Lecture 6

Cryptographic Hash Functions

1

Cryptographic HASH Functions

- Purpose: produce a fixed-size "fingerprint" or digest of arbitrarily long input data
- > Why? To guarantee integrity
- Properties of a "good" cryptographic HASH function H():
 - 1. Takes on input of any size
 - 2. Produces fixed-length output
 - 3. Easy to compute (efficient)
 - 4. Given any h, computationally infeasible to find any x such that H(x) = h
 - 1. For any x, computationally infeasible to find y such that H(y) = H(x) and y < x
 - 1. Computationally infeasible to find any (x, y) such that H(x) = H(y) and $x \leftrightarrow y$

Same properties re-stated:

- Cryptographic properties of a "good" HASH function:
 - One-way-ness (#4)
 - Weak Collision-Resistance (#5)
 - Strong Collision-Resistance (#6)
- Non-cryptographic properties of a "good" HASH function
 - Efficiency (#3)
 - Fixed output (#1)
 - Arbitrary-length input (#2)

3

Construction

> A hash function is typically based on an internal compression function f() that works on fixed-size input blocks (Mi)

- > Sort of like a Chained Block Cipher
 - Produces a hash value for each fixed-size block based on (1) its content and (2) hash value for the previous block
 - "Avalanche" effect: 1-bit change in input produces "catastrophic" changes in output

Simple Hash Functions

Bitwise-XOR

	bit 1	bit 2		bit <i>n</i>
block 1	b ₁₁	b ₂₁		b_{n1}
block 2	b ₁₂	b ₂₂		b _{n2}
	•		•	•
	•	•		•
	•	•	•	•
block m	b_{1m}	b_{2m}		b_{nm}
hash code	C ₁	C ₂		C_n

Figure 3.3 Simple Hash Function Using Bitwise XOR

- Not secure, e.g., for English text (ASCII<128) the highorder bit is almost always zero
- Can be improved by rotating the hash code after each block is XOR-ed into it
- If message itself is not encrypted, it is easy to modify the message and append one block that would set the hash code as needed

The Birthday Paradox

- \star Example hash function: y=H(x) where: x=person and H() is Bday()
- \Rightarrow y ranges over set Y=[1...365], let n = size of Y, i.e., number of distinct values in the range of H()
- ❖ How many people do we need to 'hash' to have a collision?
- Or: what is the probability of selecting at random k DISTINCT numbers from Y?
- P0=1*(1-1/n)*(1-2/n)*...*(1-(k-1)/n)) == $e^{(k(1-k)/2n)}$
- ❖ P1=1-P0 ---> probability of at least one collision
- ❖ Set P1 to be at least 0.5 and solve for k
- ❖ k == 1.17 * SQRT(n)
- ❖ k = 22.3 for n=365

So, what's the point?

The Birthday Paradox

$$m = \log(n) = \text{size of } H()$$

 $\sqrt{2^m} = 2^{m/2} \text{ trials must}$
be infeasible!

7

How long should a hash be?

- > Many input messages yield the same hash
 - ❖e.g., 1024-bit message, 128-bit hash
 - ❖On average, 2896 messages map into one hash
- > With m-bit hash, it takes about $2^{m/2}$ trials to find a collision (with >= 50% probability)
- ➤ When m=64, it takes 2³² trials to find a collision (doable in very little time)
- > Today, need at least m=160, requiring about 280 trials

Hash Function Examples

	SHA-1 (or SHA-160)	MD5 (defunct)	RIPEMD-160 (unloved) ©
Digest length	160 bits	128 bits	160 bits
Block size	512 bits	512 bits	512 bits
# of steps	80 (4 rounds of 20)	64 (4 rounds of 16)	160 (5 paired rounds of 16)
Max message size	2 ⁶⁴ -1 bits	∞	∞

Other (stronger) variants of SHA are SHA-256 and SHA-512 See: http://en.wikipedia.org/wiki/SHA_hash_functions

9

MD5

- > Author: R. Rivest, 1992
- > 128-bit hash

based on earlier, weaker MD4 (1990)

- >Collision resistance (B-day attack resistance)
 only 64-bit
- > Output size not long enough today (due to various attacks)

MD5: Message Digest Version 5

Input message

Output: 128-bit digest

MD5 Padding

- > Given original message M, add padding bits "100..." such that resulting length is 64 bits less than a multiple of 512 bits.
- > Append original length in bits to the padded message
- > Final message chopped into 512-bit blocks

MD5 Process

- > As many stages as the number of 512-bit blocks in the final padded message
- ➤ Digest: 4 32-bit words: MD=A|B|C|D
- > Every message block contains 16 32-bit words: $m_0|m_1|m_2...|m_{15}$
 - ❖ Digest MD₀ initialized to: A=01234567,B=89abcdef,C=fedcba98, D=76543210
 - Every stage consists of 4 passes over the message block, each modifying MD; each pass involves different operation

Different Passes...

