Ökologie der Pilze Antagonistische Symbionten

Phytopathogene Pilze Tier- und humanpathogene Pilze Mykoparasiten

Das Dreieck des Parasitismus

Ökologie: Antagonistische Symbionten

Zwei Arten von phytopathogenen Pilzen

	Biotroph	Nekrotroph
Abtötung Wirtszellen	sehr langsam	schnell
Produktion von Toxinen, cytolytischen Enzymen	minimal	erheblich
Bildung von parasitischen Strukturen (Haustorien)	ja	nein
Wirtsspezifität	hoch	niedrig
Organspezifität	hoch	gering
Befallene Gewebe/ Pflanzenteile	gesunde Pflanzenteile in allen Entwicklungsphasen	junge, geschwächte, seneszente Pflanzenteile
Hyphenwachstum	Inter- und intrazellulär, systemisch	interzellulär, beschränkt auf bestimmte Pflanzenteile
Axenisches (saprobes) Wachstum	in der Regel unmöglich (obligat biotroph)	möglich (fakultativ/oppor- tunistisch biotroph)

Beispiele von obligaten Pflanzenparasiten

Getreideschwarzrost (*Puccinia graminis*)

Getreidemehltau (Blumeria graminis)

Ingold and Hudson: The Biology of Fungi

Ernährung via Haustorium in obligat biotrophen Pflanzenparasiten

S: Uredinio(Uredo)spore

G: Keimschlauch

A: Appressorium

P: Penetrationshyphe

V: Vesikel

I: Infektionshyphe

HM: Haustoriumsmutterzelle

H: Haustorium

the haustorium is within a plant cell, which gathers the nutrients from the plant cell and it delivers it to the

spore (S)

Moore Fig. 14.6

Year(s)	Epidemic and consequence	Reference	
857	First recorded epidemic of ergotism: thousands died in the Rhine Valley	Carefoot and Sprott (1967)	
1039	Ergotism in France: monks of the Order of St. Anthony relieved many symptoms	Carefoot and Sprott (1967)	
1722	Ergotism at Astrakhan: aided in defeat of Peter the Great of Russia	Carefoot and Sprott (1967)	
1845–1846	Late blight of potato: Irish potato famine; 1 million Irishmen died of starvation and related maladies, another 2 million emigrated	Bourke (1964), Carefoot and Sprott (1967) Woodham-Smith (1962)	
1845–1860	Powdery mildew of grape in England and France: financial loss and importation of <i>Phylloxera</i> aphid from North America	Large (1940), Carefoot and Sprott (1967)	
1882–1885	Downy mildew of grape in France: financial loss and discovery of Bordeaux mixture	Large (1940), Carefoot and Sprott (1967)	
1870–1880	Coffee rust in Ceylon: financial ruin for planters; English people became primarily tea drinkers	Large (1940), Carefoot and Sprott (1967)	
1904-present	Chestnut blight in the United States: destruction of American chestnut as a forest tree species in eastern United States; financial loss	Hepting (1974)	
1913	Leaf spot on banana cultivar Gros Michaels in the Sigatoka Valley in Fiji: financial loss	Carefoot and Sprott (1967)	
1915–1923 and 1930–1935	Panama disease of bananas in Costa Rica, Panama, Colombia, and Guatemala: financial loss	Carefoot and Sprott (1967)	
1916–1917	Late blight of potato in Germany: food shortages in civilian population; contributing factor to demoralization of German troops in World War I	Carefoot and Sprott (1967)	
1930-present	Dutch elm disease in the United States: loss of American elm as a shade tree species in many areas; loss of property value	Carefoot and Sprott (1967)	
1942–1943	Leaf blight of rice in Bengal: great Bengal famine – nearly 2 million people died from starvation	Padmanabhan (1973)	
1951	Ergotism at Pont-StEsprit, France: 4 deaths, 32 cases of insanity, numerous cases of hallucinations	Fuller (1968)	
1970	Southern maize leaf blight in the United States: 15% of US maize crop lost	Horsfall (1972)	
1977–1978	Ergotism in Ethiopia: hallucinations, human suffering, and death	Demeke et al. (1979)	
1979–1980	Blue mold of tobacco in eastern United States and Canada: financial loss	Lucas (1980)	

