EXERCICE: Etude d'une lunette de Galilée:

 $(\approx 36 \, pts)$

Q1. Un système afocal est tel que le foyer image de la 1ère lentille soit confondu avec le foyer objet de la 2^{nde} . Alors $\overline{F'_1 = F_2}$; Soit $\overline{F'_1 F_2} = 0$.

D'après la relation de Chasles, on a : $\overline{O_1O_2} = \overline{O_1F'_1} + \overline{F'_1F_2} + \overline{F_2O_2}$.

Or
$$\overline{O_1F'_1} = f'_1 = \frac{1}{v_1}$$
 et $\overline{F_2O_2} = \overline{O_2F'_2} = f'_2 = \frac{1}{v_2}$.

Il vient donc : $\overline{O_1O_2} = \frac{1}{v_1} + \frac{1}{v_2}$.

AN: ATTENTION : La lentille (L_2) est divergente, donc $V_2 = -50 \ \delta$.

$$\overline{O_1O_2} = \frac{1}{1.33} + \frac{1}{-50}$$
; On obtient : $\overline{O_1O_2} \approx 0.73 \text{ m} \approx 73 \text{ cm}$.

Q2. On cherche la position de l'image de O_1 à travers la lentille (L_2) .

Relation de Descartes à
$$(L_2)$$
: $\frac{1}{\overline{o_2o_1'}} - \frac{1}{\overline{o_2o_1}} = \frac{1}{f_2'} = V_2$
Soit $\frac{1}{\overline{o_2o_1'}} = \frac{1}{\overline{o_2o_1}} + V_2 = \frac{1+V_2\overline{o_2o_1}}{\overline{o_2o_1}}$; Ainsi $\overline{\boldsymbol{v}_2\boldsymbol{o}_1'} = \frac{\overline{o_2o_1}}{1+V_2\overline{o_2o_1}}$.

<u>AN</u>: $\overline{O_2O_1'} = -0.731/(1 + 50 \times 0.73)$; On obtient : $\overline{O_2O_1'} \approx -0.0195 \text{ m} \approx -1.95 \text{ cm}$.

Cette image est donc virtuelle pour la lentille (L_2) : On ne peut donc pas y placer l'œil.

 \blacksquare On cherche aussi la dimension de l'image. Formule du grandissement transversal : $G_t = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA'}}$

Ici, il vient :
$$\frac{D_1'}{D_1} = \left| \frac{\overline{O_2 O_1'}}{\overline{O_2 O_1}} \right|$$
; Soit : $\boxed{D_1' = D_1 \left| \frac{\overline{O_2 O_1'}}{\overline{O_2 O_1}} \right|}$.

AN : $D_1' = 10 \frac{1.95}{73}$; On obtient : $\underline{D_1'} \approx 0.27 \text{ cm} \approx 2.7 \text{ mm}$.

Q3.a. Sur le schéma : $f'_1 = 75$ cm ; $f'_2 = -2$ cm ; $\overline{O_1O_2} = 73$ cm. Donc le foyer image de (L_1) confondu avec le foyer objet de (L_2) est à droite de (L_2) ; Cohérent puisque (L_2) est divergente.

On notera A_1B_1 l'image intermédiaire à travers (L_1) et A'B' l'image définitive.

Il est judicieux de tracer le rayon initial passant par O_1 (avec un angle α) qui n'est pas dévié et son parallèle passant par F_1 qui émerge de (L_1) en étant parallèle à l'axe optique. Et comme il est parallèle à l'axe optique avant (L_2) , il sort du système optique en passant par F'_2 (son prolongement).

Par construction de la lunette (objet à l'infini), l'image intermédiaire A_1B_1 se trouve dans le plan focal image de (L_1) et donc aussi dans le plan focal objet de (L_2) . On a donc $A_1 = F'_1 = F_2$; Ces 3 points sont confondus.

Et toujours par construction, l'image définitive est à l'infini, donc les rayons émergent parallèles entre eux (avec un angle α').

Q3.b. On cherche l'expression de $G = \frac{\alpha'}{\alpha}$.

Dans l'approximation de Gauss, les angles sont petits, ainsi :

$$\tan(\alpha) \approx \alpha = \frac{\overline{A_1 B_1}}{\overline{O_1 F_{I_1}}} = \frac{\overline{A_1 B_1}}{f_{I_1}} = V_1 \times \overline{A_1 B_1} \qquad (\alpha < 0 \text{ et } \overline{A_1 B_1} < 0)$$
Et
$$\tan(\alpha') \approx \alpha' = \frac{\overline{A_1 B_1}}{\overline{F_{I_2} O_2}} = \frac{\overline{A_1 B_1}}{-\overline{O_2 F_{I_2}}} = -\frac{\overline{A_1 B_1}}{f_{I_2}} = -V_2 \times \overline{A_1 B_1} \qquad (\alpha' < 0)$$

Et
$$tan(\alpha') \approx \alpha' = \frac{\overline{A_1 B_1}}{\overline{F_{12} O_2}} = \frac{\overline{A_1 B_1}}{-\overline{O_2 F_{12}}} = -\frac{\overline{A_1 B_1}}{f_{12}} = -V_2 \times \overline{A_1 B_1}$$
 $(\alpha' < 0)$

D'où
$$G = \frac{\alpha'}{\alpha} = -\frac{f'_1}{f'_2} = -\frac{V_2}{V_1}$$
;

D'où
$$G = \frac{\alpha'}{\alpha} = -\frac{f'_1}{f'_2} = -\frac{V_2}{V_1}$$
;
AN: $G = -\frac{-50}{1,33}$; On obtient: $G \approx 37, 6$.

Q4. Question plus difficile !!

Soit
$$\overline{A_2B_2}$$
 l'image de \overline{AB} à travers l'objectif et $\overline{A''B''}$ l'image de $\overline{A_2B_2}$ à

AB

Obj

Ocu

 $A''B''$

travers l'oculaire.

