Seção 1.2 - p. 87

EXERCÍCIOS 1.2

1. Dado que

$$\lim_{x \to a} f(x) = 2, \quad \lim_{x \to a} g(x) = -4, \quad \lim_{x \to a} h(x) = 0$$

encontre os limites.

- (a) $\lim_{x \to a} [f(x) + 2g(x)]$
- (b) $\lim_{x \to a} [h(x) 3g(x) + 1]$
- (c) $\lim [f(x)g(x)]$
- (d) $\lim_{x \to 0} [g(x)]^2$
- (e) $\lim_{x \to 0} \sqrt[3]{6 + f(x)}$
- (f) $\lim_{x \to a} \frac{2}{g(x)}$

2. Use os gráficos de f e g na figura a seguir para encontrar os limites que existirem. Se o limite não existir, explique por quê.

- (a) $\lim_{x \to 2} [f(x) + g(x)]$ (b) $\lim_{x \to 0} [f(x) + g(x)]$
- (c) $\lim_{x \to 0^+} [f(x) + g(x)]$ (d) $\lim_{x \to 0^-} [f(x) + g(x)]$
- (f) $\lim_{x \to 2} \frac{1 + g(x)}{f(x)}$
- (g) $\lim_{x \to \infty} \sqrt{f(x)}$
- (h) $\lim_{x \to 0} \sqrt{f(x)}$

3-30 Encontre os limites.

- 3. $\lim_{x \to 2} x(x-1)(x+1)$
- 4. $\lim_{x \to 3} x^3 3x^2 + 9x$
- 5. $\lim_{x \to 3} \frac{x^2 2x}{x + 1}$ 6. $\lim_{x \to 0} \frac{6x 9}{x^3 12x + 3}$
- 7. $\lim_{x \to 1^+} \frac{x^4 1}{x 1}$
- 8. $\lim_{t \to -2} \frac{t^3 + 8}{t + 2}$
- 9. $\lim_{x \to -1} \frac{x^2 + 6x + 5}{x^2 3x 4}$
- 10. $\lim_{x \to 2} \frac{x^2 4x + 4}{x^2 + x 6}$
- 11. $\lim_{x \to -1} \frac{2x^2 + x 1}{x + 1}$ 12. $\lim_{x \to 1} \frac{3x^2 x 2}{2x^2 + x 3}$
- 13. $\lim_{t \to 2} \frac{t^3 + 3t^2 12t + 4}{t^3 4t}$ 14. $\lim_{t \to 1} \frac{t^3 + t^2 5t + 3}{t^3 3t + 2}$
- 15. $\lim_{x \to 3^+} \frac{x}{x 3}$
- 16. $\lim_{x \to 3^{-}} \frac{x}{x-3}$
- 17. $\lim_{x \to 3} \frac{x}{x 3}$
- 18. $\lim_{x \to 2^+} \frac{x}{x^2 4}$
- 19. $\lim_{x \to 2^{-}} \frac{x}{x^2 4}$
- 20. $\lim_{x \to 2} \frac{x}{x^2 4}$
- 21. $\lim_{y \to 6^+} \frac{y+6}{y^2 36}$
- 22. $\lim_{y \to 6^{-}} \frac{y+6}{y^2-36}$
- 23. $\lim_{y \to 6} \frac{y+6}{y^2-36}$ 24. $\lim_{x \to 4^+} \frac{3-x}{x^2-2x-8}$
- 25. $\lim_{x \to 4^{-}} \frac{3-x}{x^2-2x-8}$ 26. $\lim_{x \to 4} \frac{3-x}{x^2-2x-8}$

Seção 1.3 - p. 96

EXERCÍCIOS 1.3 Recurso Gráfico

1-4 Em cada um destes exercícios, faça hipóteses razoáveis sobre o gráfico da função indicada fora da região esboçada.

- 1. Para a função g do gráfico abaixo, encontre
 - (a) $\lim_{x \to a} g(x)$
- (b) $\lim_{x \to \infty} g(x)$.

Figura Ex-1

- 2. Para a função ø do gráfico abaixo, encontre:
 - (a) $\lim_{x \to -\infty} \phi(x)$
 - (b) $\lim_{x \to +\infty} \phi(x)$.

Figura Ex-2

- 3. Para a função ϕ do gráfico abaixo, encontre:
 - (a) $\lim \phi(x)$
- (b) $\lim_{x \to \infty} \phi(x)$.

