US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication Kind Code Publication Date Inventor(s) 20250255528 A1 August 14, 2025 Al-Ali; Ammar et al.

BLOOD PRESSURE MONITOR ASSEMBLY

Abstract

A blood pressure monitor configured to removably mount to a cuff in a substantially symmetrical position with respect to a width of the cuff can include a housing defining an interior, a first port, and a second port. The first port can: secure to a first prong of the cuff when the cuff is mounted in a first orientation; receive and secure to a second prong of the cuff when the cuff is mounted in a second orientation; and enable fluid communication between the interior and at least one of a first fluid passage within the first prong and a second fluid passage within the second prong. The second port can: secure to the second prong of the cuff when the cuff is mounted in the first orientation; and receive and secure to the first prong of the cuff when the cuff is mounted in the second orientation.

Inventors: Al-Ali; Ammar (San Juan Capistrano, CA), Telfort; Valery G. (Irvine, CA),

Fullerton; Evan Thomas (Costa Mesa, CA), Egge; Steven (Laguna Hills, CA)

Applicant: Masimo Corporation (Irvine, CA)

Family ID: 70614616

Appl. No.: 19/196524

Filed: May 01, 2025

Related U.S. Application Data

parent US continuation 18324907 20230526 PENDING child US 19196524 parent US division 16850928 20200416 parent-grant-document US 11701043 child US 18324907 us-provisional-application US 62888271 20190816 us-provisional-application US 62923157 20191018 us-provisional-application US 62835386 20190417 us-provisional-application US 62837195 20190423

Publication Classification

Int. Cl.: A61B5/282 (20210101); A61B5/00 (20060101); A61B5/01 (20060101); A61B5/0205 (20060101); A61B5/021 (20060101); A61B5/022 (20060101); A61B5/0235 (20060101); A61B5/024 (20060101); A61B5/025 (20060101); A61B5/11 (20060101); A61B5/1455 (20060101); A61B5/259 (20210101); A61B5/30 (20210101); A61B5/332 (20210101); A61B5/339 (20210101); F04B45/04 (20060101); F04B53/00 (20060101); H02J7/00 (20060101)

U.S. Cl.:

A61B5/282 (20210101); **A61B5/0006** (20130101); **A61B5/02055** (20130101); CPC **A61B5/021** (20130101); **A61B5/02108** (20130101); **A61B5/02141** (20130101): **A61B5/022** (20130101); **A61B5/02208** (20130101); **A61B5/02225** (20130101); **A61B5/02233** (20130101); **A61B5/0235** (20130101); **A61B5/1117** (20130101); A61B5/1455 (20130101); A61B5/259 (20210101); A61B5/303 (20210101); A61B5/332 (20210101); **A61B5/339** (20210101); **A61B5/681** (20130101); **A61B5/6824** (20130101); **A61B5/6831** (20130101); **A61B5/6835** (20130101); **A61B5/7217** (20130101); **F04B45/043** (20130101); **F04B53/001** (20130101); **H02J7/0013** (20130101); H02J7/0045 (20130101); H02J7/0047 (20130101); A61B5/01 (20130101); A61B5/02438 (20130101); A61B5/025 (20130101); A61B5/14551 (20130101); A61B5/7475 (20130101); A61B2560/0214 (20130101); A61B2560/0252 (20130101); A61B2560/0443 (20130101); A61B2560/0456 (20130101); A61B2562/0204 (20130101); A61B2562/0219 (20130101); A61B2562/0271 (20130101); A61B2562/0295 (20130101); A61B2562/08 (20130101); A61B2562/164 (20130101); A61B2562/22 (20130101); A61B2562/222 (20130101); A61B2562/225 (20130101); A61B2562/227 (20130101)

Background/Summary

INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS [0001] The present application is a continuation of U.S. patent application Ser. No. 18/324,907, filed May 26, 2023, which is a divisional of U.S. patent application Ser. No. 16/850,928, filed Apr. 16, 2020, which claims priority to U.S. Provisional Application No. 62/923,157, filed Oct. 18, 2019, U.S. Provisional Application No. 62/888,271, filed Aug. 16, 2019, U.S. Provisional Application No. 62/837,195, filed Apr. 23, 2019, and U.S. Provisional Application No. 62/835,386, filed Apr. 17, 2019. All of the above-listed applications and any and all other applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application, are hereby incorporated by reference under 37 CFR 1.57.

BACKGROUND

Field

[0002] The present disclosure generally relates to systems, methods, and devices for monitoring a patient's physiological information.

Description of the Related Art

[0003] Hospitals, nursing homes, and other patient care facilities typically utilize a number of sensors, devices, and/or monitors to collect or analyze a patient's physiological parameters such as blood oxygen saturation level, respiratory rate, pulse rate, blood pressure, and the like. Such devices can include, for example, acoustic sensors, electroencephalogram (EEG) sensors, electrocardiogram (ECG) devices, blood pressure monitors, pulse oximeters, among others. In

medical environments, various sensors/devices (such as those just mentioned) are attached to a patient and connected to one or more patient monitoring devices using cables. Patient monitoring devices generally include sensors, processing equipment, and displays for obtaining and analyzing a medical patient's physiological parameters such as blood oxygen saturation level, respiratory rate, and the like. Clinicians, including doctors, nurses, and other medical personnel, use the physiological parameters obtained from patient monitors to diagnose illnesses and to prescribe treatments. Clinicians also use the physiological parameters to monitor patients during various clinical situations to determine whether to increase the level of medical care given to patients. SUMMARY

[0004] An electrocardiogram (ECG) device configured to transmit at least one signal responsive to a wearer's cardiac electrical activity can comprise: a disposable portion and a reusable portion configured to mechanically and electrically mate with the disposable portion. The disposable portion can comprise: a base configured for placement on the wearer's body, wherein the base comprises at least one mechanical connector portion; a plurality of cables and corresponding external ECG electrodes, said external ECG electrodes configured to be secured to the wearer's body and output one or more signals responsive to the wearer's cardiac electrical activity; and a first plurality of electrical connectors, each of at least some of the first plurality of electrical connectors associated with one of the plurality of cables. The reusable portion can comprise: a cover comprising at least one mechanical connector portion configured to removably secure to the at least one mechanical connector portion of the base of the disposable portion; a second plurality of electrical connectors, each of the second plurality of electrical connectors configured to electrically connect with one of the first plurality of electrical connectors of the disposable portion; and an output connector port configured to transmit at least one signal responsive to said one or more signals outputted by the external ECG electrodes of the disposable portion. The disposable portion can further comprise a first internal ECG electrode positioned at least partially within the base, the first internal ECG electrode configured to output one or more signals responsive to the wearer's cardiac electrical activity, wherein one of the first plurality of electrical connectors is associated with the first internal ECG electrode. The output connector port can be further configured to transmit at least one signal responsive to said one or more signals outputted by the first internal ECG electrode of the disposable portion. Each of the plurality of cables of the disposable portion can be soldered to a respective one of the external ECG electrodes. The base can be configured to secure the disposable portion to the wearer's body. The base can be configured to secure the disposable portion to skin of the wearer's body. In some cases, when the base can secures the disposable portion to the skin of the wearer's body and the reusable portion is mechanically and electrically mated with the disposable portion, the reusable portion does not touch the skin. The disposable portion can further comprise a flexible circuit. The flexible circuit can comprise a first plurality of conductive strips configured to electrically connect to the plurality of cables and a second plurality of conductive strips, wherein the first plurality of electrical connectors of said disposable portion comprise the second plurality of conductive strips of the flexible circuit. The flexible circuit of the disposable portion can further comprise at least one additional conductive strip spaced from the first and second plurality of conductive strips. The reusable portion can further comprise at least one additional electrical connector operably positioned by the cover and configured to electrically connect with the at least one additional conductive strip of the flexible circuit of the disposable portion to enable the reusable portion to determine whether the disposable portion is an authorized product. Each of the first plurality of conductive strips of the flexible circuit can be soldered to one of the plurality of cables. The disposable portion can further comprise a first internal ECG electrode positioned at least partially within the base, the first internal ECG electrode configured to output one or more signals responsive to the wearer's cardiac electrical activity, wherein one of the first plurality of electrical connectors is associated with the first internal ECG electrode. The output connector port can be further configured to transmit at

least one signal responsive to said one or more signals outputted by the first internal ECG electrode of the disposable portion. The flexible circuit can further comprise a first aperture and a first conductive ring positioned along the first aperture, the first conductive ring configured to electrically connect to a portion of the first internal ECG electrode, wherein the one of the first plurality of electrical connectors is electrically coupled to the first conductive ring. The disposable portion can further comprise a second internal ECG electrode positioned at least partially within the base and spaced from the first internal ECG electrode, the second internal ECG electrode configured to act as a ground electrode, wherein one of the first plurality of electrical connectors is associated with the second internal ECG electrode. The flexible circuit can further comprise a second aperture and a second conductive ring positioned along the second aperture, the second aperture spaced from the first aperture, the second conductive ring configured to electrically connect to a portion of the second internal ECG electrode. The base of the disposable portion can further comprise a plurality of pin supports, each of the plurality of pin supports configured to position one of the second plurality of conductive strips of the flexible circuit to electrically contact one of the second plurality of electrical connectors of the reusable portion when the reusable portion is mated with the disposable portion. Each of the plurality of pin supports can be flexible. Each of the plurality of pin supports can be not straight. Each of the plurality of pin supports can be arcuate. The plurality of pin supports can extend above a top surface of the base of the disposable portion. The at least one mechanical connector portion of the cover of the reusable portion can comprise at least one groove. The at least one mechanical connector portion of the base of the disposable portion can comprise at least one clip configured to removably secure within the at least one groove of the reusable portion. The at least one groove can comprise a first groove disposed on a first end of the cover and a second groove disposed on a second end of the cover, the second end opposite the first end. The at least one clip can comprise a first clip disposed on a first end of the base and a second clip disposed on a second end of the base, the second end opposite the first end. The reusable portion can further comprise: a circuit board, the circuit board comprising a processor and a memory; and a plurality of resistors electrically connected to and positioned between a portion of the circuit board and the second plurality of electrical connectors of the reusable portion, the plurality of resistors configured to protect the circuit board from sudden changes in voltage. Each of the plurality of resistors can be a low-resistance, high capacity resistor. The base of the disposable portion can further comprise a first opening and the reusable portion can further comprise a first temperature sensor, the first temperature sensor configured to align with the first opening of the disposable portion when the reusable portion is mated with the disposable portion, the first temperature sensor configured to measure a temperature of the wearer's body. A bottom portion of the reusable portion can comprise a second opening configured to align with the first opening of the base of the disposable portion when the reusable portion is mated with the disposable portion. The reusable portion can further comprise a housing, a portion of the housing extending through the second opening in the bottom portion of the reusable portion, and wherein the first temperature sensor can be positioned within the housing. The disposable portion can comprise a first substrate connected to the base and configured to secure to the wearer's skin, wherein the first opening of the base can be positioned between the first substrate and the housing of the reusable portion. The first substrate can comprise a thermally conductive material. The disposable portion can comprise a second substrate positioned between the first substrate and the base, wherein the housing of the reusable portion is configured to contact a portion of the second substrate when the reusable portion is mated with the disposable portion. The second substrate can comprise a polyethylene film. The reusable portion can further comprise a second temperature sensor at least one of vertically and horizontally spaced from the first temperature sensor, the second temperature sensor configured to measure an internal temperature of the reusable portion. The second temperature sensor can be not placed within the housing of the reusable portion. The reusable portion can further comprise a circuit board including a processor, wherein the processor

is configured to determine a corrected body temperature of the wearer based on temperature data received from the first and second temperature sensors. The cover can comprise a top frame and a bottom frame. The reusable portion can further comprise a cable connected to the output connector port. In some variants, neither of the disposable portion or the reusable portion comprise a power source, and the reusable portion is configured to receive power from the cable when the cable is connected to an external power source. The cable can be configured to electrically connect to a patient monitor, and wherein the patient monitor comprises the external power source. In some variants, the disposable portion does not include a processor. The reusable portion can further comprise a motion sensor configured to measure an acceleration of the wearer when the reusable portion is mated with the disposable portion. The reusable portion can be configured such that, when the reusable portion is placed on a flat surface, none of the second plurality of electrical connectors contact the flat surface.

[0005] An electrocardiogram (ECG) device can comprise a disposable portion. The disposable portion can comprise: a base configured for placement on a wearer's body; a plurality of cables and corresponding external ECG electrodes, said external ECG electrodes configured to be secured to the wearer's body and further configured to detect electrical signals responsive to the wearer's cardiac activity; and a flexible circuit comprising a first plurality of conductive strips and a second plurality of conductive strips, each of the first plurality of conductive strips electrically connected to a respective one of the plurality of cables, wherein the second plurality of conductive strips are configured to transmit the electrical signals responsive to the wearer's cardiac electrical activity. In some variants, the disposable portion does not include a battery. In some variants, the disposable portion does not include a processor. The disposable portion can further comprise at least one substrate configured to allow the base to be secured to skin of the wearer's body. The at least one substrate can comprise a thermally conductive material. The disposable portion can further comprise at least one internal ECG electrode positioned at least partially within the base, the at least one internal ECG electrode electrically connected to the flexible circuit. The flexible circuit can further comprise at least one aperture and at least one conductive ring positioned along the at least one aperture and configured to electrically connect to a portion of the at least one internal ECG electrode. The at least one internal ECG electrode can comprise two internal ECG electrodes. The at least one aperture can comprise two apertures. The at least one conductive ring can comprise two conductive rings. The base can comprise a plurality of pin supports, each of the plurality of pin supports configured to support one of the second plurality of conductive strips of the flexible circuit. Each of the plurality of pin supports can be flexible. Each of the plurality of pin supports can be not straight. Each of the plurality of pin supports can be arcuate. The plurality of cables can be irremovably secured to the external ECG electrodes. Each of the plurality of cables can be irremovably secured to one of the first plurality of conductive strips of the flexible circuit. The plurality of cables can be soldered to the external ECG electrodes. The plurality of cables, the external ECG electrodes, and the flexible circuit can be integrally formed. [0006] A blood pressure monitoring device configured to attach and supply air to a blood pressure cuff can comprise: a housing comprising an interior; a port configured to enable fluid

communication between the interior of the housing and an interior of the blood pressure cuff; and an air intake configured to allow ambient air to enter the interior of the housing and further configured to inhibit liquids from entering the interior of the housing. The air intake can define a non-linear passageway for ambient air to enter the interior of the housing. The air intake can define a tortuous passageway for ambient air to enter the interior of the housing. The air intake can define a serpentine passageway for ambient air to enter the interior of the housing. The air intake can comprise a waterproof membrane configured to prevent liquids from entering the interior of the housing. The housing can further comprise a first side and a first inner wall. The air intake can comprise a first opening in the first side of the housing and a second opening in the first inner wall of the housing. The first opening can be not aligned with the second opening. The first opening and

the second opening can be vertically spaced from one another. The housing can comprise a top surface and a bottom surface opposite the top surface and configured to be positioned closer to the blood pressure cuff when the blood pressure monitoring device is secured thereto. The first opening can be positioned closer to the bottom surface than the second opening. The first opening can comprise a slit having a slit width extending along a portion of a width of the first side and a slit height extending along a portion of a height of the first side. The slit width can be greater than the slit length. The first side can be a first end of the housing. The first inner wall can be configured to partition the interior of the housing into a first portion and a second portion, the first portion being positioned between the first side of the housing and the second portion of the interior. The first opening, the first portion, and the second opening can define the air intake. The housing can further comprise a second inner wall positioned within the first portion of the interior between the first opening and the second opening. The second inner wall can be configured to at least partially bifurcate the first portion of the interior. The housing can comprise a top interior surface and a bottom interior surface opposite the top interior surface. The first opening can be positioned at a first height relative to a bottom surface of the housing. The second opening can be positioned at a second height relative to the bottom surface of the housing. The second inner wall can extend from the bottom interior surface of the housing to a third height relative to the bottom surface of the housing. The third height can be greater than at least one of the first and second heights. The third height can be greater than the both of the first and second heights. The third height can be greater than the first height and less than the second height. The second opening in the second inner wall can comprise a first surface at a fourth height relative to the bottom surface of the housing and a second surface at a fifth height relative to the bottom surface of the housing, the fifth height being greater than the fourth height. The third height can be greater than the fourth height and less than the fifth height. The second opening in the second inner wall can comprise a first surface at a fourth height relative to the bottom surface of the housing and a second surface at a fifth height relative to the bottom surface of the housing, the fifth height being greater than the fourth height. The third height can be greater than both of the fourth height and the fifth height.

[0007] A blood pressure monitor configured to removably mount to a blood pressure cuff in a substantially symmetrical position with respect to a width of the blood pressure cuff, the blood pressure cuff configured to be mounted in a first orientation when worn on a right arm and a second orientation when worn on a left arm, the second orientation being the reverse of the first orientation, the blood pressure monitor configured to be in fluid communication with the blood pressure cuff regardless of whether the blood pressure cuff is mounted in the first or second orientation, said blood pressure monitor can comprise: a housing comprising an interior; a first port; and a second port. The first port can be configured to: receive and secure to a first prong of the blood pressure cuff when the blood pressure cuff is mounted in the first orientation; receive and secure to a second prong of the blood pressure cuff when the blood pressure cuff is mounted in the second orientation; and enable fluid communication between the interior of the housing and at least one of a first fluid passage within the first prong and a second fluid passage within the second prong. The second port can be configured to: receive and secure to the second prong of the blood pressure cuff when the blood pressure cuff is mounted in the first orientation; and receive and secure to the first prong of the blood pressure cuff when the blood pressure cuff is mounted in the second orientation. The first and second ports can be positioned along a bottom surface of the housing. The first and second ports can be spaced apart and aligned with one another. The first and second ports can extend from the bottom surface into the interior of the housing. The blood pressure cuff can comprise a bladder in fluid communication with the first and second fluid passages of the first and second prongs. The housing can be configured to inflate and deflate the bladder of the blood pressure cuff. The housing can be configured to inflate the bladder by moving air through the first port through one of the first and second fluid passages and can be further configured to deflate the bladder by allowing air from the bladder to flow through the first port into

the interior of the housing. The blood pressure monitor can further comprise a valve positioned within the interior of the housing proximate to the first port, wherein, when the first or second prong is secured within the first port, the valve is in a first position, and wherein, when the neither of the first and second prong is secured within the first port, the valve is in a second position. When the valve is in the first position, a flow path through the first port can be open and, when the valve is in the second position, the flow path through the first port can be closed. When the first prong is received and secured within the second port, fluid communication between the interior of the housing and the first fluid passage can be inhibited. When the second prong is received and secured within the second port, fluid communication between the interior of the housing and the second fluid passage can be inhibited. The fluid communication can be inhibited by a cap secured to an end of the second port.

[0008] A blood pressure monitor configured to removably mount to a blood pressure cuff in a substantially symmetrical position with respect to a width of the blood pressure cuff, said blood pressure monitor can comprise: a housing comprising an interior; a first port; and a second port. The first port can be configured to: receive and secure to a first prong of the blood pressure cuff when the blood pressure cuff is mounted in a first orientation; receive and secure to a second prong of the blood pressure cuff when the blood pressure is cuff mounted in a second orientation; and enable fluid communication between the interior of the housing and at least one of a first fluid passage within the first prong and a second fluid passage within the second prong. The second port can be configured to: receive and secure to the second prong of the blood pressure cuff when the blood pressure cuff is mounted in the first orientation; and receive and secure to the first prong of the blood pressure cuff when the blood pressure cuff is mounted in the second orientation. The first and second ports can be positioned along a bottom surface of the housing. The first and second ports can be spaced apart and aligned with one another with respect to a width of the blood pressure monitor. The first and second ports can extend from the bottom surface into the interior of the housing. The blood pressure cuff can comprise a bladder in fluid communication with the first and second fluid passages of the first and second prongs. The housing can be configured to inflate and deflate the bladder of the blood pressure cuff. The housing can be configured to inflate the bladder by moving air through the first port through one of the first and second fluid passages and can be further configured to deflate the bladder by allowing air from the bladder to flow through the first port into the interior of the housing. The blood pressure monitor can further comprise a valve positioned within the interior of the housing proximate to the first port, wherein, when the first or second prong is secured within the first port, the valve is in a first position, and wherein, when the neither of the first and second prong is secured within the first port, the valve is in a second position. When the valve is in the first position, a flow path through the first port can be open and, when the valve is in the second position, the flow path through the first port can be closed. When the first prong is received and secured within the second port, fluid communication between the interior of the housing and the first fluid passage can be inhibited. When the second prong is received and secured within the second port, fluid communication between the interior of the housing and the second fluid passage can be inhibited. The fluid communication can be inhibited by a cap secured to an end of the second port. When the blood pressure cuff is mounted in the first orientation, the blood pressure cuff can be secured to a right arm of a user, and when the blood pressure cuff is mounted in the second orientation, the blood pressure cuff can be secured to a left arm of a user. The second orientation can be the reverse of the first orientation. The blood pressure monitor can be configured to be in fluid communication with a bladder of the blood pressure cuff via one of the first and second fluid passages regardless of whether the blood pressure cuff is mounted in the first or second orientation.

[0009] A blood pressure cuff configured to removably secure to a user in a first orientation and a second orientation and further configured to allow a blood pressure monitor to be removably mounted in a substantially symmetrical position with respect to a width of the blood pressure cuff,

said blood pressure cuff can comprise: a first end, a second end opposite the first end, a first side, a second side opposite the first side, and a length extending between the first and second ends, wherein the width of the blood pressure cuff extends between the first and second sides, and wherein the width is smaller than the length; a bladder configured to inflate and deflate; a first prong configured to secure within a first port of the blood pressure monitor when the blood pressure cuff is in the first orientation and a second port of the blood pressure monitor when the blood pressure cuff is in the second orientation, the first prong comprising a first fluid passage in fluid communication with an interior of the bladder; a second prong configured to secure within the second port when the blood pressure cuff is in the first orientation and the first port when the blood pressure cuff is in the second orientation, the second prong comprising a second fluid passage in fluid communication with the interior of the bladder; wherein the first prong is positioned a first distance from the first end of the blood pressure cuff and the second prong is positioned a second distance from the first end of the blood pressure cuff, wherein the first and second distances are equal; and wherein the first prong is positioned a third distance from the first side of the blood pressure cuff and the second prong is positioned a fourth distance from the first side of the blood pressure cuff, wherein the third and fourth distances are not equal. The blood pressure cuff can further comprise a first attachment portion positioned between the first end and the first and second prongs and a second attachment portion positioned near the second end, the second attachment portion configured to secure to the first attachment portion when the blood pressure cuff is in the first and second orientations. The first and second attachment portions can be located on opposite surfaces of the blood pressure cuff. The blood pressure cuff can further comprise a near field communication (NFC) tag configured to electronically interact with an NFC reader in the blood pressure monitor to enable the blood pressure monitor to verify that the blood pressure cuff is an authorized product. The NFC tag can be positioned proximate at least one of the first and second prongs. The NFC tag can be positioned between the first and second prongs. Each of the first and second prongs can comprise a first end operatively connected to a portion of the blood pressure cuff, a second end opposite the first end, a reduced cross-section portion between the first and second ends, and a remainder cross-section portion, wherein the reduced cross-section area comprises a smaller cross-sectional area than the remainder cross-section portion, and wherein the reduced cross-section portion is configured to receive a sealing member within the first port of the blood pressure monitor. The reduced cross-section portion and the remainder cross-section portion can comprise a circular shape, and the reduced cross-section portion can comprise a smaller diameter than the remainder cross-section portion. Each of the first and second prongs can comprise an at least partially rounded end. Each of the first and second prongs can comprise an end having a flat surface and a rounded perimeter. When the blood pressure cuff is secured to the user in the first orientation, the blood pressure cuff can be secured to a right arm of the user, and when the blood pressure cuff is secured to the user in the second orientation, the blood pressure cuff can be secured to a left arm of a user. The second orientation can be the reverse of the first orientation. The blood pressure cuff can be configured to enable fluid communication between a bladder of the blood pressure cuff and an interior of the blood pressure device via one of the first and second fluid passages regardless of whether the blood pressure cuff is mounted in the first or second orientation. [0010] An assembly for enabling a caregiver to secure a physiological monitoring device to an arm of a user can comprise: the physiological monitoring device; and a cradle configured to removably secure to the physiological monitoring device and to the user's arm. The physiological monitoring device can comprise: a first end, a second end opposite the first end, a first side, and a second side opposite the first side; a first connector port extending outwards from the first end and configured to electrically connect to a first cable; and a first locking tab moveably mounted relative to the first side, the first locking tab movable between an extended position and a retracted position. The cradle can comprise: a base, first and second sidewalls connected to the base and opposite one another, and a back wall connected to the base and the first and second sidewalls; a first opening in

the back wall, the first opening configured to receive the first connector port of the physiological monitoring device; and a second opening in the first sidewall, the second opening configured to receive the first locking tab of the physiological monitoring device when the physiological monitoring device is secured to the cradle and the first locking tab is in the extended position. After the first connector port is received within the first opening in the back wall, the cradle can be configured to allow the physiological monitoring device to be pivoted about the back wall to secure the first locking tab within the second opening in the first sidewall. The cradle can further comprise a collar protruding from the back wall at least partially around the first opening, and the collar can be configured to receive and secure the first connector port of the physiological monitoring device. The cradle can comprise a first end and a second end opposite the first end, the back wall positioned at the first end of the cradle, and the collar can extend from the back wall in a direction away from the second end of the cradle. The collar can be configured to surround a portion of a perimeter of the first connector port when the physiological monitoring device is secured to the cradle. The collar can be configured to surround greater than 50% but less than 100% of the perimeter of the first connector port when the physiological monitoring device is secured to the cradle. The first locking tab of the physiological monitoring device can comprise a beveled end configured to allow the first locking tab to move passed a portion of the first sidewall and secure within the second opening. When the first locking tab moves passed the portion of the first sidewall, the first sidewall can contact the beveled end and move the first locking tab from the extended position towards the retracted position. The physiological monitoring device can comprise a top surface and a bottom surface opposite the top surface, the bottom surface facing towards the cradle when the physiological monitoring device is secured thereto. A surface of the beveled end of the first locking tab can face away from the top surface of the housing. The physiological monitoring device can further comprise a first button coupled to the first locking tab and moveable relative to the first side, wherein movement of the first button can cause the first locking tab to move between the extended and retracted positions. The first sidewall of the cradle can comprise a first recessed cutout configured to align with and provide access to the first button of the physiological monitoring device when the cradle is secured to the physiological monitoring device. The first recessed cutout can comprise a half-moon shape. The physiological monitoring device can further comprise: a second locking tab moveably mounted relative to the second side, the second locking tab movable between an extended position and a retracted position; and a second button coupled to the second locking tab and moveable relative to the second side, wherein movement of the second button causes the second locking tab to move between the extended and retracted positions. The cradle can further comprise: a third opening in the second sidewall, the third opening configured to receive the second locking tab of the physiological monitoring device when the physiological monitoring device is secured to the cradle and the second locking tab is in the extended position. After the first connector port is received within the first opening in the back wall, the cradle can be further configured to allow the physiological monitoring device to be pivoted about the back wall to secure the second locking tab within the third opening in the second sidewall. The second opening of the first sidewall can be aligned with the third opening of the second sidewall. The first sidewall of the cradle can comprise a first recessed cutout configured to align with and provide access to the first button of the physiological monitoring device when the cradle is secured to the physiological monitoring device. The second sidewall of the cradle can comprise a second recessed cutout configured to align with and provide access to the second button of the physiological monitoring device when the cradle is secured to the physiological monitoring device. The first recessed cutout of the first sidewall can be aligned with the second recessed cutout of the second sidewall. The cradle can further comprise a front wall connected to the base and the first and second sidewalls. The front wall can be opposite the back wall and can comprise a smaller height than the back wall. The cradle can further comprise one or more legs extending from the base and configured to allow securement of the cradle to the arm of the user. The cradle can further

comprise an RFID tag and wherein the physiological monitoring device can further comprises an RFID reader configured to determine whether the cradle is an authorized product.

[0011] An assembly can comprise: a physiological monitoring device; and a cradle configured to removably secure to the physiological monitoring device and to a portion of a user's body. The physiological monitoring device can comprise: a first end, a second end opposite the first end, a first side, and a second side opposite the first side; a first locking tab moveably mounted relative to the first side, the first locking tab movable between an extended position and a retracted position. The cradle can comprise: a base, first and second sidewalls connected to the base and opposite one another, and a back wall connected to the base and the first and second sidewalls; a first opening in the first sidewall, the first opening configured to receive the first locking tab of the physiological monitoring device when the physiological monitoring device is secured to the cradle and the first locking tab is in the extended position. The back wall can be configured to support the first end of the physiological monitoring device and allow the physiological monitoring device to be pivoted about the back wall to secure the first locking tab within the first opening in the first sidewall. [0012] A cradle configured to removably secure a physiological monitoring device and further configured to secure to an arm of a user can comprise a base, a first sidewall, a second sidewall, and a back wall. The physiological monitoring device can comprise a first locking tab movably mounted relative to a portion of the physiological monitoring device between an extended position and a retracted position. The first sidewall can be connected to and extending from the base. The first sidewall can comprise a first opening configured to receive the first locking tab of the physiological monitoring device when the physiological monitoring device is secured to the cradle and the first locking tab is in the extended position. The second sidewall can be connected to and extending from the base. The second sidewall can be opposite the first sidewall. The back wall can be connected to the base, the first sidewall, and the second sidewall. The back wall of the cradle can be configured to support a first end of the physiological monitoring device and allow the physiological monitoring device to be pivoted about the back wall to secure the first locking tab within the first opening in the first sidewall.

[0013] A physiological monitoring device configured to removably secure to a cradle, the cradle configured to secure to a portion of a user's body, the physiological monitoring device can comprise: a first end, a second end opposite the first end, a first side, and a second side opposite the first side; a first locking tab moveably mounted relative to the first side, the first locking tab movable between an extended position and a retracted position, wherein the first locking tab is further configured to secure within an opening of the cradle when in the extended position; and a first button coupled to the first locking tab and moveable relative to the first side, wherein movement of the first button in a first direction causes the first locking tab to move from the extended position to the retracted position, thereby allowing the first locking tab to move out of the opening of the cradle.

[0014] A charging station for providing power to a physiological monitoring device can comprise: a charging bay comprising a charging port configured to receive power from a power source; and a tray positioned within and movably mounted relative to the charging bay, wherein the tray is configured to secure the physiological monitoring device and move between a first position and a second position, wherein, in the first position, the tray is spaced away from the charging port, and wherein, in the second position, the tray is positioned proximate the charging port, thereby allowing the physiological monitoring device to electrically connect to the charging port. The physiological monitoring device can comprise an indicator configured to indicate a status of the physiological monitoring device when electrically connected to the charging port of the charging station. The indicator can be configured to indicate whether the charging station is an authorized product when the physiological monitoring device is electrically connected to the charging port. The physiological monitoring device can comprise a display, the display including

sidewall, a back wall connected to the first and second sidewalls, and a bottom panel connected to the first sidewall, the second sidewall, and the back wall, the charging port positioned on the bottom panel. The tray can be movably mounted to the first and second sidewalls of the charging bay. The tray can comprise a base, a first arm extending outward from and along a first side of the base, and a second arm extending outward from and along a second side of the base, the first side of the base being opposite the second side of the base, and wherein the first arm can be at least partially supported by the first sidewall and the second arm can be at least partially supported by the second sidewall. The base of the tray can comprise a back end and a front end opposite the front end. The back end of the tray can be configured to be positioned closer to the back wall of the charging station when the first and second arms are at least partially supported by the first and second sidewalls. The base of the tray can comprise an opening sized and shaped to match a size and shape of the charging port, the opening positioned closer to the front end of the tray than to the back end of the tray. The opening of the base of the tray can comprise a rounded shape. The charging port can comprise a pedestal protruding outward from the bottom panel, and, when the tray is in the second position, the opening of the tray can be positioned around the pedestal. The charging station can further comprise one or more prongs connected to the bottom panel, the one or more prongs configured to bias the tray towards the first position. The one or more prongs can be positioned at least partially within one or more openings in the bottom panel. The one or more prongs can comprise two prongs, and the two prongs can be spaced apart from one another. When the tray is in the second position, the tray can compress the one or more prongs. Each of the one or more prongs can comprise a straight portion connected to the bottom panel and a curved portion configured to contact the tray. The one or more prongs can comprise a first prong proximate the first sidewall and a second prong proximate the second sidewall. The tray can further comprise one or more legs extending from the base, the one or more legs configured to contact the one or more prongs. The one or more legs of the tray can extend from the base in a first direction and the first and second arms of the tray can extend from the base in a second direction opposite the first direction. Each of the one or more legs of the tray can comprise a perimeter wall and a hollow interior defined therein, the hollow interior configured to receive at least a portion of a respective one of the one or more prongs. Each of the first and second arms can comprise a first portion connected to the base and a second portion connected to the first portion, and the first portion can be angled with respect to the base and the second portion is angled with respect to the first portion. The first sidewall of the charging bay can comprise a first end connected to the back wall and a second end opposite the first end, and the first sidewall can comprise a first guide recess proximate the second end, the first guide recess configured to allow a first locking tab of the physiological monitoring device to slide therewithin. The first guide recess can be recessed from a surface of the first sidewall at a first depth and the first guide recess can be defined by no more than three walls. At least one of the walls defining the first guide recess can be sloped. The first sidewall of the charging bay can comprise a first stem wall extending from the second end of the first sidewall towards the second sidewall, and the first stem wall can comprise the first guide recess. The first sidewall can further comprise a first locking recess proximate the second end, the first locking recess configured to confine the first locking tab of the physiological monitoring device when the tray is in the second position. The first locking recess can be positioned closer to the bottom panel than the first guide recess. The first locking recess can be recessed from a surface of the first sidewall a first depth and the first guide recess can be recessed from the surface of the first sidewall at a second depth. The second depth can be less than the first depth. The first locking recess can be defined by four walls. The first locking recess can be spaced from the first guide recess. The second sidewall can comprise a third end connected to the back wall and a fourth end opposite the third end. The second sidewall can comprise a second guide recess proximate the fourth end. The second guide recess can be configured to allow a second locking tab of the physiological monitoring

the indicator. The charging bay can comprise a first sidewall, a second sidewall opposite the first

device to slide therewithin. The second guide recess can be recessed from a surface of the second sidewall at a third depth and the second guide recess can be defined by no more than three walls. At least one of the walls defining the second guide recess can be sloped. The second sidewall can comprise a second stem wall extending from the fourth end of the second sidewall towards the first sidewall, and the second stem wall can comprise the second guide recess. The second sidewall can further comprise a second locking recess proximate the fourth end, the second locking recess configured to confine the second locking tab of the physiological monitoring device. The second locking recess can be positioned closer to the bottom panel than the second guide recess. The second locking recess can be recessed from the surface of the second sidewall at a third depth and the second guide recess can be recessed from the surface at a fourth depth. The fourth depth can be less than the third depth. The second locking recess can be defined by four walls. The second locking recess can be spaced from the second guide recess. The power source can comprise a wall outlet and the charging station can further comprise a connector port configured to receive an end of a power cable configured to connect with said wall outlet. The power source can comprise a battery positioned within a portion of the charging station. The charging station can further comprise a base and a charging frame configured to removably secure to the base. The charging frame can comprise said charging bay. The battery can be positioned within the base of the charging station.

[0015] A charging station for providing power to one or more physiological monitoring devices can comprise a plurality of frames configured to be removably secured to one another. Each of the plurality of frames can comprise: one or more charging bays, each of the one or more charging bays comprising a charging port configured to receive power from a power source; and one or more trays. Each of the one or more trays can be: positioned within and movably mounted relative to a respective one of the one or more charging bays; and configured to secure a respective one of the one or more physiological monitoring devices and move between a first position and a second position, wherein, in the first position, each of the one or more trays is spaced away from the charging port of the respective one of the one or more charging bays, and wherein, in the second position, each of the one or more trays is positioned proximate the charging port, thereby allowing the respective one of the one or more physiological monitoring devices to electrically connect to the charging port.

[0016] A system for monitoring one or more vital signs of a patient and managing sensor cables in a patient environment can comprise: a first sensor configured to obtain physiological information related to a first physiological parameter, the first sensor configured to attach to a first portion of the patient; a second sensor configured to obtain physiological information related to a second physiological parameter, the second sensor configured to attach to a second portion of the patient, the second sensor configured to connect to the first sensor with a first cable; and a patient monitor configured to connect to the second sensor with a second cable, the patient monitor configured to receive the physiological information related to the first and second physiological parameters via the second cable, the patient monitor configured to attach to a third portion of the patient. The first sensor can comprise an electrocardiogram (ECG) device. The second sensor can comprise a blood pressure monitor. The ECG device can be configured to attach to a chest of the patient and the blood pressure device can be configured to attach to an arm of the patient. The second sensor can comprise a first connector port and a second connector port. The first connector port can be configured to connect to the first cable and the second connector port can be configured to connect to the second cable. The second sensor can further comprise a bypass bus configured to pass the physiological information obtained by the first sensor to the patient monitor without being processed by the second sensor. The second sensor can be configured to transmit the physiological information obtained by the second sensor to the patient monitor simultaneously with the physiological information from the first sensor. The first connector port and the second connector port can be positioned on a first side of the second sensor. The system can further comprise a third

sensor which can be configured to obtain physiological information related to a third physiological parameter. The third sensor can be configured to attach to a third portion of the patient and connect to the patient monitor with a third cable. The patient monitor can comprise a first end, a second end opposite the first end, a first connector port positioned on the first end, and a second connector port positioned on the second end. The first connector port can be configured to connect to the third sensor via the third cable and the second connector port can be configured to connect to the second sensor via the second cable. The second connector port can comprise a first female connector configured to connect to the second cable and a second female connector configured to connect to a fourth sensor via a fourth cable. The fourth sensor can be an acoustic sensor. The third sensor can be an optical sensor. The second sensor can be a blood pressure monitor. The system can further comprise at least one cable management prong configured to secure to skin of the patient and a portion of one of the first cable or second cable. The at least one cable management prong can comprise: a base configured to secure to a patient skin surface; a stem extending outward from the base; and one or more arms extending outward from the stem, the one or more arms sized and shaped to receive and secure the portion of the one of the first cable or second cable. The base can comprise an adhesive. The base can further comprise a release liner disposed on the adhesive. The base can comprise a square shape. The stem can extend generally perpendicular to a plane of the base. The stem can extend from a middle portion of the base. The middle portion of the base can be spaced inward from at least two sides of the base. The stem can comprise a first height and a first width and the base can comprise a second height and a second width, wherein the first height greater than the second height and the first width being less than the second width. Each of the one or more arms can extend generally perpendicular to a side of the stem in a first direction, Each of the one or more arms can extend in a second direction different from the first direction. Each of the one or more arms can extend outward from the stem and curl at least partially around a radius of curvature. The one or more arms can curl in a direction away from the base. The one or more arms can comprise a C-shape. The one or more arms can comprise a cross-section that is at least partially circular. The patient monitor can comprise a wireless transceiver configured to transmit the physiological information received from the first and second sensors.

[0017] A system for monitoring one or more vital signs of a patient and managing sensor cables in a patient environment can comprise: a first sensor configured to obtain physiological information related to a first physiological parameter, the first sensor configured to attach to a first portion of the patient; a second sensor configured to obtain physiological information related to a second physiological parameter, the second sensor configured to attach to a second portion of the patient, the second sensor comprising a first connector port and a second connector port, the first connector port configured to connect to the first sensor via a first cable; and a patient monitor configured to connect to the second connector port of the second sensor via a second cable, the patient monitor configured to receive physiological information related to the first and second physiological parameters from the second sensor and further configured to attach to a third portion of the patient. The second sensor can further comprise a bypass bus configured to pass the physiological information from the first sensor to the patient monitor without being processed by the second sensor. The second sensor can be configured to transmit the physiological information obtained by the second sensor to the patient monitor simultaneously with the physiological information from the first sensor. The first and second connector ports of the second sensor can be positioned on a first side of the second sensor. The second sensor can comprise one or more cable securement arms configured to secure to a portion of one of the first or second cables. The first sensor can be an ECG device and the second sensor can be configured to measure physiological information related to a blood pressure of the patient.

[0018] A noninvasive blood pressure monitor can comprise: an inflatable cuff; a pressure transducer; an air pump; a plurality of air paths connecting the inflatable cuff, the pressure transducer, and the air pump; and an acoustic filter provided along at least one of the air paths. The

noninvasive blood pressure monitor can include an air manifold that joins the plurality of air paths. The acoustic filter can be provided between the air pump and the air manifold. The acoustic filter can be provided between the inflatable cuff and the air manifold. The acoustic filter can be provided between the pressure transducer and the air manifold. The acoustic filter can be integrated with the air manifold. The air manifold can include an acoustic filtering cavity. The acoustic filtering cavity can include a plurality of ports that feed into the acoustic filtering cavity, wherein a dimension of the acoustic filtering cavity is at least 5 times a dimension of the plurality of ports. The acoustic filter can include a low-pass filter. The acoustic filter can include one or more stubs branching off from one of the plurality of air paths. The one or more stubs can be straight. The one or more stubs can be closed-ended. The acoustic filter can include two opposing stubs. The one or more stubs can have a folded configuration. The one or more stubs can include a plurality of sections joined together at one or more angles. The acoustic filter can include one or more boxshaped cavities. The acoustic filter can include a box-shaped cavity with a face attached to one of the plurality of air paths. The acoustic filter can include a box-shaped cavity attached to one of the plurality of air paths by a stub. The noninvasive blood pressure monitor can further include: a housing with two or more parts; and a gasket provided at a mating interface between the two or more parts. The noninvasive blood pressure monitor can further include noise-dampening material inside the housing. The acoustic filter can have a pass band that excludes a fundamental frequency produced by the air pump when operating at or above 50% of its maximum operating speed. [0019] A noninvasive blood pressure monitor can comprise: an inflatable cuff; a pressure transducer; first and second air pumps; and a processor configured to independently control one or more operating characteristics of the first and second air pumps. The one or more operating characteristics of the first and second air pumps can include speed of the first or second air pump. The one or more operating characteristics of the first and second air pumps can include stroke length of the first or second air pump. The one or more operating characteristics of the first and second air pumps can include stroke phase of the first or second air pump. The monitor can be configured to: determine one or more characteristics of acoustic noise produced by the first and second air pumps; and independently adjust the one or more operating characteristics of the first and second air pumps based on the one or more characteristics of the acoustic noise. The monitor can be configured to determine the one or more characteristics of the acoustic noise produced by the first and second air pumps using a signal output from a microphone. The microphone can be integrated in the monitor. The monitor can be configured to determine the one or more characteristics of the acoustic noise produced by the first and second air pumps using a signal output from the pressure transducer. The monitor can be configured to determine the one or more characteristics of the acoustic noise produced by the first and second air pumps using electrical currents from the air pumps. The one or more characteristics of the acoustic noise produced by the first and second air pumps can be loudness. The one or more characteristics of the acoustic noise produced by the first and second air pumps can be beat frequency. The one or more characteristics of the acoustic noise produced by the first and second air pumps can include frequency content. The noninvasive blood pressure monitor can further be configured to adjust the one or more operating characteristics of the first and second air pumps based on the one or more characteristics of the acoustic noise so as to reduce an acoustic displeasure metric. The acoustic displeasure metric can be based on the one or more characteristics of the acoustic noise produced by the first and second air pumps. The monitor can be configured to control the speed of the first or second air pump so as to set a beat frequency in the acoustic noise produced by the first and second air pumps to a desired value. The monitor can be configured to control the speed of the first or second air pump so as to achieve a desired relationship between the frequency content of the acoustic noise produced by the first air pump and the frequency content of the acoustic noise produced by the second air pump. The monitor can be configured to control the speed of the first or second air pump such that the frequency content of the acoustic noise produced by the first air pump is

harmonically related to the frequency content of the acoustic noise produced by the second air pump. The monitor can be configured to control the stroke phase of the first or second air pump so as to increase destructive interference between the acoustic noise produced by the first air pump and the acoustic noise produced by the second air pump.

[0020] A noninvasive blood pressure monitor can comprise: an inflatable cuff; a pressure transducer; one or more air pumps; and a processor configured to control the one or more air pumps so as to provide a first inflation rate for the inflatable cuff during a non-measurement portion of an inflation phase and a second inflation rate during a measurement portion of the inflation phase, the first inflation rate being greater than the second inflation rate. The monitor can include first and second air pumps, and the processor can be configured to turn on both the first air pump and the second air pump during the non-measurement portion of the inflation phase. The processor can be configured to subsequently turn off the second air pump during the measurement portion of the inflation phase. The processor can be configured to control the one or more air pumps so as to transition from the first inflation rate to the second inflation rate after a plethysmographic waveform is detected in an output signal from the pressure transducer. The processor can be configured to determine the second inflation rate based at least in part on a predetermined minimum number of cardiac cycles for performing a blood pressure measurement. The predetermined minimum number of cardiac cycles can be less than or equal to 15. The processor can be configured to determine the second inflation rate based at least in part on a patient's pulse rate. The processor can be configured to determine the second inflation rate based at least in part on a maximum inflation pressure. The maximum inflation pressure can be determined based on an envelope of a plurality of plethysmographic waveforms. The processor can be configured to provide the first inflation rate until a threshold air pressure in the inflatable cuff is reached. The processor can be configured to provide the first inflation rate until a plethysmographic waveform is detected in an output of the pressure transducer. The second inflation rate can be an actively-controlled target inflation rate during the measurement portion of the inflation phase. The target inflation rate can be a set air pressure increase per cardiac cycle. The target inflation rate can be changed during the measurement portion of the inflation phase. The target inflation rate can be slowed during an identified diastolic or systolic blood pressure measurement zone of air pressures in the inflatable cuff. The diastolic or systolic blood pressure measurement zone can be identified using an envelope of a plurality of plethysmographic waveforms in an output of the pressure transducer. The diastolic or systolic blood pressure measurement zone can be identified at least partially based on an inflection point in the envelope of the plurality of plethysmographic waveforms. The monitor can be configured to end the measurement portion of the inflation phase based on an envelope of a plurality of plethysmographic waveforms in an output of the pressure transducer. The monitor can be configured to end the measurement portion of the inflation phase based at least partially on an inflection point in the envelope of the plurality of plethysmographic waveforms. The monitor can be configured to determine a blood pressure measurement and a confidence metric upon ending the measurement portion of the inflation phase. The confidence metric can include a number of plethysmographic waveforms detected during the measurement portion of the inflation phase, a smoothness of an envelope of a plurality of plethysmographic waveforms in an output of the pressure transducer, or an indication of patient motion during time periods corresponding to one or more of the plethysmographic waveforms. The noninvasive blood pressure monitor can further include at least two air pumps; and a clock or counter to measure cumulative runtime of each of the at least two air pumps. The monitor can be configured to select the at least two air pumps for operation tasks so as to reduce an imbalance in their respective cumulative runtimes.

[0021] For purposes of summarizing the disclosure, certain aspects, advantages and novel features of the inventions have been described herein. It is to be understood that not necessarily all such advantages can be achieved in accordance with any particular embodiment of the inventions

disclosed herein. Thus, the inventions disclosed herein can be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as can be taught or suggested herein.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

- [0022] Various embodiments will be described hereinafter with reference to the accompanying drawings. These embodiments are illustrated and described by example only, and are not intended to limit the scope of the disclosure. In the drawings, similar elements have similar reference numerals.
- [0023] FIG. **1**A illustrates a perspective view of a patient monitoring system in accordance with aspects of this disclosure.
- [0024] FIG. **1**B illustrates another perspective view of the patient monitoring system of FIG. **1**A.
- [0025] FIG. **1**C illustrates a schematic diagram of the patient monitoring system of FIG. **1**A in accordance with aspects of this disclosure.
- [0026] FIG. **1**D illustrates another schematic diagram of the patient monitoring system of FIG. **1**C in accordance with aspects of this disclosure.
- [0027] FIG. **2**A illustrates a perspective view of an ECG device.
- [0028] FIG. **2**B illustrates a perspective view of a disposable portion of the ECG device of FIG. **2**A.
- [0029] FIG. 2C illustrates a perspective view of a reusable portion of the ECG device of FIG. 2A.
- [0030] FIG. 2D illustrates a schematic diagram of the ECG device of FIG. 2A.
- [0031] FIG. **2**E illustrates a dock of the disposable portion of the ECG device shown in FIG. **2**B.
- [0032] FIG. **2**F illustrates an exploded, top perspective view of the dock of FIG. **2**E.
- [0033] FIG. **2**G illustrates an exploded, bottom perspective view of the dock of FIG. **2**E.
- [0034] FIG. **2**H illustrates a side view of the dock of FIG. **2**E.
- [0035] FIG. 2I illustrates a top view of a flexible circuit of the dock of FIG. 2E.
- [0036] FIGS. **2**J and **2**K illustrate top perspective views of a hub of the reusable portion of the ECG device shown in FIG. **2**C.
- [0037] FIGS. **2**L-**2**M illustrate bottom perspective views of the hub of FIGS. **2**J-**2**K.
- [0038] FIG. 2N illustrates a side view of the hub of FIGS. 2J-2K.
- [0039] FIG. 2O illustrates an exploded, top perspective view of the hub of FIGS. 2J and 2K.
- [0040] FIG. 2P illustrates an exploded, bottom perspective view of the hub of FIGS. 2J and 2K.
- [0041] FIG. **2**Q illustrates an exploded view of a portion of the hub of FIGS. **2**J and **2**K in accordance with aspects of this disclosure.
- [0042] FIG. **2**R illustrates a perspective view of the hub and dock of the ECG device of FIG. **2**A and further illustrates a method of mating the hub and dock in accordance with aspects of this disclosure.
- [0043] FIG. **2**S illustrates a side, cross-sectional view of the ECG device of FIG. **2**A on a patient, showing relative position of a temperature sensor with respect to the patient in accordance with aspects of this disclosure.
- [0044] FIG. 2T illustrates a side, cross-sectional view of the ECG device of FIG. 2A on a patient, showing relative position of an internal electrode of the ECG device with respect to the patient in accordance with aspects of this disclosure.
- [0045] FIG. **2**U illustrates a block diagram depicting a method of collecting physiological data using the ECG of FIG. **2**A in accordance with aspects of this disclosure.
- [0046] FIG. **3**A illustrates a perspective view of another embodiment for an ECG device.
- [0047] FIG. **3**B illustrates a perspective view of a disposable portion of the ECG device of FIG.

3A.

