#### **General Disclaimer**

#### One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
  of the material. However, it is the best reproduction available from the original
  submission.

(NASA-TM-84941) TYPE 2 RADIO BURSTS, INTERPLANETARY SHOCKS AND ENERGETIC PARTICLE EVENTS (NASA) 30 P HC A03/MF A01 CSCL 03B

Unclas G3/90 08216

## NASA

Technical Memorandum 84941

# Type II Radio Bursts, Interplanetary Shocks and Energetic Particle Events

H. V. Cane and R. G. Stone



NOVEMBER 1982

National Aeronautics and Space Administration

Goddard Space Flight Center Greenbelt, Maryland 20771

#### ABSTRACT

Using the ISEE-3 radio astronomy experiment data we have identified 37 . interplanetary (IP) type II bursts in the period September 1978 to December 1981. We list these events and the associated phenomena. The events are preceded by intense, soft X ray events with long decay times (LDEs) and type II and/or type IV bursts at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range results in the occurrence of a shock accelerated (SA) event. The SA event is an important diagnostic for the presence of a strong shock and particle acceleration. The majority of the interplanetary type II bursts are associated with energetic particle events. Our results support other studies which indicate that energetic solar particles detected at 1 A.U. are generated by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients. The transients are fast i.e. velocities greater than 500 km/sec.

#### TYPE II RADIO BURSTS, INTERPLANETARY SHOCKS AND ENERGETIC PARTICLE EVENTS

H. V. CANE AND R. G. STONE

Laboratory for Extraterrestrial Physics

NASA Goddard Space Flight Center, Greenbelt, Maryland 20771

Research Associate - University of Maryland

#### ABSTRACT

Using the ISEE-3 radio astronomy experiment data we have identified 37 interplanetary (IP) type II bursts in the period September 1978 to December 1981. We list these events and the associated phenomena. The events are preceded by intense, soft X ray events with long decay times (LDEs) and type II and/or type IV bursts at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range results in the occurrence of a shock accelerated (SA) event. The SA event is an important diagnostic for the presence of a strong shock and particle acceleration. The majority of the interplanetary type II bursts are associated with energetic particle events. Our results support other studies which indicate that energetic solar particles detected at 1 A.U. are generated by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients. The transients are fast i.e. velocities greater than 500 km/sec.

#### I. INTRODUCTION

## ORIGINAL PAGE IS OF POOR QUALITY

The type II burst results from plasma emission generated by a shock as it propagates out through the solar corona. The frequency drift rate of the burst is related to the shock's velocity. Ground-based observations of type II bursts pertain to coronal heights less than about 5 solar radii. A shock typically takes 2 days to reach the earth at 215 solar radii where it causes a sudden commencement geomagnetic storm. In situ observations of shocks provide information about shock properties including the velocity, but such observations have been made primarily by earth orbiting satellites. Thus shock properties in the region between 5 and 215 solar radii are not well studied. Satellite experiments operating at low radio frequencies can access this region by remotely observing interplanetary type II bursts. The value of such observations are limited in part by our current understanding of the radio emission process.

Two events were reported from observations from IMP-6 during the previous period of solar maximum (Malitson et al., 1973,1976). Boischot et al. (1980) reported the detection of a number of events from the Voyager spacecraft and there have been accounts of detections from the Prognoz-8 satellite (Pinter et al., 1982). However the ISEE-3 radio astronomy experiment (Knoll et al., 1978), which operates over a frequency range of 2 MHz to 30 kHz, has obtained the most complete and detailed set of observations of interplanetary (IP) type II bursts thus far available. The experiment is more sensitive than previous experiments and because of its orbit is much less troubled by terrestrial kilometric radiation. In addition the experiment can observe the sun continuously. An initial paper reporting the detection of 12 events was

prepared in 1980 and published in 1982 (Cane et al. 1982).

Cane et al. (1981) reported on a new class of kilometer wavelength bursts, the shock accelerated (SA) events, also related to energetic shocks. The SA event is the low frequency continuation of the verringbone structure associated with meter wavelength type II bursts. At kilometer wavelengths these events precede the IP type II burst. The SA event allows the determination of the start of the type II event low in the corona. The sequence of events is illustrated in figure 1 (from Cane et al., 1981). There is no frequency coverage between about 20 and 2 MHz. The time difference between the end of the meter wavelength type II burst and the observation of a type II burst at 2 MHz is of the order of 1/2 hour. However the rapid drift of the SA event means that the time difference between the 2 MHz SA event and the start of the meter wavelength type II burst is of the order of a minute. Thus associations between meter wavelength and kilometer wavelength type II bursts can be made unambiguously.

In this paper we present information on the IP type II events and associated phenomena. Since the writing of the previous paper our understanding of the data has greatly improved and the sample of events has increased three-fold. It is therefore timely to provide an up-date and more comprehensive description.

#### II. DATA ANALYSIS

The ISEE-3 radio astronomy data shows numerous slow drift features in the dynamic spectra (plots of intensity as a function of frequency and time). The

majority of these are short-lived with very slow drift rates and we have no explaination for their origin. A smaller number last for many hours but because they commence in the middle of our frequency range we have no way or determining a likely starting time at the sun. Our list of type II bursts has been restricted to those events which drift through the data at a rate consistent with known shock velocities and which are preceded by an SA event. Thus we can identify the start of the event at the sun. Whereas other events may be related to solar shocks we include only those which are clearly the kilometer wavelength counterpart of the meter wavelength phenomenom.

In table 1 we list the IP type II events. As in our previous catalog there are two categories. Category 1 events have been unampiguously identified with a sudden commencement. For the most part the type II emission is discernable over the frequency range at which the events are best observed namely 500-80 kHz and therefore the events are observed for many hours. The reason for these upper and lower frequency bounds will be discussed later. The events marked with an asterisk are not as well observed because of other activity occurring at the same time, which limits the detectibility of the burst.

Category 2 events are those bursts which are not followed by a sudden commencement or only last for a few hours. Some of the events not followed by a sudden commencement are associated with flares far from central meridian and the shock probably was not extensive enough in heliographic longitude to intercept the earth.

There exist a number of candidate IP type II events which are not listed.

One event on Dec 5, 1981 was excluded because there was no ground-based data to corroborate the presence of a strong shock. However a particle event was detected as was a sudden commencement and it is likely that the event originated behind the west limb. Another event on May'10, 1981 was excluded because the start of the event at the sun could not be determined very accurately. It is probable that this event was associated with an east limb coronal transient observed by the P78-1 coronograph. For a number of events there was corroborative ground-based data but the low frequency data was of poor quality or the event was observed only over a very small frequency range.

The table lists a number of phenomena examined in conjunction with the low frequency data. In general we have used data published in Solar Geophysical Data (SGD) and apart from Culgoora dynamic spectra, have not made use of original data sets. In the main our study has been restricted to phenomena which occur high in the corona. We have not used radio data outside the meter wavelength band. Decameter wavelength information was not used because observatory coverage in this region of the spectrum is at best limited and often rendered unuseable because of interference.

The time given in the second column is the start of the meter wavelength type II burst or, if no type II was reported, the start of the SA event. In the latter case the time is enclosed in brackets.

#### (i) Ha observations

Most events have been associated with an Ha flare. The flare was determined using the start of the meter wavelength type II burst which occurs

within a few minutes of the maximum in Ha (Roberts, 1959). All the events with good identification were bright flares of importance 1 or greater.

The flare location is also shown in table 1. The question mark denotes an assumed behind-the-limb flare. The langitudinal distribution of flares associated with IP type II bursts is shown in table 2 and figure 2.

#### (ii) Soft X-rays

The 1-8 A soft X-ray class has been estimated from the daily graphs presented in SGD. The majority of the X-ray events are intense and have decays longer than 4 hours i.e they are long duration events (LDEs). The 'Y' in the column after the X ray class indicates an LDE event was observed. Thirty-five of the 37 events were seen in soft X-rays. Of the two remaining events, one occurred during an X-ray data gap and the other has been attributed to an event behind the west limb. Twenty-four of the associated X-ray events have long decays and a further 9 have decays between about 2 and 4 hours. Two events had decays less than 2 hours. These are associated with slow, category 2 IP type II bursts.

For the year 1981 we have catalogued all soft X-ray events whose 1-8 A class was greater than M4 and with a duration longer than 4 hours. Of 18 events 10 were associated with IP type II bursts. Six further events were associated with SA events only i.e. not followed by a type II burst. The remaining 2 events occurred during ISEE-3 data gaps. It would appear that intense LDE X-ray events correlate well with strong shocks, many of which produce IP type II bursts.

#### (iii) Meter wavelength radio emission .

Eighteen of the 37 events are preceded by a meter wavelength type II/IV burst pair, 10 events by a type IV burst and 9 by a type II burst. Reports of continuum are included under the classification of type IV. The annotations 'W' and 'P' mean 'weak' and 'possible' respectively. Most of the meter wavelength type II bursts are classified as intense. The dynamic spectra for events also observed by the Culgoora observatory exhibit complex behaviour with herringbone structure. We believe that all IP type II events are associated with meter wavelength activity. As discussed in the introduction to this section, the only candidate events not associated with meter wavelength activity are probably behind-the-limb events.

The reported occurrences of type III bursts associated with the meter wavelength type II and/or type IV events have been listed. The intensity class is given and the time interval between the start of the meter wavelength type III burst, or the SA event, and the reported start of the type III activity. The annotation 'D' implies that the type III activity occurred during the meter type II or type IV burst. Nine of the IP type II events are not preceded within 25 mins by, or associated with, any type III activity. The statistics do not include single bursts (i.e. type IIIb) or ongoing storm activity. For an additional 4 events the type III activity commenced after the start of the type II burst and may be herringbone structure. Only one event is proceeded by intense type IIIG/V activity. This event occurred on July 23 1980, during Culgoora observing time and an examination of the data reveals the possible presence of two type II bursts. The first event occurred shortly after the type III/V burst. The second event commenced a few minutes later and is

the event which continued to kilometer wavelengths.

#### (iv) Coronal transients

As shown in table 2 there were less IP type II bursts in 1980 than in 1979 or 1981. None of the 37 events have been associated with a coronal transient observed by the SMM coronagraph. Conversely the P-78 coronagraph; which began operating in late March 1979, has observed many transients of which a number have been associated with IP type II events. We have indicated whether a transient was seen or not with 'Y'. The 'g' indicates a data gap. These gaps will be filled in as additional data is made available. From the comparison to date all but one IP type II event has a fast (velocity greater than 500 km/sec) transient associated with it. For one event, marked with a question mark, it is unclear whether a transient did occur. A study to determine the correlation between fast transients and IP type II bursts is underway.

#### (v) Energetic particles

In table 1 we have included the magnitude of the associated particle events. The data is the count rates from the >18 Mev/n detector onboard ISEE-3 (T.T. von Rosenvinge, private communication). Intensity classes 1,2,3 correspond to count rates greater than 1, 10, 100 counts/sec respectively. Thirty-two of the 37 events were associated with energetic particle events even though many of the flare sites were not well connected. For most western events the particle onset time is within an hour or two of the start of the solar activity. For some eastern events the delay is as long as 10 hours.

1.

#### ORIGINAL PAGE IS OF POOR QUALITY

Three events are considerably delayed (of the order of 24 hours) but have been associated with the solar event because of the absence of other candidate flares. These 'delayed events' are marked with a question mark.

In figure 3 we show the kilometer wavelength activity associated with particle events during a period of 4 months. The figure suggests that larger particle events can be associated with IP type II bursts whereas smaller events can usually be associated with an SA event not followed by an IP type II burst. The association of a particle event with an SA event allows unambiguous identification of the associated flare, because of the positional information obtained with the low frequency radio experiment.

#### (vi) Sudden commencements and shocks

Sudden commencements were associated with all category 1 events by definition and 11 of the category 2 events. Shocks were detected at ISEE-3 approximately 30 minutes before the SC. The radio astronomy experiment also detects the shocks in situ by the increase in the low frequency (LF) continuum (Hoang et. al, 1980) corresponding primarily to the increase in the ambient density at the spacecraft.

#### (vii) Transit velocities

The transit velocities of the shocks have been deduced from the time interval between the start of the event (in column 2) and the arrival of the shock at 1 AU as determined by the sudden commencement.

For the 22 category 1 events a mean transit time of approximately 2 days

and a mean transit velocity of 840 km/sec is obtained. With the inclusion of the 11 category 2 events followed by sudden commencements we find a mean transit velocity of 800 km/sec. The velocity distribution is shown in figure 4. No event had a transit velocity greater than 1100 km/sec (corresponding to a transit time less than 1.5 lays).

In figure 5 we show the distribution of transit velocities as a function of flare longitude. The dashed line shows the mean transit velocity for 6 ranges of longitude. The distribution in longitude is reasonably uniform. The in velocity of shocks from the limbs relative to those from near central meridian is at most 20%, suggesting that to a first approximation most shocks expand isotropically. Individual events may expand anisotropically such as the event of September 14, 1979. This event had a transit velocity of 440 km/sec. It was the last of 4 large flares from the same active region and thus the shock was propagating into a very disturbed corona. The intensity of the event at kilometer wavelengths was comparable to that from events with transit velocities near 900 km/sec. (We show in another paper that the intensity of an IP type II burst is a function of shock velocity). This suggests that radial above the flare site (E90) a transit velocity of the order of 900 km/sec would have been determined.

#### III. DISCUSSION

We have examined the correlations between IP type II bursts and other solar phenomena. IP type II bursts and SA events correlate well with energetic particle events and this is consistent with theoretical (Ramaty et al., 1980) and observational evidence (Gloeckler et al., 1976) which suggest that flare produced shocks are responsible for the production of solar cosmic rays.

The association of LDE's with white-light transients has been shown by Sheeley et al. (1975) and Kahler (1977). The association between coronal mass ejection events and proton events was shown by Kahler et al. (1978). The association between particle events and LDE X-ray events is discussed by 'Nonnast et al. (1982). Since the current models suggest that energetic particles are shock accelerated all the above phenomena i.e. transients, proton events and LDE X-ray events, should be associated with strong shocks. Strong shocks are confirmed by our associations of these phenomena with IP type II bursts.

11

The typical starting frequency of the fundamental of meter wavelength type II bursts is 7C-100 MHz (Kundu, 1965). An initial investigation of Culgoora dynamic spectra shows that the starting frequency of the meter wavelength burst associated with many of the IP type II events and the events producing an SA event alone, is probably well below 70 MHz. This result can be deduced from the observation of a number of SA events for which there was ap associated meter wavelength type II burst. The observation of an SA event at 2 MHz implies the presence of a shock at coronal heights below the 2 MHz plasma level. The type II burst from which the SA event originates must occur above 2 MHz. See Figure 1 for clarification. If no event is detected at meter wavelengths the type II burst must occur in the frequency range between 20 and 2 MHz. This means that for those SA events not associated with a meter wavelength type II burst, which includes about 30% of the events followed by an IP type II burst, the type II commenced below 20 MHz. This result suggests that the shocks which survive to the IP medium are formed high in the corona where presumably the absence of closed field lines facilitates their escape. The alternative possibility that the shocks are formed at lower heights but

12

## ORIGINAL PAGE IS OF POOR QUALITY

are not producing detectable radio emission seems less likely.

The SA events and IP type II bursts not associated with a meter wavelength type II burst are associated with a type IV burst. We suggest that the observation of a type IV burst is a good indicator of the presence of a shock and that if no meter wavelength type II burst is detected that a type II burst may have commenced below the lowest frequency available to ground based observers.

