and it is easy to see that they are linearly independent. Therefore, the space U of linear forms in E^* spanned by the above linear forms (equations) has dimension n-1, and the space U^0 of matrices satisfying all these equations has dimension $n^2 - n + 1$. It is not so obvious to find a basis for this space.

We will now pin down the relationship between a vector space E and its bidual E^{**} .

11.4 The Bidual and Canonical Pairings

Proposition 11.5. Let E be a vector space. The following properties hold:

(a) The linear map $\operatorname{eval}_E \colon E \to E^{**}$ defined such that

$$\operatorname{eval}_{E}(v) = \operatorname{eval}_{v} \quad \text{for all } v \in E,$$

that is, $\operatorname{eval}_E(v)(u^*) = \langle u^*, v \rangle = u^*(v)$ for every $u^* \in E^*$, is injective.

(b) When E is of finite dimension n, the linear map $\operatorname{eval}_E : E \to E^{**}$ is an isomorphism (called the canonical isomorphism).

Proof. (a) Let $(u_i)_{i\in I}$ be a basis of E, and let $v = \sum_{i\in I} v_i u_i$. If $\operatorname{eval}_E(v) = 0$, then in particular $\operatorname{eval}_E(v)(u_i^*) = 0$ for all u_i^* , and since

$$\operatorname{eval}_{E}(v)(u_{i}^{*}) = \langle u_{i}^{*}, v \rangle = v_{i},$$

we have $v_i = 0$ for all $i \in I$, that is, v = 0, showing that $\text{eval}_E : E \to E^{**}$ is injective.

If E is of finite dimension n, by Theorem 11.4, for every basis (u_1, \ldots, u_n) , the family (u_1^*, \ldots, u_n^*) is a basis of the dual space E^* , and thus the family $(u_1^{**}, \ldots, u_n^{**})$ is a basis of the bidual E^{**} . This shows that $\dim(E) = \dim(E^{**}) = n$, and since by Part (a), we know that $\operatorname{eval}_E: E \to E^{**}$ is injective, in fact, $\operatorname{eval}_E: E \to E^{**}$ is bijective (by Proposition 6.19). \square

When a vector space E has infinite dimension, E and its bidual E^{**} are never isomorphic.

When E is of finite dimension and (u_1, \ldots, u_n) is a basis of E, in view of the canonical isomorphism $\operatorname{eval}_E : E \to E^{**}$, the basis $(u_1^{**}, \ldots, u_n^{**})$ of the bidual is *identified* with (u_1, \ldots, u_n) .

Proposition 11.5 can be reformulated very fruitfully in terms of pairings, a remarkably useful concept discovered by Pontrjagin in 1931 (adapted from E. Artin [6], Chapter 1). Given two vector spaces E and F over a field K, we say that a function $\varphi \colon E \times F \to K$ is bilinear if for every $v \in V$, the map $u \mapsto \varphi(u, v)$ (from E to K) is linear, and for every $u \in E$, the map $v \mapsto \varphi(u, v)$ (from F to K) is linear.

Definition 11.4. Given two vector spaces E and F over K, a pairing between E and F is a bilinear map $\varphi \colon E \times F \to K$. Such a pairing is nondegenerate iff