Maximum likelihood (Метод максимального правдоподобия)

Пусть у нашей модели есть параметры W. Пусть у нас есть наши наблюдения Y. Хотим максимизировать P(y|W)

Задача

• Дана монетка. Подбрасываем ее три раза. Какая MLоценка для вероятности выпадения орла?

Задача

• Дана монетка. Подбрасываем ее три раза. Какая MLоценка для вероятности выпадения орла?

Р = (число выпадений орла) / 3

Есть ли проблемы с этим подходом?

Задача

 Дана монетка. Подбрасываем ее три раза. Какая MLоценка для вероятности выпадения орла?

Р = (число выпадений орла) / 3

Часто будем получать, что вероятность выпадения орла - 0.

Самые лживые слова - "никогда" и "навсегда". Те, кто их говорил мне, в итоге предавали.

Максимум апостериорной вероятности (МАР)

Введем априорное знание о монетке. Пусть монетки с вероятностью выпадения орла р

$$f_X(x) = rac{1}{\mathrm{B}(lpha,eta)} \, x^{lpha-1} (1-x)^{eta-1}$$

Максимум апостериорной вероятности (МАР)

• Будем максимизировать вероятность параметра

$$\hat{ heta}_{ ext{MAP}}(x) = rg \max_{ heta} f(heta \mid x) = rg \max_{ heta} rac{f(x \mid heta) \, g(heta)}{\int_{\Theta} f(x \mid heta) \, g(heta) \, d heta} = rg \max_{ heta} f(x \mid heta) \, g(heta).$$

Bias-variance tradeoff

Линейная регрессия

Постановка в одномерном случае

х - некий признак объекта (независимая переменная)

у - предсказываемая величина (зависимая переменная)

Предположим, что y = f(x) + eps (eps - шум, распределенный нормально)

Хотим найти такую функцию h(x) = bx + a, которая лучше всего аппроксимирует эту зависимость

Много переменных

хј - некий признак объекта (независимая переменная)

у - предсказываемая величина (зависимая переменная)

Предположим, что y = f(x) + eps (eps - шум, распределенный нормально)

Хотим найти такую функцию h(x) = bx1 + ... + bxn + a, которая **лучше всего** аппроксимирует эту зависимость

Решается аналогично

Residuals (остатки)

$$r_i = y - \hat{y}_i$$

MSE

$$\sum_{i} r_i^2 = \sum_{i} (y_i - \hat{y}_i)^2 = MSE$$

Хотим минимизировать эти штуку

Почему минимизируем квадраты, а не просто остатки?

Можно ли минимизировать что-то другое?

MAE

$$\sum_{i} |r_i| = \sum_{i} |y_i - \hat{y}_i| = MAE$$

Можно ли минимизировать что-то другое?

MAE

$$\sum_{i} |r_i| = \sum_{i} |y_i - \hat{y}_i| = MAE$$

Можно ли минимизировать что-то другое?

Квантильная ошибка (quantile loss)

$$L_q(\hat{y}, y_i) = \max[q \cdot (\hat{y} - y_i), (q - 1) \cdot (\hat{y} - y_i)]$$

Что выбрать?

- Зависит от задачи
- А почему вообще мы считаем, что это хорошие оценки?

MSE можно получить, используя метод максимального правдоподобия для нашей задачи

https://www.jessicayung.com/mse-as-maximum-likelihood/

Предположения

Обычно, в линейной модели мы предполагаем, что:

$$y_i = Wx_i + \epsilon$$

$$\epsilon \sim N(0, \sigma_i^2)$$

Отсюда:

$$y_i \sim N(Wx_i, \sigma_i^2)$$

ML

$$p(Y|X,W) = \prod_{i} p(y|x_i,W)$$

$$\log p(Y|X,W) = \sum_{i} \log p(y|x_i,W)$$
отсюда:

$$y \sim N(Wx, \sigma_e^2)$$

ML

$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \sum_{i=1}^{N} \log N(y_i; \mathbf{x_i} \mathbf{w}, \sigma^2)$$

$$= \sum_{i=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma_e^2}} \exp(-\frac{(y_i - \mathbf{x_i} \mathbf{w})^2}{2\sigma_e^2})$$

$$= -\frac{N}{2} \log 2\pi\sigma_e^2 - \sum_{i=1}^{N} \frac{(y_i - \mathbf{x_i} \mathbf{w})^2}{2\sigma_e^2}$$

