Repaso Fisiología

Ariel Antinori

2025-05-14

Table of contents

Te	emas (que se dieron en los teoricos/practicos	4
		1. RENAL	4
		2. DIGESTIVO	4
		3. FISIOLOGÍA DEL EJERCICIO	5
		4. METABOLISMO ENERGÉTICO (un repaso de Interrelaciones metabólicas	_
		de bioqui)	5
1	Fisio	logía renal	6
	1.1	Funciones del riñon	6
	1.2	Anatomía funcional del riñón	6
	1.3	Filtración glomerular	6
	1.4	Reabsorción y secreción tubular	7
	1.5	Concentración y dilución de la orina	7
	1.6	Regulación del volumen y osmolaridad	7
	1.7	Excreción de sustancias	8
	1.8	Regulación ácido-base renal	8
	1.9	Diuresis y alteraciones	8
	1.10	Tipos de Nefronas	8
		1.10.1 Nefronas Corticales	9
		1.10.2 Nefronas Yuxtamedulares	9
	1.11	Tabla Comparativa de Tipos de Nefronas	9
	1.12	Preguntas de Repaso	10
	1.13	Conceptos Clave del Guyton (13 ^a ed.)	10
	1.14	Osmoles, Osmolalidad y Osmolaridad	10
		1.14.1 1. ¿Qué es un Osmol?	10
		1.14.2 2. Osmolalidad vs. Osmolaridad	11
		1.14.3 3. Valor Normal de Osmolaridad Plasmática	11
		1.14.4 4. Aplicaciones fisiológicas	12
2	Repa	aso de Fisiología Renal	13
	2.1	_	13
	2.2	,	13
	2.3		13
	2.4	9	13
	2.5		1 /1

	2.6 Filtración glomerular	14
3	Digestivo	15
4	Fisiología del ejercicio	16
5	Metabolismo energético	17
6	Resumen	18

Temas que se dieron en los teoricos/practicos

El objetivo de este apunte es guardar la info importante en forma automática en la nube en un formato reproducible, transferible, fiable y elegante.

Este es el orden de los temas (mas o menos) que se fueron dando despues del primer parcial en los distintos teoricos/practicos.

1. RENAL

• Anatomía fisiológica del riñón

Organización estructural del nefrón, los túbulos renales y su relación con los vasos sanguíneos.

• Circulación renal

Características especiales del flujo sanguíneo renal, autorregulación y particularidades del sistema portal renal.

• Filtración glomerular

Mecanismo de filtración en el glomérulo, factores que la regulan y su importancia clínica.

• Mecanismo de formación de orina

Procesos de filtración, reabsorción tubular y secreción, con énfasis en su función integrada.

• Mecanismo de contracorriente

Sistema multiplicador y de intercambio en asa de Henle y capilares rectos, crucial para la concentración de la orina.

2. DIGESTIVO

• Aparato digestivo: secreción, digestión y absorción

Procesos fundamentales que permiten descomponer los alimentos en nutrientes absorbibles y trasladarlos al sistema circulatorio portal.

•	Motricidad,	peristaltismo,	conceptos y	regulación
---	-------------	----------------	-------------	------------

Movimientos musculares del tubo digestivo, incluyendo el peristaltismo y su control neural y hormonal.

• Páncreas exócrino

Función secretora del páncreas: producción de enzimas digestivas, su activación y regulación por señales intestinales.

• Fisiología del hígado

Procesamiento de nutrientes, síntesis de proteínas plasmáticas, metabolismo de lípidos y detoxificación hepática.

3. FISIOLOGÍA DEL EJERCICIO

4. METABOLISMO ENERGÉTICO (un repaso de Interrelaciones metabólicas de bioqui)

• Metabolismo energético: concepto y uso de la energía por el organismo Definición de metabolismo energético y formas en que el cuerpo utiliza ATP para funciones celulares, musculares y de mantenimiento basal.

