K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS DC CIRCUITS

Numerical 1: Introduce the ground termination, write the nodal equations, and solve for the node voltages for the circuit shown in the following figure. Calculate the current I shown in the Figure 1.

Figure 1: Circuit 1

Solution:

From Figure 1 Circuit 1,

$$V_B = 10V \dots (1)$$

For node A,

Applying Kirchhoff's Current Law(KCL) and Ohm's Law at A,

$$-(1\times10^{-3}) + \frac{V_A - V_B}{1\times10^3} + \frac{V_A - V_C}{1\times10^3} = 0$$
$$-1 + V_A - V_B + V_A - V_C = 0$$
$$2V_A - V_B - V_C = 1 \dots (2)$$

For node C,

Applying Kirchhoff's Current Law(KCL) and Ohm's Law at C,

$$\frac{V_C - 0}{1 \times 10^3} + \frac{V_C - V_B}{1 \times 10^3} + \frac{V_C - V_A}{1 \times 10^3} = 0$$

$$V_C + V_C - V_B + V_C - V_A = 0$$

$$3V_C - V_B - V_A = 0 \dots (3)$$

From (1), (2) and (3) we get,

$$V_A = 8.6 V$$

$$V_B = 10V$$

$$V_C = 6.2 \text{V}$$

$$I = \frac{V_C - 0}{1 \times 10^3} = \frac{6.2 - 0}{10^3}$$

$$I = 6.2 \text{mA}$$

SIMULATED RESULTS

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 2: Circuit Schematic and Simulated Results

Quantity	Calculated Value	Simulated Value
V_A	8.6V	8.6V
V_C	6.2V	6.2V
I	$6.2 \mathrm{mA}$	0.0062A

Table 1: Numerical 1

Numerical 2: Using nodal voltage method, find the magnitude and direction of current I in the network of the circuit given in Figure 3.

Figure 3: Circuit 2

Solution:

In Figure 3 Circuit 2,

Applying Source Transformation to Voltage Sources V1 and V2,

$$I_1 = \frac{V_1}{R_3} = \frac{25}{5} = 5A$$
$$I_2 = \frac{V_2}{R_5} = \frac{50}{2} = 25A$$

Figure 4: Modified Circuit 2a after Source Transformation

Combining parallel resistances,

Figure 5: Modified Circuit 2b after Combining parallel resistances

Applying nodal analysis,

For node A,

Applying Kirchhoff's Current Law(KCL) and Ohm's Law at A,

$$-5 + \frac{V_A - 0}{1.428} + \frac{V_A - V_B}{10} = 0$$

$$10V_A + 1.428(V_A - V_B) = 71.4$$

$$11.428V_A - 1.428V_B = 71.4 \dots (1)$$

For node B,

Applying Kirchhoff's Current Law(KCL) and Ohm's Law at B,

$$25 + \frac{V_B - 0}{1.333} + \frac{V_B - V_A}{10} = 0$$

$$10V_B + 1.333(V_B - V_A) = -333.325$$

$$11.333V_B - 1.333V_A = -333.325 \dots (2)$$

From (1) and (2) we get,

$$V_A = 2.611 V$$

$$V_B = -29.1 \mathrm{V}$$

By Ohm's Law,

$$I = \frac{V_A - V_B}{10} = \frac{2.611 - (-29.1)}{10} = \frac{31.711}{10}$$

$$I = 3.1711A$$

SIMULATED RESULTS

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 6: Circuit Schematic and Simulated Results

Parameter	Calculated Value	Simulated Value
V_A	2.611V	2.61183V
V_B	-29.1V	-29.0981V
I	3.1711A	3.17099A

Table 2: Numerical 2

Numerical 3: By using repeated source transformations, find the value of voltage V in the network given in Figure 7.

Figure 7: Circuit 3

Solution:

In Figure 7 Circuit 3,

Applying Source Transformation to Voltage Source V1,

$$I_1 = \frac{V_1}{R_4} = \frac{40}{4} = 1A$$

Figure 8: Modified Circuit 3a after Source Transformation

Combining parallel resistances,

Figure 9: Modified Circuit 3b after Combining parallel resistances

Applying Source Transformation to Current Source I1, $V_1 = V_1 \times R_1 = 10 \times 3 = 30V$

