ЛКШ.2015.Июль.AS.День 10: структуры данных (часть 2) Судиславль, Берендеевы Поляны, 16 июля 2015, вторник

Содержание

Задача А.	Count Online [0.5 sec, 256 mb]	2
Задача В.	Приказы [0.5 sec, 256 mb]	3
Задача С.	Обратная инверсия-2 [0.5 sec, 256 mb]	4
Задача D.	Gyakkyou Burai Kaiji [0.5 sec, 256 mb]	5

Задача A. Count Online [0.5 sec, 256 mb]

Вам дано множество точек на плоскости.

Нужно уметь отвечать на два типа запросов:

- \circ ? x_1 y_1 x_2 y_2 сказать, сколько точек лежит в прямоугольнике $[x_1..x_2] \times [y_1..y_2]$. Точки на границе и в углах тоже считаются. $x_1 \leqslant x_2, y_1 \leqslant y_2$.
- \circ + x y добавить в множество точку (x + res % 100, y + res % 101). Где res ответ на последний запрос вида ?, а % операция взятия по модулю.

Формат входных данных

Число точек N ($1 \le N \le 50\,000$). Далее N точек. Число запросов Q ($1 \le Q \le 100\,000$). Далее Q запросов. Все координаты от 0 до 10^9 .

Формат выходных данных

Для каждого запроса GET одно целое число — количество точек внутри прямоугольника.

Пример

stdin	stdout
5	3
0 0	3
1 0	1
0 1	0
1 1	0
1 1	3
9	
? 0 1 1 2	
+ 1 2	
+ 2 2	
? 1 0 2 2	
? 0 0 0 0	
+ 3 3	
? 3 3 3 3	
? 4 3 4 3	
? 4 4 5 5	

Замечание

На самом деле добавлялись точки (4, 5), (5, 5), (4, 4).

Задача В. Приказы [0.5 sec, 256 mb]

Вася работает в НИИГСД (НИИ Государственных Структур Данных). Он изучает приказы правительства далёкого государства.

В том государстве все города расположены вдоль одной дороги. Они пронумерованы в порядке обхода. Изначально качество жизни в каждом из них равно нулю.

Далее последовательно издаются указы вида «уровень жизни в городах с i по j должен стать не меньше x».

Также есть некоторые официальные заявления. Они имеют следующую форму: «средний уровень жизни в городах с i по j равен x». Вася нуждается в помощи с проверкой этих утверждений: для каждого из них известны i и j, требуется подсчитать верное значение x.

Можете считать, что каждый приказ исполняется, а также в каждый момент времени каждый город имеет минимальный неотрицательный уровень жизни, удовлетворяющий всем приказам.

Формат входных данных

Ввод состоит из одного или более тестов. Каждый тест начинается строкой с двумя целыми числами n и k — числом городов и событий, соответственно. Следующие k строк содержат по одному описанию события:

- 1. ^ $i \ j \ x$ означает приказ: после этого, все города с номерами от $i \ до \ j$ включительно должны иметь уровень жизни не менее $x \ (1 \leqslant x \leqslant 10^9, \ 1 \leqslant i \leqslant j \leqslant n)$.
- 2. ? $i\ j$ означает официальное заявление: следует подсчитать средний уровень жизни в городах с i по j включительно $(1 \le i \le j \le n)$.

В конце ввода будет помещён тест с n=k=0, который не требуется обрабатывать. Сумма n по всему вводу не превысит 100 000. Сумма k по всему вводу не превысит 100 000.

Формат выходных данных

Для каждого официального заявления выведите на отдельной строке искомый средний уровень жизни в виде несократимой дроби с наименьшим возможным натуральным знаменателем. Если знаменатель равен 1, выведите вместо дроби целое число. Следуйте формату вывода, как это показано в примере.

Пример

stdin	stdout
10 10	0
? 1 10	1
^ 1 10 1	10
? 1 10	10
^ 2 3 10	5
^ 3 4 5	27/5
? 2 2	16/5
? 3 3	
? 4 4	
? 1 5	
? 1 10	
0 0	

Задача С. Обратная инверсия-2 [0.5 sec, 256 mb]

Таблицей инверсий для перестановки $A=(a_1,a_2,\ldots,a_n)$ чисел $\{1,2,\ldots,N\}$ называется массив $X=(x_i)_{1\leq i\leq N}$, в котором на i-м месте стоит количество элементов, больших i, но стоящих левее, чем i, т.е $x_i=$ число таких j', что $j'< j, a_{j'}>a_j=i$.

Например, таблицей инверсий для перестановки (2,5,1,3,4) будет (2,0,1,1,0), а для перестановки (6,1,3,7,5,4,2)-(1,5,1,3,2,0,0).

Обратной перестановкой A^{-1} к перестановке A называется такая перестановка чисел, что на i-м месте в A^{-1} стоит номер места, на котором стоит элемент, равный i, в перестановке A.

