In [2]:	<pre>import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np</pre>
	#분류 알고리즘 from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier #예측 알고리즘
	from sklearn.linear_model import LinearRegression from sklearn.svm import SVR from sklearn.ensemble import RandomForestRegressor from xgboost import XGBRegressor #평가 (분류)
	from sklearn.metrics import accuracy_score,confusion_matrix, classification_report #평가 (예측) from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score #데이터 스케일링 from sklearn.preprocessing import StandardScaler,LabelEncoder
In [3]:	#train, test 나누기 from sklearn.model_selection import train_test_split #예측할 데이터넷 불러오기 df1 = pd.read_csv("/Users/youngjinseo/Desktop/파이썬/insurance.csv")
	#분류할 데이터셋 불러오기 df2 = pd.read_csv("/Users/youngjinseo/Desktop/파이썬/mobile_price_classification.csv") 보구
In [25]: Out[25]:	battery_power blue clock_speed dual_sim fc four_g int_memory m_dep mobile_wt n_cores px_height px_width ram sc_h sc_w talk_time three_g touch_screen wifi price_range 0 842 0 2.2 0 1 0 7 0.6 188 2 20 756 2549 9 7 19 0 0 1 1
	1 1021 1 0.5 1 0 1 53 0.7 136 3 905 1988 2631 17 3 7 1 1 0 2 2 563 1 0.5 1 2 1 41 0.9 145 5 1263 1716 2603 11 2 9 1 1 0 2 3 615 1 2.5 0 0 0 10 0.8 131 6 1216 1786 2769 16 8 11 1 0 0 2 4 1821 1 1.2 0 13 1 44 0.6 141 2 1208 1212 1411 8 2 15 1 1 0 0 1 5 1859 0 0.5 1 3 0 22 0.7 164 1 1004 1654 1067 17 1 10 1
	6 1821 0 1.7 0 4 1 10 0.8 139 8 381 1018 3220 13 8 18 1 0 1 3 7 1954 0 0.5 1 0 0 24 0.8 187 4 512 1149 700 16 3 5 1 1 1 0 0 8 rows × 21 columns
In [26]:	### df2.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 2000 entries, 0 to 1999 Data columns (total 21 columns): # Column Non-Null Count Dtype</class>
	0 battery_power 2000 non-null int64 1 blue 2000 non-null int64 2 clock_speed 2000 non-null float64 3 dual_sim 2000 non-null int64 4 fc 2000 non-null int64 5 four_g 2000 non-null int64 6 int_memory 2000 non-null int64
	7 m_dep 2000 non-null float64 8 mobile_wt 2000 non-null int64 9 n_cores 2000 non-null int64 10 pc 2000 non-null int64 11 px_height 2000 non-null int64 12 px_width 2000 non-null int64 13 ram 2000 non-null int64
	14 sc_h 2000 non-null int64 15 sc_w 2000 non-null int64 16 talk_time 2000 non-null int64 17 three_g 2000 non-null int64 18 touch_screen 2000 non-null int64 19 wifi 2000 non-null int64 20 price_range 2000 non-null int64
In [27]: Out[27]:	df2.isnull().sum()
	clock_speed0dual_sim0fc0four_g0int_memory0m_dep0mobile_wt0
	n_cores 0 pc 0 px_height 0 px_width 0 ram 0 sc_h 0 sc_w 0
_	talk_time 0 three_g 0 touch_screen 0 wifi 0 price_range 0 dtype: int64
	#x, y = \(\frac{1}{2} \) y = \(\frac{1}{2} \) x = \(\frac{1}{2} \) #train_test_split xtrain_xtest_ytrain, ytest = \(\text{train_test_split} \) xtrain_xtest_ytrain_ytest = \(\text{train_test_split} \) #train_test_split
	<pre>print(xtrain.shape) print(xtest.shape) print(ytrain.shape) print(ytest.shape) (1400, 20) (600, 20) (1400,)</pre>
In [30]:	(600,)
In [31]:	# 모델 튜닝하기 rf = RandomForestClassifier(random_state = 42) dt = DecisionTreeClassifier(random_state = 42) lr = LogisticRegression(max_iter = 1000, random_state = 42) knn = KNeighborsClassifier()
In [32]:	svc = SVC(random_state = 42) # 모델 학습 및 평가 models = {'RandomForest':rf, 'DecisionTree': dt, 'LogisticRegression':lr,'KNN':knn, 'SVC':svc} results = {} for name, model in models.items():
	model.fit(xtrain, ytrain) ypred = model.predict(xtest) accuracy = accuracy_score(ytest, ypred) results[name] = accuracy # 결과 출력 print("모델별 정확도 결과:")
	for model,acc in results.items(): print(f"{model}:{acc:.2%}") 모델별 정확도 결과: RandomForest:86.83% DecisionTree:82.17% LogisticRegression:96.17%
