

北京郵電大學 网络与交换技术国家重点实验室

BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS
STATE KEY LABORATORY OF NETWORKING AND SWITCHING TECHNOLOGY

第三章 电路交换(2)

袁 泉

yuanquan@foxmail.com 2023年3月20日

提要

- 1. 程控交换软件技术
 - 程控交换软件系统
 - 呼叫处理的基本原理(<u>重点</u>)
- 2. 程控交换的软硬结合
- 3. 电话通信网

回顾: 数字程控交换机的系统结构

回顾: 数字程控交换机的系统结构

1.程控交换软件技术

程控交换软件系统、呼叫处理的基本原理

交换软件的特点

交换软件系统的组成

交换软件系统的组成

呼叫处理软件

- 整个呼叫过程的控制软件
- 主要功能
 - 用户线和中继线上输入信号(呼叫信号、地址信号)检测识别
 - 呼叫资源管理(时隙、中继电路、DTMF收号器)
 - 用户数据、呼叫状态以及号码等的分析
 - 路由选择
 - 控制呼叫状态迁移
 - 控制计时、送音和交换网络的连接
 - 信令协议的处理

交换软件系统的组成

数据库系统

数据库系统——局数据

- **硬件配置:** 用户端口数、出/入中继线数、DTMF收号器数等
- 各种号码: 本地网编号及号长、局号、应收号码等
- 路由数据: 局向、路由数
- 计费数据:呼叫详细话单(CDR)等
- 统计数据: 话务量、呼损、呼叫情况等
- 交换机类别: C1-C5, C5又分为市话端局、长市合一等
- 复原方式: 主叫控制、被叫控制、互不控制

数据库系统——用户数据

- 用户类别: 住宅用户、公用电话用户、PABX用户、传真用户等
- **话机类别**: PULSE话机、DTMF话机
- 用户状态: 空闲、忙、测试、阻塞等
- 限制情况: 呼出限制、呼入限制等
- 呼叫权限: 本局呼叫、本地呼叫、国内长途、国际长途等
- 计费类别:定期、立即、免费等
- 优先级:普通用户、优先用户
- 新业务权限: 呼叫转移、会议电话、三方通话、呼叫等待等
- **新业务登记的数据**: 转移号码、热线号码等
- 用户号码: 用户电话薄号码、用户设备号等
- **呼叫动态数据**: 呼叫状态、时隙、收号器号、计数值等

交换软件系统的组成

OAM (操作维护管理) 软件

- 用以保证系统高效、灵活、可靠地运行
- 主要功能
 - 用户数据和局数据管理
 - 测试
 - 告警
 - 故障诊断与处理
 - 动态监视
 - 话务统计
 - 计费
 - 过负荷控制

交换软件系统的组成

1.程控交换软件技术

程控交换软件系统、呼叫处理的基本原理

(1)本局呼叫的处理过程

呼叫进展状况	交换机处理动作、状态变化
主叫A 摘机呼叫	1、交换机检测到用户A的摘机信号 2、交换机检查用户A的类别,识别是普通电话、公用电话等 3、交换机检查用户呼叫限制情况 4、交换机检查话机类别,以确定是PULSE还是DTMF收号方式
向A送拨号音 准备收号	1、交换机选择一个空闲收号器和空闲的时隙(路由) 2、交换机向主叫A送拨号音 3、监视主叫A所在用户线的输入信号(拨号),准备收号
收号与 号码分析	 交换机收到第一位号码后停拨号音 交换机按位存储收到的号码 交换机对号首进行分析,判定呼叫类别(本局、出局、长途、特服等),并确定应收号长 交换机对"已收号长"进行计数,并与"应收号长"比较 号码收齐后,本局呼叫进行号码翻译,确定被叫 交换机检查被叫用户是否空闲,若空闲则选定该被叫

(1) 本局呼叫的处理过程

呼叫进展状况	交换机处理动作、状态变化
建立连接 向B振铃 向A送回铃音	
被叫应答进入通话	1、被叫摘机应答,交换机检测到后,停振铃和停回铃音 2、A、B通话 3、开始计费 4、监视主、被叫用户状态
一方用户挂机向对方送忙音	
通话结束	被催挂的用户挂机,释放占用的所有资源,通话结束。

识别和接收输入信号的过程,由输入处理程序负责

任务执行中, 要输出一些信 令、消息或动 作命令,该过 程为<u>输出处理</u>

状态迁移

任务执行是指 在迁移到下之 个稳定状态 前,根据分析 处理结果, 成相关任务

归纳: 呼叫处理的特点

- 整个呼叫处理过程可分为若干个阶段,每个阶段可以用一个稳定的状态来表示
- 整个呼叫处理的过程就是在一个稳定状态下,处理机监视、识别输入信号,进行分析处理,执行任务和输出命令,然后跃迁到下一个稳定状态的循环过程
 - 两个稳定的状态之间要执行各种处理
 - 在一个稳定状态下,若没有输入信号,状态不会迁移
 - 相同的输入信号在不同的状态下会有不同的处理,并迁移到不同的状态
 - 在同一状态下,对不同输入信号的处理是不同的
 - 在同一状态下,输入同样信号,也可能因不同情况得出不同结果

通信软件:输入事件、状态!!

