Multivariate Analysis

Homework 2

M052040003 鍾冠毅

5.20. (a) For the null hypothesis is that the mean vector is equal to (190, 275), the p-value is bigger than 0.05 so that we don't reject the null hypothesis.

Hotelling's one sample T2-test

data: t(t(Bird) - c(190, 275))T.2 = 2.7086, df1 = 2, df2 = 43, p-value = 0.078 alternative hypothesis: true location is not equal to c(0,0)

(b) The confidence interval of the T-square is wider than the one of the Bonferroni. Bonferonni is better for its narrower CI.

```
> CI.20
lower upper
Bonf of Tail 189.8216 197.4229
Bonf of Wing 274.7819 284.7736
T-sq of Tail 189.4217 197.8227
T-sq of Wing 274.2564 285.2992
```

(c) From the chi-square plot, it performs a straight line, so we believe that the data is bivariate normal.

5.22. (a) The Q-Q plot of the data with outliers eliminated (the right figure) is more like a straight line. That is the new data is more like a normal distribution.

(b) Bonferonni intervals are always narrower than the t-square CI.

> CI.22.1

```
lower
                            upper
Bonf of Fuel
                9.789733 15.33027
Bonf of Repair 5.777122 10.54528
Bonf of Capital 8.646243 12.44256
T-sq of Fuel
                9.159708 15.96029
T-sq of Repair 5.234926 11.08747
T-sq of Capital 8.214557 12.87424
> CI.22.2
                   lower
                             upper
Bonf of Fuel
                9.709644 12.788617
Bonf of Repair
                5.347498 9.565546
Bonf of Capital 8.908147 12.260548
T-sq of Fuel
                9.359528 13.138733
T-sq of Repair 4.867855 10.045188
```

T-sq of Capital 8.526939 12.641756

5.28. There are two samples is out of control so that we need to notice them.

Hotelling Control Chart

5.29. By the test statistics, we reject the null hypothesis.