Cours: Systèmes linéaires

1 Algorithme du pivot de Gauss

1.1 Opérations élémentaires

Définition 1 $(\circ \circ \circ)$.

— Soit $\lambda \in \mathbb{K}^*$ et $k \in [1, n]$. On note $D_k(\lambda)$ la matrice de $\mathcal{M}_n(\mathbb{K})$:

$$D_k(\lambda) = \begin{pmatrix} 1 & & k & \\ & 1 & & \\ & & \lambda & \\ & & 1 & \\ & & & 1 \end{pmatrix}$$

De telles matrices sont appelées matrices de dilatation.

— Soit $\lambda \in \mathbb{K}$ et $i, j \in [1, n]$ avec $i \neq j$. On note $T_{i,j}(\lambda)$ la matrice de $\mathcal{M}_n(\mathbb{K})$.

$$T_{i,j}(\lambda) = \begin{pmatrix} 1 & & & \\ & & \\ & & & \\ &$$

De telles matrices sont appelées matrices de transvection.

— Soit $k_1, k_2 \in \llbracket 1, n \rrbracket$ tels que $k_1 \neq k_2$. On note τ_{k_1, k_2} la matrice de $\mathcal{M}_n(\mathbb{K})$:

De telles matrices sont appelées matrices de transposition.

Proposition 1 ($\circ \circ \circ$). *Soit* $A \in \mathcal{M}_{q,p}(\mathbb{K})$.

- — Si $\lambda \in \mathbb{K}^*$ et $k \in [1, q]$, la matrice $D_k(\lambda) A$ est obtenue en multipliant la k-ème ligne de A par λ .
 - Si $\lambda \in \mathbb{K}$ et $i, j \in [1, q]$ avec $i \neq j$, la matrice $T_{i,j}(\lambda) A$ est obtenue ajoutant λ fois la ligne j-ème ligne de A à sa i-ème ligne.
 - Si $k_1, k_2 \in [1, q]$ avec $k_1 \neq k_2$, la matrice $\tau_{k_1, k_2} A$ est obtenue en échangeant les k_1 -ème et k_2 -ème lignes de A.
- — Si $\lambda \in \mathbb{K}^*$ et $k \in [1, p]$, la matrice $AD_k(\lambda)$ est obtenue en multipliant la k-ème colonne de A par λ .
 - Si $\lambda \in \mathbb{K}$ et $i, j \in [1, p]$ avec $i \neq j$, la matrice $AT_{i,j}(\lambda)$ est obtenue en ajoutant λ fois la colonne i-ème colonne de A à sa j-ème colonne.
 - $Si \ k_1, k_2 \in [1, p]$ avec $k_1 \neq k_2$, la matrice $A\tau_{k_1, k_2}$ est obtenue en échangeant les k_1 -ème et k_2 -ème colonnes de A.

De telles opérations sur la matrices A sont appelées opérations élémentaires.

Remarques:

 \Rightarrow L'essentiel est de retenir la liste des opérations élémentaires et le fait que multiplier une matrice par la gauche par une matrice de dilatation/transvection/transposition agit sur les lignes alors que multiplier par la droite agit sur les colonnes. À partir de cela, il est aisé de retrouver ces matrices. Par exemple, si on souhaite retrouver la matrice $T \in \mathcal{M}_n(\mathbb{K})$ telle que la matrice $TA \in \mathcal{M}_n(\mathbb{K})$ est la matrice obtenue en ajoutant la j-ème ligne de A à sa i-ème ligne, il suffit d'ajouter la j-ème ligne de I_n à sa i-ème ligne. En effet $T = TI_n$ et TI_n se calcule simplement en effectuant les opérations souhaitées sur la matrice I_n .

Proposition 2 $(\circ\circ\circ)$.

— $Si \lambda \in \mathbb{K}^*$ et $k \in [1, n]$, alors la matrice de dilatation $D_k(\lambda)$ est inversible et

$$\left[D_k\left(\lambda\right)\right]^{-1} = D_k\left(\frac{1}{\lambda}\right)$$

— $Si \ \lambda \in \mathbb{K} \ et \ i,j \in [1,n]$ avec $i \neq j$, alors la matrice de transvection $T_{i,j}(\lambda)$ est inversible et

$$\left[T_{i,j}\left(\lambda\right)\right]^{-1} = T_{i,j}\left(-\lambda\right)$$

— $Si \ k_2, k_2 \in [1, n]$ avec $k_1 \neq k_2$, alors la matrice de transposition τ_{k_1, k_2} est inversible et

$$\tau_{k_1,k_2}^{-1} = \tau_{k_1,k_2}$$

1.2 Calcul du rang

Proposition 3 (000). Les opérations élémentaires transforment une matrice en une matrice de même rang.

