Методы оптимизации Лекция 9: Условия Каруша-Куна-Таккера

Александр Катруца

Физтех-школа прикладной математики и информатики Московский физико-технический институт

9 ноября 2020 г.

▶ Преобразования задач и их типы

- ▶ Преобразования задач и их типы
- Двойственная функция и её свойства

- Преобразования задач и их типы
- Двойственная функция и её свойства
- Двойственная задача и её свойства

- Преобразования задач и их типы
- Двойственная функция и её свойства
- ▶ Двойственная задача и её свойства
- ▶ Сильная двойственность и слабая двойственность

- Преобразования задач и их типы
- Двойственная функция и её свойства
- ▶ Двойственная задача и её свойства
- Сильная двойственность и слабая двойственность
- Обобщённые неравенства

План на эту лекцию

- Теорема о сильной двойственности для выпуклых задач
- Геометрическая интерпретация условий ККТ
- Условия ККТ для задач с обобщёнными неравенствами

Задача оптимизации с функциональными ограничениями

$$\min_{\mathbf{x}\in\mathcal{D}} f_0(\mathbf{x})$$
 s.t. $g_i(\mathbf{x})=0,\ i=1,\ldots,m$
$$h_j(\mathbf{x})\leq 0,\ j=1,\ldots,p$$
 dom $f_0=\mathcal{D}\subseteq\mathbb{R}^n$, $f_0(\mathbf{x}^*)=p^*$

Задача оптимизации с функциональными ограничениями

$$\min_{\mathbf{x}\in\mathcal{D}}f_0(\mathbf{x})$$
 s.t. $g_i(\mathbf{x})=0,\ i=1,\ldots,m$ $h_j(\mathbf{x})\leq 0,\ j=1,\ldots,p$ dom $f_0=\mathcal{D}\subseteq\mathbb{R}^n$, $f_0(\mathbf{x}^*)=p^*$ Основная цель

Сформулировать условия оптимальности для таких задач

Задача оптимизации с функциональными ограничениями

$$\begin{aligned} \min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x}) \\ \text{s.t. } g_i(\mathbf{x}) &= 0, \ i = 1, \dots, m \\ h_j(\mathbf{x}) &\leq 0, \ j = 1, \dots, p \end{aligned}$$

dom $f_0 = \mathcal{D} \subseteq \mathbb{R}^n$, $f_0(\mathbf{x}^*) = p^*$

Основная цель

Сформулировать условия оптимальности для таких задач

Лагранжиан
$$L: \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p o \mathbb{R}$$

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^p \mu_j h_j(\mathbf{x})$$

- λ_i множители Лагранжа для ограничений $q_i(\mathbf{x}) = 0, \ i = 1, \dots, m$
- $m{\mu}_j$ множители Лагранжа для ограничений $h_j(\mathbf{x}) \leq 0, \ j=1,\ldots,p$

Основные результаты с прошлой лекции

Теорема

Если $\hat{\mathbf{x}}$ лежит в допустимом множестве и найдутся допустимые $(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ такие что $\boxed{f_0(\hat{\mathbf{x}})=g(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})},$ то $\hat{\mathbf{x}}$ является решением задачи.

Основные результаты с прошлой лекции

Теорема

Если $\hat{\mathbf{x}}$ лежит в допустимом множестве и найдутся допустимые $(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ такие что $f_0(\hat{\mathbf{x}})=g(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$, то $\hat{\mathbf{x}}$ является решением задачи.

Теорема

Пусть $\hat{\mathbf{x}} \in \mathcal{D}$ и $(\hat{\pmb{\lambda}}, \hat{\pmb{\mu}})$ допустимы. Тогда эквивалентны следующие условия

- 1) $\hat{\mathbf{x}}$ лежит в допустимом множестве и $f_0(\hat{\mathbf{x}}) = g(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$
- 2) для всех $\mathbf{x}\in\mathcal{D}$ и всех допустимых $(oldsymbol{\lambda},oldsymbol{\mu})$ выполнено $L(\hat{\mathbf{x}},oldsymbol{\lambda},oldsymbol{\mu})\leq L(\hat{\mathbf{x}},\hat{oldsymbol{\lambda}},\hat{oldsymbol{\mu}})\leq L(\mathbf{x},\hat{oldsymbol{\lambda}},\hat{oldsymbol{\mu}}),$ то есть точка $(\hat{\mathbf{x}},\hat{oldsymbol{\lambda}},\hat{oldsymbol{\mu}})$ есть седловая точка функции Лагранжа
- $\hat{\mathbf{x}}$ лежит в допустимом множестве, является точкой минимума функции $L(\mathbf{x},\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ и выполнено $\hat{\mu}_jh_j(\hat{\mathbf{x}})=0$ для всех $j=1,\dots,p$.

Условия Каруша-Куна-Таккера (ККТ)

Следствие

Пусть \mathbf{x}^* решение задачи минимизации такое, что $\mathbf{x}^* \in \mathrm{int}(\mathcal{D})$, f_0, g_i, h_j дифференцируемы в \mathbf{x}^* и выполнен критерий оптимальности $f_0(\mathbf{x}^*) = g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}})$ для некоторой допустимой пары $(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}})$, тогда выполнено

$$\begin{cases} L'_{\mathbf{x}}(\mathbf{x}^*, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = 0\\ \hat{\mu}_k h_k(\mathbf{x}^*) = 0 \end{cases}$$

Условия ККТ

- $L_{\mathbf{x}}'(\mathbf{x}^*, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = 0$
- $\hat{\mu}_k h_k(\mathbf{x}^*) = 0$ условия дополняющей нежёсткости
- $\hat{\boldsymbol{\mu}} \geq 0$
- $h_i(\mathbf{x}^*) \le 0$
- $g_i(\mathbf{x}^*) = 0$

$$egin{aligned} \min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x}) \ & ext{s.t.} \ f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, p \ & \mathbf{A}\mathbf{x} = \mathbf{b} \end{aligned}$$

$$\min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, p$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

 $lacktriangledown f_0, f_1, \dots, f_p$ — выпуклые функции

$$egin{aligned} \min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x}) \ & ext{s.t.} \ f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, p \ & \mathbf{A}\mathbf{x} = \mathbf{b} \end{aligned}$$

- $lacktriangledown f_0, f_1, \dots, f_p$ выпуклые функции
- lacktriangle ограничение $\mathbf{A}\mathbf{x}=\mathbf{b}$ задаёт некоторое аффинное множество

$$egin{aligned} \min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x}) \ & ext{s.t.} \ f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, p \ & \mathbf{A}\mathbf{x} = \mathbf{b} \end{aligned}$$

- ▶ f_0, f_1, \dots, f_p выпуклые функции
- lacktriangle ограничение $\mathbf{A}\mathbf{x}=\mathbf{b}$ задаёт некоторое аффинное множество
- ограничения $f_i(\mathbf{x}) \leq 0$, где $i=1,\ldots,p$ задают некоторое выпуклое множество (проверьте!)

