TEORIA DE LA PROBABILITAT

ApuntsFME

BARCELONA, OCTUBRE 2018

Darrera modificació: 4 d'octubre de 2018.

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 4.0 International" license.

Continguts

1	Espai de probabilitat			
	1.1	Definició axiomàtica de probabilitat		
		Desigualtats de Bonferroni		
	1.2	Probabilitat condicionada		
	1.3	Independència		
	1.4	Espai producte		
	1.5	Lema de Borel-Cantelli		
		Lema de Borel-Cantelli		
2	Variables aleatòries			
	2.1	Definició i propietats bàsiques de les variables aleatòries		
		Teorema de l'existència d'una funció de distribució		
	2.2	2 Esperança d'una variable aleatòria. Desigualtats de Markov i Chebyshev 1		
		Desigualtat de Markov		
4				
ln	.dex	${f alfabètic}$		

iv CONTINGUTS

Tema 1

Espai de probabilitat

1.1 Definició axiomàtica de probabilitat

Definició 1.1.1. Un espai de probabilitat és un espai de mesura (Ω, \mathcal{A}, p) tal que $p(\Omega) = 1$. Diem que

- Ω és l'espai mostral,
- \bullet A és el conjunt d'esdeveniments o de successos,
- ullet p és la funció de probabilitat.

Observació 1.1.2. Recordem que (Ω, \mathcal{A}) és un espai mesurable si $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ és una σ -àlgebra d' Ω , és a dir,

- i) $\varnothing \in \mathcal{A}$,
- ii) $A \in \mathcal{A} \iff \overline{A} \in \mathcal{A}$,
- iii) Si $\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{A}$, aleshores $\bigcup_{i\in\mathbb{N}}A_i\in\mathcal{A}$.

I que $(\Omega, \mathcal{A}, \mu)$ és un espai de mesura si μ és una mesura sobre l'espai mesurable (Ω, \mathcal{A}) , és a dir,

- i) $\mu(\varnothing) = 0$,
- ii) $\forall A \in \mathcal{A}, \quad \mu(A) \ge 0,$
- iii) (σ -additivitat) Si $\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{A}$ és tal que $\forall i\neq j,\ A_i\cap A_j=\varnothing,$ aleshores

$$\mu\left(\bigcup_{i\in\mathbb{N}}A_i\right)=\sum_{i\in\mathbb{N}}\mu(A_i).$$

Proposició 1.1.3. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat. Aleshores,

i) Si
$$A_1, \ldots, A_r \in \mathcal{A}$$
 són tals que $\forall i \neq j, A_i \cup A_j = \emptyset$, aleshores $p\left(\bigcap_{i=1}^r A_i\right) = \sum_{i=1}^r p\left(A_i\right)$.

ii)
$$A \in \mathcal{A} \implies p(\overline{A}) = 1 - p(A)$$
.

iii)
$$A, B \in \mathcal{A}, A \subseteq B \implies p(B \setminus A) = p(B) - p(A)$$
.

iv)
$$A, B \in \mathcal{A}, A \subseteq B \implies p(A) \le p(B)$$
.

v) Successions monòtones:

a) Si
$$\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{A}$$
 són tals que $A_i\subseteq A_{i+1}$, aleshores $p\left(\bigcup_{i\in\mathbb{N}}A_i\right)=\lim_{i\to\infty}p\left(A_i\right)$.

b) Si
$$\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{A}$$
 són tals que $A_i\supseteq A_{i+1}$, aleshores $p\left(\bigcap_{i\in\mathbb{N}}A_i\right)=\lim_{i\to\infty}p\left(A_i\right)$.

Demostració.

- 1. Consequència directa de la σ -additivitat.
- 2. Conseqüència diecta de ii) usant que $A = A \cup \overline{A}$.
- 3. Com que $A \subseteq B$, $B = (B \setminus A) \cup A$ i, per tant, $p(B \setminus A) = p(B) p(A)$.
- 4. Conseqüència directa de iii) ja que $p(B \setminus A) \ge 0$.

5.

a) Sigui $B_0 = A_0$ i per i > 0 sigui $B_i = A_i \setminus A_{i-1}$. Aleshores, es compleix que $\forall i \neq j, \ B_i \cap B_j = \emptyset$ i que $\bigcup_{i \in \mathbb{N}} B_i = \bigcup_{i \in \mathbb{N}} A_i$, de manera que

$$p\left(\bigcup_{i\in\mathbb{N}} A_i\right) = p\left(\bigcup_{i\in\mathbb{N}} B_i\right) = \sum_{i\in\mathbb{N}} p\left(B_i\right) =$$

$$= \lim_{N\to\infty} \sum_{i=0}^{N} p\left(B_i\right) = \lim_{N\to\infty} p\left(\bigcup_{i=0}^{N} B_i\right) = \lim_{N\to\infty} p\left(A_N\right).$$

b) Anàleg al cas anterior.

Observem que l'apartat v) només es pot aplicar en casos molt particulars. En general, si tenim A_i, \ldots, A_r successos, hi ha estimacions per a $p(\bigcup_{i=1}^r A_i)$:

Teorema 1.1.4. Designaltats de Bonferroni.