The standard sequence of events in a large flare is often illustrated as consisting of two distinct stages (Wild, Smerd and Weiss, 1963). A group of intense type III bursts is shown to occur within a few minutes of the start of the flare. These are followed about five minutes later by a type II and a type IV burst. As can be seen from table 1, the sequence of meter wavelength activity associated with the IP type II events is extremely varied. Although the type II/IV burst pair occurs about 50% of the time there are also events with type II and no type IV and vice versa. In addition the type III bursts can commune before or during the type II burst and are not always a separate entity. More importantly, for 9 events type III activity is completely absent. This complete absence of type III bursts was also noted by Svestka and Fritzova-Svestkova (1974) who studied the meter wavelength activity associated with large proton events. The idea of a standard sequence of events is misleading.

We interpreted the transit velocity distribution as a function of heliographic longitude as indicating that, on the average, interplanetary shocks propagate isotropically. This agrees with the results of Chao and

### OF POOR QUALITY

Lepping (1974) who found that "the average shock surface in the ecliptic plane near the earth's orbit lies on a circle centred at the sun with a radius of 1 AU". The fact that many of the shocks are detected at the earth and yet originate in regions far from central meridian, indicates the huge angular extent covered by such shocks. Essentially unambiguous associations can be made between shocks detected at or near earth and the responsible flare region because of the presence of the IP type bursts and the SA events.

Figure 2 suggests that there might be an E-W asymmetry in the location of flares associated with IP type II bursts. There were 15 events from sites east of E30 as against 9 events west of W30. We point out that because of the dependence of shock structure on the Archimedian spiral of the interplanetary magnetic field, we might expect any asymmetry to be in the eastern direction i.e. to favour eastern flares. The western portion of shocks are expected to have more highly compressed magnetic field than the eastern portion and to be well defined quasi-perpendicular shocks. This geometry has been invoked to explain the east-west asymmetry in the magnitude of forbush decreases (Barnden, 1973). However the sample of available events is too small to establish the statistical significance of this result as yet.

#### IV CONCLUSION

We have identified 37 IP type II bursts and listed the associated phenomena. The following results were obtained;

- 1. IP type II bursts are associated with meter wavelength type II and/or type IV bursts, intense LDE X-ray and energetic particle events and probably with coronal transients.
- 2. A number of events have no associated type III activity at meter wavelengths.
- 3. The starting frequencies of the associated meter wavelength type II bursts may be lower than average.

The unambiguous identification of shocks detected at 1 AU with a source location on the sun provides the following results;

- 4. The mean transit velocity of the more energetic solar shocks is 800 km/sec corresponding to a transit time of about 2 days.
  - 5. To a first approximation the shocks propagate isotropically.

We thank T. T. von Rosenvinge for providing ISEE-3 particle data,

R. Howard for making available P78-1 coronagraph data and R. T. Stewart for

sending Culgoora dynamic spectra. We are grateful to E. W. Cliver for a critical review of this paper.

#### REFERENCES

- Barnden, L. R. Proc. 13th Int. Cosmic Ray Conf., 1973, 2, 1277.
- Boischot, A., Riddle, A. C., Pearce, J. B., and Warwick, J. W. 1980, Solar Phys., 65, 397.
- Cane, H. V., Stone, R. G., Fainberg, J., Stewart, R. T., Steinberg, J. L. and Hoang, S. 1981, Geophys. Res. Lett., 8, 1285.
- Cane, H. V., Stone, R. G., Fainberg, J., Steinberg, J. L. and Hoang, S. 1982, Solar Phys., 78, 187.
- Chao, J. K. and Lepping, R. P. 1974, J. Geophys. Res., 79, 1799.
- Gloeckler, G., Sciambi, R. K., Fan, C. Y., and Hovestadt, D. 1976, Ap. J. (Letters), 209, L93.
- Hoang, S., Steinberg, J. L., Epstein, G., Tilloles, P., Fainberg, J. and Stone, R. G. 1980, J. Geophys. Res., 85, 3419.
- Kahler, S. 1977, Astrophys. J., 214, 891.
- Kahler, S., Hildner, E. and van Hollebeke, M. A. I. 1978, Solar Phys., 57, 429.
- Knoll, R., Epstein, F., Huntzinger, G., Steinberg, J. L., Fainberg, J., Grena, F., Mosier, S. R. and Stone, R. G. 1979, <u>IEEE Trans. Geosc. Electronics</u>, <u>GE-16</u>, 199.
- Kundu, M. R. 1965, Solar Radio Astronomy, Interscience, New York.
- Malitson, H. H., Fainberg, J. and Stone, R. G. 1973, Astrophys. Letters, 14, 111.
- Malitson, H. H., Fainberg, J. and Stone, R. G. 1976, Space Sci. Rev., 19, 511.

- Nonnast, J. H., Armstrong, T. P. and Kohl, J. W. 1982, <u>J. Geophys. Res.</u>, <u>87</u>, 4327.
- Pinter, S., Grigorieva, V. P., Kecskemety, K. and Kudela, K. 1982, Hungarian Academy of Sciences, KFK1-182-20.
- Ramaty, R., et al., 1980, in <u>Solar Flares</u>, ed. P. A. Sturrock (Boulder: Colorado Associated University Press), Chap. 4, 117.
- Roberts, J. A. 1959, Aust. J. Phys., 12, 327.
- Sheeley, N. R., Jr., Bohlin, J. D., Brueckner, G. E., Purcell, J. D., Scherrer, V. E., Tousey, R., Smith, J. B., Jr., Speich, D. M., Tandberg-Hanssen, E., Wilson, R. M., DeLoacn, A. C., Hoover, R. B., and McGuire, J. P. 1975, Solar Phys., 45, 377.
- Svestka, Z. and Fritzova-Svestkova, L. 1974, Solar Phys., 36, 417.
- Wild, J. P., Smerd, S. F., and Weiss, A. A., 1963, Ann. Rev. Astron. Astrophys., 1, 291.

# ORIGINAL PAGE IS

| Hone   Color   Hone   Hone |        |      |        |          |       |           | ۸.             | ATEC | -   | A. CATECONY I EVERTS |     |         | •                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|--------|----------|-------|-----------|----------------|------|-----|----------------------|-----|---------|-----------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •<br>: |      | Ξ      |          | 3     |           | =;             | =    |     | ?                    | 3   |         | ======================================= |
| HOV         10         6110         HIT E01         HZ         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DAT    |      | BTART  | POSITION | K-RAY | Ξ         | <sup>2</sup> ≥ | =    | ä   | F                    |     | 90      | TR.VEL.                                 |
| NOV         10         0110         NITY E01         NEQ Y         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BET    | 23   |        | MUS VEG  | XI Y  | a         | a              | a    | ac  | •                    | a   | 25/0718 | 950                                     |
| DEG         11         (19-6)         SIG W86         XI Y         -         3         -110         g         1         14-0127           AFM         32         (116)         XI         AF         -         3         -110         Y         2         05-0158           AFM         23         616         VIOO?         -         -         2         Y         2         05-0158           AULY         44         Y         -         -         2         Y         2         05-0158           JULY         44         1         4         Y         -         -         4         Y         -         24-2387           JULY         44         1         2         -         4         Y         -         24-2387           AUC         45         4         4         Y         -         2         3         -         4         7         -         24-2387           AUC         45         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4 </td <td>MOV</td> <td>•</td> <td>•</td> <td>HI7 E01</td> <td>Y 27</td> <td>a</td> <td>a</td> <td>1</td> <td></td> <td>•</td> <td>a</td> <td>12/0100</td> <td>870</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MOV    | •    | •      | HI7 E01  | Y 27  | a         | a              | 1    |     | •                    | a   | 12/0100 | 870                                     |
| AFM         63 # (6116)         S28 W14         H4 Y         -         2         W         P         Y         2         06/0158           AFM         23 # (116)         W1007         -         -         P         F         1 + 4D         Y         -         24/2387           JULY         4 # 1920         M11 E36         M2 Y         1         3         -         4         P         1 + 4D         Y         -         24/2387           JULY         4 # 1920         M11 E36         M2 Y         3         -         2         3         -         2         24/2387           AUG         16         17 E30         M3 Y         -         2         3         -         2         3         2         2         2         2         2         3         18/14         3         18/14         3         18/14         3         18/14         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DEG    | =    | (1949) | 816 V50  | XI Y  | •         | 6              |      | =   | •                    | -   | 14/0127 | 42                                      |
| AFM         23 s olfs         VIOOT         —         P         P         1 +4D         Y         —         24/2387           JULY         4 s 1920         HII E36         HZ Y         1         3         -         -         4         17         06/1930           AUG         10         1412         E907         K4 Y         3         -         -         6         17         06/1930           AUG         26         (1600)         H04 VII         K2 Y         -         2         3         -         -         2         20/0458           SEPT         14         600         H04 VII         K2 Y         -         2         -         2         -         2         -         2         -         -         20/0458         -         -         20/0458         -         -         -         -         20/0458         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< td=""><td></td><td></td><td>_</td><td>625 VI+</td><td>H4 Y</td><td>•</td><td>a</td><td>&gt;</td><td>۵</td><td>&gt;</td><td>64</td><td>05/0155</td><td>828</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |      | _      | 625 VI+  | H4 Y  | •         | a              | >    | ۵   | >                    | 64  | 05/0155 | 828                                     |
| JULY         + 1926         HII E36         H2 Y         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | APA    | 23   |        | VI 007   |       | •         | ۵.             | -    | ę   | >                    | 1   | 24/2367 | :                                       |
| AUG         18         1412         E907         K6 Y         3         -         K         3         -         K         3         20,0628           AUG         26         (1800)         M03 VII         K2 Y         -         2         -         3         -         3         20,0439           SEPT         14         0700         E907         K2 Y         -         2         -         2         -         3         20,0439           SEPT         14         0700         E907         K2 Y         -         2         -         2         -         3         10,0436           JULY         15         0530         M19         E60         M9         7         -         2         2         -         -         10,0436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         10,1436         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JULY   | ï    |        | N11 E36  | 7 2   | -         | a              | ,    |     | •                    | 2   | 06/190  | A70                                     |
| AUG         26         (1800)         MOS         VII         X2         Y         2         -050         Y         2         290-0459           SEPT         14         0700         E907         X2         Y         2         -27         6         0         10.0546           JULY         17         6540         B11 E06         M6         7         -2         2         0         6         0         0         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546         10.0546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AUG    | =    | 14.2   | E907     | X6 Y  | n         | 0              | 1    |     | *                    |     | 20/0625 | 930                                     |
| SEPT 14         O706         E907         N2 Y         0         -         2         -37         g         10,00546           JULY 17 # (0548)         811 E06         H6 7         -         2         0         p         6         0         10,1052           JULY 23         0100         819 E20         H6 7         -         2         0         -         1         6         0         10,1052           JULY 23         0100         819 E20         H6 7         -         2         0         -         1         6         0         10,1192           JULY 23         0100         819 E20         H6 7         H6 7         1         1         1         1         2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AUG    | 36   | (1800) | HOS VII  | X2 Y  | •         | 64             |      | 988 | >                    | CS. | 29/0459 | 700                                     |
| JULY         23         10         6         6         10         61         EO         10         6         10         6         10         6         10         6         10         6         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SEPT   | •    | 0020   | E907     | X2 Y  | 6         | ı              | 4    | 37  |                      | a   | 10/0546 | ÷                                       |
| JULY 23         6160         619 E20         H9 7         2         2         4         6         1         25/1111           OCT         15         0533         H19 E54         H2 7         2         2         3         -4         6         3         16/0114           NOV         22         0554         H2 7         H2 7         F         -         2         -3         -6         F         -         24/2257           AFR         01 8         613 W52         H2 Y         7         2         3         -6         F         -         24/2257           AFR         24         138         614 W50         K3 Y         3         -6         F         7         2         24/2257           AFR         24         138         634         H3 Y         1         2         -1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td>JULY</td> <td>-</td> <td></td> <td>811 E06</td> <td>M6 7</td> <td>•</td> <td>64</td> <td>n</td> <td>•</td> <td>•</td> <td>o</td> <td>10/1925</td> <td>9</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JULY   | -    |        | 811 E06  | M6 7  | •         | 64             | n    | •   | •                    | o   | 10/1925 | 9                                       |
| OCT         16         0523         N19         E64         H2 7         2         4         4         -12D         g         2         18/216           NOV         22         0564         817         E40         N2 7         7         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JULY   | 23   | 0010   | 819 E20  | H9 7  | 64        | 81             |      | •   | •                    | -   | 25/1111 | 716                                     |
| NOV         22         6864         817 E40         W3 Y         P         -         2         -3         6         F         -         24/2267           AFR         24         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **         61 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OCT    | 2    | 0239   | NI 9 E64 | H2 7  | a         | >              | >    | 120 | •                    | C1  | 18/0114 | ;                                       |
| AFM         24         136         M14 M50         M23 Y         2         2         2         2         2         5         4         2         03/0347           AFM         24         1365         M14 M50         K6 Y         3         -10         6         3         -10         6         3         26/06012           MAY         13         6         323         M09 E42         M7 Y         -         1         1         M         Y         2         10/2208           MAY         13         6         30         1         1         1         M         Y         1         14/1056           MAY         16         0025         M10 E16         M1 Y         -         1         1         M         Y         1         1/1056           AUG         7         16         1         1         1         1         1         1/1056         1         1/1056           AUG         7         2259         613 E96         M4 Y         -         3         1         1         -         3         10/1054           AUG         12         0627         817 E30         M7 Y         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 22   | 9224   | 8:7 E40  | Y 5.  | 2         | 1              | 4    |     | •                    | 1   | 24/2267 | 3                                       |
| 24         1358         N14 W50         X5 Y         3         3 - 1D         6         3         26/0012           10         2233         N09 E43         H7 Y         1         2         -         Y         2         10/2308           15         00.25         N10 E16         X1 Y         -         1         1         B         Y         1         1/1056           16         00.25         N10 E16         X1 Y         -         1         1         1         1         1         1/1056         1         1/1050         1         1/1050         1         1/1050         1         1/1050         1         1/1050         1         1/1050         1         1/1050         1         1/1050         1         1/1050         1         1/1050         1         1/1050         1         1/1050         1         1/1050         1         1/1050         1         1/1050         1         1/1050         1         1/1050         1         1/1050         1         1/1050         1         1/1050         1         1/1050         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AFR    | -    | 0130   | 843 V63  | X3 Y  | <b>c1</b> | a              | 4    |     | <b>&gt;</b>          | M   | 03/0347 | 900                                     |
| 00         2233         NO9 E43         H7 Y         1         2         -         Y         2         10/2308           13 * 0347         N12 E66         X1 Y         -         1         1         D         Y         1         1/1050           16 * 0028         N10 E16         X1 Y         2         3         3         -14         g         3         1/22302           07 * (1904)         810 E24         N4 Y         -         3         3         -3         g         27         16/0434           07 * 2289         813 E96         X4 Y         3         1         1         -3         g         3         16/1434           12 * 0627         817 E30         X3 Y         3         -         g         3         10/1434           27 * 0231         813 E16         G7 Y         -         2         1         -5         g         3         29/0455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 24   | 1355   | HI4 V50  | XS Y  | a         | e              |      | 9   |                      | 0   | 26/0812 | 9.0                                     |
| 13 * 0357         N12 Euß         X1 Y         -         1         D         Y         1         14/1056           16         0025         N10 E16         X1 Y         2         3         -14         g         3         17/2302           07 * (1904)         S10 E34         N4 Y         -         3         -1         g         27         16/0434           07         2259         B13 E90         X4 Y         3         1         1         -3         g         3         16/1434           12         0627         B17 E30         X3 Y         3         3         -         g         3         10/2241           27         0231         B13 E16         G7 Y         -         2         1         -5         g         3         29/0458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 00   | 2233   | N09 E43  | Y 7H  | -         | a              | ,    |     | >                    | M   | 10/2208 | <b>070</b>                              |
| 16         00.25         NI D E16         XI Y         2         3         -14         g         3         -15         g         3         17/2302           07 ** (1904)         \$10 E34         \$14 Y         -         3         3         -3         \$2         27         16/0434           07         \$2259         \$13 E90         \$X4 Y         3         1         1         -3         \$\$\$         3         16/1434           12         \$0627         \$17 E30         \$X3 Y         3         3         -         \$\$\$\$         3         13/2241           27         \$0.251         \$1 E3         \$\$\$\$\$\$         \$\$\$\$\$         \$\$\$\$\$         \$\$\$\$\$         \$\$\$\$\$         \$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      |        | N12 E50  | XI Y  | ı         | -              | _    | a   | <b>&gt;</b>          | -   | 14/1056 | 9901                                    |
| 07 * (1904)     810 E24     H4 Y     -     3     3     -3     £     27     10/0434       07     2259     813 E90     X4 Y     3     1     1     -3     £     3     10/1434       12     0627     817 E30     X3 Y     3     -     £     3     13/2241     1       27     0231     813 E16     C7 Y     -     2     1     -6     £     2     29/0455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAY    | •    | 0025   | N10 E16  | X X   | 4         | 6              |      | :   | •                    |     | 17/2302 | 1000                                    |
| 67     2259     813 E90     X4 Y     3 1     1 -3     g     3 16/1434       12     0627     817 E30     X3 Y     3 3 -     g     3 13/2241     1       27     0251     813 E16     G7 Y     -     2 1 -6     g     2 29/0455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | * 20 |        | S10 E34  | 7 ¥   | 1         | 63             |      | 6   | •                    | 23  | 16/0434 | 730                                     |
| 12 0627 817 E30 X3 Y 3 3 - g 3 13/2241<br>27 0251 813 E16 C7 Y· - 2 1 -5 g 2 29/0455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 20   | 2259   | 813 E90  | X4 Y  | e         | -              | -    |     |                      | a   | 16/1434 | 650                                     |
| 27 0251 813 E16 C7 Y 2 1 -6 6 2 29/0455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DCT    | 2    | 0627   |          | X3 Y  | c         | c              | ,    |     |                      | 7   | 13/2241 | 1030                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 27   | 0251   | 813 E16  | C7 Y. | •         | a              | _    | 10  | •                    | 63  | 29/0455 | 000                                     |

