SORBONNE UNIVERSITÉ

TRAVAUX D'ÉTUDE ET DE RECHERCHE

Autour du théorème de Dvoretzky

Mathieu GALLO Enseignant : Omer Friedland

TABLE DES MATIÈRES

In	Introduction		
1	Préliminaire		5
	1.1	Mesures de Haar	5
	1.2	Concentration de la mesure	7
	1.3	Ellipsoïdes	10
	1.4	Loi gaussienne	12
2	Démonstration du théorème de Dvoretzky		14
	2.1	Lemmes d'approximations	14
	2.2	Démonstration du théorème de Dvoretzky	17
3	3 Sections presque euclidiennes de ℓ_p^n		21
\mathbf{A}	A - Inégalité de Prékopa-Leindler		26
В	8 - Martingales & Inégalité de Khinchine		29

INTRODUCTION

Le mémoire présent suit la série de lectures de Gideon Schetchman, "Euclidean sections of convex bodies" [1].

Alexandre Grothendieck en 1956 dans son article "Sur certaines classes de suites dans les espaces de Banach et le théorème de Dvoretzky-Rogers" [2], inspiré par le lemme de Dvoretzky-Rogers (1950) propose une conjecture à laquelle Aryeh Dvoretzky répondra positivement en 1961, aboutissant au résultat suivant :

Théorème 1 (A. Dvoretzky, 1961). Il existe une fonction $k:]0,1[\times \mathbb{N} \to \mathbb{N}$, telle que $\forall \varepsilon \in]0,1[$, $k(\varepsilon,n) \overset{n\to\infty}{\longrightarrow} \infty$ et pour tout $n \in \mathbb{N}$ et tout compact convexe symétrique $K \subset \mathbb{R}^n$, il existe $V \subset \mathbb{R}^n$ tels que :

- (i) dim $V = k(\varepsilon, n)$
- (ii) $\exists r > 0$ tel que, $r.(V \cap B_2^n) \subset V \cap K \subset (1+\varepsilon)r.(V \cap B_2^n)$

Dans le papier original de Dvortezky, l'estimation de k était :

$$k(\varepsilon, n) \ge c(\varepsilon) \sqrt{\frac{\log n}{\log \log n}}$$
 pour un $c(\varepsilon) > 0$

Vitali Milman en 1971 [3] donna une nouvelle preuve du théorème de Dvoretzky en utilisant le phénomène de concentration de la mesure, il a de plus, amélioré le théorème en donnant l'estimation de la dépendance en n pour la dimension de $V: k(\varepsilon, n) \ge c(\varepsilon).\log(n)$.

Théorème 2 (V. Milman, 1971). Pour tout $\varepsilon > 0$, il existe une constante c > 0 telle que pour tout $n \in \mathbb{N}$ et pour tout compact convexe symétrique $K \subset \mathbb{R}^n$, il existe $V \subset \mathbb{R}^n$ tels que :

- (i) $\dim V \ge c \cdot \log(n)$
- (ii) $\exists r>0$ tel que , $r.(V\cap B_2^n)\subset V\cap K\subset (1+\varepsilon)r.(V\cap B_2^n)$

La dépendance de c par rapport à ε donnée par V.Milman était $c \sim \frac{\varepsilon^2}{\log \frac{1}{\varepsilon}}$ [3], c'est cette dépendance qui serra démontrée dans ce mémoire. Y.Gordon a montré en 1988 que l'on pouvait prendre $c \sim \varepsilon^2$ avec les mêmes outils que V.Milman dans [4], plus récemment en 2006, G.Schechtman a montré que l'on pouvait prouver le théorème de Dovretzky avec la même preuve que V. Milman pour $c \sim \varepsilon^2$ en construisant de manière plus précise le θ -net [5] (voir preuve de **théorème 2.4**).

Notation. Pour la suite, on utilisera les notations :

- $|.|_n$ la norme euclidienne sur \mathbb{R}^n , ou |.| si il n'y a pas d'ambiguïté sur la dimension.
- $S^{n-1} = \{x \in \mathbb{R}^n ; |x| = 1\}$, la (n-1)-sphère euclidienne.
- Pour ||.|| une norme sur \mathbb{R}^n on note $B_{||.||} = \{x \in \mathbb{R}^n ; ||x|| \le 1\}$ la boule unité fermée.

Commençons par donner une légère interprétation géométrique du théorème. Prenons l'exemple de $K = B_{||.||_{\infty}}$ dans le cas n=2 la distance entre un point situé sur un quart du cercle et le coin le plus proche est $\sqrt{2}-1$. Nous pouvons facilement généraliser cela pour n>2. Prenons par exemple les points $A=(\frac{1}{\sqrt{n}},...,\frac{1}{\sqrt{n}})\in S^{n-1}$ et $B=(1,...,1)\in\partial B^n_{\infty}$ le coin de B^n_{∞} le plus proche de A, on peut joindre A aux points $e_j\in\partial B^n_{\infty}\cap S^{n-1}$

de la base canonique pour $1 \le j \le n$, et on a les distances suivantes :

$$|A - e_j| = \sqrt{2(1 - \frac{1}{\sqrt{n}})} \underset{n \to \infty}{\longrightarrow} \sqrt{2}$$

$$|e_i - e_j| = \sqrt{2} \quad \text{pour } i \neq j$$

$$|A - B| = \sqrt{n - 1} \underset{n \to \infty}{\longrightarrow} \infty$$

$$|e_j - B| = \sqrt{n - 1} \underset{n \to \infty}{\longrightarrow} \infty$$

Donc lorsque n est grand, si on se place sur la (n-1)-sphère euclidienne, B_{∞}^{n} semble être formée de 2^{n} "piques" qui sont de plus en plus grands avec n. Mais le théorème de Dvoretzky nous affirme qu'il existe une section C de B_{∞}^{n} de dimension supérieure à $c \log n$ où c ne dépendant

pas de n, telle que C soit arbitrairement proche de la boule euclidienne, c'est-à-dire une section sur laquelle on ne voit pas ces "piques". En terme plus mathématique, pour tout $\varepsilon > 0$ il existe $V \subset \mathbb{R}^n$ de dimension plus grande que $c(\varepsilon) \log n$ telle que pour un certain r > 0:

$$r.(V \cap B_2^n) \subset V \cap B_\infty^n \subset (1 + \varepsilon)r.(V \cap B_2^n)$$

Nous allons maintenant donner une reformulation du théorème de Dvoretzky en terme de norme, en utilisant la relation entre un compact convexe symétrique K et la norme $||y||_K = \inf\{\lambda : \frac{y}{\lambda} \in K\}$.

Défintion. Soit $(X,||.||_X),(Y,||.||_Y)$ deux espaces normés et C>0, on dit que X s'injecte Ccontinûment dans Y, si il existe $T\in \mathcal{L}(X,Y)$ tel que pour tout $x\in X$

$$||x||_{X} \le ||Tx||_{Y} \le C||x||_{X}$$

Théorème 3. Pour tout $\varepsilon > 0$ il existe c > 0 telle que pour tout $n \in \mathbb{N}$ et pour toutes normes $\|\cdot\|$ sur \mathbb{R}^n , ℓ_2^k s'injecte $(1+\varepsilon)$ -continûment dans $(\mathbb{R}^n, \|\cdot\|)$ pour un $k \ge c \cdot \log(n)$.

Montrons que le théorème 2 et le théorème 3 sont équivalents.

 $(2) \Rightarrow (3)$

Posons $K = B_{||.||}$ et appliquons le théorème 2, celui-ci nous procure un sous-espace V de \mathbb{R}^n , avec $\dim V := k \ge c.\log(n)$ et $V \cap K$ est ε -ecuclidien. Donnons-nous une base orthonormée $\{v_j\}_{1 \le j \le k}$ de V et posons

$$T: \begin{array}{ccc} (\mathbb{R}^k, |.|_k) & \mapsto & (V, ||.||) \\ \sum_{i=1}^k x_i e_i & \to & \sum_{i=1}^k x_i v_i \end{array}$$

Soit $x \in \mathbb{R}^k$ tel que ||Tx|| = 1, comme $K \cap V$ est ε -euclidien on a que

$$r \le |Tx|_n \le (1+\varepsilon)r$$
, pour un $r > 0$

Remarquons que $|Tx|_n = |x|_k$, donc

$$r \le |x|_k \le (1 + \varepsilon)r$$

Il suffit d'appliquer cela à $\frac{x}{\|Tx\|}$ pour $x \neq 0$

$$|r||Tx|| \le |x|_k \le (1+\varepsilon)r||Tx||$$

$$\frac{1}{(1+\varepsilon)r}|x|_k \le ||Tx|| \le \frac{1}{r}|x|_k$$

$$r|x|_k \le ||\tilde{T}x|| \le (1+\varepsilon)r|x|_k$$

avec $\tilde{T} = r(1+\varepsilon)T$, remarquons que la quantité importante est $||T||.||T^{-1}|| = ||\tilde{T}||.||\tilde{T}^{-1}|| \le 1+\varepsilon$. (3) \Rightarrow (2)

Soit $\varepsilon>0$, par le théorème 3 il existe c>0 telle que pour tous $n\in\mathbb{N}$ il existe un $k>c.\log(n)$ et ℓ_2^k s'injecte $(1+\varepsilon)$ -continûment dans $(R^n,||.||)$ pour n'importe quelle norme ||.|| sur \mathbb{R}^n . Considérons un compact convexe symétrique $K\subset\mathbb{R}^n$ et $||y||=\inf\left\{\lambda>0\;;\;\frac{\gamma}{\lambda}\in K\right\}$, alors $\exists T:\ell_2^k\to(\mathbb{R}^n,||.||)$ linéaire tel que :

$$\forall x \in \mathbb{R}^k$$
, $|x| \le ||Tx|| \le (1 + \varepsilon)|x|$

ceci implique immédiatement que T est injective, notons $V = \operatorname{Im} T$, alors la co-restriction à V de T est bijective.

(i) Soit $y \in T(B_2^k)$ et $x \in B_2^k$ tel que Tx = y alors $\frac{||y||}{1+\varepsilon} \le 1$ donc $\frac{y}{1+\varepsilon} \in K \cap V$, c'est-à-dire $\frac{1}{1+\varepsilon}T(B_2^k) \subset K \cap V$.

(ii) Soit $y \in K \cap V$ par bijectivité de T, il existe $x \in \mathbb{R}^k$ tel que Tx = y, alors $1 \ge ||y|| \ge |x|$, donc $x \in B_2^k$ c'est-à-dire $K \cap V \subset T\left(B_2^k\right)$.

Et donc, '

$$\frac{1}{1+\varepsilon}T(B_2^k) \subset K \cap V \subset T(B_2^k)$$

Pour conclure, nous nous référençons au **lemme 1.6** qui sera démontré par la suite, qui dit que toutes ellipsoïdes de dimension k admet une section de dimension $\lceil k/2 \rceil$ qui soit un multiple de la boule euclidienne.

1 PRÉLIMINAIRE

1.1. MESURES DE HAAR

La mesure de Haar est une notion introduite par Alfred Haar en 1933. Il démontre que dans tout groupe localement compact à base dénombrable, il existe une mesure borélienne invariante par translation à gauche. En 1935 John V.Neumann montre que cette mesure est unique à un coefficient multiplicatif près, nous admettrons le théorème suivant (voir [6]).

Définition & Théorème (Mesures de Haar). Soit (X, d) un espace métrique, G un groupe topologique localement compact qui agit sur X et tel que :

$$\forall x, y \in X \ \forall g \in G, \ d(gx, gy) = d(x, y)$$
 (**)

alors, il existe une unique mesure à un coefficient multiplicatif près, régulière définie sur les boréliens de X qui est invariante sous l'action de G. Cette mesure est appelée mesure de Haar de X (où G est sous-entendu).

Les deux exemples suivants d'espaces métriques vérifient (\star) pour G = O(n),

- (i) $X = S^{n-1}$ muni de la distance euclidienne
- (ii) X = O(n) avec la norme $||T|| = \sup_{|x|=1} |Tx|$

Notation. Par le théorème précédent, on peut définir sans ambiguïté μ et ν les mesures de Haar normalisées respectivement sur S^{n-1} et O(n).

Montrons quelques propriétés qui seront utiles par la suite.