- [0048] FIG. 3C illustrates a perspective view of a reusable portion of the ECG device of FIG. 3A.
- [0049] FIG. **3**D illustrates a schematic diagram of the ECG device of FIG. **3**A.
- [0050] FIG. **3**E illustrates a dock of the disposable portion of the ECG device shown in FIG. **3**B.
- [0051] FIG. **3**F illustrates an exploded, top perspective view of the dock of FIG. **3**E.
- [0052] FIG. **3**G illustrates an exploded, bottom perspective view of the dock of FIG. **3**E.
- [0053] FIG. **3**H illustrates a side view of the dock of FIG. **3**E.
- [0054] FIG. **3**I illustrates a top view of a flexible circuit of the dock of FIG. **3**E.
- [0055] FIGS. **3**J and **3**K illustrate top perspective views of a hub of the reusable portion of the ECG device shown in FIG. **3**C.
- [0056] FIG. **3**L illustrates a bottom perspective view of the hub of FIGS. **3**J-**3**K.
- [0057] FIG. **3**M illustrates an exploded, top perspective view of the hub of FIGS. **3**J and **3**K.
- [0058] FIG. **3**N illustrates an exploded, bottom perspective view of the hub of FIGS. **3**J and **3**K.
- [0059] FIG. **3**O illustrates a perspective view of the hub and dock of the ECG device of FIG. **3**A and further illustrates a method of mating the hub and dock in accordance with aspects of this disclosure.
- [0060] FIG. **3**P illustrates a side, cross-sectional view of the ECG device of FIG. **3**A on a patient, showing relative position of a temperature sensor with respect to the patient in accordance with aspects of this disclosure.
- [0061] FIG. **3**Q illustrates a side, cross-sectional view of the ECG device of FIG. **3**A on a patient, showing relative position of an internal electrode of the ECG device with respect to the patient in accordance with aspects of this disclosure.
- [0062] FIG. **3**R illustrates a block diagram depicting a method of collecting physiological data using the ECG of FIG. **3**A in accordance with aspects of this disclosure.
- [0063] FIGS. **4**A-**4**C illustrates various views of an ECG packaging device in accordance with aspects of this disclosure.
- [0064] FIG. 4D illustrates various views of electrodes in accordance with aspects of this disclosure.
- [0065] FIG. **4**E illustrates an alternative configuration of the ECG packaging device of FIG. **4**A in accordance with aspects of this disclosure.
- [0066] FIG. **5**A-**5**B illustrate perspective views of a blood pressure monitor.
- [0067] FIG. 5C illustrates a top view of the blood pressure monitor of FIGS. 5A-5B.
- [0068] FIG. 5D illustrates a bottom view of the blood pressure monitor of FIGS. 5A-5B.
- [0069] FIG. 5E illustrates a side view of the blood pressure monitor of FIGS. 5A-5B.
- [0070] FIG. **5**F illustrates another side view of the blood pressure monitor of FIGS. **5**A-**5**B.
- [0071] FIG. **5**G illustrates a front view of the blood pressure monitor of FIGS. **5**A-**5**B.
- [0072] FIG. 5H illustrates a back view of the blood pressure monitor of FIGS. 5A-5B.
- [0073] FIG. 5I illustrates a perspective view of a blood pressure cuff.
- [0074] FIG. 5J illustrates an enlarged view of a portion of the blood pressure cuff of FIG. 5I.
- [0075] FIG. **5**K illustrates the blood pressure cuff of FIG. **5**I secured to the blood pressure monitor of FIGS. **5**A-**5**B.
- [0076] FIG. **5**L illustrates the blood pressure cuff of FIG. **5**I in a first orientation with the blood pressure monitor secured thereto in accordance with aspects of this disclosure.
- [0077] FIG. 5M illustrates the blood pressure cuff of FIG. 5I in a second orientation with the blood pressure monitor secured thereto in accordance with aspects of this disclosure.
- [0078] FIGS. 5N-5O illustrate perspective views of a portion of the blood pressure cuff of FIG. 5I in accordance with aspects of this disclosure.
- [0079] FIGS. 5P-5Q illustrate cross-sections of the blood pressure monitor of FIGS. 5A-5B in accordance with aspects of this disclosure.
- [0080] FIG. 5R illustrates an enlarged view of a portion of the cross-section view shown in FIG. 5Q.

- [0081] FIG. 5S-5T illustrate exploded perspective views of the blood pressure monitor of FIGS.
- **5**A**-5**B in accordance with aspects of this disclosure.
- [0082] FIGS. 5U-5V illustrate perspective views of the blood pressure monitor of FIGS. 5A-5B with portions removed in accordance with aspects of this disclosure.
- [0083] FIGS. **5**W-**5**X illustrate cross-section views of the blood pressure monitor of FIGS. **5**A-**5**B in accordance with aspects of this disclosure.
- [0084] FIG. 5Y illustrates another perspective view of the blood pressure monitor of FIGS. 5A-5B with portions removed in accordance with aspects of this disclosure.
- [0085] FIGS. 5Z and 5AA illustrate exploded views of a valve of the blood pressure monitor.
- [0086] FIG. **6**A illustrates a perspective view an embodiment of a blood pressure monitor assembly in accordance with aspects of this disclosure.
- [0087] FIG. **6**B illustrates another perspective view of the blood pressure monitor assembly of FIG. **6**A.
- [0088] FIG. **6**C illustrates a side view of the blood pressure monitor assembly of FIG. **6**A.
- [0089] FIG. **6**D illustrates an enlarged view of a portion of the blood pressure monitor assembly as shown in FIG. **6**C.
- [0090] FIG. **6**E illustrates an exploded view of the blood pressure monitor assembly of FIG. **6**A.
- [0091] FIG. **6**F-**6**I illustrate perspective views of a blood pressure monitor of the assembly of FIG. **6**A.
- [0092] FIG. **6**J illustrates a top view of the blood pressure monitor of FIGS. **6**F-**6**I.
- [0093] FIG. **6**K illustrates a bottom view of the blood pressure monitor of FIGS. **6**F-**6**I.
- [0094] FIG. **6**L illustrates a side view of the blood pressure monitor of FIGS. **6**F-**6**I.
- [0095] FIG. **6**M illustrates another side view of the blood pressure monitor of FIGS. **6**F-**6**I.
- [0096] FIG. **6**N illustrates a front view of the blood pressure monitor of FIGS. **6**F-**6**I.
- [0097] FIG. **6**O illustrates a back view of the blood pressure monitor of FIGS. **6**F-**6**I.
- [0098] FIG. **6**P illustrates an enlarged perspective view of a portion of the blood pressure monitor of FIGS. **6**F-**6**I shown in FIG. **6**F.
- [0099] FIG. **6**Q illustrates an enlarged perspective view of a portion of the blood pressure monitor of FIGS. **6**F-**6**I as shown in FIG. **6**H.
- [0100] FIG. **6**R illustrates an enlarged view of a portion of the housing of the blood pressure monitor of FIGS. **6**F-**6**I as shown in FIG. **6**M.
- [0101] FIG. **6**S-**6**T illustrate perspective views of a cradle of the assembly of FIG. **6**A.
- [0102] FIG. **6**U illustrates a top view of the cradle of the blood pressure monitor of FIG. **6**S-**6**T.
- [0103] FIG. **6**V illustrates a bottom view of the cradle of the blood pressure monitor of FIG. **6**S-**6**T.
- [0104] FIG. 6W illustrates a side view of the cradle of the blood pressure monitor of FIG. 6S-6T.
- [0105] FIG. **6**X illustrates another side view of the cradle of the blood pressure monitor of FIG. **6**S-**6**T.
- [0106] FIG. **6**Y illustrates a front view of the cradle of the blood pressure monitor of FIG. **6**S-**6**T.
- [0107] FIG. **6**Z illustrates a back view of the cradle of the blood pressure monitor of FIG. **6**S-**6**T.
- [0108] FIG. 7A illustrates an exploded view of another embodiment of a blood pressure monitor assembly in accordance with aspects of this disclosure.
- [0109] FIGS. 7B-7C illustrate perspective views of a blood pressure monitor of the assembly of FIG. 7A.
- [0110] FIG. 7D illustrates a top view of the blood pressure monitor of FIGS. 7B-7C.
- [0111] FIG. 7E illustrates a bottom view of the blood pressure monitor of FIGS. 7B-7C.
- [0112] FIG. 7F illustrates a side view of the blood pressure monitor of FIGS. 7B-7C.
- [0113] FIG. 7G illustrates another side view of the blood pressure monitor of FIGS. 7B-7C.
- [0114] FIG. 7H illustrates a front view of the blood pressure monitor of FIGS. 7B-7C.
- [0115] FIG. 7I illustrates a back view of the blood pressure monitor of FIGS. 7B-7C.
- [0116] FIG. 7J illustrates an enlarged view of a portion of the view of the blood pressure monitor

- shown in FIG. 7G.
- [0117] FIG. 7K illustrates a cross-section view of the blood pressure monitor of FIG. 7B-7C in accordance with aspects of this disclosure.
- [0118] FIG. 7L illustrates an enlarged perspective view of the cross-section shown in FIG. 7K in accordance with aspects of this disclosure.
- [0119] FIG. 7M illustrates another enlarged perspective view of the cross-section shown in FIG. 7K in accordance with aspects of this disclosure.
- [0120] FIGS. 7N-7O illustrate perspective views of a cradle of the assembly of FIG. 7A.
- [0121] FIG. 7P illustrates a top view of the cradle of FIGS. 7N-7O.
- [0122] FIG. 7Q illustrates a bottom view of the cradle of FIGS. 7N-7O.
- [0123] FIG. 7R illustrates a side view of the cradle of FIGS. 7N-7O.
- [0124] FIG. 7S illustrates another side view of the cradle of FIGS. 7N-7O.
- [0125] FIG. 7T illustrates a front view of the cradle of FIGS. 7N-7O.
- [0126] FIG. 7U illustrates a back view of the cradle of FIGS. 7N-7O.
- [0127] FIG. 7V illustrates the cradle of FIGS. 7N-7O connected to an example blood pressure cuff in accordance with aspects of this disclosure.
- [0128] FIG. **8**A illustrates a perspective view of a patient monitor assembly with connected cables in accordance with aspects of this disclosure.
- [0129] FIG. **8**B illustrates another perspective view of the patient monitor assembly of FIG. **8**A without cables attached.
- [0130] FIG. **8**C illustrates an exploded view of the patient monitor assembly of FIG. **8**B.
- [0131] FIG. **8**D illustrates a top view of a patient monitor of the assembly of FIG. **8**B.
- [0132] FIG. **8**E illustrates a bottom view of the patient monitor of FIG. **8**D.
- [0133] FIG. **8**F illustrates a side view of the patient monitor of FIG. **8**D.
- [0134] FIG. **8**G illustrates another side view of the patient monitor of FIG. **8**D.
- [0135] FIG. **8**H illustrates a front view of the patient monitor of FIG. **8**D.
- [0136] FIG. **8**I illustrates a back view of the patient monitor of FIG. **8**D.
- [0137] FIG. **8**J illustrates a perspective view of a cradle of the assembly of FIG. **8**B.
- [0138] FIG. **8**K illustrates a top view of the cradle of FIG. **8**J.
- [0139] FIG. **8**L illustrates a bottom view of the cradle of FIG. **8**J.
- [0140] FIG. 8M illustrates a side view of the cradle of FIG. 8J.
- [0141] FIG. 8N illustrates another side view of the cradle of FIG. 8J.
- [0142] FIG. **8**O illustrates a front view of the cradle of FIG. **8**J.
- [0143] FIG. **8**P illustrates a back view of the cradle of FIG. **8**J.
- [0144] FIG. **8**Q illustrates an enlarged view of a portion of the patient monitor shown in FIG. **8**G.
- [0145] FIG. **8**R illustrates an enlarged, perspective view of the view shown in FIG. **8**Q with a portion of the patient monitor removed in accordance with aspects of this disclosure.
- [0146] FIG. **8**S illustrates an enlarged, perspective view of the view shown in FIG. **8**Q with a portion of the patient monitor removed in accordance with aspects of this disclosure.
- [0147] FIG. 8T illustrates a top view of the enlarged view of FIG. 8R.
- [0148] FIG. **8**U illustrates a perspective view of a locking tab assembly of the patient monitor in accordance with aspects of this disclosure.
- [0149] FIG. **8**V illustrates a bottom view of the locking tab assembly of FIG. **8**U.
- [0150] FIGS. **9**A-**9**C illustrate various views of a cable management prong in accordance with aspects of this disclosure.
- [0151] FIG. **10**A illustrates a perspective view of a charging station in accordance with aspects of this disclosure.
- [0152] FIG. **10**B illustrates a top view of the charging station of FIG. **10**A.
- [0153] FIG. **10**C illustrates a bottom view of the charging station of FIG. **10**A.
- [0154] FIG. **10**D illustrates a side view of the charging station of FIG. **10**A.

- [0155] FIG. **10**E illustrates a front view of the charging station of FIG. **10**A.
- [0156] FIG. **10**F illustrates a back view of the charging station of FIG. **10**A.
- [0157] FIG. **10**G illustrates a top perspective view of a frame of the charging station of FIG. **10**A.
- [0158] FIG. **10**H illustrates another top perspective view of the frame of FIG. **10**G.
- [0159] FIG. **10**I illustrates a bottom perspective view of the frame of FIG. **10**G.
- [0160] FIG. **10**J illustrates an exploded view of the frame of FIG. **10**G.
- [0161] FIG. **10**K illustrates another exploded view of the frame of FIG. **10**G.
- [0162] FIG. **10**L illustrates a cross-section through a portion of the frame of FIG. **10**G.
- [0163] FIG. **11**A-**11**B illustrate perspective views of a charging cradle with two patient monitors placed therein in accordance with aspects of this disclosure.
- [0164] FIG. **11**C illustrates a perspective view of a medical monitoring hub in accordance with aspects of this disclosure.
- [0165] FIGS. **11**D**-11**E illustrate perspective views of the charging cradle of FIGS. **11**A**-11**B without the two patient monitors placed therein in accordance with aspects of this disclosure.
- [0166] FIG. 11F illustrates a bottom view of the charging cradle of FIGS. 11D-11E.
- [0167] FIG. **11**G illustrates a top view of the charging cradle of FIGS. **11**D-**11**E.
- [0168] FIG. **11**H illustrates an exploded perspective view of the charging cradle of FIGS. **11**D-**11**E.
- [0169] FIG. **11**I illustrates another exploded perspective view of the charging cradle of FIGS. **11**D-**11**E.
- [0170] FIG. **11**J illustrates a perspective view of a tray of the charging cradle of FIGS. **11**D-**11**E.
- [0171] FIG. **11**K illustrates a front view of the tray of FIG. **11**J.
- [0172] FIG. **11**L illustrates an enlarged view of a portion of the charging cradle of FIG. **11**H in accordance with aspects of this disclosure.
- [0173] FIGS. **11**M-**11**N illustrate side views of the charging cradle of FIGS. **11**D-**11**E and further illustrate the rotational capabilities of the tray of the charging cradle in accordance with aspects of this disclosure.
- [0174] FIG. **12** is a block diagram of an example embodiment of a noninvasive blood pressure monitor.
- [0175] FIG. **13**A illustrates an example embodiment of an acoustic filter that can be provided in a blood pressure monitor.
- [0176] FIG. **13**B illustrates another example embodiment of an acoustic filter that can be provided in a blood pressure monitor.
- [0177] FIG. **13**C illustrates additional example embodiments of acoustic filters that can be provided in a blood pressure monitor.
- [0178] FIG. **13**D illustrates yet another example embodiment of an acoustic filter that can be provided in a blood pressure monitor.
- [0179] FIG. **14**A is a flowchart of an example embodiment of a method for using the air pump controller to improve the audible sound emitted by a noninvasive blood pressure monitor.
- [0180] FIG. **14**B is a flowchart of an example embodiment of a method for reducing the amount of time necessary for a noninvasive blood pressure monitor to perform blood pressure measurements.
- [0181] FIG. **14**C illustrates an example embodiment of a method for dynamically controlling inflation of a cuff in with a blood pressure monitor.
- [0182] FIG. **14**D illustrates an example embodiment of a method for carrying out pump frequency relationship control in a blood pressure monitor with multiple air pumps.
- [0183] FIG. **14**E illustrates how target inflation rate of a blood pressure cuff can be adjusted during a blood pressure measurement based on the envelope of an oscillometric signal produced by a blood pressure monitor.

DETAILED DESCRIPTION

[0184] The present disclosure describes various devices, systems, and methods for monitoring one or more physiological parameters of a patient.

[0185] The present disclosure will now be described with reference to the accompanying figures, wherein like numerals refer to like elements throughout. The following description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. It should be understood that steps within a method may be executed in different order without altering the principles of the present disclosure. Furthermore, the devices, systems, and/or methods disclosed herein can include several novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the devices, systems, and/or methods disclosed herein.

Overview of Patient Monitoring Systems [0186] This disclosure describes patient monitoring systems that can include a patient monitor (also referred to herein as "user interface monitor" and "vital signs monitor") attached to a patient and also to one or more physiological sensors. The patient monitor can collect physiological data from the various connected sensors and can process and/or display such data or information related to such data on a screen of the patient monitor. In some cases, the patient monitor includes a wireless transmitter or transceiver that can transmit such data or information to a patient monitor away from the patient. In some cases, the patient monitor can be a stand-alone unit which can present (via a screen) a significant amount of physiological information to the patient or to a caregiver. The patient monitoring system and/or the various components thereof (for example, the sensors/devices) can minimize the total amount of cables in the system. For example, one or more of the sensors/devices of the patient monitoring system can indirectly connect to the patient monitor via another one of the one or more sensors/device in the system. For example, where the system includes an ECG device, a blood pressure monitor, and a patient monitor, the ECG device can connect directly to the blood pressure monitor and indirectly to the patient monitor via a single cable directly connecting the blood pressure monitor and the patient monitor. Further, the blood pressure monitor can include bypass functionality which allows incoming data from the ECG device to be passed directly to the outgoing cable connecting the blood pressure monitor to the patient monitor (for example, without having the incoming ECG device data be processed by a processor of the blood pressure monitor). Such "indirect" cable connection between the ECG device and the patient monitor can decrease the length of cable required and can allow for improved cable management of the patient monitoring system as a whole. [0187] FIGS. **1**A-**1**B illustrate a patient monitoring system **100**. The patient monitoring system **100** can include one or more physiological sensors attached to a patient **111**. For example, the patient monitoring system **100** can include an acoustic sensor **150**, an ECG device **110**, a blood pressure monitor 600 (also referred to herein as "blood pressure sensor" or "blood pressure device" or "blood pressure measurement device" or "blood pressure monitoring device"), an optical sensor 140, and/or a patient monitor 130 (also referred to herein as "user interface monitor" and "vital signs monitor"). Additional sensors and/or devices other than those illustrated in FIGS. 1A-1B can also be incorporated into the system 100. Any or all of the sensors/monitors 110, 120, 130, 140, and/or **150** cables **103**, **105**, **107**, **114**, and/or blood pressure cuff **121** can be reusable, disposable, or resposable. Resposable devices can include devices that are partially disposable and partially reusable. For example, the acoustic sensor **150** can include reusable electronics but a disposable

[0188] As shown in FIGS. **1A-1**B, the ECG device **110** can have multiple cables **114** connected to electrodes **112** and can be connected to the blood pressure monitor **120** via cable **105**. As also shown, the blood pressure monitor **120** can be connected to the patient monitor **130** via cable **107**. The system **100** can include additional sensors that can be connected to patient monitor **130**. For example, the system **100** can include an acoustic sensor **150** that can be connected to the patient monitor **130** with cable **103** and/or an optical sensor **140** that can be connected to the patient

contact surface (such as an adhesive) where the sensor **150** comes in to contact with a skin of patient **111**. As another example and as described in more detail below, ECG device **110** can

include a reusable portion and a disposable portion.

monitor **130** via cable **109**. The ECG device **110** can be secured to a chest of patient **111**. The blood pressure monitor **120** can be secured to an arm of the patient **111** and/or a blood pressure cuff **121** that can be secured to the arm. The patient monitor **130** can be secured to a forearm of patient **111**, for example, via a fastening strap **131** that can be secured to or through a portion of the patient monitor **130** and around the forearm. The acoustic sensor **150** can be secured to a neck of the patient **111**. The optical sensor **140** can be secured to a finger of a patient **111**, for example, an index finger of patient **111**.

[0189] The electrocardiogramavice **110** of system **100** can be used to monitor electrical activity of the heart of the patient **111**. The ECG device **110** can include one or more cables **114** which can be coupled to one or more external electrodes **112**. The ECG device **110** can include one, two, three, four, five, six or seven or more cables **114** and/or corresponding electrodes **112**. The ECG device **110** is further illustrated in FIGS. **2A-2U** and is described in more detail below.
[0190] The blood pressure monitor **120** of system **100** can be utilized alongside an blood pressure cuff **121** to measure blood pressure data of the patient **111**. The blood pressure cuff **121** (also referred to herein as "cuff") can be inflatable and/or deflatable. Cuff **121** can be an oscilometric cuff that is actuated electronically (e.g., via intelligent cuff inflation and/or based on a time interval) to obtain blood pressure information of patient **111**. Such blood pressure data can be transferred to the patient monitor **130** via cable **35**. The blood pressure monitor **120** is further illustrated in FIGS. **5A-5AA** and is described in more detail below. As discussed below, the blood pressure monitor **120** can have the characteristics and/or functionality as described in more detail below with reference to FIGS. **12-14**E.
[0191] The optical sensor **140** can include one or more emitters and one or more detectors for

obtaining physiological information indicative of one or more blood parameters of the patient 111. These parameters can include various blood analytes such as oxygen, carbon monoxide, methemoglobin, total hemoglobin, glucose, proteins, glucose, lipids, a percentage thereof (e.g., concentration or saturation), and the like. The optical sensor **140** can also be used to obtain a photoplethysmograph, a measure of plethysmograph variability, pulse rate, a measure of blood perfusion, and the like. Information such as oxygen saturation (SpO.sub.2), pulse rate, a plethysmograph waveform, perfusion index (PI), pleth variability index (PVI), methemoglobin (MetHb), carboxyhemoglobin (CoHb), total hemoglobin (tHb), glucose, can be obtained from optical sensor **140** and data related to such information can be transmitted to the patient monitor **130** via cable **109**. The optical sensor **140** can be a pulse oximeter, for example. [0192] The acoustic sensor **150** of system **100** (also referred to as an "acoustic respiratory sensor" or "respiratory sensor") can comprise an acoustic transducer, such as a piezoelectric element. The acoustic sensor **150** can connect to the patient monitor **130** via cable **103**. The acoustic sensor **150** can detect respiratory and other biological sounds of a patient and provide signals reflecting these sounds to a patient monitor. The acoustic sensor **150** can be a piezoelectric sensor or the like that obtains physiological information reflective of one or more respiratory parameters of the patient 111. These parameters can include, for example, respiratory rate, inspiratory time, expiratory time, inspiration-to-expiration ratio, inspiratory flow, expiratory flow, tidal volume, minute volume, apnea duration, breath sounds, rales, rhonchi, stridor, and changes in breath sounds such as decreased volume or change in airflow. In addition, in some cases the respiratory sensor **150**, or another lead of the respiratory sensor **150** (not shown), can measure other physiological sounds such as heart rate (e.g., to help with probe-off detection), heart sounds (for example, S1, S2, S3, S4, and murmurs), and changes in heart sounds such as normal to murmur or split heart sounds indicating fluid overload. In some implementations, a second acoustic respiratory sensor can be provided over the chest of the patient **111** for additional heart sound detection. [0193] The acoustic sensor **150** can be used to generate an exciter waveform that can be detected by the optical sensor **140** at the fingertip, by an optical sensor attached to an ear of the patient, by

an ECG device **110**, or by another acoustic sensor. The velocity of the exciter waveform can be

calculated by a processor in the patient monitor **130** and/or the blood pressure device **120**. From this velocity, the processor can derive a blood pressure measurement or blood pressure estimate. The processor can output the blood pressure measurement for display. The processor can also use the blood pressure measurement to determine whether to trigger the blood pressure cuff **121**. [0194] As illustrated in FIGS. **1**A-**1**B, patient monitoring system **100** includes various cables connecting the physiological sensors together and/or to the patient. As discussed above, the patient monitor 130 can advantageously connect to each of the various sensors 110, 120, 140, and/or 150 to gather various physiological data of the patient 111, process such data, and can conveniently display such data and/or information related to such data on a display screen for patient and/or caregiver viewing convenience. As shown, such cables can include one or more cables 114, cable **103** connected to the acoustic sensor **150**, cable **105** connected to the ECG device **110**, cable **107** connected to the blood pressure monitor **120**, and/or cable **109** connected to the pulse oximeter **140**. With all such sensors/device in the system **100** and all such cables connecting these sensors/devices, cable management can be difficult. Advantageously, system **100** and the various components thereof (sensors/devices) can be oriented, structured, and/or designed to effectively manage the various cables.

[0195] For example, while it is advantageous that data from each of the various sensors be transmitted to the patient monitor 130, such transmission can be provided indirectly through other ones of the sensors/devices of the system 100. As shown, in some instances where the system 100 includes the ECG device 110, the blood pressure monitor 120, and the patient monitor 130, instead of having the ECG device 110 connect directly to the patient monitor 130 (where such cable may have to span or cross a gap between the patient's 111 chest and the patient's arm) the ECG device 110 can connect, via cable 105, directly to the blood pressure device 120 which can be secured to an upper arm of patient 111 as shown in FIGS. 1A-1B. Further, when the ECG device 110 is attached to the chest of the patient 111 and the patient monitor 130 is attached to an arm (for example, wrist or lower arm) of the patient 111, such indirect connection can result in shorter cable lengths. Decreasing the length of cables connecting the various sensors/devices can reduce or eliminate problems associated with cabling, including, discomfort and/or annoyance for monitored patients, interference with movement of the patient and/or a caregiver's ability to interact with, engage, assess, and/or treat a patient.

[0196] FIG. 1B illustrates the system 100 as shown in FIG. 1A, but on an opposite side of the patient 111. Advantageously, connection techniques discussed above with reference to FIG. 1A are equally applicable where system 100 is secured to a right side of the patient 111. System 100 can include one or more cable management prongs (such as cable management prong 900 discussed further below with reference to FIGS. 9A-9C) which can secure to various portions of patient 111 and can also secure to portions of any of cables 103, 105, 107, and/or 109.

[0197] FIG. 1C illustrates a schematic diagram of the system 100. FIG. 1C schematically illustrates how patient monitor 130 can obtain information from one or more physiological sensors or monitors. Patient monitor 130 can connect (via cables or wirelessly) to one or more physiological sensors to obtain various physiological information regarding a monitored patient such as is discussed above. Patient monitor 130 can be configured to store, process, transmit, transmit without processing, display, and/or display without processing the physiological information received from the one or more physiological sensors of the system 100. Patient monitor 130 is a processing device, and as such, can include the necessary components to perform the functions of a processing device. For example, patient monitor 130 can include one or more processors (such as one, two, three, or four processors which can be dedicated to processing certain physiological parameters and/or processing physiological information from certain sensors/devices), a memory device, a storage device, input/output devices, and communications connections, all connected via one or more communication bus.

[0198] As shown, patient monitoring system 100 can include the ECG device 110 and/or the blood

pressure monitor **120**. As also shown, the ECG device **110** and/or the blood pressure monitor **120** can connect to patient monitor **130** and transmit physiological information to patient monitor **130**. Each of the ECG device **110** and/or the blood pressure monitor **120** can connect directly to the patient monitor **130** with a cable (or wirelessly). Alternatively, one or both of the ECG device **110** and the blood pressure monitor **120** can connect indirectly to the patient monitor **54**. For example, the ECG device **110** can connect directly to the blood pressure monitor **120** (such as with cable **105**), which then connects directly to patient monitor **130** (such as with cable **107**). As discussed above, such "indirect" connection between the ECG device **110** and the patient monitor **130** can be beneficial, for example, where a number of physiological sensors/devices are attached to the patient **111** and cables are used to connect the various physiological sensors/devices to each other or the patient monitor **130**. As discussed above, such "indirect" connection can reduce lengths and/or amount of cables proximate a monitored patient which can in turn reduce patient discomfort, reduce potential "snags" or cable dislodgement, and increase patient movement ability, among other things.

[0199] In some cases, the cable **103** can be configured to connect to either a connector port on the blood pressure monitor **120** or a connector port on the patient monitor **130**. Additionally or alternatively, in some cases, the cable **105** can be configured to connect to either a connector port on the blood pressure monitor **120** or a connector port on the patient monitor **130**. Advantageously, this can provide flexibility for the connectivity of the system **100** where the blood pressure monitor **120** is not included. Additionally, in some cases, the blood pressure monitor **120** includes one or more connector ports on an end thereof. This can additionally allow for a smaller cable length between the blood pressure monitor 120 and one or more of the ECG device 110 and/or acoustic sensor **150** when the system **100** is secured to the patient **111** in the configuration shown in FIGS. **1**A-**1**B. Cables **103**, **105**, and **107** can include identical connectors on ends thereof. For example, with reference to FIGS. 2C, 5A, and 8A, connector ends 105a, 107a, and/or 103a of cables 105, **107**, and/or **103** can be identical. The blood pressure monitor **120** and the patient monitor **130** can include one or more identical connector ports that are configured to electrically connect to the connectors one such ends of cables 103, 105, and 107. Advantageously, such configuration can allow the cables **103**, **1095**, and/or **107** to electrically connect to either the blood pressure monitor **120** or the patient monitor **130**, which can provide flexibility in the configuration of system **100**. For example, such configuration can provide flexibility as to which of ECG device 110, blood pressure monitor **120**, patient monitor **130**, and/or acoustic sensor are included and/or arranged. In one non-limiting example, the ECG device **110** is secured to a chest of a monitored patient, the blood pressure monitor **120** is secured to the patient's arm (for example, the bicep and/or upper arm of the patient), the acoustic sensor **150** is secured to a neck of the patient, the optical sensor **140** is secured to a finger of the patient (for example, index finger), and the patient monitor 130 is secured to a portion of the arm of the patient (for example, the forearm of the patient). [0200] As illustrated in FIG. 1C, the ECG device 110 can connect directly to the blood pressure monitor **120** with cable **105** and the blood pressure monitor **120** can connect directly to the patient monitor **130** with cable **107**. The blood pressure monitor **120** can include bypass functionality that allows the blood pressure monitor **120** to pass physiological information received from the ECG device 110 to the patient monitor 130 without processing, storing, or otherwise altering the received information. For example, the blood pressure monitor **120** can include a bypass bus configured to transmit physiological information received from the ECG device **110** without processing the information. Additionally, the blood pressure monitor **120** can transmit physiological information that it obtains from its own measurement components along with the received information from the ECG device **110**. Such transmission of the blood pressure monitor's **120** physiological information can be simultaneous or non-simultaneous with the transmission of the physiological information from the ECG device **110**. Alternatively, the blood pressure monitor **120** can be configured to process or partially process the physiological information received from

the ECG device **110** before transmitting to the patient monitor **130** (for example, via cable **107**). [0201] As discussed above, the patient monitoring system **100** can include sensors in addition or as an alternative to the ECG device **110** and/or blood pressure monitor **120**. Such additional sensors can also be configured to connected, either directly or indirectly, to patient monitor **130**. For example, patient monitoring system **100** can include the acoustic sensor **150** which can connect to patient monitor 130 via cable 103 (or wirelessly). Additionally or alternatively, patient monitoring system **100** can include the optical sensor **140**, which can connect to patient monitor **130** via cable **109** (or wirelessly). While the acoustic sensor **150** and the optical sensor **140** are shown as connected to patient monitor **130** independent from the ECG device **110** and blood pressure monitor **120**, one or both of the acoustic sensor **150** and the optical sensor **140** can alternatively be configured to connect to one of the ECG device **110** and the blood pressure monitor **120**. For example, the acoustic sensor **150** can connect directly to the blood pressure monitor **120** and indirectly to the patient monitor **130** via cable **103**. For example, system **100** can include the acoustic sensor **150**, the blood pressure monitor **120** and no ECG device **110**, and an end of cable 105 can connect to the blood pressure monitor 120 where the ECG device 110 could otherwise connect. Blood pressure monitor **120** can include a bypass bus configured to transmit physiological information received from the acoustic sensor **150** without processing the information. Additionally, similar to that described with respect to the ECG device **110** above, the blood pressure monitor **120** can transmit physiological information that it obtains from its own measurement components along with the received information from the acoustic sensor 150 to the patient monitor 130. Such transmission of the blood pressure monitor's 120 physiological information can be simultaneous with the transmission of the physiological information from the acoustic sensor **150**. Alternatively, the blood pressure monitor **120** can be configured to process or partially process the physiological information received from the acoustic sensor **150** before transmitting to the patient monitor **130**. Blood pressure monitor **120** can include a single bypass bus configured to transmit physiological information received from the ECG device 110 and/or the acoustic sensor **150** to the patient monitor **130** without processing. Alternatively, blood pressure monitor **120** can include multiple bypass buses, each of the bypass buses dedicated to one of the ECG device **110** and/or the acoustic sensor **150**. Blood pressure monitor **120** can include multiple connector ports and/or connectors configured to connect to one or more cables connecting the ECG device **110** and/or the acoustic sensor **150** to the blood pressure monitor **120**. [0202] Patient monitor **130** can be configured to transmit physiological information received from one or more of the ECG device 110, blood pressure monitor 120, acoustic sensor 150, and/or the optical sensor **140** to an external patient monitor **160**. The external patient monitor **160** can be, for example, a nurse's station, a clinician device, pager, cell phone, computer, multi-patient monitoring system, hospital or facility information system. An artisan will appreciate that numerous other computing systems, servers, processing nodes, display devices, printers, and the link can interact with and/or receive physiological information from the patient monitor 130. [0203] FIG. 1D illustrates details of the patient monitoring system 100 and the patient monitor 130 in a schematic form. As discussed above, the patient monitoring system 130 can include one or more of ECG device **110**, blood pressure monitor **120**, acoustic sensor **150**, and/or optical sensor **140**, connected, indirectly or directly, to patient monitor **130**. The patient monitoring system **130** can include one or more additional sensors **180** that can also connect indirectly or directly to patient monitor **130**. ECG device **110**, blood pressure monitor **120**, acoustic sensor **150**, optical sensor **140**, and/or any additional sensors **180** can transmit physiological data to a sensor interface **132** of the patient monitor **130**. The sensor interface **132** can pass the received physiological data to a processing and memory block **134**. The processing and memory block **134** can include one or more processors configured to process the physiological data received from one or more of ECG device **110**, blood pressure monitor **120**, acoustic sensor **150**, optical sensor **140**, and/or any additional sensors 180 into representations of physiological parameters. The processing and memory block

134 can include a plurality of processors that are independently dedicated to processing data from different ones of the physiological sensors described above. For example, the processing and memory block **134** can include a first processor dedicated to processing data from the ECG device **110** and/or blood pressure monitor **120**, a second processor dedicated to processing data from the acoustic sensor **150**, and/or a third processor dedicated to processing data from the optical sensor **140**. The processing and memory block **134** can include an instrument manager which may further process the received physiological parameters for display. The instrument manager may include a memory buffer to maintain this data for processing throughout a period of time. The memory buffer may include RAM, Flash, or other solid state memory, magnetic or optical disk-based memories, combinations or the same or the like. As discussed above, the patient monitor **130** can include a wireless transceiver **136**. Wireless transceiver **136** can wireless transmit the physiological information received from the above-described physiological sensors and/or parameters from the one or more processors and/or the instrument manager of the processing and memory block **134**. Wireless transceiver **136** can transmit received physiological data to an external device (such as external patient monitor **160**) via a wireless protocol **170**. The wireless protocol can be any of a variety of wireless technologies such as Wi-Fi (802.11x), Bluetooth®, ZigBee®, cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like.

[0204] In some cases, one or more of ECG device **110**, blood pressure monitor **120**, acoustic sensor 150, and/or optical sensor 140 incorporated in system 100 can receive power from the patient monitor **130**. In some cases, one or more of ECG device **110**, blood pressure monitor **120**, acoustic sensor **150**, and/or optical sensor **140** incorporated in system **100** do not have an independent power source and rely upon the patient monitor **130** for power in order to operate. For example, one or more of ECG device 110, blood pressure monitor 120, acoustic sensor 150, and/or optical sensor **140** incorporated in system **100** can be configured to be in a non-operational mode unless and/or until an indirect and/or direct electrical connection is made with the patient monitor **130**. As discussed further below, the patient monitor 130 can be configured to be charged from an external power source, such as charging station 1000 and/or charging cradle 1100.

Physiological Parameter Calculations

[0205] One or more of the devices discussed above can enable independent determination of certain physiological data. In some instances, the data processed from the respective devices can be used for the purposes of correlation or increasing accuracy. In some instances, the data processed from multiple devices may be aggregated to determine a particular physiological condition. Furthermore, in some instances, the independent sources of data can be used in determination of alarms.

[0206] Cardiac Parameters: Cardiac activity may be determined from ECG device 110, optical sensor **140**, blood pressure monitor **120**, and acoustic sensor **150**. In some instances, the cardiac activity determined from the respective sensors can be used to improve accuracy of parameters related to cardiac activity. For example, the parameters can be averaged from different sources. Furthermore, deviation in the parameters can be used to determine confidence. In some instances, certain parameters derived from a particular system may be given a higher priority than if it is derived from a different system. For example, with respect to cardiac parameters, in some instances, parameters derived from the ECG device **110** may have the highest priority. Accordingly, if there is discrepancy between parameters derived from the ECG device **110** and parameters derived from the optical sensor **140**, the parameters derived from the ECG device **110** may be used for further processing. In some instances, parameters derived from the ECG device **110** may have a higher weight. Furthermore, in some instances, cardiac parameters derived from the optical sensor **140** may have a higher priority than cardiac parameters derived by the blood pressure monitor **120**. Additionally, in some instances, parameters derived by the blood pressure monitor **120** may have a higher priority than parameters derived by the acoustic sensor **150**. Cardiac parameters can include

for example, pulse rate or heart rate. Cardiac parameters can also include cardiac tone. In some instances, cardiac tone can be selected based on either parameters derived from the ECG device **110** or parameters derived from the optical sensor **140**. The tone can be modulated by oxygen saturation (SpO.sub.2) values derived by optical sensor **140**.

[0207] Respiratory Rate: In some instances, respiratory rate measurements may be determined from three different sources: acoustic sensor **150**; optical sensor **140**; and the ECG device **110** (for example, impedance). A combined respiration rate may be determined from these three different sources. As discussed above with respect to cardiac parameters, rates from independent sources can be averaged or weighted according to a priority. In some examples, the respiration rate derived from the acoustic sensor **150** has a higher priority than respiration rate derived from impedance of ECG device **110**, which may in turn have a higher priority than respiration rate derived from the optical sensor **140**. As discussed above, priorities can determine weight and alarm management conditions.

[0208] ECG Features: The ECG data collected can be used for ST/QT segment analysis, beat classification, and arrhythmia detection.

[0209] Temperature Features: The temperature measurements can be obtained from one or more temperature sensors in the ECG device **110** as discussed below. In some instances, a wireless sensor can be used to determine temperature. The wireless sensor is described in more detail in U.S. Pat. Pub. No. 2018/0103874, filed Oct. 12, 2017, titled "Systems and Methods for Patient Fall Detection", the disclosure of which is hereby incorporated by reference in its entirety. This wireless sensor can be disposable. The wireless sensor can also be used for detecting patient orientation and fall. In some instances, the functionality of the wireless sensor can be integrated directly in the ECG device **110** because the ECG device **110** include an accelerometer and/or gyroscope as discussed below. Therefore, in some instances, the ECG device **110** can detect temperature and patient's orientation including fall detection as described in more detail in U.S. Pat. Pub. No. 2018/0103874. When both the ECG device **110** and the wireless sensor are used, the temperature readings from the additional sensor may have a higher priority than temperature readings from the ECG device **110**.

[0210] Posture/Fall Sources: In some instances, multiple devices may include an accelerometer and/or gyroscope that measures motion data. For example, the patient monitor 130, the blood pressure monitor 120, the ECG device 110, and the wireless sensor discussed above may all include an accelerometer and/or a gyroscope. The wireless sensor may connect to the patient monitor 130 via Bluetooth® or an alternative wireless communication protocol. As discussed above, the functionality of the ECG device 110 and the wireless sensor can be fused into a single device. In some instances, the wireless sensor may be used by itself when the ECG device 110 is not available or needed. As these devices are placed in different positions on the patient's body, the accelerometer and gyroscope data can be used to determine overall patient's orientation. For example, the motion data from the patient monitor 130 provides indication of the wrist motion. The motion data from the blood pressure monitor 120 provides indication of the arm motion. The motion data from the ECG device 110 and the wireless sensor can provide motion data from the patient's chest and/or back. The collective motion data can be used to determine for example if a patient is walking, exercising, lying down, or has fallen. The collective motion data can therefore provide information on a patient's posture.

[0211] Alarm Priority: In some instances, the interactions between devices can determine alarm priority. For example, when the blood pressure monitor **120** is measuring blood pressure, it can affect readings from the optical sensor **140**. Accordingly, alarms corresponding to the optical sensor **140** may be suspended or muted while the blood pressure monitor **120** is measuring (inflating/deflating cuff). In some examples, the following order may be used for alarming priorities with highest priority to lowest priority: 1) Lethal Arrhythmia, 2) Apnea, 3) SpO.sub.2, 4) Cuff over pressure/time, 5) Cardiac analysis, 6) Cardiac Rate, 7) Respiration Rate, 8) NIBP, and 9)

temperature.

[0212] Calibration: In some instances, features from the acoustic sensor **150** can be correlated with the blood pressure monitor **120** derived features such as systolic, mean, and diastolic pressure. The correlation can be used for the purposes of calibration. Furthermore, features from the optical sensor **140** derived waveform, the ECG device **110** derived waveform can be used for determining pulse arrival time. The pulse arrival time can be used to determine pulse transit time, which can also be obtained from the acoustic sensor **150** derived waveform. Based on these pulse parameters, an indication of blood pressure can obtained, which can be calibrated periodically or over certain time periods with blood pressure measurements derived from the blood pressure monitor **120**. ECG Device

[0213] Electrocardiogram (ECG) is a widely accepted noninvasive procedure that detects the electronic impulses that travel through a patient's heart. It is often used to detect problems and/or abnormal conditions that may be related to the patient's heart. Temperature is also a widely accepted indicator of patient's health. Temperatures that are too low or too high can negatively impact a patient's metabolic rate, organ function, and/or can cause tissue damage. By collecting and monitoring ECG and temperature data of a patient, care providers can detect and/or prevent harmful conditions such as infections, cardiac arrest, stroke, and other types of conditions. [0214] FIG. 2A illustrates an ECG device 110 (also referred to herein as "ECG sensor"). ECG device **110** can be attached to different parts of the patient **111** such as the patient's chest, back, arms, legs, neck, head, or other portions of the body of the patient. FIGS. 1A-1B illustrates ECG device **110** attached to the chest of the patient **111**. With reference to FIGS. **1**A-**1**B, **2**A, and **5**A, ECG device **110** can be connected to the blood pressure monitor **120** via cable **105**. For example, the connector **105***a* of cable **105** can connect to the connector port **516** of the blood pressure monitor **120**. In some cases, connector **105***a* is identical to connector **107***a* of cable **107**. In such cases, ECG device **110** can connect directly to the patient monitor **130** via connection of connector **105***a* to a connector port of the patient monitor **130**, such as connector port **832** (FIG. **8**I). This can advantageously provide flexibility in the connection of the ECG device 110 when the blood pressure monitor **120** is not included in system **100**, for example). In some variants, cable **105** is permanently secured to ECG device 110 at the connector port 250 (see FIGS. 2A and 2O-2P). For example, an end of cable **105** can be permanently hard-wired to a circuit board of the ECG device **110** and thus can be not removably securable like connector **105***a*.

[0215] The ECG device **110** can detect electrical signals responsive to the patient's cardiac activity and can transmit such signals, and/or physiological parameters responsive to such signals, to other patient monitoring systems and/or devices. The detected signals and/or physiological parameters can be transmitted to other patient monitoring systems and/or devices via wires or various wireless communication protocols. For example, as discussed above, the ECG device **110** can interact and/or be utilized along with devices/sensors **120**, **130**, **140**, and/or **150**.

[0216] The ECG device **110** can have the functional and/or computational capabilities to calculate physiological parameters (for example, heart rate, precise body temperature values, among others) using raw physiological data (for example, raw temperature data, raw ECG data responsive to patient cardiac activity, among others). In this regard, the ECG device **110** can transmit raw, unprocessed electrical signals or physiological data, and/or processed, calculated physiological parameters to other patient monitoring devices and/or systems, such as those discussed elsewhere herein (for example, the blood pressure monitor **120** and/or the patient monitor **130**). [0217] With reference to FIGS. **2A-2D**, the ECG device **110** can include a disposable portion **203**

(also referred to herein as "disposable device") and a reusable portion **205** (also referred to herein as "reusable device"). The disposable portion **203** can include a dock **204** (also referred to herein as a "base"), one or more external electrodes **112**, and one or more cables **114**. The one or more external electrodes **112** can be coupled to the dock **204** via the one or more cables **114**. The coupling between the external electrodes **112** and the dock **204** is further described below.

[0218] The external electrodes **112** can detect electrical signals from the patient **111** responsive to the patient's cardiac activity. The electrodes **112** can be placed at various locations on the patient **111** including chest, head, arm, wrist, leg, ankle, and the like. The electrodes **112** can be coupled to one or more substrates that provide support and/or adhesion. For example, the electrodes **112** can include a substrate configured to removably secure the external electrodes **112** to the patient **111** (for example, skin of the patient) to allow for ease in repositioning the electrodes **112**. The substrate can provide improved electrical conductivity between the external electrodes **112** and the patient **111**. The substrate can be waterproof. The substrate can be a silicone adhesive, for example. Each of the externals electrodes **112** can include designs (such as a unique design) that can be used to provide instruction to a user or caregiver in placing and/or arranging the electrodes **112** on a patient's body, as discussed further below with reference to FIGS. **4A-4E**.

[0219] The electrical signals collected by the electrodes **112** can be transmitted to the dock **204** via the cables **114**. One end of the cable **114** can be coupled to the external electrode **112** while the other end of the cable **114** can be coupled to the dock **204**. For example, the cables **114** can be soldered to the electrodes **112** and/or soldered to an electrical circuit of the dock **204** (such as the flexible circuit **225** as discussed below). The cables **114** can be flexible. The length of the cables **114** can be varied to provide flexibility to caregivers when placing the external electrodes **112** at various locations of the patient **111**. The length of the cables **114** depicted in FIGS. **2A-2B** is illustrative only is not intended to limit the scope of this disclosure.

[0220] FIG. **2**C illustrates a perspective view of the reusable device **205**. The reusable device **205** can include a hub **206** (also referred to herein as "cover"), a cable **105**, and/or a connector **105***a*. The hub **206** can transmit electrical signals to other devices and/or systems, including multiparameter patient monitoring systems (MPMS), via the cable **105** and the connector **105***a*. Additionally or alternatively, the hub **206** can wirelessly transmit electrical signals to other devices and/or systems. For example, the hub **206** can include a wireless transmitter or transceiver configured to wirelessly transmit electrical signals (for example, signals related to patient temperature and/or heart activities) using different types of wireless communication technology such as Bluetooth®, Wi-Fi, near-field communication (NFC), and the like. In some variants, the reusable device **205** does not include a cable or a connector.

[0221] The hub **206** can be of various shapes and/or sizes. For example, as shown in FIG. **2**C, the hub **206** can be rectangular in shape and/or can have rounded edges and/or corners. The hub **206** can be shaped to mate with the dock **204**. For example, the hub **206** can be sized and/or shaped to facilitate mechanical and/or electrical mating with the dock **204**. Additional details regarding the mating of the hub **206** and the dock **204** are described further below.

[0222] FIG. **2D** illustrates a schematic diagram of the ECG device **110**. As discussed above, the ECG device **110** can include the disposable device **203** and the reusable device **205**. The disposable device **203** can include a dock **204** coupled to one or more external electrodes **112** that detect and transmit electrical signals from the patient **111** through the cables **114**. The dock **204** can receive the electrical signals from the external electrodes **112** (for example, via flexible circuit **225**) and transmit them to the reusable device **205**. The external electrodes **112** can be placed at various locations relative to where the dock **204** is placed. For example, the dock **204** can be placed proximate, adjacent, and/or above the patient's heart and the external electrodes **112** can be placed at various locations on the patient's chest.

[0223] The external electrodes **112** can be color-coordinated and/or include graphics or visualizations that can advantageously aid a caregiver properly position and/or secure the electrodes **112** to portions of a patient's body so that accurate ECG data is collected. For example, with reference to FIGS. **2A-2B** and **4D**, the external electrodes **112** can include a label portion **112** at that can indicate a name, number, or other identifier of a particular electrode **112**, for example, with reference to another electrode or a plurality of other electrodes **112** (see "RA", "V1", "V3", "LL" in FIG. **4D**). As also shown, the external electrodes **112** can include a placement indicator **112** b

which can indicate a proper positioning and/or placement of a particular electrode **112** with reference to another electrode 112, a plurality of other electrodes 112, and/or the dock 204 of the disposable portion **203** of the ECG device **110**. For example, where the ECG device **110** includes four electrodes **112**, each of the electrodes **112** can include a unique placement indicator **112***b* that graphically illustrates the proper placement of the particular electrode 112 with respect to each of the other electrodes 112, the cables 114, and/or the dock 204 of the disposable portion 203 on a user's body (for example, chest). As another example, where the ECG device 110 includes two electrodes **112**, each of the electrodes **112** can include a unique placement indicator **112***b* that graphically illustrates the proper placement of the particular electrode **112** with respect to each of the other electrodes 112, the cables 114, and/or the dock 204 of the disposable portion 203 on a user's body (for example, chest). Portions of the unique placement indicators **112***b* can be color coordinated with actual colors of the cables **114** and/or the electrodes **112**. In some variants, each unique placement indicator **112***b* includes a shape of the particular electrode and/or associated cable in a solid line and include shapes representing other electrodes and/or the dock in dotted line to enable differentiation. In some variants, the shapes of the particular electrode and/or the associated cable in each unique placement indicator **112***b* have a color that matches a color of an associated cable **114**. While a body is illustrated on the electrodes **112**, the design of the body is not limiting and can be sized and/or shaped in a variety of ways. Further, instead of a body, a square or other shape can be placed on the electrodes **112** and the placement indicators **112***b* can be shown therein.

[0224] With reference to FIGS. 2A-2B, the graphics on the electrodes 112 (as shown in the enlarged view of FIG. 4D) can be oriented in a certain orientation when coupled to the dock 204 with cables 214. For example, as shown, the unique label portion 112a, body, and/or unique placement indicator 112b for each electrode can be oriented to be "upside down" with respect to a view as shown in these figures. For example, the unique label portion 112a, body, and/or unique placement indicator 112b for each electrode can be oriented so that a lower portion of the body is closer to the dock 204 that an upper portion of the body (e.g., head) and/or so that the unique label portion 112a are "upside down" when a viewer is viewing the disposable portion 203 in a direction from the electrodes 112 towards the dock 204 (see FIG. 2B). Such orientation and/or configuration can be advantageous where the disposable portion 203 is secured to the packaging device 400 described below. For example, such orientation and/or configuration can allow a user (e.g., a caregiver) to conveniently visualize proper positioning and/or order of securing the electrodes 112 and/or the dock 204 to a patient's body when removing the electrodes 112 and/or the dock 204 from the packaging device 400 (see FIG. 4B).

[0225] The disposable device **203** can include one or more external electrodes **112**. For example, the disposable device **203** can include one, two, three, four, five, six, seven, or eight or more external electrodes **112**. As another example, as illustrated by FIGS. **2**A-**2**B, the disposable device **203** can include four external electrodes **112**. As another example, the disposable device **203** can include two external electrodes **112**.

[0226] The dock **204** of the disposable device **203** can include one or more internal electrodes **211**. For example, the dock **204** can include one, two, three, four, five, six, seven, or eight or more internal electrodes **211**. For example, as illustrated in FIGS. **2F-2G**, the dock **204** can include two internal electrodes **211**. As another example, the dock **204** can include one internal electrode **211**. In some cases, one of the internal electrodes **211** is configured to be a ground or reference electrode. [0227] The total number of electrodes (including both external and internal electrodes) can be two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve or more electrodes. For example, the disposable device **203** can include four external electrodes **112**, four cables **114**, and two internal electrodes **112**, two cables **114**, and two internal electrodes **211**. In another example, the disposable device **203** can include two external electrodes **211**. In yet

another example, the disposable device **203** can include four external electrodes **112**, four cables **114**, and no internal electrode **211**. In yet another example, the disposable device **203** can include one external electrode **112**, one cable **114**, and one internal electrode **211**. In another example, the disposable device **203** can include two external electrodes **112**, two cables **114**, and no internal electrodes **211**. The number of external electrodes **112** coupled to the dock **204** of the disposable device **203** and the number of internal electrodes **211** housed within the dock **204** can be varied in various examples of disposable device **203** of the ECG device **110**.

[0228] As mentioned above, FIG. 2D illustrates a schematic representation of the ECG device 110. As shown, the reusable device 205 can include a processor 207, a memory 208, one or more temperature sensors 209, and/or a motion sensor 210. The memory 208 can be a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), a static random access memory (SRAM), or a dynamic random access memory (DRAM), and the like. The memory 208 can store various types of physiological data (raw and/or processed) related to the patient 111. For example, the memory 208 can store raw and/or processed physiological data related to patient temperature and electrical activity of the heart. The data related to the electrical activity of the heart can represent rhythm and/or activity of the heart. As discussed further below, the memory 208 can be utilized in combination with a memory on the disposable device 203 to enable, among other things, verification of whether the disposable device 203 is an authorized product. For example, the disposable device 203 can include a PROM, EPROM, EPROM, SRAM, and/or DRAM that can be read by the reusable portion 205 to enable the reusable portion 205 to verify whether the disposable device 203 is an authorized product.

