False Discovery Rates, A New Deal

Matthew Stephens

2014/7/8

 Over ~10 years of working with graduate students + postdocs, I've noticed something.

- Over ~10 years of working with graduate students + postdocs, I've noticed something.
- Organized researchers get more done (and better!).

- Over ~10 years of working with graduate students + postdocs, I've noticed something.
- Organized researchers get more done (and better!).
- Many of them are more organized than I am!

2 / 64

- Over ~10 years of working with graduate students + postdocs, I've noticed something.
- Organized researchers get more done (and better!).
- Many of them are more organized than I am!
- Thought: I should get organized; I should help others get organized.

• Buy a notebook; bring it to meetings; make notes!

- Buy a notebook; bring it to meetings; make notes!
- Come to meetings with a written agenda.

- Buy a notebook; bring it to meetings; make notes!
- Come to meetings with a written agenda.
- While doing research, record what you did and what the outcome was.

- Buy a notebook; bring it to meetings; make notes!
- Come to meetings with a written agenda.
- While doing research, record what you did and what the outcome was.
- Use version control (git) and internet repositories (bitbucket, github) to organize notes, code, etc.

3 / 64

- Buy a notebook; bring it to meetings; make notes!
- Come to meetings with a written agenda.
- While doing research, record what you did and what the outcome was.
- Use version control (git) and internet repositories (bitbucket, github) to organize notes, code, etc.
- Use knitr to help make your research reproducible.

- Buy a notebook; bring it to meetings; make notes!
- Come to meetings with a written agenda.
- While doing research, record what you did and what the outcome was.
- Use version control (git) and internet repositories (bitbucket, github) to organize notes, code, etc.
- Use *knitr* to help make your research reproducible.
- Talk about the tools you find useful!

3 / 64

What are these repository things?

 A repository: a central place in which an aggregation of data is kept and maintained in an organized way (searcharticle.com)

What are these repository things?

- A repository: a central place in which an aggregation of data is kept and maintained in an organized way (searcharticle.com)
- Great for sharing material across multiple people (eg student and advisor!)

What are these repository things?

- A repository: a central place in which an aggregation of data is kept and maintained in an organized way (searcharticle.com)
- Great for sharing material across multiple people (eg student and advisor!)
- An amateur example: http://github.com/stephens999/ash

• An R package

- An R package
- A tool for literate programming

- An R package
- A tool for literate programming
- Text, and R code are interleaved

- An R package
- A tool for literate programming
- Text, and R code are interleaved
- When you compile the document, the code is run, and output inserted into the text.

- An R package
- A tool for literate programming
- Text, and R code are interleaved
- When you compile the document, the code is run, and output inserted into the text.
- Great for writing reports, and keeping a track of what you did and what the result was!

- An R package
- A tool for literate programming
- Text, and R code are interleaved
- When you compile the document, the code is run, and output inserted into the text.
- Great for writing reports, and keeping a track of what you did and what the result was!
- This talk was written with knitr (with RStudio)!

What is Reproducible Research?

• Principle: when publishing results of computational procedures, we should publish the code that produced the results.

6 / 64

What is Reproducible Research?

- Principle: when publishing results of computational procedures, we should publish the code that produced the results.
- "publishing figures or results without the complete software environment could be compared to a mathematician publishing an announcement of a mathematical theorem without giving the proof" (Buckheit and Donohoe)

What is Reproducible Research?

- Principle: when publishing results of computational procedures, we should publish the code that produced the results.
- "publishing figures or results without the complete software environment could be compared to a mathematician publishing an announcement of a mathematical theorem without giving the proof" (Buckheit and Donohoe)
- "an article about a computational result is advertising, not scholarship. The actual scholarship is the full software environment, code and data, that produced the result." [Claerbout]

Not only because people are forgetful, error-prone, or dishonest!

- Not only because people are forgetful, error-prone, or dishonest!
- Reproducing work is also the first step to extending it.

- Not only because people are forgetful, error-prone, or dishonest!
- Reproducing work is also the first step to extending it.
- Helps communications among researchers (eg student + advisor).

- Not only because people are forgetful, error-prone, or dishonest!
- Reproducing work is also the first step to extending it.
- ullet Helps communications among researchers (eg student + advisor).
- If you do not publish code implementing your methods, your methods will likely go unused.

