Вариант 1

- 1. Линейное отображение $\varphi \colon \mathbb{R}[x]_{\leqslant 2} \to \mathrm{M}_2(\mathbb{R})$ задано формулой $\varphi(a+bx+cx^2) = aE + bS + cS^2$, где $S = \begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix}$. Найдите базис є пространства $\mathbb{R}[x]_{\leqslant 2}$ и базис $\mathbb{R}[$
- **2.** Рассмотрим на пространстве $V=\mathbb{R}[x]_{\leqslant 2}$ линейные функции $lpha_1,lpha_2,lpha_3,$ где

$$\alpha_1(f)=f(0), \ \alpha_2(f)=f'(1), \ \alpha_3(f)=3{\int_0^2} f(x)\,dx$$
 для всех $f\in V.$

Найдите базис пространства V, для которого набор $(\alpha_1, \alpha_2, \alpha_3 - 4\alpha_2)$ является двойственным базисом пространства V^* .

3. Пусть β — билинейная форма на пространстве \mathbb{R}^4 , заданная формулой

$$\beta(x,y) = 2x_3y_1 + x_4y_4$$
 для всех $x = (x_1, x_2, x_3, x_4)^T, y = (y_1, y_2, y_3, y_4)^T \in \mathbb{R}^4$,

и пусть $V\subseteq \mathbb{R}^4$ — подпространство решений уравнения $x_1+x_2-x_3-x_4=0$. Определим квадратичную форму Q на V, полагая $Q(v)=\beta(v,v)$ для всех $v\in V$. Найдите базис пространства V, в котором Q принимает нормальный вид, и выпишите этот вид.

- **4.** В четырёхмерном евклидовом пространстве даны векторы v_1, v_2, v_3 с матрицей Гра-
- ма $\begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 3 \end{pmatrix}$. Для каждого i=1,2,3 обозначим через w_i ортогональную составляю-

щую вектора v_i относительно подпространства, порождаемого двумя другими векторами. Найдите объём параллелепипеда, натянутого на векторы w_1, w_2, w_3 .

5. Пусть $L\subseteq\mathbb{R}^4$ — линейное многообразие, задаваемое системой

$$\begin{cases} x_1 + 2x_2 - x_3 + 2x_4 = 9, \\ -x_1 + 3x_2 - 3x_3 + x_4 = 2. \end{cases}$$

Найдите расстояние от точки (3, 6, -4, 5) до L.

6. Прямая $l\subseteq\mathbb{R}^3$ проходит через точку P=(3,3,2), перпендикулярна прямой $l_1=\{x+3y+2z=11,\,y+z=4\}$ и пересекает прямую $l_2=\{3x+z=1,\,x-y=-2\}$. Найдите расстояние между прямыми l и l_1 .

1	2	3	4	5	6	\sum

Вариант 2

- 1. Линейное отображение $\varphi \colon \mathbb{R}[x]_{\leqslant 2} \to \mathrm{M}_2(\mathbb{R})$ задано формулой $\varphi(a+bx+cx^2) = aE + bS + cS^2$, где $S = \begin{pmatrix} 1 & 3 \\ 1 & 0 \end{pmatrix}$. Найдите базис є пространства $\mathbb{R}[x]_{\leqslant 2}$ и базис $\mathbb{R}[$
- **2.** Рассмотрим на пространстве $V=\mathbb{R}[x]_{\leqslant 2}$ линейные функции $\alpha_1,\alpha_2,\alpha_3,$ где

$$\alpha_1(f)=f(1), \ \alpha_2(f)=f'(0), \ \alpha_3(f)=3{\int_0^2} f(x)\,dx$$
 для всех $f\in V.$

Найдите базис пространства V, для которого набор $(\alpha_1, \alpha_2, \alpha_3 - 6\alpha_1)$ является двойственным базисом пространства V^* .

3. Пусть β — билинейная форма на пространстве \mathbb{R}^4 , заданная формулой

$$\beta(x,y) = 2x_4y_1 + x_3y_3$$
 для всех $x = (x_1, x_2, x_3, x_4)^T, y = (y_1, y_2, y_3, y_4)^T \in \mathbb{R}^4$,

и пусть $V\subseteq \mathbb{R}^4$ — подпространство решений уравнения $x_1-x_2-x_3+x_4=0$. Определим квадратичную форму Q на V, полагая $Q(v)=\beta(v,v)$ для всех $v\in V$. Найдите базис пространства V, в котором Q принимает нормальный вид, и выпишите этот вид.

- **4.** В четырёхмерном евклидовом пространстве даны векторы v_1, v_2, v_3 с матрицей Гра-
- ма $\begin{pmatrix} 2 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \end{pmatrix}$. Для каждого i=1,2,3 обозначим через w_i ортогональную составляю-

щую вектора v_i относительно подпространства, порождаемого двумя другими векторами. Найдите объём параллелепипеда, натянутого на векторы w_1, w_2, w_3 .

5. Пусть $L\subseteq\mathbb{R}^4$ — линейное многообразие, задаваемое системой

$$\begin{cases} 2x_1 - x_2 + x_3 - 2x_4 = 5, \\ -x_1 + 3x_2 + x_3 + 3x_4 = 4. \end{cases}$$

Найдите расстояние от точки (5, 1, 6, 0) до L.

6. Прямая $l\subseteq\mathbb{R}^3$ проходит через точку P=(3,2,0), перпендикулярна прямой $l_1=\{x+4y+3z=11,\,y+z=3\}$ и пересекает прямую $l_2=\{2x+3z=3,\,x+y=-4\}$. Найдите расстояние между прямыми l и l_1 .

