Gödel's System T

Pramook Khungurn

December 11, 2019

Gödel's System T is the first logical system of functions such that, if you can determine a type of a function, the function terminates. The system is a restrictive subset of extended lambda calculus.

1 Definitions

1.1 Types

- We define **types** as follows:
 - $-\mathbb{N}$ is a type.
 - If α and β are types, then $\alpha \to \beta$ is a type.
- N is called the **atomic type**, and types of the form $\alpha \to \beta$ are called **higher types**.
- Types are typically denoted by σ and τ .
- $\sigma_1 \to \sigma_2 \to \sigma_3 \to \cdots \to \sigma_n$ means $\sigma_1 \to (\sigma_2 \to (\sigma_3 \to \cdots \to \sigma_n)))$
- Stenlund called all the objects we deal with in System T as computable functionals.
- An object of type \mathbb{N} is a natural number. Natural numbers are computable functionals.
- An object of type $\alpha \to \beta$ is a function which takes a computable functional of type α and spits out a computable functional of type β .

1.2 Constants

- 0 is a constant of type \mathbb{N} .
- s is a constant of type $\mathbb{N} \to \mathbb{N}$, representing the successor function.
- For each type τ , there's a constant R^{τ} of type $\tau \to (\mathbb{N} \to \tau \to \tau) \to \mathbb{N} \to \tau$. The R^{τ} represents the primitive recursive arithmetic combinator. (When R^{τ} is used, however, we will only write it as R.)
- The **numerals** in System T as defined as $0, s(0), s(s(0)), \ldots$

1.3 Terms

- Each constant of type τ is a term of type τ .
- For each type τ , there exists a countably finite list of variables of type τ , which we will denote by $x^{\tau}, y^{\tau}, z^{\tau}, \dots$
- If a is a term of type τ and x is a variable of type σ , then λx . a is a term of type $\sigma \to \tau$ (Abtraction)
- If a is a term of type $\sigma \to \tau$ and b is term of type σ , then a b is a term of type τ . (Application)

2 Equality

- There are two equality relations involved.
 - "=" is the equality between natural numbers.
 - " $=_i$ " is the intensional equality between terms.
- Of course, "=" implies "= $_i$ ".
- Equality can be inferred from a number of axioms:
 - " $=_i$ " is reflexive, symmetric, and transitive.
 - If $a =_i b$ and $c =_i d$, then $a b =_i b d$.
 - If $a =_i b$, then λx . $a =_i \lambda x$. b.
 - $-(\lambda x. (a x)) b =_i a b$
 - $-\lambda x. (a x) =_i a$
 - $-Rab0=_i a$
 - -Rabs(t) = bt(Rabt)
 - "=" is reflexive, symmetric, and transitive.
 - If c = d and $a \in \mathbb{N} \to \mathbb{N}$, then $a \ c = a \ d$.
 - If a = b, then $(\lambda x. \ a)c = (\lambda x. \ b)c$ where $c \in \mathbb{N}$.
 - If $a, b \in \mathbb{N}$ and $a =_i b$, then a = b.
 - If f = 0 0 = a and f = s(t) = b t (f t), then f = t = R a b t. Here, $a \in \mathbb{N}, b \in \mathbb{N} \to \mathbb{N} \to \mathbb{N}$, and $t \to \mathbb{N}$.

3 Reduction

- As with other lambda calculus, System T has its rule for reduction of terms.
- Here are the small-step reduction rules for System T.
 - $-Rab0 \rightarrow_1 a$
 - $-R \ a \ b \ s(t) \rightarrow_1 b \ t \ (R \ a \ b \ t)$
 - $-(\lambda x. \ a) \ b \rightarrow_1 a[b/x]$

$$-\lambda x.(a\ x) \rightarrow_1 a$$

- A term is called **normal** if it does not contain a subterm which can be reduced by one of the above rules.
- We write $a \to_* b$ if there's a finite series of reduction $a \to_1 a_1 \to_1 a_2 \to_1 a_3 \to_1 \cdots \to_1 b$. Here, we say that a reduces to b.
- A term a is **normalizable** if it reduces to a normal term. The normal term is said to be the **normal form** of a.
- We say that two terms a and b are **definitionally equal** if reduces to the same normal term.
- Theorem 3.1 (Church-Rosser). If $a \to_* b$ and $a \to_* c$, then there exists d such that $b \to_* d$ and $c \to_* d$.
- Corollary 3.2. Definitional equality is an equivalence relation.
- Theorem 3.3. Two terms a and b are definitionally equal if and only if $a =_i b$.

