

TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Verbrennungskraftmaschinen Prof. Dr. -Ing. Georg Wachtmeister

Titel der Arbeit

Masterarbeit

Verfasser: B.Sc. Max Mustermann

 $Matrikel-Nr.: \quad 00000000000$

Studienrichtung: Fahrzeug- und Motorentechnik

Betreuer: Dipl.-Ing. James Bond

Ausgabe am: 01. Januar 2015

Abgabe am: 01. Juli 2015

Aufgabenstellung

Masterarbeit/ SA/ BA Titel der Arbeit

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln. Der Kandidat verpflichtet sich, die Masterarbeit selbständig durchzuführen und die von ihm verwendeten wissenschaftlichen Hilfsmittel anzugeben. Der Lösungsweg und die Ergebnisse sind zu dokumentieren.

Die eingereichte Arbeit verbleibt als Prüfungsunterlage im Eigentum des Lehrstuhls und wird Dritten nicht zugänglich gemacht.

Bearbeitungszeitraum: 01. Januar 2015 – 01. J	uli 2015
München, den 28. Mai 2015	
DiplIng. James Bond	B.Sc. Max Mustermann

Inhaltsverzeichnis

BII	laver	Zeichnis	II
Та	belle	enverzeichnis	iii
No	men	klatur	iv
1	1.1	eitung Ausgangssituation und Motivation	
2	2.1 2.2 2.3	Formeln	3 4 4
3	Vers	suchsträger	6
Lit	eratu	urverzeichnis	7
An	hang	g A	8
An	hang	g В	9

Bildverzeichnis

2.1	Verlauf der Kolbengeschwindigkeit ($\lambda = 0.32, n = 1500 \frac{1}{\min}$)	•
2.2	Untersuchter Kolben mit Kolbenringen	4

Tabellenverzeichnis

2.1	Motor- und Betriebspunktdaten .			•		•		•	•			•	5

Nomenklatur

Lateinische Symbole

Symbol	Einheit	Bedeutung
A	m^2	Fläche
\tilde{a}	_	entdimensionierte Beschleunigung
a	$\frac{\mathrm{m}}{\mathrm{s}^2}$	Beschleunigung
C_{μ}	_	Empirischer Schließungskoeffizient
c_m	$\frac{\mathrm{m}}{\mathrm{s}}$	Mittlere Kolbengeschwindigkeit
C_H	_	Empirische Modellierungskonstante
c_p	$\frac{\mathrm{J}}{\mathrm{kg}\cdot\mathrm{K}}$	Spezifische Wärmekapazität bei konstantem Druck
c_v	$\frac{\mathrm{J}}{\mathrm{kg}\cdot\mathrm{K}}$	Spezifische Wärmekapazität bei konstantem Volumen
D_d	m	Empirischer Tropfen-/ Blasendurchmesser der dispersen Phase
\mathbf{f}	$\frac{N}{m^3}$	Vektor der Volumenkraft auf das Kontrollvolumen
\mathbf{H}_{kl}	$\frac{\mathrm{J}}{\mathrm{m}^3 \cdot \mathrm{s}}$	Energieaustausch zwischen den Phasen k und lüber den Rand ∂V
		des Kontrollvolumens V hinweg
$H_c, -H_d$	$\frac{\mathrm{J}}{\mathrm{s}}$	Enthalpieströme von der kontinuierlichen Phase c zur dispersen
		Phase d
h_k	$\frac{\mathrm{J}}{\mathrm{kg}}$	Spezifische Enthalpie der Phase k
k	_	k-Faktor
k_k	$\frac{\mathrm{m}^2}{\mathrm{s}^2}$	Turbulente kinetische Energie (TKE) der Phase k
l	m	(Pleuel-)Länge
\dot{m}	$\frac{\text{kg}}{\text{s}}$	Massenstrom
\mathbf{M}_{kl}	N	Impulsaustausch zwischen den Phasen k und lüber den Rand ∂V
		des Kontrollvolumens V hinweg
N	_	Anzahl der Einzelphasen
n	$\frac{1}{\min}$	Drehzahl
Nu	_	Nusseltzahl

