# Análisis de la posición y distancia recorrida de los huracanes

# $Alfredo\ Hern\'andez$

## Contents

| Análisis de la distancia (III)              | 2  |
|---------------------------------------------|----|
| Comentario sobre el cálculo de la distancia |    |
| Histogramas de distancia/duración           | 2  |
| Análisis de posición inicial y final (III)  | 5  |
| Mirando las medias                          | 5  |
| Mirando las medianas                        | 6  |
| 1                                           | 8  |
| North Atlantic                              | 8  |
| East Pacific                                |    |
| Análisis de posición (V)                    | 12 |
| North Atlantic                              | 13 |
| East Pacific                                | 15 |

## Análisis de la distancia (III)

#### Comentario sobre el cálculo de la distancia

Usando la fórmula de Haversine (vs la Ley de Cosenos), se obtiene en el peor de los casos una diferencia de 0.37 metros, y de media  $10^{-8}$  metros. Pero bueno, en realidad no hay ninguna justificación para usar Haversine en lugar de la Ley de Cosenos (no con la precisión computacional de hoy en día).

#### Histogramas de distancia/duración

#### Todas las tormentas





## Developing systems





## Análisis de posición inicial y final (III)

#### Mirando las medias

#### Todas las tormentas

```
get_location_mean_summary("NATL")
## # A tibble: 2 x 9
     sst.class mean.first.lat sd.first.lat mean.last.lat sd.last.lat
##
     <chr>>
                        <dbl>
                                      <dbl>
                                                     <dbl>
                                                                 <dbl>
## 1 high
                         19.5
                                      0.384
                                                     34.7
                                                                 0.660
## 2 low
                         20.8
                                      0.417
                                                     33.1
                                                                 0.678
    mean.first.long sd.first.long mean.last.long sd.last.long
##
               <dbl>
                              <dbl>
                                             <dbl>
## 1
               -58.7
                               1.16
                                             -59.4
                                                            1.32
## 2
               -59.4
                               1.20
                                             -59.4
                                                            1.26
get_location_mean_summary("EPAC")
## # A tibble: 2 x 9
##
     sst.class mean.first.lat sd.first.lat mean.last.lat sd.last.lat
##
                         <dbl>
                                      <dbl>
                                                     <dbl>
                                                                 <dbl>
## 1 high
                         13.1
                                      0.142
                                                     20.7
                                                                 0.342
## 2 low
                         13.8
                                      0.202
                                                     19.6
                                                                 0.330
##
    mean.first.long sd.first.long mean.last.long sd.last.long
##
               <dbl>
                             <dbl>
                                             <dbl>
                             0.865
                                             -120.
                                                            2.86
## 1
               -112.
## 2
               -108.
                             1.48
                                             -118.
                                                            2.97
Developing systems
get_location_mean_summary("NATL", 33)
## # A tibble: 2 x 9
     sst.class mean.first.lat sd.first.lat mean.last.lat sd.last.lat
##
##
     <chr>
                         <dbl>
                                      <dbl>
                                                     <dbl>
                                      0.428
## 1 high
                         19.7
                                                     36.6
                                                                 0.702
                         21.3
                                      0.496
                                                     36.6
                                                                 0.790
     mean.first.long sd.first.long mean.last.long sd.last.long
##
               <dbl>
                              <dbl>
                                             <dbl>
                                                           <dbl>
## 1
               -58.6
                              1.25
                                             -58.4
                                                            1.46
## 2
               -62.4
                                             -59.3
                                                            1.64
                               1.33
get_location_mean_summary("EPAC", 33)
## # A tibble: 2 x 9
     sst.class mean.first.lat sd.first.lat mean.last.lat sd.last.lat
     <chr>
                         <dbl>
                                      <dbl>
                                                    <dbl>
                                                                 <dbl>
                         12.9
                                      0.145
                                                     21.3
                                                                 0.368
## 1 high
## 2 low
                         13.6
                                      0.226
                                                     20.2
                                                                 0.379
##
     mean.first.long sd.first.long mean.last.long sd.last.long
               <dbl>
                             <dbl>
                                             <dbl>
## 1
               -111.
                             0.843
                                             -120.
                                                            3.10
```

