

FONCTIONS D'UNE VARIABLE RÉELLE: DÉFINITIONS -GÉNÉRALITÉS

Version 1

Dr Euloge KOUAME © UVCI

Aout 2017

Contract of the contract of t

Objectifs	5
I - Notions de bases sur les fonctions	7
A. Définition	
B. Opérations algébriques	g
C. Fonctions majorées, minorées, bornées	g
D. Monotonie	10
E. Parité et périodicité	10
F. Injection, Surjection, Bijection	11
G. Exercice	12
Conclusion	13
Solution des exercices	15
Bibliographie	17
Webographie	19

À la fin de cette leçon, vous serez capable de :

- **définir** une fonction
- **comprendre** les propriétés fonctions
- **connaître** les opérations possibles dans l'ensemble des fonctions à valeurs réelles

Définition	7
Opérations algébriques	9
Fonctions majorées, minorées, bornées	9
Monotonie	10
Parité et périodicité	10
Injection, Surjection, Bijection	11
Exercice	12

A. Définition

Définition

Une **fonction** d'une variable réelle à valeurs réelles est une application $f: U \to R$, où U est une partie de R. En général, U est un intervalle ou une réunion d'intervalles. On appelle U le **domaine de définition** de la fonction f.

Syntaxe

On note les fonctions f de la façon suivante :

 $f:U\to R$

 $x \mapsto f(x)$.

- 1. la première flèche reliant U à R qui s'écrit sans barre verticale à l'extrémité gauche se lit : "dans" (f va de U dans R).
- 2. la deuxième flèche reliant x à f(x) possède, elle une barre verticale à l'extrémité gauche et se lit : "a pour image" (x a pour image f(x)).

Le **graphe**, appelé encore courbe représentative, noté C_f d'une fonction f est l'ensemble des points (x; f(x)) du plan défini par :

 $C_f = \{(x, f(x)) \mid x \in U\}.$

Exemple: Deux fonctions classiques

B. Opérations algébriques

Soient $f: U \to R$ et $g: U \to R$ deux fonctions définies sur une même partie U de R. On peut alors définir les fonctions suivantes :

- la **somme** de f et g est la fonction $f+g:U\to R$ définie par (f+g)(x)=f(x)+g(x) pour tout $x\in U$;
- le **produit** de f et g est la fonction f . g : $U \to R$ définie par $(f \cdot g)(x) = f(x)$. g(x) pour tout $x \in U$;
- la **multiplication par un scalaire** $\lambda \in R$ de f est la fonction λ . $f: U \to R$ définie par $(\lambda \cdot f)(x) = \lambda \cdot f(x)$ pour tout $x \in U$.

C. Fonctions majorées, minorées, bornées

Définition

Soient $f: U \rightarrow R$ et $g: U \rightarrow R$ deux fonctions. Alors:

- $f \ge g \text{ si } \forall x \in U, f(x) \ge g(x);$
- $f \ge 0$ si $\forall x \in U, f(x) \ge 0$;
- f > 0 si $\forall x \in U$, f(x) > 0;
- f est dite **constante** sur U si $\exists a \in R$, $\forall x \in U$, f(x) = a;
- f est dite **nulle** sur U si $\forall x \in U$, f(x) = 0.

Définition

Soit $f: U \rightarrow R$ une fonction. On dit que:

- f est **majorée** sur U si $\exists M \in R$, $\forall x \in U$, $f(x) \leq M$;
- f est **minorée** sur U si $\exists m \in R$, $\forall x \in U$, $f(x) \ge m$;
- f est **bornée** sur U si f est à la fois majorée et minorée sur U.

Exemple : Graphe d'une fonction bornée (minorée par m et majorée par M).

D. Monotonie

Définition

Soit $f: U \rightarrow R$ une fonction. On dit que:

- f est **croissante** sur U si $\forall x, y \in U, x \leq y \rightarrow f(x) \leq f(y)$
- f est **strictement croissante** sur U si $\forall x, y \in U, x < y \rightarrow f(x) < f(y)$
- f est **décroissante** sur U si $\forall x, y \in U, x \le y \rightarrow f(x) \ge f(y)$
- f est strictement décroissante sur U, si $\forall x, y \in U, x < y \rightarrow f(x) > f(y)$
- *f* est **monotone** (resp. strictement monotone) sur U si f est croissante ou décroissante (resp. strictement croissante ou strictement décroissante) sur U.

Exemple : Un exemple de fonction croissante (et même strictement croissante)

Remarque : Somme, produit et composition de fonctions monotones

Soient f et g deux fonctions définies sur U.

- 1. Si f et g sont croissantes sur U, la somme f + g est croissante.
- 2. Si f et g sont positives ou nulles sur U. Si f et g sont croissantes sur U alors leur produit fg est croissant sur U.
- 3. Si f et g sont croissantes toutes le deux, ou décroissantes toutes les deux alors leur composée (si elle existe), est croissante.
- 4. Si l'une des fonctions f ou g est croissante et l'autre décroissante, alors la composée est décroissante.