[0229] As discussed above, the reusable device **205** can include a motion sensor **210**. The motion sensor **210** can measure static (for example, gravitational force) and/or dynamic acceleration forces (for example, forces caused by movement or vibration of the motion sensor **210**). By measuring one or both of static and dynamic acceleration forces, the motion sensor **210** can be used to calculate movement or relative position of the ECG device **110**. The motion sensor **210** can be an AC-response accelerometer (for example, charge mode piezoelectric accelerometer, voltage mode piezoelectric accelerometer), a DC-response accelerometer (for example, capacitive accelerometer, piezoresistive accelerometer), a microelectromechanical system (MEMS) gyroscope, a hemispherical resonator gyroscope (HRG), vibrating structure gyroscope (VSG), a dynamically tuned gyroscope (DTG), fiber optic gyroscope, and the like. The motion sensor **210** can measure acceleration forces in one-dimension, two-dimensions, or three-dimensions. With calculated position and movement data, care providers may be able to map the positions or movement vectors of the ECG device **110**. Any number of motion sensors **210** can be used collect sufficient data to determine position and/or movement of the ECG device **110**.

[0230] The motion sensor **210** can be and/or include a three-dimensional (3D) accelerometer. The motion sensor **210** can be and/or include an accelerometer similar or identical to those discussed in U.S. application Ser. No. 15/253,536, filed Aug. 31, 2016, titled "Patient-Worn Wireless Physiological Sensor," now U.S. Pat. No. 10,226,187, the disclosure of which is hereby incorporated by reference in its entirety. The term 3D accelerometer as used herein includes its broad meaning known to a skilled artisan. Measurements from the accelerometer can be used to determine a patient's orientation. The accelerometer can measure and output signals related to a linear acceleration of the patient with respect to gravity along three axes (for example, three, mutually orthogonal axes). For example, one axis, referred to as "roll," can correspond to the longitudinal axis of and/or extending through the patient's body (for example, along a length and/or height of the patient). Accordingly, the roll reference measurement can be used to determine whether the patient is in the prone position (for example, face down), the supine position (for example, face up), or on a side. Another reference axis of the accelerometer is referred to as "pitch." The pitch axis can correspond to the locations about the patient's hip (for example, an axis

extending between and/or through the patient's hips). The pitch measurement can be used to determine whether the patient is sitting up or lying down. A third reference axis of the accelerometer is referred to as "yaw." The yaw axis can correspond to a horizontal plane in which the patient is located. When in bed, the patient can be supported by a surface structure that generally fixes the patient's orientation with respect to the yaw axis. Thus, in certain embodiments, the yaw measurement is not used to determine the patient's orientation when in a bed. The three axes that the accelerometer can measure linear acceleration with respect to can be referred to as the "X," "Y," and "Z" axes. The accelerometer can provide acceleration information along three axes, and it can provide acceleration information which is the equivalent of inertial acceleration minus local gravitational acceleration. In some embodiments, the accelerometer may be a tri-axial accelerometer, and the output of the accelerometer may include three signals, each of which represents measured acceleration along a particular axis. The output of the accelerometer can be 8-bit, 12-bit, or any other appropriate-sized output signal. The outputs of the accelerometer may be in analog or digital form. The accelerometer can be used to determine the position, orientation, and/or motion of the patient to which the ECG device **110** is attached.

[0231] The motion sensor **210** can additionally or alternatively be and/or include a gyroscope. The motion sensor **210** can be and/or include a gyroscope similar or identical to those discussed in U.S. application Ser. No. 15/253,536, filed Aug. 31, 2016, titled "Patient-Worn Wireless Physiological Sensor," now U.S. Pat. No. 10,226,187, the disclosure of which is hereby incorporated by reference in its entirety. The gyroscope can be a three-axis digital gyroscope with angle resolution of two degrees and with a sensor drift adjustment capability of one degree. The term three-axis gyroscope as used herein includes its broad meaning known to a skilled artisan. The gyroscope can provide outputs responsive to sensed angular velocity of the ECG device 110 or portions thereof (for example, the dock **204**) when attached to the patient with respect to three orthogonal axes corresponding to measurements of pitch, yaw, and roll (for example, see description provided above). A skilled artisan will appreciate that numerous other gyroscopes can be used in the ECG device **110** without departing from the scope of the present disclosure. In certain embodiments, the accelerometer and gyroscope can be integrated into a single hardware component which may be referred to as an inertial measurement unit (IMU). In some embodiments, the IMU can also include an embedded processor that handles, among other things, signal sampling, buffering, sensor calibration, and sensor fusion processing of the sensed inertial data. In other embodiments, the processor can perform these functions. And in still other embodiments, the sensed inertial data are minimally processed by the components of the ECG device **110** and transmitted to an external system, such as the patient monitor **130**, for further processing, thereby minimizing the complexity, power consumption, and cost of the ECG device **110**, which may be or contain a disposable components as discussed elsewhere herein.

[0232] Incorporating the motion sensor **210** in the ECG device **120** can provide a number of benefits. For example, the ECG device **110** can be configured such that, when the motion sensor **210** detects motion of the patient above a threshold value, the ECG device **110** stops collecting and/or transmitting physiological data. As another example, when the motion sensor **210** detects motion of the patient above a threshold value, the ECG device **110** stops collecting, processing, and/or transmitting physiological data responsive to the patient's cardiac activity and/or temperature data of the patient. As another example, when the motion sensor **210** detects acceleration and/or angular velocity of the patient above a threshold value, the ECG device **110** stops collecting, processing, and/or transmitting physiological data responsive to the patient's cardiac activity and/or temperature data of the patient. This can advantageously reduce or prevent noise, inaccurate, and/or misrepresentative physiological data from being processed, transmitted, and/or relied upon (for example, by caregivers assessing the patient's wellness).

[0233] As discussed above, the reusable device **205** can include one or more temperature sensors

209. For example, the reusable device **205** can include one, two, three, four, five, or six or more

temperature sensors **209**. The temperature sensor(s) **209** can measure temperature of the patient **111** at and/or proximate to a location where the ECG device **110** is placed. The temperature sensor(s) **209** can measure temperature of the skin of the patient **111**. Additionally or alternatively, the temperature sensor(s) **209** can measure ambient temperature, for example, temperatures outside the reusable device **205** and/or temperatures inside the reusable device **205** (such as at or near a circuit board of the reusable device **205**). The temperature data collected from the patient **111** by the temperature sensor(s) **209** may be used to determine a core body temperature of the patient **111**. The temperature sensor(s) **209** can be in electronic communication with the processor **207** and can transmit the temperature data to the processor **207**. In one example, temperature sensor(s) **209** can be an infrared temperature sensor. Placement and/or arrangement of the temperature sensor(s) **209** within the reusable device **205** and/or with respect to the disposable device **203** can be varied to facilitate thermal communication between a user's skin and the temperature sensor(s) **209**, as discussed further below.

[0234] The processor **207** can receive raw temperature data from the temperature sensor(s) **209**. Additionally, the processor **207** can receive raw ECG data from the disposable device **203**. For example, the processor **207** can receive raw ECG data from the disposable device **203** via contact between one or more electrical connectors of the reusable portion **205** and one or more electrical connectors of the disposable portion **203**. As another example, the processor **207** can receive raw ECG data from the disposable device **203** via electrical contact between conductive strips **244** of the flexible circuit **225** of the disposable device **203** and conductor pins **253** of the reusable device **206**. After receiving the raw ECG and temperature data, the processor **207** can perform data processing to calculate physiological parameters corresponding to temperature and/or ECG. The physiological parameters can be stored in the memory 208 or transmitted to different sensor systems, patient monitoring systems, and the like. For example, the physiological parameters can be transmitted to the blood pressure monitor **120** and/or the patient monitor **130**. The data stored in the memory **208** can be stored for a predetermined length of time and transmitted to different sensor systems or patient monitoring systems or devices when the ECG device **110** is connected (via a wire or wirelessly) to such other systems or devices. Optionally, the raw temperature data and the raw ECG data can be stored in the memory **208** prior to data processing by the processor **207**. The processor **207** can retrieve raw temperature and/or ECG data periodically to process and/or transmit the raw data in batches. Alternatively, the processor **207** can automatically retrieve (for example, continuously) the raw data from the memory **208** as the memory **208** receives the raw ECG and temperature data. [0235] FIG. **2**E illustrates a top, perspective view of the dock **204** of the disposable device **203**. The

dock **204** (also referred to herein as "base") can include a main body **216** and a laminate structure **221**. The main body **216** can include one or more pin supports **219**, one or more pin supports **220**, a wall 255 extending along and/or around an exterior and/or perimeter of the main body 216, and openings **223** in the wall **255**. The wall **255** can extend along and/or around a portion of the main body **216** and/or can have a height which varies along the length of the wall **255**. [0236] The dock **204** of the disposable portion **203** can include one or more mechanical connector portions configured to secure (for example, removably secure) to one or more mechanical connector portions of the hub **206** of the reusable portion **205**. For example, the main body **216** can include one or both of mechanical connector portions **217** and **218**. The mechanical connector portion **217** can be, for example, a clip **217** that can be configured to bend and/or flex. As discussed further below, the clip **217** can include a protrusions **240** that can extend in a direction towards the mechanical connector portion **218** (FIG. **2**H). The mechanical connector portion **218** can extend outward from a portion of the main body 216. For example, the mechanical connector portion 218 can extend above a height of the wall **255**. The mechanical connector portion **218** can include one or more protrusions **241** that can extend in a direction towards the mechanical connector portion **217** (FIG. 2H). The mechanical connector portions **217**, **218** can assist coupling between the dock

204 and the hub 206. For example, the mechanical connector portions 217, 218 can engage corresponding mechanical connector portions of the hub 206 to hold the hub 206 in place. For example, as discussed below, the mechanical connector portions 217, 218 can removably secure within grooves 251, 252 of the hub 206. The interaction of the mechanical connector portions 217, 218 and corresponding mechanical connector portions of the hub 206 can advantageously maintain electrical communication between the dock 204 and the hub 206. The dock 204 of the disposable portion 203 can include one, two, three, or four or more mechanical connector portions and/or the hub 206 can include one, two, three, or four or more mechanical connector portions.

[0237] The mechanical connector portions 217, 218 may extend upward from outer edges of the main body 216 and/or adjacent or proximate the wall 255 as shown in FIG. 2E. The mechanical connector portions 217, 218 can be positioned opposite from each other (FIGS. 2E and 2H). In some variants, the dock 204 includes less than two mechanical connector portions or more than two mechanical connector portions. For example, in some variants, the dock 204 includes only one of

mechanical connector portions **217**, **218**. [0238] The pin supports **219**, **220** of the dock **204** of the disposable portion **203** can support and/or operably position a plurality of electrical connectors of the disposable portion **203**. For example, the pin supports **219**, **220** can support and/or operably position conductive strips **245**, **244** of the flexible circuit **225** of the dock **204**. The dock **204** can include one, two, three, four, five, six, seven, eight, nine, or ten or more of pin supports **219** and/or **220**. The pin supports **219**, **220** can extend through openings or slits formed on a top surface of the main body 216. For example, as discussed below, the main body 216 can include a top frame 224 having one or more slits 236 and a bottom frame **227** which can include the one or more pin supports **219**, **220**. The one or more pins supports 219, 220 can extend from the bottom frame 227 and through the slits 236, 237 of the top frame **224** when the main body **216** is assembled. The slits **236**, **237** formed on the top surface of the main body **216** can be rectangular or substantially rectangular in shape. The pin supports **219**, **220** can be arcuate and/or can include an upward portion, an apex, and a downward portion. The upward portions of the pin supports 219, 220 can extend upward with respect to and/or beyond the top surface of the main body **216** (for example, a top surface of the top frame **224** and/or bottom frame 227) at a predetermined angle. The upper portions of the pin supports 219, 220 can terminate at the apex, from which the downward portions of the pin supports **219**, **220** can extend downward towards the top surface of the main body **216** at another predetermined angle. Such configuration of the pin supports **219**, **220** can allow them to function like springs when downward force is applied to the pin supports **219**, **220**. Optionally, the pin supports **219**, **220** may not have the downward portions. The pin supports **219**, **220** can be flexible and/or resilient. [0239] The pin supports **219** can correspond and/or be associated with electrical connectors of the disposable portion **203**. For example, the pin supports **219** can correspond and/or be associated with conductive strips 244 of the flexible circuit 225 (see FIGS. 2F and 2I) that carry electrical signals associated with the one or more external electrodes 112 and/or the one or more internal electrodes **211**. For example, as shown in FIG. **2**E, the dock **204** can have six pin supports **219** that operably position and/or support six conductive strips **244** of the flexible circuit **225** which can carry electrical signals from four external electrodes 112 (via cables 114) and two internal electrodes **211**.

[0240] Similar to the pin supports **219**, the pin supports **220** can correspond and/or be associated with electrical connectors of the disposable portion **203**. For example, the pin supports **220** can correspond and/or be associated with conductive strips **245** of the flexible circuit **225** (see FIGS. **2**F and **2**I) that allow transmission of electrical signals and/or information between the dock **204** and the memory **208** of the hub **206**. The flexible circuit **225** can comprise and/or be coupled to a memory (such as an PROM, EPROM, EPROM, SRAM, and/or DRAM memory) of the disposable portion **203** configured to store information related to the disposable portion **203**. The conductive strips **245** of the flexible circuit **225** can be coupled to such memory. Advantageously,

the pin supports **220** can support and/or operably position the conductive strips **245** so that they contact conductor pins of the hub **206** (such as conductive pins **254**), which can enable the hub **206** to determine whether the dock **204** is an authorized product.

[0241] As discussed above, the dock **204** can include one or more openings **223** in portions of the main body **216** that are configured to allow portions of the cables **114** to pass into an interior of the dock **204**. For example, as discussed above, the main body **216** can include one or more openings 223 in the wall 255. The dock 204 can include one, two, three, four, five, six, seven, or eight or more openings **223**. The openings **223** can be sized and/or shaped to receive portions of the cables **114** coupled to the external electrodes **112**. The openings **223** can be formed on a side of the main body **216**. For example, as shown in FIG. **2**E, the openings **223** can be formed on a front side (or "end") of the main body **216**. Alternatively, the openings **223** can be formed on different sides or portions of the main body **216**. The number of the openings **223** can correspond to the number of external electrodes 112 coupled to the dock 204 and/or number of cables 114. For example, as shown in FIG. 2B, the dock 204 of the disposable device 203 can include four external electrodes **112**. In this regard, the dock **204** can include four openings **223** configured to receive four cables 114 coupled to the four external electrodes 112. While FIG. 2E illustrates four openings 223, four cables 114, and four external electrodes 112, a different number of electrodes 112, openings 223 and/or cables **114** can be implemented as part of the disposable portion **203**. The openings **223** can be dimensioned to create a tight fit with the cables **114**. Such configuration can be advantageous in allowing the dock **204** to be water-resistant and/or waterproof. Such configuration can also help maintain integrity of connections between the cables 114 and the openings 223. For example, a tight fit between the openings 223 and portions of the cables 114 can reduce the likelihood that ends of the cables 114 connected to the flexible circuit 225 (for example, to conductive strips 243) are disconnected when opposite ends of the cables **114** are pulled, either inadvertently or intentionally.

[0242] FIGS. 2F and 2G show exploded perspective views of the dock 204 of the disposable portion 203. The dock 204 can include a top frame 224, the flexible circuit 225, one or more internal electrodes 211, a bottom frame 227, and one or more of substrates (also referred to herein as "membranes") 228, 229, 230, 231, 242, and/or 239 each of which are described further below. Advantageously, the parts illustrated in the FIGS. 2F and 2G may be laid on top of each other without folding, resulting in an increased efficiency of manufacturing process of the ECG device 110. The top and bottom frames 224, 227 can together form and/or define the main body 216, which is discussed above with reference to FIG. 2E. Further, the top frame 223 can include the wall 255 discussed above.

[0243] The top frame **224** can be coupled to the bottom frame **227** such that the top frame **224** sits on top of the bottom frame **227**. The top frame **224** can include a recessed portion **235** formed from a top surface of the top frame **224**. The recessed portion **235** can include an aperture **238** (see FIGS. **2F-2**G) that is formed at a bottom of the recessed portion **235**.

[0244] The bottom frame 227 can include an aperture 232 and one or more apertures 233. The aperture 232 of the bottom frame 227 can correspond and/or align with the recessed portion 235 of the top frame 224 such that when the top frame 224 is placed on the bottom frame 227, the aperture 232 receives the recessed portion 235 and the recessed portion 235 extends through and/or below the aperture 232. As discussed below, this can advantageously allow a portion of the reusable device 205 and the temperature sensor 209a to be positioned closer to the substrate 230, which can in turn increase thermal communication between a user's skin and the temperature sensor 209a. [0245] As discussed above, the dock 204 can include the pin supports 219, 220. As shown in FIG. 2F, the pin supports 219, 220 can be formed on the bottom frame 227. The top frame 224 can include slits 236, 237 that can receive the pin supports 219, 220 of the bottom frame 227, respectively. When the top frame 224 is placed on the bottom frame 227, the pin supports 219, 220 can extend through and/or above the slits 236, 237 of the top frame 224.

[0246] The flexible circuit 225 can be placed and/or positioned between the top frame 224 and the bottom frame 227 (see FIGS. 2F-2G). For example, the flexible circuit 225 can be sandwiched between the top and bottom frames 224, 227 during assembly. The bottom frame 227 can operably position the flexible circuit 225 and/or portions thereof such that electrical communication between the flexible circuit 225 and a circuit board and/or flexible circuit of the reusable portion 205 is facilitated when the reusable portion 205 is secured to the disposable portion 203. For example, the pin supports 219 of the bottom frame 227 can operably position conductive strips 244 of the flexible circuit 225 so that the conductive strips 244 contact conductor pins 253 of the reusable portion 205 when the reusable and disposable portions 203, 205 are mated. Additionally or alternatively, the pin supports 220 of the bottom frame 227 can operably position conductive strips 245 of the flexible circuit 225 such that the conductive strips 245 contact conductor pins 254 of the reusable portion 205 when the reusable and disposable portions 203, 205 are mated. Such contact can advantageously allow the flexible circuit 225 to transmit information and/or physiological data from the disposable device 203 to the reusable device 205. Additional details of the flexible circuit 225 are provided below.

[0247] With reference to FIG. **2**F, the internal electrodes **211** can be placed and/or positioned at least partially between the top frame **224** and the bottom frame **227**. The internal electrodes **211** can be removably coupled to the flexible circuit **225**. The internal electrodes **211** can be placed within the apertures **233** and the apertures **233** can be dimensioned to receive the internal electrodes **211** (and/or portions thereof).

[0248] As discussed above, the dock **204** (also referred to herein as "base") of the disposable portion **203** can include a laminate structure **221**. For example, the dock **204** can include one or more of substrates **228**, **229**, **230**, **231**, **242**, and/or **239**. Substrate **228** can comprise foam and can be configured to surround the top and/or bottom frames **224**, **227** when the dock **204** is assembled. Substrate **228** can include an opening sized and/or shaped to match a size and/or shape of a perimeter of the top and/or bottom frames **224**, **227** (see FIGS. **2F-2**G).

[0249] Substrate **229** can comprise an adhesive material configured to secure the substrate **228** and/or the bottom frame **227** to the substrate **230** and/or substrate **231**. Substrate **229** can be, for example, a double sided adhesive layer. Substrate **229** can include one or more of openings **229***a*, **229***b*. Opening **229***a* can be sized and/or shaped to allow the recessed portion **235** and/or the housing **297** to contact a portion of the substrate **230** when the dock **204** is assembled and the hub **206** is mated with the dock **204**. Openings **229***b* can be sized and/or shaped to allow the internal electrodes **211** to contact substrates **231**, which are discussed further below.

[0250] Substrate **230** can be secured (for example, adhered) to substrate **229** as discussed above. As shown, substrate **230** can include apertures **230** *a* sized and/or shaped to correspond to a size and/or shape of the internal electrodes **211**. The number of apertures **230** *a* can correspond to the number of internal electrodes **211**. The apertures **230** *a* can be dimensioned to receive the one or more internal electrodes **211**. As discussed above, the opening **229** *a* of substrate **229** can be sized and/or shaped to allow the recessed portion **235** and/or the housing **297** to contact a portion of the substrate **230** when the dock **204** is assembled and the hub **206** is mated with the dock **204**. Advantageously, substrate **230** can comprise a thermally conductive material configured to provide thermal communication between the patient's skin and the housing **297**. As also discussed above, the housing **297** can comprise a thermally conductive material and can house the temperature sensor **209** *a*. Substrate **230** can comprise an electrically isolative material which can advantageously minimize or eliminate electrical interference between the patient's skin and portions of the dock **204** in areas other than the apertures **234**. Substrate **230** can be, for example, a polyethylene (PE) film.

[0251] The dock **204** can include one or more substrates that provide increased electrical conductivity between the patient's skin and the internal electrodes **211**. For example, the dock **204** can include one or more substrates **231**, the number of which can correspond with the number of

internal electrodes **211**. The substrates **231** can be adhered to substrate **230** (for example, a bottom side of the substrate **230**). The substrates **231** can be adhered adjacent, proximate, and/or under the apertures **230***a* of substrate **230** such that bottom portions of the internal electrodes **211** contact and/or secure to the substrates **231**. For example, the substrates **231** can be sized and/or shaped to cover the apertures **230***a* when secured to the substrate **230**. The substrates **231** can comprise an adhesive material. The substrates **231** can comprise, for example, hydrogel. The substrates **231** can be hydrogel patches. The substrates **231** can have a smaller area than any or all of the other substrates **228**, **229**, **230**, **242**, and/or **239**.

[0252] Substrate **242** can be a bottommost layer of the dock **204** configured to contact skin of a user when the dock **204** is secured to the user. Substrate **242** can comprise a material configured to secure to skin of a user. For example, substrate **242** can comprise a material configured to allow for removable securement of the dock **204** to the user's skin. Additionally or alternatively, substrate **242** can be waterproof. Substrate **242** can comprise a silicone adhesive, for example. Substrate **242** can comprise a silicone adhesive coupled with a polyurethane layer. As shown, substrate **242** can include one or more openings **242***a* aligned with the one or more substrates **231**. The one or more openings **242***a* can be sized and/or shaped to receive (for example, at least partially receive) the one or more substrates **231**. Advantageously, the openings **242***a* are spaced from each other, and as such, can separate the substrates **231**. Such separation between substrate **231** is important so that the two internal electrodes **211** (where both are included) are electrically isolated from each other and/or so that the two substrates **231** make independent electrical contact with the patient's skin. When the dock **204** is assembled and secured to the user's skin, the one or more openings **242***a* can be positioned with respect to the one or more substrates 231 such that the substrates 231 and portions of the substrate 242a around the one or more openings 242a contact and/or secure to the skin.

[0253] Substrate **239** can be a release liner configured to secure to one or more of the above-described substrates and further configured to be removed prior to securement of the dock **204** to a user. Substrate **239** can cover substrates **242** and/or **231**. As shown in FIGS. **2F-2G**, substrate **239** can include a tab **239***a* configured to assist in removing the substrate **239** from one or more of the above-described substrates.

[0254] FIG. 2H illustrates a side view of the dock **204** of the disposable portion **203**. As discussed above, the dock **204** can include one or both of mechanical connector portions **217**, **218** which can secure to mechanical connector portions of the hub **206**. The mechanical connector portions **217**, **218** can include protrusions **240**, **241**, respectively. The protrusions **240**, **241** can be positioned at free (for example, cantilevered) ends of the mechanical connector portions **217**, **218**, such as ends opposite to ends connected to portions of dock **204** (such as the main body **216**). The protrusions **240**, **241** can engage protrusions **251***a*, **252***a* within grooves **251**, **252** of the hub **206** (see FIGS. **2J-2K**) to removably secure the hub **206** to the dock **204**. When the hub **206** is mated with the dock **204**, the hub **206** can be positioned at least partially between the mechanical connector portions **217**, **218**. The engagement between the protrusions **240**, **241** and the protrusions **251***a*, **252***a* within the grooves **251**, **252** can prevent movement of the hub **206** in horizontal and/or vertical directions while mated with the dock **204**.

[0255] With reference to FIGS. 2H and 2J-2K, the hub **206** can include two protrusions **252***a* spaced from one another within the groove **252**. The protrusions **252***a* can be tapered (FIG. 2J). The hub **206** can include a protrusion **251***a* which extends across a width of the groove **252**. The mechanical connector portion **217** can be a clip that is flexible. The mechanical connector portion **217** can have a non-straight cross section (FIG. 2H). For example, mechanical connector portion **217** can have an S-shape. As another example, mechanical connector portion **217** can curve in multiple directions from a first end to a second end. Such configuration can advantageously allow the mechanical connector portion **217** to bend without breaking, especially where the mechanical

connector portion **217** is made of a rigid plastic material. The mechanical connector portion **217** can have one or more ribs **217***a* on a top plate thereof, which can aid a user in moving (for example, flexing) the mechanical connector portion **217** to disconnect a portion of the hub **206** from the dock **204**.

[0256] FIG. 2I illustrates a top view of the flexible circuit 225. The flexible circuit 225 can include numerous conductive surfaces and/or strips. For example, the flexible circuit 225 can include conductor strips 243, 244, 245, and/or 246. The conductor strips 243 can electrically connect to the cables 114 which cane themselves be electrically connected to the external electrodes 112. In this regard, the conductor strips 243 can receive electrical signals from the external electrodes 112 via the cables 114. The cables 114 can be soldered to the corresponding conductive strips 243. The conductor strips 246 (also referred to herein as "conductive rings") can be formed around and/or within apertures 247, as shown in FIG. 2I. The conductive rings 246 can create contact with and receive electrical signals from the internal electrodes 211. The apertures 247 can receive a top portion of the internal electrodes 211, creating contact between the conductor strips 246 and the internal electrodes 211 which allows the flexible circuit 225 to receive ECG data from the internal electrodes 211.

[0257] The conductor strips **245** can establish electrical communication between the dock **204** and the memory **208** of the reusable device **205**. The conductor strips **245** of the flexible circuit **225** can be positioned adjacent to (for example, on top of) the pin supports **220**. The pin supports **220** supporting the conductor strips **245** can be oriented such that when the hub **206** is mated with the dock **204**, conductor pins **254** (see FIG. **2**L**-2**M) of the hub **206** contact the conductor strips **245**. The memory **208** of the reusable device **205** can be coupled to the conductor pins **254** such that contact between the conductor strips **245** and the conductor pins **254** allow electrical signals and/or information to be transmitted from the disposable device **203** to the memory **208** of the reusable device **205**. Advantageously, the conductive strips **245** can be utilized to enable verification of whether the disposable portion **203** is an authorized product. For example, when the reusable portion **205** is electronically and/or mechanically mated to the disposable portion **203** such that contact is made between the conductive strips **245** and the conductor pins **254**, the reusable portion **205** can determine whether the disposable portion **203** is an authorized product by analyzing information contained within a memory of the flexible circuit **225** of the disposable portion **203**. As discussed above, the memory of the flexible circuit 225 can be an PROM, EPROM, EEPROM, SRAM, and/or DRAM memory configured to store information related to the disposable portion **203**. Such determination can prevent damage to the reusable device **205** that may occur if an unauthorized product is secured thereto. Such determination can additionally or alternatively ensure proper functionality of the reusable device **205**.

[0258] In some cases, the memory of the flexible circuit 225 is encoded with information regarding to the disposable portion 203, for example, how many external and/or internal electrodes 112, 211 are included in a particular disposable portion 203. In such cases, when the reusable portion 205 is electronically and/or mechanically mated to the disposable portion 203 such that contact is made between the conductive strips 245 and the conductor pins 254, the reusable portion 205 can determine such information and can determine a particular measurement and/or processing scenario to implement. For example, in such cases, after determining how many external and/or internal electrodes 112, 211 are included in a particular disposable portion 203, the processor 207 of the reusable portion 205 can determine that a more or less complex diagnostic and/or physiological assessment should be undertaken with respect to physiological parameters related to the patient's cardiac activity.

[0259] The conductor strips **244** can be in electronic communication with the conductor strips **243**, **246** such that they can receive electrocardiogram data from the external electrodes **112** and the internal electrodes **211**. The conductor strips **244** of the flexible circuit **225** can be positioned on top of the pin supports **219**. The pin supports **219** supporting the conductor strips **244** can be

oriented such that when the hub **206** is mated with the dock **204**, conductor pins **253** (see FIG. **2**L-**2**M) of the hub **206** can contact the conductor strips **244**. The contact between the conductor strips **244** and the conductor pins **253** can allow electrical signals to be transmitted from the disposable device **203** to the processor **207** of the reusable device **205**. The processor **207** of the reusable device **205** can be coupled to the conductor pins **253** to receive the electrical signals from the disposable device **203** via the conductor strips **244**. The number of conductive strips **244** can correspond with the total number of conductive strips **243**, **246**. Each of one of the conductor strips **243** and conductor strips **246** can be associated with a different one of the conductor strips **244** of the flexible circuit **225**.

[0260] FIGS. 2J-2K illustrate various perspective views of the hub 206 of the reusable portion 205. The hub 206 can include a cable outlet (also referred to herein as an "output connector port") 250, one or more mechanical connector portions, among other components discussed further below. The one or more mechanical connector portions can allow the reusable portion 205 to mate with the disposable portion 203. The one or more mechanical connector portions can be, for example, grooves 251, 252. The grooves 251, 252 can be formed on the same or different side of the hub 206. For example, as shown in FIGS. 2J and 2K, the grooves 251, 252 can be positioned opposite from each other on opposite ends of the hub 206. As discussed above, the grooves 251, 252 can interact with the protrusions 240, 241 of the mechanical connector portions 217, 218, respectively, to removably secure the dock 204 and the hub 206. The grooves 251, 252 can be dimensioned and/or shaped to engage the protrusions 240, 241, respectively. As discussed above, the grooves 251, 252 can include the protrusions 251a, 252a that can engage the protrusions 240, 241. In some variants, the mechanical connector portions 217, 218 can secure to the grooves 251, 252 in a snap-fit.

[0261] The reusable portion **205** can include one or more electrical connectors configured to connect to one or more electrical connectors of the disposable portion **203** when secured thereto. For example, with reference to FIGS. 2L-2N, the hub 206 can include one or more conductor pins **253**, **254** disposed proximate to a bottom surface of the hub **206** such that when the hub **206** is coupled with the dock **204**, the conductor pins **253**, **254** can be in contact with the conductor strips 244, 245, respectively. The contact between the pins 253, 254 and the strips 244, 245 allows information and/or electrical signals to be transmitted from the disposable device **203** to the reusable device **205**. As discussed above, the contact between the conductor strips **244** and the conductor pins **253** can allow transmission of electrical signals between the dock **204** and the processor **207** of the reusable device **205**. The contact between the conductor strips **245** and the conductor pins **254** can allow transmission of information between the a memory of the dock **204** (for example, a memory of the flexible circuit **225**) and the memory **208** of the reusable device **205**. [0262] The reusable portion **205** can be configured such that, when a bottom of the reusable portion **205** is placed on a flat surface, the conductor pins **253**, **254** do not contact the flat surface. This can advantageously minimize the risk that the reusable portion 205 or portions thereof will "short" and/or become damaged if high voltage is introduced to the flat surface. For example, if a defibrillator is used on the patient and a bottom of the reusable portion **205** is placed on a surface of the patient, the reusable portion **205** can be configured such that the conductor pins **253**, **254** are spaced away from the surface. With reference to FIGS. **2**L, the hub **206**, for example, a bottom frame **257** of the hub **206**, can include one or more bumps **291**, **293** protruding outward from a surface of the hub **206**. The one or more bumps **291**, **293** can include a cavity sized and/or shaped to receive a portion of the conductor pins **253**, **254**. The number of bumps **291**, **293** can correspond with the number of conductor pins **253**, **254**. For example, the hub **206** can include one, two, three, four, five, six, seven, or eight or more bumps 291 and/or 293. In some variants, the hub 206 comprises a bump **293** that includes two cavities, each sized and/or shaped to receive a different one of two conductor pins **253**. In some variants, a height of the bumps **291**, **293** (measured from a bottom surface of the hub **206**) is greater than a length of extension of the conductor pins **253**, **254**

through the cavities in the bumps 291, 293. This can prevent tips of the conductor pins 253, 254 from contacting a surface that the reusable portion **206** is placed upon. Additionally or alternatively, the hub **206** can include one or more stubs **295** extending outward from a bottom surface of the hub **206** (for example, a surface of the bottom frame **257** of the hub **206**). For example, the hub **206** can include one, two, three, or four or more stubs **295**. As another example, the hub **206** can include two stubs **295** positioned outside a plurality of bumps **291** (FIGS. **2**L**-2**M). The one or more stubs **295** can be aligned with one another along a bottom surface of the hub **206**. The one or more stubs **295** can have a height (measured from a bottom surface of the hub **206**) that is greater than a length of extension of the conductor pins 253, 254 beyond the bottom surface of the hub 206. This can prevent tips of the conductor pins **253**, **254** from contacting a surface that the reusable portion **206** is placed upon. Additionally or alternatively, as discussed below, the hub **206** can include a housing **297**. The housing **297** can extend beyond the bottom surface of the hub **206** a distance greater than a length of extension of the conductor pins **253**, **254** beyond the bottom surface of the hub **206**. This can prevent tips of the conductor pins **253**, **254** from contacting a surface that the reusable portion **206** is placed upon. In some cases, when a bottom of the hub **206** is placed on a surface (such as a flat surface), the one or more stubs 295 and the housing 297 contact the surface and the conductor pins **253**, **254** do not contact the surface. The housing **297**, stubs **295**, bumps **291**, **293**, and/or other portions of the hub **206** can comprise a material that minimizes or prevents electrical conductivity. For example, the housing 297, stubs 295, bumps 291, 293, and/or other portions of the hub **206** can comprise boron nitride.

[0263] FIGS. 2O-2P illustrate exploded perspective views of the hub **206** of the reusable device **205**. The hub **206** (also referred to herein as "cover") can include a top frame **256** and a bottom frame **257**. The hub **206** can further include one or more resistors **258**, a circuit board **259**, the conductor pins **253**, the conductor pins **254**, one or more of temperature sensors **209***a*, **209***b*, **209***c*, **209***d*, a housing **297**, a flexible circuit **299**, and a cable outlet **250**. The bumps **291** and/or **293** of the bottom frame **257** can include cavities **263** and/or cavities **264**. The cavities **263**, **264** can be sized and/or shaped to receive the conductor pins **253** and the conductor pins **254**, respectively. The cavities **263**, **264** can be dimensioned and sized such that the conductor pins **253**, **254** create water-resistant seal when received by the cavities **263**, **264**.

[0264] The hub **206** can include a recessed portion **261**. The recessed portion **261** can be, for example, formed in the bottom frame 257. The recessed portion 261 can be recessed from a top surface of the bottom frame 257 (FIG. 2O) and can extend outward (for example, below) a bottom surface of the bottom frame 257 (FIG. 2P). The recessed portion 261 can include an opening 260 formed at an end or bottom of the recessed portion **261**. The recessed portion **261** can be shaped, dimensioned, and/or positioned relative to the top and/or bottom surfaces of the hub **206** such that the recessed portion **235** of the dock **204** (FIG. **2**F) can receive the recessed portion **261** when the dock **204** is coupled to hub **206**. As discussed further below, the recessed portion **261** can receive the housing **297** which can house temperature sensor **209***a*. As discussed below, the housing **297** can extend through the recessed portion **261** and at least partially through the recessed portion **235** of the dock **204** proximate to openings **258** and/or **232** such that it can contact substrate **230**. [0265] FIG. 2Q illustrates an exploded view of a portion of the assembly shown in FIGS. 2O-2P. As discussed above, the reusable portion **205** can include one or more temperature sensors **209** that can be used to measure a temperature of the patient's body (for example, via the skin) and/or an ambient temperature inside or outside the reusable portion **205**. For example, the hub **206** can include a temperature sensor **209***a* and one or more of temperature sensors **209***b*, **209***c*, **209***d*. As shown, the temperature sensors **209***a*, **209***b*, **209***c*, **209***d* can be coupled to the flexible circuit **299** and the flexible circuit **299** can be coupled to the circuit board **259**. Thus, temperature data from one or more of temperature sensors **209***a*, **209***b*, **209***c*, **209***d* can be transmitted to the circuit board **259**. Temperature sensor **209***a* can be positioned adjacent and/or proximate to a different side of the circuit board **259** as the temperature sensors **209***b*, **209***c*, **209***d*. As shown, temperature sensor **209***a*

can be coupled to an end portion of the flexible circuit **299**. Temperature sensor **209***a* can be configured to be positioned closer to the patient's skin when the reusable portion **205** is mated with the disposable portion **203**. As discussed above, the hub **206** can include a housing **297**. Housing **297** can be configured to receive temperature sensor **209***a*. Temperature sensor **209***a* can be secured to a portion of housing **297** with a pad **269**. Pad **269** can be configured to adhere temperature sensor **209***a* to the portion of the housing. Pad **269** can comprise a thermally conductive material. [0266] As discussed elsewhere herein, the housing **297** can extend through portions of the bottom frame **257** and/or the dock **204** of the disposable portion **203** and contact a substrate of the dock which can contact skin of the patient. In such configuration, the housing **297** can provide thermal communication between the skin of the patient and the temperature sensor **209***a* housed within the housing **297**. Housing **297** can comprise a material that provides thermal conductivity but minimizes or prevents electrical conductivity. This can advantageously allow the housing **297** to facilitate thermal communication between the patient's skin and the temperature sensor **209***a* and simultaneously minimize or eliminate damage and/or interference that may be caused from electrical interference. As an example, the housing 297 can comprise a plastic coated with and/or comprising boron nitride.

[0267] In addition to temperature sensor **209***a*, the reusable portion **205** can include one or more of temperature sensors 209b, 209c, and 209d. The temperature sensors 209b, 209c, and 209d can be coupled to the flexible circuit **299** and be positioned away from the temperature sensor **209***a*. One or more of temperature sensors **209***b*, **209***c*, and **209***d* can be used to detect a temperature within an interior of the reusable portion **205** (for example, within an interior of the hub **206**). For example, the temperature sensors **209***b*, **209***c*, and **209***d* can detect a temperature adjacent and/or proximate to the circuit board **259** and/or the resistors **258**. In some cases, temperature data measured from temperature sensor **209***a* may be influenced by temperatures within the interior of the reusable portion **205**. Advantageously, incorporating temperature sensor **209***a* along with one or more of temperature sensors **209***b*, **209***c*, and **209***d* can allow the processor **207** more accurately determine core body temperature of the patient. For example, the processor **207** can utilize temperature data from one or more of temperature sensors **209***b*, **209***c*, and **209***d* in order to adjust temperature data received from the temperature sensor **209***a* in order to more accurately determine a patient's body temperature. Where the hub **206** includes two or more of temperature sensors **209***b*, **209***c*, and **209***d*, the temperature sensors **209***b*, **209***c*, and **209***d* can be spaced away from each other in order to collect temperature data at various locations within the interior of the hub **206**. [0268] The circuit board **259** can include the processor **207** and the memory **208**. The circuit board **259** can be operatively coupled to the external electrodes **112**, the internal electrodes **211**, and one or more of temperature sensors **209***a*, **209***b*, **209***c*, **209***d* in order to receive electrocardiogram data and temperature data. The hub **506** can include one or more resistors **258** coupled to the circuit board **259** and/or the conductor pins **253**. The hub **506** can include one, two, three, four, five, six, seven, or eight or more resistors **258**. The number of resistors **258** can correspond with the number of conductor pins **253** and/or the total number of external and internal electrodes **112**, **211**. The resistors **258** can be positioned between the circuit board **259** and the conductor pins **253**. Advantageously, the resistors **258** can prevent or reduce the damage to the circuit board **259** (or other components of the reusable device **205**) due to shorting or arcing, which may be caused when high voltage is accidentally and/or suddenly introduced via the conductor pins **253**, for example, if the reusable device **205** is positioned on or proximate to a patient when a defibrillator is used. For example, the resistors **258** can be high-capacity, low-resistance resistors that allow electrical signals related to a user's cardiac electrical activity to pass therethrough but inhibit high voltage from passing to the circuit board **259** and/or other components of the reusable device **205**. The resistors **258** can be soldered directly to the circuit board **259** and/or the conductive pins **253**. With reference to FIGS. **2**O and **2**Q, the hub **206** can include one or more walls **268** configured to separate each of the one or more resistors **268**. For example, the hub **206** can include a number of walls **268** that is

one less than the number of resistors **258**. The walls **268** can advantageously isolate portions of the resistors **258** from each other.

[0269] The reusable portion **205** can include a heat sink configured to transfer heat generated by the reusable portion **205** or portions thereof to an ambient environment outside the reusable portion **205**, thereby allowing regulation of a temperature within the reusable portion **205**. For example, with reference to FIG. **20**, the hub **206** of the reusable portion **205** can include a heat sink **279** positioned at or near a top surface of the hub **206**. Heat sink **279** can advantageously transfer heat generated by one or more of the circuit board **259**, flexible circuit **299**, temperature sensor **209***a*, **209***b*, **209***c*, **209***d*, resistors **258**, and/or other components, to the ambient environment outside of the hub **206**. Heat sink **279** can be a metal element.

[0270] FIG. **2**R illustrates a top, perspective view of the hub **206** and the dock **204**, illustrating how the hub **206** and the dock **204** can be coupled (for example, removably coupled). The dock **204** can removably secure to the hub **206** via engagement between the mechanical connector portions **217**, **218**, **252**, **251** as discussed above. When the dock **204** and the hub **206** are secured in such manner, the conductor pins 253, 254 (see FIG. 2L-2M) of the hub 206 can engage the pin supports 219, **220**, respectively. As discussed above, the conductive strips **244**, **245** of the flexible circuit **225** can be supported by the pin supports **219**, **220**. Accordingly, when the dock **204** and the hub **206** are secured in such manner, the conductive strips **244**, **245** can contact the conductor pins **253**, **254** of the hub **206**. The contact between the conductive strips **244**, **245** and the conductor pins **253**, **254** can allow electrical signals and/or information to be transmitted from the dock **204** of the disposable device 203 to the hub 206 of the reusable device 205. Additionally, when the dock 204 and the hub **206** are secured in such manner, the housing **297** (FIGS. **2**L**-2**M) and the recessed portion 235 can be aligned (FIG. 2R). The recessed portion 235 can be sized and/or shaped to receive the housing **297** and/or the recessed portion **261**. When secured in such manner, the housing 297 can contact one of the substrates of the laminate structure 221 as discussed elsewhere herein.

[0271] FIG. **2**S illustrates a cross-sectional view of the ECG device **110** placed on a patient, showing relative positions of the temperature sensor **209***a* with respect to a patient's skin. FIG. **2**S illustrates, among other things, the circuit board **259**, flexible circuit **299**, the recessed portion **261**, the housing **297**, the pad **269**, temperature sensor **209***a*, and one or more of optional temperature sensors **209***b*, **209***c*, **209***d*. As shown, temperature sensor **209***a* can be secured and/or positioned above the pad **269** and a bottom of the housing **297**. In this regard, the temperature sensor **209***a* can be in indirect contact with the patient's skin via the pad **269**, housing **297**, and one or more substrates of the dock **204**.

[0272] FIG. **2**T illustrates a cross-sectional view of the ECG device **110** placed on a patient, showing relative positions of the internal electrode **211** with respect to a patient's skin. FIG. **2**T illustrates, among other things, the internal electrode 211, the flexible circuit 225, conductive strips **244**, pin supports **219**, conductor pins **253**, and resistors **258**. As shown, when the reusable portion **205** and the disposable portion **203** are mated, the conductors pins **253** can contact and/or depress the pins supports **219**. As also shown, the internal electrodes **211** can be in indirect contact with the skin of the patient. For example, the substrates **231** can be positioned between the internal electrodes **211** and the patient's skin. As discussed above, substrates patches **231** can facilitate transmission of electrical signals from the patient's heart to the internal electrodes **211**. [0273] FIG. 2R illustrates a block diagram representing a method 270 of determining patient physiological parameters using the ECG device **110**. At step **271**, the reusable device **205** establishes connection with the disposable device **203**. This can occur when the reusable device is mechanically mated with the disposable device **203**. The connection between the reusable device **205** and the disposable device **203** can be established via contact between the conductive pins **253**, **254** and the conductive strips **244**, **245** supported by pin supports **219**, **220**. The contact between the conductive pins **253**, **254** and the conductive strips **244**, **245** can occur when the hub **206** of the

reusable device **205** is removably mounted on the dock **204** of the disposable device **203**. At step **272**, the reusable device **205** can provide power to the disposable device **203**. The power provided by the reusable device **205** can power the external and internal electrodes **112**, **211** to collect electrocardiogram data. In some variants, the disposable portion **203** does not comprise a power source and relies entirely on the reusable device **205** to collect electrocardiogram data. [0274] At step **273**, the disposable device **203** receives power from the reusable device **205**. At step **274**, the disposable device **203** uses the one or more external electrodes **112** and/or the one or more internal electrodes **211** to collect raw ECG data from the patient. At step **275**, the raw ECG data collected by the external electrodes **112** and/or the internal electrodes **211** can be transmitted to the reusable device **205**. The raw ECG data can be transmitted via the flexible circuit **225** as discussed above. The raw ECG data can be transmitted from the disposable device **203** to the reusable device **205** automatically or manually upon user input. The raw ECG data can be transmitted continuously or with a predetermined delay.

[0275] At step **276**, the reusable device **205** can collect raw temperature data. The raw temperature data can be collected by the temperature sensor **209***a*. The raw temperature data can be collected simultaneously or non-simultaneously from the raw ECG data. For example, the reusable device **205** can collect the raw temperature data regardless of whether the disposable device is collecting and/or transmitting the raw ECG data. The raw temperature data can be collected from temperature sensor **209***a* simultaneously or non-simultaneously with temperature data collected from one or more of temperature sensors **209***b*, **209***c*, **209***d*. As discussed above, the processor **207** of the reusable portion **205** can determine a body temperature of the patient based on, at least, a comparison of the temperature data from temperature sensor **209***a* and one or more of temperature sensors **209***b*, **209***c*, **209***d*.

[0276] Care providers may be able to configure the ECG device **110** to determine which physiological data to be collected in different circumstances. The ECG device **110** can be configured to collect and process temperature-related physiological data in certain, predetermined situations. For example, the ECG device **110** can be configured to measure temperature of a patient when it detects ECG signals associated with irregular heart activities and/or bodily conditions. For example, the ECG device **110** can be configured to measure temperature of a patient when a variation in ECG signals over a predetermined time period exceeds a threshold value. In another example, the ECG device 110 can be configured to collect ECG data from a patient when a temperature measurement exceeds or falls below a threshold value, which can be indicative of an abnormal condition. Other types information related to different patient parameters and/or conditions can be used to trigger the ECG device **110** to collect ECG and/or temperature data. [0277] At step **277**, the reusable device **205** (for example, the processor **207**) can perform signal processing on the raw ECG and temperature data to determine physiological parameters related to a patient's heart activity and temperature. At step 278, the reusable device 205 of the ECG device 110 can transmit the physiological parameters to other patient monitoring systems and/or devices via wires or various wireless communication protocols.

[0278] In some variants, the ECG device **110** is waterproof or water-resistant. For example, the reusable device **205** and/or the disposable device **203** can be configured such that, when secured to one another, they prevent water from entering into an interior thereof. This can minimize or prevent damage to the reusable device **205** and/or the disposable device **203** and/or components thereof (such as the temperature sensor **209**, the internal electrodes **211**, and/or the circuit board **259**). [0279] Partitioning the ECG device **110** into separable reusable and disposable portions **205**, **203** provides a number of benefits over traditional ECG devices. For example, such partitioning allows a portion of the ECG device **110** (e.g., the reusable portion **205**) to be reused after the device **200** after use with a given patient, and allows another portion of the device **200** (e.g., the disposable portion **203**) to be disposed of after such use. By removably securing to the disposable portion **203** as discussed above, the reusable portion **205** can avoid contacting portions of the patient during

use. The disposable portion **203** can secure to the patient and provide a platform by which the reusable portion **205** can attach. Such partitioning allows more expensive and/or vulnerable components, such as the circuit board **259**, flexible circuit **299**, temperature sensors **209***a*, **209***b*, **209***c*, **209***d*, among others, to be housed within the reusable portion **205** while less expensive and/or more durable components (such as the electrodes **112**, cables **114**, laminate structure **221**, dock **204**, among others) to be part of the disposable portion **203**. Such partitioning can allow the disposable portion **203** to be secured to the patient independently of the reusable portion **205**. This can be advantageous where the reusable portion **205** is connected to other physiological monitoring devices (such as the blood pressure monitor **120** and/or the patient monitor **130** via cable **105**) and securement of the reusable portion **205** and the disposable portion **203** to the patient simultaneously may be more difficult (for example, because of various cables being present in the patient environment). In such circumstances, such partitioning allows a caregiver to secure the disposable portion 203 (for example, the electrodes 112 and the dock 204) to the patient, and subsequent to such securement, the caregiver can secure the reusable portion **205** to the disposable portion **203**. In some variants, the reusable portion 205 weighs more than the disposable portion 203. In some variants, the disposable portion 203 does not include a processor and/or a power source (e.g., a battery). In some variants, the disposable portion **203** does not collect electrical signals responsive to the patient's cardiac activity until the reusable portion **205** is secured to the disposable portion **203**.

[0280] FIG. **3**A illustrates another embodiment of an ECG device **310** (also referred to herein as "ECG sensor"). The ECG device **310** can be attached to different parts of the patient **111** such as the patient's chest, back, arms, legs, neck, head, or other portions of the body of the patient. The ECG device **310** can collect one or more types of patient physiological data and transmit the data to other monitoring systems or devices. The physiological data can be transmitted to other monitoring systems or devices via wires or various wireless communication protocols. For example, as discussed above, the ECG device **310** can interact with the various other physiological devices and/or systems, such as the blood pressure monitors discussed herein (for example, blood pressure monitor **120**) and/or patient monitor **120**. Accordingly, all parts of the description above with reference to ECG device **110** and FIGS. **1**A-**1**D can be applicable to ECG device **310**. [0281] The ECG device **310** can have the functional and/or computational capabilities to calculate physiological parameters (for example, heart rate, precise body temperature values, among others) using raw physiological data (for example, raw temperature data, raw ECG data responsive to patient cardiac activity, among others). In this regard, the ECG device **310** can transmit raw, unprocessed electrical signals or physiological data, and/or processed, calculated physiological parameters to other patient monitoring devices and/or systems, such as those discussed elsewhere herein (for example, the blood pressure monitor **120** and/or the patient monitor **130**). [0282] With reference to FIGS. **3**A-**3**D, the ECG device **310** can include a disposable portion **303** (also referred to herein as "disposable device") and a reusable portion 305 (also referred to herein as "reusable device"). The disposable portion **303** can include a dock **304** (also referred to herein as a "base"), one or more external electrodes **312**, and one or more cables **314**. The one or more external electrodes **312** can be coupled to the dock **304** via the one or more cables **314**. The one or more external electrodes **312** and/or the cables **314** can be identical to the one or more external electrodes **112** and/or the cables **114** as discussed with respect to ECG device **110** and therefore the discussion above with reference to these component is not repeated for the sake of brevity. [0283] FIG. **3**C illustrates a perspective view of the reusable device **305**. The reusable device **305** can include a hub **306** (also referred to herein as "cover"), a cable **105**, and/or a connector **105***a*. The hub **306** can transmit electrical signals to other devices and/or systems, including multiparameter patient monitoring systems (MPMS), via the cable **105** and the connector **105***a*. Additionally or alternatively, the hub **306** can wirelessly transmit electrical signals to other devices and/or systems. For example, the hub 306 can include a wireless transmitter or transceiver

configured to wirelessly transmit electrical signals (for example, signals related to patient temperature and/or heart activities) using different types of wireless communication technology such as Bluetooth®, Wi-Fi, near-field communication (NFC), and the like. In some variants, the reusable device **205** does not include a cable or a connector.

