Fundamentals of Artificial Neural Networks (I) Al: Deep Learning and Neural Networks

Thuan L Nguyen, PhD

Slide 2: Fundamentals of Artificial Neural Networks

AI Deep learning (Source: mindovermachines.com)

Slide 3: Fundamentals of Artificial Neural Networks

- 1. Biological Neurons and Neural Networks
- 2. Artificial Neurons and Perceptron
- 3. Perceptron: A Simple Neural Network
- 4. Artificial Neural Networks: An Introduction
- 5. Artificial Neural Networks: Computation Power
- 6. Artificial Neural Networks: Architectures
- 7. Artificial Neural Networks: Applications

Slide 4: Fundamentals of Artificial Neural Networks

Biological Neural Networks: Human Brain

Human Brain (Source: Quora.com)

Slide 5: Fundamentals of Artificial Neural Networks

Biological Neural Networks

- The brain is one of the largest and most complex organs in the human body.
- It is made up of more than 100 billion nerves that communicate in trillions of connections called synapses.
- The brain is made up of many specialized areas that work together:
 - The cortex is the outermost layer of brain cells. Thinking and voluntary movements begin in the cortex.
 - The brain stem is between the spinal cord and the rest of the brain. Basic functions like breathing and sleep are controlled here.
 - The basal ganglia are a cluster of structures in the center of the brain. The basal ganglia coordinate messages between multiple other brain areas.
 - The cerebellum is at the base and the back of the brain. The cerebellum is responsible for coordination and balance.

Slide 6: Fundamentals of Artificial Neural Networks

Biological Neural Networks: Neural System

The human nervous system can be broken down into three stages that may be represented in block diagram form as:

Human Brain: Stimulus & Response (Source: Wikipedia)

- The receptors collect information from the environment e.g. photons on the retina.
- The effectors generate interactions with the environment e.g. activate muscles.
- The flow of information/activation is represented by arrows feedforward and feedback.
- Naturally, this module will be primarily concerned with how the neural network in the middle works, but understanding its inputs and outputs is also important.

Slide 7: Fundamentals of Artificial Neural Networks

Biological Neural Networks: Levels of Brain Organization

- The brain contains both large scale and small scale anatomical structures and different functions take place at the higher and lower levels.
- There is a hierarchy of interwoven levels of organization:
 - 1. Molecules and Ions
 - 2. Synapses
 - 3. Neuronal microcircuits
 - 4. Dendritic trees
 - 5. Neurons
 - 6. Local circuits
 - 7. Inter-regional circuits
 - 8. Central nervous system
- The artificial neural networks studied in this module are mostly approximations of levels 5 and 6.

Slide 8: Fundamentals of Artificial Neural Networks

Biological Neural Networks: Basic Components of Biological Neurons

Human Neuron (Source: by Bruce Blaus, is licensed under CC BY 3.0)

Slide 9: Fundamentals of Artificial Neural Networks

Biological Neural Networks: Basic Components of Biological Neurons

- The majority of neurons encode their activations or outputs as a series of brief electrical pulses (i.e. spikes or action potentials).
- The neuron's cell body (soma) processes the incoming activations and converts them into output activations.
- The neuron's nucleus contains the genetic material in the form of DNA. This exists in most types
 of cells, not just neurons.
- **Dendrites** are fibers which emanate from the cell body and provide the receptive zones that receive activation from other neurons.
- Axons are fibers acting as transmission lines that send activation to other neurons.
- The junctions that allow signal transmission between the axons and dendrites are called synapses. The process of transmission is by diffusion of chemicals called neurotransmitters across the synaptic cleft.

Slide 10: Fundamentals of Artificial Neural Networks

Biological Neural Networks: Neural Signal Processing

- Signals from connected neurons are collected by the dendrites.
- The cells body (soma) sums the incoming signals (spatially and temporally).
- When sufficient input is received (i.e., a threshold is exceeded), the neuron generates an action potential or 'spike' (i.e., it 'fires').
- That action potential is transmitted along the axon to other neurons, or to structures outside the nervous systems (e.g., muscles).
- If sufficient input is **not** received (i.e., the threshold is **not** exceeded), the inputs quickly decay and **no** action potential is generated.
- Timing is clearly important input signals must arrive together. Strong inputs will generate
 more action potentials per unit time.

Slide 11: Fundamentals of Artificial Neural Networks

Biological Neural Networks: Rate Coding vs. Spike Coding

- In biological neural networks, the individual spike timings are often important. So "spike time coding" is the most realistic representation for artificial neural networks.
- However, averages of spike rates across time or populations of neurons carry a lot of the useful information, and so "rate coding" is a useful approximation.
- Spike coding is more powerful, but the computer models are much more complicated and more difficult to train.
- Rate coding blurs the information coded in individual neurons, but usually leads to simpler
 models with differentiable outputs, which we will see later is important for generating efficient
 learning algorithms.
- Sigmoid shaped activation functions in the rate coding approach follow from the cumulative effect of Gaussian distributed spikes.

