Práctica 5

1. Sea $K = \{0\} \cup$	$\left\{\frac{1}{n}:n\in\mathbb{N}\right\}\subseteq\mathbb{R}$. Probar, por definición,	que K es compacto.
--------------------------------	--	---------------------------	----------------------

- **2.** Sea K un subconjunto compacto no vacío de \mathbb{R} . Probar que K tiene mínimo y máximo.
- **3.** Sea $K \subseteq \mathbb{R}$ compacto. Probar que los subconjuntos de \mathbb{R}

$$S = \{x + y : x, y \in K\}, \qquad P = \{x \cdot y : x, y \in K\}$$

también son compactos.

- **4.** Sea (E, d) un espacio métrico y sea $\{F_i\}_{i \in I}$ una familia de subconjuntos cerrados de E. Supongamos que existe $i_0 \in I$ tal que F_{i_0} es compacto. Probar que $\cap_{i \in I} F_i$ es compacto.
- **5.** Sea (E,d) un espacio métrico. Probar que E es compacto si y solo si para toda sucesión $(F_n)_{n>1}$ decreciente de cerrados no vacíos de E se tiene que $\cap_{n>1}F_n \neq \emptyset$.
- **6.** Sea *E* un conjunto, en el cual consideramos la métrica discreta. ¿Cuáles son los subconjuntos compactos de *E*?
- 7. Probar que la unión de un número finito de conjuntos compactos es compacto.
- 8. Probar que en un espacio métrico (E,d) la distancia de un punto a un compacto se realiza. Esto es, que para todo compacto $K \subseteq E$ y para todo $x \in E$ existe $y \in K$ tal que d(x,y) = d(x,K).
- 9. Sea (E,d) un espacio métrico, y sea \widehat{d} la función definida en el Ejercicio 18 de la Práctica 3. Probar que si $A \subseteq E$ es compacto, $B \subseteq E$ es cerrado y se cumple que $A \cap B = \emptyset$, entonces $\widehat{d}(A,B) > 0$. ¿Sucede lo mismo si A es sólo cerrado?
- **10.** Consideremos en $(C[0,1], d_{\infty})$ la función f_0 constantemente nula. Probar que $\overline{B(f_0,1)}$ no es compacta (pero sí es cerrada y acotada). ¿Qué pasa si cambiamos la distancia por d_1 ?
- 11. Sean (E,d) y (E',d') espacios métricos y $f:E\to E'$ continua. Probar que:
 - (a) Si E es compacto, entonces f(E) también lo es.
 - (b) Si además f es biyectiva, entonces f resulta ser un homeomorfismo.
- \square 12. Sea $f: \mathbb{R} \to \mathbb{R}$ continua tal que

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 0.$$

Probar que f es uniformemente continua en \mathbb{R} .

20. Sea $f:[a,b] \to [a,b]$ una función creciente. Probar que f tiene un punto fijo.