2 原子世界

1. DSE 2012, Q1

依據古典物理學的觀點,盧瑟福的原子模型有什麼局限?

- (1) 這原子會不斷發出電磁輻射。
- (2) 這原子會變得不穩定而最終會坍塌。
- (3) 原子發射光譜會是連續而非分立的。
 - A. 只有(1)和(2)
 - B. 只有(1)和(3)
 - C. 只有(2)和(3)
 - D. (1)、(2)和(3)
- 2. DSE 2012, Q2

下列哪些有關光體的敍述是正確的?

- (1) 錦絲燈所發射出的是連續光譜。
- (2) 透過一些氫氣觀看鎢絲燈可得到線狀吸收光譜。
- (3) 氫的發射光譜包含一明亮背景並有一些暗線。
 - A. 只有(1)和(2)
 - B. 只有(1)和(3)
 - C. 只有(2)和(3)
 - D. (1)·(2)和(3)
- 3. DSE 2012, Q3

以能量爲 7 eV 的光子照射光電池的陰極,發射出光電子的最大動能爲 4 eV · 當能量爲 4 eV 的光子照射陰極時,過止電勢應是

A	Ö	V	-
PA.	13	· Y	•

,

C D

0

B. 1 V •

C. 2 V +

0 0 0

D. 3 V .

4. DSE 2012, Q4

在探究光電效應時,以不同頻率 f 的紫外線照射某金屬,並量度所發射出光電子的最大動能 K · 所示為機論長的線圖 · K

如以強度較高的紫外線照射同一金屬,線圖會發生什麼變化?

	集體計率	線置於水平軌的舊距				
A.	減少	不變	A	B	C	D
B.	增大	不變	0	0	0	0
C.	不變	不變	•	•		
D.	不變	減少				

5. DSE 2012, Q5

根據玻爾的凱原子模型,電子在第一受激態的軌道半徑與第二受激態的比例是

A.	1:2 •	A	В	C	D
	1:√2 •	0	0	0	0
C.	4:9 •				
D.	2:3 *				

6. DSE 2012, Q6

下列哪一項的德布羅意波長最短?

- A. 一個 60 kg 的人以 0.8 m s 1 步行。
- B. 一隻質量為 0.3 kg的鳥以 20 m s 1 飛行。
- C. 一個質量為 0.6 kg的藍球以 12 m s 1 移動。
- D. 一顆質量爲 0.05 kg的子彈以 800 m s⁻¹移動。

7. DSE 2012, Q7

下列哪一性質可解釋蓮花效應?

- A. 吸水性質
- B. 斥水性質
- C. 物質的波粒二象性
- D. 高導電性

8. DSE 2012, Q8					
如果將物質的大小漢至成爲 10 mm 大小的粒子,以下哪里 體的有所不同?	些有關這	地种子	的性質的	1级数1	力質整
(1) 光學性質 (2) 力學性質 (3) 電學性質					
A. 只有 (1) 和 (2) B. 只有 (1) 和 (3) C. 只有 (2) 和 (3) D. (1) · (2) 和 (3)	A O		0	C	
9. DSE 2013, Q1					
21 在一個 α-粒子的散射實驗中,原子內的電子對入射 α 的原因是	- 机子约路	型近乎	没有影	第 一数	有可能
 A. 電子非常細小以致 α-粒子不會碰撞到電子。 B. 電子平均分布於原子內,因此作用於 α-粒子的包C. 電子和 α-粒子之間沒有電相互作用。 D. α-粒子與電子碰撞時,其動能改變可以忽略。 	合力選等・				
	A			C	
10. DSE 2013, Q2					
2.2 根據古典電磁理論·從盧緊攜原子模型可得到什麼	HE BA ?				
A. 原子是標定的,而原子光譜循連續譜, B. 原子是標定的,而原子光譜無線狀譜。 C. 原子是不穩定的,而原子光譜鴻連續譜。 D. 原子是不穩定的,而原子光譜鴻線狀譜。		^ O	В	c O	D O
11. DSE 2013, Q3					
2.3 下列哪些光體是連續的?					
(1) 燃燒蠟燭所產生的光譜 (2) 白燉燉所產生的光譜 (3) 氣體放電管所產生的光譜					
A. 只有 (I) B. 只有 (3) C. 只有 (I)和(2) D. 只有 (2)和(3)		A O	В	с О	0

12. 0	SF 20	13, Q4											
							-						
2.4	A.P.	子中的電	子所處能	及常 E, =	$-\frac{A_0}{n^2}$	其中 Ec	八名	效而 4 *	1, 2, 3,	・能	把第一分	之數態的	1
	原于	以他的光	子,其最为	大波獎是	多少?	(h = #	朗克常	X · c ·	·在A空	中光的	速率)		
	۸.	$\frac{3hc}{4E_0}$							A	B	C	D	
	В.	$\frac{hc}{E_0}$								0	O	O	
	C.	4 <i>hc</i> 3 <i>E</i> ₀											
¥.	D.	$\frac{4hc}{E_0}$		-									
13. D	SE 20	13, Q5											
	A. B.	7 輕射 紫外軸 紅外帽 可見光							^	В		D	
14. D	SE 20:	13, Q6			8								
2.6			<i>x</i> =					-	-				
	(1)	<i>Y</i> _										15000
			z										Salah as
	(2)								-				
1	■ (I) I 近・郷	《示三 》 《元洙一	元素 X、Y 定 <u>不食</u> 在i	和之的	線狀光線 中找到	?	(2)	SXH	有物的	線状光	7、报	直請執分	٠.
		K Y							A	В	C	D	1

15. DSE 2013, Q7

C.