Proof. (\rightarrow) Observe that the two sides of the reduction rules are intensionally equal to one another. So, definitional equality implies intensional equality.

 (\leftarrow) This is done by the induction on the rules of intensional equality.

4 Computability and Normal Form

• A term a is **strongly normalizable** (SN) if all reduction sequences

$$a \rightarrow_1 a_1 \rightarrow_1 a_2 \rightarrow_1 a_3 \rightarrow_1 \cdots$$

starting from a are finite.

- In other words, a is SN if a is normalizable and each reduction sequence starting with a ends up in the normal form of a.
- There are terms which are normalizable but not SN. For example:

$$(\lambda x.y) ((\lambda x. x x) (\lambda x. x x))$$

- The main theorem is that all typed terms in System T are SN.
- The proof has three steps.
 - Define what it means for a term of the *computable*.
 - Show that computable terms are SN.
 - Show that all typed terms in System T are computable.
- We call a term a **computable** if it satisfies one of the following rules:
 - If $a \in \mathbb{N}$, then a is computable if it is SN.
 - If a has type $\tau \to \sigma$, then a is computable if $(a\ b)$ is computable for all comptuble terms b of type τ .
- We can state the second rule in another way:

A term a is computable if a a_1 a_2 \cdots a_n is computable for all computable terms a_1 , a_2 , \ldots , a_n such that a a_1 a_2 \cdots $a_n \in \mathbb{N}$.

• Lemma 4.1. If $a \rightarrow_* b$ and a is computable, then b is computable.

Proof. The lemma follows immediately if $a \in \mathbb{N}$. If a is of higher type, then it follows from the other form of the second rule above.

• Lemma 4.2. For any type τ , a computable term of type τ is SN.

Proof. The proof is by structural induction on the type τ .

The first case is when τ is N. We have all computable terms are SN by definition.

The second case is when τ is $\alpha \to \beta$. Let a be a computable term of type τ . Then, we have that for all computable term b of type α , we have that a b is a computable term of type β . By induction hypothesis, we have that a and a b are SN. Consider any reduction sequence

$$a \rightarrow_1 a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow \cdots$$

We have that it generates the corresponding sequence

$$a \ b \rightarrow_1 a_1 \ b \rightarrow a_2 \ b \rightarrow a_3 \ b \rightarrow \cdots$$

Since the sequence sequence terminates, the first one must terminate as well. Therefore, a is normalizable, and since all reduction sequence terminates a is SN.

• Lemma 4.3. The constants 0 and s are computable.

Proof. 0 is a normal term, so it is computable.

Let a be a computable term of type \mathbb{N} . We have that a is SN. Then, s(a) also SN because all the reduction done to s(a) must be done to a. Therefore, s(a) is computable. Hence, we have that s is also computable.

• Lemma 4.4. If a[b/x] is computable, then $(\lambda x. \ a)$ b is also computable.

Proof. Let a_1, a_2, \ldots, a_n be computable terms such that a[b/x] a_1 a_2 \cdots a_n is a term of type \mathbb{N} . It follows that a[b/x] a_1 a_2 \cdots a_n is computable and SN. We can prove the lemma by showing that $(\lambda x. \ a) \ b \ a_1 \ a_2 \cdots a_n$ is SN.