More on git, github, knitr, reproducibility

• Google "The git book", to get started on git.

More on git, github, knitr, reproducibility

- Google "The git book", to get started on git.
- Google "Karl Broman github tutorial" for statistics-oriented intro to github.

More on git, github, knitr, reproducibility

- Google "The git book", to get started on git.
- Google "Karl Broman github tutorial" for statistics-oriented intro to github.
- Google "donohoe buckheit" for "Wavelab and reproducible research"

Measure lots of things, with error

- Measure lots of things, with error
- Get estimates of effects β_j ($\hat{\beta}_j$) and their standard errors s_j

- Measure lots of things, with error
- ullet Get estimates of effects eta_j (\hat{eta}_j) and their standard errors s_j
- Turn these into Z-scores, $z_j = \hat{\beta}_j/s_j$

9 / 64

- Measure lots of things, with error
- ullet Get estimates of effects eta_j (\hat{eta}_j) and their standard errors s_j
- Turn these into Z-scores, $z_j = \hat{\beta}_j/s_j$
- Turn these into p values, p_j

- Measure lots of things, with error
- Get estimates of effects β_j ($\hat{\beta}_j$) and their standard errors s_j
- Turn these into Z-scores, $z_j = \hat{\beta}_j/s_j$
- Turn these into p values, p_j
- Apply qvalue to identify findings "significant" at a given FDR.

- Measure lots of things, with error
- ullet Get estimates of effects eta_j (\hat{eta}_j) and their standard errors s_j
- Turn these into Z-scores, $z_j = \hat{\beta}_j/s_j$
- Turn these into p values, p_j
- Apply qvalue to identify findings "significant" at a given FDR.
- ...?

Although precise definitions vary depending on whether one takes a Bayesian or Frequentist approach to the problem, roughly

• The FDR at a threshold P is

$$FDR(P) = Pr(\beta_j = 0 | p_j < P).$$

Although precise definitions vary depending on whether one takes a Bayesian or Frequentist approach to the problem, roughly

• The FDR at a threshold P is

$$FDR(P) = Pr(\beta_j = 0 | p_j < P).$$

• The q value for observation j is $q_j = FDR(p_j)$.

Although precise definitions vary depending on whether one takes a Bayesian or Frequentist approach to the problem, roughly

• The FDR at a threshold P is

$$FDR(P) = Pr(\beta_j = 0 | p_j < P).$$

- The q value for observation j is $q_j = FDR(p_j)$.
- The local false discovery rate, fdr, at threshold P is

$$fdr(P) = Pr(\beta_j = 0 | p_j = P).$$

Although precise definitions vary depending on whether one takes a Bayesian or Frequentist approach to the problem, roughly

• The FDR at a threshold P is

$$FDR(P) = Pr(\beta_j = 0 | p_j < P).$$

- The q value for observation j is $q_j = FDR(p_j)$.
- The local false discovery rate, fdr, at threshold P is

$$fdr(P) = Pr(\beta_j = 0 | p_j = P).$$

• The fdr is more relevant, but slightly harder to estimate than FDR because it involves density estimation rather than tail-area estimation.

Is this an important problem?

 The original paper introducing FDR (Benjamini and Hochberg, 1995) has been cited 21,787 times (May 2014) according to Google Scholar.

Is this an important problem?

- The original paper introducing FDR (Benjamini and Hochberg, 1995) has been cited 21,787 times (May 2014) according to Google Scholar.
- That is three times a day for the last 19 years!

Problem 1: The Zero Assumption (ZA)

• The standard qvalue approach assumes that all the *p* values near 1 are null.

Problem 1: The Zero Assumption (ZA)

- The standard qvalue approach assumes that all the p values near 1 are null.
- Analogously, one can assume that all Z scores near 0 are null. Efron refers to this as the "Zero Assumption".

Problem 1: The Zero Assumption (ZA)

- The standard qvalue approach assumes that all the p values near 1 are null.
- Analogously, one can assume that all Z scores near 0 are null. Efron refers to this as the "Zero Assumption".
- Seems initially natural.