Slide 12: Fundamentals of Artificial Neural Networks

Biological Neural Networks: Rate Coding vs. Spike Coding

Gaussian and Cumulative Gaussian Distribution (Source: Wikipedia)

Slide 13: Fundamentals of Artificial Neural Networks

Biological Neural Networks: Learning Process

- Learning by iterative improvement:
 - Start with an initial (possibly random) solution.
 - Then improve on the solution step-by-step.
- Genetic Learning:
 - Based on evolution and natural selection.
 - 'Evolve' new solutions from old ones
 - Then 'selection' the new solutions which are good.

Slide 14: Fundamentals of Artificial Neural Networks

Artificial Neurons: The McCulloch-Pitts Neuron

A simple rate coding model of real neurons is also known as a Threshold Logic Unit:

- A set of synapses (i.e. connections) brings in activations, i.e., inputs, from other neurons.
- A processing unit sums the inputs, and then applies a non-linear activation function
 - Is also often called a threshold or transfer or squashing function
- An output line transmits the result to other neurons.

Slide 15: Fundamentals of Artificial Neural Networks

Artificial Neurons: The McCulloch-Pitts Neuron: Neuron Equation

1943: McCulloch and Pitts proposed the McCulloch-Pitts neuron model

We can now write down the equation for the output Y_j of a McCulloch-Pitts neuron as a function of its inputs I_i :

$$Y_j = \operatorname{sgn}(\sum_{i=1}^n I_i - \theta)$$

where θ is the neuron's activation threshold. When

$$Y_j = 1, \quad if \sum_{k=1}^n I_k \ge \theta \qquad \qquad Y_j = 0, \quad if \sum_{k=1}^n I_k < \theta$$

Slide 16: Fundamentals of Artificial Neural Networks

Artificial Neurons: The McCulloch-Pitts Neuron

In mathematics, the sign function or signum function (from signum, Latin for "sign") is an odd mathematical function that extracts the sign of a real number. In mathematical expressions the sign function is often represented as sgn.

The signum function of a real number x is defined as follows:

$$\mathrm{sgn}(x) := \left\{ egin{array}{ll} -1 & ext{if } x < 0, \ 0 & ext{if } x = 0, \ 1 & ext{if } x > 0. \end{array}
ight.$$

Alternatively:

$$\operatorname{sgn}(x) = \frac{\mathrm{d}}{\mathrm{d}x} |x|, \quad x \neq 0$$

Slide 17: Fundamentals of Artificial Neural Networks

Perceptron: The Simplest Form of a Neural Network

- A perceptron:
 - Frank Rosenblatt introduced the concept of a perceptron (1958):
 - He proposed a training algorithm that provided the first procedure for training a simple artificial neural network called perceptron.
- Perceptron: The simplest form of a neural network.
 - It consists of a single neuron with adjustable synaptic weights and a hard limiter.

Slide 18: Fundamentals of Artificial Neural Networks

Perceptron: A Network of The McCulloch-Pitts Neurons

A simple rate coding model of real neurons is also known as a Threshold Logic Unit:

Slide 19: Fundamentals of Artificial Neural Networks

Perceptron: A Network of The McCulloch-Pitts Neurons

McCulloch-Pitts Model (Source: Wikipedia)

Slide 20: Fundamentals of Artificial Neural Networks

Perceptron: A Network of The McCulloch-Pitts Neurons

- Frank Rosenblatt introduced the concept of a perceptron (1958)
 - Each input I_i is multiplied by a weight w_{ii} (synaptic strength)
 - These weighted inputs are summed to give the activation level, A_i
 - The activation level is then transformed by an activation function to produce the neuron's output, Y_i
 - W_{ii} is known as the weight from unit i to unit j
 - W_{ii} > 0, synapse is excitatory
 - W_{ii} < 0, synapse is inhibitory
 - Note that I_i may be
 - External input
 - The output of some other neuron

Slide 21: Fundamentals of Artificial Neural Networks

Perceptron: Networks of McCulloh-Pitts Neurons

To finish a meaningful computation task, it is necessary to have a network of multiple neurons:

$$out_k w_{ki} = in_{ki} \qquad out_i = step(\sum_{k=1}^n in_{ki} - \theta_i) \qquad out_i w_{ij} = in_{ij}$$

McCulloch-Pitts Model (Source: Wikipedia)

Slide 22: Fundamentals of Artificial Neural Networks

Deep Learning: Simple Single-Layer Neural Networks

Perceptron:

- The fundamental unit of an artificial neural network
- A simple single-layer artificial neural network:
 - A simple neural network that has one layer of input neurons feeding forward to one output layer of McCulloch-Pitts neurons, with full connectivity.

