DATA AND

DISTRIBUTIONS

Why Use Probability?

- data features are stochastic
- results are statistical

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Discrete vs. Continuous

- discrete variables:
- (a) has countable values v_1, \ldots, v_K
- (b) values associated with probabilities p_1, \ldots, p_K
- (c) example: age (in years)
- continuous variables:
- (a) can take any value in its range
- (b) probabilities described by a density function
- (c) example: height

Discrete Data

- $\bullet data X = \{x_1, \dots, x_N\}$
- assume sorted $x_1 \le \cdots \le x_N$
- probability p_i for each x_i
- how do we describe x?
- mean $\mu(X)$:

$$\mu = p_1 x_1 + \dots + p_N x_N$$

• standard deviation:

$$\sigma^2(X) = p_1(x_1 - \mu)^2 + \dots + p_N(x_N - \mu)^2$$

- mode: most frequent value
- median: value at position $\lfloor N/2 \rfloor$

Example: Chroline Atomic Weight

Isotope			Decay	
	abun- dance	half-life (t _{1/2})	mode	pro- duct
³⁵ CI	76%	stable		
³⁶ CI	trace	3.01×10 ⁵ y	β-	³⁶ Aı
			3	³⁶ S
³⁷ CI	24%	stable		

- Cl has two stable isotopes:
 - 1. Cl 35: mass 34.9689 and probability 0.7577
 - 2. Cl 37: mass 36.9653 and probability 0.2423

Chlorine Atomic Weight (cont'd)

Isotope			Decay	
abun- dance	half-life (t _{1/2})	mode	pro- duct	
76%	stable			
trace	3.01×10 ⁵ y	β	³⁶ Ar	
		3	³⁶ S	
24%	stable			
	76% trace	dance (t _{1/2}) 76% stable trace 3.01×10 ⁵ y	dance $(t_{1/2})$ 76% stable trace $3.01 \times 10^5 \text{ y}$ $\frac{\beta^-}{\epsilon}$	

• atomic weight *w*:

$$W = 34.9689 \times 0.7577 + 36.9653 \times 0.2423$$

= $26.4959 + 8.9567$
= 35.4526

Example: Hydrogen H_2

- \bullet $H_2 = \{1, 1\}$
- same mean, median, and mode
- no variation: $\sigma = 0$

Example: Water H_2O

$$H_2O = \{1, 1, 16\}$$

$$\mu(H_2O) = \frac{1}{3} + \frac{1}{3} + \frac{16}{3} = 6$$

$$\sigma^2(H_2O) = \frac{(1-6)^2}{3} + \frac{(1-6)^2}{3} + \frac{(16-6)^2}{3} = 50$$

Hydrogen vs. Water

- \bullet $H_2 = \{1, 1\}, H_2O = \{1, 1, 16\}$
- same median, and mode
- positive $\sigma(H_2O)$

Water vs. Carbon Dioxide

- $H_2O = \{1, 1, 16\}, CO_2 = \{12, 16, 16\}$
- $\mu(H_2O) < \mu(CO_2)$ larger values
- $\sigma(H_2O) > \sigma(CO_2)$ less variation

Carbonic Acid H₂CO₃

$$H_2CO_3 \leftrightarrow CO_2 + H_2O$$

$$\{1, 1, 12, 16, 16, 16\} = \{12, 16, 16\}$$

$$+ \{1, 1, 16\}$$

$$\mu(H_2CO_3) = 0.5 \cdot \mu(CO_2)$$

$$+ 0.5 \cdot \mu(H_2O)$$

mean of a mixture

Methane and Ethane

methane
$$CH_4 = \{1, 1, 1, 1, 1, 1\}$$

ethane $C_2H_6 = \{1, 1, 1, 1, 1, 1, 1, 1, 1, 1\}$

• same mode and median

Propane and Alcohol

- no change to mode and median

Coffee

- formula: $C_8H_{10}N_4O_2$
- 24 atoms
- 16 non-hydrogen atoms

Coffee

- same mode as ethane, propane, methane etc.
- μ < median
- most values larger than mean

Acetone

- formula: CH_3COCH_3
- same mode as ethane, propane, methane and coffee!
- μ > median
- most values smaller than mean

Impact of Outliers

$$CaCO_3 = \{12, 16, 16, 16, 20\}$$

 $PbCO_3 = \{12, 16, 16, 16, 82\}$

- outliers values outside of "normal" range
- may not impact median
- huge effect on μ, σ

