Fizyka na LHC – boson Higgsa

- Program fizyczny LHC.
- Brakujący element.
- Pole Higgsa.
- Poszukiwanie Higgsa na LEP.
- Produkcja Higgsa na LHC.
- ATLAS.
- Wyniki doświadczalne
- Dziś i jutro na LHC

Program fizyczny

- Unifikacja oddziaływań elektrosłabych została potwierdzona na eksperymentach na LEPie, ale nie zostało potwierdzone odkrycie bozonu Higgsa.
- Zbyt niska energia nie pozwoliła również na zbadanie fizyki kwarka t.
- Projekt LHC W CERNie z energią wiązek protonów 7 TeV:

Obserwacja bozonu Higgsa (jednego, dwóch?), jako sposobu na wyjaśnienie masy cząstek,

- rozstrzygnięcie poprawności proponowanych modeli,
- badanie niezachowania parzystości kombinowanej CP (w celu wyjaśnienia braku antymaterii),
- badania fizyki kwarku t i leptonu tau.
- obserwacja cząstek supersymetrycznych (teorie SUSY), jako kandydatów na ciemną energię i
- oszacowanie skali Wielkiej Unifikacji,

Należy również zauważyć, że budowa LHC przyczyniła się do znacznego postępu w elektronice i

informatyce.

21 MARCH 1984

A Large Hadron Collider in the LEP

Tunnel?

Bozon Higgsa – no po co po co?????

Wróćmy do konstrukcji teorii – w QED, która jest teorią najlepiej "przeliczoną" i najlepiej zbadaną doświadczalnie, symetria cechowania pola oznaczała istnienie oddziaływania fotonów z elektrycznie naładowanymi cząstkami. Kłopot polegała na tym, że w równaniu Diraca leptony były bezmasowe.

Lagrangian w Modelu Standardowym ma składowe:

$$\mathcal{L} = \mathcal{L}_f + \mathcal{L}_{int}$$

$$\mathcal{L}_f = \bar{\psi} (i \gamma^{\mu} \partial_{\mu} - m) \psi$$

$$\mathcal{L}_{int} = -\frac{g}{\sqrt{2}} \left[(\bar{u}, \bar{c}, \bar{t})_L \gamma^{\mu} V_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_L W_{\mu}^- + (\bar{d}, \bar{s}, \bar{b})_L \gamma^{\mu} V_{CKM}^\dagger \begin{pmatrix} u \\ c \\ t \end{pmatrix}_L W_{\mu}^+ \right]$$

- Przy próbie unifikacji oddz. elektromagnetycznych i słabych, cechowanie pola doprowadziło do opisu oddz. za pomocą czterech BEZMASOWYCH bozonów W_{1,2,3} i B.
- Fizycznie oddz. przenoszone poprzez prądy naładowane (W⁺⁻) oraz neutralne (Z⁰ i foton), które są kombinacjami pól W₃ i B:

$$Z^{0} = W_{3}cos\theta - Bsin\theta$$

 $\gamma = W_{3}sin\theta + Bcos\theta$ $sin\theta = 0.5$

■ W tym opisie pojawia się problem niezgodności z doświadczeniem – bozony W i Z są całkiem masywne:

$$M_W \approx 100 \; GeV$$

 Proponowanie rozwiązanie polega na wprowadzeniu dodatkowego pola Φ (Higgsa). Cząstki oddziałując z nim, widziane będą jako ciężkie.

Bozon Higgsa – bo nie ma lepszego

Pole Φ jest zespolone, w postaci dubletu:

$$\Phi = \begin{pmatrix} \varphi_1^+ + i\varphi_2^+ \\ \varphi_3^0 + i\varphi_4^0 \end{pmatrix}$$

