Arsenic Plant - Microbiome-Analysis

Jan Waelchli

24/11/2020

Contents

Description all data	2
Sequencing depth	2
Figure 1 Sequencing depth	
Data normalization	5
Asymptotic Kruskal-Wallis Test	5
Outlier Detection	
Sample Control	
Figure 2 Rarefaction plot	
Гахопоту	7
Figure 3.1 phylum level taxonomy	7
Figure 3.2 mean abundances on phylum level	9
Alpha diversity	11
Shannon diversity	11
Figure 4 shannon diversity	13
Beta diversity	1 4
PERMANOVA	14
Figure 5 Bacteria: PCoA ordination	
Figure 6 Bacteria: CAP ordination	
Figure 7 Fungi: PCoA ordination	
Figure 8 Fungi: CAP ordination	

Description all data

To decide on how to normalize the data we followed the recommendation of Weiss et al. (2017, Microbiome Journal) and we inspected whether there are differences in sequencing depths between the different sample groups utilizing the non-parametric Kruskal-Wallis Test.

Sequencing depth

We show the sum, range and median over all samples we include in the analysis.

Bacteria

[1] "samples removed (low sequencing depth)"

Table 1: Bacteria: seq depth of removed samples

	Sequences
F70_R52	4619
$F74_R43$	4493
$F71_R52$	4484
${\rm F62_R55}$	4250
$F73_R55$	3794
$\mathbf{F60}\mathbf{_R52}$	3726
$F73_R52$	3708
${ m F60_R53}$	3564
${ m F66_R52}$	3430
$F73_R45$	3254
${ m F62_R54}$	3108
${ m F62_R53}$	2736
$F74_R42$	2353
$F75_R45$	2290
$F74_R41$	2261
$F74_R45$	2148
${\rm F62_R52}$	2123
$\mathbf{F61}\mathbf{_R52}$	2057
$F75_R42$	1644
$F75_R41$	1630
$F73_R41$	1585
${\bf F66_R55}$	1493
${ m F66_R54}$	1479
$F73_R42$	1421
$F73_R54$	1143
${ m F66_R53}$	733
${ m F74}_{ m R40}$	447
$\mathbf{F64}\mathbf{_R52}$	227
$F73_R40$	176
$F75_R40$	92

```
## [1] "sum: 1099987"
```

^{## [1] &}quot;range: 5304" "range: 26983"

^{## [1] &}quot;median: 16086.5"

Fungi

[1] "samples removed (low sequencing depth)"

Table 2: Fungi: seq depth of removed samples

	Sequences
F9_R6	177
${f F8}_{f R6}$	66
$F7_R6$	29
${ m F6_R6}$	26

[1] "sum: 132467"

[1] "range: 500" "range: 3742"

[1] "median: 2116.5"

We excluded all bacterial samples with less than 5000 sequences and fungal samples with 500 sequences. respectively.

Figure 1 | Sequencing depth

Data normalization

Asymptotic Kruskal-Wallis Test

We test for different sequencing depths between the groups.

chi-squared = 6.0333, df = 7, p-value = 0.5359

Bacteria

##

##

```
## Asymptotic Kruskal-Wallis Test
##
## data: colSums(bDAT) by
## bDESIGN$group (Oppm_Leaves, Oppm_Roots, Oppm_Soil, Oppm_Kernels, 100ppm_Leaves, 100ppm_Roots, 100ppm_
## chi-squared = 11.099, df = 10, p-value = 0.3499

Fungi
##
## Asymptotic Kruskal-Wallis Test
##
## data: colSums(fDAT) by
```

fDESIGN\$group (Oppm_Roots, Oppm_Soil, Oppm_Kernels, 100ppm_Roots, 100ppm_Soil, 100ppm_Kernels, 200ppm

Conclusion: We don't find significant differences between the groups in bacteria or fungi. We follow the recommendation of Weiss et al. (2017) to use TSS normalization for samples with small sequencing-depth differences.

Outlier Detection

We use the method CLOUD developped by Montassier et al. 2018, which is a non.parametric detection test for outliers. We perform the test with Bray-Curtis distances from the normalized data. We set the number of nearest neighbors to 60% of the samples size and chose an empirical outlier percentile of 5%. We remove all outliers from our data.