E. Parité et périodicité

Définition : Parité

Soit I un intervalle de R symétrique par rapport à 0 (c'est-à-dire de la forme] - a, a[ou [-a, a] ou [-a, a]

Soit $f: I \rightarrow R$ une fonction définie sur cet intervalle. On dit que :

f est **paire** si $\forall x \in I$, f(-x) = f(x),

f est **impaire** si $\forall x \in I$, f(-x) = -f(x).

Remarque : Interprétation graphique

- *f* est paire si et seulement si son graphe est symétrique par rapport à l'axe des ordonnées (figure de gauche).
- *f* est impaire si et seulement si son graphe est symétrique par rapport à l'origine (figure de droite).
- IMPORTANT: toute fonction f impaire s'annule en 0. Autrement dit, si f est impaire f(0) = 0.

Définition : Périodicité

Soit $f:R\to R$ une fonction et T un nombre réel, T>0. La fonction f est dite **périodique de période T** si

$$\forall x \in R, f(x + T) = f(x).$$

Interprétation graphique

f est périodique de période T si et seulement si son graphe est invariant par la translation de vecteur T.i, où i est le premier vecteur de coordonnées.

Remarque

Si f est une fonction périodique de période T, alors, pour tout entier relatif non nul n, f est périodique de période nT.

Exemple

Les fonctions sinus et cosinus sont 2π -périodiques. La fonction tangente est π -périodique.

F. Injection, Surjection, Bijection

Définition

Soit $f: E \to F$ une fonction, où E et F sont des parties de R.

- f est injective si $\forall x, x' \in E$. $f(x) = f(x') \rightarrow x = x'$;
- f est surjective si $\forall y \in F$, $\exists x \in E$, y = f(x);
- f est bijective si f est à la fois injective et surjective, c'est-à-dire si ∀ y ∈ F ∃!
 x ∈ E, y = f(x).

Proposition

Si $f: E \to F$ est une fonction bijective alors il existe une unique application $g: F \to E$ telle que $g \circ f = id_E$

et $f \circ g = id_F$. La fonction g est la **bijection réciproque** de f et se note f-1.

Remarque

- On rappelle que l'identité, $id_E : E \rightarrow E$ est simplement définie par $x \mapsto x$.
- $g \circ f = id_E$ se reformule ainsi : $\forall x \in E, g(f(x)) = x$.
- Alors que $f \circ g = id_F$ s'écrit : $\forall y \in F$, f(g(y)) = y.
- Dans un repère orthonormé les graphes des fonctions f et f-1 sont symétriques par rapport à la première bissectrice.

Voici le graphe d'une fonction injective (à gauche), d'une fonction surjective (à droite) et enfin le graphe d'une fonction bijective ainsi que le graphe de sa bijection réciproque.

G. Exercice

Question 1

Soit I =]- ∞ ,0[et f : I \rightarrow R définie par f(x) = 1/x. f est-elle monotone ? Et sur I =]0,+ ∞ [? Et sur I =]- ∞ , 0[U]0, + ∞ [?

Question 2

Pour deux fonctions paires que peut-on dire sur la parité de la somme ? du produit ? et de la composée ?

Et pour deux fonctions impaires ? Et si l'une est paire et l'autre impaire ?

Question 3

[Solution n°1 p 17]

Soit I =]- ∞ ,0[et f : I \rightarrow R définie par f(x) = 1/x. f est-elle monotone ? Et sur I =]0,+ ∞ [? Et sur I =]- ∞ , 0[U]0, + ∞ [?

Question 4

[Solution n°2 p 17]

Soit f une fonction définie sur un intervalle I de R. Montrer que si f est strictement monotone sur I, alors f est injective sur I.

Indice:

Utilisez la définition et un raisonnement par l'absurde

Conclusion

Après avoir introduit les propriétés de base des fonctions, nous allons voir dans la suite les notions de **limite** et **continuité** et leurs usages dans l'étude des fonctions.

Solution des exercices

> Solution n°1 (exercice p. 13)

décroissante sur] 0, $+\infty$ [, non monotone sur]- ∞ , 0[U]0, $+\infty$ [

> Solution n°2 (exercice p. 13)

Démonstration. Soient $x, x' \in I$ tels que f(x) = f(x'). Montrons que x = x'. Si on avait x < x', alors on aurait nécessairement f(x) < f(x') ou f(x) > f(x'), suivant que f est strictement croissante, ou strictement décroissante. Comme c'est impossible, on en déduit que $x \ge x'$. En échangeant les rôles de x et de x', on montre de même que $x \le x'$. On en conclut que x = x' et donc que f est injective.

Bibliographie

[04] François Liret, Maths en pratique à l'usage des étudiants Cours et exercices, Dunod, 2006

[04] Wieslawa J. Kaczor, Maria T. Nowak, PROBLÈMES D'ANALYSE I, Exercices et corrigés, EDP Sciences, 2008.

Webographie

[04] http://www.discmath.ulg.ac.be/