Siguin $A_1, \ldots, A_r \in \mathcal{A}$, i per $I \subseteq \{1, \ldots, r\}$ sigui $A_I = \bigcap_{i \in I} A_i$. Definim

$$S_k = \sum_{I \in \{1, \dots, n\}, \#I = k} p(A_I),$$

això és, $S_1 = \sum p(A_i)$, $S_2 = \sum_{i \neq j} p(A_i \cap A_j)$,.... Aleshores:

i) Si t és parell,

$$p\left(\bigcup_{i=1}^{r} A_i\right) \ge \sum_{i=1}^{r} (-1)^{i+1} S_i$$

ii) Si t és senar,

$$p\left(\bigcup_{i=1}^{r} A_i\right) \le \sum_{i=1}^{r} (-1)^{i+1} S_i$$

Observació 1.1.5. Amb els casos t = 1 (designaltat de Boole) i t = 2 es poden donar fites inferiors i superiors.

Exemple 1.1.6.

1. Espais de probabilitat numerables.

Prenem Ω un conjunt numerable $\Omega = \{a_i\}_{i \geq 1}$. Prenem $\mathcal{A} = \mathcal{P}(\Omega)$ (que és una σ -àlgebra). Per a definir la probabilitat sobre $(\overline{\Omega}, \mathcal{A})$ prenem una successió $\{p_i\}_{i \geq 1}$ t. q. $0 \geq p_i \geq 1$ que cumpleix que $\forall i, p(a_i) = p_i$ i $\sum_{i \geq 1} p_i = 1$. Per tant, per a qualsevol element

 $A \in \mathcal{A}$, tenim que

$$p\left(\bigcup_{a\in A} \{a\}\right) = p(A) = \sum_{i\geq 1} p(\{a\}).$$

Si, a més, $|\Omega| < +\infty$, $\mathcal{A} = \mathcal{P}(\Omega)$ té $2^{|\Omega|}$ elements i si premnem $\Omega = \{a_i\}_{i=1}^N$ i $p_1 = p_2 = \cdots = p_N = \frac{1}{N}$ obtenim un espai clàssic de probabilitat.

2. Espai de probabilitat en $[a, b] \subseteq \mathbb{R}$.

Sigui $\Omega = [a, b]$ i prenem $\mathcal{A} = \mathcal{B} \cap [a, b]$ amb \mathcal{B} un borelià i com a funció de probabilitat $p = \frac{\lambda}{b-a}$, on λ és la mesura de Lebesgue. Observem que no podem prendre tot \mathbb{R} perquè no podem normalitzar $\lambda(\mathbb{R})$. Malgrat això, usant λ construirem més endavant funcions de probabilitat sobre $(\mathbb{R}, \mathcal{B})$.

3. Tirada indefinida d'una moneda.

En aquest cas tenim que $\Omega = \{a_i\}_{i \geq 1}, \, a_i \in \{0,1\}$ de la forma

00010001110110... 01001110101101... 100101111110010...

sent 0 creu i 1 cara. Aquest conjunt és no numerable fàcilment demostrable amb l'argument de la diagonal de Cantor. Per a construir una σ -àlgebra sobre Ω trobem una "bijecció" amb [0,1] de la forma

$$\varphi \colon \Omega \to [0, 1] \subseteq \mathbb{R}$$
$$a = a_1 a_2 \dots a_n \mapsto 0.a_1 a_2 \dots a_n$$

No és una bijecció completa ja que hi ha elements diferrents que van a la mateixa imatge degut als nombres que acaben en 1 periòdic, però al ser tots racionals, el conjunt d'aquests nombres és numerable i per tant té mesura nul·la. És per això que podem definir una σ -àlgebra sobre Ω prenent $\{\varphi^{-1}(A)\}_{A\subseteq\mathcal{B}\cup[0,1]}$. Similarment ho fem amb la mesura.

1.2 Probabilitat condicionada

Definició 1.2.1. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i siguin $A, B \in \mathcal{A}$. Definim la probabilitat d'A condicionada a B com

$$p(A \mid B) = \frac{p(A \cap B)}{p(B)}.$$

Observació 1.2.2. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i sigui $B \in \mathcal{A}$ tal que p(B) > 0. Aleshores, l'aplicació

$$p_B \colon \mathcal{A} \to \mathbb{R}$$

 $A \mapsto p_B(A) := p(A \mid B)$

defineix un espai de probabilitat $(\Omega, \mathcal{A}, p_B)$.

Proposició 1.2.3. Sigui I un conjunt numerable o finit i siguin $\{A_i\}_{i\in I}\subseteq\mathcal{A}$ tals que

- i) $p(A_i) > 0$,
- ii) $i \neq j \implies A_i \cap A_i = \emptyset$,
- iii) $\bigcup_{i \in I} A_i = \Omega$.

Aleshores,

1) Probabilitat total:

$$p(B) = \sum_{i \in I} p(B \mid A_i) p(A_i), \quad \forall B \in \mathcal{A}.$$

2) Fórmula de Bayes:

$$p(A_i \mid B) = \frac{P(B \mid A_i) p(A_i)}{\sum_{j \in I} p(B \mid A_j) p(A_j)}, \quad \forall B \in \mathcal{A} \text{ amb } p(B) > 0.$$

Demostració.

