- 1. (intbyparts:arcsine) Compute $\int \arcsin(x)dx$.
- 2. (intbyparts:ln) Compute $\int \ln(x)dx$
- 3. (intbyparts:arccos) Compute $\int \arccos(x) dx$.
- 4. (intbyparts:arctan) Compute $\int \arctan(x) dx$.
- 5. (intbyparts:sec3) Compute $\int \sec^3(x) dx$.
- 6. (intbyparts:xnlog) Let $n \neq -1$ and compute $\int x^n \ln(x) dx$.
- 7. (intbyparts:gamma) For x>0, call $\Gamma(x)=\int_0^\infty t^{x-1}e^{-t}dt$. Show that $\Gamma(x+1)=x\Gamma(x)$.
- 8. (intbyparts:taylorfo) Suppose that h is twice continuously differentiable. Use integration by parts and the fundamental theorem of calculus to show that

$$h(x) = h(0) + h'(0)x + \int_{0}^{x} (x - t)h''(t)dt$$

- 9. (intbyparts:expasinb) Compute $\int e^{ax} \sin(bx) dx$ where $a, b \neq 0$.
- 10. (intbyparts:expacosb) Compute $\int e^{ax} \cos(bx) dx$ where $a, b \neq = 0$.
- 11. (intbyparts:xmlnn) Assuming that $m \neq -1$, show that

$$\int x^m (\ln(x))^n dx = \frac{1}{m+1} x^{m+1} (\ln(x))^n - \frac{n}{m+1} \int x^m (\ln(x))^{n-1} dx$$

- 12. (intbyparts:xln) Compute $\int x \ln(x) dx$.
- 13. (intbyparts:xex) Compute $\int xe^x dx$.

- 14. (intbyparts:exsin) Compute $\int e^x \sin(x) dx$.
- 15. (intbyparts:definite1) Compute $\int_0^1 \ln(2t+1)dt$.