It's Not Just Size That Matters: Small Language Models Are Also Few-Shot Learners

2020/10/10 @dl-study

背景

- Language Models are Few-Shot Learners (2020)
 - ▶パラメータ数1750億の巨大モデル「GPT-3」を提案
 - ▶Fine-tuning を使わないでSOTAに近い結果を残した。

まず性能みてみよう

縦軸:SuperGLUEのスコア

横軸:パラメータ数(1億~1750億)

GPT-3の論文ではパラメータ数を変えて 実験しているので点がいっぱいある

本論文で提案しているのがPET/iPET。 信じられない場所に点があるな…

この論文、このように進みます

- PETという手法を紹介する。
- ALBERTにPETを取り入れる。 ※ALBERT: BERTの軽量モデル
- GPT-3と比べる。

GPT-3の欠点

• モデルが大きすぎて現実的に使えない(全否定)

• 入力サイズが限られているので、入力できるexampleの数が限られている。

PETの紹介

- PET(Pattern-Exploiting Training)
- PETの登場は別論文

PETモデル概要

- レビューの極性(ポジティブ/ネガ ティブ)分析を行っている
- データ T (ラベルあり) を使って学習 し、データ D (ラベルなし) にラベリ ングすることが目標。
- 左は学習時,右は実行時
- ※Just gross:「気持ち悪い」という 意味のスラング

PET 学習①

- 関数 アを使って、入力 x を変換
- "____" = [Mask]
- ・ 文章→極性予測 のタスクから、 [Mask]に入る単語の予測タスクになる
- 変換の仕方とマスクに入る単語の候補 は人が決めてる・タスクごとに違う。 たぶん単純なやり方で変換していると 思います

PET 学習①

タスク:レビューの極性分析

$$P_1(a) = \text{It was } a$$

$$P_2(a) = a$$
. All in all, it was ____.

$$P_3(a) = \text{Just } __! \parallel a$$

$$P_4(a) = a \parallel \text{In summary, the restaurant is } \dots$$

$$v(1) = \text{terrible}$$
 $v(2) = \text{bad}$ $v(3) = \text{okay}$ $v(4) = \text{good}$ $v(5) = \text{great}$

PET 学習①

タスク:ニュース記事をカテゴリ別に分類する

$$P_1(\mathbf{x}) = \ ... : a \ b \qquad P_2(\mathbf{x}) = \ a \ (\ ...) \ b$$

$$P_3(\mathbf{x}) = ---- a b$$
 $P_4(\mathbf{x}) = a b (----)$

$$P_5(\mathbf{x}) =$$
 ____ News: $a \ b$

$$P_6(\mathbf{x}) = [$$
 Category: ____ $] a b$

$$v(1) = World$$
 $v(2) = Sports$

$$v(3) = Business$$
 $v(4) = Tech$

※a:見出し, b:本文

PET 学習②

- Masked Language model (事前学習 済み)を使って[Mask]を推測する
- [Mask]が一つでないといけない弱点があるが、いろんなタスクが同一のタスクとみなせるようになり、よさげ
- (図示されてないけど)関数 v がLM の推測結果を単語に変換する

PET 学習③

- Softmaxする(推測結果:q)
- 正解ラベルとqの交差エントロピー誤差を取り、LMを更新
- これは T に対するfine-tuningであると論文中でも言ってるけど、fine-tuningありなの?って少し思ってしまった。

PET 学習(さいご)

- 点線で囲まれた部分をPVP(Patternverbalizer pair)とよぶ
- T が小さくてPVP1つでは不十分なので、複数のPVPモデルを学習させておく。

- 学習したPVPモデルを複数使ってデータD(ラベルなし)をラベリングする
- 推論結果は100%にはならないので、 Soft-labelとよぶ。

$$s_{\mathcal{M}}(l \mid \mathbf{x}) = \frac{1}{Z} \sum_{\mathbf{p} \in \mathcal{P}} w(\mathbf{p}) \cdot s_{\mathbf{p}}(l \mid \mathbf{x})$$

- M:PVPモデルの集合
- $w(\rho)$:各PVPモデルの重み
- $s_{\rho}(l \mid x)$:入力 x としてラベル l に対するスコア
- $z = \sum_{\rho \in \mathcal{P}} w(\rho)$

$$s_{\mathcal{M}}(l \mid \mathbf{x}) = \frac{1}{Z} \sum_{\mathbf{p} \in \mathcal{P}} w(\mathbf{p}) \cdot s_{\mathbf{p}}(l \mid \mathbf{x})$$

