# **SimBALink**

## 1 Vehicle

This system models the forces acting on the vehicle.



Figure 1: Vehicle Diagram

## 1.1 Gearing and Chain

This system models the gear and chain in such a way to allow for wheel slip.

## 1.2 Inputs and outputs

## 1.2.1 Inputs

| Input        | Symbol  | Unit |
|--------------|---------|------|
| Motor Torque | $	au_m$ | Nm   |
| Tire Torque  | $	au_t$ | Nm   |

### 1.2.2 Outputs

| Output        | Symbol     | Unit  |
|---------------|------------|-------|
| Tire Velocity | $\omega_t$ | rad/s |
| Gear Torque   | $\tau_q$   | Nm    |

#### 1.2.3 Background, rationale, modeling strategy

The tire, chain, gear, and motor are modeled as a lumped inertia that is accelerated by the motor torque and tire torque (modeled as a load). The chain is modeled lossey through an efficiency map. Gearing is modeled as a ratio that linearly changes motor torque to gear torque. This method of modeling allows for wheel slip down the line.

$$\dot{\omega_t} = \frac{\tau_g - \tau_t}{J_m + J_g + J_t + J_c} \tag{1}$$

$$\tau_g = \frac{\tau_m \eta_c(\omega_t)}{R_g} \tag{2}$$

#### **1.2.4** States

| State         | Symbol     | Unit  |
|---------------|------------|-------|
| Tire Velocity | $\omega_t$ | rad/s |

#### 1.2.5 Parameters

| Symbol | Unit                   |
|--------|------------------------|
| $J_m$  | $kg*m^2$               |
| $J_g$  | $kg*m^2$               |
| $J_c$  | $kg*m^2$               |
| $J_t$  | $kg*m^2$               |
| $R_g$  | $\frac{\tau_g}{	au_m}$ |
|        | $J_m$ $J_g$ $J_c$      |

#### 1.2.6 Functions

|     | /            | 1 |
|-----|--------------|---|
| n I | 1.1.         | ١ |
| IC  | $\omega_{t}$ | , |

| Type   | Description      | Symbol     | Unit  |
|--------|------------------|------------|-------|
| Input  | Wheel Speed      | $\omega_t$ | rad/s |
| Output | Chain Efficiency | n/a        | %     |

The function is modeled as a look up table following the curve below described in the paper "Optimization of Chain Drives in Sports Motorcycles".

#### 1.2.7 Assumptions

- The chain and gearing is rigid (no chain/gear dynamics)
- Chain efficiency is only a function of wheel speed

#### 1.3 Validation

The model was subjected to a motor torque of 10 and an increasing tire torque. The model works correctly. The wheel increases in speed and the correctly models the losses in the chain.



Figure 2: Estimated Chain Efficiency



### 1.4 Brakes

## 1.5 Inputs and outputs

#### 1.5.1 Inputs

| Input         | Symbol     | Unit  |
|---------------|------------|-------|
| Brake Command | beta       | %     |
| Wheel Speed   | $\omega_t$ | rad/s |

### **1.5.2** Outputs

| Output              | Symbol | Unit |
|---------------------|--------|------|
| Brake Force on Tire | $F_b$  | N    |

### 1.5.3 Background, rationale, modeling strategy

The brake is modeled as a friction force and a constant that converts  $\beta$  to a force.

$$F_b = \mu_b \omega_t \beta k_b \tag{3}$$

#### 1.5.4 Variables

| Var                           | Symbol  | $\operatorname{Unit}$ |
|-------------------------------|---------|-----------------------|
| Brake Coefficient of Friction | $\mu_b$ | $\frac{N}{rad/s}$     |
| Force Constant                | $k_b$   | $\frac{N}{\%}$        |

### 1.5.5 Assumptions

- $\bullet$  Brake percentage to friction force is linear
- The tire never locks

### 1.6 Tires

## 1.7 Inputs and outputs

### 1.7.1 Inputs

| Input            | Symbol    | Unit |
|------------------|-----------|------|
| Brake Force      | $F_b$     | N    |
| Gear Torque      | $	au_g$   | Nm   |
| Wheel Forces[3]  | $F_w$     | N[3] |
| Vehicle Velocity | v         | m/s  |
| Lead Angle       | $	heta_l$ | rad  |