D.

2.7 典型的透射電子順微鏡 (TEM) 的最小可分辨長度約算 0.2 mm。如果有一種粒子膜電子的電管 相間而質量大四倍,而這粒子束以相同電腦在 TEM 內加速,最小可分辨長度會變爲

A. 0.05 nm +

Z

以上三者皆存在於礦物中。

B. 0.1 nm ·

C. 0.4 nm :

D. 0.8 nm ·

0 0 0 0

16.	DSE	2013,	Q8									
2.1	6		I mm 的红	7方體被分	割成進長	1 nm 89	約火權8	定立方	数・大	建装置	面领增	双丁多少
	A. B. C. D.	10 ¹⁰						,	A O	В	с О	0
17.	DSE	2014,	Q1									
2.1	下夕	學些有	阿康瑟州	原子模型	的該述是	正確的:	?					
	(2)	带食物	首的電子	产在轨道 。	乎其所有質 上國 納 原子 毛垫軌道上	核運動	*					
			(1)和(2) (1)和(3)						A	B	C	
	C.	只有	(2)和(3)						0	0	0	0
	D,		(2)和(3)									
18.	DSE	2014,	Q2									
2.2	太阳	光的光	建中存	E時級·	下列原生	这是正	確的?					
	(1) (2) (3)	太陽大	大氣層中	的原子吸	的原子吸引 收光搜再# 太陽大無用	中各方量	A4 .		•			
			(1)和(2						A	В		D
	B. C.	只有 只有	(1)和(3))					0	0	0	0
			(2)和(3)									
19.	DSE	2014,	Q3									
2.3	多原	FXER	UMM子母 MELL eV		λ的光于 。	使其注意	t Filt a	- 1 受	建 有"			l dis
	٨.,	$\frac{3hc}{2\lambda}$.						A	В	0	D O	
	В.	$\frac{2hc}{3\lambda}$.						O	0	O	0	
	C.	9hc .										
	D.	8hc										
20.	DSE	2014,	Q4									
2.4				4		MAN OV						
				3		.53 eV						
				2		1.4 aV						
			1	r~1		13.6 eV						
	机原子	量低的图	9個能級如	上面所示。	下列等項引	[[本本司4	表子的	技术是	NEW I	7		
					是完全彈性 可以終非彈		٨	B	c	D		
					至第一党数		0	0	0	O		

21. DSE 2014, Q5

- 2.5 當每個能量稱 3.41 eV 的光于入射金麗而時,所發射出光電子的最大動能爲 0.54 eV·該金麗 的强型领率是多少?
 - $4.33\times10^{13}\,\mathrm{Hz}$ A.
 - 9.53 × 10¹⁴ Hz B. 8.23 × 10¹⁴ Hz
 - C.
 - 6.93 × 10¹⁴ Hz D.

22. DSE 2014, Q6

2.6 賴率爲了的光京照射光電池的陰極使其發射出光電子。如果以頻率 25 而強度相同的另一光 京取代,下列各項物理量會有何改變?設備一入射光子能發射出一粒光電子。

74: 議止電勢

1:飽和光電流的量值

	V_s	1				
A.	18 70	增加	A	B	C	D
B.	增加	減少	0	0	0	0
C.	保持不變	減少			_	
D.	減少	增加				

23. DSE 2014, Q7

- 2.7 物體 X 的楼布羅索波長較物體 Y 的短 · 下列零些推斷必定正確 ?
 - (1) X的速率高於Y。

 - (2) X的動量大於 Y・ (3) X的動能大於 Y・
 - 只有(2)
 - B. 只有(1)和(2)
 - C. 只有(2)和(3)
 - (1) (2) 和(3) D.

C D B 0 0 0 0

C

O

0

0

D

0

24. DSE 2014, Q8

- 2.8 下列哪些有關納米科技的敍述是正確的?
 - (1) 复上納米棚度氧化钛的玻璃能自我清潔。
 - (2) 嚴約米管和體石中的碳原子空間布局相同·
 - (3) 當金的大小減至約米標度時,它的跨點跟其整體形態的會有所不同。
 - 只有(1)和(2)
 - 只有(1)和(3) R.
 - C, 只有(2)和(3)
 - (1) (2) 和(3) n.

D В C 0 0 0

25. DSE 2015, Q1

Q.2: 多項重提置

2.1 初始勤能相同的一束 a-粒子被难原子核 N 散射· 在圖中若 P 為其中一粒 a-粒子的可能路徑,路径 Q·R和S之中何看可以是追於 a-粒子的路徑?

