Janik Steegmüller, 4235318 janik.steegmueller@student.unituebingen.de

1	2	3	Σ	

Lukas Sailer, 4265663 lukas.sailer@student.unituebingen.de

Übungsblatt Nr. 8

(Abgabetermin 28.01.2022)

Aufgabe 1

a

Constraints: AllDiff(F,O,U,R,I,V,E,N)

R + E = E + 10 *
$$C_1$$

 C_1 + U + V = N + 10 * C_2
 C_2 + O + I = I + 10 * C_3
 C_3 + F + F = N

1.
$$R + E = E + 10 * C_1$$

Assume $R = 0$ and $E = 1$
 $0 + 1 = 1 + 10 * 0$

2.
$$C_1 + U + V = N + 10 * C_2$$

Assume $U = 7$ and $V = 8$
 $0 + 7 + 8 = 5 + 10 * 1$

3.
$$C_2 + O + I = I + 10 * C_3$$

Assume O = 9 and I = 4
 $1 + 9 + 4 = 4 + 10 * 1$

4.
$$C_3 + F + F = N$$

 $C_3 + 2 + 2 = 4$

b

Constraints: AllDiff(C,A,K,E,O,I,L,N,S)

$$\begin{split} E+E &= S+10*C_1\\ C_1+K+I &= N+10*C_2\\ C_2+A+K &= E+10*C_3\\ C_3+C+O &= I+10*C_4\\ C_4+O &= L+10*C_5\\ C_5+C &= A \end{split}$$

O = 9 because we need a carry at the left most calculation.

L=0 because carry can be max. 1, 9+1=10.

C=2, must be lower 8, then A=3 and I=1.

S%2 = 0, 3 + K < 10, thus K = 5, thus E = 8 thus N = 7

$$\begin{array}{r}
2 3 5 8 \\
+2 9 9 5 1 8 \\
\hline
3 0 1 8 7 6
\end{array}$$
(7)

Aufgabe 2

Original Domains (No Constraints considered):

- $D_{1,1} = \{1\}$
- $D_{1,2} = \{1, 2, 3, 4\}$
- $D_{1,3} = \{1, 2, 3, 4\}$
- $D_{1,4} = \{1, 2, 3, 4\}$
- $D_{2,1} = \{1, 2, 3, 4\}$
- $D_{2,2} = \{1, 2, 3, 4\}$
- $D_{2,3} = \{1, 2, 3, 4\}$
- $D_{2,4} = \{3\}$
- $D_{3,1} = \{1, 2, 3, 4\}$
- $D_{3,2} = \{1, 2, 3, 4\}$
- $D_{3,3} = \{1, 2, 3, 4\}$
- $D_{3,4} = \{1, 2, 3, 4\}$
- $D_{4,1} = \{1, 2, 3, 4\}$
- $D_{4,2} = \{2\}$
- $D_{4,3} = \{4\}$
- $D_{4,4} = \{1, 2, 3, 4\}$

Constraints:

Row:

- AllDiff $(D_{1,1}, D_{1,2}, D_{1,3}, D_{1,4})$
- AllDiff $(D_{2,1}, D_{2,2}, D_{2,3}, D_{2,4})$
- AllDiff $(D_{3,1}, D_{3,2}, D_{3,3}, D_{3,4})$
- AllDiff $(D_{4,1}, D_{4,2}, D_{4,3}, D_{4,4})$

Column:

- AllDiff $(D_{1,1}, D_{2,1}, D_{3,1}, D_{4,1})$
- AllDiff $(D_{1,2}, D_{2,2}, D_{3,2}, D_{4,2})$
- AllDiff $(D_{1,3}, D_{2,3}, D_{3,3}, D_{4,3})$
- AllDiff $(D_{1,4}, D_{2,4}, D_{3,4}, D_{4,4})$

In-box:

- AllDiff $(D_{1,1}, D_{1,2}, D_{2,1}, D_{2,2})$
- AllDiff $(D_{1,3}, D_{1,4}, D_{2,3}, D_{2,4})$
- AllDiff $(D_{3,1}, D_{3,2}, D_{4,1}, D_{4,2})$
- AllDiff $(D_{3,3}, D_{3,4}, D_{4,3}, D_{4,4})$

1. Examine $E_{4,1}$

- Original Domain $\{1, 2, 3, 4\}$
- Row Constraints AllDiff($D_{4,1}, D_{4,2}, D_{4,3}, D_{4,4}$) Exclude 2,4
- Column Constraints AllDiff $(D_{1,1}, D_{2,1}, D_{3,1}, D_{4,1})$ Exclude 1
- In-box constraints AllDiff $(D_{3,1}, D_{3,2}, D_{4,1}, D_{4,2})$
- Domain is now $\{3\}$ and $E_{4,1}$ must be 3

2. Examine $E_{4,4}$

- Original Domain $\{1, 2, 3, 4\}$
- Row Constraints AllDiff($D_{4,1}, D_{4,2}, D_{4,3}, D_{4,4}$) Exclude 2,3,4
- Column Constraints AllDiff $(D_{1,4}, D_{2,4}, D_{3,4}, D_{4,4})$
- In-box constraints AllDiff $(D_{3,3}, D_{3,4}, D_{4,3}, D_{4,4})$
- Domain is now $\{1\}$ and $E_{4,4}$ must be 1

3. Examine $E_{1,3}$

- Original Domain $\{1, 2, 3, 4\}$
- Row Constraints AllDiff $(D_{1,1}, D_{1,2}, D_{1,3}, D_{1,4})$ Exclude 1
- Column Constraints AllDiff $(D_{1,3}, D_{2,3}, D_{3,3}, D_{4,3})$ Exclude 4
- In-box constraints AllDiff $(D_{1,3}, D_{1,4}, D_{2,3}, D_{2,4})$ Exclude 3
- Domain is now $\{2\}$ and $E_{1,3}$ must be 2

- 4. $E_{1,4}$ must be 4
- 5. $E_{1,2}$ must be 3
- 6. $E_{2,3}$ must be 1
- 7. $E_{2,2}$ must be 4
- 8. $E_{2,1}$ must be 2
- 9. $E_{3,1}$ must be 4
- 10. $E_{3,2}$ must be 1
- 11. $E_{3,3}$ must be 3
- 12. $E_{3,4}$ must be 2

1	3	2	4	
2	4	1	3	
4	1	3	2	

Aufgabe 3

a

It is obvious that A,B and D have to have three different colors.

Therefore E must have the same color as A.

It is then also clear to see that C has to be the same color as D and F the same as B.

Since G has to fulfill the Constrain AllDiff(C(C),C(E),C(F),C(G)) and C,E and F have different colors G can not have a color assignet and the puzzle is not solvable.

Doing the algorithm 3 Times but changing around the assignments of color 1, 2 and 3 will not change the outcome of the algorithm.

	A	В	$^{\rm C}$	D	E	F	G
	r,g,b	r,g,b	r,g,b	r,g,b	r,g,b	r,g,b	r,g,b
A-r	r	g,b	r,g,b	g,b	r,g,b	r,g,b	r,g,b
B-g	r	g	r,b	b	r,b	r,g,b	$_{\rm r,g,b}$
C- b	r	g	r	b	r	r,g,b	r,g
D- b	r	g	r	b		r,g	g,b
Back							
C- r	r	g	r	b	b	r,g,b	g,b
D- b	r	g	r	b		r,g	g,b
Back							
B- b	r	b	r,g	g	r,g	r,g,b	r,g,b
C- r	r	b	r	g	g	r,g,b	g,b
D- g	r	b	r	g		r,b	g,b
Back							
C- g	r	b	g	g	r	r,g,b	r,b
D- g	r	b	g	g	r	r,b	r,b
E- r	r	b	g	g	r	b	b
F- b	r	b	g	g	r	b	