Pandas

<u>Concepts</u>
Series
<u>DataFrame</u>
<u>Series</u>
<u>Creation</u>
From scalar
From dict
From numpy array
<u>Operations</u>
Element Access
<u>List Slice Access</u>
<u>Math</u>
<u>DataFrame</u>
Import and Export
<u>CSV</u>
Excel
Access by Column
By Column Name
By Column Index
As Attribute Name
Access by Row
Select Row as Object
Select Rows as Series
Select Non-contiguous Rows as Series
Select Individual Column from Row
Select Individual Columns from Rows
Select Rows by Condition
<u>Manipulation</u>
Rename Columns
Re-arrange Columns
Change Index
Delete Columns
<u>Delete Rows</u>
Delete Rows by Condition
Insert Columns

```
Insert Rows
Visualization
   Series Plot
   Bar Plot
   Histogram
   Box
   Scatter
   Heat Map (HexBin)
   Pie
   Area
Array Transformations
   Transpose
   Vertical Concatenation (normal)
   Horizontal Concatenation
   Split Horizontally
   Split Vertically
```

Concepts

Series

<u>Series</u> is a one-dimensional labeled array capable of holding any data type (integers, strings, floating point numbers, Python objects, etc.). The axis labels are collectively referred to as the **index**.

DataFrame

DataFrame is a 2-dimensional labeled data structure with columns of potentially different types. You can think of it like a spreadsheet or SQL table, or a dict of Series objects. It is generally the most commonly used pandas object. Like Series, DataFrame accepts many different kinds of input:

- Dict of 1D ndarrays, lists, dicts, or Series
- 2-D numpy.ndarray
- Structured or record ndarray
- A Series
- Another DataFrame

Along with the data, you can optionally pass index (row labels) and columns (column labels) arguments. If you pass an index and / or columns, you are guaranteeing the index and / or

columns of the resulting DataFrame. Thus, a dict of Series plus a specific index will discard all data not matching up to the passed index.

If axis labels are not passed, they will be constructed from the input data based on common sense rules.

Series

Creation

```
From scalar
pd.Series(3.14)
0 3.14
dtype: float64
pd.Series(3.14, index=['a','b','c'])
  3.14
b 3.14
c 3.14
dtype: float64
From dict
d = {'John':'Emma', 'Edward':'Molly', 'Alex':'Iris'}
pd.Series(d)
Alex
        Iris
Edward Molly
John
        Emma
dtype: object
From numpy array
arr=np.random.randn(5)
pd.Series(arr)
0 1.281289
1 1.235460
2 1.106290
3 0.863517
4 -0.430387
dtype: float64
arr=np.random.randn(5)
pd.Series(arr, index=['h', 'e', 'l', 'l', 'o'])
```

h 0.722203 e 0.104977 I 0.508504 I -0.998397 o 0.540913 dtype: float64

Operations

Element Access

Whatever you can do with a numpy array, you can do with a pandas array.

```
arr=np.random.randn(5)
srs=pd.Series(arr)
print(srs)
print(srs[1])
0 0.708338
1 -0.080908
2 -0.356362
3 -1.394590
4 -0.514729
dtype: float64
-0.0809084490034
```

List Slice Access

```
arr=np.random.randn(5)
srs=pd.Series(arr)
print(srs[2:])
2 -0.356362
3 -1.394590
4 -0.514729
dtype: float64
```

Math

```
arr=np.random.randn(5)
srs=pd.Series(arr)
print(srs ** 2)
0 0.557996
1 0.070252
2 0.637656
3 0.430528
```

4 2.447004 dtype: float64

NOTE: Notice how pow of 2 is applied to every element in the series.