On nous précise que l'œil est à 1,5 cm derrière (L_2) et qu'il voit une image située à $d_m = 25$ cm.

Alors
$$\overline{O_2A''} = 1, 5 - 25 = -23, 5$$
 cm.

<u>Méthode</u>: En appliquant la relation de Descartes à (L_2) , on va obtenir $\overline{O_2A_2}$.

Puis on va utiliser une relation de Chasles pour obtenir $\overline{O_1A_2}$ et enfin une relation de Descartes à (L_1) pour obtenir $\overline{O_1A}$ que l'on cherche.

Relation de Descartes à
$$(L_2)$$
: $\frac{1}{\overline{O_2 A^n}} - \frac{1}{\overline{O_2 A_2}} = V_2$.
Soit $\frac{1}{\overline{O_2 A_2}} = \frac{1}{\overline{O_2 A^n}} - V_2 = \frac{1 - V_2}{\overline{O_2 A^n}} \frac{\overline{O_2 A^n}}{\overline{O_2 A^n}}$ et $\boxed{\boldsymbol{O_2 A_2}} = \frac{\overline{O_2 A^n}}{1 - V_2} \frac{\overline{O_2 A^n}}{\overline{O_2 A^n}}$.
AN: $\overline{O_2 A_2} = \frac{-0.235}{1 - (-50) \times (-0.235)}$. On obtient: $\boxed{\boldsymbol{O_2 A_2}} \approx +\mathbf{0.0219} \ \mathbf{m} \approx \mathbf{2.19} \ \mathbf{cm}$.

$$\underline{AN}$$
: $\overline{O_2A_2} = \frac{-0.235}{1-(-5.0)\times(-0.235)}$. On obtient: $\underline{\overline{O_2A_2}} \approx +0.0219 \text{ m} \approx 2.19 \text{ cm}$.

Relation de Chasles : $\overline{O_1 A_2} = \overline{O_1 O_2} + \overline{O_2 A_2}$. AN : $\overline{O_1 A_2} = 73 + 2,19$; On obtient : $\overline{O_1 A_2} \approx 75,19$ cm.

Relation de Descartes à
$$(L_1)$$
: $\frac{1}{\overline{o_1 A_2}} - \frac{1}{\overline{o_1 A}} = \frac{1}{f'_1} = V_1$
Soit : $\frac{1}{\overline{o_1 A}} = \frac{1}{\overline{o_1 A_2}} - V_1 = \frac{1 - V_1}{\overline{o_1 A_2}}$ et $\boxed{\boldsymbol{o_1 A}} = \frac{\overline{o_1 A_2}}{1 - V_1 \overline{o_1 A_2}}$.
 \underline{AN} : $\overline{O_1 A} = \frac{0.7519}{1 - 1.333 \times 0.7519}$; On obtient : $\underline{\boldsymbol{o_1 A}} \approx -329 \text{ m.}$

AN:
$$\overline{O_1 A} = \frac{0.7519}{1-1.333\times0.7519}$$
; On obtient : $\overline{O_1 A} \approx -329$ m.

Q5. L'œil peut donc voir tous les objets situés entre l'infini et 300 m devant l'objectif de la lunette.

PROBLEME 1 : Filtre linéaire d'ordre 1 et pH-métrie :

 $(\approx 64 \text{ pts})$

Q1. Il faut utiliser un filtre passe-bas de fréquence de coupure f_c faible devant 4 kHz afin de conserver la composante continue et supprimer le signal sinusoïdal de fréquence 4 kHz.

On choisira, par exemple, $f_C \approx \frac{4000}{10} \approx 400 \text{ Hz}$.

Q2. Schéma électrique équivalent en BF:

Schéma électrique équivalent en HF:

En BF : Les résistances R et 3R sont en série :

Pont diviseur de tension : $\underline{H} = \frac{\underline{s}}{\underline{e}} = \frac{3R}{3R+R} = \frac{3}{4} = cste$; $\underline{G_{dB}} \to 20 \log \left(\frac{3}{4}\right) \approx -2.5 \text{ dB} = cste$.

 $\underline{\text{En HF}}: \underline{H} = \underline{\underline{s}}_{\underline{e}} \approx 0 \text{ et } \underline{G_{dB}} \rightarrow -\infty.$

Conclusion: C'est un **filtre passe-bas**.

Q3. On calcule Z_{eq} équivalent à 3R et C en parallèle à la sortie :

On a alors:
$$\underline{Z_{eq}} = \underline{\frac{Z_R Z_C}{Z_R + Z_C}} = \frac{3R \times \frac{1}{jC\omega}}{3R + \frac{1}{jC\omega}}$$
; Soit $\underline{Z_{eq}} = \frac{3R}{1 + j3RC\omega}$.

Ainsi, Z_{eq} est en série avec R: Pont diviseur de tension:

$$\underline{H}(j\omega) = \frac{\underline{s}}{\underline{e}} = \frac{\underline{Z_{eq}}}{\underline{Z_{eq}} + R} = \frac{\frac{3R}{1 + j3RC\omega}}{R + \frac{3R}{1 + j3RC\omega}} = \frac{3R}{R + j3R^2 C\omega + 3R} = \frac{3}{4 + j3RC\omega}$$
Soit:
$$\underline{H}(j\omega) = \frac{3}{4 + j3RC\omega} = \frac{3}{4\left(1 + j\frac{3RC\omega}{4}\right)} = \frac{3/4}{1 + j\frac{3RC\omega}{4}}$$
De la forme:
$$\underline{H}(jx) = \frac{H_0}{1 + jx} \text{ avec } x = \frac{\omega}{\omega_0} \text{ si } H_0 = \frac{3}{4} \text{ et } \omega_0 = \frac{4}{3RC}$$

 H_0 est la fonction de transfert statique et ω_0 la pulsation propre.

C'est un filtre passe bas du 1er ordre.

Q4. Par définition,
$$G(x) = |\underline{H}(jx)| = \frac{H_0}{\sqrt{1+x^2}}$$
.

