Universidad Central del Ecuador Facultad de Ingeniería y Ciencias Aplicadas Carrera de Ingeniería en Ciencias de la Computación

Criptografía y seguridad de la información

Algoritmos Criptográficos DES, DSA, SHA-1

Integrantes:

- Altamirano Ortiz Jonathan Danilo
- Flórez Rivera Yaniry Mabely
- Gualoto Tigrero Erika Paola
- Simbaña Pulupa Pablo Fernando

Semestre: 8 vo

Fecha: 18/Noviembre/2024

Quito-2024

DES:

El **Data Encryption Standard (DES)** es un algoritmo de cifrado simétrico desarrollado en la década de 1970. Originalmente adoptado como un estándar de cifrado por el gobierno de los Estados Unidos, DES utiliza una clave de 56 bits para realizar operaciones de cifrado y descifrado en bloques de 64 bits. Funciona mediante una serie de permutaciones y sustituciones a través de 16 rondas de procesamiento. Aunque fue un método popular, la longitud relativamente corta de su clave lo hizo vulnerable a ataques de fuerza bruta y fue reemplazada en 2001 por el Advanced Encryption Standard (AES) en aplicaciones de alta seguridad.

DSA:

El **Algoritmo de Firma Digital (DSA)** es un algoritmo de firma digital desarrollado en 1991 por el NIST para autenticar documentos digitales. Este algoritmo de criptografía asimétrica utiliza una clave privada para firmar el mensaje y una clave pública para verificar la firma, proporcionando integridad y autenticidad sin la necesidad de cifrar el mensaje completo. DSA es parte del estándar DSS (Digital Signature Standard) y sigue siendo usado en diversas aplicaciones donde la autenticidad es crítica, aunque se han desarrollado variantes más modernas como ECDSA (Elliptic Curve DSA).

SHA-1:

El **Secure Hash Algorithm 1 (SHA-1)** es un algoritmo de hash criptográfico desarrollado por la NSA en 1993. SHA-1 produce un resumen o "hash" de 160 bits a partir de una entrada de cualquier longitud. Inicialmente fue utilizado ampliamente para verificar la integridad de datos y autenticación de mensajes. Sin embargo, con el tiempo, se descubrieron debilidades en SHA-1 que permitían ataques de colisión, donde dos mensajes distintos pueden generar el mismo hash. Esto ha llevado a la mayoría de las organizaciones a migrar a algoritmos más seguros, como SHA-256 y SHA-3.

```
### disport java.io.10Exception;
### import java.io.10Exception;
### import java.nlo.file.Path;
### public class algoritmoSHA1 {

### public static void main(String[] args) throws Exception {

### Path filePath = Paths.get( [inst: 'data/palabres_10.txt');

### StringBuilder contentBuilder = new StringBuilder();

### long startTotal = System.nanoTime();

### // ### ### public static void main(String[] args) throws Exception {

### public static void main(String[] args) throws Exception {

### Path filePath = Paths.get( [inst: 'data/palabres_10.txt');

### StringBuilder contentBuilder = new StringBuilder();

### long startTotal = System.nanoTime();

### // ### public static void main(String[] args) throws Exception {

### public static void main(String[] args) throws Exception {

### Path filePath = Paths.get( [inst: 'data/palabres_10.txt');

### stringBuilder contentBuilder = new StringBuilder();

### long startTotal = System.nanoTime();

### long startTotal = System.nanoTime();

### ccessfulsec, 544 ms

### 21:17:16: Executing ':algoritmoSHA1.main() '...

> Task :compileJava

> Task
```

BIBLIOGRAFÍA:

- [1] Instituto Nacional de Estándares y Tecnología (NIST), "Estándar de hash seguro (SHS)", Publicación de SHS del NIST Departamento de Defensa de los Estados Unidos https://nvlp.norte.gramo/norte/FIP/NORTE.FIPS.180-4.pdf.
- [2] J. Kelsey y B. Schneier, "Segundas preimágenes en funciones hash de n bits para un trabajo mucho menor que 2^n", en Taller Internacional sobre Cifrado Rápido de Software.
- [3] Instituto Nacional de Estándares y Tecnología (NIST), "Estándar de firma digital (DSS)", Publicación DSS del NIST. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.
- [4] B. Schneier, Criptografía aplicada: protocolos, algoritmos y código fuente en C, 2.ª ed., Nueva York: Wiley, 1995, págs. 485-487.

ANEXOS:

• Tabla de resultados (T-1, T-2, T-3, T-4 y T-Total):

				T-E1 Lectura	T-E2 Clave	T-E3 Cifrado	T-E4			
	#palabras	#caracteres_entrada	#caracteres_salida	(ns)	(ns)	(ns)	Descifrado(ns)	T-Total(ns)	T-Total(ms)	T-Total(s)
DES	10	53	76	5647200	67333800	302900	296300	73580200	73,5802	0,0735802
	100	608	832	5631400	63725700	527400	445200	70329700	70,3297	0,0703297
	1000	6088	8248	7579900	62363800	1269900	626300	71839900	71,8399	0,0718399
	10000	62035	62035	20813600	75882000	5304400	4795800	106795800	106,7958	0,1067958
	100000	618748	836184	70802400	69743600	21015400	20923100	182484500	182,4845	0,1824845
	1000000	6185049	8359436	964034600	445375700	352053800	316569500	2078033600	2078,0336	2,0780336
	10000000	61884084	83636044	8423898700	491995800	2123690900	4581400500	15620985900	15620,9859	15,6209859
DSA	10	53	64	28239701	28239701	48286346	0	104765748	104,765748	1,04766E-07
	100	608	64	18555927	18555927	7888080	0	44999934	44,999934	4,49999E-08
	1000	6088	64	31694505	31694505	11322939	0	74711949	74,711949	7,47119E-08
	10000	62035	64	22867846	22867846	9166593	0	54902285	54,902285	5,49023E-08
	100000	618748	64	60385856	60385856	7505760	0	128277472	128,277472	1,28277E-07
	1000000	6185049	64	217509419	217509419	6869952	0	441888790	441,88879	4,41889E-07
	10000000	61884084	64	927091452	927091452	14636449	0	1868819353	1868,819353	1,86882E-06
SHA-1	10	53	40	23026700	11383600	9191800	0	54568500	54,5685	5,45685E-08
	100	608	40	13251600	13232800	8594200	0	45897000	45,897	4,5897E-08
	1000	6088	40	14615600	13872200	62533500	0	112868000	112,868	1,12868E-07
	10000	62035	40	7464100	12891100	8557900	0	44811800	44,8118	4,48118E-08
	100000	618748	40	22726400	24001500	46476200	0	124019400	124,0194	1,24019E-07
	1000000	6185049	40	7930100	12278200	18425400	0	60043700	60,0437	6,00437E-08
	10000000	61884084	40	6037800	10022900	8806100	0	35641100	35,6411	3,56411E-08