ш

(1) Publication number:

0 346 710 B1

12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication of patent specification: 10.11.93 (51) Int. Cl.⁵: C12N 15/12, C12N 5/10, C12P 21/02

(21) Application number: 89110096.8

② Date of filing: 03.06.89

- (S) cDNAs coding for members of the carcinoembryonic antigen family.
- Priority: 16.06.88 US 207678 21.11.88 US 274107
- Date of publication of application:20.12.89 Bulletin 89/51
- 45 Publication of the grant of the patent: 10.11.93 Bulletin 93/45
- Designated Contracting States:
 AT BE CH DE ES FR GB GR IT LI NL SE
- References cited:
 EP-A- 263 933
 EP-A- 0 212 880

BIOCHEM. BIOPHYS. RES. COMMUN., vol. 142, no. 2, 30th January 1987, pages 511-518; R. OIKAWA et al.: "Primary structure of human carcinoembryonic antigen (CEA) deduced from cDNA sequence"

MOL. CELL. BIOL., vol. 7, 1987, page 3221-3230; R. BEAUCHEMIN et al.: "Isolation and characterization of full-lenght functional cDNA clones for human carcinoembryonic antigen"

- 73 Proprietor: MILES INC.
 One Mellon Center
 500 Grant Str.
 Pittsburgh, PA 15219-2502(US)
- 27 Inventor: Barnett, Thomas R., Dr. 27 Jeffrey Road
 East Haven, CT 06513(US)
 Inventor: Elting, James J., Dr. 5 Heatherwood Drive
 Madison, CT 06443(US)
 Inventor: Kamarck, Michael E. 86 Russell Road
 Bethany, CT 06525(US)
 Inventor: Kretschmer, Axel, Dr. Richard-Zörner-Strasse 32
 D-5060 Bergisch Gladbach 1(DE)
- Representative: Dänner, Klaus, Dr. et al Bayer AG Konzernverwaltung RP Patente Konzern D-51368 Leverkusen (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

£170044 #13 PROC. NATL. ACAD. SCI. USA, vol. 85, September 1988, pages 6959-6963; Y. HINODA et al.: "Molecular cloning of a cDNA coding biliary glycoprotein I: primary structure of a glycoprotein immunologically crossreactive with carcinoembryonic antigen"

GENE, vol. 71, no. 2, November 1988, pages 439-449; B.C. ROONEY et al.: "Molecular cloning of a cDNA for human pregnancy-specific B1-glycoprotein: homology with human carcinoembryonic antigen and related proteins"

Description

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention concerns nucleic acid sequences which code for carcinoembryonic antigen (CEA) antigen family peptide sequences.

o Background Information

25

40

50

Carcinoembryonic antigen was first described by Gold and Freedman, <u>J. Exp. Med.</u>, 121, 439-462, (1965). CEA is characterized as a glycoprotein of approximately 200,000 molecular weight with 50-60% by weight of carbohydrate. CEA is present during normal human fetal development, but only in very low concentration in the normal adult intestinal tract. It is produced and secreted by a number of different tumors.

CEA is a clinically useful tumor marker for the management of colorectal cancer patients. CEA can be measured using sensitive immunoassay methods. When presurgical serum levels of CEA are elevated, a postsurgical drop in serum CEA to the normal range typically indicates successful resection of the tumor. Postsurgical CEA levels that do not return to normal often indicate incomplete resection of the tumor or the presence of additional tumor sites in the patient. After returning to normal levels, subsequent rapid rises in serum CEA levels usually indicate the presence of metastages. Slower postsurgical rises from the normal level are most often interpreted to indicate the presence of new primary tumors not previously detected. Post surgical management of colon cancer patients is thus facilitated by the measurement of CEA.

CEA is a member of an antigen family. Because of this, the immunoassay of CEA by presently available methods is complicated by the fact that CEA is but one of several potentially reactive antigens. There have been at least sixteen CEA-like antigens described in the literature. Since some of these appear to be the same antigen described by different investigators, the actual number of different antigens is somewhat less than this number. Nonetheless, there is a complex array of cross-reactive antigens which can potentially interfere with an immunoassay of the CEA released by tumors. It is known that serum levels of CEA-like antigens are elevated in many non-cancerous conditions such an inflammatory liver diseases and also in smokers. It is important that immunoassays used for the monitoring of cancer patient status not be interfered with by these other CEA-like antigens. Conversely, it is important to be able to distinguish the antigens by immunoassays because of the possibility that different tumor types may preferentially express different forms of CEA. If so, then the ability to reliably measure the different forms of CEA can provide the means to diagnose or more successfully treat different forms of cancer.

The members of the "CEA family" share some antigenic determinants. These common epitopes are not useful in distinguishing the members of the antigen family and antibodies recognizing them are of little use for measuring tumor-specific CEA levels.

U.S.P. 3,663,684, entitled "Carcinoembryonic Antigen and Diagnostic Method Using Radioactive lodine", concerns purification and radioiodination of CEA for use in a RIA.

U.S.P. 3,697,638 describes that CEA is a mixture of antigens (components A and B in this case). U.S.P. 3,697,638 mentions methods for separating and radioiodinating each component and their use in specific RIA's.

U.S.P. 3,852,415, entitled "Compositions for Use in Radioimmunoassay, as Substitute for Blood Plasma Extract in Determination of Carcinoembryonic Antigen" relates to the use of a buffer containing EDTA and bovine serum albumin as a substitute for plasma as a diluent for CEA RIA's.

U.S.P. 3,867,363, entitled "Carcinoembryonic Antigens", is directed to the isolation of CEA components A and B, their labelling and use in a RIA.

U.S.P. 3,927,193, entitled "Localization of Tumors by Radiolabelled Antibodies", concerns the use of radiolabelled anti-CEA antibodies in whole body tumor imaging.

U.S.P. 3,956,258, entitled "Carcinoembryonic Antigens", relates to the isolation of CEA components A and B.

U.S.P. 4,086,217, entitled "Carcinoembryonic Antigens", is directed to the isolation of CEA components

A and B.

U.S.P. 4,140,753, entitled "Diagnostic Method and Reagent", concerns the purification of a CEA isomer called CEA-S1 and its use in a RIA.

U.S.P. 4,145,336, entitled "Carcinoembryonic Antigen Isomer", relates to the antigen CEA-S1.

- U.S.P. 4,180,499, entitled "Carcinoembryonic Antigens", describes a process for producing CEA component B.
- U.S.P. 4,228,236, entitled "Process of Producing Carcinoembryonic Antigen", is directed to the use of the established cell lines LS-174T and LS-180 or clones or derivatives thereof for the production of CEA.
- U.S.P. 4,272,504, entitled "Antibody Adsorbed Support Method for Carcinoembryonic Antigen Assay", concerns two concepts for the radioimmunoassay of CEA. First, U.S.P. 4,272,504 relates to a sample pretreatment in the form of heating to 65 to 85 °C at pH 5 to precipitate and eliminate extraneous protein. Second, it describes the use of a solid phase antibody (either on beads or tubes) as a means to capture analyte and radiolabelled CEA tracer.
- U.S.P. 4,299,815, entitled "Carcinoembryonic Antigen Determination", concerns diluting a CEA sample with water and pretreating by heating to a temperature below which precipitation of protein will occur. The pretreated sample is then immunoassayed using RIA, EIA, FIA or chemiluminescent immunoassay.
- U.S.P. 4,349,528, entitled "Monoclonal Hybridoma Antibody Specific for High Molecular Weight Carcinoembryonic Antigen", is directed to a monoclonal antibody reacting with 180 kD CEA, but not with other molecular weight forms.
- U.S.P. 4,467,031, entitled "Enzyme-Immunoassay for Carcinoembryonic Antigen", relates to a sandwich enzyme immunoassay for CEA in which the first of two anti-CEA monoclonal antibodies is attached to a solid phase and the second monoclonal is conjugated with peroxidase.
- U.S.P. 4,489,167, entitled "Methods and Compositions for Cancer Detection", describes that CEA shares an antigenic determinant with alpha-acid glycoprotein (AG), which is a normal component of human serum. The method described therein concerns a solid-phase sandwich enzyme immunoassay using as one antibody an antibody recognizing AG and another antibody recognizing CEA, but not AG.
- U.S.P. 4,578,349, entitled "Immunoassay for Carcinoembryonic Antigen (CEA)", is directed to the use of high salt containing buffers as diluents in CEA immunoassays.
- EP 113072-A, entitled "Assaying Blood Sample for Carcinoembryonic Antigen After Removal of Interfering Materials by Incubation with Silica Gel", relates to the removal from a serum of a plasma sample of interfering substances by pretreatment with silica gel. The precleared sample is then subjected to an immunoassay.
- EP 102008-A, entitled "Cancer Diagnostics Carcinoembryonic Antigen Produced from Perchloric Acid Extracts Without Electrophoresis", relates to a procedure for the preparation of CEA from perchloric acid extracts, without the use of an electrophoresis step.
- EP 92223-A, entitled "Determination of Carcinoembryonic Antiyen in Cytosol or Tissue for Therapy Control and Early Recognition of Regression", concerns an immunoassay of CEA, not in serum or plasma, but in the cytosol fraction of the tumor tissue itself.
- EP 83103759.6, entitled "Cytosole-CEA-Measurement as Predictive Test in Carcinoma, Particularly Mammacarcinoma", is similar to EP 92223-A.
- EP 83303759, entitled "Monoclonal Antibodies Specific to Carcinoembryonic Antigen", relates to the production of "CEA specific" monoclonal antibodies and their use in immunoassays.
- WO 84/02983, entitled "Specific CEA-Family Antigens, Antibodies Specific Thereto and Their Methods of Use", is directed to the use of monoclonal antibodies to CEA-meconium (MA)-, and NCA-specific epitopes in immunoassays designed to selectively measure each of these individual components in a sample.
- All of the heretofore CEA assays utilize either monoclonal or polyclonal antibodies which are generated by immunizing animals with the intact antigen of choice. None of them address the idea of making sequence specific antibodies for the detection of a unique primary sequence of the various antigens. They do not cover the use of any primary amino acid sequence for the production of antibodies to synthetic peptides or fragments of the natural product. They do not include the concept of using primary amino acid sequences to distinguish the CEA family members. None of them covers the use of DNA or RNA clones for isolating the genes with which to determine the primary sequence.

50

45

10

15

20

25

DEFINITIONS

Nucleic Acid Abbreviations

c	A	adenine
5	G	guanine
	С	cytosine
	T	thymidine
10	U	uracil

Amino Acid Abbreviations:

	mano nota	EDDI CVIG CIONS	.•
15		Asp	aspartic acid
		Asn	asparagine
		Thr	threonine
20		Ser	serine
20		Glu	glutamic acid
		Gln	glutamine
		Pro	proline
25		Gly	glycine
		Ala	alanine
		Cys	cysteine
30		Val	valine
		Met	methionine
		Ile	isoleucine
35		Leu	leucine
		Tyr	tyrosine
		Phe	phenylalanine
		Trp	tryptophan
40		Lys	lysine
		His	histidine
		Arg	arginine

45

Nucleotide - A monomeric unit of DNA or RNA containing a sugar moiety (pentose), a phosphate, and a nitrogenous heterocyclic base. The base is linked to the sugar moiety via the glycosidic carbon (1' carbon of the pentose) and that combination of base and sugar is called a nucleoside. The base characterizes the nucleotide. The four DNA bases are adenine ("A"), guanine ("G"), cytosine ("C"), and thymine ("T"). The four RNA bases are A, G, C and uracil ("U").

DNA Sequence - A linear array of nucleotides connected one to the other by phosphodiester bonds between the 3' and 5' carbons of adjacent pentoses.

Functional equivalents - It is well known in the art that in a DNA sequence some nucleotides can be replaced without having an influence on the sequence of the expression product. With respect to the peptide this term means that one or more amino acids which have no function in a particular use can be deleted or replaced by another one.

Codon - A DNA sequence of three nucleotides (a triplet) which encodes through mRNA an amino acid, a translation start signal or a translation termination signal. For example, the nucleotide triplets TTA, TTG,

CTT, CTC, CTA and CTG encode the amino acid leucine ("Leu"), TAG, TAA and TGA are translation stop signals and ATG is a translation start signal.

Reading Frame - The grouping of codons during translation of mRNA into amino acid sequences. During translation, the proper reading frame must be maintained. For example, the sequence GCTGGTTGTAAG may be translated in three reading frames or phases, each of which affords a different amino acid sequence

GCT GGT TGT AAG - Ala-Gly-Cys-Lys G CTG GTT GTA AG - Leu-Val-Val GC TGG TTG TAA G - Trp-Leu-(STOP).

Polypeptide - A linear array of amino acids connected one to the other by peptide bonds between the alpha-amino and carboxy groups of adjacent amino acids.

Genome - The entire DNA of a cell or a virus. It includes inter alia the structural genes coding for the polypeptides of the cell or virus, as well as its operator, promoter and ribosome binding and interaction sequences, including sequences such as the Shine-Dalgarno sequences.

Structural Gene - A DNA sequence which encodes through its template or messenger RNA ("mRNA") a sequence of amino acids characteristic of a specific polypeptide.

Transcription - The process of producing mRNA from a structural gene.

Translation - The process of producing a polypeptide from mRNA.

Expression - The process undergone by a structural gene to produce a polypeptide. It is a combination of transcription and translation.

Plasmid - A non-chromosomal double-stranded DNA sequence comprising an intact "replicon" such that the plasmid is replicated in a host cell. When the plasmid is placed within a unicellular organism, the characteristics of that organism may be changed or transformed as a result of the DNA of the plasmid. For example, a plasmid carrying the gene for tetracycline resistance (Tet^R) transforms a cell previously sensitive to tetracycline into one which is resistant to it. A cell transformed by a plasmid is called a "transformant".

Phage or Bacterial virus, many of which consist of DNA sequences encapsulated in a protein envelope or coat ("capsid protein").

Cloning Vehicle - A plasmid, phage DNA or other DNA sequence which is capable of replicating in a host cell, which is characterized by one or a small number of endonuclease recognition sites at which such DNA sequences may be cut in a determinable fashion without attendant loss of an essential biological function of the DNA, e.g., replication, production of coat proteins or loss of promoter or binding sites, and which contains a marker suitable for use in the identification of transformed cells, e.g., tetracycline resistance or ampicillin resistance. A cloning vehicle is often called a vector.

Cloning - The process of obtaining a population of organisms or DNA sequences derived from one such organism or sequence by asexual reproduction.

Recombinant DNA Molecule or Hybrid DNA - A molecule consisting of segments of DNA from different genomes which have been joined end-to-end outside of living cells and have the capacity to infect some host cell and be maintained therein.

cDNA Expression Vector - A procaroytic cloning vehicle which also contains sequences of nucleotides that facilitate expression of cDNA sequences in eucaroytic cells. These nucleotides include sequences that function as eucaryotic promoter, alternative splice sites and polyadenylation signals.

Transformation/Transfection - DNA or RNA is introduced into cells in such a way as to allow gene expression. "Infected" referred to herein concerns the introduction of RNA or DNA by a viral vector into the host.

"Injected" referrred to herein concerns the microinjection (use of a small syringe) of DNA into a cell.

CEA antigen family (CEA gene family) - a set of genes (gene family) and their products (antigen family) that share nucleotide sequences homologous to partial cDNA LV-7 (CEA-(a)) and as a result of theses similarities also share a subset of their antigenic epitopes. Examples of the CEA antigen family include CEA (= CEA-(b)), transmembrane CEA (TMCEA) = CEA-(c) and normal crossreacting antigen NCA (= CEA-(d)).

55

50

5

10

15

20

25

30

SUMMARY OF THE INVENTION

The present invention concerns the following DNA sequences designated as TM-2 (CEA-(e)), TM-3 (CEA-(f)), TM-4 (CEA-(g)), KGCEA1 and KGCEA2, which code for CEA antigen family peptide sequences:

SEQUENCE AND TRANSLATION OF CDNA OF TM-2

10	10	30	50	
	CAGCCGTGCTCGAAGCGTT	CCTGGAGCCCAAGCTCTCCT	CCACAGGTGAAGACAGGGC	Ç.A
15	70	90	110	
	GCAGGAGACACCAŤGGGGC MetGlyH	ACCTCTCAGCCCCACTTCAC isLeuSerAlaProLeuHis	AGAGTGCGTGTACCCTGGC ArgValArgValProTrpG	AC lr
20	130	150	170	
	GGGCTTCTGCTCACAGCCT GlyLeuLeuLeuThrAlas	CACTTCTAACCTTCTGGAAC erLeuLeuThrPheTrpAsn	CCGCCCACCACTGCCCAGC ProproThrThrAlaGlnL	TC
25	190	210	230	
	ACTACTGAATCCATGCCAT ThrThrGluSerMetProP	TCAATGTTGCAGAGGGGAAC heAsnValAlaGluGlyLys	GGAGGTTCTTCTCCTTGTCC GGluValLeuLeuLeuValH	A(
30				
	250	270	290	
35	AATCTGCCCCAGCAACTTT AsnLeuProGlnGlnLeuE	TTTGGCTACAGCTGGTACAAA PheGlyTyrSerTrpTyrLy!	NGGGGAAAGAGTGGATGGCA sGlyGluArgValAspGlyA	ري ا چ ا
	310	330	350	
40	CGTCAAATTGTAGGATATC ArgGlnIleValGlyTyrA	GCAATAGGAACTCAACAAGC AlaileGlyThrGlnGlnAla	TACCCCAGGGCCCGCAAACA aThrProGlyProAlaAsnS	; e
	370	390	410	
45	GGTCGAGAGACAATATACC GlyArgGluThrIleTyrI	CCCAATGCATCCCTGCTGAT(ProAsnAlaSerLeuLeuIl	CCAGAACGTCACCCAGAAT(eGlnAsnValThcGlnAsn/	3A(
	430	450	470	
50	ACAGGATTCTACACCCTA	CAAGTCATAAAGTCAGATCT GLOVALILALVESAKASOLO	TGTGAATGAAGAAGCAACTG	3G

	490	510	530
5	CAGTTCCATGTATACCCGG GlnPheHisValTyrProG	AGCTGCCCAAGCCCTCCATC luLeuProLysProSerIle	TCCAGCAACAACTCCAACCCT SerSerAsnAsnSerAsnPro
	550	570	590
10	GTGGAGGACAAGGATGCTG ValGluAspLysAspAlaV	TGGCCTTCACCTGTGAACCT alAlaPheThrCysGluPro	rGAGACTCAGGACACCTAC oGluThrGlnAspThrThrTyr
	610	630	650
15			CAGGCTGCAGCTGTCCAATGGC DArgLeuGlnLeuSerAsnGly
	670	690	7.10
20	AACAGGACCCTCACTCTAC AsnArgThrLeuThrLeuL	TCAGTGTCACAAGGAATGAG euSerValThrArgAsnAsi	CACAGGACCCTATGAGTGTGAA PThrGlyProTyrGluCysGlu
	730	750	770
25	ATACAGAACCCAGTGAGTC IleGlnAsnProValSer#	CCGAACCGCAGTGACCCAGT (laAsnArgSerAspProVa	CACCTTGAATGTCACCTATGGC lThrLeuAsnValThrTyrGly
	790	810	830
30	CCGGACACCCCCACCATT' ProAspThrProThrIle:	CCCCTTCAGACACCTATTA SerProSerAspThrTyrTy	CCGTCCAGGGGCAAACCTCAGC
35	850	870	890
	CTCTCCTGCTATGCAGCC LeuSerCysTyrAlaAla	CCTAACCCACCTGCACAGTA SerAsnProProAlaGlnTy	CTCCTGGCTTATCAATGGAACA cSecTcpLeuileAsnGlyThc
40	910	930	950
	TTCCAGCAAAGCACACAA PheGlnGlnSerThrGln	GAGCTCTTTATCCCTAACAT GluLeuPheIleProAsnIl	CACTGTGAATAATAGTGGATCC eTnrValAsnAsnSerGlySer
45	· 970	990	1010
	TATACCTGCÉACGCCAAT TyrThrCysHisAlaAsn	AACTCAGTCACTGGCTGCAA AsnSerValThrGlyCysAs	CAGGACCACAGTCAAGACGATC
50			

	1030	1050	1070		
5	ATAGTCACTGATAATGCT IleValThrAspAsnAla	CTACCACAAGAAAATGGCCT LeuProGlnGluAsnGlyLe	CTCACCTGGGGCCATTGCTC JSerProGlyAlaIleAlac	GGC Gly	
	1090	1110	1130		
10	ATTGTGATTGGAGTAGTG IleValIleGlyValVal	GCCCTGGTTGCTCTGATAGC AlaLeuValAlaLeuIleAl	AGTAGCCCTGGCATGTTTT aValAlaLeuAlaCysPhe	CTG Leu	
	1150	1170	1190		
15	CATTTCGGGAAGACCGGC HisPheGlyLysThcGly	AGGGCAAGCGACCAGCGTGA ArgalaSerAspGlnArgAs	TCTCACAGAGCACAAACCC pLeuThrGluHisLysPro	TCA Ser	
	1210	1230	1250	•	
20	GTCTCCAACCACACTCAC ValSerAsnHisThrGln	GACCACTCCAATGACCCACC AsphisSerAsnAspProPr	TAACAAGATGAATGAAGTT OASnLysMetAsnGluVal	ACT Thr	
	1270	1290	1310		
25	TATTCTACCCTGAACTTT TyrSerThrLeuAsnPhe	CGAAGCCCAGCAACCCACACA CGluAlaGlnGlnProThrGl	ACCAACTTCAGCCTCCCCA	TCC Ser	
	1330	1350	1370		
30					
0E	1390	1410	1430		
35	TCACTGCAGTGCTGATGTATTTCAAGTCTCTCACCCTCATCACTAGGAGATTCCTTTCCC				
	1450	1470	1490		
40	CTGTAGGGTAGAGGGGT	GGGGÄČÄGAAACAACTTTCT(CTACTCTTCCTTCCTAATA	, AGGC	
	1510	1530	1550		
45	ATCTCCAGGCTGCCTGG	TCACTGCCCCTCTCTCAGTG	CCAATAGATGAAAGTACAT [,]	GGG	
	1570	1590	1610		
50	AGTCTGTAGGAAACCCA	ACCTTCTTGTCATTGAAATT	IGGCAAAGCTGACTTTGGG	AAAG	

	1630	1650	1670	
5	AGGGACCAGAACTTCCCC	TCCCTTCCCCAAC	CTGGACTTGTTTTAAACTTGCC	
	1690	1710	1730	
	TGTTCAGAGCACTCATTC	CTTCCCACCCCCAGTCCTGT	CCTATCACTCTAATTCGGATTT	
10	1750	1770	1790	
	GCCATAGCCTTGAGGTTA	•	ATGTGCCAGGAAACAGCGAGAG	
15	1810	1830		
	•	•	1850 CAAAGCCTTGTGTGAACTAGCA	
20	1870	1890	ex is as	
	•		1910 CCACAGGTTTGTCCACTGTCAG	
	1930	1950		
25	•	•	1970 TGCTTAGCTAGAATACCACCTA	
30	1990	2010	2030	
	ATCCTTCTGGCAAGCCTGTCTTCAGAGAACCCACTAGAAGCAACTAGGAAAAATCACTTG			
	2050	2070	2090	
35	CCAAAATCCAAGGCAATT	CCTGATGGAAAATGCAAAAG	CACATATATGTTTTAATATCTT	
	2110	2130	2150	
40	TATGGGCTCTGTTCAAGG	CAGTGCTGAGAGGGAGGGGT	TATAGCTTCAGGAGGGAACCAG	
	2170	2190	2210	
45	CTTCTGATAAACACAATC	TGCTAGGAACTTGGGAAAGG	AATCAGAGAGCTGCCCTTCAGC	
50				
30				

	2230	2250	2270	
	GATTATTTAAATTGTTAA	AGAATACACAATTTGGGGTA	TTGGGATTTTTCTCCTTTTCT	C
5	2200	. 2310	2220	
	2290		2330	
	TGAGACATTCCACCATTT	TAATTTTTGTAACTGCTTAT	TTATGTGAAAAGGGTTATTTT	ľ
10	2350	2370	2390	
	ACTTAGCTTAGCTATGTC	AGCCAATCCGATTĞCCTTAG	GTGAAAGAAACCACCGAAATC	c
15	2410	2430	2450	
	CTCAGGTCCCTTGGTCAG	GAGCCTCTCAAGATTTTTT	TGTCAGAGGCTCCAAATAGAA	À
20	2470	2490	2510	
	ATAAGAAAAGGTTTTCT	CATTCATGGCTAGAGCTAGA	TTTAACTCAGTTTCTAGGCAC	.c
25	2530	2550	2570	
20	TCAGACCAATCATCAAC	CONTICTATICCATGTTT	SCACCTGTGCATTTTCTGTTT(3Ċ
	2590	2610	2630	
30	CCCCATTCACTTTGTCA	GAAACCTTGGCCTCTGCTA	AGGTGTATTTGGTCCTTGAGA.	AG
	2650	2670	2690	
35	TGGGAGCACCCTACAGG	GACACTATCACTCATGCTGG	TGGCATTGTTTAČAGCTAGAA	AG
	2710	2730	2750	
40	CTGCACTGGTGCTAATG	CCCCTTGGGAAATGGGGCTG	TGAGGAGGAGGATTATAACTT	λG
	2770	2790	2810	
45	GCCTAGCCTCTTTTAAC	AGCCTCTGAAATTTATCTTT	TCTTCTATGGGGTCTATAAAT	TO.
	2830	2850	2870	
	ATCTTATAATAAAAAG	GAAGGACAGGAGGAAGACAG	GCAAATGTACTTCTCACCCAG1	rcŤ
50				

	2890	2910	2930	
_	TCTACACAGATGGAATCT	CTTTGGGGCTAAGAGAAAGG	TTTTATTCTATATTGCTTACC	T
5	2950	· 2970	2990	
		AGAGGCTTTCTCCAGGAGGA	TTAGCTTGGAGTTCTCTATAC	Ť
10	2010	3030	3050	
	3010 CAGGTACCTCTTTCAGGG		CTGTGCATACTTTCCCTCATC	C
15	•			
	3070	3090	3110	
	ATGCTGTGCTGTTAT	TTAATTTTTCCTGGCTAAGAT	CATGTCTGAATTATGTATGA	•
20	3130	3150	3170	
	ATTATTCTATGTTTTTA	ADADTATAAAATAATAATAAT	ACATCGAAAAAAAAAA	
25				
30				
35				
40				
45				
50				

