# $Signal\ Processing\ Lab\ Report\ -10$

Team: 10

 $Aasrith\ Reddy\ Vedanaparti\ -\ 2023102031$ 

Ritama Sanyal - 2023112027

 $International\ Institute\ of\ Information\ Technology\\ Hyderabad$ 

## 1 Low-pass FIR filter design using windows

To design the low-pass FIR filter using the window method, we derive the impulse responses  $h_{LPF}[n]$  and  $h_d[n]$  based on the ideal frequency responses  $H_{LPF}(e^{j\omega})$  and  $H_d(e^{j\omega})$ .

1. Ideal Low-Pass Filter Impulse Response  $h_{LPF}[n]$  The ideal frequency response  $H_{LPF}(e^{j\omega})$  is defined as:

$$H_{LPF}(e^{j\omega}) = \begin{cases} 1, & |\omega| \le \frac{\pi}{7} \\ 0, & \frac{\pi}{7} < |\omega| < \pi \end{cases}$$

To obtain the impulse response  $h_{LPF}[n]$ , we perform the inverse Discrete-Time Fourier Transform (DTFT):

$$h_{LPF}[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{LPF}(e^{j\omega}) e^{j\omega n} d\omega$$

. Since  $H_{LPF}(e^{j\omega})$  is nonzero only within  $|\omega| \leq \frac{\pi}{7}$ , we simplify this to:

$$h_{LPF}[n] = \frac{1}{2\pi} \int_{-\frac{\pi}{}}^{\frac{\pi}{7}} e^{j\omega n} d\omega$$

Solving this integral, we find:

$$h_{LPF}[n] = \frac{\sin\left(\frac{\pi}{7}n\right)}{\pi n}, \quad forn \neq 0$$

and

$$h_{LPF}[0] = \frac{1}{7}$$

Thus, the impulse response  $h_{LPF}[n]$  is:

$$h_{LPF}[n] = \begin{cases} \frac{\sin(\frac{\pi}{7}n)}{\pi n}, & n \neq 0\\ \frac{1}{7}, & n = 0 \end{cases}$$

2. Low-Pass Filter with Linear Phase Impulse Response  $h_d[n]$  The modified frequency response  $H_d(e^{j\omega})$  with linear phase is given by:

$$H_d(e^{j\omega}) = \begin{cases} e^{-j\omega n_c}, & |\omega| \le \frac{\pi}{7} \\ 0, & \frac{\pi}{7} < |\omega| < \pi \end{cases}$$

where  $n_c = \frac{N-1}{2}$ .

To find  $h_d[n]$ , we perform the inverse DTFT:

$$h_d[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{j\omega n} d\omega$$

Substituting  $H_d(e^{j\omega})=e^{-j\omega n_c}$  for  $|\omega|\leq \frac{\pi}{7}$ , we get:

$$h_d[n] = \frac{1}{2\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{7}} e^{j\omega(n-n_c)} d\omega$$

This integral evaluates to:

$$h_d[n] = \frac{\sin\left(\frac{\pi}{7}(n - n_c)\right)}{\pi(n - n_c)}, \quad forn \neq n_c$$

and

$$h_d[n_c] = \frac{1}{7}$$

Thus, the impulse response  $h_d[n]$  is:

$$h_d[n] = \begin{cases} \frac{\sin\left(\frac{\pi}{7}(n-n_c)\right)}{\pi(n-n_c)}, & n \neq n_c \\ \frac{1}{7}, & n = n_c \end{cases}$$

The impulse responses are:

• Ideal LPF Impulse Response:

$$h_{LPF}[n] = \begin{cases} \frac{\sin\left(\frac{\pi}{7}n\right)}{\pi n}, & n \neq 0\\ \frac{1}{7}, & n = 0 \end{cases}$$

• Linear-Phase LPF Impulse Response:

$$h_d[n] = \begin{cases} \frac{\sin\left(\frac{\pi}{7}(n-n_c)\right)}{\pi(n-n_c)}, & n \neq n_c \\ \frac{1}{7}, & n = n_c \end{cases}$$

where  $n_c = \frac{N-1}{2}$ .

### 1.1 Using Rectangular Window





# 1.2 Using Blackmann Window





#### 1.3 Comparison of Transition Bands and Side-Lobe Levels

#### 1. Transition Band:

- The **Rectangular Window** results in a narrower transition band because it applies no tapering to the frequency response. This leads to sharper cutoffs between the pass band and the stop band. However, this sharpness comes at the cost of more prominent side-lobes in the frequency spectrum.
- The **Blackman Window** applies significant tapering to the filter coefficients, which broadens the transition band. As a result, the filter exhibits a smoother and more gradual cutoff between the pass band and the stop band.

#### 2. Side-Lobe Levels:

- The Rectangular Window has higher side-lobe levels, with the main side-lobe approximately 13 dB below the main lobe. These high side-lobe levels lead to more spectral leakage, making the filter less effective in attenuating frequencies in the stop band.
- The **Blackman Window** significantly reduces side-lobe levels, with the first side-lobe approximately 58 dB below the main lobe. This suppression minimizes spectral leakage, making the filter more effective at attenuating unwanted frequencies.

#### 3. Key Trade-off:

- The **Rectangular Window** offers a sharper transition band but suffers from higher side-lobe levels, resulting in poor stop band attenuation.
- The **Blackman Window** offers much lower side-lobe levels, providing better stop band attenuation, but at the cost of a wider transition band.

#### **Practical Implication:**

- If a sharp transition is crucial and stop band attenuation is less critical, the Rectangular Window is preferred.
- If minimizing spectral leakage and achieving better stop band attenuation is important, the **Blackman Window** is a better choice.