In [33]:	KNN:50.83% SVC:87.33% #LogsticRegression으로 xtest 예측하기 ypred = lr.predict(xtest) #정확도 al = accuracy_score(ytest,ypred)
	print('Accuracy Score:',al) #홍동 행렬 print('\nConfusion Matrix:\n',confusion_matrix(ytest,ypred))
	#정밀도(Precision), 재현율(Recall), F1점수 (classification_report) print('\nClassification REport:\n',classification_report(ytest,ypred)) Accuracy Score: 0.961666666666667 Confusion Matrix: [[146 5 0 0]
	[3 143 0 0] [0 8 136 4] [0 0 3 152]] Classification REport: precision recall f1-score support 0 0.98 0.97 0.97 151
	1 0.92 0.98 0.95 146 2 0.98 0.92 0.95 148 3 0.97 0.98 0.98 155 accuracy macro avg 0.96 0.96 0.96 600 weighted avg 0.96 0.96 0.96 600
In [34]:	이 즉 #데이터셋 보기
Out[34]:	age sex bmi children smoker region charges 0 19 female 27.900 0 yes southwest 16884.92400 1 18 male 33.770 1 no southeast 1725.55230
	2 28 male 33.000 3 no southeast 4449.46200 3 33 male 22.705 0 no northwest 21984.47061 4 32 male 28.880 0 no northwest 3866.85520 5 31 female 25.740 0 no southeast 3756.62160 6 46 female 33.440 1 no southeast 8240.58960
In [35]:	7 37 female 27.740 3 no northwest 7281.50560 #데이터 정보보기 df1.info() <class 'pandas.core.frame.dataframe'=""></class>
	RangeIndex: 1338 entries, 0 to 1337 Data columns (total 7 columns): # Column Non-Null Count Dtype
To 1261	3 children 1338 non-null int64 4 smoker 1338 non-null object 5 region 1338 non-null object 6 charges 1338 non-null float64 dtypes: float64(2), int64(2), object(3) memory usage: 73.3+ KB
In [36]: Out[36]:	<pre>age 0 sex 0 bmi 0 children 0 smoker 0</pre>
In [4]:	region 0 charges 0 dtype: int64 #LabelEncoder 문자에서 숫자로 le = LabelEncoder()
Out[4]:	<pre>df1['sex']= le.fit_transform(df1['sex']) df1['smoker']= le.fit_transform(df1['smoker']) df1['region']= le.fit_transform(df1['region']) df1.head(8) age sex bmi children smoker region charges</pre>
	0 19 0 27.900 0 1 3 16884.92400 1 18 1 33.770 1 0 2 1725.55230 2 28 1 33.000 3 0 2 4449.46200 3 33 1 22.705 0 0 1 21984.47061
	4 32 1 28.880 0 0 1 3866.85520 5 31 0 25.740 0 0 2 3756.62160 6 46 0 33.440 1 0 2 8240.58960 7 37 0 27.740 3 0 1 7281.50560
	<pre>#x,y 나누기 x = df1.drop('charges',axis = 1) y = df1['charges'] #train_test_split xtrain,xtest,ytrain,ytest = train_test_split(x,y,test_size = 0.2, random_state = 42)</pre>
In [7]:	#데이터 스케일링 scaler = StandardScaler() xtrain = scaler.fit_transform(xtrain) xtest = scaler.fit_transform(xtest)
In [8]:	#모델 튜닝하기 lr = LinearRegression() svr = SVR(C=100, epsilon = 0.1, kernel = 'rbf') rfr = RandomForestRegressor(n_estimators = 100, random_state = 42) xgbr = XGBRegressor(n_estimators = 100, learning_rate = 0.1, max_depth = 61)
	#모델 평가 점수보기 lr.fit(xtrain,ytrain) print('LinearRegression:',lr.score(xtest,ytest)) svr.fit(xtrain,ytrain) print('SVR:',svr.score(xtest,ytest))
In [11]:	
In [11]:	rfr.fit(xtrain,ytrain) print('RandomForestRegressor:',rfr.score(xtest,ytest)) xgbr.fit(xtrain,ytrain) print('XGBRegressor:',xgbr.score(xtest,ytest)) LinearRegression: 0.7833237659369187 SVR: 0.328014938304937
	print('RandomForestRegressor:',rfr.score(xtest,ytest)) xgbr.fit(xtrain,ytrain) print('XGBRegressor:',xgbr.score(xtest,ytest)) LinearRegression: 0.7833237659369187 SVR: 0.328014938304937 RandomForestRegressor: 0.8617757870630031 XGBRegressor: 0.8315286678548098 #RandomForestRegressor으로 예측하기 ypred = rfr.predict(xtest) #평균 제곱 오차 (MSE), 평균 절대 오차 (MAE), R2점수 (결정 계수)보기
	print('RandomForestRegressor:',rfr.score(xtest,ytest)) xgbr.fit(xtrain,ytrain) print('XGBRegressor:',xgbr.score(xtest,ytest)) LinearRegression: 0.7833237659369187 SVR: 0.328014938304937 RandomForestRegressor: 0.8617757870630031 XGBRegressor: 0.8315286678548098 #RandomForestRegressor으로 예측하기 ypred = rfr.predict(xtest)