Seminár 8

Téma

Teória čísel II – úlohy o najmenšom spoločnom násobku a najväčšom spoločnom deliteli

Ciele

Zoznámiť sa s metódami riešenia príkladov o spoločných deliteľoch a násobkoch, upevniť znalosti zo seminára predchádzajúceho.

Úlohy a riešenia

Úloha 8.1. [61-I-3-N1] Určte, pre ktoré prirodzené čísla a,b platí (a,b)=10 a zároveň [a,b]=150.

Riešenie*. Pretože $10 = 2 \cdot 5$ a $150 = 2 \cdot 3 \cdot 5^2$, požadované rovnosti sú splnené práve vtedy, keď $a = 2 \cdot 3^s \cdot 5^t$ a $b = 2 \cdot 3^u \cdot 5^v$, kde $\{s, u\} = \{0, 1\}$ a $\{t, v\} = \{1, 2\}$. Riešením je teda jedna zo štvoríc $\{a, b\} = \{10, 150\}$ alebo $\{a, b\} = \{30, 50\}$.

Komentár. Úloha je relatívne jednoduchá a nevyžaduje žiadne špeciálne znalosti, zároveň však nie je triviálna. Tvorí tak príjemné preklenutie medzi školskými a olympiádnymi príkladmi.

Úloha 8.2. [60-I-5-N1] Nech d je najväčší spoločný deliteľ prirodzených čísel a a b. Ukážte, že čísla a/d a b/d sú celé a nesúdeliteľné.

Riešenie. Ak je d najväčším spoločným deliteľom čísel a a b, potom existujú prirodzené čísla u a v také, že a = ud a b = vd, čím sme dokázali prvú časť tvrdenia. Druhú dokážeme sporom. Predpokladajme, že a/d a b/d nie sú nesúdeliteľné. Potom existuje ich najväčší spoločný deliteľ d_1 . Číslo d_1 však potom delí aj čísla a a b, čo je spor s predpokladom, že d = (a, b).

Komentár. Táto mini-úloha je prípravným krokom k nasledujúcemu všeobecnejšiemu tvrdeniu a zároveň môže pripomenúť použitie dôkazu sporom.

Úloha 8.3. [60-I-5-N2] Dokážte, že pre ľubovoľné prirodzené čísla a, b platí vzťah

$$[a,b] \cdot (a,b) = ab.$$

Riešenie. Nech d=(a,b), potom a=ud, b=vd pre nesúdeliteľné u a v, a teda [a,b]=uvd. Porovnaním ľavej a pravej strany dokazovanej nerovnosti dostávame $uvd \cdot d=ud \cdot vd$, čo je pravdivé tvrdenie, teda vzťah je dokázaný.

Alternatívne môžeme vzťah dokázať úvahou o exponentoch prvočísel, z ktorých sú čísla a a b zložené. Nech $a=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdots p_k^{\alpha_k}$ a $b=p_1^{\beta_1}\cdot p_2^{\beta_2}\cdots p_k^{\beta_k}$, kde p_1 až p_k sú prvočísla a α_k,β_k prirodzené čísla. Potom

$$\begin{split} (a,b) &= p_1^{\min\{\alpha_1,\beta_1\}} \cdot p_2^{\min\{\alpha_2,\beta_2\}} \cdots p_k^{\min\{\alpha_k,\beta_k\}}, \\ [a,b] &= p_1^{\max\{\alpha_1,\beta_1\}} \cdot p_2^{\max\{\alpha_2,\beta_2\}} \cdots p_k^{\max\{\alpha_k,\beta_k\}}, \\ ab &= p_1^{\alpha_1+\beta_1} \cdot p_2^{\alpha_2+\beta_2} \cdots p_k^{\alpha_k,\beta_k}. \end{split}$$

Keďže pre akékoľvek čísla α , β platí $\max\{\alpha,\beta\} + \min\{\alpha,\beta\} = \alpha + \beta$, a to vo všetkých prípadoch $\alpha < \beta$, $\alpha = \beta$, $\alpha > \beta$, je naše tvrdenie dokázané.

