22DC 670/00

Cassette auto radio 22DC 570/00

Service Service Service

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

+ R570 R670

12/7/

Service Manual

12 V ⊝-|

1053 CONNECTING BLOCK P.B. ASSY

42 829 B12

Service Service Service

22DC670/60/60E

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-35254
Email:- enquiries@mauritron.co.uk

Service Manual

12 V ⊝-||-

44 254 A11

1053 CONNECTING BLOCK P.B. ASSY

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

C

C

PCB.01231 T27-838

				T		
- MISCELL	ANEOUS -			⊣⊢		
1055 1056 1057 1059 1060	IAC-Thifi SDK-Thifi STEREO DEC Cer.Filter 10.7 Cer.Filter 10.7	7 MHz 7 MHz	4822 214 51676 4822 214 51674 4822 214 51677 4822 242 71889 4822 242 71889	2166 2168 2172 2178 2180	100nF 20% 50V 100nF 20% 50V 100nF 20% 50V 2200μF 10V 2200μF 10V	4822 122 33104 4822 122 33104 4822 122 33104 4822 124 41452 4822 124 41452
1061 1062 1064 1065 1068	Crystal 4 MH Crystal 4 MH Cer.Filter 10.7 Cer.Filter 10.7 Potm.Volume	z 7 MHz 7 MHz	4822 242 71881 4822 242 71882 4822 242 71883 4822 242 71883 4822 102 40082	2186 2187 2192 2193 2196	100nF 20% 50V 100nF 20% 50V 33 pF 50V 33 pF 50V 2200µF 16V	4822 122 33104 4822 122 33104 4822 122 33215 4822 122 33215 4822 124 22412
1166 1250/1251 1254 1270÷1274	Fuse 2.5A(T) Potm.Tone 2) Potm.Balance Lamp 14V-40	100kΩ	4822 253 30026 4822 102 30462 4822 100 20663 4822 134 40855	2201 2204 2206 2208	100pF 20% 50V 2.2µF 40V 4.7nF 50V 4.7nF 50V	4822 122 33104 4822 124 20706 4822 122 33217 4822 122 33217
- I -						
2050 2051 2055 2056 2057	100nF 20% 47 nF 100nF 20% 10 nF 47 nF	50V 50V	4822 122 33104 4822 122 33211 4822 122 33104 4822 122 31728 4822 122 33211	3050 3051 3052 3053 3054	1k 330Ω 10E 10k Trimpotmeter 2k7	4822 111 91516 4822 111 91501 4822 111 91519 4822 100 20166 4822 111 91525
2061 2062 2063 2064 2068	2.2µF 150pF 270pF 220nF 20% 220nF 20%	40V 50V 50V	4822 124 20706 4822 122 33181 4822 122 33216 4822 122 32916 4822 122 32916	3055 3056 3057 3060 3061	10k Trimpotmeter 4k7 750E 10E 3k3	4822 100 20166 4822 111 91532 4822 111 91505 4822 111 91519 4822 111 91526
2070 2074 2076 2083 2088	390pF 20% 220nF 20% 220nF 20% 27 pF 10 pF	50V 50V 50V	4822 122 33172 4822 122 32916 4822 122 32916 4822 122 33214 4822 122 33212	3064 3065 3067 3068 3069	39k 2k2 620k 10E 3k9	4822 111 91528 4822 111 91522 4822 111 91503 4822 111 91519 4822 111 91527
2089 2090 2091 2092 2097	33 pF 20% 270pF 20% 270pF 20% 10 nF 20% 220nF 20%	50V 50V 50V 50V 50V	4822 122 33215 4822 122 33216 4822 122 33216 4822 122 33177 4822 122 32916	3070 3072 3073 3074 3075	8k2 22k 15k 1k 10k	4822 111 91507 4822 111 91523 4822 111 91498 4822 111 91516 4822 111 91517
2099 2106 2109 2110 2114	150pF 100nF 20% 22 pF 100nF 20% 4.7nF	50V 50V 50V 50V 50V	4822 122 33222 4822 122 33104 4822 122 33213 4822 122 33104 4822 122 33217	3076 3077 3079 3080 3082	2k7 330E 39k 39k 91E	4822 111 91525 4822 111 91501 4822 111 91528 4822 111 91528 4822 111 91508
2115 2118 2120 2121 2122	3.3nF 2200µF 10 pF 10 pF 820pF	50V 6.3V 50V 50V 50V	4822 122 33219 4822 124 41453 4822 122 33212 4822 122 33212 4822 122 33218	3083 3084 3086 3087 3090	2k2 39k 560E 470E 4k7	4822 111 91522 4822 111 91528 4822 111 91533 4822 111 91531 4822 111 91532
2123 2125 2126 2132 2133	820pF 820pF 820pF 2.7nF 2.7nF	50V 50V 50V 50V 50V	4822 122/33218 4822 122 33218 4822 122 33218 4822 122 33176 4822 122 33176	3091 3095 3096 3099 3100	220k 1k 1k 22k 220k	4822 111 91524 4822 111 91516 4822 111 91516 4822 111 91523 4822 111 91524
2134 2135 2136 2140 2141	220nF 20% 220nF 20% 100nF 20% 220µF 5.6nF	50V 50V 50V 10V 50V	4822 122 32916 4822 122 32916 4822 122 33104 4822 124 22409 4822 122 33221	3104 3105 3106 3107 3108	18k 18k 1k 39k 10k	4822 111 91521 4822 111 91521 4822 111 91516 4822 111 91528 4822 111 91517
2142 2150 2151 2156 2157	5.6nF 220nF 20% 220nF 20% 1.8nF 1.8nF	50V 50V 50V 50V 50V	4822 122 33221 4822 122 32916 4822 122 32916 4822 122 33144 4822 122 33144	3110 3111 3112 3113 3116	470E 470E 390k 390k 1M	4822 111 91531 4822 111 91531 4822 111 91529 4822 111 91529 4822 111 91509
2158 2162 2164	100nF 820pF 820pF	50V 50V 50V	4822 122 33209 4822 122 33218 4822 122 33218			4

