```
# importing the pandas library
In [1]:
          import pandas as pd
          import numpy as np
In [2]:
          # loading the csv data
          lay_offs = pd.read_csv('layoffs.csv')
          # summary of the dataset displaced from top to bottom
In [3]:
          lay_offs
Out[3]:
                    company
                               location
                                             industry total_laid_off percentage
                                                                                       date funds_raised
                                SF Bay
              0
                         Veev
                                           Real Estate
                                                              100.0
                                                                           0.30
                                                                                11/11/2022
                                                                                                    597.0
                                  Area
              1
                   GoTo Group
                                Jakarta
                                        Transportation
                                                             1000.0
                                                                           0.10
                                                                                 11/10/2022
                                                                                                   1300.0
                                SF Bay
              2
                         Juul
                                            Consumer
                                                              400.0
                                                                                11/10/2022
                                                                                                   1500.0
                                                                           0.30
                                  Area
                                SF Bay
              3
                    InfluxData
                                                               65.0
                                                                                 11/10/2022
                                                 NaN
                                                                           0.27
                                                                                                    119.0
                                  Area
                                SF Bay
              4
                     Coinbase
                                                               60.0
                                                                                 11/10/2022
                                                                                                    549.0
                                               Crypto
                                                                           NaN
                                  Area
                                   Los
           1569
                       Service
                                               Travel
                                                               NaN
                                                                           1.00
                                                                                  3/16/2020
                                                                                                      5.1
                                Angeles
                                   Los
           1570
                 HopSkipDrive
                                         Transportation
                                                                8.0
                                                                           0.10
                                                                                  3/13/2020
                                                                                                     45.0 I
                                Angeles
                                SF Bay
                 Panda Squad
                                                                           0.75
                                                                                                      1.0
           1571
                                            Consumer
                                                                6.0
                                                                                  3/13/2020
                                   Area
                       Tamara
                                   Los
           1572
                                                Retail
                                                               20.0
                                                                           0.40
                                                                                  3/12/2020
                                                                                                     90.0
                       Mellon
                               Angeles
                                   Salt
                                                               75.0
           1573
                     EasyPost
                                  Lake
                                             Logistics
                                                                           NaN
                                                                                  3/11/2020
                                                                                                     12.0
                                   City
```

EXPLORATORY ANALYSIS

1574 rows × 9 columns

In [4]: # view the top five rows of the data
lay_offs.head()

Out[4]:

	company	location	industry	total_laid_off	percentage	date	funds_raised	staç
0	Veev	SF Bay Area	Real Estate	100.0	0.30	11/11/2022	597.0	Series
1	GoTo Group	Jakarta	Transportation	1000.0	0.10	11/10/2022	1300.0	Unknow
2	Juul	SF Bay Area	Consumer	400.0	0.30	11/10/2022	1500.0	Unknow
3	InfluxData	SF Bay Area	NaN	65.0	0.27	11/10/2022	119.0	Series
4	Coinbase	SF Bay Area	Crypto	60.0	NaN	11/10/2022	549.0	IP
4								•

In [5]: # To get a statistical summary of our data
lay_offs.describe()

Out[5]:

	total_laid_off	percentage	funds_raised
count	1132.000000	1053.000000	1472.000000
mean	191.422261	0.277756	903.870445
std	511.777912	0.266320	6663.154374
min	3.000000	0.000000	0.000000
25%	30.000000	0.100000	42.000000
50%	70.000000	0.200000	123.000000
75%	150.000000	0.330000	359.250000
max	11000.000000	1.000000	121900.000000

In [6]: # To check for missing values in our data
lay_offs .isnull().sum()

Out[6]: company 0 location 0 industry 3 total_laid_off 442 percentage 521 date 0 funds_raised 102 stage 4 country dtype: int64

In [7]: # To check for rows that has duplicated data.
lay_offs.duplicated().sum()

Out[7]: 1

```
In [8]: # To view the five last rows of our data
lay_offs.tail()
```

