VariantStore: A Large-Scale Genomic Variant Search Index

Prashant Pandey Berkeley Lab Yinjie Gao Carnegie Mellon University

Carl Kingsford
Carnegie Mellon University

Country-scale sequencing efforts produce huge amount of gene variation data

Variation information can help improve applications

- Tens of millions of genomes are now commonly available
- Genomes contain huge amounts of diversity information
- Variation information promises to improve applications:
 - Genomes assembly
 - Population level disease analysis
 - Genome wide association studies (GWAS)
 - Personalized medicine
 - Predicting remission rate for cancer

Variant call format (VCF) enodes variation information

- The VCF format has been developed to encode variants from large scale sequencing
- These files contain variations as mutations based on a reference genome
 - SNPs and Indels

Reference sequence	CAATTTGCTGATCT													
Position	Reference seq.	Alternative seq.	HG00096	HG00101	HG00103	Variant type								
2	A	G	0	1	1	SUBSTITUTION								
2	AATT	A	1	0	0	DELETION								
6	T	TACG	0	0	1	INSERTION								

Position
Reference
HG00096
HG00101
HG00103

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
C	A	A	T	T	T	G	C	T	G	A	T	С	T			
С	A	Т	G	С	T	G	A	T	С	T						
С	G	A	Т	Т	T	G	С	Т	G	A	Т	С	Т			
С	G	A	T	T	T	A	C	G	G	С	T	G	A	T	С	T

- A coordinate system uniquely identifies the position of a variant in a given genome
- Each sample can have a different coordinate system

	Refer	rence seq	uence		CAATTTGCTGATCT												
		Position			ce seq.	Alternati	ve seq.	HG0009	6 HC	G00101	HG00103	Variant type		e			
		2		A		G		0		1	1	SUB	STITUTI	ON			
		2		AAT	T	A		1		0	0		ELETION				
		6		Т		TAC	CG	0		0	1	IN	SERTIO	N			
$AATT \rightarrow A$																	
Posn	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Reference	K.	A	A	Т	Т	Т	G	С	T	G	A	T	С	T			
HG00096	C	A	Т	G	C	Т	G	A	T	C	Т						
HG00101	C	G	A	T	Т	T	G	C	T	G	A	T	C	T			
HG00103	С	G	A	Т	Т	Т	A	C	G	G	C	T	G	A	Т	С	T

- A coordinate system uniquely identifies the position of a variant in a given genome
- Each sample can have a different coordinate system

		Refe	Reference sequence CAATTTGCTGATCT															
			Position	1	Reference	e seq.	Alternati	ve seq.	HG0009	HG00096 HG001		HG00103	Va	Variant type				
		-	2		A		G		0		1	1	SUB	STITUT	ION			
			2		AAT	T	A		1		0	0		ELETIO				
			6		T		TAC	CG	0		0	1	IN	SERTIO	N			
	$AATT \rightarrow A$																	
	Posr	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	Reference	C	A	A	Т	T	T	G	C	T	G	A	T	C	T			
	A → G	C	A	Т	G	С	Т	G	A	T	С	Т						
A	A VO	C	G	A	Т	Т	Т	G	С	T	G	A	T	C	T			
	HG00103	C	G	A	T	Т	Т	A	C	G	G	C	T	G	A	Т	С	Т

- A coordinate system uniquely identifies the position of a variant in a given genome
- Each sample can have a different coordinate system

		Refe	rence seq	uence					CAATTT	GCTGA	ТСТ									
		Position			Reference	ce seq.	Alternati	Alternative seq.		96 HG	00101	HG00103	Variant type		e					
			2		A		G		0		1	1	SUB	STITUT	ION					
			2		AAT	T	A		1		0	0		ELETIO						
)		6		T		TAC	CG	0		0	1	INSERTION							
	$AATT \rightarrow A$																			
	Posn	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17		
	Reference	K	A	A	T	T	T	G	C	T	G	A	T	C	T	T > TAGG				
	A → G	C	A	Т	G	С	Т	G	A	Т	C	Т					T → TACG			
F	A V O	C	G	A	Т	Т	Т	G	C	T	C	A	T	С	Т					
	HG00103	С	G	A	Т	Т	Т	A	C	G	G	C	T	G	A	Т	С	T		

- A coordinate system uniquely identifies the position of a variant in a given genome
- Each sample can have a different coordinate system

Different types of variant queries

- 1. Find the closest variant to position X for all samples in the reference coordinates.
- 2. Find the sequence between positions X and Y for sample S in the reference coordinates.
- 3. Find the sequence between positions X and Y for sample S in the sample coordinates.
- 4. Find all variants between positions X and Y for sample S in the reference coordinates.
- 5. Find all variants between positions X and Y for sample S in the sample coordinates.
- 6. Find all variants between positions X and Y for all samples in the reference coordinates.