- M:PVPモデルの集合
- $w(\rho)$:各PVPモデルの重み
- $s_{\rho}(l \mid x)$:入力 x としてラベル l に対するスコア
- $z = \sum_{\rho \in \mathcal{P}} w(\rho)$

2つのパターン(②のほうがうまくいく)

- ①すべての ρ に $w(\rho) = 1$ を設定する
- ②fine-tuning前の ρ で推論した精度に応じて重みづけ

• $s_{\mathcal{M}}(l \mid x)$ にSoftmaxする \rightarrow qを得る。

• (x,q) をSoft-labeled データセット \mathcal{T}_c に追加する

• T_c を使ってモデルを学習(たぶん別のモデルだと思う)

iPET

• Iterative(反復)PET

[手法]

- ① PETのいくつかの ρ を選び、ラベルなしデータにSoft-labelingする
- ②データの中で自信があるものを新しいデータセットにする
- ③ それぞれのモデル ρ を新しいデータで学習

PET with Multiple Masks

ちょっとよくわからなかったので割愛しますね (便利であるのは間違いない)

GPT-3とくらべます

- それぞれのタスクに対し、32 example
- 20,000 un-labeled example
- GPT-3は(fine-tuningしないので)exampleのみ使う。
- PETは32 exampleでLMのfine-tuningを行い、20,000 dataset に対してSoft-labeling して作ったデータでALBERTを学習する(と思われる)

GPT-3とくらべます

	Model	Params (M)	BoolQ Acc.	CB Acc. / F1	COPA Acc.	RTE Acc.	WiC Acc.	WSC Acc.	MultiRC EM/Fla	ReCoRD Acc. / F1	Avg
dev	GPT-3 Small	125	43.1	42.9 / 26.1	67.0	52.3	49.8	58.7	6.1 / 45.0	69.8 / 70.7	50.1
	GPT-3 Med	350	60.6	58.9 / 40.4	64.0	48.4	55.0	60.6	11.8 / 55.9	77.2 / 77.9	56.2
	GPT-3 Large	760	62.0	53.6 / 32.6	72.0	46.9	53.0	54.8	16.8 / 64.2	81.3 / 82.1	56.8
	GPT-3 XL	1,300	64.1	69.6 / 48.3	77.0	50.9	53.0	49.0	20.8 / 65.4	83.1 / 84.0	60.0
	GPT-3 2.7B	2,700	70.3	67.9 / 45.7	83.0	56.3	51.6	62.5	24.7 / 69.5	86.6 / 87.5	64.3
	GPT-3 6.7B	6,700	70.0	60.7 / 44.6	83.0	49.5	53.1	67.3	23.8 / 66.4	87.9 / 88.8	63.6
	GPT-3 13B	13,000	70.2	66.1 / 46.0	86.0	60.6	51.1	75.0	25.0 / 69.3	88.9 / 89.8	66.9
	GPT-3	175,000	77.5	82.1 / 57.2	92.0	72.9	55.3	75.0	32.5 / 74.8	89.0 / 90.1	73.2
	PET	223	79.4	85.1 / 59.4	95.0	69.8	52.4	80.1	37.9 / 77.3	86.0 / 86.5	74.1
	iPET	223	80.6	92.9 / 92.4	95.0	74.0	52.2	80.1	33.0 / 74.0	86.0 / 86.5	76.8
test	GPT-3	175,000	76.4	75.6 / 52.0	92.0	69.0	49.4	80.1	30.5 / 75.4	90.2 / 91.1	71.8
	PET	223	79.1	87.2 / 60.2	90.8	67.2	50.7	88.4	36.4 / 76.6	85.4 / 85.9	74.0
	iPET	223	81.2	88.8 / 79.9	90.8	70.8	49.3	88.4	31.7 / 74.1	85.4 / 85.9	75.4
	SotA	11,000	91.2	93.9 / 96.8	94.8	92.5	76.9	93.8	88.1 / 63.3	94.1/93.4	89.3

GPT-3とくらべます

• GPT-3と同じくらいのスコア

• パラメータはGPT-3に比べて約1/1000(すごい!)

• SOTAモデルには届いていない

• WiC(単語wが文章S1, S2で同じ意味で使われているか)は苦手

分析

• ρ と v の パターン が 精度に大きく影響する。

• 他にもいろいろあるが、よくわからないので割愛

まとめ

• 1/1000のパラメータ数でGPT-3を超えるモデル:ALBERT with PET/iPET を提案した。

• SuperGLUEで勝負するのは若干得意なとこで勝負してる感もある。(GPT-3は翻訳とか文章生成など幅広いタスクに対応してるし…)

• 割愛したPET with Multiple Task がすごそう。