Solutions to Artin's Algebra Second Ed

Yue Yu

Contents

2	Gro	oups :	2
	2.1	Laws of Composition	2
		Exercise 1.1	2
		Exercise 1.2	2
		Exercise 1.3	2
	2.2	Groups and Subgroups	2
		Exercise 2.1	2
		Exercise 2.2	3
		Exercise 2.3	3
		Exercise 2.4	3
		Exercise 2.5	3
		Exercise 2.6	3
	2.3	Subgroups of the Additive Group of Integers	4
		Exercise 3.1	4
		Exercise 3.2	4
		Exercise 3.3	4
	2.4	Cyclic Groups	4
		Exercise 4.1	4
		Exercise 4.2	4
		Exercise 4.3	5
		Exercise 4.4	5
		Exercise 4.5	5
		Exercise 4.6	5
		Exercise 4.7	6
		Exercise 4.8	6
		Exercise 4.9	6
		Exercise 4.10	6
		Exercise 4.11	6

Chapter 2

Groups

2.1 Laws of Composition

Exercise 1.1

Proof. For any $a, b, c \in S$, we have

$$(ab)c = ac = a = ab = a(bc),$$

which implies that the law of composition is associative.

Let a be an arbitrary element in the set for which the law has an identity. Then, we have

$$a = a1 = 1a = 1,$$

which implies that the set must be $\{1\}$.

Exercise 1.2

- (1) *Proof.* la = 1 and ar = 1 imply $l = r = a^{-1}$.
- (2) *Proof.* Suppose that both a' and a'' are the inverses of a. Then a' = a'' by part (1) and so the inverse is unique.
- (3) Proof. $(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aa^{-1} = 1$ implies that $(ab)^{-1} = b^{-1}a^{-1}$.
- (4) See Exercise 1.3.

Exercise 1.3

Proof. s has no right inverse because there is no inverse when n=1. However, s has infinitely many left inverses because there are infinitely many mappings sending n+1 to n for $n \in \mathbb{N}$.

2.2 Groups and Subgroups

Exercise 2.1

Let x be the three-cycle (1,2,3) and y be the transposition (1,2). Then we obtain the following table:

	1	x	x^2	y	xy	x^2y
1	1	x	x^2	y	xy	x^2y
x	x	x^2	1	xy	x^2y	y
x^2	x^2	1	x	x^2y	y	xy
y	y	x^2y	xy	1	x^2	x
xy	xy	y	x^2y	x	1	x^2
x^2y	x^2y	xy	y	x^2	x	1

Exercise 2.2

Proof. Denote the subset by T. By definition, every element in T has an inverse. Also, noticing that associativity and the identity follow from those of S, it suffices to prove the closure under composition. Indeed, for any $a,b \in T$, we have $(ab)^{-1} = b^{-1}a^{-1}$, which implies that $ab \in T$. Therefore, T is a group.

Exercise 2.3

- (a) $y = x^{-1}w^{-1}z$.
- (b) xyz = 1 implies $yz = x^{-1}$ and so yzx = 1. However, yxz does not necessarily equal to 1 unless x and z commute.

Exercise 2.4

- (a) $H \leq G$.
- (b) H < G.
- (c) $H \nleq G$ because there is no inverse for every element in H.
- (d) $H \leq G$.
- (e) $H \not\leq G$ because $H \not\subseteq G$.

Exercise 2.5

Proof. In G, we have $1_H 1_G = 1_H \in H$. Cancelling 1_H on both sides in H, we obtain $1_G = 1_H$. Thus, for any $a \in H$, we have $aa_G^{-1} = 1_G = 1_H = aa_H^{-1}$, which implies that $a_G^{-1} = a_H^{-1}$.

Exercise 2.6

Proof. We check the four properties in turn.

- Closure. For any $a, b \in G^{\circ}$, we have $a * b = ba \in G$ and so $a * b \in G^{\circ}$ since $G = G^{\circ}$.
- Associativity. For any $a, b, c \in G^{\circ}$, we have (a * b) * c = (ba) * c = cba = (b * c)a = a * (b * c).

- Existence of identity. The identity is the same as that in G.
- Existence of inverse. For any element in G° , the inverse is the same as that in G.