Bacteria

```
## [1] "samples removed (outliers)"
## [1] "F75_R43" "F75_R44"

Fungi
## [1] "samples removed (outliers)"
## [1] "F7_R1" "F9_R12"
```

Sample Control

Sample Size

We end up with the following number of samples per treatment for the analysis:

Table 3: Bacteria: Sample profiles

	0ppm	100ppm	200ppm
Leaves	3	4	1
\mathbf{Roots}	10	10	10
Soil	7	10	10
Kernels	2	1	0

Table 4: Fungi: Sample profiles

	0ppm	100ppm	200ppm
Roots	10	9	10
Soil	7	10	10
Kernels	5	3	0

Conclusion: Because there are not enough replicates for bacterial kernel samples, we exclude them for all further analyses.

Figure 2 | Rarefaction plot

We plot a rarefaction plot with the remaining samples to check if the sequence depth is enough to capture the microbial diversity.

Conclusion: The remaining samples are sequenced deep enough to cover the majority of microbial diversity.

Taxonomy

We get an overview for the abundance of bacterial and fungal taxonomy showing the most abundant phyla for each sample.

Figure 3.1 | phylum level taxonomy

We repeat the plot by plotting the abundances means for each arsenic concentration.

Figure $3.2 \mid$ mean abundances on phylum level

Alpha diversity

Shannon diversity

Method: We calculated Shannon diversity for each sample.

Bacteria - ANOVA

Table 5: Bacteria: Arsenic effect

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Arsenic	2	2.728	1.364	4.126	0.0213
\mathbf{Type}	2	0.6156	0.3078	0.9313	0.4001
Arsenic:Type	4	4.648	1.162	3.516	0.01249
Residuals	56	18.51	0.3305	NA	NA

Fungi - ANOVA

Table 6: Fungi: Arsenic effect

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Arsenic	2	0.04729	0.02365	0.02883	0.9716
\mathbf{Type}	2	2.477	1.238	1.51	0.2298
${f Arsenic:}{f Type}$	3	5.105	1.702	2.075	0.1139
Residuals	56	45.93	0.8202	NA	NA

Because we found significant differences in bacterial alpha diversity between the different arsenic treatments and within the arsenic:type interaction, we check how arsenic shifts the alpha diversity in the different plant compartments (type).

Bacteria - Tukey post-hoc

Table 7: Bacteria: Arsenic effect

	Shannon	.group
0ppm_Leaves	4.75	ab
$100 \mathrm{ppm_Leaves}$	5.861	b
$200 \mathrm{ppm_Leaves}$	5.451	ab
$0 \mathrm{ppm}_\mathrm{Roots}$	5.751	b
$100 \mathrm{ppm}_\mathrm{Roots}$	5.66	b
${\bf 200ppm_Roots}$	5.424	ab
$0 \mathrm{ppm}_\mathrm{Soil}$	4.765	\mathbf{a}
$100 \mathrm{ppm}_\mathrm{Soil}$	5.81	b
$200 \mathrm{ppm_Soil}$	5.619	b

Conclusion: There is no constant evidence that arsenic alters the alpha diversity in plant compartments. In soil we find statistical support that samples with no arsenic have lower alpha diversity. But considering those samples, we find a few samples with a much lower diversity than the rest of the samples.

Fungi - Tukey post-hoc

Table 8: Fungi: Arsenic effect

	Shannon	.group
0ppm_Roots	2.685	a
$100 \mathrm{ppm}_\mathrm{Roots}$	3.204	a
${\bf 200ppm_Roots}$	2.489	a
$0 \mathrm{ppm}_\mathrm{Soil}$	3.137	a
$100 \mathrm{ppm_Soil}$	3.03	a
$200 \mathrm{ppm_Soil}$	3.318	a
$0 \mathrm{ppm}$ Kernels	3.174	a
$100 \mathrm{ppm}$ Kernels	2.072	a

Conclusion: We find no statistical support that Arsenic alters fungal alpha diversity in the different compartments.

Figure 4 | shannon diversity

A Bacteria: Alpha diversity alpha diversity ~ Arsenic

B Fungi: Alpha diversity alpha diversity ~ Arsenic

Beta diversity

PERMANOVA

We use the function 'adonis2()' (package vegan) to analyse the beta diversity with a PERMANOVA (permutations = 999). First we investigate the full model to see which factors alters the beta diversity.

