Probability

Sum of all probabilities:
$$\sum_{all \ i} P(A_i) = 1 = P(S)$$

Complements:
$$P(A^C) = 1 - P(A)$$

Union ("...or ...or both"):
$$P(A \cup B) = P(A) + P(B) - P(A \text{ and } B)$$

Joint probability

Conditional:
$$P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$$

$$P(B \mid A) = \frac{P(A \text{ and } B)}{P(A)}$$

Independence:
$$P(A \mid B) = P(A)$$

 $P(A \text{ and } B) = P(A) \cdot P(B)$

Disjoint events:
$$P(A \text{ and } B) = 0$$
 (mutually exclusive events)

The Bayes formula:
$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B \mid A) \cdot P(A) + P(B \mid A^{C}) \cdot P(A^{C})}$$