Lemme 1.1. Soit $f \in C(S^{n-1})$ et $Y = (g_1, ..., g_n)$ où les $\{g_i\}_{1 \le i \le n}$ sont i.i.d suivant une loi normale $\mathcal{N}(0,1)$, alors

$$\int_{S^{n-1}} f \, d\mu = \mathbb{E}\left[f\left(\frac{Y}{|Y|}\right)\right]$$

Démonstration. Par unicité de la mesure de Haar , il nous suffit de montrer que pour tous $M \in O(n)$ et $f \in C(S^{n-1})$:

$$\mathbb{E}\left[f\left(\frac{MY}{|MY|}\right)\right] = \mathbb{E}\left[f\left(\frac{Y}{|Y|}\right)\right]$$

$$\mathbb{E}\left[f\left(\frac{MY}{|MY|}\right)\right] = \int_{\mathbb{R}^n\setminus\{0\}} f\left(\frac{My}{|y|}\right) \exp\left\{-\frac{1}{2}|y|^2\right\} dy_1...dy_n = \int_{\mathbb{R}^n\setminus\{0\}} \frac{1}{|\det M|} f\left(\frac{y}{|y|}\right) \exp\left\{-\frac{1}{2}|M^{-1}y|^2\right\} dy_1...dy_n$$
comme $|\det M| = 1$ et $|M^{-1}y| = |y|$, on a :

$$\mathbb{E}\bigg[f\Big(\frac{MY}{|MY|}\Big)\bigg] = \mathbb{E}\bigg[f\Big(\frac{Y}{|Y|}\Big)\bigg]$$

Lemme 1.2. Soit $A \subseteq S^{n-1}$ un borélien alors pour tous $x \in S^{n-1}$

$$v(T \in O(n); Tx \in A) = \mu(A)$$

 $D\acute{e}monstration.$ Soit $M\in O(n)$ et $x\in S^{n-1}$ alors ω_x définie par

$$\omega_x(A) = v \Big(T \in O(n) ; Tx \in A \Big)$$

vérifie les propriétés suivantes :

$$\omega_x(MA) = \nu \Big(T \in O(n) \; ; \; M^T T x \in A \Big) = \nu \Big(T \in O(n) \; ; \; T x \in A \Big) = \omega_x(A)$$

$$\omega_x(\emptyset) = 0$$

$$\omega_{x}\left(\bigsqcup_{i\in\mathbb{N}}A_{i}\right) = \nu\left(T\in O(n)\;;\; Tx\in\bigsqcup_{i\in\mathbb{N}}A_{i}\right) = \nu\left(\bigsqcup_{i\in\mathbb{N}}\left\{T\in O(n)\;;\; Tx\in A_{i}\right\}\right)$$
$$= \sum_{i\in\mathbb{N}}\nu\left(T\in O(n)\;;\; Tx\in A_{i}\right) = \sum_{i\in\mathbb{N}}\omega_{x}(A_{i})$$

L'unicité de la mesure de Haar nous permet de conclure que $\omega_x = \mu$, en particulier ω_x ne dépend pas de x.

1.2. CONCENTRATION DE LA MESURE

Le phénomène de concentration de la mesure a été mis en avant par V.Milman étandant les travaux de P.Lévy et son inégalité isopérimétrique. On peut formuler la question que cherche à résoudre le théorème comme cela : étant donné (X,d) un espace métrique muni d'une mesure de probabilité P, on cherche à regarder où les fonctions 1-Lipschitziennes sont essentiellement constantes. Considérons f une fonctions 1-Lipschitzienne de X dans \mathbb{R} , l'assertion f est essentiellement constante se traduit par le fait que l'on puisse donner une borne supérieure à $P(|f-i(f)| \ge \varepsilon)$, pour $\varepsilon \ge 0$ et i(f) une constante qui dépend de f, en pratique i(f) est la médiane de f ou son espérance.

Pour un ensemble $A \subset X$ et t > 0 on définit son t-élargissement A_t par :

$$A_t = \left\{ x \in X \; ; \; d(x, A) \le t \right\}$$

Dans la suite, on montre une égalité de concentration sur la sphère. Pour cette partie on note λ la mesure de Lebsgue sur \mathbb{R}^n .

Théorème 1.3. Soit $A \in \text{Bor}(S^{n-1})$ tel que $\mu(A) \ge \frac{1}{2}$, alors pour tous t > 0:

$$\mu(A_t) \ge 1 - 2e^{-\frac{nt^2}{4}}$$

Démonstration. Si t>2 alors $A_t=S^{n-1}$, on peut donc supposer t<2. Soit $x\in A$ et $y\in A_t^c$ alors

$$\left|\frac{x+y}{2}\right|^2 = \frac{|x|^2}{2} + \frac{|y|^2}{2} - \left|\frac{x-y}{2}\right|^2 = 1 - \frac{|x-y|^2}{4}$$

$$< 1 - \frac{t^2}{4}$$

or

$$(1 - \frac{t^2}{8})^2 = 1 - \frac{t^2}{4} + \frac{t^4}{8^2} \ge 1 - \frac{t^2}{4}$$

et donc

$$\left|\frac{x+y}{2}\right| < 1 - \frac{t^2}{8}$$

Posons

- $\tilde{A} = \{ax; a \in [0, 1], x \in A\}$
- $\tilde{B} = \{ax : a \in [0,1], x \in A_t^c\}$

et donnons nous $X=ax\in \tilde{A}$ et $Y=by\in \tilde{B}$, dans le calcul qui suit, les rôles de a et b sont symétriques, fixons alors $a\leq b$,

$$\left| \frac{X+Y}{2} \right| = \left| \frac{ax+yb}{2} \right|$$

$$= b \left| \frac{\frac{a}{b}x+y}{2} \right|$$

$$\leq \left| \frac{a}{b} \left(\frac{x+y}{2} \right) + \left(1 - \frac{a}{b} \right) \frac{y}{2} \right|$$

$$\leq \frac{a}{b} \left| \frac{x+y}{2} \right| + \left(1 - \frac{a}{b} \right) \left| \frac{y}{2} \right|$$

Or pour $t \le 2$

$$1 - \frac{t^2}{8} \ge \frac{1}{2} = |\frac{y}{2}|$$

et donc

$$\left|\frac{X+Y}{2}\right| < 1 - \frac{t^2}{8}$$

c'est-à-dire,

$$\frac{\tilde{A}+\tilde{B}}{2}\subset \big(1-\frac{t^2}{8}\big)B_2^n$$

Remarquons que μ peut s'exprimer géométriquement comme $\mu(C) = \frac{\lambda \left(tx; t \in [0,1], x \in C\right)}{\lambda(B_2^n)}$, pour C un borélien de S^{n-1} . Donc $\mu(A) = \frac{\lambda(\tilde{A})}{\lambda(B_2^n)}$, par l'inégalité de Brunn-Minkowsky (**corollaire A.3**)

$$\left(1-\frac{t^2}{8}\right)^n\lambda(B_2^n)\geq\lambda\Big(\frac{\tilde{A}+\tilde{B}}{2}\Big)\geq\sqrt{\lambda(\tilde{A})\lambda(\tilde{B})}=\lambda(B_2^n)\sqrt{\mu(A)\mu(A_t^c)}$$

Or $\sqrt{\mu(A)\mu(A_t^c)} \geq \sqrt{\frac{1}{2}(1-\mu(A_t))}$ et finalement :

$$\mu(A_t) \ge 1 - 2\left(1 - \frac{t^2}{8}\right)^{2n} \ge 1 - 2e^{-\frac{t^2n}{4}}$$

Le corollaire qui suit est fondamentale dans la démonstrations du théorème de Dvoretzky.

Corollaire 1.4 (concentration de la mesure sur la sphère). Pour tout t>0 et toute fonction f, L-Lipschitzienne de S^{n-1} dans \mathbb{R} pour un L>0 on a :

$$\mu\{|f - \mathbb{E}[f]| > t\} \le 4e^{-\beta \frac{t^2 n}{L^2}}$$

où $\mathbb{E}[f] = \int_{S^{n-1}} f \, d\mu$ et $1 > \beta > 0$ une constante universelle.

Démonstration. Commençons par le montrer pour L=1, donnons nous m_f une médiane de f et posons $A=\{f\leq m_f\}$, alors

$$x \in A_t \Rightarrow \exists y \in A, d(x, y) < t$$

$$\Rightarrow |f(x) - f(y)| < Lt = t$$

$$\Rightarrow f(x) - m_f \le f(x) - f(y) + f(y) - m_f$$

$$\Rightarrow f(x) \le m_f + t$$

 $\mathrm{donc}\ A_t \subset \left\{ f \leq m_f + t \right\} \iff \left\{ f > m_f + t \right\} \subset A_t^c,$

$$\mu(f > m_f + t) \le \mu(A_t^c) \le 2e^{-\frac{t^2n}{4}}$$

En appliquant exactement le même procédé avec $A = \left\{ f \geq m_f \right\}$ on obtient :

$$\mu(f < m_f - t) \le 2e^{-\frac{t^2n}{4}}$$

Il nous faut maintenant remplacer la médiane par $\mathbb{E}[f]$, on a l'inégalité suivante :

$$\begin{aligned} |m_{f} - \int_{S^{n-1}} f d\mu| &\leq \int_{S^{n-1}} |m_{f} - f| d\mu \\ &\leq \int_{0}^{+\infty} \mu (|m_{f} - f| > t) dt \\ &\leq \int_{0}^{+\infty} 4e^{-\frac{t^{2}n}{4}} dt = 4\sqrt{\frac{\pi}{n}} \end{aligned}$$

Posons
$$\alpha = \frac{\sqrt{\log(2)}}{2\sqrt{\pi} + \sqrt{\log(2)}} \Rightarrow 2e^{\frac{-4\pi\alpha^2}{(1-\alpha)^2}} = 1$$
, si $t > \frac{4}{1-\alpha}\sqrt{\frac{\pi}{n}}$ alors

$$\mu(f > \mathbb{E}[f] + t) \le \mu(f > m_f - 4\sqrt{\frac{\pi}{n}} + t)$$

$$\le \mu(f > m_f + \alpha t)$$

$$\le 2e^{-\alpha^2 \frac{t^2 n}{4}}$$

Similairement:

$$\mu(f < \mathbb{E}[f] - t) \le \mu(f < m_f + 4\sqrt{\frac{\pi}{n}} - t)$$

$$\le \mu(f > m_f - \alpha t)$$

$$\le 2e^{-\alpha^2 \frac{t^2 n}{4}}$$

Si
$$t \le \frac{4}{1-\alpha} \sqrt{\frac{\pi}{n}}$$
 alors

$$2e^{-\alpha^2\frac{t^2n}{4}} \ge 2e^{\frac{-4\pi\alpha^2}{(1-\alpha)^2}} = 1$$

Dans ce cas, il n'y à rien a montrer et finalement dans tous les cas on obtient :

$$\mu(f > \mathbb{E}[f] + t) \le 2e^{-\alpha^2 \frac{t^2 n}{4}}$$
$$\mu(f < \mathbb{E}[f] - t) \le 2e^{-\alpha^2 \frac{t^2 n}{4}}$$

C'est-à-dire:

$$\mu(|f - \mathbb{E}[f]| > t) \le 4e^{-\alpha^2 \frac{t^2 n}{4}}$$

Pour $L \neq 1$ il suffit d'appliquer ce qui précède à $\frac{f}{L}$,

$$\mu(|f - \mathbb{E}[f]| > t) \le 4e^{-\alpha^2 \frac{t^2 n}{4L^2}}$$

1.3. ELLIPSOÏDES

Dans cette partie, nous montrons plusieurs propriétés sur les ellipsoïdes, commençons par les définir :

Défintion. On appelle ellipsoïde de \mathbb{R}^n l'image de la boule unité euclidienne par un élément de GL(n).

Donnons une définition alternative d'un l'ellipsoïde.

Proposition 1.5. Pour toute ellipsoïde \mathcal{E} il existe $\alpha_1,...,\alpha_n>0$ et $v_1,...,v_n$ une base orthonormée tels que :

$$\mathcal{E} = \left\{ x \in \mathbb{R}^n \; ; \; \sum_{i=1}^n \frac{\langle x, v_i \rangle^2}{\alpha_i^2} < 1 \right\}$$

Démonstration. Donnons-nous $A \in GL(n)$ tel que $AB_2^n = \mathcal{E}$

$$|Ax|^2 = x^T A^T A x$$

 A^TA est symétrique, soit λ une de ses valeurs propres et ν un vecteur propre associé, alors

$$0 < |Av|^2 = v^T \lambda v = \lambda |v|^2$$

Donc les valeurs propres A^TA sont strictement positives. Comme A^TA est symétrique, elle est donc diagonalisable dans une base orthonormée, donnons-nous $(\lambda_i)_{i \leq n}$ et $(v_i)_{i \leq n}$ une base orthonormée tels que $A^TAv_i = \lambda_i^2 v_i$ pour tout $1 \leq i \leq n$ et définissons les quantités suivantes :

- $P \in M_n(\mathbb{R})$ la matrice définie par $P v_j = \lambda_j v_j$

$$- u_j = \lambda_i^{-1} A v_j$$

Montrons que les u_i forment une base orthonormée :

$$\begin{split} \langle u_i, u_j \rangle &= \lambda_j^{-1} v_j^T A^T \lambda_i^{-1} A v_i \\ &= \lambda_j^{-1} \lambda_i^{-1} v_j^T (A^T A v_i) \\ &= \lambda_j^{-1} \lambda_i^{-1} v_j^T \lambda_i^2 v_i \\ &= \frac{\lambda_i}{\lambda_j} \langle v_j, v_i \rangle = \left\{ \begin{array}{l} 0 \text{ si } i \neq j \\ 1 \text{ sinon} \end{array} \right. \end{split}$$

Soit $x = \sum_{i=1}^{n} x_i v_i \in S^{n-1}$

$$y =: Ax = x_1 A v_1 + \dots + x_n A v_n$$
$$= x_1 \lambda_1 u_1 + \dots + x_n \lambda_n u_n$$

Les composantes de y dans la base $\{u_j\}_{j\leq n}$ sont $\langle y,u_j\rangle=x_j\lambda_j,$ donc :

$$\frac{\langle y, u_1 \rangle^2}{\lambda_1^2} + \dots + \frac{\langle y, u_n \rangle^2}{\lambda_n^2} = x_1^2 + \dots + x_n^2 = 1$$

Et finalement $\partial\mathcal{E} = \big\{y \in \mathbb{R}^n \; ; \; \frac{\langle y, u_1 \rangle^2}{\lambda_1^2} + \ldots + \frac{\langle y, u_n \rangle^2}{\lambda_n^2} = 1 \big\}.$

Démontrons maintenant le lemme que nous avons utilisé dans l'introduction :

Lemme 1.6. Soit $\mathscr E$ un ellipsoïde de $\mathbb R^n$, alors $\exists \lambda > 0$ et $V \subset_{\mathrm{s.e.v}} \mathbb R^n$ de dimension $\lceil \frac{n}{2} \rceil$ tels que :

$$\mathscr{E} \cap V = \lambda B_2^n \cap V$$

Démonstration. Quitte à effectuer une rotation, on peut supposer que $\mathcal{E} = \{x \in \mathbb{R}^n : \sum_{i=1}^n a_i x_i^2 < 1\}$ pour $0 \le a_1 \le ... \le a_n$. Posons $\lambda = \text{Mediane}(a_1, ..., a_n)$ et

$$F = \left\{ x \in \mathbb{R}^n \; ; \; \forall i \le \left\lfloor \frac{n}{2} \right\rfloor, \; \sqrt{\lambda - a_i} x_i = \sqrt{a_{n+1-i} - \lambda} x_{n+1-i} \right\}$$

Alors pour tous $x \in F$ nous avons $\forall i \leq \lfloor \frac{n}{2} \rfloor$:

$$a_i x_i^2 + a_{n+1-i} x_{n+1-i}^2 = \lambda (x_i^2 + x_{n+1-i}^2)$$

d'où

$$\sum_{i=1}^{n} a_i x_i^2 = \lambda \sum_{i=1}^{n} x_i^2$$

Nous admettons le résultat de F.John:

Définition & Théorème (Ellipsoïde de John). Tout compact convexe symétrique d'intérieur non vide contient un unique ellipsoïde de volume maximale, elle est appelée ellipsoïde de John.

