Issues and Challenges of Aspect-based Sentiment Analysis: A Comprehensive Survey

Ambreen Nazir[®], Yuan Rao, Lianwei Wu[®], and Ling Sun

Abstract—The domain of Aspect-based Sentiment Analysis, in which aspects are extracted, their sentiments are analysed and sentiments are evolved over time, is getting much attention with increasing feedback of public and customers on social media. The immense advancements in this field urged the researchers to devise new techniques and approaches, each sermonizing a different research analysis/question, that cope with upcoming issues and complex scenarios of Aspect-based Sentiment Analysis. Therefore, this survey emphasized on the issues and challenges that are related to extraction of different aspects and their relevant sentiments, relational mapping between aspects, interactions, dependencies, and contextual-semantic relationships between different data objects for improved sentiment accuracy, and prediction of sentiment evolution dynamicity. A rigorous overview of the recent progress is summarized based on whether they contributed towards highlighting and mitigating the issue of Aspect Extraction, Aspect Sentiment Analysis or Sentiment Evolution. The reported performance for each scrutinized study of Aspect Extraction and Aspect Sentiment Analysis is also given, showing the quantitative evaluation of the proposed approach. Future research directions are proposed and discussed, by critically analysing the presented recent solutions, that will be helpful for researchers and beneficial for improving sentiment classification at aspect-level.

Index Terms—Aspect, computational linguistic, deep learning, sentiment analysis, sentiment evolution, social media

1. Introduction

The field of Natural Language Processing (NLP) dealing Sentiment Analysis (SA), also named as opinion mining, is an active research area to display emotions and to automatically discover the sentiments expressed within the text [1]. The object of SA is usually a product or service that is of keen interest among people, that they care to put a sentiment towards it. Traditionally, SA has been considered as an opinion polarity that whether someone has expressed positive, negative or neutral sentiment about an event [2].

Since last decade, researchers are putting efforts to capture, quantify and measure dynamic public sentiments through different methods, tools and techniques, and thus allowing SA as one of the rapidly growing research areas [3]. SA applications have been widely spread to nearly every domain, like social events, consumer products and services, healthcare, political elections and financial services. Influential groups and business organizations, like, Google, Microsoft, SAP and SAS, have designed their own in-house capabilities that support them in decision making and assist them in developing better business applications to track and predict evolving market trends.

From studies, SA has been generally categorized at three levels. Document-level [4], sentence-level [5] and aspect-level SA [6] to classify whether a whole document, a sentence

The authors are with the School of Software Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China. E-mail: {ambreen.nazir, stayhungry}@stu.xjtu.edu.cn, raoyuan@mail.xjtu.edu.cn, 15810738706@163.com.

Manuscript received 26 May 2019; revised 21 Nov. 2019; accepted 19 Jan. 2020. Date of publication 30 Jan. 2020; date of current version 31 May 2022. (Corresponding author: Yuan Rao.)
Recommended for acceptance by C. Girju.

Digital Object Identifier no. 10.1109/TAFFC.2020.2970399

(subjective or objective) and an aspect express a sentiment, i.e., positive, negative or neutral. The Aspect-based Sentiment Analysis (AbSA) helps to understand the problem of SA better comparatively, because it directly focuses on sentiments rather than language structure.

Where, an aspect is related to an entity, and the basic concept of an aspect is not just limited to judgement but also extends towards thoughts, point of views, ways of thinking, perspectives, an underlying theme or social influence towards an occurrence. Hence, AbSA provides a great opportunity to analyse sentiments (public) over time across different contents present on media [7].

AbSA can be categorized by three main processing phases, i.e., Aspect Extraction (AE), Aspect Sentiment Analysis (ASA) and Sentiment Evolution (SE). The first phase deals with the extraction of aspects, which can be explicit aspects [8], implicit aspects [9], aspect terms [10], entities [11] and Opinion Target Expressions (OTE) [12]. The second phase classifies sentiment polarity for a predefined aspect, target or entity [13]. This phase also formulates interactions, dependencies and contextualsemantic relationships between different data objects, e.g., aspect, entity, target, multi-word target, sentiment word, for achieving improved sentiment classification accuracy [14], [15]. The expressed sentiment can be classified into ternary, or fine-gained sentiment values [2], [16]. The third phase concerns with the dynamicity of peoples' sentiment towards aspects (events) over a period of time. Social characteristics and selfexperience are considered as the leading causes for SE [17].

1.1 Focus of This Survey

The field of AbSA is not a straight road, it has suffered many diverse changes and touched many new eras to ponder over. Researchers have been working hard to resolve multi-faceted

challenges containing many issues. They have come up with thorough solutions of many complicated challenges through different machine-learning techniques, mostly deep-learning techniques, that represent their critical idea in the field. They have provided pictorial representations and numerical modeling for handling complex scenarios through different attention mechanisms and neural-memory networks. For detailed knowledge on deep-learning techniques, attention mechanisms and memory networks, we refer our readers to these surveys [18], [29], [30], [31].

Therefore, a comprehensive survey is the need of time to summarize the most recent developments in the field of AbSA. The focus of existing surveys is limited to the technical details or specific phases of AbSA. The critical issues and key challenges of AE, ASA, SE have not stated and summarized accurately. Those surveys have also become outdated because of the exponential achievements and innovations in recent years. To fill this gap, we propose a comprehensive survey related to AbSA.

Our survey presents the systematic, detailed and thorough study about existing issues (challenges) of AE, ASA and SE, and their assembled solutions in most recent years. The survey also proposes new suggestions that induce some serious thoughts and considerations to improve present solutions, which would be helpful for future research directions; along with considering how SE is an important and exciting research problem for many applications.

Based on the present study, the fundamental prospects are discovered and discussed that are essential for future advancements and developments, as they will provide an immense-boost and motivation for researchers to explore and devise new approaches that will overcome the critical issues and major challenges of AbSA. Table 1 presents a brief summary of some existing surveys (related to AbSA and SA) and our survey.

1.2 Organization of This Survey

The survey has been started with the brief introduction and paramount significance of AbSA. The rest of the survey is organized as follows: Section 2 provides the definitions of sentiment with respect to aspect, and lists down the major issues and challenges related to AE, ASA and SE. Sections 3 and 4 discusses the major issues of AE and ASA, and concisely describes the recent solutions for these issues. Section 5 discusses the dynamics of SE. Section 6 highlights the future research directions. Section 7 concludes this survey.

2. KEY SOLUTIONS

This section presents AbSA definitions, and outlines the major issues and sub-issues of AE, ASA and SE. This section also illustrates three main processing steps of AbSA, i.e., AE, ASA and SE, through framework for the ease and understandability of the reader.

2.1 Definitions (AbSA)

In AbSA, sentiment is a subjective consciousness of human beings towards an aspect (objective existence). People get affected by the ups and downs of life, at any time and place, which results in the change of their sentiment towards a specific aspect. This change depicts human behavior flexibility, decision autonomy and creative thinking. Pang and Lee [19] defined SA as: "A sentiment is basically an opinion that a person expresses towards an aspect, entity, person, event, feature, object, or a certain target." Now days, researchers mostly use the term 'aspect' instead of 'feature' for specific application.

Liu [5] defined the above terms like: 'an opinion is defined as a quintuple $(e_i, a_{ij}, s_{ijkl}, h_k, t_l)$, where e_i is an entity, object or person, a_{ij} is the j^{th} aspect of e_i , s_{ijkl} represents sentiment that an opinion holder h_k expresses at time t for $a_{ij} \in e_i$. s_{ijkl} could be positive, negative or neutral. Both e_i and a_{ij} collectively become the opinion target.

2.2 The Core Issues and Challenges of AbSA

In the light of above definitions, the big issues and major challenges facing by AbSA are basically the elements which constitute these definitions. These major issues and subissues that are discussed in this survey are listed below:

- 1. How to perform the process of AE effectively; why till now this remains a big challenge?
 - i. How to extract explicit aspects, OTE, implicit aspects and aspects with neutral sentiment?
 - ii. How to perform cross-domain and cross-lingual AE?
 - iii. How to map relationships between different data objects for improved AE?
- 2. How to conduct ASA; how to achieve a sentimentalcalculation model that performs an in-depth analysis of all the emotional aspects; why this is still a big challenge and hot research area?
 - i. How to perform SA at aspect (target), entity and multi-word-target level?
 - ii. How multi-task learning enhances the sentiment prediction accuracy?
 - iii. How the interactions, dependencies and contextual-semantic relationships between data objects contribute towards improved sentiment classification?
- 3. How to measure the change of sentiment value with time; why there is not any outstanding achievement which makes SE an open issue?
 - How to identify factors and track obvious deficiencies in continuously-changing- sentimental characteristics?
 - ii. How to predict SE over Social Data?

These three issues are the core of AbSA and excellence could be achieved by resolving each issue at granular-level. Fig. 1 illustrates these three main phases (issues) of AbSA, i.e., AE, ASA and SE, with an initial necessary preprocessing step that applies the preprocessing filters, e.g., tokenization, transforming cases, stemming and filtering of stop words, on the corpus for eliminating any needless information, e.g., special characters, stop words, repeated words, etc. [32]. The following step is to transform the data into word embeddings, e.g., word2vec [33], Glove [34], ELMo [35], Bert [36], and then compute positional information of words, accordingly [29].

3 ASPECT EXTRACTION (AE)

AE deals with detection and discovery of explicit aspects, implicit aspects, entities, aspect categories and OTE. AE

TABLE 1
An Overview of Existing Surveys and Our Survey

Author	Title	Critical Idea	Challenges		
Pang et al. 2008 [19]	Opinion Mining and SA	 presented applications that determine sentiment of the document, and organized approaches related to opin- ion-oriented classification problems 	level using machine-learning approaches?		
Tang et al. 2009 [20]	A Survey on Sentiment Detection of Reviews	 discussed approaches related to subjectivity classification, word classification and opinion discovery in customer-review domain 	How to perform SA at document- level using machine-learning approaches?		
Wiegand et al. 2010 [21]	A Survey on the Role of Negation in SA	 presented computational methods for handling negation in SA 	How to cope with the scope and challenges of negation modeling?		
Tsytsarau et al. 2012 [22]	Survey on Mining Subjective Data on The Web	 differentiated between four different approaches that classify word-sentiment value, i.e., machine-learning, semantic, statistical and dictionary-based approaches 	How to perform subjective SA at document-level?		
Liu 2012 [2]	SA and Opinion Mining	 covered the field of SA at document, sentence and aspect-level 	How to cope with review ranking, redundancy issues, viewpoints quality, genuine aspects, spammer detection etc?		
		 discussed various issues related to AE, sentiment classi fication, sentiment lexicons, NLP and opinion-spam detection surveyed the till date practical solutions along with the 			
Ravi <i>et al</i> . 2015 [23]	A Survey on Opinion Mining and SA: Tasks, Approaches and Applications	organized subtasks of machine-learning, NLP and SA techniques, such as, subjectivity classification, sentiment classification, lexicon relation, opinion-word extraction, and various applications of SA discussed open issues and future directions in SA	How to focus on sentence-level and document-level SA and their subtasks?		
Giachanou et al. 2016 [24]	Like It or Not: A Survey of Twitter SA Methods	discussed the deep-learning algorithms related to twitter SA	How to tackle the challenges, tasks and feature selection methods limited to twitter SA?		
		 laborated tasks specific to emotion detection, change of sentiment over time, sarcasm detection, and sentiment classification 			
Schouten et al. 2016	Survey on Aspect-Level SA	 performed approach-based categorization of different solutions those were related to AE, aspect classification and a combination of both 	How to cope with the challenges of compar-ative opinions, conditional sentences, negation modifiers and presentation?		
		 proposed future research direction for semantically rich-concept-centric AbSA 	-		
Zhang <i>et al</i> . 2018 [25]	Deep Learning for SA: A Survey	 presented applications and deep-learning approaches for the SA related tasks such as sentiment intersubjectivity, lexicon expansion, stance detection 	How to achieve advances in SA using deep-learning approaches?		
Zimbra et al. 2018 [26]	The State-of-the-Art in Twitter SA: A Review and Benchmark Evaluation	 focused on challenges and key trends related to classification errors, twitter monitoring and event detection to perform twitter SA effectively 	How to reveal the root causes of commonly occurring classification errors?		
Yue et al. 2018 [27]	A Survey of SA in Social Media	categorized the latest technologies and techniques in SA	How to focus on different types of data and advance tools, to overcome the limitations of social media SA?		
		 introduced latest tools for research approaches related to subjectivity classification in customer-review domain 			
Kim and Klinger 2018 [28]	A Survey on Sentiment and E- motion Analysis for Computa- tional Literary Studies	 presented approaches of SA and emotion analysis 	How to classify and interpret the emotional text through sentimental and emotional analysis in digital human community?		
		 discussed the computational methods for sentiment and emotion classification 			
Our	Issues and Challenges of Aspect- based Sentiment Analysis: A Comprehensive Survey	 discusses the issues and challenges of AE, ASA and SE 	How to improve the mechanism of AE?		
		 presents the progress of AbSA by concisely describing the recent solutions 	What measures should be taken to achieve good classification accuracy at aspect-level?		
		 highlight factors responsible for SE dynamicity proposes future research directions by critically analysing the present solutions 	How to predict SE dynamicity?		

Fig. 1. A framework regarding the main phases of aspect-based sentiment analysis

also tackles the relation distribution between different aspects in order to identify consistent, coherent and similar aspects from the dataset that help in improving the overall representation of extracted aspects. All solutions featuring the extraction of aspects and relational mapping between aspects are discussed in this section and Table 2.

3.1 Extraction of Aspects

3.1.1 Explicit Aspects and OTE Extraction

The foremost crucial issue towards AE is; the extraction of explicit aspects, entities, aspect categories and OTE upon which a sentiment is being expressed. Where, an explicit aspect means that it is present in the text, e.g., "the camera of this mobile phone is great" is an example of an explicit aspect, i.e., camera, and explicit entity, i.e., mobile phone. Aspect category combines entity, and aspect of that entity into a pair, e.g., "This mobile looks great but expensive", in this example "MOBILE#APPERANCE" and "MOBILE#PRICE" are two mentioned categories, and the OTE in this example is the "mobile" because user is targeting the mobile's attribute.

