Opportunities in Statistics Education Research

Beth L. Chance

Cal Poly – San Luis Obispo

(bchance@calpoly.edu)

Who am I?

- Undergraduate math major
- * PhD Operations Research
 - Minor in Education
 - Behavior Characterization and Estimation for General Hierarchical Multivariate Linear Regression Models
- * Mathematics department, University of the Pacific
- * Statistics department, Cal Poly SLO (1999)

Beginnings

- Psychology research, Educational psychology, Cognitive science
- Mathematics education
 - International group for the psychology of mathematics education
 - ICME: International congress of mathematics education
 - JRME: Journal of research in mathematics education
- * Statistics education research
 - IASE: International association for statistical education
 - SERJ: Statistics education research journal
 - ICOTS: International conference on teaching statistics (USCOTS)

Beginnings

- * Initially limited focus
 - Identification of misconceptions
 - Comparison of instructional modes
 - Prediction of achievement
- * Rarely focused on statistical reasoning

Traditional Measurement

- Standardized exams, Final exams, Student ratings
 - Students who earn good grades on final exams often demonstrate poor statistical reasoning skills (Hawkins, Joliffe, & Glickman, 1992)
 - Most existing high-impact standardized exams are poorly aligned with national standards for instruction and assessment (Lesh & Lovitts, 2000)
 - Traditional exams too often emphasize final answer over the process" Garfield (1993)
- * If goals change, so must assessment strategies

New kinds of "data"

* Cliff Konold, "The virtues of building on sand", plenary presentation, ICOTS 8, 2010

Traditional Research Techniques

- * Randomized comparative experiments
 - Using statistics effectively in mathematics education research (Scheaffer et al, 2007)
- * Cautions
 - long vs. short-term
 - confounding variables
 - realism
 - time delays
 - ethical issues
 - external perspective

Qualitative Research

- * SERJ special issue: Qualitative approaches in statistics education research
- * Standards
 - Validity
 - Generalizability
 - Reliability
 - Objectivity
- Consistent, Replicable, Well-documented, Fair and equitable

Classroom-Based Research

- * "Teachers researching their own practice of teaching."
 - Feldman & Minstrell in Kelly & Lesh (2000)
- * "It is most simply defined as ongoing and cumulative intellectual inquiry by classroom teachers into the nature of teaching and learning in their own classrooms."
 - Cross and Steadman (1986) Education

To Experiment or Not to Experiment?

- Variety of tools should be employed
 - "Different techniques generate different types of information, and it is often the case that a single technique will not provide the breadth of information necessary to answer unequivocally the research questions under investigation."

- Mestre (2000)

- qualitative and quantitative data
- observe before manipulate
 Research in Statistics Education

Best Practices

- * Handbook of Research Design in Mathematics and Science Education
 - Kelly and Lesh, Eds. (2000)
- * International Handbook of Research in Statistics Education
 - Ben-Zvi, Makar, and Garfield, Eds. (2018)
- Research agenda/Instruments and Methods

Example Research in Statistics Education

1. Tools for Teaching, Assessing Statistical Inference Project (Garfield, delMas, Chance)

- Can interaction with simulation program improve student reasoning about sampling distributions?
 - how to best integrate technology into instruction
 - why particular techniques more effective
 - how student understanding evolves

This project was supported, in part, by the National Science Foundation, DUE-9752523
Research in Statistics Education

Methods

- * Diverse tertiary environments
 - private liberal arts college, college of education, developmental education college
- * Diverse student groups
- * Researchers with diverse backgrounds
- Creation of desired learning environment
- Incorporation of existing theory
- * Generating new models
 Research in Statistics Education

Measurements

- Graphics-based test items
- Open-ended questions, justifications
- * Multiple choice categorizations
- * Pre-test vs. Post-test performance
- * Post-test application problems
- Using assessment to create dissonance
- In-depth interviews and videotape analysis

Student interviews/Videos

"I'm going to go for C for n=4 and then 16 for ... n=16 for A. And partially because ... with n=4, I'm thinking you are going to have a larger range ... yeah, a larger range for n=4 than that you would for n=16.

Student interviews/Videos

"Because before I was guessing and I thought that the standard deviation for a larger sample size would be closer to the original than the standard deviation for n=4."