#### 1.7.2 Outputs

| Output              | Symbol    | Unit  |
|---------------------|-----------|-------|
| Tire Torque         | $	au_t$   | Nm    |
| Acceleration Force  | $F_a$     | N     |
| Acceleration Torque | $ 	au_a $ | Nm    |
| Tire Road Torque    | $ 	au_r $ | Nm    |
| Wheel Slip          | $\kappa$  | ratio |
| Max Force           | $F_{max}$ | N     |

#### 1.7.3 Background, rationale, modeling strategy

The tire is modeled in three parts, rolling resistance, Load and Torque, and Traction Limiting. Force directions are defined as longitudinal(long), lateral(lat), and normal(n). Longitudinal is along the direction of the motorcycle (when moving straight). Lateral is orthogonal to Longitudinal axis. Normal 3-D orthogonal to lateral and longitudinal, in general the axis to the road on no incline.

The tire models slip which in turn is used to calculate the force the tire exerts on to the motorcycle. Wheel slip occurs when because the tire does not exert a force on to the vehicle until there is some wheel slip, thus causing the tire to spin up causing wheel slip.

## Rolling Resistance

$$Frr = \begin{cases} (0.0085 + \frac{0.18}{p_t} + \frac{1.59*10^{-6}}{p_t} v_{kph}^2) F_{w,n} &: v_{kph} \le 165(km/h) \\ (\frac{0.18}{p_t} + \frac{2.91*10^{-6}}{p_t} v_{kph}^2) F_{w,n} &: v_{kph} > 165(km/h) \end{cases}$$
(4)

### Wheel Slip

$$\kappa = -\frac{v - \omega_t r_t(\theta_l)}{v} \tag{5}$$

$$\mu_{t,gnd} = D_{\kappa} \sin(C_{\kappa} \arctan[B_{\kappa}\kappa - E_{\kappa}(B_{\kappa}\kappa - \arctan B_{\kappa}\kappa)])$$
 (6)

#### Load and Torque

$$\tau_r = F_{w,long} r_t(\theta_l) + F_b r_b + F_{rr} r_t(\theta_l) \tag{7}$$

### **Traction Limiting**

$$F_a = \mu_{t,gnd} F_{w,n} - F_{w,long} \tag{8}$$

#### Torque on Chain/Gear

$$\tau_a = F_a r_t(\theta_l) \tag{9}$$

$$\tau_t = \tau_a + \tau_r \tag{10}$$

The tire coefficient  $(\mu_{t,gnd})$  is modeled using the "Magic Formula" as shown below. Where  $D_{\kappa}$  is the maximum tire coefficient of the tire.



Figure 4: Magic Formula

#### 1.7.4 Variables

| Var              | Symbol        | Unit |
|------------------|---------------|------|
| Rolling Constant | $K_t$         | n/a  |
| Tire coefficient | $\mu_{t,gnd}$ | n/a  |
| Force            | F             | N    |

#### 1.7.5 Parameters

| Param.               | Symbol                                           | Unit |
|----------------------|--------------------------------------------------|------|
| Tire Pressure        | $p_t$                                            | bar  |
| Brake Caliper Radius | $r_b$                                            | m    |
| Magic Formula        |                                                  |      |
|                      | $A_{\kappa}, B_{\kappa}, C_{\kappa}, D_{\kappa}$ | n/a  |

#### 1.7.6 Function

| $r_t(\theta_l)$ |             |            |      |
|-----------------|-------------|------------|------|
| Type            | Description | Symbol     | Unit |
| Input           | Lean Angle  | $\theta_l$ | rad  |
| Output          | Tire Radius | n/a        | m    |

### 1.7.7 Assumptions

- Maximum acceleration force should also depend on lateral forces on the vehicle. However this is not modeled because it requires modeling of high-side and low-side dynamics. The Rider model should control for a safe operating area of the motorcycle to compensate for this assumption.
- No tire deformation
- No tire temperature dynamics
- $\bullet\,$  No change in rolling resistance with lean angle

## 2 Calibration

The magic formula was calibrated using non-linear least squares to data collected from BikeSim. The calibration was fit to data for a normal force of 400 Newtons.



Figure 5: Magic Formula Calibration

It can be seen the fit is very good.

The fit was then compared to other normal forces.



Figure 6: Magic Formula validation

The fit is not longer perfect, it can be seen the tire coefficient changes with normal force but it is not being modeled.

## 3 Validation

The tire model was swept through different slip speeds to validate correct shapes. All validation looks correct but multiple parts need to be connected to check for proper dynamics.