Remarque 1.7. Soit $K \subset \mathbb{R}^n$ un compact convexe symétrique et $D = u(B_2^n)$ (avec $u \in GL(n)$) son ellipsoïde de John, notons alors $C =: u^{-1}(K)$ dont l'ellipsoïde de John est B_2^n , supposons qu'il existe $W \subset \mathbb{R}^n$ et r > 0 tel que

$$r(B_2^n \cap W) \subset C \cap W \subset r(1+\varepsilon)(B_2^n \cap W)$$

alors

$$u^{-1}\big(r(D\cap uW)\big)\subset u^{-1}(K\cap uW)\subset u^{-1}\big(r(1+\varepsilon)(D\cap uW)\big)$$
$$r(D\cap uW)\subset K\cap uW\subset r(1+\varepsilon)(D\cap uW)$$

Le **lemme 1.6** nous permet de conclure que, quitte à diviser la dimension du sous-espace W par deux, on peut se restreindre à montrer le théorème de Dvoretzky pour des compacts dont la boule euclidienne est l'ellipsoïde de John sans perte de généralité.

1.4. LOI GAUSSIENNE

Pour la preuve du théorème de Dvoretzky, nous aurons besoin de deux résultats sur les variables aléatoires gaussiennes, ce premier combiné avec **lemme 1.2** nous sera utile pour calculer des intégrales par rapport à la mesure de Haar sur la (n-1)-sphère.

Lemme 1.8. Soit $g = (g_1, ..., g_n)$ où les $(g_i)_{i \le n}$ sont des variables aléatoires i.i.d suivant une loi $\mathcal{N}(0,1)$, alors $\frac{g}{|g|}$ et |g| sont indépendantes.

Démonstration. Posons $Y = \frac{g}{|g|}$ et R = |g| alors

$$\mathbb{E}[f(Y)g(R)] = \int_{\mathbb{R}^n} f(\frac{x_1}{|x|}, ..., \frac{x_n}{|x|}) g(|x|) \exp(-\frac{|x|^2}{2}) dx_1 ... dx_n$$

en passant en coordonnées sphériques

$$x_{1} = r \sin \theta_{1} ... \sin \theta_{n-2} \sin \theta_{n-1}$$

$$x_{2} = r \sin \theta_{1} ... \sin \theta_{n-2} \cos \theta_{n-1}$$

$$x_{3} = r \sin \theta_{1} ... \sin \theta_{n-3} \cos \theta_{n-2}$$

$$\vdots$$

$$x_{n} = r \cos \theta_{1}$$

On a le déterminant suivant :

$$dx_1...dx_n = r^{n-1} \prod_{1 \le i \le n-1} |\sin \theta_i|^{n-1-i} dr d\theta_1...d\theta_{n-1}$$

d'où:

$$\mathbb{E}\big[f(Y)g(R)\big] = \int_{\mathbb{R}^n} f \circ \varphi(\theta)g(r) \exp\Big(-\frac{r^2}{2}\Big) r^{n-1} \prod_{1 \leq i \leq n-1} |\sin\theta_i|^{n-1-i} dr d\theta_1...d\theta_{n-1}$$

$$\mathbb{E}\big[f(Y)g(R)\big] = \int_{\mathbb{R}^+} g(r) \exp\Big(-\frac{r^2}{2}\Big) r^{n-1} dr \int_{]0,\pi[^{n-2}\times]0,2\pi[} f \circ \varphi(\theta) \prod_{1 \leq i \leq n-1} |\sin\theta_i|^{n-1-i} d\theta_1...d\theta_{n-1}$$
 où $\varphi(\theta) = (\sin\theta_1...\sin\theta_{n-1},\sin\theta_1...\sin\theta_{n-2}\cos\theta_{n-1},\sin\theta_1...\sin\theta_{n-3}\cos\theta_{n-2},...,\cos\theta_1).$

Nous aurons besoin de trouver un minorant pour $\int_{S^{n-1}} ||x|| d\mu(x)$ pour une norme ||.|| sur \mathbb{R}^n et pour cela nous utiliserons le lemme suivant :

Lemme 1.9. il existe c>0 telle que $\forall N>1$ et $\{g_i\}_{1\leq i\leq N}$ des variables aléatoires i.i.d suivant une loi $\mathcal{N}(0,1)$ on ait :

$$\mathbb{E}\big[\max_{1 \le i \le \left\lceil \frac{N}{2} \right\rceil} |g_i|\big] \ge c\sqrt{\log N}$$

où $\left\lceil \frac{N}{2} \right\rceil$ est la partie entière supérieure de $\frac{N}{2}$.

 $D\acute{e}monstration. \ \ \text{Commençons par montrer que pour } n>1, \ \mathbb{P}\left(|g_1|>\sqrt{\log n}\right)\geq \frac{1}{n}, \ \text{on a}:$

$$\mathbb{P}(|g_1| > \sqrt{\log n}) = 2 \int_{\sqrt{\log n}}^{+\infty} e^{-\frac{x^2}{2}} dx \ge \int_{\sqrt{\log n}}^{+\infty} e^{-\frac{x^2}{2}} (1 + \frac{1}{x^2}) dx \qquad \text{pour } x > \sqrt{\log(2)}$$

$$\int_{\sqrt{\log n}}^{+\infty} e^{-\frac{x^2}{2}} (1 + \frac{1}{x^2}) dx = \left[-\frac{e^{-\frac{t^2}{2}}}{t} \right]_{\sqrt{\log n}}^{+\infty} = \frac{1}{\sqrt{n \log n}} > \frac{1}{n}$$

Donc

$$\mathbb{P}\Big(\max_{1\leq i\leq \left\lceil\frac{N}{2}\right\rceil}|g_i|\leq \sqrt{\log N}\Big) = \mathbb{P}\Big(|g_1|\leq \sqrt{\log N}\Big)^{\left\lceil\frac{N}{2}\right\rceil} = \left(1-\mathbb{P}\Big(|g_1|>\sqrt{\log N}\Big)\right)^{\left\lceil\frac{N}{2}\right\rceil}$$

$$\mathbb{P}\left(\max_{1 \leq i \leq \left\lceil \frac{N}{2} \right\rceil} |g_i| \leq \sqrt{\log N}\right) \leq \left(1 - \frac{1}{N}\right)^{\left\lceil \frac{N}{2} \right\rceil} \leq e^{-\frac{\left\lceil \frac{N}{2} \right\rceil}{N}} \leq e^{-\frac{1}{2}}$$

Ce qui équivaut à

$$\mathbb{P}\left(\max_{1 \le i \le \left\lceil \frac{N}{2} \right\rceil} |g_i| > \sqrt{\log N}\right) \ge 1 - e^{-\frac{1}{2}}$$

Par l'inégalité de Markov, on a finalement :

$$\mathbb{E}\big[\max_{1\leq i\leq \left\lceil\frac{N}{2}\right\rceil}|g_i|\big]\geq \mathbb{P}\Big(\max_{1\leq i\leq \left\lceil\frac{N}{2}\right\rceil}|g_i|>\sqrt{\log N}\Big)\sqrt{\log N}\geq (1-e^{-\frac{1}{2}})\sqrt{\log N}$$

2 DÉMONSTRATION DU THÉORÈME DE DVORETZKY

2.1. LEMMES D'APPROXIMATIONS

Avant de débuter la démonstration du théorème de Dvoretzky, nous allons avoir besoin de plusieurs lemmes, et de la définition suivante :

Défintion. Soit (X,d) un espace métrique et $\theta > 0$, on dit que $A \subset X$ est un θ -net si

- (i) A est de cardinal fini.
- (ii) $\forall x \in X$, $\exists y \in A$ tel que $d(x, y) \leq \theta$

Montrons maintenant que sur une section de la (n-1)-sphère, on peut trouver un θ -net de cardinal borné par une quantité qui varie exponentiellement avec la dimension de la section.

Lemme 2.1. Pour tous $0 < \theta < 1$, $V \subset \mathbb{R}^n$ de dimension k > 0, alors il existe un θ -net sur $V \cap S^{n-1}$ de cardinal inférieur à $\left(\frac{3}{\theta}\right)^k$.

Démonstration. Notons $B_V(x,r) = \{y \in V : |x-y| < r\}$ la boule de centre $x \in V$ et de rayon $r \geq 0$, soit $N = \{x_i\}_{i=1,\dots,m}$ un sous-ensemble de $V \cap S^{n-1}$ maximal pour la propriété : $x,y \in N$, $|x-y| \geq \theta$, c'est-à-dire pour tous $x \in V \cap S^{n-1} \setminus N$ il existe $i \leq m$ tel que $|x-x_i| < \theta$, donc N est un θ -net et les $\{B_V(x_i,\theta/2)\}_{i=1,\dots,m}$ sont donc disjoints deux à deux et toutes contenues dans $B_V\left(0,1+\frac{\theta}{2}\right)$ en notant λ la mesure de Lebesgue sur V on a :

$$m\lambda\left\{B_{V}(x_{1}, \frac{\theta}{2})\right\} = \sum_{i=1}^{m} \lambda\left\{B_{V}(x_{i}, \frac{\theta}{2})\right\} = \lambda\left\{\bigcup_{1 \leq i \leq m} B_{V}(x_{i}, \frac{\theta}{2})\right\} \leq \lambda\left\{B_{V}(0, 1 + \frac{\theta}{2})\right\}$$
$$m \leq \frac{\lambda\left\{B_{V}(0, 1 + \frac{\theta}{2})\right\}}{\lambda\left\{B_{V}(x_{1}, \frac{\theta}{2})\right\}}$$

Par homogénéité de la mesure de Lebesgue :

$$m \le \left(\frac{1 + \frac{\theta}{2}}{\frac{\theta}{2}}\right)^k = \left(1 + \frac{2}{\theta}\right)^k < \left(\frac{3}{\theta}\right)^k$$

Le petit lemme qui suit nous permet d'approcher les points de la (n-1)-sphère par des points situés sur un θ -net.

Lemme 2.2. Soit $x \in S^{n-1}$, A un θ -net pour un $1 > \theta > 0$, alors il existe $(y_i)_{i \in \mathbb{N}} \subset A$ et $(\beta_i)_{i \in \mathbb{N}} \subset \mathbb{R}^+$ tels que

$$x = \sum_{i=0}^{+\infty} y_i \beta_i$$
 et $\forall i \in \mathbb{N}, \ \beta_i \le \theta^i$

Démonstration. Comme A est un θ -net, alors il existe $y_0 \in A$ tel que $|x-y_0| < \theta$, et donc

$$x = y_0 + \lambda_1 x'$$

avec $\lambda_1 = |x - y_0| \le \theta$ et $x' = \frac{x - y_0}{\lambda_1} \in S^{n-1}$, on peut donc itérer le même procédé sur x' et réitérer indéfiniment :

$$x = y_0 + \lambda_1(y_1 + \lambda_2 x'') = y_0 + \lambda_1 y_1 + \lambda_1 \lambda_2 x'' \qquad \text{avec} \qquad \lambda_2 \le \theta, \ y_1 \in A \ \text{et} \ x'' \in S^{n-1}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$x = y_0 + \sum_{i=1}^N y_i \left(\prod_{1 \le k \le i} \lambda_k \right) + \tilde{x} \prod_{1 \le k \le N+1} \lambda_k \qquad \text{avec} \qquad \forall i \le N+1 \ \lambda_i \le \theta, y_i \in A \ \text{et} \ \tilde{x} \in S^{n-1}$$

$$\vdots \qquad \vdots \qquad \vdots$$

Si on pose $S_N = y_0 + \sum_{i=1}^N y_i \left(\prod_{1 \le k \le i} \lambda_k \right)$, alors :

$$|x - S_N| \le |\lambda_1 ... \lambda_N| |\tilde{x}| \le \theta^N \to 0$$
 avec $N \to \infty$

il ne reste plus qu'à poser $\beta_0=1$ et pour $i>0,\;\beta_i=\prod_{1\leq k\leq i}\lambda_k\leq \theta^i$ et l'on a :

$$x = \sum_{i=0}^{+\infty} \beta_i y_i$$

Le **lemme 2.3** va nous permettre de passer d'un ensemble de grande μ -mesure à un grand sous-espace au sens des dimensions.

