華中科技大學

视觉认知工程

基于 ViT-B/16 实现 CIFAR100 分类

院	系	人工智能与自动化学院
班	级	人工智能本硕博 2101 班
姓	名	张伟业
学	号	U202115203
指导	教师	曹治国 肖阳 陆昊
日	期	2024年6月27日

目录

Τ	头验	尿理	2
	1.1	Attention 机制	2
		1.1.1 Scaled Dot-Product Attention	2
		1.1.2 Multi-Head Attention	2
	1.2	Transformer 模型	3
		1.2.1 Encoder	3
		1.2.2 Decoder	3
		1.2.3 Positional Encoding	4
		1.2.4 Embedding	4
	1.3	Vision Transformer 模型	4
		1.3.1 Model Architecture	5
		1.3.2 Embedding Filters	5
		1.3.3 Cosine Position Similarity	5
2	实验	内容	6
	2.1	项目结构	6
	2.2	实验环境部署	6
	2.3	核心模块	7
3	实验	结果	9
	3.1	评价指标	9
	3.2	训练 & 测试损失曲线	10
	3.3	可视化分析	10
		3.3.1 数据集展示	10
		3.3.2 绘制注意力图	11
4	实验	总结	11
	4.1	实验特点	11
	4.2	仍然存在的问题	11
	4.3	实验心得	12

摘要

本实验以 Vision Transformer 模型为基础, 复现了 ViT-B/16 模型, 并实现了在 CIFAR100 数据集上的分类任务, 最终测试准确率达到 89.57%。报告首先介绍实验原理和模型结构。之后展示了所编写的代码结构, 并展示了部署环境, 列出了实验的核心模块。接着展示实验结果, 包含测试准确率、测试损失、训练损失曲线, 数据集展示以及注意力图的绘制。最后总结实验特点以及问题, 并撰写了实验心得。实验代码可以从https://github.com/KingDomDom/下载。

1 实验原理

1.1 Attention 机制

1.1.1 Scaled Dot-Product Attention

Scaled Dot-Product Attention

1. 对输入序列 X 进行线性变换,乘以不同的权重矩阵得到 Query、Key 和 Value:

$$Q = W_q X, \quad K = W_k X, \quad V = W_v X \tag{1}$$

其中, W_q, W_k, W_v 是可学习的权重矩阵,X 是输入矩阵。

2. 通过计算 Q 和 K 的点积,并除以 K 向量维度 d 的平方根,然后应用 softmax 函数,得到注意力权重:

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$
 (2)

其中, d_k 是 Key 向量的维度。

3. 最终的输出是根据注意力权重对 Value 进行加权求和的结果:

$$Output = \sum_{i=1}^{n} \alpha_i V_i \tag{3}$$

其中, α_i 是通过 softmax 函数计算得到的注意力权重。

1.1.2 Multi-Head Attention

多头注意力机制(Multi-Head Attention)通过并行计算多个不同的注意力头,能够关注不同维度的不同信息。其计算公式如下:

$$MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$$
(4)

其中,每个注意力头的计算方式为:

$$head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$$
(5)

这里的 W_i^Q, W_i^K, W_i^V 是不同 head 的权重矩阵。通过引入多个注意力头,使得模型在不同子空间中独立地关注不同的特征,增强了模型的表示能力。

1.2 Transformer 模型

1.2.1 Encoder

编码器由多个相同的层组成,每一层包含两个主要子层:一个多头自注意力机制和一个前馈神经网络。每个子层后都包含残差连接和层归一化。自注意力机制允许编码器在处理输入时关注不同位置的信息,从而捕捉全局依赖关系。

1.2.2 Decoder

解码器的结构与编码器类似,但在每个编码器层之后插入了一个额外的多头注意力子层,该子层在 解码过程中能够访问编码器的输出。这允许解码器在生成序列时有效地使用编码后的输入信息。

1.2.3 Positional Encoding

由于不同的词语在不同的位置出现时会产生不同的语义,且每个词都有可能在任意的位置出现。Transformer 模型无法自然地捕捉输入序列中位置的信息,为了弥补这一点,使用了位置编码(Positional Encoding)。通过直接将位置信息加入到输入 embedding 中,模型能够感知输入序列中的位置信息。且在大量训练数据下,会出现无数种位置信息和词本身信息的组合,模型能学习和感知到位置信息,不会对词语原本的意思造成影响。位置编码的具体公式如下:

$$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{\frac{2i}{d}}}\right)$$

$$PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{\frac{2i}{d}}}\right)$$

其中, pos 表示位置, i 表示维度索引, d 表示嵌入的维度大小。

1.2.4 Embedding

嵌入层 (Embedding) 将输入序列中的每个符号转换为一个固定维度的向量表示。首先,构建一个包含所有可能输入符号的词汇表。每个符号(如单词或子词)都分配一个唯一的索引。然后将输入序列中的每个符号映射到其对应的索引。接着创建一个大小为 $|V| \times d_{model}$ 的嵌入矩阵 W_{embed} ,其中 |V| 是词汇表的大小, d_{model} 是嵌入向量的维度。最后使用索引序列在嵌入矩阵中查找对应的嵌入向量。每个索引对应矩阵中的一行,得到的结果是一个大小为 $L \times d_{model}$ 的嵌入向量序列,其中 L 是输入序列的长度。由嵌入层生成的嵌入向量表示包含了符号的语义信息,可以作为后续的注意力机制和前馈网络的输入。

1.3 Vision Transformer 模型

1.3.1 Model Architecture

- 1. 图像分块 (Patch Embedding): 将输入图像划分为 16x16 的非重叠块, 并展平成一个向量。
- 2. 线性映射 (Linear Projection): 将每个块的展平向量通过线性变换映射, 生成嵌入向量。
- 3. 位置编码 (Position Embedding): 给每个块的嵌入向量添加位置编码,以保留块的位置信息。
- 4. 分类标记 (CLS Token): 引入一个额外的的分类标记,添加到输入中。
- 5. 编码器 (Transformer Encoder): 输入到 Transformer 编码器中,通过自注意力机制进行特征提取。
- 6. 感知器头 (MLP Head): 将 Encoder 处理后的数据输入到多层感知器中,输出分类结果

1.3.2 Embedding Filters

1.3.3 Cosine Position Similarity

2 实验内容 6

2 实验内容

2.1 项目结构

2.2 实验环境部署

本实验在 AutoDL 平台的 RTX4090D 服务器上运行,实验工具为 Jupyter Lab

检查GPU是否可用,否则使用CPU

```
if torch.cuda.is_available():
    device = torch.device("cuda")
    print('使用GPU进行训练,型号为: ', torch.cuda.get_device_name(0))

else:
    device = torch.device("cpu")
    print('使用CPU进行训练')

使用GPU进行训练,型号为: NVIDIA GeForce RTX 4090 D
```

2 实验内容 7

2.3 核心模块

首先编写 Vision Transformer 结构,并保持与 ViT-B/16 的模型字典一致。分别编写了 Attention 模块, Mlp 模块, Embedding 模块, Block 模块, Encoder 模块和 Vision Transformer 模型。

配置与 ViT-B/16 相同的参数 def get_b16_config(): ... 定义模型结构名称 logger = logging.getLogger(__name__) ... 具体模块定义 class Attention(nn.Module): ... class Embeddings(nn.Module): ... class Block(nn.Module): ... class Encoder(nn.Module): ...

从 Google 的 API 下载 ViT-B/16 模型,该模型是在 ImageNet-21k 数据集上训练得到的,参数量 86M, patch size = 16,并将预训练参数加载到自己所编写的模型中作为参数初始化。

随后为微调模型做准备,下载 CIFAR 100 数据集并分成训练集和测试集,学习率调度采用余弦衰减,优化器采用随机梯度下降,并编写了 utils 函数 (如模型初始化,保存等)以及测试评估函数 eval。

A44 >15				
字习率调	度 cosine衰减			
class Wa	rmupCosineSchedule(La	nbdaLR): ···		
utils函数				
class Av	erageMeter(object): …			

2 实验内容 8

训练的超参数如下:

- train_batch_size = 64: 训练过程中每个批次的样本数目
- eval_batch_size = 64: 评估过程中每个批次的样本数目
- eval_every = 10: 每训练 10 步后进行一次模型评估。
- learning_rate = **3e-2**: 学习率设置为 0.03, 控制权重调整的速度
- weight_decay = 0: 权重衰减, 0 表示不使用权重衰减。
- num_steps = 1000: 总训练步数设置为 1000 步。
- decay_type = "cosine": 学习率衰减策略,使用余弦衰减。
- warmup_steps = 100: 预热步数设置为 100, 学习率会在这期间线性增加到初始设定值。
- $max_grad_norm = 1.0$: 梯度裁剪的最大范数值,设置为 1.0,用于防止梯度爆炸。
- seed = 42: 随机种子设置为 42, 确保实验可复现性。

