

SAT Solving with distributed local search

Guangping Li - uzdif@student.kit.edu

Institute of Theoretical informatics, Algorithmics II

Outline

Propositional Satisfiability Problem (SAT)

- Notations
- Local search in SAT problem

Solving SAT by swpSolver

- Basic scheme
- Our improvements

Our Parallel SAT-solver

- The pure portfolio approach
- Failures
- Initialization with a guide of formula partitioning

Conclusion

Outline

Propositional Satisfiability Problem (SAT)

- Notations
- Local search in SAT problem

Solving SAT by swpSolver

- Basic scheme
- Our improvements

Our Parallel SAT-solver

- The pure portfolio approach
- Failures
- Initialization with a guide of formula partitioning

Conclusion

Propositional Satisfiability Problem

Notations

- propositional variable: variable with two possible logical values true or false
- literal: an atomic formula either be a positive literal v or a negative literal \bar{v} .
- clause: disjunction of literals.
- CNF-formula: conjunction of clauses
- assignment: $V \rightarrow \{ \textit{true}, \textit{false} \}$
- SAT problem: to determine whether a given formula is satisfiable or not

Here is an example of SAT problem:

$$F = (v_1 \lor \bar{v_3}) \land (v_2 \lor v_1 \lor \bar{v_1})$$

$$Vars(F) = \{v_1, v_2, v_3\}$$

$$numV(F) = |Vars(F)| = 3$$

$$Lits(F) = \{v_1, \bar{v_1}, v_2, v_3, \bar{v_3}\}$$

$$Cls(F) = \{C_1, C_2\}$$

$$numC(F) = |Cls| = 2$$

$$C_1 = \{v_1, \bar{v_3}\}$$

$$C_2 = \{v_2, v_3, \bar{v_1}\}$$

 $A(v_1)$ = true, $A(v_2)$ = false, $A(v_3)$ = true, A is an assignment satisfying F.

 $\hat{A}(v_1) = true$, $\hat{A}(v_2) = false$, $\hat{A}(v_3) = false$, \hat{A} is an assignment with conflict in C_2 .

Local search in SAT problem

Local Search

- an instance I of a hard combinational Problem P
- a set of solutions S(I)
- an object function (score or cost) Γ
- to find the solution with minimum cost by applying local changes.

Algorithmus 1: Focused Local Search

input : A CNF Formula F

parameter : Timeout

output : a satisfying assignment A1 A ← random generated assignment A

- **2 while** $(\exists$ *unsatisfied clause* \land *Timeout does not occur*) **do**
- $c \leftarrow \text{random selected unsatisfied clause}$
- $4 \quad x \leftarrow pickVar(A, c)$
- $5 \mid A \leftarrow flip(A, x)$

Local search in SAT problem

Stochastic Local Search (SLS)

- use the probability distribution of the scores of candidate solutions
- the more advantageous a move is, the higher is the probability of choosing that move

Algorithmus 2 : PickVar in probSAT

input: current assignment *A*, unsatisfied clause *c*

output : a variable *x* in *c* to be flipped

- 1 **for** *v in c* **do**
- 2 | Evaluate v with function $\Gamma(A, v)$;
- 3 $x \leftarrow$ randomly selected variable v in c with probability

$$p(v) = \frac{\Gamma(A, v)}{\sum_{u \in c} \Gamma(A, u)}$$

Local search in SAT problem

Random walk in local search

- originally introduced in 1994
- By introducing "uphill noises", the walkSAT combines greedy local search and random walk.

Algorithmus 3: PickVar in walkSAT

input: current assignment *A*, unsatisfied clause *c*

parameter: probability p

output: a variable x in c to be flipped

- 1 **for** *v in c* **do**
- 2 Evaluate v with function $\Gamma(A, v)$;
- β with probability ρ: x ← v with maximum Γ(A, v);
- 4 with probability 1 p: $x \leftarrow$ randomly selected v in c.