1) Com que els A_i són disjunts i $\bigcup_{i\in I}A_i=\Omega,\,\forall B\in\mathcal{A},\,B=\bigcup_{i\in I}B\cap A_i,$ i la unió és disjunta. Es té

$$p(B) = p\left(\bigcup_{i \in I} B \cap A_i\right) \stackrel{\sigma-add.}{=} \sum_{i \in I} p(B \cap A_i) = \sum_{i \in I} p(B|A_i)p(A_i).$$

$$p(A_i|B) \sum_{j \in I} p(B|A_j) p(A_j) \stackrel{i)}{=} p(A_i|B) p(B) =$$

$$\frac{p(B \cap A_i)}{p(B)} p(B) = p(B \cap A_i) = P(B \mid A_i) p(A_i).$$

Problema 1.2.4. Ruïna del jugador. Partim d'un capital de k unitats i, en cada jugada (sense memòria) augmenta o disminueix el capital en una unitat, amb probabilitats 1/2 i 1/2. El joc acaba si ens quedem sense capital o si assolim un objectiu N (N > k). Quina és la probabilitat de perdre tot el capital?

Solució. Sigui A_k el succés "el jugador, començant amb capital k, perd". Condicionem A_k a la primera tirada de la moneda, definim B: "la primera tirada surt cara".

$$p(A_k) = p(A_k|B)p(B) + p(A_k|\overline{B})p(\overline{B}) = p(A_k|B)\frac{1}{2} + p(A_k|\overline{B})\frac{1}{2}$$

 $\implies 2p(A_k) = p(A_{k-1}) + p(A_{k+1}) \implies p(A_k) - p(A_{k-1}) = p(A_{k+1}) - p(A_k) = C,$

el que ens diu que la diferència entre nivells és constant. Per tant $p(A_k) = p(A_0) + kC$. Sabent que $p(A_0) = 1$ i $p(A_N) = 0$ ens queda que

$$0 = 1 + CN \implies C = -\frac{1}{n} \implies p(A_k) = 1 - \frac{k}{N}.$$

1.3 Independència

Definició 1.3.1. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat, sigui I un conjunt finit o numerable i sigui $\{A_i\}_{i\in I}\subseteq \mathcal{A}$. Diem que els esdeveniments A_i són independents si per tot $J\subseteq I$ amb $|J|\in \mathbb{N}$ es té que

$$p\left(\bigcap_{j\in J}A_j\right) = \prod_{j\in J}p\left(A_j\right).$$

Exemple 1.3.2.

- 1. \emptyset , Ω són independents entre si.
- 2. A és independent amb si mateix si i només si p(A) = 1 o p(A) = 0.

1.4 Espai producte

Donats dos espais de probabilitat $(\Omega_1, \mathcal{A}_1, p_1)$ i $(\Omega_2, \mathcal{A}_2, p_2)$, volem construir un nou espai de probabilitat $(\Omega_3, \mathcal{A}_3, p_3)$ que codifiqui els dos espais de probabilitat inicials. A aquest espai de probabilitat l'anomenarem espai de probabilitat producte.

Definició 1.4.1. Siguin $(\Omega_1, \mathcal{A}_1, p_1)$ i $(\Omega_2, \mathcal{A}_2, p_2)$ dos espais de probabilitat. Anomenem espai de probabilitat producte a la terna $(\Omega_3, \mathcal{A}_3, p_3)$ tal que

- i) $\Omega_3 = \Omega_1 \times \Omega_2$
- ii) $A_3 = \sigma (A_1 \times A_2) (\sigma$ -àlgebra generada per $A_1 \times A_2$)
- iii) p_3 és una funció de probabilitat que cumpleix que $\forall A_1, A_2$ t. q. $A_1 \times A_2 \in \mathcal{A}_1 \times \mathcal{A}_2$ aleshores p_3 $(A_1 \times A_2) = p_1$ (A_1) p_2 (A_2) .

Observació 1.4.2. p_3 està ben definida ja que pel Teorema d'extensió de Carathéodory podem construir una σ -àlgebra sobre $\Omega_1 \times \Omega_2$ a partir d'una extensió de $\sigma(\mathcal{A}_1 \times \mathcal{A}_2)$ i restringir p_3 segons iii).

Observació 1.4.3. Podem extendre λ (la mesura de Lebesgue) a \mathbb{R}^2 de la següent forma. Sabem que $([0,1], \mathcal{B} \cap [0,1], \lambda_{[0,1]})$ és un espai de probabilitat. Aleshores

$$\Big([0,1]\times[0,1],\sigma\left(\mathcal{B}\cap[0,1]\times\mathcal{B}\cap[0,1]\right),\lambda_{[0,1]\times[0,1]}\Big)$$

defineix un espai de probabilitat a \mathbb{R}^2 .

Problema 1.4.4. Agulla de Buffon. Considerem el pla \mathbb{R}^2 tesel·lat amb linies paral·leles indefinides separades per una distància L. Llancem una agulla de longitud $l \leq L$ sobre el pla. Trobar quina és la probabilitat que l'agulla toqui una de les linies.