|      |             |     |        |         |                   |           |             |    |       |    |             | E EVEN |          | 1       |         |
|------|-------------|-----|--------|---------|-------------------|-----------|-------------|----|-------|----|-------------|--------|----------|---------|---------|
|      |             |     | •      |         | .*                | Ξ         |             |    | ; = ; | =  |             | (11)   | 3        | 3       | 3       |
|      | 1           |     | erant. |         | FLARE<br>FOSITION | K-RAY     |             | =  | ₹ ≥   | =  | ¥           | F      | _        | 99      | TR.VEL. |
| 020  | -           | , 7 | 87.18  |         | E67               | ¥3        | <b>&gt;</b> |    |       | •  | -20         | •      | -        | 04/0047 | 630     |
|      | 18.4        |     | 9      | K16 E59 | 200               |           |             | ej | -     | 4  | + 50        | •      | -        | 18/6304 | • •     |
| :    | 1           | : = |        | 823 E68 | 260               | ×         |             | 61 | 1     | ч  | -2B         | •      | •        | 04/0445 | 620     |
|      | ¥           | 6   | 1027   | 7 III   | N17 E00           | ×         |             | n  | •     | •  | -65         | •      | -        | ı       |         |
|      | HAR         | =   | 1058   | 824     | 824 V76           | Ŧ         | =           | a  | ï     | a  | <b>8</b> 1- | •      | •        | 15/0556 | 974     |
|      | AUG         | 92  | 8160   | MON     | NOS E77           | ğ         | <b>&gt;</b> | a  | -     | ea | =           | •      | -        | 1       |         |
| 1980 |             |     | 1 503  | N27     | N27 V35           | 20        | <b>&gt;</b> | G  |       | 1  |             | >      | <b>a</b> | 06/1059 | 920     |
|      | NON         |     | 1729   | =       | 811 V69           | Z         | =           | es | 64    | O  | Ģ           | •      | -        | 14/1153 | 636     |
|      | 20%         |     | 1040   | Z.      | N13 V23           | 덫         | >           | n  | 63    | a  | 6           | >      | ~        | 26/0422 | 410     |
|      | <b>M</b> 0V | 28  | (0920) | 813     | 813 E62           | 7         | <b>&gt;</b> | 1  | 64    | 8  | ۵           | •      | -        |         |         |
| =    | 1901 AFR    | 9   | (1130) | H 2     | N12 V74           | ×         | <b>~</b>    | 1  | a     | -  | †           | •      | -        | •       |         |
|      | HAY         |     | 0014   | M20     | N20 E32           | H2 7      |             | 6  | 1     | 64 | 1           | •      | 1        | 16/0532 |         |
|      | 201         |     | 1243   | ~       | ~                 | H 2       | ~           | ct | 1     | 1  |             | •      | •        | 11/1238 | 870     |
|      | NOV         |     | 0729   | Z       | 2 V21             |           | ~           | -  | -     | 1  |             | •      | -        | 25/0229 |         |
|      | 334         |     |        | 2       | 9 7               | H 2       |             | 1  | a     | 1  |             | •      | 61       | 12/0144 |         |
|      |             |     |        | -       |                   | - Control |             |    |       |    |             |        |          | 1       | ļ       |

TABLE 2

# PLARE DISTRIBUTION

A. CATEGORY I

|   |                   | • | •        |          | •       | •        | •        | <b>8</b> |               | Total           | 8        | •        | •        | •        | <b>-</b> |          |         | =     |
|---|-------------------|---|----------|----------|---------|----------|----------|----------|---------------|-----------------|----------|----------|----------|----------|----------|----------|---------|-------|
|   | 1961              | - | •        | •        | •       | •        | •        | •        |               | 1861            | ı        | •        |          | a        |          | •        | -       | •     |
|   |                   | • | •        | ,        | 1       | 1        |          | •        | B. CATECORY 2 | 9061            | ı        | -        | •        | -        | -        | -        |         | •     |
| : | 1970              | " | -        | ,        | n       | •        | -        | •        |               | 1979            | <b>a</b> | a        | •        | •        | •        | -        |         | •     |
| ; | 1978              |   | 1        | -        | •       | •        | •        | •        |               | 8261            | ı        | -        | 1        | 1        | ı        | 1        |         | -     |
|   | Long   tude range | ; | E60 - 91 | E30 - 01 | VO - 30 | N31 - 60 | V61 - 90 | 70101    |               | Longitude range | E30 - 61 | E60 - 31 | E30 - 01 | W66 - 30 | 09 - ICA | 06 - 19A | Unknova | 10101 |

ORIGINAL PAGE IS OF POOR QUALITY YHEALE POOR TO Figure 1. A schematic representation of the relationship between meter wavelength type II activity with herringbone structure and the activity observed at kilometer wavelengths. Only the long wavelength elements of the herringbone structure are shown (from Cane et al., 1981).

Figure 2. Histograms of the distribution of flare longitudes of the flares associated with the IP type II bursts.

Figure 3. Count rate of the >18 Mev/nucleon detector on ISEE-3 (courtesy of T. T. von Rosenvinge). T. occurrences of IP type II bursts and SA events are indicated.

Figure 4. Histogram of the distribution of transit velocities of the shocks associated with the LF type II events.

Figure 5. Shock transit velocities shown as a function of the longitude of the associated flare.





ORIGINAL PAGE IS OF POOR QUALITY







#### LONG PERIODIC TERMS IN THE SOLAR SYSTEM

#### P. Bretagnon

(NASA-TH-76994) LONG PERICDIC TERMS IN THE SOLAR SYSTEM (National Aeronautics and Space Administration) 26 p HC A 03/HF A 01 CSCL 03B

N83-17434

Unclas G3/90 08205

Translation of "Termes à longues périodes dans le système solaire", Astronomy and Astrophysics, Vol. 30, No. 1, Jan. 1974, pp. 141.154.



| EASA TM -76904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | enter 2 Fe and to the                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LONG PERIODIC TERMS IN THE SOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AR June 1982                                                                                                                                                                                                                                                                                                                                             |
| SYSTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | f following for personal tree                                                                                                                                                                                                                                                                                                                            |
| 7. Author(s) P. Bretagnon, Bureau des Longi                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tudes                                                                                                                                                                                                                                                                                                                                                    |
| Observatoire, Paris, France                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13. York Dail No                                                                                                                                                                                                                                                                                                                                         |
| 1. Periors of Organization Name and Address Leo Kanner Associates                                                                                                                                                                                                                                                                                                                                                                                                                                             | NASW-3541                                                                                                                                                                                                                                                                                                                                                |
| Redwood City, California 94063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                          |
| 12 Spensoring Agency Name and Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Translation                                                                                                                                                                                                                                                                                                                                              |
| National Aeronautics and Space tration, Washington, D.C. 2054                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          |
| 15. Supplementary Nation Translation of "Termes à longue                                                                                                                                                                                                                                                                                                                                                                                                                                                      | es périodes dans le quetème                                                                                                                                                                                                                                                                                                                              |
| solaire", Astronomy and Astrophysic pp. 141-154                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (A74-21142)                                                                                                                                                                                                                                                                                                                                              |
| in the solar system are studied solution is calculated and then long period terms with fourth of ations are introduced into the ond approximation was made taking period terms' contribution, name first order with respect to the was paid to the determination of the relative importance of is shown. It is useless for experiod terms of fifth order if the short period terms. Meanwhold neglected would not introduce a constants. Even so, the calculation of the constants of the short period terms. | rder escentricities and inclin- perturbation function. A sec- ng into account the short ely the perturbations of masses. Special attention f the integration constants. the different contributions ample to introduce the long no account has been taken of ile, the terms that have been arge changes in the integration ation should be repeated with |
| 17. 5 By Class Supt this repair the Section Conse                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 15 15 15 15 2 15 15 2 15 2 15 2 15 2                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                          |

#### LONG PERIODIC TERMS IN THE SOLAR SYSTEM

P. Bretagnon
Bureau des Longitudes, Observatoire
17, rue E. Deutsch de la Meurthe
F-75014 Paris, France

Received June 27, 1973

/141\*

SUMMARY [English language summary from the original text]

We have studied the long period variations of the eight planets of the solar system (Pluto is excluded). We first calculated the Lagrange solution. We then introduced the long period terms of fourth order in excentricities and inclinations in the disturbing function. In a second approximation we took into account the contribution of the short period terms which provide the perturbations of the first order with respect to the masses. We have paid special attention to the problem of the determination of the integration constants.

We began with the expansion of the disturbing function R [formula (1)]. We used the variables  $h = e \sin \varpi$ ,  $K = \cos \varpi$ ,  $p = \sin \frac{i}{2} \cos \Omega$ ,  $q = \sin \frac{i}{2} \cos \Omega$  and obtained expression (3) for the disturbing function and the equations of Lagrange (4).

In the Lagrange method, one retains only the second order terms of the quantities h, k, p, q of the so called long period part of the disturbing function. The resolution of the system of differential equations thus obtained gives the solution of Lagrange (5). The corresponding integration constants are given in Tables 2, 3, 4 and 5.

We later introduced the long period terms of the disturbing function, of fourth order in the quantities h, k, p, q. These terms give rise to third order terms in the Eq. (6) for the variables  $h_{\bf u}$ , for example. We then substitute rumerically the Lagrange solution

<sup>\*</sup>Numbers in the margin indicate pagination in the foreign text.

in these third order terms and hence obtain the form (8) of the equation for  $dh_{_{11}}/dt$ .

In a second approximation, we also introduced the short period terms of the disturbing function. The masses are substituted numerically and the terms thus found are indentical in form to those arising from long period terms of fourth order of the disturbing function and are directly added to the Eq. (8).

To solve the systems of Eq. (8) and (9), we used the Krylov-Bogolioubov method, which consists in seeking a solution of the form (11) with a modification of the frequencies given by (12). Through (12) and derivation of (11) we obtain (13). In addition, the substitution of (11) into (8) and (9) gives (14), so that we get the two expressions (13) and (14) for  $dh_u/dt$  and  $dk_u/dt$ ; their third order parts are given in (15) by identification. It is then possible to determine the quantities  $M_u, \psi, \theta$ ,  $N_u, \psi, \theta$ ,  $N_u$ 

The solutions are given by (16) and (17) and in Tables 8 to 13.

The comparison between Tables 3 and 8 shows that the integration constants have been greatly modified, particularly for the planets Mercury, Venus, Earth and Mars. This is due to the importance of third order terms for these planets. Table 9 gives the modifications  $B_i$  and  $C_i$  of the frequencies as well as the new values of these frequencies:  $\tilde{g}_i = g_i + B_i$ ;  $\tilde{s}_i = s_i + C_i$ . Tables 10 and 11 show the amplitude of the Lagrange solution calculated with the new constants; Tables 12 and 13 show the amplitudes  $M_{u,\psi,\tau}$  and  $N_{u,\psi,\theta}$  of the arguments of higher order.

This work displays the relative importance of the different contributions: it is, for example, useless to introduce the long period terms of fifth order if one has not taken into account the short period terms. We have included the major contributions; the neglected terms would not introduce large modifications of the

constants of integration. However, the calculation should be repeated including long period terms of fifth order and short period terms of higher order.

Key words: planetary theory, secular perturbations

There have been several studies of long period terms in the solar system. Stockwell, Harzer (1895), Hill (1897), and more recently Brouwer and van Woerkom (1950) and Anolik et al. (1969).

Brouwer and van Woerkom calculated the Lagrange solution for the eight planets and in particular investigated the Jupiter-Saturn case. This was a continuation of the work of Hill, who had determined a mean perturbation function on the basis of Le Verrier's findings. Brouwer and van Woerkom used this perturbation function, which had been extended to sixth order excentricities and inclinations, for Jupiter-Saturn. It is difficult, however, to determine the accuracy of their result because Hill empirically established some of the coefficients.

Anolik et al. dealt with the eight planet case by introducing all the perturbation function's long period terms up to fourth order excentricities and inclinations.

Our goal was to evaluate the significance of the various long period terms according to their origin. We too dealt with only the eight planet problem. Pluto was neglected for several reasons. First of all, the generally accepted mass of Pluto, which previously had been 1/360,000 the solar mass, is now 1/1,8000,000 with a large uncertainty:

$$\frac{m_{\odot}}{m_{p}} = 1\,800\,000 \pm 600\,000\,.$$

Moreover, Pluto's radius vector can be less than Neptune's, with the result that expansions in  $\alpha$ , the ratio of semimajor axes, of the perturbation function, are no longer convergent. Finally, the introduction of Pluto's influence causes the appearance of very large resonances between Neptune and Pluto whose physical character is

/142

unclear.

Lastly, we calculated the eight planet Lagrangian solution and then introduced the perturbation function's fourth order terms as well as the contribution of the hort period terms of first order with respect to the masses. In addition, we particularly concentrated on the problem of determining the integration constants because of the significance of the terms modifying the Lagrangian solution.

The expansions of perturbation function R that we used are those constructed by Chapront at the Bureau des Longitudes. They take the fomr of analytical expansions in e and sin i/2, where e represents the excentricity and i the inclination of the orbital plane relative to the plane of origin.

$$R = \sum_{r,s,t,u,j} Q(x)e_{l}^{r}e_{E}^{s} \times \left(\sin\frac{i_{l}}{2}\right)^{t} \times \left(\sin\frac{i_{E}}{2}\right)^{u}\cos\phi_{j}$$
 (1)

with

$$\Phi_j = j_1 \lambda_I + j_2 \lambda_E + j_3 \sigma_I + j_4 \sigma_E + j_5 \Omega_I + j_6 \Omega_E ,$$

 $\lambda$  being the planet's longitude,  $\overline{\omega}$  the argument of the perihelion, and  $\Omega$  the argument of the node. The subscript I refers to the inside planet and E to the outside one. The perturbation function's long period portion is that part for which  $\lambda_{\rm I}$  and  $\lambda_{\rm E}$  are absent, i.e. in which  ${\rm j}_1={\rm j}_2=0$ . The summation with respect to the small quantities  ${\rm e}_{\rm I}, {\rm e}_{\rm E}, \sin {\rm i}_{{\rm I}/2}, \sin {\rm i}_{{\rm E}/2}$  is done starting with zero order terms and then 2, 3,...

