (e) $H_2O(I)$

Major Types of Aqueous Chemical Reactions

1. Solubility or Precipitation Reactions: (ion transfer)Lab 2

$$Cu(NO_3)_2(aq) + 2 NaOH(aq) \rightleftharpoons Cu(OH)_2(s) + 2 NaNO_3(aq)$$

2. Reduction-Oxidation (Redox) Reactions: (electron transfer)

$$Zn(s) + Cu^{2+}(aq) = Zn^{2+}(aq) + Cu(s)$$
 Lab 2

3. Acid-Base Reactions: (proton transfer)

K is a measure of extent of chemical reaction & transformation!

Solubility: Qualitative Guidelines

TABLE 5.1 Solubility Guidelines for Common Ionic Solids

Follow the lower-numbered guideline when two guidelines are in conflict. This leads to the correct prediction in most cases.

- 1. Salts of group 1 cations (with some exceptions for Li⁺) and the NH₄⁺ cation are soluble.
- 2. Nitrates, acetates, and perchlorates are soluble.
- 3. Salts of silver, lead, and mercury(I) are insoluble.
- 4. Chlorides, bromides, and iodides are soluble.
- 5. Carbonates, phosphates, sulfides, oxides, and hydroxides are insoluble (sulfides of group 2 cations and hydroxides of Ca²⁺, Sr²⁺, and Ba²⁺ are slightly soluble).
- 6. Sulfates are soluble except for those of calcium, strontium, and barium.

Soluble: Strong Electrolytes ($K_{sp} >> 1$)

$$KI(aq) \longrightarrow K^+(aq) + I^-(aq)$$

Insoluble: Weak Electrolytes (K_{sp} << 1)

$$CdCO_3$$
 (s) \longrightarrow Cd^{2+} (aq) + CO_3^{2-} (aq)

"slightly soluble" = soluble

Table 5-1; p. 156-159 (146-149, 9th ed.)

Net Ionic Reaction

Precipitation of AgI (s)

$$AgNO_3 (aq) + KI (aq) \longrightarrow AgI (s) + KNO_3 (aq)$$

or

Total Ionic Equation

$$Ag^{+}(aq) + NO_{3}^{-}(aq) + K^{+}(aq) + I^{-}(aq) \longrightarrow AgI(s) + K^{+}(aq) + NO_{3}^{-}(aq)$$

Spectator lons
Derived from Strong
Electrolytes

Net Ionic Equation

$$Ag^{+}(aq) + I^{-}(aq) \longrightarrow AgI(s)$$

Practice Exercise & Solution

Practice Question:

Determine the mass of KI needed to precipitate 0.1 mM of AgNO₃ in a 20 mL sample solution.

Balanced equation:

$$AgNO_3$$
 (aq) + KI (aq) \rightarrow AgI (s) + KNO₃(aq)

Moles of AgNO₃ present in solution:

$$(1 \times 10^{-4} \text{ moles/L}) \times (2 \times 10^{-2} \text{ L}) = 2 \times 10^{-6} \text{ moles of AgNO}_3$$

moles of KI = moles of $AgNO_3$, from the balanced reaction.

Mass of KI = 2×10^{-6} moles x 166.0 g/mol = 0.3 mg

Solubility & Precipitation: Demo#1

Solubility Product (defined by K_{sp})

$$AgI(s) \stackrel{K_{sp}}{\rightleftharpoons} Ag^{+}(aq) + I^{-}(aq)$$

$$K_{\rm sp} = 8.3 \times 10^{-17}$$

Precipitation

$$Ag^{+}(aq) + I^{-}(aq) \longrightarrow AgI(s)$$

$$K = 1/K_{\rm sp} = 1.2 \times 10^{16}$$

AgNO₃ (aq)

Nal (aq)

 $AgI(s) + NaNO_3(aq)$

Solubility & Precipitation: Demo#2

$$K_{sp}$$
 PbI₂ (s) \longrightarrow Pb²⁺ (aq) + 2I⁻ (aq) K_{sp} = 7.1 x 10⁻⁹

iClicker Question #3

What would be the impact of dissolving Pbl_2 in a 1.0 M solution of $Pb(NO_3)_2$?

a.Increase the solubility

b.Decrease the solubility

c.No effect on equilibrium

Solubility Product for Salts: K_{sp}

- Measure of the intrinsic solubility of a salt in aqueous solution \rightarrow Also temp., pH, ionic strength dependent; K_{sp} in pure water
- A low K_{sp} << 1 implies a sparingly soluble or highly insoluble salt</p>

Which form of apatite is least soluble & most resistant to demineralization (tooth decay)?

