Section 2

Randomization Inference

Sooahn Shin

GOV 2003

Sept 16, 2021

Overview

- Logistics:
 - Pset 2 released! Due at 11:59 pm (ET) on Sept 22
- Today's topics:
 - 1. Randomization inference (Design-based inference)
 - 2. Toy example: Donations encouragement (small/large sample)
 - 3. Inverting test to obtain CIs

Randomization inference

- Randomization inference (Design-based inference; permutation test)
 - Assignment mechanism: $\rightarrow \Omega_0 = \{ \boldsymbol{d} : \mathbb{P}(\boldsymbol{D} = \boldsymbol{d}) > 0 \}.$
 - Bernoulli randomization → use rbinom(N, 1,.5)
 - Completely randomized experiment → use ri::genperms() or sample()
 - Sharp null hypothesis: $H_0: \tau_i = Y_i(1) Y_i(0) = const. \forall i$
 - We can fill out the missing potential outcomes
 - We can compute/approximate the distribution of test statistics
 T(D, Y) under the null (randomization distribution)

Randomization inference

- Randomization inference (Design-based inference; permutation test)
 - Assignment mechanism: $\rightarrow \Omega_0 = \{ \boldsymbol{d} : \mathbb{P}(\boldsymbol{D} = \boldsymbol{d}) > 0 \}.$
 - Bernoulli randomization → use rbinom(N, 1,.5)
 - Completely randomized experiment → use ri::genperms() or sample()
 - Sharp null hypothesis: $H_0: \tau_i = Y_i(1) Y_i(0) = const. \forall i$
 - → We can fill out the missing potential outcomes
 - \rightsquigarrow We can compute/approximate the distribution of test statistics $T(\mathbf{D}, \mathbf{Y})$ under the null (randomization distribution)
- Model-based inference
 - Assumes a distribution for potential outcomes

Toy example: Donations encouragement

- Setup:
 - N people
 - Encouragement by mail $(0/1; D_i) \rightarrow \text{Donations to Harvard } (\$; Y_i)$
 - Let Ω = set of 2^N treatment vectors (any N-vector of 0s and 1s). $\Omega_0 \subset \Omega$

Toy example: Donations encouragement

- Setup:
 - N people

- Encouragement by mail $(0/1; D_i) \rightarrow Donations to Harvard (\$; Y_i)$
- Let Ω = set of 2^N treatment vectors (any N-vector of 0s and 1s).

Suppose **complete randomization** has been implemented N = 6 and $n_1 = \sum_{i=1}^{N} D_i = 3$.

- $\sim \Omega_0 = \{\mathbf{d} \in \Omega : \sum_{i=1}^6 d_i = 3\} = \{(1,1,1,0,0,0), (1,1,0,1,0,0), \ldots\}$

$$\Omega_0 = id \cdot P(D=d) > 0$$

$$\Omega_0 = id \cdot P(D=d) > 0$$

$$\Omega_0 = id \cdot P(D=d) > 0$$

Toy example: Donations encouragement

- Setup:
 - N people
 - Encouragement by mail $(0/1; D_i) \rightarrow \text{Donations to Harvard } (\$; Y_i)$
 - Let Ω = set of 2^N treatment vectors (any *N*-vector of 0s and 1s).
- Suppose complete randomization has been implemented
 - N = 6 and $n_1 = \sum_{i=1}^{N} D_i = 3$.
 - $\rightarrow \Omega_0 = \{ \mathbf{d} \in \Omega : \sum_{i=1}^6 d_i = 3 \} = \{ (1, 1, 1, 0, 0, 0), (1, 1, 0, 1, 0, 0), \ldots \}$
- Test a sharp null of no effect: $H_0: \tau_i = Y_i(1) Y_i(0) = 0 \quad \forall i$.

