Week 2 Revision notes

Week 2 - Network Media, NICs, Ethernet, and Wi-Fi

1. Network Media

- Two Main Types of Media:
 - · Wired Media: Physical connections, such as cables.
 - Wireless Media: Uses airwaves to transmit data, like Wi-Fi.
- Cable Types:
 - Copper Wire:
 - Transmits data via electrical signals.
 - · Used for short to medium distances.
 - Fiber Optic:
 - Transmits data as light pulses, immune to electromagnetic interference.
 - Used for high-speed, long-distance communication.

2. Criteria for Choosing Network Media

- Bandwidth:
 - The rate of data transfer, measured in bits per second (bps).
 - · Common units:
 - Mbps (Megabits per second) and Gbps (Gigabits per second).
 - Example conversions: 1 Gbps = 125 MB/s.
- Distance:
 - Each cable type has a maximum segment length.
 - Attenuation: Signal weakening over long distances; repeaters can boost signals.
- Interference:
 - Physical and radio frequency interference (RFI), especially in densely populated areas.
 - Electromagnetic interference (EMI) from electrical devices like motors or fluorescent lights.
- Security:
 - Copper wires are more susceptible to eavesdropping.
 - Fiber optics are resistant to interference and harder to tap.

3. Types of Cables

Coaxial Cable:

· Once widely used, now mainly for cable TV and internet.

Twisted-Pair Cable:

- Unshielded Twisted Pair (UTP): Commonly used in LANs.
- Shielded Twisted Pair (STP): Shielded to reduce interference.

• Fiber Optic Cable:

- Composed of a core (glass or plastic) surrounded by cladding.
- · Single-mode fiber (SMF): Longer distance, uses laser light.
- Multimode fiber (MMF): Shorter distance, uses LED light.

4. Cable Components and Installation

RJ-45 Connectors:

Used in UTP and STP cables to connect devices.

Cable Termination:

- 568A and 568B Standards: Define wiring schemes.
- **Straight-through cables**: Same wiring standard on both ends, commonly used in connecting different devices (PC-to-switch).
- Crossover cables: Different wiring standards on each end, used for connecting similar devices (PC-to-PC).

5. Network Interface Cards (NICs)

Purpose:

A NIC connects a computer to a network, handling data transmission and reception.

Types:

- Wired NICs: Use Ethernet cables.
- Wireless NICs: Connect via Wi-Fi, require SSID and sometimes security credentials.

MAC Address:

- Each NIC has a unique MAC address, a 48-bit identifier (e.g., 04-40-31-5B-1A-C4).
- Used to identify devices within a local network.

• Functions:

 Receiving Data: Converts signals to frames, verifies destination, and sends to network protocol if addressed to the NIC.

	over the network.
. Eth	ernet Technology
• Ove	rview:
•	Used for wired LANs, MANs, and some WANs.
•	Standards governed by IEEE 802.3.
• Spe	eds:
•	Ranges from 10 Mbps to 10 Gbps.
• Med	lia Access Control:
•	CSMA/CD (Carrier Sense Multiple Access with Collision Detection):
	Devices "listen" to the network before sending data.
	 Collisions are detected and cause retransmission after a delay.
• Erro	or Handling:
•	Ethernet uses Cyclic Redundancy Check (CRC) for error detection in frames.
•	Damaged frames are discarded without notification.
• Add	lressing:
•	Each device has a MAC address ; incoming frames are processed if the address matches.
. Eth	ernet Standards
• 10B	aseT:
•	Operates at 10 Mbps, typically used with Category 3 or higher UTP cabling.
• 100	BaseTX:
•	Runs at 100 Mbps, commonly used with Category 5 UTP.
• 100	0BaseT (Gigabit Ethernet):
	Operates at 1 Gbps, using Category 5 or higher cables.
•	BaseT:
• 10G	10 Gbps over Category 6A or 7 cables, used in data centers for high-speed connections.
• 10G	

8

- Benefits:
 - Mobility: Users can move around while connected.

• Convenience: Easy setup, especially in large buildings where cabling is expensive.

• Wi-Fi Components:

- Wireless Access Point (AP): Core of a Wi-Fi network, transmits and receives wireless signals.
- Wireless Router: Combines the AP, switch, and router functions in one device.

Wi-Fi Modes:

- Infrastructure Mode: Uses a central AP.
- Ad Hoc Mode: Direct device-to-device communication, often used for temporary connections.

9. Wi-Fi Frequencies and Standards

• 2.4 GHz:

Larger coverage area, penetrates obstacles better, but more susceptible to interference.

• 5 GHz:

· Higher speeds, less interference, but has a smaller coverage area.

Wi-Fi Standards:

- 802.11b: Up to 11 Mbps, 2.4 GHz.
- 802.11g: Up to 54 Mbps, 2.4 GHz.
- 802.11n (Wi-Fi 4): Up to 600 Mbps, dual-band (2.4/5 GHz).
- 802.11ac (Wi-Fi 5): Up to 3.46 Gbps, 5 GHz.
- 802.11ax (Wi-Fi 6): Up to 9.6 Gbps, supports 2.4, 5, and 6 GHz bands.

10. Wi-Fi Security

• Encryption Protocols:

- WEP: Weakest, easily compromised.
- WPA and WPA2: Improved security over WEP.
- WPA3: Latest, with enhanced protection for open networks.

CSMA/CA Protocol:

- Carrier Sense Multiple Access with Collision Avoidance:
 - Prevents collisions in wireless networks by "requesting" permission to transmit.
 - RTS/CTS (Request to Send/Clear to Send) packets help manage communication in busy networks.

