Business Intelligence

Casus Kramse - Containervervoer

Erik Kuiper & Giel Vossen Versie 4.7 (30-1-2023)

Inleiding

Dit document bevat een casusbeschrijving. Deze casus is opgebouwd rondom het zeecontainer vervoersbedrijf Kramse. Na een introductie van de missie/visie en strategie van Kramse, worden de operationele systemen van het bedrijf Kramse beschreven.

Vervolgens wordt, via een serie opdrachten, een datawarehouse voor Kramse opgebouwd en worden een aantal dashboards ontworpen en gebouwd. De bijbehorende opdrachten zijn in een apart document weergegeven.

Casusbeschrijving

Het bedrijf Kramse verzorgt het vervoer van zeecontainers tussen havens in Europa. De missie/visie en strategie van de onderneming is als volgt omschreven.

Mission(why we exist)/Vision(what we want to be):

Best in Class is to connect and simplify supply chains across the globe.

The Strategy (how)

- Managed and operated as an integrated company.
- *A one company structure with multiple brands.*
- *Growing topline, earnings for our owners, and opportunities for our people.*

Met name de strategie om als een geïntegreerde organisatie te werken resulteert in kostenbesparingen door schaalvergroting en een betere benutting (utilization) van de investeringen. Denk bij het laatste dan aan bijvoorbeeld een gezamenlijke planning van het containervervoer en de daaraan gekoppelde inlanddiensten.

Daarnaast heeft Kramse de "Sustainable Development Goals" (SDGs), zoals deze zijn geadopteerd door de Verenigde Naties in 2015, geconcretiseerd in haar bedrijfsdoelen. Voor deze opdracht zijn de twee meest belangrijkste de uitstoot van NO_x/SO_x en CO_2 (klimaatverandering, zero emissie in 2050). Beiden zijn uiteraard gerelateerd aan bedrijfsgroei, brandstofsoort en brandstofverbruik. Deze laatste hangt weer af van vaarroute, snelheid, belading en type boot.

Brandstofverbruik en snelheid

Gemiddeld halen de moderne container schepen een snelheid van 22 - 27 knopen. Dat staat gelijk aan circa 40 tot 50 km per uur (1 knoop » 1,85 km). Een groot containerschip verbruikt bij een topsnelheid zo'n 250.000 liter in 24 uur.

Veel rederijen hebben geen goed zicht op het brandstofverbruik. Men werkt in de praktijk met zogenaamde 'noon-reports', waarbij een schip dagelijks rapporteert hoeveel brandstof de afgelopen 24 uur is verbruikt. De achterliggende oorzaak van het verbruik wordt vaak niet gerapporteerd. Een laag verbruik kan natuurlijk bevestigen dat er efficiënt gevaren is, maar kan ook betekenen dat het schip stroom mee had, langzamer heeft gevaren of wellicht een tijd stil heeft gelegen. Ook een hoog verbruik kan vaak niet goed verklaard worden: Had men wind of stroom tegen, heeft de kapitein te hard gevaren, moet de romp van het schip weer eens schoongemaakt worden of is de motor toe aan onderhoud?

Bron: https://www.we4sea.com/2017/03/efficientere-schepen-in-het-digitale-tijdperk/

Voor het realiseren van de hierboven genoemde strategie heeft Kramse voor 2017 de volgende (sub)doelen geformuleerd:

- CO2 reductie/NOx/SOx: verlagen van het brandstofverbruik met 10% (brandstofverbruik/per ton vracht per zeemijl)
- Utilisatiegraad verbeteren: Reduceren van de wachttijden in de havens, de zogenaamde idle time. met 5%.

• Beladingsgraad; Verder optimaliseren van de beladingsgraad naar 90%

Voor een beter besluitvorming omtrent voorgenoemde doelen, wil Kramse een aantal dashboards ontwikkelen. Het management heeft daarom de volgende informatievragen op hoofdlijnen geformuleerd.