Q4. Par définition,
$$G(x) = |\underline{H}(jx)| = \frac{H_0}{\sqrt{1+x^2}}$$
.
Et $\varphi(x) = \arg\left(\underline{H}(jx)\right) = \arg(num) - \arg(den) = 0 - \arctan(x)$; Ainsi : $\varphi(x) = -\arctan(x)$.

Q5. La pulsation de coupure ω_C est définie par $G(\omega_C) = \frac{G_{max}}{\sqrt{2}}$.

Or
$$G(x) = \frac{H_0}{\sqrt{1+x^2}}$$
; Ainsi G est max pour $x = 0$ et $G_{max} = H_0 = \frac{3}{4}$.

Or
$$G(x) = \frac{H_0}{\sqrt{1+x^2}}$$
; Ainsi G est max pour $x = 0$ et $G_{max} = H_0 = \frac{3}{4}$.
Ainsi, $G(x_C) = \frac{H_0}{\sqrt{2}} = \frac{H_0}{\sqrt{1+x_C^2}}$; Il vient donc : $x_C = 1 = \frac{\omega_C}{\omega_0}$; Soit : $\omega_C = \omega_0 = \frac{4}{3RC}$ et $f_C = \frac{\omega_C}{2\pi} = \frac{2}{3\pi RC}$.

$$\underline{\text{AN}}: f_C = \frac{2}{3\pi \times 5, 3.10^3 \times 1, 0.10^{-7}}$$
. On obtient: $\underline{f_C} \approx 400 \text{ Hz.}$

On a bien f_C dix fois plus faible que la fréquence du signal parasite que l'on veut éliminer, ce qui parait tout à fait satisfaisant.

Q6. Etude asymptotique de $\underline{H}(jx) = \frac{H_0}{1+ix}$

- En BF: Si
$$\omega \ll \omega_0$$
 ou si $x \ll 1$: $\underline{H} \sim H_0 = \frac{3}{4}$

$$\begin{cases}
\text{Donc } G_{dB} \to 20 \log(H_0) = 20 \log\left(\frac{3}{4}\right) \approx -2,5 \text{ } dB; \\
\underline{\text{Asymptote horizontale en BF.}} \\
\text{Et } \omega \to 0.
\end{cases}$$

<u>En HF</u>: Si $\omega \gg \omega_0$ ou $x \gg 1$: $\underline{H} \sim \frac{H_0}{ix} \sim -j\frac{H_0}{x}$

Donc $G_{dB} \to 20 \log (H_0) - 20 \log(x)$:

Asymptote oblique de pente – 20 dB par décade en HF. Et $\varphi \to -\frac{\pi}{2}$.

Intersection des asymptotes en A tel que :

$$20 \log (H_0) - 20 \log(x_A) = 20 \log (H_0)$$

Soit $\log(x_A) = 0$

et pour $G_{dB}(A) = 20 \log (H_0) \approx -2,5 \text{ dB}.$

Ainsi les coordonnées du point d'intersection des asymptotes: A(0; -2, 5).

D'où le diagramme de Bode asymptotique ci-contre.

Ce filtre présente un caractère pseudo-intégrateur en haute fréquences, car il présente un asymptote oblique de pente -20 dB/ décade.

Q7. Diagramme réel: En
$$x = 1$$
 ou $\log(x) = 0$: $\underline{H}(jx = 1) = \frac{H_0}{1+j}$ et $G(1) = \frac{H_0}{\sqrt{2}}$

$$\underline{H}(jx=1) = \frac{H_0}{1+j}$$
 et $G(1) = \frac{H_0}{\sqrt{2}}$

Donc

$$G_{dB}(1) = 20 \log(H_0) - 20 \log(\sqrt{2}) = -2.5 - 3$$
.
Ainsi : $G_{dB}(\log(x) = 0) = -5.5$ et Et
$$\varphi(\log(x) = 0) = -\frac{\pi}{4}.$$

Ainsi :
$$G_{dB}(log(x) = 0) = -5, 5$$
 et Et

$$\overline{\varphi(\log(x)=0)}=-\frac{\pi}{4}.$$

Q8. - En ce qui concerne la composante continue :

On se place en basses fréquences : $\underline{H} \sim H_0 = \frac{S_0}{U_0} = \frac{3}{4}$; Ainsi : $\boxed{S_0 = \frac{3}{4}U_0}$.

- A la fréquence de 4 kHz :
$$f = 10 f_C$$
, Soit : $x = \frac{\omega}{\omega_0} = \frac{\omega}{\omega_C} = 10$ et $\log(x) = 1$.

A cette fréquence, $G_{dB}(1) = -22,5 \text{ dB} = 20 \log(G)$; D'où $\log(G) = -\frac{22,5}{20} \text{ et } G = \frac{S_m}{E_m} = 10^{-1,03}$

D'où $S_m \approx 0,09 E_m \approx \frac{E_m}{10}$: L'amplitude du signal parasite est atténuée d'un facteur 10.

Et $\varphi_s = \Phi(x) + \varphi_e$ où $\Phi(x)$ est le déphasage lié au filtre. Or en $\log(x) = 1$, $\Phi \approx -1$, 5 rad Alors $\varphi_s \approx \varphi_e - 1$, 5 rad.

Conclusion:
$$s(t) = \frac{3}{4}U_0 + \frac{E_m}{10}\cos(\omega t + \varphi_e - 1, 5)$$
.
D'où l'allure ci-dessous:

PROBLEME 2 : Production de vagues dans une piscine :

 $(\approx 66 pts)$

(D'après ENSTIM)

I – Etude de l'équilibre :

Q1. Expression de la poussée d'Archimède : $\overrightarrow{\pi} = -\rho_{equ} V \overrightarrow{g} = -\rho_{equ} V g \overrightarrow{u}_z$.

Q2. Référentiel terrestre R supposé galiléen.

