Group	Parameter	Used By libfg libreg cctest	cycle selector	Default Value(s)	Max # of Values	Type or Values	Description
GLOBAL -	Global Parameters						
GLOBAL	RUN_DELAY	✓		1	1	Float	Delay in seconds before the start of each function
GLOBAL	STOP_DELAY	✓		1	1	Float	Delay in seconds after end of last function before the simulation ends
GLOBAL	ITER_PERIOD_US	✓ ✓ ✓		1000	1	Unsigned	Base iteration period in microseconds: The is the measurement period. Current or field regulation runs at an integer multiple of this period.
GLOBAL	ABORT_TIME	✓		0	1	Float	Time in seconds at which the Current or Field reference function should be aborted. The abort sequence switches to a RAMP function that smoothly takes over from the running reference function and ramps down to LIMITS.B_MIN or LIMITS.I_MIN.
							Set to zero to disable testing the abort behaviour. If ABORT_TIME > 0, REG_MODE must be CURRENT or FIELD and FG_LIMITS must be ENABLED.
GLOBAL	LOG_LENGTH	✓		100000	1	Unsigned	Log buffer length. The log is circular so if a simulation time overruns the buffer, the oldest samples are replaced.
GLOBAL	REVERSE_TIME	~		DISABLED	1	DISABLED ENABLED	If ENABLED, the function is sampled with decreasing times to test if it can handle time going backwards. To enable this option, REG_MODE must be VOLTAGE, SIM_LOAD must be DISABLED, only one function can be specified and the RAMP function many not be selected.
GLOBAL	CYCLE_SELECTOR	✓		0	16	Unsigned	List of cycle selectors to play consecutively
GLOBAL	DYN_ECO_TIME	✓		0, 0	2	Float	Time of start and end of dynamic economy period. At the start the reference will freeze and it will then ramp up and connect smoothly with the function that was playing at the end time.
GLOBAL	REG_ERR_RATE	✓		REGULATION	1	REGULATION MEASUREMENT	If REGULATION, calculate the field regulation error at regulation rate. If MEASUREMENT, calculate regulation error at measurement rate.
GLOBAL	FG_LIMITS	√		DISABLED	1	DISABLED ENABLED	Controls whether limits are checked by libfg when initialising each reference function. As the same limits are used during the simulation of the voltage source and load, FG_LIMITS must be DISABLED to test the limits with a function that exceeds them.
GLOBAL	SIM_LOAD	✓		DISABLED	1	DISABLED ENABLED	If DISABLED, only function generation is tested. If ENABLED, the voltage source (or current source if ACTUATION is CURRENT) and the load are simulated as well.
GLOBAL	STOP_ON_ERROR	✓		ENABLED	1	DISABLED ENABLED	If ENALBED, then execution of a script being read from a file will stop if an error is reported. Specify DISABLED if errors are expected and execution must continue.
GLOBAL	CSV_OUTPUT	✓		DISABLED	1	DISABLED ENABLED	cctest can write a CSV file with all the signals from a simulation. When enabled, the CSV file will be written to/./results/csv/GROUP/PROJECT/FILE.csv

		·	arameters for corest vr.oo (i e	2.uu., 20.0,		
GLOBAL	HTML_OUTPUT	✓	ENABLED	1	DISABLED ENABLED	If ENABLED, cctest will generate HTML+Flot (jQuery) output files in/.results/html/GROUP/PROJECT/FILE.html for graphical display in a web browser. A compatible version of the Flot library must be installed in//results/html/flot to use this option.
