PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-332019

(43) Date of publication of application: 30.11.2001

(51)Int.CI.

G11B 20/10

(21)Application number: 2000-144456

(71)Applicant: TAIYO YUDEN CO LTD

(22)Date of filing:

17.05.2000

(72)Inventor: OMURA YUKIHIDE

SUNAKAWA RYUICHI

SHIMIZU HIRONOBU

(54) DATA RECORDING AND REPRODUCING METHOD FOR WRITE-ONCE TYPE OPTICAL DISK, DATA REPRODUCING DEVICE FOR WRITE-ONCE TYPE OPTICAL DISK AND RECORDING MEDIUM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a data recording and reproducing technique for a write- once type optical disk which can surely prohibit the reutilization of plaintext data after decoding without expecting the morality on a reproducing side user and can therefore assure the security in all stages from recording to reproducing.

SOLUTION: In writing data to the write-once type optical disk, the data is written by adding a prescribed confidential flag to the data and when the writing data is reproduced, the presence or absence of the confidential flag is inspected. When the presence of the confidential flag is detected, the operation relating to the formation of the copy of the data is restricted. The reutilization of the

reproduced data may be obstructed and the security in the reproduction stage assured.

LEGAL STATUS

[Date of request for examination]

02.10.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001 - 332019 (P2001 - 332019A)

(43)公開日 平成13年11月30日(2001.11.30)

(51) Int.CL*

G11B 20/10

識別記号

FI

G11B 20/10 1

テーマニード(参考)

H 5D044

審査請求 未請求 請求項の数4 OL (全 20 頁)

(21)出國番号

(22)出版日

特職2000-144456(P2000-144456)

平成12年5月17日(2000.5.17)

(71)出廢人 000204284

太陽霧電株式会社

東京都台京区上野6丁目16番20号

(72) 発明者 大村 幸秀

東京都合東区上野 6 丁目16番20号 太陽誘

围棒式会社内

(72) 発明者 砂川 隆一

東京都合東区上野6丁目16番20号 太脇誘

电株式会社内

(74)代理人 100098899

弁理士 鹿鳴 英貨

最終頁に続く

(54) 【発明の名称】 ライトワンス型光ディスク用データ記録再生方法、ライトワンス型光ディスク用データ再生装置 および記録媒体

(57)【要約】

【課題】 再生側ユーザのモラルに期待することなく復 号後の平文データの再利用を確実に禁止し、以って、記 録から再生までのあらゆる段階のセキュリティを確保で きるライトワンス型光ディスク用データ記録再生技術を 提供する。

【解決手段】 ライトワンス型光ディスクにデータを書き込む際に所定の機密フラグを前記データに付加して書き込み、前記書き込みデータを再生する際に前記機密フラグの有無を検査して機密フラグの存在が検出された場合に前記データの複製物の生成に関する動作を制限する。再生データの再利用を阻止し、再生段階におけるセキュリティを確保できる。

【特許請求の範囲】

【請求項1】 ライトワンス型光ディスクにデータを書き込む際に所定の機密フラグを前記データに付加して書き込む書き込み工程と、

前記書き込みデータを再生する際に前記録をフラグの有 係を検査して機密フラグの存在が検出された場合に前記 データの複製物の生成に関する動作を制限する複製制限 工程と、

を含むことを特徴とするライトワンス型光ディスク用データ記録再生方法。

【請求項2】 前記光ディスクのシステム領域に絡納されたセキュリティ情報に基づき該光ディスクへのアクセスを制限するアクセス制限工程をさらに具備することを特徴とする請求項1記載のライトワンス型光ディスク用データ記録再生方法。

【請求項3】 ライトワンス型光ディスクから読み込まれたデータの中に所定の機密フラグが含まれているか否かを判定する判定手段と

該判定手段によって機密フラグの存在が判定された場合 に前記データの複製物の生成に関する動作を禁止する禁 20 止手段と

を備えたことを特徴とするライトワンス型光ディスク用 データ再生装置。

【語求項4】 ライトワンス型光ディスクから読み込まれたデータの中に所定の概密フラグが含まれているか否かを判定する判定手段と

該判定手段によって機密フラグの存在が判定された場合 に前記データの複製物の生成に関する動作を禁止する禁止手段と、

を実現するためのプログラムを格納したことを特徴とする記録媒体。

【発明の詳細な説明】

[0001]

【発明の層する技術分野】本発明は、ライトワンス型光ディスク用データ記録再生方法、データ再生装置および記録媒体に関する。詳しくは、1回だけデータを書き込むととができるCDーR(Compact Disc Recordable)に代表されるライトワンス型光ディスクに適用するデータ記録再生方法。データ再生装置および記録媒体に関する。

[0002]

【従来の技術】各種コンテンツやコンピュータプログラム等の電子データの配布媒体に、CD-ROM (Compact Drisc Read Cnly Memory) が多用されている。CD-ROMは、電子データを記録したマスタCDからプレス成型等によって製造される複製物であり、主に大量配布のメディアに用いられるが、配布数(製造数)の少ないサンブル版CDやブライベートCDなどには、データの消去や上書きができない(追記は可能)ライトワンス型の光ディスク装置、典型的にはCD-Rが用いられる。

CD-Rは透明なディスク基板と反射層(詳細な構造は 後述する。)との間に有機色素からなる記録層を有して いる点でCD-ROMと構造上の違いがあり、専用の記 録表置(CD-Rライター)を用いて当該記録層に高出 カレーザを照射し、熱的反応によって当該記録層に情報 ピットを形成することにより、ユーザ段階で情報の記録 を行うことができるものである。

2

【① 0 0 3 】 C D - R は、上記のとおりデータの消去や上書きができないライトワンス型の記録媒体である。すなわち、一度書き込んだデータの消去や書き換えが不可能である。そのため、不正者によるデータの消去や改ざんを確実に防止できるという優れた利点を待つことから、今日、特に秘攬を要する電子データの保管や配布などの用途に欠かせない記録媒体としての地位を確立しているが、反面。C D - R は記録情報の読み出しが自由であるが故に、情報の不正読み出しや不正コピーを防止できないという欠点も待っている。

[0004]そこで、秘密を要するデータを記録する際に、例えば、図16に示すように、暗号化して記録することが行われている。図において、平文データ100は暗号化前の「生」のデータであり、例えば、可読性を有するテキスト形式のデータである。この平文データ10を不可視化して記録する場合、まず、所定の暗号化ツール101を用いて暗号化データ102に変換する。暗号化の方式は特に限定しないが、暗号鍵と復号鍵に共通の鍵を用いる共通鍵方式である。以下、この鍵のことを代表して「暗号鍵」ということにする。したがって、以下において、暗号鍵という場合は復号鍵も意味することとする。

50 【0005】さて、暗号化されたデータ(図においては暗号化データ102)は不可視データであり、そのまま配布しても安全(計算量的に安全)であるため、この暗号化データ102をCD-R103に書き込むことによってデータの不正読み取りを防止し、セキュリティを保つことができる。再生の際は、CD-R1から暗号化データ104を読み出し、所定の復号ツール105を用いて平文データ106に戻せば(復号すれば)よい。【0006】

【発明が解決しようとする課題】しかしながら、上記の 40 セキュリティ対策にあっては、復号後のデータ(平文データ106)の再利用が自由であり、データ保全の効果 はもっぱらCD-R103に収められた状態でしか得られないという不都合がある。すなわち、CD-R103から読み出されて復号された後の平文データ106については、まったくセキュリティがかかっておらず、この平文データ106に対するデータ保全は単に再生側ユーザのモラルに期待するしかないという問題点があった。【0007】したがって、本発明が解決しようとする課題は、再生側ユーザのモラルに期待することなく復号後50の平文データの再利用を確実に禁止し、以って、記録か

(3)

ら再生までのあらゆる段階のセキュリティを確保できる ライトワンス型光ディスク用データ記録再生技術を提供 することにある。

[0008]

