

Review: The Implication Operator

- The conditional statement (a.k.a. implication) $p \rightarrow q$ states that p implies q.
- *l.e.*, If p is true, then q is true; but if p is not true, then *q* could be either true or false.
- E.g., let p = "You study hard." q = "You will get a good grade." $p \rightarrow q =$ "If you study hard, then you will get a good grade." (else, it could go either way)
 - p: hypothesis or antecedent or premise
 - q: conclusion or consequence

Review: Implication Truth Table

$$\begin{array}{c|cccc} p & q & p \longrightarrow q \\ \hline T & T & T \\ T & F & F \end{array}$$

$$\begin{array}{c|cccc} T & ccccc & T \\ \hline T & T & T \\ \hline F & T & T \\ \hline F & F & T \end{array}$$

$$\begin{array}{c|cccc} T & ccccc & T \\ \hline T & T & T \\ \hline F & F & T \end{array}$$

- $p \rightarrow q$ is **false** only when p is true but q is **not** true.
- $p \rightarrow q$ does **not** require that p or q <u>are ever true!</u>
 - E.g. "(1=0) \rightarrow pigs can fly" is TRUE!

Examples of Implications

- "If this lecture ever ends, then the sun will rise tomorrow." True or False? $(T \rightarrow T)$
- "If 1+1=6, then Obama is president." True or False? $(F \rightarrow T)$
- "If the moon is made of green cheese, then I am richer than Bill Gates." True or False? (F → F)
- "If Tuesday is a day of the week, then I am a penguin." True or False (T→F)

English Phrases Meaning $p \rightarrow q$

- "p implies q"
- "if *p*, then *q*"
- "if p, q"
- "when *p*, *q*"
- "whenever p, q"
- "q if p"
- "q when p"
- "q whenever p"

- "*p* only if *q*"
- "p is sufficient for q"
- "q is necessary for p"
- "q follows from p"
- "q is implied by p"

We will see some equivalent logic expressions later.

Converse, Inverse, Contrapositive

• Some terminology, for an implication $p \rightarrow q$:

• Its *converse* is:
$$q \rightarrow p$$
.

■ Its *inverse* is:
$$\neg p \rightarrow \neg q$$
.

■ Its *contrapositive*: $\neg q \rightarrow \neg p$.

<u>p</u>	q	$p \rightarrow q$	$q \rightarrow p$	$\neg p \rightarrow \neg q$	$\neg q \rightarrow \neg p$
T	T	T	T	T	T
T	F	F	T	T	\mathbf{F}
F	T	T	F	\mathbf{F}	T
F	F	T	T	T	T

• One of these three has the same meaning (same truth table) as $p \rightarrow q$. Can you figure out which?

Examples

- p: Today is Easterq: Tomorrow is Monday
- $p \rightarrow q$:
 If today is Easter then tomorrow is Monday.
- *Converse*: $q \rightarrow p$ If tomorrow is Monday then today is Easter.
- *Inverse*: $\neg p \rightarrow \neg q$ If today is not Easter then tomorrow is not Monday.
- *Contrapositive*: $\neg q \rightarrow \neg p$ If tomorrow is not Monday then today is not Easter.

The Biconditional Operator

- The biconditional statement p ↔ q states that p if and only if (iff) q.
- p = "It is below freezing."
 q = "It is snowing."
 p ↔ q = "It is below freezing if and only if it is snowing."

or

= "That it is below freezing is necessary and sufficient for it to be snowing"

Biconditional Truth Table

<u>p</u>	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

- p is necessary and sufficient for q
- If p then q, and conversely
- p iff q
- $p \leftrightarrow q$ is equivalent to $(p \rightarrow q) \land (q \rightarrow p)$.
- p ↔ q means that p and q have the same truth value.
- $p \leftrightarrow q$ does **not** imply that p and q are true.
- Note this truth table is the exact **opposite** of \oplus 's! Thus, $p \leftrightarrow q$ means $\neg(p \oplus q)$.

