Effect of Catalyst Coating on Pressure Drop and Efficiency of Ceramic Wall Substrate

Qisheng Ou¹, Yuejin Li², and David Y. H. Pui¹

¹Particle Technology Laboratory, University of Minnesota ²BASF Corporation

Presented at 52nd CFR Review Meeting, Bloomington, MN October 6th, 2017

Introduction - Catalyzed Particulate Filters

 Conventional vehicle emission control catalytic converters utilized monolithic flow-through supports coated with high surface area inorganic oxides (washcoat) and, in most cases, precious metals.

- When particulate emission control is required, a catalyst is applied onto the pores of a monolithic wall-flow substrate. The catalyzed filter can:
 - reduced space in the exhaust system;
 - lower the soot combustion temperature, allowing easier self-regeneration;
 - if coated with an oxidation catalyst, supply NO₂ for improving activity of a SCR catalyst;
 - If coated with an SCR catalyst, provide for faster light-off;
 - control particulate number emissions in DPF and GPF applications.

Introduction – Effect of Catalyst on Filtration Efficiency

- Will addition of washcoat material into the ceramic microstructure improve soot removal efficiency?
 - Maybe Yes (Tsuneyoshi et al., 2011)

Sample	A	В	C	D	E
Substrate	SiC				
Size (mm)	Φ144 × L153				
Cell Density (cpsi)	300				
Wall Thickness (mm)			0.25		
Porosity (%)	46.9	45.2	43.8	43.0	42.0
Median Pore Diameter (μm)	16.5	14.5	13.5	13.2	13.0
Washcoat	none	ne yes			
Coat amount / Coat amount B	0	1	1.4	1.7	2.1
Pt Loading			none		

Maybe No (Swanson et al., 2013)

This is not a single case.

Objectives

- Evaluate and compare pressure drop and initial soot removal efficiency of ceramic wall flow substrates with and without catalyst coating.
- Identify the mechanistic causes, for change in pressure drop and initial filtration efficiency, as a result of application of catalytic washcoat into the filter structure.

Test Method

- Pressure drop and filtration efficiency of four blank (uncatalyzed) SiC wall-flow core samples (1" O.D. and 3" long) were measured using monodispersed soot particles from a home-made propane diffusion flame burner, at
 - Volumetric flow rate: 12.9 or 32.3 L/min (20,000 or 50,000 h⁻¹ space velocity)

Flow Resistance - Blank Filter

 At all test conditions, the pressure drop of the four filter core samples are very similar, indicating good consistency and uniformity.

	Pressure Drop [in H₂O]							
Sample #	Room ten	nperature	300°C					
	12.9 slm	32.3 slm	12.9 slm	32.3 slm				
#1	0.26	0.71	0.55	1.14				
#2	0.25	0.69	0.54	1.12				
#3	0.25	0.69	0.53	1.13				
#4	0.25	0.68	0.54	1.13				
Mean	0.25	0.69	0.54	1.13				
Std.	0.00	0.01	0.01	0.01				

Soot Removal - Initial Filtration Efficiency

- Similar soot fractional filtration efficiency was observed for the four samples. The largest variability is ±4% at high temperature and large particulate size.
- Good consistency in pressure drop and filtration efficiency suggests that this method can be used to evaluate the effect of washcoating, without concern from sample-to-sample variability.

Hypothesis for Reduced Filtration Efficiency – Pore Size Shift

- One possible explanation for reduced filtration efficiency after coating is media pore size distribution shift.
 - The capillary-driven washcoating process may preferentially block smaller pores, while leaving larger pores open.
 - Shift in pore size distribution induces more air flow towards larger pores, where more penetration occurs.

Hypothesis for Reduced Efficiency – A Hypothetical Demonstration (I)

- If a ceramic substrate contains two grain sizes, 8 and 12 μm, which are completely separate and have equal area;
- after washcoating, X% of coating material is applied to the finer grains (8 μm), the rest is applied to the coarser grains (12 μm);
- coating material uniformly covers each grain surface, increasing effective grain size and solidity.

(See appendix for details)

Coating	Partition	Eff	ΔΡ.	finer grain (8 μm)			coarser grain (12 μm)				
amount []	X [%]	[%]	[Pa]	α ₁ []	d _{c1} [µm]	U ₁ [cm/s]	Eff₁ [%]	α ₂ []	d _{c2} [µm]	U ₂ [cm/s]	Eff ₂ [%]
Blank	1	89.6	566	0.5	8.0	1.8	99.6	0.5	12.0	4.0	85.1
0.1	0	98.2	1382	0.5	8.0	4.3	97.7	0.7	13.4	1.4	99.6
0.1	50	94.6	1351	0.6	8.5	1.8	99.9	0.6	12.8	4.0	92.3
0.1	100	81.9	768	0.7	9.0	0.4	100.0	0.5	12.0	5.4	80.7

Hypothesis for Reduced Efficiency – A Hypothetical Demonstration (II)

If the wachcoat partition among different sized pores varies, the filtration efficiency of the coated wall-flow substrate could reduced even though the overall porosity decreases.