The sequence-labeling techniques, e.g., Conditional Random Field (CRF), have been proved effective for extracting different kind of aspects through neural-contextual word embeddings employed by deep-learning mechanism [37], [38]. Many researchers have integrated CRF and Recurrent Neural Network (RNN) to extract explicit aspects and sentiment words through learning sequential features based on likelihood and backpropagation mechanism [8], [10]. For instance, Giannakopoulos et al. [39] utilized BiLSTM and CRF to handle the extraction and sequential-labeling of explicit aspects and OTE, simultaneously, through continuous word representations. They achieved high precision score and performed AE in both supervised and unsupervised manner. Rana and Cheah [40] also extracted explicit aspects and OTE by generating sequential-pattern rules through CRF on the basis of direct and indirect correlation between aspect and sentiment words. They focused on learning pattern rules from users' review, instead of manually designing them, to mitigate the effect of language constraints and grammatical rules. Jebbara and Cimiano [41] proposed RNN supplemented with character-level embeddings to extract OTE after scrutinizing its characteristics through a sequence-labeling system, i.e., CRF. The inclusion of character embeddings helped to rectify the robustness of unseen words and spelling errors.

CRF has also been applied for grouping semantic, syntactic and lexical aspects according to their respective ambiguities [42], [43]. For instance, Ma et al. [44] discovered aspects through a hierarchical multi-layer Bidirectional Gated Recurrent Unit (BiGRU) that highlighted character features and high-level semantic features by capturing long-range dependencies between aspects and targets. The resulted features helped in estimating sentiment labels through sequence-labeling CRF.

Moreover, researchers have achieved improved aspect representations by utilizing neural-memory operations and attention encoders through memory interactions and attention mechanisms, respectively [38], [45], [46]. These two phenomena handle the interactions between aspects and sentiment words that soothe the extraction procedure, and also help to achieve the multi-task learning environment [47]. For instance, Li and Lam [45] proposed a memory-interaction mechanism with two Long Short Term Memory (LSTM) for extracting aspect and sentiment words through a multi-tasklearning environment. Their memory operations were based on the positional information of aspects and sentiment words, and global score of sentiment terms. They also added the constraints of sentimental sentences to facilitate the extraction process through another LSTM. Wang et al. [48] proposed multi-layer neural attentions with tensor operators for handling dual-interaction between aspects and sentiment words. They guided attentions through input word embeddings and the prototype vectors of aspects and sentiment words, in order to measure the attention score for each input word, where words having high-attention scores were considered as an aspect or sentiment word. Further, Li et al. [49] deployed trimmed-history-attention mechanism to encode useful history-aware-aspect representation into sequential-aspect representation obtained from two-stacked LSTMs. The employment of two-stacked RNNs and afterwards an auxiliary-opinion-based-word-recognition module helped in refining the boundaries of extracted OTE. Angelidis and Lapata [50] proposed a weakly-supervised-neural-attention encoder that averaged word vectors in each segment to

TABLE 2
Reported Performance of Presented Solutions for Aspect Extraction

Ref.	Approach Used	Evaluation Task (Extraction)	Dataset (Domain)		Precision	Performano Recall	e F1. Score
Yin et al. 2016 [37]	unsupervised	aspect	SemEval 2014 (laptop (L)) [88] SemEval 2014 (restaurant (R)) [88]				75.16 84.97
. ,	1	1	SemEval 2014 (restaurant (R)) [66]				69.73
Wang et al. 2016 [8]	supervised	aspect / opinion term	SemEval 2014 (R) SemEval 2014 (L)				84.93 / 84.11 78.42 / 79.44
			SemEval 2014 (L)				80.57
Luo et al. 2019 [10]	supervised	aspect	SemEval 2014 (R)				84.83
200 00 00 2015 [10]	Supervised		SemEval 2015 (R)				70.83 74.49
			SemEval 2016 (R) [89] SemEval 2014 (L)				74.49
Giannakopoulos et al. 2017 [39]	supervised	aenect	SemEval 2014 (R)			j _	84.01
Giannakopotatos et al. 2017 [57]	unsupervised	aspect	SemEval 2014 (L)				44.37
Al-Smadi et al. 2018 [74]	supervised	multi-lingual OTE	SemEval 2014 (R) SemEval 2016 (hotel (H)) [89]	83.19		63.09 69.98
		mun-ingual OTE	SemEval 2016 (notel (H)) [89]		81.15	87.30	84.11
		OTE	SemEval 2015		72.9	69	70.90
			SemEval 2016 Dutch		73.33 75.36	73.69 65.22	73.51 69.92
Agerri and Rigau 2019 [43]	supervised			French	69.94	69.08	69.50
		multi-lingual OTE	SemEval 2016	Russian	68.27	64.61	66.39
				Spanish Turkish	64.21	66.91 57.93	65.53 60.22
Rana and Cheah 2018 [40]	supervised	OTE	customer reviews [90		86	91	89
Ma et al. 2018 [44]	supervised	target detection	English (tweets) [91]		60.12	53.68	56.98
	*		Spanish (tweets) [91]		68.64	63.66	66.01
Jebbara and Cimiano 2017 [41]	supervised	OTE	SemEval 2016 (R) SemEval 2014 (R)			-	65.86 85.29 / 83.18
Wang et al. 2017 [48]	supervised	aspect / opinion term	SemEval 2014 (L)			-	77.80 / 80.17
			SemEval 2015 (R)				70.73 / 73.68
			SemEval 2014 (R) SemEval 2014 (L)				85.61 79.52
Li et al. 2018 [49]	supervised	aspect	SemEval 2015 (R)			-	71.46
			SemEval 2016 (R)	1,			73.61
Wana at al. 2017 [47]	supervised	aspect category / opinion	SemEval 2014 (L) SemEval 2015 (R)				57.06 / 63.53 63.16 / 59.17
Wang et al. 2017 [47]	supervised	term	SemEval 2016 (R)			_	65.34 / 61.44
Li and Lam 2017 [45]	supervised	aspect	SemEval 2014 (L)				77.58
		_	SemEval 2016 (R)				73.44
Angelidis and Lapata 2018 [50]	weakly supervised	aspect	oposum dataset (ama Amazon Reviews (Sm		57.8		49.1 78.09
Gu et al. 2017 [53]	supervised	aspect-mapping	Taobao Reviews (Skir			-	93.12
Xu et al. 2018 [54]	supervised	aspect	SemEval 2014 (L)				81.59
Pham and Le 2018 [55]	supervised	aspect category detection	SemEval 2016 (R) restaurant reviews		83.94	81.61	74.37 82.76
Jangid et al. 2018 [92]	supervised	aspect	FiQA 2018 (financial t	weets)		-	69
Chatterji et al. 2017 [59]	hybrid	aspect identification	customer reviews		79.22	70.93	74.85
	hybrid (supervised)	aspect categorization	sentihood (yahoo	(Sentic)			77.66
Ma et al. 2018 [9]			querying) [93] (Hybrid) SemEval 2015 (Sentic)				77.87 73.82
			(reviews)	(Hybrid)			75
Poria et al. 2016 [61]	unsupervised	aspect with categories	SemEval 2015 (R)		92.12	88.25	
Schmitt et al. 2018 [51]	unsupervised	aspect categorization	Germeval 2017 [94] German Wikipedia				62.3
I: 11 0017 [11]		111	English (tweets)		66.35	56.59	61.08
Li and Lu 2017 [11]	supervised	entity recognition	Spanish (tweets)		73.13	64.34	68.45
		aspect	SemEval 2014 (R) SemEval 2014 (L)		72.81 55.91	79.81 66.51	76.15 60.75
Wu et al. 2018 [65]	hybrid (unsupervised)	OTE	SemEval 2015		62.26	65.13	63.36
	(cross-domain OTE	SemEval 2016 SemEval 2015 (H)		58.94 55.86	70.59 84.58	64.24 67.27
			product reviews [90]				60
Marcacini et al. 2018 [71]	semi-supervised	cross-domain OTE	SemEval 2014 (R) SemEval 2014 (L)		-	-	68.3 61
Charact at 2017 1723	aa. 1 - 4	cross-domain aspect/	ì ·		82.5 / 84.3	E2 1 / 77 1	
Shu et al. 2017 [72]	supervised	in-domain aspect		customer reviews [90], [82]		53.1 / 71.4	64.3 / 77.3
Gaillat et al. 2018 [60]	supervised	aspect	stock trading SemEval 2014 (R)		56.89 (Accura 87.09	(cy) 82.10	84.52
Akhtar et al. 2017 [64]	unsupervised	aspect	SemEval 2014 (K) SemEval 2014 (L)		87.09 85.49	66.7	74.93
	77] unsupervised	cross-lingual OTE		Dutch			66.00
Jebbara and Cimiano 2019 [77]			SemEval 2016	English Russian			68.70 62.40
				Spanish			56.70
	supervised			Turkish	84.4	83.1	49.00 83.8
Souchen et al. 2017 [87]	unsupervised aspect category SemEval 2014 (K)			69.5	64.7	67.0	
He et al. 2017 [46]	unsupervised	aspect	restaurant reviews [95]		85.66	72.23	77.50
	ouper.nou	иорест	BeerAdvocate (reviews) [96] TripAdvisor (hotel reviews) [98]		65.4 70 (soft accura	82.8 acy)	72.5
Luo et al. 2018 [97]	unsupervised	prominent aspect	Amazon (product reviews) [98] Yelp (restaurant reviews) [98]		59.75 (soft acc	curacy)	
					72 (soft accura	acy)	92.07
Ye et al. 2017 [99]					-	83.97 75.66	
Schouten et al. 2017 [100]	supervised	aspect detection	SemEval 2015				62.8
Asghar et al. 2017 [101]	hybrid	aspect	customer reviews		83.46	71.0	77.16
Konjengbam et al. 2018 [102]	unsupervised	aspect	product reviews[90]	(SemR) (SemS)	56 78.94	73.68 78.94	63.63 78.94
	1	l		(verne)	1 1002		

identify aspect words. The encoder worked on assumption that every aspect present in the data contained a small set of seed words that could be used to identify segments containing aspects through a multi-task objective.

Though, as discussed previously; RNNs (LSTMs) have been mostly used for carrying out the AE procedure. But, to deal with the semantic and syntactic irregularities, mostly present in the user-generated social media text, Convolutional Neural Network (CNN) is proved more effective than RNN [51]. Because CNN extracts local and position-invariant aspects whereas RNN captures long-range-semantic dependencies based on sequential information for classification [52]. For instance, Gu et al. [53] proposed cascaded-CNN structure for mapping the local semantic of each aspect through convolutional and max-pooling operations, which associated each aspect to its corresponding sentence for producing aspect category labels. Xu et al. [54] adjusted aspects of seen words along with its semantics for modeling label dependencies through a less complicated neural architecture. They utilized Dual-Embeddings CNN, i.e., cross-domain embeddings and domain-specific embeddings to encode the information of each input word and to achieve the AE procedure with less supervision, but they did not consider the semantics of conjunction words. Moreover, Pham and Le [55] captured more semantics in the text through three different representations of word embeddings, i.e., Word2Vec, Glove embeddings and one-hot character vec-tors. Each embedding was passed to an independent CNN channel and a non-linear activation function to produce global-sentence representations, followed by a single NN to carry out aspect-categorylabel-prediction task.

3.1.2 Implicit Aspects Extraction

Implicit and explicit aspects should be given same importance considering their relevance to the customers' reviews. Where, an implicit aspect means that it is not clearly stated in the text, e.g., "I could not use the camera because of very low charging" is an example of implicit aspect, i.e., battery, of an entity, i.e., camera. Unfortunately, explicit aspects have earned more attention of researchers relative to implicit aspects [56]. Because, the identification of implicit aspects is a challenging task as they often do not contain any name or clue words. But with the immense achievement of NNs like LSTM that are excellent in learning implicit knowledge from data through gated mechanism because they work similar to human brain and encode the importance of each word present in the text. For instance, Sentic-LSTM (an extension of LSTM) proposed by Ma et al. [9] offered a solution for explicitly combining the implicit and explicit knowledge. The Sentic-LSTM adopted a sequence-encoder and a self-attention mechanism to calculate and incorporate affective-common-sense knowledge into a deep-neural-sequential model for handling the significance of multi-instances target.

Other studies are also classified based on supervised, unsupervised, hybrid and semi-supervised learning for categorizing implicit aspects through dependency parsing, association rule mining, semantic ontology, classification, clustering and rule-based approach [57]. SemEval 2015 involved the segregation of implicit attributes for entities [12]. Implicit aspect indicators were also identified through a probabilistic-graphical framework, i.e., CRF for extracting implicit aspects [58].

Moreover, Chatteri et al. [59] used AspectFrameNet, where they considered aspects as Frame elements, for identifying implicit-aspect and explicit-aspect patterns as a sequencelabeling task (CRF). According to defined pattern rules, the AspectFrameNet updated itself with aspects' patterns for every next iteration. Gaillat et al. [60] classified both explicit and implicit aspects by utilizing pre-defined aspect categories in financial domain. The semantic relatedness of every input word was calculated with aspect-class label based on their occurrence, which was further provided to machine-learning algorithm for final classification. However, Poria et al. [61] extracted implicit aspect through Sentic Latent Dirichlet Algorithm (SLDA) that integrated common-sense reasoning in computation of word distributions. The clusters were formed by SLDA after capturing semantic association between words and multi-word expressions. The words having highest probability among clusters were considered as aspect terms.

Despite of discussed solutions, implicit-aspect extraction still remains an issue which could be handled with improved feature engineering and large datasets.

3.1.3 Aspects Extraction With Neutral Sentiment

Every aspect plays an integral role for improving sentiment classification accuracy. But, researchers mainly focused on aspects with positive and negative sentiments, and aspects with neutral or linguistic sentiments have been neglected [62]. At the same time, some researchers also performed proper encoding of text for detecting aspects with positive, negative and neutral sentiments, after correspondingly performing end-to-end optimization through a suitable NN [63], [64], [51]. For instance, Wu et al. [65] came up with a chunk-level-extraction method for extracting neutral and implicit aspects. The method contained both rule-based and supervised-learning approaches to produce rational predictions and to achieve higher-level aspect representati-ons through a deep NN architecture. Moreover, Li et al. [11] investigated the sentiment scope of neutral aspects through sentiment-scope graphs that captured the boundless longdistance dependencies between aspects and entities.

3.1.4 Cross-Domain and Cross-Lingual AE

The limitations and characteristics of domain application contribute towards domain dependence, which is a big challenge in AE [66]. Inductive-transfer learning could be used to extract common aspects (linguistic) from two domains, only if they share a common feature space and same distribution characteristics [67], [68]. The use of pre-training and fine-tuning across different domains may cause inconsistency issues because different domains have different marginal-probability distribution and feature spaces [69]. Although, cross-domain-transfer learning have reported feasible solutions, but they make the regular labeling of data, expensive or nearly impossible [6], [62], [68], [67]. On the contrary, transductive learning has been proved effective for handling the issue of classifying unlabeled data [70]. For instance, Marcacini et al. [71] utilized transductive learning to incorporate knowledge from different domains through a unified representation model. They mapped different features (as nodes) in a heterogeneous network, i.e., linguistic features, from labeled aspects of the source domain to unlabeled aspects of the target domain, with the help of a mathematical-formalization framework and theoretic guarantees of convergence. Shu *et al.* [72] claimed that lifelong-machine-learning CRF could be significantly improved for extracting aspects from different domains by retaining knowledge from previous domains, to facilitate future learning. Akhtar *et al.* [64] worked on an efficient Particle Swarm Optimization technique that automatically discovered the most relevant aspects, irrespective of the domain adaptation.

