Spivak Calculus Notes and Exercises

Duncan Bandojo

February 20, 2021

Basic Properties of Numbers	
A quick review of the familiar properties and essential theorems regarding t	the real
numbers.	[17]
Number of Various Sorts	
Further properites of numbers and light discussion regarding \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} .	[1]

Contents

0	Introduction	3
1	Prologue	4
	1.1 Basic Properties of Numbers	4
	1.1.1 Exercises	5
	1.2 Number of Various Sorts	21
	1.2.1 Exercises	21

0 Introduction

These are notes and selected exercises from Spivak Calculus. All the proofs given are my own proofs (unless stated otherwise) which is not assured for correctness and preciseness.

1 Prologue

1.1 Basic Properties of Numbers

Definition (Field Properties). The following properties hold in \mathbb{R}

- P1 (Associative law for addition) a + (b + c) = (a + b) + c.
- P2 (Existence of an additive identity) a + 0 = 0 + a = a.
- P3 (Existence of additive inverse) a + (-a) = (-a) + a = 0.
- P4 (Commutative law for addition) a + b = b + a.
- P5 (Associative law for multiplication) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- P6 (Existence of multiplicative identity) $a \cdot 1 = 1 \cdot a = a; \quad 1 \neq 0.$
- P7 (Existence of multiplicative inverses) $a \cdot a^{-1} = a^{-1} \cdot a = 1$, for $a \neq 0$.
- P8 (Commutative law for multiplication) $a \cdot b = b \cdot a$.
- P9 (Distributive law) $a \cdot (b+c) = a \cdot b + a \cdot c$.
- P10 (Trichotomy law) For every number a, one and only one of the following holds: (Denote P as the collection of positive numbers)
 - (i) a = 0,
 - (ii) a is in the collection P,
 - (iii) -a is in the collection P.
- P11 (Closure under addition) If a and b are in P, then a + b is in P.
- P12 (Closure under multiplication) If a and b are in P, then $a \cdot b$ is in P.

Definition (Absolute Value). For any number a, we define the absolute value |a| of a as follows:

$$|a| = \begin{cases} a, & a \ge 0 \\ -a, & a \le 0 \end{cases}$$

Theorem (Triangle Inequality). For all numbers a and b, we have

$$|a+b| \le |a| + |b|$$

Proof. We make use of the fact that if both x and y are nonnegative, then $x^2 < y^2$ implies x < y.

$$|a + b|^{2} = a^{2} + 2ab + b^{2}$$

$$= |a|^{2} + 2ab + |b|^{2}$$

$$\leq |a|^{2} + 2|a||b| + |b|^{2}$$

$$= (|a| + |b|)^{2}$$

Since |a+b| and (|a|+|b|) are both nonnegative, then

$$|a+b| \le |a| + |b|.$$

1.1.1 Exercises

Exercise (1). Prove the following:

(i) If ax = a for some number $a \neq 0$, then x = 1.

Proof. Assume that ax = a fro some number $a \neq 0$.

$$x = x \cdot 1 = x \cdot (a \cdot a^{-1}) = ax \cdot (a^{-1})$$

= $a \cdot (a^{-1})$
= $(a \cdot a^{-1})$
= 1

(ii) $x^2 - y^2 = (x - y)(x + y)$.

Proof. Using the field axioms.

$$(x-y)(x+y) = x \cdot (x+y) + (-y) \cdot (x+y)$$

$$= (x^2 + xy) + ((-y) \cdot x + (-y) \cdot y)$$

$$= x^2 + xy - xy - y^2$$

$$= x^2 - y^2$$

(iii) If $x^2 = y^2$, then x = y or x = -y.

Proof. Assume that $x^2 = y^2$. We make use of (ii).

$$x^{2} = y^{2} \Leftrightarrow x^{2} - y^{2} = 0$$
$$\Leftrightarrow (x - y)(x + y) = 0$$
$$\Rightarrow x = y \text{ or } x = -y.$$

(iv) $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$.