SEQUENCE AND TRANSLATION OF CDNA OF TM-3

5			
	10	30	50
10	CAGCCGTGCTCGAAGCGTT	CCTGGAGCCCAAGCTCTCCT	CCACAGGTGAAGACAGGGCCA
	70	90	110
15			AGAGTGCGTGTACCCTGGCAG ArgValArgValProTrpGln
	130	150	170
20			CCGCCCACCACTGCCCAGCTC
25	190	210	230
20			GAGGTTCTTCTCCTTGTCCAC
30	250	270	290
			AGGGGAAAGAGTGGATGGCAAG GGJyGluArgValAspGlyAsr
35	310	330	350
			TACCCCAGGGCCGCAAACAGG ThrProGlyProAlaAsnSe
40	370	390	410
			CCAGAACGTCACCCAGAATGAG GlnAsnValThrGlnAsnAs
45			
50			

	430	450	470
5	ACAGGATTCTACACCCTAC ThrGlyPheTyrThrLeuc	CAAGTCATAAAGTCAGATCTT GlnValileLysSerAspLeu	GTGAATGAAGAAGCAACTGGA ValAsnGluGluAlaThrGly
	490	510	530
10			TCCAGCAACAACTCCAACCCT SerSerAsnAsnSerAsnPro
	550	570	590
15	GTGGAGGACAAGGATGCTC ValGluAspLysAspAlav	 GTGGCCTTCACCTGTGAACCT ValalaPheThrCysGluPro	GAGACTCAGGACACCTAC GGluThrGlnAspThrThrTyr
•	610	630	650
20	CTGTGGTGGATAAACAAT(LeuTrpTrpIleAsnAsn(CAGAGCCTCCCGGTCAGTCCCGInserLeuProValserPro	AGGCTGCAGCTGTCCAATGGC ArgLeuGlnLeuSerAsnGly
25	670	690	710
	AACAGGACCCTCACTCTAC AsnArgThrLeuThrLeuI	CTCAGTGTCACAAGGAATGAC LeuSerValThrArgAsnAsr	CACAGGACCCTATGAGTGTGAA OThrGlyProTyrGluCysGlu
30	730	750	770
	ATACAGAACCCAGTGAGTGIleGlnAsnProValSer	GCGAACCGCAGTGACCCAGTC AlaAsnArgSerAspProVal	CACCTTGAATGTCACCTATGGC
35	790	810	830
	CCGGACACCCCCACCATT ProAspThrProThrIle	TCCCCTTCAGACACCTATTAG SerProSerAspThrTyrTy	CCGTCCAGGGGCAAACCTCAGC
40			
45			
50			
50			

	850	870	890
5			CTCCTGGCTTATCAATGGAACA
	910	930	950
10			CACTGTGAATAATAGTGGATCC eThrValAsnAsnSerGlySer
	970	990	1010
15	TATACCTGCCACGCCAAT. TyrThrCysHisAlaAsn.	AACTCAGTCACTGGCTGCAA AsnSerValThrGlyCysAs	CAGGACCACAGTCAAGACGATC
	1030	1050	1070
20			AATCAAAGCCAGCAAGACCACA nlleLysalaSerLysThrThr
	1090	1110	1130
25			CACAAATGACACTGGAATCTCC rThrAsnAspThrGlyIleSer
	1150	1170	1190
30			GGAGAGGATGAAGCTGTCCCAG rGluArgMetLysLeuSerGln
35	1210	1230	1250
			GGATGCTGGGACGTATTGGTGT UASPAlaGlyThrTyrTrpCys
40			•
4 5			
50			

	1270	1290	1310		
5			CATCATGCTGAACGTAAACTAT OIleMetLeuAsnValAsnTyr		
	1330	1350	1370		
10			CATTGCTGGCATTGTGATTGGA BIleAlaGlyIleValIleGly		
	1390	1410	1430		
15			ATGTTTTCTGCATTTCGGGAAG aCysPheLeuHisPheGlyLys		
	1450	1470	1490		
20	ACCGGCAGCTCAGGACC ThrGlySerSerGlyPr		AGATGAATGAAGTTACTTATTC		
25	1510	1530	1550		
20	TACCCTGAACTTTGAAGCCCAGCAACCCACACCAACCTTCAGCCTCCCCATCCCTAAC				
	1570	1590	1610		
30	AGCCACAGAAATAATTTATTCAGAAGTAAAAAAGCAGTAATGAAACCTGAAAAAAAA				
	1630				
35					
40					
45					
50					
50					

SEQUENCE AND TRANSLATION OF CDNA OF TM-4

5	10	30	50
	CAGCCGTGCTCGAAGCGT	TCCTGGAGCCCAAGCTCTCC	CCACAGGTGAAGACAGGGCCA
10	70	90	110
,,	GCAGGAGACACCATGGGG MetGly	CACCTCTCAGCCCCACTTCAC HisLeuSerAlaProLeuHis	CAGAGTSCGTGTACCCTGGCAG GArgValArgValProTrpGln
15	130 -	150	170
	GGGCTTCTGCTCACAGCC GlyLeuLeuLeuThrAla	TCACTTCTAACCTTCTGGAAC SerLeuLeuThrPheTrpAsr	CCCGCCCACCACTGCCCAGCTC ProprothrThrAlaGlnLeu
20	190·	210	230
	ACTACTGAATCCATGCCA ThrThrGluSerMetPro	TTCAATGTTGCAGAGGGGAAC PheAsnValAlaGluGlyLys	GAGGTTCTTCTCCTTGTCCAC GluValLeuLeuLeuValHis
25	250	270	290
	AATCTGCCCCAGCAACTT AsnLeuProGlnGlnLeu	TTTGGCTACAGCTGGTACAAA PheGlyTyrSerTrpTyrLys	GGGGAAAGAGTGGATGGCAAC GlyGluArgValAspGlyAsn
30	310	330	
			350
35	ArgGlnIleValGlyTyr	GCAATAGGAACTCAACAAGC1 AlaIleGlyThrGlnGlnAla	ACCCCAGGGCCCGCAAACAGC ThrProGlyProAlaAsnSer
	370	390	410
40	GGTCGAGAGACAATATAC GlyArgGluThrIleTyr	CCCAATGCATCCCTGCTGATC ProAsnAlaSerLeuLeuIle	CAGAACGTCACCCAGAATGAC GlnAsnValThrGlnAsnAsp
	430	450	470
45	ACAGGATTCTACACCCTA ThrGlyPheTyrThrLeu	CAAGTCATAAAGTCAGATCTT GlnValileLysSerAspLeu	GTGAATGAAGAAGCAACTGGA WalasnGluGluAlaThrGly

55

50

. _

	490	510	530
5	CAGTTCCATGTATACCCGC GlnPheHisValTyrProc	SAGCTGCCCAAGCCCTCCATC	TCCAGCAACAACTCCAACCCT SerSerAsnAsnSerAsnPro
	550	570	590
10	GTGGAGGACAAGGATGCTC ValGluAspLysAspAlav	GTGGCCTTCACCTGTGAACCT ValAlaPheThrCysGluPro	GAGACTCAGGACACAACCTAC GGluThrGlnAspThrThrTyr
	610	630	650
15	CTGTGGTGGATAAACAAT LeuTrpTrpIleAsnAsn	CAGAGCCTCCCGGTCAGTCCCGINSerPro	CAGGCTGCAGCTGTCCAATGGC DArgLeuGlnLeuSerAsnGly
	670	690	710
20	AACAGGACCCTCACTCTA AsnArgThrLeuThrLeu	CTCAGTGTCACAAGGAATGAG LeuSerValThrArgAsnAs	CACAGGACCCTATGAGTGTGAA pThrGlyProTyrGluCysGlu
	730	750	770
25	ATACAGAACCCAGTGAGT IleGlnAsnProValSer	GCGAACCGCAGTGACCCAGT AlaAsnArgSerAspProVa	CACCTTGAATGTCACCTATGGC lThrLeuAsnValThrTyrGly
30	790	810	830
	CCGGACACCCCCACCATT ProAspThrProThrIle	TCCCCTTCAGACACCTATTA SerProSerAspThrTyrTy	CCGTCCAGGGGCAAACCTCAGC rArgProGlyAlaAsnLeuSer
35	850	870	890
	CTCTCCTGCTATGCAGCC LeuSerCysTyrAlaAla	TCTAACCCACCTGCACAGTA SerAsnProProAlaGlnTy	CTCCTGGCTTATCAATGGAACA rSerTrpLeuileAsnGlyThr
40	910	930	950
	TTCCAGCAAAGCACACAA PheGlnGlnSerThrGlr	GAGCTCTTTATCCCTAACAT IGluLeuPheIlePcoAsnIl	CACTGTGAATAATAGTGGATCC eThrValAsnAsnSerGlySer
45	970	990	1010
	TATACCTGCCACGCCAAT TyrThrCysHisAlaAsr	FAACTCAGTCACTGGCTGCAA hAsnSerValThrGlyCysAs	CAGGACCACAGTCAAGACGATC :nArgThrThrValLysThrIle
50			

1030 1050 1070 ATAGTCACTGATAATGCTCTACCACAAGAAAATGGCCTCTCACCTGGGGCCATTGCTGGC IleValThrAspAsnAlaLeuProGlnGluAsnGlyLeuSerProGlyAlaIleAlaGly 5 1090 1110 1130 ATTGTGATTGGAGTAGTGGCCCTGGTTGCTCTGATAGCAGTAGCCCTGGCATGTTTTCTG 10 IleValIleGlyValValAlaLeuValAlaLeuIleAlaValAlaLeuAlaCysPheLeu 1150 1170 1190 15 HisPheGlyLysThrGlySerSerGlyProLeuGln 12.10 1230 1250 20 1270 1290 1310 CCCATCCCTAAGAGCCACAGAAATAATTTATTCAGAAGTAAAAAAGCAGTAATGAAACCT 25 1330 GAAAAAAAAAAAAAAA 30

The present invention is also directed to a replicable recombinant cloning vehicle ("vector") having an insert comprising a nucleic acid, e.g., DNA, which comprises a base sequence which codes for a CEA peptide or a base sequence hybridizable therewith.

This invention also relates to a cell that is transformed/transfected, infected or injected with the above described replicable recombinant cloning vehicle or nucleic acid hybridizable with the aforementioned cDNA. Thus the invention also concerns the transfection of cells using free nucleic acid, without the use of a cloning vehicle.

Still further, the present invention concerns a polypeptide expressed by the above described transfected, infected or injected cell, which polypeptide exhibits immunological cross-reactivity with a CEA, as well as labelled forms of the polypeptide. The invention also relates to polypeptides having an amino acid sequence, i.e., synthetic peptides, or the expression product of a cell that is transfected, injected, infected with the above described replicable recombinant cloning vehicles, as well as labelled forms thereof. Stated otherwise, the present invention concerns a synthetic peptide having an amino acid sequence corresponding to the entire amino acid sequence or a portion thereof having no less than five amino acids of the aforesaid expression product.

The invention further relates to an antibody preparation specific for the above described polypeptide.

Another aspect of the invention concerns an immunoassay method for detecting CEA or a functional equivalent thereof in a test sample comprising

- (a) contacting the sample with the above described antibody preparation, and
- (b) determining binding thereof to CEA in the sample.

55

The invention also is directed to a nucleic acid hybridization method for detecting a CEA or a related nucleic acid (DNA or RNA) sample in a test sample comprising

- (a) contacting the test sample with a nucleic acid probe comprising a nucleic acid, which comprises a base sequence which codes for a CEA peptide sequence or a base sequence that is hybridizable therewith, and
- (b) determining the formation of the resultant hybridized probe.

The present invention also concerns a method for detecting the presence of carcinoembryonic antigen or a functional equivalent thereof in an animal or human patient in vivo comprising

- a) introducing into said patient a labeled (e.g., a radio-opaque material that can be detected by X-rays, radiolabeled or labeled with paramagnetic materials that can be detected by NMR) antibody preparation according to the present invention and
- b) detecting the presence of such antibody preparation in the patient by detecting the label.

In another aspect, the present invention relates to the use of an antibody preparation according to the present invention for therapeutic purposes, namely, attaching to an antibody preparation radionuclides, toxins or other biological effectors to form a complex and introducing an effective amount of such complex into an animal or human patient, e.g., by injection or orally. The antibody complex would attach to CEA in a patient and the radionuclide, toxin or other biological effector would serve to destroy the CEA expressing cell.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a schematic representation of the transmembrane CEA's

DETAILED DESCRIPTION OF THE INVENTION

In the parent application 87111/68, published as EP-A-263 933, applicants described the following CEA's:

	ATCC No.
CEA-(a) partial CEA (pcLV7) CEA-(b) full coding CEA (pc 15LV7) CEA-(c) TM-1 (FL-CEA; pc 19-22) CEA-(d) NCA (pcBT 20)	67709 67710 67711

In the present application, applicants described the following CEA's:

	ATTC No.
CEA-(e) TM-2 (pc E22) CEA-(f) TM-3 (pc HT-6) CEA-(g) TM-4.	67712 67708

ATCC Nos. 67708, 67709, 67710, 67711 and 67712 were all deposited with the American Type Culture Collection on May 25, 1988.

ეი

45

5

15

20

25

30

35

50

The sequences for CEA-(a), CEA-(b), CEA-(c) and CEA-(d) are given hereinbelow:

CEA-(a):

(b)

10 20 30 40 56

C ACC ATG GAG TCT CCC TCG GCC CCT CTC CAC AGA TGG TGC ATC CCC TGG CAG AGG CTC Met Glu Ser Pro Ser Ala Pro Leu His Arg Trp Cys Ile Pro Trp Gln Arg Leu

	60 7	0	80 90	100	110
	•		•	•	110
	CTG CTC ACA GCC	TCA CTT CTA	ACC TTC TGG AAC CC	CCC ACC ACT GCC	AAG CTC ACT
5	Leu Leu Inr Ala	Ser Leu Leu	Thr Phe Trp Asn Pr	Pro Thr Thr Ala	
					1 2 3
	120	130	140		
40	•	•	140 150	•	170 •
10	ATT GAA TCC ACG	CCG TTC AAT	GTC GCA GAG GGG AA	GAG GTG CTT CTA	CTT GTC CAC
	4 5 6 7	Pro Phe Asn	Val Ala Glu Gly Ly 11 12 13 14 19	s Glu Val Leu Leu S 16 17 18 10	Leu Val His
				, 10 17 10 13	20 21 22
15	180	190	200	210 22	20
	•	•	•		•
	AAT CTG CCC CAG	CAT CTT TTT	GGC TAC AGC TGG TA	C AAA GGT GAA AGA	A GTG GAT GGC
	23 24 25 26	27 28 29	Gly Tyr Ser Trp Ty 30 31 32 33 3	r Lys Gly Glu Arg 4 35 36 37 38	g Val Asp Gly R 39 40 41
20					33 40 41
	230 240	250	260	270	280
	•	•	•	•	•
	AAC CGT CAA ATT	ATA GGA TAT	GTA ATA GGA ACT CA	A CAA GCT ACC CCA	A GGG CCC GCA
25	42 43 44 45	110 Gly Tyr	Val Ile Gly Thr Gl 49 50 51 52 5	n Gln Ala Thr Pro	Gly Pro Ala
20	_		42 20 31 3E 3	3 34 33 36 3/	7 38 39 60
	290	300	310 320	220	340
	•	•	•	330	340 •
30	TAC AGT GGT CGA	GAG ATA ATA	TAC CCC AAT GCA TO	C CTG CTG ATC CAG	AAC ATC ATC
	61 62, 63 64	65 66 67	Tyr Pro Asn Ala Se 68 69 70 71 7:	r Leu Leu Ile Glr 2 72 74 75 76	Asn Ile Ile
			00 05 70 71 7	2 /3 /4 /3 /6	5 // /6 /9
	. 350	360	370	380 300	
35	. •	•	•	380 390	•
	CAG AAT GAC ACA	GGA TTC TAC	ACC CTA CAC GTC AT	A AAG TCA GAT CTT	GTG AAT GAA
	80 81 82 83	Gly Phe Tyr '	Thr Leu His Val Il	Lys Ser Asp Leu	Val Asn Glu
	35 51 52 53	04 03 00	87 88 89 90 9	1 92 93 94 95	5 96 97 98
40	410	420			
	*10	420	430	440	450
	GAA GCA ACT GGC	CAG TTC CGG	STA TAC CCG GAG CT	CCC AAG CCC TCC	ATC TCC AGC
	Glu Ala Thr Gly	Gln Phe Arg 1	/al Tyr Pro Glu Le	J Pro Lys Pro Ser	· Ile Ser Ser
45	33 IUI IUI IUZ	103 104 105	106 107 108 109 110	111 112 113 114	1 115 116 117
	460				
	460	470	480 490	500	510
	AAC AAC TCC AAA	CCC GTG GAG	SAC AAG GAT GCT GT		
50	Asn Asn Ser Lys	Pro Val Glu /	Asp Lys Asp Ala Va	Ala Phe Thr Cvs	Glu Pro Glu
	118 119 120 121	122 123 124	125 126 127 128 129	9 130 131 132 133	134 135 136

		520			53	0	9	40				550			5	60			570	
	ACT	- CAG :	האר (ATA	• •CC 1	' 'AC C	TG 1	rgg 1	rgg (TA A	AC /	AT (CAG	AGC	CTC	CCG	GTC	AGT	CCC	
5	Thr	Gla	Asp .	Ala	Thr 1	yr l	.eu 1	[rp]	Trp \	/al #	isn /	Asn (Gln	Ser	Leu	Pro	Val	Ser	Pro	
	137	138	139	140	141 1	142 1	43	144 1	145	146 1	47	148	149	150	151	152	153	154	155	
	•																			
			580			59	90		(500			610				620 •			
10	AGG	CTG	CAG	CTG	TCC /	MT (GGC A	AAC /	AGG .	ACC (CTC .	ACT	CTA	TTC	AAT	GTC	ACA	AGA	AAT	
	Arg	Leu	Gln	Leu	Ser	Asn (61y	Asn /	Arg	Thr I	Leu	Thr	Leu	Phe	Asn	Val	Thr	Arg	Asn	
	156	157	158	159	160	161	162	163	164	105	100	10/	108	צסו	170	171	172	1/3	1/-	
15	630			640)		6	50			660			670)		(580		
	-			•				•			•							•	CAT	
					TAC Tyr															
					179															
20																				
		690			700)		7	710	•		720			73	0			740	
		•			*				•			*			4 7 7	766	cct	CT.	445	
					AAT Asn														ASI	
25					198															
			750	٠		760)		•	770			780			79	0			
30	ACA	TCT	TAC	AGA	TCA	GGG	GAA	AAT	CTG	AAC	СТС	TCC	TGC	CAC	GCA	GCC	TCT	AA	CCA	
																			n Pro	
	213	214	215	216	217	218	219	220	ZZI	ZZZ	Z23	224	225	226	221	226	225	23	231	
	800			810			82	n			ครด			840	1		85	50		
35	800			810			82			;	830			840			•	50		
35	- CCT	GCA	CAG	TAC	тст		111	GTC		GGG	- ACT			ca	TC0		: CA/	A GA	G CTC	
35	CCT Pro	GCA A1 a	CAG G1n	TAC	TCT Ser	Trp	TTT Phe	GTC Val	Asn	GGG G1y	ACT Thr	Phe	e G1r	CAA GTr	t TCC	- Th	CA/ G1:	A GA n G1	u Leu	!
35	CCT Pro	GCA A1 a	CAG G1n	TAC	TCT Ser	Trp	TTT Phe	GTC Val	Asn	GGG G1y	ACT Thr	Phe	e G1r	CAA GTr	t TCC	- Th	CA/ G1:	A GA n G1		!
35	CCT Pro	GCA A1 a 233	CAG G1n	TAC	TCT Ser 236	Trp 237	TTT Phe	GTC Val 239	Asn 240	GGG G1y	ACT Thr	Phe 243	e G1r	CAA GTr	1 TC0 1 Sei 5 240	- Thi 5 241	CA/ G1:	A GA n G1 B 24	u Leu 9 250	!
	CCT Pro 232	GCA A1 a 233	CAG G1n 234	TAC Tyr	TCT Ser 236	Trp 237	TTT Phe 238	GTC Va1 239	Asn 240	GGG G1 y 241	ACT Thr 242	Phe 243	61r 1 244	G CAA	900	- Thi 5 241	CA/ F G1: 7 24	• A GA n G1 8 24	u Leu 9 250 10	!
	CCT Pro 232	GCA A1 a 233 860	CAG G1n 234	TAC Tyr 235	5 TCT Ser 5 236 870	7 rp 237	TTT Phe 238	GTC Va1 239 88	Asn 240 0	GGG G1y 241	ACT Thr 242	Phe 243	: G1r 3 244 C TA	G CAA	900 TG	- Thi 5 241 0	CAJ 7 G11 7 Z41	A GA n G1 8 24 9	u Leu 9 250 10 T AAC	
40	CCT Pro 232	GCA A1 a 233 860	CAG Gin 234	TAC Tyr 235	870 870	Trp 237	TTT Phe 238	GTC Val 239 88 ** AAT	Asn 240 0 AA1 Asr	GGG G1y 241	ACT Thr 242	890 87 890	C TA	CAA GTr S Z4:	900 TG	This 241	CA/ F G1: 7 24: A GC n A1	A GA n G1 8 24 9 C CA a Hi	u Leu 9 250 10 * T AAC s Asr	
	CCT Pro 232	GCA A1 a 233 860	CAG Gin 234	TAC Tyr 235	870 870	Trp 237	TTT Phe 238	GTC Val 239 88 ** AAT	Asn 240 0 AA1 Asr	GGG G1y 241	ACT Thr 242	890 87 890	C TA	CAA GTr S Z4:	900 TG	This 241	CA/ F G1: 7 24: A GC n A1	A GA n G1 8 24 9 C CA a Hi	u Leu 9 250 10 T AAC	
40	CCT Pro 232	GCA A1 a 233 860	CAG Gin 234	TAC Tyr 235	870 870	Trp 237	TTT Phe 238 GTG Val	GTC Val 239 88 ** AAT	Asn 240 0 AA1 Asn 3 259	GGG G1y 241	ACT Thr 242	890 87 890	C TA	CAA GTr S 245 T ACC T Th 3 26	900 TG	This 241	A GC	A GA n G1 8 24 9 C CA a Hi	u Leu 9 250 10 T AAC s Asn 8 269	
40	CCT Pro 232 TTT Phe 251	GCA A1a 233 860 - 1 ATC	CAG G1n 234	TAC Tyr 235 235 235 235 235	870 870 ATC	237 ACT Thr 256	TTT Phe 238	88 88 84 84 84 84 84 84 85 84 85 84 85 84 85 84 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86	Asn 240 0 Asn Asn 259	GGG G1y 241 AGT Ser 260	ACT Thr 242 GG/ GG/ 26	890 TCG Sei 26	C TA'	GAN GAN ACION TACON TACO	900 900 907 907 908 908 908 908	CA G1.5 26	CAA GC A	9 C CA Hi 7 26	u Leu 9 250 10 T AAC 5 Asn 8 269	70
40	CCT Pro 232 TTT Phe 251	GCA A 1 a 2 2 3 3 8 6 0	CAG GTn 234	- TAC TYPE 235 235 235 3 254	870 870 870 1 ATC	237 237 ACT Thr 256	TTT Phe 238	88 = 88 = 6 AAT 258	Asn 240 AA1 Asr 3 259	GGG Gly 241 AGT AGT	ACT Thr 242 GG G1,	890 TCG Sei 1 26	950 G AT	CAAC	900 # G TGG G TGG 4 26	This 241	CAA GC A	9 C CA Hi 7 26	u Leu 9 250 10 "T AAC s Asn 8 269	70 A

	•		c	80			990			1000			10	10		,	020		
			3	•			•			•				-		•	•		
	CCC																		
5	Pro 289	290																	
	1030)		10)40		1	050			1060)		10	70			1080	
10	•				•						•				•			•	
10		TTA Leu																	
		309		-															
15		109)		11	00			1110			1120)		1	130			1140
		•							•			•				•			*
		AGC																	Thr
								-								_			345
20																			
			115	0		1	160			1170			118	0		1	190		
			•				•			•			•				•		
																			GAA G1u
25		_								-		-		•	-				364
	1200			121	0		1	220			1230			124	0		1	250	
	*	467	CTT				***	-	CTC		•							•	
30																			GAC Asp
				_											•	_		-	383
25		1260			127	0		1	280			1290			130	0		•	1310
35	ccc	*		* ***	-	TCA	TAC		•			-	ccc	CTC	•		- 46	· ct/	*
																			C TCC Ser
									-	-	-		-						402
40																			
			1320)		133	10		1	340			1350)		130	50		
			•			•				•			•						
																			n Ile
45	•										-		•					•	421
	1370			1380)		139			1	400			1410)		14		
	- -	. CA4	. CA1	- • AC	\ CA4	CAC		•	T AT/	* †C'		• AT/	. VC.	EA/				• r cc	A CTC
50															_				y Leu
															-		_		9 440

	1430	1440	1450	1460 14	170 1480
	•	•	•	•	•
					ACT ACA GTC AAG ACA Thr Thr Val Lys Thr
5	441 442 443 4	144 445, 446 447	448 449 450	451 452 453 454 4	155 456 457 458 459
	1490	1500	1510	1520	1530 1540
4.0		•	•	•	•
10					AC AAC TCC AAA CCC Asn Asn Ser Lys Pro
					174 475 476 477 478
			•		
45	155	50 1560	1570) 1580	1590
15	•	•	•	•	•
	GTG GAG GAC A	AG GAT GCT GTG	GCC TTC ACC	TGT GAA CCT GAG G	SCT CAG AAC ACA ACC
	479 480 481 4	.ys Asp Ala Val 182 483 484 489	I Ala Phe ihr S 486 487 488	489 490 401 402 4	Ma Gln Asn Thr Thr 493 494 495 496 497
				450 450 450 450	133 134 133 130 137
20	1600	1610	1620	1620	40 3550
	•	1010	1620	1630 164	40 1650
	TAC CTG TGG T	GG GTA AAT GGT	CAG AGC CTC	CCA GTC AGT CCC	AGG CTG CAG CTG TCC
	Tyr Leu Trp T	rp Val Asn Gly	, Gln Ser Leu	Pro Val Ser Pro A	Arg Leu Gln Leu Ser
25	498 499 500 5	501 502 503 504	\$ 505 506 507	508 509 510 511 5	512 513 514 515 516
•					
	1660	1670 . •	1680	1690	1700 1710
	AAT GGC AAC A	AGG ACC CTC ACT	T CTA TTC AAT	GTC ACA AGA AAT	GAC GCA AGA GCC TAT
30	Asn Gly Asn A	arg Thr Leu Thi	Leu Phe Asn	Val Thr Arg Asn	Asp Ala Arg Ala Tyr
	517 518 519 5	520 521 522 523	3 524 525 526	527 528 529 530 5	531 532 533 534 535
	1720	1730	1740	1750 •	1760 =
35	GTA TGT GGA A	TC CAG AAC TC	GTG AGT GCA	AAC CGC AGT GAC	CCA GTC ACC CTG GAT
	Val Cys Gly I	lle Gln Asn Sei	r Val Ser Ala	Asn Arg Ser Asp 1	Pro Val Thr Leu Asp
	536 537 538 5	39 540 541 542	2 543 544 545	546 547 548 549 5	550 551 552 553 554
	1770 1	1780	1790 ⁻	1900 1810	1000
40	•	*	4	1800 1810	1820
					TCG TCT TAC CTT TCG
	Val Leu Tyr G	ily Pro Asp The	Pro Ile Ile	Ser Pro Pro Asp	Ser Ser Tyr Leu Ser
	555 556 557 5	559 560 561	562 563 564	565 566 567 568 !	569 570 571 572 573
45					
	1830	1840	1850	1860	1870 1880
		TO AAC OTO YES	• TGC CAC TCG	• 600 TOT AAC CC4 1	TCC CCG CAG TAT TCT
					Ser Pro Gin Tyr Ser
50	574 575 576 5	577 578 579 580	581 582 583	584 585 586 587 5	588 589 590 591 592