Figure 7: Tire Validation

### 3.1 Wheel Forces

Wheel Forces does nothing. It would allow for the environment to affect tire forces.

$$F_{\omega,long} = F_{c,long} \tag{11}$$

$$F_{\omega,n} = F_{c,n} \tag{12}$$

### 3.2 Chassis

This system models the chassis of the motorcycle including the velocity of the motorcycle and forces on the road.

The forces have a notation of Longitudinal (long), Normal(n), and Lateral (lat). Longitudinal being the direction the motorcycle is moving. Lateral at a 2D right angle to Longitudinal direction. Normal is orthogonal to others.

## Inputs and outputs

### **3.3.1** Inputs

| Input              | Symbol     | Unit         |
|--------------------|------------|--------------|
| Tire Force         | $F_t$      | N            |
| Air Density        | ho         | $kg/m^3$ rad |
| Road Gradient      | $\theta_r$ | rad          |
| Road Corner Radius | $R_c$      | m            |

### 3.3.2 Outputs

| Output            | Symbol     | Unit |
|-------------------|------------|------|
| Vehicle Velocity  | v          | m/s  |
| Distance Traveled | d          | m    |
| Lean Angle        | $\theta_l$ | rad  |
| Chassis Forces    | $F_c$      | N[3] |

### 3.3.3 Background, rationale, modeling strategy

The Chassis is modeled point mass with drag.

$$F_a = \frac{1}{2}\rho C_d A v^2 \tag{13}$$

$$F_{c,long} = F_a + gm\sin(\theta_r) \tag{14}$$

$$F_{c,n} = mg\cos(\theta_r) \tag{15}$$

$$\dot{v} = \frac{F_t}{m} \tag{16}$$

$$\dot{d} = v \tag{17}$$

$$\dot{d} = v \tag{17}$$

$$O_l = \arctan(\frac{v^2}{gR_c}) \tag{18}$$

#### **3.3.4** States

| State    | Symbol        | Unit |
|----------|---------------|------|
| Distance | d             | m    |
| Velocity | $\mid v \mid$ | m/s  |

### 3.3.5 Variables

| Output     | Symbol | Unit |
|------------|--------|------|
| Drag Force | $F_a$  | N    |

#### 3.3.6 Parameters

| Param.             | Symbol        | Unit              |
|--------------------|---------------|-------------------|
| Drag Area          | $C_dA$        | $\frac{N}{rad/s}$ |
| Gravity            | $\mid g \mid$ | $m/s^2$           |
| Mass of Motorcycle | $\mid m \mid$ | kg                |

### 3.3.7 Assumptions

- The full weight of the motorcycle is always on the correct tire for breaking or acceleration. That is not a bad assumption because maximum braking or acceleration will happen at wheelie or stoppie when there is only one tire on the ground.
- Lean angle does not affect Aero Drag
- No lateral forces
- lean angle is optimal lean angle given corner radius and speed

## 4 Calibration

The model was calibrated against coastdown data using linear least squares. Both  $C_dA$  and Rolling resistance values were found using the following equation.

$$Force = 0.5\rho V^2 + mgV\cos(\alpha) + mg\sin(\alpha) \tag{19}$$

$$m = 236.04 + 90.71 \tag{20}$$

$$\rho = 1.187 
\tag{21}$$

$$\alpha = -.0157 \tag{22}$$



Figure 8: CdA Calibration Validation

The figure above shows the calibrated value and the guess compared to data. The calibrated value is close to the guess and follows the data well.

## 5 Validation

First the Chassis model was validated by checking the lean angle and normal force by changing road gradient and corder radius. Both normal force and lean angle behave correctly



Figure 9: Chassis Validation

Then the Chassis model was validated by simulating a coast down and comparing it against collected data. The data follows the simulation well, but the CdA value  $\frac{1}{2}$ 



Figure 10: Chassis Validation Coast Down

## 5.1 Validation

A PI controller was added to the vehicle model as a whole to control for speed. The test shows the vehicle starting at 20 m/s and going to 40 m/s. The model works well.



Figure 11: Vehicle Validation Speed



Figure 12: Vehicle Validation Motor Torque



Figure 13: Vehicle Validation Slip

The Model was also validated with coast down data by making the command velocity 0.



Figure 14: Vehicle Validation Coastdown

## 6 Environment

This system models the environment of the motorcycle is riding in.

Force directions are defined as longitudinal(long), lateral(lat), and normal(n). Longitudinal is along the direction of the motorcycle (when moving straight). Lateral is orthogonal to Longitudinal axis. Normal 3-D orthogonal to lateral and longitudinal, in general the axis to the road on no incline.

