

成熟度

实验成熟度等级	1级	2级	3级	4级	5级
只构抵御故障的能力	无抵御故障的能力	一定的冗余性	冗余且可扩展	已使用可避免级联故 障的技术	已实现韧性架构
Ç验指标设计	无系统指标监控	实验结果只反映系统 状态指标	实验结果反映应用的健康状况指标	实验结果反映聚合的 业务指标	可在实验组和控制组之间 比较业务指标的差异
Ç验环境选择 	只敢在开发和测试环境 中运行实验	可在预生产环境中运行实验	未在生产环境中,用复制的生产流量来运行实验	在生产环境中运行实验	包括生产在内的任意环境都可以运行实验
实验自动化能力	全人工流程	利用工具进行半自动运行实验	自助式创建实验,自动运 行实验,但需要手动监控 和停止实验	自动结果分析,自动终止实验	全自动的设计、执行和终止实验
实验工具使用	无实验工具	采用实验工具	使用实验框架	实验框架和持续发布 工具集成	并有工具支持交互式的比对实验组和控制组
枚 障注入场景	只对实验对象注入一些 简单事件,如突发高 CPU高内存等等	可对实验对象进行一 些较复杂的故障注 入,如EC2实例终 止、可用区故障等等	对实验对象注入较高级的 事件,如网络延迟	对实验组引入如服务 级别的影响和组合式 的故障事件	可以注入如对系统的不同 使用模式、返回结果和状态的更改等类型的事件
不境恢复能力	无法恢复正常环境	可手动恢复环境	可半自动恢复环境	部分可自动恢复环境	韧性架构自动恢复
Ç 验结果整理	没有生成的实验结果, 需要人工整理判断	可通过实验工具的到 实验结果,需要人工 整理、分析和解读	可通过实验工具持续收集 实验结果,但需要人工分 析和解读	可通过实验工具持续 收集实验结果和报 告,并完成简单的故 障原因分析	实验结果可预测收入损 失、容量规划、区分出不 同服务实际的关键程度

成熟度可以反映出混沌工程实验的可行性、有效性和安全性。成熟度的级别也会因为混沌工程实验的投入程度而有差异。这里将成熟度等级分为1、

接纳指数

接纳指数通过对混沌工程实验覆盖的广	度和深度来描述对系统的信心。	暴露的脆弱点就越多,	对系统的信心也就越足。	类似成熟度等级,	对接纳指数
也定义了1、2、3、4级进行描述。					

接纳指数	描述
1级	公司重点项目不会进行混沌工程实验; 只覆盖了少量的系统; 公司内部基本上对混沌工程实验了解甚少; 极少数工程师尝试且偶尔进行混沌工程实验。
2级	混沌工程实验获得正式授权和批准; 由工程师兼职进行混沌工程实验; 公司内部有多个项目有兴趣参与混沌工程实验; 极少数重要系统会不定期进行混沌工程实验。
3级	成立了专门的混沌工程团队; 事件响应已经集成在混沌工程实验框架中以创建对应的回归实验; 大多数核心系统都会定期进行混沌工程实验; 偶尔以Game Day的形式,对实验中发现的故障进行复盘验证。
4级	公司所有核心系统都会经常进行混沌工程实验; 大多数非核心系统也都会经常进行混沌工程实验; 混沌工程实验是工程师日常工作的一部分; 所有系统默认都要参与混沌工程实验,不参与需要特殊说明。

收...

