Návrh analogových integrovaných obvodů Ústav mikroelektroniky FEKT VUT v Brně	Jméno Tomáš Vavrinec		ID 240893	
	Ročník	Obor MET	Skupina	
Název zadání 2. Zdroje referenčních proudů a napětí				

ZADÁNÍ ÚLOHY

Simulacemi zjistěte tyto parametry tranzistorů NMOS a PMOS:

- 1. Navrhněte proudovou referenci podle obr. 1a) (bez startovacího obvodu). Předpokládané napětí na výstupu je 1.2V toto napětí zde připojte v simulaci. Výstupní proud je $50\mu A$ a proudy v jádru reference jsou $10\mu A$. Postupně:
 - (a) vypočítejte parametry všech součástek v obvodu (P výpočty ve formátu obecná rovnice, dosazení, výsledek).
 - (b) proveďte analýzu **.op** zobrazte si proudy ve větvích a napětí ve všech uzlech (P schéma se zvýrazněnými U/I dle předlohy)
 - (c) a zobrazte si Spice Output log a zkontrolujte parametry polovodičových součástek (P printscreen pracovních bodů tranzistorů ze Spice Output Log)

Obr. 1: Proudový zdroj s kaskádovým PZ

- 2. Navrhněte napěťovou reference podle obr. 1b. Požadované výstupní napětí je 1.2V, proudová spotřeba obvodu pak $50\mu A$
 - vypočítejte parametry všech součástek v obvodu (P výpočty ve formátu obecná rovnice, dosazení, výsledek).
 - proved'te analýzu .op zobrazte si proudy ve větvích a napětí ve všech uzlech (P schéma se zvýrazněnými U/I dle předlohy)
 - a zobrazte si Spice Output log a zkontrolujte parametry tranzistoru NMOS (P printscreen ze Spice Output Log)

- 3. Pro napěťovou referenci z úlohy 2) použijte namísto odporu R1 proudovou referenci z úlohy 1)
 - (a) proveď te analýzu .op zobrazte si proudy ve větvích a napětí ve všech uzlech (P schéma se zvýrazněnými U/I dle předlohy)
 - (b) krokujte napájecí napětí a sledujte výstupní referenční napětí. Odečtěte změnu tohoto napětí mezi UDD=1.6V a UDD=2V (P grafický výstup z LTspice s umístěnými kurzory a viditelnou tabulkou s jejich pozicí)

1 Vypracování

1.1 Proudová reference

Jako první určíme rozměry použitých tranzistoru. Volím délku kanálu $L=2[\mu m]$ jako kompromis mezi velikostí a parametrem λ , která pro $L=2\mu m$ nabývá hodnoty $\lambda=0.0787698[V^{-1}]$. Dále musíme zvolit napětí U_{OV} , které volím s ohledem na rozsah napájecího napětí $U_{OV}=0.2[V]$ Z toho následně můžeme určit šířku kanálu W, tranzistorů M1 a M3 jako:

$$W_{M1} = W_{M3} = L \cdot \frac{2 \cdot I_1}{KP \cdot U_{OV}^2} = 2\mu \cdot \frac{2 \cdot 10\mu}{200\mu 0.2^2} = 5[\mu m]$$

obdobně určíme rozměry tranzistorů M2 a M4 jako:

$$W_{M2} = W_{M4} = L \cdot \frac{2 \cdot I_1}{KP \cdot U_{OV}^2} = 2\mu \cdot \frac{2 \cdot 10\mu}{50\mu \cdot 0.2^2} = 20[\mu m]$$

Z čehož snadno určíme W_{M6} jako:

$$W_{M6} = W_{M2} \cdot \frac{I_2}{I_1} = 20\mu \cdot \frac{50\mu}{10\mu} = 100[\mu m]$$
$$r_1 = \frac{U_{TH-M1} + U_{OV-M1}}{I_1} = \frac{0.384 + 0.2}{10\mu} = 58.4[k\Omega]$$

.option logopinfo .inc modely/cmos018.txt 49.<u>5</u>μΑ 9.8µA М6 M2 1.2118V pch pch I=2u w=20u I=2u w=20u I=2u w=100u **VDD** 1.8 1.3006V I=2u w=5u V1 **M1** 575.5mV 1.2 I=2u w=5u R1 58.4k

