COVID-19 FORECASTING

The purpose of the current project is to develop estimates for confirmed cases and fatalities between May 12 and June 7 by county in the United States as well as identifying factors that appear to impact the transmission rate of COVID-19.

Note: conda install -c plotly plotly

Packages to be Imported

```
In [1]: #Data Visualization
        import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        %matplotlib inline
        import plotly.express as px
        import plotly.graph_objects as go
        #Machine Learning
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.pipeline import Pipeline
        from sklearn.preprocessing import StandardScaler
        from sklearn.metrics import r2_score
        from sklearn.model_selection import train_test_split
        from sklearn.model selection import GridSearchCV
        from sklearn.ensemble import GradientBoostingRegressor
        from sklearn.metrics import mean squared error
        from sklearn.linear model import Lasso
        from sklearn.linear model import Ridge
        from sklearn.model selection import cross val score
```

General Info about the Dataset

In [2]: pwd

Out[2]: '/Users/admin/Desktop/python/covid19/forecasting'

In [3]: train = pd.read_csv('/Users/admin/Desktop/python/covid19/forecasting/datasets/train.csv', sep=',')
train

Out[3]:

	ld	County	Province_State	Country_Region	Population	Weight	Date	Target	TargetValue
0	1	NaN	NaN	Afghanistan	27657145	0.058359	2020-01-23	ConfirmedCases	0.0
1	2	NaN	NaN	Afghanistan	27657145	0.583587	2020-01-23	Fatalities	0.0
2	3	NaN	NaN	Afghanistan	27657145	0.058359	2020-01-24	ConfirmedCases	0.0
3	4	NaN	NaN	Afghanistan	27657145	0.583587	2020-01-24	Fatalities	0.0
4	5	NaN	NaN	Afghanistan	27657145	0.058359	2020-01-25	ConfirmedCases	0.0
727225	969566	NaN	NaN	Zimbabwe	14240168	0.607106	2020-05-04	Fatalities	0.0
727226	969567	NaN	NaN	Zimbabwe	14240168	0.060711	2020-05-05	ConfirmedCases	0.0
727227	969568	NaN	NaN	Zimbabwe	14240168	0.607106	2020-05-05	Fatalities	0.0
727228	969569	NaN	NaN	Zimbabwe	14240168	0.060711	2020-05-06	ConfirmedCases	0.0
727229	969570	NaN	NaN	Zimbabwe	14240168	0.607106	2020-05-06	Fatalities	0.0

727230 rows × 9 columns

In [4]: test = pd.read_csv('/Users/admin/Desktop/python/covid19/forecasting/datasets/test.csv', sep=',')
test

Out[4]:

	ForecastId	County	Province_State	Country_Region	Population	Weight	Date	Target
0	1	NaN	NaN	Afghanistan	27657145	0.058359	2020-04-27	ConfirmedCases
1	2	NaN	NaN	Afghanistan	27657145	0.583587	2020-04-27	Fatalities
2	3	NaN	NaN	Afghanistan	27657145	0.058359	2020-04-28	ConfirmedCases
3	4	NaN	NaN	Afghanistan	27657145	0.583587	2020-04-28	Fatalities
4	5	NaN	NaN	Afghanistan	27657145	0.058359	2020-04-29	ConfirmedCases
311665	311666	NaN	NaN	Zimbabwe	14240168	0.607106	2020-06-08	Fatalities
311666	311667	NaN	NaN	Zimbabwe	14240168	0.060711	2020-06-09	ConfirmedCases
311667	311668	NaN	NaN	Zimbabwe	14240168	0.607106	2020-06-09	Fatalities
311668	311669	NaN	NaN	Zimbabwe	14240168	0.060711	2020-06-10	ConfirmedCases
311669	311670	NaN	NaN	Zimbabwe	14240168	0.607106	2020-06-10	Fatalities

311670 rows × 8 columns

Understanding and Cleaning Data

```
In [5]: train.shape
Out[5]: (727230, 9)
```

In [6]: train.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 727230 entries, 0 to 727229 Data columns (total 9 columns): Column Non-Null Count Dtype 0 Ιd 727230 non-null int64 660030 non-null object 1 County Province_State 687960 non-null object 2 3 Country Region 727230 non-null object Population 727230 non-null int64 5 Weight 727230 non-null float64 6 Date 727230 non-null object 7 Target 727230 non-null object TargetValue 727230 non-null float64 dtypes: float64(2), int64(2), object(5) memory usage: 49.9+ MB In [7]: train.dtypes Out[7]: Id int64 object County Province_State object Country_Region object Population int64 Weight float64 Date object Target object

TargetValue

dtype: object

float64

In [8]: train.describe()

Out[8]:

	ld	Population	Weight	TargetValue
count	727230.000000	7.272300e+05	727230.000000	727230.000000
mean	484785.500000	2.719395e+06	0.530872	9.316042
std	279911.144854	3.477762e+07	0.451909	256.630911
min	1.000000	8.600000e+01	0.047491	-10034.000000
25%	242358.250000	1.213300e+04	0.096838	0.000000
50%	484785.500000	3.053100e+04	0.349413	0.000000
75%	727212.750000	1.056120e+05	0.968379	0.000000
max	969570.000000	1.395773e+09	2.239186	36163.000000

In [9]: #Data Description for String Columns
train.describe(include=[np.object])

Out[9]:

	County	Province_State	Country_Region	Date	Target
count	660030	687960	727230	727230	727230
unique	1840	133	187	105	2
top	Washington	Texas	US	2020-03-26	ConfirmedCases
frea	6510	53550	671580	6926	363615