		1	890			1900	1		19	10		1	920			1930			
				AAT	GGG											ATC			
5																Ile			
·	593	594	292	240	597	598	599	600	60 I	602	603	604	605	606	607	608	609	610	611
	1940		1	950			1960)		19	70		1	980			1990)	
10	ACG	CCA	AAT	AAT	AAC	GGG	ACC	TAT	GCC	TGT	TTT	GTC	тст	AAC	TTG	GCT	ACT	GGC	CGC
						-		-		-						Ala		-	•
	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627	628	629	630
15	20	000		2	2010			2020)		20	30		;	2040			205	0
	AAT	AAT	TCC	ATA	GTC	AAG	AGC	ATC	ACA	GTC	TCT	GCA	TCT	GGA	ACT	TCT	ССТ		стс
																Ser			
	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648	649
20		2(060		;	2070			2080)		20	90		:	2100			2110
			•			•							•			*			•
																GTT Val			
																665			
25																			
			2	120		;	2130			214	0		2	150		;	2160		
	TAG	CAG	ccc	TGG	TGT	AGT	TTC	TTC	ATT	TCA	GGA	AGA	CTG	ACA	GTT	GTT	TTG	CTT	CTT
30																			
	217				180			2190			220				210			2220	
	CCT	TAA	AGC	ATT	TGC	AAC	AGC	TAC	AGT	CTA	AAA	TTG	CTT	CTT	TAC	CAA	GGA	TAT	TTA
35		2	•																
		223	0		2	240			2250			226	0		2	270			2280
	CAG	AAA	ATA	CTC	TGA	CCA	GAG	ATC	GAG	ACC	ATC	CTA	GCC	AAC	ATC	GTG	AAA	CCC	CAT
40			229	0		2	300			2310	ı		232			2	330		
	сто	TAC	TAA	AAA	TAC		AAT	GAG	СТС	GGC	TTG	GTG	_		ACC	TGT		cco	AGT
45	2340			235	0-		 2	360			2370)		238	30		2	390	
45	2340	l		•				•			•			•	,			•	•
45	2340	l	GGA	•		GGC		•			•		CGG	•	,	GAG		•	A GTG
4 5	2340	l	i GGA	•		GGC		•			•		CGG	•	,	GAG		•	A GTG

	2400	1	2410	24	20	2430	2440	2450
	AGC CCA	GAT CGC	ACC ACT	GCA CTC	CAG TCT (GC AAC AGA	GCA AGA CTC	
5		2460	2470		2480	2490	2500	•
		•	•		•	•	CAA GTT TCT	
10	~~~			TOT GAC	CIO IAC	ici ida aia	CA 411 1C1	GAT ACC ACT
10	2510	2520		2530	254	40 z	2550	2560
	GCA CTG	TCT GAG	AAT TTC	CAA AAC	TTT AAT (GAA CTA ACT	GAC AGC, TTC	ATG AAA CTG
15	2570		2580	2590)	2600	2610	2620
	TCC ACC	AAG ATC	AAG CAG	AGA AAA	TAA TTA A	ATT TCA TGG	GGA CTA AAT	
20	2	2630	2640		2650	2660	2670	2680
	AGG ATA	ATA TTT	TCA TAA	ווו ווו	ATT TGA	AAT TTT GCT	GAT TCT TTA	AAT GTC TTG
25		2690	2			27		
	זזז כככ	AGA TTT	CAG GAA	ACT TTT	דדד כדד	TTA AGC TAT	CCA CTC TTA	CAG CAA TTT
	2740	2	750	2760	:	2770	2780	2790
30	GAT AAA	ATA TAC	TIT TGT	GAA CAA	AAA TTG	AGA CAT TTA	CAT TIT ATC	CCT ATG TGG
		00	2810	;	2820	2830		
35		CAG ACT	TGG GAA	ACT ATT	CAT GAA	TAT TTA TAT	TGT ATG	
40								
45								
50								

~-

	CEA-(c):		
5			
	10	30	50
10	CAGCCGTGCTCGAAGCGT	CCTGGAGCCCAAGCTCTCCT	CCACAGGTGAAGACAGGGCCA
	70	90	110
15			AGAGTGCGTGTACCCTGGCAG ArgValArgValProTrpGln
	130	150	170
20			CCGCCCACCACTGCCCAGCTC
	190	210	230
25			GAGGTTCTTCTCCTTGTCCAC
	250	270	290
30			AGGGGAAAGAGTGGATGGCAAG SGlyGluArgValAspGlyAsi
05	310	330	350
35			PACCCCAGGGCCCGCAAACAG ThrProGlyProAlaAsnSe
40	370	390	410
			CCAGAACGTCACCCAGAATGA eGlnAsnValThrGlnAsnAs
45	430	450	470
			TGTGAATGAAĠAAGCAACTGG uValAsnGluGluAlaThrGl
50	490	510	530

	CAGTTCCATGTATACCCGGA GlnPheHisValTyrProGl	GCTGCCCAAGCCCTCCATC uLeuProLysProSerIle	CTCCAGCAACAACTCCAACCCT eSerSerAsnAsnSerAsnPro
5	550	570	590
10	GTGGAGGACAAGGATGCTGT ValGluAspLysAspAlaVa	GGCCTTCACCTGTGAACCT	IGAGACTCAGGACACAACCTAC OGluThrGlnAspThrThrTyr
	610	630	650
15	CTGTGGTGGATAAACAATCA LeuTrpTrpIleAsnAsnGl	GAGCCTCCCGGTCAGTCCC	CAGGCTGCAGCTGTCCAATGGC
	670	690	710
20	AACAGGACCCTCACTCTACT AsnArgThrLeuThrLeuLe	CAGTGTCACAAGGAATGA(uSerValThrArgAsnAsi	CACAGGACCCTATGAGTGTGAA pThrGlyProTyrGluCysGlu
	730	750	770
25	ATACAGAACCCAGTGAGTGC IleGlnAsnProValSerAl	GAACCGCAGTGACCCAGTG aAsnArgSerAspProVa	CACCTTGAATGTCACCTATGGC lThrLeuAsnValThrTyrGly
	790	810	830
30	CCGGACACCCCCACCATTTC ProAspThrProThrIleSe	CCCTTCAGACACCTATTAC	CCGTCCAGGGGCAAACCTCAGC rArgProGlyAlaAsnLeuSer
35	850	870	890
33	CTCTCCTGCTATGCAGCCTC LeuSerCysTyrAlaAlaSe	TAACCCACCTGCACAGTAG	CTCCTGGCTTATCAATGGAACA
40	910	930	950
	TTCCAGCAAAGCACACAAGA PheGlnGlnSerThrGlnGl	GCTCTTTATCCCTAACAT uLeuPheIleProAsnIl	CACTGTGAATAATAGTGGATCC eThrValAsnAsnSerGlySer
45	970	990	1010
	TATACCTGCCACGCCAATAA TyrThrCysHisAlaAsnAs	CTCAGTCACTGGCTGCAAG	CAGGACCACAGTCAAGACGATC nArgThrThrValLysThrIle
50	1030	1050	1070

			AATCAAAGCCAGCAAGACC nIleLysAlaSerLysThr	
5	1090	1110	1130	
10			CACAAATGACACTGGAATC rThrAsnAspThrGlyIle	
	1150	1170	1190	
15	ATCCGTTGGTTCTTCAAAJ IleArgTrpPhePheLys	ACCAGAGTCTCCCGTCCTC	GGAGAGGATGAAGCTGTCC rGluArgMetLysLeuSer	CAG Gln
	1210	1230	1250	
20	GGCAACACCACCCTCAGCA GlyAsnThrThrLeuSer	ATAAACCCTGTCAAGAGGGA (leAsnProValLysArgG)	GGATGCTGGGACGTATTGG uAspAlaGlyThrTyrTrp	TGT Cys
	1270	1290	1310	
25	GAGGTCTTCAACCCAATCA GluValPheAsnProIle	AGTAAGAACCAAAGCGACCC SerLysAsnGlnSerAspPr	CATCATGCTGAACGTAAAC OIleMetLeuAsnValAsn	TAT
	1330	1350	1370	
30	AATGCTCTACCACAAGAA AsnAlaLeuProGlnGlu	ATGGCCTCTCACCTGGGGGASnGlyLeuSerProGlyA	CATTGCTGGCATTGTGATT	GGA Gly
	1390	1410	1430	
35	GTAGTGGCCCTGGTTGCT ValValAlaLeuValAla	CTGATAGCAGTAGCCCTGG LeuileAlaValAlaLeuA	CATGTTTTCTGCATTTCGGG LaCysPheLeuHisPheGly	AAG Lys
40	1450	1470	1490	
	ACCGGCAGGGCAAGCGAC ThrGlyArgAlaSerAsp	CAGCGTGATCTCACAGAGCA GlnArgAspLeuThcGluH	ACAAACCCTCAGTCTCCAAC SLysProSerValSerAsn	CAC His
45	1510	1530	1550	
	ACTCAGGACCACTCCAAT ThrGlnAspHisSerAsn	GACCCACCTAACAAGATGAA AspProProAsnLysMetA:	ATGAAGTTACTTATTCTACC snGluValThrTyrSerThr	CTG Lev
50		<u>.</u>		

AACTTTGAAGCCCAGCAACCCACACCAACTTCAGCCTCCCCATCCCTAACAGCCACA

PheGluAlaGlnGln	ProThrGlnProThrSerAl	aSerProSerLeuThrAlaTh	
1630	1650	1670	
		CCTGTCCTGCTCACTGCAGTG	:
1690	1710	1730	
TGTATTTCAAGTCTC	TCACCCTCATCACTAGGAGA	TTCCTTTCCCCTGTAGGGTAG	À
1750	1770	1790	
GTGGGGACAGAAACA	ACTTTCTCCTACTCTTCCTT	CCTAATAGGCATCTCCAGGCT	G
1810	1830	1850	
GGTCACTGCCCCTCT	CTCAGTGTCAATAGATGAAA	AGTACATTGGGAGTCTGTAGGA.	A
1870	1890	1910	
CAACCTTCTTGTCAT	TGAAATTTGGCAAAGCTGAC	TTTGGGAAAGAGGGACCAGAA	C
1930	1950	1970	
:CCCTCCCTTCCCCTT	TTCCCAACCTGGACTTGTTT	TTAAACTTGCCTGTTCAGAGCA	ċ
1990	2010	2030	
ATTCCTTCCCACCCC	AGTCCTGTCCTATCACTCTA	AATTCGGATTTGCCATAGCCTT	G
2050	2070	2090	
STTATGTCCTTTTCCA	ATTAAGTACATGTGCCAGGAA	AACAGCGAGAGAGAGAAGTAA	A
2110	2130	2150	
CAGTAATGCTTCTCC	CTATTTCTCCAAAGCCTTGT	GTGAACTAGCAAAGAGAAGAAA	A
	1630 ATAATTTATTCAGAA ATAATTTATTCAGAA ATAATTTATTCAGAA ATAATTTATTCAGAA ATAATTTATTCAGAA ATAATTTATTCAGAA ATAATTTATTCAGAA ATAATTTATTCAGAA ATAATTTATTCAAGTCTC 1750 ATGGGGGACAGAAACA 1810 CCAACCTTCTTGTCAT 1930 CCCCTCCCTTCCCCTT 1990 ATTCCTTCCCACCCCC 2050 ATTATGTCCTTTTCCA	1630 1650 ATAATTTATTCAGAAGTAAAAAAGCAGTAATGAAA ATAATTTATTCAGAAGTAAAAAAAGCAGTAATGAAA ATAATTTATTCAGAAGTAAAAAAAGCAGTAATGAAA ATAATTTATTCAGAAGTACCCTCACCCTCATCACTAGAAA 1690 1710 ATGTATTTCAAGTCTCTCACCCCTCATCACTAGGAGA 1750 1770 AGTGGGGACAGAAACAACTTTCTCCTACTCTTCCTT 1810 1830 AGGTCACTGCCCCTCTCTCAGTGTCAATAGATGAAA 1870 1890 CCAACCTTCTTGTCATTGAAATTTGGCAAAGCTGAC 1930 1950 CCCCTCCCTTCCCCTTTTCCCAACCTGGACTTGTTT 1990 2010 ATTCCTTCCCACCCCCAGTCCTGTCCTATCACTCTA 2050 2070 ATTATGTCCTTTTCCATTAAGTACATGTGCCAGGAA 2110 2130	ATAATTATTCAGAAGTAAAAAAGCAGTAATGAAACCTGTCCTGCTCACTGCAGTGCTTEETTCSCTGUValLysLysGln 1690 1710 1730 ATGTATTTCAAGTCTCTCACCCTCATCACTAGGAGATTCCTTTCCCCTGTAGGGTAGG 1750 1770 1790 AGTGGGGACAGAAACAACTTTCTCCTACTCTTCCTTACTATAGGCATCTCCAGGCT 1810 1830 1850 AGGTCACTGCCCCTCTCTCAGTGTCAATAGATGAAAGTACATTGGGAGTCTGTAGGA 1870 1890 1910 CCAACCTTCTTGTCATTGAAATTTGGCAAAGCTGACTTTGGGAAAGAGGGACCAGAA 1930 1950 1970 CCCCTCCCTTCCCCTTTCCCAACCTGGACTTGTTTAAACTTGCCTGTTCAGAGCA 1990 2010 2030 ATTCCTTCCCACCCCCAGTCCTGTCCTATCACTCTAATTCGGATTTGCCATAGCCTT 2050 2070 2090

	2230	2250	2270	
	GTAGGATCAGGGTCTAAG	ACCTTGGTGCTTAGCTAGA	ATACCACCTAATCCTTCTGG	ĊĀ
5				
	2290	2310	2330	
	AGCCTGTCTTCAGAGAAC	CACTAGAAGCAACTAGGAA	AAATCACTTGCCAAAATCCA	AG
10	2350	2370	2390	
	•	TGCAAAAGCAĆATATATGTT	TTAATATCTTTATGGGCŤCT	·GT
15	2410	2430	2450	
	TCAAGGCAGTGCTGAGAG	GGAGGGGTTATAGCTTCAGG	AGGGAACCAGCTTCTGATAA	LAC
20	2470	2490	2510	
	ACAATCTGCTAGGAACTT	CODADADATCAGAGAGCT	GCCCTTCAGCGATTATTTA	· ·AT
25	2530	2550	2570	
	TGTTAAAGAATACACAAT	TTGGGGTATTGGGATTTTT	CTCCTTTTCTCTGAGACATT	CCA
30	2590	2610	2630	
	CCATTTTAATTTTTGTAA	CTGCTTATTTATGTGAAAA	GGTTATTTTTACTTAGCTT	AGC
25	2650	2670	2690	
35	TATGTCAGCCAATCCGA	TTGCCTTAGGTGAAAGAAAC	CACCGAAATCCCTCAGGTCC	CTT
	2710	2730	2750	
40	GGTCAGGAGCCTCTCAA	GATTTTTTTTGTCAGAGGCT	CCAAATAGAAAATAAGAAAA	GGT
	2770	2790	2810	_
45	TTTCTTCATTCATGGCT	AGAGCTAGATTTAACTCAGT	TTCTAGGCACCTCAGACCAA	TC.
	2830	2850	2870	
50	TCAACTACCATTCTATT	CCATGTTTGCACCTGTGCAT	TTTCTGTTTGCCCCCATTCA	CT

	2890	2910	2930	
	TGTCAGGAAACCTTGGC	TCTGCTAAGGTGTATTTGG		
5			COLIGNORNO LOGGRACIA	CCCI
	2950	2970	2990	
	ACAGGGACACTATCACTO	CATGCTGGTGGCATTGTTTAC	Agctagaaagctgcactg	GTGC
10				
	3010	3030	3050	
	TAATGCCCCTTGGGAAA1	CGGGCTGTGAGGAGGAGGAT	TATAACTTAGGCCTAGCC	TCTT
15	3070	3090	7110	
	TTAACAGCCTCTGAAATT	TATCTTTTCTTCTATGGGGT	3110	
			ATATOTATETATATA	ATAA
20	3130	3150	3170	
	AAAGGAAGGACAGGAGGA	AGACAGGCAAATGTACTTC	CACCCAGTCTTCTACACA	GATG
ne.	3190	3210	2220	
25	GAATCTCTTTGGGGGCTA	•	3230	
		GAGAAAGGTTTTATTCTA'tA	TTGCTTACCTGATCTCAT	GTTA
30	3250	3270	3290	
	GGCCTAAGAGGCTTTCTC	CAGGAGGATTAGCTTGGAG1	TCTCTATACTCAGGTACC	TCTT
35	3310	3330	3350	
	TCAGGGTTTTCTAACCCT	GACACGGACTGTGCATACTT	TCCCTCATCCATGCTGTG	CTGT
	3370	3390	3410	
40		GCTAAGATCATGTCTGAATT		
	•		XIGIRIGARARTTATTCT/	ATGT
	3430	3450		
45	TTTTATAATAAAATAAT	ATATCAGACATCGAAAAAA		

(d)

		10		50)		٠	30		•	40			50		•	
5	CC 888	66A CAC	GCA G	66 CCA	ACA	610	ACA	6CA	ECC	C16	ACC	AGA	a 08	110	C 1 G	CrC	CIC
	60	,	70		80	·			90			100		. •	11	0	
10	AAG	כוכ זכז	ACA A	A6 A66	166	ACA	5A6	AAG	ACA	6CA	6A6	ACC					1CA Ser
		120	1	30		. 140	9			150			160	·		17	
	trr	ret rer	TEC A	EA TIE	CAT	1	cce	100		•	.,,	***	1	464		•	
15	Ala	CCT CCC Pro Pro	Cys A	rg Leu	Kis	Vaj.	Pro	Trp	Lys	6 lu	Val	Leu	Leu	1hr	Ala	Ser	Leu
		180		190			500	0		1	210			550	ı		53
	CIA	ACC 11C	TGE A	-	CCC	ACC	•	600	AAS	CIC	ACT	AII	BAA	100	ACS	CCA	13C
20	Leu	The Phe	Trp A	sn Pro	Pro	lhr	Thr	Ala	Lys	Leu 2	Thr	He	61u	Ser	ihr	Pre	Phe
			240		250			۶۶ .	•	•	-	4 270	5	6	280		4
	447	 '			1				•••			1			•		
25	Acn	Val Ala	Klu F	ite tee	£1	V.1	1	1	1	41.	w: -						
	10	בן ון	/3 /	1 15	K	17	18	/9	20	21	22	23	24	25	تات	<u>"לָכ</u> ּ	ŹŽ [¥]
	5.5	0	30	00		310			32	0		*	330	••		310	-
30	ATT	661 TAC	AGC .1	GG TAC	AAA	660	GAA	ASA	616	GAT	GGC	AAC	A61	CTA	AII	GIA	66A
30	11e	Sly lyr	Ser I	ונף לצו אל צו	۱75 عو	مرا في الم	51u <i>37</i>	وArg	42 } '42	Asp	617 41	Asn 12	Ser #3	Leu 44	110	Va1	Sly
		350		340			370			38		•		390			100
	161	1 ATA ATA	554	 	. F&&	Eet	t App	PPA	***	1	***	. 746		1			1
35	lyr	Val lie	61v 1	ihr bin	61a	Ala	The	Pro	£1.	Pra	41.	1.,	C.,	£1.	A	£1	
	43	111 50	3/ 3	52 33	420	53	37	57	36	55	A	"	W	63	W	65	il
		•	•		1			130	l		44	U			450		
	ATA	TAC CCC	AAT	6CA 1CC	CTS	CTE	ATC	CAS	AAC	610	ACC	CAE	AAT	BAC	ACA	664	IIC
40	110 67	lyr Pro	70	NIA 541 71 72	7.3	74	11e	76	27 27	731 73	ihr	61 n	Asn 8/	83	الما وزر	Ely	Phe
	460)	470			180			170	ı		50				510	
	TA	C ACC CTA	CAA	61C AT	A AÁE	10/	A BAI	נוט	616	AAI	. BAF	I Bai	A BCA	ACC	664	I Lag	110
45	Ĩvi	thr Lev E7 E3	i film '	V21 11:		Ser	4.			A		. 61.	. 41.		e1.		
	•	520		530			40	,,		550	,,	•	240		700		70
	f+1	4 STA TAF	ורב ב ר	1 AE F1E	ere	442	l LEF	166	415	100	ACC	465	1	122	4 6.2		1 E1E
	Xis	BIA IAC 271 JeV.	Pra 6	lu teu	Pra.	lve	210	Sec	11.	Ser	Ser	Asn	4ca	Ser	Asa i	Pen 1	٧٠١
50	105	106 107	pi i	wy 110	///	a's	115	uj	115	ill	")	48	118	120	111	12	123

	5	80	590	100	610	054
5	61u Aso L	AAG BAT GCT YS ASP Ala 26 127 128	Val Ala F	he the Cue St	4 CCT BAS 611 u Pro 61u Val y NS 13K N	ו CAG ARC ACA ACC TAC Sin Ash Thr Thr Tyr הוא או או או או
	£30	610	450	650	670	680
10	Leu Tra T	re Val Asn	SST CAS A	AGC CIC CCG GI	C AST CCC ASS	
	690	700	-70 7-7-7	710	720	730 710
	65C 44C 4	GE ACC CIC	ACT CTA C	I IC AGC BIC AA	•	
15	Ely Asn A	ro the low	The Lau I	au Car Ust In		Ala Bly Ser lyr Blu 126 171 176 177 180
	75		760	770	720	790 800
	TAT BAA A	TA CAG AAC	CCA SCS A	1 131 JAA 338 181	1 1 747 748 778 7	ora the ard don ora
20	Cvs Blu 1	ie bin acn	Pra Ala C		. C	Val The Leu Ash Val
		810	820	830	840	850
	ETC. TAT G	GC CCA BAT	EGC CCC A	CC ATT ICC CC	C ICA AAB GCC	AAA TAC CGT CCA GAG
25	200 201 W	אנוב למב בנו	ا 200 كلار	hr lie Ser Pri	Ser Lys Ala	Ash ly: Aig Pio Sly
	840	870	_	•	70	100 - 910
	GAR AAT C'		1CC 16C C	AC BCA BCC IC	I I AAC CCA CCI	6CA CAG TAC TCT TGG
	614 ASA LA	ev Asn Leu 27 227	Ser Cys X	يو ولا والدي	Ash fie fie	Ala Sin Tyr Ser Irp
30	920		130	140	150	160 . 170,
	ITI AIC A	AT EGE ACS	TIC CAG C	AA TCC ACA CA	• A 6A6 C1C 111	ATC CCC AAC ATC ACT
	Phe lie As	in fly thr	Phe 61n 6	la Ser The 61:	. Klu lau Pha	The Pro Ash The The
35		780	990	. 1000	1010	1020
			TCC TAT A	16 16C CAA 6C	C CAT AAC ICA	GCC ACT GGC CTC AAT
	Val Asn As 252 252	in Set 617	Sei Tyi K	el Cys Sin Al	His Asa Ser	Ala the bly Leu Ash
40	.1030	1040	105			
	ASS. ACC AI	4 274 752 47		•		ETC CTC TCA ECT ETE
	Are the The	or Val The	و واله الألا	hr Val Ser Bl	Ser Ala Pro	Val Leu Ser Ala Val
45	1070	1100		1110	1120	1130 1110.
	BCC ACC 6	• 31A 388 31	ACE A11 G	SA RIR FIR EC	l C are ete ept	t t t t t t t t t t t t t t t t t t t
	Ala Ihr V	1) 61y 11e	The Lie S	וא ערו לפי און אין אין אין אין אין אין אין אין אין אי	۱ Arq ۷۱۱ ها د ۱ مرز جمع عائد ا	Lev Tie Lev Tie

			•									180			1110			
	166 1	TET ATT										1 166					ATT (C1 1
5	1200												•••					
	1500																	
	i CIA 6	SCI CCI	CCA :	ATC	CCA	111	TAT	כננ	A16	SAA	ECA	CIA	AAA	ACA	888	161	6C1	CIE
10	128	60	!	270			1280)		18	90		!	1300			1310)
							1				•			1				
					•			-						•				
15		1320		1	330			1340)		1:	350			1360	,		1370
	CC1 (AS SCC																
20		i	380	ė	1	390			1400)		10	10					
	155		1	-1-	***	1	***					•	1	•••	••••	1		
	150	ANA CCA	nnL	LIL	111	LPL	116	DLR	POA	IBA	105	161	LAI	IAU	IAI		ALR	RDR
25	1430		14	40		1	1450			1460)		. 1	179				
	461	AGC 11C	AGA				AAC					213					([AA	CST
30		1490.		13	1			1210			155	0		1	230			1540
		ACA TAI	TAA	AAS	CGA	100	111	AST	6C A	כככ	AGI	GAC	164	CAT	IAS	CAS	CAI	£11
			50		1	260			1570)		158	0		1	1590		
35		CAC AG															ACI	CCA
	1600		141	٥		1	1470			1431	n.			10			1150	
	•		1				•			•				•			•	
40	ALI	SAA AT	5 IIR	APP	AR	iaa d	6 Alí	я Ба	CCA	IAI	I AA	A AAI	AA F	I IA	AA AA	C CA	A 111	I AAA
	1	1840		167								0					1	1710
45	324	AAA AA		CAC					TC1					C AT		A CA	B AAI	1. 5 1CC
									. .									
									1710			175				•		
50	CCI	CTA CT	IT TAI	A C11	1 11	A CA	A AA	A AS	T AA	C C1	S AA	C TA	A 10	T GI	17 61	TAA	C CA	A 161

1270 1780 1710 1800 1210 1820 ATT TAT THE TEL BET TEL BIT TEE THE TIC CAR TIT BAC AND ACC CAC TEL TEL TEL 1830 1810 1850 1860 1270 1880 ATT STA TIG CCC AGE SEE AGC TAT CAC IGT ACT IST AGA GIS SIS CIS CIT TAA SIT 1890 1900 1710 1920 1930 1940 CAT ARA TCA CAN ATA ARA SEC ART TAS CTC TAT ARC TAR ARA ARA ARA ARA ARA 1950 1960 MAR RAD RAD RAD RAD RAD RAD

20

30

5

10

15

A schematic relationship of the transmembrane CEA's, namely TM-1 (CEA-(c)), TM-2 (CEA-(e)), TM-3 (CEA-(f)) and TM-4 (CEA-(g)) is depicted in Fig. 1:

Assuming TM-1 is composed of five sections as depicted in Fig. 1, namely 10, 12, 14, 16 and 18, TM-2 differs from TM-1 in that the 100 amino acid (100 AA) section 14 is deleted and at splice point 20 between sections 12 and 16, surprisingly an extra amino acid, namely Asp occurs.

