Optimizers

Stochastic gradient descent is used to optimize NN parameters.

 $x_{t+1} = x_t - \text{learning rate} \cdot dx$

7

Optimizers

There are much more optimizers:

- Momentum
- Adagrad
- Adadelta
- RMSprop
- Adam
- ...
- even other NNs

Optimization: SGD

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W)$$

Averaging over minibatches ---> noisy gradient

First idea: momentum

Simple SGD

$$x_{t+1} = x_t - \alpha \nabla f(x_t)$$

SGD with momentum

$$v_{t+1} = \rho v_t + \nabla f(x_t)$$
$$x_{t+1} = x_t - \alpha v_{t+1}$$

Momentum update:

Nesterov momentum

Momentum update:

$$v_{t+1} = \rho v_t + \nabla f(x_t)$$
$$x_{t+1} = x_t - \alpha v_{t+1}$$

Nesterov Momentum

$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

Comparing momentums

Second idea: different dimensions are different

Adagrad: SGD with cache

$$\operatorname{cache}_{t+1} = \operatorname{cache}_t + (\nabla f(x_t))^2$$
$$x_{t+1} = x_t - \alpha \frac{\nabla f(x_t)}{\operatorname{cache}_{t+1} + \varepsilon}$$

Second idea: different dimensions are different

Adagrad: SGD with cache

$$\operatorname{cache}_{t+1} = \operatorname{cache}_t + (\nabla f(x_t))^2$$
$$x_{t+1} = x_t - \alpha \frac{\nabla f(x_t)}{\operatorname{cache}_{t+1} + \varepsilon}$$

Problem: gradient fades with time

Second idea: different dimensions are different

Adagrad: SGD with cache

$$cache_{t+1} = cache_t + (\nabla f(x_t))^2$$
$$x_{t+1} = x_t - \alpha \frac{\nabla f(x_t)}{cache_{t+1} + \varepsilon}$$

RMSProp: SGD with cache with exp. Smoothing

$$cache_{t+1} = \beta cache_t + (1 - \beta)(\nabla f(x_t))^2$$

Slide 29 Lecture 6 of Geoff Hinton's Coursera class

Adam

Let's combine the momentum idea and RMSProp normalization:

$$v_{t+1} = \gamma v_t + (1 - \gamma) \nabla f(x_t)$$

$$\operatorname{cache}_{t+1} = \beta \operatorname{cache}_t + (1 - \beta) (\nabla f(x_t))^2$$

$$x_{t+1} = x_t - \alpha \frac{v_{t+1}}{\operatorname{cache}_{t+1} + \varepsilon}$$

Let's combine the momentum idea and RMSProp normalization:

$$v_{t+1} = \gamma v_t + (1 - \gamma) \nabla f(x_t)$$

$$\operatorname{cache}_{t+1} = \beta \operatorname{cache}_t + (1 - \beta) (\nabla f(x_t))^2$$

$$x_{t+1} = x_t - \alpha \frac{v_{t+1}}{\operatorname{cache}_{t+1} + \varepsilon}$$

Actually, that's not quite Adam.

Comparing optimizers

Once more: learning rate

Sum up: optimization

- Adam is great basic choice
- Even for Adam/RMSProp learning rate matters
- Use learning rate decay
- Monitor your model quality

Better optimization algorithms help reduce training loss

But we really care about error on new data - how to reduce the gap?

Data normalization

 $Tree-based\ models\ normalization?...$

Data normalization

After normalization: less sensitive to small Before normalization: classification loss changes in weights; easier to optimize very sensitive to changes in weight matrix; hard to optimize

Weights initialization

Pitfall: all zero initialization.

Weights initialization

- Pitfall: all zero initialization.
- Small random numbers.

Weights initialization

- Pitfall: all zero initialization.
- Small random numbers.
- Calibrated random numbers.

$$S = \sum_{i}^{n} w_{i}x_{i}$$

$$Var(s) = Var(\sum_{i}^{n} w_{i}x_{i})$$

$$= \sum_{i}^{n} Var(w_{i}x_{i})$$

$$= \sum_{i}^{n} [E(w_{i})]^{2} Var(x_{i}) + E[(x_{i})]^{2} Var(w_{i}) + Var(x_{i}) Var(w_{i})$$

$$= \sum_{i}^{n} Var(x_{i}) Var(w_{i})$$

$$= (nVar(w)) Var(x)$$

Problem:

- Consider a neuron in any layer beyond first
- At each iteration we tune it's weights towards better loss function
- But we also tune it's inputs. Some of them become larger, some smaller
- Now the neuron needs to be re-tuned for it's new inputs

TL; DR:

It's usually a good idea to normalize linear model inputs

(c) Every machine learning lecturer, ever

 Normalize activation of a hidden layer (zero mean unit variance)

$$h_i = \frac{h_i - \mu_i}{\sqrt{\sigma_i^2}}$$

• Update μ_i , σ_i^2 with moving average while training

$$\mu_{i} := \alpha \cdot mean_{batch} + (1 - \alpha) \cdot \mu_{i}$$

$$\sigma_{i}^{2} := \alpha \cdot variance_{batch} + (1 - \alpha) \cdot \sigma_{i}^{2}$$

Original algorithm (2015)

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$$
 // scale and shift

Original algorithm (2015)

What is this?