Lemme 2.3. $\forall \varepsilon > 0$, il existe $1 > \theta > 0$ tel que pour tout $n \in \mathbb{N}$, si on a A un θ -net sur $V \cap S^{n-1}$ pour $V \subseteq \mathbb{R}^n$ de dimension k, ||.|| une norme sur \mathbb{R}^n et $T \in GL(n)$, tels que :

$$\forall x \in A$$
, $(1-\theta) \le ||Tx|| \le (1+\theta)$

alors,

$$\forall x \in V$$
, $\frac{1}{\sqrt{1+\varepsilon}}|x| \le \left|\left|Tx\right|\right| \le \sqrt{1+\varepsilon}|x|$

de plus si $\varepsilon \leq \frac{1}{9}$, on peu prendre $\theta = \frac{\varepsilon}{9}$

Démonstration. Soit $1 > \theta > 0$, A un θ -net sur $S^{n-1} \cap V$ et $x \in S^{n-1} \cap V$ par le **lemme 2.2**, il existe $(y_i)_{i \in \mathbb{N}} \subset A$ et $(\beta_i)_{i \in \mathbb{N}} \subset \mathbb{R}^+$ tels que

$$x = \sum_{i=0}^{+\infty} y_i \beta_i$$
 et $\forall i \in \mathbb{N}, \ \beta_i \leq \theta^i$

Notons $T = (a_1, ..., a_n)$

$$||Tx|| = \left| \left| T \sum_{i=0}^{+\infty} y_i \beta_i \right| \right|$$

$$= \left| \left| \sum_{i=0}^{+\infty} \beta_i \sum_{p=1}^n y_{i,p} a_p \right| \right|$$

$$\leq \sum_{i=0}^{+\infty} \theta^i || \sum_{p=1}^n y_{i,p} a_p ||$$

$$\leq \sum_{i=0}^{+\infty} \theta^i || Ty_i ||$$

$$\leq \sum_{i=0}^{+\infty} \theta^i (1+\theta) = \frac{1+\theta}{1-\theta}$$

de même:

$$\begin{aligned} ||Tx|| &\geq ||Ty_0|| - ||Tx - Ty_0|| \\ &= (1 - \theta) - ||\sum_{p=1}^n a_p \sum_{i=1}^{+\infty} \beta_i y_{i,p}|| \\ &\geq (1 - \theta) - \sum_{i=1}^{+\infty} \theta^i ||Ty_i|| \\ &\geq \left((1 - \theta) - \theta \frac{1 + \theta}{1 - \theta} \right) = \frac{1 - 3\theta}{1 - \theta} \end{aligned}$$

Il suffit donc de prendre θ tel que

$$\sqrt{1+\varepsilon} \ge \frac{1+\theta}{1-\theta}$$

$$\frac{1}{\sqrt{1+\varepsilon}} \le \frac{1-3\theta}{1-\theta}$$

et pour tous $x \in V \setminus \{0\}$ on a

$$\frac{1}{\sqrt{1+\varepsilon}} \le \left| \left| T \frac{x}{|x|} \right| \right| \le \sqrt{1+\varepsilon}$$

$$\frac{1}{\sqrt{1+\varepsilon}} |x| \le ||Tx|| \le |x| \sqrt{1+\varepsilon}$$

Ce qui finit la première partie de la preuve. Dans la suite on suppose $\varepsilon \leq \frac{1}{9}$. On cherche $\theta =: \theta(\varepsilon) \in]0,1[$, tel que $\sqrt{1+\varepsilon} \geq \max\left(\frac{1-\theta}{1-3\theta},\frac{1+\theta}{1-\theta}\right)$, sachant que ε va être petit supposons $\theta \leq \frac{1}{3}$ alors

$$\frac{1-\theta}{1-3\theta} - \frac{1+\theta}{1-\theta} = \frac{4\theta^2}{(1-3\theta)(1-\theta)} > 0$$

Donc $\sqrt{1+\varepsilon} \ge \frac{1-\theta}{1-3\theta}$

$$1 + \varepsilon \ge \left(\frac{1 - \theta}{1 - 3\theta}\right)^2$$
$$(9\varepsilon + 8)\theta^2 - 2(3\varepsilon + 2)\theta + \varepsilon \ge 0$$

les deux racines de ce polynôme sont $0 < \frac{3\varepsilon + 2 - 2\sqrt{1+\varepsilon}}{8+9\varepsilon} < \frac{3\varepsilon + 2 + 2\sqrt{1+\varepsilon}}{8+9\varepsilon}$, on cherche donc un θ dans $]0, \frac{3\varepsilon + 2 - 2\sqrt{1+\varepsilon}}{8+9\varepsilon}]$. Pour finir

$$\frac{3\varepsilon + 2 - 2\sqrt{1 + \varepsilon}}{8 + 9\varepsilon} \ge \frac{3\varepsilon + 2 - 2 - 2\varepsilon}{8 + 9\varepsilon} = \frac{\varepsilon}{8 + 9\varepsilon}$$
$$\ge \frac{\varepsilon}{9}$$

donc pour $\varepsilon \in]0,9^{-1}[$ on peut prendre $\theta(\varepsilon)=\frac{\varepsilon}{9}.$

2.2. DÉMONSTRATION DU THÉORÈME DE DVORETZKY

La démonstration du théorème de Dvoretzky repose sur le **théorème 2.4** et la **proposition 2.7** qui sont démontrer dans cette partie. Dans un premier temps, nous donnons un résultat de V.Milman qui est en grande partie la preuve du théorème de Dvoretzky.

Théorème 2.4. Pour tout $\varepsilon > 0$ il existe $c(\varepsilon) > 0$ tel que pour tout $n \in \mathbb{N}^*$ et ||.|| une norme sur \mathbb{R}^n , il existe $V \subset \mathbb{R}^n$ tels que $\dim V \ge c(\varepsilon)(\frac{M}{b})^2 n$ et pour tout $x \in V$:

$$|x| \frac{M}{\sqrt{1+\varepsilon}} \le ||x|| \le M\sqrt{1+\varepsilon}|x|$$

Où $M=\int_{S^{n-1}}||x||d\mu(x)$ et b>0 le plus pet it réel tel que $||.||\leq b|.|$

Démonstration. Soit $\varepsilon > 0$, $\theta =: \theta(\varepsilon) \in]0,1[$ donné par le **lemme 2.3**, $V_0 = \text{Vect}(e_1,...,e_k)$ pour un $k \le n$ entier que l'on fixeras plus tard et A un θ -net sur $V_0 \cap S^{n-1}$ avec $|A| < \left(\frac{3}{\theta}\right)^k$, alors

$$\begin{split} \nu\Big(\bigcap_{x\in A} \big\{T\in O(n)\,;\, \big|||Tx||-M\big| &\leq M\theta \big\}\Big) &= 1 - \nu\Big(\bigcup_{x\in A} \big\{T\in O(n)\,;\, \big|||Tx||-M\big| > M\theta \big\}\Big) \\ &\geq 1 - \sum_{y\in A} \nu\Big(T\in O(n)\,;\, \big|||Ty||-M\big| > M\theta \Big) \\ &\geq 1 - |A|\mu\Big(y\in S^{n-1}\,;\, \big|||y||-M\big| > M\theta \Big) \quad \text{par le lemme 1.2} \end{split}$$

En appliquant la concentration de la mesure et en utilisant $|A| < \left(\frac{3}{\theta}\right)^k$,

$$\nu\Big(\bigcap_{x\in A}\left\{T\in O(n)\;;\; \Big|||Tx||-M\Big|\leq M\theta\Big\}\Big)>1-4\Big(\frac{3}{\theta}\Big)^ke^{-\beta\frac{\theta^2M^2}{b^2}n}$$

pour un $\beta \in]0,1[$.

Donc tant que $4\left(\frac{3}{\theta}\right)^k e^{-\beta \frac{\theta^2 M^2}{b^2}n} \le 1$ on peut trouver $T \in O(n)$ tel que pour tout $x \in A$:

$$\left|||Tx|| - M\right| \le M\theta \tag{\star}$$

Posons alors $c(\theta) = \frac{\theta^2 \beta}{4 \log(\frac{3}{\theta})}$ et $\kappa(\theta) = c(\theta) \left(\frac{M}{b}\right)^2 n$, on veut donc montrer qu'il existe un $k \geq \kappa(\theta)$ entier pour le quelle on puisse trouver un $T \in O(n)$ qui vérifie (\star) . Trivialement si $\kappa(\theta) < 1$ alors k = 1 convient car toute 1-section est euclidienne, on suppose donc $\kappa(\theta) \geq 1$ ce qui équivaut à $\frac{\theta^2 M^2 n \beta}{4 b^2} \geq \log(\frac{3}{\theta})$. Fixons k entier tel que $\kappa(\theta) \leq k \leq 2\kappa(\theta)$, possible car $\kappa(\theta) \geq 1$, alors

$$\begin{split} v\Big(\bigcap_{x\in A}\left\{T\in O(n)\,;\,\left|||Tx||-M\right|\leq M\theta\right\}\Big) &> 1-4\exp\left(2\kappa(\theta)\log(\frac{3}{\theta})-\frac{\theta^2M^2n\beta}{b^2}\right)\\ &> 1-4e^{-\frac{\theta^2M^2n\beta}{2b^2}}\\ &> 1-\frac{4}{3^2}\theta^2>0 \qquad \qquad \operatorname{car}\;\frac{\theta^2M^2n\beta}{2b^2}\geq 2\log(\frac{3}{\theta}) \end{split}$$

Donc il existe $T \in O(n)$ tel que pour tous $x \in A$ on ait $|||Tx|| - M| \le M\theta$, c'est à dire

$$M(1-\theta) \le ||Tx|| \le M(1+\theta)$$

Par le **lemme 2.3** pour tous $x \in V_0$

$$\frac{1}{\sqrt{1+\varepsilon}}|x|M \le ||Tx|| \le \sqrt{1+\varepsilon}|x|M$$

Il suffit donc de prendre $V=TV_0$ pour conclure.

Remarque 2.5. Pour $\varepsilon < 9^{-1}$ on peut prendre $\theta(\varepsilon) = \frac{\varepsilon}{9}$ et donc $c(\varepsilon) = c_0 \frac{\varepsilon^2}{\log(\frac{c_1}{2})}$ pour $c_0, c_1 > 0$.

Il ne nous reste plus qu'a donner une borne inférieure à $\frac{M}{b}$, pour cela nous allons utiliser la **remarque 1.7** et le lemme suivant :

Lemme 2.6 (Dvoretzky-Rogers). Soit ||.|| une norme sur \mathbb{R}^n tel que B_2^n est l'ellipsoïde de John de $B_{||.||}$, alors il existe une base orthonormée $\{x_i\}_{i=1,\dots,n}$ telle que pour $1 \le i \le n$

$$e^{-1}\left(1 - \frac{i-1}{n}\right) \le ||x_i|| \le 1$$

Démonstration. S^{n-1} est compact et ||.|| continue, on peut donc prendre un $x_1 \in S^{n-1}$ qui maximise ||.|| c'est-à-dire $||x_1|| = 1$, supposons que l'on ait $x_1, ..., x_{k-1}$ avec $k \le n$ tel que pour tous $1 \le i \le k-1$, x_i maximise ||.|| sur $S^{n-1} \setminus \text{Vect}(x_1, ..., x_{i-1}) \ne \emptyset$ car les $\{x_i\}_{i=1,...,i-1}$ sont orthogonaux deux à deux. On peut donc répéter le procédé pour trouver x_k qui maximise $S^{n-1} \setminus \text{Vect}(x_1, ..., x_{k-1}) \ne \emptyset$, par récurrence on peut donc avoir n vecteurs avec ses propriétés. Fixons $1 \le k \le n$, a, b > 0 et définissons :

$$\mathscr{E} = \left\{ \sum_{i=1}^{n} a_i x_i ; \sum_{i=1}^{k-1} \left(\frac{a_i}{a} \right)^2 + \sum_{i=k}^{n} \left(\frac{b_i}{b} \right)^2 \le 1 \right\}$$

Supposons $\sum_{i=1}^n a_i x_i \in \mathcal{E}$, alors $\sum_{i=1}^{k-1} a_i x_i \in aB_2^n$ et donc $||\sum_{i=1}^{k-1} a_i x_i|| \le |\sum_{i=1}^{k-1} a_i x_i|| \le a$. Si $x \in \text{Vect}(x_k, ..., x_n) \cap B_2^n$ on a $||x|| \le ||x_k||$ par construction, et donc $\sum_{i=k}^n a_i x_i \in bB_2^n \Rightarrow ||\sum_{i=k}^n a_i x_i|| \le b||x_k||$, ce qui nous donne la majoration suivante

$$||\sum_{i=1}^{n} a_i x_i|| \le ||\sum_{i=1}^{k-1} a_i x_i|| + ||\sum_{i=k}^{n} a_i x_i|| \le a + b||x_k||$$

