Non-Malleable Functions and Their Applications

Yu Chen^{1,2} Baodong Qin³ Jiang Zhang⁴ Yi Deng^{1,4} Sherman S.M. Chow²

¹SKLOIS, IIE, Chinese Academy of Sciences ²IE Dept., The Chinese University of Hong Kong ³CS Dept., Southwest University of Science and Technology ⁴State Key Laboratory of Cryptology, Beijing, China

> PKC 2016 March 6, 2016

Outline

- Backgrounds
- 2 NMFs: Syntax and Definition
- 3 Relations among OW and NM
- 4 Constructions of NMFs
- **6** Applications of NMFs

Outline

- Backgrounds
- 2 NMFs: Syntax and Definition
- 3 Relations among OW and NM
- 4 Constructions of NMFs
- (5) Applications of NMFs

OWF Codes

ZK Proof Obfucation

Encyption Commitment

Non-Malleability

Non-Malleability

Non-Malleability

Non-Malleability

Non-Malleable One-Way/Hash Functions (NMOWHF)

[Boldyreva, Cash, Fischlin, and Warinschi, Asiacrypt 2009]

- simulation-based non-malleability
- standard model: POWHF+NIZKPoK
- applications:
 - partially instantiate RO in the Bellare-Rogaway PKE
 - enhance security of client-sever cryptographic puzzle

Non-Malleable One-Way/Hash Functions (NMOWHF)

[Boldyreva, Cash, Fischlin, and Warinschi, Asiacrypt 2009]

- simulation-based non-malleability
- standard model: POWHF+NIZKPoK
- applications:
 - partially instantiate RO in the Bellare-Rogaway PKE
 - enhance security of client-sever cryptographic puzzle

 \odot simulation-based NM: too strong + hard to work with

Non-Malleable One-Way/Hash Functions (NMOWHF)

[Boldyreva, Cash, Fischlin, and Warinschi, Asiacrypt 2009]

- simulation-based non-malleability
- standard model: POWHF+NIZKPoK
- applications:
 - partially instantiate RO in the Bellare-Rogaway PKE
 - enhance security of client-sever cryptographic puzzle
- © simulation-based NM: too strong + hard to work with

[Baecher, Fischlin, and Schröder, CT-RSA 2011]

- \bullet game-based NM w.r.t. admissible transformation class Φ
- \bullet RO model: Merkle-Damgård transformation is $\Phi^{\rm xor}\textsc{-NM}$
- suffice for the RO-replacement of the Bellare-Rogaway PKE

Motivations

The state-of-art about NMFs

- the function is already OW and (possibly) probabilistic
 - blur the relation between OW and NM
 - same input will not lead to the same output
- current game-based notion is not strong enough
- no efficient construction in the standard model
- few applications

Motivations

The state-of-art about NMFs

- the function is already OW and (possibly) probabilistic
 - blur the relation between OW and NM
 - same input will not lead to the same output
- current game-based notion is not strong enough
- no efficient construction in the standard model
- few applications

This work: OW & probabilistic $F \to \text{deterministic } F$

Goals

- seek a strong yet handy non-malleability notion
- figure out relations between NM and OW
- provide efficient construction without RO
- find new interesting applications

Outline

- Backgrounds
- 2 NMFs: Syntax and Definition
- 3 Relations among OW and NM
- 4 Constructions of NMFs
- (5) Applications of NMFs

Efficient Computable Deterministic Functions

Efficient Computable Deterministic Functions

• poly-to-1: $\forall y \in Y, |f^{-1}(y)| \leq \mathsf{poly}(\lambda)$.

Efficient Computable Deterministic Functions

- poly-to-1: $\forall y \in Y, |f^{-1}(y)| \leq \text{poly}(\lambda)$.
- trapdoor: f^{-1} is efficiently computable with a td.

(Adaptive) One-Wayness

(Adaptive) One-Wayness

• OW: $\Pr[\mathcal{A}(f, y^* \leftarrow f(x^*)) \in f^{-1}(y^*)] = \mathsf{negl}(\lambda)$.

(Adaptive) One-Wayness

- OW: $\Pr[A(f, y^* \leftarrow f(x^*)) \in f^{-1}(y^*)] = \mathsf{negl}(\lambda)$.
- $\bullet \text{ AOW: } \Pr[\mathcal{A}^{\mathcal{O}_{\mathsf{inv}}}(f, y^* \leftarrow f(x^*)) \in f^{-1}(y^*)] = \mathsf{negl}(\lambda).$

(Adaptive) Φ -Non-Malleability

(Adaptive) Φ-Non-Malleability

• NM: $\Pr[\mathcal{A}(f, y^*) = (\phi, y) \text{ s.t. } y = f(\phi(x^*))] = \mathsf{negl}(\lambda).$

(Adaptive) Φ -Non-Malleability

- NM: $\Pr[\mathcal{A}(f, y^*) = (\phi, y) \text{ s.t. } y = f(\phi(x^*))] = \mathsf{negl}(\lambda).$
- ANM: $\Pr[\mathcal{A}^{\mathcal{O}_{\mathsf{inv}}}(f, y^*) = (\phi, y) \text{ s.t. } y = f(\phi(x^*))] = \mathsf{negl}(\lambda).$

Common

• both of the NM notions are defined w.r.t. Φ .

Common

- both of the NM notions are defined w.r.t. Φ .
- \bullet NM notions become stronger when Φ is larger

Common

- both of the NM notions are defined w.r.t. Φ .
- \bullet NM notions become stronger when Φ is larger

Difference

- $\phi \in \Phi$ v.s. $\phi \in \Phi \land \phi(x^*) \neq x^*$
- Φ cannot contain ϕ having fixed points exclude many natural transformations weaken the notion

• \mathcal{A} 's power is completely expressed through Φ — make Φ as large as possible to yield a strong notion

- \mathcal{A} 's power is completely expressed through Φ make Φ as large as possible to yield a strong notion
- Φ may contain some dangerous $T \Rightarrow \Phi$ -NM is impossible

- \mathcal{A} 's power is completely expressed through Φ make Φ as large as possible to yield a strong notion
- Φ may contain some dangerous $T \Rightarrow \Phi$ -NM is impossible
- find a safe broader of admissible Φ to exclude dangerous T

identity transformation: id

identity transformation: id

$$\mathcal{A}:f(\operatorname{id}(x^*))=\underline{y}^*$$

 $identity\ transformation\colon id$

$$\mathcal{A}:f(\operatorname{id}(x^*))=\underline{y^*}$$

constant transformations: ϕ_c

identity transformation: id

$$\mathcal{A}:f(\operatorname{id}(x^*))= \underline{y^*}$$

constant transformations:
$$\phi_c$$

 $\mathcal{A}: f(\phi_c(x^*)) = f(c)$

identity transformation: id $\mathcal{A}: f(\operatorname{id}(x^*)) = y^*$

record all information

constant transformations: ϕ_c $\mathcal{A}: f(\phi_c(x^*)) = f(c)$ lose all information

identity transformation: id

constant transformations: ϕ_c

dangerous: regular transformations + "near" ones

Dangerous Transformations

identity transformation: id

constant transformations: ϕ_c

dangerous: regular transformations + "near" ones

intersection of transformations $X_{\phi,\phi'} = \{x : \phi(x) = \phi'(x)\}$ distance between transformations: $\|\phi, \phi'\| = (|X| - |X_{\phi,\phi'}|)/|X|$

Dangerous Transformations

identity transformation: id

constant transformations: ϕ_c

dangerous: regular transformations + "near" ones

intersection of transformations $X_{\phi,\phi'} = \{x : \phi(x) = \phi'(x)\}$ distance between transformations: $\|\phi, \phi'\| = (|X| - |X_{\phi,\phi'}|)/|X|$

example of near: $|X_{\phi,\phi'}|/|X|$ is non-negligible in λ

Intuition: Φ contains ϕ that is far away from regular ones

Intuition: Φ contains ϕ that is far away from regular ones

• Bounded Root Space (BRS) $\forall \phi \in \Phi$, RS of ϕ – id and ϕ – ϕ_c are poly bounded.

