CHƯƠNG III: XỬ LÝ LỖI PHẦN CỨNG

I-KHÁI LƯỢC CÁC LỖI PHẦN CỨNG

1- Phần cứng

* Phần cứng là phần thiết bị, có cấu trúc vật lý.

* Hư hỏng phần cứng được khắc phục khi thay thế các phần tử hư hỏng bằng các phần tử mới, sửa chữa các hư hỏng vật lý, điều chỉnh các phần tử.

* Trong các thiết bị không lập trình, mọi hư hỏng thực tế là hư hỏng phần cứng.

2- Các dạng hư hỏng phần cứng với PLC S7-300/400

* Hỏng pin backup : Pin backup không có hay yếu làm mất chương trình khi tắt nguồn điện. Thay pin backup tiến hành khi nối nguồn cho PLC để chương trình trong PLC không bị mất.

* Hỏng nguồn cung cấp: Hỏng nguồn chung hoặc nguồn riêng

- * Tín hiệu vào không phù hợp: Nếu điện áp tín hiệu đầu vào vượt quá giới hạn cho phép, PLC sẽ không làm việc được. Ta cần phải kiểm tra sửa chữa các mạch cấp tín hiệu vào.
- * Tải đầu ra : Nếu điện trở tải nhỏ, dòng tải đầu ra lớn hơn giới hạn cho phép, PLC bị quá tải dầu ra, ta phải kiểm tra phụ tải .
- * Với các module analog đầu vào, ta có thể điều chỉnh thang đo để phù hợp với thang giá trị đầu vào.

3- Các phương pháp phát hiện

- * Quan sát CPU, Module
- * Đọc thông tin từ PLC
- * Sử dụng các OB xử lý lỗi.

4-Các OB xử lý lỗi phần cứng:

- a) OB40, OB41 (cho riêng CPU 312IFM, CPU 318-2): Xử lý ngắt cứng.
- * Ngắt cứng không xử lý lỗi của phần cứng PLC hay chương trình. Nó xử lý theo tín hiệu bên ngoài kết nối với PLC.
- * OB40 được gọi khi có ngắt cừng từ các module gửi về. Ngắt cứng được tạo ra nhờ phần cứng của module, theo trạng thái tín hiệu đầu vào. Điều này giúp hệ thống phản xạ nhanh với tác động bên ngoài. Thực ra, ta có thể dùng chương trình (phần mềm) để phát hiện điều này nhưng phản ứng của hệ thống chậm hơn.
- * Chỉ có các module có chức năng tạo ngắt cứng và được cho phép tạo ngắt cứng (khi cấu hình hoặc nhờ việc gán thông số) mới cấp ngắt cứng cho CPU.

CHƯƠNG 3: XỬ LÝ LỖI PHẦN CỰNG

- * Khi có ngắt cứng từ module gửi về, nếu không có khối OB tương ứng (OB40) trong chương trình, CPU chuyển từ RUN sang STOP. Nếu có OB40, nó sẽ được gọi và thực thi . Khi có khối OB40, dù có chương trình gì bên trong thì CPU cũng không chuyển sang trạng thái tắt. Như vậy thực chất khối OB40 là khối chương trình xử lý ngắt cứng.
- * Với CPU312IFM và CPU 314IFM, có một số đầu vào cho phép sử dụng đa chức năng, ta có thể xác định nó như đầu vào số thông thường hoặc đầu vào đếm, ngắt:
 - + CPU312IFM: I124.6, I124.7, I125.0, I125.1
 - + CPU314IFM: I126.0, I126.1, I126.2, I126.3
- * Nếu khối OB40 đang thực hiện mà có ngắt khác xuất hiện thì sẽ bị bỏ qua. (Với S7-400 ngắt sẽ được thực hiên sau đó).
- * Với tín hiệu số, ngắt cứng được tạo ra khi có sườn dương hoặc sườn âm của tín hiệu.

