

MT7975PN Datasheet

802.11ax Wi-Fi 4x4 5GHz-band

Version: 1.5

Release date: 2021/11/08

Specifications are subject to change without notice.

© 2021 MediaTek Inc.

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

Document Revision History

Revision	Date	Author	Description
V1.0	2019/10/9	Kevin	1.Formal version.
V1.1	2019/11/7	Kevin	1.remove power on sequence.
V1.2	2019/11/13	Kevin	 correct AVDD18 power pin connection to 1.8V supply. Update the table of contents. Update WRI 9-bit bus interface diagram.
V1.3	2020/08/05	Kevin	Add pin number in package dimension page
V1.4	2021/04/22	Kevin	1. Update to MT7975P, add BW160
V1.5	2021/11/08	Kevin	1. Update to MT7975PN

Table of Contents

Docu	ıment	Revision History	2
Table	e of Co	ntents	3
1	Syste	em Overview	5
	1.1	Functional Block Diagram	5
	1.2	Features	6
2	Pin C	Definitions	7
	2.1	Pin Layout	7
	2.2	IO Definitions	8
	2.3	Pin Definitions	9
3	Elect	rical Characteristics	12
	3.1	Absolute maximum rating	12
	3.2	Recommended operating range	12
	3.3	Power Supply Specifications	12
	3.4	Digital Logic Characteristics	13
	3.5	MT7975PN TOP Building Blocks	16
	3.6	Wi-Fi	16
4	XO a	and Bootstrap	17
	4.1	XTAL oscillator	17
5	Mecl	hanical Information	18
	5.1	Device Physical Dimension/Part Number	18
	5.2	Ordering Information	22

Lists of Figures and Tables

Figure 1-1. MT7975PN block diagram	5
Figure 1-1. MT7975PN block diagram Figure 2-1. MT7975PN pin definition	7
Figure 3-1. Timing diagram conventions	
Figure 3-2. Rising and falling times diagram	13
Figure 3-3. 2-wire SPI timing diagram	14
Figure 3-4. Wi-Fi 9-wire SPI access	
Figure 4-1. Physical dimension of MT7975PN	19
Figure 4-2. Physical dimension of MT7975PN	22
Table 2-1. I/O definitions	8
Table 2-2 MT7975PN common pin descriptions	11
Table 3-1 Absolute maximum rating	12
Table 3-2 Recommended operating range	
	12
Table 3-3. AVDD18 specifications	
Table 3-3. AVDD18 specifications Table 3-4. AVDD33 specifications	12
Table 3-3. AVDD18 specifications Table 3-4. AVDD33 specifications Table 3-5. Operating conditions of digital logics	12 12

1 System Overview

1.1 Functional Block Diagram

MT7975PN is an IEEE 802.11ax 4x4 MIMO and Wi-Fi chip which contains 5 GHz Wi-Fi transceiver front-ends, in a DRQFN package. Simplified block diagram and how MT7975PN is used are shown in Figure 1-1. The top control logics control each subsystem independently. Each subsystem also has dedicated LDOs. A thermal sensor and a low-speed ADC (Analog-to-Digital Converter) are provided to monitor MT7975PN's temperature variation. MT7975PN have its dedicated crystal oscillator (XO) circuit. Besides, XO circuit provides an external clock source to other chips in the platform.

The transceiver front-ends are on MT7975PN while the ADC/DAC (Analog-to-Digital Converter/Digital-to-Analog Converter) is in the companion modem chip. The interface drivers/receiver buffers are designed to drive PCB trace loading.

MT7975PN exhibits the following new features: (1) WiFi 5GHz support MIMO 11ax.

Figure 1-1. MT7975PN block diagram

1.2 Features

 MT7975PN is a Wi-Fi chip which contains 4x4 MIMO 5G GHz Wi-Fi transceiver front-end, in a DRQFN package.

1.2.1 Wi-Fi Transceiver

WLAN

- A-band (5GHz) 4x4 MIMO 802.11 a/b/g/n/ac/ax RF, 20/40/80/160MHz bandwidth
- Configurable to 4x4 MIMO A-band, or 3x3 MIMO A-band+ 1 A-band RX for Dynamic Frequency Selection.
- Supports worldwide Wi-Fi 5G channel including new band in US and China (5925MHz)
- Integrated 5GHz PA, LNA and TRSW.
- Integrated power detector to support per packet Tx power control
- Built-in calibrations for PVT variation
- Configurable Wi-Fi 5GHz PA for higher efficiency in low-power applications.
- Supports external PA and LNA for WiFi-5GHz.
- Simultaneous operation (FDD) of 4x4 WiFi-5GHz and Bluetooth

Pin Definitions 2

2.1 **Pin Layout**

MT7975PN uses DRQFN package of with 10.5mm x 9mm dimension.

