δ _{6D}	a	b
$p_0 = \langle q_0 \rangle$ $p_1 = \langle q_0 q_1 \rangle$	<q0q1><q0q1q2></q0q1q2></q0q1>	<q<sub>0></q<sub>
$p_2 = \langle q_0 q_1 q_2 \rangle$	(q0q1q2qf)	(q ₀)
$p_f = \langle q_0 q_1 q_2 q_f \rangle$	(q0q1q2qf)	$\langle q_0 \rangle$

3 – Linguagens Regulares

- 3.1 Sistema de Estados Finitos
- 3.2 Composição Seqüencial, Concorrente e Não-Determinista
- 3.3 Autômato Finito
- 3.4 Autômato Finito Não-Determinístico
- 3.5 Autômato Finito com Movimentos Vazios
- 3.6 Expressão Regular
- 3.7 Gramática Regular

3.5 Autômato Finito com Movimentos Vazios

Movimentos vazios

generalizam os movimentos não-determinísticos

Movimento vazio

- transição sem leitura de símbolo algum da fita
- interpretado como um não-determinismo interno ao autômato
 - * transição encapsulada
 - * excetuando-se por uma eventual mudança de estados
 - * nada mais pode ser observado

Algumas vantagens

facilita algumas construções e demonstrações

Poder computacional p/ autômatos finitos

- não aumenta o poder de reconhecimento de linguagens
- qualquer aAFNε pode ser simulado por um AFD

Def: Autômato Finito com Movimentos Vazios - AFNε

$$M = (\Sigma, Q, \delta, q_0, F)$$

- ∑ alfabeto (de símbolos) de entrada
- Q conjunto de estados possíveis
- **δ** (função) programa ou função de transição (função parcial)

$$\delta: \mathbb{Q} \times (\Sigma \cup \{\epsilon\}) \rightarrow 2^{\mathbb{Q}}$$

* movimento vazio ou transição vazia

$$\delta(p, \varepsilon) = \{ q_1, q_2, ..., q_n \}$$

- q₀ elemento distinguido de Q: estado inicial
- F subconjunto de Q: conjunto de estados finais

Autômato como diagrama

$$\delta(q, \epsilon) = \{ p_0 \}$$
 $\delta(q, a_1) = \{ p_1 \}$... $\delta(q, a_n) = \{ p_n \}$

- Computação de um AFNε
 - análoga à de um AFN
- ◆ Processamento de uma transição vazia
 - não-determinístico
 - assume simultaneamente os estados destino e origem
 - origem de um movimento vazio: caminho alternativo

Exp: AFNε: a's antecedem b's

$$M_7 = (\{a, b\}, \{q_0, q_f\}, \delta_7, q_0, \{q_f\})$$

δ7	a	b	ε
q ₀	{ q ₀ }	-	{ q _f }
qf	-	{ q _f }	

◆ Antes de definir computação

- computação de transições vazias a partir de
 - * um estado
 - * um conjunto finito de estados

Def: Computação Vazia

$$M = (\Sigma, Q, \delta, q_0, F)$$

Computação Vazia ou Função Fecho Vazio (um estado)

$$\delta \epsilon: Q \rightarrow 2^Q$$

indutivamente definida

*
$$\delta \epsilon(q) = \{ q \}$$
, se $\delta(q, \epsilon)$ é indefinida

*
$$\delta \epsilon(q) = \{ q \} \cup \delta(q, \epsilon) \cup (\bigcup_{p \in \delta(q, \epsilon)} \delta \epsilon(p)), \text{ caso contrário}$$

Computação Vazia ou Função Fecho Vazio (conjunto de estados)

$$\delta \varepsilon^*: 2^Q \rightarrow 2^Q$$

tal que

$$\delta \varepsilon^*(P) = \bigcup_{q \in P} \delta \varepsilon(q)$$

♦ Por simplicidade, δε e δε*

ambas denotadas por δε

Exp: Computação Vazia

- $\delta \epsilon(q_0) = \{q_0, q_f\}$
- $\delta \epsilon(q_f) = \{q_f\}$
- $\delta \epsilon (\{q_0, q_f\}) = \{q_0, q_f\}$

◆ Computação de um AFNε para uma entrada w

- sucessiva aplicação da função programa
- para cada símbolo de w (da esquerda para a direita)
- cada passo de aplicação intercalado com computações vazias
- até ocorrer uma condição de parada

◆ Assim, antes de processar a próxima transição

- determinar
 - * todos os demais estados atingíveis
 - * exclusivamente por movimentos vazios

Def: Função Programa Estendida, Computação

$$M = (\Sigma, Q, \delta, q_0, F) AFN \varepsilon$$

$$\delta^*: 2^Q \times \Sigma^* \rightarrow 2^Q$$

indutivamente definida

- $\delta^*(P, \varepsilon) = \delta \varepsilon(P)$
- $\delta^*(P, wa) = \delta \epsilon(R)$ onde $R = \{ r \mid r \in \delta(s, a) \ e \ s \in \delta^*(P, w) \}$

- Parada do processamento, Ling. Aceita/Rejeitada
 - análoga à do autômato finito não-determinístico