Posons $\phi \in GL(n)$ défini par $\phi(\sum_{i=1}^n a_i x_i) = \sum_{i=1}^{k-1} a a_i x_i + \sum_{i=k}^n b a_i x_i$ on a $\phi = \operatorname{diag}(\overbrace{a,...,a}^{(k-1)\times}, \overbrace{b,...,b}^{(n-k+1)\times})$ et donc $\det \phi = a^{k-1}b^{n-k+1}$ d'où :

$$\int_{\mathcal{E}} dx_1 ... dx_n = \int_{B_2^n} \det \phi dx_1 ... dx_n = a^{k-1} b^{n-k-1} \int_{B_2^n} dx_1 ... dx_n$$

On prend $a+b||x_k||=1$ de sorte que $\mathcal{E}\subset K$, comme B_2^n est l'ellipsoïde de volume maximal inclue dans K, on a que

$$1 \ge \frac{\int_{\mathscr{E}} dx_1 ... dx_n}{\int_{B_2^n} dx_1 ... dx_n} = a^{k-1} b^{n-k+1}$$

Fixons donc pour $k \geq 2$, $b = \frac{1-a}{||x_k||}$ et $a = \frac{k-1}{n}$, en remplaçant dans l'inégalité on obtient :

$$1 \ge a^{k-1} \left(\frac{1-a}{||x_k||} \right)^{n-k+1} \iff ||x_k|| \ge a^{\frac{k-1}{n-k+1}} (1-a) \ge e^{-1} \left(1 - \frac{k-1}{n} \right)$$

 $\operatorname{car} \log a^{\frac{k-1}{n-k+1}} = \frac{k-1}{n-k+1} \log \left(\frac{k-1}{n} \right) > -1 \ \, (\text{\'etudier} \ \, f(X) = \frac{X}{1-X} \log(X)). \ \, \text{Pour} \ \, k = 1 \ \, \text{il faut prendre} \\ a = 1 - e^{-1} \ \, \text{alors} \ \, 1 \geq \left(\frac{1-a}{||x_1||} \right)^n \Rightarrow ||x_1|| \geq e^{-1}.$

Proposition 2.7. Soit ||.|| une norme sur \mathbb{R}^n tel que B_2^n est l'ellipsoïde de John de $B_{||.||}$, alors il existe c>0 tel que

$$M =: \int_{S^{n-1}} ||x|| d\mu(x) \ge c \sqrt{\frac{\log n}{n}}$$

Démonstration. Par le lemme de Dvoretzky-Rogers, il existe une base orthonormée $x_1, ..., x_n$ telle que pour $1 \le i \le \left\lceil \frac{n}{2} \right\rceil$ la partie entière supérieure de $\frac{n}{2}$, $||x_i|| \ge e^{-1} \left(1 - \frac{\left\lceil \frac{n}{2} \right\rceil - 1}{n}\right) \ge e^{-1} \left(1 - \frac{\frac{n}{2} + 1 - 1}{n}\right) = (2e)^{-1}$. Comme μ est invariante par composition par une transformation orthogonale, on a

$$M =: \int_{S^{n-1}} || \sum_{i=1}^{n} a_i x_i || d\mu(a) = \int_{S^{n-1}} || \sum_{i=1}^{n-1} a_i x_i - a_n x_n || d\mu(a)$$

et donc

$$\begin{split} M &= \frac{1}{2} \int_{S^{n-1}} || \sum_{i=1}^{n} a_i x_i || d\mu(a) + \frac{1}{2} \int_{S^{n-1}} || \sum_{i=1}^{n-1} a_i x_i - a_n x_n || d\mu(a) \\ &\geq \frac{1}{2} \int_{S^{n-1}} 2 \max \left\{ || \sum_{i=1}^{n-1} a_i x_i ||, || a_n x_n || \right\} d\mu(a) \geq \dots \geq \int_{S^{n-1}} \max_{1 \leq i \leq n} \left\{ |a_i| \, || x_i || \right\} d\mu(a) \\ &\geq \int_{S^{n-1}} \max_{1 \leq i \leq \left\lceil \frac{n}{2} \right\rceil} \left\{ |a_i| \, || x_i || \right\} d\mu(a) \geq (2e)^{-1} \int_{S^{n-1}} \max_{1 \leq i \leq \left\lceil \frac{n}{2} \right\rceil} |a_i| d\mu(a) \end{split}$$

Soit $(g_1,...,g_n)$, des variables aléatoire i.i.d de loi $\mathcal{N}(0,1)$ alors

$$\int_{S^{n-1}} \max_{1 \le i \le \left\lceil \frac{n}{2} \right\rceil} |a_i| d\mu(a) = \mathbb{E}\left[\left(\sum_{i=1}^n g_i^2\right)^{-\frac{1}{2}} \max_{1 \le i \le \left\lceil \frac{n}{2} \right\rceil} |g_i|\right]$$

Par le **lemme 1.8** $(\sum_{i=1}^n g_i^2)^{-\frac{1}{2}}(g_1,...,g_n)$ et $(\sum_{i=1}^n g_i^2)^{\frac{1}{2}}$ sont des variables aléatoires indépendantes, on a donc

$$\mathbb{E}\left[\left(\sum_{i=1}^{n} g_i^2\right)^{-\frac{1}{2}} \max_{1 \le i \le \left\lceil \frac{n}{2} \right\rceil} |g_i|\right] \cdot \mathbb{E}\left[\left(\sum_{i=1}^{n} g_i^2\right)^{\frac{1}{2}}\right] = \mathbb{E}\left[\max_{1 \le i \le \left\lceil \frac{n}{2} \right\rceil} |g_i|\right]$$

la fonction racine carré est concave, par l'inégalité de Jensen on a donc :

$$\mathbb{E}\big[\big(\sum_{i=1}^n g_i^2\big)^{\frac{1}{2}}\big] \leq \mathbb{E}\big[\sum_{i=1}^n g_i^2\big]^{\frac{1}{2}} = \sqrt{n}\mathbb{E}[g_1^2]^{\frac{1}{2}} = \sqrt{n}$$

Et finalement par le **lemme 1.9**, il existe K > 0 tel que :

$$M \geq \frac{1}{2e\sqrt{n}} \mathbb{E} \Big[\max_{1 \leq i \leq \left \lceil \frac{n}{2} \right \rceil} |g_i| \Big] \geq \frac{K}{2e} \sqrt{\frac{\log n}{n}}$$

On peut donc réunir la **proposition 2.7** et le **théorème 2.4** pour obtenir $k \ge c(\varepsilon) \log n$ lorsque B_2^n est l'ellipsoïde de John pour $B_{||.||}$, en utilisant la **remarque 1.7** quitte à diviser k par 2, on peut généraliser à toutes les normes et donc conclure la démonstration du théorème de Dvoretzky.

3 SECTIONS PRESQUE EUCLIDIENNES DE ℓ_P^N

Dans cette section on applique le **théorème 2.4** pour donner une estimation de la dimension critique des espace ℓ_n^n .

Défintion. (Dimension critique) Soit $X = (\mathbb{R}^n, ||.||)$ pour ||.|| une norme sur \mathbb{R}^n , pour $\varepsilon > 0$ on note $k(X, \varepsilon)$ le plus grand entier tel que $\ell_2^{k(X, \varepsilon)}$ s'injecte $(1 + \varepsilon)$ -continûment dans X.

Remarquons alors ce corollaire du théorème 2.4.

Corollaire 3.1. Pour tout $\varepsilon > 0$, il existe $c(\varepsilon) > 0$, tels que pour tout $p, q \in]1, \infty[$ avec $\frac{1}{p} + \frac{1}{q} = 1$ on a,

$$k(\ell_p^n, \varepsilon).k(\ell_q^n, \varepsilon) \ge c(\varepsilon).n^{1+\frac{2}{p}}$$

Démonstration. Fixons $p \ge 2$ et donc $q \le 2$ par l'inégalité de Hölder :

$$\left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}}$$

$$\left(\sum_{i=1}^{n} |x_i|^q\right)^{\frac{1}{q}} \le n^{\frac{1}{q} - \frac{1}{2}} \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}}$$

En appliquant le **théorème 2.4** $\exists c(\varepsilon) > 0$ tel que

$$k(\ell_p^n,\varepsilon) \geq c(\varepsilon) M_p^2 n$$

$$k(\ell_q^n, \varepsilon) \ge c(\varepsilon) \left(\frac{M_q}{n^{\frac{1}{q} - \frac{1}{2}}}\right)^2 n = c(\varepsilon) M_q^2 n^{\frac{2}{p}}$$

où $M_v = \int_{S^{n-1}} ||y||_v d\mu(y)$ pour v = p ou v = q. Remarquons alors que par l'inégalité de Hölder

$$1 = \int_{S^{n-1}} |x| d\mu(x) \leq \int_{S^{n-1}} ||x||_p^{\frac{1}{2}} ||x||_q^{\frac{1}{2}} d\mu(x) \leq \left(\int_{S^{n-1}} ||x||_p d\mu(x)\right)^{\frac{1}{2}} \left(\int_{S^{n-1}} ||x||_q d\mu(x)\right)^{\frac{1}{2}} = \sqrt{M_p M_q}$$

Et finalement

$$k(\ell_p^n, \varepsilon) k(\ell_q^n, \varepsilon) \ge c(\varepsilon)^2 (M_p M_q)^2 n^{1 + \frac{2}{p}}$$

 $\ge c(\varepsilon)^2 n^{1 + \frac{2}{p}}$

Pour la proposition suivante, nous allons utiliser l'inégalité de Khinchine qui est démontrée dans l'annexe B.

Proposition 3.2. Soit $2 et <math>0 < \varepsilon < 1$, alors il existe $c_p(\varepsilon) > 0$ tel que,

$$k(\ell_p^n, \varepsilon) \le c_p(\varepsilon) n^{\frac{2}{p}}$$

Démonstration. Considérons $T=(a_{ij})_{j\leq k}^{i\leq n}\subset\mathbb{R}^n$ tel que pour tout $x\in\mathbb{R}^k$

$$|x| \le ||Tx||_p \le (1+\varepsilon)|x|$$

Notons $r_i(t) = \text{sign}(\sin(\pi 2^i t))$ pour $t \in]0,1[, i \in \mathbb{N}^*$ (voir annexe B pour les détails).

$$\forall \, t \in]0,1[\; , \quad |(r_1(t),...,r_k(t))| \leq \left| \left| \left| T(r_1(t),...,r_k(t)) \right| \right|_p \leq (1+\varepsilon) |(r_1(t),...,r_k(t))|$$

Or $|(r_1(t),...,r_k(t))|^2 = \sum_{i=1}^k r_i^2(t) = k$ presque sûrement. En intégrant entre 0 et 1 :

$$k^{\frac{p}{2}} \le \sum_{i=1}^{n} \int_{0}^{1} |\sum_{i=1}^{k} a_{ij} r_{j}(t)|^{p} dt$$

Par l'inégalité de Khinchine (**théorème B.3**) $\exists B_p > 0$ tel que :

$$\left(\int_{0}^{1} \left| \sum_{j=1}^{k} a_{ij} r_{j}(t) \right|^{p} dt \right)^{\frac{1}{p}} \leq B_{p} \left(\sum_{j=1}^{k} a_{ij}^{2} \right)^{\frac{1}{2}}$$

$$k^{\frac{p}{2}} \leq \sum_{i=1}^{n} B_{p}^{p} \left(\sum_{i=1}^{k} a_{ij}^{2} \right)^{\frac{p}{2}} \tag{*}$$

Fixons $1 \le v \le n$, alors pour $x = (a_{v,j})_{j \le k}$, on a

$$\sum_{i=1}^{n} \left| \sum_{j=1}^{k} a_{ij} a_{\nu j} \right|^{p} \ge \left| \sum_{j=1}^{k} a_{\nu j}^{2} \right|^{p}$$

et donc:

$$\left| \sum_{i=1}^{k} a_{vj}^{2} \right|^{p} \le \sum_{i=1}^{n} \left| \sum_{j=1}^{k} a_{ij} a_{vj} \right|^{p} \le (1 + \varepsilon)^{p} \left| \sum_{j=1}^{k} a_{vj}^{2} \right|^{\frac{p}{2}}$$

c'est-à-dire $\left|\sum_{j=1}^k a_{vj}^2\right|^{\frac{1}{2}} \le 1 + \varepsilon$, et finalement en injectant dans (\star) :

$$k \le B_p^2 (1 + \varepsilon)^2 n^{\frac{2}{p}}$$

Remarque 3.3. Dans la démonstration de l'inégalité de Khinchine, on montre que

$$B_p = \left(2p \int_0^{+\infty} s^{p-1} e^{-\frac{s^2}{4}} ds\right)^{\frac{1}{p}}$$

Corollaire 3.4. Soit $p \in [1, +\infty[$, pour tout $\varepsilon > 0$ il existe $c_p(\varepsilon) > 0$ tel que pour tout $n \ge 2$,

$$k(\ell_p^n, \varepsilon) \ge \begin{cases} c_p(\varepsilon)n & \text{si } 1 \le p < 2\\ c_p(\varepsilon)n^{\frac{2}{p}} & \text{si } 2 \le p < \infty \end{cases}$$

Démonstration. Si p = 1 alors,

$$\mathbb{E}\left(\sum_{i=1}^{n}|x_{i}|\right) = \frac{n}{\sqrt{2\pi}}$$

et donc

$$M =: \int_{S^{n-1}} ||x||_1 d\mu(x) \ge \sqrt{\frac{n}{2\pi}}$$

par le **théorème 2.4** avec $b = \sqrt{n}$,

$$k(\ell_p^n, \varepsilon) \ge c(\varepsilon) \left(\frac{\sqrt{\frac{n}{2\pi}}}{\sqrt{n}}\right)^2 n =: \tilde{c}(\varepsilon) n$$

