U-Net的代码实现与相关细节

Harry 2019.12.7

k=2n, s=n?

VGG中卷积核的初始化可以使用pre-trained ImageNet, 转置卷积初始化如果使用随机初始化的权重, 将会花费更多的时间, 因此需要使用一种更合理有效的方法。这里就要用到 bilinear kernel。

$$f(x,y) \approx \frac{f(Q_{11})}{(x_2 - x_1)(y_2 - y_1)} (x_2 - x)(y_2 - y) + \frac{f(Q_{21})}{(x_2 - x_1)(y_2 - y_1)} (x - x_1)(y_2 - y)$$

$$+ \frac{f(Q_{12})}{(x_2 - x_1)(y_2 - y_1)} (x_2 - x)(y - y_1) + \frac{f(Q_{22})}{(x_2 - x_1)(y_2 - y_1)} (x - x_1)(y - y_1).$$

k=2n, s=n?

VGG中卷积核的初始化可以使用pre-trained ImageNet,转置卷积初始化如果使用随机初始化的权重,将会花费更多的时间,因此需要使用一种更合理有效的方法。这里就要用到 bilinear kernel。

```
def bilinear_kernel(in_channels, out_channels, kernel_size):
    """
    return a bilinear filter tensor
    """
    factor = (kernel_size + 1) // 2
    if kernel_size % 2 == 1:
        center = factor - 1
    else:
        center = factor - 0.5
    og = np.ogrid[:kernel_size, :kernel_size]
    filt = (1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) / factor
    weight = np.zeros((in_channels, out_channels, kernel_size, kernel_size), dty
    weight[range(in_channels), range(out_channels), :, :] = filt
    return torch.from_numpy(weight)
```


ResNetv2

增加了skip-connected好处:

- 1. 信息传递与优化更加有效
- 2. 能够组成不同深度的网络
- 3. 每层的特征也可以看成融合了多个层级的特征(分 布式特征)

Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$ $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$ $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$ $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$

操作过程为: 先求出每个channel的均值与方差,

然后对每个通道的数据进行归一化。

维度变化为: NHWC---->C

注意: 在训练时的均值与方差是当前批次的均值与

方差, 测试时是使用的是移动平均值。

Batch Normalization

优点:

- 训练速度更快。因为网络的数据分布更加稳定,模型更容易学习。
- 使用更大的学习率。因为网络的数据分布更加稳定,使用更大的学习率不会轻易造成损失函数曲线发散情况。
- 不需要太关注模型参数的初始化。模型的随机初始化结果对模型的训练没有太大的影响。
- 正则化效果。Mini-batch 的 BN 层是使用 mini-batch 的统计 值近似训练集的统计值,使得 BN 层具有正则化效果。

BN, CONV, RELU

CONV **RELU CONV**

- 1. 原文中作者是将bn放在激活函数之前。
- 2. <u>知乎上有个高赞回答</u>: 放在relu后面比较好。

BN -- before or after ReLU?

Name	Accuracy	LogLoss	Comments
Before	0.474	2.35	As in paper
Before + scale&bias layer	0.478	2.33	As in paper
After	0.499	2.21	
After + scale&bias layer	0.493	2.24	

BN, CONV, RELU

- 1. resnet: bn放在relu之前;
- 2. densenet: bn放在relu之前;
- 3. mobilenet: bn放在relu之前

Bottleneck Architectures

$$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix}$$

Bottleneck的作用:

- 1. 减少了参数与计算
- 2. 具有更好的特征提取能力

ResNet101

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112	7×7, 64, stride 2					
		3×3 max pool, stride 2					
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$	
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$	
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	
	1×1	average pool, 1000-d fc, softmax					
FLO	OPs	1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10 ⁹	11.3×10^9	

tures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of block

UNet尺寸变化与细节

- 1. 第一个细节上采样通道数是当前的一半。
- 2. 这里是裁剪加concat的操作。
- 3. 原始作者的实现中unet实际上网络比较浅。
- 4. padding都为0

UNet中的其他细节

$$w(\mathbf{x}) = w_c(\mathbf{x}) + w_0 \cdot \exp\left(-\frac{(d_1(\mathbf{x}) + d_2(\mathbf{x}))^2}{2\sigma^2}\right)$$

ResNet101-UNet

我们的实现

- 1. 使用encoder-decoder的编码范式, 便于模型扩展与修改。
- 2. 我们上采样到原始图像的1/4的倍数。
- 3. 思考add与concat操作的异同。