Docker

Traditional Deployment Architecture

server : application 1 : 1

Less Utilization in Traditional Architecture

Virtual Machine to the Rescue

Physical Machine

Virtual Machine provides better utilization

10 x Apps | 10 x Physical Machines | Less than 10% utilization

Physical Machine

Each VM needs a separate OS

Physical Machine

OS takes most of the Resources

Why use separate OS for each App?

Containers to the Rescue

Containers are more lightweight than Virtual Machines

Containers vs VM

Physical Machine

Physical Machine

What is Docker?

- Docker is an open-source project
 - · that automates the deployment of applications inside software containers,
 - by providing an additional layer of abstraction and
 - automation of operating system—level virtualization on Linux.

Docker Engine

Docker can run anywhere

Docker Architecture

- Docker uses a client-server architecture.
- Docker client talks to the Docker daemon
- The Docker client and daemon can run on the same system, or can connect a client to a remote Docker daemon.
- The Docker client and daemon communicate using a REST API

Docker Registry

Hands-On

Container Images and Dockerfile

6 June 2023 17

Dockerfile

Dockerfile and Images

Dockerfile

Docker Image

Dockerfile Template

Docerkfile

FROM 123

INSTRUCTION abc

INSTRUCTION def

INSTRUCTION ghi

INSTRUCTION jkl

Microservices

6 June 2023 21