Procesos Estocásticos

LibreIM

Doble Grado de Informática y Matemáticas Universidad de Granada libreim.github.io/apuntesDGIIM

Este libro se distribuye bajo una licencia CC BY-NC-SA 4.0.

Eres libre de distribuir y adaptar el material siempre que reconozcas a los autores originales del documento, no lo utilices para fines comerciales y lo distribuyas bajo la misma licencia.

creativecommons.org/licenses/by-nc-sa/4.0/

Procesos Estocásticos

LibreIM

Doble Grado de Informática y Matemáticas Universidad de Granada libreim.github.io/apuntesDGIIM

Índice

I.	Teoria			5
1.	Teor	eoría general de procesos estocásticos		
	1.1.	Defini	ción y propiedades generales	5
		1.1.1.	Teoría de la medida	5
		1.1.2.	Teoría de la probabilidad	7
		1.1.3.	Definición de proceso estocástico	9
		1.1.4.	Algunas características de procesos estocásticos	10
	1.2.	Clasifi	cación de los procesos estocásticos	11
		1.2.1.	Clasificación atendiendo al T y E	11
		1.2.2.	Clasificación atendiendo a la relación entre las variables	
			del proceso	12
	1.3.	1.3. Procesos estocásticos en tiempo discreto (PETD): Trayectorias		
		distrib	oución	13
		1.3.1.	Definición de PETD	13
		1.3.2.	Trayectorias en un PETD	13
		1.3.3.	Distribución de un PETD	15
	1.4.	1.4. Procesos estocásticos en tiempo continuo (PETC): Trayectorias y		
	distribución			16
		1.4.1.	Definición de PETC	16
		1.4.2.	Trayectorias	16
		1.4.3.	Distribución de un PETC	17
		1.4.4.	Equivalencia de procesos	17
II.	Eje	rcicios	5	19
	_			
2.				19
	2.1. Ejercicios mandados			19
		•	cios en clase	23
	2.3.	Ejercio	cios PETC	24

Parte I.

Teoría

1. Teoría general de procesos estocásticos

1.1. Definición y propiedades generales

1.1.1. Teoría de la medida

Veremos primero nociones básicas sobre la teoría de la medida.

Definición 1.1 (σ **-álgebra).** Una σ -álgebra \mathscr{A} sobre un conjunto Ω es una familia de subconjuntos de Ω ($\mathscr{A} \subset \mathscr{P}(\Omega)$) que cumple:

$$\begin{array}{ll} (i) & \forall A \in \mathcal{A} \implies \overline{A} \in \mathcal{A} \\ (ii) & \forall \{A_n\}_{n \in \mathbb{N}} \subset \mathcal{A} \implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{A} \end{array}$$

Nota. $\mathscr{P}(\Omega)$ son las partes de Ω , es decir, todos los subconjuntos posibles de Ω .

La pertenencia del total, vacío y ser cerado para intersecciones se deduce de las condiciones de la definición.

Definición 1.2 (Espacio medible). Un *espacio medible* es una tupla (Ω, \mathcal{A}) donde Ω es un conjunto y \mathcal{A} es una σ -álgebra.

Para la teoría de la probabilidad tiene especial interés los espacios Borel, en los que toman valores las variables aleatorias.

Ejemplo 1.1.
$$(\mathbb{R}, \mathcal{B}), (\mathbb{R}^n, \mathcal{B}^n)$$
.

Definición 1.3 (σ **-álgebra Borel).** La σ -álgebra de Borel es la generada por las semirrectas:

$$\mathscr{B}^n = \sigma(\mathfrak{I}^n), \ \mathfrak{I}^n = \{(-\infty, x] : x \in \mathbb{R}^n\}$$

Nota. $\sigma(D)$ es la σ -álgebra minimal generada por D.

Definición 1.4 (\sigma-álgebra Borel restringida). Sea un subconjunto $E \subset \mathbb{R}$, la σ -álgebra restringida a E es

$$\mathscr{B}_E = \{B \cap E : B \in \mathscr{B}\},\$$

Definición 1.5 (Espacio Borel restringido). Sea un subconjunto $E \subset \mathbb{R}$, el *espacio Borel restringido a E* es (E, \mathcal{B}_E) .

Ahora veamos que pasa con las aplicaciones y funciones medibles.

Definición 1.6 (Aplicación medible). Sean dos espacios medibles $(\Omega_1, \mathcal{A}_1)$, $(\Omega_2, \mathcal{A}_2)$ una aplicación $f: \Omega_1 \to \Omega_2$ se dice aplicación medible $\iff \forall A \in \mathcal{A}_2, f^{-1}(A) \in \mathcal{A}_2 \iff f^{-1}(\mathcal{A}_2) \subset \mathcal{A}_1$.

Proposición 1.1 (Caracterización de aplicaciones medibles). Una aplicación entre espacios medibles $f:(\Omega_1,\mathscr{A}_1)\to(\Omega_2,\mathscr{A}_2)$ es aplicación medible \iff $f^{-1}(D)\subset\mathscr{A}_1$ siendo $D\subset P(\Omega_2)$ y $\sigma(D)=\mathscr{A}_2$.

Proposición 1.2 (Composición de aplicaciones medibles). Sean dos aplicaciones medibles $f:(\Omega_1,\mathscr{A}_1)\to (\Omega_2,\mathscr{A}_2), g:(\Omega_2,\mathscr{A}_2)\to (\Omega_3,\mathscr{A}_3)$ entre tres espacios medibles. Entonces la composición $g\circ f:(\Omega_1,\mathscr{A}_1)\to (\Omega_3,\mathscr{A}_3)$ es una aplicación medible.

Demostración. $(g \circ f)^{-1}(\mathscr{A}_3) = f(g^{-1}(\mathscr{A}_3)) \in \mathscr{A}_1$ porque f es aplicación medible y $g^{-1}(\mathscr{A}_3) \in \mathscr{A}_2$ (g es aplicación medible).

Definición 1.7 (Función medible). Una *función medible* es una aplicación medible cuyo espacio de llegada es un espacio de Borel.

Nota. Si el espacio Borel es \mathbb{R} se denomina función medible *finita* (no toman valores en $\pm \infty$).

Proposición 1.3 (Caracterización de funciones medibles (1)). Una función entre un espacio medible y espacio Borel $f:(\Omega, \mathcal{A}) \to (\mathbb{R}^n, \mathcal{B}^n)$ es función medible $\iff f^{-1}(\mathcal{B}^n) \subset \mathcal{A}$.

Nota. Para n = 1 se dice función medible (*unidimensional*), para n > 1 se denomina función medible *multidimensional*.

Proposición 1.4 (Caracterización de funciones medibles (2)). Una función entre un espacio medible y espacio Borel $f:(\Omega, \mathcal{A}) \to (\mathbb{R}^n, \mathcal{B}^n)$ es función medible $\iff f^{-1}((-\infty, x]) \in \mathcal{A}, \ \forall x \in \mathbb{R}.$

Nota.
$$f^{-1}(B) = \{ \omega \in \Omega : f(\omega) \in B \} = [f \in B].$$

 $f^{-1}((-\infty, x]) = \{ \omega \in \Omega : f(\omega) \le x \} = [f \le x].$

Definición 1.8 (Función medible Borel). Una función medible Borel es una función medible cuyo espacio inicial también es espacio de Borel.

Ejemplos de funciones medibles:

Ejemplo 1.2.
$$\forall A \in \mathcal{A}$$
, función indicadora $1_A(\omega) = \begin{cases} 1, \ \omega \in A \\ 0, \ \omega \notin A \end{cases}$

Ejemplo 1.3. Función constante $f(\omega) = c \in \mathbb{R}$.

Ejemplo 1.4. Sean
$$A_1, \ldots, A_n \in \mathcal{A}, x_1, \ldots, x_n \in \mathbb{R}$$
, función simple $f(\omega) = \sum_{i=1}^n x_i 1_{A_i}(\omega)$.

Nota. Cualquier función que parte del espacio medible $(\Omega, P(\Omega))$ es medible.