Boolean Operations Summary

- Conjunction: p ∧ q, (read p and q), "discrete math is a required course and I am a computer science major".
- Disjunction: , p ∨ q, (read p or q), "discrete math is a required course or I am a computer science major".
- Exclusive or: p ⊕ q, "discrete math is a required course or I am a computer science major but not both".
- Implication: $p \rightarrow q$, "if discrete math is a required course then I am a computer science major".

Boolean Operations Summary

 We have seen 1 unary operator and 5 binary operators. What are they? Their truth tables are below.

<u>p</u>	q	$\neg p$	$p \land q$	$p \lor q$	$p \oplus q$	$p \rightarrow q$	$p \leftrightarrow q$
T	T	F	T	T	F	T	T
T	F	F	F	T	T	F	F
F	T	T	F	T	T	T	F
F	F	T	F	F	F	T	T

- For an implication
- $p \rightarrow q$
- Its converse is:

 $q \rightarrow p$

Its inverse is:

- $\neg p \rightarrow \neg q$
- Its contrapositive:
- $\neg q \rightarrow \neg p$

Compound Propositions

- A propositional variable is a variable such as p, q, r (possibly subscripted, e.g. p_j) over the Boolean domain.
- An atomic proposition is either Boolean constant or a propositional variable: e.g. T, F, p
- A *compound proposition* is derived from atomic propositions by application of propositional operators: e.g. $\neg p$, $p \lor q$, $(p \lor \neg q) \to q$
- Precedence of logical operators: \neg , \wedge , \vee , \rightarrow , \leftrightarrow
- Precedence also can be indicated by parentheses.
 - e.g. $\neg p \land q$ means $(\neg p) \land q$, not $\neg (p \land q)$

An Exercise

- Any compound proposition can be evaluated by a truth table
- $(p \vee \neg q) \rightarrow q$

p	q	$\neg q$	$p \lor \neg q$	$(p \lor \neg q) \rightarrow q$
T	T	F	T	T
T	F	T	T	F
F	T	F	F	T
F	F	T	T	F

Translating English Sentences

Let p = "It rained last night", q = "The sprinklers came on last night," r = "The lawn was wet this morning."

Translate each of the following into English:

 $\neg p$ = "It didn't rain last night."

 $r \wedge \neg p$ = "The lawn was wet this morning, and it didn't rain last night."

 $\neg r \lor p \lor q =$ "The lawn wasn't wet this morning, or it rained last night, or the sprinklers came on last night."

4

Another Example

- Find the converse of the following statement.
 - "Raining tomorrow is a sufficient condition for my not going to town."
- Step 1: Assign propositional variables to component propositions.
 - p: It will rain tomorrow
 - q: I will not go to town
- **Step 2**: Symbolize the assertion: $p \rightarrow q$
- **Step 3**: Symbolize the converse: $q \rightarrow p$
- Step 4: Convert the symbols back into words.
 - "If I don't go to town then it will rain tomorrow" or
 - "Raining tomorrow is a necessary condition for my not going to town."

Logic and Bit Operations

- A bit is a binary (base 2) digit: 0 or 1.
- Bits may be used to represent truth values.
 - By convention:
 - 0 represents "False"; 1 represents "True".
- A *bit string of length n* is an ordered sequence of $n \ge 0$ bits.
- By convention, bit strings are (sometimes) written left to right:
 - e.g. the "first" bit of the bit string "1001101010" is 1.
 - What is the length of the above bit string?

Bitwise Operations

 Boolean operations can be extended to operate on bit strings as well as single bits.

Example:

```
01 1011 0110

11 0001 1101

11 1011 1111 Bit-wise OR

01 0001 0100 Bit-wise AND

10 1010 1011 Bit-wise XOR
```


You have learned about:

- Propositions: what they are
- Propositional logic operators'
 - symbolic notations, truth tables, English equivalents, logical meaning
- Atomic vs. compound propositions
- Bits, bit strings, and bit operations
- Next section:
 - Propositional equivalences
 - Equivalence laws
 - Proving propositional equivalences