

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗАССР

СТЕКЛО ОПТИЧЕСКОЕ ЦВЕТНОЕ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

ГОСТ 9411-91

Издание официальное

E

КОМИТЕТ СТАНДАРТИЗАЦИИ И МЕТРОЛОГИИ СССР Москва

П. ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ, СРЕДСТВА АВТОМАТИЗАЦИИ И ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Группа П40

к ГОСТ 9411-91 Стекло оптическое цветное. Технические условия

В каком месте	Нацечатан о	Должно быть
Пункт 2.3. Таблица 2. Марка стекла БС4. Для длины волны 313	Не менее 0,09	Нс болес 0,09

(ИУС № 10 1992 г.)

ГОСУДАРСТЕЕННЫЙ СТАНДАРТ СОЮЗА ССР

СТЕКЛО ОПТИЧЕСКОЕ ЦВЕТНОЕ

Технические условия

Coloured optical glass.
Specifications

ГОСТ 9411—91

OKII 44 9240 - 44 9266

Дата введения 01.01.93

Настоящий стандарт распространяется на оптическое цветное неорганическое стекло для светофильтров, выпускаемое в заготовках размером (диаметром или с наибольшей стороной) не более 400 мм для всех стекол, кроме окрашенных сульфоселенидами или сульфидами металлов (с размером заготовки не более 360 мм), для нужд народного хозяйства и экспорта.

Требования настоящего стандарта являются обязательными.

1. ТИПЫ, МАРКИ. ОСНОВНЫЕ ПАРАМЕТРЫ

1.1. Типы и марки оптических цветных стекол указаны в табл. 1.

Обозначение типа и цвета стекла	Марка стекла
УФС — ультрафиолетовое стекло	УФСІ*, УФС2, (УФС5), УФС6*, УФС8
,ФС — фиолетовое стекло	$(\Phi C1), \Phi C6^*$
СС — синее стекло	CC1, CC2*, CC4*, CC5, CC8, (CC9),
	CC15, CC16, CC17, CC18
СЗС — сине-зеленое стекло	(C3C5), C3C7*, C3C8, C3C9, (C3C15).
	C3C16, C3C17, C3C20, C3C21, C3C22*.
	C3C23, C3C26
3C — зеленое стекло	(3C1), 3C3, 3C7, 3C8, 3C10, 3C11*,
ЖЗС — желто-зеленое стекло	ЖЗС1, (ЖЗС5), ЖЗС6*, ЖЗС9, ЖЗС12*,
	Ж3С17*, Ж3С18, Ж3С19
ЖС — желтое стекло	ЖС3, ЖС4, ЖС10, ЖС11, ЖС12*, ЖС16,
×	ЖС17, ЖС18, ЖС19, ЖС20, ЖС21
ОС — оранжевое стекло	OC5, (OC6), OC11, OC12, OC13*, OC14,
	OC17*, $OC19$, $OC20$, $OC21$, $OC22$, $OC23-1$,
	OC24
КС — красное стекло	KC10, KC11*, KC13, KC14, KC15*, KC21,
****	KC23, KC24, KC25, KC27, KC28, KC29
ИКС — инфракрасное стекло	(ИКС1), (ИКС3), ИКС5, ИКС6*, ИКС7,
77.0	ИКС970-1
ПС — пурпурное стекло	ПС5, ПС7, ПС8, (ПС11), ПС13, ПС14,
HC — нейтральное стекло	HC1*, HC2*, HC3, HC6, HC7, HC8*, HC9,
TC.	HC10, HC11, HC12, (HC13), HC14
ТС — темное стекло	TC3, (TC6), TC9, TC10*
БС — бесцветное (ультрафиоле-	БС3, БС4, БС7, (БС8), БС12
товое) стекло	
· · · · · · · · · · · · · · · · · · ·	

^{*} Предпочтительно.

Примечание Стекла марок, заключенных в скобки, применять в новых разработках не допускается.

1.2. Оптическое цветное стекло нормируют по следующим параметрам:

показателю поглощения a (λ) слоя стекла толщиной 1 мм при длинах волн, заданных для стекла каждой марки (стекла, окрашенные молекулярными красителями);

показателю поглощения a (λ_0), длине волны $\lambda_{\rm rp}$ и крутизне кривой оптической плотности $K_{\rm p}$ слоя стекла толщиной, равной толщине светофильтра (стекла, окрашенные сульфоселенидами или сульфидами металлов);

показателю поглощения a_{cp} , среднему отклонению O_{cp} и наибольшему отклонению O_{max} слоя толщиной 1 мм (стекла марок HC1-HC12);

двулучепреломлению; бессвильности; пузырности,

- где a (λ_0) показатель поглощения в области наименьшего поглощения:
 - $\lambda_{\text{гр}}$ длина волны, характеризующая границу пропускания, при которой оптическая плотность стекла превышает на 0,3 оптическую плотность стекла той же толщины при длине волны λ_0 или коэффициент внутреннего пропускания равен 0,50;
 - K_p крутизна кривой оптической плотности стекла, вычисляемая как разность оптических плотностей стекла при длинах волн λ_{rp} 20 нм и λ_{rp} ;
 - $a_{\rm cp}$ среднее арифметическое абсолютных значений показателя поглощения a (λ), измеряемое через каждые 20 нм в области спектра 440—660 нм для стекла марок HC1—HC3 и в области спектра 400—700 нм для стекла марок HC6—HC12;
 - $O_{\rm cp}$ среднее арифметическое абсолютных значений отклонения показателя поглощения a (λ) от измеренного значения $a_{\rm cp}$, выраженное в процентах от $a_{\rm cp}$;
 - O_{\max} наибольшее из абсолютных значений отклонения a (λ) от $a_{\text{ср}}$, выраженное в процентах.
- 1.3. Условное обозначение оптического цветного стекла при записи в технической документации должно состоять из обозначения марки материала и номера настоящего стандарта.

Пример условного обозначения оптического цветного ультрафиолетового стекла марки УФС1:

УФС1 ГОСТ 9411—91

- 1.4. Физико-химические характеристики оптических цветных стекол приведены в приложении 1.
- 1.5. Коды ОКП марок оптического цветного стекла приведены в приложении 2.

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 2.1. Оптическое цветное стекло должно изготовляться в соответствии с требованиями настоящего стандарта по технической документации, утвержденной в установленном порядке.
- 2.2. Параметры, характеризующие качество цветного стекла, и их категории установлены в ГОСТ 23136.
- 2.3. Спектральные показатели поглощения оптического цветного стекла, окрашенного молекулярными красителями, в зависимости от категории должны соответствовать требованиям табл. 2.