DataFrame

Import and Export

CSV

data=pd.read_csv('Data/customers.csv') data

Customerl D	CustomerName	ContactNam e	Addres s	City	PostalCod e	Countr	
0	1	Alfreds Futterkiste	Maria Anders	Obere Str. 57	Berlin	12209	German y
1	2	Ana Trujillo Emparedados y helados	Ana Trujillo	Avda. de la Constituci n 2222	Mxico D.F.	5021	Mexico
2	3	Antonio Moreno Taquera	Antonio Moreno	Mataderos 2312	Mxico D.F.	5023	Mexico

data.to_csv('Data/out.csv', index=False)

Excel

data=pd.read_excel('Data/customers.xlsx') # add sheetname='..' arg to load a specific sheet Data

CustomerI D Custome

0	1	Alfreds Futterkiste	Maria Anders	Obere Str. 57	Berlin	12209	German y
1	2	Ana Trujillo Emparedados y helados	Ana Trujillo	Avda. de la Constituci n 2222	Mxico D.F.	5021	Mexico
2	3	Antonio Moreno Taquera	Antonio Moreno	Mataderos 2312	Mxico D.F.	5023	Mexico

data.to_excel('Data/out.xlsx', index=False)

Access by Column

By Column Name

data=pd.read_excel('Data/customers.xlsx')
data['CustomerName']

Alfreds Futterkiste
 Ana Trujillo Emparedados y helados
 Antonio Moreno Taquera
 Around the Horn
 Berglunds snabbkp
 Blauer See Delikatessen
 Blondel pre et fils

data=pd.read_csv('Data/customers.csv') data[['City', 'CustomerName']]

	City	CustomerName
0	Berlin	Alfreds Futterkiste
1	Mxico D.F.	Ana Trujillo Emparedados y helados
2	Mxico D.F.	Antonio Moreno Taquera

3	London	Around the Horn
4	Lule	Berglunds snabbkp

By Column Index

data=pd.read_csv('Data/customers.csv')
data.iloc[:, [1,5,2]] # MUST USE DOUBLE SQUARE BRACKETS WHEN ACCESSING MORE
THAN 1 INDEX

	CustomerName	PostalCod e	ContactName
0	Alfreds Futterkiste	12209	Maria Anders
1	Ana Trujillo Emparedados y helados	5021	Ana Trujillo
2	Antonio Moreno Taquera	5023	Antonio Moreno
3	Around the Horn	WA1 1DP	Thomas Hardy

As Attribute Name

data=pd.read_csv('Data/customers.csv')
data.CustomerName

Alfreds Futterkiste
 Ana Trujillo Emparedados y helados
 Antonio Moreno Taquera
 Around the Horn
 Berglunds snabbkp
 Blauer See Delikatessen
 Blondel pre et fils

Access by Row

Select Row as Object

data=pd.read_csv('Data/customers.csv') data.loc[0]

CustomerID 1

CustomerName Alfreds Futterkiste
ContactName Maria Anders
Address Obere Str. 57

City Berlin
PostalCode 12209
Country Germany

Name: 0, dtype: object

Select Rows as Series

data=pd.read_csv('Data/customers.csv') data.loc[0:4]

	Customerl D	CustomerName	ContactNam e	Address	City	PostalCod e	Country
0	1	Alfreds Futterkiste	Maria Anders	Obere Str. 57	Berlin	12209	German y
1	2	Ana Trujillo Emparedados y helados	Ana Trujillo	Avda. de la Constitucin 2222	Mxico D.F.	5021	Mexico
2	3	Antonio Moreno Taquera	Antonio Moreno	Mataderos 2312	Mxico D.F.	5023	Mexico
3	4	Around the Horn	Thomas Hardy	120 Hanover Sq.	Londo n	WA1 1DP	UK
4	5	Berglunds snabbkp	Christina Berglund	Berguvsvgen 8	Lule	S-958 22	Sweden

Select Non-contiguous Rows as Series

data=pd.read_csv('Data/customers.csv')
data.loc[[0,4]] # MUST BE DOUBLE SQUARE BRACKETS

	CustomerI D	CustomerName	ContactName	Address	City	PostalCod e	Country
--	----------------	--------------	-------------	---------	------	----------------	---------

0	1	Alfreds Futterkiste	Maria Anders	Obere Str. 57	Berli n	12209	German y
4	5	Berglunds snabbkp	Christina Berglund	Berguvsvgen 8	Lule	S-958 22	Sweden

Select Individual Column from Row

data=pd.read_csv('Data/customers.csv')
data.iloc[0,4] # first is row number, second is column
'Berlin'

data=pd.read_csv('Data/customers.csv')
data.iloc[0,'City'] # first is row number, second is column... NOTE THIS IS ILOC, NOT LOC
'Berlin'

Select Individual Columns from Rows

data=pd.read_csv('Data/customers.csv')
data.iloc[0:4,4] # first is row, second is column

- 0 Berlin
- 1 Mxico D.F.
- 2 Mxico D.F.
- 3 London

Name: City, dtype: object

data=pd.read_csv('Data/customers.csv')
data.iloc[0:4,4:6] # first is row, second is column

	City	PostalCod e
0	Berlin	12209
1	Mxico D.F.	5021
2	Mxico D.F.	5023
3	London	WA1 1DP

data=pd.read_csv('Data/customers.csv') data.iloc[0:4][['City', 'PostalCode']]

	City	PostalCod e
0	Berlin	12209
1	Mxico D.F.	5021
2	Mxico D.F.	5023
3	London	WA1 1DP

data=pd.read_csv('Data/customers.csv')
data.loc[0:4, 'CustomerName':'City'] # first is row, second is column NOTE THIS IS LOC NOT ILOC

	CustomerName	ContactName	Address	City
0	Alfreds Futterkiste	Maria Anders	Obere Str. 57	Berlin
1	Ana Trujillo Emparedados y helados	Ana Trujillo	Avda. de la Constitucin 2222	Mxico D.F.
2	Antonio Moreno Taquera	Antonio Moreno	Mataderos 2312	Mxico D.F.
3	Around the Horn	Thomas Hardy	120 Hanover Sq.	London
4	Berglunds snabbkp	Christina Berglund	Berguvsvgen 8	Lule

Select Rows by Condition

data=pd.read_csv('Data/customers.csv')
data.loc[data.Country == 'Germany']

	Customerl D	CustomerName	ContactNam e	Address	City	PostalCod e	Country
0	1	Alfreds Futterkiste	Maria Anders	Obere Str. 57	Berlin	12209	German y
5	6	Blauer See Delikatessen	Hanna Moos	Forsterstr. 57	Mannhei m	68306	German y
1 6	17	Drachenblut Delikatessend	Sven Ottlieb	Walserweg 21	Aachen	52066	German y
2 4	25	Frankenversand	Peter Franken	Berliner Platz 43	Mnchen	80805	German y

data=pd.read_csv('Data/customers.csv')
data.loc[data.Country.isin(['Germany', 'Mexico'])]

	Customerl D	CustomerName	ContactNam e	Address	City	PostalCod e	Country
0	1	Alfreds Futterkiste	Maria Anders	Obere Str. 57	Berlin	12209	German y
1	2	Ana Trujillo Emparedados y helados	Ana Trujillo	Avda. de la Constitucin 2222	Mxico D.F.	5021	Mexico
2	3	Antonio Moreno Taquera	Antonio Moreno	Mataderos 2312	Mxico D.F.	5023	Mexico
5	6	Blauer See Delikatessen	Hanna Moos	Forsterstr. 57	Mannhei m	68306	German y

Manipulation

Rename Columns

data=pd.read_csv('Data/customers.csv')
data=data.rename(columns={'ContactName': 'SalesPerson'})

data

	Customerl D	CustomerName	SalesPerso n	Address	City	PostalCod e	Country
0	1	Alfreds Futterkiste	Maria Anders	Obere Str. 57	Berlin	12209	German y
1	2	Ana Trujillo Emparedados y helados	Ana Trujillo	Avda. de la Constitucin 2222	Mxico D.F.	5021	Mexico
2	3	Antonio Moreno Taquera	Antonio Moreno	Mataderos 2312	Mxico D.F.	5023	Mexico
3	4	Around the Horn	Thomas Hardy	120 Hanover Sq.	Londo n	WA1 1DP	UK

Re-arrange Columns

data=pd.read_csv('Data/customers.csv')
cols=data.columns.tolist()
cols=cols[::-1] # reverse the list
data[cols] # or data.loc[:, cols]

	Country	PostalCod e	City	Address	ContactNam e	CustomerName	Customerl D
0	German y	12209	Berlin	Obere Str. 57	Maria Anders	Alfreds Futterkiste	1
1	Mexico	5021	Mxico D.F.	Avda. de la Constitucin 2222	Ana Trujillo	Ana Trujillo Emparedados y helados	2
2	Mexico	5023	Mxico D.F.	Mataderos 2312	Antonio Moreno	Antonio Moreno Taquera	3
3	UK	WA1 1DP	Londo n	120 Hanover Sq.	Thomas Hardy	Around the Horn	4

Change Index

data=pd.read_csv('Data/customers.csv')
data=data.set_index('CustomerID', verify_integrity=True)
data

NOTE: Notice how the original index has been abandoned... CustomerID can be used as the index now. You can also set this to a non-int column (e.g. CustomerName).

NOTE: Index should be of unique values. If it isn't unique, you may get back multiple rows when you access a single index. This is wrong because people usually associate an index with a single value, not multiple values. If you want duplicates, set verify_integrity=False.

	CustomerName	ContactNam e	Address	City	PostalCod e	Country
Customerl D						
1	Alfreds Futterkiste	Maria Anders	Obere Str. 57	Berlin	12209	German y
2	Ana Trujillo Emparedados y helados	Ana Trujillo	Avda. de la Constitucin 2222	Mxico D.F.	5021	Mexico
3	Antonio Moreno Taquera	Antonio Moreno	Mataderos 2312	Mxico D.F.	5023	Mexico
4	Around the Horn	Thomas Hardy	120 Hanover Sq.	Londo n	WA1 1DP	UK

Delete Columns

data=pd.read_csv('Data/customers.csv')
data=data.drop('Address', 1) # The 1 here means you're dropping a row
data

	CustomerI D	CustomerName	ContactName	City	PostalCod e	Country
--	----------------	--------------	-------------	------	----------------	---------

0	1	Alfreds Futterkiste	Maria Anders	Berlin	12209	German y
1	2	Ana Trujillo Emparedados y helados	Ana Trujillo	Mxico D.F.	5021	Mexico
2	3	Antonio Moreno Taquera	Antonio Moreno	Mxico D.F.	5023	Mexico
3	4	Around the Horn	Thomas Hardy	London	WA1 1DP	UK
4	5	Berglunds snabbkp	Christina Berglund	Lule	S-958 22	Sweden

data=pd.read_csv('Data/customers.csv')
data=data.drop(['Address', 'Country', 'PostalCode'], 1)
data

	Customerl D	CustomerName	ContactName	City
0	1	Alfreds Futterkiste	Maria Anders	Berlin
1	2	Ana Trujillo Emparedados y helados	Ana Trujillo	Mxico D.F.
2	3	Antonio Moreno Taquera	Antonio Moreno	Mxico D.F.
3	4	Around the Horn	Thomas Hardy	London

Delete Rows

data=pd.read_csv('Data/customers.csv') data=data.drop(2, 0) # 0 means row data

NOTE: Notice how row 2 is gone

	Customerl D	CustomerName	ContactNam e	Address	City	PostalCod e	Country
0	1	Alfreds Futterkiste	Maria Anders	Obere Str. 57	Berlin	12209	German y
1	2	Ana Trujillo Emparedados y helados	Ana Trujillo	Avda. de la Constitucin 2222	Mxico D.F.	5021	Mexico
3	4	Around the Horn	Thomas Hardy	120 Hanover Sq.	Londo n	WA1 1DP	UK
4	5	Berglunds snabbkp	Christina Berglund	Berguvsvgen 8	Lule	S-958 22	Sweden

data=pd.read_csv('Data/customers.csv') data=data.drop([0,1,2,3,4], 0) # 0 means row data

Customerl D	CustomerName	ContactNam e	Address	City	PostalCod e	Countr	
5	6	Blauer See Delikatessen	Hanna Moos	Forsterstr	Mannheim	68306	German y
6	7	Blondel pre et fils	Frdrique Citeaux	24, place Klber	Strasbourg	67000	France
7	8	Blido Comidas preparadas	Martn Sommer	C/ Araquil, 67	Madrid	28023	Spain
8	9	Bon app'	Laurenc e Lebihans	12, rue des Bouchers	Marseille	13008	France

Delete Rows by Condition

data=pd.read_csv('Data/customers.csv') data=data[data.Country!='Germany']

data

	Customerl D	CustomerName	ContactNam e	Address	City	PostalCod e	Countr y
1	2	Ana Trujillo Emparedados y helados	Ana Trujillo	Avda. de la Constitucin 2222	Mxico D.F.	5021	Mexico
2	3	Antonio Moreno Taquera	Antonio Moreno	Mataderos 2312	Mxico D.F.	5023	Mexico
3	4	Around the Horn	Thomas Hardy	120 Hanover Sq.	Londo n	WA1 1DP	UK
4	5	Berglunds snabbkp	Christina Berglund	Berguvsvgen 8	Lule	S-958 22	Sweden

Insert Columns

data=pd.read_csv('Data/customers.csv')
data.insert(0, 'New column', data.City) # INPLACE -- DOES NOT RETURN NEW DATAFRAME
data

	New colum n	Customerl D	CustomerName	ContactNam e	Address	City	PostalCod e	Country
0	Berlin	1	Alfreds Futterkiste	Maria Anders	Obere Str. 57	Berlin	12209	German y
1	Mxico D.F.	2	Ana Trujillo Emparedados y helados	Ana Trujillo	Avda. de la Constituci n 2222	Mxico D.F.	5021	Mexico
2	Mxico D.F.	3	Antonio Moreno Taquera	Antonio Moreno	Mataderos 2312	Mxico D.F.	5023	Mexico
3	Londo n	4	Around the Horn	Thomas Hardy	120 Hanover Sq.	Londo n	WA1 1DP	UK

Insert Rows data=pd.read_csv('Data/customers.csv') # Create row as dict info={'CustomerID': 420, 'CustomerName': 'b', 'ContactName': 'c', 'Address': 'd', 'City': 'e', 'PostalCode': 'f', 'Country': 'g'} # Turn the dict into a DataFrame with a single row. # We'll be inserting at index 3 so give this row an index of 3. line=pd.DataFrame(info, index=[3]) # create at index=3 # Concatenate the original DataFrame with the new DataFrame data=pd.concat([data.iloc[:2], line, data.iloc[3:]]) # Display data

NOTE: Notice in the output how there are now 2 rows with index 3. To fix this, call data.reset_index(drop=True). It'll re-number the indexes from 0 onward.

	Address	City	ContactNam e	Country	Customerl D	CustomerName	PostalCod e
0	Obere Str. 57	Berlin	Maria Anders	German y	1	Alfreds Futterkiste	12209
1	Avda. de la Constitucin 2222	Mxico D.F.	Ana Trujillo	Mexico	2	Ana Trujillo Emparedados y helados	5021
3	d	е	С	g	420	b	f

3	120 Hanover Sq.	Londo n	Thomas Hardy	UK	4	Around the Horn	WA1 1DP
4	Berguvsvgen 8	Lule	Christina Berglund	Sweden	5	Berglunds snabbkp	S-958 22

Visualization

NOTE: The dataset being used here is apple financial data.

NOTE: Before doing any of this in jupyter notebook, you need to include matplotlib's magic jupyter notebook thing to display matplotlib plots...

import numpy as np import pandas as pd %matplotlib inline

Uncomment the following lines for prettier plots

import matplotlib

#

matplotlib.style.use('ggplot')

Series Plot

data=pd.read_csv('Data/aapl.csv')
data=data[::-1] # reverse rows so that rows are earliest to latest
data['Adj Close'].plot()

data=pd.read_csv('Data/aapl.csv')
data=data[::-1] # reverse rows so that rows are earliest to latest
data[['Close', 'Adj Close']].plot()

Bar Plot

NOTE: Never make a bar plot on more than 10 observations -- results will be useless.

data=pd.read_csv('Data/aapl.csv')
data=data[::-1] # reverse rows so that rows are earliest to latest
data=data[0:9]
data[['Close', 'Adj Close']].plot.bar()

Histogram

data=pd.read_csv('Data/aapl.csv')
data=data[::-1] # reverse rows so that rows are earliest to latest

data[['High', 'Low']].plot.hist()

NOTE: Notice how Low covers up high. You can handle this by either having these 2 as separate plots, setting alpha=0.5 in hist() for some transparency (although this still looks not good), or setting stacked=True in hist() (to get them to stack on top of each other instead of overlapping).

data=pd.read_csv('Data/aapl.csv')
data=data[::-1] # reverse rows so that rows are earliest to latest
data[['Low', 'High']].plot.hist(stacked=True)

Box

data=pd.read_csv('Data/aapl.csv')
data=data[::-1] # reverse rows so that rows are earliest to latest
data=data[:40]
data[['Low', 'High']].plot.box()

Scatter

```
data=pd.read_csv('Data/aapl.csv')
data=data[::-1] # reverse rows so that rows are earliest to latest
data=data[:40]
data[['Low', 'High']].plot.scatter(x='Low', y='High')
```

```
data=pd.read_csv('Data/aapl.csv')
data=data[::-1] # reverse rows so that rows are earliest to latest
data=data[:160]
data[['Low', 'High', 'Volume']].plot.scatter(x='Low', y='High', s=data.High-data.Low)
```

NOTE: s controls the size of the dot being plotted

Heat Map (HexBin)

data=pd.read_csv('Data/aapl.csv')

data=data[::-1] # reverse rows so that rows are earliest to latest

data=data[:160]

data[['Low', 'High']].plot.hexbin(x='Low', y='High', gridsize=25)

NOTE: This is showing you the concentration of observations at some point. The deeper the color, the more the area is concentrated with observations.

Pie

data=pd.read_csv('Data/aapl.csv')

data=data[::-1] # reverse rows so that rows are earliest to latest

data=data[:160]

data[['Low', 'High']].iloc[2].plot.pie()

data=pd.read_csv('Data/aapl.csv')
data=data[::-1] # reverse rows so that rows are earliest to latest
data=data[:3]
data=data.set_index('Date', verify_integrity=True)
data['Adj Close'].plot.pie()

Area

data=pd.read_csv('Data/aapl.csv')
data=data[::-1] # reverse rows so that rows are earliest to latest
data=data.set_index('Date', verify_integrity=True)
data[['Open', 'Adj Close']].plot.area()

Array Transformations

```
Transpose
import numpy as np
a=np.arange(28).reshape(4,7)
a.T # transpose
array([[ 0, 7, 14, 21],
   [1, 8, 15, 22],
   [2, 9, 16, 23],
   [3, 10, 17, 24],
   [4, 11, 18, 25],
   [5, 12, 19, 26],
    [6, 13, 20, 27]])
import numpy as np
a=np.arange(28).reshape(4,7)
a.ravel() # unravels multidimensional array to 1 dimensional array
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
    17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27])
import numpy as np
a=np.arange(28).reshape(4,7)
a.reshape(2,2,7) # new shape must contain same number of elements, e.g. 4*7=2*2*7
array([[[ 0, 1, 2, 3, 4, 5, 6],
    [7, 8, 9, 10, 11, 12, 13]],
```

```
[[14, 15, 16, 17, 18, 19, 20],
    [21, 22, 23, 24, 25, 26, 27]]])
Vertical Concatenation (normal)
import numpy as np
a=np.array([[1,2], [3,4]])
b=np.array([[5,6], [7,8]])
np.vstack((a,b))
array([[1, 2], [3, 4], [5, 6], [7, 8]])
Horizontal Concatenation
import numpy as np
a=np.array([[1,2], [3,4]])
b=np.array([[5,6], [7,8]])
np.hstack((a,b))
array([[1, 2, 5, 6], [3, 4, 7, 8]])
Split Horizontally
import numpy as np
a=np.array([[1,2], [3,4]])
b=np.array([[5,6], [7,8]])
h = np.hstack((a,b))
h_{split} = np.hsplit(h, 2)
print(h)
print(h_split)
[[1 2 5 6]
[3 4 7 8]]
[array([[1, 2], [3, 4]]), array([[5, 6], [7, 8]])]
Split Vertically
import numpy as np
a=np.array([[1,2], [3,4]])
b=np.array([[5,6], [7,8]])
v = np.vstack((a,b))
v_split = np.vsplit(v, 2)
print(v)
print(v_split)
[[1 2]
[3 4]
[5 6]
```

[7 8]] [array([[1, 2], [3, 4]]), array([[5, 6], [7, 8]])]