The orbit's descriptive elements (the semimajor axis a, the excentricity e, the inclination i, the node argument  $\Omega$ , and the perihelion argument  $\Xi$  are those of Newcomb. These elements are expressed relative to the 1850.0 ecliptic averaged over short periods, which will serve as our point of departure (t = 0 for 1850.0) in determining the integration constants of the sought after solutions. Also, we used more recent values for the masses of Venus, Earth, Mars, and Saturn than the ones Newcomb used.

The mean motions n, are the average observed values. The semi-

major axes  $a_1$  are related to the values of  $n_1$  by the expression  $n_1^2a_1^3=$  constant. Now, we need for the mean motions values from which the secular perturbations have been removed. We therefore calculated the secular perturbations  $\delta n$  on the basis of Chapront's and Simon's work concerning the construction of planetary theory with secular terms.

In the end, we used for each planet the value n of the mean motion defined by:

$$n = n_1 - \delta n$$

and the value a of the semimajor axis obtained by  $n^2a^3 = constant$ .

We have assembled the elements adopted for the eight planets in Table 1.

Table 1
Planetary Elements for 1850.0

| Planet   | <b>a</b> 1 ("/yr) | a ("/yr)       | ni (AU)      | n· (AU)      | ·          | П            | i           | Ω                  | m <sub>ij</sub> m |
|----------|-------------------|----------------|--------------|--------------|------------|--------------|-------------|--------------------|-------------------|
| Mercury  | 5381016.3893      | 5381023.1732   | 0.3870986713 | 0.3870983460 | 0,20560396 | 75 07 19:37  | 7 00'07',00 | 46 33 12,24        | 60(K)(KK)         |
| · Vėnus  | 2106641.4171      | 2106651,7631   | 0.7233322169 | 0.7233298487 | 0.00684458 | 129 27 34.5  | 3 23 35.26  | 75 19 47.41        | 408 500           |
| Earth    | 1 295 977,4496    | 1 295 975.6094 | 1,000000021  | 1.000000968  | 0,01677126 | 100 21 36,30 | 0           |                    | 328900            |
| Mars     | 689050.9354       | 689059.2817    | 1.5236914428 | 1.5236791387 | 0.09326685 | 333 17 52,37 | 1 51 02.42  | <b>48</b> 24 03,40 | 3099000           |
| Jupiter  | 109 256.63954     | 109 263.05033  | 5.202803945  | 5.202600424  | 0,04825382 | 11 54 26,72  | 1 1841,81   | 98 55 58,16        | 1047.35           |
| Saturn   | 43996,20414       | 43885.62112    | 9.538843653  | 9.554827367  | 0.05606075 | 90 06 39.53  | 2 29 39.26  | 112 20 51.38       | 3.498             |
| 1 Uranus | 15426.0928        | 15384,0851     | 19.18228185  | 19.21710613  | 0.0469055  | 168 15 46.9  | 0 46 20.54  | 73 14 08.0         | 22869             |
| Nertune  | 7864.698          | 7843.328       | 30.057342    | 30.111791    | 0.0085082  | 43 19 43,7   | 1 47 01.81  | 130 08 00.2        | 19314             |

[Commas in tabulated material are equivalent to decimal points.]

We chose the following variables to analyze our problem:

$$h = e \sin \sigma$$
,  $p = \sin \frac{i}{2} \sin \Omega$ , (2)  
 $k = e \cos \sigma$ ,  $q = \sin \frac{i}{2} \cos \Omega$ .

This choice was made in order to avoid the appearance of quantities expressed in e and i in the denominators of the Lagrangian equations. Such quantities could cancel each other out. In addition, this is necessary for the resolving process because in this way the solutions are expressed formally through the use of these variables and, in the

<u>/143</u>

algorithm of solution's construction, the second members always retain the same polynomial form.

The change in variables defined by (2) yields in the perturbation function in form (1) an expression of the form:

$$R = \Sigma S(\alpha) h_1^{r_1} h_E^{r_2} k_1^{r_1} k_E^{r_2} p_1^{r_1} p_E^{r_2} q_1^{r_1} q_E^{r_2} \cos(i_1 \lambda_1 + i_2 \lambda_E)$$
(3)

where the summation is extended to such exponential values that  $r_1 + r_2 + s_1 + s_2 + t_1 + t_2 + u_1 + u_2 \le 0$ , where  $\omega$  is the order at which it is desired to limit the calculations.

For the variables defined in (2) the Lagrange equations are written:

$$\frac{dh}{dt} = \frac{(1 - e^2)^{1/2}}{na^2} \frac{\partial R}{\partial k} - \frac{h(1 - e^2)^{1/2}}{na^2[1 + (1 - e^2)^{1/2}]} \frac{\partial R}{\partial \lambda} + \frac{kp}{2na^2(1 - e^2)^{1/2}} \frac{\partial R}{\partial p} + \frac{kq}{2na^2(1 - e^2)^{1/2}} \frac{\partial R}{\partial q}$$

$$\frac{dk}{dt} = -\frac{(1 - e^2)^{1/2}}{na^2} \frac{\partial R}{\partial h} - \frac{k(1 - e^2)^{1/2}}{na^2[1 + (1 - e^2)^{1/2}]} \frac{\partial R}{\partial \lambda} - \frac{hp}{2na^2(1 - e^2)^{1/2}} \frac{\partial R}{\partial p} - \frac{hq}{2na^2(1 - e^2)^{1/2}} \frac{\partial R}{\partial q}$$

$$\frac{dp}{dt} = \frac{1}{4na^2(1 - e^2)^{1/2}} \frac{\partial R}{\partial q} - \frac{p}{2na^2(1 - e^2)^{1/2}} \frac{\partial R}{\partial \lambda} - \frac{pk^2}{2na^2(1 - e^2)^{1/2}} \frac{\partial R}{\partial h} + \frac{ph}{2na^2(1 - e^2)^{1/2}} \frac{\partial R}{\partial k}$$

$$\frac{dq}{dt} = -\frac{1}{4na^2(1 - e^2)^{1/2}} \frac{\partial R}{\partial p} - \frac{q}{2na^2(1 - e^2)^{1/2}} \frac{\partial R}{\partial \lambda} - \frac{qk}{2na^2(1 - e^2)^{1/2}} \frac{\partial R}{\partial h} + \frac{qh}{2na^2(1 - e^2)^{1/2}} \frac{\partial R}{\partial k}$$

$$\frac{1}{a} \frac{da}{dt} = \frac{2}{na^2} \frac{\partial R}{\partial \lambda}$$

$$\frac{d\lambda}{dt} = n - \frac{2}{na} \frac{\partial R}{\partial a} + \frac{(1 - e^2)^{1/2}}{na^2[1 + (1 - e^2)^{1/2}]} \left(h \frac{\partial R}{\partial h} + k \frac{\partial R}{\partial k}\right) + \frac{1}{2na^2(1 - e^2)^{1/2}} \left(p \frac{\partial R}{\partial p} + q \frac{\partial R}{\partial q}\right)$$

where  $e^2 = h^2 + k^2$ .

1

#### LAGRANGIAN METHOD

For a planet of subscript u perturbed by the seven other planets of subscript v, the perturbation function is written:

$$\bar{R}_{u} = \sum_{r < u} \mu \frac{m_{r}}{a_{u}} \bar{R}_{ur} + \sum_{r > u} \mu \frac{m_{r}}{a_{r}} \bar{R}_{ur}$$

The first summation is extended to the planets inside the one under consideration, the second to the planets outside. We use the following notation:

$$\overline{R}_{ij} = a_j/\Delta$$
 ( $\Delta$  = distance of the two planets)

and

1

$$\mu = \frac{n_u^2 a_u^3}{1 + m_u} = \frac{n_v^2 a_v^3}{1 + m_v}.$$

Limited to the second order,  $\overline{R}_{uv}$  has the following expression:

/144

$$\begin{split} \overline{R}_{uv} &= C_{uv} + A_{uv} (h_u^2 + k_u^2 + h_v^2 + k_v^2) - 4A_{uv} (p_u^2 + q_u^2 + p_v^2 + q_v^2) \\ &+ B_{uv} (k_u k_v + h_u h_v) + 8A_{uv} (q_u q_v + p_u p_v) \end{split}$$

where  $C_{uv}$ ,  $A_{uv}$ ,  $B_{uv}$  are functions of  $\alpha_{uv} = a_u/a_v$ , which is constant here. We thus obtain, with the notation:

$$[u,v] = \frac{n_u x_{uv} m_v}{1 + m_u} \quad \text{if} \quad v > u \,,$$

$$[u,v] = \frac{n_u m_v}{1 + m_u} \quad \text{if} \quad v < u \,,$$

$$\frac{dh_u}{dt} = + \sum_{v \neq u} [u,v] (2A_{uv} k_u + B_{uv} k_v) \,,$$

$$\frac{dk_u}{dt} = - \sum_{v \neq u} [u,v] (2A_{uv} h_u + B_{uv} h_v) \,,$$

$$\frac{dp_u}{dt} = - \sum_{v \neq u} [u,v] (2A_{uv} q_u - 2A_{uv} q_v) \,,$$

$$\frac{dq_u}{dt} = + \sum_{v \neq u} [u,v] (2A_{uv} p_v - 2A_{uv} p_v) \,.$$

This system is written in matrix form as:

$$\frac{dH}{dt} = E \times K, \quad \frac{dK}{dt} = -E \times H,$$

$$\frac{dP}{dt} = I \times Q, \quad \frac{dQ}{dt} = -I \times P,$$

where H is the column vector with components  $(h_{Me}, h_V, \ldots, h_N)$ , K the column vector  $(k_{Me}, k_V, \ldots, k_N)$ , P the column vector  $(p_{Me}, p_V, \ldots, p_N)$ , and Q the column vector  $(q_{Me}, q_V, \ldots, q_N)$ . The subscripts Me, V, ..., N represent Mercury, Venus, ..., Neptune, respectively. E and I are the matrices of the linear systems in excentricities and inclinations respectively.

The conventional resolution of the two Lagrangian systems gives the eigenvalues:

$$g_i$$
,  $i = 1, 2, ..., 8$  for the excentricities;  $s_i$ ,  $i = 1, 2, ..., 8$  for the inclinations.

One of the eigenvectors in the system of inclinations in zero. We will assume  $s_5 = 0$ .

We determine the eigenvalues  $\lambda_{ij}$  associated with g, and  $\mu_{ij}$  associated with s, which gives the Lagrangian solution:

$$h_{i} = \sum_{j=1}^{8} \lambda_{ij} M_{j} \sin(g_{j}t + \beta_{j})$$

$$k_{i} = \sum_{j=1}^{8} \lambda_{ij} M_{j} \cos(g_{j}t + \dot{\beta}_{j})$$

$$p_{i} = \sum_{j=1}^{8} \mu_{ij} N_{j} \sin(s_{j}t + \delta_{j})$$

$$q_{i} = \sum_{j=1}^{8} \mu_{ij} N_{j} \cos(s_{j}t + \delta_{j}).$$
(5)

Lastly, we calculate the 32 constants of integration M ,  $\beta$  , N ,  $\delta$  , from the values of h, k, p, q at t = 0.

We have assembled the eigenvalues g and s in Table 2, and in Table 3 we show the 32 constants of integration M,  $\beta$ , N,  $\delta$ . Lastly, Table 4 gives the amplitudes of the Lagrangian solution multiplied by  $10^8$ :  $\lambda_i M_i \times 10^8$  for the excentricities, and similarly in Table 5,  $\mu_i N_j \times 10^8$  for the inclinations. Frequencies g and s are expressed in seconds per year.  $\lambda_{ih}$ ,  $\mu_{ij}$ ,  $M_j$ ,  $N_j$  are dimensionless numbers.

Table 2
Frequencies in "/yr
(Lagrangian Solution)

Table 3
Constants of Integration
(Lagrangian Solution)

/145

| HY.  | 9           | 5          | <u>i</u> | М          | β            | N          | δ            |
|------|-------------|------------|----------|------------|--------------|------------|--------------|
| -    | + 5.461369  | - 5.199958 | 1        | 0.18141040 | 87 11:11:37  | 0.06274851 | 18 15'28".76 |
| 2    | + 7.346581  | 6.5~1387   | 2        | 0.01909712 | 192 40 29,79 | 0,00506380 | 316 20 04.81 |
| 3    | +17,331295  | -18.746205 | 3        | 0,01056860 | 332 56 51,67 | 0.01222166 | 254 17 05.60 |
|      | + 18.004584 | -17.636111 | 4        | 0.07300403 | 316 06 34.81 | 0.02519918 | 295 40 38.75 |
| Stin | + 3.711401  | 0          | 5        | 0.04319426 | 27 48 34,76  | 0.01383974 | 106 08 44.50 |
| *    | + 22.286552 | -25.7-1176 | 6        | 0.04837743 | 127 51 04.46 | 0.00786789 | 126 19 31.43 |
| 7    | + 2,701787  | - 2.904326 | 7        | 0.03140786 | 106 19 25,39 | 0.00880286 | 313 42 55.41 |
|      | + 0.633116  | - 0.677520 | 8        | 0.00923780 | 66 09 18.45  | 0.00588386 | 201 00 52.94 |

[Commas in tabulated material are equivalent to decimal points.]