1	2	3	4	5	6	\sum

Вариант 3

- 1. Линейное отображение $\varphi \colon \mathbb{R}[x]_{\leqslant 2} \to \mathrm{M}_2(\mathbb{R})$ задано формулой $\varphi(a+bx+cx^2) = aE + bS + cS^2$, где $S = \begin{pmatrix} 0 & 1 \\ 1 & 3 \end{pmatrix}$. Найдите базис є пространства $\mathbb{R}[x]_{\leqslant 2}$ и базис $\mathbb{R}[$
- **2.** Рассмотрим на пространстве $V=\mathbb{R}[x]_{\leqslant 2}$ линейные функции $lpha_1,lpha_2,lpha_3$, где

$$\alpha_1(f)=f(0), \ \alpha_2(f)=f'(-1), \ \alpha_3(f)=3{\int_0^2} f(x)\,dx$$
 для всех $f\in V.$

Найдите базис пространства V, для которого набор $(\alpha_1, \alpha_2, \alpha_3 + 4\alpha_2)$ является двойственным базисом пространства V^* .

3. Пусть β — билинейная форма на пространстве \mathbb{R}^4 , заданная формулой

$$\beta(x,y) = 2x_1y_3 + x_4y_4$$
 для всех $x = (x_1, x_2, x_3, x_4)^T, y = (y_1, y_2, y_3, y_4)^T \in \mathbb{R}^4$,

и пусть $V\subseteq \mathbb{R}^4$ — подпространство решений уравнения $x_1+x_2+x_3-x_4=0$. Определим квадратичную форму Q на V, полагая $Q(v)=\beta(v,v)$ для всех $v\in V$. Найдите базис пространства V, в котором Q принимает нормальный вид, и выпишите этот вид.

- **4.** В четырёхмерном евклидовом пространстве даны векторы v_1, v_2, v_3 с матрицей Гра-
- ма $\begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$. Для каждого i=1,2,3 обозначим через w_i ортогональную составляю-

щую вектора v_i относительно подпространства, порождаемого двумя другими векторами. Найдите объём параллелепипеда, натянутого на векторы w_1, w_2, w_3 .

5. Пусть $L\subseteq\mathbb{R}^4$ — линейное многообразие, задаваемое системой

$$\begin{cases} 2x_1 - x_2 + 2x_3 - x_4 = 3, \\ 3x_1 - 3x_2 + x_3 + x_4 = -4. \end{cases}$$

Найдите расстояние от точки (1,6,6,-5) до L.

6. Прямая $l \subseteq \mathbb{R}^3$ проходит через точку P = (4, -3, 3), перпендикулярна прямой $l_1 = \{x + 3y + 2z = -7, \ y + z = -2\}$ и пересекает прямую $l_2 = \{2x - 3z = 6, \ x + y = 4\}$. Найдите расстояние между прямыми l и l_1 .

1	2	3	4	5	6	\sum

Вариант 4

- 1. Линейное отображение $\varphi \colon \mathbb{R}[x]_{\leqslant 2} \to \mathrm{M}_2(\mathbb{R})$ задано формулой $\varphi(a+bx+cx^2) = aE + bS + cS^2$, где $S = \begin{pmatrix} 4 & 1 \\ 1 & 0 \end{pmatrix}$. Найдите базис є пространства $\mathbb{R}[x]_{\leqslant 2}$ и базис $\mathbb{R}[$
- **2.** Рассмотрим на пространстве $V=\mathbb{R}[x]_{\leqslant 2}$ линейные функции $\alpha_1,\alpha_2,\alpha_3,$ где

$$\alpha_1(f)=f(-1), \ \alpha_2(f)=f'(0), \ \alpha_3(f)=3{\int_0^2} f(x)\,dx$$
 для всех $f\in V.$

Найдите базис пространства V, для которого набор $(\alpha_1, \alpha_2, \alpha_3 - 6\alpha_1)$ является двойственным базисом пространства V^* .

3. Пусть β — билинейная форма на пространстве \mathbb{R}^4 , заданная формулой

$$\beta(x,y) = 2x_1y_4 + x_3y_3$$
 для всех $x = (x_1, x_2, x_3, x_4)^T, y = (y_1, y_2, y_3, y_4)^T \in \mathbb{R}^4$,

и пусть $V\subseteq\mathbb{R}^4$ — подпространство решений уравнения $x_1-x_2+x_3-x_4=0$. Определим квадратичную форму Q на V, полагая $Q(v)=\beta(v,v)$ для всех $v\in V$. Найдите базис пространства V, в котором Q принимает нормальный вид, и выпишите этот вид.

- **4.** В четырёхмерном евклидовом пространстве даны векторы v_1, v_2, v_3 с матрицей Гра-
- ма $\begin{pmatrix} 3 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 2 \end{pmatrix}$. Для каждого i=1,2,3 обозначим через w_i ортогональную составляю-

щую вектора v_i относительно подпространства, порождаемого двумя другими векторами. Найдите объём параллелепипеда, натянутого на векторы w_1, w_2, w_3 .

5. Пусть $L\subseteq\mathbb{R}^4$ — линейное многообразие, задаваемое системой

$$\begin{cases} 2x_1 + x_2 + x_3 - 2x_4 = 3, \\ 3x_1 - x_2 + 3x_3 - x_4 = 2. \end{cases}$$

Найдите расстояние от точки (1,6,1,-2) до L.

6. Прямая $l\subseteq\mathbb{R}^3$ проходит через точку P=(5,-2,-1), перпендикулярна прямой $l_1=\{x+5y+4z=-6,\ y+z=-1\}$ и пересекает прямую $l_2=\{3x+4z=7,\ x-y=5\}$. Найдите расстояние между прямыми l и l_1 .

1	2	3	4	5	6	\sum