Si p > 2 posons 1 < q < 2 défini par $\frac{1}{p} + \frac{1}{q} = 1$, par le **corollaire 3.1** on a

$$k(\ell_p^n, \varepsilon).k(\ell_q^n, \varepsilon) \ge c(\varepsilon)n^{1+\frac{2}{p}}$$

Donc en appliquant le **proposition 3.2**,

$$c_p(\varepsilon).n^{\frac{2}{p}}.k(\ell_q^n,\varepsilon) \ge c(\varepsilon)n^{1+\frac{2}{p}}$$

$$k(\ell_q^n, \varepsilon) \ge \tilde{c}_q(\varepsilon) n$$

Comme $n \geq k(\ell_q^n, \varepsilon)$ on a tout de suite

$$k(\ell_p^n, \varepsilon) \ge c(\varepsilon) n^{\frac{2}{p}}$$

Ce qui permet déjà de conclure. Lorsque 2 < p est petit devant n on peut donner une meilleur estimation de la dépendance en p. Supposons $p < \log n$,

$$M =: \int_{S^{n-1}} ||x||^p d\mu(x) = \mathbb{E}\left[\frac{\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}}{\left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}}\right] = \frac{\mathbb{E}\left[\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}\right]}{\mathbb{E}\left[\left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}\right]}$$

Par l'inégalité de Hölder on a $||x||_p \le |x|$, donc $b \le 1$. Posons $m =: \lfloor e^p \rfloor$ et divisons $\{1,...,n\}$ en $N = \lceil \frac{n}{m} \rceil$ parties disjointes $I_1,...,I_N$ tel que pour j < N, card $(I_j) = m$, on a

$$\mathbb{E}\left[\left(\sum_{i=1}^{n}|g_{i}|^{p}\right)^{\frac{1}{p}}\right] = \mathbb{E}\left[\left(\sum_{j\leq N}\sum_{i\in I_{j}}|g_{i}|^{p}\right)^{\frac{1}{p}}\right]$$

$$\geq \mathbb{E}\left[\left(\sum_{j\leq N}(\max_{i\in I_{j}}|g_{i}|)^{p}\right)^{\frac{1}{p}}\right]$$

$$\geq \left(\sum_{j\leq N}\left(\mathbb{E}[\max_{i\in I_{j}}|g_{i}|]\right)^{p}\right)^{\frac{1}{p}}$$

$$\geq (N-1)^{\frac{1}{p}}c\sqrt{\log m} \text{ par le lemme 1.9}$$

Où c > 0 est une constante universelle, de plus :

$$\frac{(N-1)^{\frac{1}{p}}}{N^{\frac{1}{p}}} = \left(\frac{N-1}{N}\right)^{\frac{1}{p}}$$
$$= \left(1 - \frac{1}{N}\right)^{\frac{1}{p}}$$
$$\ge \left(1 - \frac{1}{2}\right)^{\frac{1}{p}} = 2^{-\frac{1}{p}}$$

Car $N \ge 2$ par hypothèse, et finalement :

$$M \ge N^{\frac{1}{p}} 2^{-\frac{1}{p}} c \sqrt{\log \lfloor e^p \rfloor} n^{-\frac{1}{2}}$$
$$\ge n^{\frac{1}{p} - \frac{1}{2}} C_p$$

Où $C_p = 2^{-\frac{1}{p}} c \sqrt{\log \lfloor e^p \rfloor} \underset{p \to \infty}{\sim} c \sqrt{p}.$

Par le **théorème 2.4** ℓ_2^k s'injecte $(1+\varepsilon)$ -continûment dans ℓ_p^n , pour

$$\begin{split} k &\geq c(\varepsilon) \Big(\frac{E}{b}\Big)^2 n \\ &\geq c_p(\varepsilon) n^{\frac{2}{p}}, \quad \text{avec} \ c_p(\varepsilon) = c(\varepsilon) C_p^2 \underset{p \to \infty}{\sim} \tilde{c}(\varepsilon) p \end{split}$$

En condensant ce qui précède on obtient le résultat suivant,

Corollaire 3.5. Soit $\varepsilon > 0$,

- Pour $1 \le p < 2$, $\frac{k(\ell_p^n, \varepsilon)}{n}$ est bornée entre deux constantes qui ne dépendent que de p et ε .
- Pour $2 \le p < \infty$, $\frac{k(\ell_p^n, \varepsilon)}{n^{\frac{2}{p}}}$ est bornée entre deux constantes qui ne dépendent que de p et ε .

Intéressons nous maintenant au cas $p = \infty$.

Proposition 3.6. Soit $0 < \varepsilon \le \frac{1}{32}$, il existe c, C > 0 des constantes universelles tel que :

$$k(\ell_{\infty}^{n}, \varepsilon) \le \frac{C\log(n)}{\log(\frac{1}{c\varepsilon})}$$

 $D\acute{e}monstration. \text{ Soit } T \in \mathcal{L}(\mathbb{R}^k, \mathbb{R}^n) \text{ tel que pour tous } x \in \mathbb{R}^k,$

$$\frac{1}{1+\varepsilon}|x| \le ||Tx||_{\infty} \le |x|$$

Comme $1-\varepsilon \leq \frac{1}{1+\varepsilon}$, en posant $a_1,\dots,a_n \in \mathbb{R}^k$ les lignes de T dans la base canonique, alors

$$(1-\varepsilon)|x| \le \max_{i \le n} |\langle a_i, x \rangle| \le |x|$$

En prenant $x=a_p$ on obtient $(1-\varepsilon)|a_p| \leq \max_{i\leq n} |\langle a_i,a_p\rangle| \leq |a_p| \Rightarrow |a_p|^2 \leq |a_p| \Rightarrow |a_p| \leq 1$.

Prenons $x \in S^{k-1}$, alors il existe $i \le n$ tel que $|\langle a_i, x \rangle| \ge (1 - \varepsilon)$, donc

$$|x - a_i|^2 = |x|^2 + |a_i|^2 - 2\langle x, a_i \rangle \le 2 - 2(1 - \varepsilon) = 2\varepsilon$$

Prenons $1>|x|>1-\sqrt{2\varepsilon}$, alors il existe i tel que $\left|\frac{x}{|x|}-a_i\right|\leq \sqrt{2\varepsilon}$ et donc :

$$|x - a_i| \le |x - \frac{x}{|x|}| + |\frac{x}{|x|} - a_i|$$

$$\le |1 - |x|| + \sqrt{2\varepsilon}$$

$$\le 2\sqrt{2\varepsilon}$$

Donc $\bigcup_{i\leq n} B_2^k(a_i, 2\sqrt{2\varepsilon})$ contient $B_2^k \setminus (1-\sqrt{2\varepsilon})B_2^k$.

$$n(2\sqrt{2\varepsilon})^k\lambda(B_2^k) \geq \lambda\Big(\bigcup_{i\leq n}B_2^k(a_i,2\sqrt{2\varepsilon})\Big) \geq \lambda\Big(B_2^k\setminus(1-\sqrt{2\varepsilon})B_2^k\Big) = \lambda(B_2^k)-(1-\sqrt{2\varepsilon})^k\lambda(B_2^k)$$

$$n(2\sqrt{2\varepsilon})^k \geq 1 - (1 - \sqrt{2\varepsilon})^k \geq \sqrt{2\varepsilon}(1 - \sqrt{2\varepsilon})^{k-1}$$

car

$$\begin{split} (1 - \sqrt{2\varepsilon})^k &= (1 - \sqrt{2\varepsilon})^{k-1} - \sqrt{2\varepsilon} (1 - \sqrt{2\varepsilon})^{k-1} \\ &\leq 1 - \sqrt{2\varepsilon} (1 - \sqrt{2\varepsilon})^{k-1} \end{split}$$

Alors pour $\varepsilon < \frac{1}{32}$ on a $\frac{1}{2\sqrt{2\varepsilon}} - \frac{1}{2} > \frac{7}{16\sqrt{2\varepsilon}}$ et donc

$$n \ge \frac{1}{2} \left(\frac{1}{2\sqrt{2\varepsilon}} - \frac{1}{2} \right)^{k-1}$$
$$\ge \frac{1}{2} \left(\frac{7}{16\sqrt{2\varepsilon}} \right)^{k-1}$$
$$\ge \frac{1}{2} \left(\frac{7}{16\sqrt{2\varepsilon}} \right)^{\frac{k}{2}}$$

et donc

$$k \leq \frac{2\log n}{\log\left(\frac{7}{16\sqrt{2\varepsilon}}\right)}$$

Proposition 3.7. Soit $0 < \varepsilon < 1$, ℓ_2^k s'injecte $(1 + \varepsilon)$ -continûment dans ℓ_∞^n pour $k = \left[\frac{\log n}{\log(\frac{3}{\varepsilon})}\right]$

 $D\acute{e}monstration$. Comme $\left(\frac{3}{\varepsilon}\right)^k \leq n$ on peut prendre un ε -net sur S^{k-1} de cardinal n, donnons nous $\{y_i\}_{i\leq n}$ un tel ε -net et

$$T: \begin{array}{ccc} \mathbb{R}^k & \to & \mathbb{R}^n \\ & & \\ x & \to & (1+\varepsilon)(\langle x, y_i \rangle)_{i \le n} \end{array}$$

Alors, pour tout $x \in S^{k-1}$, il existe $i \le n$ tel que $|x - y_i| < \varepsilon$, alors

$$\varepsilon^2 > |x - y_i|^2 = |x|^2 + |y_i|^2 - 2\langle x, y_i \rangle$$
$$= 2(1 - \langle x, y_i \rangle)$$

$$\langle x, y_i \rangle > 1 - \frac{\varepsilon^2}{2} \ge \frac{1}{1 + \varepsilon}$$

Car $1-\frac{\varepsilon^2}{2}-\frac{1}{1+\varepsilon}=\frac{\varepsilon}{2(1+\varepsilon)}(1-\varepsilon)(\varepsilon+2)>0$, finalement avec l'inégalité de Cauchy-Schwarz :

$$1 \ge \max_{1 \le j \le n} |\langle x, y_j \rangle| \ge |\langle x, y_i \rangle| \ge \frac{1}{1 + \varepsilon}$$

C'est à dire pour tout $x \in S^{k-1}$

$$1 \leq ||Tx||_{\infty} \leq 1 + \varepsilon$$

A - INÉGALITÉ DE PRÉKOPA-LEINDLER

Le but de cette annexe est de démontré l'inégalité de Brunn-Minkowsky utilisé dans la démonstration du **corollaire 1.4**, nous allons pour cela monter une inégalité plus générale, celle de Prékopa-Leindler.

Lemme A.1. Soit A, B deux compact non vide de \mathbb{R} , alors

$$\lambda(A+B) \ge \lambda(A) + \lambda(B)$$

 $D\acute{e}monstration$. Comme la mesure de Lebesgue est invariante par translation on peut supposer que $\max\{x\in A\}=0$ et $\min\{x\in B\}=0$, alors $A\cup B\subset A+B$,

$$\lambda(A+B) \ge \lambda(A \cup B) = \lambda(A) + \lambda(B)$$

Théorème A.2 (Prékopa-Leindler). Soit $\alpha \in]0,1[, f,g,h \in L^{\infty}(\mathbb{R}^n,[0,+\infty))$ tel que pour tout $x,y \in \mathbb{R}^n$,

$$h(\alpha x + (1 - \alpha)y) \ge f(x)^{\alpha} g(y)^{1-\alpha}$$

alors

$$\int_{\mathbb{R}^n} h d\lambda \ge \left(\int_{\mathbb{R}^n} f d\lambda \right)^{\alpha} \left(\int_{\mathbb{R}^n} g d\lambda \right)^{1-\alpha}$$

Démonstration. Commençons par le montrer pour n=1 et f,g de norme infinie égale à 1.

$$\int_{\mathbb{R}} f(x) dx = \int_{\mathbb{R}^n} \int_0^{f(x)} dt dx$$

$$= \int_{\mathbb{R}} \int_0^{||f||_{\infty}} \mathbb{1}_{\{f(x) > t\}} dt dx$$

$$= \int_0^1 \lambda (x \in \mathbb{R}; f(x) > t) dt$$

et de même pour g, posons alors $A(t) = \left\{ x \in \mathbb{R} \; ; \; f(x) > t \right\}$ et $B(t) = \left\{ x \in \mathbb{R} \; ; \; g(x) > t \right\}$, on a alors

$$z \in \alpha A(t) + (1 - \alpha)B(t) \Rightarrow z = \alpha x + (1 - \alpha)y$$
, avec $x \in A(t)$ et $y \in B(t)$
 $\Rightarrow h(z) \ge f(x)^{\alpha}g(y)^{1-\alpha} > t$

et donc $\alpha A(t) + (1-\alpha)B(t) \subset \{x \in \mathbb{R}; h(x) > t\}$, par le **lemme A.1**,

$$\alpha \lambda (A(t)) + (1 - \alpha)\lambda(B(t)) \le \lambda (\alpha A(t) + (1 - \alpha)B(t))$$

$$\le \lambda (x \in \mathbb{R}; h(x) > t)$$

En utilisant la concavité du logarithme on a l'inégalité suivante

$$\begin{split} \left(\int_{\mathbb{R}} f d\lambda\right)^{\alpha} \left(\int_{\mathbb{R}} g d\lambda\right)^{1-\alpha} &\leq \alpha \int_{\mathbb{R}} f d\lambda + (1-\alpha) \int_{\mathbb{R}} g d\lambda \\ &\leq \int_{0}^{1} \alpha \lambda \left(A(t)\right) + (1-\alpha) \lambda \left(B(t)\right) dt \\ &\leq \int_{0}^{1} \lambda \left(x \in \mathbb{R} \; ; \; h(x) > t\right) dt \\ &\leq \int_{0}^{+\infty} \lambda \left(x \in \mathbb{R} \; ; \; h(x) > t\right) dt = \int_{\mathbb{R}} h d\lambda \end{split}$$