(2) 呼叫处理的原理

基于扩展的有限状态机

用SDL图表示呼叫处理过程

- SDL的数学模型是扩展有限状态机(EFSM)
 - SDL(Specification and Description Language)是ITU-T提出的一种形式化描述语言,由Z.100建议定义
 - SDL图形化表示常用符号

(2) 呼叫处理的原理

基于扩展的有限状态机

(数据采集部分) 识别并接收外部输入的处 理请求和信号,生成事件

输入处理

- 对用户线、中继线、信令设备进行监视和信号识别,生成相应事件放入队列,以便其他程序取用。大多数属于周期级的程序。包括:
 - 用户线状态扫描
 - 接收拨号脉冲、DTMF信号
 - 中继线线路信号扫描
 - 接收多频MFC信号和NO.7信号
 - 接收操作控制台(OAM)的消息以及机间通信消息

- 用户线的状态
 - 挂机状态时用户线的直流回路断开,摘机状态时用户线的直流回路接通。
 - 用"0"表示续,用"1"表示断
- 扫描目的
 - 及时响应用户的动作
 - 摘机动作:线路状态"1"→"0"
 - 挂机动作:线路状态"0"→"1"
- 扫描周期
 - 200ms (符合人摘挂机的时间粒度)
- 群处理扫描
 - 提高效率

单用户比特运算

■ 群处理扫描

这次扫描结果

前次扫描结果

(!这)△前=摘

这△(!前)=挂

					8条	并行统	线路
D7	D6	D5	D4	D3	D2	D1	D0
1	1	0	1	1	1	1	0
0	1	1	1	1	1	1	1
0	0	1	0	0	0	0	1
(1)	0	0	0	0	0	0	0

多用户字节运算

用 摘 挂 机 识 别 程 序 流 程

■ 群处理的硬件基础

用户模块

输入处理——DTMF音频信号的接收

- DTMF收号器(硬件)
 - 输出数据: 状态标志SP(1bit) 0: 有号; 1: 无号 Q1~Q4(4bits) BCD号码
- 扫描原理
 - 识别来号事件,并读取号码
 - 来号: SP状态"无号"(1) → "有号"(0)
- 扫描周期
 - 16~20ms
- 群处理扫描
 - 提高效率

	1209 Hz	1336 Hz	1477 Hz	1633 Hz
697 Hz	1	2	3	Α
770 Hz	4	5	6	В
852 Hz	7	8	9	С
941 Hz	*	0	#	D

输入处理——DTMF音频信号的接收

输入处理——DTMF音频信号的接收

DTMF收号器

至中央交 换 XX 络

(2) 呼叫处理的原理

基于扩展的有限状态机

(内部数据处理部分) 根据目前状态和输入信号进行 分析、判别,决定下一步任务

分析处理

- 分析处理就是对各种信息(当前状态、输入信息、用户数据、可用资源等)进行分析,以确定下一步要执行的任务和进行的输出处理。分析处理由分析处理程序来完成,属于基本级程序。按照要分析的信息,分析处理可分为:
 - 状态分析
 - 去话分析
 - 号码分析
 - 来话分析

分析处理——状态分析

- 时机: 在某个稳定状态下,接收到各种输入信号时
- 数据: 状态和输入的事件
 - 呼叫状态:空闲、等待收号、收号、振铃、通话、听忙音、听空号音、听催挂音、挂起等
 - 事件: 摘机、挂机、超时、拨号号码、空错号(分析结果产生)等
- 目的:确定下一步执行的任务或进一步的分析

分析处理——去话分析

■ 时机: 主叫用户摘机发起呼叫时

■ 数据: 主叫用户数据

■ 目的:决定下一步的接续动作

- 时机: 收到用户的拨号号码时(不用收全)
- 数据:用户所拨的号码
 - 从用户线上直接接收号码
 - 从中继线上接收它局传送来的号码
- **目的:** 确定接续方向和应收号码的长度,以及下一步要执 行的任务

