

planetmath.org

Math for the people, by the people.

subgroup of topological group is either clopen or has empty interior

 ${\bf Canonical\ name} \quad {\bf Subgroup Of Topological Group Is Either Clopen Or Has Empty Interior}$

Date of creation 2013-03-22 18:01:29
Last modified on 2013-03-22 18:01:29
Owner asteroid (17536)
Last modified by asteroid (17536)

Numerical id 6

Author asteroid (17536)

Entry type Theorem Classification msc 22A05

Theorem - Every subgroup of a topological group is either clopen or has empty interior.

Proof: Let G be a topological group and $H \subseteq G$ a subgroup. Suppose the interior of H is nonempty, i.e. there is a non-empty open set U of G such that $U \subseteq H$. Translating U around H we can see that H is open: if $u \in U$ then for every $h \in H$ the set $hu^{-1}U$ is open in G, is contained in H and contains h, which implies that H is open in G.

Let us now see that H is closed. Let \overline{H} denote the closure of H and let H^2 be the set of elements of the form h_1h_2 where $h_1,h_2\in H$. Of course, since H is a subgroup of G, we have that $H^2=H$. Also, since H is open we know that $H\subseteq \overline{H}\subseteq H^2$ (see http://planetmath.org/BasicResultsInTopologicalGroupsthis entry - 5). Hence $\overline{H}=H$, i.e. H is closed.

We have proven that a subgroup of a topological group must be clopen or it must have empty interior. Since this two topological properties can never be satisfied simultaneously, we have that every subgroup of a topological group is either clopen or it has empty interior. \square