Algoritmi i programiranje

Tipovi i strukture podataka

Tipovi i strukture podataka

- U matematici je uobičajeno da se promenljive klasifikuju na osnovu neke ključne osobine
 - prave se jasne razlike izmedju realnih, kompleksnih ili logičkih promenljivih
 - izmedju promenljivih koje predstavljaju individualne (skalarne) vrednosti, ili skup vrednosti, ili skup skupova,...
- Ovakav način klasifikacije promenljivih je jednako važan kada je u pitanju rešavanje problema uz pomoć računara!

Šta je definisano tipom podatka?

- Svaka konstanta, promenljiva ili izraz koji se pojavljuju u programu pripadaju odredjenom tipu (klasi).
- Tipom podatka je odredjeno:
 - 1. Skup vrednosti koje konstante, promenljive ili izrazi mogu uzimati;
 - 2. Skup operatora (operacija) koje se mogu primenjivati nad konstantama i promenljivima odredjenog tipa;
 - 3. način predstavljanja u memoriji računara

Osnovni tipovi podataka

- Brojni (numerički)
- Logički
- Tekstualni (znakovni)

Numerički tipovi:

- Celobrojni (integer)
- Realni
- (kompleksni)

Celobrojni tip (integer)

- Podaci celobrojnog tipa mogu uzimati celobrojne pozitivne i negativne brojne vrednosti;
 - opseg vrednosti zavisi od broja bitova koji se koristi za predstavljanje podataka
 - Ako se koristi m bitova, onda je opseg vrednosti
 -2^{m-1} do 2^{m-1}-1
 - brojevi van ovog opsega ne pripadaju tipu integer

Celobrojni tip (integer)

- Najčešća vrednost za m=16,
 - opseg -32768 do 32767
- Operacije koje se mogu izvršavati nad podacima celobrojnog tipa su +, -, *, /
- kada se nad dva podatka celobrojnog tipa primeni neki od operatora, dobija se rezultat celobrojnog tipa!

Celobrojni tip

• r:="ostatak od m/n"?

r:=m − m/n*n

Realni tip

- Koristi se za predstavljanje realnih brojnih vrednosti.
- Podaci realnog tipa se predstavljaju u normalizovanom obliku:

$$m*b^e$$
, $\frac{1}{b} \le m < 1$

- celi deo je jednak 0, a prva cifra iza decimalne tačke je značajna cifra brojnog sistema
 - 0.1254E+3

125.4

0.01254E+4

nije normalizovani oblik

Realni tip

- Opseg vrednosti zavisi od broja cifara za predstavljanje eksponenta
- Preciznost zavisi od broja cifara za predstavljanje mantise broja

Operacije +, -, * , /

Logički tip

- Podaci ovog tipa mogu uzimati samo dve vrednosti – "istina" (tačno) i "laž" (netačno)
- "istina" se najčešće predstavlja svim jedinicama u registru računara;
- "laž" se predstavlja svim nulama u registru;
- Operacije: I (konjunkcija), ILI (disjunkcija),
 NE (negacija)

Znakovni tip

- Koristi se za predstavljanje tekstualnih podataka:
 - podaci ovog tipa se sastoje od velikih i malih slova abecede, decimalnih cifara, specijalnih znakova, znakova interpunkcije i blanko znaka
 - Svaki znak je kodiran odgovarajućim kodom (ASCII, EBCDIC,...)
 - Podskupovi slova i cifara su uredjeni i važi da je

Znakovni tip

 Nad podacima znakovnog tipa moguće je vršiti operaciju poredjenja i operaciju nadovezivanja (konkatenacije)

Strukturni tipovi

- Dobijaju se od osnovnih tipova (ili prethodno definisanih struktura) definisanjem veza izmedju elemenata strukture.
 - Strukture podataka mogu biti:
 - Linearne svaki element strukture, izuzev prvog i poslednjeg, je u relaciji samo sa dva druga elementa, prethodnikom i sledbenikom.
 - polja
 - linearne lančane liste
 - magacini
 - redovi
 - 2. **Nelinearne** veze izmedju elemenata strukture su proizvoljne (svaki element može imati veći broj prethodnika ili sledbenika).
 - stabla
 - grafovi

Polja (nizovi)

- Polje je homogena struktura podataka (sastavljena od elemenata istog tipa) koji imaju zajedničko ime. Mogu biti:
 - jednodimenzionalna (vektori),
 - dvodimenzionalna (matrice) i
 - višedimenzionalna polja.
- Elementu polja se pristupa navodjenjem zajedničkog imena i uredjene n-torke indeksa:

$$A(i_1, i_2,...,i_n)$$

 Elementi polja se smeštaju u sukcesivne (susedne) memorijske lokacije

i	a(1)
i+1	a(2)
i+2	a(3)
i+3	a(4)
	#

Polja (nast.)