- W teorii kwantowej istnienie pola oznacza istnienie cząstki, czyli pole to cząstki, które ze sobą oddziałują.
- Przy odpowiednich warunkach (wysoka energia) cząstki ta może być obserwowana.
- W ramach MS powinnien być jeden neutralny bozon Higgsa, w tzw. rozszerzeniach (supersymetrycznych) MS nawet 5 bozonów Higgsa.
- Dodatkowe pole jest opisywane jako dodatkowy człon (masowy) w lagranżianie:

$$V(\Phi) = \frac{1}{2}\mu^2 + \frac{1}{4}\lambda\Phi^4$$

Licząc minimum tego potencjału:

$$\frac{\partial V}{\partial \Phi} = \Phi(\mu^2 + \lambda \Phi^4) = 0$$

dostajemy:

gdy $\mu > 0$ i $\mu^2 > 0$ (μ rzeczywiste),

to
$$\Phi_{min} = 0$$
 i $V(\Phi_{min}) = 0$;

gdy μ jest urojone i μ^2 <0, to sa dwa minima:

$$\Phi_{min} = \pm \sqrt{\frac{-\mu^2}{\lambda}} \equiv \pm v; \ V(\Phi_{min}) = -\frac{1}{4} \frac{\mu^4}{\lambda} = -\frac{\lambda}{4} v^4$$

Pole Higgsa

Po wprowadzeniu nowego pola, w stanie o najniższej energii pole jest różne od zera, mówimy o próżniowej wartości oczekiwanej dla skalarnego pola bozonowego, o degeneracji próżni.

$$V(\Phi_{min}) = -\frac{1}{4}\frac{\mu^4}{\lambda} = -\frac{\lambda}{4}v^4$$

Mechanizm Higgsa polegał zatem na tym, że do lagranżianu o pewnej symetrii dodaliśmy człon pochodzący od skalarnego pola. Próba minimalizacji potencjału doprowadziła do obserwacji, że stan próżni oznacza niezerowe pole, czyli obecność cząstki.

Anegdota o nadawaniu masy

- Efekt ten nazwany został Spontanicznym Łamaniem Symetrii (SSB) i jest obserwowany w wielu aspektach, również makroskopowych (przykł).
- Peter Higgs wykazał, że takie niezerowe pole stawia opór cząstkom, które z nim oddziałują, czyli nadaje cząstkom masę.
- Mechanizm Higgsa podaje masy bozonów W⁺⁻ i Z⁰ oraz przewiduje, że fermiony mają masę, ale o nieznanej wartości (masa pozostaje parametrem empirycznym).
- W najprostszej wersji postuluje się istnienie jednego neutralnego skalarnego bozonu Higgsa.

Poszukiwania bozonu Higgsa

Pierwsze poszukiwania bozonu Higgsa przy dostępnych energiach LEPu obejmowały procesy:

Stałe sprzężenia są proporcjonalne do masy cząstek w wierzchołku, zatem higgs najczęściej będzie rozpadał się do ciężkich cząstek.

Produkcja bozonu Higgsa na LHC

energia zderzającego się partonu:

$$\hat{s} = x_p \cdot x_{\bar{p}} \cdot s$$

$$M_{\mathbf{X}} = \sqrt{\hat{s}}$$

- Higgs: M~100 GeV/c²
 - LHC: $\langle x_p \rangle = 100/14000 \approx 0.007$

Produkcja bozonu Higgsa na LHC

- Neutralne bozony najczęściej produkowane są z anihilacji kwart-antykwark.
- W LHC są zderzane protony antykwarki pochodzą tylko z morza.
- Stąd dominującym procesem prowadzącym do produkcji Higgsa i bozonów W i Z jest tzw fuzja gluonowa:

Rozpady bozonu Higgsa na LHC

Bozon Higgsa może rozpaść się na kilkanaście sposobów, w zależności od swojej masy (której nie znamy).

Poszukiwaliśmy go zatem w rozpadach, które można łatwo zidentyfikować:

$$H \rightarrow \gamma \gamma$$
 (dwa fotony)

$$H \rightarrow 4 \ leptony$$
 (elektrony, miony)

Bozon Higgsa może rozpaść się na kilkanaście sposobów, w zależności od swojej masy (której nie znamy).

Poszukiwaliśmy go zatem w rozpadach, które można łatwo zidentyfikować:

 $H \rightarrow \gamma \gamma$ (dwa fotony)

 $H \rightarrow 4 \ leptony$ (elektrony, miony)

Bozon Higgsa może rozpaść się na kilkanaście sposobów, w zależności od swojej masy (której nie znamy).