[0284] The hub **306** can be of various shapes and/or sizes. For example, as shown in FIG. **3**C, the hub **306** can be rectangular in shape and/or can have rounded edges and/or corners. The hub **306** can be shaped to mate with the dock **304**. For example, the hub **306** can be sized and/or shaped to facilitate mechanical and/or electrical mating with the dock **304**. Additional details regarding the mating of the hub **306** and the dock **304** are described further below.

[0285] FIG. **3D** illustrates a schematic diagram of the ECG device **310**. As discussed above, the ECG device **310** can include the disposable device **303** and the reusable device **305**. The disposable device **303** can include a dock **304** coupled to one or more external electrodes **312** that detect and transmit electrical signals from the patient **111** through the cables **314**. The dock **304** can receive the electrical signals from the external electrodes **312** (for example, via flexible circuit **325**) and transmit them to the reusable device **305**. The external electrodes **312** can be placed at various locations relative to where the dock **304** is placed. For example, the dock **304** can be placed proximate, adjacent, and/or above the patient's heart and the external electrodes **312** can be placed at various locations on the patient's chest.

[0286] Similar or identical to the external electrodes **112** of ECG device **110**, the externals electrodes **312** can be color-coordinated and/or include graphics or visualizations that can advantageously aid a caregiver properly position and/or secure the electrodes **312** to portions of a patient's body so that accurate ECG data is collected. Accordingly, the discussion above with reference to FIGS. **2A-2B** and **4D**, and ECG device **110** is equally applicable to the external electrodes **312** of ECG device **310** and is not repeated here for the sake of brevity. [0287] The disposable device **303** can include one or more external electrodes **312**. For example, the disposable device **303** can include one, two, three, four, five, six, seven, or eight or more external electrodes **312**. For example, as illustrated by FIGS. **3A-3B**, the disposable device **303** can include four external electrodes **312**. As another example, the disposable device **303** can include two external electrodes **312**.

[0288] The dock **304** of the disposable device **303** can include one or more internal electrodes **311**. For example, the dock **304** can include one, two, three, four, five, six, seven, or eight or more internal electrodes **311**. As another example, as illustrated in FIGS. **3F-3**G, the dock **304** can include two internal electrodes **311**. As another example, the dock **304** can include one internal electrode **311**.

[0289] The total number of electrodes (including both external and internal electrodes) can be two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve or more electrodes. For example, the disposable device 303 can include four external electrodes 312, four cables 314, and two internal electrodes 311. In another example, the disposable device 303 can include two external electrodes 312, two cables 314, and two internal electrodes 311. In another example, the disposable device 303 can include two external electrodes 312, two cables 314, and one internal electrodes 312, four cables 314, and no internal electrode 311. In yet another example, the disposable device 303 can include one external electrode 312, one cable 314, and one internal electrode 311. In another example, the disposable device 303 can include two external electrodes 312, two cables 314, and no internal electrodes 311. Various combinations of internal and external electrodes 311, 312 are possible without departing from the scope of the present disclosure. The number of external electrodes 312 coupled to the dock 304 of the disposable device 303 and the number of internal electrodes 311 housed within the dock 304 can be varied in various examples of disposable device 303 of the ECG device 310.

[0290] As illustrates in FIG. 3D, the reusable device 305 of the ECG device 310 can include a

```
processor 307, a memory 308, a temperature sensor 309, and/or a motion sensor 310. The memory
308 can be a programmable read-only memory (PROM), an erasable programmable read-only
memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), a static
random access memory (SRAM), or a dynamic random access memory (DRAM), and the like. The
memory 308 can store various types of physiological data (raw and/or processed) related to the
patient 111. For example, the memory 308 can store raw and/or processed physiological data
related to patient temperature and electrical activity of the heart. The data related to the electrical
activity of the heart can represent rhythm and/or activity of the heart. As discussed further below,
the memory 308 can be utilized in combination with a memory on the disposable device 303 to
enable, among other things, verification of whether the disposable device 303 is an authorized
product. For example, the disposable device 303 can include a PROM, EPROM, EEPROM,
SRAM, and/or DRAM that can be read by the reusable portion 305 to enable the reusable portion
305 to verify whether the disposable device 303 is an authorized product.
[0291] As discussed above, the reusable device 305 can include a motion sensor 310. The motion
sensor 310 can be identical to the motion sensor 210 of ECG device 110. Accordingly, the
discussion above with reference to motion sensor 110 of ECG device 110 is equally applicable to
the motion sensor 310 of ECG device 310 and is not repeated here for the sake of brevity.
[0292] As discussed above, the reusable device 305 can include a temperature sensor 309. The
temperature sensor 309 can measure temperature of the patient 111 at and/or proximate to a
location where the ECG device 310 is placed. The temperature sensor 309 can measure temperature
of the skin of the patient 111. Additionally or alternatively, the temperature sensor 309 can measure
ambient temperature, for example, temperatures outside the reusable device 305 and/or
temperatures inside the reusable device 305 (such as at or near a circuit board of the reusable
device 305). The temperature data collected from the patient 111 by the temperature sensor 309
may be used to determine a core body temperature of the patient 111. The temperature sensor 309
can be in electronic communication with the processor 307 and can transmit the temperature data to
the processor 307. In one example, the temperature sensor 309 can be an infrared temperature
sensor. Placement and/or arrangement of the temperature sensor 309 within the reusable device 305
and/or with respect to the disposable device 303 can be varied to facilitate thermal communication
between a user's skin and the temperature sensor 309, as discussed further below.
[0293] The processor 307 can receive raw temperature data from the temperature sensor(s) 309.
Additionally, the processor 307 can receive raw ECG data from the disposable device 303. For
example, the processor 307 can receive raw ECG data from the disposable device 303 via contact
between one or more electrical connectors of the reusable portion 305 and one or more electrical
connectors of the disposable portion 303. As another example, the processor 307 can receive raw
ECG data from the disposable device 303 via electrical contact between conductive strips 344 of
the flexible circuit 325 of the disposable device 303 and conductor pins 353 of the reusable device
305. After receiving the raw ECG and temperature data, the processor 307 can perform data
processing to calculate physiological parameters corresponding to temperature and/or ECG. The
physiological parameters can be stored in the memory 308 or transmitted to different sensor
systems, patient monitoring systems, and the like. For example, the physiological parameters can
be transmitted to the blood pressure monitor 120 and/or the patient monitor 130. The data stored in
the memory 308 can be stored for a predetermined length of time and transmitted to different
sensor systems or patient monitoring systems or devices when the ECG device 310 is connected
(via a wire or wirelessly) to such other systems or devices. Optionally, the raw temperature data
and the raw ECG data can be stored in the memory 308 prior to data processing by the processor
307. The processor 307 can retrieve raw temperature and/or ECG data periodically to process
and/or transmit the raw data in batches. Alternatively, the processor 307 can automatically retrieve
(for example, continuously) the raw data from the memory 308 as the memory 308 receives the raw
ECG and temperature data.
```

[0294] FIG. **3**E illustrates a top, perspective view of the dock **304** of the disposable device **303**. The dock **304** (also referred to herein as "base") can include a main body **316** and a laminate structure **321**. The main body **316** can include one or more pin supports **319**, one or more pin supports **320**, a wall **355** extending along and/or around an exterior and/or perimeter of the main body **316**, and openings **323** in the wall **355**. The wall **355** can extend along and/or around a portion of the main body **316** and/or can have a height which varies along the length of the wall **355**. [0295] The dock **304** of the disposable portion **303** can include one or more mechanical connector portions configured to secure (for example, removably secure) to one or more mechanical connector portions of the hub **306** of the reusable portion **305**. For example, the main body **316** can include one or both of mechanical connector portions **317** and **318**. The mechanical connector portion **317** can be, for example, a clip that can be configured to bend and/or flex. As discussed further below, the clip **317** can include a protrusions **340** that can extend in a direction towards the mechanical connector portion **318** (FIG. **3**H). The mechanical connector portion **318** can extend outward from a portion of the main body **316**. For example, the mechanical connector portion **318** can extend above a height of the wall **355**. The mechanical connector portion **318** can include one or more protrusions **341** that can extend in a direction towards the mechanical connector portion **317** (FIG. 3H). The mechanical connector portions **317**, **318** can assist coupling between the dock **304** and the hub **306**. For example, the mechanical connector portions **317**, **318** can engage corresponding mechanical connector portions of the hub **306** to hold the hub **306** in place. For example, as discussed below, the mechanical connector portions 317, 318 can removably secure within grooves **351**, **352** of the hub **306**. The interaction of the mechanical connector portions **317**, **318** and corresponding mechanical connector portions of the hub **306** can advantageously maintain electrical communication between the dock **304** and the hub **306**. The dock **304** of the disposable portion 303 can include one, two, three, or four or more mechanical connector portions and/or the hub **306** can include one, two, three, or four or more mechanical connector portions. [0296] The mechanical connector portions **317**, **318** may extend upward from outer edges of the main body **316** and/or adjacent or proximate the wall **355** as shown in FIG. **3**E. The mechanical connector portions **317**, **318** can be positioned opposite from each other (FIGS. **3**E and **3**H). In some variants, the dock **304** includes less than two mechanical connector portions or more than two mechanical connector portions. For example, in some variants, the dock **304** includes only one of mechanical connector portions **317**, **318**. [0297] The pin supports **319**, **320** of the dock **304** of the disposable portion **303** can support and/or operably position a plurality of electrical connectors of the disposable portion **303**. For example,

the pin supports **319**, **320** can support and/or operably position conductive strips **344**, **345** of the flexible circuit **325** of the dock **304**. The pin supports **319**, **320** can extend through openings or slits formed on a top surface of the main body 316. For example, as discussed below, the main body 316 can comprise a top frame 324 having one or more slits 336 and/or opening 337 and a bottom frame 327 which can include the one or more pin supports 319, 320. The one or more pins supports 319, 320 can extend from the bottom frame 327 and through the slits 336 and opening 337 (respectively) of the top frame **324** when the main body **316** is assembled. The slits **336** and/or opening **337** formed on the top surface of the main body **316** can be rectangular or substantially rectangular in shape. The pin supports **319**, **320** can be arcuate and/or can include an upward portion, an apex, and a downward portion. The upward portions of the pin supports **319**, **320** can extend upward with respect to and/or beyond the top surface of the main body **316** (for example, a top surface of the top frame **324** and/or bottom frame **327**) at a predetermined angle. The upper portions of the pin supports **319**, **320** can terminate at the apex, from which the downward portions of the pin supports **319**, **320** can extend downward towards the top surface of the main body **316** at another predetermined angle. Such configuration of the pin supports 319, 320 can allow them to function like springs when downward force is applied to the pin supports **319**, **320**. Optionally, the pin supports 319, 320 may not have the downward portions. The pins supports 319, 320 can be

flexible and/or resilient.

[0298] The pin supports **319** can correspond and/or be associated with electrical connectors of the disposable portion **303**. For example, the pin supports **319** can correspond and/or be associated with conductive strips **344** of the flexible circuit **325** (see FIGS. **3F** and **3I**) that carry electronic signals associated with the one or more external electrodes **312** and/or the one or more internal electrodes **311**. For example, as shown in FIG. **3E**, the dock **304** can have six support pins **319** that support six conductive strips **344** of the flexible circuit **325**, which can carry electronic signals from four external electrodes **312** (via cables **314**) and two internal electrodes **311**.

[0299] Similar to the pin supports **319**, the pin supports **320** can correspond and/or be associated with electrical connectors of the disposable portion **303**. For example, the pin supports **320** can correspond and/or be associated with conductive strips **345** of the flexible circuit **325** (see FIGS. **3F** and **3I**) that allow transmission of electronic signals and/or information between the dock **304** and the memory **308** of the hub **306**. The flexible circuit **325** can comprise and/or be coupled to a memory (such as an PROM, EPROM, EPROM, SRAM, and/or DRAM memory) of the disposable portion **303** configured to store information related to the disposable portion **303**. The conductive strips **345** of the flexible circuit **325** can be coupled to such memory. Advantageously, the pin supports **320** can support and/or operably position the conductive strips **345** so that they contact conductor pins of the hub **306** (such as conductive pins **354**), which can enable the hub **306** to determine whether the dock **304** is an authorized product.

[0300] As discussed above, the dock **304** can include one or more openings **323** in portions of the main body **316** that are configured to allow portions of the cables **314** to pass into an interior of the dock **304**. For example, as discussed above, the main body **316** can include one or more openings 323 in the wall 355. The dock 304 can include one, two, three, four, five, six, seven, or eight or more openings **323**. The openings **323** can be sized and/or shaped to receive portions of the cables **314** coupled to the external electrodes **312**. The openings **323** can be formed on a side of the main body **316**. For example, as shown in FIG. **3**E, the openings **323** can be formed on a front side (or "end") of the main body **316**. Alternatively, the openings **323** can be formed on different sides or portions of the main body 316. The number of the openings 323 can correspond to the number of external electrodes 312 coupled to the dock 304 and/or number of cables 314. For example, as shown in FIG. **3**B, the dock **304** of the disposable device **303** can include four external electrodes **312**. In this regard, the dock **304** can include four openings **323** configured to receive four cables **314** coupled to four external electrodes **312**. While FIG. **2**E illustrates four openings **323**, four cables 314, and four external electrodes 312, a different number of electrodes 312, openings 323 and/or cables **314** can be implemented into the disposable portion **303**. The openings **323** can be dimensioned to create a tight fit with the cables **314**. Such configuration can be advantageous in allowing the dock **304** to be water-resistant and/or waterproof. Additionally or alternatively, such configuration can help maintain integrity of connections between the cables **314** and the openings **323**. For example, a tight fit between the openings **323** and portions of the cables **314** can reduce the likelihood that ends of the cables **314** connected to the flexible circuit **325** (for example, to conductive strips **343**) are disconnected when opposite ends of the cables **314** are pulled, either inadvertently or intentionally.

[0301] FIGS. **3**F and **3**G show exploded perspective views of the dock **304** of the disposable portion **303**. The dock **304** can include a top frame **324**, the flexible circuit **325**, the one or more internal electrodes **311**, a substrate **328**, a substrate **329**, a bottom frame **327**, one or more adhesives **322**, a substrate **330**, and a substrate **331**. Advantageously, the parts illustrated in the FIGS. **3**F and **3**G may be laid on top of each other without folding, resulting in an increased efficiency of manufacturing process of the ECG device **310**. The top and bottom frames **324**, **327** can together form and/or define the main body **316**, which is discussed above with reference to FIG. **3**E. Further, the top frame **324** can include the wall **355** also discussed above.

[0302] The top frame **324** can be coupled to the bottom frame **327** such that the top frame **324** sits

on top of the bottom frame **327**. The top frame **324** can include a recessed portion **335** formed on a top surface of the top frame **324**. The recessed portion **335** can include an aperture **338** (see FIGS. **3F-3G**) that is formed at the bottom portion of the recessed portion **335**.

[0303] The bottom frame **327** can include an aperture **332** and one or more apertures **333**. The aperture **332** of the bottom frame **327** can correspond and/or align with the recessed portion **335** of the top frame **324** such that when the top frame **324** is placed on the bottom frame **327**, the aperture **332** receives the recessed portion **335** and the recessed portion **335** extends through and/or below the aperture **332**. As discussed below, this can advantageously allow a portion of the reusable portion **305** and the temperature sensor **309** to be positioned closer to the substrates **330** and/or **331**, which can in turn increase thermal communication between a user's skin and the temperature sensor **309**.

[0304] As discussed above, the dock **304** can include the pin supports **319**, **320**. As shown in FIG. **3F**, the pin supports **319**, **320** can be formed on the bottom frame **327**. The top frame **324** can include slits **336** and/or opening **337** that can receive the pin supports **319**, **320** of the bottom frame **327**, respectively. When the top frame **324** is placed on top of the bottom frame **327**, the pin supports **319**, **320** can extend through and/or above the slits **336** and/or opening **337** of the top frame **324**.

[0305] The flexible circuit **325** can be placed and/or positioned between the top frame **324** and the bottom frame **327** (see FIGS. 3F-3G). For example, the flexible circuit **325** can be sandwiched between the top and bottom frames **324**, **327** during assembly. The bottom frame **327** can operably position the flexible circuit **325** and/or portions thereof such that electrical communication between the flexible circuit **325** and a circuit board or flexible circuit of the reusable portion **305** is facilitated when the reusable portion **305** is secured to the disposable portion **303**. For example, the pin supports **319** of the bottom frame **327** can operably position conductive strips **344** of the flexible circuit **325** so that the conductive strips **344** contact conductor pins **353** of the reusable portion **305**. Additionally or alternatively, the pin supports **320** of the bottom frame **327** can operably position conductive strips **345** of the flexible circuit **325** such that the conductive strips **345** contact conductor pins **354** of the reusable portion **205** when the reusable portion **205** is mated with the disposable portion **303**. Such contact can allow the flexible circuit **325** to transmit information and/or physiological data between the disposable device **303** and the reusable device **305**. Additional details of the flexible circuit **325** are provided below.

[0306] With reference to FIG. **3**F, the internal electrodes **311** can be placed and/or positioned at least partially between the top frame **324** and the bottom frame **327**. The internal electrodes **311** can be removably coupled to the flexible circuit **325**. The internal electrodes **311** can be placed within the apertures **333** and the apertures **333** can be dimensioned to receive the internal electrodes **311** (and/or portions thereof).

[0307] As discussed above, the dock **304** of the disposable portion **303** can include a laminate structure **321**. As also discussed, the laminate structure **321** can include one or more substrates, such as substrates **328**, **329**, **330**, and/or **331**. Substrate **328** can be, for example, a foam membrane or ring configured to surround the top and/or bottom frames **324**, **327** when the dock **304** is assembled. Substrate **328** can include an opening sized and/or shaped to match a size and/or shape of a perimeter of the top and/or bottom frames **324**, **327** (see FIGS. **3F-3G**). Substrates **329**, **330**, **331** can be made of a material that that can provide thermal and/or electrical isolation or alternatively, conductivity. Substrates **328**, **329**, **330**, **331** can be made of different materials or the same material. Substrates **329** and/or **330** can be, for example, polyethylene (PE) film. [0308] With reference to FIGS. **3F-3G**, the adhesives **322** can be affixed to a bottom surface of the bottom frame **327** to adhere the bottom frame **327** to the substrate **330**. The substrate **330** can be adhered to the substrate **331**. One or more apertures **334** can be formed on the substrate **330**. The substrate **330** can include one, two, three, or four or more apertures **334**. The number of apertures **334** can correspond to the number of internal electrodes **311**. The apertures **334** can be dimensioned

to receive the one or more internal electrodes **311**. The substrate **330** can provide electrical isolation between the dock **304** and the patient **111**, for example, in areas outside and/or around the apertures **334**. The apertures **334** can allow the internal electrodes **311** to collect raw ECG data without electrical impedance or isolation provided by the substrate **330**.

[0309] Substrate **331** can provide thermal and/or electrical conductivity between the dock **304** and the patient **11**. Substrate **331** can be the only substrate between the internal electrodes **311** and the patient **11**. The apertures **333** of the bottom frame **327** and apertures **334** of the substrate **330** can advantageously allow the internal electrodes **311** to measure electrocardiogram data from the patient **111** without any unnecessary electrical resistance and/or impedance. The substrate **331** can comprise hydrogel, for example.

[0310] FIG. 3H illustrates a side view of the dock 304 of the disposable portion 303. As discussed above, the dock 304 can include one or both of mechanical connector portions 317, 318. The mechanical connector portions 317, 318 can include protrusions 340, 341, respectively. The protrusions 340, 341 can be positioned at free (for example, cantilevered) ends of the mechanical connector portions 317, 318, such as ends opposite to ends connected to portions of dock 304 (such as the main body 316). The protrusions 340, 341 can engage the grooves 352, 351 of the hub 306 (see FIGS. 3J-3K) to removably secure the hub 306 to the dock 304. When the hub 306 is mated with the dock 304, the hub 306 can be positioned at least partially between the mechanical connector portions 317, 318. The engagement between the protrusions 340, 341 and the grooves 352, 351 can prevent movement of the hub 306 in horizontal and/or vertical directions while mated with the dock 304.

[0311] FIG. 3I illustrates a top view of the flexible circuit 325. The flexible circuit 325 can include numerous conductive surfaces and/or strips. For example, the flexible circuit 325 can include conductor strips 343, 344, 345, and/or 346. The conductor strips 343 can electrically connect to the cables 314 which can themselves be electrically connected to the external electrodes 312. In this regard, the conductor strips 343 can receive electrical signals from the external electrodes 312 via the cables 314. The cables 314 can be soldered to the corresponding conductive strips 343. The conductor strips 346 (also referred to herein as "conductive rings") can be formed around and/or within apertures 347, as shown in FIG. 3I. The conductive rings 346 can create contact with and receive electrical signals from the internal electrodes 311. The apertures 347 can receive a top portion of the internal electrodes 311, creating contact between the conductor strips 346 and the internal electrodes 311 which allows the flexible circuit 325 to receive ECG data from the internal electrodes 311.

[0312] The conductor strips **345** can establish electrical communication between the dock **304** and the memory **308** of the reusable device **305**. The conductor strips **345** of the flexible circuit **325** can be positioned adjacent to (for example, on top of) the pin supports **320**. The pin supports **320** supporting the conductor strips **345** can be oriented such that when the hub **306** is mated with the dock **304**, conductor pins **354** (see FIG. **3**L) of the hub **306** contact the conductor strips **345**. The memory **308** of the reusable device **305** can be coupled to the conductor pins **354** such that contact between the conductor strips **345** and the conductor pins **354** allow electronic signals and/or information to be transmitted from the disposable device **303** to the memory **308** of the reusable device **305**. Advantageously, the conductive strips **345** can be utilized to enable verification of whether the disposable portion **303** is an authorized product. For example, when the reusable portion **205** is electronically and/or mechanically mated to the disposable portion **303** such that contact is made between the conductive strips **345** and the conductor pins **354**, the reusable portion **205** can determine whether the disposable portion **303** is an authorized product by analyzing information contained within a memory of the flexible circuit **325** of the disposable portion **303**. As discussed above, the memory of the flexible circuit **325** can be an PROM, EPROM, EEPROM, SRAM, and/or DRAM memory configured to store information related to the disposable portion **303**. Such determination can prevent damage to the reusable device **305** that may occur if an

unauthorized product is secured thereto. Such determination can additionally or alternatively ensure proper functionality of the reusable device **305**.

[0313] The conductor strips 344 can be in electronic communication with the conductor strips 343, 346 such that they can receive electrocardiogram data from the external electrodes 312 and the internal electrodes 311. The conductor strips 344 of the flexible circuit 325 can be positioned on top of the pin supports 319. The pin supports 319 supporting the conductor strips 344 can be oriented such that when the hub 306 is mated with the dock 304, conductor pins 353 (see FIG. 3L) of the hub 306 can contact the conductor strips 344. The contact between the conductor strips 344 and the conductor pins 353 can allow electronic signals to be transmitted from the disposable device 303 to the processor 307 of the reusable device 305. The processor 307 of the reusable device 305 can be coupled to the conductor pins 353 to receive the electronic signals from the disposable device 303 via the conductor strips 344. The number of conductive strips 344 can correspond with the total number of conductive strips 343, 346. Each of one of the conductor strips 343 and conductor strips 346 can be associated with a different one of the conductor strips 344 of the flexible circuit 325.

[0314] FIGS. 3J-3L illustrate various perspective views of the hub 306 of the reusable portion 205. As shown, the hub 306 can include a cable outlet (also referred to herein as an "output connector port") 350, one or more mechanical connector portions, among other components discussed further below. The one or more mechanical connector portions can allow the reusable portion 305 to mate with the disposable portion 303. The one or more mechanical connector portions can be, for example, grooves 351, 352. The grooves 351, 352, the conductor pins 353, 354, and the temperature sensor 309. The grooves 351, 352 can be formed on the same or different side of the hub 306. For example, as shown in FIGS. 3J and 3K, the grooves 351, 352 can be positioned opposite from each other on opposite ends of the hub 306. As discussed above, the grooves 351, 352 can interact with the protrusions 340, 341 of the mechanical connector portions 317, 318, respectively, to removably secure the dock 304 and the hub 306. The grooves 351, 352 can be dimensioned and/or shaped to engage the protrusions 340, 341, respectively. For example, the mechanical connector portions 317, 318 can snap towards and/or within the grooves 351, 352 to cause the protrusions 340, 341 to engage with the grooves 351, 352.

[0315] The reusable portion **305** can include one or more electrical connectors configured to connect to one or more electrical connectors of the disposable portion **303** when secured thereto. For example, with reference to FIGS. **3L**, the hub **306** can include one or more conductor pins **353**, **354** disposed proximate to a bottom surface of the hub **306** such that when the hub **306** is coupled with the dock **304**, the conductor pins **353**, **354** can be in contact with the conductor strips **344**, **345** allows information and/or electrical signals to be transmitted from the disposable portion **303** to the reusable portion **305**. As discussed above, the contact between the conductor strips **344** and the conductor pins **353** can allow transmission of electrical signals between the dock **304** and the processor **307** of the reusable portion **305**. The contact between the conductor strips **345** and the conductor pins **354** can allow transmission of information between the a memory of the dock **304** (for example, a memory of the flexible circuit **325**) and the memory **308** of the reusable portion **305**.

[0316] The hub **306** can include a recessed portion **361**. The recessed portion **361** can be, for example, formed in the bottom frame **357**. The recessed portion **361** can be recessed from a top surface of the bottom frame **357** (FIGS. **3**L and **3**N) and can extend outward (for example, below) a bottom surface of the bottom frame **357**. The recessed portion **361** can include an opening **360** formed at an end or bottom of the recessed portion **361**. The recessed portion **361** can be shaped, dimensioned, and/or positioned on the bottom surface of the hub **306** such that the recessed portion **335** of the dock **304** (FIG. **3**E) can receive the recessed portion **361** when the dock **304** is coupled to hub **306**. The recessed portion **361** can receive and/or house the temperature sensor **309**. The temperature sensor **309** can be positioned at a predetermined distance from a bottom portion of the

recessed portion **361** and/or the opening **360**. As discussed below, the recessed portion **361** can extend through an opening in the dock **304** and can contact the substrate **330** and/or **331**. The recessed portion **361** of the dock **304** can comprise a material that provides thermal conductivity but minimizes or prevents electrical conductivity. This can advantageously allow the recessed portion **361** to facilitate thermal communication between the patient's skin and the temperature sensor **309** and simultaneously minimize or eliminate damage and/or interference that may be caused from electrical interference. As an example, the recessed portion **361** can comprise a plastic coated with and/or comprising boron nitride.

[0317] FIGS. **3**M and **3**N illustrate various exploded, perspective views of the hub **306** of the reusable device **305**. The hub **306** (also referred to herein as "cover") can include a top frame **356** and a bottom frame **357**. The hub **306** can further include one or more resistors **358**, a circuit board **359**, the conductor pins **353**, the conductor pins **354**, the temperature sensor **309**, and the cable outlet **350**. The bottom frame **357** can include apertures **363** and/or apertures **364** (also referred to herein as "cavities"). The apertures **363**, **364** can extend through the bottom frame **357** and receive the conductor pins **353** and the conductor pins **354**, respectively. The apertures **363**, **364** can be dimensioned and sized such that the conductor pins **353**, **354** create water-resistant seal when received by the apertures **363**, **364**.

[0318] The circuit board **359** can include the processor **307** and the memory **308**. The circuit board **359** can be operatively coupled to the external electrodes **312**, the internal electrodes **311**, and the temperature sensor **309** in order to receive electrocardiogram data and temperature data. The hub **506** can include one or more resistors **358** coupled to the circuit board **359** and/or the conductor pins **353**. The hub **506** can include one, two, three, four, five, six, seven, or eight or more resistors **358**. The number of resistors **358** can correspond with the number of conductor pins **353** and/or the total number of external and internal electrodes **312**, **311**. The resistors **358** can be positioned between the circuit board **359** and the conductor pins **353**. Advantageously, the resistors **358** can prevent or reduce the damage to the circuit board **359** (or other components of the reusable device **305**) due to shorting or arcing, which may be caused when high voltage is accidentally and/or suddenly introduced via the conductor pins **353**, for example, if the reusable device **305** is positioned on or proximate to a patient when a defibrillator is used. For example, the resistors 358 can be high-capacity, low-resistance resistors that allow electronic signals related to a user's cardiac electrical activity to pass therethrough but inhibit high voltage from passing to the circuit board 359 and/or other components of the reusable device **305**. The resistors **358** can be soldered directly to the circuit board **359** and/or the conductive pins **353**. As shown in FIG. **3M**, the hub **306** can include one or more walls **368** configured to separate each of the one or more resistors **368**. [0319] FIG. **3**O illustrates a top, perspective view of the hub **306** and the dock **304**, illustrating how the hub **306** and the dock **304** can be coupled (for example, removably coupled). The dock **304** can removably secure to the hub **306** via engagement between the mechanical connector portions **217**, 218, 252, 251 as discussed above. When the dock 304 and the hub 306 are secured in such manner, the conductor pins 353, 354 (see FIG. 2L) of the hub 306 can engage the pin supports 319, 320 (see FIG. **3**E), respectively. As discussed above, the conductive strips **344**, **345** of the flexible circuit **325** can be supported by the pin supports **319**, **320**. Accordingly, when the dock **304** and the hub **306** are secured in such manner, the conductive strips **344**, **345** can contact the conductor pins **353**, **354** of the hub **306**. The contact between the conductive strips **344**, **345** and the conductor pins **353**, **354** can allow electronic signals and/or information to be transmitted from the dock **304** of the disposable device **303** to the hub **306** of the reusable device **305**. Additionally, when the dock **304** and the hub **306** are secured in such manner, the recessed portion **335** and the recessed portion **361** can be aligned (see FIGS. 3N-3O). The recessed portion 335 can be sized and/or shaped to receive the recessed portion **361**. The aperture **360** of the recessed portion **361** (see FIG. **3**N) and the aperture **338** of the recessed portion **335** (see FIG. **3**F**-3**G) can be aligned such that the apertures **360**, **338** define an open space and/or area below the temperature sensor **309**. In such configuration,

the recessed portion **261** can contact the substrate **334** when the reusable and disposable portions **305**, **303** are mated. The apertures **338**, **360** can be vertically aligned, for example.

[0320] FIGS. **3P** and **3Q** illustrate cross-sectional views of the ECG device **310** placed on a patient's skin, showing relative positions of the temperature sensor **309** and an internal electrode **311**, respectively, with respect to a patient's skin.

[0321] The temperature sensor **309** can be positioned a distance D**1** away from an outer surface of a patient's skin. The distance D**1** can be equal to the distance between the bottom-most portion of the temperature sensor **309** and a bottom surface of the substrate **331**, for example. In this regard, the temperature sensor **309** may not be in direct contact with the skin of the patient. The aperture **360** of the recessed portion **361** (see FIG. **3**N) and the aperture **338** of the recessed portion **335** can allow the temperature sensor **309** to collect temperature data from the patient.

[0322] With reference to FIG. **3**Q, the internal electrodes **311** can be positioned a distance **D2** away from the outer surface of the patient's skin. The distance **D2** can be equal to the distance between the bottom-most portion of the internal electrodes **311** and the bottom surface of the substrate **331**. In this regard, the internal electrodes **311** may not be in direct contact with the skin of the patient. For example, the substrate **331** can be positioned between the internal electrodes **311** and the patient's skin. Substrate **331** can comprise an electrically conductive material that facilitates transmission of electrical signals from the patient's heart to the internal electrodes **311**. The laminate structure **221** can include a release liner similar or identical to release liner **239** discussed above with reference to ECG device **110** and FIGS. **2F-2**G).

[0323] The distance D**2** and the distance D**1** can be the same or different. For example, D**2** can be less than D**1**. In another example, D**2** can be greater than D**2**.

[0324] FIG. 2R illustrates a block diagram representing a method 370 of determining patient physiological parameters using the ECG device **310**. At step **371**, the reusable device **305** establishes connection with the disposable device **303**. This can occur when the reusable device is mechanically mated with the disposable device **303**. The connection between the reusable device **305** and the disposable device **303** can be established via contact between the conductive pins **353**, **354** and the conductive strips **344**, **345** supported by pin supports **319**, **320** as discussed above. The contact between the conductive pins 353, 354 and the conductive strips 344, 345 can occur when the hub **306** of the reusable device **305** is mounted on the dock **304** of the disposable device **303**. At step **372**, the reusable device **305** can provide power to the disposable device **303**. The power provided by the reusable device 305 can power the external and internal electrodes 312, 311 to collect electrocardiogram data. In some variants, the disposable portion **303** does not comprise a power source and relies entirely on the reusable device **305** to collect electrocardiogram data. [0325] At step **373**, the disposable device **303** receives power from the reusable device **305**. At step **374**, the disposable device **303** uses the one or more external electrodes **312** and/or the one or more internal electrodes **311** to collect raw ECG data from the patient. At step **375**, the raw ECG data collected by the external electrodes 312 and/or the internal electrodes 311 can be transmitted to the reusable device **305**. The raw ECG data can be transmitted via the flexible circuit **325** as discussed above. The raw ECG data can be transmitted from the disposable device **303** to the reusable device **305** automatically or manually upon user input. The raw ECG data can be transmitted continuously or with a predetermined delay.

[0326] At step **376**, the reusable device **305** can collect raw temperature data. The raw temperature data can be collected by the temperature sensor **309**. The raw temperature data can be collected simultaneously or non-simultaneously from the raw ECG data. For example, the reusable device **305** can collect the raw temperature data regardless of whether the disposable device is collecting and/or transmitting the raw ECG data.

[0327] Care providers may be able to configure the ECG device **310** to determine which physiological data to be collected in different circumstances. The ECG device **310** can be configured to collect and process temperature-related physiological data in certain, predetermined

situations. For example, the ECG device **310** can be configured to measure temperature of a patient when it detects ECG signals associated with irregular heart activities and/or bodily conditions. For example, the ECG device **310** can be configured to measure temperature of a patient when a variation in ECG signals over a predetermined time period exceeds a threshold value. In another example, the ECG device **310** can be configured to collect ECG data from a patient when a temperature measurement exceeds or falls below a threshold value, which can be indicative of an abnormal condition. Other types information related to different patient parameters and/or conditions can be used to trigger the ECG device **310** to collect ECG and/or temperature data. [0328] At step **377**, the reusable device **305** (for example, the processor **307**) can perform signal processing on the raw ECG and temperature data to determine physiological parameters related to a patient's heart activity and temperature. At step **378**, the reusable device **305** of the ECG device **310** can transmit the physiological parameters to other patient monitoring systems and/or devices via wires or various wireless communication protocols.

[0329] In some variants, the ECG device **310** is waterproof or water-resistant. For example, the reusable device **305** and/or the disposable device **303** can be configured such that, when secured to one another, they prevent water from entering into an interior thereof. This can minimize or prevent damage to the reusable device **305** and/or the disposable device **303** and/or components thereof (such as the temperature sensor **309**, the internal electrodes **311**, and/or the circuit board **359**). [0330] In some variants, other portions of the ECG device **310** comprise a material that provides thermal conductivity but minimize or prevent electrical conductivity, such as boron nitride. For example, portions of the dock **304** and/or the hub **306** can be made with plastic coated with boron nitride. In some variants, portions of the ECG device **310** (for example, the dock **304** and/or the hub **306**) comprise materials that provide temperature isolation. For example, the dock **304** and the hub **306** can be manufactured using coated fiberglass.

ECG Packaging

[0331] FIGS. **4**A-**4**C illustrate views of a packaging device **400** (also referred to herein as an "ECG packaging device") that can be used to secure and/or package portions of the ECG device **110**. For example, the packaging device **400** can be used to secure and/or package the disposable portion **203** of the ECG device **110**. While FIGS. **4**A-**4**C illustrate the ECG device **110** or portions thereof, it is to be understood that the ECG device **310** or portions thereof (for example, the disposable portion **303**) can be secured and/or can interact with the packaging device **400** in a similar or identical manner. Accordingly, the discussion that follows below with reference to disposable device **203** of ECG device **110** is equally applicable to the disposable device **303** of ECG device **310**.

[0332] With reference to FIG. **4**A, the packaging device **400** can include a body placement indicator portion **410** and one or more disposable device securement portions, for example, a dock securement portion **420** and/or an electrode securement portion **440**. The packaging device **400** can include an opening **450** extending along an interior of a portion of the packaging device **400** that can allow flexing and/or bending of the device **400**, for example, as shown in FIG. **4**C. The opening **450** can extend along a centerline axis **470** of the device **400** as shown. In such configuration, when the device **400** is bent as shown in FIG. **4**C, the device **400** can be split in half and can stand upright and/or partially upright. As shown, one half can include the body placement indicator portion **410** and/or the dock securement portion **420**, and the other half can include the electrode securement portion **440**.

[0333] The dock securement portion **420** can be configured to secure (for example, removably secure) the dock **204** of the disposable device **203**. The dock securement portion **420** can include a placement indicator **422** and one or more prongs **424**, for example, one, two, three, four, five, or six or more prongs **424**. As an example, the dock securement portion **420** can include two prongs **424** positioned opposite one another about the placement indicator **422** (FIG. **4**A). The one or more prongs **424** can be formed from and/or integral with other portions of the device **400**. The one or

more prongs **424** can be bendable and/or resilient. The one or more prongs **424** can be configured to bend away from a surface **401** of the device **400** such that portions of the dock **204** can be secured between the prongs **424** and the surface **401** of the device **400**. For example, with reference to FIG. **4B**, the one or more prongs **424** can be configured to bend a distance away from the surface **401** an amount that is equal to or greater than a thickness of the laminate structure **211** of the dock **204** which can include one or more substrates as discussed above.

[0334] The electrode securement portion **440** can be configured to secure (for example, removably secure) the one or more electrodes **112** of the disposable portion **203** of the ECG device **110**. The electrode securement portion **440** can include one or more placement indicators **442** configured to indicate a placement of the one or more electrodes **112**. Each of the one or more placement indicators **442** can include a unique graphic and/or label that indicates placement of a particular one of the one or more electrodes **112** (FIG. **4**A). For example, each of the one or more placement indicators **442** can include a graphic and/or label that corresponds to a graphic and/or label on each of the electrodes **112** as illustrated in FIG. **4**D and as discussed above.

[0335] The electrode securement portion **440** can include one or more prongs **444**, for example, one, two, three, four, five, or six, seven, or eight or more prongs **444**. The electrode securement portion **440** can include one or more pairs of prongs **444**, for example, one, two, three, four, five, or six or more pairs of prongs **444**. The one or more prongs **444** can be formed from and/or integral with other portions of the device **400**. The one or more prongs **444** can be bendable and/or resilient. The one or more prongs **444** can be configured to bend away from the surface **401** of the device **400** such that portions of the electrodes **112** can be secured between the prongs **444** and the surface **401** of the device **400**. For example, with reference to FIG. **4B**, the one or more prongs **444** can be configured to bend a distance away from the surface **401** that is dimensioned to fit thicknesses of the electrodes **112** (for example a thickness of the laminate structure **221** of the electrodes **112**). The number of prongs **444** can correspond with the number of electrodes **112** of the disposable portion **203** of the ECG device **110**. For example, the electrode securement portion **440** can include a pair of prongs **444** for each electrode **112** of the disposable device **203** so that each electrode **112** is secured by two prongs **444**. Each prong **44** in a pair can be positioned opposite one another about the placement indicator **422** (FIG. **4A**).

[0336] The packaging device **400** can include one or more features that can retain and/or secure portions of the cables **114** of the disposable portion **203** of the ECG device **110**. For example, the device **400** can include one or more cable securement prongs **446** that can be configured to bend away from the surface **401** of the device **400** such that portions of the cables **114** can be received and/or secured at least partially between the prongs **446** and the surface **401** of the device **400**. For example, with reference to FIG. 4B, the one or more prongs 446 can be configured to bend a distance away from the surface **401** an amount that is equal to or greater than a dimension (for example, diameters) of the cables 114. The one or more prongs 446 can be formed from and/or integral with other portions of the device **400**. The one or more prongs **446** can be bendable and/or resilient. The one or more prongs **446** can be positioned in the electrode securement portion **440**. For example, the one or more prongs **446** can be positioned proximate and/or between the one or more prongs **444**. Such configuration can advantageously allow portions of the cable **114** to secure within the one or more prongs **446** when the one or more electrodes **112** are secured by the one or more prongs **444** (see FIG. **4**A-**4**C). The device **400** can include one, two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve or more cable securement prongs **446** or groups of cable securement prongs **446**. For example, the device **400** can include a group of prongs **446** for each number of electrodes 112. For example, the device 400 can include two, three, or four prongs 446 per each number of electrodes 112. In some variants, one or more of the prongs 446 within each group are oriented opposite a nearby prong **446** in order to reduce or prevent portions of the cables **114** from being inadvertently removed (see FIG. 4A-4C).

[0337] In addition or as an alternative to the one or more cable securement prongs **446**, the device

400 can include one or more notches **452** that are sized and/or shaped to receive and/or secure portions of the cables **114**. For example, the device **400** can include one, two, three, or four or more notches **452**. The number of notches **452** can correspond with the number of cables **114** and/or electrodes **112**. The notches **452** can be positioned adjacent to the opening **450**, as shown in FIGS. **4A-4B**. The notches **452** can include a channel and an aperture positioned at an end of the channel. The channel can have a sized and/or shape that is smaller than a cross-section of the cables **114** and the aperture can have a cross-section that is sized and/or shaped to match the cross-section of the cables **114**. Such configuration can allow portions of the cables **114** to be held at least partially within the apertures without moving out of the notches **452** via the channels. Portions of the device **400** adjacent the channels of the notches **452** can be bent or flexed to allow portions of the cables **114** to be positioned within and/or through the apertures of the notches **452**. [0338] The device **400** can include a body placement indicator portion **410** that can include a visual

[0338] The device **400** can include a body placement indicator portion **410** that can include a visual representation of a body and one or more body placement indicators that can indicate an a suggested placement of each of the one or more electrodes **112** and/or the dock **204** on the body. For example, with reference to FIG. **4A**, the body placement indicator portion **410** can include one or more electrode body placement indicators **474** that can correspond with a different and unique one of the electrodes **112** and the placement indicators **442**. Additionally or alternatively, the body placement indicator portion **410** can include a dock body placement indicator **472** that can correspond with the placement indicator **422**. The one or more electrode body placement indicators **474** and dock body placement indicator **472** can advantageously help to quickly instruct a caregiver on an appropriate placement of the dock **204** and the electrodes **112** on a patient's body. Additionally, the device **400** can include placement order indicators **460**, **462**, **464**, **466**, **468** which can indicate an order in which each of the components of the disposable portion **203** should be placed and/or secured to a patient.

[0339] While FIGS. 4A-4D illustrate packaging device **400** being configured to secure a disposable portion **203** including four electrodes **112** and four cables **114**, the packaging device **400** can be configured differently in order to secure an alternative number of electrodes **112** and cables **114**. For example, as shown by FIG. **4**E, packaging device **400** can be configured to secure a disposable portion **203** having two electrodes **112** and two cables **114**. For example, the device **400** can include two placement indicators **442**, two pairs of prongs **444**, one or more prongs **446** or groups of prongs **446** for each cable **114**, two notches **452**, two electrode body placement indicators **474**, a dock body placement indicator **472**, and one or more of the placement order indicators **460**, **462**, **464**.

Blood Pressure Monitor

[0340] FIGS. 5A-5AA illustrate various views and aspects of the blood pressure monitor **120** (also referred to herein as "blood pressure device" and "blood pressure monitoring device"). While the device **120** is referred to as a "blood pressure monitor" or "blood pressure device" herein, device **120** can measure and/or monitor other parameters in addition or as an alternative to blood pressure. For example, blood pressure device **120** can measure and/or monitor the concentration or partial pressure of carbon dioxide (CO.sub.2) in exhaled air of the patient. As another example, as mentioned above the blood pressure monitor **120** can include an accelerometer and/or gyroscope to measure motion data. Blood pressure device **120** can be, for example, a noninvasive blood pressure device and can have the characteristics and/or functionality as described in more detail below with reference to FIGS. **12-14**E.

[0341] FIGS. **5**A-**5**H illustrate various views of the blood pressure monitor **120**. Blood pressure monitor **120** can include a housing **502**. As shown in FIGS. **1**A-**1**B, **5**C-**5**D, and **5**F, and as further discussed below, blood pressure monitor **120** can be configured to secure to an arm of patient **111**, for example, by securing to a blood pressure cuff **121**. Blood pressure cuff **121** can wrap around and/or otherwise secure to an arm of patient **111**, and blood pressure monitor **120** can secure to the blood pressure cuff **121**, for example, via securement between one or more ports of the blood

pressure monitor **120** and one or more prongs of the blood pressure cuff **121** as discussed further below. As also discussed further below, blood pressure monitor **120** can be configured to connect to cuff **121** and inflate and/or deflate the cuff **121**. As also discussed further below, blood pressure monitor **120** can provide air to the cuff **121** to inflate the cuff **121** to a pressure level high enough to occlude a major artery. When air is slowly released from the cuff **121**, blood pressure can be estimated by blood pressure monitor **120** as described in more detail below with reference to FIGS. **12-14**E.

[0342] With reference to FIGS. 1A-1B and 5A, blood pressure monitor 120 can connect to one or more physiological sensors and/or monitors, such as ECG device **110** and/or patient monitor **130**, each of which are discussed in more detail elsewhere herein. For example, a cable **105** and connector **105***a* can connect to a connector port **516** (see FIGS. **1**A-**1**B and **5**A) of the blood pressure monitor **120** and also connect to ECG device **110** (see FIGS. **1**A-**1**B and **2**A). Additionally or alternatively, cable **107** can connect to a connector port **514** (see FIGS. **1**A-**1**B and **5**A) of the blood pressure monitor **120** and can also connect to patient monitor **130** (see FIGS. **1**A-**1**B and FIG. 8A). For example, cable 107 and connector 107a can connect to a female connector port 832 of patient monitor **130** (see FIGS. **8**A and **8**I). In some variants, cable **107** is permanently secured to the blood pressure monitor **120** at the connector port **514**. For example, an end of cable **107** can be permanently hard-wired to a circuit board of blood pressure monitor **120** and thus can be not removably securable like connector **105***a* and/or **107***a*. As discussed previously, blood pressure monitor **120** can include a bypass bus that can pass physiological data received from the ECG device **110** to the patient monitor **130** without processing such data. For example, the bypass bus of blood pressure monitor **120** can pass physiological data received via cable **105** and connector **105***a* by connector port **516** to connector port **514**, through cable **107** and connector **107***a*, and to patient monitor **130** via connector port **433** without processing such data.

[0343] Blood pressure monitor **120** can include various electronic components to allow the blood pressure monitor **120** to carry out its physiological measurement and/or monitoring functionality, while the cuff **121** (FIG. 5I) can include little or no electronic components and/or functionality. For example, in some cases, the only electronic components in the cuff **121** are those that relate to and/or provide near field communication (NFC) with the blood pressure monitor **120**, which is described further below. In some cases, the blood pressure monitor **120** and/or the cuff **121** can be configured such that the blood pressure monitor **120** does not contact the patient when the cuff **121** and the blood pressure monitor **120** are secured to the patient. Such configuration can allow the blood pressure monitor **120** to be "reusable" and the cuff **121** to be "disposable." In some variants, the blood pressure monitor **120** includes a label portion **521**, for example, on a top surface of the blood pressure monitor **120** (FIGS. **5**A-**5**B).

[0344] As discussed in more detail below, the blood pressure monitor **120** and the cuff **121** can include various features which allow for removable securement. Such removable securement can advantageously allow the cuff **121** to remain attached to the patient **111** while the blood pressure monitor **120** is removed from the patient **111** and/or cuff **121**. This can be especially helpful where it is desirable to temporarily remove the housing **502** for inspection or repair. This can also allow a caregiver to clean the cuff **121** and/or regions of the patient **111** proximate the cuff **121** without risking damage to the blood pressure monitor **120** (or various components thereof).

[0345] FIGS. **5**B-**5**H illustrate various views of the blood pressure monitor **120**. As shown, the blood pressure monitor **120** (and/or the housing **502**) can include a first end **510**, a second end **512** opposite the first end **510**, a first side **513**, and a second side **515** opposite the first side **513**. While the present disclosure refers to "end" or "side", such terminology is not intended to be limiting, but rather, is employed for mere convenience in differentiating certain features of the blood pressure monitor **120**. Accordingly, while the term "end" is used for the first and second ends **510**, **512**, it is to be understood that such ends **510**, **512** can also represent "sides" of the blood pressure monitor **120**.

[0346] The connector port **516** can extend from the first end **510**, and as discussed above, can connect to a connector and/or cable such as connector **105***a* and cable **105**. Connector port **516** can protrude outward from a portion of the first end **510**. The connector port **516** can be have a width and/or height that is less than a width and/or height of the first end **510**. The first end **510** can additionally or alternatively include a connector port **514** which can be spaced from the connector port **516** along the first end **510**. As also discussed above, connector port **514** can connect to a cable **107**. As also discussed above, an end of cable **107** can be irremovably secured to blood pressure monitor **120** via connector port **514**. For example, an end of the cable **107** can be hard-wired to a circuit board of blood pressure monitor **120**. Connector port **514** can protrude outward from the first end **510**. Connector port **514** can protrude outward from the first end **510** a distance greater than the connector port **516** (see FIGS. **5**C-**5**D). Connector port **514** can have a circular crosssection, a conical cross-section, and/or a combination of the same or different shaped cross-sections or shapes. Connector port **514** can have a cross-section that tapers (or decreases) from a first end of the connector port **514** that connects to the first end **510** to a second end of the connector port **514** that is opposite from the first end of the connector port **514**. Connector port **514** can have an increased cross-section at the second end of the connector port 514 (see FIGS. 5C-5D). Connector port **516** can be positioned in a middle of the first end **510**. Connector port **514** can be positioned on either side of connector port **516** along the first end **510**. As discussed further below, the blood pressure monitor **120** can include one or more ports that can provide fluid communication between an interior of the housing **502** and a bladder of the cuff **121**. For example, the blood pressure monitor 120 can include one or both of ports 570, 572 (FIG. 5D), each of which are described in more detail below.

[0347] FIGS. 5I-5M illustrate various views of the cuff **121**, with and without the blood pressure monitor **120** attached. As shown, the cuff **121** can include a first portion **540** and a second portion **542**. The second portion **542** can have tapered or partially tapered edges, as shown. The cuff **121** can have a width W.sub.1 and a length L.sub.1 (see FIG. 5L). The width W.sub.1 can extend between sides **545** and **547**. The length L.sub.1 can extend between ends **541** and **543**. The width W.sub.1 can be less than length L.sub.1. The first portion **540** can include an attachment portion **544** configured to secure to an attachment portion of the second portion **542**, which can be on an opposite surface of the cuff **121** as the attachment portion **544**. For example, the attachment portion **544** can comprise a hook-and-loop fastener that can removably secure to a hook-and loop-fastener of an attachment portion of the second portion **542**. The first portion **540** of the cuff **121** can include a bladder layer (also referred to herein as "bladder"), such as bladder layer 543 (see FIG. 5X) that can be configured to contact the patient when the cuff 121 is secured to the patient. The bladder 543 can be configured to inflate and deflate, as further discussed elsewhere herein. The cuff **121** can include, for example, in the first portion **540**, a securement portion which can facilitate removable securement of the blood pressure monitor 120. For example, the cuff 121 can include one or more prongs that can secure to portions of the blood pressure monitor 120. For example, the cuff **121** can include one or both of prongs **550**, **552** that can be configured to be received and/or secure within one or more ports of the blood pressure monitor 120 (such as ports 570, 572). The prongs **550**, **552** can be spaced apart from one another. The prongs **550**, **552** can be spaced equally from an end **541** and/or end **543** of the cuff **121**. The prong **550** can be spaced a first distance from a first side **545** of the cuff **121** and the prong **552** can be spaced a second distance from a second side **547** of the cuff **121**, and such described first and second distances can be equal. The prong **550** can be spaced a first distance from a first side **545** of the cuff **121** and the prong **552** can be spaced a second distance from the first side 545 of the cuff 121, and such described first and second distances can be not equal. The prong **550** can be spaced a first distance from a second side **547** of the cuff **121** and the prong **552** can be spaced a second distance from the second side **547** of the cuff **121**, and such described first and second distances can be equal. The width W.sub.1 of the cuff **121**, spacing and/or positioning of the prongs **550**, **552**, and/or a width and/or length of the blood

pressure monitor **120** can be configured such that, when the blood pressure monitor **120** is secured to the cuff **121** (for example, via securement of the prongs **550**, **552** within ports **570**, **572** of the blood pressure monitor **120**), the blood pressure monitor **120** is positioned within the width W.sub.1 of the cuff **121** (for example, ends of the blood pressure monitor **120** at or spaced inwards from sides **545**, **547**) (see FIGS. **5**L-**5**M).