• Interrelaciones metabólicas

Conexión entre rutas metabólicas (glucólisis, lipólisis, gluconeogénesis, etc.) y cómo se adaptan según el estado nutricional y hormonal.

• El adipocito como órgano endocrino

Función hormonal del tejido adiposo: secreción de leptina, adiponectina y su influencia en la homeostasis energética y la inflamación.

• Gasto energético: métodos para su determinación

Métodos directos e indirectos para medir el gasto energético, incluyendo calorimetría y fórmulas predictivas.

1 Fisiología renal

1.1 Funciones del riñon

El sistema renal desempeña un papel fundamental en el mantenimiento de la homeostasis del organismo. A través de procesos como la filtración, la reabsorción y la secreción, los riñones regulan el volumen de líquidos corporales, el equilibrio ácido-base, y la eliminación de desechos metabólicos.

• Funciones principales del riñón:

- Regulación del volumen y composición del líquido extracelular.
- Regulación del equilibrio ácido-base.
- Eliminación de productos metabólicos y sustancias extrañas.
- Producción de hormonas: eritropoyetina, renina, 1,25-dihidroxivitamina D3 (calcitriol).
- Gluconeogénesis durante el ayuno prolongado.

1.2 Anatomía funcional del riñón

- Componentes principales:
 - Nefrona: unidad funcional del riñón.
 - * Glomérulo
 - * Túbulo proximal
 - * Asa de Henle (descendente y ascendente)
 - * Túbulo distal
 - * Túbulo colector
 - − Vascularización: arteria renal → arterias interlobulares → arteriolas aferentes → glomérulo → arteriolas eferentes → capilares peritubulares / vasos rectos.

1.3 Filtración glomerular

• Presión de filtración neta:

- PNF = P hidro. glomerular (P coloidosmótica glomerular + P hidro. capsular)
- Tasa de Filtración Glomerular (TFG):
 - Promedio 125 ml/min
 - Regulación por autorregulación renal (mecanismo miogénico y feedback túbuloglomerular)

1.4 Reabsorción y secreción tubular

- Túbulo proximal:
 - Reabsorbe 65% del filtrado.
 - Mecanismos activos (Na /K ATPasa) y cotransporte (glucosa, aminoácidos).
- Asa de Henle:
 - Descendente: permeable al agua.
 - Ascendente gruesa: impermeable al agua, activa en transporte de Na, K, Cl.
- Túbulo distal y colector:
 - Ajuste fino del Na , H O y K .
 - Regulado por aldosterona, ADH, y otras hormonas.

1.5 Concentración y dilución de la orina

- Mecanismo de contracorriente:
 - Multiplicador (asa de Henle) y sistema intercambiador (vasos rectos).
- Gradiente osmótico medular:
 - Imprescindible para la concentración urinaria.
- Acción de la ADH (vasopresina):
 - Aumenta la permeabilidad al agua del túbulo colector \rightarrow concentración urinaria.

1.6 Regulación del volumen y osmolaridad

- Hormonas clave:
 - ADH \rightarrow conservación de agua.
 - Aldosterona \rightarrow reabsorción de Na .

- Péptidos natriuréticos \rightarrow excreción de Na $\,$ y agua.
- Sistema Renina-Angiotensina-Aldosterona (RAAS)

1.7 Excreción de sustancias

- Urea, creatinina, ácidos y bases.
- Sustancias exógenas (fármacos): vía principal de eliminación.

1.8 Regulación ácido-base renal

- Mecanismos:
 - Secreción de H .
 - Reabsorción de HCO .
 - Producción de NH y ácidos titulables.

1.9 Diuresis y alteraciones

- Tipos:
 - Diuresis osmótica
 - Diuresis acuosa
- Alteraciones clínicas comunes:
 - Acidosis / Alcalosis metabólica
 - Insuficiencia renal aguda y crónica
 - Síndrome nefrótico y nefrítico

1.10 Tipos de Nefronas

En el riñón humano existen dos tipos principales de nefronas: **corticales** y **yuxtamedulares**. Ambas desempeñan funciones esenciales en la filtración, reabsorción y concentración urinaria, pero tienen diferencias anatómicas y funcionales clave.

