Next-Next-Gen Notes Object-Oriented Maths

JP Guzman

September 29, 2017

Format: $characteristic((subjects), (dependencies)) \iff (conditions(dependencies)) \land (conditions(subjects))$

1 Mathematical Analysis

1.0.1 Formal Logic

$$statement(s,()) \iff well\text{-}formedString(s,()) \qquad (1)$$

$$proposition((p,t),()) \iff (statement(p,0)) \land \qquad (t = cval(p)) \land \qquad (t = tval(p)) \land \qquad (t$$

propositions defined over a set of the lower order logical statements (10) $quantifier\big(q,(p,V)\big) \iff \Big(predicate\big(p,(V)\big)\Big) \land$ $\left(proposition(q(p),t),()\right)$ # a quantifier takes in a predicate and returns a proposition (11) $quantifier(\forall, (p, V)) \iff proposition((\land_{v \in V}(p(v)), t), ())$ # universal quantifier (12) $quantifier(\exists, (p, V)) \iff proposition((\lor_{v \in V}(p(v)), t), ())$ # existential quantifier (13) $quantifier(\exists!, (p, V)) \iff \exists_{x \in V} \left(P(x) \land \neg \left(\exists_{y \in V \setminus \{x\}} \left(P(y) \right) \right) \right)$ # uniqueness quantifier (14) $(THM): \forall_x p(x) \iff \neg \exists_x \neg p(x)$ # De Morgan's law (15) $(THM): \forall_x \exists_y p(x,y) = \forall_x \neg \forall_y \neg p(x,y) \neq \exists_y \forall_x p(x,y) = \neg \forall_y \neg (\forall_x p(x,y)) = \neg \forall_y \exists_x \neg p(x,y)$ # different quantifiers are not interchangeable (16)===== N O T = U P D A T E D =====(17)proof = truths derived from a finite number of axioms and deductions (18)elementary arithmetics = system with substitutions, and some notion of addition, multiplication, and prime nuumbers for encoding metamathematics (19)Gödel theorem \implies axiomatic systems equivalent in power to elementary mathematics either has unprovable statements or has contradictions (20) $sequenceSet((A)_{\mathbb{N}}, (A)) \iff (Amapinputn)((A)_{\mathbb{N}} = \{A(1), A(2), A(3), \ldots\})$ (21)TODO: define union, intersection, complement, etc. (22)(23)

1.1 Axiomatic Set Theory

${f ZFC}$ set theory = standard form of axiomatic set theory	(25)
$A \subseteq B = \forall_x x \in A \implies x \in B$	(26)
$(A = B) = A \subseteq B \land B \subseteq A$	(27)
$\in \mathbf{basis} \implies \{x,y\} = \{y,x\} \land \{x\} = \{x,x\}$	(28)
\in and sets works following the 9 ZFC axioms:	(29)
$\forall_x \forall_y \big(x \in y \veebar \neg (x \in y)\big) \ \# \ \mathrm{E} : \in \mathrm{is} \ \mathrm{only} \ \mathrm{a} \ \mathrm{proposition} \ \mathrm{on} \ \mathrm{sets}$	(30)
$\exists_\emptyset \forall_y \neg y \in \emptyset \ \# \ \mathrm{E}$: existence of empty set	(31)
$\forall_x \forall_y \exists_m \forall_u u \in m \iff u = x \lor u = y \ \# \ \text{C: pair set construction}$	(32)
$\forall_s \exists_u \forall_x \forall_y (x \in s \land y \in x \implies y \in u) \ \# \ \mathrm{C} : \ \mathrm{union \ set \ construction}$	(33)
$x = \{\{a\}, \{b\}\}$ # from the pair set axiom	(34)
$u = \cup x = \cup \{\{a\}, \{b\}\} = \{a, b\}$	(35)
$\forall_x \exists !_y R(x,y) \ \# \ ext{functional relation} \ R$	(36)
$\exists_i \forall_x \exists !_y R(x,y) \implies y \in i \# C$: image i of set m under a relation R is assumed to be a set $\implies \{y \in m \mid P(y)\} \# \text{ Restricted Comprehension } \implies \{y \mid P(y)\} \# \text{ Universal Comprehension}$	(37)
$\forall_{x \in m} P(x) = \forall_x (x \in m \implies P(x)) \# \text{ ignores out of scope} \neq \forall_x (x \in m \land P(x)) \# \text{ restricts entirety}$	(38)
$\forall_m \forall_n \exists_{\mathcal{P}(m)} \big(n \subseteq m \implies n \subseteq \mathcal{P}(m) \big) \ \# \ \mathrm{C}$: existence of power set	(39)
$\exists_I \Big(\emptyset \in I \land \forall_{x \in I} \big(\{x\} \in I\big)\Big) \ \# \ \text{I: axiom of infinity} \ ; \ I = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \ldots\}; I \cong \mathbb{N} \implies \mathbb{N} \ \text{is a set}$	(40)
$\forall_x \Big(\big(\emptyset \notin x \land x \cap x' = \emptyset \big) \implies \exists_y (\mathbf{set \ of \ each \ } \mathbf{e} \in x) \Big) \ \# \ \mathrm{C}$: axiom of choice	(41)
$\forall_x x \neq \emptyset \implies x \notin x \# F$: axiom of foundation covers further paradoxes	(42)
======== N O T = U P D A T E D ========	(43)

1.2 Classification of sets

 $\begin{array}{l} space \big((set, structure), ()\big) \iff structure (set) \\ \# \ a \ space \ a \ set \ equipped \ with \ some \ structure \end{array}$