Claviceps purpurea (Mutterkorn) – Auslöser von Ergotismus (Heiliges Feuer, Antoniusfeuer)

Claviceps purpurea (Mutterkorn) – Auslöser von Ergotismus (Heiliges Feuer, Antoniusfeuer)

Szene aus "Der Kampf zwischen Karneval und Fasten« (Pieter Bruegel der Ältere, um 1559)

Mutterkornalkaloide

Moniliophthora perniciosa – Erreger der "Witches Broom Disease (Hexenbesenkrankheit)" der Kakaopflanze

During the last century the fungus spread throughout all of South America, Panama and the Caribbean, causing great losses in production. The most visible effect can be seen in Brazil where the introduction of the disease in the region of Bahia caused a decrease in production of almost 70% during a period of 10 years (International Cocoa Organisation)

Broom

Moniliophthora perniciosa – Fruchtkörper und Befall der Kakaofrucht

Moniliophthora perniciosa – Entwicklung der Krankheit

Fusarium oxysporum – Erreger der Panama-Krankheit der Banane

Bananas are Going Extinct -- Can We Still Save Them?

Siehe unter http://www.n-tv.de/wirtschaft/Killer-Pilz-zerfrisst-Bananenplantagen-article17527636.html

Phytopathogene Pilze und Artenvielfalt

Hymenoscyphus fraxineus – Auslöser des Eschensterbens in Nord-, Ost und Mitteleuropa

Siehe unter http://www.ethlife.ethz.ch/archive_articles/100408_eschenpilz_per/

Pilzliche Pathogenizitäts/Virulenzfaktoren

Penetration/Überwindung mechanischer Barrieren:

Cutinasen

Infektionsstrukturen (Appressorien, Infektionskissen)

CWDE (Cellulasen, Xylanasen, Pektinasen, β-1,3-Glucanasen)

Proteasen

Toxine: Abtötung/Schwächung der Wirtszellen

Effektoren/Suppressoren: Modifikation/Suppression der Wirtsabwehr

Überwindung der chemischen Abwehr des Wirtes: Abbau, Transport

Bildung/Abbau reaktiver Sauerstoffspezies (ROS)

Pflanzliche Abwehr gegen phytopathogene Pilze

Konstitutiv		Induziert		
Physikalisch	Chemisch	Physikalisch	Chemisch	
Wachs, Kutikula, Borke	Oberflächen pH	Lignifizierung	H ₂ O ₂ (ROS)	
Zellwand	Enzyminhibitoren	Abszission	Toxine	
Kasparischer Streifen (Endodermis)	Toxine	Korkbildung	Enzyminhibitoren	
		Harzbildung	Hypersensitivität: Induktion von programmiertem Zelltod	

Pflanzliche Abwehr gegen phytopathogene Pilze

Gene-for-gene Konzept der Pilzvirulenz und Pflanzenresistenz

Genotypen		Pflanze	
Pilz	RR	Rr	rr
VV	resistent	resistent	krank
Vv	resistent	resistent	krank
VV	krank	krank	krank

Phytopathogene Pilze und deren Wirtsmanipulation

Effektoren von obligaten Pflanzenparasiten

Phytopathogene Pilze und deren Wirtsmanipulation

Kleine sekretierte Proteine (SSPs) als Effektoren von obligaten Pflanzenparasiten am Beispiel von *Ustilago maydis* (Maisbrand)

SSP mit Ziel im Apoplast

SSP mit Ziel im Zytoplasma der Pflanzenzelle

Phytopathogene Pilze und deren Wirtsmanipulation

Weiberg et al 2014

Fünf Beispiele

Mikrosporidien – obligat intrazelluläre Parasiten

Tier- und humanpathogene Pilze Ophiocordyceps sp. - Insektenpathogene Pilze

Ophiocordyceps unilateralis – Erreger von 'Zombie Ameisen'

Ophiocordyceps sp. - Insektenpathogene Pilze

Year	Price/kg (Yuan)	Preis/kg (CHF)	
1980s	1800	268	
1997	8400	1253	
2004	36'000	5369	
2005	10'000-60'000	1491-8949	
2013	125'000-500'000	18'644-74'574	

