# LogiCORE IP AXI DataMover v3.00a

# **Product Guide**

PG022 October 16, 2012





# **Table of Contents**

**SECTION I: SUMMARY** 

## **IP Facts**

| Chapter 1: Overview                |            |
|------------------------------------|------------|
| Operating System Requirements      | 7          |
| Feature Summary                    | 8          |
| Applications                       | 9          |
| Unsupported Features               | 9          |
| Licensing and Ordering Information | 10         |
| Chapter 2: Product Specification   |            |
| Performance                        | 11         |
| Resource Utilization               | 13         |
| Port Descriptions                  | 18         |
| Chapter 3: Designing with the Core |            |
| General Design Guidelines          | 27         |
| Clocking                           | 40         |
| Resets                             | 40         |
| Design Parameters                  | 45         |
| Allowable Parameter Combinations   | <b>E</b> 1 |



**SECTION II: VIVADO DESIGN SUITE** 

# **Chapter 4: Customizing and Generating the Core Chapter 5: Constraining the Core SECTION III: ISE DESIGN SUITE Chapter 6: Customizing and Generating the Core Chapter 7: Constraining the Core SECTION IV: APPENDICES** Appendix A: Migrating **Appendix B: Debugging Appendix C: Additional Resources**



# SECTION I: SUMMARY

**IP Facts** 

Overview

**Product Specification** 

Designing with the Core





## Introduction

The Advanced eXtensible Interface (AXI)
DataMover is a soft Xilinx LogiCORE™
Intellectual Property (IP) core used as a building block for Scalable Direct Memory Access (DMA) functions. It provides the basic AXI4 Memory Map Read to AXI4-Stream and AXI4-Stream to AXI4 Memory Map Write data transport and protocol conversion. The function is intended to be a standalone core for custom designs or a helper core to higher level DMA type functions.

## **Features**

- AXI4 Compliant
- Primary AXI4 Memory Map data width support of 32, 64, 128, 256, 512, and 1024 bits
- Primary AXI4-Stream data width support of 8, 16, 32, 64, 128, 256, 512 and 1024 bits (Must be less than or equal to Memory Mapped data width)
- Parameterized Memory Map Burst Lengths of 16, 32, 64, 128, and 256 data beats
- Extended address width support up to 64 bits
- Optional Data Realignment Engine (DRE)
- Optional General Purpose Store-And-Forward in both Memory Map to Stream (MM2S) and Stream to Memory Map (S2MM)
- Optional Indeterminate Bytes to Transfer (BTT) mode in S2MM
- Supports synchronous/asynchronous clocking for Command/Status interface

|                                              | LogiCORE IP Facts Table                                                                                       |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|                                              | Core Specifics                                                                                                |
| Supported<br>Device<br>Family <sup>(1)</sup> | Zynq™-7000 <sup>(2)</sup> , Virtex <sup>®</sup> -7, Kintex™-7, Artix™-7,<br>Virtex-6, Spartan <sup>®</sup> -6 |
| Supported<br>User Interfaces                 | AXI4, AXI4-Stream                                                                                             |
| Resources                                    | See Table 2-4 through Table 2-7.                                                                              |
|                                              | Provided with Core                                                                                            |
| Design Files                                 | ISE <sup>®</sup> : VHDL<br>Vivado™: VHDL                                                                      |
| Example<br>Design                            | Not Provided                                                                                                  |
| Test Bench                                   | Not Provided                                                                                                  |
| Constraints<br>File                          | Not Provided                                                                                                  |
| Simulation<br>Model                          | Not Provided                                                                                                  |
| Supported<br>S/W Driver                      | N/A                                                                                                           |
|                                              | Tested Design Flows(3)                                                                                        |
| Design Entry                                 | ISE Design Suite 14.3<br>Vivado Design Suite 2012.3 <sup>(4)</sup>                                            |
| Simulation                                   | QuestaSim-64                                                                                                  |
| Synthesis                                    | Xilinx Synthesis Technology (XST)<br>Vivado Synthesis                                                         |
|                                              | Support                                                                                                       |
| Provide                                      | d by Xilinx @ www.xilinx.com/support                                                                          |

#### **Notes:**

- For a complete list of supported derivative devices, see <u>Embedded Edition Derivative Device Support</u>.
- 2. Supported in ISE Design Suite implementations only.
- 3. For the supported versions of the tools, see the Xilinx Design Tools: Release Notes Guide.
- 4. Supports only 7 series devices.



## Overview

The AXI DataMover is a key interconnect infrastructure IP that enables high throughput transfer of data between the AXI4 memory-mapped and AXI4-Stream domains. The AXI DataMover provides the MM2S and S2MM AXI4-Stream channels that operate independently in a full duplex like method. The AXI DataMover IP core is a key building block for the Xilinx AXI DMA core, and enables 4 KB address boundary protection, automatic burst partitioning, and provides the ability to queue multiple transfer requests using nearly the full bandwidth capabilities of the AXI4-Stream protocol. Furthermore, the AXI DataMover provides byte-level data realignment allowing memory reads and writes to any byte offset location.

Figure 1-1 shows a block diagram of the AXI DataMover core. There are two sub blocks:

- MM2S Block: This block handles transactions from the AXI memory map to AXI4-Stream domain. It has its dedicated AXI4-Stream compliant command and status queues, reset block and error signals. Based on command inputs, the MM2S block issues a read request on the AXI memory map interface. Read data can be optionally stored inside the MM2S block. Datapath interfaces (AXI4-Read and AXI4-Stream Master) can optionally be made asynchronous to command and status interfaces (AXI4-Stream Command and AXI4-Stream Status).
- S2MM Block: This block handles transactions from the AXI4-Stream to AXI memory
  map domain. It has its dedicated AXI4-Stream compliant command and status queues,
  reset block and error signals. Based on command inputs and input data from the AXI4Stream interface, the S2MM block issues a write request on the AXI memory map
  interface. Input stream data can be optionally stored inside a S2MM block. Datapath
  interfaces (AXI4-Read and AXI4-Stream Master) can optionally be made asynchronous
  to command and status interfaces (AXI4-Stream Command and AXI4-Stream Status).





Figure 1-1: AXI DataMover Block Diagram

# **Operating System Requirements**

For operating system requirements, see the Xilinx Design Tools: Release Notes Guide.



# **Feature Summary**

## **AXI4 Compliant**

The AXI DataMover core is fully compliant with the AXI4 Memory Map interface and the AXI4-Stream interface.

## **AXI4 Memory Map Data Width**

The AXI DataMover core supports the primary AXI4 Memory Map data bus width of 32, 64, 128, 256, 512, and 1024 bits.

#### **AXI4-Stream Data Width**

The AXI DataMover core supports the primary AXI4-Stream data bus width of 8, 16, 32, 64, 128, 256, 512, and 1024 bits. The AXI4-Stream data width must be less than or equal to the AXI4 Memory Map data width for the respective channel.

#### **Extended Address Width**

The AXI DataMover core supports the extended address width support up to 64 bits.

## **Maximum Memory Map Burst Length**

The AXI DataMover core supports parameterized maximum size of the burst cycles on the AXI MM2S Memory Map interface. In other words, this setting specifies the granularity of burst partitioning. For example, if the burst length is set to 16, the maximum burst on the memory map interface is 16 data beats. Smaller values reduce throughput but result in less impact on the AXI infrastructure. Larger values increase throughput but result in a greater impact on the AXI infrastructure. Valid supported values are 16, 32, 64, 128, and 256.

## **Unaligned Transfers**

The AXI DataMover core supports optional the Data Realignment Engine (DRE). When DRE is enabled, the DRE allows data realignment to the byte (8 bits) level on the Memory Map datapath. DRE support is provided up to 64 bits TDATA width of AXI4-Stream interface.

## **Asynchronous Clocks**

The AXI DataMover core supports asynchronous clock domain for Command/Status Stream interface and Memory Map interface.



## Store and Forward

The AXI DataMover core supports the optional General Purpose Store-And-Forward feature. When the Store and Forward feature is enabled, a downsizer/upsizer function is automatically inserted on the Stream side if the Stream Channel data width is less than the Memory Mapped data width. When the Store and Forward feature is not enabled, narrow transfers are generated on the AXI4 Memory Map side if the Stream Channel data width is less than the Memory Mapped data width.

#### Indeterminate BTT Mode

The AXI DataMover core supports the optional Indeterminate BTT mode for the S2MM channel. This is needed when the number of bytes to be received on the input S2MM Stream Channel is unknown.

## **Applications**

The AXI DataMover provides high-speed data movement between system memory and an AXI4-Stream-based target. This core is intended to be a standalone core for a custom design or a helper core to higher-level DMA type functions.

## **Unsupported Features**

The following AXI4 features are not supported by the DataMover design.

- User signals
- Locking transfers
- Caching transfers
- Non-incrementing and circular Burst transfers



# **Licensing and Ordering Information**

This Xilinx LogiCORE™ IP module is provided at no additional cost with the Xilinx Vivado™ Design Suite and ISE® Design Suite Embedded Edition tools under the terms of the Xilinx End User License.

Information about this and other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual Property page. For information on pricing and availability of other Xilinx LogiCORE IP modules and tools, contact your local Xilinx sales representative.



# **Product Specification**

## **Performance**

## **Maximum Frequencies**

The targeted maximum clock frequency for AXI DataMover core are given in Table 2-1.

Table 2-1: Maximum Clock Frequency

| Family    | Speed Grade | F <sub>Max</sub> |
|-----------|-------------|------------------|
| Spartan-6 | -2          | 133 MHz          |
| Virtex-6  | -1          | 180 MHz          |
| Virtex-7  | -1          | 180 MHz          |

## Latency

Table 2-2 describes the latency for the AXI DataMover core. Latency is measured in simulation and indicates AXI DataMover core latency cycles only and does not include system dependent latency or throttling.

Table 2-2: AXI DataMover Latency

| Description                                                                                           | Clocks |
|-------------------------------------------------------------------------------------------------------|--------|
| MM2S Channel                                                                                          |        |
| Initial m_axi_mm2s_rvalid to m_axis_mm2s_tvalid (C_MM2S_INCLUDE_SF = 0)                               | 1      |
| Initial m_axi_mm2s_rvalid to m_axis_mm2s_tvalid (C_MM2S_INCLUDE_SF = 1)                               | 3      |
| AXI4-Stream packet to packet latency (C_INCLUDE_MM2S_DRE = 0) m_axis_mm2s_tlast to m_axis_mm2s_tvalid | 2      |
| AXI4-Stream packet to packet latency (C_INCLUDE_MM2S_DRE = 1) m_axis_mm2s_tlast to m_axis_mm2s_tvalid | 3      |
| s_axis_mm2s_cmd_tvalid to m_axi_mm2s_arvalid                                                          | 8      |
| S2MM Channel                                                                                          |        |
| Initial s_axis_s2mm_tvalid m_axi_s2mm_awalid (C_S2MM_INCLUDE_SF = 0)                                  | 2      |



Table 2-2: AXI DataMover Latency (Cont'd)

| Description                                                                                           | Clocks |
|-------------------------------------------------------------------------------------------------------|--------|
| Initial s_axis_s2mm_tvalid m_axi_s2mm_awalid (C_S2MM_INCLUDE_SF = 1, C_S2MM_BURST_SIZE = 16)          | 20     |
| AXI4-Stream packet to packet latency (C_INCLUDE_S2MM_DRE = 0) s_axis_s2mm_tlast to s_axis_s2mm_tready | 2      |
| AXI4-Stream packet to packet latency (C_INCLUDE_S2MM_DRE = 1) s_axis_s2mm_tlast to s_axis_s2mm_tready | 3      |

## **Throughput**

Table 2-3 describes the latency for the AXI DataMover core. The tables provides performance information for a typical configuration. Throughput test consisted of eight parent commands loaded into the AXI DataMover core with each command having BTT value as 1 MB and each channel operating simultaneously (full duplex). The core was configured for synchronous operation meaning m\_axis\_mm2s\_cmdsts\_aclk = m\_axis\_s2mm\_cmdsts\_awclk = m\_axi\_mm2s\_aclk = m\_axi\_s2mm\_aclk.

The Core configuration used to generate the throughput data is as follows:

- C\_M\_AXI\_MM2S\_DATA\_WIDTH = 32 and C\_M\_AXI\_S2MM\_DATA\_WIDTH = 32
- C\_M\_AXIS\_MM2S\_TDATA\_WIDTH = 32 and C\_S\_AXIS\_MM2S\_TDATA\_WIDTH = 32
- C\_MM2S\_STSCMD\_IS\_ASYNC = 0 and C\_S2MM\_STSCMD\_IS\_ASYNC = 0
- C\_INCLUDE\_MM2S\_DRE = 0 and C\_INCLUDE\_S2MM\_DRE = 0
- C\_MM2S\_INCLUDE\_SF = 1 and C\_S2MM\_INCLUDE\_SF = 1

Table 2-3: AXI DataMover Throughput

| AXI DataMover<br>Channel | Primary Clock<br>Frequency | Packet Size     | Maximum Total<br>Data Throughput<br>(MB/sec) | Percent of<br>Theoretical |
|--------------------------|----------------------------|-----------------|----------------------------------------------|---------------------------|
|                          |                            | Spartan-6 FPGAs |                                              |                           |
| MM2S                     | 100                        | 1 MB            | 391.27                                       | 97.75%                    |
| S2MM                     | 100                        | 1 MB            | 391.27                                       | 97.75%                    |
|                          |                            | Virtex-6 FPGAs  |                                              |                           |
| MM2S                     | 150                        | 1 MB            | 587.81                                       | 97.96%                    |
| S2MM                     | 150                        | 1 MB            | 587.81                                       | 97.96%                    |



## **Resource Utilization**

Resources required for the AXI DataMover core have been estimated for the Virtex<sup>®</sup>-7 Field Programmable Gate Array (FPGA) in Table 2-4, Kintex<sup>™</sup>-7 and Artix<sup>™</sup>-7 FPGAs and Zynq<sup>™</sup>-7000 device in Table 2-5, Virtex-6 FPGA in Table 2-6, and Spartan<sup>®</sup>-6 FPGA in Table 2-7. These values were generated using Xilinx CORE Generator<sup>™</sup> tools, v14.3. They are derived from post-synthesis reports, and might change during MAP and PAR.

**Table 2-4:** Virtex-7 FPGA Resource Estimates

| C_INCLUDE_MM2S | C_M_AXI_MM2S_ADDR_WIDTHS | C_M_AXI_MM2S_DATA_WIDTH | C_M_AXIS_MM2S_TDATA_WIDTH | C_INCLUDE_MM2S_DRE | C_MM2S_BURST_SIZE | C_INCLUDE_MM2S_SF | C_INCLUDE_S2MM | C_M_AXI_S2MM_ADDR_WIDTHS | C_M_AXI_S2MM_DATA_WIDTH | C_S_AXIS_S2MM_TDATA_WIDTH | C_INCLUDE_S2MM_DRE | C_S2MM_BURST_SIZE | C_S2MM_SUPPORT_INDET_BTT | C_INCLUDE_MM2S_SF | Slices | Slice Reg | Slice LUTs | Block RAM |
|----------------|--------------------------|-------------------------|---------------------------|--------------------|-------------------|-------------------|----------------|--------------------------|-------------------------|---------------------------|--------------------|-------------------|--------------------------|-------------------|--------|-----------|------------|-----------|
| 1              | 32                       | 32                      | 32                        | 1                  | 16                | 1                 | 0              | 32                       | 32                      | 32                        | 1                  | 16                | 0                        | 1                 | 209    | 573       | 623        | 1         |
| 0              | 32                       | 32                      | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 32                      | 32                        | 1                  | 16                | 0                        | 1                 | 299    | 804       | 870        | 1         |
| 1              | 32                       | 32                      | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 32                      | 32                        | 1                  | 16                | 0                        | 1                 | 667    | 1377      | 1448       | 1         |
| 1              | 32                       | 64                      | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 64                      | 32                        | 1                  | 16                | 1                        | 1                 | 828    | 1821      | 1762       | 4         |
| 1              | 32                       | 128                     | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 128                     | 32                        | 1                  | 16                | 1                        | 1                 | 924    | 2255      | 2119       | 4         |
| 1              | 32                       | 256                     | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 256                     | 32                        | 1                  | 16                | 1                        | 1                 | 1151   | 3112      | 2695       | 8         |
| 1              | 32                       | 512                     | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 512                     | 32                        | 1                  | 16                | 1                        | 1                 | 1521   | 4809      | 3924       | 16        |
| 1              | 32                       | 1024                    | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 1024                    | 32                        | 1                  | 16                | 1                        | 1                 | 2317   | 8062      | 5794       | 34        |
| 1              | 32                       | 32                      | 8                         | 1                  | 16                | 1                 | 1              | 32                       | 32                      | 8                         | 1                  | 16                | 1                        | 1                 | 582    | 1197      | 1354       | 2         |
| 1              | 32                       | 32                      | 16                        | 1                  | 16                | 1                 | 1              | 32                       | 32                      | 16                        | 1                  | 16                | 1                        | 1                 | 509    | 1366      | 1496       | 2         |
| 1              | 32                       | 64                      | 64                        | 1                  | 16                | 1                 | 1              | 32                       | 64                      | 64                        | 1                  | 16                | 1                        | 1                 | 982    | 2196      | 2168       | 2         |
| 1              | 32                       | 128                     | 128                       | 0                  | 16                | 1                 | 1              | 32                       | 128                     | 128                       | 0                  | 16                | 1                        | 1                 | 823    | 2508      | 2081       | 4         |
| 1              | 32                       | 256                     | 256                       | 0                  | 16                | 1                 | 1              | 32                       | 256                     | 256                       | 0                  | 16                | 1                        | 1                 | 1282   | 4078      | 2794       | 8         |
| 1              | 32                       | 512                     | 512                       | 0                  | 16                | 1                 | 1              | 32                       | 512                     | 512                       | 0                  | 16                | 1                        | 1                 | 2090   | 7205      | 4388       | 16        |
| 1              | 32                       | 1024                    | 1024                      | 0                  | 16                | 1                 | 1              | 32                       | 1024                    | 1024                      | 0                  | 16                | 1                        | 1                 | 3359   | 13323     | 7986       | 34        |
| 1              | 32                       | 32                      | 32                        | 1                  | 16                | 0                 | 1              | 32                       | 32                      | 32                        | 1                  | 16                | 0                        | 0                 | 399    | 1266      | 1314       | 0         |
| 1              | 32                       | 32                      | 32                        | 1                  | 32                | 1                 | 1              | 32                       | 32                      | 32                        | 1                  | 32                | 1                        | 1                 | 790    | 1576      | 1539       | 2         |
| 1              | 32                       | 32                      | 32                        | 1                  | 64                | 1                 | 1              | 32                       | 32                      | 32                        | 1                  | 64                | 1                        | 1                 | 793    | 1596      | 1587       | 2         |
| 1              | 32                       | 32                      | 32                        | 1                  | 128               | 1                 | 1              | 32                       | 32                      | 32                        | 1                  | 128               | 1                        | 1                 | 700    | 1616      | 1674       | 2         |