GLOBAL	DEBUG_OUTPUT	✓	DISABLED	1	DISABLED ENABLED	If ENABLED, generate debugging output for each run. This can be found in//results/ccd/GROUP/PROJECT/FILE.ccd
GLOBAL	GROUP	✓	sandbox	1	String	Output files are written to//results/{csv,html,ccd}/
GLOBAL	PROJECT	✓	FG	1	String	GROUP/PROJECT/FILE.{csv,html,ccd}
GLOBAL	FILE	✓	cctest	1	String	
	- Default Parameters					
	the pre-function ramps					
DEFAULT	V_ACCELERATION	✓	1	1	Float	Acceleration for voltage reference pre-function ramps
DEFAULT	V_DECELERATION	✓	1	1	Float	Deceleration for voltage reference pre-function ramps
DEFAULT	V_LINEAR_RATE	✓	0	1	Float	Linear rate limit for voltage reference pre-function ramps
DEFAULT	I_ACCELERATION	✓	1	1	Float	Acceleration for current reference pre-function ramps
DEFAULT	I_DECELERATION	✓	1	1	Float	Deceleration for current reference pre-function ramps
DEFAULT	I_LINEAR_RATE	✓	0	1	Float	Linear rate limit for current reference pre-function ramps
DEFAULT	B_ACCELERATION	✓	1	1	Float	Acceleration for field reference pre-function ramps
DEFAULT	B_DECELERATION	✓	1	1	Float	Deceleration for field reference pre-function ramps
DEFAULT	B_LINEAR_RATE	✓	0	1	Float	Linear rate limit for field reference pre-function ramps
DEFAULT	PLATEAU_DURATION	✓	0.1	1	Float	Plateau duration for pre-functions
LIMITS – Li	mit Parameters					
Used during	the arming of the reference function w	then GLOBAL.FG_LIMITS = ENAL	BLED and during the simulation	when GLOBAL.SIM_	LOAD = ENABLE	D
LIMITS	B_POS	✓ ✓	10	REG_N_LOADS	Float	Maximum positive field
LIMITS	B_MIN	✓	0	REG_N_LOADS	Float	Minimum field that can be regulated by a 1- or 2- quadrant converter. This is usually set to zero for a 4-quadrant converter.
LIMITS	B_NEG	✓ ✓	-10	REG_N_LOADS	Float	Maximum negative field. Set to zero for a 1- or 2-quadrant converter.
LIMITS	B_RATE	✓ ✓	5	REG_N_LOADS	Float	Maximum absolute rate of change of field. If set to zero, then the rate check is disabled.
LIMITS	B_ACCELERATION	✓ ✓	1000000	REG_N_LOADS	Float	Maximum absolute field acceleration. If set to zero, the acceleration checks are disabled.
LIMITS	B_CLOSELOOP	4	0.5	1	Float	Field regulation closed-loop threshold For a 1- or 2- quadrant converter. This is the level at which the regulation switches from open-loop to closed-loop. For a 4-quadrant converter it isn't used.
LIMITS	B_LOW	✓	0	REG_N_LOADS	Float	Low field threshold. Set to zero to disable. Low field flag is set to 1 when the absolute field measurement is below this threshold. Hysteresis is used to avoid toggling.

LIMITS	B_ZERO	√	0	REG_N_LOADS	Float	Zero field threshold. Set to zero to disable. Zero field flag is set to 1 when the absolute field measurement is below this threshold. Hysteresis is used to avoid toggling.
LIMITS	B_ERR_WARNING	•	0	REG_N_LOADS	Float	Field regulation error warning threshold. If set to zero, the field regulation warning check is disabled. The field regulation error is compared to this threshold and the flag (0 or 1) indicating if the threshold is exceeded is filtered with a first order filter with a time constant of 10 periods. If the filtered flag exceeds 0.3, the warning will be activated and the threshold is halved. This hysteresis of the threshold should reduce the chance that the warning will toggle repeatedly. Once the filtered flag falls below 0.3, the threshold returns to original value defined in B_ERR_WARNING. This check will be done at the regulation rate if BREG ERROR_RATE is set to REGULATION, or the measurement rate if set to MEASUREMENT.
LIMITS	B_ERR_FAULT	*	0	1	Float	Field regulation error fault threshold. If set to zero, the fault check is disabled. The treatment of the fault threshold is the same as the warning threshold described above. If the fault is activated, cctest will simulate the tripping of the power converter.
LIMITS	I_POS	✓ ✓	10	1	Float	Maximum positive current
LIMITS	I_MIN	✓	0	1	Float	Minimum current that can be regulated by a 1- or 2- quadrant converter. This is usually set to zero for a 4-quadrant converter.
LIMITS	I_NEG	✓ ✓	-10	1	Float	Maximum negative current. Set to zero for a 1- or 2-quadrant converter.
LIMITS	I_RATE	✓ ✓	5	1	Float	Maximum absolute rate of change of current. If set to zero, then the rate check is disabled.
LIMITS	I_ACCELERATION	✓ ✓	1000000	1	Float	Maximum absolute current acceleration. If set to zero, the acceleration checks are disabled.
