数字逻辑设计

Digital Logic Design

秦阳 School of Computer Science csyqin@hit.edu.cn

时序逻辑元件

■ 锁存器 (Latch)

■触发器(Flip-Flop)

■带附加输入端的边沿触发器

■触发器类型转换

边沿触发器

- D触发器
- SR触发器
- JK锁存器
- T触发器
- T′触发器
- ■帯附加输入端的触发器

时钟触发器

- 受时钟脉冲控制的触发器称作时钟触发器。
- 时钟也称同步信号。将多个触发器的时钟端相连,可以控制它们同一时刻动作。

边沿触发器—— D触发器

(1) 逻辑符号

(2) 功能表(上升沿为例)

时钟端 CK	输入端 D	现态 Q n	次态 Q _{n+1}	
†	0	0	0	
†	0	1	0	
†	1	0	1	
1	1	1	1	

(3) 次态方程

 $\mathbf{Q}^{n+1} = \mathbf{D}$

用Verilog实现D触发器

```
module VrDff(CLK, D, Q);
 input CLK, D;
 output reg Q;
 always @ (posedge CLK)
  Q \leq D;
endmodule
```

边沿触发器—— SR触发器

(1) 逻辑符号

(3) 次态方程

$$Q_{n+1} = S + \overline{R}Q_n$$

SR = 0 (约束条件)

(2) 功能表(上升沿)

时钟端 CK	输入端 R	输入端 S	现态 Q _n	次态 Q _{n+1}
†	0	0	0	0
†	0	0	1	1
T T	0	1	0	1
t	0	1	1	1
1	1	0	0	0
t	1	0	1	0
t	1	1	0	_
†	1	1	1	

(4) 驱动表

Q _n	\rightarrow	Q_{n+1}	R	S
0	\rightarrow	0	Х	0
0	\rightarrow	1	0	1
1	\rightarrow	0	1	0
1	\rightarrow	1	0	X

驱动表可以从触发器 功能推导出来

输入存在约束

SR触发器:输入存在约束

D触发器: 没有约束, 但是只有一个输入端

边沿触发器 JK触发器

(1) 逻辑符号

功能最全,输 、没有约束

(3) 次态方程

$$Q_{n+1} = J \overline{Q}_n + \overline{K} Q_n$$

、 Jł	(
Q_n	00	01	11	10
0	0	0	1	1
1		0	0	1

(2) 功能表(下降沿)

	次态 Q _{n+1}	现态 <mark>Q</mark> n	输入端 K	输入端 J	时钟端 CK
保持	0	0	0	0	→
	1	1	0	0	↓
置0	0	0	1	0	↓
]_	0	1	1	0	↓
置1	1	0	0	1	↓
]='	1	1	0	1	↓
翻	1	0	1	1	↓
一种护子	0	1	1	1	↓

呆持

置0

翻转

输 <i>入</i>	、端	次态	7
J	K	Q _{n+1}	
0	0	O	

		-411
0	1	0
1	0	1
1	1_	$\overline{\mathbf{Q}}_{n}$

(4) 驱动表

Qn	\rightarrow	Q_{n+1}	J	K
0	\rightarrow	0	0	Х
0	\rightarrow	1	1	X
1	\rightarrow	0	Х	1
1	\rightarrow	1	Х	0
				Ω

边沿触发器—— JK触发器

输入端		次态 Q _{n+1}
J	K	Q_{n+1}
0	0	\mathbf{Q}_{n}
0	1	0
1	0	1
1	1	$\overline{\mathbf{Q}}_{\mathrm{n}}$

边沿触发器—— T触发器

(1) 逻辑符号

(2) 功能表(下降沿)

时钟端 CK	输入端 T	现态 Q _n	次态 Q _{n+1}
+	0	0	0
+	0	1	1
+	1	0	1
—	1	1	0

\		
•	输入端 T	次态 Q _r -1
	0	Q _n
	1	$\overline{\mathbf{Q}}_{n}$

翻转

保持

(3) 次态方程

$$Q_{n+1} = J \overline{Q}_n + \overline{K} Q_n$$

$$\mathbf{Q}_{n+1} = \mathbf{T} \ \overline{\mathbf{Q}}_n + \mathbf{T} \ \overline{\mathbf{Q}}_n$$
$$= \mathbf{T} \oplus \mathbf{Q}_n$$

边沿触发器—— T'触发器

(1) 逻辑符号

(3) 次态方程

$$Q_{n+1} = J \overline{Q}_n + \overline{K} Q_n$$
IF J=K=T=1
$$Q_{n+1} = \overline{Q}_n$$

(2) 功能表(下降沿)

