$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)$$
, where

- \bullet Q: set of states
- Σ : input alphabet
- Γ : tape alphabet
- $\bullet \ \delta \ : \ Q \ \times \ \Gamma \ \longrightarrow \ Q \ \times \ \Gamma \ \times \ \{L,R\}$
- $q_0 \in Q$: start state
- $q_a \in Q$: accept state
- $q_r \in Q$: reject state

 q_a and q_r halting states

 $q_a \neq q_r$

Input $w = w_1 w_2 \cdots w_n$

A configuration on input w: current state, current head location, tape contents

a string uqv over $(Q\ \cup\ \Gamma)^*$ where $u,v\ \in\ \Gamma^*,\, q\ \in\ Q$

tape contents: uv, current head location: the first symbol of v

initial configuration: $q_0w_1w_2\cdots w_n$

accepting configuration: uq_av (Halting configuration)

rejecting configuration: uq_rv (Halting configuration)

current configuration: $uaqbv,\,a,b\,\in\,\Gamma$

 $\delta(q,b) \ = \ (p,c,L) \quad \text{Next configuration: } upacv$

 $\delta(q, b) = (p, c, R)$ Next configuration: uacpv

current configuration: $qbv, b \in \Gamma$

 $\delta(q,b) = (p,c,L)$ Next configuration: pcv

current configuration: uq, current symbol is blank

A DTM M accepts input w iff \exists a sequence of configurations C_0, \dots, C_t such that:

- 1. C_0 is the initial configuration of M on input w
- 2. For all $1 \leq i \leq t$, the machine M moves from C_{i-1} to C_i
- 3. C_t is an accepting configuration

L(M) is the set of all strings accepted by M.

A language L is recognizable iff there is a DTM M such that L = L(M).

As defined, M need not halt on strings NOT in the language L(M).

Decider: A DTM that halts on all inputs.

A decider is a recognizer.

Not all recognizers are deciders (later).

Algorithm = Decider