Условие регулярности ограничений для выпуклых задач

Условие Слейтера

Говорят, что для выпуклой задачи выполнено условие Слейтера, если существует точка $\bar{\mathbf{x}} \in \mathrm{relint}\left(\mathcal{D}\right)$ такая что

- $\mathbf{A}\bar{\mathbf{x}} = \mathbf{b}$
- $f_i(\bar{\mathbf{x}}) < 0$ для всех неаффинных ограничений типа неравенств.

Это означает, что найдётся хотя бы одна внутренняя точка в допустимом множестве

Основной результат на сегодня

Теорема

Если задача оптимизации выпукла, выполнено условие Слейтера и p^* конечно, тогда выполнена сильная двойственность, то есть найдётся пара допустимых $(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ таких что $g(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})=p^*$

Основной результат на сегодня

Теорема

Если задача оптимизации выпукла, выполнено условие Слейтера и p^* конечно, тогда выполнена сильная двойственность, то есть найдётся пара допустимых $(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ таких что $g(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})=p^*$

Замечание

Проверьте, что в примере с прошлой лекции с положительным зазором двойственности условие Слейтера **не выполняется**.

Вспомогательное утверждение

Теорема

Пусть дано выпуклое множество \mathcal{X} , на котором определены выпуклые функции f_i , где $i=1,\ldots,p; p\geq 1$ и аффинные функции g_j , где $j=1,\ldots,m; m\geq 0$, то есть $g_j(\mathbf{x})=\mathbf{a}_j^{\top}\mathbf{x}+b_j$, а также множество $\{\mathbf{x}\in \mathrm{relint}\,(\mathcal{X})\mid g_j(\mathbf{x})\leq 0\}$ непусто. Тогда следующие утверждения эквивалентны

- 1) Система $\begin{cases} f_i(\mathbf{x})<0,\ i=1,\ldots,p \\ g_j(\mathbf{x})\leq 0,\ j=1,\ldots,m \end{cases}$ не имеет решения среди $\mathbf{x}\in\mathcal{X}$
- 2) Существует набор неотрицательных чисел $\mu_1, \dots \mu_p$, среди которых есть хотя бы один не ноль, и набор неотрицательных чисел $\lambda_1, \dots, \lambda_m$, такие что $\sum_{i=1}^p \mu_i f_i(\mathbf{x}) + \sum_{j=1}^m \lambda_j g_j(\mathbf{x}) \geq 0$ для всех $\mathbf{x} \in \mathcal{X}$.

• Если система из 1) имеет решение $\hat{\mathbf{x}}$, тогда сумма в утверждении 2) будет отрицательной в этой точке, поскольку коэффициенты неотрицательные.

- Если система из 1) имеет решение $\hat{\mathbf{x}}$, тогда сумма в утверждении 2) будет отрицательной в этой точке, поскольку коэффициенты неотрицательные.
- lacktriangle Таким образом, 2) ightarrow 1)

- Если система из 1) имеет решение $\hat{\mathbf{x}}$, тогда сумма в утверждении 2) будет отрицательной в этой точке, поскольку коэффициенты неотрицательные.
- ightharpoonup Таким образом, 2)
 ightharpoonup 1)
- Пусть система из 1) не имеет решения. Зададим множество $\mathcal{M} \subset \mathbb{R}^{m+p}$ такое что если $\mathbf{y} \in \mathcal{M}$, то система $\begin{cases} f_i(\mathbf{x}) < y_i, \ i=1,\dots,p \\ g_j(\mathbf{x}) = y_{p+j}, \ j=1,\dots,m \end{cases}$ имеет решение на \mathcal{X}

- Если система из 1) имеет решение $\hat{\mathbf{x}}$, тогда сумма в утверждении 2) будет отрицательной в этой точке, поскольку коэффициенты неотрицательные.
- ightharpoonup Таким образом, 2)
 ightharpoonup 1)
- ▶ Пусть система из 1) не имеет решения. Зададим множество $\mathcal{M} \subset \mathbb{R}^{m+p}$ такое что если $\mathbf{y} \in \mathcal{M}$, то система $\begin{cases} f_i(\mathbf{x}) < y_i, \ i=1,\dots,p \\ g_j(\mathbf{x}) = y_{p+j}, \ j=1,\dots,m \end{cases}$ имеет решение на \mathcal{X}
- Множество $\mathcal M$ является выпуклым (проверьте!)

- Если система из 1) имеет решение $\hat{\mathbf{x}}$, тогда сумма в утверждении 2) будет отрицательной в этой точке, поскольку коэффициенты неотрицательные.
- ightharpoonup Таким образом, 2)
 ightharpoonup 1)
- ▶ Пусть система из 1) не имеет решения. Зададим множество $\mathcal{M} \subset \mathbb{R}^{m+p}$ такое что если $\mathbf{y} \in \mathcal{M}$, то система $\begin{cases} f_i(\mathbf{x}) < y_i, \ i=1,\dots,p \\ g_j(\mathbf{x}) = y_{p+j}, \ j=1,\dots,m \end{cases}$ имеет решение на \mathcal{X}
- Множество $\mathcal M$ является выпуклым (проверьте!)
- ▶ Наше предположение об отсутствии решения у системы из 1) означает, что $\mathcal{M}\cap\mathbb{R}^{m+p}_-=\varnothing$, где $\mathbb{R}^{m+p}_-=\{\mathbf{z}\mid z_i\leq 0\}$

