O Método Backpropagation

Marcelo Thielo

Baseado em material de Mariusz Bernacki Przemyslaw Wlodarczyk

Multi-Layer Perceptron

Célula=Perceptron

Função sigmoidal

Três sigmóides (para c = 1, c = 2 e c = 3)

Derivando a f

$$\frac{d}{dx}f(x) = \frac{e^{-x}}{(1+e^{-x})^2} = f(x)(1-f(x))$$

$$S(x) = 2f(x) - 1 = \frac{1 - e^{-x}}{1 + e^{-x}}$$

Primeira etapa: apresentação das entradas e cômputo das saídas da camada de entrada

Primeira etapa: apresentação das entradas e cômputo das saídas da camada de entrada

Primeira etapa: apresentação das entradas e cômputo das saídas da camada de entrada

Primeira etapa: propagação dos sinais e cômputo das saídas da camada escondida

Primeira etapa: propagação dos sinais e cômputo das saídas da camada escondida

Primeira etapa: propagação dos sinais e cômputo da camada de saída

Primeira etapa: propagação dos sinais e cômputo do erro (desejado-obtido)

Segunda etapa: retro-propagação do erro para a camada escondida

Segunda etapa: retro-propagação do erro para a camada escondida

Segunda etapa: retro-propagação do erro para a camada de entrada

Segunda etapa: retro-propagação do erro para a camada de entrada

Segunda etapa: retro-propagação do erro para a camada de entrada

$$w'_{14} = w_{14} + \eta \delta_4 \frac{df_4(e)}{de} y_1$$

$$w'_{24} = w_{24} + \eta \delta_4 \frac{df_4(e)}{de} y_2$$

$$w'_{15} = w_{15} + \eta \delta_5 \frac{df_5(e)}{de} y_1$$

$$w'_{25} = w_{25} + \eta \delta_5 \frac{df_5(e)}{de} y_2$$

Tarefa:

 Utilizando o código postado no moodle*, modifique os arquivos de treinamento para obter uma rede capaz de reproduzir o comportamento de uma porta lógica XOR (ou exclusivo).

 *Adaptado de C++ Neural Networks and Fuzzy Logic – Rao & Rao