Presentación de la asignatura

Curso 2023-2024

Robótica Industrial

Profesores (Área de Tecnología Electrónica, ESCET)

Julio Salvador Lora Millán (coordinador)

Edificio Departamental II. Despacho 157 Campus de Móstoles julio.lora@urjc.es

Juan Carballeira López

Edificio Departamental II. Despacho 169 Campus de Móstoles juan.carballeira@urjc.es

Javier Toledo Serrano

Edificio Departamental II. Despacho 169 Campus de Móstoles

javier.toledo@urjc.es

Para comunicaciones por correo electrónico, usad la dirección **@urjc.es**, no el correo del Aula Virtual

Obligatorio: leer la Guía Docente

- Objetivos de la asignatura
- Competencias que se adquieren
- Temario
- Distribución del tiempo de trabajo
- Metodología y plan de trabajo
- Evaluación
- Bibliografía

Guía Docente: Aula Virtual URJC

Objetivos de la asignatura

Estudiar los fundamentos de la robótica industrial y de la automatización industrial desde un **punto de vista fundamentalmente aplicado**:

- Adquirir las competencias para diseñar, configurar y programar una celda robotizada industrial basada en un robot manipulador comercial de 6 ejes.
- Conocer los sistemas electromecánicos de actuación, sensado y protección existentes en una línea de producción industrial automatizada mediante controladores lógicos programables (PLC)

Fundamentos necesarios

- Electrónica digital: representación de la información en formato digital.
- Sensores y actuadores: fundamentos básicos de sensorización, actuación y control.
- Fundamentos de programación, elementos básicos como estructuras de control de flujo de programa y subprogramación (funciones).
- Fundamentos de automática, respuesta temporal de sistemas, sistemas de control en lazo cerrado, PIDs.

Deben manejarse con soltura tanto los conceptos teóricos como su aplicación práctica.

Temario de la asignatura

Bloque I: Robótica Industrial

- <u>Tema 1</u>. Introducción a la robótica industrial y las aplicaciones industriales robotizadas. Manipuladores cooperativos
 - Antecedentes históricos. Definiciones. Robótica industrial y de servicio
 - Aplicaciones industriales. Estadísticas de uso en la industria. Cobots.
- <u>Tema 2</u>. Morfología y configuración de un robot industrial. Herramientas matemáticas para la localización espacial. Control.
 - Morfología y partes. Espacio de trabajo del robot. Configuraciones típicas
 - o Elementos terminales y herramientas . Sistemas de potencia y control
 - Representación de la orientación. Coordenadas homogéneas. Cuaterniones
- <u>Tema 3</u>. Cinemática directa, inversa y diferencial del robot.
 Singularidades.
 - Cinemática directa del robot. Notación Denavit-Hartenberg. URDF
 - Cinemática inversa del robot. Métodos analíticos de resolución.
 - Cinemática diferencial. Jacobiano. Singularidades en robots de 6 ejes.

Temario de la asignatura

Prácticas del Bloque I: Robótica Industrial

- Programación y manejo de un robot manipulador industrial de 6 ejes en versión simulada.
- Adquirsición de destreza en el uso del brazo robótico ABB IRB120, el controlador IRC5-Compact y la unidad de programación FlexPendant
- Simulación del control de bajo nivel de un robot manipulador con Simulink
- Programación de un robot real Universal Robot UR5

Prácticas

Práctica 0. Introducción a ABB RobotStudio y a la familia de robots industriales ABB. Uso del FlexPendant. Modos de movimiento.

Práctica 1. Definición de herramientas terminales con RobotStudio. Creación de mecanismos. Manejo de entradas y salidas digitales

Práctica 2. Programación en lenguaje RAPID. Tipos de datos e instrucciones. Objetos de trabajo. Manejo de rutinas y procedimientos.

Práctica 3. Control de bajo nivel de un robot manipulador con Simulink

Laboratorio A. Programación de robot UR5

ABB RobotStudio

- Software de simulación y programación offline en RAPID de robots industriales ABB
- Incluye ABB RobotWare y
 VirtualController (copia exacta del software de control del robot).
- Se conecta a la unidad real

https://new.abb.com/products/robotics/es/robotstudio

Universal Robot UR5

Simulación del control de bajo nivel

Temario de la asignatura

Bloque II: Automatización Industrial.

- <u>Tema 4</u>. Sensores y actuadores industriales. Actuadores eléctricos, hidráulicos y neumáticos. Servomecanismos.
 - Sensores fotoeléctricos. Sensores de proximidad (ópticos, inductivos, capacitivos, ultrasónicos). Detección de condición (temperatura, presión, flujo, nivel). Finales de carrera
 - Actuadores eléctricos, neumáticos e hidraúlicos. Servomecanismos.
- <u>Tema 5</u>. Control automático de procesos industriales mediante Controladores Lógicos Programables (PLC)
 - Hardware: Operación de un PLC. Controladores básicos y avanzados
 Siemens Simatic S7. Módulos de F/S. Memoria. Comunicaciones.
 - Software: Lenguajes de programación de PLC. Diagramas de escalera, texto estructurado, funciones secuenciales, bloques de funciones...

