

FCC PART 22 H/24 E MEASUREMENT AND TEST REPORT

For

NEUTRANO INC.

3-255 Spinnaker Way, Vaughan, Ontario, Canada L4K 4J1

FCC ID: XVW186013

Report Type: **Product Type:** Original Report Wrist Watch Phone Coolies Bu **Test Engineer:** Cookies Bu **Report Number:** RSZA09121705-22H&24E **Report Date:** 2010-04-30 Merry Zhao merry, where **Reviewed By:** EMC Engineer Bay Area Compliance Laboratories Corp. (Shenzhen) Prepared By: 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government. * This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*" (Rev.2)

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
EUT PHOTO	
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	5
TEST METHODOLOGY	
Test Facility	5
SYSTEM TEST CONFIGURATION	6
JUSTIFICATION	
EQUIPMENT MODIFICATIONS	
CONFIGURATION OF TEST SETUP	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §1.1307 & §2.1093 - RF EXPOSURE	8
APPLICABLE STANDARD	
TEST RESULT	
FCC §2.1047 - MODULATION CHARACTERISTIC	9
FCC § 2.1046, § 22.913(A) & § 24.232(C) - RF OUTPUT POWER	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	10
Test Data	
FCC §2.1049, §22.917 & §24.238 - OCCUPIED BANDWIDTH	12
APPLICABLE STANDARDS	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS.	
TEST RESULT	
FCC §2.1051, §22.917(A) & §24.238(A) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	13
APPLICABLE STANDARDS	13
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
Test Result	13
FCC §2.1053, §22.917 & §24.238 - SPURIOUS RADIATED EMISSIONS	14
APPLICABLE STANDARDS	14
Test Procedure	14
TEST EQUIPMENT LIST AND DETAILS	14
TEST DATA	15
FCC §22.917(A) & §24.238(A) - BAND EDGES	17
APPLICABLE STANDARDS	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
TEST RESULT	17
FCC §2.1055, §22.355 & §24.235 - FREQUENCY STABILITY	18

DECALARATION LETTER	20
TEST RESULT	19
TEST EQUIPMENT LIST AND DETAILS	19
TEST PROCEDURE	18
APPLICABLE STANDARD	18

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The *NEUTRANO INC*.'s product, model number: *w600FB*,*w600*,*w900*,*w900B*,*w510*,*w518*,*w528*,*w520* (*FCC ID*: *XVW186013*) or the "EUT" as referred to in this report is a *Phone watch*, which measures approximately: 22.5 cm L x 4.8 cm W x 2.3 cm H, rated input voltage: DC 3.7V battery. And the manufacturer is *Kingtech Electronic Technology Limited*.

Frequency Range:

Cellular Band: 824-849 MHz (TX), 869-894 MHz (RX) PCS Band: 1850-1910 MHz (TX), 1930-1990 MHz (RX)

Bluetooth: 2400-2483.5 MHz (TX/RX)

Modulation: GMSK (GSM), GFSK (Bluetooth)

Transmitter Output Power:

Cellular Band: 33 dBm; PCS Band: 30 dBm; Bluetooth: -6~4 dBm

All measurement and test data in this report was gathered from production sample serial number: 0912056 (Assigned by BACL, Shenzhen). The EUT was received on 2009-12-17.

*Note: The series products, model number: w600FB, w600, w900, w900B, w510, w518, w528, w520, we select w600FB to test, the difference of these models is just in model name, and all the above models are different from the original model number w960 except the mainboard, which was explained in the attached Declaration Letter.

EUT Photo

Please see additional photos in Exhibit B&C

Objective

This type approval report is prepared on behalf of *NEUTRANO INC*. in accordance with Part 2, Subpart J, Part 22 Subpart H, and Part 24 Subpart E of the Federal Communication Commissions rules.

Page 4 of 20

The objective is to determine compliance with FCC rules for output power, modulation characteristic, occupied bandwidth, and spurious emission at antenna terminal, spurious radiated emission, frequency stability and band edge.

According to the declaration letter from the applicant, the EUT has the same RF design as the previous certified product (FCC ID: XVW196860, grant date: 2010-04-19), the only difference between them are the antenna, LCD screen and the enclosure. So, the radiated power (ERP and EIRP), radiated spurious emissions have been investigated, other items can be referred to the previous certified product.

Related Submittal(s)/Grant(s)

FCC Part 15.247 submission with FCC ID: XVW186013.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 22 Subpart H - Public Mobile Services

Report No.: RSZA09121705-22H&24E

Part 24 Subpart E - Personal Communication Services

Applicable Standards: TIA/EIA 603-C, ANSI C63.4-2003.

