Как распространяется свет?

X. Гюйгенс 1690 г.

Волновая теория света. Свет — волны в эфире, всепроникающей субстанции, заполняющей все пространство.

Как распространяется свет?

О. Френель 1818 г.

Световые волны поперечны. Какими свойствами должен обладать эфир?

Как распространяется свет?

Эфир – общий носитель света, электричества, магнетизма, гравитации,...

Дж. Максвелл 1864 г.

Из всех инерциальных систем выделяется абсолютная, неподвижная относительно «светоносного эфира»

Как сказывается движение тел на скорости света?

Экспериментальные предпосылки

Дж. Брэдли 1727 г.

Земля при своем движении не увлекает эфир

А. Физо 1851 г.

Скорость воды 7 м/с

Частичное увлечение эфира,

$$k = 1 - 1/n^2$$

Опыт Майкельсона

Эфирный ветер

Опыт Майкельсона

$$t' = \frac{L}{c+v} + \frac{L}{c-v}$$
$$t'' = \frac{2L}{c} \frac{1}{\sqrt{1-v^2/c^2}}$$

При
$$v = 3.10^4$$
 м/с, $t' - t'' = 3.10^{-17}$ с

При $T = 10^{-15}$ с смещение составит 0,03 полосы

Опыт Майкельсона

1881 г. Наблюдаемое смещение несколько меньше теоретического

1887 г. (Майкельсон и Морли). Наблюдаемое смещение меньше 1/20 теоретического

......

1958 г. (Колумбийский университет). Скорость света постоянна с точностью 10⁻¹¹.

Эфирного ветра не существует!

Постулаты Эйнштейна

Здравый смысл — это сумма предубеждений, приобретенных до восемнадцатилетнего возраста. А. Эйнштейн

1905 г. «К электродинамике движущихся сред»

Постулаты Эйнштейна

I. Принцип относительности

Все физические явления протекают одинаковым образом во всех инерциальных системах отсчёта; все законы природы и уравнения, их описывающие, инвариантны, т.е. не меняются, при переходе от одной инерциальной системы отсчёта к другой.

Все инерциальные системы отсчёта эквивалентны (неразличимы) по своим физическим свойствам; никакими опытами нельзя выделить одну из них как предпочтительную.

Постулаты Эйнштейна

II. Принцип постоянства скорости света

Скорость света в вакууме одинакова во всех инерциальных системах отсчёта, не зависит от направления и от движения источника и приемника света.

Одновременность событий

Равенство поперечных размеров тел

В момент совпадения начала отсчета y = y' в соответствии с принципом относительности

Лоренцево замедление времени

Лоренцево сокращение длины

K-система: $l = V \Delta t_0$

K'-система: $l_0 = V\Delta t$

$$l = l_0 \frac{\Delta t_0}{\Delta t} = l_0 \sqrt{1 - \left(\frac{V}{c}\right)^2}$$

Преобразования Лоренца

$$\beta = \frac{V}{c}$$

В системе К:

$$O'A = x - Vt = x'\sqrt{1 - \beta^2}$$

В системе К':

$$OA = x' + Vt = x\sqrt{1 - \beta^2}$$

$$x' = \frac{x - Vt}{\sqrt{1 - \beta^2}} \qquad y' = y \quad z' = z \qquad t' = \frac{t - \frac{xV}{c^2}}{\sqrt{1 - \beta^2}}$$

Преобразование скорости

$$v'_{x'} = \frac{dx'}{dt'} = \frac{dx'/dt}{dt'/dt}$$

$$x' = \frac{x - Vt}{\sqrt{1 - \beta^2}} \qquad t' = \frac{t - \frac{xV}{c^2}}{\sqrt{1 - \beta^2}}$$

$$v'_{x'} = \frac{v_x - V}{1 - \frac{v_x V}{c^2}}$$
 $v'_{y'} = \frac{v_y \sqrt{1 - \beta^2}}{1 - \frac{v_x V}{c^2}}$ E Если $v_x = c$, то $v'_{x'} = \frac{c - V}{1 - \frac{c V}{c^2}} = c$

Если
$$v_x$$
 = c , то $v'_{x'} = \frac{c-V}{1-\frac{cV}{c^2}} = c$

Скорость любого сигнала или частицы не может быть больше с

Пространство Минковского

теранство **Кардемя**у событию соответствует точка в теравные от странстве

Минковского, три координаты которой представляют собой декартовы координаты точки, а четвертая — координату *ct*.