Kostenverlaging en utilisatie

- Beladingsgraad per schip per haven.
- Wachttijden ('idle time') per haven en per schip inclusief trends (afgelopen jaren).
- Brandstofverbruik (in relatie tot optimale snelheid) in tonnen brandstof per ton vracht per zeemijl; een en ander per type boot, vaarroute en seizoen.
- Kosten per ton vracht per schip per route.

Besluitvorming

Op basis van bovenstaande informatievragen moet de directie in staat zijn zodanig te sturen dat de eerder geformuleerde doelen kunnen worden gerealiseerd.

Databronnen

De hiervoor benodigde gegevens komen uit een aantal bronnen:

- De kerngegevens komen uit een MS Access database.
- Gegevens over opdrachtgevers komen uit een Excel-bestand; dit bestand is afkomstig van de commerciële afdeling.
- Gegevens over soorten containers komen uit een tekstbestand; dit bestand is afkomstig van een internationale organisatie.
- CO2 verbruik https://ec.europa.eu/clima/policies/transport/shipping en#tab-0-0
- CO2 verbruiks registratie wet https://eur-lex.europa.eu/legal-content/NL/TXT/PDF/?uri=CELEX:32015R0757&from=EN

Voordat de kerngegevens besproken worden, behandelen we eerst de beide andere bronbestanden.

Opdrachtgevers

Opdrachtgevers (Consignors) staan in een apart bestand. Dat is ook wel handig, omdat de commerciële afdeling hierin ook potentiële opdrachtgevers opneemt. Opgenomen zijn identificatienummer, naam, stad, land en kortingspercentage.

Containers

Ook de typen van containers staan in een apart bestand. Dit wordt door een buitenstaander aangeleverd en bevat:

- een identificatie van de container,
- een beschrijving van het type van de container,
- een indicatie of het type gekoeld is of niet,
- een indicatie van het type stroomaansluiting,
- lengte en inhoud van de container.

Kramse voegt hier zelf de vervoersprijs per kilometer aan toe.

Kerngegevens

De MS Access database met kerngegevens is een operationele en slecht genormaliseerde database. De database bevat 2 kerntabellen en wel Voyage met gegevens over reizen met containers en Shipments met gegevens over het vervoer van containers. Andere tabellen bevatten detailleringen van gegevens. Duidelijke entiteiten zijn Ship en Port (haven). Verder worden zendingen (ShipmentDetail) en vervoerde items gedetailleerd vastgelegd. Het ERD van de database is als volgt:

Figuur 1 – Entiteit-Relatie Diagram KramseTPS

In de tabel Port zijn havens vastgelegd (tabel 1). Een overzicht van de havens is ook opgenomen in de kaart op de voorpagina; de gele nummers daarin verwijzen naar het identificatienummer van de havens.

Port								
P_PortOrder	VPS_PortId	P_PortName	P_Country	P_DistanceFromOslo	P_DistanceFromPiraeus			
1	1	Rotterdam	Netherlands	1050	5100			
10	8	Piraeus	Greece	6000	0			
11	10	Oslo	Norway	0	6000			
12	11	Gdansk	Poland	1200	7200			
13	13	Bilbao	Spain	2700	4800			
14	20	Cardiff	England	2100	5150			
15	3	Alborg	Denmark	350	6150			
16	16	Genua	Italy	4800	1800			
17	17	Ostia	Italy	5600	2100			
18	19	Bari	Italy	6300	1050			
19	14	Goteborg	Sweden	300	6200			
2	15	London	England	1400	5600			
21	4	Helsinki	Finland	1500	5000			

Tabel 1 – Fragment tabel Port

Havens zijn genummerd, maar niet perse opeenvolgend; sommige nummers ontbreken om onduidelijke redenen. In Oslo en Piraeus zitten hoofdkantoren, dus de afstand tot beide plaatsen is de tabel opgenomen. Portorder geeft de plaats op de ranglijst van grootste havens. Verder worden ook de landen gegeven waar de havens liggen.