Poszukiwaliśmy go zatem w rozpadach, które można łatwo zidentyfikować:

$H \rightarrow \gamma \gamma$ (dwa fotony)

$H \rightarrow 4 \ leptony$ (elektrony, miony)

Bozon Higgsa może rozpaść się na kilkanaście sposobów, w zależności od swojej masy (której nie znamy).

Poszukiwaliśmy go zatem w rozpadach, które można łatwo zidentyfikować:

$H \rightarrow 4 \ leptony$ (elektrony, miony)

Higgs @ ATLAS

Peter Higgs 2013 – laureat nagrody Nobla

Jaki to przypadek?

Higgs na ILC

International Linear Collider = Higgs factory:

Higgs na ILC

International Linear Collider = Higgs factory:

	ILC	ILC	ILC	CLIC	CLIC	CLIC	LEP3
√s [GeV]	250	500	1000	500	1500	3000	240
Luminosity [10 ³⁴ cm ⁻¹ s ⁻¹]	0.75	1.8	4.9	1.3	3.7	5.9	1 per IP
>0.99 √s fraction	87%	58%	45%	54%	38%	34%	100%
polarization e	80%	80%	80%	80%	80%	80%	-
polarization e+	30%	30%	20%	>50%?	>50%?	>50%?	-
beam size σ_x [nm]	729	474	335	100	60	40	71000
beam size σ_y [nm]	7.7	5.9	2.7	2.6	1.5	1	320
Power [MW]	128	162	300	235	364	589	200

 $L \sim 10^{34} (250 \text{ GeV}) \rightarrow 20,000 \text{ H/year}$

Philip Burrows

Dzisiaj na LHC

4 grudnia 2018 skończyło się zbieranie danych na LHC (2-letnia przerwa na przygotowania Run III)

- Osiągnięta świetlność LHC powyżej nominalnej.
- Odkrycie bozonu Higgsa.
- Łamanie parzystości CP.
- Brak dowodów na Nową Fizykę.

Jutro na LHC- Higher Lumi

The High Luminosity Large Hadron Collider

The New Machine for Illuminating the Mysteries of Universe HL-LHC Technical Design Report and the HL-LHC book

Program fizyczny:

- Badania bozonu Higgsa.
- Fizyka poza Modelem Standardowym (BSM).

Upgrade:

- Modernizacja optyki akceleratora (nowe magnesy, punkty oddziaływań):
- Problem zniszczeń radiacyjnych w detektorach (głównie krzemowych)

Poza Modelem Standardowym

- Model Standardowy to teoria w której leptony i kwarki oddziałują ze sobą poprzez wymianę bozonów pośredniczących.
- Opis oddziaływań elektrosłabych i silnych bardzo dobrze zgadza się z doświadczeniem.
- Po rozwiązaniu problemu mas cząstek, MS nie przewiduje Wielkiej Unifikacji (GUT), a w szczególności nie unifikuje oddz. grawitacyjnych.
- W MS aż 19 parametrów wyznaczanych jest eksperymentalnie.
- W MS nic nie wiadomo o masach neutrin.
- To, co wykracza poza MS nazywamy Nową Fizyką (lub Beyond Standard Model)
- Unifikacja oddziaływań (GUT)– przy pewnej skali energii stałe oddziaływań przyjmują tę samą wartość, ale obliczenia pokazują, że w obszarze 10¹¹ 10¹⁶ GeV stałe te zbiegają się tylko parami.
- Problem hierarchii dlaczego jest tak duża "przerwa"
 w skali energii pomiędzy unifikacją elektrosłabą a GUT
- (10² GeV a 10¹⁶ GeV), a mało brakuje do SGUT (10¹⁹ GeV)?
 Jest to przesłanka, że w tym obszarze jest miejsce na nowe zjawiska.
- Problem ekspansji Wszechświata i składników Ciemnej Energii. Rozpad protonu?
- Jednym z rozwiązań jest wprowadzenie nowego świata cząstek – cząstek supersymetrycznych (1970).
- Teoria MSSM Minimal Supersymmetric Standard Model

MSSM

Sypersymetria: symetria łącząca cząstki o różnych spinach.

Mamy operator Q: $\hat{Q}|bozon\rangle = |fermion\rangle$, który zmienia spin cząstki.

