Лекція 9. Параметричні статистичні гіпотези

Потужністю критерію називають ймовірність попадання критерію в критичну область за умови, що вірна конкуруюча гіпотеза.

Потужність критерію перевірки основної гіпотези H_0 : $a=a_0$ про рівність генерального середнього a гіпотетичному значенню a_0 при відомому середньому квадратичному відхиленні σ знаходять залежно від вигляду альтернативної гіпотези.

При альтернативній гіпотезі H_{α} : $a > a_0$ для гіпотетичного значення генерального середнього $a = a_1 > a_0$ потужність правостороннього критерію

$$1 - \beta = \frac{1}{2} - \Phi(u_{\kappa p} - \lambda),$$

де $u_{\kappa p}$ знаходять з рівності $\Phi(u_{\kappa p}) = \frac{1}{2} - \alpha$, $\alpha = \frac{(a_1 - a_0)\sqrt{n}}{\sigma}$. При різних значеннях a_1 функція потужності одностороннього критерію, якщо позначити через $\pi = 1 - \beta$, то

$$\pi_1(a_1) = \frac{1}{2} - \Phi(u_{\kappa p} - \lambda)$$

При альтернативній гіпотезі $H_{\alpha} = a \neq a_0$ для гіпотетичного значення генерального середнього $a = a_1$ потужність двостороннього критерію

$$1 - \beta = 1 - \left[\Phi\left(u_{\kappa p} - \lambda\right) + \Phi\left(u_{\kappa p} + \lambda\right)\right],$$

де $u_{\kappa p}$ знаходять з рівності $\Phi(u_{\kappa p}) = \frac{1-\alpha}{2}$, $\lambda = \frac{(a_1-a_0)\sqrt{n}}{\sigma}$. При різних значеннях a_1 функція потужності одностороннього критерію

$$\pi_2(a_1) = 1 - \left[\Phi(u_{\kappa p} - \lambda) + \Phi(u_{\kappa p} + \lambda)\right].$$

9.1. Критерій для перевірки гіпотези про ймовірність події

Нехай проведене n незалежних випробувань (n - досить велике число), в кожному з яких деяка подія A з'являється з однією і тією ж, але невідомою ймовірністю p, і знайдена відносна частота $\frac{m}{n}$ появи події A в цій серії випробувань. Перевіримо при заданому рівні значущості α нульову гіпотезу H_0 , що полягає в тому, що ймовірність р дорівнює деякому значенню p_0 .

Приймемо як статистичний критерій випадкову величину

$$Z = \frac{\left(\frac{m}{n} - p_0\right) \cdot \sqrt{n}}{\sqrt{p_0 q_0}}$$
, де $q_0 = 1 - p_0$,

що має нормальний розподіл з параметрами M(Z) = 0, $\sigma(Z) = 1$ (тобто нормовану).

Критична область будується залежно від виду конкуруючої гіпотези.

1. Якщо H_0 : $p=p_0$, а H_1 : $p\neq p_0$, то критичну область треба побудувати так, щоб ймовірність попадання критерію в цю область дорівнювала заданому рівню значущості α .

При цьому найбільша потужність критерію досягається тоді, коли критична область складається з двох інтервалів, ймовірність попадання в кожен з яких рівна $\frac{\alpha}{2}$. Оскільки Z симетрична відносно осі Oу, ймовірність її попадання в інтервали $(-\infty;0)$ і $(0;+\infty)$ рівна 0,5, отже, критична область теж має бути симетрична відносно Oу. Тому $z_{\kappa p}$ визначається по таблиці значень функції Лапласа з умови $\Phi(z_{\kappa p}) = \frac{1-\alpha}{2}$, а критична область має вигляд $(-\infty;-z_{\kappa p}) \cup (z_{\kappa p};+\infty)$.

Зауваження. Передбачається, що використовується таблиця значень функції Лапласа, заданої у виді $\Phi(x) = \int\limits_0^x e^{-\frac{t^2}{2}} dt$, де нижня границя

інтегрування дорівнює 0, а не $-\infty$. Функція Лапласа, задана таким чином, є непарною, а її значення на 0,5 менше, ніж значення стандартної функції $\Phi(x)$.

