Sharpness, Restart, Acceleration

Vincent Roulet, Alexandre d'Aspremont

OSL, Les Houches, April 13, 2017

Motivation

Goal :

minimize
$$f(x)$$
, $f: \mathbb{R}^n \to \mathbb{R}$ cvx

- Some algorithms use past information to build next iterate
 - Accelerated Gradient Method
 - Universal Fast Gradient Method
 - Quasi-Newton methods
 - **•** ..
- Idea: Refresh algorithms when past information is "no longer relevant"
- Doesn't make any sense for gradient descent with line search for example

How to characterize past information?

- ▶ Take an algorithm \mathcal{A} that outputs points $x = \mathcal{A}(x_0, \theta, t)$, where
 - x₀ is the initial point.
 - \triangleright θ are parameters of the algorithm
 - t is the number of iterations.
- Look at the convergence rate

$$f(x) - f^* \le \frac{cd(x_0, X^*)^q}{t^p}$$

where

- ▶ $d(x_0, X^*)$ is the Euclidean distance from x_0 to the set of minimizers X^*
- ightharpoonup c, p, q are constants depending on the problem
- ▶ Bound increases with $d(x_0, \mathcal{X}^*)$, intuition :

 x_0 close to $X^* o \mathsf{good}$ initialization so fast convergence

Exploit information on $d(x_0, X^*)$?

Plan

Sharpness

Scheduled restarts

General strategy

Scheduled restarts for smooth convex problem

Scheduled restarts for non-smooth or Hölder smooth convex problem

Restarts with termination criterion

Composite problems & Bregman divergences

Numerical Experiments

Conclusion

Sharpness

Definition

A function f satisfies the sharpness property on a set K if there exists $r \geq 1$, $\mu > 0$, s.t.

$$\mu d(x, X^*)^r \le f(x) - f^*, \text{ for every } x \in K$$
 (Sharp)

Examples

- ▶ Strongly convex function (r = 2)
- Gradient dominated functions (r = 2)
- ▶ Matrix game problems like $min_x max_y x^T Ay$ (r = 1)
- Real analytic functions (r unknown)
- Subanalytic functions (r unknown)

Sharpness for real analytic function

For f real analytic, $x \in \mathbb{R}$ and $x^* \in X^*$,

$$f(x) - f^* = \sum_{k=q}^{\infty} \frac{f^{(k)}(x^*)}{k!} (x - x^*)^k$$

where $q \ge 0$ is the smallest coefficient for which $f^{(q)}(x^*) \ne 0$. There is an interval V around x^* s.t.

$$\frac{1}{2} \frac{f^{(q)}(x^*)}{q!} |x - x^*|^q \le f(x) - f^*$$

Setting $x^* = \Pi_{X^*}(x)$ this yields (Sharp) on V with q and $\frac{1}{2} \frac{f^{(q)}(x^*)}{q!}$.

Sharpness for subanalytic functions

Łojasevicz inequality

- ► Sharpness property is known to be satisfied for real analytic functions as the Łojasevicz inequality [Łojasevicz 1963]
- Generalized recently to broad class of non-smooth convex functions called subanalytic [Bolte et al 2007].
- Subanalytic functions are functions whose epigraph can be expressed as a semi-analytic manifold.
- ▶ Proofs rely on topological arguments so (r, μ) are mostly unknown.

Smoothness

Definition

A function f satisfies the smoothness property on a set J if there exists $s \in [1,2], \ L>0$ s.t.

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2^{s-1}$$
, for every $x, y \in J$ (Smooth)

Examples

- Non-smooth (s = 1)
- ▶ Smooth (s = 2)
- ▶ Hölder smooth $(s \in (1,2))$

Sharpness and smoothness

If f satisfies (Smooth), for every $x \in \mathbb{R}^n$ and $y = \Pi_{X^*}(x)$,

$$f(x) \le f(y) + \nabla f(y)^T (x - y) + \frac{L}{s} ||x - y||_2^s = f^* + \frac{L}{s} d(x, X^*)^s$$

Combined with (Sharp), $\mu d(x, X^*)^r \leq f(x) - f^*$, this yields

$$0<\frac{s\mu}{L}\leq d(x,X^*)^{s-r}$$

Taking $x \to X^*$, necessarily

$$s \leq r$$

Moreover if s < r, last inequality can **only be valid on a bounded set**, either smoothness or sharpness or both are not valid in the whole space.

Condition numbers

We denote

$$au = 1 - \frac{s}{r}$$

a condition number on the ratio of powers, s.t.

$$0 \le \tau < 1$$

and

$$\kappa = \mathit{L}^{\frac{2}{\mathit{s}}}/\mu^{\frac{2}{\mathit{r}}}$$

a generalized condition number.