Out[8]:

```
industry total_laid_off percentage
                                                                             date funds_raised
         company
                    location
                         Los
1569
           Service
                                     Travel
                                                     NaN
                                                                  1.00
                                                                       3/16/2020
                                                                                            5.1
                     Angeles
                         Los
1570 HopSkipDrive
                              Transportation
                                                      8.0
                                                                       3/13/2020
                                                                                           45.0 U
                                                                  0.10
                     Angeles
                     SF Bay
1571
      Panda Squad
                                 Consumer
                                                      6.0
                                                                  0.75
                                                                       3/13/2020
                                                                                            1.0
                        Area
           Tamara
                         Los
1572
                                                     20.0
                                                                  0.40 3/12/2020
                                                                                           90.0 §
                                     Retail
                     Angeles
            Mellon
                         Salt
                                   Logistics
          EasyPost
                                                     75.0
                                                                  NaN 3/11/2020
                                                                                            12.0
                                                                                                5
1573
                        Lake
                         City
```

In [9]: # to check the rows and columns in our dataset
lay_offs.shape

Out[9]: (1574, 9)

In [10]: # To get a summary of our dataset
lay_offs.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1574 entries, 0 to 1573
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	company	1574 non-null	object
1	location	1574 non-null	object
2	industry	1571 non-null	object
3	total_laid_off	1132 non-null	float64
4	percentage	1053 non-null	float64
5	date	1574 non-null	object
6	funds_raised	1472 non-null	float64
7	stage	1570 non-null	object
8	country	1574 non-null	object
d+\/n	oc. float64(2)	object(6)	

dtypes: float64(3), object(6)
memory usage: 110.8+ KB

In [11]: # To know the total columns in our dataset
len(lay_offs)

Out[11]: 1574

```
In [12]: # To retrieve all column names in our data
         lay_offs.columns
Out[12]: Index(['company', 'location', 'industry', 'total_laid_off', 'percentage',
                 'date', 'funds_raised', 'stage', 'country'],
               dtype='object')
In [13]: # To check the number of unique vales in our data
         lay offs.nunique()
Out[13]: company
                            1327
         location
                             154
         industry
                              27
         total_laid_off
                             221
         percentage
                              69
         date
                             384
         funds_raised
                             523
         stage
                              15
         country
                              54
         dtype: int64
```

In [14]: # To retrieve random 50 rows
lay_offs.sample(50)

Out[14]:

	company	location	industry	total_laid_off	percentage	date	funds_raised
768	BookClub	Salt Lake City	Education	12.0	0.25	5/31/2022	26.0
1037	OYO	Dallas	Travel	NaN	NaN	6/24/2020	3200.0
1365	RainFocus	Salt Lake City	Marketing	NaN	NaN	4/7/2020	41.0
381	Nomad	Sao Paulo	Finance	NaN	0.20	8/4/2022	290.0
935	Instacart	SF Bay Area	Food	1877.0	NaN	1/21/2021	2400.0
195	Ola	Bengaluru	Transportation	200.0	NaN	9/19/2022	5000.0
370	Talkdesk	SF Bay Area	Support	NaN	NaN	8/5/2022	497.0
32	Code42	Minneapolis	Security	NaN	0.15	11/7/2022	137.0
508	Wave	Dakar	Finance	300.0	0.15	7/13/2022	292.0
127	Qin1	Noida	Education	NaN	1.00	10/14/2022	NaN
641	Balto	St. Louis	Sales	30.0	NaN	6/22/2022	51.0
50	LiveRamp	SF Bay Area	Marketing	NaN	0.10	11/3/2022	16.0
310	Tempo Automation	SF Bay Area	Other	54.0	NaN	8/17/2022	74.0
1393	Opencare	Toronto	Healthcare	18.0	0.25	4/3/2020	24.0
646	TaskUs	Los Angeles	Support	52.0	0.00	6/21/2022	279.0
1217	Jiobit	Chicago	Consumer	6.0	0.21	4/24/2020	12.0
138	Sketch	The Hague	Other	80.0	NaN	10/11/2022	20.0
1147	Uber	SF Bay Area	Transportation	3700.0	0.14	5/6/2020	24700.0
565	Zepto	Brisbane	Finance	NaN	0.10	7/2/2022	25.0
1344	Spyce	Boston	Food	4.0	0.12	4/8/2020	26.0
1162	League	Toronto	Healthcare	NaN	NaN	5/5/2020	76.0
539	Emotive	Los Angeles	Marketing	30.0	0.18	7/7/2022	78.0
1521	Lyric	SF Bay Area	Real Estate	100.0	NaN	3/25/2020	179.1
1454	AdRoll	Salt Lake City	Marketing	210.0	0.30	3/31/2020	89.0
505	Alto Pharmacy	SF Bay Area	Healthcare	NaN	NaN	7/14/2022	560.0
364	DataRobot	Boston	Data	NaN	NaN	8/8/2022	1000.0

