

Dr. A. Alldridge:

Mathematik für Physiker C (WS 2008/9), Blatt 7

Aufgabe 1 (Untermannigfaltigkeiten — 5 Punkte)

(a) Zeigen Sie, dass in $\Omega = \mathbb{R}^4 \setminus \{0\}$ durch das folgende Gleichungssystem eine zweidimensionale Untermannigfaltigkeit M definiert wird:

$$x_1x_3 - x_2^2 = 0$$
, $x_2x_4 - x_3^2 = 0$, $x_1x_4 - x_2x_3 = 0$.

Bestimmen Sie den Tangentialraum $T_{(1,1,1,1)}(M)$.

- (b) Sei $v : \mathbb{R} \to \mathbb{R}^2$ definiert durch $v(t) = \frac{1}{1+t^4} \cdot {t \choose t}$.
 - (i) Skizzieren Sie das Bild $K = v(\mathbb{R})$.
 - (ii) Zeigen Sie, dass v eine injektive Immersion ist.
 - (iii) Zeigen, dass Bild $K = v(\mathbb{R})$ eine kompakte Teilmenge ist, aber keine Untermannigfaltigkeit.

Aufgabe 2 (Lagrange-Multiplikatoren — 5 Punkte)

Bestimmen Sie mit der Methode der Lagrange-Multiplikatoren die kritischen Punkte der folgenden Funktionen unter den angegebenen Nebenbedingungen. In Teil (c) sollen sie auch die lokalen Extrema unter den Nebenbedingungen finden.

(a)
$$f(x,y) = x + y$$
; $x^2 + y^2 = 1$.

(b)
$$f(x,y,z) = x + z$$
; $x^2 + y^2 + z^2 = 1$.

(c)
$$f(x,y,z) = x^2 + y^2$$
; $3x^2 + y^2 - 4 = 0$ und $x + y + z = 0$.

Aufgabe 3 (Ein spezielle Extremwertaufgabe — 5 Punkte)

Sei $A=(a_{jk})_{1\leqslant j,k\leqslant n}\in\mathbb{R}^{n\times n}$ eine symmetrische Matrix. Für alle $x\in\mathbb{R}^n$ sei durch $q_A(x)=\langle x|Ax\rangle=\sum_{j,k=1}^na_{jk}x_jx_k$ die zugeordnete quadratische Form q_A definiert.

- (a) Zeigen Sie $\nabla q_A(x) = 2Ax$.
- (b) Man bestimme Sie alle kritischen Punkte von q_A unter der Nebenbedingung $x_1^2 + \cdots + x_n^2 = 1$. Zeigen Sie insbesondere, dass es mindestens 2n solcher kritischer Punkte gibt.
- (c) Bestimmen Sie die kritischen Werte von q_A . Wieviele gibt es höchstens?

Aufgabe 4 (Die Oberfläche des Torus — mündlich)

Der Torus mit Radien 0 < r < R ist die folgende zweidimensionale Untermannigfaltigkeit von \mathbb{R}^3 : $T = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + (z-R)^2 = r^2\}$. Sei

$$v:]-\pi, \pi[^2 \to \mathbb{R}^3, v(s,t) = \begin{pmatrix} (R+r\cos t)\cos s \\ (R+r\cos t)\sin s \\ r\sin t \end{pmatrix}.$$

Sei $S = v(]-\pi, \pi[^2) \subset T$.

- (a) Zeigen Sie, dass S: x = v(s, t) injektiv parametrisiert ist.
- (b) Bestimmen Sie die Gramsche Determinante g(s, t) für v.
- (c) Berechnen Sie den Flächeninhalt $A_2(S)$.
- (d) Man kann zeigen, dass *T* das Produkt von zwei Kreislinien ist. Wie können Sie das an Ihrer Formel für den Flächeninhalt erkennen?

Bitte geben Sie die Übungsaufgaben am *Montag*, 1.12.2008, vor der Vorlesung ab. Bereiten Sie die mündliche Aufgabe zur Übung am *Mittwoch*, 10.12.2008, vor.