[0348] Advantageously, the spacing and/or positioning of the prongs **550**, **552** with respect to each other and/or ends 541, 543, and/or sides 545, 547 can be configured so that the device 120 is symmetrically positioned with respect to the width W.sub.1 of the cuff **121** regardless of whether the device **120** and/or the cuff **121** is secured in an first orientation (for example, FIG. **5**L) or a second orientation (for example, FIG. 5M), for example, on an arm of patient 111. Such first and second orientations can be the reverse or opposite of each other (see FIGS. 5L-5M). The spacing and/or positioning of the prongs 550, 552 with respect to each other and/or ends 541, 543, and/or sides **545**, **547** can be configured so that the device **120** is symmetrically positioned with respect to the width W.sub.1 of the cuff **121** regardless of whether the prong **550** is secured to the port **570** or the port **572** and/or regardless of whether the prong **552** is secured to the port **570** or the port **572**. This can advantageously allow the cuff **121** and the device **120** be symmetrically positioned when secured to either a right arm or a left arm of a patient **111** as illustrated in FIGS. **1A-1**B. Additionally, the incorporation of both of prongs **550**, **552** can provide increased stability when secured to the ports 570, 572 of the device 120. As described further below, the prongs 550, 552 can include fluid passages that are in fluid communication with the bladder **543** of the cuff **121**. [0349] FIGS. 5N-5O illustrate an optional support body **560** that can be secured to other portions of the cuff **121** during assembly. Where the cuff **121** includes such support body **560**, the support body **560** can include the prongs **550**, **552**. The prongs **550**, **552** can include fluid passages **550***a*, **552***a* which can extend through a length of the prongs 550, 552 and a base 554 of the support body 560 (see FIG. 50). The support body **560** can include one or more bumps **553** extending from a bottom surface of the base **554** of the support body **560**. The one or more bumps **553** can be positioned around the fluid passages **550***a*, **552***a* as shown in FIG. **5**O. For example, the support body **560** can include one, two, three, or four or more bumps 553 extending from a bottom surface of the base **554** of the support body **560**. The one or more bumps **553** can be spaced apart from one another relative to the fluid passages **550***a*, **552**. Such bumps **553** can advantageously help ensure that bladder **543** does not cover the fluid passages **550***a*, **552***a* (see FIG. **5**X) when the blood pressure monitor **120** is in use with the cuff **121**. For example, the one or more bumps **553** can space a surface of the bladder **543** from the fluid passages **550***a*, **552***a* and provide a gap between ends of the fluid passages **550***a*, **552***a* at a surface of body **554**. The support body **560** can be welded to portions of the cuff **121** such that only the prongs **550**, **552** are visible, as shown in FIG. **5**I-**5**J. [0350] The blood pressure monitor **120** and cuff **121** can include near field communication (NFC) structure and/or functionality that can enable the blood pressure monitor 120 to, among other things: confirm that the cuff **121** is an authorized product; transfer information and/or data to the cuff **121** for storage; determine the size of a particular cuff **121** to which the blood pressure monitor **120** is attached; and/or determine a lifespan of the cuff **121**. For example, in some cases, after the blood pressure monitor **120** detects a size of the cuff **121** to which it is attached via the NFC (such as that described below), the blood pressure monitor **120** determines a particular inflation rate and/or profile that is unique to that particular cuff **121**. For example, such particular inflation rate and/or profile can be different for smaller cuffs **121** (for example, for young children or neonatal patients) than for larger cuffs **121** (for example, for adults). The blood pressure monitor **120** can include an NFC reader that transmits a radio frequency and the cuff **121** can include an NFC tag (for example, in the form of a sticker or label) which can be attached to a portion of the cuff **121** or within an interior portion of the cuff **121**. For example, the blood pressure monitor **120** can include an RFID reader that transmits a radio frequency and the cuff **121** can include an RFID tag (for example, in the form of a sticker or label) which can be attached to a portion of the cuff 121 or

within an interior portion of the cuff **121**. The RFID tag can be placed on an outer surface of the cuff **121**, for example, proximate to the prongs **550**, **552**. Alternatively, the RFID tag can be positioned within an interior portion of the cuff **121**. For example, where the cuff **121** includes the support body **560**, an RFID tag can be positioned within a recessed portion **548** of the support body **560** (see FIGS. **5**J and **5**N). The recessed portion **548** can be positioned proximate the prongs **550**, **552**, for example, between the prongs **550**, **552**. With reference to FIG. **5**J, the cuff **121** can include a placement indicator **546** that can be configured to indicate a proper placement of the blood pressure monitor **120** on the cuff **121**. The placement indicator **546** can have a sized and/or shaped that matches a size and/or shape of the blood pressure monitor **120** (such as a perimeter of the blood pressure monitor **120**).

[0351] The blood pressure monitor **120** (for example, the housing **502**) can include one or more air intakes which can enable fluid communication with ambient air outside the housing **502**. As discussed elsewhere herein, the blood pressure monitor **120** can also include one or more air pumps **522** which can create suction to draw ambient air into and/or through such air intake(s) of housing **502**. Such air intake(s) can be located and/or positioned in a variety of locations on the housing **502**, for example, sides, ends, and/or top or bottom surfaces of housing **502**. Housing **502** can include one, two, three, four, five, or six or more air intakes. For example, housing **502** can include an air intake located along one of sides **513**, **515** and/or ends **510**, **512**.

[0352] FIGS. **5P-5**Q illustrate cross-sections through the blood pressure monitor **120**. FIGS. **5P-5**R further illustrate an air intake **580** of the blood pressure monitor **120**. The air intake **580** can be configured such that air flowing into and/or out of an interior **588** of the blood pressure monitor **120** travels in a non-straight path. As discussed below, this can advantageously inhibit liquids from entering into the interior **588**, which could cause damage to internal components of the blood pressure monitor **120**.

[0353] The housing **502** can include an opening **581** in a portion of the first end **512** of the housing **502**. With reference to FIG. **5H**, the opening **581** can comprise a slit having a width that is greater than a height. The opening **581** can extend along a portion of the first end **512** of the housing **502**. The housing **502** can include an inner wall **582** spaced away from the first end **512** (or the exterior wall defined by the first end **512**). With reference to FIGS. **5Q-5R**, the inner wall **582** can partition (for example, "divide") the interior **588** of the housing **502** into a first portion **588** and a second portion **588** b. As shown, the first portion **588** can be closer to the wall defined by the first end **512** and/or the opening **581**. The first portion **588** can be in fluid communication with ambient outside the housing **502** via opening **581**. The inner wall **582** can include an opening **583**. The opening **583** can provide fluid communication between the first and second portions **588** a, **588** b. The opening **583** can comprise a square, rectangular, or circular shape, among others. The opening **583** can comprise a square or rectangular shape with rounded corners (see FIG. **5P**).

[0354] As shown in FIG. **5**R, the opening **581** can be positioned a distance D.sub.1 from a bottom of the housing **502**. A top portion **583***a* of the opening **583** can be positioned a distance D.sub.3 away from the bottom of the housing **502** and a bottom portion **583***b* of the opening **583** can be positioned a distance D.sub.2 from the bottom of the housing **502**. As also shown, the housing **502** can have a height H.sub.1.

[0355] The air intake **580** can be defined (or "formed") by the opening **581**. Where the housing **502** includes the inner wall **582**, the air intake **580** can be defined (or "formed") by the opening **581** and the opening **583**. Further, the positioning of the openings **581**, **583** relative to the bottom of the housing **502** can be selected such that a flow path for air entering or exiting the interior **588** (for example, second portion **588***b*) is not-straight. For example, the opening **581** and opening **583** can be not aligned with each other. As another example, the distance D.sub.1 can be different from (for example, less than) one or both of distances D.sub.2, D.sub.3 and/or different from (for example, less than) a distance from an axis extending through a center of opening **583** and the bottom of the housing **502**. Such configuration can advantageously inhibit (for example, prevent) liquids from

entering into the interior **588**, which could cause damage to internal components of the blood pressure monitor **120**. At the same time, such configuration can still allow air to flow into and out of the interior **588** (for example, second portion **588***b*).

[0356] With continued reference to FIGS. 5P-5R, the housing **502** can include an inner wall **586**. The inner wall **586** can extend from a bottom interior surface of the housing **502**. The inner wall **586** can extend upward from the bottom interior surface (for example, towards a top interior surface of the housing **502**) and partially partition the first portion **588***a* of the interior **588**. The inner wall **586** can have a tip or end that is positioned a distance D.sub.4 from the bottom of the housing **502** (see FIG. **5R**). The distance D.sub.4 can be different from the distance D.sub.1, distance D.sub.2, and/or distance D.sub.3 For example, the distance D.sub.4 can be greater than the distance D.sub.1, distance D.sub.2, and/or distance D.sub.3. The inner wall **586** can extend such that a tip or end of the inner wall **586** is positioned (vertically) between the top and bottom portions **583***a*, **583***b* of the opening **583**. For example, the distance D.sub.4 can be greater than the distance D.sub.2 but less than the distance D.sub.3.

[0357] In some variants, the housing **502** includes a wall **587** proximate the opening **581**, which can extend from a bottom surface or portion of the housing **502** towards a top surface or portion of the housing **502**. A tip or end of the wall **587** can be higher (for example, vertically) than the height of the opening **581** with reference to the view illustrated in FIG. **5R**. The housing **502** can include a notched portion **589** extending along a portion of the width of the opening **581** (for example, along the first end **512**) that can accommodate the wall **587** such that air can flow through opening **581**, over and/or around the wall **587**, and into the first portion **588**a of the interior **588**.

[0358] The air intake **580** can be defined (or "formed") by the opening **581** in the first end **512** and the opening **583** in the inner wall **582**. The air intake **580** can additionally be defined by one or both of the inner walls **582**, **586**, wall **587**, and/or the notched portion **589**. Such configurations can create an air flow path into the interior **588** that is non-linear. For example, such configurations can create an air flow path into the interior **588** that is tortuous, meandering, and/or serpentine. As discussed below, this can advantageously allow air to flow into and out of the interior **588** but inhibit or prevent liquids from entering into the interior **588** of the blood pressure monitor **120**. [0359] The housing **502** can be formed from more than one component. For example, with reference to FIGS. **5S-5**T, the housing **502** can be formed from a top portion **502***a* and a bottom portion **502***b*. During assembly, a membrane or gasket **502***c* can be positioned between portions of the top and bottom portions **502***a*, **502***b*, for example to provide a seal which prevents liquid from entering an interior **588** of the housing **502**. As shown, the inner wall **582** and/or the opening **583** can be formed from the top portion **502***a*. As also shown, the inner wall **586** and/or **587** can be formed from the bottom portion **502***b*. With reference to FIGS. **5**R**-5**S, the inner wall **582** can be formed from a portion of the top portion 502a, the gasket 502c, and a portion of the bottom portion 502b so that the first interior portion 588a is sealed from the second interior portion 588b other than the opening **583** (for example, air and/or liquid cannot pass around the gasket **502***c*). The opening **581** can be formed by a gap between a portion of the top portion **502***a* and a portion of the bottom portion **502***b* (see FIGS. **5**H and **5**R). The ports **570**, **572** can be formed from the bottom portion **502***b* (FIG. **5**S-**5**T). For example, the ports **570**, **572** can extend from a bottom interior surface of the housing **502** (for example, the bottom portion **502***b*) upwards toward a top interior surface of the housing **502** (for example, the top portion **502**a).

[0360] FIGS. **5**U-**5**V illustrate the blood pressure monitor **120** with a top portion removed (for example, with the top portion **502***a* removed) to better illustrate internal components of the blood pressure monitor **120**. FIGS. **5**W-**5**X illustrate cross-sectional views of the blood pressure monitor **120** taken along a line through the ports **570**, **572**. FIG. **5**V is the same as FIG. **5**U except that a top portion **520***c* of the manifold **520** (discussed below), the pumps **522**, and a flexible circuit **524** of the blood pressure monitor **120** are removed. The blood pressure monitor **120** can include one or more pumps **522**, a manifold **520**, one or more release valves **526**, and ports **570**, **572**. As described

further below, one or more of ports **572** can enable fluid communication between the interior **588** of the housing (for example, the manifold **520**) and an interior **549** of a bladder **543** of cuff **121** when the prongs **550**, **552** are receive and secured therein. As also described elsewhere herein, the prongs **550**, **552** can include fluid passageways **550***a*, **552***a* that can be in fluid communication with the interior **549** of the bladder **543** of the cuff **121**.

[0361] The one or more pumps **522** can create suction to draw ambient air into and/or through air intake(s) of housing **502**, such as air intake **580** described above. The one or more pumps **522** can pump air into the manifold **520** (for example, via inlets **520***a*). Advantageously, including more than one pump into blood pressure monitor **120** can allow the device **120** (for example, the housing **502**) to have a smaller height while still providing the same pumping capacity. The one or more release valves **526** can allow air to flow out of the manifold **520**, for example, into an interior **588** of the housing **502**.

[0362] The manifold **520** can include an opening **520***d* that can enable fluid communication between one of the fluid passageways 550a, 552a of one of the prongs 550, 552 and an interior of the manifold **520** when one of the prongs **550**, **552** is secured within the port **572**. The blood pressure monitor **120** can include a valve configured to open and/or close the opening **520***d* to enable or prevent such fluid communication. For example, the blood pressure monitor **120** can include a valve **530** which is positioned within the manifold **520** proximate the opening **520***d*. With reference to FIGS. 5Z and 5AA, the valve 530 can include a body 531, a sealing ring 532, and a biasing member **533**. The body **531** can include a stem **531***a*, a base **531***b*, and a head **531***c*. The stem **531** can be sized and/or shaped to fit within and/or through the biasing member **533**. The stem **531** can comprise a cross-patterned shape or another shape. The base **531***b* can have a circular shape. The head **531***c* can have a cylindrical shape and can have one or more openings **531***e* and an opening **531***f*. For example, the head **531***c* can have one, two, three, or four or more openings **531***e*. The one or more openings **531***e* can be positioned around an axis extending along a length of height of the valve 530 (for example, around an axis extending along a length of the stem 531a). The opening **531***f* can be aligned with an axis extending along a length of the valve **531**. For example, an axis extending through a center of the opening **531***f* can be parallel with an axis extending through the stem **531***a* and/or a height of the valve **530** or body **531**. The opening **531***f* can be oriented perpendicular with respect to the openings **531***e*. For example, axes extending through a center of the openings **531***e* can be perpendicular with respect to an axis extending through a center of the opening **531***f*. The body **531** can include a recessed portion **531***d* that is sized and/or shaped to receive the sealing ring **532**. As discussed further below, the valve **530** can allow air to flow through openings **531***e*, **531***f* so as to provide fluid communication between the interior of the manifold **520**, the fluid passages **550***a*, **552***a* of the prongs **550**, **552**, and/or the interior **549** of the bladder **543** of the cuff **121**.

[0363] The valve **530** can be configured to move so as to open and/or close a flow path through the opening **520***a* of the manifold **520**. FIG. 5W illustrates a cross-section through the blood pressure monitor **120** when the valve **530** is in a first position where the valve **530** cover the opening **520***d*. FIG. **5**X illustrates the cross-section of FIG. **5**W where the cuff **121** is secured to the blood pressure monitor **120** via securement of the prongs **550**, **552** within the ports **572**, **570**, respectively. FIG. **5**X further illustrates the valve **530** in a second position where the valve **530** does not cover or block the opening **520***d*. The blood pressure monitor **120** can be configured such that the valve **530** is in the second position unless and/or until one of the prongs **550**, **552** is secured within the port **572**. With continued reference to FIGS. **5**W-**5**X, when one of the prongs **550**, **552** are secured within the port **572**, the valve **530** can be moved (for example, "pushed") from the first position (FIG. **5**W) to the second position (FIG. **5**X). As discussed above, the valve **530** can include one or more openings **531***e* and opening **531***f*. When the valve **530** is in the first position (FIG. **5**W), the openings **531***e* can obstructed. For example, when the valve **530** is in the first position (FIG. **5**W), fluid communication between the openings **531***e* and the interior of the manifold **520** can be inhibited or

prevented. When the valve **530** is in the second position (FIG. **5**X) the openings **531***e* can be in fluid communication with the interior of the manifold **520**. In such second position, air can flow through the openings **531***e*, opening **531***f*, fluid passageway **550***a*, and into an interior **549** of a bladder **543** of the cuff **121**. Further, in such second position, air can flow in an opposite direction, for example, from the interior **549** of the bladder **543** of the cuff **121**, through the fluid passageway **550***a*, opening **531***f*, openings **531***e*, and into the interior of the manifold **520**.

[0364] As discussed above, the valve **530** can include a sealing ring **532**. When the valve **530** is in the first position (FIG. 5W), the sealing ring 532 can contact a surface of the manifold 520 around the opening **520***d*. Additionally, when the valve **530** is in the second position (FIG. **5**X), the sealing ring **532** can be spaced from the surface of the manifold **520** around the opening **520***a*. Each of the ports **572**, **570** can include a sealing ring **572***a*, **570***a* that can be received by recessed portions **550***b*, **552***b* of the prongs **550**, **552** (see FIGS. **5**W**-5**X and **5**N). The recessed portions **550***b*, **552***b* of the prongs **550**, **552** can comprise an annular recess around a perimeter of the prongs **550**, **552**. [0365] In some cases, only one of the ports **572**, **570** of the blood pressure monitor **120** is configured to enable fluid communication between an interior of the housing 502 (for example, an interior of the manifold **520**) and fluid passages **550***a*, **552***a* of the prongs **550**, **552** when the prongs **550**, **552** are received and/or secured in the ports **572**, **570**. For example, with reference to FIGS. 5V-5X, the blood pressure monitor **120** can include both of ports **570** and **572** but only port **572** is configured to enable such fluid communication. The blood pressure monitor **120** can include a cap **523** (FIGS. **5**V and **5**Y) that is secured to an end of the port **570**. In such cases, while port **570** does not enable such fluid communication, the port **570** can advantageously allow for more stability and/or more robust securement with the cuff 121. For example, regardless of whether the blood pressure monitor 120 and cuff 121 are secured in either of the two orientations shown in FIG. 5L or 5M, one of the prongs 550, 552 will be secured within port 572 to enable fluid communication between the interior **549** of the bladder **543** and the interior **588** of the housing **502**. Additionally, regardless of such described orientations, the other of the two prongs **550**, **552** not secured within port **572** can secure within port **570** and provide stability to the blood pressure monitor **120** on the cuff **121**.

[0366] As discussed further below with reference FIGS. 12-14E, the blood pressure monitor 120 can include one or more pressure transducers that are configured to detect an air pressure in the cuff **121**. The blood pressure monitor **120** can include, for example, one or two pressure transducers. The pressure transducer(s) can be coupled to and/or positioned proximate the circuit board **521**. The pressure transducer(s) can be positioned adjacent and/or proximate to the manifold **520** of the blood pressure monitor **120**. For example, the manifold **520** can include one or more openings in a bottom portion **520***b* of the manifold **520** that are positioned proximate or adjacent the pressure transducer(s). In some cases, it can be beneficial to isolate or partially isolate such openings in the manifold 520 with other portions of the manifold 520 and/or other portions of blood pressure monitor **120**. For example, it can be beneficial to partially isolate such openings from inlets **520***a*, which can be in fluid communication with the pumps **522**. The blood pressure monitor **120** can include one or more towers **527** extending around openings in the bottom portion **520***b* of the manifold **520** and/or extending upward from the bottom portion **520***b* of the manifold **520**. The towers **527** can be hollow. The towers **527** can be cylindrical, for example. The towers **527** can extend from the bottom portion **520***b* of the manifold **520** upwards to a top portion **520***c* of the manifold **520** (see FIG. **5**U). The towers **527** can include a notch **527***a* which can provide fluid communication between an interior of the towers **527** and the manifold **520**. The notch **527***a* can be sized and/or shaped to provide an air flow path over a portion of an end of the towers **527** (for example, a top end of the towers 527) so that air can flow into the manifold 520 from the towers **527** and vice versa. Advantageously, the towers **527** can help isolate or partially isolate the openings in the bottom portion **520***b* and the flow path to pressure transducers from, for example, the inlets **520***a* of the pumps **520***a* which may see large fluctuations in air flow and/or pressure

gradients that may interfere with the pressure transducers' ability to function and/or operate properly or efficiently.

[0367] Blood pressure monitor **120** can include one or more light emitting diode (LED) indicators that can indicate a status of the blood pressure monitor **120**, for example, that the blood pressure monitor **120** is in an operational ("on") mode. The LED indicator can be coupled to a side of the circuit board **521**, for example, a side that faces "up" in the orientation shown in FIG. **5V** and/or faces toward a top portion **502***a* of the housing **502** of the monitor **120**. With reference to FIG. **5V**, the blood pressure monitor **120** can include a light pipe or tube **593** that surrounds and/or encircled the LED indicator. The light tube **593** can focus and/or direct light emitted from the LED indicator to a top portion of the blood pressure monitor **120**, such as a top portion **502***a* of the housing **502** of the monitor **120**. In some variants, a top portion of the blood pressure monitor **120** (for example, top portion **502***a*) is transparent, which can allow light from the LED indicator to be seen from outside the housing **502**. The light tube **593** can be non-transparent, for example, opaque. In some variants, the housing **502** comprises an opening on a top portion thereof (such as top portion **502***a*) that is aligned with the light tube **593** (such as an axis of the light tube **592**) which allow light from the LED indicator to pass through the top portion to be seen.

[0368] FIGS. **6**A-**6**Z illustrate various views and aspects of a blood pressure monitor assembly **600** which includes an alternative design for a blood pressure monitor **602** and also includes a cradle **604**. While the device **602** is referred to herein as a "blood pressure monitor" or "blood pressure device" herein, device **602** can measure and/or monitor other parameters in addition or as an alternative to blood pressure. For example, device **602** can measure and/or monitor the concentration or partial pressure of carbon dioxide (CO.sub.2) in exhaled air of the patient. Blood pressure monitor **602** can have the characteristics and/or functionality as described in more detail below with reference to FIGS. **12-14**E.

[0369] With reference to FIGS. **6**A-**6**E, blood pressure monitor assembly **600** can include a blood pressure monitor **602** and a cradle **604** configured to secure to the blood pressure monitor **602** (and vice versa). Blood pressure monitor assembly **600** can be configured to secure to an arm of patient 11. For example, blood pressure monitor assembly 600 can secure to an a blood pressure cuff (such as cuff **737** shown in FIG. **7**V) that is secured to a patient's arm. The blood pressure cuff can wrap around and/or otherwise secure to an arm of patient 11, and blood pressure monitor assembly 600 can secure to the blood pressure cuff **737**, for example, via securement between cradle **604** and the blood pressure cuff. For example, cradle **604** can have an adhesive or a hook-and-look fastener (for example, Velcro®) on a bottom surface thereof, which can secure to a portion of the cuff **737**. [0370] Blood pressure monitor assembly **600** can be configured to connect to a cuff **737** (see FIG. 7V) and provide air to the cuff to cause inflation and/or can allow the cuff 737 to deflate. For example, blood pressure monitor assembly **600** can include a pneumatic opening or connection point **670** (see FIG. **6**F) in blood pressure device **602** (or a housing of blood pressure device **602**) which can be in fluid communication with the cuff 737 via a pneumatic hose 637 (see FIG. 6A). As also discussed further below, cradle **604** can include one or more ports that can connect to and/or facilitate connection between the pneumatic hose **637** and the opening **670** in blood pressure monitor **602**. For example, as discussed in more detail below, cradle **604** can include an outward port **672***a* that can connect to pneumatic hose **637** and an inward port **672***b* which connects to opening **670** in blood pressure device **602** (see FIGS. **6**A and **6**W-**6**X). The securement between outward port **672***a* and pneumatic hose **637** can be a snap-fit, press-fit, friction-fit, or another type of securement. Further, while FIG. **6**A illustrates an end of a pneumatic hose **637** connecting to port **672**a, the end of the pneumatic hose **637** can connect to port **672**a via an adapter or other type of intermediary connector. Blood pressure device **602** can provide air to cuff **737** to inflate the cuff **737** to a pressure level high enough to occlude a major artery. When air is slowly released from the cuff **737**, blood pressure can be estimated by the blood pressure monitor **602** as described in more detail below with reference to FIGS. **12-14**E.

[0371] Blood pressure device **602** can include structure and/or functionality to cover and/or close opening **670** when the blood pressure device **602** is not in use so as to prevent debris and/or liquids from passing through opening **670** and passing into an interior of blood pressure device **602**. For example, with reference to FIG. **6**N, blood pressure device **602** can include a cover **679** that can cover and/or seal opening **670** when the blood pressure device **602** is not in use, and thus can prevent fluid communication between ambient air and the interior of the blood pressure device when not in use. For example, cover 679 can be a flap that can act to seal and/or close off opening **670** when the blood pressure device **602** is not connected to the cradle **604**. The flap can be movable, flexible, and/or resilient. The flap can cover opening 670 unless and/or until an object pushes the flap inward at least partially into an interior of the blood pressure device **602**. For example, when blood pressure device **602** is secured to cradle **604**, port **672***b* can push the flap at least partially inward into the interior of blood pressure device **602** so that port **672***b* can pass at least partially into the interior of blood pressure device 602 and be in fluid communication with a conduit, manifold, pump, and/or valve within the blood pressure device **602**. As another example, cover 679 can be rigid and can be electronically and/or mechanically controlled by a controller and/or processor of the blood pressure device **602**. For example, cover **679** can be a rigid plate that can be moved from a position where is it not covering, or only partially covering, opening 670, to a position where it is covering and/or sealing opening **670**. Cover **679** can be sized and/or shaped to match the size and/or shape opening **670**. In some cases, the blood pressure device **602** can control operation (for example, movement) of the cover 679 based on interaction with cradle 604. [0372] As discussed elsewhere herein, the blood pressure device **602** and cradle **604** can include near field communication (NFC) functional capabilities (for example, RFID) that can enable the blood pressure device **602** and cradle **604** to, among other things: confirm that the blood pressure device 602 and/or cradle 604 are authentic components; transfer data (for example, data measured and/or gathered by the blood pressure device **602** can be transferred and/or stored on the cradle **604**); determine the size of a cuff to which the cradle **604** is attached; and determine a lifespan of the blood pressure device **602** and/or cradle **604**. For example, as discussed below, the blood pressure device 602 can include an RFID reader that transmits a radio frequency and the cradle 604 can include an RFID tag (for example, in the form of a sticker or label) which can be attached to a portion of the cradle **604**. Such NFC structure and functionality can enable the blood pressure device **602** to control operation of the cover **679** based on proximity with cradle **604**. For example, when blood pressure device **602** is brought within sufficient proximity to the RFID tag of cradle **604** such that the RFID reader in the blood pressure device **602** receives a confirmatory signal from the RFID tag, blood pressure device **602** can automatically open cover **679** to reveal opening **670**. For example, the range of the RFID reader and tag can be selected so that bringing the blood pressure device **602** within a certain distance of cradle **604** causes such automatic opening of cover **679**. Such distance can be 1 inch, 2 inch, 3 inch, 4 inch, 5 inch, 6 inch, 7 inch, 8 inch, 9 inch, 10 inch, 111 inch, 12 inch, 1 ft, 1.5 ft, or 2 ft, or any value therebetween, or any range bounded by any combination of these values, although values outside these values or ranges can be used in some cases.

[0373] Blood pressure monitor **602** can connect to one or more physiological sensors and/or monitors, such as ECG device **110** and/or patient monitor **130**, each of which are discussed in more detail elsewhere herein. For example, a cable **105** and connector **105***a* can connect to a connector port **616** (see FIG. **6**B) of blood pressure device **602** and also connect to ECG device **110** (see FIG. **2**A). Additionally or alternatively, cable **107** can connect to and/or be coupled to (for example, fixed to) to a connector port **614** (see FIG. **6**A) of blood pressure device **602** and can also connect to patient monitor **130** (see FIG. **8**A). For example, cable **107** and connector **107***a* can connect to a female connector port **832** of patient monitor **130** (see FIGS. **8**A and **8**I). As discussed previously, blood pressure monitor **602** can include a bypass bus that can pass physiological data received from the ECG device **110** to the patient monitor **130** without processing. For example, the bypass bus of

blood pressure monitor **602** can pass physiological data received via cable **105** and connector **105***a* by connector port **616** to connector port **614**, through cable **107** and connector **107***a*, and to patient monitor **130** via connector port **833**.

[0374] Blood pressure monitor **602** can include various electronic components to allow the blood pressure monitor **602** to carry out its physiological measurement and/or monitoring functionality, while cradle **604** can include little or no electronic components and/or functionality. For example, blood pressure monitor **602** can include the various electronic components and/or functionality as described with reference to FIGS. **12-14E**. As discussed in more detail below, blood pressure monitor **602** and cradle **604** can include various features which allow for the either or both to be removably secured to one another. Such removable securement can advantageously allow the cradle **604** to remain attached to the patient **111** and/or cuff **737** while the blood pressure monitor **602** is removed away from the patient **111** and/or cuff **737**. This can be especially helpful where it is desirable to temporarily remove the blood pressure monitor **602** to charge and/or repair the blood pressure monitor **602**. This can also allow a caregiver to clean the cradle **604** and/or regions of the patient **111** proximate the cradle **604** without risking damage to the blood pressure monitor **602** (or various components thereof).

various components thereof).

[0375] FIGS. 6A-6D illustrate various view of blood pressure monitor assembly 600 where the blood pressure monitor 602 and the cradle 604 are in an assembled or secured configuration. As shown and as further discussed below, the cradle 604 can secure to the blood pressure monitor 602 (and vice versa) by securement between one or more sides or ends of the blood pressure monitor 602 and one or more sides or ends of the cradle 604. For example, a first end of the cradle 604 can secure to a first end of the blood pressure monitor 602 and/or a second end of the cradle 604 (opposite the first end of the cradle 604) can secure to a second end of the blood pressure monitor 602 (opposite the first end of the blood pressure monitor 602). The securement of the blood pressure monitor 602 by the cradle 604 can advantageously prevent movement and/or rotation of the blood pressure monitor 602 relative to the cradle 604 along an axis running through a length, width, and/or height of the blood pressure monitor 602 and/or cradle 604.

[0376] FIGS. 6F-6O illustrate various views of the blood pressure monitor 602 of blood pressure monitor assembly 600. As shown, blood pressure monitor 602 can include a first end 610, a second end 612 opposite the first end 610, a first side 613, and a second side 615 opposite the first side 613. The first end 610 can include a connector port 616, which, as discussed above, can connect to

monitor assembly **600**. As shown, blood pressure monitor **602** can include a first end **610**, a second **613**. The first end **610** can include a connector port **616**, which, as discussed above, can connect to a connector and/or cable such as connector **105***a* and cable **105**. While the present disclosure refers to "end" or "side", such terminology is not intended to be limiting, but rather, is employed for mere convenience in differentiating certain features of the blood pressure monitor **602**. Accordingly, while the term "end" is used for the first and second ends **610**, **612**, it is to be understood that such ends 610, 612 can also represent "sides" of the blood pressure monitor 602. Connector port 616 can protrude outward from a surface of the first end **610**. First end **610** can additionally or alternatively include a connector port 614 which can be spaced from the connector port 616 along a surface of the first end **610**. As also discussed above, connector port **614** can connect to a cable **107**. Connector port **614** can protrude outward from a surface of the first end **610**. Connector port **614** can protrude outward from the first end 610 a distance greater than the connector port 616 (see FIGS. **6**L-**6**M). Connector port **614** can have a circular cross-section, a conical cross-section, among other shapes. Connector port **614** can have a cross-section that tapers (or decreases) from a first end of the connector port **614** that connects to the first end **610** of the blood pressure monitor **602** to a second end of the connector port **614** that is opposite from the first end of the connector port **614**. Connector port **616** can be positioned in a middle of the first end **610**. Connector port **614** can be positioned on either side of connector port **616** along the first end **610**.

[0377] As discussed above, blood pressure monitor **602** can include an opening **670** configured to connect and/or provide air to a pneumatic tube (such as hose **37**). For example, blood pressure monitor **602** can have an opening **670** on a second end **612**, which is opposite the first end **610** of

housing. Pneumatic opening **670** can be positioned in a middle of the second end **612** or in a different location on the second end **612**. Alternatively, opening **670** can be positioned on a different portion of the blood pressure monitor **602**, for example one of the sides **613**, **615** of blood pressure monitor **602**.

[0378] Opening **670** can be sized and/or shaped to receive a portion of the cradle **604** as discussed above. For example, with reference to FIG. **6**T, opening **670** can be sized and/or shaped to receive all or a portion of port **672***b* extending from a wall **646** of cradle **604**. As further discussed below, port **672***b* can be rigid or non-rigid, and can have a length and/or cross-section that is sized to fit within the opening **670**. Blood pressure monitor **602** can be secured or partially secured to cradle **604** via connection between the port **672***b* and the opening **670**. For example, when the port **672***b* is received within opening **670**, the port **672***b* can prevent movement of the blood pressure monitor **602** with respect to the cradle **604** along a direction that is perpendicular to an axis running through a length of port **672***b* and/or an axis that is parallel to a length of the blood pressure monitor **602** between the first and second ends **610**, **612**.

[0379] Blood pressure monitor **602** can include one or more features that help the blood pressure monitor **602** removably secure to the cradle **604**. For example, housing can include one or more depressions **622** that are recessed from a surface of the blood pressure monitor **602** and are configured to engage a portion of the cradle **604**. Depression **622** can be positioned on a top surface 608 of blood pressure monitor 602 (see FIGS. 6F-6G). Depression 622 can be recessed from the top surface **608** by a depth **623** (FIG. **6**N) and can extend along apportion of the top surface **608**. Depression **622** can be located along the top surface **608** and proximate or adjacent the second end **612**. As discussed further below, depression **622** can engage with a lip **646***a* of a wall **646** of cradle **604** and can be sized and/or shaped to receive the lip **646***a*. The depth **623** of depression **622** can be equal or substantially equal to a thickness of lip **646***a* such that, when the lip **646***a* is positioned within the depression **622**, a surface of the lip **646***a* is flush with a region of the top surface **608** of blood pressure monitor **602** that is proximate to the depression **622** (see FIG. **6**C). With reference to FIGS. **6**F-**6**G, **6**J, and **6**N, depression **622** can extend along a portion of a width of the blood pressure monitor **602** and can also extend along a portion of a length of the blood pressure monitor **602**. For example, where the width of the blood pressure monitor **602** is the distance between sides 613 and 615 of blood pressure monitor 602 (see FIGS. 6J), depression 622 can extend along a portion of such distance, such as the entire distance, less than the entire distance, half the distance, less than half the distance, among other percentages or fractions of the distance. Additionally or alternatively, where the length of the blood pressure monitor **602** is the distance between the first end **610** and the second end **612**, depression **622** can extend along such length by a distance **625** (see FIG. **6**P). Distance **625** can be equal or substantially equal to a length of the lip **646***a*. Distance 625 can be a percentage of the length of the blood pressure monitor 602 between the first and second ends **610**, **612**, such as 30%, 20%, 10%, 5%, less than 50%, less than 40%, less than 30%, less than 25%, less than 20%, less than 15%, less than 10%, or less than 5%, although other percentages, values, or ranges are possible in some cases.

[0380] Additionally or alternatively, the blood pressure monitor **602** can include one or more latch arm protrusions **618** that extend outward from a surface of the blood pressure monitor **602** and are configured to engage and/or interact with one or more latch arms **648** of cradle **604**. For example, as shown in at least FIGS. **6H-6K**, blood pressure monitor **602** can include one or more latch arm protrusions **618** that extend or protrude outward from a surface of the first end **610** of blood pressure monitor **602**. The one or more latch arm protrusions **618** can include, one, two, three, four, five, six, seven, eight, or nine or more latch arm protrusions **618**. The number of latch arm protrusions **618** on the blood pressure monitor **602** can be equal to the number of latch arms **648** on the cradle **604**, such that each of the latch arm protrusions **618** are configured to engage, secure, cooperate, and/or interact with a respective one of the latch arms **648** of the cradle **604**. The blood pressure monitor **602** can include a first latch arm protrusion **618** that extends from a surface of the

first end **610** of blood pressure monitor **602** and a second latch arm protrusion **618** that extends from the surface of the first end **610**. The first and second latch arm protrusions **618** can be spaced from one another. The first and second latch arm protrusions **618** can be positioned on opposite sides of connector port **616** (where the blood pressure monitor **602** includes the connector port **616**).

[0381] The one or more latch arm protrusions **618** can have a variety of shapes and/or crosssections. For example, the one or more latch arm protrusions **618** can have a triangular shape, a square shape, a rectangle shape, a circular shape, among other shapes. As illustrated in FIGS. 6L-**6**M, the latch arm protrusions **618** have a triangle shape, where a tip of the triangle shape is defines the free end (not connected to the blood pressure monitor **602**) of the protrusions **618**. The one or more protrusions **618** can have a ramped or tapered configuration that enables them to move or slide passed a portion of the latch arms **648** while contacting the portion of the latch arms **648**. The one or more latch arm protrusions **618** can have a shape or cross-section that is sized and/or shaped to correspond to a sized and/or shape of the latch arms **648** or a portion thereof. For example, where the free ends of the latch arms **648** have triangular shaped or tapering tip **648***a* (see FIGS. **6**W-**6**X), the latch arm protrusions **618** can also have a triangular shaped or tapering tip. In such configurations where the shape or cross-section of the latch arm protrusions **618** correspond to the shape or cross-section of the free ends of the latch arms **648**, the latch arm protrusions **618** can advantageously engage and/or secure to or with the free ends of the latch arms **648**. For example, with reference to FIGS. **6**C-**6**D, when an end of the blood pressure monitor **602** (such as first end 610 of blood pressure monitor 602) is secured to an end of cradle 604 (such as end 640 of cradle **604**), the one or more protrusions **618** can contact and pass over the tips **648***a* of the latch arms **648**, such that the tips **648***a* at least partially hold the protrusions **618** below (with reference to a vertical axis in the orientation shown in the FIGS. **6**C-**6**D).

[0382] As discussed above, blood pressure monitor **602** can at least partially secure to cradle **604** via connection between the port **672***b* and the pneumatic opening **670**. One example of securing the blood pressure monitor 602 to the cradle 604 can involve securement of the second end 612 of blood pressure monitor **602** to end **642** of the cradle **604** by placing the opening **670** over and around the port **672***b*. As the opening **670** is positioned over/around the port **672***b*, the second end 612 of blood pressure monitor 602 can move or slide towards the wall 646 of the cradle 604 at the end **642**. Further, as the second end **612** of blood pressure monitor **602** moves towards the wall **646**, the first end **610** of the blood pressure monitor **602** can be moved towards the end **640** of the cradle **604** such that the first end **610** contacts or approaches the one or more latch arms **648**. Movement of the first end **610** of blood pressure monitor **602** towards a top surface **638** of the cradle **604** and/or towards the one or more latch arms **648** can cause the one or more latch arm protrusions **618** of the blood pressure monitor **602** to contact and pass over the tips **648***a* of the latch arms 648 (see FIG. 6D). Such contact between the one or more latch arm protrusions 648 and the tips **648***a* of the latch arms **348** can include a snap-fit, friction-fit, or press-fit. When the first end **610** of blood pressure monitor **602** is moved to contact the top surface **638** of cradle **604**, the latch arm protrusions **618** can be positioned below the tips **648***a* of the latch arms **648**, and the tips **648***a* can at least partially prevent movement of the latch arm protrusions **618** in a direction perpendicular to a plane of the top surface **638** of the cradle **604**, for example, in a direction parallel to axis **603** as shown in FIG. **6**D. If sufficient force is applied to the blood pressure monitor **602** and/or cradle **604** in such direction, the latch arm protrusions **648** can move passed (for example, above) the tips **648***a* of latch arms **648** so as to remove the first end **610** of blood pressure monitor **602** from the end **640** of cradle **604**. Additionally, as discussed above, the cradle **604** can include a lip **646***a* on the wall **646** at end **642** of cradle **604** that can engage the depression **622** of the blood pressure monitor **602** and at least partially prevent movement of the blood pressure monitor **602** in a direction parallel to an extension of the wall **646** and/or perpendicular to the top surface **638**. [0383] The lip **646***a* and depression **622** can work alongside (or as an alternative to) the latch arms

648 and latch arm protrusions **618** and/or the opening **670** and port **672***b* to removably secure the blood pressure monitor **602** with the cradle **604**. For example, when the opening **670** of the second end **612** of blood pressure monitor **602** is placed and/or moved over/around the port **672***b*, the lip **646***a* can slide or be received in the depression **622**. Thus, the blood pressure monitor **602** and cradle **604** can include various features that enable removable securement.

[0384] The blood pressure monitor **602** and/or the cradle **604** can include one or more features that aid in the removal of the blood pressure monitor **602** from the cradle **604** (and vice versa). For example, as shown in at least FIGS. 6F-6M, blood pressure monitor 602 can include one or more grips **620** which are configured to aid in the grip or handling of the blood pressure monitor **602** (or cradle **604** if secured to the blood pressure monitor **602**) and/or the removal of the blood pressure monitor **602** from the cradle **604** (and vice versa). While the figures illustrate two grips **620**, the blood pressure monitor **602** can include a different number of grips **620**. For example, the blood pressure monitor **602** can include one, two, three, four, five, six, seven, or eight or more grips **620**. The one or more grips **620** can be located on various surfaces, ends or sides of blood pressure monitor **602**. For example, the one or more grips **620** can be located on one or both of sides **613**, **615** of blood pressure monitor **602**. The blood pressure monitor **602** can include a first grip **620** positioned on a first side **615** and a second grip **620** positioned on a second side **613**. The two grips **620** on the sides **613**, **615** can be aligned with one another. Alternatively, the two grips **620** can be non-aligned. One or both of the first grip **620** and the second grip **620** can be positioned alongside **613**, **615** and closer to one of the ends **610**, **612** of blood pressure monitor **602**. For example, the first and second grips 620 can be positioned along one of side 613, 615 and closer to the first end **610** than the second end **612**. Such placement can allow removal of the first end **610** from the end **640** of cradle. For example, such placement can allow removal of the latch arm protrusions **618** from the latch arms **648** (or tips **648***a* of latch arms **648**).

[0385] Each of the one or more grips **620** can include a recess **620***a*. The recess **620***a* can be recessed from a surface of the blood pressure monitor **602**, for example, a surface of a side **613**, **615** of blood pressure monitor **602**. The recess **620***a* can be rounded or non-rounded. Recess **620***a* can comprise a circular or partially circular shape (for example, when viewed from the view of FIG. **4**M, which shows an enlarged view of grip **620**). Alternatively, recess **620***a* can comprise a different shape, for example a square, rectangle, triangle, pentagon, hexagon, heptagon, octagon, nonagon, decagon, among other shapes (for example, when viewed from the view of FIG. 6R, which shows an enlarged view of grip **620**). A surface of recess **620***a* can be smooth. Alternatively, a surface of the recess **620***a* can be rough. The recess **620***a* can be sized and/or shaped to receive a portion of a finger. For example, the recess **620***a* can be sized and/or shaped to receive a portion of a thumb, index finger, or other finger. As another example, with reference to FIG. **6**Q, the recess **620***a* can be shaped like a thumb or a fingernail such that sides of the recess **620***a* (such as the right and left sides showing in FIG. **6**Q) are recessed less than a top and bottom of the recess **620***a* (given the orientation of FIGS. **6**L**-6**M). Such sizing and/or shaping of the recess **620***a* can advantageously allow a user to better handle the blood pressure monitor 602 by positioning a portion of the user's finger within the recess **620***a*. Such sizing and/or shaping of the recess **620***a* can also advantageously allow a user to remove the blood pressure monitor **602** from the cradle **604**.

[0386] Each of the one or more grips **620** can additionally or alternatively comprise a rim **620***b*. As shown in at least FIGS. **6**L-**6**M and **6**Q-**6**R, the rim **620***b* can extend or protrude outward from a surface of the blood pressure monitor **602**. For example, rim **620***b* can extend outwards from a surface of side **613**, side **615**, and/or ends **610**, **612**. The rim **620***b* can extend outwards from a surface of the blood pressure monitor **602** proximate or adjacent the recess **620***a*. The rim **620***b* can extend outwards from a surface of the blood pressure monitor **602** and around a portion of a perimeter of the recess **620***a*. For example, rim **620***b* can extend around an entire perimeter of the recess **620***a*. Alternatively, rim **620***b* can extend around less than the entire perimeter of the recess

620*a*. For example, rim **620***b* can extend around 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, or 10% of the perimeter of the recess **620***a*, although other percentages are possible. Rim **620***b* can extend around half or less than half the perimeter of the recess **620***a*. Rim **620***b* can extend around ¾ or less than ¾ the perimeter of the recess **620***a*. Rim **620***b* can extend around ¾ or less than ¾ the perimeter of the recess **620***a*. Rim **620***b* can be positioned proximate or adjacent the recess **620***a* and between a top or bottom of the blood pressure monitor **602**. For example, blood pressure monitor **602** can include a top surface **608** (see FIG. **6**J) and a bottom surface **609** (see FIG. **6**K), and rim **32***b* can be positioned between recess **620***a* and the top surface **608**. Alternatively or additionally, rim **620***b* can be positioned in a different location with respect to the recess **620***a* and/or top and bottom surfaces **608**, **609** of blood pressure monitor **602**.

[0387] Rim **620**b can extend around a portion of the perimeter of recess **620**a from a first end of the rim **620***b* to a second end of the rim **620***b* and rim **620***b* can have a length extending between the first and second ends. Rim **620***b* can extend outwards from a surface of the blood pressure monitor **602** a variable distance along its length. Rim **620***b* can have a constant cross-section from the first end to the second end of the rim **620***b*. Alternatively, rim **620***b* can have a variable crosssection along its length. Rim **620***b* can have a middle region positioned between the first and second ends of rim **620***b*. Rim **620***b* can have a cross-section that increases from the first end of the rim **620***b* to the middle region of the rim **620***b* and/or that decreases from the middle region to the second end of the rim **620***b*. Rim **620***b* can have a cross-section that increases from the first end to the second end or alternatively, that increases from the second end to the first end. The middle region of rim **620***b* can extend further outwards from a surface of the blood pressure monitor **602** than one or both of the first and second ends of the rim **620***b*. The middle region of the rim **620***b* can align with a center of the recess **620***a*. Rim **620***b* can have a circle shape, half-circle shape, square shape, rectangular shape, or another shape, for example, when viewed as shown in FIG. 6R which shows an enlarged view of a portion of a side **615** of blood pressure monitor **602**. [0388] As another example, blood pressure monitor **602** can include a first rim **620***b* that extends at least partially outward from side **613** and a second rim **620***b* that extends at least partially outward from side **615**. The first rim **620***b* and the second rim **620***b* can align with each other, or alternatively, not align with each other. The first rim **620***b* and/or the second rim **620***b* can be positioned along sides **613**, **615** and be closer to the first end **610**.

[0389] Rim **620***b* can advantageously act as a gripping point to allow a user to better handle or hold the blood pressure monitor **602**. Additionally, rim **620***b* can allow a user to remove the blood pressure monitor **602** from the cradle **604** when the blood pressure monitor **602** and cradle **604** are secured to one another. Rim **620***b* can act alone or alongside recess **620***a* in such manner. For example, recess **620***a* can be sized and/or shaped to receive a portion of a user's finger, and the user's finger can at least partially contact or press against a portion of rim **620***b* (such as the middle region of the rim).

[0390] FIGS. **6S-6Z** illustrate various views of cradle **604** which can secure to blood pressure monitor **602** as discussed above. Cradle **604** can include a first end **640**, a second end **642** opposite the first end **640**, a first side **643**, a second side **645** opposite the first side **643**, a top interior surface **638** between the sides **643**, **645**, and a bottom surface **639** opposite the surface **638**. The top interior surface **638** and the bottom surface **639** can together define a base of the cradle **604** which can be configured to contact and/or secure to a patient, such as patient **111** and/or a cuff **737** wrapped around an arm of a patient **111**. For example, the base of the cradle **604** can include an adhesive or Velcro® configured to attach to a portion of a cuff **737**. The sides **643**, **645** (also referred to herein as "sidewalls") can extend outward from the base of the cradle **604** in a direction that is angled with respect to the base. For example, the sidewalls **643**, **645** can extend generally perpendicularly from the base of the cradle **604**.

[0391] One or both of sidewalls **643**, **645** can comprise one or more recessed cutouts **652** along a portion of the sidewalls **643**, **645**. For example, as shown in at least FIGS. **6S-6T**, sidewall **643** can

include a first recessed cutout 652 and sidewall 645 can include a second recessed cutout 652. The first and second recessed cutouts on the sidewall **643**, **645** can align with each other, or alternatively, not align with each other. The first and second recessed cutouts **652** can be positioned along the sidewalls **643**, **645** and can be closer to the first end **640** of the cradle **604** than to the second end **642** of the cradle **604**. The one or more recessed cutouts **652** in one or both of sidewalls **643**, **645** can be positioned along a portion of the sidewall(s) **643**, **645** that is proximate or adjacent to the one or more grips **620** of the blood pressure monitor **602**, and therefore can provide access to the one or more grips **620** when the blood pressure monitor **602** and cradle **604** are secured to one another. Sidewalls 643, 645 can have a height that is equal to or less than a height of the blood pressure monitor **602**. The one or more recessed cutouts **652** can be rounded and/or smooth. The one or more recessed cutouts **652** can have a half-circle shape or another shape (such as halfsquare, half-rectangle, half-ellipse, half-triangle, among other shapes) (see FIGS. **6**W-**6**X). [0392] The cradle **604** can include one or more arms that are configured to secure to a portion of a cable or tube that may connect one or more sensor or monitors in a patient environment (such as the environment illustrated in FIGS. 1A-1B). For example, as shown in FIGS. 6S-6Z, cradle 604 can include one or more arms **650** that are sized and/or shaped to receive, retain, and/or secure a portion of a cable, such as cable **105** and/or **35**. For example, the cradle **604** can include one, two, three, four, five, six, seven, or eight or more arms **650**. The one or more arms **650** can extend from the base defined by the bottom surface **639** and top surface **638**, sidewall **643**, and/or sidewall **645**, for example. As another example, the cradle **604** can include two arms **650** extending from or proximate to sidewall **643** and two arms **650** extending from or proximate to sidewall **645**. Respective ones of the two pairs of arms **650** in such configuration can be aligned with one another (see FIG. **6**U-**6**V) or non-aligned.