- Если система из 1) имеет решение $\hat{\mathbf{x}}$, тогда сумма в утверждении 2) будет отрицательной в этой точке, поскольку коэффициенты неотрицательные.
- ightharpoonup Таким образом, 2) ightharpoonup 1)
- ▶ Пусть система из 1) не имеет решения. Зададим множество $\mathcal{M} \subset \mathbb{R}^{m+p}$ такое что если $\mathbf{y} \in \mathcal{M}$, то система $\begin{cases} f_i(\mathbf{x}) < y_i, \ i=1,\dots,p \\ g_j(\mathbf{x}) = y_{p+j}, \ j=1,\dots,m \end{cases}$ имеет решение на \mathcal{X}
- Множество $\mathcal M$ является выпуклым (проверьте!)
- ▶ Наше предположение об отсутствии решения у системы из 1) означает, что $\mathcal{M} \cap \mathbb{R}^{m+p}_- = \varnothing$, где $\mathbb{R}^{m+p}_- = \{\mathbf{z} \mid z_i \leq 0\}$
- ▶ Значит найдётся разделяющая гиперплоскость, такая что $\langle \mathbf{q}, \mathbf{y} \rangle \geq \alpha$ для $\mathbf{y} \in \mathcal{M}$ и $\langle \mathbf{q}, \mathbf{z} \rangle \leq \alpha$ для $\mathbf{z} \in \mathbb{R}^{m+p}_-$

▶ Так как $0 \in \mathbb{R}^{m+p}_-$, то $\langle \mathbf{q}, 0 \rangle = 0 \leq \alpha$

- ▶ Так как $0 \in \mathbb{R}^{m+p}_-$, то $\langle \mathbf{q}, 0 \rangle = 0 \leq \alpha$
- ightharpoonup Если взять для каждого $i=1,\ldots,m+p$ и $\mathbf{z}=t\mathbf{e}_i$ и перейти к пределу $t\to-\infty$, то окажется что $\mathbf{q}\geq 0$

- ▶ Так как $0 \in \mathbb{R}^{m+p}_-$, то $\langle \mathbf{q}, 0 \rangle = 0 \leq \alpha$
- ightharpoonup Если взять для каждого $i=1,\ldots,m+p$ и $\mathbf{z}=t\mathbf{e}_i$ и перейти к пределу $t o -\infty$, то окажется что $\mathbf{q} \geq 0$
- Так как для всех $\mathbf{x} \in \mathcal{X}$ и произвольно малого $\varepsilon > 0$ вектор $\bar{\mathbf{y}} = (f_1(\mathbf{x}) + \varepsilon, \dots, f_p(\mathbf{x}) + \varepsilon, g_1(\mathbf{x}), \dots, g_m(\mathbf{x})) \in \mathcal{M}$, то $\langle \mathbf{q}, \bar{\mathbf{y}} \rangle \geq \alpha \geq 0$

- lacktriangle Так как $0\in\mathbb{R}^{m+p}_-$, то $\langle \mathbf{q},0
 angle=0\leq lpha$
- ightharpoonup Если взять для каждого $i=1,\ldots,m+p$ и $\mathbf{z}=t\mathbf{e}_i$ и перейти к пределу $t\to -\infty$, то окажется что $\mathbf{q}\geq 0$
- Так как для всех $\mathbf{x} \in \mathcal{X}$ и произвольно малого $\varepsilon > 0$ вектор $\bar{\mathbf{y}} = (f_1(\mathbf{x}) + \varepsilon, \dots, f_p(\mathbf{x}) + \varepsilon, g_1(\mathbf{x}), \dots, g_m(\mathbf{x})) \in \mathcal{M}$, то $\langle \mathbf{q}, \bar{\mathbf{y}} \rangle \geq \alpha \geq 0$
- ▶ Переходя к пределу для $\varepsilon \to 0$, получим для всех $\mathbf{x} \in \mathcal{X}$

$$\sum_{i=1}^{p} q_i f_i(\mathbf{x}) + \sum_{j=1}^{m} q_{p+j} g_j(\mathbf{x}) \ge 0$$

- lacktriangle Так как $0\in\mathbb{R}^{m+p}_-$, то $\langle \mathbf{q},0
 angle=0\leq lpha$
- ightharpoonup Если взять для каждого $i=1,\ldots,m+p$ и $\mathbf{z}=t\mathbf{e}_i$ и перейти к пределу $t o -\infty$, то окажется что $\mathbf{q} \geq 0$
- Так как для всех $\mathbf{x} \in \mathcal{X}$ и произвольно малого $\varepsilon > 0$ вектор $\bar{\mathbf{y}} = (f_1(\mathbf{x}) + \varepsilon, \dots, f_p(\mathbf{x}) + \varepsilon, g_1(\mathbf{x}), \dots, g_m(\mathbf{x})) \in \mathcal{M}$, то $\langle \mathbf{q}, \bar{\mathbf{y}} \rangle \geq \alpha \geq 0$
- ▶ Переходя к пределу для $\varepsilon \to 0$, получим для всех $\mathbf{x} \in \mathcal{X}$

$$\sum_{i=1}^{p} q_i f_i(\mathbf{x}) + \sum_{j=1}^{m} q_{p+j} g_j(\mathbf{x}) \ge 0$$

ightharpoonup Если m=0, теорема доказана, так как все компоненты вектора ${f q}$ неотрицательны.

- lacktriangle Так как $0\in\mathbb{R}^{m+p}_-$, то $\langle \mathbf{q},0
 angle=0\leq lpha$
- lacktriangle Если взять для каждого $i=1,\ldots,m+p$ и $\mathbf{z}=t\mathbf{e}_i$ и перейти к пределу $t o -\infty$, то окажется что $\mathbf{q}\geq 0$
- Так как для всех $\mathbf{x} \in \mathcal{X}$ и произвольно малого $\varepsilon > 0$ вектор $\bar{\mathbf{y}} = (f_1(\mathbf{x}) + \varepsilon, \dots, f_p(\mathbf{x}) + \varepsilon, g_1(\mathbf{x}), \dots, g_m(\mathbf{x})) \in \mathcal{M}$, то $\langle \mathbf{q}, \bar{\mathbf{y}} \rangle \geq \alpha \geq 0$
- ▶ Переходя к пределу для $\varepsilon \to 0$, получим для всех $\mathbf{x} \in \mathcal{X}$

$$\sum_{i=1}^{p} q_i f_i(\mathbf{x}) + \sum_{j=1}^{m} q_{p+j} g_j(\mathbf{x}) \ge 0$$

