Machine Learning

Lecture 7
Perceptrons

Felix Bießmann

Beuth University & Einstein Center for Digital Future

Recap: Nearest Centroid Classification

Prototypes μ_{Δ} and μ_o can be the class means

$$egin{aligned} oldsymbol{\mu}_{\Delta} = & 1/N_{\Delta} \sum_{n}^{N_{\Delta}} \mathbf{x}_{\Delta,n} \\ oldsymbol{\mu}_{o} = & 1/N_{o} \sum_{n}^{N_{o}} \mathbf{x}_{o,n} \end{aligned}$$

Distance from w_{Δ} to new data x

$$\|\boldsymbol{\mu}_{\Lambda} - \mathbf{x}\|_2$$

From Prototypes to Linear Classification

$$\begin{aligned} \text{distance}(\mathbf{x}, \mu_{\Delta}) > & \text{distance}(\mathbf{x}, \mu_{o}) \\ & \|\mathbf{x} - \mu_{\Delta}\| > & \|\mathbf{x} - \mu_{o}\| \end{aligned} \tag{1}$$

$$\begin{aligned} \mathsf{distance}(\mathbf{x}, \mu_{\Delta}) > & \mathsf{distance}(\mathbf{x}, \mu_{o}) \\ \|\mathbf{x} - \mu_{\Delta}\| > & \|\mathbf{x} - \mu_{o}\| \\ \Leftrightarrow \|\mathbf{x} - \mu_{\Delta}\|^{2} > & \|\mathbf{x} - \mu_{o}\|^{2} \\ \Leftrightarrow & \mathbf{x}^{\top}\mathbf{x} - 2\mu_{\Delta}^{\top}\mathbf{x} + \mu_{\Delta}^{\top}\mu_{\Delta} > & \mathbf{x}^{\top}\mathbf{x} - 2\mu_{o}^{\top}\mathbf{x} + \mu_{o}^{\top}\mu_{o} \\ \Leftrightarrow & \mu_{\Delta}^{\top}\mathbf{x} - \mu_{\Delta}^{2}/2 < \mu_{o}^{\top}\mathbf{x} - \mu_{o}^{2}/2 \\ \Leftrightarrow & 0 < \underbrace{(\mu_{o} - \mu_{\Delta})^{\top}\mathbf{x} - 1/2}_{\mathbf{w}} \underbrace{(\mu_{o}^{\top}\mu_{o} - \mu_{\Delta}^{\top}\mu_{\Delta})}_{\beta} \end{aligned}$$

From Prototypes to Linear Classification

$$\begin{aligned} \operatorname{distance}(\mathbf{x}, \boldsymbol{\mu}_{\Delta}) > & \operatorname{distance}(\mathbf{x}, \boldsymbol{\mu}_{o}) \\ & \|\mathbf{x} - \boldsymbol{\mu}_{\Delta}\| > \|\mathbf{x} - \boldsymbol{\mu}_{o}\| \\ \Leftrightarrow & \|\mathbf{x} - \boldsymbol{\mu}_{\Delta}\|^{2} > \|\mathbf{x} - \boldsymbol{\mu}_{o}\|^{2} \\ \Leftrightarrow & \mathbf{x}^{\top}\mathbf{x} - 2\boldsymbol{\mu}_{\Delta}^{\top}\mathbf{x} + \boldsymbol{\mu}_{\Delta}^{\top}\boldsymbol{\mu}_{\Delta} > & \mathbf{x}^{\top}\mathbf{x} - 2\boldsymbol{\mu}_{o}^{\top}\mathbf{x} + \boldsymbol{\mu}_{o}^{\top}\boldsymbol{\mu}_{o} \\ \Leftrightarrow & \boldsymbol{\mu}_{\Delta}^{\top}\mathbf{x} - \boldsymbol{\mu}_{\Delta}^{2}/2 < \boldsymbol{\mu}_{o}^{\top}\mathbf{x} - \boldsymbol{\mu}_{o}^{2}/2 \\ \Leftrightarrow & 0 < \underbrace{(\boldsymbol{\mu}_{o} - \boldsymbol{\mu}_{\Delta})}_{\mathbf{w}}^{\top}\mathbf{x} - 1/2\underbrace{(\boldsymbol{\mu}_{o}^{\top}\boldsymbol{\mu}_{o} - \boldsymbol{\mu}_{\Delta}^{\top}\boldsymbol{\mu}_{\Delta})}_{\boldsymbol{\beta}} \end{aligned}$$

$$\mathbf{w}^{\top}\mathbf{x} - \beta = \begin{cases} > 0 & \text{if } \mathbf{x} \text{ belongs to class } 0 \\ < 0 & \text{if } \mathbf{x} \text{ belongs to class } \Delta \end{cases}$$
 (2)

$$\mathbf{w}^{\top}\mathbf{x} - \beta = \begin{cases} > 0 & \text{if } \mathbf{x} \text{ belongs to } o \\ < 0 & \text{if } \mathbf{x} \text{ belongs to } \Delta \end{cases}$$

What is a good \mathbf{w} ?