- > Different functions and constants
- \triangleright Different set of m_i -s
- > Different sets of shifts

19

Functions and Random Numbers

$$F(x,y,z) == (x \wedge y) \vee (\sim x \wedge z)$$

$$FG(x,y,z) == (x \wedge z) \vee (y \wedge \sim z)$$

$$\rightarrow$$
 H(x,y,z) == x \oplus y \oplus z

$$\succ I(x,y,z) == y \oplus (x \land \sim z)$$

$$T_i = int(2^{32} * abs(sin(i))), 0 < i < 65$$

Secure Hash Algorithm (SHA)

- > SHA-0 was published by NIST in 1993
- Revised in 1995 as SHA-1
 - ❖ Input: Up to 264 bits
 - Output: 160 bit digest
 - ❖ 80-bit collision resistance
- Pad with at least 64 bits to resist padding attack
 - ❖ 1000...0 || <message length>
- Processes 512-bit block
 - Initiate 5x32bit MD registers
 - * Apply compression function
 - > 4 rounds of 20 steps each
 - > each round uses different non-linear function
 - registers are shifted and switched

General Logic

- >Input message must be < 264 bits
 - ❖ not a realistic limitation
- Message processed in 512-bit blocks sequentially
- > Message digest (hash) is 160 bits
- >SHA design is similar to MD5, but a lot stronger

Basic Steps

Step1: Padding

Step2: Appending length as 64-bit unsigned

Step3: Initialize MD buffer: 5 32-bit

words: A|B|C|D|E

A = 67452301

B = efcdab89

C = 98badcfe

D = 10325476

E = c3d2e1f0

25

Basic Steps...

Step 4: the 80-step processing of 512-bit blocks: 4 rounds, 20 steps each Each step t (0 <= t <= 79):

❖Input:

>W₊ - 32-bit word from the message

≻K_t - constant

>ABCDE: current MD

❖Output:

> ABCDE: new MD

Basic Steps...

>Only 4 per-round distinctive additive constants:

 $0 \leftarrow 1 \leftarrow 19$ $K_{t} = 5A827999$

Basic Logic Functions

>Only 3 different functions

Round Function $f_t(B,C,D)$ $0 \leftarrow t \leftarrow 19$ $(B \land C) \lor (\sim B \land D)$

20<=t<=39 B⊕*C*⊕D

 $40 \leftarrow 1 \leftarrow 59$ $(B \land C) \lor (B \land D) \lor (C \land D)$

60<=t<=79 B⊕*C*⊕D

29

Twist With W_t's

> Additional mixing used with input message 512-bit block

 $W_0|W_1|...|W_{15} = m_0|m_1|m_2...|m_{15}$ For 15 < † <80:

 $W_{t} = W_{t-16} \oplus W_{t-14} \oplus W_{t-8} \oplus W_{t-3}$

>XOR is a very efficient operation, but with multilevel shifting, it produces very extensive and random mixing!

SHA Versus MD5

- >SHA is a stronger algorithm:
 - ❖ A birthday attack requires on the order of 280 operations, in contrast to 264 for MD5
- >SHA has 80 steps and yields a 160-bit hash (vs. 128) involves more computation

3:

What are hash functions good for?

Message Authentication Using a Hash Function

Use symmetric encryption such as AES or 3-DES

- Generate H(M) of same size as E() block
- Use $E_k(H(M))$ as the MAC (instead of, say, DEC MAC)
- Alice sends $E_k(H(M))$, M
- Bob receives C,M' decrypts C with K, hashes result $H(D_K(C))$ =?= H(M')

Collision → MAC forgery!

33

Using Hash for Authentication

- > Alice to Bob: random challenge r_A
- > Bob to Alice: $H(K_{AB}||r_A)$
- \triangleright Bob to Alice: random challenge r_B
- \triangleright Alice to Bob: $H(K_{AB}||r_B)$
- >Only need to compare H() results

Using Hash to Compute MAC: integrity

- > Cannot just compute and append H(m)
- > Need "Keyed Hash":
 - ❖ Prefix:
 - > MAC: H(K_{AB} | m), almost works, but...
 - > Allows concatenation with arbitrary message:

$$H(K_{AB} \mid m \mid m')$$

- * Suffix:
 - > MAC: $H(m \mid K_{AB})$, works better, but what if m' is found such that H(m)=H(m')?
- * HMAC:
 - $> H(K_{AB} \mid H(K_{AB} \mid m))$

35

Hash Function MAC (HMAC)

- Main Idea: Use a MAC derived from any cryptographic hash function
 - ❖ Note that hash functions do not use a key, and therefore cannot serve directly as a MAC
- > Motivations for HMAC:
 - Cryptographic hash functions execute faster in software than encryption algorithms such as DES
 - No need for the reverseability of encryption
 - No US government export restrictions (was important in the past)
- > Status: designated as mandatory for IP security
 - Also used in Transport Layer Security (TLS), which will replace SSL, and in SET

HMAC Algorithm

- Compute H1 = H() of the concatenation of M and K1
- To prevent an "additional block" attack, compute again H2= H() of the concatenation of H1 and K2
- K1 and K2 each use half the bits of K
- > Notation:
 - ❖ K⁺ = K padded with 0's
 - ❖ ipad=00110110 x b/8
 - ❖ opad=01011100 x b/8
- > Execution:
 - Same as H(M), plus 2 blocks

37

Just for fun... Using a Hash to Encrypt

- >(Almost) One-time pad: similar to OFB
 - compute bit streams using H(), K, and IV

$$b_1=H(K_{AB} | IV)$$
, ..., $b_i=H(K_{AB} | b_{i-1})$, ...
 $c_1=p_1 \oplus b_1$, ..., $c_i=p_i \oplus b_i$, ...

- >Or, mix in the plaintext
 - ❖similar to cipher feedback mode (CFB)

$$b_1=H(K_{AB} | IV), ..., b_i=H(K_{AB} | c_{i-1}), ...$$

 $b_1=p_1 \oplus b_1, ..., c_i=p_i \oplus b_i, ...$