NCEA Level 3 Calculus (Integration) 26. More Interesting Problems

These problems do not just concern integration.

Questions

- 1. E Find the equation of the line through the point (3,5) which cuts off the least area from the first quadrant.
- 2. E The area of a square is increasing at a constant rate of k m² per second. A tetrahedron (equilateral triangular pyramid), has a side length that is the same as that of the square at each instant. The initial volume of the tetrahedron was 1 m³. In terms of k, what is the volume of the tetrahedron three seconds after that?
- 3. S Scholarship 2017: The hyperbolic functions $\sinh x$ and $\cosh x$ are defined as follows:

$$\sinh x = \frac{1}{2}(e^x - e^{-x})$$
$$\cosh x = \frac{1}{2}(e^x + e^{-x}).$$

Show that $\frac{d}{dx} \sinh^{-1} x = \frac{1}{\sqrt{x^2+1}}$.

4. S Consider the tetrahedron inscribed inside a cube, as in the figure.

The volume V of the cube at any instant t is increasing at a rate proportional to the value of V at that instant. The initial volume of the cube at t = 0 was 8 cubic units. What is the volume of the tetrahedron at time t = 20?

- 5. S If $x \sin \pi x = \int_0^{x^2} f(t) dt$, where f is continuous, find f(4). [Hint: you need not perform any integration.]
- 6. S If f and g are differentiable functions with f(0) = g(0) = 0 and $g'(0) \neq 0$, show that

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{f'(0)}{g'(0)}.$$

Hence, or otherwise, evaluate

$$\lim_{x \to 0} \frac{\sin(a+2x) - 2\sin(a+x) + \sin a}{x^2}.$$

7. (a) S Consider the differential equation

$$\frac{\mathrm{d}^2\Phi}{\mathrm{d}t^2} + 5\frac{\mathrm{d}\Phi}{\mathrm{d}t} + 6\Phi(t) = 0.$$

Let f and g be the functions defined by $f(x) = e^{-2x}$ and $g(x) = e^{-3x}$.

- i. Show that all linear combinations of f and g are solutions to the differential equation.
- ii. Find the (unique) solution passing through (0,1) and (1,1).
- (b) O More generally, consider the differential equation $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$. Let the zeroes of the quadratic polynomial $p(D) = aD^2 + bD + c$ be α and β . Show that all the linear combinations of $e^{\alpha x}$ and $e^{\beta x}$ are solutions to the differential equation.
- 8. S Compute the following definite integral. [Hint: begin with a substitution.]

$$\int_{0}^{\pi/6} \sqrt{\tan \theta} \, \mathrm{d}\theta$$

- 9. (a) E Consider the two functions $p(x) = 3x^5 5x^3 + 2x$ and $q(x) = 3x^5$. Show that their ratio approaches 1 as $x \to \infty$.
 - (b) S Let p(x) and $q(x) \neq 0$ be polynomials. Recall that the degree of a polynomial is the highest n such that x^n has a non-zero coefficient. Compute the limit

$$\lim_{x \to \infty} \frac{p(x)}{q(x)}$$

if:

- i. the degree of p(x) is less than that of q(x).
- ii. the degree of p(x) is greater than that of q(x).
- 10. S A definite integral calculates the between a curve and straight line, the x-axis. In a similar way, it is possible to use integration to calculate the area above a curved line and below a surface z = f(x, y), like that in the figure.

If the curve C is defined parametrically, that is C(t) = (x(t), y(t)), then the integral along the line can be calculated with the formula

$$\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^{2} + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^{2}} \, \mathrm{d}t.$$

Compute the line integral of the function $f(x,y) = 2 + x^2y$ around the upper half of the unit circle.

11. S The **sine integral** function is defined by

$$\operatorname{Si}(x) = \begin{cases} \int_0^x \frac{\sin t}{t} \, \mathrm{d}t, & \text{for } x \neq 0; \\ 1, & \text{for } x = 0. \end{cases}$$

(a) Recall that $\int_a^b f'(t) dt = f(b) - f(a)$. Use this to show that $\frac{d}{dx} \int_0^x f'(t) dt = f'(x)$.

- (b) Find the x-coordinate of the first local maximum of Si to the right of the origin. Carefully prove that you have found a maximum.
- (c) Use the result in (a) to find an expression for the integral

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{g(x)}^{h(x)} f(t) \, \mathrm{d}t,$$

where f is continuous and g and h are differentiable.

- 12. $|\mathbf{E}|$ Minimise the function $f(x) = b \log_b N$ with respect to b, and show that the result is independent of the constant N.*
- 13. S We can calculate **improper integrals** (those where the bounds are infinite) as follows:

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx.$$

Decide whether each of the integrals given below exists. If so, calculate its value; if not, explain why.

(a)
$$\int_{1}^{\infty} \frac{1}{x} \, \mathrm{d}x$$

(b)
$$\int_{1}^{\infty} \frac{1}{x^2} \, \mathrm{d}x$$

(c)
$$\int_{1}^{\infty} \sin x \, \mathrm{d}x$$

- 14. (a) Show that $F(x) = \tan^{-1} x$ is an anti-derivative of $f(x) = \frac{1}{1+x^2}$ in the following ways:
 - i. Differentiate F(x) and simplify to give f(x).
 - ii. Use the substitution $x = \tan \theta$ to integrate f(x) and simplify to give F(x).
 - (b) 0 Recall that 22/7 is often given as a rough approximation to π . Consider the integral

$$I = \int_{0}^{1} \frac{x^4 (1-x)^4}{1+x^2} \, \mathrm{d}x,$$

and hence show that $22/7 > \pi$.

Consider the operator \mathcal{L} defined by

$$\mathcal{L}f(x) = \frac{\mathrm{d}}{\mathrm{d}x} \ln \left[f\left(e^{x}\right) \right].$$

- (a) Show that $\mathcal{L}x^n = n$ and that $\mathcal{L}[u(x)]^n = n\mathcal{L}u(x)$.
- (b) Find an expression for $\mathcal{L}[u(x)v(x)]$ and $\mathcal{L}[u(x)/v(x)]$.
- (c) Find an expression for $\mathcal{L}[u(x) + v(x)]$.
- (d) For which y is $\mathcal{L}y = y$?
- 16. S Compute the following indefinite integrals:

(a)
$$\int \frac{\sin \frac{1}{x}}{x^2} \, \mathrm{d}x$$

(b)
$$\int \frac{\ln x \cos x - \frac{\sin x}{x}}{(\ln x)^2} dx$$
Dudley, Mathematical Cranks, p.52.

[†] Nahin, Inside Interesting Integrals, pp.23-4.

17. \bigcirc A while ago (when we talked about the product and quotient rules), I claimed that the radius of the circle best approximating a continuous curve around a point (x, y) is given by

radius of curvature =
$$\frac{\left[1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right]^{\frac{3}{2}}}{\left|\frac{\mathrm{d}^2y}{\mathrm{d}x^2}\right|}.$$

Let us attempt to prove this.

- (a) Let f be a continuous function at x such that the second derivative of f at x exists. By recalling our work on approximations, explain why knowing up to the second derivative of f should be enough to find the 'best circular approximation' of f at (x, f(x)).
- (b) Consider the circle of radius r centred at (x_0, y_0) . Suppose that this circle passes through the point (x_1, y_1) ; suppose further that the first derivative of the y-ordinate of the circle with respect to the x-ordinate is m, and that the second derivative is c. Write down expressions for r, x_0 , and y_0 in terms of x_1, y_1, m , and c.
- (c) Use part (b) to write down the radius of the unique circle passing through (x, f(x)) with matching first and second derivatives to f.