稳定性分析	定性分析	比较注入故障时的系统指标和稳态指标的差异
	定量分析	系统性能指标:P=E/E0,E 为实验组性能指标,E0为稳态时性能指标 系统恢复率:R=ER/E,ER为移除扰动后系统性能指标,E为 系统稳态性能指标
系统缺陷	各维度原因	对系统弱点进行分析 对故障应对过程中的不足进行分析 对系统的故障承受能力分析 对监控告警的有效性进行分析 对模块间的依赖关系进行分析
	参与人反应	参与前后调研问卷对比
	执行实验结果	从稳定性分析/系统缺陷体现,最好结合已有故障的影响,针对实验遇到问题作出 预估的业务侧影响。
商业价值	缺陷改善	已发现问题都修复 新开发程序都没有发现已知问题
	业务结果	长期观察系统运行情况,建立混沌工程与故障时长、频次、恢复速度的关联关系 主要依据是故障真的发生时,系统因为做过实验而逃过一劫
不可用时长,并可换算成 度量成效才有意义。		实验和测试覆盖 * 线上事故 * 的系统缺陷和监控告警改进点后,计算所能挽回的线上事故 是说到的"覆盖",发生在我们已经修复了混沌工程实验所发现的漏洞之后。只有在此 效:

入口服务	下游服务	应用进程	消息服务	数据缓存	数据存储	系统运维
负载均衡	超时重试	资源隔离	异步传递	热点隔离	读写分离	监控告警
流量调度	服务降级	异步调用	消息分级	热点散列	分库分表	日志跟踪
请求限流	调用熔断	热点防护	削峰填谷	主从备份	主从备份	健康检查
	强弱依赖		消息存储		一致性保障	灰度发布
	幂等处理					发布回滚
	最优调用					弹性伸缩
						容量规划
						服务治理
						异地多活

最小化爆炸半径

分类	原则		
演练时机	1、低峰期先于高峰期2、工作日先于节假日3、变更前先于变更时、变更后		
演练规模	用户粒度: 1、单用户先于多用户 2、测试用户先于真实用户 请求粒度: 1、单请求先于多请求 2、单模块复合请求先于多模块复合请求 组件粒度: 1、小比例先于全组件 系统粒度: 1、边缘系统先于核心系统 2、边缘可用区优于核心可用区 网络粒度: 1、子网小比例先于全子网 2、子网先于全网		
演练环境	非生产环境优于生产环境		
演练模式	1、 有剧本的演练先于无剧本随机演练 2、 通过程序固化故障注入方式		
稳态指标	突破稳态指标立即中止演练		

故障画像

Saas	Application	进程Hang 进程被杀 心跳异常 启动异常
		镜像构建失败 包错误或损坏 注册中心异常 进程内部方法调用异常
	Data	异步阻塞同步 依赖超时 依赖异常
	Data	业务线程池满 流控不合理 内存溢出
	Runtime	负载均衡失败 缓存热点 缓存限流 容器故障 Pod故障
	Middleware	数据库热点数据同步延迟数据主备延迟数据库宕机
Paas		数据库连接池满数据入库延迟缓存连接池满
		缓存宕机
	0/S	CPU抢占 内存抢占 内存错乱 上下文切换 句柄数耗尽
laas	虚拟机/物理机	服务器宕机/假死 断电 超卖 混部 服务器重启
	Storage	磁盘满、慢、坏 不可写/读
	Network	断网 网卡满 DNS故障 网络抖动、丢包、超时、重复、乱序

代码层次 字节码注入JVM类应用 ByteMonkey 可集成其他注入故障工具以及监控平台,定制故障场 运维层次 Chaostoolkit 景和监控观测指标 侧重容器故障 杀掉、停止容器,网络延迟、丢包 Pumba 支持pod、压力类、网络类、IO类、时钟、kernel、 ChaosMesh DNS等多种故障,具备场景编排能力 杀掉pod、容器,网络延迟、丢包 Litmus ChaosMonkey的k8s集群实现,随机删除集群pod 终止容器实例 ChaosMonkey 网络故障、网络分区 Blockade

核心注入故障能力

支持磁盘类、进程类、压力类、网络类、JVM类等多

支持pod、磁盘、网络、压力、JVM、数据库、消息队

列多种故障,不具备场景编排能力

工具名称

Chaosd

工具总结分类

侧重虚拟机故障

支持容器和虚拟机故障