Example of a Discrete Distribution

- coffeine formula: $C_8H_{10}N_4O_2$
- K = 4 elements $\{C, H, N, O\}$

$$P_C = \frac{8}{24}, P_H = \frac{10}{24}, P_N = \frac{4}{24}, P_O = \frac{2}{24}$$

Example of a Discrete Distribution (cont'd)

• values (atomic weights):

$$v_C = 12, v_H = 1, v_N = 14, v_O = 16$$

- 24 atoms of 4 elements
- mean weight per atom:

$$\mu = v_C \cdot p_C + v_H \cdot p_H + v_N \cdot p_N + v_O \cdot p_O$$

$$= 12 \cdot \frac{8}{24} + 1 \cdot \frac{10}{24} + 14 \cdot \frac{4}{24} + 16 \cdot \frac{2}{24}$$

$$= \frac{194}{24} = 8.08$$

- (weight) mode: 1 (hydrogen)
- (weight) median: 12 (carbon)

Prob. Distributions

- have sample points from X
- know distribution of $X \mapsto$ better prediction
- example: X has mean μ , variance σ^2
- Chebyshev's inequality (valid for any distribution)

$$P(\mu - k\sigma \le X \le \mu + k\sigma) \le 1/k^2$$

Prob. Distributions (cont'd)

• for k = 2 for any X

$$P(\mu - 2\sigma \le X \le \mu + 2\sigma) \le 0.25$$

• suppose we know X is normal $N(\mu, \sigma)$

$$P(\mu - 2\sigma \le X \le \mu + 2\sigma) \le 0.05$$

- much sharper bound
- it is important to model data

Distributions

• important for *parametric* modeling of data

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Bernouilli

- discrete distribution
- value 1 with probability p
- value 0 with probability q = 1 p
- result of a single experiment

Bernouilli (cont'd)

Bernouilli (cont'd)

Uniform

- values are equally likely
- discrete case:
- (a) n values v_1, \ldots, v_n

(b)
$$P(X = v_i) = 1/n$$

- continuous case:
- (a) any value in interval [a, b]

(b)
$$P(a \le X \le b) = 1/(b-a)$$

Uniform (cont'd)

 assume every digit is equally likely

Uniform (cont'd)

Binomial

- discrete ditribution
- number m of successes in n trials
- each trial has success probability p

$$P(X=m) = \binom{n}{m} p^m (1-p)^{n-m}$$

- n = 1 is the Bernouilli distribution
- mean: $\mu = np$
- variance: $\sigma^2 = np(1-p)$

Binomial (cont'd)

Binomial (cont'd)

Poisson

- discrete distribution
- independent events
- events per time is constant λ
- \bullet prob. of k events in time T:

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

• mean is λ , variance is λ

Poisson Example

- average number of goals in World Cup is 2.5
- model as Poisson $\lambda = 2.5$

$$P(k=0) = \frac{\lambda^0 e^{-\lambda}}{0!} = \frac{2.5^0 e^{-\lambda}}{0!} = 0.082$$

$$P(k=1) = \frac{\lambda^1 e^{-\lambda}}{1!} = \frac{2.5^1 e^{-\lambda}}{1!} = 0.205$$

$$P(k=2) = \frac{\lambda^2 e^{-\lambda}}{2!} = \frac{2.5^2 e^{-\lambda}}{2!} = 0.257$$

$$P(k=3) = \frac{\lambda^3 e^{-\lambda}}{3!} = \frac{2.5^3 e^{-\lambda}}{3!} = 0.213$$

Poisson (cont'd)

Poisson (cont'd)

Normal (Gaussian)

- continous distribution
- most widely used
- mean μ , variance σ^2

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

• symmetric

Normal (cont'd)

```
import numpy as np
import matplotlib.pyplot as plt
mean = 10
st dev = 8
n = np.arange(mean - 3*st_dev,
                  mean + 3*st dev)
normal = stats.norm.pdf(n, mean, st_dev)
plt.plot(n, normal)
plt.xlabel("Random variable X",
                    fontsize=12)
plt.ylabel("Probability",
                    fontsize=12)
plt.title("Normal (m=10, sigma=8)")
plt.xlim([mean - 3*st_dev,
                     mean + 3*st_dev])
plt.show()
```

Normal (cont'd)

68-95-99 Rule

- have explicit bounds
- much sharper than general non-parametric bounds

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Concepts Check:

- (a) discrete vs. continuous data
- (b) probability distributions
- (c) mean and standard deviation
- (d) Bernouilli, uniform, binomial, Poisson, Normal
- (e) outliers
- (f) bounds