[0393] The one or more arms 650 can extend outwards from a surface of the cradle 604 (such as a surface of the sidewalls **643**, **354** in a first direction that is angled with respect to the surface. For example, the one or more arms **650** can extend generally perpendicularly with respect to a surface of the sidewalls **643**, **645**. Additionally, the one or more arms **650** can extend in multiple directions. For example, the one or more arms **650** can extend in a first direction that is generally perpendicular to a surface of the cradle **604** and can extend in a second direction that is angled with respect to the first direction. The one or more arms **650** can extend from the cradle **604** and can curl in a first direction (for example, up or down in the orientation as shown in FIGS. 6Y-6Z). The one or more arms **650** can extend in one or more directions so as to define an open region therein. For example, the one or more arms **650** can curl as shown in FIGS. **6**Y-**6**Z an define an open region that has a cross-section that is shaped like a half-circle. Alternatively, the open region can have a crosssection that is shaped differently, such as half-square, half-rectangle, triangle-shaped, among other shapes. The one or more arms 650 can curl in a direction such that an open region defined therewithin faces a direction away from or opposite a direction that the bottom surface **639** of the cradle **604** faces. Alternatively, the one or more arms **650** can curl in a direction such that an open region defined therewithin faces a same direction that the bottom surface 639 of the cradle 604 faces. The open region defined by the one or more arms **650** can be sized and/or shaped to receive, retain, and/or secure a portion of a cable or tube as discussed above.

[0394] As discussed above, cradle **604** can include one or more latch arms **648** which can engage and/or secure to the latch arm protrusions **618** of the blood pressure monitor **602**. The one or more latch arms **648** can extend from the first end **640** of cradle **604**. Additionally or alternatively, the one or more latch arms **648** can extend from a different portion of the cradle **604** (such as one or both of sidewalls **643**, **645**). Cradle **604** can include a first latch arm **648** extending from a portion of the cradle **604** at the first end **640** and a second latch arms **648** can be spaced apart from one another. Where the first end **640** of the cradle **640** include two latch arms **648** and the first end **610** of blood pressure monitor **602** includes two latch arm protrusions **618**, the spacing between the

latch arms **648** can be the same as the spacing between the latch arm protrusions **618**. Further, where the first end **640** includes two latch arms **648**, the two latch arms **648** can be spaced so as to accommodate a width of the connector port **616** of the blood pressure monitor **602** (where the housing includes such connector port **616**). A midpoint between the spacing of the two latch arms **648** on the first end **640** can be aligned with a midpoint of the depression **622** of a length of the depression **622** when the blood pressure monitor **602** is secured to the cradle **604**. The one or more latch arms **648** can have a height or length that is less than a height of the blood pressure monitor **602** (see FIG. **6**D).

[0395] The one or more latch arms **648** can have a first end that is connected to a portion of the cradle **604** and a second end opposite the first end that is free or cantilevered. As discussed above, the second, free end of the latch arms **648** can have a tip **648***a* (see FIGS. **6**W-**6**X). Tip **648***a* can extend from the second, free end of the latch arm **648** in a direction that is non-parallel with respect a length of the latch arm **648** between the first and second ends of the latch arm **648**. For example, the tip **648***a* can extend generally perpendicular to the second end of the latch arm **648**. The tip **648***a* can extend from the second, free end of the latch arm **648** in a direction towards the second end **642** of cradle **604** and/or in a direction towards the wall **646** of cradle **604** (where the cradle **604** includes such wall **646**). Tip **648***a* can be tapered or sloping, and as discussed above, can be configured to engage, contact, and/or slide passed latch arm protrusion **618**.

[0396] Cradle **604** can include a wall **646** extending from a portion of the cradle **604** and proximate, adjacent, or along the second end **642** of cradle **604**. For example, wall **646** can extend from the base of the cradle **604** which is defined by the top surface **638** and bottom surface **639** of cradle **604** (see FIGS. **6S-6T**). Wall **646** can extend at an angle with respect to a plane of the base (such as a plane of the top and/or bottom surfaces **638**, **339**). For example, wall **646** can extend in a direction that is generally perpendicular to the top surface **638** of the cradle **604**. Wall **646** can have a first end that is connected to a portion of cradle **604** and a second end opposite to the first end and that is free or cantilevered. Wall **646** can have a length extending between the first, connected end and the second, free end. Wall **646** can have a height that is greater than a height of the one or more latch arms **648** (see FIGS. **6**W-**6**X). With reference to FIG. **6**U, wall **646** can have a width extending along a portion of a width of the cradle **604** between the sidewalls **643**, **645**. The width of the wall **646** can be less than the distance between sidewalls **643**, **645**. Alternatively, the width of wall **646** can be equal to the distance between the sidewalls **643**, **645**.

[0397] As discussed above, wall **646** can include a lip **646**a configured to engage, secure, and/or fit within the depression **622** of the blood pressure monitor **602**. Lip **646**a can extend in a direction that is non-parallel with respect to the length of the wall **646** between the first, connected end of the wall **646** and the second, cantilevered end of the wall **646**. For example, the lip **646**a can extend generally perpendicular to the length of the wall **646**. Lip **646**a can extend in a direction towards the first end **640** of the cradle **604**. Where the cradle **604** includes one or more latch arms **648** on the first end **640**, the lip **646**a can extend in a direction towards the one or more latch arms **648**. The lip **646**a can be sized and/or shaped to fit within a portion of the depression **622** of blood pressure monitor **602**. For example, the width, length, and/or thickness of lip **646**a can be sized and/or shaped to match or substantially match the length, width, and/or depth of the depression **622**. When the lip **646**a is received within and/or secured to the depression **622**, a top surface of the lip **646**a can be flush with a region of the top surface **608** of blood pressure monitor **602** proximate or adjacent to depression **622**.

[0398] As discussed above, wall **646** can include one or more ports that extend from a portion thereof. As shown in at least FIG. **6**W, wall **646** can include a first port **672***a* that extends from a side or surface of the wall **646** and/or can include a second port **672***b* that extends from a side or surface of the wall **646**. The first port **672***a* can extend from an outer surface of the wall **646** in a direction away from one or both of the first end **640** and the second end **642**. The second port **672***b* can extend in a direction towards the first end **640** of the cradle **604**. The first port **672***a* can have a

first length and the second port **672***b* can have a second length that is less than, equal to, or greater than the length of the first port **672***a*. The first and second ports **672***a*, **672***b* can extend in opposite directions. As discussed above, the second port **672***b* can be sized and/or shaped to fit within the pneumatic opening **670** in blood pressure monitor **602**, and can at least partially secure the blood pressure monitor **602** within the cradle **604**. For example, when the port **672***b* is positioned within the opening **670**, the port **672***b* can prevent or reduce the likelihood of movement of the blood pressure monitor **602** with respect to the cradle **604** in a direction that is parallel to a distance between the sidewalls **643**, **645** of the cradle **604**.

[0399] One or both of ports **672***a*, **672***b* can be cylindrical or non-cylindrical. One or both of ports **672***a*, **672***b* can have a cross-section that is circular, square, rectangular, or another shape. Port **672***b* can have a tapered or partially tapered (chamfered) tip (see FIGS. **6W-6X**). such tapering or chamfer can help the free end of port **672***b* align with and/or be positioned within opening **670**. Port **672***a* can have a tapered or partially tapered free end. For example, port **672***a* can have a first end connected to the wall **646**, a second end opposite the first end, and a cross-section of the port **672***a* can vary along a length between the first and second ends. For example, port **672***a* can have a first cross-section near the wall **646** and a second cross-section near the free end. For example, port **672***a* can have a conically-shaped free end. Port **672***a* can be sized and/or shaped to secure to a tube, such as a pneumatic hose **637** as discussed above. One or both of ports **672***a*, **672***b* can be positioned along a height and/or width of wall **646**. For example, one or both of ports **672***a*, **672***b* can be positioned at or proximate a middle region of the wall **646**.

[0400] Port **672***a* can define a fluid passage and port **672***b* can define a fluid passage. Each of the fluid passages of the ports **672***a*, **672***b* can align with each other and also align with an opening in the wall **646**. In such configuration, when a pneumatic hose/tube **637** is secured to port **672***a*, fluid (for example, air) can be pumped via blood pressure monitor **602** through opening **670**, fluid passage defined within port **672***b*, an opening in the wall **646**, fluid passage defined with port **672***a*, and the hose **37**. Such pumped air can be transmitted to a blood pressure cuff **121** as discussed above.

[0401] Cradle **604** can include one or more support walls **677** proximate or adjacent to the wall **646** that can provide support to the wall **646**. For example, cradle **604** can include a first support wall **677** that extends from the second end **642** of cradle **604** and connects to a first side edge of the wall **646** and a second support wall **677** that extends from the second end **642** of cradle **604** and connects to a second side edge of the wall **646**.

[0402] Cradle **604** can include a mechanism that can facilitate near field communication (NFC) with the blood pressure monitor **602** as discussed above. For example, as shown in at least FIGS. **6**U-**6**V, cradle **604** can include a prong **674** comprising an NFC tag that can communicate with a NFC reader of the blood pressure monitor **602**. Such NFC can be, for example RFID, and the prong **674** can include an RFID tag configured to communicate with an RFID reader of the blood pressure monitor **602**. As another example, the prong **674** can include a memory, such as an erasable programmable read-only memory (EPROM) that can contact electrical contacts on a bottom surface of blood pressure monitor **602** when blood pressure monitor **602** is secured to cradle **604**. In such cases where the cradle **604** includes an NFC communication mechanism, blood pressure monitor **602** can transfer and/or collect data from the cradle **604**. For example, such NFC communication can enable the blood pressure monitor **602** and/or cradle **604** to: confirm that either or both are compatible (e.g., not counterfeit); determine a lifespan (or remaining lifespan) of either component; and/or determine the size of a cuff to which the cradle **604** (such as the base defined by the top and bottom surfaces **638**, **339** of cradle **604**). Prong **674** can extend from a portion of the

the top and bottom surfaces **638**, **339** of cradle **604**). Prong **674** can extend from a portion of the base and extend and/or curl in a direction away from the base (such as in an upward direction given the orientation shown in FIG. **6S**). Prong **674** can bias, contact, and/or press against bottom surface **609** of blood pressure monitor **602** when the blood pressure monitor **602** is secured within cradle

604. Such biasing or pressure can help the blood pressure monitor **602** better engage portions of the cradle **604** and/or help in removal of the blood pressure monitor **602** from the cradle **604**. For example, prong **674** can cause the one or more latch arm protrusions **618** to contact and/or press against the latch arms **648** (or tips **648***a*) and/or can cause the depression **622** to contact and/or press against the lip **646***a*. Prong **674** can be at least partially positioned within an opening **675** in the base of the cradle **604** that extend through the top and bottom surfaces **638**, **339** (see FIGS. **6**U-**6**V).

[0404] FIGS. 7A-7U illustrate various views and aspects of an alternative design for a blood pressure monitor assembly **700** which includes an alternative design for a blood pressure monitor **702** and also includes a cradle **704**. While the device **702** is referred to herein as a "blood pressure monitor" or "blood pressure device" herein, device **702** can measure and/or monitor other parameters in addition or as an alternative to blood pressure. For example, device **702** can measure and/or monitor the concentration or partial pressure of carbon dioxide (CO.sub.2) in exhaled air of the patient. Blood pressure monitor **702** can have the characteristics and/or functionality as described in more detail below with reference to FIGS. **12-14**E.

[0405] Blood pressure monitor assembly **700** can be the same in some or many respects to blood pressure monitor assembly **600** as described above. For example, blood pressure monitor **702** can be identical to blood pressure monitor **702** except for one or more of the differences discussed below. As another example, one or both of blood pressure monitor **702** and/or cradle **704** can be the same in some or many respects as the blood pressure monitor **602** and/or cradle **604** as shown and described above. Aspects or features of blood pressure monitor **702** can be combined and/or replaced with aspects or features of blood pressure monitor **602**, and vice versa, without departing from the scope of this disclosure. Accordingly, numerals used in FIGS. **6A-6Z** with respect to blood pressure monitor **602** and cradle **604** are similar to numerals used in FIGS. **7A-7V** to denote similar features. The discussion that follows below with reference to FIGS. **7A-7V** is intended to convey some additional and/or different features or aspects of blood pressure monitor **702** with respect to blood pressure **602**.

[0406] As shown in FIG. 7A, blood pressure monitor assembly **700** can include a blood pressure monitor **702** that can removably secure to cradle **704** in a similar or identical way in which housing **602** and cradle **604** can removably secure as described above. For example, as discussed above with reference to wall **646**, lip **646***a*, one or more latch arms **648**, tip(s) **648***a*, depression **622**, protrusion(s) **618** of blood pressure monitor **602** or cradle **604**, blood pressure monitor **702** or cradle **704** can include wall **746**, lip **746***a*, one or more latch arms **748**, tip(s) **748***a*, depression **722**, protrusion(s) **718** which can behave in the similar or identical way in order to removably secure blood pressure monitor **702** to cradle **704**.

[0407] As shown in FIG. 7B-7I, blood pressure monitor **702** can include ends **712**, **710**, top surface **708**, bottom surface **709**, sides **713**, **715**, connector port **714**, opening **770**, grip(s) **720**, protrusions **718**, connector port **716**, each of which can be the same in some, many, or all respects as ends **612**, **610**, top surface **608**, bottom surface **609**, sides **613**, **615**, connector port **614**, opening **670**, grip(s) **620**, protrusions **618**, connector port **616** as shown and described above with reference to blood pressure monitor **602**. While the present disclosure refers to "end" or "side", such terminology is not intended to be limiting, but rather, is employed for mere convenience in differentiating certain features of the blood pressure monitor **702**. Accordingly, while the term "end" is used for the first and second ends **712**, **710**, it is to be understood that such ends **712**, **710**, can also represent "sides" of the blood pressure monitor **702**.

[0408] Additionally or alternatively, as shown in FIGS. 7N-7U, cradle **704** can include ends **740**, **742**, sides **743**, **745**, ports **772***a*, **772***b*, recessed cutouts **752**, top surface **738**, and/or bottom surface **739**, each of which can be the same in some, many, or all respects as ends **640**, **642**, sides **643**, **645**, ports **672***a*, **372***b*, recessed cutouts **652**, top surface **638**, and/or bottom surface **334**, as shown and described elsewhere herein.

[0409] As shown in at least FIG. 7C, blood pressure monitor **702** can include a visual indicator **799** that can indicate whether the blood pressure monitor **702** is on or off, whether the blood pressure monitor **702** and the cradle **704** are not compatible with each other (for example, via NFC communication between the blood pressure monitor **702** and the cradle **704** discussed below), battery life of the blood pressure monitor **702**, among other things. The indicator **799** can be an LED indicator. In some cases, LED indicator is configured to flash and/or blink to indicate one or more of the above listed scenarios.

[0410] One optional difference between the cradle **604** and the cradle **704**, with reference to FIGS. **6**S-**6**V and 7N-7Q, is that cradle **704** can have no opening **675** and/or no prong **674** like that shown with respect to cradle **604**. In some cases, blood pressure monitor **702** and cradle **704** can communicate with one another via near field communication protocols, such as radio frequency protocols. For example, blood pressure monitor **702** can include a radio frequency identification reader and cradle **704** can include an NFC tag **793** (such as an RFID tag) shown in dotted lines in FIG. 7P. For example, blood pressure monitor 702 can include an RFID reader which can be positioned within an interior of blood pressure monitor 702, such as on a printed circuit board of the blood pressure monitor **702**. In such scenario, cradle **604**, **704** can include an RFID tag **393**, in the form of a sticker or label, for example, that can transmit a signal in response to recognition of a radio frequency signal from the RFID reader in the blood pressure monitor **702**. Such RFID tag **393** can be on a surface of the cradle **704**, for example, on a bottom surface **739**, of cradle **704**. Such RFID tag **393** can be, for example, sandwiched and/or covered by a hook and loop securement patch adhered to the bottom surface **739**. Alternatively, cradle **704** can include an erasable programmable read-only memory (EPROM) which can communicate (for example, transfer information or data) to the blood pressure monitor 702 via touching with an electrical contact on a surface of blood pressure monitor **702**. Whether the blood pressure monitor **702** and cradle **704** include RFID or EPROM features and functionality, these components can communicate with one another to transfer information and/or data, such as the amount of lifespan of the blood pressure monitor **702** and/or the cradle **704** remaining (which can be predetermined), whether the blood pressure monitor 702 and cradle 704 are compatible (e.g., whether a counterfeit or unauthorized product is being used), among other things.

[0411] With reference to FIGS. 7B-7D and 7F-7H, blood pressure monitor **702** can include a depression **722** that is the same in some or many respects as depression **622** in blood pressure monitor **602**. Depression **722** can have a depth **723** (FIG. 7H) that is equal to depth **623** as shown and described elsewhere herein with respect to blood pressure monitor **602**. As can be seen in FIGS. 7B-7D and 7F-7H, depression **722** can be the same as depression **622** in every respect except the length by which the depression **722** extends along the top surface **708** of blood pressure monitor **702**. For example, as shown in FIG. 7D, depression **722** can extend along a top surface **708** of blood pressure monitor **702** along an entire width of end **712** and portion(s) of the top surface **708** along one or both sides **713**, **715** of blood pressure monitor **702**.

[0412] With reference to FIGS. 7N-7U, cradle **704** can include a wall **746** (also referred to herein as "back wall") that can be similar to wall **646** of cradle **604** in some or many respects. For example, with reference to FIGS. 7N-7O, back wall **746** can extend upward from bottom surface **739** and/or top surface **638** and can extend along an entire width of end **742** of cradle **704**. Additionally, back wall **746** can extend from bottom surface **739** and/or top surface **638** and can extend along portion(s) of sides **743**, **745** of cradle **604**. Similarly, back wall **746** can include a lip **746***a* that extends along a free end of back wall **746** in similar fashion as back wall **746**. [0413] The securement of blood pressure monitor **702** and cradle **704** can be the same in some, many, or all respects as the securement of housing **602** and cradle **704** discussed above. For example, the blood pressure monitor **702** can be secured to cradle **704** by engagement of the back wall **746** and/or lip **746***a* with end **712** and/or depression **722**, and/or by engagement of port **772***b* within opening **770**, and/or by engagement of the one or more latch arms **748** with protrusions **718**.

Similarly, blood pressure monitor **702** can include grips **720** that are similar in some, many, or all respects to grips **620** of blood pressure monitor **602** which enable a user to grip the blood pressure monitor **702** and remove the blood pressure monitor **702** from cradle **704**.

[0414] With reference to FIGS. 7N-7U, cradle **704** can include arms **750** that are configured to secure to a portion of a cable or tube that may connect one or more sensor or monitors in a patient environment (such as the environment illustrated in FIGS. 1A-1B). Arm(s) 750 can be the same as arms **650** of cradle **604** in some or many respects. As shown in at least FIGS. 7N-7U, arms **750** can include a first end that connects to a portion of the cradle **704** and a second, free end. The second, free end of arms **750** can include a protrusion **750***a* that extend in a direction that is not parallel (for example perpendicular) with respect to the free end. In some cases, where the arms **750** curl as shown in FIGS. 7T-7U, the protrusion 750a of arms 750 can extend towards an interior of cradle **704**, for example, towards sides **743**, **745** (see FIGS. 7N-7O). Such protrusion **750***a* can help provide additional securement to a portion of a cable that is positioned in a space defined by the shape (for example, "curl") of arms **750**. For example, a portion of a cable can be pushed into such space passed such protrusion **750***a*, and can be at least partially secured between a portion of the protrusion **750***a* and an inner surface of arms **750**. While protrusion **750***a* is shown and described with respect to cradle **704**, arms **650** of cradle **604** can include protrusion **750***a*. [0415] As shown in FIGS. 7P-7Q, arms 750 can include an opening through a portion thereof. Such opening can help in removal of a portion of a cable from an arm **750**. For example, where a portion of a cable is secured by arm **750**, a user can partially insert the user's finger or another object through the opening and push on the portion of the cable so as to aid removal. While such opening is shown and described with respect to arms **750**, arms **650** can also have such opening. [0416] FIG. 7I illustrates a connector port **716**, which can be the same in some or many respect to connector port **616** of blood pressure monitor **602**. Connector port **716** can be identical to connector port **616** of blood pressure monitor **602** except with respect to the number and/or arrangement of female prong openings and/or slots or recesses (see FIG. 7I and FIG. 6O). Connector port **716** can connect to a cable (or a connector thereof), such as connector **105***a*. [0417] Blood pressure monitor **702** can include one or more air intakes which can be in fluid communication with ambient air and can be configured to allow ambient air to flow into the interior of blood pressure monitor 702 and/or to one or more pumps within the blood pressure monitor **702**, such as pumps discussed elsewhere herein. Such air intakes can also allow air to flow out from the interior of the blood pressure monitor 702 into the ambient, such as when the blood pressure monitor **702** is facilitating deflation of a connected cuff. The one or more pumps can create suction to draw ambient air into and/or through such air intake(s) of blood pressure monitor **702**. Such air intake(s) can be located and/or positioned in a variety of locations on the blood

[0418] FIGS. 7J-7M illustrate an example of an air intake **721** in blood pressure monitor **702**. While these figures and the discussion below describe air intakes **721** with reference to blood pressure monitor **702**, such discussion is equally applicable to blood pressure monitor **602**. As shown in FIGS. 7B-7C and 7J-7M, blood pressure monitor **702** can include a grip **720** comprising a recess **720***a* and a rim **720***b*, each of which can be the same in some, many, or all respects as grip **620**, recess **620***a*, and/or rim **620***b* discussed above. Thus, the discussion with reference to grip **620**, recess **620***a*, and/or rim **620***b* is equally applicable to grip **720**, recess **720***a*, and/or rim **720***b*. Air intake **721** can include one or more openings in an exterior portion (for example, a side of blood pressure monitor **702**) and/or an interior portion (for example, an inner wall of the blood pressure monitor **702**). For example, with reference to FIGS. **15**F-**15**G, the opening in the exterior portion can be an opening in a side **713**, **715** of blood pressure monitor **702**, and such opening can

pressure monitor **702**, for example, sides, ends, and/or top or bottom surfaces of blood pressure monitor **702**. Blood pressure monitor **702** can include one, two, three, four, five, or six or more air intakes. For example, blood pressure monitor **702** can include an air intake located along a side

713, **715** of blood pressure monitor **702**.

comprise a slit **720**c along a portion of the side **713**, **715**. Slit **720**c can extend adjacent and/or along a portion of a perimeter of recess **720**a. For example, slit **720**c can extend adjacent and/or along less than $\frac{1}{2}$, less than $\frac{1}{2}$, less than $\frac{1}{2}$, or less than $\frac{1}{2}$ of a perimeter or recess **720**a, or any value therebetween, or any range bounded by any combination of these values, although values outside these values or ranges can be used in some cases. As another example, slit **720**c can extend adjacent and/or along at least $\frac{1}{2}$, at least $\frac{1}{2}$, at least $\frac{1}{2}$, or any value therebetween, or any range bounded by any combination of these values, although values outside these values or ranges can be used in some cases. In some cases, the slit **720**c is positioned along a portion of the perimeter of the recess **720**a that is opposite the rim **720**b. For example, the slit **720**c can be positioned closer to a bottom of blood pressure monitor **702** than recess **720**a and/or rim **720**b. Slit **720**c can be positioned closer to a bottom surface of blood pressure monitor **702** than to a top surface of blood pressure monitor **702**.

[0419] FIG. 7K illustrates a cross-section through blood pressure monitor **702** along the dotted line as shown in FIG. 7D. FIG. 7K illustrates, in part, slit **720***c*. As shown, air can flow through slit **720***c* and/or around a portion of a perimeter of recess **720***a*, above and/or adjacent to a wall **720***g*, into and/or through a first chamber **720***d*, into and/or through a second chamber **720***e*, into and/or through a chamber or opening **720***f*, and into an interior of blood pressure monitor **702** and/or into one or more pumps as discussed elsewhere herein. Where the slit **720***c* extends along a perimeter of recess **720***a*, wall **720***g* and/or chamber **720***d* can also extend along, adjacent to, and/or behind the recess **720***a* (or a portion of recess **720***a*) so as to collect the air flowing in and along an entire length of slit **720***c*. As shown, wall **720***g* can extend upward (for example, in a direction towards the top surface of blood pressure monitor **702**) above slit **720***c*. As shown in FIG. 7K, blood pressure monitor **702** can include an inner wall **720***h* that is positioned closer to an interior of blood pressure monitor **702** than side **713**, **715** and/or slit **720***c*. As also shown, the chamber **720***f* can extend through inner wall **720***h*.

[0420] FIGS. 7L-7M illustrate enlarged perspective views of a portion of a cross-section through blood pressure monitor **702**. The cross-section as shown in FIG. 7L is oriented differently than the cross-section as shown in FIG. 7K so as to better illustrate opening **720***f*. With reference to FIG. 7D, the cross-section shown in FIG. 7L is spaced further to the "right" than the cross-section line "7K" shown in FIG. 7D. The cross-section shown in FIG. 7M is also spaced away from the cross-section as shown in FIG. 7K so as to better illustrate chamber **720***e*. As shown, chamber **720***e* can extend upward (for example, in a direction towards a top surface of blood pressure monitor **702**) to the chamber **720***f*. With reference to FIGS. 7K-7L, chamber or opening **720***f* can extend transverse (for example, perpendicular) to chamber **720***e* and be open and/or adjacent to an interior of blood pressure monitor **702**.

[0421] Advantageously, the structure, arrangement, and/or configuration of air intake **721** can prevent or reduce the likelihood that liquids will intrude an interior of blood pressure monitor **702** and cause damage to the electrical and/or mechanical components therein. For example, with reference to FIG. **7**K, for liquids to get into an interior of blood pressure monitor **702** via slit **720***c*, such liquids would have to pass through slit **720***c*, pass upward (defying gravity) along and/or above wall **720***g*, in and/or through chambers **720***d*, **720***e*, and pass through chamber **720***f* of inner wall **720***h*. In a typical patient care environment, the likelihood of liquids traveling through the air intake **721** in such manner is low, especially where blood pressure monitor **702** is secured to cradle **704** on a cuff similar to that shown in FIGS. **1A-1B**.

[0422] FIG. 7V illustrates how cradle **704** can connect with an exemplary blood pressure cuff **737** via a tube or hose, such as pneumatic hose **637** discussed and shown previously. As discussed previously, an end of hose **637** can be fluidly connected to an interior of cuff **737** and an end of hose **637** can secure to port **772***a* of cradle **704** such that, when port **772***b* is positioned within opening **770** of blood pressure monitor **702**, blood pressure monitor **702** can be in fluid communication with the interior of cuff **737**. Cuff **737** can be secured to a portion of a patient's

body, such as an arm, thigh, or other portion. For example, cuff **737** can be secured to an arm of patient **111** as shown by cuff **121** in FIG. **1**A-**1**B.

Noninvasive Blood Pressure Measurement

[0423] The human cardiovascular system is made up of the heart, blood vessels, and blood. The heart pumps blood through the blood vessels in order to transport oxygen, nutrients, etc., throughout the body.

[0424] Blood pressure is a measure of the pressure exerted by the circulating blood on the walls of the blood vessels and is typically measured in one of the large arteries. Blood pressure varies during the cardiac cycle from one heartbeat to the next. When the heart contracts, blood pressure momentarily rises and then subsequently falls until the next heartbeat. The systolic pressure is the maximum blood pressure attained during a cardiac cycle, while the diastolic pressure is the minimum blood pressure during the cardiac cycle. The mean arterial pressure (MAP) is the average blood pressure during the cardiac cycle. Blood pressure depends on a number of factors, including blood volume, cardiac output, vascular resistance, arterial stiffness, etc.

[0425] In medicine, blood pressure is a vital sign which can be used as an indicator of a patient's condition. Improved devices and techniques for measuring blood pressure can therefore help improve patient monitoring capabilities.

[0426] FIG. **12** is a block diagram of an example embodiment of the noninvasive blood pressure monitor **1200**. Blood pressure monitor **1200** can include any of the features of any other blood pressure monitor (e.g., **120**, **602**, **702**) described herein. For example, the blood pressure monitor **1200** can be a mobile device designed to strap to the arm of a patient via a cuff (e.g., **121**). The blood pressure monitor **1200** can include electronics for determining blood pressure values, an interface for communicating blood pressure values to an external device, an integrated display for displaying the blood pressure values, etc. The components shown in the block diagram of FIG. **12** can be contained in, attached to, and/or supported by any of the housings of the blood pressure monitors (e.g., **120**, **602**, **702**) described herein. Additionally, the following description provided with reference to blood pressure monitor **1200** is equally applicable to any other blood pressure monitor (e.g., **120**, **602**, **702**) described herein.

[0427] The blood pressure monitor **1200** can include one or more air pumps **1210** (e.g., one, two, three, four, or more air pumps). The air pumps **1210** can be similar or identical to pumps **522** described herein. The air pump(s) **1210** create suction to draw air in through an air intake (e.g., **580**) in the housing (e.g., **502**) of the blood pressure monitor **1200**. The air is then forced by the air pump(s) **1210** through an air path, such as a conduit **1220**, toward an air manifold **1240** provided in the housing. One advantage associated with the use of multiple air pumps **1210** is that smaller pumps can be used to provide a similar amount of air flow as a single larger pump but can be laid out in the housing of the blood pressure monitor **1200** in a more flexible manner than a single larger pump can. The greater flexibility in the layout of multiple smaller pumps, as compared to a single larger pump, can in turn allow for a more compact design of the blood pressure monitor **1200**.

[0428] The air manifold **1240** supplies air to an inflatable blood pressure cuff **1250**. Air manifold **1240** can include any of the features of air manifold **520** described herein, and inflatable blood pressure cuff **1250** can include any of the features of blood pressure cuff **121** described herein. The cuff **1250** can be connected to the air manifold **1240** using, for example, an air supply port (e.g., **570**), which may directly couple with a connector built into the cuff **1250** or which may couple to the cuff **1250** via a flexible hose or some other air path. The air manifold **1240** can also provide and/or connect to air paths for one or more air release valves **1260** and a pressure transducer **1270**, as schematically shown in FIG. **12**. The air manifold **1240** therefore can allow air flow between the pump(s) **1210**, the cuff **1250**, the pressure transducer **1270**, and/or the release valve(s) **1260**. [0429] As described further herein, one or more acoustic filters **1230** can be provided along the air path(s) in the blood pressure monitor **1200** to attenuate selected frequencies of air pressure waves

caused by operation of the air pump(s) **1210**. In the illustrated embodiment, a single acoustic filter **1230** is provided along the conduit **1220** between the air pump(s) **1210** and the air manifold **1240**. In some embodiments, however, the monitor **1200** can include multiple acoustic filters **1230** and the acoustic filter(s) can be provided at various different positions along the air path(s) (e.g., between the air manifold **1240** and the cuff **1250** and/or between the air manifold and the pressure transducer **1270**).

[0430] The inflatable cuff **1250** of the blood pressure monitor **1200** is designed to strap around a monitoring site on the patient's body. The monitoring site may be, for example, the patient's lower arm at the wrist. Blood pressure in the radial artery can be measured at this site. In other embodiments, the inflatable cuff **1250** of the blood pressure monitor **1200** may be designed to strap around the upper arm of the patient so as to measure blood pressure at the brachial artery. [0431] The cuff **1250** can include an internal compliant bladder whose volume expands in response to the pressure of the air supplied from the air pump(s) **1210**. The air pump(s) **1210** can cause the air pressure inside the cuff **1250** to increase over time according to a desired inflation profile. For example, the air pump(s) **1210** can be controlled so as to linearly ramp up air pressure within the cuff **1250**, though other inflation profiles can also be used (e.g., a stepped inflation profile or a piecewise linear inflation profile with segments having different slopes). The inflation profile of the cuff **1250** can be specified by, for example, using an air pump controller **1212** to control the speed(s) of the air pump(s) and/or to turn different air pumps **1210** on or off at selected times. [0432] In some cases, the desired inflation profile may not be readily achievable by operation of one or more air pumps **1210** alone. In some of those cases, the air release valve(s) **1260** may be used in conjunction with the air pump(s) **1210** to achieve the desired inflation profile. For example, the monitor **1200** may implement time-overlapping operation of the air pump(s) **1210** and the air release valve(s) **1260**. The resulting composite inflation profile is the summation of the inflation profile attributable solely to the air pump(s) **1210** and the lesser deflation profile attributable to the air release valve(s) **1260**.

[0433] As the air pressure increases and the compliant bladder expands during the inflation phase, the cuff **1250** exerts pressure on the patient's artery at the monitoring site. Pulsatile blood pressure variations inside the artery during each cardiac cycle cause the arterial wall to expand and contract, thus changing the volume of the artery. These variations in the volume of the artery are partially transmitted via tissue and skin to the bladder in the cuff **1250** and are measurable by the pressure transducer **1270**, which is connected to the cuff by an air pathway (e.g., the manifold **1240** or an optional separate bypass air pathway **1241**). The pressure transducer **1270** generates an output signal indicative of the pressure associated with the expansion and contraction of the artery during each cardiac cycle. The pressure transducer **1270** can be any of a variety of pressure sensors, such as a flexible diaphragm whose deflection is measured and then output as an electrical signal. [0434] Once the cuff **1250** has been inflated to or beyond the point of occluding the artery, the air release valve(s) 1260 can be operated so as to controllably reduce air pressure in the cuff. During the deflation phase, the air release valve(s) **1260** can be used to reduce air pressure in the cuff **1250** according to a desired deflation profile. For example, the valve(s) can be operated so as to linearly ramp down air pressure inside the cuff **1250**, though other deflation profiles can also be used (e.g., a stepped deflation profile or a piecewise linear deflation profile with segments having different slopes).

[0435] In some cases, the desired deflation profile may not be readily achievable by operation of one or more air release valves **1260** alone. In some of those cases, the air pump(s) **1210** may be used in conjunction with the air release valve(s) **1260** to achieve the desired deflation profile. For example, the monitor **1200** may implement time-overlapping operation of the air release valve(s) **1260** and the air pump(s) **1210**. The resulting composite deflation profile is the summation of the deflation profile attributable solely to the air release valve(s) **160** and the lesser inflation profile attributable to the air pump(s) **1210**.

[0436] This technique may be useful, for example, in embodiments of the blood pressure monitor **1200** which use a relatively inexpensive air release valve **1260** in order to reduce overall cost. Some inexpensive valves release air pressure in bursts rather than continuously. This can result in a stepped waveform deflation profile. Although a stepped deflation profile may be useful in some embodiments, if a more continuous deflation profile is desired, the air pump(s) **1210** can be operated during the deflation phase to provide an inflation profile that represents the difference between the desired composite deflation profile and the deflation profile attributable solely to the air release valve(s) **1260**.

[0437] In some embodiments, a first air release valve **1260** can serve as a relatively slow bleed valve to reduce air pressure inside the cuff **1250** according to normal operation during a blood pressure measurement. Meanwhile a second air release valve **1260** can serve as a relatively fast bleed emergency release valve capable of quickly deflating the cuff **1250** if the need arises. The valve(s) **1260** can be designed to fail in the open state so that air pressure inside the cuff **1250** is released in the event of a power failure.

[0438] In order to obtain a measurement using the blood pressure monitor **1200**, the cuff **1250** can be secured around the patient's arm at the measurement site. The monitor **1200** can then implement desired inflation and deflation profiles to obtain an output signal from the pressure transducer **1270** which can be processed to yield one or more blood pressure measurement values. During this process, when the air pressure inside the cuff **1250** is greater than the minimum, or diastolic blood pressure—but less than the maximum, or systolic blood pressure—inside the artery, the cuff partially collapses the arterial wall at the measurement site. The partial collapse of the arterial wall restricts blood flow through the artery. The degree of collapse—and the resulting restriction of blood flow through the artery—depends on the extent to which the air pressure in the cuff **1250** exceeds the minimum blood pressure in the artery. When the air pressure inside the cuff **1250** rises to exceed the maximum blood pressure in the artery, the artery becomes occluded and blood flow is cut off.

[0439] The patient's diastolic blood pressure measurement value is related to the pressure detected by the pressure transducer **1270** when, during the inflation phase, the cuff **1250** begins to interrupt continuous blood flow through the artery at the measurement site or, during the deflation phase, the cuff ceases to interrupt continuous flow. The patient's systolic blood pressure measurement value is related to the pressure detected by the pressure transducer 1270 when, during the inflation phase, the cuff **1250** just occludes the artery and pulsing blood flow ceases or, during the deflation phase, the artery is no longer fully occluded and blood just begins to once again flow through the artery. [0440] The diastolic and systolic blood pressure measurement values can be determined based on the pressure transducer output signal during the inflation phase and/or the deflation phase. In some embodiments, the pressure transducer **1270** outputs an analog pressure signal **1272** which varies as a function of time in response to the air pressure in the cuff 1250 and the pressure transmitted to the transducer by the artery via the cuff **1250**. The analog pressure signal can then be converted to a digital signal by an analog-to-digital converter **1281**. In some embodiments, the digital pressure signal can be decimated, as shown by the decimation blocks **1282**. The digital pressure signal can then be processed to obtain an oscillometric signal. The oscillometric signal includes plethysmographic waveforms which correspond to changes in the volume of the artery as it expands and contracts in response to pulsing blood.

[0441] In some embodiments, the processing of the digital pressure signal to obtain the oscillometric signal can include frequency filtering. For example, the digital pressure signal can be bandpass filtered to reject lower and higher frequency components which are not attributable to blood pressure variations, as shown by the bandpass filter block **1283**. Thus, the oscillometric signal includes plethysmographic signal content that is attributable to blood pressure variations in the artery at the measurement site, but typically excludes low-frequency pressure variations that are attributable to the inflation and deflation of the cuff **1250** as well as higher-frequency pressure

variations that are attributable to vibrations of the air pump(s) **1210**. The frequency filtering can be carried out by, for example, a single-stage or multi-stage filter. Additional and/or different signal processing operations can also, or alternatively, be applied to the digital signal. The resulting oscillometric signal can then be analyzed by a processor to determine one or more blood pressure values. This analysis can be performed locally by a processor **1284** provided in the blood pressure monitor **1200** itself or by an external processor to which the oscillometric signal (or a predecessor signal) may be transmitted.

[0442] The processor **1284** can cause the blood pressure measurement values to be transmitted to an external device (e.g., a bedside patient monitor) and/or to be shown on a display **1286** integrated in the blood pressure monitor **1200**. In addition to calculating and/or displaying blood pressure values, the processor **1284** can also be used to control the air pump(s) **1210** (via the air pump controller **1212**) and the air release valve(s) **1260**. The processor **1284**, air pump(s) **1210**, air release valve(s) **1260**, display **1286**, and/or other components of the blood pressure monitor **1200** can be powered by a battery provided in the housing of the monitor or by a power bus from another component.

[0443] Although not illustrated, some embodiments of the blood pressure monitor **1200** may include either an integrated microphone or a microphone input port that allows the monitor to be connected to an external microphone. The microphone can be used to provide a signal for performing ausculatory blood pressure measurements using Korotkoff sounds. The microphone can also be used to provide a signal for controlling operation of the air pump(s) **1210**, as discussed further herein.

[0444] In addition, some embodiments of the noninvasive blood pressure monitor **1200** may include an accelerometer. The accelerometer can be used, for example, to detect patient motion during a blood pressure measurement. If patient motion is detected during a measurement by the accelerometer, the blood pressure values can be flagged or rejected, depending on a selected property of the detected motion (e.g., the magnitude of the motion signal). Alternatively and/or additionally, the blood pressure monitor **1200** can output a message or warning (e.g., via the display **1286** or a speaker) to the patient to hold still during the measurement. In some embodiments, the blood pressure monitor **1200** can check the accelerometer signal prior to performing a blood pressure measurement. If the accelerometer signal is indicative of patient motion, then the monitor **1200** can delay the blood pressure measurement until patient motion is no longer detected.

[0445] In addition, the accelerometer can be used to determine if the patient's arm is in a desired position during a blood pressure measurement. For example, blood pressure measurements are typically more accurate if the patient's arm is elevated near the same height as the patient's heart. For a wrist-worn blood pressure monitor **1200**, this may be the case when the monitor is detected by the accelerometer to be horizontally level (within a specified range of angles). If, however, the blood pressure monitor **1200** is detected to be too vertically-oriented due to the patient's lower arm being elevated or hanging down, the blood pressure values can be flagged or rejected. Alternatively and/or additionally, the blood pressure monitor **1200** can output a message or warning (e.g., via the display **1286** or a speaker) to the patient to level his or her lower arm during the measurement. Example Acoustic Design for Noninvasive Blood Pressure Monitor

[0446] Since the blood pressure monitor **1200** is a portable device designed to be worn by the patient, there is a greater need—as compared to other non-wearable blood pressure monitors which can readily be positioned at a greater distance from the patient—to reduce acoustic noise produced by the monitor.

[0447] The air pump(s) **1210** are typically the dominant source of acoustic noise from the blood pressure monitor **1200**. In order to dampen the sound from the blood pressure monitor **1200**, the air pump(s) **1210** can be provided in a noise-dampening housing. The housing can include, for example, two or more parts that join together to enclose the interior components of the blood

pressure monitor **1200**. One of more gaskets can be provided at the mating interface(s) between the parts of the housing. The gasket(s) can reduce acoustic noise from the blood pressure monitor **1200** by preventing the parts of the housing from vibrating against one another and by providing a seal that helps to prevent sound waves from exiting the housing. The amount of sound attenuation may be dependent on the material properties of the gasket, and more specifically the mismatch in material acoustic properties between the housing material and the gasket itself.

[0448] Acoustic noise from the blood pressure monitor **1200** can be further reduced with noise-dampening materials. Open space within the housing of the blood pressure monitor **1200** can be partially or completely filled with noise-dampening material. The noise-dampening material(s) can be provided as a single piece, multiple layers, many small pieces, and/or combinations of the same or the like. The noise-dampening material may be, for example, loosely-layered tissue-like materials, low-density foam pieces, aerogel, etc.

[0449] As already discussed, the blood pressure monitor can include air paths which join the air pump(s) **1210**, the manifold **1240**, the cuff **1250**, the air release valve(s) **1260**, and/or the pressure transducer **1270**. The air pump(s) **1210** can create unwanted acoustic noise which manifests as air pressure waves which propagate to the cuff **1250**, the air release valve(s) **1260**, and/or the pressure transducer **1270** via the air paths that connect these components. In order to reduce the propagation of these air pressure waves between the air pump(s) **1210** and any of the other components of the monitor **1200**, an acoustic filter **1230** can be provided at any point along the air path(s) (e.g., conduit **1220** or manifold **1240**).

[0450] In some embodiments, one or more acoustic filters **1230** can be provided along the air path(s) between the pump(s) **1210** and the cuff **1250**. This may be advantageous because the cuff 1250 may act as a speaker by amplifying air pressure waves coupled into it via the air path from the pump(s) **1210**. If an acoustic filter **1230** is provided between the air pump(s) **1210** and the cuff **1250**, undesirable air pressure waves can be reduced or eliminated prior to amplification by the cuff **1250**, thereby reducing noise output from the cuff. One or more additional acoustic filters **1230** can also, or alternatively, be provided along the air path(s) between the air pump(s) **1210** and the pressure transducer **1270** and/or between the air pump(s) and the air release valve(s) **1260**. [0451] As just discussed, the acoustic filter **1230** shown in FIG. **12** attenuates unwanted air pressure waves that would otherwise reach the cuff **1250**. This reduces irritating noise and provides for a more pleasant user experience. The acoustic filter **1230** also attenuates unwanted air pressure waves that would otherwise reach the pressure transducer **1270** and possibly corrupt its output signal. The acoustic filter **1230** can therefore attenuate variations in the output signal of the pressure transducer **1270** which would otherwise manifest as signal noise. Accordingly, the acoustic filter **1230** can not only reduce audible noise emanating from the blood pressure monitor **1200** but can also reduce signal noise and thereby improve fidelity of the measurements produced by the monitor.

[0452] In FIG. **12**, the acoustic filter **1230** is illustrated as being provided along the air path between the pump(s) **1210** and the air manifold **1240**. This arrangement may be advantageous because the acoustic filter **1230** is provided upstream of the manifold **1240** where air paths branch off and can therefore reduce unwanted air pressure waves at multiple components of the monitor **1200**. In some embodiments, however, an acoustic filter can be provided along one or more air paths at points downstream from the air manifold **1240**. For example, an acoustic filter can be provided along the air path between the air manifold **1240** and the cuff **1250**, and/or along the air path between the air manifold **1240** and the pressure transducer **1270**.

[0453] FIG. **13**A illustrates an example embodiment of the acoustic filter **1230**. The air conduit **1220** between the air pump(s) **1210** and the blood pressure cuff **1250** is shown. The illustrated embodiment of the acoustic filter **1230** is made up of opposing closed-ended stubs, or elongated cavities, which branch off of the air supply conduit **1220**. These opposing stubs form a column of air that can be vibrated by air pressure waves from the air pump(s) **1210**. The air pressure waves

from the air pump(s) **1210** propagate through the air supply conduit **1220** until arriving at the acoustic filter 1230. The air pressure waves can then propagate down the opposing stubs of the acoustic filter **1230** and can reflect from the closed ends of the stubs. Depending upon the length of the stubs, some frequencies of the reflected waves destructively interfere with waves propagating in the air supply conduit **1220**. The length of the stubs can be determined based on the acoustic output of the air pump(s) **1210** so as to effectively induce destructive wave interference for the dominant wavelength(s) to be attenuated. This type of acoustic filter can function as a low-pass filter. [0454] FIG. 13B illustrates another example embodiment of the acoustic filter 1230. The acoustic filter **1230** shown in FIG. **13**B is similar to the one shown in FIG. **13**A in that it consists of opposing stubs or elongated cavities which branch off of the air supply conduit **1220**. However, in the embodiment shown in FIG. 13B, the stubs of the acoustic filter 1230 have a folded or tortuousrather than straight-configuration. As shown, a folded configuration of the acoustic filter **1230** can include multiple sections-straight or curved-joined together (e.g., at angles). The folded configuration may be advantageous in some embodiments because it is a more compact design that can efficiently use space within the housing of the blood pressure monitor **1200**. This type of acoustic filter can likewise function as a low-pass filter.

[0455] FIG. 13C illustrates additional example embodiments of the acoustic filter 1230. The example acoustic filters 1230 shown in FIG. 13C are box-shaped cavities that are intersected by the air supply conduit 1220. As shown, the box-shaped cavities may be proportioned with different sizes in different dimensions. For example, the box-shaped cavities may have relatively large faces joined by relatively thin side edges. FIG. 13C shows that the air supply conduit 1220 may intersect with a box-shaped cavity at the larger faces or at the thinner side edges. Similar to the stub filters shown in FIGS. 13A and 13B, the box-shaped acoustic filters 1230 shown in FIG. 13C function by creating reflected waves which can cause destructive interference with the air pressure waves propagating down the air supply conduit 1220. These types of acoustic filters can also function as low-pass filters. The box-shaped filters may be more effective in some embodiments than the stub line filters, however, because they include a greater interaction area at the intersection with the air supply conduit 1220. Although box-shaped cavities are illustrated, other shapes of enclosed cavities are also possible and may be effective depending on the air pressure waves produced by the air pump(s) 1210.

[0456] FIG. **13**D illustrates yet another example embodiment of the acoustic filter **1230**. In this embodiment, the acoustic filter is a box-shaped enclosure which is not intersected by the air supply conduit **1220**, but rather is joined to the air supply conduit **1220** by an open-ended stub. This embodiment can effectively function as a band-stop filter. Although a box-shaped enclosure is illustrated, other shapes are also possible.

[0457] In some embodiments, the acoustic filter(s) **1230** can be integrated with the air manifold **1240**. For example, the air manifold **1240** can itself be shaped and/or sized to act as the acoustic filter **1230**. In some embodiments, the air manifold **1240** can include an acoustic filtering cavity. The acoustic filtering cavity can be box-shaped such as is shown in FIG. **13**C, though other cavity shapes are also possible. The cavity can include multiple air conduits or ports which join with the cavity to connect the air manifold **1240** with other components. The dimensions of the acoustic filtering cavity can be at least 2, 3, 4, 5, 10, 15, or 20 times the size of the dimensions of conduits or ports which feed into the cavity.

[0458] In some embodiments, the acoustic filters **1230** described herein can be designed such that their pass bands exclude some or all of the acoustic frequencies produced by the air pump(s) **1210** at normal operating speeds. For example, the acoustic filters **1230** described herein can be designed such that their pass bands exclude the fundamental frequency produced by the air pump(s) at or above 50%, 60%, 70%, 80%, or 90% of their maximum operating speeds.

[0459] Air manifold **520**, discussed above, is an example of an acoustic filter **1230** integrated with an air manifold. Air manifold **520** includes multiple box-shaped acoustic filtering cavities joined

together to create a larger acoustic filtering cavity. Various faces of the acoustic filtering cavity in air manifold **520** include ports which connect the manifold to air pumps, the cuff, release valves, and a pressure transducer. Acoustic waves which enter the air manifold **520** through any of these ports can reflect from various walls of the acoustic filtering cavity, thereby resulting in destructive interference at certain frequencies.

Example Inflation Control Techniques

[0460] In some embodiments, the air pump controller **1212** can be used for dynamically controlling one or more operating characteristics (e.g., speed, stroke length, stroke phase, etc.) of each of the air pump(s) **1210** in the noninvasive blood pressure monitor **1200**. The ability to dynamically control operating characteristics of the air pump(s) **1210** can be used to achieve multiple advantages, including improving the audible sound emitted by the blood pressure monitor **1200** and reducing the amount of time necessary for the monitor to perform blood pressure measurements, as shown in FIGS. **14**A-**14**C, respectively.

[0461] FIG. **14**A is a flowchart of an example embodiment of a method **1400**A for using the air pump controller **1212** to improve the audible sound emitted by the blood pressure monitor **1200**. As already discussed, the blood pressure monitor **1200** can include technology, such as gaskets, acoustic filters, noise-dampening material, etc., for reducing the amount of audible noise it emits. In the case that not all of the audible noise can be eliminated, however, it may be possible to make the remaining noise more pleasant for the patient.

[0462] The example method shown in FIG. **14**A is applicable to embodiments of the blood pressure monitor **1200** which include multiple air pumps **1210**. By including multiple air pumps **1210**, the blood pressure monitor 1200 has the ability to alter the inflation rate of the cuff 1250 by turning different air pumps on or off at different times. For example, if the blood pressure monitor 1200 includes two air pumps **1210**, the inflation rate of the cuff **1250** can be doubled by turning the second air pump on at approximately the same speed as the first air pump. Or conversely, when the two air pumps are running at approximately the same speed, the inflation rate of the cuff **1250** can be halved by turning one of the air pumps off. Although similar changes in the inflation rate of the cuff **1250** could possibly be achieved by dramatically changing the operating speed of a single air pump, doing so could result in relatively large changes in the frequency of the acoustic noise emitted by the air pump (the frequency of the acoustic noise is related to the speed of the air pump), which could shift the acoustic noise into the passband of the acoustic filter 1230, require a more complicated design for the acoustic filter **1230**, and/or otherwise compromise the performance of the noise-reducing technology in the blood pressure monitor **1200**. Multiple-air-pump embodiments may also be advantageous in that they may provide for a larger range of inflation rates than could be achieved by adjusting the speed of a single air pump.

[0463] One potential difficulty, however, with using multiple air pumps 1210 is that different air pumps may run at slightly different speeds even when provided with identical drive signals. This may be attributable to, for example, manufacturing tolerances or uneven wear of internal moving parts over time. Since the frequency of the acoustic noise from an air pump is related to its speed, slight speed differences for the multiple air pumps 1210 can cause them to emit noise at slightly different frequencies, thus possibly resulting in perceptible beat frequencies or other acoustic effects which may be unpleasant for the user. This and other problems can be solved according to the method 1400A shown in FIG. 14A.

[0464] The method **1400**A begins at block **1410***a* where the blood pressure monitor **1200** detects one or more characteristics of the acoustic noise emitted by the air pumps **1210**, whether on an individual or collective basis. The detected acoustic noise characteristic(s) can include, for example, loudness, frequency content, relative phase of frequency components, beat frequencies, etc. Acoustic noise characteristics can be determined by using the processor **1284** to analyze the output signal from a microphone integrated in, or connected to, the monitor **1200** or to analyze the output signal from the pressure transducer **1270**. The analysis can be performed using, for example,

Fourier transforms or other frequency domain analysis techniques, an envelope detection algorithm, or other known signal processing techniques.