Griechische Symbole

Symbol	Einheit	Bedeutung
α	$\frac{1}{K}$	Wärmeausdehnungskoeffizient
α_k	_	Volumenanteil der Phase k
Γ_{kl}	$\frac{\mathrm{kg}}{\mathrm{m}^3 \cdot \mathrm{s}}$	Massenaustausch zwischen den Phasen k und lüber den Rand ∂V
		des Kontrollvolumens V hinweg
ϵ_k	$\frac{\mathrm{m}^2}{\mathrm{s}^3}$	Dissipationsrate der Phase k
κ	_	Isentropenexponent
κ_c	$\frac{J}{s \cdot m \cdot K}$	Wärmeleitfähigkeit der kontinuierlichen Phase
λ	_	Schubstangenverhältnis
μ_k	$\mathrm{Pa}\cdot\mathrm{s}$	Dynamische Vikosität
μ_k^t	$\mathrm{Pa}\cdot\mathrm{s}$	Turbulente Viskosität
$ ho_k$	$\frac{\mathrm{kg}}{\mathrm{m}^3}$	Dichte der Phase k
$oldsymbol{ au}_k$	$\frac{\mathrm{N}}{\mathrm{m}^2}$	Schubspannungen der Phase k (Tensor)
φ	0	Kurbelwinkel (°KW)
Ψ	_	Durchflussfunktion
ψ	0	Winkel um die Kolbenhochachse
ω	$\frac{\text{rad}}{s}$	Winkelgeschwindigkeit

Konstanten

Symbol	Wert	Bedeutung
π	3.141593	Kreiszahl
R	$8.314472rac{\mathrm{J}}{\mathrm{mol}\cdot\mathrm{K}}$	Universelle Gaskonstante

${\bf Mathematische\ Symbole}$

Symbol Bedeutung

x Skalar

v Vektor, Matrix

 $\partial/\partial x_i$ Partielle Ableitung

 ∇ Nabla-Operator $(\nabla = \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right))$

 \int Integral

 \sum Summe

I Einheitstensor

Indizes

Symbol Bedeutung

c Kontinuierlich

d Dispers

i Indiziert

s Simuliert

Akronyme

OT Oberer Totpunkt

ZOT Zünd-OT

1 Einleitung

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder

schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

1.1 Ausgangssituation und Motivation

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

1.2 Aufbau der Arbeit

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

2 Stand der Technik

2.1 Formeln

Nach [1, S. 157 ff.] (Beispiel für Zitat) ergibt sich:

$$\dot{m}_2 = A_2 \left(\frac{p_2}{p_1}\right)^{\frac{1}{\kappa}} \sqrt{2c_p \rho_1^2 \frac{p_1 \frac{1}{\rho_1}}{c_p \left(\frac{\kappa - 1}{\kappa}\right)} \left(1 - \left(\frac{p_2}{p_1}\right)^{\frac{\kappa - 1}{\kappa}}\right)}$$
(2.1)

$$= A_2 \sqrt{2p_1 \rho_1} \sqrt{\frac{\kappa}{\kappa - 1} \left(\left(\frac{p_2}{p_1}\right)^{\frac{2}{\kappa}} - \left(\frac{p_2}{p_1}\right)^{\frac{\kappa + 1}{\kappa}} \right)}$$
Durch flux function. If

Gleichung 2.2 kann auch referenziert werden (S. 3).

2.1.1 Plots

Abbildung 2.1: Verlauf der Kolbengeschwindigkeit ($\lambda=0.32,\,n=1500\,\frac{1}{\mathrm{min}}$)

2.2 Bilder einfügen

Abbildung 2.2: Untersuchter Kolben mit Kolbenringen

2.3 Abkürzungen und Zahlen mit Einheiten

Abkürzungen wie Oberer Totpunkt (OT) und Zünd-OT (ZOT) können mit dem Acronymusepackage verwaltet werden.

Einheiten werden mit siunitx richtig gesetzt, z. B. 20 °KW, oder 5.2 $\frac{m}{s}$. Auch werden große Zahlen leichter lesbar dargestellt: Standard: 1000017 Pa mit siunitx: 1000017 Pa. Bereiche können leicht angegeben werden: 10 °KW - 100 °KW und auch Exponenten: 1.456 · $10^6 \frac{\Omega}{\mu m^2}$.

2.4 Tabellen

Größe	\mathbf{Wert}
$\mathrm{Hub}\ s = 2 \cdot r$	$92.8\mathrm{mm}$
Pleuellänge l	$144\mathrm{mm}$
Drehzahl n	$1500 \frac{1}{\min}$
Indizierter Mitteldruck p_{mi}	$5\mathrm{bar}$

Tabelle 2.1: Motor- und Betriebspunktdaten

3 Versuchsträger

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Literaturverzeichnis

[1] KÖHLER, Eduard; FLIERL, Rudolf: Verbrennungsmotoren: Motormechanik, Berechnung und Auslegung des Hubkolbenmotors; mit ... 23 Tabellen. 6., erw. Aufl. Wiesbaden: Vieweg + Teubner, 2011 (Praxis). – ISBN 978–3–8348–1486–9

Anhang A

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Anhang B

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.