Circuitos Digitais

Engenharia Elétrica/Engenharia de Automação/ Engenharia de Computação/Sistemas de Informação/ Ciência da Computação/Tecnologia de Redes

Prof. VICTOR MARQUES MIRANDA

CONTEÚDOS

- I. Conceitos Básicos de Sistemas Digitais
- II. Sistemas de Numeração e Portas Lógicas
 - Parte 1) Conversões entre Bases e Operações Aritméticas
 - Parte 2) Portas Lógicas e Formas de Representação de uma Função Lógica
- III. Álgebra Booleana e Simplificação de Circuitos
- IV.
- Parte 1) Lógica Combinacional
- Parte 2) Hardware Digital: Módulos e Redes Combinacionais
- V. Sistemas Sequenciais: Flip-Flop, Registradores e Contadores
- VI. Revisão dos Conteúdos e Aplicação da N2

Unidade 1 Conceitos Básicos de Sistemas Digitais

Objetivos

- ✓ Sistemas/Sinais Analógicos e Digitais
- ✓ Representação de Variáveis Binárias
- ✓ Conversão de Sinais
- ✓ Vantagens Sistemas Digitais
- ✓ Projeto de Sistemas Digitais
- √ Níveis de Implementação e de Integração

Sistemas Analógicos

 Sistema Analógico: é um sistema que representa quantidades físicas que variam continua e infinitamente dentro de uma faixa de valores.

Sinais analógicos são aqueles cuja amplitude pode assumir qualquer valor pertencente a um intervalo contínuo de valores.

Sistemas Digitais

 Sistema Digital: resulta da combinação de dispositivos projetados para processar/manipular informações lógicas ou quantidades físicas que são representadas no formato digital; ou seja, os sinais digitais podem assumir apenas um número finito de valores discretos.

Exemplos

 Uma balança digital mede o peso através de sinais discretos que indicam quilogramas e gramas; por outro lado, uma balança analógica mede o peso através de um sinal contínuo correspondente à posição de um ponteiro sobre uma escala.

Exemplos

Sistemas Analógicos: Velocímetro, termômetro, microfone,

relógio de ponteiros, dimmer...

Sistemas Digitais: Relógio digital, odômetro, calculadoras e

computadores...

Grandezas Digitais ou Analógicas ?

- a) Chave de 10 posições
- b) Potenciômetro
- c) Temperatura
- d) Grãos de areia na praia
- e) Controle de volume de um rádio antigo
- f) Propulsores de um robô

Conceitos

Sistema Digital

Recebe entradas digitais, as processa e gera saídas digitais.

Circuito Digital

Conexão de componentes digitais que compõem um Sistema Digital.

Dígitos Binários

- Informação processada: representação binária <u>b</u>inary dig<u>it</u> = bit.
- Lógica Booleana: 2 valores possíveis ('0' ou '1').
- Comuns em computação.
- Um sistema digital pode ser definido comum conjunto de componentes interconectados que processam informações em forma digital ou discreta.

Lógica Booleana

- Dígitos Binários (bits)
 - Lógica Booleana: 2 valores /estados possíveis ('0' ou '1').

O estado **0 (zero) representa** <u>não, falso, aparelho desligado, ausência de tensão, chave elétrica desligada, etc.</u>

O estado **1 (um) representa** sim, verdadeiro, aparelho ligado, presença de tensão, chave ligada, etc.

- Hoje, na prática...
 - ✓ as variáveis booleanas são muitas vezes usadas para representar o nível de tensão presente em uma conexão ou em terminais de entrada/saída de um circuito, chamado nível lógico.

Representação de Variáveis Binárias

- Durante muito tempo, os circuitos construídos a partir da Lógica Booleana foram implementados utilizando-se dispositivos eletromecânicos como, por exemplo, os relês.
- Porém, o nível de tensão correspondente a um nível lógico poderia assumir qualquer valor dependendo apenas das características do projeto.
- A partir do surgimento dos transistores, procurou-se padronizar os sinais elétricos correspondentes aos níveis lógicos.