Handling Null Values

```
In [10]: train.isna().any()
Out[10]: Id
                           False
         County
                            True
         Province_State
                            True
         Country_Region
                            False
         Population
                           False
         Weight
                           False
         Date
                           False
         Target
                           False
         TargetValue
                           False
         dtype: bool
In [11]: train.isna().sum()
Out[11]: Id
                                0
         County
                            67200
         Province_State
                           39270
         Country_Region
                                0
         Population
                                0
         Weight
                                0
         Date
                                0
         Target
                                0
         TargetValue
                                0
         dtype: int64
```

In [12]: sns.heatmap(train.isnull(),yticklabels=False,cbar=False,cmap='viridis')

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x104b33790>


```
In [13]: #Subsetting US Data
train = train[train.Country_Region == 'US']
test = test[test.Country_Region == 'US']
```

In [14]: train

Out[14]:

	ld	County	Province_State	Country_Region	Population	Weight	Date	Target	TargetValue
50820	67761	Autauga	Alabama	US	55869	0.091485	2020-01-23	ConfirmedCases	0.0
50821	67762	Autauga	Alabama	US	55869	0.914848	2020-01-23	Fatalities	0.0
50822	67763	Autauga	Alabama	US	55869	0.091485	2020-01-24	ConfirmedCases	0.0
50823	67764	Autauga	Alabama	US	55869	0.914848	2020-01-24	Fatalities	0.0
50824	67765	Autauga	Alabama	US	55869	0.091485	2020-01-25	ConfirmedCases	0.0
722395	963126	NaN	NaN	US	324141489	0.510290	2020-05-04	Fatalities	1240.0
722396	963127	NaN	NaN	US	324141489	0.051029	2020-05-05	ConfirmedCases	23976.0
722397	963128	NaN	NaN	US	324141489	0.510290	2020-05-05	Fatalities	2142.0
722398	963129	NaN	NaN	US	324141489	0.051029	2020-05-06	ConfirmedCases	24251.0
722399	963130	NaN	NaN	US	324141489	0.510290	2020-05-06	Fatalities	2367.0

671580 rows × 9 columns

In [15]: test

Out[15]:

	ForecastId	County	Province_State	Country_Region	Population	Weight	Date	Target
21780	21781	Autauga	Alabama	US	55869	0.091485	2020-04-27	ConfirmedCases
21781	21782	Autauga	Alabama	US	55869	0.914848	2020-04-27	Fatalities
21782	21783	Autauga	Alabama	US	55869	0.091485	2020-04-28	ConfirmedCases
21783	21784	Autauga	Alabama	US	55869	0.914848	2020-04-28	Fatalities
21784	21785	Autauga	Alabama	US	55869	0.091485	2020-04-29	ConfirmedCases
309595	309596	NaN	NaN	US	324141489	0.510290	2020-06-08	Fatalities
309596	309597	NaN	NaN	US	324141489	0.051029	2020-06-09	ConfirmedCases
309597	309598	NaN	NaN	US	324141489	0.510290	2020-06-09	Fatalities
309598	309599	NaN	NaN	US	324141489	0.051029	2020-06-10	ConfirmedCases
309599	309600	NaN	NaN	US	324141489	0.510290	2020-06-10	Fatalities

287820 rows × 8 columns

```
In [16]: #Droping of Unwanted Data to make model more Predictive
    train = train.dropna()
    test = test.dropna()
```

In [17]: train

Out[17]:

	ld	County	Province_State	Country_Region	Population	Weight	Date	Target	TargetValue
50820	67761	Autauga	Alabama	US	55869	0.091485	2020-01-23	ConfirmedCases	0.0
50821	67762	Autauga	Alabama	US	55869	0.914848	2020-01-23	Fatalities	0.0
50822	67763	Autauga	Alabama	US	55869	0.091485	2020-01-24	ConfirmedCases	0.0
50823	67764	Autauga	Alabama	US	55869	0.914848	2020-01-24	Fatalities	0.0
50824	67765	Autauga	Alabama	US	55869	0.091485	2020-01-25	ConfirmedCases	0.0
721975	962566	Weston	Wyoming	US	6927	1.130796	2020-05-04	Fatalities	0.0
721976	962567	Weston	Wyoming	US	6927	0.113080	2020-05-05	ConfirmedCases	0.0
721977	962568	Weston	Wyoming	US	6927	1.130796	2020-05-05	Fatalities	0.0
721978	962569	Weston	Wyoming	US	6927	0.113080	2020-05-06	ConfirmedCases	0.0
721979	962570	Weston	Wyoming	US	6927	1.130796	2020-05-06	Fatalities	0.0

660030 rows × 9 columns

In [18]: test

Out[18]:

	ForecastId	County	Province_State	Country_Region	Population	Weight	Date	Target
21780	21781	Autauga	Alabama	US	55869	0.091485	2020-04-27	ConfirmedCases
21781	21782	Autauga	Alabama	US	55869	0.914848	2020-04-27	Fatalities
21782	21783	Autauga	Alabama	US	55869	0.091485	2020-04-28	ConfirmedCases
21783	21784	Autauga	Alabama	US	55869	0.914848	2020-04-28	Fatalities
21784	21785	Autauga	Alabama	US	55869	0.091485	2020-04-29	ConfirmedCases
309415	309416	Weston	Wyoming	US	6927	1.130796	2020-06-08	Fatalities
309416	309417	Weston	Wyoming	US	6927	0.113080	2020-06-09	ConfirmedCases
309417	309418	Weston	Wyoming	US	6927	1.130796	2020-06-09	Fatalities
309418	309419	Weston	Wyoming	US	6927	0.113080	2020-06-10	ConfirmedCases
309419	309420	Weston	Wyoming	US	6927	1.130796	2020-06-10	Fatalities

282870 rows × 8 columns

Out[19]:

	ForecastId	County	Province_State	Country_Region	Population	Weight	Date	Target
21800	21801	Autauga	Alabama	US	55869	0.091485	2020-05-07	ConfirmedCases
21801	21802	Autauga	Alabama	US	55869	0.914848	2020-05-07	Fatalities
21802	21803	Autauga	Alabama	US	55869	0.091485	2020-05-08	ConfirmedCases
21803	21804	Autauga	Alabama	US	55869	0.914848	2020-05-08	Fatalities
21804	21805	Autauga	Alabama	US	55869	0.091485	2020-05-09	ConfirmedCases
309415	309416	Weston	Wyoming	US	6927	1.130796	2020-06-08	Fatalities
309416	309417	Weston	Wyoming	US	6927	0.113080	2020-06-09	ConfirmedCases
309417	309418	Weston	Wyoming	US	6927	1.130796	2020-06-09	Fatalities
309418	309419	Weston	Wyoming	US	6927	0.113080	2020-06-10	ConfirmedCases
309419	309420	Weston	Wyoming	US	6927	1.130796	2020-06-10	Fatalities

220010 rows × 8 columns

```
In [20]: result = test.copy()
result
```

Out[20]:

	ForecastId	County	Province_State	Country_Region	Population	Weight	Date	Target
21800	21801	Autauga	Alabama	US	55869	0.091485	2020-05-07	ConfirmedCases
21801	21802	Autauga	Alabama	US	55869	0.914848	2020-05-07	Fatalities
21802	21803	Autauga	Alabama	US	55869	0.091485	2020-05-08	ConfirmedCases
21803	21804	Autauga	Alabama	US	55869	0.914848	2020-05-08	Fatalities
21804	21805	Autauga	Alabama	US	55869	0.091485	2020-05-09	ConfirmedCases
309415	309416	Weston	Wyoming	US	6927	1.130796	2020-06-08	Fatalities
309416	309417	Weston	Wyoming	US	6927	0.113080	2020-06-09	ConfirmedCases
309417	309418	Weston	Wyoming	US	6927	1.130796	2020-06-09	Fatalities
309418	309419	Weston	Wyoming	US	6927	0.113080	2020-06-10	ConfirmedCases
309419	309420	Weston	Wyoming	US	6927	1.130796	2020-06-10	Fatalities

220010 rows × 8 columns

Data Visualization

Performing Correlation Matrix for Train Data

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1a6c6950>

р -


```
In [24]: fig = px.pie(train, values='TargetValue', names='Target', title='ConfirmedCases & Fatalities')
fig.show()
```

ConfirmedCases & Fatalities


```
In [25]: fig = px.pie(train, values='TargetValue', names='Province_State', title='ConfirmedCases & Fatalities Per
fig.update_traces(textposition='inside')
fig.show()
```

ConfirmedCases & Fatalities Percentile by Country


```
In [26]: last_date=train.Date.max()
    df=train[train["Date"]==last_date]
    df
```

Out[26]:

	ld	County	Province_State	Country_Region	Population	Weight	Date	Target	TargetValue
51028	67969	Autauga	Alabama	US	55869	0.091485	2020-05-06	ConfirmedCases	5.0
51029	67970	Autauga	Alabama	US	55869	0.914848	2020-05-06	Fatalities	0.0
51238	68249	Baldwin	Alabama	US	223234	0.081195	2020-05-06	ConfirmedCases	7.0
51239	68250	Baldwin	Alabama	US	223234	0.811953	2020-05-06	Fatalities	0.0
51448	68529	Barbour	Alabama	US	24686	0.098873	2020-05-06	ConfirmedCases	0.0
721559	962010	Uinta	Wyoming	US	20226	1.008596	2020-05-06	Fatalities	0.0
721768	962289	Washakie	Wyoming	US	7805	0.111574	2020-05-06	ConfirmedCases	0.0
721769	962290	Washakie	Wyoming	US	7805	1.115742	2020-05-06	Fatalities	0.0
721978	962569	Weston	Wyoming	US	6927	0.113080	2020-05-06	ConfirmedCases	0.0
721979	962570	Weston	Wyoming	US	6927	1.130796	2020-05-06	Fatalities	0.0

6286 rows × 9 columns

In [27]: df=df.groupby(by=["Province_State"],as_index=False)["TargetValue"].sum()
df

Out[27]:

	Province_State	TargetValue
0	Alabama	282.0
1	Alaska	2.0
2	Arizona	434.0
3	Arkansas	108.0
4	California	2243.0
5	Colorado	506.0
6	Connecticut	522.0
7	Delaware	402.0
8	District of Columbia	152.0
9	Florida	617.0
10	Georgia	960.0
11	Hawaii	1.0
12	Idaho	32.0
13	Illinois	2542.0
14	Indiana	890.0
15	Iowa	292.0
16	Kansas	348.0
17	Kentucky	136.0
18	Louisiana	454.0
19	Maine	29.0
20	Maryland	1102.0
21	Massachusetts	2232.0
22	Michigan	757.0

	Province_State	TargetValue
23	Minnesota	770.0
24	Mississippi	249.0
25	Missouri	221.0
26	Montana	0.0
27	Nebraska	316.0
28	Nevada	94.0
29	New Hampshire	100.0
30	New Jersey	1558.0
31	New Mexico	160.0
32	New York	3285.0
33	North Carolina	563.0
34	North Dakota	63.0
35	Ohio	697.0
36	Oklahoma	81.0
37	Oregon	79.0
38	Pennsylvania	1102.0
39	Rhode Island	0.0
40	South Carolina	104.0
41	South Dakota	59.0
42	Tennessee	285.0
43	Texas	1045.0
44	Utah	138.0
45	Vermont	1.0
46		
40	Virginia	0.0
47	Virginia Washington	0.0 295.0

	Province_State	TargetValue
49	Wisconsin	344.0
50	Wyoming	27.0

In [28]: states=df.nlargest(5,"TargetValue")
 states

Out[28]:

	Province_State	TargetValue
32	New York	3285.0
13	Illinois	2542.0
4	California	2243.0
21	Massachusetts	2232.0
30	New Jersey	1558.0

In [29]: cases=train.groupby(by=["Date","Province_State"],as_index=False)["TargetValue"].sum()
cases

Out[29]:

Date	Province_State	TargetValue
2020-01-23	Alabama	0.0
2020-01-23	Alaska	0.0
2020-01-23	Arizona	0.0
2020-01-23	Arkansas	0.0
2020-01-23	California	0.0
2020-05-06	Virginia	0.0
2020-05-06	Washington	295.0
2020-05-06	West Virginia	-2.0
2020-05-06	Wisconsin	344.0
2020-05-06	Wyoming	27.0
	2020-01-23 2020-01-23 2020-01-23 2020-01-23 2020-01-23 2020-05-06 2020-05-06 2020-05-06	2020-01-23 Alaska 2020-01-23 Arizona 2020-01-23 Arkansas 2020-01-23 California 2020-05-06 Virginia 2020-05-06 Washington 2020-05-06 West Virginia 2020-05-06 Wisconsin

5355 rows × 3 columns

Out[30]:

	Date	Province_State	TargetValue_x	TargetValue_y
0	2020-01-23	California	0.0	2243.0
1	2020-01-24	California	0.0	2243.0
2	2020-01-25	California	0.0	2243.0
3	2020-01-26	California	2.0	2243.0
4	2020-01-27	California	0.0	2243.0
520	2020-05-02	New York	4822.0	3285.0
521	2020-05-03	New York	3948.0	3285.0
522	2020-05-04	New York	2829.0	3285.0
523	2020-05-05	New York	2364.0	3285.0
524	2020-05-06	New York	3285.0	3285.0

525 rows × 4 columns

Preparing Data for Model

In [32]: pd.options.mode.chained_assignment = None # default='warn'

```
In [33]: #Converting String Date into Integer for both Train and Test Datasets
    train["Date"] = pd.to_datetime(train["Date"]).dt.strftime("%Y%m%d")
    test["Date"] = pd.to_datetime(test["Date"]).dt.strftime("%Y%m%d")

In [34]: #Applying Label Encoding for Categorial features
    from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

train['County'] = le.fit_transform(train['County'])
    train['Province_State'] = le.fit_transform(train['Province_State'])
    train['Target'] = le.fit_transform(test['County'])
    test['County'] = le.fit_transform(test['Province_State'])
    test['Province_State'] = le.fit_transform(test['Province_State'])
    test['Target'] = le.fit_transform(test['Target'])
```

In [35]: train

Out[35]:

	ld	County	Province_State	Country_Region	Population	Weight	Date	Target	TargetValue
50820	67761	81	0	US	55869	0.091485	20200123	0	0.0
50821	67762	81	0	US	55869	0.914848	20200123	1	0.0
50822	67763	81	0	US	55869	0.091485	20200124	0	0.0
50823	67764	81	0	US	55869	0.914848	20200124	1	0.0
50824	67765	81	0	US	55869	0.091485	20200125	0	0.0
721975	962566	1763	50	US	6927	1.130796	20200504	1	0.0
721976	962567	1763	50	US	6927	0.113080	20200505	0	0.0
721977	962568	1763	50	US	6927	1.130796	20200505	1	0.0
721978	962569	1763	50	US	6927	0.113080	20200506	0	0.0
721979	962570	1763	50	US	6927	1.130796	20200506	1	0.0

660030 rows × 9 columns

In [36]: test

Out[36]:

	ForecastId	County	Province_State	Country_Region	Population	Weight	Date	Target
21800	21801	81	0	US	55869	0.091485	20200507	0
21801	21802	81	0	US	55869	0.914848	20200507	1
21802	21803	81	0	US	55869	0.091485	20200508	0
21803	21804	81	0	US	55869	0.914848	20200508	1
21804	21805	81	0	US	55869	0.091485	20200509	0
309415	309416	1763	50	US	6927	1.130796	20200608	1
309416	309417	1763	50	US	6927	0.113080	20200609	0
309417	309418	1763	50	US	6927	1.130796	20200609	1
309418	309419	1763	50	US	6927	0.113080	20200610	0
309419	309420	1763	50	US	6927	1.130796	20200610	1

220010 rows × 8 columns

```
In [37]: predictors = train.drop(['TargetValue', 'Id', 'Country_Region'], axis=1)
target = train["TargetValue"]
```

```
In [38]: X_train, X_test, y_train, y_test = train_test_split(predictors, target, test_size = 0.3, random_state =
```

```
In [39]: test.drop(['ForecastId', 'Country_Region'],axis=1,inplace=True)
    test.index.name = 'Id'
    test
```

Out[39]:

	County	Province_State	Population	Weight	Date	Target
ld						
21800	81	0	55869	0.091485	20200507	0
21801	81	0	55869	0.914848	20200507	1
21802	81	0	55869	0.091485	20200508	0
21803	81	0	55869	0.914848	20200508	1
21804	81	0	55869	0.091485	20200509	0
309415	1763	50	6927	1.130796	20200608	1
309416	1763	50	6927	0.113080	20200609	0
309417	1763	50	6927	1.130796	20200609	1
309418	1763	50	6927	0.113080	20200610	0
309419	1763	50	6927	1.130796	20200610	1

220010 rows × 6 columns

In []:

Model Building

Random Forest

```
In [40]: pipe rfr = Pipeline([
             ('scaler', StandardScaler()),
             ('regression', RandomForestRegressor(n estimators=150))
         ])
         pipe rfr.fit(X train, y train)
         #MaxAbsScaler dene
Out[40]: Pipeline(memory=None,
                  steps=[('scaler',
                           StandardScaler(copy=True, with mean=True, with std=True)),
                          ('regression',
                          RandomForestRegressor(bootstrap=True, ccp_alpha=0.0,
                                                 criterion='mse', max depth=None,
                                                 max_features='auto', max_leaf_nodes=None,
                                                 max_samples=None,
                                                 min_impurity_decrease=0.0,
                                                 min impurity split=None,
                                                 min_samples_leaf=1, min_samples_split=2,
                                                 min weight_fraction_leaf=0.0,
                                                 n estimators=150, n jobs=None,
                                                 oob score=False, random state=None,
                                                 verbose=0, warm_start=False))],
                  verbose=False)
         '''model = RandomForestRegressor(n estimators=150, n jobs=-1)
In [41]:
         model.fit(X_train,y_train)
         print(r2_score(y_test,model.predict(X_test)))'''
Out[41]: 'model = RandomForestRegressor(n_estimators=150, n_jobs=-1)\nmodel.fit(X_train,y_train)\nprint(r2_scor
         e(y test,model.predict(X test)))'
```

```
In [42]: |'''#Fitting the model RandomForestRegressor
         model = RandomForestRegressor(n estimators=150, n jobs=-1)
         scores = []
         model.fit(X train, y train)
         scores.append(model.score(X test, y test))
         score = model.score(X_test, y_test)
         print(round(score*100,2))'''
Out[42]: '#Fitting the model RandomForestRegressor\nmodel = RandomForestRegressor(n estimators=150, n jobs=-1)
         \nscores = []\nmodel.fit(X train, y train)\nscores.append(model.score(X test, y test))\nscore = model.
         score(X test, y test)\nprint(round(score*100,2))'
In [43]: y pred = pipe rfr.predict(X_test)
         y pred
Out[43]: array([ 0.33333333, 0. , -0.14666667, ..., 0.
                 0.
                       , 0.
In [44]: # Compute and print R^2 and RMSE
         print("R^2: {}".format(pipe_rfr.score(X_test, y_test)))
         rmse = np.sqrt(mean_squared_error(y test, y pred))
         print("Root Mean Squared Error: {}".format(rmse))
         R<sup>2</sup>: 0.879338510635336
         Root Mean Squared Error: 12.674922984691188
```

XGBoost

```
In [45]: pipe xgb = Pipeline([
             ('scaler', StandardScaler()),
             ('regression', GradientBoostingRegressor(loss="ls"))
         1)
         pipe xgb.fit(X_train, y_train)
         #MaxAbsScaler dene
Out[45]: Pipeline(memory=None,
                  steps=[('scaler',
                           StandardScaler(copy=True, with mean=True, with std=True)),
                          ('regression',
                          GradientBoostingRegressor(alpha=0.9, ccp_alpha=0.0,
                                                     criterion='friedman mse', init=None,
                                                     learning_rate=0.1, loss='ls',
                                                     max depth=3, max features=None,
                                                     max leaf nodes=None,
                                                     min impurity decrease=0.0,
                                                     min impurity split=None,
                                                     min samples leaf=1,
                                                     min samples split=2,
                                                     min weight fraction leaf=0.0,
                                                     n estimators=100,
                                                     n iter no change=None,
                                                     presort='deprecated',
                                                     random state=None, subsample=1.0,
                                                     tol=0.0001, validation fraction=0.1,
                                                     verbose=0, warm start=False))],
                  verbose=False)
         '''#Fitting the model GradientBoostingRegressor
In [46]:
         model = GradientBoostingRegressor(loss="ls")
         scores = []
         model.fit(X train, y train)
         scores.append(model.score(X test, y test))
         score = model.score(X test, y test)
         print(round(score*100,2))'''
Out[46]: '#Fitting the model GradientBoostingRegressor\nmodel = GradientBoostingRegressor(loss="ls")\nscores =
         []\nmodel.fit(X train, y train)\nscores.append(model.score(X test, y test))\nscore = model.score(X test
         t, y test)\nprint(round(score*100,2))'
```

Lasso Regression

Ridge Regression

```
In [53]: # Setup the array of alphas and lists to store scores
         alpha space = np.logspace(-4, 0, 50)
         pipe ridge scores = []
         pipe_ridge_scores_std = []
In [54]: def display plot(cv scores, cv scores std):
             fig = plt.figure()
             ax = fig.add subplot(1,1,1)
             ax.plot(alpha space, cv scores)
             std error = cv scores std / np.sqrt(10)
             ax.fill between(alpha space, cv scores + std error, cv scores - std error, alpha=0.2)
             ax.set ylabel('CV Score +/- Std Error')
             ax.set xlabel('Alpha')
             ax.axhline(np.max(cv scores), linestyle='--', color='.5')
             ax.set xlim([alpha space[0], alpha space[-1]])
             ax.set xscale('log')
             plt.show()
```

```
'''# Compute scores over range of alphas
         for alpha in alpha space:
             # Specify the alpha value to use: ridge.alpha
             pipe ridge.alpha = alpha
             # Perform 10-fold CV: ridge cv scores
             pipe ridge cv scores = cross val score(pipe ridge, X train, y train, cv=10)
             # Append the mean of ridge cv scores to ridge scores
             pipe ridge scores.append(np.mean(pipe ridge cv scores))
             # Append the std of ridge cv scores to ridge scores std
             pipe ridge scores std.append(np.std(pipe ridge cv scores))
         # Display the plot
         display plot(pipe ridge scores, pipe ridge scores std)'''
In [56]: pipe ridge = Pipeline([
             ('scaler', StandardScaler()),
             ('ridge', Ridge(normalize=True))
         ])
         pipe_ridge.fit(X_train, y_train)
         #MaxAbsScaler dene
Out[56]: Pipeline(memory=None,
                  steps=[('scaler',
                          StandardScaler(copy=True, with mean=True, with std=True)),
                         ('ridge',
                          Ridge(alpha=1.0, copy_X=True, fit_intercept=True,
                                max iter=None, normalize=True, random state=None,
                                solver='auto', tol=0.001))],
                  verbose=False)
In [57]: y pred = pipe ridge.predict(X test)
         y pred
Out[57]: array([ 2.61109922, -0.65862268, 2.47545918, ..., -2.44094617,
                 1.31116982, -1.4480018 1)
```

```
In [58]: # Compute and print R^2 and RMSE
    print("R^2: {}".format(pipe_ridge.score(X_test, y_test)))
    rmse = np.sqrt(mean_squared_error(y_test, y_pred))
    print("Root Mean Squared Error: {}".format(rmse))

    R^2: 0.06232292278505036
    Root Mean Squared Error: 35.3335796369288
In []:
```