Base de projection cartésienne. L'axe Oz est orienté vers le bas.

Système : La masse *M*.

Bilan des actions mécaniques extérieures :

Le poids : $\vec{P} = M\vec{g} = +Mg\vec{u}_z$

La poussée d'Archimède : $\vec{\pi} = -\rho_{eau} V g \vec{u}_z$.

La force de Hooke dirigée vers le haut : $\vec{T} = -k (l - l_0) \overrightarrow{u_z} = -k (z - l_0) \overline{u_z}$

Condition d'équilibre : $\sum \overrightarrow{F_{ext}} = \overrightarrow{0}$; Soit : $\overrightarrow{T} + \overrightarrow{\pi} + \overrightarrow{T} = \overrightarrow{0}$.

Projetons sur l'axe (0z): $Mg - \rho_{eau}Vg - k(z_{eq} - l_0) = 0$

Ou encore, avec $z_{eq} = h$, il vient : $k \; (h - l_0) = Mg - \rho_{eau} Vg$

Il faut supprimer $M = \rho V$: D'où: $h - l_0 = \frac{\rho - \rho_{eau}}{k} Vg$; Ou encore: $h = l_0 + \frac{Vg}{k} (\rho - \rho_{eau})$.

II – Mouvement sans frottement :

Q3. Equation différentielle du mouvement : $2^{\text{ème}}$ loi de Newton : $\sum \overrightarrow{F_{ext}} = M\vec{a}$ avec $\vec{a} = \ddot{z} \overrightarrow{u_z}$ En projetant sur l'axe (Oz), il vient : $Mg - \rho_{eau}Vg - k$ $(z - l_0) = M\ddot{z}$

Ou encore : $M\ddot{z} + kz = Mg - \rho_{eau}Vg + kl_0 - kh + kh$ = 0 (d'après Q2)

En simplifiant, il vient : $M\ddot{z} + kz = kh$ et sous forme canonique, on obtient : $\ddot{z} + \frac{k}{M}z = \frac{k}{M}h$.

On pose alors $|\omega_0| = \sqrt{\frac{k}{M}}$ la pulsation propre, il vient : $\ddot{z} + \omega_0^2 z = \omega_0^2 h$.

La <u>pulsation propre</u> de cet oscillateur ne dépend <u>que de ses caractéristiques intrinsèques k et M.</u>

Par contre, c'est la **position d'équilibre** h (autour de laquelle la masse oscille) qui **dépend la poussée** d'Archimède.

III – Mouvement avec frottements visqueux exercés par l'eau :

Q4. On refait une $2^{\text{ème}}$ loi de newton, en ajoutant le force de frottement visqueux : $\overrightarrow{F_v} = -\alpha \, \dot{a} \, \dot{l} = -\alpha \, \dot{z} \, \overrightarrow{u_z}$

Il vient : $Mg - \rho_{eau}Vg - k(z - l_0) - \alpha \dot{z} = M\ddot{z}$

Soit: $M\ddot{z} + \alpha \dot{z} + kz = Mg - \rho_{eau}Vg + kl_0 - kh + kh$ = 0 (d'après Q

En simplifiant et en mettant sous forme canonique, il vient : $\ddot{z} + \frac{\alpha}{M} \dot{z} + \omega_0^2 z = \omega_0^2 h$ Par identification avec $\ddot{z} + \lambda \dot{z} + \omega_0^2 z = \omega_0^2 h$, il vient : $\lambda = \frac{\alpha}{M}$.

Q5. Il faut résoudre l'équation précédente, dans le cas d'un amortissement faible, donc lorsque α reste petit. Solution homogène:

Equation caractéristique : $s^2 + \lambda s + {\omega_0}^2 = 0$ Discriminant : $\Delta = \lambda^2 - 4 {\omega_0}^2 < 0$ si amortissement faible ; Donc régime pseudo-périodique.

Solutions de l'équation caractéristique : $s_{1,2} = -\frac{\lambda}{2} \pm i \frac{\sqrt{-\Delta}}{2} = -\frac{\lambda}{2} \pm i \frac{\sqrt{4 \omega_0^2 - \lambda^2}}{2} = -\frac{\lambda}{2} \pm i \Omega$

Les solutions de l'équation homogène s'écrivent alors : $z_h(t) = e^{-\frac{\lambda}{2}t} [A\cos(\Omega t) + B\sin(\Omega t)]$ Solution particulière constante : $\mathbf{z}_{P} = \mathbf{h}$.

Solution générale :

$$z(t) = h + e^{-\frac{\lambda}{2}t} \left[A\cos(\Omega t) + B\sin(\Omega t) \right].$$

On ne cherche pas A et B d'après l'énoncé.

Allure de la courbe :

A
$$t = 0, \mathbf{z}(0) = \mathbf{h_1} > h$$

et $\dot{\mathbf{z}}(\mathbf{0}) = \mathbf{0}$, donc tangente horizontale en 0.

De plus, $\lim z(t) = h < h_1$.

Et entre temps, oscillations amorties avec décroissance exponentielle de l'amplitude.

IV – Cas du régime sinusoïdal forcé :

Q6. On a maintenant : $z_A(t) = z_{Am} \cos(\omega t)$,

donc
$$l = z - z_A$$
 et $\frac{dl}{dt} = \dot{z} - \dot{z_A}$

Ce qui modifie la force de Hooke : $\vec{T} = -k (l - l_0) \overrightarrow{u_z} = -k (z - z_A - l_0) \overrightarrow{u_z}$.

Et la force de frottement fluide : $\overrightarrow{F_v} = -\alpha \frac{dl}{dt} \overrightarrow{u_z} = -\alpha (\dot{z} - \dot{z_A}) \overrightarrow{u_z}$

La $2^{\text{ème}}$ loi de Newton devient donc : $Mg - \rho_{eau}Vg - k(z - z_A - l_0) - \alpha(\dot{z} - \dot{z}_A) = M\ddot{z}$ Qui se simplifie en : $M\ddot{z} + \alpha(\dot{z} - \dot{z}_A) + k(z - z_A) = Mg - \rho_{eau}Vg + kl_0 - kh + kh$ = 0 (d'après O2)

Ou encore : $M\ddot{z} + \alpha(\dot{z} - \dot{z}_A) + k(z - h - z_A) = 0$.

