7 класс

1. Где тут плотность?

В лаборатории провели измертния массы и объема пяти тел, изготовленных из четырех материалов: березы, $\rho_{\rm B}=0.7~{\rm r/cm}^3$, алюминия, $\rho_{\rm A\pi}=2.7~{\rm r/cm}^3$, железа, $\rho_{\rm W}=7.8~{\rm r/cm}^3$ и свинца, $\rho_{\rm C}=11.3~{\rm r/cm}^3$.

Затем результаты нанесли на график, по одной оси которого отложили объемы тел V_i , а по другой их массы m_i . Здесь индекс і может принимать значения 1, 2, 3, 4, 5 — соответственно номерам точек на графике. К сожалению, со временем масштаб по осям был утрачен, а экспериментаторы в спешке забыли записать, какому веществу какая экспериментальная точка соответствует. Определите:

- из какого материала изготовлено тело самой большой массы?
- у тела с каким номером была самая маленькая плотность? Чему она равна?
- какой точке соответствует тело, изготовленное из свинца?
- какие тела сделаны из одинакового материала? Определите из какого.

Примечание! Применять свои линейки для нанесения на график масштаба нельзя. Подобные решения будут оценены в ноль баллов.

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени): $7 \, \text{класс} - 16.00$; $8 \, \text{класс} - 17.00$.

Самой большой массой обладает тело 4. Его координата по оси m самая большая. По определению, плотность $\rho = m/V$. На данных осях точки для всех тел, обладающих одинаковой плотностью, должны лежать на одной прямой проходящей через начало координат, так

как для них (автоматически) равно отношение m/V. Из этого следует, что плотности тел 2 и 3 одинаковы. Чем больше плотность тела, тем больше отношение m/V, а прямая, идущая из начала координат через эти точки, должна идти под меньшим углом. Из этого следует, что самая маленькая плотность у тела 1, а самая большая у тела 5. Телу 4 соответствует плотность меньшая, чем у тела 5, но большая чем у 3 и 2, следовательно, тело 4 изготовлено из железа, 5 – из свинца, 2 и 3 – из алюминия, а 1 – из березы.

Критерии оценивания

Определено тело с самой большой массой
(есть обоснование)
Идея связать плотность с углом наклона прямой из начала координат
Найдено тело с самой большой плотностью
Найдено тело с минимальной плотностью
Найдены тела с одинаковой плотностью
2 балла
Найдены тела с одинаковой плотностью

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени): $7 \, \text{класс} - 16.00$; $8 \, \text{класс} - 17.00$.

2. Кубик в кубе

Однородный кубик со стороной a и плотностью ρ поместили внутрь куска глины с плотностью 4ρ , которому придали форму куба со стороной 2a. Получившийся куб облепили пластилином плотностью 2ρ , в результате чего получился куб стороной 3a (см. рисунок). Определите среднюю плотность получившейся системы.

Возможное решение

Слободянин В.

Среднюю плотность системы можно рассчитать, определив объемы глины и пластилина, и выразив их через объем $V = a^3$ маленького кубика. Заметим, что эти объемы не зависят от взаимного расположения кубика, глины и пластилина, и равны соответственно $(2^3 - 1^3)V = 7V$ и $(3^3 - 2^3)V = 19V$.

Тогда
$$\rho_{\rm cp} = \frac{\rho V + 4\rho \cdot 7V + 2\rho \cdot 19V}{27V} = \frac{67\rho}{27} \approx 2,5\rho \; .$$

Критерии оценивания

1.	Выражены объемы глины и пластилина (по 3 балла)	6 баллов
2.	Получена формула для расчета средней плотности	1 балл
3.	Получено значение средней плотности	3 балла

Сегодня, 20 января, на портале online.mipt.ru составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени): 7 класс – 16.00; 8 класс – 17.00.