Model Tuning

```
In [59]: max_range =10
In [60]: '''for i in range(max range):
             X train, X test, y train, y test = train_test_split(predictors, target, test_size =0.3, random_state =i)
             model = RandomForestRegressor(n estimators=150)
             model.fit(X train,y train)
             print("Random state {}\n".format(i))
             print(r2 score(y test, model.predict(X test)))'''
Out[60]: 'for i in range(max range):\n
                                          X train, X test, y train, y test = train test split(predictors, target, te
         st size =0.3, random state =i)\n model = RandomForestRegressor(n estimators=150)\n
                                                                                                  model.fit(X tr
         ain,y train)\n
                         print("Random state {}\n".format(i))\n print(r2 score(y test,model.predict(X tes
         t)))'
 In [ ]:
In [61]: '''param grid = {'n estimators':np.arange(50, 400, 100)}
         clf = GridSearchCV(estimator=model, param grid=param grid, cv=3, verbose=1, n jobs=-1)
         clf.fit(X train, y train)
         print("Best Parameters: {}".format(clf.best params ))
         print("Best score is {}".format(clf.best score ))'''
Out[61]: 'param grid = {\'n estimators\':np.arange(50, 400, 100)}\nclf = GridSearchCV(estimator=model, param gr
         id=param grid, cv=3, verbose=1, n jobs=-1)\nclf.fit(X train, y train)\nprint("Best Parameters: {}".for
         mat(clf.best params )) \nprint("Best score is {}".format(clf.best score ))'
```

Output

```
In [62]: y pred.shape
Out[62]: (198009,)
In [63]: y_pred = pipe_rfr.predict(test)
         pred_list = [int(x) for x in y_pred]
         output = pd.DataFrame({'Id': test.index, 'TargetValue': pred list})
         print(output)
                          TargetValue
                   21800
         0
                                    3
                                    0
          1
                   21801
                   21802
          2
                                    3
          3
                   21803
                                    0
                   21804
                                    3
          220005
                 309415
                                    0
                 309416
          220006
                                    0
          220007
                 309417
                                    0
          220008
                                    0
                 309418
         220009
                 309419
         [220010 rows x 2 columns]
```

```
In [64]: output
```

Out[64]:

	ld	TargetValue
0	21800	3
1	21801	0
2	21802	3
3	21803	0
4	21804	3
220005	309415	0
220006	309416	0
220007	309417	0
220008	309418	0
220009	309419	0

220010 rows × 2 columns

```
In [ ]:
```

Preparing Submission File

Out[65]:

	ld	TargetValue
0	21800	3
1	21801	0
2	21802	3
3	21803	0
4	21804	3
220005	309415	0
220006	309416	0
220007	309417	0
220008	309418	0
220009	309419	0

220010 rows × 2 columns

Out[66]:

	ld	TargetValue
0	1	3
1	2	0
2	3	3
3	4	0
4	5	3
220005	287616	0
220006	287617	0
220007	287618	0
220008	287619	0
220009	287620	0

220010 rows × 2 columns

In [67]: result

Out[67]:

	ForecastId	County	Province_State	Country_Region	Population	Weight	Date	Target
21800	21801	Autauga	Alabama	US	55869	0.091485	2020-05-07	ConfirmedCases
21801	21802	Autauga	Alabama	US	55869	0.914848	2020-05-07	Fatalities
21802	21803	Autauga	Alabama	US	55869	0.091485	2020-05-08	ConfirmedCases
21803	21804	Autauga	Alabama	US	55869	0.914848	2020-05-08	Fatalities
21804	21805	Autauga	Alabama	US	55869	0.091485	2020-05-09	ConfirmedCases
309415	309416	Weston	Wyoming	US	6927	1.130796	2020-06-08	Fatalities
309416	309417	Weston	Wyoming	US	6927	0.113080	2020-06-09	ConfirmedCases
309417	309418	Weston	Wyoming	US	6927	1.130796	2020-06-09	Fatalities
309418	309419	Weston	Wyoming	US	6927	0.113080	2020-06-10	ConfirmedCases
309419	309420	Weston	Wyoming	US	6927	1.130796	2020-06-10	Fatalities

220010 rows × 8 columns

```
In [68]: result['Id'] = result['ForecastId'].apply(lambda x: x - 21800)
    result = result.drop(['ForecastId'], axis=1)
```

In [69]: final = pd.merge(result, output, on='Id', how='left')
final

Out[69]:

	County	Province_State	Country_Region	Population	Weight	Date	Target	ld	TargetValue
0	Autauga	Alabama	US	55869	0.091485	2020-05-07	ConfirmedCases	1	3
1	Autauga	Alabama	US	55869	0.914848	2020-05-07	Fatalities	2	0
2	Autauga	Alabama	US	55869	0.091485	2020-05-08	ConfirmedCases	3	3
3	Autauga	Alabama	US	55869	0.914848	2020-05-08	Fatalities	4	0
4	Autauga	Alabama	US	55869	0.091485	2020-05-09	ConfirmedCases	5	3
220005	Weston	Wyoming	US	6927	1.130796	2020-06-08	Fatalities	287616	0
220006	Weston	Wyoming	US	6927	0.113080	2020-06-09	ConfirmedCases	287617	0
220007	Weston	Wyoming	US	6927	1.130796	2020-06-09	Fatalities	287618	0
220008	Weston	Wyoming	US	6927	0.113080	2020-06-10	ConfirmedCases	287619	0
220009	Weston	Wyoming	US	6927	1.130796	2020-06-10	Fatalities	287620	0