*			16	таолица 2
Марка	Длина	Предельные зна для н	Отношение показа-	
стекла	волны λ, нм	1	2	телей поглощения a(\lambda)
уфС1	254 334	Не более 0,15	Не более 0,20	<u>а₄₀₅</u> не менее 2;
	405 700	» 0,005 Не менее 0,30 » 0,100	» 0,007 Не менее 0,25 » 0,075	$\frac{a_{254}}{a_{700}}$ не менее 0,5
УФС2	280 313 405	Не более 0,21 » 0,05 Не менее 2,50	Не более 0,26 » 0,05 Не менее 1,75	a_{405} не менее 8,5; a_{280} не менее 2,3
· ·	700	» 0,56	» 0,46	a_{280}
УФС5	254 313	Не более 0,15 > 0,007	Не более 0,20 » 0,010	$\frac{a_{405}}{a_{254}}$
	405 436 546 700	Не менее 0,58 » 1,7 » 1,35 » 0,100	Не менее 0,52 >> 1,5 >> 1,25 >> 0,080	Не менее 5— по 1-й категории; не менее 3— по 2-й категории
У ФС6	313 365	Не более 0,27 > 0,05	Не более 0,44 > 0,06	<u>a₄₀₅</u>
, :	405 700	Не менее 1,26 » 0,81	Не менее 1,05 » 0,67	а ₃₆₅ не менее 25
УФС8	300 365 405	Не более 1,10 » 0,125	Но более 1,20 » 0,150	a ₄₀₅ a ₃₆₅
	546 700	Не менее 0,95 » 2,70 0,80—1,20	Не менее 0,80 » 2,40 0,70—1,55	не менее 8
ФС1	400 480 700	Не более 0,06 0,67—0,83 0,76—1,16	Не более 0,06 0,56—0,94 0,67—1,25	$\frac{a_{480}}{a_{400}}$ He MeHee 11;
				$\frac{a_{700}}{a_{400}}$ He MeHee 13
ФС6	300 360 480	Не более 0,23 » 0,032 0,80—1,05	Не более 0,25 » 0,036 0,70—1,15	а ₄₈₀ а ₃₆₀ не менее 25;
	710 800	0,60—0,93 Не более 0,03	0,50—1,10 Не более 0,03	$\frac{a_{710}}{a_{800}}$ He MeHee 30
art a l		1 .	1 .	1 = 0 = 000

Марка	Длина	Предольные значе для кат	Отношение показа			
стекла	волны 2, нм	1	2	телей погл ощения α(λ)		
CC1	420 540 640 700	Не более 0,02 0,14—0,16 0,28—0,32 0,17—0,19	Не более 0,02 0,13—0,17 0,26—0,34 0,15—0,21	a_{700} a_{540} от 0,9 до 1,5		
CC2	400 540 600	0,20-	Не более 0,020 0,20—0,31 0,32—0,48			
CC4	450 540 680	Не более 0,16 1,37—1,68 0,80—1,20	Не более 0,18 1,22—1,83 0,70—1,30	$\frac{a_{540}}{a_{450}}$ He methee 7,5		
CC5	420 540 700	Не более 0,060 1,06—1,30 0,42—0,54	Не более 0,065 0,94—1,42 0,33—0,63	$\begin{array}{c} \underline{a_{540}} \\ \underline{a_{420}} \\ \text{ не менее 16;} \\ \underline{a_{700}} \\ \overline{a_{420}} \\ \text{ не менее 7} \end{array}$		
CC8	420 540 700	0,62	лее 0,10 0,94 1,25	-		
CC9	400 450 560 640 700	Не более 0,020 0,050—0,062 0,084—0,104 0,135—0,165 0,054—0,066	Не более 0,020 0,044—0,068 0,075—0,113 0,120—0,180 0,048—0,090	$\frac{a_{640}}{a_{450}}$ ог 2,1 до 3,5; $\frac{a_{700}}{a_{450}}$ от 0,8 до 1,4		
CC15	420 540 700	Не более 0,06 1,80—2,20 0,90—1,10	Не более 0,07 1,60—2,40 0,80—1,20	$\begin{array}{c} a_{510} \\ \hline a_{420} \\ \text{ He Methee 30;} \\ \hline a_{700} \\ \hline a_{420} \\ \text{ He Methee 15} \end{array}$		
CC16	380 420 500 580	0,080 He 607 0,030 0,040				

Продолжение табл. 2

			- 	1			
Ма рка	Длина	Предельные зтаче для ка	Отношение показа телей поглощения				
стекла	волны х , н м	1	1 2				
CC17	380 420 500 580	0,020 He 60 0,010 0,015					
CC18	380 420 500 580	0,160 0,020 0,070 0,100					
C3C5	450 700 1000	Не более 0,04 0,26—0,30 Не менее 0,69	<u>а₁₀₀₀</u> а ₄₅₀ не менее 18				
C3C7	400 480 700	He более 0,03 → 0,02 0,50—0,57	Не более 0,03 » 0,02 0,45—0,61	<u>а₇₀₀</u> а ₄₈₀ не менее 40			
C3C8	400 480 700	Не более 0,08 → 0,04 1,16—1,31	Не более 0,08 » 0,04 1,05—1,42	a_{700} a_{480} не менее 35			
C3C9	400 480 640	Не более 0,31 → 0,120 1,50—1,76	Не более 0,33 » 0,125 1,37—1,89	$\frac{a_{640}}{a_{480}}$ He MeHee 12			
C3C15	400 500 650 800	Не более 0,006 » 0,007 0,055—0,070 0,16—0,20	Не более 0,008 » 0,009 0,050—0,075 0,14—0,22	а ₈₀₀ а ₄₀₀ не менее 30			
C3C16	450 700 1000	Не более 0,055 0,19—0,23 Не менее 0,56	Не более 0,060 0,16—0,26 Не менее 0,48	<u>а₁₀₀₀</u> а ₄₅₀ не менее 10			
C3C17	420 540 700	0,002—0,008 0,015—0,025 0,140—0,230	0,002—0,008 0,010—0,030 0,095—0,280	<u>а₇₀₀</u> а ₅₄₀ от 8 до 11			

