004: Data structures

Learning Outcome: String, Collections: list, tuple, dictionary, sets

Definitions/Concepts			
Data structures	 Data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied on it. Some in-built data structures of python are: List Tuple Sets Dictionary 		
String	 Any collection of numbers, letter, special character or space enclosed within double or single quotes is data of type String in Python 		

Important functions of String			
len():It returns the length of string.Syntax: len(string)	>>> a="toppr" >>> len(a) 5		
.upper():It returns the string in upper case.Syntax: string.upper()	<pre>>>> b="codr" >>> b.upper() 'CODR'</pre>		
.lower(): • It returns the string in lower case. • Syntax: string.lower()	<pre>>>> c="TopprCodr" >>> c.lower() 'topprcodr'</pre>		

- Concatenation means joining.
- Plus(+) sign can be used to concatenate two String variables.

```
>>> a="Toppr"
>>> b="Codr"
>>> c=a+b
>>> print(c)
TopprCodr
```

Lists

- It is a collection of data values, which can be of different data types.
- It is created using square brackets []
- It is <u>ordered</u>, and each element of list has a unique address called index
- It is <u>mutable</u>, which means we can change its elements.
- To access any element of a list, we can use its index, this process is called indexing.

Indexing

In this list **a_list**, the first element of is **1** and its index is **0**. Similarly, the second element is **3.5** and its index is **1** and so on.

To access a single element of the list we can simply use square brackets.

We can even access more than one element of the list.eg.

Note: Elements with index starting from 0 and less than 2 are returned.

We can use negative indexes too.

Tuples e.g.

- Similar to list, it is a collection of data values, which can be of different data types.
- It is created using round brackets () or parentheses.
- It is <u>ordered</u>, and each element of tuple has a unique address called <u>index</u>
- It is <u>immutable</u>, which means we can't change its elements.
- To access any element of a tuple, we can use indexing.

Sets

- It is a collection of data values, which can be of <u>different data types</u>.
- It is created using curly brackets { }.
- It is <u>unordered</u>, so indexing can't be done on sets.
- It is mutable, which means we can change its elements.
- Only unique elements can be stored in a set.

Dictionary

- It is a collection of key-value pairs.
- It is created using curly brackets { }.
- The key-value pairs can be of any data type.
- The keys in a dictionary should be <u>unique</u>.

Important functions of Lists

- .append():
- It is used to add an element at the end of the list
- Syntax: list.append(element)

 .insert(): It is used to add an element at the specified index. Syntax: list.insert(index,element) 	>>> b=['c','o','d','r'] >>> b.insert(1,0) >>> b ['c', 0, 'o', 'd', 'r']
 del: It is used to delete the whole list or a particular element using its index Syntax: del list or del list[index] 	>>> del b[2] >>> b ['c', 0, 'd', 'r']
 .remove(): It is used to delete an element by its value Syntax: list.remove(element) 	>>> b.remove('d') >>> b ['c', 0, 'r']

Important functions of Lists and Tuples				
 len(): It gives the number of elements present in it. Syntax: len(list) or len(tuple) 	a=[1,2,3] b=('w','e')			
 .index(): It gives the index no.of first occurrence of an element. Syntax: list.index(element) or tuple.index(element) 	>>> s=['t','o','p','p','r'] >>> s.index('p') 2 >>> s=('t','o','p','p','r') >>> s.index('p') 2			
 .count(): It gives the count of an element in a list or tuple Syntax: list.count(element) or tuple.count(element) 	>>> s=['t','o','p','p','r'] >>> s.count('o') 1 >>> s=('t','o','p','p','r') >>> s.count('p') 2			

Important functions of Sets

.add()

- It is used to add an element in the set.
- Syntax: set.add(element)

>>>	a={:	2,'r	,5.7	,11}
>>>	a.a	dd (78	3)	
>>>	a			
{2,	11,	78,	'r',	5.7}

Let's take two sets:

$$setA={2,4,6,8,10,12,14}$$

 $setB={3,6,9,12,15}$

.intersection()

- It returns the common elements of the two sets.
- Syntax: setA.intersection(setB)

.union()

- It returns all the elements of the two sets.
- Syntax: setA.union(setB)

>>> setA.intersection(setB) {12, 6}

- >>> setA.union(setB) {2, 3, 4, 6, 8, 9, 10,
- , 12, 14, 15}

Important functions of Dictionary

.values():

- It is used to display all the keys of the dictionary.
- Syntax: dictionary.values()

.keys():

- It is used to display all the values of the dictionary.
- Syntax: dictionary.keys()

.items()

- It is used to display all the key-value pairs of the dictionary.
- Syntax: dictionary.items()

```
>>> d={'a':20,'b':300,'z':45}
>>> d.items()
dict_items([('a', 20), ('b', 300), ('z', 45)])
```

Activity links and Solutions

Student Activity 1: Strings

```
#Q1: Convert the string s into upper case
```

```
>>> s="I am learning to code in Python"
>>> s.upper()
'I AM LEARNING TO CODE IN PYTHON'
```

#Q2: Convert the string t into lower case	<pre>>>> t="myTopprCodr" >>> t.lower() 'mytopprcodr'</pre>
#Q3: Create a string and display its length	<pre>>>> a_string="CODR-toppr2020" >>> len(a_string) 14</pre>
#Q4: Extract two words from w	>>> w="determination" >>> w[2:6] 'term' >>> w[7:13] 'nation'

Student Activity 2: List and Tuples

```
#Q1: Create a list with elements of different data types.
```

```
>>> new list=['toppr', 2020, 'codr', 9.12]
```

#Q2: Access the third element from the beginning and the third element from the end.

```
>>> new_list[2] 'codr'
```

>>> new_list[-3] 2020

For the 3rd element from beginning the index will be 3-1.i.e. 2

For the 3rd element from end the index will be -3

#Q3: Create a tuple with elements of different data types.

```
>>> new_tuple=('12',345,True,7.8,'u')
```

#Q4: Access the second element from beginning and second element from the end.

```
>>> new_tuple[1] 345
```

>>> new_tuple[-2]

For the 2nd element from beginning the index will be 2-1,i.e. 1

For the 2rd element from end the index will be -2

#Q5:Find the lengths of both list and tuple and display which is larger. {hint: if else conditional will be used}

Student Activity 2: Set and Dictionary

#Q1: Create two sets, one containing first six multiples of 2 and the other containing first five multiples of 3

```
>>> m_2={2,4,6,8,10,12}
>>> m_3={3,6,9,12,15}
```

#Q2: Find the intersection and union of both the sets

```
>>> m_2.union(m_3)
{2, 3, 4, 6, 8, 9, 10, 12, 15}
>>> m_2.intersection(m_3)
{12, 6}

#Q3: Create a dictionary of your choice
>>> new_dict={'India':'New Delhi','Pakistan':'Islamabad',
'Nepal':'Kathmandu','Bangladesh':'Dhaka'}

#Q4: List all the keys and values of the dictionary separately.
>>> new_dict.keys()
dict_keys(['India', 'Pakistan', 'Nepal', 'Bangladesh'])
>>> new_dict.values()
dict_values(['New Delhi', 'Islamabad', 'Kathmandu', 'Dhaka'])
```

Fun-fact

Tim Peters, a major contributor to the Python community, wrote a poem 'The Zen of Python' to highlight the philosophies of Python. If you type in "import this" in your Python IDLE, you'll find this poem.