LIMITS	I_CLOSELOOP	√	0.5	1	Float	Current regulation closed-loop threshold For a 1- or 2-quadrant converter. This is the level at which the regulation switches from open-loop to closed-loop. For a 4-quadrant converter it isn't used.
LIMITS	I_LOW	√	0	REG_N_LOADS	Float	Low current threshold. Set to zero to disable. Low field flag is set to 1 when the absolute field measurement is below this threshold. Hysteresis is used to avoid toggling.
LIMITS	I_ZERO	√	0	REG_N_LOADS	Float	Zero current threshold. Set to zero to disable. Zero field flag is set to 1 when the absolute field measurement is below this threshold. Hysteresis is used to avoid toggling.

LIMITS	I_ERR_WARNING	✓	0	REG_N_LOADS	Float	Current regulation error warning threshold. If set to zero, the current regulation warning check is disabled.
						The current regulation error is compared to this threshold and the flag (0 or 1) indicating if the threshold is exceeded is filtered with a first order filter with a time constant of 10 periods. If the filtered flag exceeds 0.3, the warning will be activated and the threshold is halved. This hysteresis of the threshold should reduce the chance that the warning will toggle repeatedly. Once the filtered flag falls below 0.3, the threshold returns to original value defined in I_ERR_WARNING. This check will be done at the regulation rate if IREG ERROR_RATE is set to REGULATION, or the measurement rate if set to MEASUREMENT.
LIMITS	I_ERR_FAULT	✓	0	REG_N_LOADS	Float	Current regulation error fault threshold. If set to zero, the fault check is disabled. The treatment of the fault threshold is the same as the warning threshold described above. If the fault is activated, cotest will simulate the tripping of the power converter.
LIMITS	I_QUADRANTS41	✓	0	2	Float	Used with V_QUADRANT41 to limit voltage as a function of current. This can protect 2- or 4-quadrant converters which cannot send energy back onto the mains and may overheat if forced to extract energy to quickly from a highly inductive load.
LIMITS	I_RMS_TC	√	0	1	Float	Converter RMS current protection: RMS Current filter Time Constant. If zero, the converter protection RMS current will not be calculated and I_RMS_WARNING and I_RMS_FAULT are ignored.
LIMITS	I_RMS_WARNING	√	0	1	Float	Converter RMS current protection: RMS Current warning limit. If set to zero, the warning check is disabled. The square of the current is filtered with a first order filter with time constant I_RMS_TC. If this filtered value exceeds the square of the I_RMS_WARNING, then the RMS warning flag will be activated and the threshold will be reduced by 20% to reduce the risk of toggling.
LIMITS	I_RMS_FAULT	√	0	1	Float	Converter RMS current protection: RMS Current fault limit. If set to zero, the fault check is disabled. The square of the current is filtered with a first order filter with time constant I_RMS_TC. If this filtered value exceeds the square of the I_RMS_FAULT, then the RMS trip flag will be activated and cctest will simulate a trip of the power converter.
LIMITS	I_RMS_LOAD_TC	✓	0	REG_N_LOADS	Float	Load RMS current protection: RMS Current filter Time Constant. If zero, the converter protection RMS current will not be calculated and I_RMS_WARNING and I_RMS_FAULT are ignored.

			i didiliotoro it	o. 00.00t v00 (. t	22.44.)		
LIMITS	I_RMS_LOAD_WARNING	V		0	REG_N_LOADS	Float	Load RMS current protection: RMS Current warning limit. If set to zero, the warning check is disabled. The square of the current is filtered with a first order filter with time constant LRMS_TC. If this filtered value exceeds the square of the LRMS_WARNING, then the RMS warning flag will be activated and the threshold will be reduced by 20% to reduce the risk of toggling.
LIMITS	I_RMS_LOAD_FAULT	V		0	REG_N_LOADS	Float	Load RMS current protection: RMS Current fault limit. If set to zero, the fault check is disabled. The square of the current is filtered with a first order filter with time constant I_RMS_TC. If this filtered value exceeds the square of the I_RMS_FAULT, then the RMS trip flag will be activated and cotest will simulate a trip of the power converter.
LIMITS	V_POS	✓ ✓		100	REG_N_LOADS	Float	Maximum positive voltage from the voltage source.