Implied distribution of p values under H_1

Implied distribution of Z scores under alternative

FDR problem 2: different measurement precision

• In some cases the measurement precisions differ among units

FDR problem 2: different measurement precision

- In some cases the measurement precisions differ among units
- Eg Expression levels of low-expressed genes have less precision than high-expressed genes

FDR problem 2: different measurement precision

- In some cases the measurement precisions differ among units
- Eg Expression levels of low-expressed genes have less precision than high-expressed genes
- If some effects are measured less precisely than others, those tests "lack power" and dilute signal, increasing FDR

Example: Mouse Heart Data

```
##
        gene
              lv1 lv2 rv1
                                rv2 genelength
## 1
       Itm2a 2236 2174
                        9484 10883
                                           1626
##
      Sergef
               97
                     90
                          341
                                408
                                           1449
    Fam109a 383
                   314
                         1864
                               2384
                                           2331
        Dhx9 2688 2631 18501
                                           4585
## 4
                              20879
              762
                    674
## 5
       Ssu72
                         2806
                               3435
                                           1446
## 8
      Eif2b2
              736
                    762
                         3081
                               3601
                                           1565
```

 Data on 150 mouse hearts, dissected into left and right ventricle (courtesy Scott Schmemo, Marcelo Nobrega)

Example: Mouse Heart Data

Mouse Data: Counts vary considerably across genes

Distribution of total counts

Lower count genes, less power

Higher count genes, more power

Low-count genes dilute signal at high-count genes

FDR problem 2: low count genes add noise, increase q values

q values for high count genes

2014/7/8

Problems: Summary

Standard tools are unduly conservative.

• The ZA, which implies actual effects have a (probably unrealistic) bimodal distribution; causes overestimate of π_0 , losing power.

Problems: Summary

Standard tools are unduly conservative.

- The ZA, which implies actual effects have a (probably unrealistic) bimodal distribution; causes overestimate of π_0 , losing power.
- By focussing on p values, low-precision measurements can dilute high-precision measurements.

• Following previous work (e.g. Newton, Efron, Muralidharan) we take an empirical Bayes approach to FDR.

- Following previous work (e.g. Newton, Efron, Muralidharan) we take an empirical Bayes approach to FDR.
- Eg Efron assumes that the Z scores come from a mixture of null, and alternative:

$$Z_j \sim f_Z(.) = \pi_0 N(.; 0, 1) + (1 - \pi_0) f_1(.)$$

where f_1 , π_0 are to be estimated from the data.

- Following previous work (e.g. Newton, Efron, Muralidharan) we take an empirical Bayes approach to FDR.
- Eg Efron assumes that the Z scores come from a mixture of null, and alternative:

$$Z_j \sim f_Z(.) = \pi_0 N(.; 0, 1) + (1 - \pi_0) f_1(.)$$

where f_1 , π_0 are to be estimated from the data.

• Various semi-parametric approaches taken to estimating f_1 . For example, Efron uses Poisson regression; Muralidharan uses mixture of normal distributions.

- Following previous work (e.g. Newton, Efron, Muralidharan) we take an empirical Bayes approach to FDR.
- Eg Efron assumes that the Z scores come from a mixture of null, and alternative:

$$Z_j \sim f_Z(.) = \pi_0 N(.; 0, 1) + (1 - \pi_0) f_1(.)$$

where f_1 , π_0 are to be estimated from the data.

- Various semi-parametric approaches taken to estimating f_1 . For example, Efron uses Poisson regression; Muralidharan uses mixture of normal distributions.
- ullet Once f_1 and π_0 estimated, FDR calculations are straightforward.

FDR: A New Deal

• Instead of modelling Z scores, model the effects β ,

$$\beta_j \sim \pi_0 \delta_0(.) + (1 - \pi_0)g(.)$$

FDR: A New Deal

• Instead of modelling Z scores, model the effects β ,

$$\beta_j \sim \pi_0 \delta_0(.) + (1 - \pi_0)g(.)$$

• Constrain g to be unimodal about 0; estimate g from data.

