TD 3 + 4 - Wavelets

The following exercises are meant to illustrate chapter 3 of Gabriel Peyré's Mathematics of Data course (mathematical-tours. github. io). Some of them are adapted from the past years' exams.

Please refer to Geert-Jan Huizing (huizing@ens.fr) for questions regarding these exercises and their solutions.

Notes We will be playing with different wavelet bases and and with Fast Wavelet Transform (FWT).

Multiresolution approximations of $L^2(\mathbb{R})$ are families $(V_j)_{j\in\mathbb{Z}}$ of nested closed subspaces of $L^2(\mathbb{R})$, s.t.

$$L^2(\mathbb{R}) \supset ... \supset V_{i-1} \supset V_i \supset V_{i+1} \supset ... \supset \{0\},$$

$$f \in V_i \iff f(\cdot/2) \in V_{i+1}$$
 and $f \in V_i \iff \forall n \in \mathbb{Z}, f(\cdot + n2^j) \in V_i$

and $\exists \varphi \in L^2(\mathbb{R})$ so that $\{\varphi(\cdot - n)\}_n$ is an Hilbertian orthonormal basis of V_0 .

This implies that $\varphi_{j,n}$ form an orthonormal basis of $L^2(\mathbb{R})$:

$$\left\{\varphi_{j,n}(t) = \frac{1}{\sqrt{2^j}} \varphi\left(\frac{t - 2^j n}{2^j}\right)\right\}_{(j,n) \in \mathbb{Z}^2}.$$

Exercises

[*] Multi-resolution Approximation Spaces

Show that these families $(V_j)_j$ are multiresolution approximations of $L^2(\mathbb{R})$, with scaling functions φ .

1. (Piecewise constant functions)

$$V_j = \left\{ f \in \mathrm{L}^2(\mathbb{R}); \forall n, f \text{ is constant on } [2^j n, 2^j (n+1)] \right\} \text{ and } \varphi(t) = \mathbf{1}_{[0,1]}$$

2. (Shannon approximations)

$$V_j = \left\{ f \in L^2(\mathbb{R}); \forall n, \hat{f} \text{ is zero outside of } [-2^{-j}\pi, 2^{-j}\pi] \right\} \text{ and } \varphi(t) = \frac{\sin \pi t}{\pi t}$$

[★] Haar Wavelets

For $j \in \mathbb{Z}$, we define the space $V_j \subset L^2(\mathbb{R})$ of functions which are constant on each interval $I_{j,k}$, where

$$\forall k \in \mathbb{Z}, \ I_{j,k} \stackrel{\text{\tiny def.}}{=} \left[2^j k, 2^j (k+1) \right]$$

We also define the functions

$$\forall x \in \mathbb{R}, \varphi(x) \stackrel{\text{def.}}{=} \begin{cases} 1 & \text{if } x \in [0, 1[\\ 0 & \text{otherwise} \end{cases}, \quad \text{and} \quad \psi(x) \stackrel{\text{def.}}{=} \begin{cases} 1 & \text{if } x \in [0, 1/2[\\ -1 & \text{if } x \in [1/2, 1[\\ 0 & \text{otherwise}. \end{cases}$$

Their dilated and translated versions are defined as

$$\forall (j,k) \in \mathbb{Z}, \quad \psi_{j,k}(t) \stackrel{\text{\tiny def.}}{=} \frac{1}{\sqrt{2j}} \psi\left(2^{-j}t - k\right) \quad \text{and} \quad \varphi_{j,k}(t) \stackrel{\text{\tiny def.}}{=} \frac{1}{\sqrt{2j}} \varphi\left(2^{-j}t - k\right).$$

The functions $\psi_{j,k}$ are the so-called "Haar wavelets".

- 1. Draw the graphs of the functions $\varphi_{0,0}$, $\varphi_{1,0}$ and $\varphi_{2,2}$. Do the same for $\psi_{0,0}$, $\psi_{1,0}$ and $\psi_{2,2}$.
- 2. Show that $\forall j \in \mathbb{Z}$, there exists a space $W_j \subset L^2(\mathbb{R})$ such that

$$W_j \perp V_j$$
 and $V_{j-1} = V_j \oplus W_j$,

3. Show that

$$\mathcal{B}_{j}^{\varphi} \stackrel{\text{\tiny def.}}{=} \{\varphi_{j,k} \ ; \ k \in \mathbb{Z}\} \quad \text{and} \quad \mathcal{B}_{j}^{\psi} \stackrel{\text{\tiny def.}}{=} \{\psi_{j,k} \ ; \ k \in \mathbb{Z}\}$$

are ortho-bases of respectively V_j and W_j .

