Linear Representations of Finite Groups

Homework #3

Due on 2022 年 11 月 23 日

苏可铮 2012604

Problem 1

设 P 是有限集合,有限群 G 在 P 上有群作用, χ 是对应的置换表示的特征标,由 G 在 P 上的群作用,定义 G 在 $P \times P$ 上的群作用:g(x,y) = (gx,gy),证明:

$$<\chi,\chi> = \frac{1}{|G|} \sum_{g \in G} |(P \times P)^g|$$

其中 $(P \times P)^g = \{(x,y) \in (P \times P) \mid g(x,y) = (x,y)\}$ 是群元素 g 的不动点集

Proof. 由题意: $\chi(g) = |P^g|$ 其中 $P^g = \{x \in P | gx = x\}$ 为群元素 g 的不动点集,则有:

$$\begin{split} |(P \times P)^g| &= |\{(x,y) \in (P \times P) \mid g(x,y) = (x,y)\}| \\ &= \sum_{g \in G} |\{(x,y) \in (P \times P) \mid (gx,gy) = (x,y)\}| \\ &= \sum_{g \in G} |P^g| \\ &= |P^g|^2 = \chi^2(g) \end{split}$$

Problem 2

群 G 在集合 P 上有群作用称为 2-传递的,如果这个作用是传递的,并且对 P 中任意 $x_1 \neq x_2, x_2 \neq x_2$,存在 $g \in G$ 使得 $x_2 = gx_1, y_2 = gy_1$

证明: G 在 P 上的群作用是 2-传递的,并且当且仅当 G 在 $P \times P$ 上的群作用恰有 2 个轨道

Proof. (先证必要性 ⇒)

若 G 在 P 上的群作用是 2-传递的,则有 G 在 P 上的群作用是传递的,即

$$\forall x_1, x_2 \in P, \exists q \in G \text{ s.t. } qx_1 = x_2$$

$$g(x, x) = (gx, gx) \in \{(x, x) \mid x \in P\}$$

且由 G 在 P 上作用传递,故 G 在 $\{(x,x) \mid x \in P\}$ 上作用传递 又对 $\forall (x,y) \in \{(x,y) \mid x,y \in P \text{且 } x \neq y\}$,由 $gx \neq gy$,则:

$$g(x,y) = (gx, gy) \in \{(x,y) \mid x, y \in P \not\exists x \neq y\}$$

且由 G 在 P 上作用传递,故 G 在 $\{(x,y) \mid x,y \in P$ 且 $x \neq y\}$ 上作用传递 综上可知,G 在 $P \times P$ 上的群作用恰有 2 个轨道

(再证充分性 ←)

若 G 在 $P \times P$ 上的群作用恰有 2 个轨道,且 $P \times P = \{(x,x) \mid x \in P\} \cup \{(x,y) \mid x,y \in P \exists x \neq y\}$,显然 G 在 $P \times P = \{(x,x) \mid x \in P\}$ 和 $\{(x,y) \mid x,y \in P \exists x \neq y\}$ 上的作用都是封闭的,故 $P \times P = \{(x,x) \mid x \in P\}$ 和 $\{(x,y) \mid x,y \in P \exists x \neq y\}$ 为这 2 个轨道

则对 $\forall x_1 \neq y_1, x_2 \neq y_2$, 由 G 在 $\{(x,y) \mid x,y \in P \exists x \neq y\}$ 上传递,则

$$\exists g \in G \text{ s.t. } g(x_1, y_1) = (x_2, y_2), \ \exists \exists x_2 = gx_1, y_2 = gy_1$$

故 G 在 P 上的群作用是 2-传递的

Problem 3

设有限群 G 在有限集合 P 上的群作用是 2-传递的,设 ρ 是对应的置换表示, ρ 可分解为 $\rho = \rho_1 \oplus \theta$,其中 ρ_1 是 1 维平凡表示, θ 是约减表示,证明: θ 是不可约表示

