Plan global projet final jedha

Créé par	marine deldicque	
 Heure de création 	@June 18, 2025 8:08 PM	
: Étiquettes		

Bien sûr! Voici la version enrichie et complète du plan en 3 blocs pour le projet SmartInvest, en intégrant les données spatiales (scraping/API), les features enrichies, MLflow, et Streamlit – le tout sans perdre la problématique centrale :

Problématique : "Comment savoir sur quel logement investir à Paris ?"

Plan de projet SmartInvest – Organisation en 3 blocs

♦ Bloc A − Modélisation & Tracking ML (MLflow)

★ Responsable : Marine (ou membre 1)

o Objectifs:

- Créer et améliorer un modèle de prédiction du prix au m²
- Tracker toutes les expérimentations avec MLflow
- Identifier les facteurs les plus influents pour la prise de décision d'investissement

🔪 Tâches :

- · Tester plusieurs modèles :
 - ▼ Random Forest (avec GridSearch)
 - ∘ **V** Régression Linéaire / Ridge / Lasso
 - XGBoost ou LightGBM

- Suivi des scores (R2, MAE) via MLflow
- Sauvegarde du meilleur modèle .pkl
- Affichage de l'importance des variables (feature_importances_)

Dossiers:

notebooks/02_model_experiments.ipynb mlflow/ models/random_forest_model.pkl

Bloc B – Feature Engineering & Enrichissement Spatial/Temporel

📌 Responsable : Collaborateur 2

o Objectifs:

- Enrichir le dataset avec des données locales, temporelles et géographiques
- Fournir des features différenciantes pour l'investissement immobilier

* Tâches:

Données internes :

- Extraction de année, mois, arrondissement
- Calcul du prix_m2_moyen_100m avec KDTree
- Détection de biens sous le prix du quartier

🦄 Données externes à intégrer :

- Latitude/Longitude par géocodage (geopy, Nominatim)
- · Scraping ou API pour:
 - ∘ P Distance à la station de métro la plus proche
 - o proche la plus proche

Espaces verts à proximité (via Open Data Paris)

Création de nouvelles colonnes :

Feature	Description
prix_m2_moyen_100m	Moyenne locale dans un rayon de 100 m
distance_metro_m	Distance en mètres à la station de métro la plus proche
nb_commerces_300m	Nombre de commerces dans 300 m
sous_eval	Booléen si le bien est sous le prix médian local

Dossiers:

notebooks/01_feature_engineering.ipynb data/enriched_features.csv

Bloc C – Application interactive (Streamlit) & Visualisation

★ Responsable: Collaborateur 3

6 Objectifs:

- Créer une application Streamlit pour aider l'utilisateur à savoir si un bien vaut le coup
- Proposer des recommandations visuelles & chiffrées

Contenu de l'application :

- Formulaire utilisateur (surface, code postal, pièces, etc.)
- Prédiction du prix/m² avec modèle .pkl
- Comparaison avec :
 - Moyenne du quartier
 - Moyenne 100 m autour
 - Évolution sur 5 ans (graphique)
- Résumé " P Opportunité ou non ?" basé sur les écarts
- Carte interactive possible (bonus)

Dossiers:

```
streamlit_app/app.py
plots/
```

Arborescence du projet (résumé)

SmartInvest/
—— README.md
— notebooks/
01_feature_engineering.ipynb
02_model_experiments.ipynb
— streamlit_app/
—— data/
│
enriched_features.csv
— models/
random_forest_model.pkl
—— mlflow/
requirements.txt

Suivi collaboratif

Bloc	Branche GitHub
A – Modélisation + MLflow	ml-dev
B – Feature engineering + enrichissements	features-dev
C – Streamlit App + visualisations	app-dev

Souhaites-tu maintenant:

- Un kanban Notion ou Trello prêt à copier avec toutes ces tâches?
- Un fichier .py ou .ipynb pour récupérer les distances avec métro/écoles via OpenStreetMap ou géopy?

• Un exemple de app.py avec formulaire + prédiction ?

Plan global projet final jedha