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$ // mini-batch mean // mini-batch variance // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$ // scale and shift

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$

// mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2$$

// mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$

// normalize

// scale and shift

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$

// mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{n} (x_i - \mu_{\mathcal{B}})^2$$

// mini-batch variance

$$\widehat{x}_i \leftarrow \frac{\omega_i \quad \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

// normalize

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$$

// scale and shift

Original algorithm (2015)

What is this?

This transformation should be able to represent the identity transform. **Input:** Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$ // mini-batch mean // mini-batch variance // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

				Mod	del	Steps to 72.2%	Max accuracy
				Incep	tion	$31.0 \cdot 10^{6}$	72.2%
				BN-Ba	seline	$13.3\cdot 10^6$	72.7%
				BN-	-x5	$2.1\cdot 10^6$	73.0%
accuracy			BN-x30			$2.7\cdot 10^6$	74.8%
0.8				BN-x5-S	Sigmoid	1	69.8%
0.6	**						
			1	Inception BN-Baseline			
0.5			-	BN-x5 BN-x30 BN-x5-Sigmoid			
1				Steps to match Ir	nception		
0.4 5M source: https://ar	10M kiv.org/pdf/1	15M 1502.03167	20M '.pdf	25M	30M	number of training steps	36

Problem: overfitting

Regularization

$$L=rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)+\lambda R(W)$$

Adding some extra term to the loss function.

Common cases:

- L2 regularization: $R(W) = \|W\|_2^2$
- L1 regularization: $R(W) = \|W\|_1$
- Elastic Net (L1 + L2): $R(W) = \beta ||W||_2^2 + ||W||_1$

Regularization: Dropout

Some neurons are "dropped" during training.

Prevents overfitting.

(a) Standard Neural Net

(b) After applying dropout.

Regularization: Dropout

Some neurons are "dropped" during training.

Prevents overfitting.

(a) Standard Neural Net

(b) After applying dropout.

Actually, on test case output should be normalized. See sources for more info.

Regularization: data augmentation

Regularization: data augmentation

Sum up: regularization

Regularization:

- Add some weight constraints
- Add some random noise during train and marginalize it during test
- Add some prior information in appropriate form

That's all. Feel free to ask any questions.

Backup

Vanishing gradient problem

Vanishing gradient problem:

When the derivatives are small, the gradient signal gets smaller and smaller as it backpropagates further

More info: "On the difficulty of training recurrent neural networks", Pascanu et al, 2013 http://proceedings.mlr.press/v28/pascanu13.pdf

Gradient signal from far away is lost because it's much smaller than from close-by.

So model weights updates will be based only on short-term effects.

 $oldsymbol{h}^{(1)}$

Vanishing gradient problem

Exploding gradient problem

 If the gradient becomes too big, then the SGD update step becomes too big:

$$heta^{new} = heta^{old} - \overbrace{lpha}^{ ext{learning rate}} \int_{ ext{gradient}}^{ ext{learning rate}} \int_{ ext{gradient}}^{ ext{gradient}} d\theta^{new}$$

- This can cause bad updates: we take too large a step and reach a bad parameter configuration (with large loss)
- In the worst case, this will result in Inf or NaN in your network (then you have to restart training from an earlier checkpoint)

Exploding gradient solution

 Gradient clipping: if the norm of the gradient is greater than some threshold, scale it down before applying SGD update

Algorithm 1 Pseudo-code for norm clipping $\hat{\mathbf{g}} \leftarrow \frac{\partial \mathcal{E}}{\partial \theta} \\ \mathbf{if} \quad ||\hat{\mathbf{g}}|| \geq threshold \ \mathbf{then} \\ \hat{\mathbf{g}} \leftarrow \frac{threshold}{||\hat{\mathbf{g}}||} \hat{\mathbf{g}} \\ \mathbf{end} \quad \mathbf{if}$

 Intuition: take a step in the same direction, but a smaller step

Exploding gradient solution

Without clipping

With clipping