Commonly, the research focuses on English language [73], but other languages also gained interest in recent years [11], [74]. The use of machine translation for multi-lingual-OTE extraction requires NLP resources to perform word alignment between POS tags and dependency features [75]. Similarly, the CRF system using different features such as POS, bigrams and lemmas obtained good results for Spanish and English [76]. Agerri and Rigau [43] also modelled multi-lingual-OTE extraction as a sequence-labeling task. Their languageindependent model obtained different feature's clusters, i.e., local, shallow and independent features, from diverse data sources based on semantic distribution. Jebbara and Cimiano [77] employed zero-shot-cross-lingual approach with multilingual word embeddings for predicting OTE. They used common vector space to transfer learning model from source language to target language.

3.2 Map Relationships

The explicit representations of the extracted data objects are essential to precisely map relationships between particular entities and aspects. These relationships include co-occurrence relations [78], dependency relations [79], dependency-context information [37] and other relations [80], [81], [82], which could be mapped through hierarchical representation of aspects based on tree structure, sentiment ontology or conceptual ontology. All these mapping representations help to understand the relations between different data objects and present product information in a structured way [83], [84], [85].

3.2.1 Co-Occurrence Relation

The co-occurrence relations help to predict complete, coherent and consistent knowledge between distribution of words, e.g., beef, mutton, fish (aspect terms), into one aspect "meat" or it can be "food". Many existing models do not incorporate the prior knowledge, e.g., consideration of topic distribution in each document, and encoding of word co-occurrence statistics to preserve topic consistency, for AE procedure, and thus they often deduced aspects of poor quality [78], [86]. To handle the issue, Souchen et al. [87] adopted a supervised approach for computing co-occurrence frequencies between annotated categories and lemmas. They also appended grammatical dependencies between words for more accurate aspect- category (implicit and explicit) detection. Moreover, they also considered word co-occurrence frequencies for computing direct and indirect relations between words through associationrule mining in an unsupervised manner. They assigned activation value to each word through spreading-activation process, where the word having higher activation value was considered as an aspect category. He et al. [46] mapped the cooccurrence between words according to their context for discovering coherent aspects in the neural-embedding space. They successfully understated non-aspect words through attention mechanism and thus maintained the uniqueness of word embeddings. Li and Lam [45] also captured the co-occurrence patterns between aspects and sentiment words through memory interactions. The neural-memory operators were designed to achieve interactions between data objects and to generate task-level information summary.

The co-occurrence relations between words could also be captured through association-rule-mining techniques [103], aspects-clustering [104], co-occurrence matrix [105] and graph-based methods [106]. Where, co-occurrence matrix focuses on relations between sentences and aspects with the intention of finding implicit aspects as well, and graph-based methods utilize probabilistic models to define edges' weights as co-occurrence relation between words.

But sometimes, the identification of co-occurrence relations and word-frequency information leads to the extraction of similar aspects from sentences, but in actual scenario these aspects should be considered differently. For example, "beautiful design" and "good looks" should be two different aspects of mobile phone, although both come under the category of "appearance". To address this issue, Luo *et al.* [97] addressed the overlapping problem of potential aspect terms through lexico-syntactic examination of input data. They found unique aspect terms at subsumed relations in the subgraph through synsets in WordNet. Their method covered both prominent and distinct aspects adequately.

3.2.2 Semantic and Dependency Relation (Hierarchical and Ontology Structure)

Dependency patterns based on semantic and syntactic sequences help to discover the missing synonymous aspects and also distinguish the non-aspect words [82], [73]. These dependency relations could be achieved either through a hierarchical structure or an ontology tree.

The hierarchical structure helps to achieve the distributed representation learning by performing the relational classification between two aspects (nodes); where nodes can be adjacent nodes or parent and child nodes [8]. The tree dependency information of sentences proposed by Ye *et al.* [99] captured the syntactic and linguistic aspects through convolutional-stacked NN. Further, they incorporated an inference layer to achieve final tag scores. Moreover, Yin *et al.* [37] encoded neural embeddings with syntactic and contextual information to explicitly learn the semantic embedding paths as grammatical relations in dependency tree through recurrent NN, and utilized sequence-labeling CRF for improved AE. Similarly, Luo *et al.* [10] also structured the sequence-labeling syntactic-dependency tree based on bidirectional-gated mechanism through BiLSTM for AE.

The use of ontology tree and ontology feature as a knowledge-base help to define the relationships between different domain-concepts. These axioms can derive implicit stated information to generate aspects and review summaries for improved extraction performance, and also encode domain-knowledge into an ontology tree to reduce the need of training data [107]. For instance, Schouten *et al.* [100] encoded domain-knowledge into an ontology tree enriched with target and sentiment lexicons for handling the task of aspect detection as binary-classification. The association of text to its domain-concept led to strong indication for aspect detection. Konjengbam *et al.* [102] formed a hierarchical-tree

structure that included aspects, sub-aspects, their relations and the semantic relationships of various aspects. They created two ontology trees based on semantic relationship and semantic-similarity relationship to incorporate every product related information after exploring all the aspects and their related review-snippet.

Besides hierarchical structure and ontology tree, heuristic patterns based on semantic-similarity also produce a reasonable approximate solution towards AE in a reasonable time [108]. For instance, Asghar *et al.* [101] composed a hybrid-integrated framework with an extended set of heuristic patterns, where noun, noun-phrases (multi-words) and verbs were considered as candidate terms from the review data, to extract aspects those were grouped by the semantic-similarity measure.

4 ASPECT SENTIMENT ANALYSIS (ASA)

ASA, the second phase of AbSA, assigns the sentiment score to each extracted aspect, target, or entity. It also includes the interactions, dependencies and contextual-semantic relationships between different data objects to enhance the sentiment classification accuracy. All solutions featuring ASA are presented in this section and Table 3.

4.1 Sentiment Analysis (SA)

ASA provides more detailed information than general SA, because it predicts the sentiment polarity of the given aspects, targets and entities present in the text. Initially, ASA was handled by manually designing features, such as n-grams, sentiment lexicons or dependency information [109], [110]. But, with the progression of deep-learning mechanisms, ASA approaches have been projecting for automatically learning of aspects and their sentiments, providing best solutions to many problems in AbSA [111], [112].

4.1.1 Aspect (Target)-Level SA

Aspect (target)-level SA classifies sentiments by learning separate representation for each data object. NN models get clear representation of words, i.e., adding more information at the word-level, by measuring and identifying the semantic and syntactic relatedness between different data objects [51], [113]. The implementation of BiLSTM with character-level embeddings have performed clear representation of OTE and nonvocabulary words, and thus contributed in the acquisition of good sentiment information [74]. For instance, Ma et al. [44] learned and pointed out non-vocabulary words through a hierarchical multi-layer BiGRU. The model produced target labels appropriately and thus made good prediction for sentiment labels. Pham et al. [114] combined feed-forward NN, containing representation learning techniques of word embeddings, with compositional vector model for capturing semantic-information and richer-knowledge representations. The designed NN utilized existing aspect-ratings and higheraspect representation layer to produce compositional sentiments. Ghasedi and Huang [115] adopted a CrowdDeep autoencoder coupled with probabilistic approach for efficiently reconstructing and reducing the noise of corruptedtext data. The approach accurately categorized sentiments by estimating the underlying information of text data. It also did not encounter any memory exhaustion problem during handling insufficient training parameters in very large datasets because of utilizing text data as a source of information. Besides NN, Asghar *et al.* [101] composed a hybrid-integrated framework to group extracted aspects according to their semantic-similarity. The sentiment scores were assigned to aspects through a sentiment-scoring technique based on lexicon-based and corpus-based concepts.

Besides sequential models like LSTM and GRU, CNN is also proved effective for achieving targeted sentiment classification accuracy [73], [116] along with many other NLP tasks such as relation classification [56] and information retrieval [117]. For instance, Xue and Li [118] developed a gated-convolutional network, containing novel gated Tanh-ReLU units (GTRU), that utilized aspect embeddings for selecting n-gram features on each receptive field to perform aspect-category SA and aspect-term SA. The GTRU units via ReLU activation function, on the top of the convolutional layers, made the network suitable for parallel computing that contributed towards reduced training time. Moreover, Zhao et al. [119] proposed CNN-based-weaklysupervised-deep embeddings for learning high-level representations that reflected general sentiment distribution of sentences from a large number of weakly-labeled sentences. They utilized review ratings, as weak labels, and labelled sentences for training and fine-tuning deep NN, respectively. In addition, Pham and Le [55] employed a multiple-CNN model, where every CNN was initialized with a different word embedding, i.e., Word2Vec, Glove and one-hot character embeddings, for capturing semantics in the text. Each CNN module was trained with the same non-linear activation function, simultaneously. The final vector representations were produced through a single NN for classifying sentiments. Li et al. [120] utilized CNN layer for extracting salient features from the transformed word representations originated from a bidirectional RNN. They adopted a proximity strategy that accurately located the sentiment indicators by scaling the input of CNN layer with positional relevance between word and target. The technique demonstrated its capability by handling both general and target-sensitive sentiment.

Although, RNN and CNN both significantly process out relevant information from one step to another through gated mechanisms and convolutional procedures for improved sentiment classification. But with the longer-input sequences, sometimes it becomes difficult for a NN to keep the context of hidden vectors. Here, attention mechanism helps to mitigate long-sequence issue by encoding the most relevant information of the input sequences. It combines with neural word embeddings to capture the key parts of the sentence, which helps to explicitly combine the explicit and implicit knowledge and produces good sentiment information [9], [63], [113]. For instance, He et al. [121] utilized attentionbased LSTM that was trained on aspect-level data for capturing domain-specific sentiment words. They hypothesized that domain-knowledge could be fully exploited to achieve additional knowledge from documents, that were from similar domain, by using two transfer-learning methods, i.e., pre-training [122] and multi-task learning [56], [123], as these two tasks are highly related semantically. Moreover, Hu et al. [124] utilized aggregated-sentiments and negation-specific words as attentions for capturing the semantic components

TABLE 3
Reported Performance of Presented Solutions for Aspect Sentiment Analysis (ASA)

Ref.	Approach	Evaluation Task	Dataset (Do	main)		Perf	ormance	
		(ASA)	Dataset (Domain)		Accuracy	Precision	Recall	F1. Score
Al-Smadi et al. 2018 [74]	supervised	aspect	SemEval 2016 (H)		82.6			
Ma et al. 2018 [44]	supervised	target	English (tweets)			46.52	39.99	42.87
. ,	<u> </u>	0	Spanish (tweets)			48.09	43.44	45.61
Ma et al. 2018 [9]			sentihood (yahoo	(Sentic)	89.32	4		
	hybrid	targeted aspect	querying) [93]	(Hybrid)	87.78			
	(supervised)		SemEval 2015	(Sentic)	76.47	4		
			(reviews)	(Hybrid)	74.11			
Li et al. 2018 [147]	supervised	multi-aspect	TripAdvisor (TripOUR		60.70			
	1	1	TripAdvisor (TripDMS) [139]	48.21	1		F1.1
Schmitt et al. 2018 [51]	unsupervised	aspect	Germeval 2017 [94]		┥			51.1
		aspect	German Wikipedia		0.1.0			50.2
Gu et al. 2017 [53]	supervised		Amazon Reviews (Smar	rtphone)	84.87			
			Taobao Reviews (Skirt)		98.26			
			SemEval 2014 (L)	(PF-CNN)	70.06	4		
Huang and Carley 2018	supervised	aspect		(PG-CNN)	69.12			
[116]			SemEval 2014 (R)	(PF-CNN)	79.20 78.93	-		
			C E 12014 (I)	(PG-CNN)		+		
Xue and Li 2018 [118]	supervised	aspect target	SemEval 2014 (L) SemEval 2014 (R)		69.14			
	1-1	-		CNINI	77.28	+	+	07/
Zhao et al. 2018 [119]	weakly	aspect	Amazon Reviews	CNN LSTM	87.7 87.9			87.6 87.9
	supervised		[148]	LOTIN		+	1	
Pham and Le 2018 [55]	supervised	aspect	restaurant reviews					84.16
Ghasedi and Huang	hybrid	target	CrowdFlower dataset	+ F1.463	91.2		82.5	
2018 [115]			Sentiment Polarity data	set [149]	91.5	 	91.5	
Angelidis and Lapata	weakly-	opinion	oposum dataset (amazo	n reviews)	44.1	1		
2018 [50]	supervised	summarization	m		(ROUGE-1)			
Pham et al. 2018 [114]	supervised	aspect rating	TripAdvisor [150]		(∆aspect) 59.6			
		word negation	Yelp 2013		64.9	4		
Hu et al. 2018 [124]	unsupervised		Yelp 2014		67.2			
	1		Yelp 2015		70.4	4		
			IMDB		53.5			∠
	supervised	aspect	SemEval 2014 (L)		71.15	4		67.46
He et al. 2018 [121]			SemEval 2014 (R)		79.11	-	-	69.73
			SemEval-2015 (R) SemEval-2016 (R)		81.30 85.58			68.74 69.76
					65.56	 	+	72.21
Tang et al. 2016 [128]	supervised	aspect	SemEval 2014 (L) SemEval 2014 (R)					80.95
			Senievai 2014 (K)	(CORR)	(4.00	1		00.93
			SemEval 2014 (L)	(CORR) (CONV)	64.89 68.81			
		aspect target	SemEval 2014 (R)	(CORV)	74.76			
				(CONV)	75.44			
Tay et al. 2017 [14]	supervised			(CORR)	80.47			
			SemEval-2015 (R)	(CONV)	81.29			
		aspect category		(CORR)	74.68			
			SemEval-14+15	(CONV)	78.44			
			SemEval 2014 (L)		74.45	72.96	69.21	70.16
	supervised	target	SemEval 2014 (R)		82.32	74.68	70.18	71.45
Zhu and Qian 2018 [129]			SemEval 2014 (R)		86.33	77.54	73.82	75.16
		aspect term	SemEval 2016 (tweets)		72.14	64.52	58.96	60.24
Asghar et al. 2017 [101]	hybrid	aspect	customer reviews			85	73	78
			English (tweets)		Ì	47.3	40.36	43.55
Li and Lu 2017 [11]	supervised	entity	Spanish (tweets)			47.14	41.48	44.13
Yang et al. 2018 [13]	supervised	multi-entity aspect	baby care (BC) dataset		80.74	86.42	84.28	85.34
-				(ABLSTM1)	71.6	1	i	71.2
Yang et al. 2017 [140]	supervised	target entity	Tweets	(ABLSTM1)	72.6			72.2
			SemEval 2014 (L)	, , , , , , , , , , , , , , , , , , , ,	74.49	i	†	71.35
	1	aspect	SemEval 2014 (L) SemEval 2014 (R)		80.23			70.80
Chen et al. 2017 [133]	supervised		Tweets		69.36			67.30
			Chinese news comments		73.89			73.85
Zheng and Xia 2018	supervised	aspect	SemEval 2014 (L) SemEval 2014 (R) Tweets		75.24			<u> </u>
					81.34			
[132]					72.69			
V . 1.001071=13			Tweets		71.2			68.8
Yang et al. 2018 [151]	supervised	target dependent	Sina Weibo Dataset (Chinese)		69.8			68.4
	supervised	multi-word aspect	SemEval 2014 (L)		76.37			72.10
Fan et al. 2018 [134]			SemEval 2014 (L) SemEval 2014 (R)		78.26			68.38
[*]			Tweets		72.11			70.8
			SemEval 2014 (L)		71.94	1		69.23
	unsupervised	aspect	SemEval 2014 (R)					71.32
					80.63			
He et al. 2018 [125]	unsupervised	aspect			81.67			66.05
He et al. 2018 [125]	unsupervised	aspect	SemEval 2015 (R) SemEval 2016 (R)		81.67 84.61	-		66.05 67.45