Продолжение табл. 2

Марка	Длина	Предельные зна для к	Отношение показа	
стекла	волкы - Х, нм	1	2	$a(\lambda)$
C3C20	400 560 620 700	Не более 0,10 » 0,486 1,24—1,68 Не менее 1,00	Не более 0,10 » 0,525 1,09—1,83 Не менее 0,80	а ₆₂₀ а ₅₆₀ не менее 2,3
C3C21	360 500 680	Не более 0,05 » 0,007 0,91—1,22	Не более 0,10 > 0,015 0,81—1,32	$a_{680} \over a_{500}$ He MeHee 100
C3C22	400 460 600	Не более 0,03 » 0,009 0,60—0,80	Не более 0,05 » 0,012 0,56—0,87	
C3C23	360 500 700	Не более 0,020 » 0,005 0,42—0,52	He более 0,023 → 0,005 0,37—0,57	а ₇₀₀ а ₅₀₀ не менее 100
C3C26	450 560 700 1000	Не более 0,025 » 0,020 0,037—0,049 Не менее 0,80	Не более 0,030 ≫ 0,030 0,032—0,054 Не менее 0,70	<u>а₁₀₀₀</u> а ₄₅₀ не менее 35
3C1	430 530 650	1,33—1,63 Не более 0,16 0,77—0,95	1,18—1,78 Не более 0,17 0,73—0,99	a_{430} a_{530} He mehee 8; a_{650} a_{530} He mehee 5
3C3	450 520 650	He 6	0,25—0,39 Не более 0,18 0,86—1,30	
3C7	578 630	Не более 0,07 0,93—1,15	Не более 0,08 0,83—1,25	а ₆₃₀ а ₅₇₈ не менее 12,5— по 1-й категориине менее 11,0— по 2-й категории
3C8	460 560 660	0,13—0,17 Не более 0,030 0,22—0,28	0,11—0,19 Не более 0,032 0,20—0,30	а ₆₆₀ от 1,2 до 2,1

Продолжение табл. 2

Марка	Длина	Предельные знач для ка	ения a(λ), мм ⁻¹ , тегорий	Отношение показа-
стекла	ВОЛНЫ λ, нм	1	2	телей поглощения $a(\lambda)$
3C10	450	1,08—1,32	0,96—1,54	
	550 650	Не более 0,15 0,76—0,94	Не более 0,17 0,68—1,02	а ₅₅₀ не менее 6,5;
				$rac{a_{650}}{a_{550}}$ He mehee 5,0
3C11	430	1,31—1,61	1,16—1,76	a ₄₃₀
	530 650	Не более 0,17 1,01—1,23	Не более 0,18 0,90—1,34	а ₅₃₀ не менее 7,0;
ū				$\frac{a_{650}}{a_{530}}$ He Mehee 5.5
ЖЗС1	480	0,45	i—1,05	a ₄₈₀
,	545 620	0,13	а ₅₄₅ от 3,0 до 5,0;	
				<u>а₆₂₀</u> от 2,5 до 4,5
Ж3С5	400	0,96—1,18	0,75—1,40	a ₄₀₀
	550 650	Не более 0,02 0,054—0,066	Не более 0,04 0,048—0,072	а ₆₅₀ от 13 до 24
K3C6	420	1,09-1,33	0,97—1,45	a ₄₂₀
,	550 650	Не более 0,05 0,10—0,12	Не более 0,05 0,09—0,13	а ₆₅₀ от 8 до 15
К3С9	420	1,44—1,76	1,20-2,00	a ₄₂₀
	540 680	Не более 0,07 0,29—0,35	Не более 0,08 0,27—0,37	от 16 до 37
				а ₅₄₀ от 4 до 7
K3C12	480 540		-1,87 -0,72	a ₄₈₀ a ₅₄₀
	620	1	-2,00	$\frac{a_{480}}{a_{548}}$ of 1,7 go 2,6;
	-			G ₅₄₀
				от 1,9 до 2,8

Марка	Длина	Предельные знач для ка	Предельные значения $a(\lambda)$, мм $^{-1}$, для категорий				
стекла	в о ли ы λ, нм	1	2	телей поглощения a(λ)			
Ж3С17	480 540 620	1,46 1,12 1,34	a_{480} a_{540} or 1,3 до 2,0; a_{620} a_{540} or 1,2 до 1,9				
Ж3С18	460 560 660	0,41—0,47 Не более 0,019 0,185—0,215	0,37—0,51 Не более 0,021 0,17—0,23	$a_{460} \over a_{660}$ He wellee 1,8			
Ж3С19	460 570 650	1,67—2,06 Не более 0,017 0,027—0,043	1,67—2,06 1,50—2,25 Не более 0,017 Не более 0,020				
ЖСЗ	313 365	Не более 0,29 0,9—2,7					
Ж С4	370 450	1,00—1,24 Не более 0,030	а ₃₇₀ а ₄₅₀ не менее 40				
ЖС19	350 410 650	Не более 0,26 0,19—0,23 Не более 0,003					
ЖС20	300 360 5 6 0	Не более 0,13 Не менее 0,52 Не более 0,020	Не более 0,13 Не более 0,16 Не менее 0,46				
ЖС21	350 380 580	Не менее 0,600 » 0,200 Не более 0,004	Не менее 0,400 » 0,130 Не более 0,006	_			
OC5	420 580 700	1,00—1,35 0,12—0,18 Не более 0,08	0,80—1,50 0,10—0,20 Не более 0,09	_			
OC6	420 500 700	0,25—0,34 0,09—0,13 Не более 0,05	0,21—0,39 0,08—0,14 Не более 0,05				

	 			прообляение табл. 2	
М арк а	Длина волны	Предельные знач для ка	Предельные значения $a(\lambda)$, мм $^{-1}$, для категорий		
стекла	λ, нм	1	2	телей поглощения $a(\lambda)$	
OC19	450 550 650	0,020 He 60	_		
OC20	450 550 650	0,050 0,020 He 60	_		
иксі	400 700 800 1100	Не менее 0,81 » 1,22 0,49—0,61 Не более 0,03	Не менее 0,72 » 1,09 0,42—0,70 Не более 0,03	а ₇₀₀ а ₁₁₀₀ не менее 45	
иқс3	400 800 900 1100	Не менее 3 » 1,43 0,43—0,53 Не более 0,10	Не менее 3 > 1,27 0,36—0,60 Не более 0,10		
иқс5	400 700 800 1100	Не менее 0,76 » 1,84 0,67—0,83 Не более 0,020	Не менее 0,68 » 1,64 0,60—0,90 Не более 0,023	<u>а₇₀₀</u> <u>а₁₁₀₀</u> не менее 80	
иқс6	400 800 900 1,100	Не менее 3 » 1,44 0,40—0,48 Не более 0,045	Не менее 3 » 1,28 0,35—0,53 Не более 0,050		
ИКС7	400 800 900 1100	Не менее 3 → 2,25 0,59—0,72 Не более 0,060	Не менее 3 » 2,0 0,53—0,79 Не более 0,070		
ПС5	420 510 570 680	0,045 0,035	—0,036 —0,090 —0,070 nee 0,030		
ПС7	546 578	Не более 0,015 0,43—0,55	Не более 0,020 0,37—0,61	<u>а₅₇₈</u> <u>а₅₄₆</u> не менее 30 ⁸	

