## Identity and Access Management Securing Systems in the Digital Age

Instructor Name

 ${\sf School/College\ Name}$ 

March 11, 2025

# Welcome to Identity and Access Management: Securing the Digital Front Door

- Identity and Access Management (IAM) is the framework for ensuring the right individuals access the right resources at the right times for the right reasons.
- Understanding IAM is essential for protecting systems against unauthorized access and potential security breaches.
- Modern organizations typically manage thousands of digital identities, making systematic approaches necessary.
- IAM encompasses both technical systems and policies that govern how identities are created, verified, and granted permissions.

#### **Key Question**

How do we ensure only authorized users can access sensitive information while still making systems convenient to use?

## Why IAM Matters: Real-World Security Scenarios

- A hospital must ensure patient records are only accessible to authorized healthcare providers while maintaining ease of access in emergencies.
- Financial institutions need to verify identities before allowing transfers, with higher security requirements for larger transactions.
- Companies must immediately remove access when employees leave to prevent security vulnerabilities from lingering accounts.
- Educational institutions must provide appropriate access levels to students, faculty, and staff while protecting sensitive data.

#### Example

The 2020 SolarWinds breach occurred partly because attackers gained privileged access credentials, showing how IAM failures can have devastating consequences across thousands of organizations.

### The IAM Lifecycle: An Overview

- The IAM lifecycle begins with identity creation and verification to establish who a user is.
- Once verified, users receive appropriate access permissions based on their role and needs.
- Throughout the lifecycle, authentication mechanisms verify user identity during each access attempt.
- The cycle concludes with de-provisioning when access is no longer needed or appropriate.



# User Account Basics: Creating and Managing Digital Identities

- A digital identity is the electronic representation of a person or entity within a system.
- User accounts store essential identifying information such as username, contact details, and authentication credentials.
- Most systems use unique identifiers (like user IDs) that remain consistent even when other account details change.
- Properly structured user accounts enable appropriate access while maintaining security and accountability.

### Components of a Digital Identity

- Identifiers (username, email, ID number)
- Authentication data (password hash, biometric templates)
- Profile information (name, department, contact info)
- Access rights and permissions

## The Art of Provisioning: Adding Users Securely

- Provisioning is the process of creating user accounts and assigning appropriate access rights to resources.
- Automated provisioning reduces human error and ensures consistency in how accounts are created and configured.
- Proper provisioning includes verification of identity before granting access to sensitive systems.
- Organizations typically develop standardized workflows to ensure all necessary approvals are obtained before access is granted.

| Provisioning Type   Best Used For |                                          |
|-----------------------------------|------------------------------------------|
| Manual                            | Small organizations, specialized roles   |
| Self-service                      | Common resources, low-risk assets        |
| Automated                         | Large organizations, standard onboarding |
| Just-in-time                      | Temporary access needs                   |

### De-provisioning: Why Removing Access Matters

- **De-provisioning** is the systematic removal of access rights when they are no longer needed or authorized.
- Orphaned accounts (accounts belonging to former employees)
  represent significant security vulnerabilities if not properly managed.
- Effective de-provisioning should be timely, complete, and documented to maintain security compliance.
- Regular access reviews help identify accounts that should be de-provisioned but might have been overlooked.

#### Security Risk

The 2020 IBM Cost of a Data Breach Report found that organizations with orphaned accounts experienced higher data breach costs, with abandoned credentials frequently exploited by attackers.

## Identity Proofing: Verifying Who's Who

- Identity proofing is the process of verifying that a person is who they claim to be before creating their digital identity.
- The strength of identity proofing should match the sensitivity of the resources the user will access.
- Common methods include document verification (ID cards, passports), knowledge-based verification, and biometric matching.
- The National Institute of Standards and Technology (NIST) defines three assurance levels for identity proofing, from basic to highly secure.

| IAL1              | IAL2                | IAL3                |
|-------------------|---------------------|---------------------|
| Self-assertion    | ID verification     | In-person proofing  |
| No validation     | Remote or in-person | Physical biometrics |
| Minimal assurance | Moderate assurance  | High assurance      |

## Understanding Permissions: The Building Blocks of Access

- Permissions are specific authorizations that allow users to perform particular actions on resources.
- Common permission types include read, write, execute, modify, and delete capabilities.
- Permissions can be assigned directly to users or indirectly through groups, roles, or attributes.
- Well-designed permission structures balance security needs with usability concerns.