(44	# various spaces can be studied through structure preserving maps between those spaces
	$map(\phi,(A,B)) \iff (\forall_{a\in A}\exists!_{b\in B}(\phi(a,b)))\lor$
	$\left(\forall_{a \in A} \exists !_{b \in B} \big(b = \phi(a)\big)\right)$
(45	# maps elements of a set to elements of another set
(46	$domainig(A,(\phi,A,B)ig) \iff \Big(mapig(\phi,(A,B)ig)\Big)$
(47	$codomain(B, (\phi, A, B)) \iff (map(\phi, (A, B)))$
	$imageig(B,(A,q,M,N)ig) \iff \Big(mapig(q,(M,N)ig) \land A \subseteq M\Big) \land$
(48	$\Big(B = \{n \in N \mid \exists_{a \in A} (q(a) = n)\}\Big)$
	$preimageig(A,(B,q,M,N)ig) \iff \Big(mapig(q,(M,N)ig) \land B \subseteq N\Big) \land$
(40	$\left(A = \{m \in M \mid \exists_{b \in B} (b = q(m))\}\right)$
(49	$\left(A - \{m \in M \mid \exists_{b \in B}(b - q(m))\}\right)$
	$injectionig(q,(M,N)ig) \iff \Big(mapig(q,(M,N)ig)\Big) \land$
	$\forall_{u,v \in M} (q(u) = q(v) \implies u = v)$
(50	
	$surjectionig(q,(M,N)ig) \iff \Big(mapig(q,(M,N)ig)\Big) \land$
	,
(51	$\forall_{n \in N} \exists_{m \in M} (n = q(m))$ # every n has at least 1 preimage
(91	# every n has at least 1 preimage
	$bijectionig(q,(M,N)ig) \iff \Big(injectionig(q,(M,N)ig)\Big) \land$
	$\Big(surjectionig(q,(M,N)ig)\Big)$
(52	# every unique m corresponds to a unique n
(52	# every unique m corresponds to a unique n
(53	$isomorphicSetsig((A,B),()ig) \iff \exists_{\phi} \Big(bijectionig(\phi,(A,B)ig)\Big)$
(54	$infiniteSet(S,()) \iff \exists_{T \subset S} \Big(isomorphicSets \big((T,S),()\big) \Big)$
/	
(55	$finiteSetig(S,()ig) \iff \Big(\neg infiniteSetig(S,()ig) \Big) \lor ig(S \in \mathbb{N}ig)$
(56	$countably Infiniteig(S,()ig) \iff \Big(infiniteSetig(S,()ig)\Big) \land \Big(isomorphicSetsig((S,\mathbb{N}),()ig)\Big)$
	$uncountablyInfiniteig(S,()ig) \iff \Big(infiniteSetig(S,()ig)\Big) \land \Big(\neg isomorphicSetsig((S,\mathbb{N}),()ig)\Big)$

$$inverseMap(q^{-1}, (q, M, N)) \iff \begin{pmatrix} bijection(q, (M, N)) \\ map(q^{-1}, (N, M)) \end{pmatrix} \land \\ \begin{pmatrix} map(q^{-1}, (N, M)) \\ \end{pmatrix} \land \\ \begin{pmatrix} \forall_{n \in N} \exists !_{m \in M} \Big(q(m) = n \implies q^{-1}(n) = m \Big) \end{pmatrix}$$
 (58)
$$mapComposition(\phi \circ \psi, (\phi, \psi, A, B, C)) \iff map(\psi, (A, B)) \land map(\phi, (B, C)) \land \\ \forall_{a \in A} \Big(\phi \circ \psi(a) = \phi(\psi(a)) \Big)$$
 (59)
$$equivalenceRelation(\sim, (M)) \iff (\forall_{m \in M} (m \sim m)) \land \\ (\forall_{m,n \in M} (m \sim n \implies n \sim m)) \land \\ (\forall_{m,n,p \in M} (m \sim n \land n \sim p \implies m \sim p)) \\ \# \text{ behaves as equivalences should}$$
 (60)
$$equivalenceClass([m], (m, M, \sim)) \iff [m] = \{n \in M \mid n \sim m\} \\ \# \text{ set of elements satisfying the equivalence relation with } m$$
 (61)

$$(\text{THM}): a \in [m] \implies [a] = [m] \; ; \; [m] = [n] \veebar [m] \cap [n] = \emptyset$$
 # equivalence class properties
$$(62)$$

$$quotientSet\big(M/\sim,(M,\sim)\big) \iff M/\sim = \{[m] \in \mathcal{P}(M) \mid m \in M\}$$
 # set of all equivalence classes (63)

(THM): axiom of choice
$$\implies \forall_{[m] \in M/\sim} \exists_r (r \in [m])$$

well-defined maps may be defined in terms of chosen representative elements r (64)

1.3 Construction of number sets

 $S^{n}(x) = 0 \implies x = \text{additive inverse} \notin \mathbb{N} \# \text{ git gud smh -_-}$ (73)

$$\mathbb{Z} = \mathbb{N} \times \mathbb{N} / \sim$$
, s.t.:

 $(m,n) \sim (p,q) \iff m+q=p+n \ \# \text{ span } \mathbb{Z} \text{ using differences then group equal differences}$ (74)

$$\mathbb{N} \hookrightarrow \mathbb{Z} : \forall_{n \in \mathbb{N}} n \to [(n,0)] \# \mathbb{N} \text{ embedded in } \mathbb{Z}$$
 (75)

$$+_{\mathbb{Z}} = [(m +_{\mathbb{N}} p, n +_{\mathbb{N}} q)] \# \text{ well-defined and consistent}$$
 (76)

 $\mathbf{multiplication} \dots M^x = id \implies x = \mathbf{multiplicative} \ \mathbf{identity} = 1 \dots \mathbf{multiplicative} \ \mathbf{inverse} \notin \mathbb{N}$ (77)

$$\mathbb{Q} = (\mathbb{Z} \times \mathbb{Z}^*) / \sim, \text{ s.t.: } (x, y) \sim (u, v) \iff x \cdot v = u \cdot y$$
 (78)

$$\mathbb{Z} \hookrightarrow \mathbb{Q} \forall_{q \in \mathbb{Q}} q \to [(q, 1)] \; ; \; \dots \{x \mid x^2 = 2\} \notin \mathbb{Q}$$
 (79)

 $\mathbb{R} = \text{almost homomorphisms on } \mathbb{Z}/\sim \# \text{ http://blog.sigfpe.com/2006/05/defining-reals.html}$ (80)

1.4 Topology

$$topology(\mathcal{O}, (M)) \iff (\mathcal{O} \subseteq \mathcal{P}(M)) \land (\emptyset, M \in \mathcal{O}) \land ((F \in \mathcal{O} \land |F| < |\mathbb{N}|) \implies \cap F \in \mathcal{O}) \land ((F \in \mathcal{O} \land |F| < |\mathbb{N}|)) \iff ((F \in \mathcal{O} \land |F| < |\mathbb{N}|)) \Leftrightarrow ((F \in \mathcal{O} \land |F| < |F| <$$

$$(F \in \mathcal{O} \land |F| < |\mathbb{N}|) \implies \cap F \in \mathcal{O}) \land$$
$$(C \subseteq \mathcal{O} \implies \cup C \in \mathcal{O})$$

topology is defined by a set of open sets which provide the characteristics needed to define continuity, etc. # arbitrary unions of open sets always result in an open set

open sets do not contain their boundaries and infinite intersections of open sets may approach and
induce boundaries resulting in a closed set (82)

induce boundaries resulting in a closed set (82)

$$topologicalSpace((M, \mathcal{O}), ()) \iff topology(\mathcal{O}, (M))$$
 (83)

$$open(S, (M, \mathcal{O})) \iff (topologicalSpace((M, \mathcal{O}), ())) \land (S \subseteq M) \land (S \in \mathcal{O})$$

an open set do not contains its own boundaries (84)

$$closed(S, (M, \mathcal{O})) \iff \Big(topologicalSpace((M, \mathcal{O}), ())\Big) \land (S \subseteq M) \land (S \in \mathcal{P}(M) \setminus \mathcal{O})$$

a closed set contains the boundaries an open set (85)