220010 rows × 9 columns

In [70]: final = final[['Id', 'Country_Region', 'Weight', 'Date', 'Target', 'TargetValue', 'County', 'Population
final

Out[70]:

	ld	Country_Region	Weight	Date	Target	TargetValue	County	Population	Province_State
0	1	US	0.091485	2020-05-07	ConfirmedCases	3	Autauga	55869	Alabama
1	2	US	0.914848	2020-05-07	Fatalities	0	Autauga	55869	Alabama
2	3	US	0.091485	2020-05-08	ConfirmedCases	3	Autauga	55869	Alabama
3	4	US	0.914848	2020-05-08	Fatalities	0	Autauga	55869	Alabama
4	5	US	0.091485	2020-05-09	ConfirmedCases	3	Autauga	55869	Alabama
220005	287616	US	1.130796	2020-06-08	Fatalities	0	Weston	6927	Wyoming
220006	287617	US	0.113080	2020-06-09	ConfirmedCases	0	Weston	6927	Wyoming
220007	287618	US	1.130796	2020-06-09	Fatalities	0	Weston	6927	Wyoming
220008	287619	US	0.113080	2020-06-10	ConfirmedCases	0	Weston	6927	Wyoming
220009	287620	US	1.130796	2020-06-10	Fatalities	0	Weston	6927	Wyoming

220010 rows × 9 columns

```
In [71]: print(final[final.County == 'Denton'][final.Date == '2020-06-10'])
                     Id Country_Region
                                                                     Target \
                                         Weight
                                                       Date
                                   US 0.073015 2020-06-10
         181018 236769
                                                             ConfirmedCases
         181019 236770
                                   US 0.730149 2020-06-10
                                                                 Fatalities
                 TargetValue County Population Province_State
         181018
                          23 Denton
                                         887207
                                                         Texas
         181019
                           0
                                         887207
                            Denton
                                                         Texas
```

/opt/anaconda3/lib/python3.7/site-packages/ipykernel launcher.py:1: UserWarning:

Boolean Series key will be reindexed to match DataFrame index.

```
In [72]: print(final[final.Province_State == 'Texas'][final.Date == '2020-06-10'])
                      Id Country Region
                                                                          Target \
                                             Weight
                                                            Date
          176748
                  231279
                                      US
                                          0.091211
                                                     2020-06-10
                                                                  ConfirmedCases
          176749
                  231280
                                                     2020-06-10
                                                                      Fatalities
                                      US
                                          0.912106
          176818 231369
                                          0.101661
                                                     2020-06-10
                                                                  ConfirmedCases
                                      US
          176819
                  231370
                                          1.016611
                                                     2020-06-10
                                                                      Fatalities
                                      US
          176888
                  231459
                                          0.087948
                                                     2020-06-10
                                                                  ConfirmedCases
                                      US
          . . .
                                      . . .
                                                . . .
                                                             . . .
          194319
                  253870
                                          1.020540
                                                     2020-06-10
                                                                      Fatalities
                                      US
          194388
                  253959
                                          0.104607
                                                                  ConfirmedCases
                                      US
                                                     2020-06-10
          194389
                  253960
                                          1.046070
                                                     2020-06-10
                                                                      Fatalities
                                      US
          194458 254049
                                          0.106617
                                                     2020-06-10
                                                                  ConfirmedCases
                                      US
         194459
                  254050
                                      US
                                          1.066175
                                                     2020-06-10
                                                                      Fatalities
                  TargetValue
                                  County
                                          Population Province State
          176748
                                Anderson
                                                57735
                             2
                                                                Texas
          176749
                                Anderson
                             0
                                                57735
                                                                Texas
          176818
                             0
                                 Andrews
                                                18705
                                                                Texas
          176819
                                                18705
                                 Andrews
                                                                Texas
          176888
                                Angelina
                            14
                                                86715
                                                                Texas
          . . .
                                     . . .
                                                  . . .
                                                                  . . .
          194319
                                                18010
                             0
                                   Young
                                                                Texas
          194388
                             0
                                  Zapata
                                                14179
                                                                Texas
         194389
                             0
                                  Zapata
                                                14179
                                                                Texas
          194458
                             0
                                  Zavala
                                                11840
                                                                Texas
          194459
                                  Zavala
                                                11840
                                                                Texas
```

[508 rows x 9 columns]

/opt/anaconda3/lib/python3.7/site-packages/ipykernel launcher.py:1: UserWarning:

Boolean Series key will be reindexed to match DataFrame index.

```
In [73]: final_grouped_county = final.groupby(['Province_State', 'County', 'Target']).TargetValue.sum()
    final_grouped_county = final_grouped_county.to_frame().reset_index()
    final_grouped_county
```

Out[73]:

	Province_State	County	Target	TargetValue
0	Alabama	Autauga	ConfirmedCases	105
1	Alabama	Autauga	Fatalities	0
2	Alabama	Baldwin	ConfirmedCases	70
3	Alabama	Baldwin	Fatalities	0
4	Alabama	Barbour	ConfirmedCases	0
6281	Wyoming	Uinta	Fatalities	0
6282	Wyoming	Washakie	ConfirmedCases	0
6283	Wyoming	Washakie	Fatalities	0
6284	Wyoming	Weston	ConfirmedCases	0
6285	Wyoming	Weston	Fatalities	0

6286 rows × 4 columns

In [74]: final_grouped_county[final_grouped_county.Province_State == 'Texas'][final_grouped_county.County == 'Dal
/opt/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: UserWarning:

Boolean Series key will be reindexed to match ${\tt DataFrame}$ index.