LIMITS	V_NEG	✓ ✓		-100	REG_N_LOADS	Float	Maximum negative voltage from the voltage source.
LIMITS	V_RATE	✓ ✓		1000	1	Float	Maximum absolute rate of change of voltage allowed by the voltage source. If set to zero, the rate of change checks are disabled.
LIMITS	V_ACCELERATION	√ ✓		1000000	1	Float	Maximum absolute voltage acceleration. If set to zero, the acceleration checks are disabled.
LIMITS	V_ERR_WARNING	*		0	1	Float	Voltage regulation error warning threshold. If set to zero, the voltage regulation warning is disabled. Libreg does not support the voltage regulation, however, if the voltage is measured, the error of the external voltage regulation loop can be calculated and monitored. The algorithm is the same as for the current or field regulation warning threshold.
LIMITS	V_ERR_FAULT	*		0	1	Float	Voltage regulation error fault threshold. If set to zero, the voltage regulation fault is disabled. Libreg does not support the voltage regulation, however, if the voltage is measured, the error of the external voltage regulation loop can be calculated and monitored. The algorithm is the same as for the current or field regulation fault threshold. If the fault is activated, cctest will simulate the trip of the power converter
LIMITS	V_QUADRANTS41	*		0	2	Float	Used with I_QUADRANT41 to limit voltage as a function of current. This can protect 2- or 4-quadrant converters which cannot send energy back onto the mains and may overheat if forced to extract energy to quickly from a highly inductive load.
LIMITS	INVERT	✓ ✓		DISABLED	1	DISABLED ENABLED	If ENABLED, libfg and invert the polarity of the limits before checking. This would be used if a 1-quadrant converter is connected to the load via a polarity switch and the switch is in the inverting position.
	oad Parameters nulate a load when GLOBAL.SIM LO	AD = ENARI ED					
LOAD	OHMS_SER	4D = ENABLED ✓		0.5	REG_N_LOADS	Float	Series resistance (R_s) corresponding to the
LOAD	OTHING_GER	•		0.5	NEG_N_LOADS	Float	resistance of the cables from the power converter to the magnet(s).
LOAD	OHMS_PAR	✓		1000000000	REG_N_LOADS	Float	Parallel damping resistance (R_p).

LOAD	OHMS MAG	✓	1	REG N LOADS	Float	Magnet resistance (R m).
LOAD	HENRYS	✓	1	REG N LOADS	Float	Magnet inductance without saturation effects (L).
LOAD	HENRYS_SAT	✓	1	REG_N_LOADS	Float	Magnet inductance when fully saturated (L_sat).
LOAD	I_SAT_START	✓	0	REG_N_LOADS	Float	Current at start of magnet saturation (I_{sat_start}).
LOAD	I_SAT_END	√	0	REG_N_LOADS	Float	Current at which the magnet is fully saturated ([_{sat_end})). Set to zero if the magnet does not saturate.
LOAD	GAUSS_PER_AMP	✓	1.2	REG_N_LOADS	Float	Field to current ratio without saturation effects.
LOAD	SELECT	✓	0	1	Unsigned	For all parameters that are arrays of REG_N_LOADS (4) parameters, this selects which parameter to use for normal operation (0-3).
LOAD	TEST_SELECT	✓	0	1	Unsigned	For all parameters that are arrays of REG_N_LOADS (4) parameters, this selects which parameter to use for test operation (0-3).
LOAD	SIM_TC_ERROR	~	0	1	Float	Simulated load Time Constant error factor. To evaluate the robustness of the regulation, the simulated load parameters can be distorted, resulting in a shift in the simulated load time constant by a factor related to SIM_TC_ERROR. For example, If SIM_TC_ERROR is 0.1, the time constant of the simulated load will be 10% greater than expected by the RST regulation algorithm, whose coefficients are calculated using the undistorted load parameters.
LOAD	PERTURB_VOLTS	~	0	1	Float	Voltage perturbation level. This voltage appears as a disturbance on the simulated load at the time given by PERTURB_TIME and remains until the end of the run. This is useful to see the rejection of perturbations by the regulation loop.
LOAD	PERTURB_TIME	√	0	1	Float	Voltage perturbation time, the time at which PERTURB_VOLTS appears as a perturbation on the simulated load. Set to zero to disabled the perturbation.