【課題を解決するための手段】請求項1記載のライトワ ンス型光ディスク用データ記録再生方法は、ライトワン ス型光ディスクにデータを書き込む際に所定の機密フラ グを前記データに付加して書き込む書き込み工程と、前 記書き込みデータを再生する際に前記機密フラグの有無 を検査して機密フラグの存在が検出された場合に前記デ ータの復製物の生成に関する動作を制限する複製制版工 程と、を含むことを特徴とする。これによれば、データ の再生時に所定の機密フラグが検出されると、再生デー タの複製物の生成が制限される。請求項2記載のライト ワンス型光ディスク用データ記録再生方法は、請求項1 記載のライトワンス型光ディスク用データ記録再生方法 において、前記光ディスクのシステム領域に格納された セキュリティ情報に基づき該光ディスクへのアクセスを 制限するアクセス制限工程をさらに具備することを特徴 とする。これによれば、光ディスクのシステム領域に不 可視状態で格納されたセキュリティ情報に基づいて光デ ィスクへのアクセスが制限される。請求項3記載のライ トワンス型光ディスク用データ再生装置は、ライトワン ス型光ディスクから読み込まれたデータの中に所定の機 密フラグが含まれているか否かを判定する判定手段と、 該判定手段によって機密フラグの存在が判定された場合 に前記データの複製物の生成に関する動作を禁止する禁 止手段と、を備えたことを特徴とする。これによれば、 データの再生時に所定の機密フラグが検出されると、再 生データの複製物の生成が禁止される。請求項4記載の 記録媒体は、ライトワンス型光ディスクから読み込まれ たデータの中に所定の機密フラグが含まれているか否か を判定する判定手段と、該判定手段によって機密フラグ の存在が判定された場合に前記データの複製物の生成に 関する動作を禁止する禁止手段と、を実現するためのブ ログラムを格納したことを特徴とする。これによれば、 マイクロコンピュータを含むハードウェアリソースと該 プログラムとの有機的結合によって前記判定手段および 禁止手段が実現される。

[0009]

【発明の実施の形態】以下、図面を参照して本発明の実 施の形態を詳細に説明する。なお、以下の説明における 様々な細部の特定ないし実例および教値や文字列その他 の記号の例示は、本発明の思想を明瞭にするための、あ くまでも参考であって、それらのすべてまたは一部によ って本発明の思想が限定されないことは明らかである。 また、周知の手法、周知の手順、周知のアーキテクチャ および周知の回路機成等(以下「周知事項」)について はその細部にわたる説明を避けるが、これも説明を簡潔 にするためであって、これら園知亭順のすべてまたは― 50 のうちユーザアクセスが許可されていない領域(システ

部を意図的に排除するものではない。かかる周知事項は 本発明の出願時点で当業者の知り得るところであるの で、以下の説明に当然含まれている。

【0010】まず、本実施形態のライトワンス型光ディ スク(以下「CD-R」という。)の利用形態を大まか に説明する。図1は、本実施形態のCD-R1の利用模 式図である。この図では、製造者(メーカ)によるCD -R1の製造段階、ユーザAによる当該CD-R1への 秘匿を要するデータの記録段階、および、ユーザBによ る当該記録済みCD-R1からデータを読み出して再生 する再生段階の三つの段階が示されている。

【0011】後の説明からも明らかになるが、(1)製 造段階ではCD-R1に固有の識別情報(以下「ID情 報」という。)と所定の暗号化方式における暗号鍵(復 号碑を兼ねるもの)とをCD-R1に電子的に記録して 出荷する。 I D情報と暗号鍵の記録場所はユーザからの 直接的なアクセスが許可されていない場所(システム領 域;領域構造については後述する。)である。(2)記 録段階ではそのCD-R1のID情報から当該CD-R 1が所定の製造者またはあらかじめ登録された製造者に よって作られたもの(以下「サポートディスク」とい う。)であるか否かを判定し、サポートディスクである 場合に、記録データに所定の"機密フラグ"を付加する と共に、CD-R1に書き込まれている暗号鍵を用いて 記録データ (機密プラグを付加したもの) を暗号化し、 その暗号化データをCD-R1に記録する。(3)再生 段階ではCD-R1のID情報を用いてユーザ認証を行 い. 正規ユーザ (ID情報を知っているユーザ) に対し てのみ暗号化データの復号処理を許容すると共に、復号 データのコピーや保存等の複製処理を実行して再利用を 行う場合は、記録データ中の「機密フラグ」の有無を判 定し、機密フラグ有りの場合は上記再利用を距否、例え は、コピー動作や保存動作を強制中断する。

【0012】とれら三つの段階において、CD-R1に セキュリティを持たせるための工夫は、①製造時にCD -RIのシステム領域にID情報と暗号鍵を書き込むよ うにしたこと ØユーザAによる記録時に、記録データ に"機密フラグ"を付加するようにしたこと、③同記録 時に記録データ(機密フラグ付)を暗号化してCD-R 1に書き込むようにしたこと、 のユーザBによる再生時 にID情報によるユーザ認証を行って正規ユーザに対し てのみ暗号化データの復号を許可するようにしたこと、 ◎同再生時に復号データの再利用が行われる場合は機密 フラグの有無を判定して機密フラグ有りの場合にその再 利用動作を強制中断するようにしたことにある。

【0013】**の**の!D情報はデータ再生時のユーザ認証 に用いられ、また、①の暗号鍵はデータの暗号化と正規 ユーザによって行われる暗号化データの復号に用いられ る。これらのID情報と暗号鍵はCD-R1の記録領域

ム領域) に書き込まれた。いわば不可視化された"隠し データ"である。Oの!D情報はまたデータ書き込み時 におけるサポートディスクの判定にも用いられる。サポ ートディスクとは、前記のとおり、所定の製造者または あらかじめ登録された製造者によって作られたCD-R 1のことであり、正確には"機密フラグ"を用いて行わ れる復号後データの再利用禁止対策を"サポート"した 特別なディスク (CD-R1) であることを意味する。 【0014】ととで、緩密フラグはその名前のとおりフ ラグ形式のデータであってもよいし、フラグ以外の別形 式であってもよい。留意すべき点は機密フラグ(または 機密フラグと同等のもの)の存在がユーザに対して秘匿 化されていなければならないことにある。一般にフラグ 形式のデータは二値論理(ブーリアン型ともいう。)の 1 ビットデータであり、そのビット位置を非公開とする ことによって一定の秘匿化は可能であるが、総当りで調 べられた場合にフラグの位置が見破られるおそれを否定 できないため、望ましくは、電子透かしのような積極的 な秘匿化対策を講じたデータとすることが好ましい。電 子透かしとは、オリジナルデータの品質を損なうことな く、そのオリジナルデータの周波数、空間または時間の 一つまたは複数のドメインに所定のメッセージ情報を隠 す(埋め込む)ととをいう。磯密フラグは、再生段階に おいて、復号後の平文データの再利用(平文データを他 の記録媒体にコピーや保存したりすること;複製動作と もいう。)を禁止するためのチェックフラグとして用い られる。これにより、暗号化データによるCD-R1の セキュリティに加え、復号後の平文データのセキュリテ ィ対策も謙じるととができ、本願発明の課題である、再 生側ユーザのモラルに依存することなく復号後の平文デ ータの再利用を禁止でき、以って、記録から再生までの あらゆる段階のセキュリティを確保できるライトワンス 型光ディスクを提供することができるのである。

【0015】以下、上記課題達成に必要な權威および作 用について、具体例をあげて説明する。図2は、本実施 形態におけるCD-R1の外観図(a)およびその要部 拡大図(b)である。これらの図において、CD-R1 は、直径12cm(直径8cmのものもある。以下、直 径12cmのもので説明する。)のディスク状を有して おり、ディスクの中心に直径15mmのセンターホール laが形成されている。ディスクの中心T()からセンタ ホール1aの壁(ディスク内縁丁1)までの距離は7. 5mm、TOからディスク外縁下7までの距離は60m mであり、このT1~T7の間に同心状の複数の記録鎖 域。すなわち、ディスクの内層側から順にPCA(Powe r Calibration Area), PMA (Program Memory Are a)、リードイン (図では「R I 」と略している。). データエリア (図では「UA」と略している。) および リードアウト (図では「RO」と略している。) の各額 域が設けられている。

