

UNIVERZITET U SARAJEVU ELEKTROTEHNIČKI FAKULTET ODSJEK ZA AUTOMATIKU I FI FKTRONIKU

Razvoj sistema za vizualnu odometriju velike skalabilnosti

MENTOR:

doc.dr. Dinko Osmanković, dipl.ing.el.

KANDIDAT:

Emina Hasanović, BoE

Sarajevo, oktobar 2020.

Sadržaj

- Uvod
- Osnovni koncepti kompjuterske vizije
- Monokularna vizualna odometrija
- Programska implementacija

Uvod

- Šta je odometrija?
 - Procjena položaja i kretanja objekta u vremenu.
- Šta je vizualna odometrija?
 - Procjena položaja i kretanja kamere u realnom vremenu.
 - Invarijantan na vrstu pogona.
 - Ideja je predstavljena prvi put za planetarne rovere na Marsu – Moravec 1980. godine.

Sojourner rover na Marsu, 1997. godine

Uvod

- Senzori za vizualnu odometriju
 - Pasivne kamere: monokularne, stereo, omnidirekcionalne

UEye kamera

Point Gray stereo kamera

Bubl omnikamera

Uvod

- Monokularna vizualna odometrija
 - Jedna kamera
 - Nepoznat faktor skaliranja pri translaciji
 - Koristi se i u hibridnim metodama
- Stereo vizualna odometrija
 - Dvije kamere
 - Riješen problem nepoznatog faktora skaliranja
 - Svodi se na monokularni slučaj ukoliko se koriste udaljene značajke

Osnovni koncepti kompjuterske vizije

- Pinhole model kamere: formiranje slike na ravnini kamere i transformacija koordinata stvarne 3D tačke u 2D tačku.
- Transformacije koordinata iz koordinatnog sistema kamere u koordinatni sistem okruženja.
- Intrinsični i ekstrinsični parametri kamere.

Ilustracija transformacije koordinata između sistema kamere i okoline

Osnovni koncepti kompjuterske vizije

• Epipolarna geometrija

- Objašnjava kako su dvije slike povezane, koje je uslikala jedna kamera ili dvije približno iste kamere u okviru stereovizijskog sistema.
- Fundamentalna i/ili esencijalna matrica.
- Dekompozicija na singularne vrijednosti esencijalne matrice da bi se odredile matrice rotacije i translacije između dvaju koordinatnih sistema kamera.

Geometrija dvaju pogleda

Monokularna vizualna odometrija

Monokularna vizualna odometrija

- Vađenje (ekstrakcija) značajki sa slike
 - Line Segment Detector LSD
 - Standard Hough Line Transform SHLT
 - Probabilistic Hough Line Transform PHLT
- Korespondencija značajki
 - Praćenje značajki u slijedu slika (eng. feature tracking) pomoću Kanade-Lucas-Tomasi (KLT) metode
- Estimacija pozicije kamere
 - Procjena esencijalne matrice
 - Odstranjivanje vanpopulacijskih značajki pomoću RANSAC metode
 - Procjena matrice rotacije i translacije

Monokularna vizualna odometrija

Primjer detekcije pomoću LSD detektora

Primjer detekcije linija SHLT (lijeva slika) i PHLT (desna slika)

Primjer praćenja značajki pomoću KLT metode

Programska implementacija

- C++ programski jezik i OpenCV (eng. Open Source Computer Vision) biblioteka
- KITTI podaci za evaluaciju algoritma
 - Snimani su različiti scenariji u saobraćaju sa mnogo statičkih i dinamičkih objekata, te otvoreni putevi kroz ruralna područja.
 - Korišteni su različiti senzori, stereo kamere u boji i grayscale visoke rezolucije, Velodyne 3D laserski skener, te GPS/IMU inercijski navigacijski sistem visoke preciznosti.

Programska implementacija

Platforma za snimanje podataka: VW Passat sa senzorima

Raspored senzora na autu VW Passat:
Dimnezije i mjesta gdje su senzori postavljeni u
odnosu na ram vozila (crveno), te udaljenost od
zemlje je označena zelenom bojom.
Transformacije između senzora su prikazane
plavom bojom

Greške za svaki od detektora za 200 frejmova

Detektor	ATE_{trans} [m]	ATE_{rot} [\circ]	ϵ_{trans} [%]	ϵ_{rot} [o/m]
LSD	1.06	4.27	0.60	1.67
PHLT	3.55	30.37	0.65	6.48
SHLT	5.20	21.63	0.78	2.50

Vrijeme izvršavanja cijele video sekvence za svaki od detektora

Vrijeme izvršavanja	Mono VO: LSD	Mono VO: PHLT	Mono VO: SHLT
Ukupno vrijeme izvršavanja	2679.28 sekundi	2023.65 sekundi	3906.06 sekundi
Prosječno vrijeme izvršavanja	0.59 sekundi	0.44 sekundi	0.86 sekundi

Zaključak

- LSD detektor za određene pređene udaljenosti ima najbolje rezultate od sva tri korištena detektora.
- Algoritam je baziran na značajkama (eng. feature-based), pokazano da se ne moraju koristiti standardni detektori značajki na slikama kao što je naprimjer FAST detektor.
- VO algoritam sa LSD detektorom je svakako robusniji za okruženja gdje su dominantne linije na slikama.
- Ukoliko se uporedi implementirani Mono VO algoritam sa poznatim Libviso Mono algoritmom od Andreasa Geigera i jasno je da Libviso Mono ima manju rotacijsku grešku, dok Mono VO algoritam sa LSD i PHLT detektorima ima manju translacijsku grešku. Prosječno vrijeme izvršavanja Libviso Mono algoritma iznosi 0.268 sekundi, dok prosječno vrijeme izvršavanja Mono VO algoritma iznosi 0.59 sekundi za LSD detektor.
- Drift između stvarne trajektorije i estimirane trajektorije ovaj algoritam (sa bilo kojim detektorom) ne može sam ukloniti bez implementacija dodatnih algoritama.