LOAD	POL_SWI_AUTO	*	DISABLED	1	DISABLED ENABLED	If ENABLED and GLOBAL FG_LIMITS is ENABLED, then the limits used when checking the reference will be based on the range of the function. This assumes that the range of the function will be used when it is about to be played, to set the polarity switch on a 1-quadrant converter automatically. In this way, the anticipated polarity switch position can be used when arming a reference function, at a time when the polarity switch may not be in the anticipated position.

MEAS	B_REG_SELECT	✓	EXTRAPOLATED	1	UNFILTERED FILTERED	Selector for the field measurement to use for field regulation.
					EXTRAPOLATED	· ·
						If UNFILTERED, then the raw measurement acquired at the measurement rate will be decimated at the regulation period and used for field regulation.
						The measurement delay will be B_DELAY_ITERS in measurement periods. This minimises the delay but noise will be aliased into the regulation pass band.
						If FILTERED, then the filtered field measurement will be decimated at the regulation period and used for field regulation. The filter is implemented in libreg and is configured by B_FIR_LENGTHS. This will reduce the noise aliased in the regulation pass band but will increase the latency.
						If EXTRAPOLATED, then the filtered measurement will be extrapolated using the measured rate of change to compensate for the delay of the measurement and the FIR filter. This will reduce the latency to zero, but will increase the noise.
MEAS	I_REG_SELECT	√	EXTRAPOLATED	1	UNFILTERED FILTERED EXTRAPOLATED	Selector for the current measurement to use for current regulation.
					EXTINI CENTED	This has the same behaviour as the selector for the field measurement (above).
MEAS	B_DELAY_ITERS	✓	1.3	1	Float	Field measurement delay specified as number of iterations (GLOBAL ITER_PERIOD)
MEAS	I_DELAY_ITERS	✓	1.3	1	Float	Current measurement delay specified as number of iterations.
MEAS	V_DELAY_ITERS	✓	1.3	1	Float	Voltage measurement delay specified as number of iterations.
MEAS	B_FIR_LENGTHS	•	1, 1	2	Unsigned	Field measurement Finite Impulse Response (FIR) filter lengths specified as number of iterations. Must be non-zero. Two sliding average filters are cascaded. Setting the length to 1 effectively disables that stage. The filter delay in iterations will be (B_FIR_LENGTHS[0] + B_FIR_LENGTHS[1])/2.
MEAS	I_FIR_LENGTHS	✓	1, 1	2	Unsigned	Current measurement FIR filter lengths. This has the same behaviour as the field measurement filter described above.
MEAS	B_SIM_NOISE_PP	✓	0	1	Float	Simulated field measurement peak-peak noise level.
MEAS	I_SIM_NOISE_PP	✓	0	1	Float	Simulated current measurement peak-peak noise level.
MEAS	V_SIM_NOISE_PP	✓	0	1	Float	Simulated voltage measurement peak-peak noise level.
MEAS	B_SIM_QUANTIZATION	✓	0	1	Float	Simulated field measurement ADC quantization.
MEAS	I_SIM_QUANTIZATION	✓	0	1	Float	Simulated current measurement ADC quantization.
MEAS	V_SIM_QUANTIZATION	✓	0	1	Float	Simulated voltage measurement ADC quantization.
MEAS	TONE_HALF_PERIOD_ITERS	√	10	1	Unsigned	Simulated measurement tone half-period specified as a number of measurement iterations. This can be used to simulate 50Hz noise and test that the FIR filter is adjusted to cancel this frequency.
MEAS	B_SIM_TONE_AMP	✓	0	1	Float	Simulated field measurement tone amplitude.
MEAS	I_SIM_TONE_AMP	✓	0	1	Float	Simulated current measurement tone amplitude.

						invalid measurements with an estimate of what the
						measurement will be, based on the model the regulation error or the rate of change. These cctest parameters allow this feature of libreg to be tested.
MEAS	INVALID_MEAS_REPEAT_ITERS	*	1	1	Unsigned	Number of iterations to repeat the invalid measurements. In general, one bad measurement will be fairly transparent. The more bad measurements, the bigger the perturbation is likely to be.
BREG - Fi	eld Regulation Parameters					
BREG	PERIOD_ITERS	✓	10	REG_N_LOADS	Unsigned	Field regulation period specified as number of iterations.