Table 2-4: Virtex-7 FPGA Resource Estimates (Cont'd)

| C_INCLUDE_MM2S | C_M_AXI_MM2S_ADDR_WIDTHS | C_M_AXI_MM2S_DATA_WIDTH | C_M_AXIS_MM2S_TDATA_WIDTH | C_INCLUDE_MM2S_DRE | C_MM2S_BURST_SIZE | C_INCLUDE_MM2S_SF | C_INCLUDE_S2MM | C_M_AXI_S2MM_ADDR_WIDTHS | C_M_AXI_S2MM_DATA_WIDTH | C_S_AXIS_S2MIM_TDATA_WIDTH | C_INCLUDE_S2MM_DRE | C_S2MM_BURST_SIZE | C_S2MM_SUPPORT_INDET_BTT | C_INCLUDE_MM2S_SF | Slices | Slice Reg | Slice LUTs | Block RAM |
|----------------|--------------------------|-------------------------|---------------------------|--------------------|-------------------|-------------------|----------------|--------------------------|-------------------------|----------------------------|--------------------|-------------------|--------------------------|-------------------|--------|-----------|------------|-----------|
| 1              | 32                       | 32                      | 32                        | 1                  | 256               | 1                 | 1              | 32                       | 32                      | 32                         | 1                  | 256               | 1                        | 1                 | 747    | 1634      | 1667       | 4         |
| 1              | 32                       | 32                      | 32                        | 0                  | 16                | 1                 | 1              | 32                       | 32                      | 32                         | 0                  | 16                | 1                        | 1                 | 606    | 1313      | 1346       | 2         |
| 1              | 64                       | 32                      | 32                        | 1                  | 16                | 1                 | 1              | 64                       | 32                      | 32                         | 1                  | 16                | 1                        | 1                 | 620    | 1816      | 1841       | 2         |
| 1              | 64                       | 1024                    | 1024                      | 1                  | 256               | 1                 | 1              | 64                       | 1024                    | 1024                       | 1                  | 256               | 1                        | 1                 | 3541   | 13605     | 7956       | 34        |
| 2              | 32                       | 32                      | 32                        | 0                  | 16                | 0                 | 1              | 32                       | 32                      | 32                         | 0                  | 16                | 0                        | 0                 | 192    | 730       | 561        | 0         |
| 2              | 32                       | 64                      | 32                        | 0                  | 32                | 0                 | 1              | 32                       | 64                      | 32                         | 0                  | 32                | 0                        | 0                 | 188    | 745       | 593        | 0         |
| 2              | 32                       | 64                      | 64                        | 0                  | 64                | 0                 | 1              | 32                       | 64                      | 64                         | 0                  | 64                | 0                        | 0                 | 500    | 976       | 606        | 0         |

Table 2-5: Kintex-7 FPGA and Zynq-7000 Device Resource Estimates

| C_INCLUDE_MM2S | C_M_AXI_MM2S_ADDR_WIDTHS | C_M_AXI_MM2S_DATA_WIDTH | C_M_AXIS_MM2S_TDATA_WIDTH | C_INCLUDE_MM2S_DRE | C_MM2S_BURST_SIZE | C_INCLUDE_MM2S_SF | C_INCLUDE_S2MM | C_M_AXI_S2MM_ADDR_WIDTHS | C_M_AXI_S2MM_DATA_WIDTH | C_S_AXIS_S2MM_TDATA_WIDTH | C_INCLUDE_S2MM_DRE | C_S2MM_BURST_SIZE | C_S2MM_SUPPORT_INDET_BTT | C_INCLUDE_MM2S_SF | Slices | Slice Reg | Slice LUTs | Block RAM |
|----------------|--------------------------|-------------------------|---------------------------|--------------------|-------------------|-------------------|----------------|--------------------------|-------------------------|---------------------------|--------------------|-------------------|--------------------------|-------------------|--------|-----------|------------|-----------|
| 1              | 32                       | 32                      | 32                        | 1                  | 16                | 1                 | 0              | 32                       | 32                      | 32                        | 1                  | 16                | 0                        | 1                 | 267    | 573       | 618        | 1         |
| 0              | 32                       | 32                      | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 32                      | 32                        | 1                  | 16                | 0                        | 1                 | 365    | 804       | 867        | 1         |
| 1              | 32                       | 32                      | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 32                      | 32                        | 1                  | 16                | 0                        | 1                 | 698    | 1377      | 1446       | 1         |
| 1              | 32                       | 64                      | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 64                      | 32                        | 1                  | 16                | 1                        | 1                 | 803    | 1821      | 1780       | 4         |
| 1              | 32                       | 128                     | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 128                     | 32                        | 1                  | 16                | 1                        | 1                 | 965    | 2255      | 2077       | 4         |
| 1              | 32                       | 256                     | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 256                     | 32                        | 1                  | 16                | 1                        | 1                 | 1161   | 3112      | 2677       | 8         |
| 1              | 32                       | 512                     | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 512                     | 32                        | 1                  | 16                | 1                        | 1                 | 1551   | 4809      | 3931       | 16        |
| 1              | 32                       | 1024                    | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 1024                    | 32                        | 1                  | 16                | 1                        | 1                 | 2265   | 8062      | 5888       | 34        |



Table 2-5: Kintex-7 FPGA and Zynq-7000 Device Resource Estimates (Cont'd)

| C_INCLUDE_MM2S | C_M_AXI_MM2S_ADDR_WIDTHS | C_M_AXI_MM2S_DATA_WIDTH | C_M_AXIS_MM2S_TDATA_WIDTH | C_INCLUDE_MM2S_DRE | C_MM2S_BURST_SIZE | C_INCLUDE_MM2S_SF | C_INCLUDE_S2MM | C_M_AXI_S2MM_ADDR_WIDTHS | C_M_AXI_S2MM_DATA_WIDTH | C_S_AXIS_S2MM_TDATA_WIDTH | C_INCLUDE_S2MM_DRE | C_S2MM_BURST_SIZE | C_S2MM_SUPPORT_INDET_BTT | C_INCLUDE_MM2S_SF | Slices | Slice Reg | Slice LUTs | Block RAM |
|----------------|--------------------------|-------------------------|---------------------------|--------------------|-------------------|-------------------|----------------|--------------------------|-------------------------|---------------------------|--------------------|-------------------|--------------------------|-------------------|--------|-----------|------------|-----------|
| 1              | 32                       | 32                      | 8                         | 1                  | 16                | 1                 | 1              | 32                       | 32                      | 8                         | 1                  | 16                | 1                        | 1                 | 602    | 1197      | 1349       | 2         |
| 1              | 32                       | 32                      | 16                        | 1                  | 16                | 1                 | 1              | 32                       | 32                      | 16                        | 1                  | 16                | 1                        | 1                 | 635    | 1366      | 1462       | 2         |
| 1              | 32                       | 64                      | 64                        | 1                  | 16                | 1                 | 1              | 32                       | 64                      | 64                        | 1                  | 16                | 1                        | 1                 | 938    | 2196      | 2187       | 2         |
| 1              | 32                       | 128                     | 128                       | 0                  | 16                | 1                 | 1              | 32                       | 128                     | 128                       | 0                  | 16                | 1                        | 1                 | 908    | 2508      | 2017       | 4         |
| 1              | 32                       | 256                     | 256                       | 0                  | 16                | 1                 | 1              | 32                       | 256                     | 256                       | 0                  | 16                | 1                        | 1                 | 1293   | 4078      | 2739       | 8         |
| 1              | 32                       | 512                     | 512                       | 0                  | 16                | 1                 | 1              | 32                       | 512                     | 512                       | 0                  | 16                | 1                        | 1                 | 1925   | 7205      | 4597       | 16        |
| 1              | 32                       | 1024                    | 1024                      | 0                  | 16                | 1                 | 1              | 32                       | 1024                    | 1024                      | 0                  | 16                | 1                        | 1                 | 3537   | 13323     | 7750       | 34        |
| 1              | 32                       | 32                      | 32                        | 1                  | 16                | 0                 | 1              | 32                       | 32                      | 32                        | 1                  | 16                | 0                        | 0                 | 408    | 1266      | 1339       | 0         |
| 1              | 32                       | 32                      | 32                        | 1                  | 32                | 1                 | 1              | 32                       | 32                      | 32                        | 1                  | 32                | 1                        | 1                 | 743    | 1576      | 1563       | 2         |
| 1              | 32                       | 32                      | 32                        | 1                  | 64                | 1                 | 1              | 32                       | 32                      | 32                        | 1                  | 64                | 1                        | 1                 | 742    | 1596      | 1600       | 2         |
| 1              | 32                       | 32                      | 32                        | 1                  | 128               | 1                 | 1              | 32                       | 32                      | 32                        | 1                  | 128               | 1                        | 1                 | 688    | 1616      | 1699       | 2         |
| 1              | 32                       | 32                      | 32                        | 1                  | 256               | 1                 | 1              | 32                       | 32                      | 32                        | 1                  | 256               | 1                        | 1                 | 615    | 1634      | 1713       | 4         |
| 1              | 32                       | 32                      | 32                        | 0                  | 16                | 1                 | 1              | 32                       | 32                      | 32                        | 0                  | 16                | 1                        | 1                 | 652    | 1313      | 1347       | 2         |
| 1              | 64                       | 32                      | 32                        | 1                  | 16                | 1                 | 1              | 64                       | 32                      | 32                        | 1                  | 16                | 1                        | 1                 | 857    | 1816      | 1741       | 2         |
| 1              | 64                       | 1024                    | 1024                      | 1                  | 256               | 1                 | 1              | 64                       | 1024                    | 1024                      | 1                  | 256               | 1                        | 1                 | 3390   | 13605     | 8061       | 34        |
| 2              | 32                       | 32                      | 32                        | 0                  | 16                | 0                 | 1              | 32                       | 32                      | 32                        | 0                  | 16                | 0                        | 0                 | 372    | 730       | 555        | 0         |
| 2              | 32                       | 64                      | 32                        | 0                  | 32                | 0                 | 1              | 32                       | 64                      | 32                        | 0                  | 32                | 0                        | 0                 | 184    | 745       | 593        | 0         |
| 2              | 32                       | 64                      | 64                        | 0                  | 64                | 0                 | 1              | 32                       | 64                      | 64                        | 0                  | 64                | 0                        | 0                 | 539    | 976       | 597        | 0         |



Table 2-6: Virtex-6 FPGA Resource Estimates

|                | C Z-U                    |                         |                           |                    |                   |                   |                | illate.                  |                         | 1                         |                    |                   | ,                        |                   |        |           | ,          |           |
|----------------|--------------------------|-------------------------|---------------------------|--------------------|-------------------|-------------------|----------------|--------------------------|-------------------------|---------------------------|--------------------|-------------------|--------------------------|-------------------|--------|-----------|------------|-----------|
| C_INCLUDE_MM2S | C_M_AXI_MM2S_ADDR_WIDTHS | C_M_AXI_MM2S_DATA_WIDTH | C_M_AXIS_MM2S_TDATA_WIDTH | C_INCLUDE_MM2S_DRE | C_MM2S_BURST_SIZE | C_INCLUDE_MM2S_SF | C_INCLUDE_S2MM | C_M_AXI_S2MM_ADDR_WIDTHS | C_M_AXI_S2MM_DATA_WIDTH | C_S_AXIS_S2MM_TDATA_WIDTH | C_INCLUDE_S2MM_DRE | C_S2MM_BURST_SIZE | C_S2MM_SUPPORT_INDET_BTT | C_INCLUDE_MM2S_SF | Slices | Slice Reg | Slice LUTs | Block RAM |
| 1              | 32                       | 32                      | 32                        | 1                  | 16                | 1                 | 0              | 32                       | 32                      | 32                        | 1                  | 16                | 0                        | 1                 | 290    | 572       | 600        | 1         |
| 0              | 32                       | 32                      | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 32                      | 32                        | 1                  | 16                | 0                        | 1                 | 300    | 804       | 878        | 1         |
| 1              | 32                       | 32                      | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 32                      | 32                        | 1                  | 16                | 0                        | 1                 | 595    | 1377      | 1466       | 1         |
| 1              | 32                       | 64                      | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 64                      | 32                        | 1                  | 16                | 1                        | 1                 | 787    | 1821      | 1795       | 4         |
| 1              | 32                       | 128                     | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 128                     | 32                        | 1                  | 16                | 1                        | 1                 | 959    | 2255      | 2068       | 4         |
| 1              | 32                       | 256                     | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 256                     | 32                        | 1                  | 16                | 1                        | 1                 | 1248   | 3111      | 2648       | 8         |
| 1              | 32                       | 512                     | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 512                     | 32                        | 1                  | 16                | 1                        | 1                 | 1558   | 4809      | 3876       | 16        |
| 1              | 32                       | 1024                    | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 1024                    | 32                        | 1                  | 16                | 1                        | 1                 | 2167   | 8075      | 5789       | 34        |
| 1              | 32                       | 32                      | 8                         | 1                  | 16                | 1                 | 1              | 32                       | 32                      | 8                         | 1                  | 16                | 1                        | 1                 | 617    | 1197      | 1368       | 2         |
| 1              | 32                       | 32                      | 16                        | 1                  | 16                | 1                 | 1              | 32                       | 32                      | 16                        | 1                  | 16                | 1                        | 1                 | 550    | 1366      | 1488       | 2         |
| 1              | 32                       | 64                      | 64                        | 1                  | 16                | 1                 | 1              | 32                       | 64                      | 64                        | 1                  | 16                | 1                        | 1                 | 1065   | 2196      | 2110       | 2         |
| 1              | 32                       | 128                     | 128                       | 0                  | 16                | 1                 | 1              | 32                       | 128                     | 128                       | 0                  | 16                | 1                        | 1                 | 1111   | 2508      | 1922       | 4         |
| 1              | 32                       | 256                     | 256                       | 0                  | 16                | 1                 | 1              | 32                       | 256                     | 256                       | 0                  | 16                | 1                        | 1                 | 1334   | 4078      | 2735       | 8         |
| 1              | 32                       | 512                     | 512                       | 0                  | 16                | 1                 | 1              | 32                       | 512                     | 512                       | 0                  | 16                | 1                        | 1                 | 1921   | 7205      | 4547       | 16        |
| 1              | 32                       | 1024                    | 1024                      | 0                  | 16                | 1                 | 1              | 32                       | 1024                    | 1024                      | 0                  | 16                | 1                        | 1                 | 3264   | 13337     | 8046       | 34        |
| 1              | 32                       | 32                      | 32                        | 1                  | 16                | 0                 | 1              | 32                       | 32                      | 32                        | 1                  | 16                | 0                        | 0                 | 444    | 1266      | 1312       | 0         |
| 1              | 32                       | 32                      | 32                        | 1                  | 32                | 1                 | 1              | 32                       | 32                      | 32                        | 1                  | 32                | 1                        | 1                 | 645    | 1576      | 1596       | 2         |
| 1              | 32                       | 32                      | 32                        | 1                  | 64                | 1                 | 1              | 32                       | 32                      | 32                        | 1                  | 64                | 1                        | 1                 | 519    | 1596      | 1682       | 2         |
| 1              | 32                       | 32                      | 32                        | 1                  | 128               | 1                 | 1              | 32                       | 32                      | 32                        | 1                  | 128               | 1                        | 1                 | 822    | 1616      | 1652       | 2         |
| 1              | 32                       | 32                      | 32                        | 1                  | 256               | 1                 | 1              | 32                       | 32                      | 32                        | 1                  | 256               | 1                        | 1                 | 798    | 1633      | 1644       | 4         |
| 1              | 32                       | 32                      | 32                        | 0                  | 16                | 1                 | 1              | 32                       | 32                      | 32                        | 0                  | 16                | 1                        | 1                 | 558    | 1313      | 1357       | 2         |
| 1              | 64                       | 32                      | 32                        | 1                  | 16                | 1                 | 1              | 64                       | 32                      | 32                        | 1                  | 16                | 1                        | 1                 | 559    | 1816      | 1851       | 2         |
| 1              | 64                       | 1024                    | 1024                      | 1                  | 256               | 1                 | 1              | 64                       | 1024                    | 1024                      | 1                  | 256               | 1                        | 1                 | 3384   | 13605     | 7944       | 34        |
| 2              | 32                       | 32                      | 32                        | 0                  | 16                | 0                 | 1              | 32                       | 32                      | 32                        | 0                  | 16                | 0                        | 0                 | 246    | 729       | 575        | 0         |
| 2              | 32                       | 64                      | 32                        | 0                  | 32                | 0                 | 1              | 32                       | 64                      | 32                        | 0                  | 32                | 0                        | 0                 | 318    | 744       | 572        | 0         |
| 2              | 32                       | 64                      | 64                        | 0                  | 64                | 0                 | 1              | 32                       | 64                      | 64                        | 0                  | 64                | 0                        | 0                 | 410    | 975       | 607        | 0         |