- RTQRR
- B. 只有R和S
- C. 只有 Q
- D. 只有S

26. DSE 2015, Q2

- 2.2 下列哪項提供了原子內有分立體體的實驗證據 7
 - (1) 納放電管的光譜
 - (2) 協脉燈的光譜
 - (3) 電子被晶體内的原子間距衍射
 - A. 只有(I)
 - B. 只有(3)
 - C. 只有(1)和(2)
 - D. 只有(2)和(3)

A B C D

27. DSE 2015, Q3

23 在一光電管幹中使用頻率了的單色光照射一金屬表面、所要射出光電子的進止電勢為 N。如 提改雙線率力· N 會如何跟聽了變化?

28. DSE 2015, Q4

2.4 一架間讓偵察機在地球表面上 10 km 的高度巡航。機上所配備的照相機其物鏡的孔徑為 10 cm。估算這照相機能分辨在地球表面兩細小物體的最小問題。假設兩物體均發射出波長 500 mm 的光。

A. 0.05 m B. 0.061 m

0 0 0

D

0

- C. 0.10 m D. 0.122 m
- 29. DSE 2015, Q5

2.5

光電池知關所示接較了直流電源。單色光照射光電池的降極 C 使其發射出光電子。光電子對 進陽模 A 的最大動能取決於

- (1) 階語表面由聯繫金屬造成。
- (2) 直流電源的電影·
- (3) 所用單色光的強度。

A. 只有(1)

A B C E

- B. 只有(3)
- C. 只有(I)和(2)
- D. 只有(2)和(3)

	- 100 11 1010 1	光常可在高緯度的空中看到。當來自外太空的高 會被激發。隨後所發射出的光通常為液長 558 mm 的 為				
	A	10 ² m s ⁻¹ *	A	В	С	D
	B.	10 ⁴ m s ⁻¹ •	0	0	0	0
	C.	10 ⁶ m s ⁻¹ •	0	0		0
	D.	10 ⁸ m s ⁻¹ *				
31.	DSE 2	2015, Q7				
2.7	下列	哪項可增加进計電子顯微鏡 (TEM) 的解象能力?				
	(1)	增加電子檢的陽極電影				
		減小磁物鏡的孔徑				
		增加投影磁號鏡和螢光牌的問距				
	A	只有 (1)	A	В	C	D
		只有 (2)	_	0		
		只有 (1) 和 (3)	0	O	0	O
		只有 (2)和 (3)				
	~~-	2045 00				
3Z. I	J3E 2	2015, Q8				
2.8	集化	t鲜 (2nO) 用於某些防曬霧。下列響項被遮差正確的	7			
	(1)	納米大小的 ZnO 能型隔紫外輻射,而較大的 ZnO	則不能,			
	(2)	納米大小的 ZnO 相比較大的 ZnO 更能有效反射可	見光・			
	(3)	含有納米大小 ZnO 的防曬霧涂於皮膚上是呈說明	的。			-

33. DSE 2016, Q1

A.

B. C.

D.

只有(1)

只有(3)

只有(1)和(2)

只有(2)粒(3)

2.1

在上圈中,實線是一 α 粒子被金原子被 (沒有在圖中關示) 散射的軌節,進線是軌節上點 P 和 點 Q 的切線。兩虛線進門軌點將平面分成五個區域 (I-V),金原子核可處於第一/哪些區域?

A.	I.	Α.	В	C	D
B.	Ц		0	0	0
C.	III	0			
n	IV w V				

C

D

34. D	SE 20:	16, Q2									
2.2	下列區	2. 图文化二	象性的發生	是正確的?							
	(1) 光 (2) 光 (3) 電	的干涉是光想 电效应是光想 干被品售污象	現本被動 現場能子 日本電子	生質的農業	*						
	B	只有(1)和(2) 只有(1)和(3) 只有(2)和(3) (1)、(2)和(3)				0	О	0	0		
35. D	SE 20:	16, Q3									
2.3			д w д w д ^w	2		展子的能級					
		示一属于的四	個影線大約	依比例修出	B·以下哪一	聚科光谱最新		示的区		子理	
	道?		111		₩ 50	A	8	C	D		
	A. B.			TIT		0	0	0	O		
	C.		TI.			35					
	D.			TI							
36. [DSE 20	16, Q4									
2.4	就以"	下氢原子能夠	之間的電	子間頭。	5一個所名	计算数据	計劃	長歌	長?		
	A.	n=2至n= n=3至n=					A .	B		c O	O
		n=4至n=	2				0	C	,	O	0
	D.	n=5至n=	2		-						
		16, Q5									
2.5	如果	一貫于和一	a粒子的模	市開建坡	有相同的数	長・旅賞子	- Ha	立于的	動態		
	A. B.	1:4					0		B	c O	Q Q
		1:2					O	•	J		0
	D.	2:1			~						
		16, Q6				-		n day by		17E - 4nc	
2.6	在正	は原明下・□	「被人眼(自孔直径	4 mm) 分辨	的可以更多		,			
	۸.	10 ⁻¹ rad •					A O		B)	C	D O
	B. C.	10 ⁻¹ rad •					U	•		0	
	D.	10 ⁻⁴ rad •									

39. DSE 2016, Q7

2.7	觀察納米大小的結構是用透射電子顯微鏡 (TEM) 而不是光學關微鏡。這是因為電子這 光可以有	此可見
	A.	
	C. 較長的波長·故此其衍射的程度較纖。	

A	В	C	D
0	0	0	0

40. DSE 2016, Q8

2.8 以下哪項納米科技的應用是利用了蓋花效應?