On pose : Z(t) = z(t) - h ; Soit $\dot{Z} = \dot{z}$ et $\ddot{Z} = \ddot{z}$

L'équation différentielle devient : $M\ddot{Z} + \alpha \dot{Z} + kZ(t) = \alpha \dot{z_A} + k z_A(t)$. Sour forme canonique, il vient : $\ddot{Z} + \frac{\alpha}{M} \dot{Z} + \frac{k}{M} Z = \frac{\alpha}{M} \dot{z_A} + \frac{k}{M} z_A(t)$.

Par identification avec $\ddot{Z} + \lambda \dot{Z} + \omega_0^2 Z = F(t)$, il vient : $F(t) = \frac{\alpha}{t} z_A + \frac{k}{t} z_A(t)$.

Q7. Passage aux notations complexes:

On nous donne $F(t) = \omega^2 z_{Am} \cos(\omega t)$. Alors $\underline{F} = \omega^2 z_{Am} e^{i\omega t}$.

On introduit $Z_{com}(i\omega) = \underline{Z}(i\omega) e^{i\omega t}$ la grandeur complexe associée à Z(t)

et $Z(i\omega)$ l'amplitude complexe telle que $Z(i\omega) = Z(\omega) e^{i\omega t}$

On reprend l'équation différentielle précédente, en la passant en complexes :

$$\underline{Z_{com}}^{"} + \lambda \, \underline{Z_{com}}^{"} + \omega_0^2 \underline{Z_{com}}^{"} = \underline{F} \; ; \, \text{Soit} : -\omega^2 \, \underline{Z_{com}}^{"} + i\omega \, \lambda \, \underline{Z_{com}}^{"} + \omega_0^2 \underline{Z_{com}}^{"} = \underline{F}$$

Avec
$$\tau = \frac{M}{\alpha} = \frac{1}{\lambda}$$
, il vient : $Z_{com} \left(\omega_0^2 - \omega^2 + i \frac{\omega}{\tau} \right) = \underline{F} = \omega^2 z_{Am} e^{i\omega t}$.

D'où:
$$\underline{Z_{com}} = \frac{\omega^2 z_{Am} e^{i\omega t}}{\left(\omega_0^2 - \omega^2 + i\frac{\omega}{\tau}\right)} \text{ et } \underline{Z}(i\omega) = \frac{\omega^2 z_{Am}}{\left(\omega_0^2 - \omega^2 + i\frac{\omega}{\tau}\right)} = \frac{z_{Am}}{\frac{\omega_0^2}{\omega^2} - 1 + i\frac{1}{\omega\tau}}$$

D'où : $\underline{Z_{com}} = \frac{\omega^2 z_{Am} e^{i\omega t}}{\left(\omega_0^2 - \omega^2 + i\frac{\omega}{\tau}\right)}$ et $\underline{Z}(i\omega) = \frac{\omega^2 z_{Am}}{\left(\omega_0^2 - \omega^2 + i\frac{\omega}{\tau}\right)} = \frac{z_{Am}}{\frac{\omega_0^2}{\omega^2} - 1 + i\frac{1}{\omega\tau}}$;

Ainsi, avec la pulsation réduite $x = \frac{\omega}{\omega_0}$: $\underline{Z}(ix) = \frac{z_{Am}}{\frac{1}{x^2} - 1 + i\frac{1}{x\omega_0\tau}}$ Enfin $\underline{Z}(x) = |\underline{Z}(ix)| = \frac{z_{Am}}{\sqrt{(\frac{1}{x^2} - 1)^2 + \frac{1}{(x\omega_0\tau)^2}}}$.

Enfin
$$Z(x) = \left| \underline{Z}(ix) \right| = \frac{z_{Am}}{\sqrt{(\frac{1}{x^2} - 1)^2 + \frac{1}{(x \omega_0 \tau)^2}}}$$

Q8. On veut
$$Z(x) > z_{Am}$$
, soit $\frac{Z(x)}{z_{Am}} > 1$; ou encore : $\frac{1}{\sqrt{(\frac{1}{x^2} - 1)^2 + \frac{1}{(x \omega_0 \tau)^2}}} > 1$; Soit : $\sqrt{(\frac{1}{x^2} - 1)^2 + \frac{1}{(x \omega_0 \tau)^2}} < 1$

On a donc : $(\frac{1}{x^2} - 1)^2 + \frac{1}{(x \omega_0 \tau)^2} < 1$; On développe : $\frac{1}{x^4} - \frac{2}{x^2} + 1 + \frac{1}{x^2 \omega_0^2 \tau^2} - 1 < 0$.

Ou encore : $\frac{1}{x^4} - \frac{2}{x^2} + \frac{1}{x^2 \omega_0^2 \tau^2} < 0$.

Multiplions par x^4 , il vient : $1 - 2x^2 + \frac{x^2}{\omega_0^2 \tau^2} < 0$; Soit $x^2 \left(-\frac{1}{\omega_0^2 \tau^2} + 2 \right) > 1$.

