24. Nemzetközi Magyar Matematika Verseny

Szabadka, 2015. április 8-12.

9. osztály

1. feladat: Egy 20×20 -as négyzetháló négyzeteibe a bal felső mezőből indulva soronként sorra beírjuk az $1, 2, 3, \ldots, 400$ pozitív egész számokat. Ezután a táblázat négyzeteiből az ábrán látható kereszt alakú síkidommal mindig ötöt letakarunk az összes lehetséges módon.

Hányszor lesz a letakart öt szám összege négyzetszám? Milyen szám áll ezekben az esetekben a kereszt közepén?

Nemecskó István (Budapest, Magyarország)

Megoldás: Ha a kereszt középső mezőjében k áll, akkor az öt mező összege 5k. Ha ez négyzetszám, akkor $5\mid k$ teljesül. A középső mező viszont nem lehet a tábla szélén, ezért: 20< k<380, valamint $k\neq 20i$, ha $i=1,2,\ldots,20$, és $k\neq 20j+1$, ha $j=0,1,\ldots,19$. Mivel 5k négyzetszám, így $k=5\cdot l^2$ alakú, ahol l természetes szám. Az előző feltételek miatt adódik, hogy $4< l^2<76$, ebből pedig 2< l<9.

l=3 esetén $k=5\cdot 3^2=45$, ami teljesíti a feltételt.

l=4 esetén $k=5\cdot 4^2=80$, ami nem teljesíti a feltételt.

l=5 esetén $k=5\cdot 5^2=125$, ami teljesíti a feltételt.

l=6 esetén $k=5\cdot 6^2=180$, ami nem teljesíti a feltételt.

l=7 esetén $k=5\cdot 7^2=245$, ami teljesíti a feltételt.

l=8 esetén $k=5\cdot 8^2=320$, ami nem teljesíti a feltételt.

A megfelelő értékek tehát $l=3,\ l=5$ és $l=7,\ {\rm s}$ így a letakart keresztek középső mezői, rendre, 45, 125 és 245 lehetnek.

2. feladat: Egy háromjegyű számot osztva a számjegyeinek összegével 37-et kapunk. Ha e háromjegyű számhoz hozzáadunk 297-et, a megfordított (felcserélt sorrendben felírt) számjegyekből álló számot kapjuk. Mely háromjegyű számok esetében lehetséges ez?

Kovács Béla (Szatmárnémeti, Erdély)

Megoldás: Legyen a háromjegyű szám 100a+10b+c. Az első feltétel alapján adódik 100a+10b+c=37(a+b+c), innen pedig 63a=27b+36c. Elosztva 9-cel a kapott egyenletet, kapjuk a 7a=3b+4c összefüggést. A második feltétel alapján adódik a 100a+10b+c+297=100c+10b+a egyenlet, innen pedig 99a+297=99c, amely 99-cel osztva adja az a+3=c összefüggést. Az első egyenlőségbe helyettesítve kapjuk, hogy 7a=3b+4(a+3), ahonnan 3a=3b+12, amely 3-mal osztva adja az a=b+4 egyenlőséget. Tehát: a=b+4 és c=b+7. Mivel a,b,c számjegyek, ezért b lehetséges értékei: 0,1 vagy 2.

Ha b=0, akkor a=4 és c=7, a keresett háromjegyű szám pedig a 407.

Ha b=1, akkor a=5 és c=8, a keresett háromjegyű szám pedig az 518.

Ha b=2, akkor a=6 és c=9, a keresett háromjegyű szám pedig a 629.

A keresett háromjegyű számok tehát: 407, 518 és 629. 407 : 11 = 37 és 704 - 407 = 297, 518 : 14 = 37 és 815 - 518 = 297, 629 : 17 = 37 és 926 - 629 = 297.

3. feladat: Hány megoldása van a prímszámok halmazában a $p^2 + q^2 + r^2 + s^2 = pqrs + 4$ egyenletnek?

Mészáros József (Galánta, Felvidék)

 $\bf Megoldás: \ Mind a négy prímszám nem lehet páratlan. Tegyük fel, hogy <math display="inline">s=2.$ Ekkor

$$p^2 + q^2 + r^2 = 2pqr.$$

A megmaradt prímszámok sem lehetnek mind páratlanok, mert akkor a bal oldal páratlan volna a jobb oldal pedig páros. Legyen r=2. Ekkor

$$p^2 + q^2 + 4 = 4pq$$
, illetve $p^2 + q^2 = 4(pq - 1)$.

A bal oldali kifejezés miatt p és q paritása megegyező kell, hogy legyen. Ha mindkettő páratlan volna, akkor $p^2=4k+1$ és $q^2=4l+1$ alakú, ahol k és l valamilyen pozitív egész számok. Ekkor viszont a $p^2+q^2=4(pq-1)$ egyenlet bal oldala 4m+2 alakú, ahol m pozitív egész szám, a jobb oldala pedig 4 többszöröse. Következésképpen csak a p=q=2 eset lehetséges. Ekkor viszont $4+4=4\cdot 3$, ami ellentmondás, tehát az adott egyenletnek nincs a feladat feltételeit kielégítő megoldása.

