Assignment 3, Math 330

Name:

Due Thursday, October 3. Feel free to work with others on this and other homework assignments.

- 1. Use the $N \epsilon$ verification of convergence for the sequence $\left\{\frac{7n^2}{n^2 n}\right\}_{n=2}^{\infty}$.
- 2. Prove the following corollary to our Boundedness Lemma. You can use the lemma we proved or just mimic its proof it's easier to use it in my opinion. Suppose that $\lim_{n\to\infty} a_n = a \neq c$. Prove $\exists \beta > 0$ and $N \in \mathbb{N}$ such that $\forall n \in \mathbb{N}$, if $n \geq N$, then $\beta < |a_n c|$.
- 3. Suppose that $\lim_{n\to\infty} a_n = a$. Prove that $\lim_{n\to\infty} a_n^2 = a^2$. Use an $N-\epsilon$ verification rather than Theorem 2.13 Product Property for Limits – in fact, look at our proof in class for Theorem 2.13 and try to mimic that proof.
- 4. Closed sets and not...
 - (a) Show that the set $[20, \infty)$ is closed.
 - (b) Show that the set $\bigcup_{n=1}^{\infty} \left[\frac{1}{n}, 1\right]$ is not closed.
- 5. Prove that $\lim_{n\to\infty} (\sqrt{n+1} \sqrt{n}) = 0$. Who says rationalizing numerators is not important? Not me, never.
- 6. They call this extra credit.
 - * Suppose that 0 < r < 1. Prove that $\exists N \in \mathbb{N}$ such that $\forall n > N$ we have

1

$$\frac{(n+1)r^{n+1}}{nr^n} < 1.$$

** Suppose that 0 < r < 1. Prove that $\lim_{n \to \infty} nr^n = 0$