Trying to Understand the B.C.'s in Comsol

Pierce Hunter

2/1/2019

1 Deriving $2\mu D$

$$D = \frac{1}{2} \left[\nabla \underline{v} + (\nabla \underline{v})^{\mathrm{T}} \right]$$

$$\underline{v} = (V, W)$$

$$\nabla \underline{v} = \begin{bmatrix} \frac{\partial V}{\partial x} & \frac{\partial V}{\partial y} \\ \frac{\partial W}{\partial x} & \frac{\partial W}{\partial y} \end{bmatrix}$$

$$(\nabla \underline{v})^{\mathrm{T}} = \begin{bmatrix} \frac{\partial V}{\partial x} & \frac{\partial W}{\partial x} \\ \frac{\partial V}{\partial y} & \frac{\partial W}{\partial y} \end{bmatrix}$$

$$\mu \left(\nabla \underline{v} + (\nabla \underline{v})^{\mathrm{T}} \right) = \begin{bmatrix} 2\mu \frac{\partial V}{\partial x} & \mu \left(\frac{\partial V}{\partial y} + \frac{\partial W}{\partial x} \right) \\ \mu \left(\frac{\partial V}{\partial y} + \frac{\partial W}{\partial x} \right) & 2\mu \frac{\partial W}{\partial y} \end{bmatrix} = 2\mu D$$

2 A Table of Normals and Boundary Conditions

	<u>n</u>	U	V	W
Left	(-1,0)	U = 0	$V = 1 - (1 - Z)^4$	W = 0
Right	(1,0)	$\mu \frac{\partial U}{\partial Y} = 1$	$\frac{\partial V}{\partial Z} = 0$	W = 0
Тор	(0,1)	$\mu \frac{\partial U}{\partial Z} = 0$	$\mu \frac{\partial V}{\partial Z} = 0$	$W = 0$ $2\mu \frac{\partial W}{\partial Z} - P + S' = 0$
Ridge (No Slip)	(0,-1)	U = 0	V = 0	W = 0
Ridge (Slip)	(0,-1)	$\begin{cases} \mu \frac{\partial U}{\partial Z} = \tau \frac{U}{\sqrt{U^2 + \varepsilon^2 V^2}} & \sqrt{U^2 + \varepsilon^2 V^2} > 0\\ \sqrt{\left(\mu \frac{\partial U}{\partial Z}\right)^2 + \varepsilon^2 \left(\mu \frac{\partial V}{\partial Z}\right)^2} \le \tau & \sqrt{U^2 + \varepsilon^2 V^2} = 0 \end{cases}$	$\begin{cases} \mu \frac{\partial V}{\partial Z} = \tau \frac{V}{\sqrt{U^2 + \varepsilon^2 V^2}} & \sqrt{U^2 + \varepsilon^2 V^2} > 0\\ \sqrt{\left(\mu \frac{\partial U}{\partial Z}\right)^2 + \varepsilon^2 \left(\mu \frac{\partial V}{\partial Z}\right)^2} \le \tau & \sqrt{U^2 + \varepsilon^2 V^2} = 0 \end{cases}$	W = 0
Stream	(0,-1)	$\mu \frac{\partial U}{\partial Z} = 0$	$\mu \frac{\partial V}{\partial Z} = 0$	W = 0

For conversion to comsol need $Y \to x, \ Z \to y$

3 Downstream Velocity Boundary Conditions in Comsol

3.1 Left Boundary

Dirichlet Boundary Condition:

$$\begin{split} U &= r \\ r &= 0 \implies U = 0 \end{split}$$

3.2 Right Boundary

Flux/Source Boundary Condition:

$$\begin{aligned} -\underline{n} \cdot \underline{\Gamma} &= g - qu \\ \underline{n} &= (1,0) \\ \underline{\Gamma} &= \left(\mu \frac{\partial U}{\partial x}, \mu \frac{\partial U}{\partial y} \right) \\ -\underline{n} \cdot \underline{\Gamma} &= -\mu \frac{\partial U}{\partial x} \\ \text{Set: } g &= -1, \ q = 0 \implies -\mu \frac{\partial U}{\partial x} = -1 \\ \mu \frac{\partial U}{\partial x} &= 1 \end{aligned}$$

3.3 Top Boundary

Zero Flux Boundary Condition:

$$-\underline{n} \cdot \underline{\Gamma} = 0$$

$$-(0,1) \cdot \left(\mu \frac{\partial U}{\partial x}, \mu \frac{\partial U}{\partial y}\right) = 0$$

$$-\mu \frac{\partial U}{\partial y} = 0$$

$$\mu \frac{\partial U}{\partial y} = 0$$