Meeting the Standards

- Validity: prolonged investigation, immersion, triangulation, member checks
- * Generalizability: extensive description, multi-site design
- * Reliability: multiple perspectives, participant involvement
- * Objectivity: documentation, dissemination
 - -"acknowledged and controlled subjectivity"

Additional Benefits

- * Narrows gap between theory and practice
 - direct link to classroom environment
- * Further insight into classroom, students
 - combined with nonparticipant viewpoint
- * Dynamic
- Open to alternative student interpretations
- Focus on process

Human Subjects

- * Talk to your institution's Institutional Review Board (IRB)
 - Exemption

1. Tools for Teaching, Assessing Statistical Inference Project (Garfield, delMas, Chance)

A model of classroom research in action: Developing simulation activities to improve students' statistical reasoning

Article (PDF Available) in Journal of Statistics Education 7(3) · January 1999 with 396 Reads

2. Simulation-Based Inference Project (Tintle, Cobb, Rossman, Roy, Swanson, VanderStoep...)

- * Does use of simulation-based inference in introductory statistics courses improve students' ability to learn statistics and/or students' attitudes towards statistics
 - Curriculum materials
 - Technology tools
 - Assessment
 - Dissemination
 - NSF grants:

NSF Grants

- * CCLI #0633349: Concepts of Statistical Inference: A Randomization-Based Curriculum,
- NSF TUES Type I Project, Award #1140629: Developing an Innovative Randomization-based Introductory Statistics Curriculum
- * NSF/TUES/DUE- Phase II, Award #1323210: Broadening the impact and evaluating the effectiveness of randomization-based curricula for introductory statistics
- NSF/IUSE/HER #1612201: Developing and Assessing a Conceptual Approach to an Algebra-based Second Course in Statistics
- * RCN-UBE #1730668: Statistical Thinking in Undergraduate Biology (STUB) Network: A network for coordinating the teaching and assessment of statistical thinking in introductory biology

Methods

- Web-based applets
- * Textbooks
 - Process, Spiraling, Active learning, Assessment
- SBI Blog (www.causeweb.org/SBI)
- Workshops for teachers

Measurements

- Multi-institutional assessment pre/post
 - Concept inventory adapted from CAOS
 - Comprehensive Assessment of Outcomes in first Statistics course (see also GOALS)
 - ~35 questions (24 "sets")
 - National comparison data
 - SATS = Students Attitudes Toward Statistics (Schau, 2003; see SERJ special issue)
 - 6 Subscales (e.g., Affect, Difficulty, Effort, Cognitive competence, Value, Interest)
 - Demographic data

Multilevel Models!

Key Principles – How students learn statistics

- * Garfield (1995), Garfield & Ben-Zvi (2007)
 - Students learn by constructing knowledge
 - Students learn by active involvement in learning activities
 - Active learning increases student performance in science, engineering, and mathematics, Freeman et al (PNAS, 2014)
 - Students learn to do well only what they practice doing
 - Do not underestimate student difficulty

Key Principles – How students learn statistics

- * Garfield (1995), Garfield & Ben-Zvi (2007)
 - Students need to become aware of and confront their errors in reasoning
 - Use technology to visualize and explore
 - Consistent and helpful feedback on their performance
 - Students learn to value what they know will be assessed

Some Current Efforts

- Service learning (e.g., Doehler; Nordmoe; Hydorn; Phelps), Experiential learning (e.g., Morris)
- Context-driven statistics (e.g., Dierker, ProCivicStats)
- * Beyond the first course (e.g., Kuiper; Tintle et al.; Chihara & Hesterberg; Nolan)
- * Connections to research (e.g., Son & Stigler)
- Assessment, Adaptive testing (e.g., Beckman; Sabbag; Broaddus; Cheng)

Some Current Questions

- Student experience vs. instructor demonstration
- * Tracking student interaction with technology
- * Large classes
- * Preparation of future teachers
- * Retention
- * Student attitudes

Advice - Designing a Lesson

- * What are the learning goals?
 - What are common student difficulties
- * How will I assess whether students have met those goals?
- * How does it connect to content before/after this lesson?
- * What is an engaging context?
- * How/when do I actively engage the students
 - Directly confront student difficulties
- Will technology be helpful?

Advice – Designing a Research Question

- * What is my audience?
- * What are the learning goals?
 - What are common student difficulties
- * What do I plan to do differently?
 - What are my preconceptions?
- * How does it connect to prior research?
- * How will I assess whether students have met those goals/whether it works?

Research in Statistics Education

Advice – Designing a Research Study (Grant)

- * Familiarize yourself with the research, assessment tools
 - NSF Award Search
- Connect with others (e.g., causeweb.org)
 - Across institutions
 - Across disciplines
 - New and "Old" folks
- * Talk with program officer
- * Be open to alternative research methodologies
 - Synergy with your "real" research

Any Questions?

* bchance@calpoly.edu