Proof. Using the field axioms

$$(x-y)(x^{2} + xy + y^{2}) = x^{2}(x-y) + xy(x-y) + y^{2}(x-y)$$

$$= (x^{3} - x^{2}y) + (x^{2}y - xy^{2}) + (xy^{2} - y^{3})$$

$$= x^{3} + (x^{2}y - x^{2}y) + (xy^{2} - xy^{2}) - y^{3}$$

$$= x^{3} - y^{3}$$

(v) $x^n - y^n = (x - y)(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1}).$

Proof. Using the field axioms

$$(x-y)(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1}) = x(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1})$$

$$- [y(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1})]$$

$$= x^n + x^{n-1}y + \dots + x^2y^{n-2} + xy^{n-1}$$

$$- [x^{n-1}y + x^{n-2}y^2 + \dots + xy^{n-1} + y^n]$$

$$= x^n - y^n$$

Alternative Proof. We make us of sigma notation

$$\begin{split} (x-y) \cdot \sum_{i=0}^{n-1} x^i y^{n-(i+1)} &= x \left(\sum_{i=0}^{n-1} x^i y^{n-(i+1)} \right) - \left[y \left(\sum_{i=0}^{n-1} x^i y^{n-(i+1)} \right) \right] \\ &= \sum_{i=0}^{n-1} x^{i+1} y^{n-(i+1)} - \left[\sum_{i=0}^{n-1} x^i y^{n-i} \right] \\ &= x^n + \sum_{i=0}^{n-2} x^{i+1} y^{n-(i+1)} - \left[\sum_{i=1}^{n-1} x^i y^{n-i} + y^n \right] \\ &= x^n + \sum_{i=0}^{n-2} x^{i+1} y^{n-(i+1)} - \left[\sum_{i=0}^{n-2} x^{i+1} y^{n-(i+1)} + y^n \right] \\ &= x^n - y^n + \sum_{i=0}^{n-2} \left[x^{i+1} y^{n-(i+1)} - \left(x^{i+1} y^{n-(i+1)} \right) \right] \\ &= x^n - y^n + \sum_{i=0}^{n-2} 0 \\ &= x^n - y^n \end{split}$$

(vi) $x^3 + y^3 = (x+y)(x^2 - xy + y^2)$.

Proof. Replace y by -y in part (iv)

$$x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2}) \Leftrightarrow x^{3} - (-y)^{3} = (x - (-y))(x^{2} + x(-y) + (-y)^{2})$$
$$\Leftrightarrow x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$$

Exercise (2). What is wrong with the following "proof"? Let x = y. Then

$$x^{2} = xy,$$

$$x^{2} - y^{2} = xy - y^{2},$$

$$(x+y)(x-y) = y(x-y),$$

$$x + y = y,$$

$$2y = y,$$

$$2 = 1.$$

Ш

Solution. For all $a \in \mathbb{R}$ we know that $a \cdot a^{-1} = 0$ with the assumption $a \neq 0$. The 4th step is contradictory on the given fact that x = y which implies x - y = 0 and has no multiplicative inverse.

Exercise (3). Prove the following:

(i)
$$\frac{a}{b} = \frac{ac}{bc}$$
, if $b, c \neq 0$.

Proof. Using the field axioms

$$\frac{a}{b} = ab^{-1} = (ab^{-1})(c \cdot c^{-1})$$

$$= (ac)(b^{-1}c^{-1})$$

$$= (ac)(bc)^{-1}$$

$$= \frac{ac}{bc}$$

(ii) $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$, if $b, d \neq 0$.

Proof. Using the field axioms

$$\frac{a}{b} + \frac{c}{d} = ab^{-1} + cd^{-1} = (ab^{-1} + cd^{-1}) \cdot (bd)(bd)^{-1}$$

$$= (ad(b \cdot b^{-1}) + bc(d \cdot d^{-1})) \cdot (bd)^{-1}$$

$$= (ad + bc) \cdot (bd)^{-1}$$

$$= \frac{ad + bc}{bd}$$

(iii)
$$(ab)^{-1} = a^{-1}b^{-1}$$
, if $a, b \neq 0$.