【0016】各領域を概説すると、T2~T3に位置するPCAは、CD-R1にデータを記録する際に行われるレーザ強度調整のための試し書き領域である。この試し書きは一般に100回程度可能であり、少なくとも1回のデータ記録で1回分の領域を消費する。T3~T4に位置するPMAは、CD-R1でまだクローズしていないセッションのトラックがあるとき。そのトラック番号と開始/終了位置を一時的に保存する領域である。T4~T5に位置するリードイン(RI)は、セッションのTOC(Table OfContents: CDに記録されているトラック数、関始位置およびデータ領域の合計の長さ)を保存する領域である。セッションをクローズすると、PMAに一時保存されていた情報がこのリードイン(RI)に書き込まれる。

5

【0017】T5~T6に位置するデータエリア(UA)は、ユーザ段階で実際にデータが書き込まれる領域である。データの記録容量は最大約680Mバイト(直径8cmのものは最大約190Mバイト)であり、この記憶容置は録音時間で表すと最大約74分(直径8cmのものは最大約21分)になる。データエリア(UA)は、リードイン(Ri)のすぐ後ろから連続する所定サイズ(2Kバイト)単位の論理プロックで管理されるようになっており、各論理プロックごとに(から最大約3000までのLBN(Logical Block Number)が割り当てられるようになっている。T6~T7に位置するリードアウト(RO)は、セッションの最後(ディスクの外層側)にある領域で、データエリア(UA)の最後に到達したことを示す領域である。

60 【0018】 これら各領域のディスク上の位置はT3を除いて規格化されている。すなわち、T2はT0から22.5 mm離れた位置、T4はT0から23 mm離れた位置、T5はT0から25 mm離れた位置、T6はT0から58 mm離れた位置となるように規定されている。なお、図ではディスク外練とリードアウト(RO)の終了位置と両一の符号(T7)で示しているが、これは図示の都合である。リードアウト(RO)の実際の終了位置はT0から58.5 mm離れた位置になる。以下、特に断りのない限り、T7はリードアウト(RO)の終了位置を表すものとする。ちなみに、リードアウト(RO)の関始と終了位置(T6およびT7)はCD-R1に記録するデータの置に応じて変化する。上記の実際値(T6=58 mm、T7=58.5 mm)は記憶データ置を最大にしたときのものである。

【0019】図3は、CD-R1の断面構造図である。 CD-R1は、透明で耐熱性、耐湿性および成形性に優れ、且つ、所要の光学的特性(層折率や復層折など)を備えた材料(例えばプラスチック)からなる基板10の上に、有機色素からなる記録層1c.アルミニウムなどの金属材料からなる反射層1dおよび樹脂等の観覧材料 からなる保護層 1 e を補層して形成されている。 断面全 体の厚さは 1. 2 mmである。

【0020】CD-ROMとの標準上の相違は、記録層 1 cを有する点、および記録層 1 cと基板 1 b との間に ウォッブルグループと呼ばれる渦巻状の寒内濃1fが形 成されている点にある。CD-R1へのデータの記録は 基板10の裏側から案内溝11に沿って記録用の強いレ ーザを照射し、記録層1cを加熱して情報ピット(Pi τ: 再生用のレーザ反射光を変調するための物理的変形 変質部分)を形成することにより行われる。案内溝11 は、ディスクの内園側から外園側(または外園側から内 園側) に向かって一筆書きの要領で連続して形成されて おり、案内接 1 f の幅は約0.5~0.7 μm. 間隔は 約1.6μmである。ユーザ段階におけるデータ記録 は、案内漂!『に沿って、その案内溝』』(または案内 **湊11の間のランド部)直下の記録層1cに情報ビット** を形成することによって行われる。なお、CD-R1の 裏側から見て案内溝11の凸部分をランド(山)。凹部 分をグループ(谷)といい。一般に谷の部分をウォップ ルグループというが、本明細書では由と谷を区別しな

【0021】ここで、案内溝11の一の役割は、ユーザ 段階のデータ記録時にディスクの回転速度を制御するた めのタイミング情報を保持することにある。この役割の ため、案内操1 fは、所定の周期(例えば22.05 k **員2に相当する周期〉で蛇行(「ウォブリング」ともい** う。) する形状に形成されている。データの記録時に は、この蛇行を光ピックアップでトレースして周期を検 出し、その検出周期が一定となるようにディスクの回転 速度を制御することにより、データ記録時の光ビックア ップとディスク間の相対速度を一定に保つ。案内溝11 の他の役割は、ディスク上の各記録領域(PCA、PM A. Ri、UAおよびRO) の位置情報をはじめとした 様々なディスク情報を保持することにある。ディスク情 級はAT!P(Absolute Time In Pregnoove:道称「A チップ」という。)とも呼ばれており、AT!Pには、 上記の位置情報のほかに 基準の記録レーザ強度やディ スク回転速度。アプリケーションコードあるいはディス クタイプなどの各種情報が含まれている。

【0022】図4は、CD-R1の各記録領域のフォー マット概念図である。この図において、PCA、PM A、リードイン(R I)、データエリア(UA) および リードアウト (RO) はそれぞれ、図2 (b) における 同名部分に対応する。PCAおよびPMAのサイズ(情 報書き込み可能容置)は特に決められていないが、前述 の試し書き回数(一般に100回程度)やセッション情 級の一時記憶回數に見合った必要量。例えば、PCAで 約3.5Mバイト程度、PMAで約2Mバイト程度の容 置が確保されている。ちなみに、これらの例示容量から PCAの開始位置(T2)とPMAの開始位置(T3) 50 段階でのCD-R1へのアクセス照合に用いられる。例

は、規格化されたリードイン(RI)の開始位置(T 4) を基準として、「T2=T4-約35秒」の位置、 「T3=T4-約13秒」の位置と書き表すことができ

【0023】既述のとおり、PCAはデータ記録を行う 際の試し書き領域、PMAはクローズされていないセッ ション情報を一時的に格納する領域であるから、これら こつの領域(PCA/PMA)はデータ記録時にのみ利 用(アクセス)される領域である。一方、リードイン (RI)はクローズされたセッション情報をTOCとし て記録する領域。データエリア (UA) は実験にデータ が書き込まれる領域、リードアウト (RO) はデータエ リアの終わりを明示する領域であるから、これら三つの 領域 (リードイン/データエリア/リードアウト) はデ ータ記録時と再生時の両方で利用(アクセス)される領 域である。

【0024】他方、これらすべての領域をユーザからの アクセス容易性の点で見ると、すなわち、CD-R1の 読み取り装置を備えたパーソナルコンピュータ等の利用 者からその記憶内容を通常のツール(典型的には当該パ ーソナルコンピュータに搭載されたオペレーティングシ ステム上のファイルシステムなど)を用いて容易にアク セスできるか否かの点で評価すると、データエリア(U A)については当然ながらその記憶内容の全容把握は可 能であるが、他の領域(PCA、PMA、リードインお よびリードアウト)の内容把握は不可能である。

【10025】もちろん、特殊なツールを使用すれば可能 ではあるが、そのようなツールは一般のユーザにとって 入手困難であるため、かかる例外的なツールの利用を除 けば、データエリア以外の他の領域(PCA、PMA、 リードインおよびリードアウト) は、システムからのア クセスだけが許可された特殊な領域であるということが できる。本明細書では、この特殊領域のことを「システ ム領域」といい、ユーザからのアクセスが許可された領 域のことを「ユーザ領域」という。すなわち、データエ リア(UA)はユーザ領域。それ以外のPCA、PM A. リードイン (Ri) およびリードアクト (RO) は システム領域である。

【10026】本実施の形態におけるCD-R1は、先に 説明したとおり、製造段階でシステム領域の一部にCD -R1の固有情報(以下「ID情報」という。)と所定 の暗号鍵情報とが書き込まれる。ID情報はCD-R1 の全製造数にわたってユニークな値(重復しない値)を 持つことが望ましいが、製造数が膨大になる場合、情報 ビットが多ビット化してシステム領域の記憶容量を圧迫 する疑念があるため、例えば、製造ロットごとや製造ラ インごとまたは製造時期ごとに異なる情報としてもよ ۱.