- ightharpoonup Если m=0, теорема доказана, так как все компоненты вектора ${f q}$ неотрицательны.
- ightharpoonup Если m>0, покажем, что среди коэффициентов q_1,\ldots,q_p найдётся ненулевой

- lacktriangle Так как $0\in\mathbb{R}^{m+p}_-$, то $\langle \mathbf{q},0
 angle=0\leq lpha$
- lacktriangle Если взять для каждого $i=1,\ldots,m+p$ и $\mathbf{z}=t\mathbf{e}_i$ и перейти к пределу $t o -\infty$, то окажется что $\mathbf{q}\geq 0$
- Так как для всех $\mathbf{x} \in \mathcal{X}$ и произвольно малого $\varepsilon > 0$ вектор $\bar{\mathbf{y}} = (f_1(\mathbf{x}) + \varepsilon, \dots, f_p(\mathbf{x}) + \varepsilon, g_1(\mathbf{x}), \dots, g_m(\mathbf{x})) \in \mathcal{M}$, то $\langle \mathbf{q}, \bar{\mathbf{y}} \rangle \geq \alpha \geq 0$
- ▶ Переходя к пределу для $\varepsilon \to 0$, получим для всех $\mathbf{x} \in \mathcal{X}$

$$\sum_{i=1}^{p} q_i f_i(\mathbf{x}) + \sum_{j=1}^{m} q_{p+j} g_j(\mathbf{x}) \ge 0$$

- ightharpoonup Если m=0, теорема доказана, так как все компоненты вектора ${f q}$ неотрицательны.
- ▶ Если m>0, покажем, что среди коэффициентов q_1,\ldots,q_p найдётся ненулевой
- ▶ Пусть это не так, то есть $q_1 = \ldots = q_p = 0$, тогда рассмотрим функцию $h(\mathbf{x}) = \sum_{j=1}^m q_{p+j} g_j(\mathbf{x})$

- lacktriangle Tak kak $0 \in \mathbb{R}^{m+p}_-$, to $\langle \mathbf{q}, 0 \rangle = 0 \leq \alpha$
- ightharpoonup Если взять для каждого $i=1,\ldots,m+p$ и $\mathbf{z}=t\mathbf{e}_i$ и перейти к пределу $t o -\infty$, то окажется что $\mathbf{q}\geq 0$
- Так как для всех $\mathbf{x} \in \mathcal{X}$ и произвольно малого $\varepsilon > 0$ вектор $\bar{\mathbf{y}} = (f_1(\mathbf{x}) + \varepsilon, \dots, f_p(\mathbf{x}) + \varepsilon, g_1(\mathbf{x}), \dots, g_m(\mathbf{x})) \in \mathcal{M}$, то $\langle \mathbf{q}, \bar{\mathbf{y}} \rangle \geq \alpha \geq 0$
- ▶ Переходя к пределу для $\varepsilon \to 0$, получим для всех $\mathbf{x} \in \mathcal{X}$

$$\sum_{i=1}^{p} q_i f_i(\mathbf{x}) + \sum_{j=1}^{m} q_{p+j} g_j(\mathbf{x}) \ge 0$$

- ightharpoonup Если m=0, теорема доказана, так как все компоненты вектора ${f q}$ неотрицательны.
- ▶ Если m>0, покажем, что среди коэффициентов q_1,\ldots,q_p найдётся ненулевой
- ▶ Пусть это не так, то есть $q_1 = \ldots = q_p = 0$, тогда рассмотрим функцию $h(\mathbf{x}) = \sum_{j=1}^m q_{p+j} g_j(\mathbf{x})$
- lacktriangle Она является аффинной и $h(\mathbf{x}) \geq 0$ для $\mathbf{x} \in \mathcal{X}$

▶ Но по условию теоремы существует точка \mathbf{x}_0 из $\mathrm{relint}\,(\mathcal{X})$ такая что $g_j(\mathbf{x}_0) \leq 0$ для $j=1,\ldots,m$. Значит $h(\mathbf{x}_0) \leq 0$, тогда $h(\mathbf{x}_0)=0$

- ▶ Но по условию теоремы существует точка \mathbf{x}_0 из $\mathrm{relint}\,(\mathcal{X})$ такая что $g_j(\mathbf{x}_0) \le 0$ для $j=1,\dots,m$. Значит $h(\mathbf{x}_0) \le 0$, тогда $h(\mathbf{x}_0)=0$
- Итак, $h(\mathbf{x})$ вогнутая функция (поскольку аффинная), $h(\mathbf{x}) \geq 0$ и $h(\mathbf{x}_0) = 0$, то есть вогнутая функция достигает своего минимума в точке \mathbf{x}_0 и он равен 0

- ▶ Но по условию теоремы существует точка \mathbf{x}_0 из $\mathrm{relint}\,(\mathcal{X})$ такая что $g_j(\mathbf{x}_0) \le 0$ для $j=1,\dots,m$. Значит $h(\mathbf{x}_0) \le 0$, тогда $h(\mathbf{x}_0)=0$
- Итак, $h(\mathbf{x})$ вогнутая функция (поскольку аффинная), $h(\mathbf{x}) \geq 0$ и $h(\mathbf{x}_0) = 0$, то есть вогнутая функция достигает своего минимума в точке \mathbf{x}_0 и он равен 0
- ightharpoonup Это означает, что $h(\mathbf{x}) = 0$ для всех $\mathbf{x} \in \mathcal{X}$ (докажите!)

- ▶ Но по условию теоремы существует точка \mathbf{x}_0 из $\mathrm{relint}\,(\mathcal{X})$ такая что $g_j(\mathbf{x}_0) \le 0$ для $j=1,\dots,m$. Значит $h(\mathbf{x}_0) \le 0$, тогда $h(\mathbf{x}_0) = 0$
- Итак, $h(\mathbf{x})$ вогнутая функция (поскольку аффинная), $h(\mathbf{x}) \geq 0$ и $h(\mathbf{x}_0) = 0$, то есть вогнутая функция достигает своего минимума в точке \mathbf{x}_0 и он равен 0
- lacktriangle Это означает, что $h(\mathbf{x})=0$ для всех $\mathbf{x}\in\mathcal{X}$ (докажите!)
- lacktriangle Но для каждого $\mathbf{y}\in\mathcal{M}$ найдётся $\mathbf{x}\in\mathcal{X}$ для которого $y_{p+j}=g_j(\mathbf{x}).$

