Алгебра и геометрия

Лисид Лаконский

November 2022

Содержание

1	Алі	ебра и геометрия - 01.11.2022	
	1.1	Кривые второго порядка	
		1.1.1 Эллипс	
		1.1.2 Гипербола	
		1.1.3 Парабола	
	1.2	Параллельный перенос координат	
	1.3	Примеры решения задач	
		1.3.1 Пример 1	

Алгебра и геометрия - 01.11.2022 1

1.1 Кривые второго порядка

1.1.1 Эллипс

Эллипсом называется множество точек M плоскости, сумма расстояний от которых до двух заданных точек F_1 и F_2 , называемых фокусами, есть величина постоянная, большая F_1F_2 : $MF_1 + MF_2 = 2a > F_1F_2$

Каноническое уравнение эллипса: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, где a - большая полуось, b - малая полуось, $a^2 - b^2 = c^2$

Эксцентриситет: $\epsilon = \frac{c}{a} \ (\epsilon < 1)$ Левый фокус: $F_1(-c, 0)$, правый фокус: $F_2(0; c)$, центр эллипса: O(0; 0)

Уравнения директрис: $x = \pm \frac{a}{\epsilon}$ Если a < b, то $b^2 - a^2 = c^2,$ $\epsilon = \frac{c}{b},$ $F_1(0;-c),$ $F_2(0;c),$ тогда уравнения

директрис: $y=\pm\frac{b}{\epsilon}$ Если a=b=r, то $c=0 \implies F_1(-c;0)=F_2(c;0)=O(0;0), \ x^2+y^2=r^2,$

1.1.2Гипербола

 Гиперболой называется множество точек M плоскости, модуль разности расстояний от которых до двух заданных точек F_1 и F_2 , есть величина постоянная, меньшая F_1F_2 : $|MF_1 - MF_2| = 2a < F_1F_2$

Каноническое уравнение: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, где a - действительная полуось, b - мнимая полуось, $a^2 + b^2 = c^2$

Эксцентриситет: $\epsilon=\frac{c}{a}>1$ Левый фокус: $F_1(-c;0)$, правый фокус: $F_2(c;0)$, центр: 0(0;0) $x=\pm\frac{a}{\epsilon}$ - уравнения директрис, $y=\pm\frac{b}{a}x$ - уравнения асимптот

 $-rac{x^2}{a^2}+rac{y^2}{b^2}=1$ - гипербола, сопряженная канонически $y=\pmrac{b}{a}x,\,F_1(0;-c),\,F_2(0;c),\,\epsilon=rac{c}{b}$

1.1.3 Парабола

Параболой называется множество точек M плоскости, равноудаленных от данной точки F (фокус) и от данной прямой l (директриса) MF = r(M, l)

Каноническое уравнение (ОХ): $y^2 = 2px$, $F(\frac{p}{2};0)$, $x = -\frac{p}{2}$ - уравнение директрис

Каноническое уравнение (OY): $x^2 = 2py$, $F(0; \frac{p}{2}, y = -\frac{p}{2})$

1.2 Параллельный перенос координат

Пусть точка M имеет координаты (x;y) в системе Oxy и (x';y') в системе Oxy'y', причем новое начало Oy в старой системе имеет координаты (a;b), тогда

$$\begin{cases} x = x' + a \\ y = y' + b \end{cases} \tag{1}$$

1.3 Примеры решения задач

1.3.1 Пример 1

Найти экцентриситет, что-то там еще и много чего еще, если $4x^2-25y^2+50y-24x-89=0$

$$4x^2 - 24x = 4(x^2 - 6x) = 4(x^2 - 6x + 9 - 9) = 4(x^2 - 6x + 9) - 36 = 4(x - 3)^2 - 36$$
$$-25y^2 + 50y = -25(y^2 - 2y) = -25(y^2 - 2y + 1 - 1) =$$
$$-25(y^2 - 2y + 1) + 25 = -25(y - 1)^2 + 25$$

$$4(x-3)^2-36-25(y-1)^2+25-89=0\Longleftrightarrow 4(x-3)^2-25(y-1)^2-100=0\Longleftrightarrow \frac{(x-3)^2}{25}-\frac{(y-1)^2}{4}=1$$
 - уравнение гиперболы, $a=5,\,b=2$

Введем новые координаты: $x-3=x',\,y-1=y',\,O'(3;1)$ $\frac{(x')^2}{5^2}-\frac{(y')^2}{2^2}=1,\,a=5$ - действительная полуось, b=2 - мнимая полуось

Уравнения директрис: $x'=\pm\frac{a}{c}=\pm\frac{5*5}{\sqrt{29}}=\pm\frac{25}{\sqrt{29}},$ уравнения асимтот: $y'=\pm\frac{b}{a}x'=\pm\frac{2}{5}x',$ экцентриситет: $\frac{c}{a}=\frac{\sqrt{29}}{5}$ $F_1(-\sqrt{29};0),$ $F(\sqrt{29};0)$