My set theory exercises

Evgeny Markin

2023

Contents

1	\mathbf{Intr}	roduction 4
	1.1	Elementary Set Theory
		1.1.1 4
		1.1.2
		1.1.3
		1.1.4
		1.1.5
		1.1.6
		1.1.7
		1.1.8
		1.1.9
	1.2	Logical Notation
	1.3	Predicates and Quantifiers
	1.4	A Formal Language for Set Theory
		1.4.1
		1.4.2
		1.4.3
		1.4.4
		1.4.5
		1.4.6
		1.4.7
		1.4.8
	1.5	The Zermelo-Fraenkel Axioms
		1.5.1
		1.5.2
		1.5.3
		1.5.4
		1.5.5
		1.5.6
		1.5.7

CONTENTS	า
CONTENTS	

	1.5.9 1.5.10			•			•	•										11
2	Basic Set-B 2.1 The First	_					_											12 12

Useful things

I think that it is pretty straightforward to define some function based on axioms that we get. For example pairing axiom allows us to define $PA: S \times S \to S$ by

$$PA(u, v) = \{u, v\}$$

same goes for union axiom

$$UA(u) = \{\text{elements of elements of U}\}$$

Later some other function might be defined in the same manner.

In logic notation, I denote tautology as 'true' and contradiction as 'false'

Chapter 1

Introduction

1.1 Elementary Set Theory

Let A, B, C be sets

1.1.1

If $a \notin A \setminus B$ and $a \in A$, show that $a \in B$

Because $a \notin A \setminus B$, we follow that $x \in B$ or $x \notin A$. Since $x \in A$, we follow that $x \in B$, as desired.

1.1.2

Show that if $A \subseteq B$, then $C \setminus B \subseteq C \setminus A$

Let $c \in C \setminus B$. Then we follow that $c \in C$ or $c \notin B$. Since $A \subseteq B$, we follow that $c \notin B$ implies that $c \notin A$. Thus we follow that $c \in C \setminus B$ implies that $c \in C \setminus A$. Therefore $C \setminus B \subseteq C \setminus A$.

1.1.3

Suppose $A \setminus B \subseteq C$. Show that $A \setminus C \subseteq B$.

Suppose that $a \in A \setminus C$. Then we follow that $a \in A$ and $a \notin C$.

Given that $A \setminus B \subseteq C$ and $A \notin C$, we follow that $a \notin A \setminus B$. Thus $a \notin A$ or $a \in B$. Since $a \in A$, we follow that $a \in B$. Thus

$$a \in A \setminus C \to a \in B$$

$$A \setminus C \subseteq B$$

as desired.

1.1.4

Suppose $A \subseteq B$ and $A \subseteq C$. Show that $A \subseteq B \cap C$

Suppose that $a \in A$. Then we follow that $a \in B$ and $a \in C$. Thus $a \in B \cap C$. Therefore we follow that $A \subseteq B \cap C$.

1.1.5

Suppose $A \subseteq B$ and $B \cap C = \emptyset$. Show that $A \in B \setminus C$

Suppose that $a \in A$. Then we follow that $a \in B$ and since $B \cap C = \emptyset$, we follow that $a \notin C$. Thus $a \in B \setminus C$ by definition. Therefore $A \subseteq B \setminus C$.

1.1.6

Show that $A \setminus (B \setminus C) \subseteq (A \setminus B) \cup C$. Suppose that $a \in A \setminus (B \setminus C)$. Then we follow that $a \in A$ and $a \notin B \setminus C$. Thus $a \notin B$ and $a \in C$. Thus we follow that $a \in A \setminus B$ or $a \in C$. Thus $A \setminus (B \setminus C) \subseteq (A \setminus B) \cup C$ as desired.

1.1.7

Let P(x) be the property $x > \frac{1}{x}$. Are the assertions P(2), P(-2), $P(\frac{1}{2})$ $P(\frac{-1}{2})$ true or false

$$2 > \frac{1}{2} \rightarrow P(2) = true$$

 $-2 < \frac{-1}{2} \rightarrow P(-2) = false$

last two are reversed.