Proof. Using the field axioms

$$ab(a^{-1}b^{-1}) = 1$$

 $a^{-1}b^{-1} = (ab)^{-1}$

(iv)
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{db}$$
 if $b, d \neq 0$.

Proof. Using the field axioms

$$\frac{a}{b} \cdot \frac{c}{d} = (ab^{-1}) \cdot (cd^{-1})$$
$$= (ac) \cdot (d^{-1}b^{-1})$$
$$= (ac) \cdot (db)^{-1}$$
$$= \frac{ac}{db}$$

(v)
$$\frac{a}{b} / \frac{c}{d} = \frac{ad}{bc}$$
, if $b, d \neq 0$.

Proof. Using the field axioms

$$\frac{a}{b} / \frac{c}{d} = \frac{a}{b} \cdot \left(\frac{c}{d}\right)^{-1}$$

$$= ab^{-1} \cdot (cd^{-1})^{-1}$$

$$= ab^{-1} \cdot c^{-1}(d^{-1})^{-1}$$

$$= ab^{-1} \cdot c^{-1}d$$

$$= (ad) \cdot (b^{-1}c^{-1})$$

$$= (ad) \cdot (bc)^{-1}$$

$$= \frac{ad}{bc}$$

(vi) If $b, d \neq 0$, then $\frac{a}{b} = \frac{c}{d}$ if and only if ad = bc. Also determine when $\frac{a}{b} = \frac{b}{a}$.

Proof. There are two cases to prove for the first part.

- $(\Rightarrow) \text{ Let } b,d\neq 0. \text{ Assume that } \frac{a}{b}=\frac{c}{d},$ $\frac{a}{b}=\frac{c}{d},$ $ab^{-1}=cd^{-1},$ $(ab^{-1})(bd)=(cd^{-1})(bd),$ $(ad)(b\cdot b^{-1})=(bc)(d\cot d^{-1}),$ ad=bc
- (\Leftarrow) Let $b, d \neq 0$. Assume that ad = bc,

$$ad = bc,$$

$$(ad)(bd)^{-1} = (bc)(bd)^{-1}$$

$$(ab^{-1})(d \cdot d^{-1}) = (cd^{-1})(b \cdot b^{-1})$$

$$ab^{-1} = cd^{-1}$$

$$\frac{a}{b} = \frac{c}{d}$$

Proof. From Exercise 1 Part (iii) we make use of the fact, if $x^2 = y^2$ then x = y or x = -y.

$$\frac{a}{b} = \frac{b}{a},$$

$$ab^{-1} = ba^{-1},$$

$$(ab^{-1})(ab) = (ba^{-1})(ab),$$

$$(a \cdot a)(b \cdot b^{-1}) = (b \cdot b)(a \cdot a^{-1}),$$

$$a^2 = b^2.$$

and so it must be that a = b or a = -b.

Exercise (4). Find all numbers x for which

(i)
$$4 - x < 3 - 2x$$
.

Proof. Using the field axioms

$$4-x < 3-2x$$

$$4-x+(2x-4) < 3-2x+(2x-4)$$

$$x < -1$$

(ii) $5 - x^2 < 8$.

Proof. Using the field axioms

$$5 - x^{2} + (x^{2} - 5) < 8 + (x^{2} - 5)$$
$$x^{2} + 3 > 0$$

since $x^2 \ge 0$ for all $x \in \mathbb{R}$, then it must be that $x^2 + 3 > 0$ for all $x \in \mathbb{R}$.

(iii)
$$5 - x^2 < -2$$

Proof. Using the field axioms

$$5 - x^{2} < -2$$

$$x^{2} > 7$$

$$|x| > \sqrt{7}$$

$$x < -\sqrt{7} \text{ or } x > \sqrt{7}$$

(iv) (x-3)(x-1) > 0 (When is a product of two numbers positive?)

Proof. The product of two numbers is postivie if and only if the numbers are both positive or both negative. For all $a,b\in\mathbb{R},\ ab>0\Leftrightarrow a>0$ and b>0, or a<0 and b<0.

Hence,

$$x - 3 > 0$$
 and $x - 1 > 0$

so it must be that x > 3. Or

$$x - 3 < 0 \qquad \text{and} \qquad x - 1 > 0$$

and it must be that x < 1. That is (x - 3)(x - 1) > 0 if x > 3 or x < 1.

(v)
$$x^2 - 2x + 2 > 0$$
.

Proof. Using the field axioms

$$x^{2} - 2x + 2 = (x^{2} + 2x + 1) + 1$$

= $(x - 1)^{2} + 1$

for all $x \in \mathbb{R}$ notice that, $(x-1)^2 \ge 0$, so it must be that $(x-1)^2 + 1 > 0$. \square

(vi) $x^2 + x + 1 > 2$.

Proof. Using the field axioms

$$x^{2} + x + 1 > 2$$

$$x^{2} + x - 1 > 0$$

$$(x^{2} + x + \frac{1}{4}) - \frac{5}{4} > 0$$

$$\left(x + \frac{1}{2}\right)^{2} > \frac{5}{4}$$

$$\left|x + \frac{1}{2}\right| > \frac{\sqrt{5}}{2}$$

$$x + \frac{1}{2} > \frac{\sqrt{5}}{2} \text{ or } x + \frac{1}{2} < -\frac{\sqrt{5}}{2}$$

so it must be that

$$x > \frac{\sqrt{5} - 1}{2}$$
 or $x < \frac{-\sqrt{5} - 1}{2}$

(vii) $x^2 - x + 10 > 16$.

Proof. Using the field axioms

$$x^{2} - x + 10 > 16$$
$$x^{2} - x - 6 > 0$$
$$(x - 3)(x + 2) > 0$$

To assure that the product is positive, it must be that the two numbers are both positive or both negative. Hence,

$$x - 3 > 0 \qquad \text{and} \qquad x + 2 > 0$$

such that x > 3. Or

$$x - 3 < 0$$
 and $x + 2 < 0$

such that x < -2. Therefore, $x^2 - x + 10 > 16$ if x > 3 or x < -2.

(viii)
$$x^2 + x + 1 > 0$$
.

Proof. Using the field axioms

$$x^{2} + x + 1 = \left(x^{2} + x + \frac{1}{4}\right) + \frac{3}{4},$$
$$= \left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}.$$

for all $x \in \mathbb{R}$, notice that $(x+\frac{1}{2})^2 \ge 0$, so it must be that $(x+\frac{1}{2})^2+\frac{3}{4}>0$ for all $x \in \mathbb{R}$.

(ix)
$$(x-\pi)(x+5)(x-3) > 0$$
.

Proof. The expression $(x-\pi)(x+5)(x-3)$ can be rearranged as a product of two numbers, namely, $(x - \pi)[(x + 5)(x - 3)]$.

Notice, the product of two real numbers ab is greater than zero if a and b are both greater than zero, or both less than zero.

There are two cases:

- Let $(x-\pi) > 0$ so that $x > \pi$, and (x+5)(x-3) > 0 so that x < -5 or x > 3. Therefore it must be that $x > \pi$.
- Let $(x-\pi) < 0$ so that $x < \pi$, and (x+5)(x-3) < 0 so that -5 < x < 3. Therefore it must be that -5 < x < 3.

Therefore,
$$(x - \pi)(x + 5)(x - 3) > 0$$
 if $x > \pi$, or $-5 < x < 3$.

(x)
$$(x - \sqrt[3]{2})(x - \sqrt{2}) > 0$$
.

