CSE 413 (Computer Graphics)

Camera Transformations and Projection

lyolita Islam

Department of Computer Science and Engineering Military Institute of Science and Technology

Last Updated: September 28, 2020

Unintentional Mistakes

Best efforts have been exercised in order to keep the slides error-free, the preparer does not assume any responsibility for any unintentional mistakes. The text books must be consulted by the user to check veracity of the information presented.

Outline

Projection

Working with openGL

3 Linear and Homogeneous Transformation

Projection

The next step of MODELING transformation is VIEW transformation.

Projection

- In general, projections transform points in a coordinate system of dimension n into points in a coordinate system of dimension less than n.
- We shall limit ourselves to the projection from *3D to 2D*.
- We will deal with planar geometric projections where:
 - The projection is onto a plane rather than a curved surface
 - The projectors are straight lines rather than curves
- Projection preserves lines.

Projection

Projection from 3D to 2D is defined by straight projection rays (projectors) emanating from the *center of projection*, passing through each point of the object, and intersecting the *projection plane* to form a projection.

Planer Geometric Projection

According to the center of projection there are two types of projections:

- Perspective Projection : if distance to center of projection is finite
- Parallel Projection : if distance to center of projection is infinite

Figure: Perspective Projection

Figure: Parallel Projection

Perspective Projection

- Visual effect of perspective projection is similar to human visual system.
- Parallel lines do not in general project to parallel lines
- Angles only remain intact for faces parallel to projection plane.

Perspective Projection

Perspective foreshortening: The farther an object is from COP the smaller it appears.

Vanishing Points: Any set of parallel lines not parallel to the view plane appear to meet at some point. There are an infinite number of these, 1 for each of the infinite amount of directions line can be oriented

Vanishing Point

If a set of lines are parallel to one of the three axes, the vanishing point is called an axis vanishing point (Principal Vanishing Point).

There are at most 3 such points, corresponding to the number of axes cut by the projection plane

- One axis vanishing point: One principle axis cut by projection plane.
- Two axis vanishing points: Two principle axes cut by projection plane.
- Three axis vanishing points: Three principle axes cut by projection plane.

Vanishing Point

Parallel Projection

- Less realistic view because of no foreshortening
- Parallel lines remain parallel.
- Angles only remain intact for faces parallel to projection plane.

Parallel Projection

Two principal types of Parallel Projection:

- Orthographic : Direction of projection (DOP) = normal to the projection plane.
- Oblique : Direction of projection (DOP) != normal to the projection plane.

Orthographic Parallel Projection

Direction of projection is perpendicular to view plane

Oblique Parallel Projection

■ Direction of projection is not perpendicular to view plane

Perspective Projection Matrix

- The projected point of P on XY plane is P'.
- ightharpoonup $\triangle POZ$ and $\triangle P'OZ'$ are similar.

Here,
$$z' = d$$

$$\Rightarrow \frac{x'}{x} = \frac{z'}{z} \Rightarrow x' = \frac{z'x}{z} = \frac{dx}{z}$$

$$\Rightarrow x' = \frac{dx}{z}$$
same, $y' = \frac{dy}{z}$

Perspective Projection Matrix

 projection is not linear in Cartesian coordinate system. So, the resultant matrix will be calculated in Homogeneous coordinate system (4X4 matrix).

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & d & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} dx \\ dy \\ dz \\ z \end{bmatrix} = \begin{bmatrix} \frac{dx}{z} \\ \frac{dy}{z} \\ d \\ 1 \end{bmatrix}$$

Schaum's Outline, Problem 7.3

Camera at (0, 0, 0) and projection plane is given in point normal form $(R_o \text{ and } N)$.

$$R_o = (x_o, y_o, z_o)$$

 $N = n_1 \hat{i} + n_2 \hat{j} + n_3 \hat{k}$

P' is the projection of P on the plane.

■ P and P' are on the same line. So, performing scaling, $\Rightarrow \alpha \vec{OP} = \vec{OP'}$ $\Rightarrow \alpha x = x'$ Same for $\alpha y = y'$ and $\alpha z = z'$

Schaum's Outline, Problem 7.3

$$\begin{aligned} & \bullet & (P'-R_o).N = 0 \\ & \Rightarrow x'n_1 + y'n_2 + z'n_3 = x_0n_1 + y_0n_2 + z_0n_3 \\ & \Rightarrow \alpha x n_1 + y n_2 + z n_3 = d_0 \ [R_0.N \ \text{is a constant}] \\ & \Rightarrow \alpha & = \frac{d_0}{xn_1 + yn_2 + zn_3} \\ & \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} & = \begin{bmatrix} \frac{d_0x}{xn_1 + yn_2 + zn_3} \\ \frac{d_0z}{xn_1 + yn_2 + zn_3} \\ \frac{d_0z}{xn_1 + yn_2 + zn_3} \end{bmatrix} & = \begin{bmatrix} d_0x \\ d_0y \\ d_0z \\ xn_1 + yn_2 + zn_3 \end{bmatrix} \\ & \Rightarrow \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} & = \begin{bmatrix} d_0 & 0 & 0 & 0 \\ 0 & d_0 & 0 & 0 \\ 0 & 0 & d_0 & 0 \\ n_1 & n_2 & n_3 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Schaum's Outline, Problem 7.4

- Camera at (0, 0, 0).
- Projection plane is z = d.
- P' is the projection of P on the plane.