	Mailer	Contr.		
Unit	D_i	Y_i	$Y_i(0) =$	$Y_i(1)$
Jon	1	3	(3)	3
Sansa	1	5	(5)	5
Arya	1	0	(0)	0
Robb	0	4	4	(4)
Bran	0	0	0	(0)
Rickon	0	1	1	(1)

In a small sample, N=6

1. Choose a sharp null hypothesis and a test statistic:

- 1. Choose a sharp null hypothesis and a test statistic:
 - E.g.: $H_0: \tau_i = 0$ for all i v. $H_1: \tau_i \neq 0$ for some i
 - E.g.: absolute difference-in-means estimator → Lost

$$T_{\text{diff}} = \frac{1}{n_1} \sum_{i=1}^{N} D_i Y_i - \frac{1}{n_0} \sum_{i=1}^{N} (1 - D_i) Y_i$$

In a small sample,

- 1. Choose a sharp null hypothesis and a test statistic:
 - E.g.: $H_0: \tau_i = 0$ for all i v. $H_1: \tau_i \neq 0$ for some i
 - E.g.: absolute difference-in-means estimator

$$T_{\text{diff}} = \left| \frac{1}{n_1} \sum_{i=1}^{N} D_i Y_i - \frac{1}{n_0} \sum_{i=1}^{N} (1 - D_i) Y_i \right|$$

 $T_{\text{diff}} = \left| \frac{1}{n_1} \sum_{i=1}^{N} D_i Y_i - \frac{1}{n_0} \sum_{i=1}^{N} (1 - D_i) Y_i \right|$ 2. Calculate observed test statistic: $T^{\text{obs}} = T(\mathbf{D}, \mathbf{Y}).$

- 1. Choose a sharp null hypothesis and a test statistic:
 - E.g.: $H_0: \tau_i = 0$ for all i v. $H_1: \tau_i \neq 0$ for some i
 - E.g.: absolute difference-in-means estimator

$$T_{\text{diff}} = \left| \frac{1}{n_1} \sum_{i=1}^{N} D_i Y_i - \frac{1}{n_0} \sum_{i=1}^{N} (1 - D_i) Y_i \right|$$

- 2. Calculate observed test statistic: $T^{obs} = T(\mathbf{D}, \mathbf{Y})$.
- 3. List all the possible treatment vectors in Ω_0 : $\{\widetilde{\mathbf{D}}_1,\ldots,\widetilde{\mathbf{D}}_K\}$ where $K=|\Omega_0|$

$$= \binom{6}{3} = 20$$

- 1. Choose a sharp null hypothesis and a test statistic:
 - E.g.: $H_0: \tau_i = 0$ for all i v. $H_1: \tau_i \neq 0$ for some i
 - E.g.: absolute difference-in-means estimator $T_{\text{diff}} = \left| \frac{1}{n_i} \sum_{i=1}^{N} D_i Y_i \frac{1}{n_0} \sum_{i=1}^{N} (1 D_i) Y_i \right|$
- 2. Calculate observed test statistic: $T^{\text{obs}} = T(\mathbf{D}, \mathbf{Y})$.
- 3. List all the possible treatment vectors in Ω_0 : $\{\widetilde{\mathbf{D}}_1,\dots,\widetilde{\mathbf{D}}_K\}$ where $K=|\Omega_0|$
- 4. Calculate $\widetilde{T}_k = T(\widetilde{\mathbf{D}}_k, \mathbf{Y})$ for each k under the sharp null.

- 1. Choose a sharp null hypothesis and a test statistic:
 - E.g.: $H_0: \tau_i = 0$ for all i v. $H_1: \tau_i \neq 0$ for some i
 - E.g.: absolute difference-in-means estimator $T_{\text{diff}} = \left| \frac{1}{n_i} \sum_{i=1}^{N} D_i Y_i \frac{1}{n_0} \sum_{i=1}^{N} (1 D_i) Y_i \right|$
- 2. Calculate observed test statistic: $T^{\text{obs}} = T(\mathbf{D}, \mathbf{Y})$.
- 3. List all the possible treatment vectors in Ω_0 : $\{\widetilde{\mathbf{D}}_1,\dots,\widetilde{\mathbf{D}}_K\}$ where $K=|\Omega_0|$
- 4. Calculate $\widetilde{T}_k = T(\widetilde{\mathbf{D}}_k, \mathbf{Y})$ for each k under the sharp null.
- 5. Observe the distribution of $\widetilde{T} = {\widetilde{T}_1, \dots, \widetilde{T}_K}$.