Bacteria

Table 9: Bacteria: all

	Df	SumOfSqs	R2	F	Pr(>F)
Arsenic	2	0.9543	0.06402	2.161	0.026
\mathbf{Type}	2	0.3842	0.02577	0.8701	0.528
${f Arsenic:Type}$	4	1.205	0.0808	1.364	0.129
Residual	56	12.36	0.8294	NA	NA
Total	64	14.91	1	NA	NA

Conclusion: There is an arsenic effect on the bacterial composition.

We test if the bacterial compositions differ between 0ppm and 200ppm arsenic concentration in different compartments.

Table 10: Arsenic effect (100ppm) in different compartments

Type	Factors	SumOfSqs	R2	F	p	p_adj
Leaves	Arsenic	0.2748	0.1363	0.7892	0.455	0.455
Leaves	Residual	1.741	0.8637	NA	NA	NA
Leaves	Total	2.016	1	NA	NA	NA
Roots	Arsenic	0.1285	0.06186	1.187	0.23	0.455
Roots	Residual	1.949	0.9381	NA	NA	NA
Roots	Total	2.078	1	NA	NA	NA
Soil	Arsenic	0.07076	0.06397	1.025	0.382	0.455
Soil	Residual	1.035	0.936	NA	NA	NA
Soil	Total	1.106	1	NA	NA	NA

Table 11: Arsenic effect (200ppm) in different compartments

Type	Factors	SumOfSqs	R2	\mathbf{F}	p	p_adj
Leaves	Arsenic	0.1357	0.171	0.4127	0.5	0.75
Leaves	Residual	0.6575	0.829	NA	NA	NA
Leaves	Total	0.7931	1	NA	NA	NA
Roots	Arsenic	0.07874	0.03102	0.5763	0.985	0.985
Roots	Residual	2.459	0.969	NA	NA	NA
Roots	Total	2.538	1	NA	NA	NA
Soil	Arsenic	0.07818	0.06806	1.096	0.228	0.684
Soil	Residual	1.07	0.9319	NA	NA	NA
Soil	Total	1.149	1	NA	NA	NA

Conclusion: The bacterial beta diversity is not altered by treating the soil with Arsenic.

Figure 5 | Bacteria: PCoA ordination

Figure 6 | Bacteria: CAP ordination

Bacteria CAP

[\sim Arsenic * Type: 63.2% of variance, P = 0.001]

Fungi

Table 12: Fungi: all

	Df	SumOfSqs	R2	F	$\Pr(>F)$
Arsenic	2	0.5097	0.02091	0.6618	0.94
\mathbf{Type}	2	0.6605	0.0271	0.8576	0.691
${f Arsenic:Type}$	3	1.641	0.06732	1.42	0.054
Residual	56	21.57	0.8847	NA	NA
Total	63	24.38	1	NA	NA

Conclusion: No effect was found on the beta diversity.

We test if the arsenic treatments alter the bacterial compositions in different compartments.

Table 13: Arsenic effect (100ppm) in different compartments

Type	Factors	SumOfSqs	R2	F	p	p_adj
Roots	Arsenic	0.2326	0.03812	0.6738	0.866	0.866
Roots	Residual	5.868	0.9619	NA	NA	NA
Roots	Total	6.101	1	NA	NA	NA
Soil	Arsenic	0.326	0.09676	1.607	0.094	0.282
Soil	Residual	3.043	0.9032	NA	NA	NA
Soil	Total	3.369	1	NA	NA	NA
Kernels	Arsenic	0.1258	0.07484	0.4854	0.686	0.866
Kernels	Residual	1.555	0.9252	NA	NA	NA
Kernels	Total	1.681	1	NA	NA	NA

Conclusion: The fungal beta diversity is not altered by treating the soil with 100ppm Arsenic.

We test if the fungal compositions differ between 0ppm and 200ppm arsenic concentration.

Table 14: Arsenic effect (200ppm) in different compartments

Type	Factors	SumOfSqs	R2	F	p	p_adj
Roots	Arsenic	0.1262	0.01974	0.3624	1	1
Roots	Residual	6.269	0.9803	NA	NA	NA
Roots	Total	6.396	1	NA	NA	NA
Soil	Arsenic	0.281	0.0864	1.418	0.138	0.276
Soil	Residual	2.971	0.9136	NA	NA	NA
Soil	Total	3.252	1	NA	NA	NA

Conclusion: The fungal beta diversity is not altered by treating the soil with Arsenic.

Figure 7 | Fungi: PCoA ordination

Figure 8 | Fungi: CAP ordination

[\sim Arsenic * Type: 45.5% of variance, P = 0.001]

