Machine Learning Assignment # 2 Universität Bern

Due date: 10/10/2018

Late submissions will incur a penalty. Submit your answers in ILIAS (as a pdf or as a picture of your written notes if the handwriting is very clear). Submission instructions will be provided via email.

You are not allowed to work with others.

Calculus review [Total 100 points]

Recall that the Jacobian of a function $f: \mathbb{R}^n \to \mathbb{R}^m$ is an $m \times n$ matrix of partial derivatives

$$Df(x) = \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1} & \frac{\partial f_1(x)}{\partial x_2} & \dots & \frac{\partial f_1(x)}{\partial x_n} \\ \frac{\partial f_2(x)}{\partial x_1} & \frac{\partial f_2(x)}{\partial x_2} & \dots & \frac{\partial f_2(x)}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m(x)}{\partial x_1} & \frac{\partial f_m(x)}{\partial x_2} & \dots & \frac{\partial f_m(x)}{\partial x_n} \end{bmatrix}$$

where $x = [x_1 \ x_2 \ \dots \ x_n]^\top$, $f(x) = [f_1(x) \ f_2(x) \ \dots \ f_m(x)]^\top$ and $\frac{\partial f_i(x)}{\partial x_j}$ is the partial derivative of the *i*-th output with respect to the *j*-th input.

Answer the following questions (show all the steps of your working)

- 1. Consider the function $f: \mathbb{R}^m \to \mathbb{R}^n$ and $f(x) = x^\top A$ where $A \in \mathbb{R}^{m \times n}$. Show that $Df(x) = A^\top$. [10 points]
- 2. Consider the function $g: \mathbb{R}^n \to \mathbb{R}$ and $g(x) = (x^\top x)^{m+1}$, with m an integer larger than 0. Calculate $\nabla g(x)$. [15 points]
- 3. Given a square matrix $A \in \mathbb{R}^{m \times m}$, when is the equality $tr(A^2) = tr(A^T A)$ true? [10 points] *Hint:* $A^2 = AA$.
- 4. Assume $A \in \mathbb{R}^{m \times n}$, $X \in \mathbb{R}^{m \times n}$, and $B \in \mathbb{R}^{m \times m}$. Show that
 - $\nabla_X tr(AX^T) = A$ [10 points]
 - $\nabla_X tr(X^T X) = 2X$. [10 points]
- 5. Suppose $A \in \mathbb{R}^{m \times n}$ and is full rank, and $b \in \mathbb{R}^m$ is a vector such that $b \notin \mathcal{R}(A)$. [20 points] In this case we will not be able to find a vector $x \in \mathbb{R}^n$, such that Ax = b.

Find a vector x such that Ax is as close as possible to b, as measured by the square of the Euclidean norm:

$$\left\|Ax - b\right\|_2^2$$

Hint: $||x||_2^2 = x^\top x$. Review the least squares method.

6. Solve the following equality constrained optimization problem:

[25 points]

$$\max_{x \in R^n} x^{\top} A x \qquad \text{subject to } ||x||_2^2 = 1$$

for a symmetric matrix $A \in S^n$.

Hint: Use the Lagrangian and the Eigen decomposition.