- 1. Choose a sharp null hypothesis and a test statistic:
 - E.g.: $H_0: \tau_i = 0$ for all i v. $H_1: \tau_i \neq 0$ for some i
 - E.g.: absolute difference-in-means estimator $T_{\text{diff}} = \left| \frac{1}{n_i} \sum_{i=1}^{N} D_i Y_i \frac{1}{n_0} \sum_{i=1}^{N} (1 D_i) Y_i \right|$
- 2. Calculate observed test statistic: $T^{\text{obs}} = T(\mathbf{D}, \mathbf{Y})$.
- 3. List all the possible treatment vectors in Ω_0 : $\{\widetilde{\mathbf{D}}_1,\dots,\widetilde{\mathbf{D}}_K\}$ where $K=|\Omega_0|$
- 4. Calculate $\widetilde{T}_k = T(\widetilde{\mathbf{D}}_k, \mathbf{Y})$ for each k under the sharp null.
- 5. Observe the distribution of $\widetilde{T} = {\widetilde{T}_1, \dots, \widetilde{T}_K}$.
- 6. Calculate the exact p-value: $p = \frac{1}{K} \sum_{k=1}^{K} \mathbb{I}(\widetilde{T}_k \geq T)$

1. Calculate observed test statistic

	Mailer	Contr.		
Unit	D_i	Y_i	$Y_i(0)$	$Y_i(1)$
Jon	1	3	(3)	3
Sansa	1	5	(5)	5
Arya	1	0	(0)	0
Robb	0	4	4	(4)
Bran	0	0	0	(0)
Rickon	0	1	1	(1)

$$T_{\text{diff}}^{\text{obs}} = |8/3 - 5/3| = 1$$

1. Calculate observed test statistic

	Mailer	Contr.			\
Unit	(D_i)	Y_i	$Y_i(0)$	$Y_i(1)$	
Jon	1	3	()	3	
Sansa	1	5	()	5	
Arya	1	0	()	0	
Robb	0	4	4	()	
Bran	0	0	0	()	
Rickon	0	1	1	()	

$$T_{\rm diff}^{\rm obs} = |8/3 - 5/3| = 1$$

```
y \leftarrow c(3, 5, 0, 4, 0, 1)
D \leftarrow c(1, 1, 1, 0, 0, 0)
T_{obs} \leftarrow abs(mean(y[D == 1]) - mean(y[D == 0]))
T_{obs} \leftarrow cobs
(y,y) cobs y cobs y
## [1] 1
```

2. Randomization distribution

 \mathcal{V}^{o}

- Possible treatment assignments $\{\widetilde{\mathbf{D}}_1, \dots, \widetilde{\mathbf{D}}_{20}\}$
- Test statistics under the null $\widetilde{T} = \{\widetilde{T}_1(\widetilde{\mathbf{D}}_1, \mathbf{Y}), \dots, \widetilde{T}_{20}(\widetilde{\mathbf{D}}_{20}, \mathbf{Y})\}$

	Mailer	Contr.		
Unit	\widetilde{D}_1	Y_i	$Y_i(0)$	$Y_i(1)$
Jon	1	3	(3)	3
Sansa	1	5	(5)	5
Arya	0	0	(0)	0
Robb	1	4	4	(4)
Bran	0	0	0	(0)
Rickon	0	1	1	(1)

$$\widetilde{T}_1 = |12/3 - 1/3| = 3.67$$

2. Randomization distribution

• Possible treatment assignments $\{\widetilde{\mathbf{D}}_1, \dots, \widetilde{\mathbf{D}}_{20}\}$ • Test statistics under the null $\widetilde{T} = \{3.67, \dots, \widetilde{T}_{20}(\widetilde{\mathbf{D}}_{20}, \mathbf{Y})\}$

	Mailer	Contr.		
Unit	\widetilde{D}_{20}	Y_i	$Y_i(0)$	$Y_i(1)$
Jon	0	3	(3)	3
Sansa	0	5	(5)	5
Arya	0	0	(0)	0
Robb	1	4	4	(4)
Bran	1	0	0	(0)
Rickon	1	1	1	(1)

$$\widetilde{T}_{20} = |5/3 - 8/3| = 1$$

2. Randomization distribution

```
D_bold <- ri::genperms(D)
K <- ncol(D_bold)
T_tilde <- rep(NA, times = K)
for (i in 1:K) {
    D_tilde <- D_bold[, i]
    T_tilde[i] <- abs(mean(y[D_tilde == 1]) - mean(y[D_tilde == 0]))
}</pre>
```