 \rightarrow We need an **error function** that tells us how good ${\bf w}$ is.

Two classical Error Functions

Given data $\mathbf{x} \in \mathbb{R}^D$ and corresponding labels $y \in \{-1, +1\}$, two classical error functions $\mathcal{E}(\mathbf{x}, y, \mathbf{w})$ to find the optimal $\mathbf{w} \in \mathbb{R}^D$ are:

_	Error Function	Used in
	$\frac{1}{2}(y - \mathbf{w}^{ op}\mathbf{x})^2$	Adaline [Widrow and Hoff, 1960]
	$\max(0, -y\mathbf{w}^{\top}\mathbf{x})$	Perceptron [Rosenblatt, 1958]

Rosenblatt's Perceptron

Frank Rosenblatt (1928-1969)

Rosenblatt proposed the **perceptron**, an artificial neural network for pattern recognition [Rosenblatt, 1958]

Perceptrons gave rise to the field of artificial neural networks

Rosenblatt's Perceptron

Rosenblatt studied Perceptrons, so that

"[...] the fundamental laws of organization which are common to all information handling systems, machines and men included, may eventually be understood."

Artificial Neural Networks

Linear Classification

Input nodes x_i receive information

Inputs are multiplied with a weighting factor w; and summed up

Integrated input is mapped through some (non-linear) function f(.)

$$f(x) = \begin{cases} +1 & \text{if } \mathbf{x} \text{ is preferred stimulus} \\ -1 & \text{if } \mathbf{x} \text{ is any other stimulus} \end{cases}$$

Rosenblatt's Perceptron

Perceptron Hardware (pictures from [Bishop, 2007])

Goal Binary classification of multivariate data $\mathbf{x} \in \mathbb{R}^D$

Goal Binary classification of multivariate data $\mathbf{x} \in \mathbb{R}^D$

Input Learning rate η and N tupels (\mathbf{x}_n, y_n) where $\mathbf{x}_n \in \mathbb{R}^D$ is the D-dimensional data $y_n \in \{-1, +1\}$ is the corresponding label, such that

$$y_n = egin{cases} +1 & ext{if } \mathbf{x}_n ext{ is a correct example} \\ -1 & ext{if } \mathbf{x}_n ext{ is not a correct example} \end{cases}$$

Goal Binary classification of multivariate data $\mathbf{x} \in \mathbb{R}^D$

Input Learning rate η and N tupels (\mathbf{x}_n, y_n) where $\mathbf{x}_n \in \mathbb{R}^D$ is the D-dimensional data $y_n \in \{-1, +1\}$ is the corresponding label, such that

$$y_n = \begin{cases} +1 & \text{if } \mathbf{x}_n \text{ is a correct example} \\ -1 & \text{if } \mathbf{x}_n \text{ is not a correct example} \end{cases}$$

Output Weight vector $w \in \mathbb{R}^D$ such that

$$\mathbf{w}^{\top}\mathbf{x}_{n} = \begin{cases} \geq 0 & \text{if } y_{n} = +1 \\ < 0 & \text{if } y_{n} = -1 \end{cases}$$

The Perceptron Error Function

$$\mathcal{E}_{\mathcal{P}}(\mathbf{w}) = -\sum_{m \in \mathcal{M}} \mathbf{w}^{\top} \mathbf{x}_{m} y_{m}$$
 (3)

Classification Error as Function of Weights

Given data $\mathbf{x} \in \mathbb{R}^D$ and corresponding labels $y \in \{-1, +1\}$ the classification error \mathcal{E} is a function of the weights \mathbf{w} (and the data \mathbf{x}, y)

$$\mathcal{E}(\mathbf{w}, \mathbf{x}_m, y_m) = -\sum_{m \in \mathcal{M}} \mathbf{w}^\top \mathbf{x}_m y_m \quad (4)$$

where \mathcal{M} denotes the index set of all misclassified data \mathbf{x}_m

Classification Error as Function of Weights

Gradient Descent

How to minimize the error function?

