Theo 1 Abgabe 2

Nick Daiber

November 29, 2024

1

```
\begin{split} \langle \langle LK \rangle \rangle &= \{w_1, \dots, w_n | \exists w = a_1 \dots a_n \in L \text{ mit } a_i \in \Sigma \text{ und } w_i \in L_{ai} \text{ für } i = 1, \dots, n \} \\ &= \{w_1, \dots, w_k, w_{k+1}, \dots, w_n | \exists w = a_1 \dots a_n \in L \text{ mit } a_i \in \Sigma \text{ und } w_i \in L_{ai} \text{ für } i = 1, \dots, n \} \\ &= \{v_1, \dots, v_k, u_1, \dots, u_{n-k} | \exists u, v = a_1 \dots a_n \in L \text{ mit } a_i \in \Sigma \text{ und } u_i, v_i \in L_{ai} \text{ für } i = 1, \dots, n \} \\ &= \{v_1, \dots, v_k | \exists v = a_1 \dots a_n \in L \text{ mit } a_i \in \Sigma \text{ und } v_i \in L_{ai} \text{ für } i = 1, \dots, n \} \\ &= \{u_1, \dots, u_{n-k} | \exists u = a_1 \dots a_n \in L \text{ mit } a_i \in \Sigma \text{ und } u_i \in L_{ai} \text{ für } i = 1, \dots, n \} \\ &= \langle \langle L \rangle \rangle \langle \langle K \rangle \rangle \end{split}
```

b

Sei
$$\hat{L} = \{ w \in L^* | |w| = i \}$$

$$\begin{split} \langle \langle L^* \rangle \rangle &= \{ w_1 \dots w_n | \exists w = a_1 \dots a_n \in L^* \text{ mit } a_i \in \Sigma \text{ und } w_i \in L_{ai} \text{ für } i = 1, \dots, n \} \\ &= \{ w_1 \dots w_n | \exists w = a_1 \dots a_n \in \bigcup_{m \in \mathbb{N}} \hat{L}_m \text{ mit } a_i \in \Sigma \text{ und } w_i \in \bigcup_{m \in \mathbb{N}} \hat{L}_{ma} \text{ für } i = 1, \dots, n \} \\ &= \bigcup_{m \in \mathbb{N}} \{ w_1 \dots w_n | \exists w = a_1 \dots a_n \in \hat{L}_m \text{ mit } a_i \in \Sigma \text{ und } w_i \in L_{mai} \text{ für } i = 1, \dots, n \} \\ &= \langle \langle L \rangle \rangle^* \end{split}$$

c

Seien L_1 und L_2 zwei Reguläre Sprachen und R_1 , R_2 reguläre Ausdrücke mit $L(R_1)=L_1$ und $L(R_2)=L_2$ Dann ist $R_1|R_2=L(L_1\cup L_2)$ auch Regulär. Also ist $\langle\langle L\rangle\rangle=\bigcup_{1\leq i\leq n: a_i\in\Sigma, L}L_{ai}$ auch regulär

\mathbf{d}

Sei $\Sigma=\{a,b\}, L=\{a^nb^n\}, L_a=\{a\}, L_b=\{a\}$ So sind $\langle\langle L\rangle\rangle=\{a^{2n}\}, L_a, L_b$ regulär aber L nicht.

Seien L_1 , L_2 reguläre Sprachen und A_1 , A_2 DFAs mit $L(A_1) = L_1$, $L(A_2) = L_2$. Nun konstruieren wir den Produktautomaten A_p von A_1 und A_2 Nun ändern wir die akzeptierten Zustandspaare (q_1,q_2) zu denen wo $q_1 \in F_1 \land q_2 \notin F_2$ somit ist $L(A_p) = L_1 \setminus L_2$ und $L_1 \setminus L_2$ eine reguläre Sprache. da $L_1 \cup L_2$ auch regulär (siehe 1.c) ist $L_1 \Delta L_2$ regulär.