Therefore, $(G^{\circ}, *)$ is a group.

2.3 Subgroups of the Additive Group of Integers

Exercise 3.1

By the Euclidean algorithm,

$$\gcd(321,123) = \gcd(123,75) = \gcd(75,48) = \gcd(48,27) = \gcd(27,21) = \gcd(21,6) = \gcd(6,3) = 3.$$

So $3 = 47 \times 123 - 18 \times 321.$

Exercise 3.2

Proof. Let $d = \gcd(a, b)$. Then $d \mid a + b$ and so $d \mid p$, which implies that d = 1 or d = p as p is prime. However, since a, b > 0, we have d < p. Hence, d = 1.

Exercise 3.3

- (a) The greatest common divisor d of $\{a_1, \ldots, a_n\}$ should
 - divide a_1, \ldots, a_n and
 - for any $c \in \mathbb{N}$ dividing $a_1, \ldots, a_n, c \mid d$.

Proof. We prove this by induction.

Denote the gcd of $\{a_1,\ldots,a_m\}$ by d_m , where $m\in\mathbb{N}$. It is clear that the d_2 exists and it is an integer combination of a_1 and a_2 by the Euclidean algorithm. Suppose that d_k exists for some integer $k\geq 2$ and $d_k=\sum_{i=1}^k\alpha_ia_i$, where $\alpha_i\in\mathbb{Z}$. Then d_{k+1} exists because $d_{k+1}\mid d_k$ and $d_{k+1}\mid a_{k+1}$. In addition,

$$\begin{aligned} d_{k+1} &= \beta_1 d_k + \beta_2 a_{n+1} & \text{(by the Euclidean algorithm)} \\ &= \beta_1 \sum_{i=1}^k \alpha_i a_i + \beta_2 a_{n+1} & \text{(by the inductive hypothesis)} \\ &= \sum_{i=1}^k \beta_1 \alpha_i a_i + \beta_2 a_{n+1}, \end{aligned}$$

where $\beta_1, \beta_2 \in \mathbb{Z}$, which proves the assertion by induction.

(b) Proof. Denote the gcd of $\{a_1/d, \ldots, a_n/d\}$ by d'. By part (a), $d = \sum_{i=1}^n \alpha_i a_i$ for some $\alpha_i \in \mathbb{Z}$. Dividing both sides by d, we obtain $1 = \sum_{i=1}^n \alpha_i (a_i/d)$. Since d' divides $a_1/d, \ldots, a_n/d$, it divides the right-hand side and so it divides 1, which implies that d' = 1.

2.4 Cyclic Groups

Exercise 4.1

Proof.
$$ab = aba^7 = a(ba^3)a^4 = a(a^3b)a^4 = a^4ba^4 = a^4(ba^3)a = a^4(a^3b)a = a^7ba = ba$$
.

Exercise 4.2

(a) *Proof.* By definition, the *n*th roots of unity are $\exp\left(\frac{2k\pi i}{n}\right)$, where $k=0,1,\ldots,n-1$. Hence, they form the cyclic group $\langle \exp\left(\frac{2\pi i}{n}\right)\rangle$ of order *n*.

(b)
$$\prod_{k=0}^{n-1} \exp\left(\frac{2k\pi i}{n}\right) = \exp\left(\sum_{k=0}^{n-1} \frac{2k\pi i}{n}\right) = \exp\left(\frac{(n-1)k\pi i}{n}\right).$$

Exercise 4.3

Proof. Let |ab| = m. Then $1 = (ab)^m = a(ba)^{m-1}b$ and so $(ba)^m = 1$. Suppose that there exists some $l \in \mathbb{N}$ smaller than m such that $(ba)^l = 1$. Then by a similar argument, $(ab)^l = 1$, which contradicts that |ab| = m. Hence, |ba| = m = |ab|.

Exercise 4.4

We start with the following claim.

Claim. A cyclic group G has no proper subgroup if and only if |G| is prime.

Proof. If G is infinite, then $G \cong \mathbb{Z}$ under addition, which has proper subgroups isomorphic to $n\mathbb{Z}$ where $n \in \mathbb{N}$. So G is finite.