Veamos que la medibilidad de una función depende de la σ -álgebra del espacio de partida:

Ejemplo 1.5. $f(\omega) = \omega$ es medible si $f: (\mathbb{R}, \mathcal{B}) \to (\mathbb{R}, \mathcal{B})$, pero no lo es si $f: (\mathbb{R}, \mathcal{A}) \to (\mathbb{R}, \mathcal{B})$ con $\mathcal{A} = \{A \subset \mathbb{R} : A \text{ o } \overline{A} \text{ es numerable}\}.$

Finalmente sobre medidas y espacios medibles:

Definición 1.9 (Función σ **-aditiva).** Una función de conjunto σ -aditiva definida sobre \mathscr{A} es una función $\varphi : \mathscr{A} \to \mathbb{R}$ que cumple:

$$\forall \{A_n\}_{n\in\mathbb{N}}, A_i \cap A_j = \emptyset \ \forall i \neq j, \ \varphi(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \varphi(A_n)$$

Definición 1.10 (Medida). Una medida μ es una función σ -aditiva no negativa, es decir que $\forall A \in \mathscr{A} \ \mu(A) \geq 0$.

Definición 1.11 (Espacio de medida). Un *espacio de medida* es una terna $(\Omega, \mathcal{A}, \mu)$ formada por un espacio medible y una medida sobre dicho espacio.

Definición 1.12 (Integral en espacio de medida). Sea una función medible f: $(\Omega, \mathscr{A}, \mu) \to (\mathbb{R}, \mathscr{B})$ entonces definimos la *integral de* f en este espacio como:

$$\int f d\mu := \int_{\Omega} f d\mu = \int_{A} f \mu = \int f \chi_{A} d\mu$$

1.1.2. Teoría de la probabilidad

La teoría de la probabilidad se desarrolla sobre un tipo especial de espacios de medida llamados *espacios de probabilidad*, a los elementos de la σ -álgebra se les llama *sucesos*; y a la medida *probabilidad*.

7

Definición 1.13 (Probabilidad). Una función $P: \mathcal{A} \to \mathbb{R}$ se dice que es una probabilidad si cumple con los tres axiomas de Kolmogorov:

- (i) $\forall A \in \mathcal{A}, P(A) \geq 0$ (no negativa). (ii) $\forall \{A_n\}_{n \in \mathbb{N}} \subset \mathcal{A}$ disjuntos $\Longrightarrow P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$ (σ -aditividad).
- (iii) $P(\Omega) = 1$ (normalización)

Luego una probabilidad es una medida normalizada.

Definición 1.14 (Variable aleatoria). Una variable aleatoria (v.a) $X: \Omega \to \mathbb{R}$, $\omega \mapsto X(\omega)$ es una función medible de un espacio de probabilidad en un espacio Borel; es decir:

$$X: (\Omega, \mathscr{A}, P) \to (\mathbb{R}, \mathscr{B}), \ \forall B \in \mathscr{B} \ X^{-1}(B) \in \mathscr{A}$$

Proposición 1.5 (Caracterización de variables aleatorias). *X* es una variable aleatoria $\iff \forall x \in \mathbb{R} \ X^{-1}((-\infty, x]) = [X \le x] \subset \mathcal{A}$.

Definición 1.15 (Vector aleatorio). Un vector aleatorio (v.a) $X: \Omega \to \mathbb{R}^n, \ \omega \mapsto$ $X(\omega)$, es una función medible multidimensional de un espacio de probabilidad en un espacio Borel (multidimensional).

La caracterización anterior es válida para vectores aleatorios, pero además veamos otra:

Definición 1.16 (Caracterización de vectores aleatorios). *X* es un vector aleatorio $\iff \forall i = 1, ..., n, X_i : (\Omega, \mathcal{A}, P) \to (\mathbb{R}, \mathcal{B})$ es una variable aleatoria.

Demostración. Se deja propuesto como ejercicio.

Definición 1.17 (Distribución de probabilidad). Se llama distribución de probabilidad de una variable aleatoria a una función de probabilidad definida en el espacio de Borel:

$$P_X: \mathcal{B} \to \mathbb{R}$$
$$B \mapsto P_X(B) = P(X^{-1}(B)) = P[X \in B]$$

Demostración. Hecho en 2.2

El teorema de correspondencia nos dice que la función de conjunto P_X puede ponerse en correspondencia biunívoca con la función de distribución F_X .

Definición 1.18 (Función de distribución). La *función de distribución* es la función de puntos:

$$F: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto F_X(x) = P_X((-\infty, x]) = P[X \le x]$$

El teorema de correspondencia nos permite también establecer una correspondencia biunívoca entre la función de distribución y la función característica φ_X .

Definición 1.19 (Función característica). La función característica se define como $\varphi_X(t) = E[e^{itX}], \ \forall t \in \mathbb{R}.$

La correspondencia entre estos tres tipos de funciones se llama *ley de la variable* aleatoria y existe también la versión análoga para vectores aleatorios.

Definición 1.20 (Función masa de probabilidad). Sea X una v.a discreta, se define la función masa de probabilidad como $f(x) = P[X = x], \ \forall x \in \mathscr{B}_X$.

Su función característica asociada es $\varphi_X(t) = \sum_{x \in \mathcal{B}_X} e^{itx} P[X = x], \ \forall t \in \mathbb{R}.$

Definición 1.21 (Función de densidad). Sea X una v.a continua, la función de densidad es la que cumple $F_X(x) = \int_{-\infty}^x f(y) dy$, $\forall x \in \mathbb{R}$

Su función característica asociada es $\varphi_X(t) = \int e^{it} f(x) dx$, $\forall t \in \mathbb{R}$.

1.1.3. Definición de proceso estocástico

Veamos que es un proceso estocástico y ciertas definiciones sobre él:

Definición 1.22 (Proceso estocástico). Un *proceso estocástico* (p.e) es una familia de variables aleatorias $\{X_t\}_{t\in T}$, donde T un conjunto ordenado arbitrario y cada v.a está definida sobre un espacio de probabilidad (Ω, \mathcal{A}, P) .

Nota. En algunas ocasiones llamaremos al proceso estocástico como proceso.

Definición 1.23 (Espacio paramétrico). Se llama *espacio paramétrico* al conjunto ordenado arbitrario T: en el caso discreto se suele tomar $\mathbb{N} \cup \{0\}$, y en el continuo $[0, +\infty)$.

Definición 1.24 (Proceso estocástico real). Un p.e se dice que es *real* si $\forall t \in T$, $X_t : (\Omega, \mathcal{A}, P) \to (\mathbb{R}, \mathcal{B})$.

Nota. En este curso son los procesos estocásticos que consideraremos, junto tam-

1. Teoría general de procesos estocásticos

bien a los p.e multidimensionales (espacio Borel de llegada muldimensional).

Definición 1.25 (Espacio de estados). Se llama *espacio de estados* al espacio Borel donde toman valores las v.a. En general, sea $E \subset \mathbb{R}$ con la σ -álgebra Borel restringida \mathcal{B}_E , el espacio de estados es (E, \mathcal{B}_E) ,

Nota. Si no se especifica uno diferente, se considera $(\mathbb{R}, \mathcal{B})$.

Definición 1.26 (Trayectoria). $\forall \omega \in \Omega$ fijo, definimos la *trayectoria* asociada a ω como

$$X(w): T \to \mathbb{R}$$

 $t \mapsto X_t(w).$

Ejemplo 1.6. Proceso de recuento:

- $X_t \equiv$ número de veces que ocurre un suceso en el intervalo [0, t).
- $T = [0, +\infty].$
- $E = \mathbb{N} \cup \{0\}.$
- $s \le t \in T \implies X_s \le X_t$ trayectorias crecientes a saltos.

Ejemplo 1.7. Recorrido aleatorio:

- $X_n \equiv$ posición de la particula en el instante n.
- $T = \mathbb{N} \cup \{0\}.$
- $E = \mathbb{Z}$.