(1) 冰农所用的斥水性鳞物是以钠米滤层裹成。

数長的波長·故此其衍射的程度較大。

- (2) 蔣親水性物料的納米被層加於玻璃上便其能夠每我清潔。
- (3) 納米大小的氧化鉢添加於鐵物作為光催化劑以助污。

A.	只有(1)			A	В	C	D
	只有(1)和(2)	•		0	0	0	0
C.	只有(1)和(3)	×2					

D. 只有(2)和(3)

41. DSE 2017, Q1

- 2.1 根據盧瑟福原子模型,下列哪些描述正確?
 - (1) 原子的差不多所有質量皆集中在其原子核。
 - (2) 原子的差不多所有電荷音集中在其原子核·
 - (3) 電子關線原子核運行·

A.	只有(1)和(2)	A	В	C	D
B.	只有(1)和(3)	0	0	0	0
C.	只有(2)和(3)	•			
D.	(1)、(2)和(3)				

42. DSE 2017, Q2

2.2

圖示一個光電池與 1 V d.c. 電源速接。一單色光束照射光電池的陰極 C 使光電子射出,光束中每一光子的能量為 5 eV 。若陰極 C 的功函數為 2 eV,到途陽極 A 的光電子其最高動能為多少?

A.	2 eV	A	В	C	D
	3 eV	0	0	0	0
C.	4 eV	0	0	9	_
n	6.437				

43. DSE 2017, Q3				
2.3 當波長分別為 A和 A A 的單色光照射一光電池的陰極表面, 光電池發射出光電子的單色光,其波長最長是多少?	建止電	势的比较	MA 1:	2、能使談
A. λ B. $\frac{4}{3}\lambda$ C. $\frac{1}{2}\lambda$ D. $\frac{1}{3}\lambda$	Ô		0	
44. DSE 2017, Q4				
2.4 將來自前放電管的一束平行黃光射向戰有前氣的玻璃管。當 一種情況?	對氣要	及收費光	後,會	出现以下哪
A. 再見不到有責光。 B. 納無沿入射光束的方向發射出黃光。 C. 納氣向各個方向發射出黃光。 D. 約氣向各個方向發射出白光。	A O		° c O	р О
45. DSE 2017, Q5				
2.5 將一束 8 keV 的電子射向一晶體以觀測電子的繞射,一粒 8 l 少?	keV 的	電子其樣	多布理测	接長為多
A. 4.34×10^{-10} m B. 1.37×10^{-11} m C. 1.74×10^{-19} m D. 5.49×10^{-21} m	0	0		
46. DSE 2017, Q6				
2.6 位於貴州省的射電望遠鏡,供觀測用的有效口極為 300 m·它至 3×10°Hz 的電磁波,估算額望遠鏡可分辨的最小角間距。	可用於	假观频	率介於	7 × 10 ⁷ Hz
A. 4.07×10^{-4} rad B. 9.49×10^{-4} rad C. 1.74×10^{-2} rad D. 4.07×10^{-3} rad	0	В	с О	0
47. DSE 2017, Q7				
2.7 植物霉絨花的葉被納米標度的細絲覆蓋。這些細絲吸收紫外 些描述正確?	以 射但	反射所引	有可見が	七・下列哪
(1) 由於細緣反射所有可見光,在陽光下觀看,禁于成白色(2) 細線不能以光學顯微鏡觀測。(3) 因細線太微小,即使被人體吸收,亦對健康無害。	*			
A. 只有(1)和(2) B. 只有(1)和(3) C. 只有(2)和(3) D. (1)~(2)和(3)	A O	В	с О	0

48. DSE 2017, Q8

2.8 圖示一座掃描解穿顧微鏡 (STM) 掃描經過一個樣本表面,探測器水平地以固定高度掃描經過 該樣本表面。

B.

D.

下列哪一個線圖最能表示醛穿電流隨探測器所移動距離的變化?

A. 腱穿電流 **→** 距離

0

腱穿電液 距離

C. 難穿電流 距

腱穿電流 距離

37. E	OSE 2	016, Q	7											
1.7	肉觀	听見復襲	X和Y的	光度相同	- 恒星	X 量度	多的视频是	TE I	的開倍、	祖是	X 的光 Y 的光	度之		
		多少?								•		į		
	Α.	1/4						A	8	c	D	ì		
	B.	1						O	O	U	O			
	C.	2												
		4										4		
38 I	D.	2016, Q	2									-2		
					0 - 存載	河水觀測	量素X的	11。禮線	出现。此	的紅衫	, a			
1,4	==	M. W. W.	## (M-10.42)		196.50			2						
			6	<u>→</u>	→((S)	D	→ (J	9					
			銀河本			x		1	r					
	T	· 要項錄並	是正確的	7										
	m	经重领	A WEST ST	k reg H	推練出	果的紅衫	大於山							
	(2) (3)	## W 16.	YERM	HOAR	- 開始 /	有出现	河流的思					n.		
	A. B.	只有(只有(^ 0	0	C) i	Ö		
	C, D.	只有(()和(2) ()和(3)								3			
39.	DSE :	2017, 0	1											
1.1		而言· 下列哪				向東移	動・在:	2016年1	的五月	和六		到火	是的逆	厅運
	(1)	在缺段												
	(2) (3)	可觀測到托勒密域	测逆行理 也心模型	動是因: 不能解	為地球 釋逆行	移動較 運動・	火星快。							
		只有(1)							A		В			
ř	C.	只有(3) 只有(1)	和(2)						C)	O	0	0	
	D.	只有 (2)	和(3)											
40.	DSE	2017, C	12											
1.5		太空站内 建正確?	的兩名人	(空人感	受「失	₹ 1 , ′	太空人的	質量分	別為 5	0 kg 🌴	70 1	g · 下列	哪項/	哪些
	(2)	地球沒 作用於 該兩名	該兩名太	大空人的	净力机	目司 •								
		只有(В	С		
		只有() 只有()									0	0	0	
		只有(