Komentár. Predchádzajúce tvrdenie je stavebným kameňom mnohých úloh o spoločných násobkoch a deliteľoch, najmä myšlienka zápisu prirodzených čísel a a b v tvare a = ud a b = vd, kde u a v sú prirodzené čísla také, že (u, v) = 1 a d = (a, b) nájde uplatnenie veľmi často.

Úloha 8.4. [64-I-5-N4] Platí pre každé tri prirodzené čísla a, b, c a ich najväčší spoločný deliteľ d a ich najmenší spoločný násobok n rovnosť abc = nd?

Riešenie. Neplatí, uvedieme protipríklad. Napríklad pre čísla 15, 18 a 24 je d = (15, 18, 24) = 3, n = [15, 18, 24] = 360. Ďalej $15 \cdot 18 \cdot 24 = 6480$ a $(15, 18, 24) \cdot [15, 18, 24] = 3 \cdot 360 = 1080$, to však nie sú rovnaké čísla a tvrdenie neplatí.

Komentár. Všeobecnejší pohľad na predchádzajúci problém by sme dostali skrz pohľad na exponenty prvočísel, z ktorých sú čísla a, b, c zložené. Dokazovaná rovnosť nastane len v prípade, že sú všetky tri čísla navzájom po dvoch nesúdeliteľné.

Zároveň úloha demonštruje riešenie uvedením protipríkladu, čo je princíp, s ktorým sme sa v seminároch zatiaľ nestretli a jeho spomenutie je určite vhodné.

Úloha 8.5. [64-I-5-N5] Ak majú prirodzené čísla a, b najväčšieho spoločného deliteľa d, majú rovnakého najväčšieho spoločného deliteľa aj čísla a, b, a - b, a + b. Dokážte. Platí rovnaké tvrdenie pre najmenší spoločný násobok?

Riešenie. Najväčší spoločný deliteľ týchto štyroch čísel nebude určite väčší ako d (ak by bol, potom by d nebol najväčší spoločný deliteľ čísel a a b, čo by bolo v spore s predpokladom úlohy). Stačí teda ukázať, že d delí a+b a a-b. Ak zapíšeme a a b v tvare a=ud a b=vd, pričom pre prirodzené čísla u, v platí (u,v)=1, bude potom a+b=ud+vd=(u+v)d, a-b=ud-vd=(u-v)d. Vidíme, že d delí súčet a j rozdiel čísel a a b, tvrdenie je teda dokázané.

Tvrdenie pre najmenší spoločný násobok neplatí, uvedieme protipríklad. Pre čísla a=12, b=8, a+b=20, a-b=4, [12,8]=24, avšak [12,8,20,4]=120.

Komentár. Úloha precvičuje dôkaz všeobecného tvrdenia a opäť prináša protipríklad ako dostatočný argument.

Úloha 8.6. [61-I-3-N4, resp. 50-C-II-1] Nájdite všetky dvojice prirodzených čísel a, b, pre ktoré platí a + b + [a, b] + (a, b) = 50.

Riešenie*. Položme a=ud, b=vd, kde d je najväčší spoločný deliteľ čísel a,b, prirodzené čísla u,v sú nesúdeliteľné a [a,b]=uvd. Podľa zadania má platiť ud+vd+uvd+d=50. Inak napísané, (1+u)(1+v)d=50. Nájdime preto všetky rozklady čísla 50 na súčin troch prirodzených čísel d,u+1,v+1, z ktorých posledné dve sú väčšie ako 1. Bez ujmy na všeobecnosti môžeme predpokladať, že $a \le b$, tj. $u \le v$. Dostaneme nasledujúce možnosti.

d	u+1	v+1	u	v	a	b
1	2	25	1	24	1	24
1	5	10	4	9	4	9
2	5	5	4	4	8	8
5	2	5	1	4	5	20

V prípade d=2 dostaneme u=v=4, to je však spor s tým, že u a v sú nesúdeliteľné. Preto má úloha práve tri riešenia.

