Silizium-PIN-Fotodiode mit sehr kurzer Schaltzeit Silicon PIN Photodiode with Very Short Switching Time Lead (Pb) Free Product - RoHS Compliant

SFH 229 SFH 229 FA

SFH 229 FA

Wesentliche Merkmale

- Speziell geeignet für Anwendungen im Bereich von 380 nm bis 1100 nm (SFH 229) und bei 880 nm (SFH 229 FA)
- Kurze Schaltzeit (typ. 10 ns)
- 3 mm-Plastikbauform im LED-Gehäuse
- · Auch gegurtet lieferbar

Anwendungen

- Lichtschranken für Gleich- und Wechselbetrieb
- Industrieelektronik
- "Messen/Steuern/Regeln"

Typ Type	Bestellnummer Ordering Code
SFH 229	Q62702P0215
SFH 229 FA	Q62702P0216

Features

- Especially suitable for applications from 380 nm to 1100 nm (SFH 229) and of 880 nm (SFH 229 FA)
- Short switching time (typ. 10 ns)
- 3 mm LED plastic package
- Also available on tape and reel

Applications

- Photointerrupters
- Industrial electronics
- · For control and drive circuits

1

2005-04-06

Grenzwerte Maximum Ratings

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{\sf op};T_{\sf stg}$	- 40 + 100	°C
Sperrspannung Reverse voltage	V_{R}	20	V
Verlustleistung Total power dissipation	P _{tot}	150	mW

Kennwerte (T_A = 25 °C) Characteristics

Bezeichnung Parameter	Symbol Symbol	Wert Value		Einheit Unit
		SFH 229	SFH 229 FA	
Fotostrom Photocurrent $V_{\rm R}$ = 5 V, Normlicht/standard light A, T = 2856 K, $E_{\rm V}$ = 1000 lx $V_{\rm R}$ = 5 V, λ = 950 nm, $E_{\rm e}$ = 1 mW/cm ²	I_{P} I_{P}	28 (≥ 18) -	_ 20 (≥ 10.8)	μ Α μ Α
Wellenlänge der max. Fotoempfindlichkeit Wavelength of max. sensitivity	$\lambda_{\text{S max}}$	860	900	nm
Spektraler Bereich der Fotoempfindlichkeit $S = 10\%$ von $S_{\rm max}$ Spectral range of sensitivity $S = 10\%$ of $S_{\rm max}$	λ	380 1100	730 1100	nm
Bestrahlungsempfindliche Fläche Radiant sensitive area	A	0.3	0.3	mm ²
Abmessung der bestrahlungsempfindlichen Fläche Dimensions of radiant sensitive area	$L \times B$ $L \times W$	0.56 × 0.56	0.56 × 0.56	$mm \times mm$
Halbwinkel Half angle	φ	±17	±17	Grad deg.
Dunkelstrom, $V_{\rm R}$ = 10 V Dark current	I_{R}	50 (≤5000)	50 (≤5000)	рА
Spektrale Fotoempfindlichkeit, λ = 850 nm Spectral sensitivity	S_{λ}	0.62	0.60	A/W
Quantenausbeute, λ = 850 nm Quantum yield	η	0.90	0.88	Electrons Photon

Kennwerte (T_A = 25 °C) Characteristics (cont'd)

Bezeichnung Parameter	Symbol Symbol	Wert Value		Einheit Unit
		SFH 229	SFH 229 FA	
Leerlaufspannung Open-circuit voltage				
$E_{\rm v}$ = 1000 lx, Normlicht/standard light A, T = 2856 K	V_{O}	450 (≥ 400)	_	mV
$E_{\rm e} = 0.5 {\rm mW/cm^2}, \lambda = 950 {\rm nm}$	V_{O}	_	420 (≥ 370)	mV
Kurzschlußstrom Short-circuit current E - 1000 ly Normlight/gtondord light A		27		
$E_{\rm v}$ = 1000 lx, Normlicht/standard light A, T = 2856 K	I_{SC}	27		μΑ
$E_{\rm e} = 0.5 \; {\rm mW/cm^2}, \; \lambda = 950 \; {\rm nm}$	$I_{ m SC}$	_	9	μΑ
Anstiegs- und Abfallzeit des Fotostromes Rise and fall time of the photocurrent $R_{\rm L}$ = 50 Ω ; $V_{\rm R}$ = 10 V; λ = 850 nm; $I_{\rm p}$ = 800 μ A	$t_{\rm r}, t_{\rm f}$	10	10	ns
Durchlaßspannung, $I_{\rm F}$ = 100 mA, E = 0 Forward voltage	V_{F}	1.3	1.3	V
Kapazität, $V_{\rm R}$ = 0 V, f = 1 MHz, E = 0 Capacitance	C_0	13	13	pF
Temperaturkoeffizient von $V_{\rm O}$ Temperature coefficient of $V_{\rm O}$	TC_{V}	- 2.6	- 2.6	mV/K
Temperaturkoeffizient von $I_{\rm SC}$ Temperature coefficient of $I_{\rm SC}$ Normlicht/standard light A $\lambda = 950~{\rm nm}$	TC_1	0.18	- 0.2	%/K
Rauschäquivalente Strahlungsleistung Noise equivalent power $V_{\rm R}$ = 10 V, λ = 850 nm	NEP	6.5×10^{-15}	6.5 × 10 ⁻¹⁵	$\frac{W}{\sqrt{Hz}}$
Nachweisgrenze, $V_{\rm R}$ = 10 V, λ = 850 nm Detection limit	D*	8.4 × 10 ¹²	8.4 × 10 ¹²	cm × √Hz W

Relative Spectral Sensitivity $S_{\text{rel}} = f(\lambda)$ SFH 229

OHF01516 100 $S_{\rm rel}$ % 80 60 20 400 600 800 1000 nm 1200

Photocurrent $I_P = f(E_e)$, $V_R = 5 \text{ V}$ Open-Circuit Voltage $V_{O} = f(E_{e})$ **SFH 229 FA**

Relative Spectral Sensitivity $S_{\text{rel}} = f(\lambda)$ SFH 229 FA

Total Power Dissipation $P_{\text{tot}} = f(T_{\text{A}})$

25

0 0

20

40

60

80 °C 100

- T_A

OHF00966

Photocurrent $I_P = f(E_v)$, $V_R = 5 \text{ V}$ Open-Circuit Voltage $V_O = f(E_v)$ SFH 229

Dark Current

$$I_{\mathsf{R}} = f(V_{\mathsf{R}}), E = 0$$

4 2005-04-06

Capacitance

Dark Current

Directional Characteristics

$$S_{\text{rel}} = f(\varphi)$$

Maßzeichnung Package Outlines

Maße werden wie folgt angegeben: mm (inch) / Dimensions are specified as follows: mm (inch).

Lötbedingungen Soldering Conditions Wellenlöten (TTW) TTW Soldering

(nach CECC 00802) (acc. to CECC 00802)

Published by OSRAM Opto Semiconductors GmbH Wernerwerkstrasse 2, D-93049 Regensburg

www.osram-os.com

© All Rights Reserved.

Attention please!

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components ¹, may only be used in life-support devices or systems ² with the express written approval of OSRAM OS. ¹ A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. ² Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.