Proof. Either both numbers are greater than zero or less than zero.

$$x > \sqrt[3]{2}$$
 and $x > \sqrt{2}$

so that
$$x > \sqrt{2}$$
. Or
$$x < \sqrt[3]{2} \qquad \text{and} \qquad x < \sqrt{2}$$

so that $x < \sqrt[3]{2}$.

Therefore,
$$(x - \sqrt[3]{2})(x - \sqrt{2}) > 0$$
 if $x > \sqrt{2}$ or $x < \sqrt[3]{2}$.

(xi) $2^x < 8$.

Proof. We can rewrite it as

$$2^x < 2^3$$

Both have the same base, so it must be that the inequality is preserved on the exponents.

so
$$2^x < 8$$
, whenever $x < 3$.

(xii) $x + 3^x < 4$.

Proof. We first notice that $x + 3^x = 4$ if x = 1

$$x + 3^x = (1) + 3^1$$

observe that $x + 3^x$ is always increasing as x increase, and decreasing as x decrease. Therefore $x + 3^x < 4$ if x < 1.

(xiii)
$$\frac{1}{x} + \frac{1}{1-x} > 0$$
.

Proof. We can rewrite the expression as

$$\frac{1}{x} + \frac{1}{1-x} = \frac{(1-x)+x}{x(1-x)}$$
$$= \frac{1}{x(1-x)}$$

Notice that $\frac{1}{x(1-x)}>0$, whenever x(1-x)>0. So it must be that x and (1-x) are greater than zero

$$x > 0$$
 and $x < 1$

or x and (1-x) are both less than zero

$$x < 0$$
 and $x > 1$

but there exists no x such t that x<0 and x>1. Therefore, $\frac{1}{x}+\frac{1}{1-x}>0$ if x>0 and x<1. \square

(xiv)
$$\frac{x-1}{x+1} > 0$$
.

Proof. Either both (x-1) and (x+1) are greater than zero or both less than zero.

$$x > 1$$
 and $x > -1$

so it must be that x > 1. Or

$$x < 1$$
 and $x < -1$

so it must be that x < -1.

Exercise (5). Prove the following:

(i) If a < b and c < d, then a + c < b + d.

Proof. Assume that a < b and c < d. Notice that b - a > 0 and d - c > 0, therefore their sum is also positive, namely,

$$(b-a) + (d-c) > 0$$

so that

$$a + c < b + d$$

(ii) If a < b, then -b < -a.

Proof. Assume that a < b. Therefore, a - b < 0. Notice that,

$$-(a-b) < 0,$$

 $b-a < 0,$
 $-a < -b.$

(iii) If a < b and c > d, then a - c < b - d.

Proof. Assume that a < b and c > d. Therefore, a - b < 0 and c - d > so that a - b < 0 < c - d. Therefore,

$$a - b < c - d,$$

$$a - c < b - d.$$

(iv) If a < b and c > 0, then ac < bc.

Proof. Assume that a < b and c > 0. Therefore, b - a > 0 and their product is positive,

$$(b-a) \cdot c > 0,$$

 $bc - ac > 0,$
 $ac < bc.$

(v) If a < b and c < 0, then ac > bc.

Proof. Assume that a < b and c < 0. Then b - a > 0 and 0 - c = -c > 0, and their product must be positive,

$$(b-a)\cdot -c > 0,$$

$$-bc + ac > 0,$$

$$ac > bc.$$

(vi) If a > 1, then $a^2 > a$.

Proof. Assume that a > 1. Notice that a - 1 > 0 and a > 0, so their product is positive,

$$(a-1) \cdot a > 0,$$

$$a^2 - a > 0,$$

$$a^2 > a.$$

(vii) If 0 < a < 1, then $a^2 < a$.

Proof. Assume that 0 < a < 1, therefore a > 0 and 1 - a > 0 so that their product is also positive,

$$(1-a) \cdot a > 0,$$

$$a - a^2 > 0,$$

$$a^2 < a.$$

(viii) If $0 \le a < b$ and $0 \le c < d$, then ac < bd.