Suppose by way of proof by contradiction that there is a infinite sequence of reduction in

$$(\lambda x. \ a) \ b \ a_1 \ a_2 \ \cdots \ a_n.$$

We know that this reduction must be an infinite reduction of $(\lambda x. a)$. Suppose such a sequence is

$$\lambda x. \ a \rightarrow_1 \lambda x. \ a' \rightarrow_1 \lambda x. \ a'' \rightarrow_1 \cdots$$

This sequence would yield

$$a[b/x] \rightarrow_1 a'[b/x] \rightarrow_1 a''[b/x] \rightarrow_1 \cdots$$

which is an infinite reduction of a[b/x], which is impossible. We have a contradiction.

• Lemma 4.5. The constant R^{τ} for all τ is computable.

Proof. It is sufficient to prove that R a b c is computable for all computable a, b, and c of the appropriate types. We do so by the number of s in c.

Let a_1, a_2, \ldots, a_n be computable terms such that R a b c a_1 a_2 \cdots a_n is of type \mathbb{N} .

If c does not reduce to 0 or s(t) for some $t \in \mathbb{N}$, then we cannot use the axiom for R to reduce R a b c. Thus, all the reduction done to R a b c a_1 a_2 \cdots a_n must be done in a, b, c, a_1 , a_2 , \ldots , a_n . Since all these terms are computable and thus SN, then R a b c a_1 a_2 \cdots a_n is SN and thus computable.

If c reduces to 0, then we have that

$$R \ a \ b \ c \ a_1 \ a_2 \ \cdots \ a_n \to_* R \ a' \ b' \ 0 \ a_1' \ a_2' \ \cdots \ a_n' \to_1 a' \ a_1' \ a_2' \ \cdots \ a_n'.$$

For some $a', b', a'_1, a'_2, \ldots a'_n$ that $a, b, a_1, a_2, \ldots, a_n$ reduce to, respectively. Since $a \ a_1 \ a_2 \ \cdots \ a_n \rightarrow a' \ a'_1 \ a'_2 \ \cdots \ a'_n$, it must be the case that $a' \ a'_1 \ a'_2 \ \cdots \ a'_n$ is SN. Therefore, $R \ a \ b \ c \ a_1 \ a_2 \ \cdots \ a_n$ is SN as well

If c reduces to s(t), we have that s(t) is computable, thus SN. This means that t is SN, thus computable. It follows by induction hypothesis that $(R \ a' \ b' \ t)$ is computable for any computable a' and b'. Consider the reduction of $R \ a \ b \ c \ a_1 \ a_2 \ \cdots \ a_n$, we have that it must be of the form

$$R \ a \ b \ c \ a_1 \ a_2 \ \cdots \ a_n \rightarrow_* R \ a' \ b' \ s(t) \ a_1' \ a_2' \ \cdots \ a_n' \rightarrow_1 b' \ t \ (R \ a' \ b' \ t) \ a_1' \ a_2' \ \cdots \ a_n'.$$

Since all the terms in the last expression is computable, we have that the term is SN. Therefore, $R\ a\ b\ c\ a_1\ a_2\ \cdots\ a_n$ is SN, that thus computable too.

• **Lemma 4.6.** If a is a term with free variable x_1, x_2, \dots, x_n and b_1, b_2, \dots, b_n are computable terms with the same types as x_1, x_2, \dots, x_n , respectively, then $a[b_1/x_1][b_2/x_2] \cdots [b_n/x_n]$ is computable.

Proof. We prove this by induction on the structure of a. For convenience let

$$a' := a[b_1/x_1][b_2/x_2] \cdots [b_n/x_n].$$

If a is one of the free variables, say x_i , then $a' = b_i$, which is computable.

If a is a_1 a_2 , then a' is a'_1 a'_2 . a'_1 and a'_2 are computable by the induction hypothesis. Therefore, a'_1 a'_2 is computable too.

If a is λx . a_1 , then by induction hypothesis $a_1'[b/x]$ is computable for all computable b. This implies that $(\lambda x.a_1)$ b is computable for all computable b, which means that $\lambda x.$ a_1 is computable.

• Theorem 4.7. All terms are computable, and thus SN.

Proof. Use the last four lemmas with structural induction on the terms.