Suppose |G| = p where p is prime. Further suppose that $|g^k| = m$ for some positive integer k < p. Then $(g^k)^m = (g)^{qp} = 1$ and so km = qp. By the fundamental theorem of arithmetic, m = p. Since every subgroup of a cyclic group is cyclic, this implies that the order of the cyclic group generated by any element in G is the same as G. Thus, G has no proper subgroup.

Conversely, suppose that |G| is not prime. Then |G| = ab for some integers a, b > 1. Then $\langle g^a \rangle$ is a proper subgroup of G, which is a contradiction. So |G| is prime.

Therefore, G has no proper subgroup if and only if |G| is prime.

Now, we analyze G. Suppose G is generated by at least two elements a, b. Then $\langle a \rangle, \langle b \rangle$ are proper subgroups of G. So G is a cyclic group. Hence, by our claim, $G \cong \mathbb{Z}_p$ where p is prime.

Exercise 4.5

Proof. Let $G = \langle a \rangle$ be a cyclic group and H be a subgroup of G. We may assume that G and H are non-trivial. Pick the smallest $m \in \mathbb{N}$ such that $a^m \in H$. We claim that $H = \langle a^m \rangle$.

To prove this, for any $a^k \in H$, since k = qm + r where $0 \le r < m$, we have $a^k = a^r \in H$. So r = 0 by the minimality of m, which implies that $a^k = (a^m)^q \in \langle a^m \rangle$ and so $H \subseteq \langle a^m \rangle$. On the other hand, for any $(a^m)^n \in \langle a^m \rangle$, $(a^m)^n \in H$ by the closure of H and so $\langle a^m \rangle \subseteq H$. Therefore, $H = \langle a^m \rangle$, which is cyclic.

Exercise 4.6

- (a) There are 2 elements generating the cyclic group of order 6, and 4 elements generating the cyclic groups of order 5 and 8.
- (b) We start with the following claim.

Claim. Let $G = \langle a \rangle$ be a cyclic group of order n. Then a^m generates G if and only if m and n are coprime.

Proof. Suppose that m and n are coprime. By Bézout's identity, we have 1 = mx + ny for some $x,y \in \mathbb{Z}$. So for any $a^k \in G$, $a^k = a^{k(mx+ny)} = (a^m)^{kx} \in \langle a^m \rangle$, which implies that $G \subseteq \langle a^m \rangle$ and so $G = \langle a^m \rangle$. Conversely, suppose that m and n are not coprime. Let $d = \gcd(m,n) > 1$. Then m = m'd and n = n'd for some positive integers m' < m and n' < n. So $a^n = a^{n'd} = a^{n'm/m'} = (a^m)^{n'/m'}$. Multiplying both sides by $a^{m'}$, we obtain $(a^m)^{n'} = (a^n)^{m'} = 1$. So $|\langle a^m \rangle| \leq n' < n = |G|$, which is a contradiction since a^m generates G. Therefore, a^m generates G if and only if m and n are coprime.

Now, by our claim, the number of elements generating the cyclic group $G = \langle a \rangle$ is the number of elements a^k , where 0 < k < n and $\gcd(k, n) = 1$.

Exercise 4.7

Proof. Since $(xy)^2 = 1$, we have yxy = x and so xy = yx. The result follows from the following table:

	1	x	y	xy
1	1	x	y	xy
x	x	1	xy	y
y	y	xy	1	x
xy	xy	y	x	1

Exercise 4.8

To be updated.

Exercise 4.9

There are $\binom{4}{2}$ elements interchanging a single pair of elements, and 3 elements interchanging two pairs of elements. So there are 9 elements of order 2 in total.

Exercise 4.10

Some 2 by 2 matrices should work. However, this is not the case if the group is abelian.

Proof. For any elements a, b of finite order in an abelian group. Suppose |a| = m and |b| = n. Then

$$(ab)^{mn} = a^{mn}b^{mn} = (a^m)^n(b^n)^m = 1,$$

which implies that |ab| is finite.

Exercise 4.11

- (a) *Proof.* Note that every element in S_n is isomorphic to an n by n permutation matrix. Since a permutation matrix is elementary, it can be obtained by applying elementary operations to the identity matrix, in particular, row switching, which proves the assertion.
- (b) *Proof.* The composition of any two transpositions is equal to some three-cycle, which proves the assertion. \Box