TM-3 is the same as TM-1 except that section 18 is truncated at splice point 22, i.e., a section of 70 amino acids is deleted and results in a new section made up of subsections 24 + 26. Surprisingly, however, six new amino acids (section 26) occur. Another example of formation of a novel amino acid sequence resulting from a deletion of nucleic acid sequence is for platelet derived growth factor-A.

TM-4 is the same as TM-2 up until the end of subsection 24.

Subsection 24 is contained in section 18 of TM-1 and TM-2, but is not depicted in Fig. 1 for TM-1 and TM-2.

Some CEA epitopes are unique. These are the epitopes which have been useful for distinguishing the various CEA-like antigens immunologically. Peptide epitopes are defined by the linear amino acid sequence of the antigen and/or features resulting from protein folding. The information required for protein folding is encoded in the primary amino acid sequence. Therefore, antigenic differences ultimately result from differences in the primary structure of the different CEA molecules. The differences residing in the CEA protein in the CEA species can thus be determined by determining the primary amino acid sequences. This can be most readily accomplished by cloning and sequencing each of the genes for CEA. To determine which gene products will be most useful for cancer diagnosis, unique probes can be selected for each gene and expression of each gene can be determined in different tumor types by nucleic acid hybridization techniques. The present invention provides a tool with which to identify potential genes coding for different members of the CEA family and to determine the theoretical primary amino acid sequences for them. Using the method of automated peptide synthesis, peptides can then be synthesized corresponding to unique sequences in these antigens. With these peptides, antibodies to these sequences can be produced which, in the intact CEA molecule, might not be recognized by the animal being immunized. Having accomplished this, advantage can then be taken of the differences in these antigens to generate specific immunoassays for the measurement of each antigen.

A wide variety of host/cloning vehicle combinations may be employed in cloning the double-stranded nucleic acid prepared in accordance with this invention. For example, useful cloning vehicles may consist of segments of chromosomal, non-chromosomal and synthetic DNA sequences, such as various known derivatives of SV40 and known bacterial plasmids, e.g., plasmids from E. coli including col E1, pCR1, pBR322, pMB89 and their derivatives, wider host range plasmids, e.g., $\overline{RP4}$, and phage DNAs, e.g., the numerous derivatives of phage, e.g., NM989, and other DNA phages, e.g., M13 and $\overline{Filamenteous}$ single-stranded DNA phages and vectors derived from combinations of plasmids and phage DNAs such as plasmids which have been modified to employ phage DNA or other expression control sequences or yeast plasmids such as the 2 μ plasmid or derivatives thereof. Useful hosts may include bacterial hosts such as strains of E. coli, such as E. coli HB 101, E. coli X1776, E. coli X2282, E. coli MRCI and strains of

Pseudomonas, Bacillus subtilis, Bacillus stearothermophilus and other E. coli, bacilli, yeasts and other fungi, animal or plant hosts such as animal (including human) or plant cells in culture or other hosts. Of course, not all host/vector combinations may be equally efficient. The particular selection of host/cloning vehicle combination may be made by those of skill in the art after due consideration of the principles sat forth without departing from the scope of this invention.

Furthermore, within each specific cloning vehicle, various sites may be selected for insertion of the nucleic acid according to the present invention. These sites are usually designated by the restriction endonuclease which cuts them. For example, in pBR322 the Pstl site is located in the gene for beta-lactamase, between the nucleotide triplets that code for amino acids 181 and 182 of that protein. One of the two Hindll endonuclease recognition sites is between the triplets coding for amino acids 101 and 102 and one of the several Taq sites at the triplet coding for amino acid 45 of beta-lactamase in pBR322. In similar fashion, the EcoRl site and the PVUII site in this plasmid lie outside of any coding region, the EcoRl site being located between the genes coding for resistance to tetracycline and ampicillin, respectively. These sites are well recognized by those of skill in the art. It is, of course, to be understood that a cloning vehicle useful in this invention need not have a restriction endonuclease site for insertion of the chosen DNA fragment. Instead, the vehicle could be cut and joined to the fragment by alternative means.

The vector or cloning vehicle and in particular the site chosen therein for attachment of a selected nucleic acid fragment to form a recombinant nucleic acid molecule is determined by a variety of factors, e.g., the number of sites susceptible to a particular restriction enzyme, the size of the protein to be expressed, the susceptibility of the desired protein to proteolytic degradation by host cell enzymes, the contamination of the protein to be expressed by host cell proteins difficult to remove during purification, the expression characteristics, such as the location of start and stop codons relative to the vector sequences, and other factors recognized by those of skill in the art. The choice of a vector and an insertion site for a particular gene is determined by a balance of these factors, not all sections being equally effective for a given case.

20

25

30

Methods of inserting nucleic acid sequences into cloning vehicles to form recombinant nucleic acid molecules include, for example, dA-dT tailing, direct ligation, synthetic linkers, exonuclease and polymerase-linked repair reactions followed by ligation, or extension of the nucleic acid strand with an appropriate polymerase and an appropriate single-stranded template followed by ligation.

It should also be understood that the nucleotide sequences or nucleic acid fragments inserted at the selected site of the cloning vehicle may include nucleotides which are not part of the actual structural gene for the desired polypeptide or mature protein or may include only a fragment of the complete structural gene for the desired protein or mature protein.

The cloning vehicle or vector containing the foreign gene is employed to transform an appropriate host so as to permit that host to replicate the foreign gene and to express the protein coded by the foreign gene or portion thereof. The selection of an appropriate host is also controlled by a number of factors recognized by the art. These include, for example, the compatibility with the chosen vector, the toxicity of proteins encoded by the hybrid plasmid, the ease of recovery of the desired protein, the expression characteristics, biosafety and costs. A balance of these factors must be struck with the understanding that not all hosts may be equally effective for expression of a particular recombinant DNA molecule.

The level of production of a protein is governed by two major factors: the number of copies of its gene within the cell and the efficiency with which those gene copies are transcribed and translated. Efficiency of transcription and translation (which together comprise expression) is in turn dependent upon nucleotide sequences, normally situated ahead of the desired coding sequence. These nucleotide sequences or expression control sequences define inter alia, the location at which RNA polymerase interacts to initiate transcription (the promoter sequence) and at which ribosomes bind and interact with the mRNA (the product of transcription) to initiate translation. Not all such expression control sequences function with equal efficiency. It is thus of advantage to separate the specific coding sequences for the desired protein from their adjacent nucleotide sequences and fuse them instead to other known expression control sequences so as to favor higher levels of expression. This having been achieved, the newly engineered nucleic acid, e.g., DNA, fragment may be inserted into a multicopy plasmid or a bacteriophage derivative in order to increase the number of gene copies within the cell and thereby further improve the yield of expressed protein.

Several expression control sequences may be employed as described above. These include the operator, promoter and ribosome binding and interaction sequences (including sequences such as the Shine-Dalgarno sequences) of the lactose operon of E. coli ("the lac system"), the corresponding sequences of the tryptophan synthetase system of E. coli ("the trp system"), the major operator and promoter regions of phage λ (O_LP_L and $O_RP'_R$), the control region of Filamenteous single-stranded DNA phages, or other sequences which control the expression of genes of prokaryotic or eukaryotic cells and

their viruses. Therefore, to improve the production of a particular polypeptide in an appropriate host, the gene coding for that polypeptide may be selected and removed from a recombinant nucleic acid molecule containing it and reinserted into a recombinant nucleic acid molecule closer or in a more appropriate relationship to its former expression control sequence or under the control of one of the above described expression control sequences. Such methods are known in the art.

As used herein "relationship" may encompass many factors, e.g., the distance separating the expression enhancing and promoting regions of the recombinant nucleic acid molecule and the inserted nucleic acid sequence, the transcription and translation characteristics of the inserted nucleic acid sequence or other sequences in the vector itself, the particular nucleotide sequence of the inserted nucleic acid sequence and other sequences of the vector and the particular characteristics of the expression enhancing and promoting regions of the vector.

Further increases in the cellular yield of the desired products depend upon an increase in the number of genes that can be utilized in the cell. This is achieved, for illustration purposes, by insertion of recombinant nucleic acid molecules engineered into the temperate bacteriophage λ (NM989), most simply by digestion of the plasmid with a restriction enzyme, to give a linear molecule which is then mixed with a restricted phage λ cloning vehicle (e.g., of the type described by N. E. Murray et al, "Lambdoid Phages That Simplify the Recovery of In Vitro Recombinants", Molec. Gen. Genet., 150, pp. 53-61 (1977) and N. E. Murray et al, "Molecular Cloning of the DNA Ligase Gene From Bacteriophage T4", J. Mol. Biol., 132, pp. 493-505 (1979)) and the recombinant DNA molecule recircularized by incubation with DNA ligase. The desired recombinant phage is then selected as before and used to lysogenize a host strain of E. coli.

Particularly useful λ cloning vehicles contain a temperature-sensitive mutation in the repression gene cl and suppressible mutations in gene S, the product of which is necessary for lysis of the host cell, and gene E, the product of which is major capsid protein of the virus. With this system, the lysogenic cells are grown at 32 °C and then heated to 45 °C to induce excision of the prophage. Prolonged growth at 37 °C leads to high levels of production of the protein, which is retained within the cells, since these are not lysed by phage gene products in the normal way, and since the phage gene insert is not encapsulated it remains available for further transcription. Artificial lysis of the cells then releases the desired product in high yield.

In addition, it should be understood that the yield of polypeptides prepared in accordance with this invention may also be improved by substituting different codons for some or all of the codons of the present DNA sequences, these substituted codons coding for amino acids identical to those coded for by the codons replaced.

Finally, the activity of the polypeptides produced by the recombinant nucleic acid molecules of this invention may be improved by fragmenting, modifying or derivatizing the nucleic acid sequences or polypeptides of this invention by well-known means, without departing from the scope of this invention.

The polypeptides of the present invention include the following:

- (1) the polypeptides expressed by the above described cells,
- (2) polypeptides prepared by synthetic means,
- (3) fragments of polypeptides (1) or (2) above, such fragments produced by synthesis of amino acids or by digestion or cleavage.

Regarding the synthetic peptides according to the invention, chemical synthesis of peptides is described in the following publications: S.B.H. Kent, Biomedical Polymers, eds. Goldberg, E.P. and Nakajima, A. (Academic Press, New York), 213-242, (1980); A.R. Mitchell, S.B.H. Kent, M. Engelhard and R.B. Merrifield, J. Org. Chem., 43, 2845-2852, (1978); J.P. Tam, T.-W. Wong, M. Riemen, F.-S. Tjoeng and R.B. Merrifield, Tet. Letters, 4033-4036, (1979); S. Mojsov, A.R. Mitchell and R.B. Merrifield, J. Org. Chem., 45, 555-560, (1980); J.P. Tam, R.D. DiMarchi and R.B. Merrifield, Tet. Letters, 2851-2854, (1981); and S.B.H. Kent, M. Riemen, M. Le Doux and R.B. Merrifield, Proceedings of the IV International Symposium on Methods of Protein Sequence Analysis, (Brookhaven Press, Brookhaven, NY), in press, 1981.

In the Merrifield solid phase procedure, the appropriate sequence of L-amino acids is built up from the carboxyl terminal amino acid to the amino terminal amino acid. Starting with the appropriate carboxyl terminal amino acid attached to a polystyrene (or other appropriate) resin via chemical linkage to a chloromethyl group, benzhydrylamine group, or other reactive group of the resin, amino acids are added one by one using the following procedure. The peptide-resin is:

- (a) washed with methylene chloride;
- (b) neutralized by making for 10 minutes at room temperature with 5% (v/v) diisopropylethylamine (or other hindered base) in methylene chloride;
- (c) washed with methylene chloride;

55

(d) an amount of amino acid equal to six times the molar amount of the growing peptide chain is activated by combining it with one-half as many moles of a carbodiimide (e.g., dicyclohexylcarbodiimide,

or diisopropylcarbodiimide) for ten minutes at 0 °C, to form the symmetric anhydride of the amino acid. The amino acid used should be provided originally as the N-alpha-tert.-butyloxycarbonyl derivative, with side chains protected with benzyl esters (e.g., aspartic or glutamic acids), benzyl ethers (e.g., serine, threonine, cysteine or tyrosine), benzyloxycarbonyl groups (e.g., lysine) or other protecting groups commonly used in peptide synthesis;

- (e) the activated amino acid is reacted with the peptide-resin for two hours at room temperature, resulting in addition of the new amino acid to the end of the growing peptide chain;
- (f) the peptide-resin is washed with methylene chloride;

5

10

30

35

40

50

55

- (g) the N-alpha-(tert.-butyloxycarbonyl) group is removed from the most recently added amino acid by reacting with 30 to 65%, preferably 50% (v/v) trifluoroacetic acid in methylene chloride for 10 to 30 minutes at room temperature;
- (h) the peptide-resin is washed with methylene chloride;
- (i) steps (a) through (h) are repeated until the required peptide sequence has been constructed.

The peptide is then removed from the resin and simultaneously the side-chain protecting groups are removed, by reaction with anhydrous hydrofluoric acid containing 10% v/v of anisole or other suitable (aromatic) scavenger. Subsequently, the peptide can be purified by gel filtration, ion exchange, high pressure liquid chromatography, or other suitable means.

In some cases, chemical synthesis can be carried out without the solid phase resin, in which case the synthetic reactions are performed entirely in solution. The reactions are similar and well known in the art, and the final product is essentially identical.

Digestion of the polypeptide can be accomplished by using proteolytic enzymes, especially those enzymes whose substrate specificity results in cleavage of the polypeptide at sites immediately adjacent to the desired sequence of amino acids.

Cleavage of the polypeptide can be accomplished by chemical means. Particular bonds between amino acids can be cleaved by reaction with specific reagents. Examples include the following: bonds involving methionine are cleaved by cyanogen bromide; asparaginyl-glycine bonds are cleaved by hydroxylamine.

The present invention has the following advantages:

- (1) The nucleic acids coding for TM-1, TM-2 and TM-3 can be used as probes to isolate other members of the CEA gene family.
- (2) The nucleic acids coding for TM-1, TM-2 and TM-3 can be used to derive oligonucleotide probes to determine the expression of TM-1, TM-2, TM-3 and other CEA genes in various tumor types.
- (3) TM-1, TM-2, TM-3 and TM-4 nucleotide sequences can be used to predict the primary amino acid sequence of the protein for production of synthetic peptides.
- (4) Synthetic peptides derived from the above sequences can be used to produce sequence-specific antibodies.
- (5) Immunoassays for each member of the CEA antigen family can be produced with these sequencespecific antibodies and synthetic peptides.
- (6) The aforementioned immunoassays can be used as diagnostics for different types of cancer if it is determined that different members of the CEA family are clinically useful markers for different types of cancer.

Peptides according to the present invention can be labelled by conventional means using radioactive moieties (e.g., ¹²⁵I), enzymes, dyed and fluorescent compounds, just to name a few.

Several possible configurations for immunoassays according to the present invention can be used. The readout systems capable of being employed in these assays are numerous and non-limiting examples of such systems include fluorescent and colorimetric enzyme systems, radioisotopic labelling and detection and chemiluminescent systems. Two examples of immunoassay methods are as follows:

- (1) An enzyme linked immunoassay (ELISA) using an antibody preparation according to the present invention (including Fab or F(ab)' fragments derived therefrom) to a solid phase (such as a microtiter plate or latex beads) is attached a purified antibody of a specificity other than that which is conjugated to the enzyme. This solid phase antibody is contacted with the sample containing CEA antigen family members. After washing, the solid phase antibody-antigen complex is contacted with the conjugated antipeptide antibody (or conjugated fragment). After washing away unbound conjugate, color or fluorescence is developed by adding a chromogenic or fluorogenic substrate for the enzyme. The amount of color or fluorescence developed is proportional to the amount of antigen in the sample.
- (2) A competitive fluorometric immunoassay using fluorescently labelled peptide or synthetic peptides of the sequences for TM-2, TM-3 and TM-4. In this example, the purified peptide expressed by cells or synthetic peptides thereof are fluorescently labelled. To a solid phase is attached a purified antibody. This solid phase is then contacted with sample containing CEA antigen family members to which has

been added fluorescent peptide probe. After binding, excess probe is washed away the amount of bound probe is quantitated. The amount of bound fluorescent probe will be inversely proportional to the amount of antigen in the sample.

In the nucleic acid hybridization method according to the present invention, the nucleic acid probe is conjugated with a label, for example, an enzyme, a fluorophore, a radioisotope, a chemiluminescent compound, etc. In the most general case, the probe would be contacted with the sample and the presence of any hybridizable nucleic acid sequence would be detected by developing in the presence of a chromogenic enzyme substrate, detection of the fluorophore by epifluorescence, by autoradiography of the radioisotopically labelled probe or by chemiluminescence. The detection of hybridizable RNA sequences can be accomplished by (1) a dot blot methodology or (2) an in situ hybridization methodology. Methods for these last two techniques are described by D. Gillespie and J. Bresser, "mRNA Immobilization in Nal: Quick Blots", Biotechniques, 184-192, November/December 1983 and J. Lawrence and R. Singer, "Intracellular Localization of Messenger RNAs for Cytosketal Proteins", Cell, 45, 407-415, May 9, 1986, respectively. The readout systems can be the same as described above, e.g., enzyme labelling, radiolabelling, etc.

As stated above, the invention also relates to the use in medicine of the aforementioned complex of the invention.

The invention further provides a pharmaceutical composition containing as an active ingredient a complex of the invention in the form of a sterile and/or physiologically isotonic aqueous solution.

For parenteral administration, solutions and emulsions containing as an active ingredient the complex of the invention should be sterile and, if appropriate, blood-isotonic.

It is envisaged that the active complex will be administered perorally, parenterally (for example, intramuscularly, intraperitoneally, or intravenously), rectally or locally.

Example 1: Preparation of cDNA in pcE22 which codes for TM2-CEA [CEA-(e)]

Example 1a: RNA Preparation

15

25

Messenger RNA was prepared by the proteinase K extraction method of J. Favolaro, R. Treisman and R. Kamen, Methods in Enzymology, 65, 718, Academic Press, Inc. (1980), followed by oligo dT cellulose chromatography to yield poly A + RNA (3'-polyadenylated eukaryotic RNA containing most mRNA sequences that can be translated into polypeptides). To obtain approximately 100 µg of poly A+ RNA, approximately 3 x 108 cells of transfectant 23.411 (ATCC No. CRL 9731, deposited with the ATCC on June 1, 1988), that expresses TM-1, TM-2, TM-3 and TM-4, Kamarck et al, Proc. Natl. Acad. Sci., USA, 84, 5350-5354, August 1987, were harvested from roller bottles after late logarithmic growth. Cells were lysed by homogenization in an ice-cold solution of 140 mM NaCl, 1.5 mM MgCl₂, 10 mM Tris-HCl, pH 8.0, 0.5% NP40®, 4 mM dithiothreitol and 20 units of placental ribonuclease inhibitor/ml. Sodium deoxycholate was then added to 0.2%. Cytoplasm and nuclei were separated by centrifugation of the homogenate at 12,000xg for 20 minutes. The cytoplasmic fraction was mixed with an equal volume of 0.2 M Tris-HCl, pH 7.8, 25 mM EDTA, 0.3 M NaCl, 2% sodium dodecyl sulfate and 400 µg/ml of proteinase K, incubated for 1 hour at 37 °C, then extracted once with an equal volume of phenol/cholorform (1:1/v:v) solution. Nucleic acids were obtained by ethanol precipitation of the separated aqueous phase. Total RNA was enriched by passage in 0.5 M NaCl, 10 mM Tris-HCl, pH 7.8, 0.1% sarcosyl® through an oligo dT(12-18) cellulose column. After washing, bound RNA was eluted in the same solution without sodium chloride.

5 Example 1b: Reverse Transcription of mRNA

Ten micrograms of poly A + RNA were primed for reverse transcription with oligo dT(12-18) and pdN₆ primers. One hundred microliter reaction was performed for 4 hours at 42 °C with 200 units AMV reverse transcriptase (Life Science, Inc. St. Petersburg, Florida, U.S.A.). The RNA component of the cDNA/mRNA hybrids was replaced with the second complementary strand by treatment with RNase H, E. coli DNA polymerase I and E. coli DNA ligase at 12 °C and 22 °C for 1.5 hours each. Molecular ends were polished by treatment with T4 DNA polymerase. cDNA was phenol/chloroform extracted and purified over a "SEPHADEX® G-50" spun column prepared in 10 mM Tris-HCl, pH 7.8, 1 mM EDTA (TE).

Example 1c: Cloning of pcE22 (plasmid cDNA E22)

Synthetic DNA linkers 5' pCCCGGG 3' 3' GGGCCCTTAA 5'

were attached to the ends of cDNA by blunt end ligation with excess T4 DNA ligase. Excess linkers were removed by chromatography through "SEPHADEX® G-50" (medium) in TE, and by fractionation on 0.8% low melting agarose gel. Based on Northern blot analysis of poly A+ RNA of the 23.411 cell line, the size of the CEA-related mRNA was estimated at 3.6 kb. Therefore, cDNA fragments between 2 and 4 kb were recovered from gel slices and fragments were ethanol precipitated. After resuspension of cDNA in TE, EcoRI-cleaved lambda gt10 arms were added to cDNA at an estimated molar ratio of 1:1. Ligation proceeded at 7 °C for 2 days in the presence of T4 DNA ligase. Aliquots of the ligation reaction were added to commercially-obtained packaging mix (Stratagene, San Diego, California, U.S.A.). Five million phage particles were obtained ofter in vitro packaging and infection of E. coli host NM514.

Example 1d: Screening of Recombinant Library

Five hundred thousand packaged lambda particles were plated on lawns of E. coli NM514 and replicate patterns were lifted onto nitrocellulose sheets as described by W.D. Benton and R.W. Davis, Science 196, 180-182, (1977). Positive phage were selected by hybridization with ³²P-labeled LV7 cDNA insert probe that contained a domain repeated amoung various CEA family members. By multiple rounds of screening. Phage from individual plaques were amplified and titered, and these were used to prepare small quantities of recombinant phage DNA.

20 Example 1e: DNA Manipulation

10

30

50

Phage DNA was prepared according to T. Maniatis, E. Fritsch and J. Sambrook, Molecular Cloning, A Laboratory Manual, Cold Spring Habor, (1982). DNA segments were isolated from low melting agarose gels and inserted for subcloning into Bluescript plasmid vectors (Stratagene, San Diego, California, U.S.A.). DNA sequencing was performed by the dideoxy termination method of F. Sanger, S. Nicklen and A. Coulson, Proc. Natl. Acad. Sci., U.S.A., 74, 5463-5467, (1977). The nucleic acid and translated sequence for cDNA in pcE22 is given hereinabove (TM-2 (CEA-(e)).

Example 2: Preparation of cDNA in pcHT-6 which Partically Codes for TM3-CEA [CEA-(f)]

Example 2a: RNA Preparation

R. Kamen, Methods in Enzymology, 65 718, Academic Press, Inc. (1980), followed by oligo dT cellulose chromatography to yield poly A+ RNA (3'-polyadenylated eukaryotic RNA containing most mRNA sequences that can be translated into polypeptides). To obtain approximately 100 ug of poly A+ RNA, approximately 3 x 10⁸ cells of HT-29 tumor cells (ATCC HTB38) were harvested form roller bottles after late logarithmic growth. Cells were lysed by homogenization in an ice-cold solution of 140 mM NaCl, 1.5 mM MgCl₂, 10 mM Tris-HCl, pH 8.0, 0.5% NP40®, 4 mM dithiothreitol and 20 units of placental ribonuclease inhibitor/ml. Sodium deoxycholate was then added to 0.2%. Cytoplasm and nuclei were separated by centrifugation of the homogenate at 12,000xg for 20 minutes. The cytoplasmic fraction was mixed with an equal volume of 0.2 M Tris-Hcl, pH 7.8, 25 mM EDTA, 0.3 M NaCl, 2% sodium dodecyl sulfate and 400 μg/ml of proteinase K, incubated for 1 hour at 37 °C, then extracted once with an equal volume of phenol/cholorform (1:1/v:v) solution. Nucleic acids were obtained by ethanol precipitation of the separated aqueous phase. Total RNA was enriched by passage in 0.5 M NaCl, 10 mM Tris-HCl, pH 7.8, 0.1% sarcosyl® through an oligo dT(12-18) cellulose column. After washing, bound RNA was eluted in the same solution without sodium chloride.

Example 2b: Reverse Transcription of mRNA

Ten micrograms of HT-29 poly A+ RNA were primed for reverse transcription with oligo dT(12-18) and pdN₆ primers. One hundred microliter reaction was performed for 4 hours at 42 °C with 200 units AMV reverse transcriptase (Life Science, Inc. St. Petersburg, Florida, U.S.A.). The RNA component of the cDNA/mRNA hybrids was replaced with the second complementary strand by treatment with RNase H, E. coli DNA polymerase I and E. coli DNA ligase at 12 °C and 22 °C for 1.5 hours each. Molecular ends were polished by treatment with T4 DNA polymerase. cDNA was phenol/chloroform extracted and purified over a "SEPHADEX® G-50" spun column prepared in 10 mM Tris-HCl, pH 7.8, 1 mM EDTA (TE).

Example 2c: Cloning of pcHT-6 (plasmid cDNA HT-6)

Synthetic DNA linkers 5' pCCCGGG 3'

3' GGGCCCTTAA 5'

were attached to the ends of cDNA by blunt end ligation with excess T4 DNA ligase. Excess linkers were removed by chromatography through "SEPHADEX® G-50" (medium) in TE, and by fractionation on 0.8% low melting agarose gel. Based on Northern blot analysis of poly A + RNA of the HT-29 cell line, the size of the CEA-related mRNA was estimated at 2.2 kb. Therefore, cDNA fragments between 2 and 3 kb were recovered from gel slices and fragments were ethanol precipitated. After resuspension of cDNA in TE, EcoRI-cleaved lambda gt10 arms were added to cDNA at an estimated molar ratio of 1:1. Ligation proceeded at 7 °C for 2 days in the presence of T4 DNA ligase. Aliquots of the ligation reaction were added to commercially-obtained packaging mix (Stratagene, San Diego, California, U.S.A.). Five million phage particles were obtained ofter in vitro packaging and infection of E. coli host NM514.