©	DE 1 - 50	V ND0 04000	©	China O f	105 W C1006	©.7.	Chine O	125 W S1206 1
~ (inips 50	V NP0 S1206		Unips U,	125 W S1206	 	Jnips U,	
1 pF	5%	4822 122 32479	4,7 E	5%	5322 111 90376	6,8 k	2%	4822 111 90544
1,2 pF	5%	4822 122 33013	5,1 E	5%	4822 111 90393	7,5 k	2%	4822 111 90276
1,5 pF	5%	4822 122 31792	5,6 E	5%	4822 111 90394	8,2 k	2%	5322 111 90118
1,8 pF	5%	4822 122 32087	6,2 E	5%	4822 111 90395	9,1 k 10 k	2% 2%	4822 111 90373 4822 111 90249
2,2 pF	5%	4822 122 32425	6,8 E 7,5 E	5% 5%	4822 111 90254 4822 111 90396	11 k	2%	4822 111 90337
3,3 pF 3,9 pF	5% 5%	4822 122 32079 4822 122 32081	8,2 E	5% 5%	4822 111 90397	12 k	2%	4822 111 90253
4,7 pF	5%	4822 122 32082	9,1 E	5%	4822 111 90398	13 k	2%	4822 111 90509
5,6 pF	5%	4822 122 32506	10 E	2%	5322 111 90095	15 k	2%	4822 111 90196
6,8 pF	5%	4822 122 32507	11 E	2%	4822 111 90338	16 k	2%	4822 111 90346
8,2 pF	5%	4822 122 32083	12 E	2%	4822 111 90341	18 k	2%	4822 111 90238
10 pF	5%	4822 122 31971	13 E	2%	4822 111 90343	20 k	2%	4822 111 90349
12 pF	5%	4822 122 32139	15 E	2%	4822 111 90344	22 k	2%	4822 111 90251
15 pF	5%	4822 122 32504	16 E	2%	4822 111 90347	24 k	2%	4822 111 90512
18 pF	5%	4822 122 31769	18 E 20 E	2% 2%	5322 111 90139 4822 111 90352	27 k 30 k	2% 2%	4822 111 90542 4822 111 90216
22 pF	10% 5%	4822 122 31837 4822 122 31966	20 E	2% 2%	4822 111 90382	33 k	2%	5322 111 90267
27 pF 33 pF	5%	4822 122 31756	24 E	2%	4822 111 90355	36 k	2%	4822 111 90514
39 pF	5%	4822 122 31972	27 E	2%	5322 111 90105	39 k	2%	5322 111 90108
47 pF	5%	4822 122 31772	30 E	2%	4822 111 90356	43 k	2%	4822 111 90363
56 pF	5%	4822 122 31774	33 E	2%	4822 111 90357	47 k	2%	4822 111 90543
68 pF	5%	4822 122 31961	36 E	2%	4822 111 90359	51 k	2%	5322 111 90274
82 pF	10%	4822 122 31839	39 E	2%	4822 111 90361	56 k	2%	4822 111 90573
100 pF	5%	4822 122 31765	43 E	2%	5322 116 90125	62 k	2%	5322 111 90275
120 pF	5%	4822 122 31766	47 E	2%	4822 111 90217	68 k	2%	4822 111 90202
150 pF	5%	4822 122 31767	51 E	2%	4822 111 90365	75 k	2%	4822 111 90574
180 pF	2%	4822 122 31794	56 E	2%	4822 111 90239	82 k	2%	4822 111 90575
220 pF	5%	4822 122 31965	62 E	2%	4822 111 90367	91 k 100 k	2%	5322 111 90277 4822 111 90214
270 pF	5% 10%	4822 122 32142 4822 122 31642	68 E 75 E	2% 2%	4822 111 90203 4822 111 90371	110 k	2% 2%	5322 111 90269
330 pF 390 pF	5%	4822 122 31771	82 E	2%	4822 111 90124	120 k	2%	4822 111 90568
170 pF	5%	4822 122 31727	91 E	2%	4822 111 90375	130 k	2%	4822 111 90511
560 pF	5%	4822 122 31773	100 E	2%	5322 111 90091	150 k	2%	5322 111 90099
680 pF	5%	4822 122 31775	110 E	2%	4822 111 90335	160 k	2%	5322 111 90264
820 pF	5%	4822 122 31974	120 E	2%	4822 111 90339	180 k	2%	4822 111 90565
1 nF	10%	5322 122 31647	130 E	2%	4822 111 90164	200 k	2%	4822 111 90351
1,2 nF	5%	4822 122 31807	150 E	2%	5322 111 90098	220 k	2%	4822 111 90197
1,5 nF	10%	4822 122 31781	160 E	2%	4822 111 90345	240 k	2%	4822 111 90215
1,8 nF	10%	4822 122 32153	180 E	2%	5322 111 90242 4822 111 90348	270 k	2% 2%	4822 111 90302 5322 111 90266
2,2 nF 2,7 nF	10% 10%	4822 122 31644 4822 122 31783	200 E 220 E	2% 2%	4822 111 90348	300 k 330 k	2%	4822 111 90513
3,3 nF	10%	4822 122 31763	240 E	2%	4822 111 90373	360 k	2%	4822 111 90515
3,9 nF	10%	4822 122 32566	270 E	2%	4822 111 90154	390 k	2%	4822 111 90182
4,7 nF	10%	4822 122 31784	300 E	2%	4822 111 90156	430 k	2%	4822 111 90168
5,6 nF	10%	4822 122 31916	330 E	2%	5322 111 90106	470 k	2%	4822 111 90161
6,8 nF	10%	4822 122 31976	360 E	1%	4822 111 90288	510 k	2%	4822 111 90364
10 nF	10%	4822 122 31728	360 E	2%	4822 111 90358	560 k	2%	4822 111 90169
12 nF	10%	5322 122 31648	390 E	2%	5322 111 90138	620 k	2%	4822 111 90213
15 nF	10%	4822 122 31782	430 E 470 E	2%	4822 111 90362	680 k 750 k	2% 2%	4822 111 90368 4822 111 90369
18 nF 22 nF	10% 10%	4822 122 31759 4822 122 31797	510 E	2% 2%	5322 111 90109 4822 111 90245	820 k	2%	4822 111 90309
27 nF	10%	4822 122 32541	560 E	2%	5322 111 90113	910 k	2%	4822 111 90374
33 nF	10%	4822 122 31981	620 E	2%	4822 111 90366	1 M	2%	4822 111 90252
47 nF	10%	4822 122 32542	680 E	2%	4822 111 90162	1,1 M	5%	4822 111 90408
56 nF	10%	4822 122 32183	750 E	2%	5322 111 90306	1,2 M	5%	4822 111 90409
100 nF	10%	4822 122 31947	820 E	2%	4822 111 90171	1,3 M	5%	4822 111 90411
80 nF	10%	4822 122 32915	910 E	2%	4822 111 90372	1,5 M	5%	4822 111 90412
20 nF	20%	4822 122 32715	1 k	2%	5322 111 90092	1,6 M	5%	4822 111 90413
77.	hina A 1	25 W S1206 NP0	1,1 k	2%	4822 111 90336	1,8 M	5%	4822 111 90414
	niips u, i	25 W 51200 NPU	1,2 k 1,3 k	2% 2%	5322 111 90096 4822 111 90244	2 M 2,2 M	5% 5%	4822 111 90415 4822 111 90185
0 E	iumper	4822 111 90163	1,5 k	2%	4822 111 90151	2,4 M	5%	4822 111 90416
1 E	5%	4822 111 90184	1,6 k	2%	5322 111 90265	2,7 M	5%	4822 111 90417
1,1 E	5%	4822 111 90377	1,8 k	2%	5322 111 90101	3 M	5%	4822 111 90418
1,2 E	5%	4822 111 90378	2 k	2%	4822 111 90165	3,3 M	5%	4822 111 90191
1,3 E	5%	4822 111 90379	2,2 k	2%	4822 111 90248	3,6 M	5%	4822 111 90419
,5 E	5%	4822 111 90381	2,4 k	2%	4822 111 90289	3,9 M	5%	4822 111 90421
1,6 E	5%	4822 111 90382	2,7 k	2%	4822 111 90569	4,3 M	5%	4822 111 90422
1,8 E	5%	4822 111 90383	3 k	2%	4822 111 90198	4,7 M	5%	4822 111 90423
2 E	5% 5%	4822 111 90384	3,3 k	2%	4822 111 90157	5,1 M	5% 5%	4822 111 90424
2,2 E 2,4 E	5% 5%	5322 111 90104 4822 111 90385	3,6 k	2%	5322 111 90107	5,6 M	5%	4822 111 90425
2,4 E 2,7 E	5% 5%	4822 111 90386	3,9 k	2% 2%	4822 111 90571 4822 111 90167	6,2 M 6,8 M	5% 5%	4822 111 90426 4822 111 90235
3 E	5% 5%	4822 111 90387	4,3 k 4,7 k	2% 2%	5322 111 90107	7,5 M	5% 5%	4822 111 90235
	5%	4822 111 90388	4,7 k 5,1 k	2% 2%	5322 111 90268	8,2 M	5%	4822 111 90237
3,3 E		-	-, · ·	_ , -		9,1 M	5%	4822 111 90428

(

f

0

C

. C

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

							*a = 2,5 V
	Carbon film 0.2 W	70°C	5%	<u> </u>	Ceramic plate Tuning ≤ 120 pF NP.0 Others	2% 20/+80%	b = 4 V c = 6,3 V d = 10 V e = 16 V
-[0]	Carbon film 0.33 W	70°C	5%	***	Polyester flat foil	10%	f = 25 V g = 40 V h = 63 V
	Metal film 0.33 W	70°C	5%	"* II—	Metalized polyester flat film	10%	j = 100 V l = 125 V m = 150 V n = 160 V
	Carbon film 0.5 W	70°C	5%	•• *	Polyester flat foil small size (Mylar)	10%	q = 200 V r = 250 V s = 300 V
	Carbon film 0.67 W	70° C	5%	<u>^^</u> *	Polysterene film/foil	1%	t = 350 V u = 400 V v = 500 V
-	Carbon film 1.15 W	70°C	5%	<u>-^*</u>	Tubular ceramic		w = 630 V x = 1000 V A = 1,6 V B = 6 V C = 12 V
				<u>°*</u> 0 ⊩ —	Miniature single		D = 15 V E = 20 V F = 35 V
© Chip con	nponent			<u>°°*</u> []	Subminiature tantalum	± 20%	G = 50 V H = 75 V I = 80 V

-					
3117	1M	4822 111 91509	5050		4822 152 20684
3118	56k	4822 111 91535	5052		4822 157 50975
3119	56k	4822 111 91535	5054		4822 152 20677
3120	56k	4822 111 91535	5055		4822 152 20677
3121	56k	4822 111 91535	5056		4822 152 20677
3124	2M2	4822 111 91511	5057		4822 152 20679
3125	2M2	4822 111 91511	5059		4822 157 50975
3126	39k	4822 111 91528	5060		4822 152 20682
3130	390k	4822 111 91502	5061		4822 152 20683
3140	2K7	4822 111 91525	5062		4822 152 20678
3141	2k7	4822 111 91525	5064		4822 157 50975
3142	10k	4822 111 91517	5066		4822 152 20681
3143	10k	4822 111 91517			
3146	15k	4822 111 91498	→		
3147	15k	4822 111 91498	P1		
3148	100k	4822 111 91518	DAY44		4000 100 04100
3149	100k	4822 111 91518	BAX14		4822 130 34193 4822 130 34121
3150	3k3	4822 111 91526	BAX18		
3151	3k3	4822 111 91526	BBY40		5322 130 80119 4822 130 34233
3152	100k	4822 111 91518	BZX79/B5V1		4822 130 34233
3153	100k	4822 111 91518	BZX79/B5V6		
3158	5k6	4822 111 91534	BZX79/C4V7		4822 130 34174
3159	5k6	4822 111 91534	1N4002		5322 130 30684
3160	5k6	4822 111 91534	1N4148		4822 130 30621
3161	5k6	4822 111 91534	α		
3165	100k	4822 111 91518	\mathbb{Q}		
3166	100k	4822 111 91518			
3167	100k	4822 111 91518	BC847B Chip Tran	eietor	4822 130 60511
3168	100k	4822 111 91518	BCC47B Chip Tran	33301	4022 100 00011
3169	100k	4822 111 91518	000000		
3170	75E	4822 111 91506	Essecood		
3171	270E	4822 111 91499			
3172	270E 270E	4822 111 91499	6050	TEA6100	4822 209 72251
3173	100k	4822 111 91518	6051	TSA6057	4822 209 72248
3174	100k	4822 111 91518	6052	TEA6200	4822 209 72247
		4822 111 91517	6053	M8571B6	4822 209 11506
3175	10k 10k	4822 111 91517	6055	TA7705P	4822 209 82116
3176	680E	4822 111 91517	6057	TMP47C421AF	4822 209 72254
3177 3178	4E7	4822 111 91304	6060	TDA1518Q	4822 209 72249
3180	4E7 4E7	4822 116 80464	6063	L4918	4822 209 72253
			6064	L4904	4822 209 72252
3204	22k	4822 111 91523	- 4 7		
4050	0E	4822 111 91536			
4051	0E	4822 111 91536			

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-35254
Email:- enquiries@mauritron.co.uk

TECHNICAL DATA

General

: 14.4V DC : 180x51x150 mm Dimensions(wxhxd) Power supply

Radio

Γ.	: 144-288 kHz
WM	: 522-1611 kH;
MH	: 87.5-108 MH:
IF-AM	: 10.7 MHz
IF-FM	: 10.7 MHz
Sensitivity 26 dB S/R	: 160 µV (LW)
	: 110 µV (MW)
	: 4 µV (FM)
Limitation α-3dB	. 15 μν
10 dB crosstalk	: 150 µV
Cassette player	
Number of tracks	: 2x2
Tape speed	: 4.76 cm/sec
Wow & Flutter	. ≥ 0.35 %
Crosstalk	. ≤ 30 dB

SERVICING HINTS

SERVICE TEST PROGRAMME

The µC test programme can be called without first entering the security code.

uC test

This test is called by turning the set on while keeping the P1 and P2 keys depressed.
Besides the RAM, a great number of µC instructions are tested. If no faults occur, a special pattern will be The test can be stopped by turning the set off. displayed. (See fig. 1f)

Display test

displayed in succession. (See figs. 1a to 1h)
If you want to make one of the patterns visible for a
longer time, you only have to keep the P1 key pressed
for the required time. The display test is called by turning the set on while keeping the P1 and P3 keys depressed. A number of easily recognizable patterns are then

SECURITY CODE

hear an error bleep and after 1 minute you will be given a new opportunity to enter the right code. Each time a wrong code is entered, the waiting time is doubled, so 1, electronic lock. The security code has been entered in the factory and cannot be changed by the customer. The security code consists of four figures varying between 7000° and '9999°. The figures are selected by pressing the UP and DOWN keys and are entered by pressing the P1 key. If you enter a wrong code, you will To reduce the risk of theft, this car radio has a built-in 2, 4, 8 etc. with a maximum of 32 minutes.

Note: If the set is presented for repair with the security codes switched on, and the customer has not stated the right code, the set will not be able to function.

Replacing the eeprom by a "non-coded" eeprom and/or replacing the microprocessor will not help in that case.

Tel:- 01844-351694 Fax:- 01844-352554 MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor For Service Manuals Contact Email: enquiries@mauritron.co.uk Oxon OX9 4QY

: 4x5.2W ± 1 dB/4Ω : 7 dB at 100 Hz 6 dB at 10 kHz : -9 dB at 100 Hz : -14dB at 10 kHz

Output power (D ≤ 10%)

Loudness Amplifier

Tone control

ACTIVATING THE SECURITY CODE

Proceed as follows:

Switch the set on while pressing the UP key.

Now you hear a two-tone beep and the protection is activated.

The car radio will signal that the code has been activated by briefly showing in the display the character '-C-' at the moment of switching on the radio.

ENTRY OF THE CODE

Example: Suppose the code is 4567.

Display Note shows	, ب	first figure	45 second figure 45-	456 third figure 456-	4567 fourth figure confirmation tone
Action	- Switch on -	- Select UP/DOWN "4" 4	/DOWN "5"	.9. NMOQ/c	-/L NMOD/e

Now that the security code is active, the code should be The radio is now on and you can operate the cassette entered again each time the supply voltage has been

To indicate that the security code is activated, the display briefly shows the character "C" each time the set is turned on.

SWITCHING THE CODE OFF

Switch the set on while pressing the UP key. The display blows the indication "-C." Enfer the right code in the way described above. Two two-tone squeaks confirm that the security code is switched off.

All ICs and many other semi-conductors are susceptible to electrostatic discharges (ESD).

Careless handling during repair can reduce service life drastically. When repairing, make sure that you are connected to the same potential as the mass of the set Keep components and tools also at this potential. via a wrist wrap with resistance.

							413 422	WE SATE OF			505 20 D	416	408 A 417 A 417 A 426	NOOTE SEA		101 July 101		The second secon		NOSA BE 700FFF BE 200 (100 to 100 to	(DC570, 574) 409 4822 462 71496 421 4822 413 31508 (DC670, 674) 411 4822 130 90499 422 4822 443 30463 412 4822 410 26314 (DC570, 574) 423 4822 43 30463 412 4822 410 26315 (DC670, 674) 424 4822 321 21135 (DC570) 413 4822 410 26316 (DC570, 670) 427 4822 267 40763 (DC574) 416 4822 410 26339 (DC574, 674) 428 4822 267 40763 (DC677) 416 4822 214 51694 (DC574, 674) 429 4822 297 10305 (DC6774) 417 4822 214 51694	419 4822 276 12296 **Incl.
			431 MATERIALS				402	403		908			408				604		1.4 3.8		402 4822 443 62358 402 4822 443 62271 403 4822 492 42291 404 4822 403 53282 406 4822 423 50891 406 4822 423 50892 406 4822 423 50892 406 4822 423 50892 406 4822 423 50898	
	□::																			\$ 25-50 µs		
	đ.	(√0dB (775 mV)	-30dB<(\$)<40dB	♦ 0dB (775 mV)	♦ 26dB	(Vm 277) Bb0 (①	(∮) > 26dB	⟨♣⟩ 200 mV ±1dB	⟨	♦ 20 mV ± 1 dB	⟨5⟩ 350 mV ± 1dB	L (1) 0dB (775 mV)	R ② - L ﴿ > 21dB	L (1) 0dB (775 mV)	R② - L (D= 10dB		◆ 1.75 v-DC	♦ > 1.0 v-DC ♦ 6.0 v-DC	(8) > 0.8 V-DC (8) ≤ 6.0 V-DC			
	Setting of controls	7	Y.	7		7						7	ac.	7	ar.							
]	[]	[]	[]			[]	[87.5 MHz 108 MHz	144 kHz 1611 kHz			
	\Diamond	(•	@	>	(>	«	>	®	❖	(>	(a)	>	®	◈			©		
or checking and adjusting see general procedures	&	93 MHz, 1 mV	no signal	93 MHz, 4 μ V \triangle f = 22.5 kHz f mod = 1 kHz	93MHz, 4μV without mod.	990 kHz, 110 µV 1 kHz, 30% AM	990kHz, 110 µV without mod.	93MHz, 1mV △f = 22.5 kHz f mod = 1 kHz	93 MHz, 1 mV ∆f = 6.75 kHz f mod. = 1 kHz	93 MHz, 1 mV ∆f = 3.75 kHz f mod. = 57 kHz	990 kHz, 1 mV 1kHz, 30% AM	93 MHz, 1 mV stereo signal	93 MHz, 1 mV stereo-R	93 MHz, 1 mV stereo signal	93 MHz, 150 μV stereo-R	93 MHz, 25μV	990 KHz, 70µV			T = 10 µsec T = 300 µsec Vp = 60 mV		
adjusting	SK	N	Ž L	Σ		3		Ĭ.		M	MW	Ā	I	Σ	1	N.	M.	£	MW MW	Σ		
or checking and	Check	CM Moto	annw-wil	26dB-SNR		-		Demodulated FM-levels		Demodulated FM level	Demodulated AM-level	Cross talk		SDS/10dB Cross talk		Search level FM	Search level AM	VC-FM	VC-AM	LA.C.		12 225

any position position FM position AM position play forward position play reverse position eject	C107= VC-FM MP-7 C108= 1.4V C109= GND. C110= 1.7V C111= 2.9V C112= 0.2V C113= 1.8V	5 = 4.3V 6 = 8.1V 7 = 8.4V 8 = GND.
Y FM Y AM Y A Y A	50 FM TUNER 01 = GND. 02 = - 03 = GND. 04 = 0.0V 05 = 1.7V 06 = 8.5V	55 IAC-THIFI = N.C = 2.5V MP-9 = N.C = 4.3V signal

11 = 6.8V AM 12 = 1.3V MP-5 13 = 4.8V AM 14 = 8.5V AM 15 = 4.8V AM 17 = GND. 19 = 1.0V AM 20 = 3.3V AM

1 = 6.8V AM 2 = 4.0V AM 3 = 8.5V 5 = 8.5V 6 = 8.5V 6 = 8.5V 7 = 0.7V 8 = 4.0V AM 10 = 4.0V AM

5052 TEA6200

5 = 4.8V(SDA) 6 = 4.8V(SCL) 7 = GND. 8 = 5.0V

1 = GND. 2 = GND. 3 = GND. 4 = GND.

6053 M8571B6

9 = 2.9V 10= N.C 11= 2.9V

1 = 8.5V 2 = 3.3V; 0.0V eject 1 3 = 0.0V >, eject 1 5.0V <

6055 TA7705P

12= 2.9V 13= 2.9V 14= N.C 15= N.C

4 = N.C 5 = 2.9V 6 = 2.9V 7 = 2.9V 8 = GND.

7 = 8.4V 8 = GND.	11= 5.0V mono 0.0V sterec 12= N.C 13= 5.0V muted
= N.C = 4.3V signal 0.0V no signal	57 ST.DEC.THIFI = 5.0V mono 0.2V stereo = N.C = 3.5V

mono	stereo	muted
11= 5.0V	0.0V stereo	13= 5.0V
	stereo	

0.0V stereo	N.C	5.0V muted	0.0V signal	= 0.0V muted	5.0V signal
tereo	12=	13=		14=	

= 2.5V

6060/6061 TDA1518Q

muted				
	5.0			
14=		15=	16≖	

15= 3.5V	16= 3.5V	17 = 3.5V	18= 3.5V	19- 357

8 = 14.4V 9 = 6.6V 10 = 14.4V 11 = 14.4V 12 = 6.6V 13 = 2.2V

1 = 2.2V 2 = 2.2V 3 = GND. 4 = 2.2V 5 = 6.6V 7 = GND.

19 = 3.5V20 = 3.5V

= 3.5V = GND. = N.C = 7.3V = N.C = N.C = 4.3V signal 0.0V no signal

6063 L4918

1 = 14.4V 2 = 2.6V 3 = GND. 5 = 8.5V

	11= 4.2V MP-4	12 = 4.6V	13= 4.6V
TEA6100	3.4V	78.0	4.3V signal

0.8		-
75.1		-
2	arginal argunal	2
0.0	no signal	

13=		14=
signal	no signal	
€	∂.	ပ

14=	15=	16=	17=	18=	19=	20=	
N.C	= MP-3	= 40 kHz	= GND.	= 8.4V	= 4.8V(SDA)	= 4.8V(SCL)	

5 = N.C 6 = 4.2V 7 = 5.0V 8 = 5.0V

1 = 12.7V 2 = 8.5V 3 = 5.6V 4 = GND.

6064 L4904

VC.2 = 1	18 = 2.9V	19 = 2.9V	20= GND.
		DA)	3

20= GND.		9 = 40 KH
= 4.8V(SCL)	51 TSA6057	= 4 MHz

		10 12 13 13 13 13 13 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	11 8 18 11	440>;	10= 4.8V(SDA) 11= 4.8V(SCL) 12= GND. 13= VC-FM 1.3V-5.8V	>> - 4	ത്ത്.∑:	35 T:	رن دن ا	> 5	ဟု ဒွ	∞;
--	--	--	------------	-------	---	--------	---------	-------	---------	-----	-------	----

	(87.5MHz	2.00	15= N.C	8.3V
-		14=	15=	16=
				Σ
				>

-0 10 10 10 10 10 10 10 10 10 10 10 10 10	(87.	14 = 2.0	15= N.C	
				MΗ
>		>	>	8.

13= VC-FF (87.5h	14= 2.00	15= N.C	16 = 8.3V	
>	>	>	.8V FM	3V AM

	15= 15 15= N
.8V	78.
.8V	V8.

11= 4.8	12≖ GNI	13= VC-	(87.	14= 2.0\	
>	ä	>		>	>

 $\theta = 0.1V$ foudn. on b = 0.7V loudn. on c = 0.1V loudn. on

6909/8909

6070/6071

$$9 = 40 \text{ kH}$$

 $10 = 4.8 \text{ V}$
 $11 \approx 4.8 \text{ V}$
 $12 \approx \text{GND}$

e = GND. b = 0.0V c = 5.0V

e = GND.
b = 0.6V loudn. off
0.0V loudn. on
c = 0.0V loudn. off
0.1V loudn. on

e = GND. b = 0.7V c = 0.0V

e = GND. b = 0.6V loudn. off 0.0V loudn. on c = 0.0V loudn. off 3.3V loudn. on

6075

တ်

For adjusting and checking see general procedures

Adjustment	XS		\Diamond	\Diamond	() :
Qudrature detector	Ā	93 MHz, 10 μV	®	2050	via 100 kΩ: 11-15 IC6050 ≤ 100 mV DC
0 7	2	93 MHz, 1 mV △f = 22.5 kHz f mod = 1 kHz	®	7	(Vm 277) abo 🚯
	Ē	93 MHz, 15 μV ∆f = 22.5 kHz f mod = 1 kHz	®	3055	-3dB
AM-search level	WW	990 kHz, 70 µV	⋄	3053	◆ 1.75 v DC

ø

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor Tel: 01844-351694 Fax:- 01844-352554 Email:- enquiries@mauritron.co.uk Oxon OX9 4QY

42 947 B12

Fig. 1

any position position FM	position play forward position play reverse position eject
>: >: > M A M A	. V > V

C107= VC-FM MP-7 C108= 1.4V C109= GND. C110= 1.7V C111= 2.9V C112= 0.2V C113= 1.8V 1050 FM TUNER C101= GND.

① OdB (775 mV)

V

0

93 MHz, 1 mV ∆f = 22.5 kHz f mod = 1 kHz

Σ

a-3dB

③ 1.75 ∨ DC

3053

③

990 KHz, 70 µV

₹

AM-search level

5 = 4.8V(SDA) 6 = 4.8V(SCL) 7 = GND. 8 = 5.0V

1 = GND. 2 = GND. 3 = GND. 4 = GND.

6053 M8571B6

9 = 2.9V 10 = N.C 11 = 2.9V

6055 TA7705P

12= 2.9V 13= 2.9V 14= N.C 15= N.C

6060 TDA1518Q

1 = 8.5V 2 = 3.3V; 0.0V eject 3 = 0.0V >, eject 4 = N.C 5 = 2.9V 7 = 2.9V 8 = GND.

こ 日 子

EM2 STERE0

こっ

š

STERE0

Ö

LOUD

8 = 14.4V 9 = 6.6V 10= 14.4V 11= 14.4V 12= 6.6V 13= 2.2V

1 = 2.2V 2 = 2.2V 3 = GND. 4 = 2.2V 5 = 6.6V 6 = 14.4V 7 = GND.

X

INFO SK

STEREO FMI

AST

INFO SK DK

AST STEREO FMI 3€

0001

-3dB

 \Diamond

3055

®

93 MHz, 15 µV ∆f = 22.5 kHz f mod = 1 kHz

via 100 kΩ: 11-15 IC6050 ≤ 100 mV DC

5050

®

93 MHz, 10 µV

Qudrature detector

11 = 6.8V AM 12 = 1.3V MP-5 13 = 4.8V AM 15 = 4.8V AM 15 = 4.8V AM 17 = GND 19 = 1.0V AM 19 = 1.3V AM 19 = 1.3V AM

1 = 6.8V AM 2 = 4.0V AM 3 = 8.5V 4 = 8.5V 5 = 8.5V 6 = 8.5V 7 = 0.7V 8 = 4.0V AM 10= 4.0V AM

3052 TEA6200

88

š F

Adjustment

For adjusting and checking see general procedures

Ø.

Ø

C102= -C103= GND. C104= 0.0V C105= 1.7V C106= 8.5V

1055 IAC-THIFI

1 = N.C 2 = 2.5V MP-9 3 = N.C 4 = 4.3V signal 0.0V no signal

5 = 4.3V 6 = 8.1V 7 = 8.4V 8 = GND.

057 ST.DEC.THIFI

1 = 5.0V mono 0.2V stereo 2 = N.C 3 = 3.5V

4 = 2.5V

5 = 3.5V 6 = GND. 7 = N.C 8 = 7.3V 9 = N.C

11= 5.0V mono 0.0V stereo 12= N.C 13= 5.0V muted 0.0V signal 14= 0.0V muted 5.0V signal 16= 3.5V 17= 3.5V 17= 3.5V 19= 3.5V 19= 3.5V 20= 3.5V

0= 4.3V signal 0.0V no signal

050 TEA6100

6063 L4918

1 = 14.4V 2 = 2.6V 3 = GND. 4 = GND. 5 = 8.5V

6064 L4904

11= 4.2V MP-4 12= 4.6V 13= 4.6V

1 = 8.4V 2 = 0.8V 3 = 4.3V signal 0.0V no signal 0.0V no signal 4 = N.C 5 = M.P.3 6 = 40 KHz 7 = GND. 8 = 8.4 V 9 = 4.8V(SDA) 9 = 4.8V(SDA)

14= 2.5V 15= 4.4V 16= 2.9V 17= 2.9V 18= 2.9V 20= GND.

5 = N.C 6 = 4.2V 7 = 5.0V 8 = 5.0V

1 = 12.7V 2 = 8.5V 3 = 5.6V 4 = GND.

351 TSA6057

e = 0.1V loudn. on b = 0.7V loudn. on c = 0.1V loudn. on

6909/8909

6070/6071

9 = 40 kHz ± 0.6Hz 10 = 4.8V(SDA) 11 = 4.8V(SCL) 12 = 6ND. 13 = VC-FM 1.3V-5.8V (87.5MHz-108MHz) 14 = 2.0V 15 = N.C.

6 = GND. b = 0.0V c = 5.0V

e = GND. b = 0.6V loudn. off 0.0V loudn. on c = 0.0V loudn. off 0.1V loudn. on

e = GND. b = 0.7V c = 0.0V 6075

e = GND.
b = 0.6V loudn. off
0.0V loudn. on
c = 0.0V loudn. off
3.3V loudn. on

= <0.8V FM 8.3V AM

= 4 MHz = 4 MHz = 4.7V = 6ND. = 1.8V = 1.8V

Fig.

Ö

FM2 (

نە

000 ≧≧

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4 QY Tel:- 01844-351694 Fax:- 01844-352554 Email:- enquiries@mauritron.co.uk

12 224

TECHNICAL DATA

: 2×2 : 4.76 cm/sec : ≽ 0.35 % : ≤ 30 dB	: 2x5.2W ± 1 dB/4Ω : 7 dB at 100 Hz 6 dB at 10 kHz :-9 dB at 100 Hz :-14dB at 10 kHz
Cassette player Number of tracks Tape speed Wow & Flutter Crosstalk	Amplifier Output power (D ≤ 10%) Loudness Tone control
: 14.4V DC : 180x51x150 mm : 22EN9875	: 144-288 kHz : 522-1611 kHz : 87.5-108 MHz : 10.7 MHz : 10.7 MHz : 160 µV (LW) : 110 µV (KW) : 4 µV (FM) : 15 µV
General Power supply Dimensions(wxhxd) Remote control unit	Radio LW MW FM IF-AM IF-FM Sensitivity 26 dB S/R Limitation α-3dB 10 dB crosstalk

SERVICING HINTS

SERVICE TEST PROGRAMME

The µC test programme can be called without first entering the security code.

uC test

This test is called by turning the set on while keeping the Besides the RAM, a great number of μC instructions are tested. If no faults occur, a special pattern will be displayed. (See fig. 1f)
The test can be stopped by turning the set off. P1 and P2 keys depressed.

Display test

longer time, you only have to keep the P1 key pressed for the required time. If you want to make one of the patterns visible for a The display test is called by turning the set on while A number of easily recognizable patterns are then displayed in succession. (See figs. 1a to 1h) keeping the P1 and P3 keys depressed.

SECURITY CODE

General

electronic lock. The security code has been entered in the factory and cannot be changed by the customer. The security code consists of four figures varying between "0000" and "9999". The figures are selected by pressing the UP and DOWN keys and are entered by pressing the P1 key. If you enter a wrong code, you will hear an error bleep and after 1 minute you will be given wrong code is entered, the waiting time is doubled, so 1, To reduce the risk of theft, this car radio has a built-in a new opportunity to enter the right code. Each time a 2, 4, 8 etc. with a maximum of 32 minutes.

code switched on, and the customer has not stated the right code, the set will not be able to function. Replacing the eeprom by a "non-coded" eeprom and/or replacing the microprocessor will not help in that case. Note: If the set is presented for repair with the security

MAURITRON TECHNICAL SERVICES For Service Manuals Contact 8 Cherry Tree Rd, Chinnor

Tel:- 01844-351694 Fax:- 01844-352554 Email:- enquiries@mauritron.co.uk Oxon OX9 4QY

Working

ACTIVATING THE SECURITY CODE

Proceed as follows:

Switch the set on while pressing the UP key.

Now you hear a two-tone beep and the protection is activated.

The car radio will signal that the code has been activated by briefly showing in the display the character '-C.' at the moment of switching on the radio.

ENTRY OF THE CODE

Example: Suppose the code is 4567.

Action - Switch on - Press P1 - Select UP/DOWN "4" - Press P1 - Select UP/DOWN "5" - Press P1 - Select UP/DOWN "6"	Display shows shows shows C- 44 44 45- 45- 456- 456-	Note first figure second figure third figure
- Select UP/DOWN "7" - Press P1	4567	fourth figure confirmation tone

Now that the security code is active, the code should be The radio is now on and you can operate the cassette entered again each time the supply voltage has been To indicate that the security code is activated, the display briefly shows the character "C" each time the set is

SWITCHING THE CODE OFF

Switch the set on while pressing the UP key. The display shows the indication "-C-". Enter the right code in the way described above. Two two-tone squeaks confirm that the security code is switched off.

ESD A

All ICs and many other semi-conductors are susceptible to electrostatic discharges (ESD).

drastically. When repairing, make sure that you are connected to the same potential as the mass of the set Careless handling during repair can reduce service life via a wrist wrap with resistance.

Keep components and tools also at this potential.

en.	
ä	
2	
=	
_	
ø	
ø	
Õ	
×	
'n	
×	
u	
_	
a	
-	
8	
≖	
=	
•	
o	
Ξ.	
o	
ă	
TA.	
•,	
×	
=	
=	
ø	
ä	
=	
ਰ	
ã	
~	
73	
×	
⋍	
ď	
_	
Q	,
=	
Œ	
÷.	
ပ	
Φ	
ē	
75	

V	/				·	444	as as a series				******			7	A.				/	4 418 4822
		For Service Manuals Contact Malipropy TECHNICAL SERVICE	8 Chery Tree Rd, Chinnor Oxo 40Y Tree Bd, Chinnor Oxo 40Y Tel: 01844.35184 Fx: 01844.353554	Email: enquiries@mauritron.co.uk			401	402	406			114	423	412 — — — — — — — — — — — — — — — — — — —			955	- 1 s	ē o	401 4822 443 62676 (570)
									,											\$\$-50 µs
(1:)	(√NM 2775 MV)	-30dB≪(I)<40dB	(Vm 277) Bb0	♦ 26dB	(y) 0dB (775 mV)	♦ 26dB	♦ 200 mV ±1dB	⟨♣⟩ 50 mV ± 1dB	⟨♣⟩ 20 mV ± 1 dB	\$ 350 mV ± 1dB	L () 0dB (775 mV)	R② - L (V) ≥ 21dB	L 🛟 0dB (775 mV)	R② - L ①= 10dB	 	◆ 1.75 v-DC	♦ 1.0 V-DC ♦ 6.0 V-DC	(B) ≥ 0.8 V-DC		
Setting of controls	1		V		7		P GLO				Ţ		Ţ							
			[]	[]	[]					[87.5 MHz 108 MHz	144 KHz	1611 kHz	
\Diamond	<	⊕	(>	(4	>	(>	®	❖	(4	>	(<u> </u>	®	◈				
₩	93 MHz, 1 mV	no signal	93 MHz, 4 μV Δf = 22.5 kHz f mod = 1 kHz	93MHz, 4μV without mod.	990 kHz, 110 μV 1 kHz, 30% AM	990kHz, 110 µV without mod.	93MHz. 1mV △f = 22.5 kHz f mod = 1 kHz	93 MHz, 1 mV ∆f = 6.75 KHz f mod. = 1 KHz	93 MHz, 1 mV	990 kHz, 1 mV 1kHz, 30% AM	93 MHz, 1 mV stereo signal	93 MHz, 1 mV stereo-R	93 MHz, 1 mV stereo signal	93 MHz, 150 µV stereo-R	93 MHz, 25μV	990 кНz, 70µV				t = 10 usec T = 300 usec Vp = 60 mV
SK		Σ	2	Ē	NA.		Ā		Æ	WM	Ā		Æ		Æ	MM	ž.	3	WW	Σ
Check		FM-Mute	26dB-SNR				Demodulated FM-levels		Demodulated FM level	Demodulated AM-level	Cross talk		SDS/10dB Cross talk		earch level FM	earch level AM	VC-FM	VC-AM		I.A.C.

C C C C C C C C C C C C C C C C C C C	429 4822 210 10305 430 4822 267 30883 • Incl. items 401, 402
4 4 1 9 4 1 9 4 1 9 9 9 9 9 9 9 9 9 9 9	418 4822 410 20902 (570) 418 4822 410 26736 (670) 419 4822 318 40380 (570) 420 4822 318 40380 (570) 420 4822 318 40380 (570) 420 4822 134 40921 423 4822 134 40921 426 4822 256 30338 428 4822 267 50859
Email: enquiries@mauritron.co.uk 401 402 406 90 90 411 423 412 417	401 4822 443 62676 (570) 401 4822 443 62271 402 4822 492 42271 406 4822 435 50934 (570/60E) 406 4822 435 50939 (670/60) 406 4822 435 50939 (670/60E) 411 4822 435 30939 (470/60E) 412 4822 413 41481 413 4822 413 41481 413 4822 413 41481
48 BB BB (%) BB (%) CO	25-50 ps

a head homed again to the

1065 STEATH 1005 STEA		-					
7 STEREO Dec. Thin 4822 242 72076 2178 100nF 20% 50V 4822 122 0 Cer. Filter 10.7 MHz 4822 242 72076 2178 200nF 20% 50V 4822 122 0 Cer. Filter 10.7 MHz 4822 242 71882 2189 2189 2189 2189 2189 2189 2189	1055	IAC-Th	jįį.	4822	2166	20%	4822 122
Confine 107 MHz 4822 242 71881 2180 2200µF 20% 50V 4822 122 71881 2180 2200µF 10V 4822 122 71882 242 7188	1057	STERE	EO DEC. Thiff	4822	2168	20%	4822 122
7 Cystal 4 MHz 4822 242 71881 2186 100hF 20% 50V 4822 128	1060	Ser. Fil.	ter 10.7 MHz	4822	2178	% 70.7	4822 122
Coff Filler 107 MHz 2822 242 71882 2189 2189 2189 2189 2189 2189 2189	1001	Crystal	4 MHZ	4822	2180	i	4822 124
Controller 107 MHz A4822 17888 2199 33 pF 500 4822 123	1064	Cer.Filt	ter 10.7 MHz	4822	2187	20%	4822 122
From Notining Account	1065	Cer. Filt	ter 10.7 MHz	4822	2192		4822 122
Porm Balance 100kA	1166	Fuse 2	SA(T)	4822	2193		4822 122
	1250/1251	Potm.T	one 2X100kΩ	4822	2201	50%	4822 122
100hF 20% 50V 4822 122 33104 3050 1k Timpormeter 4822 111 100hF 20% 50V 4822 122 33144 3051 3052 10k Timpormeter 4822 111 100hF 20% 50V 4822 122 33144 3055 10k Timpormeter 4822 112 33114 3051 3053 10k Timpormeter 4822 112 33114 3051 3051 3051 3051 3051 3051 3051 3051	1254	Lamp 1	salance 100ks 14V-40mA 14V orange	4822 100 4822 134 4822 134	2208 2208 88		4822 124 4822 122 4822 122
100nF 20% 50V 4822 122 33104 3050 1k 4822 111 100nF 20% 50V 4822 122 33128 3055 10k Timpotmeter 4822 110 10 nF 20% 50V 4822 122 33109 3055 10k Timpotmeter 4822 110 10 nF 20% 50V 4822 122 3318 3055 3 NS 3050 4822 123 3318 3055 3 NS 3050 4822 134 20705 3055 10k Timpotmeter 4822 110 15 NS 3050 2 NS	+				¢		
47 III 700 H 4822 122 33104 305 3004 4822 102 3104 4	2050	100nF		122	3050	14 000	E
47 nF 4822 122 33211 305-4 LW 4822 122 33211 305-4 482 122 232311 305-4 482 122 33211 482 122 33211 482 122 33211 482 122 33211 482 122 33211 482 122 33211 482 122 33211 482 122 33216 305-5 10k Trimpormeter 482 121 482 311 482 122 33216 305-5 10k Trimpormeter 482 121 482 311 482 121 33216 305-5 482 121 482 121 33216 305-5 482 121 482 121 33216 306-5 10k Trimpormeter 482 121 482 311 482 121 48	2055	100nF		122	3052	330% 10E	EE
2.2µF 40V 4822 122 33181 3055 10k Trimpormeter 4822 112 4821 122 33181 3055 4k7 4822 112 4822	2056 2057	10 nF 47 nF		122	3053	10k Trimpotmeter 2k7	85
270pF 20% 487 7 882 12 3310 487 4822 12 3310 487 4822 12 3310 487 4822 12 3310 482 12 3310 4822 12 3312 4822 12 3312 4822 12 3312 4822 12 3312 4822 12 3312 306 10E 4822 12 3312 306 10E 4822 12 3312 305 487 4822 12 3312 306 10E 4822 12 3312 306 10E 4822 12 3312 306 10E 4822 13 4822 12 3312 306 306 306 306 306 306 306 4822 13 4822 13 4822 13 4822 13 4822 13 4822 13 4822 13 4822 13 4822 13 4822 13 4822	2061	2.2µF	400	124	3055	10k Trimpotmeter	8
220nF 20% 50V 4822 122 32916 3061 3K3 H822 111 2006 20% 50V 4822 122 32916 3061 3K3 H822 111 2006 20% 50V 4822 122 32916 3065 3K9 4822 111 2006 20% 50V 4822 122 32916 3067 5620k 4822 111 2006 30K 4822 122 32916 3067 5620k 4822 111 2006 30K9 4822 123 32916 3069 3K9 4822 111 2006 20% 50V 4822 122 32916 3077 22k 4822 111 2006 20% 50V 4822 122 33216 3077 22k 4822 111 2006 20% 50V 4822 122 33216 3077 22k 4822 111 2006 20% 50V 4822 122 33216 3077 22k 4822 111 2006 20% 50V 4822 122 33216 3077 22k 4822 111 2006 20% 50V 4822 122 33216 3077 22k 4822 111 2006 20% 50V 4822 122 33216 3077 330E 4822 111 2006 20% 50V 4822 122 33216 3077 330E 4822 111 2006 20% 50V 4822 122 33216 3077 330E 4822 111 2006 20% 50V 4822 122 33218 3084 3084 3084 4822 111 2006 20% 50V 4822 122 33218 3084 2006 20k 4822 111 2006 20% 50V 4822 122 33218 3084 3084 4822 111 2006 20% 50V 4822 122 33218 3084 2006 20k 4822 111 2006 20% 50V 4822 122 33218 3084 2006 20k 4822 111 2006 20% 50V 4822 122 33218 3099 20k 47 4822 111 2006 20% 50V 4822 122 33218 3099 20k 47 4822 111 2006 20% 50V 4822 122 33218 3099 20k 47 4822 111 2006 20% 50V 4822 122 33218 3099 20k 47 4822 111 2006 20% 50V 4822 122 33218 3099 20k 47 4822 111 2006 20% 50V 4822 122 33218 3099 20k 47 4822 111 2006 20% 50V 4822 122 33218 3099 20k 4822 111 2006 20% 50V 4822 122 33218 3099 20k 4822 112 2000 2006 10k 4822 112 2000 2006 10k 4822 122 33314 3113 390K 4822 111 4000 2000 2000 2000 2000 2000 200	2062	150pF		225	3056	4k7	Ξ
390pF 20% 50V 4822 122 33172 3065 282 4822 111 220nF 20% 50V 4822 122 32916 3065 620k 4822 111 23 22916 3065 620k 4822 111 23 22916 3065 620k 4822 111 23 3214 3069 3k9 4822 111 23 3215 3070 8k2 4822 111 23 3216 3070 8k2 4822 111 23 3216 3077 8k2 4822 111 23 3216 3077 8k2 4822 111 23 3216 3077 306 3k4 4822 111 23 3216 3077 306 3k4 4822 111 23 3216 3077 306 3k4 4822 111 20 pF 50V 4822 122 33214 3077 306 3k4 4822 111 20 pF 50V 4822 122 33214 3079 3k4 4822 111 20 pF 50V 4822 122 33219 3083 3k4 4822 111 20 pF 50V 4822 122 33218 3087 3084 3842 111 20 pF 50V 4822 122 33218 3087 477 4822 111 20 pF 50V 4822 122 33218 3087 477 4822 111 20 pF 50V 4822 122 33218 3087 477 4822 111 20 pF 50V 4822 122 33218 3087 477 4822 111 20 pF 50V 4822 122 33218 3087 477 4822 111 20 pF 50V 4822 122 33218 3087 477 4822 111 20 pF 50V 4822 122 33218 3087 477 4822 111 20 pF 50V 4822 122 33218 3089 1k 4822 111 20 pF 50V 4822 122 33218 3089 1k 4822 111 20 pF 50V 4822 122 33218 3089 1k 4822 111 20 pF 50V 4822 122 33218 3089 1k 4822 111 20 pF 50V 4822 122 33218 3089 1k 4822 111 20 pF 50V 4822 122 33218 3089 1k 4822 111 20 pF 50V 4822 122 33218 3089 1k 4822 111 20 pF 50V 4822 122 33218 3089 1k 4822 111 20 pF 50V 4822 122 33218 3089 1k 4822 111 20 pF 50V 4822 122 33218 3089 1k 4822 111 20 pF 50V 4822 122 33218 3089 1k 4822 111 20 pF 50V 4822 122 33218 3089 1k 4822 111 20 pF 50V 4822 122 33218 3089 1k 4822 111 300 1k 4822 112 33218 300 1k 4822 111 300 1k 4822 112 33218 300 1k 4822 111 300 1k 4822 111 300 1k 4822 112 33218 300 1k 4822 111 300 1k 4822 111 300 1k 4822 112 33218 300 1k 4822 111 300 1k 4822 111 300 1k 4822 112 33218 300 1k 4822 112	2064 2068	220nF 220nF		322	3060 3061	750E 383	EEE
220nF 20% 50V 4822 122 32316 3065 2RZ 4822 111 27 pF 4822 122 33216 3067 620K 4822 111 27 pF 20% 50V 4822 122 33216 3067 0RZ 4822 111 27 pF 20% 50V 4822 122 33216 3070 8K2 4822 111 27 pF 20% 50V 4822 122 33216 3073 15k 4822 111 27 pF 20% 50V 4822 122 3376 3073 15k 4822 111 22 pF 20% 50V 4822 122 33174 3074 10k 4822 111 22 pF 50V 4822 122 3314 3073 306 307 4822 111 22 pF 50V 4822 122 3314 3073 307 4822 111 22 pF 50V 4822 122 3314 3073 308 4822 111 22 pF 50V 4822 122 3314 3073 308 4822 111 22 pF 50V 4822 122 3314 308 3	2070	390pF		122	3064	39k	Ξ
27 pF 4822 122 33214 3068 10E 4822 111 33 pF 4822 122 33216 3069 3k9 4822 111 33 pF 270pF 20% 50V 4822 122 33216 3070 8k2 4822 111 270pF 20% 50V 4822 122 33216 3073 15k 4822 111 10 nF 20% 50V 4822 122 33213 3075 10k 4822 111 10 nF 20% 50V 4822 122 33213 3076 2k7 4822 111 10 nF 20% 50V 4822 122 33213 3076 2k7 4822 111 22 pF 50V 4822 122 33104 3077 330E 4822 111 4822 111 22 pF 50V 4822 122 3314 3080 39k 4822 111 4822 111 22 pF 50V 4822 122 33218 3096 3k7 4822 111 4822 111 22 pF 50V 4822 122 33218 3080 3k7 4822 111 22 pF 50V 4822 122 33	2076	220nF		22	3065	282 620k	ΞΞ
33 pF 20% 50V 4822 122 33215 3070 8k2 4822 111 270pF 20% 50V 4822 122 33216 3072 22k 4822 111 270pF 20% 50V 4822 122 33216 3073 15k 4822 111 220nF 20% 50V 4822 122 3322 3076 2k7 4822 111 100nF 20% 50V 4822 122 33213 3079 39k 4822 111 22 pF 50V 4822 122 33213 3079 39k 4822 111 22 pF 50V 4822 122 33213 3079 39k 4822 111 22 pF 50V 4822 122 33213 3089 39k 4822 111 22 pF 50V 4822 122 33213 3089 39k 4822 111 3.3 nF 50V 4822 122 33213 3089 4822 111 482 pF 50V 4822 122 33213 3099 4k7 4822 111 820pF 50V 4822 122 33218 3099 4k7 4822 11	2083 2088	27 pF 10 pF		122	3068	10E	==
270pF 20% 50V 4822 122 33216 3073 15k 4822 112 270pF 20% 50V 4822 122 33176 3074 1k 4822 112 270pF 20% 50V 4822 122 33176 3075 10k 4822 112 150pF 50V 4822 122 33104 3076 2k7 4822 111 22 pF 50V 4822 122 3314 3079 39k 4822 111 2 pF 50V 4822 122 3314 3079 39k 4822 111 2 pF 50V 4822 122 3314 3080 39k 4822 111 3 3nF 50V 4822 122 33218 3089 39k 4822 111 3 3nF 50V 4822 122 33218 3083 2k2 4822 111 3 3nF 50V 4822 122 33218 3089 4k7 4822 111 8 20pF 50V 4822 122 33218 3090 4k7 4822 111 8 20pF 50V 4822 122 33218 3096 1k 4822 111 <	680	33 pF		122	3070	8K2	Ξ
10 nF 20% 50V 4822 122 3317 3074 1k 4822 111 12 pr 50V 4822 122 3322 3075 10k 4822 112 15 pr 50V 4822 122 33104 3077 330E 4822 112 15 pr 50V 4822 122 33104 3080 39k 4822 112 22 pr 50V 4822 122 33104 3080 39k 4822 111 22 pr 50V 4822 122 33212 3080 39k 4822 111 22 pr 50V 4822 122 33212 3080 39k 4822 111 22 pr 50V 4822 122 33212 3084 39k 4822 111 22 pr 50V 4822 122 33218 3084 4822 111 82 pr 50V 4822 122 33218 3084 4822 111 82 pr 50V 4822 122 33218 3084 4822 111 82 pr 50V 4822 122 33218 3084 4822 111 82 pr 50V 4822 122 33218 3084 4822 111 <td>090</td> <td>270pF 270pF</td> <td></td> <td>222</td> <td>3072</td> <td>22k 15k</td> <td>EE</td>	090	270pF 270pF		222	3072	22k 15k	EE
150pF 50V 4822 122 33222 3076 2k7 4822 111 22 pF 50V 4822 122 33104 3079 330E 4822 112 22 pF 50V 4822 122 33213 3079 39k 4822 111 2.2 pF 50V 4822 122 33214 3089 39k 4822 111 3.3nF 50V 4822 122 33219 3083 2k2 4822 111 3.20pF 50V 4822 122 33219 3084 36k 4822 111 820pF 50V 4822 122 33218 3084 4622 111 4822 111 820pF 50V 4822 122 33218 3099 4k7 4822 111 820pF 50V 4822 122 33218 3099 1k 4822 111 820pF 50V 4822 122 33218 3099 1k 4822 111 820pF 50V 4822 122 33218 3099 1k 4822 111 22nh 50V 4822 122 33218 3099 1k 4822 111 22nh 50V 4822 122	092 097	10 nF 220nF		<u> </u>	3074	, 5	===
22 pF 50V 4822 122 33104 307 330E 4822 112 22 pF 50V 4822 122 33213 3079 398 4822 112 4.7nF 50V 4822 122 33214 3080 39k 4822 112 3.3nF 50V 4822 122 33219 3083 2k2 4822 11 3.20µF 50V 4822 122 33219 3084 39k 4822 11 10 pF 50V 4822 122 33219 3084 4822 11 4822 11 820pF 50V 4822 122 33218 3099 4k7 4822 11 820pF 50V 4822 122 33218 3099 1k 4822 11 820pF 50V 4822 122 33218 3099 1k 4822 11 820pF 50V 4822 122 33218 3099 1k 4822 11 820pF 50V 4822 122 33218 3099 1k 4822 11 2.7nF 50V 4822 122 33218 3099 1k 4822 11 2.2nF 50V 4822 122 33218	660	150pF		122	3076	2k7	=
100nF 20% 50V 4822 122 33104 3080 39k 4822 112 3.7nF 50V 4822 122 33219 3082 91E 4822 112 3.2D0µF 50V 4822 122 33219 3083 2k2 4822 112 10 pF 50V 4822 122 33212 3084 4822 112 3087 470E 4822 111 820pF 50V 4822 122 33218 3099 4k7 4822 111 4822 111 820pF 50V 4822 122 33218 3099 1k 4822 111 4822 111 820pF 50V 4822 122 33218 3099 1k 4822 111 4822 111 820pF 50V 4822 122 33218 3099 1k 4822 111 4822 111 2.7nF 50V 4822 122 3316 3100 1k 4822 111 4822 111 2.2nF 50V 4822 122 3316 3100 220k 4822 111 4822 111 2.2nF 50V 4822 122 3316 3100 1k 4822 111 4822 111	90 1	100nF 22 pF		122	3077	330E 39k	
3.3nF 50V 4822 122 33219 3083 2k2 4822 117 2200µF 50V 4822 122 33212 3084 39k 4822 117 10 pF 50V 4822 122 33212 3087 470E 4822 117 820pF 50V 4822 122 33218 3090 4k7 4822 111 820pF 50V 4822 122 33218 3091 220k 4822 111 820pF 50V 4822 122 33218 3096 1k 4822 111 820pF 50V 4822 122 33218 3096 1k 4822 111 2.7nF 50V 4822 122 33176 3099 22k 4822 111 2.2nF 50V 4822 122 33176 3099 22k 4822 111 2.2nF 50V 4822 122 3316 3106 1k 4822 111 2.2nF 50V 4822 122 3394 3106 1k 4822 111 2.2nF 50V 4822 122 3394 3106 1k 4822 111 2.2nF 50V 4822 122 3324 <td>110</td> <td>100nF 4.7nF</td> <td></td> <td>122</td> <td>3082</td> <td>39k 91E</td> <td>==</td>	110	100nF 4.7nF		122	3082	39k 91E	==
2200µF 6.3V 4822 124 41453 3084 39k 4822 111 10 pF 50V 4822 122 33212 3087 470E 4822 112 820pF 50V 4822 122 33218 3090 4k7 4822 111 820pF 50V 4822 122 33218 3091 220k 4822 111 820pF 50V 4822 122 33218 3099 1k 4822 111 820pF 50V 4822 122 3376 3099 22k 4822 111 2.7nF 50V 4822 122 3376 3099 22k 4822 111 2.7nF 50V 4822 122 3376 3099 22k 4822 111 2.7nF 50V 4822 122 3376 3099 22k 4822 111 2.2nF 50V 4822 122 3376 3100 220k 4822 111 2.2nF 50V 4822 122 3394 3106 1k 4822 111 2.2nF 50V 4822 122 3324 3106 1k 4822 111 2.2nF 50V 4822 122 3324 <td>115</td> <td>3.3nF</td> <td></td> <td>122</td> <td>3083</td> <td>2k2</td> <td>Ξ</td>	115	3.3nF		122	3083	2k2	Ξ
10 pF 50V 4822 122 33212 3087 470E 4822 111 820pF 50V 4822 122 33218 3090 4k7 4822 112 820pF 50V 4822 122 33218 3090 1k 4822 111 820pF 50V 4822 122 33218 3096 1k 4822 111 820pF 50V 4822 122 3376 3099 22k 4822 111 2.7nF 50V 4822 122 3376 3099 22k 4822 111 2.2nF 50V 4822 122 3376 3099 22k 4822 111 2.2nF 50V 4822 122 3376 3104 18k 4822 111 2.2nF 20% 50V 4822 122 3394 3106 1k 4822 11 2.2nF 20% 50V 4822 122 3321 3106 1k 4822 111 2.2nF 20% 50V 4822 122 3321 3106 1k 4822 111 2.2nF 20% 4822 122 3324 3106 1k 4822 11 2.5nF </td <td>118</td> <td>2200µF</td> <td></td> <td>124</td> <td>3084</td> <td>39k 560F</td> <td>= =</td>	118	2200µF		124	3084	39k 560F	= =
820pF 50V 4822 122 33218 3095 1K 4822 111 820pF 50V 4822 122 33218 3096 1K 4822 111 820pF 50V 4822 122 33176 3096 1K 4822 111 2.7nF 50V 4822 122 33176 3096 1K 4822 111 2.2nF 50V 4822 122 33176 3100 220K 4822 111 22nF 50V 4822 122 32916 3104 18K 4822 111 22nF 20N 50V 4822 122 3304 3105 1K 4822 111 22nF 50V 4822 122 32916 3105 1K 4822 111 22nF 50V 4822 122 3321 3106 1K 4822 111 22nF 50V 4822 122 3321 311 470E 4822 111 22nF 50V 4822 122 33916 311 470E 4822 111 22nF 50V 4822 122 33916 311 470E 4822 111 1.8nF 50V 4822 1	121	10 pF 820nF		35	3087	470E	ΞΞ
R20pF 50V 4822 122 33218 3095 1k 4822 111 R20pF 50V 4822 122 33218 3096 1k 4822 111 2.7nF 50V 4822 122 33176 3100 220k 4822 111 2.2nF 50V 4822 122 33176 3100 220k 4822 111 220nF 20% 50V 4822 122 33916 3106 18k 4822 111 220nF 20% 50V 4822 122 33916 3106 1k 4822 111 220nF 20N 4822 122 33104 3106 1k 4822 111 220nF 50V 4822 122 3321 3107 39k 4822 111 220nF 20% 50V 4822 122 3321 3111 470E 4822 111 220nF 50V 4822 122 32916 3111 470E 4822 111 18nF 50V 4822 122 33144 3113 390k 4822 111 1.8nF 50V 4822 122 3314 3113 390k 4822 111	123	820pF		122	3091	220k	Ξ
2.7nF 50V 4822 122 33176 3099 22k 4822 111 2.7nF 50V 4822 122 33176 3100 220k 4822 111 220nF 220k 4822 122 33176 3104 18k 4822 111 220nF 20k 4822 122 33104 3106 18k 4822 111 220nF 20k 4822 122 33104 3106 1k 4822 111 220nF 20k 4822 122 33104 3106 1k 4822 111 56nF 50V 4822 122 3321 310 470E 4822 111 220nF 20k 4822 122 33916 3111 470E 4822 111 220nF 20k 4822 122 33916 3112 390k 4822 111 18nF 50v 4822 122 3314 3113 390k 4822 111 10nF 50v 4822 122 33314 3116 1M 4822 111 10nF 50v 4822 122 33218 3116 1M 4822 111 10nF 50v 4822 122 33218 <td>125</td> <td>820pF</td> <td>200</td> <td>122</td> <td>3095</td> <td>+ +</td> <td>= ;</td>	125	820pF	200	122	3095	+ +	= ;
220nF 20% 50V 4822 122 331/6 3104 18k 4822 111 220nF 20% 50V 4822 122 33916 3104 18k 4822 111 220nF 20% 50V 4822 122 33916 3104 18k 4822 111 220nF 20% 50V 4822 122 33104 3106 1k 4822 111 220nF 50V 4822 122 33291 3106 1k 4822 111 220nF 200nF 20% 50V 4822 122 33291 3110 470E 4822 111 220nF 50V 4822 122 33916 3111 470E 4822 111 220nF 50V 4822 122 33914 3113 390k 4822 111 13nF 50V 4822 122 33144 3116 1M 4822 111 4822 111 100nF 50V 4822 122 33218 820pF 50V 4822 122 33218	132	2.7nF	200	122	3080	22k	Ξ
220nF 20% 50V 4822 122 33104 3105 18A 4822 111 100nF 20% 50V 4822 122 33104 3106 11	3 5	2000E		2 6	3100	220K	Ξ;
100hF 20% 50V 4822 122 33104 3106 1k 4822 111 220µF 10V 4822 124 22409 3107 39k 4822 111 56nF 50V 4822 122 33221 310 470E 4822 111 220nF 220nF 50V 4822 122 32916 311 470E 4822 111 220nF 50V 4822 122 33914 3113 390k 4822 111 1.8nF 50V 4822 122 33144 3113 390k 4822 111 1.8nF 50V 4822 122 33314 3116 1M 4822 111 100nF 50V 4822 122 33218 316 1M 4822 111 820pF 50V 4822 122 33218 316 1M 4822 111	135	220nF		122	3105	. 45 45 45 45 45 45 45 45 45 45 45 45 45 4	==
5.6nF 50V 4822 122 33221 3108 10k 4822 111 520nF 50V 4822 122 33221 3110 470E 4822 111 220nF 220nF 20N 50V 4822 122 32916 3111 470E 4822 111 220nF 50V 4822 122 32916 3112 390k 4822 111 13nF 50V 4822 122 33144 3113 390k 4822 111 10nF 50V 4822 122 33218 820pF 50V 4822 122 33218	136	100nF		122	3106	* * 6	= :
5 GnF 50V 4822 122 33221 3110 470E 4822 111 91 220nF 20% 4822 122 33296 3111 470E 4822 111 91 220nF 20% 4822 122 33144 3112 390k 4822 111 91 1.8nF 50V 4822 122 33144 3118 390k 4822 111 91 1.0nF 50V 4822 122 33248 3116 1M 4822 111 91 820pF 50V 4822 122 33218 323218 4822 111 91	14	5.6nF	200	122	3108	30r	ΞΞ
220n 20% 30V 4822 122 3310 390k 4822 111 91 18nF 50V 4822 123 3314 3116 1M 4822 111 91 18nF 50V 4822 122 3314 3116 1M 4822 111 91 18nF 50V 4822 122 33218 820pF 50V 4822 122 33218	142	5.6nF		122	3110	470E	Ξ:
1.8nF 50V 4822 122 33144 3113 390k 4822 111 91 18nF 50V 4822 122 33144 3116 1M 4822 111 91 100nF 50V 4822 122 33209 820pF 50V 4822 122 33218 820pF 50V 4822 122 33218	5.5	220nF		150	3112	300k	111 9
1.0nF 50V 4822 122 33209 820pF 50V 4822 122 33218 820pF 50V 4822 122 33218	156	1.8nF		122	3113	390k	11 91
100nF 50V 4822 122 820pF 50V 4822 122 820pF 50V 4822 122	15/	1.8nF	200	122	3116	M	11 91
820pF 50V 4822 122	158 162	100nF 820pF	204	<u> </u>			
	164	820pF	200	122			

¢			Ę		
3117	₹	4822 111 91509	5050		4822 156 11081
3118	26k	Ξ	5052		4822 157 50975
3119	26k	=	5054		4822 152 20677
3120	26k	=	5055		4822 152 20677
3121	26k	Ξ	5056		4822 152 20677
3124	2M2	=	5057		152
3125	2M2	=======================================	5059		157
3126	39k	Ξ	5060		4822 152 20682
3130	390k	111 91	5061		152
3140	2K7	4822 111 91525	5062		4822 152 20678
3141	2k7	4822 111 91525	5064		4822 157 50975
3142	Ą	Ξ	5066		4822 152 20681
3143	1 0	11			
3146	15k	11	4		
314/	15k	Ξ			
3148	100k	Ξ	BAY14		4000 120 24100
3149	100k	=	2000		
3150	3K3	Ξ	02210		5000 100 00110
3151	3k3	Ξ	D2779/051/4		
3152	100k	4822 111 91518	B2X79/B5V6		3 6
3153	100k	4822 111 91518	0400/6/20		2
3158	5k6	Ξ	BZX/9/C4V/		4822 130 34174
3159	5k6	Ξ	104002		5322 130 30684
3160	5k6	11	1N4148		4822 130 30621
3161	5k6	4822 111 91534	Č		
3165	100k	111	Ø		
3166	100k	4822 111 91518			
3167	100k	Ξ	BC847B Chip Transistor	<u>,</u>	4822 130 B0511
3168	100k	Ξ			1000 001 100
3169	100k	4822 111 91518	Total Control		
3170	75E	Ξ	· ·		
3171	270E	=======================================			
3172	270E	Ξ		TEA6100N2	4822 209 72251
3173	100k	Ξ	•	TEA 6000	4822 209 /2248
31/4	X00L	Ξ	2000	V 24021	4927 203 72847
3175	Š	Ξ		727021 TA7784P	200
31/6	ž	Ξ		TA 40470 407	
31//	1080	4822 111 91504		TDA15180	200
3179	4E7	2 4		L4918	203
000	įį			F4904	4822 209 72252
3180	# 750	4822 116 80464	;		
4050	K II	4822 111 91523			
4051	8	Ξ			
4052	9	4822 111 91536			
100	,				

För Service Manuals Contact MAUPITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel: 01844-351634 Fax: 01844-35254 Email: enquiñes@mauritron.co.uk

						*a = 2,5 V	
			•	Ceramic plate		b = 4 V	
[Carbon film		\\ \\	PANA	%6	c = 6,3 V	
	0.2 W 70°C	2%		Others	2047 BOS	d ≈ 10 V	
					150/ ±00/0	e = 16 V	
4	Ē		*	Polvester flat foil	10%	f = 25 V	
	0.33 W 70°C	2%				9 = 40 \	
						h = 63 V	
	Metal film		*		-	- 100 V	
I.	700Z	70		Metalized polyester	10%	1 = 125 V	
			•	flat film		m = 150 V	
			1			n = 160 V	
ا •	Carbon film		00	Polyester flat foil	10%	q = 200 V	
	0.5 W 70°C	2%	_	small size (Mylar)		r = 250 V	
						s = 300 v	
	Carbon film		***	Dolvetoropo film/foil	40%	1 = 350 V	
<u></u>	O 67 W 70°C	2%		rolysterette mitty on	P.	u = 400 V	
						> 000 = >	
	19 19 19		*:	Tubulas commis		w = 630 V	
1	E			upulai ceramic		× = 1000 V	
	1.15 W dr.r	2%				V 9'1 = V	
						>9 = 8	
						C = 12 V	
			*0	o contract of the contract of		D = 15 V	
			Ţ	MIIIIature single		E = 20 V	
						F * 35 V	
			***	Subminiature	+ 20%	0 = 50 v	
(C) Chip component	nponent			tantalim		H * 75 V	
)						A.08 = 1	

27 037 A/C

1		
9	1 90544 1 90276 1 90277 1 90237 1 90237 1 90237 1 90237 1 90237 1 90234 1 90234 1 90234 1 90234 1 90216 1 90217 1 90216 1 90216 1 90217 1 90226 1 90227 1 90227	91141
5 W S1206	4822 1 1 1 1 2 2 1 1 1 1 1 2 1 1 1 1 1 1	5322 111
Chips 0,125	นั้นนี้ ถึงถึงถึงถึงถึงถึงถึงถึงถึงถึงถึงถึงถึงถ	2%
	86.08.00	10M
	903376 903376 903393 902394 903395 903395 90335 90355	0545
5 W S1206	5.322 111 4.822	4822 111 8
Chips 0,125	รัฐที่ ที่ ที่ ที่ ที่ ที่ ที่ ที่ ที่ ที่	5%
) O	######################################	6,2 k
	322479 322087 322087 322087 322087 322088 32208 32208 322088 3220	391 392
NP0 S1206	4822 122 3 4822 119 9 8822 119 9 8822 119 9 8822 119 9	듣
Chips 50 V NI	6 Chi S	4 4
⊕ 1 C		ດ ຕ