System Program:

float

Honguk Woo

Fractional binary numbers

• What is 1011.101₂?

Fractional Binary Numbers

Representation

Bits to right of "binary point" represent fractional powers of 2

Represents rational number:

$$\sum_{k=-i}^{i} b_k \times 2^k$$

3

Fractional Binary Numbers: Examples

```
Value Representation
5 3/4 101.11<sub>2</sub>
2 7/8 10.111<sub>2</sub>
1 7/16 1.0111<sub>2</sub>
63/64 0.111111<sub>2</sub>
```

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.1111111...2 just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$
 - Use notation 1.0ε

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations

Value	Representation
1/3	$0.01010101[01]{2}$
1/5	$0.001100110011[0011]{2}$
1/10	0.0001100110011[0011]2
	मिला क्रील क्री अध्या देशकी

- Limitation #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large ones?)

IEEE Floating Point

- IEEE Standard 754 (flogting-point arithmetic)
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware engineers in defining standard.

Floating Point Representation

Numerical Form:

$$(-1)^s * M * 2^E$$

- Sign bit s determines whether number is negative or positive
- Significand (fractional value, mantissa) M normally a fractional value in range [1,2)
- Exponent E weights value by power of two

Encoding

s	ехр	frac

- MSB is sign bit s
- exp field encodes E (Exponent, but is not equal to E)
- frac field encodes M (Mantissa, but is not equal to M)

Precision Options

Three cases of floating-point numbers

- Normalized
- Denormalized
- Special
- These cases depend on the bit pattern of exp

Normalized Values (1)

$$v = (-1)^s M 2^E$$

s	ехр	frac
1	8-bits	23-bits

- Condition: $exp \neq 000...0$ and $exp \neq 111...1$
- Exponent coded as biased value
 - E = Exp Bias
 - Exp: unsigned value denoted by exp
 - Bias: $2^{k-1} 1$ where k is the number of exponent bits
 - Single precision (8bit): 127 (Exp: 1..254, E: -126..127) = てこれで
 - Double precision (11bit): 1023 (Exp: 1..2046, E: -1022..1023)
- Significand (fractional value) coded with implied leading 1
 - $M = 1.xxx...x_2$
 - Minimum when frac = 000...0 (M = 1.0)
 - Maximum when frac = 111...1 (M = 2.0ε)
 - · Get extra leading bit for free

알메 10 이의 외에 가정 2) 아내의 bit를 더 사용가능 s exp frac

1 8-bits 23-bits

 $v = (-1)^s M 2^E$

- Value: float F = 15213.0;
 - Numerical form $15213_{10} = 11101101101101_2$ = $1.1101101101101_2 \times 2^{13}$

1

8-bits

|''

Normalized Encoding Example (1)

• Numerical form
$$15213_{10} = 11101101101101_2$$

= 1.1101101101101₂ x 2^{13}

 $v = (-1)^s M 2^E$ E = Exp - Bias

23-bits

Significand (single precision, 23bit)

$$M = 1.101101101101_2$$

frac= $10110110110101000000000_2$ (FE MCA.)

• Exponent (single precision, 8bit)

Exponent (single precision, obit)
$$E = 13$$

$$Bias = 127$$

$$Exp = 140 = 10001100_{2}$$

$$E = EXP - Bias$$

$$13 = EXP - DI$$

Result:

0 10001100 1101101101101000000000

s exp

frac

Normalized Encoding Example (2)

 $v = (-1)^s M 2^E$ E = Exp - Bias

- Value: float F = 15213.0;
 Numerical form 15213₁₀ = 11101101101101₂ = 1.1101101101101₂ x 2¹³
- Significand (single precision, 23bit)

```
M = 1.1101101101_2
frac= 1101101101101_000000000_2
```

Exponent (single precision, 8bit)

```
E = 13
Bias = 127
Exp = 140 = 10001100_{2}
```

0 10001100

11011011011010000000000

s exp frac

normalized

 $v = (-1)^s M 2^E$ E = Exp - Bias

Denormalized Values

denormalized

$$v = (-1)^{s} M 2^{E}$$

 $E = 1 - Bias$

- Condition: exp = 000...0
- Value
 - Exponent value E = 1 Bias (e.g. single precision: bias 127, so -126)
 - Significand value $M = 0.xxx...x_2$ (leading 0, no implied leading 1)
- Cases
 - exp = 000...0, frac = 000...0
 - Represents value 0
 - Note that have distinct values +0 and -0 (depending on sign bit)
 - exp = 000...0, $frac \neq 000...0$
 - Numbers very close to 0.0
 - Equispaced: Possible numeric values are spaced evenly near 0.0

Special Values

- Condition: exp = 111...1
- Cases
 - exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Infinity can represent results of overflows
 - Both positive and negative
 - e.g. $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
 - exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - e.g., sqrt(-1), ∞ ∞

Visualization: Floating Point Encodings

Quiz: FP

Encoding this real number into a single precison floating-point number; What's the bit pattern in 32bits?