$$\mathcal{E}(\mathbf{w}, \mathbf{x}_m, y_m) = -\sum_{m \in \mathcal{M}} \mathbf{w}^\top \mathbf{x}_m y_m$$

 \rightarrow Gradient Descent

Gradient Descent

We minimize $\mathcal{E}(\mathbf{w}, \mathbf{x}_m, y_m)$ by walking in the opposite direction of the gradient.

$$\mathbf{w}^{\mathsf{new}} \leftarrow \mathbf{w}^{\mathsf{old}} - \eta \frac{1}{|\mathcal{X}|} \sum_{i=1}^{|\mathcal{X}|} \nabla \mathcal{E}(\mathbf{w}, \mathbf{x}_i, y_i)$$

where \mathcal{X} is the set of data points and η is called a **learning rate**.

Stochastic Gradient Descent

A noisy estimate of

$$\frac{1}{|\mathcal{X}|} \sum_{i=1}^{|\mathcal{X}|} \nabla \mathcal{E}(\mathbf{w}, \mathbf{x}, y)$$

is obtained by [Robbins and Monro, 1951]

$$\mathbf{w}^{\mathsf{new}} \leftarrow \mathbf{w}^{\mathsf{old}} - \eta \nabla \mathcal{E}(\mathbf{w}, \mathbf{x}_i, y_i)$$

Note that only \mathbf{w} is stored and only one data point \mathbf{x}_i and label y_i are considered at a time!

 \rightarrow Scales to large data sets [Bottou, 2010]

Perceptron Learning •00000000

Perceptron Training

Training a Perceptron means finding weights **w** that minimize $\mathcal{E}_{\mathcal{P}}$:

$$\underset{w}{\operatorname{argmin}} \qquad \left(-\sum_{m \in \mathcal{M}} \mathbf{w}^{\top} \mathbf{x}_{m} y_{m} \right) \tag{5}$$

where \mathcal{M} denotes the index set of all misclassified data \mathbf{x}_m

Perceptron Training

Training a Perceptron means finding weights **w** that minimize $\mathcal{E}_{\mathcal{P}}$:

$$\underset{w}{\operatorname{argmin}} \quad \left(-\sum_{m \in \mathcal{M}} \mathbf{w}^{\top} \mathbf{x}_{m} y_{m} \right) \tag{5}$$

where \mathcal{M} denotes the index set of all *misclassified* data \mathbf{x}_m Data $\mathbf{x} \in \mathbb{R}^2$

Perceptron Training

Training a Perceptron means finding weights **w** that minimize $\mathcal{E}_{\mathcal{P}}$:

$$\underset{w}{\operatorname{argmin}} \quad \left(-\sum_{m \in \mathcal{M}} \mathbf{w}^{\top} \mathbf{x}_{m} y_{m} \right) \tag{5}$$

where \mathcal{M} denotes the index set of all *misclassified* data \mathbf{x}_m

Eq. 5 can be minimized *iteratively* using **stochastic gradient descent** [Bottou, 2010; Robbins and Monro, 1951]

- 1. Initialize \mathbf{w}^{old} (randomly, 1/n, ...)
- 2. While there are misclassified data points \mathbf{x}_m Pick a random misclassified data point \mathbf{x}_m

$$\mathbf{w}^{\mathsf{new}} \leftarrow \mathbf{w}^{\mathsf{old}} - \eta \nabla \mathcal{E}_{\mathcal{P}}(\mathbf{w}) = \mathbf{w}^{\mathsf{old}} + \eta \mathbf{x}_{m} \mathbf{y}_{m} \tag{6}$$

Algorithm 1 Perceptron learning

```
Require: Data X = [\mathbf{x}_1, \dots, \mathbf{x}_N], x_i \in \mathbb{R}^D, Labels y_1, \dots, y_N \in \{-1, +1\},
     iterations its, learning rate \eta
Ensure: w
 1: \mathbf{w} = \mathbb{1}_D/(D)
 2: for it = 1, \ldots, its do
 3:
         # Pick a random example
 4:
         i = ceil(rand*N)
 5:
         # If this example is not correctly classified
 6:
         if sign(\mathbf{w}^{\top}\mathbf{x}_i) ! = y_i then
 7:
              # Update weight vector
 8:
              \mathbf{w} \leftarrow \mathbf{w} + \eta/it \mathbf{x}_i \mathbf{v}_i
 9.
          end if
10: end for
```


The Perceptron Learning Algorithm in Action

The Perceptron Learning Algorithm in Action

Step 2, 1 Misclassified

The Perceptron Learning Algorithm in Action

Problems with Perceptrons

- Each update might lead to new misclassifications
- Many solutions might exist; which one is correct?
- Convergence might be slow
- Only solves linearly separable problems
- If there is no solution, the algorithm will not converge

Some solutions have been proposed by Freund and Schapire [1998]

Problems with Perceptrons

Perceptrons can only learn linearly separable problems.