	company	location	industry	total_laid_off	percentage	date	funds_raised
523	Airlift	Lahore	Logistics	NaN	1.00	7/12/2022	109.0
665	JOKR	New York City	Food	50.0	0.05	6/16/2022	430.0
204	DayTwo	SF Bay Area	Healthcare	NaN	NaN	9/15/2022	90.0
1087	Teamwork	Cork	Other	21.0	NaN	5/22/2020	NaN
1466	Kazoo	Austin	HR	NaN	0.35	3/31/2020	8.0
1514	Ecobee	Toronto	Energy	47.0	0.10	3/26/2020	149.0
1550	Cabin	SF Bay Area	Travel	NaN	0.20	3/23/2020	3.0
871	Thinkific	Vancouver	Education	100.0	0.20	3/29/2022	22.0
406	Hash	Sao Paulo	Finance	58.0	0.50	8/1/2022	58.0
231	GoStudent	Vienna	Education	200.0	NaN	9/8/2022	686.0
1099	Pollen	London	Travel	69.0	0.31	5/19/2020	88.0
541	Twitter	SF Bay Area	Consumer	NaN	NaN	7/7/2022	5700.0
556	Lightricks	Jerusalem	Consumer	80.0	0.12	7/4/2022	335.0
438	Skai	Tel Aviv	Marketing	30.0	0.04	7/27/2022	60.0
975	Akerna	Denver	Logistics	NaN	NaN	9/2/2020	NaN
1314	Geekwire	Seattle	Media	5.0	0.31	4/10/2020	NaN
603	Vezeeta	Dubai	Healthcare	50.0	0.10	6/28/2022	71.0
860	Meesho	Bengaluru	Retail	150.0	NaN	4/11/2022	1100.0
589	Oye Rickshaw	New Delhi	Transportation	40.0	0.20	6/29/2022	13.0
439	Shopify	Ottawa	Retail	1000.0	0.10	7/26/2022	122.0
424	Ribbon	New York City	Real Estate	136.0	NaN	7/28/2022	405.0
21	Faze Medicines	Boston	Healthcare	NaN	1.00	11/9/2022	81.0
217	Mode Analytics	SF Bay Area	Data	25.0	NaN	9/12/2022	81.0
1421	Sauce Labs	SF Bay Area	Infrastructure	30.0	0.15	4/2/2020	151.0
4							•

```
In [15]: # To know the proportion funds raised to non-funds raised activity
funds_prop = lay_offs.funds_raised.value_counts(normalize = True)
pd.DataFrame(funds_prop)
```

Out[15]:

	funds_raised
20.0	0.010870
1.0	0.010870
11.0	0.010190
7.0	0.008832
15.0	0.008832
500.0	0.000679
461.0	0.000679
171.0	0.000679
429.0	0.000679
5.1	0.000679

523 rows × 1 columns

let's create a pie chart to better visualize the proportion of funds raised to nonfunds raised activities

```
In [16]: # To import Data Visualization libraries
    import matplotlib
    import matplotlib.pyplot as plt
    %matplotlib inline
```

```
In [17]: plt.figure(figsize=[10,6], facecolor='white')
    plt.pie(funds_prop, labels = funds_prop.index, colors=['green', 'red'], textpr
    ops={'fontsize':'9', 'color':'black', 'fontweight':'bold'},autopct='%1.1f%')
    plt.title("Funds proportion", fontsize=10, color="black", fontweight="bold")
    plt.show()
```

Funds proportion

In [18]: # Let's visualize the relationship between our independent and dependent varia
bles by plotting a heatmap
importing the seaborn library for visaualization
import seaborn as sns

In [19]: # To visualize the correlation matrix in a Heatmap
 plt.figure(figsize=(10, 5))
 colormap = sns.color_palette("Blues")
 sns.heatmap(lay_offs.corr(), cmap=colormap, vmax=0.9, annot=True, linecolor="white", linewidths=0.02)