Obr. 2: Zobrazení napětí a proudu ve schématu

Name:	m3	m1	m2	m4	m6
Model:	nch	nch	pch	pch	pch
Id:	9.85e-06	9.78e-06	-9.78e-06	-9.85e-06	-4.95e-05
Vgs:	7.25e-01	5.75e-01	-5.88e-01	-5.88e-01	-5.88e-01
Vds:	6.36e-01	1.30e+00	-4.99e-01	-5.88e-01	-6.00e-01
Vbs:	-5.75e-01	0.00e+00	0.00e+00	0.00e+00	0.00e+00
Vth:	5.44e-01	3.80e-01	-4.05e-01	-4.04e-01	-4.04e-01
Vdsat:	1.59e-01	1.52e-01	-1.56e-01	-1.56e-01	-1.57e-01
Gm:	1.06e-04	1.04e-04	9.92e-05	9.98e-05	5.01e-04
Gds:	2.08e-07	4.54e-07	8.41e-07	8.24e-07	4.12e-06
Gmb	2.43e-05	1.48e-04	3.14e-05	3.16e-05	1.60e-04
Cbd:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00
Cbs:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00
Cgsov:	3.50e-15	3.50e-15	1.37e-14	1.37e-14	6.85e-14
Cgdov:	3.48e-15	3.48e-15	1.38e-14	1.38e-14	6.88e-14
Cgbov:	1.98e-18	1.98e-18	1.96e-18	1.96e-18	1.96e-18
dQgdVgb:	7.33e-14	7.51e-14	2.95e-13	2.94e-13	1.47e-12
dQgdVdb:	-3.51e-15	-3.35e-15	-1.34e-14	-1.33e-14	-6.66e-14
dQgdVsb:	-6.60e-14	-1.23e-13	-2.69e-13	-2.69e-13	-1.34e-12
dQddVgb:	-3.11e-14	-3.10e-14	-1.23e-13	-1.23e-13	-6.16e-13
dQddVdb:	3.50e-15	3.40e-15	1.36e-14	1.35e-14	6.77e-14
dQddVsb:	3.44e-14	6.87e-14	1.45e-13	1.45e-13	7.26e-13
dQbdVgb:	-1.12e-14	-1.30e-14	-4.80e-14	-4.81e-14	-2.39e-13
dQbdVdb:	-1.76e-17	1.87e-17	-8.58e-17	-1.30e-17	-2.80e-17
dQbdVsb:	-6.26e-15	-1.76e-14	-3.54e-14	-3.53e-14	-1.79e-13

Obr. 3: Pracovní bod tranzistorů

1.2 Napěťová reference

Jako první určíme rozměry použitých tranzistoru. Volím délku kanálu $L=2[\mu m]$ jako kompromis mezi velikostí a parametrem λ , která pro $L=2\mu m$ nabývá hodnoty $\lambda=0.0787698[V^{-1}]$. Dále musíme zvolit napětí U_{OV} , které volím $U_{OV}=0.5[V]$ jelikož pracovní napětí mám jasně dané, větší pracovní rozsah tak nepotřebuji a radši použiji menší tranzistor. Z toho následně můžeme určit šířku kanálu W jako:

$$W = L \cdot \frac{2 \cdot I_T}{KP \cdot U_{OV}^2} = 2\mu \cdot \frac{2 \cdot 40\mu}{200\mu 0.5^2} = 3.2[\mu m]$$

Dále určíme společný odpor rezistorů r_2 a r_3 jako:

$$r_{2,3} = \frac{U_{OUT}}{I_1 - I_2} = \frac{1.2}{50\mu - 50\mu} = 120[k\Omega]$$

Z čehož můžeme určit r_3 jako:

$$r_3 = \frac{U_{TH} + U_{OV}}{U_{OUT}} \cdot r_{2,3} = \frac{0.384 + 0.5}{1.2} \cdot 120 \cdot 10^3 = 88.4[k\Omega]$$

 r_2 pak určíme jednoduše jako:

$$r_2 = r_{2,3} - r_3 = 120 \cdot 10^3 - 88.4 \cdot 10^3 = 31.6[k\Omega]$$

Nakonec určíme odpor r_1 jako:

$$r_1 = \frac{U_{CC} - U_{OUT}}{I_{1,2}} = \frac{1.8 - 1.2}{50\mu} = 12[k\Omega]$$