 Kod smeštanja dvodimenzionalnih polja u memoriju vrši se linearizacija (po vrstama ili kolonama).

Polja (nast.)

- Polja su statičke strukture podataka:
 - dimenzije polja se ne mogu menjati u toku izvršenja programa,
 - ubacivanje ili izbacivanje elementa iz polja zahteva potpuno preuredjenje polja (na vežbama!).
- Direktan pristup elementima (navodjenjem indeksa).

Polja – Primer 1

Zadata je lista od 50 brojeva.
 Naći sumu svih brojeva.

Polja – Primer 2

 Naći maksimalni element u nizu od 100 brojeva.

Polja – Primer 3

 Naći proizvod elemenata na glavnoj dijagonali matrice A_{nxn}

 Naći proizvod elemenata na sporednoj dijagonali matrice A_{nxn}

Linearne lančane liste

- Svaki element strukture se sastoji iz dva dela:
 - Informacionog (sadrži podatak) i
 - Pokazivačkog (sadrži adresu sledećeg elementa liste).

- Ne zahteva sukcesivne memorijske lokacije za pamćenje elemenata structure.
- Dinamička struktura dimenzije liste se mogu menjati u toku izvršenja programa.

Linearne lančane liste

adresa 1. elementa prvi element adresa 2. elementa drugi element adresa 3. elementa treći element

Linearne lančane liste

• Ubacivanje i izbacivanje elemenata ne zahteva kompletno preuredjenje strukture.

Magacin (LIFO – Last-In-First-Out)

- Linearna struktura kod koje se upis i čitanje podataka obavlja na jednom kraju koji se zove vrh magacina:
 - po ovom principu se slažu korpe u samoposluzi, poslužavnici u ekspres restoranu,...

inicijalno je vrh:=0

if (vrh <n) then
vrh:=vrh+1
mag(vrh):=podatak
endif</pre>

realizacija magacina pomoću polja (vektora) if (vrh >0) then
podatak :=mag(vrh)
vrh:=vrh-1
endif

Magacin - upotreba

- Kod prevodjenja aritmetičkih izraza uz pomoć Poljske inverzne notacije.
- Kod poziva/povratka iz potprograma za:
 - prenos argumenata,
 - pamćenje adrese povratka i
 - pamćenje lokalnih promenljivih.

Red (FIFO – First-In-First-Out)

- Struktura podataka koja poštuje pravilo "Prvi-ušao-prvi izašao":
 - Koristi se kada se elementi obradjuju po redosledu pristizanja.
 - velika primena kod operativnih sistema: redovi čekanja procesa, red čekanja kod štampanja,...
- Upis se obavlja na jednom kraju (rep), a čitanje na drugom kraju (čelo, vrh).

Nelinearne strukture – Stablo

- Svaki element strukture može imati veći broj prethodnika i sledbenika.
- Stablo predstavlja nelinearnu strukturu sa sledećim osobinama:
 - 1. Postoji jedan element koji se zove koren stabla. Na njega ne ukazuje ni jedan drugi element. Koren se nalazi na nivou 0.
 - 2. Na nivou 1 se nalaze elementi na koje ukazuje koren stable.
 - 3. Elementi nivoa 1 ukazuju na elemente nivoa 2,...
 - 4. Elementi nivoa i-1 ukazuju na elemente na nivou i.
 - 5. Elementi koji ne ukazuju na nove elemente čine listove stabla

Binarno stablo

Svaki čvor ima najviše dva sledbenika (potomka)

Karakteristike:

- nema petlji.
- izmedju svakog para čvorova postoji jedinstveni put.

Upotreba: kod pretraživanja sortiranih podataka.

Graf – struktura podataka

Služe za predstavljanje matematičkih grafova.

Čvorovi

- Preslikati čvorove u niz uzastopnih celih brojeva.
- Zapamtiti čvorove u polje.

Potezi (grane)

Matrica susedstva

Logičke vrednosti TRUE (istina) – poteg postoji
 FALSE (laž) - nema potega

Upotreba: U računarskim mrežama, putnim mrežama, PTT, kablovskoj televiziji,...

	1	2	3	4	5
1		X			X
2				X	
3	X	X		X	
4		X	X		
5	X		X		