CS 474/574 Machine Learning 4. Support Vector Machines (SVMs)

Prof. Dr. Forrest Sheng Bao Dept. of Computer Science Iowa State University Ames, IA, USA

September 18, 2020

All samples are equal. But some samplers are equaler.

- Let's first see a demo of a linear classifier for linearly separable cases. Pay attention to the prediction outcome.
- ▶ Think about the error-based loss function for a classifier: $\sum_i (\hat{y} y)^2$ where y is the ground truth label and \hat{y} is the prediction.
- ▶ If y = +1 and $\hat{y} = +1.5$, should the error be 0.25 or 0 (because properly classified)?

The perceptron algorithm

- ightharpoonup Recall earlier that a sample (\mathbf{x}_i, y_i) is correctly classified if $\mathbf{w}^T \mathbf{x}_i y_i > 0$.
- Let's define a new cost function to be minimized: $J(\mathbf{w}) = \sum_{x_i \in \mathcal{M}} -\mathbf{w}^T \mathbf{x}_i y_i$ where \mathcal{M} is the set of all samples misclassified $(\mathbf{W}^T \mathbf{X}_i y_i < 0)$.
- ▶ Then, $\nabla J(\mathbf{w}) = \sum_{\mathbf{x}_i \in \mathcal{M}} -\mathbf{X}_i y_i$ (because \mathbf{w} is the coefficients.)
- Only those misclassified matter!
- Batch perceptron algorithm: In each batch, computer $\nabla J(\mathbf{w})$ for all samples misclassified using the same current \mathbf{w} and then update.

Single-sample perceptron algorithm

- ▶ Another common type of perceptron algorithm is called single-sample perceptron algorithm.
- ▶ Update w whenever a sample is misclassified.
 - 1. Initially, w has arbitrary values. k = 1.
 - 2. In the k-th iteration, use sample \mathbf{x}_j such that $j = k \mod n$ to update the \mathbf{w} by:

$$\mathbf{W}_{k+1} = \begin{cases} \mathbf{W}_k + \rho \mathbf{X}_j y_j & \text{, if } \mathbf{W}_j^T \mathbf{X}_j y_j \leq 0, \text{ (wrong prediction)} \\ \mathbf{W}_k & \text{, if } \mathbf{W}_j^T \mathbf{X}_j y_j > 0 \text{ (correct classification)} \end{cases}$$

where ρ is a constant called **learning rate**.

- 3. The algorithm terminates when all samples are classified correctly.
- Note that x_k is not necessarily the k-th training sample due to the loop.

An example of single-sample preceptron algorithm

- ► Feature vectors and labels:
 - $\mathbf{x}_1' = (0,0)^T$, $y_1 = 1$
 - $\mathbf{x}_2' = (0,1)^T, y_2 = 1$
 - $\mathbf{x}_3' = (1,0)^T, y_3 = -1$
 - $\mathbf{x}_4' = (1,1)^T, y_4 = -1$
- First, let's augment them and multiply with the labels:
 - $\mathbf{x}_1 y_1 = (0,0,1)^T$.
 - $\mathbf{x}_2 y_2 = (0, 1, 1)^T$,
 - $\mathbf{x}_3 y_3 = (-1, 0, -1)^T$
 - $\mathbf{x}_4 y_4 = (-1, -1, -1)^T$

- 0. Begin our iteration. Let $\mathbf{w}_1 = (0,0,0)^T$ and $\rho = 1$.
- 1. $\mathbf{W}_1^T \cdot \mathbf{x}_1 y_1 = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 0 \le 0.$
 - Need to update $\mathbf{W}: \mathbf{W}_2 =$

$$\mathbf{W}_1 + \rho \cdot \mathbf{x}_1 y_1 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

2. $\mathbf{W}_2^T \cdot \mathbf{x}_2 y_2 = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = 1 > 0$. No updated need. But since \mathbf{w} so far does not classify all samples correctly, we need to keep going. Just let $\mathbf{w}_3 = \mathbf{w}_2$.

An example of preceptron algorithm (cond.)

Continue in perceptron.ipynb

- 14. In the end, we have $\mathbf{W}_{14} = \begin{pmatrix} -3 \\ 0 \\ 2 \end{pmatrix}$,
 - let's verify how well it works
 - $\begin{cases} \mathbf{w}_{14} \cdot \mathbf{x}_{1} y_{1} &= 1 > 0 \\ \mathbf{w}_{14} \cdot \mathbf{x}_{2} y_{2} &= 1 > 0 \\ \mathbf{w}_{14} \cdot \mathbf{x}_{3} y_{3} &= 1 > 0 \\ \mathbf{w}_{14} \cdot \mathbf{x}_{4} y_{4} &= 1 > 0 \end{cases}$

- Mission accomplished!
- ► Note that the perceptron algorithm will not converge unless the data is linearly separable.
- What is w exactly? A linear composition of all training samples!
- Do all samples contribute to w? Not really!