41. DSE 2017, Q3

1.3 已知月球的半徑為 0.273 R、其中 R 為地球的半徑。而月球表面的重力加速度為 $\frac{1}{2}g$ 、其中 g 為地球表面的重力加速度。若 ν 為在地球表面的逃逸速度,在月球表面的迅速速度是多少?

A. 0.046 v

B. 0.167 v

C. 0.213 v

D. 0.273 v

A B C D O O O

42. DSE 2017, Q4

1.4 下面顯示在某年的一月和五月所拍攝天空中相同區域的圖像 · P · Q · R · S 和 T 為五顆恆 星 ·

一月景觀

五月景觀

下列專項/哪些描述必定正確?

- (1) 恆星 P· Q和 R與地球等距。
- (2) 恆星 S的视差較恆星 T的小。
- (3) 恆星 S 較恆星 T接近地球。

A. 只有(I)

B. 只有(3)

C. 只有(1)和(2)

D. 只有(2)和(3)

A B C D

43. DSE 2017, Q5

1.5 下表顯示三顆恆星的視星等和絕對星等。

	視量等	建製業等
天狼星人	-1.47	1.42
量女一	0.03	0.58
北海県A	1.98	-3.64

下列導項正確?

	光度最大	推准学是这	经地址制度是其			
A.	天被基A	天狼墓▲	北極里人			
B.	天狼星A	業女一	天雅·墨A			
C.	北極星A	置女一	北極星人			
D.	北極是人	北極星人	天猿星A			
			A	В	C	D
			0	0	0	0

44. DSE 2017, Q6

1.6 圖示為一無難於兩不問溫度 万和 万的辐射的光譜。

下列等項正確?

	温度敬意	於刀牌的颜色				
A. B. C. D.	T ₁ T ₁ T ₂ T ₃	順持較紅 順持較鉱 額持較紅 順得較監	A O	В	с О	D
	_					

45. DSE 2017, Q7

1.7 已知太陽為一顆 G型扳星,而船尾座ς為一顆 O型超巨星。下列哪項正確? 已知:光體型的次序為 OB A F G K M。

	表面是在政治	光度微大				
A.	船尾座与	船尾鹿车	A	В	C	D
B.	船尾座与	太陽	4		_	_
C.	太陽	船尾座5		0	0	0
D.	大陽	大區				

46. DSE 2017, Q8

1.8 下鹽原示恆星X、Y和 Z的資料。

下列轉項有關三顆恆星大小的比較是正確的?

A. X>Y>Z
B. X=Y>Z
C. X>Y=Z
D. Z>Y>X

2 原子世界

1. DSE 2012, Q2

氰原子中的電子所獻能級係

$$E = -\frac{13.6}{n^2} \text{ eV}$$

(a) 解釋 E 爲負値的物理意義。

(1分)

(b) 說出玻璃氣原子模型照備非「古典」的公設。

(2分)

- (c) 以波長溝 102.8 mm 和 100.0 nm 的一束紫外光照射遮於基膜的氦集、結果 102.8 nm 的紫外光被氦 氯吸收,而 100.0 nm 的紫外光卻不受影響。
 - (i) 計算波長篇 102.8 nm 紫外光的光子能量,以 eV 表示、常量原子吸收這欄光子後,其量子數是多少? (3分)
- (ii) 獨什麼 100.0 nm 的繫外光通過氫氣沒有被吸收?

(1分)

- (iii) 當該粒受激的氦原子回到基態時,有多少個體遷的可能性 ? 指出其中哪一個罐運會放出 可見光,並加以解釋。已知:一粒可見光的光子的能量介乎 1.7 eV 至 3.2 eV。 (3 分)
- 2. DSE 2013

O.2: 結構式題目

以某波找的常光照射鉀金屬面,便金屬面發射出電子,其最大動能係 0.81 eV。鉀的功函數 践 2.30 eV。

(a) (i) 求一粒繁光光子的能量,以 eV 獨單位。

(1分)

(ii) 所發射出的電子並非全部擁有最大動能、試解釋。

(1分)

所用紫光的微度黑 0.01 W m-2。

- (b) (i) 根據古典波動理論,原子階從光波吸收足夠能量才會發射電子。估算鉀原子最少需多少 時間吸收能量才能發射進子。設一個鉀原子吸收能量的有效面積為 0.01 nm² (1 nm = 10⁻⁹ m)。 (2分)
 - (ii) 解釋為何即使光的強度非常弱,在實驗中能子從金攤面發射出來時差不多沒有時間延潤, (1分)
- (c) 如果鉀金屬面接收紫光的面積換 4.00×10⁻¹ m²,每移有多少光子撞擊金屬面?倘若鏈 10 粒光子 撞擊金屬面會發射出一粒電子,求最大光電流。 (3 分)