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x26a5188c348>

In [20]: #Creating a separate dataframe that excludes Company, location, industry,date,
 stage and country. These columns will not be used for the clustering but they
 are still neccessary
 lay_off = lay_offs.drop(['company', 'location', 'date', 'stage', 'country'], a
 xis = 1)

In [21]: lay_off

Out[21]:

	industry	total_laid_off	percentage	funds_raised
0	Real Estate	100.0	0.30	597.0
1	Transportation	1000.0	0.10	1300.0
2	Consumer	400.0	0.30	1500.0
3	NaN	65.0	0.27	119.0
4	Crypto	60.0	NaN	549.0
1569	Travel	NaN	1.00	5.1
1570	Transportation	8.0	0.10	45.0
1571	Consumer	6.0	0.75	1.0
1572	Retail	20.0	0.40	90.0
1573	Logistics	75.0	NaN	12.0

1574 rows × 4 columns

As part of understanding your data you may choose to plot some charts

```
In [23]:
         import warnings
         warnings.filterwarnings('ignore')
         for i in list(lay_offs.columns)[3:7]:
             x axis = i
             x = lay_offs[x_axis]
             y = lay_offs['funds_raised']
             plt.figure(figsize=(6, 4))
             plt.scatter(x,y, marker = 'd')
             plt.grid()
             plt.ylim(ymin=0)
             plt.xlabel(x_axis)
             plt.ylabel('funds')
             plt.title(x_axis)
             plt.subplots_adjust(hspace = 0.5)
             plt.show();
```


OUTLIER DETECTION AND REMOVAL

We are going to check for outliers using total laid off columns, we take min of the total laid off = 3 and the max is 11000.00

```
In [24]:
         # Using the describe function to check for outliers
          lay_off.total_laid_off.describe()
Out[24]: count
                    1132.000000
                     191.422261
         mean
                     511.777912
          std
         min
                       3.000000
          25%
                      30.000000
          50%
                      70.000000
          75%
                     150.000000
         max
                   11000.000000
         Name: total_laid_off, dtype: float64
         total_laid_off_3 = lay_off.loc[lay_off['total_laid_off']== 3]
In [25]:
          total_laid_off_3
Out[25]:
                industry total_laid_off percentage funds_raised
          1054
                  Retail
                                3.0
                                                       2.0
                                          0.27
In [26]: total_laid_off_3.industry.unique()
Out[26]: array(['Retail'], dtype=object)
```

```
total laid off 3 = lay offs.loc[lay off['total laid off']== 3]
In [27]:
           total laid off 3
Out[27]:
                            location industry total_laid_off percentage
                                                                            date funds_raised
                                                                                               stage
                               New
            1054
                                                                  0.27 6/11/2020
                    Branch
                               York
                                        Retail
                                                       3.0
                                                                                           2.0
                                                                                                Seed
                                                                                                        ٤
                                City
           lay_off_no_outliers = lay_off[~((lay_off.total_laid_off == 3))]
In [28]:
           lay_off_no_outliers
Out[28]:
                      industry
                               total_laid_off percentage funds_raised
                                      100.0
                                                   0.30
               0
                    Real Estate
                                                                597.0
               1
                  Transportation
                                     1000.0
                                                   0.10
                                                               1300.0
               2
                                      400.0
                                                   0.30
                                                               1500.0
                     Consumer
               3
                                       65.0
                                                   0.27
                                                                119.0
                          NaN
               4
                                       60.0
                        Crypto
                                                   NaN
                                                                549.0
                                                                   ...
                                                     ...
            1569
                        Travel
                                       NaN
                                                   1.00
                                                                  5.1
            1570 Transportation
                                        8.0
                                                   0.10
                                                                 45.0
            1571
                     Consumer
                                        6.0
                                                   0.75
                                                                  1.0
            1572
                         Retail
                                       20.0
                                                   0.40
                                                                 90.0
            1573
                      Logistics
                                       75.0
                                                   NaN
                                                                 12.0
           1573 rows × 4 columns
           lay_off_no_outliers.nunique()
In [29]:
Out[29]: industry
                                 27
           total laid off
                                220
           percentage
                                 69
           funds_raised
                                523
           dtype: int64
```