Пространство Минковского псевдоэвклидово. «Расстояние» (интервал) между бесконечно близкими точками определяется как

$$ds^2 = cdt^2 - dx^2 - dy^2 - dz^2$$

Интервал между двумя событиями инвариантен относительно преобразований Лоренца (одинаков во всех системах отсчета)

Интервал

$$ds^2 = cdt^2 - dx^2 - dy^2 - dz^2$$

 $ds^2 > 0$ — времениподобный интервал. Существует система отсчета, в которой оба события произошли в одном месте. События могут быть причинно связаны.

 $ds^2 < 0$ — пространственноподобный интервал. Существует система отсчета, в которой оба события произошли в одно время. События не могут быть причинно связаны.

 $ds^2 = 0$ — светоподобный интервал.

Интервал

$$ds^2 = cdt^2 - dx^2$$

Относительность одновременности

Парадокс близнецов

AB+BC ≥ AC

Прямая АС имеет

минимальную длину.

Неравенство треугольника в геометрии Минковского

AB+BC ≤ AC

Прямая имеет максимальную «длину». Двигающиеся часы идут медленнее покоящихся.

Часы, двигающиеся с ускорением, идут медленнее, чем часы, двигающиеся с постоянной скоростью.

Релятивистская динамика

Чтобы выполнялся закон сохранения импульса должно быть:

$$\vec{p} = m\vec{v} = \frac{m_0\vec{v}}{\sqrt{1-\beta^2}}$$

 m_0 — масса покоя. Масса движущейся частицы

$$m = \frac{m_0}{\sqrt{1 - \beta^2}}$$

Основное уравнение релятивистской динамики

$$\vec{F} = \frac{d\vec{p}}{dt} = \frac{d}{dt} \left(\frac{m_0 \vec{v}}{\sqrt{1 - \beta^2}} \right)$$

Вектор ускорения может не совпадать по направлению с вектором силы

Релятивистская энергия

$$\frac{d}{dt} \left(\frac{m_0 \vec{v}}{\sqrt{1 - \beta^2}} \right) \cdot \vec{v} dt = \vec{F} \cdot \vec{v} dt$$

$$dA = dE_{\kappa}$$

$$dE_{\kappa} = \vec{v} dm \cdot \vec{v} + md\vec{v} = v^2 dm + mv dv$$

$$E_{\rm K} = m - m_0 \ c^2 = m_0 c^2 \left(\frac{1}{\sqrt{1 - \beta^2}} - 1 \right)$$

<u>Вопрос</u>: Получить из выражения для релятивистской кинетической энергии классическую формулу

Связь энергии и импульса

Полная энергия
$$E=mc^2=m_0c^2+E_{\scriptscriptstyle
m K}$$

Энергия покоя

$$E = mc^2$$
 $p = mv$

$$E = mc^2$$
 $p = mv$ $E^2 - p^2c^2 = m_0^2c^4$

$$p = mv = \frac{Ev}{c^2}$$

Если
$$m_0 = 0$$
 и $v = c$, то $p = \frac{E}{c}$

$$p = \frac{E}{c}$$

Только частицы с нулевой массой покоя могут двигаться со скоростью света (фотоны)

1916 г. ОТО. Эквивалентность сил инерции и тяготения

Законы природы одинаковы не только в инерциальных, но и в неинерциальных системах.

1859 г. Смещение перигелия Меркурия (43" за столетие)

1919 г. Отклонение света гравитационным полем (0,3")

1923 г. Красное смещение в спектре Солнца

1936 г. Открытие мюона. $\tau = 2$ мкс

1964 г. Эксперимент Паунда и Ребки

$$\frac{\delta v}{v} = -\frac{gH}{c^2} = -2,46 \cdot 10^{-15}$$

1971 г. Замедление времени в самолете

Разность показаний путешествовавших и остававшихся на месте часов, наносекунды				
	Вычисленная (предсказанная)			Измеренная фактически
	Гравитационный вклад	Кинематический вклад	Общий вклад	
При движении	(OTO)	(CTO)	(OTO + CTO)	
На восток	+ 144 ± 14	- 184 ± 18	- 40 ± 23	- 59 ± 10
На запад	+ 179 ± 18	+ 96 ± 10	+ 275 ± 21	+ 273 ± 7