Марка Длина		Предельные значе для кат	Отношение показа-				
стекла волны д, нм		1	телей поглощения $a(\lambda)$				
ПС8	440 530 650	0,50—0,80 1,20—1,80 (при $\lambda_{\rm M}$ от 520 до 550 нм) 0,05—0,13	0,40—1,00 1,00—2,00 (при Ам от 520 до 550 нм) Не более 0,18	$ \begin{array}{c} $			
ПС11	254 400 580 700	Не более 0,15 » 0,015 1,29—1,59 0,025—0,050	Не более 0,25 » 0,020 1,15—1,73 0,025—0,050	не менее 1,9			
ПС13	405 436	Не более 0,17 Не менее 0,60	Не более 0,20 Не менее 0,55	а ₄₃₆ а ₄₀₅ не менее 4,5			
TIC14	400 570 670	Не более 0,01 0,050—0,085 0,015—0,025	Не более 0,01 0,035—0,105 0,010—0,030	a_{570} не менее 6,2; a_{570} от 2,5 до 5,7			
HC13	600 640 700	0,64	1,02 0,96 0,88	<u>а₆₀₀</u> от 1,05 до 1,30			
HC14	340 420 560 700 1000	Не менее 0,55 0,160—0,200 0,150—0,190 0,215—0,265 Не менее 0,40	Не менее 0,55 0,140—0,220 0,134—0,200 0,190—0,290 Не менее 0,40				
TC3	320 450 570 660 1000	Не менее 3,0 2,36—3,16 1,66—2,26 2,11—2,86 Не менее 1,14	Не менее 3,0 1,93—3,59 1,37—2,55 1,74—3,23 Не менее 1,00	а ₄₅₀ от 1,1 до 1,7; а ₆₆₀ от 1,0 до 1,6			

			TIPOTOTOTOTO INCINI		
Марка стекла	Длина волны А, нм		Предельные значения $a(\lambda)$, мм ⁻¹ , для категория		
TC6	450 0,32—0,43 0,26- 570 0,17—0,24 0,14- 660 0,13—0,19 0,11-		Не менее 0,45 0,26—0,49 0,14—0,27 0,11—0,21 Не менее 0,13		
TC9	330 450 550 660 1000	Не м 0,21 0,14 0,11 Не м			
TC10	340 450 570 660 1000	Не м 0,5 0,26 0,20 Не м			
БС3	254 303	Не менее 0,74 Не более 0,08	Не менее 0,57 Не более 0,12		
БС4	280 313	Не менее 0,82 Не менее 0,09			
БС7	334 365	Не менее 1,25 Не более 0,10	<u>а₈₃₄</u> а ₃₆₅ не менее 11		
БС8	365 405	Не менее 0,30 Не более 0,02	Не менее 0,26 Не более 0,03	<u>а₃₆₅</u> а ₄₀₅ не менее 10	
БС12	254	Не более 0,36	Не более 0,50		

^{2.4.} Для заготовок из стекла марки ЖС20, входящих в одну партию, допускается отклонение значений a (λ) для длины волны $\lambda=300$ нм в пределах ±10 %, для длины волны $\lambda=360$ нм — ±5 %.

^{2.5.} Значения показателей длины волны λ_{rp} в зависимости от категории, а также длины волны λ_0 , показателя поглощения a (λ_0),

крутизны кривой для фильтров разной толщины для оптических цветных стекол, окрашенных сульфоселенидами или сульфидами металлов, приведены в табл. 3.

Таблина 3

	Дли	на волн	ыίλ _{гр} , н	va .	:	Показа-	Крутизна крив о й $K_{ m p}$, не менее				ζ _p .
Марка стекла	Номина-	Преде ние	льное от для кате	жлоне- сгорий	Длина волны λ ₀ , нм	тель по- глощения $a(\lambda_0)$, —1	для	для фильтра толщино	ой, мм .		
	льное значение	1	2	3		н е бо лее	2	3	5	10	20
ЖС10 ЖС11 ЖС12 ЖС16 ЖС17 ЖС18	390 420 450 470 490 510		±10 ±10 ±10 ±10 ±10	±15 ±15 ±15 ±15 ±15 ±15	560 560 560 560 560 580 600	0,002 0,005 0,005 0,005 0,005 0,005	1,2 0,6 0,6 0,8 0,8 1,2	0,6 0,8 0,8	$\begin{bmatrix} 0,4\\0,4\\0,8\\1,0 \end{bmatrix}$	— —	
OC11 OC21 OC12 OC22 OC13 OC23-1 OC14 OC24 OC17	535 535 550 550 565 560 580 580 540	±5 +5 +5 ±5 ±5 ±5 ±5	±10 ±10 ±10 ±10 ±10 ±10 ±10 ±10	±15 ±15 ±15 ±15 ±15 ±15 ±15 ±15	650 650 650 650 650 650 680 680 650	0,007 0,007 0,007 0,007 0,007 0,003 0,007 0,007 0,007		1,2 1,5 1,2 1,5 0,2	1,5 1,2 1,5 1,2 2,0 1,2 1,5	1,2	1,2 2,0 1,2 1,8
KC10 KC11 KC21 KC13 KC23 KC14 KC24 KC15 KC25 KC25 KC27 KC28 KC29	600 610 610 630 630 640 640 650 650 670 685 700	±5 ±5 ±5 ±5 ±5 ±5 -	±10 ±10 ±10 ±10 ±10 ±10 ±10 ±10 ±10 ±10	#15 #15 #15 #15 #15 #15 #15 #15 #15 #15	680 680 700 700 720 720 720 750 800 800	0,007 0,007 0,007 0,007 0,007 0,007 0,010 0,010 0,030 0,030 0,030	1,2 1,2 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	1,2 1,5 1,5 1,2 1,7 1,7 1,7 1,7 1,7	1,2 1,5 1,5 1,7 1,7 1,7 1,7 1,7 2,0	1,2 1,8 1,2 1,7 1,7 1,7 1,7 2,0	1,2 1,2 1,8 1,2 1,7 1,7

2.6. Наибольшая разность длин волн $\Delta\lambda_{\rm rp}$ в пределах одной заготовки, характеризующая неоднородность окраски стекол, окрашенных сульфоселенидами или сульфидами металлов, не должна превышать значений, приведенных в табл. 4.

2.7. Показатель рассеяния стекол, окрашенных сульфоселенидами или сульфидами металлов, не должен превышать показатель рассеяния контрольного образца.

