Characterization and complexity of Thin Strip Graphs

Abdeselam El-Haman Abdeselam¹ Department of Computer Science Universite Libre de Bruxelles aelhaman@gmail.com¹

Advisor: Jean Cardinal

May 22, 2018

ABSTRACT

Abstract

1 Graphs and disks

1.1 Graphs

A graph G is defined as G = (V, E), where V is the set of vertices and E the set of edges, where $E \subseteq \binom{V}{2}$. The vertices $v, w \in V$ such that $e = vw \in E$ links are called the *endpoints* of e.

Definition 1 An embedding of a graph G into a surface Σ is a mapping of G in Σ where the vertices correspond to distinct points and the edges correspond to simple arcs connecting the images of their endpoints. [4].

A graph G is planar if there is an embedding of this graph that does not have any crossing between the edges.

Definition 2 Let G = (V, E) and $S \subset V$, an induced subgraph is a graph H of G whose vertex set is S and its edge set $F = \{vw : v, w \in S, vw \in E\}$.

Definition 3 H is called a minor of G if H can be constructed by deleting edges and vertices, or contracting edges.

Figure 1: On the left, Hasse diagram of a poset of the power set of 2 elements ordered by inclusion. On the right, the comparability graph of this poset.

In graph theory, (forbidden graph characterization)...

Theorem 4 (Kuratowski) A graph G is planar if and only if it doesn't contain K_5 or $K_{3,3}$ as a minor or a induced subgraph.

1.2 Intersection graphs

Definition 5 The intersection graph of a collection ζ of objects is the graph (ζ, E) such that $c_1c_2 \in E \Leftrightarrow c_1 \cap c_2 \neq \emptyset$.

Definition 6 A partial order set is a binary relation \leq over a set A satisfying these axioms:

- $a \le a$ (reflexivity).
- if $a \le b$ and $b \le a$ then a = b (antisymmetry).
- if $a \le b$ and $b \le c$ then $a \le c$ (transitivity).

Definition 7 A partially ordered set or poset (S, \leq) where S a set and \leq a partial order on S.

Definition 8 A graph G is a comparibility graph if for each edge $\{u,v\} \in E$ there is a binary relation R such that $u \leq v$ or $v \leq u$. Equivalently, G is a comparability graph if it is the comparability graph of a poset. For example, the Hasse diagram (figure 1) is a comparability graph where the relation is inclusion.

1.2.1 Interval graphs

Definition of interval Graphs
Properties
Definition of MIXED interval graphs

Figure 2: Realization of a UDG (Unit Disk Graph).

1.3 Realizations

Definition 9 A graph G is said realizable if

The graph realizability problem is the problem that finds a realization of a given length l(e) for a graph G (this means that the edge e has to be represented by a straight line of length l(e) in \mathbb{R}^2).

A unit distance graph G is a graph that has a realization where 2 points u, v have $\operatorname{dist}(u, v) = 1$ if and only if their respective vertices are adjacent. This problem will be shown at chapter 2 to be $\exists \mathbb{R}$ -complete. If this realization doesn't have any crossing then G is a $matchstick\ graph$.

A unit disk graph G is a graph that has a realization where 2 points have $\operatorname{dist}(u,v) \leq 1$ if and only if their respective vertices are adjacent. Each point can be represented as the center of a disk of unit diameter and the edges can be represented as the intersection of 2 disks. This class of graphs is important for this thesis, as the Thin Strip Graphs are a sub-class of Unit Disk Graphs (section 4). Unit Disk Graph realizability is $\exists \mathbb{R}$ -complete. We will refer to the Unit Disk Graph class as UDG and an example of a realization can be found in the figure 2.

2 Complexity

Complexity theory has the objective to establish lower bounds on how efficient an algorithm can be for a given problem [9]. This approach let us have a reference point to establish the difficulty of a problem.

Definition 10 Let Σ be a finite alphabet, Σ^* every word derived from Σ , $L \subseteq \Sigma^*$ is a decision problem.

Definition 11 A decider for a decision problem A is an deterministic algorithm V where

$$A = \{w | Vaccepts \ w\}$$

A is polynomially decidable if it has a polynomial time decider [9].

Definition 12 A verifier for a decision problem A is an deterministic algorithm V where

$$A = \{w | Vaccepts \langle w, c \rangle \text{ for some string } c\}$$

A is polynomially verifiable if it has a polynomial time verifier [9].

2.1 P vs NP

Definition 13 A problem $L \in \mathcal{P}$ if L is polynomially decidable.

Definition 14 A problem $L \in \mathcal{NP}$ if L is polynomially verifiable. Thus, $\mathcal{P} \subseteq \mathcal{NP}$.