Далі треба вичислити спостережуване значення критерію:

$$Z_{cnocm} = \frac{\left(\frac{m}{n} - p_0\right) \cdot \sqrt{n}}{\sqrt{p_0 q_0}}$$

Якщо $|Z_{cnocm}| < z_{\kappa p}$, то нульова гіпотеза приймається.

Якщо $|Z_{cnocm}| > z_{\kappa p}$, то нульова гіпотеза відхиляється.

2. Якщо конкуруюча гіпотеза $H_1: p > p_0$, то критична область визначається нерівністю $Z > z_{\kappa p}$, тобто є правобічною, причому $p\left(Z>z_{\kappa p}\right)=\alpha$. Тоді $p\left(0< Z< z_{\kappa p}\right)=\frac{1}{2}-\alpha=\frac{1-2\alpha}{2}$. Отже, $z_{\kappa p}$ можна знайти по таблиці значень функції Лапласа (додаток 2) за умови, що $\Phi\left(z_{\kappa p}\right)=\frac{1-2\alpha}{2}$. Вичислимо спостережуване значення критерію по вказаній вище формулі.

Якщо $Z_{cnocm} < z_{\kappa p}$, то нульова гіпотеза приймається.

Якщо $Z_{cnocm} > z_{\kappa p}$, то нульова гіпотеза відхиляється.

3. Для конкуруючої гіпотези H_1 : $p < p_0$ критична область є лівобічною і задається нерівністю $Z < -z_{\kappa p}$, де $z_{\kappa p}$ обчислюється так само, як у попередньому випадку.

Якщо $Z_{cnocm} > -z_{\kappa p}$, то нульова гіпотеза приймається.

Якщо $Z_{cnocm} < -z_{\kappa p}$, то нульова гіпотеза відхиляється.

9.2. Перевірка правильності нульової гіпотези про значення генеральної середньої (про математичне сподівання)

Нехай генеральна сукупність X має нормальний розподіл, і необхідно перевірити припущення про те, що її математичне сподівання дорівнює деякому числу a_0 .

Розглянемо два випадки.

1) Відома дисперсія σ_{Γ}^{2} генеральної сукупності.

Тоді по вибірці об'єму n знайдемо вибіркове середнє \overline{x}_B і перевіримо нульову гіпотезу $H_0: M(X) = a_0$.

Враховуючи, що вибіркове середнє \overline{X}_{Γ} є незміщеною оцінкою M(X), тобто $M(\overline{X}_{\Gamma}) = M(X)$, можна записати нульову гіпотезу так: $M(\overline{X}_{\Gamma}) = a_0$. Для її перевірки виберемо критерій

$$U = \frac{\overline{X}_{\Gamma} - a_0}{\sigma(\overline{X}_{\Gamma})} = \frac{\overline{X}_{\Gamma} - a_0}{\frac{\sigma_{\Gamma}}{\sqrt{n}}} = \frac{\sqrt{n}(\overline{X}_{\Gamma} - a_0)}{\sigma_{\Gamma}}$$

Це випадкова величина, що має нормальний розподіл, причому, якщо нульова гіпотеза справедлива, то M(U) = 0, $\sigma(U) = 1$.

Виберемо критичну область залежно від виду конкуруючої гіпотези :

При розв'язуванні такого класу задач можливий один із трьох випадків:

- якщо
$$H_1$$
 : $M\left(\bar{X}_{\varGamma}\right)\neq a_0$, то $u_{\kappa p}$ визначається з умови: $\Phi\left(u_{kp}\right)=\frac{1-\alpha}{2}$,

критична область двобічна, $U_{cnocm}=\frac{(\overline{x}_B-a_0)\sqrt{n}}{\sigma_B}$, і якщо $|U_{cnocm}|< u_{kp}$, то нульова гіпотеза приймається; якщо $|U_{cnocm}|> u_{kp}$, то нульова гіпотеза відхиляється.