BREG	PURE_DELAY_PERIODS	✓	0	REG_N_LOADS	Float	Pure delay in the field regulation loop, specified as number of regulation periods. If set to zero, cctest will estimate it based on the other known parameters.
						This delay is a primitive way to model the otherwise unmodelled delays and dynamics around the loop (i.e. everything except the load). This includes the delay before the voltage reference is received by the voltage source (VS V_REF_DELAY_ITERS) + the measurement delay + the voltage source response time.
						The RST coefficients will be calculated using one of five algorithms selected according to the pure delay. It must be in the range from 0 to 2.4 regulation periods.
BREG	TRACK_DELAY_PERIODS	✓	0	REG_N_LOADS	Float	Anticipated delay between the setting of the field reference and the moment when the measurement should equal the reference, specified as number of regulation periods. If this is set to zero, it will be calculated by the algorithm.
						This is used to calculate the error in the response of the field regulation loop.
BREG	AUXPOLE1_HZ	✓	10	REG_N_LOADS	Float	Frequency of the first (real) auxiliary pole. The AUXPOLE* parameters are used to calculate coefficients for the RST regulation algorithm. For fast loads, set AUXPOLE1_HZ to 1.0E+5 and AUXPOLES2_Z to 0.8. Normally AUXPOLE1_HZ = AUXPOLES2_HZ and AUXPOLES2_Z = 0.5. Set to zero to use the R, S and T polynomials
BREG	AUXPOLES2_HZ	✓	10	REG_N_LOADS	Float	Frequency of (conjugate) auxiliary poles 2 & 3
BREG	AUXPOLES2_Z	✓	0.5	REG_N_LOADS	Float	Damping of (conjugate) auxiliary poles 2 & 3
BREG	AUXPOLE4_HZ	✓	10	REG_N_LOADS	Float	Frequency of (real) auxiliary pole 4
BREG	AUXPOLE5_HZ	✓	10	REG_N_LOADS	Float	Frequency of (real) auxiliary pole 5
BREG	R	✓	0,0,0,0,0,0,0,0,0,0	10	Double	RST R coefficient – used when AUXPOLE1_HZ = 0
BREG	S	✓	0,0,0,0,0,0,0,0,0,0	10	Double	RST S coefficient – used when AUXPOLE1_HZ = 0
BREG	Т	✓	0,0,0,0,0,0,0,0,0,0	10	Double	RST T coefficient – used when AUXPOLE1_HZ = 0
IREG - Cu	rrent Regulation Parameters					
IREG	PERIOD_ITERS	✓	10	REG_N_LOADS	Unsigned	Current regulation period specified as number of iterations.

IREG	PURE_DELAY_PERIODS	4	0	REG_N_LOADS	Float	Pure delay in the current regulation loop, specified as number of regulation periods. If set to zero, cctest will estimate it based on the other known parameters.
						This delay is a primitive way to model the otherwise unmodelled delays and dynamics around the loop (i.e. everything except the load). This includes the delay before the voltage reference is received by the voltage source (VS V_REF_DELAY_ITERS) + the measurement delay + the voltage source response time.
						The RST coefficients will be calculated using one of five algorithms selected according to the pure delay. It must be in the range from 0 to 2.4 regulation periods.
IREG	TRACK_DELAY_PERIODS	✓	0	REG_N_LOADS	Float	Anticipated delay between the setting of the current reference and the moment when the measurement should equal the reference, specified as number of regulation periods. If this is set to zero, it will be calculated by the algorithm.
						This is used to calculate the error in the response of the current regulation loop.
IREG	AUXPOLE1_HZ	√	10	REG_N_LOADS	Float	Frequency of the first (real) auxiliary pole. The AUXPOLE* parameters are used to calculate coefficients for the RST regulation algorithm. For fast loads, set AUXPOLE1_HZ to 1.0E+5 and AUXPOLE52_Z to 0.8. Normally AUXPOLE1_HZ = AUXPOLE52_HZ and AUXPOLES2_Z = 0.5.