ML

$$\mathbf{w}_{MLE} = \arg \max_{\mathbf{w}} - \sum_{i=1}^{N} (y_i - \mathbf{x_i w})^2$$

$$= \arg \min_{\mathbf{w}} \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{x_i w})^2$$

$$= \arg \min_{\mathbf{w}} \text{MSE}_{\text{train}}$$

- Пусть мы хотим получить предсказание для конкретного значения х
- Что нам пытается предсказать MSE?
- Что нам пытается предсказать МАЕ?
- Что нам пытается предсказать quantile loss

- Пусть мы хотим получить предсказание для конкретного значения х
- Что нам пытается предсказать MSE? среднее
- Что нам пытается предсказать МАЕ? медиану
- Что нам пытается предсказать quantile loss ?

- Пусть мы хотим получить предсказание для конкретного значения х
- Что нам пытается предсказать MSE? среднее
- Что нам пытается предсказать МАЕ? медиану
- Что нам пытается предсказать quantile loss квантиль

https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0

R-squared

$$SS_{tot} = \sum_{i} (y_i - \overline{y})^2$$

$$SS_{reg} = \sum_{i} (y_i - \hat{y}_i)^2 = \sum_{i} r_i^2$$

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

Коэффициент детерминации, в случае выполнения некоторых предположений, доля объясняемой **ДИСПЕРСИИ**

	M = 0	M = 1	M = 6	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^\star				-231639.30
w_5^\star				640042.26
w_6^\star				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^\star				125201.43

Добавляем штраф за большие веса

$$MSE + penalty(w)$$

Виды штрафов:

$$L_1 = \alpha \sum_{i} |w_i|$$

$$L_2 = \beta \sum_i w_i^2$$

$$L_{elastic} = \alpha \sum_{i} |w_i| + (1 - \alpha) \sum_{i} w_i^2$$

В чем отличие L1 от L2

Как штрафуется модель за наличие больших весов?

Регуляризация - это сообщение некоторой информации о весах, которую мы знаем без данных. Регуляризация - введение априорной вероятности.

Введение априора

Регуляризация - способ задания априора для нашей модели. Априор особо полезен при малом количестве данных

А есть еще есть способы введения априора?

Введение априора

Регуляризация - способ задания априора для нашей модели. Априор особо полезен при малом количестве данных

А есть еще есть способы введения априора?

- 1) структура модели
- 2) аугментация данных
- 3)

Примеры аугментации

SMOTE - локально аппроксимирует пространство наших объектов и создает "новые" объекты

Аугментация в нейронных сетях - повороты картинок, отрезание частей и тд

Enlarge your Dataset

Почему нельзя аугментировать от балды?

Генеративные vs дискриминативные модели

Дискриминативная модель ищет разделяющую плоскость. Задача дискриминативной модели найти p(class|x). Если она может это делать, до дальше просто для x выбираем класс с наибольшей вероятностью

Генеративная модель

И еще знать это:

Генеративная модель пытается найти p(y), p(x, y) и p(x|y) (второе и третье выражаются друг через друга при условии знания p(y)).

$$p(x, y) = p(x | y) \cdot p(y)$$

Генеративная модель, нам надо выучить априорные вероятности классов и условные вероятности p(x|class)

Пусть у объекта есть вектор признаков объекта х. Тогда получим следующее (из определения условной вероятности)

$$p(x | y = c) = p(x_1, x_2, ..., x_n | y = c) =$$

$$p(x_1 | y = c) \cdot p(x_2, ..., x_n | y = c, x_1) =$$

$$p(x_1 | y = c) \cdot p(x_2 | y = c, x_1) \cdot p(x_3, ..., x_n | y = c, x_1, x_2) =$$

$$p(x_1 | y = c) \cdot p(x_2 | y = c, x_1) \cdot ... \cdot p(x_n | y = c, x_1, ..., x_{n-1})$$

