Proof. To prove completeness of \mathbb{C}^d , consider \mathbb{R}^{2d} and identify every

$$(x_1+iy_1,x_2+iy_2,\ldots,x_d+iy_d) \in \mathbb{C}^d$$

with

$$(x_1, y_1, x_2, y_2, \dots, x_d, y_d) \in \mathbb{R}^{2d}$$
.

This transformation is isomorphic under addition and preserves the norm, so it is an isometry.

Hence, it is sufficient to show the completeness of \mathbb{R}^d for all d. Let $\{v_n\}_{n=1}^{\infty} \subset \mathbb{R}^d$ be a Cauchy sequence. For all n, denote

$$v_n = (v_{n,1}, \dots, v_{n,d}).$$

For every dimension $k=1,\ldots,d$ consider the sequence $\{v_{n,k}\}_{n=1}^{\infty}$. It is Cauchy, since for all $n,m, |v_{n,k}-v_{m,k}|$ is bounded by $||v_n-v_m||$, so it converges to some $\ell_k \in \mathbb{R}$ by completeness of \mathbb{R} .

Let $\ell \in \mathbb{R}^d = (\ell_1, \dots, \ell_d)$. We decompose the distance as

$$||v_n - \ell||^2 = \sum_{k=1}^d (v_{n,k} - \ell_k)^2$$

and observe that the RHS goes to 0 as $n \to \infty$ by convergence of $\{v_{n,k}\}_{n=1}^{\infty}$. Hence, v_n converges to ℓ as $n \to \infty$.