МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Параллельные алгоритмы»

Тема: Знакомство с программированием гетерогенных систем в стандарте Open CL

Студент гр. 0303	Парамонов В.В
Преподаватель	Сергеева Е. И.

Санкт-Петербург

2023

Цель работы.

Изучить фреймворк OpenCL для написания программ, связанных с параллельными вычислениями на различных графических и центральных процессорах. Реализовать расчёт фрактала Мандельброта на OpenCL.

Постановка задачи.

- 1) Реализовать расчет фрактала Мандельброта на OpenCL.
- 2) Визуализировать результат.
- 3) Произвести оценку производительности.

Выполнение задач.

1. Реализация программы:

- 1) В файлах *opencl_handler.cpp* и *opencl_handler.hpp* созданы функции для инициализации и работы с OpenCL: create_device нужно для выбора конкретного устройства на компьютере для вычислений, create_context создает контекст для устройства, build_program компилирует программу для использования на выбранном устройстве, create_buffer создает буфер для передачи данных между хостом и устройством вычисления, fill_buffer заполняет буфер значениями, create_queue создает очередь команд для подачи на контекст, create_kernel создает ядро для выполняения программы на устройстве, set_kernel_arg устанавливает параметр для ядра, send_to_execution отправляет программу на ядре на выполнение на устройстве, read_result_from_buf чтение результата из буфера.
- 2) В utility.cpp, utility.hpp находятся дополнительные функции: read_file для чтения содержимого файла в строку, ppm_draw для записи вычисленного фрактала в файл ppm картинки.
- 3) mandelbrot.cl содержит код для вычисления фрактала Мальденброта, который выполняется на устройстве под управлением OpenCL.
- 4) main.cpp главный файл проекта, который запускает процесс вычисления фрактала и получение изображения.

2. Визуализация полученного результата:

После работы программы был получен следующий результат (см. рисунок 1):

Рисунок 1 – Вычисленный фрактал Мальденброта

3. Оценка производительности:

• Зависимость времени выполнения от количества итераций для отрисовки фрактала (на фиксированных параметрах x_max = 4; y_max = 4; width = 2000; height = 2000) см. в таблице 1:

Таблица 1 – Время выполнения от числа итераций вычисления фрактала

Количество итераций	Intel	встроенная,	время	Nvidia	дискретная,	время
	выполнения (сек)			выполнения (сек)		

100	0.008682	0.008642
200	0.031224	0.012403
300	0.01556	0.01665
400	0.021714	0.047249
500	0.030765	0.06369
600	0.044727	0.065868
700	0.056507	0.055117
800	0.04537	0.034338
900	0.053168	0.041994

• Зависимость времени выполнения от ширины и высоты обрабатываемого множества фрактала (на фиксированных параметрах x_max = 4; y_max = 4; iterations = 1000) см. в таблице 2:

Таблица 2 – Время выполнения от ширины и высоты

Ширина и высота (пиксели)	Intel встроенная, время	Nvidia дискретная, время		
	выполнения (сек)	выполнения (сек)		
800	0.035172	0.009678		
1600	0.038852	0.034459		
2400	0.076155	0.074201		
3200	0.131717	0.130847		
4000	0.200918	0.228936		
4800	0.287071	0.289579		
5600	0.391913	0.390787		
6400	0.508236	0.512457		
7200	0.641895	0.639952		

• Зависимость времени выполнения от максимальных значений реальной и мнимой части для вычисления фрактала (на фиксированных параметрах width = 2000; height = 2000; iterations = 1000) см. в таблице 3:

Таблица 3 — Время выполнения от максимальных значений реальной и мнимой части для вычисления фрактала

x_max, y_max	Intel	встроенная,	время	Nvidia	дискретная,	время
	выполнения (сек)			выполнения (сек)		

1	0.344504	0.350404
2	0.148138	0.14885
3	0.0820554	0.0820953
4	0.0541535	0.0545258
5	0.0435677	0.0436616
6	0.0329335	0.0389207
7	0.0286191	0.0286602
8	0.027294	0.0256272
9	0.026096	0.0237956

Исходя из данных таблиц встроенная видеокарта Intel и дискретная Nvidia показали примерно одинаковую производительность, однако испытания не чистые, так как и дискретная Nvidia параллельно с отрисовкой фрактала использовалась в отрисовке графики компьютера и нескольких приложений. По параметрам вычисления фрактала получились следующие оценки: чем больше число максимальное число итераций вычисления фрактала, тем выше время вычисления; так же с высотой и шириной множества; для максимальных значений реальной и мнимой части фрактала ситуация обратная, чем она больше, тем выше скорость вычисления (так как область, занимаемая множеством фрактала, уменьшается).

Заключение.

В ходе работы был изучен фреймворк OpenCL для написания программ, связанных с параллельными вычислениями на различных графических и центральных процессорах. Был реализован расчёт фрактала Мандельброта на OpenCL. Как показала оценка производительности в "не совсем справедливой" оценке встроенная видеокарта Intel и дискретная Nvidia показали примерно одинаковую производительность.