Hình 3-1: Lập trình cho phép ngắt cứng với module DI

- * Sử dụng các ô chọn, ta có thể cho phép tác động ngắt cứng, ngắt cứng xảy ra khi có sườn dương, sườn âm hay cả sườn dương và sườn âm của tín hiệu vào.
- * Với tín hiệu analog, ngắt cứng được tạo ra khi giá trị tín hiệu vào nằm ngoài giới hạn cho phép. Khi chọn cho phép ngắt cứng, ta cần xác lập giá trị giới hạn trên

CHƯƠNG 3 : XỬ LÝ LỖI PHẦN CÚNG

và dưới cho giá trị đầu vào mà module sẽ tạo ngắt. Cấu hình này được dowload xuống PLC. Khi sử dụng ngắt cứng của các Module AI, nếu ta kết hợp với các hàm truyền tham số có thể điều chỉnh thang đo theo mức tín hiệu đầu vào (Xem phụ lục các hàm truyền tham số)

Hình 3-2: Lập trình cho phép ngắt cứng với module AI

- b) OB81 (Không có trong CPU 312IFM): Xử lý lỗi hỏng pin Backup
- * Khối OB81 được gọi khi có sự cố nguồn cung cấp hoặc pin backup.
- * Khi khối không được lập trình, CPU vẫn không chuyển sang trạng thái ngừng hoạt động như với các lỗ khác.
- * Khối OB81 được lập trình và sử dụng khi cần xác định chính xác vị trí nguồn có sự cố khi PLC sử dụng nhiều RACK

CHƯƠNG 3 : XỬ LÝ LỖI PHẦN CỨNG

Variable	Туре	Description		
OB81_EV_CLASS	BYTE	Event class and identifiers:		
		B#16#38: outgoing event		
		B#16#39: incoming event		
OB81_FLT_ID	BYTE	Error code: (possible values)		
		B#16#21, B#16#22, B#16#23, B#16#25, B#16#26, B#16#27, B#16#31, B#16#32, B#16#33)		
OB81_PRIORITY	BYTE	Priority class; can be assigned via STEP 7 (hardware configuration)		
		For example, possible values for the RUN mode: 2-26		
OB81_OB_NUMBR	BYTE	OB number (81)		
OB81_RESERVED_1	BYTE	Reserved		
OB81_RESERVED_2	BYTE	Reserved		
OB81_MDL_ADDR	INT	Bits 0 to 2: Rack no.		
		Bit 3: 0=standby CPU, 1=master CPU		
		Bits 4 to 7: 1111		
OB81_RESERVED_3	BYTE	Relevant only for error codes B#16#31, B#16#32 and B#16#33		
OB81_RESERVED_4	BYTE			
OB81_RESERVED_5	BYTE			
OB81_RESERVED_6	BYTE			
OB81_DATE_TIME	DATE_AND_TIME	DATE_AND_TIME of day when the OB was called		

Hình 3-7 : Gia trị các biến tạm của OB81

OB81_FLT_ID	Meaning
B#16#21:	At least one back-up battery of the central rack is exhausted/problem eliminated (BATTF)
	Note: This event occurs only if one of the two batteries fails (if there are redundant back-up batteries). If the second battery should also happen to fail, the event will not occur again.
B#16#22:	Back-up voltage in the central rack failed/problem eliminated (BAF)
B#16#23:	Failure of the 24 V power supply in the central rack/problem eliminated.
B#16#25:	At least one back-up battery in at least one redundant central rack is exhausted/problem eliminated (BATTF)
B#16#26:	Back-up voltage in at least one redundant central rack failed/problem eliminated (BAF)
B#16#27:	Failure of the 24 V supply in at least one redundant central rack
B#16#31:	At least one back-up battery of at least one expansion rack is exhausted/problem eliminated (BATTF).
B#16#32:	Back-up voltage in at least one expansion rack failed/problem eliminated (BAF)
B#16#33:	Failure of the 24 V power supply in at least one expansion rack/problem eliminated.

Hình 3-8 : Ý nghĩa của Error code

CHƯƠNG 3: XỬ LÝ LỖI PHẦN CỨNG

c) OB82

Khối OB82 có nhiều ứng dụng, ta sẽ trình bày kỹ ở mục sau

- d) OB83
- * Chỉ có trong các CPU S7 400.
- * Khối tổ chức OB83 được gọi khi có sự tháo lắp module.
- * Điều này cũng có thể xảy ra khi có hư hỏng trong việc ghép nối module.