【0027】この1D情報は、後述するように、ユーザ

えば、データの再生を行うアプリケーションでIDの入 力を要求し、入力されたIDとシステム領域に書き込ま れている!Dとの一致を判定して、一致の場合のみアク セスを許可する。これにより、不正なユーザ(IDを知 **らないユーザ)によるデータの再生や複製を阻止し、デ** ータの流出や不正生成物の出現を回避することができ る。

【りり28】CD-R1に書き込まれた!D情報のユー ザへの通知は、各々のCD-R1の購入者(または正規 入手者) ごとに行わなければならない。例えば、あるC D-R1(以下、便宜的に「ディスクA」とする。) に 書き込まれたID情報を "abcdef" と仮定する と、ディスクAの購入者または正規入手者に対し、当該 ! D情報(`abcdef `) を書面ないしその他の手 段で通知する。この手段としては、例えば、ディスクA のバッケージ (ディスクAを収めたプラスチックケー ス) の中に当該 I D情報 ("a b c d e f") を記載し た紙片を入れておいてもよいし、ディスクAの購入時等 に口頭で伝えてもよい。その他いろいろな手段が考えら れるが、要は、出荷時にCD-R1に書き込んだID情 級をユーザに正確に伝達できればよい。

【0029】一方、製造段階でシステム領域に一緒に書 き込まれる鍵情報は、ユーザ段階でデータエリアに書き 込まれる生データを暗号化するために用いられる。すな わち、データの記録を行うアプリケーションで暗号鍵を 読み出し、この暗号鍵を用いて生データを暗号化データ に変換した後、その暗号化データをCD-R1のデータ エリアに書き込む。この暗号鍵は暗号化データを復号す る際にも用いられる。すなわち、データの再生時に、デ ータの再生を行うアプリケーションで【Dの入力を要求 30 し、入力されたIDとシステム領域に書き込まれている ! Dとの一致を判定して、一致の場合に暗号鍵と暗号化 データを読み出し、その暗号鍵を用いて暗号化データを 復号し、生データに変換してユーザの利用に供する。

【0030】したがって、【Dを知らない不正なユーザ は、データへのアクセス自体を拒否されるから、不正な データの読み取りを回避できると共に、万が一、何らか の手段でアクセスが成功したとしても、システム領域に 書き込まれた暗号鍵へのアクセスは通常の技術知識では 不可能であるから、暗号化データを生データに復号する ことができず、この点において万全の保全業を講じるこ とができる。

【0031】図5は、システム領域に書き込まれる!D 情報と暗号鍵を含むデータフォーマットの例示構造図で ある。この図において、第一の例(a)は、8バイトの !D情報、8バイトのDES(Data Encryption Standa rd: アメリカ連邦政府標準暗号規格) 暗号鍵、2バイト の製造年、1バイトの製造月および1バイトの製造日の 各情報から構成された全部で20パイトの大きさを有し ている。また、第二の例(b)は、8バイトのID情

級。24パイトのトリプルDES暗号鍵、2パイトの製 造年、1パイトの製造月および1パイトの製造日の各情 級から構成された全部で36バイトの大きさを有してい る。いずれのフォーマットを採用するかは、もっぱら暗 号碑の信頼性を重視するか、または、システム領域の記 **慥容量圧迫を回避するかで決まる。なお、図示のバイト** 数や暗号鍵の種類およびフォーマット構造はあくまでも 例示である。要はCD-R1の固体識別が可能な情報

(ID情報)と、生データを暗号化データに変換できる 共に暗号化データから生データに復号できる所定のキー 情報 (暗号鍵) とをCD-R1のシステム領域に書き込 んでおけばよい。

【0032】図6は、ライトワンス型光ディスク記録再 生装置(以下「CD-R記録再生装置」という。)の概 略的なプロック構成図である。このCD-R記録再生装 置10は、CD-R1のクランピングエリア(図2

(a)のT1~T2の間に設けられた情報非記録エリ ア)を担待して所定方向に回転駆動するスピンドルモー タ12と、CD-R1の墓板1りを送して記録層1cに 記録用または再生用のレーザ(一般に液長770~83 On mの赤外レーザ) 13を照射する光ピックアップ 1 4と、光ピックアップ14の内部に設けられた不図示の シークモータと協調して光ビックアップ14をディスク の半径方向に移動させる組動モータ15とを備えると共 に スピンドルモータ12の回転速度を制御するディス ク回転制御部16と、粗動モータ15の回転速度と回転 方向を制御する組動モータ制御部17と、光ピックアッ プ14の位置やレーザ強度の制御を行うピックアップ制 御部18と、光ピックアップ14からの読み取り信号や 光ビックアップ 14への書き込み信号の波形変換等の制 御を行う再生/記録制御部19とを備え、さらに、これ ちの各制御部を統括するコントローラ20を備える。 【0033】CD-R記録再生装置10は、バーソチル コンピュータ等のホスト装置21の拡張スロットに内蔵 され(または外付けされ)、ホスト装置21とコントロ ーラ20との間を所定の信号規格(例えば、SCS!:

【りり34】とのような構成を有するCD-R記録再生 - 装置10は、以下に示すとおり、CD-R1への情報の 記録とその記録情報の再生を行うことができる。なお、 CD-R1はCD-ROMコンパチのデバイスであり、 CD-R記録再生装置10は、CD-ROMの情報再生 も可能であるが、本発明とは直接の関連がないため説明 を省略する。

Small Computer System Interface) のケーブル21a

で接続して用いられる。

【0035】<CD-R1への情報の記録動作>ホスト 装置21でCD-R記録専用アプリケーションプログラ ム(以下「ライティングプログラム」という。)を実行 すると、まず、ライティングプログラムからのレーザ強 50 度キャリブレーションコマンドがコントローラ20に伝 11

えられる。コントローラ20はこのコマンドに応答して 各制御部に所要の指令を任え、光ピックアップ14をC D-R1のPCA空領域(試し書きされていない領域) に位置させると共に、スピンドルモータ12の回転速度 を訓御(光ピックアップ 14の現在位置における相対速 度が所定速度となるように副御)した後、光ピックアッ プ14から暫定強度 (5.5~8mWの間の任意パワ ー)の記録用レーザ13をPCA空領域に照射して試し 書きを行う。光ピックアップ14の位置制御およびスピ ンドルモータ12の回転速度制御は、CD-R1の案内 **繰上すのトレース信号から再生された情報(タイミング** 情報およびATIP情報)に従って行われる。

【0036】次いで、コントローラ20は、再生/記録 制御部19を介してPCAに試し書きされたデータを読 み取り、そのデータをホスト装置21のライティングブ ログラムに返送する。ライティングプログラムは、試し 書きデータと期待値とを比較してレーザ強度の適否を判 定し、判定結果が「否」であればレーザ強度を増減調節 して再びレーザ強度キャリブレーションコマンドを発行 する一方、判定結果が"適"であれば、CD-R1への 情報の記録動作を開始する。

【0037】との記録動作は、ユーザによって適宜に選 択された所要の記録データをライティングプログラムか **ちコントローラ20に伝え、このコントローラ20の制** 御の下、各制御部を介してスピンドルモータ12の回転 制御および光ビックアップ14の位置副御を行いつつ、 上記記録データで光ピックアップ 14 からの記録用レー ザ13を変調しながらCD-R1のデータエリアに記録 を行っていくというものである。そして、記録を完了す ると、すべてのセッションを閉じ、そのセッション情報。 のTOCをリードイン(RI)に書き込むと共に、最終 セッションの後にリードアウト (RO)を形成する。 【0038】<CD-R1の記録情報の再生動作>CD - R1の記録情報を再生する際に上記ライティングプロ グラムは不要である。但し、CD-R1のファイルシス テムとホスト装置21のファイルシステムとの相互変換 を行うためのドライバソフトの類は必須である。ユーザ はこのドライバソフトを介してCD-R記録再生装置! ①を利用することにより、ホスト装置21に装備された ハードディスク等の他の記憶デバイスとの区別を意識せ ずにCD-R1のファイルシステムにアクセスすること ができる。すなわち、ユーザにはオペレーティングシス テムのファイルシステムによって認識されたファイル機 造が見えるから、ユーザは、他の記憶デバイスに格納さ れたファイルと同様の手順でCD-R1内の目的とする ファイルを利用することができるようになっている。 【0039】CD-R記録再生装置10は、このファイ

