Домашняя работа 2 (на 24.02).

- **ALG 1.** Pemuth cpabhenue: $3x + 7 \equiv 0 \pmod{17}$.
- **ALG 2.** Разложите $x^3 + 5x^2 + 9x + 6$ на неприводимые множители над $\mathbb{R}[x]$.

ALG 3. Является ли идеалом

- (a) множество $\{1+f(x)|f\in\mathbb{Z}[x]\}$ идеалом кольца многочленов над целыми числами;
- (б) множество $\{xf(x)|f\in\mathbb{Z}[x]\}$ идеалом кольца многочленов над целыми числами.

ALG 4. Пусть R некоторое кольцо, тогда будем называть отображения из $\mathbb{N} \cup \{0\}$ в R формальными степенными рядами над R (обозначим множество формальных степенных рядов над R, как R[[x]]). Введем на них операции умножения и сложения следующим образом: если $f,g \in R[[x]]$, то (f+g)(i)=f(i)+g(i) и $(f\cdot g)(i)=\sum\limits_{j=0}^{i}f(j)\cdot g(i-j)$ (степенные ряды похожи на многочлены, но у них бесконечно "мономов").

- (а) Докажите, что формальные степенные ряды образуют кольцо;
- (б) найдите все обратимые элементы в кольце формальных степенных рядов над \mathbb{R} ;
- (в) докажите, что $\mathbb{R}[[x]]$ кольцо главных идеалов.