Exploratory Data Analysis for Machine Learning

IBM Machine Learning - Project 1 Name- Kunal Saxena February 2021

About the data

- The data originally came from the Board Game Geek database, including 90,000+ board games, their description, and ratings.
- This data set was collected by R for Data Science (R4DS) Online Learning Community and posted on their GitHub in March 2019. The .csv file can be found in Tidy Tuesday repository.
- R4DS selected games that have at least 50 ratings and were published between
 1950 and 2016. The final data set has 10,532 rows and 22 columns.
- The data were split before this analysis: 80% train and 20% test

Data dictionary

7	7	

Variable name	Туре	Description
game_id	integer	Unique game identifier
description	string	A paragraph of text describing the game
image	string	URL image of the game
max_player	integer	Maximum recommended players
max_playtime	integer	Maximum recommended playtime (min)
min_age	integer	Minimum recommended age
min_players	integer	Minimum recommended players
min_playtime	integer	Minimum recommended playtime (min)
name	string	Name of the game

1	playing_time	integer	Average playtime
	thumbnail	string	URL thumbnail of the game
	year_published	integer	Year game was published
	artist	string	Artist for game art
	category	string	Categories for the game (separated by commas)
	compilation	string	If part of a multi-compilation - name of compilation
	designer string		Game designer
	expansion	string	If there is an expansion pack - name of expansion
	family	string	Family of game - equivalent to a publisher
	mechanic	string	Game mechanic - how game is played, separated by comma
/	publisher	string	Company/person who published the game, separated by commas
	average_rating float		Average rating on Board Games Geek (1-10)
	users rated	integer	Number of users that rated the game

To Data exploration plan

This analysis is the initial step in an attempt to build a baseline model to predict game average ratings based on their characteristics.

- Data Overview
- Data Cleaning and Feature Engineering: Categorical Data
- Data Cleaning and Feature Engineering: Numeric Data
- 4. Hypothesis Testing

- Data overview

- The train set has 8,425 rows and 22 columns
- There are missing data only in most of the categorical variables

game_id	0
year_published	0
average_rating	0
playing_time	9
name	0
min playtime	0
users rated	0
min age	9
max_playtime	0
max_players	0
description	0
min_players	0
image	1
thumbnail	1
publisher	2
category	79
designer	94
mechanic	751
artist	2238
family	2255
expansion	6236
compilation	8103

Categorical data

1. Data Cleaning:

- Remove features that are not useful to discriminate the target: description, image, name, thumbnail, family, expansion, and compilation
- Also remove game_id

	count	unique	top	freq
description	8425	8423	How could that have happened? Black Stories ar	2
image	8424	8422	//cf.geekdo-images.com/images/pic2262580.png	2
name	8425	8314	Robin Hood	5
thumbnail	8424	8422	//cf.geekdo-images.com/images/pic2410035_t.png	2
artist	6187	3881	Franz Vohwinkel	141
category	8346	3310	Wargame,World War II	364
compilation	322	269	Traveller: The Classic Games, Games 1-6+	6
designer	8331	3978	(Uncredited)	442
expansion	2189	2106	Règlement de l'An XXX,Regulations of the Year	7
family	6170	3321	Crowdfunding: Kickstarter	312
mechanic	7674	2708	Hex-and-Counter	406
publisher	8423	4538	GMT Games	140

Categorical data

2. Feature engineering:

Counts derived from category aggregates

- Each columns have multiple values that are separated by commas
- Extract unique values and print out total number of these values for each column
- Derive new features that count number of artists, designers, and publishers of each game
- Řemove columns: artists, designer, and publisher
- Remove rows that have missing values

Number of unique values of artist:	5416
Number of unique values of category:	83
Number of unique values of artist:	5416 476
Number of unique values of category:	83 1
Number of unique values of designer:	4476 045
Number of unique values of mechanic:	51
Number of unique values of publisher:	3045

- Categorical data

Categories derived from category aggregates

- Get a set of all unique values in each variable
- Create new columns based on these values
- Iterate through all rows and fill in dummy values for each new column
- Group these dummy variables if possible

Note: One game can be assigned to more than one category/ mechanic

The next two pages represent bar plots of 44 game categories (grouped from 81 categories) and 51 game mechanics.

The data set now has 5,608 rows and 109 columns

Number of Games by Mechanic

Data description

0.000000

8.000000

10.000000

12,000000

25,000000

0.000000

2.000000

2.000000

2.000000

0.000000

30.000000

45.000000

90.000000

60000,000000

max_players max_playtime

0.000000

30.000000

45.000000

90.000000

60000,000000

min

25%

50%

75%

max

0.000000

4.000000

4.000000

6.000000

count	5608.000000	5608,000000	5608.000000	5608.000000	5608.000000	5608.000000	5608.000000	5608.000000	5608,000000	5608.000000	5608.000000	5608,000000	5608.000000	5608.000000
mean	5.010521	105.758559	9.955599	2.059379	91.313302	105.758559	2004.717725	6.546314	1166.660663	2.203994	2.651926	1.411733	2.600927	2.824893
std	7.543777	866.538797	3,301289	0.674542	848.267125	866.538797	11.284651	0.775103	3548.581155	7.690679	1.300462	0.802652	1.501255	3.683774

