Improves Controllable Text Generation

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, Tatsunori Hashimoto

Stanford University

Pretrained AR-LM

Pre-trained large Autoregressive Language Models (AR-LMs) can generate high-quality text, but in order to be applicable to everyday life, it is necessary to control the generated text.

It is common to use pairs of (control, text) to fine-tune the model

Issue

- Updating LM parameters for different tasks is expensive.
- Difficult to combine multiple conditions.
- The fixed generation order limits the models' flexibility in many controllable generation settings

Controllable

$p(x_{i+1}|x_{0:i},a)$ $\propto p(a|x_{0:i+1})p(x_{i+1}|x_{0:i})$

• A pretrained large LM is responsible for generating fluent text.

 Use additional small models to control the attributes of the generated text.

- No need to fine-tune the parameters of the LM.
- Only controls at the attribute level are available.

Plug & Play

Controllable

DPMs for Text

Diffusion probabilistic models (DPMs) have demonstrated great success in **continuous data domains**, producing images and audio that have state-of-the-art sample quality.

And can use gradient-based control methods for effective control. However...

Past Works in Text

- Discrete DPMs.
- Unable to use gradient-based control methods.

Continuous DPMs for Text

Continuous DPMs for Text

- Starts with a sequence of Gaussian noise vectors
- Incrementally denoises them into vectors corresponding to words.

$$\mathbf{x}_{\mathrm{T}} \sim \mathcal{N}(0, I) \in \mathbb{R}^{L \times d}$$

Continuous DPMs for Text

- Starts with a sequence of Gaussian noise vectors
- Incrementally denoises them into vectors corresponding to words.
- There is no fixed generation order so it can be used directly for infilling tasks.

Gradient-based Control

- Change sampling paths using Gradient-based Controls common to DPMs.
- Tested on six tasks, with control over text content and grammatical structure, to demonstrate the controllability of Diffusion-LM.

Loss (MSE ver.)

$$\mathcal{L}_{\text{simple}}^{\text{e2e}}(\mathbf{w}) = \underbrace{\left[\left\| \mu_{\theta}(\mathbf{x}_{t}, t) - \hat{\mu}(\mathbf{x}_{t}, \mathbf{x}_{0}) \right\|^{2} - \log p_{\theta}(\mathbf{w} | \mathbf{x}_{0})}_{\text{Possing}} \underbrace{\left[\left\| \mathbf{x}_{t} \right\|_{\mathbf{x}_{t-1}}^{\text{Rounding}} \right]_{\mathbf{x}_{t-1}}^{\text{Text}}}_{\text{Possing}} \underbrace{\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t} \right)}_{\mathbf{x}_{t-1}} \underbrace{\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t} \right)}_{\mathbf{x}_{t-1}} \underbrace{\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t-1} \right)$$

Loss (MSE ver.)

$$\mathcal{L}_{\text{simple}}^{\text{e2e}}(\mathbf{w}) = \left[\| \mu_{\theta}(\mathbf{x}_{t}, t) - \hat{\mu}(\mathbf{x}_{t}, \mathbf{x}_{0}) \|^{2} - \log p_{\theta}(\mathbf{w} | \mathbf{x}_{0}) \right]$$
Gaussian Noise
$$\mathbf{x}_{T} \longrightarrow \mathbf{x}_{t} \xrightarrow{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})} \mathbf{x}_{t-1} \longrightarrow \mathbf{x}_{0} \xrightarrow{p_{\theta}(\mathbf{w} | \mathbf{x}_{0})} \mathbf{w}$$
Noising

Rounding Errors

Empirically, the model fails to generate $\mathbf{x_0}$ that commits to a single word.

Only starting the denoising at \underline{t} close to $\underline{0}$ can make \underline{x}_0 converge

to the word embedding.

$$\hat{\mu}(\mathbf{x}_t, \mathbf{x}_0) = \mathbf{x}_{t-1}$$

Reducing Rounding Errors

This objective quickly learn that x_0 should precisely centered at a word embedding.

