#2022_Artificial Neural Network and Deep Learning_Term Project Final Presentation

Deep Experiments on Deepfake Detection

Team 1

21510004 이예빈

21510098 한보영

21512023 정주현

Contents

#1, Introduction

#2, Methodology

#3, Experimental Results

#4, Conclusion

Introduction

Background & Motivation

- Deepfake = 'deep learning' + 'fake'
- ⇒ technology that creates a manipulated image by superimposing another image on a video through deep learning [Chawal, 2019]

March 2022 - Ukraine Surrendered to Russia???

- A video clip of the Ukrainian president declaring his surrender to Russia was distributed, drawing much attention. [Wakefield, 2022]
- However, the video is fake video utilized Deepfake technology.

Deepfake Technology

national political problems social

Introduction

Literature Review

Shad, H.S., et al. (2021). Comparative Analysis of Deepfake Image Detection Method Using Convolutional Neural Network. In *Computational Intelligence and Neuroscience*

- Dataset: 70,000 real images (Flickr dataset) + 70,000 fake images (generated by styleGAN)
- Models
 - ✓ DenseNet DenseNet121, DenseNet169, DenseNet201
 - ✓ VGGNet VGG16, VGG19
 - ✓ ResNet ResNet50
 - ✓ VGGFace
 - ✓ custom CNN (build up by authors)
- Performance metrics: accuracy, precision, recall, F1-score, AUROC
- Results
 - VGGFace(99%) > ResNet50(97%) = DenseNet121(97%) > DenseNet201(96%) > DenseNet169(95%) > VGG19(94%) > VGG16(92%) > custom CNN(90%)

Introduction

Purpose

- Hany Farid (Professor of California State University at Berkeley)
 - Ukrainian president surrender video = fake
 why?? ⇒ the resolution was lowered to hide the distortion caused by the manipulation process [Metz, 2022]
- investigate the effect of image change on Deepfake detection problem Deepfake detection performance
- original (color) images vs. images with color changes vs. images with changes in saturation

Methodology

Data

- Deepfake Detection Challenge(DFDC) dataset from Kaggle [Dolhansky et al. 2019]
- 400 color videos ⇒ using only 20% of whole dataset (by sampling)
- Label: Real / Fake
- Preprocessing
 - ① video → image
 - ② image transformation
 - ✓ RGB value transformation
 - make gray scale image
 - ✓ HSV value transformation
 - make high saturation image

Methodology

Data Examples

Real Image Example

Fake Image Example

Methodology

Experimental Results

Step1: Find Best Model

Performance of models with original image(OI)

	VGGFace2	ResNet50	DenseNet121
Train Accuracy	0.9658	0.9863	0.9995
Test Accuracy	0.9714	0.7229	0.9983

- Train Accuracy → high in all models
- Test Accuracy → low in ResNet50, high in DenseNet121
- ► Using DenseNet121!!

Experimental Results

Step2: Find Best Data Combination

Performance of DenseNet121 with input data combination

	Label	Accuracy	Precision	Recall	F1-Score
Ol	Fake(0)	0.9983	0.9984	0.9995	0.9989
	Real(1)	0.9963	0.9981	0.9944	0.9963
RTI	Fake(0)	0.9842	0.9805	0.9995	0.9899
	Real(1)	0.9042	0.9980	0.9315	0.9636
НТІ	Fake(0)	0.9998	1.0000	0.9997	0.9999
	Real(1)		0.9991	1.0000	0.9995
OI + RTI	Fake(0)	0.9995	0.9996	0.9998	0.9997
	Real(1)	0.9995	0.9994	0.9985	0.9990
OI + HTI	Fake(0)	0.9997	1.0000	0.9996	0.9998
	Real(1)	0.5557	0.9987	1.0000	0.9994
RTI + HTI	Fake(0)	0.9998	1.0000	0.9997	0.9998
	Real(1)	0.9996	0.9989	1.0000	0.9994
OI + RTI + HTI	Fake(0)	0.9997	1.0000	0.9996	0.9998
	Real(1)	0.3337	0.9987	1.0000	0.9993

Using only 1 type of data

- best: model trained with HTI data
- In model trained with RTI data, performance has been slightly reduced.

Using data combination

- overall performance ↑ ← data augmentation
- Especially, data combinations which contain HTI data have better performance.
- ► data augmentation → performance ↑
- ► increasing the image saturation → performance ↑

Part 4 Conclusion

Summary

- Deepfake video Ukrainian president's declaration of surrender
 - → it can be a threat to national security
- Comparison VGGFace2, ResNet50, and DenNet121 → Best performance model: DensNet121
- Color changed data
 - Original Image
 - RGB Transformed Image
 - HSV Transformed Image
- Results
 - Data augmentation → performance ↑
 - HSV Transformed Image → performance ↑

Conclusion

Future Research

- Larger training data
- Face-centered image data

Thank You