IN3310 Week 4 Solution

Alex Binder

1 Coding

See the attached file:)

2 Disastrous Derivatives

$$f(X) = Xa \implies Df(X)[H] = Ha \in \mathbb{R}^{(d,1)}$$

$$f(X) = XX^{\top} \implies Df(X)[H] = HX^{\top} + XH^{\top} \in \mathbb{R}^{(d,d)}$$

$$f(X) = XCX \implies Df(X)[H] = HCX + XCH \in \mathbb{R}^{(d,d)}$$

$$f(X) = CXBX^{\top}AX \implies Df(X)[H] = CHBX^{\top}AX + CXBH^{\top}AX + CXBX^{\top}AH \in \mathbb{R}^{(d,d)}$$

$$f(X) = \begin{pmatrix} 1 & x_2 \end{pmatrix} \begin{pmatrix} 1 & x_2^3 \\ \sin x_2 & x_1 \end{pmatrix}$$

$$= (1 + x_2 \sin x_2, x_2^3 + x_1 x_2)$$

$$\implies Df(X)[H] = \frac{\delta f}{\delta x_1} h_1 + \frac{\delta f}{\delta x_2} h_2$$

$$= (0, x_2) h_1 + (\sin x_2 + x_2 \cos(x_2), 3x_2^2 + x_1) h_2$$

$$= ((\sin x_2 + x_2 \cos(x_2)) h_2, x_2 h_1 + (3x_2^2 + x_1) h_2)$$

3 dims

The vector $x_2 - x_1$ is a good choice to define a hyperplane separating x_1 and x_2 . We can now look for w by assuming that $w = s(x_2 - x_1)$ for some scaling factor $s \in \mathbb{R}$. We want $f(x_1) = 1$ and $f(x_2) = -1$, this gives us the system

$$s(x_2 - x_1) \cdot x_1 + b = 1$$

 $s(x_2 - x_1) \cdot x_2 + b = -1$

so that

$$s = \frac{-2}{\|x_2 - x_1\|^2}.$$

Similarly for the bias b

$$w \cdot x_1 = 1 - b$$
$$w \cdot x_2 = -1 - b,$$

from which we can deduce

$$b = -\frac{1}{2}w \cdot (x_1 + x_2).$$

Plugging in the vectors for x_1 and x_2 into the formulas for s, w and b we get

$$s = \frac{-1}{31} \approx -0.3226$$

$$w \approx (-0.1935, -0.0323, 0.1613)$$

$$b \approx -0.2581.$$

The reason why we add *s* is that otherwise, the system of equations would not be solvable.

4 5 dims I

The procedure for the previous problem works here as well, only with the definitions of x_1 and x_2 now changed. Plugging these vectors into the formula for s, w and b, we get

$$\begin{split} s &\approx 0.0211 \\ w &\approx (-0.0421, -0.0211, 0.0842, -0.1474, 0.1053) \\ b &\approx 0.03158. \end{split}$$

5 5 dims II

II Answer for yourself:

- what is a possible mathematical criterion to test that w is not parallel to the line $x_2 - x_3$?

Solution: Check the vector $(x_2 - x_3)/w$, where / is here meant element-wise. The resulting vector is constant if and only if w is parallel to $x_2 - x_3$.

- what is a possible mathematical criterion to test that w is not orthogonal to the line $x_1 - x_3$?

Solution: Check $w \cdot (x_1 - x_3) \neq 0$.

III

Solution: Let us choose an initial vector $w = x_2 - x_3 + e_2 = (1, 3, -3, 1, -1)$, by adding e_2 we are ensuring that w is not parallel to $x_2 - x_3$.

Now we can orthogonalise w:

$$w_2 = w - (w \cdot z) \frac{z}{\|z\|^2}$$
$$= \frac{1}{8}(-1, 6, 3, -1, 1)$$

where $z = x_2 - x_3 = (1, 2, -3, 1, -1)$.

IV

Solution: We can now momentarily forget about x_3 since $f(x_2) = f(x_3)$ with our choice of weights w_2 . Now we want $f(x_1) = 1$ and $f(x_2) = -1$ for some scaled weight $w_3 = sw_2$ and bias b.

The resulting linear system can be solved by

$$s = \frac{2}{w_2 \cdot (x_1 - x_2)} \approx 1.7777$$

$$b = -\frac{1}{2} s w_2 (x_1 + x_2) \approx 1.222$$

so that

$$w_3 \approx (-0.2222, 1.3333, 0.6666, -0.2222, 0.2222).$$

 \mathbf{V}

Solution

Consider the figure below, where $x_1 - x_2$ is orthogonal to $x_2 - x_3 = w$. There is no way to define a line that separates x_1 from x_2, x_3 and is orthogonal to $x_2 - x_3$, since any line orthogonal to $x_2 - x_3$ will have x_2 and x_1 on the same side.

