

NUMBER SYSTEM

CONVERSION

Senior Capstone Courses

Defined as a system of writing to express numbers.

It is the mathematical notation for representing numbers of a given set by using digits or other symbols in a consistent manner.

Why is binary system used in computer? APPLICATION

NUMBER SYSTEM

45 10 10012 1111/02 0123456789 **BASE 2 (0, 1)** BASE 10 (0-9) **DECIMAL BINARY** 0123451789 482 45₈
BASE 8 (0-7) BASE 16 (0-9, A-F) # -15 **HEXADECIMAL** OCTAL 10 = 16

PRACTICE

642

22 100₁₀ 985₈

100₂ 12D₁₆ 101₁₆

CONVERSION

BINARY

DECIMAL

101₂

$$2^{2} 2^{1} 2^{0}$$
 $4 + 1 = 5$

POWER of 2's

	2 ⁰	1	2 ⁵	32
	2 ¹	2	2 ⁶	64
_	2 2	4	2 ⁷	128
2×2=	2 ³	8	2 ⁸	256
	2 ⁴	16	2 ⁹	512

20	1	2 ⁵	32
2 ¹	2	2 ⁶	64
2 ²	4	2 ⁷	128
2 ³	8	2 ⁸	256
2 ⁴	16	2 ⁹	512

20	1	2 ⁵	32
2 ¹	2	2 ⁶	64
2 ²	4	2 ⁷	128
2 ³	8	2 ⁸	256
24	16	2 ⁹	512

20	1	2 ⁵	32
2 ¹	2	2 ⁶	64
2 ²	4	2 ⁷	128
2 ³	8	2 ⁸	256
2 ⁴	16	2 ⁹	512

20	1	2 ⁵	32
2 ¹	2	2 ⁶	64
2 ²	4	2 ⁷	128
2 ³	8	2 ⁸	256
24	16	2 ⁹	512

PRACTICE

CONVERSION

BINARY

(0-7)OCTAL

101₂

$$\frac{110}{4210} = 68$$

PRACTICE

$$\frac{11011}{3} = 33_4 = 11000_2 = 14_8$$

CONVERSION

BINARY

HEXADECIMAL

$$A = 10$$
 $C = 12$ $E = 14$
 $B = 11$ $P = 13$ $E = 15$

PRACTICE

CONVERSION

DECIMAL

BINARY

25₁₀

1601

CONVERSION

DECIMAL

BINARY

25₁₀

				1	1	۵	0	l
256	128	64	32	16	8	4	2	1

255₁₀

166₁₀-

CONVERSION

DECIMAL

OCTAL

$$8 | 35 = 17$$
 $8 | 3 = 3 | 3$

CONVERSION

DECIMAL

BINARY

OCTAL

25₁₀

11001

2

3

		l)	G	G	1
64	32	16	8	4	2	1

	1	-
4	2	1

Ŏ	D	1
4	2	1

$$\frac{9}{9} = \frac{42}{5} = \frac{2}{5}$$

$$8 | 66 = 6$$
 $8 | 20 = 4$
 $8 | 2 = 2$

DECIMAL

HEXADECIMAL

DECIMAL

BINARY

HEXADECIMAL

25₁₀

19 16

 64
 32
 16
 8
 4
 2
 1

8 4 2 1

	- 1		
1	0	0	1
8	4	2	1

$$A=16$$
 $B=11$
 $C=12$
 $D=13$
 $E=14$
 $F=15$

$$\frac{16}{16} = 15 = 7$$
 $\frac{79}{-64}$
 $\frac{1}{16} = 4$
 $\frac{7}{16} = 4$
 $\frac{7}{16} = 4$
 $\frac{7}{16} = 4$

$$16 \ 255 = 15 = F \ 255$$
 $16 \ 15 = 15 = F \ F$

42 =
$$10 = A$$
 16
 $42 = 10 = A$ 16
 $42 = 2$

$$|b| |b| = 6$$
 $|b| |0| = |b| = A$

OCTAL

BINARY

610101	2
--------	---

2

<)	1	7
4	2	1

1	5,	,

1	0	1
4	2	1

OCTAL

DECIMAL

$$8^{1} 8^{0}$$
 $2 \times 8^{1} + 5 \times 8^{0} = 2 \times 8 + 5 \times 1$
 $16 + 5$

1054₀ = 556₁₀ 1x83+8x82+5x81+4x80 1x512+0+5x8+4x1 51240440+4 = 55610

77₈

OCTAL

HEXADECIMAL

HEXADECIMAL ___

BINARY

HEXADECIMAL ____

OCTAL

HEXADECIMAL ____

DECIMAL

10

TUROTEAM

Kezia Velasco

Kenno Fortz
INSTUCTOR 1

Josifina Llagas
INSTRUCTOR 1

https://www.rasmussen.edu/degrees/technology/blog/it-vs-computer-science-degree-infographic/ https://thebestschools.org/careers/best-information-technology-jobs/