Lecture 3: Linear Classifiers

Reminder: Assignment 1

- Due Friday 1/14, 11:59pm EST
- If you enroll late, you get a free extension for A1:
 - due_date = latest_day(original_due_date, your_enroll_date + 7 days)
- Make sure you submit the right .py file!
 - Make sure to manually save the .py file in Colab
 - After you download the .zip file, check that the .py file is correct

Office Hours

- Check Google Calendar (link also on website):
 https://calendar.google.com/calendar/b/0?cid=dW1pY2guZWR1X2cxMXJnNnZxNmd2YWNqOWRhZDRxOHVvZHNvQGdyb3VwLmNhbGVuZGFyLmdvb2dsZS5jb20
- Office hours may shift a bit from week to week (especially mine) check Google Calendar for up-to-date info
- We'll use Umich office hours queue system; find link in the description of each calendar event

Last time: Image Classification

Input: image

This image by Nikita is licensed under CC-BY 2.0

Output: Assign image to one of a fixed set of categories

cat

bird
deer
dog
truck

Last Time: Challenges of Recognition

Viewpoint

Illumination

This image is CC0 1.0 public domain

Deformation

This image by <u>Umberto Salvagnin</u> is licensed under <u>CC-BY 2.0</u>

Occlusion

This image by jonsson is licensed under CC-BY 2.0

Clutter

This image is CC0 1.0 public domain

Intraclass Variation

This image is CC0 1.0 public domain

Last time: Data-Drive Approach, kNN

Justin Johnson Lecture 3 - 6 January 12, 2022

Today: Linear Classifiers

Neural Network

This image is CC0 1.0 public domain

Recall CIFAR10

50,000 training images each image is **32x32x3**

10,000 test images.

Parametric Approach

Image

10 numbers giving class scores

W parameters or weights

Justin Johnson Lecture 3 - 10 January 12, 2022

Parametric Approach: Linear Classifier

Array of **32x32x3** numbers (3072 numbers total)

10 numbers giving class scores

W parameters or weights

Parametric Approach: Linear Classifier (3072,)

Image

f(x,W) = Wx(10,) (10,3072)

f(x, w)

10 numbers giving class scores

Array of **32x32x3** numbers (3072 numbers total)

W parameters or weights

10 numbers giving class scores

Array of **32x32x3** numbers (3072 numbers total)

W parameters or weights

Example for 2x2 image, 3 classes (cat/dog/ship)

Justin Johnson Lecture 3 - 14 January 12, 2022

Example for 2x2 image, 3 classes (cat/dog/ship)

Justin Johnson Lecture 3 - 15 January 12, 2022

Linear Classifier: Algebraic Viewpoint

Justin Johnson Lecture 3 - 16 January 12, 2022

Linear Classifier: Bias Trick

Add extra one to data vector; bias is absorbed into last column of weight matrix

Stretch pixels into column

Linear Classifier: Predictions are Linear!

$$f(x, W) = Wx$$
 (ignore bias)

$$f(cx, W) = W(cx) = c * f(x, W)$$

Linear Classifier: Predictions are Linear!

$$f(x, W) = Wx$$
 (ignore bias)

$$f(cx, W) = W(cx) = c * f(x, W)$$

Interpreting a Linear Classifier

Algebraic Viewpoint

$$f(x,W) = Wx + b$$

Interpreting a Linear Classifier

Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!

$$f(x,W) = Wx + b$$

Justin Johnson Lecture 3 - 21 January 12, 2022

Interpreting an Linear Classifier

Interpreting an Linear Classifier: Visual Viewpoint

Justin Johnson Lecture 3 - 23 January 12, 2022

Interpreting an Linear Classifier: Visual Viewpoint

Linear classifier has one "template" per category 0.2 -0.5 1.5 1.3 .25 W 0.1 2.0 2.1 0.0 0.2 -0.3 b 1.1 3.2 -1.2 -96.8 437.9 61.95 plane bird dog frog cat deer horse ship truck

Justin Johnson Lecture 3 - 24 January 12, 2022

Interpreting an Linear Classifier: Visual Viewpoint

Linear classifier has one "template" per category

A single template cannot capture multiple modes of the data

e.g. horse template has 2 heads!

cat

bird

plane

Justin Johnson Lecture 3 - 25 January 12, 2022

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

Decision Regions

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

Justin Johnson Lecture 3 - 28 January 12, 2022

Justin Johnson Lecture 3 - 29 January 12, 2022

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

Justin Johnson Lecture 3 - 31 January 12, 2022

Hard Cases for a Linear Classifier

Class 1:

First and third quadrants

Class 2:

Second and fourth quadrants

Class 1:

1 <= L2 norm <= 2

Class 2:

Everything else

Class 1:

Three modes

Class 2:

Everything else

Recall: Perceptron couldn't learn XOR

Х	Υ	F(x,y)
0	0	0
0	1	1
1	0	1
1	1	0

Linear Classifier: Three Viewpoints

Algebraic Viewpoint

$$f(x,W) = Wx$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

So Far: Defined a linear score function

$$f(x,W) = Wx + b$$

airplane	-3.45
automobile	-8.87
bird	0.09
cat	2.9
deer	4.48
dog	8.02
frog	3.78
horse	1.06
ship	-0.36
truck	-0.72

-0.51	3.42
6.04	4.64
5.31	2.65
-4.22	5.1
-4.19	2.64
3.58	5.55
4.49	-4.34
-4.37	-1.5
-2.09	-4.79
-2.93	6.14

Given a W, we can compute class scores for an image x.

But how can we actually choose a good W?

r <u>Nikita</u> is licensed under <u>CC-BY 2.0; Car image</u> is <u>CCO 1.0</u> public domain; <u>Frog image</u> is in the public domain

Choosing a good W

$$f(x,W) = Wx + b$$

5.1

airplane	-3.45
automobile	-8.87
bird	0.09
cat	2.9
deer	4.48
dog	8.02
frog	3.78
horse	1.06
ship	-0.36
truck	-0.72

TODO:

- 1. Use a **loss function** to quantify how good a value of W is
- 2. Find a W that minimizes the loss function (optimization)

A **loss function** tells how good our current classifier is

Low loss = good classifier High loss = bad classifier

(Also called: **objective function**; **cost function**)

A **loss function** tells how good our current classifier is

Low loss = good classifier High loss = bad classifier

(Also called: **objective function**; **cost function**)

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc

A **loss function** tells how good our current classifier is

Low loss = good classifier High loss = bad classifier

(Also called: **objective function**; **cost function**)

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

A **loss function** tells how good our current classifier is

Low loss = good classifier High loss = bad classifier

(Also called: **objective function**; **cost function**)

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

Loss for a single example is

$$L_i(f(x_i, W), y_i)$$

A **loss function** tells how good our current classifier is

Low loss = good classifier High loss = bad classifier

(Also called: **objective function**; **cost function**)

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

Loss for a single example is

$$L_i(f(x_i, W), y_i)$$

Loss for the dataset is average of per-example losses:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Want to interpret raw classifier scores as probabilities

cat **3.2**

car 5.1

frog -1.7

$$S = f(x_i; W)$$
 $P(Y = k | X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$ Softmax function

cat **3.2**

car 5.1

frog -1.7

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$S = f(x_i; W)$$

$$P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$

Softmax

cat

car

frog

3.2

Unnormalized logprobabilities / logits

Want to interpret raw classifier scores as probabilities

$$P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Justin Johnson Lecture 3 - 45 January 12, 2022

Want to interpret raw classifier scores as probabilities

Justin Johnson Lecture 3 - 46 January 12, 2022

Want to interpret raw classifier scores as probabilities

Justin Johnson Lecture 3 - 47 January 12, 2022

Want to interpret raw classifier scores as probabilities

Justin Johnson January 12, 2022 Lecture 3 - 48

probabilities

probabilities / logits

Want to interpret raw classifier scores as probabilities

Justin Johnson January 12, 2022 Lecture 3 - 49

Want to interpret raw classifier scores as probabilities

Justin Johnson January 12, 2022 Lecture 3 - 50

Want to interpret raw classifier scores as probabilities

Justin Johnson January 12, 2022 Lecture 3 - 51

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$S = f(x_i; W)$$

$$P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
Softmax function

Maximize probability of correct class

$$L_i = -\log P(Y = y_i \mid X = x_i)$$

Putting it all together:

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

3.2 cat

5.1 car

frog -1.7

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$S = f(x_i; W)$$

$$P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
Softmax function

Maximize probability of correct class

$$L_i = -\log P(Y = y_i \mid X = x_i)$$

Putting it all together:

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

3.2 cat

5.1 car

frog

Q: What is the min / max possible loss L_i?

3.2

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$S = f(x_i; W)$$

$$P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
Softmax function

Maximize probability of correct class

$$L_i = -\log P(Y = y_i \mid X = x_i)$$

Putting it all together:

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

5.1 car

cat

frog

Q: What is the min / max possible loss L_i?

A: Min 0, max +infinity

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$S = f(x_i; W)$$

$$P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
Softmax function

Maximize probability of correct class

$$L_i = -\log P(Y = y_i \mid X = x_i)$$

Putting it all together:

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

3.2 cat

5.1 car

frog

Q: If all scores are small random values, what is the loss?