## 6.1 Inputs and outputs

#### **6.1.1** Inputs

| Input           | Symbol | Unit |
|-----------------|--------|------|
| Distance Travel | d      | m    |

#### 6.1.2 Outputs

| Output                        | Symbol     | Unit     |
|-------------------------------|------------|----------|
| Environment Forces on Tire[3] | $F_t$      | N[3]     |
| Road Gradient                 | $\theta_r$ | rad      |
| Ambient Temperature           | $T_{amb}$  | K        |
| Air Pressure                  | P          | Pa       |
| Air Density                   | $\rho$     | $kg/m^3$ |
| Corner Radius                 | $R_c$      | m        |

### 6.1.3 Background, rationale, modeling strategy

The Environment only models air density, air temperature, and road gradient.

$$\theta_r = \arctan\left(\frac{\frac{d}{dt}h(d)}{\frac{d}{dt}d}\right)$$
 (23)

$$T_{amb} = T_0 - Lh(d) (24)$$

$$P = P_0 \left( 1 - \frac{Lh(d)}{T_0} \right)^{\frac{gM}{RL}}$$

$$\rho = \frac{PM}{1000RT}$$
(25)

$$\rho = \frac{PM}{1000RT} \tag{26}$$

#### 6.1.4 Parameters

| Parameter             | Symbol | Unit              |
|-----------------------|--------|-------------------|
| Temperature Lapse     | L      | K/m               |
| Initial Pressure      | $P_0$  | Pa                |
| Initial Temperature   | $T_0$  | K                 |
| Gravity               | g      | $m/s^2$           |
| Molar mass of Dry Air | M      | kg/mol            |
| Ideal Gas Constant    | R      | $\frac{J}{mol*K}$ |

#### 6.1.5Look up Table

h(d)

| Type     | Description     | Symbol | Unit |
|----------|-----------------|--------|------|
| Input    | Distance Travel | d      | m    |
| Output   | height          | n/a    | m    |
| $R_c(d)$ |                 |        | '    |
| Type     | Description     | Symbol | Unit |
| Input    | Distance Travel | d      | m    |
| Output   | Corner Radius   | n/a    | m    |

#### 6.1.6 Assumptions

• The air is dry

• Temperature lapse rate right is correct (no inversion)

## 7 Validation

To validate the road gradient the Isle of Man altitude map was supplied to the model and the road gradient was plotted. To validate air density data from Colorado was compared to a simulated data.



### 8 Powertrain

## 9 Block diagram

soon

## 10 Inputs and outputs

## 10.1 Inputs

| Input      | Symbol   | Unit |
|------------|----------|------|
| DC         | T        | Λ    |
| DC current | $I_{dc}$ | A    |

Add MATLAB symbols

### 10.2 Outputs

| Output           | Symbol   | Unit |
|------------------|----------|------|
| State of charge  | SOC      | %    |
| Terminal voltage | $V_{dc}$ | V    |

## 11 Background, rationale, modeling strategy

#### 11.1 Electrical model

Each battery cell is modeled as an equivalent circuit:

Figure 16: Battery cell equivalent circuit

where:

 $V_{oc}$  is the battery open-circuit voltage in volts

 $R_0$  is the battery zero-order resistance (AC resistance) in ohms

 $R_1$  is the battery first-order resistance in ohms

 $C_1$  is the battery first-order capacitance in farads

The battery open-circuit voltage,  $V_{oc}$ , is a function of the remaining cell capacity Q, and is represented by a lookup table.

For a series circuit composed of n identical battery cells, the terminal voltage of the series circuit is  $n \times V_{oc}$ .

#### 11.2 Thermal model

The battery pack thermal model is not implemented. It is assumed that the battery open-circuit voltage has no temperature dependence.

## 12 Parameters

| Parameter                                                | Symbol                 | MATLAB variable | Unit        |
|----------------------------------------------------------|------------------------|-----------------|-------------|
| Initial stored charge                                    | $Q_0$                  | Q_O             | coulomb     |
| Number of series cells                                   | n                      | n               |             |
| Zero-order series resistance                             | $R_0$                  | RO              | $_{ m ohm}$ |
| First-order capacitance                                  | $C_1$                  | C1              | farad       |
| First-order resistance                                   | $R_1$                  | R1              | $_{ m ohm}$ |
| Open-circuit voltage                                     | $V_{\rm oc}({ m SOC})$ | Voc             | volt        |
| Open-circuit voltage lookup: state-of-charge breakpoints |                        | Voc.SOC         |             |
| Open-circuit voltage lookup: voltage data                |                        | Voc.V           | volt        |

## 13 Assumptions

This battery pack model assumes that:

- None of the equivalent-circuit parameters are affected by temperature.
- $\bullet$  The charging and discharging open-circuit voltage profiles are identical.

