MISURE DI CALORE SPECIFICO DI ALCUNI MATERIALI E DEL CALORE LATENTE DI FUSIONE DELL'ACQUA

A. Cipriano¹, M. Cingolo² e P. Corrado³

Dipartimento di Fisica, Corso di laurea in Fisica, Università di Roma La Sapienza matricole: 12149050, 2000000, 300000

Abstract

Il calore specifico dei materiali e il calore latente di fusione sono parametri fondamentali per la comprensione dei processi termodinamici. In questa esercitazione di laboratorio, è stato misurato il calore specifico di diversi materiali e il calore latente del ghiaccio attraverso esperimenti basati sull'equilibrio termico. I materiali sono stati immersi in un thermos con acqua calda fino al raggiungimento dell'equilibrio termico, e successivamente trasferiti in un thermos a temperatura ambiente, misurando la temperatura inziale e finale del corpo si è ricavato, tramite il primo principio della termodinamica il calore specifico del materiale. Il calore latente è stato determinato sciogliendo il ghiaccio in acqua a temperatura controllata. I risultati mostrano (scrivere cosa mostrano).

1. INTRODUZIONE

Se prendiamo in considerazione un sistema ipoteticamente isolato dall'ambiente esterno in cui il volume rimane costante, per il primo principio della termodinamica

$$Q_1 = -Q_2 \tag{1}$$

il corpo di massa a temperatura maggiore cede calore al corpo a temperatura minore, fino al raggiungimento della temperatura finale T_f e dunque l'equilibrio termico. Se come sistema prendiamo un corpo di massa m_1 a temperatura iniziale T_1 che viene immerso in acqua a temperatura $T_{i,acq}$ e possibile calcolare il calore specifico come:

$$c_1 = \frac{c_{acq}(m_{acq} + M_e)(T_{i,acq} - T_1)}{m_1(T_f - T_1)}$$
 (2)

dove c_{acq} è il calore specifico dell'acqua e M_e la massa equivalente del thermos, necessaria per tener conto del calore assorbito o ceduto dal thermos. Sempre dal primo principio della dinamica è possibile ricavare il calore latente del ghiaccio:

$$\lambda_g = \frac{c_{acq}[(m_{acq} + M_e)(T_{i,acq} - T_g) - m_g(T_f - T_g)]}{m_g}$$

 T_g è la temperatura del ghiaccio quando viene immerso nell'acqua, pari a $0^{\circ}C$.

2. APPARATO SPERIMENTALE

- Thermos: Al fine di ridurre al minimo lo scambio di calore con l'ambiente esterno, e garantire che il calore venga scambiato solo tra i materiali coinvolti, sono stati impiegati due thermos.
- Bilancia digitale: Per misurare le masse dei corpi è stata impiegata una bilancia digitale con sensibilità di 0.1 g.
- \bullet Termometri: per la misura di temperature sono stati impiegati due termometri a mercurio con sensibilità di 0.2 °C
- Bollitore elettrico: Imiegato per portare l'acqua a temperature superiori a quella ambiente.

3. PROCEDURA SPERIMENTALE

La procedura sperimentale è stata suddivisa in due parti, la prima volta a misurare il calore specifico di alcuni materiali e la seconda il calore latente dell'acqua. In entrambe gli esperimenti i valori della massa equivalnte M_e e del calore specifico dell'acqua sono stati c_{acq} considerati noti e pari rispettivamente a 1cal/qK e 25 ± 5 g.

3.1. Calore specifico

Per ogni campione di materiale analizzato é stata inizialamente misurata la massa, in seguito il campione è stato immerso in un primo thermos contenente acqua ad una temperatura nel range di 58 - $67^{\circ}C$ e al raggiungimento dell'equilibrio termico è stata misurata la temperatura dell'acqua e quindi per equazione 1 quella del corpo. Il corpo è stato in seguito trasferito in un secondo thermos, contenente acqua a temperatura iniziale $T_{i,acq}$ precedentemente misurata. Raggiunto l'equilibrio è stata acquisita la temperatura finale T_f del sistema e tramite equazione 2 è stato calcolato il calore specifico. Poichè questo procedimento viene ripetuto, la massa dell'acqua potrebbe diminuire quando il corpo viene spostato e poi nuovamente riposto nel secondo thermos, al fine di tenere in considerazione le possibili variazione di massa dovute a questa procedura, per ogni ripetizione dell'esperimento é stata misurata la massa complessiva $m_{tot} = m_{th} + m_{acq}$, del sistema costituito dal thermos e dall'acqua, e dalla misura della massa del thermos m_{th} abbiamo ottenuto, per differenza, la massa di acqua m_{acq} .

3.2. Calore latente di fusione del ghiaccio

Inizialmente il ghiaccio si presenteva ad una temperatura di $\approx -3^{\circ}C$, è stato dunque immerso in un thermos con poca acqua e tramite un termometro si è monitorata la temperatura. Quando il termometro si è stabilizzato a $0^{\circ}C$, il ghiaccio é stato traferito nel secondo thermos, contenete acqua riscaldata tramite bollitore elettrico, di cui è stata misurata la massa m_{acq} . Misurando la temperatura iniziale T_i del ghiacchio la temperatura iniziale dell'acqua $T_{i,acq}$ nel secondo termos e la temperatura T_f all'equilibrio, si è ricavato tramite 3 il calore latente del ghiaccio. L'esperimento è stato eseguito due volte, al fine di ottenere una (motivare).

4. RISULTATI

5. CONCLUSIONI