9-12- КЛАС – ФИНАЛ 2018

Задача 1. Ако 1 и (- 4) са корени на едно биквадратно уравнение, тогава сборът на двата най-малки корена на това уравнение е:

A) -1

B) - 3

 \mathbf{C}) -5

D) не може да се определи

Задача 2. За колко цели числа x е изпълнено неравенството

$$\frac{x^3 - 6x^2 + 9x}{\sqrt{x+2}} \le 0?$$

A) 1

B) 2

C) 3

D) повече от 3

Задача 3. Бедрото AD на трапеца ABCD (AB > CD, AB CD) има дължина 4 cm, а разстоянието от средата на AB до AD е равно на 2 cm. Ако AB:DC=2:1, колко cm^2 е лицето на трапеца?

A) 6

B) 12

C) 18

D) 24

Задача 4. Вписаната в правоъгълния триъгълник *ABC* окръжност се допира до хипотенузата *AB* в точката *M*. Ако AM=5~cm и AC=8~cm пресметнете лицето на Δ *ABC*.

A) $15 cm^2$

B) $30 cm^2$

C) $60 cm^2$

D) $120 cm^2$

Задача 5. Пресметнете произведението на реалните корени на уравнението

$$(2x^3 - 9x^2 + 10x - 3) \times \sqrt{2 + x - x^2} = 0.$$

A) -2

B) -1

C) 1

D) друг отговор

Задача 6. По колко начина можем да поставим 10 еднакви ябълки в три различни фруктиери? Допуска се, че има и празни фруктиери.

A) 64

B) 66

C) 81

D) друг отговор

Задача 7. За кое естествено число x, числото равно на $(625^2)^x \times (2^{20})^3$ се записва с 69 цифри?

A) 7

B) 8

C) 9

D) друг отговор

Задача 8. Колко са тройките неотрицателни числа със сбор 6, ако сред тях няма числа по-големи от 4?

A) 32

B) 24

C) 16

D) друг отговор

Задача 9. Графиката на коя от посочените функции е успоредна на графиката на функцията = 2x + 3?

A)
$$y = -2x + 3$$
 B) $y = 3x - 2$ **C)** $y = 2x + 1$ **D)** $= -2x - 3$

$$\mathbf{B}) y = 3x - 2$$

$$\mathbf{C}) y = 2x + 1$$

D) =
$$-2x - 3$$

Задача 10. Колко са високосните години от 1001 г. до 2018 г.?

Задача 11. Ако $y = 8x + \frac{9}{2x}$, коя е най-голямата възможна стойност на y, ако x < 0?

Задача 12. Основите на трапец са 4 и 9 сантиметра, а единият диагонал му е 6 см. Да се намери отношението на дължините на по-голямото към по-малкото бедро.

Задача 13. Колко са двуцфрените числа \overline{ab} , такива, че $\sqrt{\overline{ab} + \overline{ba}}$ е рационално число? Задача 14. Колко са НЕравнобедрените триъгълници с върхове измежду върховете на правилния 18-ъгълник на чертежа?

Задача 15. За кои цели стойности на параметъра a уравнението

$$ax^2 - 8x + 16 = 0$$

се удовлетворява само за едно число x?

Задача 16. Да се намери сборът на всички реални числа х, такива че

$$\left[\frac{x}{2}\right] + \left[\frac{x}{3}\right] = x.$$

Задача 17. Ако

$$x = \frac{12}{x} + ,$$

$$= \frac{24}{x} + x,$$

пресметнете |x - y|.

Задача 18. В кой квадрант е пресечната точка на правите $y = \sqrt{2}x + \sqrt{3}$ и $y = \sqrt{3}x + \sqrt{3}$ $\sqrt{2}$?

Задача 19. Намерете най-малкото естествено число, което при умножение с 2 става точен квадрат, а при умножение с 3 е точен куб.

Задача 20. Трите кръга са с диаметри AB = 6 cm, BC = 4 cm и AC = 10 cm. Колко процента от лицето на кръга с диаметър AC е лицето на защрихованата част?

