LAB 1 DESIGN OF ARITHMETIC CIRCUIT

Adder

- ☐ The most basic arithmetic operation is the addition of 2 bits. A combinational circuit that performs this operation is called a *half-adder*.
- ☐ A combinational circuit that performs the addition of 3 bits is called a *full-adder*, which can be implemented by 2 half-adders.

Half Adder

(b)
$$S = x \oplus y$$

 $C = xy$

Full Adder

X	У	Z	S	C
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full Adder

Implementation of FA

Implementation of FA

(with two half adder)

$$S = xy'z' + x'yz' + xyz + x'y'z$$

= $z'(xy' + x'y) + z(xy + x'y')$
= $z'(xy' + xy') + z(xy' + x'y)'$
= $z \oplus (x \oplus y)$

$$C = x'yz + xy'z + xyz' + xyz$$

$$= x'yz + xy'z + xy$$

$$= z(x'y + xy') + xy$$

$$= z(x \oplus y) + xy$$

Binary Adder

Figure 9-5 Block diagram of a 4-bit ALU

(c) A plus 1's complement of B

(e) Transfer A

(b) Addition with carry

(d) Subtraction

(f) Increment A

10

Flower 0.4 Operations obtained by controlling one set of inputs to a parallel adder

F = A + 0 = A, which transfers input A into output F. Adding 1 through C_{in} as in Fig. 9-6(f), we obtain F = A + 1, which is the increment operation.

The condition illustrated in Fig. 9-6(g) inserts all 1's into the B terminals. This produces the decrement operation F = A - 1. To show that this condition is indeed a decrement operation, consider a parallel adder with n full-adder circuits. When the output carry is 1, it represents the number 2^n because 2^n in binary consists of a 1 followed by n 0's. Subtracting 1 from 2^n , we obtain $2^n - 1$, which in binary is a number of n 1's. Adding $2^n - 1$ to A, we obtain $F = A + 2^n - 1 = 2^n + A - 1$. If the output carry 2 moved, we obtain F = A - 1.

To demonstrate with a numerical example, let n = 8 and A = 9. Then:

$$A = 0000 \quad 1001 = (9)_{10}$$

$$2^{n} = 1 \quad 0000 \quad 0000 = (256)_{10}$$

$$2^{n} - 1 = 1111 \quad 1111 = (255)_{10}$$

$$A + 2^{n} - 1 = 1 \quad 0000 \quad 1000 = (256 + 8)_{10}$$

Removing the output carry $2^n = 256$, we obtain 8 = 9 - 1. Thus, we have decremented A by 1 by adding to it a binary number with all 1's.

Figure 9-7 True/complement, one/zero circuit

Function select			Y equals	Output equals	Function	
s ₁	s _o	C_{in}				
0	0	0.	0	F = A	Transfer A	
. 0	0	1	0	F = A + 1	Increment A	
0	1	0	\boldsymbol{B}	F = A + B	Add B to A	
. 0	1.	1	B	F = A + B + 1	Add B to A plus 1	
1	0	0	$oldsymbol{ar{B}}$,	$F = A + \overline{B}$	Add I's complement of B to A	
1	0	1	$oldsymbol{ar{B}}$	$F = A + \bar{B} + 1$	Add 2's complement of B to A	
1	1	0	All 1's	F = A - 1	Decrement A	
1	1 *	1 .	All I's	F = A	Transfer A	

Enough Talk, Let's Work ©