Copying	DEFINITION
Flash Cards for Math 2250 "Differential Equations and Linear Algebra"	order
ODEs and Linear Algebra	ODEs and Linear Algebra
Definition	DEFINITION
ODE and PDE	directly integrable
ODEs and Linear Algebra	ODEs and Linear Algebra
DEFINITION	DEFINITION
general solution	initial value problem (IVP)
ODEs and Linear Algebra	ODEs and Linear Algebra
DEFINITION	Algorithm
particular solution	slope field plot
ODEs and Linear Algebra	ODEs and Linear Algebra
THEOREM	Theorem
existence	uniqueness
ODEs and Linear Algebra	ODEs and Linear Algebra

© 2017 Jason Underdown

The **order** of a differential equation (DE) is the order of the highest derivative which occurs in the equation.

This work is licensed under a Creative Commons Attribution 4.0 International License

@(1)

https://creativecommons.org/licenses/by/4.0/

The DE, y' = F(x, y), is **directly integrable** if

$$F(x,y) = f(x).$$

Such an equation may be solved by computing:

$$y(x) = \int f(x) \, dx.$$

An **ODE** (ordinary differential equation) is a DE that only contains total derivatives.

A **PDE** (partial differential equation) is a DE which contains at least one partial derivative.

An **initial value problem** or **IVP** is a differential equation coupled with at least one initial condition, for example,

$$y' = F(x, y)$$
 $y(0) = y_0.$

A second order IVP will require two initial conditions, $y(0) = y_0$ and $y'(0) = v_0$. In general, an *n*th order IVP will require *n* initial conditions.

A general solution to a DE is any continuous function which satisfies the DE and contains at least one constant of integration.

A general solution is actually a collection or family of functions parametrized by the integration constant(s).

Given a first-order DE, y' = F(x, y), one can graphically approximate solutions to the DE by generating a **slope field plot**:

- 1. Divide a region of the xy-plane into a grid.
- 2. For each cell in the grid compute $m = F(\bar{x}, \bar{y})$, where (\bar{x}, \bar{y}) is the midpoint of the cell, and plot a small bar with slope m centered on the point (\bar{x}, \bar{y}) .

A particular solution is a solution to an IVP. In other words it is a single function which satisfies both the DE and any initial condition(s).

$$y' = F(x, y) \qquad y(a) = b \tag{1}$$

If F(x,y) and $F_y(x,y)$ are both continuous on some rectangle R containing the point (a,b) in its interior, then there exists an open interval I which contains a such that (1) has a *unique* solution on I. Note that the width of I may be shorter than the width of R.

$$y' = F(x, y) \qquad y(a) = b \tag{1}$$

If F(x, y) is continuous on some rectangle R containing the point (a, b) in its interior, **then** there exists an open interval I which contains a such that (1) has a solution on I. Note that the width of I may be shorter than the width of R.

DEFINITION	DEFINITION
separable	population model
ODEs and Linear Algebra	ODEs and Linear Algebra
Definition	DEFINITION
diffusion model (Newton cooling and heating)	linear DE
ODEs and Linear Algebra	ODEs and Linear Algebra
Definition	Algorithm
integrating factor	integrating factor method
ODEs and Linear Algebra	ODEs and Linear Algebra
Definition	
autonomous	
ODEs and Linear Algebra	

The **population model** describes exponential growth and decay. It is an IVP:

$$P' = kP \qquad P(0) = P_0.$$

This model has particular solution:

$$P(t) = P_0 e^{kt}$$
.

Using the particular solution to extrapolate values may not be reasonable because exponential growth is often unphysical (impossible) over a long time scale. The DE y' = F(x, y) is called **separable** if the right hand side function can be expressed as a product of two single variable functions, for example,

$$F(x,y) = f(x)g(y).$$

Such equations may be solved by "separating the variables", that is, computing:

$$\int \frac{1}{g(y)} \, dy = \int f(x) \, dx.$$

An ODE is **linear** if it can be written in the form:

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = f(x).$$

Example of first and second order, linear ODEs:

$$a_1(x)y' + a_0(x)y = f(x)$$
$$a_2(x)y'' + a_1(x)y' + a_0(x)y = f(x)$$

The **diffusion model** describes how something diffuses or spreads into its *ambient* environment.

$$y' = k(A - y) \qquad y(0) = y_0$$

This model has solution,

$$y(t) = A - Ce^{-kt} \qquad C = A - y_0.$$

Do not try to memorize the solution! Solve the model via separation of variables.

- 1. Put in standard form: y' + p(x)y = q(x).
- 2. Multiply both sides by $I(x) = e^{\int p(x)dx}$, and integrate:

$$yI(x) = \int q(x)I(x) dx$$

3.
$$y = e^{-\int p(x)dx} \left[\int \left(q(x)e^{\int p(x)dx} \right) dx \right]$$

Don't forget the +C when integrating!

Given a linear, first order ODE:

$$a_1(x)y' + a_0(x)y = f(x),$$

first divide by $a_1(x)$ to yield:

$$y' + p(x)y = q(x).$$

The integrating factor is: $I(x) = e^{\int p(x)dx}$.

The DE y' = F(x, y) is called **autonomous** if F(x, y) is just a function of the dependent variable y, that is if:

$$F(x,y) = g(y).$$

Such equations can be analyzed by finding the roots of the equation g(y) = 0 and then creating a phase diagram.