Intuition: Φ contains ϕ that is far away from regular ones

- Bounded Root Space (BRS) $\forall \phi \in \Phi$, RS of ϕ id and ϕ ϕ_c are poly bounded.
- Sampleable Root Space (SRS) $\forall \phi \in \Phi$, RS of ϕ id and ϕ ϕ_c are sampleable.

$$\mathsf{SampRS}(\phi') \xleftarrow{\mathrm{R}} \mathrm{RS}_{\phi'}$$

Intuition: Φ contains ϕ that is far away from regular ones

 $\Phi_{
m brs}^{
m srs}$

Intuition: Φ contains ϕ that is far away from regular ones

 $\Phi_{\rm brs}^{\rm srs}$ covers most algebra-induced classes:

 $\Phi^{\mathrm{lin}}\backslash\mathsf{id}$

Intuition: Φ contains ϕ that is far away from regular ones

 $\Phi_{\rm brs}^{\rm srs}$ covers most algebra-induced classes:

$$\Phi^{\mathrm{lin}} \setminus \mathsf{id} \qquad \Phi^{\mathrm{aff}} \setminus (\mathsf{id} \cup \mathsf{cf})$$

Intuition: Φ contains ϕ that is far away from regular ones

 $\Phi_{\rm brs}^{\rm srs}$ covers most algebra-induced classes:

$$\Phi^{\text{lin}} \setminus \text{id}$$
 $\Phi^{\text{aff}} \setminus (\text{id} \cup \text{cf})$ $\Phi^{\text{poly}_d} \setminus (\text{id} \cup \text{cf}), d = \text{poly}(\lambda)$

Outline

- Backgrounds
- 2 NMFs: Syntax and Definition
- 3 Relations among OW and NM
- 4 Constructions of NMFs
- (5) Applications of NMFs

Relations among One-Wayness and Non-Malleability

Lemma: \forall achievable Φ , Φ -NM \Rightarrow OW when f is poly-to-1.

Lemma: \forall achievable Φ , Φ -NM \Rightarrow OW when f is poly-to-1.

Proof sketch: \mathcal{A} breaks OW $\Rightarrow \mathcal{B}$ breaks Φ -NM.

Lemma: \forall achievable Φ , Φ -NM \Rightarrow OW when f is poly-to-1.

Proof sketch: \mathcal{A} breaks OW $\Rightarrow \mathcal{B}$ breaks Φ -NM.

Setup: Given f and $y^* \leftarrow f(x^*)$ for $x^* \stackrel{\mathbb{R}}{\leftarrow} X$, $\mathcal{B} \hookrightarrow (f, y^*) \hookrightarrow \mathcal{A}$.

Lemma: \forall achievable Φ , Φ -NM \Rightarrow OW when f is poly-to-1.

Proof sketch: \mathcal{A} breaks OW $\Rightarrow \mathcal{B}$ breaks Φ -NM.

Setup: Given f and $y^* \leftarrow f(x^*)$ for $x^* \stackrel{\mathbb{R}}{\leftarrow} X$, $\mathcal{B} \hookrightarrow (f, y^*) \hookrightarrow \mathcal{A}$.

Attack: When \mathcal{A} outputs x against OW, \mathcal{B} picks $\phi \stackrel{\mathbb{R}}{\leftarrow} \Phi$, outputs $(\phi, f(\phi(x)))$ against NM.

Lemma: \forall achievable Φ , Φ -NM \Rightarrow OW when f is poly-to-1.

Proof sketch: \mathcal{A} breaks OW $\Rightarrow \mathcal{B}$ breaks Φ -NM.

Setup: Given f and $y^* \leftarrow f(x^*)$ for $x^* \stackrel{\mathbb{R}}{\leftarrow} X$, $\mathcal{B} \hookrightarrow (f, y^*) \hookrightarrow \mathcal{A}$.

Attack: When \mathcal{A} outputs x against OW, \mathcal{B} picks $\phi \stackrel{\mathbb{R}}{\leftarrow} \Phi$, outputs $(\phi, f(\phi(x)))$ against NM.

If \mathcal{A} succeeds $(x \in f^{-1}(y^*)) \Rightarrow \Pr[x = x^*] \ge 1/\mathsf{poly}(\lambda)$

Lemma: \forall achievable Φ , Φ -NM \Rightarrow OW when f is poly-to-1.

Proof sketch: \mathcal{A} breaks OW $\Rightarrow \mathcal{B}$ breaks Φ -NM.

Setup: Given f and $y^* \leftarrow f(x^*)$ for $x^* \stackrel{\mathbb{R}}{\leftarrow} X$, $\mathcal{B} \hookrightarrow (f, y^*) \hookrightarrow \mathcal{A}$.

Attack: When \mathcal{A} outputs x against OW, \mathcal{B} picks $\phi \stackrel{\mathbb{R}}{\leftarrow} \Phi$, outputs $(\phi, f(\phi(x)))$ against NM.

If
$$\mathcal{A}$$
 succeeds $(x \in f^{-1}(y^*)) \Rightarrow \Pr[x = x^*] \ge 1/\mathsf{poly}(\lambda)$

- f is poly-to-1: at most $poly(\lambda)$ preimages x s.t. $f(x) = y^*$ and they are all equally likely in \mathcal{A} 's view.
- The probability is taken over the choice of $x^* \stackrel{\mathbb{R}}{\leftarrow} X$.

Lemma: \forall achievable Φ , Φ -NM \Rightarrow OW when f is poly-to-1.

Proof sketch: \mathcal{A} breaks OW $\Rightarrow \mathcal{B}$ breaks Φ -NM.

Setup: Given f and $y^* \leftarrow f(x^*)$ for $x^* \stackrel{\mathbb{R}}{\leftarrow} X$, $\mathcal{B} \hookrightarrow (f, y^*) \hookrightarrow \mathcal{A}$.

Attack: When \mathcal{A} outputs x against OW, \mathcal{B} picks $\phi \stackrel{\mathbb{R}}{\leftarrow} \Phi$, outputs $(\phi, f(\phi(x)))$ against NM.

$$\mathsf{Adv}^{\mathrm{NM}}_{\mathcal{B}} \geq \mathsf{Adv}^{\mathrm{OW}}_{\mathcal{A}}/\mathsf{poly}(\lambda)$$

Lemma: \forall achievable Φ , Φ -NM \Rightarrow OW when f is poly-to-1.

Proof sketch: \mathcal{A} breaks OW $\Rightarrow \mathcal{B}$ breaks Φ -NM.

Setup: Given f and $y^* \leftarrow f(x^*)$ for $x^* \stackrel{\mathbb{R}}{\leftarrow} X$, $\mathcal{B} \hookrightarrow (f, y^*) \hookrightarrow \mathcal{A}$.

Attack: When \mathcal{A} outputs x against OW, \mathcal{B} picks $\phi \stackrel{\mathbb{R}}{\leftarrow} \Phi$, outputs $(\phi, f(\phi(x)))$ against NM.

$$\mathsf{Adv}^{\mathrm{NM}}_{\mathcal{B}} \geq \mathsf{Adv}^{\mathrm{OW}}_{\mathcal{A}}/\mathsf{poly}(\lambda)$$

The above reduction loses a factor of $1/\mathsf{poly}(\lambda)$. When f is injective, the reduction becomes tight.

Lemma: \forall achievable Φ , Φ -NM \Rightarrow OW when f is poly-to-1.

Proof sketch: \mathcal{A} breaks OW $\Rightarrow \mathcal{B}$ breaks Φ -NM.

Setup: Given f and $y^* \leftarrow f(x^*)$ for $x^* \stackrel{\mathbb{R}}{\leftarrow} X$, $\mathcal{B} \hookrightarrow (f, y^*) \hookrightarrow \mathcal{A}$.

Attack: When \mathcal{A} outputs x against OW, \mathcal{B} picks $\phi \stackrel{\mathbb{R}}{\leftarrow} \Phi$, outputs $(\phi, f(\phi(x)))$ against NM.

This lemma rigorously confirms the intuition that in common cases NM implies OW.

Lemma: OW $\Rightarrow \Phi_{\rm brs}^{\rm srs}$ -NM

Lemma: $OW \Rightarrow \Phi_{brs}^{srs} - NM$

Proof: start point — a one-way function $f: \{0,1\}^n \to \{0,1\}^m$

Lemma: OW $\Rightarrow \Phi_{brs}^{srs}$ -NM

Proof: start point — a one-way function $f: \{0,1\}^n \to \{0,1\}^m$ $f \to f'$: still OW but malleable w.r.t. $\Phi_{\text{brs}}^{\text{srs}}$

Lemma: OW $\Rightarrow \Phi_{\rm brs}^{\rm srs}$ -NM

Proof: start point — a one-way function $f: \{0,1\}^n \to \{0,1\}^m$ $f \to f'$: still OW but malleable w.r.t. $\Phi_{\mathrm{brs}}^{\mathrm{srs}}$ $\{0,1\}^{n+1} \to \{0,1\}^{m+1} \sim f'(x||\beta) := f(x)||\beta$

Lemma: OW $\Rightarrow \Phi_{\rm brs}^{\rm srs}$ -NM

Proof: start point — a one-way function $f:\{0,1\}^n \to \{0,1\}^m$ $f \to f'$: still OW but malleable w.r.t. $\Phi_{\mathrm{brs}}^{\mathrm{srs}}$ $\{0,1\}^{n+1} \to \{0,1\}^{m+1} \sim f'(x||\beta) := f(x)||\beta$

Claim 1: f' is OW (inherits OW from that of f)

Lemma: OW $\Rightarrow \Phi_{\rm brs}^{\rm srs}$ -NM

Proof: start point — a one-way function $f: \{0,1\}^n \to \{0,1\}^m$ $f \to f'$: still OW but malleable w.r.t. $\Phi_{\mathrm{brs}}^{\mathrm{srs}}$ $\{0,1\}^{n+1} \to \{0,1\}^{m+1} \sim f'(x||\beta) := f(x)||\beta$

Claim 1: f' is OW (inherits OW from that of f)

Claim 2: f' is $(\Phi^{xor} \setminus id)$ -malleable

Lemma: OW $\Rightarrow \Phi_{\rm brs}^{\rm srs}$ -NM

Proof: start point — a one-way function $f: \{0,1\}^n \to \{0,1\}^m$ $f \to f'$: still OW but malleable w.r.t. $\Phi_{\mathrm{brs}}^{\mathrm{srs}}$ $\{0,1\}^{n+1} \to \{0,1\}^{m+1} \sim f'(x||\beta) := f(x)||\beta$

Claim 1: f' is OW (inherits OW from that of f)

Claim 2: f' is $(\Phi^{xor} \setminus id)$ -malleable

Given f' and $y'^* \leftarrow f'(x'^*)$, \mathcal{A}' parses $y'^* = y^*||\beta^*$, sets $a = 0^n||1$, outputs ϕ_a and $y' = y^*||(\beta^* \oplus 1)$.

