Н. Х. Хуррамов

ЛОКАЛЬНЫЕ И НЕЛОКАЛЬНЫЕ ЗАДАЧИ ДЛЯ УРАВНЕНИЯ СМЕШАННОГО ТИПА С СИНГУЛЯРНЫМ КОЭФФИЦИЕНТАМ

$$\frac{a+b}{a} = \frac{a}{b} = \varphi \approx 1,61803$$

Н. Х. Хуррамов

ЛОКАЛЬНЫЕ И НЕЛОКАЛЬНЫЕ ЗАДАЧИ ДЛЯ УРАВНЕНИЯ СМЕШАННОГО ТИПА С СИНГУЛЯРНЫМ КОЭФФИЦИЕНТАМ

УДК: 517.98

КБК: 22.161.6

X 92

В монографии исследуется разрешимости локальных и нелокальных краевых задач для уравнений смешанного типа с сингулярным коэффициентом и с общими условиями сопряжения на линии вырождения в некоторых смешанных областях. В монографии использованы методы принципа экстремума А.В.Бицадзе, а также методы теории регулярных и сингулярных интегральных уравнений.

Для уравнения смешанного типа с сингулярным коэффициентом исследована задача Геллерстедта с данными на характеристиках одного семейства, а также исследована задача с недостающим условием Трикоми на части граничной характеристики и условием Бицадзе - Самарского на части граничной, параллельной ей внутренней характеристике и общими условиями сопряжения на линии вырождения.

Найдены формулы обращения сингулярных интегральных уравнений Трикоми со сдвигом в «несингулярной» части ядра.

Изложен алгоритм решения сингулярного интегрального уравнения с нефредгольмовым оператором в нехарактеристической части уравнения, имеющего изолированную особенность первого порядка.

Монография предназначена для студентов старших курсов, магистров, докторонтов математических специальностей.

Ответственный редактор:

Тураев Х. -кандидат физико-математических наук, доцент.

Рецензенты:

Каримов Ш. Т. – доктор физико-математических наук, профессор. **Расулов Х. Р.** – кандидат физико -математических наук, доцент.

Монография рекомендована к изданию на основании решения Совета №2/4.3 Термезского государственного педагогического института от 29 сентября 2022 г.

ISBN: 978-9943-8992-8-5 © Н. X. Хуррамов

© ИПЦ ТерГУ, 2022.

ВВЕДЕНИЕ

Пользуясь случаем, выражаю искреннюю благодарность моему научному руководителю доктору физико-математических наук,профессору Мирсабурову Мирахмату за ценные советы и постоянное внимание при выполнении настоящей работы.

Одним из важнейших разделов теории дифференциальных уравнений с частных производными является теория краевых задач для уравнений смешанного эллиптическо-гиперболического типа.

Начало этому направлению было положено в 20-х годах прошлого столетия в работах Ф.Трикоми [44], для уравнения

$$T(u) = yu_{xx} + u_{yy} = 0. (0.1)$$

Ему принадлежит постановка и решение следующей задачи, носящей в настоящее время название задача Трикоми: в области D, ограниченной дугой Жордана Γ , лежащей в полуплоскости y>0, с концами в точках A(0,0), B(1,0), и отрезками AC и BC характеристик $x-(2/3)(-y)^{3/2}=0$, $x+(2/3)(-y)^{3/2}=1$ уравнения (0.1), выходящих из точки $C(1/2,-(3/4)^{2/3})$, ищется регулярное решение этого уравнения непрерывное в u(x,y) и удовлетворяющее условиям

$$u(x, y) = \varphi(x, y), (x, y) \in \Gamma, \tag{0.2}$$

$$u(x, y) = \psi(x, y), (x, y) \in AC,$$
 (0.3)

$$\lim_{y \to -0} u_y = \lim_{y \to +0} u_y, \ (x, y) \in (0, 1), \tag{0.4}$$

где $\varphi(x, y), \psi(x, y)$ – заданные непрерывные функции.

Первое направление-это исследование задачи Трикоми для более общих уравнений второго порядка, среди которых следует отметить работы С.Геллерстедта [51] (для уравнения $y^{2n-1}u_{xx} + u_{yy} - cu = F(x, y)$); А.В.Бицадзе [6,9] (для уравнения $u_{xx} + (signy)u_{yy} = 0$, $y^{2n}u_{xx} + yu_{yy} + \beta_0 u_y = 0$, $n \in \mathbb{N}$);

К.И.Бабенко [4] (для уравнения $K(y)u_{xx} + u_{yy} = 0$, $yu_{xx} + u_{yy} + c(x, y)u = 0$); И. Л.Кароля [18] (для уравнения $u_{xx} + (signy) | y|^m u_{yy} = 0$, 0 < m < 1); С.П.Пулькина [34] (для уравнения $u_{xx} + (signy) + a(x, y)u_x + b(x, y)u_y + c(x, y)u = 0$) и другие.

Второе направление-это различные модификации задача Трикоми, среди которых отметим работу Геллерстедта [53] для уравнения

$$y^{2n-1}u_{xx} + yu_{yy} = 0, n \in \mathbb{N}.$$

Геллерстедт исследовал видоизмененную задачу Трикоми, когда носителями данных вместо (0.2)(0.3)определенным образом подобранные отрезки характеристик этого уравнения. Ф.И.Франкль в работе [47] пришел к важному обобщению задачи Трикоми для уравнения $K(y)u_{xx} + u_{yy} = 0$, когда граничные значения искомой функции задаются на Г и на некоторой не характеристической AE, дуге расположенной внутри характеристического треугольника И пересекающей каждую характеристику второго семейства на более одного раза. Точка Eлежит на характеристике BC уравнения $K(y)u_{xx} + u_{yy} = 0$. В дальнейшем эту задачу будем называть обобщенной задачей Трикоми. В этом направлении отметим работы А.В.Бицадзе [6], К.И.Бабенко [4], А.П.Солдатова [36], М.А.Садыбекова [37] и др. Обобщенную задачу Трикоми для уравнения гиперболо-параболического типа исследовал Т.Д.Джураев[16]. Г.Каратопраклиев [10] обобщил задачу Трикоми для уравнения (0.1) на случай, когда при переходе через линию параболического вырождения решение u(x, y) и его производная могут иметь разрыв первого рода и на этой линии удовлетворяют условиям склеивания

$$u(x,-0) = \alpha(x)u(x,+0) + \gamma(x), x \in \overline{I},$$
$$\frac{\partial u(x,-0)}{\partial y} = \beta(x)\frac{\partial u(x,+0)}{\partial y} + \delta(x), x \in I.$$

Исследованию различных модификаций задачи Трикоми для уравнений высокого порядка посвящены работы А.В.Бицадзе и М.С.Салахитдинова [38], Т.Д.Джураева[16], А.И.Кожанова [19] С.А.Абдиназарова [17] Т.Д.Джураева, весьма исчерпывающая библиография задачам содержится ПО В монография таким М.С.Салахитдинова [39], Т.Д.Джураева [16]. Заметим, что наряду с задачами типа задачи Бицадзе-Самарского развиваются и задачи для уравнений смешанного типа со спектральным параметром, это работы Е.И.Моисеева [27], Т.Ш.Кальменова [21], С.М.Пономарева [33] М.С.Салахитдинова, А.К.Уринов [38] и др. спектралным параметром в краевом условии исследованы в работах Ш.А.Алимова [1] Н.Ю.Капустина, Е.И.Моисева [27].

Решающим моментом в развитии теории краевых задач для уравнений смешанного типа является теория потенциала, разработанной шведским математиком Свеном Геллерстедтом [52], с помощью которого решения задач Дирихле и N для вырождающегося

 $y^{m}u_{xx} + u_{yy} = 0$, выписываются в удобной эллиптического уравнения интегральной форме которое, очень удобно использовать при исследовании краевых задач для уравнений смешанного элиптикогиперболических типов. Так же большим успехом в развитии теории краевых задач для уравнений смешанного типа явилась принцип широко А.В.Бицадзе, которой используется доказательстве единственности решения задач [9]. Существенном теории краевых задачи для уравнений результатом в развитие смешанного типа так же является метод регуляризации Карлемана развитой С.Г.Михлиным [26] для решения интегрального уравнения Трикоми.

К началу 70-х годов прошлого столетия, казалось, все вопросы теории краевых задач для уравнений смешанного типа были решены и для дальнейшего развития этой теории нужны были в корне новое постановки задач. Новой задачей, дающей новый импульс развития теории краевых задач для уравнений смешанного типа, стала совместная работа А.В. Бицадзе и А.Самарского [10].

В последнее время задачи с условиями Бицадзе-Самарского являются объектом постоянного рассмотрения во многих научных центрах.

Первая глава монографии посвящена постановке и исследованию задачи с условиями Геллерстедта на граничной характеристики и на параллельной ей внутренней характеристике.

С. Геллерстедт [41,с.186, с.201] для обобщённого уравнения Ф.Трикоми исследовал задачи, при постановке которых в гиперболической части области D значения искомого решения задаются на двух кусках характеристик разного семейства EC_0 и EC_1 или AC_0 и BC_1 . При этом в эллиптической части области D граничные значения задаются на нормальной кривой σ_0 .

Задача, рассматриваемая в данной главе, отличается от задачи Геллерстедта тем, что для неё значения искомого решения задаются характеристиках семейства, T.e. граничной одного на параллельной характеристике ей внутренней AC_0 И характеристике EC_1 . Нестандартная постановки задачи Геллерстедта исследовании нестандартного интегрального уравнения Трикоми со сдвигами в несингулярной части ядра и нефредгольмовым оператором не характеристической части уравнения.

Единственность решения задачи G_0 доказывается с помощью принципа экстремума А.В.Бицадзе. Доказательство существования решения задачи доказывается с помощью метода интегральных уравнений с применением комбинации теории сингулярных интегральных уравнений, уравнений Винера-Хопфа и теории интегральных уравнений Фредгольма второго рода.

В главе 2 для уравнения смешанного типа с сингулярным коэффициентом вида (1.1.1) рассматривается задача *ТН*, когда краевое условие на первой части граничной характеристики задаётся локально, а на второй части и параллельной ей внутренней характеристике задается условие Бицадзе — Самарского.

Настоящая работа отличается от работы [9,27,36,41,44] тем что здесь граничная характеристика АС произвольным образом разбита на два куска: AC_0 , C_0C и на первой части AC_0 задаётся значение искомой функции, а на второй части C_0C и параллельной ей характеристике внутренней задаётся EC_1 [22] интервале Бицадзе-Самарского И на вырождения ABвыполняется общие условия сопряжения [20].

Единственность решения сформулированной задачи доказывается с помощью принципа экстремума. Существование решения задачи доказывается с применением теорий сингулярных интегральных уравнений, уравнений Винера-Хопфа и интегральных уравнений Фредгольма второго рода.

Существование решения задачи *TH* с использованием формулы дающей решение видоизмененной задачи Коши [40, с.34] и решение задачи Хольмгрена [40, с.93] сводиться к сингулярному интегральному уравнению Ф.Трикоми со сдвигом в несингулярной части ядра и с не регулярным оператором в правой часть уравнения. Регуляризируя эти уравнение с помощью метода Карлемана развитой С. Г. Михлиным [23, 26], [41, с.43], получено интегральное уравнение Винера-Хопфа [25,32], [13, с.55], которые редуцируется к интегральному уравнению Фредгольма второго рода, разрешимость которых следует из единственности решения задач *TH*.

Во третьей главе для уравнения Геллерстедта с сингулярным коэффициентом в некоторой нестандартной смешанной области, когда граница эллиптичности совпадает с отрезком оси *Оу* и нормальной кривой уравнения исследована задача с условием

Бицадзе- Самарского на границе эллиптичности и на линии вырождения. Доказана корректность сформулированной задачи.

Единственность решения сформулированной задачи доказана методом принципа экстремума А.В.Бицадзе.

Доказательства существования решения задачи БС эквивалентно решению сингулярного интегрального уравнения К Трикоми с нефредгольмовым оператором в нехарактеристической уравнение. Временно считая правую часть, уравнения известной функцией и к этому уравнению применяя, метол регуляризации Карлемана-Векуа интегральное уравнение Трикоми эквивалентно редуцируется к интегральному уравнению Винерауравнения Хопфа. Доказано, ЧТО индекс ЭТОГО равно следовательно, уравнения Винера-Хопфа эквивалентно редуцируется к интегральному уравнению Фредгольма второго рода, однозначная разрешимость которого следует из единственности решения задачи БС.

Настоящая монография посвящена исследованию локальных и нелокальных краевых задач для уравнения Геллерстедта с сингулярным коэффициентом.

ГЛАВА І. ЗАДАЧА С УСЛОВИЕМ ГЕЛЛЕРСТЕДТА НА ХАРАКТЕРИСТИКАХ ОДНОГО СЕМЕЙСТВА ДЛЯ УРАВНЕНИЯ СМЕШАННОГО ТИПА С СИНГУЛЯРНЫМ КОЭФФИЦИЕНТОМ

В данной главе для уравнения (1.1.1) рассматриваемого в некоторой смешанной области, доказаны теоремы единственности, и существования решения задачи с условиями Геллерстедта на части граничной характеристики и на параллельной ей внутренней характеристике.

Краевую задачу с условиями Геллерстедта для уравнения смешанного типа с сингулярным коэффициентом в далнейшем будем обозначать через Γ_0 .

Результаты данной главы опубликованы в работах [57], [59], [61], [66], [69-72].

§1.1. Постановка задачи Γ_0 .

Пусть D-конечная односвязная область плоскости xOy, ограниченная при y>0 нормальной кривой $\sigma_0: x^2+4(m+2)^{-2}y^{m+2}=1$, с концами в точках A(-1,0) и B(1,0), а при y<0- характеристиками AC и BC уравнения

$$(signy) | y|^m u_{xx} + u_{yy} + (\beta_0 / y)u_y = 0, (1.1.1)$$

где m – положительная постоянная, $\beta_0 \in (-m/2, 1)$.

Обозначим через D^+ и D^- части области, D, лежащие соответственно в полуплоскостях y>0 и y<0, а через C_0 и C_1 точку пересечения характеристик AC и BC с характеристиками уравнения (1.1.1), выходящих из точки, E(c,0) где c- некоторое число, принадлежащее интервалу I=(-1,1) оси y=0.

С. Геллерстедта [41,с.186, с.201] для обобщённого уравнения Ф.Трикоми исследовал задачи, при постановке которых в гиперболической части области D значения искомого решения задаются на двух кусках характеристик разного семейства EC_0 и EC_1 или AC_0 и BC_1 . При этом в эллиптической части области D граничные значения задаются на нормальной кривой σ_0 .

Задача, рассматриваемая в настоящей работе, отличается от задачи Геллерстедта тем, что для неё значения искомого решения задаются на характеристиках одного семейства, т.е. на граничной характеристике AC_0

и параллельной ей внутренней характеристике EC_1 .

Задача Γ_0 . Требуется найти в области D функцию $u(x,y) \in C(\bar{D})$, удовлетворяющую следующим условиям:

- 1) u(x,y) принадлежит классу $C^2(D^+)$ и в области D^+ удовлетворяет уравнению (1.1.1);
- 2) u(x,y) является в области D^- обобщённым решением класса R_1 [41, c.104];
- 3) на интервале вырождения *АВ* имеет место условие сопряжения

$$\lim_{y \to -0} (-y)^{\beta_0} \frac{\partial u}{\partial y} = \lim_{y \to +0} y^{\beta_0} \frac{\partial u}{\partial y}, \qquad x \in I \setminus \{c\},$$
 (1.1.2)

причём эти пределы при $x \to \pm 1$, $x \to c$ могут иметь особенность порядка ниже $1-2\beta$, где $\beta = \frac{m+2\beta_0}{2(m+2)} \in (0,1/2)$;

4) выполняются условия

$$u(x, y)|_{\sigma_0} = \varphi(x), x \in [-1, 1];$$
 (1.1.3)

$$u(x,y)|_{AC_0} = \psi_0(x), \ x \in [-1,(c-1)/2];$$
 (1.1.4)

$$u(x,y)|_{EC_1} = \psi_1(x), \ x \in [c,(c+1)/2].$$
 (1.1.5)

где $\varphi(x)$, $\psi_0(x)$, $\psi_1(x)$ - заданные функции, причём

$$\varphi(x) \in C[-1,1] \bigcap C^{0,\alpha_0}(-1,1), \quad \psi_0(x) \in C[-1,(c-1)/2] \bigcap C^{1,\alpha_0}(-1,(c-1)/2),$$
$$\psi_1(x) \in C[(c+1)/2,1] \bigcap C^{1,\alpha_0}((c+1)/2,1), \quad \alpha_0 \in (0,1),$$

$$\varphi(x)=(1-x^2)\varphi(x), \ \text{где} \ \varphi(x)\in C^{0,\alpha_0}[-1,1]\bigcap C^{0,\alpha_0}(-1,1), \ \psi_0(-1)=0, \ \psi_1(c)=0.$$

Заметим, что условие (1.1.3) является условием Дирихле, заданным на кривой σ_0 , а условия (1.1.4) и (1.1.5)- это соответственно условия Геллерстедта заданное на граничной характеристике AC_0 , и на внутренней характеристике EC_1 . При c=1 или c=1 из задачи Γ_0 следует задача Трикоми [41,c.128].

§1.2. Единственность решения задачи Γ_0

Формула Дарбу, дающая в области D^- для уравнения (1.1.1) решение видоизменённой задачи Коши с начальными данными

$$u(x,0) = \tau(x), x \in \overline{I}; \quad \lim_{y \to -0} (-y)^{\beta_0} \frac{\partial u}{\partial y} = v(x), x \in I,$$

имеет вид [40,с.34]

$$u(x,y) = \gamma_1 \int_{-1}^{1} \tau \left[x + \frac{2t}{m+2} (-y)^{\frac{m+2}{2}} \right] (1+t)^{\beta-1} (1-t)^{\beta-1} dt +$$

$$+ \gamma_2 (-y)^{1-\beta_0} \int_{-1}^{1} v \left[x + \frac{2t}{m+2} (-y)^{\frac{m+2}{2}} \right] (1+t)^{-\beta} (1-t)^{-\beta} dt, \qquad (1.2.1)$$

где

$$\gamma_1 = \frac{2^{1-2\beta}\Gamma(2\beta)}{\Gamma^2(\beta)}, \ \gamma_2 = -\frac{2^{2\beta-1}\Gamma(2-2\beta)}{(1-\beta_0)\Gamma^2(1-\beta)}.$$

С помощью формулы Дарбу (1.2.1) из краевых условий (1.1.4) и (1.1.5) нетрудно получить соответственно равенства

$$v(x) = \gamma D_{-1,x}^{1-2\beta} \tau(x) + \psi_0(x), \quad x \in (-1,c),$$
(1.2.2)

$$v(x) = \gamma D_{c,x}^{1-2\beta} \tau(x) + \psi_1(x), \quad x \in (c,1), \tag{1.2.3}$$

где $D_{-1,x}^{1-2\beta}$ и $D_{c,x}^{1-2\beta}$ – операторы дифференцирования дробного порядка [29],

$$\begin{split} \gamma &= 2\Gamma(2\beta)\Gamma(1-\beta)((m+2)/4)^{2\beta}/\Gamma(1-2\beta)\Gamma(\beta) \\ \psi_0(x) &= \frac{(2/(m+2))^{1-2\beta}}{\gamma_2\Gamma(1-\beta)}(1+x)^{\beta}D_{-1,x}^{1-\beta}\psi_0\bigg(\frac{x-1}{2}\bigg), \\ \psi_1(x) &= \frac{(2/(m+2))^{1-2\beta}}{\gamma_2\Gamma(1-\beta)}(x-c)^{\beta}D_{c,x}^{1-\beta}\psi_1\bigg(\frac{x+c}{2}\bigg), \end{split}$$

Равенства (1.2.2) и (1.2.3) являются первыми функциональными соотношениями между неизвестными функциями $\tau(x)$ и $\nu(x)$, привнесёнными соответственно на интервалы (-1,c) и (c,1) оси y=0 из области D^- .

Для задачи $\Gamma_{\scriptscriptstyle 0}$ аналогом принципа экстремума А.В.Бицадзе [9, с.301] является

Теорема 1.1 Решениеu(x,y) задачи Γ_0 при выполнении условий $\psi_0(x) \equiv 0$, $\psi_1(x) \equiv 0$ своего наибольшего положительного значения (НПЗ) или наименьшего отрицательного значения (НОЗ) в замкнутой области \bar{D}^+ может принимать только в точках нормальной кривой σ_0 .

Доказательство. Пусть функция u(x,y) удовлетворяет условиям теоремы 1.1 В силу принципа Хопфа [9, с.25] решение u(x,y) уравнения (1.1.1) своего НПЗ во внутренних точках области D^+ не достигает.

Пусть решение u(x,y) своего НПЗ достигает во внутренней точке $M_0(x_0,0)$

интервала АВ.

Рассмотрим отдельно три случая возможного положения точки x_0 .

1. Пусть $x_0 \in (-1,c)$. Следовательно в этой точке

$$v(x_0) < 0,$$
 (1.2.4)

[40, c.74]. С другой стороны хорошо известно, что в точке положительного максимума функции $\tau(x)$, значения операторов дробного дифференцирования строго положительны, т.е.

$$D_{-1,x}^{1-2\beta}\tau(x)|_{x=x_0} > 0$$

- [41, с.19]. Отсюда вследствие соответствующего однородного (с $\psi_0(x) \equiv 0$) условия (1.1.4) из (1.2.2) (где $\psi_0(x) \equiv 0$) имеем $v_0(x) = \gamma D_{-1,x}^{1-2\beta} \tau(x)|_{x=x_0} > 0$, но это неравенство в силу условия сопряжения (1.1.2) противоречить неравенству (1.2.4). Поэтому $x_0 \notin (-1,c)$.
- 2. Пусть $x_0 \in (c,1)$. Здесь аналогично случаю 1 в силу (1.2.3) легко показать, что $x_0 \notin (c,1)$.
- 3. Пусть $x_0 = c$. Тогда из однородного (с $\psi_1(x) \equiv 0$) краевого условия (1.1.5) имеем $\tau(c) = 0$, Следовательно, и в этом случае точка x_0 не является точкой НПЗ функции u(x, y).

Таким образом, решение u(x,y) удовлетворяющим условиям теоремы 1.1, своего НПЗ достигает в точках кривой σ_0 .

Аналогично тому, как это сделано выше, показывается, что решение u(x,y). удовлетворяющее условиям теоремы 1.1, своего НОЗ так же достигает в точках кривой σ_0 . Теоремы 1.1 доказана.

Из теоремы 1.1 вытекает

Следствие. Задача Γ_0 можеть иметь не более одного решения.

В самом деле, согласно теоремы 1.1 решение однородной задачи Γ_0 своего НПЗ и НОЗ достигает в точках нормальной кривой σ_0 , и в этих точках в силу

однородного (с $\varphi(x) \equiv 0$) условия (1.1.3) справедливо равенство $u(x,y)|_{\sigma_0} = 0$. Отсюда следует, что $u(x,y) \equiv 0$ всюду в замкнутой области \bar{D}^+ , а следовательно, и во всей смешанной области D.

§1.3. Существование решения задачи Γ_0 .

Теорема 1.2 *Задача* Γ_0 *однозначно разрешима.*

Доказательство. Решение уравнения (1.1.1) в области D^+ , удовлетворяющее краевым условиям

$$\lim_{y \to +0} y^{\beta_0} \frac{\partial u}{\partial y} = v(x), x \in I, u(x, y)|_{\sigma} = \varphi(x), x \in \overline{I},$$

имеет вид [40, с.93]

$$u(x,y) = -k_1 \int_{-1}^{1} v(t) \left\{ \left[(x-t)^2 + \frac{4}{(m+2)^2} y^{m+2} \right]^{-\beta} - \left[(1-xt)^2 + \frac{4t^2}{(m+2)^2} y^{m+2} \right]^{-\beta} \right\} dt - k_1 \beta (m+2)(1-R^2) \times \int_{0}^{1} \varphi(\xi(s)) \eta^{\beta_0 - 1}(s) (r_1^2)^{-\beta - 1} F(\beta, \beta + 1, 2\beta; 1 - \sigma) d\xi(s),$$

$$(1.3.1)$$

где s- длина дуги кривой σ_0 отсчитываемая от точка B(-1,0) до точки $M(\xi(s),\eta(s))\in\sigma_0$, l- длина всей дуги кривой σ_0 , F(a,b,c;x)- гипергеометрическая функция Гаусса [41, c.6]

$$\sigma = \frac{r^2}{r_1^2}, \quad r_1^2 = (x - \xi(s))^2 + \frac{4}{(m+2)^2} \left(y^{\frac{m+2}{2}} \mp (\eta(s))^{\frac{m+2}{2}} \right)^2,$$

$$(\xi(s), \eta(s)) \in \sigma_0, \quad k_1 = \frac{1}{4\pi} \left(\frac{4}{m+2} \right)^{2\beta} \frac{\Gamma^2(\beta)}{\Gamma(2\beta)}, \quad R^2 = x^2 + \frac{4}{(m+2)^2} y^{m+2},$$

где г(...) - гамма функция Эйлера.

1.3.1. Вывод системы сингулярных интегральных уравнений.

Из представления (1.3.1) при y = 0 нетрудно получить следующее хорошо известное соотношение между неизвестными функциями $\tau(x)$ и $\nu(x)$, привнесённое на I из области D^+ [40, c.113]

$$\tau(x) = -k_1 \int_{-1}^{1} \left[|x - t|^{-2\beta} - (1 - xt)^{-2\beta} \right] v(t) dt + \Phi(x), \ x \in \overline{I},$$
 (1.3.2)

где

$$\Phi(x) = 2\beta k_1 ((m+2)/2)^{2\beta} (1-x^2) \int_{-1}^{1} (1-t^2)^{\beta-1/2} (1-2xt+x^2)^{-1-\beta} \varphi(t) dt \in C(\overline{I}) \cap C^1(I).$$

тметим, что соотношения (1.3.2) справедлива для всего промежутка $x \in \overline{I}$.

Применяя, операторы $D_{-1,x}^{1-2\beta}$ и $D_{c,x}^{1-2\beta}$ к соотношению (1.3.2), стандартными вычислениями приходим соответственно к равенствам

$$D_{-1,x}^{1-2\beta}\tau(x) = -k_1\Gamma(1-2\beta)(1-\cos(2\beta\pi))\nu(x) - \frac{k_1}{\Gamma(2\beta)} \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{1-2\beta} \frac{\nu(t)dt}{t-x} + \frac{k_1}{\Gamma(2\beta)} \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{1-2\beta} \frac{\nu(t)dt}{1-xt} + D_{-1,x}^{1-2\beta}\Phi(x), \ x \in (-1,c),$$

$$(1.3.3)$$

$$D_{c,x}^{1-2\beta}\tau(x) = -k_1\Gamma(1-2\beta)(1-\cos(2\beta\pi))\nu(x) + \frac{k_1}{\Gamma(2\beta)} \int_{-1}^{c} \left(\frac{c-t}{x-c}\right)^{1-2\beta} \frac{\nu(t)dt}{t-x} - \frac{k_1}{\Gamma(2\beta)} \int_{c}^{1} \left(\frac{t-c}{x-c}\right)^{1-2\beta} \frac{\nu(t)dt}{t-x} + \frac{k_1}{\Gamma(2\beta)} \int_{-1}^{1} \left(\frac{1-ct}{x-c}\right)^{1-2\beta} \frac{\nu(t)dt}{1-xt} + \frac{k_1}{\Gamma(2\beta)} \int_{-1}^{1} \left(\frac{1-ct}{x-c}\right)^{1-2\beta} \frac{\nu(t)dt}{1-xt} + \frac{k_1}{\Gamma(2\beta)} \int_{-1}^{1-2\beta} \left(\frac{1-ct}{x-c}\right)^{1-2\beta}$$

Выражения для $D_{-1,x}^{1-2\beta}\tau(x)$ и $D_{c,x}^{1-2\beta}\tau(x)$ из (1.3.3) и (1.3.4) подставляя в равенства (1.2.2) и (1.2.3) соответственно, получаем следующие уравнения относительно неизвестной функции $\nu(x)$:

$$v(x) = -\lambda \int_{-1}^{1} \left(\frac{1+s}{1+x}\right)^{1-2\beta} \left(\frac{1}{s-x} - \frac{1}{1-xs}\right) v(s) ds + F_0(x), \quad x \in (-1,c),$$

$$v(x) = \lambda \int_{-1}^{c} \left(\frac{c-s}{x-c}\right)^{1-2\beta} \frac{v(s) ds}{s-x} - \lambda \int_{c}^{1} \left(\frac{s-c}{x-c}\right)^{1-2\beta} \frac{v(s) ds}{s-x} +$$

$$+\lambda \int_{-1}^{1} \left(\frac{1-cs}{x-c}\right)^{1-2\beta} \frac{v(s) ds}{1-xs} + F_1(x), \quad x \in (c,1),$$

$$(1.3.6)$$

где

$$\lambda = \frac{\cos(\beta\pi)}{\pi(1+\sin(\beta\pi))}, \ \gamma = \frac{2\Gamma(2\beta)\Gamma(1-\beta)}{\Gamma(1-2\beta)\Gamma(\beta)} \left(\frac{m+2}{4}\right)^{2\beta},$$

$$F_0(x) = \frac{\gamma D_{-1,x}^{1-2\beta}\Phi(x) + \psi_0(x)}{1+\sin(\beta\pi)}, \ F_1(x) = \frac{\gamma D_{c,x}^{1-2\beta}\Phi(x) + \psi_1(x)}{1+\sin(\beta\pi)}.$$

Заметим, что уравнения (1.3.5) и (1.3.6) имеют место соответственно только для $x \in (-1,c)$ и $x \in (c,1)$. Для рассмотрения их в одном промежутке

I = (-1,1) заменим в уравнении (1.3.5) x на ax - b, а в уравнении (1.3.6) x заменим на bx + a, где a = (1+c)/2, b = (1-c)/2, a+b=1, a-b=c.

Далее в правых частях уравнений (1.3.5) и (1.3.6) интегралы по промежутку (-1,1) предварительно разобьём на два интеграла по

промежуткам (-1,c) и (c,1) и во всех интегралах правых частей этих уравнений сделаем замену переменных интегрирования s=at-b для интегралов по промежутку (-1,c) и s=bt+a для интегралов по промежутку (c,1), где $t\in (-1,1)$. Затем, выделив интегралы с сингулярной особенностью, преобразуем их к виду

$$v_{0}(x) + \lambda \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{1-2\beta} \left(\frac{1}{t-x} - \frac{a}{1-(ax-b)(at-b)}\right) v_{0}(t)dt =$$

$$= -\lambda \int_{-1}^{1} \frac{bv_{1}(t)dt}{bt-ax+1} + T_{0}[v_{1}] + F_{0}(x), \quad x \in I,$$

$$v_{1}(x) + \lambda \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{1-2\beta} \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) v_{1}(t)dt =$$

$$= \lambda \int_{-1}^{1} \left(\frac{a(1-t)}{b(1+x)}\right)^{1-2\beta} \frac{av_{0}(t)dt}{at-bx-1} + G_{0}[v_{0}] + S_{0}[v_{1}] + F_{1}(x), \quad x \in I,$$

$$(1.3.8)$$

ГДе $v_0(x) = v(ax - b)$, $v_1(x) = v(bx + a)$,

$$T_{0}[v_{1}] = -\lambda \int_{-1}^{1} \left[\left(\frac{1+a+bt}{a(1+x)} \right)^{1-2\beta} - 1 \right] \frac{bv_{1}(t)dt}{bt-ax+1} + \lambda \int_{-1}^{1} \left(\frac{1+a+bt}{a(1+x)} \right)^{1-2\beta} \frac{bv_{1}(t)dt}{1-(ax-b)(bt+a)},$$

$$G_{0}[v_{0}] = \lambda \int_{-1}^{1} \left(\frac{1-c(at-b)}{b(1+x)} \right)^{1-2\beta} \frac{av_{0}(t)dt}{1-(bx+a)(at-b)},$$

$$S_{0}[v_{1}] = \lambda \int_{-1}^{1} \left[\left(\frac{1-c(bt+a)}{b(1+x)} \right)^{1-2\beta} - \left(\frac{1+t}{1+x} \right)^{1-2\beta} \right] \frac{bv_{1}(t)dt}{1-(bx+a)(bt+a)}$$

-регулярные операторы, $F_0(x) = F_0(ax - b)$, $F_1(x) = F_1(bx + a)$

-известные функции.

Таким образом, задача Γ_0 равносильным образом сведена к решению системы сингулярных интегральных уравнений (1.3.7) и (1.3.8).

Заметим, что уравнения (1.3.7) и (1.3.8) являются неклассическими сингулярными интегральными уравнениями Трикоми, так как они имеют две особенности:

- 1) "несингулярные" части ядер уравнений имеют некарлемановские сдвиги ax-b и at-b в (1.3.7) и bx+a и bt+a в (1.3.8);
- 2) интегральные операторы правых частей уравнений (1.3.7) и (1.3.8) не является регулярными, поскольку при

x=1, t=-1 в (1.3.7) и при x=-1, t=1 в (1.3.8) ядра этих операторов имеют изолированные особенности первого порядка (и поэтому они выделены отдельно) [22,32].

Временно считая правые части уравнений (1.3.7) и (1.3.8) известными функциями, запишем их в виде

$$v_0(x) + \lambda \int_{-1}^{1} \left(\frac{1+t}{1+x} \right)^{1-2\beta} \left(\frac{1}{t-x} - \frac{a}{1-(ax-b)(at-b)} \right) v_0(t) dt = g_0(x), \ x \in I,$$
 (1.3.9)

$$v_{1}(x) + \lambda \int_{-1}^{1} \left(\frac{1+t}{1+x} \right)^{1-2\beta} \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)} \right) v_{1}(t)dt = g_{1}(x), \ x \in I,$$
 (1.3.10)

где

$$g_0(x) = -\lambda \int_{-1}^1 \frac{b\nu_1(t)dt}{bt - ax + 1} + T_0[\nu_1] + F_0(x), \qquad (1.3.11)$$

$$g_1(x) = \lambda \int_{-1}^{1} \left(\frac{a(1-t)}{b(1+x)} \right)^{1-2\beta} \frac{av_0(t)dt}{at-bx-1} + G_0[v_0] + S_0[v_1] + F_1(x).$$
 (1.3.12)

Имеет место теоремы

Теорема 1.3 Если $g_0(x)$ удовлетворяет условию Гёльдера при $x \in (-1,1)$ и $g_0(x) \in L_p(-1,1)$ p > 1, то решение уравнения (1.3.9) в классе функций h(-1), в котором $(1+x)^{1-2\beta}v_0(x)$ ограничена на левом конце и может быть неограниченной на правом конце интервала (-1,1), выражается формулой

$$v_{0}(x) = \frac{1 + \sin(\beta \pi)}{2} g_{0}(x) - \frac{\cos(\beta \pi)}{2\pi} \int_{-1}^{1} \left(\frac{1 + t}{1 + x}\right)^{2\alpha} \left(\frac{1 - t}{1 - x}\right)^{\alpha} \times \left(\frac{1 - c(at - b)}{1 - c(ax - b)}\right)^{\alpha} \left(\frac{1}{t - x} - \frac{a}{1 - (ax - b)(at - b)}\right) g_{0}(t) dt, \tag{1.3.13}$$

где $\alpha = (1 - 2\beta)/4$.

Теорема 1.4 Если $g_1(x)$ удовлетворяет условию Гёлдера при $x \in (-1,1)$ и $g_1(x) \in L_p(-1,1)$ p > 1, то решение уравнения (1.3.10) в классе функций h(-1), в котором $(1+x)^{1-2\beta}v_1(x)$ ограничена при x=-1 и может быть неограниченной на правом конце интервала (-1,1), выражается формулой

$$v_{1}(x) = \frac{1 + sin(\beta \pi)}{2} g_{1}(x) - \frac{cos(\beta \pi)}{2\pi} \int_{-1}^{1} \left(\frac{1 + t}{1 + x}\right)^{3\alpha} \left(\frac{1 - t}{1 - x}\right)^{2\alpha} \times$$

$$\times \left(\frac{1 - (bx + a)c}{1 - (bt + a)c}\right)^{a} \left(\frac{1}{t - x} - \frac{b}{1 - (bx + a)(bt + a)}\right) g_{1}(t)dt. \tag{1.3.14}$$

Доказательство теорем 1.3 и 1.4 проводится методом Карлемана, развитого С. Г. Михлиным [22,26].

1.3.2. Вывод функционального соотношения между неизвестными функциями $v_0(x)$ и $v_1(x)$.