Solució. Considerarem dues variables: x com la distància del centre de l'agulla a la linia més propera i θ com l'angle de l'agulla amb la direcció de les lines. Tenim que $x \in \left[0, \frac{L}{2}\right]$ i $\theta \in \left[0, \pi\right)$ i per tant, $\Omega = \left[0, \frac{L}{2}\right] \times \left[0, \pi\right)$, \mathcal{A} són els borelians del conjunt i p la mesura de Lebesgue normalitzada en \mathcal{A} . Sigui $A \in \mathcal{A}$ l'esdeveniment "l'agulla talla una recta" i $\omega \in \Omega$ una tirada. Aleshores $w \in A \iff x \leq \frac{l}{2}\sin\theta$. Per tant,

$$p(A) = \frac{\int_0^{\pi} \frac{l}{2} \sin \theta \, d\theta}{\frac{L\pi}{2}} = \frac{2l}{L\pi}.$$

1.5 Lema de Borel-Cantelli

Siguin (Ω, \mathcal{A}, p) un espai de probabilitat i $\{A_n\}_{n\geq 1}\subseteq \mathcal{A}$. Volem donar-li un sentit a "límit de $\{A_n\}_{n\geq 1}$ ". Farem com a \mathbb{R} i definirem els límits superior i inferior (que sempre existiran) i, si coincideixen, aquest serà el límit.

Definició 1.5.1. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat. Donats $\{A_n\}_{n\geq 1} \subseteq \mathcal{A}$, definim els límits superior i inferior de la successió de successos $\{A_n\}_{n\geq 1}$ com

$$\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k,$$
$$\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k.$$

Observació 1.5.2. Els dos límits pertanyen a \mathcal{A} ja que son unió i intersecció numerable de sucessos.

Proposició 1.5.3. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i siguin $\{A_n\}_{n\geq 1}\subseteq \mathcal{A}$. Aleshores,

- i) $\liminf_{n\to\infty} A_n = \{\omega \in \Omega \colon \exists m \equiv m(\omega) \text{ amb } \omega \in A_r \ \forall r \geq m(\omega) \},$
- ii) $\limsup_{n\to\infty} A_n = \{\omega \in \Omega : \omega \text{ pertany a un nombre infinit dels } A_n\},$
- iii) $\limsup_{n\to\infty} A_n \subseteq \limsup_{n\to\infty} A_n$.

Demostració.

i) $\omega \in \liminf A_n \iff \omega \in \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k \iff \exists m \equiv m(\omega) \text{ t. q. } \omega \in \bigcap_{k=m(\omega)}^{\infty} A_k \iff \omega \in A_r \quad \forall r \geq m(\omega).$

- ii) $\omega \in \limsup A_n \iff \omega \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k \iff \omega \in \bigcup_{k=n}^{\infty} A_k \quad \forall n \iff \forall n, \exists n_0 \ge n \text{ t. q. } \omega \in A_{n_0} \iff \omega \text{ pertany a un nombre infinit dels } A_n.$
- iii) Si $\omega \in \liminf A_n$, aleshores $\omega \in A_r$, $\forall r \geq m(\omega)$, de manera que pertany a un nombre infinit dels A_n i, en conseqüència, pertany a $\limsup A_n$.

Proposició 1.5.4. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i siguin $\{A_n\}_{n\geq 1}\subseteq \mathcal{A}$, amb $\lim A_n = A$. Aleshores, $p(A) = p(\lim A_n) = \lim p(A_n)$ i aquest límit existeix.

Demostració. Definim $B_n = \bigcup_{k \geq n} A_k$ i $C_n = \bigcap_{k \geq n} A_k$. Observem que $\{B_n\}_{n \geq 1}$ és decreixent i que $\{B_n\}_{n \geq 1}$ és creixent. Naturalment, $C_n \subseteq A_n \subseteq B_n$, $\limsup A_n = \bigcap_{n \geq 1} B_n$ i $\liminf A_n = \bigcup_{n \geq 1} C_n$.

Vegem que $p(\liminf A_n) \leq \liminf p(A_n)$.

$$p\left(\liminf A_n\right) = p\left(\bigcup_{n\geq 1} C_n\right) = \lim p\left(C_n\right) = \lim p\left(\bigcap_{k\geq n} A_k\right) \leq \liminf p\left(A_n\right).$$

Al darrer pas hem utilitzat el fet que $p\left(\bigcap_{k\geq n}A_k\right)\leq p\left(A_n\right)$. Anàlogament, $\limsup p\left(A_n\right)\leq p\left(\limsup A_n\right)$. Així doncs, tenim que

$$p\left(\liminf A_n\right) \le \liminf p\left(A_n\right) \le \limsup p\left(A_n\right) \le p\left(\limsup A_n\right).$$

Atàs que $p(\liminf A_n) = p(\limsup A_n) = p(A)$, concloem que

$$\lim\inf p(A_n) = \lim\sup p(A_n) = \lim p(A_n) = p(A).$$

Teorema 1.5.5. Lema de Borel-Cantelli.

Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i siguin $\{A_n\}_{n\geq 1}\subseteq \mathcal{A}$. Aleshores,

- i) $\sum_{n>1} p(A_n) < \infty \implies p(\limsup A_n) = 0.$
- ii) Si $\{A_n\}_{n\geq 1}$ és independent, $\sum_{n\geq 1} p(A_n) = \infty \implies p(\limsup A_n) = 1$.