Нужно оценить п условных вероятностей. Это сложно. Например, для оценки последней вероятности нужно для каждого набора значений y=c, x1, ... нужно посчитать, какие при этом наборе встречаются значения xn

Предположение наивного Байеса - признаки независимы друг от друга. Тогда

$$p(x_1 | x_2) = p(x1)$$
 Из определения условной вероятности

$$p(x | y = c) = p(x_1, x_2, ..., x_n | y = c) =$$

$$p(x_1 | y = c) \cdot p(x_2, ..., x_n | y = c, x_1) =$$

$$p(x_1 | y = c) \cdot p(x_2, ..., x_n | y = c) =$$

$$p(x_1 | y = c) \cdot p(x_2 | y = c) \cdot ... \cdot p(x_n | y = c)$$

Нужно оценить n условных вероятностей. Это легче. Просто для каждого значения у оцениваем, как распределены хі.

Хотим предсказывать, текст о спорте или нет?

Слово	Сколько раз встретило сь слово в тексте о спорте	Сколько раз встретилось слово в тексте не о спорте
very	5	0
close	3	10
а	5	5
game	10	2
bed	0	4
Всего	23	21

Слово	Частота	Частота
very	5/23	0/21
close	3/23	10/21
а	5/23	5/21
game	10/23	2/21
bed	0/23	4/21

В чем проблема?

Хотим предсказывать, текст о спорте или нет?

Слово	Сколько раз встретило сь слово в тексте о спорте	Сколько раз встретилось слово в тексте не о спорте
very	5	0
close	3	10
a	5	5
game	10	2
bed	0	4
Всего	23	21

Слово	Частота	Частота
very	5/23	0/21
close	3/23	10/21
а	5/23	5/21
game	10/23	2/21
bed	0/23	4/21

Вероятность не должна быть равна 0 или 1!

Добавляем псевдокаунты. Самое простое - добавить каждого слова по 1 разу

Слово	Сколько раз встретило сь слово в тексте о спорте	Сколько раз встретилось слово в тексте не о спорте
very	5+1	0+1
close	3+1	10+1
а	5+1	5+1
game	10+1	2+1
bed	0+1	4+1
Всего	23+5	21+5

Слово		Вероятность не спорт
very	6/28	1/26
close	4/28	11/26
a	6/28	6/26
game	11/28	3/26
bed	1/28	5/26

Считаем вероятность текста "a very close game" быть про спорт и не про спорт

$$p(sport | text) = \frac{p(text | sport) \cdot p(sport)}{p(text)} =$$

$$\frac{6}{28} \cdot \frac{6}{28} \cdot \frac{4}{28} \cdot \frac{11}{28} \cdot p(sport)$$

$$p(\overline{sport} \mid text) = \frac{p(text \mid \overline{sport}) \cdot p(\overline{sport})}{p(text)} = \frac{p(text \mid \overline{sport}) \cdot p(\overline{sport})}{p(text)}$$

$$\frac{6}{26} \cdot \frac{1}{26} \cdot \frac{11}{26} \cdot \frac{3}{26} \cdot p(\overline{sport})$$

Слово		Вероятность не спорт
very	6/28	1/26
close	4/28	11/26
a	6/28	6/26
game	11/28	3/26
bed	1/28	5/26

Считаем вероятность текста "a very close game" быть про спорт и не про спорт

$$p(sport | text) = \frac{p(text | sport) \cdot p(sport)}{p(text)} = \frac{6}{28} \cdot \frac{6}{28} \cdot \frac{4}{28} \cdot \frac{11}{28} \cdot p(sport)$$

$$p(\overline{sport} \mid text) = \frac{p(text \mid \overline{sport}) \cdot p(\overline{sport})}{p(text)} = \frac{p(text \mid \overline{sport}) \cdot p(\overline{sport})}{p(text)}$$

$$\frac{6}{26} \cdot \frac{1}{26} \cdot \frac{11}{26} \cdot \frac{3}{26} \cdot p(\overline{sport})$$

p(text)

Получается, считать полную вероятность текста, чтобы решить, вероятность какого текста больше - нам не надо.

