微机原理实验

刘昊 王学香

wxx@seu.edu.cn

School of Electronic Science and Engineering Southeast University

2021

实验安排

实验地点: 教二205

时间: 周二下午14:00~17:00

周四晚上17:15~20:15

实验系统

实验装置结构介绍

实验内容与安排

11月18日	11月23日	11月25日	11月30日	12月7日	12月14日	12月21日
第十一周	第十二周	第十二周	第十三周	第十四周	第十五周	第十六周
讲课 汇编程序 设计	实验一、 I/0地址译 码	实验二、 简单并行 接口	实验三 可编程定 时器/计数 器(8253)	实验五、 七段数码 管	实验七、 交通灯控 制	选作实验

汇编程序设计实验: 熟悉软硬件环境, 练习汇编语言程序设计

微机接口电路实验:

接口芯片/外围电路所需要的输入/输出信号如何连接 CPU和接口芯片之间交互工作 理解CPU运行指令时总线上的信号变化

实验装置结构介绍

评分标准

平时成绩(10分)	考勤
实验项目完成情况(30分)	助教对于每个实验记录的分数 通过修改程序演示实验结果(中) 演示每个实验后面的选作实验和思考题(良) 回答问题较好(优)
实验项目完成情况(30分)	我随机抽一个实验, 演示并回答问题
实验报告(30分)	最后一个实验完成后提交实验报告(12月15日之前)包括: 1、交通灯控制实验; 2、选作实验:实验指导书中的其他实验,或者I2C创新实验。

提交实验报告文件名格式: 学号姓名_微机实验报告发送邮箱: wxx@seu.edu.cn

TPC-PCI集成开发环境

功能:

- ▶用户程序的编辑
- >程序调试和运行
- ▶实验项目的查看
- ▶实验项目演示

> ……

实验装置中的电路介绍 1、I/O地址译码电路

|/0地址译码

2、时钟电路

可以输出1MHz、2MHz信号 哪些实验需要时钟信号?

供A/D转换器、定时器/计数器、串行接口实验用

时钟

3、逻辑电平开关电路

开关为"1"输出高电平

开关为"0"输出低电平

图 5

逻辑电平开关电路在做实验过程中的作用?

逻辑电平开关

4、LED显示电路

2

6

8个发光二极管输入端L7~L0输入为1时发光输入为0时灭

LED显示电路在做实验过程中的作用?

LED显示

5、七段数码显示电路

两个共阴极七段数码管及驱动电路 段码(a/b/c/d/e/f/g/dp)位码(s1/s2)

七段数码管的字型编码表

2、七段数码管的字型代码表如下表:

显示字形	g	е	f	d	С	b	a	段码
0	0	1	1	1	1	1	1	3fh
1	0	0	0	0	1	1	0.	06h
2	1	0	1	1	0	1	1	5bh
3	1	0	0	1	1	1	1	4fh
4	1	1	0	0	1	1	0	66h
5	1	1	0	1	1	0	1	6dh
6	1	1	1	1	1	0	1	7dh
7	0	0	0	0	1	1	1	07h
8	1	1	1	1	1	1_	1	7fh
9	1	1	0	1	1	1	1	6fh

七段数码管

6、单脉冲电路

采用RS触发器 每按一次开关可以分别输出 正脉冲和负脉冲

图 8

哪些实验需要单脉冲信号?

供中断、DMA、定时器/计数器等实验用

单脉冲

7、逻辑笔电路

逻辑笔

8、继电器及驱动电路

开关量输入端为"1" 继电器动作 常开触点闭合 常闭触点断开

了解开关量控制的一般原理

继电器

9、复位电路

哪些实验需要用到复位信号?