Tipicamente, os números binários seriam representados por dois níveis de tensões. Por exemplo, **zero volt (0 V)** → **bit 0 e (+5V)** → **bit 1.**

Porém, na realidade, devido às variações nos circuitos, o "0" e o "1" são representados por **faixas de tensões.**

 Esta padronização ocasionou o surgimento das famílias de componentes digitais com características e representações distintas e que são até hoje empregadas na fabricação de circuitos integrados.

Famílias Lógicas de Circuitos Integrados

- As famílias lógicas diferem basicamente pelo componente principal utilizado por cada uma em seus circuitos.
- As famílias **TTL** (Transistor-Transistor Logic) e ECL (Emitter Coupled Logic) usam **transistores bipolares (TBJ)** como seu principal componente..
- .. enquanto as famílias CMOS (PMOS, NMOS) usam os transistores unipolares MOSFET (transistor de efeito de campo construído segundo a técnica MOS - Metal Oxide Semicondutor) como seu elemento principal de circuito.
- Atualmente as tecnologias <u>TTL e a CMOS</u> são as mais usadas, sendo empregadas em uma grande quantidade de equipamentos digitais e também nos computadores e periféricos.

Representação Família TTL

TTL significa "Transistor-Transistor-Logic" (Lógica Transistor-Transistor)

Valores Típicos de Entrada:

$$V_{H_{MAX}} = 5.0 V$$
 $V_{L_{MIN}} = 0.8 V$
 $V_{L_{MAX}} = 2.0 V$ $V_{L_{MIN}} = 0.0 V$

Valores Típicos de Saída:

$$V_{H_{MAX}} = 5.0 V \qquad V_{L_{MIN}} = 0.5 V$$

$$V_{L_{MAX}} = 2.4 V \qquad V_{L_{MIN}} = 0.3 V$$

Representação Família CMOS

- **CMOS** significa **C**omplementary **M**etal **O**xide **S**emiconductor (Semicondutor de Óxido-Metal Complementar), usa tanto FETs canal-N quanto canal-P no mesmo circuito, de forma a aproveitar as vantagens de ambas as famílias lógicas.
- A família CMOS possui, também, uma determinada faixa de tensão para representar os níveis lógicos de entrada e de saída, porém esta faixa de valores depende da tensão de alimentação (como exemplo abaixo) e da temperatura ambiente.

Valores Típicos "CMOS 3.3 V":

$$V_{H_{MAX}} = 3.3 V$$
 $V_{L_{MIN}} = 0.8 V$
 $V_{L_{MAX}} = 2.0 V$ $V_{L_{MIN}} = 0.0 V$

Lógica Positiva e Negativa

POSITIVE LOGIC

$$V_H \longleftrightarrow 1$$

$$V_L \longleftrightarrow 0$$

NEGATIVE LOGIC

$$V_H \longleftrightarrow 0$$

$$V_L \longleftrightarrow 1$$

	Input		Output	Positive			Negative		
	voltages		voltage	logic			logic		
	\boldsymbol{x}	y	z	\boldsymbol{x}	y	z	\boldsymbol{x}	y	z
	V_L	V_L	V_L	0	0	0	1	1	1
	V_L	V_H	V_L	0	1	0	1	0	1
	V_H	V_L	V_L	1	0	0	0	1	1
	V_H	V_H	V_H	1	1	1	0	0	0
				f = And			f = or		

Lógica Positiva e Negativa

Active Low

Circuitos Digitais

- Um circuito digital responde aos níveis binários das entradas (0 ou 1), e não ao valor exato da tensão.
- Isso significa dizer que um circuito digital responderá da mesma maneira para tensões de entrada que estejam dentro da faixa permitida para o nível 1.