Need a system to index and query in multiple coordinate systems

• Each sample coordinate system requires a function

$$f(\mathrm{pos}_{REF}) o \mathrm{pos}_{SAMPLE}$$

- Maintaining thousands of mappings increases memory footprint and computational complexity
- Limits the scalability of variant indexes to population level data

VariantStore: a system to efficiently index and query population-level variation data

- Supports querying variants in both reference and sample-specific coordinates
 - Takes between 0.002 -- 3 seconds for different types of variant queries
- Scales to data containing thousands of samples and millions of variants
 - o 1000 Genomes project, 2500 samples and 924M variants, 3 Hrs
 - TCGA (BRCA) project, **8640 samples and 5M variants, 4 Hrs**
- Efficiently scales out-of-RAM to enable memory-efficient construction and query
 - Peak RAM is 10% the size of the index

Existing solutions do not scale to thousands of samples

- Existing solutions are built to cater to specific applications
- For example, VG toolkit^[1] and Seven Bridges^[2] are built for read mapping applications
- They encode variants in a **variation graph** and perform graph traversals for read mapping
- They support sequence search but do not support other kinds of queries
- The solutions are not designed to scale with increasing amounts of population-level variation data

^[1] Variation graph toolkit improves read mapping by representing genetic variation in the reference. *Nature Biotechnology*, 36:875–879, 2018 [2] Fast and accurate genomic analyses using genome graphs. *Nature Genetics*, 51:354–362, 2019

Reference-only indexes do not support multiple coordinate queries

- GQT^[1], BGT^[2], and GTC^[3] are **reference-only indexes**
- They are optimized to support positional variant queries but do not store sequences
 for comparison
- Traditional database-based solutions have proven prohibitively slow

^[2] BGT: efficient and flexible genotype query across many samples. Bioinformatics, 32(4): 590-592, 2015

^[3] GTC: how to maintain huge genotype collections in a compressed form. *Bioinformatics*, 34(11):1834–1840, 2018

VariantStore components

• Variants are encoded in variation graph

Variation graphs encode variations based on a reference

- Variation graph is a directed, acyclic graph (DAG) that embeds a set of genomic sequences
- Graph G(N, E, P) contains as set of nodes N, set of edges E, and set of paths P
- Each node represents a sequence
- Edges connect nodes containing sequences that are present in genomes
- A path is a set of nodes through the graph that represents a complete genomic sequence

Reference sequence and sample variants

Reference sequence			CAATTTGC	CTGATCT		
Position	Reference seq.	Alternative seq.	HG00096	HG00101	HG00103	Variant type
2	A	G	0	1	1	SUBSTITUTION
2	AATT	A	1	0	0	DELETION
6	T	TACG	0	0	1	INSERTION

Table 2: Variants ordered by the position in the reference genome for three samples (HG00096, HG00101, HG00103). Each variant has the list of samples that contain the variant.

Variation graph with on the reference sequence

C A A T T G C T G A T C T

Node id: 0 Seq len: 14 Ref idx: 1

Adding a "substitution" variant in variation graph

Adding a "deletion" variant in variation graph

Adding an "addition" variant in variation graph

Variation graph representation in VariantStore

Variation graph representation in VariantStore

VariantStore components

- Variants are encoded in variation graph
- Position-based index to locate node in the graph corresponding to a position

Position index to lookup nodes in variation graph

VariantStore components

- Variants are encoded in variation graph
- Position-based index to locate node in the graph corresponding to a position
- Position index is only maintained for a single reference genome
- Use local graph traversals to translate between coordinate systems
- Marker nodes in the graph store absolute sample positions and bound local traversals during translation

Two-phase construction avoids multiple backtracking during construction.