Pour f,g de norme infinie différente de 1, posons $\tilde{f} = \frac{f}{||f||_{\infty}}$, $\tilde{g} = \frac{g}{||g||_{\infty}}$ et $\tilde{h} = \frac{h}{||f||_{\infty}^{\alpha}||g||_{\infty}^{1-\alpha}}$, on a tous de suite $\tilde{h}(\alpha x + (1-\alpha)y) \ge \tilde{f}^{\alpha}(x)\tilde{g}^{1-\alpha}(y)$ en appliquant ce qui précède on obtient :

$$\left(\int_{\mathbb{R}} f d\lambda\right)^{\alpha} \left(\int_{\mathbb{R}} g d\lambda\right)^{1-\alpha} \leq \int_{\mathbb{R}} h d\lambda$$

Ce qui fini la preuve pour le cas n=1, si n>1 supposons que pour n-1 l'inégalité soit montrer et montrons le résultat par récurrence. Posons $f_t: \begin{array}{c} \mathbb{R}^{n-1} & \to & [0,+\infty) \\ x & \to & f(t,x) \end{array}$ pour $t \in \mathbb{R}$ et de même pour g et h. Pour $t,s \in \mathbb{R}$ et $x,y \in \mathbb{R}^{n-1}$,

$$h_{s\alpha+(1-\alpha)t}(\alpha x + (1-\alpha)y) \ge f_s(x)^{\alpha} g_t(y)^{1-\alpha}$$

donc par hypothèse:

$$\int_{\mathbb{R}^{n-1}} h_{s\alpha+(1-\alpha)t} d\lambda \ge \left(\int_{\mathbb{R}^{n-1}} f_s d\lambda\right)^{\alpha} \left(\int_{\mathbb{R}^{n-1}} g_t d\lambda\right)^{1-\alpha}$$

Donc les trois fonction F, G, H définit par

$$F(t) = \int_{\mathbb{R}^{n-1}} f_t d\lambda(t) \quad \& \quad G(t) = \int_{\mathbb{R}^{n-1}} g_t d\lambda(t) \quad \& \quad H(t) = \int_{\mathbb{R}^{n-1}} h_t d\lambda(t)$$

vérifies :

$$H(\alpha s + (1 - \alpha)t) \ge F(t)^{\alpha} G(s)^{1-\alpha}$$

Donc par le cas n = 1,

$$\int_{\mathbb{R}^n} h d\lambda = \int_{\mathbb{R}} H d\lambda \ge \left(\int_{\mathbb{R}} F d\lambda\right)^{\alpha} \left(\int_{\mathbb{R}} G d\lambda\right)^{1-\alpha} = \left(\int_{\mathbb{R}^n} f d\lambda\right)^{\alpha} \left(\int_{\mathbb{R}^n} g d\lambda\right)^{1-\alpha}$$

Ce qui permet de conclure la preuve par récurrence.

Corollaire A.3 (Brunn-Minkowsky). Soit A, B deux compact non vide de \mathbb{R}^n on a

- (i) Pour $\alpha \in]0,1[, \lambda(\alpha A + (1-\alpha)B)] \ge \lambda(A)^{\alpha}\lambda(B)^{1-\alpha}$
- (ii) $\lambda(A+B)^{\frac{1}{n}} \ge \lambda(A)^{\frac{1}{n}} + \lambda(B)^{\frac{1}{n}}$

Démonstration. (i) Prenons $f = \mathbb{I}_A$, $g = \mathbb{I}_B$ et $h = \mathbb{I}_{\alpha A + (1-\alpha)B}$, alors f, g, h vérifie les hypothèses du théorème de Prékopa-Leindler par conséquent,

$$\int_{\mathbb{R}^n} h d\lambda \ge \left(\int_{\mathbb{R}^n} f d\lambda\right)^{\alpha} \left(\int_{\mathbb{R}^n} g d\lambda\right)^{1-\alpha}$$

$$\lambda(\alpha A + (1-\alpha)B) \ge \lambda(A)^{\alpha}\lambda(B)^{1-\alpha}$$

(ii) On a

$$\frac{1}{\lambda(A)^{\frac{1}{n}} + \lambda(B)^{\frac{1}{n}}} \lambda(A+B)^{\frac{1}{n}} = \lambda \left(\frac{A+B}{\lambda(A)^{\frac{1}{n}} + \lambda(B)^{\frac{1}{n}}} \right)^{\frac{1}{n}}$$

$$= \lambda \left(\frac{\lambda(A)^{\frac{1}{n}} + \lambda(B)^{\frac{1}{n}}}{\lambda(A)^{\frac{1}{n}} + \lambda(B)^{\frac{1}{n}}} \frac{A}{\lambda(A)^{\frac{1}{n}} + \lambda(B)^{\frac{1}{n}}} + \frac{\lambda(B)^{\frac{1}{n}}}{\lambda(A)^{\frac{1}{n}} + \lambda(B)^{\frac{1}{n}}} \frac{B}{\lambda(B)^{\frac{1}{n}}} \right)^{\frac{1}{n}}$$

Appliquons le point (i) aux ensembles $\frac{A}{\lambda(A)^{\frac{1}{n}}}$ et $\frac{B}{\lambda(B)^{\frac{1}{n}}}$ avec $\alpha = \frac{\lambda(A)^{\frac{1}{n}}}{\lambda(A)^{\frac{1}{n}} + \lambda(B)^{\frac{1}{n}}}$, on obtient

$$\frac{1}{\lambda(A)^{\frac{1}{n}} + \lambda(B)^{\frac{1}{n}}} \lambda(A+B)^{\frac{1}{n}} \ge \lambda \left(\frac{A}{\lambda(A)^{\frac{1}{n}}}\right)^{\alpha/n} \lambda \left(\frac{B}{\lambda(B)^{\frac{1}{n}}}\right)^{(1-\alpha)/n} = 1$$

B - MARTINGALES & INÉGALITÉ DE KHINCHINE

Soit (Ω, \mathcal{F}, P) un espace probabilisé, \mathcal{G} une sous-tribus de \mathcal{F} , pour tous $f \in L^1(\Omega, \mathcal{F}, P)$ par le théorème de Randon-Nikodym il existe un unique $h \in L^1(\Omega, \mathcal{G}, P)$ tel que pour tous $A \in \mathcal{G}$ on ait

$$\int_{A} h dP = \int_{A} f dP$$

Notation. Par la suite on note $h = \mathbb{E}(f|\mathcal{G})$ l'espérance conditionnelle de f.

Donnons quelques propriétés associées:

Proposition B.1.

- (i) Pour toute sous tribus $\mathcal H$ de $\mathcal G$ on a $\mathbb E\Big(\mathbb E(f|\mathcal G)|\mathcal H\Big)=\mathbb E(f|\mathcal H).$
- (ii) Pour tous $g \in L^{\infty}(\Omega, \mathcal{F}, P)$, $\mathbb{E}(f.g|\mathcal{G}) = g.\mathbb{E}(f|\mathcal{G})$.
- (iii) Si f et $\mathcal G$ sont indépendant alors $\mathbb E(f|\mathcal G)=\mathbb E[f].$
- (iv) Si f est $\mathcal G$ mesurable alors $\mathbb E(f|\mathcal G)=f$.

 $\label{eq:definition} \begin{array}{l} \textit{D\'{e}monstration.} \ \ (\text{i}) \ \text{Par d\'{e}finition} \ \mathbb{E}\Big(\mathbb{E}(f|\mathcal{G})|\mathcal{H}\Big) \ \text{est l'unique fonction de } L^1(\Omega,\mathcal{H},P) \ \text{tel que pour tous } A \in \mathcal{H} \subset \mathcal{G} \ : \end{array}$

$$\int_{A} \mathbb{E} \Big(\mathbb{E}(f|\mathcal{G})|\mathcal{H} \Big) dP = \int_{A} \mathbb{E}(f|\mathcal{G}) dP = \int_{A} f dP$$

Par unicité $\mathbb{E}\left(\mathbb{E}(f|\mathcal{G})|\mathcal{H}\right) = \mathbb{E}\left(f|\mathcal{H}\right)$.

(ii) Nous allons le montrer en plusieurs étapes, premièrement si $g=\mathbb{1}_B$ pour $B\in\mathcal{F}$ alors pour

tous $A \in \mathcal{G}$

$$\begin{split} \int_A \mathbb{E}(\mathbb{1}_B f | \mathcal{G}) dP &= \int_A \mathbb{1}_B f dP \\ &= \int_{A \cap B} f dP \\ &= \int_{A \cap B} \mathbb{E}(f | \mathcal{G}) dP \quad \text{car } A \cap B \subset A \in \mathcal{G} \\ &= \int_A \mathbb{1}_B \mathbb{E}(f | \mathcal{G}) dP \end{split}$$

Par unicité $\mathbb{E}(\mathbb{I}_B f | \mathcal{G}) = \mathbb{I}_B \mathbb{E}(f | \mathcal{G})$. La linéarité de l'espérance permet de conclure pour des fonctions en escaliers, or pour toute fonction positive g mesurable, il existe une suite de fonctions en escaliers $(g_n)_{n \in \mathbb{N}}$ croissante telle que $g = \lim g_n$ presque partout, et donc par le théorème de convergence monotone pour $A \in \mathcal{G}$:

$$\int_{A} g f dP = \lim_{n} \int_{A} g_{n} f dP = \lim_{n} \int_{A} \mathbb{E}(g_{n}.f|\mathcal{G}) dP = \lim_{n} \int_{A} g_{n} \mathbb{E}(f|\mathcal{G}) dP = \int_{A} g \mathbb{E}(f|\mathcal{G}) dP$$

finalement si g est une fonction mesurable, alors on écrit $g=|g|\mathbb{1}_{\left\{g>0\right\}}-|g|\mathbb{1}_{\left\{g<0\right\}}$ et on applique le point précédent à $|g|\mathbb{1}_{\left\{g>0\right\}}$ et $|g|\mathbb{1}_{\left\{g<0\right\}}$.

(iii)Soit $A \in \mathcal{G}$,

$$\begin{split} \int_A \mathbb{E}(f|\mathcal{G})dP &= \int_A f dP \\ &= \mathbb{E}[f].\mathbb{E}[\mathbb{1}_A] \quad \text{par indépendance} \\ &= \int_A \mathbb{E}[f] dP \end{split}$$

L'unicité permet de conclure.

(iv) Évident par la définition et l'unicité.

Défintion. Soit $\mathscr{F}_1 \subset \cdots \subset \mathscr{F}_N \subset \mathscr{F}$ une suite de sous-tribus, alors une suite de fonctions f_1, \ldots, f_N avec $f_i \in L^1(\Omega, \mathscr{F}_i, P)$ pour tout $1 \leq i \leq N$ est appelées martingales de $\{\mathscr{F}_i\}_{1 \leq i \leq N}$ si pour tout i > 2, $\mathbb{E}(f_i | \mathscr{F}_i) = f_{i-1}$.

Démontrons l'inégalité de concentration suivante :

 $\mathbf{Lemme \ B.2. \ Soit \ } f \in L^{\infty}(\Omega, \mathcal{F}, P), \ \Big\{ \emptyset, \Omega \Big\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_N = \mathcal{F}, \ \text{alors pour tous } \varepsilon > 0 :$

$$P(|f - \mathbb{E}[f]| > \varepsilon) \le 2 \exp\left(-\frac{\varepsilon^2}{4\sum_{i=1}^{N} ||d_i||_{\infty}^2}\right)$$

Où
$$d_i = \mathbb{E}(f|\mathcal{F}_i) - \mathbb{E}(f|\mathcal{F}_{i-1})$$

 $D\acute{e}monstration.$ En utilisant l'inégalité $e^x \leq x + e^{x^2}$ on a pour tous $\lambda \neq 0$:

$$\mathbb{E}\left(e^{\lambda d_i}|\mathscr{F}_{i-1}\right) \leq \mathbb{E}\left(\lambda d_i|\mathscr{F}_{i-1}\right) + \mathbb{E}\left(e^{\lambda^2 d_i^2}|\mathscr{F}_{i-1}\right)$$

Remarquons alors que

$$\begin{split} \mathbb{E} \big(\lambda d_i | \mathscr{F}_{i-1} \big) &= \lambda \mathbb{E} \big(d_i | \mathscr{F}_{i-1} \big) \\ &= \lambda \mathbb{E} \big(\mathbb{E} (f | \mathscr{F}_i) | \mathscr{F}_{i-1} \big) - \lambda \mathbb{E} \big(\mathbb{E} (f | \mathscr{F}_{i-1}) | \mathscr{F}_{i-1} \big) \\ &= \lambda \mathbb{E} \big(f | \mathscr{F}_{i-1} \big) - \lambda \mathbb{E} \big(f | \mathscr{F}_{i-1} \big) \\ &= 0 \end{split}$$