Vantagens dos Sistemas Digitais

- A utilização das técnicas digitais proporcionou novas aplicações da eletrônica bem como de outras tecnologias, substituindo grande parte dos métodos analógicos existentes.
- As principais razões que viabilizam a mudança para a tecnologia digital são:
- 1. Os sistemas digitais são mais fáceis de projetar. Isto é devido ao fato de os circuitos empregados nos sistemas digitais serem <u>circuitos de chaveamento</u>, onde os valores exatos da tensão ou corrente dos sinais manipulados não são tão importantes, bastando resguardar a faixa de operação (ALTO ou BAIXO) destes sinais.
- **2. O** armazenamento da informação é fácil. Circuitos especiais de chaveamento podem reter a informação pelo tempo que for necessário.
- 3. Precisão e exatidão são maiores. Os sistemas digitais podem trabalhar com tantos dígitos de precisão quantos forem necessários, com a simples adição de mais circuitos de chaveamento. Nos sistemas analógicos, a precisão geralmente é limitada a três ou quatro dígitos, porque os valores de tensão e corrente dependem diretamente dos componentes empregados.

Vantagens dos Sistemas Digitais

- **4. Simplicidade de programação.** É relativamente fácil e conveniente desenvolver sistemas digitais cuja operação possa ser controlada por um conjunto de instruções previamente armazenadas, chamado programa. <u>Os sistemas analógicos também podem ser programados, mas a variedade e a complexidade das operações envolvidas são bastante limitadas.</u>
- 5. Circuitos digitais são menos afetados por variações nos valores dos componentes. Ex: Ruídos provocados por flutuações na tensão de alimentação ou de entrada, ou mesmo induzidos externamente, não são tão críticos em sistemas digitais porque o valor exato da tensão não é tão importante, desde que o nível de ruído não atrapalhe a distinção entre os níveis ALTO e BAIXO.
- 6. Os circuitos digitais são mais adequados à integração. É verdade que o desenvolvimento da tecnologia de integração (CIs) também beneficiou os circuitos analógicos, mas a <u>sua relativa complexidade e o uso de dispositivos que não podem ser economicamente integrados</u> (capacitores de grande capacitância, resistores de precisão, indutores, transformadores) <u>não permitiram que os circuitos analógicos atingissem o mesmo grau de integração dos circuitos digitais.</u>

Limitações das Técnicas Digitais

 Na verdade, há apenas uma grande desvantagem quando se usam técnicas digitais:

"...os sinais do mundo físico são quase em suas totalidades analógicos". (Ercegovac, 2000)

- A grande maioria das variáveis (quantidades) físicas são, em sua natureza analógicas
- e geralmente elas representam as entradas e saídas que devem ser monitoradas, operadas e controladas por um sistema.
- Exemplo: a temperatura, a pressão, a posição, a velocidade, o nível de um líquido, a vazão e outros mais.

Emprego das Técnicas Digitais

- Para se tirar proveito das técnicas digitais quando lidamos com entradas e saídas analógicas, três etapas devem ser executadas:
- Converter o "mundo real" das entradas analógicas para a forma digital (conversão A/D).
- **2. Processar** o sinal digital.
- 3. Converter as saídas digitais de volta para o mundo real, em sua forma analógica (conversão D/A).

Conversão de Sinais

- A conversão de um sinal analógico em digital é chamada de DIGITALIZAÇÃO.
 Para isso, 3 etapas são fundamentais: Valor do sinal A
- A AMOSTRAGEM é o processo pelo qual um sinal contínuo é amostrado pela medição da sua amplitude em instantes discretos de tempo.
- A partir das amostras obtidas, podemos quantificar as amplitudes, que pertencem a um intervalo contínuo de valores, em um conjunto finito de valores possíveis, chamados níveis de QUANTIZAÇÃO.
- Cada amplitude é alocada ao nível de quantização mais próximo, ou seja, ao nível que leve ao menor erro absoluto.