Lemma: OW $\Rightarrow \Phi_{\text{brs}}^{\text{srs}}$ -NM

Proof: start point — a one-way function $f: \{0,1\}^n \to \{0,1\}^m$ $f \to f'$: still OW but malleable w.r.t. $\Phi_{\rm brs}^{\rm srs}$

$$\{0,1\}^{n+1} \to \{0,1\}^{m+1} \sim f'(x||\beta) := f(x)||\beta|$$

Claim 1: f' is OW (inherits OW from that of f)

Claim 2: f' is $(\Phi^{xor} \setminus id)$ -malleable

Given f' and $y'^* \leftarrow f'(x'^*)$, \mathcal{A}' parses $y'^* = y^*||\beta^*$, sets $a = 0^n||1$, outputs ϕ_a and $y' = y^*||(\beta^* \oplus 1)$.

- $\phi_a \in \Phi^{xor} \setminus id \subset \Phi^{srs}_{brs};$
- $y' = f'(x^*||(\beta^* \oplus 1)) = f'(x^*||\beta^* \oplus 0^n||1) = f'(\phi_a(x'^*))$

Lemma: $OW \Rightarrow \Phi_{brs}^{srs}$ -NM

more simple and intuitive counterexample: homomorphic OWF

$$\forall x \in D : f(\phi(x)) = \phi(f(x)) \text{ e.g. } f(x) = g^x$$

Lemma: $OW \Rightarrow \Phi_{brs}^{srs}$ -NM

more simple and intuitive counterexample: homomorphic OWF

$$\forall x \in D : f(\phi(x)) = \phi(f(x)) \text{ e.g. } f(x) = g^x$$

• easily mall eable since $f(x^*) = y^*$ implies $f(\phi(x^*)) = \phi(y^*)$

Lemma: OW $\Rightarrow \Phi_{\rm brs}^{\rm srs}$ -NM

more simple and intuitive counterexample: homomorphic OWF

$$\forall x \in D : f(\phi(x)) = \phi(f(x)) \text{ e.g. } f(x) = g^x$$

- easily mall eable since $f(x^*) = y^*$ implies $f(\phi(x^*)) = \phi(y^*)$
- such counterexample usually requires number-theoretic assumptions

Lemma: OW $\Rightarrow \Phi_{\rm brs}^{\rm srs}$ -NM

more simple and intuitive counterexample: homomorphic OWF

$$\forall x \in D : f(\phi(x)) = \phi(f(x)) \text{ e.g. } f(x) = g^x$$

- easily mall eable since $f(x^*) = y^*$ implies $f(\phi(x^*)) = \phi(y^*)$
- such counterexample usually requires number-theoretic assumptions

functions with nice algebraic structure are unlikely to be non-malleable

${\bf Adaptive~Non\text{-}Malleability} \Rightarrow {\bf Adaptive~One\text{-}Wayness}$

Lemma: \forall achievable Φ , Φ -ANM \Rightarrow AOW when f is poly-to-1.

${\bf Adaptive~ Non\text{-}Malleability} \Rightarrow {\bf Adaptive~ One\text{-}Wayness}$

Lemma: \forall achievable Φ , Φ -ANM \Rightarrow AOW when f is poly-to-1.

The proof is similar to the non-adaptive setting.

$\mathbf{Adaptive} \ \mathbf{One\text{-}Wayness} \Rightarrow \mathbf{Adaptive} \ \mathbf{Non\text{-}Malleability}$

Lemma: AOW $\Rightarrow \Phi_{\text{brs}}^{\text{srs}}$ -ANM when f is injective.

Lemma: AOW $\Rightarrow \Phi_{\text{brs}}^{\text{srs}}$ -ANM when f is injective.

High level idea: \mathcal{A} against ANM $\Rightarrow \mathcal{B}$ against AOW

Lemma: AOW $\Rightarrow \Phi_{brs}^{srs}$ -ANM when f is injective.

High level idea: \mathcal{A} against ANM $\Rightarrow \mathcal{B}$ against AOW finding x^* appears harder than mauling its image

Lemma: $\overline{AOW} \Rightarrow \Phi_{brs}^{srs}$ -ANM when f is injective.

High level idea: \mathcal{A} against ANM $\Rightarrow \mathcal{B}$ against AOW finding x^* appears harder than mauling its image Technical hurdle: how to utilize \mathcal{A} 's power to break AOW

Lemma: AOW $\Rightarrow \Phi_{\text{brs}}^{\text{srs}}$ -ANM when f is injective.

• the challenge instance of OW already provides \mathcal{B} an equation about x^* , $f(x^*) = y^*$

Lemma: AOW $\Rightarrow \Phi_{\text{brs}}^{\text{srs}}$ -ANM when f is injective.

- the challenge instance of OW already provides \mathcal{B} an equation about x^* , $f(x^*) = y^*$
- \mathcal{A} 's solution (ϕ, y) against NM provides \mathcal{B} another equation about x^* , $f(\phi(x^*)) = y$

Lemma: AOW $\Rightarrow \Phi_{\text{brs}}^{\text{srs}}$ -ANM when f is injective.

- the challenge instance of OW already provides \mathcal{B} an equation about x^* , $f(x^*) = y^*$
- \mathcal{A} 's solution (ϕ, y) against NM provides \mathcal{B} another equation about x^* , $f(\phi(x^*)) = y$

 \odot these two equations are hard to solve due to the involvement of f, which unlikely has nice algebraic structure.

Lemma: AOW $\Rightarrow \Phi_{\text{brs}}^{\text{srs}}$ -ANM when f is injective.

© by utilizing the injectivity of f and \mathcal{O}_{inv} , \mathcal{B} can obtain a new solvable equation about x^* . (break \mathcal{A} 's solution into two cases)

Lemma: AOW $\Rightarrow \Phi_{\text{brs}}^{\text{srs}}$ -ANM when f is injective.

© by utilizing the injectivity of f and \mathcal{O}_{inv} , \mathcal{B} can obtain a new solvable equation about x^* . (break \mathcal{A} 's solution into two cases)

• $y = y^*$: injectivity of $f \Rightarrow \phi(x^*) = x^*$

Lemma: AOW $\Rightarrow \Phi_{\text{brs}}^{\text{srs}}$ -ANM when f is injective.

© by utilizing the injectivity of f and \mathcal{O}_{inv} , \mathcal{B} can obtain a new solvable equation about x^* . (break \mathcal{A} 's solution into two cases)

- $y = y^*$: injectivity of $f \Rightarrow \phi(x^*) = x^*$
- $y \neq y^*$: injectivity of $f + x \leftarrow \mathcal{O}_{\mathsf{inv}}(y) \Rightarrow \phi(x^*) = x$

Lemma: AOW $\Rightarrow \Phi_{\text{brs}}^{\text{srs}}$ -ANM when f is injective.

© by utilizing the injectivity of f and \mathcal{O}_{inv} , \mathcal{B} can obtain a new solvable equation about x^* . (break \mathcal{A} 's solution into two cases)

- $y = y^*$: injectivity of $f \Rightarrow \phi(x^*) = x^*$
- $y \neq y^*$: injectivity of $f + x \leftarrow \mathcal{O}_{\mathsf{inv}}(y) \Rightarrow \phi(x^*) = x$

In either case, \mathcal{B} can successfully

- confine x^* in a poly-bounded space (BRS property),
- 2 extract it with noticeable probability (SRS property).

Lemma: AOW $\Rightarrow \Phi_{\text{brs}}^{\text{srs}}$ -ANM when f is injective.

