Suppose that X and Y are independent, uniformly distributed in $\{0, 1, 2\}$. Let S = X + Y and W = X · Y.

$$X \sim Uniform(3)$$

 $Y \sim Uniform(3)$
 $S = X + Y$
 $S \sim \{(0, 1/9), (1, 2/9), (2, 1/3), (3, 2/9), (4, 1/9)\}$
 $W = X * Y$
 $W \sim \{(0, 5/9), (1, 1/9), (2, 2/9), (4, 1/9)\}$

i. Compute the entropy of the random variables S and W.

$$H(S) = -\sum_{i=1}^{5} P(S = s_i) \log P(S = s_i) = 2 * \frac{1}{9} \log_2 9 + 2 * \frac{2}{9} \log_2 \frac{9}{2} + \frac{1}{3} \log_2 3 = 2.197$$

$$H(W) = -\sum_{i=1}^{5} P(W = w_i) \log P(W = w_i) = \frac{5}{9} * \log_2 \frac{9}{5} + 2 * \frac{1}{9} * \log_2 9 + \frac{2}{9} * \log_2 \frac{9}{2} = 1.658$$

ii. What is the mutual information I(S, W)?

Joint probabilities:

		S				
		0	1	2	3	4
W	0	1/9	2/9	2/9	0	0
	1	0	0	1/9	0	0
	2	0	0	0	2/9	0
	4	0	0	0	0	1/9

$$I(S,W) = \sum_{j=1}^{5} \sum_{k=1}^{4} p_{jk} \log_2 \left(\frac{p_{jk}}{p_{j}q_{k}}\right) =$$

$$= \frac{1}{9} * \log 2(\frac{1}{9} * 9 * \frac{9}{5}) + \frac{2}{9} * \log_2(\frac{2}{9} * \frac{9}{2} * \frac{9}{5}) + \frac{2}{9} \log_2(\frac{2}{9} * 3 * \frac{9}{5}) +$$

$$+ \frac{1}{9} * \log_2(\frac{1}{9} * 3 * 9) + \frac{2}{9} * \log_2(\frac{2}{9} * \frac{9}{2} * \frac{9}{2}) + \frac{1}{9} * \log_2(\frac{1}{9} * 9 * 9) =$$

$$= \frac{1}{3} * \log_2 \frac{9}{5} + \frac{2}{9} * \log_2 \frac{6}{5} + \frac{1}{9} * \log_2 3 + \frac{2}{9} * \log_2 \frac{9}{2} + \frac{1}{9} * \log_2 9 = 1.352$$