Figura Ex-3

- 4. Para a função G do gráfico a seguir, encontre:
 - (a) $\lim_{x \to a} G(x)$
- (b) $\lim_{x \to \infty} G(x)$.

Figura Ex-4

5. Dado que

$$\lim_{x \to +\infty} f(x) = 3, \quad \lim_{x \to +\infty} g(x) = -5, \quad \lim_{x \to +\infty} h(x) = 0$$

encontre os limites que existirem. Se o limite não existir, explique por quê.

(a)
$$\lim_{x \to +\infty} [f(x) + 3g(x)]$$

- (b) Use a Figura 1.3.3 para encontrar o valor exato do limite na parte (a).
- 8. Complete a tabela e dê um palpite sobre o limite indicado.

$$f(x) = x^{1/x} \quad \lim_{x \to +\infty} f(x)$$

х	10	100	1.000	10.000	100.000	1.000.000
f(x)						

9-40 Encontre os limites.

- 9. $\lim_{x \to +\infty} (1 + 2x 3x^5)$ 10. $\lim_{x \to +\infty} (2x^3 100x + 5)$
- 11. $\lim_{x \to +\infty} \sqrt{x}$ 12. $\lim_{x \to -\infty} \sqrt{5-x}$
- 13. $\lim_{x \to +\infty} \frac{3x+1}{2x-5}$ 14. $\lim_{x \to +\infty} \frac{5x^2-4x}{2x^2+3}$
- 15. $\lim_{y \to -\infty} \frac{3}{y+4}$ 16. $\lim_{x \to +\infty} \frac{1}{x-12}$
- 17. $\lim_{x \to -\infty} \frac{x-2}{x^2 + 2x + 1}$ 18. $\lim_{x \to +\infty} \frac{5x^2 + 7}{3x^2 x}$
- 19. $\lim_{x \to +\infty} \frac{7 6x^5}{x + 3}$ 20. $\lim_{t \to -\infty} \frac{5 2t^3}{t^2 + 1}$
- 21. $\lim_{t \to +\infty} \frac{6-t^3}{7t^3+3}$
- 22. $\lim_{x \to -\infty} \frac{x + 4x^3}{1 x^2 + 7x^3}$

Seção 1.5 - p. 118

6. Considere as funções

$$f(x) = \begin{cases} 1, & 0 \le x \\ 0, & x < 0 \end{cases} \quad \mathbf{e} \quad g(x) = \begin{cases} 0, & 0 \le x \\ 1, & x < 0 \end{cases}$$

Em cada parte, verifique se a função dada é contínua em x = 0.

- (a) f(x)(e) f(x)g(x)
- (b) g(x)
- (c) f(-x)
- (d) |g(x)|
- (f) g(f(x)) (g) f(x) + g(x)

- 11-22 Encontre os pontos x, se houver, nos quais f não é contínua.
- **11.** $f(x) = 5x^4 3x + 7$
- 12. $f(x) = \sqrt[3]{x-8}$
- 13. $f(x) = \frac{x+2}{x^2+4}$ 14. $f(x) = \frac{x+2}{x^2-4}$
- **15.** $f(x) = \frac{x}{2x^2 + x}$ **16.** $f(x) = \frac{2x + 1}{4x^2 + 4x + 5}$
- 17. $f(x) = \frac{3}{x} + \frac{x-1}{x^2-1}$ 18. $f(x) = \frac{5}{x} + \frac{2x}{x+4}$
- 19. $f(x) = \frac{x^2 + 6x + 9}{|x| + 3}$ 20. $f(x) = \left| 4 \frac{8}{x^4 + x} \right|$
- 21. $f(x) = \begin{cases} 2x + 3, & x \le 4 \\ 7 + \frac{16}{x}, & x > 4 \end{cases}$
- 22. $f(x) = \begin{cases} \frac{3}{x-1}, & x \neq 1\\ 3, & x = 1 \end{cases}$

ENFOCANDO CONCEITOS

- 7. Em cada parte, esboce o gráfico de uma função f que satisfaça as condições propostas.
 - (a) f é contínua em toda parte, exceto em x = 3, onde é contínua à direita.
 - (b) f tem um limite bilateral em x = 3, mas não é contínua naquele ponto.
 - (c) f não é contínua em x = 3, mas se seu valor em x = 3for mudado de f(3) = 1 para f(3) = 0, torna-se contínua em x = 3.
 - (d) fé contínua no intervalo [0, 3) e está definida no inter-