E.T.S. de INGENIERÍA INFORMÁTICA

Curso 2015/2016

Estructuras Algebraicas para la Computación Relación de Ejercicios 1

1. Halla el cardinal de los conjuntos siguientes:

$$A = \{10, 20, 30, 40, \ldots\}, \qquad B = \{6, 7, 8, 9, \ldots\}, \qquad \mathbb{Z}^- = \{-1, -2, -3, -4, \ldots\}, \qquad C = \{1/n \mid n \in \mathbb{Z}^+\}$$

2. En el conjunto $\mathbb R$ de los números reales se consideran los subconjuntos:

$$A = \left\{ x \in \mathbb{R} \mid 1 \le x \le 2 \right\} \qquad B = \left\{ b_n = \frac{2n}{n+6} \mid n \in \mathbb{N} \right\}$$

Determina los cardinales de los conjuntos $A, B, \overline{A}, \overline{B}, A \cup B, A \cap B, A - B y B - A$.

3. Se define la función $f:[0,1]\to(0,1)$ de la siguiente manera:

$$f(x) = \begin{cases} \frac{1}{2} & \text{si } x = 0 \\ \frac{1}{n+2} & \text{si } x = \frac{1}{n}, \quad n \in \mathbb{Z}^+ \\ x & \text{si } x \in [0,1] - \{0,1,\frac{1}{2},\frac{1}{3},\dots,\frac{1}{n},\dots\} \end{cases}$$

- a) Estudia qué propiedades verifica f.
- b) Deduce qué relación hay entre el cardinal de [0,1] y el de (0,1).
- 4. Justifica si los siguientes enunciados son verdaderos:
 - a) El conjunto \mathbb{Q} de los números racionales es numerable.
 - b) El conjunto $\mathbb{N} \times \mathbb{N}$ es numerable.
 - c) El conjunto $\mathcal{P}(\mathbb{N})$ es numerable.
 - d) Dado un alfabeto finito Σ , el conjunto Σ^* es numerable.
 - e) Dado un alfabeto finito Σ , el conjunto $\mathcal{P}(\Sigma^*)$ es numerable.
- 5. Encuentra, si es posible, un conjunto S tal que $|\mathcal{P}(S)| = \aleph_0$.
- 6. Determina si los siguientes enunciados son \underline{V} erdaderos o \underline{F} alsos (demostrando los que sean V y poniendo un contraejemplo de los F).
 - a) Si A y B son conjuntos numerables, entonces $A \cup B$ es numerable.
 - b) Si A y B son conjuntos no numerables, entonces $A \cap B$ es no numerable.
 - c) Si A y B son conjuntos no numerables, entonces A B es no numerable.
 - d) Si A es no numerable y B es numerable, entonces $A \cap B$ es no numerable.
 - e) Si A es no numerable y B es numerable, entonces A B es numerable.
 - f) Si A es numerable, entonces $\mathcal{P}(A)$ es numerable.
- 7. Demuestra que el conjunto de todos los programas de ordenador que se pueden escribir en un lenguaje de programación es numerable. (*Indicación*: Un programa escrito en un lenguaje de programación se puede considerar como una cadena de símbolos de un alfabeto finito).
- 8. Sea \mathcal{F} el conjunto de funciones de \mathbb{N} en $\{0,1,2,3,4,5,6,7,8,9\}$. Prueba que \mathcal{F} es no numerable. (*Indicación*: Encuentra una biyección entre el conjunto de los números reales comprendidos entre 0 y 1 y un subconjunto de \mathcal{F}).
- 9. Decimos que una función es *computable* si hay un programa de ordenador que calcula los valores de esta función. Usa los dos resultados anteriores para mostrar que hay funciones que no son computables.

- 10. Sea $A = \{1, 2, 3, 4, 6, 8, 9\}$ ordenado por la divisibilidad. Dibuja su diagrama de Hasse.
- 11. Los prerrequisitos en las asignaturas de una carrera universitaria constituyen un orden parcial. Se dice que $a \leq b$ si es necesario acabar con éxito la asignatura a para poder terminar con éxito la asignatura b. (Enunciado así, la relación \leq es reflexiva.)

Considera los prerrequisitos para las asignaturas de Matemáticas (Mat)

Asignaturas	Prerrequisitos
Mat 101	Ninguno
Mat 201	Mat 101
Mat 250	Mat 101
Mat 251	Mat 250
Mat 340	Mat 201
Mat 341	Mat 340
Mat 450	Mat 201, Mat 250
Mat 500	Mat 450, Mat 251

- a) Dibuja el diagrama de Hasse correspondiente.
- b) Si un estudiante quiere cursar las 8 asignaturas, pero sólo una por semestre, ¿qué asignaturas debe cursar en su primer semestre? ¿Y en el último?
- c) Suponiendo que quiere cursar Mat 250 en su primer año (primer o segundo semestre) y Mat 340 en su último curso (séptimo u octavo semestre), halla todas las formas en que puede cursar las ocho asignaturas.
- 12. Sea D_{72} el conjunto de los divisores de 72 y sean los subconjuntos $B_1 = \{3, 6, 12, 18\}, B_2 = \{4, 6, 12, 18\}$ y $B_3 = \{6, 9, 12, 18, 36\}.$
 - a) Dibuja el diagrama de Hasse de $(D_{72}, |)$.
 - b) Determina los elementos destacables de los subconjuntos B_1, B_2 y B_3 .
- 13. En el conjunto parcialmente ordenado $(D_{2310}, |)$ se consideran los subconjuntos

$$B_1 = \{2, 6, 10, 14, 22\},$$
 $B_2 = \{6, 14, 15, 42\}$ y $B_3 = \{6, 15, 21, 35\}$

Determina los elementos destacables de B_1 , B_2 y B_3 .

14. En cada uno de los siguientes apartados estudia si las funciones que se dan son operaciones binarias y, en caso afirmativo, determina sus propiedades:

$$i)$$
 \vee : $D_{60} \times D_{60} \longrightarrow D_{60}$ $ii)$ \wedge : $D_{60} \times D_{60} \longrightarrow D_{60}$
$$(x,y) \longmapsto x \vee y = m.c.m.(x,y) \qquad (x,y) \longmapsto x \wedge y = m.c.d.(x,y)$$

$$iii) +: \mathcal{F}(\mathbb{B}^2, \mathbb{B}) \times \mathcal{F}(\mathbb{B}^2, \mathbb{B}) \longrightarrow \mathcal{F}(\mathbb{B}^2, \mathbb{B})$$

$$(f, g) \longmapsto f + g, \qquad (f + g)(x) = \max\{f(x), g(x)\}, \quad \text{para cada } x \in \mathbb{B}^2$$

$$iv)$$
 \bullet : $\mathcal{F}(\mathbb{B}^2, \mathbb{B}) \times \mathcal{F}(\mathbb{B}^2, \mathbb{B}) \longrightarrow \mathcal{F}(\mathbb{B}^2, \mathbb{B})$ $(f, g) \longmapsto f \bullet g, \qquad (f \bullet g)(x) = \min\{f(x), g(x)\}, \text{ para cada } x \in \mathbb{B}^2$