IREG	AUXPOLES2_HZ	✓	10	REG_N_LOADS	Float	Frequency of (conjugate) auxiliary poles 2 & 3
IREG	AUXPOLES2_Z	✓	0.5	REG_N_LOADS	Float	Damping of (conjugate) auxiliary poles 2 & 3
IREG	AUXPOLE4_HZ	✓	10	REG_N_LOADS	Float	Frequency of (real) auxiliary pole 4
IREG	AUXPOLE5_HZ	✓	10	REG_N_LOADS	Float	Frequency of (real) auxiliary pole 5
IREG	R	✓	0,0,0,0,0,0,0,0,0,0	10	Double	RST R coefficient – used when AUXPOLE1_HZ = 0
IREG	S	✓	0,0,0,0,0,0,0,0,0,0	10	Double	RST S coefficient – used when AUXPOLE1_HZ = 0
IREG	Т	✓	0,0,0,0,0,0,0,0,0,0	10	Double	RST T coefficient – used when AUXPOLE1_HZ = 0
	er Source model parameters	ol if CLORAL ACTUATION is VOLTAGE How	yover if CLOBAL AC	TUATION is CUIDDE	INT then the mode	el will be used to simulate the external current source
response.	ameters define the voltage source mod	erii Geobal actoation is voetage. How	rever, ii GLOBAL AC	TOATION IS CONNE	ivi, then the mode	in will be used to simulate the external current source
PC	ACTUATION	*	VOLTAGE	1	VOLTAGE CURRENT	Specify VOLTAGE to simulate control of a voltage source. In this case, cotest can use libreg to regulate the current or field or it can drive a voltage reference in open-loop.
						Specify CURRENT to simulate control of a current source. In this case, cotest can use libfg to generate a current reference and the regulation of the current is assumed to be the responsibility of the current source.
PC	ACT_DELAY_ITERS	~	1	1	Float	Delay between the start of an iteration in which V_REF is calculated and the time that it enters the simulation of the voltage source, in iterations. This models the delay that might be due to a DAC settling, or a digital link between a current controller and the voltage source electronics.

				· u.uoto.c	3 101 00 1001 11 100 (1 00.1	aa., 20.0,		
PC	BANDWIDTH	√			200	1	Float	Voltage source bandwidth. Set to zero if SIM_NUM and SIM_DEN are used to explicitly define the model. If positive it is used to calculate Z Transform using
								Tustin.
PC	Z	✓			0.9	1	Float	Damping factor. Used to calculate Z Transform if BANDWIDTH > 0.
PC	TAU_ZERO	√			0	1	Float	Time Constant for real zero. Set to zero to turn off the zero.
								Used to calculate Z Transform if BANDWIDTH > 0.
PC	SIM_NUM	✓			1,0,0,0	4	Float	Voltage source transfer function numerator.
PC	SIM_DEN	✓			1,0,0,0	4	Float	Voltage source transfer function denominator.
PC	SIM_QUANTIZATION	√			0	1	Float	Simulated voltage source quantization. This can simulate the quantization due to the resolution of the PWM generator in the voltage source. It is ignored if PC ACTUATION is CURRENT.
PC	SIM_RIPPLE	✓			0	1	Float	Simulated voltage source output ripple. This is simulated as pseudo white noise with the peak-peak amplitude defined by SIM_RIPPLE. It is ignored if PC ACTUATION is CURRENT.
REF - Re	ference function parameters							
Used to a	rm a function for different cycle selectors							
REF	REG_MODE		✓	✓	VOLTAGE	1	VOLTAGE CURRENT FIELD	Regulation mode for each cycle selector.
REF	FUNCTION		✓	✓	SINE	1	NONE DIRECT PLEP RAMP PPPL TABLE STEPS SQUARE SINE COSINE LTRIM CTRIM PULSE	Function to arm for each cycle selector.
REF	PREFUNC_POLICY		✓	√	RAMP	1	RAMP MIN MINMAX	Pre-function policy.
REF	REFUNC_MIN_REF		✓	✓	0	1	Float	Pre-function minimum reference for MIN and MINMAX policies.
Used whe	arameters for Parabola-Linear-Exponents or GLOBAL.FUNCTION is PLEP. The PL ange is not zero, then this adds a fifth pa	.EP function is spec	cial becaus	e it can be initi				ce can also have a non-zero rate of change. If the final
PLEP	INITIAL_REF		✓	✓	0	1	Float	Initial reference at beginning of function
PLEP	FINAL_REF	✓		✓	1	1	Float	Final reference at end of function
PLEP	ACCELERATION	✓		✓	1	1	Float	Acceleration/deceleration of the parabolic segments. Absolute value is used.
