Experiment #9 Redox Titrations

Iodimetric Titration of Vitamin C¹

Ascorbic acid (C₆H₈O₆, vitamin C) is a mild reducing agent that reacts rapidly with triiodide

In this experiment, we will generate a known excess of I₃ by the reaction of iodate with iodide:

$$IO_3^- + 8I^- + 6H^+ \rightarrow 3I_3^- + 3H_2O_3$$
 (1)

allow the reaction with ascorbic acid to proceed,

$$C_6H_8O_6 + I_3^- + H_2O \rightarrow C_6H_6O_6 + 3I^- + 2H_3O^+$$
 (2)

and then back titrate the excess I₃ with thiosulfate:

$$2S_2O_3^{2-}_{\text{(thiosulfate)}} + I_3^{-} \rightarrow S_4O_6^{2-}_{\text{(tethrathionate)}} + 3I^{-}$$
(3)

Reagents:

Starch indicator: Make a paste of 5 g of soluble starch and 5 mg of Hg2I₂ in 50 mL of distilled water. Pour the paste into 500 mL of boiling distilled water and boil until it is clear.

Sodium thiosulfate: 9 g Na₂S₂O₃.5H₂O/student. **Sodium carbonate**: 50 mg Na₂CO₃/student.

Potassium iodate: 1 g KIO₃/student. Potassium iodide: 12 g KI/student. 0.5 M H₂SO₄: 30 mL/student.

Vitamin C: Dietary supplement containing 100 mg of vitamin C per tablet is suitable.

Each student needs six tablets. **0.3 M H₂SO₄**: 180 mL/student.

Preparation and Standardization of Thiosulfate Solution

- **1. Prepare starch indicator** by making a paste of 5 g of soluble starch and 5 mg of HgI₂ in 50 mL of water. Pour the paste into 500 mL of boiling water and boil until it is clear.
- **2. Prepare 0.07 M Na₂S₂O₃** by dissolving 8.7 g of Na₂S₂O₃.5H₂O in 500 mL of freshly boiled water containing 0.05 g of Na₂CO₃. Store this solution in a tightly capped amber bottle. **Prepare 0.01 M KIO₃** by accurately weighing 1.0000 g of solid reagent and dissolving it in a 500-mL volumetric flask. From the mass of KIO₃ (FM 214.00), compute the molarity of the solution.

3. Standardize the thiosulfate solution as follows: Pipet 50.00 mL of KIO₃ solution into a flask. Add 2 g of solid KI and 10 mL of 0.5 M H₂SO₄. Immediately titrate with thiosulfate until the solution has lost almost all its color (**pale yellow**). Then add 2 mL of starch indicator and complete the titration. Repeat the titration with two additional 50.00-mL volumes of KIO₃ solution. From the stoichiometries of Reactions (1) and (3), compute the average molarity of thiosulfate and the relative standard deviation.

Analysis of Vitamin C

Commercial vitamin C containing 100 mg per tablet can be used. Perform the following analysis three times, and find the mean value (and relative standard deviation) for the number of milligrams of vitamin C per tablet.

- 1. Dissolve two tablets in 60 mL of 0.3 M H₂SO₄, using a glass rod to help break the solid. (Some solid binding material will not dissolve.)
- 2. Add 2 g of solid KI and 50.00 mL of standard KIO₃. Then titrate with standard thiosulfate as above. Add 2 mL of starch indicator just before the end point.

References:

- 1. D. N. Bailey, J. Chem. Ed. 1974, 51, 488.
- 2. Skoog et al., 7th ed., Chap. 18
- 3. D.C. Harris 6th ed., Chap. 16