Московский Физико-Технический Институт (государственный университет)

Работа 5.4.1

Цель работы:

Измерить пробег альфа-частиц в воздухе двумя способами: с помощью торцевого счетчика Гейгера и ионизационной камеры.

1 Теоретическое введение и описание установки

В качестве источника альфа-частиц используется 239 Pu с периодом полураспада $T_{1/2}=2,44\cdot 10^4$ лет. Альфа-частицы, испускаемые 239 Pu, состоят из трех моноэнергетических групп, различие между которы- ми лежит в пределах 50 кэВ. При той точности, которая достигается в наших опытах, их можно считать совпадающими по энергии, равной 5,15 МэВ.

1.1 Счетчик Гейгера

Для определения пробега альфа-частиц с помощью счетчика радиоактивный источник помещается на дно стальной цилиндрической бомбы (рис. 1), в которой может перемещаться торцевой счетчик Гейгера. Его чувствительный объем отделен от наружной среды тонким слюдяным окошком, сквозь которое могут проходить альфа-частицы. Рабочее напря- жение счетчика указано на установке.

Импульсы, возникающие в счетчике, усиливаются и регистрируются пересчетной схемой. Путь частиц в воздухе зависит от расстояния между источником и счетчиком. Перемещение счетчика производится путем вращения гайки, находящейся на крышке бомбы. Расстояние между счетчиком и препаратом измеряется по шкале, нанесенной на держатель счетчика. Счетчик не может быть придвинут к препарату ближе чем на 10 мм, т. к. между источником и счетчиком установлен коллиматор, изготовленный из

Рис. 1: Схема торцевого счетчика Гейгера

плотно сжатых металлических трубок. Отверстия трубок пропускают к счетчику только те альфа-частицы, которые вылетают из источника почти перпендикулярно его поверхности.

1.2 Ионизационная камера

Ионизационная камера — прибор для количественного измерения ионизации, произведенной заряженными частицами при прохождении через газ. Камера представляет собой наполненный газом сосуд с двумя электродами (схема камеры приведена на рис. 2). Сферическая стенка прибора служит одним из электродов, второй электрод вводится в газ через изолирующую пробку. К электродам подводится постоянное напряжение от источника ЭДС.

Заполняющий сосуд газ сам по себе не проводит электрический ток, возникает он только при прохождении быстрой заряженной частицы, которая рождает в газе на своем пути ионы.

Поместим на торец внутреннего электрода источник ионизирующего излучения (в нашем случае это источник альфа-частиц $^{239}_{94}$ Pu), заполним объем камеры воздухом и начнем

постепенно увеличивать разность потенциалов между электродами. Ток, протекающий через камеру, вначале будет резко возрастать, а затем, начиная с некоторого напряжения V_0 , станет постоянным, т. е. «выйдет на плато». Предельный ток I_0 будет равен $I_0 = n_0 e$, где n_0 — число пар ионов, образуемых в секунду в объеме камеры, а e — заряд электрона.

Рис. 2: Схема устройства ионизационной камера

Прохождение тока через камеру регистрируется посредством измерения напряжения на включенном в цепь камеры сопротивлении R. Так как средняя энергия ионизации атомов воздуха составляет около 30 эВ, то альфа-частица с энергией 3 МэВ образует на своем пути около 10^5 электронов, им соответствует заряд $1,6\cdot 10^{-14}$ Кл. Чтобы столь малое количество заряда, создаваемое проходящей через камеру одной альфачастицей, вызывало измеряемое напряжение, емкость C должна быть мала.

Так как подвижность электронов примерно в 1000 раз больше подвижности ионов, то подбором параметров RC-цепочки можно выделить импульсы тока, соответствующие только возникающей электронной компоненте. Реально регистрация электронной компоненты импульса тока обеспечивается при величине постоян-

ной времени RC- цепочки в несколько микросекунд. Если число проходящих через камеру альфа-частиц достаточно велико, то можно регистрировать не заряд, а величину возникающего тока, которая, естественно, пропорциональна интенсивности альфа-частиц. В токовом режиме величину постоянной времени RC-цепочки устанавливают равной нескольким секундам, а работающую в этом режиме камеру называют токовой.