3. Встретились две трубы

На трубопрокатном заводе по конвейерам с одинаковой скоростью движутся во встречных направлениях две трубы разной длины. Мимо друг друга трубы проезжают за время $t_1 = 5$ с (время измеряется от момента, когда поравняются передние торцы труб, движущиеся навстречу друг другу, до момента, когда поравняются задние торцы). В результате поломки, один из конвейеров начал движение в обратном направлении с вдвое большей скоростью. За какое время t_2 трубы проедут мимо друг друга теперь? Рассмотрите возможные варианты.

Возможное решение

Кармазин С.

Задачу удобно решать в системе отсчета, связанной с трубой, скорость υ которой не изменялась. Обозначим длину этой трубы l_1 , а длину другой трубы l_2 . Можно считать, что встречная труба проехала мимо неподвижной, когда она переместилась на расстояние $L=l_1+l_2$. В первом случае труба двигалась со скоростью 2υ . Время $t_1=L/(2\upsilon)$ разъезда труб не зависит от того, какая именно труба находится в движении, длинная или короткая. Во втором случае, скорость подвижной трубы относительно неподвижной равна υ . В результате, время обгона составляет $t_2=L/\upsilon=2t_1=10$ с. Это время тоже не зависит от длины подвижной трубы.

Критерии оценивания

1. Выражение для времени t_1 3 балла

2. Выражение для времени t_2 3 балла

3. Численный ответ 1 балл

4. Рассмотрены разные варианты и указано, что ответ не зависит от того, какая именно труба изменила скорость 3 балла

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени): $7 \, \text{класс} - 16.00$; $8 \, \text{класс} - 17.00$.

4. Кофе на средней скорости

Машина половину пути ехала равномерно; затем, въехав 70 на плохой участок дороги, стала 60 двигаться медленнее, но тоже с постоянной скоростью. На графике приведена зависимость 20 средней скорости машины от

времени движения. К сожалению, при движении по плохой дороге на график пролили кофе, и часть информации пропала.

Определите:

- путь, пройденный машиной за все время движения;
- время движения на первой половине пути;
- величину скорости машины на втором участке;
- значение средней скорости через 60 с после начала движения.

Замятнин М.

Весь пройденный путь можно найти, умножив значения средней скорости (на всём пути) на все время движения, найденные из графика:

$$v_{cp} = 30$$
 км/час = 30 000 м/3 600 с = 25/3 м/с.

Отсюда находим путь $S = v_{cn}t_0 = 25/3$ (м/c) ·120 c = 1000 м.

Половине пути соответствует расстояние 500 м. Скорость на первом участке составляет 60 км/ч = 50/3 м/с, следовательно, время движения на нем $t_1 = 500$ м:50/3 м/с = 30 с.

Время движения на втором участке $t_2 = 120 \text{ c} - 30 \text{ c} = 90 \text{ c} = (1/40) \text{ ч}$, откуда, скорость движения на нем $v_2 = 0.5 \text{ км}$:(1/40) ч = 20 км/ч.

К моменту времени 60 с машина половину времени ехала со скоростью v_1 и половину с v_2 , следовательно, $v_{\rm cp}(60\,{\rm c})=\frac{v_1+v_2}{2}=40\,{\rm km/y}$.

Критерии оценивания

1. Найден путь, пройденный машиной	2 балла
2. Найдено время движения на первом участке	2 балла
3. Определена скорость движения на втором участке	3 балла
4. Найдено значение средней скорости через 60 с	3 балла

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени): $7 \, \text{класс} - 16.00$; $8 \, \text{класс} - 17.00$.

8 класс

1. Столоход

Экспериментатор Глюк на большом лабораторном столе проводил испытания модели вездехода. Координатную ось X он направил вдоль длинного края стола. Зависимости координаты модели x(t) и пройденного им пути s(t) от времени приведены на графиках. Опишите характер движения модели вездехода (словами или сделав рисунок). Определите, с какой максимальной скоростью двигался вездеход? На каком расстоянии друг от друга находятся начальная и конечная точки его движения?

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени): $7 \, \text{класc} - 16.00$; $8 \, \text{класc} - 17.00$.

