Langages et Compilation

L4: Analyse Syntaxique (2)
T. Goubier
L3A
2019/2020

- L3: top-down parsing
- L4: bottom-up parsing
 - Une manière plus puissante de faire de l'analyse syntaxique
 - Celle utilisée dans SmaCC
 - Et Bison, et Yacc, etc.
 - Principe
 - Partir des tokens
 - Et reconstruire des phrases de plus en plus complexes (arbre)
 - Sans jamais avoir à revenir en arrière

$$3 + 4$$

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid < numb$

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid < numb$

```
E \rightarrow E + T \mid T

T \rightarrow T * F \mid F

F \rightarrow (E) \mid < numb
```



```
E \rightarrow E + T \mid T

T \rightarrow T * F \mid F

F \rightarrow (E) \mid < numb
```


$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid < numb$


```
E \rightarrow E + T \mid T

T \rightarrow T * F \mid F

F \rightarrow (E) \mid < numb
```


$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid < numb$

- Principes
 - Deux opérations: shift et reduce
 - Reduce:
 - Remplacer la phrase ω par A, si on a une production A $\rightarrow \omega$
 - C'est l'inverse d'une dérivation
 - Shift:
 - ajoute le token courant à la phrase ω
 - En pratique, c'est construire une dérivation à droite

Théorie

- notion de handle
 - on a: $S \Rightarrow^* \alpha A \omega \Rightarrow \alpha \beta \omega$
 - alors: $A \rightarrow \beta$ et la position après α est une handle
 - note : ω ne contient que des terminaux (c'est l'entrée non encore traitée)
 - note2: α peut contenir des terminaux et des non-terminaux
- Principe du parse
 - Commencer par ω
 - A chaque étape, chercher la handle β et appliquer la réduction A → β
 - (remplacer β par A)
 - Jusqu'à atteindre S

- Shift-Reduce parsing (l'implémentation)
 - Une pile, un buffer d'entrée (contenant les tokens)

– État initial:

Stack	Input
\$	ω\$

État final

Stack	Input
\$ S	\$

Exemple

-3 + 4

Stack	Input	Action
\$	3 + 4 \$	Shift
\$ 3	+ 4 \$	Reduce F → <number></number>
\$ F	+ 4 \$	Reduce T → F
\$ T	+ 4 \$	Reduce E → T
\$ E	+ 4 \$	Shift
\$ E +	4 \$	Shift
\$ E + 4	\$	Reduce F → <number></number>
\$ E + F	\$	Reduce T → F
\$ E + T	\$	Reduce E \rightarrow E + T
\$ E	\$	Accept

- Actions d'un parseur shift-reduce:
 - Shift
 - met le token suivant sur la pile
 - Reduce
 - considère une chaîne β sur la pile; le haut de la pile est le dernier caractère de β. Trouver le début de β dans la pile et remplacer par un non-terminal
 - Accept
 - signifie que la chaîne est acceptée
 - Error
 - retourne une erreur

Principe:

- Shift jusqu'à ce que on ait une handle sur la pile
- Reduce pour remplacer cette handle par un nonterminal
- La handle n'est jamais à l'intérieur de la pile: elle se trouve toujours sur le dessus
 - Le dernier symbole de la handle est le haut de la pile

Démonstration

- Cas 1 : la partie droite de A contient des nonterminaux
 - A \rightarrow B B y; B \rightarrow γ
 - $S \Rightarrow * \alpha A z \Rightarrow \alpha \beta B y z \Rightarrow \alpha \beta \gamma y z$
- Parseur

Stack	Input
\$αβγ	y z \$
\$αβΒ	y z \$
\$αβΒy	z \$
\$ α A	z \$

- Démonstration
 - Cas 2: la partie droite de A ne contient que des terminaux
 - $A \rightarrow y$; $B \rightarrow \gamma$
 - $S \Rightarrow^* \alpha B x A z \Rightarrow \alpha B x y z \Rightarrow \alpha \gamma x y z$
 - Parseur

Stack	Input
\$αγ	x y z \$
\$ α B	x y z \$
\$ α B x y	z \$
\$ α B x A	z \$

- Conflits:
 - Deux types: shift/reduce et reduce/reduce
 - Shift/reduce
 - Ambiguité type if/else du C
 stmt → if (expr) stmt else stmt
 → if (expr) stmt

Stack	Input
if (expr) stmt	else \$

Conflits:

- Deux types: shift/reduce et reduce/reduce
- Shift/reduce
 - Solution
 - Privilégier le shift au reduce (greedy: créer la phrase la plus longue)
 - Conforme à la sémantique du langage C (par exemple).