Komentár. Úloha okrem vhodného zapísania čísel a, b a [a,b] vyžaduje ešte vhodnú úpravu rovnosti zo zadania, opäť tak kombinuje algebraické poznatky s poznatkami z oblasti teórie čísel.

Úloha 8.7. [61-S-1] Nájdite všetky dvojice prirodzených čísel a, b, pre ktoré platí rovnosť množín

$$\{a\cdot [a,b], b\cdot (a,b)\} = \{45,180\}.$$

Riešenie*. Z danej rovnosti vyplýva, že číslo b je nepárne (inak by obe čísla naľavo boli párne), a teda číslo a je párne (inak by obe čísla naľavo boli nepárne). Rovnosť množín preto musí byť splnená nasledovne:

$$a \cdot [a, b] = 180$$
 a $b \cdot (a, b) = 45$. (1)

Keďže číslo a delí číslo [a,b], je číslo $180=2^2\cdot 3^2\cdot 5$ deliteľné druhou mocninou (párneho) čísla a, takže musí platiť buď a=2, alebo a=6.

V prípade a = 2 (vzhľadom na to, že b je nepárne) platí

$$a \cdot [a, b] = 2 \cdot [2, b] = 2 \cdot 2b = 4b,$$

čo znamená, že prvá rovnosť v (1) je splnená jedine pre b=45. Vtedy $b \cdot (a,b)=45 \cdot (2,45)=45$, takže je splnená aj druhá rovnosť v (1), a preto dvojica a=2, b=45 je riešením úlohy.

V prípade a = 6 podobne dostaneme

$$a \cdot [a, b] = 6 \cdot [6, b] = 6 \cdot 2 \cdot [3, b] = 12 \cdot [3, b],$$

čo znamená, že prvá rovnosť v (1) je splnená práve vtedy, keď [3,b]=15. Tomu vyhovujú jedine hodnoty b=5 a b=15. Z nich však iba hodnota b=15 spĺňa druhú rovnosť v (1), ktorá je teraz v tvare $b \cdot (6,b)=45$. Druhým riešením úlohy je teda dvojica $a=6,\,b=15$, žiadne ďalšie riešenia neexistujú. Záver. Hľadané dvojice sú dve, a to a=2,b=45 a a=6,b=15.

Iné riešenie*. Označme d=(a,b). Potom a=ud a b=vd, pričom u,v sú nesúdeliteľné prirodzené čísla, takže [a,b]=uvd. Z rovností

$$a \cdot [a, b] = ud \cdot uvd = u^2vd^2$$
 a $b \cdot (a, b) = vd \cdot d = vd^2$

vidíme, že číslo $a \cdot [a,b]$ je u^2 -násobkom čísla $b \cdot (a,b)$, takže zadaná rovnosť množín môže byť splnená jedine tak, ako sme zapísali vzťahmi (1) v prvom riešení. Tie teraz môžeme vyjadriť rovnosťami

$$u^2vd^2 = 180$$
 a $vd^2 = 45$.

Preto platí $u^2=180/45=4$, čiže u=2. Z rovnosti $vd^2=45=3^2\cdot 5$ vyplýva, že buď d=1 (a v=45), alebo d=3 (a v=5). V prvom prípade $a=ud=2\cdot 1=2$ a $b=vd=45\cdot 1=45$, v druhom $a=ud=2\cdot 3=6$ a $b=vd=5\cdot 3=15$.