$$clopen(S, (M, \mathcal{O})) \iff \left(closed(S, (M, \mathcal{O}))\right) \land \left(open(S, (M, \mathcal{O}))\right)$$
 (86)

$$neighborhood(U,(a,\mathcal{O})) \iff (a \in U \in \mathcal{O})$$

another name for open set containing a (87)

$$M = \{a, b, c, d\} \land \mathcal{O} = \{\emptyset, \{c\}, \{a, b\}, \{c, d\}, \{a, b, c\}, M\} \Longrightarrow \left(open(X, (M, \mathcal{O})) \iff X = \{\emptyset, \{c\}, \{a, b\}, \{c, d\}, \{a, b, c\}, M\}\right) \land \left(closed(Y, (M, \mathcal{O})) \iff Y = \{\emptyset, \{a, b, d\}, \{c, d\}, \{a, b\}, \{d\}, M\}\right) \land \left(clopen(Z, (M, \mathcal{O})) \iff Z = \{\emptyset, \{a, b\}, \{c, d\}, M\}\right)$$
(88)

$$chaoticTopology(M) = \{0, M\}; discreteTopology = \mathcal{P}(M)$$
 (89)

1.5 Induced topology

$$\begin{aligned} \textit{distance}\big(d,(M)\big) &\iff \bigg(\forall_{x,y\in M}\Big(d(x,y) = d(y,x) \in \mathbb{R}_0^+\Big)\bigg) \land \\ & \bigg(\forall_{x,y\in M}\big(d(x,y) = 0 \iff x = y\big)\bigg) \land \\ & \bigg(\forall_{x,y,z}\Big(\big(d(x,z) \le d(x,y) + d(y,z)\big)\Big)\bigg) \\ & \# \text{ behaves as distances should} \end{aligned}$$
(90)

$$metricSpace((M,d),()) \iff distance(d,(M))$$
 (91)

$$openBall(B, (r, p, M, d)) \iff \left(metricSpace((M, d), ())\right) \land$$

$$\left(r \in \mathbb{R}^+, p \in M\right) \land$$

$$\left(B = \{q \in M \mid d(p, q) < r\}\right)$$

$$(92)$$

$$\begin{split} metricTopology\big(\mathcal{O},(M,d)\big) &\iff \Big(metricSpace\big((M,d),()\big)\Big) \land \\ \Big(\mathcal{O} = \{U \in \mathcal{P}(M) \mid \forall_{p \in U} \exists_{r \in \mathbb{R}^+} \Big(openBall\big(B,(r,p,M,d)\big) \land B \subseteq U\Big)\}\Big) \end{split}$$

every point in the neighborhood has some open ball that is fully enclosed in the neighborhood (93)

$$metricTopologicalSpace((M, \mathcal{O}, d), ()) \iff metricTopology(\mathcal{O}, (M, d))$$
 (94)

$$limitPoint(p,(S,M,\mathcal{O},d)) \iff \left(metricTopologicalSpace((M,\mathcal{O},d),()) \right) \land (S \subseteq M) \land$$

$$\forall_{r \in \mathbb{R}^+} \left(openBall(B,(r,p,M,d)) \land B \cap S \neq \emptyset \right)$$

every open ball centered at p contains some intersection with S

(95)

$$interiorPoint(p,(S,M,\mathcal{O},d)) \iff \left(\underbrace{metricTopologicalSpace}((M,\mathcal{O},d),()) \right) \land (S \subseteq M) \land$$
$$\left(\exists_{r \in \mathbb{R}^+} \left(openBall(B,(r,p,M,d)) \land B \subseteq S \right) \right)$$

there is an open ball centered at p that is fully enclosed in S (96)

$$closure(\bar{S}, (S, M, \mathcal{O}, d)) \iff \bar{S} = S \cup \{p \in M \mid limitPoint(p, (S, M, \mathcal{O}, d))\}$$

$$(97)$$

```
dense\big(S,(M,\mathcal{O},d)\big) \iff (S\subseteq M) \land \bigg(\forall_{p\in M}\Big(p\in closure\big(\bar{S},(S,M,\mathcal{O},d)\big)\Big)\bigg)
                                                                        \# every of point in M is a point or a limit point of S
                                                                                                                                                                        (98)
                                                               eucD(d,(n)) \iff (\forall_{i \in \mathbb{N} \land i \leq n} (x_i \in \mathbb{R})) \land \left(d = \sqrt[2]{\sum_{i=1}^n x_i^2}\right)
                                                                                                                                                                         (99)
                                                                metricTopology \bigg( standardTopology, \Big( \mathbb{R}^n, eucD \big( d, (n) \big) \Big) \bigg)
                                                      ==== N O T = U P D A T E D ====
             L1: \forall_{p \in U = \emptyset}(...) \implies \forall_p ((p \in \emptyset) \implies ...) \implies \forall_p ((\mathbf{False}) \implies ...) \implies \emptyset \in \mathcal{O}_{standard}
                                                                             L2: \forall_{p \in \mathbb{R}^n} B(r, p, \mathbb{R}^n, d) \subseteq \mathbb{R}^n \implies M \in \mathcal{O}_{standard}
                          L4: C \subseteq \mathcal{O}_{standard} \implies \forall_{U \in C} \forall_{p \in U} \exists_{r \in \mathbb{R}^+} (B_r(p) \subseteq U \subseteq \cup C) \implies \cup C \in \mathcal{O}_{standard}
                                                        L3: U, V \in \mathcal{O}_{standard} \implies p \in U \cap V \implies p \in U \land p \in V \implies
                                                                                    \exists_{r \in \mathbb{R}^+} B(r, p, \mathbb{R}^n, d) \land \exists_{s \in \mathbb{R}^+} B(s, p, \mathbb{R}^n, d) \implies
                                                       B(min(r,s), p, \mathbb{R}^n, eucD) \subseteq U \land B(min(r,s), q, \mathbb{R}^n, d) \subseteq V \implies
                                                               B(min(r,s), p, \mathbb{R}^n, eucD) \in U \cap V \implies U \cap V \in \mathcal{O}_{standard}
                                                                                                                   # natural topology for \mathbb{R}^d
                                                                     \# could fail on infinite sets since min could approach 0
                                                                   = N O T = U P D A T E D ========
                                                                                                                                                                      (100)
 subsetTopology(\mathcal{O}|_{N},(M,\mathcal{O},N)) \iff topology(\mathcal{O},(M)) \land (N \subseteq M) \land (\mathcal{O}|_{N} = \{U \cap N \mid U \in \mathcal{O}\})
                                                                                                                \# crops open sets outside N
                                                                                                                                                                      (101)
                                              (THM): subsetTopology(\mathcal{O}|_N, (M, \mathcal{O}, N)) \land topology(\mathcal{O}|_N, (N)) \Leftarrow
                                    ======= N O T = U P D A T E D ========
                                                                        L1: \emptyset \in \mathcal{O} \implies U = \emptyset \implies \emptyset \cap N = \emptyset \implies \emptyset \in \mathcal{O}|_{N}
                                                               L2: M \in \mathcal{O} \implies U = M \implies M \cap N = N \implies N \in \mathcal{O}|_N
     L3: S, T \in \mathcal{O}|_{N} \implies \exists_{U \in \mathcal{O}}(S = U \cap N) \land \exists_{V \in \mathcal{O}}(T = V \cap N) \implies S \cap T = (U \cap N) \cap (V \cap N)
                                                                                  = (U \cap V) \cap N \wedge U \cap V \in \mathcal{O} \implies S \cap T \in \mathcal{O}|_{N}
                                                                                                                 L4: TODO : EXERCISE
                                  ======= N O T = U P D A T E D =========
                                                                                                                                                                      (102)
productTopology(\mathcal{O}_{A\times B}, ((A, \mathcal{O}_A), (B, \mathcal{O}_B))) \iff (topology(\mathcal{O}_A, (A))) \land (topology(\mathcal{O}_B, (B))) \land
                                                           (\mathcal{O}_{A\times B} = \{(a,b) \in A \times B \mid \exists_S (a \in S \in \mathcal{O}_A) \exists_T (b \in T \in \mathcal{O}_B)\})
                                                                                                           # open in cross iff open in each
                                                                                                                                                                      (103)
```