时钟端 CK	输入端 T	现态 Q _n	次态 Q _{n+1}
↓	1	0	1
↓	1	1	0

(4) 波形分析

带附加输入端的边沿触发器

■ 带异步清零端和异步置1端

异步:独立于时钟信号

用途: 为触发器 设置指定状态

		-		
时钟端 CK	输入端 D	异步置1端 PreN	异步清零端 ClrN	次态 Q _{n+1}
Х	X	0	0	不允许
Х	Х	0	1	1
X	X	1	0	0
†	0	1	1	0
†	1	1	1	1
0,1, ↓	Х	1	1	Q _n

用Verilog实现带异步清零端的D触发器

```
module VrDffC(CLK, CLR, D, Q);
 input CLK, CLR, D;
 output reg Q;
 always @ (posedge CLK or posedge CLR)
  if (CLR==1) Q \le 0;
  else Q \leq D;
endmodule
```

带附加输入端的边沿触发器—续

■帯时钟使能端

解决方案:

使能端CE不与时钟端CLK捆绑使用

$$Q^+ = Q \cdot CE' + D \cdot CE$$

带时钟使能端和同步置位D触发器

```
module VrDffSE(CLK, S, CE, D, Q);
 input CLK, S, CE, D;
 output reg Q;
 always @ (posedge CLK)
  if (S==1) Q \le 1;
  else if (CE==1) Q \le D;
endmodule
```

T触发器的应用—二进制加法计数器

JK触发器的应用实例

例1: 写出JK触发器的次态方程

$$Q_{n+1} = J \overline{Q}_n + \overline{K} Q_n$$

$$= J \overline{Q}_n$$

$$= \overline{A} \overline{Q}_n + B \overline{Q}_n \overline{Q}_n$$

$$= \overline{A} \overline{Q}_n \cdot \overline{B} \overline{Q}_n \overline{Q}_n$$

$$= (\overline{A} + \overline{Q}_n) (\overline{B} + Q_n) \overline{Q}_n$$

$$= \overline{A} \overline{B} \overline{Q}_n + \overline{B} \overline{Q}_n$$

$$= \overline{B} \overline{Q}_n$$

JK触发器的应用实例2

例2: 画出Q端波形图

Q

方法1:写出JK触发器的次态方程

$$Q_{n+1} = J \overline{Q}_n + \overline{K} Q_n$$

$$= (A \oplus B) \overline{Q}_n + Q_n Q_n$$

$$= A \oplus B + Q_n$$

CP

方法2: 在每一个时钟下降沿, 计算J和 K的取值,从而确定Q端波形

第1个↓:	J=0,	K=1	置0功能
第2个↓:	J=0,	K=1	置0功能
第3个↓:	J=1,	K=1	翻转功能
第4个↓:	J=0,	K=0	保持功能
第5个↓:	J=0,	K=0	保持功能

输入	次态 Q _{n+1}	
J	K	Q_{n+1}
0	0	\mathbf{Q}_{n}
0	1	0
1	0	1
1	1	$\overline{\mathbf{Q}}_{n}$

18

触发器的应用——1

1. 存储功能的应用——保存瞬态信号,直到清除为止

【例】举重裁判逻辑电路V2.0:一个主裁判A和两个副裁判B和C,只有两人以上(必须包含主裁判在内)认定试举动作合格,并按下自己的按钮时,输出信号Z=1,该信号一直保持下去,直到工作人员按下清除按钮 P为止。

分析:

- □ 三个人的按钮动作有先后、长短之别,所以需要3个存储元件分别保存三个按钮信号;
- □ 存储元件有置1和置0功能即可(锁存器和SR、JK、D触发器均可)

触发器的应用——续

对于每个锁存器:

- □ 裁判按钮按下,执 行<mark>置1</mark>功能;按钮弹 起,执行<mark>保持</mark>功能;
- □ 按钮P按下,全体执 、行**置0**功能

基本RS锁存器

- □锁存器的置1端S: 连接主裁按钮A
 - 、和副裁B、C输出的低电平
- □锁存器的置0端R:连接工作人员按钮P给出的低电平
- □输出信号Z:三个锁存器输出状态的 或与逻辑。

采用JK触发器或D触发器,如何实现?哪种方法更简单?

触发器的应用——2

2. 分频/计数功能的应用——

利用触发器的置0、置1功能,由多个触发器组成分频电路, 对输入的时钟信号进行分频。

【例】分析输出信号 Q_1 、 Q_2 、 Q_3 与时钟信号CLK之间的频率关系,R为清零端

边沿触发器——总结

时钟边沿触发器的特点

由时钟脉冲边沿确定状态转换的时刻(即何时转换?)

其余时刻都是保持功能

由输入信号确定触发器状态转换的方向(即如何转换?)

思考:对于一个下降沿触发的JK触发器,如果让它实现保持功能,有几种方法可以做到?

方法1:

最简单的方法:不给有效的时钟边沿(此时不用考虑J端和K端的信号)

方法2:

给时钟下降沿,此时触发器 的保持功能就必须依靠J端 和K端的信号配合才能完成

边沿触发器

- D触发器
- SR触发器
- ■JK锁存器
- ■T触发器
- T′触发器
- ■帯附加输入端的触发器