1.10.1 Nefronas Corticales

- Representan aproximadamente el 85% del total de nefronas.
- Glomérulos ubicados en la corteza renal externa.
- Tienen un asa de Henle corta, que apenas penetra la médula renal.
- El sistema tubular está rodeado por capilares peritubulares.
- Son las principales responsables de la excreción de productos de desecho y del mantenimiento del equilibrio hidroelectrolítico.

1.10.2 Nefronas Yuxtamedulares

- Representan aproximadamente el 15% del total de nefronas.
- Glomérulos ubicados en la corteza renal interna, cerca de la médula.
- Poseen un asa de Henle larga, que se introduce profundamente en la médula.
- Están rodeadas por vasos sanguíneos especializados llamados vasos rectos (vasa recta).
- Tienen un papel fundamental en la capacidad del riñón para concentrar o diluir la orina, gracias a la creación de un gradiente osmótico medular.

1.11 Tabla Comparativa de Tipos de Nefronas

Característica	Nefronas Corticales	Nefronas Yuxtamedulares	
Porcentaje en el riñón	85%	15%	
Ubicación del glomérulo	Corteza externa	Corteza interna	
Longitud del asa de Henle	Corta	Larga	
Penetración en la médula	Superficial o escasa	Profunda	
Capilares que las rodean	Capilares peritubulares	Vasos rectos (vasa recta)	
Función principal	Excreción de desechos	Concentración/dilución de	
		orina	

1.12 Preguntas de Repaso

- 1. ¿Qué porcentaje del total de nefronas en el riñón humano corresponde a las nefronas yuxtamedulares?
- 2. ¿Qué estructura vascular rodea al sistema tubular de las nefronas corticales?
- 3. ¿Cuál es la función principal del asa de Henle larga en las nefronas yuxtamedulares?
- 4. ¿Cómo contribuyen los vasos rectos a la concentración de la orina?
- 5. ¿Qué diferencias funcionales existen entre las nefronas corticales y yuxtamedulares?

1.13 Conceptos Clave del Guyton (13ª ed.)

- El gradiente osmótico en la médula renal es esencial para la reabsorción de agua.
- Las nefronas yuxtamedulares son fundamentales para la concentración máxima de la orina, mediante el mecanismo de contracorriente.
- Los capilares peritubulares permiten una eficiente reabsorción de solutos y agua en nefronas corticales.
- La tasa de filtración glomerular (TFG) depende del número y función de ambos tipos de nefronas.

1.14 Osmoles, Osmolalidad y Osmolaridad

La capacidad de una solución para ejercer una presión osmótica depende de la **cantidad total de partículas disueltas**, sin importar su naturaleza química. Para cuantificar estas partículas, se utilizan los conceptos de **osmoles**, **osmolalidad** y **osmolaridad**.

1.14.1 1. ¿Qué es un Osmol?

- Un osmol representa una molécula (o grupo de moléculas) osmóticamente activa en una solución.
- Cada molécula que se disocia en varios iones cuenta como múltiples osmoles.
 Ejemplo:
 - 1 mol de NaCl \rightarrow 1 mol de Na + 1 mol de Cl = 2 osmoles
 - -1 mol de glucosa (no se disocia) = 1 osmol

Importante: No todas las moléculas afectan igual la presión osmótica. Solo aquellas que no atraviesan fácilmente las membranas celulares contribuyen de manera significativa.