Obr. 4: Zobrazení napětí a proudu ve schématu

m1 Name: Model: nch4.09e-05 Id: Vqs: 8.77e-01 Vds: 1.19e+00 0.00e+00 Vbs: Vth: 3.81e-01 Vdsat: 3.63e-01 Gm: 1.61e-04 Gds: 8.42e-07 Gmb 2.14e-04 Cbd: 0.00e+00Cbs: 0.00e+00Cqsov: 2.24e-15 2.22e-15 Cgdov: Cgbov: 1.98e-18 dQqdVqb: 4.80e-14 dQgdVdb: -2.15e-15 dQqdVsb: -7.67e-14 dQddVqb: -1.99e-14 dQddVdb: 2.18e-15 dQddVsb: 4.23e-14 dQbdVqb: -8.17e-15 dQbdVdb: 6.17e-18 dQbdVsb: -1.02e-14

Obr. 5: Pracovní bod tranzistoru

1.3 Napěťová reference s proudovým zdrojem

V předchozím příkladě napěťové reference sloužil odpor r_1 jako proudoví zdroj. Protože jde jen o rezistor nebude to dvakrát přesný proudoví zdroj a proto ho nyní nahradíme proudovým zdrojem z předcházejícího příkladu. Hodnoty všech prvku zůstávají zachovány a výsledkem je tedy následující schéma.

Obr. 6: Zobrazení napětí a proudu ve schématu

Name:	m1	m2	m3	m4	m5
Model:	nch	nch	nch	pch	pch
Id:	3.97e-05	9.85e-06	9.78e-06	-9.78e-06	-9.85e-06
Vgs:	8.70e-01	7.25e-01	5.75e-01	-5.88e-01	-5.88e-01
Vds:	1.18e+00	6.36e-01	1.30e+00	-4.99e-01	-5.88e-01
Vbs:	0.00e+00	-5.75e-01	0.00e+00	0.00e+00	0.00e+00
Vth:	3.81e-01	5.44e-01	3.80e-01	-4.05e-01	-4.04e-01
Vdsat:	3.58e-01	1.59e-01	1.52e-01	-1.56e-01	-1.56e-01
Gm:	1.58e-04	1.06e-04	1.04e-04	9.92e-05	9.98e-05
Gds:	8.28e-07	2.08e-07	4.54e-07	8.41e-07	8.24e-07
Gmb	2.10e-04	2.43e-05	1.48e-04	3.14e-05	3.16e-05
Cbd:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00
Cbs:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00
Cgsov:	2.24e-15	3.50e-15	3.50e-15	1.37e-14	1.37e-14
Cgdov:	2.22e-15	3.48e-15	3.48e-15	1.38e-14	1.38e-14
Cgbov:	1.98e-18	1.98e-18	1.98e-18	1.96e-18	1.96e-18
dQgdVgb:	4.80e-14	7.33e-14	7.51e-14	2.95e-13	2.94e-13
dQgdVdb:	-2.15e-15	-3.51e-15	-3.35e-15	-1.34e-14	-1.33e-14
dQgdVsb:	-7.64e-14	-6.60e-14	-1.23e-13	-2.69e-13	-2.69e-13
dQddVgb:	-1.99e-14	-3.11e-14	-3.10e-14	-1.23e-13	-1.23e-13
dQddVdb:	2.18e-15	3.50e-15	3.40e-15	1.36e-14	1.35e-14
dQddVsb:	4.22e-14	3.44e-14	6.87e-14	1.45e-13	1.45e-13
dQbdVgb:	-8.17e-15	-1.12e-14	-1.30e-14	-4.80e-14	-4.81e-14
dQbdVdb:	6.14e-18	-1.76e-17	1.87e-17	-8.58e-17	-1.30e-17
dQbdVsb:	-1.02e-14	-6.26e-15	-1.76e-14	-3.54e-14	-3.53e-14

Obr. 7: Pracovní bod tranzistoru

Obr. 8: Zobrazení napětí a proudu ve schématu

Obr. 9: Pracovní bod tranzistoru