1.1.4. Algunas características de procesos estocásticos

Sea $\{X_t\}_{t\in T}$ p.e definido sobre el espacio de probabilidad (Ω, A, P) , suponemos que existen las esperanzas de las siguientes definiciones:

Definición 1.27 (Función media). La *función media* es una función que asigna a cada t la esperanza de la variable aleatoria asociada a t, es decir:

$$\mu: T \to \mathbb{R}$$

$$t \mapsto \mu(t) = \mu_t = E[X_t]$$

Nota. Para que la definición sea válida se debe tener $\forall t \in T$, $E[|X_t|] < \infty$.

Definición 1.28 (Proceso centrado). Un p.e se dice *centrado* si se cumple $\mu(t) = 0, \forall t \in T$.

Definición 1.29 (Momentos no centrados de orden k). El momento no centrado

de orden k se define como:

$$\mu_k: T \to \mathbb{R}$$
$$t \mapsto \mu_k(t) = E[X_t^k]$$

Definición 1.30 (Momentos centrados de orden k). El momento centrado de orden k se define como:

$$m_k: T \to \mathbb{R}$$

 $t \mapsto m_k(t) = E[(X_t - \mu_t)^k]$

Definición 1.31 (Función varianza). La función varianza es $\sigma_t^2 = m_2(t)$

Definición 1.32 (Función correlación). La función correlación se define como:

$$R: T \times T \to \mathbb{R}$$
$$(s,t) \mapsto R(s,t) = E[X_s X_t]$$

Definición 1.33 (Función covarianza). La función covarianza se define como:

$$C: T \times T \to \mathbb{R}$$

$$(s,t) \mapsto C(s,t) = E[(X_s - \mu_s)(X_t - \mu_t)] = R(s,t) - \mu_s \mu_t$$

Nota. Consideraciones:

- $C(t,t) = \sigma_t^2$.
- Si el proceso es centrado entonces la correlación y la covarianza coinciden.

Definición 1.34 (Procesos de segundo orden). Un p.e $\{X_t\}_{t\in T}$ se dice de *segundo orden* si $\forall t\in T, E[X_t^2]<\infty$ (las v.a son cuadrado integrables).

1.2. Clasificación de los procesos estocásticos

1.2.1. Clasificación atendiendo al T y E

Sea $\{X_t\}_{t\in T}$ p.e definido sobre el espacio de probabilidad (Ω, A, P) con espacio de estados (E, \mathcal{B}_E) .

Definición 1.35 (Procesos en tiempo discreto). Un p.e es en *tiempo discreto* si T es discreto, es decir, $T \subset \mathbb{Z}$.

Nota: para TD usaremos $T = \mathbb{N} \cup \{0\}$ y notamos $\{X_n\}_{n \in \mathbb{N}^*}$ (sucesiónes de v.a).

1. Teoría general de procesos estocásticos

Definición 1.36 (Procesos en tiempo continuo). Un p.e es en *tiempo continuo* si T es continuo, es decir, $T \subset \mathbb{R}$.

Nota: para TC usaremos $T = [0, +\infty]$ y notamos $\{X_t\}_{t \in \mathbb{R}^+}$.

Definición 1.37 (Procesos discretos). Un p.e es *discreto* si E es discreto, es decir, E es conjunto numerable.

Nota: también se les denota como Cadenas.

Definición 1.38 (Procesos continuos). Un p.e es en *continuo* si E es continuo, es decir E es conjunto no numerable.

Veamos unos ejemplos:

Ejemplo 1.8. PDTD. Resultado de lanzar un dado en el n-ésimo lanzamiento. $T = \mathbb{N}, E = \{1, 2, 3, 4, 5, 6\}.$

Ejemplo 1.9. PCTD. Cantidad de lluvia en el n-ésimo día. $T = \mathbb{N}, E = \mathbb{R}_0^+$.

Ejemplo 1.10. PDTC. Cantidad de clientes en el instante t. $T = [0, +\infty), E = \mathbb{N} \cup \{0\}.$

Ejemplo 1.11. PCTC. Cantidad de lluvia en el instante t. $T = [0, +\infty), E = \mathbb{R}_0^+$.

1.2.2. Clasificación atendiendo a la relación entre las variables del proceso

Sea $\{X_t\}_{t\in T}$ p.e definido sobre el espacio de probabilidad (Ω, \mathcal{A}, P) .

Definición 1.39 (Proceso independiente). Un p.e es *independiente* si $\forall n > 1, t_1, \ldots, t_n \in T$

$$X_{t_1}, \dots, X_{t_n}$$
 son v.a independientes.

Definición 1.40 (Proceso con incrementos independientes). Un p.e tiene *incrementos independientes* si $\forall n > 1, \forall t_1 < ... < t_n \in T$

$$X_{t_1}, X_{t_2} - X_{t_1}, \dots, X_{t_n} - X_{t_{n-1}}$$
 son v.a independientes.

Definición 1.41 (Proceso con incrementos estacionarios). Un p.e tiene *incrementos estacionarios* si $\forall s < t \in T, \forall h$

$$(X_t - X_s) \sim (X_{t+h} - X_{s+h}).$$

12

Nota. $X \sim Y$ indica que X sigue la misma distribución que Y.

Definición 1.42 (Proceso estacionario). Un p.e es *estrictamente estacionario* si $\forall n, \forall t_1 < \ldots < t_n \in T, \forall h$

$$(X_{t_1},\ldots,X_{t_n}) \sim (X_{t_1+h},\ldots,X_{t_n+h}).$$

Definición 1.43 (Proceso débilmente estacionario). Un p.e de 2° orden es *débilmente estacionario* si cumple

- (i) Su función media es constante
- (ii) $C(s,t) = C(s+h,t+h) = C(0,t-s), \forall s,t \in T.$

Nota. Todos procesos de 2° orden estrictamente estacionarios son débilmente estacionarios.

Definición 1.44 (Martingala (tiempo discreto)). Un p.e es una martingala si $\forall n \in \mathbb{N}$

$$E[X_{n+1}|X_1,...,X_n] = X_n \ c.s$$

Definición 1.45 (Procesos de Markov). Un p.e es un *Proceso de Markov* si $\forall s < t \in T, \forall B \in \mathcal{B}$

$$P[X_t \in B | X_n, n \leq s] = P[X_t \in B | X_s] c.s$$

1.3. Procesos estocásticos en tiempo discreto (PETD): Trayectorias y distribución

1.3.1. Definición de PETD

Consideramos el espacio de probabilidad (Ω, \mathcal{A}, P) , espacio paramétrico discreto $T \equiv \mathbb{N}$, y espacios de estados $(\mathbb{R}, \mathcal{B})$.

Definición 1.46 (Proceso estocástico en tiempo discreto). Un p.e en tiempo discreto (PETD) es una sucesión $\{X_n\}_{n\in\mathbb{N}}$ de v.a definidas en (Ω, \mathcal{A}, P) t.q $\forall n\in\mathbb{N}$:

$$X^{-1}(B) \in \mathcal{A}, \forall B \in \mathcal{B} \iff [X \leq x] \in \mathcal{A}, \forall x \in \mathbb{R}$$

1.3.2. Trayectorias en un PETD

Definición 1.47 (Trayectoria (PETD)). Sea un PETD $\{X_n\}_{n\in\mathbb{N}}$, fijando $\omega\in\Omega$

definimos la trayectoria de ω como:

$$X(\omega): \mathbb{N} \to \mathbb{R}$$

 $n \mapsto X_n(\omega)$

Vemos que $\{X_n(\omega)\}_{n\in\mathbb{N}}$ es una sucesión de números reales. Así, definiendo $\mathbb{R}^{\mathbb{N}}=\{\{x_n\}_{n\in\mathbb{N}}:x_n\in\mathbb{R},n\in\mathbb{N}\}$, tenemos que $\{X_n(\omega)\}_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$.