Выражения для $g_0(x)$ и $g_1(x)$ из (1.3.11) и (1.3.12) подставляя соответственно в (1.3.13) и (1.3.14) и выполнив стандартные преобразования [40, с.129] выделим интегралы с сингулярными особенностями и запишем их соответственно в виде

$$v_{0}(x) = -\frac{\lambda(1+\sin(\beta\pi))}{2} \int_{-1}^{1} \frac{bv_{1}(s)ds}{bs-ax+1} + \frac{\lambda\cos(\beta\pi)}{2\pi} \int_{-1}^{1} bv_{1}(s)ds \times \\ \times \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{2\alpha} \left(\frac{1-t}{1-x}\right)^{\alpha} \left(\frac{1}{t-x} - \frac{a}{1-(ax-b)(at-b)}\right) \times \\ \times \frac{dt}{bs-at+1} + T_{1}[v_{1}] + g_{0}(x), \qquad (1.3.15)$$

$$v_{1}(x) = \frac{\lambda(1+\sin(\beta\pi))}{2} \left(\frac{a}{b}\right)^{4\alpha} \int_{-1}^{1} \left(\frac{1-s}{1+x}\right)^{4\alpha} \frac{av_{0}(s)ds}{as-bx-1} - \\ -\frac{\lambda\cos(\beta\pi)}{2\pi} \left(\frac{a}{b}\right)^{4\alpha} \int_{-1}^{1} av_{0}(s)ds \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{3\alpha} \times \\ \times \left(\frac{1-t}{1-x}\right)^{2\alpha} \left(\frac{1-s}{1+t}\right)^{4\alpha} \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) \frac{dt}{as-bt-1} + \\ +G_{1}[v_{0}] + S_{1}[v_{1}] + g_{1}(x), \qquad (1.3.16)$$

где

$$T_{1}[v_{1}] = \frac{1 + \sin(\beta \pi)}{2} T_{0}[v_{1}] + \frac{\lambda \cos(\beta \pi)}{2\pi} \int_{-1}^{1} b v_{1}(s) ds \int_{-1}^{1} \left(\frac{1 + t}{1 + x}\right)^{2\alpha} \times \left(\frac{1 - t}{1 - x}\right)^{\alpha} \left[\left(\frac{1 - c(at - b)}{1 - c(ax - b)}\right)^{\alpha} - 1\right] \left(\frac{1}{t - x} - \frac{a}{1 - (ax - b)(at - b)}\right) \frac{dt}{bs - at + 1} - \frac{\cos(\beta \pi)}{2\pi} \int_{-1}^{1} \left(\frac{1 + t}{1 + x}\right)^{2\alpha} \left(\frac{1 - t}{1 - x}\right)^{\alpha} \left(\frac{1 - c(at - b)}{1 - c(ax - b)}\right)^{\alpha} \times \left(\frac{1}{t - x} - \frac{a}{1 - (ax - b)(at - b)}\right) T_{0}[v_{1}] dt,$$

$$G_{1}[v_{0}] = \frac{1 + \sin(\beta \pi)}{2} G_{0}[v_{0}] - \frac{\lambda \cos(\beta \pi)}{2\pi} \left(\frac{a}{b}\right)^{4\alpha} \int_{-1}^{1} av_{0}(s) ds \int_{-1}^{1} \left(\frac{1 + t}{1 + x}\right)^{3\alpha} \times \left(\frac{a}{b}\right)^{4\alpha} \int_{-1}^{1} av_{0}(s) ds \int_{-1}^{1} \left(\frac{1 + t}{1 + x}\right)^{3\alpha} ds$$

$$\times \left(\frac{1-t}{1-x}\right)^{2\alpha} \left[\left(\frac{1-c(bx+a)}{1-c(bt+a)}\right)^{\alpha} - 1 \right] \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) \frac{dt}{as-bt-1} - \\ - \frac{cos(\beta\pi)}{2\pi} \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{3\alpha} \left(\frac{1-t}{1-x}\right)^{2\alpha} \left(\frac{1-c(bx+a)}{1-c(bt+a)}\right)^{\alpha} \times \\ \times \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) G_{0}[v_{0}] dt, \\ S_{1}[v_{1}] = \frac{1+sin(\beta\pi)}{2} S_{0}[v_{1}] - \frac{cos(\beta\pi)}{2\pi} \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{3\alpha} \left(\frac{1-t}{1-x}\right)^{2\alpha} \left(\frac{1-c(bx+a)}{1-c(bt+a)}\right)^{\alpha} \times \\ \times \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) S_{0}[v_{1}] dt - \text{регулярные операторы.} \\ g_{0}(x) = \frac{1+sin(\beta\pi)}{2} F_{0}(x) - \frac{cos(\beta\pi)}{2\pi} \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{2\alpha} \left(\frac{1-t}{1-x}\right)^{\alpha} \left(\frac{1-c(at-b)}{1-c(ax-b)}\right)^{\alpha} \times \\ \times \left(\frac{1}{t-x} - \frac{a}{1-(ax-b)(at-b)}\right) F_{0}(t) dt, \\ g_{1}(x) = \frac{1+sin(\beta\pi)}{2} F_{1}(x) - \frac{cos(\beta\pi)}{2\pi} \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{3\alpha} \left(\frac{1-t}{1-x}\right)^{2\alpha} \left(\frac{1-c(bx+a)}{1-c(bt+a)}\right)^{\alpha} \times \\ \times \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) F_{1}(t) dt - \text{известные функции.}$$

В правых частях (1.3.15) и (1.3.16) вычислим внутренние интегралы.

1. Сначала вычислим внутренный интеграл в (1.3.15)

$$J_0(x,s) = \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{2\alpha} \left(\frac{1-t}{1-x}\right)^{\alpha} \left(\frac{1}{t-x} - \frac{a}{1-(ax-b)(at-b)}\right) \frac{dt}{bs-at+1}.$$

Рациональную часть подинтегрального выражения разложим на простые дроби

$$\left(\frac{1}{t-x} - \frac{a}{1-(ax-b)(at-b)}\right) \frac{1}{bs-at+1} = \frac{1}{bs-ax+1} \left(\frac{1}{t-x} + \frac{a}{bs-at+1}\right) - \frac{a}{1-(ax-b)(bs+a)} \left(\frac{1}{bs-at+1} - \frac{ax-b}{1-(ax-b)(at-b)}\right)$$
(1.3.17)

и с учётом тождеств (1.3.17) получаем

$$J_{0}(x,s) = \frac{(1+x)^{-2\alpha}(1-x)^{-\alpha}}{bs - ax + 1} \{J_{01}(x) + aJ_{02}(s)\} - \frac{a(1+x)^{-2\alpha}(1-x)^{-\alpha}}{1 - (ax - b)(bs + a)} \{J_{02}(s) - (ax - b)J_{03}(x)\},$$

$$(1.3.18)$$

где

$$J_{01}(x) = \int_{-1}^{1} \frac{(1+t)^{2\alpha} (1-t)^{\alpha}}{t-x} dt, \ J_{02}(s) = \int_{-1}^{1} \frac{(1+t)^{2\alpha} (1-t)^{\alpha}}{bs-at+1} dt,$$
$$J_{03}(x) = \int_{-1}^{1} \frac{(1+t)^{2\alpha} (1-t)^{\alpha}}{1-(ax-b)(at-b)} dt$$

и к полученным интегралам применим формулы [40, с.125]

$$\int_{-1}^{1} \frac{(1+t)^{\alpha-1}(1-t)^{\beta-1}dt}{t-x} = \frac{\pi ctg(\beta\pi)}{(1+x)^{1-\alpha}(1-x)^{1-\beta}} - \frac{2^{\beta-1}B(\alpha,\beta-1)}{(1+x)^{1-\alpha}}F\left(\alpha,1-\beta,2-\beta;\frac{1-x}{2}\right), \qquad (1.3.19)$$

$$\int_{-1}^{1} \frac{(1+t)^{\alpha-1}(1-t)^{\beta-1}dt}{bx-at+1} = \frac{\pi}{\sin(\beta\pi)} \frac{b^{\beta-1}a^{1-\alpha-\beta}}{(1+a+bx)^{1-\alpha}(1+x)^{1-\beta}} + \frac{B(\alpha,\beta-1)}{2^{2-\alpha-\beta}a} \times F\left(2-\alpha-\beta,1,2-\beta;-\frac{b(1+x)}{2a}\right), \qquad (1.3.20)$$

$$\int_{-1}^{1} \frac{(1+t)^{\alpha-1}(1-t)^{\beta-1}dt}{1-(ax-b)(at-b)} = \frac{2^{\alpha+\beta-1}B(\alpha,\beta)}{1-c(ax-b)}F\left(\beta,1,\alpha+\beta;\frac{2a(b-ax)}{1-c(ax-b)}\right). \qquad (1.3.21)$$

где $B(\alpha,\beta)$ – бета функция Эйлера, F(a,b,c;x) – гипергеометрическая функция Гаусса [41,c.6].

Далее вычислим интегралы $J_{01}(x)$, $J_{02}(s)$, $J_{03}(x)$

$$\begin{split} J_{01}(x) &= \frac{\pi c t g(\pi \alpha)}{(1+x)^{-2\alpha}(1-x)^{-\alpha}} - 2^{3\alpha} B(1+2\alpha,\alpha) F\left(-3\alpha,1,1-\alpha;\frac{1-x}{2}\right); \\ J_{02}(s) &= -\frac{\pi}{sin(\pi \alpha)} \frac{a^{-1-3\alpha}b^{\alpha}}{(1+a+bs)^{-2\alpha}(1+s)^{-\alpha}} + \\ &+ \frac{B(1+2\alpha,\alpha)}{2^{-3\alpha}a} F\left(-3\alpha,1,1-\alpha;-\frac{b(1+s)}{2a}\right); \\ J_{03}(x) &= \frac{2^{3\alpha} B(1+2\alpha,1+\alpha)}{1-c(ax-b)} F\left(1+\alpha,1,2+3\alpha;\frac{2a(b-ax)}{1-c(ax-b)}\right). \end{split}$$

Затем, подставляя значения для $J_{01}(x)$, $J_{02}(s)$, $J_{03}(x)$ в (1.3.18), получим

$$J_{0}(x,s) = \frac{\pi ctg(\pi\alpha)}{(1+x)^{-2\alpha}(1-x)^{-\alpha}} \frac{(1+x)^{-2\alpha}(1-x)^{-\alpha}}{bs - ax + 1} - \frac{\pi}{sin(\pi\alpha)} \frac{a^{-3\alpha}b^{\alpha}}{(1+a+bs)^{-2\alpha}(1+s)^{-\alpha}} \frac{(1+x)^{-2\alpha}(1-x)^{-\alpha}}{bs - ax + 1} - \frac{2^{3\alpha}B(1+2\alpha,\alpha)(1+x)^{-2\alpha}(1-x)^{-\alpha}}{bs - ax + 1} \left[F\left(-3\alpha,1,1-\alpha;\frac{1-x}{2}\right) - \frac{1-x}{bs - ax + 1} \right]$$

$$-F\left(-3\alpha,1,1-\alpha;-\frac{b(1+s)}{2a}\right) + \frac{(1+x)^{-2\alpha}(1-x)^{-\alpha}}{1-(ax-b)(bs+a)} \left[\frac{\pi}{\sin(\pi\alpha)} \times \frac{a^{-3\alpha}b^{\alpha}}{(1+a+bs)^{-2\alpha}(1+s)^{-\alpha}} - 2^{3\alpha}B(1+2\alpha,\alpha)F\left(-3\alpha,1,1-\alpha;-\frac{b(1+s)}{2a}\right) + \frac{2^{3\alpha}aB(1+2\alpha,1+\alpha)(ax-b)}{1-c(ax-b)}F\left(1+\alpha,1,2+3\alpha;\frac{2a(b-ax)}{1-c(ax-b)}\right)\right]. \quad (1.3.22)$$

2. Теперь вычислим внутренный интеграл в (1.3.16)

$$J_{1}(x,s) = \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{3\alpha} \left(\frac{1-t}{1-x}\right)^{2\alpha} \left(\frac{1-s}{1+t}\right)^{4\alpha} \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) \frac{dt}{as-bt-1}.$$

Для этого рациональную часть подинтегрального выражения разложим на простые дробы:

$$\left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) \frac{1}{as-bt-1} = \frac{1}{as-bx-1} \left(\frac{1}{t-x} + \frac{b}{as-bt-1}\right) - \frac{b}{1-(bx+a)(as-b)} \left(\frac{1}{as-bt-1} - \frac{bx+a}{1-(bx+a)(bt+a)}\right) \tag{1.3.23}$$

и с учётом этого разложения имеем

$$J_{1}(x,s) = \frac{(1-s)^{4\alpha}}{(1+x)^{3\alpha}(1-x)^{2\alpha}} \frac{1}{as-bx-1} \{J_{11}(x) + bJ_{12}(s)\} - \frac{(1-s)^{4\alpha}}{(1+x)^{3\alpha}(1-x)^{2\alpha}} \frac{b}{1-(bx+a)(as-b)} \{J_{12}(s) - (bx+a)J_{13}(x)\},$$
(1.3.24)

где

$$J_{11}(x) = \int_{-1}^{1} \frac{(1+t)^{-\alpha} (1-t)^{2\alpha}}{t-x} dt, \quad J_{12}(s) = \int_{-1}^{1} \frac{(1+t)^{-\alpha} (1-t)^{2\alpha}}{as-bt-1} dt,$$
$$J_{13}(x) = \int_{-1}^{1} \frac{(1+t)^{-\alpha} (1-t)^{2\alpha}}{1-(bx+a)(bt+a)} dt$$

и к этим интегралам применим формулы

$$\int_{-1}^{1} \frac{(1+t)^{\alpha-1}(1-t)^{\beta-1}dt}{t-x} = -\frac{\pi ctg(\alpha\pi)}{(1-x)^{1-\beta}(1+x)^{1-\alpha}} + \frac{2^{\alpha-1}B(\beta,\alpha-1)}{(1-x)^{1-\alpha}}F\left(\beta,1-\alpha,2-\alpha;\frac{1+x}{2}\right), \qquad (1.3.25)$$

$$\int_{-1}^{1} \frac{(1+t)^{\alpha-1}(1-t)^{\beta-1}dt}{1-(bx+a)(bt+a)} = \frac{2^{\alpha+\beta-1}B(\alpha,\beta)}{1-c(bx+a)}F\left(\alpha,1,\alpha+\beta;\frac{2b(bx+a)}{1-c(bx+a)}\right), \qquad (1.3.26)$$

$$\int_{-1}^{1} \frac{(1+t)^{\alpha-1}(1-t)^{\beta-1}dt}{ax-bt-1} = -\frac{\pi}{\sin(\alpha\pi)} \frac{a^{\alpha-1}b^{1-\alpha-\beta}}{(1+b-ax)^{1-\beta}} \frac{1}{(1-x)^{1-\alpha}} - \frac{B(\beta,\alpha-1)}{2^{2-\alpha-\beta}b} \times \frac{B(\beta,\alpha-1)}{2^{2$$

$$\times F\left(2-\alpha-\beta,1,2-\alpha;-\frac{a(1-x)}{2b}\right). \tag{1.3.27}$$

Далее вычислим интегралы $J_{11}(x)$, $J_{12}(s)$, $J_{13}(x)$

$$\begin{split} J_{11}(x) &= \frac{\pi c t g(\pi \alpha)}{(1-x)^{-2\alpha}(1+x)^{\alpha}} + 2^{\alpha} B(1+2\alpha,-\alpha) F\left(-\alpha,1,1+\alpha;\frac{1+x}{2}\right); \\ J_{12}(s) &= -\frac{\pi}{sin(\pi \alpha)} \frac{a^{-\alpha}b^{-1-\alpha}}{(1+b-as)^{-2\alpha}(1-s)^{\alpha}} - \frac{B(1+2\alpha,-\alpha)}{2^{-\alpha}b} F\left(-\alpha,1,1+\alpha;-\frac{a(1-s)}{2b}\right); \\ J_{13}(x) &= \frac{2^{1+\alpha} B(1-\alpha,1+2\alpha)}{1-c(bx+a)} F\left(1-\alpha,1,2+\alpha;\frac{2b(bx+a)}{1-c(bx+a)}\right). \end{split}$$

Затем, подставляя значения для $J_{11}(x)$, $J_{12}(s)$, $J_{13}(x)$ в (1.3.24), получим

$$J_{1}(x,s) = \frac{\pi ctg(\pi\alpha)}{as - bx - 1} \left(\frac{1-s}{1+x}\right)^{4\alpha} - \frac{\pi}{sin(\pi\alpha)} \frac{a^{-\alpha}b^{-\alpha}(1-s)^{3\alpha}}{(1+b-as)^{-2\alpha}} \times \frac{(1+x)^{-3\alpha}(1-x)^{-2\alpha}}{as - bx - 1} + \frac{2^{\alpha}B(1+2\alpha,-\alpha)}{as - bx - 1} \frac{(1-s)^{4\alpha}}{(1+x)^{3\alpha}(1-x)^{2\alpha}} \times \left[F\left(-\alpha,1,1+\alpha;\frac{1+x}{2}\right) - F\left(-\alpha,1,1+\alpha;-\frac{a(1-s)}{2b}\right)\right] + \frac{(1+x)^{-3\alpha}(1-x)^{-2\alpha}(1-s)^{4\alpha}}{1-(bx+a)(as-b)} \left[\frac{\pi}{sin(\pi\alpha)} \frac{a^{-\alpha}b^{-1-\alpha}}{(1+b-as)^{-2\alpha}(1-s)^{\alpha}} + \frac{2^{\alpha}b^{-1}B(1+2\alpha,-\alpha)F\left(-\alpha,1,1+\alpha;-\frac{a(1-s)}{2b}\right) + \frac{2^{1+\alpha}B(1-\alpha,1+2\alpha)(bx+a)}{1-c(bx+a)}F\left(1-\alpha,1,2+\alpha;\frac{2b(bx+a)}{1-c(bx+a)}\right)\right]. \quad (1.3.28)$$

Теперь выражения для $J_0(x,s)$ и $J_1(x,s)$ из (1.3.22) и (1.3.28) подставляя соответственно в (1.3.15) и (1.3.16), затем выделив интегралы с особенностями первого порядка в изолированных особых точках, запишем их соответственно в виде

$$v_0(x) = -\frac{\sin(\alpha\pi)}{\pi} \int_{-1}^{1} \left(\frac{b(1+s)}{a(1+x)}\right)^{\alpha} \frac{bv_1(s)ds}{bs - ax + 1} + T_2[v_1] + g_0(x), \ x \in I,$$
(1.3.29)

$$v_1(x) = -\frac{\sin(\alpha\pi)}{\pi} \int_{1}^{1} \left(\frac{a(1-s)}{b(1+x)}\right)^{3\alpha} \frac{av_0(s)ds}{bx - as + 1} + G_2[v_0] + S_1[v_1] + g_1(x), \quad x \in I, \quad (1.3.30)$$

Теперь в (1.3.29) x заменив на -x, а в (1.3.30) сделав замену переменного интегрирования s=-t и введя обозначение $v_0(x)=v_0(-x)$ соответственно получим

$$v_0(x) = -\int_{-1}^{1} m \left(\frac{1+x}{1+s} \right) \frac{v_1(s)ds}{1+s} + T_3[v_1] + F_0(x),$$
 (1.3.31)

$$v_1(x) = -\int_{-1}^{1} n \left(\frac{1+x}{1+t} \right) \frac{v_0(t)dt}{1+t} + G_3[v_0] + S_3[v_1] + F_1(x), \tag{1.3.32}$$

где

$$m(y) = \frac{\delta(ay/b)^{-\alpha}}{(1+ay/b)}, \ n(y) = \frac{\delta(by/a)^{-2\alpha}}{(1+by/a)}, \ \delta = \frac{\sin(\alpha\pi)}{\pi}, \ (1.3.33)$$

 $T_3[\nu_1], G_3[\nu_1], S_3[\nu_1]$ — регулярные операторы а $F_0(x), F_1(x)$ — известные функции.

1.3.3. Вывод интегрального уравнения Винера- Хопфа.

Таким образом, уравнение (1.3.31) совместно с уравнением (1.3.32) составляют систему интегральных уравнений относительно неизвестных функций $\nu_0(x)$ и $\nu_1(x)$ с сингулярной особенностью в ядре.

Характерной особенностью уравнения (1.3.31) является, то что оно разрешено относительно $v_0(x)$, что позволяет из (1.3.32) исключить $v_0(x)$.

Выражение для $\nu_0(x)$ из (1.3.31) подставляя в (1.3.32), имеем [22,32]

$$v_1(x) = \int_{-1}^{1} \frac{\Omega(x,t)v_1(t)dt}{1+t} + R[v_1], \qquad (1.3.34)$$

где

$$\Omega(x,t) = \int_{-1}^{1} n \left(\frac{1+x}{1+s} \right) m \left(\frac{1+s}{1+t} \right) \frac{ds}{1+s},$$

$$R[v_1] = -\int_{-1}^{1} n \left(\frac{1+x}{1+t} \right) \frac{T_3[v_1] + F_0(t)}{1+t} dt +$$
(1.3.35)

$$+G_3 \left[-\int_{-1}^{1} m \left(\frac{1+x}{1+t} \right) \frac{v_1(t)dt}{1+t} + T_3[v_1] + F_0(x) \right] + S_3[v_1] + F_1(x) -$$
регулярный

оператор.

В (1.3.35) сделав замену r = (1+s)/(1+t), имеем

$$\Omega(x,t) = \int_{0}^{2/(1+t)} n\left(\frac{1+x}{r(1+t)}\right) m(r) \frac{dr}{r} = \Omega_1(x,t) - \Omega_2(x,t)$$

где

$$\Omega_1(x,t) = \int_0^\infty n \left(\frac{1+x}{r(1+t)} \right) m(r) \frac{dr}{r}, \qquad (1.3.36)$$

$$\Omega_2(x,t) = \int_{2/(1+t)}^{\infty} n \left(\frac{1+x}{r(1+t)} \right) m(r) \frac{dr}{r}, \qquad (1.3.37)$$

оценим сначала $\Omega_2(x,t)$. В силу (1.3.33) имеем

$$n\left(\frac{1+x}{r(1+t)}\right) \le \delta\left(\frac{a(1+t)}{b(1+x)}\right)^{3\alpha} r^{3\alpha}, \ m(r) \le \delta\left(\frac{b}{a}\right)^{1+\alpha} r^{-1-\alpha}$$

Согласно последним неравенствам из (1.3.37) получим

$$\Omega_2(x,t) \le \frac{\delta^2}{1-2\alpha} \left(\frac{b}{2a}\right)^{1-2\alpha} \frac{(1+t)^{1+\alpha}}{(1+x)^{3\alpha}},$$

следовательно $\Omega_2(x,t)/(1+t)$ – регулярное ядро.

Таким образом, на основании последнего утверждения уравнение (1.3.34) преобразуем к виду

$$v_1(x) = \int_{-1}^{1} \Omega_1(x,t) \frac{v_1(t)dt}{1+t} + R_2[v_1], \qquad (1.3.38)$$

где

$$R_2[\nu_1] = R_1[\nu_1] - \int_{-1}^{1} \frac{\Omega_2(x,t)}{1+t} \nu_1(t) dt$$
 — регулярный

оператор.

Вычислим теперь интеграл (1.3.36)

$$\Omega_{1}(x,t) = \int_{0}^{\infty} n \left(\frac{1+x}{r(1+t)} \right) \frac{m(r)}{r} dr = \int_{0}^{\infty} n \left(\frac{y}{r} \right) \frac{m(r)}{r} dr,$$

где y = (1+x)/(1+t). Отсюда в силу (1.3.33) получим, что

$$\Omega_{1}(x,t) = \delta^{2} \left(\frac{a}{b}\right)^{2\alpha} y^{-3\alpha} a b \int_{0}^{\infty} \frac{r^{2\alpha} dr}{(by + ar)(b + ar)} = \frac{\delta^{2} (a/b)^{2\alpha} a}{y^{3\alpha} (1 - y)} \left(\int_{0}^{\infty} \frac{r^{2\alpha} dr}{by + ar} - \int_{0}^{\infty} \frac{r^{2\alpha} dr}{b + ar}\right)$$

Тогда, воспользовавшись интегралом Эйлера [46, с.161]

$$\int_{0}^{\infty} \frac{x^{\alpha - 1}}{1 + x} dx = \frac{\pi}{\sin(\alpha \pi)}, 0 < \alpha < 1,$$

получаем

$$\Omega_{1}(x,t) = \frac{tg(\alpha\pi)}{2\pi} \frac{y^{-3\alpha}(y^{2\alpha} - 1)}{y - 1}, y = \frac{1 + x}{1 + t}.$$
 (1.3.39)

Поэтому вследствие представления (1.3.39) уравнение (1.3.38) запишется в виде

$$\psi(x) = \frac{tg(\alpha\pi)}{2\pi} \int_{-1}^{1} \frac{\left[(1+x)/(1+t) \right]^{2\alpha} - 1}{(1+x)/(1+t) - 1} \frac{\psi(t)}{1+t} dt + R_3[\psi], \tag{1.3.40}$$

где

$$\psi(x) = (1+x)^{3\alpha} V_1(x), \quad R_3[\psi] = (1+x)^{3\alpha} R_2[(1+x)^{-3\alpha} \psi(x)].$$

В уравнении (1.3.40) сделаем замену переменных 1+t=2exp(-s), 1+x=2exp(-y) и введём обозначения $\rho(y)=\psi(2exp(-y)-1)exp((2\alpha-1)y/2)$, $2\alpha-1<0$,

$$K_0(x) = \frac{tg(\alpha\pi)}{\sqrt{2\pi}} \frac{sh(\alpha x)}{sh(x/2)}$$
.

Тогда уравнение (1.3.39) запишется в виде [22,32]

$$\rho(y) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} K_0(y - s)\rho(s)ds + R_4[\rho]. \tag{1.3.41}$$

Уравнение (1.3.41) является интегральным уравнением Винера-Хопфа [13, c.55]. Функция K(x) имеет показательный порядок убывания на бесконечности причём $K_0(x) \in C[0,\infty]$. Следовательно, [13, c.12]

$$K_0(x) \in L_2 \cap H_\alpha = \{0\}.$$

Теоремы Фредгольма для интегральных уравнений типа свёртки применимы лишь в одном частном случае, когда индекс этих уравнений равен нулю [13, с.46]. Индекс χ уравнения (1.3.41) совпадает с индексом выражения $1-K^{\wedge}(x)$, взятым с обратным знаком, т.е. $\chi = -Ind(1-K^{\wedge}(x))$ [13, c.56], где

$$K^{\wedge}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ixt} K_0(t) dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (\cos(xt) - i\sin(xt)) K_0(t) dt.$$

С учётом четности функции $K_0(x)$ и формулы [14, c.518]

$$\int_{0}^{\infty} \cos(\alpha t) \frac{sh(\beta t)}{sh(\gamma t)} dt = \frac{\pi}{2\gamma} \frac{\sin(\beta \pi / \gamma)}{\cosh(\alpha \pi / \gamma) + \cos(\beta \pi / \gamma)}$$

нетрудно убедиться в том, что

$$K^{\wedge}(x) = \frac{2\sin^2(\alpha\pi)}{ch(2\pi x) + \cos(2\alpha\pi)} < \frac{1}{ch(2\pi x) + \cos(2\alpha\pi)} < 1$$

Так как $maxK^{\wedge}(x) < 1$, то $\chi = -Ind(1 - K^{\wedge}(x)) = 0$.

Следовательно, уравнение (1.3.40) однозначно редуцируется к интегральному уравнению Фредгольма второго рода [13, c.46], однозначная

разрешимость которого следует из единственности решения задачи Γ_0 . Отсюда следует однозначна разрешимость задачи Γ_0 . Теорема 1.2 доказана.

§1.4. Задача с условиями Геллерстедта для уравнения смешанного типа в случае предельного значения параметра $\beta_0 = -m/2$

Рассмотрим уравнение (1.1.1) для предельного значения параметра $\beta_0 = -m/2$,

$$(signy) |y|^m u_{xx} + u_{yy} - (m/2y)u_y = 0$$
 (1.4.1)

1.4.1. Вывод основного функционального соотношения между неизвестными функциями $\tau(x)$ и $\nu(x)$ из области D^- и единственность решения задачи G_0 .

Формула Даламбера, определяющая в области D^- решение для уравнения (1.4.1) видоизменённой задачи Коши с начальными данными

$$\tau(x) = u(x,0), \ x \in \overline{I}; \ \nu(x) = \lim_{y \to -0} (-y)^{-m/2} \frac{\partial u}{\partial y}, \ x \in I,$$

имеет вид [40,с.39]

$$u(x,y) = \frac{1}{2} \left[\tau \left(x - \frac{2}{m+2} (-y)^{(m+2)/2} \right) + \tau \left(x + \frac{2}{m+2} (-y)^{(m+2)/2} \right) \right] - \frac{(-y)^{(m+2)/2}}{m+2} \int_{-1}^{1} v \left[x + \frac{2t}{m+2} (-y)^{(m+2)/2} \right] dt.$$
(1.4.2)

С помощью формулы Даламбера (1.4.2) из краевых условий (1.1.4) и (1.1.5) нетрудно получить равенства

$$\tau'(x) - \nu(x) = \psi_0\left(\frac{x-1}{2}\right), \quad x \in (-1,c),$$
 (1.4.3)

$$\tau'(x) - \nu(x) = \psi_1\left(\frac{x+c}{2}\right), \quad x \in (c,1).$$
 (1.4.4)

Соотношения (1.4.3) и (1.4.4) являются первыми функциональными соотношениями между неизвестными функциями $\tau(x)$ и $\nu(x)$, привнесёнными на интервалы (-1,c) и (c,1) оси y=0 из области D^- .

Теорема 1.5. (Аналог принципа экстремума А.В.Бицадзе [4,c.301]) Решение u(x,y) задачи G_0 при выполнении условий $\psi_0(x) \equiv 0$, $\psi_1(x) \equiv 0$ своего наибольшего положительного значения (НПЗ) или наименьшего отрицательного значения (НОЗ) в замкнутой области \bar{D}^+ может принимать только в точках нормальной кривой σ_0 .

Доказательство. Пусть функция u(x, y) удовлетворяет условиям теоремы 1.5. В силу принципа Хопфа [4,с.25] решение u(x, y)

уравнения (1.4.1) своего НПЗ во внутренних точках области D^+ не достигает.

Пусть решение u(x, y) своего НПЗ достигает во внутренней точке $M_0(x_0, 0)$ интервала AB.

Рассмотрим отдельно три случая возможного положения точки x_0 .

1. Пусть $x_0 \in (-1,c)$. Тогда в силу известного аналога принципа Заремба- Жиро в этой точке

$$v(x_0) < 0,$$
 (1.4.5)

[40, с.74]. С другой стороны хорошо известно, что в точке положительного максимума $\tau'(x_0) = 0$ и в силу соответствующего однородного равенство (1.4.3) (где $\psi_0((x_0-1)/2) \equiv 0$) имеем

$$v(x_0) = 0, (1.4.6)$$

а это равенство в силу условия сопряжения (1.1.2) противоречить неравенству (1.4.5), следовательно $x_0 \notin (-1,c)$.

- 2. Пусть $x_0 \in (c,1)$. Здесь аналогично случаю 1 в силу (1.4.4) легко показать, что $x_0 \notin (c,1)$.
- 3. Пусть $x_0 = c$. Тогда из соответствующего однородного краевого условия (1.1.5) (с $\psi_1(x) \equiv 0$) имеем $\tau(c) = 0$, следовательно и в этом случае точка x_0 не является точкой НПЗ функции u(x,y).

Таким образом, решение u(x,y) удовлетворяющим условиям теоремы 1.5 своего НПЗ достигает в точках кривой σ_0 .

Аналогично как и выше также можно показать, что решение u(x,y) удовлетворяющая условиям теоремы 1.5 своего НОЗ так же достигает в точках кривой σ_0 . Теоремы 1.5 доказана.

Из теоремы 1.5 вытекает

Следствие. Задача G_0 может иметь не более одного решения.

В самом деле, в силу теоремы 1.5 решение однородной задачи G_0 своего НПЗ и НОЗ достигает в точках нормальной кривой σ_0 и в этих точках в силу

соответствующего однородного (с $\varphi(x) \equiv 0$) условия (1.1.3) $u(x,y)|_{\sigma_0} = 0$. Отсюда следует, что $u(x,y) \equiv 0$ всюду в замкнутой области \bar{D}^+ , следовательно, и во всей смешанной области D.

1.4.2. Исследование задачи G_0 .

Теорема 1.6. $3a \partial a \vee a G_0$ однозначно разрешима.

Доказательство. Решение видоизменённой задачи Хольмгрена с краевыми данными

$$\lim_{y\to+0} y^{-m/2} \frac{\partial u}{\partial y} = v(x), x \in I; \ u(x,y)|_{\sigma_0} = \varphi(x), \ x \in \overline{I},$$

дается формулой [40, с.143]

$$u(x,y) = \frac{1}{2\pi} \int_{-1}^{1} \left\{ ln \left[(x-t)^{2} + \frac{4y^{m+2}}{(m+2)^{2}} \right] - ln \left[(1-xt)^{2} + \frac{4t^{2}y^{m+2}}{(m+2)^{2}} \right] \right\} v(t)dt - \frac{(m+2)(1-R^{2})}{4\pi} \int_{0}^{\ell} \varphi(\xi(s))(\eta(s))^{\frac{(m+2)}{2}} (r^{-2} + r_{1}^{-2})d\xi(s),$$
(1.4.7)

где

$$R^{2} = x^{2} + \frac{4y^{m+2}}{(m+2)^{2}}, \quad r^{2} \atop r_{1}^{2} = (x - \xi(s))^{2} + \frac{4}{(m+2)^{2}} \left(y^{\frac{m+2}{2}} \mp (\eta(s))^{\frac{m+2}{2}} \right)^{2},$$

 $(\xi(s),\eta(s))\in\sigma_0,\ s$ — длина дуга кривой $\sigma_0,$ отсчитываемая от точки B(1,0) до точка $(\xi(s),\eta(s))\in\sigma_0$ а ℓ — длина дуга всей кривой σ_0 .

Из представления (1.4.7) при y = 0 найдём функцию

$$\tau(x) = \frac{1}{2\pi} \int_{-1}^{1} \left[\ln(x-t)^{2} - \ln(1-xt)^{2} \right] v(t) dt +$$

$$+ \frac{(m+2)(1-x^{2})}{2\pi} \int_{-1}^{1} \varphi(\xi(s)) \eta^{-(m+2)/2}(s) [1-2x\xi(s)+x^{2}]^{-1} d\xi(s),$$

затем, дифференцируя по х получаем

$$\tau'(x) = -\frac{1}{\pi} \int_{1}^{1} \left(\frac{1}{t - x} - \frac{t}{1 - xt} \right) \nu(t) dt + \Phi(x), \quad x \in I,$$
 (1.4.8)

где

$$\Phi(x) = \frac{m+2}{2\pi} \frac{d}{dx} \left[(1-x^2) \int_{-1}^{1} \varphi(s) [\eta(s)]^{-(m+2)/2} \left(1 - 2x\xi + x^2 \right)^{-1} d\xi \right] \in C(\overline{I}) \cap C^1(I).$$

Отметим, что равенство (1.4.8) имеет место для всех $x \in \overline{I}$.

Теперь выражения для $\tau'(x)$ из (1.4.8) подставляя в (1.4.3) и (1.4.4) с учётом равенства

$$\frac{1}{t-x} - \frac{t}{1-xt} = \frac{1+t}{1+x} \left(\frac{1}{t-x} - \frac{1}{1-xt} \right),$$

получим следующие сингулярные интегральные уравнения относительно неизвестной функции v(x)

$$v(x) = -\frac{1}{\pi} \int_{1}^{1} \left(\frac{1+s}{1+x} \right) \left(\frac{1}{s-x} - \frac{1}{1-xs} \right) v(s) ds + F_0(x), \quad x \in (-1,c), \quad (1.4.9)$$

$$v(x) = \frac{1}{\pi} \int_{-1}^{1} \left(\frac{1+s}{1+x} \right) \left(\frac{1}{s-x} - \frac{1}{1-xs} \right) v(s) ds + F_1(x), \quad x \in (c,1), \quad (1.4.10)$$

где

$$F_0(x) = \Phi(x) - \psi_0((x-1)/2), \quad F_1(x) = \Phi(x) + \psi_0((x+c)/2).$$

Заметим, что уравнения (1.4.9) и (1.4.10) имеют место соответственно только для $x \in (-1,c)$ и $x \in (c,1)$. Для рассмотрения их в одном промежутке I = (-1,1) в уравнении (1.4.9) x заменим на ax - b, а в (1.4.10) x - на bx + a, где a = (1+c)/2, b = (1-c)/2, a + b = 1, a - b = c. С учётом последних преобразований (1.4.9) и (1.4.10) соответственно запишем в виде

$$v(ax-b) = -\frac{1}{\pi} \int_{-1}^{1} \left(\frac{1+s}{a(1+x)} \right) \left(\frac{1}{s+b-ax} - \frac{1}{1-(ax-b)s} \right) v(s) ds + F_0(ax-b), \quad x \in I,$$

$$v(bx+a) = \frac{1}{\pi} \int_{-1}^{1} \left(\frac{1+s}{1+a+bx} \right) \left(\frac{1}{s-a-bx} - \frac{1}{1-(bx+a)s} \right) v(s) ds + F_0(bx+a), \quad x \in I.$$

$$(1.4.11)$$

Затем в правых частях уравнений (1.4.11) и (1.4.12) интегралы по промежутку (-1,1) предварительно разобьём на два интеграла по промежуткам (-1,c), (c,1), и во всех интегралах из правых частей этих уравнений сделаем замену переменных интегрирования s = at - b для интегралов по промежутку (-1,c) и s = bt + a для интегралов по промежутку (c,1), где $t \in (-1,1)$. Затем выделив интегралы с сингулярной особенностью, преобразуем их к виду

$$v_{0}(x) + \frac{1}{\pi} \int_{-1}^{1} \left(\frac{1+t}{1+x}\right) \left(\frac{1}{t-x} - \frac{a}{1-(ax-b)(at-b)}\right) v_{0}(t)dt =$$

$$= -\frac{1}{\pi} \int_{-1}^{1} \frac{bv_{1}(t)dt}{bt-ax+1} + T_{0}[v_{1}] + F_{0}(x), \quad x \in I, \qquad (1.4.13)$$

$$v_{1}(x) - \frac{1}{\pi} \int_{-1}^{1} \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) v_{1}(t)dt =$$

$$= \frac{1}{\pi} \int_{-1}^{1} \frac{av_{0}(t)dt}{at-bx-1} + G_{0}[v_{0}] + S_{0}[v_{1}] + F_{1}(x), \quad x \in I, \qquad (1.4.14)$$

ГДе
$$v_0(x) = v(ax-b), \ v_1(x) = v(bx+a), \ T_0[v_1] = \frac{b}{\pi} \int_{-1}^{1} \frac{(bt+a)v_1(t)dt}{1-(ax-b)(bt+a)},$$

$$G_0[v_0] = \frac{1}{\pi} \int_{-1}^{1} \left[\frac{a(1+t)}{1+a+bx} - 1 \right] \frac{av_0(t)dt}{at-bx-1} - \frac{1}{\pi} \int_{-1}^{1} \frac{a(1+t)}{1+a+bx} \frac{av_0(t)dt}{1-(bx+a)(at-b)},$$

$$S_0[v_1] = \frac{1}{\pi} \int_{-1}^{1} \left(\frac{1+a+bt}{1+a+bx} - 1 \right) \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)} \right) v_1(t) dt$$

-регулярные операторы,

 $F_0(x) = F_0(ax - b), \ F_1(x) = F_1(bx + a)$ – известные функции.

Таким образом, задача G_0 эквивалентним образом сведена к решению системы сингулярных интегральных уравнений (1.4.13) и (1.4.14).

Заметим, что уравнения (1.4.13) и (1.4.14) являются неклассическими сингулярными интегральными уравнениями Трикоми, так как они имеют две особенности:

- 1) "несингулярная" часть ядра имеют некарлемановские сдвиги ax-b и at-b в (1.4.13) и bx+a и bt+a в (1.4.14);
- 2) интегральные операторы правых частей уравнений (1.4.13) и (1.4.14) не является регулярными, поскольку при x=1, t=-1 в (1.4.13) и при x=-1, t=1 в (1.4.14) ядра этих операторов имеют изолированные особенности первого порядка (и поэтому они выделены отдельно) [22,26].

