

EVERLASTING *Ceasning*

FUNDAMENTALS OF COMPUTER GRAPHICS (CSIT304)

2D VIEWING AND CLIPPING

CHIRANJOY CHATTOPADHYAY

Associate Professor,
FLAME School of Computation and Data Science

2D VIEWING

INTRODUCTION

- We see in real life through a small window or the viewfinder of a camera.
- A computer-generated image often depicts a partial view of a large scene.
- Objects are placed into a world coordinate system (WCS).
- A rectangular window with its edges parallel to the axes of the WCS is used
 to select the portion of the scene for which an image is to be generated.
- A Sub-area of the total pixel area.

ILLUSTRATION

www.flame.edu.in

WINDOW

- A world-coordinate area selected for display is called a window or clipping window.
- The section of the 2D scene that is selected for viewing.
- The window defines what is to be viewed.

VIEWPORT

- An area on a display device to which a window is mapped is called a viewport.
- The viewport indicates where on an output device selected part will be displayed.

How to convert / transform a point in the world coordinate (wx, wy) to a point in the view coordinate (vx,vy)?

World Coordinates

View-port Coordinates

WINDOW TO VIEWPORT TRANSFORMATION

To maintain the same relative placement of the point in the viewport as in the window

$$\frac{wx - xw_{min}}{xw_{max} - xw_{min}} = \frac{vx - xv_{min}}{xv_{max} - xv_{min}}$$

$$\frac{yx - yw_{min}}{yw_{max} - yw_{min}} = \frac{vy - yv_{min}}{yv_{max} - yv_{min}}$$

$$vx = ?$$

$$vy = ?$$

$$vx = \frac{xv_{max} - xv_{min}}{xw_{max} - xw_{min}}(wx - xw_{min}) + xv_{min}$$
$$vy = \frac{yv_{max} - yv_{min}}{yw_{max} - yw_{min}}(yx - yw_{min}) + yv_{min}$$

WINDOW TO VIEWPORT TRANSFORMATION

- Translate the window to the origin $[(wx xw_{min}), (wy yw_{min})]$
- Scale it to the size of the viewport

$$\left[\frac{xv_{max}-xv_{min}}{xw_{max}-xw_{min}}, \frac{yv_{max}-yv_{min}}{yw_{max}-yw_{min}}\right]$$

• Translate scaled window to the position of the viewport $[+xv_{min}, +yv_{min}]$

TRANSFORMATION MATRIX

Window is parallel to the coordinate axis. What if it is not?

$$\begin{bmatrix} vx \\ vy \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & xv_{min} \\ 0 & 1 & yv_{min} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} xv_{max} - xv_{min} & 0 & 0 \\ xw_{max} - xw_{min} & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -xw_{min} \\ 0 & 1 & -yw_{min} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} wx \\ wy \\ 1 \end{bmatrix}$$

2D CLIPPING

OBJECTIVE

After completing this lecture the students will be able to

- Explain and solve numerical problems of 2D Clipping of
 - Point
 - Line
 - Polygon

CLIPPING

- We've been assuming that all primitives (lines, triangles, polygons) lie entirely within the *viewport*
- In general, this assumption will not hold

CLIPPING

Analytically calculating the portions of primitives within the viewport

WHY CLIP?

Bad idea to rasterize outside of framebuffer bounds

Also, don't waste time scan converting pixels outside window

CLIPPING

The naïve approach to clipping lines:

```
for each line segment
  for each edge of viewport
    find intersection points
    pick "nearest" point
  if anything is left, draw it
```

What do we mean by "nearest"?

TRIVIAL ACCEPTS

- Big optimization: trivial accept/ rejects
- How can we quickly determine whether a line segment is entirely inside the viewport?
- A: test both endpoints. x_{min}

TRIVIAL REJECTS

- How can we know a line is outside viewport?
- A: if both endpoints on wrong side of same edge, can trivially reject line

- Divide view plane into regions defined by viewport edges
- Assign each region a 4-bit outcode:

- To what do we assign outcodes?
- How do we set the bits in the outcode?
- How do you suppose we use them?

Set bits with simple tests

$$x > x_{max}$$

$$y < y_{min}$$

etc.

Assign an outcode to each vertex of line

- If both outcodes = 0, trivial accept
- o bitwise AND vertex outcodes together
- o If result \neq 0, trivial reject

www.flame.edu.in

DEFINING OUTCODES

For each endpoint, define an outcode (TBRL)
 b₀b₁b₂b₃

$$b_0 = 1$$
 if $y > y_{max}$, 0 otherwise
 $b_1 = 1$ if $y < y_{min}$, 0 otherwise
 $b_2 = 1$ if $x > x_{max}$, 0 otherwise
 $b_3 = 1$ if $x < x_{min}$, 0 otherwise

1001 1000 1010
$$y = y_{\text{max}}$$
0001 0000 0010
$$y = y_{\text{min}}$$
0101 0100 0110
$$x = x_{\text{min}} x = x_{\text{max}}$$

Alternatively, $b_0 = sign(y-ymax)$, ...

