(C)	STRANDEDNESS:	double
-----	---------------	--------

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 147: 5 GGCAGAGCCT CAAGCTGACT TGGATTATGT GGTCCCTCAA ATCTACCGAC ACATGCAGGA 60 GGAGTTCCGG GGCCGGTTAG AGAGGACCAA ATCTCAGGGT CCCCTGACTG TGGCTGCTTA 120 10 TCAKWYGGGG AGTGTCTACT CAGCTGCTAT GGTCACAGCC CTCACCCTGT TGGCCTTCCC 180 ACTTCTGCTG TTGCATGCGG AGCGCATCAG CCTTGTGTTC CTGCTTCTGT TTCTGCAGAG 240 CTTCCTTCTC CTACATCTGC TTGCTGCTGG GATACCCGTC ACCACCCCTG GTCCTTTTAC 300 15 TGTGCCATGG CAGGCAGTCT CGGCTTGGGC CCTCATGGCC ACACAGACCT TCTACTCCAC 360 AGGCCACCAG CCTGTCTTTC CAGCCATCCA TTGGCATGCA GCCTTCGTGG GATTCCCAGA 420 20 GGGTCATGGC TCCTGTACTT GGCTGCCTGC TTTGCTAGTG GGAGCCAACA CCTTTGCCTC 480 CCACCTCCTC TTTGCAGTAG GTTGCCCACT GCTCCTGCTC TGGCCTTTCC TGTGTGAGAG 540 TCAAGGGCTG CGGAAGAGAC AGCAGCCCCC AGGGAATGAA GCTGATGCCA GAGTCAGACC 600 25 CGAGGAGGAA GAGGAGCCAC TGATGGAGAT GCGGCTCCGG GATGCGCCTC AGCACTTCTA 660 TGCAGCACTG CTGCAGCTGG GCCTCAAGTA CCTCTTTATC CTTGGTATTC AGATTCTGGC 720 30 CTGTGCCTTG GCAGCCTCCA TCCTTCGCAG GCATCTCATG GTCTGGAAAG TGTTTGCCCC 780 TAAGTTCATA TTTGAGGCTG TGGGCTTCAT TGTGAGCAGC GTGGGACTTC TCCTGGGCAT 840 AGCTTTGGTG ATGAGAGTGG ATGGTGCTGT GAGCTCCTGG TTCAGGCAGC TATTTCTGGC 900 35 CCAGCAGAGG TAGCCTAGTC TGTGATTACT GGCACTTGGC TACAGAGAGT GCTGGAGAAC 960 AGTGTAGCCT GGCCTGTACA GGTACTGGAT GATCTGCAAG ACAGGCTCAG CCATACTCTT 1020 40 1080 ACTATCATGC AGCCAGGGC CGCTGACATC TANGACTTCA TTATTCWATR ATTCAGGACC ACAGTGGAGT ATGATCCCTA ACTCCTGATT TGGATGCATC TGAGGGACAA GGGGGKCGGT 1140 STCCGAAGTG GAATAAAATA GGCGGGCGTG GTGACTTGCA CCT 1183 45

(2) INFORMATION FOR SEQ ID NO: 148:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 734 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 148:

GAATTCGGCA GAGTGAAGCA TTAGAATGAT TCCAACACTG CTCTTCTGCA CCATGAGACC 60

50

	AACCCAGGGC A	AAGATCCCAT	CCCATCACAT	CAGCCTACCT	CCCTCCTGGC	TGCTGGCCAK	120
	GATGTCGCCA (GCATTACCTT	CCACTGCCTT	TCTCCCTGGG	AAGCAGCACA	GCTGAGACTG	180
5	GCCACCAGGC (CACCTCTGTT	GGGACCCACA	GGAAAGAGTG	TGGCAGCAAC	TGCMTGGCTG	240
	ACCTTTCTAT	CTTCTCTAGG	CTCAGGTACT	GCTCCTCCAT	GCCCATGGYT	GGGCCGTGGG	300
10	GAGAAGAAGC '	TCTCATACGC	CTTCCCACTC	CCTCTGGTTT	ATAGGACTTC	ACTCCCTAGC	360
10	CAACAGGAGA	GGAGGCCTCC	TGGGGTTTCC	CCRRGGCAGT	AGGTCAAACG	ACCTCATCAC	420
	AGTCTTCCTT	CCTCTTCAAG	CGTTTCATGT	TGAACACAGC	TCTCTCCRCT	CCCTTGTGAT	480
15	TTCTGAGGGT	CACCACTGCC	ARCCTCAGGC	AACATAGAGA	CCCTCCTGTT	CTTTCTATGC	540
	TTGGTCTGAC	TGAGCCTAAA	GTTGAGAAAA	TGGGTGCCAA	GGCCAGTGCC	AGTGTCTTGG	600
20	GGCCCCTTTG	GCTCTCCCTC	ACTCTCTGAG	GCTCCAGCTG	GTCCTGGGAC	ATGCAGCCAG	660
20	GACTGTGAGT	CTGGGCASGT	CCAAGGCCTG	CACCTTCAAG	AAGTGGAATA	AATGTGGCCT	720
	TTGCTTCTAT	TTAA					734
25							
				40			

(2) INFORMATION FOR SEQ ID NO: 149:

30 (i) SEQUENCE CHARACTERISTICS:

35

40

45

50

55

60

(A) LENGTH: 1405 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 149:

GGCACAGTGG ACCCCAGACT CCCTCTCCGC CTTTCTCTGC CTGGGGAGAC CCACTGTGTG CATGGCATCA CTGACTCCCA TACCTCTGGC TATCAAAGGT TTCTGCCATG GCCACCCTGG 120 AAGSAAACCA GAGGGAGGTA GACAGGGAGA TCAGGTCCCT TCTACTCTGG TTCCTGCTCT 180 GTGAAATTGT CTCAGGCTGG CTGTGTCCAG ARGGTCCCTG GTTCTCTCAR GGATGCCAAA 240 TCTACAAGAA TCTCTCCTCT TCCAGTTCCT ATAACCTCTC CTTCCTTTTG TCTCTTTAGA 300 CCTTGGAGTA GTAGCAGCCA GGTTCTTTCT ATCTCTGGGT TAGTGCATTA TCTCTGGTGG 360 CTCCCTTACC CAGGACTITG GGAATGGTCT TITTGTAATA CATTCTCCTC AAATAATTCA 420 ATTTTGAGTG TTCTGTATGT ATCCTGCTGG GAGGTTGTTA TATACAAATC ACTGTGCCCG 480 TTTAGCAGAG AAGGAGACTG AAGCTCAGGG AGGTTAAGTG TCTTTCTCTA GGTCGTATTG 540 TGGAGAAAGT GGCTGACTGG GGACTTGAAT GAGGTCCCTA GTTTCATGCT CGGAGGGCAA 600 AGANGAATGT CCAATTGGCC TGAGATAAGC CTCTGGTAAA ATGTACTGTA CATAATAGGT AATCAATAAA TGTTGGCTGA TGACAAACAT GTTTTCTTTG TTCATTAGTT ATAGTGATTA 720

	TGTTCTAAAT	AACTCCMACA	AGGAARTCAG	CACATTTGGA	ATATCAWTAT	CTTTCCATGA	780
5	TAATATCTTT	CCMYGGAAAG	AWAATGATAT	TCCMAACTGG	GAGTGTCCCW	AGCARATCTG	840
3	ANTCTGTGTA	TTGGCCCTGG	GGTGGGCCAG	CCCCTTAGAC	TCTATGGTCT	CATTCTCTTT	900
	GTTTACAAAA	TTGAGATAAG	GCCTTATTCT	CTCCCCACCC	CACCCATCCA	TATTGTTTTG	960
10	AGAATAAAAT	GAGAGGATGT	GTGTCAAGGG	TGTATTTTGG	CAATAGTCTC	TGAGCCATTT	1020
	TCTGAGCACC	TCCATACTGT	TGACACTCAA	GTAATATTTC	ATCAGCATTC	CATTCAGGNT	1080
15	CCTCCCTTAA	TGAGGTGTGC	GATGTACAAG	AGTYGTGAGG	TGGCAAAGGA	TEGGCTCCTG	1140
13	AGGAAACACT	TAGGAAACTG	GGCTTTCTGC	CATTAAAAGA	GACAAACCTT	TGTGGTGACC	1200
	TAATTAAAGT	TTTTAAAATT	CAATTTGGAA	AGTTAGCAAG	CTAGCTCCTK	TCCAGGWAAA	1260
20	ATAAGGAGTC	AGTGCATGAC	CTAACCGGTC	CCGGGCTGCT	TGCCATTCCA	AACAACTGCA	1320
	GTAAGTTTAT	CACNTTCTTT	CAGGGACTGA	GGTTTCCAGG	CACAGACTTG	GATAAGGAAG	1380
25	GATGTCCTAT	GGGTCACAT	TGATG				1405

(2) INFORMATION FOR SEQ ID NO: 150:

30

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2890 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150:

40	TTATATGCTA	CAGCTACAGT	AATTTCTTCT	CCAAGCACAG	AGGANCTITC	CCAGGATCAG	60
40	GGGGATCGCG	CGTCACTTGA	TGCTGCTGAC	AGTGGTCGTG	GGAGCTGGAC	GTCATGCTCA	120
	AGTGGCTCCC	ATGATAATAT	ACAGACGATC	CAGCACCAGA	GAAGCTGGGA	GACTOTTCCA	180
45	TTCGGGCATA	CTCACTTTGA	TTATTCAGGG	GATCCTGCAG	GTTTATGGGC	ATCAAGCAGC	240
	CATATGGACC	AAATTATGTT	TTCTGATCAT	AGCACAAAGT	ATAACAGGCA	AAATCAAAGT	300
50	AGAGAGAGCC	TTGAACAAGC	CCAGTCCCGA	GCAAGCTGGG	CGTCTTCCAC	AGGTTACTGG	360
30	GGAGAAGACT	CAGAAGGTGA	CACAGGCACA	ATAAAGCGGA	GGGTGGAAA	CGATGTTTCC	420
	ATTGAAGCCG	AAAGCAGTAG	CCTAACGTCT	GTGACTACGG	AAGAAACCAA	GCCTCTCCCC	480
55	ATGCCTGCCC	ACATAGCTGT	GGCATCAAGT	ACTACAAAGG	GGCTCATTGC	ACGAAAGGAG	540
	GGCAGGTATC	GAGAGCCCCC	GCCCACCCCT	CCCGGCTACA	TTGGAATTCC	CATTACTGAC	600
60	TTTCCAGAAG	GGCACTCCCA	TCCAGCCAGG	AAACCGCCGG	ACTACAACGT	GCCCTTCAG	660

	AGATCGCGGA TGGTCGCACG ATCCTCCGAC ACAGCTGGGC CTTCATCCGT ACAGCAGCCA	720
	CATGGGCATC CCACCAGCAG CAGGCCTGTG AACAAACCTC AGTGGCATAA AYCGAACGAG	780
5	TCTGACCCGC GCCTCGCCCC YTATCAGTCC CAAGGGTTTT CCACCGAGGA GGATGAAGAT	840
	GAACAAGTTT CTGCTGTTTG AGGCACAGAC TTTTCTGGAA GCAGAGCGAG CCACCTGAAA	900
10	GGAGAGCACA AGAAGACGTC CTGAGCATTG GAGCCTTGGA ACTCACATTC TGAGGACGGT	960
10	GGACCAGTTT GCCTCCTTCC CTGCCTTAAA AGCAGCATGG GGSTTCTTCT CCCCTTCTTC	1020
	CTTTCCCCTT TGCATGTGAA ATACTGTGAA GAAATTGCCC TGGCACTTTT CAGACTTTGT	1080
15	TECTTGAAAT GCACAGTECA GCAATCTTCG AGCTCCCACT GTTGCTGCCT GCCACATCAC	1140
	ACAGTATCAT TCCAAATTCC AAGATCATCA CAACAAGATG ATTCACTCTG GCTGCACTTC	1200
20	TCAATGCCTG GAAGGATTTT TTTTAATCTT CCTTTTAGAT TTCAATCCAG TCCTAGCACT	1260
20	TGATCTCATT GGGATAATGA GAAAAGCTAG CCATTGAACT ACTTGGGGCC TTTAACCCAC	1320
	CAAGGAAGAC AAAGAAAAAC AATGAAATCC TTTGAGTACA GTGCTTGTCC ACTTGTTTAC	1380
25	AATGTCCTCC TTTTAAAAAA AAAAAAATGA GTTTAAAGAT TTTGTTCAGA GAGTAAATAT	1440
	ATATCCATTT AATGATTACA GTATTATTTT AAACCTTAAG TAGGGTTGCC AGCCTGGTTT	1500
30	CTGAAAAACC AAATATGCCG GACAGGGTGT GGCCACACCA AGAAGACGGG AAGACCTGGC	1560
50	TTGTGACCCT GGCTTCCCAT GTCCTTCTGG TCTCACCCGC GAAGTGCCCT ATCCTGGAAG	1620
	TATGAAATGT TAGCCAATTA ATACCAAGAC ACCTCATCTG CTCCTTCCCC AGTGGATGGG	1680
35	GTTCTTCTGT AAAACTGTTT GCACATGGCC AGGGGAGGGA ACTAGGACCC TTGTGTCCTG	1740
	TCTGAGCCTT ATGGAGGCAG GACGGTGTCA TTGGCGGATG TGTCCTGCTC CATTGAGATG	1800
40	GATGGCAAAC CCCATTITTA AGTTATATTT CTTTGATTTT TGTTAATTTA GAGGTGTAGG	1860
.0	TITIGITITT TGITTTITIG TITITITTA AGAGAAACAT TIATAACTGG ATAGCATTGC	1920
	AGTGAAAGCA GCTTGGGATG TTGGAGCTAA TGCCAGCTGT TTATACTGCT CTTTCAAGAC	1980
45	AGCCTCCCTT TATTGAATTG GCATTAGGGA ATAAACAAGC CTTTAAACGT GATAAAAGAT	2040
	CAAAAACCTG GTTAGACATG CCAGCCTTTG CAAGGCAGGT TAGTCACCAA AGACTAACCT	2100
50	CCAAGTGGCT TTATGGACGC TGCATATAGA GAAGGCCTAA GTGTAGCAAC CATCTGCTCA	2160
	CAGCTGCTAT TAACCCTATA ATGACTGAAA TGACCCCTCC ACTCTATTTT TGTGTTGTTT	2220
	TGCACAGACT CCGGAAAAGT GAAGGCTGCC AATCTGAGTA GTACTCAAAT GTGAGGAACT	2280
55	GCTGGTCTTG GATTTTTTT CCATTAAATT CAGCTGATCA TATTGATCAG TAGATAAACG	2340
	TAAATAGCTT CAAATTTTAA AAGTGGAATT GCAGTGTTTT TICACTGTAT CAAACAATGT	2400
60	CAGTGCTTTA TTTAATAATT CTCTTCTGTA TCATGGCATT TGTCTACTTG CTTATTACAT	2460

	TGTCAATTAT	GCATTTGTAA	TTTTACATGT	AATATGCATT	ATTTGCCAGT	TTTATTATAT	2520
	AGGCTATGGA	CCTCATGTGC	ATATAGAAAG	ACAGAAATCT	AGCTCTACCA	CAAGTTGCAC	2580
5	AAATGTTATC	TAAGCATTAA	GTAATTGTAG	AACATAGGAC	TGCTAATCTC	AGTTCGCTCT	2640
	GTGATGTCAA	GTGCAGAATG	TACAATTAAC	TGGTGATTTC	CTCATACTTT	TGATACTACT	2700
0	TGTACCTGTA	TGTCTTTTAG	AAAGACATTG	GTGGAGTCTG	TATCCCTTTT	GTATTTTTAA	2760
	TACAATAATT	GTACATATTG	GTTATATTTT	TGTTGAAGAT	GGTAGAAATG	TACTATGTTT	2820
	ATGCTTCTAC	ATCCAGTTTG	TACAAGCTGG	AAAATAAATA	AATATAACAT	AAAAAAAA	2880
15	AAAAAAAAA						2890

20 (2) INFORMATION FOR SEQ ID NO: 151:

25

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2399 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151:

30	GAACTTTTCC	ATCTGGCAAA	CCGGAAACTC	CATCCCCATT	AAACCAACTC	CCCCTTTTGG	60
	TTTCCCCCCC	AGNGGAATAG	AATTTGGACN	CCCATATAAA	TCCAGGAAAC	CACCTAAATT	120
35	CTTTAGTNGT	TTGTGTTTGC	AAGATCTAAG	GTCATGGTAA	ACATTAAGTT	CTTAAAATTT	180
33	TTGGGAGGGA	CCAGTGCACC	TCTCCCTCTG	AATTGTTCNC	CAATTTAAAA	TTGGAGTAAG	240
	GTTTTAAAAT	GTCTNATTCC	ATTGGAAGGG	TNTGTTATTT	CATTTTGAGC	CCAGAGGGGA	300
40	GAGGCACATT	TTAAATATCA	GAATTAGATT	AGCTTTGAGT	TTGTACAATT	GGGAACATAA	360
	TAGATTTTCA	TAAATTATGT	GIGCCIIGIT	GGAAGTGTCA	ACTGTCTTTA	TGTCTGCTTG	420
45	TAAAAGTTTC	AAAATATGTT	TTCCCTCAAA	AAGGCAACGT	TACTTCATTT	GCTTGAATAT	480
73	TATGATAGGA	ATGCTTACTG	ATATTACTTG	ATAGTCATAT	ATAGCCTAGG	AAATTTAACA	540
	TATATATAAC	TATAGCAGTA	TTAATAATGA	TAGTTGTACT	TCTTTAAAAC	ATTAAATTTG	600
50	AGGAAACTTT	AATGCTGTCT	CGTGTACATT	GCTTTACTAC	AGTGAGGGG	AATATCCTTT	660
	AGATTGAGCC	TCAATTTACT	GGTTAGTAGT	ATGTGAACTC	TGGTATAAAA	ACGTAAACTA	720
55	GACAGTAGAG	CCGATGAATT	AAAATTGTAA	ATTGCTACAT	TGGCATTTTC	TACCTCCTTT	780
	TCTGTCAGAG	TATTACTTTT	TCCAGCATTT	ATTCTTATTT	GTGAGTAAAG	AGGAAATGGG	840
	AACCTGAGGT	TAAAATTGAC	ATTTTTGTTT	CATTGAGAAT	TTAAGCAGTA	GGTACAGGAG	900
60	AAGTGACTTG	TCACATTAAT	TTGGTGCCTA	AATCTGTAAC	TACAAGTTGT	GATCGACATG	960

	TACAAAATGT	CTAAGAAAGG	TCATATGCTG	AATATTTTAC	TTTTCCTGTA	TAGTCTGCAT	1020
5	GATTTGTTTC	ATAAACCCAG	CTTATTTCCT	CCAAAAAGCA	AAATGGTCCT	GTAATTTTTA	1080
J	aagtaaaata	AACGTGCCAT	TTTGTCTGCA	ATCTATAATT	TCAGGAAGTT	ATTGRAAGTT	1140
	CTGACTCAGG	GCTTTTTAAC	AGTTCAAGCA	ATTGTCAGTT	ATATTTTGGA	AACTCCATCT	1200
.0	GTGTAATTCT	CCAGTGCCTT	GAAAGAATTA	TTAACTTGGC	AACACTATTA	AAACTTTATA	1260
	AAAGATGGTC	TTTAGTGCAC	GTGTATCATT	ATATACACGT	TTTAAAGTCA	TATTGCTTAG	1320
15	CTTGTTAATA	ATGATTCTGC	ATGTGTGCTG	GGTTTGGGTA	ATTCTTTAAA	GGAAGTTTTC	1380
	TAGATTTGCA	CTTGATGTTT	GTTTTTTAAA	AACTGATTAT	TTATGGCCGT	GACACTGTTA	1440
	CCAGAAAAGT	AATTCTAATT	AAGTTATTAT	GCAAAGTCAT	CTATAAGTAG	CATCTGGGAA	1500
20	GAGGAGATSG	AGGCCACAGT	TTGCTATTTT	AGTATGAAAG	GAGGATCTGT	TTGGGAAACA	1560
	TAGATTGTCT	TCCCCTCAAA	TGAGGGGAAA	. AAAAAAGACC	CTTTGTTCAA	ATGGATTCTG	1620
25	TTGTAAAAAA	AATTTTTAT	AGGAAATCAC	AAATTGTATG	TCATTCTTAA	TGCTAGTCTT	1680
	ATAGAATAAA	TCCATAAAAT	TGTTTTTATG	TTCAGTATGT	TTATGTCATT	CTAAATGCAG	1740
	CAAATTCAAT	GATAGCAGTT	CAATTGACTC	ATAGCAGTGT	TTTGTATTTT	TTCTAATTCT	1800
30	TTAGCTTTCA	ATATTGGATT	AAAGTCTTGT	TTGTGAATAT	AGTTTCCGTA	TGGCAAATGA	1860
	TTTCTTGCTT	ATTAGCTTTT	GTTAAAGAAT	GCTTAGTAAG	AGCTAAGCTT	TTAAAAGTAA	1920
35	TGCAAACATT	TATCGTTAAT	AAAACCTATG	GTGTAATATC	: ATATAATGCT	TTTCTTTGAT	1980
	CTTTGGAGAA	TTATTCTTT	ATAGTAGTAT	CATGAATTI	TGATTTTAA	AGCATTTAAA	2040
	AACAAATCTC	AATACATTAA	AAAACCTGTT	T ATTGTTAAAA	RGGAAATTAC	CATGCCTTTA	2100
40	AGAAACAAGO	ATGTACATCT	TCAATTCAGG	ATRAGTGTCC	ACATCTAGAA	GGCTCTCATT	2160
	GCAGTTGTT	ACAGTTAAGG	TACCTCTATO	TAAAGGGCCA	A AAGAAGCATT	TCATAYTTTA	2220
45	ACACCTCACA	A TTCTTTCAGO	ATTAAGACAT	r atgaaaatac	TCTGAATAGO	ATAAATTTGG	2280
	ATAGGAAGT	A ACTTAACCAC	TCTGGGAAG!	A TTCAGGCTTT	TTCTATKAA	AAGCTTATTC	2340
	CTCTTCACA	A CTCNGGTGGT	R AGGNITICA	TTTTCAAGAG	GGTAGATAT	TTAAAGCCA	239

(2) INFORMATION FOR SEQ ID NO: 152:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 802 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 152:	
	CGTGCCTGTA GTAAGCTCAT CCCTGCCTTT GAGATGGTGA TGCGTGCCAA GGACAATGTT	60
5	TACCACCTGG ACTGCTTTGC ATGTCAGCTT TGTAATCAGA GATTNTGTGT TGGAGACAAA	120
	TITITCCTAA AGAATAACWI GAYCCTITGC CARACGGACT ACGAGGAAGG TITAATGAAA	180
	GAAGGTTATG CACCCCMGGT TCGCTGATCT ATCAACATCA CCCCATTAAG AATACAAAGC	240
10	ACTACATTCT TTTATCTTTT TTGCTCCACA TGTACATAAG AATTGACACA GGAACCTACT	300
	GAATAGCGTA GATATAGGAA GGCAGGATGG TTATATGGAA TAAAAGGCGG ACTGCATCTG	360
15	TATGTAGTGA AATTGCCCCA GTTCAGAGTT GAATGTTTAT TATTAAAGAA AAAAGTAATG	420
	TACATATGGC TGGATTTTT TGCTTGCTAT TCGTTTTTGT GTCACTTGGC ATGAGATGTT	480
	TATTTTGGAC TATTGTATAT AATGTATTGT AATATTTGAA GCACAAATGT AATACAGTTT	540
20	TATTGTGTTA CCATTTGTGT TCCATTTGCT YCTTTGTATT GTTGCATTTA GTACAATCAG	600
	TGTTTAAACT TACTGTATAT TTATGCTTTC TGTATTTACC AGCTATTTTA AATGAGCTGT	660
25	AACTITCTAG TAAAGAATTG AAAAGCAAAT CCTCACTAAA GGATACACAG GATAGGATAA	720
	AGCCAAGTCN CATCAACATT AAAAAATACT AAAANANAAA ACACAAAAAA AAAAAAANCCC	780
	GGGGGGGCC CGGAACCCAT TC	802
30		
35	(2) INFORMATION FOR SEQ ID NO: 153:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH:-461 base pairs	
	(B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 153:	
	CTAGGAGCAC CGAGCAGCTT GGCTAAAAGT AAGGGTGTCG TGCTGATGGC CCTGTGCGCA	60
45	CTGACCCGCG CTCTGCINCTC TCTGAACCTG GCGCCCCCGA CCGTCGCCGC CCCTGCCCCG	120
	AGTOTOTTOC COGCOGCOCA GATGATGAAC AATGGCOTOC TOCAACAGOO CTOTGCOTTG	180
50	ATGTTGCTCC CCTGCCGCCC AGTTCTTACT TCTGTGGCCC TTAATGCCAA CTTTGTGTCC	240
	TOGAAGAGTC GTACCAAGTA CACCATTACA CCAGTGAAGA TGAGGAAGTC TGGGGGCCGA	300
	GACCACACAG GTGGGAACAA GGACAGGGG ATTTAAGCAG TCAAAAGGAA AAACATGTTA	360
55	AGACCCTAGA CTTGTATATT GACACACTTG TACCTTGTAA GGCAGAGGAA TGTAATTAAA	420
	AACCACTTAT TTCCCWNAAA AAAAAAAAAA AAAAAAAAAA C	461

60

(2) INFORMATION FOR SEQ ID NO: 154:

5	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 2388 base pairs
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: double
10	(D) TOPOLOGY: linear
10	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 154:

GCCCACGCGT CCGAAAGCGG AGAACGCTGG TGGGCCTGTT GTGGAGTACG CTTTGGACTG 60 15 AGAACCATCG AGGCTATAGG ACGCAGCTGT TGCCATGACG GCCCAGGGGG GCTGGTGGCT 120 AACCGAGGCC GGCGCTTCAA GTGGGCCATT GAGCTAAGCG GGCCTGGAGG AGGCAGCAGG 180 GGTCGAAGTG ACCGGGGCAG TGGCCAGGGA GACTCGCTCT ACCCAGTCGG TTACTTGGAC 20 AAGCAAGTGC CTGATACCAG CGTGCAAGAG ACAGACCGGA TCCTGGTGGA GAAGCGCTGC 300 TGGGACATCG CCTTGGGTCC CCTCAAACAG ATTCCCATGA ATCTCTTCAT CATGTACATG 360 25 GCAGGCAATA CTATCTCCAT CTTCCCTACT ATGATGGTGT GTATGATGGC CTGGCGACCC 420 ATTCAGGCAC TTATGGCCAT TTCAGCCACT TTCAAGATGT TAGAAAGTTC AAGCCAGAAG TITCTTCAGG GTTTGGTCTA TCTCATTGGG AACCTGATGG GTTTGGCATT GGCTGTTTAC 30 AAGTGCCAGT CCATGGGACT GTTACCTACA CATGCATCGG ATTGGTTAGC CTTCATTGAG 600 CCCCCTGAGA GAATGGAGTT CAGTGGTGGA GGACTGCTTT TGTGAACATG AGAAAGCAGC 660 35 GCCTGGTCCC TATGTATTTG GGTCTTATTT ACATCCTTCT TTAAGCCCAG TGGCTCCTCA 720 GCATACTCTT AAACTAATCA CTTATGTTAA AAAGAACCAA AAGACTCTTT TCTCCATGGT 780 GGGGTGACAG GTCCTAGAAG GACAATGTGC ATATTACGAC AAACACAAAG AAACTATACC 40 ATAACCCAAG GCTGAAAATA ATGTAGAAAA CTTTATTTTT GTTTCCAGTA CAGAGCAAAA 900 CAACAACAAA AAAACATAAC TATGTAAACA AGAGAATAAC TGCTGCTAAA TCAAGAACTG 960 45 TTGCAGCATC TCCTTTCAAT AAATTAAATG GTTGAGAACA ATGCATAAAA AAAGTTGCAC 1020 AAGTTCCTTA TTTTCCTTAA TATTTCACTT CTATTTAATA CAAGCTGGGA CATAAAAATT 1080 CTGTTGGGGA TACCTGGGGG AAGATGTGAG AAACTAATGC TGAATTCAGC TTATACATGA 1140 50 TGAAAAGAAA AACCAGACAA AAGGAGCACA TAAATATGCA TACAGTGTAA CTGTTATTAT 1200 TTTAATACCC ACGATAAGGG ATTTTTGTTA GCATGTTTAG GGGGAACGAG GATTGGTGGG 1260 ATCCTTGGGG CCACAGGAAT CTGAGGCAAC GGAAGATATA TAGAGTGATC GTCCCCCTGC 1320 CGAAGGAACC TGGCAYCTGT CAAGCAGATG CTGCAGTTCA AACTTCAGCT TTTAAGATAG 1380 ATAGCTATTG AAGGCAGAGG GTCAGCAGGA GGATGTGTAT TTCTAATCTA CCCTGGTAAA 1440

	GTCATAGGTA AGACTCAAAA GCGGGATCTT ATTCAAAAGG CAGGTATTTC CTTTGTTTTC	1500
	TGTCTTGAAA TAGCCCCTTC CCCTAAGGTG CATTCTCTCA AGTTTTCAGT ATTGCTTTAT	1560
5	TTGCAGTGAT TAAAAGAGAT GAGAGACTTT GGAGACAGAC AACGTAAGCA ACACATACAC	1620
	ACATGAAATA CTCTAGACAG AGATGAATAT AAATCTGGCC TAATAACCAG TTTTCCATGT	1680
	AACAGTGATT TTGTGTTTCG GGCTGAAGCA GTGGTTATAT TAAAAGCCAC TAATTCCCTT	1740
10	ATCCCTTTAA AAGATTTTTA CAATTCTCCA ACCACAAACA GCACTTCTAA AACTAACTTT	1800
	ACTITCTGCC CATAATTIGI ICTACATGGA AAAAAAAAA ATTACTITGG CCAGGGGTGT	1860
15	GTGTAAATGT GGCAGAATTC CTAGGCAGGC TGACCTTTAC AGTATGGGCC TTTAAGATAC	1920
	TGGATCCTGG TTGGGCAACA AGTGTCACGC CTGAAGTTTC TGAAAACAAA TTAGAAGACT	1980
20	GTTGGCTTGG CTAATCTCGT AGTTCAGGGC CAAGTTTCTG TAGTCAGAAT GAAGAATAAA	2040
20	ATTGAAAGAA AAAGGGGGAA ATGCTTATAC TTGGCATTAA GTTGAATGCC TCAAGTCTTA	2100
	ACTATGGCTT TGTAGATGAG GCAAAAGATT TCTTAGTGGT AAAATTTCTT CAACAGGTCA	2160
25	ATGCCAATCT GTATGCCATT TTAGTAAAGT AGGTAAGGAG AGTAGCCGCT CAGTAACTTT	2220
	GGCACTAAAG AAAGAGTGTG GCTCTAGAAC TTCCAATCCC ATTGCTAGAT GTGCCCTTTA	2280
20	AAAGATGGTC CAGTGCTTTC AGGGAAGGAT GTTTAGCCAG TTTTCCTAGT ATTTGTTCCT	2340
30	TAAGATTITT TGACCTGTGC TTAATAAGAC GGACGCGTGG GTCGACCC	2388

40

(2) INFORMATION FOR SEQ ID NO: 155:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 642 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 155: 45 AAAACAGACC ATTTAAAAAC TCAGACAAGA TTATATTTAA TATATTAATT ACTAAAAAGG 60 CACAAGATTA CACTGAACAT ATTAGCTACT AAAAAGGCAC TGCTAAGACA TTCAAGCAAA TAGCTATTAC ACACTACTGC AGATTTTACA GGTTTCTAAT TCTAACATAT GTTTGAAAAA 50 TCCGTGAGTA TTCCAAAATA TATTTAATAA TGGAATATCT GCATTAATAT ACCATCCATG 240 TGTTTTTACC ATTTGCCTTA ATATTGAATA TACTGTTTAC CTCACACTAA AAAGAAAACC 300 55 AGAAGCCTTA TTTGTGATTT TGGGAGTGGA AGCTTCCATT TTTGTGTCAA AAATGAATCC 360 TGATTCTTAT GGAAATCTCT GTTATTAAGA TATTTCAAGA TGAGACAACA CTGAAGATCA 420 AATTGTGTTT AGTATCACTA TCTTCTCTC TCGTTTCTCT CTTACTCCTC ATCCTCCCAG 480 60

407

	AATCTACCAG TTTATGGTAG AAAGATGGGA ACCTTATTTG AATGTGTTTT TTTTTTTCCA	540
5	TGATGTCCAA TTTTGTTGTG GGAAAGGATT TGGATAAAAT TTTTGTTTAA ATTTTGGTAG	600
J	ATTITIATCT ATACAAATTT AAATAAAATT ATGTTTTGTA AG	642
10	(2) THEORY TON DOD ON TO VO. 150	
	(2) INFORMATION FOR SEQ ID NO: 156:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1251 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 156:	
	GCCGCTGCCC CTCCACGGAG TTGCTGATCA TCTGGGCTGT GATCCACAAA CCCGGTTCTT	60
	TGTCCCTCCT AATATCAAAC AGTGGATTGC CTTGCTGCAG AGGGGAAACT GCACGTTTAA	120
25	AGAGAAAATA TCACGGGCCG CTTTCCACAA TGCAGTTGCT GTAGTCATCT ACAATAATAA	180
	ATCCAAAGAG GAGCCAGTTA CCATGACTCA TCCAGGCACT GAGCATATTA TTGCTGTCAT	240
30	GATAACAGAA TTGAGGGGTA AGGATATTTT GAGTTATCTG GAGAAAAACA TCTCTGTACA	300
	AATGACAATA GCTGTTGGAA CTCGAATGCC ACCGAAGAAC TTCAGCCGTG GCTCTCTAGT	360
	CTTCGTGTCA ATATCCTTTA TIGTTTTGAT GATTATTTCT TCAGCATGGC TCATATTCTA	420
35	CTTCATTCAG AAGATCAGGT ACACAAATGC ACGCGACAGG AACCAGCGTC GTCTCGGAGA	480
	TGCAGCCAAG AAAGCCATCA GTAAATTGAC AACCAGGACA GTAAAGAAGG GTGACAAGGA	540
40	AACTGACCCA GACTTTGATC ATTGTGCAGT CTGCATAGAG AGCTATAAGC AGAATGATGT	600
	CGTCCGAATT CTCCCCTGCA AGCATGTTTT CCACAAATCC TGCGTGGATC CCTGGCTTAG	660
	TGAACATTGT ACCTGTCCTA TGTGCAAACT TAATATATTG AAGGCCCTGG GAATTGTGCC	720
45	GAATTTGCCA TGTACTGATA ACGTAGCATT CGATATGGAA AGGCTCACCA GAACCCAAGC	780
	TGTTAACCGA AGATCAGCCC TCGGCGACCT CGCCGGCGAC AACTCCCTTG GCCTTGAGCC	840
50	ACTICGAACT TCGGGGATCT CACCTCTTCC TCAGGATGGG GAGCTCACTC CGAGAACAGG	900
50	AGAAATCAAC ATTGCAGTAA CAAAAGAATG GTTTATTATT GCCAGTTTTG GCCTCCTCAG	960
	TGCCCTCACA CTCTGCTACA TGATCATCAG AGCCACAGCT AGCTTGAATG CTAATGAGGT	1020
55	AGAATGGTTT TGAAGAAGAA AAAACCTGCT TTCTGACTGA TTTTGCCTTG AAGGAAAAAA	1080
	GAACCTATTT TTGTGCATCA TTTACCAATC ATGCCACACA AGCATTTATT TTTAGTACAT	1140

TTTATTTTT CATAAAATTG CTAATGCCAA AGCTTTGTAT TAAAAGAAAT AAATAATAAA

ATAAAAAAA AAAAACCCCG GGGGGGGCCC GGTCCCCAAT TGGCCCTATG G

1251

5

(2) INFORMATION FOR SEQ ID NO: 157:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2127 base pairs

10

15

20

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 157:

CCGGCGGGAG AGGGAAGCTG CAGCGAGAGG CGCGGATCTC AGCGCGGGAG CAGTGCTTCT 60 GCGGCAGGCC CCTGAGGGAG GGAGCTGTCA GCCAGGGAAA ACCGAGAACA CCATCACCAT 120 GACAACCAGT CACCAGCCTC AGGACAGATA CAAAGCTGTC TGGCTTATCT TCTTCATGCT 180 GGGTCTGGGA ACGCTGCTCC CGTGGAATTT TTTCATGACG GCCACTCAGT ATTTCACAAA CCGCCTGGAC ATGTCCCAGA ATGTGTCCTT GGTCACTGCT GAACTGAGCA AGGACGCCCA 300 25 GGCGTCAGCG CNCCCTGCAG CACCCTTGCC TGAGCGGAAC TCTCTCAGTG CCATCTTCAA 360 CAATGTCATG ACCCTATGTG CCATGCTGCC CCTGCTGTTA TTCACCTACC TCAACTCCTT 420 CCTGCATCAG AGGATCCCCC AGTCCGTACG GATCCTGGGC AGCCTGGTGG CCATCCTGCT 480 30 GGTGTTTCTG ATCACTGCCA TCCTGGTGAA GGTGCAGCTG GATGCTCTGC CCTTCTTTGT 540 CATCACCATG ATCAAGATCG TGCTCATTAA TTCATTTGGT GCCATCCTGC AGGGCAGCCT 600 35 GTTTGGTCTG GCTGGCCTTC TGCCTGCCAG CTRACACGGC CCCCATCATG AGTGGCCAGG 660 GCCTAGCAGG CTTCTTTGCC TCCGTGGCCA TGATCTGCGC TATTGCCAGT GGCTCGGAGC 720 TATCAGAAAG TGCCTTCGGC TACTTTATCA CAGCCTGTGC TGTKATCATT TTGACCATCA 780 40 TCTGTTACCT GGGCCTGCCC CGCCTGGAAT TCTACCGCTA CTACCAGCAG CTCAAGCTTG 840 AAGGACCCGG GGAGCAGGAG ACCAAGTTGG ACCTCATTAG CAAAGGAGAG GAGCCAAGAG 900 45 CAGGCAAAGA GGAATCTGGA GTTTCAGTCT CCAACTCTCA GCCCACCAAT GAAAGCCACT 960 CTATCAAAGC CATCCTGAAA AATATCTCAG TCCTGGCTTT CTCTGTCTGC TTCATCTTCA 1020 CTATCACCAT TGGGATGTTT CCAGCCGTGA CTGTTGAGGT CAAGTCCAGC ATCGCAGGCA 1080 50 GCAGCACCTG GGAACGITAC TTCATTCCTG TGTCCTGTTT CTTGACTTTC AATATCTTTG 1140 ACTGGTTGGG CCGGAGCCTC ACAGCTGTAT TCATGTGGCC TGGGAAGGAC AGCCGCTGGC 1200 55 TGCCAAGCTG GNTGCTGGCC CGGCTGGTGT TTGTGCCACT GCTGCTGCTG TGCAACATTA 1260 AGCCCCGCCG CTACCTGACT GTGGTCTTCG AGCACGATGC CTGGTTCATC TTCTTCATGG 1320 CTGCCTTTGC CTTCTCCAAC GGCTACCTCG CCAGCCTCTG CATGTGCTTC GGGCCCAAGA 1380 60

	AAGTGAAGCC AGCTGAGGCA GAGACCGCAG AGCCATCATG GCCTTCTTCC TGTGTCTGGG	1440
5	TCTGGCACTG GGGGCTGTTT TCTCCTTCCT GTTCCGGGCA ATTGTGTGAC AAAGGATGGA	1500
	CAGAAGGACT GCCTGCCTCC CTCCCTGTCT GCCTCCTGCC CCTTCCTT	1560
	ATCCTGAGTG GTCTGGCGGT TTTTTCTTCT AACTGACTTC TGCTTTCCAC GGCGTGTGCT	. 1620
10	GGGCCCGGAT CTCCAGGCCC TGGGGAGGGA GCCTCTGGAC GGACAGTGGG GACATTGTGG	1680
	GTTTGGGGCT CAGAGTCGAG GGACGGGGTG TAGCCTCGGC ATTTGCTTGA GTTTCTCCAC	1740
15	TCTTGGCTCT GACTGATCCC TGCTTGTGCA GGCCAGTGGA GGCTCTTGGG CTTGGAGAAC	1800
	ACGTGTGTCT CTGTGTATGT GTCTGTGTGT CTGCGTCCGT GTCTGTCAGA CTGTCTGCCT	1860
	GTCCTGGGGT GGCTAGGAGC TGGGTCTGAC CGTTGTATGG TTTGACCTGA TATACTCCAT	1920
20	TCTCCCCTGC GCCTCCTCCT CTGTGTTCTC TCCATGTCCC CCTCCCAACT CCCCATGCCC	1980
	AGITCITACC CATCATGCAC CCTGTACAGT TGCCACGTTA CTGCCTTTTT TAAAAATATA	2040
25	TTTGACAGAA ACCAGGTGCC TTCAGAGGCT CTCTGATTTA AATAAACCTT TCTTGTTTTT	2100
	TTCTCCATGG AAAAAAAAA AAAAAAA	2127
30	(2) INFORMATION FOR SEQ ID NO: 158:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1625 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 158:	
10	CAAAAGATCT ATAATCAGGA CATTGTTTAT GTAAGTTGGA CAANAAAAAT TCTTCCCCTT	60
	TATGTCCACC CTTCCTATGA TIGCAAGACA AAATTICCCT CCTTTACCTC ATCCCTATAA	120
45	CATGGGAGGC TGAGAAAAAT GAGGGGAGAT GGAACCAGAT ACAAGGAGAT CCAATAAGAG	180
	AAGCTTATTT AAATATTGTG AAATAAAGGA AGAMCCAAAG CATTTTTTTA AGTGGGGAAT	240
50	CCTTTTGAAC AGTTATTATT TATCCATATT ATTAAYAACA TCTTTTCTGA CAAAATCCAT	300
50	CACAMOA AOM OMA LA MORA MARIA	
	CAGATGAAGT GTAAATGGAT AATCTTTTAA TGGATCTAAA CCTAGAAAGT TTCACTTACT	360
	GTTCATGTCC GTGTTCCAGA ATTGTGAAAT GGTGTGTGGT TTTGCTTTCC AAGTTCTTCT	360 420
55		

