

Project 5

Proxy ARP

Deadline: 2021/12/01 (WED) 23:55

- Introduction to ARP
 - What is ARP
 - -ARP Request/Reply Format
- Proxy ARP
 - What is Proxy ARP
 - Workflow of Proxy ARP in SDN
- Project 5 Requirements
- Reference

- Introduction to ARP
 - -What is ARP
 - -ARP Request/Reply Format
- Proxy ARP
 - What is Proxy ARP
 - Workflow of Proxy ARP in SDN
- Project 5 Requirements
- Reference

What is Address Resolution Protocol (ARP)

- Used to discover Link Layer address (e.g. MAC) with the given Network Layer address (e.g. IPv4)
- Use flooding to discover devices
 - Destination Ethernet address of ARP Request is broadcast address
- Hosts maintain a ARP table for mapping of IPv4 to MAC address

ARP Request Packet Frame

Following table depicts ARP request packet format (Find IPv4 from MAC)

Hardware Type (Ethernet = 1)		Protocol Type (IPv4 = 0x0800)		
Hardware Length (Ethernet = 6)	Protocol Length (IPv4 = 4)	Operation Code (ARP request = 1)		
Sender Hardware Address (h1-MAC)				
Sender Protocol Address (h1-IP)				
Target Hardware Address (00:00:00:00:00)				
Target Protocol Address (h2-IP)				

ARP Reply Packet Frame

Following table depicts ARP reply packet format (Find IPv4 from MAC)

Hardware Type (Ethernet = 1)		Protocol Type (IPv4 = 0x0800)		
Hardware Length (Ethernet = 6)	Protocol Length (IPv4 = 4)	Operation Code (ARP request = 1)		
Sender Hardware Address (h2-MAC)				
Sender Protocol Address (h2-IP)				
Target Hardware Address (h1-MAC)				
Target Protocol Address (h1-IP)				

- Introduction to ARP
 - What is ARP
 - -ARP Request/Reply Format
- Proxy ARP
 - What is Proxy ARP
 - Workflow of Proxy ARP in SDN
- Project 5 Requirements
- References

What is Proxy ARP

- A Proxy device answers ARP requests for IP address on behalf of other devices
 - The proxy device could be router, firewall, etc.
 - The replied MAC address belongs to the **proxy device**
- In the context of SDN, controller serves as proxy device
 - However, the replied MAC address belongs to the target host
 - Benefits:
 - Decreases workload of network devices
 - Prevent issues like broadcast storm

Workflow of Proxy ARP in SDN

- 1. Sender sends ARP request
- 2. Edge switch Packet-Ins the request to controller
- 3. Proxy ARP learns address mappings of the sender
- 4. Proxy ARP fetches target's MAC from ARP table
 - If mapping not exists:
 - a. Flood request packet to edge ports
 - b. Wait for ARP reply from the target
 - c. Learn address mapping of the target
 - Else, generate an ARP reply packet
- 5. Proxy ARP Packet-Outs the ARP reply to the sender

First ARP Request (1/4)

- h1 sends ARP request to h2
- The very first switch (s1) performs Packet-In to controller

First ARP Request (2/4)

- Controller learns mapping of IP to MAC address of h1
- With mapping of h2 absent, controller needs to discover h2
 - By Packet-Outing the ARP request to all edge ports (ports connecting to host) other
 than h1's
 ARP table maintained by Proxy ARP

First ARP Request (3/4)

- All other hosts receive ARP requests, but only h2 will send ARP reply
- Again, the very first switch (s2) performs Packet-In to controller

First ARP Request (4/4)

- Controller learns mapping of requested IP to MAC address of h2
- Controller Packet-Outs the ARP reply to the switch connected to h1

h1 IP	h1 MAC
h2 IP	h2 MAC

NYCU CS

ARP Reply

Subsequent ARP Request

- If h1 sends ARP request to h2 again
 - Since controller has learned the address mapping of h2, it just generates and Packet-Out the ARP reply to the ingress port