Замятнин М.

Из графиков видно, что на первом участке $(0-40\,\mathrm{c})$ изменение координаты x равно пройденному вездеходом пути. Это означает, что движение происходило вдоль длинного края стола. На втором участке $(40-60\,\mathrm{c})$, координата x не изменялась, но путь продолжал увеличиваться. Такое возможно, если вездеход двигался в направлении, перпендикулярном оси X, причём часть времени он может ехать в одну сторону, а часть в обратную. На третьем участке $(60-120\,\mathrm{c})$ уменьшение координаты x совпало с изменением пройденного пути, следовательно, вездеход вновь двигался вдоль длинной стороны стола, но в направлении противоположном первоначальному.

Максимальную скорость вездеход имел на втором участке (самый большой угловой коэффициент наклона графика пути от времени). Из графика находим значение $\upsilon_{\text{макс}} = 2.0 \text{ см/c}$.

На втором участке смещение модели вездехода может принимать значения от нуля до 40 см в направлении перпендикулярном оси X. Изменение координаты x за все время движения составило 20 см, откуда, по теореме Пифагора, можно найти максимальное расстояние между точками старта и финиша $L = \sqrt{20^2 + 40^2} \approx 45$ см. Таким образом искомое расстояние лежит в пределах от 20 см до 45 см.

Критерии оценивания

1. Правильно описан характер движения вездехода	3 балла
2. Найдена максимальная скорость	2 балла
3. Определено смещение в направлении перпендикулярн	ном
оси X	2 балла
4. Применена теорема Пифагора для нахождения рассто	яния 2 балла
5. Дан числовой ответ для расстояния	1 балл

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени): $7 \, \text{класс} - 16.00$; $8 \, \text{класс} - 17.00$.

2. Куб кубу рознь

Куб из однородного материала плавает, погрузившись на глубину h в жидкость. На какую глубину H в этой же жидкости погрузится куб, имеющий вдвое бо́льшую плотность и вдвое бо́льшую длину ребра?

Возможное решение

Замятнин М.

Запишем условие плавания куба с длиной ребра a, имеющего плотность ρ , в жидкости с плотностью $\rho_{\text{ж}}$:

$$ho_{\scriptscriptstyle{\mathbb{R}}} h a^2 g =
ho a^3 g$$
 ИЛИ $h = a \left(
ho /
ho_{\scriptscriptstyle{\mathbb{R}}} \right)$.

Тогда, для второго куба

$$\rho_{\mathbb{R}} H(2a)^2 g = (2\rho)(2a)^3 g$$
 или $H = 4a(\rho/\rho_{\mathbb{R}}).$

Из этих уравнений следует, что: H = 4h.

Но это не окончательный ответ. Дело в том, что если H = 4h > 2a, то большой куб утонет. Это накладывает более жёсткое условие на плавание маленького куба. Так как 4h > 2a, то h < a/2. Иными словами, глубина погружения маленького куба не должна превышать a/2. В противном случае большой куб утонет.

Критерии оценивания

• Условие плавания маленького куба	2 балла
• Условие плавания большого куба	3 балла
• Глубина погружения большого куба $H = 4h$	1 балл
• Анализ условия плавания большого куба	
и ограничение $a > 2h$	4 балла

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени): $7 \, \text{класc} - 16.00$; $8 \, \text{класc} - 17.00$.

3. Разное нагревание

В лаборатории провели измерения удельной теплоемкости пяти твердых тел, имеющих одинаковую массу. Изменений агрегатного состояния вещества в процессе эксперимента не происходило. Результаты измерений нанесли на график, по одной оси

которого откладывалась удельная теплоемкость c, а по другой количество теплоты Q, подведённой к телам при их нагревании. К сожалению, масштаб по осям со временем был утрачен. Определите:

- какому телу было передано больше всего теплоты?
- у какого тела изменение температуры оказалось самым большим, а у какого самым маленьким?
- у каких тел изменения температуры оказались одинаковыми? **Примечание!** Применять свои линейки для нанесения на график масштаба нельзя. Подобные решения будут оценены в ноль баллов.