(d) 下面練圖解光電流 / 對陸櫃和陽報之間電勢差 V 的曲線·

抄續總匯至你的普遍簿。如果光的強度減至原來的一半,在你所抄線的圈上以<u>應線</u>單線相應的曲線。 (2分)

3. DSE 2014

Q.2: 結構式題目

(a) 在透射電子順微鏡 (TEM) 中,從陰極發射出的電子通過樣本以及下列四個功能部分後在屏幕 上成像。

功能部分:(1) 磁物鏡

- (2) 投影磁透鏡
- (3) 聚焦磁透鏡
- (4) 陽極

參照下面的 TEM 方框置・配對關中 A・B・C 和 D 所代表的功能部分・

(2 分)

- (b) (i) 當質量 m 和電荷 e 的電子以電壓 P 使其從靜止加速、證明其德布羅意波長 λ 指 $\frac{h}{\sqrt{2meV}}$,其中 h 為音朗克常數。 (2分)
 - (山) 一台 TEM 的加速電影系 10 kV・求え・

(2分)

(iii) 解釋爲何 TEM 的解像能力比光學面微觀高·

(2分)

(c) 掃描雕穿顯微鏡 (STM) 與透射電子顯微鏡 (TEM) 皆有極高的解像能力。現有一片金屬樣本無 研究其內部結構,上述哪一種顯微鏡適用還是兩者皆適用? 試加以說明。 (2分)

Q.2: 偿模式题目

在玻頭模型中, 机原子内的量子的能级 6. 写由下式表理:

- (a) 驳解的構想不時被部分物理學家批評為半古典半量子·指出玻層模型<u>一項屬於古典方面</u>的地方· (1分)
- (1分) 試從能量的角度親出一個原子正處於基體在物理上的意思。 (1分)
- (c) 如果電離一個減於基態的凱原子是少需要能量 E·以 E 和另一物理常數表示出可電離被包 原子的光子的最少動量 P· (2分)
- (d) 一些處於基態的製原子按電子複擊、每粒電子的動能為 129 eV。
 - (i) 體明這些氣原子最高可被激發至第三受激態 (即n=4)。 (2分)
 - (ii) 就處於第三受激態 (n=4)的氫原子而言,在其軌道上運動的電子的德布羅素液及及多少? 已知:在玻璃模型的氫原子內,電子的軌道半徑 r_n 傳於 0.053 n² (單位:nm),其中 n=1,2,3,...。
 - (iii) **珍緒下面的報酬職至你的答臘籍**、並繪畫新矢以表示這些受激的戲原子所有導致發射 出光子的可能鑽纜。 (2分)

Q.2: 結構式服目

2.1

羅 2.1 的裝置可用以探究光電效器。一草色光束射往光電池的光敏陰極 X · 光束中等一光子 借 3.4 eV 的能量 · 讀校可變電源可改變陽極 Y 與陰極 X 之間的電勢差 F · 線整顯示光電流 I 頭電勢差 V 的變化。

(a) (i) P 進来數值後,光電流 I 遠至飽和。解釋為何如此。 (1分)
(ii) 據此推斷 I 剛飽和時光電子到遠陽程 Y 的<u>最大動能</u> (單位 eV)。 (2分)
(b) (i) 求陰極 X 所用金屬的功函數 (單位 eV)。並計算對應這金屬的趣閩波長。 (3分)
(ii) 據此解釋波長 576 mm 的黃光能否對陰極 X 產生光電效應。 (2分)
(c) 如以另一光束射往同一光電池來重複實驗。所得新的曲線如圖所示 (虛錄)。有關這光束的頻率和強度可得知些什麼? (2分)

Q.2: 結構式題目

圖 2.1 顯示氫的緣狀光譜的一部分。

2.1

波長增加

(2分)

它包括一系列的光譜線,其波長 2 可表達為

$$\frac{1}{\lambda} = R(\frac{1}{2^2} - \frac{1}{n^2}) \quad \cdot$$

其中 R 為一常數而 $H=3\times4\times5$... 。在該系列內沒有光譜線的波長較線 X (366 nm) 的更短,亦沒有光譜線的波長較線 Y 的更長。

- (a) 利用玻爾的氫原子模型解釋為什麼光譜線是分立的而非連續的。
- (b) (i) 線 X 屬於電磁波譜中的哪一備範圍? (1分)
 - (ii) 線 X 的一粒光子的能量是多少 ? 以 eV 表達答案。 (2分)
 - (iii) 當一束液長與線 X相同的輻射射向一些處於第一受激態 (n=2) 的氯原子時,會出現什麼情況?試簡單解釋。 (2分)
- (c) (i) 指出在氯原子內可以產生線 Y 的薩遵。 (1分)
 - (ii) 求線 Y 的波長 · (2 分)

2 原子世界

- 1. DSE 2012
- 2. (a) 負債的物理意義:
 - ·電子便原子「束縛」。
 -原子核與電子之間的力指吸引力。
 必須作功才可將電子移往無窮遠慮。