© by utilizing the injectivity of f and \mathcal{O}_{inv} , \mathcal{B} can obtain a new solvable equation about x^* . (break \mathcal{A} 's solution into two cases)

- $y = y^*$: injectivity of $f \Rightarrow \phi(x^*) = x^*$
- $y \neq y^*$: injectivity of $f + x \leftarrow \mathcal{O}_{inv}(y) \Rightarrow \phi(x^*) = x$

In either case, \mathcal{B} can successfully

- confine x^* in a poly-bounded space (BRS property),
- ② extract it with noticeable probability (SRS property).

Injectivity is necessary to guarantee \mathcal{B} obtains a correct equation.

Lemma: AOW $\Rightarrow \Phi_{\text{brs}}^{\text{srs}}$ -ANM when f is injective.

Proof sketch: \mathcal{A} against ANM $\Rightarrow \mathcal{B}$ against AOW

Lemma: AOW $\Rightarrow \Phi_{brs}^{srs}$ -ANM when f is injective.

Proof sketch: \mathcal{A} against ANM $\Rightarrow \mathcal{B}$ against AOW

Setup: Given f and $y^* \leftarrow f(x^*)$ for $x^* \stackrel{\mathbb{R}}{\leftarrow} X$, $\mathcal{B} \hookrightarrow (f, y^*) \hookrightarrow \mathcal{A}$.

Lemma: AOW $\Rightarrow \Phi_{\text{brs}}^{\text{srs}}$ -ANM when f is injective.

Proof sketch: \mathcal{A} against ANM $\Rightarrow \mathcal{B}$ against AOW

Setup: Given f and $y^* \leftarrow f(x^*)$ for $x^* \stackrel{\mathbb{R}}{\leftarrow} X$, $\mathcal{B} \hookrightarrow (f, y^*) \hookrightarrow \mathcal{A}$.

Attack: $\mathcal{A} \rightleftharpoons \mathcal{O}_{inv} \iff \mathcal{B} \rightleftharpoons \mathcal{CH}$. When \mathcal{A} outputs its solution

 (ϕ, y) against ANM, \mathcal{B} proceeds as follows:

Lemma: AOW $\Rightarrow \Phi_{\text{brs}}^{\text{srs}}$ -ANM when f is injective.

Proof sketch: \mathcal{A} against ANM $\Rightarrow \mathcal{B}$ against AOW

Setup: Given f and $y^* \leftarrow f(x^*)$ for $x^* \stackrel{\mathbb{R}}{\leftarrow} X$, $\mathcal{B} \hookrightarrow (f, y^*) \hookrightarrow \mathcal{A}$.

Attack: $\mathcal{A} \rightleftarrows \mathcal{O}_{\mathsf{inv}} \iff \mathcal{B} \rightleftarrows \mathcal{CH}$. When \mathcal{A} outputs its solution (ϕ, y) against ANM, \mathcal{B} proceeds as follows:

• $y = y^*$: \mathcal{B} runs $\mathsf{SampRS}(\phi')$ to output a random solution of $\phi'(\alpha) = 0$ where $\phi'(\alpha) = \phi(\alpha) - \alpha$.

Lemma: AOW $\Rightarrow \Phi_{\text{brs}}^{\text{srs}}$ -ANM when f is injective.

Proof sketch: \mathcal{A} against ANM $\Rightarrow \mathcal{B}$ against AOW

Setup: Given f and $y^* \leftarrow f(x^*)$ for $x^* \stackrel{\mathbb{R}}{\leftarrow} X$, $\mathcal{B} \hookrightarrow (f, y^*) \hookrightarrow \mathcal{A}$.

Attack: $\mathcal{A} \rightleftharpoons \mathcal{O}_{\mathsf{inv}} \iff \mathcal{B} \rightleftarrows \mathcal{CH}$. When \mathcal{A} outputs its solution (ϕ, y) against ANM, \mathcal{B} proceeds as follows:

- $y = y^*$: \mathcal{B} runs $\mathsf{SampRS}(\phi')$ to output a random solution of $\phi'(\alpha) = 0$ where $\phi'(\alpha) = \phi(\alpha) \alpha$.
- $y \neq y^*$: $\mathcal{B} \rightleftharpoons x \leftarrow \mathcal{O}_{\mathsf{inv}}(y)$, runs $\mathsf{SampRS}(\phi'')$ to output a random solution of $\phi''(\alpha) = 0$ where $\phi''(\alpha) = \phi(\alpha) x$.

Lemma: AOW $\Rightarrow \Phi_{\text{brs}}^{\text{srs}}$ -ANM when f is injective.

Proof sketch: \mathcal{A} against ANM $\Rightarrow \mathcal{B}$ against AOW

Setup: Given f and $y^* \leftarrow f(x^*)$ for $x^* \stackrel{\mathbb{R}}{\leftarrow} X$, $\mathcal{B} \hookrightarrow (f, y^*) \hookrightarrow \mathcal{A}$.

Attack: $\mathcal{A} \rightleftharpoons \mathcal{O}_{\mathsf{inv}} \iff \mathcal{B} \rightleftarrows \mathcal{CH}$. When \mathcal{A} outputs its solution (ϕ, y) against ANM, \mathcal{B} proceeds as follows:

- $y = y^*$: \mathcal{B} runs $\mathsf{SampRS}(\phi')$ to output a random solution of $\phi'(\alpha) = 0$ where $\phi'(\alpha) = \phi(\alpha) \alpha$.
- $y \neq y^*$: $\mathcal{B} \rightleftharpoons x \leftarrow \mathcal{O}_{\mathsf{inv}}(y)$, runs $\mathsf{SampRS}(\phi'')$ to output a random solution of $\phi''(\alpha) = 0$ where $\phi''(\alpha) = \phi(\alpha) x$.

If \mathcal{A} succeeds $(f(\phi(x^*)) = y)$, injectivity of $f \Rightarrow x^*$ is a root of ϕ' or ϕ'' . BRS & SRS \Rightarrow Pr[SampRS $(\phi', \phi'') = x^*$] = 1/poly (λ) .

Lemma: AOW $\Rightarrow \Phi_{\text{brs}}^{\text{srs}}$ -ANM when f is injective.

Proof sketch: \mathcal{A} against ANM $\Rightarrow \mathcal{B}$ against AOW

Setup: Given f and $y^* \leftarrow f(x^*)$ for $x^* \stackrel{\mathbb{R}}{\leftarrow} X$, $\mathcal{B} \hookrightarrow (f, y^*) \hookrightarrow \mathcal{A}$.

Attack: $\mathcal{A} \rightleftharpoons \mathcal{O}_{\mathsf{inv}} \iff \mathcal{B} \rightleftarrows \mathcal{CH}$. When \mathcal{A} outputs its solution (ϕ, y) against ANM, \mathcal{B} proceeds as follows:

- $y = y^*$: \mathcal{B} runs $\mathsf{SampRS}(\phi')$ to output a random solution of $\phi'(\alpha) = 0$ where $\phi'(\alpha) = \phi(\alpha) \alpha$.
- $y \neq y^*$: $\mathcal{B} \rightleftharpoons x \leftarrow \mathcal{O}_{\mathsf{inv}}(y)$, runs $\mathsf{SampRS}(\phi'')$ to output a random solution of $\phi''(\alpha) = 0$ where $\phi''(\alpha) = \phi(\alpha) x$.

If \mathcal{A} succeeds $(f(\phi(x^*)) = y)$, injectivity of $f \Rightarrow x^*$ is a root of ϕ' or ϕ'' . BRS & SRS \Rightarrow Pr[SampRS $(\phi', \phi'') = x^*$] = 1/poly (λ) .

Note: Here Pr is taken over SampRS but not $x^* \stackrel{\mathbb{R}}{\leftarrow} X$.

Lemma: AOW $\Rightarrow \Phi_{\text{brs}}^{\text{srs}}$ -ANM when f is injective.

Proof sketch: \mathcal{A} against ANM $\Rightarrow \mathcal{B}$ against AOW

Setup: Given f and $y^* \leftarrow f(x^*)$ for $x^* \stackrel{\mathbb{R}}{\leftarrow} X$, $\mathcal{B} \hookrightarrow (f, y^*) \hookrightarrow \mathcal{A}$.

Attack: $\mathcal{A} \rightleftharpoons \mathcal{O}_{\mathsf{inv}} \iff \mathcal{B} \rightleftarrows \mathcal{CH}$. When \mathcal{A} outputs its solution (ϕ, y) against ANM, \mathcal{B} proceeds as follows:

- $y = y^*$: \mathcal{B} runs $\mathsf{SampRS}(\phi')$ to output a random solution of $\phi'(\alpha) = 0$ where $\phi'(\alpha) = \phi(\alpha) \alpha$.
- $y \neq y^*$: $\mathcal{B} \rightleftharpoons x \leftarrow \mathcal{O}_{\mathsf{inv}}(y)$, runs $\mathsf{SampRS}(\phi'')$ to output a random solution of $\phi''(\alpha) = 0$ where $\phi''(\alpha) = \phi(\alpha) x$.

$$\mathsf{Adv}^{\mathrm{anm}}_{\mathcal{B}} \geq \mathsf{Adv}^{\mathrm{aow}}_{\mathcal{A}}/\mathsf{poly}(\lambda)$$

Lemma: AOW $\Rightarrow \Phi_{\text{brs}}^{\text{srs}}$ -ANM when f is injective.

