课程代号: PHY17016

(C)  $\overline{v_x} = \sqrt{\frac{8kT}{3\pi m}}$ ;

北京理工大学 2009-2010 学年第二学期

## 大学物理 I 考试题 A 卷

|             |                      |              | 2010年7        | 月5日9:         | 00-11: 00                             | )       |                    |                |
|-------------|----------------------|--------------|---------------|---------------|---------------------------------------|---------|--------------------|----------------|
| 班级          |                      |              | 学号_           |               |                                       | 姓名      |                    |                |
| 任课教         | 如一种名 _               |              |               |               |                                       |         |                    |                |
|             | 选择题                  | 填空题          | 计算 1          | 计算2           | 计算3                                   | 计算 4    | 计算 5               | 总 分            |
| 得分          |                      |              |               | u             |                                       |         |                    |                |
| 2           | 1                    |              |               |               | · · · · · · · · · · · · · · · · · · · | 7 2     |                    |                |
| \p <u>.</u> | · 大田 / H             | 21 八 后目      | 面。 八、         |               |                                       |         |                    |                |
|             |                      | 21 分 每是      |               |               |                                       |         |                    |                |
| <b>请将答</b>  | 条与任卷                 | 面指定的方        | 方括号内          |               |                                       |         | •                  |                |
| 1. (3 %     | 分)质点作                | =曲线运动        | , <i>r</i> 表示 | 位置矢量          | b, v 表示                               | ~速度,    | ā表示加:              | 速度, <i>S</i> え |
| 示路程         | !, a <sub>t</sub> 表示 | 切向加速周        | 度,下列          | 表达式中          | ,                                     |         |                    |                |
|             |                      | , (2) dr     |               |               |                                       | (4) di  | $ \vec{v}/dt  = a$ | 0              |
|             |                      | (4) 是对       |               |               |                                       |         |                    |                |
|             |                      | 是对的;         |               |               |                                       |         | [                  |                |
| (0)         | / H (2)              | , L/1, H1,   |               | 27 7113       | (3) / (1)                             | 1 11 10 | _                  |                |
| 2. (3 )     | 分)假设]                | 卫星环绕地        | 球中心作          | 圆周运动          | 力,则在:                                 | 运动过程    | 是中,卫星              | 星对地球中          |
| 心的          |                      |              |               |               | ,                                     |         |                    |                |
| (A)         | 角动量守恒                | 亘, 动能也       | 守恒;()         | B)角动          | 量守恒,                                  | 动能不完    | 宁恒;                |                |
| (C)         | 角动量不匀                | <b>宁恒,动能</b> | 守恒;(I         | <b>D</b> )角动: | 量不守恒                                  | i,动量t   | 也不守恒               | ;              |
|             |                      | 豆, 动量也       |               |               |                                       |         |                    |                |
|             |                      |              |               |               |                                       |         |                    |                |
| 1. (3 5     | 子)一定量                | 的理想气         | 体贮于某          | 一容器中          | 7,温度                                  | 为 T, 气  | 体分子的               | 质量为m           |
| 根据理         | 想气体分                 | 子模型和统        | 论计假设,         | 分子速           | 度在x方                                  | 向的分量    | 量的平均               | 值              |
|             | - $8kT$              | -            |               |               | $1 \sqrt{8kT}$                        |         |                    |                |

(D)  $\overline{v_x} = 0$   $\circ$ 

- 4. (3分) 用以下两种方法:
- (1) 使高温热源的温度  $T_1$  升高 $\Delta T_1$  (2) 使低温热源的温度  $T_2$  降低同样的值 $\Delta T_1$ 分别使卡诺循环的效率升高 $\Delta\eta_1$ 和 $\Delta\eta_2$ ,两者相比,
- (A)  $\Delta \eta_1 > \Delta \eta_2$ ; (B)  $\Delta \eta_1 < \Delta \eta_2$ ;
- (C)  $\Delta \eta_1$  =  $\Delta \eta_2$ ; (D) 无法确定哪个大。

- 5. (3 分) 两相干波源  $S_1$  和  $S_2$  相距 $\lambda$  /4, ( $\lambda$  为波长),  $S_1$  的相 位比  $S_2$  的相位超前  $\pi/2$ ,在  $S_1$ ,  $S_2$  的连线上,  $S_1$  外侧各点(如  $\frac{1}{P}$ 图中 P 点)两波引起的两谐振动的相位差是

  - (A) 0; (B)  $\pi/2$ ; (C)  $\pi$ ; (D)  $3\pi/2$ .