Ou encore $x > \frac{1}{\sqrt{2 - \frac{1}{(1 - \frac{1}{2})^2}}}$;

Or
$$\omega = x \omega_0$$
;

Il faut donc que
$$\omega > \frac{\omega_0}{\sqrt{2 - \frac{1}{\omega_0^2 \tau^2}}} = \frac{\omega_0 \omega_0 \tau}{\sqrt{2 \omega_0^2 \tau^2 - 1}} = \frac{\omega_0^2 \tau}{\sqrt{2 \omega_0^2 \tau^2 - 1}} = \omega_{lim}$$

On remarque que
$$\omega_{lim}$$
 n'existe que si $2 \omega_0^2 \tau^2 - 1 > 0$; Donc que si $\omega_0^2 \tau^2 > \frac{1}{2}$.
Or $\tau = \frac{M}{\alpha}$ et $\omega_0^2 = \frac{k}{M}$; Ainsi ω_{lim} n'existe que si $\frac{k}{M} \frac{M^2}{\alpha^2} > \frac{1}{2}$; Donc pour $M > \frac{\alpha^2}{2k}$.
Cette condition revient à avoir un facteur de qualité suffisamment grand pour que la condition de résonance

soit respectée.

Q9. On a vu que
$$Z(x) = |\underline{Z}(ix)| = \frac{z_{Am}}{\sqrt{(\frac{1}{x^2} - 1)^2 + \frac{1}{(x \omega_0 \tau)^2}}}$$
.

Le numérateur est constant, ainsi Z est maximum si $(\frac{1}{x^2} - 1)^2 + \frac{1}{(x \omega_0 \tau)^2}$ est minimum.

Posons
$$f(x) = (\frac{1}{x^2} - 1)^2 + \frac{1}{(x \omega_0 \tau)^2}$$
.

Alors
$$\frac{df(x)}{dx} = 0$$
 ssi $2(\frac{1}{x^2} - 1)(\frac{-2}{x^3}) - \frac{2}{\omega_0^2 \tau^2 x^3} = 0$; Soit $(\frac{-2}{x^3}) \left[2(\frac{1}{x^2} - 1) + \frac{1}{\omega_0^2 \tau^2} \right] = 0$

Il vient
$$: 2\left(\frac{1}{x_r^2} - 1\right) + \frac{1}{\omega_0^2 \tau^2} = 0$$
; D'où $: \frac{1}{x_r^2} - 1 = -\frac{1}{2\omega_0^2 \tau^2}$; ou $\frac{1}{x_r^2} = 1 - \frac{1}{2\omega_0^2 \tau^2} = \frac{2\omega_0^2 \tau^2 - 1}{2\omega_0^2 \tau^2}$

Enfin:
$$x_r = \sqrt{\frac{2 \omega_0^2 \tau^2}{2 \omega_0^2 \tau^2 - 1}} = \frac{1}{\sqrt{1 - \frac{1}{2 \omega_0^2 \tau^2}}} = \frac{\omega_0 \tau \sqrt{2}}{\sqrt{2 \omega_0^2 \tau^2 - 1}}$$

Hors
$$\frac{1}{dx} = 0 \text{ ssi } 2(\frac{1}{x^2} - 1)(\frac{1}{x^3}) - \frac{1}{\omega_0^2 \tau^2 x^3} = 0$$
, soit $(\frac{1}{x^3})[2(\frac{1}{x^2} - 1) + \frac{1}{\omega_0^2 \tau^2}] = 0$
Il vient : $2(\frac{1}{x_r^2} - 1) + \frac{1}{\omega_0^2 \tau^2} = 0$; D'où : $\frac{1}{x_r^2} - 1 = -\frac{1}{2\omega_0^2 \tau^2}$; ou $\frac{1}{x_r^2} = 1 - \frac{1}{2\omega_0^2 \tau^2} = \frac{2\omega_0^2 \tau^2 - 1}{2\omega_0^2 \tau^2}$
Enfin : $x_r = \sqrt{\frac{2\omega_0^2 \tau^2}{2\omega_0^2 \tau^2 - 1}} = \frac{1}{\sqrt{1 - \frac{1}{2\omega_0^2 \tau^2}}} = \frac{\omega_0 \tau \sqrt{2}}{\sqrt{2\omega_0^2 \tau^2 - 1}}$.
Et $\omega_r = \omega_0 x_r = \frac{\omega_0^2 \tau \sqrt{2}}{\sqrt{2\omega_0^2 \tau^2 - 1}} = \frac{\omega_0}{\sqrt{1 - \frac{1}{2\omega_0^2 \tau^2}}}$: Pulsation de résonance.

Et le phénomène est appelé phénomène de résonance.

PROBLEME 3 : Autour de l'aluminium : (D'après CCP TSI) $(\approx 76 \text{ pts})$

I - Propriétés de l'atome d'aluminium :

Q1. Le <u>numéro atomique</u> d'un élément est le <u>nombre de protons</u> du noyau atomique (et nombre d'électrons de l'atome neutre).

¥ Z = 13 : Soit 2+8+3 : Dans la classification périodique, il sera donc situé sur la 3ème période et 1er élément <u>du groupe p</u>, soit dans le <u>groupe 13</u>. Il a donc <u>3 électrons de valence</u> $(3s^2 3p^1)$.

Son schéma de Lewis est : | Al

L'ion le plus probable a la configuration du gaz rare le plus proche, celle où toutes les couches sont occupées. Il aura donc tendance à perdre ses 3 électrons de valence et donner l'ion Al^{3+} .

II – L'aluminium comme source d'énergie :

Q2. A l'anode, il se produit une oxydation du réducteur, d'où le sens de la réaction :

$$Al_{(s)} + \overline{3HO^{-}_{(aq)}} = Al(OH)_{3(s)} + 3e^{-}$$
 (×4)

A la cathode, il se produit une réduction de l'oxydant :

$$O_{2(g)} + \overline{2 H_2 O_{(l)} + 4 e^-} = \overline{4 H O_{(aq)}}$$
 (×3)

Pour obtenir l'équation bilan, il faut équilibrer le nombre d'électrons échangés, on obtient donc :

Pour obtenir l'équation bilan, il faut équilibrer le nombre d'électrons echanges, on obtient dor
$$4 A l_{(s)} + 3 O_{2(g)} + 6 H_2 O_{(l)} = 4 A l (OH)_{3(s)}.$$
 Tout est équilibré.
$$Q3. K^{\circ} = \frac{(P^{\circ})^3}{(P(O_2)_{eq}^3)} = \frac{1}{(P(O_2))_{eq}^3};$$