TTATATTGAA GCCAACTGCC TTTAATTCTT GGGCCCTCTT ATATTTTTAA GGTGCAAAAT

	TTGAAGTCTC	AGTCACCAGA	CACAGGTTCT	ATACAATTAA	TGATGAGCTG	GAGAAGTAAT	660
	ATGTAGCTAA	TTTTTCAAAA	GCATTGAATA	TACTTTCCGG	AAAGAAAACA	GAAATTAAAT	720
5	ATTGCCACAT	CTTGCCAGAA	TCCCATCTGA	CACCTTAACT	TTGTCAGGTT	TCCTACAACT	780
	TGCTAATCAA	GTTTTATACA	TTCTAAATCT	CCCCAGTTTC	TTTGGGGCTG	GAAGATGCAA	840
0	CTTCCATTTA	ATAGAAACTT	TGAAATCTTG	GGGTAAGGGA	GCACTGGGG	GACTAGGGAG	900
U	AAGGATAAGA	AATAGAATTA	TTGAAAAGCC	CCCACCAGGG	ACCTTCCTGG	CCAGAATATG	960
	CAGAGTAATT	CCTGCTGGCT	TCACCTTTGA	AAGTCCCTCG	AAACTATGCA	GATGAAACTG	1020
15	AGTCTGTTTT	TGATATTGTC	AGATGTATTC	TACCTTGGAA	GTCCCNACAC	CTAAACTGGA	1080
	ATTCTTGTAT	TTACATCTCC	TCCACTGTCC	CCCACACCAC	CCCTCAATTC	CTGCTGCCCC	1140
20	TGCTAATGTT	AAGCATTTTT	CTCTTGTTAT	CATCAGGTTC	ACATTAAAAM	CAGRTACTTA	1200
20	CAAACTGACT	TGAAGCACAG	ATACTTTTAC	GAATGTGATA	AAATATTTTC	TTAAGAAAAG	1260
	GAAAGAGGAT	GTGGGTCAAA	TAAAACACCG	CATGGATGTT	GATTGGTGAA	TACTGGTGTA	1320
25	AGAAAAGGGA	GCTCAGGAAT	TTTTATTACT	GTATTTGTAA	ATGAGTTTGA	AGGAATTTGT	1380
	AAATGCCACT	GGTACATTTT	TAAGGTGACA	CATTTGCTCC	TTATAAAGTT	TTAAAAATT	1440
30	ACAGGGTAAG	CTTAAATGAC	GTTTGCCAGT	AGTTTTACTT	TATATAATCA	. ATATTGATAT	1500
50	TGTTGCTGAA	CTATGTAACT	TTATGATGCA	TTTTTCAGTC	CCTTTTCAGA	GCAAATGCTT	1560
	TTGCAATGGT	AGTAATGTTT	AGTTTAAATT	GACTTAATAA	ATTMTTACCT	GAGCAAAAA	1620
35	AAAA						1625

40 (2) INFORMATION FOR SEQ ID NO: 159:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1687 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 159:

50	CGGGGTCACC	AGTTATTAGA	GGAAGTAACA	CAAGGGGATA	TGAGTGCAGC	AGACACATTT	60
	CTGTCCGATC	TGCCAAGGGA	TGATATCTAT	GTGTCAGATG	TTGAGGACGA	CGGTGATGAC	120
55	ACATCTCTGG	ATAGTGACCT	GGATCCAGAG	GAGCTGGCAG	GAGTCAGGGG	ACATCAGGGT	180
55	CTAAGGGACC	AAAAGCGTAT	GCGACTTACT	GAAGTGCAAG	ATGATAAAGA	GGAGGAGGAG	240
	GAGGAGAATC	CACTGCTGGT	ACCACTGGAG	GAAAAGGCAG	TACTGCAGGA	AGAACAAGCC	300
60	AACCTGTGGT	TCTCAAAGGG	CAGCTTTGCT	GGGNATCGAG	GACGATGCCG	ATGAAGGCCC	360

	TGGAGATCAG	TCAGGCCCAG	CTGTTATTTG	AGAACCGGYG	GAAGGGACGG	CAGCAGCAGC	420
5	AGAAGCAGCA	GCTGCCACAG	ACACCCCCTT	CCTGTTTGAA	GACTGAGATA	ATGTCTCCCC	480
	TGTACCAAGA	TGAAGCCCCT	AAGGNAACAG	AGGCTTCTTC	GGGGACAGAA	GCTGCCACTG	540
	GCCTTGAAGG	GGAAGAAAAG	GATGGCATCT	CAGACAGTGA	TAGCAGTACT	AGCAKTGAGG	500
10	AAGAAGAGAG	CTGGGAACCC	TCCGTGGTAA	GAAGCGAASC	GTGGGCCTAA	AGTCAGATGA	560
	TGACGGGTTT	GAGATAGTGC	CTATTGAGGA	CCCAGCGAAA	CATCGGATAC	TGGACCCCGA	720
15	AGGCCTTGCT	CTAGGTGCTG	TTATTGCCTC	TTCCAAAAAG	GCCAAGAGAG	ACCTCATAGA	780
	TAACTCCTTC	AACCGGTACA	CATTTAATGA	GGATGAGGG	GAGCTTCCGG	AGTGGTTTGT	340
	GCAAGAGGAA	AAGCAGCACC	GGATACGACA	GTTGCCTGTT	GGTAAGAAGG	AGGTGGAGCA	900
20	TTACCGGAAA	CGCTGGCGGG	AAATCAATGC	ACGTCCCATC	AAGAAGGTGG	CTGAGGCTAA	9 60
	GGCTAGAAAG	AAAAGGAGGA	TGCTGAAGAG	GCTGGAGCAG	ACCAGGAAGA	AGGCAGAAGC	1020
25	CGTGGTGAAC	ACAGTGGACA	TCTNCAGAAC	GAGAGAAAGT	GGCACAGCTG	CGAAGTCTCT	1080
	ACAAGAAGGC	TGGGCTTGGC	AAGGAGAAAC	GCCATGTCAC	CTACGTTGTA	GCCAAAAAAG	1140
	GTGTGGGCCG	CAAAGTGCGC	CGGCCAGCTG	GAGTCAGAGG	TCATTTCAAG	GTGGTGGACT	1200
30	CAAGGATGAA	GAAGGACCAA	AGAGCACAGC	AACGTAAGGA	ACAAAAGAAA	AAACACAAAC	1260
	GGAAGTAAGC	AGAGCTGCCA	GGCTCCCAGG	AGAGCATGGG	GACTAGGAGG	AAGGGTGTGG	1320
35	CATGGCTCAG	TCTGGCCCCC	TTGATTACCG	GCCTAGCCCC	TGCTCACATC	ACAGCTGTCT	1380
	GAAGAACAGT	GAGGTGGAGT	GCCTAGAACT	CCCGTGGTGG	TCCTGAGCAG	AGAGGAGGAT	1440
	GTCCTCCTGC	CTGCCTGAAG	GTCTCCCATG	AAAACACTGC	TGAACTGTGT	TGACACTCAT	1500
40	GACCCTTTTT	TTAAACCGTT	AAAGGGAAGT	TCGGTGTTGG	AGCGATACTC	AATGTAGTCA	1560
	GTCTACACCT	GGACGTGTGG	GCCACTTAAG	CCCTCCCCAC	CCCCATCCTA	TTCCTRAATA	1620
45	AAACCAGGAT	AATGGAARAA	AAAAAAAA	AAAAAAAAAG	GGGGGCCCN	TAAAGGGNCC	1580
	CANNTTT						1687

- (2) INFORMATION FOR SEQ ID NO: 160:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1842 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 160:

60

	GGATGACAGA	TTGCGACANA	GATTTGTGAC	CCTTCCTGCT	GAACTTCAGA	GGGAGCTGAA	60
	ANCAGCGTAT	GATCAAAGAC	AAAGGCAGGG	CGAGAACAGC	ACTCACCAGC	AGTCAGCCAG	120
5	CGCATCTGTG	CCCCGAGAAT	CCTTTACTTC	ATCTAAAGGC	AGCAGTGAAA	GAAAAGAAAA	180
	GAAACAAGAA	GAAAAAAACC	ATTGGTTCAC	CAAAAAGGAT	TCAGAGTCCT	TTGAATAACA	240
10	AGCTGCTTAA	CAGTCCTGCA	AAAACTCTGC	CAGGGGCCTG	TGGCAGTCCC	CAGAAGTTAA	300
10	TTGATGGGTT	TCTAAAACAT	GAAGGACCTC	CTGCAGAGAA	ACCCCTGGAA	GAACTCTCTG	360
	CTTCTACTTC	AGGTGTGCCA	GGCCTTTCTA	GTTTGCAGTC	TGACCCAGCT	GGCTGTGTGA	420
15	GACCTCCAGC	ACCCAATCTA	GCTGGAGCTG	TTGAATTCAA	TGATGTGAAG	ACCTTGCTCA	480
	GAGAATGGAT	AACTACAATT	TCAGATCCAA	TGGAAGAAGA	CATTCTCCAA	GTTGTGAAAT	540
20	ACTGTACTGA	TCTAATAGAA	GAAAAAGATT	TGGAAAAACT	GGATCTAGTT	ATAAAATACA	600
20	TGAAAAGGCT	GATGCAGCAA	TCGGTGGAAT	CGGTTTGGAA	TATGGCATTT	GACTTTATTC	660
	TTGACAATGT	CCAGGTGGTT	TTACAACAAA	CTTATGGAAG	CACATTAAAA	GTTACATAAA	720
25	TATTACCAGA	GAGCCTGATG	CTCTCTGATA	GCTGTGCCAT	AAGTGCTTGT	GAGGTATTTG	780
	CAAAGTGCAT	GATAGTAATG	CTCGGAGTTT	TTATAATTTT	AAATTTCTTT	TAAAGCAAGT	840
30	GTTTTGTACA	TTTCTTTTCA	AAAAGTGCCA	AATTTGTCAG	TATTGCATGT	AAATAATTGT	900
50	GTTAATTATT	TTACTGTAGC	ATAGATTCTA	TTTACAAAAT	GTTTGTTTAT	AAAGTTTTAT	960
	GGATTTTTAC	AGTGAAGTGT	TTACAGTIGT	TTAATAAAGA	ACTGTATGTA	TATTTGGTAC	1020
35	RGGCTCCTTT	TKGTGAAYCC	TTAAAAACTC	AACTCTAGGA	RGCAACTACT	GTTTATTATA	1080
	CTAAARGGCT	GAAAAMCCTC	CAGGCCAGAC	TGCTAAGCTC	TGAAATYCCT	GAGAGGTCTC	1140
40	AGACCGGGAT	TCTACTTGTT	CCAAGAAAGG	GTAAAGCTTC	TAAACCATCT	TATTCTTGTC	1200
	TCCAAGCATG	AACACAGGAG	CATGTYAAGA	AAATCTTTAC	TACTTTCTYC	CATGCGGAGA	1260
	AATCTACATA	TTTTGAATTA	GAAACACCCT	CACACCCACT	TGAAGATTTT	TTTCCTGGGA	1320
45	ACATTATGTO	CCGTAGATCA	GAGGTGGTGT	TGTCTTTTTG	CTTCTACTGG	CCATTGAGAA	1380
	ACTITGATGA	TAAAAAAGAA	CGGTATAGAT	TTTTCAAACG	TATATAAAAT	ATTTTTATGT	1440
50	TATATGTTAT	GCCATAACTI	TAAATAAAT	ATAGTTTAAA	ATTCTATGCT	AGTGGATATT	1500
50	TGGAACTTT	TCCTCAAACA	AACACCCCAC	: ACTGACTTCA	GCAAAACCCT	AAAACTAGCT	1560
	ACAGATTACT	CACTACGAATO	AATCATYAAG	TTTTGTGTCT	GCAACAATTT	AGAAGCACTA	1620
55	AGCCCAAATA	TCAGGAAAT	TGTGTATGAT	GGAATTITCI	'AGGACAAAAC	AGATCAAGAT	1680
	TAAAACAGG	A TCAAGGATT	ATGGTATAA	AATGGTCTAC	TAAAACAGGA	TCAAGGATTA	1740
60	AAACAGGATO	AAGGATTAAT	GGTATAAAA	TCTCTACTGG	TTACCGGGTG	GCNGGGCCAT	1800
~~							

	ACAGGGTAGT GGTGGATGGA TAGTTTAGTT TGGNAAGGGT AA	1842
5	(2) THEODMANTON FOR SEC. ID NO. 161.	
	(2) INFORMATION FOR SEQ ID NO: 161:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 770 base pairs	
10	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 161:	
	GGCACGAGCC CTATGCTGTT CTTGTGATAA TGAGTGAGTC TCACAAGATC TGGTGGTGTT	60
	ATAGGCATCT GGCATTTCCC CTGCTGACGC TCATTCTCTA TCCTGCCACC CTGGGAAGAA	120
20	GIGICITCIG TCATGATIGI AAGITTCCIG AGGCCTCCCC AGCTATGIAG AACIGIGAGC	180
	CAATTAAACC TCTTTTCTCT ATAAATTATC CAGTCTTATA TATTTCTTCA TAGCAGTGTG	240
25	AGAACAGATA ATACCGTAAA TTGGTATCAC AGAGAGTGGG GTGTTGCTAT AAACACATCT	300
25	GAAAATGTTA AAGCAAATTT GGAACTGGGT AACAGGCAAA GGCTGGAACA GTTKGAAGAA	360
	CAGTTAAGAA GAAGACAGGA AAATATGAGA AATCTTGAAA CTTCCTAGAG TCTTAAAGGT	420
30	CTCAGAAGAC ATGAAGATGT GGGAAGCTTT GGAACTTCCT AGAGACTTGT TTGAATGGCT	480
	TTGACCAAAA TGCTGATAGT GATATGGACA ATGAAGTCCA GGCTGAGCTT ATCCAGACAG	540
35	ACATAAGAAG CTCGCTGGGA ACTTGAGTAA AGATCACTCT TGCTAGGCAA AGAGACTGGT	600
,,	GGCCTTTTTT CCTCTGCCCT AGAGATCTGT GGAAATCTGA ACCTGAGAGA GATGATTTAG	660
	GGTATCTGGC AGAAGAAATA TCTAAGCGGC AAAACCTTCM AGAGGAAGCA GAGCATAAAC	720
40	GTTTGAAAAA TTTGCAGCCT GACNATGGGA GACCAAAGTT AAACCCAATT	770
4 5	(2) INFORMATION FOR SEQ ID NO: 162:	
	(2) INCOMPTION FOR SEQ ID NO. 102.	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 519 base pairs	
	(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(b) Torologi. Theat	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 162:	
55	GAATTCGGCA CGAGCTGAGA GGCACAGGAG CAACAGCCAG TGCCCCCTGC AGAGGACCAC	60
	TGGGGTCACA GACTTCARAC CTGATGACCT GGGCTCAGAT CCCAGCTCTG CACCTACCAG	120
50	CCGTGTGACA AGGTGTCCTC TCTGAGCCTC AGTCACACAC TGCCTTAACG GTTGGGCCTC	180

	ATGGAGCTGT TTGTGAAGGT TAAATGGGAA GACATAAAGC ACTTAGCCCA GAGCCAAGGA	240
	CATGCTGAAT AGGATAATGG TGGCCTCCTT TGGCGCTGTG CTGGTGCAGG TGTGCCGAGG	300
5	AAYTGGGCAG GGGTGACAGA TACCTCTTCT AACCTAGTTC CTTTCCAAGA ACCTAATTGG	360
	TGTCTCTCCC TCCCCCAGGC AATTGGAAGG AGGAGGCTGG GCCCCAGCCC CAGAATACGG	420
10	GAGGTTTCTC ACCGTGGTAG GGAAATTGCT GGGTTGGGGG TGTGGGCAAC CACAGTGATC	480
10	GTCTCTCTGC AGGACGGATG AGGCTTTGCT GACAGAGGC	519
15	(2) INFORMATION FOR SEQ ID NO: 163:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 753 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163:	
23	GGCACGAGCG GCACGAGCAG CCAGTTGCTG ACTGGCACAT GGCCTCCAGC GTCCCGGCTG	60
	GTGGGCACAC TAGAGCCGGA GGGATCTTCT TAATTGGTAA ATTGGATCTT GAAGCTTCAC	120
30	TGTTTAAATC TTTTCAGTGG CTTCCCTTTG TACTTAGAAA AAAATGCAAC TTCTTCTGCT	180
	GGGACTCATC CGCTCACAGC CTTCCCCTCC ACCCTCTCTC TGCCTCATGC TCTGCCCCTG	240
35	CCTGCCATGC CTCCGATACT CACCTTTTGT ACCCCAGCAC CCGTGCCCTC TGCCCCTCGA	300
33	TCTTTGCCTG GCTGGTTGCT CCTCACTCAG TGTTCAGGAC AAATGCTCCT GGCCCTACCC	360
	CATCTAGCCA GTCTAGCCCG GTCTTCCCTG TCTTCCCTGT TTCATTCATG GCTCTTATTG	420
40	TTTGTTWACT TGTGTGCTGT TGACTTTTAA CTCTCTCAGT CCCCACTGGA ATGCAAGCGA	480
	TCTCCCAAGC TCCTAGAATT GTTCCTGCCT CTTCACAGGC CCTTACGCTG TGTGTGCTCG	540
45	TGCCGAATTC GGCACGAGGG TATGTGCACT TGCTGGTATG TATGTAGGTG TTTGCTAACA	600
	CATACGTGCA CACGCAGAAT GCTTCCAGGG GACTGCACAG CCTCTAGTTC GCAGCCCCCA	660
	CCCCTCCCTT TGSCCCTGCA CTCTCCCCTC TCTGAGCTGC ATTCGCATGA AAGGGTGCAN	720

55 (2) INFORMATION FOR SEQ ID NO: 164:

50 GGTTCCTGAN CCCGCNAGCG NCACCTCCTG GGA

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1400 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 164:

5	GGCACAGTTT	ATTAATACCT	ATTATGGGAA	AGTCACTTTG	GTTGGCATTG	AAAATTACAT	60
	CATCTTTAAA	GCAGTATTIG	TCCCCAGATG	GACTCATCAC	TAGCAAAGAC	TAGGTTCATT	120
10	GGAAGGCATA	GGGTGAGAGA	ATGGGAAGAT	GRAGTGGAGG	CGGGTTGTTA	AAGTGCTGTC	. 180
- •	AGTGAGTGAT	TTTGTCTACT	TGAATAATGG	TCCATGTTTG	GGGGCATATT	GTGTTTCATA	240
	AGAAGTGAAA	GGTATTTGCA	AAGTAAGCTA	CAAATGACCC	ATAAATCTGT	TAACAACAGT	300
15	CCTTAATATG	CAAAGATGAA	AAACAAGCAT	TACTGCTACC	CAAAGGGAAC	TGGTGCTTGG	360
	TGATGTGCAG	ATGGGGCTGT	TGGTTAAGAG	AGCTATTACA	GGTTTTCTCT	CTTAGGTTTC	420
20	ATAGGAGGTA	GTTACTGAGA	TGAGATTGTT	TTATCTTTTT	GAATACAGAT	CTCTTGTCTT	480
	GAGTTAGTTC	TGAGGATGGG	agtaataaag	GAGTTTTTTG	TTTTTTTGTT	TGTTTGTTTG	540
	TTTTGGCTCC	TTAGTAATAC	TCCTCTGACA	TTTATTTCTA	TTATTCTTCA	AAGAAAGGAA	600
25	ACCAACTGAA	ATGTTTGCTT	TAACAAACAT	TTTAATAAGT	TCTCTGGGTT	TTTTTTCCC	660
	CTTTTAAAAA	AATTAGCATA	TACCATAGCA	ATAAAAGAAC	TAATGTTAAC	TATTGTATGC	720
30	TACAACTTAA	GTGATTTTTC	TAAAGAAGCA	CAATGTCATT	GRAAGTATTA	TTGAAAAGGA	780
	TCATAGTCAC	ATTGAATTTG	TGAAGGCCAA	AGAAATTGAA	GGGAGTGATA	TTTTCATTIT	840
	ATGATATTCA	CATATTTAGT	AAATTTTGTG	TACAAGAATA	CCAGGCAGAG	TGTTTTACCC	900
35	ATGGAAACAG	GTTTCAGATT	ACTTIGTITT	TACTGTTAGA	GTCTCAAGTT	TAGAAATGCT	960
	AACACTTAAA	TCAGTTTTTT	TCTÇACTATA	CTTGAAGATT	GTTAATATTT	TGATATCTTC	1020
40	CTAGCTTGAT	GGAATTTAAA	CATATCTTCA	GATCTGTGAC	AGTGACAGCC	AATAGGACTG	1080
	ATAATATTAG	CTTCAAACCA	ATAATATCCA	GGGTTAAAAT	АААААТСАТА	GTGAAAGTAC	1140
	GATTGTAAAA	TTATGCTATA	TTAACTTTTA	AGTCTGTAAT	AACTTGACAT	CAAAATGTTA	1200
45	TGTAATTACC	ATAAATAATG	GCTAGCGAGA	ACATCTTTGG	AAATTCTCAA	ATTACCTTTC	1260
	TTACTACACT	GTTTGCAGAA	TGAATGTAGA	AATGATCCTG	TTAGCTTTCT	GAATGTTCTG	1320
50	TGGTTGAATG	TGTTTTTGCT	TAAATAAAGC	TTTTGGTATT	TGTTTAAATW	АСААААААА	1380
	аааааааааа	AAAAACTCGA					1400

- (2) INFORMATION FOR SEQ ID NO: 165:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2153 base pairs
- 60 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

-	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 165:	
5	CAGGCCTCAG GGCCTCTGGT GGCTCTGGCC CAGACAGTAT TTGCAGTTCT TGTGCTATGG	60
	GTGGGAGTCT TCTTCCTCAA GTTTCGGCAG CTGTGCTGTG	120
10	CAGGGCTCAA GGGCTGTGGT CCGCTCAGGG TCTCATTTCC CCAGGCCAAG TTCAAGGCAG	180
	CAGCCCTTTG TGAGGCGCTC TTGGCCCTGG GCTGGAGGGA GAACTTTAAG CTTTTTTGCT	240
15	CACAGGGACG TGGTATGGGC CCTGGGTGCA GGTGCCCACA TTCTGCTAAT GAGAGCTTTG	300
15	TCTGATCAGT CCTGGGTCCA TCAGTTTGTC CATGTGTCCG GCTGCCAGCC CGTCCCTTGG	360
	GATCCTTCCC CTGGGGTGTA GCCTTGTTCA TTAGTATATA CTCATTCCTT CATGCTTTCC	420
20	TCAGCAGAAC ACTTCCACTT CTGAGGTGAG CTTTTGCCCC RTGCCCTTCC TCCACAGGTG	480
	TTGCCTTTTT ATAAAGACCT GATAGCAGAA TAAATTGGTG TTTCCCTGTT GACCCAGCAC	540
25	CATTTCTGTG GGCCTAGAAT ATGGCCCTCA ACCCTTAGAG TGGGGCAGTG AGGGCTTGAG	600
25	GAGTGACCCT TCCTTTCTCA TGGTTTTAGT CATTTTGGCT GCCAGCCCTT AATGGCACAG	660
	ATCTGCTGCT TCTAACAGAT GCCCAGGAGG TGACACCGAT TTCAGCCATT GCCAAGGTTA	720
30	GCACCCTCTC CTTTGAGCCT AGGGCCACAC TGTTCATTGT CACTTTAGGC AAGTGCCTGT	780
	TTGGCTTTAA AGGTAAGCCT GCCAGCTGTG AGAAGCCTTG GTAACTGATG GACTCATTTC	840
35	CTGGTCCTTA AAGATGCAGC CTCTTAAGGG CTCCTTGATG GATGCCATCT CTCCTAGCCC	900
33	CCAGCCCTGG TGCCACTGGT GGGCAGGTTC CCATTCTTTG GGGCTGGGAG GGACAGCTTG	960
	CCTGTTTCTG GTCACAAATT ACAGTCTTCT CTCCTGTACC ATTCTGTGGC TTCAGCATGG	1020
40	GGGCAGTAGC CTTTCATTAG TGTAGATAGT CATTCCCTGG TAGGGTGGAG GGTAAGACAT	1080
	AGGGTCTGGA ACTGTTTGGG ACCTTTTGGG GATGTCCTGT GCCTCCCAGA TTCCTMGATT	1140
45	CTGGGAGGAG AGGCTGCCGC ATTCTGCTGC TCCTCACAGC GAGCAAAGCT GCACCCACTT	1200
43	ACATTCAGTA TTTTCCTGGC ACTACAAAGA GTGGGAAGGC CTGGGATTTG CTGCTGCTCC	1260
	CTTAGAGCAG GGCCCCTYTT TTCAGCACTT TGGACACCTG GAGACCCAGC CCTGTTATTT	1320
50	AATGGTAGTG GGCAAGTGTG TGTGCATACT GTCTGCCACT GCTTTCTCCC TGCCCCATGC	1380
	CAGAGAGCCC TGTCCCTGCC AGGCCCAGCC TTCTTAGCCC CAACTTGGGA ACAAAGTGCA	1440
<i></i>	ACATGGGATC ATGGGTTGGG GTGCTCAGGT GAGCCCTCTC TATAGTGCTT CCCTGGGCCA	1500
55	AGCTGACACC AGCCCCTGAG GGTGGGGTGG GACGGGTGGT GCTTAAAAGA GGAAGGGGAC	1560
	CAGTGTAGCA ACTTGCCAGG GACCCCACCC CTCCCTCTCT GGGCCTGTGC AGTGAGCATG	1620
60	GGGATTCCCA TCAAGGGGCC TGGCACCTGT GCTAGTTACG TAGCCGCTGN TCACGCGCTC	1680

	ACTCCTGACC	ACATGCACGT	TCCCTAGATG	CAGACTGCTT	TGAACTTTAA	AGCTGTACAA	1740
5	TTTGGTTATG	TTTGTGCTGA	CTTAAAATAT	ATTTTAATGA	GGAAAAAATA	ATGGAGAACC	1800
_	CTGGGAAGGA	CCTGGTTCTT	TTGCTTCTCG	GGGAACTGTA	AGCCCTCGCG	TTCTGGGAAT	1860
	CCCTCTCTCC	TGCTCTTTCC	TGGAAGCTAA	GCCTGTCTCC	ACCGCCCGAG	GCCTGCGCCG	1920
10	GTCCTCCCGC	CGCAGTTGCG	TTTGCTTTGG	ACCTTGCGTG	CGGGGGAGGG	GGTGCTCGGT	1980
	CCGAGCCCGC	TCCTTTCTGT	ACACCTAGCG	CTGCCCGCCC	CGCTTGTGTC	TGAGGTCGTG	2040
15	TATGTCAAAA	ATAAAGCCGC	TAGAAACGGA	АААААААА	алалалала	АААААААА	2100
	AAACTCGAGG	GGGGGCCCGT	ACCCAATTAA	CCCNNTATGA	TCTATAAAGC	GTC	2153

25

30

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 166:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1251 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 166:

GCCCACGCGT CCGCCCACGC GTCCGGCGGT GCGGAGTATG GGGCGCTGAT GGCCATGGAG 60 GGCTACTGGC GCTTCCTGGC GCTGCTGGGG TCGGCACTGC TCGTCGGCTT CCTGTCGGTG 120 ATCTTCGCCC TCGTCTGGGT CCTCCACTAC CGAGAGGGGC TTGGCTGGGA TGGGAGCGCA 180 CTAGAGTTTA ACTGGCACCC AGTGCTCATG GTCACCGGCT TCGTCTTCAT CCAGGGCATC 240 GCCATCATCG TCTACAGACT GCCGTGGACC TGGAAATGCA GCAAGCTCCT GATGAAATCC 300 ATCCATGCAG GGTTAAATGC AGTTGCTGCC ATTCTTGCAA TTATCTCTGT GGTGGCCGTG 360 TTTGAGAACC ACAATGTTAA CAATATAGCC AATATGTACA GTCTGCACAG CTGGGTTGGA 420 CTGATAGCTG TCATATGCTA TTTGTTACAG CTTCTTCAG GTTTTCAGT CTTTCTGCTT 480 CCATGGGCTC CGCTTTCTCT CCGAGCATTT CTCATGCCCA TACATGTTTA TTCTGGAATT 540 GTCATCTTTG GAACAGTGAT TGCAACAGCA CTTATGGGAT TGACAGAGAA ACTGATTTTT 600 TCCCTGAGAG ATCCTGCATA CAGTACATTC CCGCCAGAAG GTGTTTTCGT AAATACGCTT 660 GGCCTTCTGA TCCTGGTGTT CGGGGCCCTC ATTTTTTGGA TAGTCACCAG ACCGCAATGG 720 AAACGTCCTA AGGAGCCAAA TTCTACCATT CTTCATCCAA ATGGAGGCAC TGAACAGGGA GCAAGAGGTT CCATGCCAGC CTACTCTGGC AACAACATGG ACAAATCAGA TTCAGAGTTA 840 AACAGTGAAG TAGCAGCAAG GAAAAGAAAC TTAGCTCTGG ATGAGGCTGG GCAGAGATCT 900

	ACCATGTAAA	ATGTTGTAGA	GATAGAGCCA	TATAACGTCA	CGTTTCAAAA	CTAGCTCTAC	960
	AGTTTTGCTT	CTCCTATTAG	CCATATGATA	ATTGGGCTAT	GTAGTATCAA	TATTTACTTT	1020
5	AATCACAAAG	GATGGTTTCT	TGAAATAATT	TGTATTGATT	GAGGCCTATG	AACTGACCTG	1080
	AATTGGAAAG	GATGTGATTA	ATATAAATAA	TAGCAGATAT	AAATTGTGGT	TATGTTACCT	1140
10	TTATCTTGTT	GAGGACCACA	ACATTAGCAC	GGTGCCTTGT	GCAKAATAGA	TACTCAATAT	1200
10	GTGAATATGT	GTCTACTAGT	AGTTAATTGG	ATAAACTGGC	AGCATCCCTG	A	1251

(2) INFORMATION FOR SEQ ID NO: 167:

(i) SEQUENCE CHARACTERISTICS:

20

25

(A) LENGTH: 882 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 167:

23	GACSMTCTAG AACTATGGTC CCCCGGGACT GCAGGAATTC GGCACAGCGG CTGCGGGCGC	60
	GAGGTGAGGG GCGCGAGGTT CCCAGCAGGA TGCCCCGGCT CTGCAGGAAG CTGAAGTGAG	120
30	AGGCCCGGAG AGGGCCCAGC CCGCCCGGGG CAGGATGACC AAGGCCCGGC TGTTCCGGCT	180
	GTGGCTGGTG CTGGGGTCGG TGTTCATGAT CCTGCTGATC ATCGTGTACT GGGACAGCGC	240
35	AGGCGCCGCG CACTTCTACT TGCACACGTC CTTCTCTAGG CCGCACACGG GGCCGCCGCT	300
33	GCCCACGCCC GGGCCGGACA GGGACAGGGA GCTCACGGCC GAYTCCGATG TCGACGAKTT	360
	TCTGGACAAK TTTCTCAGTG CTGGCGTGAA GCAGAGTGAC YTTCCCAGAA AGGAGACGGA	420
40	GCAGCCGCCT GCGCCGGGGA GCATGGAGGA GAGCGTGAGA RGCTACGACT GGTCCCCGCG	480
	CGAMICCCCGG CGCACCCAGA CCAGGGCCGG CAGCARGCGG ANCGGAGGAR CGTGCTGCGG	540
45	GGCTTCTGCG CCAAYTCCAG CCTGGCCTTC CCCACCAAGG AGCGCGCATT CRACGACATC	600
43	CCCAACTCGG AGCTGAGCCA CCTGATCGTG GACGACCGGC ACGGGGCCAT CTACTGCTAC	660
	GTGCCCAAGG TGGCCTGCAC CAACTGGAAG CGCGTRATGA TCGTGCTGAG CGGAAGCTGT	720
50	GCACCGCGTG CGCCTACCGC GACCCGYTGC GNTCCCGCGC GAGCACGTGC ACAACGCCAG	780
	CGCGCACTGA CTTCAACAAT TCTGGCGCCG CTACGGGAAG TCTCCCCCAC CTCATGAAGT	840
55	CAAGCTCAAG AATACACCAA TTCTTTCTGC GCGACCCTTC TG	882

⁽²⁾ INFORMATION FOR SEQ ID NO: 168:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1208 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 168:

10	GGGAAACTCA	AAAGGATGAT	GGAATGGTTG	ATGGAGCCAG	AGCCTAGAAG	TRAAGGGATA	. 60
	CAGAGTGAAG	ATAGAGGTAT	TTACGTATAT	TTWAATATTA	GCTTTGGAAT	TACGTAGGGA	120
	TTCTTAAGAA	AAGATCATGA	CAGGACAGCC	ACATTTGGTA	AAATGTCAGG	GCAGCCAGTG	180
15	CATGGTCCTC	CTGGGGCTCC	TCAGTTGACG	GGTTTAAATC	ATTTCCTGAT	CCCCCTGCCC	240
	TGGTTTGAGG	AATGCATACA	GTACGTGAAA	TGCCTGTGGT	ATGAGTTGCA	ATGGGCAATC	300
20	AACCTGGGTA	AATCCAAGAT	TAATGATTAG	TTCTAAAGAT	CCAGTTGAAG	TTCTAGAGTG	360
	GGAATTTTCC	GTCAAGCARC	TCAGCACAGC	TTTATGCCTG	TTCCTCTAAT	AACGATAGGT	420
	AACAAATAGC	TGTGTKTWCA	CAGCTAGGAR	GATAACCAAA	TCTAGAGTTC	TTGARTCTCA	480
25	TTTAATAAAT	AAKTATTATG	AGTACCAACT	GCATATTTCA	GGCACTGCAT	TTGACTCTGT	540
	TAAATACTGA	TYCCTTAKGA	CMSCCACWTC	AGAWAACMTT	AATCTGTCTG	ATCAATAAAC	600
30	AGCTTGACTT	AGAGRGGTAA	AATAGCTTGC	CACAGGTWAC	CCAATTAGTA	GGTAACAGCG	660
	ACAGAATAAC	AGTGCAGTTA	AAATCTTAGA	CTGGAGACTA	ATTGCATAAG	TTTGAATTTC	720
	AGTTCTGCTA	TGTAAATTTG	GGTGAGTACC	TTAATTYACC	TGAGTCTCGG	TCTTTATATC	780
35	TGTAGAATGG	AGCTAATGAT	ATTACTTAAT	TTGCTTTATG	TGAGATTAAA	TGTACTAATA	840
	TATGTAAATC	ACTTACAACA	GCAŢTTGACA	TATTTGACAT	ACTTAATATA	TTTGCTACTA	900
40	ATACTATTAG	CAACAGCATT	CTGATTTTCC	AAGTTGAAAT	TCAGTGTTTT	CTTTTTTACT	960
	TTGCCATAAT	TTACAATGTT	GTGCTCTGTA	AACCATAAAT	TTCCCTGAGG	TGTTGTCAGG	1020
	AAAAAAATT	ATCACTATGG	CCCCCARNIMA	CTTGGAAAAT	AGAAATGAGA	CCAGCTTCAT	1080
45	CTATATTCTT	TACTGCAAAT	AACTTAGAAT	TGTAATAGGC	TAATATGTAC	TGGGACTTCC	1140
	AATTTGGGAA	TATGACAAAA	ATAATACTAT	TTAGCTAAAA	CATATACAGA	ACTTATTTTT	1200
50	CCTCTGAA						1208

(2) INFORMATION FOR SEQ ID NO: 169:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1307 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 169:

5	GGCACGAGAG	AAAAGAGGTT	GAGAATGTTT	TCTAGCAGGC	AGAATGTGCA	TACATGTTTT	60
3	CATGARTGTC	CTTTGGGTGC	TGTTTCTTTT	AAATCCTCTG	TGCACAGGGC	TCTGGCCTTT	120
	ARTAAACTGT	TTTTCTGTCT	TACGTCATGC	TGACTGGGTG	CTAGGGGCTG	ATTACAAAGG	180
10	GGAAGAGITG	AACAGACATC	AGGGCCGAT	GAAACCAAAG	GACTAGGAGT	CAGGAGAACA	240
	AGTCAGGGAT	TAGGAGACAG	CGCTTTGGTT	TATTGTTATC	CAGCTGGAGG	ACTCCTAGGG	300
15	GCAGCAGCAG	GAGGAATACC	AGGCCACGG	AGGGGCAGGA	GTCTCACAGT	GGAGGGCAGA	360
13	CTCTAACAGA	TGCCAGCTGA	ACGCTCGCTG	GCCCTGGATG	TCATACGAGT	TGGGGACCAG	420
	AAATCTGGGC	TCAGAGAACC	CGTCCAGGGA	GATTTGAAGC	CATGGGTTAT	CTTCTAGAGT	480
20	TGATACTGAT	AATATATTTT	AATTTTTATT	GATGTTTAAT	ACCTTCTGAA	ACAGGAGGGT	540
	AAGATCAGAT	GGGAAGCCCY	TCTGTTGAAG	GATCTTGGGA	ACCTTGGTGG	TTTTTTTTTT	600
25	TIGGTITIT	TTTTTTGAT	CGAGCTGTGG	ACATCCTTCT	TAATTCGATT	NTGAGGATTT	660
2.5	GTTTAACTAA	AAAGTTCCCA	AACACAGAAA	GGCCTCCCC	ACCTGCTTTG	GGGAGCTGTC	720
	TGTSCTGGGA	GTGCCAGGCA	TCCSATGGGA	CCCATCACTG	CCAGTGTCTG	TGCCTCCCAG	780
30	AGGTCAGCCC	TGTGTCTGCC	CTGGCTCTGT	CICCICIGIG	ACAGGGCAGA	GCATTTCTGG	840
	TCAGTTTCTC	CATGGTGCCT	CCCACCCCTT	TGTAAAGTGG	ATGGACATGA	TGGAATTCAG	900
35	TIGICTCACC	CTGATAGCCT	GGGTGTTGAT	ATTCACTTTA	CCCGCACTCA	GACACAGGCG	960
55	ACCTTGAAGC	AGTTCTCGGT	GTGTAGAGTC	CACGTGACAG	TCCCCACAGC	CTCCCCAGAT	1020
	AGCTGTGTGC	CTGTGCGCTA	CTGCTGTGCC	ATTITICCCAA	CTTNGGCGTT	TCACTAAATG	1080
40	CAGCTGATCT	CTCTCTCTGT	GCACTCGTGA	TCCATGTTGA	ACAATACATG	TAGGTTCTTT	1140
	TTCCACGCAA	TGTAAGAACA	TGATATACTG	TACGTTGGAA	AGCATTTACC	TTATTTATAT	1200
45	ACCTGAATGT	TCCTACTACA	CAAATAAACA	TATATTAAAT	WCTAAAAAA	AAAAAAAA	1260
,,,	CTGGAGGGG	GGCCCGGTAC	CCAAATCGCC	GGATAGTGAT	CGTAAAC		1307

50

55

(2) INFORMATION FOR SEQ ID NO: 170:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1624 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 170:

	GGCACGAGGT	CGCCGCCGCG	GCCGCCTGGA	ATTGTGGGAG	TIGIGICICC	CACTCGGCTG	60
	CCGGAGGCGA	AGGTCCCTGA	CTATGGCTCC	CCAGAGCCTG	CCTTCATCTA	GGATGGCTCC	120
5	TCTGGGCATG	CTGCTTGGGC	TGCTGATGGC	CGCCTGCTTC	ACCITCIGCC	TCAGTCATCA	180
	GAACCTGAAG	GAGTTTGCCC	TGACCAACCC	AGAGAAGAGC	AGCACCAAAG	AAACRGAGAG	240
10	AAAAGAAACC	AAAGCCGAGG	AGGAGCTGGA	TGCCGAAGTC	CTGGAGGTGT	TCCACCCGAC	. 300
••	GCATGAGTGG	CAGGCCCTTC	AGCCAGGGCA	GGCTGTCCCT	GCAGGATCCC	ACGTACGGCT	360
	GAATCTTCAG	ACTGGGGAAA	GAGAGGCAAA	ACTCCAATAT	GAGGACAAGT	TCCGAAATAA	420
15	TTTGAAAGGC	AAAAGGCTGG	ATATCAACAC	CAACACCTAC	ACATCTCAGG	ATCTCAAGAG	480
	TGCACTGGCA	AAATTCAAGG	AGGGGGCAGA	GATGGAGAGT	TCAAAGGAAG	ACAAGGCAAG	540
20	GCAGGCTGAG	GTAAAGCGGC	TCTTCCGCCC	CATTGAGGAA	CTGAAGAAAG	ACTTTGATGA	600
	GCTGAATGTT	GTCATTGAGA	CTGACATGCA	GATCATGGTA	CGGCTGATCA	ACAAGTTCAA	660
	TAGTTCCAGC	TCCAGTTTGG	AAGAGAAGAT	TGCTGCGCTC	TTTGATCTTG	AATATTATGT	720
25	CCATCAGATG	GACAATGCGC	AGGACCTGCT	TTCCTTTGGT	GGTCTTCAAG	TGGTGATCAA	780
	TGGGCTGAAC	AGCACAGAGC	CCCTCGTGAA	GGAGTATGCT	GCGTTTGTGC	TGGGCGCTGC	840
30	CTTTTCCAGC	AACCCCAAGG	TCCAGGTGGA	GGCCATCGAA	GGGGGAGCCC	TGCAGAAGCT	900
	GCTGGTCATC	CTGGCCACGG	AGCAGCCGCT	CACTGCAAAG	AAGAAGGTCC	TGTTTGCACT	960
	GTGCTCCCTG	CTGCGCCACT	TCCCCTATGC	CCAGCGGCAG	TTCCTGAAGC	TCGGGGGGCT	1020
35	GCAGGTCCTG	AGGACCCTGG	TGCAGGAGAA	GGGCACGGAG	CTCCTCCCCG	TGCGCGTGGT	1080
	CACACTGCTC	TACGACCTGG	TCACGGAGAA	GATGTTCGCC	GAGGAGGAGG	CTGAGCTGAC	1140
40	CCAGGAGATG	TCCCCAGAGA	AGCTGCAGCA	GTATCGCCAG	GTACACCTCC	TGCCAGGCCT	1200
	GTGGGAACAG	GGCTGGTGCG	AGATCACGGC	CCACCTCCTG	GCGCTGCCCG	AGCATGATGC	1260
	CCGTGAGAAG	GTGCTGCAGA	CACTGGGCGT	CCTCCTGACC	ACCTGCCGGG	ACCGCTACCG	1320
45	TCAGGACCCC	CAGCTCGGCA	GGACACTGGC	CAGCCTGCAG	GCTGAGTACC	AGGTGCTGGC	1380
	CAGCCTGGAG	CTGCAGGATG	GTGAGGACGA	GGGCTACTTC	CAGGAGCTGC	TGGGCTCTGT	1440
50	CAACAGCTTG	CTGAAGGAGC	TGAGATGAGG	CCCCACACCA	GGACTGGACT	GGGATGCCGC	1500
	TAGTGAGGCT	GAGGGGTGCC	AGCGTGGGTG	GGCTTCTCAG	GCAGGAGGAC	ATCTTGGCAG	1560
	TGCTGGCTTG	GCCATTAAAT	GGAAACCTGA	AGGCCAAAAA	AAAAAAAA	AAAAAAAA	1620
55	AAAA						1624