1951,000000

2001,000000

2009.000000

2013.000000

2016.000000

2.339400

6.051200

6.548855

7.065962

9.003920

users_rated

50.000000

100.000000

237.000000

755,250000

67655.000000

1.000000

1.000000

1.000000

2.000000

510.000000

num_artist num_category num_designer num_mechanic num_publisher

1.000000

1.000000

1.000000

2.000000

11.000000

1.000000

1.000000

2.000000

3.000000

12.000000

1.000000

2.000000

2.000000

3.000000

14.000000

1.000000

1.000000

2.000000

3.000000

92.000000

min_age min_players min_playtime playing_time year_published average_rating

0.000000

30.000000

45.000000

90.000000

60000.000000

1. Data cleaning

max_players

- Derive game_agefrom year_published
- Remove max_playtime, min_playtime, and users_rated
- Select data that have non zero values

	Kax min	55500	0000 100		57 S103	1000100 01	0393		500 195	E5800	50356	SERVE PRODUCTS
count	5240.000000	5240.000000	5240.000000	5240.000000	5240.000000	5240.000000	5240.000000	5240.000000	5240.000000	5240.000000	5240.000000	5240.000000
mean	5.102290	10.471756	2.070611	101.502481	2004.554008	6.525332	2.213550	2,663740	1.406870	2.624046	2.909542	14.445992

min_age min_players playing time year_published average_rating num_artist num_category num_designer num_mechanic num_publisher

game_age

std	7.753493	2.441990	0.666585	858.286053	11.397775	0.765409	7,936809	1.316168	0.794444	1.512648	3.783639	11.397775
min	1.000000	2.000000	1.000000	1.000000	1951.000000	2.339400	1.000000	1.000000	1.000000	1.000000	1.000000	3.000000

25%	4.000000				2000.000000	6.036300	1.000000		1.000000	1.000000	1.000000	6.000000
50%	4.000000	10.000000	2.000000	45.000000	2009.000000	6.525335	1.000000	2,000000	1.000000	2,000000	2.000000	10.000000

75% 6.000000 12.000000 2.000000 90.000000 2013.000000 7.032408 2.000000 3.000000 2.000000 3.000000 3.000000 19.000000

max 362.000000 25.000000 9.000000 60000.000000 2016.000000 9.003920 510.000000 14.000000 11.000000 12.000000 92.000000 68.000000

- The target (average_rating) has a normal distribution
- Most features are right skewed
- Severe outliers

2. Feature engineering

Log transformation for skewed variables

- Apply log transformation and check for skewness again.
- The result shows that log transformation does not work well for num_artist, num_designer, num_publisher, and year_published

Next page present a pairplot of numeric features that have nearly normal distribution.

- No strong linear relationship between the features and the target. Linear regression might not be well-suited to this problem
- Might try adding polynomial and interaction terms and examine their correlation with the target

Adding polynomial and interaction terms

 This plot shows that polynomial and interaction terms do not have significantly higher correlations with the target comparing to the original features

Polynomial Features and Their Correlations

Binning numeric data that cannot be scaled by log transformation

- These are num_artist, num_designer, num_publisher, and year_published
- Apply dummy transformation to these bins
- New columns from these bins: group_artist_three_or_more, group_designer_three_or_more, group_max_players_five_or_six, group_max_players_seven_or_more, group_publisher_four_or_more, group_year_published_between_2001_and_2009, group_year_published_between_2010_and_2013, and group_year_published_between_2014_and_2016

Remove the original columns after transformation (log and binning). The data set now has 5,240 rows and 131 columns

Hypothesis testing

- Main purpose: check if there are differences in average ratings between one group and others
- Due to different variances between two groups, Welch's t-test is used
- Perform multiple tests across all categories, mechanics, and groups (derived from numeric data)
- Sample of hypotheses:
 - Ho: War games and other games have similar ratings on average
 - H_a: There is a difference in average ratings between war games and other games

Hypothesis testing

- Result tables are shown in the next three pages. These values are sorted by p-values with colored bars (green for positive values and red for negative ones)
- For those that have p-value < 0.05 and |t-value| > 1.96, we reject the null hypotheses
- The sign of t-value suggests the direction of the test. A positive sign means that
 the group of interest has higher average ratings than others. On the contrary, a
 negative sign means that the group of interest has lower average ratings than
 others.