Ophiocordyceps sp. - Insektenpathogene Pilze

Übersicht Erreger von Mykosen beim Menschen

Primary route of entry	Fungus	Sexual stage	Disease	Natural distribution
Skin	Trichophyton (22 species) Microsporum (19 species) but only 9 are involved in infections Epidermophyton (2 species)	Arthroderma (Ascomycota)	Dermatomycosis: ringworm, tinea, athlete's foot, etc.	Keratinized tissues, humans and wild or domesticated animals
Mucosa	Candida albicans Some other Candida spp.	Recently reported (see text)	Candidosis: thrush, vulvovaginitis, stomatitis	Commensal on mucosa
Lungs	Aspergillus fumigatus	None	Aspergillosis: invasive (systemic) or aspergillomas of lungs	Saprotrophic in soil or organic matter (composts)
	Blastomyces dermatitidis	Ajellomyces (Ascomycota)	Blastomycosis: lungs, skin lesions, bones, brain	Saprotrophic
	Coccidioides immitis	None	Coccidioidomycosis: lungs, systemic	Saprotrophic in soil
	Cryptococcus neoformans	Filobasidiella (Basidiomycota)	Cryptococcosis: lungs, brain, meninges	Bird excreta, vegetation (eucalypt trees)
	Histoplasma capsulatum	Ajellomyces (Ascomycota)	Histoplasmosis: lungs, rarely systemic	Bird and bat droppings
	Paracoccidioides brasiliensis	None	Paracoccidioidomycosis: lungs, cutaneous, lymph nodes	Soil ?
Wounds/ lesions	Phialophora Cladosporium Sporothrix, etc.	Often none	Subcutaneous mycoses: chromomycosis, sporotrichosis, etc.	Saprotrophic in soil, dead plant material
	Rhizopus, Absidia, etc.	Zygomycota	Zygomycosis	Saprotrophic
Lungs	Pneumocystis species	None	Virulent pneumonia	Humans, other mammals

Candida albicans – eine dimorphe Hefe mit tier- und humanpathogenem Potential

Aspergillus fumigatus - ein Schimmelpilz mit tier- und humanpathogenem Potential

Factors: temperature, nutrients, pH, humidity, interaction with other microbes, etc.

NZZ am Sonntag 17. September 2017

Wissen

Warum Pilze gefährlich sind

Bis in die Lunge und ins Gehirn

Manche Keime leben in organischem Abfall.

Rund eine Billion Pilze tummelt sich im und auf dem menschlichen Körper, Candida trägt etwa die Hälfte der Europäer im Darm mit sich herum. Meist hat das Immunsystem die Pilze im Griff - aus mehreren Gründen. Die Erreger können sich zum Beispiel nur mühsam mit unseren Körpertemperaturen arrangieren. Mangels Toxinen verfügen sie zudem in der Regel nicht über ein so gefährliches Waffenarsenal wie Bakterien. Sind die Abwehrzellen eines Menschen jedoch wie nach einer grossen Operation stark geschwächt, können sich auch

Pilze in Lunge oder Gehirn ausbreiten oder Blutvergiftungen verursachen. Nicht allen Ärzten sei das bewusst, sagen Experten. Deshalb werden solche Infektionen oft lange übersehen. Zudem sind Aspergillus, Candida und Mucorales, ein regelmässiger Untermieter in Komposthaufen, auch deutlich schwieriger zu diagnostizieren als Bakterien. Das hat leider manchmal Folgen: Mit jeder Stunde Zeitverzögerung bis zum Therapiebeginn sinkt bei einer Candida-Sepsis die Überlebenswahrscheinlichkeit um 2 Prozent, Michael Brendler

Mykoparasiten

Trichoderma sp. – Einsatz als biologisches Fungizid gegen pflanzenpathogene Pilze und Bakterien

Deacon Fig. 12.5

Viridin Trichodermin

Gliotoxin

6*n*-Pentyl-2H-pyran-2-one (6-PAP)

Mykoparasiten

Andere Beispiele von mykoparasitischen Pilzen

Tolypocladium japonicum Stromata auf Elaphomyces sp. Fruchtkörpern (Trüffel)

Boletus parasiticus auf Scleroderma citrinum (gemeiner Erdball)

