

EQUATIONS

Why

We name a statement which involves an identity.¹

Definition

An equation is statement (see Statements) relating two terms by the relation of identity (see Identities). Some authors also call an equation an equality. The symbol "=" is called the (or an) equals sign or equals symbol.

Variables

Let X and Y be sets and let $f, g: X \to Y$. In the statement $(\forall x)(f(x) = g(x))$, f and g are free names and x is a bound name (see Quantified Statements).

For convenience, we often refer to the equation f(x) = g(x) without the quantifier $\forall x$. In this case, x appears free, but is not. In this context, the statement f(x) = g(x) has x implicitly bound. There are two senses here, though. The first is that x is bound because it is "subordinate" to the quantifier \forall . The particular symbol is irrelevant; the symbol y works just as well. In a second sense, though, the name is "free," as it is a placeholder and the choice of the symbol x does not matter.

We use different terminology for this common case. In discussing f(x) = g(x), we call the placeholder name x a variable and we call the names f and g constants. The language is meant to convey f and g are fixed in the present discussion, as indicated by the usual language "Let f and g …".

¹Future editions will modify this statement and sheet.

Solutions

We are often interested in finding objects in some set to satisfy an equation. For example, we are interested in finding an object $\xi \in X$ to satisfy $f(\xi) = g(\xi)$. In this setting we call the variable ξ in the equation an unknown.

We call an element $\xi \in X$ a solution of the equation if $f(\xi) = g(\xi)$. We call the set $\{\xi \in X \mid f(\xi) = g(\xi)\}$ the solution set. If the solution set is non-empty, we say that a solution exists. If the solution set is a singleton, we say that the solution is unique.

We are often interested in solutions which satisfy several equations at once. For example, we have the equations $f_1(x) = g_1(x)$ and h(x) = i(x) and so on. We want x to satisfy these. Here it is set of equations, simultaneous equations, or a system of equations.

Finding solutions

We often talk about finding or searching for solutions or solving equations. We say: "We want to find $x \in X$ to satisfy f(x) = g(x)." In addition to f(x) = g(x), we may include other statements about x. The language is meant to convey that we are searching for an object which we will name, as a variable, x, and we want this object to satisfy the statements.

