Frühjahr 24 Themennummer 3 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

- a) Gegeben Seien eine Zahlenfolge $(a_k)_{k\in\mathbb{N}}$ in \mathbb{C} und $a\in\mathbb{C}$. Geben Sie eine Definition dafür an, dass $(a_k)_{k\in\mathbb{N}}$ gegen a konvergiert, ohne den Konvergenzbegriff in \mathbb{R} zu verwenden.
- b) Sei $(a_k)_{k\in\mathbb{N}}$ eine Folge in \mathbb{C} und $a_k = b_k + ic_k$ mit $b_k, c_k \in \mathbb{R}$ für $k \in \mathbb{N}$. Geben Sie an, welche Beziehung zwischen der Konvergenz der Folge $(a_k)_{k\in\mathbb{N}}$ und der Konvergenz der beiden Folgen $(b_k)_{k\in\mathbb{N}}$, $(c_k)_{k\in\mathbb{N}}$ besteht. Beweisen Sie diese Beziehung unter Verwendung der Definition aus Teilaufgabe a).
- c) Untersuchen Sie die folgenden Reihen auf Konvergenz:

(i)
$$\sum_{k=1}^{\infty} \frac{k + ik^2}{2k^3 + \cos(k)}$$
 (ii) $\sum_{k=1}^{\infty} (-1)^k \frac{\cos(k) + \sin(2k)}{(4 - \cos(2k))^k}$

Lösungsvorschlag:

a) $(a_k)_{k\in\mathbb{N}}$ konvrgiert genau dann gegen a, wenn für alle $\varepsilon>0$ ein $K\in\mathbb{N}$ existiert, sodass für alle $k\in\mathbb{N}$ mit $k\geq K$ die Ungleichung $|a_k-a|<\varepsilon$ erfüllt ist. In Quantoren:

$$\lim_{k \to \infty} a_k = a \iff \forall \varepsilon > 0 \ \exists K \in \mathbb{N} \ \forall k \in \mathbb{N}, k \ge K : |a_k - a| < \varepsilon.$$

b) Sei $a = b + ic \in \mathbb{C}$, dann gilt

$$\lim_{k \to \infty} a_k = a \iff \lim_{k \to \infty} b_k = b \text{ und } \lim_{k \to \infty} c_k = c.$$

Um das zu beweisen, wiederholen wir drei wichtige Ungleichungen. Für $z \in \mathbb{C}$ gilt

$$|\text{Re}(z)| \le |z|, |\text{Im}(z)| \le |z|, |z| \le |\text{Re}(z)| + |\text{Im}(z)|.$$

Weil $\sqrt{\cdot}$ auf $[0,\infty)$ streng monoton wachsend ist, folgt für alle $z\in\mathbb{C}:|z|=\sqrt{\operatorname{Re}(z)^2+\operatorname{Im}(z)^2}\geq\sqrt{\operatorname{Re}(z)^2}=|\operatorname{Re}(z)|$ und $|z|=\sqrt{\operatorname{Re}(z)^2+\operatorname{Im}(z)^2}\geq\sqrt{\operatorname{Im}(z)^2}=|\operatorname{Im}(z)|$. Außerdem folgt daraus $|z|=\sqrt{\operatorname{Re}(z)^2+\operatorname{Im}(z)^2}\leq\sqrt{|\operatorname{Re}(z)|^2+|\operatorname{Im}(z)|^2+2|\operatorname{Re}(z)||\operatorname{Im}(z)|}=\sqrt{(|\operatorname{Re}(z)|+|\operatorname{Im}(z)|)^2}=||\operatorname{Re}(z)|+|\operatorname{Im}(z)|=|\operatorname{Re}(z)|+|\operatorname{Im}(z)|.$

Nun zur eigentlichen Aufgabe. " \Longrightarrow : " Sei $\varepsilon > 0$, dann gibt es $K \in \mathbb{N}$ sodass für $k \in \mathbb{N}$ gilt $k \geq K \Longrightarrow |a_k - a| = |(b_k - b) + i(c_k - c)| < \varepsilon$, also auch $|b_k - b| < \varepsilon$ und $|c_k - c| < \varepsilon$ für alle $k \in \mathbb{N}$ mit $k \geq K$. Daher konvergiert b_k gegen b und c_k gegen c. " \Longleftrightarrow : " Sei $\varepsilon > 0$, dann ist $\frac{\varepsilon}{2} > 0$ und es gibt $K, K' \in \mathbb{N}$ sodass für alle $k \in \mathbb{N}$ die Implikationen $k \geq K \Longrightarrow |b_k - b| < \frac{\varepsilon}{2}$ und $k \geq K' \Longrightarrow |c_k - c| < \frac{\varepsilon}{2}$ gelten. Für alle $k \in \mathbb{N}$ mit $k \geq \max\{K, K'\} \in \mathbb{N}$ folgt dann $|a_k - a| \leq |b_k - b| + |c_k - c| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Also konvergiert a_k gegen a.

c) (i): Die Reihe konvergiert per Definitionem genau dann, wenn die Folge ihrer Partialsummen konvergiert. Dies ist eine komplexe Folge, die nach b) genau dann konvergiert, wenn die Folge der Real- und Imaginärteile der Partialsummen konvergiert. Das wiederum ist äquivalent zur Konvergenz der beiden Reihen $\sum_{k=1}^{\infty} \frac{k}{2k^3 + \cos(k)}$ und $\sum_{k=1}^{\infty} \frac{k^2}{2k^3 + \cos(k)}$. Wir werden zeigen, dass die zweite Reihe divergiert, daher divergiert auch die zu untersuchende Reihe. Für alle $k \in \mathbb{N}$ gilt

$$\frac{k^2}{2k^3 + \cos(k)} \ge \frac{k^2}{2k^3 + 1} \ge \frac{k^2}{2k^3 + k^3} = \frac{1}{3k}.$$

Nach dem Majoranten- und Minorantenkriterium divergiert die Reihe $\sum\limits_{k=1}^{\infty}\frac{k^2}{2k^3+\cos(k)},$ weil $\sum\limits_{k=1}^{\infty}\frac{1}{3k}$ eine harmonische Reihe ist und folglich divergiert. Daher divergiert auch $\sum\limits_{k=1}^{\infty}\frac{k+ik^2}{2k^3+\cos(k)}.$

k=1 (ii) Diese Reihe konvergiert. Um das zu zeigen, benutzen wir wieder das Majorantenkriterium. Für alle $k \in \mathbb{N}$ gilt

$$\left| (-1)^k \frac{\cos(k) + \sin(2k)}{(4 - \cos(2k))^k} \right| \le \frac{|\cos(k)| + |\sin(2k)|}{(|4 - \cos(2k))|^k} \le \frac{2}{3^k}.$$

Also konvergiert die Reihe $\sum_{k=1}^{\infty} (-1)^k \frac{\cos(k) + \sin(2k)}{(4 - \cos(2k))^k}$, weil $\sum_{k=1}^{\infty} \frac{2}{3^k}$ als geometrische Reihe mit $\left|\frac{1}{3}\right| < 1$ konvergiert.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$