De schepen waarover Kramse kan beschikken staan in de onderstaande lijst (tabel 2). Naast een identificatie per schip worden naam, maximale aantal containers, maximale snelheid (in knopen en kilometers per uur), het land onder welke vlag het vaart en de jaarlijkse onderhoudskosten weergegeven.

Tabel 2 – Fragment tabel Ship

Ship							
VS_Shipid	Sh_Shipname	Sh_MaxNumberContain	Sh_SpeedInKnots	Sh_SpeedInKm_H	Sh_Country	Sh_Yearcost	
1	Xin Beijing	9580	15	28	Hong Kong	\$	
						1.000.000,00	
2	MSC Vittoria	8809	12	22	Panama	\$ 950.000,00	
3	MSC Rachele	8238	18	33	Germany	\$ 860.000,00	
4	Emma Maersk	13000	19	35	Denmark	\$	
						1.350.000,00	
5	Maersk Sana	8452	15	28	Liberia	\$ 750.000,00	
6	CMA CGM Otello	8488	20	37	Frankrijk	\$ 700.000,00	
7	Caroline Maersk	8660	22	41	Denmark	\$ 750.000,00	
8	Cosco	10046	20	37	China	\$	
						1.200.000,00	
9	Mærsk Stepnica	8750	17	31	Cyprus	\$	
						1.150.000,00	
10	OOCL Ningbo	8063	20	37	Marshalleilanden	\$ 950.000,00	

Schepen maken reizen langs havens in Europa. In de tabel hieronder (tabel 3) wordt, als voorbeeld, een aantal reizen gegeven. Naast de identificatienummers van de reis en het schip dat die reis vaart, worden datum van vertrek en (identificatie van) havens gegeven waar de reis begint en waar die eindigt.

Tabel 3 – Fragment tabel Voyage

Voyage								
VV_VoyageId	VS_ShipId	V_DateDepartVoyage	VPS_PortIdStart	V_PortIdEnd				
1	10	25-3-2016	1	21				
2	7	4-4-2016	7	2				
3	2	12-4-2016	3	8				
4	6	12-7-2016	15	4				
5	3	28-7-2016	1	12				
6	8	1-9-2016	8	13				
7	1	8-11-2016	4	8				
10	6	10-12-2016	18	19				

Maar reizen worden ook gedetailleerder beschreven. Voor elke reis worden alle havens opgenomen waar aangemeerd wordt; dit gebeurt in de tabel VoyagePort (tabel 4). LegDateDepart is de datum waarop het schip uit de haven vertrekt en LegDateArrival is de datum van aankomst in de volgende haven. Verder wordt de lengte van de reis in km gegeven. Schepen kunnen enkele dagen in een haven blijven liggen omdat te foerageren, papieren te regelen of andere zaken.

Tabel 4 - Fragment tabel VoyagePort

VoyagePort								
VV_VoyageId	VP_PortIdCurrent	Vp_PortIdNext	Vp_LegDateDepart	Vp_LegDateArrival	Vp_Traject_Distance	Vp_PortOrder		
1	1	21	25-3-2016	26-3-2016	300			
2	7	2	4-4-2016	6-4-2016	700			
3	3	15	12-4-2016	15-4-2016	800			
3	12	18	16-5-2016	23-5-2016	1200			
3	13	12	25-4-2016	11-5-2016	3000			
3	15	13	17-4-2016	21-4-2016	1050			
3	18	8	26-5-2016	1-6-2016	1000			
4	3	4	21-7-2016	25-7-2016	1500			
4	15	3	12-7-2016	17-7-2016	1200			
5	1	5	28-7-2016	31-7-2016	500			
5	5	13	2-8-2016	6-8-2016	1200			
5	13	12	10-8-2016	14-8-2016	3000			
6	6	12	6-10-2016	8-10-2016	450			

Merk op dat de tabellen Voyage en VoyagePort niet genormaliseerd zijn en dus bijwerkanomalieën kunnen opleveren. Of beide tabellen geen tegenstrijdigheden bevatten is een aandachtspunt.

