Università degli Studi di Padova

SCUOLA DI SCIENZE

CORSO DI LAUREA IN INFORMATICA

Piano di lavoro

Studente: Matteo Tiozzo - 2042882 Azienda: Università di Padova, Dipartimento di Matematica

12 settembre 2024

Contatti

Studente: Matteo Tiozzo, matteo.tiozzo.1@studenti.unipd.it, + 39 3345263731

Tutor aziendale: Alessandro Galeazzi, alessandro.galeazzi@unipd.it,

Azienda: Università di Padova, Dipartimento di Matematica, Via Trieste, 63, 35131 Padova, https://www.math.unipd.it/

Scopo dello stage

Lo scopo dello stage è acquisire competenze nell'applicazione di tecniche di Intelligenza Artificiale Interpretabile (Explainable AI) all'analisi e l'interpretazione delle caratteristiche delle Reti Generative Avversarie (GAN) nella generazione di malware. Lo stage si focalizzerà sull'esplorazione di metodi avanzati per migliorare la trasparenza e l'interpretabilità dei risultati prodotti dalle GAN, contribuendo allo sviluppo di soluzioni di cybersecurity interpretabili.

Lo studente dovrà acquisire competenze nell'utilizzo di strumenti di Explainable AI come Grad-CAM, Lime o tecniche di sensibilità all'occlusione, comprendere i meccanismi alla base delle GAN, e sviluppare la capacità di analizzare e comunicare i risultati attraverso report e visualizzazioni.

Interazione tra studente e tutor aziendale

Gli incontri con il tutor aziendale Alessandro Galeazzi avverranno a cadenza settimanale. In tali occasioni lo studente discuterà dei progressi raggiunti, dei prossimi obiettivi, di eventuali aggiornamenti al piano di lavoro e di come migliorare la qualità del progetto.

Prodotti attesi

Lo studente dovrà produrre una relazione scritta che illustri i seguenti punti:

- Revisione della letteratura esistente
 Effettuare una revisione della letteratura sulle tecniche che utilizzano le Reti Generative Avversarie (GAN) nel campo dell'analisi e rilevazione di malware.
- Raccolta del dataset di malware
 Raccogliere un dataset curato di eseguibili malware da fonti affidabili come Malwarebazaar, Virusshare, ecc., garantendo qualità e diversità dei dati. Utilizzare servizi come VirusTotal o AVClass2 per costruire un dataset di malware etichettato per tipologia.
- Conversione dei binari di malware
 Convertire i binari di malware in un formato adatto come input per le GAN
- Sviluppo del sistema di rilevazione malware
 Progettare e implementare un sistema di rilevazione del malware utilizzando algoritmi di deep learning come Convolutional Neural Networks (CNN), InceptionNet, XceptionNet e altri.

- Addestramento dei modelli GAN
 Sviluppare un'architettura GAN (es. DCGAN, WGAN) adatta alla generazione di malware. Monitorare metriche chiave come perdita, FID (Fréchet Inception Distance) e la qualità visiva dei campioni di malware generati.
- Applicazione delle tecniche di Explainability
 Analizzare le prestazioni tramite tecniche di Explenable AI come Grad-CAM e Lime.
- Valutazione dell'interpretabilità (Analisi quantitativa) e Ablation analysis
 Misurare la coerenza delle caratteristiche evidenziate su diversi campioni e tipologie di malware.
 Eseguire ablation analysis rimuovendo o modificando le caratteristiche chiave.

Contenuti formativi previsti

Il progetto prevede che lo studente metta in pratica e approfondisca le sue conoscenze nell'ambito dell'Intelligenza Artificiale Interpretabile (Explainable AI) e delle Reti Generative Avversarie (GAN). Inizialmente, lo studente dovrà acquisire competenze nella comprensione e manipolazione di dataset di malware, con un focus particolare sull'analisi delle caratteristiche generate dalle GAN. Successivamente, è richiesto che familiarizzi con metodi per migliorare la trasparenza e l'interpretabilità dei modelli generativi, utilizzando tecniche come Grad-CAM e Lime. Durante l'attività di stage, lo studente potrà quindi approfondire le tecniche avanzate e gli strumenti utilizzati per rendere i modelli di intelligenza artificiale più trasparenti e interpretabili nel contesto della sicurezza informatica.