- якщо $H_1:M\left(\overline{X}_{\varGamma}\right)>a_0$, то $u_{\kappa p}$ визначається з умови: $\Phi\left(u_{kp}\right)=\frac{1-2\alpha}{2}$, критична область правобічна, і якщо $U_{cnocm}>u_{kp}$, то нульова гіпотеза відхиляється.

- якщо H_1 : $M\left(\bar{X}_{\varGamma}\right)$ < a_0 , то $u_{\kappa p}$ визначається з умови: $\Phi\left(u_{kp}\right) = \frac{1-2\alpha}{2}$, критична область лівобічна, і якщо U_{cnocm} > $-u_{kp}$, то нульова гіпотеза приймається.

2. У випадку, коли значення σ_{Γ} є невідомим, В цьому випадку виберемо в якості критерію випадкову величину

$$T = \frac{\left(\overline{X}_{\Gamma} - a_0\right)\sqrt{n}}{S},$$

де S - виправлене середнє квадратичне відхилення. Така випадкова величина має розподіл Стьюдента з k=n-1 ступенями свободи. Розглянемо ті ж, що і у попередньому випадку, конкуруючі гіпотези і критичні області, що відповідають їм. Заздалегідь вичислимо спостережуване значення критерію:

$$T_{cnocm} = \frac{\overline{x}_B - a_0}{\frac{S}{\sqrt{n}}}$$

- якщо $H_1: M\left(\bar{X}_{\varGamma}\right) \neq a_0$, то $t_{\kappa p}$. - двобічна критична точка та знаходиться по таблиці критичних точок розподілу Стьюдента по відомих α і k=n-1.

Якщо $\left|T_{cnocm}\right| < t_{\kappa p.}$, то нульова гіпотеза приймається.

Якщо $|T_{cnocm}| > t_{\kappa p.}$, то нульова гіпотеза відхиляється.

- якщо $H_1: M\left(\overline{X}_{\varGamma}\right) > a_0$, то по відповідній таблиці знаходять $t_{\kappa p.}(\alpha,k)$ критичну точку правобічної критичної області. Нульова гіпотеза приймається, якщо в $T_{cnocm} < t_{kp}$, інакше відхиляють.
- якщо $H_1:M\left(\overline{X}_{\varGamma}\right)< a_0$, критична область є лівобічною, і нульова гіпотеза приймається за умови $T_{cnocm}>-t_{kp}$. Якщо $T_{cnocm}<-t_{kp}$, то нульову гіпотезу відхиляють.

<u>Зауваження:</u> При великих обсягах вибірки (n>40) статистичний критерій $z=\frac{\overline{x}_B-a}{\frac{S}{\sqrt{n}}}$, що має закон розподілу Стьюдента з k=n-1 ступенями

свободи, наближається асимптотично до нормованого нормального закону N(0;1). У цьому разі критичні точки визначаються з умов $\Phi(u_{\kappa p})$.

Приклад. Проведено 10 незалежних експериментів над випадковою величиною X, що має нормальний закон розподілу з невідомими значеннями a, σ . Наслідки експериментів подано у вигляді статистичного ряду:

x_i	2,5	2	-2,3	1,9	-2,1	2,4	2,3	-2,5	1,5	-1,7
n_i	1	1	1	1	1	1	1	1	1	1

При рівні значущості $\alpha = 0,001$ перевірити правильність нульової гіпотези, $H_0: a = 0,9$ при альтернативній гіпотезі $H_\alpha: a < 0,9$.

Розв'язання: Запишемо статистичний ряд у вигляді статистичного розподілу й обчислимо \bar{x}_B, S :

x_i	-2,5	-2,3	-2,1	-1,7	1,5	1,9	2	2,3	2,4	2,5
n_i	1	1	1	1	1	1	1	1	1	1

$$\overline{x}_B = \frac{\sum x_i}{n} = \frac{-2,5 - 2,3 - 2,1 - 1,7 + 1,5 + 1,9 + 2 + 2,3 + 2,4 + 2,5}{10} = 0,4.$$

$$D_B = \frac{\sum x_i^2}{n} - \overline{x}_B^2 = 4,6 - 0,4^2 = 4,44.$$

$$S^2 = \frac{n}{n-1}D_B = \frac{10}{9} \cdot 4,44 = 4,933.$$

$$S = \sqrt{4,933} \approx 2,22$$
.