Диаметр или наибольщая сторона заготовки, ми	Разность длин волн $\Delta \lambda_{\Gamma p}$, нм, ге более
До 40	9
Св. 40 до 90	3
» 90 -» 180	5
» 180 » 360	10

2.8. По спектральной характеристике стекло марки ИКС 970-1 в рабочей толщине слоя должно соответствовать требованиям, приведенным в табл. 5.

Таблица 5

М арка стекла	Длина волн	ыλ _{гр} , нм	Оптическа		
	Номичальное Предельное значение отклонение		$D_{i\lambda} = a(\lambda) \cdot s$ слочей толщиной г	Рабочая толщина s, мм	
			800	1100	<u> </u>
ИКС970-1	970	±20	Не менее 4,0	Не более 0,20	От 5 до 10

2.9. Значения показателей поглощения $a_{\rm cp}$, среднего отклонения $O_{\rm cp}$ и наибольшего отклонения $O_{\rm max}$ в зависимости от категорий приведены в табл. 6.

Таблица 6

-	Показате	ль поглощен мм ^{—1}	ия а _{ср} ,	Среднее о	тклонение не более,	Наибольшее откло-		
М арка стекла	Предельное откл незие для категој			для ка	нение O_{max} , %, не более, для категорий			
	льноэ значение	1	2	1	2	1	2	
HC1	0,07	±0,01	±0,02	-		20,00	25.00	
HC2	0,24	±0,03	±0,05	10,00	15,00	20,00	25,00	
HC3	0,47	±0,05	±0,10	10,00	10,00	25,00	30,00	
HC6	0,06	±0,01	±0,02			30,00	35,00	
HC7	0,12	$-\pm 0.02$	±0,04	7,00	10,00	17,00	28,00	
HC8	0,27	±0,03	± 0.06			10,00	15,00	
HC9	0,55	±0,06	±0,11	-		15,00	20,00	
HC10	0,90	$^{+0,10}_{-0.09}$	+0,20 0,18	5,00	10,00	20,00	25,00	
HC11	1,80	±0,18	±0,36	7		20,00	20,00	
HC12	3,30	±0,35	±0,66	10,00	15,00	30,00	35,00	

2.10. По показателю поглощения и бессвильности оптическое стекло должно изготовляться категорий не ниже указанных в табл. 7.

Таблица 7

	Кате	гория по		Кате	оп видо	-		гория по
Марка стекла	поглощению а(А) или А _{гр}	бессви- льн ост и	Марка стекла	поглощению а(А) или А _{гр}	бессви- льности	Марка стекла	поглощению а(λ) или д _{гр}	бессви- льности
УФС1 УФС2 УФС5 УФС6 УФС8 ФС6 СС1 СС2 СС4 СС5 СС8 СС9 СС15 СС16 СС17 СС18 СЗС5 СЗС7 СЗС8 СЗС7 СЗС8 СЗС9 СЗС15 СЗС16 СЗС17 СЗС20 СЗС21 СЗС21 СЗС21 СЗС22 СЗС23 СЗС21 СЗС21 СЗС22 СЗС23 СЗС21 СЗС22 СЗС23 СЗС26 ЗС7 ЗС8 ЗС7 ЗС8 ЗС7 ЗС8 ЗС7 ЗС8 ЗС7 ЗС8 ЗС9 СЗС21 СЗС21 СЗС22 СЗС23 СЗС26 ЗС7 ЗС8 ЗС8 ЗС7 ЗС8 ЗС8 ЗС7 ЗС8 ЗС8 ЗС8 ЗС8 ЗС8 ЗС8 ЗС8 ЗС8	1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2	4 4 4 4 4 4 2—4 3—4 при толщине до 5 мм 4—св. 5 мм 2—4 3—4 до 5 мм 4—св. 5 мм 4—св. 5 мм 4—св. 5 мм 4—св. 5 мм 4—св. 5 мм 4—2—4 2—4 2—4 2—4 2—4 2—4 3—4 3—4 3—4 3—4 3—4 3—4 3—4 3—4 3—4 3		2 2 2 1-2 1-2 2 1-2 1-2 3 3 2-3 2-3 2-3 2-3 1-3 2-3 1-3 1-3 1-3 2-3 1-3 1-3 2-3 1-3 2-3 1-3 2-3 1-3 2-3 1-2 2-3 1-2 2-3 1-2 2-3 1-2 2-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1	2-4 2-4 3-4 3-4 3-5 MM 4-CB. 5 MM 3-4 3-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2	КС25 КС27 КС28 КС29 ИКС1 ИКС3 ИКС5 ИКС6 ИКС7 ИКС970-1 ПС5 ПС7 ПС8 ПС11 ПС13 ПС14 НС1 НС2 НС3 НС6 НС7 НС8 НС9 НС10 НС11 НС12 НС13	2-3 2-3 2-3 2-3 2-3 2-1 1-2 2-1 1-2 1-2 1-2 1-2 1-2 1-2 1-2	2—4 4 4 4 4 4 4 4 4 4 2—4 2—4 2—4 2—4 2—

C. 16 **FOCT** 9411—91

Вторая цифра соответствует категории для заготовок, изготовляемых партиями любых объемов, и при массовом производстве.

2.11. По двулучепреломлению оптическое цветное стекло дол-

жно изготовляться 3—5 категории по ГОСТ 23136.

2.12. По пузырности оптическое цветное стекло в зависимости от массы заготовки должно изготовляться категорий по ГОСТ 23136, указанных в табл. 8.

Таблица 8

			Karerop	ия пузы	рности	, ·	
Марка стекла	2—10	3—10	4—10	5—10	610	7—10	8—10
		при	массе за	готовок	, г, не	более	
ЖС21	50	C01	1000	1500	2500	Св.	2500
СС1, СС2, 3С3, Ж3С1, Ж3С5, Ж3С6, Ж3С9,	30	50	100	300	500	1000	3000
ЖС10, ЖС11, ЖС12, ЖС16,	_	10	30	50	100	300	500
ЖС17, ЖС18, ОС11, ОС12, ОС13, ОС14, ОС17, ОС21, ОС22, ОС23-1, ОС24, КС10, КС11, КС13, КС14, КС15, КС21, КС23, КС24, КС25, НС1, НС2, НС6, НС7, БС3, БС7, БС8, БС12	30	50	100	300	500	1000	3000
CC9, C3C7, C3C8, C3C17, 3C11	10			. *			
Ж3С19	10			100	300	500	2000
ЖС4, ЖС19, БС4		30	50				
CC16, CC17, CC18, C3C9, C3C20, C3C21, C3C22, C3C23, 3C1, 3C10, OC5, OC6, OC19, OC20, ПC5, ПС7, ПС14,	_			300	500	1000	3000
TC6, HC3, HC8					1 1		
C3C5, C3C15, C3C16, C3C26 3C7, 3C8, Ж3C18, ЖC3, ЖC20	5	10	30	100	300	1000	.3000
TC9	-			50	100	300	500

