Applied Deep Learning for NLP

Week 11 - Text Summarization

Juan Carlos Medina Serrano

Technische Universität München Hochschule für Politik Political Data Science

Munich, 14. January 2021

political data science

Conditional Language Model

Task of predicting the next word, given the words so far, and some other input x

$$P(y_t|y_1,...,y_{t-1},x)$$

For Machine translation: x=source sentence, y=target sentence

Summarization

Task: Given input x, write summary y which is shorter and contains the main information of x

Summarization can be:

- ► Single-document: summary from a single x document
- \blacktriangleright Multi-document: summary from several documents $x_1,...,x_n$. (With overlapping content)

Different Datasets Different Tasks

Summarization is a broad task. Existing datasets differ in the input and target:

- ► Gigaword: x=first one or two sentences, y=headline
- ► NYT, CNN/DailyMail: x=news article y=multisentence summary
- ► Sample Wikipedia: x=Wikipedia sentence y= simple sentence (Sentence simplification)

Summarization Strategies

- **Extractive** Summarization: Select parts (sentences) of the original text to form a summary. Similar task to keyword extraction, but the inputs are sentences and not ngrams.
- ▶ **Abstractive** Summarization: Generate new fluent text that summarizes the text.

Seq2Seq

Basic Seq2Seq + Attention architectures (pre-transformers) work great for sentence simplification:

Not so good for long paragraphs. How to make it better?

Copy Mechanisms

Abstractive summarization can get better using the ideas of extractive summarization: Add a mechanism to copy important parts of the original sentence. Copying rarely occurs in seq2seq architectures.

Idea: Use a probability of generating the next word, instead of copying it

https://arxiv.org/pdf/1704.04368.pdf

Content Selection

Problem: On each step of the decoder, there is a word-level attention to select next word. However, this does not include any **global** strategy.

Step 1: Use a neural sequence-tagging model to tag words as include or don't-include

Step 2: The attention in the Seq2seq can't attend to words tagged as don't include.

ROUGE

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is the equivalent of BLUE for summarization.

Also based on overlapping n-grams. BUT, no brevity penalty. Normally with a maximum length constraint.

BLUE is based on precision.

ROUGE is based on recall.

BLUE is reported as a single number that combines 1,2,3,4 n-grams

ROUGE is reportedly separately: ROUGE-1, ROUGE-2, ROUGE-L (longest common subsequence).

PEGASUS

Transformer Encoder- Decoder architecture. It uses the MLM task (Encoder side) and adds a new objective (Decoder side):

Gap Sentences Generation: Mask whole sentences from documents, and concatenate the gap-sentences as a pseudo-summary.

Similar to T5, it reconstructs only the masked sentences.

PEGASUS

Transformer Encoder- Decoder architecture. It uses the MLM task (Encoder side) and adds a new objective (Decoder side):

Gap Sentences Generation: Mask whole sentences from documents, and concatenate the gap-sentences as a pseudo-summary.

Similar to T5, it reconstructs only the masked sentences.

PEGASUS

Masks 15% of the sentences. Selecting the right sentences to mask is important! How:

- ► Random m sentences
- ► Lead: First m sentences
- ▶ Principal: Select top-m scored sentences according to importance. Use ROUGE1 between sentence and the rest of the document.

Beats all previous SOTA. (Except for the Gigaword dataset)