1A ______1

- (b) 電子角動量無 h 的整數倍,即量子化、
 - -電子鑑於某些穩定的軌道而沒有發出任何輻射·
 - ·電子只在分立的軌道上/原子的總能量差量化的/能級幾分立的
 - -當電子從某能級體遷至其他能級時,原子只能養射減吸收光子形式 的輻射

2A 2

任何問題

(c) (i) 能量"好

$$= \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{102.8 \times 10^{-6}} = 1.93 \times 10^{-18} \text{ J}$$
$$= 1.93 \times 10^{-18} / (1.60 \times 10^{-16}) = 12.09 \text{ (eV)}$$

14

$$\Delta E = 12.09 \,\text{eV} = -\left(\frac{1}{n^2} - \frac{1}{1^2}\right) 13.6 \,\text{eV}$$

IM

$$n^2 = \frac{1}{1 \cdot 13.02}$$

$$n^2 = 9.007 \implies n = 3$$

A 3

- (ii) 100.0 mm 紫外光的能量並不聽含製的基態與其他能級的能量差。
- .

1A

1

(iii) 共有三個層通的可能性·

表演子處於 n-3 的受激器,

n = 3

$$E_3 = -\frac{13.6}{3^2} \text{ eV} = -1.51 \text{ eV}$$

 $E_2 = -\frac{13.6}{2^2} \text{ eV} = -3.40 \text{ eV}$

$$E_i = -\frac{13.6}{1^2} \text{ eV} = -13.60 \text{ eV}$$

- 3 至 1 AE = 12.09 eV (=-1.51 -(-13.6))
- 3 至 2 ΔE=1.89 eV (=-1.51-(-3.40))
- 2至1 ΔE=10.2 eV (=-3.40-(-13.6))

從3至2的隨邊會放出可見光·這由於1.89 eV介乎相應範圍內·

1A 2

IM

分數 2. (a) (i) E = M = 功函數 + KE_{max}(最大動能) - 2.30 eV + 0.81 eV - 3.11 (eV) IA (ii) 只有金屬表面的傳導 / 自由電子才携有最大動能。 変 金屬的功函數只是射出一粒電子所需的最小能量。 或 金屬內的傳導 / 自由電子各自有不同的能量。 业 能量較少的電子受原子核束縛,需要更多能量才能擴脫原子核的吸引而自 由運動· 1 並 一些電子不在金屬的表面,故它們不會擁有最大動能。 (b) (i) 原子吸收的能量 = 功函數 IM $(0.01 \text{ W m}^{-2}) \times [0.01 \times (10^{-9})^2 \text{ m}^3] \times rs = 2.30 \times (1.60 \times 10^{-19}) \text{ J}$ IA 2 r=3680s=61.3分量 IA (ii) 如果單一光子有足夠能量把電子轟出,則電子只在一次的碰撞便會獲得足夠的 能量・ 1 這是一對一的過程 / 若一粒電子接受了一粒能量較金屬功函數大的光子,則電子可立即發射出來。 (c) (0.01 W m⁻²) × (4.00×10⁻⁴ m²) + [3.11 × (1.60 ×10⁻¹⁹) J] = 8.04×10¹² (郵砂的光子數目) IA IM $(8.04 \times 10^{12}) \times 0.1 \times (1.60 \times 10^{-19}) A$ = 1.29 × 10⁻⁷ A = 0.13 μ A 3 IA

(d)

3. DSE 2014

24

2

_			
2.	(a)	A - (4): 陽極	
1		B-(3): 聚焦磁透鏡	L. 1
		C-(1): 磁物鏡	2A
		D-(2): 投影磁透鏡	
			2
	4.5	CTA AND AND THE WAY AND	
	(b)	(i) 動能-電子獲得的能量	1
Ţ		$\frac{1}{2}mv^2 = eV$	м
		$(mv)^2 = 2meV$	
		$p = mv = \sqrt{2meV}$	IM
		:. 2 = h Jamev	
			2
		110	
		$\lambda = \frac{h}{\sqrt{2meV}}$	
		6.63×10 ⁻³⁴	
			1M
		$\sqrt{2(9.11\times10^{-31})(1.60\times10^{-19})(10\times10^{3})}$	
		$\lambda = 1.2279 \times 10^{-11} \mathrm{m} \ (= 0.012 \mathrm{nm})$	1.20×10 ⁻¹¹ - 1.23×10 ⁻¹¹ m
			2
		(iii) 由於電子來的波長 (~10 ⁻¹¹ m) 較可見光的波長 (~10 ⁻² m) 小/短·	1A
		顯微鏈採用的波長較短(衍射較少)則其解像能力	
			l'A
		$\theta = \frac{1.22\lambda}{d}$ 較大 -	
		_	2
	(c)		IA
		掃描雕字顯微鏡 (STM) 只能展示權本的表面結構。	IA
			2