	supervised	aspect	Debates		78.48	74.55	66.31	67.68
Li et al. 2017 [138]			SemEval 2016 (tweets)		74.76	68.40	62.09	64.62
			SemEval 14 + 15 (review	vs)	65.58	50.34	44.95	45.93
Yin et al. 2017 [139]	cuparvised	multi-aspect	TripAdvisor [150]		46.65			
Three al. 2017 [137]	supervised	multi-aspect	BeerAdvocate [96]		38.25	1		
			SemEval 2014 (L)	(Tensor)		58.08	56.60	55.24
		aspect term	Schievar 2014 (E)	(Holo)	_	60.15	60.20	60.11
		dopect term	SemEval 2014 (R)	(Tensor)		60.71	57.24	58.61
			Demizvar morr (10)	(Holo)	4	62.05	57.82	58.82
			SemEval 2014 (R)	(Tensor)	4	68.73	65.17	66.64
Tay et al. 2017 [127]	supervised	aspect category	(/	(Holo)	4	66.29	62.43	63.99
, , ,	supervised		Reviews [12], [88]	(Tensor)	4	59.06	59.81	58.59
				(Holo)	-	55.34	56.56	55
			SemEval 2016 (tweets)	(Tensor) (Holo)		72.11 71.07	72.79 71.38	72.42 71.24
				(Tensor)		66.53	66.07	66.17
			Debates (Web forums)	(Holo)	1	63.59	63.27	63.34
			SemEval 2014 (L)	(11010)	75.07	00.09	03.27	00.04
Liu et al. 2018 [141]	supervised	aspect	SemEval 2014 (R)		80.89			
Liu et al. 2010 [141]	superviseu	aspect	Tweets		71.53			
	1		SemEval 2014 (L)		74.12	+		+
Gu et al. 2018 [142]	supervised	aspect	SemEval 2014 (R)		81.16			
Maium day at -1 2010	<u> </u>	1 -	-		73.8	+	1	+
Majumder et al. 2018 [143]	supervised	aspect	SemEval 2014 (L) SemEval 2014 (R)		73.8			
[173]	 	+			+	+	+	66.7
Wang et al. 2018 [15]	supervised	aspect	SemEval-2015 (L) SemEval-2015 (R)		81.6 80.9	⊣		66.7 68.5
	-	+	+				+	00.3
		aspect	SemEval 2014 (L)		75.1	4		
			SemEval 2014 (R)		81.6 69	-		
			Tweets	English	88.7	-		
	aumorrico d			Spanish	88	-		
Wang and Lu 2018 [144]	supervised	cross-domain aspect		French	82.4			
			SemEval 2015 (R)	Turkish	83.7	- - -		
				Russian	82.8			
				Dutch	87.3			
			SemEval 2015 (H)	Arabic	86.9	┥		
		inter-aspect	SemEval 2014 (L)	THEFT	79.0	1	+	†
Hazarika et al. 2018 [145]	supervised	dependencies	SemEval 2014 (R)		72.5	┥		
	l l	† 			77.59	 	1	81.16
Lin et al. 2019 [146]	2019 [146] supervised inter-aspect dependencies supervised dependencies SemEval 2014 (L) SemEval 2014 (R)			73.61			71.50	
Liu and Zhang 2017		dependencies	T-Dataset [113]		73.6			72.1
[131]	supervised	target	Z-Dataset [152]		75.0			72.3
[101]			Z-Dataset [152]	(NP)	7.5			72.43
	supervised	aspect/target	SemEval 2014 (L)	(CNP)				70.25
				(IT)				71.37
				(CI)				71.67
				(JCI)				71.79
				(JPI)				70.18
Wang et al. 2018 [153]			SemEval 2014 (R)	(NP)				75.73
				(CNP)				76.65
				(IT)				78.55
				(CI)				78.69
	1			(JCI)				78.79
				(JPI)				77.95
Ma ot al. 2017 [154]	al 2017 [154] SemEval 2014 (L)			72.1				
Ma et al. 2017 [154]	2017 [154] supervised aspect SemEval 2014 (R)			78.6				
Ma at al. 2010 [155]		10	SemEval 2014 (L)		73.1			
Ma et al. 2019 [155]	supervised	multi-aspect	SemEval 2014 (R)		80.1			
	supervised	aspect	SemEval 2014 (L)		75.39			72.47
			SemEval 2014 (R)		81.25			71.94
Fan et al. 2018 [156]	super viseu		Tweets		72.54			70.81
Fan et al. 2018 [156]	superviseu		SemEval 2014 (L)		72.68	1		
		1 .	SemEval 2014 (L)	SemEval 2014 (E)				
Fan et al. 2018 [156] Ma et al. 2017[157]	supervised	aspect			82.03			
		aspect	SemEval 2014 (R)	TNet-LF)	+	<u> </u>		71.47
		aspect	SemEval 2014 (R)	TNet-LF) TNet-AS)	76.01			71.47 71.75
Ma et al. 2017[157]	supervised		SemEval 2014 (R) SemEval 2014 (L) (C)	TNet-LF) TNet-AS) TNet-LF)	+			71.47 71.75 70.84
		aspect	SemEval 2014 (R) SemEval 2014 (L) (C) SemEval 2014 (R)	TNet-AS)	76.01 76.54			71.75
Ma et al. 2017[157]	supervised		SemEval 2014 (R) C C	TNet-AS) TNet-LF)	76.01 76.54 80.79			71.75 70.84
Ma et al. 2017[157]	supervised		SemEval 2014 (R) C C	TNet-AS) TNet-LF) TNet-AS)	76.01 76.54 80.79 80.69			71.75 70.84 71.27

from data to form sentence representations. Next, they incorporated the hierarchical structure of word, sentence and document representations into one-target-class label for final sentiment prediction. He *et al.* [125] adopted an autoencoder trained with a neural-attention-based sentiment classifier for learning aspect embeddings those were semantically related

(meaningful). Further, they exploited a local-attention mechanism to create a weighted combination of aspect embeddings for a given target by averaging the target and context information. The adopted autoencoder provided good target representation with a high accuracy on the predicted sentiment. Angelidis and Lapata [50] utilized a hierarchical-

attention-based-neural architecture that adopted a greedy algorithm for discarding redundant opinions. The neural architecture required little knowledge and less supervision for sentiment classification, and for generating well-balanced opinion-based summary from high-ranked opinions with minimal human intervention.

Another category of network architectures are memory networks that provide an explicit context representation for every input word in the sequence [126]. Memory networks, like attention mechanisms, also mitigate the issue of learning long-range dependencies in sequential data, and draw relationships between different data objects for improved sentiment performance [14], [127]. For instance, Tang et al. [128] employed a multi-layers external memory, where each layer acted as an attention mechanism, for learning significance of each context word. They considered aspect terms as a query and utilized contextual information for continuous text representation. The computed features of last layer were considered for sentiment classification. Moreover, Zhu and Qian [129] performed the interactions between two memories, i.e., deep memory and auxiliary memory, for learning the context of each input word and for explicitly generating connections between aspects and terms. They considered each memory as attention, and the result of auxiliary memory was fed to the main memory for final sentiment classification.

4.1.2 Entity-Level SA

Entity SA is considered as a subdomain of ASA. Sentimentscope graphs were introduced to jointly determine the named entities and their respective sentiments based on assumption that each entity is surrounded by an unbounded window that is responsible for capturing its sentiment polarity, which could not be achieved by fixed window of bounded size [11], [130]. But sometimes, reviews contain entities those share same aspects and it becomes difficult to capture sentiment dependencies between aspects and entities. For example, "Bought Johnsons baby lotion, texture was very smooth, but bit expensive. Then I tried Mother Care but texture was bit oily". This example contains two aspects, i.e., price and texture, that are shared by two entities, i.e., Johnsons and Mother Care. Addressing the problem, Yang et al. [13] modelled the context, entity and aspect memory, simultaneously. Where, context memory utilized three layers, i.e., interaction, position and LSTM layer, for performing element-wise multiplication and concatenation of entity, aspect and context information. The other two memories, i.e., entity and aspect memory, effectively updated context memory in an iterative manner for predicting the sentiment polarity towards each pair, i.e., aspect-entity pair, present in the data.

4.1.3 Multi-Word Target SA

Reviews on social data mostly contain aspects with more than one word, e.g., hot-dog, mango pudding, Chinatown etc. Single-attention-based methods or merely LSTMs are not suitable for multi-word expressions, because they performed aspect-mapping by taking the average of word vectors that worked well for single word targets, but could not fully capture the semantics of multi-word targets [121], [111]. In this way, they also might disturb the integrity of each attended word [63]. Therefore, studies have been designed for modeling

the contribution (context) of each word (multi-word) present in the sentence through attention mechanisms and RNN architectures [131], [132]. For instance, Chen et al. [133] utilized multiple attentions (memory) that were non-linearly combined with the help of BiLSTM for handling complicated multi-word expressions. Every target in a sentence possessed its own suitable memory and the weight of memory slices were defined according to the position of target in a particular sentence. However, Fan et al. [134] proposed a convolutional-based memory network incorporated with an attention mechanism for explicitly modeling both words and multi-words information in the sentence. The model mapped low-dimensional embedding space, extracted sequential aspects, and captured long-distance dependencies by storing context information into a fixed-size window through BiGRU for sentiment classification.

4.1.4 Multi-Task Learning SA

Traditional SA approaches have separately handled the task of ternary (3-category) and fine-grained (5-category) classification learning. But with the passage of time, multi-task learning has been potentially validating in various domains through different data-learning techniques [56], [123], [135]. These techniques elegantly access resources which are developed for similar tasks to learn hidden representation of different tasks and to promote multi-task learning environment through NNs [136], [47]. For instance, Balikas et al. [137] performed ternary and fine-grained sentiment classification to jointly learn multiple independent tasks through BiLSTM. The tasks were correlated by sharing information, which was expected to improve the overall generalization ability. Each task was assigned to an independent softmax layer for final classification. Moreover, Li et al. [138] adopted a multi-task deep memory network for effectively modeling the interactions between subtasks and targets through sharing a common semantic-space. The semanticsimilarity helped to simultaneously learn the targets and their respective sentiment polarities. Furthermore, Yin et al. [139] modelled a hierarchical-attention architecture, as a machine comprehension problem, with multi-task framework for building different representations at both word-level and sentencelevel for ASA. These representations interacted with aspectquestions, where pseudo question-answer pairs were constructed by utilizing some aspect-related keywords and ratings, for learning aspect-aware-document representation through input-encoders and iterative-attention modules.

4.2 Interactions and Contextual Sentiment Information for Improved ASA

4.2.1 Interaction Between Data Objects

Interactions and dependencies between data objects achieve refined and accurate aspects' representations, and sentiment classification. But some existing works do not consider the neighboring aspects and inter-aspect relationships or dependencies in a sentence [113], [140]. Single NNs also lack the representation learning capability for capturing relevance between aspects and terms, and for drawing relationships between different aspects, and between aspects and word terms [126], [128]. However, the utilization of attention mechanisms and deep memory networks have been proving effective for drawing relationships between different data objects

by focusing on the corrected aspect terms and by capturing long-distance, inter-aspect, clause-level and structural dependencies from the sentences. For instance, Tay et al. [14] adopted circular convolution and circular correlation of vectors for modeling relationship between aspects and words through an attention layer. The attention calculated the probabilistic weights of aspect-word fusion by utilizing an associativememory operator. These learned attention scores and all the hidden representations of the LSTM layer were then passed to the softmax for final sentiment classification. The model was efficient and inexpensive, as it did not append any extra tasks on LSTM for learning word-aspect relationship. Liu et al. [141] also considered the correlations between words and aspects through a content-attention mechanism. They first captured the important information about a given aspect from a global perspective through a sentence-level-content-attention mechanism. Next, to correlate aspects and words, and to embed the sequential words into customized memories, they employed a context-attention mechanism. Both attentions mutually considered the whole meaning of the sentence conveyed by each word (aspect) for final sentiment classification. Moreover, Tay et al. [127] adopted memory networks that utilized parameterized-neural-tensor compositions and holographic compositions for modeling richer interactions between aspects and words. The rich-dyadic interactions skilled with complex-valued computations helped to achieve improved sentiment classification performance. Zhu and Qian [129] proposed a novel deep memory network with an auxiliary memory for handling the relation between aspects and terms, based on the semantic relatedness, through an attention mechanism. The results of auxiliary memory were forwarded to main memory for capturing the context of each word for sentiment classification.

Gu et al. [142] discussed that aspects and their neighboring words should be given more importance than other long-distant words. They proposed a position-aware-bidirectionalattention network for mutually modeling the relation between aspect terms and sentence. They initially generated aspectpositional embeddings for each word in the corresponding sentence. And then concatenated the word embeddings and position embeddings to get the final hidden contextual representations of the aspects and input words to compute the attention weights for classification prediction. Moreover, Majumder et al. [143] also proposed a memory network architecture to model the connection between inter-aspects and its neighboring aspects. They employed GRU for promoting contextual information of words, which was further utilized by an attention mechanism for achieving aspect-aware-sentence representation. The final accurate representations of the aspects and sentiment classification was achieved after continuously iterating through the memory network. However, Wang and Lu [144] captured and modelled the structural dependencies between targets and sentiments, and between sentimental words, through a segmentation-attention-based LSTM for selecting sentiment words those have most impact on classification.

