8. Surface integrals and curve integrals of vector fields

We solve the problems together in the exercise sessions. Note that these problems are optional and for learning purposes: solving these does not provide extra points. Actual home assignments (giving you extra points) are given separately.

It is advised to take a look of the problems beforehand. Note that some of the problems might be very challenging, so do not feel bad if you are unable to solve them independently: we will go through the solutions together!

Problems for the session

- **8.1** Compute the area of $x^2 + y^2 + z^2 = R^2$, $z \ge h$ with $0 \le h \le R$ (problem 8.30d from the book).
- **8.2** Compute the curve integral $\int_{\gamma} y \log \frac{x^2}{y} dx \frac{x}{y} dy$, where γ is given by $y = x^2$ from (1,1) to (2,4) (problem 9.4 from the book).

Problems for individual practice

In addition to the problems below, one can get routine by solving similar exercises from the exercise-book "övningar i flerdimensionell analys".

- **8.1** Compute the area of the cylinder $x^2 + y^2 = 4$, $0 \le z \le 3$ (problem 8.29c from the book).
- **8.2** Compute the area of $x^2 + y^2 + z^2 = 4$, $z \ge 1$ (problem 8.30c from the book).
- **8.3** Compute the area of the torus $(x, y, z) = ((2 \cos t) \cos s, (2 \cos t) \sin s, \sin t), -\pi \le s, t < \pi$ (problem 8.31 from the book).
- **8.4** Compute the curve integral $\int_{\gamma} y dx dy$ where
 - (a) γ is a line from (0,1) to (1,-1).
 - (b) $\gamma = \gamma_1 + \gamma_2$, where γ_1 is a line from (0,1) to (1,1) and γ_2 is a line from (1,1) to (1,-1).

(problem 9.2 from the book).

- **8.5** Compute the curve integral $\int_{\gamma} (x^2 + xy) dx + (y^2 xy) dy$, where
 - (a) γ is a line from (0,0) to (2,2).
 - (b) γ is a parabel $x^2 = 2y$ from (0,0) to (2,2).
 - (c) $\gamma = \gamma_1 + \gamma_2$, where γ_1 is a line from (0,0) to (2,0) and γ_2 is a line from (2,0) to (2,2). (problem 9.3 from the book).