Definición 1.48 (Trayectoria asociada (PETD)). Sea un PETD $\{X_n\}_{n\in\mathbb{N}}$, definimos la *trayectoria asociada* como la función que asigna a cada elemento su trayectoria:

$$\chi: (\Omega, \mathscr{A}) \to (\mathbb{R}^{\mathbb{N}}, \mathscr{B}^{\mathbb{N}})$$
$$\omega \mapsto X(\omega) = \{X_n(\omega)\}_{n \in \mathbb{N}}$$

Necesitamos saber como es el espacio Borel ($\mathbb{R}^{\mathbb{N}}$, $\mathscr{B}^{\mathbb{N}}$), para ello veamos unas definiciones:

Definición 1.49 (Rectángulo). Dados $B_1, \ldots, B_n \subset \mathbb{R}$ llamamos un *rectángulo* de lados B_1, \ldots, B_n a $\{\{a_n\}_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : x_1 \in B_1, \ldots, x_n \in B_n\} = B_1 \times B_2 \times \ldots \times B_n \times \mathbb{R} \times \ldots$

Definición 1.50 (Rectángulo medible). Un *rectángulo medible* es un rectángulo donde $B_1, \ldots, B_n \in \mathcal{B}$.

Definición 1.51 (Clase de rectángulos medibles). Denotamos por $\mathscr{C}^{\mathbb{N}}$ la clase de rectángulos medibles.

Definición 1.52 (Semi-álgebra). Una *semi-álgebra* sobre Ω es un conjunto $\mathscr{C} \in \mathscr{P}(\Omega)$ verificando:

- (i) $\Omega \in \mathscr{C}$
- (ii) $\forall A, B \in \mathscr{C} \implies A \cap B \in \mathscr{C}$
- (iii) $\forall A \in \mathscr{C} \implies \overline{A}$ es unión finita disjunta de elementos de \mathscr{C} .

No hay ningún método constructivo para hallar la σ -álgebra minimal asociada a un conjunto, pero si tenemos una semi-álgebra solo nos falta comprobar que estén los complementarios, o lo que es lo mismo, que las uniones finitas disjuntas estén.

Definición 1.53 (σ **-álgebra de rectángulos medibles).** El σ -álgebra de rectángulos medibles es el σ -álgebra minimal generada por los rectangulos medibles, es decir, $\sigma(\mathscr{C}^{\mathbb{N}})$.

Definición 1.54 (σ **-álgebra Borel sobre** $\mathbb{R}^{\mathbb{N}}$ **).** La σ -álgebra Borel sobre $\mathbb{R}^{\mathbb{N}}$ es $\mathscr{B}^{\mathbb{N}}$ que es la σ -álgebra sobre la clase $\mathscr{C}^{\mathbb{N}}$, es decir $\mathscr{B}^{\mathbb{N}} \equiv \sigma(\mathscr{C}^{\mathbb{N}})$.

Teorema 1.1 (Teorema de medibilidad (Caracterización de PETD)). Sea (Ω, \mathcal{A}, P) espacio de probabilidad, $T \equiv \mathbb{N}$, consideramos $\forall n \in \mathbb{N}, X_n : (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B})$ y

$$\chi: \Omega \to \mathbb{R}^{\mathbb{N}}$$
$$\omega \mapsto \{X_n(\omega)\}_{n \in \mathbb{N}}$$

Entonces, $\chi:(\Omega,\mathcal{A},P)\to(\mathbb{R}^\mathbb{N},\mathcal{B}^\mathbb{N})$ es función medible $\iff \forall n\in\mathbb{N},X_n$ es v.a $\iff \{X_n\}_{n\in\mathbb{N}}$ es PETD.

1.3.3. Distribución de un PETD

Definición 1.55 (Distribución de un PETD). Sea $\{X_n\}_{n\in\mathbb{N}}$ un PETD definido sobre (Ω, \mathcal{A}, P) , la *distribución del PETD* es una probabilidad definida:

$$P_{\chi}: \mathcal{B}^{\mathbb{N}} \to [0,1]$$
$$B \mapsto P(\chi^{-1}(B)) = P[\chi \in B]$$

 P_{χ} está bien definida porque $\chi^{-1}(B) \in \mathcal{A}$ al ser χ función medible (T. medibilidad), y es una probabilidad (se puede comprobar facilmente).

Por los Teoremas de extensión podemos conocer la medida en el σ -álgebra conociendo solo la medida finita en el semi-álgebra, ya que se extiende de forma única a una medida sobre el álgebra minimal sobre la semi-álgebra (sumatoria de los conjuntos); que a su vez se extiende de forma única sobre la σ -álgebra minimal sobre la álgebra (que desconocemos).

Teorema 1.2 (Teorema de consistencia de Kolmogorov). Sea $\forall n \in \mathbb{N}$, P_n medida en $(\mathbb{R}^n, \mathcal{B}^n)$ verificando la *propiedad de consistencia*:

$$P_n(B_1 \times \ldots \times B_n) = P_{n+1}(B_1 \times \ldots \times B_n \times \mathbb{R}), \ \forall B_1, \ldots, B_n \in \mathcal{B}$$

Entonces:

$$\exists ! \ \hat{P} : \mathscr{B}^{\mathbb{N}} \to [0,1], \ \hat{P}(\{(x_n)_{n \in \mathbb{N}} : x_1 \in B_1, \dots, x_n \in B_n\}) = P_n(B_1 \times \dots \times B_n)$$

Corolario 1.1. La distribución de probabilidad P_{χ} está determinada por las distribuciones finito dimensionales, $\forall n \in \mathbb{N}$, $dist(X_1, \ldots, X_n) = P_n = P_{(X_1, \ldots, X_n)}(B_1 \times \ldots \times B_n) = P[X_1 \in B_1, \ldots, X_n \in B_n].$

Demostración. Veamos que $\{P_{(X_1,\dots,X_n)}\}_{n\in\mathbb{N}}$ es sucesión de distribuciones de probabilidad que verifican la propiedad de consistencia.

Se verifica ya que
$$P_{(X_1,\ldots,X_n)}(B_1\times\ldots\times B_n)=P[X_1\in B_1,\ldots,X_n\in B_n]=P[X_1\in B_1,\ldots,X_n\in B_n]$$

1. Teoría general de procesos estocásticos

$$B_1, \dots, X_n \in B_n, X_{n+1} \in \mathbb{R}] = P_{(X_1, \dots, X_n, X_{n+1})}(B_1 \times \dots \times B_n \times R).$$
Ahora veamos que $P_{\chi} \equiv \hat{P}$.
$$\text{Sea } S \in \mathscr{C}^{\mathbb{N}}, \ P_{\chi}(S) = P(\chi^{-1}(S)) = P\{w \in \Omega : \ \chi(\omega) \in S\} = P\{\omega \in \Omega : \{X_n(w)\}_{n \in \mathbb{N}} \in S\} = P[X_1 \in B, \dots, X_n \in B_n] = P_{(X_1, \dots, X_n)}(B_1 \times \dots \times B_n) = \hat{P}(S) \quad \Box$$

1.4. Procesos estocásticos en tiempo continuo (PETC): Trayectorias y distribución

1.4.1. Definición de PETC

Definición 1.56 (Proceso estocástico en tiempo continuo). Sea espacio de probabilidad (Ω, \mathcal{A}, P) y un intervalo $T \subseteq R$, un *proceso estocástico en tiempo continuo* (PETC) $\{X_t\}_{t\in T}$ es una familia de v.a definidas sobre (Ω, \mathcal{A}, P) , es decir:

$$\forall t \in T, X_t : (\Omega, \mathcal{A}, P) \to (\mathbb{R}, \mathcal{B}) \text{ es medible } \iff X_t^{-1}(B) \in \mathcal{A}, \ \forall B \in \mathcal{B} \iff X_t^{-1}((-\infty, x]) \in \mathcal{A}, \ \forall x \in T, X_t : (X_t : (X_t : (X_t : X_t : (X_t : (X_t : X_t :$$

1.4.2. Trayectorias

Definición 1.57 (Trayectoria (PETC)). Sea $\omega \in \Omega$, definimos la trayectoria de ω como

$$X(\omega): T \to \mathbb{R}$$

 $t \mapsto X_t(\omega)$

Tenemos que ver ahora si la función que asocia elementos a sus trayectorias es medible:

$$\chi: \Omega \to \mathbb{R}^T$$
$$\omega \mapsto \{X_t(\omega)\}_{t \in T}$$

Definición 1.58 (\mathbb{R}^T **).** Definimos \mathbb{R}^T como $\mathbb{R}^T = \{f : T \to \mathbb{R}\}$ (trayectorias).

