On Counterfactual Inference with Unobserved Confounding

Abhin Shah abhin@mit.edu

Raaz Dwivedi raaz@mit.edu

Devavrat Shah devavrat@mit.edu

Greg Wornell gww@mit.edu

arxiv.org/pdf/2211.08209

Sequential Recommender System

Outcomes $\{\mathbf{y}^{(1)}(\mathbf{a})\}_{\mathbf{a}\in\mathscr{A}}$ $\mathbf{y}^{(1)} = \mathbf{y}^{(1)}(\mathbf{a}^{(1)})$

Potential

Challenges

- unobserved factors → spurious associations
- users → heterogeneous

Problem Setup

n heterogenous and independent users with one observation each - $\{v^{(i)}, a^{(i)}, y^{(i)}\}_{i=1}^n$

Goal: Counterfactual Questions

For user $i \in [n]$, what would have happened if alternative treatments were assigned?

Estimate $\mathbf{y}^{(i)}(\tilde{\mathbf{a}}^{(i)})$ for $\tilde{\mathbf{a}}^{(i)} \in \mathcal{A}$?

Suffices to learn $p(\mathbf{y} = \cdot \mid \mathbf{a} = \cdot, \mathbf{z}^{(i)}, \mathbf{v}^{(i)})$ for all $i \in [n]$, but each user may have different \mathbf{z}

Can we learn *n* different distributions with *one* sample per distribution?

Our Approach

We posit a joint exponential family distribution for $\mathbf{w} \triangleq (\mathbf{z}, \mathbf{v}, \mathbf{a}, \mathbf{y})$ $p(w) \propto \exp(\phi^{\top} w + w^{\top} \Phi w)$

$$p(\mathbf{y} \mid \mathbf{a}, \mathbf{z} = \mathbf{z^{(i)}}, \mathbf{v} = \mathbf{v^{(i)}}) \propto \exp\left(\left[\begin{array}{c} \boldsymbol{\phi}_{\mathbf{y}}^{\top} + 2\mathbf{z^{(i)}}^{\top}\boldsymbol{\Phi}_{z,\mathbf{y}} + 2\mathbf{v^{(i)}}^{\top}\boldsymbol{\Phi}_{v,\mathbf{y}} + 2\mathbf{a}^{\top}\boldsymbol{\Phi}_{a,\mathbf{y}} \end{array}\right] \mathbf{y} + \mathbf{y}^{\top}\boldsymbol{\Phi}_{y,\mathbf{y}} \mathbf{y}\right)$$
different for different users

n heterogeneous conditional distributions same exp. family but with diff. parameters

Inference Tasks

counterfactual User-level $-\theta^*(\mathbf{z}^{(i)})$ for all $i \in [n]$ 1. Parameters: distribution Population-level — Θ^*

counterfactual 2. Potential Outcomes: $\mu^{(i)} \triangleq \mathbf{E} \left[\mathbf{y}^{(i)}(\tilde{\mathbf{a}}^{(i)}) | \mathbf{z} = \mathbf{z}^{(i)}, \mathbf{v} = \mathbf{v}^{(i)} \right]$ mean

Parameter Estimation

 Θ^* has sparse rows Assum 1: $\theta^{\star}(\mathbf{z}^{(i)}) \in \operatorname{set} \mathscr{B}$ Assum 2:

$$\|\Theta^{\star} - \widehat{\Theta}\|_{2,\infty} \le \epsilon \qquad \text{when } n \ge O\left(\frac{\log(\dim)}{\epsilon^4}\right)$$
For all i , $\|\theta^{\star}(\mathbf{z}^{(i)}) - \widehat{\theta}^{(i)}\|_{2} \le \max\left\{\epsilon, M\right\} \qquad \text{when } n \ge O\left(\frac{\dim^2 M^2}{\epsilon^4}\right)$

metric entropy of \mathcal{B}

 $M = O(s \log(k))$ when $\mathcal{B} = s$ -sparse linear combinations of k known vectors

Outcome Estimation

$$\widehat{p}(\mathbf{y} \mid \mathbf{a} = \widetilde{\mathbf{a}}^{(i)}, \mathbf{z} = \mathbf{z}^{(i)}, \mathbf{v} = \mathbf{v}^{(i)}) \propto \exp\left(\left[\widehat{\boldsymbol{\theta}}(\mathbf{z}^{(i)}) + 2\mathbf{v}^{(i)\top}\widehat{\boldsymbol{\Phi}}_{v,y} + 2\widetilde{\mathbf{a}}^{(i)\top}\widehat{\boldsymbol{\Phi}}_{a,y}\right]\mathbf{y} + \mathbf{y}^{\top}\widehat{\boldsymbol{\Phi}}_{y,y}\mathbf{y}\right)$$

For all *i* and any $\tilde{a}^{(i)} \in \mathcal{A}$,

$$MSE(\mu^{(i)}, \hat{\mu}^{(i)}) \le \frac{s \log(k \cdot \dim) + \epsilon^2}{\dim} \quad \text{when } n \ge O\left(\frac{s \dim^2 \log(k \cdot \dim)}{\epsilon^4}\right)$$

Application: Denoise User-wise Covariates

No unobserved covariates

Noisy observed covariates = true covariates + measurement error

Assum 1: Only half users have error: $\Delta \mathbf{v}^{(i)} = \mathbf{0}$ for $i \in \{n/2, \dots, n\}$

Assum 2: Covariates have sparse error: $\|\Delta \mathbf{v}^{(i)}\|_0 \le s$ for $i \in \{1, \dots, n/2\}$

Goal: Estimate the true covariates

For all
$$i \in [n/2]$$
, $MSE(\mathbf{v}^{(i)}, \widehat{\mathbf{v}}^{(i)}) \le \frac{s \log(\dim)}{\dim} + \epsilon^2$ when $n \ge O\left(\frac{s \log(\dim)}{\epsilon^4}\right)$