1.14.2 2. Osmolalidad vs. Osmolaridad

Término	Definición	Unidad	Común en
Osmolalida	adNúmero de osmoles por kilogramo de	mOsm/kg H O	Fisiología celular
	agua (solvente)		
Osmolarid	adúmero de osmoles por litro de	mOsm/L de	Práctica clínica
	solución (soluto + solvente)	solución	general

- La **osmolalidad** se considera más precisa, ya que no se ve afectada por cambios en el volumen de los solutos o la temperatura.
- En la práctica, **osmolalidad y osmolaridad son muy similares** en líquidos corporales diluidos, como el plasma, debido al alto contenido de agua (1 kg/L).

1.14.3 3. Valor Normal de Osmolaridad Plasmática

- Valor promedio: 290 ± 10 m0sm/L
- Este valor refleja principalmente la concentración de:
 - Sodio (Na) y sus aniones asociados (Cl, HCO)
 - Glucosa
 - Urea (BUN Blood Urea Nitrogen)

Fórmula clínica aproximada para calcular la osmolaridad plasmática:

[Osmolaridad (mOsm/L)
$$\approx 2 \times [Na^+] + \frac{Glucosa~(mg/dL)}{18} + \frac{BUN~(mg/dL)}{2.8}$$
]

Figure 1.1: Fórmula de osmolaridad

1.14.4 4. Aplicaciones fisiológicas

- Osmorreceptores en el hipotálamo detectan cambios de osmolalidad.
- Incremento en osmolalidad \to secreción de ${f ADH}$ \to retención de agua en los túbulos colectores.

	00100001001
•	Disminución en osmolalidad \rightarrow supresión de ADH \rightarrow diuresis acuosa.

2 Repaso de Fisiología Renal

2.1 Mecanismo de formación de la orina: filtración, secreción y reabsorción

La formación de orina ocurre en tres etapas: filtración glomerular (paso de líquido desde los capilares glomerulares hacia la cápsula de Bowman), reabsorción tubular (retorno de sustancias útiles desde el túbulo hacia la sangre) y secreción tubular (transporte activo de sustancias desde la sangre hacia el túbulo para su eliminación).

2.2 Mecanismo de contracorriente

Es un proceso que ocurre en el asa de Henle y los vasos rectos. Permite la concentración de la orina gracias al intercambio de solutos y agua entre segmentos descendente y ascendente, y al gradiente osmótico en la médula renal. Este mecanismo es esencial para la conservación de agua.

2.3 Anatomía fisiológica renal

Cada riñón contiene alrededor de un millón de nefronas, unidad funcional básica. Estas incluyen un glomérulo, túbulos proximales, asa de Henle, túbulo distal y túbulo colector. La disposición cortical y medular permite la función de concentración de orina y regulación homeostática.

2.4 Circulación renal

Recibe aproximadamente el 20-25% del gasto cardíaco. Inicia en las arterias renales \rightarrow arterias interlobares \rightarrow arcuatas \rightarrow interlobulillares \rightarrow arteriolas aferentes \rightarrow glomérulo \rightarrow arteriolas eferentes \rightarrow capilares peritubulares o vasos rectos. Esta distribución permite una regulación precisa de la filtración y el equilibrio hidroelectrolítico.

2.5 Mecanismo de formación de orina

Inicia con la filtración en el glomérulo, seguida de reabsorción y secreción a lo largo del túbulo renal. El objetivo es mantener la homeostasis del organismo, ajustando el volumen, la osmolaridad y la composición de la orina según las necesidades fisiológicas.

2.6 Filtración glomerular

Es un proceso pasivo impulsado por la presión hidrostática del capilar glomerular. El filtrado atraviesa una barrera de tres capas: endotelio capilar, membrana basal y podocitos. La TFG (tasa de filtración glomerular) normal es de $\sim 125 \text{ mL/min}$ en adultos, regulada por mecanismos como la autorregulación y señales hormonales.

3 Digestivo

En esta parte va digestivo

4 Fisiología del ejercicio

Aca va lo del teorico del dr chiapello

5 Metabolismo energético

Apuntes de met energ

6 Resumen

En esta área iran los resumenes recontra importantes