Table 2-7: Spartan-6 FPGA Resource Estimates

|                | C Z-/.                   |                         | i taii-o                  |                    | A Nes             |                   |                |                          |                         |                            |                    |                   |                          | 1                 |        | ı         |            |           |
|----------------|--------------------------|-------------------------|---------------------------|--------------------|-------------------|-------------------|----------------|--------------------------|-------------------------|----------------------------|--------------------|-------------------|--------------------------|-------------------|--------|-----------|------------|-----------|
| C_INCLUDE_MM2S | C_M_AXI_MM2S_ADDR_WIDTHS | C_M_AXI_MM2S_DATA_WIDTH | C_M_AXIS_MM2S_TDATA_WIDTH | C_INCLUDE_MM2S_DRE | C_MM2S_BURST_SIZE | C_INCLUDE_MM2S_SF | C_INCLUDE_S2MM | C_M_AXI_MM2S_ADDR_WIDTHS | C_M_AXI_S2MM_DATA_WIDTH | C_S_AXIS_S2MIM_TDATA_WIDTH | C_INCLUDE_S2MM_DRE | C_S2MM_BURST_SIZE | C_S2MM_SUPPORT_INDET_BTT | C_INCLUDE_MM2S_SF | Slices | Slice Reg | Slice LUTs | Block RAM |
| 1              | 32                       | 32                      | 32                        | 1                  | 16                | 1                 | 0              | 32                       | 32                      | 32                         | 1                  | 16                | 0                        | 1                 | 227    | 573       | 569        | 2         |
| 0              | 32                       | 32                      | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 32                      | 32                         | 1                  | 16                | 0                        | 1                 | 256    | 804       | 781        | 1         |
| 1              | 32                       | 32                      | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 32                      | 32                         | 1                  | 16                | 0                        | 1                 | 570    | 1376      | 1318       | 3         |
| 1              | 32                       | 64                      | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 64                      | 32                         | 1                  | 16                | 1                        | 1                 | 754    | 1821      | 1652       | 6         |
| 1              | 32                       | 128                     | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 128                     | 32                         | 1                  | 16                | 1                        | 1                 | 845    | 2262      | 1966       | 10        |
| 1              | 32                       | 256                     | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 256                     | 32                         | 1                  | 16                | 1                        | 1                 | 1103   | 3118      | 2497       | 18        |
| 1              | 32                       | 512                     | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 512                     | 32                         | 1                  | 16                | 1                        | 1                 | 1478   | 4827      | 3675       | 34        |
| 1              | 32                       | 1024                    | 32                        | 1                  | 16                | 1                 | 1              | 32                       | 1024                    | 32                         | 1                  | 16                | 1                        | 1                 | 2154   | 8119      | 5415       | 70        |
| 1              | 32                       | 32                      | 8                         | 1                  | 16                | 1                 | 1              | 32                       | 32                      | 8                          | 1                  | 16                | 1                        | 1                 | 512    | 1196      | 1187       | 4         |
| 1              | 32                       | 32                      | 16                        | 1                  | 16                | 1                 | 1              | 32                       | 32                      | 16                         | 1                  | 16                | 1                        | 1                 | 428    | 1366      | 1336       | 4         |
| 1              | 32                       | 64                      | 64                        | 1                  | 16                | 1                 | 1              | 32                       | 64                      | 64                         | 1                  | 16                | 1                        | 1                 | 939    | 2197      | 2037       | 6         |
| 1              | 32                       | 128                     | 128                       | 0                  | 16                | 1                 | 1              | 32                       | 128                     | 128                        | 0                  | 16                | 1                        | 1                 | 916    | 2513      | 1879       | 10        |
| 1              | 32                       | 256                     | 256                       | 0                  | 16                | 1                 | 1              | 32                       | 256                     | 256                        | 0                  | 16                | 1                        | 1                 | 1215   | 4087      | 2604       | 18        |
| 1              | 32                       | 512                     | 512                       | 0                  | 16                | 1                 | 1              | 32                       | 512                     | 512                        | 0                  | 16                | 1                        | 1                 | 1918   | 7230      | 4129       | 34        |
| 1              | 32                       | 1024                    | 1024                      | 0                  | 16                | 1                 | 1              | 32                       | 1024                    | 1024                       | 0                  | 16                | 1                        | 1                 | 3321   | 13390     | 7434       | 70        |
| 1              | 32                       | 32                      | 32                        | 1                  | 16                | 0                 | 1              | 32                       | 32                      | 32                         | 1                  | 16                | 0                        | 0                 | 552    | 1269      | 1232       | 0         |
| 1              | 32                       | 32                      | 32                        | 1                  | 32                | 1                 | 1              | 32                       | 32                      | 32                         | 1                  | 32                | 1                        | 1                 | 672    | 1575      | 1457       | 4         |
| 1              | 32                       | 32                      | 32                        | 1                  | 64                | 1                 | 1              | 32                       | 32                      | 32                         | 1                  | 64                | 1                        | 1                 | 690    | 1596      | 1479       | 4         |
| 1              | 32                       | 32                      | 32                        | 1                  | 128               | 1                 | 1              | 32                       | 32                      | 32                         | 1                  | 128               | 1                        | 1                 | 510    | 1615      | 1523       | 6         |
| 1              | 32                       | 32                      | 32                        | 1                  | 256               | 1                 | 1              | 32                       | 32                      | 32                         | 1                  | 256               | 1                        | 1                 | 598    | 1634      | 1592       | 10        |
| 1              | 32                       | 32                      | 32                        | 0                  | 16                | 1                 | 1              | 32                       | 32                      | 32                         | 0                  | 16                | 1                        | 1                 | 503    | 1313      | 1221       | 4         |
| 1              | 64                       | 32                      | 32                        | 1                  | 16                | 1                 | 1              | 64                       | 32                      | 32                         | 1                  | 16                | 1                        | 1                 | 771    | 1817      | 1549       | 4         |
| 1              | 64                       | 1024                    | 1024                      | 1                  | 256               | 1                 | 1              | 64                       | 1024                    | 1024                       | 1                  | 256               | 1                        | 1                 | 3452   | 13670     | 7498       | 70        |
| 2              | 32                       | 32                      | 32                        | 0                  | 16                | 0                 | 1              | 32                       | 32                      | 32                         | 0                  | 16                | 0                        | 0                 | 234    | 730       | 529        | 0         |
| 2              | 32                       | 64                      | 32                        | 0                  | 32                | 0                 | 1              | 32                       | 64                      | 32                         | 0                  | 32                | 0                        | 0                 | 218    | 745       | 585        | 0         |
| 2              | 32                       | 64                      | 64                        | 0                  | 64                | 0                 | 1              | 32                       | 64                      | 64                         | 0                  | 64                | 0                        | 0                 | 255    | 977       | 687        | 0         |



# **Port Descriptions**

The AXI DataMover I/O signals are described in Table 2-8.

Table 2-8: I/O Signal Description

| Signal Name         | Interface | Signal<br>Type | Init Status                                                                                | Description                                                                                                                                                                                                                                                                                                       |
|---------------------|-----------|----------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Mer       | nory Map       | to Stream Clock                                                                            | and Reset                                                                                                                                                                                                                                                                                                         |
| m_axi_mm2s_aclk     | MM2S      | Input          | -                                                                                          | Master Clock for the MM2S synchronization                                                                                                                                                                                                                                                                         |
| m_axi_mm2s_aresetn  | MM2S      | Input          | -                                                                                          | Master Reset for the MM2S logic. Active-Low assertion sensitivity.  Must be asserted for three clock periods of m_axi_mm2s_aclk. See Reset Assertion Timing in Chapter 3.                                                                                                                                         |
|                     | Memor     | y Map to S     | tream Soft Shu                                                                             | tdown Control                                                                                                                                                                                                                                                                                                     |
| mm2s_halt           | MM2S      | Input          | -                                                                                          | Active-High input signal requesting that the MM2S function perform a soft shutdown and stop. See DataMover Soft Shutdown (Halt) Request Operations in Chapter 3.                                                                                                                                                  |
| mm2s_halt_cmplt     | MM2S      | Output         | 0                                                                                          | Active-High output signal indicating that the MM2S function has completed a soft shutdown and is stopped. See DataMover Soft Shutdown (Halt) Request Operations in Chapter 3.                                                                                                                                     |
|                     | Memo      | ry Map to      | Stream Error De                                                                            | etect Discrete                                                                                                                                                                                                                                                                                                    |
| mm2s_err            | MM2S      | Output         | 0                                                                                          | Detected Error output discrete. This active-High output discrete signal is asserted whenever an Error condition is encountered within the MM2S such as an invalid BTT value of 0. This bit is a "sticky" error indication; after being set it requires an assertion of the m_axi_mm2s_aresetn signal to clear it. |
|                     | Mei       | mory Map       | to Stream Debu                                                                             | ıg Support                                                                                                                                                                                                                                                                                                        |
| mm2s_dbg_sel(3:0)   | MM2S      | Input          |                                                                                            | Reserved for internal Xilinx use.                                                                                                                                                                                                                                                                                 |
| mm2s_dbg_data(31:0) | MM2S      | Output         | BEEF0000 (if<br>Omit MM2s)<br>BEEF1111<br>(if Full MM2s)<br>BEEF2222<br>(if Basic<br>MM2s) | Reserved for internal Xilinx use.                                                                                                                                                                                                                                                                                 |



Table 2-8: I/O Signal Description (Cont'd)

| Signal Name                                            | Interface | Signal<br>Type     | Init Status           | Description                                                                                                                                                                                                                                                                                             |  |  |
|--------------------------------------------------------|-----------|--------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Memory Map to Stream Address Posting Controls          |           |                    |                       |                                                                                                                                                                                                                                                                                                         |  |  |
| mm2s_allow_addr_req                                    | MM2S      | Input              | -                     | This input is used to control when the MM2S is allowed to post an address qualifier set on the AXI4 Read address channel. A "1" allows posting and a "0" inhibits posting. See DataMover External Store and Forward Support in Chapter 3.                                                               |  |  |
| mm2s_addr_req_<br>posted                               | MM2S      | Output             | 0                     | This output signal is asserted to "1" for one m_axi_mm2s_aclk period for each new address qualifier set posted to the AXI4 Read Address Channel. The assertion is not dependent on the address qualifier set being accepted by the AXI4. See DataMover External Store and Forward Support in Chapter 3. |  |  |
| mm2s_rd_xfer_cmplt                                     | MM2S      | Output             | 0                     | This output signal is asserted to 1 for one m_axi_s2mm_aclk period for each completed AXI4 read transfer (qualified RLAST data beat) clearing the internal read data controller block.                                                                                                                  |  |  |
|                                                        | Memor     | y Map to S         | tream Read Ad         | dress Channel                                                                                                                                                                                                                                                                                           |  |  |
| m_axi_mm2s_arid<br>(C_M_AXI_MM2S_ID_WID<br>TH-1:0)     | MM2S      | Constant<br>Output | C_M_AXI_<br>MM2S_ARID | MM2S Read ID Qualifier. This is always driven with a constant output set by the value assigned to the C_M_AXI_MM2S_ARID parameter.                                                                                                                                                                      |  |  |
| m_axi_mm2s_araddr<br>(C_M_AXI_MM2S_ADDR_<br>WIDTH-1:0) | MM2S      | Output             | 0                     | MM2S Read Address                                                                                                                                                                                                                                                                                       |  |  |
| m_axi_mm2s_arlen<br>(7:0)                              | MM2S      | Output             | 0                     | MM2S Read Length Qualifier. AXI4 proposal expands this from 4 bits to 8 bits to support Burst lengths of up to 256.                                                                                                                                                                                     |  |  |
| m_axi_mm2s_arsize<br>(2:0)                             | MM2S      | Output             | 0                     | MM2S Read Size Qualifier                                                                                                                                                                                                                                                                                |  |  |
| m_axi_mm2s_arburst<br>(1:0)                            | MM2S      | Output             | 0                     | MM2S Read Burst Type Qualifier. This is always set to Incrementing Burst type ("01").                                                                                                                                                                                                                   |  |  |
| m_axi_mm2s_arprot<br>(2:0)                             | MM2S      | Constant<br>Output | 0                     | MM2S Read Protection Qualifier. This is always driven with a constant output of "000."                                                                                                                                                                                                                  |  |  |
| m_axi_mm2s_arcache<br>(3:0)                            | MM2S      | Constant<br>Output | 0011                  | MM2S Cache Qualifier. This is always driven with a constant output of "0011" unless the MM2S function is omitted; then it is driven with zeroes.                                                                                                                                                        |  |  |
|                                                        |           |                    |                       |                                                                                                                                                                                                                                                                                                         |  |  |



Table 2-8: I/O Signal Description (Cont'd)

| Signal Name                                                  | Interface                              | Signal<br>Type | Init Status   | Description                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|--------------------------------------------------------------|----------------------------------------|----------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| m_axi_mm2s_arready                                           | MM2S                                   | Input          | -             | MM2S Read Address Ready Status (from Slave)                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                              | Memory Map to Stream Read Data Channel |                |               |                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| m_axi_mm2s_rdata<br>(C_M_AXI_MM2S_<br>DATA_WIDTH-1:0)        | MM2S                                   | Input          | -             | MM2S Read Data                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| m_axi_mm2s_rresp<br>(1:0)                                    | MM2S                                   | Input          | _             | MM2S Read Response                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| m_axi_mm2s_rlast                                             | MM2S                                   | Input          | _             | MM2S Read Last Indication                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| m_axi_mm2s_rvalid                                            | MM2S                                   | Input          | -             | MM2S Read Valid Handshake Input                                                                                                                                                                                                                                                                                            |  |  |  |  |
| m_axi_mm2s_rready                                            | MM2S                                   | Output         | 0             | MM2S Read Ready Handshake Output                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                              | Memory                                 | Map to St      | ream Master S | tream Channel                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| m_axis_mm2s_tvalid                                           | MM2S<br>Stream                         | Output         | 0             | MM2S Stream Valid Handshake                                                                                                                                                                                                                                                                                                |  |  |  |  |
| m_axis_mm2s_tready                                           | MM2S<br>Stream                         | Input          | _             | MM2S Stream Ready Handshake                                                                                                                                                                                                                                                                                                |  |  |  |  |
| m_axis_mm2s_tdata<br>(C_M_AXIS_MM2S_<br>TDATA_WIDTH-1:0)     | MM2S<br>Stream                         | Output         | 0             | MM2S Stream Data                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| m_axis_mm2s_tkeep<br>((C_M_AXIS_MM2S_<br>TDATA_WIDTH/8)-1:0) | MM2S<br>Stream                         | Output         | 0             | MM2S Stream Strobes                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| m_axis_mm2s_tlast                                            | MM2S<br>Stream                         | Output         | 0             | MM2S Stream Last Indication                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Memory Mar                                                   | to Stream (                            | Command/       | Status Channe | l Asynchronous Clock and Reset                                                                                                                                                                                                                                                                                             |  |  |  |  |
| m_axis_mm2s_<br>cmdsts_aclk                                  | MM2S<br>Command<br>& Status            | Input          | -             | MM2S Command Interface Clock. This clock is only used if the MM2S Command and Status Interfaces are specified to be asynchronous to the MM2S Memory Mapped Data Channel Clock. The frequency of this clock is expected to be equal or less than the m_axi_mm2s_aclk.                                                       |  |  |  |  |
| m_axis_mm2s_<br>cmdsts_aresetn                               | MM2S<br>Command<br>& Status            | Input          | _             | MM2S Command and Status Interface Reset (Active-Low). This reset input is only used if the MM2S Command and Status Interfaces are specified to be asynchronous to the MM2S Memory Mapped Data Channel Clock. Must be asserted for three clock periods of m_axis_mm2s_cmdsts_aclk. See Reset Assertion Timing in Chapter 3. |  |  |  |  |



Table 2-8: I/O Signal Description (Cont'd)

| Signal Name                                                     | Interface                            | Signal<br>Type     | Init Status                                             | Description                                                                                                                                                      |  |  |  |
|-----------------------------------------------------------------|--------------------------------------|--------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| M                                                               | emory Map                            | to Stream          | Command Cha                                             | nnel (Slave Stream)                                                                                                                                              |  |  |  |
| s_axis_mm2s_cmd_<br>tvalid                                      | MM2S<br>Command                      | Input              | _                                                       | MM2S Command Valid Handshake                                                                                                                                     |  |  |  |
| s_axis_mm2s_cmd_<br>tready                                      | MM2S<br>Command                      | Output             | 0                                                       | MM2S Command Ready Handshake                                                                                                                                     |  |  |  |
| s_axis_mm2s_cmd_<br>tdata((C_M_AXI_MM2S_A<br>DDR_WIDTH+40)-1:0) | MM2S<br>Command                      | Input              | -                                                       | MM2S Command Data                                                                                                                                                |  |  |  |
| r                                                               | Memory Ma                            | p to Strean        | n Status Chann                                          | el (Master Stream)                                                                                                                                               |  |  |  |
| m_axis_mm2s_sts_<br>tvalid                                      | MM2S<br>Status                       | Output             | 0                                                       | MM2S Status Valid Handshake                                                                                                                                      |  |  |  |
| m_axis_mm2s_sts_<br>tready                                      | MM2S<br>Status                       | Input              | -                                                       | MM2S Status Ready Handshake                                                                                                                                      |  |  |  |
| m_axis_mm2s_sts_<br>tdata(7:0)                                  | MM2S<br>Status                       | Output             | Undefined until m_axis_mm2s _sts_tvalid is asserted     | MM2S Status Data                                                                                                                                                 |  |  |  |
| m_axis_mm2s_sts_<br>tkeep(0:0)                                  | MM2S<br>Status                       | Constant<br>Output | 1                                                       | Driven to 1                                                                                                                                                      |  |  |  |
| m_axis_mm2s_sts_<br>tlast                                       | MM2S<br>Status                       | Constant<br>Output | 1 when<br>MM2S is<br>present, else<br>0 when<br>omitted | Driven to a constant 1 when MM2S is present, else 0 when omitted                                                                                                 |  |  |  |
|                                                                 | Stream to Memory Map Clock and Reset |                    |                                                         |                                                                                                                                                                  |  |  |  |
| m_axi_s2mm_aclk                                                 | S2MM                                 | Input              | _                                                       | Master Clock for the MM2S Synchronization                                                                                                                        |  |  |  |
| m_axi_s2mm_aresetn                                              | S2MM                                 | Input              | -                                                       | Master Reset for the MM2S logic (Active-Low sensitivity).  Must be asserted for three clock periods of m_axi_s2mm_aclk. See Reset Assertion Timing in Chapter 3. |  |  |  |