[0465] Then, at block **1420***a*, the blood pressure monitor **1200** can use the air pump controller **1212** to make one or more adjustments (e.g., via open-loop or feedback control) to one or more operating characteristics of the air pumps **1210** so as to reduce an acoustic displeasure metric. The acoustic displeasure metric can be any objective metric that is correlated with the subjective displeasure that the sound emitted by the air pumps **1210** causes for a representative group of patients. In some cases, the acoustic displeasure metric can be equal to, or based on, an acoustic noise characteristic, or a combination of multiple acoustic noise characteristics, that is/are detected in block **1410***a*. For example, the acoustic displeasure metric can be based on the loudness of the sound, the beat frequency, etc. Method **1400**A can be repeated iteratively during the inflation phase of a blood pressure measurement or until the acoustic displeasure metric is reduced beyond a desired threshold.

[0466] In some embodiments, the blood pressure monitor can use the air pump controller **1212** to reduce the acoustic displeasure metric by adjusting the speed, stroke length, or stroke phase of either or both air pumps **1210**. For example, the acoustic noise characteristic that is detected in block **1410***a* can be the loudness of the noise produced by the air pumps **1210**. The loudness of the noise can also serve as the acoustic displeasure metric in block **1420***a*. Then at block **1420***a*, the stroke phases of the air pumps **1210** can be adjusted (e.g., toward a relative phase difference of 180 degrees) so as to increase the destructive interference between the respective sound waves they produce. By increasing the degree of destructive interference, the loudness of the acoustic noise (i.e., the acoustic displeasure metric) can be reduced.

[0467] In other embodiments, the acoustic noise characteristic that is detected in block **1410***a* can be the beat frequency produced by the air pumps **1210** operating at slightly different speeds. The acoustic displeasure metric in block **1420***a* can be, for example, inversely related to the beat frequency such that a lower beat frequency results in a higher acoustic displeasure metric and a higher beat frequency results in a lower acoustic displeasure metric. Then at block **1420***a*, the speed of one of the air pumps can be adjusted so as to change the beat frequency in a way that reduces the displeasure metric. For example, the difference in speed of one of the air pumps with respect to the other can be increased, thereby increasing separation between the respective frequency content of the acoustic noise emitted by the air pumps. This in turn will increase the beat frequency so it is more pleasant-sounding. In some embodiments, the monitor **1200** can identify a dominant frequency in the acoustic noise emitted by each of the air pumps **1210** and the air pump controller **1212** can be used to make adjustments which increase the difference between the respective dominant frequencies. The adjustments can be made by altering the drive signal to a single air pump while holding the drive signal to the other pump steady, or by altering the drive signals for both pumps. In other embodiments, the acoustic displeasure metric can be proportional to the beat frequency such that a lower beat frequency (e.g., low enough to be imperceptible to the human ear) results in a lower acoustic displeasure metric and a higher beat frequency results in a higher acoustic displeasure metric. Then at block **1420***a*, the speed of one of the air pumps can be adjusted to as to reduce the acoustic displeasure metric by, for example, driving the beat frequency toward zero.

[0468] In some embodiments, the air pump controller **1212** can be used to make adjustments which cause the frequency content of the acoustic noise emitted by one of the air pumps **1210** to have a desired relationship in comparison to the frequency content of the acoustic noise emitted by another of the air pumps. For example, the relationship can be that the dominant frequency of the acoustic noise emitted by one of the pumps be harmonically related (or have any other offset) to the dominant frequency of the acoustic noise emitted by another of the air pumps since harmonic frequencies (i.e., frequencies related by a whole number multiple) are generally considered to be pleasant to the ear. Any other desired relationship between the respective dominant frequencies of

the air pumps can also be used.

[0469] FIG. **14**B is a flowchart of an example embodiment of a method **1400**B for reducing the amount of time necessary for the noninvasive blood pressure monitor **1200** to perform blood pressure measurements. The inflation phase for the cuff **1250** can be divided into a nonmeasurement portion and a measurement portion. The method **1400**B begins at block **1410***b* where the blood pressure monitor **1200** inflates the cuff **1250** at a relatively high rate during the nonmeasurement portion of the inflation phase until a plethysmographic waveform is detected in the signal from the pressure transducer **1270**. Plethysmographic waveforms are indicative of changes in arterial volume caused by instantaneous blood pressure variations during cardiac cycles from one heartbeat to the next. Plethysmographic waveforms are not present in the signal from the pressure transducer **1270** until the air pressure inside the cuff **1250** causes the cuff to squeeze the arm with sufficient force to become responsive to the pulsing of the patient's artery. [0470] Since no clinically relevant measurements can be obtained from the output of the pressure transducer 1270 until plethysmographic waveforms begin to appear, the overall process for obtaining a blood pressure measurement can be accelerated by quickly inflating the cuff 1250 to that point during the non-measurement portion of the inflation phase. In embodiments where blood pressure measurements are taken during the inflation phase, it may be undesirable, however, to continue to inflate the cuff **1250** at the same high rate after plethysmographic waveforms have appeared in the output signal of the pressure transducer **1270**. This is because the blood pressure measurements may be reliant on data from a certain predetermined minimum number of cardiac cycles, so a high cuff inflation rate may completely occlude the patient's artery before a sufficient number of cardiac cycles have occurred, thus negatively impacting the accuracy of the blood pressure measurements. Accordingly, the blood pressure monitor **1200** can reduce the inflation rate of the cuff 1250 during the measurement portion of the inflation phase (e.g., as delineated by the detected presence of plethysmographic waveforms in the output from the pressure transducer **1270**) so as to allow for an adequate number of cardiac cycles before the artery is completely occluded. [0471] At block **1420***b* of the method **1400**B, the blood pressure monitor **1200** can determine the patient's pulse rate from the period or fundamental frequency of the train of plethysmographic waveforms. The pulse rate can typically be determined within 2-3 cardiac cycles. Then, at block **1430***b*, given the patient's pulse rate, the blood pressure monitor **1200** can set (e.g., lower) the cuff inflation rate so as to allow for an adequate number of cardiac cycles to occur before reaching the maximum inflation pressure. In some embodiments, the monitor may allow ≤ 15 , or ≤ 12 , or ≤ 10 cardiac cycles (inclusive of the cardiac cycles also used to determine the pulse rate) to make the blood pressure measurements prior to reaching the maximum inflation pressure. (Note: In some embodiments, the maximum inflation pressure may be determined based on the shape of the envelope of the train of plethysmographic waveforms in the oscillometric signal. This technique can make use of the fact that the envelope reaches a maximum amplitude at the mean arterial pressure. This point can be identified by detecting the envelope of the oscillometric signal and then detecting when the slope of the envelope crosses zero. Once the mean arterial pressure is estimated from the maximum value—or first-derivative zero-crossing—of the envelope of the oscillometric signal, it can be used to estimate the diastolic and systolic blood pressure values. The maximum inflation pressure can then be set to a value at least as high as the estimated systolic pressure.) [0472] FIG. **14**C illustrates an example embodiment of a method **1400**C for dynamically controlling inflation of the cuff **1250** in the blood pressure monitor **1200**. The method **1400**C begins at the start block **1405***c* before subsequently entering the first of three inflation stages: stage 1 inflation, stage 2 inflation, and stage 3 inflation.

[0473] In the embodiment illustrated in FIG. **14**C, stage 1 is a non-blood-pressure-measurement inflation stage. The purpose of the first inflation stage is to quickly fill dead space in the cuff **1250**. As already mentioned herein, the blood pressure monitor **1200** cannot perform a measurement until plethysmographic waveforms begin appearing in the output of the pressure transducer **1270**. Such

plethysmographic waveforms do not begin to appear until the cuff exerts adequate pressure at the measurement site. Thus, the first inflation stage is used to quickly increase the volume of the cuff **1250** from its deflated state.

[0474] The first inflation stage begins at block **1410***c* where at least one of the air pumps **1210** is started. The first inflation stage is a relatively high-rate inflation stage. Thus, the starting output volume of the air pump(s) **1210** at block **1410***c* can be, for example, at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 95% of the maximum operating output volume available from the pumps. In some embodiments, the starting output volume of the air pump(s) **1210** can be a fixed value or it can be variable based on one or more inputs. For example, block **1410***c* can receive the size of the cuff **1250** as an input to determine the starting pump output volume. (The blood pressure monitor **1200** can utilize different sized cuffs **1250** depending upon the measurement site (e.g., wrist or upper arm) or the size of the patient (e.g., child, adolescent, adult, etc.)) In some embodiments, the cuff size can be stored in a near-field communication (NFC) or radio frequency (RF) tag located on or in the cuff **1250** and can be read by an NFC or RF tag reader provided in the blood pressure monitor **1200**, though other techniques for receiving the cuff size as an input can also be used. For a larger sized cuff **1250**, the starting output volume of air at block **1410***c* can be set to a higher value; for a smaller sized cuff, the starting output volume of air can be set to a lower value.

[0475] Since the first inflation stage is intended to be a relatively high-rate inflation stage, it will often be the case that multiple air pumps will be started at block **1410***c*. In those embodiments, the first inflation stage can optionally include block **1415***c* where pump frequency relationship control is performed. As described herein, even though two air pumps may be provided with identical drive signals they may have slightly different operating speeds. Since the frequency of the acoustic noise produced by each air pump **1210** is dependent on its operating speed, this offset in operating speeds can result in acoustic beat frequencies that may be unpleasant-sounding to the user. Thus, block **1415***c* can be implemented so as to control the respective operating speeds of the air pumps **1210** so as to achieve a desired relationship between the respective acoustic frequencies they produce. [0476] FIG. **14**D illustrates an example embodiment of a method for carrying out the pump frequency relationship control in block **1415***c* of FIG. **14**C. In operation, a drive signal, such as a selected voltage, is applied to each of the air pumps **1210**. An operating electrical current is developed in each air pump **1210** in response to the applied voltage. These operating electrical currents are generally periodic waveforms whose periodicities are indicative of the respective operating speeds of the air pumps **1210**. In the illustrated embodiment, the operating electrical current signal, i.sub.pump1, of the first air pump **1210** is input into a first Fast Fourier Transform (FFT) block **1410***d*, while the operating electrical current signal, i.sub.pump2, of the second air pump **1210** is input into a second FFT block **1430***d*. The respective FFT blocks **1410***d*, **1430***d* can calculate the frequency content of the operating current signals from the air pumps **1210**. Although FFT blocks are illustrated, any technique for determining frequency content of the operating current signals can be used.

[0477] Once the frequency content of the operating current signals has been determined by FFT blocks **1410***d*, **1430***d*, the ith harmonic of the frequency content of the operating electrical current signals can be respectively determined at blocks **1420***d* and **1440***d*. In some embodiments, blocks **1420***d* and **1440***d* output the frequency of the first harmonic, or fundamental frequency, of the operating current signals from the air pumps **1210**.

[0478] The selected harmonic of each of the operating current signals is then input into block **1450***d*. Block **1450***d* can also receive as an input the current drive signal being applied to either or both air pumps **1210**. In the illustrated embodiment, the current voltage, V.sub.pump2, being applied to the second air pump **1210** is input into block **1450***d*. In response to these inputs, block **1450***d* outputs an updated voltage to be applied to either or both air pumps **1210**. In the illustrated embodiment, block **1450***d* outputs an updated voltage to be applied to the second air pump **1210**.

The updated voltage can be selected so as to achieve a desired relationship between the identified harmonic from the operating electrical current of the first air pump and the identified harmonic from the operating electrical current of the second air pump. In some embodiments, the desired relationship between the identified frequencies can be that they are the same. This frequency relationship would set the operating speeds of the air pumps 1210 to be the same. In other embodiments, however, the desired frequency relationship can be a non-zero offset value (e.g., one that produces a beat frequency lower than the frequency threshold the human ear is able to perceive, or one that causes the frequencies to be harmonically related at integer multiples of one another, etc.). In some embodiments, the desired frequency relationship can be set based on input from the user. For example, the user can provide an input via a button, knob, or other input device to set the frequency offset at a value that is acoustically pleasing to the user. [0479] The voltage update block **1450***d* can operate in an open loop or a closed loop control mode. In the case of an open loop control mode, the operating speed of at least one of the air pumps, e.g., the second air pump **1210**, can be characterized for a range of input voltages. For example, a lookup table can include the operating speed of the second air pump **1210** for each of a range of input voltages. The voltage update block **1450***d* can receive the operating speed of the first air pump **1210** as an input in the form of the frequency of the ith harmonic of the operating electrical current of the first air pump. The voltage update block **1450***d* can then select and output the updated voltage, V.sub.pump2, which results in the ith harmonic of the operating electrical current of the second air pump having the desired relationship with the ith harmonic of the operating electrical current of the first air pump. In the case of the closed loop control mode, the voltage update block **1450***d* can iteratively adjust the updated voltage, V.sub.pump2, applied to the second air pump. The voltage update block **1450***d* can then determine the effect of that adjustment on the relationship between the respective operating frequencies of the air pumps. If the adjustment resulted in the relationship between the respective operating frequencies of the air pumps being closer to the desired relationship, then the voltage update block **1450***d* can make a subsequent adjustment to V.sub.pump2 in the same direction. If, on the other hand, the adjustment resulted in the relationship between the respective operating frequencies of the air pumps being further from the desired relationship, then the voltage update block **1450***d* can make a subsequent adjustment to V.sub.pump2 in the opposite direction. The magnitude of the adjustment can vary depending upon how close the desired frequency relationship is to being satisfied. An example closed loop control mode can be governed by the following equations: V.sub.updated pump2=V.sub.pump2+dV, where $dV = \alpha * df$ if $dV.sub.min \le \alpha * df < dV.sub.max$, or dV = dV.sub.min if $\alpha * df < dV.sub.min$, or dV=dV.sub.max if $\alpha*df>dV.sub.max$; df=f.sub.pump2-f.sub.pump1 and $\alpha=constant$. [0480] Decision block **1420***c* illustrates an example ending criterion for the first inflation stage. In

[0480] Decision block **1420***c* illustrates an example ending criterion for the first inflation stage. In the illustrated embodiment, the ending criterion for the first inflation stage is that the pressure in the cuff **1250**, as measured by the pressure transducer **1270**, is above a threshold pressure P.sub.1. An example of the threshold pressure is 30 mmHg, though other pressure thresholds can also be used. Other ending criteria can also be used. For example, in some embodiments, the ending criterion for the first inflation stage is that a plethysmographic waveform has been detected in the output from the pressure transducer **1270**.

[0481] If it is determined at decision block **1420***c* that the ending criterion for the first inflation stage has not been met, then the method **1400**C can return to block **1415***c* to iteratively perform pump frequency relationship control. This can be done because the operating frequency of each of the air pumps **1210** may change in response to the increasing back pressure from the cuff **1250** as it is inflated. If, on the other hand, the ending criterion for the first inflation stage is satisfied at decision block **1420***c*, the second inflation stage begins.

[0482] The second inflation stage is a non-blood-pressure-measurement inflation stage, but it is a heart-rate-detection inflation stage. The second inflation stage begins at block 1425c where the drive signal(s) (e.g., input voltage(s)) for the air pump(s) 1210 is/are set. In some embodiments, the

output volume of the air pump(s) **1210** at block **1425***c* can be set to a value that is lower than the output volume of air during the first inflation stage. The starting output volume of the air pump(s) **1210** during the second inflation stage can be a fixed value or it can be variable based on one or more inputs. For example, block **1430***c* can receive the size of the cuff **1250** as an input to determine the starting pump output volume for the second inflation stage. The inflation rate of the cuff **1250** can be slowed in the second inflation stage—relative to the first inflation stage—so as to facilitate detection of a heart rate from an oscillometric signal collected by the pressure transducer **1270**.

[0483] The second inflation stage can then continue to block **1430***c* where pump frequency relationship control can once again be performed. This can be done as described with respect to block **1415***c*. Then, at block **1435***c*, the blood pressure monitor **1200** can analyze the output of the pressure transducer **1270** to determine whether plethysmographic waveforms are present and whether a heart rate can be detected. In some embodiments, the heart rate can be determined based on the frequency of the plethysmographic waveforms in the oscillometric signal. Subsequently, at decision block **1440***c*, if no heart rate is yet detected then the method **1400**C can iteratively return to blocks **1430***c* and **1435***c*. Once plethysmographic waveforms are present in the oscillometric signal from the pressure transducer **1270** and a heart rate is detected, then decision block **1440***c* can cause the method **1400**C to proceed to the third inflation stage.

[0484] The third inflation stage is a blood-pressure-measurement inflation stage. At block **1445***c*, a control loop, such as a proportional-integral-derivative (PID) controller, sets the drive signal(s) of the air pump(s) **1210** so as to achieve a target inflation rate per unit time or per cardiac cycle. In some embodiments, accuracy of the blood pressure measurement performed by the blood pressure monitor **1200** may be partially dependent upon the number cardiac cycles—and the corresponding number of plethysmographic waveforms—that are detected during the blood pressure measurement phase. The target inflation rate can be selected so as to allow for a desired number of cardiac cycles before the pressure inside the cuff **1250** reaches the patient's systolic blood pressure. The target inflation rate can be selected so as to balance speed of measurement against measurement accuracy. In some embodiments, the target inflation rate is 9 mmHg per heartbeat, or cardiac cycle, though other target inflation rates can also be used.

[0485] In some embodiments, the target inflation rate is the same for all patients. In other embodiments, however, the target inflation rate can be adjusted for each patient. For example, the target inflation rate may be adjusted based on the detected heart rate at block **1435**c (e.g., for patients with higher heart rates, the target inflation rate can be set to a higher value per unit time; for patients with lower heart rates, the target inflation rate can be set to a lower value per unit time). [0486] In some embodiments, the target inflation rate can be maintained steady during the entire measurement phase. In other embodiments the target inflation rate can be changed for different sections of the measurement phase, as described with respect to FIG. **14**E.

[0487] FIG. **14**E illustrates how target inflation rate of the blood pressure cuff **1250** can be adjusted during a blood pressure measurement based on the envelope of the oscillometric signal produced by the blood pressure monitor **1200**. An oscillometric signal **1402***e* is shown in FIG. **14**E. The oscillometric signal is plotted as a function of pressure in the cuff **1250**. The oscillometric signal includes a train of plethysmographic waveforms—each corresponding to a cardiac cycle or heartbeat—detected by the pressure transducer **1270**. The oscillometric signal has an envelope **1404***e*. The envelope **1404***e* generally begins at or near zero prior to the cuff **1250** exerting enough pressure on the measurement site to detect plethysmographic waveforms. Once the cuff **1250** does exert adequate pressure on the measurement site, plethysmographic waveforms begin to appear in the oscillometric signal **1402***e*, with the amplitudes of the plethysmographic waveforms initially increasing in response to rising pressure in the cuff **1250**. When the cuff **1250** reaches the mean arterial pressure, plethysmographic waveform magnitude reaches a maximum value, causing the envelope **1404***e* to likewise reach a maximum value. The amplitudes of the plethysmographic

waveforms then decrease in response to rising pressure in the cuff **1250**. Eventually, the pressure in the cuff **1250** causes the artery at the measurement site to be occluded, causing plethysmographic waveforms to disappear or have their amplitudes drop below a threshold value.

[0488] Point **1410***e* in FIG. **14**E is the rising inflection point of the envelope **1404***e* of the oscillometric signal **1402***e*, while point **1420***e* is the falling inflection point of the envelope. The dashed vertical bars on either side of the rising inflection point **1410***e* define a diastolic blood pressure measurement zone **1415***e* on the rising side of the envelope **1404***e* prior to reaching its peak, while the dashed vertical bars on either side of the falling inflection point **1420***e* define a systolic blood pressure measurement zone **1425***e* on the falling side of the envelope after it has already peaked. The zone between the diastolic blood pressure measurement zone **1410***e* and the systolic blood pressure measurement zone **1420***e*—which encompasses the peak of the envelope **1404***e* of the oscillometric signal **1402***e*—is the mean arterial blood pressure measurement zone. [0489] In some embodiments, the target inflation rate of the cuff **1250** can be set to a lower value when the air pressure in the cuff **1250** is in the diastolic blood pressure measurement zone **1415***e* and/or in the systolic blood pressure measurement zone **1425***e*, as compared to a higher target inflation rate when the air pressure in the cuff is below the diastolic blood pressure measurement zone **1415***e*, in the mean arterial blood pressure measurement zone, and/or above the systolic blood pressure measurement zone **1425***e*. The lower target inflation rate while in the diastolic blood pressure measurement zone **1415***e* and/or the systolic blood pressure measurement zone **1425***e* allows for more plethysmographic waveforms to be collected in these zones. In some embodiments, this increased measurement resolution in these zones can allow for improved diastolic and/or systolic blood pressure measurements. Meanwhile, by increasing the target inflation rate when the air pressure in the cuff 1250 is outside of these measurement zones, the overall speed of the blood pressure measurement can be improved without necessarily sacrificing measurement accuracy.

[0490] In some embodiments, the blood pressure monitor **1200** includes an envelope detector to detect the envelope **1404***e* of the oscillometric signal **1402***e* from the pressure transducer **1270**. The blood pressure monitor **1200** can detect when the air pressure in the cuff **1250** is in the diastolic blood pressure measurement zone **1415***e*, the systolic blood pressure measurement zone **1425***e*, or the in-between mean arterial blood pressure measurement zone based on the derivatives of the envelope **1404***e*. For example, while the cuff **1250** is being inflated, the left edge of the diastolic blood pressure measurement zone **1415***e* can be identified by the first derivative of the envelope **1404***e* rising above a set threshold. The rising inflection point **1410***e* can be identified by the first derivative of the envelope **1404***e* reaching a local maximum value or by the second derivative of the envelope **1404***e* crossing zero. The right edge of the diastolic blood pressure measurement zone **1415***e* can be identified by the first derivative of the envelope **1404***e* falling below a set threshold after the rising inflection point **1410***e* has already been detected. The peak of the envelope **1404***e* can indicate that the air pressure in the cuff **1250** is in the mean arterial pressure measurement zone. This can be identified by the first derivative of the envelope **1404***e* crossing zero. The left edge of the systolic blood pressure measurement zone **1425***e* can be identified by the first derivative of the envelope **1404***e* falling below a threshold after the envelop maximum has already been detected. The falling inflection point **1420***e* can be identified by the first derivative of the envelope **1404***e* reaching a local minimum value or by the second derivative of the envelope **1404***e* crossing zero. The right edge of the systolic blood pressure measurement zone **1425***e* can be identified by the first derivative of the envelope **1404***e* rising above a set threshold after the falling inflection point **1420***e* has already been detected.

[0491] Block **1445***c* can perform one or more cycles of the PID control loop before proceeding to block **1450***c* where pump frequency relationship control can once again be performed. This can be done as described with respect to block **1415***c*.

[0492] At block **1455***c*, the blood pressure monitor **1200** can execute stop inflation logic to

determine whether to cease inflation of the cuff **1250**. The stop inflation logic can identify the falling inflection point **1420***e* and/or the systolic blood pressure measurement zone **1425***e* of the envelope **1404***e* of the oscillometric signal using the above-described techniques. At decision block **1460***c*, the blood pressure monitor **1200** can determine whether a stop inflation criterion is satisfied. In some embodiments, the stop inflation criterion is that the air pressure in the cuff **1250** has reached the falling inflection point **1420***e* of the envelope **1404***e* of the oscillometric signal **1402***e*, or surpassed it by a set threshold. In some embodiments, the stop inflation criterion is that the air pressure in the cuff **1250** has reached the right edge of, or exited, the systolic blood pressure measurement zone **1425***e*. If the stop inflation criterion is not satisfied, then the method **1400**C can repeat blocks **1445***c* and **1450***c* so as to continue tracking the target inflation rate and the desired relative pump frequency relationship. The stop inflation logic can also be repeated at block **1455***c*. [0493] Once the stop inflation criterion is satisfied at decision block **1460***c*, the blood pressure monitor can proceed to block **1465***c* to calculate and output one or more blood pressure measurements (e.g., diastolic pressure, mean arterial pressure, systolic pressure, etc.). At block **1470***c*, the blood pressure monitor **1200** deflates the cuff **1250** using the air release valve(s) **1260**. [0494] At decision block **1475***c*, the blood pressure monitor **1200** can calculate a confidence metric to determine whether the blood pressure measurement was successful. In some embodiments, the confidence metric includes the number of plethysmographic waveforms detected during the measurement phase, with lower numbers of plethysmographic waveforms being indicative of a lower confidence value. In some embodiments, the confidence metric includes the smoothness of the envelope **1404***e* of the oscillometric signal **1402***e*, with a smoother envelope being indicative of a higher confidence value. In some embodiments, the confidence metric includes a measure of the amount of patient motion detected during the blood pressure measurement; a greater amount of patient motion during the measurement can be indicative of a lower confidence value. Patient motion can be calculated based on a signal from an accelerometer included in the blood pressure monitor **1200**. In some embodiments, a measure of patient motion can be calculated, using the accelerometer output, for the time period corresponding to each plethysmographic waveform in the oscillometric signal **1402***e*. Plethysmographic waveforms captured during time periods where the patient motion rises above a set threshold can be discarded. The confidence metric can include the number or percentage of discarded plethysmographic waveforms, with lower numbers or percentages being indicative of higher confidence. Other confidence metrics can also be used. [0495] If the blood pressure measurement is determined to have been successful based on the confidence metric (e.g., based on the confidence metric being above a set threshold), then the method **1400**C proceeds to block **1480***c* and ends. Otherwise, the method **1400**C can be repeated by starting again at block **1405***c*.

[0496] The methods described with respect to FIGS. **14**A-**14**C may involve the operation of one of multiple air pumps **1210** for longer periods of time than another of the air pumps. For example, the first stage of inflation in FIG. **14**C may involve operation of two air pumps, whereas slower inflation stages may only require operation of a single air pump in some circumstances. This can result in an imbalance over time in the cumulative operation time of each of the air pumps. Over months or years of use, this may cause the air pump **1210** with longer cumulative run time to exhibit greater signs of wear than another air pump with lesser cumulative run time. This can in turn increase any mismatch in operation speeds of the air pumps, causing control loops in blocks **1415***c*, **1430***c*, **1445***c*, and **1450***c* to have to provide mismatched drive signals to the air pumps in order to obtain the desired operation, which may further exacerbate differences in wear. Thus, in some embodiments, the blood pressure monitor **1200** can include a runtime counter or clock (e.g., with non-volatile memory) for each of the air pumps **1210**. The runtime counter or clock for each of the air pumps **1210** can track the cumulative runtime for each air pump over the lifetime of the blood pressure monitor **1200** or over some designated period of time. The blood pressure monitor can then select individual ones of the air pumps **1210** for performing required operation tasks, such

as individually inflating the cuff **150** for some inflation stage, in a manner so as to reduce any imbalance that may develop in the respective cumulative runtimes of the air pumps. In addition, with reference to FIG. **14**D, the blood pressure monitor may alternate the air pump designated as "pump 1," since pump 1 may be operated at a more constant speed, thus experiencing less overall wear than "pump 2," whose input voltage may be constantly adjusted to maintain the desired frequency relationship between the two pumps.

Patient Monitor

[0497] FIGS. **8**A-**8**V illustrate various views and aspects of an assembly **800** which can include patient monitor **130** and a cradle **804**. Patient monitor **130** can be a fully functional, stand-alone monitor capable of various physiological measurements. Patient monitor **130** can be small and light enough to comfortably be secured to and carried around on an arm of a patient, for example, via a fastening strap **131** (see FIG. **1**A-**1**B).

[0498] As discussed above, patient monitor **130** can connect one or more sensors or monitors in a patient environment. For example, as illustrated in FIGS. 1A-1B, patient monitor 130 can connect to blood pressure monitor 120, acoustic sensor 150, ECG device 110, and/or optical sensor 140. Patient monitor **130** can connect to blood pressure monitor **120** via cable **107** and connector **107***a*. While the discussion below with reference to FIGS. **8**A-**8**V and patient monitor **130** may reference ECG device **110** and/or blood pressure monitor **120**, the discussion below is equally applicable to ECG device **310** and blood pressure monitors **600**, **700**. For example, patient monitor **130** can connect to and/or interact with to ECG device **310** and blood pressure monitors **600**, **700** in an identical or similar way as to ECG device **110** and blood pressure monitor **120**. [0499] As shown in FIG. 8A, connector 107a of cable 107 can connect to connector port 833 on a first end or side of patient monitor **130**. Patient monitor **130** can additionally or alternatively connect to another sensor, for example, acoustic sensor **150**, via cable **103** and connector **103***a*. Connector **103***a* can connect to connector port **833**. Connector port **833** of patient monitor **130** can have more than one connector which can allow it to connect to both of connectors **107***a* and **103***a*. For example, with reference to FIG. **8**I, connector port **833** can have a first female connector port **830** and a second female connector port **832** spaced from one another and positioned within a perimeter of the connector port **833**. Patient monitor **130** can additionally or alternatively have a connector and/or connector port on another end or side of the patient monitor 130. For example, as shown in at least FIGS. **8**A and **8**H, patient monitor **130** can have a connector port **831** that can connect to a connector **109***a* and cable **109**. Cable **109** can connect to a physiological sensor or monitor such as optical sensor **140**. As shown, connector port **833** can be located on (and/or extending from) an end of patient monitor **130** that is opposite to an end of the patient monitor **130** that connector port **831** is located on (and/or extends from). Such configuration can prevent cable clutter and entanglements, especially where the patient monitor 130 is secured to a portion of a

[0500] As discussed above, patient monitor **130** can store, process, transmit, transmit without processing, display, and/or display without processing the physiological information received from the one or more physiological sensors, such as from acoustic sensor **150**, ECG device **110**, blood pressure monitor **120**, and/or optical sensor **140**. Patient monitor **130** is a processing device, and as such, can include the necessary components to perform the functions of a processing device. For example, patient monitor **130** can include one or more processors (such as one, two, three, or four processors which can be dedicated to processing certain physiological parameters and/or processing physiological information from certain sensors/devices), a memory device, a storage device, input/output devices, and communications connections, all connected via one or more communication bus.

patient's body in between multiple sensors which are also secured to the patient, for example as

and can be easily sterilized to avoid contamination.

shown in FIGS. 1A-1B. Connector **107***a*, connector **103***a*, and/or connector **109***a* can be waterproof

[0501] As discussed above, patient monitor **130** can transmit physiological information received

from one or more of the acoustic sensor **150**, ECG device **110**, blood pressure monitor **120**, and/or optical sensor **140** to an external patient monitor that is located away from the patient **111**, such as external patient monitor **160**. The external patient monitor **160** can be, for example, a nurse's station, a clinician device, pager, cell phone, computer, multi-patient monitoring system, hospital or facility information system. An artisan will appreciate that numerous other computing systems, servers, processing nodes, display devices, printers, and the link can interact with and/or receive physiological information from the patient monitor **130**.

[0502] Patient monitor **130** can include a sensor interface (such as sensor interface **132**) that is configured to receive physiological information from one or more of the acoustic sensor **150**, ECG device **110**, blood pressure monitor **120**, and/or optical sensor **140**. The sensor interface of patient monitor **130** can pass the received physiological data to a processing and memory block (such as processing and memory block **134**). The processing and memory block can include one or more processors configured to process the physiological data received from one or more of the acoustic sensor 150, ECG device 110, blood pressure monitor 120, and/or optical sensor 140 into representations of physiological parameters. The processing and memory block can include a plurality of processors that are independent dedicated to processing data from different physiological sensors (such as the acoustic sensor **150**, ECG device **110**, blood pressure monitor **120**, and/or optical sensor **140**). For example, the processing and memory block can include a first processor dedicated to processing data from the acoustic sensor 150, a second processor dedicated to processing data from the blood pressure monitor **120**, and/or a third processor dedicated to processing data from the optical sensor **140**. The processing and memory block can include an instrument manager which may further process the received physiological parameters for display. The instrument manager may include a memory buffer to maintain this data for processing throughout a period of time. The memory buffer may include RAM, Flash, or other solid state memory, magnetic or optical disk-based memories, combinations or the same or the like. Patient monitor **130** can include a wireless transceiver (such as wireless transceiver **136**). The wireless transceiver can wirelessly transmit the physiological information received from the external physiological sensors (such as the acoustic sensor 150, ECG device 110, blood pressure monitor 120, and/or optical sensor 140) and/or parameters from the one or more processors and/or the instrument manager of the processing and memory block. The wireless transceiver can transmit received physiological data to an external device via a wireless protocol. The wireless protocol can be any of a variety of wireless technologies such as Wi-Fi (802.11x), Bluetooth®, ZigBee®, cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like.

[0503] Patient monitor **130** can display one or more physiological parameters on a screen or display thereof. Patient monitor **130** can include a display (such as display **877** as shown in FIG. **8**D), control buttons (such as an on-off button **834** shown in FIG. **8**I), one or more microphones and/or one or more speakers for enabling audio communication and/or messages or alerts. Display **877** of patient monitor **130** can be a touch-screen. Patient monitor **130** can include a battery configured to provide power to the electronics within the patient monitor **130**. Patient monitor **130** can include a battery that is rechargeable. For example, as discussed elsewhere herein, patient monitor **130** can be configured to be charged from an external power source, such as charging station **1000** and/or charging cradle **1100**.

[0504] As shown in FIGS. **8**A-**8**C, the assembly **800** can include the patient monitor **130** and a cradle **804**. As discussed in more detail below, the patient monitor **130** and the cradle can be configured to removably secure to one another. As shown in FIGS. **1**A-**1**B, patient monitor **130** can secure to a patient **111**, for example, a forearm of patient **111**. For example, cradle **804** of patient monitor **130** include one or more legs **848** (also referred to herein as "strap hoops") extending from a surface of the cradle **804** which define an opening sized to allow a fastening strap (such as strap **131**) to fit within and/or pass through. After passing through the one or more legs **848** of cradle

604, strap **131** can wrap around the patients arm (see FIGS. **1A-1B**). In addition or as an alternative to the one or more legs **848**, the cradle **604** can include a hook-and-look attachment on a bottom surface thereof that allows the cradle **604** to secure to strap **131** and thus to the patient **111** and/or can include an adhesive (for example, a silicone adhesive) that allows the cradle **804** to secure to skin of the patient **111**. Advantageously, the patient monitor **130** can be removed from the cradle **604** before, during, and/or after the cradle **604** is attached to the patient **111** and/or strap **131**. This can be especially helpful where it is desirable to temporarily remove the patient monitor **130** to charge and/or repair the patient monitor **130**, which can house the electronics of the patient monitor **130**. This can also allow a caregiver to clean the cradle **804** and/or regions of the patient **111** proximate the cradle **804** without risking damage to the patient monitor **130** (or various components thereof).

[0505] FIGS. **8**D-**8**I illustrates various views of patient monitor **130**. Patient monitor **130** can include a top surface **808**, a bottom surface **809** opposite the top surface **808**, a first end **810**, a second end **812** opposite the first end **810**, a first side **813**, and a second side **815** opposite the first side **813**. As discussed above, patient monitor **130** can include one or more connector ports configured to connect to one or more cables, and in turn, to one or more physiological sensors and/or monitors. For example, patient monitor **130** can include a first connector port **833** on first end **810** and/or a second connector port **831** on second end **812**.

[0506] Connector port **833** can extend or protrude from a surface of the first end **810** (see, for example, FIGS. 8D-8E). Connector port 833 can have a width that is equal to or smaller than a width of the patient monitor **130** between the first and second sides **813**, **815** (see FIGS. **8**D-**8**E and **8**H**-8**I). Connector port **833** can have a height that is equal to or smaller than a height of the patient monitor 130 between the top and bottom surfaces 808, 809 of patient monitor 130 (see FIGS. 8H-81). Connector port 833 can include one or more connector ports configured to connect to one or more cables. For example, as shown in FIG. 8I, connector port 833 can include a first female connector port **830** and a second female connector port **832** spaced from each other and within a perimeter of the connector port **833**. The size and/or shape of the female connector ports **830**, **832** can correspond to a size and/or shape of a cable connector to which it connects, such as cable connectors **107***a*, **103***a* shown in FIG. **8**A. Patient monitor **130** can include a control button to control various functionality. For example, patient monitor **130** can include an on-off button **834**. On-off button **834** can be located within the perimeter of the connector port **833**. As shown in FIG. **8**I, on-off button **834** can be positioned proximate to female connector ports **430**, **832**. Connector port **833** can advantageously connect and obtain data from multiple physiological sensors simultaneously. For example, connector port **833** can connect and obtain data from the blood pressure monitor 120 from connector port 832, and can also connect and obtain data from an acoustic sensor **150** from connector port **830**. As also discussed herein, the data obtained from blood pressure monitor 120 can include physiological data from the ECG device 110 and physiological data from blood pressure monitor **120**.

[0507] Connector port **831** can extend or protrude from a surface of the second end **812** (see, for example, FIGS. **8F-8**G). Connector port **831** can have a width that is equal to or smaller than a width of the patient monitor **130** between the first and second sides **813**, **815** (see FIG. **8**D-**8**G). Connector port **831** can have a height that is equal to or smaller than a height of the patient monitor **130** between the top and bottom surfaces **808**, **809** of patient monitor **130** (see FIG. **8**H). Connector port **831** can include one or more connectors configured to connect to one or more cables. For example, as shown in FIG. **8**H, connector port **831** can include a connector within a perimeter of the connector port **833**. The size and/or shape of the connector(s) with the connector port **831** can correspond to a size and/or shape of a cable connector to which it connects, such as cable connector **109***a* shown in FIG. **8**A. Connector ports **833**, **831** can be located on opposite ends of patient monitor **130** (for example, ends **810**, **812**) and can be aligned with each other or non-aligned with each other. For example, as shown in FIGS. **8**A-**8**B, connector ports **833**, **831** can be aligned about

an axis running through a center of the ports **833**, **831** and along a length of the patient monitor **130** between the first and second ends **810**, **812**. As also shown in FIGS. **8**A-**8**B, connector port **833** can have a width that is greater than a width of connector port **831** (the width being measured about an axis up-down in the view of these figures). Connector port **831** can protrude from a surface of the second end **812** a first distance and connector port **833** can protrude from a surface of the first end **810** a second distance. The first and second distances can be equal or unequal. For example, the connector port **831** can have a length that is greater than a length of connector port **833**. As discussed further below, the connector port **831** can be sized and/or shaped to secure within collar **850** of cradle **804** so as to secure the patient monitor **130** to cradle **804**.

[0508] Patient monitor **130** can include one or more electrical contacts **839** which allow charging of a battery of the patient monitor **130**. For example, as discussed further below, the electrical contacts **839** can mate or otherwise contact electrical contacts **1024** in charging station **1000** and/or electrical contact **1146** of charging cradle **1100**.

[0509] As discussed previously, patient monitor **130** can be removably secured to cradle **804**. As shown in at least FIGS. 8D-8G, patient monitor 130 can include one or more locking tabs 822 and/or one or more buttons 820. The one or more locking tabs 822 can secure to and/or within a portion of cradle **804**, such as openings **860** of cradle **804**. The one or more locking tabs **822** can be positioned along one or more of side 813, side 815, end 810, end 812, and/or another location of patient monitor **130**. The one or more locking tabs **822** can extend and/or retract within one or more openings in the patient monitor **130** that surround the locking tabs **822** (for example, one or more openings in a housing of the patient monitor **130**). The one or more locking tabs **822** can be coupled to one or more buttons **820**, such that movement of the buttons **820** can cause the locking tabs **822** to move (for example, extend or retract). As an example, movement of a button **820** in a direction towards an interior of patient monitor 130 can cause a coupled locking tab 822 to retract in a direction towards the interior of the patient monitor **130**. Alternatively, movement of a button **820** in a direction towards an interior of patient monitor **130** can cause a coupled locking tab **822** to extend in a direction away from the interior of the patient monitor **130**. The one or more locking tabs **822** and the one or more buttons **820** can be positioned proximate and/or adjacent to one another. The one or more locking tabs 822 and/or the one or more buttons 820 can be positioned along one or both sides 813, 815 of patient monitor 130 and can be positioned closer to either end 810 or end 812. For example, the one or more locking tabs 822 and/or the one or more buttons 820 can be positioned closer to the first end **810** than to the second end **812** and/or can be positioned closer to the connector port **833** than to the connector port **831**.

[0510] In some cases, patient monitor **130** and cradle **804** can communicate with one another via near field communication (NFC) protocols, such as radio frequency protocols. For example, patient monitor **130** can include an NFC reader and cradle **804** can include an NFC tag (such as an RFID tag). For example, patient monitor **130** can include an RFID reader which can be positioned within an interior of patient monitor **130**, such as on a printed circuit board of the patient monitor **130**. In such scenario, cradle **804** can include an RFID tag, in the form of a sticker or label, for example, that can transmit a signal in response to recognition of a radio frequency signal from the RFID reader in the patient monitor **130**. Such RFID tag can be on a surface of the cradle **804**, for example, on a bottom or top surface **808**, **809** of cradle **804**. Alternatively, cradle **804** can include an erasable programmable read-only memory (EPROM) which can communicate (for example, transfer information or data) to the patient monitor **130** via touching with electrical contacts **839** (FIG. **8**E) on a surface of patient monitor **130**. Whether the patient monitor **130** and cradle **804** include RFID or EPROM features and functionality, these components can communicate with one another to transfer information and/or data, such as the amount of lifespan of the patient monitor **130** and/or the cradle **804** remaining (which can be predetermined), whether the patient monitor 130 and cradle 804 are compatible (e.g., whether a counterfeit or unauthorized product is being used), among other things.

[0511] FIG. 8Q illustrates an enlarged view of a portion of the patient monitor **130** as shown in FIG. 8G. FIGS. 8R-8S illustrate a locking tab **822** and a button **820** along with other corresponding structure associated with and/or connected to patient monitor **130**. As shown, locking tab **822** and button **820** can be coupled with a stem **823***a* which can extend between the locking tab **822** and the button **820**. Locking tab **822**, stem **823***a*, and/or button **820** can rotate about a pivot point. For example, button **820** can connect to stem **823***a* on one side of button **820** and also to a stem **823***b* on an opposite side of button **820**. Stem **823***b* can connect button **820** to a pivot connector **825**. Pivot connector **825** can have a cylindrical cross-section (see FIGS. **8**U-**8**V) or other cross-section. Pivot connector **825** can have a hollow or partially hollow interior (see FIG. **8**V) that is sized and/or shaped to receive and/or secure to a pivot pin **893** extending from a portion of the patient monitor **130**. The pivot pin **893** can extend from a bottom portion of the patient monitor **130** underneath the pivot connector **825**. For example, with reference to FIGS. **8**R-**8**T, the pivot pin **893** can be positioned below and/or within the pivot connector **825**.

[0512] When positioned around and/or secured to the pivot pin **893**, the pivot connector **825** can be prevented from moving in a direction perpendicular to an axis extending through a length or height of the pivot pin **893** and/or the pivot connector **825** while also allowing the pivot connector **825** to rotate about such axis. Further, when positioned around and/or secured to the pivot pin **893**, the pivot connector **825** can allow the stem **823***b*, button **820**, stem **823***a*, and locking tab **822** to rotate about an axis extending through a height of the pivot connector **825**.

[0513] Pivot connector **825** can include a tip **825***a* extending from a portion of the pivot connector **825** (see, for example, FIG. **8**U). For example, tip **825***a* can extend from a top surface of the pivot connector **825**. Tip **825***a* can be spaced inward from a perimeter of the top surface of the pivot connector **825**. Tip **825***a* can have a cylindrical cross-section or other cross-section. Tip **825***a* can be sized and/or shaped to fit within an opening or hollow chamber of the patient monitor 130 that is positioned above the tip **825***a*. When tip **825***a* is secured and/or positioned within such opening or hollow chamber of patient monitor **130**, interior surfaces of the opening or hollow chamber can prevent movement of the tip **825***a* in a direction perpendicular to an axis running through a height or length of tip **825***a* while also allowing the tip **825***a* to rotate within the opening or hollow chamber. Thus, engagement between the pivot connector **825** and pivot pin **893** of the patient monitor **130** underneath the pivot connector **825** alone or in combination with the engagement between the tip **825***a* and an opening or hollow chamber of the patient monitor **130** above the tip **825***a* can support the stem **823***b*, button **820**, stem **823***a*, and locking tab **822** and allow such elements to rotate about an axis extending through the pivot connector **825** and/or tip **825***a*. Such rotation can allow the locking tab **822** and/or button **820** to extend and/or retract farther or closer from an interior of the hosing **802**.

[0514] The locking tab **822**, stem **823***a*, button **820**, stem **823***b*, pivot connector **825**, and/or tip **825***a* can be positioned within a portion of patient monitor **130** proximate to a perimeter of patient monitor **130**. For example, with reference to FIGS. **8**R-**8**T, patient monitor **130** can include an inner wall **833** that defines a chamber sized and shaped to allow for the movement of the locking tab **822**, stem **823***a*, button **820**, stem **823***b*, pivot connector **825**, and/or tip **825***a*. Inner wall **833** can connect to a first portion of a side or end of the patient monitor **130** and a second portion of a side or end of the patient monitor **130**.

[0515] With continued reference to FIGS. **8**R-**8**T, the chamber defined by the inner wall **833** can include one or more additional walls that engage or contact portions of the stem **823***a*, button **820**, and/or stem **823***b*. For example, the chamber defined by the inner wall **833** can include a wall **837** that extends generally perpendicular to a portion of the inner wall **833** and towards the stem **823***a*. Wall **837** can include a recessed portion **837***a*. Recessed portion **837***a* can have a smaller height than the remainder of wall **837**. Recessed portion **837***a* of wall **837** can be positioned underneath a portion of stem **823***a*. The length of the recessed portion **837***a* can define a space or distance that the stem **823***a* can move within the chamber. For example, when a force is applied to button **820** in

a direction towards an interior of patient monitor **130**, stem **823***a* can move (for example, pivot) towards wall **837** and above recessed portion **837***a* of wall **837**. Once stem **823***a* passes an end of recessed portion **837***a*, stem **823***a* contact the remainder of wall **837** and is prevented from moving further inwards. Thus, the recessed portion **837***a* of wall **837** can define the distance by which the stem **823***a* and/or locking tab **822** can move into the interior of patient monitor **130**. Further, since stem **823***a* and/or locking tab **822** can be coupled to any or all of button **820** and/or stem **423**, recessed portion **837***a* of wall **837** can define the distance by which all of these elements can move into the interior of patient monitor **130**.

[0516] The chamber defined by the inner wall **833** can additionally or alternatively include a wall **835** that extends from inner wall **833**. As shown in FIG. **8**S-**8**T, wall **835** can extend from two portions of inner wall **833** at least partially towards button **820**. The distance between an outwards surface of wall **835** and button **820** can define a space or distance that the button **820** can move within the chamber. For example, when a force is applied to button **820** in a direction towards an interior of patient monitor **130**, stem button **820** can move (for example pivot) towards wall **835**. As shown in FIGS. **8**R-**8**T, the patient monitor **130** can include a biasing member **879** that is configured to bias the stem **823***b*, button **820**, stem **823***a*, and locking tab **822** towards an extended position. The biasing member **879** can be a spring or a prong. The biasing member **879** can be positioned and/or secured within or to a portion of the patient monitor **130**, for example, at least partially secured within a chamber defined between the inner wall **83** and the inner wall **835** (see FIG. **8**S). The biasing member **879** can apply a force to the stem **823***b*, button **820**, stem **823***a*, and/or locking tab **822** or portions thereof to bias the locking tab **882** towards a position where the locking tab **822** is further from an interior of the patient monitor **130**. In some cases, when button **820** is pressed inward, the button **820** can depress the biasing member **879** such that the biasing member **879** and/or the button **820** contact the inner wall **835**. Accordingly, the inner wall **835** can prevent the button **820** from moving further inwards.

[0517] Thus, the wall **835** can define a distance by which the button **820** can move into the interior of patient monitor **130**. Further, since button **820** can be coupled with stem **823***b*, **823***a*, and/or locking tab **822**, wall **835** can define the distance by which all of these elements can move into the interior of patient monitor **130**.

[0518] As shown in at least FIGS. **8**U-**8**V, locking tab **822** can extend outward from a surface and/or side of stem **823***a*. Locking tab **822** can extend outwards from a first end of stem **823***a* that is opposite a second end of stem **823***b* that connects to button **820**. Locking tab **822** can have a height that is smaller than a height of stem **324***b* (see FIG. **8**U). Locking tab **822** can have a extend from stem **823***a* a length such that a thickness of the stem **823***a* and the length of the locking tab **822** is equal or substantially equal to a portion of an end **820***a* of button **820** (see FIG. **8**V). Locking tab **822** can have a tapered end. For example, as shown in FIGS. **8**U-**8**V, a free/cantilevered end of locking tab 822 can be tapered such that a surface of the free end faces a direction at least partially towards a bottom surface 809 of patient monitor 130, cradle 804, and/or strap **131** (when strap **131** is secured to cradle **804** and patient monitor **130**). Such tapering can advantageously allow the free end of locking tab 822 to contact, pass, and/or slide over a portion of cradle **804** proximate to opening **860** of cradle **804**. For example, with reference to at least FIGS. **8**M**-8**N and **8**U, the tapered end of locking tab **822** can contact and/or pass over the portion of cradle **804** that is above opening **860** when the patient monitor **130** is placed into the cradle **804**. In some cases, when patient monitor **130** is placed into cradle **804** from atop the cradle **804** (with reference to the view shown in FIGS. **8**C), the tapered end of locking tab **822** can contact and slide passed the portion of cradle **804** above opening **860** and such portion of cradle **804** can press locking tab 822 inwards. Once the locking tab 822 reaches the opening 860, locking tab 822 can extend into and/or through opening **860**. Such "automatic" movement to an extended position can result from the biasing of the locking tab **822** and/or button **820** that is discussed above with reference to biasing member **879**. Once positioned within and/or through opening **860**, locking tab

822 can prevent or reduce movement of the patient monitor **130** with respect to the cradle **804** in a direction perpendicular to the bottom and/or top surfaces **809**, **808** of patient monitor **130** and/or in a direction parallel with a length of patient monitor **130** between the first and second ends **810**, **812**. In order to allow the patient monitor **130** to be removed from the cradle **804**, the button **820** can be pressed (for example, towards an interior of the patient monitor **130**), thus rotating the locking tab **822** (and/or stem **823***a*, **823***b*) about the pivot described above and inward toward an interior of the patient monitor **130**. Such movement (for example, retraction) of the locking tab **822** towards the interior of patient monitor **130** can remove locking tab **822** from opening **860**, which in turn allows at least a portion of patient monitor **130** to be removed from cradle **804**.

[0519] Button **820** can be cylindrical or partially cylindrical, among other shapes. Button **820** can have a circular, square, rectangular, triangle, pentagon, hexagon, heptagon, octagon, nonagon, or decagon shape, among other shapes. Button **820** can have a tapered free end **820***a* (the end not connected to stems **823***a*, **823***b*). For example, as shown in at least FIG. **8**V, a free end **820***a* of button **820** can be tapered such that a portion or side of the free end **820***a* has a longer length than another portion or side of the free end **820***a*. For example, a portion of the free end **820***a* of button **820** that is closer to the locking tab **822** and/or stem **823***a* can have a greater length and/or can extend further from stems **823***a*, **823***b* than a portion of the free end that is closer to the stem **823***b* and/or pivot connector **825**. Such tapering and/or length difference can advantageously provide better gripping of button **820** by a user. For example, when a user applies a force to button **820** in a direction towards an interior of patient monitor **130**, the stem **823***b*, button **820**, stem **823***a*, and locking tab 822 (also referred to herein as "locking tab assembly") can rotate about pivot connector 825 and move towards the interior of patient monitor 130. As such movement/rotation occurs, a user's finger may tend to slip off the free end **820***a* proximate the stem **823***a* and/or locking tab **822**. Thus, where free end **820***a* of button **820** is tapered as shown in FIGS. **8**U-**8**V, such tapering can help a user better engage the button 820 in order to retract and/or extend the locking tab 822 to removably secure the patient monitor **130** and cradle **804**.