	t-value	p-value	maze	3.009117	0.004285
category_name			pirates	-2.329630	0.021775
children's game	-15.841916	0.000000	political	2.278630	0.023735
war	13.893726	0.000000	mythology	2.144308	0.034218
component	-10.584794	0.000000	spies/secret agents	2.004349	0.050047
humor	-9.138182	0.000000	entertainment	1.937038	0.053610
	7 005045	0.00000	religious	1.763866	0.084909
party game	-7.005245	0.000000	print & play	1.709978	0.090178
animals	-6.487482	0.000000	aviation / flight	1.708230	0.091375
trains	4.741813	0.000006	skills	1.677003	0.093654
renaissance	4.690531	0.000007	exploration	1.409116	0.159621
activity	4.241476	0.000024	environmental	1.298456	0.200263
space exploration	4.478895	0.000032	adventure	0.972847	0.331317
fighting	3.980679	0.000077	mature / adult	-0.791506	0.437057
industry / manufacturing	4.088935	0.000090	arabian	0.638325	0.527225
age of reason	3.980063	0.000221	murder/mystery	0.600392	0.550026
ancient	3,669080	0.000289	horror	0.465960	0. 641699
ancient		0.000209	sports	0.423544	0. 672805
abstract strategy	3.629330	0.000328	medical	0.424722	0.675144
medieval	3.532035	0.000461	travel	0.345949	0.7 30699
fantasy	3.358155	0.000818	prehistoric	0.332909	0.740358
farming	3.341165	0.001299	american west	0.231495	0.817530
science fiction	2.937326	0.003463	mafia	-0.115298	0,908744
nautical	2,900014	0.004100	zombies	-0.002223	0.998233

	t-value	p-value	action / movement programming	4.203600	0.000050
mechanic_name			pattern building	-4.014621	0.000088
area control / area influence	13.681888	0.000000	stock holding	3.906744	0.000189
worker placement	12.531980	0.000000	betting/wagering	-3.804758	0.000243
simulation	11,917241	0.000000	point to point movement	3.653005	0.000308
variable player powers	11,257887	0.000000	secret unit deployment	3.471693	0.000631
6 10h 21			simultaneous action selection	3.098684	0.002062
deck / pool building	11.228836	0.000000	tile placement	2.819089	0.004956
roll / spin and move	-10.953231	0.000000	singing	-3.479737	0.005121
action point allowance system	8,988847	0.000000	player elimination	2.795235	0.005905
grid movement	9.043836	0.000000	set collection	-2.591833	0.009665
dice rolling	8.376262	0.000000	rock-paper-scissors	-2.586553	0.013116
hex-and-counter	7.67 8370	0.000000	acting	-2.472040	0.016953
card drafting	7.236475	0.000000	partnerships	2.153588	0.032088
8 98	70	9,999999	time track	2.053270	0.048476
route/network building	7.371719		role playing	1.959523	0.051902
campaign / battle card driven	7.395763	0.000000	paper-and-pencil	1.934789	0.060433
variable phase order	7.407286	0.000000	commodity speculation	1.693678	0.093399
pattern recognition	-7.046414	0.000000	storytelling	-1.496163	0.138264
area movement	6.606161	0.000000	auction/bidding	1.426467	0.154380
co-operative play	6.594492	0.000000	area-impulse	1,207543	0.239942
trick-taking	-5,584741	0.000000	trading	-1.016744	0.310614
modular board	4,749033	0.000003	area enclosure	0.984194	0.328520
55%			pick-up and deliver	0.741010	0.459464
chit-pull system	5.020407	0.000003	voting	-0.721287	0.471988
crayon rail system	6.101341	0.000040	take that	-0.422657	0.673047
memory	-4.161645	0.000043	press your luck	0.323775	0.746403
hand management	4.088635	0.000045	line drawing	0.253232	0.802941

Hypothesis testing

These tables show that on average:

- People like war games
- People do not like children's games and component games
- People like games that use area control/area influence, worker placement, simulation, variable player powers, and deck/pool building
- People do not like games that use roll/spin and move mechanic
- People like games published between 2014 and 2016
- People like games that were designed by three or more artists

	t-value	p-value
group_name		
year_published_between_2014_and_2016	21.686049	0.000000
artist_three_or_more	10.349241	0.000000
year_published_between_2001_and_2009	-9.785744	0.000000
max_players_five_or_six	-9.068495	0.000000
publisher_four_or_more	6.625750	0.000000
year_published_between_2010_and_2013	5.153826	0.000000
designer_three_or_more	2.842000	0.004688
max_players_seven_or_more	-2.561497	0.010632

Hypothesis testing

Since these features might have effects on each other, there need to be more analyses before jumping to a conclusion. For example, perhaps area control mechanic is mostly used in war games, or children's games are mostly played by rolling and spinning. War games might be more complex and need more artists to complete.

Further data engineering and analyzing

- Score game complexity by calculating weighted average of number of artists, number of designers, and number of publishers. Examine the relationship between this score and the target
- Reduce categorical data dimensionality and create interaction terms among them or with numeric data
- Apply mutual information regression for feature selection
- Apply Backward Stepwise Regression
- Build a pipeline to preprocess data and run the model on the test set

*Conclusion

As shown in the analysis, linear regression might not be a good fit to this data set. However, it might be good enough as a baseline model. To collect a better dataset, one might request the Board Game Geek API and retrieve other features such as weight (complexity rating), number of reviews, or explore available data from Kaggle.

Jupyter Notebook for this analysis can be found here: https://github.com/thuynh323/IBM-Machine-Learning/blob/master/1-EDA/Project-1.ipynb

Thanks!