Nicole Keeney

Climate Data Scientist

PERSONAL INFO

% nicolekeeney.com

in github.com/nicolejkeeney

linkedin.com/in/nicole-keeney

RESUME SUMMARY

Fast learning, detail-oriented climate data scientist with a background in computational earth science research. Highly qualified with python data science modules for visualization, wrangling, and statistical analysis of climate model and remote sensing data.

EDUCATION

Atmospheric Science, B.A. (Hons)

University of California, Berkeley

SKILLS

- Python (xarray, dask, pandas, numpy, matplotlib, scipy, cartopy, bokeh, zarr, pyproj, geopandas, metpy)
- R (netcdf, stars, raster)
- Data visualization
- High Performance Computing
- Google & Amazon Cloud
- Git/GitHub: version control & opensource code development
- Model Development & Validation
- Time Management
- Science Communication

WORK EXPERIENCE

Eagle Rock Analytics

Junior Atmospheric Scientist (remote) 06/2021 – present

 Developing python code for the Cal-Adapt Analytics Engine, a cloud-based climate data analytics platform for California's energy sector.

UC Berkeley School of Public Health, Division of Environmental Health Sciences

Junior Specialist (half-time) 01/2021 – 02/2022

Undergraduate Student Researcher

10/2020 - 12/2020

- Calibrated a wind erosion model in California using remote sensing-derived vegetation data.
- Performed data extractions and zonal statistics using python and R for various environmental datasets utilizing a high performance computing environment.

University of Maryland / NASA Goddard Space Flight Center

Research Assistant (half-time, remote)

01/2021 - 01/2022

 Contributed to the development of a cloud-optimized python toolkit to streamline polar climate model validation using satellite data. Project emphasized interactive plotting techniques and data management with Google Cloud and zarr.

NASA Goddard Space Flight Center

Summer Intern (remote)

06/2020 - 08/2020

 Built an interactive Jupyter Book to highlight python code for evaluating potential drivers of winter sea ice growth in the Arctic using gridded data from NASA's ICESat-2 satellite.

UC Berkeley College of Natural Resources, Department of Environmental Science & Policy

Undergraduate Student Researcher

10/2019 - 12/2020

- Conducted original research for an undergraduate thesis.
- Utilized eddy covariance flux measurements and a planetary boundary layer model to evaluate a drought index using python data science packages.