$$\mathcal{L}_{\text{simple}}^{\text{e2e}}(\mathbf{w}) = \left[\|\mu_{\theta}(\mathbf{x}_t, t) - \mathbf{x}_0\|^2 - \log p_{\theta}(\mathbf{w}|\mathbf{x}_0) \right]$$

$$\hat{\mu}(\mathbf{x}_t, \mathbf{x}_0) = \mathbf{x}_t \mathbf{x}_0$$

Reducing Rounding Errors

Sampling Algorithm

 θ : parameter of Diffusion-LM, φ : parameter of Attribute Model

$$\mathbf{x}_{T} \sim \mathcal{N}(0, I) \in \mathbb{R}^{L \times d}$$

$$\mathbf{for} \text{ t in } \{T, ..., 1\}:$$

$$\mu_{t} \leftarrow \sqrt{\overline{a}_{t}} \cdot \mathbf{Clamp}(\mu_{\theta}(\mathbf{x}_{t}, t))$$

$$\mathbf{x}_{t-1} \sim \mathcal{N}(\mu_{t}, 1 - \overline{a}_{t}) \in \mathbb{R}^{L \times d}$$

$$\mathbf{for} \text{ k in } \{1, ..., K\}:$$

$$\Delta \mathbf{x}_{t-1} \leftarrow \nabla_{\mathbf{x}_{t-1}} \left[\lambda \| \mu_t - \mathbf{x}_{t-1} \|^2 - \log p_{\varphi}(c | \mathbf{x}_{t-1}) \right]$$

$$\mathbf{x}_{t-1} \leftarrow \mathrm{Adagrad}(\mathbf{x}_{t-1}, \Delta \mathbf{x}_{t-1})$$

return $p_{\theta}(\mathbf{w}|\mathbf{x}_0)$

- **Replace** the predicted x_0 with the closest word embedding.
 - Applying the clamping trick to early diffusion steps with t near T may be sub-optimal.

$$\log p_{\varphi}(c|\mathbf{x}_{t-1})$$

return $p_{\theta}(\mathbf{w}|\mathbf{x}_0)$

Multiple Gradient Steps

Sampling Algorithm

```
\theta: parameter of Diffusion-LM, \varphi: parameter of Attribute Model
\mathbf{x}_T \sim \mathcal{N}(0, I) \in \mathbb{R}^{L \times d}
                                                                                             Increase control strength
for t in \{T,...,1\}:
     \mu_t \leftarrow \sqrt{\bar{a}_t} \cdot \text{Clamp}(\mu_{\theta}(\mathbf{x}_t, t))
\mathbf{x}_{t-1} \sim \mathcal{N}(\mu_t, 1 - \bar{a}_t) \in \mathbb{R}^{L \times d}
for k in \{1, ..., K\}:
           \Delta \mathbf{x}_{t-1} \leftarrow \nabla_{\mathbf{x}_{t-1}} |\lambda| |\mu_t - \mathbf{x}_{t-1}||^2 - \log p_{\varphi}(c|\mathbf{x}_{t-1})|
           x_{t-1} \leftarrow Adagrad(x_{t-1}, \Delta x_{t-1})
```

Fluency Regularization

Sampling Algorithm

```
\theta: parameter of Diffusion-LM, \varphi: parameter of Attribute Model
\mathbf{x}_T \sim \mathcal{N}(0, I) \in \mathbb{R}^{L \times d}
for t in \{T,...,1\}:
      \mu_t \leftarrow \sqrt{\overline{a}_t} \cdot \text{Clamp}(\mu_{\theta}(\mathbf{x}_t, t))
      \mathbf{x}_{t-1} \sim \mathcal{N}(\mu_t, 1 - \bar{a}_t) \in \mathbb{R}^{L \times d}
                                                                                           maintain fluency
     for k in \{1, ..., K\}:
          \Delta \mathbf{x}_{t-1} \leftarrow \nabla_{\mathbf{x}_{t-1}} \left[ \lambda \| \mu_t - \mathbf{x}_{t-1} \|^2 - \log p_{\varphi}(c | \mathbf{x}_{t-1}) \right]
          x_{t-1} \leftarrow Adagrad(x_{t-1}, \Delta x_{t-1})
return p_{\theta}(\mathbf{w}|\mathbf{x}_0)
```

Fluency Regularization

Sampling Algorithm

 θ : parameter of Diffusion-LM, φ : parameter of Attribute Model $\mathbf{x}_T \sim \mathcal{N}(0, I) \in \mathbb{R}^{L \times d}$

for t in {T,...,1}:

$$\mu_t \leftarrow \sqrt{\bar{a}_t} \cdot \text{Clamp}(\mu_{\theta}(\mathbf{x}_t, t))$$

$$\mathbf{x}_{t-1} \sim \mathcal{N}(\mu_t, 1 - \bar{a}_t) \in \mathbb{R}^{L \times d}$$

for k in $\{1, ..., K\}$:

$$\Delta \mathbf{x}_{t-1} \leftarrow \nabla_{\mathbf{x}_{t-1}} \left[\lambda \| \mu_t - \mathbf{x}_{t-1} \|^2 - \log p_{\varphi}(c | \mathbf{x}_{t-1}) \right]$$

$$\mathbf{x}_{t-1} \leftarrow \mathrm{Adagrad}(\mathbf{x}_{t-1}, \Delta \mathbf{x}_{t-1})$$

return
$$p_{\theta}(\mathbf{w}|\mathbf{x}_0)$$

Decoding by Minimum Bayes Risk

Examples

input (Semantic Content) output text	food : Japanese Browns Cambridge is good for Japanese food and also children friendly near The Sorrento .
input (Parts-of-speech) output text	PROPN AUX DET ADJ NOUN NOUN VERB ADP DET NOUN ADP DET NOUN PUNCT Zizzi is a local coffee shop located on the outskirts of the city .
input (Syntax Tree) output text	(TOP (S (NP (*) (*) (*)) (VP (*) (NP (NP (*) (*)))))) The Twenty Two has great food
input (Syntax Spans) output text	(7, 10, VP) Wildwood pub serves multicultural dishes and is ranked 3 stars
input (Length) output text	14 Browns Cambridge offers Japanese food located near The Sorrento in the city centre.
input (left context) input (right context) output text	My dog loved tennis balls. My dog had stolen every one and put it under there. One day, I found all of my lost tennis balls underneath the bed.

Training Dataset. E2E & ROCStories. Challenge. ROCStories > E2E.

Semantic Content

input (Semantic Content) output text

food : Japanese

Browns Cambridge is good for Japanese food and also children friendly near The Sorrento .

Given a **field** and **value**, generate a sentence that covers field=value.

- Classifier-Based
- Train an autoregressive LM (GPT-2 small architecture) to predict the (field, value) pair.

<value> ← AR-LM(<sentence> <eos> <field> <eos>)

Parts-of-speech

Generate a sequence of words of the same length whose POS tags match the target.

input (Parts-of-speech) output text

PROPN AUX DET ADJ NOUN NOUN VERB ADP DET NOUN ADP DET NOUN PUNCT Zizzi is a local coffee shop located on the outskirts of the city .

- Classifier-Based
- BERT-base architecture

parametrized by a parts-of-speech tagger, which estimates the probability of the target POS sequence conditioned on the latent variables.

Syntax Tree

Given a target syntactic parse tree, generate text whose syntactic parse matches the given parse.

```
input (Syntax Tree) (TOP (S (NP (*) (*) (*) (VP (*) (NP (NP (*) (*))))))
output text The Twenty Two has great food
```

- Classifier-Based
- Transformer-based constituency parser
 Constituency parsing with a self-attentive encoder, ACL, 2018

Syntax Spans

Given a target (span, syntactic category) pair, generate text whose parse tree over span [i, j] matches the target syntactic category.

input (Syntax Spans) (7, 10, VP)
output text Wildwood pub serves multicultural dishes and is ranked 3 stars

- Classifier-based
- Use the same parser trained for the syntax tree

Length & Infilling

Length: Given a target length and generate a sequence with a length within ± 2 of the target.

Infilling: Given a left context and a right context, and generate a sentence to connect them.

Classifier-Free

input (Length)	14
output text	Browns Cambridge offers Japanese food located near The Sorrento in the city centre.
input (left context)	My dog loved tennis balls.
input (right context)	My dog had stolen every one and put it under there.
output text	One day, I found all of my lost tennis balls underneath the bed.

Infilling Algorithm

Algorithm 1 Infilling Algorithm

```
prefix, suffix
infix length
T: number of diffusion steps
p_{\theta}: trained diffusion model
q_{\theta}: forward diffusion process
 1: x_T(\inf x) \sim \text{Gaussian}(0, I)
 2: for t \in \{T-1,\ldots,0\} do
 B:
            x_{t+1}(\text{prefix}) \sim q_{\theta}(x_{t+1} \mid \text{EMB}(\text{prefix}))
            x_{t+1}(\text{suffix}) \sim q_{\theta}(x_{t+1} \mid \text{EMB}(\text{suffix}))
            x_{t+1} = [x_{t+1}(prefix), x_{t+1}(infix), x_{t+1}(suffix)]
            x_t \sim p_{\theta}(x_t \mid x_{t+1})
 4:
 5: return Round(x_0(infix))
```