43.25

E = 5

SI EXP I frag

normalized

$$v = (-1)^s M 2^E$$

 $E = Exp - Bias$

$$E = \exp - B \cos \frac{1}{5} = \exp - \frac{1}{2} = \frac{1}{3} = \frac{1}{3}$$

43.25

normalized

$$v = (-1)^s M 2^E$$

 $E = Exp - Bias$

$$v = 101011.01 = 1.0101101 \times 2^{5}$$

$$M = 1.0101101$$

$$E = 5$$

$$S = 0$$

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next 4 bits are the **exp**, with a bias of 7 $(2^{k-1} 1)$
 - the last 3 bits are the frac

24-1-1=1

- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Denormalized

•
$$exp = 000...0$$

- Normalized
 - $exp \neq 000...0$ and $exp \neq 111...1$
- Special
 - exp = 111...1

Dynamic Range (Positive Only)

v = (-1)^s M 2^E n: E = Exp - Bias d: E = 1 - Bias

	s	exp	frac	E	Value		n: E = Exp - Bias d: E = 1 - Bias
	0	0000	000	-6	0		
	0	0000	001	-6	1/8*1/64 = 1/51	2 closest to	zero
Denormalized	0	0000	010	-6	2/8*1/64 = 2/51	2	
numbers							
	0	0000			6/8*1/64 = 6/51		
युव्य १५ १८ म	0	0000	111	-6	7/8*1/64 = 7/51	2 largest de	norm
स्वायत	0	0001	000	-6	<mark>8/8*1/64 = 8/51</mark>	2 smallest n	orm Leading 1
	0	0001	001	-6	9/8*1/64 = 9/51	2	
	0	0110	110	-1	14/8*1/2 = 14/1	6	
	0	0110	111	-1	15/8*1/2 = 15/1	6 closest to	1 below
Normalized	0	0111	000	0	8/8*1 = 1		
numbers	0	0111	001	0	9/8*1 = 9/8	closest to	1 above
	0	0111	010	0	10/8*1 = 10/8		
	0	1110	110	7	14/8*128 = 224		
युक्ता वद्योग (0	1110	111	7	15/8*128 = 240	largest no	rm
भी भी भी थी.	0	1111	000	n/a	inf		

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

Special Properties of IEEE Encoding

- refloating point
- "FP zero" is the same as "integer zero"
 - All bits = 0
- Can (almost) use unsigned integer comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Floating Point Operations: Basic Idea

- $\cdot x +_{f} y = Round(x + y)$
- $\cdot x \times_{f} y = Round(x \times y)$
- Rounding : for a real-number, approximation in floating-point format
- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Huristics : अरथ

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Toward-zero	\$1	\$1	\$1	\$2	- \$1
Round-down ($-\infty$)	\$1	\$1	\$1	\$2	- \$2
Round-up (+ ∞)	\$2	\$2	\$2	\$3	- \$1
Round-to-even	\$1	\$2	\$2	\$2	-\$2
(Round-to-nearest, defa		322	L even Zez	et.	

Closer Look at Round-To-Even

- Default Rounding Mode
 - All others are statistically biased
 - · Sum of a set of positive numbers will consistently be over- or under- estimated
 - Round-to-even: 50% round-up, 50% round-down => 코텔게 정된 (화물인)
- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - · Round so that least significant digit is even
 - E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way—round up) : round to even
7.8850000	7.88	(Half way—round down) : round to even

Rounding Binary Numbers

- Binary Fractional Numbers
 - "Even" when least significant bit is 0
 - "Half way" when bits to right of rounding position = 100...2
- Examples
 - Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00110 ₂	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

MEM STORER

Floating Point Addition

- $(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$
 - •Assume *E1 > E2*
- Exact Result: (-1)^s M 2^E
 - •Sign *s*, significand *M*:
 - · Result of signed align & add
 - •Exponent *E*: *E1*

- Fixing
 - •If $M \ge 2$, shift M right, increment E
 - •if M < 1, shift M left k positions, decrement E by k
 - •Overflow if *E* out of range
 - •Round *M* to fit **frac** precision