

اصول سیستمهای مخابراتی

دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی

تمرین سری چهارم موعد تحویل: روز جمعه ۱۳۹۸/۱۰/۰۶

- $f_c=1000Hz$ و $\mu=1$ با AM ورودی یک فرستنده $x(t)=3K\left(\cos 8\pi t+2\cos 20\pi t\right)$ و $x(t)=3K\left(\cos 8\pi t+2\cos 20\pi t\right)$.
 است. X را طوری تعیین کنید که x(t) به طور مناسبی نرمالیزه شود. سپس طیف خطی مثبت موج مدوله شده را رسم کنید.
- در m(t) در شکل ریام متناوب شکل و کرم $[A+m(t)]\cos\omega_c$ را برای سیگنال پیام متناوب شکل و برای در $[A+m(t)]\cos\omega_c$ در حالات مختلف مشخص شده رسم کنید:

$$\mu = \infty$$
 (ع $\mu = 2$ (ج $\mu = 1$ ب $\mu = 0.5$ الف)

ه) حالتی که $\omega = \infty$ است را تحلیل کنید.

- ۳. برای مسئله ۲، توان سیگنال حامل را هنگامی که $\mu = 0.8$ است بیابید.
- ۴. یک سیستم FM با $f_{\Delta}=30$ برای $f_{\Delta}=30$ برای W=10 طراحی شدهاست. وقتی که سیگنال مدوله کننده برای $f_{m}=5$ برای $f_{m}=5$ برای $f_{m}=5$ فرض شده تک تون با دامنه واحد و فرکانسهای مختلف $f_{m}=5$ اشغال شدهاست؟
- ۵. یک مولد FM مستقیم، برای کنترل از راه دور یک ماشین به کار رفته است. محدوده مجاز مقادیر پهنای باند سیگنال پیام (W) را به نحوی پیدا کنید که B_T نیازهای پهنای باند کسری (W) را برآورده سازد. انحراف فرکانس ماکزیمم (f_c) دلخواه است و انتخاب فرکانس سیگنال حامل (f_c) دلخواه است.

موفق باشيد