 A exatidão com que a conversão é feita depende do número de níveis quantizados e da frequência (ou período) das amostras.

Codificação

- A designação de cada nível quantizado por um dado código é chamado de CODIFICAÇÃO.
- O conjunto de níveis possíveis é definido pelo número de bits que serão usados para a Codificação.

Codificação

- Os dados seriais necessitam serem **codificados/decodificados**.
- Para tal utilizamos um conjunto de processadores e algoritmos para codificar/decodificar esta informação.

- Em outras palavras, **Codificação** significa a modificação de características de um sinal para torná-lo mais apropriado para uma aplicação específica, como por exemplo, transmissão ou armazenamento de dados.

Multiplexação

- Para transmitir os sinais digitais, várias linhas digitais podem ser condensadas (multiplexadas) em uma única linha com sequências de bits dispostos em série.

Problemas devido à Amostragem

Mais Problemas...

Frequência Ideal de Amostragem

Teorema de Nyquist (da Amostragem): "Se a frequência de amostragem é maior ou igual a duas vezes a frequência do sinal original, é for possível reconstruir fielmente o sinal analógico a partir das amostras".

Convertendo o Mundo Analógico

- Por que converter?
 - Armazenar
 - Transmitir
 - Evitar deterioração
 - Confiabilidade: Técnicas de Correção de Erros
 - Criptografia
 - Compressão

Entradas/Saídas Analógicas e Digitais

- Sensor ou Comando Analógico:
 - fenômeno físico → sinal elétrico (analógicos)

- Conversor A/D:
 - sinal elétrico (analógico) → código de bits (digital)
- Conversor D/A:
 - código de bits (digital) → sinal elétrico (analógico)

- Atuador ou Saída Analógica:
 - sinal elétrico → fenômeno físico

Entradas/Saídas Analógicas e Digitais

Ex1: sistema de comando e controle de temperatura.

Transmissão a Longas Distâncias

Ex2: sistema de telemetria de um robô submarino operado remotamente (ROV): propulsores hidráulicos e controle de luzes.

Transmissão a Longas Distâncias

Sistemas

 Um sistema pode ser definido como sendo um conjunto de elementos que são interligados de alguma maneira para compor um todo (estrutura)...

"Por exemplo, um aparelho de som hi-fi é composto de vários componentes, tais como compartimento para discos e fitas, amplificador e auto-falantes. Todos são interconectados por cabos elétricos".

 ... e assim realizar funções específicas bem definidas (comportamento), as quais podem ser identificadas a partir das funcionalidades de seus componentes..

Por exemplo, a função do aparelho de som hi-fi é transformar a informação armazenada em discos e/ou fitas em som audível, o que é algo que nenhum dos componentes do sistema pode realizar por si só.

Análise vs Projeto de um Sistema

 A Análise tem como objetivo a determinação de sua especificação (o que o sistema faz) a partir de uma implementação.

 O Projeto consiste na obtenção de uma implementação (como o sistema faz) que satisfaça a especificação de um sistema.

Representação Comportamental

- Enxerga o sistema como uma caixa preta.
- Concentra-se na especificação do comportamento como uma função normalmente dos valores de entrada.
- Em outras palavras, uma representação comportamental descreve a funcionalidade mas não a implementação de um dado sistema, definindo as respostas da caixa preta para qualquer combinação dos valores de entrada mas sem descrever como projetar ou construir o sistema usando dados componentes.

Representação Estrutural

- Define o sistema como um conjunto de componentes e suas interconexões.
- Diferente da representação comportamental, **especifica a implementação** do sistema sem qualquer referência à sua funcionalidade.
- Obviamente, muitas vezes a funcionalidade pode ser derivada a partir dos componentes interconectados.
 - No entanto, derivar a funcionalidade de um sistema desta maneira é muito difícil, principalmente se o sistema possui um grande número de componentes.