Figure 10: Modified Circuit 3c after Source Transformation

Combining series resistances,

Figure 11: Modified Circuit 3d after Combining series resistances

Applying Source Transformation to Voltage Source V1,

$$I_1 = \frac{V_1}{R_1} = \frac{30}{5} = 6A$$

Figure 12: Modified Circuit 3e after Source Transformation

Applying Source Transformation to Current Source I1,

$$V_1 = I_1 \times \frac{R_1 \times R_2}{R_1 + R_2} = 6 \times 4 = 24V$$

Figure 13: Modified Circuit 3f after Source Transformation

Combining series resistances,

Figure 14: Modified Circuit 3g after Combining series resistances

To find V,

Using Voltage Division Rule,

$$V=24{\times}\frac{4}{4+8}$$

$$V = 8V$$

SIMULATED RESULTS

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 15: Circuit Schematic and Simulated Results

Parameter	Calculated Value	Simulated Value
V	8V	8V

Table 3: Numerical 3

Numerical 4: Find R_{ab} in the four way power divider circuit given in Figure 16. Each resistance is of 3Ω

Figure 16: Circuit 4

Solution:

In Figure 16 Circuit 4,

Converting the resistances connected in Delta in the network to Stars,

$$\mathbf{R}_{star} = \frac{3 \times 3}{3 + 3 + 3}$$

$$\mathbf{R}_{star} = \mathbf{1}\Omega$$

Figure 17: Modified Circuit 4a after Delta to Star

Combining series and parallel resistances and simplifying the circuit,

Figure 18: Modified Circuit 4b after Combining series resistances

Figure 19: Modified Circuit 4c after Combining series and parallel resistances

Figure 20: Modified Circuit 4d after Combining series resistances

Figure 21: Modified Circuit 4e after Combining series resistances

SIMULATED RESULTS

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 22: Circuit Schematic and Simulated Results

Verifying the Calculated Values with Simulated Values:

Parameter	Calculated Value	Simulated Value
R_{ab}	6Ω	5.999988Ω

Table 4: Numerical 4

For finding R_{ab} by simulation, we use $Ohm's\ Law$,

- i) We first connect a 10V voltage source across the terminals a and b.
- ii) Find the current flowing through the 10V voltage source.
- iii) Then use $R = \frac{V}{I} [Ohm's Law]$

Numerical 5: Find the Norton equivalent circuit for the active linear network shown in the Figure 23. [Hint: It would be easier to first find Thevenin's equivalent circuit].

Figure 23: Circuit 5

Solution:

Finding R_{Th} ,

Figure 24: Modified Circuit 5a for finding R_{Th}

Further simplifying we get,

$$R_{Th} = R_N = 16\Omega$$

Applying Source Transformation,

Figure 25: Modified Circuit 5b after Source Transformation

Applying Kirchhoff's Voltage Law (KVL),

$$20 - 15I_1 - 10I_1 = 0$$

$$25I_1 = 20$$

$$I_1 = 0.8A$$

Finding voltage across R_1 ,

$$V_{R1} = I_1 \times R_1 = 0.8 \times 10$$

$$V_{R1} = 8V$$

$$V_{Th} = 8 + 24$$

$$\therefore V_{Th} = 32V$$

Thevenin's Equivalent Circuit

Figure 26: Thevenin's Equivalent Circuit

Nortons's Equivalent Circuit

Figure 27: Nortons's Equivalent Circuit

SIMULATED RESULTS

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 28: Modified Circuit 5c for finding R_{Th} by simulation

Figure 29: Circuit Schematic and Simulated Results

Quantity	Calculated Value	Simulated Value
R_N	16Ω	16Ω
V_{Th}	32V	32V
I_N	2A	2A

Table 5: Numerical 5

Numerical 6: Find the currents I_1 , I_2 , I_3 and voltages V_1 , V_2 , V_3 shown in the Figure 30.

Figure 30: Circuit 6

Solution:

Considering Loops 1 and 2,

Figure 31: Loops 1 and 2 in Circuit 6

By Ohm's Law,

$$V_1 = 8I_1 \; ; \; V_2 = 3I_2 \; ; \; V_3 = 6I_3$$

$$I_1 = I_2 + I_3 \qquad \qquad(1)$$

Applying KVL to Loop 1,

$$30 - 8I_1 - 3I_2 = 0$$

 $8I_1 + 3I_2 = 30$ (2)

Applying KVL to Loop 2,

$$-3I_2 + 6I_3 = 0$$

 $I_2 = 2I_3$ (3)

From (1), (2) and (3),

$$I_1 = 3A$$

$$I_2 = 2A$$

$$I_3 = 1A$$

Hence,

$$V_1 = 8I_1 = 8 \times 3 = 24V$$

$$V_2 = 3I_2 = 3 \times 2 = 6V$$

$$V_3 = 6I_3 = 6 \times 1 = 6V$$

SIMULATED RESULTS

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 32: Circuit Schematic and Simulated Results