1.1.8

Sow that each of the following sets can be expressed as an interval

$$a)(-3,3)$$

 $b)(-3,\infty)$
 $c)(-3,3)$

all of them follow from order properties of real numbers.

1.1.9

Express the following sets as truth sets

$$A = \{1, 4, 9, 16, 25, \ldots\} \iff A = \{x \in N : x = y^2 \text{ for some } y \in N\}$$

$$B = \{\ldots, -15, -10, -5, 0, 5, \ldots\} \iff A = \{x \in N : x = 5y \text{ for some } y \in N\}$$

Rest are also trivial, not gonna go deep here

1.2 Logical Notation

1.2.1

Using truth tables, show that $\neg(P \Rightarrow Q) \Leftrightarrow (P \land \neg Q)$

P	Q	$P \Rightarrow Q$	$\neg (P \Rightarrow Q)$	$\neg Q$	$P \wedge \neg Q$
false	false	true	false	true	false
false	true	true	false	false	false
${\it true}$	false	false	true	true	true
true	true	true	false	false	false

from this we can see that they are equqivalent.

Following 4 exercises are the same as this one, so I'm skipping them

1.2.5

Show that $(P \Rightarrow Q) \land (P \Rightarrow R) \Leftrightarrow P \Rightarrow (Q \land R)$, using logic laws

$$(P \Rightarrow Q) \land (P \Rightarrow R) \Leftrightarrow (\neg P \lor Q) \land (\neg P \lor R) \Leftrightarrow \neg P \lor (R \land Q) \Leftrightarrow P \Rightarrow (R \land Q)$$

Laws used:

$$CL \to DIST \to CL$$

1.2.6

Show that $(P \Rightarrow R) \lor (Q \Rightarrow R) \Leftrightarrow (P \land Q) \Rightarrow R$, using logic laws

$$\begin{split} (P \Rightarrow R) \lor (Q \Rightarrow R) \Leftrightarrow (\neg P \lor R) \lor (\neg Q \lor R) \Leftrightarrow \neg P \lor R \lor \neg Q \lor R \Leftrightarrow (\neg Q \lor \neg P) \lor R \Leftrightarrow \\ \Leftrightarrow \neg (Q \land P) \lor R \Leftrightarrow (Q \land R) \Rightarrow R \end{split}$$

Laws used:

$$CL \to ASC \to ID, ASC \to DML \to CL$$

1.2.7

Show that $P \Rightarrow (Q \Rightarrow R) \Leftrightarrow (P \land Q) \Rightarrow R$, using logic laws

$$P \Rightarrow (Q \Rightarrow R) \Leftrightarrow \neg P \lor (Q \Rightarrow R) \Leftrightarrow \neg P \lor (\neg Q \lor R) \Leftrightarrow (\neg P \lor \neg Q) \lor R \Leftrightarrow \neg (P \land Q) \lor R \Leftrightarrow (P \land Q) \Rightarrow R$$

Laws used:

$$CL \rightarrow CL \rightarrow ASC \rightarrow DML \rightarrow CL$$

1.2.8

Show that $(P \Rightarrow Q) \Rightarrow R$ and $P \Rightarrow (Q \Rightarrow R)$ are not logically equivalent We're gonna show that $q \land w \Leftrightarrow false$

$$\begin{split} ((P \Rightarrow Q) \Rightarrow R) \wedge (P \Rightarrow (Q \Rightarrow R)) \Leftrightarrow (\neg (\neg P \vee Q) \vee R) \wedge (\neg P \vee (\neg Q \vee R)) \Leftrightarrow \\ \Leftrightarrow ((P \wedge \neg Q) \vee R) \wedge (\neg P \vee \neg Q \vee R) \Leftrightarrow ((P \wedge Q) \wedge (\neg P \vee \neg Q)) \vee R \Leftrightarrow \\ \Leftrightarrow ((P \wedge Q) \wedge \neg (P \wedge Q)) \vee R \Leftrightarrow false \vee R \Leftrightarrow false \end{split}$$

1.3 Predicates and Quantifiers

1.4 A Formal Language for Set Theory

1.4.1

What does the formula $\exists x \forall y (x \notin y)$ say in English?