ルアクセスに際して、リードイン (RI)内のTOC情 級を読み出してホスト装置21のドライバソフトに提供

み出しコマンドを受け取った場合は、リードイン(R 1) 内のTOC情報を参照して当該ファイルのデータが 書き込まれたデータエリア(UA)のトラックを特定 し、そのトラックの開始位置に光ピックアップ 14を位 置させると共に、スピンドルモータ12の回転速度を制 御し、光ピックアップ14から再生用のレーザ(パワー がり、2mW程度に抑えられる点を除き記録用のレーザ と同じもの)13をCD-R1に照射して当該ファイル データを読み取り、その読み取りデータをホスト装置2 1に転送するという一連の動作を実行する。

【0040】とのように、CD-R記録再生装置10 は、CD-R1への情報の書き込みを行うことができる と共に、CD-R1に書き込まれた情報の再生も行うこ とができる。このCD-R記録再生装置10は、記録段 階でCD-R1への情報の書き込みを行う場合に必要不 可欠な構成要素であるが、再生段階で、CD-R1に書 き込まれた情報の再生を行う場合も必要とされる構成要 素である。CD-R1はCD-ROMコンパチのデバイ スで、昨今のパーソナルコンピュータ等のほとんどには CD-ROM再生装置が搭載されており、そのCD-R OM再生装置を利用してCD-R1の情報再生を行うと とも可能であるが、このCD-ROM再生装置は、CD -RIのシステム領域に書き込まれたID情報や暗号鍵 にアクセスできないから、やはり、CD-R1に書き込 まれた情報の再生を行う場合もCD-R記録再生装置! ()は欠かせない構成要素である。

【0041】また、CD-R記録再生装置10はもっぱ ちユーザによる記録や再生で使用される装置であるが、 CD-R1への情報書き込み機能に注目すると、その基 本的動作は、CD-R1の製造段階で行われるID情報 や暗号鍵の書き込みにも適用可能であるから、以下の説 明では上記のC D – R 記録再生装置10をユーザ段階と 製造段階の両方で使用されるものとして話を進める。

【0042】<出荷時情報記錄処理>図7は、CD-R 1の製造段階における I D情報と暗号鍵の書き込み動作 《以下「出荷時情報記録処理」という。) を示すプロー チャートである。なお、製造段階では、CD-R記録再 生装置10の記録機能しか利用しないため、図示のフロ ーチャートではCD-R記録再生装置 1 0 のことを便宜 49 的に「記録機」と称している。但し、この用語(記録 機)には、CD-R記録再生装置10に限らず、製造段 階専用の「記録機」であってもよい旨の意図も含まれて いる。

【①①43】図において、出前時情報記録処理を開始す ると、まず、未記録のCD-R1(フロー中では「ディ スク」と称する。)を用意し、このCD-R1を記録機 に装填する (ステップS11)。次に、ホスト装置21 を操作してCD-R1への記録情報を手入力または自動 生成する (ステップS12)。この記録情報はCD-R すると共に、当該ドライバソフトから特定ファイルの誌 50 lのID情報や所定の秘密鍵および当日の日付(作成日

ì

(8)

付)などであり、そのフォーマットは、図5 (a)または(b)に示すとおりである。

【0044】次いで、ホスト装置21から記録機に対して情報記録命令を発行すると(ステップS13). 記録 機はこの命令に定答してレーザ強度キャリプレーション処理を実行し. 適正なパワーに記録用レーザ13を設定した後、光ピックアップ14をCD-R1の記録領域の "特定位置" に移動制御する(ステップS14)。この特定位置は原理的にはユーザからの直接的なアクセスが認められていない領域、すなわち、システム領域(PCA、PMA、リードインまたはリードアウト)の未使用領域上の任意位置である。特に好ましくは、データ再生時にその存在が無視される領域として当業者に広く認知されているPCAまたはPMA上の(未使用領域上の)任意位置である。以下、説明の便宜上. 上記 "特定位置"をPCAの未使用領域上の任意位置とする。

【0045】次いで、記録機は、ホスト装置21から記録情報(ステップS12で生成した情報)を受け取り、その記録情報を用いて記録用レーザ13を変調しつつ、記録用レーザ13をCD-R1の透明な基板1bを介して記録層1cに情報ピットを形成して、前記記録情報のCD-R1への書き込みを行う(ステップS15)。記録情報の書き込み開始位置は、上記ステップS15)。記録情報の書き込み開始位置は、上記ステップS14で実行された光ピックアップ14の移動位置、すなわち、PCAの未使用領域上の任意位置であり、記録情報の書き込み終了位置は当該位置から記録情報のサイズ(例えば、図5のフォーマットに従えば20バイトまたは36バイト)に相当する分だけ離れた位置である。

【0046】次いで、記録機は、光ビックアップ 14を 上記特定位置に復帰させると共に、当該位置を再生開始 位置、記録情報のサイズに相当する分だけ離れた位置を 再生終了位置として、システム領域に書き込んだ記録情 級の再生を行い、この再生情報をホスト装置21に転送 する。ホスト装置21は 記録機から転送された再生デ ータと上記記録情報とを比較照合してベリファイ検査を 行い(ステップS16) 両者が一致していれば正常に 書き込みを行えたと判断してその旨を作業者に報知する 一方。そうでなければ書き込みを失敗したと判断してそ の旨を作業者に報知する(ステップS17)。作業者 は、正常書き込み報知の場合に当該CD-R1を出荷舗 へ移動し (ステップS18)、書き込み失敗報知の場合 に当該CD-R1を不良品棚へ移動する(ステップS1 9)。そして、以上の処理を用意されたCD-R1がな くなるまで繰り返して実行する(ステップS20)。 【0047】したがって、この「出荷時情報記録処理」 によれば、未記録のCD-R1のシステム領域にID情 報。暗号鍵および作成日付などの隠し情報を書き込んで 市場に出荷し、ユーザに届けることができる。そして、

ータ再生処理またはディスクコピー処理を行う際に、上 記の隠し情報を利用した本実施の形態特有の処理を実行 することができる。

【① 048】 <ユーザによるデータ書き込み処理>図8は、ユーザ段階で実行されるデータ書き込み動作(以下「ユーザによるデータ書き込み処理」という。)を示すフローチャートである。ユーザは上途の「出荷時情報記録処理」を終えたCD-R1を市場で入手し、そのCD-R1をCD-R記録再生装置10にセットして、図示の処理を開始する。

【0049】との処理を開始すると、まず、ホスト装置21からCD-R記録再生装置10へ書き込み命令が発行される。CD-R記録再生装置10はこの命令に応答してCD-R1のシステム領域からID情報を読み出しくステップS31)、サポートディスクであるか否かを判定する(ステップS32)。サポートディスクを基され、前途のとおり、所定の製造者またはあらかじめ登録された製造者によって作られたディスクのことである。CD-R記録再生装置10はこれらの製造者を識別するためのID情報リスト(以下「サポートリスト」という。)を保持しており、上記のステップS32で当該サポートリストを察照してID情報が登録済みであれば、CD-R記録再生装置10にセットされているCD-R1がサポートディスクであると判定する。

【0050】ステップS32の判定結果が「否」(NO)の場合、すなわち、CD-R記録再生装置10にセットされているCD-R1がサポートディスクでない場合は、ホスト装置21に対してサポートディスクへの交換を促す旨のメッセージ(例えば、「このディスクになりません。セキュリティ対応ではありません。セキュリティ対応ではありません。セキュリティ対応のディスクに交換してください。」)を送出(ステップS33)して、ディスク交換後の書き込み続行または書き込み中止を判定(ステップS38)する一方、ステップS32の判定結果が「旨」(YES)の場合、すなわち、CD-R記録再生装置10にセットされているCD-R1がサポートディスクである場合は、以下の処理を実行する。

【0051】まず、記録データに機密フラグを付加する (ステップS34)。この機密フラグをは、前述のとおり、再生段階において、復号後の平文データの再利用を禁止するためのチェックフラグとして用いられるものであり、好ましくは、電子透かしのような技術を応用してその存在を秘匿化したデータのことである。次いで、CD-R記録再生鉄置10にセットされているCD-R1のシステム領域から暗号鍵を読み出し(ステップS36)。その暗号鍵を用いて上記の機密フラグを付加した記録データを暗号化した後、その暗号化データをCD-R1のユーザ領域に記録する(ステップS37)。【0052】最後に、他のCD-R1に書き込みを行う