Временно считая правые части уравнений (1.4.13) и (1.4.14) известными функциями и введя обозначения

$$g_0(x) = -\frac{1}{\pi} \int_{-1}^{1} \frac{b\nu_1(t)dt}{bt - ax + 1} + T_0[\nu_1] + F_0(x), \quad x \in I,$$
 (1.4.15)

$$g_1(x) = \frac{1}{\pi} \int_{-1}^{1} \frac{av_0(t)dt}{at - bx - 1} + G_0[v_0] + S_0[v_1] + F_1(x), \quad x \in I,$$
 (1.4.16)

систему уравнений (1.4.13) и (1.4.14) запишем в виде

$$v_0(x) + \frac{1}{\pi} \int_{-1}^{1} \left(\frac{1+t}{1+x} \right) \left(\frac{1}{t-x} - \frac{a}{1-(ax-b)(at-b)} \right) v_0(t) dt = g_0(x), \quad (1.4.17)$$

$$v_1(x) - \frac{1}{\pi} \int_{-1}^{1} \left(\frac{1}{t - x} - \frac{b}{1 - (bx + a)(bt + a)} \right) v_1(t) dt = g_1(x).$$
 (1.4.18)

Теорема 1.7. Если $g_0(x)$ удовлетворяет условию Гёльдера при $x \in (-1,1)$ и $g_0(x) \in L_p(-1,1)$ p > 1, то решение уравнения (1.4.17) в классе функций h(-1), в котором $(1+x)v_0(x)$ ограничена на левом конце и может быть неограниченной на правом конце интервала (-1,1), выражается формулой

$$v_0(x) = \frac{1}{2} g_0(x) - \frac{1}{2\pi} \int_{-1}^{1} \left(\frac{1+t}{1+x} \right)^{\frac{1}{2}} \left(\frac{1-t}{1-x} \right)^{\frac{1}{4}} \times \left(\frac{1-c(at-b)}{1-c(ax-b)} \right)^{\frac{1}{4}} \left(\frac{1}{t-x} - \frac{a}{1-(ax-b)(at-b)} \right) g_0(t) dt.$$
 (1.4.19)

Теорема 1.8. Если $g_1(x)$ удовлетворяет условию Гёльдера при $x \in (-1,1)$ и $g_1(x) \in L_p(-1,1)$ p > 1, то решение уравнения (1.4.18) в классе функций h(-1), в котором $v_1(x)$ ограничена при x = -1 и может быть неограниченной на правом конце интервала (-1,1), выражается формулой

$$v_{1}(x) = \frac{1}{2}g_{1}(x) - \frac{1}{2\pi} \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{-\frac{1}{4}} \left(\frac{1-t}{1-x}\right)^{\frac{1}{2}} \times \left(\frac{1-(bx+a)c}{1-(bt+a)c}\right)^{\frac{1}{4}} \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) g_{1}(t)dt.$$
 (1.4.20)

Доказательство теоремы (1.7) и (1.8) приводиться методом аналогичным доказательству теоремы 2.4 (см. стр. 63).

Приступим к дальнейшему исследованию системы уравнений (1.4.13) и (1.4.14). Теперь выражения для $g_0(x)$ из (1.4.15) и для $g_1(x)$ из (1.4.16) соответственно подставляя в решения (1.4.18) и (1.4.19) и выполнив стандартные преобразования [40, с.129] выделим интегралы с сингулярными особенностями и запишем их соответственно в виде

$$v_{0}(x) = -\frac{1}{2\pi} \int_{-1}^{1} \frac{bv_{1}(s)ds}{bs - ax + 1} + \frac{1}{2\pi^{2}} \int_{-1}^{1} bv_{1}(s)ds \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{\frac{1}{2}} \left(\frac{1-t}{1-x}\right)^{\frac{1}{4}} \times \left(\frac{1}{t-x} - \frac{a}{1-(ax-b)(at-b)}\right) \frac{dt}{bs - at + 1} + T_{1}[v_{1}] + g_{0}(x), x \in I, \quad (1.4.21)$$

$$v_{1}(x) = \frac{1}{2\pi} \int_{-1}^{1} \frac{av_{0}(s)ds}{as - bx - 1} - \frac{1}{2\pi^{2}} \int_{-1}^{1} av_{0}(s)ds \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{-\frac{1}{4}} \left(\frac{1-t}{1-x}\right)^{\frac{1}{2}} \times \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) \frac{dt}{as - bt - 1} + G_{1}[v_{0}] + S_{1}[v_{1}] + g_{1}(x), \quad (1.4.22)$$

где

$$T_{1}[v_{1}] = \frac{1}{2}T_{0}[v_{1}] + \frac{1}{2\pi^{2}}\int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{\frac{1}{2}} \left(\frac{1-t}{1-x}\right)^{\frac{1}{4}} \left[\left(\frac{1-c(at-b)}{1-c(ax-b)}\right)^{\frac{1}{4}} - 1\right] \times$$

$$\times \left(\frac{1}{t-x} - \frac{a}{1-(ax-b)(at-b)}\right) dt - \frac{1}{2\pi} \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{\frac{1}{2}} \left(\frac{1-t}{1-x}\right)^{\frac{1}{4}} \left(\frac{1-c(at-b)}{1-c(ax-b)}\right)^{\frac{1}{4}} \times \\ \times \left(\frac{1}{t-x} - \frac{a}{1-(ax-b)(at-b)}\right) T_0[\nu_1] dt, \\ G_1[\nu_0] = \frac{1}{2} G_0[\nu_0] - \frac{1}{2\pi} \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{\frac{1}{4}} \left(\frac{1-t}{1-x}\right)^{\frac{1}{2}} \left(\frac{1-(bx+a)c}{1-(bt+a)c}\right)^{\frac{1}{4}} \times \\ \times \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) G_0[\nu_0] dt - \frac{1}{2\pi^2} \int_{-1}^{1} a\nu_0(s) ds \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{\frac{1}{4}} \left(\frac{1-t}{1-x}\right)^{\frac{1}{2}} \times \\ \times \left[\left(\frac{1-(bx+a)c}{1-(bt+a)c}\right)^{\frac{1}{4}} - 1\right] \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) \frac{dt}{as-bt-1}, \\ S_1[\nu_1] = \frac{1}{2} S_0[\nu_1] - \frac{1}{2\pi} \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{\frac{1}{4}} \left(\frac{1-t}{1-x}\right)^{\frac{1}{2}} \left(\frac{1-(bx+a)c}{1-(bt+a)c}\right)^{\frac{1}{4}} \times \\ \times \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) S_0[\nu_1] dt - \text{регулярные операторы.} \\ g_0(x) = \frac{1}{2} F_0(x) - \frac{1}{2\pi} \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{\frac{1}{2}} \left(\frac{1-t}{1-x}\right)^{\frac{1}{4}} \left(\frac{1-c(at-b)}{1-c(ax-b)}\right)^{\frac{1}{4}} \times \\ \times \left(\frac{1}{t-x} - \frac{a}{1-(ax-b)(at-b)}\right) F_0(t) dt, \\ g_1(x) = \frac{1}{2} F_1(x) - \frac{1}{2\pi} \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{-\frac{1}{4}} \left(\frac{1-t}{1-x}\right)^{\frac{1}{2}} \left(\frac{1-(bx+a)c}{1-(bt+a)c}\right)^{\frac{1}{4}} \times \\ \times \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) F_1(t) dt. - \text{известные}$$

функции.

В правых частях (1.4.21) и (1.4.22) вычислим внутренние интегралы.

1. Сначала вычислим внутренний интеграл в (1.4.21)

$$A_0(x,s) = \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{\frac{1}{2}} \left(\frac{1-t}{1-x}\right)^{\frac{1}{4}} \left(\frac{1}{t-x} - \frac{a}{1-(ax-b)(at-b)}\right) \frac{dt}{bs-at+1}.$$

Рациональный множитель подынтегрального выражения с учётом (1.3.17) разложим на простые дроби и с учётом этого разложения имеем

$$A_{0}(x,s) = \frac{(1+x)^{-1/2}(1-x)^{-1/4}}{bs - ax + 1} I_{01}(x) + (1+x)^{-1/2}(1-x)^{-1/4} \times \\ \times \left(\frac{a}{bs - ax + 1} - \frac{a}{1 - (ax - b)(bs + a)}\right) I_{02}(s) + \\ + (1+x)^{-1/2}(1-x)^{-1/4} \frac{a(ax - b)}{1 - (ax - b)(bs + a)} I_{03}(x), \tag{1.4.23}$$
 ГДе
$$I_{01}(x) = \int_{-1}^{1} \frac{(1+t)^{\frac{1}{2}}(1-t)^{\frac{1}{4}}dt}{t - x}, I_{02}(s) = \int_{-1}^{1} \frac{(1+t)^{\frac{1}{2}}(1-t)^{\frac{1}{4}}dt}{bs - at + 1},$$

$$I_{03}(x) = \int_{-1}^{1} \frac{(1+t)^{\frac{1}{2}}(1-t)^{\frac{1}{4}}dt}{1 - (ax - b)(at - b)}.$$

К полученным интегралам соответственно применим формулы [40, c.125] (1.3.19), (1.3.20) и (1.3.21), где $\alpha = 3/2$, $\beta = 5/4$.

Далее, вычислим интегралы $I_{01}(x)$, $I_{02}(s)$, $I_{03}(x)$:

$$I_{01}(x) = \frac{\pi}{(1+x)^{-1/2}(1-x)^{-1/4}} - 2^{3/4}B\left(\frac{3}{2}, \frac{1}{4}\right)F\left(-\frac{3}{4}, 1, \frac{3}{4}; \frac{1-x}{2}\right),\tag{1.4.24}$$

$$I_{02}(s) = -\frac{2^{1/2}\pi a^{-7/4}b^{1/4}}{(1+s)^{-1/4}(1+a+bs)^{-1/2}} + 2^{3/4}a^{-1}B\left(\frac{3}{2},\frac{1}{4}\right)F\left(-\frac{3}{4},1,\frac{3}{4};-\frac{b(1+s)}{2a}\right), \quad (1.4.25)$$

$$I_{03}(x) = \frac{2^{7/4}B\left(\frac{3}{2}, \frac{5}{4}\right)}{1 - c(ax - b)}F\left(\frac{5}{4}, 1, \frac{11}{4}; \frac{2a(b - ax)}{1 - c(ax - b)}\right). \tag{1.4.26}$$

Заметим, что к интегралу $I_{01}(x)$ применена формула автотрансформации [41, с.10] . Затем подставляя выражения из (1.4.24), (1.4.25) и (1.4.26) в (1.4.23), получим

$$A_{0}(x,s) = \frac{\pi}{bs - ax + 1} - \frac{2^{3/4}B\left(\frac{3}{2}, \frac{1}{4}\right)}{(1+x)^{1/2}(1-x)^{1/4}} \frac{1}{bs - ax + 1} \left[F\left(-\frac{3}{4}, 1, \frac{3}{4}; \frac{1-x}{2}\right) - F\left(-\frac{3}{4}, 1, \frac{3}{4}; -\frac{b(1+s)}{2a}\right) \right] - \frac{2^{1/2}\pi}{bs - ax + 1} \left(\frac{b(1+s)}{a(1-x)}\right)^{1/4} \left(\frac{1+a+bs}{a(1+x)}\right)^{1/2} - \frac{2^{1/2}}{(1+x)^{1/2}(1-x)^{1/4}} \frac{1}{1 - (ax - b)(bs + a)} \left[\pi\left(\frac{b(1+s)}{a}\right)^{1/4} \left(\frac{1+a+bs}{a}\right)^{1/2} - \frac{2^{1/4}B\left(\frac{3}{2}, \frac{1}{4}\right)F\left(-\frac{3}{4}, 1, \frac{3}{4}; -\frac{b(1+s)}{2a}\right) - 2^{5/4}B\left(\frac{3}{2}, \frac{5}{4}\right)\frac{a(ax - b)}{1 - c(ax - b)} \times F\left(\frac{5}{4}, 1, \frac{11}{4}; \frac{2a(b - ax)}{1 - c(ax - b)}\right) \right].$$

$$(1.4.27)$$

2. Теперь вычислим внутренний интеграл в (1.4.22)

$$A_{1}(x,s) = \int_{1}^{1} \left(\frac{1+t}{1+x}\right)^{-\frac{1}{4}} \left(\frac{1-t}{1-x}\right)^{\frac{1}{2}} \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) \frac{dt}{as-bt-1}.$$

Рациональный множитель подынтегрального выражения с учётом (1.3.23) разложив на простые дроби, имеем

$$A_{1}(x,s) = \frac{(1+x)^{1/4}(1-x)^{-1/2}}{as-bx-1}I_{11}(x) + (1+x)^{1/4}(1-x)^{-1/2} \times \left(\frac{b}{as-bx-1} - \frac{b}{1-(bx+a)(as-b)}\right)I_{12}(s) + (1+x)^{1/4}(1-x)^{-1/2}\frac{b(bx+a)}{1-(bx+a)(as-b)}I_{13}(x),$$
(1.4.28)

где

$$I_{11}(x) = \int_{-1}^{1} \frac{(1+t)^{-\frac{1}{4}}(1-t)^{\frac{1}{2}}dt}{t-x}, I_{12}(s) = \int_{-1}^{1} \frac{(1+t)^{-\frac{1}{4}}(1-t)^{\frac{1}{2}}dt}{as-bt-1}, I_{13}(x) = \int_{-1}^{1} \frac{(1+t)^{-\frac{1}{4}}(1-t)^{\frac{1}{2}}dt}{1-(bx+a)(bt+a)}.$$

К полученным интегралам соответственно применив формулы [40, c.125] (1.3.25), (1.3.26) и (1.3.27) (где $\alpha = 3/4$, $\beta = 3/2$) имеем

$$I_{11}(x) = \frac{\pi}{(1-x)^{-1/2}(1+x)^{1/4}} + 2^{1/4}B\left(\frac{3}{2}, -\frac{1}{4}\right)F\left(-\frac{1}{4}, 1, \frac{5}{4}; \frac{1+x}{2}\right),\tag{1.4.29}$$

$$I_{12}(s) = -\frac{2^{1/2}\pi a^{-1/4}b^{-5/4}}{(1-s)^{1/4}(1+b-as)^{-1/2}} - 2^{1/4}b^{-1}B\left(\frac{3}{2}, -\frac{1}{4}\right)F\left(-\frac{1}{4}, 1, \frac{5}{4}; -\frac{a(1-s)}{2b}\right), \quad (1.4.30)$$

$$I_{13}(x) = \frac{2^{5/4}B\left(\frac{3}{4}, \frac{3}{2}\right)}{1 - c(bx + a)}F\left(\frac{3}{4}, 1, \frac{9}{4}; \frac{2b(bx + a)}{1 - c(bx + a)}\right). \tag{1.4.31}$$

Заметим, что к интегралу $I_{11}(x)$ применена формула автотрансформации [41, с. 10.] Затем подставляя выражения из (1.4.29), (1.4.30) и (1.4.31) в (1.4.28), получим

$$A_{1}(x,s) = \frac{\pi}{as - bx - 1} + \frac{2^{1/4}B\left(\frac{3}{2}, -\frac{1}{4}\right)}{as - bx - 1} \frac{(1+x)^{1/4}}{(1-x)^{1/2}} \left[F\left(-\frac{1}{4}, 1, \frac{5}{4}; \frac{1+x}{2}\right) - F\left(-\frac{1}{4}, 1, \frac{5}{4}; -\frac{a(1-s)}{2b}\right) \right] - \frac{2^{1/2}\pi}{as - bx - 1} \left(\frac{a(1-s)}{b(1+x)}\right)^{-1/4} \left(\frac{1+b-as}{b(1-x)}\right)^{1/2} + \frac{2^{1/2}}{1 - (bx + a)(as - b)} \frac{(1+x)^{1/4}}{(1-x)^{1/2}} \left[\pi\left(\frac{a(1-s)}{b}\right)^{-1/4} \left(\frac{1+b-as}{b}\right)^{1/2} - 2^{-1/4}B\left(\frac{3}{2}, -\frac{1}{4}\right) \times F\left(-\frac{1}{4}, 1, \frac{5}{4}; -\frac{a(1-s)}{b}\right) + 2^{3/4}B\left(\frac{3}{4}, \frac{3}{2}\right) \frac{b(bx + a)}{1 - c(bx + a)} F\left(\frac{3}{4}, 1, \frac{9}{4}; \frac{2b(bx + a)}{1 - c(bx + a)}\right) \right].$$

$$(1.4.32)$$

Теперь выражения для $A_0(x,s)$ и $A_1(x,s)$ из (1.4.27) и (1.4.32) подставляя соответственно в (1.4.21), (1.4.22) и выделив интегралы с сингулярными особенностями в изолированных особых точках запишем их соответственно в виде

$$v_0(x) = -\frac{1}{\sqrt{2\pi}} \int_{-1}^{1} \left(\frac{b(1+s)}{a(1-x)} \right)^{1/4} \frac{bv_1(s)ds}{bs - ax + 1} + T_2[v_1] + g_0(x), \ x \in I,$$
 (1.4.33)

$$v_1(x) = -\frac{1}{\sqrt{2}\pi} \int_{-1}^{1} \left(\frac{a(1-s)}{b(1+x)} \right)^{-1/4} \frac{av_0(s)ds}{bx - as + 1} + G_2[v_0] + S_1[v_1] + g_1(x), \quad x \in I, \quad (1.4.34)$$

где

$$T_{2}[\nu_{1}] = T_{1}[\nu_{1}] - \frac{1}{\sqrt{2}\pi} \int_{-1}^{1} \left(\frac{b(1+s)}{a(1-x)} \right)^{1/4} \left[\left(\frac{1+a+bs}{a(1+x)} \right)^{1/2} - 1 \right] \frac{b\nu_{1}(s)ds}{bs-ax+1} - \frac{B\left(\frac{3}{2},\frac{1}{4}\right)}{2\pi^{2}} \times \\ \times \int_{-1}^{1} \left[F\left(-\frac{3}{4},1,\frac{3}{4};\frac{1-x}{2}\right) - F\left(-\frac{3}{4},1,\frac{3}{4};-\frac{b(1+s)}{2a}\right) \right] \left(\frac{2}{1-x}\right)^{1/4} \left(\frac{2}{1+x}\right)^{1/2} \times \\ \times \frac{b\nu_{1}(s)ds}{bs-ax+1} - \frac{1}{2\pi^{2}} \int_{-1}^{1} \left[\pi\left(\frac{b(1+s)}{a}\right)^{1/4} \left(\frac{1+a+bs}{a}\right)^{1/2} - 2^{1/4}B\left(\frac{3}{2},\frac{1}{4}\right) \times \\ \times F\left(-\frac{3}{4},1,\frac{3}{4};-\frac{b(1+s)}{2a}\right) - 2^{5/4}B\left(\frac{3}{2},\frac{5}{4}\right) \frac{a(ax-b)}{1-c(ax-b)}F\left(\frac{5}{4},1,\frac{11}{4};\frac{2a(b-ax)}{1-c(ax-b)}\right) \right] \times \\ \times (1-x)^{-1/4} \left(\frac{2}{1+x}\right)^{1/2} \frac{b\nu_{1}(s)ds}{1-(ax-b)(bs+a)}, \\ G_{2}[\nu_{0}] = G_{1}[\nu_{0}] + \frac{1}{\sqrt{2}\pi} \int_{-1}^{1} \left(\frac{a(1-s)}{b(1+x)}\right)^{-1/4} \left[\left(\frac{1+b-as}{b-as}\right)^{1/2} - 1 \right] \frac{a\nu_{0}(s)ds}{as-bx-1} - \frac{2^{1/4}B\left(\frac{3}{2},-\frac{1}{4}\right)}{2\pi^{2}} \times \\ \times \frac{(1+x)^{1/4}}{(1-x)^{1/2}} \int_{-1}^{1} \left[F\left(-\frac{1}{4},1,\frac{5}{4};\frac{1+x}{2}\right) - F\left(-\frac{1}{4},1,\frac{5}{4};-\frac{a(1-s)}{2b}\right) \right] \frac{a\nu_{0}(s)ds}{as-bx-1} - \\ - \frac{2^{1/2}}{2\pi^{2}} \frac{(1+x)^{1/4}}{(1-x)^{1/2}} \int_{-1}^{1} \left[\pi\left(\frac{a(1-s)}{b}\right)^{-1/4} \left(\frac{1+b-as}{b}\right)^{1/2} + 2^{-1/4}B\left(\frac{3}{2},-\frac{1}{4}\right) \times \\ \times F\left(-\frac{1}{4},1,\frac{5}{4};-\frac{a(1-s)}{2b}\right) + 2^{3/4}B\left(\frac{3}{4},\frac{3}{2}\right) \frac{b(bx+a)}{1-c(bx+a)} F\left(\frac{3}{4},1,\frac{9}{4};\frac{2b(bx+a)}{1-c(bx+a)}\right) \right] \times \\ \times \frac{a\nu_{0}(s)ds}{1-(bx+a)(as-b)} - \text{perynaphise one partopid.}$$

Теперь в (1.4.33) x заменив на -x, а в (1.4.34) сделав замену переменного интегрирования s=-t и введя обозначение $v_0(x)=v_0(-x)$ соответственно получим

$$v_0(x) = -\int_{-1}^{1} m \left(\frac{1+x}{1+s}\right) \frac{v_1(s)ds}{1+s} + T_3[v_1] + F_0(x), \qquad (1.4.35)$$

$$v_1(x) = -\int_{-1}^{1} n \left(\frac{1+x}{1+t} \right) \frac{v_0(t)dt}{1+t} + G_3[v_0] + S_2[v_1] + F_1(x),$$
 (1.4.36)

где

$$m(y) = \frac{\delta(ay/b)^{-1/4}}{(1+ay/b)}, \quad n(y) = \frac{\delta(by/a)^{1/4}}{(1+by/a)}, \quad \delta = \frac{1}{\sqrt{2}\pi},$$
 (1.4.37)

 $T_3[\nu_1], \ G_3[\nu_0], \ S_2[\nu_1]$ — регулярные операторы, а $F_0(x), \ F_1(x)$ — известные функции.

Таким образом, уравнение (1.4.35) совместно с уравнением (1.4.36) составляют систему интегральных уравнений относительно неизвестных функций $v_0(x)$ и $v_1(x)$ с сингулярной особенностью в ядре.

Характерной особенностью уравнения (1.4.35) является, то что оно разрешено относительно $v_0(x)$, что позволяет из (1.4.36) исключить $v_0(x)$. Выражение для $v_0(x)$ из (1.4.35) подставляя в (1.4.36), имеем [22,32]

$$v_1(x) = \int_{-1}^{1} \frac{\Omega(x,t)v_1(t)dt}{1+t} + R[v_1], \qquad (1.4.38)$$

где

$$\Omega(x,t) = \int_{-1}^{1} n \left(\frac{1+x}{1+s} \right) m \left(\frac{1+s}{1+t} \right) \frac{ds}{1+s},$$
 (1.4.39)

$$R[v_1] = -\int_{1}^{1} n \left(\frac{1+x}{1+t} \right) \frac{T_3[v_1] + F_0(t)}{1+t} dt +$$

$$+G_{3}\left[-\int_{-1}^{1}m\left(\frac{1+x}{1+t}\right)\frac{v_{1}(t)dt}{1+t}+T_{3}[v_{1}]+F_{0}(x)\right]+S_{2}[v_{1}]+F_{1}(x)$$

-регулярный оператор.

Сделав в интеграле (1.4.39) замену r = (1+s)/(1+t), будем иметь

$$\Omega(x,t) = \int_{0}^{2/(1+t)} n \left(\frac{1+x}{r(1+t)} \right) m(r) \frac{dr}{r} = \Omega_{1}(x,t) - \Omega_{2}(x,t)$$

где

$$\Omega_{1}(x,t) = \int_{0}^{\infty} n \left(\frac{1+x}{r(1+t)} \right) m(r) \frac{dr}{r}, \qquad (1.4.40)$$

$$\Omega_2(x,t) = \int_{2/(1+t)}^{\infty} n \left(\frac{1+x}{r(1+t)} \right) m(r) \frac{dr}{r}.$$
 (1.4.41)

Оценим сначала интеграл $\Omega_{2}(x,t)$. В силу (1.4.37) имеем оценки

$$n\left(\frac{1+x}{r(1+t)}\right) \leq \delta\left(\frac{a(1+t)}{b(1+x)}\right)^{-1/4} r^{-1/4}, \quad m(r) \leq \delta\left(\frac{b}{a}\right)^{5/4} r^{-5/4}.$$

Согласно последним неравенствам из (1.4.41) получаем

$$\Omega_2(x,t) \le \frac{2\delta^2}{3} \left(\frac{b}{2a}\right)^{3/2} \frac{(1+t)^{5/4}}{(1+x)^{-1/4}}.$$

Следовательно, $\Omega_2(x,t)/(1+t)$ – регулярное ядро.

Таким образом, на основании последнего утверждения уравнение (1.4.38) преобразуем к виду

$$v_1(x) = \int_{-1}^{1} \Omega_1(x,t) \frac{v_1(t)dt}{1+t} + R_2[v_1], \qquad (1.4.42)$$

где

$$R_2[\nu_1] = R_1[\nu_1] - \int_{-1}^{1} \frac{\Omega_2(x,t)}{1+t} \nu_1(t) dt$$
 – регулярный оператор.

Вычислим теперь интеграл (1.4.40). Имеем

$$\Omega_1(x,t) = \int_0^\infty n \left(\frac{1+x}{r(1+t)} \right) \frac{m(r)}{r} dr = \int_0^\infty n \left(\frac{y}{r} \right) \frac{m(r)}{r} dr,$$

где y = (1+x)/(1+t). Отсюда в силу (1.4.37) находим, что

$$\Omega_{1}(x,t) = \delta^{2} a^{1/2} b^{3/2} y^{1/4} \int_{0}^{\infty} \frac{r^{-1/2} dr}{(by + ar)(b + ar)} = \frac{\delta^{2} (ab)^{1/2}}{y^{-1/4} (1 - y)} \left(\int_{0}^{\infty} \frac{r^{-1/2} dr}{by + ar} - \int_{0}^{\infty} \frac{r^{-1/2} dr}{b + ar} \right).$$

Тогда, воспользовавшись интегралом Эйлера [46, с. 161]

$$\int_{0}^{\infty} \frac{x^{\alpha - 1}}{1 + x} dx = \frac{\pi}{\sin(\alpha \pi)}, \quad 0 < \alpha < 1,$$

получаем

$$\Omega_1(x,t) = \frac{1}{2\pi} \frac{y^{-1/4}(y^{1/2} - 1)}{y - 1}, \quad y = \frac{1 + x}{1 + t}.$$
(1.4.43)

Поэтому вследствие представления (1.4.43) уравнение (1.4.42) запишется в виде

$$\psi(x) = \frac{1}{2\pi} \int_{-1}^{1} \frac{\left[(1+x)/(1+t) \right]^{1/2} - 1}{(1+x)/(1+t) - 1} \frac{\psi(t)}{1+t} dt + R_3[\psi], \qquad (1.4.44)$$

где

$$\psi(x) = (1+x)^{1/4} \nu_1(x), R_3[\psi] = (1+x)^{1/4} R_2[(1+x)^{-1/4} \psi(x)].$$

В уравнении (1.4.44) сделаем замену переменных 1+t=2exp(-s), 1+x=2exp(-y) и введя обозначения $\rho(y)=\psi(2exp(-y)-1)exp(-y/4)$,

$$K_0(x) = \frac{1}{\sqrt{2\pi}} \frac{sh(x/4)}{sh(x/2)}$$

Тогда уравнение (1.4.44) запишем в виде [22,32]

$$\rho(y) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} K_0(y - s)\rho(s)ds + R_4[\rho]. \tag{1.4.45}$$

Уравнение (1.4.45) является интегральным уравнением Винера-Хопфа [13, с.55]. Функция $K_0(x)$ имеет показательный порядок убывания на бесконечности причём $K_0(x) \in C[0, \infty]$. Следовательно,

$$K_0(x) \in L_2 \cap H_\alpha = \{0\},$$
 [13, c.12].

Теоремы Фредгольма для интегральных уравнений типа свёртки применимы лишь в одном случае, когда индекс этих уравнений равен нулю [13, c.46]. индекс χ уравнения (1.4.45) совпадает с индексом выражения $1-K^{\wedge}(x)$, взятым с обратным знаком, т.е.

$$\chi = -Ind(1 - K^{\hat{}}(x))$$
 [13, c. 56],

где

$$K^{\wedge}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ixt} K_0(t) dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (\cos(xt) - i\sin(xt)) K_0(t) dt =$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \cos(xt) \frac{\sinh(t/4)}{\sqrt{2\pi} \sinh(t/2)} dt.$$

С учётом чётности функции $K_0(x)$ и формулы [14, с. 518]

$$\int_{0}^{\infty} \cos(\alpha t) \frac{sh(\beta t)}{sh(\gamma t)} dt = \frac{\pi}{2\gamma} \frac{\sin(\beta \pi / \gamma)}{\cosh(\alpha \pi / \gamma) + \cos(\beta \pi / \gamma)},$$

где $\alpha = x$, $\beta = 1/4$, $\gamma = 1/2$ нетрудно убедиться в том, что

$$K^{\wedge}(x) = \frac{\sin(\pi/2)}{ch(2\pi x) + \cos(\pi/2)} = \frac{1}{ch(2\pi x)} < 1.$$

Так как $\max K^{\wedge}(x) < 1$, тогда $\chi = -Ind(1 - K^{\wedge}(x)) = 0$.

Следовательно, уравнение (1.4.45) однозначно редуцируется к интегральному уравнению Фредгольма второго рода [13, с.46] однозначная

разрешимость, которого следует из единственности решения задачи G_0 . Отсюда следует, однозначной разрешимости задачи G_0 . Теорема 1.6 доказана.

ГЛАВА II. ЗАДАЧА С УСЛОВИЕМ БИЦАДЗЕ - САМАРСКОГО НА ПАРАЛЛЕЛЬНЫХ ХАРАКТЕРИСТИКАХ И ОБЩИМИ УСЛОВИЯМИ СОПРЯЖЕНИЯ НА ЛИНИИ ВЫРОЖДЕНИЯ ДЛЯ УРАВНЕНИЯ ГЕЛЛЕРСТЕДТА С СИНГУЛЯРНЫМ КОЭФФИЦИЕНТОМ

В настоящей главе для уравнения Геллерстедта с сингулярным коэффициентом доказаны теоремы единственности и существования решения задачи с локальными и нелокальными условиями на частях граничной характеристики и с разрывными условиями склеивания на линии вырождения.

Результаты данной главы опубликованы в работах [58], [60], [62-65], [67], [68], [73].

§2.1. Постановка задачи ТН.

Пусть Ω — конечная односвязная область плоскости xOy, ограниченная при y>0 нормальной кривой $\sigma_0: x^2+4(m+2)^{-2}y^{m+2}=1$, с концами в точках A(-1,0) и B(1,0), а при y<0—характеристиками AC и BC уравнения

$$(signy) |y|^m u_{xx} + u_{yy} + (\beta_0 / y)u_y = 0,$$
 (2.1.1)

где постоянные m > 0, $\beta_0 \in (-m/2,1)$.

Обозначим через Ω^+ и Ω^- части области Ω , лежащие соответственно в полуплоскостях y>0 и y<0, а через C_0 и C_1 соответственно точки пересечения характеристик AC и BC с характеристиками, исходящими из точки E(c,0), где $c\in I=AB=(-1,1)$ – интервал оси y=0.

В задаче Трикоми [9,27,36,41,44] значение искомой функции задаётся во всех точках граничной характеристики AC. В настоящей работе исследуется корректность задачи, когда характеристика AC произвольном образом разбивается на две части $AC_0 \subset AC$ и $C_0C \subset AC$ и на первой части AC_0 задаётся значение искомой функции, а на второй части C_0C и параллельной ей внутренней характеристике EC_1 задаётся условие Бицадзе – Самарского [22].

Задача *TH* . В области Ω требуется найти функцию u(x,y) удовлетворяющую следующим условиям:

- 1) u(x,y) непрерывна в каждой из замкнутых областей $\bar{\Omega}^+$ и $\bar{\Omega}^-$;
- 2) u(x,y) принадлежит классу $C^2(\Omega^+)$ и удовлетворяет уравнению (2.1.1) в этой области;

- 3) u(x,y) является обобщённым решением класса R_1 [4; 40, c.35] в области Ω^- :
- 4) на интервале вырождения АВ выполняется общие условия сопряжения [20]

$$u(x,-0) = a_1 u(x,+0) + a_0(x), x \in \overline{I};$$
 (2.1.2)

$$\lim_{y \to -0} (-y)^{\beta_0} \frac{\partial u}{\partial y} = f(x) \lim_{y \to +0} y^{\beta_0} \frac{\partial u}{\partial y} + b_0(x), \quad x \in I \setminus \{c\},$$
 (2.1.3)

причём пределы в (2.1.3) при $x \to \pm 1, x \to c$ могут иметь особенности

порядка ниже $1-2\beta$, где $\beta = (m+2\beta_0)/2(m+2) \in (0,1/2)$;

5) выполнены условия

$$u(x,y) = \varphi(x), \ (x,y) \in \overline{\sigma}_0; \tag{2.1.4}$$

$$u(x,y)|_{AC_0} = \psi(x), \ x \in [-1,(c-1)/2];$$
 (2.1.5)

$$u[\theta(x)] = \mu u[\theta^*(x)] + \rho(x), \ x \in [c,1],$$
 (2.1.6)

здесь

$$\theta(x_0) = \frac{x_0 - 1}{2} - i \left[\frac{(m+2)(x_0 + 1)}{4} \right]^{2/(m+2)},$$

$$\theta^*(x_0) = \frac{x_0 + c}{2} - i \left[\frac{(m+2)(x_0 - c)}{4} \right]^{2/(m+2)}$$

-соответственно аффиксы точек пересечения характеристик $C_0C \subset AC$ и EC_1 с характеристикой, исходящей из точки $(x_0,0)$, где $x_0 \in [c,1]$. В условиях (2.1.2)-(2.1.6) $a_0(x)$, f(x), $b_0(x)$, $\varphi(x)$, $\psi(x)$, $\rho(x)-$ заданные достаточно гладкие функции, a_1 и $\mu-$ некоторые постоянные, причём $\psi(-1)=0$, $\varphi(-1)=\varphi(1)=0$, $f(x)=a_1$ при $x\in (-1,c)$.

Заметим, что условие (2.1.4) является условием Дирихле, заданным на кривой σ_0 , а условие (2.1.6) представляет собой условие Бицадзе- Самарского [10] на параллельных характеристиках $C_0C \subset AC$ и EC_1 .

Отметим, что задача *TH* при $\mu = 0$, $(\psi((c-1)/2) = \rho(c))$ переходит в задачу Трикоми с разрывными условиями сопряжения на линии вырождения вида (2.1.2) и (2.1.3) [20].

Применив оператор $D_{c,x}^{1-\beta}$ к краевому условию (2.1.6), получим

$$D_{c,x}^{1-\beta}u[\theta(x)] = \mu D_{c,x}^{1-\beta}u[\theta^*(x)] + D_{c,x}^{1-\beta}\rho(x), \qquad (2.1.7)$$

где $D_{c,x}^{l}$ – операторы интегро – дифференцирования дробного порядка в смысле Лиувилля [29].

В силу равенства

$$D_{c,x}^{1-\beta}u[\theta(x)] = D_{-1,x}^{1-\beta}u[\theta(x)] - \frac{1}{\Gamma(\beta)} \frac{d}{dx} \int_{-1}^{c} \frac{u[\theta(t)]dt}{(x-t)^{1-\beta}}$$

соотношение (2.1.7) запишем в виде

$$D_{-1,x}^{1-\beta}u[\theta(x)] = \mu D_{c,x}^{1-\beta}u[\theta^*(x)] + \rho_0(x), \quad x \in [c,1],$$
 (2.1.8)

где

$$\rho_0(x) = D_{c,x}^{1-\beta} \rho(x) + \frac{1}{\Gamma(\beta)} \frac{d}{dx} \int_{-1}^{1} \frac{u[\theta(t)]dt}{(x-t)^{1-\beta}}.$$

Таким образом, краевое условие (2.1.6) может быть заменено, эквивалентным ему условием (2.1.8).

Введём обозначения

$$\tau^{-}(x) = u(x, -0), \quad v^{-}(x) = \lim_{y \to -0} (-y)^{\beta_0} \frac{\partial u}{\partial y},$$
 (2.1.9)

$$\tau(x) = u(x, +0), \quad v(x) = \lim_{y \to +0} y^{\beta_0} \frac{\partial u}{\partial y}.$$
 (2.1.10)

В силу обозначений (2.1.9), (2.1.10) условия склеивания (2.1.2) и (2.1.3) примут соответственно вид

$$\tau^{-}(x) = a_1 \tau(x) + a_0(x), \ x \in \overline{I}, \tag{2.1.11}$$

$$v^{-}(x) = f(x)v(x) + b_0(x), \ x \in I.$$
 (2.1.12)

§2.2. Единственность решения задачи ТН.