Getting ready for SVMs

- Earlier our discussion used the augmented definition of linear binary classifier: the feature vector $\mathbf{x} = (x_1, \dots, x_n, 1)^T$ and the weight vector $\mathbf{w} = (w_1, \dots, w_n, w_b)^T$. The hyperplane is an equation $\mathbf{w}^T \mathbf{x} = 0$. If $\mathbf{w}^T \mathbf{x} > 0$, then the sample belongs to one class. If $\mathbf{w}^T \mathbf{x} < 0$, the other class.
- Let's go back to the un-augmented version. Let $\mathbf{x} = [x_1, x_2, \dots, x_n]^T$ and $\mathbf{w} = [w_1, w_2, \dots, w_n]^T$. If $\mathbf{w}^T\mathbf{x} + w_b > 0$ then $\mathbf{x} \in C_1$. If $\mathbf{w}^T\mathbf{x} + w_b < 0$ then $\mathbf{x} \in C_2$. The equation $\mathbf{w}^T\mathbf{x} + w_b = 0$ is the hyperplane, where \mathbf{w} only determines the direction of the hyperplane. To build a classifier is to search for the values for w_1, \dots, w_n and w_b , the bias/threshold.
- For convenience, we denote $g(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$.
- ▶ We have proved that w, augmented or not, is perpendicular to the hyperlane.

What is the distance from a sample z to the hyperplane?

- Let the point on the hyperplane closest to ${\bf z}$ be ${\bf x}$.
- Define y = x z.
- $\mathbf{y} = v \frac{\mathbf{w}}{\|\mathbf{w}\|}$ Because both \mathbf{y} and \mathbf{w} are perpendicular to the hyperplane, we can rewrite $\mathbf{y} = v \frac{\mathbf{w}}{\|\mathbf{w}\|}$, where v is the Euclidean distance from \mathbf{z} to \mathbf{x} (what we are trying to get) and $\frac{\mathbf{w}}{\|\mathbf{w}\|}$ is the unit vector pointing at the direction of \mathbf{w} .
 - ► Therefore, $\mathbf{z} = \mathbf{x} + v \frac{\mathbf{w}}{||\mathbf{w}||}$.
- ▶ The prediction for z is then (subsituting into linear classifier equation):

$$\mathbf{w}^{T}\mathbf{z} + w_{b} = \mathbf{w}^{T}(\mathbf{x} + v_{\frac{\mathbf{w}}{||\mathbf{w}||}}) + w_{b}$$

$$= \mathbf{w}^{T}\mathbf{x} + v_{\frac{\mathbf{w}^{T}\mathbf{w}}{||\mathbf{w}||}} + w_{b} = \underbrace{\mathbf{w}^{T}\mathbf{x} + w_{b}}_{=0, \text{by definition}} + v_{\frac{\mathbf{w}^{T}\mathbf{w}}{||\mathbf{w}||}}^{\mathbf{w}^{T}\mathbf{w}}$$

$$= v_{\frac{\mathbf{w}^{T}\mathbf{w}}{||\mathbf{w}||}}^{\mathbf{w}^{T}\mathbf{w}} = v_{\frac{\mathbf{w}^{T}\mathbf{w}}{||\mathbf{w}||}}^{\mathbf{w}^{T}\mathbf{w}} = v_{\frac{\mathbf{w}^{T}\mathbf{w}}{||\mathbf{w}||}}^{\mathbf{w}^{T}\mathbf{w}}$$

Finally, $v = \frac{\mathbf{w}^T \mathbf{z} + w_b}{\|\mathbf{w}\|}$.

Hard margin linear SVM

- Assume that the minimum distance from any point in Class C_1 and C_2 to the hyperplane are $d_1/||\mathbf{w}||$ and $d_2/||\mathbf{w}||$, respectively, where $d_1, d_2 > 0$.
- ► Then we have $\mathbf{w}^T \mathbf{x} + w_b d_1 \ge 0, \forall x \in C_1$, and $\mathbf{w}^T \mathbf{x} + w_b + d_2 \ge 0, \forall x \in C_2$.
- To make the classifier more discriminant, we want to maximize the distance between the two classes, known as the **margin**, i.e. $\max\left(\frac{d_1}{||\mathbf{w}||} + \frac{d_2}{||\mathbf{w}||}\right)$.
- An SVM classifier is also called a *Maximum Margin Classifier*.
- Assuming the two classes are linearly separable, our problem becomes:

$$\begin{cases} \max & \frac{d_1}{||\mathbf{w}||} + \frac{d_2}{||\mathbf{w}||} \\ s.t. & \mathbf{w}^T \mathbf{x} + w_b - d_1 \ge 0, \forall x \in C_1 \\ & \mathbf{w}^T \mathbf{x} + w_b + d_2 \ge 0, \forall x \in C_2 \end{cases}$$

Hard margin linear SVM (cond.)

