

Beam dynamics simulations for the FAIR SIS100 synchrotron

Oliver Boine-Frankenheim, Vera Chetvertkova, Vladimir Kornilov

FAIR main facts

a new facility for research with anti-protons and heavy-ions.

Primary ions: Protons-Uranium

Max. energy: 100 Tm

Max. beam intensity on target: 10¹¹/s (15 kW)

Beam intensity/quality limitations:

Sources, injection (Liouville), cycle times

space charge / resonances

lifetime

activation

Unique features:

Parallel operation (serves 4 research areas)

Intense and high-energy heavy-ion beams

Slow extraction and bunch compression

Storage rings and beam cooling

Start/end commissioning (day-1): 2024/2025

	SIS-100
Reference primary ion	U ²⁸⁺
Reference energy	1.5 GeV/u
Ions per cycle	3E11
Bunch length	60 ns
Cycle rate	0.5 Hz
Beam power	15 kW

FAIR@GSI

https://youtu.be/wSN7jIoV5nM

The SIS100 synchtrotron

Aerial photo of the construction site taken on May 25, 2014 (photo: Jan Schäfer for FAIR) (2014, before start of construction)

Images courtesy of M. Konradt / J. Falenski

- Circumference: 1 km
- Rigidity: 100 Tm
- Fast ramping superferric 'nuclotron' magnets (4 T/s)
- Cycle rates of up to 1 Hz (1 s accumulation after injection)
- Slow extraction (over seconds) or fast extraction (single compressed bunches)

SIS100 Machine model and simulations

Multipoles from measurements with rotating coils

$$B(z)=B_{\scriptscriptstyle y}+iB_{\scriptscriptstyle y}=\sum
olimits_{\scriptscriptstyle n=1}C_{\scriptscriptstyle n}\Big(rac{z}{R_{\scriptscriptstyle c}}\Big)^{\scriptscriptstyle n-1}$$

Dynamic effects: Eddy currents and beam pipe

Cooling pipes to keep pipe wall at 10 K

Magnet field distortion due to cooling pipes during fast ramping (4 T/s)

The thin (0.3 mm) stainless steal pipe is also the main transverse impedance source for beam instabilities!

Impedance/instability/damping simulation studies are not part of this talk.

(Transverse) space charge force in SIS100

$$\boldsymbol{\varepsilon}_{\scriptscriptstyle 0} \nabla \cdot \vec{E} = \boldsymbol{\rho}$$

Space charge tune shift: $\Delta Q_y^{sc} \propto -\frac{q^2}{m} \frac{N}{B_f} \frac{4}{\epsilon \beta_0^2 \gamma_0^3}$

(in the rest system of the beam)

The transverse space charge force is one of the main intensity limiting effect in in the FAIR synchrotrons!

Space charge tune shifts in SIS100: 0.2 - 0.4 (> 0.5 during bunch compression)

Time scales: 1000-10⁶ turns (1 ms - 1 s)

Tolerable emittance growth < 10 %, Beam loss (a few %)

Simulation challenge: Control numerical errors/emittance growth! Performance!!!!

Particle Tracking Codes used for SIS100

Elegant (M. Borland)

- 3D static nonlinear space charge kicks
- Pelegant for parallel tracking
- For flexible, also for longitiudinal tracking
- Script input
- V. Kornilov (2018)

py-orbit

(A.Shishlo, S.Cousineau, J.Holmes, S.Appel) http://sourceforge.net/projects/py-orbit/

- Teapot tracking
- 3D static space charge kicks
- 2D/2.5D self-consistent space charge
- o MPI
- C++ sources / Python interface

Y. Yuan, O. Boine-F., I. Hofmann, PRAB 2018

pyPATRIC:

- 3D particle tracking with self-consistent
 2.5D space charge solvers
- MADX maps, arbitrary rf bucket forms
- o Automatized parameter scans.
- python/numpy implementation
- Optional: gridless space charge solvers
- O. Boine-Frankenheim, W. Stem, NIMA 2018

MAD-X (L. Deniau, F. Schmidt, et al.) https://github.com/MethodicalAcceleratorDesign/MAD-X

- Thin lens / PTC tracking
- 3D static space charge kicks
- Fortran/C sources, Script input

V. Chetvertkova (2018)

Example: Tracking with static 3D space charge

- U²⁸⁺ bunch at the injection energy (200 MeV/u) in SIS100
- Space-charge tune shifts: vertrical ΔQ_{sc} =0.3, horizontal ΔQ_{sc} =0.2
- Elegant: 3D static "frozen" nonlinear space-charge kicks
- Field errors in the main dipole magnets and in the main quadrupole magnets.
- Beam loss after 20k turns (130ms)
- Lines: black (2nd order, quadrupole), blue (3rd order, sextupole), red (4th order, octupole)

V. Kornilov (2018)

Self-consistent (grid-based) tracking: PIC for beams

The present "production code" for beam quality/loss predictions.

