

www.mockopedia.com

Height and distance

Solution

test platform

1. Answer: (B)

$$\tan 30^0 = \frac{20\sqrt{3}}{BD}$$

$$BD = 60 \text{ m}$$

$$\tan 60^0 = \frac{20\sqrt{3}}{BC}$$

$$BC = 20 \text{ m}$$

$$DC = 40 \text{ m}$$

Speed of boat = 40/10 = 4m/sec

Total time taken to reach light house

$$= 60/4 = 15 \text{ sec}$$

Answer: (D)

2.

In triangle PQS,

$$\tan 60^0 = \frac{h}{x}$$

$$\sqrt{3} = \frac{h}{x}$$

$$x = \frac{h}{\sqrt{2}}$$

Now in triangle PRS,

$$\tan 30^0 = \frac{h}{180 - x}$$

$$\frac{1}{\sqrt{5}} = \frac{h}{h}$$

$$\frac{1}{\sqrt{3}} = \frac{h}{180 - \frac{h}{\sqrt{5}}}$$

$$4h = 180\sqrt{3}$$

$$h = 45\sqrt{3}$$

again in triangle PQS,

$$\sin 60^0 = \frac{h}{PQ}$$

$$\sqrt{3} \quad 45\sqrt{3}$$

$$\frac{\sqrt{3}}{2} = \frac{45\sqrt{100}}{2}$$

$$PQ = 90$$

Total height of tower before breakage

$$=45\sqrt{3}+90$$

$$=45(\sqrt{3}+2) \text{ m}$$

3. Answer:(D)

$$an(90-\theta) = \frac{n}{x} = \cot \theta \qquad ...(i)$$

$$\tan \theta = \frac{\pi}{y}$$
 ...(ii)

$$(i) \times (ii) \Rightarrow \tan \theta \times \cot \theta = \frac{h^2}{xy}$$

$$h = \sqrt{xy}$$

[shortcut: —if angle of elevation are complementary then $h = \sqrt{xy}$

ISO Certa. (Answer:(D)

$$\tan \theta = \frac{P}{B} = \frac{5}{9}$$

$$5 \rightarrow 25 (60 - 35)$$

[GIVEN TOTAL HT AS 60 IN QUES]

$$1 \rightarrow 5$$

$$9 \rightarrow 45 \text{ cm}$$
.

5. Answer:(A)

Let height of light house= $\sqrt{3}$ tan45°= height/base

Base= $\sqrt{3}$

 $\tan 60^0 = \frac{\sqrt{3}}{2}$

x=1 ,therefore,

$$(\sqrt{3}-1)$$
distance $\rightarrow 60 \times 4 (\sqrt{3}-1)$
1 $\rightarrow 240$

HENCE,(height) $\sqrt{3} \rightarrow 240\sqrt{3}$ m

6. Answer:(**B**)

From the question figure is drawn

$$\tan 45^{\circ} = \frac{200}{x}$$

$$\tan 60^{0} = \frac{h}{400 - 200}$$

$$h = 200\sqrt{3}m$$

7. Answer:(C)

with reference to question, fig is given below

Keep in touch:

www.mockopedia.com

$$\tan 45 = \frac{16}{\text{base}}$$

$$\tan 60 = \frac{x + 40}{}$$

$$x = 40(\sqrt{3} - 1)m$$

Answer:(B)

8.

Given = $\tan x = \frac{3}{4} & \tan \alpha = \frac{4}{3}$

$$\tan x = \frac{h}{base} = \frac{3}{4}$$

Therefore $base = \frac{4h}{3}$(1)

$$\tan \alpha = \frac{h}{\text{base} - 560}$$

Put value of base in above eq

$$\frac{4}{3} = \frac{311}{4h - 560 \times 3}$$

$$16h - 560 \times 12 = 9h$$

$$h = \frac{560 \times 12}{7} = 960 \text{ m}$$

9.

From the following figure

$$\tan 60 = \frac{4500}{Base}$$

Base =
$$\frac{4500}{\sqrt{3}}$$
 = $1500\sqrt{3}$

$$\tan 30 = \frac{4500}{x + 1500\sqrt{3}}$$

$$\frac{x}{\sqrt{3}}$$
 + 1500 = 4500

$$x = 3000\sqrt{3}$$

Speed of aeroplane = $\frac{3000\sqrt{3}}{30}$ = $100\sqrt{3}$

10. **Answer:**(**A**)

From reference to question

 $\sin 30 = \frac{x}{420}$

x = 210 m

11. **Answer:**(**B**)

fig is drawn according to question

 $\tan 60 = \frac{h}{450\sqrt{3}}$

 $h = 450\sqrt{3} \times \sqrt{3}$

in 6 minutes achiveht of 1350

speed =
$$\frac{450 \times 3}{6 \times 60}$$
 = 3.75 m/s

12. **Answer:(D)**

Keep in touch:

www.mockopedia.com

From foll. Fig.

$$BC^2 = AB^2 - AC^2$$

$$BC^2 = (52)^2 - (20)^2$$

$$BC = \sqrt{72 \times 32}$$

$$BC = 48$$

13. **Answer:(D)**

In **ABD**

$$tan45 = \frac{220}{BD}$$

$$BD = 220$$

$$\tan 30 = \frac{220}{220 + DC}$$

$$CD = 220(\sqrt{3} - 1)$$

$$= 220 \times 0.732 = 161.05$$

14. **Answer:(D)**

In AABC

$$\tan 60 = \frac{72}{80}$$

$$BC = \frac{72}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = 24\sqrt{3}$$

In AADE

$$\tan 30 = \frac{AE}{ED = BD} = \frac{AE}{24\sqrt{3}}$$

AE = 24

So,

$$DC = (72 - 24) = 48$$

Height of building = 48 m

15. Answer:(C)

16. Answer:(B)

Keep in touch:

www.mockopedia.com

17. Answer:(A)

Keep in touch:

www.mockopedia.com

18. Answer:(B)

In
$$\Delta$$
 BCX

$$\tan 30 = \frac{cx}{BX}$$

$$BX = CX \sqrt{3}$$

In AABX

$$\tan 45 = \frac{4+cX}{BX}$$

$$CX\sqrt{3} = 4 + CX$$

$$CX = \frac{4}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}$$

$$CX = 2(\sqrt{3} + 1)$$

19. Answer:(A)

W.R.T to question

$$\tan 75 = \frac{120}{AB}$$

$$AB = \frac{120}{\sqrt{3}+1} \times \sqrt{3} - 1 \times \frac{\sqrt{3}-1}{\sqrt{3}-1}$$

$$AB = \frac{120(\sqrt{3}-1)^2}{2} \Rightarrow 120(2-\sqrt{3})$$

20. Answer:(D)

With respect to question

In AABC

$$\tan 45 = \frac{58.2}{BC}$$

$$\tan 60 = \frac{58.2}{CD}$$

BD = BC - CD =
$$58.2 - 19.4\sqrt{3}$$

BD = 19.4 (3 –
$$\sqrt{3}$$
)

Certified