Selected Exercises §13

Colton Kinstley

June 20, 2018

Question 1

Let X be a topological space; let A be a subset of X. Suppose the for each $x \in A$ there is an open set U containing x such that $U \subset A$. Show that A is open in X.

Solution

To show that A is an open set in X we will show that it is the union of open sets of X. Given $x \in A$ let U_x be an open set containing X such that $U \subset A$. Then

$$\bigcup_{x \in A} U_x = A$$

thus A is a union of open sets.

Question 6

Show that the topologies of \mathbb{R}_l and \mathbb{R}_K are not comparable.

Solution

A basis for \mathbb{R}_l is the set of all intervals [a,b) and a basis for \mathbb{R}_K is the set of all open intervals (a,b) along with the intervals of the form $(a,b) \setminus K$ where $K = \{1/n \mid n \in \mathbb{Z}_+\}$. Let [x,b) be a basis element of \mathbb{R}_l where 1 < x < b. Then there is no basis element B of \mathbb{R}_K such that $x \in B$ and $B \subset [x,b)$. Thus by lemma 13.3 [Munkres] $\mathbb{R}_K \not\subset \mathbb{R}_l$.

Now take $D = (-1,1) \setminus K$ as a basis element of \mathbb{R}_K . No basis element B of \mathbb{R}_l both contains the point 0 and is contained within D. If so then B = (a,b) where a < 0 < b but there exists $n \in \mathbb{Z}$ such that 0 < 1/n < b so $B \not\subset D$. Thus by lemma 13.3 [Munkres] $\mathbb{R}_l \not\subset \mathbb{R}_K$. We conclude that \mathbb{R}_l and \mathbb{R}_K are not comparable.

Question 8

(a)

ApplyLemma 13.2 to show that the countable collection

$$\mathcal{B} = \{(ab,) \mid a < b, a \text{ and } b \text{ rational}\}\$$

is a basis that generated the standard topology on \mathbb{R} .

Proof

Let \mathcal{T} be the topology generated by \mathcal{B} . We will show that $\mathcal{T} = \mathcal{T}_{\mathbb{R}}$. Each element of \mathcal{B} is also a basis element of $\mathcal{T}_{\mathbb{R}}$ so $\mathcal{T} \subset \mathbb{R}$.

Now suppose $U = (\alpha, \beta)$ is a basis element of $\mathfrak{T}_{\mathbb{R}}$. For any $x \in U$ there exists an open interval (a, b) with a and b rational such that $\alpha < a < x < b < \beta$ because \mathbb{Q} is dense in \mathbb{R} . Thus by lemma 13.3 $\mathfrak{T}_{\mathbb{R}} \subset \mathfrak{T}$.

(b)

Show that the collection

$$\mathcal{C} = \{ [a, b) \mid a < b, a \text{ and } b \text{ rational} \}$$

is a basis that generates a topology different from the lower limit topology on R.

Solution

Let \mathcal{T} be the topology generated by \mathcal{C} . Take $[x,\beta)$ with x irrational as basis element of \mathbb{R}_l . There is no element of \mathcal{C} that contains x and is contained within $[x,\beta)$. Thus by lemma 13.3 $\mathcal{T} \not\subset \mathbb{R}_l$. Thus $\mathcal{T} \neq \mathbb{R}_l$.

Extra Question

Determine the convergent sequences for the finite complement topology on \mathbb{R} .

Claim

If x_n is a sequence in $(\mathbb{R}, \mathcal{T}_F)$ then x_n converges if and only if x_n has 0 or 1 constant subsequence.

Proof

First we note that any open set U in $(\mathbb{R}, \mathcal{T}_F)$ can be written in the form

$$U = \mathbb{R} \setminus \{a_i\}_{i=1}^n.$$

Suppose a sequence x_n has no constant subsequences. We claim that this sequence will converge to any point l in \mathbb{R} . Take some neighborhood of l, $U = \mathbb{R} \setminus \{a_i\}_{i=1}^n$. Since x_n has no constant subsequences the sequence coincides with $\{a_i\}_{i=1}^n$ on finitely many terms. That is to say $x_{i_k} = a_k$ for only finitely many $i_k \in \mathbb{N}$. Otherwise, a_k would be the value of a constant subsequence. Thus we may take

$$N = \max_{\substack{k \in 1, \dots, n \\ i_k \in \mathbb{N}}} \{i_k\} + 1.$$

in the definition of convergence. So that for all $n \geq N$ we have that $x_n \notin \{a_i\}_{i=1}^n$ thus $x_n \in U$ for $n \geq N$.

Now suppose that x_n has only one constant subsequence, say $x_m = l$ for $m \in M \subset \mathbb{N}$ where M has infinite cardinality. Then x_n converges to l. To see this take any neighborhood U of l. Then $x_m = l \in U$ for all $m \in M$ and the remaining subsequence x_k where $k \in \mathbb{N} \setminus M$ is a sequence with no constant subsequence. From the above argument it will also converge to l, thus x_n as a whole converges to l.

For the converse we will prove its contrapositive; if x_n has two or more constant subsequences, then x_n does not converge to any point in \mathbb{R} . Suppose x_n is a series with two or more distinct constant subsequences, say

$$x_{m_1} = l_1,$$

$$x_{m_2} = l_2,$$

$$\vdots$$

for $m_i \in M_i \subset \mathbb{N}$ and M_i infinite.

Suppose that x_n does converge to some point $l \in \mathbb{R}$, then l is different from at least one of l_1, l_2, \ldots and the neighborhood of $l, U = \mathbb{R} \setminus \{l_k\}$ where $l \neq l_k$ is such that for all $m_k \in M_k$ we have that $x_{m_k} \notin U$. But, since M_k is infinite this contradicts the supposition that x_n converges to l.