New Technologies in Medical Imaging and Surgery

Tomographic reconstruction techniques

Irène Buvat U494 INSERM, Paris

buvat@imed.jussieu.fr http://www.guillemet.org/irene

Outline

- Introduction: the issue of tomographic reconstruction
- Basics
- Tomographic reconstruction methods
- Regularization
- New challenges
- Conclusion

Introduction

What is tomography?

• An indirect measurement of a parameter of interest, using a detector sensitive to some sort of radiations

Algorithms to recover the 3D cartography of the parameters from the measurements

Direct (forward) problem

of a signal along certain specific directions. The tomographic system measures a set of "projection" data: integrals

parameters and the measurements is the direct problem. The mathematical formulation of the relationship between the unknown

Inverse problem

Tomographic reconstruction is the inversion of the direct problem.

parameters from the measured data Inverse problem: estimating the 3D cartography of unknown

III-posed inverse problem

Limited spatial sampling

III-posed: several solutions compatible with the measurements

No noise

Noisy

Different types of tomography

Transmission tomography

Emission tomography

- External radiation source
- Measurement of radiations transmitted through the patient
- Parameters related to the interactions of radiations within the body
- e.g., Computed Tomography (CT)

- Internal radiation source
- Measurement of radiation emitted from the patient
- Parameters related to the radiation sources within the body

e.g., SPECT and PET

Different types of tomography

PET

SPECT

Optical Tomography

Synchrotron Tomography

Factorization of the reconstruction problem

2D images from a set of 1D measurements

If real 3D: "Fully 3D reconstruction"

Key notion 1: projection

Modelling the direct problem

$$p(u, \square) = f(x, y) dv$$

Projection: mathematical expression

The 2D Radon transform

$$p(u,\square) = f(x,y) dv$$

Key notion 2: sinogram

All detected signal concerning 1 slice

Key notion 3: backprojection

Tackling the inverse problem

$$f^*(x,y) = \left[p(u, \square) d \right]$$

Beware: backprojection is not the inverse of projection!

Methods of tomographic reconstruction

Two approaches

Analytical approaches

$$f^*(x,y) = \bigcap_{0}^{L} p'(u, \square) d\square$$

- Continuous formulation
- Explicit solution using inversion formulae or successive transformations
- Direct calculation of the solution
- Hast
- Discretization for numerical implementation only

② Discrete approaches

- Discrete formulation
- Resolution of a system of linear equations or probabilistic estimation
- Iterative algorithms
- Slow convergence
- Intrinsic discretization

Analytical approach: central slice theorem

1D FT of p with respect to u = 2D FT of f in a specific direction

Analytical approach: filtered backprojection (FBP)

Summer school Clermont - Irène Buvat - july 2004 - 19

Filtered backprojection: algorithm

$$f(x,y) = \bigcup_{0}^{1} f(u, \square) d\square \quad \text{with} \quad p'(u, \square) = \bigcup_{-1}^{1} P(\square, \square) |\square| e^{i2\square u} d\square$$

Ramp filter

Filtered backprojection: beyond the Ramp filter

$$f(x,y) = \bigcup_{0}^{n} f(u, \square) d\square \quad \text{with} \quad p'(u,\square) = \prod_{i=1}^{n} f(\square, \square) |\square| e^{i2\square u} d\square$$

noise amplification

Two approaches

Analytical approaches

$$f^*(x,y) = \bigcap_{0}^{b} (u, \square) d\square$$

- Continuous formulation
- Explicit solution using inversion formulae or successive transformations
- Direct calculation of the solution
- Fast
- Discretization for numerical implementation only

Discrete approaches

$$\mathbf{p}_{i} = \coprod_{j} \mathbf{r}_{ij} \mathbf{f}_{j}$$

- Discrete formulation
- Resolution of a system of linear equations or probabilistic estimation
- Iterative algorithms
- Slow convergence
- Intrinsic discretization

Discrete approach: model

Given p and R, estimate f

Discrete approach: calculation of R

0 川 刀

て models the direct problem

- Geometric modelling
- intersection between pixel and projection rays

parallel

fan beam

- Physics modelling
- spatial resolution of the detector
- physical interactions of radiations

spatial resolution

Two classes of discrete methods

Algebraic methods

Statistical approaches

$$\mathsf{p}_\mathsf{i} = \prod_\mathsf{r} \mathsf{r}_\mathsf{ij} \mathsf{f}_\mathsf{j}$$

- Generalized inverse methods

- Bayesian estimates
- Optimization of functionals
- Account for noise properties

Iterative algorithm used in discrete methods

defines the iterative method:

multiplicative if fn+1 = fn . cn

additive if $f^{n+1} = f^n + C^n$

Algebraic methods

Minimisation of ||p - R f||²

Several minimisation algorithms are possible to estimate a solution:

e.g., SIRT (Simultaneous Iterative Reconstruction Technique) ART (Algrebraic Reconstruction Technique) Conjugate Gradient

e.g., additive ART:

$$f_j^{n+1} = f_j^n + (p_i - p_i^n) r_{ij}/\prod_k r_{ik}^2$$

Statistical methods

probability of obtaining f when p is measured Probabilistic formulation (Bayes' equation): proba(f|p) = proba(p|f) proba(f) / proba(p) likelihood of p prior on f prior on p

Find a solution f maximizing proba(p|f) given a probabilistic model for p

if p follows a Poisson law: $proba(p|f) = \prod exp(-\overline{p}_k).\overline{p}_k p_k / p_k!$

MLEM (Maximum Likelihood Expectation Maximisation):

$$f^{n+1} = f^n \cdot R^t(p/p^n)$$

and OSEM (accelerated version of MLEM)

Regularization

Set constraints on the solution f

Solution f:
trade-off between
the agreement with the observed data
and
the agreement with the constraints

Regularization for analytical methods

Filtering

Ramp filter

Butterworth filter

Regularization for discrete methods

Minimisation of
$$\|p - Rf\|^2 + (\square K(f))$$

agreement with the projections and agreement with the constraints ☐ controls the trade-off between

Examples of priors:

- smooth
- f having discontinuities

MLEM gives MAP-EM Conjugate Gradient gives MAP-Conjugate Gradient (Maximum A Posteriori)

Analytical reconstruction

- Fully 3D reconstruction for CT:
- speed, helical cone beam geometry) (increased number of rows, increased gantry rotation - real time suited to the new designs of CT detectors

deformations (motions) Reconstruction algorithms managing source

Iterative reconstruction: fully 3D Monte Carlo reconstruction

modelling R using numerical (Monte Carlo) simulations of the imaging procedure in emission tomography

tissue density and composition

cross-section tables of radiation interaction

probability that an "event" in j be detected in i

of physical interactions

All propagation and detection physics can be accurately modelled 3D propagation of radiation is taken into account

Pending issues

(256 Gigabytes) Size of the fully 3D problem: 64 projections 64 x 64, R includes 646 elements

Time

Question 1

easily create: Given 128 projections of 64 pixels by 64 pixels, you can

- A. 64 sinograms with 128 rows and 128 columns
- <u>.</u> 128 sinograms with 64 rows and 64 columns
- C. 64 sinograms with 128 rows and 64 columns
- 64 sinograms with 64 rows and 128 columns
- 128 sinograms with 128 rows and 64 columns

Question 2

Iterative reconstruction:

- A. Is faster than analytical reconstruction
- B. Is necessarily fully 3D
- C. Always involves a regularization term
- D. Is based on a discrete formalism
- E. Can include accurate modelling of the radiation physics