Towards Federated Learning in ML Models

Team: Salva Umar, Karan Khubdikar, Hina Bandukwala, Prabhjit Thind

Mentor: Quan Nguyen

Capstone Partner: ALS GoldSpot Discoveries Ltd.

Team Members

Karan Khubdikar

Prabhjit Thind

Salva Umar

Hina Bandukwala

Quan Nguyen (Mentor)

ALS GoldSpot Discoveries Ltd. (Partner)

Capstone Partner: ALS GoldSpot Discoveries Ltd.

Who are they?

Geoscience expertise with AI and data science for mineral exploration & mining

Why is it important?

- Enhances decision-making in mining operations
- Ensuring sustainable and profitable resource extraction.

Federated Learning Model Overview

Train local models

Global model aggregation

$$(W_1, W_2, ... W_3) \longrightarrow W'$$

What are the capstone partner's needs?

What issues are they facing?

- Communication Efficiency: data is distributed across clients
- Data Heterogeneity: Managing different client data distributions
- Model Training Efficiency: Improving accuracy of ML models in decentralized framework

Scientific Objective

- Investigating effectiveness of decentralized training approaches.
- Creating a federated learning framework to solve business problems in the mining industry.

Data Product

Successful Project Delivery will entail:

- ★ A report: covering objectives, methodology, experiments, results.
- ★ A Git repository: with reproducible code, documentation, experiment configurations.
- ★ A data pipeline: processes and tools needed to simulate the federated learning framework.

Data Source

Osteosarcoma dataset:

- Bone cancer images
- Open source dataset is used for testing the applicability of the decentralised framework

Image specifications

- □ 1,144 images
- □ 1024 x 1024 at 10X resolution

Dataflow Pipeline

Central Model

- ★ Multi-Class Classification task
- ★ Unfreeze last few layers for fine tuning

Metric	Value
Balanced Accuracy	0.77
F1 Score	0.81
Precision	0.77
Recall	0.77

Data Partitioning

Data Partitioning: IID

- ★ PyTorch *random_split* function
- ★ Each client receives a random sample from the training set
- ★ Minimal heterogeneity between clients

Data Partitioning: Non-IID

- Dirichlet Distribution:
- Controlled by α (Concentration Parameter)
 - Multivariate generalization of beta distribution
- Used to split a dataset among multiple clients
- Exhibit heterogeneity in their class distributions

Client Training

Experimental Setup & Evaluation

- ★ We carried out 12 experiments where we tested the following:
 - Data Partitioning:
 - lid
 - Non-iid ($\alpha = 0.5$ and 0.1)
 - Aggregation strategies:
 - FedAvg, FedProx, FedAvgM,FedTrimmedAvg
- ★ All experiments were conducted with:
 - 4 clients
 - 5 rounds of FL
 - Learning rate = 0.002
 - Momentum = 0.9

Evaluation Metrics:

BALANCED ACCURACY

F1 -SCORE

RECALL

PRECISION

Server Aggregation Methods

Strategy	Description
FedAvg	Computes a weighted average of the local updates from each client.
FedAvgM	Builds on FedAvg by incorporating momentum parameter, to accelerate convergence by considering past gradients
FedProx	Builds on FedAvg by introducing a proximal term to handle heterogeneity
FedTrimmedAvg	Aggregates model updates by averaging the central 80% of updates

Experiments: Confusion Matrices

Note: FedAvg Results 22

Experiments: Performance Results

Global Balanced Accuracy
Global F1-score

Experiments: Non-IID Observations

Best Strategy: Dirichlet ($\alpha = 0.1$)

More Skewed

Best Strategy: Dirichlet ($\alpha = 0.5$)

Less Skewed

FedAvg

- High variability data
- Focus on balanced accuracy
- General robustness

FedProx

- -Highly non-IID data
- Regularization focus
- Consistency across metrics

FedAvqM

- Moderate data imbalance
- High recall requirements
- Balanced performance

FedTrimmedAvg

- Moderate non-IID
- Outlier robustness
- High precision requirements

Balanced Accuracy: 0.84

F1 Score: 0.80 Precision: 0.81 Recall: 0.80 Balanced Accuracy: **0.86**

F1 Score: 0.83 Precision: 0.85 Recall: 0.83 Balanced Accuracy: 0.83

F1 Score: 0.79 Precision: 0.82 Recall: 0.80 Balanced Accuracy: **0.86**

F1 Score: 0.84 Precision: 0.85 Recall: 0.83

Design Features

1. Customising Model Parameters: Hydra framework

- Configuration manager
- To efficiently evaluate across different datasets and parameters
- Important Parameters:
 - No of clients
 - Rounds of training
 - Path to data directory
 - Partition type
 - Strategy type

... many more

Design Features

1. Configurability: Hydra


```
data dir: "./data/combined'
batch size: 4
class names: ["non-tumor", "non-viable-tumor", "viable"]
input size: 224
num clients per round fit: 4
num clients per round eval: 4
num rounds: 5
num clients: 4
num cpus per client: 4
gpu usage per client: 0.2
strategy name: "FedAvg'
config fit:
  lr: 0.002
  momentum: 0.9
  local epochs: 5
  batch size: 4
  step size: 5
  gamma: 0.1
data partition:
  strategy: "dirichlet"
  alpha: 0.1
```

Start Simulation: python main.py

```
[2024-06-04 21:45:32,092][flwr][INFO] - Starting Flower simulation, config: num_rounds=5, no round timeout
[2024-06-04 21:45:37,647][flwr][INFO] - Flower VCE: Ray initialized with resources: {'object store memory': 16165516492.0, 'memory': 32331032987.0,
 node:__internal_head__': 1.0, 'GPU': 1.0, 'node:172.28.0.12': 1.0, 'CPU': 8.0}
[2024-06-04 21:45:37,051][flwr][INFO] - Optimize your simulation with Flower VCE: https://flower.ai/docs/framework/how-to-run-simulations.html
[2024-06-04 21:45:37,654][flwr][INFO] - Flower VCE: Resources for each Virtual Client: {'num_cpus': 4, 'num_gpus': 0.2}
[2024-06-04 21:45:37,671][flwr][INFO] - Flower VCE: Creating VirtualClientEngineActorPool with 2 actors
[2024-06-04 21:45:37,675][flwr][INFO]
[2024-06-04 21:45:37,679][flwr][INFO]
                                         Requesting initial parameters from one random client
[2024-06-04 21:45:46,428][flwr][INFO]
                                         Received initial parameters from one random client
[2024-06-04 21:45:46,431][flwr][INFO] - Evaluating initial global parameters
[2024-06-04 21:45:49,939][flwr][INF0] - initial parameters (loss, other metrics): 1.263537882919043, ('test_bal_accuracy': 0.3949993989662219, 'test_f1':
0.25517252023721754, 'test precision'
                                        0.6158703968694331, 'test recall': 0.3286219081272085}
[2024-06-04 21:45:49,942][flwr][INFO]
[2024-06-04 21:45:49,946][flwr][INFO]
[2024-06-04 21:45:49,949][flwr][INFO] - configure_fit: strategy sampled 4 clients (out of 4)
[2024-06-04 21:46:31,147][flwr][INFO] - aggregate fit: received 4 results and 0 failures [2024-06-04 21:46:33,089][flwr][WARNING] - No fit metrics_aggregation_fn provided
'test_precision': 0.3456449408062727, 'test_recall': 0.44876325088339225}, 46.34703543399996)
[2024-06-04 21:46:36,292][flwr][INFO] - configure_evaluate: no clients selected, skipping evaluation
[2024-06-04 21:46:36,295][f]wr][INFO]
[2024-06-04 21:46:36,298][flwr][INFO]
[2024-06-04 21:46:36,301][flwr][INFO]
                                         configure_fit: strategy sampled 4 clients (out of 4)
[2024-06-04 21:47:17,407][flwr][INFO]
                                         aggregate_fit: received 4 results and 0 failures
2024-06-04 21:47:22,543][flwr][INF0] - fit progress: (2, 1.2887797025261893, {'test_bal_accuracy': 0.6638418079096046, 'test_f1': 0.4902542299442604,
 'test precision': 0.7598527912401012, 'test recall': 0.5795053003533569}, 92.60115222599984)
[2024-06-04 21:47:22,546][flwr][INFO]
                                         configure evaluate: no clients selected, skipping evaluation
[2024-06-04 21:47:22,549][flwr][INFO
[2024-06-04 21:47:22,552][flwr][INFO]
[2024-06-04 21:47:22,556][flwr][INFO]
                                         configure_fit: strategy sampled 4 clients (out of 4)
[2024-06-04 21:48:00,008][flwr][INFO]
                                         aggregate_fit: received 4 results and 0 failures
[2024-06-04 21:48:05,160][flwr][INFO]
                                         fit progress: (3, 5.701338005366954, {'test_bal_accuracy': 0.33333333333333, 'test_f1': 0.24539358317985954,
'test precision': 0.17385658454968847,
                                         'test recall': 0.4169611307420495}, 135.2184447489999)
[2024-06-04 21:48:05,164][flwr][INFO]
                                         configure evaluate: no clients selected, skipping evaluation
[2024-06-04 21:48:05,172][flwr][INFO]
[2024-06-04 21:48:05,176][flwr][INFO]
                                         configure fit: strategy sampled 4 clients (out of 4)
[2024-06-04 21:48:45,489][flwr][INFO]
                                         aggregate_fit: received 4 results and 0 failures
[2024-06-04 21:48:50,568][flwr][INFO]
                                         fit progress: (4, 1.770318077618444, {'test_bal_accuracy': 0.7188965019834114, 'test_f1': 0.6016802052989247,
                                        'test recall': 0.6537102473498233}, 180.62626229900002)
[2024-06-04 21:48:50,571][flwr][INFO]
                                         - configure evaluate: no clients selected, skipping evaluation
[2024-06-04 21:48:50,575][flwr][INFO]
[2024-06-04 21:48:50,582][flwr][INFO]
                                         configure_fit: strategy sampled 4 clients (out of 4)
[2024-06-04 21:49:30,664][f]wr][INFO]
                                         aggregate_fit: received 4 results and 0 failures
 test precision': 0.8339563319566574, 'test recall': 0.8197879858657244}, 226.22070998499998)
[2024-06-04 21:49:36.166][flwr][INFO] - configure evaluate: no clients selected. skipping evaluation
```

Design Features

2. Parallel Programming: Ray 🧀

- Enhances scalability
- Manages client model training concurrently
- Resource Optimization

3. Addressing Class Imbalance in Federated Models

- Addition of a decaying learning rate to address overfitting
- Running 5 rounds of training for each client (within each round 10 epochs per local model are run)
- Data Augmentation techniques to increase robustness of the local models

Limitations of current work

01	Limited Data	 ~2k images after augmentation Limit on the maximum no of clients to test without increasing overfitting
02	Data Quality and Consistency	Variability in data quality and heterogeneity across clients impacts model performance
03	Resource Constraints at Client level	Decentralized training can be resource-intensive, and some clients may not have all available across all nodes

Final Product: Big Picture!