- 7
- 6. (3分)在迈克尔孙干涉仪的一支光路中,放入一片折射率为 n 的透明薄膜后, 测出两束光的光程差的改变量为一个波长2,则薄膜的厚度是

- (A)  $\lambda/2$ ; (B)  $\lambda/(2n)$ ; (C)  $\lambda/n$ ; (D)  $\lambda/2(n-1)$ .
- 7. (3分) 一束单色光垂直入射在平面光栅上, 衍射光谱中共出现了5条明纹, 若光栅的缝宽度与不透明宽度相等,那么在中央明纹一侧的第二条明纹是

- (A) 第一级; (B) 第二级; (C) 第三级; (D) 第四级。 [
- 1

二、填空题(共33分)

## 请将答案写在卷面指定的划线处

1. (4分) 一人骑自行车沿笔直的公路行驶, 其速度 图线如图中折线 OABCDE 所示, 其中三角形 OAB 的 面积等于三角形 CDE 的面积。图中 CD 线段表示的 的位移为。



2. (4分) 一质量为 m 的质点沿着一条曲线运动, 其位置矢量在空间直角坐标系 中的表达式为 $\vec{r} = a(\cos \omega t)\vec{i} + b(\sin \omega t)\vec{j}$ , 其中  $a \times b \times \omega$ 皆为常量,则此质点对原 

3. (4 分) 一长为 L 的轻质细杆,两端分别固定质量为 m 和 2m 的小球,此系统 在竖直平面内可绕过中点 O 且与杆垂直的水平光滑固定轴(O 轴)转动。开始 时杆与水平成 60°角,处于静止状态。无初转速地释放以后,杆球这一刚体系 4. (3分) 一人从 10 m 深的井中提水。起始时桶中装有 10 kg 的水,桶的质量为 1 kg, 由于水桶漏水,每升高 1 m 要漏去 0.2 kg 的水。当水桶匀速地从井中提到 装 井口时,人所作的功 W= \_\_\_\_\_\_J。 5. (3分)已知f(v)为麦克斯韦速率分布函数, $v_p$ 为分子的最概然速率,则  $\int_{a}^{v_{p}}f(v)\mathrm{d}v$ 表示\_\_\_\_\_ 速率 v>vp 的分子的平均速率表达式为\_\_\_\_\_\_ 6. (3分) 在比热实验中,使温度为  $t_1 = 100$ °C、质量为  $m_1 = 200$ g 的铝,同温度 为  $t_2=20$ °C、质量为  $m_2=50$ g 的水混合,则由铝和水组成的系统,平衡后与混合 前的熵差为\_\_\_\_\_\_J/K。(已知: 铝的比热 $c_{Al} = 0.903 \times 10^3 \text{ J/(kg·K)}$ , 水的比热  $c_{\rm H_2O} = 4.2 \times 10^3 \, {\rm J/(kg \cdot K)}$ ,自然对数  ${\rm ln}1.126 = 0.1185$ ,  ${\rm ln}1.130 = 0.1222$ ) 线 7. (3分) 一单摆的悬线长 l=1.5m,在顶端固定点的竖直 下方 0.45m 处有一小钉,如图所示。设摆动很小,则单摆 的左右两方振幅之比  $A_1/A_2$  的近似值为\_\_\_\_\_ 8. (3分) 用波长为 589nm 的单色线光源 s (垂直于 纸面延伸) 照射双缝, 在观察屏上形成干涉图样, 零级明条纹位于O点,如图所示。如将线光源s向 上平移至 s'位置,零级明条纹将发生移动。欲使零 级明纹移回到 O 点,必须在 缝(填入:  $s_1$ 或  $s_2$ )处覆盖一薄云母片 才有可能; 欲使移动了 4 个明纹间距的零级明纹移回到 0 点, 云母片的厚度应

为\_\_\_\_\_nm (云母片的折射率为 1.58)。

9. (3 分)平行单色光垂直入射于单缝上,得到一组夫琅禾费衍射条纹。若将原缝宽扩大3/5倍,则原第2级明纹位置变成第\_\_\_\_级\_\_\_条纹。

10. (3分) 如图安排的三种透光媒质 I、II、III, III, III



## 三、 计算题 (共46分)

- 1.(10分)己知:质量为m、长为L的均匀细棒,可绕O 点在竖直平面内转动,如图所示。求:
- (1) 质量为 $m_0$ 的子弹(看成质点)以速度 $\bar{v}_0$ 水平射入 细棒最下端A点(没有穿出),系统过A点的角速度;
- (2)子弹穿入细棒后,细棒上升的最大高度h为多少?



2. (10 分) 1mol 双原子分子理想气体作如图的可逆循环过程,其中  $1\rightarrow 2$  为直线,  $2\rightarrow 3$  为绝热线,  $3\rightarrow 1$  为等温线,已知:设图中 1 和 2 点的温度分别为  $T_1$  和  $T_2=2T_1$ ,  $V_3=8V_1$ ,求:



- (1) 各过程的功,内能增量和传递的热量(用  $T_1$  和已知常数表示);
- (2) 此循环的效率 η 为多少?

4线

订

3. (10 分) 一平面简谐波在 t=0 时刻的波形图,如图所示。求:



(2) P处质点的振动方程。



- 4. (10 分) 两平板玻璃之间形成一个 $\theta$ =10<sup>-4</sup>rad 的空气劈尖,若用 $\lambda$ =600nm 的 单色光垂直照射。求:
- (1) 第10条明纹距劈尖棱边的距离;
- (2) 将劈尖内充以折射率为 n=1.28 的液体后, 第 10 条明纹移动了多少?

- 5. (6分) 冬天室内取暖,可以开冷暖空调,也可以开电暖气。试问:
- (1) 为了节省能源,是开冷暖空调好,还是开电暖气好?
- (2) 说明理由。