Kształtowanie umiejętności inżynierskich Na podstawie realizacji przedmiotu PUST

W. Rokicki, R. Pietkun, J. Gruszecki

Czerwiec 2020

Plan prezentacji

- Organizacja pracy
 - Podział zadań w zespole
- Rozwiązywanie problemów tworzenie własnych algorytmów i modyfikacja gotowych
 - Implementacja algorytmów regulacji, wykorzystanie algorytmów optymalizacji
 - Modyfikacja wcześniej zaimplementowanych algorytmów regulacji
- Przeprowadzanie eksperymentów/symulacji i wyciąganie wniosków, wprowadzanie zabezpieczeń
 - Testowanie i symulacja rozwiązań, wyciąganie wniosków
 - Zabezpieczenia
- 4 Czytanie dokumentacji
 - Korzystanie z opracowanych dokumentacji
- 5 Przygotowywanie raportów
 - Sporządzanie dokumentacji

Podział zadań w zespole

Podział zadań podczas projektów

- Tworzenie kodu
- Testowanie kodu i przeprowadzanie symulacji
- Optymalizacja
- Tworzenie sprawozdania

Podział zadań podczas laboratorium

- Tworzenie kodu
- Testowanie kodu i przeprowadzanie symulacji
- Tworzenie HMI
- Tworzenie sprawozdania

Implementacja algorytmów regulacji, wykorzystanie algorytmów optymalizacji

Implementacja dyskretnych algorytmów PID i DMC

- Implementacja algorytmów regulacji na podstawie wiedzy teorytycznej
- Strojenie regulatorów metoda inżynierska, metoda Zieglera-Nicholsa
- Implementacja algorytmów optymalizacji w celu dobotu optymalnych parametrów algorytmów

Modyfikacja wcześniej zaimplementowanych algorytmów regulacji

- Zmiana jednowymiarowych algorytmów sterowania na algorytmy wielowymiarowe - wykorzystanie gotowego kodu z poprzednich projektów do implementacji
- Wykorzystanie gotowych algorytmów regulacji na innej platformie wykorzystanie kodu z projektów podczas laboratorium w programie GX Works

Testowanie i symulacja rozwiązań, wyciąganie wniosków

- Analiza składni
- Kompilacja
- Symulacja
- Debugowanie
- Sledzenie zmian wartości
- Pamięć i złożoność obliczeniowa

Dzięki testom mogliśmy wyciągać wnioski dotyczące:

- Dynamiki obiektu
- Poprawności implementacji algorytmu
- Optymalnych wartości nastaw regulatora
- Jakości sterowania
- Odporności na zakłócenia
- Ograniczeń
- Najlepszego algorytmu regulacji przy zakładanych ograniczeniach

Zabezpieczenia

- Ochrona zdrowia człowieka
- Ochrona środowiska
- Zabezpieczenie przed uszkodzeniem urządzenia
- Zabezpieczenie i odporność na sytuacje nadzwyczajne

Wprowadzone zabezpieczenia

- Zabezpieczenie stanowiska grzejąco-chłodzącego uszkodzenie czujnika (przekroczenie temperatury powyżej $250^\circ) \to wyłączenie$ najbliższej grzałki
- Zabezpieczenie stanowiska ze zbiornikami limit poziomu wody w zbiorniku (osiągnięcie 20cm wysokości) → otworzenie zaworu tego zbiornika

Korzystanie z opracowanych dokumentacji

- Instrukcje do projektu/laboratorium
- Materiały wykładowe
- Obsługa stanowisk laboratoryjnych
 - Stanowisko grzewczo-chłodzące
 - Stanowisko INTECO
- Obsługa oprogramowania Mitsubishi Electric
 - GX Works
 - GT Designer
 - ▶ GT Simulator
 - LogViewer

Sporządzanie dokumentacji

- Wstęp teoretyczny
- Opis implementacji
- Planowane eksperymenty
- Przeprowadzone eksperymenty
- Uzyskane wyniki
- Wnioski