

SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO SUL E SUDESTE DO PARÁ - UNIFESSPA INSTITUTO DE GEOCIÊNCIAS E ENGENHARIAS - IGE FACULDADE DE COMPUTAÇÃO E ENG. ELÉTRICA – FACEEL CURSO ENGENHARIA DE COMPUTAÇÃO

Microeletrônica

Prof. José Carlos Da Silva jcdsilv@hotmail.com jose-carlos.silva@unifesspa.edu.br whatsApp: 19-993960156

Outubro/2021

Conteúdo

- Introdução;
- Transistores (FET):
 - Análise de pequenos sinais (Análise AC ou CA):
 - Análise AC ou CA (Impedância de entrada e saída, ganho e etc).
 - Simulação (Análise AC ou CA):
 - Polarização: Fixa;
 - Polarização: autopolarização;
 - Polarização por Divisor de Tensão.

Introdução

Vacuum Tube Op-Amps

- First op amps built in 1930's-1940's
 - Technically feedback amplifiers due to only having one useable input
- Used in WWII to help how to strike military targets
 - Buffers, summers, differentiators, inverters
- Took ±300V to ± 100V to power

Cross section of an npn BJT.

(Exemplos de AmpOp - 1964 - Op-Amp A702, Fairchild)

Referência: Notas de Aulas do Prof. Wilhelmus Van Noije

Transistor Efeito de Campo (FET)

- Principais diferenças entre BJT x FET:
 - A variável de controle para um transistor TBJ é um valor de corrente, enquanto para o FET essa variável é um valor de tensão.

Transistor Efeito de Campo de Junção (J-FET) (Análise de pequenos sinais – Análise AC ou CA)

Transistor Efeito de Campo de Junção (J-FET) (Análise de pequenos sinais – Análise AC ou CA)

Circuito Equivalente AC ou CA (TBJ)

Circuito Equivalente AC ou CA (J-FET)

Meta: Representar as grandezas elétricas e físicas dos dispositivos semicondutor (TBJ ou J-FET) por um circuito elétrico equivalente.

Transistor Efeito de Campo de Junção (J-FET) (Análise de pequenos sinais – Análise AC ou CA)

MODELO AC ou CA

- g_m (transcondutância):
 - Representa a variação na corrente de dreno que resultará de uma variação na tensão porta-fonte V_{GS}:

$$\Delta I_D = g_m \, \Delta V_{GS}$$

- trans: Este prefixo na terminologia aplicada a g_m revela que esse parâmetro estabelece uma relação entre uma quantidade de saída e a quantidade de entrada.
- Condutância: O radical condutância foi escolhido porque g_m é determinado por uma razão corrente-tensão similar à razão que define a condutância de um resistor G=1/R=I/V. Assim podemos utilizar a relação abaixo:

$$g_m = \frac{\Delta I_D}{\Delta V_{GS}}$$

Transistor Efeito de Campo de Junção (J-FET) (Análise de pequenos sinais – Análise AC ou CA)

MODELO AC ou CA

- Determinação gráfica de gm
 - Se examinarmos a característica de transferência da Figura do "slide anterior", veremos que gm é na verdade a inclinação da curva no ponto de operação. Isto é:

$$g_m = m = \frac{\Delta y}{\Delta x} = \frac{\Delta I_D}{\Delta V_{GS}}$$

 Ao acompanharmos a curvatura da característica de transferência, fica claro que a inclinação, e portanto gm, aumenta à medida que a curva é percorrida de V_P até I_{DSS}. Em outras palavras, conforme V_{GS} se aproxima de 0V, o valor de gm aumenta.

$$g_m = \frac{\Delta I_D}{\Delta V_{GS}}$$

 A Equação anterior, revela que gm pode ser determinado em qualquer ponto Q sobre a curva característica de transferência, bastando para isso que escolhamos um incremento finito em V_{GS} (ou em I_D) em torno do ponto Q e depois determinemos a variação correspondente em I_D (ou V_{GS}, respectivamente).

Transistor Efeito de Campo de Junção (J-FET) (Análise de pequenos sinais – Análise AC ou CA)

MODELO AC ou CA

- Circuito equivalente AC ou CA do JFeT
 - parâmetros Agora que OS importantes de circuito um equivalente CA foram introduzidos e discutidos, um modelo de transistor JFET no domínio CA pode ser construído. O controle de I_D por V_{as} é incluído como uma fonte de corrente $g_m V_{gs}$ conectada do dreno para a fonte, como vemos na Figura ao lado. A seta da fonte de corrente aponta o dreno para a fonte para estabelecer um deslocamento de fase de 180° entre as tensões de saída e de entrada, assim como ocorrerá na operação real.

A impedância de entrada é representada pelo circuito aberto nos terminais de entrada, e a impedância de saída é representada pelo resistor r_d do dreno para a fonte. Observe que, nesse caso, a tensão porta-fonte é representada por Vgs (subscritos em letra minúscula) para que seja distinguida dos valores CC. Além disso, registre o fato de que a fonte é comum aos circuitos de entrada e saída, enquanto os terminais de porta e dreno se "relacionam" apenas através da fonte de corrente controlada gmVqs.

