1.723 – Computational Methods for Flow in Porous Media Homework #1

Due on February 12, 2015

Problem 1 (4 points) The files berea_xsection_top.dat and berea_xsection_bot.dat (available for download at the class website as a zip file) each contain a matrix of 400×400 pixels, representing cross sections from a micro-CT image of a sample of Berea sandstone (a value of 0 means void, a value of 1 means solid rock).

- 1. Plot the two cross sections of the micro-CT image using MATLAB.
- 2. From the cross sections, estimate the porosity of the rock.
- 3. For each cross section, plot (together, on the same graph) the average porosity as a function of window size, each time starting at the center of the image.
- 4. From your previous answer, estimate the length scale (in pixel units) of the representative elementary volume.

Problem 2 (2 points) A porous medium has a permeability of 1 darcy.

- 1. What is the mediums permeability in cm²?
- 2. What is the hydraulic conductivity of this medium for water (kinematic viscosity ν_w =0.013 cm²/s) and for a viscous oil (ν_o =1.8 cm²/s)?

Problem 3 (4 points) At the course website you will find a document with the experimental data collected by Darcy (darcydata_partial.xls). Use linear regression to obtain estimates of the permeabilities of the sand in all series of experiments. Give the value of the hydraulic conductivity K (in cm/s and m/day) and the associated permeability k (in md) for each experiment. Comment on the results.

Hint: The regression of Q vs. Δh should have a zero intercept.