Формула Дарбу, определяющая в области Ω^- для уравнения (2.1.1) решение видоизменённой задачи Коши с начальными данными (2.1.9), имеет вид [40, c.34]:

$$u(x,y) = \gamma_1 \int_{-1}^{1} \tau^{-} \left[x + \frac{2t}{m+2} (-y)^{\frac{m+2}{2}} \right] (1+t)^{\beta-1} (1-t)^{\beta-1} dt +$$

$$+ \gamma_2 (-y)^{1-\beta_0} \int_{-1}^{1} v^{-} \left[x + \frac{2t}{m+2} (-y)^{\frac{m+2}{2}} \right] (1+t)^{-\beta} (1-t)^{-\beta} dt, \qquad (2.2.1)$$

где

$$\gamma_1 = \frac{2^{1-2\beta}\Gamma(2\beta)}{\Gamma^2(\beta)}, \gamma_2 = -\frac{2^{2\beta-1}\Gamma(2-2\beta)}{(1-\beta_0)\Gamma^2(1-\beta)}.$$

Из формулы Дарбу (2.2.1) нетрудно найти, что

$$u[\theta(x)] = \gamma_{1}\Gamma(\beta) \left(\frac{1+x}{2}\right)^{1-2\beta} D_{-1,x}^{-\beta} (1+x)^{\beta-1} \tau^{-}(x) + \gamma_{2} \left(\frac{m+2}{2}\right)^{1-2\beta} \times \left(1-\beta\right) D_{-1,x}^{\beta-1} \left(1+x\right)^{-\beta} v^{-}(x), \quad x \in (c,1),$$

$$u[\theta^{*}(x)] = \gamma_{1}\Gamma(\beta) \left(\frac{x-c}{2}\right)^{1-2\beta} D_{c,x}^{-\beta} (x-c)^{\beta-1} \tau^{-}(x) + \gamma_{2} \left(\frac{m+2}{2}\right)^{1-2\beta} \times \left(1-\beta\right) D_{c,x}^{\beta-1} \left(x-c\right)^{-\beta} v^{-}(x), \quad x \in (c,1).$$

$$(2.2.2)$$

Непосредственными вычислениями несложно доказать тождества

$$D_{c,x}^{1-\beta}(x-c)^{1-2\beta}D_{c,x}^{-\beta}(x-c)^{\beta-1}\tau^{-}(x) = (x-c)^{-\beta}D_{c,x}^{1-2\beta}\tau^{-}(x),$$

$$D_{c,x}^{1-\beta}D_{c,x}^{\beta-1}(x-c)^{-\beta}v^{-}(x) = (x-c)^{-\beta}v^{-}(x).$$
(2.2.3)

Тогда, из краевых условий (2.1.5), (2.1.6) в силу (2.2.1)—(2.2.3) получаем

$$v^{-}(x) = \gamma D_{-1,x}^{1-2\beta} \tau^{-}(x) + \Psi_{1}(x), \quad x \in (-1,c),$$
(2.2.4)

$$v^{-}(x) = \gamma \omega(x) \left\{ (x-c)^{\beta} D_{-1,x}^{1-2\beta} \tau^{-}(x) - \mu (1+x)^{\beta} D_{c,x}^{1-2\beta} \tau^{-}(x) \right\} + \rho_{1}(x), \quad x \in (c,1), \quad (2.2.5)$$

ГДе $\Psi_{1}(x) = -\gamma (\Gamma(\beta) / \Gamma(2\beta)) (1+x)^{\beta} D_{-1,x}^{1-\beta} \psi((x-1)/2),$

$$\rho_{1}(x) = -\gamma(\Gamma(\beta) / \Gamma(2\beta))(x-c)^{\beta}(1+x)^{\beta}\omega(x) \left[D_{c,x}^{1-\beta}\rho(x) + \frac{1}{\Gamma(\beta)} \frac{d}{dx} \int_{-1}^{c} \frac{\psi((t-1) / 2)dt}{(x-t)^{1-\beta}} \right],$$

$$\omega(x) = \frac{1}{(x-c)^{\beta} - \mu(1+x)^{\beta}}, \quad \gamma = \frac{2\Gamma(2\beta)\Gamma(1-\beta)}{\Gamma(\beta)\Gamma(1-2\beta)} \left(\frac{m+2}{4}\right)^{2\beta}.$$

Вследствие условий склеивания (2.1.2) и (2.1.3) ((2.1.11) и (2.1.12)) соотношения (2.2.4) и (2.2.5) преобразуем к виду $f(x)\nu(x) = \gamma a_1 D_{-1}^{1-2\beta} \tau(x) + \Psi_2(x), \ x \in (-1,c), \tag{2.2.6}$

$$f(x)v(x) = \gamma a_1 \omega(x) \left\{ (x-c)^{\beta} D_{-1,x}^{1-2\beta} \tau(x) - \mu(1+x)^{\beta} D_{c,x}^{1-2\beta} \tau(x) \right\} + \rho_2(x), \ x \in (c,1),$$

$$(2.2.7)$$

где $\Psi_2(x) = \Psi_1(x) + \gamma D_{-1,x}^{1-2\beta} a_0(x) - b_0(x),$

$$\rho_2(x) = \rho_1(x) + \gamma \omega(x) \left\{ (x - c)^{\beta} D_{-1,x}^{1-2\beta} a_0(x) - \mu (1 + x)^{\beta} D_{c,x}^{1-2\beta} a_0(x) \right\} - b_0(x).$$

Соотношения (2.2.6) и (2.2.7) являются первыми функциональными соотношениями между неизвестными функциями $\tau(x)$ и $\nu(x)$ привнесённые соответственно на интервалы (-1,c) и (c,1) из области Ω^- .

Теорема 2.1. Решение
$$u(x,y)$$
 задачи ТН при выполнении условий $a_0(x) \equiv 0, \quad b_0(x) \equiv 0, \quad \varphi(x) \equiv 0, \quad \psi(x) \equiv 0, \quad \rho(x) \equiv 0, \quad \mu < 0, \quad a_1 > 0, \quad f(x) > 0$ (2.2.8)

в замкнутой области $\bar{\Omega}^+$ тождественно равно нулю.

Доказательство. Пусть функция u(x,y) удовлетворяет условиям теоремы 2.1 и $u(x,y) \neq 0$ в точках области $\bar{\Omega}^+$. Тогда она в точках $\bar{\Omega}^+$ достигает своего наибольшего положительного значения (НПЗ) или наименьшего отрицательного значения (НОЗ). В силу принципа Хопфа [9, с.25] решение u(x,y) уравнения (2.1.1) своего (НПЗ) во внутренних точках области Ω^+ не достигает.

Пусть решение u(x, y) своего (НПЗ) достигает во внутренней точке x_0 интервала I. Могут представиться только следующие три случая:

 $x_0 \in (-1,c), \quad x_0 \in (c,1), \text{ M } x_0 = c.$

1. Допустим, что $x_0 \in (-1,c)$, тогда в этой точке

$$v(x_0) < 0, (2.2.9)$$

[40, с.74]. С другой стороны, в силу соответствующего однородного условия (2.2.6) (c $\Psi_2(x)\equiv 0$) и того, что в точке положительного максимума функции $\tau(x)$ значение оператора дробного дифференцирования $D_{-1,x}^{1-2\beta}\tau(x)|_{x=x_0}$ положительно [41, с.19], учитывая также неравенство f(x)>0, имеем $\nu(x_0)>0$. Полученное неравенство противоречить неравенству (2.2.9), следовательно $x_0\not\in (-1,c)$.

- 2. Пусть $x_0 \in (c,1)$. Здесь точно так же, как и в случае $x_0 \in (-1,c)$ с использованием соотношения (2.2.7) показывается, что $x_0 \notin (c,1)$.
- 3. Пусть $x_0 = c$. В этом случае из соответствующего однородного условия (2.1.6) (с $\rho(x) \equiv 0$) при x = c имеем $\tau(c) = 0$, т.е. $x_0 \neq c$.

Следовательно, решение u(x,y) однородной задачи TH своего (НПЗ) в области $\overline{\Omega}^+$ может достигать только в точках A(-1;0) и B(1,0).

Аналогично показывается, что решение u(x,y) однородной задачи TH своего (HO3) в области $\overline{\Omega}^+$ может достигать только в точках A(-1;0) и B(1,0).

Из краевого условия (2.1.4) (с $\varphi(x) \equiv 0$), при $x = \pm 1$ получаем u(A) = u(B) = 0. Поэтому $u(x, y) \equiv 0$ во всех точках области $\overline{\Omega}^+$. Отсюда

$$\tau(x) = u(x, +0) = 0, \quad v(x) = \lim_{y \to +0} y^{\beta_0} \frac{\partial u}{\partial y} = 0.$$

Тогда в силу соответствующих однородных общих условий склеивания (2.1.2) и (2.1.3) (с $a_0(x) \equiv 0$; $b_0(x) \equiv 0$) имеем

$$\tau^{-}(x) = u(x, -0) = 0, \quad v^{-}(x) = \lim_{y \to -0} (-y)^{\beta_0} \frac{\partial u}{\partial y} = 0.$$

Теперь, восстановив функцию u(x, y) в области Ω^- как решение видоизменённой задачи Коши с нулевыми данными по формуле Дарбу (2.2.1) получаем, что $u(x, y) \equiv 0$ в области $\bar{\Omega}^-$.

Таким образом, $u(x,y) \equiv 0$ во всей смешанной области $\bar{\Omega}$. Теорема 2.1 доказана.

§2.3. Существование решения задачи

Теорема 2.2. Задачи ТН при выполнении условий (2.2.8) и неравенств

$$\alpha_0 = \pi^{-1} arctg(\pi(C(-1))) < \frac{1}{4}, \qquad |3\alpha - \alpha_0| < \frac{1}{2}, \qquad (2.3.1)$$

$$C(-1) = \frac{a_1 \cos(\beta \pi)}{\pi(f(c) + a \sin(\beta \pi))}, \qquad \alpha = \frac{1 - 2\beta}{4} < \frac{1}{4}$$

где

однозначно разрешима.

Доказательство. Рассмотрим соотношение между функциями t(x) и n(x), которое получается из решения видоизмененной задачи N, т.е. из формулы (1.3.1) при y=0:

$$\tau(x) = -k_1 \int_{-1}^{1} \left[\left| x - t \right|^{-2\beta} - (1 - xt)^{-2\beta} \right] v(t) dt + \Phi(x), \ x \in \overline{I},$$
 (2.3.2)

где

$$\Phi(x) = 2\beta k_1 ((m+2)/2)^{2\beta} (1-x^2) \int_{-1}^{1} (1-t^2)^{\beta-1/2} (1-2xt+x^2)^{-1-\beta} \varphi(t) dt.$$

Заметим, что соотношение (2.3.2) справедливо для всего промежутка $x \in \overline{I}$. В силу этого замечания, подставляя в систему уравнений (2.2.6) и (2.2.7) представления для $\tau(x)$ из (2.3.2), можно исключить из них неизвестную функцию $\tau(x)$. Для этого нам нужно вычислить производные дробного порядке $D_{c,x}^{1-2\beta}\tau(x)$ и $D_{-1,x}^{1-2\beta}\tau(x)$. Применив оператор $D_{c,x}^{1-2\beta}$, к обеим частям равенства (2.3.2), получим

$$I(x) = D_{c,x}^{1-2\beta} \tau(x) = \frac{1}{\Gamma(2\beta)} \frac{d}{dx} \int_{c}^{x} \frac{\tau(t)dt}{(x-t)^{1-2\beta}}, \ x \in (c,1)$$
 (2.3.3)

Теперь подставляя в (2.3.3) представление для $\tau(x)$ из (2.3.2) будем иметь

$$I(x) = \frac{1}{\Gamma(2\beta)} \frac{d}{dx} \int_{c}^{x} \frac{dt}{(x-t)^{1-2\beta}} \left[-k_{1} \int_{-1}^{1} \left(\frac{1}{|t-s|^{2\beta}} - \frac{1}{(1-ts)^{2\beta}} \right) \nu(s) ds + \Phi(t) \right] =$$

$$= I_{11} + I_{12} + \Phi_{1}(x), \quad x \in (c,1),$$
(2.3.4)

где

$$I_{11}(x) = -\frac{k_1}{\Gamma(2\beta)} \frac{d}{dx} \int_{c}^{x} \frac{dt}{(x-t)^{1-2\beta}} \int_{-1}^{1} \frac{\nu(s)ds}{|t-s|^{2\beta}},$$
 (2.3.5)

$$I_{12}(x) = \frac{k_1}{\Gamma(2\beta)} \frac{d}{dx} \int_{c}^{x} \frac{dt}{(x-t)^{1-2\beta}} \int_{-1}^{1} \frac{v(s)ds}{(1-ts)^{2\beta}},$$
 (2.3.6)

$$\Phi_1(x) = \frac{1}{\Gamma(2\beta)} \frac{d}{dx} \int_{c}^{x} \frac{\Phi(t)dt}{(x-t)^{1-2\beta}}.$$

а). Вычислим $I_{11}(x)$. Для этого разбив промежуток интегрирования во внутреннем интеграле (2.3.5) на два интервала (-1,t) и (t,1), получим

$$I_{11}(x) = -\frac{k_1}{\Gamma(2\beta)} \frac{d}{dx} \int_{c}^{x} \frac{dt}{(x-t)^{1-2\beta}} \int_{-1}^{t} \frac{v(s)ds}{(s-t)^{2\beta}} - \frac{k_1}{\Gamma(2\beta)} \frac{d}{dx} \int_{c}^{x} \frac{dt}{(x-t)^{1-2\beta}} \int_{t}^{1} \frac{v(s)ds}{(t-s)^{2\beta}}.$$

Поменяв здесь порядок интегрирования, придём к равенству

$$I_{11}(x) = -\frac{k_1}{\Gamma(2\beta)} \left[\frac{d}{dx} \int_{-1}^{c} v(s) ds \int_{c}^{x} \frac{dt}{(x-t)^{1-2\beta} (t-s)^{2\beta}} + \frac{d}{dx} \int_{c}^{x} v(s) ds \int_{s}^{x} \frac{dt}{(x-t)^{1-2\beta} (t-s)^{2\beta}} + \frac{d}{dx} \int_{c}^{x} v(s) ds \int_{c}^{s} \frac{dt}{(x-t)^{1-2\beta} (s-t)^{2\beta}} + \frac{d}{dx} \int_{x}^{1} v(s) ds \int_{c}^{x} \frac{dt}{(x-t)^{1-2\beta} (s-t)^{2\beta}} \right]. \quad (2.3.7)$$

Во внутренних интегралах правой части равенства (2.3.7) сделаем замену переменных: в первом внутренном интеграле $t = x + (c - x)\sigma$; в втором внутренном интеграле $t = s + (x - s)\sigma$; в третьем внутренном интеграле $t = c + (s - c)\sigma$; в четвёртом внутренном интеграле $t = c + (x - c)\sigma$; затем используя интегральное представление гипергеометрической функции Гаусса [41, c.8-13]:

$$\int_{-1}^{1} \sigma^{a-1} (1-\sigma)^{c-a-1} (1-x\sigma)^{-b} d\sigma = \frac{\Gamma(a)\Gamma(c-a)}{\Gamma(c)} F(a,b,c;x),$$

$$|x| < 1, \quad a > 0, \quad c = a > 0, \quad c = a, \quad b > 0, \quad \text{if the probability}$$

где |x| < 1, a > 0, c - a > 0, c - a - b > 0, и формулы

$$\frac{d}{dx}[x^{c-1}F(a,b,c;x)] = (c-1)x^{c-2}F(a,b,c-1;x), \quad F(a,b,b;x) = (1-x)^{-a},$$

найдём,что

$$I_{11}(x) = -\frac{k_1}{\Gamma(2\beta)} \left[-\int_{-1}^{c} \left(\frac{c-s}{x-c} \right)^{1-2\beta} \frac{v(s)ds}{s-x} + \Gamma(2\beta)\Gamma(1-2\beta)v(x) + \tilde{I}_{11}(x) \right], \qquad (2.3.8)$$

где

$$\tilde{I}_{11}(x) = \frac{1}{1 - 2\beta} \frac{d}{dx} \int_{c}^{x} \left(\frac{s - c}{x - c}\right)^{1 - 2\beta} F\left(1, 1 - 2\beta, 2 - 2\beta; \frac{s - c}{x - c}\right) v(s) ds + \frac{1}{2\beta} \frac{d}{dx} \int_{x}^{1} \left(\frac{x - c}{s - c}\right)^{2\beta} F\left(1, 2\beta, 1 + 2\beta; \frac{x - c}{s - c}\right) v(s) ds, \tag{2.3.9}$$

Вычислим теперь в (2.3.9) производные от интегралов, т.е.

$$\begin{split} \tilde{I}_{11}(x) &= \lim_{\delta \to 0} \left\{ \frac{1}{1 - 2\beta} \frac{d}{dx} \int_{c}^{x - \delta} \left(\frac{s - c}{x - c} \right)^{1 - 2\beta} F\left(1, 1 - 2\beta, 2 - 2\beta; \frac{s - c}{x - c} \right) v(s) ds + \right. \\ &+ \frac{1}{2\beta} \frac{d}{dx} \int_{x + \delta}^{1} \left(\frac{x - c}{s - c} \right)^{2\beta} F\left(1, 2\beta, 1 + 2\beta; \frac{x - c}{s - c} \right) v(s) ds \right\} = \\ &= \lim_{\delta \to 0} \left\{ \int_{c}^{x - \delta} \left(\frac{s - c}{x - c} \right)^{1 - 2\beta} \frac{v(s) ds}{s - x} + \int_{x + \delta}^{1} \left(\frac{s - c}{x - c} \right)^{1 - 2\beta} \frac{v(s) ds}{s - x} + \right. \\ &+ \left(\frac{x - c - \delta}{x - c} \right)^{1 - 2\beta} F\left(1, 1 - 2\beta, 2 - 2\beta; \frac{x - c - \delta}{x - c} \right) \frac{v(x - \delta)}{1 - 2\beta} - \\ &- \left(\frac{x - c}{x - c + \delta} \right)^{2\beta} F\left(1, 2\beta, 1 + 2\beta; \frac{x - c}{x - c + \delta} \right) \frac{v(x + \delta)}{2\beta} \right\}. \end{split}$$
 (2.3.10)

Переходя в (2.3.10) к пределу при $\delta \to 0$, с учётом формулы [41, с.55].

$$F(a,b,a+b;1-\sigma) = -\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}F(a,b,1;\sigma)ln\sigma + \frac{\Gamma(a+b)}{\Gamma^{2}(a)\Gamma^{2}(b)}\sum_{k=0}^{\infty} \frac{\Gamma(a+k)\Gamma(b+k)}{(k!)^{2}} \left[2\frac{\Gamma^{'}(1+k)}{\Gamma(1+k)} - \frac{\Gamma^{'}(a+k)}{\Gamma(a+k)} - \frac{\Gamma^{'}(b+k)}{\Gamma(b+k)}\right]\sigma^{k},$$

$$\frac{\Gamma^{'}(1-\alpha)}{\Gamma(1-\alpha)} - \frac{\Gamma^{'}(\alpha)}{\Gamma(\alpha)} = \pi ctg(\alpha\pi).$$

получаем

$$\tilde{I}_{11}(x) = \int_{c}^{1} \left(\frac{s-c}{x-c}\right)^{1-2\beta} \frac{v(s)ds}{s-x} - \pi ctg(2\beta\pi)v(x). \tag{2.3.11}$$

Таким образом, в силу представления (2.3.11) равенство (2.3.8) принимает вид

$$I_{11}(x) = -\frac{k_1}{\Gamma(2\beta)} \left[-\int_{-1}^{c} \left(\frac{c-s}{x-c} \right)^{1-2\beta} \frac{v(s)ds}{s-x} + \int_{c}^{1} \left(\frac{s-c}{x-c} \right)^{1-2\beta} \frac{v(s)ds}{s-x} + + \Gamma(2\beta)\Gamma(1-2\beta)(1-\cos(2\beta\pi))v(x) \right], \quad x \in (-1,c).$$
(2.3.12)

б). Вычислим I_{12} . Для этого в (2.3.6) поменяем порядок интегрирования и затем сделаем во внутреннем интеграле замену переменного интегрирования $t = c + (x - c)\sigma$; после несложных вычислений, придём к равенству

$$I_{12}(x) = \frac{k_1}{\Gamma(2\beta)} \int_{1}^{1} \left(\frac{1-cs}{x-c}\right)^{1-2\beta} \frac{v(s)ds}{1-xs}, \ x \in (c,1).$$
 (2.3.13)

Таким образом, подставляя в (2.3.4) представления (2.3.12) и (2.3.13), получаем

$$D_{c,x}^{1-2\beta}\tau(x) = -k_1\Gamma(1-2\beta)(1-\cos(2\beta\pi))\nu(x) + \frac{k_1}{\Gamma(2\beta)} \int_{-1}^{c} \left(\frac{c-s}{x-c}\right)^{1-2\beta} \frac{\nu(s)ds}{s-x} - \frac{k_1}{\Gamma(2\beta)} \int_{c}^{1} \left(\frac{s-c}{x-c}\right)^{1-2\beta} \frac{\nu(s)ds}{s-x} + \frac{k_1}{\Gamma(2\beta)} \int_{-1}^{1} \left(\frac{1-cs}{x-c}\right)^{1-2\beta} \frac{\nu(s)ds}{1-xs} + \Phi_1(x), \qquad x \in (c,1).$$
(2.3.14)

Подставляя выражение для $D_{c,x}^{1-2\beta}\tau(x)$ из (2.3.14) соответственно в (2.2.6) (где c=-1, $f(x)=a_1$) и (2.2.7), в силу тождеств $\gamma k_1/\Gamma(2\beta)=\cos(\beta\pi)/\pi$, $\gamma k_1\Gamma(1-2\beta)(1-\cos(2\beta\pi))=\sin(\beta\pi)$, запишем соотношения (2.2.6) и (2.2.7) соответственно в виде

$$v(x) = -\lambda \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{1-2\beta} \left(\frac{1}{t-x} - \frac{1}{1-xt}\right) v(t) dt + \tilde{F}_{0}(x), \ x \in (-1,c),$$

$$(f(x) + a_{1} \sin(\beta \pi)) v(x) =$$

$$= -\frac{a_{1} \cos(\beta \pi) \omega(x)}{\pi} \left\{ (x-c)^{\beta} \int_{-1}^{1} \left(\frac{1+s}{1+x}\right)^{1-2\beta} \left(\frac{1}{s-x} - \frac{1}{1-xs}\right) v(s) ds + \right.$$

$$+ \mu (1+x)^{\beta} \int_{-1}^{c} \left(\frac{c-s}{x-c}\right)^{1-2\beta} \frac{v(s) ds}{s-x} - \mu (1+x)^{\beta} \int_{c}^{1} \left(\frac{s-c}{x-c}\right)^{1-2\beta} \frac{v(s) ds}{s-x} +$$

$$+ \mu (1+x)^{\beta} \int_{-1}^{1} \left(\frac{1-cs}{x-c}\right)^{1-2\beta} \frac{v(s) ds}{1-xs} + \tilde{F}_{1}(x), \ x \in (c,1),$$

$$(2.3.16)$$

где $\lambda = \cos(\beta \pi) / \pi (1 + \sin(\beta \pi)), \quad \tilde{F}_0(x) = \frac{\gamma a_1 \Phi_1(x) + \Psi_2(x)}{a_1 (1 + \sin(\beta \pi))},$

 $\tilde{F}_{1}(x) = \gamma(x-c)^{\beta}\omega(x)\Phi_{1}(x) - \mu\gamma(1+x)^{\beta}\omega(x)\Phi_{1}(x) + \rho_{2}(x).$

Заметим, что соотношения (2.3.15) и (2.3.16) имеют место для $x \in (-1,c)$ и $x \in (c,1)$ соответственно. Чтобы рассматривать их на одном промежутке I = (-1,1), в (2.3.15) заменим x на ax - b, а в (2.3.16) заменим x на bx + a, где a = (1+c)/2, b = (1-c)/2, a+b=1, a-b=c. С учётом этих преобразований соотношения (2.3.15) и (2.3.16) соответственно запишутся в виде

$$v(ax-b) = -\lambda \int_{-1}^{1} \left(\frac{1+t}{a(1+x)} \right)^{1-2\beta} \left(\frac{1}{t-ax+b} - \frac{1}{1-(ax-b)t} \right) v(t) dt + \\ + \tilde{F}_{0}(ax-b), \ x \in I,$$

$$v(bx+a) = -\frac{a_{1}cos(\beta\pi)\omega(bx+a)}{\pi(f(bx+a)+a_{1}sin(\beta\pi))} \begin{cases} \int_{-1}^{1} (bx+a-c)^{\beta} \left(\frac{1+t}{1+a+bx} \right)^{1-2\beta} \times \end{cases}$$

$$\times \left(\frac{1}{t - bx - a} - \frac{1}{1 - (bx + a)t}\right) v(t)dt + \mu(1 + bx + a)^{\beta} \int_{-1}^{c} \left(\frac{c - t}{b(1 + x)}\right)^{1 - 2\beta} \frac{v(t)dt}{t - bx - a} - \mu(1 + bx + a)^{\beta} \int_{c}^{1} \left(\frac{t - c}{b(1 + x)}\right)^{1 - 2\beta} \frac{v(t)dt}{t - bx - a} + \mu(1 + bx + a)^{\beta} \times \left(\frac{1 - ct}{b(1 + x)}\right)^{1 - 2\beta} \frac{v(t)dt}{1 - (bx + a)t} + \frac{\tilde{F}_{1}(bx + a)}{f(bx + a) + a_{1}sin(\beta\pi)}, \quad x \in I. \quad (2.3.18)$$

Теперь в соотношениях (2.3.17) и (2.3.18) все интегралы по промежутку (-1,1) разобьём на два интеграла – по промежуткам (-1,c) и (c,1). Далее, сделав в интегралах по промежуткам (-1,c) и (c,1) замену переменного интегрирования t = as - b и t = bs + a соответственно и обозначив $v_0(x) = v(ax - b)$, $v_1(x) = v(bx + a)$, получим

$$v_{0}(x) = -\lambda \int_{-1}^{1} \left(\frac{1+s}{1+x}\right)^{1-2\beta} \left(\frac{1}{s-x} - \frac{a}{1-(ax-b)(as-b)}\right) v_{0}(s)ds - \frac{1}{1-a(ax-b)(as-b)} v_{0}(s)ds - \frac{1}{1-a(ax-b)(bs+a)} \left(\frac{1}{bs-ax+1} - \frac{1}{1-(ax-b)(bs+a)}\right) bv_{1}(s)ds + \frac{1}{1-a(ax-b)(bs+a)} v_{1}(s)ds + \frac{1}{1-a(ax-b)(bs+a)} v_{1}(s)ds + \frac{1}{1-a(ax-b)(bs+a)} v_{1}(s)ds - \frac{1}{1-a(ax-b)(as-b)} v_{1}(s)ds - \frac{1}{1-a(ax-b)$$

где

$$A(x) = \frac{a_1 cos(\beta \pi) \mu (1 + a + bx)^{\beta} \omega(bx + a)}{\pi (f(bx + a) + a_1 sin(\beta \pi))}, \quad B(x) = \frac{a_1 cos(\beta \pi) b^{\beta} (1 + x)^{\beta} \omega(bx + a)}{\pi (f(bx + a) + a_1 sin(\beta \pi))},$$
$$C(x) = B(x) - A(x) = \frac{a_1 cos(\beta \pi)}{\pi (f(bx + a) + a_1 sin(\beta \pi))},$$

$$F_0(x) = \tilde{F}_0(ax - b), \quad F_1(x) = \frac{\tilde{F}_1(bx + a)}{f(bx + a) + a_1 sin(\beta \pi)}.$$

Выделив в соотношениях (2.3.19) и (2.3.20) интегралы с особенностями

первого порядка, запишем эти соотношения в виде

$$\begin{split} v_0(x) + \lambda \int_{-1}^{1} \left(\frac{1+s}{1+x}\right)^{1-2\beta} \left(\frac{1}{s-x} - \frac{a}{1-(ax-b)(as-b)}\right) v_0(s) ds = \\ = -\lambda \int_{-1}^{1} \left(\frac{1+a+bs}{a(1+x)}\right)^{1-2\beta} \frac{bv_1(s) ds}{bs-ax+1} + \int_{-1}^{1} \tilde{T}_0(x,s)v_1(s) ds + F_0(x), \ x \in I, \quad (2.3.21) \\ v_1(x) + C(x) \int_{-1}^{1} \left(\frac{1+s}{1+x}\right)^{1-2\beta} \left(\frac{1}{s-x} - \frac{b}{1-(bx+a)(bs+a)}\right) v_1(s) ds = \\ = -A(-1) \int_{-1}^{1} \left(\frac{a(1-s)}{b(1+x)}\right)^{1-2\beta} \frac{av_0(s) ds}{as-bx-1} + \\ + \int_{-1}^{1} \tilde{H}_0(x,s)v_0(s) ds + \int_{-1}^{1} \tilde{H}_1(x,s)v_1(s) ds + F_1(x), \ x \in I, \quad (2.3.22) \\ \text{ГДе} \qquad A(-1) = -a_1 cos(\beta\pi) / \pi(f(c) + a_1 sin(\beta\pi)), \quad C(-1) = -A(-1), \\ \tilde{T}_0(x,s) = \lambda b \left(\frac{1+a+bs}{a(1+x)}\right)^{1-2\beta} \frac{1}{1-(ax-b)(bs+a)}, \\ \tilde{H}_0(x,s) = -aB(x) \left(\frac{a(1+s)}{1+a+bx}\right)^{1-2\beta} \left(\frac{1}{as-bx-1} - \frac{1}{1-(bx+a)(as-b)}\right) - \\ -aA(x) \left(\frac{1-c(as-b)}{b(1+x)}\right)^{1-2\beta} \frac{1}{1-(bx+a)(as-b)} - (A(x) - A(-1)) \left(\frac{a(1-s)}{b(1+x)}\right)^{1-2\beta} \frac{a}{as-bx-1}, \\ \tilde{H}_1(x,s) = -B(x) \left[\left(\frac{1+a+bs}{1+a+bx}\right)^{1-2\beta} - \left(\frac{1+s}{1+x}\right)^{1-2\beta}\right] \left(\frac{1}{s-x} - \frac{b}{1-(bx+a)(bs+a)}\right) - \\ -bA(x) \left[\left(\frac{1-c(bs+a)}{b(1+x)}\right)^{1-2\beta} - \left(\frac{1+s}{1+x}\right)^{1-2\beta}\right] \frac{1}{1-(bx+a)(bs+a)} - \text{регулярные ядра.} \end{split}$$

2.3.1. Регуляризация интегральных уравнений Трикоми с некарлемановским сдвигом в несингулярной части ядра.

Уравнения системы (2.3.21), (2.3.22) являются неклассическими сингулярными интегральными уравнениями Трикоми, так как они имеют две особенности:

1) "несингулярные" части ядер имеют некарлемановские сдвиги видов ax - b, as - b в (2.3.21) и bx + a, bs + a в (2.3.22);

2) первые интегральные операторы в их правых частях не являются регулярными, поскольку при x = 1, s = -1 в (2.3.21) и при x = -1, s = 1 в (2.3.22) ядра этих операторов имеют изолированные особенности первого порядки (и поэтому они выделены отдельно).

Таким образом, задача *ТН* сведена к эквивалентной задаче об однозначной разрешимости системы уравнений (2.3.21), (2.3.22).

Временно считая правые части уравнений (2.3.21) и (2.3.22) известными функциями и вводя обозначения

$$g_{0}(x) = -\lambda \int_{-1}^{1} \left(\frac{1+a+bs}{a(1+x)}\right)^{1-2\beta} \frac{b\nu_{1}(s)ds}{bs-ax+1} + \int_{-1}^{1} \tilde{T}_{0}(x,s)\nu_{1}(s)ds + F_{0}(x), \quad x \in I, \quad (2.3.23)$$

$$g_{1}(x) = -A(-1)\int_{-1}^{1} \left(\frac{a(1-s)}{b(1+x)}\right)^{1-2\beta} \frac{a\nu_{0}(s)ds}{as-bx-1} + \int_{-1}^{1} \tilde{H}_{0}(x,s)\nu_{0}(s)ds + \int_{-1}^{1} \tilde{H}_{1}(x,s)\nu_{1}(s)ds + F_{1}(x), \quad x \in I, \quad (2.3.24)$$

систему уравнений (2.3.21) и (2.3.22) запишем в виде

$$v_0(x) + \lambda \int_{-1}^{1} \left(\frac{1+s}{1+x}\right)^{1-2\beta} \left(\frac{1}{s-x} - \frac{a}{1-(ax-b)(as-b)}\right) v_0(s) ds = g_0(x), \quad (2.3.25)$$

$$v_1(x) + C(x) \int_{-1}^{1} \left(\frac{1+s}{1+x} \right)^{1-2\beta} \left(\frac{1}{s-x} - \frac{b}{1-(bx+a)(bs+a)} \right) v_1(s) ds = g_1(x). \quad (2.3.26)$$

Имеет место

Теорема 2.3. Если функция $g_0(x)$ удовлетворяет условию Гёльдера при $x \in (-1,1)$ и принадлежит классу $g_0(x) \in L_p(-1,1)$, p>1, то решение уравнения (2.3.25) в классе h(-1), в котором функция $(1+x)^{1-2\beta}v_0(x)$ ограничена на левом конце x=-1 интервала (-1,1) и может быть неограниченной на его правом конце x=1, выражается формулой

$$v_{0}(x) = \frac{1 + \sin(\beta \pi)}{2} g_{0}(x) - \frac{\cos(\beta \pi)}{2\pi} \int_{-1}^{1} \left(\frac{1 + t}{1 + x}\right)^{2\alpha} \left(\frac{1 - t}{1 - x}\right)^{\alpha} \left(\frac{1 - c(at - b)}{1 - c(ax - b)}\right)^{\alpha} \times \left(\frac{1}{t - x} - \frac{a}{1 - (ax - b)(at - b)}\right) g_{0}(t) dt, \qquad (2.3.27)$$

где $\alpha = (1 - 2\beta)/4$.

Теорема 2.4. Если функция $g_1(x)$ удовлетворяет условию Гёльдера при $x \in (-1,1)$ и принадлежит классу $g_1(x) \in L_p(-1,1)$, p > 1, то решение уравнения (2.3.26) в классе h(-1), в котором функция $(1+x)^{1-2\beta}v_1(x)$

ограничена на левом конце x = -1 интервала (-1,1) и может быть неограниченной на его правом конце x = 1, выражается формулой

$$v_{1}(x) = \frac{g_{1}(x)}{1 + \pi^{2}C^{2}(x)} - \frac{\pi C(x)}{1 + \pi^{2}C^{2}(x)} \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{4\alpha - \alpha_{0}} \left(\frac{1-t}{1-x}\right)^{2\alpha_{1}} \times \left(\frac{1-c(bx+a)}{1-c(bt+a)}\right)^{\alpha_{0}} \frac{\delta(x)}{\delta(t)} \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) g_{1}(t)dt.$$
 (2.3.28)

(определение функции $\delta(x)$ приведено ниже в (2.3.44))

Сначала докажем теорему 2.4.

Доказательство. Решение уравнения (2.3.26) будем искать в классе H(-1,1) функций Гёльдера, в котором функция $(1+x)^{1-2\beta}v(x)$ может быть неограниченной в точке x=1 и ограничена в точке x=-1, т.е. в классе h(-1) [41, c.43].

Применим к уравнению (2.3.26) метод регуляризации Карлемана, развитый С. Г. Михлиным [26]. В обозначениях

$$\rho(x) = (1+x)^{1-2\beta} v_1(x), \quad g(x) = (1+x)^{1-2\beta} g_1(x), \tag{2.3.29}$$

уравнение (2.3.26) запишем в виде

$$\rho(x) + C(x) \int_{-1}^{1} \left(\frac{1}{t - x} - \frac{b}{1 - (bx + a)(bt + a)} \right) \rho(t) dt = g(x).$$
 (2.3.30)

Пусть z – произвольная точка комплексной плоскости. Следуя идея Карлемана, положим

$$\Phi(z) = \frac{1}{2\pi i} \int_{-1}^{1} \left(\frac{1}{t-z} - \frac{b}{(bz+a)(bt+a)} \right) \rho(t) dt.$$
 (2.3.31)

Очевидно, $\Phi(z)$ голоморфна как в верхней, так и в нижней полуплоскостях и исчезает на бесконечности. Обозначим через $\Phi^+(x)$ и $\Phi^-(x)$ предельные значения функции, $\Phi(z)$ когда z стремится к точке x действительной оси соответственно из верхней или из нижней полуплоскости.

Из определения (2.3.31) следует, что

$$\Phi\left(\frac{1+a-az}{bz+a}\right) = (bz+a)\Phi(z).$$
(2.3.32)

Дробно-линейное преобразование

$$W = W(z) = \frac{1+a-az}{bz+a} \quad \left(z = \frac{1+a-aW}{bW+a}\right)$$

переводит верхнюю полуплоскость в нижнюю и наоборот. При этом промежуток (-1,1) переходит в промежуток

$$\Delta = \begin{cases} (1, (2+c)/c), & \text{если} \quad c > 0, \\ (1, +\infty), & \text{если} \quad c = 0, \\ (-\infty, (2+c)/c) \bigcup (1, +\infty), & \text{если} \quad c < 0. \end{cases}$$

Вследствие тождества (2.3.32) получаем

$$\Phi^{+}\left(\frac{1+a-ax}{bx+a}\right) = (bx+a)\Phi^{-}(x), \quad \Phi^{-}\left(\frac{1+a-ax}{bx+a}\right) = (bx+a)\Phi^{+}(x). \tag{2.3.33}$$

Из определения (2.3.31) в силу формул Сохоцкого – Племеля [9. с.145] вытекает равенства

$$\Phi^{+}(x) - \Phi^{-}(x) = \rho(x), \qquad (2.3.34)$$

$$\Phi^{+}(x) + \Phi^{-}(x) = \frac{1}{\pi i} \int_{-1}^{1} \left(\frac{1}{t - x} - \frac{b}{1 - (bx + a)(bt + a)} \right) \rho(t) dt.$$
 (2.3.35)

Тогда на основании (2.3.34) и (2.3.35) уравнение (2.3.30) принимает вид

$$\Phi^{+}(x) - \frac{1 - i\pi C(x)}{1 + i\pi C(x)} \Phi^{-}(x) = \frac{g(x)}{1 + i\pi C(x)}, \quad x \in I.$$
 (2.3.36)

Заменив в уравнении (2.3.36) x на W(x) (тогда $x \in \Delta$, а $W \in I$), с учётом равенств (2.3.33) будем иметь

$$\Phi^{+}(x) - \frac{1 + i\pi C(W(x))}{1 - i\pi C(W(x))} \Phi^{-}(x) = -\frac{g(W(x))}{(bx + a)(1 - i\pi C(W(x)))}, \quad x \in \Delta.$$
 (2.3.37)

Уравнения (2.3.36) и (2.3.37) можно объединить в одно уравнение

$$\Phi^{+}(x) - G(x)\Phi^{-}(x) = h(x), \ x \in (-\infty, +\infty), \tag{2.3.38}$$

где

$$G(x) = \begin{cases} \frac{1 - i\pi C(x)}{1 + i\pi C(x)} & \text{при} \quad x \in I, \\ \frac{1 + i\pi C(W(x))}{1 - i\pi C(W(x))} & \text{при} \quad x \in \Delta, \\ 1 & \text{при} \quad x \notin I \bigcup \Delta. \end{cases}$$
 (2.3.39)

$$h(x) = \begin{cases} \frac{g(x)}{1 + i\pi C(x)} & \text{при } x \in I, \\ -\frac{g(W(x))}{(bx + a)(1 - i\pi C(W(x)))} & \text{при } x \in \Delta, \\ 0 & \text{при } x \notin I \bigcup \Delta. \end{cases}$$
 (2.3.40)

Таким образом, решение интегрального уравнения (2.3.30) сводится к следующей задаче теории функций комплексного переменного: найти исчезающую на бесконечности функцию $\Phi(z)$

голоморфную как в верхней, так и в нижней полуплоскостях, удовлетворяющую граничному условию (2.3.38).