1.6 Convergence

$$sequence \big(q,(M)\big) \iff map \big(q,(\mathbb{N},M)\big) \ \, (104)$$

$$sequence Converges To \big((q,a),(M,\mathcal{O})\big) \iff \Big(topological Space \big((M,\mathcal{O}),()\big)\Big) \land \\ \Big(sequence \big(q,(M)\big)\Big) \land (a \in M) \land \Big(\forall_{U \in \mathcal{O} \mid a \in U} \exists_{N \in \mathbb{N}} \forall_{n > N} \big(q(n) \in U\big)\Big)$$
 # each neighborhood of a has a tail-end sequence that does not map to outside points (105)

(THM): convergence generalizes to: the sequence $q: \mathbb{N} \to \mathbb{R}^d$ converges against $a \in \mathbb{R}^d$ in \mathcal{O}_S if: $\forall_{r>0} \exists_{N \in \mathbb{N}} \forall_{n>N} \left(||q(n) - a|| < \epsilon \right) \#$ distance based convergence (106)

1.7 Continuity

$$continuous(\phi, (M, \mathcal{O}_M, N, \mathcal{O}_N)) \iff \Big(topologicalSpace((M, \mathcal{O}_M), ())\Big) \land \Big(topologicalSpace((N, \mathcal{O}_N), ())\Big) \land \Big(\forall_{V \in \mathcal{O}_N} \Big(preimage(A, (V, \phi, M, N)) \in \mathcal{O}_M\Big)\Big) \\ \# \text{ preimage of open sets are open}$$

$$(107)$$

$$homeomorphism(\phi, (M, \mathcal{O}_M, N, \mathcal{O}_N)) \iff \left(inverseMap(\phi^{-1}, (\phi, M, N))\right)$$

$$\left(continuous(\phi, (M, \mathcal{O}_M, N, \mathcal{O}_N))\right) \land \left(continuous(\phi^{-1}, (N, \mathcal{O}_N, M, \mathcal{O}_M))\right)$$
structure preserving maps in topology, ability to share topological properties (108)

$$isomorphicTopologicalSpace\Big(\big((M, \mathcal{O}_M), (N, \mathcal{O}_N)\big), ()\Big) \iff \\ \exists_{\phi}\Big(homeomorphism\big(\phi, (M, \mathcal{O}_M, N, \mathcal{O}_N)\big)\Big) \tag{109}$$

1.8 Separation

$$T0Separate((M, \mathcal{O}), ()) \iff \Big(topologicalSpace((M, \mathcal{O}), ())\Big) \land \\ \Big(\forall_{x, y \in M \land x \neq y} \exists_{U \in \mathcal{O}} \Big(\big(x \in U \land y \notin U\big) \lor \big(y \in U \land x \notin U\big) \Big)\Big)$$

each pair of points has a neighborhood s.t. one is inside and the other is outside (110)

$$T1Separate((M, \mathcal{O}), ()) \iff \left(topologicalSpace((M, \mathcal{O}), ())\right) \land \left(\forall_{x, y \in M \land x \neq y} \exists_{U, V \in \mathcal{O} \land U \neq V} \left(\left(x \in U \land y \notin U\right) \land \left(y \in V \land x \notin V\right)\right)\right)$$

every point has a neighborhood that does not contain another point (111)

$$T2Separate((M, \mathcal{O}), ()) \iff \Big(topologicalSpace((M, \mathcal{O}), ())\Big) \land \Big(\forall_{x,y \in M \land x \neq y} \exists_{U,V \in \mathcal{O} \land U \neq V} \big(U \cap V = \emptyset\big)\Big)$$

every point has a neighborhood that does not intersect with a nhbhd of another point - Hausdorff space (112)

$$(THM): T2Separate \implies T1Separate \implies T0Separate$$
 (113)

1.9 Compactness

$$openCover\big(C,(M,\mathcal{O})\big) \iff \Big(topologicalSpace\big((M,\mathcal{O}),()\big)\Big) \land (C \subseteq \mathcal{O}) \land (\cup C = M)$$

collection of open sets whose elements cover the entire space (114)

$$finiteSubcover(\widetilde{C}, (C, M, \mathcal{O})) \iff (\widetilde{C} \subseteq C) \land (openCover(C, (M, \mathcal{O}))) \land$$

$$\left(openCover(\widetilde{C}, (M, \mathcal{O}))\right) \land \left(finiteSet(\widetilde{C}, ())\right)$$
finite subset of a cover that is also a cover
$$(115)$$

$$compact\big((M,\mathcal{O}),()\big) \iff \Big(topologicalSpace\big((M,\mathcal{O}),()\big)\Big) \land \\ \left(\forall_{C \subseteq \mathcal{O}} \Bigg(\underbrace{openCover}\big(C,(M,\mathcal{O})\big) \implies \exists_{\widetilde{C} \subseteq C} \Big(\underbrace{finiteSubcover}\big(\widetilde{C},(C,M,\mathcal{O})\big)\Big) \right) \right)$$

every covering of the space is represented by a finite number of nhbhds (116)

$$compactSubset(N, (M, \mathcal{O}_d, d)) \iff \left(compact((M, \mathcal{O}), ())\right) \land \left(subsetTopology(\mathcal{O}|_N, (M, \mathcal{O}, N))\right)$$
 (117)

$$bounded(N, (M, d)) \iff \left(metricSpace((M, d), ())\right) \land (N \subseteq M) \land \left(\exists_{r \in \mathbb{R}^+} \forall_{p, q \in n} (d(p, q) < r)\right)$$
(118)

$$(\text{THM}) \text{ HeineBorel: } \underbrace{metricTopologicalSpace} \big((M, \mathcal{O}_d, d), () \big) \implies \\ \forall_{S \in \mathcal{P}(M)} \bigg(\Big(closed \big(S, (M, \mathcal{O}_d) \big) \wedge bounded \big(S, (M, \mathcal{O}_d) \big) \Big) \iff compactSubset \big(S, (M, \mathcal{O}_d) \big) \bigg)$$

when metric topologies are involved, compactness is equivalent to being closed and bounded

