Deterministic and stochastic effects of food quality on extinction time

David Nguyen

2021-04-15

Data

Bean weevil abundances

- Response: Census of adult weevils every 4 days
- Treatment: food quality (0, 5, 10, 15 % peanut shell)
- Experimental design: 10 replicates per treatment level = 40 populationsx
 - Pure bean pellets and 4 adult weevils added every 4 days up to day 28
 - Day 32 treatment begins. Food added every 7 days.

Model

Definitions

- $n_{ij,t}$: the adult weevil count for treatment i, replicate j, and time t
- $n_{ij,t-1}$: the adult weevil count for treatment i, replicate j, and time t-1 lag
- $z_{ij,t}$: The expected number of adult weevils for treatment i, replicate j, and time t
- α_{ij} : treatment specific population growth rate in replicate j
- β_{ij} : effect of previous population size at t-1 on expected number of adult weevils at time t for treatment i in replicate j
- $\mu_{\alpha,i}$: the mean population growth rate for treatment i
- μ_{β_i} : the mean effect of previous population size at t-1 on expected number of adult weevils at time
- σ_{α}^2 : variance of distribution of population growth rates σ_{β}^2 : variance of distribution of density dependence magnitudes (maybe should make it specific to lag

Gompertz process model

$$N_t = N_{t-1} \exp(\alpha + \beta \ln(N_{t-1}))$$

= $g(\alpha, \beta, n_{t-1})$

But, note that when $N_{t-1} = 0$, then all subsequent abundances will be zero.

The log-gompertz model (might?) be more useful for estimation since we no longer multiply by N_{t-1} .

$$X_t = \alpha + \beta X_{t-1}$$

= $g(\alpha, \beta, n_{t-1})$

Note that β_1 in the log-gompertz is technically $(1 + \beta_1)$ for the model on arithmetic (not-logged) scale.

Full model

```
\begin{split} [\alpha,\beta,\mu_{\alpha},\mu_{\beta},Z,\sigma_{p}^{2},\sigma_{\alpha}^{2},\sigma_{\beta}^{2}|N] &\propto \prod_{i=1}^{4} \prod_{j=1}^{J_{ij}} \prod_{t=1}^{T_{ij}} \operatorname{Poisson}[n_{ij,t}|\exp(Z_{ij,t})] \\ &\operatorname{normal}(Z_{ij,t}|g(\alpha_{i},\beta_{ik},n_{ij,t-1},\ldots,n_{ij,t-1}),\sigma_{p}^{2}) \\ &\operatorname{N}[\alpha_{ij}|\mu_{\alpha,i},\sigma_{\alpha}^{2}] \\ &\operatorname{N}[\beta_{ij}|\mu_{\beta_{i}},\sigma_{\beta}^{2}] \\ &\operatorname{Unif}[\mu_{\alpha,i}|0,3] \\ &\operatorname{Unif}[\mu_{\beta_{ik}}|-1.1,1.1] \\ &\operatorname{inv.gamma}[\sigma_{\alpha}^{2}|0.001,0.001] \\ &\operatorname{inv.gamma}[\sigma_{p}^{2}|0.001,0.001] \\ &\operatorname{inv.gamma}[\sigma_{p}^{2}|0.001,0.001] \end{split}
```