Main Results

Classifier-Guided

	Semantic Content		Parts-of-speech		Syntax Tree		Syntax Spans		Length	
	ctrl ↑	lm↓	ctrl ↑	lm↓	ctrl ↑	lm↓	ctrl ↑	lm↓	ctrl ↑	lm↓
PPLM	9.9	5.32	_	-	-	_	-	-	-	-
FUDGE	69.9	2.83	27.0	7.96	17.9	3.39	54.2	4.03	46.9	3.11
Diffusion-LM	81.2	2.55	90.0	5.16	86.0	3.71	93.8	2.53	99.9	2.16
FT-sample	72.5	2.87	89.5	4.72	64.8	5.72	26.3	2.88	98.1	3.84
FT-search	89.9	1.78	93.0	3.31	76.4	3.24	54.4	2.19	100.0	1.83

Both PPLM and FUDGE are plug-and-play controllable generation approaches based on AR-LMs trained from scratch using the GPT-2 small architecture.

Im-score. Feed the generated text to a teacher LM (i.e., a carefully fine-tuned GPT-2 model) and report the perplexity of generated text under the teacher LM.

Main Results

Classifier-Guided

	Semantic Content		Parts-of-speech		Syntax Tree		Syntax Spans		Length	
	ctrl ↑	lm↓	ctrl ↑	lm↓	ctrl ↑	lm↓	ctrl ↑	lm↓	ctrl ↑	lm↓
PPLM	9.9	5.32	-	_	_	-	-	-	-	-
FUDGE	69.9	2.83	27.0	7.96	17.9	3.39	54.2	4.03	46.9	3.11
Diffusion-LM	81.2	2.55	90.0	5.16	86.0	3.71	93.8	2.53	99.9	2.16
FT-sample FT-search	72.5 89.9	2.87 1.78	89.5 93.0	4.72 3.31	64.8	5.72 3.24	26.3 54.4	2.88 2.19	98.1 100.0	3.84 1.83

	Semantic Cor	ntent + Syntax T	Semantic Content + Parts-of-speech			
	semantic ctrl ↑	syntax ctrl †	semantic ctrl ↑	POS ctrl ↑	lm↓	
FUDGE	61.7	15.4	3.52	64.5	24.1	3.52
Diffusion-LM	69.8	74.8	5.92	63.7	69.1	3.46
FT-PoE	61.7	29.2	2.77	29.4	10.5	2.97

Im-score. Feed the generated text to a teacher LM (i.e., a carefully fine-tuned GPT-2 model) and report the perplexity of generated text under the teacher LM.

Main Results

Infilling

		Human Eval			
	BLEU-4↑	ROUGE-L↑			
Left-only	0.9	16.3	3.5	38.5	n/a
DELOREAN	1.6	19.1	7.9	41.7	n/a
COLD	1.8	19.5	10.7	42.7	n/a
Diffusion	7.1	28.3	30.7	89.0	$0.37^{+0.03}_{-0.02}$
AR	6.7	27.0	26.9	89.0	0.39 ^{+0.02} _{-0.03}

AR-infilling.
$$x_{i+1} \leftarrow AR-LM(x_{0:l}; x_{r:end}; x_{l+1:l}), l < l < r$$

Conclusions

This study proposes a **novel text generation model** based on a **Continuous Diffusion Model** and exhibits good performance on six different control tasks.

Advantages

- High flexibility and quality
- Achieved performance similar to or even better than FT-AR without fine-tune.

Drawbacks

- Higher perplexity.
- Decoding is substantially slower.
- Training converges more slowly.

Q & A

Thanks for your attention.

Doubt

The GPT used in the experiment is not a model pre-trained with a large amount of data, which is different from the research environment of PPLM.

Next Version

DiffuSeq: Sequence to Sequence Text Generation with Diffusion Models

Prediction

In the near future, there will be research institutions developing large-scale pre-trained Diffusion-based Language Models. (Recorded on 2022/11/07)

Additional Information

$p(x_{i+1}|x_{0:i},a)$ $\propto p(a|x_{0:i+1})p(x_{i+1}|x_{0:i})$

$$x_{i+1}, H_{i+1} \leftarrow LM\left(x_i, H_i + \Delta H_i^{(T)}\right)$$

$$\Delta H_i^{(t+1)}$$

$$\leftarrow \Delta H_{i}^{(t)} + \alpha \frac{\nabla_{\Delta H_{i}} \log p\left(a \middle| H_{i} + \Delta H_{i}^{(t)}\right)}{\left\|\nabla_{\Delta H_{i}} \log p\left(a \middle| H_{i} + \Delta H_{i}^{(t)}\right)\right\|^{\gamma}}$$

PPLM

