ANSWERS TO SEMESTER ONE EXAMINATION DEC 2010 (JUNE 2010 INTAKE)

2	Prove	n F4 2 + 207 + 254 40
	(i)	$\frac{\frac{n}{2}}{54n^2 + 207n + 251}; 10$ $1 - \frac{1}{\frac{n+1}{3}}$
	(ii)	$1 - \frac{1}{n+1}$
3	(i)	$\mathbf{r} = \begin{array}{ccc} 3 & 1 \\ 1 & +\lambda & 2 \\ -1 & 3 \end{array}$
	(ii)	$\mathbf{r} = \begin{array}{ccc} 2 & 1 \\ 5 & +\mu & -1 \\ 0 & 1 \end{array}$
	(iii)	4, 3, 2
	(iv)	$\frac{1}{4}x + \frac{1}{10}y - \frac{3}{20}z = 1$
4	(i) (ii) (iii)	y = 2x + 9, $x = 3Max: (1, 5); Min: (5, 23)$
		$y = \frac{2x^{2} + 3x - 19}{x - 3}$ o: Critical points •: Intersection points
5	(25-4	3561 5930721
	625 <i>u</i> = -	$3561u^{2} + 5400u^{2} + 4320u + 1296 = 0$; $S_{4} = \frac{1}{625}$; $S_{8} = \frac{1}{390625}$;
		$3561u^{3} + 5400u^{2} + 4320u + 1296 = 0 ; S_{4} = \frac{3561}{625} ; S_{8} = \frac{5930721}{390625} ;$ $S_{-4} = -\frac{10}{3} ; S_{-8} = \frac{25}{9}$