Table 2-8: I/O Signal Description (Cont'd)

| Signal Name         | Interface | Signal<br>Type | Init Status                                                                             | Description                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------|-----------|----------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Stream    | to Memory      | y Map Soft Shu                                                                          | tdown Control                                                                                                                                                                                                                                                                                                                                                                          |
| s2mm_halt           | S2MM      | Input          | -                                                                                       | Active-High input signal requesting that the S2MM function perform a soft shutdown and stop. See DataMover Soft Shutdown (Halt) Request Operations in Chapter 3.                                                                                                                                                                                                                       |
| s2mm_halt_cmplt     | S2MM      | Output         | 0                                                                                       | Active-High output signal indicating that the S2MM function has completed a soft shutdown and is stopped. See DataMover Soft Shutdown (Halt) Request Operations in Chapter 3.                                                                                                                                                                                                          |
|                     | Stream    | to Memoi       | ry Map Error Do                                                                         | etect Discrete                                                                                                                                                                                                                                                                                                                                                                         |
| s2mm_err            | S2MM      | Output         | 0                                                                                       | Detected Error output discrete. This active-High output discrete signal is asserted whenever an Error condition is encountered within the S2MM such as an invalid BTT of 0 or a Stream overrun or underrun when S2MM Indeterminate BTT is not enabled. This bit is a "sticky" error indication; after being set it requires an assertion of the m_axi_s2mm_aresetn signal to clear it. |
|                     | Stre      | am to Mer      | nory Map Debi                                                                           | ug Support                                                                                                                                                                                                                                                                                                                                                                             |
| s2mm_dbg_sel(3:0)   | S2MM      | Input          | -                                                                                       | Reserved for internal Xilinx use.                                                                                                                                                                                                                                                                                                                                                      |
| s2mm_dbg_data(31:0) | S2MM      | Output         | CAFE0000 (if<br>Omit S2MM)<br>CAFE1111 (if<br>Full S2MM)<br>CAFE2222 (if<br>Basic S2MM) | Reserved for internal Xilinx use.                                                                                                                                                                                                                                                                                                                                                      |



Table 2-8: I/O Signal Description (Cont'd)

| Signal Name                                            | Interface | Signal<br>Type     | Init Status           | Description                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------|-----------|--------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        | Stream to | Memory             | Map Address P         | Posting Controls                                                                                                                                                                                                                                                                                                                                                          |
| s2mm_allow_addr_req                                    | S2MM      | Input              | -                     | This input is used to control when the S2MM is allowed to post an address qualifier set on the AXI4 Write Address Channel. A "1" allows posting and a "0" inhibits posting. See DataMover External Store and Forward Support in Chapter 3.                                                                                                                                |
| s2mm_addr_req_posted                                   | S2MM      | Output             | 0                     | This output signal is asserted to "1" for one m_axi_s2mm_aclk period for each new address qualifier set posted to the AXI4 Write Address Channel. The assertion is not dependent on the address qualifier set being accepted by the AXI4.                                                                                                                                 |
| s2mm_wr_xfer_cmplt                                     | S2MM      | Output             | 0                     | This output signal is asserted to "1" for one m_axi_s2mm_aclk period for each completed AXI4 write transfer (qualified WLAST data beat) clearing the internal write data controller block.                                                                                                                                                                                |
| s2mm_ld_nxt_len                                        | S2MM      | Output             | 0                     | This output signal is asserted to "1" for one m_axi_s2mm_aclk period for each AXI4 Write Transfer request to be posted to the AXI4 Write Address channel. This reflects internal queue loading so its assertion is prior to it appearing on the Write Address Channel. This signal is used to qualify the value on the s2mm_wr_len output port for use by external logic. |
| s2mm_wr_len                                            | S2MM      | Output             | 0                     | This bus reflects the value that is placed on the m_axi_s2mm_awlen output (AXI4 Write Address Channel) when it is pulled from the internal queue. The value is only valid when the signal s2mm_ld_nxt_len is asserted.                                                                                                                                                    |
|                                                        | Stream 1  | to Memory          | Map Write Ad          | ldress Channel                                                                                                                                                                                                                                                                                                                                                            |
| m_axi_s2mm_awid<br>(C_M_AXI_S2MM_ID_WID<br>TH-1:0)     | S2MM      | Constant<br>Output | C_M_AXI_S2<br>MM_AWID | S2MM Write Address ID Qualifier. This is always driven with a constant output set by the value assigned to the C_M_AXI_S2MM_AWID parameter.                                                                                                                                                                                                                               |
| m_axi_s2mm_awaddr<br>(C_M_AXI_S2MM_<br>ADDR_WIDTH-1:0) | S2MM      | Output             | 0                     | S2MM Write Address                                                                                                                                                                                                                                                                                                                                                        |
| m_axi_s2mm_awlen<br>(7:0)                              | S2MM      | Output             | 0                     | S2MM Write Length Qualifier This qualifier has been expanded in the AXI4 proposal from 4 bits to 8 bits to support Burst lengths of up to 256 data beats.                                                                                                                                                                                                                 |
| m_axi_s2mm_awsize<br>(2:0)                             | S2MM      | Output             | 0                     | S2MM Write Qualifier                                                                                                                                                                                                                                                                                                                                                      |



Table 2-8: I/O Signal Description (Cont'd)

| Tuble 2-8. 170 Signal De                                     | Signal         |                    |                |                                                                                                                                                  |  |  |
|--------------------------------------------------------------|----------------|--------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Signal Name                                                  | Interface      | Туре               | Init Status    | Description                                                                                                                                      |  |  |
| m_axi_s2mm_awburst<br>(1:0)                                  | S2MM           | Output             | 0              | S2MM Write Burst Type Qualifier. This is always set to Incrementing Burst type. ("01")                                                           |  |  |
| m_axi_s2mm_awprot<br>(2:0)                                   | S2MM           | Constant<br>Output | 0              | S2MM Write Protection Qualifier. This is always driven with a constant output of "000."                                                          |  |  |
| m_axi_s2mm_awcache<br>(3:0)                                  | S2MM           | Constant<br>Output | 0011           | S2MM Cache Qualifier. This is always driven with a constant output of "0011" unless the S2MM function is omitted; then it is driven with zeroes. |  |  |
| m_axi_s2mm_awvalid                                           | S2MM           | Output             | 0              | S2MM Write Address Valid Qualifier                                                                                                               |  |  |
| m_axi_s2mm_awready                                           | S2MM           | Input              | _              | S2MM Write Address Ready Status (from Slave)                                                                                                     |  |  |
|                                                              | Stream         | n to Memo          | ry Map Write [ | Data Channel                                                                                                                                     |  |  |
| m_axi_s2mm_wdata<br>(C_M_AXI_S2MM_<br>DATA_WIDTH-1:0)        | S2MM           | Output             | 0              | S2MM Write Data                                                                                                                                  |  |  |
| m_axi_s2mm_wstrb<br>((C_M_AXI_S2MM_<br>DATA_WIDTH/8)-1:0)    | S2MM           | Output             | 0              | S2MM Write Strobes                                                                                                                               |  |  |
| m_axi_s2mm_wlast                                             | S2MM           | Output             | 0              | S2MM Write Last Indication                                                                                                                       |  |  |
| m_axi_s2mm_wvalid                                            | S2MM           | Output             | 0              | S2MM Write Valid Handshake Output                                                                                                                |  |  |
| m_axi_s2mm_wready                                            | S2MM           | Input              | _              | S2MM Write Ready Handshake Input                                                                                                                 |  |  |
|                                                              | Stream t       | o Memory           | Map Write Res  | ponse Channel                                                                                                                                    |  |  |
| m_axi_s2mm_bresp<br>(1:0)                                    | S2MM           | Input              | _              | S2MM Write ID. This is passed to the Read Stream output.                                                                                         |  |  |
| m_axi_s2mm_bvalid                                            | S2MM           | Input              | _              | S2MM Write Valid Handshake Input                                                                                                                 |  |  |
| m_axi_s2mm_bready                                            | S2MM           | Output             | 0              | S2MM Write Ready Handshake Output                                                                                                                |  |  |
|                                                              | Stream         | to Memor           | y Map Slave St | ream Channel                                                                                                                                     |  |  |
| s_axis_s2mm_tvalid                                           | S2MM<br>Stream | Input              | _              | S2MM Stream Valid Handshake In                                                                                                                   |  |  |
| s_axis_s2mm_tready                                           | S2MM<br>Stream | Output             | 0              | S2MM Stream Ready Handshake Out                                                                                                                  |  |  |
| s_axis_s2mm_tdata<br>(C_S_AXIS_S2MM_<br>TDATA_WIDTH-1:0)     | S2MM<br>Stream | Input              | _              | S2MM Stream Data In                                                                                                                              |  |  |
| s_axis_s2mm_tkeep<br>((C_S_AXIS_S2MM_<br>TDATA_WIDTH/8)-1:0) | S2MM<br>Stream | Input              | -              | S2MM Stream Strobes In                                                                                                                           |  |  |
| s_axis_s2mm_tlast                                            | S2MM<br>Stream | Input              | _              | S2MM Stream Last Indication                                                                                                                      |  |  |



Table 2-8: I/O Signal Description (Cont'd)

| Signal Name                                                     | Interface                   | Signal<br>Type               | Init Status                                                     | Description                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------|-----------------------------|------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stream to Me                                                    | mory Map (                  | Asynchronous Clock and Reset |                                                                 |                                                                                                                                                                                                                                                                                                                   |
| m_axis_s2mm_cmdsts_<br>awclk                                    | S2MM<br>Command<br>& Status | Input                        | -                                                               | S2MM Command Interface Clock. This clock is only used if the S2MM Command and Status Interfaces are specified to be asynchronous to the S2MM Memory Mapped Data Channel Clock. The frequency of this clock is expected to be equal or less than the m_axi_m_axi_s2mm_aclk.                                        |
| m_axis_s2mm_cmdsts_<br>aresetn                                  | S2MM<br>Command<br>& Status | Input                        | _                                                               | S2MM Command Interface Reset (Active-Low).  This reset input is only used if the S2MM Command and Status Interfaces are specified to be asynchronous to the S2MM Memory Mapped Data Channel Clock.  Must be asserted for three clock periods of m_axis_s2mm_cmdsts_awclk. See Reset Assertion Timing in Chapter 3 |
| St                                                              | ream to Me                  | mory Map                     | <b>Command Cha</b>                                              | nnel (Slave Stream)                                                                                                                                                                                                                                                                                               |
| s_axis_s2mm_cmd_<br>tvalid                                      | S2MM<br>Command             | Input                        | _                                                               | S2MM Command Valid Handshake                                                                                                                                                                                                                                                                                      |
| s_axis_s2mm_cmd_<br>tready                                      | S2MM<br>Command             | Output                       | 0                                                               | S2MM Command Ready Handshake                                                                                                                                                                                                                                                                                      |
| s_axis_s2mm_cmd_<br>tdata((C_M_AXI_S2MM_A<br>DDR_WIDTH+32)-1:0) | S2MM<br>Command             | Input                        | -                                                               | S2MM Command Data                                                                                                                                                                                                                                                                                                 |
| S                                                               | Stream to M                 | emory Ma <sub>l</sub>        | p Status Channo                                                 | el (Master Stream)                                                                                                                                                                                                                                                                                                |
| m_axis_s2mm_sts_<br>tvalid                                      | S2MM<br>Status              | Output                       | 0                                                               | S2MM Status Valid Handshake                                                                                                                                                                                                                                                                                       |
| m_axis_s2mm_sts_<br>tready                                      | S2MM<br>Status              | Input                        | _                                                               | S2MM Status Ready Handshake                                                                                                                                                                                                                                                                                       |
| m_axis_s2mm_sts_<br>tdata(7:0)                                  | S2MM<br>Status              | Output                       | Undefined<br>until<br>m_axis_s2mm<br>_sts_tvalid is<br>asserted | S2MM Status Data                                                                                                                                                                                                                                                                                                  |
| m_axis_s2mm_sts_<br>tkeep                                       | S2MM<br>Status              | Constant<br>Output           | 1                                                               | S2MM Status Strobes always driven to 1's                                                                                                                                                                                                                                                                          |
| m_axis_s2mm_sts_<br>tlast                                       | S2MM<br>Status              | Constant<br>Output           | 1 when<br>S2MM is<br>present, else<br>0 when<br>omitted         | Driven to a constant "1" when S2MM is present, else "0" when omitted                                                                                                                                                                                                                                              |



# Designing with the Core

Figure 3-1 and Figure 3-2 show typical use cases of AXI DataMover. Figure 3-1 shows a multichannel application of DataMover in the MM2S path.



**TIP:** You can optionally use TDEST FIFO to store TDEST information while queueing commands in DataMover.



Figure 3-1: Typical Application of MM2S DataMover

Figure 3-2 shows multichannel application of DataMover in S2MM path. Incoming TDEST information can be used to pick the corresponding destination address on the AXI MM side and same TDEST value can be stored in the register space.



Figure 3-2: Typical Application of S2MM DataMover



## **General Design Guidelines**

#### **Command Interface**

The DataMover operations are controlled by an AXI Slave Stream interface that receives transfer commands from the user logic. The MM2S and the S2MM each have a dedicated command interface. A command is loaded with a single data beat on the input Command Stream interface. The width of the command word is normally 72 bits if 32-bit AXI Addressing is being used in the system. However, the command word width must grow (by parameterization) if the system address space grows beyond 32 bits. For example, a 64-bit address system requires the command word to be 104 bits wide to accommodate the wider starting address field.

The format of the command word is shown in Figure 3-3 and detailed in Table 3-1. It is the same for either the MM2S or S2MM DataMover elements. The command format allows the specification of a single data transfer from 1-byte to 8,388,607 bytes (7FFFFF hex bytes). A command loaded into the command interface is often referred to as the parent command of a transfer. The DataMover automatically breaks up large transfers into intermediate bursts (child transfers) that comply with the AXI4 Memory Mapped protocol requirements.



N = C\_M\_AXI\_MM2S\_ADDR\_WIDTH for Memory Map to Stream Channel or C\_M\_AXI\_S2MM\_ADDR\_WIDTH for Stream to Memory Map Channel

X12284

Figure 3-3: Command Word Layout

Table 3-1: Command Word Description

| Bits                              | Field Name | Description                                                                                                                                                                                                 |
|-----------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (N+39) -<br>(N+36) <sup>(1)</sup> | RSVD       | Reserved  This field is reserved to pad the command width to an even multiple of 8 bits (required for AXI4-Stream interfaces).                                                                              |
| (N+35) -<br>(N+32) <sup>(1)</sup> | TAG        | Command TAG  This field is an arbitrary value assigned by the user to the Command. The TAG flows through the DataMover execution pipe and gets inserted into the corresponding status word for the Command. |



Table 3-1: Command Word Description (Cont'd)

| Bits                      | Field Name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (N+31) -32 <sup>(1)</sup> | SADDR      | Start Address  This field indicates the starting address to use for the Memory Mapped side of the transfer requested by the command. If DRE is enabled, the lower order address bits of this field indicate the starting alignment to load on the Memory Mapped side of the DRE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 31                        | DRR        | DRE ReAlignment Request  This bit is only used if the optional DRE is included by parameterization. The bit indicates that the DRE alignment needs to be re-established prior to the execution of the associated command. The DRE Stream side alignment is derived from the DSA field of the command. The Memory Mapped side alignment is derived from the least significant bits of the SADDR field.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 30                        | EOF        | End of Frame This bit indicates that the command is an End of Frame command. This generally affects the MM2S element (Read Master) because it causes the Stream output logic to assert the TLAST output on the last data beat of the last transfer needed to complete the command. If DRE is included, this also causes the DRE to Flush out any intermediate data at the conclusion of the last transfer of the command and submit it to the Stream output (in the case of the MM2S Read Master) or to the AXI Write Data Channel (in the case of the S2MM Write Master).                                                                                                                                                                                                                                                                                 |
| 29-24                     | DSA        | DRE Stream Alignment This field is only used by the MM2S and if the optional MM2S DRE is included by parameterization. The field is only used when the DRR bit of the associated command is also set to 1. This 6-bit field indicates the reference alignment of the MM2S Stream Data Channel for the optional DRE. The value is byte-lane relative. A value of 0 indicates byte lane 0 (least significant byte) is the reference byte lane; a value of 1 indicates byte lane 1, and so on. Valid values are dependent upon the parameterized data width of the Stream data Channel. For example, a 32-bit wide data channel has only 4-byte lane positions and thus the DSA field can only have values of 0 to 3.  Note: DRE alignment on the associated Memory Mapped side is derived from the least significant bits of the SADDR value of the command. |
| 23                        | Туре       | Reserved This 1-bit field is currently reserved and ignored by the DataMover.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 22 to 0                   | ВТТ        | Bytes to Transfer This 23-bit field indicates the total number of bytes to transfer for the command. A transfer of 1 up to 8,388,607 bytes. A value of 0 is not allowed and causes an internal error from the DataMover. The actual number of BTT bits used by the DataMover is controlled by the parameters C_MM2S_BTT_USED and C_S2MM_BTT_USED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

#### Notes:

1. N is equal to the value assigned to the parameter C\_M\_AXI\_MM2S\_ADDR\_WIDTH or C\_M\_AXI\_S2MM\_ADDR\_WIDTH depending on the applicable DataMover command interface.



#### **Command FIFO**

The Command interface of a DataMover element is designed to allow command queuing. The commands are "queued" in a FIFO that has a parameterized depth. For more information, see the parameters C\_MM2S\_STSCMD\_FIFO\_DEPTH, page 45 and C\_S2MM\_STSCMD\_FIFO\_DEPTH, page 48.