Quantity	Calculated Value	Simulated Value
I_1	3A	3A
I_2	2A	2A
I_3	1A	1A
V_1	24V	24V
V_2	6V	6V
V_3	6V	6V

Table 6: Numerical 6

Numerical 7: Find the current I_o shown in the Figure 33

Figure 33: Circuit 7

Solution:

 V_2 is a current dependant voltage source,

Applying KVL,

$$54 - 22I_o - 5I_o = 0$$

$$I_o = 2A$$

SIMULATED RESULTS

The given circuit is simulated in LTspice and the results obtained are as follows:

For simulation, we check the total current in the circuit (I_o) by substituting $I_o = 2A$ in $5I_o$. Hence, replacing it with 10V.

Figure 34: Circuit Schematic and Simulated Results

Quantity	Calculated Value	Simulated Value
I_o	2A	2A

Table 7: Numerical 7

${\bf Numerical~8:~Find}$

- i) Thevenin Equivalent Voltage
- ii) Thevenin Equivalent Resistance

for the networks shown in the Figure 35 and 36.

Figure 35: Circuit 8

Figure 36: Circuit 9

Solution:

For Circuit 8,

Finding V_{Th} ,

Figure 37: Considering Loops 1 and 2

Applying KVL to Loop 1,

$$10 - (I_1 - I_2) = 0$$

$$I_1 - I_2 = 10$$
(1)

Applying KVL to Loop 2,

$$2I_2 + 6I_2 + 2I_2 + 1(I_2 - I_1) = 0$$

From (1) and (2),

$$I_1 = 11A$$

$$I_2 = 1A$$

$$V_{Th} = V_{6\Omega} = 6 \times I_2 = 6 \times 1$$

$$V_{Th} = 6V$$

Finding R_{Th} ,

Figure 38: Modified Circuit 8a to find R_{Th}

$$R_{Th} = \frac{(2k+2k) \times 6k}{2k+2k+6k}$$

$$R_{Th} = 2.4k\Omega$$

For Circuit 9, Finding V_{Th} ,

Figure 39: Circuit 2

$$V_{Th} = I_1 \times R_1 = 1 \times 10^{-3} \times 6 \times 10^3$$

 $V_{Th} = 6V$

Finding R_{Th} ,

Figure 40: Modified Circuit 9a to find R_{Th}

 $R_{Th} = 6k\Omega$

SIMULATED RESULTS for Circuit 8

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 41: Circuit Schematic and Simulated Results

$$V_{Th} = V_a - V_b$$
$$V_{Th} = 6V$$

Figure 42: Finding R_{Th} by simulation

Quantity	Calculated Value	Simulated Value
V_{Th}	6V	6V
R_{Th}	$2.4 \mathrm{k}\Omega$	$2.3999 \mathrm{k}\Omega$

Table 8: Numerical 8 Circuit 8

SIMULATED RESULTS for Circuit 9

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 43: Circuit Schematic and Simulated Results

Figure 44: Finding R_{Th} by simulation

Quantity	Calculated Value	Simulated Value
V_{Th}	6V	6V
R_{Th}	$6 \mathrm{k}\Omega$	$5.9999 \mathrm{k}\Omega$

Table 9: Numerical 8 Circuit 9

Numerical 9: Find Thevenin and Norton Equivalents at terminal A-B of the circuit shown in Figure 45

Figure 45: Circuit 10

Solution:

Finding R_{Th} ,

Figure 46: Modified Circuit 10a to find R_{Th}

$$R_{Th} = \frac{(14+6) \times 5}{14+6+5}$$

$$R_{Th} = 4\Omega$$

$$R_{Th} = 4\Omega$$

Finding V_{Th} ,

Applying Source Transformation,

Figure 47: Modified Circuit 10b to find V_{Th}

Applying Nodal Analysis,

$$\frac{V_A - 14 - 6}{14 + 6} + 3 + \frac{V_A}{5} = 0$$
$$\frac{V_A - 20}{20} + \frac{V_A}{5} = -3$$

$$V_A = -8V$$

$$\therefore V_{Th} = -8V$$

Thevenin's Equivalent Circuit,

Figure 48: Thevenin's Equivalent Circuit

$$I_N = \frac{V_{Th}}{R_{Th}} = \frac{-8}{4}$$
$$\therefore I_N = -2A$$

Norton's Equivalent Circuit,

Figure 49: Norton's Equivalent Circuit

SIMULATED RESULTS

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 50: Circuit Schematic and Simulated Results

Figure 51: Finding R_{Th} by simulation

Quantity	Calculated Value	Simulated Value
V_{Th}	-8V	-8V
I_N	-2A	-2A
R_{Th}	4Ω	4Ω

Table 10: Numerical 9

Numerical 10: Find the maximum power in R_L which is variable in the circuit shown below in Figure 52.