FDR: A New Deal

• Instead of modelling Z scores, model the effects β ,

$$\beta_j \sim \pi_0 \delta_0(.) + (1 - \pi_0)g(.)$$

- Constrain g to be unimodal about 0; estimate g from data.
- Incorporate precision of each observation $\hat{\beta}$ into the likelihood. Specifically, approximate likelihood for β_j by a normal:

$$L(\beta_j) \propto \exp(-0.5(\beta_j - \hat{\beta}_j)^2/s_j^2).$$

[From $\hat{\beta}_j \sim N(\beta_j, s_j)$] Or, better, use a t likelihood if s_j estimated using few observations.

FDR - A New Deal

 A convenient way to model g: mixture of 0-centered normal distributions:

$$g(\beta;\pi) = \sum_{k=1}^{K} \pi_k N(\beta;0,\sigma_k^2)$$

FDR - A New Deal

 A convenient way to model g: mixture of 0-centered normal distributions:

$$g(\beta;\pi) = \sum_{k=1}^{K} \pi_k N(\beta;0,\sigma_k^2)$$

• Estimating g comes down to estimating π . Joint estimation of π_0, π easy by maximum likelihood (EM algorithm).

 A convenient way to model g: mixture of 0-centered normal distributions:

$$g(\beta;\pi) = \sum_{k=1}^{K} \pi_k N(\beta;0,\sigma_k^2)$$

- Estimating g comes down to estimating π . Joint estimation of π_0, π easy by maximum likelihood (EM algorithm).
- By allowing K large, and σ_k to span a dense grid of values, we get a flexible unimodal symmetric distribution.

 A convenient way to model g: mixture of 0-centered normal distributions:

$$g(\beta;\pi) = \sum_{k=1}^{K} \pi_k N(\beta;0,\sigma_k^2)$$

- Estimating g comes down to estimating π . Joint estimation of π_0, π easy by maximum likelihood (EM algorithm).
- By allowing K large, and σ_k to span a dense grid of values, we get a flexible unimodal symmetric distribution.
- Can approximate, arbitrarily closely, any scale mixture of normals. Includes almost all priors used for sparse regression problems (spike-and-slab, double exponential/Laplace/Bayesian Lasso, horseshoe).

 Alternatively, a mixture of uniforms, with 0 as one end-point of the range, provides still more flexibility, and in particular allows for asymmetry.

- Alternatively, a mixture of uniforms, with 0 as one end-point of the range, provides still more flexibility, and in particular allows for asymmetry.
- If allow a very large number of uniforms this provides the non-parametric mle for g; cf Grenander 1953; Cordy + Thomas 1997.

Illustration: g a mixture of 0-centered normals

Illustration: g a mixture of 0-centered normals

Illustration: g a mixture of 0-anchored uniforms

Illustration: g a mixture of 0-anchored uniforms

• This approach actually provides a full posterior distribution for each β_j .

- This approach actually provides a full posterior distribution for each β_j .
- So easy to obtain point estimates and credible intervals.

- This approach actually provides a full posterior distribution for each β_j .
- So easy to obtain point estimates and credible intervals.
- Because $g(\beta)$ is unimodal, the point estimates (and CIs) will tend to be "shrunk" towards the overall mean (0).

- This approach actually provides a full posterior distribution for each β_j .
- So easy to obtain point estimates and credible intervals.
- Because $g(\beta)$ is unimodal, the point estimates (and CIs) will tend to be "shrunk" towards the overall mean (0).
- Because $g(\beta)$ is estimated from the data, the amount of shrinkage is adaptive to signal in the data. And because of the role of s_j , the amount of shrinkage adapts to the information on each observation.

- This approach actually provides a full posterior distribution for each β_j .
- So easy to obtain point estimates and credible intervals.
- Because $g(\beta)$ is unimodal, the point estimates (and CIs) will tend to be "shrunk" towards the overall mean (0).
- Because $g(\beta)$ is estimated from the data, the amount of shrinkage is adaptive to signal in the data. And because of the role of s_j , the amount of shrinkage adapts to the information on each observation.
- So we call the approach "Adaptive Shrinkage" (ASH).