## 2 -106. 1.75 -118. 3.26

#### Mirando las medianas

#### Todas las tormentas

```
get_location_median_summary("NATL")
## # A tibble: 2 x 9
    sst.class median.first.lat sd.first.lat median.last.lat sd.last.lat
##
     <chr>>
                           <dbl>
                                        <dbl>
                                                         <dbl>
                                                                      <dbl>
## 1 high
                           17.5
                                        0.481
                                                          34.4
                                                                     0.827
## 2 low
                            20.5
                                        0.523
                                                          33.8
                                                                     0.849
     median.first.long sd.first.long median.last.long sd.last.long
##
                 <dbl>
                                <dbl>
                                                  <dbl>
## 1
                 -60.1
                                 1.46
                                                  -59.2
                                                                1.65
## 2
                 -62.5
                                 1.50
                                                  -59.1
                                                                1.58
get_location_median_summary("EPAC")
## # A tibble: 2 x 9
     sst.class median.first.lat sd.first.lat median.last.lat sd.last.lat
##
                           <dbl>
                                        <dbl>
                                                         <dbl>
## 1 high
                            12.7
                                        0.178
                                                          20.0
                                                                      0.429
## 2 low
                            13.4
                                        0.253
                                                          19.2
                                                                     0.414
     median.first.long sd.first.long median.last.long sd.last.long
##
                 <dbl>
                                <dbl>
                                                 <dbl>
                                                               <dbl>
## 1
                 -108.
                                 1.08
                                                  -125.
                                                                3.58
## 2
                 -106.
                                 1.86
                                                 -120.
                                                                3.72
Developing systems
get_location_median_summary("NATL", 33)
## # A tibble: 2 x 9
     sst.class median.first.lat sd.first.lat median.last.lat sd.last.lat
##
     <chr>
                           <dbl>
                                        <dbl>
                                                         <dbl>
                                                                      <dbl>
## 1 high
                            18.0
                                        0.536
                                                          37.3
                                                                     0.880
                            21.5
                                        0.621
                                                          38.0
##
    median.first.long sd.first.long median.last.long sd.last.long
##
                 <dbl>
                                <dbl>
                                                 <dbl>
                                                               <dbl>
## 1
                 -60.4
                                                  -57.9
                                 1.57
                                                                1.84
                                                                2.05
## 2
                 -65.5
                                 1.66
                                                  -60.3
get_location_median_summary("EPAC", 33)
## # A tibble: 2 x 9
##
     sst.class median.first.lat sd.first.lat median.last.lat sd.last.lat
##
     <chr>>
                           <dbl>
                                        <dbl>
                                                         <dbl>
                                                                      <dbl>
## 1 high
                            12.5
                                        0.182
                                                          20.5
                                                                     0.461
                           13.2
                                        0.283
## 2 low
                                                          20.0
                                                                     0.475
##
     median.first.long sd.first.long median.last.long sd.last.long
##
                 <dbl>
                                <dbl>
                                                  <dbl>
```

## 1 -107. 1.06 -125. 3.89 ## 2 -105. 2.19 -120. 4.09

## Análisis de posición inicial y final (IV): Boxplots and Wilcoxon **Tests**

#### North Atlantic

Todas las tormentas (NALT)

```
plot_positions_boxplot("NATL", "first") + theme_bw()
                  Latitude
                                                        Longitude
```

```
40
                                                                                   SST Class
30
                                                                                   苗 high
                                                                                    low
20
10
           high
                             low
                                                  high
                                                                   low
```

```
perform_wilcox_test("first.lat", "NATL")
```

```
##
   Wilcoxon rank sum test with continuity correction
## data: df[, var] by df[, "sst.class"]
## W = 67150, p-value = 0.0245
\#\# alternative hypothesis: true location shift is not equal to 0
perform_wilcox_test("first.long", "NATL")
```

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: df[, var] by df[, "sst.class"]
## W = 75016, p-value = 0.7657
## alternative hypothesis: true location shift is not equal to 0
```

#### Developing systems (NALT)