修改 num class 为 100 后开始训练,并保存最佳模型至 output_dir

开始训练

```
def get_world_size(): ...
def train(local_rank, output_dir, name, train_batch_size, eval_batch_size, seed, n_gpu, ...
超参数定义
 name = "vit-cifar100" ...
主函数
 test_accs = [] ···
Files already downloaded and verified
 Files already downloaded and verified
 训练中 (10 / 1000 Steps) (loss=4.60298): 1%|| 9/782 [00:03<03:49, 3.37it/s]INFO: __main __:
 INFO: main :***** 开始评估 *****
 INFO:__main__:
 INFO: __main__:测试结果
 INFO:__main__: 当前迭代步数: 10
 INFO:__main__:损失函数值: 4.60187
 INFO:
       _main__:准确率: 0.31230
 训练中(20 🖊 1000 Steps)(loss=4.59234): 2%|| 19/782 [00:20<05:49, 2.18it/s]INFO:__main__:
```

3 实验结果 9

3 实验结果

3.1 评价指标

最终的测试准确率达到 89.57%


```
INFO: __main__:***** 开始评估 *****
INFO: __main__: 测试结果
INFO: __main__:当前迭代步数: 1000
INFO: __main__:损失函数值: 0.45434
INFO: __main__:准确率: 0.89570
训练中 (1000 / 1000 Steps) (loss=1.47234): 28%|| 217/782 [06:19<16:28, 1.75s/it]
INFO: __main__:最终测试准确率: 0.895700
INFO: __main__:结束训练
```

3 实验结果 10

3.2 训练 & 测试损失曲线

3.3 可视化分析

3.3.1 数据集展示

最初从数据集中提取图片后,可视化程度非常低。后续发现是因为在数据预处理步骤时,为图片添加了均值和方差的校正。通过标准化函数恢复后再展示的图片,具有很好的可视化特性。

从CIFAR100中提取图片并显示

```
1... def imshow(img):
       npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
       plt.show()
   dataiter = iter(train_loader)
images, labels = next(dataiter)
   imshow(torchvision.utils.make\_grid(images[\theta]))
   Files already downloaded and verified
    Files already downloaded and verified
   WARNING:matplotlib.image:Clipping input data to the valid range for imshow with
      0
     25
     50
    100
    125
    150
    175
    200
                           100
                                     150
```

标准化处理后重新展示

```
def std_imshow(img):
     img = img.detach().cpu().numpy()
     img = (img * np.array([0.2675, 0.2565, 0.2761])[:, None, None]
                + np.array([0.5071, 0.4867, 0.4408])[:, None, None])
    img = np.transpose(img, (1, 2, 0)) # 从CHW转换为HWC img = np.clip(img, 0, 1) # 确保图像值在[0, 1]范围内 img_pil = Image.fromarray((img * 255).astype(np.uint8))
     img_pil.save("saved_image.png")
    plt.imshow(img)
    plt.show()
std imshow(torchvision.utils.make grid(images[0]))
  25
  50
  75
100
125
150
175
```

4 实验总结 11

3.3.2 绘制注意力图

将这张图片传入 output_dir 中保存的模型,得到输出并绘制出注意力图与原图比较。发现注意力图的背景相较于原图亮度更低,且画面前景部分(狮子)的轮廓更加清晰,主体的对比度增强了。

Attention Map绘制

```
x = images[0].unsqueeze(0).to(device)
model = model.to(device)
logits, att_mat = model(x)
att_mat = torch.stack(att_mat).squeeze(1)
att_mat = torch.mean(att_mat, dim=1)
residual_att = torch.eye(att_mat.size(1)).to(device)
aug_att_mat = att_mat + residual_att
aug_att_mat = aug_att_mat / aug_att_mat.sum(dim=-1).unsqueeze(-1)
joint_attentions = torch.zeros(aug_att_mat.size()).to(device)
joint_attentions[0] = aug_att_mat[0]

for n in range(1, aug_att_mat.size(0)):
    joint_attentions[n] = torch.matmul(aug_att_mat[n], joint_attentions[n-1])
v = joint_attentions[-1]
grid_size = int(np.sqrt(aug_att_mat.size(-1)))
mask = v(0, 1:].reshape(grid_size, grid_size).detach().cpu().numpy()
im = im = Image.open("saved_image.png").convert('RGB')
mask = cv2.resize(mask / mask.max(), im.size)[..., np.newaxis]
result = (mask * im).astype("uint8")
```