Решение этой задачи можно получить в явном виде. Решим предварительно соответствующую однородную задачу, т.е. в комплексной плоскости z найдём функцию X(z), голоморфную вне промежутка $I\bigcup \Delta$, а в промежутке $I\bigcup \Delta$, удовлетворяющую условию

$$X^{+}(x) = G(x)X^{-}(x). \tag{2.3.41}$$

Одно из частных решений уравнения (2.3.41) имеет вид

$$X(z) = exp\left\{\frac{1}{2\pi i} \int_{-1}^{1} \left(\frac{1}{t-z} - \frac{b(bz+a)}{1-(bz+a)(bt+a)}\right) \ln G(t) dt\right\}.$$
 (2.3.42)

Из (2.3.42) следует, что

$$X\left(\frac{1+a-az}{bz+a}\right) = X(z).$$

а также что

$$X(z) = exp \left\{ \frac{1}{2\pi i} \int_{-1}^{1} lnG(t)d[ln(t-z) + ln(1-(bz+a)(bt+a))] \right\} =$$

$$= exp \left\{ \frac{1}{2\pi i} [lnG(1)ln(b(1-z)^{2}) - lnG(-1)(ln(-1-z) + ln(1-c(bz+a)))] + \Psi(z) \right\},$$
(2.3.43)

ГДе
$$\Psi(z) = -\frac{1}{2\pi i} \int_{-1}^{1} \left[\ln(t-z) + \ln(1-(bz+a)(bt+a)) \right] d\ln G(t)$$

— голоморфная функция как в верхней, так и в нижней полуплоскости, имеющая конечный предел при $z \rightarrow \pm 1$.

В силу определения (2.3.39) функции G(x) имеем

$$lnG((-1)^{j+1}) = ln\frac{1 - i\pi C((-1)^{j+1})}{1 + i\pi C((-1)^{j+1})} = [-2arctg(\pi C((-1)^{j+1})) + 2k\pi]i = -2\pi\alpha_j i, \ j = 0,1$$

где
$$\alpha_{j} = arctg(\pi C((-1)^{j+1})) / \pi, \quad tg(\alpha_{j}\pi) = \pi C((-1)^{j+1}), \quad k = 0.$$

Следовательно, с учётом этого равенство (2.3.43) примет вид

$$X(z) = exp\left\{-\alpha_1 ln(b(1-z)^2) + \alpha_0 \left[ln(-1-z) + ln(1-c(bz+a))\right]\right\} \delta(z),$$

где

$$\delta(z) = exp(\Psi(z)) \tag{2.3.44}$$

- голоморфная функция, как в верхней, так и в нижней полуплоскости отсюда находим

$$X^{+}(x) = b^{-\alpha_{1}} \frac{(1+x)^{\alpha_{0}} (1-c(bx+a))^{\alpha_{0}}}{(1-x)^{2\alpha_{1}}} \delta(x) e^{-\pi\alpha_{0}i},$$

$$X^{-}(x) = b^{-\alpha_1} \frac{(1+x)^{\alpha_0} (1-c(bx+a))^{\alpha}}{(1-x)^{2\alpha_1}} \delta(x) e^{\pi \alpha_0 i}.$$

Здесь $\delta^+(x) = \delta^-(x) = \delta(x)$.

Таким образом, функцию G(x) мы можем представить в факторизованном виде $G(x) = X^+(x)/X^-(x)$ [13, с.33]. С учётом этого представления краевое условие (2.3.38) запишем в виде

$$\frac{\Phi^{+}(x)}{X^{+}(x)} - \frac{\Phi^{-}(x)}{X^{-}(x)} = \frac{h(x)}{X^{+}(x)}, \ x \in I \bigcup \Delta.$$
 (2.3.45)

В результате для функции $F(z) = \Phi(z)/X(z)$, приходим к задаче о скачке [13, с.30] из теории аналитических функций. Одно из частных решений уравнения (2.3.45) имеет вид

$$\frac{\Phi(z)}{X(z)} = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} \frac{h(t)}{X^{+}(t)} \frac{dt}{t - z}.$$
 (2.3.46)

Решение (2.3.46) с учётом определения (2.3.40) запишем в виде $\frac{\Phi(z)}{X(z)} = \frac{1}{2\pi i} \left(\int_{-1}^{1} \frac{1}{X^{+}(t)} \frac{g(t)}{1 + i\pi C(t)} \frac{dt}{t - z} - \int_{\Delta} \frac{1}{X^{+}(s)} \frac{g(W(s))}{(bs + a)(1 - i\pi C(W(s)))} \frac{ds}{s - z} \right)$ (2.3.47)

Сделав во втором интеграле правой части равенства (2.3.47) замену переменного интегрирования t = W(s) (s = W(t)), где $s \in \Delta$, $t \in (-1,1)$, с учётом тождеств

$$X^{+}(W(x)) = X^{-}(x) = \frac{1 + i\pi C(x)}{1 - i\pi C(x)} X^{+}(x), \quad \frac{ds}{s - z} = -\frac{bdt}{(bt + a)(1 - (bz + a)(bt + a))},$$
$$\frac{1}{bs + a} = bt + a, \qquad X^{+}(s) = X^{+}(W(t)) = X^{-}(t) = \frac{1 + i\pi C(t)}{1 - i\pi C(t)} X^{+}(t),$$

запишем решение (2.3.47) в виде

$$\frac{\Phi(z)}{X(z)} = \frac{1}{2\pi i} \int_{-1}^{1} \frac{g(t)}{X^{+}(t)(1+i\pi C(t))} \left(\frac{1}{t-z} - \frac{b}{1-(bz+a)(bt+a)} \right) dt.$$

Чтобы найти общее решение уравнения (2.3.45), рассмотрим соответствующее ему однородное уравнение

$$\frac{\Phi^{+}(x)}{X^{+}(x)} - \frac{\Phi^{-}(x)}{X^{-}(x)} = 0.$$

Это уравнение показывает, что функция $F(z) = \Phi(z)/X(z)$ голоморфна на всей плоскости кроме, быть может, точек z=-1, z=1, которые могут являться только полюсами, на бесконечности функция F(z) равна нулю. В силу обобщённой теоремы Лиувилля об аналитическом продолжении [13, с.29] находим, что

$$F(z) = \frac{c_0}{1+z} + \frac{c_1}{1-z}.$$

Таким образом, общее решения уравнения (2.3.38) имеет вид [23]

$$\Phi(z) = \frac{X(z)}{2\pi i} \int_{-1}^{1} \frac{g(t)}{X^{+}(t)(1+i\pi C(t))} \left(\frac{1}{t-z} - \frac{b}{1-(bz+a)(bt+a)}\right) dt + \left(\frac{c_0}{1+z} + \frac{c_1}{1-z}\right) X(z).$$

Теперь вычислим $\Phi^+(x)$ и $\Phi^-(x)$, затем, подставляя их в формулу (2.3.34), после стандартных вычислений с учётом обозначений (2.3.29) придём к решению (2.3.28). Теоремы 2.4 доказана.

Доказательство теоремы 2.3 проводится идентичным методом доказательству теоремы 2.4.

2.3.2. Выделение нефредгольмовых операторов ядра, которых имеют особенности первого порядка в изолированной особой точке.

Продолжим дальнейшее исследование системы уравнений (2.3.21) и (2.3.22). Подставляя выражения для $g_0(x)$ из (2.3.23) и для $g_1(x)$ из (2.3.24) соответственно в решения (2.3.27) и (2.3.28), получаем соотношения

$$\begin{split} v_0(x) &= -\frac{\lambda(1+\sin(\beta\pi))}{2} \int_{-1}^{1} \left(\frac{1+a+bs}{a(1+x)}\right)^{4a} \frac{bv_1(s)ds}{bs-ax+1} + \frac{\lambda cos(\beta\pi)}{2\pi} \int_{-1}^{1} bv_1(s)ds \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{2a} \times \\ &\times \left(\frac{1-t}{1-x}\right)^{a} \left(\frac{1-s}{1+t}\right)^{4a} \left(\frac{1}{t-x} - \frac{a}{1-(ax-b)(at-b)}\right) \frac{dt}{bs-at+1} + \\ &\quad + T_1[x,v_1] + F_0^*(x), \ x \in I, \\ v_1(x) &= \frac{-A(-1)(a/b)^{4a}}{1+\pi^2C^2(x)} \int_{-1}^{1} \left(\frac{1-s}{1+x}\right)^{4a} \frac{av_0(s)ds}{as-bx-1} + \frac{A(-1)(a/b)^{4a}C(x)}{1+\pi^2C^2(x)} \int_{-1}^{1} av_0(s)ds \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{4a-a_0} \times \\ &\times \left(\frac{1-t}{1-x}\right)^{2a_1} \left(\frac{1-s}{1+t}\right)^{4a} \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) \frac{dt}{as-bt-1} + \\ &\quad + H_0[x,v_0] + H_1[x,v_1] + F_1^*(x), \ x \in I, \end{aligned} \tag{2.3.49} \end{split}$$

$$\mathsf{T}_1[x,v_1] &= \frac{\lambda cos(\beta\pi)}{2\pi} \int_{-1}^{1} bv_1(s)ds \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{2a} \left(\frac{1-t}{1-x}\right)^a \left(\frac{1+a+bs}{a(1+t)}\right)^{4a} \times \\ &\times \left[\left(\frac{1-c(at-b)}{1-c(ax-b)}\right)^a - 1\right] \left(\frac{1}{t-x} - \frac{a}{1-(ax-b)(at-b)}\right) \frac{dt}{bs-at+1} + \\ &\quad + \frac{1+\sin(\beta\pi)}{2} \int_{-1}^{1} T_0(x,s)v_1(s)ds - \frac{cos(\beta\pi)}{2\pi} \int_{-1}^{1} v_1(s)ds \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{2a} \left(\frac{1-t}{1-x}\right)^a \times \\ &\times \left(\frac{1-c(at-b)}{1-c(ax-b)}\right)^a \left(\frac{1}{t-x} - \frac{a}{1-(ax-b)(at-b)}\right) T_0(t,s)dt, \end{aligned}$$

$$\begin{split} H_0[x,v_0] &= \frac{1}{1+\pi^2C^2(x)} \int_{-1}^1 \tilde{H}_0(t,s) v_0(s) ds + \frac{A(-1)(b/a)^{4\alpha}C(x)}{1+\pi^2C^2(x)} \int_{-1}^1 a v_0(s) ds \times \\ & \times \int_{-1}^1 \left(\frac{1+t}{1+x}\right)^{4\alpha-\alpha_0} \left(\frac{1-t}{1-x}\right)^{2\alpha_1} \left(\frac{1-s}{1+t}\right)^{4\alpha} \times \\ & \times \left[\frac{\delta(x)}{\delta(t)} \left(\frac{1-c(bx+a)}{1-c(bt+a)}\right)^{\alpha_0} - 1\right] \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) \frac{dt}{as-bt-1} - \\ & - \frac{C(x)}{1+\pi^2C^2(x)} \int_{-1}^1 v_0(s) ds \int_{-1}^1 \left(\frac{1+t}{1+x}\right)^{4\alpha-\alpha_0} \left(\frac{1-t}{1-x}\right)^{2\alpha_1} \left(\frac{1-c(bx+a)}{1-c(bt+a)}\right)^{\alpha_0} \frac{\delta(x)}{\delta(t)} \times \\ & \times \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) \tilde{H}_0[t,s] dt; \\ H_1[x,v_1] &= \frac{1}{1+\pi^2C^2(x)} \int_{-1}^1 \tilde{H}_1[x,s] v_1(s) ds - \frac{C(x)}{1+\pi^2C(x)} \int_{-1}^1 v_1(s) ds \int_{-1}^1 \left(\frac{1+t}{1+x}\right)^{4\alpha-\alpha_0} \left(\frac{1-t}{1-x}\right)^{2\alpha_1} \times \\ & \times \frac{\delta(x)}{\delta(t)} \left(\frac{1-c(bx+a)}{1-c(bt+a)}\right)^{\alpha_0} \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) \tilde{H}_1[t,s] dt, \end{split}$$

-регулярные операторы.

$$F_0^*(x) = \frac{1 + \sin(\beta \pi)}{2} F_0(x) - \frac{\cos(\beta \pi)}{2\pi} \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{2\alpha} \left(\frac{1-t}{1-x}\right)^{\alpha} \times \left(\frac{1-c(at-b)}{1-c(ax-b)}\right)^{\alpha} \left(\frac{1}{t-x} - \frac{a}{1-(ax-b)(at-b)}\right) F_0(t) dt$$

$$F_1^*(x) = \frac{F_1(x)}{1+\pi^2 C^2(x)} - \frac{C(x)}{1+\pi^2 C^2(x)} \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{4\alpha-\alpha_0} \left(\frac{1-t}{1-x}\right)^{2\alpha_1} \times \left(\frac{1-c(bx+a)}{1-c(bt+a)}\right)^{\alpha_0} \frac{\delta(x)}{\delta(t)} \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) F_1(t) dt$$

-известные функции.

В правых частях (2.3.48) и (2.3.49) вычислим внутренние интегралы. Для этого рациональные части подынтегральных выражений этих интегралов с учётом тождеств (1.3.17) и (1.3.23) разложим на простые дроби

и к полученным интегралам применим формулы (1.3.19), (1.3.20), (1.3.21), (1.3.25), (1.3.26) и (1.3.27).

Далее, выделив интегралы с особенностями первого порядка в изолированных особых точках, с учётом тождеств $cos(\beta\pi)ctg(\alpha\pi) = 1 + sin(\beta\pi), \ \lambda cos(\beta\pi) / 2sin(\alpha\pi) = sin(\alpha\pi) / \pi,$

 $\pi\lambda^2/(1+\pi^2\lambda^2)=\sin^2(\alpha\pi)/\pi$, $C(-1)=-A(-1)=tg(\alpha_0\pi)/\pi$, $1-\pi ctg(\alpha_0\pi)C(-1)=0$, за пишем уравнения (2.3.48) и (2.3.49) соответственно в виде

$$\begin{split} v_0(x) &= -\frac{\sin(\alpha\pi)}{\pi} \int_{-1}^{1} \left(\frac{b(1+s)}{a(1-x)} \right)^{a} \frac{bv_1(s)ds}{bs-ax+1} + T_2[x,v_1] + F_0^*(x), \ x \in I, \quad (2.3.50) \\ v_1(x) &= -\frac{\pi A(-1)C(-1)}{\sin(\alpha_0\pi)(1+\pi^2C^2(-1))} \int_{-1}^{1} \left(\frac{a(1-s)}{b(1+x)} \right)^{4a-a_0} \frac{av_0(s)ds}{as-bx-1} + \overline{H_0}[x,v_0] + \\ &\quad + H_1[x,v_1] + F_1^*(x), \ x \in I, \quad (2.3.51) \\ \text{TIDE} \qquad T_2[x,v_1] &= T_1[x,v_1] - \frac{\sin(\alpha\pi)}{\pi} \int_{-1}^{1} \left(\frac{b(1+s)}{a(1-x)} \right)^{a} \left[\left(\frac{1+a+bs}{a(1+x)} \right)^{2a} - 1 \right] \frac{b_1v(s)ds}{bs-ax+1} - \\ &\quad - \lambda \frac{\cos(\beta\pi)}{2^{1-a}\pi} \frac{B(1-2a,a)(1+x)^{2a}}{(1-x)^a} \int_{-1}^{1} \left(\frac{1+a+bs}{a(1+x)} \right)^{2a} \times \left[\left(\frac{2}{1+x} \right)^{2a} F\left(1-2a,-a,1-a;\frac{1-x}{2} \right) - \left(\frac{2a}{1+a+bs} \right)^{2a} \times \left[\frac{2}{1+a+bs} \right] \frac{bv_1(s)ds}{bs-ax+1} + \lambda \frac{c\cos(\beta\pi)}{2\pi} \frac{(1+x)^{2a}}{(1-x)^a} \times \left[\frac{2a}{1+a+bs} \right] \frac{bv_1(s)ds}{bs-ax+1} + \lambda \frac{c\cos(\beta\pi)}{2\pi} \frac{(1+x)^{2a}}{(1-x)^a} \times \left[\frac{1+a+bs}{a(1+x)} \right] \frac{bv_1(s)ds}{bs-ax+1} + \lambda \frac{cos(\beta\pi)}{2\pi} \frac{(1+x)^{2a}}{(1-x)^a} \times \left[\frac{1+a+bs}{a(1+x)^a} \right] \frac{bv_1(s)ds}{bs-ax+1} + \lambda \frac{cos(\beta\pi)}{2\pi} \frac{(1+x)^{2a}}{(1-x)^a} \times \left[\frac{1+a+bs}{a(1+x)^a} \right] \frac{bv_1(s)ds}{bs-ax+1} + \lambda \frac{cos(\beta\pi)}{2\pi} \frac{(1+x)^{2a}}{(1-x)^a} \times \left[\frac{1+a+bs}{a(1+x)^a} \right] \frac{bv_1(s)ds}{bs-ax+1} + \lambda \frac{cos(\beta\pi)}{2a} \frac{(1+x)^{2a}}{a(1+x)^a} \times \left[\frac{a(1-s)}{a(1+x)^a} \right] \frac{bv_1(s)ds}{as-bx-1} - \frac{av_0(s)ds}{as-bx-1} - \frac{av_0(s)ds}{as-bx-1} - \frac{av_0(s)ds}{as-bx-1} - \frac{av_0(s)ds}{as-bx-1} + \lambda \frac{av_0(s)ds}{as-bx-1} + \lambda \frac{av_0(s)ds}{as-bx-1} \times \left[\frac{a(1-s)}{1+\pi^2C^2(x)} \right] \frac{av_0(s)ds}{as-bx-1} + \lambda \frac{a$$

2.3. 3. Вывод и исследование интегрального уравнения Винера-Хопфа.

В уравнении (2.3.50) заменим x на -x, а в первом интеграле в правой части уравнения (2.3.51) сделаем замену переменной интегрирования s=-t; тогда, введя обозначение, $v_0(x)=v_0(-x)$, получим соответственно

$$v_0(x) = -\int_1^1 m \left(\frac{1+x}{1+s}\right) \frac{v_1(s)ds}{1+s} + T_2[-x, v_1] + F_0^*(-x),$$
 (2.3.52)

$$v_1(x) = -\int_{-1}^{1} n \left(\frac{1+x}{1+t} \right) \frac{\tilde{v}_0(t)dt}{1+t} + \overline{H}_0[\tilde{v}_0] + H_1[x, v_1] + F_1^*(x), \tag{2.3.53}$$

где

$$m(y) = \frac{\delta_0 (ay/b)^{-\alpha}}{(1+ay/b)}, n(y) = \frac{\delta_1 (by/a)^{\alpha_0 - 4\alpha}}{(1+by/a)}, \delta_0 = \frac{\sin(\alpha\pi)}{\pi}, \delta_1 = \frac{\sin(\alpha_0\pi)}{\pi}, \quad (2.3.54)$$

 $T_2[-x,\nu_1], \bar{\bar{H}}_0[x,\tilde{\nu}_0], H_1[x,\nu_1]-$ регулярные операторы, а $F_0^*(x), F_1(x)^*-$ известные функции.

Таким образом, уравнение (2.3.52) совместно с уравнением (2.3.53) составляют систему интегральных уравнений относительно неизвестных функций $v_0(x)$ и $v_1(x)$ с сингулярной особенностью в ядре [32].

Характерной особенностью уравнения (2.3.52) является, то что оно разрешено относительно $v_0(x)$, что позволяет исключить $v_0(x)$ из уравнения (2.3.53). Подставляя в уравнение (2.3.53) выражение для $v_0(x)$ из (2.3.52), получаем [25, 32]

$$v_1(x) = \int_{-1}^{1} \frac{\Omega(x,s)v_1(s)ds}{1+s} + R[v_1], \qquad (2.3.55)$$

где

$$\Omega(x,s) = \int_{-1}^{1} n \left(\frac{1+x}{1+t} \right) m \left(\frac{1+t}{1+s} \right) \frac{dt}{1+t}, \qquad (2.3.56)$$

$$R[v_1] = -\int_{-1}^{1} n \left(\frac{1+x}{1+t} \right) \frac{T_2[-t,v_1] + F_0^*(-t)}{1+t} dt + \frac{\overline{\overline{H}}_0[x,-\int_{-1}^{1} m \left(\frac{1+x}{1+t} \right) \frac{v_1(t)dt}{1+t} + T_2[-x,v_1] + F_0^*(-x)] + H_1[x,v_1] + F_1^*(x)$$

-регулярный оператор.

Сделав замену r = (1+t)/(1+s) в интеграле (2.3.56), будем иметь

$$\Omega(x,s) = \int_{0}^{2/(1+s)} n \left(\frac{1+x}{(1+s)r} \right) m(r) \frac{dr}{r} = \Omega_{1}(x,s) - \Omega_{2}(x,s),$$

где

$$\Omega_1(x,s) = \int_0^\infty n \left(\frac{1+x}{(1+s)r} \right) m(r) \frac{dr}{r}, \quad \Omega_2(x,s) = \int_{2/(1+s)}^\infty n \left(\frac{1+x}{(1+s)r} \right) m(r) \frac{dr}{r}.$$

Оценим сначала $\Omega_2(x,s)$. Для функций из (2.3.54) очевидно справедливы неравенства

$$n\left(\frac{1+x}{(1+s)r}\right) \leq \delta_1 \left(\frac{a(1+s)}{b(1+x)}\right)^{4\alpha-\alpha_0} r^{4\alpha-\alpha_0}, \quad m(r) \leq \delta_0 \left(\frac{b}{a}\right)^{1+\alpha} r^{-1-\alpha},$$

воспользовавшись которыми, для $\Omega_2(x,s)$ получаем оценку

$$\Omega_2(x,s) \le \frac{\delta_0 \delta_1}{1 - 3\alpha + \alpha_0} \left(\frac{b}{2a}\right)^{1 - 3\alpha + \alpha_0} \frac{(1+s)^{1+\alpha}}{(1+x)^{4\alpha - \alpha_0}}.$$

Следовательно $\Omega_{2}(x,s)/(1+s)$ – регулярное ядро.

Таким образом, на основании последнего утверждения уравнение (2.3.55) запишется в виде

$$v_1(x) = \int_{-1}^{1} \Omega_1(x, s) \frac{v_1(s)ds}{1+s} + R_2[v_1], \qquad (2.3.57)$$

где

$$R_2[\nu_1] = R_1[\nu_1] - \int_{-1}^{1} \frac{\Omega_2(x,s)}{1+s} \nu_1(s) ds$$
 – регулярный оператор.

Для $\Omega_1(x,s)$ имеем

$$\Omega_1(x,s) = \int_0^\infty n \left(\frac{1+x}{(1+s)r} \right) \frac{m(r)}{r} dr = \int_0^\infty n \left(\frac{y}{r} \right) \frac{m(r)}{r} dr,$$

где y = (1+x)/(1+s). Отсюда в силу (2.3.54) получаем

$$\Omega_{1}(x,s) = \delta_{0}\delta_{1}ab\left(\frac{a}{b}\right)^{3\alpha-\alpha_{0}}y^{\alpha_{0}-4\alpha}\int_{0}^{\infty}\frac{r^{3\alpha-\alpha_{0}}dr}{(by+ar)(b+ar)} = \frac{\delta_{0}\delta_{1}(a/b)^{3\alpha-\alpha_{0}}a}{y^{4\alpha-\alpha_{0}}(1-y)}\left(\int_{0}^{\infty}\frac{r^{3\alpha-\alpha_{0}}dr}{by+ar}-\int_{0}^{\infty}\frac{r^{3\alpha-\alpha_{0}}dr}{b+ar}\right).$$

Далее, используя интеграл Эйлера [46, с.161]

$$\int_{0}^{\infty} \frac{x^{\alpha - 1}}{1 + x} dx = \frac{\pi}{\sin(\alpha \pi)}, \quad 0 < \alpha < 1,$$

будем иметь

$$\Omega_{1}(x,s) = \frac{\sin(\alpha \pi)\sin(\alpha_{0}\pi)}{\pi \sin((3\alpha - \alpha_{0})\pi)} \frac{y^{\alpha_{0} - 4\alpha}(y^{3\alpha - \alpha_{0}} - 1)}{y - 1}, y = \frac{1 + x}{1 + s}.$$
 (2.3.58)

В силу представления (2.3.58) уравнение (2.3.57) запишется в виде

$$\psi(x) = \frac{\sin(\alpha \pi)\sin(\alpha_0 \pi)}{\pi \sin((3\alpha - \alpha_0)\pi)} \int_{-1}^{1} \frac{\left[(1+x)/(1+s) \right]^{3\alpha - \alpha_0} - 1}{(1+x)/(1+s) - 1} \frac{\psi(s)}{1+s} ds + R_3[\psi], \qquad (2.3.59)$$

где $\psi(x) = (1+x)^{4\alpha-\alpha_0} v_1(x), R_3[\psi] = (1+x)^{4\alpha-\alpha_0} R_2[(1+x)^{\alpha_0-4\alpha} \psi(x)].$ В уравнении (2.3.59) сделаем замену переменных 1+s=2exp(-t), 1+x=2exp(-y). Тогда вводя обозначения

 $\rho(y) = \psi(2exp(-y) - 1)exp((3\alpha - \alpha_0 - 1)y/2), 3\alpha - \alpha_0 - 1 < 0$

$$K_0(x) = \frac{2}{\sqrt{2\pi}} \frac{\sin(\alpha \pi) \sin(\alpha_0 \pi)}{\pi \sin((3\alpha - \alpha_0)\pi)} \frac{\sinh((3\alpha - \alpha_0)x/2)}{\sinh(x/2)},$$

запишем уравнение (2.3.59) в виде [22,32]

$$\rho(y) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} K_0(y - t)\rho(t)dt + R_4[\rho].$$
 (2.3.60)

Уравнение (2.3.60) является интегральным уравнением Винера-Хопфа

[13, c.55]. Функция K(x) имеет показательный порядок убывания на бесконечности, причём $K_0(x) \in C[0,\infty]$. Следовательно,

$$K_0(x) \in L_2 \cap H_\alpha = \{0\} \quad [13, c.12].$$

Теоремы Фредгольма для интегральных уравнений типа свёртки применимы лишь в том случае, когда индекс этих уравнений равен нулю [13, с.46]. Индекс χ уравнения (2.3.60) совпадает с индексом выражения

 $1-K^{\wedge}(x)$, взятым с обратным знаком: $\chi = -Ind(1-K^{\wedge}(x))$ [13, c.56], где

$$K^{\wedge}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ixt} K_0(t) dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (\cos(xt) - i\sin(xt)) K_0(t) dt.$$

С учётом чётности функции $K_0(x)$ и формулы [14, с.518]

$$\int_{0}^{\infty} \cos(\alpha t) \frac{sh(\beta t)}{sh(\gamma t)} dt = \frac{\pi}{2\gamma} \frac{\sin(\beta \pi / \gamma)}{\cosh(\alpha \pi / \gamma) + \cos(\beta \pi / \gamma)}$$

нетрудно убедиться в том, что

$$K^{\wedge}(x) = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} \cos(xt) K_0(t) dt = \frac{2\sin(\alpha\pi)\sin(\alpha_0\pi)}{\cosh(2\pi x) + \cos((3\alpha - \alpha_0)\pi)}.$$
 (2.3.61)

В силу условия (2.3.1) справедливы неравенства $\alpha_0 < 1/4$, $\alpha < 1/4$, тогда $2\sin(\alpha\pi)\sin(\alpha_0\pi) < 1$ и $\cos((3\alpha-\alpha_0)\pi) > 0$. Поэтому из (2.3.61) вытекает неравенство $K^{\wedge}(x) < 1$ для всех $x \in (0,\infty)$, а значит, $1-K^{\wedge}(x) > 0$. Тогда

$$\chi = -Ind(1 - K^{\hat{}}(x)) = -\frac{1}{2\pi} \left[arg(1 - K^{\hat{}}(x)) \right]_{-\infty}^{\infty} =$$

$$= -\frac{1}{2\pi} \left[arctg \frac{Im(1 - K^{\hat{}}(x))}{Re(1 - K^{\hat{}}(x))} \right]_{-\infty}^{\infty} = -\frac{1}{2\pi} \left[arctg \frac{0}{Re(1 - K^{\hat{}}(x))} \right]_{-\infty}^{\infty} = 0.$$

Таким образом, уравнение (2.3.60) однозначно редуцируется к интегральному уравнению Фредгольма второго рода [13,с.46], однозначная разрешимость которого следует из единственности решения задачи *TH*. Отсюда следует однозначная разрешимость задачи *TH*. Теорема 2.2 доказана.

§2.4. Задача с условием Бицадзе — Самарского для уравнений Геллерстедта с сингулярным коэффициентом в случае $\beta_0 = -m/2$.

Рассмотрим задачу *TH* для предельного значения параметра $\beta_0 = -m/2$ уравнение (2.1.1).

2.4.1. Единственность решения задачи ТН.

С помощью формулы Даламбера (1.4.2) из краевых условий (2.1.5) и (2.1.6) нетрудно получить равенства

$$(\tau^{-}(x)) = v^{-}(x) + \psi_{1}(x), \quad x \in (-1, c),$$
 (2.4.1)

$$(\tau^{-}(x))^{'} = v^{-}(x) + \rho_{1}(x), \quad x \in (c,1),$$
 (2.4.2)

где $\psi_1(x) = \psi'((x-1)/2)$, $\rho_1(x) = 2\rho'(x)/(1-\mu)$.

В силу условий склеивания (2.1.2) и (2.1.3) ((2.1.11) и (2.1.12)) соотношения (2.4.1) и (2.4.2) преобразуем к виду

$$a_1 \tau'(x) = f(x) \nu(x) + \psi_2(x), \ x \in (-1, c),$$
 (2.4.3)

$$a_1 \tau'(x) = f(x)\nu(x) + \rho_2(x), x \in (c,1),$$
 (2.4.4)

где $\psi_2(x) = b_0(x) - a_0(x) + \psi_1(x)$, $\rho_2(x) = b_0(x) - a_0(x) + \rho_1(x)$.

Соотношения (2.4.3) и (2.4.4) являются первыми основными функциональными соотношениями между неизвестными функциями $\tau(x)$ и $\nu(x)$, привнесёнными соответственно на интервалы (-1,c) и (c,1) оси y=0 из области Ω^- .

Теорема 2.5. Решение u(x,y) при выполнение условий $a_0(x) \equiv 0$, $b_0(x) \equiv 0$, $\varphi(x) \equiv 0$, $\psi(x) \equiv 0$, $\rho(x) \equiv 0$, и $a_1 > 0$, $\mu < 1$, f(x) > 0 в замкнутой области $\bar{\Omega}^+$ тождественно равна нулю.

В самом деле, в силу принципа Хопфа [9, с.25] решение u(x,y) уравнения (2.1.1) своего (НПЗ) во внутренних точках области $\bar{\Omega}^+$ не достигает. Пусть (ξ ,0) точки положительного максимума функции u(x,y) на AB, так как $\tau(c)=0$ тогда $\xi\neq c$.

Теперь пусть $\xi \in (-1,c)$. Тогда в силу известного аналога принципа Заремба-Жиро [40, с.74] в этой точке

$$v(\xi) < 0. \tag{2.4.5}$$

С другой стороны в точке положительного максимума в силу соответствующего однородного условия (2.4.3) (где $\psi_2(x) \equiv 0$, $\tau'(\xi) = 0$) имеем

$$v(\xi) = 0,$$
 (2.4.6)

равенство (2.4.6) в силу условия сопряжения (2.1.3) противоречить неравенству (2.4.5), следовательно $\xi \notin (-1,c)$.

Пусть $\xi \in (c,1)$. В силу (2.4.4) легко показать, что $\xi \notin (c,1)$.

Полученное противоречие показывает, что в области $\overline{\Omega}^+$ решение u(x,y) своего НПЗ во внутренних точках интервала I не достигает.

Аналогично, как и выше можно показать, что в области $\bar{\Omega}^+$ решение u(x,y) своего HO3 во внутренних точках интервала I так же не достигает. Отсюда в силу соответствующего однородного краевого условия (2.1.4) (с $\varphi(x) \equiv 0$) видно, что его также нет и в точках кривой σ_0 .

Таким образом, решение u(x,y)- однородной задачи TH своего (НПЗ) в области $\overline{\Omega}^+$ может достигать только в точках A(-1,0) и B(1,0).

Аналогично можно показать, что решение u(x,y) – однородной задачи TH своего (HO3) в области $\overline{\Omega}^+$ может достигать только в точках A(-1,0) и B(1,0).

Из краевого условия (2.1.4) (с $\varphi(x) \equiv 0$), при $x = \pm 1$ имеем u(A) = u(B) = 0. Следовательно, $u(x, y) \equiv 0$ во всех точках области $\overline{\Omega}^+$.

Отсюда
$$\tau(x) = u(x,0) = 0$$
, $\nu(x) = \lim_{y \to +0} y^{-m/2} \frac{\partial u}{\partial y} = 0$, тогда в силу

соответствующих однородных общих условий склеивания (2.1.2) и (2.1.3) (с $a_0(x) \equiv 0$, $b_0(x) \equiv 0$) имеем

$$\tau^{-}(x) = u(x, -0) = 0, \quad v^{-}(x) = \lim_{y \to -0} (-y)^{-m/2} \frac{\partial u}{\partial y} = 0.$$

Теперь в области Ω^- восстанавливая решение задача *TH* с помощью формулы Даламбера (1.4.7) получим $u(x,y) \equiv 0$ в Ω^- .

Таким образом, $u(x, y) \equiv 0$ во всей смешанной области $\bar{\Omega}$.

2.4.2. Существование решения задачи *TH* .

Теорема 2.6. Задача ТН при выполнении условий (2.2.8) и (2.3.1) однозначно разрешима.

Из решения видоизменённой задачи N (1.4.7), стандартными вычислениями получаем следующее систему уравнений относительно неизвестных функций $V_0(x)$ и $V_1(x)$

$$v_{0}(x) = -A_{0}(x) \int_{-1}^{1} \left(\frac{1+s}{1+x}\right) \left(\frac{1}{s-x} - \frac{a}{1-(ax-b)(as-b)}\right) v_{0}(s) ds - A_{0}(x) \int_{-1}^{1} \left(\frac{1+a+bs}{a(1+x)}\right) \left(\frac{1}{bs-ax+1} - \frac{1}{1-(ax-b)(bs+a)}\right) bv_{1}(s) ds + F_{0}(x), x \in I,$$

$$v_{1}(x) = -A_{1}(x) \int_{-1}^{1} \left(\frac{1+a+bs}{1+a+bx}\right) \left(\frac{1}{s-x} - \frac{b}{1+(bx+a)(bs+a)}\right) v_{1}(s) ds - A_{1}(x) \int_{-1}^{1} \left(\frac{a(1+s)}{1+a+bx}\right) \left(\frac{1}{as-bx-1} - \frac{1}{1-(bx+a)(as-b)}\right) av_{0}(s) ds + F_{1}(x), x \in I,$$

$$(2.4.8)$$

где

$$v_0(x) = v(ax - b), v_1(x) = v(bx + a), A_0(x) = a_1 / \pi f(ax - b), A_1(x) = a_1 / \pi f(bx + a),$$

 $F_0(x) = F_0(ax - b), F_1(x) = F_1(bx + a).$

С учетом равенство

$$\left(\frac{1+a+bs}{a(1+x)}\right)\left(\frac{1}{bs-ax+1} - \frac{1}{1-(ax-b)(bs+a)}\right) = \frac{1}{bs-ax+1} - \frac{bs+a}{1-(ax-b)(bs+a)}.$$

для правой части из (2.4.7) и (2.4.8) выделим, интегралы с особенностями первого порядка и запишем их в виде

$$\begin{split} \nu_0(x) + A_0(x) \int_{-1}^{1} \left(\frac{1+s}{1+x}\right) & \left(\frac{1}{s-x} - \frac{a}{1-(ax-b)(as-b)}\right) \nu_0(s) ds = \\ & = -A_0(1) \int_{-1}^{1} \frac{b\nu_1(s) ds}{bs-ax+1} + \int_{-1}^{1} \tilde{T}_0(x,s)\nu_1(s) ds + F_0(x), \ x \in I, \\ & \nu_1(x) + A_1(x) \int_{-1}^{1} \left(\frac{1}{s-x} - \frac{b}{1-(bx+a)(bs+a)}\right) \nu_1(s) ds = \\ & = -A_1(-1) \int_{-1}^{1} \frac{a\nu_0(s) ds}{as-bx-1} + \int_{-1}^{1} \tilde{H}_0(x,s)\nu_0(s) ds + \int_{-1}^{1} \tilde{H}_1(x,s)\nu_1(s) ds + F_1(x), \ x \in I, (2.4.10) \\ \text{ГДе} & A_0(1) = a_1 / (\pi f(c)), A_1(-1) = a_1 / (\pi f(c)), A_0(1) = A_1(-1), \\ & \tilde{T}_0(x,s) = \frac{b(A_0(1)-A_0(x))}{bs-ax+1} + \frac{b(bs+a)A_0(x)}{1-(ax-b)(bs+a)}, \\ & \tilde{H}_0(x,s) = A_1(x) \left[\frac{a(1+s)}{1+a+bx} \frac{a}{1-(bx+a)(as-b)} - \frac{a}{1+a+bx}\right] - \frac{a\left(A_1(x)-A_1(-1)\right)}{as-bx-1}, \\ & \tilde{H}_1(x,s) = -A_1(x) \left[\frac{1+a+bs}{1+a+bx} - 1\right] \left(\frac{1}{s-x} - \frac{b}{1-(bx+a)(bs+a)}\right) \end{split}$$

-регулярные ядра.