Model fitting: Direct density dependence

This is the full model presented earlier with direct density dependence only (k = 1).

```
set.seed(123)
data <-
 list(
 n = as.numeric(weevil$N_lag0),
 lag1 = as.numeric(ifelse(weevil$N_lag1 == 0, 0.001, weevil$N_lag1)),
  lnlag1 = log(ifelse(weevil$N_lag1 == 0, 0.001, weevil$N_lag1)),
  replicate = as.numeric(weevil$replicate), # nx1 vector of replicate numbers for each observation
  sreplicate = as.numeric(1:10), # replicate numbers
  treatment = as.numeric(weevil$ftreatment), # nx1 vector of treatment levels for each observation
  streatment = as.numeric(1:4), # treatment levels
  start_index = as.numeric(trt_index$init_index), # 1st obs. number for trt 1:4
  end_index = as.numeric(trt_index$end_index) # last obs. number for trt 1:4
inits <-
 list(
   list(mu_a = rep(1, 4), mu_b = rep(0.5, 4), tau_a = 1/5, tau_b = 1/5, tau_p = 0.001),
   list(mu_a = rep(0.5, 4), mu_b = rep(0.2, 4), tau_a = 1/10, tau_b = 1/10, tau_p = 0.01),
   list(mu_a = rep(1.5, 4), mu_b = rep(0.9, 4), tau_a = 1/100, tau_b = 1/100, tau_p = 0.005)
```

```
variablenames <- c("mu_a", "mu_b", "sd_a", "sd_b", "sd_p", "K", #"n_new",
                   "ts_cv", "ts_new_cv", "indicator_cv",
                   "ts_max", "ts_new_max", "indicator_max")
modelstring="
model{
 #likelihood
 for (t in 1:length(n)){
    z[t] ~ dnorm(a[treatment[t], replicate[t]] + b[treatment[t], replicate[t]]*lnlag1[t], tau_p)
    n[t] ~ dpois(exp(z[t]))
    # posterior predictive dist. Uses new values for a and b for each replicate
    z_new[t] ~ dnorm(a_new[treatment[t], replicate[t]] + b_new[treatment[t], replicate[t]]*lnlag1[t], t
    n_new[t] ~ dpois(exp(z_new[t]))
  # draw a and b's
  # store in a 4 x 10 matrix (rows are treatment levels, cols are replicate number)
  for (i in 1:length(streatment)) {
  for (j in 1:length(sreplicate)) {
      a[i, j] ~ dnorm(mu_a[i], tau_a)
      b[i, j] ~ dnorm(mu_b[i], tau_b)
      # get new a and b for replicates for posterior predictive dist'n
      a_new[i, j] ~ dnorm(mu_a[i], tau_a)
      b_new[i, j] ~ dnorm(mu_b[i], tau_b)
 }
  # Draw for mean of treatment specific a and b
  for (i in 1:length(streatment)) {
      mu_a[i] \sim dunif(0,3)
      mu_b[i] ~ dunif(-1.1, 1.1)
  # Draw for precisions
  tau_a ~ dgamma(0.001, 0.001)
  tau_b ~ dgamma(0.001, 0.001)
  tau_p ~ dgamma(0.001, 0.001) # same process error across treatments
  # convert precision to sd
  sd_a <- 1/sqrt(tau_a)</pre>
  sd_b <- 1/sqrt(tau_b)</pre>
  sd_p <- 1/sqrt(tau_p)</pre>
  # Compute carrying capacity
  for (i in 1:length(streatment)) {
   K[i] \leftarrow \exp(mu_a[i]/(1-mu_b[i]))
  }
  # compute test statistics for each treatment group
  for (i in 1:length(streatment)) {
    # coefficient of variation
```

```
ts_cv[i] <- mean(n[start_index[i]:end_index[i]]) / sd(n[start_index[i]:end_index[i]])
ts_new_cv[i] <- mean(n_new[start_index[i]:end_index[i]]) / sd(n_new[start_index[i]:end_index[i]])
indicator_cv[i] <- ifelse(ts_new_cv[i] > ts_cv[i], 1, 0)

# Max abundance
ts_max[i] <- max(n[start_index[i]:end_index[i]])
ts_new_max[i] <- max(n_new[start_index[i]:end_index[i]])
indicator_max[i] <- ifelse(ts_new_max[i] > ts_max[i], 1, 0)
}

}"

jm = jags.model(textConnection(modelstring),data,inits,n.chains=length(inits),n.adapt=1000) #create mod
update(jm, n.iter=10000) #burn-in
cs = coda.samples(jm,variable.names = variablenames,n.iter=30000) #generate chains
save(cs, file = "chains/weevil_random_trt_proc_error.RData")
```