Demostració. Posem $A = \limsup_{n \ge 1} A_n = \bigcap_{n \ge 1} \bigcup_{k > n} A_k$.

i) Sabem que

$$0 \le p(A) \le p\left(\bigcup_{k \ge n} A_k\right) \le \sum_{k \ge n} p(A_k), \, \forall n \in \mathbb{N}$$

i que $\sum_{n\geq 1} p(A_n) < \infty$, de manera que $\lim \sum_{k\geq n} p(A_k) = 0$ i immediatament deduïm que p(A) = 0.

ii) Observem primer que $\overline{A} = \bigcap_{n \geq 1} \bigcup_{k \geq n} A_k = \bigcup_{n \geq 1} \bigcap_{k \geq n} \overline{A_k} = \liminf \overline{A_n}$. Veurem que $p\left(\overline{A}\right) = 0$. Calculem $p\left(\bigcap_{m \geq n} \overline{A_m}\right)$.

$$0 \le p\left(\bigcap_{m \ge n} \overline{A_m}\right) = \lim_{r \to \infty} p\left(\bigcap_{m = n}^r \overline{A_m}\right) = \lim_{r \to \infty} \prod_{m = n}^r \left(p\left(\overline{A_m}\right)\right) =$$

$$= \lim_{r \to \infty} \prod_{m = n}^r \left(1 - p\left(A_m\right)\right) \le \lim_{r \to \infty} \prod_{m = n}^r \left(e^{-p(A_m)}\right) =$$

$$= \lim_{r \to \infty} e^{-\sum_{m = n}^r p(A_m)} = 0,$$

de manera que $p\left(\bigcap_{m\geq n}\overline{A_m}\right)=0, \forall n\in\mathbb{N}.$ Finalment,

$$0 \le p\left(\overline{A}\right) = p\left(\bigcup_{n \ge 1} \bigcap_{m \ge n} \overline{A_m}\right) \le \sum_{n \ge 1} p\left(\bigcap_{m \ge n} \overline{A_m}\right) = 0 + 0 + \dots = 0,$$

i concloem que p(A) = 1.

Tema 2

Variables aleatòries

2.1 Definició i propietats bàsiques de les variables aleatòries

Definició 2.1.1. Siguin $(\Omega_1, \mathcal{A}_1)$ i $(\Omega_2, \mathcal{A}_2)$ espais mesurables. Diem que $X \colon \Omega_1 \to \Omega_2$ és una variable aleatòria si

$$X^{-1}(A_2) \in \mathcal{A}_1, \, \forall A_2 \in \mathcal{A}_2.$$

En aquest curs, sempre pendrem $(\Omega_2, \mathcal{A}_2) = (\mathbb{R}, \mathcal{B})$. Per tant, quan parlem de variable aleatòria ens estarem referint a una aplicació $X \colon \Omega \to \mathbb{R}$ amb $B \in \mathcal{B} \implies X^{-1}(B) \in \mathcal{A}$, on (Ω, \mathcal{A}) és un espai de mesura.

Exemple 2.1.2.

1. Sigui (Ω, \mathcal{A}) un espai de mesura. Aleshores, $\forall c \in \mathbb{R}$, l'aplicació

$$X \colon \Omega \to \mathbb{R}$$
$$\omega \mapsto c$$

és una variable aleatòria, atès que, $\forall B \in \mathcal{B}$, es té que

$$X^{-1}(B) = \begin{cases} \Omega, & \text{si } c \in B, \\ \emptyset, & \text{si } c \notin B. \end{cases}$$

- 2. Siguin X i Y variables aleatòries. Aleshores, també son variables aleatòries les següents funcions.
 - \bullet X + Y
 - $\bullet X Y$
 - aX, $\forall a \in \mathbb{R}$
 - XY
 - $\bullet |X|$
 - $\max\{X,Y\}$
 - $\min\{X,Y\}$

- X⁺
- X⁻
- g(X,Y), on $g: \mathbb{R}^2 \to \mathbb{R}$ és ua funció mesurable.
- 3. Sigui (Ω, \mathcal{A}) un espai de mesura i sigui $A \in \mathcal{A}$. Definim la variable aleatòria indicadora d'A com

$$\mathbb{I}_{A} \equiv \mathbb{1}_{A} \colon \Omega \to \mathbb{R}$$

$$\omega \mapsto \mathbb{I}_{A}(\omega) = \begin{cases} 0, & \text{si } \omega \notin A, \\ 1, & \text{si } \omega \in A. \end{cases}$$

Vegem que, efectivament, es tracta d'una variable aleatòria. Sigui $B \in \mathcal{B}$. Aleshores,

$$\mathbb{I}_{A}(B) = \begin{cases} \Omega, & \text{si } 0 \in B, 1 \in B, \\ \overline{A}, & \text{si } 0 \in B, 1 \notin B, \\ A, & \text{si } 0 \notin B, 1 \in B, \\ \varnothing, & \text{si } 0 \notin B, 1 \notin B. \end{cases}$$

Observació 2.1.3. A partir d'ara, emprarem la notació següent. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i sigui $B \in \mathcal{B}$, escrivim

$$p(X \in B) := p\left(\left\{\omega \in \Omega \mid \omega \in X^{-1}(B)\right\}\right).$$

Exemple 2.1.4.
$$p(X \le 2) = p(\{\omega \in \Omega \mid X(\omega) \le 2\})$$
.

Observació 2.1.5. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i sigui X una variable aleatòria. X indueix una funció de probabilitat P_X sobre l'espai de mesura $(\mathbb{R}, \mathcal{B})$

$$P_X(B) := p(X \in B).$$

És a dir, $(\mathbb{R}, \mathcal{B}, P_x)$ és un espai de probabilitat. Comprovem, primer, que és un espai de mesura.