中場に古向し、ユーリに語りることができる。そして、 「りりう2」取扱に、他のしり一K1に書き込みを作う ユーザ段階で、以下に説明するデータ書き込み処理、デ 50 か否かを判定し(ステップS38)、書き込みを継続す

る場合は、所要のメッセージ(例えば、「新しいディス クをセットしてください。) をホスト装置21に送出す ると共に、書き込み済みのCD-R1をリジェクトして ステップS31以降を繰り返し、書き込みを継続しない 場合は書き込み済みのCD-R1をリジェクトして処理 を終了する。

15

【0053】図9は、上記「ユーザによるデータ書き込 み処理」のタイムランを示す図である。この図におい て、ユーザは、CD-RlをCD-R記録再生装置10 に装填すると共に、ホスト装置21を操作して所要の書 き込み命令をCD-R記録再生装置10に発行する。C D-R記録再生装置10はこの書き込み命令に応答し て、CD-RIのシステム領域に書き込まれたID情報 を読み出し、所定の!D情報リスト(サポートリスト) と照合してサポートディスクであるが否かを判定する。 そして、サポートディスクでなければ、ホスト装置21 に対してディスクの交換を促し、サポートディスクであ れば、ホスト装置21に対してその旨を通知する。ホス ト装置21はサポートディスクである旨の通知に応答し て、記録データに機密フラグを付加し、CD-R記録再 生装置10に対して暗号鍵を要求する。CD-R記録再 生装置10はCD-R1のシステム領域から暗号鍵を読 み出し、その暗号鍵をホスト装置21に転送する。ホス ト装置21は転送された暗号鍵を用いて記録データ(機 密フラグを付加したもの)を暗号化し、その暗号化デー タをCD-R記録再生装置10に転送し、CD-R記録 再生装置10は転送された暗号化データをCD-R1に 記録する。

【0054】したがって、この「ユーザによるデータ書 き込み処理」によれば、所定のサポートリストに記載さ れたID情報を持つCD-R、要するに、特定の製造者 によって作られたCD-Rについてのみ、そのユーザ領 域に、機密フラグを付加した記録データを暗号化して記 録することができるから、サポートリストに未記載の製 造者によって作られたCD-Rとの差別化を図ることが でき、市場での優位性を得ることができる。

【0055】<ユーザによるデータ再生処理>図10 は、ユーザ段階のデータ再生に用いられる再生専用機 (以下「CD-R再生装置」という。) の概略的なブロ ック構成図であり、前述のCD-R記録再生装置10 (図6参照)との相違は、データの記録機能を持たない 点である。すなわち、このCD-R再生装置30(発明 の要旨に記載のライトワンス型光ディスク用データ再生 装置に相当)は、CD-R1のクランピングエリアを担 持して所定方向に回転駆動するスピンドルモータ32 と、CD-R1の基板1bを透して記録層1cに再生用 のレーザ33を照射する光ピックアップ34と、光ピッ クアップ34の内部に設けられた不図示のシークモータ と協調して光ビックアップ34をディスクの半径方向に

ルモータ32の回転速度を制御するディスク回転制御部 36と、粗動モータ35の回転速度と回転方向を副御す る組動モータ調御部37と、光ピックアップ34の位置 やレーザ強度の副御を行うピックアップ制御部38と、 光ピックアップ34からの読み取り信号の波形変換等の 制御を行う再生制御部39とを備え、さらに、これらの 各制御部を統括するコントローラ40を備える。

16

【0056】とのCD-R再生装置30は、前途のCD - R 記録再生装置!() と同様に、パーソナルコンピュー タ等のホスト装置51の拡張スロットに内蔵され(また は外付けされ)。ホスト装置51とコントローラ40と の間を所定の信号規格(例えば、SCS!)のケーブル 51aで接続して用いられる。

【りり57】とのような構成を有するCD-R再生装置 30は、以下に示すとおり、CD-R1に書き込まれた 情報の再生を行うことができる。なお、CD-R1はC D-ROMコンパチのデバイスであり、CD-R再生装 置30は、先に説明したCD-R記録再生装置10と同 様にCD-ROMの情報再生も可能であるが、本発明と は直接の関連がないため説明を省略する。

【0058】図11は、ホスト装置51の階層的機能機 念図であり、図示の階層構造は、いわゆるOSI (Open System Interconnection:関放型システム間相互接 続)参照モデルと同様に最下位層を物理層、最上位層を アプリケーション圏とする構造を有している。この構造 は大きく分けて、物理層と密接に関係するドライバ層5 1 bと、その上位に位置するいわゆるオペレーティング システム (OS) によって提供されるサービス層51 c と、最上位層に位置してユーザインターフェースを実現 するためのアプリケーション屋510とからなり、アプ リケーション層51dに実装されたアプリケーションプ ログラム(例えば、CD-R再生装置30を利用するた めのユーザインターフェースを含むもの) 51eは、サ ービス屋51cのオペレーティングシステム51fのA PI (Application Programmable Interface) を介して ドライバ暦51bにアクセスし、例えば、CD-R再生 装置30をはじめとした各種リソースを利用する。

【0059】ととで、ドライバ層51bには多種多様な ドライバプログラムが実装されている。例えば、CD-R再生装置30のインターフェース規格をSCSIとす ると、少なくともSCSIドライバ(ATAPIドライ バともいう》51gやSCS!ポート用のミニボートド ライバ5 1 h および入出力制御用の I O S (Input/Cut put Supervisor)ドライバ51!などが実装されてい

【0060】一般にアプリケーションプログラム51e はオペレーティングシステム511の所定のAPIを利 用して、物理層に位置する各種リソースを利用するが、 通常、アプリケーションプログラム5 1 e から見て、こ 移動させる粗動モータ35とを備えると共に、スピンド 50 れらのドライバの存在は意識されない。例えば、アプリ

18

ケーションプログラム51eからCD-R再生装置30 を利用する場合、実際には、 ! OSドライバ5 1 i やS CSIドライバ51gおよびミニポートドライバ51h を間接的に利用している。また、ファイルコピーの操作 などを行う場合も、実際には 1 0 S ドライバ5 1 i を間 接的に利用している。

17

【0061】ところで、図示のドライバ層51bには、 ハッチングで他と区別された特別なドライバ(以下「フ ィルタドライバ」という。)51jが実装されている。 このフィルタドライバ51」は本実施形態に特有のもの で、少なくとも(a)アプリケーションプログラム5 1 eの要求に応じてCD-R再生装置30からオペレーテ ィングシステム51 化設されるデータをモニタし、そ のデータ内に前述の「機密フラグ」が含まれているか否 かを判定する第一の機能と、(り)上記「機密フラグ」 の存在を判定した場合に当該データに対するオペレーテ ィングシステム511のコピー動作や保存動作を拒否な いしは制限(例えば、コピー命令や保存命令を無視した りすること)する第二の機能とを持つものであり、発明 の要旨に記載の判定手段および禁止手段に相当するもの 20

【0062】第一の機能を実現するために、フィルタド ライバ51 jはSCS!ドライバ51 gとミニポートド ライバ51hの間に実装されており、さらに、第二の機 能を実現するために、オペレーティングシステム511 とIOSドライバ5 1 1の間に実装されている。なお、 この実装位置は一例である。要はアプリケーション層5 1 d から直接的にアクセスできない位置であって、且 つ。上記モニターと上記コピー動作や保存動作の拒否に 適した位置に実装されていればよい。また、フィルタド 30 ごとに分割されたものであってもよい。

【0063】ユーザは、アプリケーションプログラム5 leによって提供されるユーザインターフェースを操作 しながらCD-R再生装置30にアクセスし、CD-R 1 に記録されたデータの再生を行う。この再生処理に際 して、オペレーティングシステム51(やドライバプロ グラム51g~51 jは黒子的な仲介役となって表に出 てとない。 すなわち、ユーザは、オペレーティングシス テム511やドライバプログラム518~51」の存在 40 を意識することなく、CD-R再生装置30にアクセス し、CD-R1に記録されたデータを利用することがで きる。

