Number Theory I : Classical therory

Written by Ikhan Choi Solved by Ikhan Choi

Contents

Chapter 1. Diophantine equations	5
1. Quadratic equations	6

CHAPTER 1

Diophantine equations

1. Quadratic equations

PROBLEM 1.1. Consider a family of diophantine equations:

$$x^2 + y^2 - kxy - k = 0$$

for $k \in \mathbb{Z}$.

- (1) Find the smallest three solutions such that $x > y \ge 0$ when k = 4.
- (2) Show that if (x, y) is a solution, then (y, ky x) is also a solution.
- (3) Show that if it has a solution, then at least one solution satisfies $x > 0 \ge y$.
- (4) Show that the equation does not have a solution in the region xy < 0.
- (5) Show that the equation has a solution if and only if k is a perfect square.
- (6) Let a and b be integers. Deduce that if ab + 1 divides $a^2 + b^2$, then

$$\frac{a^2 + b^2}{ab + 1}$$

is a perfect square.

SOLUTION.

- (1) Try for $y = 0, 1, \dots, 8$. Then we get (2, 0), (8, 2), and (30, 8).
- (2) By substitution, we have

$$y^{2} + (ky - x)^{2} - ky(ky - x) - k = y^{2} - 2kxy + x^{2} + kxy - k = 0.$$

(3) Suppose not. By symmetry, we may assume we have a solution with x > y > 0. Take the solution such that x + y is minimal. Note that we have

$$0 \le x^2 + y^2 = k(xy + 1) \implies k \ge 0,$$

and

$$2x^2 > x^2 + y^2 = kxy + k \ge kxy \implies 2x > ky.$$

As we have seen, (y, ky - x) is a solution, and ky - x > 0 by the assumption. Since x + y > y + (ky - x), we obtain a contradiction for the minimality.

(4) Suppose $x, y \in \mathbb{Z}$ satisfy xy < 0. Since $xy \leq -1$,

$$x^{2} + y^{2} - kxy - k \ge x^{2} + y^{2} + k - k > 0.$$

(5)

NOTE. In general, the transformation $(x,y) \mapsto (y,ky-x)$ preserving the image of hyperbola is not easy to find. A strategy to find it in this problem is called the *Vieta jumping* or *root flipping*. It gets the name by the following reason: If (a,b) is a solution with a > b, then a quadratic equation

$$x^2 - kbx + b^2 - k = 0$$

has a root a, and the other root is kb-a so that (b, kb-a) is also a solution. The last problem is from the International Mathematical Olympiad 1988, and the Vieta jumping technique was firstly used to solve it.

PROBLEM 1.2. Consider a diophantine equation:

$$y^2 = x^3 + 7.$$

Suppose (x, y) is a solution.

- (1) Show that x is even and y is odd.
- (2) Show that $x^3 + 8$ is divided by a prime p such that $p \equiv 3 \pmod{4}$.
- (3) Show that the equation has no solutions.