In a large sample,

(omplete rand

- 1. Choose a sharp null hypothesis and a test statistic:
- 2. Calculate observed test statistic: $T^{\text{obs}} = T(\mathbf{D}, \mathbf{Y})$.
- 3. Too many possible treatment vectors in $\Omega_0 \to \text{take } K = 1000$ samples!
- 4. Calculate $\widetilde{T}_k = T(\widetilde{\mathbf{D}}_k, \mathbf{Y})$ for each k under the sharp null.
- 5. Observe the distribution of $\widetilde{T} = {\widetilde{T}_1, \dots, \widetilde{T}_K}$.
- 6. Calculate the p-value: $p = \frac{1}{K} \sum_{k=1}^{K} \mathbb{I}(\widetilde{T}_k \geq T)$

Choosing test statistics

- Difference in means
- Rank statistic
 - when we have many outliers
 - → wilcox.test() for rank-sum statstic
- $S = \sum_{i=1}^{N} D_i Y_i(1)$
 - when Y_i is binary, Fisher's exact test (recall Lady Tasting Tea)
 - → fisher.test()
- Using absolute values under the sharp null of no effect
 - > testing against a two-sided alternative hypothesis

$$H_0: \tau_i = 0 \ \forall i$$
 $H_1: \tau_i \neq 0 \ \text{for some } i$

Confidence Intervals: Inverting the Test

/const

- For a sharp null $\tau_i = Y_i(1) Y_i(0) = \tau_0$ $\forall i$, we can conduct the test and calculate the p-value.
- Repeat the above with different values of τ_0

• 95% CI: The range of τ_0 that we cannot reject the null at the 0.05 level.

Example Code for Inverting the Test

```
# Data
 Yi <- large_sample<mark>$</mark>factor # Observed outcome
Di <- recode(large_sample$canvass, `Placebo` = 0, `Full Intervention` = 1)
N \leftarrow length(Yi); n1 \leftarrow sum(Di); n0 \leftarrow sum(1-Di)
 # Pick candiate taus on a grid
                                                 tau_{cand} = c(-0.5, -\cdots, 0.5)
 tau_cand <- seq(-0.5, 0.5, by = 0.01)
save_pval <- rep(NA, length(tau_cand)) # to save the p-value below</pre>
# 1. Calculate the observed statistics
T_obs <- sum(Di*Yi)/n1 - sum((1-Di)*Yi)/n0</pre>
```

```
Example Code for Inverting the Test pin - 2-4
T000 2: Create function for computing p-value given tau and observed star
TODO 2-1: Calculate Yi(1) using Yi, Di, and tau
   <- NULL
                                                 Yzu)- Yzlo) = 0,1
  TODO 2-2: Calculate Yi(0) using Yi, Ti, and tau
Y0)<- NULL
                                        null
Ttilde_ls <- rep(NA, n_sim)</pre>
# Simulation:
for (s) in 1:n_sim) {
                                                        (0.6)
                                    7: ~ No
  # TODO 2-3: Randomly sample treatment vectors
  Dtilde_s <- NUI
  # TODO 2-4: For each treatment vector,
                                     compute
  Ttilde_ls[s] <- NULL
                                             Y2(0) =0.2
                               h:M
# 2-5: Calculate and return the p-value
-pval <- 2 * min(mean(Ttilde_ls >= t_obs), mean(Ttilde_ls <= t_bbs
return(pval)
                                                               15
```

Example Code for Inverting the Test

```
# TODO 3: Loop over each candidate tau
set.seed(123)
for (t in 1:length(tau_cand)) {
  save_pval[t] <- your_fun(tau_t, T_obs)</pre>
}
# 4. Obtain the upper / lower bound of 95% CI
lb <- tau_cand[min(which(save_pval >= 0.025))]
ub <- tau_cand[max(which(save_pval >= 0.025))]
# TODO 5: Print the 95% CI (lb. ub)
```

Visualization of p-values from test inversion