【0064】CD-R1に記録されたデータは、アプリ ケーションプログラム51eから見て、オペレーティン グシステム51cのファイルシステムによって管理され た独立したデータの集まり (ファイル) として認識され る。ユーザは、このデータを他の記憶デバイスに格納さ れたデータと同様に取り扱う(ファイルアクセス)こと

セスに際して、リードイン(R!)内のTOC情報を読 み出してホスト装置51のドライバ層51りに提供する と共に、当該ドライバソフト層51bから特定ファイル の読み出しコマンドを受け取った場合は、リードイン {RI}内のTOC情報を参照して当該ファイルのデー タが書き込まれたデータエリア (UA)のトラックを特 定し、そのトラックの開始位置に光ビックアップ34を 位置させると共に、スピンドルモータ32の回転速度を 制御し、光ピックアップ34から再生用のレーザ33を CD-R1に照射して当該ファイルデータを読み取り、 その読み取りデータをホスト装置51のドライバ層51 りに転送するという一連の動作を実行する。 【0065】図12は、ユーザ段階で実行されるデータ 再生動作(以下「ユーザによるデータ再生処理」とい

う。)を示すフローチャートである。ユーザは、前述の ユーザによるデータ書き込み処理によって暗号化データ (記録データに概密フラグを付加して暗号化したもの) が書き込まれたCD-R1を入手し、そのCD-R1を CD-R再生装置30にセットして、そのCD-R1か ち I D情報を読み出す(ステップS41)と共に、ホス ト装置51に対して!D入力を要求する(ステップS4 2)。ホスト装置51は、画面上にID入力を促す旨の 所定のGU! (Graphical User Interface) を表示して ユーザによるキーボード等からの「D入力を受け付け、 入力された!D情報をCD-R記録再生装置10に転送 する。CD-R再生装置30は、転送された!D情報と CD-R1から読み込んだID情報とを比較し(ステッ プ\$43)、一致した場合は正規ユーザ、一致しなかっ た場合は不正なユーザと判断し、不正ユーザの判断時に はそのまま処理を終了する一方、正規ユーザの判断時に は、以下の処理を実行する。

【0066】まず、CD-R1のシステム領域に書き込 まれている暗号鍵と暗号化データを読み出して(ステッ プS44、ステップS45)、ホスト続置51に転送す る。ホスト装置51は、転送されたデータに機密フラグ が含まれているが否かを判定し(ステップS46)、含 まれている場合は、暗号鍵を用いてその暗号化データを 復号し(ステップS47)、平文のデータに戻してユー ザの利用に供する一方、機密フラグが含まれていない場 台は、復号動作を行うことなく、そのまま処理を終了す

【りり67】図13は、上記「ユーザによるデータ再生 処理」のタイムランを示す図である。この図において、 ユーザは、CD-R1をCD-R再生装置30に装填す ると共に、ホスト装置51を操作して所要の再生命令を CD-R再生装置30に発行する。CD-R再生装置3 ①はこの再生命令に応答して!D要求をホスト装置51 に返し、ホスト装置51は画面上にID入力を促す旨の GUIを表示する。ユーザは、そのGUIに従って所定 ができる。CD-R再生装置30は、このファイルアク 50 のID情報(CD-R1の配布先から正当に通知された

19 「D情報)を入力し、ホスト装置5 1 は入力された | D 情報をCD-R再生装置3 0 に転送する。

【0068】CD-R再生装置30は、CD-R1のシステム領域に書き込まれている!D情報を読み出し、ホスト装置51から転送された!D情報を認み出し、ホスト装置51から転送された!D情報をの一致を判定して、不一致であれば不正ユーザと判断し、処理を中止して再生を提否する一方、一致していれば正規ユーザと判断し、CD-R1のシステム領域に書き込まれている暗号とデータエリアに書き込まれている暗号化データとを読み出してホスト装置51に転送する。ホスト装置51は、転送データ中に機密フラグがあるか否かを制定し、機密フラグが含まれている場合は、その暗号健を用いて暗号化データを復号し、正規ユーザからのアクセスを許容する一方、機密フラグが含まれていない場合は復号的作を行うことなく、処理を終了する。

【0069】したがって、との「ユーザによるデータ再生処理」によれば、CD-Rのシステム領域に書き込まれている【D情報を用いて正規ユーザと不正ユーザとを 識別することができ、正規ユーザによってデータ再生処理が行われている場合に、CD-Rのシステム領域に書 20 き込まれた暗号鍵とデータエリアに書き込まれた暗号化データとをホスト装置に転送することができる。そして、転送データ中に緩密フラグが含まれている場合に、ホスト装置で暗号化データの復号を行い、復号された生データへのアクセス(例えば、データの閲覧ないし実行等)を当該正規ユーザに許容することができる。

【0070】その結果、不正ユーザを排除してデータの再生を行うことができると共に、機密フラグが含まれている暗号化データの復号のみを行うことができるから、前記の「ユーザによるデータ書き込み処理」との組み合わせによって、記録段階から再生段階までの一連のセキュリティ対策を確立することができるうえ、このセキュリティ対策に欠くことのできない記録媒体として特定の製造者によって作られたサポートディスクの使用を強制することができる。

【りり71】 <ユーザによるディスクコピー処理>図14は、ユーザ段階で実行されるデータコピー動作(以下「ユーザによるデータコピー処理」という。)を示すフローチャートである。なお、以下の説明では、データのコピー先をCDーRとしているが、これはデータ再利用の一例であり、コピー先は如何なる記憶媒体であってもかまわない。ハードディスクやその他の記録媒体であってもよい。

【0072】図14において、ユーザによるデータコピー処理を関始すると、ユーザは、前途のユーザによるデータ書き込み処理によって暗号化データ(記録データに 機筋フラグを付加して暗号化したもの)が書き込まれた CD-R1をコピー元、未記録のCD-Rをコピー先とし、それぞれをコピー元のCD-R再生装置30とコピー先のCD-R記録再生装置10にセットする。そし

て、ホスト装置51を操作してコピー元のCD-R再生 装置30にコピー命令を発行する。コピー元のCD-R 再生鉄置30は、コピー命令に応答してCD-R1から ID情報を読み出す(ステップS51)と共に、ホスト 装置51に対してID入力を要求する(ステップS5 2)。ホスト装置51は画面上にID入力を促す旨の所 定のGUIを表示してユーザによるキーボード等からの ID入力を受け付け、入力されたID情報をコピー元の CD-R再生装置30に転送する。

20

【0073】コピー元のCD-R再生装置30は、転送 された!D情報とCD-Rlから読み込んだ!D情報と を比較し (ステップS53)、一致した場合は正規ユー ザ、一致しなかった場合は不正ユーザと判断し、不正ユ ーザの判断時にはそのまま処理を終了する一方。正規ユ ーザの判断時には、コピー元のCD-R1のシステム領 域に書き込まれている暗号鍵と暗号化データを読み出し てホスト装置51に転送する。ホスト装置51は、その ドライバ圏51 bに実装されたフィルタドライバ51j により、転送データ中に機密フラグが存在するか否かを 判断し(ステップS54)、鍛密フラグが存在しなけれ は、転送された暗号鍵を用いて暗号化データを復号し、 その復号データをコピー先のCD-R記録再生装置10 に転送してコピー先のCD-R1に記録するというコピ ー処理を実行(ステップSSS) して処理を終了する一 方、機密フラグが存在していれば、同コピー処理を強制 的に中止(ステップ\$56)して処理を終了する。

【0074】図15は、上記「ユーザによるデータコピ ー処理」のタイムランを示す図であり、図中のCD-R 1とCD-R再生装置30はコピー元のもの、CD-R 記録再生装置10とCD-R11はコピー先のものであ る。この図において、ユーザは、コピー元とコピー先の CD-R1、1′をそれぞれCD-R再生装置30とC D-R記録再生装置10に装填すると共に、ホスト装置 51を操作して所要のコピー命令をコピー元のCD-R 再生装置30に発行する。コピー元のCD-R再生装置 30はこのコピー命令に応答して!D要求をホスト装置 51に返し、ホスト装置51は画面上に「D入力を促す 旨のGU!を表示する。ユーザは、そのGU!に従って 所定の「D情報(CD-R1の配布先から正当に通知さ れた I D 情報) を入力し、ホスト装置 5 1 は入力された I D情報をコピー元のCD-R再生装置30に転送す る.