The Command FIFO is by default a synchronous FIFO clocked by the same clock that is clocking the Memory Mapped Data and Address channels of the associated DataMover element. However, you can specify an asynchronous command interface FIFO. This allows the command interface to be clocked at a different (generally much slower) clock frequency than the Memory Mapped Data and Address channel clocking frequency.

The selection of synchronous or asynchronous is made through the C\_MM2S\_STSCMD\_IS\_ASYNC and C\_S2MM\_STSCMD\_IS\_ASYNC parameters assignments (0 = synchronous, 1 = asynchronous).

## **Command Load Timing by the Command Stream Interface**

Loading a command into the Command FIFO is mechanized by a single AXI4-Stream data beat. Because the DataMover Command is a wide-parallel word format, only one stream data beat is required to load one command. An example of loading five commands into the MM2S Command FIFO is shown in Figure 3-4. In this scenario, the Command FIFO is synchronous to the Memory Mapped Address and Data Channel clock. The example illustrates that a command is considered loaded into the Command FIFO only when both the TVALID and TREADY handshake signals are both asserted at the rising edge of the clock. TLAST and TSTRB signals are ignored.



Figure 3-4: Loading Commands via the Command Interface



## **Status Interface**

The status of DataMover transfer operations are provided by an AXI Master Stream interface that relays transfer status to the user logic. The MM2S and the S2MM each have a dedicated Status Interface. A status word is read with a single data beat on the Status Stream interface. The width of the status word is fixed at 8 bits. One exception is the S2MM side when Indeterminate BTT mode is enabled (Special S2MM Status Format when Indeterminate BTT Support is Enabled, page 31). The format of the status word is shown in Figure 3-5 and detailed in Table 3-2. It is the same for either the MM2S or S2MM DataMover elements.



Figure 3-5: Normal Status Word Layout

Table 3-2: Status Word Details

| Bits | Field Name | Description                                                                                                                                                                                                                                                                                                                                                                                          |
|------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7    | OKAY       | Transfer OKAY This bit indicates that the associated transfer command has been completed with the OKAY response on all intermediate transfers.  0 = Command had a non-OKAY response during all associated transfers  1 = Command had a OKAY response during all associated transfers                                                                                                                 |
| 6    | SLVERR     | Slave Error Indicates the DataMover Element encountered a Slave reported error condition for the associated command. This is received by the Response inputs from the AXI4 Memory Mapped interface.  0 = No Error 1 = Slave Asserted Error Condition                                                                                                                                                 |
| 5    | DECERR     | Decode Error  Indicates the DataMover Element encountered an address decode error condition for the associated command. This is received by the Response inputs from the AXI4 Memory Mapped interface and indicates an address decode timeout occurred on an address generated by the DataMover Element while executing the corresponding Command.  0 = No Error  1 = Address Decode Error Condition |



Table 3-2: Status Word Details (Cont'd)

| Bits   | Field Name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4      | INTERR     | Internal Error Indicates the DataMover Element encountered an internal error condition for the associated command. A BTT (Bytes to Transfer) value of 0 (zero) in the Command Word can cause this assertion. The S2MM function can also assert this if the input stream TLAST assert occurs prematurely (relative to the commanded BTT for the transfer) and the Indeterminate BTT mode is not enabled.  0 = No Error 1 = Internal Error Condition |
| 3 to 0 | TAG        | <b>TAG</b> This 4-bit field echoes the value of the TAG field of the associated input Command whose completion generated the Status.                                                                                                                                                                                                                                                                                                               |

## Special S2MM Status Format when Indeterminate BTT Support is Enabled

The DataMover S2MM function can be parameterized to enable support for Stream data transfer of an indeterminate number of bytes. This is defined as where the S2MM is commanded (by the BTT command field) to transfer a fixed number of bytes, but it is unknown how many bytes are actually going to be received from the incoming Stream interface (at the assertion of s\_axis\_s2mm\_tlast). Supporting this operation mode requires additional hardware in the S2MM function, and additional fields in the status word indicating the actual count of the bytes received from the Stream interface for the commanded transfer, and whether the TLAST was received during the transfer.

The format of the S2MM status word with Indeterminate BTT mode enabled is shown in Figure 3-6 and detailed in Table 3-3. This status format does not apply to the MM2S DataMover status interface.



Figure 3-6: Special S2MM Status Word Layout (IBTT Mode Enabled)



Table 3-3: Special S2MM Status Word Details (Indeterminate BTT Mode Enabled)

| Bits    | Field Name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|---------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 31      | ЕОР        | End of Packet  This bit indicates that the S2MM Stream input received a TLAST assertion during the execution of the DataMover command associated with the status word. This is not an error condition. It is needed by certain Users (that is, Scatter Gather Engines) to identify the actual End of Packet for the input Stream versus the theoretical maximum that could occur.                                                                                                               |  |  |
| 30 to 8 | BRCVD      | Bytes Received  This field indicates the actual number of bytes received on the Stream interface at the point where s_axis_s2mm_tlast was asserted by the Stream Master.                                                                                                                                                                                                                                                                                                                        |  |  |
| 7       | OKAY       | Transfer OKAY  This bit indicates that the associated transfer command has been completed with the OKAY response on all intermediate transfers.  0 = Command had a non-OKAY response during all associated transfers  1 = Command had a OKAY response during all associated transfers                                                                                                                                                                                                           |  |  |
| 6       | SLVERR     | Slave Error Indicates the DataMover Element encountered a Slave reported error condition for the associated command. This is received by the Response inputs from the AXI4 Memory Mapped interface.  0 = No Error  1 = Slave Asserted Error Condition                                                                                                                                                                                                                                           |  |  |
| 5       | DECERR     | Decode Error  Indicates the DataMover Element encountered an address decode error condition for the associated command. This is received by the Response inputs from the AXI4 Memory Mapped interface and indicates an address decode timeout occurred on an address generated by the DataMover Element while executing the corresponding Command.  0 = No Error  1 = Address Decode Error Condition                                                                                            |  |  |
| 4       | INTERR     | Internal Error Indicates the DataMover Element encountered an internal error condition for the associated command. A BTT (Bytes to Transfer) value of 0 (zero) in the Command Word can cause this assertion. The S2MM function can also assert this if the input stream TLAST assert occurs prematurely (relative to the commanded BTT for the transfer) and the Indeterminate BTT mode is not enabled.  Additional conditions are To Be Determined.  0 = No Error 1 = Internal Error Condition |  |  |
| 3 to 0  | TAG        | TAG This 4-bit field echoes the value of the TAG field of the associated input Command whose completion generated the Status.                                                                                                                                                                                                                                                                                                                                                                   |  |  |



#### Status FIFO

The Status Interface of a DataMover element is designed to allow for status queuing corresponding to the available command queuing on the Command Interface. The status values are "queued" in a FIFO that has a parameterizable depth. For more information, see the parameters C\_MM2S\_STSCMD\_FIFO\_DEPTH, page 45 and C\_S2MM\_STSCMD\_FIFO\_DEPTH, page 48. Status values have a one-to-one correlation to loaded commands by the Command Interface.

The Status FIFO is by default a synchronous FIFO clocked by the same clock that is clocking the Memory Mapped Data and Address channels of the associated DataMover element. However, you can specify an asynchronous Command/Status Interface FIFO. This allows the Command and Status Interfaces to be clocked at a different (generally much slower) clock frequency than the associated Memory Mapped Data and Address channel clocking frequency.

The selection of synchronous or asynchronous mode is made by the C\_MM2S\_STSCMD\_IS\_ASYNC and C\_S2MM\_STSCMD\_IS\_ASYNC parameters assignments (0 = synchronous, 1 = asynchronous).

## Status Read Timing by the Status Stream Interface

Reading a status word from the Status FIFO is mechanized by a single AXI4-Stream data beat. An example of reading five status entries from the MM2S Status FIFO is shown in Figure 3-7. In this scenario, the Status FIFO is synchronous to the Memory Mapped Address and Data Channel clock. The example illustrates that a status word is considered read from the Status FIFO only when both the TVALID and TREADY handshake signals are both asserted at the rising edge of the synchronizing clock.



Figure 3-7: Reading Status over the Status Interface



#### **General Purpose MM2S Store and Forward**

The MM2S can include an optional Store and Forward block when the parameter C\_MM2S\_INCLUDE\_SF is assigned a value of 1 (the default). Enabling this parameter ensures that child transfers are not posted to the AXI4 Read Address Channel if there is not enough space left in the Store and Forward FIFO for the data. The depth of the MM2S Store and Forward data FIFO is set by the following calculation:

((C\_MM2S\_ADDR\_PIPE\_DEPTH+2) × C\_MM2S\_BURST\_SIZE) rounded up to the next power of 2.

#### **Indeterminate BTT Mode**

The DataMover S2MM function has a special operating mode to support the case when the amount of data being received in the Stream Channel is unknown (or indeterminate). This mode is enabled by the top level parameter C\_S2MM\_SUPPORT\_INDET\_BTT being set to a value of 1.

An additional feature of the Indeterminate BTT mode is the absorption of overflow data from the input Stream channel. Overflow is defined as the stream data that is received that exceeds the BTT value for the corresponding parent transfer command and the EOF bit is also set in that command. The data absorption occurs from the point of the BTT value being reached to the next TLAST data beat.

The corresponding status output by the S2MM block for the associated transfer command does not have the EOP bit set and the BRCVD field in the status word only reflects the commanded BTT value, not the actual number of bytes received for the input overflow packet. Only the data up to the BTT value is written to the Memory Mapped space by the S2MM AXI4 Write Data Channel.

#### **General Purpose S2MM Store and Forward**

The S2MM can include an optional General Purpose Store and Forward block when the parameter C\_S2MM\_INCLUDE\_SF is assigned a value of 1. This is the default. Enabling this parameter ensures that transfers are not posted to the AXI4 Write Address Channel until all of the data needed for the requested transfer is present in the Store and Forward FIFO. The depth of the S2MM General Purpose (GP) Store and Forward data FIFO is set by the following calculation:

((C\_S2MM\_ADDR\_PIPE\_DEPTH+2) × C\_S2MM\_BURST\_SIZE) rounded up to the next power of 2.



#### **DataMover Basic**

Some applications of the DataMover do not need the high performance features it provides. In these applications, resource utilization is more important than performance. The DataMover provides the ability to select a reduced function implementation. The parameters C\_INCLUDE\_S2MM and C\_INCLUDE\_MM2S are used to include/omit the S2MM and MM2S elements independently. In addition, the same parameters are used to select between a Full version and the Basic version of the DataMover. See Table 3-5.

#### DataMover Basic Feature Reduction from the Full Version

The following feature simplifications characterize the Basic version:

- 32-bit and 64-bit Memory Mapped Data Width and 8, 16, 32, and 64-bit Stream width (parameterized). Starting transfer address must be aligned to address boundaries that are multiples of the Stream Data width (in bytes).
- Maximum AXI4 Memory Map Burst Length support of 16, 32, and 64 data beats (parameterized)
- No DRE support
- One-Deep Command and Status Queuing (Parent command). The Command and Status FIFOs are replaced with a FIFO register for each.
- Commanded transfer lengths (Bytes to Transfer) are limited to the Max AXI4 Memory Map Burst Length multiplied by the Stream data width (in bytes)

Example: Maximum burst length = 32, Stream Data Width = 4 bytes (32 bits), the maximum commanded transfer length (BTT) is 128 bytes

- No breakup of transfers into smaller bursts
- 4K byte boundaries are not monitored
- Automatic transfer splitting at an AXI 4K address boundary is not supported
- No Store and Forward support

#### **DataMover Basic Command Interface**

The format of the Basic command word is shown in Figure 3-8 and detailed in Table 3-4.

**Note:** \* = S2MM or MM2S



| N+39 N+36 | N+35 N+32 | N+31 32 | 31 24   | 23   | 22 X+1  | <b>x</b> 0 | _ |
|-----------|-----------|---------|---------|------|---------|------------|---|
| RSVD      | TAG       | SADDR   | Ignored | RSVD | Ignored | ВТТ        |   |

 $\label{eq:conditional_condition} X = Log \ 2[C\_^*\_BURST\_SIZE \times (C\_M\_AXIS\_^*\_DATA \ \_WIDTH/8)] \quad \{Note: ^* = \ S2MM \ or \ MM \ 2S\}$ 

 $N = C\_M\_AXI\_MM2S\_ADDR\_WIDTH \ for \ Memory \ Map \ to \ Stream \ Channel \ or \ C\_M\_AXI\_S2MM\_ADDR\_WIDTH \ for \ Stream \ to \ Memory \ Map \ Channel$ 

X12288

Figure 3-8: DataMover Basic Command Word Layout

Table 3-4: DataMover Basic Command Word Details

| Bits                              | Field Name | Description                                                                                                                                                                                                                    |  |  |
|-----------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (N+39) -<br>(N+36) <sup>(1)</sup> | RSVD       | Reserved This field is reserved to pad the command width to an even multiple of 8 bits. (required for AXI4-Stream interfaces)                                                                                                  |  |  |
| (N+35) -<br>(N+32) <sup>(1)</sup> | TAG        | Command TAG  The user assigns this field an arbitrary value to the Command. The TAG flows through the DataMover execution pipe and gets inserted into the corresponding status word for the Command.                           |  |  |
| (N+31) -32 <sup>(1)</sup>         | SADDR      | Start Address This field indicates the starting address to use for the Memory Mapped side of the transfer requested by the command.                                                                                            |  |  |
| 31-24                             | Ignored    | This field is ignored by the DataMover Basic. Can be any value but zeroes are recommended.                                                                                                                                     |  |  |
| 23                                | RSVD       | Reserved This 1-bit field is reserved and ignored by the DataMover.                                                                                                                                                            |  |  |
| 22-(X+1)                          | Ignored    | This field is ignored by the DataMover Basic. Can be any value but zeroes are recommended.                                                                                                                                     |  |  |
| X-0                               | ВТТ        | Bytes to Transfer  This field indicates the total number of bytes to transfer for the command. The maximum allowed value is set by the following formula:  C_*_BURST_SIZE × (C_M_AXIS_*_DATA_WIDTH/8) {Note: * = S2MM or MM2S} |  |  |

#### **Notes:**

1. N is equal to the value assigned to the parameter C\_M\_AXI\_MM2S\_ADDR\_WIDTH or C\_M\_AXI\_S2MM\_ADDR\_WIDTH depending on the applicable DataMover command interface.



### **DataMover Basic Status Interface**

The format of the status word is the same as the full version and is shown in Figure 3-5, and detailed in Table 3-2.

### **Example DataMover Read(MM2S) Timing**

Figure 3-9 illustrates example timing on read (MM2S) path in synchronous mode.



Figure 3-9: Example Timing on Read (MM2S) Path in Synchronous Mode



#### Dataflow:

- 1. After receiving commands on the AXI4-Stream command interface (s\_axis\_mm2s\_cmd\_tvalid) and if mm2s\_allow\_addr\_req is high, AXI DataMover initiates read cycle on the AXI MMap interface by asserting m\_axi\_mm2s\_arvalid and other address bus signals.
- 2. It also asserts mm2s\_addr\_req\_posted indicating address is posted on the MMap interface.
- 3. Read data is stored in internal FIFO if enabled.
- 4. AXI DataMover starts sending out data on the streaming interface by asserting m\_axis\_mm2s\_tvalid and other associated signals.
- 5. AXI DataMover asserts mm2s\_rd\_xfer\_cmplt indicating data is completely read on the MMap interface.
- 6. AXI4-Stream Status interface signals m\_axis\_mm2s\_sts\_tvalid and other associated signals are asserted indicating the status for a particular command that was posted on command interface



**IMPORTANT:** A single parent command can generate multiple child commands on the AXI MMap Interface. Status signals are asserted when all child commands are processed.



### **Example DataMover Write(S2MM) Timing**

Figure 3-10 illustrates example timing on write (S2MM) path in synchronous mode.



Figure 3-10: Example Timing on Write (S2MM) Path in Synchronous Mode

#### Dataflow:

- 1. After receiving commands on the AXI4-Stream command interface (s\_axis\_s2mm\_cmd\_tvalid) and if s2mm\_allow\_addr\_req is high, AXI DataMover initiates write cycles on the AXI MMap interface by asserting m\_axi\_s2mm\_awvalid and other address bus signals.
- 2. AXI DataMover also asserts mm2s\_addr\_req\_posted indicating address is posted on MMap interface.
- 3. AXI DataMover accepts data on the streaming interface by asserting s\_axis\_s2mm\_tready.
- 4. Incoming data is stored in FIFO if enabled.
- 5. AXI DataMover starts sending out data on MMap interface by asserting m\_axi\_s2mm\_wvalid and other associated signals.



- 6. AXI DataMover asserts s2mm\_wr\_xfer\_cmplt indicating data is completely written on the MMap interface.
- 7. AXI4-Stream Status interface signals m\_axis\_s2mm\_sts\_tvalid and other associated signals are asserted indicating the status for a particular command that was posted on command interface.
- 8. AXI DataMover also asserts additional signals s2mm\_ld\_nxt\_len along with s2mm\_wr\_len indicating the burst length of the write transfer to be posted on the AXI MMap interface.



**IMPORTANT:** A single parent command can generate multiple child commands on the AXI MMap Interface. Status signals are asserted when all child commands are processed.

# **Clocking**

The DataMover has two clock inputs for each of the MM2S and S2MM blocks for a total of four clock inputs. The <code>m\_axi\_mm2s\_aclk</code> is the main synchronizing clock for the MM2S block. This clock synchronizes both the associated Memory Mapped interface and Stream interface. The second clock for the MM2S element is the <code>m\_axis\_mm2s\_cmdsts\_awclk</code>. This clock is used only when the parameter <code>C\_MM2S\_STSCMD\_IS\_ASYNC</code> is assigned a value of 1. When used, it synchronizes the User sides of the Command and Status interfaces. If the parameter <code>C\_MM2S\_STSCMD\_IS\_ASYNC</code> is assigned a value of 0, the <code>m\_axis\_mm2s\_cmdsts\_awclk</code> is not used and the User sides of the Command and Status interfaces are synchronized with the <code>m\_axi\_mm2s\_aclk</code>.

