Лабораторная работа №2

Расчет и измерение скорости шара, скатывающегося по наклонному желобу

Цель работы: рассчитайте конечную скорость шара, скатывающегося с наклонного желоба. Результат расчета проверьте экспериментально.

Ofopydosahue: штатив, длинный желоб с углом раствора 90° , шар радиуса R, меньшего ширины одной стороны желоба, линейка демонстрационная, секундомер, упор, линейка ученическая.

Содержание и метод выполнения работы

Так как шар катится по желобу прямоугольного сечения, его угловую скорость следует вычислять по формуле $\omega = V/r$.

Из рисунка видно, что при R << l, $r^2 + r^2 = R^2$, т. е. $r = R/\sqrt{2}$.

Порядок выполнения работы

- 1. С помощью уровня или шара установите горизонтальность стола.
- 2. С помощью штатива установите желоб в наклонном положении. Измерьте высоту h наклонного желоба.
 - 3. Рассчитайте теоретическую скорость скатывания шара с желоба по формуле $v_{\rm T} = \frac{\sqrt{10gh}}{3}$.
 - 4. Измерьте длину пути l и время t скатывания шара.
 - 5. Рассчитайте скорость шара в конце желоба по формуле $v_3 = \frac{2l}{t}$.
- 6. Повторите опыт при разных значениях высоты h желоба и сделайте вывод об оптимальных условиях выполнения работы.
- 7. Результаты измерений и расчетов занесите в отчетную таблицу. На одной координатной плоскости $(V,\ h)$ постройте экспериментальный и теоретический графики V(h).

<i>h</i> , м	$V_{\scriptscriptstyle \mathrm{T}}$, m/c	ℓ , M	<i>t</i> ₁ , c	t _{cp} c	V _{э, м} /с
0,1					
0,15					
0,2					

8. Рассчитайте погрешности измерений $V_{\scriptscriptstyle \rm T}$ и $V_{\scriptscriptstyle 9}$ и убедитесь в достоверности измерений.

Контрольные вопросы

- 1. Почему при скатывании шара по желобу нельзя использовать формулу $\omega = \frac{V}{R}$, где R радиус шара?
 - 2. Какую роль играет трение в этом опыте?
 - 3. Как доказать, что движение шара по жёлобу равноускоренное?
- 4. Чем объясняются различия в значениях $V_{\rm T}$ и $V_{\rm 9}$, полученных в данной работе?
 - 5. При каких углах наклона желоба погрешности измерений минимальны?