Complex Networks, HW3

Andrés F. Lamilla

$\mathrm{May}\ 22,\ 2015$

Contents

1	1 Code			
2	Res	sults	:	
	2.1	Barabasi Albert		
	2.2	Erdos Renyi		
	2.3	Random network		

Figure 1: Barabasi transitions

1 Code

For this code I used networkx library for python. The code is in the file sis_epidemic_spreading.py and it was test on a linux machine using ubuntu 14.04. It's necessary to install networkx and matplotlib librarys for python. The requirements are in requirements.txt file and can be installed using pip install -r requirements.txt

2 Results

I got the results for three differents graph models (Barabasi Albert, Erdos Renyi and Random network) with 500 nodes. I try to do it for more nodes but it took to much time, several days without finish. The mu values tested were $0.1,\,0.5$ and 0.9. the number of repetitions Nrep = 100, initial fraction of infected nodes p0=0.2, maximum number of time steps of each simulation Tmax = 1000, number of steps of the transitory Ttrans = 900.

2.1 Barabasi Albert

Number of edges to attach from a new node to existing nodes, m = 10.

Figure 2: Barabasi mu=0.1

Figure 3: Barabasi mu=0.5

Figure 4: Barabasi mu=0.9

Figure 5: Erdos Renyi transitions

2.2 Erdos Renyi

Probability for edge creation, p = 0.4.

2.3 Random network

Degree, d = 10.

Figure 6: Erdos Renyi mu=0.1

Figure 7: Erdos Renyi mu=0.5

Figure 8: Erdos Renyi mu=0.9

Figure 9: Random network transitions

Figure 10: Random network mu=0.1

Figure 11: Random network mu=0.5

Figure 12: Random network mu=0.9