Hydroxylapatite

$$Ca_{5}(PO_{4})_{3}OH(s) = 5Ca^{2+}(aq) + 3PO_{4}^{3-}(aq) + OH^{-}(aq)$$

$$K_{\rm sp} = [{\rm Ca^{2+}}]^5 [{\rm PO_4^{3-}}]^3 [{\rm OH^{-}}] = 1.0 \times 10^{-36}$$

Fluorapatite

$$Ca_5(PO_4)_3F(s) = 5Ca^{2+}(aq) + 3PO_4^{3-}(aq) + F^{-}(aq)$$

$$K_{\rm sp} = [{\rm Ca^{2+}}]^5 [{\rm PO_4^{3-}}]^3 [{\rm F^-}] = 1.0 \times 10^{-60}$$

Differential Solubility of Salts

Determine the Relative Decrease in Solubility of Fluorapatite vs. Hydroxylapatite

Hydroxylapatite:
$$K_{sp}$$
 $Ca_5(PO_4)_3OH(s) \longrightarrow 5Ca^{2+}(aq) + 3PO_4^{3-}(aq) + OH^-(aq)$ $K_{sp} = [Ca^{2+}]^5 [PO_4^{3-}]^3 [OH^-] = 1.0 \times 10^{-36}$

Let $x = [OH^{-}]$ formed upon dissolution

$$K_{sp} = (5x)^5 (3x)^3 (x) = 84375 x^9$$

Molar solubility of $x = [K_{sp}/84375]^{1/9} = 2.84 \times 10^{-5} \, \text{M}$
— hydroxylapatite

Differential Solubility of Salts...contd

Similarly, for Fluorapatite:

$$Ca_5(PO_4)_3F(s)$$
 $\stackrel{K_{sp}}{=}$ $5Ca^{2+}(aq) + 3PO_4^{3-}(aq) + F^-(aq)$
 $K_{sp} = [Ca^{2+}]^5 [PO_4^{3-}]^3 [F^-] = 1.0 \times 10^{-60}$

Let $x = [F^-]$ formed upon dissolution

$$K_{sp} = (5x)^5 (3x)^3 (x) = 84375 x^9$$

 $x = [K_{sp}/84375]^{1/9} = 6.11 \times 10^{-8} M$

Chemistry

Take Home Problem

What is the molar solubility of cobalt (II) hydroxide ($K_{sp} = 1.6 \times 10^{-15}$)?

d.
$$7.4 \times 10^{-6}$$

Application: Low Cost Defluoridation Method

- Inexpensive, renewable and low cost method needed for defluoridation of drinking water in villages of developing countries
- Ion-exchange process uses charred animal bone that is pulverized, filtered & washed for defluoridation via F⁻ adsorption

Q vs K_{sp} : Practice Question

Precipitation of PbS (s): Lead Contamination

PbS (s)
$$\Longrightarrow$$
 Pb²⁺ (aq) + S²⁻ (aq)

$$K_{sp} = [Pb^{2+}][S^{2-}] = 3.0 \times 10^{-29}$$

Will a precipitate form if 0.50 mL of 10 μ M of K₂S is mixed with 250 mL of 0.10 μ M Pb(NO₃)₂ ?

$$K_2S$$
 (aq) + $Pb(NO_3)_2$ (aq) \rightleftharpoons $2KNO_3$ (aq) + PbS (s)

Initial Concentration of K₂S After Mixing Solutions:

Initial Concentration of Pb(NO₃)₂
After Mixing Solutions:

=
$$(1x10^{-5} \text{ mol/L*5}x10^{-4} \text{ L}) / 2.505x10^{-1} \text{ L}$$
 = $(1x10^{-7} \text{ mol/L*2}.50x10^{-1} \text{ L}) / 2.505x10^{-1} \text{ L}$
= $1.996 \times 10^{-8} \text{ M}$ = $9.980 \times 10^{-8} \text{ M}$

$$Q = [Pb^{2+}][S^{2-}] = (9.98 \times 10^{-8})(1.996 \times 10^{-8}) = 2.0 \times 10^{-15} >> K_{sp}$$

Therefore, precipitate of PbS (s) will form!

iClicker Questions #4 & #5

What is the value for Q_{sp} if 0.500 mL of 1.50M BaCl₂ is mixed with 0.600 mL of 0.20M NaOH?

a. 8.1 x 10⁻³

b. 7.7×10^{-3}

c. 2.3×10^{-3}

d. 9.1 x 10⁻²

e. 7.4 x 10⁻²

If the K_{sp} for Ba(OH)₂ is 5 x 10⁻³, will a precipitate form?

a.Yes

b.No

Take Home Problem

Which of the following reactions will result in formation of a precipitate?