There exists x such that for every y we've got that x is not in y. In other ways, there exists an empty set.

1.4.2

What does the formula $\forall y \exists x (y \notin x)$ say in English? For every y there exists set x such that y is not in x.

1.4.3

What does the formula $\forall y \exists x (x \notin y)$ say in English? For every y there exists x such that x is not in y.

1.4.4

What does the formula $\forall y \neg \exists x (x \notin y)$ say in English? For every y there does not exist an x such that x is not in y.

1.4.5

What does the formula $\forall z \exists x \exists y (x \in y \land y \in z)$ say in English? For every z there exists x and y such that x is in y and y is in z

1.4.6

Let $\phi(x)$ be a formula. What does $\forall z \forall y ((\phi(x) \land \phi(y)) \rightarrow z = y)$ For every z and y, $\phi(x)$ and $\phi(y)$ implies that z = y.

1.4.7

Translate each of the following into the language of set theory.

(a) x is the union of a and b

$$\forall (y \in x)(y \in a \land y \in b)$$

(b) x is not a subset of y

$$\exists (z \in x) (\neg z \in y)$$

(c) x is the intersection of a and b

$$\forall (y \in x)(y \in a \lor y \in b)$$

(d) a and b have no elements in common

$$\forall (x \in a) \forall (y \in b) (\neg x = y)$$

1.4.8

Let a, b, C and D be sets. Show that the relationship

$$y = \begin{cases} a \text{ if } x \in C \setminus D \\ b \text{ if } x \notin C \setminus D \end{cases}$$

$$((x \in C \land \neg x \in D) \to (y = a)) \land ((\neg x \in C \land \neg x \in D) \to (y = a))$$

1.5 The Zermelo-Fraenkel Axioms

1.5.1

Let u, v, w be sets. By pairing axiom, the sets $\{u\}$ and $\{v, w\}$ exist. Using the pairing and union axioms, show that the set $\{u, v, w\}$ exists.

By pairing axiom we've got that

$$PA(u, u) = \{u\}$$

$$PA(v, w) = \{v, w\}$$

thus

$$PA(\{u\}, \{v, w\}) = \{\{u\}, \{v, w\}\}\$$

and therefore by union axiom we follow that

$$UA(\{\{u\},\{v,w\}\}) = \{u,v,w\}$$

as desired.

1.5.2

Let A be a set. Show that the pairing axiom implies that the set $\{A\}$ exists

$$PA(A, A) = \{A, A\}$$

which by extension axiom is equal to $\{A\}$, as desired.

1.5.3

Let A be a set. The pairing axiom implies that the set $\{A\}$ exists. Using the regularity axiom, show that $A \cap \{A\} = 0$. Conclude that $A \notin A$.

Since $\{A\} \neq \emptyset$, we follow that there exists x such that $x \in \{A\}$ and $x \cap \{A\} = \emptyset$. Since A is the only element of $\{A\}$, we follow that $A \cap \{A\} = \emptyset$, as desired.

1.5.4

For sets A, B, the set $\{A, B\}$ exists by the pairing axiom. Let $A \in B$. Using the regularity axiom, show that $A \cap \{A, B\} = \emptyset$, and thus $B \notin A$.

 $\{A,B\}$ consists of sets A and B, thus it is not empty and therefore there exists $x \in \{A,B\}$ such that $x \in \{A,B\} \land x \cap \{A,B\} = \emptyset$. For B we've got that $B \in \{A,B\}$. Since $A \in B$ and $A \in \{A,B\}$, we can follow that $A \in (B \cap \{A,B\})$. By pairing axiom we follow that the element with desired property must exists, and given that the only other choice is A, we conclude that $A \cap \{A,B\} = \emptyset$. Therefore we can follow that $B \notin A$, as desired.

1.5.5

Let A, B, C be sets. Suppose that $A \in B$ and $B \in C$. Using the regularity axiom, show that $C \notin A$.