Representação Física

- Especifica as **características físicas do sistema**, indicando as dimensões e as posições de cada componente e conexão existentes na descrição estrutural do sistema.
- Enquanto a representação estrutural fornece a conectividade do sistema, somente a representação física é que descreve precisamente as relações espaciais dos vários componentes.
- Ou seja, a representação física é usada para descrever o sistema depois que ele foi fabricado, especificando seu peso, tamanho, consumo de potência, posição de cada pino de entrada ou saída,...

Projeto de Sistemas

- O processo de projeto de sistemas, principalmente sistemas digitais em particular, consiste sempre de pelo menos três fases, cada uma centrada em uma das representações de projeto:
- 1. derivar uma representação comportamental da funcionalidade do sistema;
- 2. converter esta representação para uma **representação estrutural** contendo componentes elementares e suas interconexões;
- 3. produzir uma **representação física** que especifica como montar e fabricar o sistema.
- Qualquer projeto pode ser realizado seguindo estes passos usando diferentes níveis de abstração/implementação. Em certo nível de abstração apenas determinados detalhes são representados.

Projeto de Sistemas Digitais

- Sistemas digitais modernos abrangem uma vasta gama de graus de complexidade.
- Os componentes disponíveis para a construção de sistemas digitais vão desde chaves do tipo liga-desliga até computadores completos.
- O número de componentes em um sistema digital pode variar de um, dois ou de milhares de componentes.
- Obviamente, quanto mais componentes são necessários à implementação de um sistema digital, mais complexo ele é e, consequentemente, mais difícil de entender seu funcionamento e de projetá-lo.
- Daí a importância do uso de **níveis de abstração (módulos) de crescente complexidade** no processo de projeto de sistemas digitais.

Níveis de Abstração

Nível	Comportamento	Estrutura	Físico
Transistor	Equações diferenciais, diagramas corrente- voltagem	Transistores, resistores, capacitores	Células analógicas e digitais
Portas	Equações Booleanas, máquinas de estado finitas (FSM)	Portas lógicas, Flip-flops	Módulos, unidades
Registrador	Algoritmos, <i>flowcharts</i> , conjunto de instruções, generalizações de FSMs	Somadores, comparadores, contadores, registradores	Microcircuitos
Processador	Especificação executável, programas	Processadores, controladores, ASICs	Placas de circuito impresso, módulos multicircuitos

- No NÍVEL FÍSICO, componentes elementares normalmente eletrônicos (transistores, resistores, capacitores etc) são interconectados formando circuitos analógicos e digitais que realizam uma dada funcionalidade.
- Esta funcionalidade é usualmente descrita por um conjunto de equações diferenciais ou por algum tipo de relacionamento entre corrente e tensão.

- Os principais componentes do NÍVEL LÓGICO são portas lógicas e flip-flops. As tensões são restritas a intervalos discretos, indicados por 0 e 1.
 - Portas lógicas são circuitos especiais que implementam funções Booleanas, tais como E e OU.
 - O seu comportamento pode se descrito com o uso de tabelas verdades e equações da Álgebra Booleana.
 - Um flip-flop é um elemento básico de memória que é capaz de armazenar informações.
 - O seu comportamento pode ser descrito com o uso de diagramas de máquinas de estados finitas (Finite State Machines FSMs).

- No **NÍVEL DOS REGISTRADORES**, os principais componentes são unidades aritméticas e unidades de memória:
 - somadores, comparadores, multiplicadores, contadores, registradores, bancos de registradores, etc.
- Usualmente, estes microcircuitos são descritos por fluxogramas, conjuntos de instruções (algum tipo de linguagem para descrever as transferências de dados), FSM's ou tabelas de estados.