Lets adopt the target encoding method for our model

In [30]: !pip install category_encoders

Requirement already satisfied: category encoders in c:\users\lekue\anaconda3 \lib\site-packages (2.5.1.post0) Requirement already satisfied: statsmodels>=0.9.0 in c:\users\lekue\anaconda3 \lib\site-packages (from category encoders) (0.11.0) Requirement already satisfied: scikit-learn>=0.20.0 in c:\users\lekue\anacond a3\lib\site-packages (from category encoders) (1.0.2) Requirement already satisfied: pandas>=1.0.5 in c:\users\lekue\anaconda3\lib \site-packages (from category encoders) (1.3.5) Requirement already satisfied: scipy>=1.0.0 in c:\users\lekue\anaconda3\lib\s ite-packages (from category encoders) (1.4.1) Requirement already satisfied: patsy>=0.5.1 in c:\users\lekue\anaconda3\lib\s ite-packages (from category encoders) (0.5.1) Requirement already satisfied: numpy>=1.14.0 in c:\users\lekue\anaconda3\lib \site-packages (from category encoders) (1.18.1) Requirement already satisfied: joblib>=0.11 in c:\users\lekue\anaconda3\lib\s ite-packages (from scikit-learn>=0.20.0->category_encoders) (0.14.1) Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\lekue\anacond a3\lib\site-packages (from scikit-learn>=0.20.0->category encoders) (3.1.0) Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\lekue\anaco nda3\lib\site-packages (from pandas>=1.0.5->category encoders) (2.8.1) Requirement already satisfied: pytz>=2017.3 in c:\users\lekue\anaconda3\lib\s ite-packages (from pandas>=1.0.5->category_encoders) (2019.3) Requirement already satisfied: six in c:\users\lekue\anaconda3\lib\site-packa ges (from patsy>=0.5.1->category encoders) (1.14.0)

Out[32]:

	industry	percentage
0	1067.392045	0.30
1	2488.690495	0.10
2	1375.463514	0.30
3	361.780239	0.27
4	255.279070	NaN
1569	481.794118	1.00
1570	2488.690495	0.10
1571	1375.463514	0.75
1572	350.065323	0.40
1573	248.437500	NaN

1573 rows × 2 columns

In [33]: #Deleting the industry and the percentage columns
 lay_off_no_outliers.drop(['industry', 'percentage'], axis = 1, inplace = True)
 lay_off_no_outliers

Out[33]:

	total_laid_off	funds_raised
0	100.0	597.0
1	1000.0	1300.0
2	400.0	1500.0
3	65.0	119.0
4	60.0	549.0
1569	NaN	5.1
1570	8.0	45.0
1571	6.0	1.0
1572	20.0	90.0
1573	75.0	12.0

1573 rows × 2 columns

```
In [34]: # Merging the two tables
    transaction = pd.concat([transformed_values, lay_off_no_outliers], axis = 1)
    transaction
```

Out[34]:

	industry	percentage	total_laid_off	funds_raised
0	1067.392045	0.30	100.0	597.0
1	2488.690495	0.10	1000.0	1300.0
2	1375.463514	0.30	400.0	1500.0
3	361.780239	0.27	65.0	119.0
4	255.279070	NaN	60.0	549.0
1569	481.794118	1.00	NaN	5.1
1570	2488.690495	0.10	8.0	45.0
1571	1375.463514	0.75	6.0	1.0
1572	350.065323	0.40	20.0	90.0
1573	248.437500	NaN	75.0	12.0

1573 rows × 4 columns

```
In [35]: # separating the independent from the dependent variables
X = transaction.drop(['funds_raised'], axis = 1)
X
```

Out[35]:

	industry	percentage	total_laid_off
0	1067.392045	0.30	100.0
1	2488.690495	0.10	1000.0
2	1375.463514	0.30	400.0
3	361.780239	0.27	65.0
4	255.279070	NaN	60.0
1569	481.794118	1.00	NaN
1570	2488.690495	0.10	8.0
1571	1375.463514	0.75	6.0
1572	350.065323	0.40	20.0
1573	248.437500	NaN	75.0