Proof. 不妨记 χ 为置换表示 ρ 的特征标, ϕ 为约减表示 θ 的特征标, 由 ρ 可分解为 $\rho = \rho_1 \oplus \theta$ 得:

$$\chi = \phi + 1$$

又由有限群 G 在有限集合 P 上的群作用是 2-传递的,则由上一题知:有限群 G 在 $P \times P$ 上的群作用 恰有 2 个轨道,则由 Burnside's lemma 得:

$$<\chi,\chi> = \frac{1}{|G|} \sum_{g \in G} |(P \times P)^g| = 2$$

又由:

$$<\chi,\chi> = <\phi+1,\phi+1> = 1+2<1,\phi>+<\phi,\phi> = 1+<\phi,\phi> = 2$$

 $\Rightarrow <\phi,\phi> = 1$

则 θ 是不可约表示

Problem 4

考虑 S_n 和 A_n $(n \ge 4)$ 在集合 $P = \{1, 2, ..., n\}$ 上的置换作用证明: 这些群有不可约表示 θ ,其特征标是:

$$\chi_{\theta}(g) = |P^g| - 1$$

其中 P^g 是 g 的不动点集

Proof. 首先证明 S_n 和 A_n $(n \ge 4)$ 在集合 $P = \{1, 2, ..., n\}$ 上的置换作用为 2-传递的: 即对 $\forall x_1 \ne y_1, x_2 \ne y_2$,存在 $\sigma \in A_n \subset S_n$ s.t. $\sigma(x_1) = x_2, \sigma(y_1) = y_2$

- 若 x_1, x_2, y_1, y_2 互不相同,取 $\sigma = (x_1y_1)(x_2y_2) \in A_n \subset S_n$,则满足条件

- <math> $x_2 = y_1, x_1 \neq y_2, \ \, \mathbb{M}$ $\sigma = (x_1y_1y_2), \ \, \mathbb{M}$ \mathbb{A}

- 若 $x_1 = y_2, x_2 = y_1$,同理取 p, q 满足与 x_1, x_2 互不相同,则 $\sigma = (x_1 x_2)(pq)$,则满足条件

综上所述,对 $\forall x_1 \neq y_1, x_2 \neq y_2$,存在 $\sigma \in A_n \subset S_n$ s.t. $\sigma(x_1) = x_2, \sigma(y_1) = y_2$,则 S_n 和 A_n $(n \geq 4)$ 在集合 $P = \{1, 2, \ldots, n\}$ 上的置换作用为 2-传递的

则由题目三可知:存在 G 的置换表示和约减表示分别为 ρ , θ ,对应的特征标分别为 χ , ϕ ,且 θ 为不可约表示

又因为 ρ 可分解为 $\rho = \rho_1 \oplus \theta$, 其中 ρ_1 是 1 维平凡表示,则由 $\chi = 1 + \chi_\theta$ 得:

$$\chi_{\theta}(g) = \chi(g) - 1 = |P^g| - 1$$

其中 P^g 是 g 的不动点集, 综上 θ 即为满足条件的不可约表示

Problem 5

设 P 是正十二面体的所有顶点组成的集合,作为正二十面体的对称群, A_5 作用在集合 P 上,设 ρ 是 对应的置换表示,请将 ρ 分解成 A_5 的不可约表示的直和

Solution 对于正十二面体以及正二十面体其旋转对称包括三种(除恒等变换之外):

中心-顶点为轴、中心-面中心为轴,中心-棱中点为轴的旋转;其对应的阶数分别为 5, 3, 2,数量分别为 24, 20, 15,对应 A_5 的共轭类为: (12345) 和 (21345), (12)(134), (123)

Figure 1: 正十二面体以及正二十面体

则可知 ρ 的特征标 χ 取值为:

		(1)	(12)(34)	(123)	(12345)	(21345)
		(1)	(15)	(20)	(12)	(12)
Ì	χ	12	0	0	2	2

由 A_5 的特征标表为:

	(1)	(12)(34)	(123)	(12345)	(21345)
	(1)	(15)	(20)	(12)	(12)
χ_1	1	1	1	1	1
χ_2	3	-1	0	$\frac{1+\sqrt{5}}{2}$	$\frac{1-\sqrt{5}}{2}$
<i>χ</i> ₃	3	-1	0	$\frac{1-\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$
χ_4	4	0	1	-1	-1
χ_5	5	1	-1	0	0

则有:

$$<\chi, \chi_1> = \frac{1}{60}(12+2\times12+2\times12) = 1$$
 $<\chi, \chi_2> = <\chi_1, \chi_3> = \frac{1}{60}(36+12(1+\sqrt{5})+12(1-\sqrt{5})) = 1$
 $<\chi, \chi_4> = \frac{1}{60}(48+12\times(-2)+12\times(-2)) = 0$
 $<\chi, \chi_1> = \frac{1}{60}(60+0+0+0+0) = 1$

即 ρ 有 1 个平凡表示,2 个不同的 3 维不可约表示,1 个 5 维不可约表示 即分解成 A_5 的不可约表示的直和为: $\rho=\rho_1\oplus\rho_2\oplus\rho_3\oplus\rho_5$