The S2MM block has identical clocking schemes as the MM2S block but with two different clocks, the m\_axis\_s2mm\_cmdsts\_awclk and m\_axis\_s2mm\_cmdsts\_awclk. Synchronous or Asynchronous Command/Status mode is controlled by the C\_MM2S\_STSCMD\_IS\_ASYNC parameter.

## Resets

The DataMover has two reset inputs for each of the MM2S and S2MM blocks for a total of four reset inputs. The DataMover is designed such that the Command and Status interfaces can optionally be clocked and reset with a secondary clock and reset input for each of the MM2S and S2MM functions. This is intended to allow these interfaces to operate at a slower clock frequency than the main data payload paths.



### **Reset Assertion Timing**

Because the DataMover internally synchronizes the input resets by registering, internal logic reset and port I/O reaction are delayed by up to two clocks after the first rising edge of the synchronizing clock. This synchronization period requires that any reset assertion to the DataMover must be a minimum of three clock periods of the synchronizing clock. The reset period and I/O relationship is shown in Figure 3-11.



Figure 3-11: Reset Assertion Timing

### **DataMover External Store and Forward Support**

The AXI DataMover has additional features to allow for support of an external Store and Forward function should the internal ones not provide the needed function. An example use case is AXI Central Direct Memory Access (CDMA), where a single data FIFO solution is optimum but with both Read and Write Address posting control by the Store and Forward Controller. The purpose of Store and Forward is to eliminate or minimize the need for the DataMover to throttle the AXI4 Read and Write Data Channels. This implies that the DataMover MM2S function does not post a Read Request to the AXI4 unless the associated read data transfer can complete without the DataMover throttling by deasserting the m\_axi\_mm2s\_rready signal.

In addition, the DataMover S2MM function does not post a Write Request to the AXI4 unless the associated write data transfer can complete without the DataMover throttling by deasserting the m\_axi\_s2mm\_wvalid signal. These two requirements imply a data storage FIFO is needed and special monitoring logic must be employed to track the data input and output levels. The monitoring logic is then allowed to control the DataMover address/ qualifier posting to AXI4 based on the available space and available data levels.



#### **DataMover External Store and Forward Ports**

The DataMover external Store and Forward interface consists of eight ports. These ports are:

- mm2s\_allow\_addr\_req (input to DataMover)
- mm2s\_addr\_req\_posted (output from DataMover)
- mm2s\_rd\_xfer\_cmplt (output from DataMover)
- s2mm\_allow\_addr\_req (input to DataMover))
- s2mm\_addr\_req\_posted (output from DataMover)
- s2mm\_wr\_xfer\_cmplt (output from DataMover)
- s2mm\_ld\_nxt\_len (output from DataMover)
- s2mm\_wr\_len (output from DataMover)

### **Usage**

The connection of these ports to an external Store and Forward module is shown in Figure 3-12. This is representative of the AXI CDMA use case. The external Store and Forward module has the ability to control the DataMover Address/Qualifier posting to the AXI4 bus through the mm2s\_allow\_addr\_req and s2mm\_allow\_addr\_req signals. When asserted high, the associated DataMover Address Controller is allowed to post transfer address/qualifiers to the AXI4 bus and thus commit to a transfer. The mm2s\_allow\_addr\_req controls the MM2S Address Controller and the s2mm\_allow\_addr\_req controls the S2MM Address Controller. When asserted low, the associated Address Controller is inhibited from posting transfer address/qualifiers to the AXI4 bus.

The DataMover also provides status back to the Store and Forward block indicating when an address/qualifier set has been committed to the AXI4 bus through the mm2s\_addr\_req\_posted and s2mm\_addr\_req\_posted signals. In addition, the MM2S and S2MM also provide a status bit indicating when a scheduled Read or Write Data Channel transfer has completed through the mm2s\_rd\_xfer\_cmp1t and s2mm\_wr\_xfer\_cmp1t signals.

The S2MM function also provides two more outputs (s2mm\_wr\_len and s2mm\_ld\_nxt\_len) that are used to provide some lookahead to the monitoring logic by indicating the needed data beats for each of the upcoming Write Transfers that are being queued in the S2MM Write Data Controller. By monitoring the input stream from the MM2S, the Monitoring logic can count the incoming data and notify the write side monitor logic when the exact amount of data has been received to satisfy a queued write transfer.



This control and status mechanism allows the DataMover to pipeline Read requests to the AXI4 without over-committing the Store and Forward Data FIFO capacity (filling it up and throttling the AXI4 Read data Channel). It also can keep the DataMover from pipelining Write transfers until the write data is actually present in the data fifo and ready to be written. This keeps the DataMover from pipelining write requests to the AXI4 when the write data is not yet available (causing the DataMover to throttle the AXI4 Write Data Channel).



Figure 3-12: CDMA Store and Forward Connection Example with Address Pipeline Control

### **Request Spawning**

One important aspect of the DataMover operation is the ability to spawn multiple child AXI requests when executing a single command from the corresponding Command FIFO. This occurs when the requested Bytes to Transfer (BTT) specified by the Command exceeds a parameterized burst data beat limit (default is 16 but can also be set to 32. 64, 128, or 256). The parameters are C\_MM2S\_BURST\_SIZE, page 46 and C\_S2MM\_BURST\_SIZE, page 49.

### **DataMover Soft Shutdown (Halt) Request Operations**

The overall command queue design of DataMover allows it to fully exploit the AXI4 address pipeline capability. This is sometimes detrimental when it is required for the DataMover to be stopped quickly to support a soft reset in the Host core. The AXI4 Memory Mapped Bus requires that transfers committed on the Address Channel by a Master must also have the associated Data Channel transfers completed. This requirement causes the DataMover to implement a soft shutdown scheme that completes all committed Memory Map transfers before it can stop operation. It is desirable for the DataMover to only complete what is committed to the Memory Map bus and not allow any other queued commands to advance in the pipeline to the point of being committed to the Memory Map Bus.



#### **MM2S Soft Shutdown**

The DataMover MM2S soft shutdown is initiated by the active-High assertion of the input signal mm2s\_halt. When the soft halt operations are completed, the MM2S asserts the mm2s\_halt\_cmplt outputs. This output remains asserted until the MM2S is reset through the hard reset input m\_axi\_mm2s\_aresetn (or m\_axis\_mm2s\_cmdsts\_aresetn if asynchronous command interface is in use).

During a soft shutdown, DataMover gracefully completes the existing transactions on the AXI MM side. You will find data on the streaming side sometime while its exiting gracefully. The m\_axis\_mm2s\_tdata data output is then driven with invalid data values. The MM2S completes all committed Memory Map requests presented on the MM2S Memory Map Address Channel. Input data from the Memory Map Data Channel received during the cleanup operations are discarded.

#### **S2MM Soft Shutdown**

The S2MM soft shutdown is initiated by the active-High assertion of the input signal s2mm\_halt. When the soft halt operations are completed, the S2MM asserts the s2mm\_halt\_cmplt output. This output remains asserted until the S2MM is reset by the hard reset input m\_axi\_s2mm\_aresetn (or m\_axis\_s2mm\_cmdsts\_aresetn if the asynchronous command interface is in use).

During a soft shutdown, the S2MM function asserts the S2MM Stream s\_axis\_s2mm\_tready output signal and ignores the remaining S2MM Stream inputs. The S2MM completes all committed Memory Map requests presented on the S2MM Memory Map Address Channel. Output data to the Memory Map Data Channel transmitted during the cleanup operations are invalid data values.



# **Design Parameters**

The AXI DataMover Design Parameters are listed and described in Table 3-5.

**Table 3-5:** Design Parameters

| Parameter Name                | Allowable<br>Values                         | Default<br>Values | VHDL Type    | Feature/Description                                                                                                                                                                       |
|-------------------------------|---------------------------------------------|-------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | Memory                                      | Map to St         | ream Paramet | ers                                                                                                                                                                                       |
|                               |                                             |                   |              | 0 = Exclude Memory Map to Stream channel (Omit Mode) 1 = Include Memory Map to Stream channel (Full Mode)                                                                                 |
| C_INCLUDE_MM2S                | 0, 1, 2                                     | 2                 | Integer      | 2 = Include Memory Map to Stream channel but with limited functionality for a reduction in resource utilization (Basic Mode) When C_INCLUDE_MM2S = 0, all inputs to the MM2S element are  |
|                               |                                             |                   |              | ignored and all outputs from the MM2s element are driven to zeroes.                                                                                                                       |
| C_M_AXI_MM2S_ARID             | 0 to 255                                    | 0                 | Integer      | The value to drive onto the MM2S<br>Address Channel ARID output                                                                                                                           |
| C_M_AXI_MM2S_ID_WIDTH         | 1 to 8                                      | 4                 | Integer      | The bit width of any MM2S ID buses                                                                                                                                                        |
| C_M_AXI_MM2S_ADDR_WIDTH       | 32 to 64                                    | 32                | Integer      | Address width on the Memory Map to Stream channel                                                                                                                                         |
| C_M_AXI_MM2S_DATA_WIDTH       | 32, 64,<br>128, 256,<br>512, 1024           | 32                | Integer      | Data width on the Memory Map to<br>Stream channel's Memory Map<br>interface                                                                                                               |
| C_M_AXIS_MM2S_TDATA_<br>WIDTH | 8, 16, 32,<br>64, 128,<br>256, 512,<br>1024 | 32                | Integer      | Data width on the Memory Map to<br>Stream channel's Stream interface.<br>Must be equal to or less than<br>C_M_AXI_MM2S_DATA_WIDTH                                                         |
| C_INCLUDE_MM2S_STSFIFO        | 0, 1                                        | 1                 | Integer      | 0 = Exclude Memory Map to Stream<br>Status FIFO<br>1 = Include Memory Map to Stream<br>Status FIFO                                                                                        |
|                               |                                             |                   |              | Depth of Memory Map to Stream<br>Status and Command FIFO. A specified<br>depth of 1 indicates a single register<br>implementation.                                                        |
| C_MM2S_STSCMD_FIFO_DEPTH      | 1, 4, 8, 16                                 | 4                 | Integer      | <b>Note:</b> If C_MM2S_STSCMD_IS_ASYNC is set to a value of 1 (asynchronous mode), the Command and Status FIFO depth is automatically set to a depth of 16 and this parameter is ignored. |



Table 3-5: Design Parameters (Cont'd)

| Parameter Name         | Allowable<br>Values     | Default<br>Values | VHDL Type | Feature/Description                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------|-------------------------|-------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C_MM2S_STSCMD_IS_ASYNC | 0, 1                    | 0                 | Integer   | 0 = MM2S Command and Status<br>Stream interfaces are synchronous to<br>the MM2S Memory Mapped interface<br>(uses same clock)<br>1 = MM2S Command and Status<br>Stream interfaces are asynchronous to<br>the MM2S Memory Mapped interface<br>(uses different clock)                                                                                                                                           |
| C_INCLUDE_MM2S_DRE     | 0, 1                    | 1                 | Integer   | DRE support is only available for AXI4-Stream data widths of 16, 32, and 64 bits.  0 = Exclude Memory Map to Stream Data Realignment engine  1 = Include Memory Map to Stream Data Realignment engine                                                                                                                                                                                                        |
| C_MM2S_BURST_SIZE      | 16, 32, 64,<br>128, 256 | 16                | Integer   | Memory Map to Stream channel maximum allowed burst length (in data beats).  Note: When the parameter C_M_AXIS_MM2S_TDATA_WIDTH is set to 1024-bit, the MM2S burst length is internally limited to 32 data beats so that the AXI 4K address boundary restriction is not violated. When C_S_AXIS_MM2S_TDATA_WIDTH is set to 512 or 256, the MM2S burst length is internally limited to 64 or 128 respectively. |
| C_MM2S_BTT_USED        | 8 to 23                 | 16                | Integer   | Actual number of bits to be used from the MM2S Command BTT field. The BTT used bits are extracted from the field starting from (C_MM2S_BTT_USED-1) down to bit 0.  **Note: Value assigned to this parameter must be greater than or equal to the value log2(C_M_AXIS_MM2S_TDATA_WIDT H/8 × C_MM2S_BURST_SIZE) + 1.                                                                                           |



Table 3-5: Design Parameters (Cont'd)

| able 3-5: Design Parameters (Cont'a) |                                      |                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------|--------------------------------------|-------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter Name                       | Allowable<br>Values                  | Default<br>Values | VHDL Type   | Feature/Description                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C_MM2S_ADDR_PIPE_DEPTH               | 1 to 30                              | 3                 | Integer     | This parameter specifies the internal MM2S queuing depth used for child command address pipelining. The value controls how many address qualifier sets can be committed (pipelined) to the AXI4 Read Address Channel before the associated read data starts flowing into the MM2S function on the AXI4 Read Data Channel. The effective pipelining that is observed on the AXI4 Read Address Channel is the value assigned to this parameter plus 2. |
| C_MM2S_INCLUDE_SF                    | 0, 1                                 | 1                 | Integer     | This parameter specifies the inclusion/omission of the MM2S (Read) Store and Forward function. If the MM2S Stream Channel data width is less than the Memory Map Data Width, a downsizer function is automatically inserted on the Stream side of the Store and Forward FIFO.  0 = Omit MM2S GP Store and Forward 1 = Include MM2S GP Store and Forward                                                                                              |
|                                      | Stream t                             | o Memory          | Map Paramet | ers                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C_INCLUDE_S2MM                       | 0, 1, 2                              | 2                 | Integer     | 0 = Exclude Stream to Memory Map channel (Omit Mode) 1 = Include Stream to Memory Map channel (Full Mode) 2 = Include Stream to Memory Map channel but with limited functionality for a reduction in resource utilization (Basic Mode) When C_INCLUDE_S2MM = 0, all inputs to the S2MM element are ignored and all outputs from the S2MM element are driven to Zeroes.                                                                               |
| C_M_AXI_S2MM_AWID                    | 0 to 255                             | 1                 | Integer     | The value to drive onto the S2MM Address Channel AWID output and the Data Channel WID output.                                                                                                                                                                                                                                                                                                                                                        |
| C_M_AXI_S2MM_ID_WIDTH                | 1 to 8                               | 4                 | Integer     | The bit width of any S2MM ID buses                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C_M_AXI_S2MM_ADDR_WIDTH              | 32 to 64                             | 32                | Integer     | Address width on the Stream to<br>Memory Map channel                                                                                                                                                                                                                                                                                                                                                                                                 |
| C_M_AXI_S2MM_DATA_WIDTH              | 32, 64,<br>128,<br>256, 512,<br>1024 | 32                | Integer     | Data width on the Stream to Memory<br>Map channel's Memory Map interface                                                                                                                                                                                                                                                                                                                                                                             |



Table 3-5: Design Parameters (Cont'd)

| Parameter Name                | Allowable<br>Values                         | Default<br>Values | VHDL Type | Feature/Description                                                                                                                                                                                                                                                |
|-------------------------------|---------------------------------------------|-------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C_S_AXIS_S2MM_TDATA_<br>WIDTH | 8, 16, 32,<br>64, 128,<br>256, 512,<br>1024 | 32                | Integer   | Data width on the Stream to Memory<br>Map channel's Stream interface. Must<br>be equal to or less than<br>C_M_AXI_S2MM_DATA_WIDTH.                                                                                                                                 |
| C_INCLUDE_S2MM_STSFIFO        | 0, 1                                        | 1                 | Integer   | 0 = Exclude Stream to Memory Map<br>Status FIFO<br>1 = Include Stream to Memory Map<br>Status FIFO                                                                                                                                                                 |
|                               |                                             |                   |           | Depth of Stream to Memory Map<br>Status and Command FIFO. A specified<br>depth of 1 indicates a single register<br>implementation.                                                                                                                                 |
| C_S2MM_STSCMD_FIFO_DEPTH      | 1, 4, 8, 16                                 | 4                 | Integer   | <b>Note:</b> If C_S2MM_STSCMD_IS_ASYNC is set to a value of 1 (asynchronous mode), the Command and Status FIFO depth is automatically set to a depth of 16 and this parameter is ignored.                                                                          |
| C_S2MM_STSCMD_IS_ASYNC        | 0,1                                         | 0                 | Integer   | 0 = S2MM Command and Status<br>Stream interfaces are synchronous to<br>the S2MM Memory Mapped interface<br>(uses same clock)<br>1 = S2MM Command and Status<br>Stream interfaces are asynchronous to<br>the S2MM Memory Mapped interface<br>(uses different clock) |
| C_INCLUDE_S2MM_DRE            | 0, 1                                        | 1                 | Integer   | DRE support is only available for AXI4-Stream data widths of 16, 32, and 64 bits.  0 = Exclude Stream to Memory Map Data Realignment engine  1 = Include Stream to Memory Map Data Realignment engine                                                              |



Table 3-5: Design Parameters (Cont'd)

| Parameter Name           | Allowable<br>Values     | Default<br>Values | VHDL Type | Feature/Description                                                                                                                                                                                                                                                                                                                |
|--------------------------|-------------------------|-------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                         |                   |           | Stream to Memory Map channel maximum allowed burst length (in data beats).                                                                                                                                                                                                                                                         |
| C_S2MM_BURST_SIZE        | 16, 32, 64,<br>128, 256 | 16                | Integer   | Note: When the parameter C_S_AXIS_S2MM_TDATA_WIDTH is set to 1024-bit, the S2MM burst length is internally limited to 32 data beats so that the AXI 4K address boundary restriction is not violated. When C_S_AXIS_S2MM_TDATA_WIDTH is set to 512 or 256, the S2MM burst length is internally limited to 64 or 128 respectively.   |
| C_S2MM_BTT_USED          | 8 to 23                 | 16                | Integer   | Actual number of bits to be used from the S2MM Command BTT field. The BTT used bits are extracted from the field starting from (C_S2MM_BTT_USED-1) down to bit 0.  *Note: Value assigned to this parameter must be greater than or equal to the value log2(C_S_AXIS_S2MM_TDATA_WIDT H/8 × C_S2MM_BURST_SIZE) + 1.                  |
| C_S2MM_SUPPORT_INDET_BTT | 0, 1                    | 0                 | Integer   | This parameter enables the Indeterminate BTT mode. This is needed when the number of bytes to be received on the input S2MM Stream Channel is unknown at the time the transfer command is posted to the DataMover's S2MM command input.  0 = S2MM indeterminate BTT mode is disabled.  1 = S2MM Indeterminate BTT mode is enabled. |
|                          |                         |                   |           | <b>Note:</b> The features enabled by the parameters C_S2MM_SUPPORT_INDET_BTT and C_S2MM_INCLUDE_SF are mutually exclusive. They cannot both be set simultaneously.                                                                                                                                                                 |