This is an expantion of previous exercise. We can follow that

$$B \in \{A, B, C\} \land B \in C \Rightarrow B \in C \cap \{A, B, C\} \Rightarrow C \cap \{A, B, C\} \neq \emptyset$$

$$A \in \{A, B, C\} \land A \in B \Rightarrow A \in B \cap \{A, B, C\} \Rightarrow B \cap \{A, B, C\} \neq \emptyset$$

thus the only other choice is A, and therefore $A \cap \{A, B, C\} = \emptyset$. Therefore $C \notin A$, as desired.

1.5.6

Let A, B be sets. Using the subset and power set axioms, show that the set $\mathcal{P}(A) \cap B$ exists. Because set A exists we follow that $\mathcal{P}(A)$ exists. By setting $\phi(x): x \in B$ and subset axiom we follow that there exists a subset of $\mathcal{P}(A)$ such that $x \in S \Leftrightarrow x \in \mathcal{P}(A) \wedge x \in B$. Thus we follow by Extensionality axiom that $S = \mathcal{P}(A) \cap B$. Thus $\mathcal{P}(A) \cap B$ exists.

1.5.7

Let A, B be sets. Using the subset axiom, show that the set $A \setminus B$ exists.

$$\phi(x): \neg x \in B$$

thus by subset axiom

$$x \in S \Leftrightarrow x \in A \land \neg x \in B$$

thus $A \setminus B$ exists.

1.5.8

Show that no two of the sets \emptyset , $\{\emptyset\}$, $\{\emptyset\}$, are equal to each other.

I had a little confusion with this one at first because I thought that every set has empty set in it, which is false. Every set has an empty set as a subset, but it might be so that empty set is not in the set itself.

$$\emptyset \notin \emptyset \land \emptyset \in \{\emptyset\} \Rightarrow \emptyset \neq \{\emptyset\}$$
$$\emptyset \notin \emptyset \land \emptyset \in \{\emptyset, \{\emptyset\}\} \Rightarrow \emptyset \neq \{\emptyset, \{\emptyset\}\}\}$$
$$\{\emptyset\} \notin \{\emptyset\} \land \{\emptyset\} \in \{\emptyset, \{\emptyset\}\} \Rightarrow \{\emptyset\} \neq \{\emptyset, \{\emptyset\}\}\}$$

all of the implication follow from extensionality axiom.

1.5.9

Let A be a set with no elements. Show that for all x, we have that $x \in A$ if and only if $x \in \emptyset$. Using the extensionality axiom, conclude that $A = \emptyset$.

Suppose that $\neg x \in A$. Then we follow that x is an element, therefore $\neg x \in \emptyset$. Thus

$$\neg x \in A \Rightarrow \neg x \in \emptyset \iff x \in \emptyset \Rightarrow x \in A$$

Suppose that $\neg x \in \emptyset$. Then we follow that x is an element. Thus $\neg x \in A$. Thus

$$\neg x \in \emptyset \Rightarrow \neg x \in A \iff x \in A \Rightarrow x \in \emptyset$$

thus we follow that

$$x \in \emptyset \Leftrightarrow x \in A$$

thus by extensionality axiom we follow that

$$\emptyset = A$$

which gives us nice follow-up that

$$\emptyset = \{\}$$

1.5.10

Let $\phi(x,y)$ be the formula $\forall z(z \in y \Leftrightarrow z = x)$ which asserts that $y = \{x\}$. For all x the set $\{x\}$ exists. So $\forall x \exists ! y \phi(x,y)$. Let A be a set. Show that the collection $\{\{x\} : x \in A\}$ is a set.

We know that A is a set and therefore $\mathcal{P}(A)$ is also a set. Thus by subset axiom there exists a set

$$\exists S(x \in S \Leftrightarrow x \in \mathcal{P}(A) \land \exists (y \in A)(\phi(x,y)))$$

which is precisely our collection.

Chapter 2

Basic Set-Building Axioms and Operations

2.1 The First Six Axioms

Prove the following theorems, where A, B, C, D are sets.