[0520] Patient monitor **130** can include one, two, three, four, five, six, seven, or eight or more locking tabs **822** and/or can include one, two, three, four, five, six, seven, or eight or more buttons **820**. For example, patient monitor **130** can include a first locking tab **822** positioned on a first side **813** and a second locking tab **822** positioned on a second side **815** opposite the first side **813**. Additionally, patient monitor **130** can include a first button **820** positioned on first side **813** and a second button **820** positioned on second side **815**. The first locking tab **822** and first button **820** can be positioned proximate and/or adjacent to one another, and/or closer to first end **810** than to second end **812** of patient monitor **130**. The second locking tab **822** and second button **820** can be positioned proximate and/or adjacent to one another, and/or closer to first end **810** than to second end **812** of patient monitor **130**. The first locking tab **822** can be aligned with the second tab **822** and/or the first button **820** can be aligned with the second button **820**.

[0521] FIGS. **8**J-**8**P illustrate various views of cradle **804**. As discussed elsewhere herein, cradle **804** can removably secure to patient monitor **130**. Cradle **804** can include a first end **840**, a second end **842** opposite the first end **840**, a first sidewall **845**, a second sidewall **834** opposite the first sidewall **845**, a top surface **844**, and a bottom surface **846** opposite the top surface **844**. The top surface **844** and the bottom surface **846** can together define a base of the cradle **804**, from which sidewalls **454**, **834**, and/or walls along first and second ends **840**, **842** can extend.

[0522] As discussed above, cradle **804** can include one or more legs **848** (also referred to herein as "strap hoops") configured to secure to fastening strap **131** as shown in FIGS. **1A-1B**. For example, cradle **804** can include one, two, three, or four or more legs **848**. Each of one or more legs **848** can extend from and connect to a first portion of cradle **804** and a second portion of cradle **804** spaced from the first portion so as to define an opening that is sized and/or shaped to receive a portion of strap **131**. For example, the distance between the first and second portions of the cradle **804** from which legs **848** extend from can be selected to match a width of strap **131**. As shown in at least

FIGS. **8**K-**8**L, cradle **804** can include a first leg **848** extending from or proximate to sidewall **845** and a second leg **848** extending from or proximate to sidewall **834**. The first and second legs **848** can be aligned with each other or unaligned with each other.

[0523] One or both of sidewalls **843**, **845** can comprise one or more recessed cutouts **852** along a portion of the sidewalls **843**, **845**. For example, as shown in FIGS. **8**M-**8**N, sidewall **843** can include a first recessed cutout **852** and sidewall **845** can include a second recessed cutout **852**. The first and second recessed cutouts **852** on the sidewalls **843**, **845** can align with each other, or alternatively, not align with each other. The first and second recessed cutouts 852 can be positioned along the sidewalls **843**, **845** and can be closer to the first end **840** of the cradle **804** than to the second end **842** of the cradle **804** (see FIGS. **8**M-**8**N). The recessed cutouts **852** in one or both of sidewalls **843**, **845** can be positioned along a portion of the sidewall(s) **843**, **845** that is proximate or adjacent to the one or more locking tabs **822** and/or one or more buttons **820** of the patient monitor **130**. For example, the one or more recessed cutouts **852** can be sized and/or shaped to at least partially surround button **820** when patient monitor **130** is secured to cradle **804**. Such location of the one or more recessed cutouts **852** can provide access to the one or more buttons **820** when the patient monitor **130** and cradle **804** are secured to one another. Sidewalls **843**, **845** can have a height that is equal to or less than a height of the patient monitor 130 (see FIG. 8B). The one or more recessed cutouts **852** can be rounded and/or smooth. The one or more recessed cutouts **852** can have a half-circle shape or another shape (such as half-square, half-rectangle, half-ellipse, halftriangle, among other shapes) (see FIGS. **8**M-**8**N).

[0524] As shown throughout FIGS. **8**J-**8**P cradle **804** can include a collar **850** that is sized and/or shaped to receive, surround, and/or secure to a portion of patient monitor 130. For example, collar **850** can be sized and/or shaped to receive, surround, and/or secure connector port **831** (or a portion thereof). FIG. 8J illustrates a perspective view of cradle 804 and collar 850, while FIGS. 8A-8C illustrate how collar **850** can secure to connector port **831** of housing **403**. Cradle **804** can include a wall **836** (also referred to herein as "back wall") along the second end **842** that extends from the base defined by the top and bottom surfaces 844, 846 of cradle 804. Wall 836 can include an opening **836***a* (see FIGS. **8**O**-8**P). Opening **836***a* can be positioned and/or aligned with a center of a width of the wall **836** or positioned in an alternative location. Collar **850** can extend or protrude outward from a portion of the wall **836**, for example, around and/or partially around a perimeter of opening **836***a*. Collar **850** can extend in a direction that is non-parallel with respect to the wall **836**. For example, collar **850** can extend outward from the wall **836** in a direction generally perpendicular with respect to the wall **836**. Collar **850** can extend away from the wall **836** a distance or length. Collar **850** can extend in a direction away from the end **840** (see FIGS. **8**M-**8**N). The length of the collar **850** can be equal or substantially equal to a length of connector port **831**. The width of the collar **850** can be equal or substantially equal to a width of connector port **831**. [0525] Collar **850** can have a cross-section that is sized and/or shaped to match or partially match a cross-section of the connector port **831**. Collar **850** can have a rounded cross-section or nonrounded cross-section. Collar **850** can have a cross-section with a perimeter that is sized and/or shaped to surround a portion of the perimeter of the cross-section of the connector port **831** when secured thereto. For example, collar **850** can have a cross-section having a perimeter that is 90%, 80%, 70%, 60%, 50%, 40%, 30%, or 20% of the perimeter of the cross-section of the connector port **831**, although other percentages are possible in some cases. Collar **850** can be sized and/or shaped to surround 90%, 80%, 70%, 60%, 50%, 40%, 30%, or 20% of the perimeter of the crosssection of the connector port **831** when secured thereto.

[0526] Patient monitor **130** can be secured to cradle **804** in a variety of ways. For example, one method of securing patient monitor **130** to cradle **804** can be by first placing and/or securing connector port **831** on second end **812** of housing **602** such that connector port **831** is positioned through opening **836***a* and/or within collar **850** on second end **842** of cradle **804**. Placement and/or securement of connector port **831** into and/or through opening **829***a* and/or within collar **850** can be

completed by insertion of connector port **831** along an axis running through a center of the opening **836***a* and/or collar **850** (for example, aligned with a length of cradle **804** between first and second ends **840**, **842**). Additionally or alternatively, connector port **831** can be inserted into and/or secured within collar **850** by placing port **831** into collar **850** along a direction that is perpendicular to the axis running through the center of collar **850**. Regardless of the direction of securement of connector port **831** to collar **850**, such securement can be a snap fit, friction fit, press fit, or another type of securement. After connector port **831** is secured within collar **850** (thus securing the second end **812** of patient monitor **130** to the second end **842** of cradle **804**), end **810** of patient monitor **130** and end **840** of cradle **804** can be positioned proximate to and/or secured to one another. For example, end **810** of housing **804** can be moved toward top surface **844** and/or end **840** of cradle until the one of more locking tabs **822** engage with the opening **860** (which can be as described above). For example, after the connector port **831** is positioned within and/or through the opening **836***a* and/or collar **850**, another portion of the patient monitor **130** can be rotated and/or pivoted about the wall **836** such that the one or more locking tabs **822** engage with one or more openings **860**.

[0527] Such securement of the connector port **831** to the collar **850** prior to the securement of the locking tabs **822** to the openings **860** can be advantageous when the patient monitor **130** is secured to a patient in a manner such that the first end **810** of the patient monitor **130** and/or first end **840** of cradle **804** are positioned vertically above the second end **812** of the patient monitor **130** and/or second end **842** of cradle **804**. For example, in such vertical orientation, connector port **831** can be advantageously vertically supported by back wall **836**, opening **836***a*, and/or collar **850** and a portion of patient monitor **130** (such as first end **810**) can be moved so that the locking tab(s) **822** snap into openings **860**.

Cable Management Prongs

[0528] FIGS. **9**A-**9**C illustrate various views of a cable management prong **900** (also referred to herein as "cable securement prong" "cable prong" and "prong"). One or more cable prongs **900** can be utilized alongside any or all of the sensors, monitors, cables, and/or tubes discussed herein. For example, one or more cable prongs **900** can be used within patient monitoring system **100** and can be used alongside acoustic sensor **150**, ECG device **110**, blood pressure monitor **120**, patient monitor **130**, optical sensor **140**, cable **103**, **105**, **107**, and/or **109**. One or more cable prongs **900** can advantageously secure to one or more portions of cables **103**, **105**, **107**, and/or **109**. As discussed above, where patient monitoring system **100** includes multiple physiological sensors and such sensors are connected via cables, such cables can interfere with a patient's ability to move and/or a caregivers ability to interact with the patient. Such cables often dangle, intersect, tangle, and get caught on objects present or introduced nearby. This can in turn lead to dislodgement of cables from connected physiological sensors/monitors, which can, in some cases, interfere with or stop monitoring of a patient's physiological condition. The one or more cable prongs **900** can advantageously be used to manage one or more cables in a patient monitoring environment and thus prevent or reduce occurrence of the above-mentioned problems.

[0529] Cable prong **900** can include a base **902**, a stem **904** extending from the base **902**, and one or more arms **906** extending from the stem **904**. Base **902** can be configured to secure to a portion of a patient, such as skin of the patient. Base **902** can include an adhesive bottom surface, for example, that can adhere to the patient's skin. Base **902** can have a square, rectangular, circular, triangular, pentagonal, hexagonal, heptagonal, octagonal, nonagonal, decagonal, or other shape (for example, when viewed from the view of FIG. **9**B). Base **902** can include an adhesive layer configured to allow for securement of the prong **900** to skin of a patient and a release layer positioned overtop the adhesive layer that is removable. Such adhesive layer can comprise, for example, a silicone adhesive.

[0530] Stem **904** can extend outward from a surface of base **902**. For example, stem **904** can extend outward from the base **902** in a direction that is non-parallel with respect to a surface of the base

902, such as perpendicular to the surface of the base **902**. Stem **904** can have a thickness or width that is less than a width of the base **902** (see FIG. **9**C). Stem **904** can extend from the base **902** and be spaced from sides of the base **902** (see FIG. **9**C). For example, stem **904** can extend from a middle portion of base **902**. Stem **904** have a length that is equal to or less than a length of the base **902**, where the "length" of the stem **904** and the base **902** is in a direction perpendicular to the "width" of the base **904** (for example, the "length" can refer to "into" the page in the view of FIG. **9**C).

[0531] Cable prong **900** can include one or more arms **906** that extend from a portion of the stem **904** and that are sized and/or shaped to receive, retain, surround, and/or secure a portion of a cable (such as a portion of cables **103**, **105**, **107**, and/or **109**). For example, cable prong **900** can include one, two, three, or four arms extending from stem **904**. As another example, cable prong **900** can include a first arm 906 extending from a first side of stem 904 and a second arm 906 extending from a second side of stem **904** opposite the first side **904** (see FIG. **9**A**-9**C). The one or more arms **906** can extend from the stem **904** proximate a free (top) end of the stem **904** opposite the base **904**. The one or more arms **906** can extend from stem **904** in one or more directions. For example, the one or more arms **906** can extend generally perpendicular to stem **904** and can curl in a direction facing away from base **902**. Alternatively, the one or more arms **906** can extend generally perpendicular to stem **904** and can curl in a direction toward base **902**. The one or more arms **906** can be rounded or non-rounded. The one or more arms **906** can comprise a partially circular, partially square, or partially rectangular cross-section. The one or more arms **906** can extend outward from stem **904** and define an open region that is sized and/or shaped to receive, retain, surround, and/or secure a portion of a cable (such as a portion of cables 103, 105, 107, and/or 109). The one or more arms **906** can have a C-shape (see FIG. **9**C). Alternatively, the one or more arms **906** can have an L-shape, U-shape, J-shape, among other shapes.

[0532] While FIGS. **9**A-**9**C illustrate a cable prong **900** having two, opposing arms **906**, cable prong **900** could have a single arm **906** extending from a portion of the stem **904**. Moreover, cable prong **900** could have three or four arms **906**, where each of the arms **906** extend from different ones of four surfaces of stem **904**.

[0533] With reference to FIGS. **1**A-**1**B, one or more cable prongs **900** can be utilized within patient monitoring system 100 to secure one or more of cables 103, 105, 107, and/or 109. For example, patient monitoring system 100 can include a first cable prong 900 which can secure to a portion of cable **109** and also secure to a portion of the skin of patient **111** between the optical sensor **140** and the patient monitor **130** (for example, on or near a wrist of patient **111**). Additionally or alternatively, patient monitoring system **100** can include a second cable prong **900** which can secure to a portion of cable **107** and also secure to a portion of the skin of patient **111** between the patient monitor **130** and the blood pressure monitor **120** (for example, at or near an elbow of patient **111**). Additionally or alternatively, patient monitoring system **100** can include a third cable prong **900** which can secure to a portion of cable **105** and also secure to a portion of the skin of patient **111** between the blood pressure monitor **120** and the ECG device **110** (for example, at or near an upper chest or collar bone of patient **111**). Additionally or alternatively, patient monitoring system **100** can include a fourth cable prong **900** which can secure to a portion of cable **103** and also secure to a portion of the skin of patient **111** between the patient monitor **130** and the blood pressure monitor **120** (for example, at or near an elbow of patient **11**). As an alternative to having two separate prongs **900** for securing cables **103** and **107**, for example, at or near an elbow of patient **111**, a single prong **900** can be used to secure both of cables **103** and **107**. Such dual securement of cables 103 and 107 is possible with prong 900 where prong 900 has more than one wing **906** as described and shown above. Additionally or alternatively, patient monitoring system **100** can include a fifth cable prong **900** which can secure to a portion of cable **103** and also secure to a portion of the skin of patient **111** between the blood pressure monitor **120** and the acoustic sensor **150** (for example, at or near a neck or shoulder of patient **111**). While the terms "first,"

"second,", "third," "fourth," and "fifth" have been used above, such usage is for convenience only and is not intended to convey that the presence of the "fifth," "fourth,", "third," "second," or "first" prong **900** requires the presence of any of the other numbered prongs **900** and/or requires the other prongs **900** to be positioned in the exemplary manner described above. Charging Station

[0534] FIGS. **10**A-**10**F illustrates various view of a charging station **1000**. Charging station **1000** can include one or more charging bays that are sized and/or shaped to receive a physiological sensor, device, and/or monitor. For example, as shown in FIG. **10**A, charging station **1000** can include one or more charging bays **1001**, which can be sized and/or shaped to receive all or a portion of patient monitor **130**. Each of the one or more charging bays **1001** can include a charging bay including electrical contacts (such as charging bay **1024** discussed further below) which can connect to electrical contacts of a physiological sensor, device, and/or monitor (such as electrical contacts **839** of patient monitor **130** as shown in FIG. **8**E) in order to provide power to the same. [0535] Charging station **1000** can include one or more frames which can include the one or more charging bays. For example, as shown in FIGS. 10D-10E, charging station 1000 can include one or more frames **1008**. For example, charging station **1000** can include, one, two, three, four, five, six, seven, or eight or more frames **1008**. Charging station **1000** can include a base **1006**. Base **1006** can connect to and/or support the one or more frames **1008**. The one or more frames **1008** can secure, connect, and/or support one another and/or can stack atop each other. Additionally, the one or more frames **1008** can secure to, connect to, and/or can stack atop base **1006**. The amount of frames **1008** can be selectively customized by attaching or removing the one or more frames **1008** to or from one another.

[0536] Base **1006** can include a bottom portion which has a greater width and/or length than an upper portion of the base **1006**. Such configuration can allow the bottom portion to support the upper portion of the base **1006** and/or the one or more frames **1008** that are attached to the base **1006**. For example, such configuration can allow the base **1006** to resist an overturning force, rotation, and/or tendency of the charging station **1000**, especially where a plurality of frames **1008** are attached to base 1006. As shown in FIG. 11C, base 1006 can have a bottom surface 1002. Bottom surface **1002** of base **1006** can have a vent **1003** including one or more openings. For example, the one or more openings of vent **1003** can have a square, rectangular, circular, triangular, pentagonal, hexagonal, heptagonal, octagonal, nonagonal, decagonal, or other shape (for example, when viewed from the view of FIG. 10C). The one or more openings of vent 1003 can have a rounded or non-rounded shape. The one or more vents **1003** can allow air to flow into an interior of the base **1006** and/or charging station **1000**. Such venting can be important since a significant amount of heat can be generated by the charging station **1000** and/or from one or more devices secured therein. Charging station **1000** can include one or more vents **1015***a*, **1015***b* on a back cover or portion of the station **100**, as shown in FIG. **10**F. The one or more vents **1015***a*, **1015***b* can include one or more openings comprising a variety of sizes and/or shapes. For example, the one or more openings of vent **1015***a*, **1015***b* can have a square, rectangular, circular, triangular, pentagonal, hexagonal, heptagonal, octagonal, nonagonal, decagonal, or other shape (for example, when viewed from the view of FIG. **10**F). The one or more openings of vents **1015***a*, **1015***b* can have a rounded or non-rounded shape. As shown in FIG. **10**F, the vents **1015***a* can be located adjacent or proximate a top of the charging station **1000**, for example, proximate the roof **1004**, and the vents 1015b can be positioned at or near a bottom of the charging station 1000. [0537] Charging station **1000** can include and/or connect to a power source. For example, where charging station **1000** includes a base **1006**, base **1006** can include a power connector port **1013** configured to receive and/or connect to a power source, for example to a wall outlet via a power cable.

[0538] As shown in FIG. **10**B, charging station **1000** can include a roof **1004**. Roof **1004** can be attached to one of the frame(s) **1008**. For example, a frame **1008** that is intended to be a top of the

charging station **1000** can include or attach to roof **1004**. Roof **1004** can have a width and/or length that is less than, equal to, or greater than a width and/or length of the one or more frames **1008** and/or the base **1006**.

[0539] FIGS. **10**G-**10**H illustrate two different perspective views frame **1008**. As discussed above, one or more of frames **1008** can be secured to, supported by, and/or stacked atop of another one of frames **1008**. Frame **1008** can have a top portion/panel having a top surface **1040** and a bottom portion/panel having a bottom surface **1042** (see FIGS. **10**G-**10**I). One or more of frames **1008** can be secured and/or stacked with respect to another frame **1008** such that a top surface **1040** of one frame **1008** contacts, faces, and/or secures to a bottom surface **1042** of another frame **1008**. Frame **1008** can include one or more recessed portions **1044** that are recessed from top surface **1040** a given depth. For example, frame **1008** can include one, two, three, four, five, six, seven, or eight or more recessed portions **1044**. Frame **1008** can additionally include one or more skirt walls **1046** protruding outward from bottom surface 1042 a given length. For example, frame 1008 can include one, two, three, four, five, six, seven, or eight or more skirt walls **1046**. As another example, the frame **1008** can include two openings **1036** (see FIG. **10**J), two recessed portions **1044** (see FIG. **10**J), and two skirt walls **1046** (see FIG. **10**I) extending from bottom surface **1042** around openings **1036** and/or below each charging bay **1001**. Frame **1008** can include two charging bays **1001**, for example (see FIGS. **10**G**-10**I). The one or more skirt walls **1046** can extend outward from the bottom surface **1042** and around one or more openings **1036** in portions of the frame **1008** (see FIGS. **10**I-**10**K). The frame **1008** can include an equal amount of recessed portions **1044** as skirt walls **1046**. The one or more recessed portions **1044** can be sized and/or shaped to receive all or a portion of the length/height of the one or more skirt walls 1046 and vice versa. The depth of the one or more recessed portions 1044 can be equal to, less than, or greater than the length/height of the one or more skirt walls **1046**. The one or more skirt walls **1046** can secure within the one or more recessed portions 1044 via a press fit, friction fit, snap fit, or another type of fit or securement. Thus, a first frame **1008** can secure to a second frame **1008** via interaction and/or securement between one or more recessed portions **1044** and one or more skirt walls **1046**. [0540] With reference to FIGS. 10J-10K, frame 1008 can include one or more sidewalls 1013, one or more back walls **1015**, and one or more bottom or floor panels **1017**. The one or more sidewalls **1013** can connect to the one or more back walls **1015**. The one or more bottom or floor panels **1017** can connect to the one or more back walls 1015 and/or one or more sidewalls 1013. The one or more bottom or floor panels **1017** can extending along a plane that is perpendicular to a plane of the one or more sidewalls **1013** and/or the one or more back walls **1015**. The one or more sidewalls **1013**, one or more back walls **1015**, and/or one or more bottom or floor panels **1017** can define the one or more charging bays **1001**.

[0541] Frame 1008 can include an amount of sidewalls 1013, back walls 1015, and/or bottom panels 1017 according to the amount of charging bays 1001 included in frame 1008. For example, where frame 1008 includes a single charging bay 1001, frame 1008 can include a back wall 1015, two sidewalls 1013 connected to the back wall 1015, and a bottom panel 1017 connected to the sidewalls 1013 and/or the back wall 1015. As another example, where frame 1008 includes two charging bays 1001 as shown in the exemplary illustration of FIGS. 10G-10K, frame 1008 can include two exterior sidewalls 1013, one or more interior sidewalls 1013 (those which divide or separate the two charging bays 1001), two back panels 1015 (which can be integral or separated), and two bottom panels 1017. Where frame 1008 includes a plurality of charging bays 1001, such charging bays 1001 can be separated by a middle portion 1032 which can include one or more of the interior sidewalls 1013. As shown by the cross-section of FIG. 10L, middle portion 1032 can have a first interior sidewall 1013, a second interior sidewall 1013, and hollow section therebetween. Use of the phrase "interior sidewall" is intended to mean a sidewall 1013 of the frame 1008 that is spaced interior to an exterior perimeter of the frame 1008. Similarly, use of the phrase "exterior sidewall" is intended to mean a sidewall 1013 of frame 1008 that is positioned

along and/or that at least partially defines an exterior perimeter of frame **1008**.

[0542] As shown by FIGS. **10**J-**10**K, the sidewalls **1013** of frame **1008** can include one or more stem walls **1039** extending outward and/or adjacent to a surface, corner, and/or end of the sidewalls **1013**. For example, stem walls **1039** can be positioned near front ends of the sidewalls **1013** that are opposite to back ends of the sidewall **1013** adjacent to back walls **1015**. The stem walls **1039** can include one or more guide recesses **1026** and/or one or more locking recesses **1028** as discussed further below.

[0543] Each of the one or more charging bays **1001** can be at least partially defined by cavities in the frame **1008** and stem walls **1039** near the front of the frame **1008**. Each charging bay **1001** can be bordered by a stem wall **1039** on two front corners thereof. The term "front corners" is meant as indicating corners near the entrance of the charging bays **1001**.

[0544] FIGS. **10**J-**10**K show an exploded view of frame **1008**. Frame **1008** can include one or more trays **1020** sized and/or shaped to fit within and/or secure to the one or more charging bays **1001** of frame **1008**. The one or more trays **1020** can include one, two, three, four, five, or six or more trays **1020**. The amount of trays **1020** can be equal to the amount of bays **1001** present in frame **1008**. Tray **1020** can be sized and/or shaped to hold and/or secure a physiological sensor, device, or monitor. For example, tray **1020** can be sized and/or shape to hold and/or secure patient monitor **130**. Tray **1020** can include an opening **1020***a* which is sized and/or shaped to accommodate charging port **1024** of the frame **1008**. The charging port **1024** can comprise and/or be formed on a pedestal (see FIGS. **10**J-**10**K). The charging port **1024** can be sized and/or shaped to pass at least partially through opening **1020***a*, as discussed in more detail below. The charging port **1024** can be electrically coupled to a battery or power source inside or outside the charging station **1000**.

[0545] Tray **1020** can include a base portion having an opening **1020***b* that is larger than opening **1020***a*. Opening **1020***b* can be positioned underneath a bottom surface of patient monitor **130** (for example), when patient monitor **130** is held and/or secured by tray **1020**. Opening **1020***b* can provide venting and airflow in and around portions of patient monitor **130** (or another type of physiological device) when held and/or secured by tray **1020**.

[0546] Tray **1020** can include sidewalls **1020***d* (also referred to herein as "arms") extending outward and/or upwards from the base portion of tray **1020**. For example, tray **1020** can include two opposing arms **1020***d*. Arms **1020***d* can extend in one or more directions and/or can curve or be angled. For example, arms **1020***d* can be angled and/or curved such that the arms **1020***d* can extend adjacent to and/or surround a portion of sides of patient monitor **130** (such as sides **813** and/or **815** of patient monitor **130**). Such configuration can prevent patient monitor **130** from moving in a direction perpendicular to a plane of the base portion and/or opening **1020***b* of tray **1020** when secured to the tray **1020**, while at the same time allowing patient monitor **130** to be inserted within tray **1020** in a direction generally parallel to such plane (for example, along an axis parallel to a length of tray **1020**).

[0547] Tray **1020** can include one or more knobs **1020***e* extending outwards from a surface of one or more of the arms **1020***d* of tray **1020**. For example, tray **1020** can include one, two, three, four, five, six, seven, or eight or more knobs **1020***e*. As another example, tray **1020** can include a pair of knobs **1020***e* on a first arm **1020***d* and a pair of knobs **1020***e* on a second arm **1020***d* opposite the first arm **1020***d* (see FIGS. **10**J-**10**K). The one or more knobs **1020***e* can be sized and/or shaped to secure to one or more detents **1038** on frame **1008**. The one or more detents **1038** can be located along inner walls of frame **1008** which define the one or more charging bays **1001**. The one or more knobs **1020***e* can be configured to secure to the one or more detents **1038** via press fit, snap fit, friction fit, or another type of fit or securement. The one or more knobs **1020***e* can be configured to slide within the one or more detents **1038** from above without being secured in a press fit, snap fit, friction fit, or another type of fit or securement such that tray **1020** can easily be

1020*e* can have a circular cross-section and the detents **1038** can have a half-circle shape, although other shapes are possible. Thus, the trays **1020** can be at least partially held, received, and/or secured within the charging bays **1001** by securement between the one or more knobs **1020***e* and the one or more detents **1038**. The knobs **1020***e* can be positioned in the detents **1038** such that the tray **1020** is movable between one or more positions as discussed further below. [0548] As shown in FIGS. **10**J-**10**K, tray **1020** can include one or more legs **1020**c extending outward and/or downward from the base portion of tray **1020**. The one or more legs **1020**c can extend from the base portion of tray **1020** in a direction opposite to the direction that the arms **1020***d* extend from the base portion. The one or more legs **1020***c* can include, for example, two legs **1020***c*. The one or more legs **1020***c* can be sized and/or shaped to correspond with the size and/or shape of openings **1036** and/or one or more prongs **1034**. When tray **1020** is placed within a charging bay **1001**, a leg **1020***c* can be positioned proximate to, adjacent to, above, and/or around opening 1036 and/or a prong 1034. Frame 1008 can include one or more prongs 1034 positioned and/or extending within or through opening 1036 (see FIGS. 10I-10K). Frame 1008 can include one, two, three, four, five, six, seven, or eight or more prongs **1034**. Frame **1008** can include an equal amount of prongs **1034** and openings **1036**, and the number of prongs **1034** and openings **1036** can be equal to the number of legs **1020***c* in tray **1020**. Prongs **1034** can help bias a tray **1020** when a physiological device (such as patient monitor **130**) is not received and/or secured within the tray **1020**. For example, when tray **1020** is positioned within a charging bay **1001**, a top surface of a prong **1034** can contact and/or apply a force to a bottom surface of the legs **1020***c* so as to keep at least a portion of the tray **1020** in a raised position. The charging bay **1001** on the right side of frame **1008** in FIGS. **10**G-**10**H illustrates a tray **1020** in a raised position, whereas the charging bay **1001** on the left side of frame **1008** in FIGS. **10**G-**10**H illustrates a tray **1020** in a lowered position. In the lowered position, the opening **1020***a* of tray **1020** is positioned around the charging port **1024** of frame **1008**. In the raised position, the opening **1020***a* of tray **1020** is spaced from the charging port 1024 of frame 1008. Thus, prongs 1034 can bias a portion of the tray 1020 (for example, a "front" portion of tray **1020** which is proximate to opening **1020***a*) so that it is spaced away from charging port **1024** and/or an inner surface of frame **1008**. If a portion of the tray **1020** is pushed downward toward the inner surface of frame 1008 and/or towards the charging port 1024, a bottom surface of the tray **1020** (for example, legs **1020***c*) can compress the prong(s) **1034**. The one or more legs **1020***c* can be defined by a perimeter wall extending from the base of the tray **1020**. As shown in FIG. **10**I, the perimeter wall can have an opening on an end opposite the base of the tray **1020**. The perimeter wall can have a hollow interior therewithin. The hollow interior can be sized and/or shaped to receive at least a portion of the a prong **1034**. When received and/or extending through the hollow interior of the leg **1020***c*, an end of prong **1034** can contact and/or apply pressure to the base of the tray **1020**.

lifted in and out of bay **1001** by vertically moving knobs **1020***e* out of detents **1038**. The knobs

[0549] As shown in FIG. **10**I-**10**J, prong(s) **1034** can pass through openings **1036** and/or skirt walls **1046** and secure or connect (at an end thereof) to a portion of bottom surface **1042** of frame **1008**. As shown in FIGS. **10**I-**10**K, prong(s) **1034** can have a straight portion which connects and/or secures to the bottom surface **1042** (see FIG. **10**I) and a curved or flared portion which extends into an interior of charging bay **1001** and/or applies a biasing force to a portion of tray **1020** (see FIGS. **10**J-**10**K).

[0550] As shown in FIGS. **10**G-**10**K, stem walls **1039** positioned on sides of charging bay **1001** and/or at corners thereof can have a guide recess **1026** and/or a locking recess **1028**. Guide recesses **1026** can be sized and/or shaped to receive locking tabs **822** of patient monitor **822**. Guide recesses **1026** can have a height and/or width to allow the locking tabs **822** to pass therewithin when patient monitor **822** is inserted into a charging bay **1001**. Guide recesses **1026** can be recessed from a surface of stem walls **1039** a depth that is equal to or greater than a length of locking tabs **822** of patient monitor **130**. Guide recesses **1026** can have three inner walls defining the recess and an

open front portion. Such configuration allows locking tab **822** to pass into the guide recess **1026**. Locking recesses **1028** can be sized and/or shaped to receive, secure, surround, and/or confine locking tabs **822** of patient monitor **822**. Locking recesses **1028** can have a height and/or width to allow the locking tabs **822** to extend therewithin when patient monitor **822** is inserted into a charging bay **1001** and the patient monitor **130** is in a lowered position (as discussed further below). Locking recesses **1028** can be recessed from a surface of stem walls **1039** a depth that is equal to or greater than a length of locking tabs **822** of patient monitor **130**. Locking recesses **1028** can be recessed a depth greater than or equal to the recess depth of guide recesses **1026** (see FIG. **11**L). Locking recesses **1028** can have four walls that define the recess and act to confine, secure, and/or lock the locking tabs **822**.

[0551] FIG. **10**L illustrates a cross-section taken along a portion of frame **1008** as shown in FIG. **10**G when two patient monitors **130** are inserted into the charging bays **1001**. The right hand side of FIG. **10**L illustrates a patient monitor **130** in the raised position (discussed above) where the locking tabs **822** are positioned within the guide recesses **1026**. The left hand side of FIG. **10**L illustrates a patient monitor **130** in the lowered position where the locking tabs **822** are positioned within locking recesses **1028**.

[0552] To secure a patient monitor **130** within a charging bay **1001** and/or to electrically connect the patient monitor 130 to the charging station 1000 (or frame 1008 thereof), the patient monitor **130** can be inserted into tray **1020** within a charging bay **1001**. As the patient monitor **130** is inserted into tray **1020** and/or charging bay **1001**, locking tabs **822** of patient monitor **130** can pass and/or slide within guide recess(es) 1026 of stem walls 1039 positioned at front corners of sides of the charging bay 1001. To electrically connect the patient monitor 130 to the frame 1008 (for example, to begin charging), a front portion of patient monitor 130 (for example, the end 810 of patient monitor **130** as shown in FIG. **8**I) can be pressed by a user. Application of a force in a downward manner (for example, toward charging port **1024** of frame **1008**) moves a front portion of tray **1020** toward an inner surface of frame **1008** in charging bay **1001** such that opening **1020***a* of tray **1020** slides over and/or around charging port **1024**. After the charging port **1024** passes through opening **1020***a*, electrical contacts **839** of patient monitor **130** (see FIG. **8**E) can mate (for example, connect) with electrical contracts 1024 of frame 1008. Further, as a downward force is applied to the patient monitor **130** and tray **1020**, the tray **1020** compresses the one or more prongs **1034**. Additionally, as such downward force is applied to the patient monitor **130** and tray **1020**, the locking tabs **822** of patient monitor **130** move and/or slide from the guide recesses **1026** to the locking recesses **1028** (for example, by sliding over a wall or non-recessed portion of stem walls **1039** separating the guide recesses **1026** from the locking recesses **1028** as shown in FIG. **10**L). Once the locking tabs **822** move into the locking recesses **1028**, the locking recesses **1028** prevent movement of the locking tabs **822** (and thus the patient monitor **130**) in a direction parallel to axis **1077** as shown in FIG. **10**L which can be parallel with a height of the frame **1008** and/or patient monitor **130**. When the locking tabs **822** pass from the guide recesses **1026** to the locking recesses **1028**, the locking tabs **822** can snap into place. As discussed previously, the locking tabs **822** can have tapered ends. Such tapered ends of locking tabs **822** can help the locking tabs **822** slide over the walls or non-recessed portion of stem walls **1039** separating the guide recesses **1026** from the locking recesses **1028** and thereafter snap and/or extend into and/or within locking recesses **1028**. [0553] As discussed above, after the charging port **1024** passes through opening **1020***a*, electrical contacts **839** of patient monitor **130** (see FIG. **8**E) can mate (for example, electrically connect) with charging port **1024** of frame **1008**. The patient monitor **130** can include an indicator that illustrates a charging status of the patient monitor **130**. For example, the patient monitor **130** can include an indicator that visually indicates when electrical contacts 839 of patient monitor 130 connect with charging port **1024** of frame **1008**. For example, patient monitor **130** can include an LED indicator on a portion of end **810**. As another example, on/off button **834** on end **810** of patient monitor **130** can be configured to illuminate when electrical contacts **839** of patient monitor **130** connect with

charging port **1024** of frame **1008**. For example, on/off button **834** can be made of a transparent or semi-transparent material and one or more LEDs can be positioned between the on/off button **834** and the interior of the patient monitor **130**, and such one or more LEDs can be configured to illuminate when electrical contacts **839** of patient monitor **130** connect with charging port **1024** of frame **1008**. Such indicator on patient monitor **130** can also indicate (for example, by illumination or flashing) whether the patient monitor **130** and/or the charging station **1000** (or frame thereof) are compatible, whether the patient monitor **130** has reached an end of its service life. In some variants, the charging station **1000** does not include any indicators, such as charging status indicators. For example, the charging station **1000** can have not charging status indicators and the only charging status indicator is on the patient monitor **130**.

[0554] As discussed above, the charging station **1000** can include one or more vents to allow air to flow into an interior of the charging station **1000** and to allow heat to dissipate from the interior of the charging station **1000**. For example, as discussed above, charging station **1000** can include one or more of vents **1003** (FIG. **10**C) or vents **1015***a*, **1015***b* (FIG. **10**F). In some variants, the charging station **1000** is configured to allow heat generated from an interior of the charging station **1000** to flow up to the top of the charging station **1000** and out vents **1015***a*. For example, one or more of the frames **1008** can include openings configured to provide a flow path for heat to pass upward through the frames **1008** toward a top of the charging station **1000** and out the vents **1015***a*. For example, with reference to FIG. **10**I-**10**K, the bottom surface **1042** can have an opening **1080** that separates portions of the frame **1008** and allows hot air to pass through. The structure and configuration of the frame **1008** can incorporate an opening like opening **1080**. Advantageously, heat generated by electrical components in the base **1006** of the charging station **1000** along with heat generated from the one or more patient monitors **103** secured in the charging bays **1001** of the frames **1008** can efficiently pass through openings **1080** and flow upward to a top of the charging station **1000** and out vents **1015***a*.

Charging Cradle

[0555] FIGS. **11**A-**11**B illustrate various views of a charging cradle **1100** with two patient monitors **130** secured therein. As shown, one or more patient monitors **130** can be secured within portions of the charging cradle **1100**. Charging cradle **1100** can itself be secured within a portion of a medical monitoring hub, such as medical monitoring hub **1101**. For example, charging cradle **1100** can be sized and/or shaped to fit within a docking station **1105** of medical monitoring hub **1101**. Charging cradle **1100** can transfer physiological data, for example, from a patient monitor **130**, to medical monitoring hub **1101** via contact between electrical contacts on charging cradle **1100** and electrical contacts in docking station **1105**. Charging cradle **1100** can itself comprise a rechargeable battery or battery pack that can be recharged, for example, when the charging cradle **1100** is secured to docking station **1105** of the hub **1101**. Medical monitoring hub **1101** can include a display **1103** which can display information responsive to physiological data obtained from the charging cradle **1100** and/or patient monitor **130**.

[0556] FIGS. 11D-11E and 11G illustrate charging cradle 1100 without patient monitors 130 secured therein. Charging cradle 1100 can include one or more docks configured to secure a patient monitor 130. For example, charging cradle 1100 can include two docks, each of which are sized, shaped, and configured to secure a patient monitor 130. In some cases, charging cradle 1100 can include a first dock 1140 including a charging port 1146 including electrical contacts and a second dock 1130 that does not include a charging port 1146 but rather is intended to secure a patient monitor 130 without charging. The electrical contacts of the charging port 1146 of the dock 1140 can electrically connect to electrical contacts on patient monitor 130 when the patient monitor 130 is secured to the dock 1140. For example, the electrical contacts of the charging port 1146 of the dock 1140 can electrically connect to electrical contacts 839 on patient monitor 130 when the patient monitor 130 is secured to the dock 1140 (see FIG. 8E).

[0557] Dock **1140** can include one or more openings **860** in sidewalls extending from a bottom

surface of dock 1140 that are sized and/or shaped to receive locking tabs 822 of patient monitor **130**. Additionally or alternatively, dock **1140** can include an opening **1142** in a end wall of the dock **1140**. Opening **1142** can be sized and/or shaped to surround a portion of a perimeter of connector port **831** of patient monitor **130**. Opening **1142** can be similar to opening **836***a* of cradle **804**. [0558] The securement between the locking tabs **822** of patient monitor **130** within the openings **1144** can be similar or identical to the securement of locking tabs **822** to openings **860** of cradle **804**. Thus, the discussion above with reference to the securement of locking tabs **822** to openings **860** of cradle **804** is equally applicable to the securement between the locking tabs **822** of patient monitor **130** within the openings **1144** of dock **1140**. Similarly, the securement between connector port **831** of patient monitor **130** and opening **1142** can be similar in some or many respects as the securement between connector port **831** of patient monitor **130** and opening **836***a* and/or collar **450**. For example, connector port **831** can be inserted along a direction parallel to an axis extending through opening **1142** and/or a direction perpendicular to such direction. [0559] As shown in FIGS. **11**D-**11**E and **11**H-**11**I, dock **1130** can include a tray **1120** that can be sized and/or shaped to secure and/or surround patient monitor 130. Tray 1120 can be similar in some or many respects as tray **1020** of charging frame **1008**. For example, with reference to FIGS. **11**J-**11**K, tray **1120** can include outer wall **1124** that can be U-shaped and an inner portion **1126**. Inner portion **1126** can extend toward an interior of tray **1120** and can be curved, as shown. Inner portion **1126** can have a size and/or shape that corresponds to a size and/or shape of a patient monitor **130**. Outer wall **1124** and/or inner portion **1126** can be shaped so as to surround the sides and/or bottom of patient monitor **130** when patient monitor **130** is placed therein. Outer wall **1124** can include an opening **1127** sized and/or shaped to receive connector port **831** of patient monitor **130**. Patient monitor **130** can be secured within tray **1120** by placement of connector port **831**

within and/or through opening 1127 and/or by the shape of outer wall 1124 and/or inner portion

1126.

[0560] As shown in at least FIGS. **11**H-**11**I, charging cradle **1100** can include a base **1110** which can include dock **1130** and dock **1140**. Tray **1120** can be secured within a portion or portions of dock 1130 of base 1110. For example, tray 1120 can include one or more legs 1122 (such as one, two, three, or four of more legs) that can secure to portions of dock 1130. Legs 1122 can extend from the outer wall **1124** of tray **1120** (see FIG. **11**J-**11**K). Legs **1122** can include nubs **1122***a*, **1122***b* which protrude outward from a surface of leg **1122**. For example, nubs **1122***a*, **1122***b* can extend perpendicular to a surface of leg **1122**. Nubs **1122***a*, **1122***b* can be sized and/or shape to fit within slot **1131** on an interior surface of a wall **1136** of dock **1130** (see FIG. **11**L). Nubs **1122***a*, **1122***b* can have a circular cross-section. Nubs **1122***a*, **1122***b* can be rounded and/or cylindrical. Such configurations can help the nubs **1122***a*, **1122***b* more easily slide within slots **1131**. Slot **1131** can be recessed from an interior surface of a wall 1136 of dock 1130. Slot 1131 can extend along a portion of such surface of wall **1136** and can be curved. When nubs **1122***a*, **1122***b* of legs **1122** are positioned within slots 1130 of dock 1130 and tray 1120 is positioned within dock 1130, tray 1120 can be rotatably secured to dock **1130**. For example, in such configuration, tray **1120** can be prevented from being separated from dock **1130**, but can allow tray **1120** to rotate and/or swivel by movement of the nubs **1122***a*, **1122***b* within and/or along slots **1131**. FIG. **11**M illustrates a first position of the tray **1120** secured within dock **1130** and FIG. **11**N illustrates a second position of tray **1120** secured within dock **1130**. Thus, the nubs **1122***a*, **1122***b* and slots **1131** allow the tray **1120** to rotate outward from base **1110** while still being prevented from removal. Such configuration (FIG. 11N) can allow a patient monitor 130 to be more easily inserted into tray 1120 from a top position. After a patient monitor 130 is inserted into the tray 1120 as shown in FIG. 11N, the tray can be rotated back toward base **1110**.

[0561] Dock **1130** of base **1110** and/or tray **1120** can include additional features to help securement therebetween. For example, with reference to FIGS. **11**J-**11**L, leg **1122** can include a bump **1122***c* and the dock **1130** can include a stopper **1132** and a bump **1134**. Bump **1122***c* can extend outward

(for example, perpendicular) from a surface of leg **1122**. Bump **1134** of dock **1130** can protrude outward (for example, perpendicular) from a surface of wall **1136** of dock **1130**. Stopper **1132** can also extend outward (for example, perpendicular) from the same surface of the wall **1136** of dock **1130**. Stopper **1132** can extend further outwards from the wall of dock **1130** than the bump **1134**. [0562] When tray **1120** is rotated and/or positioned as shown in FIG. **11M**, bump **1122***c* can be positioned between bump **1134** and stopper **1132**. Such positioning can prevent rotation of tray **1120**, via sliding of nubs **1122***a*, **1122***b* within slot **1131**, until a sufficient force is applied so that bump **1122***c* can pass over bump **1134** in dock **1130**. Bump **1122***c* can be rounded and/or smooth, and in some cases comprises a partially spherical shape. Bump **1134** can be rounded and/or smooth, and in some cases comprises a partially square shape, for example, with rounded edges and/or sides (see FIG. **11L**). Stopper **1132** can prevent tray **1120** from rotating beyond a certain position, for example, the position of tray **1120** shown in FIG. **11**M.

Additional Considerations

[0563] The various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans can implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention. [0564] Depending on the embodiment, certain acts, events, or functions of any of the methods described herein can be performed in a different sequence, may be added, merged, or left out altogether (e.g., not all described acts or events are necessary for the practice of the method). Moreover, in certain embodiments, acts or events may be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors, rather than sequentially. [0565] The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein can be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor can be a microprocessor, conventional processor, controller, microcontroller, state machine, etc. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In addition, the term "processing" is a broad term meant to encompass several meanings including, for example, implementing program code, executing instructions, manipulating signals, filtering, performing arithmetic operations, and the like. [0566] The steps of a method or algorithm described in connection with the embodiments disclosed herein can be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, a DVD, or any other form of storage medium known in the art. A storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium can reside in an ASIC. The ASIC can reside in a user terminal. In the alternative, the processor and the storage medium can reside as discrete components in a user terminal.

[0567] The modules can include, but are not limited to, any of the following: software or hardware

components such as software object-oriented software components, class components and task components, processes, methods, functions, attributes, procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, or variables.

[0568] In addition, although this invention has been disclosed in the context of certain preferred embodiments, it should be understood that certain advantages, features and aspects of the systems, devices, and methods may be realized in a variety of other embodiments. Additionally, it is contemplated that various aspects and features described herein can be practiced separately, combined together, or substituted for one another, and that a variety of combination and subcombinations of the features and aspects can be made and still fall within the scope of the invention. Furthermore, the systems and devices described above need not include all of the modules and functions described in the preferred embodiments.

[0569] Conditional language used herein, such as, among others, "can," "might," "may," "e.g.," and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment. The terms "comprising," "including," "having," and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term "or" is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term "or" means one, some, or all of the elements in the list. Further, the term "each," as used herein, in addition to having its ordinary meaning, can mean any subset of a set of elements to which the term "each" is applied.

[0570] While the above detailed description has shown, described, and pointed out novel features as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the systems, devices or methods illustrated can be made without departing from the spirit of the disclosure. As will be recognized, certain embodiments described herein can be embodied within a form that does not provide all of the features and benefits set forth herein, as some features can be used or practiced separately from others.

[0571] The term "and/or" herein has its broadest, least limiting meaning which is the disclosure includes A alone, B alone, both A and B together, or A or B alternatively, but does not require both A and B or require one of A or one of B. As used herein, the phrase "at least one of" A, B, "and" C should be construed to mean a logical A or B or C, using a non-exclusive logical or. [0572] The apparatuses and methods described herein may be implemented by one or more computer programs executed by one or more processors. The computer programs include processor-executable instructions that are stored on a non-transitory tangible computer readable medium. The computer programs may also include stored data. Non-limiting examples of the non-transitory tangible computer readable medium are nonvolatile memory, magnetic storage, and optical storage.

[0573] Although the foregoing disclosure has been described in terms of certain preferred embodiments, other embodiments will be apparent to those of ordinary skill in the art from the disclosure herein. Additionally, other combinations, omissions, substitutions and modifications will be apparent to the skilled artisan in view of the disclosure herein. Accordingly, the present invention is not intended to be limited by the description of the preferred embodiments, but is to be defined by reference to claims.

Claims

1.-13. (canceled)

- **14.** An assembly comprising: a blood pressure cuff comprising a flexible material configured to allow the blood pressure cuff to be wrapped around an arm of a subject to conform and secure to the subject's arm, the blood pressure cuff further comprising: a cuff interior; a support body secured within the cuff interior, the support body comprising two holes that extend through a thickness of the support body and are in fluid communication with the cuff interior; a first prong supported by and extending outward from the support body and through a first portion of the blood pressure cuff, the first prong comprising a first fluid passage that is aligned with a first one of the holes of the support body and is in fluid communication with the cuff interior via said first one of the holes; and a second prong supported by and extending outward from the support body and through a second portion of the blood pressure cuff, the second prong spaced from the first prong and comprising a second fluid passage that is aligned with a second one of the holes of the support body and is in fluid communication with the cuff interior via said second one of the holes; and a blood pressure monitor including a housing comprising a housing interior, a first port, and a second port spaced from the first port; wherein the blood pressure monitor and the blood pressure cuff are configured to removably secure to one another via engagement between the first and second ports and the first and second prongs, and wherein at least one of the first and second fluid passages is in fluid communication with the housing interior when the first and second prongs are secured within the first and second ports, thereby allowing the blood pressure monitor to inflate the cuff interior of the blood pressure cuff.
- **15**. The assembly of claim 14, wherein the blood pressure monitor further comprises a first sealing ring arranged within the first port and a second sealing ring arranged within the second port, wherein the first and second sealing rings are configured to engage portions of the first and second prongs when the blood pressure monitor and the blood pressure cuff are secured to one another.
- **16**. The assembly of claim 15, wherein each of the first and second prongs comprises an annular recess configured to receive one of the first and second sealing rings when the blood pressure monitor and the blood pressure cuff are secured to one another.
- **17**. The assembly of claim 14, wherein the support body comprises one or more bumps extending outward from a bottom surface of the support body and proximate to at least one of the holes of the support body.
- **18**. The assembly of claim 14, wherein the blood pressure cuff further comprises an RFID tag, and wherein the blood pressure monitor further comprises an RFID reader configured to communicate with the RFID tag and determine that the blood pressure cuff is an authorized product.
- **19**. The assembly of claim 18, wherein the RFID tag is secured to a portion of the support body.
- **20**. The assembly of claim 18, wherein the RFID tag is arranged between the first and second prongs.
- **21**. The assembly of claim 18, wherein the RFID tag is arranged within a recessed portion of the support body that is recessed from a top surface of the support body.
- **22.** The assembly of claim 14, wherein the blood pressure monitor is configured to block fluid communication between the housing interior and one of the first and second fluid passages when the first and second prongs are secured within the first and second ports.
- **23**. An assembly comprising: a blood pressure cuff comprising a flexible material configured to allow the blood pressure cuff to be wrapped around an arm of a subject to conform and secure to the subject's arm, the blood pressure cuff further comprising a cuff interior and at least one prong comprising a fluid passage that is in fluid communication with the cuff interior; a blood pressure monitor including a housing comprising a housing interior and at least one port; wherein the blood pressure monitor and the blood pressure cuff are configured to removably secure to one another via

- engagement between the at least one port and the at least one prong, and wherein the fluid passage of the at least one prong is in fluid communication with the housing interior when the at least one prong is secured within the at least one port, thereby allowing the blood pressure monitor to inflate the cuff interior of the blood pressure cuff.
- **24**. The assembly of claim 23, wherein the blood pressure monitor further comprises a sealing ring arranged within the at least one port, and wherein the sealing ring is configured to engage a portion of the at least one prong when the blood pressure monitor and the blood pressure cuff are secured to one another.
- **25**. The assembly of claim 24, wherein the at least one prong comprises an annular recess configured to receive the sealing ring when the blood pressure monitor and the blood pressure cuff are secured to one another.
- **26**. The assembly of claim 23, wherein: the blood pressure cuff further comprises a support body arranged within the cuff interior and comprising at least one hole that extends through a thickness of the support body and is in fluid communication with the cuff interior; and the fluid passage of the at least one prong is in fluid communication with the cuff interior via said at least one hole.
- **27**. The assembly of claim 26, wherein the support body comprises one or more bumps extending outward from a bottom surface of the support body and proximate to the at least one hole of the support body.
- **28**. The assembly of claim 26, wherein the blood pressure cuff further comprises an RFID tag, and wherein the blood pressure monitor further comprises an RFID reader configured to communicate with the RFID tag and determine that the blood pressure cuff is an authorized product.
- **29**. The assembly of claim 28, wherein the RFID tag is secured to a portion of the support body.
- **30**. The assembly of claim 28, wherein the RFID tag is arranged within a recessed portion of the support body.
- **31.** The assembly of claim 23, wherein: the at least one prong of the blood pressure cuff comprises: a first prong extending through a first portion of the blood pressure cuff, the first prong comprising a first fluid passage in fluid communication with the cuff interior; and a second prong spaced from the first prong and extending through a second portion of the blood pressure cuff, the second prong comprising a second fluid passage in fluid communication with the cuff interior; the at least one port of the blood pressure monitor comprises a first port and a second port; and the blood pressure monitor and the blood pressure cuff are configured to removably secure to one another via engagement between the first and second ports and the first and second prongs, and wherein at least one of the first and second fluid passages is in fluid communication with the housing interior when the first and second prongs are secured within the first and second ports, thereby allowing the blood pressure monitor to inflate the cuff interior of the blood pressure cuff.
- **32**. The assembly of claim 31, wherein the blood pressure cuff further comprises a support body arranged within the cuff interior and configured to support the first and second prongs.
- **33**. The assembly of claim 32, wherein the support body comprises a pair of holes configured to provide fluid communication between the cuff interior and the first and second fluid passages.