

PROBABILIDADE

AGENDA

- O que é probabilidade?
- Critérios da probabilidade
- Propriedades das probabilidades
- Variáveis aleatórias
- Distribuições de probabilidades

T

O QUE É PROBABILIDADE?

Estatística x Probabilidade

Área do conhecimento que se dedica à coleta, à organização, à análise e à interpretação de dados

Estudo/ quantificação da incerteza associada à ocorrência de eventos

Qual a probabilidade de chover amanhã?

Qual a probabilidade de eu ganhar na Mega Sena?

- 1. Probabilidade frequentista
- 2. Probabilidade clássica
- 3. Probabilidade subjetiva

- 1. Probabilidade frequentista
- 2. Probabilidade clássica
- 3. Probabilidade subjetiva

Qual a probabilidade de ocorrer um acidente aéreo com fatalidade em um voo comercial?

De acordo com a ANAC, entre 2010 e 2019 ocorreram **11.633.540** voos comerciais regulares

Nesse mesmo período, o CENIPA registrou **524** acidentes com fatalidades

- 1. Probabilidade frequentista
- 2. Probabilidade clássica
- 3. Probabilidade subjetiva

Qual a probabilidade de ocorrer um acidente aéreo com fatalidade em um voo comercial?

T

HÁTRÊS FORMAS DE DEFINIR PROBABILIDADE

- 1. Probabilidade frequentista
- 2. Probabilidade clássica
- 3. Probabilidade subjetiva

Qual a probabilidade de sair o número 18?

$$\frac{1}{20}$$
 = 0,05 = 5%

Evento

É um resultado possível (no qual estamos interessados) Exemplos:

- Obter o número 18 ao jogar o dado de 20 faces
- Ocorrer um voo com fatalidade

Evento simples

É um evento que não pode ser decomposto em outros eventos

- Obter o número 18 no dado é um evento simples
- Obter um número par no dado **não** é um evento simples

"obter 2 ou obter 4 ou obter 6..."

Espaço amostral = espaço de eventos

É o conjunto de todos os eventos simples possíveis.

 O espaço amostral do experimento de jogar um dado de vinte faces é: {1, 2, 3, ..., 18, 19, 20}.

Simbologia da Teoria dos Conjuntos: elementos do conjunto lado a lado, separados por vírgula e limitados por chaves

 O espaço amostral do exemplo do voo comercial é: {ocorrer um voo com fatalidade, não ocorrer um voo com fatalidade}.

- 1. Probabilidade frequentista
- 2. Probabilidade clássica
- 3. Probabilidade subjetiva

Qual a probabilidade de sair o número 18?

$$\frac{1}{20}$$
 = 0,05 = 5%

Importante: para usarmos a probabilidade clássica, os eventos devem ser <u>equiprováveis</u>

- 1. Probabilidade frequentista
- 2. Probabilidade clássica
- 3. Probabilidade subjetiva

Qual a probabilidade de eu ganhar na Mega Sena com um jogo em que foram escolhidos 6 números?

- 1. Probabilidade frequentista
- 2. Probabilidade clássica
- 3. Probabilidade subjetiva

Qual a probabilidade de chover amanhã?

Os meteorologistas estimam uma probabilidade de 30%

CRITÉRIOS DA PROBABILIDADE

Toda probabilidade deve atender aos seguintes critérios:

1. A probabilidade deve ser um número entre 0 e 1

Probabilidade 10 ≠ Probabilidade 10%

0,1

Outro exemplo:
Probabilidade 0,07 = Probabilidade 7%

0,07 * 100 = 7

Toda probabilidade deve atender aos seguintes critérios:

2. Os eventos simples que compõem o espaço amostral devem mutuamente excludentes

Ou seja: se um evento simples ocorre, certamente não ocorrem os demais eventos simples.

A ocorrência de um evento simples exclui a possibilidade de outro evento simples, e vice-versa.

Toda probabilidade deve atender aos seguintes critérios:

3. Os eventos simples são coletivamente exaustivos

Ou seja: a soma das probabilidades dos eventos simples tem de ser 1 (ou 100%).

O espaço amostral contempla tudo o que pode acontecer, nada fica de fora.

{1, 2, 3, ..., 18, 19}

PROPRIEDADES DAS PROBABILIDADES

EVENTO COMPLEMENTAR

Evento: obter 18 no dado de 20 faces \longrightarrow Evento A Probabilidade do evento A = P(A)

O que é o evento complementar de A?

É o evento que corresponde à probabilidade de A **não** ocorrer

Formas de representar o evento complementar a A: \bar{A} , $\neg A$ ou !A

Como, juntos, A e ¬A correspondem a **todo** o espaço amostral, então...

$$P(A) + P(\neg A) = 1$$

Evento A = obter 18 no dado de 20 faces

$$P(A) + P(\neg A) = 1$$

Se P(A) = 0.05, então $P(\neg A)$ pode ser calculado como:

$$0.05 + P(\neg A) = 1$$

$$P(\neg A) = 1 - 0.05$$

$$P(\neg A) = 0.95$$

Essa regra funciona também para a probabilidade frequentista.

Seja o evento B "ocorrer um voo com fatalidade" então a probabilidade de não ocorrer um voo com fatalidade (¬B) será:

$$P(B) + P(\neg B) = 1$$

 $0,000045 + P(\neg B) = 1$
 $P(\neg B) = 1 - 0,000045$
 $P(\neg B) = 0,999955$

UNIÃO DE EVENTOS

$$P(A \text{ ou } B) = P(A) + P(B)$$

Exemplo 1:

Qual a probabilidade de obtermos 18 ou 19 no dado de 20 faces?

$$P(A \text{ ou } B) = P(A) + P(B)$$

 $P(A \text{ ou } B) = 0.05 + 0.05$
 $P(A \text{ ou } B) = 0.10$

$$P(A \text{ ou } B) = P(A) + P(B)$$

Só é válida quando não há interseção entre os eventos!