However, another challenge is to handle sentences that contain multiple aspects, as it includes two sub-challenges, first; to connect an aspect to the clause that contains its sentiment information, and second; to conclude sentiment for aspects that do not hold enough contextual or semantic information. Because, sometimes, sentences with conjunctions,

e.g., but, not, also, though, however, only etc., are suitable to predict the sentiments for aspects, e.g., "Food is great, but I doubt about the freshness of meat". In this example, the positive sentiment of "food" and presence of conjunction "but" ultimately determine the negative sentiment for "meat". Another example, "The grocery list was short; I remember it contained only 5 to 7 items". In this example, the aspect "items" does not provide any sentiment unless we consider it with aspect "grocery list". Hence, the negative sentiment of "grocery list" cause "items" to have similar sentiment. To handle these challenges, Hazarika et al. [145] focused on all the aspects and the particular words of the sentence for generating aspect-sentence representations through an attentionbased LSTM. Further, they captured inter-aspect dependencies by sequentially modeling aspect-sentence representations through another LSTM for concluding sentiment for aspects that did not hold enough contextual information. However, Wang et al. [15] handled word-level and clause-level information in the sentence through a hierarchical-aspect-specificattention network for improved sentiment classification. They initially implemented elementary-discourse units to segment a sentence into different non-overlapping clauses. Next, they employed a BiLSTM and a word-level attention for encoding clauses' information and for capturing the importance of each word present in the clause, respectively. Further, they utilized another BiLSTM and a clause-level attention for computing the attention weights of each clause and representing their relative significance. Moreover, Lin et al. [146] adopted deep memory network for modeling inter-aspect-semantic dependencies between different aspects through semantic attention and contextual learning to finalize sentiments of all aspects. The attention exploited the information about every explicit aspect present in memory through semantic parsing. And the context-moment-learning module provided the complete context (background) of the particular aspects by learning the semantic distribution of the whole sentence.

4.2.2 Contextual-Semantic Sentiment Information

The impressive enhancement in attention mechanisms have considerably improved the abilities of NNs, and SA of the text is more becoming the contextual analysis of the text. Because the contextual scenario behind the text data derive meaningful actions for making things interesting and up-to-date. Therefore, a crucial step is the detection of the sentiment context about the given aspect (target) for correct sentiment prediction. Many researches have employed attention mechanisms for achieving semantic relatedness between targets and context words to capture the target information and to compute context representation for sentiment classification [128], [154]. Moreover, deep memory networks [129], LSTM [144], GRU [143], and positional information of aspects [142] has also been adopted to promote contextual-semantic sentiment information of words, along with attention mechanisms. For instance, Fan et al. [156] employed a BiLSTM via multi-grainedattention network to capture relationships between similar context words possessing similar/different sentiment polarities. The network considered the temporal interaction between words by consistently linking and fusing information between aspect terms and context words, with no information loss. The network assigned attention scores to context words with respect to their aspect terms and targets, and vice versa. Attention mechanism also studied the attention difference of aspects sharing same context words. Moreover, Yang *et al.* [151] employed a multi-view co-attention network for modeling general semantics of sentiments, targets and context words. First, they learned improved feature representations of single inputs, POS and word-position features through low-dimensional embeddings. Next, they exploited three independent LSTMs and an attention to obtain the hidden states of sentiment words, targets and context words, and to capture the significant sentiment information from different representation subspaces at different positions. Further, Ma *et al.* [155] utilized LSTM and position-attention mechanism for computing the explicit position-contextual information between an aspect and its context words for processing multi-aspects and their sentiments within the sentence simultaneously.

But sometimes, simply relying on an attention model cannot solve the issue of contextual-semantic-sentiment information because performance degrades when the sentiment of a context word is sensitive to the given target (word). Therefore, Ma et al. [157] got inspired by the cognitive characteristic of humans and focused on more effective representation of each context word. They observed that only using word embedding as external memory is not sufficient, hence, they extracted location, POS and sentiment features through memory network to enrich the word representation of each context word. Each layer of model was designed to compute attention scores between aspects' representation and context words. Finally, aspect representations of last layer were used through a ReLU function for final sentiment classification. Overall, model showed better performance in distributing attention scores between words and in ignoring words without sentiment. Yang et al. [140] modelled long-sequences between words, after considering different word locations in a relatively even manner, for performing target-dependent-sentiment classification through a BiLSTM with additional attention layer(s) on top. One attention layer considered the context and intent importance of current input and target for computing attention score of each word through a dot-product mechanism. The other attention layer computed attention scores through a bilinear term. Further, Wang et al. [153] proposed six alternative target-sensitive-recurrent-attention-memory networks for capturing interaction between the aspects (targets) and their contextual sentiments. The target-sensitive memory networks were capable of handling both general and target-sensitive sentiments.

However, Qiu *et al.* [158] utilized a sequence-labeling CRF for predicting rating of reviews by considering aspects with their related context. The core component of the model was a probabilistic discriminative model, a variant of CRF, called SentiCRF, that built the list of term pairs where each element of the pair was acted as the context for their counterpart. This contextual information helped to assign appropriate sentiment scores to the term pairs.

5 SENTIMENT EVOLUTION (SE)

SE, the third phase of AbSA, deals with the sentiment's dynamicity with time. SE captures researchers' attention for last two decades, as it depicts the social diversity that formulates the overall agreement in sentiment change [159]. The two major issues of SE are: the recognition of factors that opt people to change their sentiment, e.g., cognitive

attitude, adopting the majority sentiment, social behavior and influence of heterogeneous confidence, and the prediction of SE over social media.

5.1 Recognition of Factors in SE

5.1.1 Cognitive (Informational) Attitude

Cognitive attitude refers to the thoughts, perceptions and understanding of a certain aspect. It is basically an opinion that depicts the general knowledge of a person towards a certain aspect (object, event, entity, target or person), which compel him/her to change his sentiment towards certain event [160]. For example, the sentiment outcome on the mega events such as World Cup involved much dynamicity with the passage of time [161]. Keeping this factor in mind, Chi et al. [17] provided a theoretical framework that associated the affective-evaluation attitude with the cognitiveevaluation attitude to evaluate SE. They studied the attitude and predicted the decision-making psychology of people towards an event over a period. They assessed that the differences in the peoples' attitudes concerning pre-event and post-event are due to the information insights and understanding towards the particular aspects, that make them revise their sentiments with passing time. They clearly demonstrated that the context of a certain aspect (event) is the basic reason for decision making tendency of humans.

5.1.2 Adopting the Majority Sentiment (Minority Avoidance)

Another issue involved in SE is the preference of majority sentiments. People instead of showing their own sentiment towards the aspect, adopt the neighbor's and relative's sentiment and avoid the linkage to the minor community holding different sentiment attitude. Fu and Wang [162] found that SE is basically based on majority-adaptation and minority-avoidance rule. The underlying network of their study was a majority-rule model in which people preferred to follow crowd to update their sentiment and broke the link with the community holding a dissimilar (minor) sentiment. They revealed that an increasing tendency of linking neighbors reduced the number of sentiments. Their investigation clearly demonstrated that like-minded people holding the same sentiment belonged to the single-community in the network.

5.1.3 Social Behavior

Social behavior arises when the individuals interact with the community and its surrounding environment. During social interactions, the change of sentiment is determined by the social impacts like harmonization and divergence. Because sometimes individuals get influenced from their neighbors and make a decision, but, the probability still holds that an individual instead of following its community, devises its own sentiment [163], [164]. Chen et al. [165] also stated that social policies, relationships and norms have great impact on social evolution. They proposed three different social-acquaintance networks named kinship-priority-acquaintance network (KPAN), independence-priority-acquaintance network (IPAN), and hybrid-acquaintance network (HAN) based on the variations between the social cultures and policies. They found that KPAN always achieved fragmentations in sentiment due to the fact that individuals mostly believe in their relatives and neighbors for adopting sentiments. In IPAN, SE was based on the western values that encouraged independent decision about sentiments, but with consent discussion. HAN took into account both networks, i.e., KPAN and IPAN, and depicted that sentiment reach a consensus on a very large scale. The findings of these networks facilitated in computing and predicting SE under diverse associated networks, and also helped in forming rational cultural policies for public guidance.

5.1.4 Heterogeneity of Confined Confidence and Influence (HCCI)

Sometimes, the fact of heterogeneity-confidence distribution over the network is ignored, in which people cannot communicate with each other due to different geographical locations or statuses in the society, but yet hold the same sentiment level. To address the issue, Liang et al. [166] examined the HCCI in discrete-time scenarios, where all agents updated their sentiment level in a synchronous manner after averaging their neighbor's sentiments. In the network, every cluster kept the value of sentiment for a finite time before promoting consensus of sentiments, but this was not always true. Moreover, to find the weighted and signed relationships between individual nodes in a heterogeneous network environment, Pengyi et al. [165] explored dynamic sentiment patterns within heterogeneous relationships. After conducting a series of simulations, they found that at a stable state the sentiment level depends on the degree of social communication between networks. They observed that when harmoniousness parameter increases within the networks, sentiments transit from the bipolarization to the consensus phase.

5.2 Predicting Sentiment Evolution Over Social Data

Predicting the changing social behavior of individuals on realtime applications is a complex task. Nguyen et al. [167] presented a statistical-machine-learning model for analysing the collective sentiment level. They further transformed their model for large structured networks; containing many individuals and tweets. They extracted aspects from history and then utilized them for predicting the sentiment change in future. Moreover, Guerra et al. [168] tracked the emotional reactions of social media users during continual changing events on twitter, such as. breaking news, political talk etc. They found that users are more driven by the positive thoughts instead of negative thoughts, and users preferred to present their extreme thoughts instead of average thoughts towards the events. By taking into account these extreme thoughts, they proposed a feature-representation approach that was capable of discovering new aspects by capturing frequent changes on sentiment level caused by the real-world events. Lumin et al. [169] presented a hierarchical multidimensional model that first captured the non-redundant sentiment patterns towards the event, and then discovered the closed sentiment patterns through a clustering algorithm. The algorithm also maintained a sentiment vector that hold reasons behind changed sentiments. The model focused on the userlevel sentiment dynamicity and conducted a study on real dataset, i.e., "Japanese Earthquake" in March 2011. Charltron et al. [170] observed the dynamic communicability of evolving networks to recognize the top communicators on twitter. First, they computed the initial sentiment of the communities and then detected correlation between the loss of users through a community-detection algorithm. They monitored stable connected twitter communities over a time-scale of months, and found that the people who have highest communicability-broadcast directories generally show positive sentiment as compared to ordinary users. They also found that every community maintain a stable sentiment level and remain connected by sending messages, but when a community shows a temporary large deviation from its usual sentiment, then some communities hold all its users and some communities lost a relatively small number of users.

6 DISCUSSION AND FUTURE RESEARCH DIRECTIONS

To achieve excellent performance from NLP and specifically AbSA requires a lot of effort. Aspect extraction and sentiment score determination are the core challenges of AbSA, which could not be handled through single-general solution. Instead, researchers should consider many sub-issues and sub-challenges for resolving the major challenges. These sub-challenges would develop an effective tool for AbSA and increase the sentiment classification performance (to some extent) at aspect-level. Some of them are discussed in this section.

6.1 Data Pruning and Cleansing

Mostly during the preprocessing phase, punctuation marks, common words, special characters, slangs and pronouns are removed from the text. To our perception, all of them make little contribution in analysing sentiment polarity from opinionated text. But the stop words and the redundant terms should be eliminated through an effective pattern-based approach.

In preprocessing, a multiple domain-specific lexicon would also be an interesting development that will produce distance metrics, integrate fuzzy membership of unclassified reviews and perform automatic domain-labeling. It could also be utilized with AE techniques to enrich text with significant information (lexical).

6.2 Cross-Domain-Transfer Learning

Supervised approaches are convenient for dealing with labeled data, but relying on large training datasets make the task less efficient. Generally, the efficiency of AE process compromises during handling unlabeled datasets, and might fail when applying it on a new domain, e.g., a model trained on restaurant data is not applicable on hotel data. No doubt, it is hard to grasp that there would be a general model that will perform reasonably good on all domains. However, model representations could be enhanced by pretraining and fine-tuning process, if accompanied by an efficient self-attention mechanism to carry out cross-domaintransfer learning. Because, self-attention network has the capability to deal with complex data by relating input words according to their context and positional information. This challenge, we believe, will be a new era in the field of AbSA, but it requires proper advancements for text representation, e.g., statistical and linguistic features, and label propagation with effective transductive learning.

6.3 Contextual-Semantic Relationships

Semantic information is compulsory to associate words with sentences according to their contextual information, which could be helpful in the extraction of explicit and implicit aspects, neutral sentiment expressions and complex text, e.g., negation words (shifting words), from the data. Based on semantic information, relationships between different data objects could also be mapped to improve sentiment classification accuracy. Moreover, the inclusion of contextual-semantic information, e.g., n-grams, dependency and syntactic relations, and likeness between sentences, would also be advantageous for upgradation of knowledge extraction process and for handling complex scenarios, e.g., "We went to a Pakistani restaurant and they offered us 5 to 6 choices of cocktails", here, "choices of cocktails" should be considered as a positive sentiment but normally taken as neutral. Another example is "Try the hand ripped bread", in this, the word "try" itself is not sentimentally charged, but it carries sentimental meaning when considered in the right context.

6.4 Aspect Summarization

Aspect summarization is entity-centric; it aims to produce brief summaries which are relevant to particular aspects (entities) and their sentiments. These summaries could be created by context-dependent words, negation words, similar sentiment words etc., but the challenge is to introduce a solution that will perform improved personalized summarization and give clear explanation on recommended aspects from the application. However, the actual presentation totally depends on the requirements and needs of the particular application.

6.5 Predicting Dynamicity of Sentiment

Some factors for sentiment transition might be little 'trust in government' and some 'political issues'. Therefore, social context should be improved to track sentiment at user, group and multi-group level. This will help to understand the behavior and complex-posting patterns of social media users. The dominant patterns will analyse the SE in more detail, and will also achieve different relationships between separated groups to produce more informative social contexts. Most of the time, prediction model computes the evolving sentiments of the existing users, but to validate the effects of new users on real data is a challenging research task in itself.

6.6 Multimodal SA

Lastly, as social media is not just overwhelmed by the text data, it also contains images, videos, emoticons, stickers etc., which depict user behaviors and attitudes towards the scenario. Therefore, it would be interesting to perform unification on such multimodal data by devising new approaches for extracting semantics of visual features. This fusion of crossmodal features will help to achieve more comprehensive aspect analysis from the user-generated content over social media. Moreover, cognitive techniques could also be adopted for reading and studying comprehensive skills and behaviors

of human beings through machine intelligence imitation. To have more understanding on the topic, we refer our readers to [171].