【0075】コピー元のCD-R再生装置30は、CD-R1のシステム領域に書き込まれている!D情報を設み出し、ホスト装置51から転送された!D情報との一致を判定して、不一致であれば不正ユーザと判断し、処理を終了する一方、一致していれば正規ユーザと判断し、CD-R1に書き込まれている暗号鍵と暗号化データとを読み出してホスト装置51に転送する。ホスト装50 置51は、そのドライバ層51bに実装されたフィルタ

ドライバ51」により、転送データ中の機密フラグの存 在を判断する。そして、存在していればコピー処理を強 制的に中止する一方、存在していなければ、暗号鍵を用 いて暗号化データを復号し、その復号データをコピー先 のCD-R記録再生装置10に転送し、コピー先のCD - R記録再生措置 1 0 はその転送データをCD - R 1' に書き込む。

21

【0076】したがって、この「ユーザによるデータコ ピー処理」によれば、コピー元のCD-Rのシステム領 域に書き込まれている!D情報を用いて正規ユーザと不 正ユーザとを識別することができると共に、機密フラグ が付加されたデータのコピーが行われようとした場合 は、たとえ正規ユーザであっても、そのコピー動作を強 制的に中止(コピー動作の拒否)して実行しないように することができる。その結果、暗号化データに機密フラ グが存在する場合は、コピー処理を積極的に禁止できる から、復号データの再利用を阻止することができ、記録 から再生までのすべての段階にわたってセキュリティを 痔たせることができる。

の形態によれば、CD-R1のシステム領域に書き込ま れたID豬級を用いて、サポートリストに記載された製 造者のCD-R1(サポートディスク)であるか否かを 判定でき、サポートディスクの場合に所定の機密フラグ を付加した記録データを暗号化してCD-R1に記録す ることができる。そして、再生側でこの暗号化データを 読み出す際に、機密フラグの有無を検査し、機密フラグ がある場合に復号データの萬利用を禁止することができ る。したがって、ホスト装置51の内部には、前途の 「ユーザによるデータ再生処理」によってメインメモリ 上に一時的に作られた復号データしか存在しないため、 しかも、この一時的データはプロセスからの利用完了時 点で遠やかに解放されるため、再利用可能な復号データ の痕跡が残されることはなく、データの不正流出等を確 実に防止することができるという格別有益な効果が得ら れる.

【0078】なお、以上の説明では、【D情報や暗号鍵 などの隠し情報をシステム領域に書き込んでいるが、こ のシステム領域とは、ユーザによる直接的なアクセスが 許容された領域(典型的にはデータエリア)以外の領域 40 という意味であり、前述のPCAやPMAはもちろんの こと、リードインであってもよいし、リードアウトであ ってもよく、あるいは、これ以外の領域が存在するなら は、その領域であってもよい。

【0079】また、暗号鍵については、特に説明を加え なかったが、一般的に知られている様々な暗号化方式 (例えば、前途のDES方式以外にも、FEAL: Fast Encipherment Algorithmなどの方式がある。)のいず れを採用してもかまわない。解読の函難性、暗号化処理 や復号処理のオーバヘッドおよび暗号化データのボリュ 50 判定手段および禁止手段を実現できる。

ーム等を勘察して適切な方式を採用すればよい。 【0080】また、前記説明のセキュリティ機能のう ち、特に復号データの再利用を禁止する機能は、もっぱ ちホスト装置51に実装されたフィルタドライバ51j やその他の汎用ドライバおよびオペレーティングシステ ム等のソフトウェアリソースと、ホスト装置51の各種 ハードウェアリソースとの有機的結合によって機能的に 実現されるものであるが、フィルタドライバ5 1 」以外 のリソースは汎用のものを利用できるから、前記説明の 「復号データの再利用を禁止する機能」にとって欠くこ とのできない必須の享項は、実質的に、フィルタドライ バ5 1 j のプログラムに集約されているということがい える。したがって、本発明に係るセキュリティ機能のボ イントは、それらのプログラムのすべてまたはその要部 を絡納した、フロッピィディスク、光ディスク、コンパ クトディスク、磁気テープ、ハードディスクまたは半導 体メモリなどの記録媒体若しくはこれらの記録媒体を含 む構成品 (ユニット品や完成品または半完成品)を包含 する。なお、その記録媒体または構成品は、それ自体が 【0077】<まとめ>以上、説明したとおり、本実施 20 流通経路にのるものはもちろんのこと、ネットワーク上 にあって記録内容だけを提供するものも含まれる。

22

【0081】また、以上の説明では、ライトワンス型光 ディスクとしてCD-Rの例を示したが、これに限らな い。例えば、DVD(Digital Video DiscまたはDigita 1 Versatile Disc) — Rも1回だけのデータ書き込みを 行うことができるから、もちろんライトワンス型光ディ スクの仲間である。上記説明をDVD-Rに適用する場 合、CD-RをDVD-Rと読み替えると共に、CD-R記録再生装置やCD-RライターをそれぞれDVD-R記録再生装置、DVD-Rライターと読み替ればよ Ls.

[0082]

30

【発明の効果】請求項1記載の発明によれば、データの 再生時に所定の機密フラグが検出されると、再生データ の複製物の生成が制限される。したがって、再生データ の再利用を阻止して、再生段階におけるセキュリティを 確保することができる。請求項2記載の発明によれば、 光ディスクのシステム領域に不可視状態で格納されたセ キュリティ情報に基づいて光ディスクへのアクセスが制 限される。したがって、例えば、データ再生時に正当な ユーザを認証して書き込みデータへのアクセスを許容す るととができ、不正ユーザの排除等。セキュリティ性の 向上を図ることができる。請求項3記載の発明によれ は、データの再生時に所定の機密フラグが検出される と、再生データの複製物の生成が禁止される。したがっ て、再生データの再利用を阻止して、再生段階における セキュリティを確保することができる。請求項4記載の 発明によれば、マイクロコンピュータを含むハードウェ アリソースと該プログラムとの有機的結合によって前記

(13)

特開2001-332019

【図面の簡単な説明】

【図1】本実施形態のCD-Rの利用模式図である。

【図2】ライトワンス型光ディスクの外観図およびその 要部拡大図である。

23

【図3】CD-Rの断面構造図である。

【図4】 CD-Rの各記録領域のフォーマット概念図で ある。

【図5】CD-Rのシステム領域に書き込まれるID情 報と暗号鍵を含むデータフォーマットの例示構造図であ

【図6】CD-R記録再生装置の概略的なブロック構成 図である。

【図7】 出荷時情報記録処理を示すプローチャートであ る。

【図8】ユーザによるデータ書き込み処理を示すフロー チャートである。

【図9】ユーザによるデータ書き込み処理のタイムラン を示す図である。

*【図10】CD-R再生装置の機略的なブロック構成図

【図11】ホスト装置の階層的機能概念図である。

【図12】ユーザによるデータ再生処理を示すプローチ ャートである。

【図13】ユーザによるデータ再生処理のタイムランを 示す図である。

【図14】ユーザによるディスクコピー処理を示すフロ ーチャートである。

【図15】ユーザによるディスクコピー処理のタイムラ ンを示す図である。

【図16】従来のセキュリティ対策の概念図である。 【符号の説明】

PCA Power Calibration Area (システム領域)

1 CD-R (ライトワンス型光ディスク)

30 CD-R再生装置(ライトワンス型光ディスク用 データ再生装置)

51) フィルタドライバ (判定手段、禁止手段)

[図.1]

[図4]

(a) 15 16 17 18 19
(b) 10 17 8 15 16 17 18 19
(c) 10 17 18 19
(c) 10 17 18 19
(c) 10 18 19
(d) 10 18 19
(e) 10 18 19
(fixed)

特闘2001-332019

特闘2001-332019

フロントページの続き

(72)発明者 清水 洋信 東京都台東区上野6丁目16香20号 太陽誘 電株式会社內

Fターム(参考) 50044 BC05 CC04 DE17 DE60 EF05 FG18 GK12 HL08

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.