RELATION DPP-1

1.	A relation from P to Q is
	(a) A universal set of $P \times Q$ (b) $P \times Q$
	(c) An equivalent set of $P \times Q$ (d) A subset of $P \times Q$
2.	Let $A = \{a, b, c\}$ and $B = \{1, 2\}$. Consider a relation R defined from set A to set B. Then R is
	equal to set
	(a) A (b) B (c) $A \times B$ (d) $B \times A$
3.	Let $n(A) = n$. Then the number of all relations on A is
	(a) 2^n (b) $2^{(n)!}$ (c) 2^{n^2} (d)None of these
4.	The relation R defined on the set $A = \{1, 2, 3, 4, 5\}$ by
	$R = \{(x, y) : x^2 - y^2 < 16\}$ is given by
	(a) {(1, 1), (2, 1), (3, 1), (4, 1), (2, 3)}
	(b) {(2, 2), (3, 2), (4, 2), (2, 4)}
	(c) {(3, 3), (3, 4), (5, 4), (4, 3), (3, 1)} (d) None of these
5.	A relation R is defined from $\{2, 3, 4, 5\}$ to $\{3, 6, 7, 10\}$ by ${}^{xRy \Leftrightarrow x}$ is relatively prime to y. Then
•	domain of R is
	(a) $\{2, 3, 5\}$ (b) $\{3, 5\}$
	(c) $\{2, 3, 4\}$ (d) $\{2, 3, 4, 5\}$
6.	Let R be a relation on N defined by $x + 2y = 8$. The domain of R is
	(a) {2, 4, 8} (b) {2, 4, 6, 8}
	(c) $\{2, 4, 6\}$ (d) $\{1, 2, 3, 4\}$
7.	If $R = \{(x,y) x, y \in \mathbb{Z}, x^2 + y^2 \le 4\}$ is a relation in \mathbb{Z} , then domain of \mathbb{R} is
	(a) $\{0, 1, 2\}$ (b) $\{0, -1, -2\}$
	(c) {-2, -1, 0, 1, 2} (d) None of these
8.	If A is the set of even natural numbers less than 8 and B is the set of prime numbers less than 7,
	then the number of relations from A to B is
_	(a) 2^9 (b) 9^2 (c) 3^2 (d) 2^{9-1}
9.	Given two finite sets A and B such that $n(a) = 2$, $n(b) = 3$. Then total number of relations from A to B is (a) 4 (b) 8 (c) 64 (d) None of these
10.	The relation R defined on the set of natural numbers as {(a, b) : a differs from b by 3}, is given by
	(a) $\{(1, 4, (2, 5), (3, 6),)\}$ (b) $\{(4, 1), (5, 2), (6, 3),\}$
	(c) $\{(1,3),(2,6),(3,9),\}$ (d) None of these
11.	Let $A = \{1, 2, 3\}$, $B = \{1, 3, 5\}$. A relation $R: A \to B$ is defined by $R = \{(1, 3), (1, 5), (2, 1)\}$. Then R^{-1} is defined by
	(a) $\{(1,2), (3,1), (1,3), (1,5)\}$ (b) $\{(1,2), (3,1), (2,1)\}$
	(c) $\{(1, 2), (5, 1), (3, 1)\}$ (d) None of these

Answers

1)d 2 c 3 c 4 d 5d 6 c 7 c 8 a9c 10b 11c