4 实验总结

4.1 实验特点

本实验主要以复现 Vision Transformer 为主,将预训练的模型参数导入自己编写的 ViT-B/16 模型中,并通过一系列方法从 ImageNet-21k 迁移到 CIFAR100 数据集上。本实验全程在云平台(AutoDL)上进行,为增强对模型的理解,采用 ipynb 进行编写增强可视化,实验代码已上传到 Github。

4.2 仍然存在的问题

从论文查得, ViT 最高可在 CIFAR100 数据集上实现 94.1% 的准确率,但该微调方式所需的计算量过于大,是在 ImageNet-21k 上预训练 3000 个 epoch,且模型为 L/16,参数量 307M,远大于本实验的 86M。

再对比本实验所使用的 ImageNet-21k 预训练 30 个 epoch,模型为 B/16,论文中的 CIFAR100 最佳的正确率达到 91.6%,而本实验结果为 89.57%,十分接近。后续的改进可以由以下两个出发点:数据集增强和正则化方法,来进一步提高实验的准确率。另外,增大 batch size 也是一个可行的方法。

		• Caltech 101	• CIFAR-100	• DTD	• Flowers102	• Pets	• Sun397	•SVHN	• Mean	• Camelyon	• EuroSAT	• Resisc45	• Retinopathy	• Mean	• Clevr-Count	• Clevr-Dist	• DMLab	• dSpr-Loc	• dSpr-Ori	• KITTI-Dist	• sNORB-Azim	• sNORB-Elev	• Mean
_	R+Ti/16	91.6	81.9	68.0	94.0	91.9	70.6	95.6	84.8	85.2	98.4	94.8	80.4	89.7	96.1	89.8	67.4	99.9	86.9	81.9	25.1	46.3	74.2
(300ep)	S/32	92.7	86.4	70.7	93.6	91.2	72.9	95.8	86.2	83.6	98.6	95.5	79.6	89.3	94.2	88.4	65.8	99.9	86.1	80.7	24.9	68.2	76.0
300	B/32	92.6	87.6	72.7	94.4	92.2	73.8	95.8	87.0	82.7	98.6	94.9	79.8	89.0	94.0	89.6	66.1	99.8	84.7	80.3	24.7	62.4	75.2
	Ti/16	92.7	84.0	68.9	93.8	92.5	72.0	96.1	85.7	83.7	98.7	95.6	81.6	89.9	98.0	91.9	68.5	99.7	83.2	82.0	26.5	65.9	77.0
ImageNet-1k	R26+S/32	90.2	86.2	74.0	95.5	94.3	74.5	95.6	87.2	84.5	98.6	96.0	83.4	90.6	99.7		73.3	100	84.8	84.5	28.2	51.3	76.7
eNe	S/16	93.1	86.9	72.8	95.7	93.8	74.3	96.2	87.5	84.1	98.7	95.9	82.7	90.3		91.5	69.8	100	84.3	79.6	27.3	58.0	76.1
ıag	R50+L/32	90.7	88.1	73.7	95.4	93.5	75.6	95.9	87.6	85.8	98.4	95.4	83.1	90.7		90.4	71.1	100	87.5	82.4	23.5	53.0	76.0
In	B/16	93.0	87.8	72.4	96.0	94.5	75.3	96.1	87.9	85.1	98.9	95.7	82.5	90.5	98.1		69.5		84.5	84.0	25.9	53.9	76.0
	L/16	91.0	86.2	69.5	91.4	93.0	75.3	94.9	85.9	81.0	98.7	93.8	81.6	88.8	94.3	88.3	63.9	98.5	85.1	81.3	25.3	51.2	73.5
	R+Ti/16	92.4	82.7	69.5	98.7	88.0	72.4	95.1	85.6	83.6	98.8	94.9	80.7	89.5	95.7	90.2	66.6	99.9	87.0	80.3	24.4	47.0	73.9
(30ep)	S/32	92.7	88.5	72.4	98.9	90.5	75.4	95.4	87.7	83.5	98.7	95.0	79.5	89.2	94.5	89.8	64.4	99.8	87.9	81.2	24.9	57.7	75.0
(30	B/32	93.6	90.5	74.5	99.1	91.9	77.8	95.7	89.0	83.5	98.8	95.1	78.8	89.1	93.6	90.1	62.9	99.8	89.0	78.3	24.1	55.9	74.2
11	Ti/16	93.3	85.5	72.6	99.0	90.0	74.3	95.1	87.1	85.5	98.8	95.5	81.6	90.4	97.7	91.7	67.4	99.9	83.8	81.2	26.3	55.1	75.4