Proposition 4 (000). Soit $A \in \mathcal{M}_{q,p}(\mathbb{K})$. Alors, il existe une succession d'opérations élémentaires sur les lignes et les colonnes transformant A en une matrice du type :

De plus r ne dépend pas des opérations effectuées et est égal au rang de A. Autrement dit, il existe une famille $Q_1,\ldots,Q_n\in \mathrm{GL}_q\left(\mathbb{K}\right)$ de matrices d'opérations élémentaires et une famille $P_1,\ldots,P_m\in \mathrm{GL}_p\left(\mathbb{K}\right)$ de matrices d'opérations élémentaires telles que $Q_n\cdots Q_1AP_1\cdots P_m$ soit une matrice du type cité plus haut.

Exercices:

- \Rightarrow Calculer le rang de $P_1 = X^2 + X + 1$, $P_2 = X^2 X 1$, $P_3 = X^2 + 3X + 2$.
- \Rightarrow Calculer le rang de

$$\varphi: \mathcal{M}_2(\mathbb{K}) \longrightarrow \mathcal{M}_2(\mathbb{K}) \\
X \longmapsto AX$$

οù

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$

- \Rightarrow Calculer le rang de la famille $e_1 = (1, x, -1), e_2 = (x, 1, x), e_3 = (-1, x, 1)$ où $x \in \mathbb{R}$.
- \Rightarrow Soit $a, b \in \mathbb{R}$. Calculer le rang de la matrice

$$\begin{pmatrix}
a & b & b \\
b & a & b \\
b & b & a
\end{pmatrix}$$

 \Rightarrow Dans $\mathcal{M}_2(\mathbb{K})$, on pose

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 2 & 3 \\ -1 & 2 \end{pmatrix}$$

et F = Vect(A, B). Déterminer une équation de F.

1.3 Calcul de l'inverse d'une matrice

Exercices:

⇒ Calculer l'inverse de

$$A = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 3 & -1 \end{pmatrix}$$

Proposition 5 (000). Soit $A \in GL_n(\mathbb{K})$. Alors, il existe une succession d'opérations élémentaires sur les lignes transformant A en I_n . Autrement dit, il existe une famille B_1, \ldots, B_m de matrices d'opérations élémentaires telles que :

$$B_m \cdots B_1 A = I_n$$

On a alors $A^{-1} = B_m \cdots B_1$. En remarquant que :

$$B_m \cdots B_1 = B_m (B_{m-1} (\cdots (B_1 I_n)))$$

on en déduit que A^{-1} est obtenu en appliquant à la matrice I_n les opérations élémentaires sur les lignes utilisées pour transformer A en I_n .

Remarques:

- \Rightarrow Remarquons au passage que cette méthode est connue depuis le cours sur les matrices. En effet, nous savons qu'inverser une matrice $A \in GL_n(\mathbb{K})$ revient à résoudre le système linéaire AX = Y où $X, Y \in \mathcal{M}_{n,1}(\mathbb{K})$. Si on résout ce système par la méthode du pivot de Gauss en prenant soin de placer les x_k et les y_k les un en dessous des autres, on remarque que la méthode de la proposition précédente conduit exactement aux mêmes calculs.
- ⇒ Cette proposition démontre que toute matrice inversible s'écrit comme un produit de matrices d'opérations élémentaires.

Exercices:

 \Rightarrow Calculer l'inverse de la matrice $A \in \mathcal{M}_n(\mathbb{K})$ définie par

$$\forall i, j \in [1, n] \quad a_{i,j} = \begin{cases} 1 & \text{si } i \leqslant j \\ 0 & \text{sinon} \end{cases}$$

2 Systèmes linéaires

2.1 Définition, interprétations

Définition 2 ($\circ \circ \circ$). Soit $p, q \in \mathbb{N}^*$. On appelle système linéaire à q équations et p inconnues tout système d'équations de la forme

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,p}x_p = b_1 \\ \vdots \\ a_{q,1}x_1 + a_{q,2}x_2 + \dots + a_{q,p}x_p = b_q \end{cases}$$

où les inconnues sont x_1, \ldots, x_p .