Out[74]:

	Province_State	County	Target	TargetValue
5160	Texas	Dallas	ConfirmedCases	8540
5161	Texas	Dallas	Fatalities	105

In [75]: final_grouped_county[final_grouped_county.Province_State == 'New York']

Out[75]:

	Province_State	County	Target	TargetValue
3658	New York	Albany	ConfirmedCases	980
3659	New York	Albany	Fatalities	105
3660	New York	Allegany	ConfirmedCases	0
3661	New York	Allegany	Fatalities	0
3662	New York	Bronx	ConfirmedCases	0
3777	New York	Westchester	Fatalities	770
3778	New York	Wyoming	ConfirmedCases	35
3779	New York	Wyoming	Fatalities	0
3780	New York	Yates	ConfirmedCases	0
3781	New York	Yates	Fatalities	0

124 rows × 4 columns

```
In [76]: final_grouped_state = final.groupby(['Province_State', 'Target']).TargetValue.sum()
    final_grouped_state = final_grouped_state.to_frame().reset_index()
    final_grouped_state
```

Out[76]:

	Province_State	Target	TargetValue
0	Alabama	ConfirmedCases	9940
1	Alabama	Fatalities	420
2	Alaska	ConfirmedCases	175
3	Alaska	Fatalities	0
4	Arizona	ConfirmedCases	14000
97	West Virginia	Fatalities	0
98	Wisconsin	ConfirmedCases	10290
99	Wisconsin	Fatalities	140
100	Wyoming	ConfirmedCases	875
101	Wyoming	Fatalities	0

102 rows × 3 columns

```
In [77]: final.to_csv('final.csv', index=False)
In [78]: final_grouped_county.to_csv('final_grouped_county.csv', index=False)
In [79]: final_grouped_state.to_csv('final_grouped_state.csv', index=False)
In []:
In []: '''last_date_final=final.Date.max()
df2=final[final["Date"]==last_date_final]
df2'''
```

In [81]: final

Out[81]:

	ld	Country_Region	Weight	Date	Target	TargetValue	County	Population	Province_State
0	1	US	0.091485	2020-05-07	ConfirmedCases	3	Autauga	55869	Alabama
1	2	US	0.914848	2020-05-07	Fatalities	0	Autauga	55869	Alabama
2	3	US	0.091485	2020-05-08	ConfirmedCases	3	Autauga	55869	Alabama
3	4	US	0.914848	2020-05-08	Fatalities	0	Autauga	55869	Alabama
4	5	US	0.091485	2020-05-09	ConfirmedCases	3	Autauga	55869	Alabama
220005	287616	US	1.130796	2020-06-08	Fatalities	0	Weston	6927	Wyoming
220006	287617	US	0.113080	2020-06-09	ConfirmedCases	0	Weston	6927	Wyoming
220007	287618	US	1.130796	2020-06-09	Fatalities	0	Weston	6927	Wyoming
220008	287619	US	0.113080	2020-06-10	ConfirmedCases	0	Weston	6927	Wyoming
220009	287620	US	1.130796	2020-06-10	Fatalities	0	Weston	6927	Wyoming

220010 rows × 9 columns

In [82]: df2=final.groupby(by=["Province_State", "Date"],as_index=False)["TargetValue"].sum()
df2

Out[82]:

	Province_State	Date	TargetValue
0	Alabama	2020-05-07	296
1	Alabama	2020-05-08	296
2	Alabama	2020-05-09	296
3	Alabama	2020-05-10	296
4	Alabama	2020-05-11	296
1780	Wyoming	2020-06-06	25
1781	Wyoming	2020-06-07	25
1782	Wyoming	2020-06-08	25
1783	Wyoming	2020-06-09	25
1784	Wyoming	2020-06-10	25

1785 rows × 3 columns

In [83]: states_final=df2.nlargest(5,"TargetValue")
 states_final

Out[83]:

		Province_State	Date	TargetValue
11	20	New York	2020-05-07	3365
11	21	New York	2020-05-08	3365
11	22	New York	2020-05-09	3365
11	23	New York	2020-05-10	3365
11:	24	New York	2020-05-11	3365

In [84]: cases_final=final.groupby(by=["Date","Province_State"],as_index=False)["TargetValue"].sum()
cases_final

Out[84]:

	Date	Province_State	TargetValue
0	2020-05-07	Alabama	296
1	2020-05-07	Alaska	5
2	2020-05-07	Arizona	421
3	2020-05-07	Arkansas	90
4	2020-05-07	California	2583
1780	2020-06-10	Virginia	380
1781	2020-06-10	Washington	264
1782	2020-06-10	West Virginia	4
1783	2020-06-10	Wisconsin	298
1784	2020-06-10	Wyoming	25

1785 rows × 3 columns

Out[85]:

	Date_x	Province_State	TargetValue_x	Date_y	TargetValue_y
0	2020-05-07	New York	3365	2020-05-07	3365
1	2020-05-07	New York	3365	2020-05-08	3365
2	2020-05-07	New York	3365	2020-05-09	3365
3	2020-05-07	New York	3365	2020-05-10	3365
4	2020-05-07	New York	3365	2020-05-11	3365
170	2020-06-10	New York	3365	2020-05-07	3365
171	2020-06-10	New York	3365	2020-05-08	3365
172	2020-06-10	New York	3365	2020-05-09	3365
173	2020-06-10	New York	3365	2020-05-10	3365
174	2020-06-10	New York	3365	2020-05-11	3365

175 rows × 5 columns