

Deflection - Unit Load Method

The 40-kip vertical load at Joint C in the steel truss shown below produces the forces given in the accompanying table. The cross-sectional area of each member is 4.0 in^2 , and the length of each member is given in the table. The elastic modulus of steel is 29,000 ksi. The downward vertical displacement (in.) of Joint C is most nearly:

Member	Force, F (kips)	Length, L (in.)	
AB	50.0	240	
BC	49.2	473	
CD	-75.0	480	
AD	-30.0	288	
BD	-25.0	240	

from NCEES FE Civil practice exam

Deflection – Unit Load Method

Member	Force, F (kips)	Length, L (in.)	
AB	50.0	240	
BC	49.2	473	
CD	-75.0	480	
AD	-30.0	288	
BD	-25.0	240	

Member	Force, F (kips)	Length, L (in.)	$\frac{FL}{AE}$	f	$f \cdot \frac{FL}{AE}$
AB	50.0	240	0.1034	1.25	0.1292
BC	49.2	473	0.2008	1.231	0.2472
CD	-75.0	480	-0.3103	-1.875	0.5818
AD	-30.0	288	-0.0745	-0.75	0.0559
BD	-25.0	240	-0.0517	-0.625	0.0323

1.046 in

Steel Column

The proportional limit and modulus of elasticity for a material are 40 ksi and 30,000 ksi, respectively. A square column made from this material has a moment of inertia equal to 6.8 in.⁴ and an area equal to 9 in². Assume a pin-pin connected column so that the effective length factor K is equal to 1.0. The **maximum** column length (in.) based on the Euler formula is most nearly:

from NCEES FE Civil practice exam

- O A. 42.2
- O B. 74.8
- O C. 195.0
- O D. 224.3

Steel Beam

The W21 × 57 steel beam shown in the figure has its compression flange laterally braced at the one-third points over its full length. Assume $F_y = 50$ ksi and $C_b = 1.0$ for the critical segment. The maximum factored load w_u (kips/ft) that the beam can carry for this length is most nearly:

from NCEES FE Civil practice exam

В

- O A. 2.658
- O B. 3.360
- O C. 4.302
- O D. 4.778

Beam Behavior – Limit States

Nominal flexural strength (M_n) is determined by considering the following limit states:

- 1. Local Buckling
 - Flange local buckling (FLB)
 - Web local buckling (WLB)
- 2. Lateral torsional buckling (LTB)
- 3. Development of a fully-plastic cross-section (M_p)

Failure by excessive deformation

Computing M_n For Uniform Moment ($C_b = 1$)

• If
$$L_b \le L_p$$

$$M_n = M_p = Z_x F_y$$

• If
$$L_p < L_b \le L_r$$

$$M_n = M_p - \left(M_p - 0.7M_y\right) \left(\frac{L_b - L_p}{L_r - L_p}\right)$$

• If
$$L_b > L_r$$

$$M_n = F_{cr}S_x$$

$$F_{cr} = \frac{\pi^2 E}{\left(\frac{L_b}{r_{ts}}\right)^2} \sqrt{1 + 0.078 \frac{J}{S_x h_o} \left(\frac{L_b}{r_{ts}}\right)^2}$$

Sunghyun Park
sunghyun.park@ttu.edu
CE 129

Tuesdays/Thursdays 12:30 pm – 2:00 pm