Application example: Handwritten Digit Recognition

Handwritten digits from UPS data set

Each digit represented as 16×16 pixel image

 $\rightarrow x \in \mathbb{R}^{256}$ input nodes Each image is associated with a label

$$y \in \{0,1,\dots,9\}$$

Goal Artificial neural network that recognizes the digit 8

 \Rightarrow We need a function f(.)such that

$$f(x) = \begin{cases} -1 & \text{if } y \in \{0, 1, \dots, 7, 9\} \\ +1 & \text{if } y = 8 \end{cases}$$

Application example: Handwritten Digit Recognition

Application example: Handwritten Digit Recognition

- Handwritten Digit Recognition is a Multiclass Problem
- But the Perceptron is a **two-class** (binary) classifier
- How can we **binarize** the multi class problem?
- → Train a perceptron for each digit against all others
- \rightarrow Concatenate all weight vectors $W = [\mathbf{w_0}, \mathbf{w}_1, \dots, \mathbf{w}_9]$
- \rightarrow For new data point **x** compute the label as argmax $(W^{\top}\mathbf{x})$

Minimizing Functions

Remember:

- ML algorithms are functions f that need to be fitted to data
- ML is finding minima/maxima of functions
- Function minimization is done by Gradient Descent

Function Derivative
$$f(x) = x^{n}$$

$$cf(x)$$

$$f(x) + g(x)$$

$$f(x)g(x)$$

$$\frac{f(x)}{g(x)}$$

$$f(g(x))$$

Function Derivative
$$f(x) = x^{n} \qquad f'(x) = nx^{n-1}$$

$$cf(x) \qquad cf'(x)$$

$$f(x) + g(x) \qquad f'(x) + g'(x)$$

$$f(x)g(x) \qquad f'(x)g(x) + f(x)g'(x)$$

$$\frac{f(x)}{g(x)} \qquad \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^{2}}$$

$$f(g(x)) \qquad f'(g(x)) g'(x)$$

Consider a vector-valued function $f(\mathbf{x}) : \mathbb{R}^D \to \mathbb{R}^U, \mathbf{x} \in \mathbb{R}^D$

The gradient $\nabla f(\mathbf{x})$ at position \mathbf{x} is

$$\nabla f(x) = \left[\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_D} \right]$$
 (7)

Function Derivative $f(\mathbf{x}) = \mathbf{u}^{\top} \mathbf{x}$ $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{x}$ $f(\mathbf{x}) = A\mathbf{x}$ $f(\mathbf{x}) = \mathbf{x}^{\top} A\mathbf{x}$

More complicated examples: The Matrix Cookbook

Function	Derivative
$f(\mathbf{x}) = \mathbf{u}^{\top}\mathbf{x}$	$f'(\mathbf{x}) = \mathbf{u}$
$f(\mathbf{x}) = \mathbf{x}^{\top}\mathbf{x}$	$f'(\mathbf{x}) = 2\mathbf{x}$
$f(\mathbf{x}) = A\mathbf{x}$	$f'(\mathbf{x}) = A$
$f(\mathbf{x}) = \mathbf{x}^{\top} A \mathbf{x}$	$f'(\mathbf{x}) = \mathbf{x}^{\top}(A + A^{\top})$

More complicated examples: The Matrix Cookbook

References

- C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer US, 2007.
- L. Bottou. Large-scale machine learning with stochastic gradient descent. In Y. Lechevallier and G. Saporta, editors, Proceedings of the 19th International Conference on Computational Statistics (COMPSTAT'2010), pages 177–187, Paris, France, 2010. Springer.
- Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm. Machine Learning, pages 277-296, 1998.
- H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical Statistics, 22(3):400-407, 1951.
- F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65(6):386-408, Nov. 1958.
- B. Widrow and M. E. Hoff. Adaptive switching circuits. In 1960 IRE WESCON Convention Record, Part 4, pages 96–104, New York, 1960. IRE.