- ▶ Но по условию теоремы существует точка \mathbf{x}_0 из $\mathrm{relint}\,(\mathcal{X})$ такая что $g_j(\mathbf{x}_0) \le 0$ для $j=1,\dots,m$. Значит $h(\mathbf{x}_0) \le 0$, тогда $h(\mathbf{x}_0)=0$
- Итак, $h(\mathbf{x})$ вогнутая функция (поскольку аффинная), $h(\mathbf{x}) \geq 0$ и $h(\mathbf{x}_0) = 0$, то есть вогнутая функция достигает своего минимума в точке \mathbf{x}_0 и он равен 0
- ightharpoonup Это означает, что $h(\mathbf{x})=0$ для всех $\mathbf{x}\in\mathcal{X}$ (докажите!)
- lacktriangle Но для каждого $\mathbf{y}\in\mathcal{M}$ найдётся $\mathbf{x}\in\mathcal{X}$ для которого $y_{p+j}=g_j(\mathbf{x}).$
- lacktriangle Это означает, что $\langle \mathbf{q}, \mathbf{y} \rangle = \sum_{j=1}^m q_{p+j} g_j(\mathbf{x}) = h(\mathbf{x}) = 0$

- ▶ Но по условию теоремы существует точка \mathbf{x}_0 из $\mathrm{relint}\,(\mathcal{X})$ такая что $g_j(\mathbf{x}_0) \le 0$ для $j=1,\dots,m$. Значит $h(\mathbf{x}_0) \le 0$, тогда $h(\mathbf{x}_0)=0$
- Итак, $h(\mathbf{x})$ вогнутая функция (поскольку аффинная), $h(\mathbf{x}) \geq 0$ и $h(\mathbf{x}_0) = 0$, то есть вогнутая функция достигает своего минимума в точке \mathbf{x}_0 и он равен 0
- ightharpoonup Это означает, что $h(\mathbf{x})=0$ для всех $\mathbf{x}\in\mathcal{X}$ (докажите!)
- lacktriangle Но для каждого $\mathbf{y}\in\mathcal{M}$ найдётся $\mathbf{x}\in\mathcal{X}$ для которого $y_{p+j}=g_j(\mathbf{x}).$
- lack Это означает, что $\langle \mathbf{q}, \mathbf{y} \rangle = \sum_{j=1}^m q_{p+j} g_j(\mathbf{x}) = h(\mathbf{x}) = 0$
- ▶ То есть $\alpha=0$ и ${\mathcal M}$ является подмножеством разделяющей гиперплоскости, получили противоречие.

- ▶ Но по условию теоремы существует точка \mathbf{x}_0 из $\mathrm{relint}\,(\mathcal{X})$ такая что $g_j(\mathbf{x}_0) \le 0$ для $j=1,\dots,m$. Значит $h(\mathbf{x}_0) \le 0$, тогда $h(\mathbf{x}_0)=0$
- Итак, $h(\mathbf{x})$ вогнутая функция (поскольку аффинная), $h(\mathbf{x}) \geq 0$ и $h(\mathbf{x}_0) = 0$, то есть вогнутая функция достигает своего минимума в точке \mathbf{x}_0 и он равен 0
- lacktriangle Это означает, что $h(\mathbf{x})=0$ для всех $\mathbf{x}\in\mathcal{X}$ (докажите!)
- lacktriangle Но для каждого $\mathbf{y}\in\mathcal{M}$ найдётся $\mathbf{x}\in\mathcal{X}$ для которого $y_{p+j}=g_j(\mathbf{x}).$
- lack Это означает, что $\langle \mathbf{q}, \mathbf{y} \rangle = \sum_{j=1}^m q_{p+j} g_j(\mathbf{x}) = h(\mathbf{x}) = 0$
- ▶ То есть $\alpha = 0$ и \mathcal{M} является подмножеством разделяющей гиперплоскости, получили противоречие.
- ▶ Таким образом, хотя бы один из коэффициентов q_1, \dots, q_p не равен нулю.

$$\min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, p$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

Теорема

Если задача оптимизации выпукла, выполнено условие Слейтера и p^* конечно, тогда выполнена сильная двойственность, то есть найдётся пара допустимых $(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ таких что $g(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})=p^*$

$$\min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, p$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

Теорема

Если задача оптимизации выпукла, выполнено условие Слейтера и p^* конечно, тогда выполнена сильная двойственность, то есть найдётся пара допустимых $(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ таких что $g(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})=p^*$

$$\min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, p$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

Теорема

Если задача оптимизации выпукла, выполнено условие Слейтера и p^* конечно, тогда выполнена сильная двойственность, то есть найдётся пара допустимых $(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ таких что $g(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})=p^*$

Доказательство

 Пусть в задаче выпуклой оптимизации есть только ограничения типа неравенств

$$\min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, p$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

Теорема

Если задача оптимизации выпукла, выполнено условие Слейтера и p^* конечно, тогда выполнена сильная двойственность, то есть найдётся пара допустимых $(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ таких что $g(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})=p^*$

- Пусть в задаче выпуклой оптимизации есть только ограничения типа неравенств
- ▶ Также пусть первые k ограничений выпуклые и неаффинные, а оставшиеся p-k+1 аффинные

$$igspace$$
 В силу условия Слейтера у системы
$$\begin{cases} f_i(\mathbf{x}) < 0, \ i=1,\ldots,k \\ f_i(\mathbf{x}) \leq 0, \ i=k+1,\ldots,p \end{cases}$$
 есть решение для $\mathbf{x} \in \mathcal{D}$

$$lackbox{igspace}$$
 В силу условия Слейтера у системы
$$\begin{cases} f_i(\mathbf{x}) < 0, \ i=1,\ldots,k \\ f_i(\mathbf{x}) \leq 0, \ i=k+1,\ldots,p \end{cases}$$
 есть решение для $\mathbf{x} \in \mathcal{D}$

$$\{f_i(\mathbf{x}) \leq 0,\ i=k+1,\ldots,p \}$$

Вместе с тем у системы $\begin{cases} f_0(\mathbf{x})-p^*<0 \\ f_i(\mathbf{x})<0,\ i=1,\ldots,k \\ f_i(\mathbf{x})\leq 0,\ i=k+1,\ldots,p \end{cases}$

