Convolution and Correlation

Expt.2: To find Convolution and correlation of signals

} Objective:

- (i) To perform convolution of two signals
 - (a) with built-in function
 - (b) without built-in function
- (ii) To perform correlation of two signals
 - (a) with built-in function
 - (b) without built-in function
- (iii) Find the correlation of ECG signal and its delayed version [choose the delay]

Convolution

- } Two types:
- Continuous convolution
- > Discrete convolution

Methods to perform

```
Two ways:

} Linear convolution

} Circular convolution

Ex:

x[n] = \{1, 2, 3\} \& h[n] = \{-1, 2, 2\}
```


×	1	2	3
-1	-1	-2	-3
2	2	4	6
2	2	4	6

$$Y(n) = [-1, 0, 3, 10, 6]$$

Manual calculation

 $X[n] = \{1 2 3\} \text{ and } h[n] = \{-1 2 2\}$

Convolution:

Y[n] = x[n]*h[n]

X	1	2	3
-1	-1	-2	-3
2	2	4	6
2	2	4	6

Therefore $y[n] = \{-1, 0, 3, 10, 6\}$

Correlation:

Y[n] = x[n]*h[-n]

X	1	2	3
2	2	4	6
2	2	4	6
-1	-1	-2	-3

Therefore $y[n] = \{2, 6, 9, 4, -3\}$

Correlation

- } Two types
- > Auto correlation
- > Cross correlation

Auto correlation function is a measure of similarity between a signal & its time delayed version.

The cross correlation of x(n) and y(n) is a sequence $\gamma_{xy}(l)$, which is defined as

$$\gamma_{xy}(l) = \sum_{n=-\infty}^{\infty} x[k]y[n-l]$$
 $l = 0, \pm 1, \pm 2 \dots \dots$

which can be alternately written as

$$\gamma_{xy}(l) = \sum_{n=-\infty}^{\infty} x[n+l]y[n]$$
 $l = 0, \pm 1, \pm 2 \dots \dots$

Built-in function

```
} conv (x1, x2)
} xcorr (x1, x2)
} fliplr(y)
```


Cross correlation

$$\gamma_{xy}(l)$$
 =_X(1)*y(-1)

Real-time example for cross correlation