Plan

Sharpness

Scheduled restarts

General strategy

Scheduled restarts for smooth convex problem

Scheduled restarts for non-smooth or Hölder smooth convex problem

Restarts with termination criterion

Composite problems & Bregman divergences

Numerical Experiments

Conclusion

General strategy

- ▶ Take an algorithm \mathcal{A} that outputs points $x = \mathcal{A}(x_0, \theta, t)$, where
 - x₀ is the initial point,
 - \blacktriangleright θ are parameters of the algorithm
 - t is the number of iterations
- Look at the convergence rate if f satisfies (Sharp)

$$f(x) - f^* \le \frac{cd(x_0, X^*)^q}{t^p}$$

 $\le \frac{c'(f(x_0) - f^*)^{q/r}}{t^p}$

▶ Given $\gamma \ge 0$, compute analytically t s.t.

$$f(x) - f^* \le e^{-\gamma} (f(x_0) - f^*)$$

Iterate and compute total complexity

General formulation

Given an algorithm \mathcal{A} that outputs points $x = \mathcal{A}(x_0, \theta, t)$

Scheduled restart schemes:

Inputs: x_0 , sequence θ_k , sequence t_k

for $k = 1 \dots R$ do

$$x_k = \mathcal{A}(x_{k-1}, \theta_k, t_k)$$

end for

Output: $\hat{x} = x_R$

General analysis

Lemma

Given $\gamma \geq 0$, suppose setting

$$t_k = Ce^{\alpha k}$$
, with $C > 0$, $\alpha \ge 0$,

ensures

$$f(x_k) - f^* \le Me^{-\gamma k}$$
, with $M > 0$.

Writing $N = \sum_{k=1}^{R} t_k$ the total number of iterations, we get

$$f(\hat{x}) - f^* \le M \exp(-\gamma C^{-1}N), \quad \text{when } \alpha = 0,$$

$$f(\hat{x}) - f^* \le \frac{M}{(\alpha e^{-\alpha} C^{-1}N + 1)^{\frac{\gamma}{\alpha}}}, \quad \text{when } \alpha > 0.$$

Smooth convex problems

- ▶ If f is cvx and smooth (s = 2, L), an optimal algorithm is the Accelerated Gradient Acc.
- ▶ Given x_0 , it outputs after t iterations, a point $x = Acc(x_0, t)$, s.t.

$$f(x) - f^* \le \frac{cL}{t^2} d(x_0, X^*)^2,$$

where c is a universal constant.

▶ Assume that f satisfies (Sharp) with (r, μ) on a set K

$$\mu d(x, X^*)^r \le f(x) - f^*$$
, for every $x \in K$

▶ Assume we are given $x_0 \in \mathbb{R}^n$, s.t. $\{x, f(x) \le f(x_0)\} \subset K$.

Optimal scheme

Proposition 1st part

Assume f cvx, smooth (s = 2, L) and sharp (r, μ) on a set K. Run scheduled restarts of $\mathcal{A}cc$ with

$$t_k = C_{\tau,\kappa} e^{\tau k}$$
 $C_{\tau,\kappa} = e^{1-\tau} (c\kappa)^{\frac{1}{2}} (f(x_0) - f^*)^{-\frac{\tau}{2}}$

Then for every outer iteration $k \geq 0$,

$$f(x_k) - f^* \le e^{-2k} (f(x_0) - f^*).$$

Optimal scheme

Proposition

Denote N the total number of iterations at the output \hat{x} , then, when $\tau=0$,

$$f(\hat{x}) - f^* \le \exp\left(-2e^{-1}(c\kappa)^{-\frac{1}{2}}N\right)(f(x_0) - f^*) = O\left(\exp(-\kappa^{-\frac{1}{2}}N)\right),$$

while, when $\tau > 0$,

$$f(\hat{x}) - f^* \leq \frac{f(x_0) - f^*}{\left(\tau e^{-1}(f(x_0) - f^*)^{\frac{\tau}{2}}(c\kappa)^{-\frac{1}{2}}N + 1\right)^{\frac{2}{\tau}}} = O\left(\kappa^{\frac{1}{\tau}}N^{-\frac{2}{\tau}}\right),$$

Note: Optimal for this class of problems [Optimal methods of smooth convex optimization, A. Nemirovski, Y. Nesterov 1985]

Adaptive scheme

- ▶ In practice (r, μ) are unknown
- Given a fixed total number of iterations N, run following schemes

```
S_{i,j}: Scheduled restart with t_k = C_i e^{\tau_j k}, where C_i = 2^i and \tau_j = 2^{-i} with i \in [1, ..., \lfloor \log_2 N \rfloor], j \in [0, ..., \lceil \log_2 N \rceil]
```

- Optimal bounds up to constant factor 4
- ► Has a complexity $log_2(N)^2$ higher than running N iterations in the optimal scheme
- Adaptive algorithm

Non-smooth or Hölder smooth convex problems

▶ If f is cvx, satisfies (Smooth) with (s, L) on a set J, i.e.