Proof. Assume that $0 \le a < b$ and $0 \le c < d$. Notice that bd > 0, and if either one of a or c is equal to zero so that ac is zero, then

$$0 = ac < bd.$$

Otherwise, if a and c are greater than zero then ac is also greater than zero,

$$0 < ac < bc < bd.$$

(ix) If $0 \le a < b$, then $a^2 < b^2$.

Proof. Assume that $0 \le a < b$. If a = 0, then $a^2 = 0$ so that

$$a^2 < b^2$$
.

Suppose that a > 0. From our assumption, a < b therefore

$$a^2 < ab < b^2$$
.

(x) If $a, b \ge 0$ and $a^2 < b^2$, then a < b.

Proof. Suppose for contradiction that $a,b \ge 0$ and $a^2 < b^2$, but $a \ge b$. So either a = b or a > b.

If a = b, then $a^2 = b^2$, a contradiction. Now if $a > b \ge 0$, then

$$a^2 > ab > b^2$$

also a contradiction. Therefore it must be that a < b.

Exercise (6). Prove the following:

(i) Prove that if $0 \le x < y$, then $x^n < y^n$, n = 1, 2, 3, ...

Proof. Assume that $0 \le x < y$. From the previous problems, it must be that $x^2 < y^2$, and so on for all $n \in \mathbb{N}$.

(ii) Prove that if x < y and n is odd, then $x^n < y^n$.

Proof. Assume tha x < y and n is odd. There are three cases:

– If $0 \le x$, then by the previous exercise, it must be that

$$x^n < y^n$$
.

– If $x < y \le 0$, then it must be that $0 \le -y < -x$. Therefore,

$$(-y)^n < (-x)^n,$$

$$-y^n < -x^n,$$

$$x^n < y^n.$$

- If $x < 0 \le y$, then since n is odd, it must be that

$$x^n < 0 \le y^n$$

so that $x^n < y^n$.

(iii) Prove that if $x^n = y^n$ and n is odd, then x = y.(

Proof. If it is not, then it must be that $x^n < y^n$ or $x^n > y^n$.

(iv) Prove that if $x^n = y^n$ and n is even, then x = y or x = -y.

Proof. We have three cases and we make use of (i):

- Let $x, y \ge 0$. If $x^n = y^n$, then x = y. Since from part (i), without loss of generality, $x \ne y$ implies that $x^n < y^n$ for all $n \in \mathbb{N}$.
- Let $x, y \le 0$ so that $-x, -y \ge 0$. If $(-x)^n = (-y)^n$, then -x = -y so that x = y for all $n \in \mathbb{N}$.
- Let $x \le 0, y \ge 0$ so that $-x, y \ge 0$. If $(-x)^n = y^n$, then -x = y which is the same as x = -y, for all $n \in \mathbb{N}$.

We have now exhausted all the cases of x and y. Therefore, if $x^n = y^n$ where n is even, then x = y or x = -y.

Exercise (7). Prove that if 0 < a < b, then

$$a < \sqrt{ab} < \frac{a+b}{2} < b.$$

Notice that the inequality $\sqrt{ab} \le (a+b)/2$ holds for all $a,b \ge 0$. A generalization of this fact occurs in Exercise 2-22.

Proof. Since 0 < a < b, then we know that

$$a^2 = a \cdot a < ab < b \cdot b = b^2.$$

therefore $a < \sqrt{ab} < b$.

Notice also that

$$a = \frac{a+a}{2} < \frac{a+b}{2} < \frac{b+b}{2} = b.$$

so that a < (a + b)/2 and b > (a + b)/2.