However, researchers should also ponder upon other issues, like, preference of authors, emotional (emotional characteristics) analysis and computation etc. Apart from essential elements, AbSA deals with many other challenges which are not only limited to aspects' quality and flexibility. For instance, Robustness; to cope with informal writing style on user-generated content, e.g., spelling mistakes, grammatical errors, non-dictionary words, slang words, special characters, emoticons etc., for expressing sentiment. Scalability; efficiency of the system as the problem grows and also as the system grows. Learning rate decay; the learning time of system should be reduced over time. Other major problems are overfitting reduction and improved regularization over predicting large NNs. One more is maxpooling; to make assumptions about different aspect features. Finally, an approach should always learn to stop when performance starts to degrade.

The field of AbSA is at the never-ending stage where researchers are contributing day-by-day to satisfy it at several levels.

7 CONCLUSION

The survey has explored a very important research domain in the field of NLP, i.e., Aspect-based Sentiment Analysis (AbSA); a subfield of sentiment analysis that has accomplished many excellent researches. The survey has stated the thorough overview of the recent progress in AbSA by depicting the state-of-the-art deep-learning techniques fashioned in locating the target, which can be an entity, or it can be an aspect related to a target or an entity, their relationships, their respective sentiments and sentiment evolution dynamicity. An issue-based categorization of the recent solutions is presented each contributing towards improving the process of aspect extraction, aspect sentiment analysis or sentiment evolution. Key challenges are included as future research directions, which should be considered to achieve excellence in sentiment classification at aspect-level. Our survey can act as a foundation for researchers who want to know the recent progress of the field and help them formulate general strategies which would be applicable to most of the scenarios.

ACKNOWLEDGMENTS

The authors would like to thank editors and reviewers for their valuable comments and suggestions, which certainly improve the quality of this survey. The research work was supported by "National key research and development program in China" (2019YFB2102300); "the World-Class Universities (Disciplines) and the Characteristic Development Guidance Funds for the Central Universities of China" (PY3A022); Ministry of Education Fund Projects (18JZD022 and 2017B00030); Shenzhen Science and Technology Project (JCYJ20180306170836595); Basic Scientific Research Operating Expenses of Central Universities (No. ZDYF2017006); Xi'an Navinfo Corp. & Engineering Center of Xi'an Intelligence Spatial-temporal Data Analysis Project (C2020103); Beilin District of Xi'an Science & Technology Project

(GX1803). We would like to thanks them for providing support.

REFERENCES

- [1] E. Cambria, S. Poria, A. Gelbukh, and M. Thelwall, "Sentiment analysis is a big suitcase," *IEEE Intell. Syst.*, vol. 32, no. 6, pp. 74–80, Nov./Dec. 2017.
- [2] B. Liu, Sentiment Analysis and Opinion Mining (Synthesis Lectures on Human Language Technologies). Morgan & University of Illinois, Chicago, Claypool Publishers, 2012.
- [3] K. Dave, S. Lawrence, and D. M. Pennock, "Mining the peanut gallery: opinion extraction and semantic classification of product reviews," in *Proc.* 12th Int. Conf. World Wide Web, 2003, pp. 519–528.
- [4] A. Tripathy, A. Anand, and S. K. Rath, "Document-level sentiment classification using hybrid machine learning approach," *Knowl. Inf. Syst.*, vol. 53, no. 3, pp. 805–831, 2017.
- [5] B. Liu, "Sentiment analysis and subjectivity," Handbook of Natural Language Processing. Boca Raton, FL, USA: CRC Press, 2010, pp. 627–666.
- [6] K. Schouten and F. Frasincar, "Survey on aspect-level sentiment analysis," *IEEE Trans. Knowl. Data Eng.*, vol. 28, no. 3, pp. 813–830, Mar. 2016
- [7] J. Wang et al., "Mining multi-aspect reflection of news events in twitter: Discovery, linking and presentation," in Proc. IEEE Int. Conf. Data Mining, 2015, pp. 429–438.
- [8] W. Wang, S. J. Pan, D. Dahlmeier, and X. Xiao, "Recursive neural conditional random fields for aspect-based sentiment analysis," in *Proc. Conf. Empirical Methods Natural Lang. Process.*, 2016, pp. 616–626.
- [9] Y. Ma, H. Peng, T. Khan, E. Cambria, and A. Hussain, "Sentic LSTM: A hybrid network for targeted aspect-based sentiment analysis," Cogn. Comput., vol. 10, no. 4, pp. 639–650, 2018.
- [10] H. Luo, T. Li, B. Liu, B. Wang, and H. Unger, "Improving aspect term extraction with bidirectional dependency tree representation," *IEEE/ACM Trans. Audio, Speech Lang. Process.*, vol. 27, no. 7, pp. 1201–1212, 2019. [Online]. Available: https://doi.org/10.1109/ TASLP.2019.2913094
- [11] H. Li and W. Lu, "Learning latent sentiment scopes for entity-level sentiment analysis," in *Proc. 31st AAAI Conf. Artif. Intell.*, 2017, pp. 3482–3489.
- [12] M. Pontiki, D. Galanis, H. Papageorgiou, S. Manandhar, and I. Androutsopoulos, "Semeval-2015 task 12: Aspect based sentiment analysis," in *Proc. 9th Int. Workshop Semantic Eval.*, 2015, pp. 486–495.
- [13] J. Yang, R. Yang, C. Wang, and J. Xie, "Multi-entity aspect-based sentiment analysis with context, entity and aspect memory," in *Proc. 32nd AAAI Conf. Artif. Intell.*, 2018, pp. 6029–6036.
 [14] Y. Tay, A.T. Luu, and S. C. Hui, "Learning to attend via word-
- [14] Y. Tay, A.T. Luu, and S. C. Hui, "Learning to attend via word-aspect associative fusion for aspect-based sentiment analysis," in Proc. 32nd AAAI Conf. Artif. Intell., 2017, pp. 5956–5963.
- [15] J. Wang et al., "Aspect sentiment classification with both word-level and clause-level attention networks," in Proc. 27th Int. Joint Conf. Artif. Intell., 2018, pp. 4439–4445.
- [16] S. Angelidis and M. Lapata, "Multiple instance learning networks for fine-grained sentiment analysis," *Trans. Assoc. Comput. Linguistics*, vol. 6, pp. 17–31, 2018.
- [17] C. G. Q. Chi, Z. Ouyang, and X. Xu, "Changing perceptions and reasoning process: Comparison of residents' pre-and post-event attitudes," Ann. Tourism Res., vol. 70, pp. 39–53, 2018.
- [18] T. Young, D. Hazarika, S. Poria, and E. Cambria, "Recent trends in deep learning based natural language processing," *IEEE Com*put. Intell. Magaz., vol. 13, no. 3, pp. 55–75, 2018.
- [19] L. Lee and B. Pang, "Opinion mining and sentiment analysis," Foundations Trends Inf. Retrieval, vol. 2, no. 1–2, pp. 1–135, 2008.
- [20] H. F. Tang, S. B. Tan, and X. Q. Cheng, "A survey on sentiment detection of reviews," Expert Syst. Appl., vol. 36, no. 7, pp. 10760–10773, 2009.
- [21] M. Wiegand, A. Balahur, B. Roth, D. Klakow, and A. Montoyo, "A survey on the role of negation in sentiment analysis," in Proc. Workshop Negation Specul. Natural Lang. Process., 2010, pp. 60–68.
- Proc. Workshop Negation Specul. Natural Lang. Process., 2010, pp. 60–68.
 [22] M. Tsytsarau and T. Palpanas, "Survey on mining subjective data on the web," Data Mining Knowl. Discovery, vol. 24, no. 3, pp. 478–514, 2012.
- [23] K. Ravi and V. Ravi, "A Survey on opinion mining and sentiment analysis: Tasks, approaches and applications," *Knowl.-Based Syst.*, vol. 89, pp. 14–46, 2015.

- [24] A. Giachanou and F. Crestani, "Like it or not: A survey of twitter sentiment analysis methods," *ACM Comput. Surveys*, vol. 49, no. 2, pp. 1–41, 2016.
- [25] L. Zhang, S. Wang, and B. Liu, "Deep learning for sentiment analysis: A survey," Wiley Interdisciplinary Reviews: Data Mining Knowl. Discovery, vol. 8, no. 4, 2018, Art. no. e1253.
- [26] D. Zimbra, A. Abbasi, D. Zeng, and H. Chen, "The state-of-theart in twitter sentiment analysis: A review and benchmark evaluation," ACM Trans. Manage. Inf. Syst., vol. 9, no. 2, pp. 1–29, 2018.
- [27] L. Yue, W. Chen, X. Li, W. Zuo, and M. Yin, "A survey of sentiment analysis in social media," *Knowl. Inf. Syst.*, vol. 60, pp. 617–663, 2018
- [28] E. Kim and R. Klinger, "A survey on sentiment and emotion analysis for computational literary studies," *Zeitschrift Für Digitale Geisteswissenschaften*, Wolfenbüttel, to be published, doi: 10.17175/2019_008
- [29] A. Vaswani et al., "Attention is all you need," in Proc. 31st Conf. Neural Inf. Process. Syst., 2017, pp. 5998–6008.
- [30] D. Hu, "An introductory survey on attention mechanisms in NLP problems," in *Proc. SAI Intell. Syst. Conf.*, 2019, pp. 432–448.
- [31] Y. Ma and J. C. Principe, "A taxonomy for neural memory networks," *IEEE Trans. Neural Netw. Learn. Syst.*, to be published, doi: 10.1109/TNNLS.2019.2926466.
- [32] A. S. Manek, P. D. Shenoy, M. C. Mohan, and K. Venugopal, "Aspect term extraction for sentiment analysis in large movie reviews using gini index feature selection method and SVM classifier," World Wide Web, vol. 20, no. 2, pp. 135–154, 2017.
- [33] T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient estimation of word representations in vector space," in *Proc. Int. Conf. Learn. Representations*, 2013, pp. 1–12.
- [34] J. Pennington, R. Socher, and C. Manning, "Glove: Global vectors for word representation," in *Proc. Conf. Empirical Methods Natural Lang. Process.*, 2014, pp. 1532–1543.
- [35] M. Peters *et al.*, "Deep contextualized word representations," in *Proc. Conf. North Amer. Chapter ACL: Hum. Lang. Technol.*, 2018, pp. 2227–2237.
- pp. 2227–2237.
 [36] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, "Bert: Pretraining of deep bidirectional transformers for language understanding," 2018, Art. no. 13, arXiv:1810.04805.
- [37] Y. Yin, F. Wei, L. Dong, K. Xu, M. Zhang, and M. Zhou, "Unsupervised word and dependency path embeddings for aspect term extraction," in *Proc. 25th Int. Joint Conf. Artif. Intell.*, 2016, pp. 2979–2985.
- [38] P. Liu, S. Joty, and H. Meng, "Fine-grained opinion mining with recurrent neural networks and word embeddings," in *Proc. Conf. Empirical Methods Natural Lang. Process.*, 2015, pp. 1433–1443.
- [39] A. Giannakopoulos, C. Musat, A. Hossmann, and M. Baeriswyl, "Unsupervised aspect term extraction with B-LSTM & CRF using automatically labelled datasets," in *Proc. 8th Workshop Comput. Approaches Subjectivity Sentiment Social Media Anal.*, 2017, pp. 180–188.
- [40] T. A. Rana and Y. N. Cheah, "Sequential patterns rule-based approach for opinion target extraction from customer reviews," J. Inf. Sci., vol. 45, pp. 643–655, 2018.
- [41] S. Jebbara and P. Cimiano, "Improving opinion-target extraction with character-level word embeddings," in *Proc. 1st Workshop Subword Character Level Models NLP Assoc. Comput. Linguistics*, 2017, pp. 159–167.
- [42] Z. Toh and J. Su, "Nlangp at semeval-2016 task 5: Improving aspect based sentiment analysis using neural network features," in *Proc. 10th Int. Workshop Semantic Eval.*, 2016, pp. 282–288.
- [43] R. Agerri and G. Rigau, "Language independent sequence labelling for opinion target extraction," *Artif. Intell. Rev.*, vol. 268, pp. 85–95, 2019.
- [44] D. Ma, S. Li, and H. Wang, "Joint learning for targeted sentiment analysis," in *Proc. Conf. Empirical Methods in Natural Lang. Pro*cess., 2018, pp. 4737–4742.
- [45] X. Li and W. Lam, "Deep multi-task learning for aspect term extraction with memory interaction," in *Proc. Conf. Empirical Methods Natural Lang. Process.*, 2017, pp. 2886–2892.
- [46] R. He, W. S. Lee, H. T. Ng, and D. Dahlmeier, "An unsupervised neural attention model for aspect extraction," in *Proc. 55th Ann. Meeting ACL*, 2017, pp. 388–397.
- [47] W. Wang, S. J. Pan, and D. Dahlmeier, "Multi-task coupled attentions for category specific aspect and opinion terms co-extraction," in Proc. 31st Conf. Neural Inf. Process. Syst., 2017, pp. 1–11.