Больше всего теплоты было передано телу 4. Его координата по оси Q самая большая. Если при нагревании твердого тела к нему подводится количество теплоты $Q = mc\Delta t$, то его температура повышается на $\Delta t = Q/mc$.

На координатной плоскости (c,Q) для всех тел, имеющих одинаковую массу, температура которых повысилась на одинаковую величину Δt , соответствующие точки лежат на одной прямой, проходящей через начало координат, так как для них отношение Q/(mc) одно и то же. Из этого следует, что изменения температуры тел 2 и 3 одинаковы. Чем больше было повышение температуры, тем больше стало отношение Q/(mc); а прямая, проведённая из начала координат, пойдёт под меньшим углом. Из этого следует, что больше всего нагрелось тело 5, а меньше всего тело 1.

Критерии оценивания

- Определено тело, которому передано больше теплоты (есть обоснование) 1 балл
- Отмечено, что наклон прямой на графике связан с изменением температуры 3 балла
- Найдено тело с максимальным изменением температуры 2 балла
- Найдено тело с минимальным изменением температуры 2 балла
- Найдены тела с одинаковым изменением температуры 2 балла

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени): $7 \, \text{класс} - 16.00$; $8 \, \text{класс} - 17.00$.

4. Шарики

В цилиндрическом стакане находилось 4 шарика. Экспериментатор аккуратно с помощью шприца добавлял в стакан жидкость и заносил в таблицу значения высоты уровня жидкости в стакане в зависимости от объема добавленной жидкости. Известно, что в процессе эксперимента шарики не всплывали. По результатам измерений определите площадь сечения стакана и объем одного шарика.

V, cm ³	0	50	100	150	200	250	300	350	400	450	500	550	600
<i>h</i> , см	0	1,2	2,7	4,1	5,3	7,0	9,0	10,5	12,0	13,0	14,0	15,0	16,0

Возможное решение

По табличным построим данным график зависимости h(V). Из графика следует, что линейный характер этой зависимости начинается после объема 400 cm^3 , и добавляемая жидкость распределяется по всему сечению сосуда равномерно. По угловому

Замятнин М.

коэффициенту наклона этой части графика найдём площадь сечения сосуда:

$$S = \frac{\Delta V}{\Delta h} = \frac{200}{4} = 50 \text{ cm}^2.$$

Проведём экстраполяцию линейного участка до нулевого объема добавленной жидкости. В результате получим значение высоты «нулевого» уровня $h_0 = 4$ см. Это позволяет найти суммарный объем четырех и объем одного шарика. $V_1 = Sh_0/4 = 50$ см³.

Решение 2. Из таблицы в условии видно, что, начиная с $V = 400 \text{ cm}^3$ зависимость h(V) является линейной, и добавление каждых 50 см³ воды приводит к повышению уровня воды на h = 1 см. Значит площадь сечения

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени): $7 \, \text{класс} - 16.00$; $8 \, \text{класс} - 17.00$.

стакана $S = V/h = 50 \text{ cm}^2$. При наличии в стакане $V = 600 \text{ cm}^3$ воды, h = 16 cm, т.е. объем воды с шариками равен $hS = 800 \text{ cm}^3$. Следовательно суммарный объем шариков равен $V_{\text{ш}} = 200 \text{ cm}^3$, а одного шарика -50 cm^3 .

Критерии оценивания

\bullet График зависимости $h(V)$	2 балла
• Найден и правильно интерпретирован линейный участок	2 балла
• Идея нахождения площади сечения по углу наклона график	а 1 балл
• Численный результат для площади сечения	1 балл
• Нахождение нулевого уровня	1 балл
• Идея поиска объема одного шарика	2 балла
• Численный результат для объема шарика	1 балл

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени): $7 \, \text{класс} - 16.00$; $8 \, \text{класс} - 17.00$.