Poznámka. Keďže zo zadanej rovnosti okamžite vyplýva, že obe čísla a,b sú deliteľmi čísla 180 (takým deliteľom je dokonca aj ich najmenší spoločný násobok [a,b]), je možné úlohu vyriešiť rôznymi inými cestami, založenými na testovaní konečného počtu dvojíc konkrétnych čísel a a b. Takýto postup urýchlime, keď vopred zistíme niektoré nutné podmienky, ktoré musia čísla a,b spĺňať. Napríklad spresnenie rovnosti množín na dvojicu rovností (1) možno (aj bez použitia úvahy o parite čísel a,b) vysvetliť všeobecným postrehom: súčin $a \cdot [a,b]$ je vždy deliteľný súčinom $b \cdot (a,b)$, pretože ich podiel možno zapísať v tvare

$$\frac{a \cdot [a, b]}{b \cdot (a, b)} = \frac{a}{(a, b)} \cdot \frac{[a, b]}{b},$$

teda ako súčin dvoch *celých* čísel.

Komentár. Úloha je zložitejšia ako predchádzajúce, dá sa však riešiť mnohými spôsobmi a bude iste zaujímavé vidieť rôzne študentské riešenia. Je taktiež vhodným miestom na to, aby sme študentov nechali diskutovať o prístupoch medzi sebou a prípadne skúšali hľadať slabiny jednotlivých zdôvodnení. Určite považujeme za vhodné zmieniť poslednú rovnosť z poznámky, keďže ide o zaujímavý postreh a metóda vhodného zapísania tvaru zlomku je užitočná nielen tu. Na túto úlohu nadväzuje komplexnejšia domáca práca, ktorá však vychádza z veľmi podobného princípu.

Úloha 8.8. [64-I-5] Rozdiel dvoch prirodzených čísel je 2010 a ich najväčší spoločný deliteľ je 2014-krát menší ako ich najmenší spoločný násobok. Určte všetky také dvojice čísel.

Riešenie*. Označme hľadané čísla a a b (a > b) a d ich najväčší spoločný deliteľ. Potom a = ud, b = vd, pričom u > v sú nesúdeliteľné čísla. Keďže najmenší spoločný násobok čísel a, b je číslo uvd, dosadením do zadaných vzťahov dostaneme rovnosti

$$a - b = (u - v)d = 2010,$$

 $uvd = 2014d.$ čiže $uv = 2014.$

Podľa rozkladu na súčin prvočísel $2014 = 2 \cdot 19 \cdot 53$ vypíšeme všetky možné dvojice (u,v) a pre každú z nich sa presvedčíme, či číslo u-v je deliteľom čísla 2010. V pozitívnom prípade príslušný podiel udáva číslo d a výpočet neznámych a=ud a b=vd je už jednoduchý:

- a) u = 2014 a v = 1: u v = 2013 nedelí 2 010;
- b) u = 19.53 = 1007 a v = 2: $u v = 1005 \mid 2010$, d = 2, $a = 1007 \cdot 2 = 2014$, $b = 2 \cdot 2 = 4$;
- c) $u = 2 \cdot 53 = 106$ a v = 19: $u v_{\parallel} = 87$ nedelí 2 010;
- d) u = 53 a $v = 2 \cdot 19 = 38$: $u v = 15 \mid 2010, d = 134, a = 53 \cdot 134 = 7102, b = 38 \cdot 134 = 5092$.

Záver. Hľadané čísla tvoria jednu z dvojíc (2014,4) alebo (7102,5092).

Komentár. Úloha neprináša žiadne nové poznatky a princípy, je však vhodná na trénovanie riešenia sústavy dvoch rovníc s dvomi neznámymi a opäť tak vytvorí prepojenie s minulými seminármi.

Úloha 8.9. [60-I-5-D3] Nájdite všetky dvojice kladných celých čísel a, b, pre ktoré má výraz

$$\frac{a}{b} + \frac{14b}{9a}$$

celočíselnú hodnotu.

Riešenie*. Nech d=(a,b), potom a=ud, b=vd pre nesúdeliteľné prirodzené u a v. Skúmaný výraz bude po dosadení $(9u^2+14v^2)/(9uv)$, takže $9u\mid 14v^2$ a z nesúdeliteľnosti u a v máme $u\mid 14$, navyše $3\mid v$. Podobne $v\mid 9$; vyskúšame konečne veľa možností.