Exp: Computação Vazia, Computação

 $L_8 = \{ w \mid w \text{ possui como sufixo a ou bb ou ccc } \}$

 $M_8 = (\{a, b, c\}, \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_f\}, \delta_8, q_0, \{q_f\})$

$$\delta^*(\{q_0\}, abb) = \delta \varepsilon(\{r \mid r \in \delta(s, b) \ e \ s \in \delta^*(\{q_0\}, ab)\})$$
(1)
$$\delta^*(\{q_0\}, ab) = \delta \varepsilon(\{r \mid r \in \delta(s, b) \ e \ s \in \delta^*(\{q_0\}, a)\})$$
(2)

$$\delta^*(\{q_0\}, a) = \delta \varepsilon(\{r \mid r \in \delta(s, a) \ e \ s \in \delta^*(\{q_0\}, \varepsilon)\})$$
 (3)

Como:

$$\delta^*(\{q_0\}, \epsilon)\} = \delta\epsilon(\{q_0\}) = \{q_0, q_1, q_2, q_4\}$$
 considerado em (3) $\delta^*(\{q_0\}, a) = \{q_0, q_1, q_2, q_4, q_f\}$ considerado em (2) $\delta^*(\{q_0\}, ab) = \{q_0, q_1, q_2, q_3, q_4\}$ considerado em (1)

Resulta na computação: $\delta^*(\{q_0\}, abb) = \{q_0, q_1, q_2, q_3, q_4, q_f\}$

Teorema: Equivalência entre AFN e AFNε

Classe dos Autômatos Finitos com Movimentos Vazios é equivalente à Classe dos Autômatos Finitos Não-Determinísticos

Prova: (por indução)

Mostrar que

- a partir de um AFNε M qualquer
- construir um AFN M_N que realiza as mesmas computações
- M_N simula M

$AFN_{\varepsilon} \rightarrow AFN$

- construção de uma função programa sem movimentos vazios
- conjunto de estados destino de cada transição não-vazia
 - ampliado com os demais estados possíveis de serem atingidos exclusivamente por transições vazias

 $M = (\Sigma, Q, \delta, q_0, F)$ um AFN ε qualquer. AFN construído

$$M_N = (\Sigma, Q, \delta_N, q_0, F_N)$$

• δ_N : $Q \times \Sigma \rightarrow 2^Q$ é tal que

$$\delta_N(q, a) = \delta^*(\{q\}, a)$$

F_N é o conjunto de todos os estados q pertencentes a Q

$$\delta \epsilon(q) \cap F \neq \emptyset$$

estados que atingem estados finais via computações vazias

Demonstração que, de fato, o AFN M_N simula o AFNε M

- indução no tamanho da palavra
- exercício

- Portanto, linguagem aceita por AFNε
 - é Linguagem Regular ou Tipo 3

Exp: Construção de um AFN a partir de um AFNε

AFN_E - M₉ = ({ a, b }, { q₀, q₁, q₂ }, δ_9 , q₀, { q₂ })

δ9	а	b	ε
q 0	{ q ₀ }	1	{ q ₁ }
Q 1	-	{ q ₁ }	{ q ₂ }
q 2	{ q ₂ }	-	-

 $M_{9N} = (\{a, b\}, \{q_0, q_1, q_2\}, \delta_{9N}, q_0, F_N)$

$$F_N = \{ q_0, q_1, q_2 \}$$

- $\delta \epsilon(q_0) = \{q_0, q_1, q_2\}$
- $\delta \epsilon(q_1) = \{ q_1, q_2 \}$
- $\delta \epsilon(q_2) = \{q_2\}$

Na construção de δ_{9N}

- $\underline{\delta}_9^*(\{q_0\}, \epsilon) = \{q_0, q_1, q_2\}$
- $\underline{\delta}_9^*(\{q_1\}, \epsilon) = \{q_1, q_2\}$
- $\delta_9^*(\{q_2\}, \epsilon) = \{q_2\}$

Assim, δ_{9N} é tal que

$$\begin{split} \delta_{9N}(q_0,a) &= \delta_9^*(\{\,q_0\,\},a) = \\ \delta_{\epsilon}(\{\,r \mid r \in \delta(s,a) \; e \; s \in \underline{\delta}^*(\{\,q_0\,\},\epsilon)\,\}) &= \{\,q_0,\,q_1,\,q_2\,\} \\ \delta_{9N}(q_0,b) &= \delta_9^*(\{\,q_0\,\},b) = \\ \delta_{\epsilon}(\{\,r \mid r \in \delta(s,b) \; e \; s \in \underline{\delta}^*(\{\,q_0\,\},\epsilon)\,\}) &= \{\,q_1,\,q_2\,\} \\ \delta_{9N}(q_1,a) &= \delta_9^*(\{\,q_1\,\},a) = \\ \delta_{\epsilon}(\{\,r \mid r \in \delta(s,a) \; e \; s \in \underline{\delta}^*(\{\,q_1\,\},\epsilon)\,\}) &= \{\,q_2\,\} \end{split}$$

- $\delta_{9N}(q_1, b) = \underline{\delta}_{9}^*(\{q_1\}, b) = \delta_{\epsilon}(\{r \mid r \in \delta(s, b) e s \in \underline{\delta}^*(\{q_1\}, \epsilon)\}) = \{q_1, q_2\}$
- $\delta_{9N}(q_2, a) = \underline{\delta}_9^*(\{q_2\}, a) = \delta_{\epsilon}(\{r \mid r \in \delta(s, a) \in s \in \underline{\delta}^*(\{q_2\}, \epsilon)\}) = \{q_2\}$
- $\delta_{9N}(q_2, b) = \underline{\delta}_9^*(\{q_2\}, b) = \delta\epsilon(\{r \mid r \in \delta(s, b) \in s \in \delta^*(\{q_2\}, \epsilon)\})$ é indefinida