Q3.
$$K^{\circ} = \frac{(P^{\circ})^3}{(P(O_2)_{eq}^3)} = \frac{1}{(P(O_2))_{eq}^3}$$

 $4 \frac{1}{2}$ équation redox : $Al(OH)_{3(s)} + 3e^{-} = Al_{(s)} + 3HO_{(aq)}^{-}$

Relation de Nernst :
$$E_a = E_a^{\circ} + \frac{0.06}{3} \log \frac{1}{[HO^{-}]^3}$$
;

4 ½ équation redox : $O_{2(g)} + 2 H_2 O_{(l)} + 4 e^- = 4 HO^-_{(aq)}$ Relation de Nernst : $E_c = E^{\circ}_c + \frac{0.06}{4} \log \frac{P(O_2)}{[HO^{-1}]^4}$;

Relation de Nernst :
$$E_c = E_c^{\circ} + \frac{0.06}{4} \log \frac{P(O_2)}{[HO^{-1}]^4}$$

 \blacksquare A l'équilibre, les potentiels redox sont égaux, soit : $E_{a\ eq} = E_{c\ eq}$;

4 Multiplions par 12 :
$$12 E^{\circ}_{a} + 0.06 \log \frac{1}{[HO^{-}]^{12}_{eq}} = 12 E^{\circ}_{c} + 0.06 \log \frac{(P(O_{2}))^{3}_{eq}}{[HO^{-}]^{12}_{eq}};$$

Soit : $0.06 \log K^{\circ} = 12(E^{\circ}_{c} - E^{\circ}_{a});$ Soit $\frac{K^{\circ} = 10^{\frac{12(E^{\circ}_{c} - E^{\circ}_{a})}{0.06}}}{[HO^{-}]^{12}_{eq}};$ $\frac{AN}{AN} : \frac{K^{\circ} = 10^{538} > 10^{3}}{[HO^{-}]^{12}_{eq}};$

Q4. Calcul du nbre de moles initiales d'Al : $n(Al)_{init} = \frac{m}{M(Al)}$; $\underline{AN} : n(Al)_{init} = \frac{25}{27}$; $\underline{n(Al)_{init}} = 0.93 \text{ mol.}$

Tableau d'avancement :

	$4 Al_{(s)} +$	3 O _{2(g)} +	$6 H_2 O_{(l)} =$	$4 Al (OH)_{3 (s)}$
EI	$n(Al)_{init} = 0.93$	excès	excès	
EF	$0,93-4\xi_{max}$	excès	excès	$4 \xi_{max}$

La réaction étant totale, on a disparition du réactif limitant :

Soit : 0,93 – 4
$$\xi_{max} = 0$$
; Soit : $\xi_{max} = \frac{0.93}{4}$; $\xi_{max} = 0.23$ mol.

Q5. On sait que : $Q = I \Delta t$; Donc : <u>Durée de fonctionnement</u> : $\Delta t = \frac{Q}{I}$;

$$\underline{AN}$$
: $\Delta t = \frac{2,1.10^5}{6,5}$; On obtient $\underline{\Delta t} \approx 3,2.10^4 \text{ s} \approx 9\text{h}$.

Pourcentage d'aluminium consommé :

✓ Quantité d'électricité ayant circulé : $Q = n_e - F = 3 \times n_{Al\ consommé} \times F$; Soit $n_{Al,consommé} = \frac{Q}{3F}$;

$$\underline{\text{AN}}: n_{Al\ consomm\acute{e}} \frac{2,1.10^5}{3\times96500}; \text{ Soit } \underline{n_{Al\ consomm\acute{e}}} = 0,73 \text{ mol}.$$

$$\sqrt{n_{Al \, restant}} = 0.93 - 0.73 = 0.20 \, \text{mol.}$$
 Soit en pourcentage : $p = \frac{0.20}{0.93} \times 100$;

D'où le pourcentage d'aluminium non consommé : p = 21,5%;

III – Présence d'aluminium (III) dans un vaccin :

Q6. Diagramme potentiel-pH de l'élément aluminium :

espèce	degré d'oxydation de Al	espèce	degré d'oxydation de Al
$Al_{(s)}$	0	$Al(OH)_{3(s)}$	+ III
$Al^{3+}_{(aq)}$	+ III	$Al(OH)_4^{-}$	+ III

E (en V) - 0,5

- 1,5

♣ De bas en haut du diagramme, les espèces sont placées par ordre croissant de nombre d'oxydation.

D'autre part, l'espèce la plus acide $(Al^{3+}_{(aq)})$ est majoritaire à bas pH et l'espèce la plus basique $(Al (OH)_4^-_{(aq)})$ est majoritaire à haut pH. D'où les identifications ci-contre. Remarque: on aurait aussi pu faire un diagramme primitif.

Q7. Couple $Al^{3+}_{(aq)}/Al_{(s)}$:

4 ½ équation redox : $Al^{3+}_{(aq)} + 3e^{-} = Al_{(s)}$

Relation de Nernst:

$$E(Al^{3+}_{(aq)}/Al_{(s)})=E_1^{\circ}+0.02\log([Al^{3+}]);$$

Sur la frontière entre Al^{3+} et $Al_{(s)}$, le solide est présent à l'état

de trace et $[Al^{3+}] = C_T$. Soit $E_{1\ Front} = E_1^{\circ} + 0.02 \log(C_T)$ On donne $E_{1\ Front} = -1.72 \text{ V. Donc} \underbrace{E_1^{\circ} = E_{1\ Front} - 0.02 \log(C_T)}_{}$.

 \underline{AN} : $E^{\circ}_{1} = -1.72 + 0.02 \times 3$; $\underline{E^{\circ}_{1}} = -1.66 \, \mathrm{V}$; (valeur déjà donnée dans le sujet).