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2^{s-1}$$
, for every $x, y \in J$, (Smooth)

an optimal algorithm is the Fast Universal Gradient method \mathcal{U} by Nesterov, 2015.

▶ Given ϵ , x_0 , it outputs, after t iterations, a point $x = \mathcal{U}(x_0, \epsilon, t)$ s.t.

$$f(x) - f^* \le \frac{\epsilon}{2} + \frac{cL^{\frac{2}{s}}d(x_0, X^*)^2}{\epsilon^{\frac{2}{s}}t^{\frac{2\rho}{s}}} \frac{\epsilon}{2}$$

where

$$\rho = \frac{3s - 2}{2}$$

is the optimal rate for this class of functions.

Hölder smooth convex problems strategy

- Assume that we have access to $\epsilon_0 \geq f(x_0) f^*$ for a given $x_0 \in \mathbb{R}^n$
- ▶ Given $\gamma \ge 0$ run scheduled restarts with sequence of target accuracies

$$\epsilon_k = e^{-\gamma k} \epsilon_0$$

Choose t_k to ensure

$$f(x_k) - f^* \le \epsilon_k$$

Optimal scheme

Proposition 1st part

Assume f cvx, Hölder smooth (s, L) and sharp (r, μ) on a set K. Run scheduled restarts of $\mathcal U$ with

$$\epsilon_k = e^{-\rho k} \epsilon_0$$
 $t_k = C_{\tau,\kappa,\rho} e^{\tau k}$ $C_{\tau,\kappa,\rho} = e^{1-\tau} (c\kappa)^{\frac{s}{3s-2}} \epsilon_0^{\frac{\tau}{\rho}}$

Then for every outer iteration $k \geq 0$,

$$f(x_k)-f^*\leq e^{-\rho k}\epsilon_0.$$

Optimal scheme

Proposition 2nd part

Denote N the total number of iterations at the output \hat{x} , then, when $\tau=0$,

$$f(\hat{x}) - f^* \le \exp\left(-\rho e^{-1}(c\kappa)^{-\frac{s}{2\rho}}N\right)\epsilon_0 = O\left(\exp(-\kappa^{-\frac{s}{2\rho}}N)\right),$$

while, when $\tau > 0$,

$$f(\hat{x}) - f^* \leq \frac{\epsilon_0}{\left(\tau e^{-1} (c\kappa)^{-\frac{s}{2\rho}} \epsilon_0^{\frac{\tau}{\rho}} N + 1\right)^{\frac{\rho}{\tau}}} = O\left(\kappa^{\frac{s}{2\tau}} N^{-\frac{\rho}{\tau}}\right),$$

Note : Optimal for this class of problems [Optimal methods of smooth convex optimization, A. Nemirovski, Y. Nesterov 1985]

General convex problems

- ▶ 3 parameters for the schedule γ , C, α
- Grid search inefficient if r or s unknown
- ▶ Otherwise grid search on *C* works
- Can be used for
 - \rightarrow non-smooth (s=1), gradient dominated functions (r=2)
 - ightarrow non-smooth (s=1), sharp functions (r=1)

Plan

Sharpness

Scheduled restarts

General strategy

Scheduled restarts for smooth convex problem

Scheduled restarts for non-smooth or Hölder smooth convex problem

Restarts with termination criterion

Composite problems & Bregman divergences

Numerical Experiments

Conclusion

Strategy

- Assume f^* known (e.g. zero sum-game matrix problem, projection a convex set...)
- ▶ Given an accuracy ϵ , denote t_{ϵ} the number of iterations to observe that $x = \mathcal{U}(x_0, \epsilon, t_{\epsilon})$ satisfies

$$f(x) - f^* \le \epsilon$$

- \rightarrow Stop when target accuracy reached
- → Restart with a reduced target accuracy

Formulation

Given the Fast Universal Gradient method $\mathcal U$ that outputs $x=\mathcal U(x_0,\epsilon,t)$

Restarts with termination criterion:

```
Inputs: x_0, \gamma, f^*
\epsilon_0 = f(x_0) - f^*
for k = 1 \dots R do
\epsilon_k = e^{-\gamma} \epsilon_{k-1}
x_k = \mathcal{U}(x_{k-1}, \epsilon_k, t_{\epsilon_k})
end for
Output: \hat{x} = x_R
```

Restarts with termination criterion

Assume f cvx, Hölder smooth (s, L) and sharp (r, μ) on a set K. Run restarts with termination criterion with $\gamma = \rho$.

