

L

2

Doubling Ratio

EMBRY-RIDDLE Aeronautical University

- The ratio will converge to a ratio of 2^b if the algorithm's true order is N^b , where b is some unknown polynomial.
- e.g. Assume some unknown algorithm is $\sim N^2$, but we don't know that because we don't understand the code, but we can run an experiment.
 - $N = 16, T_1 = 268$
 - $N = 32, T_2 = 1027$
 - Knowing the doubling ratio and having doubled our inputs, we observe a convergence of ratio at
 - Ratio = $\frac{T2}{T1} = \frac{1027}{268} = 3.83$
 - $b = log_2(3.83) = 1.93734$ (round up to 2)
 - Therefore, order is ~N²

CC 21E

4

,

College of Engineering, Daytona Beach, FL

Doubling Ratio

EMBRY-RIDDLE Aeronautical University

 $ratio = \frac{time_{cur}}{time_{prev}}$

- The ratio will converge to a ratio of 2^b if the algorithm's true order is N^b , where b is some unknown polynomial.
- By forcing the size to be double, we can observe how the result scales.

CS 315

College of Engineering, Daytona Beach, FL

5

Doubling Ratio

EMBRY-RIDDLEAeronautical University

 $ratio = \frac{time_{cur}}{time_{prev}}$

- The ratio will converge to a ratio of 2^b if the algorithm's true order is N^b, where b is some unknown polynomial.
- By forcing the size to be double, we can observe how the result scales.
- Once we have our convergence, we can solve for b.
 - e.g. 2^h = 8 after convergence in the ThreeSum
 - Which means that b = 3 AND the algorithm's order of growth is N^3 .

CS 315

College of Engineering, Daytona Beach, FL

6