Например, для перестановки (2,5,1,3,4) обратной будет (3,1,4,5,2) (т.к. 1 стоит на третьем месте, 2 — на первом, 3 — на четвертом, 4 — на пятом, а 5 — на втором), а для перестановки (2,7,3,6,5,1,4) обратной будет (6,1,3,7,5,4,2).

Ваша задача — по таблице инверсий перестановки A посчитать таблицу инверсий обратной перестановки A^{-1} .

Формат входных данных

Файл состоит ровно из N чисел, разделенных пробелами и переводами строки, задающих таблицу инверсий перестановки A. Число N находится в пределах от 1 до **262 144**.

Формат выходных данных

Выведите N целых чисел, разделенных пробелами — таблицу инверсий для обратной перестановки.

Пример

stdin	stdout
2 0 1 1 0	1 3 0 0 0
5 0 1 3 2 1 0	1 5 1 3 2 0 0

Задача D. Gyakkyou Burai Kaiji [0.5 sec, 256 mb]

You shouldn't let kings like myself draw twice.

Однажды, прежде чем появится здесь. Каиджи потерял все. Единственное, что у него осталось — жалкая жизнь.

Правила этой игры практически такие же. Есть N различных типов карт, все типы пронумерованы числами от 1 до N включительно. Каиджи хранит свои карты в колодах. Карты одинакового типа он кладет в одинаковые колоды, а карты разного типа в разные. Индекс каждой колоды совпадает с индексом типа карт, которые она содержит.

В любой момент времени, у Каиджи может быть от 0 до 999 999 999 карт каждого типа. Однако, сейчас игроки не могут купить, продать или обменяться картами. Таким образом, количество карт каждого типа, которое есть у Каиджи, остается одинаковым в течение всей игры. В течение хода, Каиджи может сыграть, используя только одну колоду с индкексами из отрезка [i,j] где i и j параметры хода.

Каиджи уже изучил поведение и стратегии всех игроков и разработал выигрышную стратегию. Теперь все, что ему надо, это быстро находить ответы к текущему типу вопроса: на ходе с параметрами i и j, какое количество карт в k-й по величине колоде среди колод, которые он использует? Помогите ему ответить на эти вопросы.

Первая строка содержит целое число N, количество типов карт $(1 \le N \le 450\,000)$.

Вторая строка используется, чтобы сгенерировать целые числа a_i , начальное количество карт каждого типа, которое есть у Каиджи ($0 \le a_i < 10^9$). Она содержит три целых числа a_1 , l и m. ($0 \le a_1, l, m < 10^9$); $2 \le i \le N$,

$$a_i = (a_{i-1} \cdot l + m) \bmod 10^9.$$

Третья строка содержит целое число B — число противников ($1\leqslant B\leqslant 1000$). B следующих строк описывают множество игр с отдельным противником. Каждое множество описывается десятью целыми числами. Первым идет число G — число игр, сыгранных с этим противником. Затем следуют $x_1,\ l_x$ и m_x , потом $y_1,\ l_y$ и m_y , и наконец, $k_1,\ l_k$ и m_k ($1\leqslant x_1\leqslant y_1\leqslant N,\ 1\leqslant k_1\leqslant y_1-x_1+1,\ 0\leqslant l_x,m_x,l_y,m_y,l_k,m_k<10^9$). Они используются, чтобы сгенерировать вспомогательную последовательность x_g и y_g и текущие параметры i_g , j_g и k_g для $1\leqslant g\leqslant G$:

$$\begin{array}{lll} x_g & = & ((i_{g-1}-1)\cdot l_x + m_x) \bmod N) + 1, & 2 \leqslant g \leqslant G \\ y_g & = & ((j_{g-1}-1)\cdot l_y + m_y) \bmod N) + 1, & 2 \leqslant g \leqslant G \\ i_g & = & \min(x_g,y_g), & 1 \leqslant g \leqslant G \\ j_g & = & \max(x_g,y_g), & 1 \leqslant g \leqslant G \\ k_g & = & (((k_{g-1}-1)\cdot l_k + m_k) \bmod (j_g - i_g + 1)) + 1, & 2 \leqslant g \leqslant G \end{array}$$

Сгенерированные параметры означают, что в g-й игре с текущим противником, Каиджи хочет знать количество карт в k_g -й по величине колоде среди всех колод с индексами из отрезка $[i_g, j_g]$. Общее количество игр, сыгранных Каиджи, не превышает 600 000.

Формат выходных данных

Для каждой игры g с каждым противником b, найдите число карт в k_g -й по величине колоде, среди его колод с индексами из отрезка $[i_g,j_g]$. Выведите одно число: сумму всех этих значений.

Пример

stdin	stdout
5	15
1 1 1	
5	
1 1 0 0 3 0 0 2 0 0	
1 2 0 0 5 0 0 3 0 0	
1 1 0 0 5 0 0 5 0 0	
1 3 0 0 3 0 0 1 0 0	
1 1 0 0 4 0 0 1 0 0	

У Каиджи есть i карт i-го типа для всех i=1,2,3,4,5. Каждый тип выбирается только один раз. Таким образом ответ 15.