») neue fische

School and Pool for Digital Talent

Evaluation Metrics

Orientation

Where are we now?

06 PREDICTIVE MODELING:

- select a ML algorithm
- train the ML model
- evaluate the performance
- make predictions

01

BUSINESS UNDERSTANDING

PREDICTIVE MODELING

them to make predic

LIFECYCLE

DATA SCIENCE

sudeep.co

DATA EXPLORATION

Form hypotheses about your analyzing the data

02

DATA MINING

03

DATA CLEANING

Fix the inconsistencies within the data and handle the missing values.

05

FEATURE ENGINEERING

defined problem by visually

Evaluate model performance

- Regression Metrics (R-squared, RMSE...)
- Classification Metrics (accuracy, precision, recall...)
- Custom Metrics
 - \rightarrow e.g. based on the worst case scenarios of your product

If you need to present to stakeholders you need a simple metric! MSE, precision, recall... are too complex to explain

Regression

What Metrics do we have to evaluate model performance?

• R² (R-squared)
$$R^2 = 1 - rac{RSS}{TSS} = 1 - rac{\sum_{i=1}^n (y_i - \hat{y_i})^2}{\sum_{i=1}^n (y_i - ar{y})^2} = 1 - rac{\sum_{i=1}^n e_i^2}{\sum_{i=1}^n (y_i - ar{y})^2}$$

• MSE (Mean Square Error)

$$MSE = rac{1}{n} \sum_{i=1}^n \left(y_i - \hat{y}_i
ight)^2$$

• RMSE (Root Mean Square Error)

$$RMSE = \sqrt{MSE}$$

Binary classification

Definition

Confusion Matrix

Counts how often the model predicted correctly and how often it got confused

- False Positive: false alarm / type I error
- False Negative: missed detection / type II error

Predicted

	Negatives	Positives
Negatives	TN	FP
Positives	FN	TP

Actual

Accuracy

Definition

How often the model has been right

$$rac{Correct}{All} = rac{TP + TN}{TP + FP + TN + FN}$$
 Predicted Negatives Positives

Actual Positives FN TP

Accuracy

Drawbacks

- When one class is very rare it leads to false conclusions
- Here, Accuracy is 94 %
- But 5 out of 6 positives have been predicted incorrectly

Predicted

		Negatives	Positives
Actual	Negatives	93	1
	Positives	5	1

Accuracy

Accuracy might not be good enough

<u>Image source</u>

12

Positive class

Precision and Recall

- Focus on positive class
- Number of True Negatives are not taken into account
- When trying to detect a rare event
- The number of negatives is very large

Recall or True Positive Rate (TPR)

What proportion of actual positives was predicted correctly?

- The TPR is also called sensitivity or recall
- Here, the True Positive Rate is % (~16.67%)

TP		
\overline{TP}	\overline{FN}	

Predicted

		Negatives	Positives
Actual	Negatives	93	1
Actual	Positives	5	1

Changing the threshold

Tweaking the model

- Every model has a **threshold** that discerns positive from negative predictions
- Typically, instances will get predicted positive if the probability for that is larger 0.5

Predicted

	Negatives	Positives
Negatives	93	1
Positives	5	1

Actual

Changing the threshold

Now let's tweak the model

- The lower the threshold the more instances get predicted positive
- This will automatically raise the True Positive Rate (TPR)

Changing the threshold

Now let's tweak the model

- Now, the True Positive Rate (TPR, recall) is at 100%
- But are we entirely happy?

After tweaking -

 $rac{TP}{TP+FN}$

Predicted

Precision

What proportion of positive predictions are actually correct?

Actual

- Here, Precision is 6/86 (~6.97 %), even lower as recall before tweaking!
- But: if it's too low or acceptable depends on the business case
- For detecting cancer it might be okay for the stakeholders
 → still, costs for screening millions of people might be very high

After tweaking

 $rac{TP}{TP+FP}$

Predicted

	Negatives	Positives
Negatives	14	80
Positives	0	6

Confusion Matrix

Summary

N₊: the number of positives

N: the number of negatives

n = # observations

Predicted

Negatives / O

Negatives / 0	Positives / 1	Σ
TN	FP	N __ = FP + TN
FN	TP	$N_{+} = TP + FN$
N_ = FN + TN	Ŋ ₊ = TP + FP	n = TP + FP + FN + TN

Decitives / 1

Negatives / 0

Positives / 1

Σ

Trade-off

Precision-Recall Curve

- Plots Precision vs. Recall depending on the **threshold**
- If threshold is high:
 - → Precision is close to 1
 - → Recall will be very low

Trade-off

Precision-Recall Curve

- If threshold is effectively zero:
 - → predicting all instances as positives
 - \rightarrow Recall will be 1
 - → Precision is equal to the share of positives
- Goal: Get a threshold the stakeholder agrees on
- Starting point might be estimation of economic benefit and cost

F1- Score

F1-Score

Harmonic mean of precision and recall

$2 imes rac{Precision imes Recall}{Precision + Recall}$

F1- Score

F1-Score

• The harmonic mean punishes low rates.

$$2 imes rac{Precision imes Recall}{Precision + Recall}$$

Precision	Recall	F1-score
5%	50%	9%
90%	90%	90%
30%	60%	40%

Negative Class

Let's take negatives into the equation

- The amount of correct negative predictions is sometimes just as important
- Spam vs. ham is just one example (email spam detection)

<u>Image source</u>

False Positive Rate

What proportion of actual negatives was predicted as positives?

• Here, FPR is 80/(80+14) = 85.11%

$_FP$	
$\overline{TN+FP}$	•

Predicted

		Negatives	Positives
Actual	Negatives	14	80
Actual	Positives	0	6

True Negative Rate

What proportion of actual negatives was predicted correctly?

- Here, TNR is 14/(80+14) = 14.89%
- TNR is also called *specificity*
- FPR = 1 specificity

T	Λ	T	
\overline{TN}	+.	\overline{F}	\overline{P}

Predicted

		Negatives	Positives
Actual	Negatives	14	80
Actual	Positives	0	6

Trade-off

Receiver Operating Characteristic Curve (ROC Curve)

- Plots TPR vs. FPR for different thresholds
- The 45° line is equivalent to throwing a coin
- If all positives are correctly predicted and no negative is incorrectly predicted ROC curve would be the green curve
- Aim: ROC curve as closely as possible to (0,1)

Trade-off

ROC and the Area Under the Curve (ROC AUC)

- Metric to compare different classifiers
- Random classifier:
 - \rightarrow ROC AUC is 0.5
 - → ROC curve is on the 45° line
- Perfect classifier:
 - → ROC AUC is 1

ROC

Explanation of ROC curve

ROC

Explanation of ROC curve

Image source

Trade-off

Imbalanced classes

Going beyond aggregated metrics

All the performance metrics we've seen today are aggregated metrics.

They help determine whether a model has learned well from a dataset or needs improvement.

Next step:

examine results and errors to understand why and how the model is failing or succeeding

Why: validation and iteration

Performance metrics can be deceptive, on highly imbalanced datasets a classifier can reach very high accuracy without any predictive power

Next Steps - Error Analysis

Validated your model - inspect how it is performing

There are a lot of way to do this. You want to contrast data (target and/or features) and predictions

• Regression:

looking at residuals, for example doing EDA on residuals and inspecting the outliers

Classification:

one can start with a confusion matrix, breaking results in true class and predictions

Resources

https://paulvanderlaken.com/2019/08/16/roc-auc-precision-and-recall-visually-explained/

<u>Building Machine Learning Powered Applications</u> - Emmanuel Ameisen