#### CRUD Permissions Model

Most systems organize permissions around four basic operations:

- Create: Ability to generate new data or resources
- Read: Ability to view existing data
- Update: Ability to modify existing data
- Delete: Ability to remove data or resources

## Permission Assignment: Who Gets What Access and Why

- Permission assignment should be based on legitimate business needs rather than convenience or hierarchy.
- **Segregation of duties** ensures that critical functions are divided among different individuals to prevent fraud.
- Permissions can be assigned through static methods (manual assignment) or dynamic methods (calculated at access time).
- Regular permission audits help identify and correct inappropriate access rights before they cause security incidents.

#### Example

A financial system might require two different employees to create and approve payment transactions, preventing any single individual from both creating and authorizing fraudulent payments.

## The Principle of Least Privilege: Need-to-Know Access

- The **principle of least privilege** states that users should be given only the minimum access rights needed to perform their job functions.
- Implementing least privilege reduces the potential damage from compromised accounts or insider threats.
- This principle applies to both human users and system processes or applications.
- Temporary privilege elevation can be used when higher-level access is occasionally needed but not justified permanently.



## Access Control Models: Different Approaches to Security

- Access control models provide structured frameworks for determining who can access what resources.
- Different models address varying security needs, organizational structures, and compliance requirements.
- Most modern systems implement hybrid approaches that combine elements from multiple access control models.
- The choice of access control model significantly impacts both security posture and administrative complexity.

| Access Control Model   | Key Characteristic                          |
|------------------------|---------------------------------------------|
| Mandatory (MAC)        | System-enforced based on sensitivity labels |
| Discretionary (DAC)    | Owner-determined access permissions         |
| Role-based (RBAC)      | Access based on job functions/roles         |
| Rule-based             | Access based on predefined rules            |
| Attribute-based (ABAC) | Dynamic access based on attributes          |

# Mandatory vs. Discretionary Access Control: Understanding the Differences

- Mandatory Access Control (MAC) uses system-enforced security labels that cannot be altered by users.
- MAC assigns sensitivity labels to resources and clearance levels to users, with access granted only when clearance meets or exceeds sensitivity.
- Discretionary Access Control (DAC) allows resource owners to determine who can access their resources.
- DAC is more flexible but potentially less secure, as permissions are at the discretion of individual users.

#### When to Use Each Model

- MAC: Military systems, government classified information, highly regulated industries
- DAC: Collaborative environments, file sharing systems, situations requiring user autonomy

## Role-Based Access Control: Organizing Permissions by Job Function

- Role-Based Access Control (RBAC) assigns permissions to roles, and roles to users based on their job responsibilities.
- RBAC simplifies administration by managing permissions at the role level rather than individually for each user.
- When employees change positions, administrators need only assign them to different roles rather than reconfiguring all permissions.
- Roles can be hierarchical, allowing permissions to be inherited from more general to more specific job functions.



## Rule-Based and Attribute-Based Access: Dynamic Security Controls

- Rule-Based Access Control uses predefined rules to determine access permissions based on specific conditions.
- Rules can incorporate factors such as time of day, network location, or previous access patterns.
- Attribute-Based Access Control (ABAC) makes access decisions based on attributes of users, resources, actions, and environment.
- ABAC offers more granular control than RBAC but requires more complex policy definition and evaluation.

#### **ABAC Policy Example**

IF user.department = "Finance" AND resource.type = "Financial Report" AND action = "view" AND environment.time BETWEEN "9:00" AND "17:00" THEN permit

#### Time-Based Restrictions: When Access Matters

- Time-based access restrictions limit when users can access resources, regardless of their identities or roles.
- Time restrictions help prevent unauthorized access outside normal business hours when legitimate use is unlikely.
- These controls can be used to enforce maintenance windows, scheduled system upgrades, or compliance with labor regulations.
- Effective time-based controls must account for different time zones, holidays, and emergency access procedures.

| Time Restriction Type | Use Case                                                                   |
|-----------------------|----------------------------------------------------------------------------|
| Hours of operation    | Limiting access to business applications to normal working hours (8am-6pm) |
| Day of week           | Restricting system maintenance tasks to weekends only                      |
| Date range            | Allowing temporary contractors access only during their contract period    |
| Seasonal              | Enabling tax filing systems only during tax                                |
|                       | season ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (                               |

## Authentication 101: Proving Identity in the Digital World

- **Authentication** is the process of verifying that a user is who they claim to be when accessing a system.
- Authentication is distinct from authorization, which determines what an authenticated user is allowed to do.
- Strong authentication typically relies on multiple factors rather than a single piece of evidence.
- Authentication strength should be proportional to the sensitivity of the information or systems being protected.

