

www.vishay.com

Vishay Semiconductors

COMPLIANT HALOGEN

FREE

High Performance Schottky Rectifier, 2 x 20 A

PRIMARY CHARACTERISTICS					
I _{F(AV)}	2 x 20 A				
V _R	15 V				
V _F at I _F	0.33 V				
I _{RM} max.	600 mA at 100 °C				
T _J max.	125 °C				
E _{AS}	10 mJ				
Package	D ² PAK (TO-263AB), TO-262AA				
Circuit configuration	Common cathode				

FEATURES

- 125 °C T_J operation (V_R < 5 V)
- Center tap module
- · Optimized for OR-ing applications
- Ultralow forward voltage drop
- High frequency operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Guard ring for enhanced ruggedness and long term reliability
- Meets MSL level 1, per J-STD-020, LF maximum peak of 245 °C
- Designed and qualified according to JEDEC®-JESD 47
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

The center tap Schottky rectifier module has been optimized for ultralow forward voltage drop specifically for the OR-ing of parallel power supplies. The proprietary barrier technology allows for reliable operation up to 125 °C junction temperature. Typical applications are in parallel switching power supplies, converters, reverse battery protection, and redundant power subsystems.

MAJOR RATINGS AND CHARACTERISTICS							
SYMBOL	CHARACTERISTICS	VALUES	UNITS				
I _{F(AV)}	Rectangular waveform	40	Α				
V _{RRM}		15	V				
I _{FSM}	t _p = 5 μs sine	700	А				
V _F	19 A _{pk} , T _J = 125 °C (per leg, typical)	0.25	V				
T _J		-55 to +125	°C				

VOLTAGE RATINGS							
PARAMETER SYMBOL TEST CONDITIONS VS-40L15CTS-M3 VS-40L15CT-1-M3 UNITS							
Maximum DC reverse voltage	V_R	T.ı = 100 °C	15	V			
Maximum working peak reverse voltage	V_{RWM}	1j = 100 C	15	V			

VS-40L15CTS-M3, VS-40L15CT-1-M3

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS								
PARAMETER	SYMBOL	TEST COND	TEST CONDITIONS					
Maximum average forwardper leg	1	50 % duty avalo at T ₋ = 85 °C	rootangular wayoform	20				
current, see fig. 5 per device	I _{F(AV)}	50 % duty cycle at T _C = 85 °C, rectangular waveform		40				
Maximum peak one cycle non-repetitive	I _{FSM}	5 μs sine or 3 μs rect. pulse	Following any rated load	700	A			
surge current per leg, see fig. 7		10 ms sine or 6 ms rect. pulse	condition and with rated V _{RRM} applied	330				
Non-repetitive avalanche energy per leg	E _{AS}	$T_J = 25$ °C, $I_{AS} = 2$ A, $L = 6$ mH		10	mJ			
Repetitive avalanche current per leg	I _{AR}	Current decaying linearly to zero in 1 µs Frequency limited by T _J maximum V _A = 1.5 x V _R typical		2	Α			

ELECTRICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CO	NDITIONS	TYP.	MAX.	UNITS	
		19 A	T _{.1} = 25 °C	-	0.41		
Maximum forward voltage drop per leg	V _{FM} ⁽¹⁾	40 A	1J=25 C	-	0.52	V	
See fig. 1	VFM ('')	19 A	T.ı = 125 °C	0.25	0.33		
		40 A	1) = 125 G	0.37	0.50		
Reverse leakage current per leg	1 (1)	T _J = 25 °C	V _B = Rated V _B	-	10	mA	
See fig. 2	I _{RM} ⁽¹⁾	T _J = 100 °C	v _R = nateu v _R	-	600] 111/4	
Threshold voltage	V _{F(TO)}	T _ T mavimum		0.1	82	V	
Forward slope resistance	r _t	ij = ijillaxilliulli	$T_J = T_J$ maximum		.6	mΩ	
Maximum junction capacitance per leg	C _T	$V_R = 5 V_{DC}$ (test signal range	-	2000	pF		
Typical series inductance per leg	L _S	Measured lead to lead 5 n	8	-	nΗ		
Maximum voltage rate of change	dV/dt	Rated V _R		10	000	V/µs	

Note

 $^{^{(1)}\,}$ Pulse width < 300 µs, duty cycle < 2 %

THERMAL - MECH	THERMAL - MECHANICAL SPECIFICATIONS								
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS				
Maximum junction temperature range		TJ		-55 to +125	°C				
Maximum storage tempera	ture range	T _{Stg}		-55 to +150	C				
Maximum thermal resistant junction to case per leg	ce,	R _{thJC}	DC operation See fig. 4	1.5					
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased		°C/W				
Maximum thermal resistance, junction to ambient		R _{thJA}	DC operation	40					
Approximate weight				2	g				
Approximate weight				0.07	OZ.				
Marinting taxoria	minimum		Non-lubricated threads	6 (5)	kgf ⋅ cm				
Mounting torque maxim			Non-lubricated trireads	12 (10)	(lbf · in)				
Marking daving	Maddan da ta		Case style D ² PAK (TO-263AB)	40L15	5CTS				
Marking device			Case style TO-262AA	40L15	40L15CT-1				