При альтернативній гіпотезі H_{α} : a < 0,9 будується лівобічна критична область. Для цього необхідно знайти критичну точку:

$$t_{kp}(\alpha=0.001; k=n-1=10-1=9)=4.78.$$

Оскільки щільність ймовірностей для розподілу Стьюдента є парною, то $t_{kp} = -4,78 \, .$

Обчислимо спостережуване значення критерію:

$$T_{cnocm} = \frac{\overline{x}_B - a}{\frac{S}{\sqrt{n}}} = \frac{0.4 - 0.9}{\frac{2.22}{\sqrt{10}}} = -0.712.$$

Висновок. Оскільки $T_{cnocm} \in [-4,78;\infty[$, то немає підстав для відхилення нульової гіпотези $H_0: a=9$ мм. Отже, нульова гіпотеза приймається.

Приклад Із нормальної генеральної сукупності з відомим середнім квадратичним відхиленням $\sigma_{\Gamma} = 4,8$ отримано вибірку об'єму n = 144, за якою знайдено вибіркове середнє $\overline{x}_B = 16$. Потрібно при рівні значущості $\alpha = 0,05$ перевірити нульову гіпотезу $H_0: a = 15$ при конкуруючій гіпотезі:

- a) H_{α} : $a \neq 15$.
- 6) $H_{\alpha}: a > 15$.
- B) $H_{\alpha}: a < 15$.

Крім того, необхідно знайти потужність правостороннього та двохстороннього критеріїв.

Розв'язання. Обчислимо спочатку спостережуване значення критерію:

$$U_{cnocm} = \frac{\overline{x}_B - a}{\frac{\sigma_{\Gamma}}{\sqrt{n}}} = \frac{\left(\overline{x}_B - a\right)\sqrt{n}}{\sigma_{\Gamma}} = \frac{\left(16 - 15\right)\sqrt{144}}{4,8} = 2,5.$$

а) Знайдемо двобічну критичну точку з рівності $\Phi\Big(u_{\kappa p}\Big) = \frac{1-\alpha}{2} = \frac{1-0.05}{2} = 0.475 \, ; \, u_{\kappa p} = \pm 1.96 \, .$

Оскільки $|U_{cnocm}| > u_{\kappa p}$, то основна гіпотеза відхиляється. Тобто, вибіркове та генеральні середні суттєво відрізняються.

б) Знайдемо критичну точку з рівності: $\Phi \Big(u_{\kappa p} \Big) = \frac{1-2\alpha}{2} = \frac{1}{2} - \alpha = \frac{1}{2} - 0,05 = 0,45 \,. \quad \text{За} \quad \text{таблицею} \quad \text{функції} \quad \text{Лапласа}$ визначимо правобічну критичну точку: $u_{\kappa p} = 1,64 \,.$

Оскільки $U_{cnocm} > u_{\kappa p}$, то основна гіпотеза відхиляється. Тобто, вибіркове та генеральні середні суттєво відрізняються.

в) Критична точка буде такою ж, як і в пункті б), але з протилежним знаком (лівобічна): $u_{\kappa p} = -1,64$.

Оскільки $U_{cnocm} > u_{\kappa p}$, то немає підстав відхиляти нульову гіпотезу. Тобто вибіркове та гіпотетичне генеральне середні несуттєво відрізняються.

Тепер знайдемо потужності правостороннього та двохстороннього критеріїв. Нагадаємо, що критичні точки у цих випадках різні та дорівнюють 1,64 і 1,96 відповідно.