Уравнения (2.4.9) и (2.4.10) запишем в виде

$$v_0(x) + A_0(x) \int_{-1}^{1} \left(\frac{1+s}{1+x} \right) \left(\frac{1}{s-x} - \frac{a}{1 - (ax-b)(as-b)} \right) v_0(s) ds = g_0(x), \quad (2.4.11)$$

$$v_1(x) + A_1(x) \int_{-1}^{1} \left(\frac{1}{s - x} - \frac{b}{1 - (bx + a)(bs + a)} \right) v_1(s) ds = g_1(x), \tag{2.4.12}$$

где $g_0(x)$, $g_1(x)$ — соответственно правые части уравнений (2.4.9) и (2.4.10).

Перейдём к регуляризации системы сингулярных интегральных уравнений (2.4.11) и (2.4.12).

Теорема 2.7. Если $g_0(x)$ удовлетворяет условию Гельдера при $x \in (-1,1)$ и $g_0(x) \in L_p(-1,1)$ p>1, то решение уравнения (2.4.11) в классе функций h(-1), в котором $(1+x)v_0(x)$ ограничена при x=-1 и может быть неограниченной на правом конце интервала (-1,1), выражается формулой

$$v_{0}(x) = \frac{g_{0}(x)}{1 + \pi^{2} A_{0}^{2}(x)} - \frac{A_{0}(x)}{1 + \pi^{2} A_{0}^{2}(x)} \int_{-1}^{1} \frac{\omega_{0}(x)}{\omega_{0}(t)} \left(\frac{1 - c(at - b)}{1 - c(ax - b)}\right)^{\alpha_{1}} \left(\frac{1 - t}{1 - x}\right)^{\alpha_{1}} \left(\frac{1 + t}{1 + x}\right)^{1 - 2\alpha_{0}} \times \left(\frac{1}{t - x} - \frac{a}{1 - (ax - b)(at - b)}\right) g_{0}(t) dt,$$

$$(2.4.13)$$

где $\omega_0(x) = 1 + i\pi A_0(x)$.

Докажем теорему 2.7. Введя обозначения $\rho(x) = (1+x)\nu_0(x)$, $g(x) = (1+x)g_0(x)$; уравнение (2.4.11) перепишем в виде

$$\rho(x) + A_0(x) \int_{-1}^{1} \left(\frac{1}{t - x} - \frac{a}{1 - (ax - b)(at - b)} \right) \rho(t) dt = g(x).$$
 (2.4.14)

Пусть *z* – произвольная точка комплексной плоскости. Следуя идея Карлемана [26] положим

$$\Phi(z) = \frac{1}{2\pi i} \int_{-1}^{1} \left(\frac{1}{t-z} - \frac{a}{(az-b)(at-b)} \right) \rho(t) dt.$$
 (2.4.15)

Очевидно, $\Phi(z)$ голоморфна как в верхней, так и в нижней полуплоскостях и исчезает на бесконечности. Обозначим через $\Phi^+(x)$ и $\Phi^-(x)$ предельные значения, $\Phi(z)$ когда z стремится к точке x действительной оси соответственно из верхней или из нижней полуплоскости.

Из (2.4.15) нетрудно проверить, что

$$\Phi\left(\frac{1+b+bz}{az-b}\right) = (az-b)\Phi(z). \tag{2.4.16}$$

Дробно – линейное преобразование W = W(z) = (1+b+bz)/(az-b) (z = (1+b+bW(z))/(aW(z)-b)) переводит верхнюю полуплоскость в нижнюю и наоборот. При этом промежуток (-1,1) переходит в промежуток

$$\Delta = \begin{cases} (-\infty, -1) \bigcup ((2-c) \, / \, c, +\infty), \text{если} & c > 0, \\ (-\infty, -1), & \text{если} & c = 0, \\ ((2-c) \, / \, c, -1), & \text{если} & c < 0. \end{cases}$$

Из (2.4.16) легко усмотреть, что

$$\Phi^{+}\left(\frac{1+b+bx}{ax-b}\right) = (ax-b)\Phi^{-}(x), \quad \Phi^{-}\left(\frac{1+b+bx}{ax-b}\right) = (ax-b)\Phi^{+}(x). \quad (2.4.17)$$

Из (2.4.15), в силу формул Сохоцкого - Племеля [9, с.145] имеем $\Phi^+(x) - \Phi^-(x) = \rho(x), \qquad (2.4.18)$

$$\Phi^{+}(x) + \Phi^{-}(x) = \frac{1}{\pi i} \int_{-1}^{1} \left(\frac{1}{t - x} - \frac{a}{1 - (ax - b)(at - b)} \right) \rho(t) dt.$$
 (2.4.19)

Тогда на основании (2.4.18) и (2.4.19) уравнение (2.4.14) имеет вид

$$\Phi^{+}(x) - \frac{1 - i\pi A_{0}(x)}{1 + i\pi A_{0}(x)} \Phi^{-}(x) = \frac{g(x)}{1 + i\pi A_{0}(x)}, \quad x \in I.$$
 (2.4.20)

Теперь в (2.4.20) x заменив на W(x) (тогда $x \in \Delta$, $W \in I$), с учетом (2.4.17) имеем

$$\Phi^{+}(x) - \frac{1 + i\pi A_0(W(x))}{1 - i\pi A_0(W(x))} \Phi^{-}(x) = -\frac{g(W(x))}{(ax - b)(1 - i\pi A_0(W(x)))}, \quad x \in \Delta. \quad (2.4.21)$$

Введём функции

функции
$$G(x) = \begin{cases} (1 - i\pi A_0(x)) / (1 + i\pi A_0(x)) & \text{при } x \in I, \\ (1 + i\pi A_0(W(x))) / (1 - i\pi A_0(W(x))) & \text{при } x \in \Delta, \\ 1 & \text{при } x \notin I \bigcup \Delta. \end{cases}$$

$$(2.4.22)$$

$$H(x) = \begin{cases} g(x) / (1 + i\pi A_0(x)) & \text{при } x \in I, \\ -g(W(x)) / (ax - b)(1 - i\pi A_0(W(x))) & \text{при } x \in \Delta, \\ 0 & \text{при } x \notin I \bigcup \Delta, \end{cases}$$

в силу этих обозначений уравнения (2.4.20) и (2.4.21) можно соединить в одно уравнение

$$\Phi^{+}(x) - G(x)\Phi^{-}(x) = H(x), \ x \in (-\infty, +\infty).$$
 (2.4.23)

Таким образом, задача о нахождения решения сингулярного интегрального уравнения (2.4.14) свелась к задаче Римана теории функции комплексного переменного: найти исчезающую на бесконечности функцию $\Phi(z)$, голоморфную как в верхней, так и в

нижней полуплоскостях, удовлетворяющую граничному условию (2.4.23).

Решение этой задачи можно получить в явном виде. Решим предварительно соответствующую однородную задачу, т.е. в комплексной плоскости z найдем функцию X(z), голоморфную вне промежутка $I\bigcup \Delta$, а в промежутке $I\bigcup \Delta$, удовлетворяющую условию

$$X^{+}(x) = G(x)X^{-}(x).$$
 (2.4.24)

Одно из частных решений уравнения (2.4.24) имеет вид

$$X(z) = \exp\left\{\frac{1}{2\pi i} \int_{-1}^{1} \left(\frac{1}{t-z} - \frac{a(az-b)}{1-(az-b)(at-b)}\right) \ln G(t) dt\right\}.$$
 (2.4.25)

Из (2.4.25) легко усмотреть, что

$$X\left(\frac{1+b+bz}{az-b}\right) = X(z).$$

Теперь из (2.4.25) нетрудно вычислить, что

$$X(z) = \exp\left\{\frac{1}{2\pi i} \int_{-1}^{1} \ln G(t) d\left[\ln(t-z) + \ln(1-(az-b)(at-b))\right] + \Psi_{0}(z)\right\} =$$

$$= \exp\left\{\frac{1}{2\pi i} \left[\ln G(1)(\ln(1-z) - \ln(1-c(az-b))) - \left(2.4.26\right)\right] - \ln G(-1)(\ln(-1-z) + \ln(a(1+z))) + \Psi_{0}(z)\right\},$$
(2.4.26)

где $\Psi_0(z) = -\frac{1}{2\pi i} \int_{-1}^{1} \left[\ln(t-z) + \ln(1-(az-b)(at-b)) \right] dlnG(t)$

— голоморфная функция как в верхней, так и в нижней полуплоскости и имеет конечный предел при $z \to \pm 1$.

Вычислим из (2.4.22)

$$\ln G((-1)^{j+1}) = \ln \frac{1 - i\pi A_0((-1)^{j+1})}{1 + i\pi A_0((-1)^{j+1})} = [-2arctg(\pi A_0((-1)^{j+1})) + 2k\pi]i = -2\pi\alpha_j i, \quad j = 0, 1,$$

где
$$\alpha_j = \frac{arctg(\pi A_0((-1)^{j+1}))}{\pi}$$
, $tg(\alpha_j \pi) = \pi A_0((-1)^{j+1})$, $k = 0$.

Следовательно, с учетом последнего из (2.4.26) получим $X(z) = \exp\left\{-\alpha_1 \Big[\ln(1-z) + \ln(1-c(az-b))\Big] + \alpha_0 \Big[\ln(-1-z) + \ln(a(1+z))\Big]\right\} \tilde{\Psi}_0(z),$

где $\tilde{\Psi}_0(z) = \exp \Psi_0(z) -$ голоморфная функция, как в верхней, так и в нижней полуплоскости, отсюда

$$\begin{split} X^+(x) &= \frac{a^{\alpha_0} (1+x)^{2\alpha_0}}{(1-x)^{\alpha_1} (1-c(ax-b))^{\alpha_1}} \tilde{\Psi}_0(x) e^{-\pi \alpha_0 i}, \ X^-(x) = \frac{a^{\alpha_0} (1+x)^{2\alpha_0}}{(1-x)^{\alpha_1} (1-c(ax-b))^{\alpha_1}} \tilde{\Psi}_0(x) e^{\pi \alpha_0 i}, \\ \text{ГДе} \quad \tilde{\Psi}_0^+(x) &= \tilde{\Psi}_0^-(x) = \tilde{\Psi}_0(x). \end{split}$$

Таким образом, функцию G(x) можно представить в виде $G(x) = X^+(x) / X^-(x)$ – факторизации функции G(x) [23,c.33], с учётом последнего представления, краевое условие (2.4.23) запишем в вид

$$\frac{\Phi^{+}(x)}{X^{+}(x)} - \frac{\Phi^{-}(x)}{X^{-}(x)} = \frac{H(x)}{X^{+}(x)}, \ x \in I \bigcup \Delta.$$
 (2.4.27)

Таким образом, для функции $E(z) = \Phi(z) / X(z)$, мы пришли к задаче о скачке [13, с.30] теории аналитических функций. Одно из частных решений уравнения (2.4.27) имеет вид

$$\frac{\Phi(z)}{X(z)} = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} \frac{H(t)}{X^{+}(t)} \frac{dt}{t - z}.$$
 (2.4.28)

Решение (2.4.28) с учётом (2.4.22) запишем в виде $\frac{\Phi(z)}{X(z)} = \frac{1}{2\pi i} \left(\int_{-1}^{1} \frac{1}{X^{+}(t)} \frac{g(t)}{1 + i\pi A_{0}(t)} \frac{dt}{t - z} - \int_{\Delta} \frac{1}{X^{+}(s)} \frac{g(W(s))}{(as - b)(1 - i\pi A_{0}(W(s)))} \frac{ds}{s - z} \right), \quad (2.4.29)$

во втором интеграле правой части (2.4.29) сделаем замену переменного интегрирование t = W(s) (s = W(t)), где $s \in \Delta, t \in (-1,1)$, с учётом тождеств

$$X^{+}(W(x)) = X^{-}(x) = \frac{1 + i\pi A_{0}(x)}{1 - i\pi A_{0}(x)} X^{+}(x), \quad X^{+}(s) = X^{+}(W(t)) = X^{-}(t) = \frac{1 + i\pi A_{0}(t)}{1 - i\pi A_{0}(t)} X^{+}(t),$$

$$\frac{ds}{s - z} = -\frac{adt}{(at - b)(1 - (az - b)(at - b))}, \quad \frac{1}{as - b} = at - b,$$

запишем (2.4.29) в виде

$$\frac{\Phi(z)}{X(z)} = \frac{1}{2\pi i} \int_{-1}^{1} \frac{g(t)}{X^{+}(t)(1+i\pi A_{0}(t))} \left(\frac{1}{t-z} - \frac{a}{1-(az-b)(at-b)} \right) dt,$$

чтобы найти общее решение, рассмотрим однородное уравнение

$$\frac{\Phi^{+}(x)}{X^{+}(x)} - \frac{\Phi^{-}(x)}{X^{-}(x)} = 0.$$

Это уравнение показывает, что функция $E(z) = \Phi(z)/X(z)$ голоморфна на всей плоскости кроме может быть точек z=-1,z=1, которые могут быть только полюсами, на бесконечности функция E(z) равна нулю. В силу обобщенной теоремы Лиувилля об аналитическом продолжении [13, c.29] находим что, $E(z) = \frac{c_0}{1+z} + \frac{c_1}{1-z}$ таким образом, общее решения уравнения (2.4.23) имеет вид

$$\Phi(z) = \frac{X(z)}{2\pi i} \int_{-1}^{1} \frac{g(t)}{X^{+}(t)(1+i\pi A_{0}(t))} \left(\frac{1}{t-z} - \frac{a}{1-(az-b)(at-b)}\right) dt + X(z) \left(\frac{c_{0}}{1+z} + \frac{c_{1}}{1-z}\right).$$

Теперь вычислим $\Phi^+(x)$ и $\Phi^-(x)$, затем, подставляя их в формулу (2.4.18), после стандартных вычислений с учётом обозначений

 $\rho(x) = (1+x)\nu_0(x)$, $g(x) = (1+x)g_0(x)$ придём к решению (2.4.13). Теоремы 2.7 доказана.

Теперь рассмотрим уравнение (2.4.12). Здесь тоже, как и в случае уравнения (2.4.11), его (2.4.12) будем рассматривать как сингулярное интегральное уравнение со сдвигом в несуммируемой части ядра относительно неизвестной функции $\nu_1(x)$.

Теорема 2.8. Если $g_1(x)$ удовлетворяет условию Гельдера при $x \in (-1,1)$ и $g_1(x) \in L_p(-1,1)$ p > 1, то решение уравнения (2.4.12) в классе функций h(-1), в котором $v_1(x)$ ограничена при x = -1 и может быть неограниченной на правом конце интервала (-1,1), выражается формулой

$$v_{1}(x) = \frac{g_{1}(x)}{1 + \pi^{2} A_{1}^{2}(x)} - \frac{A_{1}(x)}{1 + \pi^{2} A_{1}^{2}(x)} \int_{-1}^{1} \frac{\omega_{1}(x)}{\omega_{1}(t)} \left(\frac{1 - c(bx + a)}{1 - c(bt + a)}\right)^{\alpha_{1}} \left(\frac{1 - t}{1 - x}\right)^{2\alpha_{1}} \times \left(\frac{1 + t}{1 + x}\right)^{-\alpha_{0}} \left(\frac{1}{t - x} - \frac{b}{1 - (bx + a)(bt + a)}\right) g_{1}(t) dt,$$

$$(2.4.30)$$

 $\partial e \omega_1(x) = 1 + i\pi A_1(x)$.

Доказательство теоремы 2.8 проводиться методом [11], [22], [57], [58] или аналогичным методом как при доказательстве теоремы 2.7.

Приступим к дальнейшему исследованию системы уравнений (2.4.9) и (2.4.10). Теперь выражения для $g_0(x)$ и $g_1(x)$ (соответственно правые части уравнений (2.4.9) и (2.4.10)) подставляя в решения (2.4.13) и (2.4.30) соответственно получим

$$\begin{split} \nu_0(x) &= -\frac{A_0(1)}{1+\pi^2A_0^2(x)} \int_{-1}^1 \frac{b\nu_1(s)ds}{bs-ax+1} + \frac{A_0(1)A_0(x)}{1+\pi^2A_0^2(x)} \int_{-1}^1 b\nu_1(s)ds \times \\ &\times \int_{-1}^1 \left(\frac{1+t}{1+x}\right)^{1-2\alpha_0} \left(\frac{1-t}{1-x}\right)^{\alpha_1} \left(\frac{1}{t-x} - \frac{a}{1-(ax-b)(at-b)}\right) \frac{dt}{bs-at+1} + \\ &\quad + T_1[x,\nu_1] + F_0^*(x), \ x \in I, \end{split} \tag{2.4.31}$$

$$\nu_1(x) &= -\frac{A_1(-1)}{1+\pi^2A_1^2(x)} \int_{-1}^1 \frac{a\nu_0(s)ds}{as-bx-1} + \frac{A_1(-1)A_1(x)}{1+\pi^2A_1^2(x)} \int_{-1}^1 a\nu_0(s)ds \int_{-1}^1 \left(\frac{1+t}{1+x}\right)^{-\alpha_0} \times \\ &\times \left(\frac{1-t}{1-x}\right)^{2\alpha_1} \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) \frac{dt}{as-bt-1} + H_0[x,\nu_0] + H_1[x,\nu_1] + F_1^*(x), x \in I, \end{split} \tag{2.4.32}$$
 ГДе

$$T_{1}[x,v_{1}] = \frac{A_{0}(1)A_{0}(x)}{1+\pi^{2}A_{0}^{2}(x)} \int_{-1}^{1} bv_{1}(s)ds \int_{-1}^{1} \left(\frac{1+t}{1+x}\right)^{1-2\alpha_{0}} \left(\frac{1-t}{1-x}\right)^{\alpha_{1}} \times$$

$$\begin{split} \times \left[\frac{\omega_0(x)}{\omega_0(t)} \left(\frac{1 - c(at - b)}{1 - c(ax - b)} \right)^{\alpha_1} - 1 \right] & \left(\frac{1}{t - x} - \frac{a}{1 - (ax - b)(at - b)} \right) \frac{dt}{bs - at + 1} + \\ & + \frac{1}{1 + \pi^2 A_0^2(x)} \int_{-1}^{1} \tilde{T}_0(x, s) \nu_1(s) ds - \frac{A_0(x)}{1 + \pi^2 A_0^2(x)} \int_{-1}^{1} \nu_1(s) ds \int_{-1}^{1} \left(\frac{1 + t}{1 + x} \right)^{1 - 2\alpha_0} \left(\frac{1 - t}{1 - x} \right)^{\alpha_1} \times \\ & \times \frac{\omega_0(x)}{\omega_0(t)} \left(\frac{1 - c(at - b)}{1 - c(ax - b)} \right)^{\alpha_1} \left(\frac{1}{t - x} - \frac{a}{1 - (ax - b)(at - b)} \right) \tilde{T}_0(t, s) dt, \\ & H_0[x, \nu_0] = \frac{1}{1 + \pi^2 A_1^2(x)} \int_{-1}^{1} \tilde{H}_0(x, s) \nu_0(s) ds + \frac{A_1(-1)A_1(x)}{1 + \pi^2 A_1^2(x)} \int_{-1}^{1} a \nu_0(s) ds \int_{-1}^{1} \left(\frac{1 + t}{1 + x} \right)^{-\alpha_0} \times \\ & \times \left(\frac{1 - t}{1 - x} \right)^{2\alpha_1} \left[\frac{\omega_1(x)}{\omega_1(t)} \left(\frac{1 - c(bx + a)}{1 - c(bt + a)} \right)^{\alpha_1} - 1 \right] \left(\frac{1}{t - x} - \frac{b}{1 - (bx + a)(bt + a)} \right) \frac{dt}{as - bt - 1} - \\ & - \frac{A_1(x)}{1 + \pi^2 A_1^2(x)} \int_{-1}^{1} \nu_0(s) ds \int_{-1}^{1} \left(\frac{1 + t}{1 + x} \right)^{-\alpha_0} \left(\frac{1 - t}{1 - x} \right)^{2\alpha_1} \frac{\omega_1(x)}{\omega_1(t)} \left(\frac{1 - c(bx + a)}{1 - c(bt + a)} \right)^{\alpha_1} \times \\ & \times \left(\frac{1}{t - x} - \frac{b}{1 - (bx + a)(bt + a)} \right) \tilde{H}_0(t, s) dt, \end{split}$$

$$H_1[x, \nu_1] = \frac{1}{1 + \pi^2 A_1^2(x)} \int_{-1}^{1} \tilde{H}_1[x, s] \nu_1(s) ds - \frac{A_1(x)}{1 + \pi^2 A_1^2(x)} \int_{-1}^{1} \nu_1(s) ds \int_{-1}^{1} \left(\frac{1 + t}{1 + x} \right)^{-\alpha_0} \left(\frac{1 - t}{1 - x} \right)^{2\alpha_1} \times \\ & \times \frac{\omega_1(x)}{\omega_1(t)} \left(\frac{1 - c(bx + a)}{1 - c(bt + a)} \right)^{\alpha_0} \left(\frac{1}{t - x} - \frac{b}{1 - (bx + a)(bt + a)} \right) \tilde{H}_1(t, s) dt \end{split}$$

-регулярные операторы.

$$F_0^*(x) = \frac{F_0(x)}{1+\pi^2A_0^2(x)} - \frac{A_0(x)}{1+\pi^2A_0^2(x)} \int_{-1}^1 \left(\frac{1+t}{1+x}\right)^{1-2\alpha_0} \left(\frac{1-t}{1-x}\right)^{\alpha_1} \times \frac{\omega_0(x)}{\omega_0(t)} \left(\frac{1-c(at-b)}{1-c(ax-b)}\right)^{\alpha_1} \left(\frac{1}{t-x} - \frac{a}{1-(ax-b)(at-b)}\right) F_0(t) dt,$$

$$F_1^*(x) = \frac{F_1(x)}{1+\pi^2A_1^2(x)} - \frac{A_1(x)}{1+\pi^2A_1^2(x)} \int_{-1}^1 \left(\frac{1+t}{1+x}\right)^{-\alpha_0} \left(\frac{1-t}{1-x}\right)^{2\alpha_1} \frac{\omega_1(x)}{\omega_1(t)} \left(\frac{1-c(bx+a)}{1-c(bt+a)}\right)^{\alpha_1} \times \left(\frac{1}{t-x} - \frac{b}{1-(bx+a)(bt+a)}\right) F_1(t) dt$$
 —известные функции.

В правых частях равенств (2.4.31) и (2.4.32) вычислим внутреннее интегралы, для этого рациональные части подынтегральных выражений этих интегралов разложим на простые дроби [40, с.130], к полученным интегралам применив формулы [40, с. 125] и выполнив стандартные вычисления получаем

$$v_{0}(x) = -\frac{\sin(\alpha_{1}\pi)}{\pi} \int_{-1}^{1} \left(\frac{b(1+s)}{a(1-x)}\right)^{\alpha_{1}} \frac{bv_{1}(s)ds}{bs - ax + 1} + T_{2}[x,v_{1}] + F_{0}^{*}(x), \quad x \in I, \quad (2.4.33)$$

$$v_{1}(x) = -\frac{\sin(\alpha_{0}\pi)}{\pi} \int_{-1}^{1} \left(\frac{a(1-s)}{b(1+x)}\right)^{-\alpha_{0}} \frac{av_{0}(s)ds}{as - bx - 1} + \bar{H}_{0}[x,v_{0}] + H_{1}[x,v_{1}] + F_{1}^{*}(x), \quad x \in I, \quad (2.4.34)$$

где

$$T_{2}[x,\nu_{1}] = T_{1}[x,\nu_{1}] + \frac{A_{0}(x) - A_{0}(1)}{1 + \pi^{2}A_{0}^{2}(x)} \int_{1}^{1} \frac{b\nu_{1}(s)ds}{bs - ax + 1} - \frac{1}{\cos(\alpha_{1}\pi)} \left[\frac{A_{0}(x)}{1 + \pi^{2}A_{0}^{2}(x)} - \frac{A_{0}(1)}{1 + \pi^{2}A_{0}^{2}(1)} \right] \int_{1}^{1} \left(\frac{b(1+s)}{a(1-x)} \right)^{\alpha_{1}} \frac{b\nu_{1}(s)ds}{bs - ax + 1} - \frac{1}{\cos(\alpha_{1}\pi)} \frac{A_{0}(x)}{1 + \pi^{2}A_{0}^{2}(x)} \int_{1}^{1} \left(\frac{b(1+s)}{a(1-x)} \right)^{\alpha_{1}} \left[\left(\frac{1+a+bs}{a(1+x)} \right)^{-2\alpha_{0}} - 1 \right] \frac{b\nu_{1}(s)ds}{bs - ax + 1} - \frac{2^{\alpha_{1}-2\alpha_{0}+1}B(2-2\alpha_{0},\alpha_{1})A_{0}(1)A_{0}(x)}{1 + \pi^{2}A_{0}^{2}(x)} \int_{-1}^{1} \frac{(1-x)^{-\alpha_{1}}}{(1+x)^{1-2\alpha_{0}}} \left\{ F\left(2\alpha_{0} - \alpha_{1} - 1,1,1 - \alpha_{1}; \frac{1-x}{2} \right) - F\left(2\alpha_{0} - \alpha_{1} - 1,1,1 - \alpha_{1}; \frac{b(1+s)}{2a} \right) \right\} \frac{b\nu_{1}(s)ds}{bs - ax + 1} + \frac{A_{0}(1)A_{0}(x)}{1 + \pi^{2}A_{0}^{2}(x)} \int_{-1}^{1} \frac{(1-x)^{-\alpha_{1}}}{(1+x)^{1-2\alpha_{0}}} \left\{ \frac{\pi a^{2\alpha_{0}-\alpha_{1}-1}b^{\alpha_{1}}(1+s)^{\alpha_{1}}}{2a} \right\} \frac{b\nu_{1}(s)ds}{bs - ax + 1} + \frac{A_{0}(1)A_{0}(x)}{1 + \pi^{2}A_{0}^{2}(x)} \int_{-1}^{1} \frac{(1-x)^{-\alpha_{1}}}{(1+x)^{1-2\alpha_{0}}} \left\{ \frac{\pi a^{2\alpha_{0}-\alpha_{1}-1}b^{\alpha_{1}}(1+s)^{\alpha_{1}}}{2a} - \frac{B(2-2\alpha_{0},\alpha_{1})}{2^{2\alpha_{0}-\alpha_{1}-1}} \times \right\}$$

$$\times F\left(2\alpha_{0} - \alpha_{1} - 1,1,1 - \alpha_{1}; -\frac{b(1+s)}{2a} \right) + \frac{aB(2-2\alpha_{0},1+\alpha_{1})}{2^{2\alpha_{0}-\alpha_{1}-2}} \frac{ax - b}{1 - c(ax - b)} \times \right\}$$

$$\times F\left(1 + \alpha_{1},1,3 - 2\alpha_{0} + \alpha_{1}; \frac{2a(b-ax)}{1 - c(ax - b)} \right) \frac{b\nu_{1}(s)ds}{1 - (ax - b)(bs + a)},$$

$$\bar{H}_{0}[x,\nu_{0}] = H_{0}[x,\nu_{0}] + \frac{A_{1}(x) - A_{1}(-1)}{1 + \pi^{2}A_{1}^{2}(x)} \int_{-1}^{1} \frac{a\nu_{0}(s)ds}{b(1+x)} - \frac{a\nu_{0}(s)ds}{as - bx - 1} - \frac{A_{1}(x)}{\cos(\alpha_{0}\pi)(1 + \pi^{2}A_{1}^{2}(x))} \int_{1}^{1} \left(\frac{a(1-s)}{b(1+x)} \right)^{-\alpha_{0}} \left[\frac{1+b-as}{b(1-x)} \right]^{2\alpha_{0}} - \frac{a\nu_{0}(s)ds}{as - bx - 1} - \frac{A_{1}(-1)B(1+2\alpha_{1},-\alpha_{0})A_{1}(x)}{1 + \pi^{2}A_{1}^{2}(x)} \int_{1}^{1} \frac{a\nu_{0}(s)ds}{b(1-x)} + \frac{A_{1}(-1)A_{1}(x)}{1 + \pi^{2}A_{1}^{2}(x)} \int_{1}^{1} \frac{a\nu_{0}(s)ds}{as - bx - 1} - \frac{A_{1}(-1)A_{1}(x)}{1 + \pi^{2}A_{1}^{2}(x)} \int_{1}^{1} \frac{a\nu_{0}(s)ds}{bs - ax + 1} + \frac{A_{1}(-1)A_{1}(x)}{1 + \pi^{2}A_{2}^{2}(x)} \int_{1}^{1} \frac{a\nu_{0}(s)ds}{as - bx - 1} + \frac{A_{1}(-1)A_{1}(x)}{1 + \pi^{2}A_{2}^{2}(x)} \int_{1}^{1} \frac{a\nu_{0}$$

$$\times \int_{-1}^{1} \frac{1}{1-(bx+a)(as-b)} \Biggl\{ \frac{\pi a^{-\alpha_0} b^{\alpha_0-2\alpha_1}}{\sin(\alpha_0\pi)(1+b-as)^{-2\alpha_1}(1-s)^{\alpha_0}} + \\ + \frac{B(1+2\alpha_1,-\alpha_0)}{2^{\alpha_0-2\alpha_1-1}} F\Biggl(\alpha_0-2\alpha_1,1,1+\alpha_0;-\frac{a(1-s)}{2b}\Biggr) + \frac{2^{1+2\alpha_1-\alpha_0} bB(1-\alpha_0,1+2\alpha_1)(bx+a)}{1-c(bx+a)} \times \\ \times F\Biggl(1-\alpha_0,1,2-\alpha_0+2\alpha_1;\frac{2b(bx+a)}{1-c(bx+a)}\Biggr) \Biggr] \Biggr\} av_0(s) ds - \text{регулярные операторы.}$$

Теперь в (2.4.33) x заменив на -x, а в первом интеграле (2.4.34), сделав замену переменного интегрирования s=-t и введя обозначение $v_0(x)=v_0(-x)$ соответственно получим

$$v_0(x) = -\int_{-1}^{1} m \left(\frac{1+x}{1+s} \right) \frac{v_1(s)ds}{1+s} + T_2[-x, v_1] + F_0^*(-x), \tag{2.4.35}$$

$$v_1(x) = -\int_{-1}^{1} n \left(\frac{1+x}{1+t} \right) \frac{\tilde{v}_0(t)dt}{1+t} + \overline{\overline{H}}_0[\tilde{v}_0] + H_1[x, v_1] + F_1^*(x), \qquad (2.4.36)$$

где

$$m(y) = \frac{\delta(ay/b)^{-\alpha_1}}{(1+ay/b)}, n(y) = \frac{\delta_0(by/a)^{\alpha_0}}{(1+by/a)}, \delta = \frac{\sin(\alpha_1\pi)}{\pi}, \delta_0 = \frac{\sin(\alpha_0\pi)}{\pi},$$
(2.4.37)

 $T_2[-x,\nu_1], \overline{\bar{H}}_0[x,\tilde{\nu}_0], H_1[x,\nu_1]$ — регулярные операторы, а $F_0^*(x), F_1^*(x)$ — известные функции.

Таким образом, уравнение (2.4.35) совместно с уравнением (2.4.36) составляют систему интегральных уравнений относительно неизвестных функций $v_0(x)$ и $v_1(x)$ с сингулярной особенностью в ядре.

Характерной особенностью уравнения (2.4.35) является, то, что оно разрешено относительно $v_0(x)$, что позволяет из (2.4.36) исключить $v_0(x)$.

Выражение для $v_0(x)$ из (2.4.35) подставляя в (2.4.36), имеем [32]

$$v_1(x) = \int_{-1}^{1} \frac{\Omega(x, s)v_1(s)ds}{1+s} + L[v_1], \qquad (2.4.38)$$

где

$$\Omega(x,s) = \int_{-1}^{1} n \left(\frac{1+x}{1+t} \right) m \left(\frac{1+t}{1+s} \right) \frac{dt}{1+t}, \qquad (2.4.39)$$

$$L[v_1] = -\int_{-1}^{1} n \left(\frac{1+x}{1+t} \right) \frac{T_2[-t,v_1] + F_0^*(-t)}{1+t} dt + \frac{\overline{\overline{H}}_0[x,-\int_{-1}^{1} m \left(\frac{1+x}{1+s} \right) \frac{v_1(s)ds}{1+s} + T_2[-x,v_1] + F_0^*(-x)] + H_1[x,v_1] + F_1^*(x)$$

-регулярный оператор.

B (2.4.39) сделав замену r = (1+t)/(1+s), имеем

$$\Omega(x,s) = \int_{0}^{2/(1+s)} n \left(\frac{1+x}{(1+s)r} \right) m(r) \frac{dr}{r} = \Omega_{1}(x,s) - \Omega_{2}(x,s),$$

где

$$\Omega_1(x,s) = \int_0^\infty n \left(\frac{1+x}{(1+s)r} \right) m(r) \frac{dr}{r}, \qquad (2.4.40)$$

$$\Omega_2(x,s) = \int_{2/(1+s)}^{\infty} n \left(\frac{1+x}{(1+s)r} \right) m(r) \frac{dr}{r},$$
(2.4.41)

оценим сначала $\Omega_2(x,s)$. В силу (2.4.37) имеем

$$n\left(\frac{1+x}{(1+s)r}\right) \leq \delta_0 \left(\frac{a(1+s)}{b(1+x)}\right)^{-\alpha_0} r^{-\alpha_0}, \quad m(r) \leq \delta \left(\frac{b}{a}\right)^{1+\alpha_1} r^{-1-\alpha_1}.$$

Согласно последним неравенствам из (2.4.41) получим

$$\Omega_2(x,s) \le \frac{\delta \delta_0}{1 + \alpha_0 + \alpha_1} \left(\frac{b}{2a}\right)^{1 + \alpha_0 + \alpha_1} \frac{(1+s)^{1 + \alpha_1}}{(1+x)^{-\alpha_0}},$$

следовательно, $\Omega_2(x,s)/(1+s)$ – регулярное ядро.

Таким образом, на основании последнего утверждения уравнение (2.4.38) преобразуем к виду

$$v_1(x) = \int_{-1}^{1} \Omega_1(x, s) \frac{v_1(s)ds}{1+s} + L_1[v_1], \qquad (2.4.42)$$

где

$$L_1[v_1] = L[v_1] + \int_{-1}^{1} \frac{\Omega_2(x,s)}{1+s} v_1(s) ds$$

-регулярный оператор.

Теперь из (2.4.40) вычислим

$$\Omega_1(x,s) = \int_0^\infty n \left(\frac{1+x}{(1+s)r} \right) \frac{m(r)}{r} dr = \int_0^\infty n \left(\frac{y}{r} \right) \frac{m(r)}{r} dr,$$

где y = (1+x)/(1+s). Отсюда в силу (2.4.37) получим, что

$$\Omega_{1}(x,s) = \delta \delta_{0} ab \left(\frac{a}{b}\right)^{3\alpha_{1}-\alpha_{0}-1} y^{\alpha_{0}-4\alpha_{1}+1} \int_{0}^{\infty} \frac{r^{3\alpha_{1}-\alpha_{0}-1} dr}{(by+ar)(b+ar)} = \frac{\delta \delta_{0}(a/b)^{-\alpha_{0}-\alpha_{1}} a}{y^{-\alpha_{0}}(1-y)} \left(\int_{0}^{\infty} \frac{r^{-\alpha_{0}-\alpha_{1}} dr}{by+ar} - \int_{0}^{\infty} \frac{r^{-\alpha_{0}-\alpha_{1}} dr}{b+ar}\right).$$

Здесь, используя интеграл Эйлера [46, с.161]

$$\int_{0}^{\infty} \frac{x^{\gamma - 1}}{1 + x} dx = \frac{\pi}{\sin(\gamma \pi)}, \quad 0 < \gamma < 1,$$

находим

$$\Omega_{1}(x,s) = \frac{\sin(\alpha_{0}\pi)\sin(\alpha_{1}\pi)}{\pi\sin((\alpha_{0}+\alpha_{1})\pi)} \frac{y^{\alpha_{0}+\alpha_{1}}-1}{y^{\alpha_{1}}(y-1)}, y = \frac{1+x}{1+s}.$$
 (2.4.43)

В силу (2.4.43) уравнение (2.4.42) запишем в виде

$$\psi(x) = \frac{\sin(\alpha_0 \pi)\sin(\alpha_1 \pi)}{\pi \sin((\alpha_0 + \alpha_1)\pi)} \int_{-1}^{1} \frac{\left[(1+x)/(1+s) \right]^{\alpha_0 + \alpha_1} - 1}{(1+x)/(1+s) - 1} \frac{\psi(s)}{1+s} ds + L_2[\psi], \quad (2.4.44)$$

где

$$\psi(x) = (1+x)^{\alpha_1} v_1(x), L_2[\psi] = (1+x)^{\alpha_1} L_1[(1+x)^{-\alpha_1} \psi(x)].$$

В уравнении (2.4.44) сделаем замену переменных 1 + s = 2exp(-t),

1 + x = 2exp(-z) и вводя обозначения

 $\rho(z) = \psi(2exp(-z)-1)exp((\alpha_0 + \alpha_1 - 1)z/2),$

$$K_0(x) = \frac{2}{\sqrt{2\pi}} \frac{\sin(\alpha_0 \pi) \sin(\alpha_1 \pi)}{\sin((\alpha_0 + \alpha_1)\pi)} \frac{\sinh((\alpha_0 + \alpha_1)x/2)}{\sinh(x/2)}$$

запишем уравнение (2.4.44) в виде [22,32]

$$\rho(y) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} K_0(z - t) \rho(t) dt + L_3[\rho].$$
 (2.4.45)

Уравнение (2.4.45) является интегральным уравнением Винера-Хопфа [13, c.55]. Функция K(x) имеет показательный порядок убывания на бесконечности причем $K_0(x) \in C[0,\infty]$. Следовательно

$$K_0(x) \in L_2 \cap H_\alpha = \{0\} [13, c.12].$$

Теоремы Фредгольма для интегральных уравнений типа свёртки применимы лишь в одном случае, когда индекс этих уравнений равен нулю [13, c.46] индексом уравнения (2.4.45) будет индекс выражения $1-K^{\wedge}(x)$ с обратным знаком: $\chi = -Ind(1-K^{\wedge}(x))$ [12, c.56], где

$$K^{\wedge}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ixt} K_0(t) dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (\cos(xt) - i\sin(xt)) K_0(t) dt.$$

С учётом чётности функции $K_0(x)$ и формулы [14, c.518]

$$\int_{0}^{\infty} \cos(\alpha t) \frac{sh(\beta t)}{sh(\gamma t)} dt = \frac{\pi}{2\gamma} \frac{\sin(\beta \pi / \gamma)}{\cosh(\alpha \pi / \gamma) + \cos(\beta \pi / \gamma)}$$

получим

$$K^{\wedge}(x) = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} cos(xt) K_0(t) dt = \frac{sin(\alpha_0 \pi) sin(\alpha_1 \pi)}{cos((\alpha_0 + \alpha_1)\pi) + ch(2\pi x)}.$$

Нетрудно убедиться в том, что

$$\frac{sin(\alpha_0\pi)sin(\alpha_1\pi)}{cos((\alpha_0+\alpha_1)\pi)+ch(2\pi x)}<1$$

Так как $K^{\wedge}(x) < 1$, тогда $\chi = -Ind(1 - K^{\wedge}(x)) = 0$

Следовательно, уравнение (2.4.45) однозначно редуцируется к интегральному уравнению Фредгольма второго рода [13, с.46], однозначная разрешимость которого следует из единственности решения задачи TN. Отсюда следует, однозначная разрешимость задачи TN. Теорема 2.6 доказана.

