

ATIVIDADE EXTRA-CLASSE

4 – Minimização de AFD e AFD → GR – GABARITO

1-) a-)Autômato Minimizado:

Tabela Resultante:

p ₁	X	
$\mathbf{p_2}$	X	
	$\mathbf{p_0}$	\mathbf{p}_1

b-)

Autômato Minimizado (como não houve minimização, mantem-se o original):

Tabela Resultante:

\mathbf{q}_1	\otimes	
$\mathbf{q_2}$	X	X
	$\mathbf{q_0}$	$\mathbf{q_1}$

c-)

Autômato Minimizado:

Tabela Resultante:

$\mathbf{q_1}$	
	$\mathbf{q_0}$

d-) Autômato Minimizado:

Tabela Resultante:

$\mathbf{q_1}$	X		_
$\mathbf{q_2}$	\otimes	X	
\mathbf{q}_3	X		X
	\mathbf{q}_0	\mathbf{q}_1	\mathbf{q}_2

e-) Autômato Minimizado:

Tabela Resultante:

$\mathbf{q_1}$	X		
$\mathbf{q_2}$	\otimes	X	
\mathbf{q}_3	X	\otimes	X
	$\mathbf{q_0}$	$\mathbf{q_1}$	\mathbf{q}_2

f-)

Autômato Minimizado:

Tabela Resultante:

1				
2				
3	X	X	X	
4	X	X	X	
	0	1	2	3

g-)

Autômato Minimizado:

Tabela Resultante:

$\mathbf{q_1}$	\otimes			
$\mathbf{q_2}$	\otimes			
\mathbf{q}_3	X	X	X	
$\mathbf{q_4}$	X	X	X	
	$\mathbf{q_0}$	$\mathbf{q_1}$	\mathbf{q}_2	\mathbf{q}_3

h-)

V é um estado Inacessível, por isso não é minimizável.

Tabela Resultante:

$\mathbf{q_1}$					
\mathbf{q}_2	X	X			
\mathbf{q}_3	X	X			
$\mathbf{q_4}$	X	X			
q ₅	\otimes	\otimes	X	X	X
	$\mathbf{q_0}$	$\mathbf{q_1}$	$\mathbf{q_2}$	\mathbf{q}_3	$\mathbf{q_4}$

i-)

D é um estado inacessível a partir do estado inicial A, desta forma não pode ser minimizado.

j-) Autômato Minimizado:

Tabela Resultante:

T the citt Trest.		_			
1	\otimes				
2	\otimes				
3	\otimes	\otimes	\otimes		
4	\otimes	\otimes	\otimes		
5	X	X	X	X	X
	0	1	2	3	4

2-)

a-) Sendo $p_0 = X$, $p_1 = Y e p_2 = Z$, temos $G = (V, T, P, S) \rightarrow G = (\{X, Y, Z\}, \{0, 1\}, P, X)$ onde:

$$P=\{X \rightarrow 0Y / 1Z,$$

$$Y \rightarrow 0X \mid 1Z \mid \varepsilon$$

$$Z \rightarrow 0X / 1Y / \varepsilon$$

b-) Sendo $q_0 = X$, $q_1 = Y e q_2 = Z$, temos $G = (V, T, P, S) \rightarrow G = (\{X, Y, Z\}, \{a, c\}, P, X)$ onde:

$$P=\{X \rightarrow aZ \mid cY,$$

$$Y \rightarrow aY/bY$$

$$Z \rightarrow aZ /bY / \varepsilon$$

c-) Sendo $q_0 = X e \ q_1 = Y$, temos $G = (V, T, P, S) \implies G = (\{X, Y\}, \{a, b\}, P, X)$ onde:

$$P=\{X \rightarrow aX/bY \mid \varepsilon,$$

$$Y \rightarrow aY / bY | \varepsilon$$

 $\{a, b\}, P, X)$ onde:

$$P=\{X \rightarrow aY/bW,$$

$$Y \rightarrow aY / bY / \varepsilon$$

$$W \rightarrow aZ/bW$$

$$Z \rightarrow aZ /bY/\varepsilon$$

 $\{a, b\}, P, X\}$ onde:

$$P=\{X \rightarrow aX \mid bW,$$

$$Y \rightarrow aX / bY / \varepsilon$$

$$W \rightarrow aZ/bW$$

$$Z \rightarrow aZ /bY / \varepsilon$$

W, Z, $\{a, b\}, P, V$) onde:

$$P=\{V \rightarrow aX/bW,$$

$$X \rightarrow aY/bZ$$

$$Y \rightarrow aX/bZ$$

$$W \rightarrow aZ/bW/\varepsilon$$

$$Z \rightarrow aW/bZ/\varepsilon$$

g-) Sendo $q_0 = V$, $q_1 = X$, $q_2 = Y$, $q_3 = W$ e $q_4 = Z$, temos $G = (V, T, P, S) \implies G = (\{V, X, Y, P, Y,$

$$Y, W, Z$$
, $\{a, b\}, P, V$) onde:

$$P=\{V \rightarrow aX/bV,$$

$$X \rightarrow aW/bY$$

$$Y \rightarrow aZ / bY$$

$$W \rightarrow aW/bY/\varepsilon$$

$$Z \rightarrow aW /bY / \varepsilon$$


```
h-) Sendo q_0 = U, q_1 = V, q_2 = X, q_3 = Y, q_4 = W e q_5 = Z, temos G = (V, T, P, S) \implies G
= (\{U, V, X, Y, W, Z\}, \{a, b\}, P, U) onde:
P=\{U \rightarrow aV/bX,
    V \rightarrow aU/bY
    X \rightarrow aW/bZ/\varepsilon
    Y \rightarrow aW / bZ / \varepsilon
    W \rightarrow aW/bZ/\varepsilon,
    Z \rightarrow aZ /bZ
i-) Sendo A = S, B = T, C = U, D = V, E = X, F = Y, G = W e H = Z, temos G = (S, T, T)
V, T, P, S) \rightarrow G = (\{U, V, X, Y, W, Z\}, \{0, 1\}, P, S)  onde:
P=\{S \rightarrow 0T/1Y,
    T \rightarrow 0W/1U
    U \rightarrow 0S/1U/\varepsilon,
    V \rightarrow 0U/1W
    X \rightarrow 1Y/0Z
    Y \rightarrow 0W / 1W
    W \rightarrow 0W/1X,
    Z \rightarrow 0W/1U
V, X, Y, W, Z, {a, b}, P, U) onde:
P=\{U \rightarrow aV/bX,
    V \rightarrow aY/bW
    X \rightarrow aW/bY
    Y \rightarrow aZ / bZ
    W \rightarrow aZ/bZ
    Z \rightarrow aZ /bZ/\varepsilon
```