Voor elke tocht van haven tot haven worden onderweg zaken uit- en ingeladen. Ook kunnen formaliteiten (veel) tijd in beslag nemen. De (nieuwe) lading per tocht wordt hieronder gegeven voor de reizen 1 en 2 (tabel 5); de rest van de tabel kan gevonden worden in de bronnen.

Tabel 5 – Deel van de tabel Shipment

Shipment							
ShipmentId	Voyageld	ConsignorId	PortIdFrom	PortIdTo	Distance	NumberContainers	
1	1	2	1	21	300	5000	
2	1	1	1	21	300	1000	
3	1	3	1	21	300	2000	
4	1	4	1	21	300	1200	
5	2	3	7	2	700	3000	
6	2	1	7	2	700	4000	
7	2	2	7	2	700	3500	
8	2	2	7	2	700	1000	

Ladingen worden verder beschreven in de tabel ShipmentDetail; enkele records zijn hieronder weergegeven (tabel 6). Bekend is dat deze tabel bepaald niet genormaliseerd is. Probleem zal worden wat te doen met de kolom ContainerNr. De velden daarin voldoen niet aan de 0^{de} normaalvorm en mogelijk zullen dus velden gesplitst moeten worden.

Tabel 6 – Deel van de tabel ShipmentDetail

ShipmentDetail						
ShipmentId	ContainerNr	Item	Containertypeld			
1	2001-5000	1	5			
1	1-2000	3	5			
2	1-1000	4	2			
3	1001-2000	5	6			
3	1-1000	9	7			
4	1-600	4	2			
4	601-1200	11	5			
5	2001-3000	2	5			
5	1-1000	6	1			
5	1001-2000	8	3			

De items zijn opgenomen in de tabel Items (tabel 7).

Tabel 7 – tabel Item

Item							
item_key	item_description	item_category	item_mfgr	item_storage_type	item_hazard_flag		
1	Mountains bikes	Bikes	Gazelle	standard	low		
2	Netbooks	Computers	Asus	safe	high		
3	Computer books	Books	AW	standard	low		
4	Flatscreens	domestic appliance	Philips	protected	medium		
5	Cigarettes	Smoking goods	Marlboro	safe	medium		
6	Frozen spinace	Frozen food	Iglo	refrigeration	low		
7	Beef	Frozen food	Beef&Steak	refrigeration	low		
8	Chicken	Frozen food	Poultex	refrigeration	low		
9	Fireworks	Explosive	Bonbridge	anti-explosive	high		
10	Refrigerators	domestic appliances	Miele	standard	low		
11	Sports shoes	shoes	Addidas	standard	low		
12	Desks	Furniture	Ikea	standard	low		
13	Chair	Furniture	Ikea	standard	low		
14	Wardrobes	Furniture	Ikea	standard	low		
15	Memory sticks	Media hardware	Emtec	protected	low		
16	CD	Media hardware	Emtec	standard	low		
17	DVD	Media hardware	Emtec	standard	low		
18	Balls	Toys	Toys R us	standard	medium		
19	Trains	Toys	Toys R us	standard	medium		
20	Guns	Arms	Xxx	secret	high		

Hiermee is het kernsysteem van Kramse toegelicht. Dit systeem dient als basis voor het nieuw te ontwikkelen datawarehouse.

Belangrijke opmerking: In de module Technieken BI hebben we geoefend met het bouwen van een datawarehouse en het deployen hiervan naar een kubus. Hierbij moesten alle measures en KPI's aangemaakt worden in de kubus. Voor deze opdracht is het ook toegestaan om powerBI te verbinden met het datawarehouse(direct query) i.p.v. met je kubus (live connect).

Alle measures, KPI's etc moeten dan uiteraard aangemaakt worden met PowerBI (DAX)