Recall Problem 1: distribution of alternative Z values multimodal

Problem Fixed: distribution of alternative Z values unimodal

Example: FDR estimation

Example: FDR estimation

Recall Problem 2: low count genes add noise, increase q values

q values for high count genes

41 / 64

Problem Fixed: incorporating precision reduces influence of low-count genes

q values for high count genes

A new problem: an embarrassment of riches

 If the null is mostly false, the new approach can provide unsettling results

A new problem: an embarrassment of riches

- If the null is mostly false, the new approach can provide unsettling results
- The FDR can be small for all observations, even those with $p \approx 1!$

A new problem: an embarrassment of riches

- If the null is mostly false, the new approach can provide unsettling results
- The FDR can be small for all observations, even those with $p \approx 1!$
- In the illustrative example, the maximum q value is 0.18

• Problem arises only if we insist on asking question "is $\beta_j = 0$?"

- Problem arises only if we insist on asking question "is $\beta_j = 0$?"
- ullet Given enough signal, we become convinced that very few of the $eta_j=0$

- Problem arises only if we insist on asking question "is $\beta_j = 0$?"
- ullet Given enough signal, we become convinced that very few of the $eta_j=0$
- ullet But for some eta_j we still may have little information about actual value

- Problem arises only if we insist on asking question "is $\beta_j = 0$?"
- ullet Given enough signal, we become convinced that very few of the $eta_j=0$
- ullet But for some eta_j we still may have little information about actual value
- Suggests a change of focus: ask for which β_j are we confident about the sign (cf Gelman et al, 2012).

The False Sign Rate

 Suggestion: replace FDR with local false sign rate (Ifsr), the probability that if we say an effect is positive (negative), it is not.

The False Sign Rate

- Suggestion: replace FDR with local false sign rate (lfsr), the probability that if we say an effect is positive (negative), it is not.
- Example: suppose we estimate that $\Pr(\beta_j < 0) = 0.95, \Pr(\beta_j = 0) = 0.025$ and $\Pr(\beta_j > 0) = 0.025$. Then we report β_j as a "(negative) discovery", and estimate its Ifsr as 0.05.

Even with many signals, large p values have high lfsr

• The FDR is typically not actually identifiable from data.

- The FDR is typically not actually identifiable from data.
- This is because data cannot distinguish between $\beta_j = 0$ and β_j "very small". So π_0 is not identifiable, and FDR is very sensitive to π_0 .

- The FDR is typically not actually identifiable from data.
- This is because data cannot distinguish between $\beta_j = 0$ and β_j "very small". So π_0 is not identifiable, and FDR is very sensitive to π_0 .
- So methods for estimating π_0 and FDR, including those presented here, are designed to be "conservative" (i.e. overestimate the FDR).

- The FDR is typically not actually identifiable from data.
- This is because data cannot distinguish between $\beta_j = 0$ and β_j "very small". So π_0 is not identifiable, and FDR is very sensitive to π_0 .
- So methods for estimating π_0 and FDR, including those presented here, are designed to be "conservative" (i.e. overestimate the FDR).
- The False Sign Rate is much less senstive to π_0 , and hence more identifiable from data!

Simulated example: π_0 not identifiable.

Simulated Example: so fdr not identifiable

Simulated Example: fsr much more identifiable

 ASH provides a generic approach to shrinkage estimation, as well as false discovery (sign) rates.

- ASH provides a generic approach to shrinkage estimation, as well as false discovery (sign) rates.
- But by using two numbers $(\hat{\beta}, s)$ instead of one (p values or z scores) varying precision of measurements is better accounted for.

- ASH provides a generic approach to shrinkage estimation, as well as false discovery (sign) rates.
- But by using two numbers $(\hat{\beta}, s)$ instead of one (p values or z scores) varying precision of measurements is better accounted for.
- Unimodal assumption for effects reduces conservatism

- ASH provides a generic approach to shrinkage estimation, as well as false discovery (sign) rates.
- But by using two numbers $(\hat{\beta}, s)$ instead of one (p values or z scores) varying precision of measurements is better accounted for.
- Unimodal assumption for effects reduces conservatism
- False Sign Rate preferable to False Discovery Rate: more identifiable, and better representation of information in data for "high-signal" situations.

Other Applications

• Widely applicable: requiring only an estimated effect size and standard error for each object.

Other Applications

- Widely applicable: requiring only an estimated effect size and standard error for each object.
- E.g. Currently applying it to wavelet shrinkage applications.