- [48] W. Wang, S. J. Pan, D. Dahlmeier, and X. Xiao, "Coupled multilayer attentions for co-extraction of aspect and opinion terms," in Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 3316–3322.
- [49] X. Li, L. Bing, P. Li, W. Lam, and Z. Yang, "Aspect term extraction with history attention and selective transformation," in *Proc.* 27th Int. Joint Conf. Artif. Intell., 2018, pp. 4194–4200.
- [50] S. Angelidis and M. Lapata, "Summarizing opinions: Aspect extraction meets sentiment prediction and they are both weakly supervised," in *Proc. Conf. Empirical Methods Natural Lang. Pro*cess., 2018, pp. 3675–3686.
- [51] M. Schmitt, S. Steinheber, K. Schreiber, and B. Roth, "Joint aspect and polarity classification for aspect-based sentiment analysis with end-to-end neural networks," in *Proc. Conf. Empirical Meth*ods Natural Lang. Process., 2018, pp. 1109–1114.
- [52] X. Wang, W. Jiang, and Z. Luo, "Combination of convolutional and recurrent neural network for sentiment analysis of short texts," in *Proc. COLING 26th Int. Conf. Comput. Linguistics*, 2016, pp. 2428–2437.
- [53] X. Gu, Y. Gu, and H. Wu, "Cascaded convolutional neural networks for aspect-based opinion summary," Neural Process. Lett., vol. 46, no. 2, pp. 581–594, 2017.
- [54] H. Xu, B. Liu, L. Shu, and P. S. Yu, "Double embeddings and CNN-based sequence labeling for aspect extraction," in Proc. 56th Annu. Meeting Assoc. Comput. Linguistics, 2018, pp. 592–598.
- [55] D. H. Pham and A. C. Le, "Exploiting multiple word embeddings and one-hot character vectors for aspect-based sentiment analysis," *Int. J. Approx. Reasoning*, vol. 103, pp. 1–10, 2018.
- [56] Y. Liu, S. Li, X. Zhang, and Z. Sui, "Implicit discourse relation classification via multi-task neural networks," in *Proc.* 13th AAAI Conf. Artif. Intell., 2016, pp. 2750–2756.
- [57] M. Tubishat, N. Idris, and M. Abushariah, "Implicit aspect extraction in sentiment analysis: Review, taxonomy, oppportunities, and open challenges," *Inf. Process. Manage.*, vol. 54, no. 4, pp. 545–563, 2018.
- [58] I. Cruz, A. F. Gelbukh, and G. Sidorov, "Implicit aspect indicator extraction for aspect based opinion mining," *Int. J. Comput. Linguistics Appl.*, vol. 5, no. 2, pp. 135–152, 2014.
- [59] S. Chatterji, N. Varshney, and R. K. Rahul, "AspectFrameNet: A framenet extension for analysis of sentiments around product aspects," J. Supercomput., vol. 73, no. 3, pp. 961–972, 2017.
- [60] T. Gaillat, B. Stearns, R. McDermott, G. Sridhar, M. Zarrouk, and B. Davis, "Implicit and explicit aspect extraction in financial microblogs," Proc. 1st Workshop Economics Natural Lang. Process., 2018, pp. 55–61.
- [61] S. Poria, I. Chaturvedi, E. Cambria, and F. Bisio, "Sentic LDA: Improving on LDA with semantic similarity for aspect-based sentiment analysis," in *Proc. Int. Joint Conf. Neural Netw.*, 2016, pp. 4465–4473.
- [62] T. A. Rana and Y. N. Cheah, "Aspect extraction in sentiment analysis: A comparative analysis and survey," Artif. Intell. Rev., vol. 46, no. 4, pp. 459–483, 2016.
- [63] Y. Wang, M. Huang, and L. Zhao, "Attention-based LSTM for aspect-level sentiment classification," in Proc. Conf. Empirical Methods Natural Lang. Process., 2016, pp. 606–615.
- [64] M. S. Akhtar, D. Gupta, A. Ekbal, and P. Bhattacharyya, "Feature selection and ensemble construction: A two-step method for aspect based sentiment analysis," *Knowl.-Based Syst.*, vol. 125, pp. 116–135, 2017.
- pp. 116–135, 2017.
 [65] C. Wu, F. Wu, S. Wu, Z. Yuan, and Y. Huang, "A hybrid unsupervised method for aspect term and opinion target extraction," *Knowl.-Based Syst.*, vol. 148, pp. 66–73, 2018.
- [66] S. Deng, A. P. Sinha, and H. Zhao, "Adapting sentiment lexicons to domain-specific social media texts," *Decis. Support Syst.*, vol. 94, no. C, pp. 65–76, 2017.
- [67] T. A. Rana and Y. N. Cheah, "A two-fold rule-based model for aspect extraction," Expert Syst. Appl., vol. 89, pp. 273–285, 2017.
- [68] P. Zhang, J. Wang, Y. Wang, and Y. Wang, "A statistical approach to opinion target extraction using domain relevance," in *Proc. 2nd IEEE Int. Conf. Comput. Commun.*, 2016, pp. 273–277.
- [69] L. Luo, X. Wang, S. Hu, C. Wang, Y. Tang, and L. Chen, "Close yet distinctive domain adaptation," 2017, Art. no. 11, arXiv:.04235.
- [70] X. N. Kong, M. K. Ng, and Z. H. Zhou, "Transductive multilabel learning via label set propagation," *IEEE Trans. Knowl. Data Eng.*, vol. 25, no. 3, pp. 704–719, Mar. 2013.
- [71] R. M. Marcacini, R. G. Rossi, I. P. Matsuno, and S. O. Rezende, "Cross-domain aspect extraction for sentiment analysis: A transductive learning approach," *Decis. Support Syst.*, vol. 114, pp. 70–80, 2018.

- [72] L. Shu, H. Xu, and B. Liu, "Lifelong learning CRF for supervised aspect extraction," in Proc. 55th Annu. Meeting Assoc. Comput. Linguistics, 2017, pp. 148–154.
- guistics, 2017, pp. 148–154.
 [73] S. Poria, E. Cambria, and A. Gelbukh, "Aspect extraction for opinion mining with a deep convolutional neural network," *Knowl.-Based Syst.*, vol. 108, pp. 42–49, 2016.
- [74] M. Al-Smadi, B. Talafha, M. Al-Ayyoub, and Y. Jararweh, "Using long short-term memory deep neural networks for aspect-based sentiment analysis of arabic reviews," *Int. J. Mach. Learn. Cybern.*, vol. 10, pp. 2163–2175, 2018.
- [75] X. Zhou, X. Wan, and J. Xiao, "CLOpinionMiner: Opinion target extraction in a cross-language scenario," *IEEE/ACM Trans. Audio Speech Lang. Process.*, vol. 23, no. 4, pp. 619–630, Apr. 2015.
- [76] T. Alvarez-López, J. Juncal-Martinez, M. Fernández-Gavilanes, E. Costa-Montenegro, and F. J. González-Castano, "Gti at semeval-2016 task 5: SVM and CRF for aspect detection ad unsupervised aspect-based sentiment analysis," in *Proc. 10th Int.* Workshop. Semantic Eval., 2016, pp. 306–311.
- [77] S. Jebbara and P. Cimiano, "Zero-shot cross-lingual opinion target extraction," 2019, Art. no. 10, arXiv:1904.09122.
- [78] K. Schouten, F. Frasincar, and F. De Jong, "Commit-p1wp3: A cooccurrence based approach to aspect-level sentiment analysis," in Proc. 8th Int. Workshop Semantic Eval., 2014, pp. 203–207.
- [79] Y. Liu, F. Wei, S. Li, H. Ji, M. Zhou, and H. Wang, "A dependency-based neural network for relation classification," in Proc. 53rd Annu. Meeting Assoc. Comput. Linguistics 7th Int. Joint Conf. Natural Lang. Process., 2015, pp. 285–290.
- [80] W. Maharani, D. H. Widyantoro, and M. L. Khodra, "Aspect extraction in customer reviews using syntactic pattern," *Procedia Comput. Sci.*, vol. 59, pp. 244–253, 2015.
- [81] L. Qiu, "An opinion analysis model for implicit aspect expressions based on semantic ontology," Int. J. Grid Distrib. Comput., vol. 8, no. 5, pp. 165–172, 2015.
- [82] Q. Liu, B. Liu, Y. Zhang, D. S. Kim, and Z. Gao, "Improving opinion aspect extraction using semantic similarity and aspect associations," in *Proc. 13th AAAI Conf. Artif. Intell.*, 2016, pp. 2986–2992.
- [83] S. Kim, J. Zhang, Z. Chen, A. Oh, and S. Liu, "A hierarchical aspect-sentiment model for online reviews," in *Proc. 27th AAAI Conf. Artif. Intell.*, 2013, pp. 526–533.
- [84] S. Ruder, P. Ghaffari, and J. G. Breslin, "A hierarchical model of reviews for aspect-based sentiment analysis," in *Proc. Conf. Empirical Methods Natural Lang. Process.*, 2016, pp. 999–1005.
- [85] S. Poria, E. Cambria, L.W. Ku, C. Gui, and A. Gelbukh, "A rule-based approach to aspect extraction from product reviews," in Proc. 2nd Workshop Natural Lang. Process. Social Media, 2014, pp. 28–37.
- [86] A. Mukherjee and B. Liu, "Aspect extraction through semi-supervised modeling," in Proc. 50th Annu. Meeting Assoc. Comput. Linguistics, 2012, pp. 339–348.
 [87] K. Schouten, O. Van Der Weijde, F. Frasincar, and R. Dekker,
- [87] K. Schouten, O. Van Der Weijde, F. Frasincar, and R. Dekker, "Supervised and unsupervised aspect category detection for sentiment analysis with co-occurrence data," *IEEE Trans. Cybern.*, vol. 48, no. 4, pp. 1263–1275, Apr. 2017.
 [88] S. Manandhar, "SemEval-2014 task 4: Aspect based sentiment
- [88] S. Manandhar, "SemEval-2014 task 4: Aspect based sentiment analysis," in Proc. 8th Int. Workshop Semantic Eval., 2014, pp. 19–30.
- [89] M. Pontiki et al., "SemEval-2016 task 5: Aspect based sentiment analysis," in Proc. 10th Int. Workshop. Semantic Eval., 2016, pp. 19–30.
- [90] M. Hu and B. Liu, "Mining and summarizing customer reviews," in Proc. 10th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2004, pp. 168–177.
- [91] M. Mitchell, J. Aguilar, T. Wilson, and B. Van Durme, "Open domain targeted sentiment," in Proc. Conf. Empirical Methods Natural Lang. Process., 2013, pp. 1643–1654.
- [92] H. Jangid, S. Singhal, R. R. Shah, and R. Zimmermann, "Aspect-based financial sentiment analysis using deep learning," in *Proc. Companion Web Conf.*, 2018, pp. 1961–1966.
- [93] M. Saeidi, G. Bouchard, M. Liakata, and S. Riedel, "SentiHood: Targeted aspect based sentiment analysis dataset for urban neighbourhoods," in *Proc. COLING 26th Int. Conf. Comput. Linguistics*, 2016, pp. 1546–1556.
- [94] M. Wojatzki, E. Ruppert, S. Holschneider, T. Zesch, and C. Biemann, "Germeval 2017: Shared task on aspect-based sentiment in social media customer feedback," in Proc. GermEval – Shared Task Aspect-Based Sentiment Social Media Customer Feedback, 2017, pp. 22–29.
- [95] G. Ganu, N. Elhadad, and A. Marian, "Beyond the stars: Improving rating predictions using review text content," in *Proc. 12th Int. Workshop Web Databases*, 2009, pp. 1–6.

- [96] J. McAuley, J. Leskovec, and D. Jurafsky, "Learning attitudes and attributes from multi-aspect reviews," in *Proc. IEEE 12th Int. Conf. Data Mining*, 2012, pp. 1020–1025.
- [97] Z. Luo, S. Huang, F. F. Xu, B. Y. Lin, H. Shi, and K. Zhu, "ExtRA: Extracting prominent review aspects from customer feedback," in *Proc. Conf. Empirical Methods Natural Lang. Process.*, 2018, pp. 3477–3486.
- [98] H. Wang, C. Wang, C. Zhai, and J. Han, "Learning online discussion structures by conditional random fields," in *Proc. 34th Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval*, 2011, pp. 435–444.
- [99] H. Ye, Z. Yan, Z. Luo, and W. Chao, "Dependency-tree based convolutional neural networks for aspect term extraction," in Proc. Pacific-Asia Conf. Knowl. Discovery. Data Mining, 2017, pp. 350–362.
- [100] K. Schouten, F. Frasincar, and F. de Jong, "Ontology-enhanced aspect-based sentiment analysis," in *Proc. Int. Conf. Web Eng.*, 2017, pp. 302–320.
- [101] M. Z. Asghar, A. Khan, S. R. Zahra, S. Ahmad, and F. M. Kundi, "Aspect-based opinion mining framework using heuristic patterns," *Cluster Comput.*, vol. 22, pp. 7181–7199, 2017.
- [102] A. Konjengbam, N. Dewangan, N. Kumar, and M. Singh, "Aspect ontology based review exploration," *Electron. Commerce Res. Appl.*, vol. 30, pp. 62–71, 2018.
- [103] Z. Hai, K. Chang, and J. J. Kim, "Implicit feature identification via co-occurrence association rule mining," in *Proc. Int. Conf. Intell. Text Process. Comput. Linguistics*, 2011, pp. 393–404.
- Intell. Text Process. Comput. Linguistics, 2011, pp. 393–404.
 [104] W. Wang, H. Xu, and W. Wan, "Implicit feature identification via hybrid association rule mining," Expert Syst. Appl., vol. 40, no. 9, pp. 3518–3531, 2013.
- pp. 3518–3531, 2013. [105] Y. Zhang and W. Zhu, "Extracting implicit features in online customer reviews for opinion mining," in *Proc. 22nd Int. Conf. World Wide Web*, 2013, pp. 103–104.
- [106] H. Sayyadi and L. Raschid, "A graph analytical approach for topic detection," ACM Trans. Internet Technol., vol. 13, no. 2, 2013, Art. no. 4.
- [107] S. de Kok, L. Punt, R. van den Puttelaar, K. Ranta, K. Schouten, and F. Frasincar, "Aggregated aspect-based sentiment analysis with ontology features," *Proc. Artif. Intell.*, vol. 7, no. 4, pp. 295–306, 2018.
- ontology features," *Prog. Artif. Intell.*, vol. 7, no. 4, pp. 295–306, 2018. [108] K. Khan, B. Baharudin, and A. Khan, "Identifying product features from customer reviews using hybrid patterns," *Int. Arab J. Inf. Technol.*, vol. 11, no. 3, pp. 281–286, 2014.
- [109] S. Kiritchenko, X. Zhu, C. Cherry, and S. Mohammad, "NRC-Canada-2014: Detecting aspects and sentiment in customer reviews," in *Proc. 8th Int. Workshop Semantic Eval.*, 2014, pp. 437–442.
- [110] J. Wagner et al., "Dcu: Aspect-based polarity classification for semeval task 4," in Proc. 8th Int. Workshop Semantic Eval., 2014, pp. 223–229.
- [111] L. Dong, F. Wei, C. Tan, D. Tang, M. Zhou, and K. Xu, "Adaptive recursive neural network for target-dependent twitter sentiment classification," in *Proc. 52nd Ann. Meeting Assoc. Comput. Linguis*tics, 2014, pp. 49–54.
- [112] D.-T. Vo and Y. Zhang, "Target-dependent twitter sentiment classification with rich automatic features," in *Proc. 24th Int. Joint Conf. Artif. Intell.*, 2015, pp. 1347–1353.
- [113] D. Tang, B. Qin, X. Feng, and T. Liu, "Effective LSTMs for target-dependent sentiment classification," in *Proc. 26th Int. Conf. Comput. Linguistics*, 2015, pp. 3298–3307.
 [114] D. H. Pham and A. C. Le, "Learning multiple layers of knowl-
- [114] D. H. Pham and A. C. Le, "Learning multiple layers of knowledge representation for aspect based sentiment analysis," *Data Knowl. Eng.*, vol. 114, pp. 26–39, 2018.
- [115] K. Ghasedi and H. Huang, "Sentiment analysis via deep hybrid textual-crowd learning model," in *Proc. 32nd AAAI Conf. Artif. Intell.*, 2018, pp. 1563–1570.
- [116] B. Huang and K. Carley, "Parameterized convolutional neural networks for aspect level sentiment classification," in Proc. Conf. Empirical Methods Natural Lang. Processing, 2018, pp. 1091–1096.
- [117] M. D. Smucker, D. Kulp, and J. Allan, "Dirichlet mixtures for query estimation in information retrieval," Center Intell. Inf. Retrieval Univ. Massachusetts, CIIR Tech. Rep. IR-445, pp. 1–13, 2005.
- [118] W. Xue and T. Li, "Aspect based sentiment analysis with gated convolutional networks," in *Proc. 56th Ann. Meeting. Assoc. Com*put. Linguistics, 2018, pp. 2514–2523.
- [119] W. Zhao *et al.*, "Weakly-supervised deep embedding for product review sentiment analysis," *IEEE Trans. Knowl. Data Eng.*, vol. 30, no. 1, pp. 185–197, Jan. 2018.