Remarques:

⇒ —Interprétation matricielle :

Si $A = (a_{i,j}) \in \mathcal{M}_{q,p}(\mathbb{K})$, $B = (b_i) \in \mathcal{M}_{q,1}(\mathbb{K})$ et $X = (x_i) \in \mathcal{M}_{q,1}(\mathbb{K})$, alors (x_1, \ldots, x_p) est solution du système si et seulement si AX = B. La matrice A s'appelle matrice du système et la matrice B s'appelle second membre du système.

—Interprétation vectorielle :

Si $c_1, \ldots, c_p \in \mathbb{K}^q$ sont les vecteurs colonnes de la matrice A et $b = (b_1, \ldots, b_q) \in \mathbb{K}^q$ alors (x_1, \ldots, x_p) est solution du système si et seulement si $x_1c_1 + \cdots + x_pc_p = b$.

—Interprétation linéaire :

Si a est l'application linéaire de \mathbb{K}^p dans \mathbb{K}^q dont la matrice relativement aux bases canoniques est A, et si $b = (b_1, \ldots, b_q) \in \mathbb{K}^q$, alors $x = (x_1, \ldots, x_p)$ est solution du système si et seulement si a(x) = b.

—Interprétation duale :

On considère les formes linéaires $\varphi_1, \ldots, \varphi_q$ définies sur \mathbb{K}^p par :

$$\forall i \in [1, q] \quad \forall (x_1, \dots, x_p) \in \mathbb{K}^p \quad \varphi_i(x_1, \dots, x_p) = a_{i,1}x_1 + \dots + a_{i,p}x_p$$

Alors $x = (x_1, \dots, x_p)$ est solution du système linéaire si et seulement si :

$$\forall i \in [1, q] \quad \varphi_i(x) = b_i$$

Exercices:

 \Rightarrow Soit $n \geqslant 2$ et $a, b \in \mathbb{C}$. Résoudre le système :

$$\begin{cases} x_2 = ax_1 + b \\ x_3 = ax_2 + b \\ \vdots \\ x_n = ax_{n-1} + b \\ x_1 = ax_n + b \end{cases}$$

Définition 3 ($\circ \circ \circ$). Soit AX = B un système linéaire à q équations et p inconnues.

- • On dit que le système est homogène lorsque B=0.
 - On appelle système homogène associé le système linéaire AX = 0; l'ensemble des solutions de ce système est noté $S_{\mathcal{H}}$.
- • On appelle rang du système linéaire le rang de la matrice A.
 - On dit que le système est compatible lorsque l'ensemble des solutions est non vide, c'est-à-dire lorsque $b \in \operatorname{Im} a$.

Définition 4 ($\circ \circ \circ$). On dit qu'un système AX = B à n équations et n inconnues est de Cramer lorsque A est inversible.

Proposition 6 (000). Un système AX = B à n équations et n inconnues est de Cramer si et seulement si il possède une unique solution. De plus, si tel est le cas, cette solution est $X = A^{-1}B$.

Exercices:

 \Rightarrow Soit $n \in \mathbb{N}^*$, $\omega = e^{i\frac{2\pi}{n}}$ et $b_0, \ldots, b_{n-1} \in \mathbb{C}$. Résoudre le système :

$$\forall i \in \llbracket 0, n-1 \rrbracket \quad \sum_{j=0}^{n-1} \omega^{ij} z_j = b_i$$

2.2 Structure de l'ensemble des solutions

Proposition 7 (000). $S_{\mathcal{H}}$ est un \mathbb{K} -espace vectoriel de dimension $p - \operatorname{rg}(A)$.

Proposition 8 ($\circ\circ\circ$).

- Si le système est incompatible $S = \emptyset$.
- Si le système est compatible et $x_0 \in \mathbb{K}^p$ en est une solution particulière, alors :

$$\mathcal{S} = x_0 + \mathcal{S}_{\mathcal{H}} = \{x_0 + x \mid x \in \mathcal{S}_{\mathcal{H}}\}\$$

On dit que S est un espace affine de dimension $\dim S_{\mathcal{H}} = p - \operatorname{rg}(A)$.