[*] Up and down sampling (from exam 2020)

We consider $\ell^2(\mathbb{Z})$ the set of sequences $(x_i)_{i\in\mathbb{Z}}$ with $\sum_i x_i^2 < +\infty$ with the inner product $\langle x,y\rangle = \sum_i x_i y_i$.

1. The down and up-sampling operators are

$$x \downarrow_2 \stackrel{\text{def.}}{=} (x_{2i})_{i \in \mathbb{Z}}$$
 and $(x \uparrow^2)_i \stackrel{\text{def.}}{=} \begin{cases} x_{i/2} & \text{if } i \text{ even,} \\ 0 & \text{otherwise.} \end{cases}$

Prove that \downarrow_2 and \uparrow^2 are adjoints i.e. $\langle x \downarrow_2, y \rangle = \langle x, y \uparrow_2 \rangle$.

- 2. What is the adjoint of the linear operator $x \mapsto x \star h$, where $(x \star h)_i \stackrel{\text{def.}}{=} \sum_{j \in \mathbb{Z}} x_j h_{i-j}$?
- 3. Prove that $(x \downarrow_2) \star h = (x \star (h \uparrow^2)) \downarrow_2$. Then use this recursively to show

$$f^k(x) = (x \star H^k) \downarrow_{2^k}$$
 where $H^k \stackrel{\text{def.}}{=} h^0 \star h^1 \star \dots h^{k-1}$ and $f: x \mapsto (x \star h) \downarrow_2$.

We denote $h^s = h \uparrow^{2^s} (\uparrow^{2^s}$ is defined similarly to \uparrow^2 by inserting $2^s - 1$ zeros).

4. What is H^k in the case of a box filter $[h_0, h_1] = [1, 1]/2$ (the other entries of the vector being 0)?

[**] Heisenberg inequality

A wavelet is a filter with mean 0, localized both in the spatial and Fourier domains. How localized can it be? For a function $f \in L^2(\mathbb{R})$ such that the following quantities exist, we define:

- Time mean $m: f \mapsto \frac{1}{\|f\|_2^2} \int_{-\infty}^{+\infty} t |f(t)|^2 dt$ and variance $s^2: f \mapsto \frac{1}{\|f\|_2^2} \int_{-\infty}^{+\infty} \left(t m(f)\right)^2 |f(t)|^2 dt$
- Fourier mean $\mu: f \mapsto \frac{1}{2\pi \|f\|_2^2} \int_{-\infty}^{+\infty} \omega |\hat{f}(\omega)|^2 d\omega$ and variance $\sigma^2: f \mapsto \frac{1}{2\pi \|f\|_2^2} \int_{-\infty}^{+\infty} (\omega \mu(f))^2 |\hat{f}(\omega)|^2 d\omega$
- 1. Let us consider a scaling factor $\gamma \in \mathbb{R}_+^*$ and $f_{\gamma}(t) = \frac{1}{\sqrt{\gamma}} f(\frac{t}{\gamma})$.
 - (a) Show that $||f_{\gamma}||_2^2 = ||f||_2^2$
 - (b) Derive the time mean and variance of f_{γ} as a function of those of f.
 - (c) Derive the Fourier mean and variance of f_{γ} as a function of those of f.
 - (d) How does scaling affect time and Fourier resolution?
- 2. Let's assume $m = \mu = 0$ (this amounts to replacing f with $g: t \mapsto f(t-m)e^{i\mu t}$). Using the Plancherel identity $(2\pi \|u\|_2^2 = \|\hat{u}\|_2^2)$, prove that

$$s^2 \sigma^2 = \frac{1}{\|f\|^4} \int_{-\infty}^{+\infty} |tf(t)|^2 dt \int_{-\infty}^{+\infty} |f'(t)|^2 dt.$$

3. Prove that

$$s^2 \sigma^2 \ge \frac{1}{\|f\|^4} \left(\int_{-\infty}^{+\infty} t f(t) \overline{f'(t)} dt \right)^2.$$

4. Assuming $\lim_{|t|\to+\infty} \sqrt{t} f(t) = 0$, prove the Heisenberg inequality:

$$s^2 \sigma^2 \ge 1/4$$

5. Find f such that this is an equality. You should recover what is called the Morlet wavelet.