1.10 Paracompactness

$$\begin{aligned} openRefinement\Big(\widetilde{C},(C,M,\mathcal{O})\Big) \iff \Big(openCover\big(C,(M,\mathcal{O})\big)\Big) \wedge \Big(openCover\big(\widetilde{C},(M,\mathcal{O})\big)\Big) \wedge \\ \Big(\forall_{\widetilde{U} \in \widetilde{C}} \exists_{U \in C} \Big(\widetilde{U} \subseteq U\Big)\Big) \end{aligned}$$

a refined cover can be constructed by removing the excess nhbhds and points that lie outside the space (120)

$$(THM): finiteSubcover \implies openRefinement$$
 (121)

(119)

$$locallyFinite(C, (M, \mathcal{O})) \iff \left(openCover(C, (M, \mathcal{O}))\right) \land$$
$$\forall_{p \in M} \exists_{U \in \mathcal{O}|p \in U} \left(finiteSet(\{U_c \in C | U \cap U_c \neq \emptyset\}, ())\right)$$

each point has a neighborhood that intersects with only finitely many sets in the cover (122)

$$paracompact((M, \mathcal{O}), ()) \iff$$

$$\forall_{C} \left(openCover(C, (M, \mathcal{O})) \right) \implies \exists_{\widetilde{C}} \left(locallyFinite(openRefinement(\widetilde{C}, (C, M, \mathcal{O})), (M, \mathcal{O})) \right) \right)$$
every open cover has a locally finite open refinement (1)

The control of the state of the control of the cont

 $(THM): metricTopologicalSpace \implies paracompact$ (124)

$$partitionOfUnitySubjCover(\mathcal{F}, (C, M, \mathcal{O})) \iff \left(locallyFinite(C, (M, \mathcal{O}))\right) \land (f \in \mathcal{F}) \land \\ \left(continuous\left(f, \left(M, \mathcal{O}, [0, 1], subsetTopology(\mathcal{O}|_{[0, 1]}, ([0, 1], \mathbb{R}, standardTopology))\right)\right)\right) \land \\ \left(\exists_{U_f \in C} \forall_{p \in M} (f(p) \neq 0 \implies p \in U_f)\right) \land \\ \left(\forall_{p \in M} \exists_{U \in \mathcal{O}|p \in U} ((f_U)_n = \{f \in \mathcal{F}|p \in M \land f(p) \neq 0\})\right) \land \\ \left(locallyFinite(C, M, \mathcal{O}) \implies finiteSet((f_U)_n, ())\right) \land \\ \left(\forall_{p \in M} \exists_{U \in \mathcal{O}|p \in U} \left(\sum_{i=1}^{|(f_U)_i|} (f_U)_i(p) = 1\right)\right) \\ \# \text{ useful for defining integrals between overlapping neighborhoods} \right.$$

$$T2Separate((M, \mathcal{O}), ()) \implies \left(paracompact((M, \mathcal{O}), ())\right) \iff \\ \forall_{C} \left(openCover(C, (M, \mathcal{O})) \implies partitionOfUnitySOTCover(\mathcal{F}, (C, M, \mathcal{O}))\right) \right.$$

$$= = = = = = N \text{ O T} = \text{U P D A T E D} = = = = = = (128)$$

1.11 Connectedness and path-connectedness

$$connected((M, \mathcal{O}), ()) \iff \left(topologicalSpace((M, \mathcal{O}), ())\right) \land \left(\neg \exists_{A,B \in \mathcal{O} \backslash \emptyset} (A \cap B \neq \emptyset \land A \cup B = M)\right)$$
if there is some covering of the space that does not intersect (129)

$$(THM) : \neg connected\left(\left(\mathbb{R} \setminus \{0\}, subsetTopology\left(\mathcal{O}_{standard}|_{\mathbb{R} \setminus \{0\}}, (\mathbb{R}, standardTopology, \mathbb{R} \setminus \{0\})\right)\right), ()\right)$$

$$\iff \left(A = (-\infty, 0) \in \mathcal{O}_{standard}|_{\mathbb{R} \setminus \{0\}}\right) \land \left(B = (0, \infty) \in \mathcal{O}_{standard}|_{\mathbb{R} \setminus \{0\}}\right) \land \left(A \cap B = \emptyset\right) \land \left(A \cup B = \mathbb{R} \setminus \{0\}\right) \qquad (130)$$

$$(THM) : connected((M, \mathcal{O}), ()) \iff \forall_{S \in \mathcal{O}}\left(clopen\left(S, (M, \mathcal{O}) \implies (S = \emptyset \lor S = M)\right)\right) \qquad (131)$$

$$pathConnected((M, \mathcal{O}), ()) \iff \left(subsetTopology\left(\mathcal{O}_{standard}|_{[0,1]}, (\mathbb{R}, standardTopology, [0,1])\right)\right) \land \left(\forall_{p,q \in M} \exists_{\gamma}\left(continuous\left(\gamma, \left([0,1], \mathcal{O}_{standard}|_{[0,1]}, M, \mathcal{O}\right)\right) \land \gamma(0) = p \land \gamma(1) = q\right)\right) \qquad (132)$$

