## Seminarul 4

1. Considerăm vectorul aleatoar discret (X,Y) cu distribuția dată sub formă tabelară:

| X | -2  | 1   | 2   |
|---|-----|-----|-----|
| 1 | 0,2 | 0,1 | 0,2 |
| 2 | 0,1 | 0,1 | 0,3 |

- a) Să se determine distribuțiile de probabilitate ale variabilelor aleatoare X și Y.
- b) Calculati probabilitatea ca |X Y| = 1, stiind că Y > 0.
- c) Sunt evenimentele X = 2 şi Y = 1 independente?
- d) Sunt variabilele aleatoare X și Y independente?
- e) Sunt evenimentele X=1 si Y=1 conditional independente, cunoscând X+Y=2?
- f) Este variabila aleatoare X condițional independentă de Y, cunoscând X + Y?
- g) Calculați valoarea medie a variabilei aleatoare  $2X + Y^2$ .

R: a) 
$$X \sim \begin{pmatrix} 1 & 2 \\ 0.5 & 0.5 \end{pmatrix}, Y \sim \begin{pmatrix} -2 & 1 & 2 \\ 0.3 & 0.2 & 0.5 \end{pmatrix}$$
.

- b)  $P(|X Y| = 1 | Y > 0) = \frac{P(|X Y| = 1, Y > 0)}{P(Y > 0)} = \frac{P(X = 1, Y = 2) + P(X = 2, Y = 1)}{P(Y > 0)} = \frac{0.3}{0.7} = \frac{3}{7}.$ c)  $P(X = 2, Y = 1) = 0.1 = 0.5 \cdot 0.2 = P(X = 2) \cdot P(Y = 1) \implies X = 2 \text{ şi } Y = 1 \text{ sunt independente.}$
- d)  $P(X = 2, Y = 2) = 0.3 \neq 0.25 = 0.5 \cdot 0.5 = P(X = 2) \cdot P(Y = 2) \implies X \text{ si } Y \text{ nu sunt independente.}$
- e)  $P(X = 1, Y = 1 | X + Y = 2) = 1 = P(X = 1 | X + Y = 2) \cdot P(Y = 1 | X + Y = 2) \implies X = 1$  şi Y = 1 sunt
- condițional independente, cunoscând X+Y=2. f)  $P(X=1,Y=2|X+Y=3)=\frac{P(X=1,Y=2)}{P(X+Y=3)}=\frac{0,2}{0,3}\neq \frac{0,2}{0,3}\cdot \frac{0,2}{0,3}=P(X=1|X+Y=3)\cdot P(Y=2|X+Y=3)\Longrightarrow X$  și Y nu sunt condițional independente, cunoscând X+Y.
- g)  $E(2X + Y^2) = 2E(X) + E(Y^2) = 2(1 \cdot 0.5 + 2 \cdot 0.5) + (-2)^2 \cdot 0.3 + 1^2 \cdot 0.2 + 2^2 \cdot 0.5 = 6.4$
- 2. Considerăm următoarele variabile aleatoare care indică anumite situații (1=da și 0=nu), pe care le avem în vedere pentru o persoană într-o seară:
  - F indică dacă filmul care rulează la cinema este în premieră sau nu.
  - S indică dacă biletul de intrare la film este scump sau nu.
  - C indică dacă persoana vizionează filmul la cinema sau nu.
  - R indică dacă persoana ia cina la un restaurant sau nu.
  - B indică dacă persoana bea un cocteil la un bar sau nu.

Variabile aleatoare de mai sus depind unele de altele conform unei rețele Bayes cu probabilitățile condiținate date mai jos.



| P(F=1) | P(F=0) |
|--------|--------|
| 0,8    | 0,2    |

| S | $P(S = \dots   F = 1)$ | $P(S = \dots   F = 0)$ |
|---|------------------------|------------------------|
| 1 | 0,9                    | 0,6                    |
| 0 | 0,1                    | 0,4                    |

| C | P(C = S = 1, F = 1) | P(C = S = 1, F = 0) | P(C = S = 0, F = 1) | P(C = S = 0, F = 0) |
|---|---------------------|---------------------|---------------------|---------------------|
| 1 | 0,6                 | 0,2                 | 0,9                 | 0,4                 |
| 0 | 0,4                 | 0,8                 | 0,1                 | 0,6                 |

| R | $P(R = \dots   C = 1)$ | $P(R = \dots   C = 0)$ |
|---|------------------------|------------------------|
| 1 | 0,3                    | 0,5                    |
| 0 | 0,7                    | 0,5                    |

| B | $P(B = \dots   C = 1)$ | $P(B = \dots   C = 0)$ |
|---|------------------------|------------------------|
| 1 | 0,5                    | 0,8                    |
| 0 | 0,5                    | 0,2                    |

Calculați probabilitățile următoarelor evenimente:

- a) Persoana bea un cocteil la un bar, știind că nu vizionează filmul care rulează în premieră la cinema, biletul de intrare la film fiind scump.
- b) Persoana vizionează un film care nu e în premieră la cinema.
- c) Persoana vizionează filmul la cinema.
- d) Persoana ia cina la un restaurant.

