Similar Pair

A pair of nodes, (a, b), is a *similar pair* if the following conditions are true:

1. node $oldsymbol{a}$ is the ancestor of node $oldsymbol{b}$

2.
$$abs(a-b) \leq k$$

Given a tree where each node is labeled from ${\bf 1}$ to ${\bf n}$, find the number of similar pairs in the tree.

For example, given the following tree:

We have the following pairs of ancestors and dependents:

If k=3 for example, we have 6 pairs that are $\mathit{similar}$, where $\mathit{abs}(a-b) \leq k$.

Input Format

The first line contains two space-separated integers n and k, the number of nodes and the similarity threshold. Each of the next n-1 lines contains two space-separated integers defining an edge connecting nodes p[i] and c[i], where node p[i] is the parent to node c[i].

Constraints

•
$$1 \le n \le 10^5$$

•
$$0 \le k \le n$$

•
$$1 \leq p[i], c[i] \leq n$$

Output Format

Print a single integer denoting the number of similar pairs in the tree.

Sample Input

```
5 2
3 2
3 1
1 4
1 5
```

Sample Output

4

Explanation

The similar pairs are (3,2), (3,1), (3,4), and (3,5), so we print 4 as our answer. Observe that (1,4) and (1,5) are *not* similar pairs because they do not satisfy $abs(a-b) \leq k$.