Proof sketch: \mathcal{A} against ANM $\Rightarrow \mathcal{B}$ against AOW

Setup: Given f and $y^* \leftarrow f(x^*)$ for $x^* \stackrel{\mathbb{R}}{\leftarrow} X$, $\mathcal{B} \hookrightarrow (f, y^*) \hookrightarrow \mathcal{A}$.

Attack: $\mathcal{A} \rightleftharpoons \mathcal{O}_{\mathsf{inv}} \iff \mathcal{B} \rightleftarrows \mathcal{CH}$. When \mathcal{A} outputs its solution (ϕ, y) against ANM, \mathcal{B} proceeds as follows:

- $y = y^*$: \mathcal{B} runs $\mathsf{SampRS}(\phi')$ to output a random solution of $\phi'(\alpha) = 0$ where $\phi'(\alpha) = \phi(\alpha) \alpha$.
- $y \neq y^*$: $\mathcal{B} \rightleftharpoons x \leftarrow \mathcal{O}_{\mathsf{inv}}(y)$, runs $\mathsf{SampRS}(\phi'')$ to output a random solution of $\phi''(\alpha) = 0$ where $\phi''(\alpha) = \phi(\alpha) x$.

core technique of reduction — equation solving

- \bullet use \mathcal{A} 's NM solution to establish equation

Lemma: $\overline{NM} \Rightarrow \overline{ANM}$ for any Φ when f is poly-to-1.

Lemma: NM \Rightarrow ANM for any Φ when f is poly-to-1.

Anti-Intuition: \mathcal{O}_{inv} seems useless against NM

Lemma: NM \Rightarrow ANM for any Φ when f is poly-to-1.

Anti-Intuition: \mathcal{O}_{inv} seems useless against NM

 \mathcal{A} against ANM: given f and $y^* \leftarrow f(x^*)$, aims to output (ϕ, y) s.t. $f(\phi(x^*)) = y$ with the help of \mathcal{O}_{inv} . Since querying \mathcal{O}_{inv} at y^* is not allowed, the only strategy is:

Lemma: NM \Rightarrow ANM for any Φ when f is poly-to-1.

Anti-Intuition: \mathcal{O}_{inv} seems useless against NM

 \mathcal{A} against ANM: given f and $y^* \leftarrow f(x^*)$, aims to output (ϕ, y) s.t. $f(\phi(x^*)) = y$ with the help of $\mathcal{O}_{\mathsf{inv}}$. Since querying $\mathcal{O}_{\mathsf{inv}}$ at y^* is not allowed, the only strategy is:

pick $y \stackrel{\mathbb{R}}{\leftarrow} Y$; obtain $x \leftarrow \mathcal{O}_{\mathsf{inv}}(y)$; compute ϕ s.t. $\phi(x^*) = x$.

Lemma: NM \Rightarrow ANM for any Φ when f is poly-to-1.

Anti-Intuition: \mathcal{O}_{inv} seems useless against NM

 \mathcal{A} against ANM: given f and $y^* \leftarrow f(x^*)$, aims to output (ϕ, y) s.t. $f(\phi(x^*)) = y$ with the help of \mathcal{O}_{inv} . Since querying \mathcal{O}_{inv} at y^* is not allowed, the only strategy is:

pick $y \stackrel{\mathbb{R}}{\leftarrow} Y$; obtain $x \leftarrow \mathcal{O}_{\mathsf{inv}}(y)$; compute ϕ s.t. $\phi(x^*) = x$.

NM \Rightarrow OW when f is poly-to-1 $\Rightarrow x^*$ is computationally hidden $\Rightarrow \mathcal{A}$ fails!

Lemma: NM \Rightarrow ANM for any Φ when f is poly-to-1.

Anti-Intuition: \mathcal{O}_{inv} seems useless against NM

 \mathcal{A} against ANM: given f and $y^* \leftarrow f(x^*)$, aims to output (ϕ, y) s.t. $f(\phi(x^*)) = y$ with the help of \mathcal{O}_{inv} . Since querying \mathcal{O}_{inv} at y^* is not allowed, the only strategy is:

pick
$$y \stackrel{\mathbb{R}}{\leftarrow} Y$$
; obtain $x \leftarrow \mathcal{O}_{\mathsf{inv}}(y)$; compute ϕ s.t. $\phi(x^*) = x$.

NM \Rightarrow OW when f is poly-to-1 $\Rightarrow x^*$ is computationally hidden $\Rightarrow \mathcal{A}$ fails!

The intuition is deceptive: \mathcal{O}_{inv} always behaves benignly

$$\mathcal{O}_{\mathsf{inv}}(y) = \left\{ \begin{array}{ll} x & \text{ if } y \in \mathrm{Img}(f) \\ \bot & \text{ if } y \notin \mathrm{Img}(f) \end{array} \right.$$

Lemma: NM \Rightarrow ANM for any Φ when f is poly-to-1.

Anti-Intuition: \mathcal{O}_{inv} seems useless against NM

 \mathcal{A} against ANM: given f and $y^* \leftarrow f(x^*)$, aims to output (ϕ, y) s.t. $f(\phi(x^*)) = y$ with the help of \mathcal{O}_{inv} . Since querying \mathcal{O}_{inv} at y^* is not allowed, the only strategy is:

pick
$$y \stackrel{\mathbb{R}}{\leftarrow} Y$$
; obtain $x \leftarrow \mathcal{O}_{\mathsf{inv}}(y)$; compute ϕ s.t. $\phi(x^*) = x$.

NM \Rightarrow OW when f is poly-to-1 $\Rightarrow x^*$ is computationally hidden $\Rightarrow \mathcal{A}$ fails!

 \mathcal{O}_{inv} could behave wildly (align with the real TdInv).

$$\mathcal{O}_{\mathsf{inv}}(y) = \left\{ \begin{array}{ll} x & \text{if } y \in \mathrm{Img}(f) \\ td & \text{if } y \notin \mathrm{Img}(f) \end{array} \right.$$

and this will lead to a separation!

Lemma: NM \Rightarrow ANM for any Φ when f is poly-to-1.

Separation: f is NM $\rightarrow f'$ is still NM but not ANM.

Lemma: NM \Rightarrow ANM for any Φ when f is poly-to-1.

Separation: f is NM $\rightarrow f'$ is still NM but not ANM.

Idea: make $\mathcal{O}_{\mathsf{inv}}^{f'}$ dangerous. Let $f:\{0,1\}^n \to \{0,1\}^m$ be a trapdoor NMF, we build f' as below:

$$\begin{array}{ll} f'(x):&=0||f(x)\text{ strings with prefix '1' must be invalid}\\ f'.td:&=f.td\\ f'.\mathsf{TdInv}(y'):&=\left\{\begin{array}{ll} f.\mathsf{TdInv}(y) & \text{if } y'=0||y\\ td & \text{if } y'=1||y\end{array}\right. \end{array}$$

Lemma: NM \Rightarrow ANM for any Φ when f is poly-to-1.

Separation: f is NM $\rightarrow f'$ is still NM but not ANM.

Idea: make $\mathcal{O}_{\mathsf{inv}}^{f'}$ dangerous. Let $f: \{0,1\}^n \to \{0,1\}^m$ be a trapdoor NMF, we build f' as below:

$$\begin{array}{ll} f'(x):&=0||f(x)\text{ strings with prefix '1' must be invalid}\\ f'.td:&=f.td\\ f'.\mathsf{TdInv}(y'):&=\left\{\begin{array}{ll} f.\mathsf{TdInv}(y) & \text{if } y'=0||y\\ td & \text{if } y'=1||y\end{array}\right. \end{array}$$

Claim 1: f' inherits correctness and NM from that of f.

Lemma: NM \Rightarrow ANM for any Φ when f is poly-to-1.

Separation: f is NM $\rightarrow f'$ is still NM but not ANM.

Idea: make $\mathcal{O}_{\mathsf{inv}}^{f'}$ dangerous. Let $f: \{0,1\}^n \to \{0,1\}^m$ be a trapdoor NMF, we build f' as below:

$$\begin{array}{ll} f'(x):&=0||f(x)\text{ strings with prefix '1' must be invalid}\\ f'.td:&=f.td\\ f'.\mathsf{TdInv}(y'):&=\left\{\begin{array}{ll} f.\mathsf{TdInv}(y) & \text{if } y'=0||y\\ td & \text{if } y'=1||y\end{array}\right. \end{array}$$

Claim 1: f' inherits correctness and NM from that of f.

Claim 2: f' is not ANM w.r.t. any Φ .