Komentár. Úloha je zaujímavá tým, že prácu s najväčším spoločným deliteľom obsahuje nepriamo a využíva tiež poznatky o deliteľnosti z minulého seminára.

Úloha 8.10. [60-I-5] Dokážte, že najmenší spoločný násobok [a, b] a najväčší spoločný deliteľ (a, b) ľubovoľných dvoch kladných celých čísel a, b spĺňajú nerovnosť

$$a \cdot (a, b) + b \cdot [a, b] \ge 2ab.$$

Zistite, kedy v tejto nerovnosti nastane rovnosť.

Riešenie*. Nerovnosť by bolo ľahké dokázať, ak by niektorý z dvoch sčítancov na ľavej strane bol sám osebe aspoň taký, ako pravá strana. Číslo [a,b] je zjavne násobkom čísla a. Ak $[a,b] \geq 2a$, tak $b[a,b] \geq 2ab$ a v zadanej nerovnosti platí dokonca ostrá nerovnosť, lebo číslo a(a,b) je kladné. Ak [a,b] < 2a, tak neostáva iná možnosť ako [a,b] = a. To však nastane iba v prípade, keď $b \mid a$. V tomto prípade (a,b) = b a v zadanej nerovnosti nastane rovnosť.

Iné riešenie*. Označme d=(a,b), takže a=ud a b=vd pre nesúdeliteľné prirodzené čísla u,v. Z toho hneď vieme, že [a,b]=uvd. Keďže

$$a \cdot (a,b) + b \cdot [a,b] = ud^2 + uv^2d^2 = u(1+v^2)d^2,$$

 $2ab = 2uvd^2.$

je vzhľadom na $ud^2 > 0$ nerovnosť zo zadania ekvivalentná s nerovnosťou $1 + v^2 \ge 2v$, čiže $(v-1)^2 \ge 0$, čo platí pre každé v. Rovnosť nastane práve vtedy, keď v = 1, čiže $b \mid a$.

Iné riešenie*. Označme d=(a,b). Je známe, že $[a,b]\cdot(a,b)=ab$. Po vyjadrení [a,b] z tohto vzťahu, dosadení do zadanej nerovnosti a ekvivalentnej úprave dostaneme ekvivalentnú nerovnosť $d^2+b^2\geq 2bd$, ktorá platí, lebo $(d-b)^2\geq 0$. Rovnosť nastáva pre d=b, čiže v prípade $b\mid a$.

Komentár. Na úspešné zvládnutie úlohy je opäť potrebná znalosť z predchádzajúceho seminára o nerovnostiach a taktiež ponúka široké spektrum prístupov, takže bude zaujímavé sledovať, ako k nej študenti pristúpia.

Domáca práca

Úloha 8.11. [61-I-3] Nájdite všetky trojice prirodzených čísel a,b,c, pre ktoré platí množinová rovnosť

$$\{(a,b),(a,c),(b,c),[a,b],[a,c],[b,c]\}=\{2,3,5,60,90,180\},$$

pričom (x,y) a [x,y] označuje postupne najväčší spoločný deliteľ a najmenší spoločný násobok čísel x a y.

Riešenie*. Prvky danej množiny M rozložíme na prvočinitele:

$$M = \{2, 3, 5, 2^2 \cdot 3 \cdot 5, 2 \cdot 3^2 \cdot 5, 2^2 \cdot 3^2 \cdot 5\}.$$

Odtiaľ vyplýva, že v rozklade hľadaných čísel a,b,c vystupujú iba prvočísla 2, 3 a 5. Každé z nich je pritom prvočiniteľom práve dvoch z čísel a,b,c: keby bolo prvočiniteľom len jedného z nich, chýbalo by v rozklade troch najväčších spoločných deliteľov a jedného najmenšieho spoločného násobku, teda v štyroch číslach z M; keby naopak bolo prvočiniteľom všetkých troch čísel a,b,c, nechýbalo by v rozklade žiadneho čísla z M. Okrem toho vidíme, že v rozklade každého z čísel a,b,c je prvočíslo 5 najviac v jednom exemplári.

