$$R_{XY}(t_{1}, t_{2}) = E[X(t_{1})Y(t_{2})] = E\left[X(t_{1}) \int_{-\infty}^{\infty} h(\alpha)X(t_{2} - \alpha) d\alpha\right]$$

$$= E\left[\int_{-\infty}^{\infty} h(\alpha)X(t_{1})X(t_{2} - \alpha) d\alpha\right]$$

$$= \int_{-\infty}^{\infty} h(\alpha)E[X(t_{1})X(t_{2} - \alpha)] d\alpha$$

$$= \int_{-\infty}^{\infty} h(\alpha)R_{X}(t_{1}, t_{2} - \alpha) d\alpha$$

$$= \int_{-\infty}^{\infty} h(\alpha)R_{X}(t_{1} - t_{2} + \alpha) d\alpha \qquad \text{(since } X(t) \text{ is WSS)}.$$

We note that $R_{XY}(t_1, t_2)$ is only a function of $\tau = t_1 - t_2$, so we may write

$$egin{aligned} R_{XY}(au) &= \int_{-\infty}^{\infty} h(lpha) R_X(au + lpha) \; dlpha \ &= h(au) * R_X(- au) = h(- au) * R_X(au). \end{aligned}$$

Similarly, you can show that

$$R_Y(\tau) = h(\tau) * h(-\tau) * R_X(\tau).$$

This has been shown in the Solved Problems section. From the above results we conclude that X(t) and Y(t) are jointly WSS. The following theorem summarizes the results.

Theorem 10.2

Let X(t) be a WSS random process and Y(t) be given by

$$Y(t) = h(t) * X(t),$$

where h(t) is the impulse response of the system. Then X(t) and Y(t) are jointly WSS. Moreover,

1.
$$\mu_Y(t) = \mu_Y = \mu_X \int_{-\infty}^{\infty} h(\alpha) d\alpha$$
;

2.
$$R_{XY}(\tau) = h(-\tau) * R_X(\tau) = \int_{-\infty}^{\infty} h(-\alpha) R_X(t-\alpha) d\alpha;$$

3.
$$R_Y(\tau) = h(\tau) * h(-\tau) * R_X(\tau)$$
.

Frequency Domain Analysis:

Let's now rewrite the statement of <u>Theorem 10.2</u> in the frequency domain. Let H(f) be the Fourier transform of h(t),

$$H(f)=\mathcal{F}\{h(t)\}=\int_{-\infty}^{\infty}h(t)e^{-2j\pi ft}\;dt.$$

H(f) is called the **transfer function** of the system. We can rewrite

$$\mu_Y = \mu_X \int_{-\infty}^{\infty} h(lpha) \; dlpha$$

as

$$\mu_Y = \mu_X H(0)$$

Since h(t) is assumed to be a real signal, we have

$$\mathcal{F}\{h(-t)\} = H(-f) = H^*(f),$$

where * shows the complex conjugate. By taking the Fourier transform from both sides of $R_{XY}(\tau) = R_X(\tau) * h(-\tau)$, we conclude

$$S_{XY}(f)=S_X(f)H(-f)=S_X(f)H^*(f).$$

Finally, by taking the Fourier transform from both sides of $R_Y(\tau) = h(\tau) * h(-\tau) * R_X(\tau)$, we conclude

$$S_Y(f) = S_X(f)H^*(f)H(f)$$

= $S_X(f)|H(f)|^2$.

$$S_Y(f) = S_X(f) |H(f)|^2$$

Example 10.14

Let X(t) be a zero-mean WSS process with $R_X(\tau)=e^{-|\tau|}.$ X(t) is input to an LTI system with

$$|H(f)| = \left\{ egin{array}{ll} \sqrt{1 + 4 \pi^2 f^2} & |f| < 2 \ \ 0 & ext{otherwise} \end{array}
ight.$$

Let Y(t) be the output.

- a. Find $\mu_Y(t) = E[Y(t)]$.
- b. Find $R_Y(\tau)$.
- c. Find $E[Y(t)^2]$.

Solution

Note that since X(t) is WSS, X(t) and Y(t) are jointly WSS, and therefore Y(t) is WSS.

a. To find $\mu_Y(t)$, we can write

$$\mu_Y = \mu_X H(0)$$

= 0 \cdot 1 = 0.

b. To find $R_Y(\tau)$, we first find $S_Y(f)$.

$$S_Y(f) = S_X(f) |H(f)|^2.$$

From Fourier transform tables, we can see that

$$egin{aligned} S_X(f) &= \mathcal{F}\{e^{-| au|}\} \ &= rac{2}{1+(2\pi f)^2}. \end{aligned}$$

Then, we can find $S_Y(f)$ as

$$S_Y(f) = S_X(f) |H(f)|^2 \ = egin{cases} 2 & |f| < 2 \ 0 & ext{otherwise} \end{cases}$$

We can now find $R_Y(\tau)$ by taking the inverse Fourier transform of $S_Y(f)$.

$$R_Y(au) = 8\mathrm{sinc}(4 au),$$

where

$$\operatorname{sinc}(f) = rac{\sin(\pi f)}{\pi f}.$$

c. We have

$$E[Y(t)^2] = R_Y(0) = 8.$$