Exemplo 2:

Qual a probabilidade de obtermos 18 ou um número par no dado de 20 faces?

Fórmula completa (válida em qualquer situação):

$$P(A \text{ ou } B) = P(A) + P(B) - P(A \text{ e } B)$$

Exemplo 2:

Qual a probabilidade de obtermos 18 ou um número par no dado de 20 faces?

$$P(A \text{ ou } B) = P(A) + P(B) - P(A \text{ e } B)$$

 $P(A \text{ ou } B) = 0.05 + 0.5 - 0.05$
 $P(A \text{ ou } B) = 0.5$

Importante saber: notação de conjuntos!

Não há interseção entre os conjuntos

Há interseção entre os conjuntos

A ou B = A
$$\cup$$
 B

$$A e B = A \cap B$$

$$P(A \text{ ou } B) = P(A) + P(B) - P(A \text{ e } B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

INTERSEÇÃO DE EVENTOS

Para eventos **independentes**, podemos calcular a probabilidade da interseção como:

$$P(A \cap B) = P(A) \times P(B)$$

Exemplo:

Qual a probabilidade de obtermos 18 na primeira e na segunda jogada, usando um dado de 20 faces?

$$P(A \cap B) = 0.05 \times 0.05$$

 $P(A \cap B) = 0.025$

PROBABILIDADE CONDICIONAL

Qual a probabilidade de ter saído o número 18, sendo que saiu um número ímpar?

Zero!

Evento A: obter o número 18 no dado

Evento B: obter um número ímpar no dado

A probabilidade de A, dado que ocorreu B é:

P(A|B) = 0

Qual a probabilidade de ter saído o número 18, sendo que saiu um número par?

Evento A: obter o número 18 no dado

Evento B: obter um número par no dado

Espaço amostral: {2, 4, 6, ..., 16, 18, 20}

A probabilidade de A, dado B é:

$$P(A|B) = \frac{1}{10} = 0.1 = 10\%$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Evento A: obter o número 18 no dado

Evento B: obter um número par no dado

$$P(A|B) = \frac{1/20}{10/20}$$

$$P(A|B) = \frac{1}{10} = 0.1$$

Cuidado:

Probabilidades condicionais não podem ser invertidas!

$$P(A|B) \neq P(B|A)$$

VARIÁVEIS ALEATÓRIAS

Experimento aleatório

Experimento que, mesmo quando realizado sob as mesmas condições, não produz os mesmos resultados

Variável aleatória

Variável que corresponde aos resultados desses experimentos

Exemplos de variáveis aleatórias

Experimento: jogar um **dado** com 20 faces

Variável aleatória X

Possibilidades: X = 1, X = 2, ..., X = 20

Experimento: um **voo** comercial

Variável aleatória Y

Possibilidades: Y = sucesso ou Y = insucesso (acidente)

Experimento: medir a altura de pessoas

Variável aleatória **Z**

Possibilidades: Z = 1,58 m, Z = 1,77 m...

Tipos de variáveis aleatórias

Variáveis qualitativas (categóricas)

DISTRIBUIÇÕES DE PROBABILIDADES

Distribuições de probabilidade

Descrevem as probabilidades associadas aos resultados de um experimento aleatório

Exemplo: dado de 20 faces

X	P(X)
1	0,05
2	0,05
3	0,05
•••	•••
19	0,05
20	0,05

DISTRIBUIÇÃO UNIFORME

Distribuição uniforme

Quando os valores são equiprováveis Observada em variáveis discretas e contínuas

Exemplo de discreta: lançar um dado de 20 faces

Distribuição uniforme

Quando os valores são equiprováveis Observada em variáveis discretas e contínuas

Exemplo de contínua: geração de um número aleatório

DISTRIBUIÇÃO DE BERNOULLI

Distribuição de Bernoulli

Para variáveis categóricas com duas categorias (sucesso e insucesso)

Convenção:

Sucesso = 1

Insucesso = 0

$$P(1) = p$$

$$P(0) = 1 - p$$

Distribuição de Bernoulli

Para variáveis categóricas com duas categorias (sucesso e insucesso)

Exemplo: tirar cara (sucesso = 1) ao jogar uma moeda

Distribuição de Bernoulli

Para variáveis categóricas com duas categorias (sucesso e insucesso)

Exemplo: um e-mail não ser spam (sucesso = 1)

DISTRIBUIÇÃO BINOMIAL

Distribuição binomial

Quando a variável aleatória é a quantidade de sucessos em provas de Bernoulli

Exemplo: tirar 3 caras ao jogar uma moeda 10 vezes

Distribuição binomial

Quando a variável aleatória é a quantidade de sucessos em provas de Bernoulli

Exemplo: receber 7 spams em 10 e-mails

P(spam) = 0.3

DISTRIBUIÇÃO NORMAL (GAUSSIANA)

Distribuição normal

Para variáveis contínuas Simétrica em torno da média, formato de sino

Distribuição normal

Para variáveis contínuas Simétrica em torno da média, formato de sino

OUTRAS DISTRIBUIÇÕES CONTÍNUAS

0,40 -

RESUMO DA AULA

- Probabilidades fazem parte do dia a dia do Cientista de Dados.
- Muitas das tomadas de decisão são baseadas nelas, portanto, é fundamental entendê-las!
- As variáveis aleatórias podem apresentar diversas distribuições. Entendê-las é importante para tomarmos as melhores decisões na análise dos dados.