решения нет в силу определения p^*

$$igspace$$
 В силу условия Слейтера у системы
$$\begin{cases} f_i(\mathbf{x}) < 0, \ i=1,\ldots,k \\ f_i(\mathbf{x}) \leq 0, \ i=k+1,\ldots,p \end{cases}$$
 есть решение для $\mathbf{x} \in \mathcal{D}$

- Вместе с тем у системы $\begin{cases} f_0(\mathbf{x})-p^*<0\\ f_i(\mathbf{x})<0,\ i=1,\dots,k\\ f_i(\mathbf{x})\leq 0,\ i=k+1,\dots,p \end{cases}$
 - решения нет в силу определения p^*
- Поэтому в силу ранее доказанного факта найдутся неотрицательные коэффициенты $\mu_0, \mu_1, \dots, \mu_p$ такие что хотя бы одно из чисел $\mu_0, \mu_1, \dots, \mu_k$ больше нуля и для всех $\mathbf{x} \in \mathcal{D}$ выполнено

$$\mu_0(f_0(\mathbf{x}) - p^*) + \sum_{i=1}^p \mu_i f_i(\mathbf{x}) \ge 0$$

всех $\mathbf{x} \in \mathcal{D}$ выполнено

$$igspace$$
 В силу условия Слейтера у системы
$$\begin{cases} f_i(\mathbf{x}) < 0, \ i=1,\ldots,k \\ f_i(\mathbf{x}) \leq 0, \ i=k+1,\ldots,p \end{cases}$$
 есть решение для $\mathbf{x} \in \mathcal{D}$

- Вместе с тем у системы $\begin{cases} f_0(\mathbf{x})-p^*<0\\ f_i(\mathbf{x})<0,\ i=1,\dots,k\\ f_i(\mathbf{x})\leq 0,\ i=k+1,\dots,p \end{cases}$ решения нет в силу определения p^*
- Поэтому в силу ранее доказанного факта найдутся неотрицательные коэффициенты $\mu_0, \mu_1, \dots, \mu_p$ такие что хотя бы одно из чисел $\mu_0, \mu_1, \dots, \mu_k$ больше нуля и для

$$\mu_0(f_0(\mathbf{x}) - p^*) + \sum_{i=1}^p \mu_i f_i(\mathbf{x}) \ge 0$$

 $ightharpoonup \mu_0 > 0$ так как иначе мы получили бы противоречие с условием Слейтера

$$igspace$$
 В силу условия Слейтера у системы
$$\begin{cases} f_i(\mathbf{x}) < 0, \ i=1,\ldots,k \\ f_i(\mathbf{x}) \leq 0, \ i=k+1,\ldots,p \end{cases}$$
 есть решение для $\mathbf{x} \in \mathcal{D}$

- Вместе с тем у системы $\begin{cases} f_0(\mathbf{x})-p^*<0\\ f_i(\mathbf{x})<0,\ i=1,\dots,k\\ f_i(\mathbf{x})\leq 0,\ i=k+1,\dots,p \end{cases}$ решения нет в силу определения p^*
- Поэтому в силу ранее доказанного факта найдутся неотрицательные коэффициенты μ_0,μ_1,\dots,μ_p такие что хотя бы одно из чисел $\mu_0, \mu_1, \dots, \mu_k$ больше нуля и для всех $\mathbf{x} \in \mathcal{D}$ выполнено

$$\mu_0(f_0(\mathbf{x}) - p^*) + \sum_{i=1}^p \mu_i f_i(\mathbf{x}) \ge 0$$

- $lacktriangledown \mu_0 > 0$ так как иначе мы получили бы противоречие с условием Слейтера
- Поделив на μ_0 , получим, что для всех $\mathbf{x} \in \mathcal{D}$ выполнено

$$L(\mathbf{x}, \boldsymbol{\mu}) > p^*$$

▶ Значит $g({\boldsymbol{\mu}}) = \inf_{{\mathbf{x}} \in \mathcal{D}} L({\mathbf{x}}, {\boldsymbol{\mu}}) \geq p^*$

- ▶ Значит $g({m \mu}) = \inf_{{f x} \in \mathcal{D}} L({f x}, {m \mu}) \geq p^*$
- ▶ Но мы знаем, что $g({\pmb \mu}) \le p^*$ из прошлой лекции, а значит $p^* = g({\pmb \mu})$ и выполнена сильная двойственность

- ▶ Значит $g({m \mu}) = \inf_{{f x} \in \mathcal{D}} L({f x}, {m \mu}) \geq p^*$
- ▶ Но мы знаем, что $g({\pmb \mu}) \le p^*$ из прошлой лекции, а значит $p^* = g({\pmb \mu})$ и выполнена сильная двойственность
- lacktriangle Пусть теперь есть m аффинных ограничений типа равенств. Обозначим их $g_i(\mathbf{x})=0$

- ▶ Значит $g({m \mu}) = \inf_{{f x} \in \mathcal{D}} L({f x}, {m \mu}) \geq p^*$
- ▶ Но мы знаем, что $g({\pmb \mu}) \le p^*$ из прошлой лекции, а значит $p^* = g({\pmb \mu})$ и выполнена сильная двойственность
- lacktriangle Пусть теперь есть m аффинных ограничений типа равенств. Обозначим их $g_i(\mathbf{x})=0$
- ▶ Перепишем их в виде 2m аффинных ограничений типа неравенств вида $\mathbf{a}_i^{\top}\mathbf{x} + b_i \leq 0$ и $-\mathbf{a}_i^{\top}\mathbf{x} b_i \leq 0$

- ▶ Значит $g({m \mu}) = \inf_{{f x} \in \mathcal{D}} L({f x}, {m \mu}) \geq p^*$
- ▶ Но мы знаем, что $g({\pmb \mu}) \le p^*$ из прошлой лекции, а значит $p^* = g({\pmb \mu})$ и выполнена сильная двойственность
- ightharpoonup Пусть теперь есть m аффинных ограничений типа равенств. Обозначим их $g_i(\mathbf{x})=0$
- ▶ Перепишем их в виде 2m аффинных ограничений типа неравенств вида $\mathbf{a}_i^{\top}\mathbf{x} + b_i \leq 0$ и $-\mathbf{a}_i^{\top}\mathbf{x} b_i \leq 0$
- ▶ Тогда в силу доказанного выше найдутся такие неотрицательные множители Лагранжа μ_1,\dots,μ_p , β_1,\dots,β_m и γ_1,\dots,γ_m , что для всех $\mathbf{x}\in\mathcal{D}$

$$f(\mathbf{x}) + \sum_{i=1}^{p} \mu_i f_i(\mathbf{x}) + \sum_{j=1}^{m} (\beta_j - \gamma_j) g_i(\mathbf{x}) \ge p^*$$