Q8. On sait que pour un couple acido-basique : $H_2CO_{3(aq)}/HCO_{3(aq)}^-$: On a la relation : $pH = pKa + log(\frac{[HCO_3^-]}{[H_2CO_3]})$; $\underline{AN} : pH = 6.2 + log(\frac{0.027}{0.0014})$; On obtient : $\underline{pH} \approx 7.5$.

 \bot A un tel pH, d'après le diagramme E - pH, $\underline{Al}(OH)_{3(s)}$ est l'espèce majoritaire de Al (III).

Titrage de l'aluminium (III) :

Titrage 1: Titrage d'une solution d'acide chlorhydrique { H₃O + (aq) ; Cl - (aq) }.

Q9. Réaction du dosage acide fort / base forte : $H_3O^+_{(aa)} + HO^-_{(aa)} = 2 H_2O_{(I)}$

AN : $K = 10^{14}$; Réaction totale.

Q10. On utilise la méthode des tangentes :

On trace une 1^{ère} droite tangente à la courbure après l'équivalence (droite 1).

On trace une 2^{nde} droite tangente à la courbure avant l'équivalence et parallèle à la droite 1 (droite 2).

A l'aide d'une équerre, on trace une droite perpendiculaire aux deux autres (droite 3).

On tracer ensuite une droite parallèle et à égale distance des droites 1 et 2 (droite 4).

Le point d'intersection avec la courbe du pH donne le volume équivalent.

On lit $V_{e} = 10.0 \text{ mL}$.

Diagramme E-pH de l'alu

AR(s)

es des points : A : (0,0 ; - 1,72)

mme E-pH de l'aluminium à 298 K ration de tracé : $C_T = 1,0.10^{-3}$ mol.L'

A l'équivalence : les réactifs sont versés dans les proportions stœchiométriques.

Donc: $n(H_3O^+)_0 = n(HO^-)_{eq}$; Soit: $C_1V_0 = CV_e$; Ainsi: $C_1 = \frac{CV_e}{V_o}$;

<u>AN</u>: $C_1 = \frac{0.1 \times 10}{20}$; On obtient: $C_1 = 5, 0.10^{-2}$ mol.L⁻¹.

Q11. L'indicateur coloré doit avoir une zone de virage comprenant le pH à l'équivalence (7 ici). Le BBT convient donc ; on observera le passage <u>du jaune</u> (milieu acide avant l'équivalence) <u>au bleu</u> (milieu basique lorsque l'ion hydroxyde est en excès).

Titrage 2: Titrage d'une solution acidifiée d'ions Al³⁺(aa).

Q12.
$$1^{\text{ère}}$$
 réaction : $H_3O^+_{(aq)} + HO^-_{(aq)} = 2 H_2O_{(l)}$; $V_{e1} = 10 \text{ mL}$; $2^{\text{ème}}$ réaction : $Al^{3+}_{(aq)} + 3HO^-_{(aq)} = Al(OH)_{3(s)}$; $V_{e2} = 25 \text{ mL}$.

Le premier saut de pH correspond au volume déterminé à la question 10, lors du titrage des 20 mL d'acide chlorhydrique { $H_3O^+_{(aq)}$; $Cl^-_{(aq)}$ } ;

Ou bien 1ère réaction entre l'acide le plus fort et la base la plus forte, soit HCl.

Q13. Volume ayant réagi avec $Al^{3+}{}_{(aq)}: \overline{V_{A1} = V_{e2} - V_{e1}}; \underline{AN}: \underline{V_{A1} = 15 \text{ mL}}.$

Attention aux coefficients stæchiométriques de la 2ème réaction :

Pour ce volume, on a
$$n(Al^{3+})_0 = \frac{n(HO^-)_{eq}}{3}$$
; Soit : $C_2V_0 = \frac{CV_{A1}}{3}$; Ainsi : $C_2 = \frac{CV_{A1}}{3V_0}$;

$$\underline{AN}$$
: $C_2 = \frac{0.1 \times 15}{3 \times 20}$; On obtient : $\underline{C_2} = 2.5.10^{-2} \text{ mol.L}^{-1}$.

Soit:
$$m = C_2V_0 \times M(AlCl_3, 6H_2O)$$
.

avec
$$M(AlCl_3, 6H_2O) = 27 + 3 \times 35,5 + 6 \times 18$$
; Soit $M(AlCl_3, 6H_2O) = 241,5$ g.mol⁻¹.

AN:
$$m = 2.5.10^{-2} \times 20.10^{-3} \times 241.5$$
; On obtient : $m \approx 121$ mg.

Exploitation du point anguleux :

Q14. Attention au sens de la réaction : Sens de la dissolution du précipité :
$$Al(OH)_{3(s)} = Al^{3+}_{(aq)} + 3HO^{-}_{(aq)}$$
 ; $K = Ks$.

Q15. En
$$D$$
, $\underline{pH} = 3.9$; Soit $[HO^-] = \frac{K_e}{10^{-pH(D)}}$; $\underline{AN} : [HO^-] = \frac{10^{-14}}{10^{-3.9}}$
On obtient: $\underline{[HO^-]} = 7.9.10^{-11} \, \text{mol.L}^{-1}$.

Q16. Au point D, les ions Al^{3+} n'ont pas encore réagi. Donc en solution, on a : $Al^{3+} = \frac{c_2 V_0}{V_0 + V_D}$.

$$\underline{AN} : [Al^{3+}] = \frac{2,5.10^{-2} \times 20}{20+10}; \text{ On obtient } : [\underline{Al^{3+}}] \approx 1,7.10^{-2} \text{ mol.L}^{-1}.$$

$$\blacksquare \text{ Et par definition, } [\underline{Ks} = [\underline{Al^{3+}}] [\underline{HO}^{-}]^{3}].$$

$$\underline{AN} : Ks = 1,7.10^{-2} \times (7,9.10^{-11})^{3}; \text{ On obtient } : \underline{Ks} \approx 8,4.10^{-33} (pKs \approx 32,1)$$