#### Authentication vs. Authorization

- Authentication answers: "Are you who you say you are?"
- Authorization answers: "What are you allowed to do?"
- Both are required for a complete access control system

# Password Best Practices: Length, Complexity, and Management

- Passwords remain the most common authentication method despite their known security limitations.
- Password strength is primarily determined by length, with longer passwords being exponentially harder to crack.
- Modern guidance emphasizes memorable passphrases (longer but simpler to remember) over complex but short passwords.
- Organizations should implement password policies that balance security requirements with usability considerations.

| Password Characteristic | Recommendation               | Rationale                       |
|-------------------------|------------------------------|---------------------------------|
| Length                  | Minimum 12 characters        | Increases attack complexity     |
| Complexity              | Mix of character types       | Increases possible combinations |
| Uniqueness              | Different for each service   | Prevents credential stuffing    |
| Expiration              | Only if compromise suspected | Reduces password fatigue        |

## Password Managers: Simplifying Secure Password Usage

- A password manager is a tool that securely stores, generates, and autofills complex unique passwords.
- Using a password manager allows implementation of best practices without requiring users to memorize dozens of complex passwords.
- Password managers typically encrypt their databases with a single master password, creating a secure but convenient system.
- Enterprise password managers offer additional features like shared credentials, access logs, and emergency access protocols.

#### Security Consideration

While password managers create a single point of failure, the security benefits of using unique, complex passwords for each service far outweigh this risk when proper precautions are taken.

#### The Future is Passwordless: Modern Authentication Trends

- Passwordless authentication eliminates passwords in favor of more secure and convenient methods.
- Common passwordless methods include biometrics, hardware security keys, and cryptographic certificates.
- Standards like FIDO2 and WebAuthn are enabling widespread adoption of passwordless authentication across platforms.
- Passwordless approaches improve security by eliminating password-related vulnerabilities like phishing and credential stuffing.



### Multifactor Authentication: Beyond the Password

- Multifactor authentication (MFA) requires users to provide two or more verification factors to gain access to a resource.
- MFA significantly reduces the risk of unauthorized access even if one authentication factor is compromised.
- The security benefit of MFA comes from requiring attackers to compromise multiple independent verification methods.
- Organizations can implement MFA with varying levels of strictness depending on risk tolerance and usability requirements.

#### MFA Implementation Options

- Required for all users and all access
- Required for sensitive operations only
- Required based on risk factors (new device, unusual location)
- Required for specific user roles or resource types

## Something You Know, Have, Are, or Where You Are: The Four Factors

- Authentication factors are categorized by the type of verification they provide, with each category offering different security properties.
- **Something you know** includes passwords, PINs, and security questions that rely on secret knowledge.
- **Something you have** includes physical devices like phones, smart cards, or security keys that must be in the user's possession.
- **Something you are** includes biometric characteristics like fingerprints or facial features that are unique to the individual.
- Somewhere you are uses location data to verify that access attempts come from expected or approved locations.

#### Example

Withdrawing money from an ATM typically uses two-factor authentication: something you have (the bank card) and something you know (the PIN).

# Biometrics in Action: Using Physical Traits for Authentication

- Biometric authentication uses unique physical or behavioral characteristics to verify a person's identity.
- Common biometric methods include fingerprint scanning, facial recognition, iris scanning, and voice recognition.
- Biometrics offer convenience because they don't need to be remembered and are difficult to transfer between individuals.
- Unlike passwords, biometric characteristics cannot be changed if compromised, creating unique security challenges.

| Biometric Type     | Advantages                       | Limitations                       |
|--------------------|----------------------------------|-----------------------------------|
| Fingerprint        | Fast, accurate, widely accepted  | Can be affected by injuries       |
| Facial recognition | Non-intrusive, improving rapidly | Sensitive to lighting, aging      |
| Voice recognition  | Works remotely by phone          | Background noise, illness affects |
| Iris scanning      | Extremely accurate, stable       | Specialized equipment needed      |

# Authentication Tokens and Security Keys: Physical Security Tools

- **Authentication tokens** generate temporary codes or cryptographic responses that prove the user possesses the token.
- Hard tokens are physical devices dedicated to authentication, while soft tokens are software implementations on general-purpose devices.
- Time-based One-Time Password (TOTP) tokens generate codes that change periodically and become invalid after a short time.
- **Security keys** like FIDO U2F devices use cryptographic challenges and responses that protect against phishing attacks.



## Federation: Extending Trust Across Organizations

- Identity federation allows organizations to recognize and accept identity credentials issued by trusted external parties.
- Federation establishes trust relationships that enable secure authentication across organizational boundaries without duplicate accounts.
- In federated systems, users authenticate with their home organization (identity provider) to access resources at partner organizations (service providers).
- Federation reduces administrative overhead while improving security by centralizing identity management.