Next steps?

 Incorporate shrinkage of variances and not just means. (e.g. "moderated t test", Smyth et al)

Next steps?

- Incorporate shrinkage of variances and not just means. (e.g. "moderated t test", Smyth et al)
- Allow $g(\cdot; \pi)$ to depend on covariates X.

Next steps?

- Incorporate shrinkage of variances and not just means. (e.g. "moderated t test", Smyth et al)
- Allow $g(\cdot; \pi)$ to depend on covariates X.
- Allow for correlations in the measured $\hat{\beta}_j$.

• to the developers of **R**, **knitr**, **Rstudio** and **Pandoc**.

- to the developers of R, knitr, Rstudio and Pandoc.
- to the several postdoctoral researchers and students who have worked with me on related topics.

- to the developers of **R**, **knitr**, **Rstudio** and **Pandoc**.
- to the several postdoctoral researchers and students who have worked with me on related topics.
- Including Ester Pantaleo, Scott Powers, Mengyin Lu, Sen Tian, Wei Wang, Zhengrong Xing.

- to the developers of R, knitr, Rstudio and Pandoc.
- to the several postdoctoral researchers and students who have worked with me on related topics.
- Including Ester Pantaleo, Scott Powers, Mengyin Lu, Sen Tian, Wei Wang, Zhengrong Xing.
- NHGRI for funding.

- to the developers of R, knitr, Rstudio and Pandoc.
- to the several postdoctoral researchers and students who have worked with me on related topics.
- Including Ester Pantaleo, Scott Powers, Mengyin Lu, Sen Tian, Wei Wang, Zhengrong Xing.
- NHGRI for funding.
- ashr package: http://www.github.com/stephens999/ash

Pandoc Command used

```
pandoc -s -S -i --template=my.beamer -t beamer -V
theme: CambridgeUS -V colortheme: beaver slides.md -o
slides.pdf
(alternative to produce html slides; but figures would need reworking)
pandoc -s -S -i -t dzslides --mathjax slides.md -o
slides.html
Here is my session info:
print(sessionInfo(), locale=FALSE)
## R version 3.0.2 (2013-09-25)
## Platform: x86_64-apple-darwin10.8.0 (64-bit)
##
## attached base packages:
## [1] splines stats
                            graphics grDevices utils
                                                             datas
   [8] base
                                         ◆□ ト ◆□ ト ◆ □ ト ◆ □ ト ◆ □ ◆ ○ へ ○ ○
```

Some odd things in the data

Figure: plot of chunk unnamed-chunk-35

Error: object 'dd' not found

A technicality

• Suppose you estimate $\Pr(\beta_j < 0) = 0.98$, $\Pr(\beta_j > 0) = 0.01$, $\Pr(\beta_j = 0) = 0.01$.

A technicality

- Suppose you estimate $\Pr(\beta_j < 0) = 0.98$, $\Pr(\beta_j > 0) = 0.01$, $\Pr(\beta_j = 0) = 0.01$.
- Should you declare an fdr of 0.01 or 0.02?

A technicality

- Suppose you estimate $\Pr(\beta_j < 0) = 0.98$, $\Pr(\beta_j > 0) = 0.01$, $\Pr(\beta_j = 0) = 0.01$.
- Should you declare an fdr of 0.01 or 0.02?
- Maybe fsr makes more sense anyway?

Adaptive Shrinkage of point estimates

• Recall idea: amount of shrinkage depends on measurement precision, s_j .

Adaptive Shrinkage of point estimates

Shrinkage is adaptive to information

Need to fix counts.associate to use fdr method in ash

Shrinkage is adaptive to information

Shrinkage is adaptive to information

```
## gene lv1 lv2 rv1 rv2 pval zdat.ash$lfdr
## 19422 Mgat5b 7 10 320 452 0.03795 0.06575
## 20432 Sec63 1042 1034 5496 6649 0.04908 0.01895
```

Recall FDR problem 1: q values increased by low count genes

q values for high count genes

ASH q values more robust to inclusion of low count genes

Compare fitted $f(\beta)$, both estimating π_0 and fixing $\pi_0 = 0$.

Error: object 'hh.ash.fdr' not found