Exercice 1:

Dans cet exercice, on se propose de trouver une méthode pour approcher la solution sur $[0, +\infty[$ de l'équation $\ln(1+x) = x - 1$.

- 1. Montrer que l'équation $\ln(1+x) = x 1$ d'inconnue x admet effectivement une unique solution sur $[0, +\infty[$. On notera par la suite α cette solution.
- 2. Soit (u_n) une suite définie par : $\begin{cases} u_0 \geqslant 0, \\ \forall n \in \mathbb{N}, \ u_{n+1} = 1 + \ln(1 + u_n) \end{cases}$
 - (a) Justifier que la suite (u_n) est bien définie.
 - (b) Etudier la monotonie et le comportement asymptotique de (u_n) suivant que $u_0 \in [0, \alpha]$ ou que $u_0 \in [\alpha, +\infty[$.
- 3. (a) Justifier que $1 < \alpha < 3$. On admettra que $\ln 2 \simeq 0,69$.
 - (b) Soit (v_n) et (w_n) les suites définies par : $\begin{cases} v_0 = 1, \\ \forall n \in \mathbb{N}, \ v_{n+1} = 1 + \ln(1 + v_n) \end{cases}$ et $\begin{cases} w_0 = 3, \\ \forall n \in \mathbb{N}, \ w_{n+1} = 1 + \ln(1 + w_n) \end{cases}$. Que pouvons-nous dire de ces deux suites? Décrire alors une méthode permettant d'obtenir une approximation de α .
 - •

(c) On considère la fonction Python ci-dessous :

Expliquer ce que fait cette fonction et préciser le rôle joué par la variable d'entrée e.

Exercice 2:

Pour tout entier naturel n et tout réel x, on pose $P_n(x) = x^3 + nx^2 + 1$.

- 1. Soit $n \in \mathbb{N}$. Montrer que le polynôme P_n admet une unique racine réelle que l'on notera x_n . Calculer x_0 .
- 2. Montrer: $\forall n \in \mathbb{N}, x_n \leqslant -1$.
- 3. Montrer que la suite $(x_n)_{n\in\mathbb{N}}$ est strictement décroissante.
- 4. La suite (x_n) étant monotone, elle admet une limite (finie ou non). On se propose de déterminer cette limite de deux façons différentes.
 - (a) Soit $n \in \mathbb{N}^*$. Calculer $P_n(-n)$. En déduire une inégalité portant sur x_n puis la limite de $(x_n)_{n \in \mathbb{N}}$ quand n tend vers $+\infty$.
 - (b) Retrouver la limite de $(x_n)_{n\in\mathbb{N}}$ en raisonnant par l'absurde.
- 5. Montrer: $x_n \sim -n$.
- 6. Soit $n \in \mathbb{N}^*$. Montrer que $P_n\left(-n-\frac{1}{n}\right) < 0$. En déduire un encadrement de x_n puis retrouver le résultat de la question précédente.
- 7. Écrire une fonction Python permettant d'obtenir une approximation de x_n à ε près où ε est un réel strictement positif choisi par l'utilisateur.

Cette fonction prendra en entrée le réel ε .

Indication : on pourra utiliser l'algorithme de dichotomie rappelé dans la question 2) a) de l'exercice 14 de la liste d'exercices sur les suites.

Exercice 3:

On se place dans l'espace affine euclidien muni d'un repère orthonormé.

Soit \mathcal{D} la droite de représentation paramétrique $\begin{cases} x = 2 + 10\lambda \\ y = 4 - \lambda & (\lambda \in \mathbb{R}) \text{ et } \mathcal{D}' \text{ la droite d'équations} \\ z = 1 + 2\lambda \end{cases}$

cartésiennes $\begin{cases} 2x - y + 3z = -3 \\ 4x + 2y - z = 7 \end{cases}.$

- 1. Montrer que \mathcal{D} et \mathcal{D}' se coupent en un unique point A dont on déterminera les coordonnées.
- 2. Déterminer une équation cartésienne du plan \mathcal{P} contenant \mathcal{D} et \mathcal{D}' .
- 3. Trouver une représentation paramétrique de la droite Δ perpendiculaire au plan \mathcal{P} passant par A puis déterminer des équations cartésiennes de Δ .
- 4. Écrire une fonction Python permettant de tester si un point M:(x,y,z) appartient à Δ .