Pojawiają się supersymetryczni partnerzy zwykłych cząstek (o ciekawych nazwach):

cząstk	i SM	R	partnerzy SUSY	R
Spin = 1/2 4	kwark <i>q</i> lepton <i>l</i>	1 1	Spin = 0 $\begin{cases} \text{skwark } \tilde{q} \\ \text{slepton } \tilde{l} \end{cases}$	-1 -1
Spin = 1 ≺		1	Spin = 1/2 $\begin{cases} \text{wino } \tilde{W} \\ \text{zino } \tilde{Z} \\ \text{fotino } \tilde{\gamma} \\ \text{gluino } \tilde{g} \end{cases}$	-1
Spin = 0	higgs H^0 H^\pm	1	Spin = 1/2 higgsino $ ilde{H}^0$ $ ilde{H}^\pm$	-1

Mamy 3 generacje skwarków i sleptonów.

Sektor Higgsa jest rozszerzony o nowe stany: h^0 , A^0 , H^{\pm} i ich partnerów supersymetrycznych.

SUSY – wielka unifikacja

Gdyby masa najlżejszej s-cząstki była rzędu M_w, skala GUT przesuwa się do 10¹⁶ GeV.

Zmierzone stałe sprzeżenia zbiegają się przy skali GUT w SUSY a nie w MS.

Czas życia protonu byłby rzędu 10³³ lat.

Gdyby supersymetria była symetrią dokładną, masy cząstek i ich s-cząstek byłyby takie same (no i byłyby już obserwowane).

Brak obserwacji cząstki Higsa daje się wytłumaczyć istnieniem ciężkich cząstek supersymetrycznych.

Przy teoriach SUSY jest bardzo dużo przewidywać łamania CP (np. elektryczny moment dipolowy neutronu)

Parzystość R

Każdy fermion ma swojego supersymetrycznego partnera bozonowego.

Każdy bozon ma swojego partnera fermionowego.

W teoriach supersymetrycznych jest więcej cząstek Higgsa.

Supersymetryczne bozony pośredniczące są mieszaniną s-bozonów:

$$gaugino = \widetilde{\gamma}, \widetilde{W}^{\pm}, \widetilde{Z}^{0}$$

$$chargino(\chi_{1,2}^{\pm}) = \widetilde{W}^{\pm}, \widetilde{H}^{\pm}$$

$$neutralino(\chi^0)_{1,2,3,4} = \tilde{Z}^0, \, \tilde{H}^0$$

A skoro nie udało się nam na razie znaleźć cząstek SUSY, to znaczy, że

są one bardzo ciężkie:
$$M_{SUSY} > 100 \ GeV$$

Liczba kwantowa zdefiniowana jako:

wana jako:

$$R = (-1)^{2J+3B+L}$$
 \longrightarrow -1 Cząstki SUSY

gdyby była zachowana w oddziaływaniach:

- cząstki SUSY produkowane w parach,
- najlżejsza cząstka (LSP) powinna być stabilna,
- LSP bardzo słabo oddziałuje (jak neutrino nie widzimy go),
- LSP jest kandydatem na ciemną energię, oddziałują tylko grawitacyjnie

Supersymmetric "shadow" particles

Particles

SUSY w LHC

Jeśli SUSY istnieje, to łatwo (i szybko) może być znaleziona na LHC do 3 TeV.

Dzięki dużemu przekrojowi czynnemu i spektakularnym sygnaturom tło do tych procesów jest małe.

Jeśli nic nie znajdziemy na LHC: SUSY umrze

Jeśli ją znajdziemy: powinniśmy zmierzyć masy niektórych cząstek i zidentyfikować spin.

Higgs SUSY

Teoria supersymetryczne przewiduje istnienie pięciu bozonów Higgsa

Sygnatury SUSY - przykłady

SUSY na LHCb

Jeśli nowe cząstki istnieją, to powinny być również widzialne w pośrednich procesach, jako diagramy pętlowe, np. w rozpadach $B_s^0 \to \mu^+\mu^-$ i $B^0 \to K^{*0}\mu^+\mu^-$:

 Wyniki LHCb nie znajdują dowodów na Fizykę poza Modelem Standardowym (BSM):