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & d & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Schaum's Outline, Problem 7.5

- Camera at (a, b, c).
- Projection point is given in point normal form. $R_o = (x_o, y_o, z_o)$ $N = n_1 \hat{i} + n_2 \hat{i} + n_3 \hat{k}$

- We need to.
 - Translate the camera by (-a, -b, -c)
 - project P
 - Translate back camera by (a, b, c)
- So, transformation matrix = TPT_{back}

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & d & 0 \\ n_1 & n_2 & n_3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -a \\ 0 & 1 & 0 & -b \\ 0 & 0 & 1 & -c \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Camera Positioning

Let, the camera is at (0, 0, 0) point and direction is on X-axis.
 So, camera definition:
 position - (pos.x, pos.y, pos.z)
 I (looking direction) - X
 r (right direction) - Y
 u (up direction) - Z

■ I, r and u are unit vectors and perpendicular to each other.

```
\begin{aligned} u &= r \times I \\ r &= I \times u \\ I &= u \times r \end{aligned}
```

Camera Positioning - openGL

In openGL,
r = X
u = Y
l = - Z and
camera position (pos.x, pos.y, pos.z)

- For our own purpose, we need,
 r = X
 u = Y
 l = Z and
 camera position (0, 0, 0)
- So, we need a translation for the camera position and a rotation for the alignment.

Camera Positioning - openGL

- Translation(-pos.x, -pos.y, -pos.z)
- Rotation (for I) $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = v. \begin{bmatrix} -l.x \\ -l.y \\ -l.z \end{bmatrix}$
- Rotation (for u) $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = v. \begin{bmatrix} u.x \\ u.y \\ u.z \end{bmatrix}$
- Rotation (for r) $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = v. \begin{bmatrix} r.x \\ r.y \\ r.z \end{bmatrix}$

Camera Positioning - openGL

Translation(-pos.x, -pos.y, -pos.z)

$$T = \begin{bmatrix} 1 & 0 & 0 & -pos.x \\ 0 & 1 & 0 & -pos.y \\ 0 & 0 & 1 & -pos.z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

■ Rotation Resultant Matrix= vR

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = v \begin{bmatrix} r.x & u.x & -l.x \\ r.y & u.y & -l.y \\ r.z & u.z & -l.z \end{bmatrix}$$

$$I = vR$$

$$\Rightarrow \mathbf{v} = R^{-1} = R^{T}$$

$$\Rightarrow \mathbf{v} = \begin{bmatrix} r.x & r.y & r.z \\ u.x & u.y & u.z \\ -l.x & -l.y & -l.z \end{bmatrix}$$

Linearity

- In Cartesian co-ordinate system, translation is not linear.
 In homogeneous co-ordinate system, translation is linear.
- In 2D, Cartesian \Rightarrow (x, y); Homogeneous \Rightarrow (x, y, w)
- hom $(x, y, w) \xrightarrow{h \text{ to } c} \text{cur } (\frac{x}{w}, \frac{y}{w})$

How can we show point and vector at a time in Homogeneous co-ordinate system?

- $(4,4,w)_h = (\frac{4}{w},\frac{4}{w})_c$
- $w = 1 \Rightarrow (4,4)_c$; $w = \frac{1}{2} \Rightarrow (8,8)_c$
- if we increase w, the point goes in a specific direction.

When w=0, we can locate the point as infinity. So, when w=0, we assume the (x, y, w) as a vector.

When w > 0, (x, y, w) is a point.

So, in Homogeneous co-ordinate system, we can show point and vector altogether.

From two points we can generate the vector also:

$$\Rightarrow$$
(4, 4, 1) - (2, 2, 1) = (2, 2, 0)

Homogeneous co-ordinate system?

- In Homogeneous system, after operation among the vectors and points, if w ≠ 0 then it is a vector.
- If $w \neq 1$ also, then we need to scale it to be 1.
- $(2,2,2)_h$ must be scaled as $(1,1,1)_h$.
- same for $(3,3,3)_h$, $(4,4,4)_h$; all are to be scaled as (1, 1, 1).