(i) 2 NaOH (aq) + MgCl₂ (aq)
$$\longrightarrow$$
 Mg(OH)₂ (s) + 2NaCl (aq)

(ii) BaS (aq) + CuSO₄ (aq)
$$\longrightarrow$$
 CuS (s) + BaSO₄ (s)

(iii)
$$(NH_4)_2SO_4$$
 (aq) + $ZnCl_2$ (aq) $\longrightarrow ZnSO_4$ (aq) + $2NH_4Cl$ (aq)

(A) i (D) i and ii

(B) ii (E) ii and iii

(C) iii

Note that precipitation reactions involve an ion-exchange process without changes in oxidation state of any species

Chemistry

Ch 5-2, p. 159 (p. 149, 0th ed.)

Reduction-Oxidation Reactions (Redox)

- A redox reaction can be identified by changes in oxidation numbers (O.N.) in the reactants and products
- The reducing <u>agent</u> loses electrons and is oxidized
- The oxidizing <u>agent</u> gains electrons and is reduced

Example (Lab 2):

LEO says GER or OIL RIG

$$Zn(s) + 2 HCI(aq) \rightarrow H_2(g) + ZnCI_2(aq)$$

O.N. 0 +1 -1 0 +2 -1

Zn(s) is oxidized (loses 2 e⁻)

Zn is the reducing agent

H⁺(aq) is reduced (each H⁺ gains 1 e⁻) H⁺ is the oxidizing agent

Concept Check: Oxidation States of Nitrogen

N Biogeochemical Cycle

Compound or ion	Oxidation state		
NO ₃		gent)	Reduction half-reaction (oxidizing agent)
N ₂ O ₄ NO ₂ ⁻		ng ag	izing
NO ₂		educi	oxidi
NO		on (r	tion (
N ₂ O		eacti	-reac
N ₂		Oxidation half-reaction (reducing agent)	n half
NH ₂ OH		ation	
N ₂ H ₄		Oxida	Redi
NH ₃			

Copyright © 2007 Pearson Prentice Hall, Inc.

iClicker Question #6

What is the oxidation number for phosphorous in Na₂HPO₄?

- a. 0
- b. +3
- c. -2
- d. +5

Redox Reactions

Thermite Reaction (or Goldschmidt reaction, 1893)

 A classic redox reaction involving hematite (rust) and aluminum for welding applications/pyrotechnics

Reducing agent

Fe₂O₃(s) + 2A1(s)
$$\longrightarrow$$
 2Fe (l) + Al₂O₃(s)
+3 Oxidizing agent Δ° H < 0; T > 2,000 K

Consider Half-Reactions

1.
$$Fe^{3+}(s) + 3e^{-} \longrightarrow Fe(I)$$
 Reduction (Gains e⁻)

2. Al(s)
$$\longrightarrow$$
 Al³⁺ (s) + 3e⁻ Oxidation (Loses e⁻)

A redox reaction is an electron transfer process!

http://www.youtube.com/watch?v=Yex063_Fblk

Highly Exothermic!

iClicker Question #7

Identify the <u>oxidizing agent</u> in the following redox reaction:

$$K_2Cr_2O_7$$
 (aq) + HI (aq) --> KI (aq) + CrI_3 (aq) + I_2 (s) + H_2O (I)

- a. I-
- b. $Cr_2O_7^{2-}$
- c. K+
- d. Cr³⁺
- e. H₂O

From the Iron Age to Post-Modern Age

Reduction of Iron Oxide

- Steel and related iron-based alloys are widely used in construction
- Smelting of iron ore in a blast furnace → Chemical reduction method for iron (Fe) extraction; Feedstocks: C, Fe₂O₃, CaCO₃

Stainless steel Fe (Cr, Ni)

Hamilton: Steel City

Blast Furnace: Continuous Generation of Fe (I)

Balancing Redox Reactions: Half-reactions

- 1. Deduce the oxidation numbers for all species → This will identify the oxidizing and reducing agents
- 2. Write reduction and oxidation skeleton half-reactions
- 3. Balance the redox atoms (usually not O, H unless they are participating in the redox chemistry)
- 4. Add the correct number of electrons to each half-reaction
- 5a. If acidic conditions: Balance O by adding H₂O then H by H⁺
- 5b. If basic conditions: Balance as if in acidic conditions, then add OH⁻ to balance the H⁺ (making water), then cancel the H₂O (or balance the negative charges by adding OH⁻, then balance O & H by adding H₂O)
- 6. Check atoms and charges. Multiply half-reactions by a factor, if needed, to make the number of electrons transferred match.
- 7. Write the net redox reaction!