Podľa uvedených zistení môžeme čísla a,b,c usporiadať tak, že rozklady čísel a,b obsahujú po jednom exemplári prvočísla 5 (potom (c,5)=1) a že (a,2)=2 (ako vieme, aspoň jedno z čísel a,b musí byť párne). Číslo 5 z množiny M je potom nutne rovné (a,b), takže platí (b,2)=1, a preto (b,3)=3 (inak by platilo (b,c)=1), odtiaľ zase s ohľadom na (a,b)=5 vyplýva (a,3)=1. Máme teda $a=5\cdot 2^s$ a $b=5\cdot 3^t$ pre vhodné prirodzené čísla s a t.

Z rovnosti $[a, b] = 2^s \cdot 3^t \cdot 5$ vyplýva, že nastane jeden z troch nasledujúcich prípadov.

- (1) $2^s \cdot 3^t \cdot 5 = 60 = 2^2 \cdot 3^1 \cdot 5$. Vidíme, že platí s=2 a t=1, čiže a=20 a b=15. Ľahko určíme, že tretím číslom je c=18.
 - (2) $2^s \cdot 3^t \cdot 5 = 90 = 2^1 \cdot 3^2 \cdot 5$. V tomto prípade a = 10, b = 45 a c = 12.
 - (3) $2^s \cdot 3^t \cdot 5 = 180 = 2^2 \cdot 3^2 \cdot 5$. Teraz a = 20, b = 45 a c = 6.

Záver. Hľadané čísla a, b, c tvoria jednu z množín $\{20, 15, 18\}, \{10, 45, 12\}$ a $\{20, 45, 6\}$.

Iné riešenie*. V danej rovnosti je množina napravo tvorená šiestimi rôznymi číslami väčšími ako 1, takže čísla (a,b), (a,c), (b,c) musia byť netriviálnymi deliteľmi postupne čísel [a,b], [a,c], [b,c]. Čísla 2, 3, 5 ale žiadne netriviálne delitele nemajú, musí teda platiť

$$\{(a,b),(a,c),(b,c)\} = \{2,3,5\}$$
 a $\{[a,b],[a,c],[b,c]\} = \{60,90,180\}.$

Pretože poradie čísel a,b,c nehrá žiadnu úlohu, môžeme predpokladať, že platí (a,b)=2, (a,c)=3 a (b,c)=5. Odtiaľ vyplývajú vyjadrenia

$$a = 2 \cdot 3 \cdot x = 6x$$
, $b = 2 \cdot 5 \cdot y = 10y$, $c = 3 \cdot 5 \cdot z = 15z$

pre vhodné prirodzené čísla x,y,z. Zo známej rovnosti $[x,y]\cdot(x,y)=xy$ tak dostaneme vyjadrenia najmenších spoločných násobkov v tvare

$$[a,b] = \frac{6x \cdot 10y}{2} = 30xy, \quad [a,c] = \frac{6x \cdot 15z}{3} = 30xz, \quad [b,c] = \frac{10y \cdot 15z}{5} = 30yz.$$

Z rovnosti $\{30xy, 30xz, 30yz\} = \{60, 90, 180\}$ upravenej na $\{xy, xz, yz\} = \{2, 3, 6\}$ potom vďaka tomu, že 2 a 3 sú prvočísla, vyplýva $\{x, y, z\} = \{1, 2, 3\}$. Pretože z podmienky 5 = (b, c) = (10y, 15z) vyplýva $y \neq 3$ a $z \neq 2$, prichádzajú do úvahy len trojice (x, y, z) rovné (1, 2, 3), (2, 1, 3) a (3, 2, 1), ktorým postupne zodpovedajú trojice (a, b, c) rovné (6, 20, 45), (12, 10, 45), (18, 20, 15). Skúškou sa presvedčíme, že všetky tri vyhovujú množinovej rovnosti zo zadania úlohy.