5 Example 2d: Screening of Recombinant Library

Five hundred thousand packaged lambda particles were plated on lawns of E. coli NM514 and replicate patterns were lifted onto nitrocellulose sheets as described by W.D. Benton and R.W. Davis, Science, 196, 180-182, (1977). Positive phage were selected by hybridization with ³²P-labeled LV7 cDNA insert probe that contained a domain repeated amoung various CEA family members. By multiple rounds of screening. Phage from individual plaques were amplified and titered, and these were used to prepare small quantities of recombinant phage DNA.

Example 2e: DNA Manipulation

Phage DNA was prepared according to T. Maniatis, E. Fritsch and J. Sambrook, Molecular Cloning, A Laboratory Manual, Cold Spring Habor, (1982). DNA segments were isolated from low melting agarose gels and inserted for subcloning into Bluescript plasmid vectors (Stratagene, San Diego, California, U.S.A.). DNA sequencing was performed by the dideoxy termination method of F. Sanger, S. Nicklen and A. Coulson, Proc. Natl. Acad. Sci., U.S.A., 74, 5463-5467, (1977). The nucleic acid and translated sequence for cDNA in HT-6 not complete at the 5' end of its coding region, but the nucleotide sequence and restriction map of the HT-6 insert indicates that it is related to nucleic acid sequences of cDNA clones coding for CEA-(c) and CEA-(e). The nucleotide sequence of HT-6 insert differs from these clones at only nucleotide position 1463

to 1515 and 1676 to 2429 of the CEA-(c) cDNA. It is inferred from this result that the pcHT-6 insert is a partial coding sequence for CEA-(f) and the presumed nucleic acid and translated sequence of CEA-(f) is given hereinabove (TM-3 (CEA-(f)).

Example 3: Preparation of cDNA which codes for TM4-CEA [CEA-(g)]

Example 3a: RNA Preparation

Messenger RNA is prepared by the proteinase K extraction method of J. Favolaro, R. Treisman and R. Kamen, Methos in Enzymology, 65, 718, Academic Press, Inc. (1980), followed by oligo dT cellulose chromatography to yield poly A + RNA (3'-polyadenylated eukaryotic RNA containing most mRNA sequences that can be translated into polypeptides). To obtain approximately 100 ug of poly A + RNA, approximately 3 x 10⁸ cells of transfectant 23.411 or tumor cell line HT-29 (ATCC HTB 38) are harvested from roller bottles after late logarithmic growth. Cells are lysed by homogenization in an ice-cold solution of 140 mM NaCl, 1.5 mM MgCl₂, 10 mM Tris-HCl, pH 8.0, 0.5% NP40®, 4 mM dithiothreitol and 20 units of placental ribonuclease inhibitor/ml. Sodium deoxycholate was then added to 0.2%. Cytoplasm and nuclei are separated by centrifugation of the homogenate at 12,000xg for 20 minutes. The cytoplasmic fraction is mixed with an equal volume of 0.2 M Tris-Hcl, pH 7.8, 25 mM EDTA, 0.3 M NaCl, 2% sodium dodecyl sulfate and 400 μg/ml of proteinase K, incubated for 1 hour at 37°C, then extracted once with an equal volume of phenol/cholorform (1:1/v:v) solution. Nucleic acids are obtained by ethanol precipitation of the separated aqueous phase. Total RNA is enriched by passage in 0.5 M NaCl, 10 mM Tris-HCl, pH 7.8, 0.1% sarcosyl through an oligo dT(12-18) cellulose column. After washing, bound RNA is eluted in the same solution without sodium chloride.

Example 3b: Reverse Transcription of mRNA

Ten micrograms of 23.411 or HT 29 poly A+ RNA are primed for reverse transcription with oligo dT(12-18) and pdN₆ primers. One hundred microliter reaction was performed for 4 hours at 42 °C with 200 units AMV reverse transcriptase (Life Science, Inc. St. Petersburg, Florida, U.S.A.). The RNA component of the cDNA/mRNA hybrids is replaced with the second complementary strand by treatment with RNase H, E. coli DNA polymerase I and E. coli DNA ligase at 12 °C and 22 °C for 1.5 hours each. Molecular ends are polished by treatment with T4 DNA polymerase. cDNA is phenol/chloroform extracted and purified over a "SEPHADEX® G-50" spun column prepared in 10 mM Tris-HCl, pH 7.8, 1 mM EDTA (TE).

Example 3c: Cloning of cDNA for CEA-(g)

10

Synthetic DNA linkers 5' pCCCGGG 3' 3' GGGCCCTTAA 5'

are attached to the ends of cDNA by blunt end ligation with excess T4 DNA ligase. Excess linkers are removed by chromatography through "SEPHADEX® G-50" (medium) in TE, and by fractionation on 0.8% low melting agarose gel. Based on Northern blot analysis of poly A+ RNA of the 23.411 and HT-29 cell lines, the size of the CEA-related mRNA is estimated at 1.7 kb. Therefore, cDNA fragments between 1 and 2 kb are recovered from gel slices and fragments are ethanol precipitated. After resuspension of cDNA in TE, EcoRI-cleaved lambda gt10 arms are added to cDNA at an estimated molar ratio of 1:1. Ligation proceeds at 7 °C for 2 days in the presence of T4 DNA ligase. Aliquots of the ligation reaction are added to commercially-obtained packaging mix (Stratagene, San Diego, California, U.S.A.). Phage particles are obtained after in vitro packaging and infection of E. coli host NM514.

Example 3d: Screening of Recombinant Library

Five hundred thousand to one million packaged lambda particles are plated on lawns of E. coli NM514 and replicate patterns are lifted onto nitrocellulose sheets as described by W.D. Benton and R.W. Davis, Science, 196, 180-182, (1977). Positive phage are selected by hybridization with ³²P-labeled LV7 cDNA insert probe that contained a domain repeated amoung various CEA family members. By this selection method, positive phage are obtained after multiple rounds of screening. Phage from individual plaques are amplified and titered, and these are used to prepare small quantities of recombinant phage DNA.

Example 3e: DNA Manipulation

Phage DNA is prepared according to T. Maniatis, E. Fritsch and J. Sambrook, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor, (1982). DNA segments are isolated from low melting agarose gels and inserted for subcloning into Bluescript plasmid vectors (Stratagene, San Diego, California, U.S.A.). DNA sequencing is performed by the dideoxy termination method of F. Sanger, S. Nicklen and A. Coulson, Proc. Natl. Acad. Sci., U.S.A., 74, 5463-5467, (1977). The nucleotide and translated sequence for a cDNA coding for CEA-(g) is given hereinabove (TM-4 (CEA-(g)).

Example 4: Screening of a KG-1 cDNA Library with 32P-labelled CEA Probe, LV7 (CEA-(A))

A segment of cDNA coding for a portion of carcinoembryonic antigen [LV7 or CEA-(a)] was radiolabelled by random priming and used to detect homologous sequences on filter replicas of a commercial cDNA library prepared from KG-1 cells in bacteriophage vector λ gt11 (Clontech Laboratories, Inc., Palo Alto, CA., U.S.A.). Hybridizations were performed at 68 °C in 2xSSSPE (1xSSPE - 0.15 M NaCl, 0.01 M sodium phosphate and 1 mM EDTA, pH 7), 5x Denhardt's solution and 100 μg of denatured salmon sperm DNA per ml, and post-hybridization washes were in 0.2xSSC, 0.25% sodium dodecyl sulfate.

Positive phage were picked, rescreened to homogeneity, and amplified for production of DNA. cDNA inserts were excised from phage DNA with EcoRI endonuclease and subcloned into the EcoRI site of the plasmid vector pBluescript KS. DNA sequencing on double-stranded DNA was by the method of Sanger et al, supra. The sequences of two different inserts from the KG-1 cDNA library are shown below:

55

45

pcKGCEA]	
----------	--

	1	acagcacagctgacagccgtactcaggaagcttctggatcctaggcttatctccacagag	60
5	61	gagaacacacaagcagcagagaccatggggcccctctcagcccctccct	120
	121	atcacttggaaggggtcctgctcacagcatcacttttaaacttctggaatccgcccaca IleThrTrpLysGlyValLeuLeuThrAlaSerLeuLeuAsnPheTrpAsnProProThr	180
10	181	actgcccaagtcacgattgaagcccagccacccaaagtttctgaggggaaggatgttctt ThrAlaGlnValThrIleGluAlaGlnProProLysValSerGluGlyLysAspValLeu	240
	241	ctacttgtccacaatttgccccagaatcttgctggctacatttggtacaaagggcaaatg LeuLeuValHisAsnLeuProGlnAsnLeuAlaGlyTyrIleTrpTyrLysGlyGlnMet	300
15	301	acatacgtctaccattacattacatcatatgtagtagacgqtcaaagaattatatatggg ThrTyrValTyrHisTyrIleThrSerTyrValValAspGlyGlnArgIleIleTyrGly	360
	361	cctgcatacagtggaagagaaagag ta tattccaatgcatccctgctgätccagaatgtc ProAlaTyrSerGlyArgGluArgValTyrSerAsnAlaSerLeuLeuIleGlnAsnVal	420
20	421	acgcaggaggatgcaggatcctacaccttacacatcataaagcgacgcgatgggactgga ThrGlnGluAspAlaGlySerTyrThrLeuHisIleIleLysArgArgAspGlyThrGly	480
	481	ggagtaactggacatttcaccttcaccttacacctggagactcccaagccctccatctcc GlyValThrGlyHisPheThrPheThrLeuHisLeuGluThrProLysProSerIleSer	540
25	541	agcagcaacttaaatcccagggaggccatggaggctgtgatcttaacctgtgatcctgcg SerSerAsnLeuAsnProArgGluAlaMetGluAlaValIleLeuThrCysAspProAla	600
	601	actccagccgcaagctaccagtggtggatgaatggtcagagcctccctatgactcacagg ThrProAlaAlaSerTyrGlnTrpTrpMetAsnGlyGlnSerLeuProMetThrHisArg	660
30	0 61	ttgcagctgtccaaaaccaacaggaccctctttatattttggtgtcacaaagtatattgca LeuGlnLeuSerLysThrAsnArgThrLeuPheIlePheGlyValThrLysTyrIleAla	720
	721	ggaccctatgaatgtgaaatacggaacccagtgagtgccagccgcagtgacccagtcacc GlyProTyrGluCysGluIleArgAsnProValSerAlaSerArgSerAspProValThr	780
35	781	ctgaatctcctcccaaagctgtccaagccctacatcacaatcaacaacttaaaccccaga LeuAsnLeuLeuProLysLeuSerLysProTyrIleThrIleAsnAsnLeuAsnProArg	840
	841	gagaataaggatgtcttaaccttcacctgtgaacctaagagtgagaactacacctacatt GluAsnLysAspValLeuThrPheThrCysGluProLysSerGluAsnTyrThrTyrIle	900
40	901	tggtggctaaatggtcagagcctccctgtcagtcccagggtaaagcgacccattgaaaac TrpTrpLeuAsnGlyGlnSerLeuProValSerProArgValLysArgProIleGluAsn	960
	961	aggatcctcattctacccaatgtcacgagaaatgaaacaggaccttatcaatgtgaaata ArgIleLeuIleLeuProAsnValThrArgAsnGluThrGlyProTyrGlnCysGluIle	1020
45	1021	cgggaccgatatggtggcatccgcagtgacccagtcaccctgaatgtcctctatggtcca ArgAspArgTyrGlyGlyIleArgSerAspProValThrLeuAsnValLeuTyrGlyPro	1080

	1081	gacctccccagcatttacccttcattcacctattaccgttcaggagaaaacctctacttt AspLeuProSerIleTyrProSerPheThrTyrTyrArgSerGlyGluAsnLeuTyrPhe	1140
5	1141	tcctgcttcggtgagtctaacccacgggcacaatattcttggacaattaatgggaagttt SerCysPheGlyGluSerAsnProArgAlaGlnTyrSerTrpThrIleAsnGlyLysPhe	1200
	1201	cagctatcaggacaaaagctctctatcccccaaataactacaaagcatagtgggctctat GlnLeuSerGlyGlnLysLeuSerIleProGlnIleThrThrLysHisSerGlyLeuTyr	1260
10	1261	gcttgctctgt&cgtaactcagccactggcaaggaaagctccaaatccatcacagtcaaa AlaCysSerValArgAsnSerAlaThrGlyLysGluSerSerLysSerIleThrValLys	1320
	1321	gtctctgactggatattaccctgaattctactagttcctccaattccattttctcccatg ValSerAspTrpIleLeuProEnd	1380
15	1-11 1-1 1501 1561	gaatcacgaagagcaagacccactctgttccagaagccctataatctggaggtggacaac tcgatgtaaatttcatgggaaaacccttgtacctgacatgtgagccactcagaactcacc aaaatgttcgacaccataacaacagctactcaaactgtaaaccaggataagaagttgatg acttcacactgtggacagtttttcaaagatgtcataacaagactccccatcatgacaagg	1440 1500 1560 1620 1680
20	1621 1681 1741 1801 1861 1921 1981	ctccacctctactgtctgctcatgcctgctctttcacttggcaggataatgcagtcat tagaatttcacatgtagtagcttctgagggtaacaacagagtgtcagatatgtcatctca acctcaaacttttacgtaacatctcagggaaatgtggctctctccatcttgcatacaggg ctcccaatagaaatgaacacagagatattgcctgtgtgtttgcagagaagatggtttcta taaagagtaggaaagctgaaattatagtagagtctcctttaaatgcacattgtgtggatg gctctcaccatttcctaagagatacagtgtaaaaacgtgacagtaatactgattctagca gaataaacatgtaccacatttgcaaaaaa	1740 1800 1860 1920 1980 2010
25	•	pcRGCEA2:	
	1	gggtggatcctaggctcatctccataggggagaacacacatacagcagagaccatggga MetGly	59
30	60	ccctctcagcccctccctgcactcagcacatcacctggaaggggctcctgctcacagca ProLeuSerAlaProProCysThrGlnHisIleThrTrpLysGlyLeuLeuLeuThrAla	119
	120	tcacttttaaacttctggaacctgcccaccactgcccaagtaataattgaagcccagcca SerLeuLeyAsnPheTrpAsnLeuProThrThrAlaGlnValIleIleGluAlaGlnPro	179
35	180	cccaaagtttctgaggggaaggatgttcttctacttgtccacaatttgccccagaatctt ProLysValSerGluGlyLysAspValLeuLeuLeuValHisAsnLeuProGlnAsnLeu	239
	240	actggctacatctggtacaaagggcaaatgacggacctctaccattacattacatcatat ThrGlyTyrIleTrpTyrLysGlyGlnMetThrAspLeuTyrHisTyrIleThrSerTyr	299
40	300	gtagtagacggtcaaattatatatgggcctgcctacagtggacgagaaacagtatattcc ValValAspGlyGlnIleIleTyrGlyProAlaTyrSerGlyArgGluThrValTyrSer	359
	360	aatgcatccctgctgatccagaatgtcacacaggaggatgcaggatcctacaccttacac AsnAlaSerLeuLeuIleGlnAsnValThrGlnGluAspAlaGlySerTyrThrLeuHis	419
45	420	atcataaagcgaggcgatgggactggaggagtaactggatatttcactgtcaccttatac IleIleLysArgGlyAspGlyThrGlyGlyValThrGlyTyrPheThrValThrLeuTyr	479
	480	tcggagactcccaagcgctccatctccagcagcaacttaaaccccagggaggtcatggag SerGluThrProLysArgSerIleSerSerSerAsnLeuAsnProArgGluValMetGlu	539

	540	gctgtgcgcttaatctgtgatcctgagactccggatgcaagctacctgtggttgctgaat AlaValArgLeuIleCysAspProGluThrProAspAlaSerTyrLeuTrpLeuLeuAsn	599
5	600	ggtcagaacctccctatgactcacaggttgcagctgtccaaaaccaacaggaccctctat GlyGlnAsnLeuProMetThrHisArgLeuGlnLeuSerLysThrAsnArgThrLeuTyr	659
	660	ctatttggtgtcacaaagtatattgcagggccctatgaatgtgaaatacggaggggagtg LeuPheGlyValThrLysTyrIleAlaGlyProTyrGluCysGluIleArgArgGlyVal	719
10	720	agtgccagccgcagtgacccagtcaccctgaatctcctcccgaagctgcccatgccttac SerAlaSerArgSerAspProValThrLeuAsnLeuLeuProLysLeuProMetProTyr	779
	780	atcaccatcaacaacttaaaccccagggagaagaaggatgtgttagccttcacctgtgaa IleThrIleAsnAsnLeuAsnProArgGluLysLysAspValLeuAlaPheThrCysGlu	839
15	840	cctaagagtcggaactacacctacatttggtggctaaatggtcagagcctcccggtcagt ProLysSerArgAsnTyrThrTyrIleTrpTrpLeuAsnGlyGlnSerLeuProValSer	899
	900	ccgagggtaaagcgacccattgaaaacaggatactcattctacccagtgtcacgagaaat ProArgValLysArgProIleGluAsnArgIleLeuIleLeuProSerValThrArgAsn	959
20	960	gaaacaggaccctatcaatgtgaaatacgggaccgatatggtggcatccgcagtaaccca GluThrGlyProTyrGlnCysGluIleArgAspArgTyrGlyGlyIleArgSerAsnPro	1019
	1020	gtcaccctgaatgtcctctatggtccagacctccccagaatttacccttacttcacctat ValThrLeuAsnValLeuTyrGlyProAspLeuProArgIleTyrProTyrPheThrTyr	1079
25	1080	taccgttcaggagaaaacctcgacttgtcctgctttgcggactctaacccaccggcagag TyrArgSerGlyGluAsnLeuAspLeuSerCysPheAlaAspSerAsnProProAlaGlu	1139
	1140	tatttttggacaattaatgggaagtttcagctatcaggacaaaagctctttatcccccaa TyrPheTrpThrIleAsnGlyLysPheGlnLeuSerGlyGlnLysLeuPheIleProGln	1199
30	1 ,0	attactacaaatcatagcgggctctatgcttgctctgttcgtaactcagccactggcaag IleThrThrAsnHisSerGlybeuTyrAlaCysSerValArgAsnSerAlaThrGlyLys	1259
	1260	gaaateteeaateeatgatagteaaagtetetggteeetgeeatggaaaceagaeaga GluIleSerLysSerMetIleValLysValSerGlyProCysHisGlyAsnGlnThrGlu	1319
35	1320	tctcattaatggctgccacaatagagacactgagaaaaagaacaggttgataccttcatg SerHisEnd	1379
•	1380 1440 1500 1560	aaattcaagacaaagaagaaaaaggctcaatgttattggactaaataatcaaaaggataa tgttttcataatttttattggaaaatgtgctgattcttggaatgttttattctccagatt tatgaactttttttttcttcagcaattggtaaagtatacttttgtaaacaaaattgaaaca tttgcttttgctctctatctgagtgcccccc 1591	1439 1499 1559

It will be appreciated that the instant specification and claims are set forth by way of illustration and not limitation and that various modifications and changes may be made without departing from the scope of the present invention.

Claims

1. A nucleic acid comprising a base sequence which codes for a peptide sequence, characterized in that the group nucleic acid is a DNA selected from the following group of five sequences:

50

40

	10	30	50
	CAGCCGTGCTCGAAGCGTTC	CTGGAGCCCAAGCTCTCCTC	CACAGGTGAAGACAGGGCCA
5			
	70 	90	110
			AGAGTGCGTGTACCCTGGCAG ArgvalArgvalProTrpGln
10	•		•
	130	150	170
15	GGGCTTCTGCTCACAGCCTCGlyLeuLeuLeuThrAlaSc	CACTTCTAACCTTCTGGAAC erLeuLeuThrPheTrpAsn	CCGCCCACCACTGCCCAGCTC ProProThrThrAlaGlnLeu
	190	210	230
20	ACTACTGAATCCATGCCAT ThrThrGluSerMetProP	TCAATGTTGCAGAGGGGAAC heAsnValAlaGluGlyLys	GAGGTTCTTCTCCTTGTCCAC GluValLeuLeuLeuValHis
	250	270	290
25	AATCTGCCCCAGCAACTTT AsnLeuProGlnGlnLeuP	TTGGCTACAGCTGGTACAAA heGlyTyrSerTrpTyrLys	GGGGAAAGAGTGGATGGCAAC GlyGluArgValAspGlyAsn
	310	330	350
30	CGTCAAATTGTAGGATATG ArgGlnIleValGlyTyrA	CAATAGGAACTCAACAAGCT lalleGlyThrGlnGlnAla	TACCCCAGGGCCCGCAAACAGC ThrProGlyProAlaAsnSer
	370	390	410 .
35	GGTCGAGAGACAATATACC GlyArgGluThrIleTyrF	CCAATGCATCCCTGCTGAT(ProAsnAlaSerieuLeuIl	CCAGAACGTCACCCAGAATGAC
40 ₁	430	450	470
	ACAGGATTCTACACCCTAGThrGlyPheTyrThrLeu	CAAGTCATAAAGTCAGATCT GlnValileLysSerAspLe	TGTGAATGAAGAAGCAACTGGA uValAsnGluGluAlaThrGly
45			
50			

	490	510	530
5	CAGTTCCATGTATACCCGC GlnPheHisValTyrPro	GAGCTGCCCAAGCCCTCCATC GluLeuProLysProSerIle	TCCAGCAACAACTCCAACCCT SerSerAsnAsnSerAsnPro
	550	570	590
10	GTGGAGGACAAGGATGCT ValGluAspLysAspAla	GTGGCCTTCACCTGTGAACCT ValalaPheThrCysGluPro	GAGACTCAGGACACAACCTAC GluThrGlnAspThrThrTyr
	610	630	650
15	CTGTGGTGGATAAACAAT LeuTrpTrpIleAsnAsn	CAGAGCCTCCCGGTCAGTCCC	AGGCTGCAGCTGTCCAATGGC ArgLeuGlnLeuSerAsnGly
20	670	690	710
	AACAGGACCCTCACTCTA AsnArgThrLeuThrLeu	ACTCAGTGTCACAAGGAATGA uLeuServalThrArgAsnAs	CACAGGACCCTATGAGTGTGAA OThrGlyProTyrGluCysGlu
25	730	750	770
	ATACAGAACCCAGTGAG IleGlnAsnProValSe	TGCGAACCGCAGTGACCCAGT rAlaAsnArgSerAspProVa	CACCTTGAATGTCACCTATGGC lThrLeuAsnValThrTyrGly
30	790	810	830
35	CCGGACACCCCCACCAT ProAspThr?roThrIl	TTCCCCTTCAGACACCTATTA eSerProSerAspThrTyrTy	CCGTCCAGGGGCAAACCTCAGC rArgProGlyAlaAsnLeuSer
	850	870	890
40	CTCTCCTGCTATGCAGC LeuSerCysTyrAlaAl	CCTCTAACCCACCTGCACAGTA LaSerAsnProProAlaGlnTy	ACTCCTGGCTTATCAATGGAACA
	910	930	950
45	TTCCAGCAAAGCACACA PheGlnGlnSerThrG	AAGAGCTCTTTATCCCTAACA lnGluLeuPheIleProAsnI	TCACTGTGAATAATAGTGGATCC leThtValAsnAsnSetGlySet
	970	990	1010
50	サルサルCCTGCCACGCCA	ATAACTCAGTCACTGGCTGCA snasnsetValThtGlyCysa	ACAGGACCACAGTCAAGACGATC SNArgThrThrValLysThrIle

	1030	1050	1070		
5	ATAGTCACTGATAATGCTC IlevalThrAspAsnAlaL	TACCACAAGAAAATGGCCI euProGlnGluAsnGlyLe	CTCACCTGGGGCCATTGCTGGC userProGlyAlaIleAlaGly		
	1090	1110	1130		
10			CAGTAGCCCTGGCATGTTTTCTG		
	1150	1170	1190		
15			ATCTCACAGAGCACAAACCCTCA spleuThrGluHisLysProSer		
	1210	1230	1250		
20			CTAACAAGATGAATGAAGTTACT roAsnLysMetAsnGluValThr		
	1270	1290	1310		
25	TATTCTACCCTGAACTTTGAAGCCCAGCAACCCACACAACCAAC				
30	1330	1350	1370		
30	CTAACAGCCACAGAAATAATTTATTCAGAAGTAAAAAAGCAGTAATGAAACCTGTCCTGC LeuThrAlaThrGluIleIleTyrSerGluValLysLysGln				
35	1390	1410	1430		
	TCACTGCAGTGCTGATGTATTTCAAGTCTCTCACCCTCATCACTAGGAGATTCCTTTCCC				
40	1450	1470	1490		
40	CTGTAGGGTAGAGGGGTC	GGGGACAGAAACAACTTTC	TCCTACTCTTCCTTCCTAATAGGC		
45	1510	1530	1550		
45	ATCTCCAGGCTGCCTGG	CACTGCCCCTCTCTCAGT	GTCAATAGATGAAAGTACATTGGG		
	1570	1590	1610		
50	AGTCTGTAGGAAACCCA	ACCTTCTTGTCATTGAAAT	TTGGCAAAGCTGACTTTGGGAAAG		

	1630	1650	1670
5	AGGGACCAGAACTTCCCC	TCCCTTCCCCTTTTCCCAAC	CTGGACTTGTTTTAAACTTGCC
	1690	1710	1730
10	TGTTCAGAGCACTCATTC	CTTCCCACCCCCAGTCCTGT	CCTATCACTCTAATTCGGATTT
	1750	1770	1790
15	GCCATAGCCTTGAGGTTA	TGTCCTTTTCCATTAAGTAC	ATGTGCCAGGAAACAGCGAGAG
	1810	1830	1850
20	AGAGAAAGTAAACGGCAG	TAATGCTTCTCCTATTTCTC	CAAAGCCTTGTGTGAACTAGCA
	1870	1890	1910
25	AAGAGAAGAAATCAAAT	'ATATAACCAATAGTGAAATG	CCACAGGTTTGTCCACTGTCAG
	1930	1950	1970
	GGTTGTCTACCTGTAGGA	TCAGGGTCTAAGCACCTTGG	TGCTTAGCTAGAATACCACCTA
30	1990	2010	2030
	ATCCTTCTGCAAGCCTC	STCTTCAGAGAACCCACTAGA	AGCAACTAGGAAAATCACTTG
35	2050	2070	2090
	CCAAAATCCAAGGCAATT	CCTGATGGAAAATGCAAAA	GCACATATATGTTTAATATCTT
40	2110	2130	2150
	TATGGGCTCTGTTCAAGG	GCAGTGCTGAGAGGGAGGGG	TTATAGCTTCAGGAGGGAACCAG
45	2170	2190	2210
	CTTCTGATAAAGACAAT	CTGCTAGGÄACTTGGGAAAGG	GAATCAGAGAGCTGCCCTTCAGC
50			

