

IMT 598 – Finance Fraud Detection

Group 3: Zhitong (Mia) Xie, Ajinkya Sheth, Xiaohua Shi

AGENDA

- 1. INTRODUCTION
- 2. MACHINE LEARNING
 ON AZURE
- 3. DEMO
- 4. LIMITATIONS

1. Introduction

Industry

Bank/Financial Industry

- Brick-and-mortar → Online Platform
- Utilized big data to expand core business model
- Expand customer segment from B2C to B2B (billing platform)
- Recommendation Engine (personalized service and products)

Business Problem

Freya Group

- Top US-based financial services provider
 - Key service: Mobile Banking
- Current Digital Transformation:
 - On-premise server
 - Regression model to detect fraud transaction

Business Problem

Lack of Efficient Model for Fraud Detection!

1,048,576

Transactions in our dataset

10.13%

Are fraud transactions

0.195%

Fraud transactions are successfully identified!

Business Model Change

Going Cloud!

- Customer: seamless experience
- Company: reduce cost and reliance on hardware; increase flexibility and scalability

Data Provider!

- Improving algorithm
- Bring insights on customer pattern

B2B to B2C!

- Expand to health-care industry
- Expand to insurance industry

Improving and Expanding!

2. Solution

Solution

Azure

- Azure SQL Server
- Azure ML Studio
- Azure Web Service

Solution

Raw Data

- Step: hashed time stamp
- Type: [CASH-IN, CASH-OUT, DEBIT, PAYMENT, TRANSFER]
- Amount: amount of the transaction in local currency.
- nameOrig: customer who started the transaction
- nameDest: customer who is the recipient of the transaction
- oldbalanceOrig / oldbalanceDest: initial balance before the transaction for Orig / Dest
- newbalanceOrig / newbalanceDest initial balance before the transaction for Orig / Dest

Solution - 1st Step Data Processing

Solution - 2nd Step Feature Engineering

Solution - 3rd Step Model Building

Solution - 3rd Step Model Building

Solution - 4th Step Model Selection

Solution - 4th Step Model Selection

Algorithm	Accuracy		Precision		Recall		F-Score		AUC		Average Log Loss		Training Log Loss	
Ш	ı		ī		lı	Ĭ	ī	h	í	I		í	ī	
Anomaly Detection	0.417036		0.071811		0.721174		0.130616		0.660331		0.706956		-208.776221	
Logistic Regression	0.983061		0.972701		0.741873		0.841749		0.991722		0.05444		76.222472	
Decision Forest	0.99583		0.967829 0.963351		3351	0.965585		0.998512		0.015648		93.165659		
Neural Network	0.98457		0.96	0.960463 0.777913		0.859603		0.994018		0.042999		81.219275		

Solution - 4th Step Model Selection

Method	ADR	VDR	AFPR
Anomaly Detection	72.12%	81.38%	92.82%
Logistic Regression	74.19%	96.69%	2.73%
Decision Forest	96.34%	99.62%	3.23%
Neural Network	77.79%	97.75%	3.95%
Original Method	0.19%	0.65%	0.00%

Note:

ADR (Fraud Account Detection Rate): The percentage of detected fraud accounts in all fraud accounts.

VDR (Value Detection Rate): The percentage of monetary savings, assuming the current fraud transaction triggered a blocking action on subsequent transactions, over all fraud losses.

AFPR (Account False Positive Ratio): The ratio of detected false positive accounts over detected fraud accounts.

3. Demo

Web App

- Python based Web App
- Front-end framework : Bootstrap
- Back-end framework : Flask
- Hosted on Linux VM
- URL: fraudwatch.azurewebsites.net/

Web Page - Blank

saction Type:
AYMENT © TRANSFER © CASH_IN © CASH_OUT © DEBIT
punt:
ne Origin:
ansaction Origin
Balance Origin:
ne Dest:
ansaction Destination
Balance Destination:

Web Page #1 - Input

Transaction Type:
● PAYMENT ● TRANSFER ● CASH_IN ● CASH_OUT ● DEBIT
Amount:
21312
Name Origin:
C0980
Old Balance Origin:
0
Name Dest:
C9809
Old Balance Destination:
0

Web Page #1 - Output

Transaction Type:
PAYMENT TRANSFER CASH_IN CASH_OUT DEBIT
Amount:
\$
Name Origin:
Transaction Origin
Old Balance Origin:
0
Name Dest:
Transaction Destination
Old Balance Destination:
0
Submit
Success! ('Fraud Probability': '6.5%')

Web Page #2 - Input

ransaction Type:
PAYMENT TRANSFER CASH_IN CASH_OUT DEBIT
Amount:
181
Name Origin:
C1305486145
Old Balance Origin:
181
Name Dest:
C553264065
Old Balance Destination:
0

Web Page #2 - Output

Transaction Type:
PAYMENT TRANSFER CASH_IN CASH_OUT DEBIT
Amount:
\$
Name Origin:
Transaction Origin
Old Balance Origin:
0
Name Dest:
Transaction Destination
Old Balance Destination:
0
Submit
Success! {'Fraud Probability': '73.78%'}

4. Constraints and Limitations

Model & Data Constraints

- Lack of time series analysis
 - Due to lack of temporal data
- Only two kinds of Destination Bank Account
 - Private/Customer & Merchant account
- Only one type of Origin Bank Account
 - Private/Customer

Cloud Service Limitations

SaaS Limitations

- Free Tier ML Studio
- Included transactions (per month): 1,000
- Included compute hours (per month) : 2

PaaS Limitations

- Free Tier Linux VM
- RAM 1 GB, Storage 1 GB
- 60 min/day compute time
- Insecure Data Transfer (Lack of SSL Certificate)

Unanswered Business Questions

- How much time a bank should maintain the data for getting better prediction?
- What is the best probability threshold to flag a transaction as fraud?
 - Currently, we are using 50%

Future Work

Improve the rule for triggering block system
 [0, 0.5]: GOOD
 [0.5, 0.7]: Contact customer for verification

[0.7, 1]: BAD

THANKS!

Any questions?

You can find me at:

ajinkya@uw.edu, xzhitong@uw.edu, shi249@uw.edu

