Den	omina	ción de l	a Asig	natura	Elec	Electrónica Digital Combinatoria		
Abreviatura:				Códig	odigo: IMP-022			
Presencial No				presencial		Total Horas por	Créditos	
HT	HP	H.Lab.	HT	HP	H.Lab.	semana		
2	0	3	1	0	0	6	4	
Pre-	requis	itos:	/IP-08					

DESCRIPCIÓN DEL CURSO:

Este curso presenta al estudiante las especificaciones y diseño de subsistemas digitales combinacionales, circuitos electrónicos digitales y familias lógicas.

Una característica significativa del curso es la cobertura sólida de los conceptos y la teoría fundamentales acoplada con métodos prácticos de diseño real. Se involucran aspectos del CAD a través de laboratorios y simulación. Se hace fuerte hincapié en el desarrollo y uso de metodológicas sistemáticas de resolución de problemas.

Se ha puesto en cada tema especial atención para que las clases y laboratorios sean próximos a la realidad técnica del mercado, con el fin que, los métodos y conceptos de análisis, evaluación y diseño de circuitos electrónicos digitales sean aplicados en forma efectiva y eficiente en esta área.

OBJETIVOS GENERALES:

Al finalizar el curso los estudiantes deben estar en capacidad de:

- Enumerar las funciones lógicas fundamentales y sus aplicaciones.
- Conocer los aspectos tecnológicos básicos del diseño electrónico digital.
- Aplicar las técnicas básicas analíticas y de diseño de circuitos lógicos y su utilización en circuitos electrónicos digitales sencillos.
- Diseñar bloques de circuitos combinacionales.

OBJETIVOS ESPECIFICOS:

- Comparar los sistemas numéricos y códigos decimales, binarios, octales y hexadecimales.
- Diseñar circuitos lógicos con compuertas lógicas: AND, OR, NOT, NAND, NOR, XOR y XNOR.

 Diseñar circuitos lógicos combinacionales con dispositivos lógicos programables: PLA, PROM, PAL.

CONTENIDO:

TEMA 1: INTRODUCCIÓN A LOS SISTEMAS DIGITALES.

- 1.1.- Los sistemas digitales frente a los sistemas analógicos.
- 1.2.- Definición y características.
- 1.3.- Clasificación de los sistemas digitales.
- 1.4.- Aplicaciones.

TEMA 2: REPRESENTACIÓN DE LA INFORMACIÓN.

- 2.1.- Sistemas de numeración.
- 2.2.- Conversión entre sistemas de numeración.
- 2.3.- Códigos binários de numeración.
- 2.4.- Códigos BCD.
- 2.5.- Códigos alfanuméricos.
- 2.6.- Códigos detectores y correctores de errores.

TEMA 3: ÁLGEBRA DE CONMUTACIÓN.

- 3.1.- Álgebra de Boole.
- 3.2.- Teoremas de un álgebra de Boole.
- 3.3.- Función lógica: definición y representación.
- 3.4.- Funciones básicas y su simbología.
- 3.5.- Otras funciones semi-elementales.

TEMA 4: FUNCIONES LÓGICAS.

- 4.1.- Implementación.
- 4.2.- Principios de la minimización lógica.
- 4.3.- Algoritmo gráfico de los mapas de Karnaugh.
- 4.4.- Algoritmo numérico de Quine-McCluskey.
- 4.5.- Funciones incompletamente especificadas.
- 4.6.- Minimización de multifunciones.

TEMA 5: DISEÑO DE CIRCUITOS COMBINACIONALES.

- 5.1.- Circuito Combinacional (CC): definición y características.
- 5.2.- Síntesis mediante puertas básicas.

5.3.- Los fenómenos aleatorios en los circuitos combinacionales:

Tipos y técnicas para su compensación.

TEMA 6: CIRCUITOS COMBINACIONALES ARITMÉTICOS.

- 6.1.- Representación binaria de números con signo.
- 6.2.- Aritmética binaria.
- 6.3.- Semisumador y sumador total.
- 6.4.- Circuitos sumadores con propagación serie del acarreo y con generación anticipada.
- 6.5.- Circuitos sumadores/restadores (binarios, BCD).
- 6.6.- Circuitos comparadores de magnitud.
- 6.7.- Unidad aritmético-lógica.
- 6.8.- Circuitos multiplicadores.

TEMA 7: CIRCUITOS COMBINACIONALES LÓGICOS.

- 7.1.- Codificadores y decodificadores.
- 7.2.- Conversores de código.
- 7.3.- Multiplexores y demultiplexores.
- 7.4.- Generadores y detectores de paridad.
- 7.5.- Aplicación a la síntesis de funciones lógicas.

PRÁCTICAS DE SIMULACIÓN:

- Introducción a las herramientas CAD/CAE: Familiarización y manejo del entorno.
- Edición y captura de esquemas con herramientas CAD/CAE.
- Simulación de circuitos con herramientas CAD/CAE.
- Funciones lógicas.
- Síntesis de circuitos combinacionales lógicos.
- Síntesis de circuitos combinacionales aritméticos.
- Unidad aritmético-lógica.

PRACTICA DE LABORATORIO:

- Experimentos de Compuertas Lógicas Básicas
- Experimentos de Circuitos de Lógica Combinacional

METODOLOGÍA:

- Clase teórica-práctica de aplicación
- Ejercicios de aplicación
- Ejercicios asignados para hacer en casa
- Discusión de problemas: técnica grupal, clase activa y reflexiva

Estudio Dirigido: Este trabajo involucra acciones de carácter individual, lo que permite la interacción de los estudiantes en el momento en que el profesor imparte la clase.

Trabajo Individual: El desarrollo de problemas requiere de acciones de carácter individual. Para lo cual se deben encauzar trabajos y prácticas que evidencien este aprendizaje.

RECURSOS UTILIZADOS:

- Retro-Proyector
- Tablero acrílico / piloto
- Multimedia -Internet
- Material documentados

EVALUACIÓN:

2 Exámenes Parciales (15% cada uno)		30%
Asistencia y participación		10%
Trabajos grupales		10%
Estudios de casos, Investigaciones		20%
Proyecto Final		<u>30%</u>
	Total	100%

BIBLIOGRAFÍA BÁSICA:

Hayes, John P. Introduction to digital logic design. Addison-

Wesley Iberoamericana, Estados Unidos, 1996.

Ercegovac, Milos; Lang, T. Digital systems and harware-firmware

algorithms. John Wiley & sons, 1998.

Sandige, R. S. Modern digital design. McGraw-Hill, 1990.

Tokheim, Roger Electrónica digital: principios y aplicaciones.

McGraw-Hill, España, 2008.

Acha, Santiago Electrónica Digital, lógica digital Integrada, 2da.

Edición. Alfaomega Grupo Editor, 2010.

Tavernier, Ch. Circuitos lógicos programables. Paraninfo,

1994.

Weste, Niel; Eshragian, K. Principals of CMOS VLSI design: a systems

perspective. Addison Wesley, 1994.

Reina Acedo, Rafael Electrónica digital en la práctica. Edición 1.

Alfaomega Grupo Editor, México, 2011.

Den	omina	ción de	e la Asign	atura	Terr	Termodinámica		
Abre	eviatur	ra:			Cód	Código: IA-36		
	Preser	ncial	No	prese	ncial	Total Horas por	Créditos	
HT	HP	H.Lab	. HT	HP	H.Lab.	semana		
HT 1	HP 2	H.Lab	2 HT	HP	H.Lab.	semana 5	4	

DESCRIPCIÓN DEL CURSO: