

逻辑专项训练

◆ 知识梳理

一、命题

1、命题的概念

在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.

2、四种命题及其关系

(1)、四种命题

命题	表述形式
原命题	若 p , 则 q
逆命题	若 q , 则 p
否命题	若¬₽则¬q
逆否命题	若¬q则¬p

(2)、四种命题间的逆否关系

(3)、四种命题的真假关系

- **两个命题互为逆否命题,它们有相同的真假性;
- *两个命题为互逆命题或互否命题,它们的真假性没有关系.

虧高 學中

分版块专项复习 高二

二、充分条件与必要条件

1、定义

- 1. 如果 $p \Rightarrow q$,则 $p \neq q$ 的充分条件, $q \neq p$ 的必要条件.
- 2. 如果 $p \Rightarrow q$, $q \Rightarrow p$, 则 p 是 q 的充要条件.

2、四种条件的判断

- 1.如果 "若 $p \cup q$ " 为真,记为 $p \Rightarrow q$,如果 "若 $p \cup q$ "为假,记为 $p \Rightarrow q$.
- 2.若 $p \Rightarrow q$,则 $p \neq q$ 的充分条件 , $q \neq p$ 的必要条件

三、简单的逻辑联结词

- (1) 命题中的"且""或""非"叫做逻辑联结词.
 - ①用联结词"且"联结命题 p和命题 q,记作 $p \land q$,读作" $p \bowtie q$ ".
 - ②用联结词"或"联结命题 p和命题 q,记作 $p \lor q$,读作"p或 q".
 - ③对一个命题 p 全盘否定,就得到一个新命题,记作¬p,读作"非 p"或"p 的否定".

(2)简单复合命题的真值表:

p	9	<i>p</i> ^	p v	¬р
		q	q	. P
真	真	真	真	假
假	真	假	真	真
真	假	假	真	假
假	假	假	假	真

*p^q: p、q有─假为假, *p∨q:─真为真, *p与¬p:真假相对即─真─ 假.

四、量词

1、全称量词与存在量词

(1)常见的全称量词有:"任意一个""一切""每一个""任给""所有的"等.

(2)常见的存在量词有:"存在一个""<u>至少</u>有一个""有些""有一个""某个""有的"等。

(3)全称量词用符号 "∀"表示;存在量词用符号 "∃"表示.

2 全称命题与特称命题

(1)含有<u>全称</u>量词的命题叫全称命题: "对 M 中任意一个 x , 有 p(x)成立"可用符号简记为 $\forall x \in M$, p(x) , 读作"对任意 x 属于 M , 有 p(x)成立".

(2)含有<u>存在</u>量词的命题叫特称命题: "存在 M 中的一个 x_0 , 使 $p(x_0)$ 成立"可用符号简记为 $\exists x_0 \in M$, $P(x_0)$, 读作"存在 M 中的元素 x_0 , 使 $p(x_0)$ 成立".

3 命题的否定

(1) 含有量词命题的否定

全称命题 $p: \forall x \in M, p(x)$ 的否定 $\neg p: \exists x \in M, \neg p(x)$;全称命题的否定为存在命题 **存在命题** $p: \exists x \in M, p(x)$ 的否定 $\neg p: \forall x \in M, \neg p(x)$;存在命题的否定为全称命题 其中 p(x)p(x) 是一个关于x的命题.

(2) 含有逻辑连接词命题的否定

"p或 q" 的否定: " $\neg p$ 且 $\neg q$ " ;

"p且q"的否定:"¬p或¬q"

(3)"若p则q"命题的否定:只否定结论

特别提醒:命题的"否定"与"否命题"是不同的概念,命题的否定:只否定结论;

否命题:全否

对命题 p 的否定(即非 p)是否定命题 p 所作的判断 ,而 "否命题" 是 "若 $\neg p$ 则 $\neg q$ "

◆ 经典习题

- 1. 设四边形 ABCD 的两条对角线为 AC,BD则 "四边形 ABCD 为棱形" 是 " $AC \perp BD$ " 的
 - A. 充分不必要条件
- B. 必要不充分条件

C. 充要条件

- D. 既不充分也不必要条件
- 2. 已知命题 $p: \forall x_1, x_2 \in R$, $(f(x_2) f(x_1))(x_2 x_1) \ge 0$, 则 $\neg p$ 是

A.
$$\exists x_1, x_2 \in R$$
, $(f(x_2) - f(x_1))(x_2 - x_1) \le 0$

B.
$$\forall x_1, x_2 \in R$$
, $(f(x_2) - f(x_1))(x_2 - x_1) \le 0$

C.
$$\exists x_1, x_2 \in R$$
, $(f(x_2) - f(x_1))(x_2 - x_1) < 0$

D.
$$\forall x_1, x_2 \in R$$
, $(f(x_2) - f(x_1))(x_2 - x_1) < 0$

- 3. 已知 α , β 表示两个不同的平面 , m 为平面 α 内的一条直线 ,则 " $m \perp \beta$ " 是 " $\alpha \perp \beta$ " 的
 - A.充分不必要条件

B.必要不充分条件

C.充分必要条件

D.既不充分也不必要条件

- 4. 下列命题中假命题是
 - $A: \exists x_0 \in R , \lg x_0 = 1$
- $B: \exists x_0 \in R \ , \sin x_0 = 1$
- $C. \forall x \in R, x^3 > 0$
- $D. \forall x \in R, 2^x > 0$

)

分版块专项复习 高二

5.	设 $m \in \mathbb{R}$,命题"若 $m \ge 0$,则方程 x^2 A . 若方程 $x^2 = m$ 有实根,则 $m \ge 0$ B . 若方程 $x^2 = m$ 有实根,则 $m < 0$ C . 若方程 $x^2 = m$ 没有实根,则 $m \ge 0$ D . 若方程 $x^2 = m$ 没有实根,则 $m \ge 0$	≥ 0				
6.	已知命题 p 和命题 q ,若 $^p \wedge ^q$ 为真命题 ,则下面结论正确的是					
	A. ¬p 是真命题	B. ¬q是真命题				
	C. p v q 为真命题	D. (¬p)∨(¬q)为真命题 b				
7.	7. 平面 α //平面 β 的一个充分条件是					
	A . 存在两条异面直线 $a,b,a\in lpha$, $a//eta$, $b//lpha$, $b\in eta$					
	B . 存在一条直线 a , $a \in \alpha$, a / β					
	C . 存在两条平行直线 $a,b,a \in \alpha$, $b \in \beta$, $a //\beta$, $b //\alpha$					
	D. 存在一条直线 a, a//α, a//β					
8.	$a = -2$ 是直线 l_1 : $ax + y + 2 = 0$ 和直线 l_2 : $(a+1)x + ay + 2 = 0$ 垂直的					
	A. 充要条件	B. 充分不必要条件				
	C. 必要不充分条件	D. 既不充分也不必要条件				
9.	命题 "∃ $x \in R$, 使得 $x^2 + 2x + 5 = 0$ "	的否定是				
10	10. 已知命题 <i>p</i> : ∃ <i>x</i> ∈ <i>R</i> 有 sin <i>x</i> ≥ 1 , 则一 <i>p</i> 为					

解析

- **1**. *A*
- **2.***C*
- **3**. *A*
- **4.** *C*
- **5**.*D*
- **6**. *C*
- **7**.*D*
- **8**. *B*
- $9.\forall x \in R, x^2 + 2x + 5 \neq 0$
- 10. \forall *x* ∈ *R*, sinx < 1