 \mathcal{A} can obtain td by querying $\mathcal{O}_{\mathsf{inv}}^{f'}$ at $1||0^m$, then computes the right x^* with probability $1/\mathsf{poly}(\lambda)$ and breaks NM.

Lemma: NM \Rightarrow ANM for any Φ when f is poly-to-1.

Separation: f is NM $\rightarrow f'$ is still NM but not ANM.

Idea: make $\mathcal{O}_{\mathsf{inv}}^{f'}$ dangerous. Let $f: \{0,1\}^n \to \{0,1\}^m$ be a trapdoor NMF, we build f' as below:

$$\begin{array}{ll} f'(x):&=0||f(x)\text{ strings with prefix '1' must be invalid}\\ f'.td:&=f.td\\ f'.\mathsf{TdInv}(y'):&=\left\{\begin{array}{ll} f.\mathsf{TdInv}(y) & \text{if } y'=0||y\\ \textcolor{red}{td} & \text{if } y'=1||y \end{array}\right. \end{array}$$

This separation is similar in spirit to IND-CPA \Rightarrow IND-CCA1 in PKE setting.

NM ANM

OW AOW

A Short Summary

extend to the trapdoor functions \Rightarrow solve the open problem posed in [Kiltz, Mohassel, O'Neill, Eurocrypt 2010].

A Short Summary

extend to the trapdoor functions \Rightarrow solve the open problem posed in [Kiltz, Mohassel, O'Neill, Eurocrypt 2010].

A Short Summary

extend to the trapdoor functions \Rightarrow solve the open problem posed in [Kiltz, Mohassel, O'Neill, Eurocrypt 2010].

Hinted Notions

Hinted Notions

• OWF or NMF might be used in various different high-level protocols simultaneously.

Hinted Notions

- OWF or NMF might be used in various different high-level protocols simultaneously.
- \mathcal{A} may collect some auxiliary info about x^* hint of x^* probabilistic hint : $X \to \{0,1\}^{m(\lambda)}$ hinted notions
- hinted notion is generally more strong and useful.

Relations between hinted notions and hint-free notions

Relations between hinted notions and hint-free notions

hinted notions hint-free notions

hint-free notions

• statistically simulatable: with some noticeable $p(\lambda)$

$$(f, y^*, \mathcal{R}(f, y^*)) \approx_s (f, y^*, \mathsf{hint}(x^*))$$

• statistically simulatable: with some noticeable $p(\lambda)$

$$(f, y^*, \mathcal{R}(f, y^*)) \approx_s (f, y^*, \mathsf{hint}(x^*))$$

• computationally simulatable: with some noticeable $p(\lambda)$

$$(f, y^*, \mathcal{R}(f, y^*)) \approx_c (f, y^*, \mathsf{hint}(x^*))$$

based on the hint-free notions.

Examples of Simulatable Hint Functions

 $\mathsf{hint}: X \to \{0,1\}^{m(\lambda)}$

Examples of Simulatable Hint Functions

$$\mathsf{hint}: X \to \{0,1\}^{m(\lambda)}$$

• bounded output length, i.e., $m(\lambda) \leq O(\log(\lambda))$ \mathcal{R} can always output a right $\mathsf{hint}(x^*)$ by making a random guess $\Rightarrow 1/\mathsf{poly}(\lambda)$ -perfectly simulatable.

Examples of Simulatable Hint Functions

$$\mathsf{hint}: X \to \{0,1\}^{m(\lambda)}$$

- bounded output length, i.e., $m(\lambda) \leq O(\log(\lambda))$ \mathcal{R} can always output a right $\mathsf{hint}(x^*)$ by making a random guess $\Rightarrow 1/\mathsf{poly}(\lambda)$ -perfectly simulatable.
- beyond the bound $O(\log(\lambda))$ Let f be a OWF $X \to Y$, h be its hardcore function from $X \to \{0,1\}^{m(\lambda)}$.

$$\mathsf{hint}(x;b) = \left\{ \begin{array}{ll} h(x) & \text{if } b = 0 \\ r \xleftarrow{\mathbb{R}} \{0,1\}^{m(\lambda)} & \text{if } b = 1 \end{array} \right.$$

now $m(\lambda)$ is possibly beyond $O(\log(\lambda))$. OW $\Rightarrow h(x^*) \approx_c U_{m(\lambda)} \Rightarrow \operatorname{hint}(x^*; b) \approx_c U_{m(\lambda)} \Rightarrow$ 1-computationally simulatable application

Outline

- 1 Backgrounds
- 2 NMFs: Syntax and Definition
- 3 Relations among OW and NM
- 4 Constructions of NMFs
- 6 Applications of NMFs

Random oracle model

Random oracle model

Figure: The Merkle-Damgåd Transformation

By modeling the compression function h as a random oracle, we show that the MD is $\Phi_{\rm brs}^{\rm srs}$ -NM.

Random oracle model

Figure: The Merkle-Damgåd Transformation

By modeling the compression function h as a random oracle, we show that the MD is $\Phi_{\text{brs}}^{\text{srs}}$ -NM.

- improve previous result [BFS, CT-RSA 2011]: Φ^{xor} -NM.
- provide us a practical candidate of NMFs.

Outline

- 1 Backgrounds
- 2 NMFs: Syntax and Definition
- 3 Relations among OW and NM
- 4 Constructions of NMFs
- **6** Applications of NMFs

Security against related-key attacks is called RKA-security.

RKA-security model for PKE and Copy-attacks

RKA-security w.r.t. RKD class $\Phi = \{\phi : SK \to SK\}$

RKA-security w.r.t. RKD class $\Phi = \{\phi : SK \to SK\}$

• trivial: must be forbidden to avoid trivial definition

- trivial: must be forbidden to avoid trivial definition
- non-trivial: practical \Rightarrow strong definition

- trivial: must be forbidden to avoid trivial definition
- non-trivial: practical \Rightarrow strong definition
 - directly reject ([Wee, PKC 2012]) \Rightarrow weak RKA-security

- trivial: must be forbidden to avoid trivial definition
- non-trivial: practical \Rightarrow strong definition
 - directly reject ([Wee, PKC 2012]) \Rightarrow weak RKA-security
 - rule out ([Bellare and Cash, Crypto 2010]) $\Rightarrow \Phi$ is claw-free

- trivial: must be forbidden to avoid trivial definition
- non-trivial: practical \Rightarrow strong definition
 - directly reject ([Wee, PKC 2012]) \Rightarrow weak RKA-security
 - rule out ([Bellare and Cash, Crypto 2010]) \Rightarrow Φ is claw-free
 - specific property ([Abdalla et al., Crypto 2014]) \Rightarrow tie to scheme algebra \Rightarrow Φ unlike to be general

• Our NM notion is defined via RKA-like framework

- Our NM notion is defined via RKA-like framework
- strengthening allowing $\phi(x^*) = x^*$ somehow resembles non-trivial copy attacks

- Our NM notion is defined via RKA-like framework
- strengthening allowing $\phi(x^*) = x^*$ somehow resembles non-trivial copy attacks

Q: Does previous result shed light?

- Our NM notion is defined via RKA-like framework
- strengthening allowing $\phi(x^*) = x^*$ somehow resembles non-trivial copy attacks

Q: Does previous result shed light?

A: Yes! $\underline{\text{AOW}} \Rightarrow \Phi_{\text{brs}}^{\text{srs}} - \underline{\text{ANM}}$ indicates that $\phi \in \Phi_{\text{brs}}^{\text{srs}}$ s.t. $\phi(x^*) = x^*$ possibly exists but hard to find assuming AOW.

- Our NM notion is defined via RKA-like framework
- strengthening allowing $\phi(x^*) = x^*$ somehow resembles non-trivial copy attacks

Q: Does previous result shed light?

A: Yes! $\underline{AOW} \Rightarrow \Phi_{\text{brs}}^{\text{srs}} - \underline{ANM}$ indicates that $\phi \in \Phi_{\text{brs}}^{\text{srs}}$ s.t. $\phi(x^*) = x^*$ possibly exists but hard to find assuming AOW.

- Our NM notion is defined via RKA-like framework
- strengthening allowing $\phi(x^*) = x^*$ somehow resembles non-trivial copy attacks

Q: Does previous result shed light?

A: Yes! $\underline{AOW} \Rightarrow \Phi_{\text{brs}}^{\text{srs}} - \underline{ANM}$ indicates that $\phi \in \Phi_{\text{brs}}^{\text{srs}}$ s.t. $\phi(x^*) = \overline{x^*}$ possibly exists but hard to find assuming AOW.

- Our NM notion is defined via RKA-like framework
- strengthening allowing $\phi(x^*) = x^*$ somehow resembles non-trivial copy attacks

Q: Does previous result shed light?

A: Yes! $\underline{AOW} \Rightarrow \Phi_{\text{brs}}^{\text{srs}} - \underline{ANM}$ indicates that $\phi \in \Phi_{\text{brs}}^{\text{srs}}$ s.t. $\phi(x^*) = \overline{x^*}$ possibly exists but hard to find assuming AOW.