Necesitamos un σ -álgebra con \mathbb{R}^T , veamos como la definimos:

Definición 1.59 (Rectángulo en \mathbb{R}^T **).** Definimos el rectángulo de lados B_1, \ldots, B_n con $B_i \subseteq \mathbb{R}$ como $R = \{ f \in \mathbb{R}^T : f(t_1) \in B_1, \ldots, f(t_n) \in B_n, \ \forall t_1, \ldots, t_n \in T \}$.

Definición 1.60 (σ **-álgebra Borel** \mathscr{B}^T **).** Definimos la σ -álgebra Borel \mathscr{B}^T como el σ -álgebra minimal sobre el álgebra de rectángulo medibles, es decir, $\mathscr{B}^T = \sigma(\text{Álg. de rect. medibles}) = \sigma(\mathscr{C}^T)$.

Definición 1.61 (Teorema de medibilidad(PETC)). Sea un espacio de probabilidad (Ω, \mathcal{A}, P) , un intervalo $T \subseteq \mathbb{R}, \ \forall t \in T$, las funciones $X_t : \Omega \to \mathbb{R}$, y la función

$$\chi: \Omega \to \mathbb{R}^T$$
$$\omega \mapsto \{X_t(\omega)\}_{t \in T}$$

. Entonces $\chi:(\Omega,\mathscr{A},P)\to(\mathbb{R}^T,\mathscr{B}^T)$ es medible $\iff \forall t\in T,\ X_t:(\Omega,\mathscr{A},P)\to(\mathbb{R},\mathscr{B})$ es v.a $\iff \{X_t\}_{t\in T}$ es un PETC.

1.4.3. Distribución de un PETC

Definición 1.62 (Distribución de un PETD). La distribución de un PETD $\{X_t\}_{t\in T}$ definido sobre el espacio de probabilidad (Ω, \mathcal{A}, P) es una probabilidad definida como:

$$P_{\chi}: \mathcal{B}^{T} \to [0,1]$$

$$B \mapsto P_{\chi}(B) = P(\chi^{-1}(B)) = P[\chi \in \mathcal{B}]$$

Está bien definida por ser χ medible, y es una probabilidad (comprobable fácilmente).

1.4.4. Equivalencia de procesos

Sea (Ω, \mathcal{A}, P) el espacio de probabilidad, espacio paramétrico $T \subseteq \mathbb{R}$ y $\{X_t\}_{t \in T}$, $\{Y_t\}_{t \in T}$ dos PETC con distribuciones P_{χ} y P_{χ} respectivamente.

Definición 1.63 (Equivalencia en sentido amplio de procesos). Dos PETC $\{X_t\}_{t\in T}$ y $\{Y_t\}_{t\in T}$ son *equivalentes en sentido amplio* si y solo si tienen la misma distribución, es decir, $P_{\gamma} \equiv P_{\gamma}$ o lo que es lo mismo:

$$P_{\gamma}(B) = P_{\gamma}(B), \ \forall B \in \mathscr{B}^T$$

Para esta definición no es necesario que los dos procesos estén definidos en el mismo espacio de probabilidad.

Proposición 1.6 (Caracterización de equivalencia). Dos PETC $\{X_t\}_{t\in T}$ y $\{Y_t\}_{t\in T}$ son *equivalentes en sentido amplio* si y solo si sus distribuciones finito-dimensional son iguales, es decir:

$$P[X_{t_1} \in B_1, \dots, X_{t_n} \in B_n] = P[Y_{t_1} \in B_1, \dots, Y_{t_n} \in B_n],$$

 $\forall n \in \mathbb{N}, \ \forall t_1, \dots, t_n \in T, \ \forall B_1, \dots, B_n \in \mathcal{B}$

Definición 1.64 (Equivalencia de procesos). Dos PETC $\{X_t\}_{t\in T}$ y $\{Y_t\}_{t\in T}$ son equivalente si y solo si todas sus v.a son iguales casi seguramente, es decir:

$$P[X_t = Y_t] = 1, \ \forall t \in T$$

Definición 1.65 (Indistinguibilidad de procesos). Dos PETC $\{X_t\}_{t\in T}$ y $\{Y_t\}_{t\in T}$ son indistinguibles si y solo si

$$[X_t - Y_t] \in \mathcal{A}, P[X_t = Y_t, t \in T] = 1$$

Proposición 1.7. Sean las siguientes definiciones:

- (i) Equivalentes en sentido amplio
- (ii) Equivalentes
- (iii) Indistinguibles

Entonces $3 \Rightarrow 2 \Rightarrow 1$, pero $1 \not\Rightarrow 2 \not\Rightarrow 3$.

 $\begin{array}{c} \textit{Demostración.} \quad \boxed{3 \Rightarrow 2} \\ 1 = P[X_t = Y_t, \ t \in T \] \leq P[X_t = Y_t] \leq 1 \implies P[X_t = Y_t] = 1, \forall t \in T. \\ \boxed{2 \Rightarrow 1} \\ \end{array}$

 $\overline{\mathrm{Denotamos}}\,A_j=[X_{t_j}=Y_{t_j}]$, tenemos que

$$1 \ge P[X_{t_1} = Y_{t_1}, \dots, X_{t_n} = Y_{t_n}] = P[\bigcap_{j=1}^n A_j] = 1 - P(\bigcup_{j=1}^n \overline{A_j}) \ge 1 - \sum_{j=1}^n P(\overline{A_j}) = 1$$

Luego tenemos que $P[X_t = Y_t] = 1 \implies P[X_{t_1} = Y_{t_1}, \dots, X_{t_n} = Y_{t_n}] = 1.$ $P[X_{t_1} \in B_1, \dots, X_{t_n} \in B_n] = P$

Sea el espacio de probabilidad ([0,1], $\mathscr{B}_{[0,1]}$, $P \equiv$ Lebesgue), con T = [0,1],

consideramos las v.a
$$\forall t \in T, \forall \omega \in \Omega, X_t(\omega) = 0$$
 y $Y_t(\omega) = \begin{cases} 0, & \omega \neq t \\ 1, & \omega = t \end{cases}$

Entonces $P[X_t \neq Y_t] = P\{\omega \in \Omega : X_t(\omega) \neq Y_t(\omega)\} = P\{w = t\} = 0$, por lo que los PETC son equivalentes, pero $P\{\omega \in \Omega : X_t(w) = Y_t(w), t \in T\} = P(\emptyset) = 0$, luego no son indistinguibles.

$$\begin{array}{c|c} \boxed{1 \Rightarrow 2} \\ P[X_t = Y_t] = P[X_t = 0, Y_t = 0] + P[X_t = 1, Y_t = 1] = P[X_t = 0]P[X_t = 0] + P[X_t = 1]P[Y_t = 1] = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}, \text{ luego no son equivalentes.} \end{array}$$

Nota. Para PETD se define exactamente igual y todo es igual, excepto para la indistinguibilidad que el conjunto pertenezca a la σ -álgebra ya se cumple por ser un conjunto numerable.

Parte II. Ejercicios

2. Tema 1

2.1. Ejercicios mandados

Ejercicio 2.1. Definir la distribución de probabilidad, función de distribución y función característica de una variable aleatoria y expresar dichas funciones en términos de la función masa de probabilidad o la función de densidad, según que la variable sea de tipo discreto o continuo, respectivamente.