Circuito equivalente CA do JFET.

Análise AC ou CA (Com Desvio):

 A configuração com polarização fixa apresenta a desvantagem de exigir duas fontes de tensão CC. A configuração com autopolarização da Figura ao lado requer somente uma fonte CC para estabelecer o ponto de operação desejado.

Análise AC ou CA (Com Desvio):

O capacitor $C_{\rm S}$ em paralelo com a resistência de fonte representa um circuito aberto equivalente para a operação CC, o que permite que $R_{\rm S}$ defina o ponto de operação. Sob condições CA, o capacitor assume o estado de curto-circuito e "curto-circuita" o efeito de $R_{\rm S}$. O circuito equivalente do JFET é apresentado na Figura abaixo:

• O circuito equivalente do JFET da figura anterior é apresentado na

Análise AC ou CA (Rs com Desvio):

Visto que a configuração resultante é a obtida configuração na mesma polarização fixa, as equações resultantes para Zi , Zo e Av serão as mesmas, temos:

• **Z**_i $Z_i = R_G$

• Z₀ $Z_o = r_d \| R_D$ Se $r_d \ge 10R_D$

 $Z_o \cong R_D \Big|_{r_d \ge 10R_D}$ • Av

 $A_v = -g_m(r_d || R_D)$

Se $r_d \ge 10R_D$,

 Relação de Fase: O sinal negativo nas soluções para Av indica novamente um deslocamento de fase de 180° entre Vi e Vo.

Análise AC ou CA (R_s sem desvio):

Se C_s for removido da Figura abaixo, o resistor R_s será parte do circuito equivalente CA, como mostra a Figura ao lado. Nesse caso, não há uma forma óbvia de reduzir o circuito para diminuir seu nível de complexidade. Ao determinar Zi, Zo e Av, devemos tomar cuidado com a notação, com as polaridades e com os sentidos de corrente definidos. Inicialmente, a resistência r_d não será incluída na análise para que se possa ter uma base de comparação.

 Z_i Devido à condição de circuito aberto entre a porta e o circuito de saída, a entrada se mantém como a seguir:

$$Z_i = R_G$$

Análise AC ou CA (R_s sem desvio):

Z_o A impedância de saída é definida por:

$$Z_o = \frac{V_o}{I_o} \bigg|_{V_i = 0}$$

• Estabelecer V_i =0V na Figura abaixo faz com que o terminal da porta fique no potencial do terra (0V). Assim, a tensão através de R_G é 0V, o que equivale a "cortá-lo" da figura.

Análise AC ou CA (R_s sem desvio):

 A aplicação da Lei das Correntes de Kirchhoff resulta em:

$$I_o + I_D = g_m V_{gs}$$
$$V_{gs} = -(I_o + I_D) R_S$$

com

de maneira que

$$I_o + I_D = -g_m(I_o + I_D)R_S = -g_mI_oR_S - g_mI_DR_S$$

ou
$$I_o[1 + g_m R_S] = -I_D[1 + g_m R_S]$$

e $I_o = -I_D$ (a fonte de corrente controlada $g_m V_{gs} = 0$ A para as condições aplicadas)

Visto que então

$$V_o = -I_D R_D$$

$$V_o = -(-I_o)R_D = I_oR_D$$

Se r_d for incluído no circuito, o equivalente aparecerá como mostra a Figura abaixo.

Visto que
$$Z_o = \frac{V_o}{I_o}\Big|_{V_i=0 \text{ V}} = -\frac{I_D R_D}{I_o}$$

Devemos tentar encontrar uma expressão para I_o em termos de I_D . A aplicação da Lei das Correntes de Kirchhoff produz:

$$I_o = g_m V_{gs} + I_{rd} - I_D$$

Análise AC ou CA (R_s sem desvio):

$$V_{rd} = V_o + V_{gs}$$

$$I_o = g_m V_{gs} + \frac{V_o + V_{gs}}{r_d} - I_D$$

ou

$$I_o = \left(g_m + \frac{1}{r_d}\right)V_{gs} - \frac{I_D R_D}{r_d} - I_D \text{ usando } V_o = -I_D R_D$$

Agora,

$$V_{gs} = -\left(I_D + I_o\right)R_S$$

de maneira que

$$I_o = -\left(g_m + \frac{1}{r_d}\right)(I_D + I_o)R_S - \frac{I_D R_D}{r_d} - I_D$$

$$I_o \left[1 + g_m R_S + \frac{R_S}{r_d} \right] = -I_D \left[1 + g_m R_S + \frac{R_S}{r_d} + \frac{R_D}{r_d} \right]$$

ou
$$I_{o} = \frac{-I_{D} \left[1 + g_{m}R_{S} + \frac{R_{S}}{r_{d}} + \frac{R_{D}}{r_{d}} \right]}{1 + g_{m}R_{S} + \frac{R_{S}}{r_{d}}}$$

e
$$Z_o = \frac{V_o}{I_o} = \frac{-I_D R_D}{-I_D \left(1 + g_m R_S + \frac{R_S}{r_d} + \frac{R_D}{r_d}\right)}$$

$$\frac{1 + g_m R_S + \frac{R_S}{r_d}}{1 + g_m R_S + \frac{R_S}{r_d}}$$

e finalmente:

$$Z_{o} = \frac{\left[1 + g_{m}R_{S} + \frac{R_{S}}{r_{d}}\right]}{\left[1 + g_{m}R_{S} + \frac{R_{S}}{r_{d}} + \frac{R_{D}}{r_{d}}\right]}R_{D}$$