2.1.1

$$A \subseteq B \to (A \subseteq A \cup B \land A \cap B \subseteq A)$$

$$\forall x(x \in A \to x \in B) \to ((\forall x(x \in A \Rightarrow x \in A \lor x \in B)) \land (\forall (x \in A \land x \in B \Rightarrow x \in A))) \Leftrightarrow$$

$$\Leftrightarrow \forall x(x \in A \to x \in B) \to ((\forall x(\neg x \in A \lor x \in A \lor x \in B)) \land (\forall (\neg (x \in A \land x \in B) \lor x \in A))) \Leftrightarrow$$

$$\Leftrightarrow \forall x(x \in A \to x \in B) \to ((\forall x(\text{true} \lor x \in B)) \land (\forall (\neg x \in A \lor \neg x \in B \lor x \in A))) \Leftrightarrow$$

$$\Leftrightarrow \forall x(x \in A \to x \in B) \to (\text{true} \land (\forall (true \lor \neg x \in B))) \Leftrightarrow$$

$$\Leftrightarrow \neg \forall x(x \in A \to x \in B) \lor (\text{true} \land \text{true}) \Leftrightarrow$$

$$\Leftrightarrow \neg \forall x(x \in A \to x \in B) \lor \text{true} \Leftrightarrow$$

$$\text{true}$$

2.1.2

$$A \subseteq B \land B \subseteq C \rightarrow A \subseteq C$$

$$(\forall x(x \in A \Rightarrow x \in B)) \land (\forall x(x \in B \Rightarrow x \in C)) \rightarrow \forall x(x \in A \Rightarrow x \in C) \Leftrightarrow \\ \Leftrightarrow (\forall x(\neg x \in A \lor x \in B)) \land (\forall x(\neg x \in B \lor x \in C)) \rightarrow \forall x(\neg x \in A \lor x \in C) \Leftrightarrow \\ \Leftrightarrow (\forall x((\neg x \in A \lor x \in B) \land (\neg x \in B \lor x \in C))) \rightarrow \forall x(\neg x \in A \lor x \in C) \Leftrightarrow \\ \Leftrightarrow (\forall x((\neg x \in A \land (\neg x \in B \lor x \in C)) \lor (x \in B \land (\neg x \in B \lor x \in C)))) \rightarrow \forall x(\neg x \in A \lor x \in C) \Leftrightarrow \\ \Leftrightarrow (\forall x((\neg x \in A \land (\neg x \in B \lor x \in C)) \lor ((x \in B \land \neg x \in B) \lor (x \in B \land x \in C)))) \rightarrow \forall x(\neg x \in A \lor x \in C) \Leftrightarrow \\ \Leftrightarrow (\forall x((\neg x \in A \land \neg x \in B) \lor (\neg x \in A \land x \in C) \lor (x \in B \land x \in C)) \rightarrow \forall x(\neg x \in A \lor x \in C) \Leftrightarrow \dots$$

So this thing is tedious as hell and should be left to computers.

Suppose that $x \in A$. Then we follow by $A \subseteq B$ that $x \in B$. Thus by $B \subseteq C$ we follow that $x \in C$. Therefore $x \in A \to x \in C$. Therefore $A \subseteq C$, as desired.

2.1.3

$$B \subseteq C \Rightarrow A \setminus C \subseteq A \setminus B$$

Suppose that $x \in A \setminus C$. Then we follow that $x \in A$ and $x \notin C$. Therefore $x \in A$ and $x \notin B$ since $B \subseteq C$. Thus $x \in A \setminus B$. Therefore we follow that $B \subseteq C$ implies that $A \setminus C \subseteq A \setminus B$, as desired.

2.1.4

$$C \subseteq A \land C \subseteq B \iff C \subseteq A \cap B$$

Suppose that $x \in C$. Then we follow that $x \in A$ and $x \in B$. Thus $x \in A \cap B$. Therefore $C \subseteq A \cap B$. Thus we follow that $C \subseteq A \cap C \subseteq B \Rightarrow C \subseteq A \cap B$

Suppose that $x \in C$. Then we follow that $x \in A \cap B$. Thus $x \in A$ and $x \in B$. Therefore $C \subseteq A \cap C \subseteq B$. Therefore $C \subseteq A \cap B \Rightarrow C \subseteq A \cap C \subseteq B$ thus we follow that

$$C \subseteq A \land C \subseteq B \iff C \subseteq A \cap B$$

as desired.