* Các biến tạm ghi trạng thái khi OB83 được gọi:

Address	Declarati	Name	i –	Comment	
0.0	temp	OB83_EV_CLASS	BYTE	16#38/39, Event class 3, module inserted/removed (8/9)	
1.0	temp	OB83_FLT_ID	BYTE	16#XX, Fault identifcation code	
2.0	temp	OB83_PRIORITY	BYTE	Priority of OB Execution	
3.0	temp	OB83_OB_NUMBR	BYTE	83 (Organization block 83, OB83)	
4.0	temp	OB83_RESERVED_1	BYTE	Reserved for system	
5.0	temp	OB83_MDL_ID	BYTE	Input module (01010100), Output module (01010101)	
6.0	temp	OB83_MDL_ADDR	INT	Base address of module with point fault	
8.0	temp	OB83_RACK_NUM	INT	Number of rack that has module with point fault	
10.0	temp	OB83_MDL_TYPE	WORD	Module type with point fault	
12.0	temp	OB83_DATE_TIME	DATE_AND_TIM	Date and time OB83 started	

Hình 3-12: Các biến tạm của OB83

*Biến OB83 FLT ID: Code hư hỏng, lấy các giá trị

+61H: Module được đưa vào, đúng loại (LB0 = 38H)

Module bi tháo ra hoặc loại module họp (LB0 = 39H)

+63H: Module được lắp vào nhưng không đúng loại.

+64H: Module được lắp vào nhưng bị hỏng

II-SỬ DỤNG OB82

1-Công dụng

- * Khối OB82 được gọi khi các module có khả năng chẩn đoán, được lập trình cho phép chẩn đoán, phát hiện có sự cố và phát ra ngắt gọi.
 - * CPU 312 không có khối OB82.
 - * Nếu khối OB82 không được lập trình, CPU sẽ chuyển sang trạng thái STOP.
 - * Có thể xóa hay cho phép ngắt bằng các hàm hệ thông SFC39 SFC42.
- * Thông tin hệ điều hành ghi vào biến tạm của OB82 cho phép xác định nguyên nhân sự cố:

^{*}OB83 được gọi khi có sự tháo lắp một module tín hhiệu nào đó.

CHƯƠNG 3 : XỬ LÝ LỖI PHẦN CỰNG

Variable	Туре	Description
OB82_EV_CLASS	BYTE	Event class and identifiers:
		B#16#38: outgoing event
		B#16#39: incoming event
OB82_FLT_ID	BYTE	Error code (B#16#42)
OB82_PRIORITY	BYTE	Priority class; can be assigned via STEP 7 (hardware configuration)
OB82_OB_NUMBR	BYTE	OB number (82)
OB82_RESERVED_1	BYTE	Reserved
OB82_IO_FLAG	BYTE	Input module: B#16#54
		Output module: B#16#55
OB82_MDL_ADDR	WORD	Logical base address of the module where the fault occurred
OB82_MDL_DEFECT	BOOL	Module is defective
OB82_INT_FAULT	BOOL	Internal fault
OB82_EXT_FAULT	BOOL	External fault
OB82_PNT_INFO	BOOL	Channel fault
OB82_EXT_VOLTAGE	BOOL	External voltage failed
OB82_FLD_CONNCTR	BOOL	Front panel connector not plugged in
OB82_NO_CONFIG	BOOL	Module is not configured
OB82_CONFIG_ERR	BOOL	Incorrect parameters on module
OB82_MDL_TYPE	BYTE	Bit 0 to 3: Module class
		Bit 4: Channel information exists
		Bit 5: User information exists
		Bit 6: Diagnostic interrupt from substitute
		Bit 7: Reserve
OB82_SUB_MDL_ERR	BOOL	Submodule is missing or has an error
OB82_COMM_FAULT	BOOL	Communication problem
OB82_MDL_STOP	BOOL	Operating mode (0: RUN, 1: STOP)
OB82_WTCH_DOG_FLT	BOOL	Watchdog timer responded
OB82_INT_PS_FLT	BOOL	Internal power supply failed
OB82_PRIM_BATT_FLT	BOOL	Battery exhausted
OB82_BCKUP_BATT_FLT	BOOL	Entire backup failed
OB82_RESERVED_2	BOOL	Reserved
OB82_RACK_FLT	BOOL	Expansion rack failure
OB82_PROC_FLT	BOOL	Processor failure
OB82_EPROM_FLT	BOOL	EPROM fault
OB82_RAM_FLT	BOOL	RAM fault
OB82_ADU_FLT	BOOL	ADC/DAC error
OB82_FUSE_FLT	BOOL	Fuse tripped
OB82_HW_INTR_FLT	BOOL	Hardware interrupt lost
OB82_RESERVED_3	BOOL	Reserved
OB82_DATE_TIME	DATE_AND_TIME	DATE_AND_TIME of day when the OB was called