To prove a bound of complexity on an unknown problem L we have to find other problems with already known complexity and find equivalences between those two. This can be achieved through reductions.

Definition 15 A reduction of a problem L to a problem M is a mapping of an instance of L (I_L) to an isntance of M (I_M) such that I_L is true for the problem L if and only if I_M is true for the problem M. This is noted $L \leq M$ and $L \leq_P M$ if the reduction is done in polynomial time.

With this concept we can define new complexity classes. \mathcal{NP} -hard is the set of problems so that we can reduce every \mathcal{NP} problem to. The set of problems that are \mathcal{NP} -hard and \mathcal{NP} are called \mathcal{NP} -complete. This is generalized to every complexity class $(\mathcal{P}, \exists \mathbb{R}, RP, \text{etc...})$

Satisfiability problem The satisfiability problem (SAT) is to decide the satisfiability of a CNF formula ϕ . A CNF formula is a boolean formula that is a conjunction of multiple clauses c_k . A clause is a disjunction of multiple literals. A literal may be a variable or a negation of a variable.

Theorem 16 (Cook-Levin) SAT is \mathcal{NP} -complete.

2.2 $\exists \mathbb{R} \text{ complexity class}$

 $\exists \mathbb{R}$ is the class that describes the problems that can be reduced to the existential theory of the reals[1]. The existential theory of the reals is the problem of deciding if a sentence of this form is true:

$$(\exists X_1 \dots \exists X_n) : F(\exists X_1, \dots, \exists X_n)$$

where F is a quantifier-free formula in the reals. In other words, it is a conjuntion of clauses where each clause is a real polynomial inequality where each variable X_k is a real number. We can see that ETR is NP-hard because SAT can be reduced to it.

Proof. Let's take an instance of SAT ϕ_{SAT} with clauses c_k and variables x_k , we can construct an instance of ETR ϕ_{ETR} where we can construct variables in the domain $\{0,1\}$ with this equality, so for each variable X_k :

$$X_k - X_k^2 = 0$$

Each literal of each clause will be positive or negative depending if the literal is cancelled in ϕ_{SAT} :

$$x_k \to l = X_k$$
$$\neg x_k \to l = -X_k$$

Then for each clause we can have a polynomial that will sum the value of every literal in the clause must be greater that one, so that at least one literal is true:

$$\sum_{l \in c_k} l \ge 1$$

With this proof, it is easy to see that ϕ_{ETR} is valid if and only if ϕ_{SAT} is also valid. \square

This result can show us that $P \subseteq NP \subseteq \exists \mathbb{R}$.

2.2.1 Problems in $\exists \mathbb{R}$

In this section we will describe some problems that are $\exists \mathbb{R}$ -complete and will give an overview of the proof.

The art gallery problem Given a simple polygon P (without crossings between every side), we introduce *guards*. A guard g is a point such that every point of the polygon is watched by a guard. A point p is watched by a point q if the segment pq is contained in P. The subset G, being G the set of guards and $G \subseteq P$, is optimum if it has the minimal cardinality covering the whole polygon.

The art gallery problem is to decide, given a polygon P and a number of guards k, whether there exists a configuration of k guards in G guarding the whole polygon. The art gallery problem is $\exists \mathbb{R}$ -complete [2].

Proof idea First of all, we can see that the art gallery problem is in $\exists \mathbb{R}$ if we reduce this problem to ETR. If we have an instance (P, k) of the art gallery problem we can have a formula [3] like this:

$$\phi = \{\exists x_1 y_1, \dots x_k y_k \forall p_x p_y : \text{INSIDE-POLYGON}(p_x, p_y) \to \bigvee_{1 \le i \le k} \text{SEES}(x_i, y_i, p_x, p_y)\}$$

Where INSIDE-POLYGON returns 1 if $(p_x, p_y) \in P$ and SEES returns 1 if the segment $(x, y)(p_x, p_y) \in P$. ϕ is not a ETR formula, so we would like to construct a quantifier-free formula with the idea of ϕ . To achieve this, the main idea is to have a small set of points $Q \subseteq P$ such that if these points are watched, the whole polygon is watched. This subset Q is called the *witness set*. The only thing is now to create a polynomial for each point that ensures that the point is watched by a guard.

To finish the proof we have to prove that the art gallery problem is $\exists \mathbb{R}$ -hard. For this part an $\exists \mathbb{R}$ -complete problem has been deducted from ETR. For the problem ETR-INV we have a set of variables $\{x_1, \ldots, x_n\}$ and a set of equations of this form:

$$x = 1, \quad x + y = z, \quad x \cdot y = 1$$

and the problem decides if it exists a solution to this set of equations such that the value of each variable is real in $[\frac{1}{2}, 2]$.

