Smart Control Algorithm for 2-DOF Helicopter

Glenn Janiak Kenneth Vonckx Advisor: Dr. Suruz Miah

Department of Electrical and Computer Engineering Bradley University 1501 W. Bradley Avenue Peoria, IL, 61625, USA

Thursday, November 29, 2018

- Introduction
- Background Study
 - Control Techniques
 - Modeling a 2-DOF Helicopter
 - Prior Work
- 3 Subsystem Level Functional Requirements
 - Block Diagram
- Preliminary Work
 - LQR Simulation
 - LQR via USB
 - LQR via Wireless
 - Demonstration
- Parts List
- 6 Future Directions

November 29, 2018

Introduction

- Helicopter are important for short-distance travel
 - air-sea rescue
 - fire fighting
 - traffic control
 - tourism
- Purpose of control system
 - resistance to turbulence
 - enable use of mobile device
- Which is better?
 - Fundamental (LQR)
 - Noise Filtering (LQG)
 - Machine Learning (ADP)

Introduction

Figure 1: General High-Level System Architecture

Introduction

- This project will:
 - use a pair of 2-DOF (2-degrees-of-freedom) testing platforms
 - implement control algorithms on embedded system
 - use mobile device for user control
 - encourage research
 - serve as an educational tool

- Introduction
- 2 Background Study
 - Control Techniques
 - Modeling a 2-DOF Helicopter
 - Prior Work
- 3 Subsystem Level Functional Requirements
 - Block Diagram
- Preliminary Work
 - LQR Simulation
 - LQR via USB
 - LQR via Wireless
 - Demonstration
- 6 Parts List
- 6 Future Directions

Control Techniques

Various control techniques have been proposed for 2-DOF helicopters such as:

- Sliding mode control [?]
- Fuzzy Logic control [?] [?] [?]
- Data-driven Adaptive Optimal Output-feedback control [?]
- Decentralized discrete-time neural control [?]

These control techniques employ advanced mathematics that are difficult to implement on embedded systems.

- Introduction
- Background Study
 - Control Techniques
 - Modeling a 2-DOF Helicopter
 - Prior Work
- Subsystem Level Functional Requirements
 - Block Diagram
- Preliminary Work
 - LQR Simulation
 - LQR via USB
 - LQR via Wireless
 - Demonstration
- Parts List
- 6 Future Directions

Modeling a 2-DOF Helicopter

Figure 2: Model of a 2-DOF Helicopter

Modeling a 2-DOF Helicopter

- Characterized by fixed base
 - Can change 2 of 3 possible orientations...
 - Pitch (θ)
 - Yaw (ψ)
 - Not Roll
 - and cannot change position
 - x direction
 - y direction
 - z direction

Modeling a 2-DOF Helicopter

- Motors are attached to the propellers to create thrust due to air resistance
 - Main changes pitch angle
 - Tail changes yaw angle
- Torque due to rotation also creates a force on opposite axes

Modeling a 2-DOF Helicopter

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \text{ where}$$
 (1)

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{K_{\text{sp}}}{J_p} & 0 & -\frac{D_p}{J_p} & 0 \\ 0 & 0 & 0 & -\frac{D_y}{J_v} \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{K_{\text{pp}}}{J_p} & \frac{K_{\text{py}}}{J_p} \\ \frac{K_{\text{yp}}}{J_v} & \frac{K_{\text{yy}}}{J_v} \end{bmatrix},$$

November 29, 2018

Modeling a 2-DOF Helicopter

- K_{sp} being the stiffness of the axes
- K_{pp} pitch motor thrust constant
- \bullet K_{py} thrust constant acting on the pitch angle from the yaw motor
- \bullet K_{yp} thrust constant acting on the yaw angle from the pitch motor
- K_{yy} yaw motor thrust constant
- J_p moment of inertia about pitch axis
- J_{ν} moment of inertia about yaw axis
- ullet D_p viscous damping of the pitch axis
- \bullet D_y viscous damping of the yaw axis