All radiated and conducted emissions measurements were performed at Bay Area Compliance Laboratories Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp.(Shenzhen) to collect test data is located in the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 21, 2007. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2007070.htm

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to TIA/EIA-603-C.

The final qualification test was performed with the EUT operating at normal mode.

Equipment Modifications

No modifications were made to the EUT.

Configuration of Test Setup

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1307, §2.1093	RF Exposure (SAR)	Compliant *
\$2.1046; \$22.913 (a), \$24.232 (c)	RF Output Power	Compliant
§2.1047	Modulation Characteristics	N/A
\$2.1049 \$22.917, \$24.238	99% & -26 dB Occupied Bandwidth	Compliant **
\$2.1051, \$22.917 (a), \$24.238 (a)	Spurious Emissions at Antenna Terminal	Compliant **
\$ 2.1053 \$22.917 (a), \$24.238 (a)	Field Strength of Spurious Radiation	Compliant
§22.917 (a), §24.238 (a)	Out of band emission, Band Edge	Compliant **
\$2.1055 \$22.355, \$24.235	Frequency stability vs. temperature Frequency stability vs. voltage	Compliant **

Note: * Please refer to SAR report released by BACL, Report Number: R0912228-SAR ** Please refer to FCC ID: XVW196860.

FCC §1.1307 & §2.1093 - RF EXPOSURE

Applicable Standard

FCC §1.1307 and §2.1093.

Test Result

Compliance

The EUT is a portable device and need the SAR evaluation; please refer to SAR Report: R0912228-SAR.

FCC §2.1047 - MODULATION CHARACTERISTIC

According to FCC §2.1047(d), Part 22H & 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

FCC § 2.1046, § 22.913(a) & § 24.232(c) - RF OUTPUT POWER

Applicable Standard

According to FCC $\S 2.1046$ and $\S 22.913$ (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to FCC $\S 2.1046$ and $\S 24.232(c)$, in no case may the peak output power of a base station transmitter exceed 2 watt EIRP.

Test Procedure

Conducted method:

The RF output of the transmitter was connected to the wireless test set and the spectrum analyzer through sufficient attenuation.

Radiated method:

TIA 603-C section 2.2.17

Test Equipment List and Details

Manufacturer	Description	Description Model		Calibration Date	Calibration Due Date
Sunol Sciences	Horn Antenna	DRH-118	A052604	2009-09-25	2010-09-25
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2009-08-28	2010-08-27
Rohde & Schwarz	EMI Test Receiver	ESCI	100224	2009-11-07	2010-10-16
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2009-03-11	2010-03-11
HP	Preamplifier	8449B	3008A00277	2009-09-12	2010-09-11
HP	Signal Generator	HP8657A	2849U00982	2009-10-16	2010-10-15
HP	Amplifier	HP8447D	2944A09795	2009-08-02	2010-08-02
HP	Synthesized Sweeper	8341B	2624A00116	2009-11-07	2010-11-06
COM POWER	Dipole Antenna	AD-100	041000	2009-09-25	2010-09-25
A.H. System	Horn Antenna	SAS-200/571	135	2009-05-17	2010-05-17
Rohde & Schwarz	Universal Radio Communication Tester	CMU200	109038	2009-05-09	2010-05-09

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0kPa

The testing was performed by Cookies Bu on 2009-12-23.

Conducted Output Power: Please refer to FCC ID: XVW196860, test report RSZ09110302-22H&24E.

ERP & EIRP:

Cellular Band (Part 22H)

Indic	cated	Table	Test A	ntenna	Su	bstituted		Ant.	Cable	Absolute	Part 22H	
Frequency (MHz)	S.A. Reading (dBµV/m)	Angle (Degree)	Height (m)	Polar (H/V)	Frequency (MHz)	S.G. Level (dBm)	Polar (H/V)	Gain Cord.	Loss (dB)	Level (dBm)	Limit (dBm)	
Frequency in Low Channel												
824.2	120.25	110	1.8	Н	824.2	28.4	Н	0	0.9	27.5	38.45	
824.2	122.34	256	1.2	V	824.2	31.1	V	0	0.9	30.2	38.45	
				Freq	uency in M	iddle Cha	nnel					
836.6	120.14	89	1.8	Н	836.6	28.3	Н	0	0.9	27.4	38.45	
836.6	122.25	178	1.1	V	836.6	30.9	V	0	0.9	30.0	38.45	
	Frequency in High Channel											
848.8	119.03	310	1.8	Н	848.8	27.8	Н	0	0.9	26.9	38.45	
848.8	121.40	125	1.2	V	848.8	30.1	V	0	0.9	29.2	38.45	

