ESC 152: Programming with MATLAB

Computer Lab Exercise^{1,2,3,4}

- 3. 1. For the function $y = x^2 \frac{x}{x+3}$, calculate the value of y for the following values of x using element-by-element operations: 0, 1, 2, 3, 4, 5, 6, 7.
- 3. 2. For the function $y = x^4 e^{-x}$, calculate the value of y for the following values of x using element-by-element operations: 1.5, 2, 2.5, 3, 3.5, 4.
- 3.3. For the function $y = (x + x\sqrt{x+3})(1+2x^2) x^3$, calculate the value of y for the following values of x using element-by-element operations: -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2.
- 3.4. For the function $y = \frac{4 \sin x + 6}{(\cos^2 x + \sin x)^2}$, calculate the value of y for the following values of x using element-by-element operations: 15°, 25°, 35°, 45°, 55°, 65°.
- 3.5. The radius, r, of a sphere can be calculated from its volume, V, by:

$$r = \sqrt[3]{\frac{3V}{4\pi}}$$

The surface area of a sphere, S, is given by:

$$S = 4\pi r^2$$

Determine the radius and surface area of spheres with volumes of 4,000, 3,500, 3,000, 2,500, 2,000, 1,500, and 1,000 in.³. Display the results in a three-column table where the values of r, V, and S are displayed in the first, second, and third columns, respectively. The values of r and S that are displayed in the table should be rounded to the nearest tenth of an inch.

3. 6. A 70 lb-bag of rice is being pulled by a person by applying a force F at an angle θ as shown. The force required to drag the bag is given by:

$$F(\theta) = \frac{70\mu}{\mu \sin\theta + \cos\theta}$$

where $\mu = 0.35$ is the friction coefficient.

- (a) Determine $F(\theta)$ for $\theta = 5^{\circ}$, 10° , 15° , 20° , 25° , 30° , and 35° .
- (b) Determine the angle θ where F is minimum. Do it by creating a vector θ with elements ranging from 5° to 35° and spacing of 0.01. Calculate F for each value of θ and then find the maximum F and associated θ with MATLAB's built-in function max.

¹ Fully understand the problem.

² Decide on an algorithm.

³ Program algorithm in MATLAB.

⁴ Debug if necessary.

4.11. Early explorers often estimated altitude by measuring the temperature of boiling water. Use the following two equations to make a table that modern-day hikers could use for the same purpose.

$$p = 29.921(1 - 6.8753 \times 10^{-6}h)$$
, $T_b = 49.161 \ln p + 44.932$

where p is atmospheric pressure in inches of mercury, T_b is boiling temperature in °F, and h is altitude in feet. The table should have two columns, the first altitude and the second boiling temperature. The altitude should range between -500 ft and 10,000 ft at increments of 500 ft.

3.1	У =						
	0.7500 35.3333	3.6000 48.3000		15.4286	24.3750		
3,2	у =						
	1.1296 4.6888	2.1654	3.2064	4.0328	4.5315		
3.3	y = -28.0000	-14.9791	-6.2426	-1.8109			
	2.0281	8.0000	22.3759	50.2492			
3.4	y = 4.9528	4.9694	5.3546	6.0589	7.0372		
	8.1775	4.5054	3.3310	0.000			
3.5	Result =	.80	4000.00	1218.60			
	9	.40	3500.00	1114.80	-		
		.90 .40	3000.00	1005.90			Boiling
		.80	2000.00	767.70		4.11 Altitude	Temperatur
		.10 5.20	1500.00 1000.00	633.70 483.60		(ft) -500 0	(degF) 212.17 212.01
36	F =					500	211.84
0.0	23.8	36 2	23.43	23.19	23.13	1000 1500	211.67
	23.24	2	23.53	24.02		2000	211.5 211.32
	Fmin =					2500	211.15
		3.12				3000	210.98
	at_Theta =					3500	210.81
	19	0.29				4000	210.63
						4500	210.46
						5000	210.29
						5500	210.11
						6000	209.93
						6500	209.76
						7000	209.58
						7500	209.4
						8000	209.22
						8500	209.04
						9000	208.87
						0=00	

9500

10000

208.68

208.5