供8255、8251等接口芯片使用

复位

实验基本步骤

- 1、熟悉实验箱的结构,并找到与实验有关的电路
- 2、按实验内容要求用连接线将电路的各线路连接好
- 3、确定所使用的I/O口的地址
- 4、编写程序并完成编译和连接工作
- 5、调试程序,实现实验内容要求的指标和功能

创新实验

微机系统的I²C总线技术应用

实验目的:

为学生提出一个新的实验内容 让学生利用已有的实验平台, 完成一个新的实验训练。

充分发挥学生的聪明才智,提高知识的 运用能力和创新意识。

实验要求:

在现有的实验平台上,通过硬件(即合理的接线)和软件设计完成微机系统对24C01串行总线存储器的读与写的操作。30

• I²C总线接口

I²C BUS (Inter IC BUS) 是Philips推出的芯片间串行传输总线,它以2根连线实现了完善的全双工同步数据传送,可以极方便地构成多机系统和外围器件扩展系统。I²C总线采用了器件地址的硬件设置方法,通过软件寻址完全避免了器件的片选线寻址方法,从而使硬件系统具有最简单而灵活的扩展方法。由于I2C总线具有标准的规范及众多带I2C接口的外围器件,使得使用I2C总线设计计算机系统变得十分方便、灵活,体积也小,因此得到广泛使用。

• I²C总线接口——名词解释

- ■发送器:本次传输中发送数据到总线的器件;
- ■接收器:本次传输中从总线接收数据的器件;
- ■主机:初始化发送、产生时钟信号和终止发送的器件,它可以是发送器或接收器。主机通常是微控制器;
- ■从机:被主机寻址的器件,可以是发送器或接收器。

• I2C总线接口——总线信号

数据的有效位

起始信号通常由 主机发出,它作 为一次传输的开 始。在起始信号 后总线被认为处 于忙的状态

停止信号作为 一次传送的结 束,在该信号 之后,总线被 认为再次处于 空闲状态。

I²C总线时序

• I²C总线接□ ——常用I2C器件

随着12C总线技术的推出。很多电子厂商都推出了许多带12C总线接口的器件,大量应用于视频、音像及通讯等领域。表6.2给出了常用的通用12C接口的种类、型号及寻址字节。

种类	型号	器件地址及寻址字节
128B E ² RPM	CAT24WC01	(1) 0 1 0 A2 A1 A0 R/W
256B E ² RPM	CAT24WC02	(2) 0 1 0 A2 A1 A0 R W
512B E ² RPM	CAT24WC04	(3) 0 1 0 A2 A1 A0 R W
实时时钟/日历时钟	PCF8563	读:0A3H 写:0A2H
键盘及LED驱动器	ZLG7290	从地址:070H
带32×4位RAM 低复用率的通用 LCD驱动器	PCF8562	只写:011100SA0 ₹ (SA0为该器件的引脚)
通用低复用率LCD 驱动器	PCF8576	只写:011100SA0 R (SA0为该器件的引脚)
内嵌I2C总线、E2PROM、RESET、WDT功能的电源监控器件	CAT1161/2	1 0 1 0 a10 a9 a8 🕅

• I²C总线接口 ——CAT24WC02

CAT24WC02是一款I2C总线接口的E2PROM器件,其引脚如下图所示。

CAT24WC02的12C总线地址的高4位固定为1010, 低四位由A2、A1和A0决定。当A2A1A0引脚悬空时

,默认值为000。

扩展实验

其他创新实验

SPI、UART、NoR Flash、Nand Flash。。。

较复杂的IP模块:

SDRAM, MMC, SD, USB, DMA, o

实验一 [/0地址译码

3-8译码器的输入信号如何连接?

当CPU执行I/ O指令且地址在280H~2BFH范围内,选中74LS138译码器,Y0-Y7中一根译码线输出负脉冲。

执行下面两条指令,Y0~Y7中哪一个输出负脉冲? MOV DX, 2A0H OUT DX, AL(或IN AL, DX)

执行下面两条指令,Y0~Y7中哪一个输出负脉冲? MOV DX, 2A8H OUT DX, AL(或IN AL, DX)

利用这个负脉冲控制**L7**闪烁发光(亮、灭、亮、灭、......),时间间隔通过软件延时实现。

程序

ioport equ 0280h outport1 equ 2a0h outport2 equ 2a8h code segment assume cs:code

start:

mov dx,outport1 out dx,al call delay mov dx,outport2 out dx,al call delay mov ah,1 int 16h je start mov ah,4ch int 21h

; ioport+2a0h ; clk端负脉冲 ;调延时子程序 ; ioport+2a8h ; rd端负脉冲

;读键盘缓冲区字符;有字符则跳转

;终止当前程序并返回

```
;延时子程序
delay proc near
    mov bx,2000
III: mov cx,0
loop II
    dec bx
    jne III
    ret
delay endp
code ends
end start
```