- [120] X. Li, L. Bing, W. Lam, and B. Shi, "Transformation networks for target-oriented sentiment classification," in *Proc. 56th Annu. Meeting Assoc. Comput. Linguistics*, 2018, pp. 946–956.
- [121] R. He, W. S. Lee, H.T. Ng, and D. Dahlmeier, "Exploiting document knowledge for aspect-level sentiment classification," in Proc. 56th Annu. Meeting Assoc. Comput. Linguistics, 2018, pp. 579–585.
- [122] P. Ramachandran, P. J. Liu, and Q. V. Le, "Unsupervised pretraining for sequence to sequence learning," in *Proc. Conf. Empiri*cal Methods Natural Lang. Processing, 2017, pp. 383–391.
- [123] M.-T. Luong, Q.V. Le, I. Sutskever, O. Vinyals, and L. Kaiser, "Multi-task sequence to sequence learning," in *Proc. Int. Conf. Learn. Representations*, 2015, pp. 1–10.
- [124] Q. Hu, J. Zhou, Q. Chen, and L. He, "SNNN: Promoting word sentiment and negation in neural sentiment classification," in *Proc. 32nd AAAI Conf. Artif. Intell.*, 2018, pp. 3255–3262.
- [125] R. He, W. S. Lee, H. T. Ng, and D. Dahlmeier, "Effective attention modeling for aspect-level sentiment classification," in *Proc. 27th Int. Conf. Comput. Linguistics*, 2018, pp. 1121–1131.
 [126] S. Sukhbaatar, J. Weston, and R. Fergus, "End-to-end memory
- [126] S. Sukhbaatar, J. Weston, and R. Fergus, "End-to-end memory networks," in *Proc. 28th Int. Conf. Neural Inf. Process. Syst.*, 2015, pp. 2440–2448.
- [127] Y. Tay, L. A. Tuan, and S. C. Hui, "Dyadic memory networks for aspect-based sentiment analysis," in *Proc. ACM Conf. Inf. Knowl. Manage.*, 2017, pp. 107–116.
- [128] D. Tang, B. Qin, and T. Liu, "Aspect level sentiment classification with deep memory network," in Proc. Conf. Empirical Methods Natural Lang. Process., 2016, pp. 214–224.
- [129] P. Zhu and T. Qian, "Enhanced aspect level sentiment classification with auxiliary memory," in *Proc. 27th Int. Conf. Comput. Linguistics*, 2018, pp. 1077–1087.
- [130] M. Zhang, Y. Zhang, and D. T. Vo, "Neural networks for open domain targeted sentiment," in *Proc. Conf. Empirical Methods Natural Lang. Process.*, 2015, pp. 612–621.
- ural Lang. Process., 2015, pp. 612–621.
 [131] J. Liu and Y. Zhang, "Attention modeling for targeted sentiment," in Proc. 15th Conf. Eur. Chapter Assoc. Comput. Linguistics, 2017, pp. 572–577.
- [132] S. Zheng and R. Xia, "Left-center-right separated neural network for aspect-based sentiment analysis with rotatory attention," 2018, Art. no. 7, arXiv:.00892.
- [133] P. Chen, Z. Sun, L. Bing, and W. Yang, "Recurrent attention network on memory for aspect sentiment analysis," in *Proc. Conf. Empirical Methods Natural Lang. Process.*, 2017, pp. 452–461.
- [134] C. Fan, Q. Gao, J. Du, L. Gui, R. Xu, and K.F. Wong, "Convolution-based memory network for aspect-based sentiment analysis," in *Proc. 41st Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval*, 2018, pp. 1161–1164.
- [135] P. Liu, X. Qiu, and X. Huang, "Deep multi-task learning with shared memory," in *Proc. Conf. Empirical Methods Natural Lang. Process.*, 2016, pp. 118–127.
- [136] X. Liu, J. Gao, X. He, L. Deng, K. Duh, and Y.-Y. Wang, "Representation learning using multi-task deep neural networks for semantic classification and information retrieval," in *Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics*, 2015, pp. 912–921.
- [137] G. Balikas, S. Moura, and M.-R. Amini, "Multitask learning for fine-grained twitter sentiment analysis," Proc. 40th Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2017, pp. 1005–1008.
- [138] C. Li, X. Guo, and Q. Mei, "Deep memory networks for attitude identification," Proc. 10th ACM Int. Conf. Web Search Data Mining, 2017, pp. 671–680.
- [139] Y. Yin, Y. Song, and M. Zhang, "Document-level multi-aspect sentiment classification as machine comprehension," in *Proc. Conf. Empirical Methods Natural Lang. Process.*, 2017, pp. 2044–2054.
- [140] M. Yang, W. Tu, J. Wang, F. Xu, and X. Chen, "Attention based LSTM for target dependent sentiment classification," in *Proc.* 31st AAAI Conf. Artif. Intell., 2017, pp. 5013–5014.
- [141] Q. Liu, H. Zhang, Y. Zeng, Z. Huang, and Z. Wu, "Content attention model for aspect based sentiment analysis," in *Proc. Conf. World Wide Web*, 2018, pp. 1023–1032.
- [142] S. Gu, L. Zhang, Y. Hou, and Y. Song, "A Position-aware bidirectional attention network for aspect-level sentiment analysis," in *Proc. 27th Int. Conf. Comput. Linguistics*, 2018, pp. 774–784.
- [143] N. Majumder, S. Poria, A. Gelbukh, M. S. Akhtar, E. Cambria, and A. Ekbal, "IARM: Inter-aspect relation modeling with memory networks in aspect-based sentiment analysis," in *Proc. Conf. Empirical Methods Natural Lang. Processing*, 2018, pp. 3402–3411.

- [144] B. Wang and W. Lu, "Learning latent opinions for aspect-level sentiment classification," in *Proc. 32nd AAAI Conf. Artif. Intell.*, 2018, pp. 5537–5544.
- [145] D. Hazarika, S. Poria, P. Vij, G. Krishnamurthy, E. Cambria, and R. Zimmermann, "Modeling inter-aspect dependencies for aspect-based sentiment analysis," in *Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics*, 2018, pp. 266–270.
- [146] P. Lin, M. Yang, and J. Lai, "Deep mask memory network with semantic dependency and context moment for aspect level sentiment classification," in *Proc. 28th Int. Joint Conf. Artif. Intell.*, 2019, pp. 5088–5094.
- pp. 5088–5094.
 [147] J. Li, H. Yang, and C. Zong, "Document-level multi-aspect sentiment classification by jointly modeling users, aspects, and overall ratings," in *Proc. 27th Int. Conf. Comput. Linguistics*, 2018, pp. 925–936.
- [148] J. McAuley, R. Pandey, and J. Leskovec, "Inferring networks of substitutable and complementary products," in *Proc. 21th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining*, 2015, pp. 785–794.
- [149] B. Pang and L. Lee, "A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts," in *Proc. 42nd Annu. Meeting Assoc. Comput. Linguistics*, 2004, pp. 271–278.
- [150] H. Wang, Y. Lu, and C. Zhai, "Latent aspect rating analysis on review text data: A rating regression approach," in *Proc. 16th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining*, 2010, pp. 783–792.
- [151] M. Yang, Q. Qu, X. Chen, C. Guo, Y. Shen, and K. Lei, "Feature-enhanced attention network for target-dependent sentiment classification," *Neurocomputing*, vol. 307, pp. 91–97, 2018.
- sification," *Neurocomputing*, vol. 307, pp. 91–97, 2018. [152] M. Zhang, Y. Zhang, and D.-T. Vo, "Gated neural networks for targeted sentiment analysis," in *Proc. 13th AAAI Conf. Artif. Intell.*, 2016, pp. 3087–3093.
- [153] S. Wang, S. Mazumder, B. Liu, M. Zhou, and Y. Chang, "Target-sensitive memory networks for aspect sentiment classification," in Proc. 56th Ann. Meeting Assoc. Comput. Linguistics, 2018, pp. 957–967.
- [154] D. Ma, S. Li, X. Zhang, and H. Wang, "Interactive attention networks for aspect-level sentiment classification," in *Proc. 76th Int. Joint Conf. Artif. Intell.*, 2017, pp. 4068–4074.
- [155] X. Ma, J. Zeng, L. Peng, G. Fortino, and Y. Zhang, "Modeling multi-aspects within one opinionated sentence simultaneously for aspect-level sentiment analysis," Future Gener. Comput. Syst., vol. 93, pp. 304–311, 2019.
- [156] F. Fan, Y. Feng, and D. Zhao, "Multi-grained attention network for aspect-level sentiment classification," in *Proc. Conf. Empirical Methods Natural Lang. Processing*, 2018, pp. 3433–3442.
- [157] R. Ma, K. Wang, T. Qiu, A. K. Sangaiah, D. Lin, and H. B. Liaqat, "Feature-based compositing memory networks for aspect-based sentiment classification in social Internet of things," Future Gener. Comput. Syst., vol. 92, 2017, pp. 879–888.
- [158] J. Qiu, C. Liu, Y. Li, and Z. Lin, "Leveraging sentiment analysis at the aspects level to predict ratings of reviews," *Inf. Sci.*, vol. 451, pp. 295–309, 2018.
- [159] H. X. Yang, Z. X. Wu, C. Zhou, T. Zhou, and B.-H. Wang, "Effects of social diversity on the emergence of global consensus in opinion dynamics," *Phys. Rev. E*, vol. 80, no. 4, 2009, Art. no. 046108.
- ion dynamics," *Phys. Rev. E*, vol. 80, no. 4, 2009, Art. no. 046108.
 [160] J. Aronfreed, "The socialization of altruistic and sympathetic behavior: Some theoretical and experimental analyses," in *Altruism Helping Behavior*, J. Macaulay and L. Berkowitz, Eds. New York: Academic Press, 1970, pp. 103–126.
 [161] K. Kaplanidou *et al.*, "Quality of life, event impacts, and mega-
- [161] K. Kaplanidou et al., "Quality of life, event impacts, and megaevent support among south african residents before and after the 2010 Fifa World Cup," J. Travel Res., vol. 52, no. 5, pp. 631–645, 2013.
- [162] F. Fu and L. Wang, "Co-evolutionary dynamics of opinions and networks: From diversity to uniformity," *Phys. Rev. E*, vol. 78, no. 1, pp. 0161041–1060414, 2008.
- [163] T. Carletti, S. Righi, and D. Fanelli, "Emerging structures in social networks guided by opinions' exchanges," Adv. Complex Syst., vol. 14, no. 01, pp. 13–30, 2011.
- [164] K. Sznajd-Weron and J. Sznajd, "Opinion evolution in closed community," Int. J. Modern Phys. C, vol. 11, no. 06, pp. 1157–1165, 2000
- [165] P. Fan, P. Li, H. Wang, Z. Jiang, and W. Li, "Opinion interaction network: Opinion dynamics in social networks with heterogeneous relationships," in *Proc. ACM SIGKDD Workshop Intell.* Security Inform., 2012, Art. no. 8.
- [166] H. Liang, Y. Yang, and X. Wang, "Opinion dynamics in networks with heterogeneous confidence and influence," *Physica A: Statistical Mechanics Appl.*, vol. 392, no. 9, pp. 2248–2256, 2013.

- [167] L. T. Nguyen, P. Wu, W. Chan, W. Peng, and Y. Zhang, "Predicting collective sentiment dynamics from time-series social media," in *Proc. 1st Int. Workshop Issues Sentiment Discovery Opinion Mining*, 2012, Art. no. 8.
- [168] P. C. Guerra, W. Meira Jr, and C. Cardie, "Sentiment analysis on evolving social streams: How self-report imbalances can help," in Proc. 7th ACM Int. Conf. Web Search Data Mining, 2014, pp. 443–452.
- [169] L. Zhang, Y. Jia, X. Zhu, B. Zhou, and Y. Han, "User-level sentiment evolution analysis in microblog," *China Commun.*, vol. 11, no. 12, pp. 152–163, 2014.
- [170] N. Charlton, C. Singleton, and D. V. Greetham, "In the mood: The dynamics of collective sentiments on twitter," Roy. Soc. Open Sci., vol. 3, no. 6, pp. 160–162, 2016.
- [171] S. Poria, N. Majumder, D. Hazarika, E. Cambria, A. Gelbukh, and A. Hussain, "Multimodal sentiment analysis: Addressing key issues and setting up the baselines," *IEEE Intell. Syst.*, vol. 33, no. 6, pp. 17–25, Nov./Dec. 2018.

Ambreen Nazir received the BSc and MSc degrees in software engineering from the University of Science and Technology, Taxila, Pakistan, in 2012 and 2014, respectively. She is currently working towards the PhD degree with Xi'an Jiaotong University, China. Her research focusing on aspect-level sentiment analysis and its applications, and how to move towards a more contextual semantic-oriented form of sentiment analysis. She worked as a lecturer at Comsats Institute of Information and Technology, Pakistan for two years.

Yuan Rao received the PhD degree from Xi'an Jiaotong University, China, in 2005. He was a postdoctoral researcher at Tsinghua University from 2005 to 2007. He was a visiting scholar at the Language Technique Institute (LTI) of Carnegie Mellon University from 2015 to 2016. He is currently an associate professor and deputy director of the department of Business Analysis and Technology, with the School of Software Engineering with Xi'an Jiaotong University. He is also the director of the Laboratory of Social Intelligence and

Complexity Data Processing (SICDP), Xi'an Jiaotong University. His research is supported by the National Natural Science Foundation of China, the Ministry of Education, and the Ministry of Science and Technology. His main research interests include natural language processing, social media analysis, and machine learning.

Lianwei Wu received the BS degree from the School of Software from Xinjiang University, Urumqi, China, with 2015. He is currently working towards the PhD degree with the School of Software Engineering, Xi'an Jiaotong University China. His research interests include information credibility evaluation, social media analysis, and natural language processing.

Ling Sun received the BS degree in software engineering from the Minzu University of China, Beijing, China, in 2019. She is currently working towards the PhD degree with the School of Software Engineering, Xi'an Jiaotong University. Her research interests include natural language processing, complex network, and false information dissemination.

▷ For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/csdl.