电子科技大学 2022-2023 学年第 2 学期期中考试试卷

1. 记 A: 二元函数 z = f(x, y) 在点 (x_0, y_0) 可微,B: 二元函数 z = f(x, y) 在点 (x_0, y_0) 有一阶连

2. 设
$$x + y^3 - e^z = z$$
, 则 $\frac{\partial z}{\partial x} =$ ()

二、填空题(每小题3分,共15分)

1. 极限
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{\sin(x^2 y)}{xy} = _____.$$

- 2. 函数 $u = x^{x}$ 在点 (1,1,2) 处的全微分 du =______
- 3. 曲线 $y = x^2, z = x^3$ 在 x = 1 处的切向量为 . .

4. 设曲线
$$L: \frac{x^2}{9} + \frac{y^2}{4} = 1$$
 的周长为 a ,则积分 $\int_L (4x^2 + 9y^2) ds = _____.$

5. 函数 $z = x^2 + y^2$ 在点 (1,2) 处沿从点 (1,2) 到点 (2,2+ $\sqrt{3}$) 的方向的方向导数为

三、(14 分)设 f(u,v) 具有二阶连续偏导数, z = f(x - y, xy),求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ 和 $\frac{\partial^2 z}{\partial x \partial y}$.

四、(14 分)讨论函数
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, (x,y) \neq (0,0), \\ 0, \quad (x,y) = (0,0) \end{cases}$$
 在点(0,0)的可微性.

五、 (12 分) 计算
$$I = \iint |x^2 + y^2 - 1| dxdy$$
, $D: x^2 + y^2 \le 4$.

五、(12 分) 计算 $I = \iint_D |x^2 + y^2 - 1| \, dx dy$, $D: x^2 + y^2 \le 4$. 六、(12 分) 设 $F(t) = \iiint_V [z^2 + f(x^2 + y^2)] \, dV$, $V: x^2 + y^2 \le t^2$, $0 \le z \le h$, $f \in V$ 上连续,求 F'(t).

七、 $(10 \, f)$ 若点 $M_0(x_0, y_0, z_0)$ 是光滑曲面 F(x, y, z) = 0 上与原点相距最近的点,试证过点 M_0 的 法线必过原点.

八、(8分) 设P为椭球面 $\Sigma: x^2 + y^2 + z^2 - yz = 1$ 上的动点, 若 Σ 在点P处的切平面与xOy面垂直,

求点 P 的轨迹 L, 并计算曲面积分 $I = \iint_S \frac{(x+\sqrt{3})|y-2z|}{\sqrt{4+y^2+z^2-4yz}} dS$, 其中 S 是椭球面 Σ 位于曲线 L 上 方的部分.