Fig. 1 - Maximum Forward Voltage Drop Characteristics

Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

www.vishay.com

Vishay Semiconductors

Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

Fig. 6 - Forward Power Loss Characteristics

Fig. 7 - Maximum Non-Repetitive Surge Current

Fig. 8 - Unclamped Inductive Test Circuit

Note

 $^{(1)}$ Formula used: T_C = T_J - (Pd + Pd_{REV}) x R_{thJC}; Pd = forward power loss = I_{F(AV)} x V_{FM} at (I_{F(AV)}/D) (see fig. 6); Pd_{REV} = inverse power loss = V_{R1} x I_R (1 - D); I_R at V_{R1} = 80 % rated V_R

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

2 - Current rating (40 A)

3 - L = Schottky "L" series

4 - Voltage rating (15 V)

C = common cathode

6 - T = TO-220

7 - • $S = D^2PAK$ (TO-263AB)

• -1 = TO-262AA

8 - • None = tube

• TRL = tape and reel (left oriented - for D²PAK (TO-263AB) only)

• TRR = tape and reel (right oriented - for D²PAK (TO-263AB) only)

9 - -M3 = halogen-free, RoHS-compliant, and termination lead (Pb)-free

ORDERING INFORMATION (Example)								
PREFERRED P/N BASE QUANTITY PACKAGING DESCRIPTION								
VS-40L15CTS-M3	50	Antistatic plastic tubes						
VS-40L15CTSTRL-M3	800	13" diameter plastic tape and reel						
VS-40L15CTSTRR-M3	800	13" diameter plastic tape and reel						
VS-40L15CT-1-M3	50	Antistatic plastic tubes						

LINKS TO RELATED DOCUMENTS						
Dimensions	D ² PAK (TO-263AB)	www.vishay.com/doc?96164				
Dimensions	TO-262AA	www.vishay.com/doc?96165				
Doub an ordinar information	D ² PAK (TO-263AB)	www.vishay.com/doc?95444				
Part marking information	TO-262AA	www.vishay.com/doc?95443				
Packaging information		www.vishay.com/doc?96424				
SPICE model		www.vishay.com/doc?97118				

D²PAK

DIMENSIONS in millimeters and inches

SYMBOL	MILLIMETERS		INCHES		NOTES		SYMBOL	MILLIMETERS		MILLIMETERS INCHES		HES	NOTES
STIVIBUL	MIN.	MAX.	MIN.	MAX.	NOTES	NOIES	STIVIBUL	MIN.	MAX.	MIN.	MAX.	NOTES	
Α	4.06	4.83	0.160	0.190			D1	6.86	8.00	0.270	0.315	3	
A1	0.00	0.254	0.000	0.010			Е	9.65	10.67	0.380	0.420	2, 3	
b	0.51	0.99	0.020	0.039			E1	7.90	8.80	0.311	0.346	3	
b1	0.51	0.89	0.020	0.035	4		е	2.54	BSC	0.100	BSC		
b2	1.14	1.78	0.045	0.070			Н	14.61	15.88	0.575	0.625		
b3	1.14	1.73	0.045	0.068	4		L	1.78	2.79	0.070	0.110		
С	0.38	0.74	0.015	0.029			L1	-	1.65	-	0.066	3	
c1	0.38	0.58	0.015	0.023	4		L2	1.27	1.78	0.050	0.070		
c2	1.14	1.65	0.045	0.065			L3	0.25	BSC	0.010	BSC		
D	8.51	9.65	0.335	0.380	2		L4	4.78	5.28	0.188	0.208		

Notes

- (1) Dimensioning and tolerancing per ASME Y14.5 M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- (3) Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Datum A and B to be determined at datum plane H
- (6) Controlling dimension: inch
- (7) Outline conforms to JEDEC® outline TO-263AB

TO-262

DIMENSIONS in millimeters and inches

SYMBOL	MILLIN	METERS	INC	INCHES			
STIVIBUL	MIN.	MAX.	MIN.	MAX.	NOTES		
Α	4.06	4.83	0.160	0.190			
A1	2.03	3.02	0.080	0.119			
b	0.51	0.99	0.020	0.039			
b1	0.51	0.89	0.020	0.035	4		
b2	1.14	1.78	0.045	0.070			
b3	1.14	1.73	0.045	0.068	4		
С	0.38	0.74	0.015	0.029			
c1	0.38	0.58	0.015	0.023	4		
c2	1.14	1.65	0.045	0.065			
D	8.51	9.65	0.335	0.380	2		
D1	6.86	8.00	0.270	0.315	3		
E	9.65	10.67	0.380	0.420	2, 3		
E1	7.90	8.80	0.311	0.346	3		
е	2.54 BSC		0.100	BSC			
L	13.46	14.10	0.530	0.555			
L1	-	1.65	-	0.065	3		
L2	3.36	3.71	0.132	0.146			

Notes

- (1) Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- (3) Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- 5) Controlling dimension: inches
- (6) Outline conform to JEDEC TO-262 except A1 (maximum), b (minimum), D1 (minimum) and L2 where dimensions derived the actual package outline

Revision: 11-Jul-2019 1 Document Number: 95419

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.