1

Table 4  $\lambda_{ij}^{M}$  x 10<sup>8</sup>. Amplitudes of Lagrangian Solution

| 1  |         | 2                                        |                                                            | 3                                                                                           |                                                                              | 4                                                                                                                     |                                                                                                                                                | 5                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----|---------|------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18 | 8141040 | - 2                                      | 318196                                                     | 1                                                                                           | 55897                                                                        | - 1                                                                                                                   | 70495                                                                                                                                          | 2414071                                                                                                                                                                                                                                                          | 11364                                                                                                                                                                                                                                                                                                                                      | 62612                                                                                                                                                                                                                                                                                                                                                                                                                  | 727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | 631873  | 19                                       | 909712                                                     | 12                                                                                          | 75337                                                                        | 14                                                                                                                    | 97153                                                                                                                                          | 1624499                                                                                                                                                                                                                                                          | - 55447                                                                                                                                                                                                                                                                                                                                    | 61654                                                                                                                                                                                                                                                                                                                                                                                                                  | 1106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | 405895  | 14                                       | 490-107                                                    | 10                                                                                          | 56860                                                                        | 14                                                                                                                    | 92703                                                                                                                                          | 1624452                                                                                                                                                                                                                                                          | 247593                                                                                                                                                                                                                                                                                                                                     | 65295                                                                                                                                                                                                                                                                                                                                                                                                                  | 1284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | 66283   |                                          | 264664                                                     | 30                                                                                          | 17351                                                                        | 73                                                                                                                    | 00403                                                                                                                                          | 1870379                                                                                                                                                                                                                                                          | 1617034                                                                                                                                                                                                                                                                                                                                    | 86626                                                                                                                                                                                                                                                                                                                                                                                                                  | 2053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -  |         | _                                        |                                                            | _                                                                                           | 95                                                                           | _                                                                                                                     | 55                                                                                                                                             | 4319426                                                                                                                                                                                                                                                          | - 1563040                                                                                                                                                                                                                                                                                                                                  | 218379                                                                                                                                                                                                                                                                                                                                                                                                                 | 5968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -  |         | _                                        | 1088                                                       | -                                                                                           | 750                                                                          | -                                                                                                                     | 840                                                                                                                                            | 3404356                                                                                                                                                                                                                                                          | 4837743                                                                                                                                                                                                                                                                                                                                    | 199229                                                                                                                                                                                                                                                                                                                                                                                                                 | 6736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | 271     |                                          | 265                                                        |                                                                                             | 44                                                                           |                                                                                                                       | 46                                                                                                                                             | - 4384597                                                                                                                                                                                                                                                        | - 181906                                                                                                                                                                                                                                                                                                                                   | 3140786                                                                                                                                                                                                                                                                                                                                                                                                                | 141054                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | 4       |                                          | 10                                                         |                                                                                             | 3                                                                            |                                                                                                                       | 3                                                                                                                                              | 160418                                                                                                                                                                                                                                                           | - 13561                                                                                                                                                                                                                                                                                                                                    | - 338902                                                                                                                                                                                                                                                                                                                                                                                                               | 923740                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | _       | 405895<br>66283<br>- 703<br>- 627<br>271 | 631873 11<br>405895 14<br>66283 -<br>703 -<br>627 -<br>271 | 631873 1909712<br>405895 1490407<br>66283 264664<br>- 703 - 1055<br>- 627 - 1088<br>271 265 | 631873 190971212 405895 1490407 10 66283 264664 30 703 1055 627 1088 271 265 | 631873 1909712 1275337<br>405895 1490407 1056860<br>66283 264664 3017351<br>703 1055 95<br>627 1088 750<br>271 265 44 | 631873 1909712 -1275337 14<br>405895 1490407 1056860 -14<br>66283 264664 3017351 73<br>- 703 - 1055 - 95 -<br>627 - 1088 - 750 -<br>271 265 44 | 631873     1909712     -1275337     1497153       405895     1490407     1056860     -1492703       66283     264664     3017351     7300403       - 703     - 1055     - 95     - 55       - 627     - 1088     - 750     - 840       271     265     44     46 | 631873     1909712     -1275337     1497153     1624499       405895     1490407     1056860     -1492703     1624452       66283     264664     3017351     7300403     1870379       - 703     - 1055     - 95     - 55     4319426       - 627     - 1088     - 750     - 840     3404356       271     265     44     46     - 4384597 | 631873     1909712     -1275337     1497153     1624499     - 55447       405895     1490407     1056860     -1492703     1624452     24°593       66283     264664     3017351     7300403     1870379     161°034       - 703     - 1055     - 95     - 55     4319426     - 1563040       - 627     - 1088     - 750     - 840     3404356     - 4837743       271     265     44     46     - 4384597     - 181906 | 631873     1909712     -1275337     1497153     1624499     - 55447     61654       405895     1490407     1056860     -1492703     1624452     247593     65295       66283     264664     3017351     7300403     1870379     1617034     86626       - 703     - 1055     - 95     - 55     4319426     - 1563040     218379       - 627     - 1088     - 750     - 840     3404356     4837743     199229       271     265     44     46     - 4384597     - 181906     3140786 |

Table 5  $\mu_{\text{ij}}N_{\text{j}} \times 10^{8}$ . Amplitudes of Lagrangian Solution

| /       | 1       | 2         | 3         | 4        | 5       | 6       | 7        | 8       |
|---------|---------|-----------|-----------|----------|---------|---------|----------|---------|
| Mercury | 6274851 | - 1781583 | 204668    | 58171    | 1383974 | 13920   | - 166549 | - 72367 |
| Vénus   | 591896  | 506380    | - 1341594 | - 343391 | 1383974 | 6022    | - 95883  | - 66215 |
| Earth   | 426404  | 408232    | 1222166   | 226117   | 1383974 | 140699  | - 86614  | - 64905 |
| Mars    | 90534   | 90894     | - 1794150 | 2519918  | 1383974 | 482917  | - 62850  | - 6148  |
| Jupiter | - 1038  | - 655     | - 9       | - 88     | 1383974 | -315878 | - 47877  | - 58499 |
| Saturn  | - 1328  | - 925     | - 241     | - 916    | 1383974 | 786799  | - 39034  | - 5638  |
| Uranus  | 1112    | 477       | 20        | 86       | 1383974 | - 34790 | 880286   | 54715   |
| Neptune | 28      | 27        | 2         | 9        | 1383974 | - 3858  | - 103566 | 5883%   |

#### INTRODUCTION OF HIGHER ORDER TERMS

We are now going to introduce the perturbation function's long period terms of fourth order h, k, p, q, as well as the perturbation function's short order terms.

### Fourth Order Long Period Terms

By differentiation, these terms yield third order terms, and the Lagrangian equation for variable  $h_{\rm u}$ , for example, then has the following form:

$$\frac{dh_u}{dt} = \sum_{r=u} [u, r] \{ 2A_{ur}k_u + B_{ut}k_r + P_{ut}(h_u, h_t, k_u, k_v, p_u, p_v, q_u, q_v) \}$$
 (6)

where  $P_{\mu\nu}$  is a homogeneous third degree polynomial.

Into polynomial  $P_{uv}$  we substitute the Lagrangian solution (5), whose numerical values are given in Tables 2, 3, 4, and 5:

$$\begin{split} k_{\rm u} &= \sum_{j=1}^8 \lambda_{uj} M_j \sin \psi_j \,, \quad k_{\rm u} &= \sum_{j=1}^8 \lambda_{uj} M_j \cos \psi_j \,, \\ p_{\rm u} &= \sum_{j=1}^8 \mu_{uj} N_j \sin \theta_j \,, \quad q_{\rm u} &= \sum_{j=1}^8 \mu_{uj} N_j \cos \theta_j \,, \end{split}$$

where we have made  $\psi_j = g_j t + \beta_j$  and  $\theta_j - s_j t + \delta_j$ . Therefore only the numerical values of amplitudes  $\lambda_{uj}^M{}_j$  and  $\mu_{uj}^N{}_j$  appear in this calculation.

Among the values of the i and j subscripts of arguments  $\psi_i$  (i = 1, 2, ..., 8) and  $\theta_j$  (j = 1, 2, ..., 8), such a substitution makes combinations appear in which at most only three values of subscripts i and j are involved. For example, there will be combinations of the type  $(\psi_1 + \theta_2 - \theta_4)$ ,  $(2\psi_5 - \psi_6)$ .

The expression  $\sum_{i=1}^{n} [u,v]P_{ui}$  therefore has the form:

$$\sum_{\substack{e \in \mathbf{a} \\ j_1, j_2, \dots, j_6}} [u, v] P_{uv} = \sum_{\substack{i_1, i_2, \dots, i_6 \\ j_1, j_2, \dots, j_6}} \xi_{u, i_1, \dots, i_6, j_1, \dots, j_6} \cos(i_1 \varphi_1 + \dots + i_s \varphi_s + j_1 \theta_1 + \dots + j_s \theta_s)$$
(7)

where  $\xi_{u,i_1...i_8,j_1...j_8}$  is a numerical coefficient.

The summation over integers i and j is such that:

$$\sum_{m=1}^{8} |i_m| + \sum_{m=1}^{8} |j_m| = 1 \quad \text{or} \quad 3$$

We will designate that:

$$(\mathbf{v}, \theta) = i_1 \psi_1 + i_2 \psi_2 + \dots + i_8 \psi_8 - j_1 \theta_1 + j_2 \theta_2 + \dots + j_8 \theta_8$$

and hence equation (7) takes on the form:

$$\sum_{\mathbf{r},\mathbf{q}} [u,\mathbf{r}] P_{uv} = \sum_{\mathbf{q},\mathbf{d}} \xi_{u,\mathbf{q},\mathbf{d}} \cos(\mathbf{q},\mathbf{d}).$$

We also make:

$$\varepsilon = +1 \text{ if } \sum_{m=1}^{8} i_m + \sum_{m=1}^{8} j_m = +1,$$

$$\varepsilon = -1 \text{ if } \sum_{m=1}^{8} i_m + \sum_{m=1}^{8} i_m = -1.$$

/146

Equation (6) is then written:

$$\frac{dh_u}{dt} = \sum_{v \neq u} [u, v] \{ 2A_{uv}k_u + B_{uv}k_v \} + \sum_{v, \theta} \xi_{u, v, \theta} \cos(\psi, \theta). \tag{8}$$

Substituting the Lagrangian solution into the equation in  $dk_{\mu}/dt$  similarly yields:

$$\frac{dk_u}{dt} = -\sum_{v=u} [u, v] \{2A_{uv}h_u + B_{uv}h_v\} - \sum_{v,\theta} \varepsilon \times \xi_{u,v,\theta} \sin(\psi,\theta). \tag{9}$$

We also calculate:

$$\begin{split} \frac{dp_u}{dt} &= -\sum_{v=u} \left[ u, v \right] \{ 2A_{uv}q_u - 2A_{uv}q_v \} + \sum_{v,\theta} \eta_{u,v,\theta} \cos(\psi,\theta) \,, \\ \frac{dq_u}{dt} &= \sum_{v=u} \left[ u, v \right] \{ 2A_{uv}p_u - 2A_{uv}p_v \} - \sum_{v,\theta} \varepsilon \times \eta_{u,v,\theta} \sin(\psi,\theta) \,. \end{split}$$

#### Short Period Terms

Substituting the Lagrangian solution into the short period part of the perturbation function yields only short period terms that are first order with respect to the masses. It is only with the second mass order that we come across long period terms again.

This time we have to consider for each planet the complete

system of Lagrange equations (4), which we will write for a planet of
subscript u in the form:

/147

# ORIGINAL PAGE IS

$$\frac{dh_{u}}{dt} = F_{h_{u}}, \quad \frac{dk_{u}}{dt} = F_{h_{u}}.$$

$$\frac{dp_{u}}{dt} = F_{p_{u}}, \quad \frac{dq_{u}}{dt} = F_{q_{u}}.$$

$$\frac{1}{a_{u}} \frac{da_{v}}{dt} = F_{a_{u}}, \quad \frac{d\lambda_{v}}{dt} = n_{v} + F_{\lambda_{v}}.$$
(10)

We determine the short period effects argument by argument. For a short period argument  $i\lambda_{\bf u}$  +  $j\lambda_{\bf v}$ , i and j being given integers, the functions F have the form:

$$F_c \cos(i\lambda_u + j\lambda_c) + F_s \sin(i\lambda_u + j\lambda_c)$$

where  $F_c$  and  $F_s$  are polynomials in  $h_u$ ,  $k_u$ ,  $q_u$ ,  $h_v$ ,  $k_v$ ,  $p_v$ ,  $q_v$ , whose coefficients are functions of  $\alpha_{uv} = a_u/a_v$ ,  $n_u$  and  $n_v$ . (In the special case in which one of the two integers i, j is zero, i.e., in the case in which the short period argument takes on the form  $i\lambda_u$ , the functions  $F_c$  and  $F_s$  depend on  $h_v$ ,  $k_v$ ,  $p_v$ ,  $q_v$ ,  $n_v$  for  $v=1, 2, \ldots, 8$  and on the seven quantities  $\alpha_{uv} = a_u/a_v$  for  $u \neq v$ .)

We therefore substitute the Lagrangian solution into equations (10), which after integration yield a short period increase in the Lagrangian solution. Then by doing a Taylor expansion of the second members of equations (10), we obtain second order terms with respect to mass after substituting the first order that we have just found. We will retain only the second terms' long period parts.

Since the masses are always substituted for numerically, the terms thus found in the second members of the Lagrangian equations have the same form as those coming directly from the perturbation function's fourth order long period terms.

In contrast to the case of the perturbation function's long periods, for which we kept the fourth period terms, the criterion for choosing short period terms is numerical. What we did was to retain the beginning of the h, k, p, q expansion of all the arguments

causing changes in the Lagrangian solution frequencies of more than  $10^{-3}$  "/yr.

#### RESOLUTION OF THE SYSTEMS OF DIFFERENTIAL EQUATIONS

We saw that the contribution of the short period terms took on the same form as the terms coming directly from the perturbation function. We therefore have to resolve a system of differential equations having the form:

$$\frac{dh_u}{dt} = \sum_{v \neq u} [u, v] \{ 2A_{uv}k_u + B_{uv}k_v \} + \sum_{v, \theta} \xi_{u, v, \theta} \cos(\psi, \theta), \qquad (8)$$

$$\frac{dk_u}{dt} = -\sum_{v \in u} [u, v] \{ 2A_{uv}h_u + B_{uv}h_v \} - \sum_{v, \theta} \varepsilon \times \xi_{u, \psi, \theta} \sin(\psi, \theta)$$
 (9)

as well as a similar system for variables  $\boldsymbol{p}_{\boldsymbol{u}}$  and  $\boldsymbol{q}_{\boldsymbol{u}}$  .

For that, we are going to use the Krylov-Bogolyubov method. This method consists of finding a solution of the form:

$$\begin{aligned}
\dot{\mathbf{a}}_{u} &= \sum_{j=1}^{8} \lambda_{uj} M_{j} \sin \psi_{j} + \sum_{\mathbf{v}, \theta} M_{u, \mathbf{v}, \theta} \sin(\psi, \theta) \\
\dot{\mathbf{k}}_{u} &= \sum_{j=1}^{8} \lambda_{uj} M_{j} \cos \psi_{j} + \sum_{\mathbf{v}, \theta} M'_{u, \mathbf{v}, \theta} \cos(\psi, \theta) \\
P_{u} &= \sum_{j=1}^{8} \mu_{uj} N_{j} \sin \theta_{j} + \sum_{\mathbf{v}, \theta} N_{u, \mathbf{v}, \theta} \sin(\psi, \theta) \\
\dot{\mathbf{s}}_{u} &= \sum_{j=1}^{8} \mu_{uj} N_{j} \cos \theta_{j} + \sum_{\mathbf{v}, \theta} N'_{u, \mathbf{v}, \theta} \cos(\psi, \theta)
\end{aligned}$$

with

$$\frac{dv_{ij}}{dt} = g_{ij} + B_{ij}$$

$$\frac{d\theta_{ij}}{dt} = s_{ij} + C_{ij}.$$
(12)

By differentiating system (11) and taking account of (12), we obtain:

# ORIGINAL PAGE IS

$$\frac{dh_{u}}{dt} = \sum_{j=1}^{8} \lambda_{uj} M_{j} \cos \psi_{j} \times (g_{j} + B_{j}) + \sum_{\psi, \theta} (g, s) M_{u, \psi, \theta} \cos(\psi, \theta)$$

$$\frac{dk_{u}}{dt} = -\sum_{j=1}^{8} \lambda_{uj} M_{j} \sin \psi_{j} \times (g_{j} + B_{j}) - \sum_{\psi, \theta} (g, s) M'_{u, \psi, \theta} \sin(\psi, \theta)$$
(13)

where

$$(g. s) = i_1 g_1 + i_2 g_2 + \dots + i_8 g_8 + j_1 s_1 + j_2 s_2 + \dots + j_8 s_8$$