- -

	2230	2250	2270		
	GATTATTTAAATTGTTAAA	GAATACACAATTTGGGGTA	TTGGGATTTTTCTCCTTTTCTC		
5	2290	2310	2330		
	TGAGACATTCCACCATTT	AATTTTTGTAACTGCTTAT	TTATGTGAAAAGGGTIATTTT	. . .	
10	2350	2370	2390		
	ACTTAGCTTAGCTATGTCA	GCCAATCCGATTGCCTTAG	GTGAAAGAAACCACCGAAATCC		
15	2410 -	2430	. 2450		
	CTCAGGTCCCTTGGTCAGC	AGCCTCTCAAGATTTTTT	TGTCAGAGGCTCCAAATAGAAA		
20	2470	2490	2510		
	ATAAGAAAAGGTTTTCTT	CATTCATGGCTAGAGCTAGA	ATTTAACTCAGTTTCTAGGCACC		
25	2530	2550	2570		
	TCAGACCAATCATCAACT	ACCATTCTATTCCATGTTT	GCACCTGTGCATTTTCTGTTTGC		
30	2590	2610	2630		
	CCCCATTCACTTTGTCAGGAAACCTTGGCCTCTGCTAAGGTGTATTTGGTCCTTGAGAAG				
35	2650	2670	2690		
55	TGGGAGCACCCTACAGGGACACTATCACTCATGCTGGTGGCATTGTTTACAGCTAGAAAG				
	2710	2730	2750		
40	CTGCACTGGTGCTAATGC	CCCTTGGGAAATGGGGCTG	TGAGGAGGAGGATTATAACTTAG	3	
	2770	2790	2810		
45	GCCTAGCCTCTTTTAACA	GCCTCTGAAATTTATCTT	TCTTCTATGGGGTCTATAAATG	r	
	2830	2850	2870		
50	ΑΤΟΤΤΑΤΑΤΆΛΛΑΛΑΟΟ	ANGGACAGGAGG <mark>AAGACAG</mark>	GCAAATGTACTTCTCACCCAGTC	T	

	2890	2910	2930
	TCTACACAGATGGAATCT	CTTTGGGGCTAAGAGAAAGGT	TTTATTCTATATTGCTTACCT
5			•
	2950	2970	2990
	GATCTCATGTTAGGCCTA	AGAGGCTTTCTCCAGGAGGA	TTAGCTTGGAGTTCTCTATACT
10			
	3010	3030	3050
	CAGGTACCTCTTTCAGGG	TTTTCTAACCCTGACACGGA	CTGTGCATACTTTCCCTCATCC
15	3070	3090	3110
	•	•	
20	ATGCTGTGCTGTTATT	TTAATTTTTCCTGGCTAAGAT	CATGTCTGAATTATGTATGAAA
20	3130	3150	3170
	ATTATTCTATGTTTTA1	PAATAAAATAATATATCAGA	CATCGAAAAAAAA
25			
30			
35			
40			
4-			
45			
50			

(2)

5	10	30	50
	CAGCCGTGCTCGAAGCGTT	CCTGGAGCCCAAGCTCTCCT	CCACAGGTGAAGACAGGGCCA
10`	·		110
			AGAGTGCGTGTACCCTGGCAG ArgValArgValProTrpGln
15	130	150	170
			CCCGCCCACCACTGCCCAGCTC nProProThrThrAlaGlnLeu
20	190	210	230
25			GGAGGTTCTTCTCCTTGTCCAC GGluValLeuLeuLeuValHis
	250	270	290
30			AGGGGAAAGAGTGGATGGCAAC sGlyGluArgValAspGlyAsn
	310	330	350
35	CGTCAAATTGTAGGATATC ArgGlnIleValGlyTyrA	CAATAGGAACTCAACAAGC	TACCCCAGGGCCCGCAAACAGC TTTTCCGTYPTOAlaAsnSet
	370	390	410
40			CCAGAACGTCACCCAGAATGAC eGlnAsnValThrGlnAsnAsp
45			
50			

	430	450	470
5	ACAGGATTCTACACCCTAC	AAGTCATAAAGTCAGATCTTC	TGAATGAAGAAGCAACTGGA ValAsnGluGluAlaThrGly
	490	510	530
10		GAGCTGCCCAAGCCCTCCATC GluLeuProLysProSerIle	
	550	. 570	590
15		GTGGCCTTCACCTGTGAACCT ValAlaPheThrCysGluPro	
	610	630	650
20	CTGTGGTGGATAAACAAT LeuTrpTrpIleAsnAsn	CAGAGCCTCCCGGTCAGTCCC GlnSerLeuProValSerPro	AGGCTGCAGCTGTCCAATGGC ArgLeuGlnLeuSerAsnGly
25	670	690	710
			ACAGGACCCTATGAGTGTGAA ThrGlyProTyrGluCysGlu
30	730	750	770
	- · · - ·		ACCTTGAATGTCACCTATGGC ThrLeuAsnValThrTyrGly
35	790	810	830
40	CCGGACACCCCCACCATT ProAspThrProThrIle		CGTCCAGGGGCAAACCTCAGC ArgProGlyAlaAsnLeuSer
45			
50			

_-

	850	870	890
5			TTCCTGGCTTATCAATGGAACA SerTrpLeuIleAsnGlyThr
	910	930	950
10			CACTGTGAATAATAGTGGATCC eThrValAsnAsnSerGlySer
	970	990	1010
15			CAGGACCACAGTCAAGACGATC nargThrThrValLysThrIle
20	1030	1050	1070
			AATCAAAGCCAGCAAGACCACA nIleLysAlaSerLysThrThr
25	1090	1110	1130
			CACAAATGACACTGGAATCTCC rThrAsnAspThrGlyIleSer
30	1150	1170	1190
35			GGAGAGGATGAAGCTGTCCCAG rGluArgMetLysLeuSerGln
	1210	1230	1250
40			AGGATGCTGGGACGTATTGGTGT LUAspAlaGlyThrTyrTrpCys
45			
-70			
50			

	1270	1290	1310		
5			CATCATGCTGAACGTAAACTAT DIleMetLeuAsnValAsnTyr		
	1330	1350	1370		
10			CATTGCTGGCATTGTGATTGGA alleAlaGlyIleValIleGly		
	1390	1410	1430		
15			ATGTTTTCTGCATTTCGGGAAG aCysPheLeuHisPheGlyLys		
20	1450	1470	1490		
20	ACCGGCAGCTCAGGACCACTCCAATGACCCACCTAACAAGATGAATGA				
25	1510	1530	1550		
	TACCCTGAACTTTGAAGO	CCAGCAACCCACACAACCAA	CTTCAGCCTCCCCATCCCTAAC		
30	1570	1590	1610		
	AGCCACAGAAATAATTTA	ATTCAGAAGTAAAAAGCAGT	AATGAAACCTGAAAAAAAAAAA		
35	1630				
40					
45					
.3					
50					
50					

GGTCGAGAGACATATACCCCAATGCATCCCTGCTGATCCAGAACGTCACCCAGAATGACGlyArgGluThrIleTyrProAsnAlaSerLeuLeuIleGlnAsnValThrGlnAsnAsp

	1030	1050	1070		
5	ATAGTCACTGATAATGCTC IleValThrAspAsnAlaL	TACCACAAGAAAATGGCCT euProGlnGluAsnGlyLe	CTCACCTGGGGCCATTGCTGGC uSerProGlyAlaIleAlaGly	,	
	1090	1110	1130		
10			AGTAGCCCTGGCATGTTTTCTC		
	1150	1170	1190		
15	CATTTCGGGAAGACCGGCA HisPheGlyLysThrGlyS		SACCCACCTAACAAGATGAATG	Λ	
	1210	1230	1250		
20	AGTTACTTATTCTACCCTC	SAACTTTGAAGCCCAGCAA(CCACACAACCAACTTCAGCCT	C	
	1270	1290	1310		
25	CCCATCCCTAACAGCCACAGAAATAATTTATTCAGAAGTAAAAAAGCAGTAATGAAACCT				
	1330		·		
30	GAAAAAAAAAAAAAA	A			
35					
40					
45					
50					

(4)

5	1	acagcacagctgacagccgtactcaggaagcttctggatcctaggcttatctccacagag	60
	61	gagaacacacagcagcagagaccatggggcccctctcagcccctccct	120
10	1.21	atcacttggaaggggtcctgctcacagcatcacttttaaacttctggaatccgcccaca IleThrTrpLysGlyValLeuLeuThrAlaSerLeuLeuAsnPheTrpAsnProProThr	1:80
,,	181	actgcccaagtcacgattgaagcccagccacccaaagtttctgaggggaaggatgttctt ThrAlaGlnValThrIleGluAlaGlnProProLysValSerGluGlyLysAspValLeu	240
15	241	ctacttgtccacaatttgccccagaatcttgctggctacatttggtacaaagggcaaatg LeuLeuValHisAsnLeuProGlnAsnLeuAlaGlyTyrIleTrpTyrLysGlyGlnMet	300
	301	acatacgtctaccattacattacatcatatgtagtagacggtcaaagaattatatatggg ThrTyrValTyrHisTyrIleThrSerTyrValValAspGlyGlnArgIleIleTyrGly	360
20	361	cctgcatacagtggaagagaaagagtatattccaatgcatccctgctgatccagaatgtc ProAlaTyrSerGlyArgGluArgValTyrSerAsnAlaSerLeuLeuIleGlnAsnVal	420
20	.421.	acgcaggaggatgcaggatcctacaccttacacatcataaagcgacgcgatgggactgga ThrGlnGluAspAlaGlySerTyrThrLeuHisIleIleLysArgArgAspGlyThrGly	480
05	481	ggagtaactggacatttcaccttcaccttacacctggagactcccaagccctccatctcc GlyValThrGlyHisPheThrPheThrLeuHisLeuGluThrProLysProSerIleSer	540
25	541	agcagcaacttaaatcccagggaggccatggaggctgtgatcttaacctgtgatcctgcg SerSerAsnLeuAsnProArgGluAlaMetGluAlaValIleLeuThrCysAspProAla	600
	601	actccagccgcaagctaccagtggtggatgaatggtcagagcctccctatgactcacagg ThrProAlaAlaSerTyrGlnTrpTrpMetAsnGlyGlnSerLeuProMetThrHisArg	660
30	661	ttgcagctgtccaaaaccaacaggaccctctttatattttggtgtcacaaagtatattgca LeuGlnLeuSerLysThrAsnArgThrLeuPheIlePheGlyValThrLysTyrIleAla	720
	721	ggaccctatgaatgtgaaatacggaacccagtgagtgccagccgcagtgacccagtcacc GlyProTyrGluCysGluIleArgAsnProValSerAlaSerArgSerAspProValThr	780
35	781	ctgaatctcctcccaaagctgtccaagccctacatcacaatcaacaacttaaaccccaga LeuAsnLeuLeuProLysLeuSerLysProTyrIleThrIleAsnAsnLeuAsnProArg	840
	841	gagaataaggatgtcttaaccttcacctgtgaacctaagagtgagaactacacctacatt GluAsnLysAspValLeuThrPheThrCysGluProLysSerGluAsnTyrThrTyrIle	900
40	901	tggtggctaaatggtcagagcctccctgtcagtcccagggtaaagcgacccattgaaaac TrpTrpLeuAsnGlyGlnSerLeuProValSerProArgValLysArgProIleGluAsn	960
	961	aggatcctcattctacccaatgtcacgagaaatgaaacaggaccttatcaatgtgaaata ArgIleLeuIleLeuProAsnValThrArgAsnGluThrGlyProTyrGlnCysGluIle	1020
45	1021	Cgggaccgatatggtggcatccgcagtgacccagtcaccctgaatgtcctctatggtcca	1080

	1081	gacctccccagcatttacccttcattcacctattaccgttcaggagaaaacctctacttt AspLeuProSerIleTyrProSerPheThrTyrTyrArgSerGlyGluAsnLeuTyrPhe	1140
5	1141	tcctgcttcggtgagtctaacccacgggcacaatattcttggacaattaatgggaagttt SerCysPheGlyGluSerAsnProArgAlaGlnTyrSerTrpThrIleAsnGlyLysPhe	1200
_	1201	-cagctatcaggacaaaagctctctatccccaaataactacaaagcatagtgggctctat GlnLeuSerGlyGlnLysLeuSerIleProGlnIleThrThrLysHisSerGlyLeuTyr	1260
10	1261	gcttgctctgttcgtaactcagccactggcaaggaaagctccaaatccatcacagtcaaa AlaCysSerValArgAsnSerAlaThrGlyLysGluSerSerLysSerIleThrValLys	1320
	1321	gtctctgactggatattaccctgaattctactagttcctccaattccattttctcccatg ValSerAspTrpIleLeuProEnd	1380
15	1381 7441	gaatcacgaagagcaagacccactctgttccagaagccctataatctggaggtggacaac	1440
	1501	tcgatgtaaatttcatgggaaaacccttgtacctgacatgtgagccactcagaactcacc aaaatgttcgacaccataacaacagctactcaaactgtaaaccaggataagaagttgatg	1500 1560
	1561	acttcacactgtggacagtttttcaaagatgtcataacaagactccccatcatgacaagg	1620
	1621	ctccaccctctactgtctgctcatgcctgcctctttcacttggcaggataatgcagtcat	1680
	1681	tagaatttcacatgtagtagcttctgagggtaacaacagagtgtcagatatgtcatctca	1740
20	1741	acctcaaacttttacgtaacatctcagggaaatgtggctctctccatcttgcatacaggg	1800
	1801	ctcccaatagaaatgaacacagagatattgcctgtgtgtttgcagagaagatggtttcta	1860
	1861	taaagagtaggaaagctgaaattatagtagagtctcctttaaatgcacattgtgtggatg	1920
	1921	gctctcaccatttcctaagagatacagtgtaaaaacgtgacagtaatactgattctagca	1980
	1981	gaataaacatgtaccacatttgcaaaaaa	2010

25 and

(5)

5	1	gggtggatcctaggctcatctccataggggagaacacacatacagcagagaccatggga MetGly	59
	60	cccctctcagcccctccctgcactcagcacatcacctggaaggggctcctgctcacagca ProLeuSerAlaProProCysThrGlnHisIleThrTrpLysGlyLeuLeuLeuThrAla	119
10	120	tcacttttaaacttctggaacctgcccaccactgcccaagtaataattgaagcccagcca SerLeuLeuAsnPheTrpAsnLeuProThrThrAlaGlnValIleIleGluAlaGlnPro	179
	180	cccaaagtttctgaggggaaggatgttcttctacttgtccacaatttgccccagaatctt ProLysValSerGluGlyLysAspValLeuLeuLeuValHisAsnLeuProGlnAsnLeu	239
15	240	actggctacatctggtacaaagggcaaatgacggacctctaccattacattacatcatat ThrGlyTyrIleTrpTyrLysGlyGlnMetThrAspLeuTyrHisTyrIleThrSerTyr	299
•	୍ଷ୍ଟେପ ପ	gtagtagacggtcaaattatatatgggcctgcctacagtggacgagaaacagtatattcc ValValAspGlyGlnIleIleTyrGlyProAlaTyrSerGlyArgGluThrValTyrSer	359
20	360	aatgcatccctgctgatccagaatgtcacacaggaggatgcaggatcctacaccttacac AsnAlaSerLeuLeuIleGlnAsnValThrGlnGluAspAlaGlySerTyrThrLeuHis	419
	420	atcataaagcgaggcgatgggactggaggagtaactggatatttcactgtcaccttatac IleIleLysArgGlyAspGlyThrGlyGlyValThrGlyTyrPheThrValThrLeuTyr	479
25	480	tcggagactcccaagcgctccatctccagcagcaacttaaaccccagggaggtcatggag SerGluThrProLysArgSerIleSerSerSerAsnLeuAsnProArgGluValMetGlu	539
	540	gctgtgcgcttaatctgtgatcctgagactccggatgcaagctacctgtggttgctgaat AlaValArgLeuIleCysAspProGluThrProAspAlaSerTyrLeuTrpLeuLeuAsn	599
30	600	ggtcagaacctccctatgactcacaggttgcagctgtccaaaaccaacaggaccctctat GlyGlnAsnLeuProMetThrHisArgLeuGlnLeuSerLysThrAsnArgThrLeuTyr	659
	660 _}	ctatttggtgtcacaaagtatattgcagggccctatgaatgtgaaatacggaggggagtg LeuPheGlyValThrLysTyrIleAlaGlyProTyrGluCysGluIleArgArgGlyVal	719
35	720	agtgccagccgcagtgacccagtcaccctgaatctcctcccgaagctgcccatgccttac SerAlaSerArgSerAspProValThrLeuAsnLeuLeuProLysLeuProMetProTyr	779
	780	atcaccatcaacaacttaaaccccagggagaagaaggatgtgttagccttcacctgtgaa IleThrIleAsnAsnLeuAsnProArgGluLysLysAspValLeuAlaPheThrCysGlu	839
40	840	cctaagagtcggaactacacctacatttggtggctaaatggtcagagcctcccggtcagt ProLysSerArgAsnTyrThrTyrIleTrpTrpLeuAsnGlyGlnSerLeuProValSer	899
	900	ccgagggtaaagcgacccattgaaaacaggatactcattctacccagtgtcacgagaaat ProArgValLysArgProIleGluAsnArgIleLeuIleLeuProSerValThrArgAsn	959
45	960	gaaacaggaccctatcaatgtgaaatacgggaccgatatggtggcatccgcagtaaccca GluThrGlyProTyrGlnCysGluIleArgAspArgTyrGlyGlyIleArgSerAsnPro	1019

•	1020	gtcaccctgaatgtcctctatggtccagacctccccagaatttacccttacttcacctat ValThrLeuAsnValLeuTyrGlyProAspLeuProArgIleTyrProTyrPheThrTyr	1079
5	1080	taccgttcaggagaaaacctcgacttgtcctgctttgcggactctaacccaccggcagag TyrArgSerGlyGluAsnLeuAspLeuSerCysPheAlaAspSerAsnProProAlaGlu	1139
	1140	tatttttggacaattaatgggaagtttcagctatcaggacaaaagctctttatcccccaa TyrPheTrpThrIleAsnGlyLysPheGlnLeuSerGlyGlnLysLeuPheIleProGln	1199
10	1200	attactacaaatcatagcgggctctatgcttgctctgttcgtaactcagccactggcaag IleThrThrAsnHisSerGlyLeuTyrAlaCysSerValArgAsnSerAlaThrGlyLys	1259
	1260	gaaatctccaaatccatgatagtcaaagtctctggtccctgccatggaaaccagacaga	1319
15	1320	tctcattaatggctgccacaatagagacactgagaaaaagaacaggttgataccttcatg SerHisEnd	1379
	Ĩ380	aaattcaaqacaaaqaaqaaaaaqqctcaatqttattqqactaaataatcaaaaqqataa	1439
	1440	tgttttcataatttttattggaaaatgtgctgattcttggaatgttttattctccagatt	1499
	1500	tatgaactttttttcttcagcaattqqtaaaqtatacttttqtaaacaaaaattqaaaca	1559
	1560	tttgcttttgctctctatctgagtgcccccc 1591	
วก			

- 2. A replicable recombinant cloning vehicle having an insert comprising a nucleic acid of claim 1.
- 25 3. A cell that is transfected, infected or injected with a recombinant cloning vehicle of claim 2.
 - 4. A method for preparing a polypeptide, said method comprising the steps of
 - (a) culturing the cell of claim 3
 - (b) recovering the polypeptide expressed by said cell.
 - 5. A method for preparing an antibody directed against a polypeptide said method comprising the steps of (a) preparing said polypeptide by the method of claim 4
 - (b) injecting said polypeptide into a host capable of producing antibodies and
 - (c) recovering said antibodies.

Patentansprüche

30

35

40

45

50

1. Nucleinsäure, umfassend eine Basen-Sequenz, die für eine Peptid-Sequenz codiert, dadurch gekennzeichnet, daß die Gruppen-Nucleinsäure eine DNA ist, die aus der folgenden Gruppe von fünf Sequenzen ausgewählt ist:

	10	30	50
	CAGCCGTGCTCGAAGCGTTC	CTGGAGCCCAAGCTCTCCT	CCACAGGTGAAGACAGGGCCA
5	70	90	110
10			AGAGTGCGTGTACCCTGGCAG ArgValArgValProTrpGln
	130	150	170
15			CCGCCCACCACTGCCCAGCTC
	190	210	230
20			GAGGTTCTTCTCCTTGTCCAC sGloValLeuLeuLeuValHis
	250	270	290
25			AGGGGAAAGAGTGGATGGCAAC sGlyGluArgValAspGlyAsn
	310	330	350 -
30			TACCCCAGGGCCGGCAAACAGC aThrProGlyProAlsAsnSer
	370	390	410
35			CCAGAACGTCACCCAGAATGAC eGlnAsnValThrGlnAsnAsp
	130	450	470
40	ACAGGATTCTACACCCTA ThrGlyPheTyrThrLet	CAAGTCATAAAGTCAGATC GGlnVallleLysSerAspL	TTGTGAATGAAGAAGCAACTGGA euvalasnGluGluAlaThrGly
45			
50			

	490	510	530
5	CAGTTCCATGTATACCCGGA GlaPheHisValTyrProG	AGCTGCCCAAGCCCTCCATC LuLeuProLysProSerile	TCCAGCAACAACTCCAACCCT SerSerAsnAsnSerAsnPro
	550	570	590
10	GTGGAGGACAAGGATGCTG ValGluAsplysAspAlaV	TGGCCTTCACCTGTGAACCT alalaPheThrCysGluPro	GAGACTCAGGACACAACCTAC GluthrGlnAspThrThrTyr
	610	630	650
15	CTGTGGTGGATAAACAATC LeuTrpTrplleAsnAsnC	AGAGCCTCCCGGTCAGTCCC	CAGGCTGCAGCTGTCCAATGGC DAIGLEUGINLEUSEIAENGly
	570	590	710
20	AACAGGACCCTCACTCTA(AsnargThrLeuThrLeu)	TCAGTGTCACAAGGAATGA LeuSerValThrArgasnas	CACAGGACCCTATGAGTGTGAA pThrGlyProTyrGluCysGlu
	730	750	770
25	ATACAGAACCCAGTGAGT IleGlnAsnProValSer	GCGAACCGCAGTGACCCAGT AlaasnargSerAspProVa	CACCTTGAATGTCACCTATGGC
30	790	810	830
	CCGGACACCCICACCATT ProAspThrProThrlle	TCCCCTTCAGACACCTATTA SerProSerAspThrTyrT	kCCGTCCAGGGGCAAACCTCAGC yrArgProGlyAlaAsnLeuSer
35	850	870	890
	CTCTCCTGCTATGCAGC LeuSerCysTyrAlaAl	TOKACCACCTGCACAGT Tn[Ds[korgorgnakase	ACTCCTGGCTTATCAATGGAACA yrSerTrpLeuileAsnGlyThr
40	910	930	950
	TTCCAGCAAAGCACACA PheGlnGlnSerThrGl	AGAGCTCTTTATCCCTAAC/ nGluLeuPheIleP:oAsnl	NTCACTGTGAATAATAGTGGATCC leThrValasnAsnSerGlySer
45	970	990	1010
	•		AACAGGACCACAGTCAAGACGATC
	TyrThrCysHisAlaA	snAsnSerValThrGlyCys	AsnArgThrThrValLysThrlle
50			

	1030	1050	1070		
_			CTCACCTGGGGCCATTGCTGGC uSerProGlyAlaIleAlaGly		
5					
	1093	1110	1130		
10	ATTGTGATTGGAGTAGTG IleValIleGlyValVal	GCCCTGGTTGCTCTGATAGC AlaLeuValAlaLeuIleAl	AGTAGCCCTGGCATCTTTTCTC aValAlaLeuAlaCysPheLeu	!	
	1150	1170	1190		
15			ATCTCACAGAGCACAAACCCTCA SpleuThrGluHislysProSer		
	1210	1230	1250		
20			CTAACAAGATGAATGAAGTTACT roAsnLysMetasnGluValTh		
	1270	1290	1310		
25			AACCAACTTCAGCCTCCCCATC lnProThrSerAlaSerProSe		
30	1330	1350	1370		
30	CTAACAGCCACAGAAATAATTTATTCAGAAGTAAAAAGCAGTAATGAAACCTGTCCTGC LeuThralaThrGluileileTyrSerGluValLysLysGln				
35	1390	1410	1430		
	TCACTGCAGTGCTGATG	TATTTCAAGTCTCTCACCCT	CATCACTAGGAGATTCCTTTCC	Ċ	
40	1450	1470	1490		
	CTGTAGGGTAGAGGGGT	GGGGACAGAAACAACTTTC	CCTACTCTTCCTTCCTAATAGO	c	
45	1510	1530	1550		
	ATCTCCAGGCTGCCTGG	TCACTGCCCCTCTCTCAGT	GTCAATAGATGAAAGTACATTGO	; C	
	1570	1590	1610		
50	AGTCTGTAGGAAACCCA	ACCTTCTTGTCATTGAAAT	TTGGCAAAGCTGACTTTGGGAA	, A (

	1530	1650	1670
	GGACCAGA+CTTCCCC	TCCCTTCCCCTTTTCCCAACC	TGGACTTGTTTTAAACTTGCC
5			
	1690	1710	1730
	TTCAGAGCACTCATTC	CTTCCCACCCCAGTCCTGT	CTATCACTCTAATTCGGATTT
10	1757	1770	
	1750	1770	1790
GC	CATAGCCTTGAGGTTA	TGTCCTTTTCCATTAAGTAC	ATGTGCCAGG&&ACAGCGAGAG
15	1810	1830	1850
<u> </u>	•		
	AGAAAG I AFACGGCAG	: AXIGCITCICCIXIIICIC	CAAAGCCTTGTGTGAACTAGCA
20	1870	1890 -	1910
ر ۸	PARADAKADAKOAO	PATATAACCAATAGTGAAATG	CCACAGGTTTGTCCACTGTCAG
25	1930	1950	1970
G	GTTGTCTACCTGTAGG/	ATCAGGGTCTAAGCACCTTGG	TGCTTAGCTAGAATACCACCTA
30	1990	2010	2030
A ^r	PCCTTCTGGCAAGCCT	GTCTTCAGAGAACCCACTAGA	AGCAACTAGGAAAAATCACTTG
35	2050	2070	2090
C	CAAAATCCAAGGCAAT	TCCTGATGGAAAATGCAAAA	GCACATATATGTTTAATATCTT
40	2110	2130	2150
7	ATGGGCTCTGTTCAAG	GCAGTGCTGAGAGGGAGGGG	TTATAGCTTCAGGAGGGAACCAG
45	2170	2190	2210
С	TAGDADAATADTDTT	CTGCTAGGAACTTGGGAAAG	GAATCAGAGAGCTGCCCTTCAGC
50			

	2230	2250	2270	
_	GATTATTTAAATTGTTAAJ	NGAATACACAATTTGGGGTAT	TGGGATTTTTCTCCTTTTC	TC
5	2290	2310	2330	
	TGAGACATTCCACCATTT	TAATTTTTGTAACTGCTTAT	Petatedooraradetate	TT
10	2350	2370	2390	
	•	AGCCAATCCGATTGCCTTAG		CC
15	2410 .	2430	. 2450	
		GAGCCTCTCAAGATTTTTTT	•	&&&
20	2470	2490	2510	
	 ATAAGAAAAGGTTTTCTT	CATTCATGGCTAGAGCTAGA	•	ACC
25	2530	2550	2570	
	TCAGACCAATCATCAACT	ACCATTCTATTCCATGTTTG	CACCTGTGCATTTTCTGTT	TGC
30	2590	2610	2630	
	CCCCATTCACTTTGTCAC	AATODTOTODDTTTGGCTAA	GGTGTATTTGGTCCTTGAG	NAG
35	2650	2670	269C	
	TGGGAGCACCCTACAGGG	GACACTATCACTCATGCTGGT	CGCATTGTTTACAGCTAG	حجة G
40	2710	2730	2750	
	CTGCACTGGTGCTAATG	CCCTTGGGAAATGGGGCTG	PGAGGAGGAGGATTATAACT	TAC
45	2770	2790	2810	
	GCCTAGCCTCTTTTAAC	AGCCTCTGAAATTTATCTTT	PCTTCTATGGGGTCTATAA/	TO
5 0	2830	2850	2870	
50				.