Úloha 8.12. [63-S-2] Čísla 1, 2, ..., 10 rozdeľte na dve skupiny tak, aby najmenší spoločný násobok súčinu všetkých čísel prvej skupiny a súčinu všetkých čísel druhej skupiny bol čo najmenší.

Riešenie*. Pre uvažované súčiny a a b určite platí $a \cdot b = 1 \cdot 2 \cdot \ldots \cdot 10 = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7$. Aspoň jedno z čísel a, b je preto deliteľné 2^4 , aspoň jedno deliteľné 3^2 , aspoň jedno deliteľné 5 a práve jedno deliteľné 7. Pre najmenší spoločný násobok n čísel a, b preto platí $n \geq 2^4 \cdot 3^2 \cdot 5 \cdot 7 = 5040$, pritom rovnosť tu nastane práve vtedy, keď ani jedno z čísel a, b nebude deliteľné žiadnym z čísel $2^5, 3^3$ a 5^2 .

Ak zvolíme napríklad $a=2\cdot 3\cdot 4\cdot 5\cdot 6=720$ a $b=1\cdot 7\cdot 8\cdot 9\cdot 10=5040$, bude najmenší spoločný násobok oboch čísel práve 5040. Tým je ukázané, že 5040 je naozaj najmenšia zo všetkých možných hodnôt n.

I keď bolo úlohou nájsť iba jeden príklad, pre úplnosť uvedieme všetky rozdelenia s minimálnou hodnotou n = 5040:

Prvá skupina čísel	Druhá skupina čísel
2, 3, 4, 5, 6	1, 7, 8, 9, 10
3,5,6,8	1, 2, 4, 7, 9, 10
2, 5, 8, 9	1, 3, 4, 6, 7, 10
1, 2, 3, 4, 5, 6	7, 8, 9, 10
1,3,5,6,8	2, 4, 7, 9, 10
1, 2, 5, 8, 9	3, 4, 6, 7, 10
2, 3, 4, 5, 6, 7	1, 8, 9, 10
3, 5, 6, 7, 8	1, 2, 4, 9, 10
2, 5, 7, 8, 9	1, 3, 4, 6, 10
1, 2, 3, 4, 5, 6, 7	8, 9, 10
1, 3, 5, 6, 7, 8	2, 4, 9, 10
1,2,5,7,8,9	3, 4, 6, 10

Nájsť ich nie je ťažké, keď si uvedomíme, že čísla 1 a 7 môžeme dať do ľubovoľnej z oboch skupín, zatiaľ čo v tej istej skupine spolu nemôžu byť 4 s 8, 5 s 10, 3 s 9 ani 6 s 9; s 8 spolu môže byť práve jedno z párnych čísel 2, 6 a 10. Získame tak iba tri základné rozdelenia (prvé tri riadky tabuľky), z ktorých možno každé štyrmi spôsobmi doplniť číslami 1 a 7.

Poznámka. Úlohu možno vyriešiť aj bez výpočtu súčinu $a \cdot b$. Deliteľnosť n číslami $3^2, 5$ a 7 vyplýva z ich priameho zastúpenia medzi rozdeľovanými číslami, deliteľnosť číslom 2^4 z jednoduchej úvahy o rozdelení všetkých piatich párnych čísel: ak nie je číslo 8 vo svojej skupine ako párne jediné, je všetko jasné, v opačnom prípade sú v rovnakej skupine čísla 2, 4 a 6 (aj 10, ale to už ani nepotrebujeme).

Doplňujúce zdroje a materiály

Materiály vhodné na ďalšie počítanie nájdeme v minulom seminári. Keďže témy sú si veľmi blízke, publikácie zvyčajne obsahujú úlohy zamerané na obe témy.