

L1. Tc. Ing. Inform., Academic year 2023 – 2024

## ANALYSIS I, TUTORIAL 3/ Real-valued Function with a real variable Differentiability

Exercise 1. Provide the derivative of the following functions and exhibit their domain.

$$f(x) = \frac{1}{\sqrt[3]{x^2}} - \frac{1}{\sqrt{x^3}}, \quad g(x) = \sin(\cos(3x)), \quad h(x) = 2^{\ln(x)} + 3^x.$$

Exercise 2. Provide the n-th derivative of the following functions

$$f(x) = e^{2x}$$
,  $g(x) = \frac{1}{1+x}$ ,  $h(x) = \sin(x)$ .

**Exercise 3.** Let f be a real-valued function with a real variable defined by

$$\forall x \in \mathbb{R}: \quad f(x) = \frac{x}{1 + |x|}.$$

- Provide the domain, the parity and the derivative of f.
- $\bullet$  Provide the limit of f at its domain's boundary.
- Find the largest sets  $\mathcal{A}, \mathcal{B} \subset \mathbb{R}$  such as the maps g defined as

$$g: \mathcal{A} \longrightarrow \mathcal{B}$$
  
 $x \longmapsto g(x) = f(x),$ 

be a bijective one; in this case, exhibit the inverse of g.

## Exercise 4.

- Show that for any  $x \in [-1, +1]$  we have  $\arcsin(x) + \arccos(x) = \pi/2$ .
- Show that for any  $x \in [0, +1]$  we have  $\arcsin(x) + \arcsin\left(\sqrt{1 x^2}\right) = \pi/2$ .

**Exercise 5.** [The inverse of the hyperbolic sinus] Let f be the function defined over  $\mathbb{R}$  with value in  $\mathbb{R}$  and satisfies

$$f(x) = \text{sh}(x) = \frac{e^x - e^{-x}}{2}.$$

Show that f has an inverse, denoted it arcsh, and provide the derivative of  $f^{-1}$ .

**Exercise 6.** [The inverse of the hyperbolic consinus] Let f be the function defined over  $\mathbb{R}$  with value in  $\mathbb{R}_+^*$  and satisfies

$$f(x) = \text{sh}(x) = \frac{e^x + e^{-x}}{2}.$$

Show that f has an inverse, denoted it arcch, and provide the derivative of  $f^{-1}$ .

**Exercise 7.** [The inverse of the hyperbolic tangent] Let f be the function defined over  $\mathbb{R}$  with value in ]-1,1[ and satisfies

$$f(x) = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

Show that f has an inverse, denoted it arctanh, and provide the derivative of  $f^{-1}$ .

Exercise 8. Study the differentiability of the following functions

$$f(x) = x|x|, \quad g(x) = \frac{1}{1+|x|}, \quad h(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

**Exercise 9.** Let  $a, b, c \in \mathbb{R}$ , we define the function f as

$$f(x) = \begin{cases} \sqrt{x} & if \quad x \in [0; 1], \\ ax^2 + bx + c & if \quad x > 1. \end{cases}$$

Find a, b, c so that the function f be differentiable over  $\mathbb{R}_+^*$ .

## Exercise 10.

- Show that the equation cos(x) x = 0 has a solution in [0, 1].
- Show that the equation  $x + e^x = 0$  has a unique solution in  $\mathbb{R}$ .
- Provide an example of function g from [0, 1[ to ]0, 1[ without fixed point.

**Exercise 11.** Let  $n \in \mathbb{N}^*$ , we defined the function  $\mathcal{L}_n$  over I = [0, 1] by

$$\forall x \in I : \quad \mathcal{L}_n(x) = x^n \sin(\pi x).$$

Show the existence of  $x_n \in ]0,1[$  such that  $\mathcal{L}'_n(x_n)=0$ , write  $\mathcal{L}_n(x)$  in terms of  $\mathcal{L}'_n(x)$ , and calculate the limit of  $\mathcal{L}_n(x_n)$  when n tends to  $+\infty$ .

**Exercise 12.** Let the function  $f(x) = \operatorname{Ln}(x)$  defined over  $\mathbb{R}_+^*$  with value in  $\mathbb{R}$ .

Show that

$$\forall x \in \mathbb{R}_+^*: \frac{1}{1+x} < f(x+1) - f(x) < \frac{1}{x}.$$

• Calculate the value of the following limits

$$\lim_{x \to +\infty} \sqrt{x} \left( \operatorname{Ln}(x+1) - \operatorname{Ln}(x) \right), \quad \lim_{x \to +\infty} \left( 1 + \frac{1}{x} \right)^{x}.$$

**Exercise 13.** Let the function f defined over  $\mathbb{R}$  with value in  $\mathbb{R}$  by

$$f(x) = \begin{cases} \frac{3-x^2}{2} & si \quad x < 1, \\ \frac{1}{x} & si \quad x \ge 1. \end{cases}$$

Show that f is continuous and differentiable on  $\mathbb{R}$  and there exists  $x_0 \in ]0, 2[$  such that

$$2f^{(1)}(x_0) = f(2) - f(0).$$

**Exercise 14.** Show that for ever  $x \in \mathbb{R}_+$  we have  $x \leq e^x$  and prove that

$$\forall \alpha \in \mathbb{R}_+, \quad \exists C_\alpha \in \mathbb{R}_+^*, \quad \exists K_\alpha \in \mathbb{R}_+^*, \quad \forall x \in \mathbb{R}_+ : \quad C_\alpha x^\alpha \leq e^x, \quad K_\alpha x^\alpha \geq \operatorname{Ln}(x).$$

Show that for any  $s \in \mathbb{R}_+^*$  we have

$$\lim_{x \to +\infty} \frac{e^x}{x^s} = +\infty, \quad \lim_{x \to +\infty} \frac{x^s}{\operatorname{Ln}(x)} = +\infty.$$

**Exercise 15.** Let n be an integer greater than or equal to two; we define the function  $f_n$  from  $\mathbb{R}$  to  $\mathbb{R}$  by

$$\forall x \in \mathbb{R}: f_n(x) = x^n + x^{n-1} + x^2 + x - 1.$$

- Show that  $f_n$  has a unique root noted  $u_n$  in  $\mathbb{R}_+^*$ .
- Show that  $u_n \in ]0, 2/3[$  for every  $n \in \mathbb{N}^*$ .
- Show that the sequence  $(u_n)_n$  is strictly increasing.
- Show that the sequence  $(u_n)_n$  converges and calculate its limit.