Hình 3-9: Các biến tam của khối OB82

+OB82_IO_FLAG(LB5): B#16#54: Module vào;B#16#55: Module ra.

+OB82 MDL ADDR (LW6): Địa chỉ cơ sở của module có lỗi.

+OB82_MDL_TYPE(LB9) : Bit 0-3 chỉ loại module

0000 : CPU 0101 : Analog 1000 : FM 1100 : CP

1111 : DM

CHƯƠNG 3 : XỬ LÝ LỖI PHẦN CÚNG

+ Các bit của LB8, LB10, LB11 : Dạng lỗi module

2- Ví dụ ứng dụng

a) Với PLC thực tế, cần có các module có khả năng tạo ngắt chẩn đoán. Các module này cần phải được lập trình và truyền tham số đến các module.

Hình 3-10: Lập trình cho phép chẩn đoán module DI

Hình 3-11: Lập trình cho phép chẩn đoán Module AI

	VAT_	1 (⊕ test_	_ob8	
	Address	Symbol	Display fo	Status value	Modify value
1	MB 100		HEX	B#16#39	
2	MB 101		HEX	B#16#42	
3	MB 102		HEX	B#16#1A	
4	MB 103		HEX	B#16#52	
5	MB 104		HEX	B#16#C5	
6	MB 105	''Modul	HEX	B#16#55	
7	MW 106	"MDL_	HEX	W#16#0004	
8	MB 108	"Erro_1	HEX	B#16#0D	
9	MW 110	"Err0_2	HEX	W#16#0000	
10					

* Để theo dõi hoạt động OB82 ta cần tạo ra bảng biến. Ví dụ:

Hình 3-12: Bảng biến theo dõi hoạt động OB 82

*Trong OB82 ta viết chương trình cho phép đọc các biến tạm của OB82:

CALL "BLKMOV"

SRCBLK :=P#L 0.0 BYTE 20

RET_VAL:=MW200

DSTBLK :=P#M 100.0 BYTE 20

b) Nếu ta muốn sử dụng PLCSIM, cần cấu hình với CPU315_2DP, CPU316_2DP, CPU 318_2. Các module tín hiệu phải chọn loại có khả năng tạo ngặt Diagnostic. Khi sử dụng PLCSIM, ta có thể tạo giả ngắt khi sử dụng **Execute>Trigger Error OB**

c) Theo ví dụ đọc trên bảng biến, ta biết

LB5 (MB105)= 55 : Module ra

LW6(MW106)=4 : Địa chỉ cơ sở của module DO Slot 5.

LB8 (MB108) = 0DH= 0000 1101:

Bit 0 = 1: Module hư hỏng được phát hiện.

Bit 2 = 1: Hu hỏng bên ngoài module

Bit 3 = 1: Hu hỏng kênh (channel)

+ Ta có thể đọc các byte trên để biết nguyên nhân lỗi, nhưng cũng có thể xem tin tức về lỗi từ chẩn đoán **Hardware Diagnostics**

CHƯƠNG 3 : XỬ LÝ LỖI PHẦN CỰNG

Hình 3-11 : Dùng tin tức từ module để biết nguyên nhân lỗi.

- * Để biết lỗi, ta có thể viết trong OB chương trình truyền ra đầu giá trị báo :
- + Trong OB82 ta viết:
 - A #OB82_INT_FAULT
 - = Q 4.0
- + Nếu có Module bị lỗi bên trong, Q 4.0 sáng.