PCT/US98/11422

422

(i) SEQUENCE CHARACTERISTICS:

5

(A) LENGTH: 2003 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 171:

	(X1) SEQUENCE DESCRIPTION: SEQ ID NO: 1/1:	
10	GGCACGAGCC AGCTTGCAGG AGGAATCGGT GAGGTCCTGT CCTGAGGCTG CTGTCCGGGG	60
	CCGGTGGCTG CCCTCAAGGT CCCTTCCCTA GCTGCTGCGG TTGCCATTGC TTCTTGCCTG	120
15	TTCTGGCATC AGGCACCTGG ATTGAGTTGC ACAGCTTTGC TTTATCCGGG CTTGTGTGCA	180
	GGGCCCGGCT GGGCTCCCCA TCTGCACATC CTGAGGACAG AAAAAGCTGG GTCTTGCTGT	240
	GCCCTCCCAG GCTTAGTGTT CCCTCCCTCA AAGACTGACA GCCATCGTTC TGCACGGGGC	300
20	TTTCTGCATG TGACGCCAGC TAAGCATAGT AAGAAGTCCA GCCTAGGAAG GGAAGGATTT	360
	TGGAGGTAGG TGGCTTTGGT GACACACTCA CTTCTTTCTC AGCCTCCAGG ACACTATGGC	420
25	CTGTTTTAAG AGACATCTTA TTTTTCTAAA GGTGAATTCT CAGATGATAG GTGAACCTGA	480
23	GTTGCAGATA TACCAACTTC TGCTTGTATT TCTTAAATGA CAAAGATTAC CTAGCTAAGA	540
	AACTTCCTAG GGAACTAGGG AACCTATGTG TTCCCTCAGT GTGGTTTCCT GAAGCCAGTG	600
30	ATATGGGGGT TAGGATAGGA AGAACTITCT CGGTAATGAT AAGGAGAATC TCTTGTTTCC	660
	TCCCACCTGT GTTGTAAAGA TAAACTGACG ATATACAGGC ACATTATGTA AACATACACA	720
35	CGCAATGAAA CCGAAGCTTG GCGCCTGGG CGTGGTCTTG CAAAATGCTT CCAAAGCCAC	780
))	CTTAGCCTGT TCTATTCAGC GGCAACCCCA AAGCACCTGT TAAGACTCCT GACCCCCAAG	840
	TGGCATGCAG CCCCCATGCC CACCGGGACC TGGTCAGCAC AGATCTTGAT GACTTCCCTT	900
40	TCTAGGGCAG ACTGGGAGGG TATCCAGGAA TCGGCCCCTG CCCCACGGGC GTTTTCATGC	960
	TGTACAGTGA CCTAAAGTTG GTAAGATGTC ATAATGGACC AGTCCATGTG ATTTCAGTAT	1020
45	ATACAACTCC ACCAGACCCC TCCAACCCAT ATAACACCCC ACCCCTGTTC GCTTCCTGTA	1080
-1 -3	TOGTGATATC ATATGTAACA TITACTCCTG TITCTGCTGA TTGTTTTTT AATGTTTTGG	1140
	TITGITTITG ACATCAGCTG TAATCATTCC TGTGCTGTGT TTTTTATTAC CCTTGGTAGG	1200
50	TATTAGACTT GCACTTTTT AAAAAAAGGT TTCTGCATCG TGGAAGCATT TGACCCAGAG	1260
	TGGAACGCGT GGCCTATGCA GGTGGATTCC TTCAGGTCTT TCCTTTGGTT CTTTGAGCAT	1320
ہے ہے	CTTTGCTTTC ATTCGTCTCC CGTCTTTGGT TCTCCAGTTC AAATTATTGC AAAGTAAAGG	1380
55	ATCTTTGAGT AGGITCGGTC TGAAAGGTGT GGCCTTTATA TTTGATCCAC ACACGTTGGT	1440
	CTTTTAACCG TGCTGAGCAG AAAACAAAAC AGGTTAAGAA GAGCCGGGTG GCAGCTGACA	1500
60	GAGGAAGCCG CTCAAATACC TTCACAATAA ATAGTGGCAA TATATATATA GTTTAAGAAG	1560

	GCTCTCCATT	TGGCATCGTT	TAATTTATAT	GTTATGTTCT	AAGCACAGCT	CTCTTCTCCT	1620
5	ATTTTCATCC	TGCAAGCAAC	TCAAAATATT	TAAAATAAAG	TTTACATTGT	AGTTATTTTC	1680
	AAATCTTTGC	TTGATAAGTA	TTAAGAAATA	TTGGACTTGC	TGCCGTAATT	TAAAGCTCTG	1740
	TTGATTTTGT	TTCCGTTTGG	ATTTTTGGGG	GAGGGGAGCA	CTGTGTTTAT	GCTGGAATAT	1800
10	GAAGTCTGAG	ACCTTCCGGT	GCTGGGAACA	CACAAGAGTT	GTTGAAAGTT	GACAAGCAGA	1860
	CTGCGCATGT	CTCTGATGCT	TTGTATCATT	CTTGAGCAAT	CGCTCGGTCC	GTGGACAATA	1920
15	AACAGTATTA	TCAAAGAGAA	ааааааааа	AAAAAACTCG	NGGGGGGCC	CGGTACCCAA	1980
	TTCGCCCTAT	AGTGAGCCNA	TTC				2003

(2) INFORMATION FOR SEQ ID NO: 172:

(i) SEQUENCE CHARACTERISTICS:

25

(A) LENGTH: 786 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 172:

GGCACAGCGG CACGAGAAGA CTTTGGTGTT TAAGAGATTA ATGTGTTAGC CAGAACAACT 60 CATTICTCTA CCMGTGTGTA GTCCATTTAT CTTTAAAGAT TTTCTATTGG AATAATTTTG 120 35 AAATTACTTT CTTAGTTTTC TTCATTAAAA ACTAAGAAAA TGCTTTGTTT ATTATGAATT 180 GCTATTTCTC TTGATTATTA TTCTTGGAGA AAGTCTATCA GACGTAATTC TTCTGATTTG 240 CTTCTAGGCT AGAGGAAAAT GTGAAAGATG ACAAATGAAA ATTTCAAAGG TTGTCAGTAG 300 40 TATGACTTCT TTTATCGTTT GTCATTATCA CAAATATATC AACATAGGAC TTTTAAAAGA 360 TATTTTGTAC ATATTGGGCC TTAGTAGGAT TTTGCATGAA TTTTTTTTT CTTTTATGCC 420 45 CAGAGAGAA GAGCAAAGAA ATAACCAAGG GTGATGTACT CGTATTGAAG GTTTACCAAA 480 TAAGGACTGC TTTTATTATG AACTATAGTC TATATTCTAA GTAAATCAAT TTTTCTATTA 540 TGTGTTTTTT GTTCCTGCAG GCAAGATCTC TGAACTTTAT GCAGAGGGTT CTTTTAAAAA 600 50 AACAAAGTIG AATTITITTA TITCITGGAA TATTITITTT CATTGATTIC TCCCAAGTAG 660 AGCAGATICA AATCTCCTTT GTACCCTATG TCTTTTTTGT TTTGCTATTA GCTCAGTATT 720 55 CCGTTTCTAC ATTTTCCTTT CCTAGAACCA GTCAATAAAT GACAAAAAAA AAAAAAAAA 780 ACTCGA 786

(2) INFORMATION FOR SEQ ID NO: 173:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1758 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

	(D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 173:	
	GGGACGAGCC CTGCCCACCT CCTGCAGCCT CCTGCGCCCC GCCGAGCTGG CGGATGGAGC	60
15	TGCGCACGGG GAGCGTGGGC AGCCAGGCGG TGGCGCGGAG GATGGATGGG GACAGCCGAG	120
13	ATGGCGGCGG CGGCAAGGAC GCCACCGGGT CGGAGGACTA CGAGAACCTG CCGACTAGCG	180
	CCTCCGTGTC CACCCACATG ACAGCAGGAG CGATGGCCGG GATCCTGGAG CACTCGGTCA	240
20	TGTACCCGGT GGACTCGGTG AAGACACGAA TGCAGAGTTT GAGTCCAGAT CCCAAAGCCC	300
	AGTACACAAG TATCTACGGA GCCCTCAAGA AAATCATGCG GACCGAAGCT TCTGGAGGCC	360
25	CTTGCGAGGC GTCAACGTCA TGATCATGGG TGCAGGGCCR GCCCATGCCA TGTATTTTGC	420
23	CTGCTATGAA AACATGAAAA GGACTTTAAA TGACGTTTTC CACCACCAAG GAAACAGCCA	480
	CCTAGCCAAC GGTATTTTGA AAGCGTTTGT CTGGAGTTAG AAAGTTCTCT TCTTCAACAC	540
30	GTCCCTCCCC AGGGTGTTCC TCCCTGTGAC CCAGCCGCCT CGACTTCGGC CCGCTTGCTC	600
	ACGAATAAAG AACTCAGAGT TGTGTGTGCA ATGCACACCC AGACACACGC ACGCACACAC	660
35	ACGCGCGCGC ACACACATGC TTTTTTCTGT TCCCCTCCGC TTTCTGAAGC CTGGGGAGAA	720
33	ATCAGTGACA GAGGTGTTTT GGTTTTATTG TTATGTGGGT TTTCTTTTGT ATTTTTTTTG	780
	TTTGTTTTGT TTTTAAACAT TCAAAAGCAA TTAATGATCA GACATAGGAG AAACCCTGAA	840
40	TAGAAACAAA ACTTTTGAAT GCTGGATTCA AAAAAAAAA AAAGTTATCT GGACAGCTTC	900
	TTTGAGACTA TTTAAAAACT GGTACAACAG GTCTCTACAA CGCCAAGATC TAACTAAGCT	960
15	TTAAAAGGTC AAGAAGTTTT ATGGCTGACA AAGGACTCGC GCAACGCAGA AGGCCTTTCC	1020
45	CACCTTAAGC TTCCGGGGAT CTGGGAATTT TACCCCCATT CTCTTCTGTT TGTCTGAGTC	1080
	TCATCTCTCT GCAAGCAAGG GCTGAAATCA TTTTGTTTGG TTGTTTTGAG GGAGAGAGGC	1140
50	GGGGTGGGGG GGTGCAAATC TGCCAGCAGC TCTTACGTAA GGCATGTTTT ATTGGGGAGG	1200
	GCTGAGCTTT TATTTTCTCC TCTCCAGTGG GGTTGGCTTT TATTGTTTCT TGTTTGGGTT	1260
<i>c</i>	TOGAATOGAA ATATOGATAG CAGCATAAAG TACTTTTATT TTGACAAAAT TCATTTTTT	1320
55	CAACAATGGA GACATAGATT TGACCCACAA TAACTTCTCC CCCTCTCTT TTACTCTGCT	1380
	CAAAAAGCAT CTCTCCTCCC ATTACCCAAC CTTGGTCATA AGTGTGCCTG GCTGGTTTGC	1440
60	ACAMAMMET TOTACTOTOT AAAAATTGGC CATTAGTGCA TITATTGAGA TGATCTCTAA	1500

	AGAGCTATGC CCTGACCTAC CCCTGATTCT ATGACATTGG GGCCCTTCTT TTGCTGAAAC	1560
5	TGCCTTACGT AATGGTTTTA CTCCTTGAAA GAGATTTGAC GGAATCCATT TTATGCCAAG	1620
J	TECTECCTE CACTETTTCT GCAATATETE STETATECTE TEGTEATCTT SCTEGGAATE	1680
	ATTATAAGTG TGTGTGGT GGGGGAGTGG GTATTACATG CATTGCTGAA GAGTCAAAAA	1740
10	AAAAAAAAA AAACTCGA	1758
15	(2) INFORMATION FOR SEQ ID NO: 174:	
	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 888 base pairs (B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 174:	
25	CTGTTAGAAT GCCCAGTTTA CCTGGATGGC AACCCAACAG TGCTCCTGCC CACCTGCCCC	60
	TCAATCCTCC TAGAATTCAG CCCCCAATTG CCCAGTTACC AATAAAAACT TGTACACCAG	120
30	CCCCAGGGAC AGTCTCAAAT GCAAATCCAC AGAGTGASMC ACCACCTCGG GTAGAATTTG	180
	ATGACAACAA TCCCTTTAGT GAAAGTTTTC AAGAACGGGA ACGTAAGGAA CGTTTACGAG	240
	AACAGCAAGA GAGACAACGG ATCCAACTCA TGCAGGAGGT AGATAGACAA AGAGCTTTGC	300
35	AGCAGAGGAT GGAAATGGAG CAGCATGGTA TGGTGGGCTC TGAGATAAGT AGTAGTAGGA	360
	CATCTGTGTC CCAGATTCCC TTCTACAGTT CCGACTTACC TTGTGATTTT ATGCAACCTC	420
40	TAGGACCCCT TCAGCAGTCT CCACAACACC AACAGCAAAT GGGGCAGGTT TTACAGCAGC	480
	AGAATATACA ACAAGGATCA ATTAATTCAC CCTCCACCCA AACTTTCATG CAGACTAATG	540
	AGCGAGGCAG GTAGGCCCTC CTTCATTTGT TCCTGATTCA CCATCAATCC CTGTTGGAAG	600
45	CCCAAATTTT TCTTCTGTGA AGCAGGGACA TGGAAATCTT TCTGGGACCA GCTTCCAGCA	660
	GTCCCCAGTG AGGCCTTCTT TTACACCTGC TTTACCAGCA GCACCTCCAG TAGCTAATAG	720
50	CAGTCTCCCA TGTGGCCAAG ATTCTACTAT AACCCATGGA CACAGTTATC CGGGATCAAC	780
_	CCAATCGCTC ATTCAGTTGT ATTCTGATAT AATCCCAGAG GAAAAAGGGN AAAAAAAARA	840
	AMAARAAARA ARAAAGGAGA TGATGATGCA GAATTCCACC AAGGCTCC	888

(2) INFORMATION FOR SEQ ID NO: 175:

60 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2379 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

	GGCAGAGCTA						
	Occinate Ciri	GTGTGGACTC	CATCCCCCTG	GAGTGGGATC	ACGNCTATGA	CCTCAGTCGG	60
10	GACCTGGAGT	CTGCAATGTC	CAGAGCTCTG	CCCTCTGAGG	ATGAAGAAGG	TCAGGATGAC	120
	AAAGATTTCT	ACCTCCGGG	AGCTGTTGSC	TTATCAGGGG	ACCACAGTGC	CCTAGAGTCA	180
	CAGATCCGAC	AACTGGGCAA	AGCCTGGATG	ATAGCCGCTT	TCAGATACAG	CAAACCGAAA	240
15	ATATCATTCG	CAGCAAAACT	CCCACGGGGC	CGGAGCTAGA	CACCAGCTAC	AAAGGCTACA	300
	TGAAACTGCT	GGGCGAATGC	AGTAGCAGTA	TAGACTCCGT	GAAGAGACTG	GAGCACAAAC	360
20	TGAAGGAGGA	AGAGGAGAGC	CTTCCTGGCT	TTGTTAACCT	GCATAGTACC	GAAACCCAAA	420
	CGGCTGGTGT	GATTGACCGA	TGGGAGCTTC	TCCAGGCCCA	GGCATTGAGC	AAGGAGTTGA	480
	GGATGAAGCA	GAACCTCCAG	AAGTGGCAGC	AGTTTAACTC	AGACTTGAAC	AGCATCTGGG	540
25	CCTGGCTGGG	GGACACGGAG	GAGGAGTTGG	AACAGCTCCA	GCGTCTGGAA	CTCAGCACTG	600
	ACATCCAGAC	CATCGAGCTC	CAGATCAAAA	AGCTCAAGGA	GCTCCAGAAA	GCTGTGGACC	660
30	ACCGCAAAGC	CATCATCCTC	TCCATCAATC	TCTGCAGCCC	TGAGTTCACC	CAGGCTGACA	720
	GCAAGGAGAG	CCGGGACCTG	CAGGATCGCT	TGTSGCAGAT	GAATGGGCGC	TGGGACCGAG	780
	TGTGCTCTCT	GCTGGAGGAG	TGGCGGGGCC	TGCTGCAGGA	TGCCCTGATG	CAGTGCCAGG	840
35	GTTTCCATGA	AATGAGCCAT	GGTTTGCTTC	TTATGCTGGA	GAACATTGAC	AGAAGGAAAA	900
	ATGAAATTGT	CCCTATTGAT	TCTAACCTTG	ATGCAGAGAT	ACTTCAGGAC	CATCACAAAC	960
40	AGCTTATGCA	AATAAAGCAT	GAGCTGTTGG	AATCCCAACT	CAGAGTAGCC	TCTTTGCAAG	1020
	ACATGTCTTG	CCAACTACTG	GTGAATGCTG	AAGGAACAGA	CTGTTTAGAA	GCCAAAGAAA	1080
	AAGTCCATGT	TATTGGAAAT	CGGCTCAAAC	TTCTCTTGAA	GGAGGTCAGT	CGTCATATCA	1140
45	AGGAACTGGA	GAAGTTATTA	GACGTGTCAA	GTAGTCAGCA	GGATTTGTCT	TCCTGGTCTT	1200
	CTGCTGATGA	ACTGGACACC	TCAGGGTCTG	TGAGTCCCAY	ATCAGGAAGG	AGCACCCCAA	1260
50	ACAGACAGAA	AACGCCACGA	GGCAAGTGTA	GTCTCTCACA	GCCTGGACCC	TCTGTCAGCA	1320
	GTCCACATAG	CAGGTCCACA	AAAGGTGGCT	CCGATTCCTC	CCTTTCTGAG	CCARGGCCAG	1380
. .	GTCGGTCCGG	CCCCCCCTTC	CTGTTCAGAG	TCCTCCGAGC	AGCTCTTCCC	CTTCAGCTTC	1440
55	TCCTGCTCCT	CCTCATCGGG	CTTGCCTGCC	TIGTACCAAT	GTCAGAGGAA	GACTACAGCT	1500
	GTGCCCTCTC	CAACAACTTT	GCCCGGTCAT	TCCACCCCAT	GCTCAGATAC	ACGAATGGCC	1560
60	CTCCTCCACT	CTGAACTAAG	CAGATGCCAT	CTGCAGAAGT	GCTGGTAGCA	TAAGGAGGAT	1620

	CGGGTCATAA	GCAATCCCAA	ACTACCAACA	AGAGGACCTT	GATCTTGGCG	AAAGCCMTCG	1680
5	GTGTGGCAGC	TTTAGCCTCC	TCCAGATCAC	ATGTGTGCAA	ATTATGGCTT	CAGAGGTGGA	1740
,	AGATAAACAG	TGACGGGGGA	ACAAACAGAC	AACAAGAAGG	TTTGGAAGAA	ATCTGGTTTG	1800
	AGACTCTGAA	CCTTAGCACT	AAGGAGATTG	AGTAAGGACC	TCCAAAGTTC	CCCGGACTCA	1860
10	TGAATTCTGG	GCCCTTGGCC	NATICIGIGO	ACAGCCAAGG	ACTTCAGTAG	ACCATCTGGG	1920
	CAGCTTTCCC	ATGGTGCTGC	TCCAACCATC	AGATAAATGA	CCCTCCCAAG	CACCATGTCA	1980
15	GTGTCGTACA	ATCTACCAAC	CAACCAGTGC	TGAAGAGATT	TTAGAACCTT	GTAACATACA	2040
	ATTTTTAAGA	GCTTATATGG	CAGCTTCCTT	TTTACCTTGT	TTTCCTTTGG	GGCATGATGT	2100
	TTTAACCTTT	GCTTTAGAAG	CACAAGCTGT	AAATCTAAAA	GGCACTTTTT	TTTAGAGGTA	2160
20	TAAAGAAAAA	CTAGATGTAA	TAAATAAGAT	CATGGAAGGC	TTTATGTGAA	AAAAGTTGAA	2220
	TGTTATAGTA	AAAAAAAAAG	ATATTTATGT	ATGTACAGTT	TGCTAAAGCC	AAGTTTTGTT	2280
25	TGTATTGATT	TCTTTGCATT	TATTATAGAT	ATTATAAAAT	AAAAAAAA	AAAAAAAAC	2340
==	TCGAGGGGG	GCCCGGTACC	CAATTCGCCC	TATAGTGAG			2379

35

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 176:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1348 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 176: GCGCCTTCAC GATGCCGGCG GTCAGTGGTC CAGGTCCCTT ATTCTGCCTT CTCCTCCTGC 60 TCCTGGACCC CCACAGCCCT GAGACGGGGT GTCCTCCTCT ACGCAGGTTT GAGTACAAGC 120 TCAGCTTCAA AGGCCCAAGG CTGGCATTGC CTGGGGCTGG AATACCCTTC TGGAGCCATC 180 ATGGAGGTGA GGGGCAGGGG TGGGGACCGC TATGCCCAGG GTCCCTCAAA GTGCTGGAGG 240 GGCTGTRACT TGGTGGGGAG TGGGTCTGTC ACAGCCATCC TCTGTCCAGG GTGGGGCAAG 300 GCCTGGGACA GTGCCAGGCA CCCCAGGACC CCTTCCAGGC TTGTCTCCTG CTCCACCGCC 360 TCAACACCCC CCACCCCTGC CCAAGCTGTT TCTCCTCTGC CTCTCTNNTT CCCTGCCCCA 420 GGACTICICI CITCICCICI GCCTCTCCTT GGACCCCTGC CCTTCCTCTA CCTCTGACCT 480 GTGAACACAC AGACACATGC TCACACACTA AGTCCCARGC ACACMSAAAG GCAATGTGGA 540 CCAGCACAAA CCTCCACTCT CCCGGCTCCA TCCCARCGGG CCTGTGGCTG GCCATGAAAA 600

	CTGGGGGCTA	CCTGGAGGGA	AGCATCCTCA	TCCCAGGTGA	GTGGGCACCA	GCCCTTCCCT	660
	GTATGTGTGT	TGTGGGTGGA	AGCAGGCATG	AGAGCATCTT	AGCCCATAGG	TTTGTATTCA	720
5	GGGACTTCCA	AACCCAGACC	TACAAAGAGT	GTGTCTTCTA	CCAGATCTTG	TTCAAAAAAG	780
	GGTTTGTGAT	GATGGAACTA	CACGATAGAG	GGAGTGAGCA	AGAACAATGA	GGATTAGAGT	840
10	GGAGCGTGAA	ATAGTCTAGG	AGCATGGCTT	CCAAAACATA	TGCTGTGAGG	TCTGTCCACC	900
•	TGAGAGTTGG	GCCATGGATT	TAATTCTGAG	CCTCTTAGCA	GGCAAAGCAA	AGACAGAAAG	960
	CAGATCGGCT	GTGGATTTCT	GTCTATAAAA	TGTGAGTTCT	TGGCCGGGTG	CGGTGGCTCA	1020
15	CGCCTGTAAT	CCCGGCGCTT	TGGGAGGCCA	GGGCGGATGG	GTCGCGAGGT	CAGGAGGTTG	1080
	GAAACCATCC	TGGCCGGAAT	GGTGAAGCCC	TGACTCTACT	AGAAGTGCAA	AGATTGGCTG	1140
20	GGTGTGGTGG	CCTCCCCCTC	TGGTCCCAGC	TTCTCGGGAG	GCTGAGGCGG	GAGAGTTGCT	1200
	TGGGCCTGGG	AGGCCGAGGT	TGCGGTGAGC	TGAGATCCTG	CCATTGCACT	TCAGCCTGGG	1260
	CACAGAGCCA	GACTCTGGCT	СААААААА	АААААААА	ACTCGAGGGG	GGCCCGTACC	1320
25	CAATTCGCCG	NATATGATCG	TAAACAAT				1348

30 (2) INFORMATION FOR SEQ ID NO: 177:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1502 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 177:

40	СТСААААТАА	АТАААТАААТ	AAAAATTTGT	ATTCCATTGA	TTTGGGTAGA	CACCAGGAAT	60
	GTGCATTTCT	AACAAGCTTT	CCAGGCGATC	CTATAGTAAG	TCATCTGTGG	ACTACTTTAA	120
45	GAAACTCTTC	TATAGAGAAT	GGAGTTGGAT	TAATAATAGG	TGATTTTTTA	CACTGGACTG	180
,,,	ATTCACAAGA	ACCTAAACAG	TAGTCCATGA	AGCTGCTCAT	CTGTGGTAAC	TATTTGGCCC	240
	CGTCTCACTC	TGAAAGCAGC	AGGAGATGTT	GTTTACTTTG	TTTCTATCCC	CTTTGTCTGG	300
50	AGATTAATTT	TGGAATGAAA	GTTTTTCTCT	CTATGCCATT	CCTGGTTCTT	TTCCAAAGCC	360
	TCATACAAGA	GGATTAGGTC	ACAATGCATG	CATTACCTTT	TAAAAGAATG	CGATATTGAT	420
55	ACCGATGCTT	ACTITITIT	TTTTTNACTA	CTTGTTTTAT	TCCTTCCAGN	AAAGTATAGC	480
	CCGCCTTTCT	ATAGCATAGT	TCTCTTTAGG	TGGAATGATT	CCTATAAGAT	TTCTCATTAT	540
	TAAATCATGC	ATTTTTCAAG	ATGGAATCAA	TMTTTGATTT	AATCTAAGCT	GATATTCTCA	600
60	TTTGTTAGAA	GAACAACCTA	CATGCTAGAG	AGAGAGGAGG	AAATATACCC	ACGACCACAC	660

	AGCCAGTTAG	TATCCAGTTG	GTGCTGGACT	CCAGCCAGGT	GTCCTGCCTC	ATGGTAGTTA	720
5	AATGATATAT	AGAAAAGGTA	AATTTTTAAA	GAAATATTTA	TTAATATATT	CCTATAAAAC	780
5	ATTTTAAAGG	TAACCACATA	AAAATGGTTA	ATTTTTCCAT	TCCAAAGTAA	ATGCTAAGCA	840
	TGTTTATTAA	TGAAGCAGTA	CTTCTGATTA	GTATATGACA	TTCTGAAGTT	AATTAAACTC	900
10	ATTGCACTAA	ATGTGTCTTC	CTTGGTATAG	TGGAGGATTT	GAGGATTGGA	ATATAGAGTA	960
	GAGTGCTTGC	TTAAGCCTGG	GAGCCCATCT	TTATAGCTAT	TTGATGTAAG	AAAAGAGACA	1020
15	TGGNCCATTT	СТАААСТАТА	TAAGGTGAGT	GTGTCTATTC	CCAGCAGATA	TAAAGGAAAA	1080
15	AGGAAACTTT	TTTGATTCCC	ACCTTCCCAG	CCTCACCTAG	CCATCTTCCA	GCCTCAAATA	1140
	TAGAGATGTT	AGTGCAAGGT	CCTGGGCTCT	AGGTGATCAT	TTCATAAGTC	CTTTACAGAT	1200
20	AAAGAAAAAG	TAGTGTTTGT	ATGTTTGTTT	TTAAGTAACC	CCAAAACAAA	TTTATATTGT	1260
	ATTCAGCAAA	ATTGGAATTC	AGGTGTTTAA	TTTTAGAACA	TGAAGTGCCT	GCTGTTTTAA	1320
25	GCATTGACTT	GTATAAAAAG	AATTGCATGT	CTCCAGTAAG	CTTATGGGTT	TTCTCATTTT	1380
23	TAGGTATATG	GCTTTTAATC	ATGTAAAGTG	AAACATTAGT	TTTCTTGCAT	TTTATTACAG	1440
	GTTCTTTGTT	GCAATAAAGA	TGCTGCTGAA	ATTAATTGAA	AAAAAAAA	AAAAAAACTC	1500
30	GA						1502

35 (2) INFORMATION FOR SEQ ID NO: 178:

40

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1637 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 178:

45	ATTTTCTAGC	CCACAAGGAC	TGAAGTTCAG	ATCCAAAAGT	TCACTTGCTA	ATTATCTTCA	60
	CAAAAATGGA	GAGACTTCTC	TTAAGCCAGA	AGATTTTGAT	TTTACTGTAC	TTTCTAAAAG	120
50	GGGTATCAAG	TCAAGATATA	AAGACTGCAG	CATGGCAGCC	CTGACATCCC	ATCTACAAAA	180
	CCAAAGTAAC	AATTCAAACT	GGAACCTCAG	GACCCGAAGC	AAGTGCAAAA	AGGATGTGTT	240
	TATGCCGCCA	AGTAGTAGTT	CAGAGTTGCA	GGAGAGCAGA	GGACTCTCTA	ACTITACTIC	300
55	CACTCATTTG	CTTTTGAAAG	AAGATGAGGG	TGTTGATGAT	GTTAACTTCA	GAAAGGTTAG	360
	AAAGCCCAAA	GGAAAGGTGA	CTATTTTGAA	AGGAATCCCA	ATTAAGAAAA	CTAAAAAAGG	420
60	ATGTAGGAAG	AGCTGTTCAG	GTTTTGTTCM	AAGTGATAGC	AAAAGAGAAT	CTGTGTGTAA	480

600

TAAAGCAGAT GCTGAAAGTG AACCTGTTGC ACAAAAAAGT CAGCTTGATA GAACTGTCTG

CATTTCTGAT GCTGGAGCAT GTGGTGAGAC CCTCAGTGTG ACCAGTGAAG AAAACAGCCT

5	TGTAAAAAA AAAGAAAGAT CATTGAGTTC AGGATCAAAT TTTTGTTCTG AACAAAAAAC	660
	TTCTGGCATC ATAAACAAAT TTTGTTCAGC CAAAGACTCA GAACACAACG AGAAGTATGA	720
10	GGATACCTTT TTAGAATCTG AAGAAATCGG AACAAAAGTA GAAGTTGTGG AAAGGAAAGA	780
	ACATTTGCAT ACTGACATTT TAAAACGTGG CTCTGAAATG GACAACAACT GCTCACCAAC	840
	CAGGAAAGAC TTCACTGAAG ATACCATCCC ACGGAACACA GATAGAAAGA AGGAAAACAA	900
15	GCCTGTATTT TTCCAGCAAA TATAACAAAG AAGCTCTTAG CCCCCCACGA CGTAAAGCCT	960
	TTAAGAAATG GACACCTCCT CGGTCACCTT TTAATCTCGT TCAAGAAACA CTTTTTCATG	1020
20	ATCCATGGAA GCTTCTCATC GCTACTATAT TTCTCAATCG GACCTCAGGC AAAATGGCAA	1080
20	TACCTGTGCT TTGGAAGTTT CTGGAGAAGT ATCCTTCAGC TGAGGTAGCA AGAACCGCAG	1140
	ACTGGAGAGA TGTGTCAGAA CTTCTTAAAC CTCTTGGTCT CTACGATCTT CGGGCAAAAA	1200
25	CCATTGTCAA GTTCTCAGAT GAATACCTGA CAAAGCAGTG GAAGTATCCA ATTGAGCTTC	1260
	ATGGGATTGG TGCACCCTGA AGACCACAAA TTAAATAAAT ATCATGACTG GCTTTGGGAA	1320
30	AATCATGAAA AATTAAGTCT ATCTTAAACT CTGCAGCTTT CAAGCTCATC TGTTATGCAT	1380
50	AGCTTTGCAC TTCAAAAAAG CTTAATTAAG TACAACCAAC CACCTTTCCA GCCATAGAGA	1440
	TTTTAATTAG CCCAACTAGA AGCCTAGTGT GTGTGCTTTC TTAATGTGTG TGCCAATGGT	1500
35	GGATCTTTGC TACTGAATGT GTTTGAACAT GTTTTGAGAT TTTTTTAAAA TAAATTATTA	1560
	ТТТСАСААСА АТССАААААА АЛАДАААААА АЛАДААААА АЛАДААААА АЛАДААААА	1620
40	AAAAAA AAAAAAA	1637
45	(2) INFORMATION FOR SEQ ID NO: 179:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2911 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 179:	
55	GGTGGTTTTT GTTCTGCAAT AGGCGGCTTA GAGGGAGGGG CTTTTTCGCC TATACCTACT	60
	GTAGCTTCTC CACGTATGGA CCCTAAAGGC TACTGCTGCT ACTACGGGGC TAGACAGTTA	120
	CTGTCTCAGC TCTAGGATGT GCGTTCTTCC ACTAGAAGCT CTTCTGAGGG AGGTAATTAA	180
60	AAAACAGTGG AATGGAAAAA CAGTGCTGTA GTCATCCTGT AATATGCTCC TTGTCAACAA	240

	TGTATACATT	CCTGCTAGGT	GCCATATTCA	TTGCTTTAAG	CTCAAGTCGC	ATCTTACTAG	300
5	TGAAGTATTC	TGCCAATGAA	GAAAACAAGT	ATGATTATCT	TCCAACTACT	GTGAATGTGT	360
J	GCTCAGAACT	GGTGAAGCTA	CTTTCTGTG	TGCTTGTGTC	ATTCTGTGTT	ATAAAGAAAG	420
	ATCATCAAAG	TAGAAATTTG	AAATATGCTT	CCTGGAAGGA	ATTCTCTGAT	TTCATGAAGT	480
10	GGTCCATTCC	TGCCTTTCTT	TATTTCCTGG	ATAACTTGAT	TGTCTTCTAT	GTCCTGTCCT	540
	ATCTTCAACC	AGCCATGGCT	GTTATCTTCT	CAAATTTTAG	CATTATAACA	ACAGCTCTTC	600
15	TATTCAGGAT	AGTGCTGAAG	ANGCGTCTAA	ACTGGATCCA	GTGGGCTTCC	CTCCTGACTT	660
13	TATTTTTGTC	TATTGTGGCC	TTGACTGCCG	GGACTAAAAC	TTTACAGCAC	AACTTGGCAG	720
	GACGTGGATT	TCATCACGAT	GCCTTTTTCA	GCCCTTCCAA	TTCCTGCCTT	CTTTTCAGAA	780
20	ATGAGTGTCC	CAGAAAAGAC	AATTGTACAG	CAAAGGAATG	GACTTTTCCT	GAAGCTAAAT	840
	GGAACACCAC	AGCCAGAGTT	TTCAGTCACA	TCCGTCTTGG	CATGGGCCAT	GTTCTTATTA	900
25	TAGTCCAGTG	TTTTATTTCT	TCAATGGCTA	АТАТСТАТАА	TGAAAAGATA	CTGAAGGAAG	960
25	GGAACCAGCT	CACTGAARGC	ATCTTCATAC	AGAACAGCAA	ACTCTATTTC	TTTGGCATTC	1020
	TGTTTAATGG	GCTGACTCTG	GGCCTTCAGA	GGAGTAACCG	TGATCAGATT	AAGAACTGTG	1080
30	GATTTTTTTA	TGGCCACAGT	GCATTTTCAG	TAGCCCTTAT	TTTTGTAACT	GCATTCCAGG	1140
	GCCTTTCAGT	GGCTTTCATT	CTGAAGTTCC	TGGATAACAT	GITCCATGTC	TTGATGGCCC	1200
35	AGGTTACCAC	TGTCATTATC	ACAACAGTGT	CIGICCIGGI	CTTTGACTTC	AGGCCCTCCC	1260
33	TGGAATTTTT	CTTGGAAGCC	CCATCAGTCC	TTCTCTCTAT	ATTTATTTAT	AATGCCAGCA	1320
	AGCCTCAAGT	TCCGGAATAC	GCACCTAGGC	AAGAAAGGAT	CCGAGATCTA	AGTGGCAATC	1380
40	TTTGGGAGCG	TTCCAGTGGG	GATGGAGAAG	AACTAGAAAG	ACTTACCAAA	CCCAAGAGTG	1440
	ATGAGTCAGA	TGAAGATACT	TTCTAACTGC	TACCCACATA	GTTTGCAGCT	CTCTTGAACC	1500
15	TTATTTTCAC	ATTITCAGTG	TTTGTAATAT	TTATCTTTTC	ACTTTGATAA	ACCAGAAATG	1560
45	TTTCTAAATC	CTAATATTCT	TTGCATATAT	CTAGCTACTC	CCTAAATGGT	TCCATCCAAG	1620
	GCTTAGAGT	A CCCAAAGGCT	AAGAAATTCT	AAAGAACTGA	TACAGGAGTA	ACAATATGAA	1680
50	GAATTCATT	A ATATCTCAGI	ACTTGATAA	TCAGAAAGTI	* ATATGTGCAG	ATTATTTTCC	1740
	TTGGCCTTC	A AGCTTCCAAA	AAACTIGTAA	TAATCATGTT	AGCTATAGCT	TGTATATACA	1800
	CATAGAGATO	AATTTGCCAP	ATATTCACA/	TCATGTAGTT	CTAGITTACA	TGCCAAAGTC	1860
55	TTCCCTTTT	T AACATTATAA	AAGCTAGGT	GICTCTTGA	TTTTGAGGCC	CTAGAGATAG	1920
	TCATTTTGC	A ACTAAAGAGG	: AACGGGACC	TITCTAAAA	CGTTGGTTGA	AGGACCTAAA	1980
60	መል ርርጥ ርርርር	ላ <i>ጥእር</i> ርእጥእር <u></u> ልባ	י ייייניניניבאייניאי	r GTAGTCTGTG	CTAAATATTI	TGCTGAAGAA	2040

	GCAGTTTCTC A	GACACAACA '	TCTCAGAATT	TTAATTTTTA	GAAATTCATG	GGAAATTGGA	2100
5	TTTTTGTAAT A	ATCTTTTGA	TGTTTTAAAC	ATTGGTTCCC	TAGTCACCAT	AGTTACCACT	2160
	TGTATTTTAA (STCATTTAAA	CAAGCCACGG	TGGGGCTTTT	TTCTCCTCAG	TTTGAGGAGA	2220
	AAAATCTTGA T	IGTCATTACT	CCTGAATTAT	TACATTITGG	AGAATAAGAG	GGCATTTTAT	2280
10	TTTATTAGTT A	ACTAATTCAA	GCTGTGACTA	TTGTATATCT	TTCCAAGAGT	TGAAATGCTG	2340
	GCTTCAGAAT (CATACCAGAT	TGTCAGTGAA	GCTGATGCCT	AGGAACTTTT	AAAGGGATCC	2400
	TTTCAAAAGG	ATCACTTAGC	AAACACATGT	TGACTTTTAA	CTGATGTATG	ATATTAATA	2460
15	CTCTAAAAAT	AGAAAGACCA	GTAATATATA	AGTCACTTTA	CAGTGCTACT	TCACACTTAA	2520
	AAGTGCATGG '	TATTTTCAT	GGTATTTTGC	ATGCAGCCAG	TTAACTCTCG	TAGATAGAGA	2580
20	AGTCAGGTGA	TAGATGATAT	TAAAAATTAG	CAAACAAAAG	TGACTTGCTC	AGGGTCATGC	2640
	AGCTGGGTGA	TGATAGAAGA	GTGGGCTTTA	ACTGGCAGGC	CTGTATGTTT	ACAGACTACC	2700
25	ATACTGTAAA	TATGAGCTTT	ATGGTGTCAT	TCTCAGAAAC	TTATACATTI	CTGCTCTCCT	2760
	TTCTCCTAAG	TTTCATGCAG	ATGAATATAA	GGTAATATAC	TATTATATAA	TTCATTIGTG	2820
	ATATCCACAA	TAATATGACT	GGCAAGAATT	GGTGGAAATT	TGTAATTAAA	ATAATTATTA	2880
30	AACCTAAAAA	АААААААА	AAAAACTCGA	. G			2911

35 (2) INFORMATION FOR SEQ ID NO: 180:

40

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 519 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 180:

45	GGCACGAGCC	CCAGGCCAGC	CAGGGCCAGG	CCTACTTTGG	CCACCCTTAA	ATTAGAATGT	60
	GGGGTCAGGG	GTCACAGAAA	AGCCATTTCT	CTGACCTAGT	GTTTGGCGTC	CGGGAACTCT	120
50	GTGCCCAACC	TTCAGACCCT	GGCAGTCCTC	ACTGAGGCCA	TTGGCCCAGA	GCCCGCCATC	180
50	CCCCGARACC	CCCGGGAGCC	GCCTGTTGCC	ACGTCCACAC	CTGCCACACC	CTCTGCCGGG	240
	CCCCAGCCCC	TCCCAACCGG	GACCGTGCTG	GTCCCTGGGG	GTCCTGCCCC	ACCTTGCCTT	300
55	GGGGAGGCAT	GGCCCTCCT	CCTCCCACCC	TGCCGGCCGT	CACTCACCTC	TTCCTTCTCG	360
	TCCCCCAGGC	CTAGCCCTTG	GAAGGAGACA	GGAGTCTAGG	GAGGCTGAAG	CCCACTCCCG	420
60	GGGAGGCCCG	TGCTCCTCCA	GCCCCAGGGA	CAGCAAGGAA	AAGAGAAGAG	AGCAGAGCAT	480
60							

TTCATGGCTC TAATAAAAAA AAAAAAAAAA AAAACTCGA

519

5

10

(2) INFORMATION FOR SEQ ID NO: 181:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 968 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 181:

15 TCCCCTTGGG GCCGGAAAAA GCGGGGTTGG CCTGNCCATT GGTTNTCCAT GCCGCCCGCC 60 CATGCCCCAG TACTAGCCTG CAGTCCCAAT GTAGCCCCTC CCTCYTCCMA GAGCCCYTCM 120 180 20 AACCGCCCCG STCANTTGTG ATTTCAGGAG GATTTGATGA AGATGTTAAA GCGAAAGTGG 240 AGAACCTTCT CGGGATTTCC AGCCTGGAAA AAACGGACCC TGTTAGGCAA GCACCCTGCA 300 GCCCTCCCTG TCCCCTTCTT CCCCTCCCCT TCYCCCGCCC GTGGAGACAG CTGTTYTCAG 25 CAGGGCTCTC CGCAGGGAGG GGGCCGGCTC CTTCCCTGGC AGCAACATCC TTGCCCTTGT 360 420 CACACAAGTC AGCCTCCATC TGCGCAGCTC TGTGGATGCG CTGCTGGAGG GCAACAGGTA TGTCACTGGC TGGTTCAGCC CCTACCACCG CCAGCGGAAG CTCATCCACC CGGTCATGGT 480 30 540 TCAGCACATC CAGCCCGCAG CGCTCAGCCT CCTGGCACAG TGGAGCACCC TCGTGCAGGA 600 CCTGGAGGCT GCCCTGCAGC TGGCTTTCTA CCCGGATGCC GTGGAGGAGT GGCTGGAGGA 35 AAACGTGCAC CCCAGCCTGC AGCGGCTGCA ARCTCTGCTG CAGGACCTCA GCGAGGTGTC 660 720 TGCCCCCCG CTGCCACCCA CCAGCCCTGG CAGGGACGTT GCTCAGGACC CCTGAGGGGA 780 GAGCTCATGC CAGGGGGCTC CTGCTGGAGG CTGGGGGGGC TCTGCWYTKY CWWWTGGCCT 40 GGGCAATACG GCCCACGTGG GCGTCGTGCC CTCTGGCCCA GCAGTGTCTT GCCCACACTC 840 900 AGTTCCTGAG GGCCCTGGGC AGCCCCTGGG GGAGAGACTA GAAAACACAG AAGGAAGCAG 45 960 CACAGGGAGA CCCGCTTTGT GATCTGCATG TGTGACACTG ATTCTTTGGA AATAAAGAGT 968 GGAAGCTG