Furthermore, equations (8) and (9) yield, by plugging in (11):

$$\frac{dh_{u}}{dt} = \sum_{v \neq u} \left[ u.v \right] \left\{ 2A_{uv} \left[ \sum_{j=1}^{8} \lambda_{uj} M_{j} \cos \psi_{j} + \sum_{v.\theta} M'_{u.v.\theta} \cos(\psi, \theta) \right] \right. \\
+ B_{uv} \left[ \sum_{j=1}^{8} \lambda_{vj} M_{j} \cos \psi_{j} + \sum_{v.\theta} M'_{v.\psi,\theta} \cos(\psi, \theta) \right] \right\} + \sum_{v.\theta} \xi_{u.v.\theta} \cos(\psi, \theta) \\
\frac{dk_{u}}{dt} = -\sum_{v \neq u} \left[ u.v \right] \left\{ 2A_{uv} \left[ \sum_{j=1}^{8} \lambda_{uj} M_{j} \sin \psi_{j} + \sum_{v.\theta} M_{u.v.\theta} \sin(\psi, \theta) \right] \right. \\
+ B_{uv} \left[ \sum_{j=1}^{8} \lambda_{vj} M_{j} \sin \psi_{j} + \sum_{v.\theta} M_{v.\psi,\theta} \sin(\psi, \theta) \right] \right\} - \sum_{v.\theta} \varepsilon \times \xi_{u.v.\theta} \sin(\psi, \theta) .$$
(14)

Hence, we have two expressions, (13) and (14), for  $dh_u/dk$  and  $dk_u/dt$ . We make equal their parts that are of third order with respect to variables h, k, p, and q:

$$\sum_{j=1}^{8} B_{j} \lambda_{uj} M_{j} \cos \psi_{j} + \sum_{\psi,\theta} (g,s) M_{u,\psi,\theta} \cos(\psi,\theta) 
= \sum_{v=u} [u,v] \left\{ 2A_{uv} \sum_{v,\theta} M'_{u,\psi,\theta} \cos(\psi,\theta) + B_{uv} \sum_{\psi,\theta} M'_{v,\psi,\theta} \cos(\psi,\theta) \right\} + \sum_{\psi,\theta} \xi_{u,\psi,\theta} \cos(\psi,\theta) 
= \sum_{j=1}^{8} B_{j} \lambda_{uj} M_{j} \sin \psi_{j} + \sum_{v,\theta} (g,s) M'_{u,\psi,\theta} \sin(\psi,\theta) 
= \sum_{v=u} [u,v] \left\{ 2A_{uv} \sum_{v,\theta} M_{u,\psi,\theta} \sin(\psi,\theta) + B_{uv} \sum_{\psi,\theta} M_{v,\psi,\theta} \sin(\psi,\theta) \right\} + \sum_{v,\theta} \varepsilon \times \xi_{u,\psi,\theta} \sin(\psi,\theta).$$
(15)

The method now consists of establishing argument by argument identities within each order. Two cases arise:

1) The case in which the argument  $(\psi_{},\theta_{})$  is equal to  $\psi_{}_{j}$  , i.e. we have:

$$\sum_{m=1}^{8} |i_m| + \sum_{m=1}^{8} |j_m| = 1.$$

Here, we once again come across the Lagrangian solution arguments, and establishing identities between coefficients makes it possible to determine the new frequency values. The solutions then are expressed in Fourier series of these new arguments. Establishing the identities yields:

$$\lambda_{uj}M_{j}B_{j} + g_{j}M'_{u,\psi_{j}} = \sum_{v \neq u} [u,v](2A_{uv}M'_{u,\psi_{j}} + B_{uv}M'_{v,\psi_{j}}) + \xi_{u,\psi_{j}}$$

and

1:

$$\lambda_{uj}M_jB_j+g_jM_{u,\psi_j}=\sum_{v\neq u}\big[u,v\big](2A_{uv}M_{u,\psi_j}+B_{uv}M_{v,\psi_j})+\xi_{u,\psi_j},$$

For a given  $\psi_{\mathbf{i}}$ , subtraction of these two equations furnishes:

$$\left(\sum_{v=u} [u,v] \times 2A_{uv} + g_j\right) (M'_{u,v_j} - M_{u,v_j}) + \sum_{v=u} [u,v] B_{uv} (M'_{v,v_j} - M_{v,v_j}) = 0.$$

The fact that and  $[u,v]B_{uv}$  are not zero means that  $M_{u,\psi_{j}} = M'_{u,\psi_{j}}$  whatever u and j are.

We can then write:

$$\sum_{\mathbf{r} \neq \mathbf{u}} [u, v] \times 2A_{uv} - g_j M_{u, v_j} + \sum_{\mathbf{r} \neq \mathbf{u}} [u, v] B_{uv} M_{v, v_j} = \lambda_{uj} M_j B_j - \xi_{u, v_j}.$$

In the first member of this expression, we once again come across matrix E of the Lagrangian system. Subtracting the eigenvalue  $g_j$  from the principal diagonal means that the  $M_{u,\psi_j}$  values ( $u=1,2,\ldots,8$ ) will not be independent. We then let:

$$M_{j,\psi_{j}} = 0$$

This is an arbitrary step in the Krylov-Bogolyubov method. It reduces to changing variables over the integration constants  $M_j$ ,  $N_j$ . The choice of  $M_j$  = 0 does not specify the solution but imposes the choice of a certain type of expansion for the coefficients of arguments  $\psi_j$ .

Having made this choice, we then have for each  $\psi_j$ , j fixed, a system of eight equations in eight unknowns: B<sub>j</sub> and M<sub>u, $\psi_j$ </sub>, (u  $\neq$  j).

/149

2) Case in which the argument  $(\psi,\theta)$  is random, i.e. such that:

$$\sum_{m=1}^{8} |i_m| + \sum_{m=1}^{8} |j_m| = 3.$$

Establishing argument by argument identities in equations (15) yields:

$$\sum_{e \neq u} [u, v] (2A_{uv}M'_{u, v, \theta} + B_{uv}M'_{v, v, \theta}) - (g, s)M_{u, v, \theta} = -\xi_{u, v, \theta}$$

and

$$\sum_{r \in u} [u,v] (2A_{uv}M_{u,\psi,\theta} + B_{uv}M_{v,\psi,\theta}) - (g,s)M'_{u,\psi,\theta} = -\varepsilon \times \xi_{u,\psi,\theta} \,.$$

By subtraction, we obtain M \_u,  $\psi$ ,  $\theta$  =  $\epsilon$ M'\_u,  $\psi$ ,  $\theta$  whatever u and argument ( $\psi$ ,  $\theta$ ) is.

We can then write:

$$\left[\sum_{r=u} [u,v] \times 2A_{uv} - \varepsilon(g,s)\right] M_{u,v,\theta} + \sum_{r=u} [u,r] B_{uv} M_{r,v,\theta} = -\varepsilon \xi_{u,v,\theta}.$$

This time there is no arbitrary step and the resolution of the system of eight equations in eight unknowns gives for each argument  $(\psi,\theta)$  the eight values  $M_{u,\psi,\theta}$   $(u=1,\ 2,\ \ldots,\ 8)$ .

We therefore have expansions of  $h_{u}$  and  $k_{u}$ :

$$h_{u} = \sum_{j=1}^{8} \lambda_{uj} M_{j} \sin \psi_{j} + \sum_{v,\theta} M_{u,v,\theta} \sin(v,\theta)$$

$$k_{u} = \sum_{j=1}^{8} \lambda_{uj} M_{j} \cos \psi_{j} + \sum_{v,\theta} \varepsilon M_{u,v,\theta} \cos(v,\theta)$$
(16)

And similarly we find:

$$P_{u} = \sum_{j=1}^{8} \mu_{uj} N_{j} \sin \theta_{j} + \sum_{v,\theta} N_{u,v,\theta} \sin(\psi,\theta)$$

$$P_{u} = \sum_{j=1}^{8} \mu_{uj} N_{j} \cos \theta_{j} + \sum_{v,\theta} \varepsilon N_{u,v,\theta} \cos(\psi,\theta).$$
(17)

#### RESULTS AND DETERMINATION OF THE CONSTANTS OF INTEGRATION

In Tables 6 and 7 we give the integration constants and frequencies of the solutions obtained solely from the second order h, k, p, q long period terms. Comparison of tables 3 and 6 show how great the contribution of the perturbation function's fourth order long period terms is, especially for Mercury, Venus, Earth, and Mars. Table 7 contains the frequency modifications  $B_i$  and  $C_i$ , as well as the frequencies' new values:  $\tilde{g}_i = g_i + B_i$ ,  $\tilde{s}_i = s_i + C_i$ .

Table 6
Constants of Integration (According to the Solution Based
on the Perturbation Function's Second and Fourth Order Long Periods)

| <u>i</u> | Mi         | β,           | N <sub>i</sub> | <i>δ</i> ,   |
|----------|------------|--------------|----------------|--------------|
| 1        | 0,18454867 | 83 32'24',16 | 0.05887664     | 11 51 44,62  |
| 2        | 0.01864278 | 191 26 15.44 | 0.00323843     | 302 59 26,61 |
| 3        | 0,01204101 | 318 18 13.08 | 0.00967327     | 248 33 14,44 |
| 4        | 0.06311073 | 307 01 46.20 | 0.03227762     | 275 46 53.61 |
| 5        | 0.04297488 | 27 17 43.13  | 0.01384057     | 106 07 34.95 |
| 6        | 0.04842782 | 127 29 49,50 | 0.00786457     | 125 49 11.16 |
| 7        | 0.03210686 | 100 44 43.97 | 0.00880119     | 316 00 16.25 |
| 8        | 0,00932559 | 64 54 28.20  | 0.00592089     | 201 11 07.71 |

[Commas in tabulated material are equivalent to decimal points.]

Table 7

Modifications and New Frequencies in "/yr

(According to the Solution Based on the Perturbation Function's Second and Fourth Order Long Periods)

| <u>i</u> | В,         | ğ,          | С,        | 3,          |
|----------|------------|-------------|-----------|-------------|
| 1        | -0,258373  | + 5,202996  | -0,443985 | - 5.643943  |
| 2        | -0.000721  | + 7,345860  | -0.220510 | - 6.791897  |
| 3        | -0.130032  | + 17,201263 | -0.152704 | - 18.898909 |
| 4        | -0,169168  | + 17.835416 | -0.231362 | -17.867473  |
| 5        | + 0.018087 | + 3,729488  | 0         | 0           |
| 6        | +0.322115  | + 22,608667 | -0.606907 | - 26.348083 |
| 7        | + 0.078361 | + 2,780148  | -0.083205 | - 2.987531  |
| 8        | +0.009180  | + 0.642296  | -0.009136 | - 0.686656  |

[Commas in tabulated material are equivalent to decimal points.]

Table 8
Constants of Integration (Complete Solution)

| i | M <sub>i</sub> | β,           | N <sub>i</sub> | ó,           |
|---|----------------|--------------|----------------|--------------|
| 1 | 0.17791613     | 87 03'02''09 | 0.05962772     | 12 08 17715  |
| 2 | 0.02104749     | 193 35 04.97 | 0.00315338     | 305 13 17.19 |
| 3 | 0.00988829     | 319 43 16.64 | 0.01002295     | 244 01 59.07 |
| 4 | 0.06115173     | 307 48 39.56 | 0.03130279     | 2** 56 06.16 |
| 5 | 0.04341616     | 28 30 11.60  | 0.01383939     | 106 09 11.57 |
| 6 | 0.04814727     | 127 42 54.52 | 0.00785328     | 125 38 34,23 |
| 7 | 0.03126134     | 114 46 31.58 | 0.00880088     | 316 17 35.94 |
| 8 | 0.00899181     | 72 05 25.03  | 0.00588806     | 20: 17 15.59 |

[Commas in tabulated material are equivalent to decimal points.]

Table 9
Modifications and New Frequencies in "/yr (Complete Solution)

| i | В                 | ğ,          | С,        | 3,          |
|---|-------------------|-------------|-----------|-------------|
| 1 | $-0.26\dot{2}290$ | + 5.1990*9  | 0.410979  | - 5.610937  |
| 2 | -0,000490         | + 7.346091  | -0.199640 | - 6.771027  |
| 3 | -0.110749         | + 17,220546 | -0.083094 | - 18.529299 |
| 4 | -0.147321         | + 17.857263 | -0.182658 | -17.818769  |
| 5 | + 0.495804        | + 4,207205  | 0         | 0           |
| 6 | + 3,930206        | + 26.216758 | -0.525894 | - 26,267070 |
| 7 | +0,363394         | + 3.065181  | -0.095511 | 2,999837    |
| 8 | +0.034747         | + 0.667863  | -0.013911 | - 0.691431  |

[Commas in tabulated material are equivalent to decimal points.]

Tables 8 and 9 give the constants of integration and the frequencies for the complete solutions, i.e. the solutions that take the short periods into consideration. By comparing tables 6 and 8, we can see that the integration constants are once more greatly altered. Comparison of Tables 7 and 9 show that while the short period terms hardly change the frequencies related to the inside planets, the  $\mathbf{g}_5$  and  $\mathbf{g}_6$  frequencies on the contrary are changed to a much greater extent by the short period terms than by the perturbation function's fourth order long period terms.

The modification of the constants of integration originates in the magnitude of the nonlinear terms found in particular in the /151

expressions of the elements related to the inside planets. Of course, we began by calculating these terms by numerical substitution of the Lagrangian solution in Tables 4 and 5. We then determined an analytic form of the expressions found so as to calculate the new integration constants. With the help of this analytic form and by making a first order Taylor expansion about the first values of the integration constants, we obtained integration constants of sufficient accuracy after several iterations.

<u>/153</u>

Table 10  $\lambda_{ij}^{M} \times 10^{8}$ . Lagrangian Solution Amplitudes

| 1       | 1  |        | 2  |        | 3    |        | 4    |       | 5         | 6         | 7             | 8      |
|---------|----|--------|----|--------|------|--------|------|-------|-----------|-----------|---------------|--------|
| Mercury | 17 | 791613 | -2 | 554951 | 1    | 45862  | - 1  | 42815 | 2426473   | 11310     | 62320         | 708    |
| Venus   |    | 019702 | 2  | 104749 | - 11 | 93243  | 12   | 54088 | 1632845   | - 55183   | 61366         | 1076   |
| Earth   |    | 398077 | 1  | 642622 | 9    | 88829  | - 12 | 50360 | 1632798   | 246415    | 649 <b>90</b> | 1250   |
| Mars    |    | 65007  |    | 291694 | 28   | 323123 | 61   | 15173 | 1879988   | 1609341   | 86222         | 1998   |
| Jupiter | _  | 689    | -  | 1163   | -    | 89     |      | 46    | 4341616   | - 1555604 | 217360        | 5809   |
| Saturn. |    | 615    | _  | 1200   | -    | 702    | _    | 703   | 3421845   | 4814727   | 198300        | 6557   |
| L'ranus |    | 266    |    | 293    |      | 41     |      | 38    | - 4407122 | - 181041  | 3126134       | 137298 |
| Neptune |    | 3      |    | 11     |      | 3      |      | 2     | 161243    | - 13497   | - 337321      | 899181 |

Table ll  $\mu_{\text{ij}}N_{\text{j}} \times 10^{8}$ . Lagrangian Solution Amplitudes

| , ,      | 1       | 2         | 3         | 4        | 5       | 6        | 7        | 8       |
|----------|---------|-----------|-----------|----------|---------|----------|----------|---------|
| Mercury  | 5962772 | - 1109444 | 167847    | 72261    | 1383939 | 13894    | - 166511 | - 72418 |
| Vénus    | 562458  | 315338    | - 1100237 | - 426565 | 1383939 | 6010     | 95861    | - 66262 |
| Earth    | ÷05197  | 254218    | 1002295   | 280886   | 1383939 | 140436   | - 86594  | - 64951 |
| Mars     | 86031   | 56602     | - 1471377 | 3130279  | 1383939 | 482015   | - 62835  | - 61532 |
| Jupiter  | - 986   | - 408     | - 7       | - 109    | 1383939 | - 315287 | - 47866  | - 58541 |
| Saturn   | - 1262  | - 576     | - 197     | - 1138   | 1383939 | 785328   | - 39025  | - 56429 |
| Uranus . | 1057    | 297       | 16        | 107      | 1383939 | - 34725  | 880088   | 54753   |
| Neptune  | 27      | 16        | 1         | 12       | 1383939 | - 3851   | - 103543 | 588806  |

Lastly, we give the totality of our solution in Tables 8 to 13. Hence, Table 8 contains the 32 integration constants. Table 9 gives the  $B_i$  and  $C_i$  frequency modifications as well as the frequencies' new values:  $\tilde{g}_i = g_i + B_i$ ;  $\tilde{s}_i = s_i + C_i$ . The amplitudes of the Lagrangian solution corresponding to the new constants are given in Table 10 for

<u>/154</u>

 $\lambda_{ij}M_j \propto 10^8$  and in Table 11 for  $\mu_{ij}N_j \propto 10^8$ . Finally, Tables 12 and 13 contain the amplitudes  $M_{u,\psi,\theta}$  and  $N_{u,\psi,\theta}$  of the higher order arguments  $(\psi,\theta)$ . When computing these terms, we retained only the arguments whose amplitudes are higher than  $10^{-4}$  for the planets Mercury, Venus, Earth, and Mars, and  $10^{-6}$  for Jupiter, Saturn, Uranus, and Neptune. The zeros found in Tables 12 and 13 are amplitudes less than the retained percisions.