ImageNet-21k	R26+S/32	94.7	89.9	76.5	99.5	93.0	79.1	95.9	89.8	86.3	98.6	96.1	83.1	91.0	99.7	92.0	73.4	100	88.7	84.8	26.2	53.3	77.3
Ne Ne	S/16	94.3	89.4	76.2	99.3	92.3	78.1	95.7	89.3	84.5	98.8	96.3	81.7	90.3	98.4	91.5	68.3	100	86.5	82.8	25.9	52.7	75.8
age	R50+L/32	95.4	92.0	79.1	99.6	94.3	81.7	96.0	91.1	85.9	98.7	95.9	82.9	90.9	99.9	90.9	72.9	100	86.3	82.6	25.4	57.4	76.9
<u>II</u>	B/16	95.1	91.6	77.9	99.6	94.2	80.9	96.3	90.8	84.8	99.0	96.1	82.4	90.6	98.9	90.9	72.1	100	88.3	83.5	26.6	69.6	78.7
	L/16	95.7	93.4	79.5	99.6	94.6	82.3	96.7	91.7	88.4	98.9	96.5	81.8	91.4	99.3	91.8	72.1	100	88.5	83.7	25.0	62.9	77.9
	R+Ti/16	93.2	85.3	71.5	99.0	90.3	74.7	95.2	87.0	85.2	98.3	95.3	81.3	90.0	95.5	90.5	67.4	99.9	87.4	78.2	24.5	45.2	73.6
(300ep)	S/32	93.2	89.7	75.3	99.2	92.0	78.1	96.1	89.1	84.0	98.5	95.4	80.6	89.6	96.9	88.7	68.1	100	91.0	79.6	26.2	55.0	75.7
300	B/32	95.2	92.3	77.2	99.5	92.8	81.2	96.6	90.7	87.0	98.8	96.0	81.3	90.8	97.7	89.8	70.5	100	92.3	82.7	25.9	83.1	80.2
	Ti/16	93.7	87.2	73.1	99.2	91.0	77.3	95.7	88.2	86.0	98.5	95.8	81.9	90.6	98.3	89.7	70.8	100	86.0	82.6	26.8	49.9	75.5
-21	R26+S/32	94.8	90.9	78.9	99.5	94.1	81.3	96.7	90.9	87.5	98.7	96.4	84.2	91.7	99.9	92.4	77.0	100	87.1	83.4	28.6	56.0	78.1
fmageNet-21k	S/16	95.2	90.8	77.8	99.6	93.2	80.6	96.6	90.5	86.7	98.8	96.4	82.9	91.2	99.1	89.8	73.9	100	87.6	85.1	26.8	61.1	77.9
1ge	R50+L/32	95.7	93.9	81.6	99.5	94.9	83.6	97.1	92.3	85.8	98.7	96.7	84.2	91.3	100	92.0	76.8	100	87.2	85.2	26.8	61.8	78.7
ľ	B/16	96.0	93.2	79.1	99.6	94.7	83.0	97.0	91.8	87.4	98.7	96.8	83.5	91.6	99.7	89.0	76.0	100	86.7	85.7	28.3	68.2	79.2
	L/16	95.5	94.1	80.3	99.6	95.0	83.4	97.4	92.2	86.4	99.0	96.6	83.3	91.3	99.8	91.7	75.6	100	90.4	84.7	27.5	76.5	80.8

图 1: 不同 ViT 模型在不同数据集上的表现

4.3 实验心得

我曾经使用过 CNN 对 CIFAR10 数据集进行分类,当时编写一个简单的卷积网络对我来说很难,但最终还是编写成功了。我也试过 CLIP 模型对 CIFAR10 数据集进行分类,但结果十分差,不过也为我提供了许多经验。这次课程作业要求使用 ViT 对 CIFAR100 分类,一开始我认为比较简单,但真正开始做才发现比较费功夫。我的想法先是在 CIFAR100 上从头训练一个 ViT 分类器,但模型在训练集上已经发生过拟合,在测试集的准确率也只有 60% 左右。之后我又想自己租服务器,在 ImageNet 上训练,将模型参数和迭代次数增大来增加模型的泛化能力。但计算资源消耗太大,最终也以失败告终。于是我开始查阅论文,查看方法和各种实验结果,最终选择了迁移学习这条路,且没有再无脑增大模型参数和迭代次数,而是选择比较合适的小模型来进行任务。在阅读了几篇相关文献后我便确定了道路,于是开始实践。中间也遇到了许许多多的问题,但通过不断尝试都解决了。最终证明,必须先确立合适的战略,然后再实践才是正确的道路。