50

(2) INFORMATION FOR SEQ ID NO: 182:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1128 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 182:	
	TGTAAAAGTT ATCAGTAATC CTAATTCTTT TCCTGGGTTT TCCTTTTGTC ACTTATTAAT	60
5	CAGTITITGA AAGGACGAAT GAATTTAGAG ATGTACTCTG GAGCAGTATC ATGTTAAACC	120
	AGGGGTATAT TAGAAAAATC ATCCTCATAA TCATTCTGGG AAGTTTTTCC TCCCCAAAAA	180
10	AAGCCATCCT GATGGGTTTT CAAAACCAGA AAAAAGCTCT TAATGAGGAA CAGACCACTG	240
10	GAGTACCCAT GAGCATCTCA GGAAAACTGA GACCCTCGAG AAGCCTTGAT TTCGTGCAAC '	300
	CCCCAAGGTT TCAGAGCCAG CAGCCCAGTG CTGTGGTTGA CAGACGTGGT TTTKTGGRGA	360
15	AAGCAGCCAG AGGCCAGGAA TTTTCAGAGT CGTGAGTCAC GRTYTCCCAC CCAAGATTAG	420
	AGCAMAGATT AGCCATACTG AGATTTGGTA AAATCATTCT GTCTAAGCAA TGGAGGTGTG	480
20	TGCAMACGTG CAGTGCCTGT TCACAGGGGA TGCAGGCAGA TCSYGGGTTT AGGATGGGGR	540
20	AGGCCACCGC ACCCCCYTTC AYTGCTCTGC ACCTGCTCCC TCACGTGGAC ACTGTCCACA	600
	ACTGTGGCTC TCACAGGACA GTTGCCCAAG GAGCTCATAT CTTATTGGAG ATAGGGGGTC	660
25	GTACAGGTGA CATTCATGAG CAGTGTGAGC CGGGTGACAT GGGGGTGTCA ACCCAGCATC	720
	TGTCCAGGAG CTCCTCCTGC AGCGGCTCTG GCAGGTGGCC TGAGGCTCCT TTTTGAGAGA	780
30	GAACTGTTTG GCCTTCCTGT CTCCTCTCCT CTGATCTGTT CTTTCTTGGA ACACCACCCA	840
30	AGAACGTCAC CTCCTCCATC AGATTGTGAG CTCCTGGAGG GCAGGAGCTG TGTCCTTCTA	900
	TTCATCTTCC TATCCCCAGA ACCTTGCACA GATCCTGGAA TGTGGTAGGT GCTCAGTAAA	960
35	TGTGTGTTGA ATAAATGAAT GAATGAATGA ACAAATGAAT GAATTTGCTT ACTTCAAGGC	1020
	AAAAGAACCA TGAAACTGTA TTTPGAGTTT CTATGTTATA GCAGTCAGCA AATCCTATTA	1080
40	AATACTTTGT GTTTCCAAGC AAAAAAAAAA AAAAAAAAA AAACTCGA	1128
45	(2) INFORMATION FOR SEQ ID NO: 183: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2276 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 183:	
E E	CCGCGGCGTC TGACCTCATG GCGTAGAGCC TAGCAACAGC GCAGGCTCCC AGCCGAGTCC	60
55	GTTATGGCCG CTGCCGTCCC GAAGAGGATG AGGGGGCCAG CACAAGCGAA ACTGCTGCCC	120
	GGGTCGGCCA TCCAAGCCCT TGTGGGGTTG GCGCGGCCGC TGGTCTTGGC GCTCCTGCTT	180
60	CHETCUCCE CICTATCCAG IGTIGIATCA CEGACIGATI CACCGAECCC AACCGTACIC	240

	AACTCACATA TTTCTACCCC AAATGTGAAT GCTTTAACAC ATGAAAACCA AACCAAACCT	300
5	TCTATTTCCC AAATCAGCAC CACCCTCCCT CCCACGACGA GTACCAAGAA AAGTGGAGGA	360
3	GCATCTGTGG TCCCTCATCC CTCGCCTACT CCTCTGTCTC AAGAGGAAGC TGATAACAAT	420
	GAAGATCCTA GTATAGAGGA GGAGGATCTT CTCATGCTGA ACAGTTCTCC ATCCACAGCC	480
10	AAAGACACTC TAGACAATGG CGATTATGGA GAACCAGACT ATGACTGGAC CACGGGCCCC	540
	AGGGACGACG ACGACTCTGA TGACACCTTG GAAGAAAACA GGGGTTACAT GGAAATTGAA	600
15	CAGTCAGTGA AATCTTTTAA GATGCCATCC TCAAATATAG AAGAGGAAGA CAGCCATTTC	660
15	TTTTTCATC TTATTATTTT TGCTTTTTGC ATTGCTGTTG TTTACATTAC ATATCACAAC	720
	AAAAGGAAGA TITTTCTTCT GGTTCAAAGC AGGAAATGGC GTGATGGCCT TTGTTCCAAA	780
20	ACAGTGGAAT ACCATCGCCT AGATCAGAAT GTTAATGAGG CAATGCCTTC TTTGAAGATT	840
	ACCAATGATT ATATTTTTA AAGCACTGTG ATTTGAATTT GCTTATGTAA TTTTATTTGC	900
25	TIGACITTIT ATATGATATI GIGCAAATGI TIGCCATAGG CAATTGGTAC TIAAATGAGA	960
20	GGTGAGTCTC TCTTTTGCCT TGGTGCTTTG GAAATTAAAT GTCACAAACG AGTATATAAT	1020
	TTTTTATCTG TACTTTAGA GCTGAGTTTA ATCAGGTGTC CAAAATGTGA GTTAAACATT	1080
30	ACCTTATATT TACACTGITA GITTTTATTG TTTTAGATTT ATTATGCTTC TTCTGGAAGT	1140
	ATTAGTGATG CTACTTTTAA AAGATCCCAA ACTTGTAACT AAATTCTGAC ATATCTGTTA	1200
35	CTGCTGACTC ACATTCATTC TCCGCCATTC AAATACTATT TTTTATCCAC ATTTTTTTT	1260
55	GTTCCCAAAC TGTAATGTAC AAGGATATGT GTGATAATGC TTTGGATTTG AGTAATATTT	1320
	TITTTTCTTC CAAGAAAACT GCTTTGGATA TTTTTAGATA ATTTAAACAT AATTTAGGAT	1380
40	AATGATATTG CTCAATCTGA CCACAATTTT AGGTAAAACA TTAAATGTGT CAGAAATCTT	1440
	GGCAACAGAG ACTCTGCAGC TTGCAGTGGA CATAGATAAA ATGTTACAGA GATACTATTT	1500
45	TTTTGGTTGG AATTACTATA TTAAATTTAG AAGCAGAAAC TGGTAAAATG TTAAATACAT	1560
73	GTACAATTGC TTTTAGTTAG CAATTGATTG TAGCATGGGT TCCTCCAAGG TTTCAAGCAA	1620
	TGGGCAGAGT TTAAAATTAT ATCAGATTCG TTTACTTCGT TTATTATTTT ACAGTAAATT	1680
50	TGAATAAATC TTAGGGGTCA TTATCACTTA AATAATACTG TACCTAGGTC TTTCAAATTA	1740
	AAATTATACC TGAATGAAGT TGTTTGTATA CATAAAGGAT ATTTGTGTAC AATTACCTTT	1800
55	TTTCCCCCAC ACTIGITTTC TITGITTTTG TTTTTTATGG CAACTGGAAA GTATTTACTA	1860
در	TGGGATTCAT TTATGTCTGT CTTTCTATCA TAAAGAATTG ATCAATATGT AAATATGTGA	1920
	TTTGAACCAT GGTTGACTTA CAAGTGTCAC TACAGCTTTT TAGAAAACAT AGCCCTAATA	1980
60	TATGTTAAGC AGGACCCGGG TGAGCCAGTG GGCTTGCGCT TTATGTAGAG CTGGAAGAAG	2040

	GCCGTCCATC CTGTCTCTTG GGCGGACAGT GTACTTTCCT AATAGGGAAG GGAAGCACAA	2100
_	TOGAAATACC CCTGAACCGT TTTATTGCAG TAATTTTTTT CATATCTGAA ACTATTATTT	2160
5	AATATTTTGA ATAAGATTTT AAAAAATAAA TGGCAAAGAT ATAAATCTAA AAAAAAAAAA	2220
	AAAAAA AAAAAAAAA AAAAAAAAA AAAAAAAAA AAAA	2276
10		
	(2) INFORMATION FOR SEQ ID NO: 184:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2500 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 184:	
	TCCAAGCTAC GCCACTCGGG CTGGGGGCGTT GGGAGCGGGA GTGCAGAGCG TGGTCGTGGC	60
25	GGCGGCGTG AGAAGAGCGA GGCGKAGGAG GGGGTGCCAT GGCCGGGCAG CAGTTCCAGT	120
	ACGATGACAG TGGGAACACC TTCTTCTACT TCCTCACCTC CTTCGTGGGG CTCATCGTGA	180
30	TCCCGGCGAC ATACTACCTC TGGCCCCGAG ATCAGAATGC CGAGCAAATT CGATTAAAGA	240
50	ATATCAGAAA AGTATATGGA AGGTGTATGT GGTACGTTTA CGGTTATTAA AACCCCAGCC	300
	AAATATTATT CCTACAGTAA AGAAAATAGT TCTGCTTGCA GGATGGGCAT TGTTCTTATT	360
35	CCTTGCATAT AAAGTTTCCA AAACAGACCG AGAATACCAA GAATACAATC CTTATGAAGT	420
	ATTAAATTTG GATCCTGGAG CCACAGTAGC AGAAATTAAA AAACAATATC GTTTGCTGTC	480
40	ACTTAAATAT CATCCAGATA AAGGAGGTGA TGAGGTTATG TTCATGAGGA TAGCAAAAGC	540
40	TTATGCTGCT TTAACGGATG AAGAGTCCCG GAAAAATTGG GAAGAATTTG GAAATCCAGA	600
	TGGGCCTCAA GCCACAAGCT TTGGAATTGC CCTGCCAGCT TGGATAGTTG ACCAGAAAAA	660
45	TTCAATTCTG GTTTTACTTG TATATGGATT GGCATTTATG GTTATCCTTC CAGTTGTTGT	720
	GGGCTCTTGG TGGTATCGCT CAATACGCTA TAGTGGAGAC CAGATTCTAA TACGSACAAC	780
50	ACAGATTTAT ACATACTTTG TTTATAAAAC CCGAAATATG GATATGAAAC GTCTTATCAT	840
50	GGTTTTGGST GGAGCTTCTG AATTTGATCC TCAGTATAAT AAAGATGCCA CAAGCAGACC	900
	AACGGATAAT ATTCTAATAC CACAGCTAAT CAGAGAAATT GGCAGCATTA ATTTAAAGAA	960
55	GAATGAGCCT CCACTTACCT GCCCATATAG CCTGAAGGCC AGAGTTCTTT TACTGTCTCA	1020
	TCTTGCTAGA ATGAAAATTC CTGAGACCCT TGAAGAAGAT CAGCAATTCA TGCTAAAAAA	1080
	GTGTCCTGCC CTACTTCAAG AAATGGTTAA TGTAATCTGC CAACTAATAG TAATGGCCCG	1140

	GAACCGTGAA G	AAAGGGAGT '	TTCGTGCTCC	AACTTTGGCA	TCCCTAGAAA	ACTGCATGAA	1200
	GCTTTCTCAG A	TGGCCGTTC	AGGGACTTCA	GCAATTTAAG	TCTCCCCTTC	TGCAGCTCCC	1260
5	TCATATTGAA G	AGGACAATC	TTAGACGGGT	TTCTAATCAT	aagaagtata	AAATTAAAAC	1320
	TATCCAGGAT T	TGGTGAGTT	TAAAAGAATC	AGATCGTCAC	ACTCTACTGC	ACTTCCTTGA	1380
10	AGATGAAAAA T	ATGAAGAGG	TTATGGCTGT	CCTTGGGAGT	TTTCCATATG	TGACCATGGA .	1440
10	TATAAAATCA C	AGGTGTTAG	atgatgaaga	TAGCAACAAC	ATCACAGTAG	GATCCTTAGT	1500
	TACAGTGTTG G	TTAAGTTGA	CAAGGCAAAC	AATGGCTGAA	GTATTTGAAA	AGGAGCAGTC	1560
15	CATCTGTGCT G	CAGAGGAAC	AGCCAGCAGA	AGATGGGCAG	GGTGAAACTA	ACAAGAACAG	1620
	GACAAAAGGA G	GATGGCAAC	agaagagtaa	AGGACCCAAG	AAAACTGCTA	AATCAAAAA	1680
20	AAAGAAACCT T	MAAAAAAAA	AACCTACACC	TGTGCTATTA	CCACAGTCAA	AGCAACAGAA	1740
20	ACAAAAGCAG G	GCAAATGGAG	TCGTTGGGAA	TGAAGCTGCA	GTAAAGGAAG	ATGAAGAAGA	1800
	AGTTTCAGAT A	AAGGCAGTG	ATTCTGAAGA	AGAAGAAACC	AATAGAGATT	CCCAAAGTGA	1860
25	GAAAGATGAT (GGTAGTGACA	GAGACTCTGA	TAGAGAGCAA	GATGAAAAAC	AAAACAAAGA	1920
	TGATGAAGCA (GAGTGGCAAG	AATTACAACA	AAGCATACAG	CGAAAAGAGA	GAGCTCTATT	1980
30	GGAAACCAAA 1	CAAAAATAA	CACATCCTGT	GTATAGCCTT	TACTTTCCTG	AGGAAAAACA	2040
50	AGAATGGTGG	IGGCTTTACA	TTGCAGATAG	GAAGGAGCAG	ACATTAATAT	CCATGCCATA	2100
	TCATGTGTGT 2	ACGCTGAAAG	ATACAGAGGA	GGTAGAGCTG	AAGTTTCCTC	CACCAGGCAA	2160
35	GCCTGGAAAT '	TATCAGTATA	CTGTGTTTCT	GAGATCAGAC	TCCTATATGG	GTTTGGATCA	2220
	GATTAAACCA '	TTGGAAGTTK	GGAAGTTCAT	GAGGCTGAAG	CCTGTGCCAG	AAAATCACCC	2280
40	ACAGTGGGAT	ACAGCAATAG	AGGGGGATGA	AGACCAGGAG	GACAGTGAGG	GCTTTGAAGA	2340
10	TAGCTTTGAG	GGAGGAAGAG	GGAGGGAGGA	AGGAAGGTGG	TGGACTTAAC	GCAGTTACTC	2400
	TGGAATGGGA	CCCACAGTGT	TTTGCACCAT	TATTTTGGCAP	A TTTTTTTTGG	CCGTTTTING	2460
45	GAAGTGTTTT	CCNTNAANCC	CAGGAACCAT	TACAGAACCO	3		2500

50 (2) INFORMATION FOR SEQ ID NO: 185:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1337 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 185:

	TCTCCCTGGC GTTTGGTCAC CTCTGCTTCA TTCTCCACCG CGCCTATGGT CCCTCTTGGA	120
_	GCCAGCGTGG CGGGCCTGGC GGCTCCCGGG TGGTGAGAGA GCGGTCCGGG AACGATGAAG	180
5	GCCTCGCAGT GCTGCTGCTG TCTCAGCCAC CTCTTGGCTT CCGTCCTCCT CCTGCTGTTG	240
	CTGCCTGAAC TAAGCGGGYC CCTGGMAGTC CTGCTGCAGG CAGCCGAGGC CGCGCCAGGT	300
10	CTTGGGCCTC CTGACCCTAG ACCACGGACA TTACCGCCGC TGCCACCGGG CCCTACCCCT	360
	GCCCAGCAGC CGGGCCGTGG TCTGGCTGAA GCTGCGGGGC CGCGGGGCTC CGAGGGAGGC	420
1.5	AATGGCAGCA ACCCTGTGGC CGGGCTTGAG ACGGACGATC ACGGAGGGAA GGCCGGGGAA	480
15	GGCTCGGTGG GTGGCGGCCT TGCTGTGAGC CCCAACCCTG GCGACAAGCC CATGACCCAG	540
	CGGGCCCTGA CCGTGTTGAT GGTGGTGAGC GGCGCGGTGC TGGTGTACTT CGTGGTCAGG	600
20	ACGGTCAGGA TGAGAAGAAG AAACCGAAAG ACTAGGAGAT ATGGAGTTTT GGACACTAAC	660
	ATAGAAAATA TGGAATTGAC ACCTTTAGAA CAGGATGATG AGGATGATGA CAACACGTTG	720
25	TTTGATGCCA ATCATCCTCG AAGATAAGAA TGTGCCTTTT GATGAAAGAA CTTTATCTTT	780
23	CTACAATGAA GAGTGGAATT TCTATGTTTA AGGAATAAGA AGCCACTATA TCAATGTTGG	840
	GGGGGTATTT AAGTTACATA TATTTTAACA ACCTTTAATT TGCTGTTGCA ATAAATACCG	900
30	TATCCTTTTA TTATATCTTT ATATGTATAG AAGTACTCTR TTAATGGGCT CAGAGATGTT	960
	GGGGATAAAG TATACTGTAA TAATTTATCT GTTTGAAAAT TACTATAAAA CGGTGTTTTC	1020
35	TGATCGGTTT TTGTTTCCTG CTTACCATAT GATTGTAAAT TGTTTTATGT ATTAATCAGT	1080
55	TAATGCTAAT TATTTTTGCT GATGTCATAT GTTAAAGAGC TATAAATTCC AACAACCAAC	1140
	TGGTGTGTAA AAATAATTTA AAATTTCCTT TACTGAAAGG TATTTCCCAT TITTGTGGGG	1200
40	AAAAGAAGCC AAATTTATTA CTTTGTGTTG GGGTTTTTAA AATATTAAGA AATGTCTAAG	1260
	TTATTGTTTG CAAAACAATA AATATGATTT TAAATTCTCT TAAAAAAAAA AAAAAAAACC	1320
45	CCGGGGGGG GCCCGGN	1337
10		

(2) INFORMATION FOR SEQ ID NO: 186:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 941 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

55

60

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186:

GGCACGAGCC TGGACGCAGC AGCCACCGCC GCGTCCCTCT CTCCACGAGG CTGCCGGCTT

	AGGACCCCCA	GCTCCGACAT	GTCGCCCTCT	GGTCGCCTGT	GTCTTCTCAC	CATCGTTGGC	120
	CTGATTCTCC	CCACCAGAGG	ACAGACGTTG	AAAGATACCA	CGTCCAGTTC	TTCAGCAGAC	180
5	TCAACTATCA	TGGACATTCA	GGTCCCGACA	CGAGCCCCAG	ATGCAGTCTA	CACAGAACTC	240
	CAGCCCACCT	CTCCAACCCC	AACCTGGCCT	GCTGATGAAA	CACCACAACC	CCAGACCCAG	300
10	ACCCAGCAAC	TGGAAGGAAC	GGATGGGCCT	CTAGTGACAG	ATCCAGAGAC	ACACAAGAGC .	360
10	ACCAAAGCAG	CTCATCCCAC	TGATGACACC	ACGACGCTCT	CTGAGAGACC	ATCCCCAAGC	420
	ACAGACGTCC	AGACAGACCC	CCAGACCCTC	AAGCCATCTG	GTTTTCATGA	GGATGACCCC	480
15	TTCTTCTATG	ATGAACACAC	CCTCCGGAAA	CGGGGGCTGT	TGGTCGCAGC	TGTGCTGTTC	540
	ATCACAGGCA	TCATCATCCT	CACCAGTGGC	AAGTGCAGGC	AGCTGTCCCG	GTTATGCCGG	600
20	AATCATTGCA	GGTGAGTCCA	TCAGAAACAG	GAGCTGACAA	CCYCCTGGGC	ACCCGAAGAC	660
20	CAAGCCCCCT	GCCAGCTCAC	CGTGCCCAGC	CTCCTGCATC	CCCTCGAAGA	. GCCTGGCCAG	720
	AGAGGGAAGA	CACAGATGAT	GAAGCTGGAG	CCAGGGCTGC	CGGTCCGAGT	CTCCTACCTC	780
25	CCCCAACCCT	GCCCGCCCCT	GAAGGCTACC	TGGCGCCTTG	GGGGCTGTCC	CTCAAGTTAT	840
	CTCCTCTGYT	AAGACAAAAA	GTAAAGCACI	GIGGICITIG	CAAAAAAAAA	AAAAAAAA	900
30	АААААААА	AAAAAAAAA	AAAAAAAAA .	AAAAAACTCG	; A		941
20							

(2) INFORMATION FOR SEQ ID NO: 187:

35

40

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 654 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 187:

GAATTCGGCA CGAGGCAGCT TGTGCTTTAA AGGAGGTGTT CAAAGCATGT CTGAGCAGAG 60 45 ACTITIGGGC TCTGTTTTAA TTAATACTIT AAAATAATIC ATATTTAAAA TATCARATGT 120 TTCCATAAAG AGGAGGATGT TTAAATGCCT CCAGACTACA TTCCTTTTTA TTSCTTGATT 180 TTACCTGGGA GTCCAAAGTT CAATTCCCAT AAAGCAAGCG TTTTATTTGT CACTTTCAAT 240 50 ATACATCCGA TTGCCATGCT TAAGATGCAA TATGGGCTGC GGAAATAGGT TAACCCACAG 300 GCTCCCAGGG CCCAGTGTAG AAGGTGAGAG ATTCGTGTAA AATGATTCAA ATAAAAGGAA 360 55 GACCCTGGCC GGGTGCCGTA RCTCACGCCT GTAATCCCAG CACTTTGGGA GGCCGAAGCG 420 AGTGGATGAC GAGGTTAGGA GTTGGAGACC AGCCTGGCCA ACATCGTGAA ACCCCGTCTC 480 TACTAAAAAT ACAAAAATTA GCCGGGCATG GTGGCAGGCA CCTGTAATCC TAGCTAGTTG 540 60

	GGAGGCTGAG	GCAGGAGAAT	CGTTTGAATC	TGGGAGTTGG	AGGITGICAG	TGAGCTGAGA	600
_	TCGCGCCACA	GCACTCCAGC	CTGGGTGACA	GGGTGAGACT	CTGTCTCAAA	NAGA	654
`							

(2) INFORMATION FOR SEQ ID NO: 188:

10

20

25

30

35

40

45

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1848 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

15 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 188:

GAAACTGGAC CGGAGAACCG GAGCGAAGCG AAGCGGAAGC CCGGAATGAG GCCGGACT	GG 60
AAAGCCGGAG CGGGCCAGG CGGGCCTCCC CAAAAGCCTG CCCCTTCATC CCAGCGGA	AA 120
CCGCCGGCCC GGCCGAGCGC GGCGGCCGCT GCGATTGCAG TCGCGGCGGC GGAGGAAG	AG 180
AGACGGCTCC GGCAGCGGAA CCGCCTGAGG CTGGAGGAGG ACAAACCGGC CGTGGAGC	GG 240
TECTTGGAGG AGCTGGTCTT CGGCGACGTC GAGAACGACG AGGACGCGTT GCTGCGGC	GT 300
CTGCGAGGCC CGAGGGTTCA AGAACATGAA GACTCGGGTG ACTCAGAAGT GGAGAATG	AA 360
GCAAAAGGTA ATTTTCCACC TCAAAAGAAG CCAGTTTGGG TGGATGAAGA AGATGAAG	AT 420
GAGGAAATGG TTGACATGAT GAACAATCGG TTTCGGAAGG ATATGATGAA AAATGCTA	GT 480
GAAAGTAAAC TTTCGAAAGA CAACCTTAAA AAGAGACTTA AAGAAGAATT CCAACATG	CC 540
ATGGGAGGAG TACCTGCCTG GGCAGAGACT ACTAAGCGGA AAACATCTTC AGATGATG	AA 600
AGTGAAGAG ATGAAGATGA TTTGTTGCAA AGGACTGGGA ATTTCATATC CACATCAA	ACT 660
TCTCTTCCAA GAGGCATCTT GAAGATGAAG AACTGCCAGC ATGCGAATGC TGAACGTC	720 T
ACTGITGCTC GGATCTCCAT CTGTGCAGTT CCATCCCGGT GCACAGATTG TGATGGTT	rgc 780
TGGGATTAGA TAATGCTGTA TCACTATTTC AGGTTGATGG GAAAACAAAT CCTAAAAN	PTC 840
AGAGCATCTA TITGGAAAGG TITCCAATCT TTAAGGCTTG TITTAGTGCT AATGGGG	AAG 900
AAGTTTTAGC CACGAGTACC CACAGCAAGG TTCTTTATGT CTATGACATG CTGGCTGC	GAA 960
AGITAATTCC TGTGCATCAA GTGAGAGGTT TGAAAGAGAA GATAGTGAGG AGCTTTG	AAG 1020
TCTCCCCAGA TGGGTCCTTC TTGCTCATAA ATGGCATTGC TGGATATTTG CATTTGC	rag 1080
CAATGAAGAC CAAAGAACTG ATTGGAAGCA TGAAAATTAA TGGAAGGGTT GCAGCAT	CCA 1140
CATTCTCTTC AGATAGTAAG AAAGTATACG CCTCTTCGGG GGATGGAGAA GTTTATG	TTT 1200
GGGATGTGAA CTCAAGGAAG TGCCTTAACA GATTTGTTGA TGAAGGCAGT TTATATG	GAT 1260

	TAAGCATTGC	CACATCTAGG	AATGGACAGT	ATGTTGCTTG	TGGTTCTAAT	TGTGGAGTGG	1320
	TAAATATATA	CAATCAAGAT	TCTTGTCTCC	aagaaacaaa	CCCAAAGCCA	ATAAAAGCTA	1380
5	TAATGAACTT	GGTTACAGGT	GTTACTTCTC	TGACCTTCAA	TCCTACTACA	GAAATCTTGG	1440
	CAATTGCTTC	AGAAAAAATG	AAAGAAGCAG	TCAGATTGGT	TCATCTTCCT	TCCTGTACAG	1500
10	TATTTTCAAA	CTTCCCAGTC	ATTAAAAATA	AGAATATTTC	TCATGTTCAT	ACCATGGATT	1560
10	TTTCTCCGAG	AAGTGGATAC	TTTGCCTTGG	GGAATGAAAA	GGGCAAGGCC	CTGATGTATA	1620
	GGTTGCACCA	TTACTCAGAC	TTCTAAAGAG	ACTATTTGAA	GTCCAGTTGA	GTCACAAGAG	1680
15	AAGCCTGTCT	TGATATATCA	TCTCAGAAAC	TTTCCTGAAT	ATGTGATAAT	ATATGGAAAA	1740
	TGATTTATAG	ATCCAGCTGT	GCTTAAGAGC	CAGTAATGTC	TTAATAAACA	TGTGGCAGCT	1800
20	TTTGTTTGAA	. AAAAAAAA	AAAAAAAA,	AAAAAAAAA	AAACTCGA		1848

(2) INFORMATION FOR SEQ ID NO: 189:

25

30

35

40

45

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1146 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 189:

AAAAAAAACC CAGGGGAACN TTGGGGGCCG CTTTNNNTTC CCCCTCCAGG CCATTGGGGA 60 ATTCTTCAAG TTAATCCTGC TTTGCTCTTG GCCAACAGGG CTTGTAGGGG GGAGAGACCC 120 AGGATCATCA AGGGGTTCGA GTGCAAGCCT CACTCCCAGC CCTGGCAGGC AGCCCTGTTC 180 GAGAAGACGC GGCTACTCTG TGGGGCGACG CTCATCGCCC CCAGATGGCT CCTGACAGCA 240 GCCCACTGCC TCAAGCCCCG CTACATAGTT CACCTGGGGC AGCACAACCT CCAGAAGGAG 300 GAGGGCTGTG AGCAGACCCG GACAGCCACT GAGTCCTTCC CCCACCCCGG CTTCAACAAC 360 AGCCTCCCCA ACAAAGACCA CCGCAATGAC ATCATGCTGG TGAAGATGGC ATCGCCAGTC 420 TCCATCACCT GGGCTGTGCG ACCCCTCACC CTCTCCTCAC GCTGTGTCAC TGCTGGCACC 480 AGCTGYCTCA THTCCGGCTG GGGCAGMACG TCCAGCCCCC AGTTACGCCT GCCTCACACC 540 TTGSGATGCG CCAACATCAC CATCATTGAG CACCAGAAGT GTGAGAACGC CTACCCCGGC 600 AACATCACAG ACACCATGGT GTGTGCCAGC GTGCAGGAAG GGGGCAAGGA CTCCTGCCAG 660 GGTGACTCCG GGGCCCTCT GGTCTGTAAC CAGTCTCTTC AAGGCATTAT CTCCTGGGGC 720 CAGGATCCGT GTGCGATCAC CCGAAAGCCT GGTGTCTACA CGAAAGTCTG CAAATATGTG 780 GACTGGATCC AGGAGACGAT GAAGAACAAT TAGACTGGAC CCACCCACCA CAGCCCATCA 840

	CCCTCCATTT	CCACTTGGTG	TTTGGTTCCT	GTTCACTCTG	TTAATAAGAA	ACCCTAAGCC	900
_	AAGACCCTCT	ACGAACATTC	TTTGGGCCTC	CTGGACTACA	GGAGATGCTG	TCACTTAATA	960
5	ATCAACCTGG	GGTTCGAAAT	CAGTGAGACC	TGGATTCAAA	TTCTGCCTTG	AAATATTGTG	1020
	ACTCTGGGAA	TGACAACACC	TGGTTTGTTC	TCTGTTGTAT	CCCCAGCCCC	AAAGACAGCT	1080
10	CCTGGCCATA	TATCAAGGTT	TCAATAAATA	TTTGCTAAAT	GAAAAARAAA	АААААААА	1140
	ACTCGA						1146

20

30

35

40

45

50

(2) INFORMATION FOR SEQ ID NO: 190:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 906 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 190:

ACTCCCTCAC CCAGGTCCCA GCCCTGGGAA CCACCTACCG TGAGCCCTTT TGCAGATATA 60 GACTCATTTC ATCCTCAGAT GGTCCTTCAA GGTAGGTACT TTAGTCCCAT TTTAGAGATG 120 AGACGATTGA GGCCAGAGGG GTGNNGTAAC TTGCCTGGGG GCTCACGAGC ACAAAAGGAG 180 CCGAGGCAGG ATCTGACCCT TGTTCTCTGG CCTCACTGCC CTCACTTTGC CATGACCCGA 240 AGTTATGTCC CTACAAAGCA ATGCATGGTC CAAGGYTCTT TTTATTGTAT TTTTATTTTT 300 AAGGGTCCTG TTCAAAACTG GTGTGAGCTC TGAGGAGTCC TGAACCCTGG GTGCAGCATC 360 CTAGCATCCT GGGAGTCCTT TTCTGCCCAC ACTGAGCTGG GCTCCTCGAG GGGTGGGGCT 420 GCTGTCCCTG GAAGCCTGGC AGCAGCACTG TATCGGGTTG GCTGAAGCTG ARCGCCGTGG 480 GGTGCAGGGC TCCMGGAATC CCCGTTTGGC TGAAGGGGTT CCCTGTAGCC MCGGATGTTT 540 ATGAGGTCTC TCTGATGCCC CAGGCGCAGG ACATGTGTGC GGGTGGAGAA AAGCAGGCCC 600 TTTCAGTGCC AGCTCCACTC AATTTCTATG TGGACCAAGA ACGATAAACT TAAAAAATTT 660 TTTTTCCTAA GGTATCTTCA GAATATGGTG TATTTTTATG TGGAAAAGAA AAGTTATGAA 720 GGCAGCTGTT ACTTTAAGAG AAAATTCATT AAAAGTCCTC GAGGTATGAA GATGACGGCG 780 840 CAAGCATGTC AGACAATAAA GTCTTTGTAA AAAGRGAAAA AAAAAAAAA AAAAAAAAA 900 906 ACTCGA

(2) INFORMATION FOR SEQ ID NO: 191:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1941 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 191: 10 CTTCAGCTGA AGCCCAGGGA CCCCTTTTCC ACCCTGGGCC CCAATGCCGT CCTTTCCCCG 60 CAGAGACTGG TCTTGGAAAC CCTCAGCAAA CTCAGCATCC AGGACAACAA TGTGGACCTG 120 15 ATTCTGGCCA CACCCCCTT CAGCCGCCTG GAGAAGTTGT ATAGCACTAT GGTGCGCTTC 180 CTCAGTGACC GAAAGAACCC GGTGTGCCGG AGATGGCTGT GGTACTGCTG GCCAACCTGG 240 CTCAGGGGGA CAGCCTGGCA GCTCGTGCCA TTGCAGTGCA GAAGGGCAGT ATCGGCAACC 300 20 TCCTGGGCTT CCTAGAGGAC AGCCTTGCCG CCACACAGTT CCAGCAGAGC CAGGCCAGCC 360 TCCTCCACAT GCAGAACCCA CCCTTTGAGC CAAYTAGTGT GGACATGATG CGGCGGGCTG 420 25 CCCGCGCGCT GCTTGCCTTG GCCAAGGTGG ACGAGAACCA CTCAGAGTTT ACTCTGTACG 480 AATCACGGCT GTTGGACATC TCGGTATCAC CGTTGATGAA CTCAKTGGTT TCACAAGTCA 540 TTTGTGATGT ACTGTTTTTG NATTGGCCAG TCATGACAGC CGTGGGACAC CTCCCCCCC 600 30 CGTGTGTGTG TGCGTGTGTG GAGAACTTAG AAACTGACTG TTGCCCTTTA TTTATGCAAA 660 ACCACCTCAG AATCCAGTTT ACCCTGTGCT GTCCAGCTTC TCCCTTGGGA AAAAGTCTCT 720 35 CCTGTTTCTC TCTCCTCCTT CCACCTCCCC TCCCTCCATC ACCTCACGCC TTTCTGTTCC 780 TIGTCCTCAC CITACTCCCC TCAGGACCCT ACCCCACCCT CTTTGAAAAG ACAAAGCTCT 840 GCCTACATAG AAGACTTTTT TTATTTTAAC CAAAGTTACT GTTGTTTACA GTGAGTTTGG 900 40 GGAAAAAAA TAAAATAAAA ATGGCTTTCC CAGTCCTTGC ATCAACGGGA TGCCACATTT 960 CATAACTGTT TTTAATGGTA AAAAAAAAA AAAAAAATAC AAAAAAAAAT TCTGAAGGAC 1020 45 AAAAAAGGTG ACTGCTGAAC TGTGTGTGGT TTATTGTTGT ACATTCACAA TCTTGCAGGA 1080 GCCAAGAAGT TCGCAGTTGT GAACAGACCC TGTTCACTGG AGAGGCCTGT GCAGTAGAGT 1140 GTAGACCCTT TCATGTACTG TACTGTACAC CTGATACTGT AAACATACTG TAATAATAAT 1200 50 GTCTCACATG GAAACAGAAA ACGCTGGGTC AGCAGCAAGC TGTAGTTTTT AAAAATGTTT 1260 TTAGTTAAAC GTTGAGGAGA AAAAAAAAA AGGCTTTTCC CCCAAAGTAT CATGTGTGAA 1320 55 CCTACAACAC CCTGACCTCT TTCTCTCCTC CTTGATTGTA TGAATAACCC TGAGATCACC 1380 TCTTAGAACT GGTTTTAACC TTTAGCTGCA GCGNCTACGT CNAWCGNTGT GTATATATAT 1440 GACGTKGTAC ATTGCACATA CCCTTGGATC CCCACAGTTK GGTCCTCCTC CCAGCTACCC 1500 60

	CTTTATAGTA	TGACGAGTTA	ACAAGTTGGT	GACCIGCACA	AAGCGAGACA	CAGCTATTTA	1560
_	ATCTCTTGCC	CAGATATCGC	CCCTCTTGGT	GCGATGCTGT	ACAGGTCTCT	GTAAAAAGTC	1620
3	CTTGCTGTCT	CAGCAGCCAA	TCAACTTATA	GTITATTTTT	TTCTGGGTTT	TTGTTTTGTT	1680
	TIGITITCTT	TCTAATCGAG	GTGTGAAAAA	GTTCTAGGTT	CAGTTGAAGT	TCTGATGAAG	1740
10	AAACACAATT	GAGATTTTT	CAGTGATAAA	ATCTGCATAT	TTGTATTTCA	ACAATGTAGC	1800
	TAAAACTTGA	TGTAAATTCC	TCCTTTTTT	CCTTTTTTGG	CTTAATGAAT	ATCATTTATT	1860
1.5	CAGTATGAAA	TCTTTATACT	ATATGTTCCA	CGTGTTAAGA	ATAAATGTAC	ATTAAATCTT	1920
15	GGTAAGACTT	тааааааааа	A				194

25

(2) INFORMATION FOR SEQ ID NO: 192:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2118 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 192:

30 AAATAATAAT AANAATAAAT AAAAATWAAG TGCTTAKTGT AACTCAGCGG ACAGGGCTCC 60 CAGCTGCTCT GGCACGTGGG ACACCYTCCA CCCTGCACAC AACAGGCATG CAAAGAGGAC 120 TGGATATGGT GGGGTAGAGT GCTTCTGGTG TGTTCACTTT AAGAAAACAT CTGCCAAGAG 180 35 240 AGAAGAGTGC CCAGGAAAGA CCAGGAAAAT ACAAGTACAT GGCTGCTTCA TACCATATAC CCCAATTCTT TAAAGCAGCA AAAGGCACTT TTTTTTTCAG GCCAGAGTGA ATCTAAAACA 300 40 AACCTGGCTT TGCTTACAGG GAAGCTGTCC CAGAAGGACT GAGTGATGCC TCTTGTTCCC 360 TAAGGTCTGG AGAGTCTTTG CAAGTTTCCA ACGACATTTC CAACCAGGTG GGAGAGACCA 420 GCAGTTGACG AGACAAGTCA GACCCAAAAA ACGACGCCAA GGTAGTGAGT GGGTGCCTAT 480 45 TTGGGAGTAG GATGATTTGA GGAAAACAGG AAGAAAAACC GGTCAGAAAG TGGCACTTTG 540 GAAGTGGAAA GCTGTTTGCA AATAGCAACT CTGGCTAAAG CGAAAATGTT AATCAAGTAG 600 50 AAAGTAAAAT TCAGGATCTT AGAAGCTCAT CCTTCTGATG AGAACTATTT TTTTTTCCGT 660 GAAGGAACTA TTATTACTTT AAAAGTGAGG GTAATTTACA TATGGGGTGT ATATATTCTA 720 AAAATAGTAA TAAAAGTACC TTTTATAAGC AATGTTGTGT GGCTTGTAGA AGAAAGCAGG 780 55 GAGGAAAAA AGGCAGGCAA AACTAGTCTA GGTCTAGGCC CTAAAAATGA GCTTCCTTCC 840 CACTTGACTG GAAACGCCCA TGTGATTTCT AGGCTGAAAA TAGGTAGGAT TTAACGAGTA 900 60

	ACCTAGTTCC CTTCTGTCTC TGATTTCTGA TCAGCTGATG GAGCTGCTAG TAAGAGGGGC	960
	CGATCATGCT CCCAGACGAG TCCTTTGGCC TCTTGCTCTC CATCCCAAGC CTGACTCCTT	1020
5	CAGCAGCAGC CCCCTCCTTC TGTGTCCATC TGATGCAGGC AAGCAGGAGC AGTAAGAGGG	1080
	CATCCCATGT TCCAGTTCAC CTTCTATGGG GTGACTARGA GGTTCCCGGT AACTAGGGCA	1140
•	GCCCARGCCC AGCAGGTTGC AAAAGCAGCT GCAAGCTTCA GAAACCCACT TCCTCCAACA	1200
0	CCAGGGAGGT GGCAGAGAGC CCATCCAAAA GCCCACTGGG AGAGGCATAA GATTCTGTGC	1260
	CAGGCCCCCA GGTCCCCTCT GTGTCAGGTA GGCTCTGCTA CTGGCCTCTG AAGTAAAGGC	1320
15	AAANACAAAC GGGCAGGGCA GGGTGGCAGG AATAAAAAAC TCTGGACAGA AACCCTTTTA	1380
	ATAAAGGAAA TTCCACCCCT CCCAATCCTT CCATGGAAGG GTGAGACCTT AATGTGATGT	1440
20	AAGAGGAAGG TCTTCTCTGG CTTTCAGGGA AACAGCTGCA GCTGAAACTT AGGGGCCCAT	1500
20	TCCAGGGCAC TTTTCACCAC AGCCAGTGCA GCCGCTCCAA GTGCCACTGT CAGCCCCATC	1560
	ACTGCCAATT TCACAAAGCG GTTGGTCCTT GGCTTGGTCA GGACATCTTT TGTTCGATCT	1620
25	TCAGGCCGCA GAAGTCCCCG AANACCGCTG CCGCAGCACC ATATCAGGCC TCTGCTGGGC	1680
	TGATGCCAGC TCAAAGTCTT TGAAAGTAGA GGCTGCCGTC CTCTCAGCTT GCTGTTGGGC	1740
30	AGCGGCCTCC CGAGCAAGTT CGGATGGGGG AAACTGAACA AAAAGGTCTC CTSTCTGCTG	1800
30	ATCAGTGTCT CATAGGGCAA GTCCTGAGGG ATCTGGGACA ACAGGTGGTG GACCGAGGCC	1860
	ATGTCACAGT CACAGTCCAG GACTTCCTGC TCGCGATACA ACACAATCAC GGCTGCAAAG	1920
35	TAAATCGGCA TCAGTGGGTG GCAGGCCAGG AAGAAGTCAT ATAACCGCAC GACGTGCCTG	1980
	AAGTCAGACA GGACATGCCC AAACCAGGTG ATGAGCCAGC TGAGGGCAAA GATGGTCCCT	2040
40	ACCTCAGCAC TCTGCATGAA GTCATGGAGC TCTGGATTCA CCTGGTCAAT GATGGGCATC	2100
70	AGATAGTTTA ATATATGC	211

