МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Информационные технологии и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №6 по курсу «Нейроинформатика»

Сети Кохонена.

Выполнил: Д. Д. Син

Группа: 8О-407Б

Преподаватели: Н.П Аносова

Постановка задачи

Целью работы является исследование свойств слоя Кохонена, карты Кохонена, а также сетей векторного квантования, обучаемых с учителем, алгоритмов обучения, а также применение сетей в задачах кластеризации и классификации.

Основные этапы работы:

- 1. Использовать слой Кохонена для выполнения кластеризации множества точек. Проверить качество разбиения
- 2. Использовать карту Кохонена для выполнения кластеризации множества точек.
- 3. Использовать карту Кохонена для нахождения одного из решений задачи коммивояжера.
- 4. Использовать сеть векторного квантования, обучаемую с учителем, (LVQ-сеть) для классификации точек в случае, когда классы не являются линейно разделимыми.

Метод решения

Для решения задачи воспользуемся библиотеками neupy и neirolab. Там уже есть готовые реализации карты Кохонена и LVQ-сети. Сам алгоритм карты и слоя кохонена не сложный. Он заключается в изменении весов данного слоя по принципу конкурентности. Мы выбираем наиболее близкий нейрон к входному вектору по определенной метрики, в нашем случае по Евклидовой, а затем изменяем веса нашего нейрона, чтобы он был ближе к входному вектору. По такому же принципу работает и карта Кохонена. LVQ-сеть является развитием самоорганизующихся сетей Кохонена и помимо конкурентного слоя Кохонена и имеет линейных слой. Такая сеть может решать задачу классификации

Архитектура сети Кохонена

Архитектура карты кохонена

Архитектура LVQ сети

Описание работы программы

Задание 1. Входные данные для кластеризации

Обучение сети Кохонена

```
kohonen_net = KohonenNet(clusters=8)
kohonen_net.train(x)

Epoch: 15; Error: 14.05149061978321;
Epoch: 30; Error: 12.680372454415672;
Epoch: 45; Error: 11.753434231225818;
Epoch: 60; Error: 11.304897776676007;
Epoch: 75; Error: 11.129554774124603;
Epoch: 90; Error: 11.067733122283034;
Epoch: 105; Error: 10.99440120094895;
Epoch: 120; Error: 10.886864411979607;
Epoch: 135; Error: 10.854604077132281;
Epoch: 150; Error: 10.859924239093072;
The maximum number of train epochs is reached
```


На графике видно, что центры кластеров определены достаточно хорошо

Теперь попробуем предсказать кластеры для 5 и 15 случайно сгенерированных точек.

Задание 2. Входные данные для кластеризации

Теперь посмотрим правильно ли мы определили центры кластеров.

Снова проверим кластеризацию на 5 и 15 случайных точках

Видим, что результаты хорошие и мы можем довольно точно определять точку в ее кластер.

Задание 3.

Построим случайные точки на плоскости, по которым нужно будет решить задачу Коммивояжера.

Теперь попробуем с помощью самоорганизующейся карты Кохонена найти путь по точкам. Как видно из получившихся путей при большем числе обучения путь видоизменяется.

Задание 4. Построим точки на плоскости, которые попробуем классифицировать LVQ сетью

Обучив LVQ-сеть на 300-х эпохах получили такой результат. На графике видно, что получилось классифицировать точки на плоскости.

Выводы

В данной лабораторной работе проанализировали сети Кохонена, использовав обучение без учителя, а именно на задаче кластеризации. И было заметно, что данный метод хорошо справляется с такой задачей и несложен в понимании, а также содержит в себе очень интересную идею, основанную на метрике между входным вектором и весами, а также на конкуренции нейронов. Также применение карт кохонена находится при подавлении шумов на изображениях.