- ▶ Значит $g({m \mu}) = \inf_{{f x} \in \mathcal{D}} L({f x}, {m \mu}) \geq p^*$
- ▶ Но мы знаем, что $g({\pmb \mu}) \le p^*$ из прошлой лекции, а значит $p^* = g({\pmb \mu})$ и выполнена сильная двойственность
- lacktriangle Пусть теперь есть m аффинных ограничений типа равенств. Обозначим их $g_i(\mathbf{x})=0$
- ▶ Перепишем их в виде 2m аффинных ограничений типа неравенств вида $\mathbf{a}_i^{\top}\mathbf{x} + b_i \leq 0$ и $-\mathbf{a}_i^{\top}\mathbf{x} b_i \leq 0$
- ▶ Тогда в силу доказанного выше найдутся такие неотрицательные множители Лагранжа μ_1,\dots,μ_p , β_1,\dots,β_m и γ_1,\dots,γ_m , что для всех $\mathbf{x}\in\mathcal{D}$

$$f(\mathbf{x}) + \sum_{i=1}^{p} \mu_i f_i(\mathbf{x}) + \sum_{j=1}^{m} (\beta_j - \gamma_j) g_i(\mathbf{x}) \ge p^*$$

▶ Обозначим $\lambda_j=\beta_j-\gamma_j$ и поскольку $\alpha_j\geq 0, \beta_j\geq 0$, то ограничений на знак λ_j нет

- ▶ Значит $g({m \mu}) = \inf_{{f x} \in \mathcal{D}} L({f x}, {m \mu}) \geq p^*$
- ▶ Но мы знаем, что $g({\pmb \mu}) \le p^*$ из прошлой лекции, а значит $p^* = g({\pmb \mu})$ и выполнена сильная двойственность
- lacktriangle Пусть теперь есть m аффинных ограничений типа равенств. Обозначим их $g_i(\mathbf{x})=0$
- ▶ Перепишем их в виде 2m аффинных ограничений типа неравенств вида $\mathbf{a}_i^{\top}\mathbf{x} + b_i \leq 0$ и $-\mathbf{a}_i^{\top}\mathbf{x} b_i \leq 0$
- ▶ Тогда в силу доказанного выше найдутся такие неотрицательные множители Лагранжа μ_1,\dots,μ_p , β_1,\dots,β_m и γ_1,\dots,γ_m , что для всех $\mathbf{x}\in\mathcal{D}$

$$f(\mathbf{x}) + \sum_{i=1}^{p} \mu_i f_i(\mathbf{x}) + \sum_{j=1}^{m} (\beta_j - \gamma_j) g_i(\mathbf{x}) \ge p^*$$

- ▶ Обозначим $\lambda_j=\beta_j-\gamma_j$ и поскольку $\alpha_j\geq 0, \beta_j\geq 0$, то ограничений на знак λ_j нет
- ightharpoonup Значит нашли допустимую точку (λ, μ) , такую что выполнена сильная двойственность

Формулировка

Пусть дана выпуклая задача и функции f_0,\dots,f_p дифференцируемы в допустимой точке $\hat{\mathbf{x}}.$ Тогда

- Если $(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ допустимы и для тройки $(\hat{\mathbf{x}},\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ выполнены условия ККТ, то выполнена сильная двойственность, $\hat{\mathbf{x}}$ решение прямой задачи, $(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ решение двойственной задачи
- Если выполнено условие Слейтера и $\hat{\mathbf{x}}$ решение задачи, тогда существуют множители Лагранжа $(\hat{\boldsymbol{\lambda}},\hat{\boldsymbol{\mu}})$, такие что для тройки $(\hat{\mathbf{x}},\hat{\boldsymbol{\lambda}},\hat{\boldsymbol{\mu}})$ выполнены условия ККТ

Формулировка

Пусть дана выпуклая задача и функции f_0,\dots,f_p дифференцируемы в допустимой точке $\hat{\mathbf{x}}.$ Тогда

- Если $(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ допустимы и для тройки $(\hat{\mathbf{x}},\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ выполнены условия ККТ, то выполнена сильная двойственность, $\hat{\mathbf{x}}$ решение прямой задачи, $(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ решение двойственной задачи
- Если выполнено условие Слейтера и $\hat{\mathbf{x}}$ решение задачи, тогда существуют множители Лагранжа $(\hat{\boldsymbol{\lambda}},\hat{\boldsymbol{\mu}})$, такие что для тройки $(\hat{\mathbf{x}},\hat{\boldsymbol{\lambda}},\hat{\boldsymbol{\mu}})$ выполнены условия ККТ

Формулировка

Пусть дана выпуклая задача и функции f_0,\dots,f_p дифференцируемы в допустимой точке $\hat{\mathbf{x}}$. Тогда

- Если $(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ допустимы и для тройки $(\hat{\mathbf{x}},\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ выполнены условия ККТ, то выполнена сильная двойственность, $\hat{\mathbf{x}}$ решение прямой задачи, $(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ решение двойственной задачи
- Если выполнено условие Слейтера и $\hat{\mathbf{x}}$ решение задачи, тогда существуют множители Лагранжа $(\hat{\boldsymbol{\lambda}},\hat{\boldsymbol{\mu}})$, такие что для тройки $(\hat{\mathbf{x}},\hat{\boldsymbol{\lambda}},\hat{\boldsymbol{\mu}})$ выполнены условия ККТ

Доказательство

Если задача выпукла и точка $(\hat{\lambda}, \hat{\mu})$ допустима, то лагранжиан есть выпуклая функция по \mathbf{x} (проверьте это!)