 $\begin{array}{c}
\text{Table } 12 \\
M_{u,\psi,\theta} \times 10^6
\end{array}$ 

| Argument                                            | Mercury | Vénus | Earth          | Mars    | Argument                           | Mercur y | Vénus | Earth  | Mars    |
|-----------------------------------------------------|---------|-------|----------------|---------|------------------------------------|----------|-------|--------|---------|
| ¥7                                                  | 151     | 0     | 0              | 0       | $\psi_4 - \theta_3 - \theta_4$     | 0        | 0     | 0      | - 177   |
| $r_0 - \theta_3 + \theta_0$                         | 0       | 0     | 0              | ~ 199   | $\psi_4 - \theta_3 + \theta_6$     | 0        | 0     | 0      | - 240   |
| $r_e - \theta_3 + \theta_4$                         | 0       | 0     | 0              | 453     | $\psi_4 - \theta_3 + \theta_4$     | 0        | - 536 | 276    | 6177    |
| $V_{\bullet} - \theta_{\bullet} + \theta_{\bullet}$ | 0       | 0     | 0              | 287     | $\psi_4 - 2\theta_4$               | 0        | 0     | 0      | 176     |
| v.                                                  | 0       | 98 t  | - 10 <b>64</b> | - 13379 | $\psi_4 - \theta_4 + \theta_6$     | 0        | 0     | 0      | 370     |
| $\nabla_{\phi} + \theta_3 - \theta_{\phi}$          | 0       | 0     | . 0            | 762     | Ψ.                                 | - 120    | 456   | 503    | 0       |
| $V_5 - V_6 - V_7$                                   | 0       | 0     | 0              | 134     | $\psi_4 + \theta_4 - \theta_6$     | 0        | 0     | 0      | - 354   |
| $v_s - 2\theta_1$                                   | 254     | 0     | 0              | 0       | $\psi_4 + \theta_3 - \theta_4$     | - 519    | 4126  | - 3367 | - 14852 |
| $V_5 - \theta_1 - \theta_2$                         | - 114   | 0     | 0              | 0       | $\psi_4 + \theta_3 - \theta_6$     | 0        | 0     | 0      | 211     |
| $V_3 - \theta_1 + \theta_7$                         | 102     | 0     | 0              | 0       | $y_4 + y_5 - y_7$                  | 0        | 0     | 0      | 118     |
| $\nabla_3 - \theta_1 + \theta_2$                    | - 275   | 0     | 0              | 0       | $2\psi_{\bullet} - \psi_{\bullet}$ | 0        | 0     | 0      | - 286   |
| $\nabla_5 - \theta_5 + \theta_4$                    | 150     | 0     | 0              | 0       | $y_3 - 2y_4$                       | 0        | 465   | - 378  | - 726   |
| V <sub>5</sub>                                      | 14547   | 2918  | 2280           | 1092    | $y_3 - y_4 - y_6$                  | 0        | 0     | 0      | - 133   |
| $r_1 + \theta_1 - \theta_2$                         | - 2172  | 0     | 0              | 0       | $V_3 - V_4 + V_6$                  | 0        | 0     | 0      | 184     |
| $r_5 + \theta_1 - \theta_3$                         | 0       | - 216 | 182            | 503     | $\psi_3 = \theta_1 + \theta_4$     | 396      | 0     | 0      | 0       |
| Vs + V6 - 47                                        | 0       | 0     | 0              | 105     | $\psi_3 - \theta_1 + \theta_3$     | 312      | 0     | 0      | 0       |
| 255-V7                                              | - 118   | 0     | 0              | 0       | $\psi_3 - \theta_2 + \theta_3$     | - 237    | 0     | 0      | 0       |
| Fa-Ve+ve                                            | 0       | 0     | 0              | - 180   | $\psi_3 = \theta_3 + \theta_4$     | - 275    | 2457  | 2354   | 8864    |
| $\mathbf{v}_4 - 0_1 + 0_4$                          | 1644    | 0     | 0              | 0       | $\psi_3 - \theta_4 + \theta_6$     | 0        | 0     | 0      | 148     |
| $r_4 - \theta_1 + \theta_3$                         | - 598   | 9     | 0              | 0       | V's                                | 0        | 0     | 0      | - 323   |

7.

Table 12 (cont.)

| Argument                                                 | Mercury | Vénus         | Eart   | Mars . | Argument                                               | Jupiter      | Saturn  | Uranus      | Nep      |
|----------------------------------------------------------|---------|---------------|--------|--------|--------------------------------------------------------|--------------|---------|-------------|----------|
| $\psi_3 + \theta_4 - \theta_6$                           | 0       | 0             | 0      | - 162  |                                                        | ·            | -       | <del></del> | tune     |
| $\psi_3 + \theta_3 - \theta_4$                           | 115     | <b>~ 9</b> 01 | 8.57   | - 1422 | <b>y</b>                                               | - 174        | 198     | 0           | - 619    |
| $\psi_3 + \theta_3 - \theta_0$                           | 0       | 0             | 0      | 102    | $\psi_{-} + \theta_{-} - \theta_{n}$                   | 0            | 0       | 5           | 9;       |
| $\psi_3 + \psi_5 - \psi_7$                               | 0       | 0             | 0      | 137    | $\psi = + \theta_0 = \theta$                           | 0            | 0       | - 2         | (        |
| $\psi_3 + \psi_4 - \psi_6$                               | 0       | 0             | 0      | 144    | $\psi_{-} + \theta_{\pm} = 0$                          | 0            | 0       | - 3         |          |
| والأع الم                                                | 0       | - 691         | 599    | 388    | 2 y = y <sub>a</sub>                                   | 0            | Ō       | - 4         | 3        |
| $\hat{\psi}_2 = \hat{2}\hat{\theta}_1$                   | - 374   | 0             | 0      | 0      |                                                        | •            | •       | ·           |          |
| $\theta_1 - \theta_1 - \theta_2$                         | 175     | Ŏ             | 0      | 0      | $\psi_0 - 2\psi$                                       | 0            | 0       | - 7         |          |
| $\psi_2 - \theta_1 + \theta_3$                           | - 137   | 0             | 0      | =      | 4 4 1.8                                                | 0            | - 1     | 0           | Ö        |
| $\psi_2 - \theta_1 + \theta_2$                           | - 4711  | •             | _      | 0      | $\psi_0 - \theta_5 - \theta_0$                         | 0            | 5       | 0           | Ğ        |
| 4:-01 +02                                                |         | - 261         | - 174  | 0      | 40-211                                                 | - 9          | 15      | 0           | ř        |
| $V_2$                                                    | 2947    | 0             | - 151  | U      | $\psi_{\bullet} - \theta_{\bullet} = \theta_{\bullet}$ | 0            | 0       | 1           | ì        |
| $\psi_2 + \theta_3 - \theta_4$                           | 0       | 111           | 0      | 0      |                                                        |              |         | -           | •        |
| $\psi_2 + \theta_1 - \theta_2$                           | - 875   | 0             | 0.     | Ō      | $\psi_0 - \theta_0 + \theta_7$                         | 0            | 0       | - 1         | 0        |
| $\psi_2 + \theta_1 - \theta_3$                           | 105     | 0             | 0      | Ö      | Vo - 20-                                               | 0            | 0       | 1           | Č        |
| $\psi_1 + \theta_1 - \theta_7$                           | 355     | Ō             | 0      | ŏ      | $\psi_{e} = \theta_{e} + \theta_{g}$                   | 0            | - 1     | 0           | Ŏ        |
|                                                          |         |               | -      | •      | 4.0                                                    | - 594        | 0       | 192         | 33       |
| $\psi_2 + \psi_3 - \psi_4$                               | 205     | 0             | 0      | 0      | $\psi_0 + \theta_0 = \theta$                           | - 1          | ő       | 22          | ,,       |
| $\psi_1 - 2\psi_2$                                       | - 361   | 0             | 0      | 0      | ***************************************                | •            | v       |             | ,        |
| $\psi_1 - \psi_2 - \psi_5$                               | - 3340  | - 131         | 0      | 0      | $\psi_6 + \theta_c - \theta_s$                         | 0            | 0       | 1           | ۸        |
| $\psi_1 - \psi_2 + \psi_3$                               | 194     | 0             | 0      | 0      | $\psi_0 + \theta_5 - \theta_6$                         | ő            | 5       | 0           | •        |
| $\varphi_1 - \psi_3 + \psi_4$                            | - 591   | 0             | 0      | Ō      | ₩ <sub>6</sub> + ₩ ₩                                   | ŏ            | 1       | 0           |          |
|                                                          |         | -             | _      |        | $2\psi_{e} - \psi_{e}$                                 | - 23         | 78      | •           | 0        |
| $c_1 - 2\theta_1$                                        | 2231    | 0             | 0      | 0      | 2ψ <sub>0</sub> - ψ <sub>3</sub>                       | - 23         | /8<br>3 | ž           | 0        |
| $\theta_1 - \theta_1 - \theta_2$                         | - 1022  | 0             | 0      | 0      | 44 v - 4 v                                             | U            | 3       | 0           | 0        |
| $\theta_1 - \theta_1 - \theta_3$                         | 350     | 0             | 0      | 0      | $\psi_5 - 2\psi_6$                                     | 298          | - 962   | 27          | ^        |
| $\theta_1 - \theta_1 - \theta_4$                         | 147     | 0             | 0      | 0      |                                                        | - 113        | 348     | - 49        | •        |
| $r_1 - \theta_1 + \theta_2$                              | 399     | 0             | 0      | 0      | $\psi_{i} = \psi_{i} + \psi_{i}$                       |              |         |             | V        |
| $c_1 - \theta_1 + \theta_5$                              | - 146   | 0             | 0      | •      | $\psi_5 - \psi_6 - \psi_0$                             | - 1          | 4       | - 1         | U        |
| . 4 . 6                                                  |         |               | 0      | 0      | $\psi_5 - \psi_6 + \psi_8$                             | 0            | 0       | - 1         | G        |
| $a_1 - \theta_1 + \theta_4$                              | 212     | 0             | 0      | 0      | W5 W6 + W-                                             | 0            | - 6     | - 36        | 0        |
| $\theta_1 - \theta_1 + \theta_3$                         | 480     | 0             | 0      | 0      | y'5 - 21,'-                                            | - 7          | - 7     | - ++0       | 34       |
| $\theta_1 - \theta_1 + \theta_2$                         | - 8302  | 0             | 0      | 0      | 4'5 - 4' 4's                                           | 0            | 0       | - 3         | - 35     |
| $\varphi_1 - 2\theta_2$                                  | 119     | 0             | 0      | 0      | $\psi_{\sigma} = \psi_{\sigma} - \psi_{\sigma}$        | - 1          | - 1     | - 13        | - 33     |
| $c_1 - \theta_2 + \theta_3$                              | - 139   | 0             | 0      | 0      | ψ <sub>3</sub> – 2ψ <sub>3</sub>                       | ó            | 0       |             |          |
| $\theta_1 - \theta_3 + \theta_4$                         | - 605   | ŏ             | 0      | -      | $\psi_3 - \theta_5 + \theta_7$                         | Ö            | 0       | - 1         | 1        |
|                                                          | 00.5    | - 812         | - 650  | 0      |                                                        | U            | U       | - 5         | C        |
| $\frac{\partial u}{\partial x} + \theta_3 - \theta_4$    | 603     |               |        | 0      | $\psi_5 - \theta_5 + \theta_6$                         | - 1          | 3       | 0           | 0        |
| 1 + 03 - 04                                              |         | 0             | 0      | 0      | $\psi_2 = 2\theta_0$                                   | 7            | - 5     | 0           | 0        |
| $\theta_1 + \theta_2 - \theta_3$                         | 147     | 0             | 0      | 190    | $\psi_5 - \theta_6 = \theta_7$                         | 0            | 0       | 2           | ò        |
| $\theta_1 + \theta_1 - \theta_2$                         | 6786    | 1372          | 1007   | 173    | $\psi_4 - \theta_6 - \theta$                           | - 1          | 6       | - 5         | 0        |
| $\theta_1 + \theta_1 - \theta_3$                         | - 505   | 164           | - 124  | 135    | $\psi_5 = 2\theta$ .                                   | 0            | 1       | _ 8         | 1        |
| $t_1 + \theta_1 - \theta_4$                              | - 209   | 0             | 0      | - 1087 |                                                        | •            | •       |             |          |
| $1+\theta_1-\theta_3$                                    | 146     | Ŏ             | ŏ      | 0      | $\psi_5 - \theta_7 - \theta_8$                         | 0            | 0       | 4           | _ 2      |
| $+\theta_1-\theta_2$                                     | - 316   | Ŏ             |        |        | $\psi_5 - \theta + \theta_8$                           | 0            | 0       | - 3         | 4        |
|                                                          |         | J             | 0      | 0      | $\psi_5 - 2\theta_5$                                   | 0            | 0       | - 2         | 0        |
| $\gamma_1 + \psi_3 - \psi_4$                             | 645     | 0             | 0      | 0      | ψ,                                                     | 0            | 257     | 5257        | 463      |
| $\gamma_1 + 4\gamma_2 + 4\gamma_3$                       | 258     | 0             | 0      | 0      | $\psi_s + \theta_r - \theta_u$                         | 1            | 1       | 15          | 2:       |
| ' <sub>1</sub> - 4' <sub>2</sub>                         | 1544    | 0             | 0      | 0      |                                                        | ^            | •       |             |          |
| $y_1 - y_3$                                              | - 109   | 0             | Ů      | ō      | $\psi_5 + \theta_6 - \theta_7$                         | 0            | 0       | 5           | G        |
| , - 1/ <sub>4</sub>                                      | 107     | Ŏ             | Ö      | ő      | $\psi_5 + \theta_5 - \theta_6$                         | 1            | 3       | 0           | 0        |
|                                                          |         |               |        | -      | $\psi_5 + \theta_5 = \theta$                           | 0            | 0       | 5           | 0        |
| $\gamma_1 = \psi_5$                                      | - 824   | - 438         | 337    | 0.     | $\psi_5 + \theta_3 - \theta_4$                         | 0            | 0       | - 1         | 0        |
|                                                          |         |               |        |        | ψ <sub>4</sub> ÷ ψ <sub>2</sub> ψ <sub>3</sub>         | 0            | 0       | 2           | - 6      |
|                                                          |         |               |        |        | \$°5 + \$°6 - \$°4                                     | 111          | 349     | 15          | į.       |
| gument                                                   | Jupiter | Saturn        | Uranus | Nep-   | 4's + 4'h - 4's                                        | - "          | 4       | 0           | - 1      |
|                                                          |         |               |        | tune   | $2\psi_{s} - \psi_{s}$                                 | - 10         | - 50    |             | v.       |
|                                                          |         |               |        |        | 7 m                                                    | - <b>6</b> 6 |         | 41          | (2)      |
| $\cdot \theta \cdot = \theta_{\rm s}$                    | . ,     | _ ,           | 35     | 5      | 2y ; y -<br>2y : y :                                   |              | - 46    | 511         | - 43     |
| 9                                                        | 0       | _ 1           | 271    |        |                                                        | 0            | 0       | 2           | <u>.</u> |
| $\theta_{\bullet} + \theta_{\bullet} = \theta_{\bullet}$ | ŏ       | 0             | - 1    | U      | yu - 25'n                                              | ~ 1          | 3       | 0           |          |
| 24°                                                      | Ö       | 0             |        | !      | $\psi_4 - \theta_3 = \theta_4$                         | 0            | 1       | Ŏ           | e e      |
|                                                          |         | -             | 0      | - 1    | V'a                                                    | - 2          | 8       | Ŏ           | ě        |
| $-\theta_5 + \theta_7$                                   | 0       | U             | 3      | 0      | $\psi_{\bullet} + \theta_{\bullet} = \theta_{\bullet}$ | ō            | 3       | 0           | ₹.       |
| $-\theta_0 + \theta_7$                                   | 0       | - 2           | 2      | ()     | $y_0 = 2y_0$                                           | ŏ            | 3       | 0           | - E      |
| 20,                                                      | Ō       | ō             | 4      | - 1    |                                                        |              | 3       | U           | 7        |
| 0 0a                                                     | ŏ       | 0             | _ 1    | · ;    | ψ <sub>3</sub>                                         | 2            | 7       | 0           | <b>K</b> |
|                                                          | o       | 0             | - 4    | . 4    | ψ' <sub>2</sub>                                        | - 1          | 0       | 1           | <u> </u> |
| $-\theta_1 + \theta_0$                                   |         |               |        |        |                                                        |              |         |             |          |