50

(2) INFORMATION FOR SEQ ID NO: 193:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1538 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 193:

55
CCGGGTTCGG CTCTGTGTCA GCAGCCGGGC GGCGCTCGGG CGGGACATGG CAGCCTGTAC
AGCCCGGCGG CCTGGCCGTG GGCAGCCGCT GGTGGTCCCG GTCGCTGACT GNGGCCCGGT
120
60
GGCCAAGGCC GCTCTGTGCG CGGCCGNAGC TGGAGCCTTC TCGCCAGCGT CGACCACGAC
180

	GACGCGGAGG CACCTCTCGT CCCGAAACCG ACCAGAGGGC AAAGTGTTGG AGACAGTTGG	240
ے	TGTGTTTGAG GTGCCAAAAC AGAATGGAAA ATATGAGACC GGGCAGCTTT TCCTTCATAG	300
5	CATTITIGGC TACCGAGGIG TCGTCCTGTT TCCCTGGCAG GCCAGACTGT RTGACCGGGA	360
	TGTGGCTTCT GCAGCTCCAG AAAAAGCAGA GAACCCTGCT GGCCATGGCT CCAAGGAGGT	420
10	GAAAGGCAAA ACTCACACTT ACTATCAGGT GCTGATTGAT GCTCGTGACT GCCCACATAT	480
	ATCTCAGAGA TCTCAGACAG AAGCTGTGAC CTTCTTGGCT AACCATGATG ACAGTCGGGC	540
15	CCTCTATGCC ATCCCAGGCT TGGACTATGT CAGCCATGAA GACATCCTCC CCTACACCTC	600
13	CACTGATCAG GTTCCCATCC AACATGAACT CTTTGAAAGA TTTCTTCTGT ATGACCAGAC	660
	AAAAGCACCT CCTTTTGTGG CTCGGGAGAC GCTAAGGGCC TGGCAAGAGA AGAATCACCC	720
20	CTGGCTGGAG CTCTCCGATG TTCATCGGGA AACAACTGAG AACATACGTG TCACTGTCAT	780
	CCCCTTCTAC ATGGGCATGA GGGAAGCCCA GAATTCCCAC GTGTACTGGT GGCGCTACTG	840
25	TATCCGTTTG GAGAACCTTG ACAGTGATGT GGTACAGCTC CGGGAGCGGC ACTGGAGGAT	900
2 3	ATTCAGTCTC TCTGGCACCT TGGAGACAGT GCGAGGCCGA GGGGTAGTGG GCAGGGAACC	960
	AGTGTTATCC AAGGAGCAGC CTGCGTTCCA GTATAGCAGC CACGTCTCGC TGCAGGCTTC	1020
30	CAGTGGGCAC ATGTGGGGCA CGTTCCGCTT TGAAAGACCT GATGGCTCCC ACTTTGATGT	1080
	TOGGATTOOT COOTTOTOOC TOGGAAAGCAA TAAAGATGAG AAGACACCAC COTCAGGCOT	1140
35	TCACTGGTAG GCCAGCTGAG GCCCCAAGTG CCCAGGCTTG GTCACCGGGA AGAACAACTC	1200
23	TCATCCCACA ATTGCTGCAG AACTCTTCTC TCCCCATCAT GGGCCACAGT GGGTCTCTTA	1260
	ATTTGATTGT GGGGTTCTTT TTGTGGGGAG GGGTGGTATA ACTTTTCTTC AGAAGACCCA	1320
40	TGTGGGACAC CTCCAAGGCT GGCCTCCTCA TAAGCCCTGC CTACACCATG TTCCAGTAAA	1380
	CCTCTCCACC AAGGAACTGT GTTCAGCTGC CACAGGCCTG GAGGAGTTTC CTGGCCTGTC	1440
45	ACGTGAGGTT TGATCAGTAA ACCAGTGCAS GYTTGGCCAA AAAAAAAAAA AAAAAAAAA	1500
75	АААААААА ААААААААА ААААААААА АААСТСGA	1538

(2) INFORMATION FOR SEQ ID NO: 194:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1098 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 194:

	AGACCCTGTC TCAAATAATA ATAATAATAA TAATCTTATT TTGGAGAATA AAGAGACCTS	60
	TGGATTTGAG GTGCCATTTG GGTAGAAAGA AAAGACGTTT ACACCGAGAA ATAGTCTGTG	120
5	TTGCCCTGAA GGAGCAGAGG GATGCATCGC TGGAGGTGAC CTACAGTTGA AGAAGACTCA	180
	TTATGACAGA CCTTGTCCTT CTTCCTTGTG GAAAGTGTTT CCTCTGCTGC TACTGCTCAT	240
10	GAGACTOTTC CCCCTCCCTG TCCCAGGGAA CCAAAGGGCT TINCTACCAC ACCCTTTCTT	- 300
10	NGCCCCCCGC CTCCCATGTC TGCTGTGCCT TTGTACTCAG CAATTCTTNG TTTGCTCCCA	360
	TTATCTTCCA GCCGGATACA GAGTGAATAG TTAACCACAC TTAGGTCAAA TAGGATCTAA	420
15	ATTTTTGTTC CTGCTCCNGT GTAAAGAGGC CAGTGTTTGT GTGTTGCAAG CAGCCTTGGA	480
	ATAGTAACTC TTCTCATTTG TTTGGGATCT GGCCAMCAAG TTCCAGAATG ATACACGGAT	540
20	CAGTGCAGAA GTTCATCAGG CTCTCGGACC TTAGGGCTGT TGGAGAAGGC TTCAGCAGCA	600
20	GAACTGATGG TKAWKGYTCG TGTTCTCCAT CCTCAACTTT CTTTGCTTCG ATCATACACA	660
	AGAATACATT TGGAAGGGCA AAAAATGAAC ACTGTTGTTC ATTGCAGCCG TGTTTTGTGA	720
25	CACAGATGCA CAGTCTGCTG TGAAGACCTT CTCTCAAGTG GSATYTGGGA GTCCATGCCA	780
	GATCATGGTG CTTCATGAGA GACTGACAGC TATCAGGGGT TGTGGCACTT AGTGAGGACT	840
30	CTCCTCCCCC AGTGTGTGCT GATGACACAT ACACACCTGA CAATAGCTTG AGTCTTCTCT	900
30	GITCCTTTTA CTCTGTAGCC AACATACACA TGATTTAAAA CCCTTTCTAA ATATCTATCA	960
	TGGTTCATCC TTGTCCAAAT GCAGAGTCAG AGCTATTTGT ACTTCATTAT TATTTCCAAG	1020
35	GCGAATAGTT GGCTTTCTTT TTGCAAAAAT AATTAAAGTT TTTGTATGTT GCAAAAAAAA	1080
	AAAAAAAAA CTACGTAG	1098
40		
40	(2) INFORMATION FOR SEQ ID NO: 195:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1001 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 195:	
	GAATTCGGCA CGAGATAGCT TGCATCTCAT CCCAGTAAAA CCACTTATTT ATAACATATC	6
E F	AACGTATTGA CAAGGTTGAA GAGCAAGATT GTTCTGAGGT GAGATGCAAA TTTCAAAGGG	12
55	GTGAGCACTA ATTGTTCCAG TGATTGTTTA TTTATTGGCT AGGACATAAT TACTCTCTTT	18
	GAGGTTACAC ATCTGCCTCC AGGTTCCTGT GTGCTTGTGC CCTTGGGATC AGGCCAGGGC	24
60	AGACTGTGAT CACTGAGATT CAAACTCCCA GARTAATCAG CAAGAGCTTT CTAGAGACCA	30

	AGGCCAGGCC	TGATCCCTGA	GGGATGCATG	AGAAGGCTTG	GAATCTCATT	CTGCTATGGT	360
<i>-</i>	GGCTCTCTCT	TGATCTTCTT	GGAGTAGCAA	AAACAGCAAT	GTGGGCCCAA	TGGTGTGGCC	420
5	TAAATGATCA	CAAAGGTAAA	TGAGTAAAGG	GCTCAGCAGA	TGAGTAAGGA	GCCTTGTCCT	480
	GAGAAATTAG	CACTGGGCTC	TGCATTCAGA	AACATGTGAT	AAGCATTGCC	CATTGCACAT	540
10	TGCCTTTATT	GTGTAAGGAC	ATGAAATTCC	AGTTTTGCAT	AGCTAGTGAT	GAATACCTGA	600
	AGGGAATTGC	AGACATATTT	TATTTTATTT	TTAATTGACA	GATGGAATTG	TATATATTTA	660
15	TCATGTACAT	AATCATGCTT	TAAAATATGT	ACATTATGGA	ATGGCTAAAT	CAAACTAACC	720
13	TAGGCATTAT	CTCATATAAT	TGTCATTTTT	GTGGCGAGAA	GACTAAAAAT	CTACCCTTTC	780
	AGCATTTTTA	AAGAATACAA	TGTGTTTTAT	TAACAACAGT	CACCATTICG	TACACTAGAT	840
20	CTCTTGAACT	TCTTCCTCTT	ATCTAACTGA	GATCTTGTAA	CCTTTGATAA	CAGCTCCCAA	900
	GCCCTTCCCC	AACCACTGCT	CCACCCGTGG	TAACCACCAT	TCTATTCTCA	ACTTCCTGGT	960
25	AATCACCATT	'CTAGACACAG	GGAAGACTCT	CTACCCTCTG	A		1001
<i></i>							

(2) INFORMATION FOR SEQ ID NO: 196:

30

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1443 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

35 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 196:

60 ATAAACTGAA ATAGGTCATG CAAATATAAA ATATTATTTT TAAATTATTT GTCATAAGAA 40 ACGATGGTGG CCATATTTTG CTTTAATAAT GGAAAAAATG TGGTTAGCAT TCTKTGGAAG 120 GTGGTCATCA GATAGTAGAC ATTTTCTAGG ATTTATTTCT ACCTGCATAT GTGGAAATGT 180 GTACTACTTT AGATTTATWT AATGGCAGCT AACTCAGAGG CATCAAAATG TGCTAATGGT 240 45 GTAATATGGC CTTTGTCTTG CTGTYCTGTT TTGTARGCCT TCAATCAAGC ARGGGCAGGG 300 CCGTACAGTG AACTTGTCCT TTGSCAGACG CCAGCGTCTG CCCCTGACCC CGTCTCCACT 360 50 CTCTGTGTCC TGGAGGAGGA GCCCCTTGAT GCYTACCCTG ATTCACCTTC TGCGTGCCTT 420 GTACTGAACT GGGAAGAGCC GTGCAATAAC GGATCTGAAA TCCTTGCTTA CACCATTGAT 480 CTAGGAGACA CTAGCATTAC CGTGGGCAAC ACCACCATGC ATGTTATGAA AGATCTCCTT 540 55 CCAGAAACCA CCTACCGGTG AGTGCAAGGG AGTAGAAATC TGCATCAGCA CATCAGCACT 600 TGGGGATCTA AGTAAACCTC TCGGGGAAAA TGACCAAGTG GATGTCATCT CCCAGCTGTT 660 60

	TCTAAGAGCC CAGATGTCCA GAGTATTGTC TCACCTTGAT CCCTCAGGCC AGAAGACCTG	720
	TGAAAAAGCC ACACTGGTTC AGGGACTCAC TGGACGGTTT TGTGTCCACT YTAACTTGCA	780
5	COGTOTOTAC COCAGAGTGG ACTICARATICS TORAGTCATO CTCTGARGAT TORRESTORGA	840
	AATTATAAAA GGGCTTTGGC AATATGTTAG CCCAAGAATT TGGCTTCTTC CAGAAATTGT	900
10	GCCGACNITA ACAGTGGCTT AAATGATGGT AAAACTTUTA AGATTTCTAA AAGGRTGGCA	960
10	TIGGAGATAC GITGACITIT ATTAAACMAC CTATAGITGI TIAATGAYIT CTAAAAAAAT	1020
	ATCTGGAGCT CAGGGGTTCA ACTGAGGGAA CACATGTTGA GRATCATTGT TIALTAATTA	1080
15	AATGCCAGGT AACCCGTTGA AATTATCAAA AACATCTTOC ACGTACCAGA AAGGACCTCA	1140
	GAGGATAGTT CTGTTATGGA GAAGATGAAA TGGTTTAGTA GTGTAGGAAC TATGGAAAGG	1200
20	TGAGCTTAGA TTTGGATAGT AAAACCTCAA GACCCTATTT AAAAAGTATT TTATGAATGC	1260
20	AGCATAAATA ATTTAATTCA GTGTTAANAT GCCAAGGCTA GTATATTGAG CTGAATGTGA	1320
	AAAGAAACTC ACATTGGGAG AATGCCACCT TTTCCTTATA AGATAGCTTT GAAGATACCA	1380
25	TTTTAGACAG ATGGAAATTG AATAGCTTTA GAAAAGGLAA ATGTTTGATC TTGGGGAAAA	1440
	AAA	1443

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 197:

(i) SEQUENCE CHARACTERISTICS:

35 (A) LENGTH: 1282 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: dcuble

(D) TOPOLOGY: linear

40 (xi) SEQUENCE DESCRIPTION: SEQ : NO: 197:

	GAAAAAAAAA	AGTATGACCC	AGTAGCTAGG	CACCTGTGGC	CCCGCCAAGT	TGACACATAA	60
	AATTAACTGT	CACAGTATCA	TCTTAGAAGT	CAAAGAAGCC	COTTTATCCT	CONSTRUCC	120
	TCTACCACCA	CCTACTGACA	AAGAACATGG	TGCTATCTGG	CATGGGAGAA	ACCTICACTT	180
	TGCTATGGCT	TGTATGTGTC	CCCTCAAATT	CAAGIGITGC	CAATGTGACA	GCATCAAGAG	240
	GTGGGGTCTT	TAAGAGATCA	CTAGGCCATG	AGGGATTCTC	TTAGGACTGG	GATGAAGGCC	300
	CATAATAAAA	GAGGTTTCAG	GGAGCATCCT	GCTAGGTTGC	CTTCTGTATG	TGAGAACACA	360
	GCAAGAAAGC	CCTAGTCAAC	AAGTGCCAGC	TOOTIGATOT	TAGACTTCCC	ACCOTOCAGA	420
	ACTGTGAGAA	ATACATTTCT	GTTCCTTACA	AATTACCCAG	TCTCCTGTAT	TOTOTTATAG	480
	CAGCACAAAA	TGAAGATACC	ATACCTGAAC	ACCTEAACAT	TCTTCACAAG	GIAGIAAATG	540
)	CACTGCTTTA	TTCTGGTCTC	AGTATTGTGT	GCTTAATAAG	GAAATGAGAA	AGGGTGGATC	600

	AGGGCATAGG ATGAACAAGT TACTGCTAGA CCTCTCACAA TGCCACTAAT GGATAAGATT	660
5	GTATTTTCAT CATTNCTTGT CTCTTCGGAA GCTAACACCA TGCTATAATA GGCATTAAAT	720
3	AGATGTCTAA AAACACCTTA AGTATTTGTC TAGAAATCTG GTGCATTGTC CAGAAAGAAC	780
	CAAAATTCMA AATAATTTCA AAGGGCCTAA AGGACTAKIT AATGGAAATT CAITAGTTTT	840
10	TAATGGTACT ACCACTOTCA AATTTAAAAT GTCATCTTAL GTTCCTCTTC CTCGCATTGG	900
	ATTTATTGCT AAAACCTGGT AAACACTTTA ATCCYTTICA ATTCCAITAC CACTGCTCTT	960
15	GTCCAGAATT ACTCGCAGAC TAATAGTCAC CTGACTTCTC CCCCTGCATC CCGALTTGCT	1020
13	GTCTAATTCT GGTTACAAAT AAGTAACTGC CAAACTAATC TTTCTAAAAA GCAAGACTGA	1080
	TOTOGTCACT COTTTGCTCA ACAATGTAAA AGCTCCCATT GTCTCCCAAA TAAAACCAGC	1140
20	TTTCCACTGT GTATACAATA CATCCATGAT CTGTATCCAG CATCATTTTG TATTIGCTCA	1200
	CTTTATACAC CACCCCCAT GCCACATCAA ATTAAATTAT CCTGATAAAT GCAACTGCAA	1260
25	AAAAAAAAA AAAAAAACTC GA	1282
30	(2) INFORMATION FOR SEQ ID NO: 198:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 951 base pairs	
	(B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 198:

40	ATTTCGGAAC	GAGGACTGAA	GTGGGAGCGG	CGGCAGGGTA	GAAGACAGAA	GEGGEATCTA	60
40	TGTGGTAACT	AAAGAATGTT	TCTGTTTTGT	TAATTATIGT	<u> व्यक्तकाक</u>	TTTTATTGTT	120
	TGCTTAAGAG	AATCAAAAAC	TGAAAAAAT	GAGAATACAG	GAAATGGCTC	TIGITTATIT	180
45	TTTTGCTGTG	TTTACAGCTT	GTTAATGCTC	TACTGTCTTT	GTTTCAAGAG	AGATTTGTTC	240
	ACTGCCCAGC	TCGTTTTGTG	TCCTGAGCCC	TATGCCCAGC	CCACCTTATA	AATCATGCCT	300
50	GTTTAGATGT	TTGATTTTGT	TCTGTTTGCT	ATTGTTATCT	TAAAGGTGTA	TAACTCTGAC	360
50	ATGCCAGACA	TCAAATTAAG	CTCAAATTAA	GCTCTCGTTT	AAATGTTTAA	ACACCTAATT	420
	тататтстаа	TTGATCCCAG	CCACTGATGC	ATGTACTTEA	CCTACTTCTG	CTALATAAGC	480
55	ATATTAATTT	TCCACATCAG	GCCATCAGAT	CTTGAGAACC	AACAGTTATC	TAGAATTCCG	540
	TGTCTACTAA	TGTTTCACCT	GCATGCAGCC	TTCATTAATT	TTGTAGCAAA	ATATAAAGTG	600
.	ATCATTATGT	AGTTTCTGGA	TAAAAAATT	TIGIGIGIGA	AGTTGCTTIG	TAAAGTGCAT	660
60							

60

	GTGGAATTAA TGGGACAGTG TGCCCTTTGT GTTAGATGTT AGAGCAAAAG AAAGGGCTTA	720
	TAGTGTTAGT ATTGGAGCAC TTTGAAGATA GATATTTTCA GAAAAGATGT AGGATTTAAA	780
5	AGTTAAATTT TAAATTTTAG AAAAAGATAT GATGGCAATT GGAAATAGTC ACAATGAAGT	840
	TCTTCATCCA GTAGGTGTTT AACAGTGTTA TTTTGCCACT GGTAATGTGT AAACTGTGAG	900
10	TGATTTACAA TAAATGATTA TGAATTCAAA AAAAAAAAA AAAAAACTCG A	951
15	(2) INFORMATION FOR SEQ ID NO: 199:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1740 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double 	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 199:	
25	TTATTATAAT AATGATGATG ATTCCAAGGA AAAAACCTAC AGCGAATGTT CCATTTCTAC	60
25	CCCGCACGCA GACACTCTCC CTAACACTGA TAACCTGAGC CCCCAGCACT GGACGGAAGA	120
	ATGCTGGCGT CTCCGTGTGT ACTGGTTCAG GGTTCTGGCC CCAGCCTTGT CAGGACCCCC	180
30	TGGTGTCCAG AGCCCCCACC CCTCCCGCAA CAAGCAGCTG ATGCCCCAGT GATTCTCTAT	240
	ACATTITCA CCTCGGCCAA TATGTCCAGG AAAACTGCTT ACTTCTCTTT TCTTGCCTGG	300
25	AGCCTTCATT GTTCACCCTT ACGTTGCAAT ATAGGAATTA ATGCTACAAA ATAAAAGTAA	360
35	AGCTTACCTG AAAAGTGCAT AGTTTGGGGC AATGGTATCT ACATCTCCCA CTGTGGGAAA	420
	ACCAGCAAAG CATCAAAACT CTCAATTCTC CTGTTACCRA ATGCAGATCT GAATTATAAG	480
40	ATGTTTATGT TTGACCATTG TTTCAACAAT GGGATTTTGT TACGAATTAT CCCTTTAACT	540
	GAAACCCTCA GTTTTACTGT TTACATTATT AGGAAAACAG GGATATCTTT TGAATCTAAA	600
	AATTIGATGI ACAGCATGIG ATTITIGAAG TITACATGIA AAGTCACAGI ATAGGIGAAA	660
45	TAACGTTTGT CATATTTTGA GACGTATCCT GCAGCCATGT TTTTACGTGA GTGTTTTAGT	720
	CAAAGTACAT GGTAGACAGT CTTTCACAAT AAAAGGAAAA GGATTTTTTT TCCTCCAAAT	780
50	GTACATTTAT CAACCTAATG ATTGATTTTT TTAAAAAGAG ATTTCGCCCC AGTCTGGTTT	840
	ATGAAAGTTC ATTGCCCTAA ACTGTGCTGA TTGTTTTTAA TCAAGTTATA AATTTCCAAC	900
	CTAGATCATG TATCTACCAA CTCTCCTGCA TTTTCCAAAA GGCATTGAGC TTAAATATTA	96
55	GTCTTGCTTA GAGTAGGTTA TCCACTTACA TGCTGCGCTA AAGCCATGCC TTTGAAACTC	102
	CTTGTTTAAA ACATGATATG ATTTTTGTGG GCAGTTTCAG AAAAGAAAAC AAACAAACAA	108
	* · · ·	

AAATCGACCC TTTAATTATT ACTTGCAACT CAACAGATCT CCCTGCCGTA CTGCCTTTTC

	CAGGAACTTT	ACTTCAGGGC	TGTCCAGATT	GCAGTTGTGC	CCCGTGTATG	TGGATCTAGT	1200
_	TCACAGAGTC	TTTGGAAGCC	AGCAGTCGTG	CCCTCCGTAT	ACTGTCCACT	CATTTTATGT	1260
5	AGATTTGGTA	TCCTCAGCAG	CCAGTGTTAA	CACCACTGTC	ACGTAGTTAN	CAGATTCATC	1320
	TTTTATGTAT	TTAAAGTAAT	CCATACTATG	ATTTGGTTTT	TCCCTGCACC	ATTAATTCTG	1380
10	GCATCAGATC	AGTTTTTGTG	TTGTGAAGTT	CTACTGTGGT	TTGACCCAAG	ACCACAACCA	1440
	TGAGACCCTG	AAGTAAAGAT	AAGGTACACA	TACATTATTT	GAGTAACTGT	TTCCTTGGGG	1500
. -	GCCAATCTGT	GTATGCTTTT	AGAAGTTTAC	AGAATGCTTT	TATTTTTGTC	TATAACAAAC	1560
15	AGTCTGTCAT	TTATTTCTGT	TGATAAACCA	TTTGGACAGA	GTGAGGACGT	TIGCCCIGIT	1620
	ATCTCCTAGT	GCTAACAATA	CACTCCAGTC	ATGAGCCGGG	CTTTACAAAT	AAAGCACTTT	1680
20	TGATGACTCA	AAAAAAAA	AAAAAAAAMC	YCGGGGGGG	GCCGGTAACC	CATTINNCCC	1740

25 (2) INFORMATION FOR SEQ ID NO: 200:

30

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1707 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 200:

GCTTATAGAA GGGAGAGGAG CGAACATGGC AGCGCGTTGG CGGTTTTGGT GTGTCTCTGT 60 35 GACCATGGTG GTGGCGCTGC TCATCGTTTG CGACGTTCCC TCAGCCTCTG CCCAAAGAAA 120 GAAGGAGATG GTGTTATCTG AAAAGGTTAG TCAGCTGATG GAATGGACTA ACAAAAGACC 180 40 TGTAATAAGA ATGAATGGAG ACAAGTTCCG TCGCCTTGTG AAAGCCCCAC CGAGAAATTA 240 CTCCGTTATC GTCATGTTCA CTGCTCTCCA ACTGCATAGA CAGTGTGTCG TTTGCAAGCA 300 AGCTGATGAA GAATTCCAGA TCCTGGCAAA CTCCTGGCGA TACTCCAGTG CATTCACCAA 360 45 CAGGATATIT TITGCCATGG TGGATTTTGA TGAAGGCTCT GATGTATTTC AGATGCTAAA 420 CATGAATTCA GCTCCAACTT TCATCAACTT TCCTGCAAAA GGGAAACCCA AACGGGGTGA 480 50 TACATATGAG TTACAGGTGC GGGGTTTTTC AGCTGAGCAG ATTGCCCGGT GGATCGCCGA 540 CAGAACTGAT GTCAATATTA GAGTGATTAG ACCCCCAAAT TATGCTGGTC CCCTTATGTT 600 GGGATTGCTT TTGGCTGTTA TTGGTGGACT TGTGTATCTT CGAAGAGTAA TATGGAATTT 660 55 CTCTTTAATA AAACTGGATG GGCTTTTGCA GCTTTGTGTT TTGTGCTTGC TATGACATCT 720 GGTCAAATGT GGAACCATAT AAGAGGACCA CCATATGCCC ATAAGAATCC CCACACGGGA 780 60

	CATGIGAATT ATATCCATGG AAGCAGTCAA GCCCAGTTTG TAGCTGAAAC ACACATTGTT	840
	CTTCTGTTTA ATGGTGGAGT TACCTTAGGA ATGGTGCTTT TATGTGAAGC TGCTACCTCT	900
5	GACATGGATA TTGGAAAGCG AAAGATAATG TGTGTGCTG GTATTGGACT TGTTGTATTA	960
	TTCTTCAGTT GGATGCTCTC TATTTTTAGA TCTAAATATC ATGGCTACCC ATACAGCTTT	1020
	CTGATGAGTT AAAAAGGTCC CAGAGATATA TAGACACTGG AGTACTGGAA ATTGAAAAAC	1080
10	GAAAATCGTG TGTGTTTGAA AAGAAGAATG CAACTTGTAT ATTTTGTATT ACCTCTTTTT	1140
	TTCAAGTGAT TTAAATAGTT AATCATTTAA CCAAAGAAGA TGTGTAGTGC CTTAACAAGC	1200
15	AATCCTCTGT CAAAATCTGA GGTATTTGAA AATAATTATC CTCTTAACCT TCTCTTCCCA	1260
	GTGAACTTTA TGGAACATTT AATTTAGTAC AATTAAGTAT ATTATAAAAA TTGTAAAACT	1320
	ACTACTITGT TITAGTTAGA ACAAAGCTCA AAACTACTTT AGTTAACTTG GTCATCTGAT	1380
20	TTTATATTGC CTTATCCAAA GATGGGGAAA GTAAGTCCTG ACCAGGTGTT CCCACATATG	1440
	CCTGTTACAG ATAACTACAT TAGGAATTCA TTCTTAGCTT CTTCATCTTT GTGTGGATGT	1500
25	GTATACTTTA CGCATCTTTC CTTTTGAGTA GAGAAATTAT GTGTGTCATG TGGTCTTCTG	1560
	AAAATGGAAC ACCATTCTTC AGAGCACACG TCTAGCCCTC AGCAAGACAG TTGTTTCTCC	1620
	TCCTCCTTGC ATATTTCCTA CTGAAATACA GTGCTGTCTA TGATTGTTTT TGTTTTGTTG	1680
30	TTTTTTYGAG ATCACGYTAC TGGGCTC	1707

40

(2) INFORMATION FOR SEQ ID NO: 201:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 779 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 201:

45 CTGTCCCCAG TGTTTCCAGG TAATGACTTG GCACTCCAGA GAAAGTTTCA TRCTGTTGCG 60 TGTGGTGGCT CCAAGCCAAG CACCTGGCAT GCAGGTCAGC CCTTCCCAGC GGGCGTGGCG 120 TOGTOCTOTT CACAGATGCC ACGTTGCAGC CCCAAGGCCT CACCATTTTG CGTTTTTTTAG 180 50 AAACCCATTT TCTTGGTCAT TTATAAAGCT GCTTTATAGA TATCTTTGAT CCTGGCATGC 240 CTTGGTTTCC TCTCCCTTCC CTCTTTCCAA TCCTGGTTTC CTAACCTCCT CTTGTAGTAA 300 55 TTCTCAACTC AACTCAAAGT CCCAAGAATT TGGAATGGTA GGATGCTGTG CGGGGAGCTC 360 GAGGCTGAGG CATAATCACT GCTTCGGTTC TGCTCATCAG GGGACACGCT CCCTTACTCA 420 TOGCAGCCAT GTTTGATTGT CACAGAGCCC CCCGAATACT CTGTCTATAG TGACACACTG 480 60

	TAGGTGTCAT	AAATTTTAAG	AAACCTGCTT	TTAAGTACTA	TTTATAGGTT	TTTCTGTTAT	540
5	ACTTGCAACC	TAGTTTTAAA	ATACATGAGG	ATTTTATGAA	AGCTTTATAC	AGACATTTAT	600
J	AGGAAACTCA	TTCTTTGATT	TTAGGTGCCA	TTTAAATTGA	TAACACTTAC	TTTATAAAAA	660
	GATGCTTTTT	GTCTGGATAG	AGCCTTATAG	TTTAAAATAT	CTTCATATAT	TGCCATTTGA .	720
10	TCAAATAAAT	TTCTTACTTA	GAAAAAAAA	АААААААА	АААААААА	AAAACTCGA	7 79

15 (2) INFORMATION FOR SEQ ID NO: 202:

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1617 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 202:

25	GGCACAGCTT TCTGTCTCTT CCTCGCTCCC TCTCTTTCTC TCCTCCCTC	60
	TGCATAAAGT CTCTGTCGCT CCCGGAACTT GTTGGCAATG CCTATTTTTT GGCTTTCCCC	120
30	CGCGTTCTCT AAACTAACTA TTTAAAGGTC TGCGGTCGCA AATGGTTTGA CTAAACGTAG	180
50	GATGGGACTT AAGTTGAACG GCAGATATAT TTCACTGATC CTCGCGGTGC AAATAGCGTA	240
	TCTGGTGCAG GCCGTGAGAG CAGCGGGCAA GTGCGATGCG GTCTTCAAGG GCTTTTCGGA	300
35	CTGTTTGCTC AAGCTGGGCG ACACATGGCC AACTACCCGC AGCCTGGGAC GACAAGACGA	360
	ACATCAAGAC CGTGTGCACA TACTGGGAGG ATTTCCACAG CTGCACGGTC ACAGCCCTTA	420
40	CGGATTGCCA GGAAGGGGCG AAAGATATGT GGGATAAACT GAGAAAAAGAA TCCAAAAAACC	480
40	TCAACATCCA AGGCAGCTTA TTCGAACTCT GCGGCAGCGG CAACGGGGCG GCGGGTCCC	540
	TGCTCCCGGC GTTCCCGGTG CTCCTGGTGT CTCTCTCGGC AGCTTTAGCG ACCTGGCTTT	600
45	CCTTCTGAGC GTGGGGCCAG CTCCCCCCGC GCGCCCACCC ACACTCACTC CATGCTCCCG	660
	GAAATCGAGA GGAAGATCCA TTAGTTCTTT GGGGACGTTG TGATTCTCTG TGATGCTGAA	720
50	AACACTCATA TAGGATTGTG GGAAATCCTG ATTCTCTTTT TTATTTCGTT TGATTTCTTG	780
50	TGTTTTATTT GCCAAATGTT ACCAATCAGT GAGCAAGCAA GCACAGCCAA AATCGGACCT	840
	CAGCTTTAGT CCGTCTTCAC ACACAAATAA GAAAACGGCA AACCCACCCC ATTTTTTAAT	900
55	TTTATTATTA TTAATTTTTT TTGTTGGCAA AAGAATCTCA GGAACGGCCC TGGGCACCTA	960
	CTATATTAAT CATGCTAGTA ACATGAAAAA TGATGGGCTC CTCCTAATAG GAAGGCGAGG	1020
60	AGAGGAGAAG GCCAGGGGAA TGAATTCAAG AGAGATGTCC ACGGACGAAA CATACGGTGA	1080

WO 98/54963 PCT/US98/11422

455

	ATAATTCACG	CTCACGTCGT	TCTTCCACAG	TATCTTGTTT	TGATCATTTC	CACTGCACAT	1140
	TTCTCCTCAA	GAAAAGCGAA	AGGACAGACT	GTTGGCTTTG	TGTTTGGAGG	ATAGGAGGGA	1200
5	GAGAGGGAAG	GGGCTGAGGA	AATCTCTGGG	GTAAGAGTAA	AGGCTTCCAG	AAGACATGCT	1260
	GCTATGGTCA	CTGAGGGGTT	AGCTTTATCT	GCTGTTGTTG	ATGCATCCGT	CCAAGTTCAC	1320
10	TGCCTTTATT	TTCCCTCCTC	CCTCTTGTTT	TAGCTGTTAC	ACACACAGTA	ATACCTGAAT	1380
l U	ATCCAACGGT	ATAGATCACA	AGGGGGGGAT	GTTAAATGTT	AATCTAAAAT	ATAGCTAAAA	1440
	AAAGATTTTG	ACATAAAAGA	GCCTTGATTT	AAAAAAAT	AGAGAGAGAG	ATGTAATTTA	1500
15	AAAAGTTTAT	TATAAATTAA	ATTCAGCAAA	AAAAGATTTG	CTACAAAGTA	TAGAGAAGTA	1560
	таааатаааа	GTTATTGTTT	GAAAAAAAAA	WAAAAAAAA	CTCGACCGCA	AGGGAAT	1617

20

(2) INFORMATION FOR SEQ ID NO: 203:

(i) SEQUENCE CHARACTERISTICS:

25

35

40

45

50

55

60

(A) LENGTH: 1974 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 203:

GAATTCGGCA CGAGGCTGAG GGAGCTGCAG CGCAGCAGAG TATCTGACGG CGCCAGGTTG 60 CGTAGGTGCG GCACGAGGAG TTTTCCCGGC AGCGAGGAGG TCCTGAGCAG CATGGCCCGG 120 AGGAGCGCCT TCCCTGCCGC CGCGCTCTGG CTCTGGAGCA TCCTCCTGTG CCTGCTGGCA 180 CTGCGGGCGG AGGCCGGGCC GCCGCAGGAG GAGAGCCTGT ACCTATGGAT CGATGCTCAC 240 CAGGCAAGAG TACTCATAGG ATTTGAAGAA GATATCCTGA TTGTTTCAGA GGGGAAAATG 300 GCACCTTTTA CACATGATTT CAGAAAAGCG CAACAGAGAA TGCCAGCTAT TCCTGTCAAT 360 420 CTGTCCTTGC GCTCCCTGGA TAAAGGCATC ATGGCAGATC CAACCGTCAA TGTCCCTCTG CTGGGAACAG TGCCTCACAA GGCATCAGTT GTTCAAGTTG GTTTCCCATG TCTTGGAAAA 540 CAGGATGGGG TGGCAGCATT TGAAGTGGAT GTGATTGTTA TGAATTCTGA AGGCAACACC ATTCTCCAAA CACCTCAAAA TGCTATCTTC TTTAAAACAT GTCAACAAGC TGAGTGCCCA 660 GGCGGGTGCC GAAATGGAGG CTTTTGTAAT GAAAGACGCA TCTGCGAGTG TCCTGATGGG 720 TTCCACGGAC CTCACTGTGA GAAAGCCCTT TGTACCCCAC GATGTATGAA TGGTGGACTT 780 TGTGTGACTC CTGGTTTCTG CATCTGCCCA CCTGGATTCT ATGGAGTGAA CTGTGACAAA 840 GCAAACTGCT CAACCACCTG CTTTAATGGA GGGACCTGTT TCTACCCTGG AAAATGTATT 900

	TSCCCTCCAG GACTAGAGGG AGAGCAGTGT	GAAATCAGCA AATGCCCACA	ACCCTGTCGA	960
_	AATGGAGGTA AATGCATTGG TAAAAGCAAA	TGTAAGTKTT CCAAAGGTTA	CCAGGGAGAC	1020
5	CTCTGTTCAA AGCCTGTCTG CGAGCCTGGC	TGTGGTGCAC ATGGAACCTG	CCATGAACCC	1080
	AACAAATGCC AATGTCAAGA AGGTTGGCAT	GGAAGACACT GCAATAAAAG	GTACGAAGCC .	1140
10	AGCCTCATAC ATGCCCTGAG GCCAGCAGGC	GCCCAGCTCA GGCAGCACAC	GCCTTCACTT	1200
	AAAAAAGGCCG AGGAGCGGCG GGATCCACCT	GAATCCAATT ACATCTGGTG	AACTCCGACA	1260
1.5	TCTGAAACGT TTTAAGTTAC ACCAAGTTCA	TAGCCTTTGT TAACCTTTCA	TGTGTTGAAT	1320
15	GTTCAAATAA TGTTCATTAC ACTTAAGAAT	ACTGGCCTGA ATTTATTAG	CTTCATTATA	1380
	AATCACTGAG CTGATATTTA CTCTTCCTT	TAAGTTTTCT AAGTACGTCT	GTAGCATGAT	1440
20	GGTATAGATT TTCTTGTTTC AGTGCTTTG	GACAGATTTT ATATTATGTC	AATTGATCAG	1500
	GTTAAAATTT TCAGTGTGTA GTTGGCAGA	r attitcaaaa ttacaatgca	TTTATGGTGT	1560
25	CTGGGGGCAG GGGAACATCA GAAAGGTTA	A ATTGGGCAAA AATGCGTAAG	TCACAAGAAT	1620
25	TTGGATGGTG CAGTTAATGT TGAAGTTAC	A GCATTTCAGA TTTTATTGTC	AGATATTTAG	1680
	ATGTTTGTTA CATTTTTAAA AATTGCTCT	т аатттттааа стстсаатас	TTTTATATAA	1740
30	GAÇCTTACCA TTATTCCAGA GATTCAGTA	т тааааааааа ааааттасас	: TGTGGTAGTG	1800
	GCATTTAAAC AATATAATAT ATTCTAAAC	A CAATGAAATA GGGAATATAA	TGTATGAACT	1860
25	TTTTGCATTG GCTTGAAGCA ATATAATAT	A TTGTAAACAA AACACAGCTO	TTACCTAATA	1920
35	AACATTTAT ACTGTTTGTA TGTATAAAA	T AAAGGTGCTG CTTTAGTTT	r CTGA	1974

45

(2) INFORMATION FOR SEQ ID NO: 204:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1057 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 204:

CGGCCTTCCG GGGCAACCGT TCGTCCCAAC NCGGGAAAGG GTCCTGGAGN CGGGAACTAG 60
GAGCCTCGGA AGTCCAAGGG CGGAGCGCCC TTTGCTAATA AGCCAATCAG AACGTGAGAC 120
55 GCTCCGGTGG GNCGGTGCCG TCGAGCGCGG GGTGGAGTCT GGGTGACTTG GCTGGCGGGA 180
TCAAGTGCAG CTGCTTCAGG CTGAGGTGGC AGATAGTGAG CGCTGGTGGC GGAGTTAAAG 240
TYAAAGCAGG AGAGTAATWA TGAATAGCGC AGCGGGATTC TCACACCTAG ACCGTCGCGA 300

	GCGGGTTCTC AAGTTAGGGG AGAGTTTCGA GAAGCAGCCG CGCTGCGCTT CCACACTGTG	360
	CGCTATGACT TCAAACCTGC TTCTATTGAC ACTTCTTCTG AAGGATACCT TGAGKTTGGC	420
5	GAAGKTGAAC AGKTGACCAT WACTCTGCCM AATATAGAAA GTTGAAGGAA GCAGTAAAAT	480
	TCAGTATCGT AAAGAACAAC AGCAACAACA ATGTGGAATT CASCCAGGAC TCCCAATCTT	540
10	GTAAAACATT CTCCATCTGA AGATAAGATG TCCCCAGCAT CTCCAATAGA TGATATCGAA	600
10	AGAGAACTGA AGGCAGAAGC TAGTCTAATG GACCAGATGA GTAGTTGTGA TAGTTCATCA	660
	GATTCCAAAA GTTCATCATC TTCAAGTAGT GAGGATAGTT CTAGTGACTC AGAAGATGAA	720
15	GATTGCAAAT CCTCTACTTC TGATACAGGG NAATTGTGTC TCAGGACATC CTACCATGAC	780
	ACAGTACAGG ATTCCTGATA TAGATGCCAG TCATAATAGA TTTCGAGACA ACAGTGGCCT	840
	TCTGATGAAT ACTTTAAGAA ATGATTTGCA GCTGAGTGAA TCAGGAAGTG ACAGTGATGA	900
20	CTGAAGAAAT ATTTAGCTAT AAATAAAAAT TTATACAGCA TGTATAATTT ATTTTGTATT	960
	AACAATAAAA ATTCCTAAGA CTGAGGGAAA TATGTCTTAA CTTTTGATGA TAAAAGAAAT	1020
25	TAAATTTGAT TCAGAAAAAA AAAAAAAAAA AACTCGA	1057

30 (2) INFORMATION FOR SEQ ID NO: 205:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 721 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 205:

40	GAATTCGGCA CGAGTCATCC CTCTCCCTCT TTCACTCCCT TACTCTTACT CTGTTTTTTG	60
	TECTCCAGAC AGACAGACCC TACCTCTTTT GCTTCTTTT TGTTTGTTTG TTTTGAGATG	120
	GAGTGTCGCT CTTGTTGCCC AGGCTGGAGT GCAGTGGCGC AATCTCGGCT CACCACAACC	180
45	TCTGCCTCCC GGGTTCAAGC AATTCTCCTG CCTCAGCCTC CCGAGAAGCT GGGGATTACA	240
	GGCATGCGCC ACCACACCCA GCTNAATTTT ATATTTTTAG TAGAGATGGT GTTTCTCCAT	300
50	GTTGGTCAGG CTGGCCTCAA ACTCCCAACC TCAGGTGATN CCGCCTGCTT TGGCCTCCCC	360
	AAAGTGCTGG GATTACAGGC GTGAGCCACT GCGCCCAGCC TCTTTTGCTC CTTTATACTC	420
55	ATTAACTCAC GCCTGTAATC CCTGTTTTGG GAGGCCAAAG TGAGAAGGTT GCTTGAGGCC	480
	AAGAGTTTGA GACTAGCCTG GGCAACACAG CAAGATGCCA TCTTTATAAT AAAAATAAAA	540
	ATAAAAATCA ATTAGCTGGG CATGGTGGAA CGCACCTGTA GTCCCAGCCA ATTGAGAGGC	600
60	TGAAGTGGGA GGATCATTGA GCCCAGGAGT TGAGGTTGCA GTGAGCCATG ATCATGTCAC	660