## 14 Block diagram



Figure 17: Motor model block diagram.

## 15 Inputs and outputs

## 15.1 Inputs

| Signal                           | Symbol   | MATLAB variable | Unit     |
|----------------------------------|----------|-----------------|----------|
| Stator current                   | $I_s$    | Is              | rms amps |
| Stator current (quadrature axis) | $I_q$    | Is.Iq           | rms amps |
| Stator current (direct axis)     | $I_d$    | Is.Id           | rms amps |
| Motor speed                      | $\omega$ | omega           | rad/sec  |

## 15.2 Outputs

| Signal       | Symbol | MATLAB variable | Unit |
|--------------|--------|-----------------|------|
| Motor torque | au     | tau             | N m  |

## 16 Background, rationale, modeling strategy

The motor model has two main components. The torque-generation component is based on an electrical equivalent-circuit model and a 2D efficiency map derived from motor-specific testing. There is also a simple thermal model based on a constant thermal resistance.

### 16.1 Torque model

The motor's electrical behavior can be represented using two equivalent circuits using the Park transformation [?]. The result of the transformation for a 3-phase permanent-magnet synchronous motor (PMSM) is the dq motor model. Figure 18 shows the constant-parameter dq equivalent circuits.



Figure 18: Motor model - dq equivalent circuits.

The motor parameters are assumed to be constant with respect to stator currents and temperatures.

By the equivalent circuits in Figure 18, the stator voltages  $\mathcal{V}_d$  and  $\mathcal{V}_q$  can be found:

$$V_d = Ri_d + L_d \frac{di_d}{dt} + \omega L_q i_q \tag{27}$$

$$V_q = Ri_q + L_d \frac{di_q}{dt} + \omega L_d i_d - \omega \phi \tag{28}$$

Calibrating the above model using experimental data could be difficult because of the  $\frac{di}{dt}$  terms. After evaluating typical values of  $\frac{di_q}{dt}$  recorded in previous testing, the maximum observed value (about -3070 A/sec) was small enough that the in-

ductance term  $L\frac{di}{dt}$  could be neglected without introducing significant error. With this modification, 27 and 28 become

$$V_d = Ri_d + \omega L_q i_q \tag{29}$$

$$V_q = Ri_q + \omega L_d i_d - \omega \phi \tag{30}$$

It is assumed that the power inverter has perfect control over the d- and q-axis currents  $I_d$  and  $I_q$ . With the known stator current  $I_s = \sqrt{I_d^2 + I_q^2}$ , the input power can be found:

$$P_e = I_s \times V_s \tag{31}$$

Then the motor "electrical torque" can be found:

$$\tau_e = \frac{P_e}{\omega} \tag{32}$$

The motor output torque is the product of  $\tau_e$  and the motor efficiency:

$$\tau = \eta(\tau_e, \omega) \times \tau_e \tag{33}$$

## 17 Parameters

| Parameter                                           | Symbol   | MATLAB variable | Unit             |
|-----------------------------------------------------|----------|-----------------|------------------|
| Q-axis inductance                                   | $L_q$    | Lq              | Н                |
| D-axis inductance                                   | $L_d$    | Ld              | Н                |
| Equivalent-circuit series resistance                | R        | R               | ohm              |
| Permanent-magnet flux linkage                       | $\phi_m$ | phi             | $V s rad^{-1}$   |
| Motor efficiency                                    | $\eta$   | eta             |                  |
| Motor efficiency lookup: stator current breakpoints |          | eta.Is          | rms amps $(I_s)$ |
| Motor efficiency lookup: motor speed breakpoints    |          | eta.omega       | rad/sec          |
| Motor efficiency data                               |          | eta.eta_m       |                  |

## 18 Assumptions

The motor electrical model is significantly simplified.

- The model assumes that the motor magnetization is linear (i.e., the motor never saturates).
- ullet The model assumes that the motor inductances  $L_d$  and  $L_q$  are constant. In fact,

details about behavior of Lq with Id

 $\bullet$  The motor efficiency model assumes that motor efficiency  $\eta$  depends only on motor speed and electrical torque.