- Our NM notion is defined via RKA-like framework
- strengthening allowing $\phi(x^*) = x^*$ somehow resembles non-trivial copy attacks

Q: Does previous result shed light?

A: Yes! $\underline{AOW} \Rightarrow \Phi_{\text{brs}}^{\text{srs}} - \underline{ANM}$ indicates that $\phi \in \Phi_{\text{brs}}^{\text{srs}}$ s.t. $\phi(x^*) = x^*$ possibly exists but hard to find assuming AOW.

- Our NM notion is defined via RKA-like framework
- strengthening allowing $\phi(x^*) = x^*$ somehow resembles non-trivial copy attacks

Q: Does previous result shed light?

A: Yes! $\underline{AOW} \Rightarrow \Phi_{\text{brs}}^{\text{srs}} - \underline{ANM}$ indicates that $\phi \in \Phi_{\text{brs}}^{\text{srs}}$ s.t. $\phi(x^*) = x^*$ possibly exists but hard to find assuming AOW.

• w.r.t. Φ_{brs}^{srs} resilience against non-trivial copy-attacks is a built-in property guaranteed by standard security.

$$\mathsf{Setup}(\lambda) \to pp$$

$$\begin{aligned} \mathsf{Setup}(\lambda) &\to pp \\ \downarrow \\ \mathsf{Sample}(pp) &\to (s,t) \end{aligned}$$

$$\begin{array}{c} \mathsf{Setup}(\lambda) \to pp \\ \downarrow \\ \mathsf{Sample}(pp) \to (s,t) \\ \downarrow \\ \mathsf{Derive}(s,t) \to k \text{ or } \bot \end{array}$$

[Qin et al. PKC 2015] extended NM KDFs [Faust et al. Eurocrypt 2014] to continuously NM KDFs, which we call RKA-secure Authenticated KDFs.

$$\begin{array}{c} \mathsf{Setup}(\lambda) \to pp \\ \downarrow \\ \mathsf{Sample}(pp) \to (s,t) \\ \downarrow \\ \mathsf{Derive}(s,t) \to k \text{ or } \bot \end{array}$$

RKA-security: For all PPT \mathcal{A} , we have:

$$\Pr \begin{bmatrix} pp \leftarrow \mathsf{Setup}(\lambda), (s^*, t^*) \leftarrow \mathsf{Sample}(pp); \\ b^* \leftarrow \mathsf{Derive}(s^*, t^*), k_1^* \xleftarrow{\mathbb{R}} \{0, 1\}^m; \\ b \xleftarrow{\mathbb{R}} \{0, 1\}, b' \leftarrow \mathcal{A}^{\mathcal{O}^\Phi_{\mathsf{dev}}(\cdot, \cdot)}(pp, t^*, k_b^*); \end{bmatrix} - \frac{1}{2} = \mathsf{negl}(\lambda).$$

 $\mathcal{O}_{\mathsf{dev}}^{\Phi}(\phi,t)$ returns same* if $\underline{\phi(s^*) = s^*}$ and $t = t^*$, and returns $\mathsf{Derive}(\phi(s^*),t)$ otherwise.

Efficiency

- large public parameters size: $pp = pp_1 + pp_2 + pp_3$
- slow tagging & large tag size: randomized tag generation

Efficiency

- large public parameters size: $pp = pp_1 + pp_2 + pp_3$
- \bullet slow tagging & large tag size: randomized tag generation

Security

- non-trivial copy attack is not allowed.
- $\Phi^{\mathsf{poly}(d)}$ is large but still specific.

Efficiency

- large public parameters size: $pp = pp_1 + pp_2 + pp_3$
- \bullet slow tagging & large tag size: randomized tag generation

Security

- non-trivial copy attack is not allowed.
- $\Phi^{\mathsf{poly}(d)}$ is large but still specific.

We expect...

High Efficiency

- compact public parameters
- \bullet quick tag generation & short tag size

High Efficiency

- compact public parameters
- quick tag generation & short tag size

Strong RKA-security

- capture non-trivial copy attacks
- \bullet Φ is large and general

Technical hurdle: simulate RKA oracle

Technical hurdle: simulate RKA oracle

Typical approach: exploit so called Φ -key-malleability

$$\underline{\mathsf{F}'(\phi(sk),c)=\mathsf{F}(sk,\mathsf{T}(\phi,c))}$$

Technical hurdle: simulate RKA oracle

Typical approach: exploit so called Φ -key-malleability

Technical hurdle: simulate RKA oracle

Typical approach: exploit so called Φ -key-mall eability

- We do not have the underlying primitive.
- Φ -key-malleability requires nice algebra property, e.g. homomorphism $\Rightarrow \Phi$ cannot be general

Our Construction

Core idea: acquire RKA-security from Non-Malleability

Our Construction

Core idea: acquire RKA-security from Non-Malleability

Our Construction

Core idea: acquire RKA-security from Non-Malleability

Our Construction

Core idea: acquire RKA-security from Non-Malleability

Our Construction

Core idea: acquire RKA-security from Non-Malleability

- Setup(λ): pp = (f, h).
- $\bullet \ \mathsf{Sample}(pp) \!\!:\: s \xleftarrow{\scriptscriptstyle{\mathbf{R}}} X, \, t \leftarrow f(s).$

Our Construction

Core idea: acquire RKA-security from Non-Malleability

- Setup(λ): pp = (f, h).
- Sample(pp): $s \stackrel{\text{R}}{\leftarrow} X$, $t \leftarrow f(s)$.
- Derive(s, t): h(s) if t = f(s) or \perp otherwise.

If f is Φ -non-malleable, AKDF is $\Phi \cup \mathsf{id} \cup \mathsf{cf}$ -RKA-secure.

If f is Φ -non-malleable, AKDF is $\Phi \cup \mathsf{id} \cup \mathsf{cf}\text{-RKA-secure}$.

Proof (high level idea): (1) NM \Rightarrow rejecting all RKA queries; (2) OW \Rightarrow derived key is pseudorandom

If f is Φ -non-malleable, AKDF is $\Phi \cup id \cup cf$ -RKA-secure.

Proof (high level idea): (1) NM \Rightarrow rejecting all RKA queries; (2) OW \Rightarrow derived key is pseudorandom

Game 0 (the real experiment) \mathcal{CH} runs $\mathsf{Setup}(\lambda) \to (f,h)$, $\mathsf{Sample}(f,h) \to (s^*,t^*)$, computes $k_0^* \leftarrow h(s^*)$, $k_1^* \overset{\mathsf{R}}{\leftarrow} K$, picks $b \overset{\mathsf{R}}{\leftarrow} \{0,1\}$, sends (f,h,t^*,k_b^*) .

- $\phi = id \wedge t = t^*$: return same* indicating illegal.
- $\phi = id \land t \neq t^*$: return \bot indicating invalid. (f is deterministic thus tag is unique).
- $\phi = \mathsf{cf} \text{ and } t : \mathsf{return} \ h(c) \text{ if } f(c) = t \text{ and } \bot \text{ else.}$
- \bullet $\phi \notin \operatorname{id} \cup \operatorname{cf}$ and t: return $h(\phi(s^*))$ if $t = f(\phi(s^*))$ and \bot else.

If f is Φ -non-malleable, AKDF is $\Phi \cup id \cup cf$ -RKA-secure.

Proof (high level idea): (1) NM \Rightarrow rejecting all RKA queries; (2) OW \Rightarrow derived key is pseudorandom

Game 0 (the real experiment) \mathcal{CH} runs $\mathsf{Setup}(\lambda) \to (f,h)$, $\mathsf{Sample}(f,h) \to (s^*,t^*)$, computes $k_0^* \leftarrow h(s^*)$, $k_1^* \overset{\mathsf{R}}{\leftarrow} K$, picks $b \overset{\mathsf{R}}{\leftarrow} \{0,1\}$, sends (f,h,t^*,k_b^*) .

- $\phi = id \wedge t = t^*$: return same* indicating illegal.
- $\phi = id \land t \neq t^*$: return \bot indicating invalid. (f is deterministic thus tag is unique).
- $\phi = \mathsf{cf} \text{ and } t : \mathsf{return} \ h(c) \text{ if } f(c) = t \text{ and } \bot \text{ else.}$
- $\bullet \phi \notin \mathsf{id} \cup \mathsf{cf} \text{ and } t$: return $h(\phi(s^*))$ if $t = f(\phi(s^*))$ and \bot else.

Game 1 (handle type-4 queries without s^*) directly return \perp .

If f is Φ -non-malleable, AKDF is $\Phi \cup id \cup cf$ -RKA-secure.

Claim 1: NM of
$$f \Rightarrow |\mathsf{Adv}_{\mathcal{A}}^{\mathsf{Game 1}}(\lambda) - \mathsf{Adv}_{\mathcal{A}}^{\mathsf{Game 0}}(\lambda)| = \mathsf{negl}(\lambda)$$

If f is Φ -non-malleable, AKDF is $\Phi \cup id \cup cf$ -RKA-secure.