ГЛАВА III. ЗАДАЧА С ЛОКАЛЬНЫМИ И НЕЛОКАЛЬНЫМИ УСЛОВИЯМИ НА ГРАНИЦЕ ОБЛАСТИ ЭЛЛИПТИЧНОСТИ ДЛЯ УРАВНЕНИЯ СМЕШАННОГО ТИПА

В данной главе для уравнения Геллерстедта с сингулярным коэффициентом (3.1.1) рассматриваемого в некоторой смешанной области, когда граница эллиптичности совпадает с отрезком оси *Оу* и нормальной кривой уравнения исследована задача с условием Бицадзе- Самарского на границе эллиптичности и на линии вырождения. Доказана корректность сформулированной задачи.

Результаты данной главы опубликовано в работе [62,74].

§3.1. Постановка задачи БС (Бицадзе-Самарского).

Пусть D_a – область ограниченная отрезком OB оси Oy, $0 \le y \le ((m+2)a/2)^{2/(m+2)}$, дугой AB нормальной кривой $\sigma_a : x^2 + \frac{4}{(m+2)^2} y^{m+2} = a^2, x \ge 0, y > 0$, здесь O = O(0,0), A = A(a,0), B = B(0,b)

и характеристиками $OC: x - \frac{2}{m+2} (-y)^{(m+2)/2} = 0$ и $AC: x + \frac{2}{m+2} (-y)^{(m+2)/2} = a$ уравнения Геллерстедта с сингулярным коэффициентом

$$(signy) |y|^m u_{xx} + u_{yy} + (\beta_0 / y)u_y = 0,$$
 (3.1.1)

где постоянные $m > 0, \beta_0 \in (-m/2,1).$

Через D_a^+ и D_a^- соответственно обозначим части области D_a лежащие в верхней или в нижней полуплоскостях.

Пусть прямая $y = -k(x - x_0)$ $(x \le x_0, 0 \le x_0 \le a)$ пересекает оси координат в точках $(x_0, 0)$, $(0, kx_0)$, где k = b/a, $b = ((m+2)a/2)^{2/(m+2)}$.

Настоящая работа посвящена исследованию задачи с условиями Бицадзе-Самарского связывиющим значения искомого решения u(x,y) в точках $(x_0,0)$, $(0,kx_0)$, осей координат, Ox и Oy соответственно, где $0 \le x_0 \le a$.

Задача БС. Требуется найти в области D_a функцию $u(x,y) \in C(\overline{D_a})$ удовлетворяющую следующим условиям:

- 1) u(x,y) принадлежат классу $C^2(D^+)$ и удовлетворяет уравнению (3.1.1) в области D_a^+ ;
 - 2) u(x,y) является в области D_a^- обобщённым решением класса R_1 ;
 - 3) выполняется условия

$$u(x,y)|_{\sigma_{a}} = \varphi_{1}(x), \ 0 \le x \le a;$$
 (3.1.2)

$$u(0,kx) = \mu(x)u(x,0) + \varphi_2(x), \ 0 \le x \le a;$$
 (3.1.3)

$$u(x,y)|_{QC} = \psi(x), \ 0 \le x \le a/2,$$
 (3.1.4)

где $\varphi_1(x), \mu(x), \varphi_2(x) \in C[0,a], \psi(x) \in C[0,a/2] \cap C^{1,\delta}(0,a/2)$ -заданные функции, причём $\psi(0) = 0, \ \varphi_2(0) = 0, \ \mu(x) = x^{\delta_1} \tilde{\mu}(x) \ \varphi_2(x) = x^{\delta_1 - m} \tilde{\varphi}_2(x),$ $\delta_1 > (m+2)(1+\beta) - 1, \ \tilde{\mu}(x), \ \tilde{\varphi}_2(x) \in C[0,a], \ \varphi_1(x) = (a-x)^{\delta_2} \tilde{\varphi}_1(x), \ \delta_2 > 1/2, \ \tilde{\varphi}_1(x) \in C[0,a].$

4) На отрезке вырождения $y = 0, 0 \le x \le a$ имеет место условие сопряжения

$$\lim_{y \to 0} (-y)^{\beta_0} \frac{\partial u}{\partial y} = \lim_{y \to +0} y^{\beta_0} \frac{\partial u}{\partial y}, \quad 0 < x < a, \tag{3.1.5}$$

причём эти пределы при $x \to 0$, $x \to a$ могут иметь особенности порядка меньше $1-2\beta$, где $\beta = (m+2\beta_0)/2(m+2) \in (0,1/2)$.

§3.2. Единственность решения задачи БС.

Решение видоизмененной задачи Коши с начальными данными

$$\tau(x) = u(x,0), \ 0 \le x \le a; \quad v(x) = \lim_{y \to -0} (-y)^{\beta_0} \frac{\partial u}{\partial y}, \ 0 < x < a,$$

для уравнения (3.1.1) в области D_a^- задаётся формулой Дарбу [40, с.34]

$$u(x,y) = \gamma_1 \int_0^a \tau \left[x + \frac{2(2t-a)}{a(m+2)} (-y)^{\frac{m+2}{2}} \right] t^{\beta-1} (a-t)^{\beta-1} dt +$$

$$+ \gamma_2 (-y)^{1-\beta_0} \int_0^a v \left[x + \frac{2(2t-a)}{a(m+2)} (-y)^{\frac{m+2}{2}} \right] t^{-\beta} (a-t)^{-\beta} dt,$$

$$\gamma_1 = \frac{a^{1-2\beta} \Gamma(2\beta)}{\Gamma^2(\beta)}, \gamma_2 = -\frac{a^{2\beta-1} \Gamma(2-2\beta)}{(1-\beta_0)\Gamma^2(1-\beta)}.$$
(3.2.1)

где

В силу (3.2.1) из краевого условия (3.1.4) получим

$$v(x) = \gamma D_{0,x}^{1-2\beta} \tau(x) + \psi_1(x), \quad 0 < x < a \quad , \tag{3.2.2}$$

где

$$\gamma = \frac{2\Gamma(2\beta)\Gamma(1-\beta)}{\Gamma(\beta)\Gamma(1-2\beta)} \left(\frac{m+2}{4}\right)^{2\beta}, \ \psi_1(x) = -\gamma(\Gamma(\beta)/\Gamma(2\beta))x^{\beta}D_{0,x}^{1-\beta}\psi(x/2), D_{0,x}^{l} - \frac{2\Gamma(2\beta)\Gamma(1-\beta)}{\Gamma(\beta)\Gamma(1-\beta)} \left(\frac{m+2}{4}\right)^{2\beta}, \ \psi_1(x) = -\gamma(\Gamma(\beta)/\Gamma(2\beta))x^{\beta}D_{0,x}^{1-\beta}\psi(x/2), D_{0,x}^{l} - \frac{2\Gamma(2\beta)\Gamma(1-\beta)}{\Gamma(\beta)\Gamma(1-\beta)} \left(\frac{m+2}{4}\right)^{2\beta}, \ \psi_1(x) = -\gamma(\Gamma(\beta)/\Gamma(2\beta))x^{\beta}D_{0,x}^{1-\beta}\psi(x/2), D_{0,x}^{l} - \frac{2\Gamma(2\beta)\Gamma(1-\beta)}{\Gamma(\beta)\Gamma(1-\beta)} \left(\frac{m+2}{4}\right)^{2\beta}, \ \psi_1(x) = -\gamma(\Gamma(\beta)/\Gamma(2\beta))x^{\beta}D_{0,x}^{1-\beta}\psi(x/2), D_{0,x}^{l} - \frac{2\Gamma(2\beta)\Gamma(1-\beta)}{\Gamma(2\beta)} \left(\frac{m+2}{4}\right)^{2\beta}$$

оператор дробного дифференцирования в смысле Лиувилля [41, с. 18].

Соотношение (3.2.2) является первым функциональным соотношением между неизвестными функциями $\tau(x)$ и $\nu(x)$, привнесённым на интервал (0,a) оси y=0 из области D_a^- .

Для задачи БС аналогом принципа экстремума А.В.Бицадзе [9, с. 301] является.

Теорема 3.1. Решение u(x, y) задачи EC при выполнении условий

$$\varphi_2(x) \equiv 0, \ \psi(x) \equiv 0,$$

$$0 < \mu(x) < 1,$$
 (3.2.3)

своего наибольшего положительного значения (HПЗ) или наименьшего

отрицательного значения (HO3) в замкнутой области \bar{D}_a^+ может принимать только в точках кривой σ_a .

Доказательство. Пусть функция u(x, y) удовлетворяет условиям теоремы 3.1 В силу принципа Хопфа [9, с. 25] решение u(x, y) уравнения (3.1.1) своего положительного максимума во внутренних точках области D_a^+ не достигает.

Пусть решение u(x,y) своего НПЗ достигает во внутренней точке $M_0(x_0,0)$ интервала OA оси y=0, т.е. $\max_{(x,y)\in \bar{D}^+_a}u(x,y)=u(x_0,0)=\tau(x_0)>0$.

Учитывая, что значение производной дробного порядка $D_{0,x}^{1-2\beta}\tau(x)$ в точке положительного максимума функции $\tau(x)$ строго положительна, из равенства (3.2.2) (с $\psi_1(x) \equiv 0$) имеем

$$v(x_0) > 0. (3.2.4)$$

В силу аналога принципа Заремба - Жиро в этой точке $v(x_0) < 0$ [40, с. 74], что в силу условию сопряжения (3.1.5) противоречить неравенству (3.2.4), следовательно, функция u(x,y) своего НПЗ не достигает на OA. В силу (3.2.3), где $0 < \mu(x) < 1$ из соответствующего однородного условия (3.1.3) (с $\varphi_2(x) \equiv 0$), заключаем, что искомая функция u(x,y) своего НПЗ так же не достигает и на отрезке OB оси x = 0, 0 < y < b.

Из условия (3.1.3) (с $\varphi_2(x) \equiv 0$) при x = 0 имеем $\tau(0) = 0$.

Таким образом, решение u(x, y) удовлетворяющим условиям теоремы 3.1 своего НПЗ достигает в точках кривой σ_a .

Аналогично, как и выше также можно показать, что решение u(x,y) удовлетворяющая условиям теоремы 3.1 своего НОЗ так же достигает в точках кривой σ_a . Теоремы 3.1 доказана. Из теоремы 3.1 вытекает.

Следствие. Задача БС при выполнении условия (3.2.3) может иметь не более одного решения.

В самом деле, в силу теоремы 3.1 решение однородной задачи БС в области \bar{D}_a^+ своего НПЗ и НОЗ достигает в точках кривой σ_a , а в этих точках в силу соответствующего однородного условия (3.1.2)

(с $\varphi_1(x) \equiv 0$) имеем $u(x,y)\big|_{\sigma_a} = 0$, тогда $u(x,y) \equiv 0$ всюду в замкнутой области \bar{D}_a^+ , следовательно, и во всей смешанной области D_a .

§ 3.3 Существование решения задачи БС.

Теорема 3.2. Задача БС при выполнении условия (3.2.3) однозначно разрешима.

Доказательство. Пусть $G_{01}(\xi,\eta;x,y)-$ функция Грина видоизмененной

задачи N для уравнения (3.1.1) в области D_0^* , ограниченной отрезком [-a,a]

оси x и нормальной кривой σ_a . Тогда

$$G(\xi, \eta; x, y) = G_{01}(\xi, \eta; x, y) - G_{01}(\xi, \eta; -x, y), \tag{3.3.1}$$

есть функция Грина задачи N для уравнения (3.1.1) в области $D_a^+\bigcap(x>0)$.

Функция Грина $G_{01}(\xi,\eta;x,y)$ записывается в явном виде [41, с. 71]

$$G_{01}(\xi, \eta; x, y) = q_1(\xi, \eta; x, y) - \left(\frac{a}{R}\right)^{2\beta} q_1(\xi, \eta; \tilde{x}, \tilde{y}), \tag{3.3.2}$$

где

$$R^2 = x^2 + \frac{4y^{m+2}}{(m+2)^2}, \quad \tilde{x} = \frac{a^2}{R^2}x, \quad \tilde{y}^{(m+2)/2} = \frac{a^2}{R^2}y^{(m+2)/2},$$

 $q_1(\xi,\eta;x,y) = k_1(r_1^2)^{-\beta} F(\beta,\beta,2\beta;1-\sigma)$ – фундаментальное решение уравнения (3.1.1) в полуплоскости y>0, здесь

$$k_{\!\scriptscriptstyle 1} \! = \! \frac{1}{4\pi} \! \left(\frac{4}{m+2} \right)^{\!\!^{2\beta}} \! \frac{\Gamma^2(\beta)}{\Gamma(2\beta)}, \ \sigma \! = \! \frac{r^2}{r_{\!\scriptscriptstyle 1}^2}, \ F(\ldots) \! -$$
 гипергеометрическая функция Гаусса,

3.3.1. Сведение задачи БС к сингулярному интегральному уравнению.

Решение видоизмененной задачи N с граничными условиями $u(x,y)|_{\sigma_a} = \varphi_1(x), 0 \le x \le a; u(0,y) = \varphi(y), 0 \le y \le b; v(x) = \lim_{y \to +0} y^{\beta_0} \frac{\partial u}{\partial y}, \ 0 < x < a$ для уравнения (3.1.1) в области $D_a^+ \bigcap \{x > 0\}$ имеет вид [41, с. 149]

$$u(x,y) = -\int_{0}^{a} v(t)G(t,0;x,y)dt - \int_{0}^{b} t^{m} \varphi(t)G_{\xi}(0,t;x,y)dt - \int_{0}^{a} \varphi_{1}(\xi) \left[\frac{d\eta}{d\xi} \frac{\partial}{\partial \xi} G(\xi,\eta;x,y) - \frac{\partial}{\partial \eta} G(\xi,\eta;x,y) \right] d\xi,$$
(3.3.3)

где $(\xi,\eta) \in \sigma_a$.

В силу (3.3.3) согласно условием (3.1.3) имеем

$$u(x,y) = -\int_{0}^{a} v(t)G(t,0;x,y)dt - \int_{0}^{b} t^{m}(\mu(t)\tau(t) + \varphi_{2}(t))G_{\xi}(0,t;x,y)dt - \int_{0}^{a} \varphi_{1}(\xi) \left[\frac{d\eta}{d\xi} \frac{\partial}{\partial \xi} G(\xi,\eta;x,y) - \frac{\partial}{\partial \eta} G(\xi,\eta;x,y) \right] d\xi.$$

$$(3.3.4)$$

Из представления (3.3.4) при y=0 и в силу (3.3.1) и (3.3.2) получим

$$\tau(x) = -k_1 \int_0^a \left[|x - t|^{-2\beta} - (x + t)^{-2\beta} - \left(a - \frac{xt}{a} \right)^{-2\beta} + \left(a + \frac{xt}{a} \right)^{-2\beta} \right] v(t) dt +$$

$$+ R_0[\tau] + \Phi(x),$$
(3.3.5)

где

$$R_0[\tau] = -4\beta k_1 x \int_0^b \left\{ \left[x^2 + \frac{4t^{m+2}}{(m+2)^2} \right]^{-1-\beta} - \left[a^2 + \frac{4x^2t^{m+2}}{a^2(m+2)^2} \right]^{-1-\beta} \right\} t^m \mu(t)\tau(t)dt$$

-регулярный оператор,

$$\Phi(x) = -4\beta k_1 x \int_0^b t^m \varphi_2(t) \left\{ \left[x^2 + \frac{4t^{m+2}}{(m+2)^2} \right]^{-1-\beta} - \left[a^2 + \frac{4x^2 t^{m+2}}{a^2 (m+2)^2} \right]^{-1-\beta} \right\} dt + \\ + \beta k_1 (m+2) ((m+2)/2)^{1-2\beta} (a^2 - x^2) \int_0^a \varphi_1(t) (a^2 - t^2)^{\beta - 1/2} \times \\ \times \left[(a^2 + x^2 - 2xt)^{-1-\beta} - (a^2 + x^2 + 2xt)^{-1-\beta} \right] dt$$

-известная функция.

Соотношение (3.3.5) является вторым функциональным соотношением между $\tau(x)$ и $\nu(x)$ привнесёнными на интервал (0,a) оси y=0 из области D_a^+ .

Далее, подставляя значения для v(x) из (3.2.2) в (3.3.5) с учётом определения

$$D_{0,x}^{1-2\beta}\tau(x) = \frac{1}{\Gamma(2\beta)} \frac{d}{dx} \int_{0}^{x} \frac{\tau(t)dt}{(x-t)^{1-2\beta}}, \ x \in (0,a)$$

получим

$$\tau(x) = -\frac{k_1 \gamma}{\Gamma(2\beta)} \int_0^a \left[|x - t|^{-2\beta} - (x + t)^{-2\beta} - \left(a - \frac{xt}{a} \right)^{-2\beta} + \left(a + \frac{xt}{a} \right)^{-2\beta} \right] \times \frac{d}{dt} \int_0^t \frac{\tau(s)ds}{(t - s)^{1 - 2\beta}} dt + R_0[\tau] + \Phi_1(x),$$
(3.3.6)

где

$$\Phi_{1}(x) = \Phi(x) - \frac{k_{1}\gamma}{\Gamma(2\beta)} \int_{0}^{a} \left[|x-t|^{-2\beta} - (x+t)^{-2\beta} - \left(a - \frac{xt}{a}\right)^{-2\beta} + \left(a + \frac{xt}{a}\right)^{-2\beta} \right] \varphi_{1}(t) dt.$$

Соотношение (3.3.6) перепишем в виде

$$\tau(x) = -\frac{k_1 \gamma}{\Gamma(2\beta)} \left[\int_0^a \frac{dt}{|x-t|^{2\beta}} \frac{d}{dt} \int_0^t \frac{\tau(s)ds}{(t-s)^{1-2\beta}} - \int_0^a \frac{dt}{(x+t)^{2\beta}} \frac{d}{dt} \int_0^t \frac{\tau(s)ds}{(t-s)^{1-2\beta}} - \int_0^a \frac{a^{2\beta}dt}{(a^2-xt)^{2\beta}} \frac{d}{dt} \int_0^t \frac{\tau(s)ds}{(t-s)^{1-2\beta}} + \int_0^a \frac{a^{2\beta}dt}{(a^2+xt)^{2\beta}} \frac{d}{dt} \int_0^t \frac{\tau(s)ds}{(t-s)^{1-2\beta}} \right] +$$

$$+R_0[\tau] + \Phi_1(x) = -\frac{k_1 \gamma}{\Gamma(2\beta)} \left[I_1(x) - I_2(x) - I_3(x) + I_4(x) \right] + R_0[\tau] + \Phi_1(x).$$
(3.3.7)

Имеют место равенства

$$I_{1}(x) = \int_{0}^{a} \frac{dt}{|x-t|^{2\beta}} \frac{d}{dt} \int_{0}^{t} \frac{\tau(s)ds}{(t-s)^{1-2\beta}} = \int_{0}^{x} \frac{dt}{(x-t)^{2\beta}} \frac{d}{dt} \int_{0}^{t} \frac{\tau(s)ds}{(t-s)^{1-2\beta}} + \int_{x}^{a} \frac{dt}{(t-x)^{2\beta}} \frac{d}{dt} \int_{0}^{t} \frac{\tau(s)ds}{(t-s)^{1-2\beta}} = \pi t g(\beta \pi) \tau(x) + \int_{0}^{a} \left(\frac{a-x}{a-t}\right)^{1-2\beta} \frac{\tau(t)dt}{t-x},$$

$$I_{2}(x) = \int_{0}^{a} \frac{dt}{(x+t)^{2\beta}} \frac{d}{dt} \int_{0}^{t} \frac{\tau(s)ds}{(t-s)^{1-2\beta}} = \int_{0}^{a} \left(\frac{a+x}{a-t}\right)^{1-2\beta} \frac{\tau(t)dt}{t+x},$$

$$I_{3}(x) = \int_{0}^{a} \frac{a^{2\beta}dt}{(a^{2}-xt)^{2\beta}} \frac{d}{dt} \int_{0}^{t} \frac{\tau(s)ds}{(t-s)^{1-2\beta}} = \int_{0}^{a} \left(\frac{a-x}{a-t}\right)^{1-2\beta} \frac{a\tau(t)dt}{a^{2}-xt},$$

$$I_{4}(x) = \int_{0}^{a} \frac{a^{2\beta}dt}{(a^{2}+xt)^{2\beta}} \frac{d}{dt} \int_{0}^{t} \frac{\tau(s)ds}{(t-s)^{1-2\beta}} = \int_{0}^{a} \left(\frac{a+x}{a-t}\right)^{1-2\beta} \frac{a\tau(t)dt}{a^{2}+xt}.$$

Докажем равенство для $I_2(x)$ из (3.3.8). Здесь выполнив, операцию интегрирования по частям, имеем

$$I_2(x) = \frac{1}{(a+x)^{2\beta}} \int_0^a \frac{\tau(s)ds}{(a-s)^{1-2\beta}} + 2\beta \int_0^a \frac{dt}{(x+t)^{1+2\beta}} \int_0^t \frac{\tau(s)ds}{(t-s)^{1-2\beta}}.$$

Теперь во втором интеграле поменяв порядок интегрирования, получим

$$I_2(x) = \frac{1}{(a+x)^{2\beta}} \int_0^a \frac{\tau(s)ds}{(a-s)^{1-2\beta}} + 2\beta \int_0^a \tau(s)ds \int_s^a \frac{dt}{(x+t)^{1+2\beta}(t-s)^{1-2\beta}}.$$

Здесь в внутреннем интеграле выполнив замену переменного интегрирования $t = s + (a - s)\sigma$ имеем

$$I_{2}(x) = \frac{1}{(a+x)^{2\beta}} \int_{0}^{a} \frac{\tau(s)ds}{(a-s)^{1-2\beta}} + 2\beta \int_{0}^{a} \frac{(a-s)^{2\beta}\tau(s)ds}{(x+s)^{1+2\beta}} \int_{0}^{1} \sigma^{2\beta-1} \left(1 - \frac{-(a-s)}{x+s}\sigma\right)^{-1-2\beta} d\sigma.$$

Здесь для внутреннего интеграла второго слагаемого используя

интегральное представление гипергеометрической функции Гаусса: F(a,b,c;x) [41, с. 8] и свойства $F(a,b,b;x) = (1-x)^{-a}$, получим, что

$$I_2(x) = \frac{1}{(a+x)^{2\beta}} \int_0^a \frac{\tau(s)ds}{(a-s)^{1-2\beta}} + \int_0^a \left(\frac{a-s}{a+x}\right)^{2\beta} \frac{\tau(s)ds}{x+s} = \int_0^a \left(\frac{a+x}{a-s}\right)^{1-2\beta} \frac{\tau(s)ds}{x+s}.$$

Теперь докажем четвёртое равенство для $I_4(x)$ в (3.3.8). В $I_4(x)$ выполнив операцию интегрирования по частям имеем

$$I_4(x) = \frac{1}{(a+x)^{2\beta}} \int_0^a \frac{\tau(s)ds}{(a-s)^{1-2\beta}} + \frac{2\beta x}{a} \int_0^a \left(\frac{a}{a^2+xt}\right)^{1+2\beta} dt \int_0^t \frac{\tau(s)ds}{(t-s)^{1-2\beta}}.$$

Здесь во втором интеграле поменяем порядок интегрирования, далее в внутреннем интеграле выполнив замену переменного интегрирования $t = s + (a - s)\sigma$ получим, что

$$I_4(x) = \frac{1}{(a+x)^{2\beta}} \int_0^a \frac{\tau(s)ds}{(a-s)^{1-2\beta}} + \frac{2\beta x}{a} \int_0^a \left(\frac{a}{a^2 + xs}\right)^{1+2\beta} (a-s)^{2\beta} \tau(s)ds \int_0^1 \sigma^{2\beta-1} \left(1 - \frac{-x(a-s)}{a^2 + xs}\sigma\right)^{-1-2\beta} d\sigma,$$

далее как и выше, используя интегральное представление гипергеометрической функции Гаусса: F(a,b,c;x) [41, c. 8] и свойства $F(a,b,b;x) = (1-x)^{-a}$, будем иметь

$$I_4(x) = \frac{1}{(a+x)^{2\beta}} \int_0^a \frac{\tau(s)ds}{(a-s)^{1-2\beta}} + \int_0^a \left(\frac{a-s}{a+x}\right)^{2\beta} \frac{x\tau(s)ds}{a^2+xs} = \int_0^a \left(\frac{a+x}{a-s}\right)^{1-2\beta} \frac{a\tau(s)ds}{a^2+xs}.$$

Доказательства равенств $I_1(x)$ и $I_3(x)$ проводиться аналогичным методом как и в [58].

Теперь выражения для $I_1(x), I_2(x), I_3(x), I_4(x)$ из (3.3.8) с учётом равенства $k_1 \gamma / \Gamma(2\beta) = \cos(\beta\pi) / \pi$ подставляя в (3.3.7) получим следующие сингулярное интегральное уравнения относительно неизвестной функции $\tau(x)$

$$\tau(x) + \lambda \int_{0}^{a} \left[\left(\frac{a - x}{a - t} \right)^{1-2\beta} \left(\frac{1}{t - x} - \frac{a}{a^{2} - xt} \right) - \left(\frac{a + x}{a - t} \right)^{1-2\beta} \left(\frac{1}{t + x} - \frac{a}{a^{2} + xt} \right) \right] \tau(t) dt = R_{1}[\tau] + F(x), \ x \in (0, a),$$

$$\Gamma \text{Де} \quad \lambda = \frac{\cos(\beta \pi)}{\pi (1 + \sin(\beta \pi))}, \ R_{1}[\tau] = \frac{R_{0}[\tau]}{1 + \sin(\beta \pi)}, \ F(x) = \frac{\Phi_{1}(x)}{1 + \sin(\beta \pi)}.$$

Здесь $R_i[\tau]$ – регулярный оператор.

Теперь в соотношение (3.3.9) выделив интегралы с сингулярной особенностью, преобразуем его к виду

$$\tau(x) + \lambda \int_{0}^{a} \left(\frac{a-x}{a-t}\right)^{1-2\beta} \left(\frac{1}{t-x} - \frac{a}{a^{2}-xt}\right) \tau(t) dt =$$

$$= \lambda \int_{0}^{a} \frac{\tau(t) dt}{t+x} + R_{2}[\tau] + F(x), \quad x \in (0,a),$$
(3.3.10)

где

$$R_{2}[\tau] = R_{1}[\tau] + \lambda \int_{0}^{a} \left[\left(\frac{a+x}{a-t} \right)^{1-2\beta} - 1 \right] \frac{\tau(t)dt}{t+x} - \lambda \int_{0}^{a} \left(\frac{a+x}{a-t} \right)^{1-2\beta} \frac{a\tau(t)dt}{a^{2} + xt}$$

-регулярный оператор.

Первый интегральный оператор правой части уравнение (3.3.10) не является регулярным, так как подынтегральное выражение при x = 0, t = 0 имеет изолированную особенность первого порядка, и поэтому это слагаемое в (3.3.10) выделено отдельно.

Таким образом, задача БС эквивалентным образом сведена к решению сингулярного интегрального уравнение (3.3.10).

3.3.2. Регуляризация сингулярного интегрального уравнения (3.3.10).

Для решения уравнения (3.3.10) применим метод Карлемана-Векуа [26]. Правую часть уравнения (3.3.10) временно будем считать известной функцией, и перепишем его в виде

$$\tau(x) + \lambda \int_{0}^{a} \left(\frac{a-x}{a-t}\right)^{1-2\beta} \left(\frac{1}{t-x} - \frac{a}{a^2 + xt}\right) \tau(t) dt = g_0(x), \quad (3.3.11)$$

где

$$g_0(x) = \lambda \int_0^a \frac{\tau(t)dt}{t+x} + R_2[\tau] + F(x).$$
 (3.3.12)

В обозначениях $(a-x)^{2\beta-1}\tau(x) = \rho(x)$, $(a-x)^{2\beta-1}g_0(x) = g(x)$ уравнение (3.3.12) запишем в виде

$$\rho(x) + \lambda \int_{0}^{a} \left(\frac{1}{t - x} - \frac{a}{a^{2} - xt} \right) \rho(t) dt = g(x).$$
 (3.3.13)

Решение уравнения (3.3.13) будем искать в классе функций Гёльдера H,

которая ограничена при x=0, и может обращаться в бесконечность порядка ниже $1-2\beta$ при x=a т.е. в классе h(a) [41, c.43].

Пусть z – произвольная точка комплексной плоскости \square . Следуя идея Карлемана, положим

$$\Phi(z) = \frac{1}{2\pi i} \int_{0}^{a} \left(\frac{1}{t - z} - \frac{a}{a^{2} - zt} \right) \rho(t) dt.$$
 (3.3.14)

Очевидно, $\Phi(z)$ голоморфна на всей плоскости z с разрезом вдоль отрезка

[0,a] и луча $[a,\infty)$ вещественной оси Ox. Отметим ещё, что $\Phi(z) \to 0$,

 $Rez \to \infty$. Формулы Сохоцкого- Племеля для (3.3.14), при 0 < x < aимеют вид

$$\Phi^{+}(x) - \Phi^{-}(x) = \rho(x), \qquad (3.3.15)$$

$$\Phi^{+}(x) + \Phi^{-}(x) = \frac{1}{\pi i} \int_{0}^{a} \left(\frac{1}{t - x} - \frac{a}{a^{2} - xt} \right) \rho(t) dt, \qquad (3.3.16)$$

где $\Phi^+(x)$ и $\Phi^-(x)$ – предельные значения функции, $\Phi(z)$, когда zдействительной оси, соответственно, из стремится к точке Oxверхней или из нижней полуплоскости.

В силу (3.3.15) и (3.3.16) уравнение (3.3.13) имеет вид

$$(1 + \lambda \pi i)\Phi^{+}(x) - (1 - \lambda \pi i)\Phi^{-}(x) = g(x), \quad 0 < x < a.$$
 (3.3.17)

Преобразования

$$W = a^2 / z (3.3.18)$$

переводит верхнюю полуплоскость в нижнюю и наоборот, при этом промежуток (0,a) переходят, в промежуток (a,∞) .

Нетрудно проверить, что $\Phi(a^2/z) = (z/a)\Phi(z)$.

В силу (3.3.18) из (3.3.14) для граничных значения $\Phi(z)$ не трудно получить следующие соотношения

$$\Phi^{+}(a^2/x) = (x/a)\Phi^{-}(x), \quad \Phi^{-}(a^2/x) = (x/a)\Phi^{+}(x). \quad (3.3.19)$$

В силу (3.3.19) из (3.3.17) имеем

$$(1 - \lambda \pi i)\Phi^{+}(x) - (1 + \lambda \pi i)\Phi^{-}(x) = -(a/x)g(a^{2}/x), \quad a < x < \infty.$$
 (3.3.20)

Так как $\lambda = \cos(\beta \pi) / \pi (1 + \sin(\beta \pi)),$ To легко вычислить, что $1 + \lambda \pi i = e^{i\alpha\pi} / \cos(\alpha\pi), \ 1 - \lambda \pi i = e^{-i\alpha\pi} / \cos(\alpha\pi), \$ ГДе $\alpha = (1 - 2\beta) / 4.$

Введём функции

$$G(x) = \begin{cases} \frac{1 - i\pi\lambda}{1 + i\pi\lambda} = e^{-2i\pi\alpha} & \text{при} \quad 0 < x < a, \\ \frac{1 + i\pi\lambda}{1 - i\pi\lambda} = e^{2i\pi\alpha} & \text{при} \quad a < x < \infty, \\ 1 & \text{при} \quad x \notin (0, a) \bigcup (a, \infty), \end{cases}$$

$$(3.3.21)$$

$$h(x) = \begin{cases} e^{-i\pi\alpha} \cos(\alpha\pi)g(x) & \text{при} \quad 0 < x < a, \\ -e^{i\pi\alpha} \cos(\alpha\pi)(a/x)g(a^2/x) & \text{при} \quad a < x < \infty, \\ 0 & \text{при} \quad x \notin (0, a) \bigcup (a, \infty). \end{cases}$$

$$(3.3.22)$$

$$h(x) = \begin{cases} e^{-i\pi\alpha} \cos(\alpha \pi) g(x) & \text{при } 0 < x < a, \\ -e^{i\pi\alpha} \cos(\alpha \pi) (a / x) g(a^2 / x) & \text{при } a < x < \infty, \\ 0 & \text{при } x \notin (0, a) \bigcup (a, \infty). \end{cases}$$
(3.3.22)

При этих обозначениях уравнения (3.3.17) и (3.3.20) можно объединить в одно уравнение

$$\Phi^{+}(x) - G(x)\Phi^{-}(x) = h(x), -\infty < x < \infty.$$
 (3.3.23)

Таким образом, решение интегрального уравнения (3.3.13) приведено к следующей задаче теории функции комплексного переменного: найти исчезающую на бесконечности функцию $\Phi(z)$, голоморфную как в верхней, так и в нижней полуплоскостях, удовлетворяющую граничному условию (3.3.23).

Сначала решим следующую однородную задачу: найти ограниченную на бесконечности функцию X(z), голоморфную как в верхней полуплоскости, так и в нижней полуплоскости, а на действительной оси Ox удовлетворяющую условию

$$X^{+}(x) = G(x)X^{-}(x), x \in (-\infty, \infty)$$
 (3.3.24)

или, что тоже $\ln X^+(x) - \ln X^-(x) = \ln G(x)$

Одно из частных решений уравнения (3.3.24) имеет вид

$$X(z) = \exp\left\{\frac{1}{2\pi i} \int_{0}^{a} \left(\frac{1}{t-z} - \frac{z}{a^{2} - zt}\right) \ln G(t) dt\right\}.$$
 (3.3.25)

Из (3.3.25) легко усмотреть, что $X(a^2/z) = X(z)$. Из (3.3.25), нетрудно вычислить, что

$$X^{+}(x) = \frac{(ax)^{\alpha}}{(a-x)^{2\alpha}} e^{-\alpha\pi i}, \quad X^{-}(x) = \frac{(ax)^{\alpha}}{(a-x)^{2\alpha}} e^{\alpha\pi i}, \quad 0 < x < a.$$
 (3.3.26)

Теперь неоднородное граничное условие (3.3.23) в силу (3.3.24) можно переписать в виде [13, с.33]

$$\frac{\Phi^{+}(x)}{X^{+}(x)} - \frac{\Phi^{-}(x)}{X^{-}(x)} = \frac{h(x)}{X^{+}(x)}, \ x \in (-\infty, \infty).$$
 (3.3.27)

Одно из частных решений задачи о скачке (3.3.27) имеет вид [13, с.30]

$$\frac{\Phi(z)}{X(z)} = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{h(t)}{X^{+}(t)} \frac{dt}{t-z} = \frac{1}{2\pi i} \left[\int_{0}^{a} \frac{h(t)}{X^{+}(t)} \frac{dt}{t-z} + \int_{a}^{\infty} \frac{h(t)}{X^{+}(t)} \frac{dt}{t-z} \right], \quad (3.3.28)$$

в втором интеграле (3.3.28) сделав замену $t=a^2/s$, с учётом (3.3.21), (3.3.22) и (3.3.24) имеем

$$\frac{\Phi(z)}{X(z)} = \frac{e^{-i\pi\alpha}\cos(\alpha\pi)}{2\pi i} \int_{0}^{a} \frac{g(t)}{X^{+}(t)} \left(\frac{1}{t-z} - \frac{a}{a^{2}-zt}\right) dt.$$

Теперь найдём общее решение граничной задачи (3.3.27), для этого рассмотрим однородное уравнение

$$\frac{\Phi^{+}(x)}{X^{+}(x)} - \frac{\Phi^{-}(x)}{X^{-}(x)} = 0.$$

Это уравнение показывает, что $\chi(z) = \Phi(z)/X(z)$ голоморфна на всей комплексной плоскости, кроме, может быть, точек z = 0, z = a, которые могут быть только полюсами. Следовательно, в силу обобщенной теоремы Лиувилля об аналитическом продолжении [13, c.29], имеем что

$$\chi(z) = \frac{c_1}{z} + \frac{c_2}{z - a}.$$

Таким образом, общее решение уравнение (3.3.23) с учетом (3.3.21) и (3.3.22) имеет вид

$$\Phi(z) = \frac{e^{-i\pi\alpha}\cos(\alpha\pi)}{2\pi i}X(z)\int_{0}^{a} \frac{g(t)}{X^{+}(t)} \left(\frac{1}{t-z} - \frac{a}{a^{2}-zt}\right) dt + X(z)\left(\frac{c_{1}}{z} + \frac{c_{2}}{z-a}\right).$$
(3.3.29)

Здесь с учётом того, что решение $\rho(x)$ в точке x=a имеет особенность порядка ниже $1-2\beta$, а при x=0 ограничено, находим, что $c_1=0,\ c_2=0,\$ следовательно, в силу формул Сохоцкого - Племеля (3.3.15) получим

$$\rho(x) = \frac{1 + \sin(\beta \pi)}{2} g(x) - \frac{\cos(\beta \pi)}{2\pi} \int_{0}^{a} \left(\frac{a - t}{a - x}\right)^{2\alpha} \left(\frac{x}{t}\right)^{\alpha} \left(\frac{1}{t - x} - \frac{a}{a^{2} - xt}\right) g(t) dt.$$
 (3.3.30)

Далее, в (3.3.30) введя обозначения, $(x-a)^{2\beta-1}\tau(x) = \rho(x)$, $(x-a)^{2\beta-1}g_0(x) = g(x)$ окончательно получим, что

$$\tau(x) = \frac{1 + \sin(\beta \pi)}{2} g_0(x) - \frac{\cos(\beta \pi)}{2\pi} \int_0^a \left(\frac{a - x}{a - t}\right)^{2\alpha} \left(\frac{x}{t}\right)^{\alpha} \left(\frac{1}{t - x} - \frac{a}{a^2 - xt}\right) g_0(t) dt. \quad (3.3.31)$$

Подставляя выражение для $g_0(x)$ из (3.3.12) в (3.3.31), решение (3.3.31) запишется в виде

$$\tau(x) = \frac{1 + \sin(\beta \pi)}{2} \int_{0}^{a} \frac{\tau(t)dt}{t + x} - \frac{\cos(\beta \pi)}{2\pi} \int_{0}^{a} \tau(s)ds \int_{0}^{a} \left(\frac{a - x}{a - t}\right)^{2\alpha} \left(\frac{x}{t}\right)^{\alpha} \times \left(\frac{1}{t - x} - \frac{a}{a^{2} - xt}\right) \frac{dt}{t + s} + R_{3}[\tau] + F_{1}(x),$$
(3.3.32)

где

$$R_{3}[\tau] = \frac{1 + \sin(\beta \pi)}{2} R_{2}[\tau] - \frac{\cos(\beta \pi)}{2\pi} \int_{0}^{a} \left(\frac{a - x}{a - t}\right)^{2\alpha} \left(\frac{x}{t}\right)^{\alpha} \left(\frac{1}{t - x} - \frac{a}{a^{2} - xt}\right) R_{2}[\tau] dt$$

-регулярный оператор

$$F_1(x) = \frac{1 + \sin(\beta \pi)}{2} F(x) - \frac{\cos(\beta \pi)}{2\pi} \int_0^a \left(\frac{a - x}{a - t}\right)^{2\alpha} \left(\frac{x}{t}\right)^{\alpha} \left(\frac{1}{t - x} - \frac{a}{a^2 - xt}\right) F(t) dt.$$

-известная функция.