A reduction of ETR-INV is found to the art gallery problem by constructing a polygon P and finding a number g for that polygon such that the instance of ETR-INT is true if and only if P is covered by at most g guards.

Unit Disk Graph recognition The Unit Disk Graph recognition is the problem that decides if a graph G has a realization ϕ as a Unit Disk Graph. Unit Disk Graph recognition is $\exists \mathbb{R}$ -complete.

Recognition of Unit Disk Graphs is $\exists \mathbb{R}$ -complete. (corollary of graph realizability problem)[7] Stretchability is $\exists \mathbb{R}$ -complete.

3 Geometry

The intersection of convex objects is a matter well studied for multiple subjects. In our case, it is interesting to know some properties about the intersection of disks, those being convex objects.

A set S is convex if:

$$\forall p, q \in S \ \forall \lambda \in [0, 1] : (1 - \lambda)p + \lambda q \in S$$

.

3.1 Stabbing

A *stabbing* is a point that traverses a set of intersecting objects. A lot of research has been done [8] on the minimal amount of stabbings to cover every object in a set. Stabbings can also be done with more complex structures than points, in that case we're talking about *coverings*.

Theorem 17 (Helly) Given a set Q of objects in \mathbb{R}^d , if for each subset of Q of size d+1 their intersection is non empty, then $\bigcap_{g\in Q} \neq \varnothing$. [6]

Koebe's planar \subseteq disk = Planar graph duality

4 Thin Strip Graphs

c-strip graphs are unit disk graphs such that the centers of the disks belong to $\{(x,y): -\infty < x < \infty, 0 < y \le c\}$. The class is denoted by SG(c). We have SG(0) = UIG and $SG(\infty) = UDG$. [5]

Definition 18 Thin strip graphs are defined as $TSG = \bigcap_{c>0} SG(c)$.

Remark 19 $SG(0) \neq TSG$. We can construct a $K_{1,3}$ such that we have 3 vertices with the coordinates (1,0), (0,0), (1,0) and a last one $(0,\varepsilon)$ with $\varepsilon > 0$ as seen in Figure 3.

It has been proven that MUIG \subseteq TSG.

Denote that there's not constant t such that SG(t) = TSG.

Unfettered unit interval graphs = UUIG

 $MUIG \subsetneq TSG \subsetneq UUIG$

 $UUIG \subseteq co$ -comparability graphs (to prove).

Proof Let's have a relation of non-increasing order \leq between the left endpoints of each interval v(l(v)). This relation will (nope, find another proof...).

4.1 Open questions about Thin Strip Graphs

In this section we state the problems that are being studied for the thesis.

Figure 3: A construction of $K_{1,3}$ with a disk realization, being this graph a TSG.

Forbidden subgraphs of Thin Strip Graphs We've proven that MUIG \subsetneq TSG \subsetneq UUIG. Knowing the

(Why F_k is a co-comparability unit disk graph?)

Complexity class of TSG recognition We've shown in section 2 that some intersection geometric problems are in $\exists \mathbb{R}$ (unit disk graph recognition problem or the stretchability problem) and we'd like to know if TSG recognition or even SG(c) recognition is in NP knowing that $TSG \subseteq UDG$.

References

- [1] Existential Theory of the Reals. In *Algorithms in Real Algebraic Geometry*, volume 10, pages 505–532. Springer Berlin Heidelberg.
- [2] Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The Art Gallery Problem is \$\exists \mathbb{R}\$-complete.
- [3] Alon Efrat and Sariel Har-Peled. Guarding galleries and terrains. 100(6):238–245.

- [4] Palash Goyal and Emilio Ferrara. Graph Embedding Techniques, Applications, and Performance: A Survey.
- [5] Takashi Hayashi, Akitoshi Kawamura, Yota Otachi, Hidehiro Shinohara, and Koichi Yamazaki. Thin Strip Graphs. 216:203–210.
- [6] E. Helly. ber Mengen konvexer Krper mit gemeinschaftlichen Punkten. 32:175–176. cited By 187.
- [7] Marcus Schaefer. Realizability of Graphs and Linkages. In Jnos Pach, editor, *Thirty Essays on Geometric Graph Theory*, pages 461–482. Springer New York.
- [8] L.M. Schlipf. Stabbing and Covering Geometric Objects in the Plane.
- [9] Michael Sipser. *Introduction to the Theory of Computation*. Course Technology, second edition.