1.12 Homotopic curve and the fundamental group

```
homotopic(\sim, (\gamma, \delta, M, \mathcal{O})) \iff (map(\gamma, ([0, 1], M)) \land map(\delta, ([0, 1], M))) \land
                                                                                                               (\gamma(0) = \delta(0) \land \gamma(1) = \delta(1)) \land
(\exists_{H}\forall_{\lambda\in[0,1]}(continuous(H,(([0,1]\times[0,1],\mathcal{O}_{standard^{2}}|_{[0,1]\times[0,1]}),(M,\mathcal{O}))\wedge H(0,\lambda)=\gamma(\lambda)\wedge H(1,\lambda)=\delta(\lambda))))
                                                                     \# H is a continuous deformation of one curve into another (135)
                                                                                         homotopic(\sim) \implies equivalenceRelation(\sim) (136)
                            loopSpace(\mathcal{L}_p, (p, M, \mathcal{O})) \iff \mathcal{L}_p = \{map(\gamma, ([0, 1], M)) | continuous(\gamma) \land \gamma(0) = \gamma(1)\})  (137)
                                                                        concatination(\star, (p, \gamma, \delta)) \iff (\gamma, \delta \in loopSpace(\mathcal{L}_p)) \land
                                                                                   (\forall_{\lambda \in [0,1]} ((\gamma \star \delta)(\lambda)) = \begin{cases} \gamma(2\lambda) & 0 \le \lambda < 0.5 \\ \delta(2\lambda - 1) & 0.5 \le \lambda \le 1 \end{cases})) \quad (138)
                                                                                       group((G, \bullet), ()) \iff (map(\bullet, (G \times G, G))) \wedge
                                                                                                                             (\forall_{a,b\in G}(a\bullet b\in G))
                                                                                                        (\forall_{a,b,c\in G}((a\bullet b)\bullet C=a\bullet (b\bullet c)))
                                                                                                              (\exists_{\boldsymbol{e}} \forall_{a \in G} (\boldsymbol{e} \bullet a = a = a \bullet \boldsymbol{e})) \wedge
                                                                                                       (\forall_{a \in G} \exists_{a^{-1}} (a \bullet a^{-1} = e = a^{-1} \bullet a))
                                                                                          # characterizes symmetry of a set structure (139)
                     isomorphic(\cong, (X, \odot), (Y, \ominus))) \iff \exists_f \forall_{a,b \in X} (bijection(f, (X, Y)) \land f(a \odot b) = f(a) \ominus f(b))  (140)
                                                               fundamentalGroup((\pi_{1,p}, \bullet), (p, M, \mathcal{O})) \iff (\pi_{1,p} = \mathcal{L}_p/\sim) \land
                                                                                                               (map(\bullet,(\pi_{1,p}\times\pi_{1,p},\pi_{1,p})))\wedge
                                                                                                          (\forall_{A,B\in\pi_{1,p}}([A]\bullet[B]=[A\star B]))\wedge
                                                                                                                            (group((\pi_{1,p}, \bullet), ()))
                                  # an equivalence class of all loops induced from the homotopic equivalence relation (141)
                        fundamentalGroup_1 \ncong fundamentalGroup_2 \Longrightarrow topologicalSpace_1 \ncong topologicalSpace_2 (142)
               there exists no known list of topological properties that can imply homeomorphisms (143)
                                                                                            CONTINUE @ Lecture 6: manifolds (144)
```

1.13 Measure theory

$$sigmaAlgebraig(\sigma,(M)ig) \iff ig(M
eq \emptysetig) \land ig(\sigma \subseteq \mathcal{P}(M)ig) \land \\ ig(M \in \sigma) \land ig(orall_{A \in \sigma}ig(M \setminus A \in \sigmaig)ig) \land$$

```
\left(\left(A\subseteq\sigma\wedge\neg uncountablyInfinite(A,())\right)\implies \cup A\in\sigma\right)
                                                          # behaves as measurable sets should; provides the sufficient structure for defining a measure \mu
                                                                                                                                                                                                                                             measurableSpace((M, \sigma), ()) \iff sigmaAlgebra(\sigma, (M))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (147)
                                                                                                                                                          measurableSet(A, (M, \sigma)) \iff (measurableSpace((M, \sigma), ())) \land (A \in \sigma)
                   measure\big(\mu,(M,\sigma)\big) \iff \left(measurableSpace\big((M,\sigma),()\big)\right) \wedge \left(map\bigg(\mu,\bigg(\sigma,\left(\overline{\mathbb{R}}\right)_0^+\right)\right) \right) \wedge \left(\mu(\emptyset) = 0\right) \wedge \left
                                                                                                                                                  \left( \left( (A)_{\mathbb{N}} \subseteq \sigma \wedge \forall_{i \in \mathbb{N}} \forall_{j \in \mathbb{N} \setminus \{i\}} \left( A_i \cap A_j = \emptyset \right) \right) \implies \mu \left( \cup_{i \in \mathbb{N}} (A_i) \right) = \sum_{i \in \mathbb{N}} \left( \mu(A_i) \right) \right)
                                                                                                                                                                                      # enforces meaningful concepts of measures such as precise additivity
                                                                                                                                                                                                                                                                                                                                                                     (THM): measure(\mu, (M, \sigma)) \implies
                                                                                                                                                                                                                                                                                                                                              (\forall_{A,B\in\sigma}(A\subseteq B\implies \mu(A)\leq \mu(B)))\land
                                                                                                                                                                                                                                                                                                      \left( (A)_{\mathbb{N}} \subseteq \sigma \implies \mu \left( \cup_{i \in \mathbb{N}} (A_i) \right) \le \sum_{i \in \mathbb{N}} \left( \mu(A_i) \right) \right) \wedge
                                                                                                                                                     \left(\left((B)_{\mathbb{N}} \subseteq \sigma \land \forall_{i \in \mathbb{N}} (B_i \subseteq B_{i+1}) \land B = \cup (B)_{\mathbb{N}}\right) \implies \lim_{n \to \infty} \left(\mu(B_n)\right) = \mu(B)\right) \land
                                                                                                                                                               \left( \left( (C)_{\mathbb{N}} \subseteq \sigma \land \forall_{i \in \mathbb{N}} (C_{i+1} \subseteq C_i) \land C = \cap (C)_{\mathbb{N}} \right) \implies \lim_{n \to \infty} \left( \mu(C_n) \right) = \mu(C) \right)
                                                                                      # immediate implications of the measurable set A \in \sigma axioms and the measure \mu axioms
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (150)
                                                                                                                                                                                                                                                                measureSpace((M, \sigma, \mu), ()) \iff measure(\mu, (M, \sigma))
                                                                                                                                                                                                                                                  finiteMeasure(\mu, (M, \sigma)) \iff (measure(\mu, (M, \sigma))) \land
                                                                                                                                                                                                                                                                                               \left(\exists_{(A)_{\mathbb{N}}\subseteq\sigma}\Big(\cup\big((A)_{\mathbb{N}}\big)=M\wedge\forall_{n\in\mathbb{N}}\big(\mu(A_n)<\infty\big)\Big)\right)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (152)
    generatedSigmaAlgebra \big(\sigma(\zeta), (\zeta, M)\big) \iff \Big(G = \{\sigma \subseteq \mathcal{P}(M) \mid sigmaAlgebra \big(\sigma, (M)\big)\}\Big) \land \big(\sigma(\zeta) = \cap G\big)
                                                                                                                                                                                                                                                                            # smallest \sigma-algebra containing the generating set \zeta
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (153)
                                                                                                                         (\text{THM}): \exists_{\zeta \subseteq M} \Big( generatedSigmaAlgebra \big( \sigma(\zeta), (\zeta, M) \big) = sigmaAlgebra \big( \sigma, (M) \big) \Big)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (154)
                                                                                                                                                              borelSigmaAlgebra(\sigma(\mathcal{O}), (M, \mathcal{O})) \iff (topologicalSpace((M, \mathcal{O}), ())) \land
                                                                                                                                                                                                                                                                                                                             (generatedSigmaAlgebra(\sigma(\mathcal{O}), (\mathcal{O}, M)))
                                                                                                                                                                                                                                                                                                                                                                   # \sigma-algebra induced by a topology
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            (155)
lebesgueMeasure \big(\lambda, ()\big) \iff \bigg(borelSigmaAlgebra\bigg(\sigma(standardTopology), \Big(\mathbb{R}^d, standardTopology\Big)\bigg)\bigg) \bigg| \wedge \\
```