Формулировка

Пусть дана выпуклая задача и функции f_0,\dots,f_p дифференцируемы в допустимой точке $\hat{\mathbf{x}}$. Тогда

- Если $(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ допустимы и для тройки $(\hat{\mathbf{x}},\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ выполнены условия ККТ, то выполнена сильная двойственность, $\hat{\mathbf{x}}$ решение прямой задачи, $(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$ решение двойственной задачи
- Если выполнено условие Слейтера и $\hat{\mathbf{x}}$ решение задачи, тогда существуют множители Лагранжа $(\hat{\boldsymbol{\lambda}},\hat{\boldsymbol{\mu}})$, такие что для тройки $(\hat{\mathbf{x}},\hat{\boldsymbol{\lambda}},\hat{\boldsymbol{\mu}})$ выполнены условия ККТ

- lacktriangle Если задача выпукла и точка $(\hat{m{\lambda}},\hat{m{\mu}})$ допустима, то лагранжиан есть выпуклая функция по ${f x}$ (проверьте это!)
- Так как градиент лагранжиана (выпуклой функции) по ${\bf x}$ равен 0, то $\hat{{\bf x}}$ есть точка минимума лагранжиана

 Выполнено условие 3) из теоремы о седловой точке функции Лагранжа и выполнена сильная двойственность

- Выполнено условие 3) из теоремы о седловой точке функции Лагранжа и выполнена сильная двойственность
- ▶ Обратно, если выполнено условие Слейтера и $\hat{\mathbf{x}}$ решение, то выполнена сильная двойственность.

- Выполнено условие 3) из теоремы о седловой точке функции Лагранжа и выполнена сильная двойственность
- ▶ Обратно, если выполнено условие Слейтера и $\hat{\mathbf{x}}$ решение, то выполнена сильная двойственность.
- lacktriangle Значит найдётся допустимая пара $(\hat{oldsymbol{\lambda}},\hat{oldsymbol{\mu}})$ такая что

$$f(\hat{\mathbf{x}}) = g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = \inf_{\mathbf{x}} L(\mathbf{x}, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) \le$$

$$f(\hat{\mathbf{x}}) + \sum_{i=1}^{m} \hat{\lambda}_{i} g_{i}(\hat{\mathbf{x}}) + \sum_{j=1}^{p} \hat{\mu}_{j} h_{j}(\hat{\mathbf{x}}) \le$$

$$f(\hat{\mathbf{x}}), \qquad \boldsymbol{\mu} \ge 0$$

- Выполнено условие 3) из теоремы о седловой точке функции Лагранжа и выполнена сильная двойственность
- ▶ Обратно, если выполнено условие Слейтера и $\hat{\mathbf{x}}$ решение, то выполнена сильная двойственность.
- lacktriangle Значит найдётся допустимая пара $(\hat{oldsymbol{\lambda}},\hat{oldsymbol{\mu}})$ такая что

$$f(\hat{\mathbf{x}}) = g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = \inf_{\mathbf{x}} L(\mathbf{x}, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) \le$$
$$f(\hat{\mathbf{x}}) + \sum_{i=1}^{m} \hat{\lambda}_{i} g_{i}(\hat{\mathbf{x}}) + \sum_{j=1}^{p} \hat{\mu}_{j} h_{j}(\hat{\mathbf{x}}) \le$$
$$f(\hat{\mathbf{x}}), \qquad \boldsymbol{\mu} \ge 0$$

 Отсюда следует условие дополняющей нежёсткости и стационарность лагранжиана

Геометрическая интерпретация условий ККТ

Условие стационарности лагранжиана в точке минимума

$$f'_0(\mathbf{x}^*) + \sum_{i=1}^p \mu_i f'_i(\mathbf{x}^*) + \mathbf{A}^\top \boldsymbol{\lambda} = 0$$

• Если рассмотреть задачу только с ограничениями типа неравенств, то $-f_0'(\mathbf{x}^*)$ должен лежать в конусе, натянутом на градиенты активных ограничений в \mathbf{x}^*

1. $h_j(\mathbf{x}^*) \leq_{\mathcal{K}} 0$

- 1. $h_j(\mathbf{x}^*) \leq_{\mathcal{K}} 0$
- 2. $g_i(\mathbf{x}^*) = 0$

- 1. $h_j(\mathbf{x}^*) \leq_{\mathcal{K}} 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* \geq_{\mathcal{K}^*} 0$

- 1. $h_j(\mathbf{x}^*) \leq_{\mathcal{K}} 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* \geq_{\mathcal{K}^*} 0$
- 4. $\mu_j^* h_j(\mathbf{x}^*) = 0$

- 1. $h_j(\mathbf{x}^*) \leq_{\mathcal{K}} 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* \geq_{\mathcal{K}^*} 0$
- 4. $\mu_j^* h_j(\mathbf{x}^*) = 0$
- 5. $f'_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g'_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h'_j(\mathbf{x}^*) = 0$

- 1. $h_j(\mathbf{x}^*) \leq_{\mathcal{K}} 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* \geq_{\mathcal{K}^*} 0$
- 4. $\mu_i^* h_j(\mathbf{x}^*) = 0$
- 5. $f_0'(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i'(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j'(\mathbf{x}^*) = 0$

Условия оптимальности

Все утверждения для обычных скалярных неравенств (то есть для конуса \mathbb{R}^n_+) переносятся на случай произвольного конуса $\mathcal K$ с точностью до отмеченных отличий.

- 1. $h_j(\mathbf{x}^*) \leq_{\mathcal{K}} 0$
- 2. $g_i(\mathbf{x}^*) = 0$
- 3. $\mu^* >_{K^*} 0$
- 4. $\mu_i^* h_i(\mathbf{x}^*) = 0$
- 5. $f_0'(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i'(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j'(\mathbf{x}^*) = 0$

Условия оптимальности

Все утверждения для обычных скалярных неравенств (то есть для конуса \mathbb{R}^n_+) переносятся на случай произвольного конуса $\mathcal K$ с точностью до отмеченных отличий.

Условие Слейтера для выпуклой задачи

Говорят, что выполнено условие Слейтера, если найдётся $\hat{\mathbf{x}}\in\mathcal{D}$ такой что $\mathbf{A}\hat{\mathbf{x}}=\mathbf{b}$ и $f_i(\hat{\mathbf{x}})<_{\mathcal{K}}0$

▶ Условие Слейтера

- Условие Слейтера
- ▶ Выпуклость + условие Слейтера = сильная двойственность

- Условие Слейтера
- ▶ Выпуклость + условие Слейтера = сильная двойственность
- Теорема Каруша-Куна-Таккера

- Условие Слейтера
- ▶ Выпуклость + условие Слейтера = сильная двойственность
- Теорема Каруша-Куна-Таккера
- Геометрическая интерпретация