- i) $P_X(\varnothing) = p\left(\left\{\omega \in \Omega \mid \omega \in X^{-1}(\varnothing)\right\}\right) = p(\varnothing) = 0$, atès que p és una funció de probabilitat.
- ii) $0 \le p\left(\left\{\omega \in \Omega \mid \omega \in X^{-1}\left(B\right)\right\}\right) = P_X\left(B\right)$, atès que p és una funció de probabilitat.
- iii) Si $\{B_i\}_{i\in\mathbb{N}}\subseteq\mathcal{B}$ són disjunts dos a dos, aleshores $\{X^{-1}(B_i)\}_{i\in\mathbb{N}}\subseteq\mathcal{A}$ també són disjunts dos a dos. I, per ser p una funció de probabilitat, es té que

$$P_X\left(\bigcup_{i\in\mathbb{N}}B_i\right) = p\left(\left\{\omega\in\Omega\mid\omega\in X^{-1}\left(\bigcup_{i\in\mathbb{N}}B_i\right)\right\}\right) =$$

$$= \sum_{i\in\mathbb{N}}p\left(\left\{\omega\in\Omega\mid\omega\in X^{-1}\left(B_i\right)\right\}\right) =$$

$$= \sum_{i\in\mathbb{N}}P_X\left(B_i\right).$$

A més a més, per ser p una funció de probabilitat,

$$P_X(\mathbb{R}) = p\left(\left\{\omega \in \Omega \mid \omega \in X^{-1}(\mathbb{R})\right\}\right) = p(\Omega) = 1$$

i $(\mathbb{R}, \mathcal{B}, P_x)$ és un espai de probabilitat.

Observació 2.1.6. Sigui (Ω, \mathcal{A}) un espai mesurable. Recordem que $X : \Omega \to \mathbb{R}$ és una funció mesurable si i només si $X^{-1}((-\infty, a]) \in \mathcal{A}, \forall a \in \mathbb{R}$.

Definició 2.1.7. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i sigui X una variable aleatòria. Anomenem funció de distribució de probabilitat d'X a l'aplicació

$$F_X \colon \mathbb{R} \to [0, 1]$$

 $x \mapsto F_X(x) = p(X \le x) = P_X((-\infty, x]).$

Proposició 2.1.8. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i sigui F_X la funció de distribució de probabilitat d'una variable aleatòria X sobre (Ω, \mathcal{A}, p) . Aleshores,

- i) $x_1 \le x_2 \implies F_X(x_1) \le F_X(x_2)$.
- ii) $\lim_{x \to -\infty} F_X(x) = 0$ i $\lim_{x \to \infty} F_X(x) = 1$.
- iii) F_X és contínua per la dreta, és a dir, $\lim_{h\to 0^+} F_X\left(x+h\right) = F_X\left(x\right)$.

Demostració.

- i) $F_X(x_1) = p\left(\left\{\omega \in \Omega \mid X(\omega) \le x_1\right\}\right) \le p\left(\left\{\omega \in \Omega \mid X(\omega) \le x_2\right\}\right) = F_X(x_2)$, atès que $\left\{\omega \in \Omega \mid X(\omega) \le x_1\right\} \subseteq \left\{\omega \in \Omega \mid X(\omega) \le x_2\right\}$ i que p és una funció mesurable.
- ii) Vegem que $\forall \{x_n\}_{n\in\mathbb{N}}$ tal que $\lim_{n\to\infty} x_n = -\infty$, es té que $\lim_{n\to\infty} F_X(x_n) = 0$. Definim $A_n = \{\omega \in \Omega \mid X(\omega) \leq x_n\}$. Tenim que $\varnothing \subseteq \liminf A_n \subseteq \limsup A_n$. A més, $\limsup A_n = \varnothing$ perquè, altrament, hi hauria un nombre infinit de conjunts A_n contenint un $\omega \in \Omega$ determinat. Per tant,

$$\lim_{n \to \infty} F_X(x_n) = \lim_{n \to \infty} p(A_n) = p\left(\lim_{n \to \infty} A_n\right) = p(\varnothing) = 0.$$

Anàlogament, es demostra que $\lim_{x\to\infty} F_X(x) = 1$.

iii) Fixat x, volem veure que $\lim_{h\to 0^+} F_X(x+h) = F_X(x)$.

Prenem $C_n = \{ \omega \in \Omega \mid X(\omega) \leq x + h_n \}$, on $\{h_n\}$ és una successió de reals no negatius amb límit zero. Aleshores, $\liminf C_n = \limsup C_n = \{ \omega \in \Omega \mid X(\omega) \leq x \}$. Això ens diu que

$$\lim_{n \to \infty} F_X(x + h_n) = \lim_{n \to \infty} p(C_n) = p\left(\lim_{n \to \infty} C_n\right) = p(C) = F_X(x).$$

Com això és cert $\forall h$ t. q. $\{h_n\} \to 0$, tenim que $\lim_{h \to 0^+} F_X(x+h) = F_X(x)$.

Observació 2.1.9. En general no podem assegurar que sigui contínua per l'esquerra. Fent la mateixa prova prenent $x - h_n$ amb $h_n \to 0^+$ en comptes de $x + h_n$, obtenim que $C = \{ \omega \in \Omega \mid X(\omega) < x \}$ i, per tant

$$\lim_{h \to 0^{-}} F_X(x+h) = p(X < x) = F_X(x) - p(X = x).$$

Lema 2.1.10. Sigui $f: \mathbb{R} \to \mathbb{R}$ una funció creixent i fitada. Aleshores f és mesuable Lebesgue.