Stack	Input
if (expr) stmt	else \$

Conflits:

- Deux types: shift/reduce et reduce/reduce
- reduce/reduce

```
stmt → id ( parameter ) "function call"

parameter → id

expr → id

→ id ( expr ) "Array access"
```

Stack	Input
id (id) \$

Conflits:

- Deux types: shift/reduce et reduce/reduce
- reduce/reduce
 - Solution: avoir un autre token fid pour les fonctions (utiliser une table des symboles)
 - stmt → fid (parameter) "function call"
 - Un parseur shift/reduce sait utiliser la pile entière pour choisir le reduce

Stack	Input
fid (id) \$

- Implémentation: LR
 - LR(k)
 - "L" left to right: scan de gauche à droite de l'entrée
 - "R" rightmost : dérivation à droite
 - construite à l'envers
 - k: nombre de tokens de lookahead
 - en pratique, k = 0 ou 1
 - Parseurs basés sur des tables

Intérêt de LR ?

- Les parseurs LR peuvent reconnaître presque toutes les constructions des langages de programmation
- Le parsing LR est la méthode la plus générale de shift/reduce sans backtracking, et la plus efficace
- Un parseur LR peut détecter une erreur de syntaxe au plus tôt
- Les grammaires LR(k) sont un superset des grammaires LL(k)

Défaut:

- Construire la table est trop complexe à faire à la main
- Éventuellement on peut écrire à la main: parseurs récursifs ascendants

- Un parseur LR sait quand faire shift ou reduce via un automate
- Chaque état de cet automate correspond à un ensemble d'"items"
- Un "item" est une production avec un point dans le body
 - Par exemple, pour $A \rightarrow \alpha \beta \delta$, les items possibles sont:
 - $A \rightarrow . \alpha \beta \delta$
 - $A \rightarrow \alpha$. β δ
 - $A \rightarrow \alpha \beta . \delta$
 - $A \rightarrow \alpha \beta \delta$.

- Pour A → ε , on a un seul item: A → .
- Signification:
 - Si on est à l'item $A \rightarrow \alpha$. β δ
 - alors nous avons dérivé α dans l'entrée et nous nous attendons à voir β et δ
 - Si on est à l'item A → α β δ .
 - Alors on a dérivé α, β et δ, et il est temps de réduire à A
- Construction:
 - L'automate LR(0)

- Automate LR(0)
 - Grammaire augmentée G'
 - Si G est une grammaire avec comme symbole de départ S
 - Alors G' est une grammaire augmentée avec
 - S' symbole de départ
 - Et la production S' → S
 - Deux fonctions
 - CLOSURE
 - GOTO

CLOSURE(I):

- Démarrer avec I, un ensemble d'items
- Si A $\rightarrow \alpha$. B β est dans CLOSURE(I) et B $\rightarrow \gamma$ une production,
 - alors ajouter B → . γ à CLOSURE(I) s'il n'y est pas déjà.
- Continuer jusqu'à ce qu'aucun nouvel item ne puisse être ajouté
- GOTO(I, X) (I ensemble d'items, X symbole de G)
 - C'est la closure de tous les items $A \rightarrow \alpha X \cdot \beta$,
 - avec A → α . X β ∈ CLOSURE(I)

Exemple:

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid < number >$

Augmentée

$$S \rightarrow E$$

- Items

$$S \rightarrow . E$$

 $S \rightarrow E .$

```
E \rightarrow . E + T
E \rightarrow E . + T
E \rightarrow E + . T
E \rightarrow E + T .
E \rightarrow . T
E \rightarrow . T
E \rightarrow . T
...
```

- Question
 - Construire CLOSURE et GOTO ...
 - Commencer avec I₀:

```
S \rightarrow . E
```

- Compléter la closure (si A $\rightarrow \alpha$. B β , et B $\rightarrow \gamma$, alors...)

```
E \rightarrow . E + T

E \rightarrow . T

T \rightarrow . T * F

T \rightarrow . F

F \rightarrow . (E)

F \rightarrow . < number >
```

- Question
 - Construire CLOSURE et GOTO ...
 - Continuer avec GOTO

```
    GOTO(I₀, E):
        S → E.
        E → E. + T
    GOTO(I₀, <number>)
        F → <number>.
```

Utilisation

- Construction d'un automate LR(0) à partir de CLOSURE et GOTO
- Chaque item set (I₀, I₁, I₂) est un état
- Chaque GOTO(I_x, c) est un shift (c un terminal)
- Chaque GOTO(I_x, A) est une réduction (A un nonterminal)
 - Et si In = GOTO(Ix, A) alors l'état après réduction est In