We prefer d₁ = d₂: both classes are equal.
 Since d₁ and d₂ are constants, we can let them be 1.
 Let the label yk ∈ {+1, -1} for sample xk, we can get a different form:

$$\begin{cases} \max & \frac{2}{||\mathbf{w}||} \\ s.t. & y_k(\mathbf{w}^T \mathbf{x}_k + w_b) \ge 1, \forall \mathbf{x}_k \in C_1 \cup C_2. \end{cases}$$

Maximizing $\frac{2}{||\mathbf{w}||}$ is equivalent to minimizing $\frac{||\mathbf{w}||}{2}$. Finally, we transform it into a quadratic programming problem (the primal form of SVMs):

$$\begin{cases} \min & \frac{1}{2} ||\mathbf{w}||^2 = \frac{1}{2} \mathbf{w}^T \mathbf{w} \\ s.t. & y_k (\mathbf{w}^T \mathbf{x}_k + w_b) \ge 1, \forall \mathbf{x}_k. \end{cases}$$

Recap: the Karush-Kuhn-Tucker conditions

► Given a nonlinear optimization problem

$$\begin{cases} \min & f(\mathbf{x}) \\ s.t. & h_k(\mathbf{x}) \ge 0, \forall k \in [1..K], \end{cases}$$

where ${\bf x}$ is a vector, and $h_k(\cdot)$ is linear, its Lagrange multiplier (or Lagrangian) is:

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) - \sum_{k=1}^{K} \lambda_k h_k(\mathbf{x})$$

▶ The necessary condition that the problem above has a solution is KKT condition:

$$\begin{cases} \frac{\partial L}{\partial \mathbf{x}} = \mathbf{0}, \\ \lambda_k \ge 0, & \forall k \in [1..K] \\ \lambda_k h_k(\mathbf{x}) = 0, & \forall k \in [1..K] \end{cases}$$

Properties of hard margin linear SVM

► The KKT condition to the SVM problem is

$$\begin{cases} A : \frac{\partial L}{\partial w} = \mathbf{0}, \\ B : \frac{\partial L}{\partial w_b} = 0, \\ C : \lambda_k \ge 0, & \forall k \in [1..K] \\ D : \lambda_k [y_k(\mathbf{w}^T \mathbf{x_k} + w_b) - 1] = 0, & \forall k \in [1..K] \end{cases}$$

Let's solve it.

$$A: \frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{k=1}^{K} \lambda_k y_k \mathbf{x_k} \Rightarrow \mathbf{w} = \sum_{k=1}^{K} \lambda_k y_k \mathbf{x_k}$$
$$B: \frac{\partial L}{\partial w_k} = \sum_{k=1}^{K} \lambda_k y_k = 0$$

Because λ_k is either positive or 0, the solution of the SVM problem is only associated with samples that $\lambda_k \neq 0$. Denote them as

Properties of hard margin linear SVM (cont.)

► Therefore, Eq. A can be rewritten into

$$\mathbf{w} = \sum_{\mathbf{x}_k \in N_s} \lambda_k y_k \mathbf{x_k}$$

The samples $\mathbf{x}_k \in N_s$ collectively determine the \mathbf{w} , and thus called **support vectors**, supporting the solution.

- The support vectors also have an interesting "visual" properties. Solving Eqs. C and D for all $\mathbf{x}_k \in N_s$: $\lambda_k \neq 0$ and $\lambda_k[y_k(\mathbf{w}^T\mathbf{x_k} + w_b) 1] = 0$, we have $y_k(\mathbf{w}^T\mathbf{x_k} + w_b) = 1$.
- ► Given that $y_k \in \{+1, -1\}$, we have $\mathbf{w}^T \mathbf{x_k} + w_h = \pm 1$. Bingo!

Solving hard margin linear SVM

- ► Remember that KKT condition is a necessary condition, not sufficient condition.
- ► The SVM problem is a quadratic programming problem. There are many documents on the Internet about solving hard margin linear SVM as a quadratic programming problem. Here is one in MATLAB http://www.robots.ox.ac.uk/~az/lectures/ml/matlab2.pdf. For Python, use the cvxopt toolbox. I have some hints here.

Soft margin linear SVM

.4 image

.6

- ▶ What if the samples are not linearly separable?
- Let $\xi_k = 0$ for all samples on or inside the correct margin boundary.
- Let $\xi_k = |y_k (\mathbf{w}^T \mathbf{x}_k + w_b)|$, i.e., the prediction error, for all samples that are misclassified (red in the left figure), where the operator $|\cdot|$ stands for absolute value.
- ▶ In this case, we want to maximize the margin but minimize the number of misclassified samples.
- ► Therefore, we have a new optimization problem:

$$\begin{cases} \min & \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{k=1}^{K} \xi_k \\ s.t. & y_k(\mathbf{w}^T \mathbf{x}_k + w_b) \ge 1 - \xi_k, \forall \mathbf{x}_k \\ & \xi_k \ge 0. \end{cases}$$