Outline

Propositional Satisfiability Problem (SAT)

- Notations
- Local search in SAT problem

Solving SAT by swpSolver

- Basic scheme
- Our improvements

Our Parallel SAT-solver

- The pure portfolio approach
- Failures
- Initialization with a guide of formula partitioning

Conclusion

Solving SAT by swpSolver

Basic scheme

Algorithmus 4: Our Local Search

: A CNF Formula F input

parameter: Timeout

output: a satisfying assignment A

- 1 $A \leftarrow initAssign(F)$;
- 2 while (∃ unsatisfied clause ∧ Timeout does not occur) do
- $c \leftarrow pickCla(A)$:
- $x \leftarrow pickVar(A, c)$;
- $A \leftarrow flip(A, x);$

- 180 benchmark instances used in our experiments are the 180 instances (UNIF) in random benchmark categories in SAT competition 2017.
- all the clause have the same length *k* in a *UNIF* problem file
- to construct one clause, k literals are randomly chosen from the 2n possible literals
- at least 60 (33%) problems form our 180 benchmark collections are unsatisfiable
- each experiment is repeated three times
- PAR-2 runtime for a whole kSAT set

initAssign(F)

- RandomInit: buid a complete assignment randomly
- BiasInit: assign true to a variable if the number of occurrences of its positive literal is larger than that of its negative literal.
- Bias-RandomInit: assign true to variable v_i with probability posOccurences[i] posOccurences[i]+negOccurences[i].

initAssign(F)

k	RandomInit	BiasInit	Bias-RandomInit
3	9221.9	9157.76	9078.27
	55	54	55
5	7143.9	4351.09	4582.54
	82	87	87
7	6238.51	5421.9	6310.7
	60	60	60

3SAT: RandomInit

5SAT and 7SAT: BiasInit

pickVar(A,c)

- combine the random walk and stochastic selection
- pick greedy flips with zero breakcounts with a certain probability p.
- using the SLS with probability (1 p)

Algorithmus 5 : Our pickVar

```
input: current assignment A, unsatisfied clause c
```

parameter: probability p

output: a variable x in c to be flipped

- 1 *greedyVs* ← \emptyset ;
- 2 for all v in c do
- $\mathbf{g} \mid \mathbf{f} (break(A, v) = 0) \mathbf{then}$
- 5 with probability p: x ← randomly selected variable v ∈ greedyVs;
- 6 with probability (1-p): $x \leftarrow$ randomly selected variable v in c with probability $\frac{\Gamma(A,v)}{\sum_{u \in r} \Gamma(A,u)}$

Variant 1: Walk

- statistic list S: how many times each variable is chosen for flipping
- The candidate with the small statistic value will be chosen.

 Getting the random literals using stochastic process consumes the most runtime.

Variant 2: GreedyBreak

- permitted greedy literal: literal with zero breakcount and its statistic value is under a certain threshold t
- choose a permitted greedy literal randomly for flipping.
- if no permitted greefy literal exists, we pick a literal using SLS heuristic.
- 1.approach *Average*: $t = \alpha \times \frac{numF}{numV}$
- 2.approach *Random-Flip*: $t = \alpha \times r$ with $r \in [0, numF]$.

PickVar(A,c) with simulated annealing

Simulated Annealing

- proposed by Kirkpatrick, Gelatt, and Vecchi.
- guide local search with a controlling parameter temperature.
- The temperature varies according to the score of the current situation.
- Higher temperature allows uphill moves with higher probability.

• Walk:
$$p = \alpha \times \frac{s(randomV)}{s(greedyV) + s(randomV)}$$

- Average: $t = \alpha \times \frac{numF}{numV}$
- Random-Flip: $t = \alpha \times r$ with $r \in [0, numF]$.
- two variants of q(A):
 - $q_{global}(A) = unsatN(A)$
 - $q_{local}(A) = |\{v | v \in c \land break(v) = 0\}|$

pickVar

- probSAT:
 - implemented by the authors of the original paper
 - non-incremental approach to the 3SAT problems and incremental method for 5SAT and 7SAT
- yalSAT:
 - the third version of yalSAT submitted to the 2017 SAT competition
 - uses a variant of probSAT randomly in the restart of a searchround

k	probSAT	yalSAT	Walk	Average	Random-Flip
3	9221.9	17062.35	7430.12	6161.11	7308.01
	55	41	57	61	58
5	7143.9	5676.63	3330.61	2939.74	4003.06
	82	85	89	89	88
7	6238.51	10063.4	5409.67	3829.95	4903.61
	60	54	61	65	60