R: a)

c)

$$P(B = 1|F = 1, S = 1, C = 0) = P(B = 1|C = 0) = 0.8 = 80\%.$$

b) 
$$P(C=1,F=0) = P(C=1,F=0,S=1) + P(C=1,F=0,S=0) \\ = P(C=1|S=1,F=0) \cdot P(S=1|F=0) \cdot P(F=0) + P(C=1|S=0,F=0) \cdot P(S=0|F=0) \cdot P(F=0) \\ = 0.2 \cdot 0.6 \cdot 0.2 + 0.4 \cdot 0.4 \cdot 0.2 = 0.056 = 5.6\%.$$

$$P(C=1) = \sum_{i,j \in \{0,1\}} P(C=1, S=i, F=j) = \sum_{i,j \in \{0,1\}} P(C=1|S=i, F=j) \cdot P(S=i|F=j) \cdot P(F=j)$$
$$= 0.6 \cdot 0.9 \cdot 0.8 + 0.2 \cdot 0.6 \cdot 0.2 + 0.9 \cdot 0.1 \cdot 0.8 + 0.4 \cdot 0.4 \cdot 0.2 = 0.56 = 56\%.$$

d) 
$$P(R=1) = P(R=1|C=1) \cdot P(C=1) + P(R=1|C=0) \cdot P(C=0)$$
 
$$= 0.3 \cdot 0.56 + 0.5 \cdot 0.44 = 0.388 = 38.8\%.$$

3. Un sistem electronic are 80 de componente care funcționează independent unele de altele. Fiecare componentă funcționează cu probabilitatea 0.75. Fie X variabila aleatoare care indică numărul de componente funcționale ale sistemului. Determinați distribuția lui X și apoi calculați valoarea sa medie.

R: 
$$X = X_1 + \dots + X_{80} \sim \text{Bino}(80, 0.75), X_i \sim \text{Bernoulli}(0.75)$$
 indică funcționarea componentei  $i, i = \overline{1.80}$ .  $E(X) = \sum_{i=1}^{n} E(X_i) = 80 \cdot \frac{3}{4} = 60$ .

4. Un mesaj este transmis printr-un canal de comunicare cu perturbări. Probabilitatea ca mesajul să fie recepționat este 10%. Dacă mesajul nu este recepționat, atunci se reia transmisia mesajului, independent de transmisiile anterioare. Fie X variabila aleatoare care indică numărul de transmisii până la prima transmisie în care este recepționat mesajul. Determinați valoarea medie a lui X.

R.: Observăm că  $X \sim \text{Geo}(p)$ ,  $p = \frac{1}{10}$ . Pe baza criteriului raportului, seria cu termeni pozitivi  $\sum_{k=0}^{\infty} kp(1-p)^k$  este convergentă.

$$E(X) = \sum_{k=0}^{\infty} kp(1-p)^k = (1-p)\sum_{k=1}^{\infty} kp(1-p)^{k-1}$$

$$\stackrel{k=j+1}{=} (1-p)\sum_{j=0}^{\infty} (j+1)p(1-p)^j = (1-p)\sum_{j=0}^{\infty} jp(1-p)^j + (1-p)\sum_{j=0}^{\infty} p(1-p)^j$$

$$= (1-p)E(X) + (1-p) \Longrightarrow E(X) = \frac{1-p}{p}$$

 $\implies E(X) = \frac{\frac{9}{10}}{\frac{1}{10}} = 9$ , deci vor fi în medie 9 transmisii eşuate până la recepționarea mesajului.

6. Un punct material se deplasează pe axa reală dintr-un nod spre un nod vecin, la fiecare pas, cu probabilitatea  $p \in (0,1)$  la dreapta și cu probabilitea 1-p la stânga. Nodurile sunt centrate în numerele întregi:



Fie X variabila aleatoare care indică poziția finală a punctului material după  $n \in \mathbb{N}$  pași ai unei deplasări ce pornește din nodul 0. Determinați distribuția și valoarea medie lui X.

R: Dacă 
$$Y_i$$
 reprezintă pasul  $i$ , atunci  $Y_i \sim \begin{pmatrix} -1 & 1 \\ 1-p & p \end{pmatrix} \implies Y_i = 2X_i - 1$  cu  $X_i \sim Bernoulli(p)$ ,  $i \in \{1, \ldots, n\}$ .  $X = Y_1 + \ldots + Y_n = (2X_1 - 1) + \ldots + (2X_n - 1)$ ,  $X_1 + \ldots + X_n \sim Bino(n, p) \implies X \sim \begin{pmatrix} 2k - n \\ C_n^k p^k (1-p)^{n-k} \end{pmatrix}_{k=\overline{0,n}}$  și  $E(X) = 2np - n$ .

**Temă:** Următoarele variabile aleatoare indică decizia unui parior sportiv de a paria sau nu (1=da, 0=nu) într-o zi pe anumite tipuri de meciuri: fotbal F, handbal H, baschet B și tenis T. Pariorul ia deciziile conform rețelei Bayes alăturate, cu următoarele probabilități:

$$P(F = 1) = P(H = 1) = 0.6;$$
  
 $P(B = 1|F = 1, H = 1) = P(B = 1|F = 0, H = 0) = 0.5;$   
 $P(T = 1|F = 1, H = 1) = P(T = 1|F = 0, H = 0) = 0.9;$   
 $P(B = 1|F = 0, H = 1) = P(B = 1|F = 1, H = 0) = 0.2;$   
 $P(T = 1|F = 0, H = 1) = P(T = 1|F = 1, H = 0) = 0.3.$ 

Calculați probabilitățile următoarelor evenimente:

- a) Pariorul nu pariază pe niciun tip de meci.
- b) Pariorul alege meciuri de fotbal și baschet, știind că nu alege niciun meci de handbal.
- c) Pariorul alege meciuri de baschet.