Solución. La distribución de probabilidad de una variable aleatoria es una función de probabilidad definida en el espacio de Borel:

$$P_X: \mathcal{B} \to [0,1]$$

$$B \mapsto P_X(B) = P(X^{-1}(B)) = P[X \in B]$$

La función de distribución es la función de puntos definida como:

$$F: \mathbb{R} \to [0,1]$$
$$x \mapsto F_X(x) = P_X((-\infty, x]) = P[X \le x]$$

La función característica es la función definida como

$$\varphi_X : \mathbb{R} \to \mathbb{C}$$

$$t \mapsto \varphi_X(t) = E[e^{itX}]$$

· Caso discreto:

$$\forall B \in \mathcal{B}, P_X(B) = \sum_{x \in B \cap E_X} P[X = x] = \sum_{x \in B \cap E_X} f(x)$$

$$\forall x \in \mathbb{R}, F_X(x) = P_X[(-\infty, x]] = \sum_{x \in E_X, x \le y} P[X = x] = \sum_{x \in E_X, x \le y} f(x)$$

$$\forall t \in \mathbb{R}, \ \varphi_X(t) = E[e^{itX}] = \sum_{x \in E_Y} e^{itx} P[X = x] = \sum_{x \in E_Y} e^{itx} f(x)$$

· Caso continuo:

$$\forall B \in \mathcal{B}, \ P_X(B) = \int_{\mathcal{B}} f(x) dx$$

$$\forall x \in \mathbb{R}, F_X(x) = P_X[(-\infty, x]] = P[X \in (-\infty, x]] = P[X \le x] = \int_{-\infty}^x f(y) dy$$
$$\forall t \in \mathbb{R}, \ \varphi_X(t) = E[e^{itX}] = \int_{\mathbb{R}} e^{itx} f(x) dx$$

Donde f(x) representa la función masa de probabilidad en el caso discreto, y la función densidad en el caso continuo.

Ejercicio 2.2. Demostrar que la distribución de probabilidad de una variable aleatoria es una medida de probabilidad definida sobre la σ -álgebra de Borel.

Solución. Veamos si

$$P_X: \mathcal{B} \to \mathbb{R}$$

$$B \mapsto P_X(B) = P(X^{-1}(B)) = P[X \in B]$$

cumple con los tres Axiomas de Kolmogorov, usando que P es una probabilidad:

- (i) $P_X(B) = P[X \in B] \ge 0, \forall B \in \mathcal{B}$.
- (ii) $\forall \{B_n\}_{n\in\mathbb{N}} \subset \mathcal{B}$ disjuntos

$$P_X(\bigcup_{n=1}^{\infty} B_n) = P[X \in \bigcup_{n=1}^{\infty} B_n] = P[\bigcup_{n=1}^{\infty} (X \in B_n)] = \sum_{n=1}^{\infty} P[X \in B_n] = \sum_{n=1}^{\infty} P_X(B_n)$$

(iii)
$$P_X(\mathbb{R}) = P[X^{-1}(\mathbb{R})] = P[\Omega] = 1$$

Ejercicio 2.3. Demostrar la caracterización de vectores aleatorios mediante variables aleatorias.

Solución. Sea $X=(X_1,\ldots,X_n):(\Omega,\mathscr{A},P)\to(\mathbb{R}^n,\mathscr{B}^n)$, entonces X es vector aleatorio $\iff X_1,\ldots,X_n$ son variables aleatorias.

$$X \text{ v.a} \iff \forall x = (x_1, \dots, x_n) \in \mathbb{R}^n, X^{-1}((-\infty, x]) = [X \le x] =$$

$$= [X_1 \le x_1, \dots, X_n \le x_n] = \bigcap_{i=1}^n [X_i \le x_i] \subset \mathscr{A} \iff \forall i \in \{1, \dots, n\}, \ \forall x_i \in \mathbb{R}$$

$$\mathscr{A} \supset [X_i \le x_i] = X^{-1}((-\infty, x_i]) \iff X_1, \dots, X_n \text{ v.a}$$

Vemos la penúltima implicación tomando $x_j = \infty \, \forall j \neq i \text{ en } \bigcap_{i=1}^n [X_i \leq x_i] \subset \mathscr{A} \Longrightarrow [X_i \leq x_i] \subset \mathscr{A},$ y al revés sabiendo que $\bigcap_{i=1}^n [X_i \leq x_i] \subset [X_i \leq x_i] \subset \mathscr{A}.$

Ejercicio 2.4. Sean X e Y variables aleatorias independientes tales que E[X] = 0, Var(X) = 1 y la variable Y tiene distribución uniforme en $[-\pi, \pi]$. Consideremos el proceso estocástico $\{X_t\}_{t\geq 0}$ definido por

$$X_t = X \cos(t + Y)$$

Calcular las funciones media y covarianza y decir si el proceso es débilmente estacionario.

Solución. Primero veamos que efectivamente $\{X_t\}_{t\geq 0}$ es un proceso estocástico. Para $t\geq 0$, tenemos que $X_t:(\Omega,\mathscr{A},P)\to(\mathbb{R},\mathscr{B})$, luego falta ver que es medible, pero funciones Borel de variables aleatorias son medibles y el producto de funciones medibles es medible.

Función media: $\mu(t) = E[X_t] = E[X\cos(t+Y)]$, como $\cos(t+Y)$ es función medible por composición de funciones medibles junto a que X y Y son independientes, entonces X y $\cos(t+Y)$ son independientes; luego $E[X\cos(t+Y)] = E[X]E[\cos(t+Y)] = 0$. Luego $\mu(t) = 0$, $\forall t \geq 0$.

Función covarianza: $C(s,t) = R(s,t) - \mu_t \mu_s = R(s,t) = E[X_t X_s] = E[X^2 \cos(t+Y)\cos(s+Y)]$, por la independencia otra vez, $E[X^2 \cos(t+Y)\cos(s+Y)] = E[X^2]E[\cos(t+Y)\cos(s+Y)] = Var(X)E[\cos(t+Y)\cos(s+Y)] = E[\cos(t+Y)\cos(s+Y)]$, resolvemos la integral $\frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(t+Y)\cos(s+Y)dy$ y tenemos que $C(s,t) = \frac{1}{2}\cos(s-t)$.

Este pe. es débilmente estacionario ya que su función media es constante, $\mu(t) = 0$, $\forall t \geq 0$; y la función covarianza cumple $C(s,t) = \frac{1}{2}\cos(s-t) = \frac{1}{2}\cos(s+h-t-h) = C(s+h,t+h) = C(0,t-s)$, $\forall t,s \geq 0$.

Ejercicio 2.5. Ejemplos de procesos estocásticos atendiendo a la clasificación según el espacio de estados y espacio paramétrico.

Solución. Ejemplos:

- PDTD: N° de productos fabricados al día $\equiv X_n$ $T \equiv \mathbb{N}(\text{días}), E = \mathbb{N} \cup \{0\} (\text{n° productos}).$
- PCTD: Nota media por curso $\equiv X_n$ $T = \{1, 2, 3, 4, 5\}$ (curso), E = [0, 10] (nota media).
- PDTC: No de lanzamientos hechos en el instante $t \equiv X_t$ $T = \mathbb{R}_0^+$ (tiempo), $E = \mathbb{N} \cap \{0\}$ (lanzamientos).
- PCTC: Temperatura en una ciudad en el instant $t \equiv X_t$ $T = \mathbb{R}_0^+$ (tiempo), $E = \mathbb{R}_0^+$ (Kelvin).

Ejercicio 2.6. Demostrar que si las componentes del vector aleatorio $X = (X_1, ..., X_n)^T$ son independientes, entonces la funcion característica del vector X es igual al producto de las funciones características de las variables X_k , k = 1, ..., n.

Solución. Sea un vector aleatorio $X=(X_1,\ldots,X_n)$, la función característica del vector X es $\varphi_X(t)=E[e^{it^TX}]=E[e^{i(t_1X_1+\ldots+t_nX_n)}]=E[e^{it_1X_1+\ldots+it_nX_n}]=E[\prod_{k=1}^n e^{it_kx_k}]=\prod_{k=1}^n E[e^{it_kx_k}]=\prod_{k=1}^n \varphi_{X_k}(t_k)$. Podemos separar las esperanzas ya que X_1,\ldots,X_n son independientes y e^{itx} es función Borel de variable aleatoria; y por tanto e^{itX_k} , $k=1,\ldots,n$, siguen siendo independientes.