Table 3-5: Design Parameters (Cont'd)

| Parameter Name         | Allowable<br>Values                          | Default<br>Values | VHDL Type | Feature/Description                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------|----------------------------------------------|-------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C_S2MM_ADDR_PIPE_DEPTH | 1 to 30                                      | 3                 | Integer   | This parameter specifies the internal S2MM queuing depth used for child command address pipelining. The value controls how many address qualifier sets can be committed (pipelined) to the AXI4 Write Address Channel before the associated write data starts flowing into the S2MM function on the AXI4 Write Data Channel. The effective pipelining that is observed on the AXI4 Write Address Channel is the value assigned to this parameter plus 2. |
| C_S2MM_INCLUDE_SF      | 0, 1                                         | 1                 | Integer   | This parameter specifies the inclusion/omission of the S2MM (Write) Store and Forward function. If the S2MM Stream Channel data width is less than the Memory Map Data Width, an upsizer function is automatically inserted on the Steam side of the Store and Forward fifo.  0 = Omit S2MM GP Store and Forward 1 = Include S2MM GP Store and Forward                                                                                                   |
|                        |                                              |                   |           | <b>Note:</b> The features enabled by the parameters C_S2MM_SUPPORT_INDET_BTT and C_S2MM_INCLUDE_SF are mutually exclusive. They cannot both be set simultaneously.                                                                                                                                                                                                                                                                                       |
|                        |                                              | FPGA Fami         | Іу Туре   |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C_FAMILY               | virtex6,<br>spartan6,<br>virtex7,<br>kintex7 | Virtex-6          | string    | Specifies the FPGA Family the implementation targets                                                                                                                                                                                                                                                                                                                                                                                                     |



# **Allowable Parameter Combinations**

**Table 3-6:** Allowable Parameter Combination

| Parameter Name          | Affects Parameter                                                                                                                                                                                                                                         | Relationship Description                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | MM2S Design Parameters                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                            |
| C_INCLUDE_MM2S          | C_M_AXI_MM2S_ARID, C_M_AXI_MM2S_ID_WIDTH, C_M_AXI_MM2S_ADDR_WIDTH, C_M_AXI_MM2S_DATA_WIDTH, C_M_AXIS_MM2S_TDATA_WIDTH, C_INCLUDE_MM2S_STSFIFO, C_INCLUDE_MM2S_DRE, C_MM2S_STSCMD_FIFO_DEPTH, C_MM2S_STSCMD_IS_ASYNC, C_MM2S_BURST_SIZE, C_MM2S_INCLUDE_SF | A value of 0 assigned to the affecting parameter removes the MM2S DataMover block from the implementation. The affected parameters are ignored internally as a result.  Some of affected parameters specify port widths. These parameters should be left at default values to maintain default port width even though they are not used for internal logic implementation. |
| C_INCLUDE_MM2S          | C_M_AXI_MM2S_DATA_WIDTH                                                                                                                                                                                                                                   | A value of 2 assigned to the affecting parameter causes the Basic version of the MM2S DataMover block to be implemented. The affected parameter is limited to a value of 32 or 64 as a result.                                                                                                                                                                             |
| C_INCLUDE_MM2S          | C_M_AXIS_MM2S_TDATA_WIDTH                                                                                                                                                                                                                                 | A value of 2 assigned to the affecting parameter causes the Basic version of the MM2S DataMover block to be implemented. The affected parameter is limited to a value of 8, 16, 32, or 64 as a result.                                                                                                                                                                     |
| C_INCLUDE_MM2S          | C_INCLUDE_MM2S_STSFIFO, C_INCLUDE_MM2S_DRE, C_MM2S_STSCMD_FIFO_DEPTH, C_MM2S_STSCMD_IS_ASYNC, C_MM2S_BURST_SIZE, C_MM2S_INCLUDE_SF                                                                                                                        | A value of 2 assigned to the affecting parameter causes the Basic version of the MM2S DataMover block to be implemented. The affected parameters are ignored internally as a result.                                                                                                                                                                                       |
| C_M_AXI_MM2S_DATA_WIDTH | C_M_AXIS_MM2S_TDATA_WIDTH                                                                                                                                                                                                                                 | The affected parameter's assigned value cannot exceed the affecting parameter's assigned value.                                                                                                                                                                                                                                                                            |
| C_INCLUDE_MM2S_STSFIFO  | C_MM2S_STSCMD_FIFO_DEPTH                                                                                                                                                                                                                                  | A value assignment of 0 to the affecting parameter causes the affected parameter to be ignored.                                                                                                                                                                                                                                                                            |



Table 3-6: Allowable Parameter Combination (Cont'd)

| Parameter Name                | Affects Parameter                                                                                                                                                                                                                                                            | Relationship Description                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C_MM2S_BURST_SIZE             | C_MM2S_BTT_USED                                                                                                                                                                                                                                                              | The value assigned to this parameter requires the affected parameter assigned value to be greater than or equal to the value log2(C_M_AXIS_MM2S_TDATA_WIDTH/ 8 × C_MM2S_BURST_SIZE).                                                                                                                                                                                                                 |
| C_M_AXIS_MM2S_TDATA_<br>WIDTH | C_MM2S_BTT_USED                                                                                                                                                                                                                                                              | The value assigned to this parameter requires the affected parameter assigned value to be greater than or equal to the value log2(C_M_AXIS_MM2S_TDATA_WIDTH/ 8 × C_MM2S_BURST_SIZE) + 1.                                                                                                                                                                                                             |
|                               | S2MM Design Parameters                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                      |
| C_INCLUDE_S2MM                | C_S2MM_ARID, C_M_AXI_S2MM_ID_WIDTH, C_M_AXI_S2MM_ADDR_WIDTH, C_M_AXI_S2MM_DATA_WIDTH, C_S_AXIS_S2MM_TDATA_WIDTH, C_INCLUDE_S2MM_STSFIFO, C_INCLUDE_S2MM_DRE, C_S2MM_STSCMD_FIFO_DEPTH, C_S2MM_STSCMD_IS_ASYNC, C_S2MM_BURST_SIZE, C_S2MM_SUPPORT_INDET_BTT C_S2MM_INCLUDE_SF | A value of 0 assigned to the affecting parameter removes the S2MM DataMover block from the implementation. The affected parameters are ignored internally as a result.  Note: Some affected parameters specify port widths for the S2MM block. These parameters should be left at default values to maintain the default port width even though they are not used for internal logic implementation. |
| C_INCLUDE_S2MM                | C_M_AXI_S2MM_DATA_WIDTH                                                                                                                                                                                                                                                      | A value of 2 assigned to the affecting parameter causes the Basic version of the S2MM DataMover block to be implemented. The affected parameter is limited to a value of 32 or 64 as a result.                                                                                                                                                                                                       |
| C_INCLUDE_S2MM                | C_S_AXIS_S2MM_TDATA_WIDTH                                                                                                                                                                                                                                                    | A value of 2 assigned to the affecting parameter causes the Basic version of the S2MM DataMover block to be implemented. The affected parameter is limited to a value of 8, 16, 32, or 64 as a result.                                                                                                                                                                                               |
| C_INCLUDE_S2MM                | C_INCLUDE_S2MM_STSFIFO, C_INCLUDE_S2MM_DRE, C_S2MM_STSCMD_FIFO_DEPTH, C_S2MM_STSCMD_IS_ASYNC, C_S2MM_BURST_SIZE, C_S2MM_INCLUDE_SF, C_S2MM_SUPPORT_INDET_BTT                                                                                                                 | A value of 2 assigned to the affecting parameter causes the Basic version of the S2MM DataMover block to be implemented. The affected parameters are ignored internally as a result.                                                                                                                                                                                                                 |



Table 3-6: Allowable Parameter Combination (Cont'd)

| Parameter Name                | Affects Parameter         | Relationship Description                                                                                                                                                                |
|-------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C_M_AXI_S2MM_DATA_WIDTH       | C_S_AXIS_S2MM_TDATA_WIDTH | The affected parameter's assigned value cannot exceed the affecting parameter's assigned value.                                                                                         |
| C_INCLUDE_S2MM_STSFIFO        | C_S2MM_STSCMD_FIFO_DEPTH  | A value assignment of 0 to the affecting parameter causes the affected parameter to be ignored.                                                                                         |
| C_S2MM_BURST_SIZE             | C_S2MM_BTT_USED           | The value assigned to this parameter requires the affected parameter assigned value to be greater than or equal to the value log2(C_S_AXIS_S2MM_TDATA_ WIDTH/8 × C_S2MM_BURST_SIZE).    |
| C_S_AXIS_S2MM_TDATA_<br>WIDTH | C_S2MM_BTT_USED           | The value assigned to this parameter requires the affected parameter assigned value to be greater than or equal to the value log2(C_S_AXIS_S2MM_TDATA_WIDTH/8 × C_S2MM_BURST_SIZE) + 1. |



# SECTION II: VIVADO DESIGN SUITE

Customizing and Generating the Core
Constraining the Core



# Customizing and Generating the Core

This chapter includes information about using Xilinx tools to customize and generate the core in the Vivado™ Design Suite environment.

## **GUI**

The AXI DataMover can be found in **\AXI\_Infrastructure** and also in **Embedded\_Processing\AXI\_Infrastructure\DMA** in the Vivado IP catalog.

To access the AXI DataMover, perform the following:

- 1. Open a project by selecting **File** then **Open Project** or create a new project by selecting **File** then **New Project** in the Vivado design tools.
- 2. Open the IP catalog and navigate to any of the taxonomies.
- 3. Double-click on AXI DataMover to bring up the AXI DataMover GUI.

The AXI DataMover GUI contains one screen with two tabs (Figure 4-1 and Figure 4-2) that provides information about the core, allow configuration of the core, and provides the ability to generate the core.

In most cases the DataMover can be configured with the option specified on the "Basic Options" tab. All the options available in this GUI are essentially the same as the CORE Generator™ GUI. The GUI has been split into two tabs for sake of simplicity and enhanced for ease-of-use.





Figure 4-1: AXI DataMover GUI – Channel Options Tab





Figure 4-2: AXI DataMover GUI – Advanced Options Tab

**Component Name** – The base name of the output files generated for the core. Names must begin with a letter and can be composed of any of the following characters: a to z, 0 to 9, and "\_".

### **Basic Options**

The following describes the fundamental options that affect the MM2S and S2MM channels of the AXI DataMover core.

- MM2S Channel Options This box allows you to configure the MM2S channel options.
  - Channel Type You can choose a Full, Basic, or Omit modes. Selecting Full allows the MM2S channel to be configured for all possible combination and advance features. The Basic mode restricts some of features and allows the MM2S to be used only for 32 or 64-bit wide data. The Omit mode completely disables the channel.



- Memory Mapped Data Width Specifies the data width in bits of the AXI Memory Mapped Read bus. Valid values are 32, 64, 128, 256, 512, and 1024. Depending on the Channel Type, these options vary.
- Stream Data Width Specifies the data width in bits of the MM2S Stream bus.
   Valid values are 8, 16, 32, 64, 128, 256, 512, and 1024. This value cannot be more than the Memory Mapped Data Width.
- Bytes To Transfer (BTT) Bit Used Specifies the valid number of bits in the number of BTT field of the MM2S command. Valid options are 8 to 23.
- **S2MM Channel Options** This box allows you to configure the S2MM channel options.
  - **Channel Type** The user can choose a Full, Basic, or Omit. Selecting Full allows the S2MM channel to be configured for all possible combination and advance features. The Basic mode restricts some of features and allows the S2MM to be used only for 32 or 64-bit wide data. The Omit mode completely disables the channel.
  - Memory Mapped Data Width Specifies the data width in bits of the AXI Memory Mapped Write bus. Valid values are 32, 64, 128, 256, 512, and 1024. The choices vary depending on the Channel Type chosen.
  - Stream Data Width Specifies the data width in bits of the S2MM Stream bus.
     Valid values are 8, 16, 32, 64, 128, 256, 512, and 1024. This value cannot be more than the Memory Mapped Data Width.
  - **Bytes To Transfer (BTT) Bit Used** Specifies the valid number of bits in the number of BTT field of the S2MM command. Valid options are 8 to 23.

### **Advanced Options**

The following describes the advanced options of the MM2S and S2MM channels of the AXI DataMover core.

- **MM2S Channel Options** This box allows you to configure the advance options of the MM2S channel options.
  - **ID Value** This setting is the ID value of MM2S ID bus and drive onto the MM2S Address Channel ARID output.
  - Memory Mapped Address Width This setting is the address width of the MM2S Channel. AXI DataMover core supports Memory Map address width from 32 bits to 64 bits.
  - ID Width This setting is the bit width of MM2S ID bus.
  - Address Pipeline Depth This setting provides internal MM2S queuing depth used for child command address pipelining. The value controls how many address qualifier sets can be committed (pipelined) to the AXI4 Read Data Channel.



Maximum Burst Size – This option specifies the maximum size of the burst cycles on the AXI MM2S Memory Map Read interface. In other words, this setting specifies the granularity of burst partitioning. For example, if the burst length is set to 16, the maximum burst on the memory map interface is 16 data beats. Smaller values reduce throughput but result in less impact on the AXI infrastructure. Larger values increase throughput but result in a greater impact on the AXI infrastructure. Valid values are 16, 32, 64, 128, and 256.

The following options are only available when the channel is configured in "Full" mode.

- **Enable Asynchronous Clocks** This setting allows you to operate the MM2S Command and Status Stream interface asynchronously with MM2S Memory Map interface.
- Include MM2S STS FIFO This setting allows you to include or exclude the MM2S Status (STS) FIFO. If the Status FIFO is included, its depth is defined by C\_MM2S\_STSCMD\_FIFO\_DEPTH.
- STS Command FIFO Depth This setting is the depth of the MM2S Status and Command FIFO. A specified value of 1 indicates a single register implementation. Valid values are 1, 4, 8, and 16. If asynchronous clocks are enabled, the Command and Status FIFO depth is automatically set to a depth of 16 and this option setting is ignored.
- Allow Unaligned Transfers This setting enables or disables the MM2S Data Realignment Engine (DRE). When checked, the DRE is enabled and allows data realignment to the byte (8 bits) level on the MM2S Memory Map datapath. For the MM2S channel, data is read from the memory. If the DRE is enabled, data reads can start from any Buffer Address offset, and the read data is aligned such that the first byte read is the first valid byte out on the AXI4-Stream. What is considered aligned or unaligned is based on the stream data width C\_M\_AXIS\_MM2S\_TDATA\_WIDTH.
- Enable Store and Forward This setting provides the inclusion/omission of the MM2S Store and Forward function. If the MM2S Stream Channel data width is less than the Memory Mapped data width, a downsizer function is automatically inserted on the Stream side of the Store and Forward module.

The following is a list of S2MM Channel parameters.

- **S2MM Channel Options** This box allows you to configure the advance options of the S2MM channel options.
  - **ID Value** This setting is the ID value of S2MM ID bus and drive onto the S2MM Address Channel ARID output.
  - Memory Mapped Address Width This setting is the address width of the S2MM Channel. AXI DataMover core supports Memory Map address width from 32 bits to 64 bits.
  - **ID Width** This setting is the bit width of S2MM ID bus.



- Address Pipeline Depth This setting provides internal S2MM queuing depth used for child command address pipelining. The value controls how many address qualifier sets can be committed (pipelined) to the AXI4 Read Data Channel.
- Maximum Burst Size This option specifies the maximum size of the burst cycles on the AXI S2MM Memory Map Read interface. In other words, this setting specifies the granularity of burst partitioning. For example, if the burst length is set to 16, the maximum burst on the memory map interface is 16 data beats. Smaller values reduce throughput but result in less impact on the AXI infrastructure. Larger values increase throughput but result in a greater impact on the AXI infrastructure. Valid values are 16, 32, 64, 128, and 256.

The following options are only available when the channel is configured in "Full" mode.

- **Enable Asynchronous Clocks** This setting allows you to operate the S2MM Command and Status Stream interface asynchronously with S2MM Memory Map interface.
- Include S2MM STS FIFO This setting allows you to include or exclude the S2MM Status (STS) FIFO. If the Status FIFO is included, its depth is defined by C\_S2MM\_STSCMD\_FIFO\_DEPTH.
- STS Command FIFO Depth This setting is the depth of the S2MM Status and Command FIFO. A specified value of 1 indicates a single register implementation. Valid values are 1, 4, 8, and 16. If asynchronous clocks are enabled, the Command and Status FIFO depth is automatically set to a depth of 16 and this option setting is ignored.
- Allow Unaligned Transfers This option enables or disables the S2MM Data Realignment Engine (DRE). When checked, the DRE is enabled and allows data realignment to the byte (8 bits) level on the S2MM Memory Map datapath. For the S2MM channel, data is written to the memory. If the DRE is enabled, data writes can start from any Buffer Address offset, and the read data is aligned such that the first byte read is the first valid byte out on the AXI4-Stream. What is considered aligned or unaligned is based on the stream data width C\_S\_AXIS\_S2MM\_TDATA\_WIDTH.
- Enable Store and Forward This setting provides the inclusion/omission of the S2MM Store and Forward function. If the S2MM Stream Channel data width is less than the Memory Mapped data width, an upsizer function is automatically inserted on the Stream side of the Store and Forward module.
- **Enable Indeterminate BTT Mode** This setting provides the Indeterminate BTT mode. This is needed when the number of bytes to be received on the input S2MM Stream Channel is unknown at the time the transfer command is posted to the DataMover's S2MM command input.