Evaluation pickVar

Karkruher Institut für Technologi

pickVar

Karkruher Institut für Technolog

swpSolver

Outline

Propositional Satisfiability Problem (SAT)

- Notations
- Local search in SAT problem

Solving SAT by swpSolver

- Basic scheme
- Our improvements

Our Parallel SAT-solver

- The pure portfolio approach
- Failures
- Initialization with a guide of formula partitioning

Conclusion

The pure portfolio approach

- random generator affects the performance.
- the agents run the *swpSAT* with different random generation policies.

rand()	minstd_rand	mt19937
mt19937_64	ranlux24_base	ranlux48_base
ranlux24	ranlux48	knuth_b
default_random_engine	minstd_rand0	-

k	swpSAT	pure portfolio	Speedup	Efficiency
3	12971.3	7426.9	1.75	0.16
	59	69		
5	8339.98	5185.75	1.61	0.14
	89	94		
7	13406.26	2853.81	4.70	0.43
	66	83		

benchmark COMBINE

- formula partitioning by a relatively balanced partitioning with small intersection
- combine two *UNIF* benchmark instances
- build the intersection based on a randomly chosen satisfying assignment
 - *BIG*: *COMBINE* problems with big intersection (numCl/numCl > 1%)
 - SMALL: COMBINE problems with big intersection (numCl < 1%)

Failures

2nd Approach: Solver with formula partitioning

- parallelize flippings in both partitioning sets
- Two slave thread deals with partitioning sets in parallel.
- The master thread handles with conflicts in the intersection
- can only solve trivial small problems
- the order of solving the clauses in search
- Repeated flippings make the search stuck in one cycling.

Failures

3nd Approach: Solver with combination of sub-assignments

- the slave threads take intersection into consideration.
- The master thread deals with these differences in sub-assignments
 - randomCombine: assigns the variable randomly
 - partitionCombine: assigns the variable to the value suggested by its charging thread
- randomCombine can not bring a better performance compared with our swpSAT solver
- partitionCombine suffers from repeated flips and may not terminate.

Our Parallel GCP-solver

4th Approach: Initialization with formula partitioning (FineInit)

- The formula partitioning information is only used to get an initial solution.
- The statistic information shared among the agents encourages the further search to flip non-critical variables in clauses.
- The candidate with the smallest statistic value will be chosen in the next step.
- The agents use one common statistic matrix.

Karkruher Institut für Technologie

benchmark COMBINE-BIG

Karkruher Institut für Technologi

benchmark COMBINE-SMALL

Our parallel solver

- uses FineInit as initialization
- tries different search paths with pure portfolio approach

```
input : A CNF Formula F, number of Processors n_p

1 A \leftarrow initAssign(F);

2 foreach (Processor_t \text{ for } t \in \{1, ..., n_p\}) do

3 A_t \leftarrow A;

4 i \leftarrow t\%2;

5 swpSAT(P_i);

6 swpSAT(P_{1-i});

7 while (!sat \land !Timeout) do

8 A_t \leftarrow A;

9 swpSAT(F);

10 sat \leftarrow true;
```

Karkruher Institut für Technolog

benchmark UNIF

- separate the vertices according their indices in two partition sets.
- All vertices v_i with $i < \frac{numV}{2}$ belong to P_0 .
- The rest vertices belong to P₁.

k	swp-4	S	E	,	S	Е
3	3350.36	1.49	0.37	2376.26	2.10	0.19
	21			24		
5	2535.86	1.23	0.31	1115.99	2.79	0.25
	30			33		
7	3874.51	1.28	0.32	1076.26	4.62	0.42
	22			27		

3SAT

5SAT

7SAT

Conclusion

Our improvement:

- a stochastic local search algorithm *swpSAT* with the incorporation of walkSAT and probSAT
- different local variants, which gets better performance than the probSAT algorithm.
- parallel *swpSAT* solver with formula partitioning
- the formula partitioning information can guide the local search

Further work

- Using different search strategies
- Using different cooperation strategies
- Using different random generation in local search

THANK YOU FOR YOUR ATTENTION ANY QUESTIONS?