一、选择题(共50分,每答对一道小题得5分)

1、曲面 $z = x^3 + y^2$ 在点 (1,1,2) 处的切平面和法线方程依次为 ()

(A)
$$3x+2y-z=3$$
, $\frac{x-1}{3}=\frac{y-1}{2}=2-z$.

(B)
$$3x + 2y + z = 7$$
, $\frac{x-1}{3} = \frac{y-1}{2} = z-2$.

(c)
$$\frac{x-1}{3} = \frac{y-1}{2} = 2-z$$
, $3x + 2y - z = 3$.

(D)
$$\frac{x-1}{3} = \frac{y-1}{2} = z-2$$
, $3x+2y+z=7$.

- 2、设函数 $f(x,y) = 3x + 4y x^2 2y^2 2xy$,则 f(x,y)有唯一的 ()
 - (A) 极小值 $\frac{5}{2}$.

(B) 极大值 $\frac{5}{2}$.

(C) 极大值 $-\frac{15}{2}$.

(D) 极小值 $-\frac{15}{2}$.

3、设函数
$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
 ()

(A)
$$f_x'(0,0) = 0, f_{xy}''(0,0) = -1$$

(A)
$$f'_x(0,0) = 0, f''_{xy}(0,0) = -1$$
. (B) $f'_x(0,0) = 1, f''_{xy}(0,0) = -1$.

(C)
$$f'_x(0,0) = 0, f''_{xy}(0,0) = 1.$$
 (D) $f'_x(0,0) = 1, f''_{xy}(0,0) = 1.$

(D)
$$f'_x(0,0) = 1, f''_{xy}(0,0) = 1$$
.

4、将函数
$$f(x) = \begin{cases} x, & x \in [0,1] \\ 1-x, & x \in (1,2] \end{cases}$$
 展成 Fourier 级数 $\sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{2}$,其中 Fourier

系数
$$b_n = \int_0^2 f(x) \sin \frac{n\pi x}{2} dx (n = 1, 2, \dots)$$
,级数的和函数记为 $S(x)$,则(

(A)
$$S(1) = 1, S(\frac{7}{2}) = -\frac{1}{2}$$
. (B) $S(1) = \frac{1}{2}, S(\frac{7}{2}) = \frac{1}{2}$.

(B)
$$S(1) = \frac{1}{2}, S(\frac{7}{2}) = \frac{1}{2}$$
.

(c)
$$S(1) = \frac{1}{2}, S(\frac{7}{2}) = -\frac{1}{2}$$
. (D) $S(1) = 1, S(\frac{7}{2}) = \frac{1}{2}$.

(D)
$$S(1) = 1, S(\frac{7}{2}) = \frac{1}{2}$$
.

5、设函数
$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$
 则级数 $f(0) + f'(0) + \dots + f^{(n)}(0) + \dots$ (

(A) 绝对收敛.

 (A) 绝对收敛.
 (B) 条件收敛.

 (C) 发散,且部分和数列趋于 $+\infty$.
 (D) 发散,且部分和数列趋于 $-\infty$.

(A)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}.$$

(B)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \sin \frac{1}{n} \right).$$

(C)
$$\sum_{n=1}^{\infty} \frac{n^2 + \ln n}{n^4 - \cos n}.$$

(D)
$$\sum_{n=1}^{\infty} \left(\frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n} \right).$$

7、设曲面
$$S: z = \sqrt{x^2 + y^2} \ (0 \le z \le 1)$$
,则曲面积分 $\iint_S z \, dS = ($

(A)
$$\frac{2}{3}\pi$$
.

(B)
$$\frac{2\sqrt{2}}{3}\pi$$
.

(c)
$$\sqrt{2} \pi$$
.

(D)
$$\pi$$
.

				• •						
8、设	V 是由	玉 & 曲 5	= 2	2 4 H _	$-2 - x^2$	2 王	成的 \mathbf{R}^3	中的有	界闭区	域,则
		两个曲度		+ <i>y</i> / µ <i>z</i> =	$= \angle - x$	$-y$ \blacksquare	WHY	, ,,,,,,	/	
				+ <i>y</i> / µ <i>z</i> =	-2-x	— <i>у</i> 🖼 .	/ X H J IX	,,	<i>></i> 1114	
				+ <i>у ү</i> үн <i>z</i> =	- Z - x	— у ш ,	, у ДН Ј ТС		<i>7</i> , 1.4 L	
三重移	?分∭	z dV = 0		+ y /h u z =			, And It	,	<i>7</i> 11.4.	
三重移	?分∭			+ у үн z =			,		<i>></i> ,,,,,,	
三重移	?分∭			+ у үн z =			, , , , , , , , , , , , , , , , , , ,		<i>></i> ,,,,,,	
三重移	?分∭			+ у үн z =			, , , , , , , , , , , , , , , , , , ,		<i>></i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
三重移				+ у үн z =		$\frac{8}{3}\pi$. $\frac{1}{2}\pi$.	, , , , , , , , , , , , , , , , , , ,		<i>></i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
三重移	?分∭			+ y /h			,		<i>y</i> ,,,,,,	
三重移	?分∭			+ y / 						
三重移	?分∭			+ y / 						
三重移	?分∭			+ y / 						
三重移	?分∭			+ y / 						
三重移	?分∭			+ y / 						
三重移	?分∭			+ y / 						
三重移	?分∭			+ y / 						
三重移	?分∭			+ y / 						
三重移	?分∭			+ y / 						
三重移	?分∭			+ y / 						
三重移	?分∭			+ y / 						
三重移	?分∭			+ y / 						
三重移	?分∭			+ y / 						
三重移	?分∭			+ y / 						
三重移	?分∭			+ y / 						

- 9、二次积分 $\int_0^1 dx \int_0^{x^2} x \cos(1-y)^2 dy = ($)
 - (A) $\frac{1}{4} \sin 1$.
- (B) $-\frac{1}{4}\sin 1$.
- (C) $\frac{1}{4}\cos 1$.

(D) $-\frac{1}{4}\cos 1$.

- 10、设曲线 $L: x^2 + y^2 = 1$ $(x \ge 0, y \ge 0)$, 质量线密度 $\rho = 1$,则 L 对 x 轴的转动惯量等于(
 - (A) $\frac{\pi}{8}$.

(B) $\frac{\pi}{4}$.

(C) $\frac{\pi}{2}$.

(D) π .