PCT/US98/11422

	TACACTCAGC CTGGGCAATA GAGGGACATG TTGTCTCTAA AAAAAAAAAA	720
	A	721
5		
••	(2) INFORMATION FOR SEQ ID NO: 206:	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2465 base pairs (B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
13	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 206:	
		60
20	CCACCATTTA TCCAACTGAA GAGGAGTTAC AGGCAGTTCA GAAAATTGTT TCTATTACTG	120
	AACGTGCTTT AAAACTCGTT TCAGACAGTT TGTCTGAACA TGAGAAGAAC AAGAACAAAG	
	AGGGAGATGA TAAGAAAGAG GGAGGTAAAG ACAGAGCTTT GAAAGGAGTT TTGCGAGTGG	180
25	GAGTATTGGC AAAAGGATTA CTTCTCCGAG GAGATAGAAA TGTCAACCTT GTTTTGCTGT	240
	GCTCAGAGAA ACCTTCAAAG ACATTATTAA GCCGTATTGC AGAAAACCTA CCCAAACAGC	300
	TIGCTGTTAT AAGCCCTGAG AAGTATGACA TAAAATGTGC TGTATCTGAA GCGGCAATAA	360
30	TTTTGAATTC ATGTGTGGAA CCCAAAATGC AAGTCACTAT CACACTGACA TCTCCAATTA	420
	TTCGAGAAGA GAACATGAGG GAAGGAGATG TAACCTCGGG TATGGTGAAA GACCCACCGG	480
35	ACGTCTTGGA CAGGCAAAAA TGCCTTGACG CTCTGGCTGC TCTACGCCAC GCTAAGTGGT	540
,,,	TCCAGGCTAG AGCTAATGGT CTGCAGTCCT GTGTGATTAT CATACGCATT CTTCGAGACC	600
	TCCAGGCTAG AGCTACTAGGT CTGGTCTGATT TTCCAAGCTG GGCTATGGAG TTACTAGTAG	660
40		720
	AGAAAGCAAT CAGCAGTGCT TCTAGCCCTC AGAGCCCTGG GGATGCACTG AGAAGAGTTT	780
	TTGAATGCAT TTCTTCAGGG ATTATTCTTA AAGGTAGTCC TGGACTTCTG GATCCTTGTG	
45		840
	CCAGTGCACA GTTTGCATTG AGACTCCTTG CATTCCGCCA GATACACAAA GTTCTAGGCA	900
	TGGATCCATT ACCGCAAATG AGCCAACGTT TTAACATCCA CAACAACAGG AAACGAAGAA	960
50	GAGATAGTGA TGGAGTTGAT GGATTTGAAG CTGAGGGGAA AAAAGACAAA AAAGATTATG	1020
	ATAACITTIA AAAAGIGICI GIAAAICITC AGIGITAAAA AAACAGAIGC CCATIIGIIG	1080
. .	TORREST TORREST AND ACCORDED TO A ACCORDED	1140
55		1200
	CATGGAAGAA CCAAGTTTTT CTATGATATT AAAAAATGTA CAGTGTTAGG TATTATTTGA	1260
	ATTEGRARGAC ACCCARARAR ARRANTGTGC TCCGRCTAGG GGGRARACAG TAGTTCCGRT	1200

	TTTTTCCCAT TATTTTTATT TTATTTTCTG GTTGCCCTAG CTTCCCCCCC TATTTTTGTG	1320
	TCTTTTATTA ACTAGTGCAT TGTCTTATTA AATCTTCACT GTATTTAATG CAGGATGTGT	1380
5	GCTTCAGTTG CTCTGTGTAT TTTGATATTT TAATTTAGAG GTTTTGTTTG	1440
	CTAGTTGTAA GTTACTTTGT TATAGATGGT ATCCTTTACC CCTTCTTAAT ATTTTACAGC	1500
10	AGTACGTTTT TTTGTAACGT GAGACTGCAG AGTTTGTTTT TCTATATGTG AAGGATTACA	1560
10	ACACAAAAAG TTATCCTGCC ATTCGAGTGC TCAGAACTGA ATGTTTCTGC AGATCTTGTG	1620
	GCATTTGTCT CTAGTGTGAT ATATAAAGGT GTAATTAAGA CAGAGTTCTG TTAATCTAAT	1680
15	CAAGTTTGCT GTTAGTTGTG CATTAGCAGT ATAAAAGCTA ATATATACTA TATGGTCTTG	1740
	CAACAGTTTT AAAGCCTCTG CATAATTGAT AATAAAAATG CATGACATTC TTGTTTTTAA	1800
20	TAGACTTTTA AAATCATAAT TTTAGGTTTA ACACGTAGAT CTTTGTACAG TTGACTTTTT	1860
20	GACATAGCAA GGCCAAAAAT AACTITCTGA ATATTITTIT CTTGTGTATA AGTGGAAAGG	1920
	GCATTTTTCA CATATAAGTG GGCTAACCAA TATTTTCAAA AGAACTTCAT CATTGTACAA	1980
25	CTAACAACAG TAACTAGCCC TTAATTATGG TGACAGTTCC TTATTGGTGT GTGTGAGATT	2040
	ACTCTAGCAA CTATTACAGT ATAACACAGA TGATCTTCTC CACACACCCC ATCACCCAGA	2100
30	TAATTTACAG TTCTGTTAAC AGTGAGGTTG ATAAAGTATT ACTGATAAAA AATTATCTAA	2160
30	GGAAAAAAAC AGAAAATTAT TTGGTGTGGC CATCTTACCT GCTTATGTCT CCTACACAAA	2220
	GCTAAATATT CTAGCAGTGA TGTAATGAAA AATTACATCT TACTGTTGAT ATATGTATGC	2280
35	TCTGGTACAC AGATGTCATT TTGTTGTCAC AGCACTACAG TGAAATACAC AAAAAATGAA	2340
	ATTCATATAA TGACTTAAAT GTATTATATG TTAGAATTGA CAACATAAAC TACTTTTGCT	2400
40	TTGAAATGAT GTATGCTTCA GTAAAATCAT ATTCAAATTT AAAAAAAAAA	2460
40	CTCGA	246

50

(2) INFORMATION FOR SEQ ID NO: 207:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1480 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 207:

GAATTCGGCA CGAGCTCAAG CTGGCAGGTG GTCGGGGGAG CGGCCGGAGA GGAGCTGCCG 60
GGAGTTCGTG CCCTGCAGGA CATGACACCA GTGGCATATC ACGGCCATGG GGTCTCAGCA 120
TTCCGCTGCT GCTCGCCCCT CCTCCTGCAG GCGAAAGCAA GAAGATGACA GGGACGGTTT 180

	GCTGGCTGAA	CGAGAGCAGG	AAGAAGCCAT	TGCTCAGTTC	CCATATGTGG	AATTCACCGG	240
5	GAGAGATAGC	ATCACCTGTC	TCACGTGCCA	GGGGACAGGC	TACATTCCAA	CAGAGCAAGT	300
3	AAATGAGTTG	GTGGCTTTGA	TCCCACACAG	TGATCAGAGA	TTGCGCCCTC	AGCGAACTAA	360
	GCAATATGTC	CTCCTGTCCA	TCCTGCTTTG	TCTCCTGGCA	TCTGGTTTGG	TGGTTTTCTT	. 420
10	CCTGTTTCCG	CATTCAGTCC	TTGTGGATGA	TGACGGCATC	AAAGTGGTGA	AAGTCACATT	480
	TAATAAGCAA	GACTCCCTTG	TAATTCTCAC	CATCATGGCC	ACCCTGAAAA	TCAGGAACTC	540
15	CAACTTCTAC	ACGGTGGCAG	TGACCAGCCT	GTCCAGCCAG	ATTCAGTACA	TGAACACAGT	600
15	GGTGAATTTT	ACCGGGAAGG	CCGAGATGGG	AGGACCGTTT	TCCTATGTGT	ACTICTICIG	660
	CACGGTACCT	GAGATCCTGG	TGCACAACAT	AGTGATCTTC	ATGCGAACTT	CAGTGAAGAT	7 20
20	TTCATACATT	GGCCTCATGA	CCCAGAGCTC	CTTGGAGACA	CATCACTATG	TGGATTGTGG	780
	AGGAAATTCC	ACAGCTATTT	AACAACTGCT	ATTGGTTCTT	CCACACAGCG	CCTGTAGAAG	840
25	AGAGCACAGC	ATATGTTCCC	AAGGCCTGAG	TTCTGGACCT	ACCCCACGT	GGTGTAAGCA	900
2.5	GAGGAGGAAT	TGGTTCACTT	AACTCCCAGC	AAACATCCTC	CTGCCACTTA	GGAGGAAACA	960
	CCTCCCTATG	GTACCATTTA	TGTTTCTCAG	AACCAGCAGA	ATCAGTGCCT	AGCCTGTGCC	1020
30	CAGCAAATAG	TTGGCACTCA	ATAAAGATTT	GCAGAATTTA	ATACAGATCT	TTTCAGCTGT	1080
	TCTTAGGGCA	TTATAAATGG	AAATCATAAC	GTGGTTCTAG	GTTATCAAAC	CATGGAGTGA	1140
35	TGTGGAGCTA	GGATTGTGAG	TGACCTGCAG	GCCATTATCA	GTGCCTCATC	TGTGCAGAAG	1200
	TCGCAGCAGA	GAGGGACCAT	CCAAATACCI	AAGAGAAAAC	AGACCTAGTO	AGGATATGAA	1260
	TTTGTTTCAC	CTGTTCCCAA	AGGCCTGGGA	GCTTTTTGAA	AAGAAAGAAA	AAAGTGTGTT	1320
40	GGCTTTTTT	TTTTTTAGAA	AGTTAGAATT	GTTTTTACCA	AGAGTCTATO	TGGGGCTTGA	1380
	TTCACCCTTC	ATCCATTGGC	TGGAACATGO	ATTGGGGATI	TGATAGAAAA	ATAAACCCTG	1440
15	CTTTTGATT	AAAAAAAA	AAAAAAAA	AAAAACTCGA	A		1480

(2) INFORMATION FOR SEQ ID NO: 208:

50

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 872 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 208:

CAGTATTICC CTCAGTACTG TAAGCAAAAG TGGTATGTTT TTCTTTCTTT ATGTCTACTC

	TGTCCTCTGT GGCCTTCTGG TGTACCCCTC TCTTCCTAGC CATTCAGTCT CTCTAGTCAC	120
	CTCCCTAGTA GCTAGTGCTC TCTAAGTTTT TATTTAATTA GAACAACTCC ATTTCCATTT	180
5	CAAGGTAGGT CAATGGGGGG AAAAGCCTCA TGATTTAAAC TGAAGTTAAC AACACAGCTT	240
	TTAAAATGAA AACTCATACT CCAACTTCTA AAGTATATTT GAGCTGATTT GTTTCCAAAA	300
	CAAAGATATG CTGTACCTAA AACTGCTAAA ACAAAAATAT AAAGACAAGG ACTAGGTGAT	360
10	TAAGGGGAGA GAAAAATCAT YTCTTTTCCA GGAAACCTTT GCTAAAATAA GCAAAACTTG	420
	ANTICTATGCT TCATGGAAAC TGACACAAAG AAAAGAAACT GATGGATTGC ACAGGCCTTG	480
15	TTATAGAAAT AGATCTATAA AAAGATCTGT CCACAGGAAA TATACACCTT CTCCTGGTTC	540
	TGAACTICAA TGGGGATTTG TCACCTAGGT CTCCATCTAT AGGAATACCT TCACATACCT	600
20	ATCTATTCAT GCACATATTC TGAAAACAGG TACATACAAA ATTACAACAA AGGAAAAAAA	660
20	TICTATIGAA CACTIAAAAA TAGAAACAGG CCAGGCACGG TGGCTCATGC TGTAATCCCA	720
	ACAATTTGGG AGGCTGAGGC TGGTGGATCA CCTGAGGTCA GGAGTGTGAG ACCAGCTTGG	780
25	CCAACATGGT GAAACCCCGT CACTACTAAA AATACAAAAA AAATTAGCCT GTGTGGTGGC	840
	ACACTCNTAC AATCCNGGCT GACTCGGGAA AN	872
30		
3 U	(2) INFORMATION FOR SEQ ID NO: 209:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1779 base pairs	
55	(B) TYPE: nucleic acid	
	(C) STRANDEBNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 209:	
	AATTGCCAAG ACTGCACAAA ATTACAGTGC TAATGTATAT GGTTGCAGTT CACATAAAGA	60
	CAAAAGCATC TGTTATGAAA TGAGTAGTAA TATTGGGTGG TTGATTTGTT CTTAGCAGAC	120
45	TTGGCTTCAT WITGGTCTTG AGATAAAATG GCCAGCATAA ATGCTGTTTA TATTCACGTT	180
	TTCCTAGGTG TGTGTGTGCA GGCCACAGCA GCATGCCCTT GGTGTAGTCA GTGCCGAAAS	240
50		300
5 0,	CAGCATTCAG TACACTGAAG GTAAGCTAAA CCATCAACAT CTCTGGTGTT TTAAGATGTT	360
	ATTITATING AACAACIGAC AAATGAGGGA TGTTAGCTIT GTGGCAGAAT TCCCTGCATG	420
55	TGTGATAACT GATCTTGTTT TATTTTTTGG CATTGCAACT GTGGCATAGT TACAATTTCT	480
	COMMON CACAMINA A AMICERAGA AACGCGCTTG AKGGATAGAG CGCCTTCAGK	540

60 GTACTGTTTC TTATTAACTT TACTTTTTTT AAATCAACTT GCTATAGACT TTATATACAT

•	TTTGTTAAAT	ATAGTTCCTA	GTGACATAGA	AACGATGCGT	AGTTTTCATT	TACTAATTAC	660
_	AAATGTTGAG	GCCTAATTCT	GAAAGTCCTC	ATATTTAAAG	GCTAGACAAC	GTAATGAAAT	720
5	TTTTAACTAT	TTGTATGTCA	TTTTGAAAGT	GTACTGCTTT	atggtaaaag	TGTTTTTCAT	780
	TTGTTCATTG	TTTTCATTAT	TTGTGATCAT	GTTGTCTTTC	AATACAGGCA	TAAACCTTCC	840
10	ACTCTTGAAC	AAAGCAGCTG	CTTTTTAAAA	GCGGTAATTG	CTTCTTTACC	TTTTATTTCT	900
	TTTGTAAATG	AAGCTTTTCT	TTAAGAATGT	GACTTTAAAG	TGTTGTCTAT	TGCATAAAAC	960
	AGTTGACACT	CACTTATTGT	AAAGTGAAGA	TTGTTCTACT	GCATGTGAAG	TGGACCATGC	1020
15	AGATTTCTGT	ATGTTCTCAG	TATGCATCAC	TAGATAATAA	AGTCTTTTGT	GAACAAGGCA	1080
	TTTGTAGCCA	. TTTTTAAAAG	TTTTTGTCTT	CAGTGCTGGT	AAGTCAGGTA	AACCATAAAT	1140
20	AGTTAAAAGC	AACCTTTTGT	TTTTTTCCTG	AAAGTTTTTA	ATTGAAAGTA	TTATTAGTTA	1200
	AAGATGTAAA	CCTAGCCAAA	ATTACCAGTT	TATTAATAAT	TAGGATCCTA	ATTATTTCAA	1260
0.5	AAAATCCTAC	AAATATTGTC	AGCTTTCAGT	GTAGTGAGAT	TATTCCTGTA	GGTTATGGGG	1320
25	TATAATTCAG	GATTTAACTA	ATGTTTCTGC	TATTTTCTCA	CTTTTCCTTI	TGATGGTGCG	1380
	GAAAGAGAAA	AAGGAAAACG	GGGCACAGGC	CATTCGACGC	CTTCTCCAAG	GGGTCTGATT	1440
30	TGCTGAGACA	CCAGCTTCAC	CTTCTTAACA	AGGCACCTAA	TTACAACAAC	CATGCACATT	1500
	TTGGTGCAT	CAAGAATGGA	. AAATCAGAAT	AGCAGCATTG	ATTCTTCTGC	TGCAGCTCAG	1560
25	TGGAAGATGA	A TGACAACCAG	AAGACATGAC	CTAAGGGTAA	GGGACTGTTC	TGAAGAACCT	1620
35	TTCCATTTAC	G TGATCAAGAT	ATGGAAGCTC	ATTTCTGAAA	ATGCTCAGT	G TGTACTCTAA	1680
	TTATTTATG	G TACCATTIGA	ATTGTAACT	CATTTTAGC	agtgcatgt	TCTAATTGAC	1740
40	TTACTGGGA	A ACTGAATAA	ATATGCCTC	TATTATCAA			1779

45 (2) INFORMATION FOR SEQ ID NO: 210:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2110 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 210:

60

	GCCTCGGAGG GGCCTCGGCT GCCCCACCCT CGGAGCCACT GCTAGAAGGG GCCGCTCCCC	240
	AGCCTTTCAC CACCTCTGAT GACACCCCCT GCCAGGAGCA GCCCAAGGAA GTCCTTAAGG	300
5	CTCCCAGCAC CTCGGGCCTT CAGCAGGTGG CCTTTMAGCC TGGGCAGAAG GTTTATGTGT	360
	GGTACGGGGG TCAAGAGTGC ACAGGACTGG TGGWGCAGCA CAGCTGGATG GAGGGTCAGG	420
	TGACCGTCTG GCTGCTGGAG CAGAAGCTGC AGGTCTGCTG CAGGGTGGAG GAGGTGTGGC	480
10	TGGCAGAGCT GCAGGGCCCC TGTCCCCAGG CACCACCCCT GGAGCCCGGA GCCCAGGCCC	540
	TGGCCTACAG GCCCGTCTCC AGGAACATCG ATGTCCCAAA GAGGAAGTCG GACGCATGGA	600
15	AATGGATGAG ATGATGCCGG CCATGGTGCT GACGTCCCTG TCCTGCAGCC CTGTTGTACA	660
	GAGTCCTCCC GGGACCGAGG CCAACTTCTC TGCTTCCCGT GCGGCCTGCG ACCCATGGAA	720
20	GGAGAGTGGT GACATCTCGG ACAGCGGCAN CAGCACTACC AGCGGTCACT GGAGTGGGAG	780
20	CAGTGGTGTC TCCACCCCCT CGCCCCCCCA CCCCCAGGCC AGCCCCAAGT ATTTGGGGGA	840
	TGCTTTTGGT TCTCCCCAAA CTGATCATGG CTTTGAGACC GATCCTGACC CTTTCCTGCT	900
25	GGACGAACCA GCTCCACGAA AAAGAAAGAA CTCTGTGAAG GTGATGTACA AGTGCCTGTG	960
	GCCAAACTGT GGCAAAGTTC TGCGCTCCAT TGTGGGCATC AAACGACACG TCAAAGCCCT	1020
30	CCATCTGGGG GACACAGTGG ACTCTGATCA GTTCAAGCGG GAGGAGGATT TCTACTACAC	1080
30	AGAGGTGCAG CTGAAGGAGG AATCTGCTGC TGCTGCTGCT GCTGCTGCCG CAGACCCCCA	1140
	GTCCCTGGGA CTCCCACCTC CGAGCCAGCT CCCACCCCCA GCATGACTGG CCTGCCTCTG	1200
35	TCTGCTCTTC CACCACCTCT GCACAAAGCC CAGTCCTCCG GCCCAGAACA TCCTGGCCCG	1260
	GAGTCCTCCC TGCCCTCAGG GGCTCTCAGC AAGTCAGCTC CTGGGTCCTT CTGGCACATT	1320
40	CAGGCAGATC ATGCATACCA GGCTCTGCCA TCCTTCCAGA TCCCAGTCTC ACCACACATC	1380
40	TACACCAGTG TCAGCTGGGC TGCTGCCCCC TCCGCCGCCT GCTCTCTMTC TCCGGTCCGG	1440
	AGCCGGTCGC TAAGCTTCAG CGAAGCCCCA GCAGCCAGCA CCTGCGATGA AATCTCATCT	1500
45	GATCGTCACT TCTCCACCCC GGGCCCAGAG TGGTGCCAGG AAAGCCCGAG GGGAGGCTAA	1560
	GAAGTGCCGC AAGTGTATGG CATCGAGCAC CGGGACCAGT GGTGCACGGC CTGCCGGTGG	1620
50	AAGAAGGCCT GCCAGCGCTT TCTGGACTGA GCTGTGCTGC AGGTTCTACT CTGTTCCTGG	1680
30	CCCTGCCGGC AGCCACTGAC AAGAGGCCAG TGTGTCACCA GCCCTCAGCA GAAACCGAAA	1740
	GAGAAAGAAC GGAAACACGG AGTTTGGGCT CTGTTGGCTA AGGTGTAACA CTTAAAGCAA	1800
55	TTTTCTCCCA TTGTGCGAAC ATTTTATTTT TTAAAAAAAA GAAACAAAAA TATTTTTCCC	1860
	CCTAAAATAG GAGAGACCA AAACTGACCA AGGCTATTCA GCAGTGAACC AGTGACCAAA	1920
60	GAATTAATTA CCCTCCGTTT CCCACATCCC CACTCTCTAG GGGATTAGCT TGTGCGTGTC	1980
60		

;	AAAAACTCGA						2110
	TCTTCCAGAA	AGGACTGTGA	GCAAGATGAA	TTTACTTTTC	AAAAAATT	ААААААААА	2100
	AAAAGAAGGA	ACAGCTCGTT	CIGCITCCIG	CTGAGTCGGT	GAATTCTTTG	CTTTCTAAAC	2040

(2) INFORMATION FOR SEQ ID NO: 211:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 938 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 211:

20	GGCACAGGAA AAAAAAGAAA AAAGAAAAAA GAAAAAAGTT TTTGTACCCA CAGATTAGCA	60
	TTTTCTTGAT GTTTGAAAAA AGTTTAAGCT ATGTCCTAAT TTAAAAATGA GCACAAACTA	120
	CTTAACAGAT GTCTGTTCCC TCTTCTCTTA CTTAAATTAT CTTTATTTTC ACCATCACCT	180
25	CCCAGTGCCG AACACCTGAN CTCTGTGTTT TGTGGTTGGA TCCTGGGTTG CCAAGTTCCT	240
	ATTTGGTCAG TCCCTGGCCT GTGGGGCGGT CTCAGGAAGT GGCATGCTCT TCAMGRAGGA	300
30	TOGTTCATYT CCAGTATAAC CAWITTGITA ATAATAGTTG ATAATTCCCA GCTTTTACCA	360
	GATGARTITT GACTIATITT TCCTCCTTTG ACCTGTTCAA AGCTAACATA TCTCGGTCAG	420
	TTCGGAGAGG GTGGGGGATT TGAGAATGTG AGGAGGAGTG GGGTTAGAAT GGGTTTGCCT	480
35	ATCTGGGCAA GGAAAGAGTT CCTAGTCGAT TGGGCACAAT GACAAAATGA TTCCATGGAT	540
	AGAATCGTCC CATGTTGCTG GAACACCTCA CGTGTTGTGA ACGCCTTAAA TTCCTGCCAT	600
40	CCCTTCTCTG ATTCCCCACC TCCCTGTAGT TTCCACAGGA TTTATCTCTC TGTACCCCCG	660
	TCCTCCAACT CTACTCTGTC AGCCTCTCCT CCATCCCTTA CTTCCCTTCT AAATTCCAGG	720
	AGATGACCTC ACTITIGCAAA GCAAATTGGA GCCACCAAAT TGTAGCTCTC CTCGGTGGAA	780
45	ACTIGNATORIE TIGNATORIE TIGNACATORI TIGNAGAAGO COCCCCTORI GECCAAGATG	840
	AGTGCCTGGC CCCCATGGGA GACTCAGACA CTTTGACCCC TTGTGACTTC AGCATCTCCC	900
50	TCTTTAAAGA TTCTCTCCCA ACATTCAGTC GTGCTCGA	938

55 (2) INFORMATION FOR SEQ ID NO: 212:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1551 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 212:

5	AGGCTGGACT AAGCATAGAG AACCAGGAGA GAAAGAAAGA TTTAAGAGAC TGAGTAATAT	60
	TYPTTGACAG ATCATTTAAG AAACTGAGTA ATTTTTTTT TCTCCAAAAG GGCATGGGTT	120
10	THYTTTTGT TTTGTTTTTT CTCTATTTGG CACTTTCTAG GGATTGGTCT ATAAATTTTT	. 130
10	TGAAAGATCA TAGGATAAAT TTCTTTGTAG CAACTTCCTA TTTTAGTGTT TATGTTAGGG	240
	GARCCCCARG TGTCCCTGCT GATACGCCAT TAGGGCCACT TCTCAGCCTC TGGCTACATC	300
15	ATAATGCTTT TTTTTCTATC TTGCCAAAGT TTCCMGAAAA TTKAKGTTTT CTAATTTTAA	360
	AAAAATTGGT TGTGGAGATG GGATGGGACC TCTTTATAAG CCCTGAAAAT AAGTGATTTN	420
20	TITTAAGIGC TATTCIGCTA TAAACCIGAT TCTCACITTT TTCTGTAGAC AACAGITTTT	430
20	TATAATATAT CTATTTTGTG TGGACATTAT TTCCTTTTAA CCAATACTGA AATTCCATAG	540
	TGTAWACTTT CTCCACATTT TCTTTGATTA ATACTTYCTT AAAATAGACA CTTCGATTGG	630
25	CACCAGCTGT CACCAATAAA GCTGCCCTGA ACATTGTCAA TCAATCCTGT TAACCAATTT	650
	GAGAATTTTT CTGGAATGCT TAGTTAGGGA TGAAATTGCT GGGTTATAGG TATGAGTATG	720
30	CTIGATATAC TTTTCTCCAG AATGTCTACA CCTGTGTGTA CACCACATCT CCAGAGATAG	730
30	GGGAATCITA TGTCCCTGCT AACTGCTCTC GTTATTTAAT TTTCTGACAT TTGCCGCCGC	840
	CGCCGCCCCC TGCCCCCAAC ACACACATGG TATAAAGTGG TAGTTTCTTG TTTTAAATTG	930
35	AACTITIGAA TGATTIGAAT TIGGGCATTI CITIGIATCC IGAGITATIT IGGITICCCG	950
	TTATGTGAAT ATCCTTTTCC TATGCTTTAA CTACTTTTCT AATTTGTCCC TTTTTTNGGT	1020
40	TATCAAATTC CAGGCCATTG TCTATTCCAT CGTCACTTTT GGGTATTGGA AACATCTTTC	1030
40	CATTCTGTAG CCTGTCTGTT GAACATAAAT CTTGATTTTT ATGTAATCAG ATTTTTCTCC	1140
	TTACGGTTAT GTTCTTGGAA TTTTATTTAA GAAATCTTTT TCTATCCTGA GACCACAAAA	1200
45	ATGTCCCCAC CATTTCTTC TGTTTCATAG TTTTGCCTTG TATGTTTAAT CCTTTAAGGC	1260
	ATGTGTAGTT CATTTTATAT GGTGTGAAAT AGTTCTTATT CATTTATTCA ACACATATTG	1320
50	GTGGAGTGCC TGCTGATGGT AGTACTCTTC AGAGTACTTT GTATATATTT GTGAACACAT	1330
50	ATTCTTGCCC TGGAAGCTTA TGTTGTCNTT CAAGGTAGAT CCNTACTCGG TTTCCACCTG	1440
	TTTTCTTCAG CCCTCAGGAT GAATTCCACA ATTTTACACA TAGCACCAGT TAAGGAATAG	1500
5 5	GCTTTATTGG AGAAAAGGAA GGCTTATTAG ACCAGCATCA GCAAAAAAAA A	1551

5	(A) LENGTH: 997 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear				
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 213:				
10	AGAGAGTCCT CAACAGAACC TAATCATGCT GGCACCCTAA TOTCATACTT CTAGCCTCCA	60			
	GAACTGAGAG AACATAAACT CCAGTTGTTT AAGCTACCCA GTCTATGGTA TTTGTTATTA	120			
15	TAGCCCAAGC TAAGTCAGGT GGAAAGGCAG AAATATTTTG AGAAGARTCA TTTCTACAAA	130			
	AACAGAGTTG TTCTAAATGA AATGGCCAGA TATTTCATCT TSTTCATACT AGTATTTATG	240			
	AAAGTTTCAT TAAACACCAC TTGGCCAGCA CCCAGGCCTG CCACCCTCAG AACGGCAAAC	300			
20	AAAAGCAAAT GATTTGAGGA ACAAAAGAGT GGACACAGAG CCTCTCAGAA GATGGCTCCA	360			
	TCTTCTGAGA TGATCTTCTG AGATCATCAA TTTTCTGCAC CTGATGTCCT ACTCCAATTG	420			
25	TAGTAGATAA GAGCAAAGAC ACTTCCTGAT CCTGTGGAAA ALTGCTGGAGC CCTGCTGATG	430			
	GAGAGGCTGA CACTGGGACC AACAGAAGGC CGGACATTTA TITTGGTGCAG CCCTTCTGCA	540			
30	CCTGGGCCCT CTTCAGGCCT TGTACCTTGC ACTCCCCATG CCACTGTAGC ACCTGGTAAG	600			
	CTGAAGTTAG GTATTTGAAG AGATAATTTG CCCCCAACAA ARAACTACTT AAAAGAAAAA	550			
	GGAAACCACT AAATTCCACT TGACAAACCA GTTTGTTCAG TTTTGACTIT TGCAAATTTG	720			
35	AAACTITCTC TITGGCACCA TATGATTCTG TTACATTAGG GUTCATCARI GCTAAGATAC	780			
	ACAGCTAGGT CTACCAGCTG CCAGTGGTCA AGAATGAAAG AACCTTTTCAG AGAGAGATGA	840			
4.0	GTTTCTAATA ACCTAACAGT TTTCCTTGGS TATTACMAAA AAAAAAAAA TTAGAATAAA	900			
40	ATGTCAGTGC CATGCAGGCA AGTACAGATA TGGAAATGAA AGGTTTGTGT ACAACTGCAA	960			
	GATTTGTTTG TTAATAAAAT TGATTGGGAT CACTCGA	997			
45					
	(2) INFORMATION FOR SEQ ID NO: 214:				
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1496 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear				
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 214:				
	GAATTCGGCA CGAGTGACCA CAGATATCTT TGGCTTTCAG CCTCACCACA ATGCTGTCCA	60			
60	CTATGITITI TITAATCGAT TGACATCTCA TGAATCCACA AATTIAGCCG CTITICCATC	120			

	TTTTCCATCT TTGTCATAGC TTCATCACGC ACGATGGAGG TCACTTCAGC ACTATCCGGA	180
	GCGGCCTCAC GGACAGATCR GTGAATTTCC TTTTCCTTTT TCTTGATGTA CCGGATTGTC	240
5	GACTOGTTAA CATTGAGCTC ATGGCCAACA GCACTGTAAC TCATGCCTGA TTGGAGCTTA	300
	TCCAACACGC GGAMTTTCTC CGTAAGGSAM ATCAMGGTCT TCTTTCGCTT AGGAACACTG	360
10	GGCARARCTT AARCACTACG CTTGGGGGCC ATTTTAGAAA GCAAAACCAC CCACAAAAAG	420
	CAGAAAAAA AGTGTCAGTA AACAGACTGN NGANAGGACT CTTTGTTTAC AGCACAGGAG	480
	CTGCGACTAG AAGGCGGCGC TTCTCCCCAG TTCAAACTTC AGCTGGGAAC CTTACCTCCG	540
15	CCAACTCCAA ATTITCACCC TCTGCGCATG CCCGGGAAAS AAACCCCCAG AACAGTACCG	600
	TGATGATTGA TTTTAGGGTT ACAAATACAT TTTAGCAAGT AAGTGAATTT GGCATTACGA	6 60
20	ATTAATGATT AATGAAGGTC ACCTGTATTT CCATAGATAT GTAATTTTAT TTAAGCAGGT	720
	TTATTATATT AAGGCGGSGA GGCAGCGCCG AAGACTACAA GTTCCAGCAT GCACCGCGTC	780
	CGGGCGGGTT CGGGCTCCCA GCGAGGGCTT CAGGGACGCC AGCCCGGAGG CATCGGCCGG	840
25	AAGTGTCGTA GGGCAACCAC GTAGTACTCT CTGCGCATGT GCAAAGCGCT GTCGGGGGCC	900
	GCCCTAGCTG CCGTCGCCGC CGCCGGGGCT CTATGGTCTC TCCCTAGAGC TTTGCCGTTG	960
20	GAGGCGGCTG CTGCGGTCTT GTGAGTTTGA CCAGCGTCGA GCGGCAGCAA CATGGAGGAA	1020
30	TTCGACTCCG AAGACTTCTC TACGTCGGAG GAGGACGAGG ACTACGTGCC GTCGGGTGAG	1080
	CGATTCCGCC TGAGGCGAGA AGCGAATTGC CCCGCCCCAC GCCTCACGTG AGGCGCGCTC	1140
35	TECCCCCECE EGCETCTECC CTETESCCCA EGTESTCCAG EGGEGCTCCT GTTCTCGAEC	1200
	GTCCGCTCCC TCAGGCCCCT CATCCTCGGC CGCTCCGGCC CGAGGCGTGT GCGCGTGGCG	1260
40	GTTCTGTGCT CCCCTCCCGT TGGGCAGCTC CGGCCGCCGC CCCCTCTTGC AGCGCGGGAA	1320
	COGCACATOG ACACOGCCCC TTGTCGCTAG GGACGCTCGT CGGTCAGCCC CGAACGACAA	1380
	CGCTGCTTCA GAAGTCGGGG CGGCAGTTCG AGCCTTGGAA GTTTTTTTCA GCCCTGGCCC	1440
15	CAGAGAGCTG CTGGCCAACA ACCCGTCCAA GATAGAGCTG TCCGNTCTCC GNCTGG	149

50 (2) INFORMATION FOR SEQ ID NO: 215:

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1308 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 215:

	CTGCCTTTGA	CCCATCACAC	CCCATTTCCT	CCTCTTTCCC	TCTCCCCGCT	GCCAAAAAA	120
5	AAAAAAAAGG	AAACGTTTAT	CATGAATCAA	CAGGGTTTCA	GTCCTTATCA	AAGAGAGATG	180
	TGGAAAGAGC	TAAAGAAACC	ACCCTTTGTT	CCCAACTCCA	CTTTACCCAT	ATTITATGCA	240
	ACACAAACAC	TGTCCTTTTG	GGTCCCTTTC	TTACAGATGG	ACCTCTTGAG	AAGAATTATC	300
10	GTATTCCACG	TTTTTAGCCC	TCAGGTTACC	AAGATAAATA	TATGTATATA	TAACCTTTAT	360
	TATTGCTATA	TCTTTGTGGA	TAATACATTC	AGGTGGTGCT	GGGTGATTTA	TTATAATCTG	420
15	AACCTAGGTA	TATCCTTTGG	TCTTCCACAG	TCATGTTGAG	GTGGGCTCCC	TGGTATGGTA	480
13	AAAAGCCAGG	TATAATGTAA	CTTCACCCCA	GCCTTTGTAC	TAAGCTCTTG	ATAGTGGATA	540
	TACTCTTTTA	AGTTTAGCCC	CAATATAGGG	TAATGGAAAT	TTCCTGCCCT	CTGGGTTCCC	600
20	CATTTTTACT	ATTAAGAAGA	CCAGTGATAA	TTTAATAATG	CCACCAACTC	TGGCTTAGTT	660
	AAGTGAGAGT	GTGAACTGTG	TGGCAAGAGA	GCCTCACACC	TCACTAGGTG	CAGAGAGCCC	720
25	AGGCCTTATG	TTAAAATCAT	GCACTTGAAA	AGCAAACCTT	AATCTGCAAA	GACAGCAGCA	780
23	AGCATTATAC	GGTCATCTTG	AATGATCCCT	TTGAAATTTT	TTTTTTGTTT	GTTTGTTTAA	840
	ATCAAGCCTG	AGGCTGGTGA	ACAGTAGCTA	CACACCCATA	TTGTGTGTTC	TGTGAATGCT	900
30	AGCTCTCTTG	AATTTGGATA	TTGGTTATTT	TTTATAGAGT	GTAAACCAAG	TTTTATATTC	960
	TGCAATGCGA	ACAGGTACCT	ATCTGTTTCT	AAATAAAACT	GTTTACATTC	ATTATGGGGT	1020
35	ATGTATGACC	TTCATTTTCC	AAGAAATAGA	ACTCTAGCTT	AGAATTATGG	ATGCTCTAAA	1080
<i>)</i>)	ATGTCAGAAT	GGGAACTCTC	CTCGAAGTTC	TCCCAAACTC	AGAGACAGCA	CTGCCTTCTC	1140
	CTAAATGATT	ATTCTTTTCT	CCCTCTTTTC	TGGTATTITC	TAGGCATCCT	TCTCACCACA	1200
40	GCCATAACCC	TTTTTTACTT	CCATTAGGCC	GTATAACTGG	NGGGACNGCT	GGTCGGTATA	1260
	TAATACTGGT	WCCAACAMAG	GGGTTCTGG	TGTACACMAG	GTTATCTT		1308

50

(2) INFORMATION FOR SEQ ID NO: 216:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1705 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 216:

TGGCCATGGA AGCGCTAGAA GGTTTAGATT TTGAAACAGC AAAGAAGGAT TTCCTTGGAT 60
CTGGAGACCC CAAAGAAACA AAGATGCTAA TCACCAAACA GGCTGACTGG GCCAGAAATA 120

	TCAAGGAGCC CAAAGCCGCC GTGGAGATGT ACATCTCAGC AGGAGAGCAC GTCAAGGCCA	180
5	TOGAGATOTG TOGTGACCAT GGCTGGGTTG ACATGTTGAT CGACATCGCC CGCAAACTGG	240
	ACAAGGCTGA GCGCGAGCCC CTGCTGCTGT GCGCTACCTA CCTCAAGAAG CTGGACAGCC	300
	CTGGCTATGC TGCTGAGACC TACCTGAAGA TGGGTGACCT CAAGTCCCTG GTGCAGCTGC	360
	AGTGGAGACC CAGCGCTGGG ATGAGGCCTT TGCTTTGGGT GAGAAGCATC CTGAGTTTAA	420
	GGATGACATC TACATGCCGT ATGCTCAGTG GCTAGCAGAG AACGATCGCT TTGAGGAAGC	480
	CCAGAAAGCG TTCCACAAGG CTGGGCGACA GAGAGAAGCG GTCCAGGTGC TGGAGCAGCT	540
15	CACAAACAAT GCCGTGGCGG AGAGCAGGTT TAATGATGCT GCCTATTATT ACTGGATGCT	600
	GTCCATGCAG TGCCTCGATA TAGCTCAAGA TCCTGCCCAG AAGGACACAA TGCTTGGCAA	660
	GTTCTACCAC TTCCAGCGTT TGGCAGAGCT GTACCATGGT TACCATGCCA TCCATCGCCA	720
20	CACGGAAGAT CCGTTCAGTG TCCATCGTCC TGAAACTCTT TTCAACATCT CCAGGTTCCT	780
	GCTGCACAGC CTGCCCAAGG ACACCCCCTC GGGCATCTCT AAAGTGAAAA TACTCTTCAC	840
25	CTTGGCCAAG CAGAGCAAGG CCCTCGGTGC CTACAGGCTG GCCCGGCACG CCTATGACAA	900
	GCTGCGTGGC CTGTACATCC CTGCCAGATT CCAAAAGTCC ATTGAGCTGG GTACCCTGAC	960
	CATCCGCGCC AAGCCCTTCC ACGACAGTGA GGAGTTGGTG CCCTTGTGCT ACCGCTGCTC	1020
30	CACCAACAAC CCGCTGCTCA ACAACCTGGG CAACGTCTGC ATCAACTGCC GCCAGCCCTT	1080
	CATCTTCTCC GCCTCTTCCT ACGACGTGCT ACACCTGGTT GAGTTCTACC TGGAGGAAGG	1140
35	GATCACTGAT GAAGAAGCCA TCTCCCTCAT CGACCTGGAG GTGCTGAGAC CCAAGCGGGA	1200
	TGACAGACAG CTAGAGATTT GCAAACAACA GCTCCCAGAT TCTTGCGGCT AGTGGGAGAC	1260
40	CAAGGGACTC CATCGGAGAT NAGGACCCGT TCACAGCTAA GCTRAGCTTT GAGCAAGGTG	1320
40	GCTCARAGTT CGTGCCAGTG GTGGTGAGCC GGCTGGTGCT GCGCTCCATG AGCCGCCGGG	1380
	ATGTCCTCAT CAAGCGATGG CCCCCACCC TGAGGTGGCA ATACTTCCGC TCACTGCTGC	1440
45	CTGACGCCTC CATTACCATG TGCCCCTCCT GCTTCCAGAT GTTCCATTCT GAGGACTATG	1500
	AGTTGCTGGT GCTTCAGCAT GGCTGCTGCC CCTACTGCCG CAGGTGCAAG GATGACCCTG	1560
50	GCCCATGACC AGCATCCTGG GGACGGCCTG CACCCTCTGC CCGCCTTGGG GTCTGCTGGG	1620
	CTGTGAAGGA GAATAAAGAG TTAAACTGTC AAAAAAAAA AAAAAAAAA AAAAAAAAA	1680
	AMAAA AAAAAAAAA	1705

60

(i) SEQUENCE CHARACTERISTICS:

⁽²⁾ INFORMATION FOR SEQ ID NO: 217:

	(A) LENGTH: 999 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
5	(D) TOPOLOGY: linear	
J	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 217:	
	AGCAAATCAC CTTAACGATC TGGAATGAAA CTGTGACCAG TGCCGCCCTG GGTGGTTCTG	60
10	GAGAGACTGC CGTCTTCTTG TTTGGCCATA GGTGCTGGGG CCCCGGCTTC AGTCACTGTC	120
	TCAGACAGKA GTCCCGATAA GCAGATCACC AGTCCTCCAC TGTCCTTCCT GTCGGCCTTG	180
15	CTGCATGAGA AGATAGCTGC TTCCTCCCTC TTTTCCTACA CTGTAAATTA TTGTTTTACA	240
13	ATTGAGTGYC TTAATAATAG TYTACAAATA CTATGTATTT ATGCAAAACT GTTAAAGTTC	300
	TCATCTGTTA TGATTGGATA CTTGGTCTTG TCAGTAGTGG TCAGCATTGG GTTGTGAGCT	360
20	TGTCCTACTC CATACGTGTT TATCCTGCTA TGCATTTTAC ATTGTGTGTT CACATCTATT	420
	CCAAGGAGCC TTGCTAGAAA CAACACTGGC GGTTCCTGCA GGCCAGGCAG GCATTGGCCC	480
25	ATGCTGTGTC CCATAGGAGC CAATGGAAAG AACGTAGCTT GGTCTGCTAG CCAGCCGTGG	540
23	GGTGGCGCAG GCCAGGCAGC CTCTGCACCA GAGTCCAGCA CCTGCCCATT CCCCAGTCAC	600
	ACAATCATAC TCTTCTTTCA TAGAGATTTT ATTACCACCT AGACCACCCT AGTTTTCCTC	660
30	TCTGTTAGTG TCCTGAGCTC TTTTGCAACA AAATGTAGGT ACAGACCAAT CCCTGTCCCT	720
	TCCCCAATCA GGAGCTCCAC ACCATGAGTT GTTTGGTTTT CCAGAAGCTG CCAGTGGGTT	780
35	CCCGTGAATT GCGTTAAGAT ATCGATGATK TTTTTTATTG TTTTTCTTCT TGTTTTTTTA	840
50	AATAATATAT TTAAAGGCAG TATCTTTTGT ACTGTGAATT TGCAGTAGAA GATGCAGAAT	900
	GCACTTTTT TTTACTTCTG TTGGTGTGTA TTGTATATAG TGTGTGTGCT TCTTGTGATG	960
40	AAAAAAACT TTTTCTTTAT AAAAAAAAA AAAAAAACC	999
45	(2) INFORMATION FOR SEQ ID NO: 218:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 941 base pairs(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 218:	
55	GGCACGAGTA GCATTTCATT TAATCTGCAG GTATATTCTC CCAACAGTTT ATTGTCATGT	60
	GATGTCCTCA GCCAAGATTG TRAGGCAGAG AGGAGCTGTC CCAACCTACT ATACCACCGA	120
	GCCTGGAGAG ATCATATTT TGGTATTAAA CTGGAGTCTC TCCATCCTTC ACATTGTTGA	180

	TGTCCTCTGT AGCAAACCGG AAAAGTCAGT GACAGAAGAT GCCGCTAGCG GTTTGAGCCA	240
	GAGAATGACA GCTCTGGTTT GGAGAAAAGG GCCGGATGGT GGCTCTAGAA AGCCCATCCT	300
5	TCTGCTCTTC TTTTTTCTCC CCCTTATATT GTGCTTTCAT TCATTCATTC ATTCATCAAA	360
	CATTIGTIGA GCACCIATTA IGIGICAAGC ICIGIGCIAG CCICTGGAAA ACCIGCCCIC	420
	ATGTAGCTCA CTGTGGAGTA GGAGAAACAA TGACTACACT ATGATAAGCA CGGGTTGTCA	480
10	GGGTCTCACA GAGCAGTGGC CCCTCATCCA GACCGATGAG GTCAAAGAAG GCATCCAGGC	540
	GAGGATGGTG TCAGAGCTAA CTGAAGAATG AGAGGGAGCT GCACCASCAG GGGTTGGAAC	600
15	TGAAGGTGGC AGTGCCTGGA GTCTTGATTC CAGCAGAGGG AGAGCAGTCT GTGAAAAGGC	660
	ACCAAGGGTG GGAGAGGGCA GAGCACATGG AGGAACTTCA GGTAGTTCTG GATGGCSCTG	720
••	GGGCAAAGCT AGAGAGGTAA GAAGAATCTA CAAATGTTCC TCGAGTTACA TGAACTTCCA	780
20	TCCCAATAAA CCCATTGGAA ACGAAAAATT TAAGTCAGAA GTGCATTTAA GGCTGGTCCG	840
	AGTAGAATGA TTTTTACAAC GAATTGATCA CAACCAGTTA CAGATGTCTT TGTTCCTTCT	900
25	CCACTCCCAC TGCTTCACCT GACTAGCCTT TAAAAAAAAA A	941

30 (2) INFORMATION FOR SEQ ID NO: 219:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 575 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 219:

TAAGTGGAAT CCCCCGGGT TGCAGGGAAT TCGGCACGAG GCATTCTGAG AAGCTTAAGA 60 40 CATACTITGA AGACAACCCT AGGGACCTCC AGCTGCTGCG GCATGACCTA CCTTTGCACC 120 CCGCAGTGGT GAAGCCCCAC CTGGGCCATG TTCCTGACTA CCTGGTTCCT CCTGCTCTCC 180 45 GTGGCCTGGT RCGCCCTCAC AAGAAGCCGA AGAAGCTGTC TTCCTCTTGT AGGAAGGCCA 240 AGAGAGCAAA GTCCCAGAAC CCACTGCGCA GCTTCAAGCA CAAAGGAAAG AAATTCAGAC 300 CCACAGCCAA GCCCTCCTGA GGTTGTTGGG CCTCTCTGGA GCTGAGCACA TTGTGGAGCA 360 50 CAGGCTTACA CCCTTCGTGG ACAGGCGAGG CTCTGGTGCT TACTGCACAG CCTGAACAGA 420 CAGTTCTGGG GCCGGCAGTG CTGGGCCCTT TAGCTCCTTG GCACTTCCAA GCTGGCATCT 480 55 540 575 CTCGAGGGG GGCCCGTACC CAATTCGCCC TATAA

(2) INFORMATION FOR SEQ ID NO: 220:

5 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 3018 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 220:

	(XI) SEQUENCE	DESCRIPTION	: SEO ID NO	: 220:		
	GCCAGCCTTA	CAGGTTTTAC	GTGAAATGAA	AGCCATTGGA	ATAGAACCCT	CGCTTGCAAC	60
15	ATATCACCAT	ATTATTCGCC	TGTTTGATCA	ACCTGGAGAC	CCTTTAAAGA	GATCATCCTT	120
	CATCATTTAT	GATATAATGA	ATGAATTAAT	GGGAAAGAGA	TTTTCTCCAA	AGGACCCGGA	180
20	TGATGATAAG	TTTTTTCAGT	CAGCCATGAG	CATATGCTCA	TCTCTCAGAG	ATCTAGAACT	240
	TGCCTACCAA	GTACATGGCC	TTTTAAAAAC	CGGAGACAAC	TGGAAATTCA	TTGGACCTGA	300
	TCAACATCGT	AATTTCTATT	ATTCCAAGTT	CTTCGATTTG	ATTIGTCTAA	TGGAACAAAT	360
25	TGATGTTACC	TTGAAGTGGT	ATGAGGACCT	GATACCTTCA	GCCTACTTTC	CCCACTCCCA	420
	AACAATGATA	CATCTTCTCC	AAGCATTGGA	TGTGGCCAAT	CGGCTAGAAG	TGATTCCTAA	480
30	AATTTGGGAA	AGATAGTAAA	GAATATGGTC	ATACTTTCCG	CAGTGACCTG	AGAGAAGAGA	540
	TCCTGATGCT	CATGGCAAGG	GACAAGCACC	CACCAGAGCT	TCAGGTGGCA	TTTGCTGACT	600
	GTGCTGCTGA	TATCAAATCT	GCGTATGAAA	GCCAACCCAT	CAGACAGACT	GCTCAGGATT	6 60
35	GGCCAGCCAC	CTCTCTCAAC	TGTATAGCTA	TCCTCTTTTT	AAGGCTGGG	AGAACTCAGG	720
	AAGCCTGGAA	AATGTTGGGG	CTTTTCAGGA	AGCATAATAA	GATTCCTAGA	AGTGAGTTGC	780
40	TGAATGAGCT	TATGGACAGT	GCAAAAGTGT	CTAACAGCCC	TTCCCAGGCC	ATTGAAGTAG	840
	TAGAGCTGGC	AAGTGCCTTC	AGCTTACCTA	TTTGTGAGGG	CCTCACCCAG	AGAGTAATGA	900
	GTGATTTTGC	AATCAACCAG	GAACAAAAGG	AAGCCCTAAG	TAATCTAACT	GCATTGACCA	960
45	GTGACAGTGA	TACTGACAGC	AGCAGTGACA	GCGACAGTGA	CACCAGTGAA	GGCAAATGAA	1020
	AGTGGAGATT	CAGGAGCAGC	AATGGTCTCA	CCATAGCTGC	TGGAATCACA	CCTGAGAACT	1080
50	GAGATATACC	AATATTTAAC	ATTGTTACAA	AGAAGAAAAG	ATACAGATTT	GGTGAATTTG	1140
	TTACTGTGAG	GTACAGTCAG	TACACAGCTG	ACTTATGTAG	ATTTAAGCTG	CTAATATGCT	1200
	ACTTAACCAT	CTATTAATGC	ACCATTAAAG	GCTTAGCATT	TAAGTAGCAA	CATTGCGGTT	1260
5 5	TTCAGACACA	TGGTGAGGTC	CATGGCTCTT	GTCATCAGGA	TAAGCCTGCA	CACCTAGAGT	1320
	GTCGGTGAGC	TGACCTCACG	ATGCTGTCCT	CGTGCGATTG	CCCTCTCCTG	CTGCTGGACT	1380
60	TCTGCCTTTG	TTGGCCTGAT	GTGCTGCTGT	GATGCTGGTC	CTTCATCTTA	GGTGTTCATG	1440

	CAGTTCTAAC	ACAGTTGGGG	TTGGGTCAAT	AGTTTCCCAA	TTTCAGGATA	TTTCGATGTC	1500
	AGAAATAACG	CATCTTAGGA	ATGACTAAAC	AAGATAATGG	CAGTTTAGGC	TGCACAACTG	1560
5	GTAAAATGAC	TGTAGATAAA	TGTTGTAATT	AGTGTACACG	TTTGTATTTT	TGTTAATATA	1620
	GCCGCTGCCA	TAGTTTTCTA	ACTTGAACAG	CCATGAATGT	TTCATGTCTC	CCTTTTTTT	1680
10	TIGTCTATAG	CTGTTACCTA	TTTTAGTGGT	TGAAATGAGA	GCTAGTGATG	ACAGAAGGAT	. 1740
10	GTGGAATGTC	TTCTTGACAT	CATTGTGTAT	TGCTGGTAAT	CAAGTTGGTA	ACGACTACTT	1800
	CTAGCAGCTC	TTACCACTAT	GACTTAAGTG	GTCCTGGAAG	GCAGTAAGTG	GAGGTTTGCA	1860
15	GCATTCCTGC	CTTCATGAGG	GCTTCTACCA	CTGACCACTT	TGCACGTACC	TGGCTCCCAG	1920
	ATTTACTTAG	GTACCCCACG	AGTCGTCCAC	ATAAGCAGCT	TCATCTTTAC	CTTGCCAGAG	1980
20	TTGACAATTA	TGGGATACTC	TAGTCTACTT	ATACTTGTGT	TCCCATCTGT	CTGCCATCCT	2040
20	CTGAAGGCCA	GGACCCAGTC	ATACATCCTT	AGAAACCAAA	GTATGGTTTT	TGTTTTCTCT	2100
	TGGAATGTCA	GGTCTTAAGG	CATTTAATTG	AGGGACAAAA	AAAAAAAAA	GCCGATATAG	2160
25	TAGCTAGCTA	CTTAAGCATC	CATGGGTATT	GCTCCATATC	AAAGCAGATT	TGCAGGACAG	2220
	AAAGAGTAAA	TTAGCCTTCA	GTCTTGGTTT	ACAGCTTCCA	AGGAGAGCCT	TGGSCACCTG	2280
30	AAATGTTAAC	TCGGTCCCTT	CCTGTCTCTA	GTTCATCAGC	ACCTGCAGAT	GCCTGACTCT	2340
50	TGTTAGCCTT	ACTATTCAAT	ACAGTCCTTA	GATTCACGGT	ATGCCTCTTC	CTATCCAGGC	2400
	ACCTATTCTG	AATCACCATG	TTGCTCTGCA	GCTAGAGTTG	ATAGGAGAAA	ATCCATTTGG	2460
35	GTAGATGGCC	TATGAATTTG	TAGTAGACTT	TCAAAATGAG	TGATTTGTTA	GCTTGGTACT	2520
	TTTAAGTTTG	TGGTACAGAT	CCTCCAAACC	CATACTCTGA	GCAATTAACT	GCCTTGAACA	2580
40	TAGAGAAAAA	TTAAGGCCTC	ACAGGATGAG	TCTCCATTCT	CTGTAAATGC	TTATTTTATC	2640
10	ATAGTCTTTA	GCCTCTAACT	ATGAGTAAAA	TGTTCTCTTC	GCCCGCTGT	GGTGACTCAC	2700
	ACCTGTAACC	TCAGCACTTT	GGGAGGCAGA	GGTGGGAGGA	TCACTTAGGT	CCAGGAGTTC	2760
45	GAGACTAGCC	TGGGCAACAT	AGTGAGACAC	CGGATCTACA	AAAAAATAAA	AAGCCAGACT	2820
	GGTGGTATGT	ATCTGTGTCC	CAGCTAATTG	GGAGGGTGAG	ATGGGAGGAT	TGTTTGAGCC	2880
50	TAGGAGAGGG	AGGTTGCAGT	GAGCCGTGAT	CGCACCACTG	CACTCCAGCC	TGGGCAACAG	2940
50	AGCAAGACCC	TGTCTTGGAG	: AAACCAGAAT	TTTGGAAGAG	CAAATGGGGC	TGAGTGCAGT	3000
	GGCTCATGCC	TGTAATCC					3018

60 (i) SEQUENCE CHARACTERISTICS:

⁽²⁾ INFORMATION FOR SEQ ID NO: 221:

. 5	(A) LENGTH: 968 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 221:	
	GGCACGAGGG CCGCGGGACA TCCACGGGGC GCGAGTGACA CGCGGGAGGG AGAGCAGTGT	60
10	TCTGCTGGAG CCGATGCCAA AAACCATGCA TTTCTTATTC AGATTCATTG TTTTCTTTTA	120
	TCTGTGGGGC CTTTTTACTG CTCAGAGACA AAAGAAAGAG GAGAGCACCG AAGAAGTGAA	180
15	AATAGAAGTT TTGCATCGTC CAGAAAACTG CTCTAAGACA AGCAAGAAGG GAGACCTACT	240
15	NAAATGCCCA TTATGACGGC TACCTGGCTA AAGACGGCTC GAAATTCTAC TGCAGCCGGA	300
	CACAAAATGA AGGCCACCCC AAATGGTTTG TTCTTGGTGT TGGGCAAGTC ATAAAAGGCC	360
20	TAGACATTGC TATGACAGAT ATGTGCCCTG GAGAAAAGCG AAAAGTAGTT ATACCCCCTT	420
	CATTTGCATA CGGAAAGGAA GGCTATGCAG AAGGCAAGAT TCCACCGGAT GCTACATTGA	480
25	TTTTTGAGAT TGAACTTTAT GCTGTGACCA AAGGACCACG GAGCATTGAG ACATTTAAAC	540
25	AAATAGACAT GGACAATGAC AGGCAGCTCT CTAAAGCCGA GATAAACCTC TACTTGCAAA	600
	GGGAATTTGA AAAAGATGAG AAGCCACGTG ACAAGTCATA TCAGGATGCA GTTTTAGAAG	660
30	ATATTTTAA GAAGAATGAC CATGATGGTG ATGCCTTCAT TTCTCCCAAG GAATACAATG	720
	TATACCAACA CGATGAACTA TAGCATATTT GTATTTCTAC TITTTTTTTT TAGCTATTTA	780
	CTGTACTTTA TGTATWAAAC AAAGTCMCTT TTCTCCMAGT TGKATTTGCT ATTTTTCCCC	840
35	TATGAGAAGA TATTTTGATC TCCCCAATAC ATTGATTTTG GTATAATAAA TGTGAGGCTG	900
	TTTTGCAAAC TTAAAAAAAA ATTTAAAAAA ACTGGAGGG GGCCCGTACC CAANTCGCCG	960
40	NATATGAT	968
45	(2) INFORMATION FOR SEQ ID NO: 222: (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1404 base pairs (B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 222:	
55	CGTTTTCCGG CCGTGCGTTT GTGGCCGTCC GGCCTCCCTG ACATGCAGCC CTCTGGACCC	60
	CGAGGTTGGA CCCTACTGTG ACACACCTAC CATGCGGACA CTCTTCAACC TCCTCTGGCT	120

TGCCCTGGCC TGCAGCCCTG TTCACACTAC CCTGTCAAAG TCAGATGCCA AAAAAGCCGC

	CTCAAAGACG	CTGCTGGAGA	AGAGTCAGTT	TTCAGATAAG	CCGGTGCAAG	ACCGGGGTTT	240
	GGTGGTGACG	GACCTCAAAG	CTGAGAGTGT	GGTTCTTGAG	CATCGCAGCT	ACTGCTCGGC	300
5	AAAGGCCCGG	GACAGACACT	TTGCTGGGGA	TGTACTGGGC	TATGTCACTC	CATGGAACAG	360
	CCATGGCTAC	GATGTCACCA	AGGTCTTTGG	GAGCAAGTTC	ACACAGATCT	CACCCGTCTG	420
10	GCTGCAGCTG	AAGAGACGTG	GCCGTGAGAT	GTTTGAGGTC	ACGGGCCTCC	ACGACGTGGA	. 480
10	CCAAGGGTGG	ATGCGAGCTG	TCAGGAAGCA	TGCCAAGGGC	CTGCACATAG	TGCCTCGGCT	540
	CCTGTTTGAG	GACTGGACTT	ACGATGATTT	CCGGAACGTC	TTAGACAGTG	AGGATGAGAT	600
15	AGAGGAGCTG	AGCAAGACCG	TGGTCCAGGT	GGCAAAGAAC	CAGCATTICG	ATGGCTTCGT	660
	GGTGGAGGTC	TGGAACCAGC	TGCTAAGCCA	GAAGCGCGTG	GGCCTCATCC	ACATGCTCAC	720
20	CCACTTGGCC	GAGGCTCTGC	ACCAGGCCCG	GCTGCTGGCC	CTCCTGGTCA	TCCCGCCTGC	780
	CATCACCCC	GGGACCGACC	AGCTGGGCAT	GTTCACGCAC	AAGGAGTTTG	AGCAGCTGGC	840
	CCCCGTGCTG	GATGGTTTCA	GCCTCATGAC	CTACGACTAC	TCTACAGCGC	ATCAGCCTGG	900
25	CCCTAATGCA	CCCCTGTCCT	GGGTTCGAGC	CTGCGTCCAG	GTCCTGGACC	CGAAGTCCAA	960
	GTGGCGAAGC	AAAATCCTCC	TGGGGCTCAA	CTTCTATGGT	ATGGACTACG	CGACCTCCAA	1020
30	GGATGCCCGT	GAGCCTGTTG	TCGGGGCCAG	GTACATCCAG	ACACTGAAGG	ACCACAGGCC	1080
	CCGGATGGTG	TGGGACAGCC	AGGYCTCAGA	GCACTTCTTC	GAGTACAAGA	AGAGCCGCAG	1140
	TGGGAGGCAC	GTCGTCTTCT	ACCCAACCCT	GAAGTCCCTG	CAGGTGCGGC	TGGAGCTGGC	1200
35	CCGGGAGCTG	GCCTTGGGG	TCTCTATCTG	GGAGCTGGCC	AGGCCTGGA	CTACTTCTAC	1260
	GACCTGCTCT	AGGTGGGCAT	TCCCCCTCC	GCGGTGGACG	TGTTCTTTTC	TAAGCCATGG	1320
40	AGTGAGTGAG	CAGGTGTGAA	ATACAGGCCT	NCACTCCGTT	TGCTGTGAAA	AAAAAAAAA	1380
	АААААААА	AAAAAAAA	AAAA				1404

50

(2) INFORMATION FOR SEQ ID NO: 223:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 707 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 223:

NGCGCGCCTG CAGTCGACAC TAGTGGATCC AAAGAATTCG GCACGAGGGC AGGTCCAGGG 60
CTCAGAAATC AGCTCTATTG ACGAATTCTG CCGCAAGTTC CGCCTGGACT GCCCGCTGGC 120
CATGGAGCGG ATCAAGGAGG ACCGGCCCAT CACCATCAAG GACGACAAGG GCAACCTCAA 180

•	COGCTGCATC GCAGACGTGG TCTCGCTCTT CATCACGGTC ATGGACAAGC TGCGCCTGGA	240
5	GATCCGCGCC ATGGATGAGA TCCAGCCCGA CCTGCGAGAG CTGATGGAGA CCATGCACCG	300
Ū	CATGAGCCAC CTCCCACCCG ACTITGAGGG CCGCCAGACG GTCAGCCAGT GGCTGCAGAC	360
	CCTGAGCGGC ATGTCGGCGT CAGATGAGCT GGACGACTCA CAGGTGCGTC AGATGCTGTT	420
10	CGACCTGGAG TCAGCCTACA ACGCCTTCAA CCGCTTCCTG CATGCCTGAG CCCGGGGCAC	480
	TAGCCCTTGC ACAGAAGGGC AGAGTCTGAG GCGATGGCTC CTGGTCCCCT GTCCGCCACA	540
15	CAGGCCGTGG TCATCCACAC AACTCACTGT CTGCAGCTGC CTGTCTGGTG TCTGTCTTTG	600
	GTGTCAGAAC TTTTGGGCCG GGCCCCTCCC CACAATAAAG ATGCTCTCCG ACCTTCAAAA	660
	AAAAAAAAA AAAAACTCRG GGGGGGCCCG GTCCCCAATCC CCCCNMC;	707
20		
	(2) INFORMATION FOR SEQ ID NO: 224:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LEXGTH: 1334 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEINESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ □ NO: 224:	
35	GGGGAACTGC AGTGACAGCA GGAGTAAGAG TGGGAGGCAG GACAGAGCTG GGACACAGGT	60
23	ATGGAGAGGG GGTTCAGCGA GCCTAGAGAG GGCAGACTAT CAGGGTGCG GCGGTGAGAA	120
	TCCAGGGAGA GGAGCGGAAA CAGAACAGGG GCAGAAGACC GGGGCACTTG TGGGTTGCAG	180
40	AGCCCCTCAG CCATGTTGGG AGCCAAGCCA CACTGGCTAC CAGGTCCCCT ACACAGTCCC	240
	GGGCTGCCCT TGGTTCTGGT GCTTCTGGCC CTGGGGGCCCA GGAGGGGTCA	300
	ACCOUNTED TOTOGRAPH DESCRIPTION OF THE PROPERTY OF THE PROPERT	360
45	GGGGGGCCCG GGGGAGCAGC CCTGGGAGAG GCACCCCCTG GGCGAGTGGC ATTTGCTGCG	420
	GTCCGAAGCC AMCACCATGA GCCAGCAGGG GAAACCGGCA ATGGCACTAK TGGGCCATC	480
50	TACTICGACC AGGICCIGGI GAACGAGGGC GGIGGCTITG ACCGGGCTIC IGGCICCITC	540
50	GTAGCCCCTG TCCGGGGTGT CTALAGCTTC CGGTTCLATG TGGTGAAGGT GTALAACCGC	600
	CAAACTGTCC AGGTGAGCCT GATGCTGAAC ACGTGGCCTG TCATCTCAGC CTTTGCCAAT	660
55	GATCCTGACG TGACCCGGGA GGCAGCCACC AGCTCTGTGC TACTGCCCTT GGACCCTGGG	720
	GACCGAGTGT CTCTGCGCCT GCGTCGGGGG AATCTACTGG GTGGTTGGAA ACACTCAAGT	780
60	TTCTCTGGCT TCCTCATCTT CCCTCTCTGA GGACCCAAGT YTTTCAAGCA CAAGAATCCA	840

	GCCCCTGACA	ACTITCTICT	GCCCTCTCTT	GCCCCAGAAA	CAGCAGAGGC	AGGAGAGAGA	900
	CTCCCTCTGG	YTCCTATCCC	ACYTCTTTGC	ATGGGAMCCT	GTGCCAAACA	CCCAAGTTTA	960
5	AGARAARARY	ARARCTGWGG	CAGGTATACA	GAGCTGGAAG	TGGACCATGG	AAAACATSGA	1020
	TAACCATGCA	TCYTCTTGCT	TGGCCACCTC	CTGAAACTGT	CCACCTTTGA	AGTTTGAACT	1080
10	TTAGTCCCTC	CAMACTCTGA		CTTCCTCCCA	GCTCTCTCAC	TGAGTTATYT	. 1140
10	TCACTGTACC			ATCTCTCTTT	CTCCTGATCT	GTGCTGTCTT	1200
	ATTCTCCTCC	TTAGGCTTCC	TATTACCTGG	GATTCCATGA	TTCATTCCTT	CAGACCCTCT	1260
15	CCTGCCAGTA	TGCTAAACCC	TCCCTCTCTC	TTTCTTATCC	CGCTGTCCCA	TTGGCCCAGC	1320
	CTGGATGAAT	CTATCAATAA	AACAACTAGA	GAATGGTGGT	САААААААА	AAAAAAAAC	1380
20	TCGA						1384

(2) INFORMATION FOR SEQ ID NO: 225:

25

30

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 760 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 225:

GGGTCGACCC ACGCGTCCGC TGACCAGTCC GTTATAGATA CTTCTTCCTA TACCAAAACT 60 35 GTTTAAACAG GTGCCACCAC AAGGGATGTC GTCCTTACTC TCTGCGGGTC TTCAAGCATC 120 CCTTTGTGGG AAARGTCTCT GGGCAAGCAC GTGGTATTTG GTCTGCTGCT TGCTTCCCTT 180 40 TTTCCACCAG GGATGTTGTG ATCATAAGTC AAAACAACAG TATATTCCAA ATCTCAAAAG 240 CTATTGTGGC CTGAGCACAA TTGAAATCTA GCAGAGTTTT TCCTATGTAG CTTTAGAGTA 300 ACTOTTCTGC TTCTCTGTCA CTTACAATTC AGGTTCTGCC TTTGCCTAAG AGCATGAGCA 360 45 420 GAAGAGTCCT CATGTGACGC TTAGTTCTAT TGCAGTCCTG GGTGAAACTA TTTAAGCWAT GGGGCTGCTK CTCCCCANWT CCTCCCTAAC AATTCGTTGT GTGGACTTCT CATCTAAAAG 480 50 GTTAGTGGCT TTTGCTTGGG ATCAGTGCTC TCTATTGATG TTCTTGCTGG TCTCCAGACA 540 CATTCCTGTT GCATTAAGAC TTGAAAGACT TGTAGATGTG TGATGTTCAG GCACAGGATG 600 CTGAAAGCTA TGTTACTATT CTTAGTTTGT AAATTGTCCT TTTGATACCA TCATCTTGTT 660 55 720 760 ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΝ ΝΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ

20

25

30

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 226:

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2057 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 226:

CCGAGCCGGC TGCGCCGGG GAATCCGTGC GGGCGCCTTC CGTCCCRGTC CCATCCTCGC 60 CGCGCTCCAG CACCTCTGAA GTTTTGCAGC GCCCAGAAAG GAGGCGAGGA AGGAGGGAGT 120 180 AGGGGGGGCG CAAAAATGGC TGGGGCAATT ATAGAAAACA TGAGCACCAA GAAGCTGTGC 240 ATTGTTGGTG GGATTCTGCT CGTGTTCCAA ATCATCGCCT TTCTGGTGGG AGGCTTGATT 300 GCTCCAGGGC CCACAACGGC AGTGTCCTAC ATGTCGGTGA AATGTGTGGA TGCCCGTAAG 360 AACCATCACA AGACAAAATG GTTCGTGCCT TGGGGACCCA ATCATTGTGA CAAGATCCGA 420 GACATTGAAG AGGCAATTCC AAGGGAAATT GAAGCCAATG ACATCGTGTT TTCTGTTCAC 480 ATTCCCCTCC CCCACATGGA GATGAGTCCT TGGTTCCAAT TCATGMTGTT TATCCTGCAG 540 CTGGACATTG CCTTCAAGCT AAACAACCAA ATCAGRGAAA ATGCAGAAGT CTCCATGGAC 600 GTTTCCCTGG CTTACCGTGA TGACGCGTTT GCTGAGTGGA CTGAAATGGC CCATGAAAGA 660 GTACCACGGA AACTCAAATG CACCTTCACA TCTCCCAAGA CTCCAGAGCA TGGAGGGCCG 720 GTTACTATGA ATGTGATGTC CTTCCTTTCA TGGAAATTGG GTCTGTGGCC CATGAAGTTT 780 TACCTTTTAA ACATCCGGCT GCCTGTGAAT GAGAAGAAGA AAATCAATGT GGGAATTGGG 840 GAGATAAAGG ATATCCGGTT GGTGGGGATC CACCAAAATG GAGGCTTCAC CAAGGTGTGG 900 TTTGCCATGA AGACCTTCCT TACGCCCAGC ATCTTCATCA TTATGGTGTG GTATTGGAGG 960 AGGATCACCA TGATGTCCCG ACCCCCAGTG CTTCTGGAAA AAGTCATCTT TGCCCTTGGG 1020 ATTTCCATGA CCTTTATCAA TATCCCAGTG GAATGGTTTT CCATCGGGTT TGACTGGACC 1080 TGGATGCTGC TGTTTGGTGA CATCCGACAG GCATCTTCTA TGCRATGCTT CTKTCCTTCT 1140 GGATCATCTT CTGTGCCGAG CACATGATGG ATCAGCACGA GCGGAACCAC ATCGCAGGGT 1200 ATTGGAAGCA AGTCGGACCC ATTGCCGTTG GTCCTTCTGC CTCTTCATAT TTGACATGTG 1260 TGAGAGAGGG GTACAACTCA CGAATCCCTT CTACAGTATC TGGACTACAG ACATTGGGAA 1320 CAGAGCTGGC CATGGCTTTC ATCATCGTGG CTGGAATCTG CCTCTGCCTC TAACTTCCTG 1380 TTTCTATGCT TCATGGTATT TCAGGTGTTT CGGAACATCA GTGGGAAGCA GTCCAGCCTG 1440

	CCAGCTATGA	GCNANGICCG	GCGGCTACAC	TATGAGGGGC	TAATTTTTAG	GTTCAAGTTC	1500
	CTCATGCTTA	TCACCTTGGC	TIGOGOTGOO	ATGACTGTCA	TOTTCTTCAT	CGTTAGTCAG	1560
5	GTAACGGAAG	GOCATTGGGA	AATGGGGGGG	CGTCACAGTO	CCAAGTGAAC	AGTGCCTTTT	1620
	TCACAGGCAT	CTATGGGATG	regalicier	ATGTCTTTGC	TCTGATGTTC	TTGTATGCAC	1680
10	CATCCCATAA	AAACTATGGA	GAAGACCAGT	CCAATGGAAT	GCAACTCCCA	TGTAAATCGA	1740
10	GGGAAGATTG	recerrator	GTTTCGGAAC	TTTATCAAGA	ATTGTTCAGC	GCTTCGAAAT	1800
	ATTOCTTCAT	CAATGACAAC	errectione	GIATTIGAGI	CAACAAGGCA	ACACATGTTT	1860
15	ATCAGCTTTG	CATTIGCAGT	TFTCLCAGTC	ACATTGATTG	TACTTGTATA	CGCACACAAA	1920
	TACACTCATT	TASCOTTTAT	CTCAAAATGT	TARATATARS	GAAAAAAGCG	TCAACAATAA	1980
20	ATATTCTTTG	AGIATIGICI	TACTTCTCTT	AAAAAAAAA	AAAAAAACTC	GTGCCGAATT	2040
	CGGCACGAGC	GGCACGA					2057
~ ~							

30

(2) DIFORMATION FOR SEQ ID NO: 227:

(1) SEQUENCE CHAPACTERISTICS:

(A) LENGTH: 2084 base pairs

(B) TYPE: nucleic acid

(C) STRAIDELNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 227:

35 GGCAGAGGGC CAUTYSCTIGG AAAGAGCGAA ACCCCCATTC CTCTGTGCCC CTCCTCTCCC 60 ACCAAGIGCT TTATAAAAT AGGICTIGIT ACCGGAAATA ACTGITCATT TITCACTCCT 120 CCCTCCTAGG TCACACTTTT CAGAAAARA ATCTGCATCC TGGAAACCAG AAGAAAAATA 40 180 TGAGACGGGG AATCATCGTG TGATGTGTGT SCTGCCTTTG GCTGAGTGTG TGGAGTCCTG 240 CTCAGGIGIT AGGIACAGIG IGITIGATICS IGGIGGCIIG AGGGGAACCG CITGITCAGA 300 45 GOTGTGACTG CGGCTGCACT GCAGAGAAGC TGCCCTTTGGC TGCTCGTAGC GCCGGGCCTT 360 CTCTCCTCGT CATCATCCAG AGCAGCCAGT GTCCGGGAGG CAGAAGGTAC CGGGGCAGCT 420 50 ACTIGUAGGAD TIGTIGUEGGOO TECCTIGGETT GCCCCCTTCCG CCGTGGGGCC CTGTTGCTGC 480 TGTCCATCTA TETCTACTAC TCCCTCCCAA ATGCGGTCGG CCCGCCCTTC ACTTGGATGC 540 TTGCCCTCCT GGGCCTTCTC GCAGGCACTG AACATCCTCC TGGGCCTCAA GGGCCTGGCC 600 55 CCAGCTGAGA TOTOTGCAGT GTGTGAAAAA GGGAATTTCA ACGTGGCCCA TGGGCTGGCA 660 TEGTCATATT ACATOGGADA TOTGCGGCTG ATCOTGCCAG AGCTCCAGGC CCGGATTCGA 720 ACTIACAATO AGCATTACAA CAACCIGCTA CGGGGIGCAG IGAGCCAGCG GIGINATAIT 60 780

	CTCCTCCCAT	TGGACTGTGG	GGTGCCTGAT	AACCTGAGTA	TGGCTGACCC	CAACATTCGC	840
5	TTCCTGGATA	AACTGCCCCA	GCAGACCGGT	GACCGTGCTG	GCATCAAGGA	TCGGGTTTAC	900
5	AGCAACAGCA	TCTATGAGCT	TCTGGAGAAC	GGGCAGCGGG	CGGGCACCTG	TGTCCTGGAG	960
	TACGCCACCC	CCTTGCAGAC	TTTGTTTGCC	ATGTCACAAT	ACAGTCAAGC	TGGCTTTAGC	1020
10	GGGGAGGATA	GGCTTGAGCA	GGCCAAACTC	TTCTGCCGGA	CACTTGAGGA	CATCCTGGCA	1080
	GATGCCCCTG	AGTCTCAGAA	CAACTGCCGC	CTCATTGCCT	ACCAGGAACC	TGCAGATGAC	1140
15	AGCAGCTTCT	CGCTGTCCCA	GGAGGTTCTC	CGGCACCTGC	GGCAGGAGGA	AAAGGAAGAG	1200
1.5	GTTACTGTGG	GCAGCTTGAA	GACCTCAGCG	GTGCCCAGTA	CCTCCACGAT	GTCCCAAGAG	1260
	CCTGAGCTCC	TCATCAGTGG	AATGGAAAAG	ссстссстс	TCCGCACGGA	TTTCTCTTGA	1320
20	GACCCAGGGT	CACCAGGCCA	GAGCCTCCAG	TGGTCTCCAA	GCCTCTGGAC	TGGGGGCTCT	1380
	CTTCAGTGGC	TGAATGTCCA	GCAGAGCTAT	TTCCTTCCAC	AGGGGGCCTT	GCAGGGAAGG	1440
25	GTCCAGGACT	TGACATCTTA	AGATGCGTCT	TGTCCCCTTG	GGCCAGTCAT	TTCCCCTCTC	1500
	TGAGCCTCGG	TGTCTTCAAC	CTGTGAAATG	GGATCATAAT	CACTGCCTTA	CCTCCCTCAC	1560
	GGTTGTTGTG	AGGACTGAGT	GTGTGGAAGT	TTTTCATAAA	CTTTGGATGC	TAGTGTACTT	1620
30	AGGGGGTGTG	CCAGGTGTCT	TTCATGGGGC	CTTCCAGACC	CACTCCCCAC	CCTTCTCCCC	1680
	TTCCTTTGCC	CGGGGACGCC	GAACTCTCTC	AATGGTATCA	ACAGGCTCCT	TCGCCCTCTG	1740
35	GCTCCTGGTC	ATGTTCCATT	ATTGGGGAGC	CCCAGCAGAA	GAATGGAGAG	GAGGAGGAGG	1800
	CTGAGTTTGG	GGTATTGAAT	CCCCCGCTC	CCACCCTGCA	GCATCAAGGT	TGCTATGGAC	1860
	TCTCCTGCCG	GGCAACTCTT	GCGTAATCAT	GACTATCTCT	AGGATTCTGG	CACCACTTCC	1920
40	TTCCCTGGCC	CCTTAAGCCT	AGCTGTGTAT	CGGCACCCCC	ACCCCACTAG	AGTACTCCCT	1980
	CTCACTTGCG	GTTTCCTTAT	ACTCCACCCC	TTTCTCAACG	GTCCTTTTTT	AAAGCACATC	2040
45	TCAGATTAAA	ааааааааа	ААААААААА	AGGGGGGCN	GCNT		2084

(2) INFORMATION FOR SEQ ID NO: 228:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2143 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 228:

TOGACCCACG CGTCCGGTTG AATTCCTTGA CCTGCAAACA CATATTTATT AGCCTGACTC

50

•	AAACAATGAA	GCTATTAAAA	CTTCGGAGGA	acattgtaaa	ACTCTCTTTG	TATCGGCATT	120
	TCACCAACAC	GCTTATTTTG	GCAGTGGCAG	CATCCATTGT	GTTTATCATC	TGGACAACCA	180
5	TGAAGTTCAG	AATAGTGACA	TGTCAGTCGG	ACTGGCGGGA	GCTGTGGGTA	GACGATGCCA	240
	TCTGGCGCTT	GCTGTTCTCC	ATGATCCTCT	TTGTCATCAT	GCTTCTCTGG	CGACCATCTG	300
10	CAAACAACCA	GAGGTTTGCC	TTTTCACCAT	TGTCTGAGGA	AGAGGAGGAG	GATGAACAAA	360
10	AGGAGCCTAT	GCTGAAAGAA	AGCTTTGAAG	GAATGAAAAT	GAGAAGTACC	AAACAAGAAC	420
	CCAATGGAAA	TAGTAAAGTT	AACAAAGCAC	AGGAAGATGA	TTTGAAGTGG	GTAGAAGAGA	480
15	ATGTTCCTTC	TTCTGTGACA	GATGTAGCAC	TTCCAGCCCT	TCTGGATTCA	GATGAGGAAC	540
	GAATGATCAC	ACACTTTGAA	AGGTCCAAAA	TGGAGTAAGG	AATGGGAAGA	TTTGCAGTTA	600
20	AAGATGGCTA	CCATCAGGGA	AGAGATCAGC	ATCTGTGTCA	GTCTTCTGTA	CGGCTCCATG	660
20	GGATTAAAGG	AAGCAATGAC	ATCCTGATCT	GTTCCTTGAT	CTTTGGGCAT	TGGAGTTGGC	720
	GAGAGGTGTC	AGAACAAAGA	GAACATCTTA	CTGAAAACAA	GTTCATAAGA	TGAGAAAAAT	780
25	CTACGAGCTT	CTTATTTACA	ACACTGCTGC	CCCCTTTCCT	CCCAGACTCT	GACATGGATG	840
	TTCATGCAAC	TTAAGTGTGT	TGTTCCTGAA	CTTTCTGTAA	TGTTTCATTT	TTTAAATCTG	900
30	ACAAACTAAA	AAGTTTAACG	TCTTCTAAAA	GATTGTCATC	AACACCATAA	TATGTAATCT	960
50	CCAGGAGCAA	CTGCCTGTAA	. TTTTTATTTA	TTTAGGGAGT	TACATAGGTG	ATGGGGGAAA	1020
	TTGTTAACTA	CCTTTCATT	TCCTGGGAAG	TCAAGGTTAC	ATCTTGCAGA	GCTTCTTTTG	1080
35	AGAAAAAAGG	GCCCTTCTGA	GTTAAGGAGG	CATAGTTCTA	TCAATGATCA	AAAGAAAAAA	1140
	AAAAAAAAGA	GAAACTGTTA	CAGTATGATT	CAGATCATTI	AAAAAAGCAA	AATCAAGTGC	1200
40	AATTTTGTTT	ACAAATGGTG	TATATTAAAC	ATTTTTCTAT	TTCAGATGT	CTTTAAAGAG	1260
40	AAATATTAGO	TTAACTCTTT	TGACATCTG	TATTGTGACA	CATCCCATTO	CTGGCAATGT	1320
	GGTGCACACT	CCGAAACTT	TAACTACTG	TTTGTAAGCC	TCCAAGGGT	GCATTGCAGG	1380
45	GTCCTTAGGC	AATGTTTTG	TIGCCTITA	r gcagagaggi	GCTCCAAGTC	CTGTGATTGA	1440
	GCACCGTGCT	AGAGGAACTO	TAATGCTTC	A GAAGTIGIAO	CTTATACAA	A GGAAACAGGT	1500
50	CCTGCTGGCT	TAATTTAAT	AGTTATTGC	A TGAAGTAGCO	TGGAGGCCC	GGACTGCTGC	1560
50	TCGTTCTTT	A GGATGGACT	TTCTGGTAT	C TGGTATTGG	TTAGAGACT	TTAATAAGGG	1620
	ACATCACAAC	G GTGATGGGA	r tcatttgaa	G CACTCTATT	r ctgrtttaa	r GGTTTTATCC	168
55	AATTTTGCC	r TCCCAAGAT	r TTTGTTCTA	C ATAAAAAGT	r catgccact	AATATATTT 1	174
	AAAAATTTA	A CAAAATTAA	r GTATTTTC	T CATTITITY	C AAACTTTTT	C TAAAGACTCT	180
(0	TTCTGTCAA	A CTCATGAAA	A ATTICTTIC	T ATGGCTTTT	A TTCTAGATT	G TCTTATTTTC	186

	TGTTAAAACC	AATGACCACA	TGACCACAAT	CTTCACTAAC	TCATACTGCA	GTGAAAGTGT	1920
	TAACCCTTAG	GTAGTTTCTC	TACAACTCTT	TGCTATGGTG	AAAATTTTTA	AAGTTTCCTA	1980
5	GGGAAGTATC	TCTGAGGGAA	CAGGCAATCT	GAAGGAACTG	ACTATATTCT	CCATGGCTAA	2040
	GTCCATTAGG	CCAAAAGNCT	GGGTGGGTAT	TGGTTGTCAN	GCTGTCTATT	GGCATATTAA	2100
10	AAACGTAGGC	CGGANGGAAT	AATTAGGTTG	TNATGCCGGC	GGG		2143

(2) INFORMATION FOR SEQ ID NO: 229:

15

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1025 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 229:

25	CCTGGCCCAC	ATTGCTTCAT	TGGCCTGGCC	ATGCGCCTGT	ACTATGGCAG	CCGCTAGTCC	60
	CTGACAACTT	CCACCCTGAT	TCCGGACCCT	GTAGATTGGG	CGCCACCACC	AGATCCCCCT	120
	CCCAGGCCTT	CCTCCCTCTC	CCATCAGCAG	CCCTGTAACA	AGTGCCTTGT	GAGAAAAGCT	180
30	GGAGAAGTGA	GGGCAGCCAG	GTTATTCTCT	GGAGGTTGGT	GGATGAAGGG	GTACCCTAGG	240
	AGATGTGAAG	TGTGGGTTTG	GTTAAGGAAA	TGCTTACCAT	CCCCCACCCC	CAACCAAGTT	300
35	CTTCCAGACT	AAAGAATTAA	GGTAACATCA	ATACCTAGGC	CTGAGAAATA	ACCCCATCCT	360
J J	TGTTGGGCAG	CTCCCTGCTT	TGTCCTGCAT	GAACAGAGTT	GATGAAAGTG	GGGTGTGGGC	420
	AACAAGTGGC	TTTCCTTGCC	TACTTTAGTC	ACCCAGCAGA	GCCACTGGAG	CTGGCTAGTC	480
40	CAGCCCAGCC	ATGGTGCATG	ACTOTTCCAT	AAGGGATCCT	CACCCTTCCA	CTTTCATGCA	540
	AGAAGGCCCA	GTTGCCACAG	ATTATACAAC	CATTACCCAA	ACCACTCTGA	CAGTCTCCTC	600
45	CAGTTCCAGC	AATGCCTAGA	GACATGCTCC	CTGCCCTCTC	CACAGTGCTG	CTCCCCACAC	660
73	CTAGCCTTTG	TTCTGGAAAC	CCCAGAGAGG	GCTGGGCTTG	ACTCATCTCA	GGGAATGTAG	720
	CCCCTGGGCC	CTGGCTTAAG	CCGACACTCC	TGACCTCTCT	GTTCACCCTG	AGGGCTGTCT	780
50	TGAAGCCCGC	TACCCACTCT	GAGGCTCCTA	GGAGGTACCA	TGCTTCCCAC	TCTGGGGCCT	840
	GCCCCTGCCT	AGCAGTCTCC	CAGCTCCCAA	CAGCCTGGGG	AAGCTCTGCA	CAGAGTGACC	900
55	TGAGACCAGG	TACAGGAAAC	CTGTAGCTCA	ATCAGTGTCT	CTTTAACTGC	ATAAGCAATA	960
33	AGATCTTAAT	AAAGTCTTCT	AGGCTGTAGG	GTGGTTCCTA	CAACCACAGC	СААААААА	1020
	ААААА						1025

(2) INFORMATION FOR SEQ ID NO: 230:

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1250 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230:

	GCCCACGCGT	CCGCCCACGC	GTCCGGCGGT	GCGGAGTATG	GGGCGCTGAT	GGCCATGGAG	60
15	GGCTACTGGC	GCTTCCTGGC	GCYGCTGGGG	TCGGCACTGC	TCGTCGGCTT	CCTGTCGGTG	120
	ATSTTCGCCC	TCGTCTCGGT	CCTCCACTAC	CGAGAGGGC	TTGGCTGGGA	TGGGAGCGCA	180
20	CTAGAGTTTA	ACTGGCACCC	AGTGCTSATG	GTCACCGGCT	TCGTCTTCAT	CCAGGGCATC	240
20	GCATCATCGT	CTACAGACTG	CCGTGGACCT	GGAAATGCAG	CAAGCTCCTG	ATGAAATCCA	300
	TCCATGCAGG	GTTAAATGCA	GTTGCTGCCA	TTCTTGCAAT	TATCTCTGTG	GTGGCCGTGT	360
25	TTGAGAACCA	CAATGTTAAC	AATATAGCCA	ATATGTACAG	TCTGCACAGC	TGGGTTGGAC	420
	TGATAGCTGT	CATATGCTAT	TTGTTACAGC	TTCTTTCAGG	TTTTTCAGTC	TTTCTGCTTC	480
30	CATGGGCTCC	GCTTTCTCTC	CGAGCATTTC	TCATGCCCAT	ACATGTTTAT	TCTGGAATTG	540
30	TCATCTTTGG	AACAGTGATT	GCAACAGCAC	TTATGGGATT	GACAGAGAAA	CTGATTTTTT	600
	CCCTGAGAGA	TCCTGCATAC	AGTACATTCC	CGCCAGAAGG	TGTTTTCGTA	AATACGCTTG	660
35	GCCTTCTGAT	CCTGGTGTTC	GGGCCCTCA	TTTTTTGGAT	AGTCACCAGA	CCGCAATGGA	720
	AACGTCCTAA	GGAGCCAAAT	TCTACCATTC	TTCATCCAAA	TGGAGGCACT	GAACAGGGAG	780
40	CAAGAGGTTC	CATGCCAGCC	TACTCTGGCA	ACAACATGGA	CAAATCAGAT	TCAGAGTTAA	840
40	ACARTGAAGT	AGCAGCAAGG	AAAAGAAACT	TAGCTCTGGA	TGAGGCTGGG	CAGAGATCTA	900
	CCATGTAAAA	TGTTGTAGAG	ATAGAGCCAT	ATAACGTCAC	GTTTCAAAAC	TAGCTCTACA	960
45	GTTTTGCTTC	TCCTATTAGC	CATATGATAA	TTGGGCTATG	TAGTATCAAT	ATTTACTTTA	1020
	ATCACAAAGG	ATGGTTTCTT	GAAATAATTT	GTATTGATTG	AGGCCTATGA	ACTGACCTGA	1080
50	ATTGGAAAGG	ATGTGATTAA	татааатаат	AGCAGATATA	AATTGTGGTT	ATGTTACCTT	1140
20	TATCTTGTTG	AGGACCACAA	CATTAGCACG	GTGCCTTGTG	CAKAATAGAT	ACTCAATATG	1200
	TGAATATGTG	TCTACTAGTA	GTTAATTGGA	TAAACTGGCA	GCATCCCTGA		1250

- (2) INFORMATION FOR SEQ ID NO: 231:
- 60 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1811 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 231:

	CNGNCAGTAC	CGGTCNGATT	CCCGGGTCGA	CCCACGCGTC	CGCTGCATTC	CAGGGCCTTT	. 60
10	CAGTGGCTTT	CATTCTGAAG	TTCCTGGATA	ACATGTTCCA	TGTCTTGATG	GCCCAGGTTA	120
	CCASTGTCAT	TATCACAACA	GTGTCTGTCC	TGGTCTTTGA	CTTCAGGCCC	TCCCTGGAAT	180
15	TTTTCTTGGA	AGCCSCATCA	GTCSTYCTCT	СТАТАТТТАТ	TTATAATGCC	AGCAAGCCTC	240
13	AAGTTCCGGA	ATACGCACCT	AGGCAAGAAA	GGATCCGAGA	TCTAAGTGGC	AATCTTTGGG	300
	AGCGTTCCAG	TGGGGATGGA	GAAGAACTAG	AAAGACTTAC	CAAACCCAAG	AGTGATGAGT	360
20	CAGATGAAGA	TACTTTCTAA	CTGGTACCCA	CATAGTTTGC	AGCTCTCTTG	AACCTTATTT	420
	TCACATTTTC	AGTGTTTGTA	ATATTTATCT	TTTCACTTTG	ATAAACCAGA	AATGTTTCTA	480
25	AATCCTAATA	TTCTTTGCAT	ATATCTAGCT	ACTCCCTAAA	TGGTTCCATC	CAAGGCTTAG	540
25	AGTACCCAAA	GGCTAAGAAA	TTCTAAAGAA	CTGATACAGG	AGTAACAATA	TGAAGAATTC	600
	ATTAATATCT	CAGTACTTGA	TAAATCAGAA	AGTTATATGT	GCAGATTATT	TTCCTTGGCC	660
30	TTCAAGCTTC	CAAAAAACTT	GTAATAATCA	TGTTAGCTAT	AGCTTGTATA	TACACATAGA	720
	GATCAATTTG	CCAAATATTC	ACAATCATGT	AGTTCTAGTT	TACATGCCAA	AGTCTTCCCT	780
35	TTTTAACATT	ATAAAAGCTA	GGTTGTCTCT	TGAATTTTGA	GCCCTAGAG	ATAGTCATTT	840
	TGCAAGTAAA	GAGCAACGGG	ACCCTTTCTA	AAAACGTTGG	TTGAAGGACC	TAAATACCTG	900
	GCCATACCAT	AGATTTGGGA	TGATGTAGTC	TGTGCTAAAT	ATTTTGCTGA	AGAAGCAGTT	960
40	TCTCAGACAC	AACATCTCAG	AATTTTAATT	TTTAGAAATT	CATGGGAAAT	TGGATTTTTG	1020
	TAATAATCTT	TTGATGTTTT	AAACATTGGT	TCCCTAGTCA	CCATAGTTAC	CACTTGTATT	1080
45	TTAAGTCATT	TAAACAAGCC	ACGGTGGGGC	TTTTTTCTCC	TCAGTTTGAG	GAGAAAAATC	1140
1.5	TTGATGTCAT	TACTCCTGAA	TTATTACATT	TTGGAGAATA	AGAGGGCATT	TTATTTTATT	1200
	AGTTACTAAT	TCAAGCTGTG	ACTATTGTAT	ATCTITCCAA	GAGTTGAAAT	GCTGGCTTCA	1260
50	GAATCATACC	AGATTGTCAG	TGAAGCTGAT	GCCTAGGAAC	TTTTAAAGGG	ATCCTTTCAA	1320
	AAGGATCACT	TAGCAAACAC	ATGTTGACTT	TTAACTGATG	TATGAATATT	AATACTCTAA	1380
55	AAATAGAAAG	ACCAGTAATA	TATAAGTCAC	TTTACAGTGC	TACTTCACAC	TTAAAAGTGC	1440
<i>33</i>	ATGGTATTTT	TCATGGTATT	TTGCATGCAG	CCAGTTAACT	CTCGTAGATA	GAGAAGTCAG	1500
	GTGATAGATG	АТАТТАААА	TTAGCAAACA	AAAGTGACTT	GCTCAGGGTC	ATGCAGCTGG	1560
60	GTGATGATAG	AAGAGTGGGC	TTTAACTGGC	AGGCCTGTAT	GTTTACAGAC	TACCATACTG	1620

	TAAATATGAG CTTTATGGTG TCATTCTCAG AAACTTATAC ATTTCTGCTC TCCTTTCTCC	1680
_	TAAGTTTCAT GCAGATGAAT ATAAGGTAAT ATACTATTAT ATAATTCATT TGTGATATCC	1740
5	ACAATAATAT GACTGGCAAG AATTGGTGGA AATTTGTAAT TAAAATAATT ATTAAACCTA	1800
	AAAAAAAAN N	1811
10		
	(2) INFORMATION FOR SEQ ID NO: 232:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2271 base pairs (B) TYPE: nucleic acid (C) TOPOLOGY: linear	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 232:	
	CTGACCTCAT GGCGTAGAGC CTAGCAACAG CGCAGGCTCC CAGCCGAGTC CGTTATGGCC	60
25	GCTGCCGTCC CGAAGAGGAT GAGGGGCCCA GCACAAGCGA AACTGCTGCC CGGGTCGGCC	120
	ATCCAAGCCC TTGTGGGGTT GGCGCGGCCG CTGGTCTTGG CGCTCCTGCT TGTGTCCGCC	180
30	GCTCTATCCA GTGTTGTATC ACGGACTGAT TCACCGAGCC CAACCGTACT CAACTCACAT	240
50	ATTTCTACCC CAAATGTGAA TGCTTTAACA CATGAAAACC AAACCAAACC	300
	CAAATCAGCA CCACCCTCCC TCCCACGACG AGTACCAAGA AAAGTGGAGG AGCATCTGTG	360
35	GICCCTCATC CCTCGCCTAC TCCTCTGTCT CAAGAGGAAG CTGATAACAA TGAAGATCCT	420
	AGTATAGAGG AGGAGGATCT TCTGATGCTG AACAGTTCTC CATCCACAGC CAAAGACACT	480
40	CTAGACAATG GCGATTATGG AGAACCAGAC TATGACTGGA CCACGGGCCC CAGGGACGAC	540
40	GACGAGTCTG ATNGACACCT TGGAAGAAAA CAGGGGTTAC ATGGAAATTG AACAGTCAGT	600
	GAAATCTTTT AAGATGCCAT CCTCAAATAT AGAAGAGGAA GACAGCCATT TCTTTTTTCA	6 60
45	TCTTATTATT TTTGCTTTTT GCATTGCTGT TGTTTACATT ACATATCACA ACAAAAGGAA	720
	GATTTTTCTT CTGGTTCAAA GCAGGAAATG GCGTGATGGC CTTTGTTCCA AAACAGTGGA	780
50	ATACCATCGC CTAGATCAGA ATGTTAATGA GGCAATGCCT TCTTTGAAGA TTACCAATGA	840
50	TTATATTTT TAAAGCACTG TGATTTGAAT TTGCTTATGT AATTTTATTT GCTTGACTTT	900
	TTATATGATA TTGTGCAAAT GTTTGCCATA GGCAATTGGT ACTTAAATGA GAGGTGAGTC	960
55	TCTCTTTTGC CTTGGTGCTT TGGAAATTAA ATGTCACAAA CGAGTATATA ATTTTTTATC	1020
	TGTACTTTTA GAGCTGAGTT TAATCAGGTG TCCAAAATGT GAGTTAAACA TTACCTTATA	1080
	TTTACACTGT TAGTTTTAT TGTTTTAGAT TTATTATGCT TCTTCTGGAA GTATTAGTGA	1140

PCT/US98/11422

	TGCTACTTTT AAAAGATCCC AAACTTGTAA CTAAATTCTG ACATATCTGT TACTGCTGAC	1200
	TCACATTCAT TCTCCGCCAT TCAAATACTA TTTTTTATCC ACATTTTTTT TTGTTCCCAA	1260
5	ACTGTAATGT ACAAGGATAT GTGTGATAAT GCTTTGGATT TGAGTAATAT TTTTTTTCT	1320
	TCCAAGAAAA CTGCTTTGGA TATTTTTAGA TAATTTAAAC ATAATTTAGG ATAATGATAT	1380
	TGCTCAATCT GACCACAATT TTAGGTAAAA CATTAAATGT GTCAAGAAAT CTTGGCAACA	1440
10	GAGACTCTGC AGCTTGCAGT GGACATAGAT AAAATGTTAC AGAGATACTA TTTTTTTGGT	1500
	TGGAATTACT ATATTAAATT TAGAAGCAGA AACTGGTAAA ATGTTAAATA CATGTACAAT	1560
15	TGCTTTTAGT TAGCAATTGA TTGTAGCATG GGTTCCTCCA AGGTTTCAAG CAATGGGCAG	1620
	AGTTTAAAAT TATATCAGAT TCGTTTACTT CGTTTATTAT TTTACAGTAA ATTTGAATAA	1680
20	ATCTTAGGGG TCATTATCAC TTAAATAATA CTGTACCTAG GTCTTTCAAA TTAAAATTAT	1740
20	ACCTGAATGA AGTTGTTTGT ATACATAAAG GATATTTGTG TACAATTACC TTTTTTCCCC	1800
	CACACTTGTT TTCTTTGTTT TTGTTTTTTA TGGCAACTGG AAAGTATTTA CTATGGGATT	1860
25	CATTTATGTC TGTCTTTCTA TCATAAAGAA TTGATCAATA TGTAAATATG TGATTTGAAC	1920
	CATGGTTGAC TTACAAGTGT CACTACAGCT TTTTAGAAAA CATAGCCCTA ATATATGTTA	1980
30	AGCAGGACCC GGGTGAGCCA GTGGGCTTGC GCTTTATGTA GAGCTGGAAG AAGGCCGTCC	2040
30	ATCCTGTCTC TTGGGCGGAC AGTGTACTTT CCTAATAGGG AAGGGAAGCA CAATGGAAAT	2100
	ACCCCTGAAC CGTTTTATTG CAGTAATTTT TTTCATATCT GAAACTATTA TTTAATATTT	2160
35	TGAATAAGAT TTTAAAAAAT AAATGGCAAA GATATAAATC TAAAAAAAAA AAAAAAAAAA	2220
	малалала алалалала алалалала алалалала алалалала N	2271
40		
40	(2) INFORMATION FOR SEQ ID NO: 233:	
45	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1338 base pairs(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 233:	
	CTTCCGGTTC TCCGGGCAGC TGCCACTGCT GTAGCTTCTG CCACCTGCCA CGACCGGGCC	60
E	TCTCCCTGGC GTTTGGTCAC CTCTGCTTCA TTCTCCACCG CGCCTATGGT CCCTCTTGGA	120
55	GCCAGCGTGG CGNGCCTGGC GGCTCCCGGG TGGTGAGAGA GCGGTCCGGG AACGATGAAG	180
	GCCTCGCAGT GCTGCTGCTG TCTCAGCCAC CTCTTGGCTT CCGTCCTCCT CCTGCTGTTG	240
60	CHARGE TARGETTE CHARGETTE CHARGETTE CARGETTE CAR	300

	YTTGGGCCTC	CTGACCCTAG	ACCAGGACAT	TACCGCCGCT	GCCACCGGGC	CCTWACCCCT	360
5	GCCCAGCAGC	COGCCCTCG	TCTGGCTGAA	GCTGCGGGG	CCGCGGGGCT	CCGAGGGAGG	420
J	CAATGGCAGC	AACCCTGTGG	CCGGGCTTGA	GACGGACGAT	CACGGAGGGA	AGGCCGGGGA	480
	ARGCTCGGTG	GGTGGCGGCC	TIGCTGTGAG	CCCCAACCCT	GGCGACAAGC	CCATGACCCA	. 540
10	CCCCCCCTC	ACCGTGTTGA	TGGTGGTGAG	CGGCGCGGTG	CTGGTGTACT	TCGTGGTCAG	600
	GACGGTCAGG	ATGAGAAGAA	GAAACCGAAA	GACTAGGAGA	TATGGAGTTT	TGGACACTAA	660
15	CATAGAAAAT	ATGGAATTGA	CACCTTTAGA	ACAGGATGAT	GAGGATGATG	ACAACACGTT	720
13	GTTTGATGCC	AATCATCCTC	GAAGATAAGA	ATGTGCCTTT	TGATGAAAGA	ACTITATCIT	780
	TCTACAATGA	AGAGTGGAAT	TTCTATGTTT	AAGGAATAAG	AAGCCACTAT	ATCAATGTTG	840
20	GGGGGTATT	TAAGTTACAT	ATATTTNAAC	AACCTTTAAT	TTGCTGTTGC	AATAAATACC	900
	GTATCCTTTT	ATTATATCTT	TATATGTATA	GAAGTACTCT	GTTAATGGGC	TCAGAGATGT	960
25	TGGGGATAAA	GTATACTGTA	ATAATTTATC	TGTTTGAAAA	TTACTATAAA	ACGGTGTTTT	1020
	CTGRTCGGTT	TTTGTTTCCT	GCTTACCATA	TGATTGTAAA	TTGTTTTATG	TATTAATCAG	1080
	TTAATGCTAA	TTATTTTTGC	TGATGTCATA	TGTTAAAGAG	CTATAAATTC	CAACAACCAA	1140
30	CTGGTGTGTA	AAAATAATT	AAAATYTCCT	TTACTGAAAG	GTATTTCCCA	TTTTTGTGGG	1200
	GAAAAGAAGC	CAAATTTATT	ACTITGTGTT	GGGTTTTTA	AAATATTAAG	AAATGTCTAA	1260
35	GTTATTGTTT	GCAAAACAAT	AAATATGATI	TTAAATTCTC	TTAAAAAAAA	AAAAAAAAAC	1320
55	cccgggggg	GGCCCGGN					1338

45

(2) INFORMATION FOR SEQ ID NO: 234:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 31 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 234:

Met Leu Ser Thr Gly Ile Glu Val Ala Arg Pro Pro Ala Thr Leu Leu 50 1 5 10 15

Gly Leu Met Phe Val Leu Thr Gly Met Pro Arg Gly Leu Arg Xaa 20 25 30

55

(2) INFORMATION FOR SEQ ID NO: 235:

(i) SEQUENCE CHARACTERISTICS:

60 (A) LENGTH: 116 amino acids

•					B) T											
			(xi)		D) IN JEINCE					EQ II	ON C	: 23	ō:			
5	Met 1	Asn	Val	Val	Ile 5	Val	Ile	Ile	Leu	Phe 10	Ser	Phe	Ąsp	Ser	Val 15	Gly
10	Thr	Met	Phe	Ser 20	Cys	Asn	Arg	Ile	Pro 25	Lys	Ile	Thr	Val	Leu 30	Asn	Lys
••	Leu	Lys	Phe 35	Xaa	Cys	Glu	Val	Leu 40	Leu	Arg	Ile	Gln	Thr 45	Ile	Gln	Gly
15	Phe	Тут 50	Arg	Cys	Thr	Arg	Ile 55	Ser	Arg	Tyr	Lys	Gly 60	Ile	Phe	Pro	Asp
	Phe 65	Cys	Gln	Ser	Gln	Cys 70	Met	Gly	Cys	Asn	Pro 75	Glu	Ser	Xaa	Met	Ala 80
20	Val	Pro	Ala	Leu	Val 85	Thr	Pro	Ile	Leu	Ala 90	His	Arg	Lys	Lys	Glu 95	Lys
25	Gly	Met	Cys	Leu 100	Phe	Thr	Leu	Ile	Ile 105	Ala	Pro	Thr	Arg	Cys 110	Thr	His
	Tyr	Phe	Cys 115	Xaa												
30	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:	236:							
35				((B) T	ENGI YPE : OPOL	H: 1 ami OGY:	03 a no a lir	mino cid ear	: aci EQ I		: 23	6:			
40	Met 1		Ser	Ala	Lys 5		Val	Arg	Gln	Arg 10	Gly	Ala	Val	Pro	Thr 15	Tyr
	Тут	Thr	Thr	Glu 20		Gly	Glu	Ile	Ile 25		Leu	Val	Leu	Asn 30	Trp	Ser
45	Leu	Ser	: Ile 35		His	Ile	Val	Asp 40		Leu	Cys	Ser	Lys 45		Glu	Lys
50	Ser	Val	Thr	Glu	Asp	Ala	Ala 55		Gly.	Leu	Ser	Gln 60		Met	Thr	Ala
30	Leu 65		l Trp	Arg	Lys	Gly 70		Asp	Gly	· Gly	Ser 75		Lys	Pro	Ile	Leu 80
55	Lev	ı Let	ı Phe	Phe	Phe 85		Pro	Leu	Ile	90		Phe	His	Ser	Phe 95	
	His	s Sei	s Ser	Asr 100		Cys	Xaa									

	(2) INFORMATION FOR SEQ ID NO: 237:
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 237:
10	Met Ile Leu Phe Pro Gln Xaa Ala Leu Arg Leu Gly Xaa Trp Pro Arg 1 5 10 15
15	Thr Trp Ser Ile Leu Xaa Lys Tyr Ser Val Asn Phe Phe Ser Ala Tyr 20 25 30
• •	Ser Pro Met Gly Ala Val Gly Thr Glu Phe 35 40
20	(2) INFORMATION FOR SEQ ID NO: 238:
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 238:
30	Met Ile Ile Leu Leu Leu Phe Met Leu Leu Asn Asn Val Val Leu Val 1 5 10 15
	Gln Glu Asp Asn Cys Gln Arg Lys Asn Thr Val Gln Glu Arg Arg Xaa 20 25 30
35	Trp Ser Gln Trp Xaa 35
40	(2) INFORMATION FOR SEQ ID NO: 239:
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 128 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 239:
	Met Ala Ala Xaa Pro Pro Gly Cys Thr Pro Pro Xaa Leu Leu Asp Ile 1 5 10 15
50	Ser Trp Leu Thr Glu Ser Leu Gly Ala Gly Gln Pro Val Pro Val Glu 20 25 30
55	Cys Arg His Arg Leu Glu Val Ala Gly Pro Arg Lys Gly Pro Leu Ser 35 40 45
	Pro Ala Trp Met Pro Ala Tyr Ala Cys Gln Arg Pro Thr Pro Leu Thr 50 55 60
60	His His Asn Thr Gly Leu Ser Glu Leu Leu Glu His Gly Val Cys Glu

	65					70					75					80
5	Glu	Val	Glu	Arg	Val 85	Arg	Arg	Ser	Glu	Arg 90	Tyr	Gln	Thr	Met	Lys 95	Val
J	Arg	Arg	Ala	Gly 100	Leu	Gly	Pro	Thr	Pro 105	Gly	Met	Ser	Çys	Pro 110	Gly	Asn
10	Asp	Asn	Thr 115	Val	His	Thr	Met	His 120	Gly	Glu	Ala	Asn	Arg 125	Gly	Ser	Xaa
15																
20	(2)	INF	(i)	(ENCE A) L B) T D) T	CHAI ENGT YPE:	RACT H: 6 ami OGY:	ERIS 7 am no a lin	rics ino cid ear	acid		: 24	0:			
25	Met 1		Ile	Leu	Cys 5	Cys	Pro	Xaa	Leu	Cys 10	Leu	Phe	Phe	Ser	Phe 15	Cys
30	Ile	Ser	Ser	Gly 20		Cys	Pro	Phe	Ser 25	His	Val	Ser	Gln	Leu 30	Ser	Phe
	Ile	Ala	Thr 35		Ser	Gln	Ser	Ser 40	Pro	Val	Leu	Leu	Val 45	Pro	Ala	Tyr
35	Asn	Thr 50		Leu	Ser	Phe	Leu 55	Ala	Phe	Leu	Asp	Суs 60	Ala	Ser	Leu	Thr
	Ser 65		· Xaa	i												
40	(2)	INF	ORMA	TION	FOR	. SEQ	ID	NO:	241:							
45		•	, ,		(A) I (B) T (D) T	LENGT TYPE : TOPOI	H: 6	69 ar ino a : lir	mino acid near	acio		o: 24	1:			
50	Met		Th:	. Phe	Gln 5		Leu	. Leu	Leu	Ile 10		. Ala	. Glm	Ser	Thr 15	
55	Lys	s Ile	e Lys	Ser 20		Pro	Leu	His	Met 25		Asn	h His	Thr	Leu 30		Asn
JJ	Sei	r Pro	o Gly 35		ı Asn	Pro	Ser	Ser 40		Thr	Leu	ı Asn	Phe 49		Thr	Gln
60	Gl	n His		ı Ser	val	Ser	Тут		. Cys	s Cys	His	Met		ser	Leu	His

```
His Ala Phe Ala Xaa
5
      (2) INFORMATION FOR SEQ ID NO: 242:
             (i) SEQUENCE CHARACTERISTICS:
10
                    (A) LENGTH: 44 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 242:
15
     Met Val Ser Val Val Leu Ile Phe Ser Phe Leu Ser Leu Thr Ile Ser
                                         10
                      5
      Thr Thr Ala Ser Ala Tyr Asn Gly Asn Asp Thr Gln Gly Trp Asn Asp
                                      25
20
      Lys-Phe His Xaa Xaa Ser Val Lys Thr Gln Thr Xaa
                                  40
25
      (2) INFORMATION FOR SEQ ID NO: 243:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 51 amino acids
30
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 243:
      Met Ile Ser Asp Ala Gly Ala Gly Phe Gly Val Phe Leu Leu Val Pro
35
                                       10
      Arg Ala Gly His Cys Trp Gly Ala Gly Lys Pro Leu Pro Ser Cys Pro
                                      25
40
      Ser Val Ala Ser Ile Pro Ser Trp Val Leu Pro Ser Phe Leu Glu Arg
                                   40
      Gly Arg Xaa
           50
45
       (2) INFORMATION FOR SEQ ID NO: 244:
50
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 43 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 244:
55
      Met Val Gln Thr Ile Gln Asp Phe Leu Ser Leu Phe Ser Thr Pro Ile
                                           10
       Phe Leu Leu Leu Met Phe Glu Thr Leu Ser Leu Ala Pro Ala Trp
```

20

Leu Lys Pro Leu Arg Val Thr Ser His Ser Maa . 40 5 (2) INFORMATION FOR SEQ ID NO: 245: (i) SEQUENCE CHAFACTERISTICS: 10 (A) LEWIH: 61 amino acids (B) TYFE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 245: 15 Met Ile Leu Met Pro Gly Leu Gly Thr Ser Arg Gln Arg Ser Val Pro Phe Val Pro Thr Leu Ast Ala Sar Thr Pro Gly Ala Met Thr Gly Pro 20 Thr Ala Thr Leu Thr Ser Dys Glim Trp Thr Thr Ala Cys Arg Val Ser Trp Ala Asn Gly Trp Thr Ser Leu Arg Thr Phe Arg Kaa 25 50 (2) INFORMATION FOR SEQ ID NO: 246: 30 (i) SEQUENCE CHAPACTERISTICS: (A) LEWIH: 36 amino acids (B) TYPE: amin: acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 246: 35 Met Ser His His Ala Glm Pro Arg Phe Leu Leu Ile Thr Met Leu Leu Gln Glu Ala Lys Pro Val Ser Asm Ile Pro His Leu Leu Glu Ser Trp 40 Tyr Phe Gly Xaa 35 45 (2) INFORMATION FOR SEQ ID NO: 247: 50 (i) SEQUENCE CFARACTERISTICS: (A) LEWIH: 35 amino acids (B) TYFE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 247: 55 Met Asn Ser Leu Phe Trp Met Ile Leu Leu Pro Val Ser Gln Asp Gln Val Val Glu Gly Leu Glm Gly Gly Phe Ser Glm Ile His Met Arg Ile Leu Arg Lys His Leu Xaa 35

5

(2)	INFORMATION	FOR	SEO	ID	NO:	248:

1:1	CONTENICE	CHARACTERISTICS:

10

(A) LENGTH: 211 amino acids

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 248:
- Met Ser Arg Ser Xaa Asp Val Thr Asn Thr Thr Phe Leu Leu Met Ala

 1 5 10 15

Ala Ser Ile Tyr Leu His Asp Gln Asn Pro Asp Ala Ala Leu Arg Ala 20 25 30

20

Leu His Gln Gly Asp Ser Leu Glu Cys Thr Ala Met Thr Val Gln Ile 35 40 45

Leu Leu Lys Leu Asp Arg Leu Asp Leu Ala Arg Lys Glu Leu Lys Arg
50 55 60

Met Gln Asp Leu Asp Glu Asp Ala Thr Leu Thr Gln Leu Ala Thr Ala 65 70 75 80

Trp Val Ser Leu Ala Thr Gly Gly Glu Lys Leu Gln Asp Ala Tyr Tyr 85 90 95

Ile Phe Gln Glu Met Ala Asp Lys Cys Ser Pro Thr Leu Leu Leu Leu 100 105 110

35

Asn Gly Gln Ala Ala Cys His Met Ala Gln Gly Arg Trp Glu Ala Ala 115 120 125

Glu Gly Leu Leu Gln Glu Ala Leu Asp Lys Asp Ser Gly Tyr Pro Glu 40 130 135 140

Thr Leu Val Asn Leu Ile Val Leu Ser Gln His Leu Gly Lys Pro Pro 145 150 150 160

45 Glu Val Thr Asn Arg Tyr Leu Ser Gln Leu Lys Asp Ala His Arg Ser 165 170 175

His Pro Phe Ile Lys Glu Tyr Gln Ala Lys Glu Asn Asp Phe Asp Arg 180 185 190

50

Leu Val Leu Gln Tyr Ala Pro Ser Ala Glu Ala Gly Pro Glu Leu Ser 195 200 205

Gly Pro Xaa 55 210

(2) INFORMATION FOR SEQ ID NO: 249:

(i) SEQUENCE CHARACTERISTICS:

				(1	A) LE 3) TY O) TO	PE:	amir	no ac	id	acio	is					
5			(xi)							Q II	NO:	249) :			
	Met 1	Glu	Asp	Ser	Glu 5	Ala	Leu	Gly	Phe	Glu 10	His	Met	Gly	Leu	Asp 15	Pro
10	Arg	Leu	Leu	Gln 20	Ala	Val	Thr	Asp	Leu 25	Gly	Trp	Ser	Arg	Pro 30	Thr	Leu
15	Ile	Gln	Glu 35	Lys	Ala	Ile	Pro		Ala	Leu	Glu	Gly	Lys 45	Asp	Leu	Leu
15	Ala	Arg 50	Ala	Arg	Thr	Gly	Ser 55	Gly	Lys	Thr	Ala	Ala 60	тут	Ala	Ile	Pro
20	Met 65	Leu	Gln	Leu	Leu	Leu 70	His	Arg	Lys	Ala	Thr 75	Gly	Pro	Val	Val	Glu 80
	Gln	Ala	Val	Arg	Gly 85	Leu	Val	Leu	Val	Pro 90	Thr	Lys	Glu	Leu	Ala 95	Arg
25	Gln	Ala	Gln	Ser 100	Met	Ile	Gln	Gln	Leu 105	Ala	Thr	Tyr	Cys	Ala 110	Arg	Asp
30	Val	Arg	Val 115	Ala	Asn	Val	Ser	Ala 120	Ala	Glu	Asp	Ser	Val 125	Ser	Gln	Arg
50	Ala	Val 130	Leu	Met	Glu	Lys	Pro 135		Val	Val	Val	Gly 140		Pro	Ser	Arg
35	Ile 145		Ser	His	Leu	Gln 150	Gln	Asp	Ser	Leu	Lys 155		Arg	Asp	Ser	Leu 160
	Glu	Leu	ı Leu	Val	Val 165	Asp	Glįu	Ala	Asp	Leu 170		Phe	Ser	Phe	Gly 175	
40	Glu	Glu	ı Glu	Leu 180		Ser	Leu	Leu	Cys 185		Leu	Pro	Arg	Ile 190		Gln
45	Ala	Phe	195		. Ser	Ala	Thr	Phe 200		Glu	Asp	Val	. Gln 205		Leu	Lys
73	Glu	Le:	ı Ile	e Leu	ı His	Asn	215		Thr	Leu	Lys	220		Glu	Ser	Glr
50	Leu 225		o Gly	/ Pro	Asp	Gln 230		ı Glm	Glr	n Ph€	Glr 235		l Val	. Cys	Glu	240
	Glu	Gl:	u Asp	Ly:	Phe 245		Le.	ı Lev	туг	250		ı Lev	ı Lys	Leu	255	
55	Ile	e Ar	g Gly	7 Ly: 26		Leu	ı Lev	ı Phe	265		Thi	c Le	ı Glı	270		туз
60	Arg	j Le	u Arg 27		u Phe	Leu	ı Glı	u Glr 280		e Sei	c Ile	e Pro	285	c Cys	val	Le
DI I																

•	Asn	Gly 290	Glu	Leu	Pro	Leu	Arg 295	Ser	Arg	Cys	His	Ile 300	Ile	Ser	Gln	Phe
5	Asn 305	Gln	Gly	Phe	Tyr	Asp 310	Суѕ	Val	Ile	Ala	Thr 315	Asp	Ala	Glu	Val	Leu 320
	Gly	Ala	Pro	Val	Lys 325	Gly	Lys	Arg	Arg	Gly 330	Arg	Gly	Pro	Lys	Gly 335	Asp
10	Lys	Ala	Ser	Asp 340	Pro	Glu	Ala	Gly	Val 345	Ala	Arg	Gly	Ile	Asp 350	Phe	His
15	His	Val	Ser 355	Ala	Val	Leu	Asn	Phe 360	Asp	Leu	Pro	Pro	Thr 365	Pro	Glu	Ala
	Tyr	Ile 370	His	Arg	Ala	Gly	A rg 375	Thr	Ala	Arg	Ala	Asn 380	Asn	Pro	Gly	Ile
20	Val 385	Leu	Thr	Phe	Val	Leu 390	Pro	Thr	Glu	Gln	Phe 395	His	Leu	Gly	Lys	Ile 400
	Glu	Glu	Leu	Leu	Ser 405	Gly	Glu	Asn	Arg	Gly 410	Pro	Ile	Leu	Leu	Pro 415	Tyr
25	Gln	Phe	Arg	Met 420	Glu	Glu	Ile	Glu	Gly 425	Phe	Arg	Tyr	Arg	Cys 430	Arg	Asp
30		. Met	435					440					445			
		11e 450					455					460				
35	465					470					475					480
		Pro			485					490					495	
40	Val	. Pro	Pro	Ala 500		Arg	Gly	Leu	Val 505		Pro	His	Lys	Lys 510		Lys
45	Lys	: Leu	Ser 515		Ser	Cys	Arg	Lys 520		Lys	Arg	Ala	Lys 525		Gln	Asn
	Pro	530		Ser	Phe	Lys	His 535		Gly	Lys	Lys	9he 540		Pro	Thr	Ala
50	Lys 545	Pro	Ser	Xaa												
	(2)	INE	ORMA	ATION	FOR	SEC) ID	NO:	250:							
55	(2) INFORMATION FOR SEQ ID NO: 250: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 299 amino acids															
60			(xi)		(D) 1	ropo:	: am: LOGY ESCRI	: lin	near		ED NO	D: 25	50 :			

	Met 1	Thr	Thr	Val	Pro 5	Pro	Ser	Pro	Arg	Pro 10	Met	Ser	Arg	Pro	Ser 15	Glu
5	Arg	Asn	Met	Arg 20	Arg	Pro	Arg	Gly	Pro 25	Ser	Pro	Leu	Pro	Ala 30	Ser	Pro
10	Arg	Asn	Ser 35	Thr	Pro	Asp	Glu	Pro 40	Asp	Val	His	Phe	Ser 45	Lys	Lys	Phe
	Leu	Asn 50	Val	Phe	Met	Ser	Gly 55	Arg	Ser	Arg	Ser	Ser 60	Ser	Ala	Glu	Ser
15	Phe 65	Gly	Leu	Phe	Ser	Cys 70	Ile	Ile	Asn	Gly	Glu 75	Glu	Gln	Glu	Gln	Thr 80
	His	Arg	Ala	Ile	Phe 85	Arg	Phe	Val	Pro	Arg 90	His	Glu	Asp	Glu	Leu 95	Glu
20	Leu	Glu -	Val	Asp 100	Asp	Pro	Leu	Leu	Val 105	Glu	Leu	Gln	Ala	Glu 110	Asp	Tyr
25	Trp	Tyr	Glu 115	Ala	Tyr	Asn	Met	Arg 120	Thr	Gly	Ala	Arg	Gly 125	Val	Phe	Pro
	Ala	Туг 130	Tyr	Ala	Ile	Glu	Val 135	Thr	Lys	Glu	Pro	Glu 140	His	Met	Ala	Ala
30	Leu 145	Ala	Lys	Asn	Ser	Asp 150	Trp	Val	Asp	Gln	Phe 155	Arg	Val	Lys	Phe	Leu 160
	Gly	Ser	Val	Gln	Val 165	Pro	Tyr	His	Lys	Gly 170	Asn	Asp	Val	Leu	Cys 175	Ala
35	Ala	Met	Gln	Lys 180		Ala	Thr	Thr	Ar g 185	Arg	Leu	Thr	Val	His 190	Phe	Asn
40	Pro	Pro	Ser 195	Ser	Cys	Val	Leu	Glu 200	Ile	Ser	Val	Arg	Gly 205	Val	Lys	Ile
	Gly	Val 210	_	Ala	Asp	Asp	Ser 215	Gln	Glu	Ala	Lys	Gly 220	Asn	Lys	Cys	Ser
45	His 225		Phe	Gln	Leu	Lys 230		Ile	Ser	Phe	Cys 235		Tyr	His	Pro	Lys 240
	Asn	Asn	Lys	Тут	Phe 245		Phe	Ile	Thr	Lys 250		Pro	Ala	Asp	His 255	Arg
50	Phe	Ala	. Cys	His 260		Phe	Val	Ser	Glu 265		Ser	Thr	Lys	Ala 270	Leu	Ala
55	Glu	Ser	Val 275	. Gly	Arg	Ala	. Phe	Gln 280		Phe	Туг	Lys	Gln 285		Val	Glu
<i>JJ</i>	Тут	Thr 290	_	Pro	Thr	Glu	Asp 295		Tyr	Leu	Glu					

	(2)	INF	ORMA'	TION	FOR	SEQ	ID	NO:	251:							
5				(A) I B) T D) T	CHA ENGI YPE: YPOL E DE	H: 4 ami OGY:	no a no a	mino cid mear	ació): 2 5	1:			
10	Leu 1	Leu	Tyr	Leu	Leu 5		Val	Xaa	Val	Ile 10	Phe	Val	Phe	Ser	Ser 15	
	Lys	Gly	Val	Thr 20	Leu	Val	Ser	Met	Asn 25		Thr	Ser	Phe	Phe 30	Val	Se
15	Ser	Val	Leu 35	Ala	Cys	Phe	Ser	Xaa 40								
20	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:	252:							
25				((A) L B) T D) T	CHA ENGT YPE: YPOL E DE	H: 5 ami OGY:	94 a no a lin	mino cid ear	aci		: 25	2:			
30	Met 1	Pro	Ala	Ser	Ser 5	Leu	Glu	Ser	Arg	Ser 10	Phe	Leu	Leu	Ala	Lys 15	Ly
50	Ser	Gly	Glu	Asn 20	Val	Ala	Lys	Phe	Ile 25	Ile	Asn	Ser	Tyr	Pro 30	Lys	Ту
35	Phe	Gln	Lys 35	Asp	Ile	Ala	Glu	Pro 40	His	Ile	Pro	Cys	Leu 45	Met	Pro	Glı
	Tyr	Phe 50	Glu	Pro	Gln	Ile	Lys 55	Asp	Ile	Ser	Glu	Ala 60	Ala	Leu	Lys	Glu
40	Arg 65	Ile	Glu	Leu	Arg	Lys 70	Val	Lys	Ala	Ser	Val 75	Asp	Met	Phe	Asp	G1r 80
45	Leu	Leu	Gln	Ala	Gly 85	Thr	Thr	Val	Ser	Leu 90	Glu	Thr	Thr	Asn	Ser 95	Leu
	Leu	Asp	Xaa	Leu 100	Cys	Tyr	Tyr	Gly	Asp 105	Gln	Glu	Pro	Ser	Thr 110	Asp	ТУI
50	His	Phe	Gln 115	Gln	Thr	Gly	Gln	Ser 120	Glu	Ala	Leu	Glu	Glu 125	Glu	Asn	Asp
	Glu	Thr 130	Ser	Arg	Arg	Lys	Ala 135	Gly	His	Gln	Phe	Gly 140	Val	Thr	Trp	Arg
55	Ala 145	Lys	Asn	Asn	Ala	Glu 150	Arg	Ile	Phe	Ser	Leu 155	Met	Pro	Glu	Lys	A sr 160
~ 0	Glu	His	Ser	Tyr	Cys 165	Thr	Met	Ile	Arg	Gly 170	Met	Val	Lys	His	Arg 175	Ala