- Mercury Intrusion Porosimetry
- Mercury intrusion porosimetry is one of the most widely used techniques to measure the pore size distribution of porous media:

Pressure required to introduce a non-wetting liquid into a pore is associated with an equivalent pore diameter:

$$P = 4\gamma \cos \theta / D$$

Mercury reservoir with pressure

- P: pressure applied
- liquid surface tension
- liquid-solid contact angle
- D: equivalent diameter

- Both through pores and blind pores are measured;
- Pore volumes are measured partially. No flow characteristics of pores are measurable.

- Liquid Extrusion Porosimetry
- In <u>liquid extrusion porosimetry</u>, a pressurized non-reacting gas is used to remove liquid from pores of the sample:
 - A membrane whose largest pore is smaller than the smallest pore of interest in the sample is placed underneath the sample
 - A liquid that wets the sample and the membrane is used to fill all the pores of the sample and the membrane;
 - Pressure required to displace the wetting liquid in a pore is associated with an equivalent pore diameter:
 gas pressure

- Only through pores are measured. (results not interferred by blind pores)
- Pore volumes are measured partially. No flow characteristics of pores are measurable.

- Extrusion Flow Porometry
- Extrusion flow porometry (capillary flow porometry) is a characterization technique based on the displacement of a wetting liquid from the sample pores by applying an inert gas at increasing pressure.
 - Presence of pores is detected by sensing the increase in gas flowrate at any given differential pressure, which corresponds to pore size.

- Only through pores are measured. (results not interferred by blind pores)
- ❖ Pore volumes are not measured. Flowrate through each pore size is measurable, which may be particularly relevant to the filtration process.

- 3D structure reconstruction
- 3-D micro-structures from images captured through various techniques (e.g., X-ray µCT or FIB-SEM) can enable calculation of pore size distributions from digital scan images, if pore size characterization tool is not available.

(An example layer of a SiC wall from X-ray µCT)

(An example layer of a SiC wall with simulated mercury intrusion)

- Potential analysis from 3-D structure:
 - Intrusion and extrusion porosimetry (geometric pore size with connectivity consideration)
 - Extrusion capillary porometry and permeability (lattice Boltzmann or Navier-Stokes)
 - Filtration efficiency based on particle tracking (Navier-Stokes with Lagrangian specification for particle movement)

Summary

- Pressure drop and soot removal efficiency of four blank SiC wall-flow core samples (1" O.D. and 3" long) were measured at different flowrates and temperatures.
- Good consistency was found among the samples, which will enable comparison between blank and coated filter cores.
- Filtration performance of coated filter cores will be evaluated, and compared with the reference blank samples, in order to quantify the effect of coating methods and coating quantity.
- A possible explanation for reduced filtration efficiency after coating is proposed, based upon a shift in pore size distribution which changes the flow distribution through pores. The hypothesis is further illustrated with a hypothetical model.
- A review of pore size distribution measurement techniques suggests that extrusion flow porometry can serve as a basic characterization tool, and 3-D structure characterization can provide further details of porous wall microstructure.

Appendix

- Equations used for illustration in slide 9 & 10:
 - Pressure drop of a wall substrate with uniform spherical grain size:

$$\Delta P = \frac{18\mu U t h \alpha (3 + 2\alpha^{5/3})}{(3 - 4.5\alpha^{1/3} + 4.5\alpha^{5/3} - 3\alpha^2)d_s^2},$$

(Rudnick and First, 1978)

Collection efficiency of a wall substrate with uniform spherical grain size:

$$P = \exp\left(\frac{-3\alpha Et}{2d_s(1-\alpha)}\right), \qquad E = 1 - (1 - E_D)(1 - E_R).$$

$$E_D = 3.5 \left(\frac{1-\alpha}{Ku}\right)^{1/3} Pe^{-2/3}; \qquad E_R = 1.5 \left(\frac{1-\alpha}{Ku}\right) \frac{R^2}{(1+R)^{(1+2\alpha)/(3-3\alpha)}}. \qquad \text{(Kuwabara, 1959)}$$
(Tardos et al., 1976)

Change in grain size after coating:

$$\frac{\alpha_{blank}}{\alpha_{coated}} = \frac{d_{s_blank}^3}{d_{s_coated}^3}.$$

Ensuring same differential pressure across 8μm and 12μm wall.

$$\Delta P_{8\mu m} = \Delta P_{12\mu m}.$$

<i>∆P</i> :	pressure drop	<i>P</i> :	penetration
μ:	air viscosity	<i>E</i> :	single sphere efficiency
U:	face velocity	E_D :	single sphere efficiency by diffusion
th:	wall thickness	E_R :	single sphere efficiency by interception
α :	packing density	Ku:	Kuwabara flow constant for sphere bed
d_s :	grain size	Pe:	Péclet number
		$R \cdot$	interception parameter