#### 1.4 Passing Signals

#### Comparison of Filtered Signals with Original Signal

1. **Original Signal** x[n]: The original signal is defined as:

$$x[n] = \cos\left(\frac{\pi n}{16}\right) + 0.25\sin\left(\frac{\pi n}{2}\right).$$

This signal consists of two frequency components:

- A low-frequency component at  $\omega = \frac{\pi}{16}$ , corresponding to the cosine term.
- A higher-frequency component at  $\omega = \frac{\pi}{2}$ , corresponding to the sine term.

#### 2. Filtered Signal using Rectangular Window Filter:

- The rectangular window filter preserves the lower frequency component  $\cos\left(\frac{\pi n}{16}\right)$  effectively, as it falls within the pass band.
- The higher frequency component  $\sin\left(\frac{\pi n}{2}\right)$  is attenuated due to its proximity to the stop band, but some leakage occurs due to the higher side-lobe levels of the rectangular window.
- The filtered signal retains the general shape of the original signal but exhibits slight ripples due to side-lobe leakage.

#### 3. Filtered Signal using Blackman Window Filter:

- The Blackman window filter also preserves the lower frequency component  $\cos\left(\frac{\pi n}{16}\right)$  effectively, with less distortion compared to the rectangular window filter.
- The higher frequency component  $\sin\left(\frac{\pi n}{2}\right)$  is attenuated more effectively due to the lower side-lobe levels of the Blackman window.
- The filtered signal is smoother, with reduced ripples compared to the rectangular window filter, indicating better stop band attenuation.





#### 4. Overall Comparison:

- The rectangular window filter exhibits a sharper transition band but higher side-lobe leakage, leading to minor distortions in the stop band.
- The Blackman window filter provides smoother results with better stop band attenuation but a slightly broader transition band, resulting in reduced distortion in the filtered signal.

**Conclusion** The Blackman window filter outperforms the rectangular window filter in terms of stop band attenuation and smoothness of the filtered signal, making it a better choice for applications requiring minimal spectral leakage.

#### 1.5 New Filter



#### **Description of the New Filter** $h_1[n] = (-1)^n h[n]$

The new filter is obtained by modifying the impulse response h[n], where:

$$h_1[n] = (-1)^n \cdot h[n].$$

Here:

- h[n] is the impulse response of a low-pass filter designed using the rectangular window method.
- The term  $(-1)^n$  alternates the sign of each coefficient of h[n] for every successive n.

#### Effect on Frequency Response

#### 1. Frequency Shifting:

- Multiplying h[n] by  $(-1)^n$  in the time domain corresponds to a frequency shift of  $\pi$  in the frequency domain.
- The frequency response  $H(e^{j\omega})$  of the original filter is shifted by  $\pi$ , resulting in the new frequency response:

$$H_1(e^{j\omega}) = H(e^{j(\omega-\pi)}).$$

#### 2. Transformation to a High-pass Filter:

- The original filter h[n] is a low-pass filter with a pass band centered at  $\omega = 0$ .
- The frequency shift by  $\pi$  moves the pass band to  $\omega = \pi$ , transforming the filter into a high-pass filter.

#### Impulse Response Characteristics

- The alternation of signs in  $h_1[n]$  results in oscillations in the impulse response.
- The filter retains the same length and symmetry properties as the original low-pass filter, ensuring it remains linear-phase.

#### Applications of the New Filter

- The new filter can effectively attenuate low-frequency components while preserving high-frequency components.
- It is useful in applications requiring high-pass filtering, such as noise removal in signals dominated by low-frequency noise.

**Conclusion** The new filter  $h_1[n]$  is a high-pass filter obtained by frequency shifting the low-pass filter designed using the rectangular window. It retains linear-phase characteristics and is well-suited for applications where high-frequency signal components are of interest.

# 2 Digital Band Limited differentiator

## 2.1 Theory



|   | Page MA. YOUVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Core Core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 1 X H(e 310)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - | T/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| _ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | -11/2 ( Banda Ca) Hange Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | Let $N_{-}(1) = Q_{-}(\pi+ T)$ $T = g_{max} _{max} \pi g_{max}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | Let $x_c(t) = 8k_n(\pi +  T)$ , $T = 8ampling period$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| _ | Then,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | $X_{0}(\beta\omega) = \frac{1}{2} \frac{1}{1} \times 100 \times 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| _ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | (Sufferent to ensure Sampling Ke(t) at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | frequency we = 211/T does not give the to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | any almarna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | Ony alsterna).  Output of digital differentiator,  Yo (t) = d xo(t) = coa(\pi +  T) - Sin(\pi +  T)  Tt \ \pi + 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | Copper of digital divergentions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - | 10 (t) = d 200 (t) = coachth) - Stricker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | $x_{q}[n] = x_{q}(n_{\perp}) = \frac{1}{2} S[n]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | too n + 0, xe (nT) = 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | Whole 201 = 101 = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | Similarly, ya [n] = ye (n) = S (-1) n +0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | orminary, Ja le Carl MIT2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | Thus, halm = { (-1) n +0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 0 n=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | The same of the sa |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | and the second s |
|   | The state of the s |
|   | Services of the service of the servi |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | Marie de la companya del companya de la companya de la companya del companya de la companya de l |
|   | 14 CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



Figure 2.1: Obtained filters



Figure 2.2: Obtained graph

# 3 Filter design using filter Designer GUI

## 3.1 Low pass FIR filter using window method



Figure 3.1: Data of Filter



Figure 3.2: Impulse Response



Figure 3.3: Magnitude Spectrum



Figure 3.4: Phase Spectrum

# 3.2 Low- pass FIR Least square filter



Figure 3.5: Data of Filter



Figure 3.6: Impulse Response



Figure 3.7: Magnitude Spectrum



Figure 3.8: Phase Spectrum