$$\left(\frac{measure}{\lambda} \left(\lambda, \left(\mathbb{R}^d, \sigma(standardTopology) \right) \right) \right) \wedge \\
\left(\lambda \left(\times_{i=1}^d \left([a_i, b_i) \right) \right) = \sum_{i=1}^d \left(\sqrt[2]{(a_i - b_i)^2} \right) \right) \\
\# \text{ natural measure for } \mathbb{R}^d \quad (156)$$

$$\begin{aligned} measurableMap\big(f,(M,\sigma_M,N,\sigma_N)\big) &\iff \Big(measurableSpace\big((M,\sigma_M),()\big)\Big) \wedge \\ \Big(measurableSpace\big((N,\sigma_N),()\big)\Big) \wedge \Big(\forall_{B\in\sigma_N}\Big(preimage\big(A,(B,f,M,N)\big)\in\sigma_M\Big)\Big) \\ &\# \text{ preimage of measurable sets are measurable} \end{aligned} \tag{157}$$

$$pushForwardMeasure(f \star \lambda_{M}, (f, M, \sigma_{M}, \mu_{M}, N, \sigma_{N})) \iff \left(measureSpace((M, \sigma_{M}, \mu_{M}), ())\right) \land \left(measurableSpace((N, \sigma_{N}), ())\right) \land \left(measurableMap(f, (M, \sigma_{M}, N, \sigma_{N}))\right) \land \left(\forall_{B \in N} \left(f \star \lambda_{M}(B) = \mu_{M} \left(preimage(A, (B, f, M, N))\right)\right)\right) \land \left(measure(f \star \lambda_{M}, (N, \sigma_{N}))\right) \right)$$
natural construction of a measure based primarily on measurable map (158)

$$nullSet(A, (M, \sigma, \mu)) \iff \left(measureSpace((M, \sigma, \mu), ())\right) \land (A \in \sigma) \land (\mu(A) = 0)$$
 (159)

$$almostEverywhere(p,(M,\sigma,\mu)) \iff \left(\frac{measureSpace((M,\sigma,\mu),())}{measureSpace((M,\sigma,\mu),())} \right) \land \left(\frac{predicate(p,(M))}{measureSpace(nullSet(A,(M,\sigma,\mu)))} \right) \Rightarrow \forall_{m \in M \setminus A}(p(m)) \right)$$

the predicate holds true for all points except the points in the null set (16

1.14 Lebesque integration

0 (161)

 $(\Omega \in \mathcal{F}_0) \wedge$

2 Statistics

2.1 Overview

$$randomExperiment(X,(\Omega)) \iff \forall_{\omega \in \Omega}(outcome(\omega,(X)))$$
 (162)
$$sampleSpace(\Omega,(X)) \iff \Omega = \{\omega | outcome(\omega,(X))\}$$
 (163)
$$event(A,(\Omega)) \implies A \subseteq \Omega \text{ $\#$ that is of interest}$$
 (164)
$$eventOccured(A,(\omega,\Omega)) \iff \omega \in A, \Omega \land event(A,(\Omega))$$
 (165)
$$algebra(\mathcal{F}_0,(\Omega)) \iff (\mathcal{F}_0 \subseteq \mathcal{P}(\Omega)) \land$$

$$(\forall_{A \in \mathcal{F}_{0}}(A^{C} \in \mathcal{F}_{0})) \land \\ (\forall_{A,B \in \mathcal{F}_{0}}(A \cup B \in \mathcal{F}_{0}))$$
but this is unable to capture some countable events (166)
$$\sigma\text{-algebra}(\mathcal{F},(\Omega)) \iff (\mathcal{F}_{0} \subseteq \mathcal{P}(\Omega)) \land \\ (\Omega \in \mathcal{F}) \land \\ (\forall_{A \in \mathcal{F}}(A^{C} \in \mathcal{F})) \land \\ (\forall_{F \subseteq \mathcal{F}}(\neg uncountablyInfinite(F,()) \implies \cup F \in \mathcal{F}))$$
(167)

3 Statistical Learning Theory

3.1 Overview

	(168)
$curve-fitting/explaining \neq prediction$	(169)
$ill-defined problem + solution space constraints \implies well-defined problem$	(170)
$x \ \# \ ext{input} \ ; y \ \# \ ext{output}$	(171)
$S_n = \{(x_1, y_1), \dots, (x_n, y_n)\} \ \# ext{ training set}$	(172)
$f_S(x) \sim y \; \# \; { m solution}$	(173)
$each(x,y) \in p(x,y) \ \# \ { m training \ data} \ x,y \ { m is \ a \ sample \ from \ an \ unknown \ distribution} \ p$	(174)
$V(f(x),y)=d(f(x),y)~\#~{ m loss~function}$	(175)
$I[f] = \int_{X \times Y} V(f(x), y) p(x, y) dx dy \; \# \; \text{expected error}$	(176)
$I_n[f] = rac{1}{n} \sum_{i=1}^n V(f(x_i), y_i) \; \# \; ext{empirical error}$	(177)
$probabilisticConvergence(X,()) \iff \forall_{\epsilon>0} \lim_{n\to\infty} Pxn - x \leq \epsilon = 0$	(178)
I-Ingeneralization error	(179)
well-posed := exists, unique, stable; elseill-posed	(180)