Но нам нужны априорные вероятности того, что текст про спорт - можем оценить по нашей выборке (просто частота текстов)

$$\log p(sport \mid text) = \log \frac{p(text \mid sport) \cdot p(sport)}{p(text)} = \log p(text \mid sport) + \log p(sport) - \log(p(text))$$

$$\log p(\overline{sport} \mid text) = \log \frac{p(text \mid \overline{sport}) \cdot p(\overline{sport})}{p(text)} = \log p(text \mid \overline{sport}) + \log p(\overline{sport}) - \log(p(text))$$

Обычно нам интересует отношение вероятностей (odds) или логарифм отношения вероятностей: log-odds

$$\log \frac{p(sport \mid text)}{p(\overline{sport} \mid text)} = \log \frac{p(sport)}{p(\overline{sport})} + \log \frac{p(text \mid sport)}{p(text \mid \overline{sport})}$$

Апостериорный log-odds Априорный log-odds Изменение log-odds за счет нашего наблюдения

$$\log p(sport \mid text) = \log \frac{p(text \mid sport) \cdot p(sport)}{p(text)} = \log p(text \mid sport) + \log p(sport) - \log(p(text))$$

$$\log p(\overline{sport} \mid text) = \log \frac{p(text \mid \overline{sport}) \cdot p(\overline{sport})}{p(text)} = \log p(text \mid \overline{sport}) + \log p(\overline{sport}) - \log(p(text))$$

Обычно нам интересует отношение вероятностей (odds) или логарифм отношения вероятностей: log-odds

$$\log \frac{p(sport \mid text)}{p(\overline{sport} \mid text)} = \log \frac{p(sport)}{p(\overline{sport})} + \log \frac{p(text \mid sport)}{p(text \mid \overline{sport})}$$

Апостериорный log-odds Априорный log-odds Изменение log-odds за счет нашего наблюдения

За счет этой формулы и допущения о том, что у нас все слова появляются независимо, мы можем наблюдать текст по частям.

За счет этой формулы и допущения о том, что у нас все слова появляются независимо, мы можем наблюдать текст по частям.

Первая часть текста

$$\log \frac{p(sport)_1}{p(\overline{sport})_1} = \log \frac{p(sport \mid text_1)}{p(\overline{sport} \mid text_1)} = \log \frac{p(sport)}{p(\overline{sport})} + \log \frac{p(text_1 \mid sport)}{p(text_1 \mid \overline{sport})}$$

Апостериорный log-odds Априорный log-odds Изменение log-odds

за счет нашего наблюдения

Вторая часть текста

$$\log \frac{p(sport \mid text_2)}{p(\overline{sport} \mid text_2)} = \log \frac{p(sport)_1}{p(\overline{sport})_1} + \log \frac{p(text_2 \mid sport)}{p(text_2 \mid \overline{sport})}$$

Апостериорный log-odds

Априорный log-odds, Просто подставляем апостериорные вероятности, подсчитанные на основе первой части

Изменение log-odds за счет нашего наблюдения

$$\log \frac{p(sport)_1}{p(\overline{sport})_1} = \log \frac{p(sport \mid text_1)}{p(\overline{sport} \mid text_1)} = \log \frac{p(sport)}{p(\overline{sport})} + \log \frac{p(text_1 \mid sport)}{p(text_1 \mid \overline{sport})}$$

$$= \log \frac{p(sport)}{p(\overline{sport})} + \log \prod_{word \in text} \frac{p(word \mid sport)}{p(word \mid \overline{sport})} =$$

$$= \log \frac{p(sport)}{p(\overline{sport})} + \sum_{word \in text} \log \frac{p(word \mid sport)}{p(word \mid \overline{sport})}$$

