Separate Chaining

0	
1	4371
2	
3	1323, 6173
4	4344
5	
6	
7	
8	
9	4199, 9679, 1989

Linear Probing

0	9679
1	4371
2	1989
3	1323
4	6173
5	4344
6	
7	
8	
9	4199

Quadratic Probing

0	9679
1	4371
2	
3	1323
4	6173
5	4344
6	
7	
8	1989
9	4199

2nd Hash Function

0	
1	4371
2	
3	1323
4	6173
5	9679
6	
7	4344
8	
9	4199

2. Separate Chaining, Linear Probing, Quadratic Probing, 2nd Hash Function All have this table:

All liave tills table.		
0		
1	4371	
2		
3		
4		
5		
6		
7		
8		
9	6173	
10		
11	1989	
12	1323	
13	4199	
14		
15		
16		
17		
18		
19	9679	
20	4344	
21		
22		

5.	
a.	The heap-order property requires that every node
	be smaller than its parent. This means the
72.3	maximum value node cannot have any children, b/c
	it would be bigger than them. A node with no children
- 193	is a leaf.
b.	At any given height(h) there are $N=2^h$ nodes $N=\frac{h}{2}$ nodes $N=\frac{h}{2}$ nodes $N=\frac{h}{2}$ nodes total for a complete
	N = = 2h = 2h+1-1 nodes total for a complete
	tree of height h.
	$N = 2^{h+1} - 1$
	$N + 1 = 2^{h+1} \rightarrow ln(N+1) = (h+1) ln(2)$
	1 10(N+1) -1 = h -> log2(N+1)-1=h
	10(5)
	-> logz(N+1)-logz(2)=h->h=logz(N+1)
	Now the # of leaves is still 2h
	Now the # of leaves is still 2h $L=2^{h}=2^{\log_2\left(\frac{N+1}{2}\right)}=\frac{N+1}{2}=\frac{N}{2}+\frac{1}{2}=\left[\frac{N}{2}\right] Q.E.D$
	merson as the
C.	As we have alread-, proven that the maximum node must
	be a leaf, and heaps do not organize themselves in
	any other way than the heap-order property. Hence
	we must check every leaf node to find the
	maximum node.