Продолжение табл. 8

		Категория пузырности						
Марка стекла	2-10	3—10	4—10	5—10	6—10	7—10	8—10	
		прим	гассе за	готовки,	г, не б	олее		
СС4, СС5, СС8, СС15, ЖЗС12, ПС8, ПС13, НС9, ТС10			10			товок з м вклю	гол щн- ч.: 	
УФС1, УФС5, ФС1, ФС6, ИКС1, ИКС3, ИКС5, ИКС6, ИКС7, ПС11, НС10, НС13				30	50	100	200	

Примечание. Ввиду невозможности контроля категорию пузырности не устанавливают для заготовок стекла марок УФС2, УФС6, УФС8, ЖЗС17, КС27, КС28, КС29, НС11, НС12, НС14, ТС3, ИКС970-1.

2.13. Требования к показателям качества вне рабочей зоны, кроме двулучепреломления, не устанавливают.

2.14. Требования к размерам и форме заготовок и качеству их

поверхностей — по ГОСТ 13240.

2.15. Требования к маркировке и упаковке — по ГОСТ 13240.

3. ПРИЕМКА

3.1. Для проверки соответствия оптического цветного стекла требованиям настоящего стандарта проводят приемочный контроль.

- 3.2. Приемку стекла проводят как партиями, так и единичными заготовками в соответствии с ГОСТ 13240. Состав и объем партии по ГОСТ 13240.
- 3.3. Каждая партия заготовок стекла должна сопровождаться паспортом, удостоверяющим их качество. Требования к паспорту— по ГОСТ 13240.
- 3.4. При приемке единичных заготовок проводят контроль на соответствие требованиям и методами, указанными в табл. 9. Результаты контроля считают положительными, если заготовка или образец соответствует всем проверяемым требованиям стандарта и заказа.
- 3.5. При приемке заготовок стекла партиями проводят сплошной или выборочный контроль или контроль по образцам в соответствии с табл. 9. Допускается изменять объем выборки и число

'				,	таолица э
	Номер п	ункта		Объем выбор-	
Нормируемый параметр	техничес- ких тре- бований методов контроля		Вид колтроля	ки, число образцов или заготовок, шт.	Условия отбора и подготовки контролируемых заготовок или образцов
Показатель поглощения <i>a</i> (λ)	2.3 2.4 2.10	4.2	По образ- цам	2	От стекла каждой варки
Показатель поглощения a (λ_0)	2.5	4.2	По образ- цам	, 1	От стекла каждой варки и каждой наводки. Допускается контроль не проводить, если качество обеспечено технологическим процессом
Длина вол- ны λ _г р	2.5 2.8	4.2	Выбороч- ный или по образцам	2 (наиболее темная и наиболее светлая заготовки)	От стекла каждой варки и каждой наводки
Крутизна Кр	2.5	4.2	По образ- цам	2	От стекла каждой варки и каждой на- водки
Показатель поглощения $a_{\rm cp}$ Среднее отклонение $O_{\rm cp}$	2.9	4.2	По образ- цам	2	От стекла каждой варки и каждого отжига
Наиболь- шее откло- нение	2.9	4.2	По об- разцам	2	От стекла каждой варки и каждого отжига
Неоднород- ность ок- раски	2.6	4.3	Выбороч- ный	2 (наиболее неоднород- ные заго- товки)	От партии; допускается контроль не проводить, если качество обеспечено технологическим про-
Показатель рассеяния	2.7	4.4	Выбороч- ный	1	цессом наводки
Двулуче- преломле- ние	2.11	4.5	Выбороч- ный	5 %, но не менее 5 шт.	От партии; допускается не проводить контроль, если качество обеспечено отжигом
		1 .			

Продолжение табл. 9

	Номер пункта				1	
Нормируемый параметр	техничес- ких тре- бований	методов контроля	В ид контроля	Объем выборки, число образцов или заготовок, шт.	Условия отбора и подготовки колтролируемых заготовок или образцов	
Бессвиль-	2.10	4.6	Выбороч- ный, для темных сте- кол по об- разцам	10 %, но неменее 10 шт.; для темных стекол, заказанных по 3 категории, — не менее 3 шт.	От партии или при операционном конт- роле	
Пузыр- ность	2.12	4.7	Слошной	100 %	Вся партня или при операционном контроле	

образцов при проведении контроля по всем нормируемым параметрам.

3.6. В случае обнаружения при сплошном контроле заготовок, не соответствующих хотя бы одному проверяемому требованию

стандарта и заказа, их бракуют.

Результаты выборочного контроля считают положительными, если все заготовки в выборке соответствуют всем проверяемым требованиям стандарта и заказа. При несоответствии заготовок хотя бы одному требованию проводят повторные испытания на удвоенной выборке. Результаты повторных испытаний считают положительными, если все заготовки в выборке соответствуют всем проверяемым требованиям стандарта и заказа. Результаты повторных испытаний являются окончательными. Результаты выборочного контроля распространяют на всю партию.

В случае несоответствия образцов хотя бы одному проверяемому требованию стандарта и заказа при контроле по образцам бракуют все заготовки, изготовленные из стекла той варки, отжига

или наводки, от которых был отобран образец.

4. МЕТОДЫ КОНТРОЛЯ

4.1. Приемочный контроль заготовок проводят методами, указанными в пп. 4.2—4.8.

Допускается применять другие методы контроля с предельной погрешностью определения не более указанной в стандартах на

перечисленные методы или методы с погрешностью определения, обеспечивающей качество стекла в пределах заказа потребителя. 4.2. Показатели поглощения a (λ) (п. 2.3), $a_{\rm cp}$ (п. 2.9), a (λ_0) (п. 2.5), границу пропускания $\lambda_{\rm rp}$ (пп. 2.5, 2.8) следует измерять на спектрофотометре по технической документации.

Требования к образцам — по нормативно-технической доку-

ментации на методы контроля.

4.2.1. Показатели поглощения следует определять с учетом многократного отражения излучения от обеих полированных поверхностей образца.

4.2.2. Качество стекла по длине волны λ_{rp} допускается обеспечивать путем визуального сравнения заготовок с контрольным об-

разцом.

4.2.3. У образцов стекол, окрашенных сульфоселенидами сульфидами металлов, и стекла марки ПС8 перед измерением должен быть наведен цвет.