4. feladat: Egy ABC háromszögben $A \triangleleft = 60^{\circ}$. Legyenek rendre az M és N pontok az AB és AC oldalak olyan pontjai, melyekre AM = CN. Az MN szakasz felezőpontja legyen F_1 , míg az AC oldal felezőpontja F_2 . Bizonyítsd be, hogy

$$F_1 F_2 = \frac{1}{2} \cdot AM.$$

Bíró Béla (Sepsiszentgyörgy, Erdély)

1. megoldás: Tekintsük az A csúcsnak az F_1 pontra vonatkozó A_1 szimmetrikus képét. (lásd az ábrát) A feltevést is figyelembe véve, az AMA_1N négyszög paralelogramma. Így $AM = A_1N$ és $AM \parallel A_1N$. Emiatt $A_1N = NC$ és $BAC \lhd A_1NC \lhd G0^\circ$, ahonnan következik, hogy az A_1NC_Δ szabályos. Következésképpen $A_1C = NC = AM$. Végezetül: F_1F_2 középvonal az AA_1C háromszögben, s ebből az következik, hogy $F_1F_2 = \frac{1}{2} \cdot A_1C = \frac{1}{2} \cdot AM$, amit igazolni kellett.

2. megoldás: Az általánosság megszorítása nélkül feltehetjük, hogy az ABC_{Δ} hegyesszögű, és az AB oldala hosszabb az AC oldalnál. A háromszög AC oldalán vegyünk fel egy D pontot

úgy, hogy AM=AD legyen. Ekkor az AMD_{Δ} egyenlő oldalú, ugyanis AM=AD, valamint az A csúcsban lévő szög 60°. Mivel az F_2 pont az AC szakasz felezőpontja, és AD=AM=CN, így az F_2 pont a DN szakasznak is a felezőpontja. Az MND_{Δ} -ben ezek alapján F_1F_2 a háromszög középvonala, vagyis

$$F_1F_2 = \frac{1}{2} \cdot MD.$$

Figyelembe véve az AMD_{Δ} egyenlő oldalú voltát megkapjuk a feladat bizonyítandó állítását:

$$F_1 F_2 = \frac{1}{2} \cdot MD = \frac{1}{2} \cdot AM.$$

 $Megjegyz\acute{e}s$: ha a CN szakasz hossza nagyobb a CF_2 szakaszétől, a feladat megoldása akkor is hasonlóan alakul a fentiekhez.

5. feladat: Keresd meg az összes olyan pozitív egészekből álló (x, y, z) számhármast, amelyre érvényes, hogy $x \mid (y+1)$, $2y \mid (z+2)$ és $3z \mid (x+3)$.

Kekeňak Szilvia (Kassa, Felvidék)

Megoldás: Az $x \mid (y+1), \quad 2y \mid (z+2)$ és $3z \mid (x+3)$ feltételekből következik, hogy $x \leq y+1, \ 2y \leq z+2$ és $3z \leq x+3$. Szorozzuk be az első egyenlőtlenséget 2-vel és alkalmazzuk egymás után az első két egyenlőtlenséget. Ekkor azt kapjuk, hogy $2x \leq 2y+2 \leq z+4$, illetve hogy $2x-4 \leq z$. Figyelembe véve a $2x-4 \leq z$ és a $3z \leq x+3$ egyenlőtlenségeket adódik, hogy $3(2x-4) \leq 3z \leq x+3$, azaz $3(2x-4) \leq x+3$. Az utóbbi egyenlőtlenség megoldása $x \leq 3$. A $3z \mid (x+3)$ feltételből következik, hogy $3 \mid (x+3)$, ezért $3 \mid x$, így az $x \leq 3$ feltételt is figyelembe véve adódik, hogy x=3.

Figyelembe véve a $3z \mid (x+3)$ feltételt, azt kapjuk, hogy $3z \mid 6$, vagyis $z \mid 2$. Mivel $2y \mid (z+2)$ alapján z biztosan páros szám, így z=2.

Visszahelyettesítve a kapott értékeket a $2x \le 2y + 2 \le z + 4$ egyenlőtlenségbe, adódik, hogy $6 \le 2y + 2 \le 6$, ahonnan y = 2.

A feladat egyetlen megoldása tehát a (3,2,2) számhármas.

6. feladat: Az ABC hegyesszögű háromszög magasságpontja M. Igazold, hogy ha MC = AB, akkor az $ACB \le 45^\circ$. Igaz-e az állítás tompaszögű háromszögben is?

Katz Sándor (Bonyhád, Magyarország)

Megoldás: Az ábrán α -val jelölt ABT és TCM szögek egyenlők, mert merőleges szárú hegyesszögek. A feladat feltétele szerint az AB és MC szakaszok egyenlők, ezért az ATB és

MTCderékszögű háromszögek egybevágók, mert egyenlők az átfogóik és a szögeik. Így az α szög melletti befogók is egyenlők, azaz BT=TC. Tehát a BTC derékszögű háromszög egyenlő szárú, ezért $ACB \lhd = 45^\circ.$

Ha a háromszög tompaszögű, és a tompaszög A-nál vagy B-nél van, akkor a fenti megoldással azonos módon igazolható, hogy $ACB \lhd = 45^\circ$. Ha viszont C-nél van a tompaszög, akkor MC = AB teljesülhet, de nyilván $ACB \lhd = 45^\circ$ nem teljesülhet. Az α -val jelölt szögek most is merőleges szárúak, ezért egyenlők, és ha MC = AN, akkor az MTC és ATB derékszögű háromszögek egybevágók. Ezért az α -val szemközti oldalak egyenlők, azaz BT = TC, tehát a BTC háromszög itt is egyenlő szárú, derékszögű, így itt $TCB \lhd = 45^\circ$. Tehát most $ACB \lhd = 135^\circ$.