- Outcodes divide space into 9 regions
- Computation of outcode requires at most 4 subtractions

- If line cannot be trivially accepted or rejected, subdivide so that one or both segments can be discarded
- Pick an edge that the line crosses (how?)
- Intersect line with edge (how?)
- Discard portion on wrong side of edge and assign outcode to new vertex
- Apply trivial accept/ reject tests; repeat if necessary

- Outcode tests and line-edge intersects are quite fast
- But some lines require multiple iterations:
 - Clip top
 - Clip left
 - Clip bottom
 - o Clip right
- Fundamentally more efficient algorithms:
 - Cyrus-Beck uses parametric lines
 - Liang-Barsky optimizes this for upright volumes

THE CASES

- Case 1: both endpoints of line segment inside all four lines
 - Draw (accept) line segment as is

- Case 2: both endpoints outside all lines and on same side of a line
 - Discard (reject) the line segment

THE CASES

- Case 3: One endpoint inside, one outside
 - Must do at least one intersection

- Case 4: Both outside
 - May have part inside
 - Must do at least one intersection

EXAMPLE

Point	Т	В	R	L
Α	0	0	0	0
В	0	0	0	0
С	0	0	0	0
D	0	0	1	0
Е	0	0	1	0
F	0	0	1	0
G	0	0	0	1
Н	1	0	0	0
1	0	0	0	1
J	1	0	0	0

EXAMPLE (INTERSECTION)

• Intersect with the candidate boundaries

MORE EXAMPLE

Use the slope intercept form of the line equation

y coordinate of the intersection point with a **vertical clipping** border line

$$y = y_0 + m(x - x_0)$$

$$m = (y_{\text{end}} - y_0)/(x_{\text{end}} - x_0)$$

$$x = xw_{min} \text{ or } xw_{max}$$

MORE EXAMPLE

 (x_0, y_0)

Use the slope intercept form of the line equation

x coordinate of the intersection point with a horizontal clipping border line

$$x = x_0 + \frac{y - y_0}{m}$$

$$y = yw_{min} or yw_{max}$$

CLIPPING POLYGONS

- We know how to clip a single line segment
 - How about a polygon in 2D?
 - How about in 3D?
- Clipping polygons is more complex than clipping the individual lines
 - o Input: polygon
 - Output: polygon, or nothing

 When can we trivially accept/reject a polygon as opposed to the line segments that make up the polygon?

CONVEX POLYGON CLIPPING WINDOW

Non-Convex

WHY IS CLIPPING HARD?

- What happens to a triangle during clipping?
- Possible outcomes:

How many sides can a clipped triangle have?

WHY IS CLIPPING HARD?

• A really tough case:

WHY IS CLIPPING HARD?

• A really tough case:

concave polygon→multiple polygons

SUTHERLAND-HODGMAN CLIPPING

Basic idea:

- Consider each edge of the viewport individually
- o Clip the polygon against the edge equation
- o After doing all planes, the polygon is fully clipped

- Consider each edge of the viewport individually
- Clip the polygon against the edge equation
- o After doing all planes, the polygon is fully clipped

- Consider each edge of the viewport individually
- o Clip the polygon against the edge equation
- After doing all planes, the polygon is fully clipped

- Consider each edge of the viewport individually
- o Clip the polygon against the edge equation
- o After doing all planes, the polygon is fully clipped

- Consider each edge of the viewport individually
- o Clip the polygon against the edge equation
- o After doing all planes, the polygon is fully clipped

- Consider each edge of the viewport individually
- Clip the polygon against the edge equation
- o After doing all planes, the polygon is fully clipped

- Consider each edge of the viewport individually
- o Clip the polygon against the edge equation
- o After doing all planes, the polygon is fully clipped

- Consider each edge of the viewport individually
- o Clip the polygon against the edge equation
- o After doing all planes, the polygon is fully clipped

- Consider each edge of the viewport individually
- o Clip the polygon against the edge equation
- o After doing all planes, the polygon is fully clipped

- Basic idea:
 - Consider each edge of the viewport individually
 - Clip the polygon against the edge equation
 - o After doing all planes, the polygon is fully clipped

Will this work for non-rectangular clip regions?

What would 3-D clipping involve?

- Input/output for algorithm:
 - Input: list of polygon vertices in order
 - Output: list of clipped polygon vertices consisting of old vertices (maybe) and new vertices (maybe)
- Note: this is exactly what we expect from the clipping operation against each edge

This algorithm generalizes to 3-D

- We need to be able to create clipped polygons from the original polygons
- Sutherland-Hodgman basic routine:
 - o Go around polygon one vertex at a time
 - Current vertex has position p
 - o Previous vertex had position s, and it has been added to the output if appropriate

Edge from s to p takes one of four cases:

(Blue line can be a line or a plane)

- 1. s inside plane and p inside plane
 - Add p to output
 - Note: s has already been added
- 2. s inside plane and p outside plane
 - Find intersection point i
 - Add i to output

- 1. s outside plane and p outside plane
 - Add nothing
- 2. s outside plane and p inside plane
 - Find intersection point i
 - Add i to output, followed by p

PSEUDO-CODE

1. Initialize:

1. Initialize the output polygon with the vertices of the input polygon.

2. Clip Against Each Clipping Window Edge:

- 1. For each edge of the clipping window (xmin, ymin, xmax, ymax), do the following steps:
 - 1. Set the input polygon to the current output polygon.
 - 2. Clear the output polygon.
 - 3. Loop through each consecutive pair of vertices (v1, v2) in the input polygon.

3. Process Each Vertex:

- 1. For each vertex v in the input polygon, do the following:
 - 1. If v is inside the clipping window, add it to the output polygon.
 - 2. If the previous vertex was outside the clipping window and the current vertex is inside, add the intersection point of the edge and the clipping window to the output polygon.

4. Handle Wraparound:

1. Handle the wraparound case by connecting the last and first vertices of the polygon.

5. Repeat for Each Clipping Window Edge:

1. Repeat steps 2-4 for each edge of the clipping window.

6. Final Result:

1. The final result is the clipped polygon, stored in the output polygon.

ANIMATION

EVERLASTING Ceasing

THANK YOU