Simple One

You are given the equation $an lpha = rac{p}{q}$ and a positive integer, n. Calculate an nlpha. There are T test cases.

Input Format

The first line contains T, the number of test cases.

The next T lines contain three space separated integers: p, q and n, respectively.

Constraints

$$0 \leqslant p \leqslant 10^9$$

$$1 \leqslant q \leqslant 10^9$$

$$1 \leqslant n \leqslant 10^9$$

$$T \leqslant 10^4$$

Output Format

If the result is defined, it is always a rational number. However, it can be very big.

Output the answer modulo (10^9+7) .

If the answer is $\frac{a}{b}$ and b is not divisible by (10^9+7) , there is a unique integer $0\leqslant x<10^9+7$ where $a\equiv bx\mod(10^9+7)$.

Output this integer, x.

It is guaranteed that b is not divisible by $(10^9 + 7)$ for all test cases.

Sample Input

2 1 2

Sample Output

666666670 237627959

Explanation

If $\tan\alpha=\frac21$ then $\tan2\alpha=-\frac43$ and $-4\equiv3\times66666670\mod(10^9+7)$. So, the answer is 666666670.