Demostració. Suposem que f té un nombre no numerable de discontinuïats. Observem que totes les discontinuïtats són de salt. Sigui $D \subseteq \mathbb{R}$ el conjunt de punts on f és discontínua. Aleshores, tenim que, per tots els punts $x_d \in D$, existeixen els límits $\lim_{x \to x_d^+} f(x)$ i $\lim_{x \to x_d^-} f(x)$. Definim, per tot $n \in \mathbb{N}$, els conjunts

$$A_{n} = \left\{ x_{d} \in D \mid \frac{1}{n+1} \le \lim_{x \to x_{d}^{+}} f(x) - \lim_{x \to x_{d}^{-}} f(x) < \frac{1}{n} \right\},\,$$

on cometem l'abús de notació $\frac{1}{0} = \infty$. Com que D és no numerable, hi ha un nombre numerable de conjunts A_n i $\bigcup_{n \in \mathbb{N}} A_n = D$, necessàriament $\exists n \in \mathbb{N}$ tal que $|A_n| \notin \mathbb{N}$. Per tant, hi ha un nombre infinit de salts de, com a mínim $\frac{1}{n+1}$, la qual cosa contradiu la hipòtesi que f és fitada. Per tant, f té un nombre numerable de discontinuïtats i és, doncs, mesurable.

Teorema de l'existència d'una funció de distribució (2.1.11) Sigui $F: \mathbb{R} \to [0,1]$ una funció de probabilitat tal que

- i) $x_1 \le x_2 \implies F_X(x_1) \le F(x_2)$.
- ii) $\lim_{x \to -\infty} F(x) = 0$ i $\lim_{x \to \infty} F(x) = 1$.
- iii) F és contínua per la dreta, és a dir, $\lim_{h\to 0^+}F\left(x+h\right)=F\left(x\right)$.

Aleshores, existeixen un espai de probabilitat (Ω, \mathcal{A}, p) i una variàble aleatòria $X \colon \Omega \to \mathbb{R}$ tals que $F_X(x) = F(x)$.

 $Demostraci\acute{o}$. Prenem $(\Omega, \mathcal{A}, p) = ([0, 1], \mathcal{B} \cap [0, 1], \lambda_{[0, 1]})$ i definim

$$X \colon [0,1] \to [0,1]$$

 $\omega \mapsto X(\omega) = \sup \{ y \in \mathbb{R} \mid F(y) \le \omega \}.$

Observem que a tots els punts on F és contínua X també ho és, de manera que X és una funció mesurable. Vegem que $F_X(x) = F(x)$, $\forall x \in \mathbb{R}$. Donat $x \in \mathbb{R}$, definim els conjunts

$$A = \left\{ \omega \in [0, 1] \mid X(\omega) \le x \right\},$$

$$B = \left\{ \omega \in [0, 1] \mid \omega \le F(x) \right\}$$

i observem que

$$P(A) = P(X \le x) = F_X(x),$$

$$P(B) = \lambda ([0, F(x)]) = F(x).$$

Si demostrem que A = B, haurem acabat.

- $\bullet \ \omega \in B \implies \omega \leq F\left(x\right) \implies x \notin \left\{y \in \mathbb{R} \mid F\left(y\right) < \omega\right\} \implies x \geq X\left(\omega\right) \implies \omega \in A.$
- $\omega \notin B \implies \omega > F(x) \implies \exists \varepsilon > 0 \text{ t.q. } \omega > F(x+\varepsilon) \implies x(\omega) \ge x+\varepsilon > x \implies X(\omega) > x \implies \omega \notin A.$

2.2 Esperança d'una variable aleatòria. Desigualtats de Markov i Chebyshev

Definició 2.2.1. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i sigui $X : \Omega \to \mathbb{R}$ una variable aleatòria. Com ja sabem, X indueix una probabilitat P_X sobre $(\mathbb{R}, \mathcal{B})$. Definim l'esperança de la variable aleatòria d'X, $\mathbb{E}[X]$ com

$$\mathbb{E}[X] = \int_{\Omega} X \, \mathrm{d}p = \int_{\mathbb{R}} x \, \mathrm{d}P_X,$$

si existeix aquesta integral.

Observació 2.2.2. La demostració que aquestes dues integrals són iguals resulta de l'aplicació de la definició de la integral de Lebesgue, però escapa dels objectius d'aquest curs i no l'escriurem.

Observació 2.2.3. Igual que es va veure al curs de teoria de la mesura, pot ser que $\mathbb{E}[X]$ no existeixi o que sigui infinita. No obstant això, atès que $|\int_{\Omega} f \, \mathrm{d}p| \leq \int_{\Omega} |f| \, \mathrm{d}p$, sovint demanarem que $\mathbb{E}[|X|] \leq +\infty$ per poder afirmar que $\mathbb{E}[X] \leq +\infty$.

Proposició 2.2.4. Sigui $f: \mathbb{R} \to \mathbb{R}$ una funció mesurable i sigui X una variable aleatòria. Aleshores, f(X) és una variable aleatòria i

$$\mathbb{E}[f(X)] = \int_{\Omega} f(X) \, \mathrm{d}p = \int_{\mathbb{R}} x \, \mathrm{d}P_{f(X)}.$$

Demostració. Si f és mesurable, aleshores f(X) també, de manera que f(X) és una varible aleatòria i la resta segueix de la definició.