November 29, 2018

- Introduction
- Background Study
 - Control Techniques
 - Modeling a 2-DOF Helicopter
 - Prior Work
- 3 Subsystem Level Functional Requirements
 - Block Diagram
- Preliminary Work
 - LQR Simulation
 - LQR via USB
 - LQR via Wireless
 - Demonstration
- Parts List
- 6 Future Directions

Prior Work

- extensive modeling & simulations
- implementation of two motion control algorithms (LQR & ADP)
- one helicopter

- Introduction
- Background Study
 - Control Techniques
 - Modeling a 2-DOF Helicopter
 - Prior Work
- 3 Subsystem Level Functional Requirements
 - Block Diagram
- Preliminary Work
 - LQR Simulation
 - LQR via USB
 - LQR via Wireless
 - Demonstration
- 6 Parts List
- 6 Future Directions

Subsystem Level Functional Requirements

Block Diagram

Figure 4: Communication Model

November 29, 2018

Subsystem Level Functional Requirements

Block Diagram

Figure 5: Low Level Smart Control Diagram

- Introduction
- Background Study
 - Control Techniques
 - Modeling a 2-DOF Helicopter
 - Prior Work
- 3 Subsystem Level Functional Requirements
 - Block Diagram
- Preliminary Work
 - LQR Simulation
 - LQR via USB
 - LQR via Wireless
 - Demonstration
- 6 Parts List
- 6 Future Directions

Preliminary Work

LQR Simulation

Figure 6: LQR Simulation (a) Position and (b) Voltage w/ Constant Signal

Preliminary Work

LQR Simulation

Figure 7: LQR Simulation Error w/ Constant Signal

- Introduction
- Background Study
 - Control Techniques
 - Modeling a 2-DOF Helicopter
 - Prior Work
- 3 Subsystem Level Functional Requirements
 - Block Diagram
- 4 Preliminary Work
 - LQR Simulation
 - LQR via USB
 - LQR via Wireless
 - Demonstration
- Parts List
- 6 Future Directions

Preliminary Work

Figure 8: LQR Pitch Position (a) and Voltage (b) on PC with Square Wave Input

Preliminary Work

Figure 9: LQR Yaw Position (a) and Voltage (b) on PC with Square Wave Input

- Introduction
- Background Study
 - Control Techniques
 - Modeling a 2-DOF Helicopter
 - Prior Work
- Subsystem Level Functional Requirements
 - Block Diagram
- 4 Preliminary Work
 - LQR Simulation
 - LQR via USB
 - LQR via Wireless
 - Demonstration
- 6 Parts List
- 6 Future Directions

Preliminary Work

LQR via Wireless

Figure 10: Performance in following user's command (a) tracking pitch angle, and (b) pitch motor input voltage

Preliminary Work

LQR via Wireless

Figure 11: Performance in following user's command (a) tracking yaw angle, and (b) yaw motor input voltage.

- Introduction
- Background Study
 - Control Techniques
 - Modeling a 2-DOF Helicopter
 - Prior Work
- 3 Subsystem Level Functional Requirements
 - Block Diagram
- 4 Preliminary Work
 - LQR Simulation
 - LQR via USB
 - LQR via Wireless
 - Demonstration
- 6 Parts List
- 6 Future Directions

Demonstration

Parts List

- Hardware
 - Two Quanser Aeros
 - Q-flex2 Embedded Panel
 - Two Single Board Computers (Raspberry Pi 3 Model B)
 - Android Smart-phone or Tablet (Note that Apple devices could also be used, however modifications are needed)
- Software
 - MATLAB & Simulink
 - Raspberry Pi Support Package
 - Android Support Package
 - Quanser Real-Time Control (QUARC)

Deliverables

Schedule for Completion

Figure 12: Gantt chart for Fall 2018

Deliverables

Schedule for Completion

Figure 13: Gantt Chart for Spring 2019

Future Directions

- Two more motion control algorithms (LQG & ADP)
- Test plan
- Implmentation on 6-DOF Helicopter

Summary

- Embedded implementation of control algorithms
- Mobile interface

For Further Reading I