2.	(a)	- 電子被認為是以特定軌道/圓周運動團繞着原子核旋轉 的粒子,或	1A
		- 向心力由庫倫力提供,或	
		- 電子的運動連從牛頓運動定律	
		all 1 and some play was that 1 and some play with this	
	(b)	最低能級 荥 最穩定態	IA
	1-2	are imparting SQT on hor veryon	
		h hc 1	
	(c)	$p = \frac{h}{\lambda} = \frac{hc}{\lambda} \cdot \frac{1}{c}$	1M
		$p = \frac{E}{c}$	IA
		p = c	

	(d)	(i) $E_4 = -\frac{13.6}{42} = -0.85 \text{ eV}$,	IM
		•	
		$\Delta E_{1 \to 4} = E_4 - E_1 = -0.85 - (-13.6) \approx 12.75 \text{ eV}$	
		$E_s = -\frac{13.6}{s^2} = -0.544 \text{ eV}$	
		3	
		ΔE _{1→5} ™E ₅ -E ₁ =-0.544-(-13.6)=13.056 eV 12.75 eV < 12.9 eV < 13.06 eV,所以最多只能读第	1A
		12.73 cV < 12.9 cV < 13.00 cV · 所以数多风能运用 三受激版 (n=4) *	l'A
		或 $\Delta E = E_n - E_1 = -13.6(\frac{1}{n^2} - \frac{1}{1^2}) = 129 \text{ eV}$ $n = 4.41 \text{ 而由於 } n $	1M
	1		
		(ii) nh nh	
		(ii) $mvr_n = \frac{nh}{2\pi} \Rightarrow 2\pi r_n = \frac{nh}{mv} = n\lambda$ (由公設得知)	1M
		新以 A= 1.33 nm	IA
m(2)	w == 11	$0.053) 4^2 \text{ nm} = 0.848 \text{ nm} = 8.48 \times 10^{-10} \text{ m}$	
Z.			1M
	Apr	$\frac{e^2}{r^2} = \frac{mv^2}{r} \Rightarrow v^2 = \frac{1}{4n\varepsilon_0} \cdot \frac{e^2}{r} \cdot \frac{1}{m} = 9 \times 10^9 \times \frac{(1.6 \times 10^{-19})^2}{8.48 \times 10^{-10}} \cdot \frac{1}{9.11 \times 10^{-31}}$	
	7000	$=>v=5.46\times10^5\text{ms}^{-1}$	
		$\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-14}}{(9.11 \times 10^{-31})(5.46 \times 10^5)} = 1.33 \times 10^{-9} \mathrm{m} = 1.33 \mathrm{nm}$	
		mv (9.11×10 ⁻¹¹)(5.46×10 ¹)	1A
-	-		

6. DSE 2017

2	(-)	466 765	艺织教育化科则资效化补料、商本独立中艺术社	IA	1
2.	(a)		(子從較高能級躍邏到低能級,便會發出光子(其能 等於該兩能級的能量差)。	IV	
İ			能級皆為量子化,因此所發射光子的能量(以及由	IA	
		****	波長)只能為分立的數值。		1
					2
	(h)	m	線X屬於紫外線範圍。	IA	
	(0)	(1)	東入層で水作練報題 。	1	
		(ii)	能量 = hc le		1
			le V V		
			$=\frac{\left(6.63\times10^{-34}\right)\left(3\times10^{8}\right)}{\left(366\times10^{-9}\right)\left(1.60\times10^{-19}\right)}$	IM	1
				IA	1
Į.			= 3.40 eV	I'A	2
				-	
į		(iii)	輻射會被吸收。	lA	
)			而創原子電廠・	IA	
-					2
	(c)	(i)	從n=3到n=2的觀選。	IA	
,			(即從第二到第一受激態)		
i				_	1
La discounte de la constante d		(ii)	由線光可得		
		(40)		IM	1
			$\frac{1}{366} = R(\frac{1}{2^2} - 0)$		
			$R \approx 0.0109 (\text{nm}^{-1}) (32 1.09 \times 10^7 \text{m}^{-1})$		I
ř.			對線下。		
1			$\frac{1}{\lambda} = R(\frac{1}{2^2} - \frac{1}{3^2})$		
			ent gar	IA	ĺ
			λ ≈ 658.8 nm	1	l
			另解:		
			13.6eV		
			hc $F \approx F_1 - F_2$		
			$= \frac{13.6 \times (1.6 \times 10^{-19})}{10^{-19}}$	IM	
			$R = \frac{13.6 \times (1.6 \times 10^{-19})}{hc}$ $= \frac{13.6 \times (1.6 \times 10^{-19})}{(6.63 \times 10^{-34})(3 \times 10^{1})}$ $= 1.094 \times 10^{7} \text{ (m}^{-1})$ $= \frac{1}{\lambda} = R(\frac{1}{2^{2}} - \frac{1}{3^{2}})$ $\lambda = 6.58 \times 10^{-7} \text{ m}$ $\lambda = 6.58 \times 10^{-7} \text{ m}$	1 (V)	
			= 1.094 × 10 ⁷ (m ⁻¹)		
			$\left \frac{1}{x} = R(\frac{1}{2^2} - \frac{1}{3^2}) \times 1.6 \times 10^{-12} \right $		
			$\lambda = \frac{\lambda^{2} + 2^{2} + 3^{2}}{\lambda = 6.58 \times 10^{-7} \text{ m}}$ $\lambda = 6.58 \times 10^{-7} \text{ m}$	IA	
			A O 10 M		2