Lastly, we must show that $\sqrt{ab} < (a+b)/2$. But since a, b > 0, we know that

$$(a-b)^{2} > 0,$$

$$a^{2} - 2ab + b^{2} > 0,$$

$$a^{2} + 2ab + b^{2} > 4ab,$$

$$(a+b)^{2} > 4ab,$$

$$\frac{a+b}{2} > \sqrt{ab}$$

for all a, b such that 0 < a < b.

Exercise (12). Prove the following:

(i) $|xy| = |x| \cdot |y|$.

Proof. We will prove this fact the same way we proved the *Triangle Inequality*, by using that fact that if $x^2 = y^2$ and x, y are nonnegative, then x = y. Notice

$$|xy|^2 = (xy)^2 = x^2y^2 = |x|^2 \cdot |y|^2 = (|x| \cdot |y|)^2.$$

Since |xy| and $|x|\cdot |y|$ are always nonnegative, we find that

$$|xy| = |x| \cdot |y|.$$

(ii) $\left| \frac{1}{x} \right| = \frac{1}{|x|}$, if $x \neq 0$.

Proof. We make use of the previous exercise.

$$\left|\frac{1}{x}\right|\cdot|x| = \left|\frac{1}{x}\cdot x\right| = |1| = 1$$

therefore

$$\left|\frac{1}{x}\right| = \frac{1}{|x|}.$$

(iii)
$$\frac{|x|}{|y|} = \left|\frac{x}{y}\right|$$
, if $y \neq 0$.

Proof. It follows by using the result of the previous exercise,

$$|x^{-1}| = |x|^{-1}$$
.

(iv) $|x - y| \le |x| + |y|$.

Proof. We make use of the *Triangle Inequality* and the fact that for all $x \in \mathbb{R}$, |x| = |-x|. Let $y_0 = -y$,

$$|x + y_0| \le |x| + |y_0|,$$

 $|x + (-y)| \le |x| + |-y|,$
 $|x - y| \le |x| + |y|.$

(v) $|x| - |y| \le |x - y|$.

Proof. From the *Triangle Inequality*,

$$|x| = |(x - y) + y|$$

$$\leq |x - y| + |y|$$

so that

$$|x| - |y| \le |x - y|.$$

(vi) $|(|x| - |y|)| \le |x - y|$.

Proof. To show that $|(|x|-|y|)| \le |x-y|$, we must show that $-|x-y| \le |x|-|y| \le |x-y|$.

- The second inequality follows from the previous exercise.
- The first inequality is the same as $|y|-|x|\leq |x-y|$, but this also follows from the previous exercises since $|y|-|x|\leq |y-x|=|x-y|$.

(vii) $|x + y + z| \le |x| + |y| + |z|$.

Proof. We just apply the *Triangle Inequality* multiple times.

$$|x + y + z| \le |x| + |y + z|$$

 $\le |x| + |y| + |z|.$

Exercise (14). Prove the following

(i) Prove that |a| = |-a|.

Proof. If $a \ge 0$, then $-a \le 0$ and its absolute value is

$$|-a| = -(-a) = a = |a|$$

Now, if $a \leq 0$, then $-a \geq 0$ so it follows from the previous one that |a| = |-a|. \square

(ii) Prove that $-b \le a \le b$ if and only if $|a| \le b$. In particular, it follows that $-|a| \le a \le |a|$.

Proof. This is a biconditional, so we prove it in both directions.

Assume that $-b \le a \le b$. If $a \ge 0$, then

$$|a| = a \le b.$$

If $a \leq 0$ and also notice that $-a \leq b$, then

$$|a| = -a \le b.$$

For the converse, we assume that $|a| \leq b$ and it follows that $b \geq 0$. If $a \geq 0$, then

$$a = |a| \le b$$
.

and

$$-b \le 0 \le a$$
.

Now, if $a \le 0$, then $-a = |a| \le b$ so that

$$-b \leq a$$

and

$$a \leq 0 \leq b$$
.

(iii) Use this fact to give a new proof that $|a + b| \le |a| + |b|$.

