Low-Level Design (LLD) Report for Fraud Transaction Detection

Author: Sanika Kanade

Email: Kanadesanika2@gmail.com

Table of Contents

- 1. Introduction
- 2. Objective
- 3. Architecture Overview
- 4. Data Flow
- 5. Detailed Component Design
 - Data Ingestion
 - o Data Pre-processing
 - o Exploratory Data Analysis
 - o Feature Engineering
 - o Data Balancing
 - Model Training
 - Model Evaluation
- 6. Classes and Functions
- 7. Libraries and Dependencies
- 8. Testing Strategy
- 9. Conclusion

Introduction

This report outlines the Low-Level Design (LLD) for a Fraud Transaction Detection system. The system aims to classify transactions as fraudulent or non-fraudulent using machine learning models. This document details the design and implementation of the system, including data processing, feature engineering, model training, and evaluation.

Objective

The objective of this project is to build a machine learning model that can accurately detect fraudulent transactions. The model will be trained on historical transaction data and evaluated based on various performance metrics.

Architecture Overview

The architecture of the Fraud Transaction Detection system consists of the following main components:

- 1. Data Ingestion
- 2. Data Pre-processing
- 3. Exploratory Data Analysis (EDA)
- 4. Feature Engineering
- 5. Data Balancing
- 6. Model Training
- 7. Model Evaluation

Each component plays a critical role in ensuring the accuracy and robustness of the fraud detection model.

Data Flow

- 1. **Data Ingestion:** Load the training and testing datasets from CSV files.
- 2. **Data Pre-processing:** Clean and preprocess the data to handle missing values, encode categorical variables, and extract relevant features.
- 3. **Exploratory Data Analysis (EDA):** Perform EDA to understand the data distribution and relationships between features.
- 4. **Feature Engineering:** Create new features based on existing data to improve model performance.
- 5. Data Balancing: Down-sample the majority class to address class imbalance.

- 6. **Model Training:** Train various machine learning models on the preprocessed data.
- 7. **Model Evaluation:** Evaluate the trained models using appropriate metrics and select the best model.

Detailed Component Design

Data Ingestion

Description: Load the training and testing datasets from CSV files.

```
from google.colab import drive
drive.mount('/content/drive')
file_path1 = '/content/drive/My Drive/Colab/fraudTrain.csv'
file_path2 = '/content/drive/My Drive/Colab/fraudTest.csv'
train_df = pd.read_csv(file_path1, index_col='Unnamed: 0')
test_df = pd.read_csv(file_path2, index_col='Unnamed: 0')
```

Data Pre-processing

Description:

- 1. Convert transaction dates to datetime objects.
- Extract hour and month from transaction dates.
- 3. Drop non-useful columns.
- 4. Encode categorical features using Weight of Evidence (WOE)

Exploratory Data Analysis

Description: Perform EDA to understand the data distribution and relationships between features.

```
plt.show()

# Fraud vs non-fraud pie chart

is_fraud = train_df["is_fraud"].value_counts()

plt.figure(figsize=(10, 6))

plt.pie(is_fraud, labels=["No", "YES"], autopct="%0.0f%%")

plt.title("is_fraud Counts")

plt.tight_layout()

plt.show()
```

Feature Engineering

Description: Create new features such as hour and month from transaction dates.

```
# Extract hour and month from transaction date

train_df['hour'] = train_df['trans_date_trans_time'].dt.hour

test_df['hour'] = test_df['trans_date_trans_time'].dt.hour

train_df['month'] = train_df['trans_date_trans_time'].dt.month

test_df['month'] = test_df['trans_date_trans_time'].dt.month
```

Data Balancing

Description: Down-sample the majority class to address class imbalance.

```
# Down-sample the majority class
No_class = train_df[train_df["is_fraud"] == 0]
yes_class = train_df[train_df["is_fraud"] == 1]
No_class = resample(No_class, replace=False, n_samples=len(yes_class))
down_samples = pd.concat([yes_class, No_class], axis=0)
```

Model Training

Description: Train various machine learning models on the preprocessed data.

```
X = down samples.drop("is fraud", axis=1)
y = down samples["is fraud"]
X train, X test, y train, y test = train test split(X, y, test size=0.2,
random state=65)
# Scale the features
scaler = StandardScaler()
X train = scaler.fit transform(X train)
X test = scaler.transform(X test)
models = {
   "Random Forest": RandomForestClassifier(),
for name, model in models.items():
```

```
print(f"Accuracy: {accuracy}")
print(f"Classification Report:\n{report}")
print(f"Confusion Matrix:\n{matrix}\n")
```

Model Evaluation

Description: Evaluate the trained models using appropriate metrics and select the best model. **Evaluation Metrics:**

- **Accuracy:** Proportion of correctly classified instances among the total instances.
- **Precision:** Proportion of true positive instances among the instances predicted as positive.
- Recall (Sensitivity): Proportion of true positive instances among the actual positive instances.
- **F1-Score:** Harmonic mean of precision and recall, providing a balance between the two.
- **Confusion Matrix:** A table showing the counts of true positives, true negatives, false positives, and false negatives.

Classes and Functions

1. Data Ingestion:

o load_data(file_path): Load data from the specified file path.

2. Data Pre-processing:

 preprocess_data(df): Preprocess the data including datetime conversion, feature extraction, and encoding.

3. **EDA**:

- plot_gender_distribution(df): Plot gender distribution.
- o plot_fraud_distribution(df): Plot fraud vs non-fraud distribution.

4. Feature Engineering:

extract_features(df): Extract new features from existing data.

5. **Data Balancing:**

 balance_data(df): Down-sample the majority class to address class imbalance.

6. Model Training:

 train_models(X_train, y_train): Train various machine learning models. evaluate_models(X_test, y_test, models): Evaluate trained models using appropriate metrics.

Libraries and Dependencies

- pandas: For data manipulation and analysis.
- numpy: For numerical operations.
- sklearn: For machine learning algorithms and evaluation metrics.
- xgboost: For the XGBoost model.
- imblearn: For handling class imbalance.
- matplotlib and seaborn: For data visualization.

Testing Strategy

- Unit Testing: Test individual functions such as load_data, preprocess_data, and extract_features to ensure they work as expected.
- 2. **Integration Testing:** Test the entire pipeline from data ingestion to model evaluation to ensure all components work together seamlessly.
- 3. **Performance Testing:** Evaluate the performance of different models using metrics such as accuracy, precision, recall, F1-score, and confusion matrix.

Conclusion

This Low-Level Design (LLD) report provides a comprehensive guide for implementing a fraud transaction detection system. The system includes data ingestion, pre-processing, feature engineering, data balancing, model training, and evaluation. The detailed component design, code snippets, and testing strategy ensure the robustness and accuracy of the fraud detection model.