Figure 52: Circuit 11

Solution:

Finding R_{Th} ,

Figure 53: Modified Circuit 11a for finding \mathbf{R}_{Th}

$$R_{Th} = \frac{40 \times 60}{40 + 60} + \frac{50 \times 50}{50 + 50}$$
$$R_{Th} = 49\Omega$$

Figure 54: Considering Loops 1 and 2 in Circuit 11

Finding V_{Th} ,

Applying Kirchhoff's Voltage Law (KVL) to Loop 1,

$$100 - 40(I_1 - I_2) - 60(I_1 - I_2) = 0$$

$$100 - 100(I_1 - I_2) = 0$$

$$I_1 - I_2 = 1$$
(1)

Applying Kirchhoff's Voltage Law (KVL) to Loop 2,

$$100(I_2 - I_1) + 50I_2 + 50I_2 = 0$$

$$200I_2 - 100I_1 = 0$$

$$I_1 = 2I_2$$
(2)

From (1) and (2),

$$I_1 = 2A$$

$$I_2 = 1A$$

$$V_A = 100 - 40(I_1 - I_2) = 100 - (40 \times 1)$$

$$\therefore V_A = 60V$$

$$V_B = 50(I_2) + 2 = (50 \times 1) + 2$$

$$\therefore$$
V_B = 52V

$$V_{Th} = V_A - V_B = 60 - 52$$

$$\therefore V_{Th} = 8V$$

Thevenin's Equivalent Circuit

Figure 55: Thevenin's Equivalent Circuit

For Maximum Power Transfer,

$$R_L = R_{Th} = 49\Omega$$

$$P_{Max} = \frac{V_{Th}^2}{4 \times R_{Th}}$$

$$P_{Max} = \frac{8^2}{4 \times 49}$$

$$\therefore P_{Max} = 326.5306 mW$$

SIMULATED RESULTS

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 56: Modified Circuit 11b for finding R_{Th} by simulation

Figure 57: Circuit Schematic and Simulated Results

Quantity	Calculated Value	Simulated Value
R_{Th}	49Ω	48.9999Ω
V_{Th}	8V	8V
P_{Max}	326.5306 mW	$326.53\mathrm{mW}$

Table 11: Numerical 10

Numerical 11: From Figure 58, find the value of R_L for Maximum Power transfer and calculate the Maximum Power.

Figure 58: Circuit 12

Solution:

Considering Loops 1, 2 and 3,

Figure 59: Loops 1, 2 and 3 in Circuit 12

Applying Kirchhoff's Voltage Law (KVL) to Loop 1,

$$6 - 2(I_1 - I_2) = 0$$

 $I_1 - I_2 = 3$ (1)

Applying Kirchhoff's Voltage Law (KVL) to Loop 2,

$$-2(I_2 - I_1) - 3I_2 - 1(I_2 - I_3) = 0$$

-6I_2 + 2I_1 + I_3 = 0(2)

From Loop 3,

From (1), (2) and (3),

 $I_1 = 4A$

 $I_2 = 1A$

 $I_3 = -2A$

Hence by Ohm's Law,

$$V_{Th} = 1 \times (1 - (-2))$$

 $V_{Th} = 3V$

For finding R_{Th} ,

Figure 60: Modified Circuit 12a for finding R_{Th}

$$R_{Th} = \frac{3 \times 1}{3+1} + 1$$

$$R_{Th} = 1.75\Omega$$

Thevenin's Equivalent Circuit

Figure 61: Thevenin's Equivalent Circuit

For Maximum Power Transfer,

$$R_L = R_{Th} = 1.75\Omega$$

$$P_{Max} = \frac{{V_{Th}}^2}{4 \times R_{Th}} = \frac{3^2}{4 \times 1.75}$$

$$\therefore P_{Max} = 1.2857W$$

SIMULATED RESULTS

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 62: Modified Circuit 12b for finding R_{Th} by simulation

Figure 63: Circuit Schematic and Simulated Results

Verifying the Calculated Values with Simulated Values:

Quantity	Calculated Value	Simulated Value
R_{Th}	1.75Ω	1.74999Ω
V_{Th}	3V	3V
P_{Max}	1.2857W	1.285W

Table 12: Numerical 11