	2890	2910	2930	
тC	TACACAGATGGAATCT	CTTTGGGGCTAAGAGAAAGGT	TTTATTCTATATTGCTTACC	r
5				
	2950	2970	2990	
C۸	TCTCATGTTAGGCCTA	AGAGGCTTTCTCCAGGAGGA	TTAGCTYGGAGTTCTCTATAC	Ţ
10	3010	3030	3050	
٠,				
	.06:400:10:1:0000		CTGTGCATACTTTCCCTCATC	١
15	3070	3090	3110	
A?	GCTGTGCTGTGTTATT	TAATTTTTCCTGGCTAAGAT	CATGTCTGAATTATGTATG	هي
20	3130	3150	3170	
Α.	TTATTCTATGTTTTA	RAATAAAAATAATATATAA	Categaaaaaaaaa,	
25				
30				
35				
40				
45				
45				
50				
55				

(2)

	430	450	470		
5	ACAGGATTCTACACCCTAG ThrGlyPheTyrThrLeuG	CRAGTCATAAAGTCAGATCTT(GlnvalIleLysSerAspLeu'	TGAATGAAGAAGCAACTGGA ValasnGluGluAlaThrGly		
	490	510	530		
10	CAGTTCCATGTATACCCG GlnPheHisValTyrPro	GAGCTGCCCAAGCCCTCCATC GluLeuProLysProSerIle	TCCAGCAACAACTCCAACCCT SerSerAsnAsnSerAsnPro		
	550	570	590		
15	GTGGAGGACAAGGATGCT ValGluAspLysAspAla	GTGGCCTTCACCTGTGAACCT	GAGACTCAGGACACCTAC GOLUTHIGINASPTHITHITYI		
	610	630	650		
20	CTGTGGTGGATAAACAATCAGAGCCTCCCGGTCAGTCCCAGGCTGCAGCTGTCCAATGGC LeuTrpTrpIleAsnAsnGlnSerLeuProValSerProArgLeuGlnLeuSerAsnGly				
	670	690	710		
25	AACAGGACCCTCACTCTACTCAGTGTCACAAGGAATGACACAGGACCCTATGAGTGTGAA AsnArgThrleuThrleuLeuSerValThrArgAsnAspThrGlyProTyrGluCysGlu				
30	730	750	770		
	ATACAGAACCCAGTGAG IleGlnAsnProValSe	TGCGAACCGCAGTGACCCAGT rAlaAsnArgSerAspProVa	CACCTTGAATGTCACCTATGGC lThrLeuAsnValThrTyrGly		
35 ·	790	810	830		
	CCGGACACCCCCACCAT ProAspThrProThrIl	TTCCCCTTCAGACACCTATTA eSerProSerAspThrTyrTy	ACCGTCCAGGGGCAAACCTCAGC rArgProGlyAlaAsnLeuSer		
40					
45					
50					

	550	870	890	
r	CTCTCCTGCTATGCAGCCTCTAACCCACCTGCACAGTACTCCTGGCTTATCAATGGAACA LeuSerCysTyrAlaAlaSer#snProProAlaGlnTyrSerTrpLeuIleAsnGlyThr			
5	910	930	950	
10			CACTGTGAATAATAGTGGATCC eThrValAsnAsnSerGlySer	
	970	990	1010	
15			CAGGACCACAGTCAAGACGATC	
	1030	1050~	1070	
20			AATCAAAGCCAGCAAGACCACA nileLysAlaSerLysThrThr	
	1090	1110	1130	
25	GTCACAGGAGATAAGGACTCTGTGAACCTGACCTGCTCCACAAATGACACTGGAATCTCC ValthrGlyAspLysAspSerValAsnLeuThrCysSerThrAsnAspThrGlyIleSer			
30	1150	1170	1190	
			GGAGAGGATGAAGCTGTCCCAG rGluArgMetLysLeuSerGln	
35	1210	1230	1250	
			AGGATGCTGGGACGTATTGGTGT LUAspAlaGlyThrTyrTrpCys	
40				
45				
50				

	1270	1290	1310		
5	GAGGTCTTCAACCCAATC GluValPheAsnProlle	AGTAAGAACCAAAGCGACCCC SerLysAsnGlnSerAspPro	CATCATGCTGAACGTAAACTAT DIleMetLeuAsnValAsnTyr		
	1330	1350	1370		
10	AATGCTCTACCACAAGAA AsnAlaLeuFroGlnGlu	AATGGCCTCTCACCTGGGGCC	CATTGCTGGCATTGTGATTGGA EllealsGlylleVallleGly		
	1390	1410	1430		
15	GTAGTGGCCCTGGTTGCT ValValAlaLeuValAla	CTGATAGCAGTAGCCCTGGC. LeullealaValalaLeuAl	ATGTTTTCTGCATTTCGGGAAG aCysPheLeuHisPheGlyLys		
	1450	1470	1490		
20	ACCGGCAGCTCAGGACCACTCCAATGACCCCACCTAACAAGATGAATGA				
25	1510	1530	1550		
	TACCCTGAACTTTGAAGCCCAGCAACCCACCCAACCTTCAGCCTCCCCATCCCTAAC				
30	1570	1590	1610		
	AGCCACAGAAATAATTTATTCAGAAGTAAAAAAGCAGTAATGAAACCTGAAAAAAAA				
35	1630				
	AAAAAAAAA				
40					
40					
4 5					
50					

(3)

5	10	30	50	
	CAGCCGTGCTCGAAGCGTT	CCTGGAGCCCAAGCTCTCCT	CCACAGGTGAAGACAGGGCCA	
10	70	90	110	
			AGAGTGCGTGTACCCTGGCAG ArgValArgValProTrpGln	
15	130	150	170	
20			CCGCCCACCACTGCCCAGCTC ProProThrThrAlaGinLeu	
	190	210	230	
25			GAGGTTCTTCTCCTTGTCCAC GluValLeuLeuLeuValHis	
	250	270	290	
30			AGGGGAAAGAGTGGATGGCAAC sGlyGluArgValAspGlyAsn	
	310	330	350	
35			TACCCCAGGGCCCGCAAACAGC aThrProGlyProAlaAsnSer	
40	370	390	410	
40	GGTCGAGAGACATATACCCCAATGCATCCCTGCTGATCCAGAACGTCACCCAGAATGACGlyArgGluThrileTyrProAsnAlaSerLeuLeuileGlnAsnValThrGlnAsnAsp			
45	430	450	470	
			TGTGAATGAAGAAGCAACTGGA uValasnGluGluAlaThrGly	
50				

	490	510	530		
5	CAGTTCCATGTATACCCGGAGCTGCCCAAGCCCTCCATCTCCAGCAACAACTCCAACCCT GlnPheHisvalTyrProGluLeuProLysProSerTleSerSerAsnAsnSerAsnFro				
	550	570	590		
10	GTGGAGGACAAGGATGCTG ValGluAspLysAspAlaV	TGGCCTTCACCTGTGAACCT alalaPheThrCysGluPro	GAGACTCAGGACACAACCTAC		
	610	630	650		
15	CTGTGGTGGATAAACAAT(LeuTrpTrpIleAsnAsn(TAGAGCCTCCCGGTCAGTCCCGInserLeuProValSerPro	CAGGCTGCAGCTGTCCAATGGC DArgLeuGlnLeuSerAsnGly		
	670	690 -	710		
20	AACAGGACCCTCACTCTACTCAGTGTCACAAGGAATGACACAGGACCCTATGAGTGTGAA AsnargTh:LeuThrLeuLeuSerValThrArgAsnAspThrGlyProTyrGluCysGlu				
25	730	750	770		
	ATACAGAACCCAGTGAGTGCGAACCGCAGTGACCCAGTCACCTTGAATGTCACCTATGGCIleGlnAsnProValSerAlaAsnArgSerAspProValThrLeuAsnValThrTyrGly				
30			•		
	790	810	830		
35	COGGACACCCCCACCATTT ProaspTh:ProThrileS	CCCCTTCAGACACCTATTAC e rProSerAspThrTyrTyr	CGTCCAGGGGCAAACCTCAGC ArgProGlyAlaAsnLeuSerll		
	853	870	£90		
40	CTCTCCTGCTATGCAGCCT LeuSerCysTyrAlaAlaS	CTAACCCACCTGCACAGTA erasnProProAlaGlnTy	TTCCTGGCTTATCAATGGAACA rSerTrpLeuileAsnGlyThr		
45	910	930	950		
	TTCCAGCAAAGCACACAAC PheGlnGlnSerThrGlnC	GAGCTCTTTATCCCTAACAT GluLeuPheileProasnil	CACTGTGAATAATAGTGGATCC eTh:ValasnasnSe:GlySe:		
50	970	990	1010		
	TATACCTCCCACGCCAAT TyrThrCysHisAlaAsn	AACTCAGTCACTGGCTGCAA AsnSerValThrGlyCysAs	CAGGACCACAGTCAAGACGATC		
55					

	1030	1050	1070		
5	ATAGTCACTGATAATGCTCTACCACAAGAAAATGGCCTCTCACCTGGGGCCATTGCT(1 levalThraspasnalaLeuProGlnGluAsnGlyLeuSerProGlyAlaIleAlac				
	1090	1110	1130		
10			AGTAGCCCTGGCATGTTTTCTG		
	1150	1170	1190		
15		CAGCTCAGGACCACTCCAATG ySerSerGlyProLeuGln	ACCCACCTAACAAGATGAATGA		
20	1210	1230	1250		
20	AGTTACTTATTCTACCC	TGAACTTTGAAGCCCAGCAAC	CCACACAACCAACTTCAGCCTC		
	1270	1290	1310		
25	CCCATCCCTAACAGCCACAGAAATAATTTATTCAGAAGTAAAAAAGCAGTAATGAAACCT				
	1330				
30	KAASIKKKIKKAKAAA	.A.A			
35					
40					
45					
50					
50					

--

(4)

5	1	acagcacagctgacagccgtactcaggaagcttctggatcctaggcttatctccacagag	60
•	51	gagaacacacascagcagagaccatggggcccctctcagcccctccctgcacacacctc MetGlyProLeuSerAlaProProCysThrHisLeu	120
10	121	atcacttggaaggggtcctgctcacagcatcacttttaaacttctggaatccgcccaca. IleThrTrpLysGlyValLeuLeuThrAlaSerLeuLeuAsnPheTrpAsnProProThr	1.80
	181	actgcccaagtcacgattgaagcccagccacccaaagtttctgaggggaaggatgttctt ThrAlaGlnValThrIleGluAlaGlnProProLysValSerGluGlyLysAspValLeu	240
15	241	ctacttgtccacaatttgccccagaatcttgctggctacatttggtacaaagggcaaatg LeuLeuValHisAsnLeuProGlnAsnLeuAlaGlyTyrIleTrpTyrLysGlyGlnMet	300
	301	acatacgtctaccattacattacatcatatgtagtagacggtcaaagaattatatatggg ThrTyrValTyrHisTyrIleThrSerTyrValValAspGlyGlnArgIleIleTyrGly	360
20	361	cctgcatacactcgazgagaaagagtatattccaatgcatccctgctgatccagaatctc ProAlaTyrSerGlyArgGluArgValTyrSerAsnAlaSerLeuLeuIleGlnAsnVal	420
	.421	acgcaggaggatgcaggatcctacaccttacacatcataaagcgacgcgatgggactgga ThrGlnGluAspAlaGlySerTyrThrLeuHisIleIleLysArgArgAspGlyThrGly	480
25	481	ggagtaactggacatttcaccttcaccttacacctggagactcccaagccctccatctcc GlyValThrGlyHisPheThrPheThrLeuHisLeuGluThrProLysProSerIleSer	540
20	541	agcagcaacttaaatcccagggaggccatggaggctgtgatcttaacctgtgatcctgcg SerSerAsnLeuAsnProArgGluAlaMetGluAlaValIleLeuThrCysAspProAla	600
	501	actccagccgcaagctaccagtggtggatgaatggtcagagcctccctatgactcacagg ThrProAlaAlaSerTyrGlnTrpTrpMetAsnGlyGlnSerLeuProMetThrHisArg	660
30	561	ttgcagctgtccaaaaccaacaggaccctctttatatttggtgtcacaaagtatattgca LeuGlnLeuSerLysThrAsnArgThrLeuPheIlePheGlyValThrLysTyrIleAla	720
	7 21	gçaccctatgaatgtgaaatacgçaacccagtgagtgccagccgcagtgacccagtcacc GlyProTyrGluCysGluIleArgAsnProValSerAlaSerArgSerAspProValThr	780
35	781	ctgaatctcctcccaaagctgtccaagccctacatcacaatcaacaacttaaaccccaga LeuAsnLeuLeuProLysLeuSerLysProTyrIleThrIleAsnAsnLeuAsnProArg	840
	841	gaçaataaggatgtcttaaccttcacctgtgaacctaagagtgagaactacacctacatt GluAsnLysAspValLeuThrPheThrCysGluProLysSerGluAsnTyrThrTyrIle	900
40	901	tggtggctaaatggtcagagcctccctgtcagtcccagggtaaagcgacccattgaaaac TrpT:pLeuAsnGlyGlnSerLeuProValSerFroArgValLysArgProIleGluAsn	960
	961	aggateeteattetaeeeaatgteaegagaaatgaaaeaggaeettateaatgtgaaata ArgileLeuIleLeuProAsnValThrArgAsnGluThrGlyProTyrGlnCysGluile	1020
45	1021	cgggaccgatatggtggcatccgcagtgacccagtcaccctgaatgtcctctatggtcca ArgAspArqTyrGlyGlyIleArqSerAspProValThrLeuAsnValLeuTvrGlyPro	1060

50

25	i	≘nd	
	1981	gctctcaccatttcctaagagatacagtgtaaagacgtgacagtaatactgattctagca gaataaacatgtaccacatttgcaaaaaa	1980 2010
	1861 1921	tazagagtaggaaagctgaaattatagtagagtctcctttaaatgcacattgtgtggatg	1920
20	1801	Ctcccaatagaaatgaacacagagatattgcctgtgtgtttgcagagaagaaga+gc+++c+a	1860
	1741	acctcaaacttttacqtaacatctcaqqqaaatqtqqctctctcca+c++qca+acaqq	1800
	1681	tagaatttcacatgtagtagcttctgagggtaacaacagagtgtcagatatgtcatcatca	1740
	1621	Ctccacctctactgtctqctcatqcctqctctttcacttqqcaqqataatqcaqtcat	1680
	1561	acttcacactgtggacagtttttcaaagatgtcataacaagactccccatcatgacaaga	1560 1620
	1501	aaaatgttcgacaccataacaacagctactcaaactgtaaaccaggataagaagttgatg	1500
15	1441	tcgatgtaaatttcatgggaaaacccttgtacctgacatgtgagccactcagaactcacc	1440
	(381	gaatcacgaagagcaagacccactctgttccagaagccctataatctggaggtggacaac	910.00
		ValSerAspTrpTleLeuProEnd	1350
10	1321	gtctctgactggatattaccctgaattctactagttcctccaattccattttctcccatg	1350
10	1201	gcttgctctcttcctaactcagccactggcaaggaaagctccaaatccatcacagtcaaa AlaCysSerValArgAsnSerAlaThrGlyLysGluSerSerLysSerIleThrValLys	1320
	1261	•	
	1291	cagctatcaggacaaaagctctctatcccccaaataactacaaagcatagtgggctctat GlnLeuSerGlyGlnLysLeuSerIleProGlnIleThrThrLysHisSerGlyLeuTyr	1260
5		SerCysPheGlyGluSerAsnProArgAlaGlnTyrSerTrpThrIleAsnGlyLysPhe	1 - 0 0
	1141	tcctgcttcggtgagtctaacccacgggcacaatattcttggacaattaatgggaagttt	1209
		AspLeuProSerIleTyrProSerPheThrTyrTyrArgSerGlyGluAsnLeuTyrPhe	1140
	1081	gacctccccagcatttacccttcattcacctattaccgttcaggagaaaacctctacttt	

(5)

5	1	gggtggatcctzggctcatctccataggggagaacacacatacagcagagaccatggga MetGly	59
	50	cccctctcagcccctccctgcactcagcacatcacctggaaggggctcctgctcacagca ProLeuSerAla?ro?roCysThrGlnHisIleThrTrpLysGlyLeuLeuLeuThrAla	119
10	120	tcacttttaaacttctggaacctgcccaccactgcccaagtaataattgaagcccagcca SerLeuLeuAsnPheTrpAsnLeuProThrThrAlaGlnValIleIleGluAlaGlnPro	179
	180	cccaaagtttctgaggggaaggatgttcttctacttgtccacaatttgccccagaatctt ProLysValSerGluGlyLysAspValLeuLeuLeuValHisAsnLeuProGlnAsnLeu	239
15	240	actggctacatctggtacaaagggcaaatgacggacctctaccattacattacatcatat ThrGlyTyrIleTrpTyrLysGlyGlnMetThrAspLeuTyrHisTyrIleThrSerTyr	299
	300	gtagtagacgctcaaattatatatgggcctgcctacagtggacgagaaacagtatattcc ValValAspGlyGlnIleIleTyrGlyProAlaTyrSerGlyArgGluThrValTyrSer	359
20	360	aatgcatccctgctgatccagaatgtcacacaggaggatgcaggatcctacaccttacac AsnAlaSerLeuLeuIleGlnAsnValThrGlnGluAspAlaGlySerTyrThrLeuHis	419
	420	atcataaagcgaggcgatgggactggaggagtaactggatatttcactgtcaccttatac IleIleLysArcGlyAspGlyThrGlyGlyValThrGlyTyrPheThrValThrLeuTyr	479
25	480	tcggagactcccaagcgctccatctccagcagcaacttaaaccccagggaggtcatggag SerGluThr?rcLysArgSerIleSerSerSerAsnLeuAsnProArgGluValMetGlu	539
	540	<pre>gctgtgcgcttaatctgtgatcctgagactccggatgcaagctacctgtggttgctgaat AlaValArgLeuIleCysAspProGluThrProAspAlaSerTyrLeuTrpLeuLeuAsn</pre>	599
30	600	ggtcagaacctccctatgactcacaggttgcagctgtccaaaaccaacaggaccctctat GlyGlnAsnLeuProMetThrHisArgLeuGlnLeuSerLysThrAsnArgThrLeuTyr	659
	660	ctatttggtgtcacaagtatattgcagggccctatgaatgtgaaatacggaggggagtg LeuPheGlyValThrLysTyrIleAlaGlyProTyrGluCysGluIleArgArgGlyVal	719
35	720	agtgccagccgcagtgacccagtcaccctgaatctcctcccgaagctgcccatgccttac SerAlaSerArgSerAspProValThrLeuAsnLeuLeuProLysLeuProMetProTyr	779
	780	atcaccatcaacaacttaaaccccagggagaagaaggatgtgttagccttcacctgtgaa IleThrIleAsnAsnLeuAsnProArgGluLysLysAspValLeuAlaPheThrCysGlu	839
40	840	cctaagagtcggaactacacctacatttggtggctaaatggtcagagcctcccggtcagt ProLysSerArgAsnTyrThrTyrIleTrpTrpLeuAsnGlyGlnSerLeuProValSer	899
	900	ccgagggtaaagcgacccattgaaaacaggatactcattctacccagtgtcacgagaaat ProArgValLysArgProIleĢluAsnArgIleLeuIleLeuProSerValThrArgAsn	959
45	960	gaaacaggaccctatcaatgtgaaatacgggaccgatatggtggcatccgcagtaaccca GluThrGlyProTyrGlnCysGluIleArgAspArgTyrGlyGlyIleArgSerAsnPro	1019

50

	1020	gtcaccctgaatctcctctatggtccagacctccccagaatttacccttacttcacctat valThrLeuAsnValLeuTyrGlyProAspLeuProArgIleTyrProTyrPheThrTyr	1079
5	1080	taccgttcaggagaaaacctcgacttgtcctgctttgcggactctaacccaccggcagag TyrArgSerGlyGluAsnLeuAspLeuSerCysPheAlaAspSerAsnProProAlaGlu	1139
	1140	tatttttggacaattaatgggaagtttcagctatcaggacaaaagctctttatcccccaa TyrPheTrpTh:IleAsnGlyLysPheGlnLeuSerGlyGlnLysLeuPheIleProGln	1199
10	1200	attactacaaatcatagcgggctctatgcttgctctgttcgtaactcagccactggcaag IleThrThrAsnHisSerGlyLeuTyrAlaCysSerValArgAsnSerAlaThrGlyLys	1259
	1260	gaaatctccaaatccatgatagtcaaagtctctggtccctgccatggaaaccagacaga	1319
15	1320	tctcattaatggctgccacaatagagacactgagaaaaagaacaggttgataccttcatg SerHisEnd	1379
	1380 1440 1500 1560	aaattcaagacazagaagaaaaaggctcaatgttattggactaaataatcaaaaggataa tgttttcataatttttattggaaaatgtgctgattcttggaatgttttattctccagatt tatgaactttttttcttcagcaattggtaaagtatacttttgtaaacaaaaattgaaaca tttgcttttgctctctatctgagtgccccccc 1591	1439 1499 1559
20			

2. Replizierbares rekombinantes Kloniervehikel mit einem eine Nucleinsäure nach Anspruch 1 umfassenden Insert.

- 5 3. Zelle, die mit einem rekombinanten Kloniervehikel nach Anspruch 2 transfiziert, infiziert oder injiziert ist.
 - 4. Verfahren zur Herstellung eines Polypeptids, umfassend die Schritte
 - (a) des Kultivierens der Zelle nach Anspruch 3,
 - (b) des Gewinnens des durch diese Zelle exprimierten Polypeptids.

30

- 5. Verfahren zur Herstellung eines gegen ein Polypeptid gerichteten Antikörpers, umfassend die Schritte (a) des Herstellens des Polypeptids durch das Verfahren des Anspruchs 4,
 - (b) des Injizierens des Polypeptids in einen Wirt, der zur Bildung von Antikörpern befähigt ist, und
 - (c) des Gewinnens der Antikörper.

