MP du lycée Berthollet, 2015/2016 http://mpberthollet.wordpress.com

Résumé 14 : Séries entières

I CONVERGENCE

 \blacktriangleright On appelle rayon de convergence de la série entière $\sum_{k\geqslant 0}a_kx^k$ l'élément

de $\mathbb{R} \cup \{+\infty\}$:

$$\begin{array}{lll} R &=& \sup\{r\geqslant 0 \text{ tels que } (a_nr^n)_{n\in\mathbb{N}} \text{ est born\'ee.}\}.\\ &=& \sup\{r\geqslant 0 \text{ tels que } (a_nr^n)_{n\in\mathbb{N}} \text{ tend vers } 0.\}\\ &=& \sup\{r\geqslant 0 \text{ tels que } \sum a_nr^n \text{ converge.}\}\\ &=& \sup\{r\geqslant 0 \text{ tels que } \sum |a_n|r^n \text{ converge.}\}. \end{array}$$

Ainsi, avec les notations évidentes,

- $R_{|a|} = R_a$.
- Si $a_n \sim b_n$, alors $R_a = R_b$.
- Si $a_n = O(b_n)$, alors $R_b \leqslant R_a$.
- Si $(a_n)_{n\in\mathbb{N}}$ est bornée, $R_a\geqslant 1$.
- ▶ Le domaine 𝒯 de convergence de la série entière vérifie alors

$$D(0,R) \subset \mathscr{D} \subset \overline{D(0,R)}$$
.

La série numérique $\sum a_n x^n$ converge absolument si |x| < R et diverge grossièrement si |x| > R.

La série entière converge normalement sur tout compact inclus dans le disque ouvert de convergence.

▶ Si $\sum a_n x^n$ et $\sum b_n x^n$ ont pour rayons de convergence $R_a > 0$ et $R_b > 0$, alors toute combinaison linéaire de ces deux séries a un rayon de convergence $R \ge \min(R_a, R_b)$.

On appelle produit de Cauchy de ces deux séries la série entière $\sum c_k x^k$, où pour tout $k \in \mathbb{N}, c_k = \sum_{i=0}^k a_i b_{k-i}$. C'est une série entière dont le rayon de convergence vérifie aussi $R \geqslant \min(R_a, R_b)$, et sa somme est égale au

produit
$$\left(\sum_{n=0}^{+\infty} a_n x^n\right) \left(\sum_{n=0}^{+\infty} b_n x^n\right)$$
 pour tout x de module $< \min(R_a, R_b)$.

II PROPRIÉTÉS DE LA SOMME

Soit $\sum a_n x^n$ une série entière de variable réelle et de rayon R non nul. Nous noterons $f: x \in]-R, R[\mapsto \sum_{n=0}^{+\infty} a_n x^n]$.

- Alors la série dérivée $\sum na_nx^{n-1}$ a également pour rayon de convergence R. De plus, f est de classe \mathscr{C}^{∞} sur]-R,R[et pour tout x dans cet intervalle, $f'(x) = \sum_{n=0}^{+\infty} na_nx^{n-1}$.
- ▶ La fonction $x \in]-R, R[\mapsto \sum_{n=0}^{+\infty} a_n \frac{x^{n+1}}{n+1}$ est la primitive de f qui s'annule en 0
- ▶ Pour tout $n \in \mathbb{N}$, $a_n = \frac{f^{(n)}(0)}{n!}$. Comme corollaire, on obtient que deux sommes de séries entières coïncident sur un voisinage de 0 si et seulement si ces deux séries sont égales.

III FONCTIONS DÉVELOPPABLES EN SÉRIE ENTIÈRE

- ▶ Définition d'une fonction DSE sur]-r,r[, sur un voisinage de 0.
- ▶ Développemements en série entière en 0 des fonctions exp, sin, cos, ch, sh, argth, $\arctan, x \mapsto \frac{1}{1-x}, x \mapsto \ln(1-x), x \mapsto (1+x)^{\alpha}$.
- Formule de Taylor-Lagrange.

_ ANNEXE _

EXERCICES:

CCP 18: On pose: $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, u_n(x) = \frac{(-1)^n x^n}{n}$.

On considère la série de fonctions $\sum_{n\geqslant 1}u_n.$

- 1. Étudier la convergence simple de cette série. On note D l'ensemble des x où cette série converge et S(x) la somme de cette série pour $x \in D$.
- 2. (a) Étudier la convergence normale, puis la convergence uniforme de cette série sur D.
 - (b) La fonction S est-elle continue sur D?

EXERCICES:

CCP 20 : Calculer le rayon de convergence de chacune des séries entières suivantes :

$$\sum \frac{(n!)^2}{(2n)!} z^{2n+1} \quad \text{et } \sum n^{(-1)^n} z^n.$$

Résumé 14 : Séries entières

MP du lycée Berthollet, 2015/2016 http://mpberthollet.wordpress.com

EXERCICES:

CCP 21:

1. Donner la définition du rayon de convergence d'une série entière de la variable complexe.

2. Soit $(a_n)_{n\in\mathbb{N}}$ une suite bornée telle que la série $\sum a_n$ diverge.

Quel est le rayon de convergence de la série entière $\sum a_n z^n$? Justifier.

3. Quel est le rayon de convergence de la série entière $\sum_{n \ge 1} \left(\sqrt{n} \right)^{(-1)^n} \ln \left(1 + \frac{1}{\sqrt{n}} \right) z^n ?$

EXERCICES:

CCP 22:

Que peut-on dire du rayon de convergence de la somme de deux séries entières?
Le démontrer.

2. Développer en série entière au voisinage de 0, en précisant le rayon, la fonction $f:x\longmapsto \ln{(1+x)}+\ln{(1-2x)}$.

La série obtenue converge-t-elle pour $x=\frac{1}{4}$? $x=\frac{1}{2}$? $x=-\frac{1}{2}$?.

Résumé 14 : Séries entières Page 2