Образцы стекол марок УФС1, УФС2, ОС6, ПС11, ТС3, ТС6, TC10, HC1, HC2, HC3, HC6, HC7, HC8, HC9, HC10, HC11, HC12

перед измерением должны быть отожжены.

Наводка и отжиг образцов стекол должны быть произведены

по тому же режиму, что и заготовок контролируемой партии. 4.3. Неоднородность окраски (п. 2.6) при необходимости опре-

деляют путем визуального просмотра заготовок в проходящем свете, сравнивая их с контрольными образцами, или измерением на спектрофотометре двух наиболее неоднородных по цвету заготовок из партии.

4.4. Показатель рассеяния (п. 2.7) при необходимости опреде-

ляют путем сравнения с контрольным образцом.

Просмотр проводят на темном фоне при боковом освещении. -

4.5. Двулучепреломление (п. 2.11) при необходимости следует измерять по ГОСТ 3519 на поляриметре; разность хода измеряют в середине заготовки в направлении наибольшего размера.

4.6. Бессвильность (п. 2.10) следует определять:

заготовок, заказанных по 1—2-й категориям, — по ГОСТ 3521; заготовок, заказанных по 3-й категории, — путем визуального просмотра в проходящем свете.

Контроль заготовок, заказанных по 4-й категории, дят, обеспечивая качество стекла технологическим процессом вар-KИ.

4.7. Категорию пузырности (п. 2.12) следует определять по ГОСТ 3522. При определении категории пузырности камни, кристаллы и головки узловых свилей приравнивают к пузырям.

Толщина стекла, просматриваемого на установке с электроннооптическим преобразователем или флюоресцирующим экраном,

должна быть не более 10 мм.

Толщина стекла, просматриваемого на установке с проекцией на сетчатку глаза, должна быть, мм, не более:

5 — для стекла марок с установленной наивысшей категорией

пузырности 4 (стекла с недостаточной прозрачностью);

10 — для стекла марок с установленной наивысшей категорией пузырности 3 (стекла со средней прозрачностью);

25 — для стекла остальных марок.

4.8. Размеры заготовок и глубину залегания дефектов стекла следует проверять по ГОСТ 13240.

5. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

Транспортирование и хранение заготовок оптического цветного стекла — по ГОСТ 13240.

ПРИЛОЖЕНИЕ 1 Справочное

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ОПТИЧЕСКИХ ЦВЕТНЫХ СТЕКОЛ

1. Спектральные кривые коэффициента внутреннего пропускания $\tau_i(\lambda)$ стекол в слое различной толщины приведены на черт. 1—88.

Толщина стекла указана на чертежах в миллиметрах.

2. Спектральные кривые коэффициента внутреннего пропускания τ; (λ) стекол, окрашенных сульфоселенидами или сульфидами металлов, в слое рабочей

толщины приведены на черт. 89—104.

3. Показатель преломления n_ℓ , поправка на многократное отражение D_{ρ_m} , группы химической устойчивости (по ГОСТ 13917), среднее число $N_{\rm cp}$ пузырей в $100~{\rm cm}^3$ и в 1 кг, наименьший диаметр пузыря, с которого начинают подсчет числа пузырей в стекле каждой марки, оптический коэффициент нап-

	Плотность р, г/см ⁸	4248962942948949 4648965946649 4648965946649 46489659 46489669 46489669 46489 4648969 46489
1	Наименьший диаметр пу- зыря, мм	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
Пузырность	Среднее чис- ло пузырей в 100 см³ стек- ла	284 284 784 784 775 755 755 755 755 755 755 755 755 75
	Среднее число пузырей в 1 кг стекла	1000 1000 1000 300 300 100 100 100 300 3
	Оптический коэффициецт напряжения В 1012, Па ^{—1}	
па	кислото- устойчи- вости	
Группа	устойчи- вости к влажной атмосфере	, В В В В В В В В В В В В В В В В В В В
	Поправка на отражение D рт	0,039 0,039 0,034 0,034 0,037 0,037 0,037 0,035 0,035 0,035 0,039 0,039 0,039 0,039 0,039
	Покаватель $n_{\rm e}(n_D)$	(1,540) (1,540) (1,554) (1,554) (1,524) (1,522) (1,522) (1,522) (1,519
Марка стекла		24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Продолжение табл. 16

Плотность		29999999999999999999999999999999999999
	Наименьший диаметр пу- зыря, мм	0,000,000,000,000,000,000,000,000,000,
Пузырность	Среднее чис- ло пузырей в 100 см. ³ стек-	285.2 285.2 141.5 141.5 15.2 285.2 285.0 285.0 286.4 280 286.4 280 286.4
	Среднее чис- ло пузырей в 1 кг стекля	1000 1000 1000 1000 1000 1000 1000 100
=	Оптический коэффициент напряжения В.1012, Па	8,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4
па	кислото- устойчи- вости	
Группа	устойчи- вости к влажной атмосфере	
	Поправка на отражение $D D \rho m$	0,033 0,033 0,033 0,033 0,033 0,033 0,033 0,033 0,033 0,033 0,033 0,033 0,033 0,033 0,033 0,033 0,033
	Показатель преломления $n_e(n_D)$	1,526 1,526 1,533 1,533 1,524 1,524 1,525
	Марка стекла	33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.

	Πυστηρος ρ, Γ/cm ⁸	9494448884444444444448888448868
	Наименьший диаметр пу- зыря, мм	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Пузырность	Среднее чис- ло пузмрей в 100 см³ стек- ла	26.17 26.17 26.17 26.17 26.17 26.17 26.17 26.17 27.17
-	Среднее чис- ло пузырей в 1 кг стекла	100 100 100 100 100 100 100 100 100 100
	Оптический коэффициент напряжения, В 1012, Па	ਫ਼
ша	кислото- устойчи- вости	00000004400404040444-000000-
Группа	устойчи- вости к влажной атмосфере	日日日日日日日日日日日日日日日日日日日日日日日日日
	Поправка на отражение D_{nn}	0,037 0,037 0,039 0,039 0,037 0,037 0,037 0,038 0,038 0,038 0,038 0,038 0,038 0,038 0,038 0,038 0,038 0,038 0,038 0,038 0,038
	Показатель преломления $n_e(n_D)$	1,525 1,528 1,528 1,523 1,525
	Марка стекла	00012 00023 00023 00024 00014 00017 00019 000000 00019 00000 00000 00000 00000 00000 00000 0000