```
plot_positions_boxplot("NATL", "first", 33) + theme_bw()
```



```
perform_wilcox_test("first.lat", "NATL", 33)
```

##

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: df[, var] by df[, "sst.class"]
## W = 39363, p-value = 0.02067
## alternative hypothesis: true location shift is not equal to 0
perform_wilcox_test("first.long", "NATL", 33)
```

```
## Wilcoxon rank sum test with continuity correction
##
## data: df[, var] by df[, "sst.class"]
## W = 48140, p-value = 0.06458
## alternative hypothesis: true location shift is not equal to 0
```

#### East Pacific

#### Todas las tormentas (EPAC)

```
plot_positions_boxplot("EPAC", "first") + theme_bw()
```



```
perform_wilcox_test("first.lat", "EPAC")
```

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: df[, var] by df[, "sst.class"]
## W = 35518, p-value = 0.0008379
## alternative hypothesis: true location shift is not equal to 0
perform_wilcox_test("first.long", "EPAC")
```

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: df[, var] by df[, "sst.class"]
## W = 37072, p-value = 0.009825
## alternative hypothesis: true location shift is not equal to 0
```

#### Developing systems (EPAC)

```
plot_positions_boxplot("EPAC", "first", 33) + theme_bw()
```



```
perform_wilcox_test("first.lat", "EPAC", 33)
```

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: df[, var] by df[, "sst.class"]
## W = 25558, p-value = 0.00457
## alternative hypothesis: true location shift is not equal to 0
perform_wilcox_test("first.long", "EPAC", 33)
```

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: df[, var] by df[, "sst.class"]
## W = 25926, p-value = 0.009199
## alternative hypothesis: true location shift is not equal to 0
```

## Análisis de posición (V)

```
plot_clusters <- function(basin.name, type, min.speed = 0, n.clust = 2) {</pre>
    storms.small <- storms.joint %>%
        dplyr::filter(basin == basin.name) %>%
        dplyr::filter(max.wind > min.speed)
    if (type == "first") {
        mat <- storms.small %>% select(sst.class, first.lat, first.long, distance)
    } else if (type == "last") {
        mat <- storms.small %% select(sst.class, last.lat, last.long, distance)
    }
    # High SST
    mat.high <- mat %>%
        dplyr::filter(sst.class == "high") %>%
        select(-sst.class)
    clust.high <- hclust(dist(mat.high), method = "complete")</pre>
    tree.high <- cutree(clust.high, n.clust)</pre>
    # Low SST
    mat.low <- mat %>%
        dplyr::filter(sst.class == "low") %>%
        select(-sst.class)
    clust.low <- hclust(dist(mat.low), method = "complete")</pre>
    tree.low <- cutree(clust.low, n.clust)</pre>
    # Merge data with clustering results
    data.high <- as_tibble(cbind(mat.high, clust = as.factor(tree.high), sst.class = "high"))</pre>
    data.low <- as_tibble(cbind(mat.low, clust = as.factor(tree.low), sst.class = "low"))</pre>
    data.all <- rbind(data.high, data.low)</pre>
    # Plot
    gg <- ggplot(data.all) +</pre>
        aes(colour = clust, size = distance) +
        scale_size_continuous(range = c(0.2, 3)) +
        facet_wrap( ~ sst.class)
    if (type == "first") {
        gg <- gg +
            geom_point(aes(x = first.long, y = first.lat), shape = 1)
    } else if (type == "last") {
        gg <- gg +
            geom_point(aes(x = last.long, y = last.lat), shape = 1)
    }
    return(gg)
```

#### North Atlantic

## plot\_clusters("NATL", "first", n.clust = 2)



## plot\_clusters("NATL", "last", n.clust = 2)



#### plot\_clusters("NATL", "first", 33, n.clust = 2)



## plot\_clusters("NATL", "last", 33, n.clust = 2)



#### East Pacific

## plot\_clusters("EPAC", "first", n.clust = 3)



## plot\_clusters("EPAC", "last", n.clust = 3)



#### plot\_clusters("EPAC", "first", 33, n.clust = 3)



plot\_clusters("EPAC", "last", 33, n.clust = 3)