- O mais alto nível de abstração apresentado na tabela é o NÍVEL DE PROCESSADOR, onde os componentes básicos são processadores, memórias, controladores e interfaces, além de circuitos de aplicação específica (Application Specific Integrated Circuits - ASICs).
- Geralmente, um ou mais destes componentes são montados em uma placa de circuito impresso.
- O seus comportamentos são usualmente descritos utilizandose uma especificação executável em alguma linguagem de descrição de hardware (Hardware Description Language -HDL), ou um algoritmo ou programa escrito em uma linguagem de programação procedural.

- O **módulos** são mais do que apenas entidades conceituais usadas para simplificar a descrição de uma implementação.
- Consistem em componentes básicos a serem utilizados no nível superior e são implementados a partir do agrupamento dos componentes do nível inferior.
- Eles são frequentemente **projetados e construídos separadamente e depois montados** para formarem o sistema final.
- Normalmente, inicia-se o projeto pelos módulos de menor complexidade (blocos básicos no nível lógico). A seguir, estes blocos são interconectados para compor um sistema mais complexo, como por exemplo um microprocessador. É praticamente impossível projetar um microprocessador inteiro usando apenas portas lógicas básicas.
- Além disso, existem módulos-padrão de diversos níveis de complexidade que já podem ser usados no projeto de grande número de diferentes sistemas (eficiência de custo).

A Evolução dos Sistemas Digitais

- Na maioria dos sistemas digitais atuais, os componentes básicos utilizados são dispositivos eletrônicos chamados circuitos integrados (CIs ou chips). As ligações entre estes componentes eletrônicos são conexões físicas através das quais a informação digital pode ser transmitida.
- Os avanços da microeletrônica nos últimos anos possibilitou:
 - a fabricação de sistemas digitais extremamente complexos, pequenos, rápidos e baratos;
 - o encapsulamento de milhares de componentes discretos (diodos, transistores, resistores, capacitores,...) em uma pequena pastilha de silício de alguns milímetros quadrados envolta por um invólucro de alguns centímetros;
 - e a integração em larga escala destes componentes.

Níveis de Integração de CIs

	Level of	Technology	Number of	Typical functions
Nível de Integração	Integration		transistors	
Integração em Pequena Escala (SSI)		bipolar		Individual gates, flip-flops
Integração em Média Escala (MSI)	SSI			0 / 1
Integração em Grande Escala (LSI)		Mos, bipolar		Adders, counters, registers
Integração em Muito Grande Escala (VLSI)				ROMs, PLAs, small memories
Integração Ultra Grande Escala (ULSI)	VLSI	MOS, bipolar	> 10,000	large memories, microprocessors,
				complex systems

Encapsulamento de CIs:

Encapsulamentos mais comuns para Cls: (a) DIP (dual-in-line package) de 24 pinos; (b) envoltório de cerâmica flexível de 14 pinos; (c) envoltório montado sobre a superfície (surface-mount).

O envoltório de cerâmica flexível é uma embalagem hermeticamente fechada construída com uma cerâmica não-condutora, o que torna o chip totalmente imune aos efeitos da umidade. Estes envoltórios são usados em circuitos destinados a aplicações militares, que devem funcionar em condições ambientais extremas, totalmente desfavoráveis.

O envoltório montado na superfície é a técnica de encapsulamento mais moderna, é muito similar ao DIP, exceto pelo fato de seus pinos terminarem dobrados en ângulos retos, de maneira a poderem ser soldados diretamente na superfície da placa de circuito impresso. Em geral, são menores que os DIPs. Os CIs montados na superfície também têm a vantagem de poderem ser mais facilmente manipulados pelos equipamentos automáticos de montagem de placas de circuito.

Aplicações

 Aplicações Atuais: a eletrônica digital está presente em praticamente todos os dispositivos eletrônicos: telefone celular, câmera digital, pen-drive, controle remoto, DVD, TV digital, computadores, rôbos de montagem, controle de manufatura, etc...

Dúvidas??

OBRIGADO PELA ATENÇÃO

Prof. Victor M. Miranda