При изменении давления в камере ионизационный ток меняется так, как это показано на рис. 3. При небольших давлениях газа альфа-частицы передают часть энергии стенкам камеры. По достижении давления P_0 все они заканчивают свой пробег внутри газа, и дальнейшее возрастание тока прекращается. Для определения давления P_0 чаще всего пользуются методом экстраполяции (полученная таким методом величина называется экстраполированным пробегом), продолжая наклонный и горизонтальный участки кривой до пересечения. Найденный таким образом пробег затем должен быть приведен к нормальному давлению и температуре $15^{\circ}C$.

В данной работе измерение пробега альфа-частицы проводится по величине тока ионизации в сферической камере. Рис. 3: Характерная кри-Внутренним электродом камеры служит диск диаметром 5 зависимости тока мм, на который нанесен тонкий слой $^{239}_{94}$ Pu, покрытый сверху ионизационной камеры тонкой защитной пленкой. Вторым электродом служит внешняя обоновижая камернизация лый шар с внутренним диаметром 100 мм. Оба электрода тщадедденесизолиционного от другого и от земли. Разность потенциалов между электродами составляет 300 В. Вакуумная установка содержит кран и манометр. Она позволяет изменять давление в камере от атмосферного до 10 мм рт. ст. Величина тока ионизации измеряется электрометром, состоящим из нескольких стандартных микросхем, по величине падения напряжения на сопротивлении $R=100~{\rm MOm}~(C=10^{-8}~{\rm \Phi apag},{\rm так}~{\rm что}~RC=1~{\rm c}).$ Значение измеряемого ионизационного тока (в пикоамперах) высвечивается на цифровом табло.

2 Выполнение работы

2.1 Счетчик Гейгера

- 1. Включим счетчик Гейгера и дадим ему прогреться в течении 10 минут. Убедимся, что он регистрирует альфа-частицы. Затем проведем измерения зависимости скорости счета частиц N от расстояния между источником и счетчиком l, начиная с минимально допустимых 10 мм и до 40мм (по факту, уже после $l \gtrsim 25$ мм остается только фон).
- 2. Методика измерения счета и его погрешности стандартные: мы считаем число N' зарегистрированных частиц со статистической погрешностью $\sigma_{N'} = \sqrt{N'}$ и время регистрации t, откуда получаем скорость счета N = N'/t и ее погрешность

$$\sigma_N = N \cdot \frac{\sqrt{N'}}{N'} = \frac{\sqrt{N'}}{t} \tag{1}$$

3. Погрешность для l оценим как $\sigma_l = 0,5$ мм — погрешность цены деления. Результаты измерений величин и их погрешностей занесем в таблицу и построим график.

x, mm	N	t, c	N', 1/c	σ_N', 1/c
0	462	30	15,40	0,13
5	472	30	15,73	0,13
10	482	30	16,07	0,13
15	482	30	16,07	0,13
20	486	30	16,20	0,13
25	464	30	15,47	0,13
30	466	30	15,53	0,13
35	464	30	15,47	0,13
40	460	30	15,33	0,13
45	434	30	14,47	0,13
50	425	30	14,15	0,13
55	430	30	14,33	0,13
60	426	30	14,20	0,13
65	424	30	14,13	0,13
70	374	30	12,45	0,12
75	361	30	12,04	0,12
80	277	30	9,22	0,10
85	147	30	4,90	0,07
87,5	115	30	3,83	0,07
90	60	30	2,00	0,05
95	15	30	0,50	0,02
100	13	30	0,43	0,02

Рис. 4: Зависимость скорости счета частиц от расстояния между источником и счетчиком

