MATH 215B HWS

1. The attaching map for each k-cell

$$5^{k-1} \rightarrow \chi^{(k-1)} \rightarrow \chi^{(k-1)} / \chi^{(k-2)}$$

$$\cong V S^{k-1} \rightarrow S^{k-1}$$

factors as

collapse all but idvid two faces of cube

H is easy to see that the two pieces of the first map differ by a reflection in the domain, so they have degrees summing to 0. By the cellular boundary formula, the differentials of $C_{*}^{cw}(X)$ are therefore zero.

2. h even:

$$H_{4} = \mathbb{Z}_{1_{2}} \mathbb{Z}_{1_{2}} \cdots \mathbb{Z}_{1_{2}} \mathbb{Z}_{$$

n odd:

3. Either f has a fixed point, or $f \sim \text{antipodal map} \Rightarrow \text{deg } f = -1$ $\Rightarrow \text{deg } (-f) = 1$ $\Rightarrow -f \text{ has a fixed point } f$

If $g: RIP^{2n} \rightarrow RIP^{2n}$ then $\exists a \text{ lift } f$ $S^{2n} \rightarrow f \rightarrow S^{2n}$ $\downarrow \rho \qquad \downarrow \rho$ $|RIP^{2n} \rightarrow RIP^{2n}$

by the x_i -lifting criterion. Picking $x \in S^{2n}$ st. f(x) = x or -x, we see p(x) is fixed under g.

Let $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ be rotation by 90° . Then $\phi^n: (\mathbb{R}^2)^n \to (\mathbb{R}^2)^n$ descends to a map $\mathbb{R}\mathbb{P}^{2n-1}$ \mathcal{D} without fixed points [x], since $\phi^n(x) \neq \pm x$.

ta. It suffices to show GLn(IR) has two path components, det > 0 and det < 0. Visualizing each matrix by drawing its rows, we extend the row operations to continuous paths of invertible matrices:

multiply row by positive constant

add multiple of RI to RZ

These generate all matrices 46. Use the straight-line homotopy from f(x) to dfo(x). For small E, If(x)-dfo(x) = 1 for |x| < E Clearly g: 5'-> 5' has degree => |dfo 'of(x) -x | < 1x1 so the straight line from x homology, to dfo of(x) misses 0, so the line from dfo(x) to f(x)

(BE(0), BE(0) - fo]) → (IR", IR"-fo]) between f and offo, so they have the same local degree.

misses O too. This gives a

homotopy of pairs

5. Let 20 be a root of f, and use an FLT to bring Zo to the origin while preserving 00. Now of looks like Z'T(2-a) where r is the multiplicity of . f at Z. A straight-line homotopy gives a homotopy of maps 76. of pairs | E min | ail

(BE, BE- {0}) - (C, C- {0}) from our new f to g(z)=z", Now we just need dego g = r.

Compare two LES's: of positive det so we are done H2(02) -> H2(02,51) -> H1(51) -> H1(52) H2(02) -> H2(0,020) -> H1(02-0) -> H1(02) V, so under this identification => |dfo-||f(x)-dfo(x)| < 1x1 9: (0,02-503) -> (0,02-503) has degree r.

6. Using Künneth or cellular 40 = Z H=ZOZOZ

7. C= 0 - Z - Z - Z - 0 d,B 8 da = 2x 0B=3x

4	H. A	H.	A H21	4	16×4		4, 4/A H2 X/A		H. X/2
P	Z	0	0	CONTRACTOR DESIGNATION OF THE PERSON	72		0		Z
608	12	72	0		72		0		$\mathbb{Z}\oplus\mathbb{Z}$
basas	7	12/2	0	The same of	Z		0		72
Barab	Z	7/3	0		Z		0		Z
Porad	2	0	Z	M. Carriero	2		0		0

These two maps $S^2 \rightarrow X \rightarrow S^2$ give the homotopy equivalence $S^2 \simeq X$, as checked laboriously or using Cor. 4.33 in Hatcher.

HA= purus then
$$\begin{array}{ccc}
X \longrightarrow X/A \\
\uparrow & \downarrow = \\
S^2 \longrightarrow S^2 \\
deg = 3
\end{array}$$

and if A = purux then $X \rightarrow X/A$ is equivalent to $S^2 \rightarrow S^2$ deg = 2.

8. a. By UCT we may tensor with Q so everything is a vector space. Then $x(Hi) = \sum_{i=1}^{n} (-1)^{i} \operatorname{rank}_{i} H_{i}$ $= \sum_{i=1}^{n} (-1)^{i} (\ker \partial_{i} - \operatorname{im}_{i} \partial_{i} + \operatorname{im}_{i} \partial_{i})$ $= \sum_{i=1}^{n} (-1)^{i} (\ker \partial_{i} + \operatorname{im}_{i} \partial_{i})$ $= \sum_{i=1}^{n} (-1)^{i} \operatorname{rank}_{i} C_{i}$ $= x(C_{i})$

b. The given definition is x of the cellular chain complex, which by the above is = $x(\{H; \})$ c. The Mayer-Vietoris sequence is exact (x=0). Therefore

rank $H_0(A \cap B)$ - rank H_0A - rank H_0B + rank H_0X - rank $H_1(A \cap B)$ + ... = 0 $\Sigma(-1)^i rk \; H_1(A \cap B) - \Sigma(-1)^i (rk \; H_1A + rk \; H_1B)$ + $\Sigma(-1)^i rk \; H_1X = 0$ $\chi(A \cap B) - \chi(A) - \chi(B) + \chi(X) = 0$ $\chi(S^n \vee S^k) = \chi(S^n) + \chi(S^k) - \chi(k)$ $= (1 + (-1)^n) + (1 + (-1)^k) - 1$ $= 1 + (-1)^n + (-1)^k$

9.a. Put a CW structure on X with one k-cell for each lift of a k-cell in X. Then $X(X) = \sum_{k=1}^{\infty} (-1)^k \operatorname{vank} C_k^{cw}(X)$ $= \sum_{k=1}^{\infty} (-1)^k \operatorname{vank} C_k^{cw}(X)$ $= \sum_{k=1}^{\infty} (-1)^k \operatorname{vank} C_k^{cw}(X)$ $= n \times (X)$ b. $\chi(M_3) = (-6+1) = -4$

 $\chi(M_6) = 1-12+1 = -10$ Since $\chi(M_3) \not\uparrow \chi(M_6)$ there is no finite cover $M_6 \rightarrow M_3$.

10. Let $A = S^n - S^k$ and $B = S^n - S^l$,

In the first case ($S^k v S^l$) we have $A U B = S^n - k \simeq k$ so

Mayer - Vietoris gives

H; $(A \cap B) \cong H$; $(A) \oplus H$; $(B) = \{ Z \cap k - l - l \}$ and Z^2 in n - k - l if k = l.

In the Second case ($S^k \coprod S^l$)

we have $A U B = S^n$ so we get

the above answer plus an extra I in degree n-1.

11. Cover
$$I = [0,1]$$
 by
$$U_1 = [0, \frac{1}{4} + \epsilon) \cup (\frac{3}{4} - \epsilon, 1]$$

$$U_2 = (\frac{1}{4} - \epsilon, \frac{3}{4} + \epsilon)$$

Let $A \leq M_{\xi}$ be the image of $X \times U$, and $B \leq M_{\xi}$ be the image of $X \times U_2$. Then

and under this equivalence

becomes

and

becomes

so Mayer-Vietoris gives

HnX&HnX -> HnX&HnX -> Hn Mf -> ...

and this map has matrix