Знайдемо параметр λ , який входить в обидва рівняння для визначення потужності критеріїв:

$$\lambda = \frac{(\bar{x}_B - a)\sqrt{n}}{\sigma_{\Gamma}} = \frac{(16 - 15)\sqrt{144}}{4.8} = 2.5.$$

Отже, потужності відповідно правостороннього та двостороннього критеріїв наступні:

- потужність для правостороннього критерію:

$$1 - \beta = \pi_1^{npasocm} (16) = \frac{1}{2} - \Phi(u_{\kappa p} - \lambda) = \frac{1}{2} - \Phi(1, 64 - 2, 5) =$$
$$= \frac{1}{2} + \Phi(0, 86) = 0, 5 + 0, 3051 = 0, 8051.$$

- потужність для двостороннього критерію:

$$1 - \beta = \pi_1^{\partial socm} (16) = 1 - \left[\Phi \left(u_{\kappa p} - \lambda \right) + \Phi \left(u_{\kappa p} + \lambda \right) \right] =$$

$$= \frac{1}{2} - \left[\Phi \left(1,96 - 2,5 \right) + \Phi \left(1,64 + 2,5 \right) \right] =$$

$$= 1 - \left[-\Phi \left(0,54 \right) + \Phi \left(4,14 \right) \right] = 1 + 0,2054 - 0,5 = 0,7054.$$

Тобто ймовірності того, що нульова гіпотеза буде відхилена, якщо правильною є конкуруюча гіпотеза, дорівнюють 0,8051 і 0,7054 відповідно для правостороннього та двостороннього критеріїв.

9.3. Перевірка рівності виправленої вибіркової дисперсії генеральної сукупності

Нехай з нормальної генеральної сукупності отримано вибірку об'єму n, для якої знайдено виправлену вибіркову дисперсію S^2 .

1. Для того, щоб при заданому рівні значущості α перевірити нульову гіпотезу $H_0:\sigma^2=\sigma_0^2$ про рівність невідомої генеральної дисперсії σ^2 гіпотетичному (прогнозованому) значенню σ_0^2 при конкуруючій гіпотезі $H_\alpha:\sigma^2>\sigma_0^2$, потрібно обчислити спостережуване значення критерію

$$\chi_{cnocm}^2 = \frac{(n-1)S^2}{\sigma_0^2},$$

і за таблицею критичних точок розподілу χ^2 при заданому рівні значущості α і кількості ступенів вільності k=n-1 знайти критичну точку $\chi^2_{\kappa p}(\alpha;k)$.

Якщо $\chi^2_{cnocm} < \chi^2_{\kappa p}$, то немає підстав відхиляти нульову гіпотезу. Якщо $\chi^2_{cnocm} > \chi^2_{\kappa p}$ – нульову гіпотезу відхиляють.

2. При конкуруючій гіпотезі $H_{\alpha}: \sigma^2 \neq \sigma_0^2$ знаходять ліву $\chi^2_{_{{\it Л}i{\it B}}\; \kappa p} \left(1-\frac{\alpha}{2};k\right)$ і праву $\chi^2_{_{{\it n}pas}\; \kappa p} \left(\frac{\alpha}{2};k\right)$ критичні точки.

Якщо $\chi^2_{\text{лів }\kappa p} < \chi^2_{\text{спост}} < \chi^2_{\text{прав }\kappa p}$, то немає підстав відхиляти нульову гіпотезу.

Якщо $\chi^2_{cnocm} < \chi^2_{лів\ \kappa p}$ або $\chi^2_{cnocm} > \chi^2_{npab\ \kappa p}$ – нульову гіпотезу відхиляють.

3. При конкуруючій гіпотезі H_{α} : $\sigma^2 < \sigma_0^2$ знаходять критичну точку $\chi^2_{\kappa p} \left(1 - \alpha; k \right)$.

Якщо $\chi^2_{cnocm} > \chi^2_{\kappa p}$, то немає підстав відхиляти нульову гіпотезу. Якщо $\chi^2_{cnocm} < \chi^2_{\kappa p}$ – нульову гіпотезу відхиляють.