# **Core Implementation**

### **Functional Simulation**

VHDL and Verilog source files for axi\_datamover\_v3\_00\_a are provided un-encrypted for use in behavioral simulation within a simulation environment. Neither a test bench nor test fixture is provided with the AXI DataMover core.

## **Synthesis**

Synthesis of the AXI DataMover can be performed with Vivado synthesis.

### **Xilinx Tools**

See the LogiCORE IP Facts Table.

### **Static Timing Analysis**

Static timing analysis can be performed using trace, following ngdbuild, map, and par.



## **Output Generation**

The output files generated from the Xilinx Vivado IP catalog are placed in the project directory. The file output list can include some or all of the following files.

The component name of the IP generated is axi\_datamover\_v3\_00\_a\_0.



Top-level project directory; name is user-defined

- color color project directory>/ip/axi\_datamover\_v3\_00\_a\_0
  AXI DataMover folders and files
- proc\_common\_v3\_00\_a
  Helper cores
- sim
  Simulation wrapper
- synth
  Synthesis wrapper
- axi\_datamover.veo/.vho
  Instantiation template files
- <axi\_datamover\_v3\_00\_a\_0>axi\_datamover\_v3\_00\_a/hdl/src/vhdl
  AXI DMA RTL files

### opect directory>

The project directory contains the axi\_datamover core RTL files as well as all its helper cores. The proc\_common\_v3\_00\_a directory contains the helper cores used by the axi\_datamover.

## oject directory>/ip/axi\_datamover\_v3\_00\_a\_0

The axi\_datamover\_v3\_00\_a\_0 name directory contains the following folders and files.

Table 4-1: axi\_datamover\_v3\_00\_a\_0 Directory

| Name                                                                   | Description                  |
|------------------------------------------------------------------------|------------------------------|
| <pre><pre><pre><pre>project_dir&gt;/ip/axi_dat</pre></pre></pre></pre> | amover_v3_00_a_0             |
| proc_common_v3_00_a                                                    | Helper cores folder          |
| sim                                                                    | Simulation wrapper folder    |
| synth                                                                  | Synthesis wrapper folder     |
| axi_datamover.veo/.vho                                                 | Instantiation template files |

Back to Top



# <axi\_datamover\_v3\_00\_a\_0>axi\_datamover\_v3\_00\_a/hdl/src/vhdl

The axi\_dma RTL files are delivered under /ip/axi\_datamover\_v3\_00\_a/hdl/src/vhdl directory.





# Constraining the Core

There are no applicable constraints for this core in the Vivado™ Design Suite environment.



# SECTION III: ISE DESIGN SUITE

Customizing and Generating the Core
Constraining the Core



# Customizing and Generating the Core

This chapter includes information about using Xilinx tools to customize and generate the core in the ISE® Design Suite environment.

## **GUI**

The AXI DataMover can be found in AXI Infrastructure in the Xilinx CORE Generator™ GUI View by Function pane.

To access the AXI DataMover, do the following:

- 1. Open a project by selecting **File** then **Open Project** or create a new project by selecting **File** then **New Project**.
- 2. With an open project, choose **AXI Infrastructure** in the View by Function pane.
- 3. Double-click on **AXI DataMover**; this brings up the AXI DataMover GUI.

The AXI DataMover GUI contains one screen (Figure 6-1) that provides information about the core, allows for configuration of the core, and provides the ability to generate the core.





Figure 6-1: AXI DataMover GUI

- **Component Name** This field contains the base name of the output files generated for the core. Names must begin with a letter and can be composed of any of the following characters: a to z, 0 to 9, and "".
- **MM2S Channel Options** The following subsections describe options that affect only the MM2S channel of the AXI DataMover core.
  - Channel Type This option allows you to configure the MM2S channel in Basic, Full mode or to disable the channel. Setting the channel type to Basic disables the channel. Setting channel type to Full includes the Full version of DataMover. Setting the channel type to Omit includes the Basic version of DataMover.
  - **ID Value** This setting is the ID value of MM2S ID bus and drive onto the MM2S Address Channel ARID output.
  - ID Width This setting is the bit width of MM2S ID bus.
  - Memory Map Address Width This setting is the address width of the MM2S Channel. AXI DataMover core supports Memory Map address width from 32 bits to 64 bits.



- Address Pipeline Depth This setting provides internal MM2S queuing depth used for child command address pipelining. The value controls how many address qualifier sets can be committed (pipelined) to the AXI4 Read Data Channel.
- Memory Map Data Width This setting is the data width in bits of the AXI MM2S Memory Map Read data bus. Valid values are 32, 64, 128, 256, 512, and 1024.
- Maximum Burst Size This option specifies the maximum size of the burst cycles on the AXI MM2S Memory Map Read interface. In other words, this setting specifies the granularity of burst partitioning. For example, if the burst length is set to 16, the maximum burst on the memory map interface is 16 data beats. Smaller values reduce throughput but result in less impact on the AXI infrastructure. Larger values increase throughput but result in a greater impact on the AXI infrastructure. Valid values are 16, 32, 64, 128, and 256.
- **Stream Data Width** This setting is the data width in bits of the AXI MM2S Stream data bus. Valid values are 8, 16, 32, 64, 128, 256, 512, and 1024. This value must be less than or equal to the AXI MM2S Memory Map data width.
- **Enable Asynchronous Clocks** This setting allows you to operate the MM2S Command and Status Stream interface asynchronously with MM2S Memory Map interface.
- Include MM2S STS FIFO This setting allows you to include or exclude the MM2S Status (STS) FIFO. If the Status FIFO is included, its depth is defined by C\_MM2S\_STSCMD\_FIFO\_DEPTH.
- **STS Command FIFO Depth** This setting is the depth of the MM2S Status and Command FIFO. A specified value of 1 indicates a single register implementation. Valid values are 1, 4, 8, and 16. If asynchronous clocks are enabled, the Command and Status FIFO depth is automatically set to a depth of 16 and this option setting is ignored.
- BTT Bit Used This setting defines the actual number of BTT bits used by the AXI DataMover core out of the 23-bit BTT field in the DataMover Command. The value assigned to this field must be greater than or equal to the value log2(Stream Data Width/8 X Maximum Burst Size).
- Realignment Engine (DRE). When checked, the DRE is enabled and allows data realignment to the byte (8 bits) level on the MM2S Memory Map datapath. For the MM2S channel, data is read from the memory. If the DRE is enabled, data reads can start from any Buffer Address offset, and the read data is aligned such that the first byte read is the first valid byte out on the AXI4-Stream. What is considered aligned or unaligned is based on the stream data width C\_M\_AXIS\_MM2S\_TDATA\_WIDTH. For example, if C\_M\_AXIS\_MM2S\_TDATA\_WIDTH = 32, data is aligned if it is located at word offsets (32-bit offset), that is, 0x0, 0x4, 0x8, 0xC, and so forth. If C\_M\_AXIS\_MM2S\_TDATA\_WIDTH = 64, data is aligned if it is located at the double-word offset (64-bit offsets), that is, 0x0, 0x8, 0x10, 0x18, and so forth.



For use cases where all transfers are C\_M\_AXIS\_MM2S\_TDATA\_WIDTH aligned, DRE can be disabled to save FPGA resources.

**Note:** Having an unaligned address with the DRE disabled produces undefined results. DRE support is only available for the AXI4-Stream data width setting of 64-bits and less.

- **Enable Store and Forward** This setting provides the inclusion/omission of the MM2S Store and Forward function. If the MM2S Stream Channel data width is less than the Memory Mapped data width, a downsizer function is automatically inserted on the Stream side of the Store and Forward module.
- **S2MM Channel Options** The following subsections describe options that affect only the S2MM channel of the AXI DataMover core.
  - **Channel Type** This option allows you to configure the S2MM channel in Basic, Full mode or to disable the channel. Setting the channel type to Basic disables the channel. Setting channel type to Full includes the Full version of DataMover core. Setting the channel type to Omit includes the Basic version of DataMover core.
  - **ID Value** This setting is the ID value of S2MM ID bus and drive onto S2MM Address Channel AWID output.
  - **ID Width –** This options sets the bit width of the S2MM ID bus.
  - Memory Map Address Width Address width of the S2MM Channel. The AXI DataMover core supports Memory Map address width from 32 bits to 64 bits.
  - Address Pipeline Depth This setting provides internal S2MM queuing depth used for child command address pipelining. The value controls how many address qualifier set can be committed (pipelined) to the AXI4 Write Data Channel.
  - Memory Map Data Width This option sets the data width in bits of the AXI S2MM Memory Map Write data bus. Valid values are 32, 64, 128, 256, 512, and 1024.
  - **Stream Data Width** This option sets the data width in bits of the AXI S2MM Stream data bus. Valid values are 8, 16, 32, 64, 128, 256, 512, and 1024. This value must be less than or equal to the AXI S2MM Memory Map data width.
  - Maximum Burst Size This option specifies the maximum size of the burst cycles on the AXI S2MM Memory Map Read interface. In other words, this setting specifies the granularity of burst partitioning. For example, if the burst length is set to 16, the maximum burst on the memory map interface is 16 data beats. Smaller values reduce throughput but result in less impact on the AXI infrastructure. Larger values increase throughput but result in a greater impact on the AXI infrastructure. Valid values are 16, 32, 64, 128, and 256.
  - Enable Asynchronous Clocks This setting allows you to operate S2MM
     Command and Status Stream interface asynchronously with S2MM Memory Map interface.



- Include S2MM STS FIFO This setting allows you to include or exclude the S2MM Status FIFO. If the Status FIFO in included, its width is defined by C\_S2MM\_STSCMD\_FIFO\_DEPTH.
- **STS Command FIFO Depth** This options sets the depth of the S2MM Status and Command FIFO. A specified value of 1 indicates a single register implementation. Valid values are 1, 4, 8, and 16. If asynchronous clocks are enabled, the Command and Status FIFO depth is automatically set to a depth of 16 and this option setting is ignored.
- **BTT Bit Used** This setting defines the actual number of BTT bits used by the DataMover core out of the 23-bit BTT field in the DataMover Command. The value assigned to this field must be greater than or equal to the value log2(Stream Data Width/8 X Maximum Burst Size).
- Realignment Engine (DRE). When checked, the DRE is enabled and allows data realignment to the byte (8 bits) level on the S2MM Memory Map datapath. For the S2MM channel, data is written to the memory. If the DRE is enabled, data writes can start from any Buffer Address offset, and the read data is aligned such that the first byte read is the first valid byte out on the AXI4-Stream. What is considered aligned or unaligned is based on the stream data width C\_S\_AXIS\_S2MM\_TDATA\_WIDTH. For example, if C\_S\_AXIS\_S2MM\_TDATA\_WIDTH = 32, data is aligned if it is located at word offsets (32-bit offset), that is, 0x0, 0x4, 0x8, 0xC, and so forth. If C\_S\_AXIS\_S2MM\_TDATA\_WIDTH = 64, data is aligned if it is located at the double-word offset (64-bit offsets), that is, 0x0, 0x8, 0x10, 0x18, and so forth. For use cases where all transfers are C\_S\_AXIS\_S2MM\_TDATA\_WIDTH aligned, DRE can be disabled to save FPGA resources.

**Note:** Having unaligned address with DRE disabled produces undefined results. The DRE support is only available for AXI4-Stream data width setting of 64-bits and less.

- **Enable Store and Forward** This setting provides the inclusion/omission of the S2MM Store and Forward function. If the S2MM Stream Channel data width is less than the Memory Mapped data width, an upsizer function is automatically inserted on the Stream side of the Store and Forward module.
- Enable Indeterminate BTT Mode This setting provides the Indeterminate BTT mode. This is needed when the number of bytes to be received on the input S2MM Stream Channel is unknown at the time the transfer command is posted to the DataMover's S2MM command input.



## **Core Implementation**

### **Functional Simulation**

VHDL and Verilog source files for axi\_datamover\_v3\_00\_a are provided un-encrypted for use in behavioral simulation within a simulation environment. Neither a test bench nor test fixture is provided with the AXI DataMover core.

### **Synthesis**

Synthesis of the AXI DataMover can be performed with XST.

### **Xilinx Tools**

See the LogiCORE IP Facts Table table.

### **Static Timing Analysis**

Static timing analysis can be performed using trace, following ngdbuild, map, and par.

## **Output Generation**

The output files generated from the Xilinx CORE Generator tool are placed in the project directory. The file output list can include some or all of the following files.



#### project directory>

Top-level project directory; name is user-defined



AXI DataMover doc and source files



<axi\_datamover\_component name>/doc AXI DataMover solution PDF documentation



<axi datamover component name>/hdl/src/vhdl

Source files for AXI DataMover core



## oject directory>

The project directory contains templates for instantiation of the core and the xco file.

**Table 6-1:** Project Directory

| Name                                                                          | Description                                                                                                                                                                                                                                                                                       |  |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <pre><pre><pre><pre>project_c</pre></pre></pre></pre>                         | ir>                                                                                                                                                                                                                                                                                               |  |
| <axi_datamover_component_name>.xco</axi_datamover_component_name>             | Log file from CORE Generator tool describing which options were used to generate the AXI DataMover core. An XCO file is generated by the CORE Generator tool for each core that it creates in the current project directory. An XCO file can also be used as an input to the CORE Generator tool. |  |
| <axi_datamover_component_name>_flist.txt</axi_datamover_component_name>       | A text file listing all of the output files produced when the customized AXI DataMover core was generated in the CORE Generator tool.                                                                                                                                                             |  |
| <axi_datamover_component_name>.vho</axi_datamover_component_name>             | The HDL template for instantiating the AXI DataMover core.                                                                                                                                                                                                                                        |  |
| <axi_datamover_component_name_synth>.vhd</axi_datamover_component_name_synth> | The HDL synthesis wrapper file with the modified parameter configuration of AXI DataMover core.                                                                                                                                                                                                   |  |
| <axi_datamover_component_name_sim>.vhd</axi_datamover_component_name_sim>     | The structural simulation model for the AXI DataMover core. It is used for functionally simulating the core.                                                                                                                                                                                      |  |

Back to Top

### ct directory>/<axi\_datamover\_component name>

The axi\_datamover\_component name directory contains the doc and hdl folder.

## <axi\_datamover\_component name>/doc

The doc directory contains the appropriate product guide.

*Table 6-2:* **Doc Directory** 

| Name                                                                                     | Description                                                                        |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre> | _component_name>/doc                                                               |
| axi_datamover_v3_00_a_readme.txt axi_datamover_v3_00_a_readme_vinfo.html                 | The AXI DataMover release notes and core information file in text and html format. |
| pg022_axi_datamover.pdf                                                                  | AXI DataMover Product Guide                                                        |

Back to Top



### <axi\_datamover\_component name>/hdl/src/vhdl

The hdl/src/vhdl contains AXI DataMover source files including the proc\_common library helper files.





# Constraining the Core

There are no applicable constraints for this core in the ISE® Design Suite environment.



# SECTION IV: APPENDICES

Migrating

Debugging

**Additional Resources** 





# Migrating

For information on migrating to the Vivado™ Design Suite, see *Vivado Design Suite Migration Methodology Guide* (UG911).





# Debugging

See the <u>Xilinx Solution Centers</u> for support on devices, software tools, and intellectual property at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting tips.



# Additional Resources

## **Xilinx Resources**

For support resources such as Answers, Documentation, Downloads, and Forums, see the Xilinx Support website at:

www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

www.xilinx.com/company/terms.htm.

## References

To search for Xilinx documentation, go to www.xilinx.com/support

These documents provide supplemental material useful with this product guide:

- 1. LogiCORE IP AXI Interconnect Product Guide (PG059)
- 2. Vivado Design Suite Migration Methodology Guide (UG911)
- 3. Vivado™ Design Suite documentation: www.xilinx.com/cgi-bin/docs/rdoc?v=2012.3;t=vivado+userquides
- 4. AMBA® AXI4-Stream Protocol Specification
- 5. ARM® AXI4 Memory Mapped Specification
- 6. ARM AXI4-Stream Interface Specification



## **Technical Support**

Xilinx provides technical support at <a href="www.xilinx.com/support">www.xilinx.com/support</a> for this LogiCORE™ IP product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled DO NOT MODIFY.

See the IDS Embedded Edition Derivative Device Support web page (<a href="www.xilinx.com/ise/">www.xilinx.com/ise/</a> embedded/ddsupport.htm) for a complete list of supported derivative devices for this core.

See the IP Release Notes Guide (XTP025) for more information on this core. For each core, there is a master Answer Record that contains the Release Notes and Known Issues list for the core being used. The following information is listed for each version of the core:

- New Features
- · Resolved Issues
- Known Issues

## **Revision History**

The following table shows the revision history for this document.

| Date     | Version | Revision                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10/19/11 | 1.0     | Initial Xilinx release.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 07/11/12 | 1.1     | Template update.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 07/25/12 | 2.0     | Updated for Vivado 2012.2, Zynq features, and ISE v14.2<br>Added Vivado content in Customizing and Generating the Core                                                                                                                                                                                                                                                                                                                                                           |
| 10/16/12 | 2.0.1   | <ul> <li>Updated for Vivado 2012.3 and ISE v14.3.</li> <li>Added MM2S and S2MM block Information</li> <li>Added two figures showing typical use cases for DataMover</li> <li>Removed AXI Read Master, AXI Write Master sections, AXI DataMover Operation, and Parameter I/O Signal Dependencies sections</li> <li>Added two new sections to Chapter 3:         <ul> <li>Example DataMover Read(MM2S) Timing</li> <li>Example DataMover Write(S2MM) Timing</li> </ul> </li> </ul> |



## **Notice of Disclaimer**

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at <a href="http://www.xilinx.com/warranty.htm">http://www.xilinx.com/warranty.htm</a>; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications:

http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA and ARM are registered trademarks of ARM in the EU and other countries. All other trademarks are the property of their respective owners.