Разложив рациональный множитель под интегральные выражения для внутреннего интеграла в (3.3.32), получим

$$\frac{1}{t+s} \left(\frac{1}{t-x} - \frac{a}{a^2 - xt} \right) = \frac{1}{x+s} \left(\frac{1}{t-x} - \frac{1}{t+s} \right) - \frac{1}{a^2 + xs} \left(\frac{x}{a^2 - xt} + \frac{1}{t+s} \right).$$

Вычислим интеграл

$$A(x,s) = \int_{0}^{a} \left(\frac{a-x}{a-t}\right)^{2\alpha} \left(\frac{x}{t}\right)^{\alpha} \left(\frac{1}{t-x} - \frac{a}{a^{2}-xt}\right) \frac{dt}{t+s} =$$

$$= \frac{(a-x)^{2\alpha} x^{\alpha}}{x+s} (J_{1}(x) - J_{2}(s)) - \frac{(a-x)^{2\alpha} x^{\alpha}}{a^{2}+xs} (J_{3}(x) + J_{2}(s)),$$
(3.3.33)

где

$$J_1(x) = \int_0^a \frac{t^{-\alpha}dt}{(a-t)^{2\alpha}(t-x)},$$
 (3.3.34)

$$J_2(s) = \int_0^a \frac{t^{-\alpha}dt}{(a-t)^{2\alpha}(t+s)},$$
 (3.3.35)

$$J_3(x) = \int_0^a \frac{xt^{-\alpha}dt}{(a-t)^{2\alpha}(a^2 - xt)}.$$
 (3.3.36)

Вычислим интегралы $J_1(x)$, $J_2(s)$ и $J_3(x)$.

Перепишем интеграл (3.3.34) в виде

$$J_{1}(x) = \lim_{\delta \to 0} \left\{ -\int_{0}^{x} \frac{t^{-\alpha} (a-t)^{-2\alpha} dt}{(x-t)^{1-\delta}} + \int_{x}^{a} \frac{t^{-\alpha} (a-t)^{-2\alpha} dt}{(t-x)^{1-\delta}} \right\}.$$

Здесь в первом и втором интеграле, соответственно, сделав замену переменного интегрирования по формулам $t = x\sigma$ и $t = a - (a - x)\sigma$ имеем

$$J_1(x) = \lim_{\delta \to 0} \left\{ -\frac{x^{\delta - \alpha}}{a^{2\alpha}} \int_0^1 \sigma^{-\alpha} (1 - \sigma)^{\delta - 1} \left(1 - \frac{x}{a} \sigma \right)^{-2\alpha} d\sigma + \frac{(a - x)^{\delta - 2\alpha}}{a^{\alpha}} \int_0^1 \sigma^{-2\alpha} (1 - \sigma)^{\delta - 1} \left(1 - \frac{a - x}{a} \sigma \right)^{-\alpha} d\sigma \right\}.$$

Затем, используя формулы интегрального представления для гипергеометрической функции Гаусса [41, с.9] и формулу автотрансформации [41, с.10], получим

$$J_{1}(x) = \lim_{\delta \to 0} \left\{ -\frac{x^{\delta - \alpha} (a - x)^{\delta - 2\alpha}}{a^{\delta}} \frac{\Gamma(1 - \alpha)\Gamma(\delta)}{\Gamma(\delta + 1 - \alpha)} F\left(\delta, \delta + 1 - 3\alpha, \delta + 1 - \alpha; \frac{x}{a}\right) + \frac{x^{\delta - \alpha} (a - x)^{\delta - 2\alpha}}{a^{\delta}} \frac{\Gamma(1 - 2\alpha)\Gamma(\delta)}{\Gamma(\delta + 1 - 2\alpha)} F\left(\delta, \delta + 1 - 3\alpha, \delta + 1 - 2\alpha; \frac{a - x}{a}\right) \right\}. \tag{3.3.37}$$

К гипергеометрической функцию первого слагаемого в (3.3.37) применяя формула Больца [41, с.11], имеем

$$J_{1}(x) = \lim_{\delta \to 0} \left\{ \frac{x^{\delta - \alpha} (a - x)^{\delta - 2\alpha}}{a^{\delta}} F\left(\delta, \delta + 1 - 3\alpha, \delta + 1 - 2\alpha; \frac{a - x}{a}\right) \left(\frac{\Gamma(1 - 2\alpha)\Gamma(\delta)}{\Gamma(\delta + 1 - 2\alpha)} - \frac{\Gamma(2\alpha - \delta)\Gamma(\delta)}{\Gamma(2\alpha)}\right) - \frac{x^{\delta - \alpha}}{a^{2\alpha}} \frac{\Gamma(1 - \alpha)\Gamma(\delta - 2\alpha)}{\Gamma(\delta + 1 - 3\alpha)} F\left(1 - \alpha, 2\alpha, 2\alpha + 1 - \delta; \frac{a - x}{a}\right) \right\}.$$

$$(3.3.38)$$

С учётом равенства $\Gamma(2\alpha)\Gamma(1-2\alpha) = \pi / \sin(2\pi\alpha)$, легко вычислить, что

$$\lim_{\delta \to 0} \left(\frac{\Gamma(1-2\alpha)}{\Gamma(\delta+1-2\alpha)} - \frac{\Gamma(2\alpha-\delta)}{\Gamma(2\alpha)} \right) \Gamma(\delta) = -\pi ctg(2\alpha\pi).$$

Теперь, в (3.3.38) переходя к пределу при $\delta \to 0$, имеем

$$J_1(x) = -\frac{\pi ctg(2\alpha\pi)}{x^{\alpha}(a-x)^{2\alpha}} - \frac{a^{-2\alpha}}{x^{\alpha}} \frac{\Gamma(1-\alpha)\Gamma(-2\alpha)}{\Gamma(1-3\alpha)} F\left(1-\alpha, 2\alpha, 1+2\alpha; \frac{a-x}{a}\right). \tag{3.3.39}$$

Далее вычислим интегралы (3.3.35) и (3.3.36). В интегралах (3.3.35) и (3.3.36) сделав замену переменного интегрирования $t = a\sigma$, затем, используя формулы интегрального представления гипергеометрической функции и формулу автотрансформации, соответственно, получим

$$J_{2}(s) = \frac{a^{1-3\alpha}}{s^{1-2\alpha}(a+s)^{2\alpha}} \frac{\Gamma(1-\alpha)\Gamma(1-2\alpha)}{\Gamma(2-3\alpha)} F\left(1-2\alpha, 1-3\alpha, 2-3\alpha; -\frac{a}{s}\right), \quad (3.3.40)$$

$$J_3(x) = \frac{a^{-1-\alpha}x}{(a-x)^{2\alpha}} \frac{\Gamma(1-\alpha)\Gamma(1-2\alpha)}{\Gamma(2-3\alpha)} F\left(1-2\alpha, 1-3\alpha, 2-3\alpha; \frac{x}{a}\right), \tag{3.3.41}$$

Применяя к гипергеометрической функцию в (3.3.40) формулу $F(a,b,c;z) = (1-z)^{-b} F(c-a,b,c;z/(z-1))$, преобразуем его к виду

$$J_{2}(s) = \frac{a^{1-3\alpha}}{s^{\alpha}(a+s)^{1-\alpha}} \frac{\Gamma(1-\alpha)\Gamma(1-2\alpha)}{\Gamma(2-3\alpha)} F\left(1-\alpha, 1-3\alpha, 2-3\alpha; \frac{a}{a+s}\right).$$
 (3.3.42)

Теперь выражения для $J_1(x)$, $J_2(s)$ и $J_3(x)$ из (3.3.39), (3.3.40) и (3.3.41)

подставляя в (3.3.33) имеем

$$A(x,s) = -\frac{\pi ctg(2\alpha\pi)}{x+s} - \left(\frac{a-x}{a}\right)^{2\alpha} \frac{1}{x+s} \frac{\Gamma(1-\alpha)\Gamma(-2\alpha)}{\Gamma(1-3\alpha)} F\left(1-\alpha,2\alpha,1+2\alpha;\frac{a-x}{a}\right) - \left(\frac{a}{a+s}\right)^{1-\alpha} \left(\frac{a-x}{a}\right)^{2\alpha} \left(\frac{x}{s}\right)^{\alpha} \frac{1}{x+s} \frac{\Gamma(1-\alpha)\Gamma(1-2\alpha)}{\Gamma(2-3\alpha)} F\left(1-\alpha,1-3\alpha,2-3\alpha;\frac{a}{a+s}\right) - \frac{\Gamma(1-\alpha)\Gamma(1-2\alpha)}{\Gamma(2-3\alpha)} \left[\left(\frac{x}{a}\right)^{1+\alpha} F\left(1-2\alpha,1-3\alpha,2-3\alpha;\frac{x}{a}\right) + \left(\frac{a}{a+s}\right)^{1-\alpha} \left(\frac{a-x}{a}\right)^{2\alpha} \left(\frac{x}{s}\right)^{\alpha} F\left(1-\alpha,1-3\alpha,2-3\alpha;\frac{a}{a+s}\right) \right] \frac{1}{a^2+xs}.$$

$$(3.3.43)$$

Далее, подставляя выражение (3.3.43) в (3.3.32) и выделив интегралы с особенностями первого порядка в изолированной особой точке с учётом тождеств

$$\cos(\beta\pi) = \sin(2\alpha\pi); \frac{\lambda\cos(\beta\pi)}{2\sin(\alpha\pi)} = \frac{\sin(\alpha\pi)}{\pi}; \frac{1+\sin(\beta\pi)}{2} + \frac{\cos(\beta\pi)ctg(2\alpha\pi)}{2} - \frac{\cos(\beta\pi)\sin(3\alpha\pi)}{2\sin(\alpha\pi)\sin(2\alpha\pi)} = 0,$$

будем иметь

$$\tau(x) = \frac{\sin(\alpha \pi)}{\pi} \int_{0}^{a} \left(\frac{x}{s}\right)^{\alpha} \frac{\tau(s)ds}{x+s} + R_{4}[\tau] + F_{1}(x), \tag{3.3.44}$$

где

$$\begin{split} R_4[\tau] &= R_3[\tau] - \frac{\lambda \cos(\beta \pi)}{2\pi} \int_0^a \left\{ \frac{1}{x+s} \left[\left(\frac{a-x}{a} \right)^{2\alpha} \frac{\Gamma(1-\alpha)\Gamma(-2\alpha)}{\Gamma(1-3\alpha)} F\left(1-\alpha, 2\alpha, 1+2\alpha; \frac{a-x}{a} \right) + \right. \\ &+ \frac{\pi \sin(3\alpha \pi)}{\sin(\alpha \pi) \sin(2\alpha \pi)} \right] - \frac{1}{x+s} \left[\left(\frac{a-x}{a} \right)^{2\alpha} \left(\frac{a}{a+s} \right)^{1-\alpha} \frac{\Gamma(1-\alpha)\Gamma(1-2\alpha)}{\Gamma(2-3\alpha)} F\left(1-\alpha, 1-3\alpha, 2-3\alpha; \frac{a}{a+s} \right) - \right. \\ &- \frac{\pi}{\sin(\alpha \pi)} \right] - \frac{\Gamma(1-\alpha)\Gamma(1-2\alpha)}{\Gamma(2-3\alpha)} \left[\left(\frac{x}{a} \right)^{1+\alpha} F\left(1-2\alpha, 1-3\alpha, 2-3\alpha; \frac{x}{a} \right) + \right. \\ &+ \left(\frac{a-x}{a} \right)^{2\alpha} \left(\frac{a}{a+s} \right)^{1-\alpha} \left(\frac{x}{s} \right)^{\alpha} F\left(1-\alpha, 1-3\alpha, 2-3\alpha; \frac{a}{a+s} \right) \right] \frac{1}{a^2+xs} \right\} \tau(s) ds \end{split}$$

-регулярный оператор.

После замены переменных $x = ae^{-y}$, $s = ae^{-t}$ и введя обозначения $\rho(y) = e^{(\alpha - 1/2)y} \tau(ae^{-y})$ уравнение (3.3.44) примет вид

$$\rho(y) = \frac{\sin(\alpha \pi)}{\pi} \int_{0}^{\infty} \frac{\rho(t)dt}{e^{(y-t)/2} + e^{-(y-t)/2}} + R_{5}[\rho] + F_{2}(y), \qquad (3.3.45)$$

где $R_5[\rho] = e^{(\alpha-1/2)y} R_4[\tau]$ – регулярный оператор, $F_2(y) = e^{(\alpha-1/2)y} F_1(ae^{-y})$ – известная функция.

Введя обозначение

$$K(x) = \frac{1}{e^{x/2} + e^{-x/2}}$$

перепишем уравнение (3.3.45) в виде

$$\rho(y) = \frac{\sin(\alpha \pi)}{\pi} \int_{0}^{\infty} K(y - t) \rho(t) dt + R_{5}[\rho] + F_{2}(y), \quad y \in (0, \infty).$$
 (3.3.46)

Функция K(x) непрерывна и имеет экспоненциальный порядок убывания на бесконечности, в силу $\alpha \in (0,1/4)$ значение $\alpha - 1/2$ отрицательно, следовательно, оператор $R_5[\rho]$ и функция $F_2(y)$ также имеют показательный порядок убывания на бесконечности.

Уравнение (3.3.46) является интегральным уравнением Винера - Хопфа и с помощью преобразования Фурье оно приводится к краевой задаче Римана и тем самым решается в квадратурах.

Теоремы Фредгольма для интегральных уравнений типа свёртки справедливы лишь в одном частном случае, когда индекс χ этих уравнений равен нулю.

Индексом уравнения (3.3.46) будет индекс выражения

$$1 - \frac{\sin(\alpha \pi)}{\pi} K^{\wedge}(x) \tag{3.3.47}$$

с обратным знаком, где

$$K^{\hat{}}(x) = \int_{-\infty}^{\infty} \frac{e^{ixt}dt}{e^{t/2} + e^{-t/2}}.$$
 (3.3.48)

С помощью теории вычетов вычислив интеграл Фурье (3.3.48) [40, с.198] получим

$$K^{\wedge}(x) = \frac{\pi}{ch\pi x}$$
.

Теперь вычислим индекс выражения (3.3.47). Так как

$$Re\frac{\sin(\alpha\pi)}{\pi}\frac{\pi}{ch(\pi x)} = \frac{\sin(\alpha\pi)}{ch(\pi x)} \le \sin(\alpha\pi) < 1, \quad ImK^{\wedge}(x) = 0,$$

тогда

$$Re\left(1 - \frac{\sin(\alpha\pi)}{\pi}K^{\wedge}(x)\right) > 0. \tag{3.3.49}$$

Следовательно, индекс уравнение (3.3.46) т.е. изменение аргумента функции $1 - \frac{\sin(\alpha \pi)}{\pi} K^{\wedge}(x)$ на действительной оси, выраженной в полных оборотах с обратным знаком [13, c.28,c.55] с учётом неравенства (3.3.49) равен

$$\chi = -Ind\left(1 - \frac{\sin(\alpha\pi)}{\pi}K^{\wedge}(x)\right) = -\frac{1}{2\pi}\left[arg\left(1 - \frac{\sin(\alpha\pi)}{\pi}K^{\wedge}(x)\right)\right]_{-\infty}^{\infty} = -\frac{1}{2\pi}\left[arctg\frac{Im\left(1 - \frac{\sin(\alpha\pi)}{\pi}K^{\wedge}(x)\right)}{Re\left(1 - \frac{\sin(\alpha\pi)}{\pi}K^{\wedge}(x)\right)}\right]_{-\infty}^{\infty} = 0$$

Следовательно, уравнение (3.3.45) однозначно редуцируется к интегральному уравнению Фредгольма второго рода, однозначная разрешимость которого следует из единственности решения задачи БС. Теорема 3. 2 доказана.

ЛИТЕРАТУРА

- 1. Алимов Ш.А. Об одной спектральной задаче типа задачи Бицадзе-Самарского. // Докл. АН СССР. 1986. Т. 287. № 6. С. 1289-1290.
- 2. Alimov Sh. O., Ashurov R. R. Matematik analiz. Toshkent: MUMTOZ SO'Z., 2018.Jild 3. 320 bet.
- 3. Алимов Ш.А. Об одной спектральной задаче типа задачи Бицадзе-Самарского. // Докл. АН СССР. 1986. Т. 287. № 6. С. 1289-1290.
- 4. Бабенко К.И. К теории уравнений смешанного типа. Докторская диссертация (библиотека математического института им. В. А. Стеклова РАН),1952.
- 5. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Гипергеометрическая функция. Функция Лежандра. М.: Наука.1965. Т.1. -296с.
- 6. Бицадзе А.В. Уравнения смешанного типа. М.: Изд-во АН СССР. 1959,-164с.
- 7. Бицадзе А.В. К теории одного класса уравнений смешанного типа. В сб. «Некоторые проблемы математика и механики». Л.: Наука, 1970, с. 112-119.
- 8. Бицадзе А.В. К теории уравнений смешанного типа, порядок которых вырождается вдоль линии изменения типа. В сб. «Механика сплошной среды и родственные проблемы анализа». М.: Наука, 1972, с. 47-52.
- 9. Бицадзе А.В. Некоторые классы уравнений в частных производных. М.: Наука, 1981, -448с.
- 10. Бицадзе А.В., Самарский А.А. О некоторых простейших обобщениях линейных эллиптических краевых задач //ДАН СССР. 1969. 185. № 4. с. 739-740.
- 11. Волкодавов В.Ф. О единственности решения задаче TN для одного уравнения смешанного типа // Волжский математический сборник. Куйбышев. Изд-во Куйбышевского гос. пединститута, 1970, вып.1, с. 55-65
- 12. Гахов Ф.Д. Краевые задачи. М.: Наука, 1977, -640 с.
- 13. Гахов Ф.Д., Черский Ю.Н. Уравнения типа свертки. М.: Наука, 1978,-269с.
- 14. Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М.: Наука 1971, -1108с

- 15. Девингталь Ю.В. О существовании и единственности решения одной задачи Ф.И.Франкля //Изв.вузов. Математика.1958. №2(3). с.39-51.
- 16. Джураев Т.Д. Краевые задаче для уравнений смешанного и смешанно составного типов. Ташкент. Фан, 1979, -238с.
- 17. Джураев Т.Д., Абдиназаров С. Неклассическая краевая задача для уравнения высокого порядка с кратными характеристиками / / ДАН СССР. 1991, т. 317, No1, с.19-22.
- 18. Жегалов В.И. Краевая задача для уравнения смешанного типа с граничными условиями на переходной линии. //Учен.зып. Казанск.ун-та.122(3). с.3-16(1962).
- 19. Ильин В.А., Моисеев Е.И. Нелокальная краевая задача для оператора Штурма Лиувилля в дифференциальной и разностной трактовках / ДАН СССР. 1986, т. 291, No 3, c. 534-539.
- 20. Каратопраклиев Г. Об одном обобщении задачи Трикоми / / ДАН СССР. 1964, т.158, No 2, c. 271-274.
- 21. Кальменов Т.Ш. О спектре задачи Трикоми для уравнения Лаврентьева-Бицадзе // Дифференц. уравнения.-Минск, 1977, Т.13, № 8. -С. 1718-1725.
- 22. Мирсабуров М. Краевая задача для одного класса уравнений смешенного типа с условием Бицадзе- Самарского на параллельных характеристиках / / Дифференц. уравнения. 2001, т.37, № 9. с. 1281-1284.
- 23. Мирсабуров М. Задача с недостающим условием смешения для уравнения Геллерстедта с сингулярным коэффициентом. //Известия вузов. Математика. 2018, №5, с.52-63.
- 24. Мирсабуров М. Задача с аналогами условия Франкля на характеристике и на отрезке вырождения для уравнения смешанного типа с сингулярным коэффициентом. //Дифференц. уравнения. 2017. т.53. №6. с.778-788.
- 25. Мирсабурова Гулбахор М. Объединенная задача Трикоми и задача со смешением для уравнения Геллерстедта. //Известия вузов. Математика. 2012. №9, с.32-46.
- 26. Михлин С.Г. Об интегральном уравнении F.TRICOMI//ДАН СССР. 1948. Т.59, No 6. C. 1053-1056.
- 27. Моисеев Е.И. Уравнения смешанного типа со спектральным параметром. М.: Изд-во МГУ 1988. -149 с.
- 28. Мусхелишвили Н.И. Сингулярные интегральные уравнения. М.: Наука, 1968, 512 с.

- 29. Нахушев А.М. О некоторых краевых задачах для гиперболических уравнений и уравнений смешанного типа//Дифференц. уравнения. 1969, Т 5, № 1. С. 44-59.
- 30. Нахушев А.М. Обратные задачи для вырождающихся уравнений и интегральные уравнения. Вольтерра третьего рода//Дифференц. уравнения 1974. Т. 10 № 1. С. 100-111.
- 31. Нахушев А. М. К теории краевых задач для вырождающихся уравнений. Сообщ. АН ГССР, 1975, Т.77, №3. С.545-548.
- 32. Полосин А.А. Об однозначной разрешимость задачи Трикоми для специальной области. //Дифференц.уравнения.1996.т.32, №3, с.394-401.
- 33. Пономорев С.М. К задаче на собственные значения для уравнения Лаврентьева Бицадзе//Докл. АН СССР. 1977. Т. 233. № 1. С. 39-40.
- 34. Пулькин С.П. Задача Трикоми для обобщенного уравнения Лаврентьева-Бицадзе//Докл. АН СССР.1958. Т.118. № 1. С. 38-41.
- 35. Сабитов К.Б., Исянгильдин А.Х. Задачи Трикоми с нелокальным условием сопряжения для обобщенного уравнения Трикоми//Дифференц. уравнения. 1996. Т. 32. № 3. С.409-412.
- 36. Сабитов К. Б. К теории уравнений смешанного типа. М.: Физматлит, 2014.304с.
- 37. Садыбеков М.А. Краевые задачи в областях с отходом от характеристики для уравнений гиперболического и смешанного типов второго порядка. Докторская диссертация (библиотека института математики им. В. И. Романовского АН РУз).
- 38. Салахитдинов М.С. Уравнения смешанно-составного типа. Ташкент: Фан.1974,-156с.
- 39. Салахитдинов М.С., Уринов А.К. Краевые задачи для уравнений смешанного типа со спектральным параметром. Ташкент. Фан, 1997, –165с.
- 40. Салахитдинов М.С., Мирсабуров М. Нелокальные задачи для уравнений смешанного типа с сингулярными коэффициентами. Ташкент 2005. "Universitet "Yangi yo`l poligraf servis" 224 с.
- 41. Смирнов М.М. Уравнения смешанного типа. М.: Высшая школа. 1985,-304с.
- 42. Солдатов А.П. Одномерные сингулярные оператора и краевые задачи теории функции М.: Наука, 1991г.
- 43. Уринов А.К. Нелокальные краевые задачи для уравнений смешанного типа в односвязной и двусвязной областях. Докторская

- диссертация (библиотека института математики им. В.И.Романовского.АН РУз). 1993.
- 44. Трикоми Ф. О линейных уравнениях в частных производных второго порядка смешанного типа М.-Л. Гос.тех. издат 1947, -192 с.
- 45. Фихтенгольц Г.М. Основы математического анализа. Т.1 М.:Наука. 1968,-440с.
- 46. Фихтенгольц Г.М. Основы математического анализа. Т.2. М.: Наука. 1968,-464с.
- 47. Франкль Ф.И. Обтекание профилей газом с местной сверхзвуковой зоной, оканчивающейся прямим скачком уплотнения $//\Pi MM \ 20(2)$, с.196-202(1956).
- 48. Хайрулин Р. С. Задача Коши для уравнения Эйлера Пуассона Дарбу. Казань: Казан. ун-т, 2014. -276с.
- 49. Darboux G. Theoriegenereie des surfaces. -Paris, 1894, t.3.
- 50. Blum E.K. The solutions of the Euler-Darboux equation for negative values of the parameter / / Duke. Math.j. 1954, V. 21, p. 257-269.
- 51. Callerstedt S. Sur laresution de certaines equations integales. Arkuv for matematik, astro№ni och fysik.1922, Bd 16, No 26.
- 52. Gellerstedt S. Sur un probleme aux limites pour ane equation lineaire aux derives partielles du second ordre de type mixte. Thesis, Uppsala, 1935.
- 53. Gellerstedt S. Quelgues problem mixted pour I'equation $y^m z_{xx} + z_{yy} = 0$. //Arkiv for matematik, astronmiochfysik. 1938, vand 26A. No 3, p.1-32.
- 54. Hardy G., Littlwood J. Some properties of fractional integrals. // Math. Zeitschr.1928, v.27№4, p.565-606.
- 55. Holmgren E. Sur un problem aux limites pour I'equation $y^m z_{xx} + z_{yy} = 0$. // Arkiv for matematik, astronmiochfysik. 1927, vand 19B. No 14.
- 56. Hopf E. Elementary Betrachtungen uber die Losungen partiellen Differentialgleichungen rweiter Ordnung vom elliptischen Tyrus //Situngsb. Preuss. Akad. wis., 1927, Bd 19., 147-152.
- 57. Мирсабуров М., Бегалиев О, Хуррамов Н.Х. Об одном обобщении задачи Трикоми //Дифференц. уравнения. 2019,том 55 №8, С.1117-1126.
- Мирсабуров М., Хуррамов Н. Задача с условием Бицадзе -58. характеристиках одного семейства Самарского на И общими сопряжения на вырождения для уравнения условиями линии коэффициентом Геллерстедта сингулярным // Дифференц. c уравнения. 2020, том 56 №8, С.1073-1094.

- 59. Хуррамов Н.Х. Об одном обобщении задачи Трикоми для одного класса уравнений смешанного типа // Бюллетень Института математики 2020, №3, С.183-198.
- 60. Хуррамов Н.Х. Задача с условием Бицадзе Самарского на параллельных характеристиках одного семейства и общими условиями сопряжения на линии вырождения для одного класса уравнений смешанного типа //Бюллетень Института математики 2020, №4, стр.128-146
- 61. Khurramov N.Kh. On a problem with the Tricomi condition on part of the boundary characteristic and the Gellerstedt condition on an internal characteristic parallel to it // Uzbek Mathematical Journal, 2020. №3, pp.98-106.
- 62. Мирсабуров М., Хуррамов Н.Х. Задача с локальными и нелокальными условиями на границе области эллиптичности для уравнения смешанного типа // Известия вузов. Математика, 2021, №12, с.80-93.
- 63. Мирсабуров М., Хуррамов Н. Х. Задача для уравнения смешанного типа с условием Бицадзе- Самарского на характеристиках одного семейства // IV Международная научная конференция "Актуальные проблемы прикладьной математике" г.Нальчик-Эльбрус Кабардино-Балгарская республика, Россия; 22-26 мая 2018 г. С. 187.
- 64. Мирсабуров М., Хуррамов Н.Х. Задача для уравнения смешанного типа с условием Бицадзе-Самарского на характеристиках одного семейства // Международная научная конференция. "Дифференциальные уравнения и смежные проблемы" г. Стерлитамак . 25-29 июня 2018 г. Том 1. С. 116-118 .
- 65. Мирсабуров М., Хуррамов Н.Х. О единственности решение задачи с условием Бицадзе-Самарского на характеристиках одного семейства и общими условиями сопряжения на линии вырождения для уравнения Геллерстедта с сингулярным коэффициентом // Современная математика и ее приложения: материалы Международной научно- практической конференции (Грозный 21-23 октября 2018г.). Махачкала: АЛЕФ, ЧГПУ, 2018. 144 с. С. 22-23.
- 66. Мирсабуров М., Хуррамов Н.Х. Задачи с условием Бицадзе-Самарского на характеристиках одного семейства и общими условиями сопряжения на линии вырождения для уравнения Геллерстедта с сингулярным коэффициентом // V Международной научной конференции. Нелокальные краевые задачи и родственные

- проблемы математической биологии, информатики и физики. Нальчик, Кабардино- Балкарская Республика. 4-7 декабря 2018 г. С. 147
- 67. Мирсабуров М., Хуррамов Н.Х. Об одном интегральном уравнение Трикоми с некарлемановским сдвигом в несингулярной части ядра // Международная научная конференция «теоретические и прикладные вопросы математики, механики и информатики». 12-14 июня 2019 года, г. Караганда, Казахстан. С. 93-94.
- 68. Мирсабуров М., Хуррамов Н.Х. Задача для уравнения смешанного типа с условием Бицадзе Самарского на характеристиках одного семейства // Республика илмий амалий анжуман. Фарғона давлат университети ЎзР ФА В. И. Романовский номидаги математика институти 22-23 май. 2019 йил. 10-11 бетлар.
- 69. Мирсабуров М., Хуррамов Н.Х. О существовании решения задачи с условием Бицадзе- Самарского на характеристиках одного семейства и общими условиями сопряжения на линии вырождения для уравнения Геллерстедта с сингулярным коэффициентом // « Неклассические уравнения математической физики и их приложения» Узбекско- Российская научная конференция Ташкент. Узбекистан ТЕЗИСЫ ДОКЛАДОВ 24-26 октября 2019 г. С.121-123.
- 70. Мирсабуров М., Хуррамов Н.Х. О единственности решения задачи с условиями Трикоми на части граничной характеристики и Геллерстедта на параллельной ей внутренной характеристике // "Сингулярные интегральные уравнения и дифференциальные уравнения с сингулярными коэффициентами." // Материалы межд. конф. Таджикистан. Душанбе 30-31 январ 2020 г. С. 185-187.
- 71. Хуррамов Н. Х. О существования решения задачи с условиями Трикоми на части граничной характеристики и Геллерстедта на параллельной ей внутренной характеристике // "Современные проблемы дифференциальных уравнений и смежных разделов математики" Тезисы докладов межд. научной конф. Фергана 12-13 март 2020 г. С. 180-184.
- 72. Хуррамов Н. Х. Об одном обобщении задачи Трикоми // Сборник тезисов научной онлайн конференции «Современные проблемы математики» 20 мая 2020 года. Нукус. 180-183 стр.
- 73. Хуррамов Н. Х., Аманов Б.Б. О единственности решения задачи с локальными и нелокальными условиями на граничной характеристике для одного класса уравнений смешанного типа // «Математиканинг замонавий масалалари: муаммолар ва ечимлар»

- мавзусидаги республика микёсидаги илмий онлайн конференция материаллари тўплами 21-23 октябр 2020 йил. Термиз ш. 198-200 бетлар.
- Мирсабуров М., Хуррамов Н. Х. Задача с условием Бицадзе -74. характеристиках одного семейства обшими условиями сопряжения вырождения на линии уравнения Геллерстедта c сингулярным коэффициентом "Современные методы математической физики и их приложения" республиканской научной конференции с участием зарубежных ученых. 17-18 ноябре 2020 г. г. Ташкент. 250-254 стр.
- 75. Мирсабуров М., Хуррамов Н. Х. Задача с локальными и нелокальными условиями на границе области эллиптичности для уравнения смешанного типа // "Современные методы математической физики и их приложения" республиканской научной конференции с участием зарубежных ученых. 17-18 ноябре 2020 г. г. Ташкент. 392-397 стр.
- 76. Хуррамов Н. Х., Хидиров Б., Алланазаров О. Задача с условием Геллерстедта на характеристиках одного семейства для уравнения смешанного типа с сингулярным коэффициентом // «Тезисы докладов республиканской научной конференции с участием зарубежных ученых дифференциальные уравнения и родственные проблемы анализа» Бухара, Узбекистан, 04–05 ноябрь, 2021 г. 239-242 стр.
- 77. Мирсабуров М., Хуррамов Н. Х. Задача с локальными и нелокальными условиями на границе области эллиптичности для уравнения смешанного типа // "Современные методы математической физики и их приложения" республиканской научной конференции с участием зарубежных ученых. 17-18 ноябрь 2020 г. г. Ташкент. 392-397 стр.
- 78. Мирсабуров М., Хуррамов Н. Х., Аманов Б. Задача с условием Геллерстедта на характеристиках для одной специальной области // VI Международная конференция «Нелокальные краевые задачи и родственные проблемы математической биологии, информатики и физики». Нальчик, 5-9 декабря 2021 год. 141 с.
- Мирсабуров М., Хуррамов Н. Х., Хасанова Д. О единственности 79. Геллерстедта условием на \mathbf{c} параллельных характеристиках общими условиями сопряжения И на уравнения смешанного типа вырождения ДЛЯ сингулярным «Современные коэффициентом проблемы // теории математического анализа» материалы международной конференции,

посвященной 80-летию со дня рождения доктора физикоматематических наук, профессора Дододжона Исмоилова (Душанбе, 29-30 апреля 2022 г.) 142-145 с.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3
ГЛАВА І. ЗАДАЧА С УСЛОВИЕМ ГЕЛЛЕРСТЕДТА НА	
ХАРАКТЕРИСТИКАХ ОДНОГО СЕМЕЙСТВА ДЛЯ	
УРАВНЕНИЯ СМЕШАННОГО ТИПА С СИНГУЛЯРНЫМ	
КОЭФФИЦИЕНТОМ	8
$\S 1.1.$ Постановка задачи $\Gamma_{\scriptscriptstyle 0}$	8
$\S 1.2.$ Единственность решения задачи $\Gamma_{\scriptscriptstyle 0}$	9
§1.3. Существование решения задачи Г ₀	12
1.3.1. Вывод системы сингулярных интегральных	
уравнений	15
1.3.2. Вывод функционального соотношения между	
неизвестными функциями $v_0(x)$ и $v_1(x)$	
1.3.3. Вывод интегрального уравнения Винера- Хопфа	
§1.4. Задачи с условиями Геллерстедта для	
уравнений смешанного типа для предельного значения	
параметра $\beta_0 = -m/2$	24
ГЛАВА ІІ. ЗАДАЧА С УСЛОВИЕМ БИЦАДЗЕ-	
САМАРСКОГО НА	
ПАРАЛЛЕЛЬНЫХ ХАРАКТЕРИСТИКАХ И ОБЩИМИ	
УСЛОВИЯМИ СОПРЯЖЕНИЯ НА ЛИНИИ ВЫРОЖДЕНИЯ	
для уравнения геллерстедта с сингулярным	
КОЭФФИЦИЕНТОМ	37
§2.1. Постановка задачи TN	37
82.2. Елинственность решения залачи TN	39

§2.3. Существование решения задачи TN	42
2.3.1. Регуляризация интегральных уравнений Трикоми с	
некарлемановским сдвигом в несингулярной части	
ядра	47
2.3.2. Выделение нефредгольмовых операторов ядра, которых	
имеют особенности первого порядка в	
изолированной особой точке	48
2.3.3. Вывод и исследование интегрального уравнения	
Винера-Хопфа	48
§2.4. Задача с условием Бицадзе - Самарского для уравнений	
Геллерстедта с сингулярным коэффициентом в случае когда	
параметр $\beta_0 = -m/2$	73
ГЛАВА III. ЗАДАЧА С ЛОКАЛЬНЫМИ И НЕЛОКАЛЬНЫМИ	
УСЛОВИЯМИ НА ГРАНИЦЕ ОБЛАСТИ ЭЛЛИПТИЧНОСТИ	
ДЛЯ УРАВНЕНИЯ СМЕШАННОГО ТИПА	73
§3.1. Постановка задачи БС	73
§3.1. Единственность решения задачи БС	73
§3.1. Существование решения задачи БС	73
3.3.1.Сведение задачи БС к сингулярному	
интегральному уравнению	
3.3.2. Регуляризация сингулярного интегрального уравнения	7.5
(3.3.10)	
ЛИТЕРАТУРА	88

Для заметок

Для заметок

 	 	

Н. Х. Хуррамов

ЛОКАЛЬНЫЕ И НЕЛОКАЛЬНЫЕ ЗАДАЧИ ДЛЯ УРАВНЕНИЯ СМЕШАННОГО ТИПА С СИНГУЛЯРНЫМ КОЭФФИЦИЕНТАМ

Редактор:

Технический редактор: А.Бўриев

Оператор-компьютерщик: 3. Низомиддинов

Корректор: Б.Ботиров

Подписано в печать 20.11.2022 г.Разрешено на печать 13.12.2022 г.Формат 60x84 $^{1}/_{16}$. Усл. печат.лист 6,25. Заказ № 169. Гарнитура Times New Roman. Отпечатано в офсетном режиме. 100 экз. 100 стр.

Издательство ИПЦ ТерГУ. Адрес: г.Термез, улица Баркамол авлод, 43. Отпечатано в типографии ИПЦ Термезского государственного университета.