ARP table maintained by Proxy ARP

h1 IP	h1 MAC
h2 IP	h2 MAC

NYCU CS

ARP Reply

- Introduction to ARP
 - What is ARP
 - -ARP Request/Reply Format
- Proxy ARP
 - What is Proxy ARP
 - Workflow of Proxy ARP in SDN
- Project 5 Requirements
- References

Project 5 Descriptions

- In this project, you need to implement a Proxy ARP application
- No flow rule should be installed by your application
- Your implementation should comply to workflow introduced earlier
- Note:
 - The sender should **not** receive the packet-out when table miss
 - When table miss, only packet-out to edge ports

Test Your Application

 Once you activating your application and Mininet, executing arping in Mininet to check ARP functionality

```
mininet> h1 arping h2
```

Correct result would look like:

```
mininet> h1 arping h2 -c 3
ARPING 10.0.0.2 from 10.0.0.1 h1-eth0
Unicast reply from 10.0.0.2 [D6:B5:82:B5:23:0E] 15.850ms
Unicast reply from 10.0.0.2 [D6:B5:82:B5:23:0E] 4.267ms
Unicast reply from 10.0.0.2 [D6:B5:82:B5:23:0E] 4.370ms
Sent 3 probes (1 broadcast(s))
Received 3 response(s)
mininet>
```


Restriction

- ONOS application activation
 - You are only allowed to activate your *ProxyARP* and the following ONOS applications:

```
brian@root > apps -a -s
   6 org.onosproject.drivers
                                                  Default Drivers
                                          2.2.0
   7 org.onosproject.optical-model
                                                  Optical Network Model
                                          2.2.0
   39 org.onosproject.gui2
                                          2.2.0
                                                  ONOS GUI2
   52 org.onosproject.openflow-base
                                                  OpenFlow Base Provider
                                          2.2.0
                                                  Host Location Provider
   84 org.onosproject.hostprovider
                                         2.2.0
   85 org.onosproject.lldpprovider
                                         2.2.0 LLDP Link Provider
                                                  OpenFlow Provider Suite
   86 org.onosproject.openflow
                                         2.2.0
  192 nctu.winlab.ProxyArp
                                          1.0.SNAPSHOT ONOS OSGi bundle archetype
```


Naming Requirement

- You should follow the Maven project naming format below
- Otherwise, your project will result in 10 points deduction

```
- <groupId>: nctu.winlab
- <artifactId>: ProxyArp
- <version>: <use default> (1.0-SNAPSHOT)
- <Package>: nctu.winlab.ProxyArp
```


Project 5 Scoring Criteria

- (10%) Project naming convention
- (30%) Print messages in following events:
 - ARP table miss

```
209 - nctu.winlab.ProxyArp - 1.0.0.SNAPSHOT | TABLE MISS. Send request to edge ports
```

- ONOS receives ARP reply from host
- 209 nctu.winlab.ProxyArp 1.0.0.SNAPSHOT | RECV REPLY. Requested MAC = 06:4F:F1:84:A5:EA
 - ARP table hit

```
209 - nctu.winlab.ProxyArp - 1.0.0.SNAPSHOT | TABLE HIT. Requested MAC = 06:4F:F1:84:A5:EA
```

- (60%) Work properly at least in tree (depth=3, fanout=3) topology
 - All hosts are able to arping to each other

Submission

- Files
 - All files of your application
- Submission
 - Upload ".zip" file to New e3
 - Named: project5_<studentID>.zip
 - Incorrect naming convention or format will result in 10 points deduction

- Introduction to ARP
 - What is ARP
 - -ARP Request/Reply Format
- Proxy ARP
 - What is Proxy ARP
 - Workflow of Proxy ARP in SDN
- Project 5 Requirements
- References

References

- For fetching network topology status
 - http://api.onosproject.org/2.2.0/apidocs/org/onosproject/net/host/HostService.
 html
 - http://api.onosproject.org/2.2.0/apidocs/org/onosproject/net/edge/EdgePortSer vice.html
- For packet manipulation
 - http://api.onosproject.org/2.2.0/apidocs/org/onlab/packet/Ethernet.html
 - http://api.onosproject.org/2.2.0/apidocs/org/onlab/packet/ARP.html