Balancing Redox Reactions: Acidic Conditions

Balance the following reaction under acidic conditions:

$$Fe^{2+}$$
 (aq) + MnO_4^{-} (aq) \rightarrow Fe^{3+} (aq) + Mn^{2+} (aq)

Half-cell Reactions:

Oxidation Fe²⁺ (aq)
$$\rightarrow$$
 Fe³⁺ (aq) + 1e⁻ X 5
Reduction $^{+7}\text{MnO}_4^-$ (aq) + 5e⁻ + 8H⁺ (aq) \rightarrow Mn²⁺ (aq) + 4H₂O (I)

Net Balanced Redox Reaction

$$5Fe^{2+}$$
 (aq) + MnO₄⁻ (aq) + 8H⁺ (aq) \rightarrow
 $5Fe^{3+}$ (aq) + Mn²⁺ (aq) + 4H₂O (I)

Balancing Redox Reactions: Basic Conditions

Balance the following reaction under basic conditions:

$$SO_3^{2-}(aq) + MnO_4^{-}(aq) \rightarrow SO_4^{2-}(aq) + MnO_2(s)$$

Half-cell Reactions:

Oxidation
$$SO_3^{2-}$$
 (aq) + $H_2O(I) \rightarrow SO_4^{2-}$ (aq) + $2e^- + 2H^+$ (aq) X 3

Reduction
$$^{+7}MnO_4^-$$
 (aq) + 3e⁻ + 4H⁺ (aq) \rightarrow MnO₂ (s) + 2H₂O (l) X 2

$$3SO_3^{2-}$$
 (aq) + $2MnO_4^-$ (aq) + $2H^+$ (aq) \rightarrow
 $3SO_4^{2-}$ (aq) + $2MnO_2$ (s) + H_2O (l)

Net Balanced Redox Reaction

$$3SO_3^{2-}$$
 (aq) + $2MnO_4^-$ (aq) + $H_2O(I) \rightarrow 3SO_4^{2-}$ (aq) + $2MnO_2$ (s) + $2OH^-$ (aq)

iClicker Question #8

When the following is balanced in a <u>basic</u> solution:

 MnO_4^- (aq) + $C_2O_4^{2-}$ (aq) --> MnO_2 (s) + CO_3^{2-}

The coefficient in front of CO_3^{2-} is:

- a. 1
- b. 2
- c. 3
- d. 4
- e. 6

Disproportionation Reactions

Hydrogen Peroxide (H₂O₂)

■ One reactant (H₂O₂) acts as both reducing and oxidizing agent

$$2H_2O_2$$
 (aq) \longrightarrow $2H_2O$ (l) $+ O_2$ (g) $\Delta H^{\circ} < 0$

Half-Reactions

Oxidation
$$H_2O_2$$
 (aq) \rightarrow O_2 (g) + 2e⁻ + 2H⁺

-1

Reduction H_2O_2 (aq) + 2e⁻ + 2H⁺ \rightarrow 2H₂O (l)

 $2H_2O_2$ (aq) \longrightarrow 2H₂O (l) + O₂ (g)

Topical antiseptic as H₂O₂ can oxidize microbes p. 174 (p. 160, 9th ed.)

3% H₂O₂ as disinfectant

REDOX Chemical Reactions: Demo

Observe and predict the outcome of these two reactions

Redox Chemical Reactions

1.
$$CuSO_4$$
 (aq) + Zn (s) \longrightarrow Cu (s) + Zn^{2+} (aq)
As in Lab 2

2.
$$AgNO_3$$
 (aq) + Cu (s) \longrightarrow Ag (s) + Cu^{2+} (aq)

Observations...

A Closer Look...

Acid-Base Reactions

• Involve proton (H⁺) transfer (Bronsted-Lowry definition)

Example:

$$HCI(aq) + NaOH(aq) \longrightarrow H_2O(I) + NaCI(aq)$$
 (Lab 1)

Acid Base (OH-)

H⁺ donor H⁺ acceptor

The focus of an upcoming section (Ch 16)

p. 160-165; 177-181 (p. 149-153, 163-165, 9th ed.)