PCS Band (Part 24E)

Indic	cated	Table	Test A	ntenna	Su	ıbstituted		Ant. Cable		Absolute	Part 24E	
Frequency (MHz)	S.A. Reading (dBµV/m)	Angle (Degree)	Height (m)	Polar (H/V)	Frequency (MHz)	S.G. Level (dBm)	Polar (H/V)	Gain Cord.	Loss (dB)	Level (dBm)	Limit (dBm)	
	Frequency in Low Channel											
1850.2	114.62	128	1.8	Н	1850.2	15.9	Н	6.2	1.02	21.08	33	
1850.2	122.21	216	1.1	V	1850.2	22.5	V	6.2	1.02	27.68	33	
				Frequ	uency in M	iddle Cha	nnel					
1880.0	114.84	147	1.8	Н	1880.2	16.1	Н	6.2	1.03	21.27	33	
1880.0	122.28	124	1.2	V	1880.2	22.5	V	6.2	1.03	27.57	33	
	Frequency in High Channel											
1909.8	114.64	336	1.8	Н	1909.8	15.9	Н	6.2	1.03	21.07	33	
1909.8	122.41	80	1.2	V	1909.8	22.3	V	6.2	1.03	27.47	33	

FCC §2.1049, §22.917 & §24.238 - OCCUPIED BANDWIDTH

Applicable Standards

FCC §2.1049, §22.917 and §24.238.

Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 30 kHz (Cellular /PCS) and the 26 dB & 99% bandwidth was recorded.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100224	2009-11-07	2010-10-16
Rohde & Schwarz	Universal Radio Communication Tester	CMU200	109038	2009-05-09	2010-05-09

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Result

FCC §2.1051, §22.917(a) & §24.238(a) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standards

FCC §2.1051, §22.917(a) and §24.238(a).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1051.

Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2009-08-28	2010-08-27
Rohde & Schwarz	EMI Test Receiver	ESCI	100224	2009-11-07	2010-10-16
Rohde & Schwarz	Universal Radio Communication Tester	CMU200	109038	2009-05-09	2010-05-09

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Result

FCC §2.1053, §22.917 & §24.238 - SPURIOUS RADIATED EMISSIONS

Applicable Standards

CFR 47 § 2.1053, §22.917 and § 24.238.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \lg (TXpwr in Watts/0.001) - the absolute level$

Spurious attenuation limit in $dB = 43 + 10 \text{ Log}_{10}$ (power out in Watts)

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Sunol Sciences	Horn Antenna	DRH-118	A052604	2009-09-25	2010-09-25
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2009-03-11	2010-03-11
Rohde & Schwarz	EMI Test Receiver	ESCI	100224	2009-11-07	2010-10-16
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2009-08-28	2010-08-27
HP	Preamplifier	8449B	3008A00277	2009-09-12	2010-09-11
HP	Signal Generator	HP8657A	2849U00982	2009-10-16	2010-10-15
HP	Amplifier	HP8447D	2944A09795	2009-08-02	2010-08-02
HP	Synthesized Sweeper	8341B	2624A00116	2009-11-07	2010-11-06
COM POWER	Dipole Antenna	AD-100	041000	2009-09-25	2010-09-25
A.H. System	Horn Antenna	SAS-200/571	135	2009-05-17	2010-05-17
Rohde & Schwarz	Universal Radio Communication Tester	CMU200	109038	2009-05-09	2010-05-09

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0kPa

The testing was performed by Cookies Bu on 2009-12-25.

Test mode: Transmitting

Below 1 GHz:

Cellular Band (Part 22H)

Indic	ated	Table	Test Antenna		Substituted				Absolute		
Frequency (MHz)	S.A. Reading (dBµV/m)	Angle Degree	Height (m)	Polar (H/V)	Frequency (MHz)	Level (dBm)	Antenna Gain (dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
499.70	36.16	85	1.3	V	499.70	-63.2	0	0.72	-63.92	-13	50.92
185.54	32.33	120	1.4	Н	185.54	-65.2	0	0.55	-65.75	-13	52.75
199.40	30.45	256	1.0	Н	199.40	-66.4	0	0.55	-66.95	-13	53.95
756.88	31.94	314	10	V	756.88	-68.5	0	0.86	-69.36	-13	56.36

PCS Band (Part 24E)