Априорный log-odds

Каждое слово влияет на наш апостериорный log-odds независимо. Можем вообще процессировать текст по одном слову за раз. Просто добавляя соответствующее отношение логарифмов

$$\log \frac{p(sport)_1}{p(\overline{sport})_1} = \log \frac{p(sport \mid text_1)}{p(\overline{sport} \mid text_1)} = \log \frac{p(sport)}{p(\overline{sport})} + \log \frac{p(text_1 \mid sport)}{p(text_1 \mid \overline{sport})}$$

$$= \log \frac{p(sport)}{p(\overline{sport})} + \log \prod_{word \in text} \frac{p(word \mid sport)}{p(word \mid \overline{sport})} =$$

$$= \log \frac{p(sport)}{p(\overline{sport})} + \sum_{word \in text} \log \frac{p(word \mid sport)}{p(word \mid \overline{sport})}$$

Априорный log-odds

Каждое слово влияет на наш апостериорный log-odds независимо. Можем вообще процессировать текст по одном слову за раз.

$$\log \frac{p(sport)_1}{p(\overline{sport})_1} = \log \frac{p(sport \mid text_1)}{p(\overline{sport} \mid text_1)} = \log \frac{p(sport)}{p(\overline{sport})} + \log \frac{p(text_1 \mid sport)}{p(text_1 \mid \overline{sport})}$$

$$= \log \frac{p(sport)}{p(\overline{sport})} + \log \prod_{word \in text} \frac{p(word \mid sport)}{p(word \mid \overline{sport})} =$$

$$= \log \frac{p(sport)}{p(\overline{sport})} + \sum_{word \in text} \log \frac{p(word \mid sport)}{p(word \mid \overline{sport})}$$

Пусть у нас встречается в текстах (в принципе) п различных слов (vocabulary)

$$= \log \frac{p(sport)}{p(\overline{sport})} + \sum_{word \in vocabulary} k_{word} \cdot \log(\frac{p(word \mid sport)}{p(word \mid \overline{sport})})$$

Априорный log-odds

Каждое слово влияет на наш апостериорный log-odds независимо. Даже если слова одинаковые. Можем просто умножать log-odds каждого слова из словаря на то, сколько раз оно встретилось в тексте.

Пусть у нас встречается в текстах (в принципе) п различных слов (vocabulary)

$$= \log \frac{p(sport)}{p(\overline{sport})} + \sum_{word \in vocabulary} k_{word} \cdot \log(\frac{p(word \mid sport)}{p(word \mid \overline{sport})})$$

Априорный log-odds

Каждое слово влияет на наш апостериорный log-odds независимо. Даже если слова одинаковые. Можем просто умножать log-odds каждого слова из словаря на то, сколько раз оно встретилось в тексте.

$$= a + w^T x$$

а - свободный параметр х - описание нашего текста в виде (число word_1, число word_2) и т.д w - вектор log-ods для слов из словаря.

 $w^T \chi$ - скалярное произведение

Пусть у нас встречается в текстах (в принципе) п различных слов (vocabulary)

$$= \log \frac{p(sport)}{p(\overline{sport})} + \sum_{word \in vocabulary} k_{word} \cdot \log(\frac{p(word \mid sport)}{p(word \mid \overline{sport})})$$

Априорный log-odds

Каждое слово влияет на наш апостериорный log-odds независимо. Даже если слова одинаковые. Можем просто умножать log-odds каждого слова из словаря на то, сколько раз оно встретилось в тексте.

$$= a + w^T x$$

Naive Bayes - частый случай generalized additive models (просто для общего развития)

Можно ли использовать численные признаки в этом методе?

Можно ли использовать численные признаки в этом методе?

Да, мы можем придумать, как этот признак распределен для каждого класса. Часто предполагают, что р(численный признак | у) распределен нормально. Тогда достаточно оценить из нашей выборки среднее и стандартное отклонение признака для объектов данного класса