- Backtracking to compute absolute sample index is time consuming
- Backtracking during each variant addition becomes the bottleneck
- Phase 1: add variant by adding new nodes and splitting reference nodes
 - Do not assign any absolute index to sample nodes
- Phase 2: breadth-first traversal over the whole graph and update the absolute index for each sample

Pseudo code for updating sample indexes

```
Maintain delta for each
                                               sample during BFS
 1: for i in Samples do
       delta[i] \leftarrow 0
2:
                                                                            Going from ref node to
 3: for node in BFS(variation graph) do
                                                                              sample node update
       if ISREFERENCE(node) then
4:
                                                                                  sample pos
          for neighbor in node.neighbors do
 5:
              if neighbor.pos[sample] = 0 then
6:
                 neighbor.pos[sample] \leftarrow node.pos[ref] + node.len + delta[sample]
 7:
              else
                                                                                                 On sample nodes
 8:
                  delta[sample] \leftarrow neighbor.pos[sample] - (node.pos[ref] + node.len)
                                                                                                update delta vector
9:
                                                                                                using neighbor ref
       else
10:
          for samples in node.samples do
11:
              delta[sample] \leftarrow node.pos[sample] + node.len - node.neighbor.pos[ref]
12:
```


Phase 2: updating sample indexes

Phase 2: updating sample indexes

Phase 2: updating sample indexes

VariantStore components

- Variants are encoded in variation graph
- Position-based index to locate node in the graph corresponding to a position
- Position index is only maintained for a single reference genome
- Use local graph traversals to translate between coordinate systems
- Marker nodes in the graph store absolute sample positions and bound local traversals during translation
- Graph partitioning to enable memory-efficient construction/query

Graph partitioning for memory-efficient operations

- Variant queries are performed between small position ranges
- Queries only access a small portion of the graph
- Partition the graph into small chunks and only load relevant chunks during query
- Graph is partitioned dynamically during construction
- We sort queries based on position in a batch and perform them sequentially
- Each chunk is loaded only once during a batch operation

Performance evaluation

- Index construction performance
 - Running time
 - Disk space
 - Peak RAM
- Query performance
 - Running time
 - Peak RAM
 - Effect of range size and variant density
- Index space analysis

Results for constructing the index

System	Time	Disk space	Peak RAM	Peak RAM Agg.		
Dataset	1000 Genomes					
VariantStore	3 Hrs 25 mins	41 GB	8.8 GB	153 GB		
VG-toolkit	11 Hrs 10 mins	50 GB	37 GB	450 GB		
Dataset	TCGA (OV)					
VariantStore	1 Hr 5 mins	3.4 GB	1.1 GB	17.45 GB		
VG-toolkit		11 GB *				
Dataset	TCGA (LUAD)					
VariantStore	1 Hr 20 mins	3.5 GB	2.3 GB	36.05 GB		
VG-toolkit		12 GB*				
Dataset	TCGA (BRCA)					
VariantStore	4 Hrs 36 mins	4.2 GB	3.2 GB	53.21 GB		
VG-toolkit		14 GB*				

Table 1: Time, space, peak RAM, and peak RAM (aggregate) to construct variant index on the 1000 Genomes and TCGA (OV, LUAD, and BRCA) data using VariantStore and VG toolkit. *VG toolkit could not build GBWT index embedding all sample paths for TCGA data. Space reported is for the XG index that does not contain any path information. We constructed all 24 chromosomes (1 – 22 and X and Y) in parallel. The time and peak RAM reported is for the biggest chromosome (usually chromosome 1 or 2). The space reported is the total space on disk for all 24 chromosomes. The peak RAM (aggregate) is the aggregate peak RAM for all 24 processes.

VariantStore is 3× faster, takes 25% less disk space, and 3× less peak RAM than VG toolkit.

Results for variant queries

(b) Time for 10, 100, and 1000 queries on Chromosome 22 index in VariantStore for TCGA LUAD data.

Aggregate time to execute queries increases sublinearly with the number of queries

Results for variant queries

(a) Time for 10, 100, and 1000 queries on Chromosome 2 index in VariantStore for 1000 Genomes data.

(b) Time for 10, 100, and 1000 queries on Chromosome 2 index in VariantStore for TCGA LUAD data.

Takes between 0.002 -- 3 seconds for different types of variant queries

Query analysis based on range size

Memory usage remains constant regardless of the query length

Query analysis based on number of variants

Query time increases with the density of variants in the queries region

Index space analysis

Position index is only a small fraction (1.5%--4.5%) of the index size Adding multiple references will have a trivial space overhead

Conclusion

- The ability to efficiently query population-level variation data promises to improve many medical and scientific applications
- VariantStore enables querying variants and sequences across thousands of samples in multiple coordinate systems
- <u>https://www.biorxiv.org/content/10.1101/2019.12.24.888297v2</u>