1573 rows × 3 columns

```
In [36]: | y = transaction['funds_raised']
Out[36]: 0
                  597.0
                 1300.0
         1
         2
                 1500.0
         3
                  119.0
         4
                  549.0
         1569
                    5.1
         1570
                   45.0
         1571
                    1.0
         1572
                   90.0
         1573
                   12.0
         Name: funds raised, Length: 1573, dtype: float64
In [37]: # Let's scale our data before fitting, This process ensures that we do not get
         our scaled data in arrays but in a dataframe.
         from sklearn.preprocessing import StandardScaler
         # Create a scaler object
         sc = StandardScaler()
         X[['industry','percentage','total_laid_off']] = sc.fit_transform(X[['industry'
         ,'percentage','total_laid_off']])
         Χ
```

Out[37]:

	industry	percentage	total_laid_off
0	0.070321	0.083495	-0.178973
1	0.853393	-0.667483	1.579708
2	0.240054	0.083495	0.407254
3	-0.318440	-0.029152	-0.247366
4	-0.377118	NaN	-0.257136
1569	-0.252318	2.711917	NaN
1570	0.853393	-0.667483	-0.358749
1571	0.240054	1.773194	-0.362657
1572	-0.324894	0.458983	-0.335300
1573	-0.380887	NaN	-0.227825

1573 rows × 3 columns

DUE TO SOME INPUT CONTAINS, INFINITE OR TOO LARGE VALUES

WE INTRODUCE DATETIME INDEX

```
In [39]: # CONVERTING THE DATE COLUMNS TO DATETIME DATA TYPE
         from datetime import datetime
         lay offs.date = pd.to datetime(lay offs.date)
         lay offs.percentage = pd.to datetime(lay offs.percentage)
In [40]: lay_offs.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1574 entries, 0 to 1573
         Data columns (total 9 columns):
              Column
                              Non-Null Count Dtype
         - - -
                                               ----
                              1574 non-null
          0
              company
                                              object
          1
              location
                              1574 non-null
                                              object
          2
              industry
                              1571 non-null
                                              object
          3
              total laid off 1132 non-null
                                              float64
          4
              percentage
                              1053 non-null
                                              datetime64[ns]
                                              datetime64[ns]
          5
                              1574 non-null
              date
          6
              funds_raised
                              1472 non-null
                                              float64
          7
                              1570 non-null
                                              object
              stage
          8
              country
                              1574 non-null
                                               object
         dtypes: datetime64[ns](2), float64(2), object(5)
         memory usage: 110.8+ KB
```

The columns are now converted to datetime data format, Now we can perform some datetime functions

In [43]: lay_offs.head()

Out[43]:

	company	trans_hour	trans_day	trans_month	location	industry	total_laid_off	percenta
0	Veev	0	5	11	SF Bay Area	Real Estate	100.0	1970-01
1	GoTo Group	0	4	11	Jakarta	Transportation	1000.0	1970-01
2	Juul	0	4	11	SF Bay Area	Consumer	400.0	1970-01
3	InfluxData	0	4	11	SF Bay Area	NaN	65.0	1970-01
4	Coinbase	0	4	11	SF Bay Area	Crypto	60.0	٨
4								>

In [44]: ### The three new independent variables have been added to our data, let's go ahead to create another predictor(total laid off) from the existing data of columns

In [45]: # to find the funds raised using the column
amount_generated = 121900 - pd.DatetimeIndex(lay_offs.funds_raised).day

In [46]: #inserting the percentage
lay_offs.insert(10,'amount_generated',amount_generated)

In [47]: lay_offs.head()

Out[47]:

	company	trans_hour	trans_day	trans_month	location	industry	total_laid_off	percenta
0	Veev	0	5	11	SF Bay Area	Real Estate	100.0	1970-01
1	GoTo Group	0	4	11	Jakarta	Transportation	1000.0	1970-01
2	Juul	0	4	11	SF Bay Area	Consumer	400.0	1970-01
3	InfluxData	0	4	11	SF Bay Area	NaN	65.0	1970-01
4	Coinbase	0	4	11	SF Bay Area	Crypto	60.0	Ν
4								•

Out[57]: Text(32.09374999999999, 0.5, 'Actual Values')


```
In [ ]:
```