Ejercicio 2.7. Demostrar que para un proceso con incrementos independientes las distribuciones finito dimensionales del proceso (esto es, las distribuciones de los vectores $(X_{t_1}, X_{t_2}, \dots, X_{t_n})^T$, $\forall t_1 < t_2 < \dots < t_n$) están determinadas por las distribuciones marginales unidimensionales $(X_{t_1}, Y_{t_2}, \dots, Y_{t_n})^T$, $\forall t_1 < t_2 < \dots < t_n$) están determinadas por las distribuciones marginales unidimensionales $(X_{t_1}, Y_{t_2}, \dots, Y_{t_n})^T$, $(X_{t_n}, X_{t_n}, Y_{t_n})^T$, $(X_{t_n}, X_{t_n}, Y_{t_n}, Y_{t_n}, Y_{t_n})^T$, $(X_{t_n}, X_{t_n}, Y_{t_n}, Y$

Solución. Tenemos un $\{X_t\}_{t \in T}$ p.e con incrementos independientes, entonces $\forall t_1 < \ldots < t_n \in T, X_{t_1}, X_{t_2} - x_{t_1}, \ldots, X_{t_n} - X_{t_{n-1}}$ son v.a independientes.

Definimos
$$S_1 = X_{t_1}$$
, $S_2 = X_{t_2} - X_{t_1} \Longrightarrow X_{t_2} = S_1 + S_2$
 $S_3 = X_{t_3} - Xt_2 \Longrightarrow X_{t_3} = S_1 + S_2 + S_3$, por tanto $X_{t_k} = \sum_{j=1}^k S_j$.
 $\phi_{(X_{t_1}, \dots, X_{t_n})}(u_1, \dots, u_n) = \phi_{(s_1, \dots, s_n)}(v_1, \dots, v_n)$

Ejercicio 2.8. Demostrar que la clase de rectángulos medibles $\mathscr{C}^{\mathbb{N}}$ es una semi-álgebra.

Solución. Tenemos que

$$\mathscr{C}^{\mathbb{N}} = \{ \prod_{i=1}^{\infty} A_i : n \in \mathbb{N}, \, A_i \in \mathscr{B}, \, A_j = \mathbb{R}, \, 1 \leq i \leq n, \, j > n \}$$

Veamos que $\mathscr{C}^{\mathbb{N}}$ es una semi-álgebra.

(i) $\mathbb{R}^{\mathbb{N}} \in \mathscr{C}^{\mathbb{N}}$. Como $\mathbb{R} \in \mathscr{B}$ (\mathscr{B} es σ -álgebra) $\Longrightarrow \mathbb{R}^{\mathbb{N}} \in \mathscr{C}^{\mathbb{N}}$.

(ii) $\forall A, B \in \mathscr{C}^{\mathbb{N}} \implies A \cap B \in \mathscr{C}^{\mathbb{N}}.$ Sean $A, B \in \mathscr{C}^{\mathbb{N}}$, $A \cap B = (\prod_{n=1}^{\infty} A_n) \cap (\prod_{n=1}^{\infty} B_n) = \prod_{n=1}^{\infty} (A_n \cap B_n) \in \mathscr{C}^{\mathbb{N}}$, ya que $A_i, B_i \in \mathscr{B} \implies A_i \cap B_i \in \mathscr{B}$ (por ser \mathscr{B} σ -álgebra).

(iii)
$$\forall A, B \in \mathcal{C}^{\mathbb{N}}, \exists \{C_i\}_{i=1}^n \subset \mathcal{C}^{\mathbb{N}} \text{ disjuntos dos a dos tal que } A \setminus B = \bigcup_{i=1}^n C_i.$$

Sean $A, B \in \mathcal{C}^{\mathbb{N}}, A \setminus B = (\prod_{n=1}^{\infty} A_n) \setminus (\prod_{n=1}^{\infty} B_n) = \prod_{n=1}^{\infty} (A_n \setminus B_n) = C \in \mathcal{C}^{\mathbb{N}}, \text{ ya que } A_i \setminus B_i = A_i \cap \overline{B_i} \in \mathcal{B} \ (\mathcal{B} \text{ es } \sigma\text{-álgebra}).$

Ejercicio 2.9. Demostrar el Teorema de medibilidad para procesos estocásticos en tiempo discreto.

Solución. Sea la función

$$\chi: (\Omega, \mathscr{A}) \to (\mathbb{R}^{\mathbb{N}}, \mathscr{B}^{\mathbb{N}})$$
$$\omega \mapsto X(\omega) = \{X_n(\omega)\}_{n \in \mathbb{N}}$$

Entonces χ es medible $\iff \{X_n\}_{n\in\mathbb{N}}$ son medibles.

2.2. Ejercicios en clase

Ejercicio 2.10. Sea el espacio de probabilidad ([-1,1], $\mathcal{B}_{[-1,1]}$, U[-1,1]) y

$$\forall n \in \mathbb{N}, X_n(\omega) = \begin{cases} -1, \omega \in [-1, \frac{-1}{n}] \\ 0, \omega \in [\frac{-1}{n}, \frac{1}{n}] \\ 1, \omega \in [\frac{1}{n}, 1] \end{cases}$$

Y las trayectorias:

$$\omega \in [-1,0) \to \chi(\omega) = \begin{cases} 0, & n \le \frac{-1}{\omega} \\ -1, & n \ge \frac{-1}{w} \end{cases}$$
$$\omega \in [0,1] \to \chi(\omega) = \begin{cases} 0, & n < \frac{1}{\omega} \\ 1, & n \ge \frac{1}{w} \end{cases}$$

Solución. Los pasos a seguir son:

- (i) Demostrar que tenemos un PETD (p.e)
- (ii) Obtener las trayectorias
- (iii) Obtener la distribución basandonos en la trayectoria
- (iv) Ver que la distribución queda dada por distribuciones finito dimensionales

Veamos la distribución:

$$P[X_1 = 0] = P((-1,1)) = 1$$

$$P[X_1 = 0, X_2 = 0] = P[(-1,1) \cap (\frac{-1}{2}, \frac{1}{2})] = P[(\frac{-1}{2}, \frac{1}{2})] = \frac{1}{2}$$

$$P[X_1 = 0, X_2 = 1] = P[(-1,1) \cap [-1, \frac{-1}{2})] = P[(-1,\frac{-1}{2})] = \frac{1}{4}$$

$$P[X_1 = 0, X_2 = 2] = P[(-1,1) \cap (\frac{1}{2},1]] = P[[\frac{1}{2},1]] = \frac{1}{4}$$

$$P[X_1 = 0, \dots, X_n = 0] = P[(-1,1) \cap (\frac{-1}{2}, \frac{1}{2}) \cap \dots \cap (\frac{-1}{n}, \frac{1}{n})] = P((\frac{-1}{n}, \frac{1}{n})) = \frac{1}{n}.$$

$$P[X_1 = 0, \dots, X_{k-1} = 0, X_k = -1, \dots, X_n = -1] = P((-1,1) \cap \dots \cap (\frac{-1}{k-1}, \frac{1}{k-1}) \cap [-1, \frac{-1}{k}] \cap \dots \cap [-1, \frac{-1}{n}]) = P((\frac{-1}{n}, \frac{1}{k-1}) \cap [-1, \frac{-1}{k}]) = \frac{1}{2k(k-1)}$$

$$P[X_1 = 0, \dots, X_{k-1} = 0, X_k = 1, \dots, X_n = 1] = P((-1,1) \cap \dots \cap [\frac{1}{k-1}, 1] \cap \dots \cap [\frac{1}{n}, 1]) = P((\frac{-1}{k-1}, \frac{1}{k-1}) \cap [\frac{1}{k}, 1]) = \frac{1}{2k(k-1)}$$
Comprehense que es una probabilidad (viendo que suma):