Indic	cated Table		Test Antenna		Substituted				Absolute		
Frequency (MHz)	S.A. Reading (dBµV/m)	Angle Degree	Height (m)	Polar (H/V)	Frequency (MHz)	Level (dBm)	Antenna Gain (dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
121.18	30.92	223	1.1	Н	121.18	-60.5	0	0.48	-60.98	-13	47.98
499.48	33.55	321	1.2	V	499.48	-65.5	0	0.72	-66.22	-13	53.22
757.50	33.63	120	1.6	V	757.50	-65.4	0	0.86	-66.26	-13	53.26
82.38	31.86	45	1.0	Н	82.38	-66.2	0	0.46	-66.66	-13	53.66

Above 1 GHz:

Cellular Band (Part 22H)

Indicated		Table	Test Aı	ntenna		Substitu	ted		Absolute		
Frequency (MHz)	S.A. Reading (dBµV/m)	Angle (Degree)	Height (m)	Polar (H/V)	Frequency (MHz)	Level (dBm)	Antenna Gain (dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
1673.20	59.06	98	1.4	V	1673.20	-42.9	6.2	1.24	-37.94	-13	24.94
3344.68	51.56	254	1.2	Н	3344.68	-45.6	6.7	2.90	-41.80	-13	28.80
3344.68	50.45	210	1.2	V	3344.68	-45.7	6.7	2.90	-41.90	-13	28.90
2513.02	49.15	223	1.1	V	2513.02	-48.2	7.4	1.72	-42.52	-13	29.52
1673.20	52.90	146	1.6	Н	1673.20	-47.6	6.2	1.24	-42.64	-13	29.64
1324.34	48.56	123	1.1	Н	1324.34	-53.2	6.4	1.21	-48.01	-13	35.01

PCS Band (Part 24E)

Indic	ated Table		Test Antenna		Substituted				Absolute		
Frequency (MHz)	S.A. Reading (dBµV/m)	Angle Degree	Height (m)	Polar (H/V)	Frequency (MHz)	Level (dBm)	Antenna Gain (dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
3760.00	54.12	169	1.5	Н	3760.	-42.2	6.9	1.47	-36.77	-13	23.77
3760.00	51.23	85	1.2	V	3760.	-45.2	6.9	1.47	-39.77	-13	26.77
1731.14	51.95	145	1.1	V	1731.14	-47.1	6.2	1.25	-42.15	-13	29.15
2412.82	48.13	98	1.3	V	2412.82	-49.5	7.4	1.62	-43.72	-13	30.72
1130.26	50.77	110	1.4	V	1130.26	-51.2	6.3	1.18	-46.08	-13	33.08
1150.30	48.87	236	1.5	Н	1150.30	-54.3	6.3	1.18	-49.18	-13	36.18

FCC §22.917(a) & §24.238(a) - BAND EDGES

Applicable Standards

According to FCC §22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to FCC §24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency, RBW set to 3 kHz.

Test Equipment List and Details

Manufacturer	Manufacturer Description		Serial Number	Calibration Date	Calibration Due Date	
Rohde & Schwarz	EMI Test Receiver	ESCI	100224	2009-11-07	2010-11-06	
Rohde & Schwarz	Universal Radio Communication Tester	CMU200	109038	2009-05-09	2010-05-09	

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Result

FCC §2.1055, §22.355 & §24.235 - FREQUENCY STABILITY

Applicable Standard

FCC §2.1055 (a), §2.1055 (d), §22.355, §24.235

According to FCC §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

Frequency Range (MHz)	Base, fixed (ppm)	Mobile ≤3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

Frequency Tolerance for Transmitters in the Public Mobile Services

According to FCC §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
WUHUAN	Temperature & Humidity Chamber	HTP205	20021115	2009-05-09	2010-05-09	
Rohde & Schwarz	Universal Radio Communication Tester	CMU200	109038	2009-05-09	2010-05-09	

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Result

DECALARATION LETTER

Company Address: 3-255 Spinnaker Way, Vaughan, Ontario, Canada L4K 4J1

Tel: 905.760.0226 Fax: 905.760.1403

Product Similarity Declaration

To Whom It May Concern,

We, NEUTRANO INC., hereby declare that our Product: Phone watch, Model Number: w600FB,w600,w900,w900B,w510,w518,w528,w520 are different from the Model Number: w960that was certified by BACL except the main board.

In addition, the difference among the model: w600FB (tested by BACL), w600, w900, w900B, w510, w518, w528 and w520 is model name due to marketing purposes

Please contact me if you have any question.

Signature:

Print Name: Gary Motman

Title: president

Date: 2009-12-24

***** END OF REPORT *****