AI Deep Learning: Perceptron (Source: Wikipedia)

Slide 23: Fundamentals of Artificial Neural Networks

Deep Learning: Simple Single-Layer Neural Networks

Perceptron:

- The McCulloch-Pitts neuron model is actually the **simplest** single-layer neural network.
 - One or more inputs \rightarrow One output
- Therefore, the McCulloch-Pitts neuron model represents a **perceptron**, the simplest neural network.

McCulloch-Pitts Model (Source: towardsdatascience.com)

Slide 24: Fundamentals of Artificial Neural Networks

Deep Learning: Multi-Layer Neural Networks

- Single-layer perceptrons: very limited regarding the computation power
- Multi-layer perceptrons, i.e., multi-layer neural networks, were constructed.

AI Deep Learning: Multi-layer Neural network (Source: medium.com)

Slide 17: AI Deep Learning: An Introduction

Al: Deep Learning: Neural Networks with Multiple Layers

Deep Learning and Other Al Approaches

Sources: Di, Bhardwaj, & Wei (2018)

Slide 12: AI Deep Learning: An Introduction

Al: Deep Learning: Neural Networks with Multiple Layers

Deep learning (Sources: G. E. Hilton, 1997)

- "Deep Learning" stands for the concept of successive layers of representations.
 - How many layers contribute to a model of the data is called the **depth** of the model.
 - Other appropriate names for the field could have been layered representations learning and hierarchical representations learning.
 - Modern deep learning often involves tens or even hundreds of successive layers of representations that are all learned automatically from exposure to training data.

Slide 18: AI Deep Learning: An Introduction

Al Deep Learning: Multiple Layers: From a Biological Neural Viewpoint

- An architecture for learning is biologically inspired.
- The human brain has deep architecture:
 - The cortex seems to have a generic learning approach.
- A given input is perceived at multiple levels of abstraction.
 - Each level corresponds to a different area of the cortex.
- We process information in hierarchical ways.
 - With multi-level transformation and representation.
- Therefore, we learn simple concepts first then compose them together.

Human Brain (Source: Quora.com)

Slide 19: AI Deep Learning: An Introduction

Al Deep Learning: Multiple Layers: From a Biologocal Neural Viewpoint

Biologocal Neural Viewpoint (Source: Wikipedia)

- The structure of understanding can be found in a human's vision system as shown in the figure:
 - Signal path from the retina to human lateral occipital cortex (LOC)
 - The path which finally recognizes the object
 - The ventral visual cortex comprises a set of areas that process images in increasingly more abstract ways, from edges, corners and contours, shapes, object parts to object
 - This path allows us to learn, recognize, and categorize three-dimensional objects from arbitrary two-dimensional views.

Slide 20: AI Deep Learning: An Introduction

Al Deep Learning: Multiple Layers: From a Representation Viewpoint

- For most traditional machine learning algorithms, their performance depends heavily on the representation of the data they are given.
 - Therefore, domain prior knowledge, feature engineering, and feature selection are critical to the performance of the output.
 - But hand- crafted features lack the flexibility of applying to different scenarios or application areas.
 - Also, they are not data-driven and cannot adapt to new data or information comes in.
- For many tasks related to various input formats such as image, video, audio, and text:
 - It is very difficult to know what kind of features should be extracted
 - Let alone their generalization ability for other tasks that are beyond the current application.
 - Manually designing features for a complex task requires a great deal of domain understanding, time, and effort.
 - Sometimes, it can take decades for a large group of researchers to make progress in this area.

Slide 21: AI Deep Learning: An Introduction

Al Deep Learning: Multiple Layers: From a Representation Viewpoint

- Representation Learning:
 - It is a data driven type of approach using machine learning to discover the representation.
 - Such representation can represent the mapping from representation to output (supervised), or simply representation itself (unsupervised).
 - Learned representations often result in much better performance as compared to what can be obtained with hand-designed representations.
 - This also allows AI systems to rapidly adapt to new areas, without much human intervention.
 - With a representation learning algorithm, we can discover a good set of features for a simple task in minutes or a complex task in hours to months.
 - It may take vastly more time and effort if using hand-craft and design features.

Slide 22: AI Deep Learning: An Introduction

Al Deep Learning: Multiple Layers: From a Representation Viewpoint

- Deep Learning is Representation Learning
 - Deep learning feature extraction happens automatically when the deep architecture tries to process the data, learning, and understanding the mapping between the input and the output.
 - This brings significant improvements in accuracy and flexibility since human designed feature/feature extraction lacks accuracy and generalization ability.
 - In addition to this automated feature learning, the learned representations are both distributed and with a hierarchical structure.
 - Such successful training of intermediate representations helps feature sharing and abstraction across different tasks.

AI Deep Learning (Sources: Di, Bhardwaj, & Wei, 2018)