integration step
$$\begin{pmatrix} x_j \\ x'_j \\ y'_j \\ y'_j \end{pmatrix}_{n+1}$$
 (4D, for simplicity)
$$= \mathcal{M}(s_n, s_{n+1}) \begin{pmatrix} x_j \\ x'_j + \Delta x'_j \\ y_j \\ y'_j + \Delta y'_j \end{pmatrix}_{n}$$
 (favorite interpolation scheme)
$$e_0 \nabla \cdot E = \rho(x, y, s) \quad Q' = \frac{Q}{L}$$
 (favorite Poisson solver) (macro particle charge)
$$x'' = \frac{qE_x}{m\beta_0^2c^2\gamma_0^3}$$
 (space charge kicks)

Artificial emittance growth depending on the ratio of real N to macro-particles M

Growth rate:
$$v \propto \frac{N^2}{M}$$
 For example: Boine-Frankenheim, Hofmann, Struckmeier, Appel, NIM A (2015)

Because of noise and performance issues "frozen" or "adaptive" sc kicks are used.

However, this might be justified only for weak space charge and Gaussian distributions! (Example: Bunch compression with strong space charge in SIS100)

(Fast) gridless space charge solvers

$$F_1 = \sum_{j=1}^M F_{12} egin{array}{c} oldsymbol{\chi_1} \ oldsymbol{f 0} \ oldsymbol{f ...} \ oldsymbol{macroparticles} \ \end{pmatrix}$$

Potential:
$$\phi(x_1) = \frac{Q'}{2\pi\epsilon_0 \gamma^2} \sum_{j=1}^{M} \ln|x_2 - x_1|$$

Advantages:

- Underlying (multi-particle) Hamiltonian
- Controlled noise smoothing (shapes)!
- Cylindrical pipe with image charges.
- Fast Multipole Method

Disadvantages:

Complex pipe boundaries

 $F_1 = \sum_{j=1}^M F_{12} \qquad \qquad F(x_1) = \frac{qQ'(x_1 - x_2)}{2\pi\epsilon_0\gamma^2 \mid x_1 - x_2 \mid^2}$ (sum over all macroparticles) $\sum_{j=1}^M \ln \mid x_2 - x_1 \mid$ Direct particle-macroparticle force

Smoothed ",cloud" macroparticles:

Greengard and Rokhlin, A Fast Algorithm for Particle Simulations, J. Comput. Phys. (1997) Zhang and Berz, The fast multipole method in the differential algebra framework, Nucl. Instr. Meth. A (2011) **FMMLIB2D:** Gimbutas and Greengard, Simple FMM Libraries for Electrostatics ..., Comm. Comput. Phys. (2015)

Tests: (Single-particle) Symplecticity

R. Ruth, A Canonical Integration Technique, 1983; E. Forrest, Geometric Integration for Particle Accelerators, 2006

$$\mathbf{x}_2 = M_{1,2}(\mathbf{x}_1)$$

Mapping of particle coordinates from position "1" to position "2"

$$M^T S M = S$$

Symplecticity condition
M: Jacobian or transport matrix

$$S_{2D} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Symplectic matrix

Symplectic error [2]: $||M^TSM - S|| = \eta$

$$\begin{pmatrix} x_j \\ x_j' \\ y_j \\ y_j' \\ y_{n+1}' \end{pmatrix}_{n+1} = M(s_n, s_{n+1}) \begin{pmatrix} x_j \\ x_j' + \Delta x_j' \\ y_j \\ y_j' + \Delta y_j' \\ y_j' + \Delta y_j' \\ y_j' + \Delta y_j' \\ x_j' + \Delta y_j' \end{pmatrix}_{n}$$

$$x_j^{n+1} = \sum_{i=0}^{6} M_{j,i} x_i^n$$
 $j = 1, 6, n = N, N + 5 \implies M_j$

Reconstruction of the individual particle transport matrix M for one cell with space charge [1]

[1] A. Luccio, N. D'Imperio,Eigenvalues of the One-Turn matrix, BNL (2003)[2] M. Titze, ICFA-HB 2016

Simplectic error for FODO (PIC vs. FMM)

How to test multi-particle symplecticity in a tracking code?

Conclusions

- The FAIR SIS100 construction is progressing! The focus of beam dynamics simulations is now on the characterization of the magnets and the identification of optimum parameter windows for high-intensity operation.
- Also for the purpose of benchmarking, several codes are employed, with different tracking implementations and space charge models/solvers.
- Self-consistent space charge solvers are required for realistic predictions! At present they are employed only for short-term simulations (< 10k turns) because of performance/noise issues.
- Gridless space charge solvers based on the Fast Multipole Method are very promising in terms of flexibility and performance for 2.5D or 3D tracking with self-consistent space charge.
- Gridless solvers are "closer" to a Hamiltonian multi-particle system for which fluctuations follow the "well-known" IBS theory. Therefore the numerical errors might be easier to predict and to control (cloud shapes).
- More difficult to add complex beam pipe geometries for image contributions!