Automatically Fixing Vulnerabilities in WebAssembly

Yubin Hu

yubin.hu@bupt.edu.cn

November 2, 2021

Blockchain

Define

Blockchain is a public list of records which are linked together.

• Thanks to the underlying cryptography mechanism, the records in the blockchain can resist against modification.

Smart Contracts

Define

Smart Contracts, once deployed on the blockchain network, become an unchangeable commitment between the involving parties.

- Because of that, they have the potential to revolutionize many industries such as financial institutes and supply chains.
- However, like traditional programs, smart contracts are subject to code-based vulnerabilities, which may cause huge financial loss and hinder its applications.

WebAssembly

Define

WebAssembly (abbreviated Wasm) is a binary instruction format for a stack-based virtual machine.

- Wasm is designed as a portable compilation target for programming languages, enabling deployment on the web for client and server applications.
- The WebAssembly virtual machines can be embedded into Web browsers or blockchain platforms.
- Furthermore, in Ethereum 2.0, Wasm VM is the replacement of Ethereum VM (EVM).

Goal

In this work, I propose a tool, which automatically fixes potential vulnerable smart contracts in WebAssembly.

Research Question I

Research Question

How to detect the vulnerability?

Vulnerabilities

- Reentrancy
- Missing Input Validation
- Locked EthereumUnhandled Exception
- tx.origin Vulnerability
- Arithmetic Vulnerability

Vulnerability Detection

symbolic execution

Research Question II

Research Question

How to solve the problem of path explosion in symbols execution?

- loop bound
- call depth
- template-based fix patterns
- different levels depend on vulnerabilities

Research Question III

Research Question

Effectiveness in patch generation.

- Overall Results
- Transaction Usage
- Failed Patch

Reference

[1] Nguyen T D , Pham L H , Sun J . sGUARD: Towards Fixing Vulnerable Smart Contracts Automatically[J]. 2021.
[2] Rodler M , Li W , Karame G O , et al. EVMPatch: Timely

and Automated Patching of Ethereum Smart Contracts[J]. 2020.