3.2

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$S = f(x_i; W)$$

$$P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
Softmax function

Maximize probability of correct class

$$L_i = -\log P(Y = y_i \mid X = x_i)$$

Putting it all together:

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

5.1 car

cat

frog

Q: If all scores are small random values, what is the loss?

A: -log(1/C) $\log(10) \approx 2.3$

"The score of the correct class should be higher than all the other scores"

Score for correct class

"The score of the correct class should be higher than all the other scores"

Highest score among other classes

"The score of the correct class should be higher than all the other scores"

"The score of the correct class should be higher than all the other scores"

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

2.2

2.5

cat

car

frog

Loss

3.2

5.1

-1.7

2.9

1.3

4.9

2.0

-3.1

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

= 2.9

Then the SVM loss has the form:

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \max(0, 5.1 - 3.2 + 1)$$

$$+ \max(0, -1.7 - 3.2 + 1)$$

$$= \max(0, 2.9) + \max(0, -3.9)$$

$$= 2.9 + 0$$

January 12, 2022

2.2

2.5

-3.1

3.2 cat

5.1

frog -1.7

car

2.9 Loss

1.3

4.9

2.0

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{\substack{j \neq y_i \\ = \max(0, 1.3 - 4.9 + 1)}} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 1.3 - 4.9 + 1)$

 $+\max(0, 2.0 - 4.9 + 1)$

 $= \max(0, -2.6) + \max(0, -1.9)$

= 0 + 0

= 0

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

3.2 cat

1.3

2.2

5.1 car

4.9

frog

2.0 -1.7

2.5

-3.1

12.9

Then the SVM loss has the form:

$$L_i = \sum_{\substack{j \neq y_i \\ = \max(0, 2.2 - (-3.1) + 1) \\ +\max(0, 2.5 - (-3.1) + 1) \\ = \max(0, 6.3) + \max(0, 6.6)}$$

= 6.3 + 6.6

Loss

2.9

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Loss

2.9

0

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over the dataset is:

$$L = (2.9 + 0.0 + 12.9) / 3$$

= 5.27

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Loss

2.9

0

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What happens to the loss if the scores for the car image change a bit?

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Loss

2.9

0

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q2: What are the min and max possible loss?

cat **3.2**

1.3

2.2

car 5.1

4.9

2.5

frog -1.7

2.0

-3.1

Loss 2.9

0

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q3: If all the scores were random, what loss would we expect?

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Loss

2.9

0

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q4: What would happen if the sum were over all classes? (including $i = y_i$)

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Loss

2.9

0

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q5: What if the loss used a mean instead of a sum?

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Loss

2.9

0

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q6: What if we used this loss instead?

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

[10, -2, 3]

[10, 9, 9]

[10, -100, -100]

and $oldsymbol{y_i} =$

Q: What is cross-entropy loss? What is SVM loss?

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

$$[10, -2, 3]$$

$$[10, -100, -100]$$

and

$$y_i = 0$$

Q: What is cross-entropy loss? What is SVM loss?

A: Cross-entropy loss > 0 SVM loss = 0

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

$$[10, -2, 3]$$

$$[10, -100, -100]$$

and

$$y_i = 0$$

Q: What happens to each loss if I slightly change the scores of the last datapoint?

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

[10, -2, 3]

[10, 9, 9]

[10, -100, -100]

and

$$y_i = 0$$

Q: What happens to each loss if I slightly change the scores of the last datapoint?

A: Cross-entropy loss will change; SVM loss will stay the same

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

$$[10, -2, 3]$$

[10, 9, 9]

[10, -100, -100]

and

$$y_i = 0$$

Q: What happens to each loss if I double the score of the correct class from 10 to 20?

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

[10, -2, 3]

[10, 9, 9]

[10, -100, -100]

and

$$y_i = 0$$

Q: What happens to each loss if I double the score of the correct class from 10 to 20?

A: Cross-entropy loss will decrease, SVM loss still 0

Recap: Three ways to think about linear classifiers

Algebraic Viewpoint

$$f(x,W) = Wx$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

Recap: Loss Functions quantify preferences

- We have some dataset of (x, y)
- We have a **score function:**
- We have a loss function:

$$s = f(x; W, b) = Wx + b$$

Linear classifier

Softmax:
$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

SVM:
$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Recap: Loss Functions quantify preferences

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function:

Q: How do we find the best W, b?

$$s = f(x; W, b) = Wx + b$$

Linear classifier

Softmax:
$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

SVM:
$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Justin Johnson Lecture 3 - 80 January 12, 2022

Next time: Regularization + Optimization