On a donc finalement

$$\begin{split} \mathbb{E} \left(e^{\lambda d_i} | \mathcal{F}_{i-1} \right) &\leq \mathbb{E} \left(e^{\lambda^2 d_i^2} | \mathcal{F}_{i-1} \right) \\ &\leq \mathbb{E} \left(e^{\lambda^2 ||d_i||_{\infty}^2} | \mathcal{F}_{i-1} \right) \\ &\leq e^{\lambda^2 ||d_i||_{\infty}^2} \end{split}$$

En utilisant la **proposition B.1.ii** on obtient :

$$\mathbb{E}\bigg(\mathbb{E}\bigg(\exp\big(\lambda\sum_{j=1}^i d_j\big)|\mathscr{F}_{i-1}\bigg)\bigg) = \mathbb{E}\bigg(\mathbb{E}\bigg(\exp\big(\sum_{j=1}^{i-1}\lambda d_j\big)e^{\lambda d_i}|\mathscr{F}_{i-1}\bigg)\bigg) = \mathbb{E}\bigg(\exp\big(\sum_{j=1}^{i-1}\lambda d_j\big)\mathbb{E}\big(e^{\lambda d_i}|\mathscr{F}_{i-1}\big)\bigg)$$

D'où:

$$\mathbb{E}\left(\mathbb{E}\left(\exp\left(\lambda\sum_{j=1}^{i}d_{j}\right)|\mathscr{F}_{i-1}\right)\right) \leq \mathbb{E}\left(\exp\left(\sum_{j=1}^{i-1}e^{\lambda d_{j}}\right)\right)e^{\lambda^{2}||d_{i}||_{\infty}^{2}}$$

d'autre part, on a $\mathbb{E}\left(\mathbb{E}\left(\exp\left(\lambda\sum_{j=1}^{i}d_{j}\right)|\mathcal{F}_{i-1}\right)\right)=\mathbb{E}\left(\exp\left(\lambda\sum_{j=1}^{i}d_{j}\right)\right)$ et donc on a

$$\mathbb{E}\left(\exp\left(\lambda\sum_{j=1}^{i}d_{j}\right)\right) \leq \mathbb{E}\left(\exp\left(\sum_{j=1}^{i-1}e^{\lambda d_{j}}\right)\right)e^{\lambda^{2}||d_{i}||_{\infty}^{2}}$$

Par récurrence, on obtient :

$$\mathbb{E}\left(\exp\left(\lambda \sum_{j=1}^{i} d_{j}\right)\right) \leq \exp\left(\lambda^{2} \sum_{j=1}^{i} ||d_{j}||_{\infty}^{2}\right) \tag{\star}$$

Remarquons maintenant ceci:

$$\sum_{i=1}^{N} d_i = \mathbb{E}(f|\mathscr{F}) - \mathbb{E}(f|\{\emptyset, \Omega\}) = f - \mathbb{E}[f]$$

Donc pour tous $\lambda > 0$,

$$\begin{split} P\big(f - \mathbb{E}[f] > \varepsilon\big) &= P\big(\sum_{i=1}^{N} d_i > \varepsilon\big) \\ &= P\Big(\exp\big(\lambda \sum_{i=1}^{N} d_i - \varepsilon\lambda\big) > 1\Big) \\ &\leq \mathbb{E}\big[\exp\big(\lambda \sum_{i=1}^{N} d_i - \varepsilon\lambda\big)\big] \qquad \text{par l'inégalité de Markov} \\ &\leq \exp\big(\lambda^2 \sum_{i=1}^{N} ||d_i||_{\infty}^2\big) e^{-\varepsilon\lambda} \qquad \text{par } (\star) \end{split}$$

de même

$$\begin{split} P\big(\mathbb{E}[f] - f > \varepsilon\big) &= P\big(-\sum_{i=1}^{N} d_i > \varepsilon\big) \\ &= P\Big(\exp\big(-\varepsilon\lambda - \lambda\sum_{i=1}^{N} d_i\big) > 1\Big) \\ &\leq \mathbb{E}\big[\exp\big(-\lambda\sum_{i=1}^{N} d_i\big)\big] e^{-\varepsilon\lambda} \qquad \text{par l'inégalité de Markov} \\ &\leq \exp\big(\lambda^2\sum_{i=1}^{N} ||d_i||_{\infty}^2\big) e^{-\varepsilon\lambda} \qquad \text{par } (\star) \end{split}$$

finalement

$$P(|f - \mathbb{E}[f]| > \varepsilon) \le 2 \exp\left(\lambda^2 \sum_{i=1}^{N} ||d_i||_{\infty}^2\right) e^{-\varepsilon \lambda}$$

avec $\lambda = \frac{\varepsilon}{2\sum_{i=1}^N ||d_i||_\infty^2}$ on obtient le résultat recherché :

$$P(|f - \mathbb{E}[f]| > \varepsilon) \le 2 \exp\left(-\frac{\varepsilon^2}{4\sum_{i=1}^{N} ||d_i||_{\infty}^2}\right)$$

Introduisons maintenant les fonctions de Rademacher déjà utiliser dans la preuve de la proposition 3.2.

Définition & Proposition. On note $r_k \in L^2([0,1])$ définie par :

$$r_k(t) = \operatorname{sign} \left(\sin(\pi 2^k t) \right)$$

les $(r_k)_{k\in\mathbb{N}}$ sont appelées fonctions de Rademacher et elles vérifient les propriétés suivantes :

- (i) Pour $p \neq q$, r_p et r_q sont orthogonaux dans L^2 .
- (ii) Pour tous $j \in \mathbb{N}^*$, $\int_0^1 r_j d\lambda = 0$.

Démonstration. (i) Supposons p < q, on a l'égalité suivante :

$$\int_0^1 \operatorname{sign}(\sin \pi 2^p t) \operatorname{sign}(\sin \pi 2^q t) dt = \sum_{i=0}^{2^p-1} \int_{i2^{-p}}^{(i+1)2^{-p}} \operatorname{sign}(\sin \pi 2^p t) \operatorname{sign}(\sin \pi 2^q t) dt$$

Or pour tout $t \in]i2^{-p}, (i+1)2^{-p}[$, on a sign($\sin \pi 2^p t$) = $(-1)^i$ et de plus

$$\pi 2^q t \in]i2^{q-p}\pi, (i+1)2^{q-p}\pi[$$

un intervalle de taille un multiple de 2π , et pour finir sign $(\sin \pi 2^q t)$ prend les valeurs 1 et -1 sur des intervalles de mêmes longueurs pour $t \in]i2^{-p}$, $(i+1)2^{-p}$ [, donc chaque terme de la somme est nul.

(ii) Pour $t \in]0,1[$ on a $\pi 2^j t \in]0,2^j \pi[$ un intervalle de taille un multiple de 2π , donc $\sin(\pi 2^j t)$ prend des valeurs positives et négatives sur des ensembles de mêmes mesures, et donc $\int_0^1 r_j d\lambda = 0$.

Théorème B.3 (Inégalité de Khinchine). Pour tout $1 \le p < \infty$, il existe des constantes $0 < A_p < B_p$ telles que pour tous n et tous $(a_i)_{i \le n} \subset \mathbb{R}$:

$$\left(\sum_{i=1}^{n}|a_{i}|^{2}\right)^{\frac{1}{2}}\frac{1}{A_{p}} \leq \left(\int_{0}^{1}\left|\sum_{i=1}^{n}a_{i}r_{i}(t)\right|^{p}dt\right)^{\frac{1}{p}} \leq B_{p}\left(\sum_{i=1}^{n}|a_{i}|^{2}\right)^{\frac{1}{2}}$$

Démonstration. Soit $(a_i)_{i \le n} \ne (0,...,0)$, posons $b_i = \frac{a_i}{(\sum_{i=1}^n a_i^2)^{\frac{1}{2}}}$ et $f = \sum_{i=1}^n b_i r_i$, on veut appliquer le lemme qui précède à f. Pour cela, il nous faut définir une suite de sous-tribus de Bor([0,1]), on la construit de la manière suivante :

$$\mathcal{F}_0 = \left\{ \emptyset, [0, 1] \right\}$$

$$\mathcal{F}_1 = \sigma(r_1)$$

$$\mathcal{F}_2 = \sigma(r_1, r_2)$$

$$\vdots$$

$$\mathcal{F}_n = \sigma(r_1, ..., r_n)$$

$$\mathcal{F}_{n+1} = \text{Bor}([0, 1])$$

Où $\sigma(r_1,\ldots,r_k)$ désigne la tribus engendrées par les variables aléatoires r_1,\ldots,r_k . On a alors

$$\begin{split} d_i &= \mathbb{E}(f|\mathcal{F}_i) - \mathbb{E}(f|\mathcal{F}_{i-1}) \\ &= \sum_{j=1}^n \mathbb{E}(b_j r_j|\mathcal{F}_i) - \sum_{j=1}^n \mathbb{E}(b_j r_j|\mathcal{F}_{i-1}) \end{split}$$

remarquons alors que

- Si $1 \leq j \leq i < n, \; r_j \text{ est } \mathcal{F}_j \subset \mathcal{F}_i \text{ mesurable, donc } \mathbb{E}(r_j | \mathcal{F}_i) = r_j.$
- Si j>i , r_j est indépendante de \mathcal{F}_i et donc $\mathbb{E}(r_j|\mathcal{F}_i)=\mathbb{E}(r_j)=0$

et donc si $1 < i \le n$:

$$d_i = \sum_{j=1}^{i} b_j r_j - \sum_{j=1}^{i-1} b_j r_j = b_i r_i$$

et

$$d_1 = b_1 r_1 - \mathbb{E}(b_1 r_1) = b_1 r_1$$

$$d_{n+1} = \mathbb{E}(f|\mathcal{F}) - \mathbb{E}(f|\mathcal{F}_n) = f - f = 0$$

et l'on obtient :

$$\sum_{i=1}^{n+1} ||d_i||_{\infty}^2 = \sum_{i=1}^{n} |b_i|^2 = 1$$

par le **lemme B.2** pour tous $\varepsilon > 0$:

$$\lambda(|f| > \varepsilon) \le 2 \exp(-\frac{\varepsilon^2}{4})$$

Par changement de variable $s^p = t$ on obtient :

$$\begin{split} \int_{0}^{1} |f|^{p} d\lambda &= \int_{0}^{+\infty} \lambda(|f|^{p} > t) dt = \int_{0}^{+\infty} p s^{p-1} \lambda(|f| > s) ds \\ &\leq 2p \int_{0}^{+\infty} s^{p-1} e^{-\frac{s^{2}}{4}} ds \\ &\leq B_{p}^{p} \end{split}$$

avec $B_p = (2p \int_0^{+\infty} s^{p-1} e^{-\frac{s^2}{4}} ds)^{\frac{1}{p}}$.

Donc pour $p \ge 2$:

$$1 = \left(\int_0^1 |f|^2 d\lambda\right)^{\frac{1}{2}} \le \left(\int_0^1 |f|^p d\lambda\right)^{\frac{1}{p}} \le B_p$$

$$\left(\sum_{i=1}^n |a_i|^2\right)^{\frac{1}{2}} \le \left(\int_0^1 |\sum_{i=1}^n a_i r_i|^p d\lambda\right)^{\frac{1}{p}} \le B_p \left(\sum_{i=1}^n |a_i|^2\right)^{\frac{1}{2}}$$

Pour p = 1, soit $\theta \in]0,1[$ alors

$$\int_{0}^{1} |f|^{2} d\lambda = \int_{0}^{1} |f|^{2\theta} |f|^{2(1-\theta)} d\lambda \le \left(\int_{0}^{1} |f| d\lambda \right)^{2\theta} \left(\int_{0}^{1} |f|^{4} d\lambda \right)^{\frac{1-\theta}{2}}$$

$$1 = \left(\int_0^1 |f|^2 d\lambda\right)^{\frac{1}{2}} \le \left(\int_0^1 |f| d\lambda\right)^{\theta} B_4^{1-\theta}$$

Avec $\theta = \frac{1}{3}$ on obtient :

$$B_4^{-2} \le \int_0^1 |f| d\lambda$$

Et pour $1 \le p < 2$ on a finalement :

$$B_4^{-2} \le \int_0^1 |f| d\lambda \le \left(\int_0^1 |f|^p d\lambda \right)^{\frac{1}{p}} \le \left(\int_0^1 |f|^2 d\lambda \right)^{\frac{1}{2}} = 1$$

c'est-à-dire

$$B_4^{-2} \Big(\sum_{i=1}^n a_i^2\Big)^{\frac{1}{2}} \leq \Big(\int_0^1 |\sum_{i=1}^n a_i r_i|^p d\lambda\Big)^{\frac{1}{p}} \leq \Big(\sum_{i=1}^n a_i^2\Big)^{\frac{1}{2}}$$

RÉFÉRENCES

- [1] G. Schechtman, "Euclidean sections of convex bodies," 2008.
- [2] A. Grothendieck, "Sur certains classes de suites dans les espaces de Banach, et le théorème de Dvoretzky-Rogers," 1956.
- [3] V. MILMAN, "New proof of the theorem of A. Dvoretzky on intersections of convex bodies," 1971.
- [4] Y. GORDON, "On Milman's inequality and random subspaces which escape through a mesh in \mathbb{R}^n ," 1988.
- [5] G. Schechtman, "A remark concerning the dependence on ε in dvoretzky's theorem," 1989.
- [6] V. MILMAN et G. SCHECHTMAN, Asymptotic theory of finite dimensional normed space. Springer, 1986.
- [7] G. PISIER, The volume of convex bodies and Banach space geometry. Cambridge University Press, 1989.
- [8] V. Milman, "Dvoretzky theorem thirty years later," 1992.