Рис. 5: Зависимость скорости счета частиц от расстояния между источником и счетчиком

4. Получаем зависимость вида y = ax + b:

	Значение	Погрешность
a	-0.498	0.006
b	47.7	0.5

5. Экстраполируем полученую прямую до пересечения с осью абсцисс. Отсюда получаем экстраполированную длину пробега

$$R_9 = \frac{b}{a} \approx 95.4 \pm 1.5 \rightarrow R'_9 = \rho R_9 = (12, 12 \pm 0, 19) \cdot 10^{-3} \, \text{r/cm}^2$$
 (2)

6. Энергию таких альфа-частицы можно оценить по эмпирической формуле

$$R = 0.32E^{3/2} \to E_9 = \approx 11.28 \pm 0.18$$
 (3)

2.2 Ионизационная камера

1. Включив питание установки, измерим при атмосферном давлении $P_a=745$ Торр (измеренном барометром) ток $I_a=922$ пА. Температура T=295 К. После этого откачаем воздух из камеры до давления порядка 10 Торр и снимем зависимость тока от давления.

2. Погрешность давления оценим как цену деления — $\sigma_P = 5$ Торр. Результаты измерения занесем в таблицу и построим график.

I, pA	Р, торр	I, pA	Р, торр
8	15	637	395
34	35	665	410
65	55	698	425
100	80	737	445
122	95	782	465
152	115	821	485
181	135	864	505
213	155	897	525
245	175	940	550
279	195	958	570
317	220	967	595
346	235	966	615
378	255	964	630
414	275	961	645
449	295	951	660
484	315	953	675
522	335	949	695
559	355	946	710
593	375	940	725
609	380	932	745

Рис. 6: Зависимость силы тока от давления в камере

3. Построим две прямых, соответствующих линейным участкам графика. Результаты фита сведем в таблицу:

Результаты приближения вида y = ax + b занесем в таблицу:

	a	b
$x \in [15; 570]$	1.76 ± 0.02	-53.4 ± 6.4
$x \in [595; 745]$	-0.231 ± 0.019	1107 ± 12

4. Их пересечение дает нам значение

$$P_0 = \frac{b_2 - b_1}{a_1 - a_2} \approx (582 \pm 85) \text{ Topp}$$
 (4)

Работа 5.4.1. 3 B B B O Д

Рис. 7: Зависимость тока от давления в ионизационной камере

Так как пробег $R_l = 5$ см задается размером камеры, приведем его к н.у.:

$$R_9 = R_l \frac{\rho}{\rho_0} = R_l \frac{P_0 T}{P T_0} \approx (3,81 \pm 0,56) \text{ cm} \rightarrow R_9' \approx (4.84 \pm 0.71) \cdot 10^{-3} \text{ r/cm}^2$$
 (5)

Энергию такой альфа-частицы можно оценить по эмпирической формуле

$$R = 0.32E^{3/2} \to E_9 = \left(\frac{R}{0.32}\right)^{2/3} \approx 5.21 \pm 0.77$$
 (6)

3 Вывод

В работе был измерен пробег альфа-частиц от ²³⁹Ри двумя способами :с помощью торцевого счетчика Гейгера и ионизационной камеры. По полученным данным была определена энергия альфа - частиц.

При работе с ионизационной камерой пробег и энергия получились близкими к ожидаемым (из таблиц при E=5 МэВ получаем R=3,29 см для воздуха). При работе со счетчиком Гейгера значения пробега и энергий выше табличных. Это можно объяснить тем, что часть энергии альфа-частиц тратится на прохождение слюдяной пластинки, прикрывающей счетчик, и пленки, закрывающей источник.

Если плотность бумаги равна 1, 2 г/см³, следовательно, лист бумаги толщины $l \ge R'/\rho = 36, 6$ мкм не пропустит альфа-частицы от ²³⁹Pu.