

Don't Allow Allow

Home Maths Article v Maths Calculators Maths Formulas Math Symbols v Maths Syllabus v

Maths Important Questions ~

Home (https://byjus.com/maths) / Set Theory Symbols

Q

Set Theory Symbols

Set theory was developed by mathematicians to be able to talk about collections of objects. It has turned out to be an invaluable tool for defining some of the most complicated mathematical structures.

Let us explore few common Set theory symbols used in more complicated math (https://byjus.com/maths/) structures.

Consider a Universal set (U) = {1, 2, 7, 9, 13, 15, 21, 23, 28, 30}

Symbol	Symbol Name		
{}	set		
ΑυΒ	union		
A ∩ B	intersection		
A⊆B	subset		
A⊄B	not subset		
A⊂B	proper subset / strict subset		
A⊃B	proper superset / strict superset		
A⊇B	superset		
Ø	empty set		

Chat now

Notifications on Important Exam Updates

Notifications can be turned off anytime from browser settings.

		Don't Allow	Allow
		_	
А⊅В	not superset		
A = B	equality	-	
A \ B or A-B	relative complement	•	
Ac	complement		
АΔВ	symmetric difference	-	
а∈В	element of	•	
(a,b)	ordered pair	-	
x∉A	not element of	•	
B , #B	cardinality	•	
A×B	cartesian product	•	
N	natural numbers / whole numbers set (without zero)		
No	natural numbers / whole numbers set (with zero)		
Q	rational numbers set	-	

Recent Posts

- » Finding Square Root Of A Number By Division Method (https://byjus.com/maths/square-root-long-division-method/)
- > Consistent And Inconsistent Systems (https://byjus.com/maths/consistent-and-inconsistent-systems/)
- » Area Of Rhombus (https://byjus.com/maths/area-of-rhombus/)
- » Ratios And Proportion (https://byjus.com/maths/ratios-and-proportion/)
- » Simple Interest (https://byjus.com/maths/simple-interest/)

Chat now