Comprobamos que es una probabilidad (viendo que suma):

$$\frac{1}{n} + \sum_{k=2}^{n} \frac{1}{2k(k-1)} + \sum_{k=2}^{n} \frac{1}{2k(k-1)} = \frac{1}{n} + \sum_{k=2}^{n} \frac{1}{k(k-1)}, \ k = 2, 3, \dots, n$$

Por ejemplo por n = 3, 4:

$$n = 3 \to \frac{1}{3} + \frac{1}{2} + \frac{1}{6} = 1.$$

$$n = 4 \to \frac{1}{4} + \frac{1}{2} + \frac{1}{6} + \frac{1}{12} = 1.$$

2.3. Ejercicios PETC

Ejercicio 2.11. Sea (Ω, \mathcal{A}, P) un espacio probabilístico, con $\Omega = [0, 1]$, $\mathcal{A} = \mathcal{B}_{[0,1]}$, y P la distribución uniforme en [0,1]. Definimos $\{X_n\}_{n>4}$ sobre (Ω, \mathcal{A}, P) por

$$\forall n > 4, X_n(\omega) = \begin{cases} 0, & \text{si } 0 \le \omega < \frac{1}{4} - \frac{1}{n} \\ 1, & \text{si } \frac{1}{4} - \frac{1}{n} \le \omega < \frac{1}{2} - \frac{1}{n} \\ 2, & \text{si } \frac{1}{2} - \frac{1}{n} \le \omega < \frac{3}{4} - \frac{1}{n} \\ 3, & \text{si } \frac{3}{4} - \frac{1}{n} \le \omega \le 1 \end{cases}$$

Demostrar que $\{X_n\}_{n>4}$ es un proceso estocástico, calcular sus trayectorias y su distribución.

Solución. Veamos primero que es un proceso estocástico (las X_n son medibles):

Como $X_n = 1_{\left[\frac{1}{4} - \frac{1}{n}, \frac{1}{2} - \frac{1}{n}\right]} + 2_{\left[\frac{1}{2} - \frac{1}{n}, \frac{3}{4} - \frac{1}{n}\right]} + 3_{\left[\frac{3}{4} - \frac{1}{n}, 1\right]}$, es decir, es suma de funciones indicadoras de conjuntos medibles, por tanto medibles.

Definimos las trayectorias:

$$\chi: \Omega \to \mathbb{R}^{\mathbb{N}}$$
$$\omega \mapsto \{X_n(\omega)\}_{n>4}$$

Tenemos que:

•
$$\chi(0) = \{0, 0, \dots, 0, \dots\}$$

•
$$\chi(\frac{1}{4}) = \{1, 1, \dots, 1, \dots\}$$

•
$$\chi(\frac{1}{2}) = \{2, 2, \dots, 2, \dots\}$$

•
$$\chi(\frac{1}{2}) = \{2, 2, \dots, 2, \dots\}$$

• $\omega \in [\frac{3}{4}, 1] \implies \chi(\omega) = \{3\}_{n>4}$
• $\omega \in (0, \frac{1}{4}) = (0, \frac{1}{4} - \frac{1}{n}) \cup [\frac{1}{4} - \frac{1}{n}, \frac{1}{4}]$

$$-\omega < \frac{1}{4} - \frac{1}{n} \iff \frac{1}{n} < \frac{1}{4} - \omega \iff n > \frac{4}{1 - 4\omega} \implies X_n(\omega) = 0$$

$$-\omega \ge \frac{1}{4} - \frac{1}{n} \iff n \le \frac{4}{1 - 4\omega} \implies X_n(\omega) = 1$$

•
$$\omega \in (\frac{1}{4}, \frac{1}{2}) = (\frac{1}{4}, \frac{1}{2} - \frac{1}{n}) \cup [\frac{1}{2} - \frac{1}{n}, \frac{1}{2})$$

- $\omega < \frac{1}{2} - \frac{1}{n} \iff n > \frac{2}{1 - 2\omega} \implies X_n(\omega) = 1$

$$-\omega \ge \frac{1}{2} - \frac{1}{n} \iff n \ge \frac{2}{1 - 2\omega} \implies X_n(\omega) = 2$$
Por tanto $\forall \omega \in (\frac{1}{4}, \frac{1}{2}), \ \chi(\omega) =$

Ahora obtendremos la distribución, que está determinada por las distribuciones finito dimensionales:

•
$$P[X_5 = 0, X_6 = 0, ..., X_n = 0] = P[(0, \frac{1}{4} - \frac{1}{5} \cap ... \cap (0, \frac{1}{4} - \frac{1}{n})] = P[(0, \frac{1}{4} - \frac{1}{5})] = \frac{1}{4} - \frac{1}{5} = \frac{1}{20}$$

•
$$P[X_5 = 1, X_6 = 1, \dots, X_n = 1] = P[(\frac{1}{4} - \frac{1}{5}, \frac{1}{2} - \frac{1}{5}) \cap \dots \cap (\frac{1}{4} - \frac{1}{n}, \frac{1}{2} - \frac{1}{n})] = P[(\frac{1}{4} - \frac{1}{n}, \frac{1}{2} - \frac{1}{5})] = \frac{1}{n} + \frac{1}{20}$$

•
$$P[X_5 = 2, ..., X_n = 2] = P[C_5 \cap ... \cap C_n] = P[(\frac{1}{2} - \frac{1}{n}, \frac{3}{4} - \frac{1}{5})] = \frac{1}{20} + \frac{1}{n}$$

•
$$P[X_5 = 3, ..., X_n = 3] = P[D_5 \cap ... D_n] = P[(\frac{3}{4} - \frac{1}{n}, 1)] = \frac{1}{4} + \frac{1}{n}$$

•
$$P[X_5 = 1, X_6 = 1, ..., X_{k-1} = 1, X_k = 0, ..., X_n = 0] = P[B_5 \cap B_6 \cap ... \cap B_{k-1} \cap A_k \cap ... \cap A_n] = P[(\frac{1}{4} - \frac{1}{k-1}, \frac{1}{4} - \frac{1}{k})] = \frac{1}{(k-1)k}$$

•
$$P[X_5 = 2, X_6 = 2, ..., X_{k-1} = 2, X_k = 1, ..., X_n = 1] = P[C_5 \cap ... \cap C_{k-1} \cap B_k \cap ... \cap B_n] = P[(\frac{1}{2} - \frac{1}{k-1}, \frac{3}{4} - \frac{1}{5}) \cap (\frac{1}{4} - \frac{1}{n}, \frac{1}{2} - \frac{1}{k})] = P[(\frac{1}{2} - \frac{1}{k-1}, \frac{1}{2} - \frac{1}{k})] = \frac{1}{(k-1)k}$$
• $P[X_5 = 3, ..., X_{k-1} = 3, X_k = 2, ..., X_n = 2] = P[D_5 \cap ... \cap D_{k-1} \cap C_k \cap ... \cap C_n] = P[(\frac{3}{4} - \frac{1}{k-1}, \frac{3}{4} - \frac{1}{k})] = \frac{1}{(k-1)k}$

•
$$P[X_5 = 3, ..., X_{k-1} = 3, X_k = 2, ..., X_n = 2] = P[D_5 \cap ... \cap D_{k-1} \cap C_k \cap ... \cap C_n] = P[(\frac{3}{4} - \frac{1}{k-1}, \frac{3}{4} - \frac{1}{k})] = \frac{1}{(k-1)k}$$

Comprobamos que las probabilidades suman uno:

$$\frac{1}{20} + (\frac{1}{n} + \frac{1}{2}) + (\frac{1}{n} + \frac{1}{20}) + (\frac{1}{n} + \frac{1}{20}) + (\frac{1}{4} + \frac{1}{n}) + 3\sum_{k=6}^{n} \frac{1}{(k-1)k} =$$

$$= \frac{3}{n} + \frac{2}{5} + 3\sum_{k=6}^{n} \frac{1}{(k-1)k}, \ n > 4$$

Tomamos valores de n y lo comprobamos fácilmente, por ej $n = 5, 6, \dots, 10, 50$.