 $\begin{array}{c} \text{Table } 13 \\ N_{u, \psi, \theta} \times 10^6 \end{array}$ 

| Argument                                                                                   | Mercury         | Vénus        | Earth    | Mars         | Argument                                                                                     | Jupite      | s Saturn | Uranus   | Nep-  |
|--------------------------------------------------------------------------------------------|-----------------|--------------|----------|--------------|----------------------------------------------------------------------------------------------|-------------|----------|----------|-------|
| 1.                                                                                         | 0               | 0            | 0        | - 180        |                                                                                              |             |          |          | 10110 |
| î, <b>8</b> 4                                                                              | 306             | - 1138       | 997      | 0            | $\theta_{\bullet}$                                                                           | - 2         | _ 2      | 12       | ()    |
| -0, -204                                                                                   | 0               | 0            | o        | †101         | 0-                                                                                           | 0           |          | 0        | - 12  |
| 1,                                                                                         | 275             | 0            | 0        | - 1838       | $2\theta_{\tau} - \theta_{\theta}$                                                           | 0           | Ç.       | 1        | ()    |
| 20, - 0.                                                                                   | 0               | 457          | - 378    | - 207        | $\theta_{6}$                                                                                 | 0           |          | - 9      | 0     |
| $\theta_2 - \theta_3 + \theta_4$                                                           | 175             | 0            | 0        | 0            | $\theta_1$                                                                                   | - 3         | - 4      | 3        | 0     |
| 56.                                                                                        | - 4695          | 9            | 0        | 17           | ψ <sub>3</sub> - γ <sub>3</sub> θ <sub>3</sub>                                               | 0           | 0        | 2        | . 1   |
| $\theta_1 - 2\theta_2$                                                                     | 172             | 0            | 0        | 0            | $\psi_{\bullet} \rightarrow \psi_{\bullet} - \theta_{\bullet}$                               | - 1         | - 1      | 33       | - 2   |
| $\theta_1 - \theta_3 + \theta_4$                                                           | 166             | 0            | 0        | 0            | $\psi_7 - \psi_B + \theta_B$                                                                 | 0           | 0        | - t      | 1     |
| <b>6</b> ,                                                                                 | 0               | 2637         | 1478     | 429          | $y_2 - y_0 + \theta_2$                                                                       | - 3         | =        | 5        | 31    |
| $2\theta_1 - \theta_2$                                                                     | - 879           | 0            | 0        | 0            | $2\psi_{7}-\theta_{7}$                                                                       | 0           | 0        | 3        | - 2   |
| $y_{\bullet} - y_{\bullet} - \theta_{\bullet}$                                             | - 105           | 0            | 0        | 0            | $2\psi_{\pi} \cdots \theta_{\mathbf{a}}$                                                     | 0           | 0        | - 1      | 1     |
| $y_3 - y_7 + \theta_3$                                                                     | 0               | 0            | 0        | - 205        | $\psi_0 - \psi_2 - \theta_0$                                                                 | 0           | 0        | - 1      | 0     |
| $y_4 - y_6 - \theta_3$                                                                     | 0               | 0            | 0        | - 416        | $\psi_6 - \psi_7 - \theta_7$                                                                 | - 1         | 3        | 3        | 0     |
| $v_4 - v_6 - \theta_4$                                                                     | 0               | 0            | 0        | 537          | $y_0 - y_1 + \theta_2$                                                                       | 0           | 0        | 3        | 0     |
| $v_4 - v_6 - \theta_6$                                                                     | 0               | 0            | 0        | - 145        | 40 - 4 + + A.                                                                                | 1           | 0        | 17       | 1     |
| $\varphi_{\bullet} - \varphi_{\bullet} + \theta_{\bullet}$                                 | Ö               | ō            | ò        | 608          | $\psi_6 - \psi_4 + \theta_6$                                                                 | 0           | 0        | 2        | 0     |
| $v_4 - v_6 + \theta_3$                                                                     | 0               | 0            | Ó        | - 251        | $\psi_0 + \psi_2 - \theta_0$                                                                 | O           | -        | 1        | Ō     |
| $\psi_2 - \psi_4 - \theta_1$                                                               | - 233           | 0            | 0        | 0            | $\psi_0 + \psi \theta$                                                                       | Ö           | 0        | 1        | 0     |
| $v_3 - v_4 - \theta_3$                                                                     | 0               | 280          | - 499    | 7947         | $2y_0 - \theta_6$                                                                            | - 10        | 26       | - i      | 0     |
| $v_3 - v_4 - \theta_4$                                                                     | 0               | 0            | 0        | 3757         | $2y_0 - \theta$                                                                              | 0           | 0        | 2        | 0     |
| $v_1 - v_4 + \theta_4$                                                                     | 320             | - 2029       | 1741     | 1136         | $v_5 - v_6 - \theta_6$                                                                       | 1           | - 22     | 46       | 0     |
| $v_3 - v_4 + \theta_3$                                                                     | - 206           | 1392         | - 1192   | 0            | $\psi_5 - \psi_6 - \theta$                                                                   | Ċ           |          | 9        | ő     |
| $y_1 - y_4 + \theta_1$                                                                     | - 207           | 0            | 0        | ŏ            | $y_5 - y_6 + \theta_8$                                                                       | ŏ           |          | 1        | Ŏ     |
| $\varphi_3 - \varphi_5 + \theta_3$                                                         | - 221           | Ō            | 0        | 0            | $\psi_5 - \psi_6 + \theta$                                                                   | 3           | -        | 9        | ō     |
|                                                                                            | 0               | 0            | 0        |              | $v_s - v_b + \theta_b$                                                                       | 8           |          | _ 4      | 0     |
| $ \begin{aligned} \psi_3 - \psi_6 - \theta_3 \\ \psi_3 - \psi_6 - \theta_4 \end{aligned} $ | 0               | 0            | 0<br>0   | - 119<br>198 |                                                                                              | 5           | 13       | - 3      | 0     |
| $v_3 - v_4 + \theta_4$                                                                     | 0               | 0            | 0        | 214          | ψ <sub>5</sub> ψ <sub>7</sub> θ <sub>6</sub><br>ψ <sub>5</sub> ψ <sub>7</sub> θ <sub>7</sub> | - 11        | -        | 225      | - 30  |
| $\psi_1 - \psi_4 - \theta_3$                                                               | 114             | ŏ            | 0 -      | 0.           | $\psi_{s} - \psi_{s} - \theta_{s}$                                                           | <u>.</u>    |          | .12      | 16    |
| $v_2 - v_3 - \theta_1$                                                                     | 170             | 0            | 0        | 0.           | $\psi_5 - \psi_7 + \theta_8$                                                                 | - 1         |          | - 2      | 18    |
|                                                                                            |                 | •            |          |              | $\psi_5 + \psi_7 + \theta_7$                                                                 | - 13        |          | 220      | - 15  |
| $v_2 - v_3 + \theta_1$                                                                     | 117<br>- 3777   | 0            | 0        | 0            |                                                                                              |             |          |          |       |
| $\mathbf{v}_1 - \mathbf{v}_2 - \mathbf{\theta}_1$                                          | - 3177<br>3170  | 0<br>176     | 0<br>124 | 0            | $y_5 - y_7 + \theta_6$                                                                       | 5           |          | 5        | 0     |
| $v_1 - v_2 - \theta_2$ $v_1 - v_2 - \theta_3$                                              | 117             | 0            | 0        | 0            | $\psi_{5} - \psi_{6} - \theta_{7}$                                                           | 0           |          | I        | 1     |
| $\varphi_1 - \varphi_2 + \theta_2$                                                         | - 232           | 0            | ()       | 0            | $\psi_3 - \psi_4 - \theta_4$                                                                 | 0           | •        | 0        | - 1   |
|                                                                                            |                 | _            |          |              | $\psi_5 - \psi_4 + \theta_4$ $\psi_5 - \psi_4 + \theta_7$                                    | 0           |          | 0        | 8     |
| $v_1 - v_2 + \theta_2$                                                                     | 787             | 0            | 0        | 0            |                                                                                              | _           | -        | v        |       |
| $v_1 - v_2 + \theta_1$                                                                     | - 7950          | 1062         | 903      | 206          | $\psi_b + \psi_a - \theta_b$                                                                 | 0           |          | 1        | 0     |
| $V_1 - V_3 - \theta_1$                                                                     | 117<br>- 413    | 0            | 0        | 0            | v. + v. · 0.                                                                                 | 0           | •        | 13       | 3     |
| $V_1 - V_3 - \theta_3$ $V_1 - V_3 - \theta_4$                                              | - 229           | 0<br>0       | 0<br>0   | 0            | $\psi_A + \psi_B - \theta_B$                                                                 | 0<br>10     |          | - 5      | - 3   |
|                                                                                            |                 | <del>-</del> |          | -            | $\psi_5 + \psi_6 - \theta_6$                                                                 | 0           |          | - 3<br>8 | 0     |
| $v_1 - v_3 + \theta_1$                                                                     | 126             | 0            | 0        | 0            | $\psi_5 + \psi_6 - \theta_7$                                                                 |             |          |          |       |
| $V_1 = V_4 = \theta_1$                                                                     | ~ 115           | 0            | 0        | 0            | $2y_5 - \theta_6$                                                                            | ~ <u>\$</u> |          | - 2      | 0     |
| $V_1 - V_4 - \theta_3$                                                                     | 277             | 0            | 0        | 0            | $2\psi_5 - \theta_7$                                                                         | 0           |          | 21       | 3     |
| $V_1 = V_4 = \theta_4$ $V_1 = 13 + \theta$                                                 | - 1021<br>- 134 | 0<br>0       | 0        | 0            | $2\psi_3 - \theta_4$                                                                         | 0           |          | 0        | 3     |
| $V_1 = V_4 + \theta_1$                                                                     |                 | =            | 0        | - 606        | $\psi_3 - \psi_4 - \theta_3$                                                                 | 0           |          | 0        | 0     |
| $\nabla_1 = \psi_2 = \theta_1$                                                             | - 3353          | 477          | 401      | 0            | $\psi_3 - \psi_4 - \theta_4$                                                                 | _           | -        |          |       |
| $r_1 - r_2 - \theta_2$                                                                     | 282             | 0            | 0        | 0            | $\psi_3 - \psi_4 + \theta_4$                                                                 | 0           |          | 0        | 0     |
| $\mathbf{v}_1 - \mathbf{v}_3 + \mathbf{\theta}_2$                                          | 1387            | 0            | 0        | 0            | $\psi_1 - \psi_2 - \frac{\theta_1}{2}$                                                       | 0           |          | - I      | v     |
| $V_1 - V_5 + \theta_1$                                                                     | - 1388          | 0            | ð        | 0            | $\psi_1 = \psi_2 + \theta_3$                                                                 |             | - 1      | 0        | 0     |
| $V_1 + V_5 - \theta_1$                                                                     | 396             | 0            | θ        | 0            |                                                                                              |             |          |          |       |
| $V_1 + \psi_2 - \theta_1$                                                                  | - 589           | 0            | 0        | 0            |                                                                                              |             |          |          |       |
| $\nabla_1 + \nabla_2 - \theta_2$                                                           | 138             | 0            | θ        | U            |                                                                                              |             |          |          |       |
| $\frac{2}{2}\mathbf{v}_{1}-\mathbf{\theta}_{1}$                                            | 1746            | 0            | ()       | 0            |                                                                                              |             |          |          |       |
| $\frac{2V_1-\theta_2}{2r-\theta_1}$                                                        | - 401           | 0            | 0        | 0            |                                                                                              |             |          |          |       |
| $2\mathbf{r}_1 - \mathbf{\theta}_2$                                                        | 140             | 0            | 0        | 0            |                                                                                              |             |          |          |       |

#### CONCLUSION

In this study of the long period variations of the planetary elements, we added to the Lagrangian solution the terms of third order excentricity and inclination arising from the long period portion of the perturbation function calculated for the planets as a whole. We also took into consideration the influence of short period terms of second order mass. We particularly concentrated on determining the integration constants that make the solutions agree with the mean elements when t = 1850.0 is used as time zero.

The terms calculated with these constants are grouped together in Tables 8 to 13. Notice in these results the very strong coupling that exists, for a long period problem, in the planetary system. The magnitude of the terms arising from the short periods shows that there is no point to extending a theory to the fifth order on the basis of the perturbation function's long periods if the short periods are not taken into account.

This work's essential task was therefore the comparison of the various effects according to their origin so as to have an overall view of this problem and to be able to embark on the complete construction of a long period theory. Our solution is in fact still incomplete. Even so, we should take into account the direct terms of fifth order that must have an influence, especially for Mercury, Venus, Earth, and Mars. We have yet to calculate the influence of short periods of higher orders of excentricity and inclination, and maybe even part of the third order with respect to masses in the case of the resonant argument  $2\lambda_j - 5\lambda_s$  between Jupiter and Saturn. Such an investigation would be very important. However, since the largest contributions have already been considered, it would no longer present any great difficulties for the determination of integration constants.

#### **BIBLIOGRAPHY**

#### ORIGINAL PAGE IS OF POOR QUALITY

Hill, G.W., Astron. J., 9, 89-91 (1889).

Hill, G.W., Astron. J., 17, 81-87 (1897).

Brouwer, D., van Woerkom, A.J.J., Astron. Pap., 13, part 2 (1950).

Anolik, M.V., Krassinsky, B.S., Pius, L.J., <u>Trudy Inst. Theor.</u>
Astron. Leningrad, <u>14</u>, 3-47 (1969).

Chapront, J., Simon, J.-L., <u>Astron. & Astrophys.</u>, <u>19</u>, 231 (1972).

Kovalevsky, J., Celestial Mechanics, 4, 213 (1971).

Bogolioubov, N. Mitropolski, I., Les méthodes asymptotiques en théorie des oscillations non linéaires [Asymptotic Methods in Nonlinear Oscillations], Gauthier-Villars, Paris, 1962.