35

Revendications

1. Acide nucléique comprenant une séquence de bases qui code pour une séquence peptidique, caractérisé en ce que le groupe d'acides nucléiques est de l'ADN choisi parmi le groupe de cinq séquences ci-après :

45

40

	10	30	50	
	CAGCCGTGCTCGAAGCGTT	CCTGGAGCCCAAGCTCTCCTC	CACAGGTGAAGACAGGGCCA	
5	•	•		
	70	90	110	
10		ACCTCTCAGCCCCACTTCACA isLeuSerAlaProLeuHisA		
	130	150	170	
15	GGGCTTCTGCTCACAGCCT GlybeubeubeuThrAlaS	CACTTCTAACCTTCTGGAAC	CCGCCCACCACTGCCCAGCTC ProProThrThrAlaGlnLau	
	190	210	230	
20			GAGGTTCTTCTCCTTGTCCAL GluValLeuLeuLeuValHis	
	250	270	290	
25	AATCTGCCCCAGCAACTTT AsnLeuProGlaGlaLeuF	TTTGGCTACAGCTGGTACAAA PheGlyTyrSerTrpTyrLys	GGGGAAAGAGTGGATGGCAAC GlyGluArgValAspGlyAsn	
	310	330	350	
30	CGTCAAATTGTAGGATAT(ArgGlnIleValGlyTyr)	GCAATAGGAACTCAACAAGCT AlaileGlyTh:GlnGlnAla	TACCCCAGGGCCCGCAAACAGC	
35	370	390	410 .	
55	GGTCGAGAGACAATATACCCCAATGCATCCCTGCTGATCCAGAACGTCACCCAGAATGACGIyargGluThrileTyrProAsnAlaSerLeuLeuIleGlnAsnValThrGlnAsnAsp			
40	130	450	470	
			TGTGAATGAAGAAGCAACTGGA uValAsnGluGluAlaThrGly	
45				
50				

	493	510	530	
5	CAGTTCCATGTATACCCGG GlnPheHisValTyrPro0	AGCTGCCCAAGCCCTCCATC NuceuProLysProSerile	TCCAGCAACAACTCCAACCCT SerSerAsnAsnSerAsnPro	
	550	570	590	
10	GTGGAGGACÁAGGATGCT(ValGluAsplysAspAlat	GTGGCCTTCACCTGTGAACCT ValalaPheThrCysGluPro	GAGACTCAGGACACCAACCTAC GluThrGlnAspThrThrTyr	
	510	630	650	
15	CTGTGGTGGATAAACAAT LeuTrpTrpIleAsnAsn	CAGAGCCTCCCGGTCAGTCCC GlnSerLeuProValSerPro	AGGCTGCAGCTGTCCAATGGC ArgLeuGlnLeuSerAsnGly	
	57 0	590	710	
20	AACAGGACCCTCACTCTA AsnargthrieuThrieu	CTCAGTGTCACAAGGAATGAG LeuSerValThrArgAsnAs;	TACAGGACCCTATGAGTGTGAA pThrGlyProTyrGluCysGlu	
	732	750	770	
25	ATACAGAACCCAGTGAGTGCGAACCGCAGTGACCCAGTCACCTTGAATGTCACCTATGGCIleGlnAsnFroValSerAlaAsnArgSerAspProValThrLeuAsnValThrTyrGly			
30	793	810	830	
			CCGTCCAGGGGCAAACCTCAGC rArgProGlyAlaAsnLeuSer	
35	833	870	890	
			CTCCTGGCTTATCAATGGAACA	
40	910	930	950	
			CACTGTGAATAATAGTGGATCC LeTh:ValasnasnSe:GlySer	
45	975	990	,1010	
			ACAGGACCACAGTCAAGACGATC snAcgThcThcValLysThcile	
50				

~

	1030	1050	1070		
5	ATAGTCACTGATAATGCTCTACCACAAGAAAATGGCCTCTCACCTGGGGCCATTGCTGGC 11eValThrAspAsnAlaLeuProGlnGluAsnGlyLeuSerProGlyAlaIleAlaGly				
	1090	1110	1130		
10	ATTSTGATTSGAGTAGTC	SCCCTGGTTGCTCTGATAGCA AlaLeuValAlaLeuIleAla	GTAGCCCTGGCATGTTTTCTG ValAlaLeuAlaCysPheleu		
	1150	1170	1190		
15	CATTTCGGGAAGACCGGG HisPheGlyLysThrGly	CAGGGCAAGCGACCAGCGTGAT yArgAlaSerAspGlnArgAs;	CTCACAGAGCACAAACCCTCA DLeuThrGluHisLysProSer		
	1210	1230	1250		
20	GTCTCCAACCACACTCA ValserasmHisThrGl	GGACCACTCCAATGACCCACC naspHisSerasnaspProPr	TAACAAGATGAATGAAGTTACT DASNLysMetAsnGluValTh:		
25	1275	1290	1310		
	TATTCTACCCTGAACTTTGAAGCCCAGCAACCCACACCAACCTTCAGCCTCCCCATCC TyrSerThrLauAsnPheGluAlaGlnGlnProThrGlnProThrSerAlaSerProSer				
30	1333	1350	1370		
		TAATTTATTCAGAAGTAAAAA .eileTyrSerGluVallysLy	GCAGTAATGAAACCTGTCCTGC sGln		
35	1390	1410	1430		
	TCACTGCAGTGCTGATG	TATTCAAGTCTCACCCTC	ATCACTAGGAGATTCCTTTCCC		
40	1450	1470	1490		
	CTGTAGGGTAGAGGGG	TGGGGACAGAACAACTTTCT	CCTACTCTTCCTTCCTAATAGGC		
45	1510	1530	1550		
	ATCTCCAGGCTGCCTG	GTCACTGCCCCTCTCTCAGTG	TCANTAGATGAAAGTACATTGGG		
50	1570	1590	1610		
	AGTCTGTAGGAAACCC	AACCTTCTTGTCATTGAAATT	TGGCAAAGCTGACTTTGGGAAAG		

	1533	1650	1670
5	AGGGACCAGAACTTCCCC	TOCOTTOCCOTTTTCCCAACO	TGGACTTGTTTTAAACTTSCC
	1690	1710	1730
	TGTTCAGAGCACTCATTC	CTTCCCACCCCCAGTCCTGTC	CTATCACTCTAATTCGGATTT
10	1750	1770	1790
			ATGTGCCAGGAAACAGCGAGAG
15	occaladeeoadoi.a	. o. cellile chiling inc	VIOIOCENOUMENOCUEORONO
	1810	1830	1850
	AGAGAAAGTAAACGGCAG	TAATGCTTCTCCTATTTCTC	CAAAGCCTTGTGTGAACTAGCA
20	1870	1890	1910
	AAGAGAAGAAATCAAAT	ATATAACCAATAGTGAAATG	CCACAGGTTTGTCCACTGTCAG
25	1930	1950	1970
	GGTTGTCTACCTGTAGGA	TCAGGGTCTAAGCACCTTGG	TGCTTAGCTAGAATACCACCTA
30	1990	2010	2030
	ATCCTTCTGCAAGCCTC	TCTTCAGAGAACCCACTAGA	AGCAACTAGGAAAAATCACTTG
35	2050	2070	2090
	CCAAAATCCAAGGCAAT	TCCTGATGGAAAATGCAAAAG	CACATATATGTTTAATATCTT
40	2110	2130	2150
	TATGGGCTCTGTTCAAG	CACTCCTGAGAGGGAGGGG	TTATAGCTTCAGGAGGGAACCAG
45	2170	2190	2210
	CTTCTGATAAACACAAT	CTGCTAGGAACTTGGGAAAG	GAATCAGAGAGCTGCCCTTCAG

	2230	2250	2270
C.	MATTÖTTAAATTÖTTATT.	.GAATACACAATTTGGGGTA'	TTGGGATTTTTCTCCTTTTCTC
5			
	2293	2310	2330
70	SAGACATTICACCATTT	TANTTTTGTAACTGCTTAT	TTATGTGAAAAGGGTTATTTTT
10			
	2350	2370	2390
۸	CTTAGCTTAGCTATGTC	RGCCAATCCGATTGCCTTAG	GTGAAAGAAACCACCGAAATCC
15	2410	2430	. 2450
c			TTGTCAGAGGCTCCAAATAGAAA
20	2470	2490	2510-
۸	 TAAGAAAAGGTTTTCTT	CATTCATGGCTAGAGCTAG	ATTTAACTCAGTTTCTAGGCACC
25	2530	2550	2570
ī	CAGACCAATCATCAACT	ACCATTCTATTCCATGTTT	GCACCTGTGCATTTTCTGTTTGC
30	2590	2610	2630
(CCCATTCACTTTGTCAC	GAAACCTTGGCCTCTGCTA	AGGTGTATTTGGTCCTTGAGAAG
35	2650	2670	2590
•	TGGGAGCACCCTACAGG	GACACTATCACTCATGCTGG	TGGCATTGTTTACAGCTAGAAAG
40	2710	2730	2750
	CTGCACTGGTGCTAATG	CCCCTTGGGAAATGGGGCTG	TGAGGAGGAGGATTATAACTTAG
45	2770	2790	2010
	GCCTAGCCTCTTTTAAC	AGCCTCTGAAATTTATCTT	PTCTTCTATGGGGTCTATAAATGT
50	2830	2850	2870
			CCXAATGTACTTCTCACCCAGTCT

	1390	2910	2930
	TCTACACAGATGGAATCT	CTTTGGGGCTAAGAGAAAGG	TTTTATTCTATATTGCTTACCT
5			
	2950	2970	2990
	GATCTCATGTTAGGCCTA	AGAGGETTTCTCCAGGAGGA	TTAGCTTGGAGTTCTCTATACT
10			
	3010	3030	3050
	CAGGTACCTCTTTCAGGG	TTTTCTAACCCTGACACGGA	CTGTGCATACTTTCCCTCATCC
15			
	3070	3090	3110
	ATGCTGTGCTGTTATT	TAATTTTTCCTGGCTAAGAT	CATGTCTGAATTATGTATGAA
20			
	3130	3150	3170
	ATTATTCTATGTTTTTAT	TAATAAAAATAATATATCAGA	CATCGAAAAAAAA,
25	•		·
30			
35			
40			
45			
50			
50			
55			
J			

(2)

5	13	30	50	
	CAGCCGTGCTTGAAGCGTT	CCTGGAGCCCAAGCTCTCC1	CCACAGGTGAAGACAGGGC	CA
10		90	110	
	GCAGGAGACACCATGGGGC MetGlyH	ACCTCTCAGCCCCACTTCAC isLeuSerAlaProLeuHis	AGAGTGCGTGTACCCTGGC ArgValArgVal?roTrpG	AG ln
15	133	150	170	
	GGGCTTCTGCTCACAGCCT GlyLeuLeuLeuThrAlas	CACTTCTAACCTTCTGGAAC	CCCGCCCACCACTGCCCAGC nProProThrThrAlaGlnL	TC e u
20	190	210	230	
	ACTACTGAATCCATGCCAT ThrThrGluSermetProP	TCAATGTTGCAGAGGGGAA(heAsnValAlaGluGlyLy:	GGAGGTTCTTCTCCTTGTCC sGluValLeuLeuLeuValH	AC is
25	250	270	290	
30	AATCTGCCCCAGCAACTTT AsnLeuProGlaGlaLeuP	TTGGCTACAGCTGGTACAAJ heGlyTyrSerTrpTyrLys	AGGGGAAAGAGTGGATGGA	AC sn
	310	330	350	
35	CGTCAAATTOTAGGATATG ArgGlnIleValGlyTyrA	CAATAGGAACTCAACAAGCT lalleGlyThrGlnGlnAla	FACCCCAGGGCCCGCAAACA aThrProGlyProAlaAsnS	GC e:
	370	390	410	
40	GGTCGAGAGACAATATACC GlyArgGluThrIleTyrP	CCAATGCATCCCTGCTGAT(roAsnalaSerLeuLeuIle	CCAGAACGTCACCCAGAATG EGlnAsnValThrGlnAsnA	۵C sp
45				
50				

	430	÷50	470
_	ACAGGATTCTACACCCTA ThrGlyPheTyrThrLeu	CRAGTCATAAAGTCAGATCTTC GlnValIleLysSerAspLeuV	TGAATGAAGAAGCAACTGGA - ValAsnGluGluAlaThrGly
5	490	510	530
10	CAGTTCCATGTATACCCG	GGAGCTGCCCAAGCCCTCCATC GluLeuProLysProSerIle!	TCCAGCAACAACTCCAACCCT SerSerAsnAsnSerAsnPro
	550	570	590
15	GTGGAGGACAAGGATGCT ValGluAspLysAspAla	rGTGGCCTTCACCTGTGAACCT avalalaPheThrCysGluPro	GAGACTCAGGACACAACCTAC GluThrGlnAspThrThrTyr
	610	630	650
20		TCAGAGCCTCCCGGTCAGTCCC nGlnSerLeuProValSerPro	
	670	690	710
25	AACAGGACCCTCACTCT. AsnargThrLeuThrLeu	ACTCAGTGTCACAAGGAATGAC uLeuSerValThrArgAsnAsp	ACAGGACCCTATGAGTGTGAA ThrGlyProTyrGluCysGlu
30	730	750	770
		TGCGAACCGCAGTGACCCAGTC rAlaAsnArgSerAsp?roVal	
35	. 790	810	830
		TTCCCCTTCAGACACCTATTAG eSerProSerAspThrTyrTyr	CCGTCCAGGGGCAAACCTCAGC ArgProGlyAlaAsnLeuSer
40			
45			
50			

	\$50	870	890		
5	CTCTCCTGCTATGCAGCCT LeuSérCysTycAlaAlaS	TCTAACCCACCTGCACAGTAC SecasnProProAlaGlnTyr	TCCTGGCTTATCAATGGAACA SerTrpLeuIleAsnGlyThr		
	910	930	950		
10	TTCCAGCARAGCACACAA(PheGlnGlnSerThrGlnG	GAGCTCTTTATCCCTAACATC	ACTGTGAATAATAGTGGATCC ThrValAsnAsnSerGlySer		
	970	990	1010		
15	TATACCTGCCACGCCAAT. TyrThrCysHisAlaAsn.	AACTCAGTCACTGGCTGCAAC AsnSerValThrGlyCysAsn	AGGACCACAGTCAAGACGATC ArgThrThrValLysThrIle		
	1030	1050	1070		
20	ATAGTCACTGAGCTAAGT IleValThrGluLeuSer	CCAGTAGTAGCAAAGCCCCAA P:oValValAlaLysProGlr	ATCAAAGCCAGCAAGACCACA BlleLysAlaSerLysThrThr		
25	1090	1110	1130		
	GTCACAGGAGATAAGGACTCTGTGAACCTGACCTGCTCCACAAATGACACTGGAATCTCC ValthrGlyAspLysAspSerValAsnLeuThrCysSerThrAsnAspThrGlyIleSer				
30	- 1150	1170	1190		
			GGAGAGGATGAAGCTGTCCCAG rGluArgMetLysLeuSerGln		
35	1210	1230	1250		
			GGATGCTGGGGACGTATTGGTGT uAspalaGlyThrTyrTrpCys		
40					
45					
50					

	1090	1290	1310			
5			TATCATGCTGAACGTAAACTAT			
	1330	1350	1370			
10	AATGCTCTACCACAAGAA AsnAlaLeuFroGlnGlu	AATGGCCTCTCACCTGGGGCC AsnGlyLeuSerProGlyAla	ATTGCTGGCATTGTGATTGGA EllealaGlyIleValIleGly			
	1390	1410	1430			
15			TGTTTTCTGCATTTCGGGAAG CysPheLeuHisPheGlyLys			
20	1450	1470	1490			
	ACCGGCAGCTCAGGACCACTCCAATGACCCCACCTAACAAGATGAATGA					
25	1510	1530	1550			
	TACCCTGAACTTTGAAGC	CCAGCAACCCACACAACCAA	CTTCAGCCTCCCCATCCCTAAC			
30	1570	1590	1610			
	AGCCACAGAAATAATTTA	TTCAGAAGTAAAAAAGCAGT.	AATGAAACCTGAAAAAAAAAAAAA			
35	1630		,			
	AAAAAAAAA					
40						
45						
50						

	493	510	530
5	CAGTTCCATGTATACCC GlnPheHisValTyc2c	GGAGCTGCCCAAGCCCTCCATCT oGlubeuProLysProSerileS	CCAGCAACAACTCCAACCCT GerSerAsnAsnSerAsnPro
	550	570	590
10		TGTGGCCTTCACCTGTGAACCTC	
	510	630	650
15		ATCAGAGCCTCCCGGTCAGTCCC. snGlnSerLeuProValSerPro	
	670	690	710
20		TACTCAGTGTCACAAGGAATGAC euleuserValThrArgAsnAsp	
25	730	750	770
		GTGCGAACCGCAGTGACCCAGTC erAlaAsnArgSerAspProVal	
30	793	810	830
35		TTTCCCCTTCAGACACCTATTACC leserProserAspThrTyrTyr/	
	8 5 0	870	0 6 8
40		CCTCTAACCCACCTGCACAGTAC laserasnProProAlaGlnTyr	
	910	930	950
45		AAGAGCTCTTTATCCCTAACATC	
	970	990	1010
50		ATAACTCAGTCACTGGCTGCAAC snasnservalthrGlyCysAsr	

	103G	1050	1070			
5	ATAGTCACTGATAATGCTG TlevalThraspasnalaL	TACCACAAGAAAATGGCCT(.euPcoGlnGluAsnGlyLe	CTCACCTGGGGCCATTGCTGGC userProGlyAlaIleAlaGly			
	1090	1110	1130			
10	ATTGTGATTGGAGTAGTGG	SCCCTGGTTGCTCTGATAGC AlaLeuValAlaLeuIleAl	AGTAGCCCTGGCATGTTTTCTG aValAlaLeuAlaCysPheLeu			
15	1150	1170	1190			
,,,	CATTTCGGGAAGACCGGC His?heGlyLysThrGly	AGCTCAGGACCACTCCAATO SerSerGlyProLeuGln	ACCCACCTAACAAGATGAATGA			
20	1210	1230	1250.			
	AGTTACTTATTCTACCCT	GAACTTTGAAGCCCAGCAA	CCCACACAACCAACTTCAGCCTC			
25	1270	1290	1310			
	CCCATCCCTAACAGCCACAGAAATAATTTATTCAGAAGTAAAAAAGCAGTAATGAAACCT					
30	1330					
	GAAAAAAAAAAAAAA	e.k				
35						
40						
45						
50						

(4)

	:	acagcacagctgacagccgtactcaggaagcttctggatcctaggcttatctccacagag	60
5	51	gagaacacacagcagcagagaccatggggcccctctcagcccctccct	120
	121	atcacttggaaggggtcctgctcacagcatcacttttaaacttctggaatccgcccaca IleThrTrpLysGlyValLeuLeuThrAlaSerLeuLeuAsnPheTrpAsnProProThr	180
10	181	actgcccaagtcacgattgaagcccagccacccaaagtttctgaggggaaggatgttctt ThrAlaGlnValThrIleGluAlaGlnProProLysValSerGluGlyLysAspValLeu	240
	241	ctacttgtccacaatttgccccagaatcttgctggctacatttggtacaaagggcaaatg LeuLeuValHisAsnLeuProGlnAsnLeuAlaGlyTyrIleTrpTyrLysGlyGlnMet	300
15	301 ,	acatacgtctaccattacattacatcatatgtagtagacgqtcaaagaattatatatggg ThrTyrValTyrHisTyrIleThrSerTyrValValAspGlyGlnArgIleIleTyrGly	360
	361	cctgcatacagtggaagagaagagtatattccaatgcatccctgctghtccagaatgtc ProAlaTyrSerGlyArgGluArgValTyrSerAsnAlaSerLeuLeuIleGlnAsnVal	420
20	421	acgcaggaggatgcaggatcctacaccttacacatcataaagcgacgcgatgggactgga ThrGlnGluAspAlaGlySerTyrThrLeuHisIleIleLysArgArgAspGlyThrGly	480
	481	ggagtaactggacatttcaccttcaccttacacctggagactcccaagccctccatctcc GlyValThrGlyHis?heThrPheThrLeuHisLeuGluThrProLysProSerIleSer	540
25	541	agcagcaacttaaatcccaggcaggccatggaggctgtgatcttaacctgtgatcctgcg SerSerAsnLeuAsnProArgGluAlaMetGluAlaValIleLeuThrCysAspProAla	600
	501	actocagoogcaagotaccagtggtggatgaatggtcagagootcootatgactcacagg ThrProAlaAlaSerTyrGlnTrpTrpMetAsnGlyGlnSerLeuProMetThrHisArg	560
30	PP 1	ttgcagctgtccaaaaccaacaggaccctctttatattttggtgtcacaaagtatattgca LeuGláLeuSerLysThrAsnArgThrLeuPheIlePheGlyValThrLysTyrIleAla	720
	721	ggaccctatgaatgtgaaatacggaacccagtgagtgccagccgcagtgacccagtcacc GlyProTyrGluCysGluIleArgAsnProValSerAlaSerArgSerAspProValThr	780
35	731	ctgaatctcctcccaaagctgtccaagccctacatcacaatcaacaacttaaaccccaga LeuAsnLeuLeuProLysLeuSerLysProTyrlleThrlleAsnAsnLeuAsnProArg	840
	841	<pre>gagaataaggatgtcttaaccttcacctgtgaacctaagagtgagaactacacctacatt GluAsnLysAspValLeuThrPheThrCysGluProLysSerGluAsnTyrThrTyrIle</pre>	900
40	901	tggtggctaaatggtcagagcctccctgtcagtcccagggtaaagcgacccattgaaaac TrpTrpLeuAsnGlyGlnSerLeuProValSerProArgValLysArgProIleGluAsn	960
	961	aggatecteattetacceaatgteacgagaaatgaaacaggacettateaatgtgaaata ArgileLeuIleLeu2roAsnValThrArgAsnGluThrGlyProTyrGlnCysGluIle	1020
45	1021	C999accgatatggtggcatccgcagtgacccagtcaccctgaatgtcctctatggtcca	1080

50

	1081	gacttccccaccatttacccttcattcacctattaccgttcaggagaaaacctctacttt AspLeuProSerIleTyrProSerPhtThrTyrTyrArgSerGlyGluAsnLeuTyrPhe	1140
5	1141	tcctgcttcggtgagtctaacccacgggcacaatattcttggacaattaatgggaagttt SerCysPheGlyGluSerAsnProArgAlaGlnTyrSerTrpThrIleAsnGlyLysPhe	1209
	1201	cagetateaggaeaaaagetetetateeeccaaataaetacaaageatagtgggetetat GlnLeuSerGlyGlnLysLeuSerlleProGlnIleThrThrLysHisSerGlyLeuTyr	1260
10	1261	gcttgctctgttcgtaactcagccactggcaaggaaagctccaaatccatcacagtcaaa AlaCysSerValArgAsnSerAlaThrGlyLysGluSerSerLysSerIleThrValLys	1320
	1321	<pre>gtctctgactggatattaccctgaattctactagttcctccaattccattttctcccatg ValSerAspTrpIleLeuProEnd</pre>	1380
15 20	1381 1441 1501 1561 1621 1681 1741 1801 1861 1921 1981	gaatcacgaagagcaagacccactctgttccagaagccctataatctggaggtggacaac tcgatgtaaatttcatgggaaaacccttgtacctgacatgtgagccactcagaactcacc aaaatgttcgacaccataacaacagctactcaaactgtaaaccaggataagaagttgatg acttcacactgtggacagtttttcaaagatgtcataacaagactccccatcatgacaagg ctccaccctctactgtctgctcatgcctgcctctttcacttggcaggataatgcagtcat tagaatttcacatgtagtagcttctgagggtaacaacagagtgtcagatatgtcatctca acctcaaacttttacgtaacatctcagggaaatgtggctctctccatcttgcatacaggg ctcccaatagaaatgaacacagagatattgcctgtgtgtttgcagagaagatggtttcta tazagagtaggaaagctgaaattatagtagagtctcctttaaatgcacattgtgtggatg gctctcaccatttcctaagagatacagtgtaaaaacgtgacagtaatactgattctagca gaataaacatgtaccacatttgcaaaaaa	1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2010

₂₅ and

(5)

5	1	gggtggatcctaggctcatctccataggggagaacacacatacagcagagaccatggga metGly	59
	60	cccctctcagcccctccctgcactcagcacatcacctggaaggggctcctgctcacagca ProLeuSerAlaProProCysThrGlnHisIleThrTrpLysGlyLeuLeuThrAla	119
10	120	tcacttttaaacttctggaacctgcccaccactgcccaagtaataattgaagcccagcca SerLeuLeuAsn?heTrpAsnLeuProThrThrAlaGlnValIleIleGluAlaGlnPro	179
	180	cccaaagtttctgaggggaaggatgttcttctacttgtccacaatttgccccagaatctt ProLysValSerGluGlyLysAspValLeuLeuLeuValHisAsnLeuProGlnAsnLeu	239
15	240	actggctacatctggtacaaagggcaaatgacggacctctaccattacattacatcatat ThrGlyTyrIleTrpTyrLysGlyGlnMetThrAspLeuTyrHisTyrIleThrSerTyr	299
	<u>3</u> 00	gtagtagacggtcaaattatatatgggcctgcctacagtggacgagaaacagtatattcc ValValAspGlyGlnIleIleTyrGlyProAlaTyrSerGlyArgGluThrValTyrSer	359
20	360	aatgcatccctgctgatccagaatgtcacacaggaggatgcaggatcctacaccttacac AsnAlaSerLeuLeuIleGlnAsnValThrGlnGluAspAlaGlySerTyrThrLeuHis	419
	420	atcataaagcçaggcgatgggactggaggagtaactggatatttcactgtcaccttatac IleIleLysArgGlyAspGlyThrGlyGlyValThrGlyTyrPheThrValThrLeuTyr	479
25	480	tcggagactcccaagcgctccatctccagcagcaacttaaaccccagggaggtcatggag SerGluThrProLysArgSerIleSerSerSerAsnLeuAsnProArgGluValMetGlu	539
	540	gctgtgcgcttaatctgtgatcctgagactccggatgcaagctacctgtggttgctgaat AlaValArgLeuIleCysAspProGluThrProAspAlaSerTyrLeuTrpLeuLeuAsn	599
30	600	ggtcagaacctccctatgactcacaggttgcagctgtccaaaaccaacaggaccctctat GlyGlnAsnLeuProMetThrHisArgLeuGlnLeuSerLysThrAsnArgThrLeuTyr	659
	66 0	ctatttggtgtcacaaagtatattgcagggccctatgaatgtgaaatacggaggggagtg LeuPheGlyValThrLysTyrIleAlaGlyProTyrGluCysGluIleArgArgGlyVal	719
35	720	agtgccagccgcagtgacccagtcaccctgaatctcctcccgaagctgcccatgccttac SerAlaSerArgSerAspProValThrLeuAsnLeuLeuProLysLeuProMetProTyr	779
	780	atcaccatcaacaacttaaaccccagggagaagaaggatgtgttagccttcacctgtgaa IleThrIleAsnAsnLeuAsnProArgGluLysLysAspValLeuAlaPheThrCysGlu	839
40	840	cctaagagtcggaactacacctacatttggtggctaaatggtcagagcctcccggtcagt ProLysSerArgAsnTyrThrTyrIleTrpTrpLeuAsnGlyGlnSerLeuProValSer	899
	900	ccgagggtaaagcgacccattgaaaacaggatactcattctacccagtgtcacgagaaat ProArgValLysArgProIleGluAsnArgIleLeuIleLeuProSerValThrArgAsn	959
45	960	gaaacaggaccctatcaatgtgaaatacgggaccgatatggtggcatccgcagtaaccca GluThrGlyProTyrGlnCysGluIleArgAspArgTyrGlyGlyIleArgSerAsnPro	1019

50

1080		
	taccgttcaggagaaaacctcgacttgtcctgctttgcggactctaacccaccggcagag TyrArgSerGlyGluAsnLeuAspLeuSerCysPheAlaAspSerAsnProProAlaGlu	1139
1140	tatttttggacaattaatgggaagtttcagctatcaggacaaaagctctttatcccccaa TyrPheTrpTh:IleAsnGlyLysPheGlnLeuSerGlyGlnLysLeuPheIleProGln	1199
1200	attactacaaatcatagcgggctctatgcttgctctgttcgtaactcagccactggcaag IleThrThrAsnHisSerGlyLeuTyrAlaCysSerValArgAsnSerAlaThrGlyLys	1259
1250	gaaatctccaaatccatgatagtcaaagtctctggtccctgccatggaaaccagacaga	1319
13 2 0	totoattaatggotgocacaatagagacactgagaaaaagaacaggttgatacottcatg SerHisEnd	1379
1380 1440 1500 1560	aaattcaagacaaagaagaaaaaggctcaatgttattggactaaataatcaaaaggataa tgttttcataatttttattggaaaatgtgctgattcttggaatgttttättctccagatt tatgaactttttttcttcagcaattggtaaagtatacttttgtaaacaaaaattgaaaca tttgcttttgctctctatctgagtgccccccc 1591	1439 1499 1559
	1140 1200 1250 1320 1380 1440 1500	TyrArgSerGlyGluAsnLeuAspLeuSerCysPheAlaAspSerAsnProProAlaGlu tatttttggacaattaatgggaagtttcagctatcaggacaaaagccctttatccccaa TyrPheTrpThrIleAsnGlyLysPheGlnLeuSerGlyGlnLysLeuPheIleProGln 200 attactacaaatcatagcgggctctatgcttgctctgttcgtaactcagccactggcaag IleThrThrAsnHisSerGlyLeuTyrAlaCysSerValArgAsnSerAlaThrGlyLys 250 gaaatctccaaatccatgatagtcaaagtctctggtccctgccatggaaaccagacaga

20

30

35

- 2. Véhicule de clonage recombinant apte à une réplication, comportant un produit d'insertion comprenant un acide nucléique selon la revendication 1.
- 25 3. Cellule qui a été transfectée, infectée par un véhicule de clonage recombinant selon la revendication 2, ou à laquelle on a injecté ce dernier.
 - 4. Procédé pour préparer un polypeptide, ledit procédé comprenant les étapes consistant à :
 - (a) cultiver la cellule selon la revendication 3, et
 - (b) récupérer le polypeptide exprimé par ladite cellule.
 - 5. Procédé pour préparer un anticorps dirigé contre un polypeptide, ledit procédé comprenant les étapes consistant à :
 - (a) préparer ledit polypeptide par le procédé selon la revendication 4,
 - (b) injecter ledit polypeptide dans un hôte capable de produire des anticorps, et
 - (c) récupérer lesdits anticorps.

40

45

50

FIG.1