## Single Sign-On: One Key for Many Doors

- **Single Sign-On (SSO)** allows users to authenticate once and gain access to multiple systems without re-entering credentials.
- SSO improves user experience by eliminating the need to remember and manage multiple sets of credentials.
- From a security perspective, SSO reduces password fatigue and encourages stronger authentication for the single login point.
- SSO can be implemented within a single organization (enterprise SSO) or across multiple organizations (federated SSO).

#### Security Consideration

While SSO is generally more secure, it creates a single point of failure - if the SSO account is compromised, all connected applications are potentially vulnerable.

# LDAP, OAuth, and SAML: Understanding Authentication Protocols

- Lightweight Directory Access Protocol (LDAP) is a protocol for accessing and maintaining directory information services.
- LDAP servers store user accounts and authentication information in a hierarchical directory structure for organizational use.
- Security Assertion Markup Language (SAML) is an XML-based standard for exchanging authentication and authorization data between parties.
- Open Authorization (OAuth) enables third-party applications to obtain limited access to user accounts without sharing credentials.

| Protocol       | Primary Use Case                                     |
|----------------|------------------------------------------------------|
| LDAP           | Directory services within organizations              |
| SAML           | Enterprise SSO and cross-domain federation           |
| OAuth          | Delegated authorization for third-party applications |
| OpenID Connect | User authentication based on OAuth 2.0               |

## Interoperability: Making Different Systems Work Together

- Interoperability refers to the ability of different IAM systems to work together seamlessly despite differences in design and implementation.
- Standards-based approaches ensure consistent interpretation of identity information across heterogeneous systems.
- Attestation provides verified claims about identity attributes that can be trusted across organizational boundaries.
- Modern IAM systems must balance proprietary features with compatibility with widely-adopted industry standards.

#### Key Interoperability Standards

- SCIM (System for Cross-domain Identity Management) for user provisioning
- JWT (JSON Web Tokens) for securely transmitting claims between parties
- X.509 certificates for public key infrastructure
- FIDO (Fast Identity Online) for passwordless authentication

## Privileged Access: Managing the Keys to the Kingdom

- **Privileged access** refers to elevated permissions that provide extensive control over critical systems and sensitive data.
- Privileged accounts represent the highest security risk because they can bypass normal security controls and make widespread changes.
- **Privileged Access Management (PAM)** includes special controls to secure, monitor, and audit privileged account usage.
- Effective PAM requires both technical solutions and operational practices like separation of duties and regular access reviews.

#### Example

Examples of privileged accounts include domain administrators, database administrators, root accounts on servers, emergency access accounts, and service accounts that run critical system processes.

#### Just-in-Time Permissions: Access When Needed

- Just-in-Time (JIT) permissions provide elevated access only when needed and only for the duration required.
- JIT permissions reduce the risk of privilege abuse by limiting the window of opportunity for malicious actions.
- Implementation typically involves a workflow where users request temporary privileges with justification and receive automatic expiration.
- This approach follows the principle of zero standing privileges, where no user permanently holds administrative rights.



## Password Vaulting and Ephemeral Credentials: Temporary Access Solutions

- A password vault securely stores privileged account credentials and controls their usage through check-out procedures and automatic rotation.
- Password vaults eliminate the need for users to know actual passwords while still allowing controlled access to privileged accounts.
- **Ephemeral credentials** are temporary authentication secrets generated for a single session and discarded afterward.
- Cloud environments increasingly use ephemeral credentials to minimize the risk of long-lived access keys being compromised.

#### Security Benefit

With properly implemented password vaulting, even administrators cannot access privileged credentials directly, reducing insider threat risks and preventing password sharing among team members.

## IAM Best Practices: Putting It All Together

- Implement the principle of least privilege by providing minimal access required for each job function.
- Use multifactor authentication for all accounts, especially those with privileged access.
- Automate provisioning and de-provisioning to ensure consistency and timeliness.
- Conduct regular access reviews to identify and correct inappropriate permissions.

#### Balancing Security and Usability

The most effective IAM implementations find the right balance between:

- Strong security controls without excessive user friction
- Centralized governance with appropriate delegation
- Standardized policies with flexibility for special cases
- Automated processes with human oversight

# The Future of Identity and Access Management: Trends and Challenges

- The movement toward Zero Trust Architecture emphasizes continuous verification rather than implicit trust based on network location.
- **Artificial intelligence** is increasingly used to detect abnormal access patterns and provide risk-based authentication.
- Decentralized identity approaches using blockchain technology promise user control over personal data and credentials.
- Cloud and mobile computing continue to challenge traditional perimeter-based security models and drive IAM innovation.

| Traditional IAM         | Future IAM                  |
|-------------------------|-----------------------------|
| Static permissions      | Dynamic, contextual access  |
| Password-centric        | Passwordless authentication |
| Organization-controlled | User-controlled identity    |
| Perimeter-focused       | Zero Trust model            |