Definició 2.2.5. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i sigui $X \colon \Omega \to \mathbb{R}$ una variable aleatòria. Aleshores, definim

• Moment d'ordre r d'X:

$$\mathbb{E}\left[X^r\right],$$

on $r \in \mathbb{R}$ i hem suposat que $\mathbb{E}\left[\left|X\right|^r\right] < +\infty$.

• Moment factorial d'ordre r d'X:

$$\mathbb{E}\left[(X)_r \right] = X \left(X - 1 \right) \cdots \left(X - r + 1 \right),$$

on $r \in \mathbb{N}$.

• Variància d'X:

$$\mathbb{V}$$
ar $[X] = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^2\right]$.

• Desviació típica d'X:

$$\sigma = \sqrt{\mathbb{V}\mathrm{ar}\left[X\right]}.$$

Proposició 2.2.6. Siguin X, Y variables aleatòries, siguin $a, b \in \mathbb{R}$ i sigui $A \in \mathcal{A}$. Es tenen les següents propietats de l'esperança.

- $\mathbb{E}[a] = a$,
- $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y],$
- $\mathbb{E}\left[\mathbb{I}_A\right] = p\left(A\right)$,
- $|\mathbb{E}[X]| \leq \mathbb{E}[X]$.

Es tenen les següents propietats de la variància.

- $\operatorname{Var}[X] = \mathbb{E}\left[\left(X \mathbb{E}[X]\right)^2\right] = \mathbb{E}\left[X^2 + \mathbb{E}[X]^2 2X\mathbb{E}[X]\right] = \mathbb{E}\left[X^2\right] + \mathbb{E}[X]^2 2\mathbb{E}[X]^2 = \mathbb{E}\left[X^2\right] \mathbb{E}[X]^2,$
- $\operatorname{Var}\left[a\right] = 0$,
- $\operatorname{Var}[a+X] = \operatorname{Var}[X],$
- $\operatorname{Var}[aX] = a^2 \operatorname{Var}[X]$.

Proposició 2.2.7. Designaltat de Holder. Signin X, Y variables aleatòries i signin $p, q \in \mathbb{R}$ tals que $\frac{1}{p} + \frac{1}{q} = 1$. Si $\mathbb{E} [|X|^p], \mathbb{E} [|Y|^q] < +\infty$, aleshores

$$\mathbb{E}\left[\left|XY\right|\right] \le \mathbb{E}\left[\left|X\right|^{p}\right]^{\frac{1}{p}} \mathbb{E}\left[\left|Y\right|^{q}\right]^{\frac{1}{q}} < +\infty.$$

Designaltat de Cauchy-Schwartz. Siguin X,Y variables aleatòries. Si $\mathbb{E}\left[\left|X\right|^2\right],\mathbb{E}\left[\left|Y\right|^2\right]<+\infty$, aleshores

$$\mathbb{E}\left[|XY|\right] \le \mathbb{E}\left[|X|^2\right]^{\frac{1}{2}} \mathbb{E}\left[|Y|^2\right]^{\frac{1}{2}} < +\infty.$$

Desigualtat de Minkowsky. Siguin X, Y variables aleatòries i sigui $p \in \mathbb{R}$. Si $\mathbb{E}[|X|^p]$, $\mathbb{E}[|Y|^p] < +\infty$, aleshores

$$\mathbb{E}\left[|X+Y|^p \right]^{\frac{1}{p}} \leq \mathbb{E}\left[|X|^p \right]^{\frac{1}{p}} + \mathbb{E}\left[|Y|^p \right]^{\frac{1}{p}} < +\infty.$$

Demostraci'o. Tots aquests resultats són l'aplicaci\'o de les designaltats corresponents demostrades al curs de teoria de la mesura.

Observació 2.2.8. La designaltat de Cauchy-Schwartz és el cas particular p=q=2 de la designaltat de Holder.

Teorema 2.2.9. Designaltat de Markov.

Sigui (Ω, \mathcal{A}, p) un espai de probabilitat, sigui $X \colon \Omega \to \mathbb{R}$ una variable aleatòria amb X > 0 i sigui $a \in \mathbb{R}^+$. Aleshores,

$$P(X \ge a) \le \frac{\mathbb{E}[X]}{a}.$$

Demostració. Sigui $A=\left\{ \omega\in\Omega\mid X\left(\omega\right)\geq a\right\} .$ Com que X és mesurable, A és un succés. Observem que

$$a\mathbb{I}_{A}\left(\omega\right) \leq X\left(\omega\right), \,\forall \omega \in \Omega.$$

Aleshores,

$$ap(X \ge a) = \mathbb{E}\left[a\mathbb{I}_A(\omega)\right] \le \mathbb{E}\left[X(\omega)\right] = \mathbb{E}\left[X\right].$$

Índex alfabètic

conjunt	de probabilitat, 1	
d'esdeveniments, 1		
de successos, 1	límit	
desviació típica, 13	inferior d'esdeveniments, e superior d'esdeveniments,	
${\rm esdeveniments\ independents,\ 5}$	moment	
espai	d'ordre r , 13	
$ m de\ probabilitat,\ 1$	factorial d'ordre r , 13	
producte, 5	,	
mostral, 1	probabilitat condicionada, 4	
esperança d'una variable aleatòria, 13		
<u>. </u>	variància, 13	
funció	varible	
de distribució de probabilitat, 11	aleatòria, 9	