- 号码分析可分为两步:号首分析(号码预译)、号码翻译
- **号首分析**: 对收到的前几位号码分析(*不用收全*),一般 为1~3位,以判定呼叫的接续类型,获取应收号长和路由 等信息
- 号码翻译:接收到全部被叫号码后,找到对应的被叫用户
 - 每个用户在交换机内都具有唯一标识,即用户设备号
 - 通过被叫号码找到对应的被叫用户,实际上就是要确定被叫用户 的用户设备号,从而确定其实际所处的物理端口

利用多级检索表, 为树型结构

号码分析及相应任务执行的流程

分析处理——来话分析

■ 时机:入局呼叫到来时,在叫出被叫之前

■ 数据:被叫用户数据

■ 目的:确定能否叫出被叫和如何继续控制入局呼叫的接续

(2) 呼叫处理的原理

基于扩展的有限状态机

(输出命令部分) 根据分析结果,发布控制命令

任务执行和输出处理

- 任务执行: 根据分析处理的结果, 处理机完成相关任务
 - ✔ 启动和停止各种计时器
 - ✓ 分配和释放各种资源(DTMF收号器、时隙)
 - ✔ 形成信令、处理机间通信消息和驱动硬件的控制命令
 - ✔ 开始和停止计费、计算操作、存储各种号码
 - ✔ 对用户数据、局数据的读写操作
- 输出处理: 在任务执行过程中,输出各种命令,完成具体 的动作
 - ✔ 驱动交换网络建立或拆除话路
 - ✔ 送/停各种信号音、振铃和停振铃
 - ✓ 连接DTMF收号器
 - ✔ 发送公共信道信令、发送处理机间通信信息等

任务执行和输出处理

输出处理举例

至中央交 换 XX 络

(2) 呼叫处理的原理(总结)

基于扩展的有限状态机

(3) 呼叫处理软件的实现

- 有限状态机的实现
- 程序分级和调度

有限状态机的实现

- 呼叫处理过程可以用扩展的有限状态机来描述,因而呼叫 处理程序的实现,就是实现呼叫处理的有限状态机
- 两种实现方法

二维数组法

多级表法

有限状态机的实现(二维数组法,例)

(3) 呼叫处理软件的实现

- 有限状态机的实现
- 程序分级和调度

对各种输入处理、分析处理、任务执行和输出处理程序进行分级调度

■ 程序分级

程序级别	程序功能	启动方式	响应速度
故障级	故障识别和故障紧急处理	硬件中断启动	立即响应
周期级	按一定周期进行的各种扫描 和驱动	时钟中断启动	在严格时限内响应
基本级	分析处理和各种无时限任务	事件队列启动	在一定时限内响应

- 级间转移的原则
 - 级别高的程序优先处理

时钟级 周期级 基本级等待

- 周期级调度
 - 在单任务操作系统中,可以利用时钟中断+时间表的方法调度周期级任务
 - 在实时多任务操作系统中,可以设置任务周期,利用操作系统的 调度机制调度周期级任务

有不同的周期要求

时间表调度原理

屏蔽表控制该时刻程序是 否被调用,提供一种灵活 控制程序调用的机制

时间表调度 管理程序流程图

- 基本级调度
 - 在单任务操作系统中,可以自己设计事件队列调度基本级任务
 - 在实时多任务操作系统中,可以利用操作系统的事件队列、信箱等机制驱动基本级任务

(3) 呼叫处理软件的实现(总结)

- 有限状态机的实现
- 程序分级和调度

输入处理程序 _<mark>(周期级)</mark>_

检测事件

2.程控交换的软硬结合

程控交换的软硬结合

程控交换的软硬结合

程控交换的软硬结合

3. 电话通信网

- 由国际接口局接入 国际网
- 四级汇接制的国内 长途网
- 端局、汇接局和用 户构成的本地网

作业

作业

- 试画出主叫用户使用温线业务(主叫摘机等待一段时间不拨号,则拨打登记的号码)、被叫用户使用遇忙转移时,局内呼叫从空闲状态直到振铃状态的呼叫处理SDL图。
- 某成程控交换机采用时间表实现周期级程序的调度,图中给出了该交换机的时间表,在时钟控制下,每隔10ms会读取一次时间表。各个周期级程序的执行周期为:按键拨号识别程序的执行周期为20ms,脉冲拨号识别的执行周期为10ms,摘挂机识别的执行周期为200ms,中继扫描的执行周期为100ms。请在图中的时间表相应位置填写"1"来完成周期级任务的调度控制,并且画出周期级程序调度管理流程图。
- 给出下图整个本局呼叫处理过程的程序架构,包括主程序、子程 序和主要的数据结构。
- 利用第三章MOOC复习,并完成测验

北京郵電大學 网络与交换技术国家重点实验室

BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS
STATE KEY LABORATORY OF NETWORKING AND SWITCHING TECHNOLOGY

袁 泉

yuanquan@foxmail.com 2023年3月20日