Pianificazione del lavoro

Pianificazione settimanale

Prima Settimana (40 ore)

- Revisione della letteratura e delle tecniche esistenti per le Reti Generative Avversarie
- Identificazione e scaricamento di dataset di malware
- Etichettatura del dati per lo sviluppo del sistema di rilevamento

Seconda Settimana (40 ore)

- Pre-elaborazione e pulizia dei dati
- Identificazione ed estrazione delle caratteristiche rilevanti

Terza Settimana (40 ore)

- Studio dei modelli di deep learning per identificazione di malware
- Classificazione delle tipologie dei codici sorgenti

Quarta Settimana (40 ore)

- Sviluppo di esempi di reti avversarie utilizzando GAN
- Creazione di un dataset per la valutazione del modello

· Quinta Settimana (40 ore)

- Analisi delle caratteristiche del classificatore tramite Grad-CAM/Lime/Occlusion sensitivity
- Analisi delle differenze tra malware originali e generati sinteticamente

Sesta Settimana (40 ore)

- Analisi della similarità delle caratteristiche dei malware nella stessa famiglia
- Analisi della similarità delle caratteristiche dei malware tra famiglie diverse

Settima Settimana (40 ore)

- Descrizione e visualizzazione dei risulati
- Confronto con i ricercatori coinvolti per discutere i risultati ottenuti

Ottava Settimana (20 ore)

- Applicazione dei feedback ricevuti
- Redazione documentazione e relazione finale;

Ripartizione ore

La pianificazione, in termini di quantità di ore di lavoro, sarà così distribuita:

Durata in ore	Descrizione dell'attività
80	Background
20	Revisione delle tecniche e della letteratura
60	Creazione del dataset
140	Progettazione e Creazione dei modelli
50	Selezione del modello di malware detection
50	Selezione del modello di malware detection
40	Addestramento dei modelli
80	Valutazione dei Modelli
50	Applicazione delle tecniche di Explenability
20	Analisi dei risultati
10	Stesura documentazione finale
Totale ore	300

Obiettivi

Notazione

Si farà riferimento ai requisiti secondo le seguenti notazioni:

- O per i requisiti obbligatori, vincolanti in quanto obiettivo primario richiesto dal committente;
- *D* per i requisiti desiderabili, non vincolanti o strettamente necessari, ma dal riconoscibile valore aggiunto;
- *F* per i requisiti facoltativi, rappresentanti valore aggiunto non strettamente competitivo.

Le sigle precedentemente indicate saranno seguite da una coppia sequenziale di numeri, identificativo del requisito.

Obiettivi fissati

Si prevede lo svolgimento dei seguenti obiettivi:

- Obbligatori
 - <u>001</u>: Creazione di un dataset di malware classificato per categoria
 - 002: Implementazione di un sistema per identificare i malware basato su deep learning
 - 003: Creazione di un modello avversario (GAN) per generare malware
 - <u>004</u>: Valutazione delle performance del modello secondo tecniche di Explenable Al
 - <u>005</u>: Valutazione delle performance del modello tramite ablation analysis
- Desiderabili
 - <u>D01</u>: Analisi esaustiva dei modelli tramite Explanable Al
 - D02: Analisi approfondita dei risultati degli esperimenti;
- Facoltativi
 - *F01*: Implementazione di diversi modelli per identificazione di malware.
 - F02: Implementazione di diverse architetture per la generazione di malware.

Approvazione

Il presente piano di lavoro è stato approvato dai seguenti

Alessandro Galeazzi

Tutor aziendale

Matteo Tiozzo

Stagista

Prof. Alessandro Brighente

Tutor interno

Data