- 1. (a) The system Ax = b has a solution if and only if b is orthogonal to what subspace?
- (b) Find the determinant of the 4×4 matrix A whose entries are $a_{ij} = \text{smaller of } i^2$ and j^2 .
- (c) What is the relation between the determinant of A and the pivots? Why is this true?
- 2. At t = 1, 2, 3 we are given values b_1 , b_2 , b_3 . The idea is to fit the best straight line b = C + Dt to those three points.
- (a) What three equations in two unknowns will have a solution if the three points lie exactly on a line?
- (b) Under what condition $m b_1 + n b_2 + p b_3 = 0$ (find m, n, p) will the three points lie on a line? (You could use elimination or your answer to Question 1(a).)
- (c) Find the best line $\bar{C} + \bar{D}t$ if the values are $(b_1, b_2, b_3) = (0, 0, 1)$.
- (d) What 3×3 matrix P projects every vector onto the plane containing the column vectors (1,1,1) and (1,2,3)?
- **3.** (a) Suppose q_1, q_2, q_3 are orthonormal vectors in \mathbb{R}^6 . Under what condition on the vector v will there be a fourth orthonormal vector q_4 that is a combination of v, q_1, q_2, q_3 ?
- (b) Give a formula for that fourth orthonormal vector q_4 .
- (c) Suppose q_1, \ldots, q_n is an orthonormal basis for \mathbb{R}^n . Define the $n \times n$ matrix $A = q_1 q_1^T + \cdots + q_n q_n^T$. What does Aq_1 equal? What does Aq_i equal? What is A?