Análise AC ou CA (R_s sem desvio):

Para $r_d \ge 10R_D$,

$$\left(1 + g_m R_S + \frac{R_S}{r_d}\right) \gg \frac{R_D}{r_d}$$

e

$$1 + g_m R_S + \frac{R_S}{r_d} + \frac{R_D}{r_d} \cong 1 + g_m R_S + \frac{R_S}{r_d}$$

o que resulta em

 Av Para o circuito da Figura abaixo, a aplicação da Lei das Tensões de Kirchhoff no circuito de entrada resulta em:

$$V_i - V_{gs} - V_{RS} = 0$$
$$V_{gs} = V_i - I_D R_S$$

Análise AC ou CA (R_s sem desvio):

Para $r_d \ge 10R_D$,

$$\left(1 + g_m R_S + \frac{R_S}{r_d}\right) \gg \frac{R_D}{r_d}$$

e

$$1 + g_m R_S + \frac{R_S}{r_d} + \frac{R_D}{r_d} \cong 1 + g_m R_S + \frac{R_S}{r_d}$$

o que resulta em

Av: Para o circuito da Figura abaixo, a aplicação da Lei das Tensões de Kirchhoff no circuito de entrada resulta em:

$$V_i - V_{gs} - V_{RS} = 0$$
$$V_{gs} = V_i - I_D R_S$$

Av:

A tensão através de r_d usando-se a Lei das Tensões de Kirchhoff é:

$$V_{rd} = V_o - V_{RS}$$

$$I' = \frac{V_{r_d}}{r_d} = \frac{V_o - V_{R_S}}{r_d}$$

De maneira que a aplicação da Lei das Correntes de Kirchhoff resulta em:

$$I_D = g_m V_{gs} + \frac{V_o - V_{R_S}}{r_d}$$

Substituindo V_{as} , V_{o} e V_{RS} na equação anterior, temos:

$$I_D = g_m [V_i - I_D R_S] + \frac{(-I_D R_D) - (I_D R_S)}{r_d}$$

Av:

de forma que

$$I_D\bigg[1 + g_m R_S + \frac{R_D + R_S}{r_d}\bigg] = g_m V_i$$

ou

$$I_D = \frac{g_m V_i}{1 + g_m R_S + \frac{R_D + R_S}{r_d}}$$

A tensão de saída é, portanto,

$$V_{o} = -I_{D}R_{D} = -\frac{g_{m}R_{D}V_{i}}{1 + g_{m}R_{S} + \frac{R_{D} + R_{S}}{r_{d}}}$$

e
$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{g_{m}R_{D}}{1 + g_{m}R_{S} + \frac{R_{D} + R_{S}}{r_{d}}}$$

Novamente, se $r_d \ge 10(R_D + R_S)$,

$$A_{v} = \frac{V_{o}}{V_{i}} \cong -\frac{g_{m}R_{D}}{1 + g_{m}R_{S}}$$

$$r_{d} \geq 10(R_{D} + R_{S})$$

Relação de fase:

O sinal negativo na Equação abaixo, indica novamente que há um deslocamento de fase de 180° entre Vi e Vo:

$$A_v = \frac{V_o}{V_i} \cong -\frac{g_m R_D}{1 + g_m R_S} \bigg|_{r_d \ge 10(R_D + R_S)}$$

FET (ATIVIDADES)

A configuração com autopolarização das atividades da aula 04 apresenta um ponto de operação definido por $V_{\rm GSQ}=-2,6$ V e $I_{\rm DQ}=2,6$ mA, com $I_{\rm DSS}=8$ mA e $V_{\rm P}=-6$ V. O circuito é redesenhado na Figura abaixo considerando-se um sinal aplicado $V_{\rm i}$. O valor de $g_{\rm os}$ dado é 20 μ S.

- a) Determine g_m.
- b) Determine r_d.
- c) Determine Z_i.
- d) Calcule Z_0 com e sem efeito de r_d . Compare os resultados.
- e) Calcule Av $\,$ com e sem efeito de $\,$ r $_{\rm d}$. Compare os resultados.

Referencias

- Boylestad e Nashelsky. "Dispositivos Eletrônicos e teoria de circuitos", Prentice Hall, 11 Edição, 784p, 2013;
- Sedra e Smith, "Microeletrônica", Pearson Prentice Hall, 5 Edição, 948p, 2007.