Checking convergence

trace plots

```
load("chains/weevil_random_trt_proc_error.RData")
color_scheme_set("viridis")
bayesplot::mcmc_trace(cs, pars = vars(starts_with(c("mu", "sd", "K"))))
         mu a[1]
                                                    mu_a[3]
                                                                        mu_a[4]
                                           1.50
                                                               1.0
0.8
0.6
0.4
                      1.2
                                           1.25
                                           1.00
                      0.8
                                           0.75
    0.5000003000003000000
                         0.5000003000000000000
                                                                   0500005020025020000
                              mu b[2]
                                                    mu b[3]
         mu b[1]
                                                                        mu b[4]
                                            0.6
0.6
0.5
0.4
0.3
                      0.7
                                                                0.4
                                            0.5
                     0.6
                                                                0.
                                            0.4
                      0.5
                                                                                      Chain
                                            0.3
                      0.4
    050000350200250800000
                                                05000035020025000000
                                                                                           2
                               sd b
                                                                         K[1]
                                                     sd p
                     0.20
                                                                40
0.4
                                                                                           3
                     0.15
                                          0.275
                                                                30
0.
                    0.10
                                          0.250
                                                                20
                                          0.225
    05000050200250200000
                                                050000332002530000
                                                                   0500005020025020000
                               K[3]
                                                     K[4]
          K[2]
 60
                      15
                                             4
 40
                      10
 20
                                               05000050200250200000
```

density plots

```
bayesplot::mcmc_dens_overlay(cs, pars = vars(starts_with(c("mu", "sd", "K"))))
```


autocorrelation of chains

```
bayesplot::mcmc_acf(cs, pars = vars(starts_with(c("mu", "sd", "K"))))
```


R-hat and effective sample size

MCMCvis::MCMCsummary(cs, params = c("mu_a", "mu_b", "sd_a", "sd_b", "sd_p", "K")) %>% knitr::kable(digits

	mean	sd	2.5%	50%	97.5%	Rhat	n.eff
mu_a[1]	1.36	0.09	1.18	1.36	1.53	1.00	541
$mu_a[2]$	1.04	0.07	0.90	1.04	1.16	1.00	2293
$mu_a[3]$	0.97	0.07	0.84	0.97	1.10	1.00	2383
$mu_a[4]$	0.71	0.08	0.54	0.71	0.86	1.00	3449
mu_b[1]	0.46	0.04	0.39	0.46	0.54	1.00	734
$mu_b[2]$	0.55	0.03	0.49	0.55	0.61	1.00	3205
mu_b[3]	0.44	0.03	0.37	0.44	0.51	1.00	2076
$mu_b[4]$	0.29	0.04	0.21	0.29	0.38	1.00	1496
sd_a	0.15	0.05	0.04	0.15	0.25	1.01	313
sd_b	0.08	0.02	0.03	0.08	0.12	1.01	353
sd_p	0.25	0.01	0.23	0.25	0.27	1.00	3038
K[1]	12.69	2.10	9.29	12.45	17.63	1.00	39381
K[2]	10.17	1.92	7.12	9.94	14.68	1.00	33446
K[3]	5.73	0.76	4.39	5.68	7.43	1.00	22130
K[4]	2.73	0.32	2.15	2.72	3.41	1.00	5934

- \hat{R} : measures ratio average variance within change compared to across chains.
- Effective sample size: measures how much autocorrelation in chains increases uncertainty in estimates of posterior
 - how large does my N_{eff} need to be? Not sure see mcmcse

Model Checking

Coefficient of variation: $CV_i = \mu_i/\sigma_i$

Table 2: Posterior predictive check: coefficient of variation

treatment	ts_obs	ts_pred	p_value
0.00	2.9644458	2.055061	0.0000000
0.05	1.3182378	1.411516	0.8322889
0.10	1.0066157	1.180144	0.9872111
0.15	0.8217851	1.061684	0.9994667