Claim 1: NM of $f \Rightarrow |\mathsf{Adv}_{\mathcal{A}}^{\mathsf{Game 1}}(\lambda) - \mathsf{Adv}_{\mathcal{A}}^{\mathsf{Game 0}}(\lambda)| = \mathsf{negl}(\lambda)$

Define $E \longrightarrow \mathcal{A}$ issues $\langle \phi, t \rangle$ such that $f(\phi(s^*)) = t$ in Game 1.

Game 0 and Game 1 are identical if E never happens.

If f is Φ -non-malleable, AKDF is $\Phi \cup id \cup cf$ -RKA-secure.

Claim 1: NM of $f \Rightarrow |\mathsf{Adv}_{\mathcal{A}}^{\mathsf{Game 1}}(\lambda) - \mathsf{Adv}_{\mathcal{A}}^{\mathsf{Game 0}}(\lambda)| = \mathsf{negl}(\lambda)$

Define $E \longrightarrow \mathcal{A}$ issues $\langle \phi, t \rangle$ such that $f(\phi(s^*)) = t$ in Game 1.

Game 0 and Game 1 are identical if E never happens.

 $f \text{ is NM} \Rightarrow \Pr[E] = \mathsf{negl}(\lambda) \Rightarrow \text{Game } 0 \approx_c \text{Game } 1$

If f is Φ -non-malleable, AKDF is $\Phi \cup id \cup cf$ -RKA-secure.

Claim 1: NM of
$$f \Rightarrow |\mathsf{Adv}_{\mathcal{A}}^{\mathsf{Game 1}}(\lambda) - \mathsf{Adv}_{\mathcal{A}}^{\mathsf{Game 0}}(\lambda)| = \mathsf{negl}(\lambda)$$

Define $E \longrightarrow \mathcal{A}$ issues $\langle \phi, t \rangle$ such that $f(\phi(s^*)) = t$ in Game 1. Game 0 and Game 1 are identical if E never happens.

$$f \text{ is NM} \Rightarrow \Pr[E] = \mathsf{negl}(\lambda) \Rightarrow \text{Game } 0 \approx_c \text{Game } 1$$

Note: NM is insufficient — except (pp, t^*) , \mathcal{A} gets to see

$$k_b^* = \mathsf{hint}(s^*; b) = \left\{ \begin{array}{ll} k^* = h(s^*) & \text{ if } b = 0 \\ k^* \xleftarrow{\mathsf{R}} K & \text{ if } b = 1 \end{array} \right.$$

If f is Φ -non-malleable, AKDF is $\Phi \cup id \cup cf$ -RKA-secure.

Claim 1: NM of
$$f \Rightarrow |\mathsf{Adv}_{\mathcal{A}}^{\mathsf{Game 1}}(\lambda) - \mathsf{Adv}_{\mathcal{A}}^{\mathsf{Game 0}}(\lambda)| = \mathsf{negl}(\lambda)$$

Define $E \longrightarrow \mathcal{A}$ issues $\langle \phi, t \rangle$ such that $f(\phi(s^*)) = t$ in Game 1. Game 0 and Game 1 are identical if E never happens.

$$f \text{ is NM} \Rightarrow \Pr[E] = \mathsf{negl}(\lambda) \Rightarrow \text{Game } 0 \approx_c \text{Game } 1$$

Note: NM is insufficient — except (pp, t^*) , \mathcal{A} gets to see

$$k_b^* = \mathsf{hint}(s^*; b) = \left\{ \begin{array}{ll} k^* = h(s^*) & \text{ if } b = 0 \\ k^* \xleftarrow{\mathsf{R}} K & \text{ if } b = 1 \end{array} \right.$$

hinted NM is required! ► luckily hint-free NM ⇒ hinted NM ©

If f is Φ -non-malleable, AKDF is $\Phi \cup id \cup cf$ -RKA-secure.

Claim 1: NM of
$$f \Rightarrow |\mathsf{Adv}_{\mathcal{A}}^{\mathsf{Game 1}}(\lambda) - \mathsf{Adv}_{\mathcal{A}}^{\mathsf{Game 0}}(\lambda)| = \mathsf{negl}(\lambda)$$

Define $E \longrightarrow \mathcal{A}$ issues $\langle \phi, t \rangle$ such that $f(\phi(s^*)) = t$ in Game 1. Game 0 and Game 1 are identical if E never happens.

$$f \text{ is NM} \Rightarrow \Pr[E] = \mathsf{negl}(\lambda) \Rightarrow \text{Game } 0 \approx_c \text{Game } 1$$

Note: NM is insufficient — except (pp, t^*) , \mathcal{A} gets to see

$$k_b^* = \mathsf{hint}(s^*; b) = \left\{ \begin{array}{ll} k^* = h(s^*) & \text{ if } b = 0 \\ k^* \xleftarrow{\mathbb{R}} K & \text{ if } b = 1 \end{array} \right.$$

hinted NM is required! ▶ luckily hint-free NM ⇒ hinted NM

Claim 2: f is NM and poly-to-1 \Rightarrow Adv_A^{Game 1}(λ) = negl(λ).

If f is Φ -non-malleable, AKDF is $\Phi \cup id \cup cf$ -RKA-secure.

Claim 1: NM of
$$f \Rightarrow |\mathsf{Adv}_{\mathcal{A}}^{\mathsf{Game 1}}(\lambda) - \mathsf{Adv}_{\mathcal{A}}^{\mathsf{Game 0}}(\lambda)| = \mathsf{negl}(\lambda)$$

Define $E \longrightarrow \mathcal{A}$ issues $\langle \phi, t \rangle$ such that $f(\phi(s^*)) = t$ in Game 1. Game 0 and Game 1 are identical if E never happens.

$$f \text{ is NM} \Rightarrow \Pr[E] = \mathsf{negl}(\lambda) \Rightarrow \text{Game } 0 \approx_c \text{Game } 1$$

Note: NM is insufficient — except (pp, t^*) , \mathcal{A} gets to see

$$k_b^* = \mathsf{hint}(s^*; b) = \left\{ \begin{array}{ll} k^* = h(s^*) & \text{if } b = 0 \\ k^* \xleftarrow{\mathsf{R}} K & \text{if } b = 1 \end{array} \right.$$

hinted NM is required! ▶ luckily hint-free NM ⇒ hinted NM

Claim 2:
$$f$$
 is NM and poly-to-1 $\Rightarrow \mathsf{Adv}^{\mathsf{Game\ 1}}_{\mathcal{A}}(\lambda) = \mathsf{negl}(\lambda)$.

f is NM and poly-to-1 $\Rightarrow f$ is OW $\Rightarrow k_0^* \approx_c k_1^*$

Better efficiency

- compact public parameters
- short tag size and quick tag generation and verification

Better efficiency

- compact public parameters
- short tag size and quick tag generation and verification

Strong RKA-Security

- \bullet strong NM \Rightarrow secure against non-trivial copy attacks
- $\Phi_{\mathrm{brs}}^{\mathrm{srs}}$ -NM $f \Rightarrow \Phi_{\mathrm{brs}}^{\mathrm{srs}} \cup \mathsf{id} \cup \mathsf{cf}$ is large yet general

Better efficiency

- compact public parameters
- short tag size and quick tag generation and verification

Strong RKA-Security

- strong NM \Rightarrow secure against non-trivial copy attacks
- $\Phi_{\mathrm{brs}}^{\mathrm{srs}}$ -NM $f \Rightarrow \Phi_{\mathrm{brs}}^{\mathrm{srs}} \cup \mathsf{id} \cup \mathsf{cf}$ is large yet general

Optimizations

- NM functions ⇒ NM relations typically more efficient
- $h = \mathsf{GL} \Rightarrow |k| = 1$, obtain multiple hardcore bits by:
 - \bullet f is OWP iteration
 - 2 rely on decisional assumptions
 - opoly-many hardcore bits from differing-input obfuscation
 - apply PRG at the end

Conclusion

- a formal study of NMFs
 - with simplified syntax
 - a strong game-based security definition
- connections between (A)NM and (A)OW
 - w.r.t. our algebraic abstraction of Φ
- relations between hint-free v.s. hinted notions
- efficient constructions of NMFs
 - (in)directly via the implication $AOW \Rightarrow ANM$
- address non-trivial copy attacks in RKA area
 - leverage the algebraic technique used in AOW \Rightarrow ANM
- elegant construction of RKA-secure authenticated KDFs
 - via a simple twist of NMFs

Future Works

- direct construction of NMFs
- \bullet new construction of NMFs w.r.t. $\Phi \supset \Phi_{\rm brs}^{\rm srs}$
- new interesting applications
- connections to other primitives, e.g., non-malleable codes, non-malleable extractors

Any Questions?

Thanks for listening!