PLEP	LINEAR_RATE	✓		✓	1	1	Float	Maximum linear rate of change. Absolute value is used.
PLEP PLEP	LINEAR_RATE FINAL_RATE	✓		✓ ✓	0	1 1	Float	

PLEP	EXP_FINAL	✓	✓	0	1	Float	Final reference for exponential segment (at t = ∞)
RAMP - F	arameters for fast ramp based	l on Parabola-Parabola fu	nction				
	n GLOBAL.FUNCTION is RAMP me. This allows a smooth parabo					because it uses the	e reference from the previous iteration to adjust the
RAMP	INITIAL_REF		✓ ✓	0	1	Float	Initial reference at beginning of function
RAMP	FINAL_REF	✓	✓	1	1	Float	Final reference at end of function
RAMP	ACCELERATION	✓	✓	4	1	Float	Acceleration of first parabolic segment. Must be non-zero. Absolute value is used.
RAMP	LINEAR_RATE	✓	✓	1	1	Float	Maximum linear rate of change. Absolute value is used.
RAMP	DECELERATION	✓	✓	6	1	Float	Deceleration of second parabolic segment. Must be non-zero. Absolute value is used.
PPPL - Pa	arameters for Parabola-Parabo	la-Parabola-Linear (PPPL) function				
Used whe	n GLOBAL.FUNCTION is PPPL.	The parameters define the	4 segments of each PP	PL section. Up to 8 PPI	PLs can be chaine	d together.	
PPPL	INITIAL_REF		✓ ✓	0	1	Float	Initial reference at beginning of function
PPPL	ACCELERATION1	✓	✓	5	8	Float	Acceleration of first (parabolic) segment. Must be non-zero.
PPPL	ACCELERATION2	✓	✓	-0.1	8	Float	Acceleration of second (parabolic) segment. If zero, the function becomes PLPL.
PPPL	ACCELERATION3	✓	✓	-2	8	Float	Acceleration of third (parabolic) segment. Must be non-zero.
PPPL	RATE2	✓	✓	1	8	Float	Rate of change at start of second (parabolic) segment. Must be non-zero.
PPPL	RATE4	✓	✓	0	8	Float	Rate of change of fourth (linear) segment.
PPPL	REF4	✓	✓	1	8	Float	Reference at start of fourth (linear) segment
PPPL	DURATION4	✓	✓	0.1	8	Float	Duration of fourth (linear) segment
TABLE -	Parameters for linearly interpo	lated table function					
Used whe	n GLOBAL.FUNCTION is TABLE						
TABLE	REF	✓	✓	0, 1, 1, 0	10000	Float	List of reference values.
TABLE	TIME	✓	✓	0, 1, 2, 3	10000	Float	List of times corresponding to the reference values.
	arameters for linear and cubic						
TRIM	n GLOBAL.FUNCTION is LTRIM INITIAL_REF		√	0	1	Float	Initial reference at beginning of function
TRIM		✓	v	1	1	Float	Initial reference at beginning of function Final reference at end of function
TRIM	FINAL_REF	▼	→	1	1		
IKIM	DURATION	*	*	1	1	Float	Duration for transition from initial to final reference. Set to zero to go as fast as possible while respecting the rate of change limits.
TEST - Pa	arameters for test functions						
Used whe	n GLOBAL.FUNCTION is STEPS						
TEST	INITIAL_REF		✓ ✓	0	1	Float	Initial reference at beginning of function
TEST	AMPLITUDE_PP	✓	✓	2	1	Float	Reference peak-to-peak amplitude
TEST	NUM_CYCLES	✓	✓	3	1	Float	Number of cycles/steps. Although specified as a float, the value is rounded to the nearest integer.
TEST	PERIOD	✓	✓	2	1	Float	Period of the function (=1/frequency). The duration of the function is equal to NUM_CYCLES*PERIOD
TEST	WINDOW	✓	✓	ENABLED	1	DISABLED ENABLED	Window Control start and end of SINE and COSINE functions
TEST	EXP_DECAY	✓	✓	DISABLED	1	DISABLED ENABLED	Exponential decay control for SINE and COSINE functions