Denote N the total number of iterations at the output \hat{x} , then, when $\tau=0$,

$$f(\hat{x}) - f^* \le \exp\left(-\rho e^{-1}(c\kappa)^{-\frac{s}{2\rho}}N\right)\epsilon_0 = O\left(\exp(-\kappa^{-\frac{s}{2\rho}}N)\right),$$

while, when $\tau > 0$.

$$f(\hat{x}) - f^* \leq \frac{\epsilon_0}{\left(\tau e^{-1} (c\kappa)^{-\frac{s}{2\rho}} \epsilon_0^{\frac{\tau}{\rho}} N + 1\right)^{\frac{\rho}{\tau}}} = O\left(\kappa^{\frac{s}{2\tau}} N^{-\frac{\rho}{\tau}}\right),$$

Note : Restarts robust to the choice of γ .

Taking $\gamma = 1$ is optimal up to a small constant factor.

Plan

Sharpness

Scheduled restarts

General strategy

Scheduled restarts for smooth convex problem

Scheduled restarts for non-smooth or Hölder smooth convex problem

Restarts with termination criterion

Composite problems & Bregman divergences

Numerical Experiments

Conclusion

General setting

Extension to

minimize
$$f(x) = \phi(x) + g(x)$$

where

• ϕ satisfies (Smooth) w.r.t a generic norm $\|.\|$.

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|^{s-1}, \quad \text{for every } x, y \in J,$$
(Smooth)

we have access to a prox function h 1-strongly convex w.r.t.
||.|| defining a Bregman divergence

$$D_h(z;x) = h(z) - h(x) - \nabla h(x)^T (z - x)$$

g is simple in the sense that we can easily solve

$$\min_{z} y^{T}z + g(z) + \lambda D_{h}(z;x)$$

- Covers a whole class f of problems such as sparse or constrained.
- ▶ Need an appropriate notion of sharpness w.r.t ||.||.

Relative sharpness

Definition

A convex function f is called relatively sharp with respect to a strictly convex function h on a set $K \subset \text{dom}(f)$ if there exists $r \geq 1$, $\mu > 0$ such that

$$2\mu D_h(x;X^*)^{\frac{r}{2}} \leq f(x) - f^*$$
 for any $x \in K$ (Relative Sharpness)

where $D_h(x; X^*) = \min_{x^* \in X^*} D_h(x; x^*)$ and D_h is the Bregman divergence associated to h.

Plan

Sharpness

Scheduled restarts

General strategy

Scheduled restarts for smooth convex problem

Scheduled restarts for non-smooth or Hölder smooth convex problem

Restarts with termination criterion

Composite problems & Bregman divergences

Numerical Experiments

Conclusion

Numerical Experiments

- Classification problems on UCI Sonar data set with various losses.
- ► Check convergence of best method found by grid search **Adap**
- Compare against
 - Gradient descent Grad
 - Accelerated gradient descent Acc
 - Restarts enforcing monotonicity **Mono**, i.e., when $f(x_{k+1}) \le f(x_k)$ in the inner iterations.

Least Squares and Logistic

Figure: Least squares loss (left) and Logistic loss (right).

Large dots represent restart iterations

Lasso and Dual SVM

Figure: Lasso (left) and dual SVM (right) problems. Large dots represent restart iterations

Plan

Sharpness

Scheduled restarts

General strategy

Scheduled restarts for smooth convex problem

Scheduled restarts for non-smooth or Hölder smooth convex problem

Restarts with termination criterion

Composite problems & Bregman divergences

Numerical Experiments

Conclusion

Contributions

- ► Open the black box model by adding a generic assumption on the behavior of the function around minimizers
- Convergence analysis of restart schemes
- Optimal schemes for smooth, Hölder smooth, non-smooth convex optimization
- Adaptive scheme for smooth convex optimization

Future work

Sharpness analysis

Sharpness reads

$$\mu d(x, X^*)^r \le f(x) - f^*$$
, for every $x \in K$

- μ depends generally on K, thorough analysis in From error bounds to the complexity of first-order descent methods for convex functions, J. Bote et al. 201
- ▶ Local adaptivity of restart schemes ?
- ▶ If f^* known, restart with termination criterion is adaptive.
 - \rightarrow Approximate f^* ?

Practical algorithm

- Grid search shows robustness but not very practical
- Restarting from a combination of points, see
 Restarting accelerated gradient methods with a rough strong convexity estimate, O. Fercoq, Z. Qu, 2016

Thanks! Questions?