Proof. We make use of the fact that $-|a| \le a \le |a|$ and $-|b| \le b \le |b|$, and it follows that

$$-(|a|+|b|) \le a+b \le |a|+|b|,$$

so
$$|a+b| \le |a| + |b|$$
.

Exercise (18). Prove the following

(i) Suppose that $b^2 - 4c \ge 0$. Show that the numbers

$$\frac{-b+\sqrt{b^2-4c}}{2}$$
, $\frac{-b-\sqrt{b^2-4c}}{2}$

both satisfy the equation $x^2 + bx + c = 0$.

Proof. From the equation, we can find that

$$\begin{split} x^2 + bx + c &= 0, \\ \left(x + \frac{b}{2} \right)^2 &= -c + \frac{b^2}{4}, \\ \left| x + \frac{b}{2} \right| &= \frac{\sqrt{b^2 - 4c}}{|2|}, \\ x &= \frac{-b \pm \sqrt{b^2 - 4c}}{2}. \end{split}$$

(ii) Suppose that $b^2 - 4c < 0$. Show there are no numbers x satisfying $x^2 + bx + c = 0$; in fact, $x^2 + bx + c > 0$ for all x.

Proof. We complete the square

$$x^{2} + bx + c = \left(x + \frac{b}{2}\right)^{2} + c - \frac{b^{2}}{4}$$
$$= \left(x + \frac{b}{2}\right)^{2} - \left(\frac{b^{2} - 4c}{4}\right)$$

We know that squares are always nonnegative, and also we know that $b^2 - 4c < 0$ so the second term is always positive. Therefore $x^2 + bx + c$ is always positive for all x.

(iii) Use this fact to give another proof that if x and y are not both 0, then $x^2 + xy + y^2 > 0$.

Proof. From the previous exercise, we make $y^2-4y^2<0$ to assure that $x^2+xy+y^2>0$ for all x, given that $y\neq 0$ (since $y^2-4y^2=0$ if y=0). In the case that $y=0,\,x^2+xy+y^2=x^2$ is still positive given that $x\neq 0$.

(iv) For which numbers α is it true that $x^2 + \alpha xy + y^2 > 0$ whenever x and y are not both 0.

Proof. From the previous exercise, $b^2 - 4c = (\alpha y)^2 - 4y^2 < 0$ will assure that $x^2 + \alpha xy + y^2 > 0$, given that both x and y are not 0.

We just solve for the values of α that will assure $(\alpha y)^2 - 4y^2$ is less than zero.

$$(\alpha y)^2 - 4y^2 < 0,$$

$$\alpha^2 y^2 < 4y^2,$$

$$\alpha^2 < 4,$$

$$|\alpha| < 2.$$

so the values of α that will make $x^2 + \alpha xy + y^2 > 0$ are

$$-2 < \alpha < 2$$
.

(v) Find the smallest possible value of $x^2 + bx + c$ and of $ax^2 + bx + c$, for a > 0.

Proof. By completing the square, we can find the minimum value.

$$x^{2} + bx + c = \left(x + \frac{b}{2}\right)^{2} + c - \frac{b^{2}}{4},$$

and the minimum $c - \frac{b^2}{4}$ is achieved if $x = -\frac{b}{2}$.

For $ax^2 + bx + c$ where a > 0,

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$
$$= a\left(x + \frac{b}{2a}\right)^{2} + c - \frac{b^{2}}{4a},$$

and the minimum $c - \frac{b^2}{4a}$ is achieved if $x = -\frac{b}{2a}$.

1.2 Number of Various Sorts

Definition (Mathematical Induction). Suppose that P(x) means that the property P holds for the number x. Then the principle of mathematical induction states that P(x) holds for all natural numbers x provided that

- -P(1) is true.
- Whenever P(k) is true, P(k+1) is true.

(Note: In the construction of the natural numbers from the *Peano Axioms*, induction is an axiom and 0 is an element of the naturals.)

1.2.1 Exercises

(Next time nalang)