

Katedra číslicového návrhu Fakulta informačních technologií ČVUT v Praze

BIK-TZP.21
Technologické základy
počítačů
2022/23

5. Obvody s tranzistory

Doc.Ing. Kateřina Hyniová, CSc.

hyniova@fit.cvut.cz

Katedra číslicového návrhu, FIT ČVUT

ThA:1031

Tranzistor

Tranzistor je polovodičový prvek používaný k zesilování a spínání elektrických signálů a výkonů

Zdroje proudu a spínače řízené el. proudem

Zdroje proudu a spínače řízené el. napětím

Stručná historie

- Bellovy laboratoře (1946):
 Bardeen, Brattain a Shockley obdrželi za vynález Nobelovu cenu.
- Původně vyroben z germania

Dnes vyráběny z dotovaného

křemíku

Bipolární tranzistor

Malý proud tekoucí do báze bipolárního tranzistoru řídí mnohem větší proud tekoucí mezi kolektorem a emitorem.

Tranzistor je prvek se třemi vývody:

B... báze

C... kolektor

E....emitor

NPN tranzistor

NPN transistor

 S rostoucím proudem I_B do báze NPN transistoru, se tranzistor stále více otevírá až se otevře úplně a proud I_C od kolektoru k emitoru dosáhne maxima.

•S klesající proudem l_B do báze NPN transistoru, se tranzistor stále zavírá až se zavře úplně a žádný proud l_C od kolektoru k emitoru neteče.

NPN - Zapojení se společným emitorem

 Emitor NPN tranzistoru je spojen se zeměmi zdrojů napětí U_B a U_C.

 Zapojení se společným emitorem je nejčastěji využívaným zapojením v tranzistorových zesilovačích

 Zesílení proudu stejně jako výkonový zisk jsou u zapojení se společným emitorem velké.

NPN - Zapojení se společným emitorem

Malý proud I_B do báze teče z báze do emitoru a řídí nebo spíná mnohem větší proud I_C tekoucí od kolektoru k emitoru

NPN - Zapojení se společným emitorem

≈ 1kΩ–100kΩ

 R_C je zatěžovací odpor, který omezuje kolektorový proud I_C když je tranzistor zcela otevřený

 Resistor R_B nastavuje velikost proudu I_B, který otevírá tranzistor a umožní, aby tekl kolektorový proud I_C kolektorovou smyčkou.

Tranzistor jako zesilovač

Zesilovací činitel ß (často označovaný jako h₂₁)

$$I_C = \beta \times I_B$$

V obvodu NPN tranzistoru se společným Příklad 1: emitorem jsou dány parametry:

Určete všechny el. veličiny v obvodu.

 $U_1=5V, U_2=5V,$ $R_B = 50 k\Omega$, $R_C = 200\Omega$, $\beta = 100$

Příklad 1:

 U_1 =5V, U_2 =5V, R_B =50kΩ, R_C =200Ω, β=100

Pro tranzistor v zesilovacím režimu platí:

 $U_{BE}=0,7V$

NA.

Příklad:

$$U_1$$
=5V, U_2 =5V,
 R_B =50kΩ, R_C =200Ω,
 β =100

Modrá šipka — naznačuje směr oběhu podél bázové smyčky pro aplikaci Kirchhoffova napěťového zákona.

Example 1:

 U_1 =5V, U_2 =5V, R_B =50kΩ, R_C =200Ω, β=100

- lacksquare U_{BE} =0,7 $V \Rightarrow U_{RB}$ = U_1 - U_{BE} =4,3V
- $I_B = U_{RB}/R_B = 4,3/50000 = 86 \mu A$

Z U_{RB} pomocí Ohmova zákona určíme I_B.

Všechny el. veličiny v bázové smyčce již známe.

Příklad 1:

$$U_1$$
=5V, U_2 =5V,
 R_B =50kΩ, R_C =200Ω,
 β =100

Example

 U_1 =5V, U_2 =5V, R_B =50kΩ, R_C =200Ω, β =100

Example

 U_1 =5V, U_2 =5V, R_B =50kΩ, R_C =200Ω, β =100

Příklad 1:

 U_1 =5V, U_2 =5V, R_B =50kΩ, R_C =200Ω, β =100

- U_{BE} =0,7 $V \Rightarrow U_{RB}$ = U_1 - U_{BE} =4,3V
- $I_B = U_{RB}/R_B = 4,3/50000 = 86\mu$ A
- $I_C = \beta \times I_B = 8.6 \text{mA}$
- $U_{RC} = R_C \times I_C = 200 \times 0,0086 = 1,72V$

Modrá šipka naznačuje směr oběhu podél bázové smyčky pro aplikaci Kirchhoffova napěťového zákona (KNZ).

(Podle KNZ: $U_{RC}+U_{CE}-U_2=0V \rightarrow U_{CE}=U_2-U_{RC}=5-1,72=3,28 \text{ V}$

Kompletní analýza obvodu

Příklad 1:

$$U_1$$
=5V, U_2 =5V,
 R_B =50kΩ, R_C =200Ω,
β=100

 $U_{BF}=0.7V \Rightarrow U_{RB}=U_1-U_{BF}=4.3V$ ■ $I_B = U_{RB}/R_B = 4,3/50000 = 86\mu$ A $I_C = \beta \times I_B = 8,6 \text{mA}$ ■ $U_{RC} = R_C \times I_C = 200 \times 0,0086 = 1,72V$ ■ U_{CE}=U₂-U_{RC}=5-1,72=3,28V

Budeme měnit některé zadané parametry obvodu

Příklad 2:

 U_1 =5V, U_2 =**10V**, R_B =50kΩ, R_C =200Ω, β =100

 $\mathbf{U}_{\mathrm{BF}} = 0.7 \text{V} \Rightarrow \mathbf{U}_{\mathrm{RB}} = U_{1} - U_{\mathrm{BF}} = 4.3 \text{V}$ $I_B = U_{RB}/R_B = 4,3/50000 = 86 \mu A$ ■ $I_C = \beta \times I_B = 8.6 \text{mA}$ ■ $U_{RC} = R_C \times I_C = 200 \times 0,0086 = 1,72V$ $U_{CE}=U_2-U_{RC}=10-1,72=8,28V$

Opět jsme změnili některé zadané parametry obvodu

Příklad 3:

 U_1 =5V, U_2 =10V, R_B =25k Ω , R_C =200 Ω , β=100

 \blacksquare $U_{BF}=0.7V \Rightarrow U_{RB}=U_1-U_{BF}=4.3V$ $I_B = U_{RB}/R_B = 4.3/25000 = 172 \mu A$ $I_C = \beta \times I_B = 17,2mA$ ■ $U_{RC} = R_C \times I_C = 200 \times 0,0172 = 3,44V$ $U_{CF}=U_2-U_{RC}=10-3,44=6,56V$

Opět jsme změnili některé zadané parametry obvodu

Příklad 4:

 U_1 =5V, U_2 =10V, R_B =10kΩ, R_C =200Ω, β =100

 \blacksquare $U_{BF}=0.7V \Rightarrow U_{RB}=U_1-U_{BF}=4.3V$ I_B=U_{RB}/R_B=4,3/10000=430μA \blacksquare $I_C = \beta \times I_B = 43 \text{mA}$ ■ $U_{RC} = R_C \times I_C = 200 \times 0,043 = 8,6V$ ■ U_{CF}=U₂-U_{RC}=10-8,6=1,4V

Opět jsme změnili některé zadané parametry obvodu

Příklad 5:

 U_1 =5V, U_2 =10V, R_B = $\frac{5k\Omega}{R_C}$, R_C =200Ω, β =100

 \blacksquare $U_{BF}=0.7V \Rightarrow U_{RB}=U_1-U_{BF}=4.3V$ $I_B = U_{RB}/R_B = 4.3/5000 = 860 \mu A$ \blacksquare $I_C = \beta \times I_B = 86 \text{mA}$ $U_{RC} = R_C \times I_C = 200 \times 0.086 = 17.2V$ $U_{CF}=U_2-U_{RC}=10-17,2=-7,2V$

Napětí U_{CE} je nyní záporné. Co to znamená?

 U_1 =5V, U_2 =10V, R_B =**5k**Ω, R_C =200Ω, β=100

 U_1 =5V, U_2 =10V, R_B =5kΩ, R_C =200Ω, β=100

Tranzistor je nyní plně otevřen- dostal se do saturace, tj. stavu nasycení. El. veličiny v kolektorové smyčce musíme počítat jinak. Pro NPN v saturaci:

$$U_{CESAT} = 0.2V$$

 U_1 =5V, U_2 =10V, R_B = $\frac{5k\Omega}{R_C}$, R_C =200Ω, β =100

(Podle KNZ:
$$U_{RC}+U_{CE}-U_2=0V \rightarrow U_{RC}=U_2-U_{CE}=10-0,2=9,8 \text{ V}$$

 U_1 =5V, U_2 =10V, R_B =**5k**Ω, R_C =200Ω, β=100

Z U_{RC} pomocí Ohmova zákona určíme I_C. Všechny el. veličiny v kolektorové i bázové smyčce již známe. Analýza obvodu je hotová.

28

Bipolární NPN tranzistory – operační režimy

Spínač rozepnutý (tranzistor zavřený)

$$\circ I_B = 0$$

Zesilovač

$$\circ I_B > 0, I_C = \beta \times I_B$$

 Spínač sepnutý (saturace)tranzistor je plně otevřen

$$\circ I_B \gg 0$$

Výkonová ztráta v tranzistorech

- K výkonovým ztrátám v tranzistoru dochází, je-li tranzistor otevřen a protéká jím proud l_C. Výkonová ztráta na přechodu kolektor-emitor:
- P_{CE}=U_{CE}.I_C

Ke ztrátám dochází i na přechodu bázeemitor:

$$P_{CE} = U_{BE}.I_{B}$$

Je-li tranzistor zavřený, neprotéká jím proud l_C a k výkonovým ztrátám nedochází.

Výkonová ztráta v tranzistorech

Příklad 6:

Unipolární tranzistory MOS FET

Prvek se třemi vývody

G... gate

D... drain

S.....source

Unipolární tranzistor jako spínač řízený napětím U_{GS}

Je-li řídicí napětí U_{GS} kladné ve směru šipky a vyšší než prahové napětí U_{th} , pak je tranzistor otevřený (sepnutý) a teče jím el. proud. Je-li menší než prahové napětí U_{th} , pak je tranzistor zavřený (rozepnutý) a proud jím neteče.

Unipolární tranzistor jako zesilovač

Užívá se jako zdroj el. proudu l_D řízeného el. napětím U_{GS}

$$I_D = \frac{K.\left(U_{GS} - U_{th}\right)^2}{2}$$

U_{th...}prahové napětí [V]

K...zesilovací činitel [A/V²]

$$U_{GS} = U_1 \frac{R_2}{R_1 + R_2}$$

$$U_{RD} = I_D R_D$$

Podle KNZ:

$$U_{DS} = U_2 - U_{RD}$$

Příklad 7:

Určete všechny el. veličiny v obvodu s danými parametry:

$$U_{GS} = \frac{R_2}{R_1 + R_2} U_1 = \frac{220000}{220000 + 150000} .8 = 4,76V$$

$$I_D = K. \frac{(U_{GS} - U_{th})^2}{2} = 0,002. \frac{(4,76-2,5)^2}{2} = 5,11mA$$

$$U_{RD} = R_D \cdot I_D = 470.5,11.10^{-3} = 2,4 V$$

Podle KNZ:

$$U_{DS} = U_2 - U_{RD} = 12.0 - 2.4 = 9.6 V$$

Příklad 8:

Určete všechny el. veličiny v obvodu, jsou-li dány parametry obvodu:

$$U_{GS} = \frac{R_2}{R_1 + R_2} U_1 = \frac{220000}{220000 + 150000} .8 = 4,76V$$

$$I_D = K. \frac{(U_{GS} - U_{th})^2}{2} = 0.002. \frac{(4.76 - 2.5)^2}{2} = 5.11 \text{ mA}$$

$$U_{DS} = U_2 - U_{RD} = 2.0 - 2.4 = (-0.4 V)$$

Záporná hodnota U_{GS} naznačuje, že tranzistor pracuje v Ohmickém režimu.

Příklad 8:

$$U_{GS} = \frac{R_2}{R_1 + R_2} U_1 = \frac{220000}{220000 + 150000}.8 = 4,76V$$

$$I_D = K. \frac{(U_{GS} - U_{th})^2}{2} = 0,002. \frac{(4,76 - 2,5)^2}{2} = 5,11 \text{ mA}$$

$$U_{RD} = R_D \cdot I_D = 470.5,11.10^{-3} = 2,4$$

According to KVL:

$$U_{DS} = U_2 - U_{RD} = 2.0 - 2.4 = 2.4 = 2.4 V$$

Hodnoty veličin I_D, U_{RD} a U_{DS} musíme počítat jinak

Unipolární tranzistor v lineárním (Ohmickém) režimu

El napětí U_{DS} mezi Drain and Source nemůže být záporné, protože vnitřní odpor mezi Drain a Source by musel být záporný . To není možné. V této situaci je tranzistor plně otevřený a strukturu Drain a Source můžeme nahradit ideálním vodičem. Proud I_D je nyní zcela nezávislý velikosti na unipolárních tranzistorů neříkáme, že je tranzistor v saturaci, ale že pracuje lineárním (Ohmickém) režimu.

Podle KNZ (tranzistor v v lineárním režimu:

$$U_2 = U_{RD}$$

Z Ohmova zákona:

Zpět k příkladu 8:

$$U_{GS} = \frac{R_2}{R_1 + R_2} U_1 = \frac{220000}{220000 + 150000} .8 = 4,76V$$

 U_1 =8,0 V U_2 =2,0 V R_1 =150 kΩ R_2 =220 kΩ R_D =470 Ω K=2 mA·V⁻² U_{th} =2,5 V

Podle KNZ: U2=URD

$$\boldsymbol{U_{RD}} = \boldsymbol{U_2} = 2\boldsymbol{V}$$

Podle Ohmova zákona:

$$I_D = \frac{U_{RD}}{R_D}$$

$$I_D = \frac{U_{RD}}{R_D} = \frac{2}{470} = 4,26 \text{ mA}$$

Unipolární tranzistory – operační režimy

□ Spínač rozepnutý

Tranzistor zavřený

$$U_{GS} < U_{th}$$

□ zesilovač

$$U_{GS} > U_{th}$$

$$I_D = \frac{K \cdot (U_{GS} - U_{th})^2}{2}$$

Tranzistor plně sepnutý

$$U_{GS}\gg U_{th}$$

Výkonové ztráty v obvodu s unipolárním tranzistorem

 K výkonovým ztrátám v tranzistoru dochází, je-li tranzistor otevřen a protéká jím proud I_D. Výkonová ztráta mazi Drain a Source

$$P_{DS}=U_{DS}.I_{D}$$

- Výkon se ztrácí formou tepla.
- Je-li tranzistor zavřený, neprotéká jím proud l_D a k výkonovým ztrátám nedochází.

Výkonová ztráta v obvodu s tranzistorem

$$P_{\text{Total}} = P_{\text{RD}} + P_{\text{DS}}$$

P_{Total}=Celková výkonová ztráta v obvodu

P_{RD} = Výkonová ztráta na rezistoru R_D

P_{DS} = Výkonová ztráta v tranzistoru mezi Drain a Source

$$P_{Total} = I_D U_{RD} + U_{DS} I_D = I_D^2 R_D + U_{DS} I_D$$
Ztráta na resistoru R_D

$$I_D^2 R_D + I_D^2 I_D = I_D^2 R_D + I_D^2 I_D$$