Prácticas

Práctica 5. Programación básica de PLC SIEMENS Simatic S7 mediante lenguajes IEC 61131

Laboratorio B. Programación de PLC S7-1200 y HMI

Software de simulación

- Simulación de líneas de producción industrial mediante Factory I/O
- Extensa librería de equipos industriales
- Drivers de conexión con PLC Siemens Simatic reales y simulados
- Aplicaciones industriales predefinidas

https://factoryio.com/

Equipos SIEMENS automatización

SIEMENS SIMATIC

Metodología y actividades formativas

1. Clases teóricas y resolución de problemas

- Explicación de los conceptos básicos de cada tema.
- Resolución de problemas y casos prácticos
- Se seguirá el material disponible en el Aula Virtual

2. Prácticas de Robótica Industrial y Automatización Industrial

- 10 sesiones prácticas (no desdobladas) de simulación y programación en RAPID con ABB RobotStudio, Simulink y Siemens TIA Portal
- 4 sesiones prácticas (no desdobladas) de laboratorio con equipos reales de Universal Robots y Siemens

Tutorías online

Concertar con antelación con el profesor por correo-e (@urjc)

Recursos online y herramientas en MyApps

Aula Virtual URJC https://www.aulavirtual.urjc.es

 Presentación, guía docente, apuntes de clase, ejercicios, prácticas, manuales, material de consulta, avisos (foro Novedades), calificaciones, calendario...

ABB RobotStudio https://new.abb.com/products/robotics/es/robotstudio

Tutoriales en https://new.abb.com/products/robotics/es/robotstudio/tutoriales

Matlab Simulink https://es.mathworks.com/products/matlab-online.html

SIEMENS Totally Integrated Automation Portal

Más info en https://new.siemens.com/global/en/products/automation/industry-software/automation-software/tia-portal.html

Semana 22/26 Enero					
Lunes	Martes	Miércoles	Jueves	Viernes	
	Presentación Tema 1 - Introducción		Tema 2 – Morfología		

Semana 29/Enero 2/Febrero					
Lunes Martes Miércoles Jueves Viernes					
	Tema 2 – Matemática		Tema 2 – Informática		
	orientación		Orientación Matlab		

Semana 5/9 Febrero					
Lunes	Martes	Miércoles	Jueves	Viernes	
	Tema 3 – Cinemática		Prácticas Informática		
	Directa		Robot Studio 0		

Semana 12/16 Febrero					
Lunes	Martes	Miércoles	Jueves	Viernes	
	Tema 3 – Ejercicios		Prácticas Informática		
	Cinemática directa		Robot Studio 1.1		

Semana 19/23 Febrero					
Lunes	Martes	Miércoles	Jueves	Viernes	
	Tema 3 – Cinemática		Prácticas Informática		
	inversa		Robot Studio 1.2		

Semana 26/Febrero 1/Marzo				
Lunes Martes Miércoles Jueves Viernes				
	Tema 3 – Cinemática		Prácticas Informática	
	diferencial		Robot Studio 2.1	

Semana 4/8 Marzo					
Lunes	Martes	Miércoles	Jueves	Viernes	
	Tema 3 - Ejercicios Cinemática inversa y diferencial		Prácticas Informática Robot Studio 2.2		

Semana 11/15 Marzo					
Lunes Martes Miércoles Jueves Viernes					
	Prácticas Informática		Prácticas Informática		
	Control bajo nivel 1		Control bajo nivel 2		

Semana 18/22 Marzo					
Lunes	Martes	Miércoles	Jueves	Viernes	
	Tema 4 - Sensores y actuadores		Tema 4 - Ejercicios		

Semana 25/ 29 Marzo				
Lunes	Martes	Miércoles	Jueves	Viernes
Semana Santa				

		Semana 1/5 Abril		
Lunes	Martes	Miércoles	Jueves	Viernes
	Tema 5 - PLCs y KOP		Tema 5 – Ejercicios KOP	
		Semana 8/12 Abril		
Lunes	Martes	Miércoles	Jueves	Viernes
	Prácticas Informática		T	
	Automatización (I)		Tema 5 – GRAFCET	
		Semana 15/19 Abril		
Lunes	Martes	Miércoles	Jueves	Viernes
	Prácticas Informática		Tema 5 – Ejercicios	
	Automatización (II)		GRAFCET	
		Semana 22/26 Abril		
Lunes	Martes	Miércoles	Jueves	Viernes
	Prácticas Informática		Labaustauis 1 A	
	Automatización (III)		Laboratorio 1.A	
		Semana 29/3 Mayo		
Lunes	Martes	Miércoles	Jueves	Viernes
	Laboratorio 1.B		Festivo 2 Mayo	
				•
		Semana 6/10 Mayo		
Lunes	Martes	Miércoles	Jueves	Viernes
	Laboratorio 2.A		Laboratorio 2.B	

Evaluación y Asistencia

Asistencia no obligatoria a sesiones teóricas y de simulación

1. Prueba escrita de los Bloques I y II: 30%

- Teoría, problemas y cuestiones de todo el temario
- Examen presencial en la fecha oficial publicada
- Nota mínima 5/10. Reevaluable en 2º convocatoria

2. Prácticas de simulación: 50%

- Ejercicios entregables por grupos de 2 alumnos.
- 2 semanas de trabajo tras las sesiones teóricas.
- Calificación media de todas las prácticas
- Nota mínima 5/10. Reevaluables en 2º convocatoria

3. Prácticas de laboratorio: 20%

- Defensa por grupos de trabajo tras la realización de las prácticas.
- Control de trabajo previo y asistencia obligatoria.
- Calificación media de todas las prácticas
- Nota mínima 5/10. No reevaluables en 2º convocatoria

Bibliografía básica

A. Barrientos, L.F. Penín, C. Balaguer, R. Aracil, *Fundamentos de Robótica* (2ª edición). McGraw Hill (2007)

ABB, *RobotStudio: Manual del Operador*. Última versión disponible para su descarga desde https://new.abb.com/products/robotics/es/robotstudio/descargas

W. Bolton. Programmable Logic Controllers. Newnes-Elsevier (2009)