3.2 Background maths

```
vectorSpace(V, (+, *)) \iff (u, v, w \in V), (c, d \in \mathbb{R} \in F) \land
                                                                                              (u+v, c*u = c(u) = cu \in V) \land
                                                                                                                 (u+v=v+u)\wedge
                                                                                                ((u+v)+w=u+(v+w))\wedge
                                                                                                                (\exists_{\boldsymbol{o}}(u+\boldsymbol{o}=u))\wedge
                                                                                                         (\exists_{-u}(u+(-u)=\mathbf{0}))\wedge
                                                                                                                           ((1)u = u)
                                                                                                                  ((cd)u = c(du)) \wedge
                                                                                         ((c+d)u = cu + du) \wedge \# linearity
                                                                                         (c(u+v)=cu+cv) \land \# \text{ linearity}
                                                                                                  # behaves similar to vectors
                                                                                                                                                  (181)
                                                       innerProduct(\langle \cdot, \cdot \rangle, (V)) \iff (u, v, w \in V), (c \in \mathbb{R} \in F) \land
                                                                                                                (\langle v, w \rangle = \langle w, v \rangle) \wedge
                                                                                                              (\langle cv, w \rangle = c \langle v, w \rangle) \wedge
                                                                             (\langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle) \wedge \# \text{ linearity}
                                                                                   (\langle u, u \rangle \geq 0 \in \mathbb{R}_0^+) \wedge \# \text{ metric inducing}
                                                                                                        (\langle u, u \rangle = 0 \iff u = \mathbf{0})
                                                                                                                                                  (182)
                                                        innerProductNorm(||\cdot||,(V)) \iff (v,w\in V),(r\in R)\land
                                                                                                        (||v|| = \sqrt{\langle v, v \rangle} \in \mathbb{R}_0^+) \wedge
                                                                                                        (||v|| = 0 \iff v = \mathbf{0}) \wedge
                                                                                                                 (||rv|| = |r|||v||) \wedge
                                                                                                                                                  (183)
                                                                          (||v+w|| \le ||v|| + ||w||) # triangle inequality
                                               normConvergences(v,(V,(v_n)_{n\in\mathbb{N}}))\iff (\{v\}\cup (v_n)_{n\in\mathbb{N}}\subseteq V)\land
                                                                                                             \left(\lim_{n\to\infty}||v-v_n||=0\right)
                                                                                                                                                  (184)
                                                                                      cauchySequence((v_n)_{n\in\mathbb{N}},(V)) \iff
                                                                                         (\forall_{\epsilon>0}\exists_{n\in\mathbb{N}}\forall_{x,y>n}(||v_x-v_y||<\epsilon))
                                                                                                                                                  (185)
                                                                                                                                                  (186)
                          normConvergences \implies cauchySequence \# there might be holes in the space
       completeSpace(V, (innerProductNorm)) \iff (cauchySequence \iff normConvergences)
                                                                                                                                                  (187)
                                                                completion(R, (Q)) \iff R = QUcauchyUs = Qbar
                                                                                                                                                  (188)
                                                    hilbertSpace(H,(+,*,\langle\cdot,\cdot\rangle)) \iff (vectorSpace(H,(+,*))) \land
                                                                                                  (innerProduct(\langle \cdot, \cdot \rangle, (H))) \land
                                                                               completeSpace(H, (innerProductNorm))
                                                                                                                                                  (189)
                      separable(H, ()) \iff \exists_{S \subset V}(countable(S, ()) \land Sbar = V) \# \text{ has a countable basis}
                                                                                                                                                  (190)
hilbertSpace \land seperable \iff \exists countable ortho(gonal) normal basis for space, all norm = 1, IP = 0
                                                                                                                                                  (191)
```

$x = \sum \langle x, v \rangle v \#$ countable projection times v	(192)
0000000000	(193)
$linearOperator(L,(V)) \iff (u,v \in V), (c,d \in \mathbb{R}) \land (L(cu+dv) = cL(u) + dL(v))$	(194)
$adjoint(L^{\dagger},(L,V)) \iff (\forall_{u,v \in V} < L(u),v> = < u,L^{\dagger}(v)>_{\dagger})$	(195)
$selfAdjoint(L,()) \iff L = L^{\dagger}$	(196)
$eigenvector(V) \iff Lv = kv$	(197)
30mins	(198)

4 Machine Learning

4.0.1 Overview

Overview	
$X \ \# \ \mathrm{input} \ ; \ Y \ \# \ \mathrm{output} \ ; \ S(X,Y) \ \# \ \mathrm{dataset}$	(199
learned parameters = parameters to be fixed by training with the dataset	(200
$\mathbf{hyperparameters} = \mathbf{parameters} \ \mathbf{that} \ \mathbf{depends} \ \mathbf{on} \ \mathbf{a} \ \mathbf{dataset}$	(201
validation = partitions dataset into training and testing partitions, then evaluates the accuracy of the parameters learned from the training partition in predicting the	
outputs of the testing partition $\#$ useful for fixing hyperparameters	(202
${ m cross-validation} = { m average} \ { m accuracy} \ { m of} \ { m validation} \ { m for} \ { m different} \ { m choices} \ { m of} \ { m testing} \ { m partition}$	(203
${f L1} = {f scales} {f linearly} ; {f L2} = {f scales} {f quadratically}$	(204)
$d = {f distance} = {f quantifies}$ the the similarity between data points	(20
$d_{L1}(A,B) = \sum_p A_p - B_p \; \# \; ext{Manhattan distance}$	(200
$d_{L2}(A,B) = \sqrt{\sum_p (A_p - B_p)^2} \; \# \; ext{Euclidean distance}$	(20)
\mathbf{kNN} classifier = classifier based on k nearest data points	(208
$s = {f class} \ {f score} = {f quantifies} \ {f bias} \ {f towards} \ {f a} \ {f particular} \ {f class}$	(209

$s_{linear} = f_{c \times 1}(x_{n \times 1}, W_{c \times n}, b_{c \times 1}) = W_{c \times n}x_{n \times 1} + b_{c \times 1} \# \text{ linear score function}$	(210)
$l = \mathbf{loss} = \mathbf{quantifies}$ the errors by the learned parameters	(211)
$l = rac{1}{ c_i } \sum_{c_i} l_i \ \#$ average loss for all classes	(212)
$l_{SVM_i} = \sum_{y_i \neq c_i} \max(0, s_{y_i} - s_{c_i} + 1) \ \# \ ext{SVM} \ ext{hinge class loss function:}$	
# ignores incorrect classes with lower scores including a non-zero margin	(213)
$l_{MLR_i} = -\log\!\left(rac{e^{s_{c_i}}}{\sum_{y_i}e^{y_i}} ight) \# ext{ Softmax class loss function}$	
# lower scores correspond to lower exponentiated-normalized probabilities	(214)
$R={f regularization}={f optimizes}$ the choice of learned parameters to minimize test error	(215)
$\lambda \; \# \; ext{regularization strength hyperparameter}$	(216)
$R_{L1}(W) = \sum_{W_i} W_i \; \# \; ext{L1 regularization}$	(217)
$R_{L2}(W) = \sum_{W_i} {W_i}^2 \ \# \ \mathrm{L2} \ \mathrm{regularization}$	(218)
$L' = L + \lambda R(W) \; \# \; ext{weight regularization}$	(219)
$ abla_W L = \overrightarrow{rac{\partial}{\partial W_i}} L = extbf{loss gradient w.r.t. weights}$	(220)
$\frac{\partial L_E}{\partial W_I} = \frac{\partial L_L}{\partial W_I} \frac{\partial L_E}{\partial L_L} \# $ loss gradient w.r.t. input weight in terms of external and local gradients	(221
$s = {f forward\ API}\ ; \ {\partial L_L \over \partial W_I} = {f backward\ API}$	(222
$W_{t+1} = W_t - \nabla_{W_t} L \# \text{ weight update loss minimization}$	(223
	(224
TODO:Research on Activation functions, Weight Initialization, Batch Normalization	

TODO loss L or 1??