Maximum: $\max(n_i)$

Table 3: Posterior predictive check: max abundance

treatment	ts_obs	ts_pred	p_value
0.00	29	48.06102	0.9974333
0.05	54	48.79607	0.2485556
0.10	22	24.34962	0.5663444
0.15	13	10.50621	0.0916111

Comparing models

 $X_{ij,t} = a_i + b_i X_{ij,t-1} + N(0, \sigma_i^2)$, for treatment i = 1, 2, 3, 4, replicate j = 1, ..., 10.

- Both
 - Gompertz with direct density dependence
- Bayesian
 - response is poisson with lognormal process error
 - random effect of treatment (variation among replicates)
 - shared parameters: $\sigma_a, \sigma_b, \sigma_p$
- GLS
 - response is lognormal
 - fixed effect of treatments (no random effect of replicate)
 - treatment specific residual (process error)

Parameter estimates

Table 4: Parameter estimates from hierarchical bayes model

treatment	density dependence (b)	population growth rate (a)	process noise (sd)
0	0.46 (0.39 , 0.54)	1.36 (1.18 , 1.53)	0.25 (0.23 , 0.27)
0.05	$0.55 \; (\; 0.49 \; , 0.61 \;)$	$1.04 \; (\; 0.9 \; , 1.16 \;)$	$0.25 \; (\; 0.23 \; , 0.27 \;)$
0.1	$0.44 \; (\; 0.37 \; , 0.51 \;)$	$0.97 \; (\; 0.84 \; , \; 1.1 \;)$	$0.25 \; (\; 0.23 \; , 0.27 \;)$
0.15	$0.29 \; (\; 0.21 \; , 0.38 \;)$	$0.71 \; (\; 0.54 \; , 0.86 \;)$	$0.25 \; (\; 0.23 \; , 0.27 \;)$

Table 5: Parameter estimates from previous model: treatment specific variance $\,$

treatment	density dependence (b)	population growth rate (a)	process noise (sd)
0	0.57 (0.52 , 0.61)	1.11 (0.99 , 1.23)	0.29 (0.27 , 0.3)
0.05	$0.25 \; (\; 0.19 \; , 0.31 \;)$	$0.38 \; (\; 0.3 \; , 0.45 \;)$	$0.48 \; (\; 0.44 \; , \; 0.53 \;)$
0.1	0.24~(~0.17~,~0.31~)	0.24~(~0.16~,~0.32~)	$0.55 \; (\; 0.49 \; , 0.61 \;)$
0.15	$0.13 \; (\; 0.03 \; , \; 0.23 \;)$	0.2 (0.08 , 0.32)	$0.52 \; (\; 0.45 \; , 0.6 \;)$

Comparison of model predictions

HB Gompertz model: comparison of observed and predicted abundances

red: simulated abundance, black: observed abundance

Gompertz model simulations with parameters from top model

1 sim Simulations conditioned on inital population s

Figure 1: Log-Gompertz model estimated by GLS

95% CrI of carrying capacity (derived quantity)

Model prediction: expected carrying capacity 95 % credible interval

Predictions for individual replicates

Gompertz model simulations with parameters from top model 0 % peanut shell

1 simulation per replicate. Simulations conditioned on inital population size in each replicate.

Gompertz model simulations with parameters from top model 5 % peanut shell

1 simulation per replicate. Simulations conditioned on inital population size in each replicate.

Gompertz model simulations with parameters from top model 10 % peanut shell

1 simulation per replicate. Simulations conditioned on inital population size in each replicate.

Gompertz model simulations with parameters from top model 15 % peanut shell

1 simulation per replicate. Simulations conditioned on inital population size in each replicate.

Final thoughts

- Modeling populations as discrete vs continuous
- Delayed density dependence
- Latent stages
- Look into effective sample size and monte carlo error