	Плотность р, г/см*	& Q & Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
	Наименьший диаметр пу- зыря, мм	00000000000000000000000000000000000000
Пузырность	Среднее чис- ло пузырей в 100 см³ стек- ла	2068 326 227 227 227 227 247 247 247 257 257 257 257 257 257 257 25
	Среднее чис- ло пузырей в 1 кг стекла	3000 3000 1000 1000 1000 1000 1000 300 3
	Оптический коэффициент напряжения В 1012, Па	21-6442226666666666222222222 50000000000000000
па	кислото- устойчи- вости	ფ
Группа	устойчи- вости к влажной атмосфере	ngannundaaaaaaannaanaaaa
	Поправка на отражение $D_{\rho m}$	0.047 0.032 0.032 0.033 0.033 0.035 0.036 0.036 0.036 0.036 0.038 0.036 0.037
	Показатель преломления $n_e(n_D)$	1,608 1,535 1,534 1,479 1,523 1,528 1,500 1,500 1,500 1,511 1,520 1,520 1,520 1,520 1,520 1,520 1,520 1,520 1,520 1,520 1,520 1,520 1,530
	Марка стекла	1108 11013 11013 11013 11014 1103 1103 1103

C. 42 FOCT 9411-91

ПРИЛОЖЕН**ИЕ 2** Обязательное

КОДЫ ОКП МАРОК ОПТИЧЕСКИХ ЦВЕТНЫХ СТЕКОЛ

Марка стекла	Қод ОКП	Марка стекла	Код ОКП
УФС1	44 9240 0000 44 9240 1000 44 9240 2000 44 9240 3000 44 9240 4000 44 9241 0000 44 9241 1000 44 9242 0000 44 9242 2000 44 9242 3000 44 9242 3000 44 9242 6000 44 9243 0000 44 9243 1000	CC17	44 9243 2000
УФС2		CC18	44 9243 3000
УФС5		C3C5	44 9244 1000
УФС6		C3C7	44 9244 2000
УФС8		C3C8	44 9244 3000
ФС1		C3C9	44 9244 4000
ФС6		C3C15	44 9244 5000
СС1		C3C16	44 9244 6000
СС2		C3C17	44 9244 7000
СС4		C3C20	44 9244 8000
СС5		C3C21	44 9244 9000
СС8		C3C22	44 9245 1000
СС9		C3C23	44 9245 1000
СС15		C3C24	44 9245 2000
СС16		C3C25	44 9245 3000

Продолжени**е**

Марка стекла	Код ОКП	Марка стекла	Код ОКП
C3C26 C3C27 3C1 3C3 3C7 3C8 3C10 3C11 X3C5 X3C6 X3C9 X3C12 X3C18 X3C19 XC3 XC11 XC12 XC10 XC11 XC12 XC16 XC17 XC18 XC17 XC18 XC19 XC20 XC21 OC5 OC6 OC11 OC12 OC13 OC14 OC17 OC19 OC20 OC21 OC22 OC23-1 OC22 OC23-1 OC224 KC10 KC11 KC13	44 9245 4000 44 9246 5000 44 9246 7000 44 9246 7000 44 9246 7000 44 9247 0000 44 9247 1000 44 9247 2000 44 9248 2000 44 9248 2000 44 9248 8000 44 9248 8000 44 9248 8000 44 9248 8000 44 9250 0000 44 9250 1000 44 9250 2000 44 9250 3000 44 9250 3000 44 9250 5000 44 9250 5000 44 9250 7000 44 9250 7000 44 9250 8000 44 9250 8000 44 9250 8000 44 9250 9000	КС14 КС15 КС21 КС23 КС24 КС25 КС27 КС28 КС29 ИКС1 ИКС3 ИКС5 ИКС6 ИКС7 ИКС970-1 ПС7 ПС7 ПС8 ПС11 ПС13 ПС11 НС14 НС1 НС2 НС3 НС6 НС7 НС8 НС9 НС10 НС11 НС12 НС13 НС14 ТС3 НС10 НС11 НС12 НС13 НС14 ТС3 НС10 НС11 НС12 НС13 НС14 НС10 НС11 НС12 НС13 НС14 НС10 НС11 НС12 НС13 НС14 НС16 НС16 НС17 НС16 НС17 НС18 НС19 НС11 НС11 НС11 НС12 НС13 НС14 НС11 НС14 НС16 НС16 НС17 НС16 НС17 НС18 НС11 НС16 НС17 НС18 НС19 НС11 НС11 НС11 НС11 НС11 НС14 НС14 НС16 НС16 НС17 НС18 НС19 НС10 НС11 НС11 НС11 НС14 НС14 НС16 НС16 НС17 НС16 НС17 НС17 НС18 НС18 НС19 НС11 НС11 НС11 НС11 НС11 НС11 НС11	44 9254 9000 44 9255 0000 44 9255 6000 44 9255 8000 44 9255 8000 44 9255 9000 44 9255 5000 44 9256 0000 44 9256 6000 44 9256 6000 44 9256 8000 44 9256 8000 44 9256 9000 44 9256 9000 44 9260 1000 44 9260 1000 44 9260 1000 44 9260 1000 44 9260 1000 44 9261 8000 44 9261 8000 44 9261 8000 44 9261 1000 44 9261 1000 44 9261 1000 44 9261 1000 44 9261 1000 44 9261 1000 44 9262 0000 44 9263 1000 44 9264 1000 44 9264 2000 44 9262 1000 44 9262 1000 44 9264 1000 44 9264 1000 44 9264 1000 44 9264 1000 44 9264 1000 44 9264 1000 44 9264 1000 44 9264 1000 44 9264 1000 44 9264 1000 44 9264 1000 44 9264 1000 44 9264 1000 44 9266 1000 44 9266 1000 44 9266 1000 44 9266 5000 44 9266 5000 44 9266 5000 44 9266 5000

информационные данные

1. РАЗРАБОТЧИКИ

- В. И. Пучков; Е. А. Иозеп, канд. техн. наук; Г. Т. Петровский; Л. С. Иутинская; А. П. Иванова; А. В. Смирнова; С. П. Лунькин
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕИСТВИЕ Постановлением Комитета стандартизации и метрологии СССР от 24.12.91 № 2082
- 3. Срок проверки 1996 г.; периодичность проверки 5 лет
- 4. B3AMEH FOCT 9411-81
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, приложения		
TOCT 3519—91	4.5		
TOCT 3521—81	4.6		
FOCT 3522—81	4.7		
FOCT 13240—78	2.14; 2.15; 3.2; 3.3; 4.8; 5.1		
FOCT 13917—82	Приложение 1		
FOCT 23136—78	2.2; 2.11; 2.12		

Редактор В. М. Лысенкина Технический редактор О. Н. Никитина Корректор О. Я. Чернецова

Сдано в наб. 03.02.92 Подп. в печ. 25.03.92 Усл. печ. л. 3,0, Усл. кр.-отт. 3,13, Уч.-изд. л. 2,75. Тираж-683 экэ.