Figure 2-1. MT7975PN pin definition

2.2 **IO Definitions**

The IO definitions used in Table 2-1 are listed below.

Table 2-1. I/O definitions

	Pad attribute			
AI	Analog input (excluding pad circuitry)			
AO	Analog output (excluding pad circuitry)			
AIO	Analog bidirectional (excluding pad circuitry)			
DIO	Bidirectional digital with CMOS input			
DI	Digital input (CMOS)			
DO	Digital output (CMOS)			
Z	High-impedance (high-Z) output			
NP	No internal pull			
PU	Internal pull-high			
PD	Internal pull-low			
ADIO	Analog and digital IO (excluding pad circuitry)			
Power	Voltage supply			
GND	Ground			
NC	No connection			

2.3 **Pin Definitions**

Details pin descriptions of MT7975PN are listed in the following table.

DRQFN	Pin Name	Pin description	PU/PD	I/O	Supply domain
GND pins					
1,2,7,10,11, 18,19,25,31, 32,33,34,43, 45,54,55,56, 57,69,71,73, 76,78,79,81, 83,84,91,10 0,110, 8, 107, 98, 89, 6, 106, 97, 88,	GND	GND	N/A	GND	
12	PAD_VCO_MON	GND	N/A	GND	
13	RF_TEST	GND	N/A	GND	
NC pins					
44	NC (DVDD13_SCAN)	Digital LDO output	N/A	NC	
Reset and cl	ocks				
70	XO_IN	Crystal input or external clock input		Al	
72	AVDD33_XO	XO 3.3v power supply	N/A	Power	
67	XO_OUT_A	XTAL buffered clock output	N/A	AO	
26	XO_OUT_B	XTAL buffered clock output	N/A	AO	
BT interface					
20	AVDD33_BT	RF 3.3v power supply	N/A	Power	
17	AVDD18_BT	RF 1.8v power supply	N/A	Power	
WIFI Power	supply				
14	AVDD33_WF0_TOP	RF 3.3v power supply	N/A	Power	
75	AVDD33_WF3_TOP	RF 3.3v power supply	N/A	Power	
16	AVDD18_WF0_TRX	RF 1.8v power supply	N/A	Power	
74	AVDD18_WF3_TRX	RF 1.8v power supply	N/A	Power	
15	AVDD18_WF0_AFE	RF 1.8v power supply	N/A	Power	
77	AVDD18_WF3_AFE	RF 1.8v power supply	N/A	Power	
109	AVDD33_WF0_TRX_A	RF 3.3v power supply	N/A	Power	
101	AVDD33_WF1_TRX_A	RF 3.3v power supply	N/A	Power	
92	AVDD33_WF2_TRX_A	RF 3.3v power supply	N/A	Power	
80	AVDD33_WF3_TRX_A	RF 3.3v power supply	N/A	Power	
3	AVDD33_WF0_PA_A	RF 3.3v power supply	N/A	Power	

	T	T	ı	
103	AVDD33_WF1_PA_A	RF 3.3v power supply	N/A	Power
94	AVDD33_WF2_PA_A	RF 3.3v power supply	N/A	Power
85	AVDD33_WF3_PA_A	RF 3.3v power supply	N/A	Power
9	AVDD33_WF0_PA_G	RF 3.3v power supply	N/A	Power
108	AVDD33_WF1_PA_G	RF 3.3v power supply	N/A	Power
99	AVDD33_WF2_PA_G	RF 3.3v power supply	N/A	Power
90	AVDD33_WF3_PA_G	RF 3.3v power supply	N/A	Power
WIFI Radio	Frequency interface			
5	WF0_DET	External TSSI DC/AC input	N/A	Al
105	WF1_DET	External TSSI DC/AC input	N/A	Al
96	WF2_DET	External TSSI DC/AC input	N/A	Al
87	WF3_DET	External TSSI DC/AC input	N/A	Al
111	WF0_RFIO_A	RF A-band RF port	N/A	AIO
102	WF1_RFIO_A	RF A-band RF port	N/A	AIO
93	WF2_RFIO_A	RF A-band RF port	N/A	AIO
82	WF3_RFIO_A	RF A-band RF port	N/A	AIO
4	WF0_RFIN_A	A-band External LNA input	N/A	AI
104	WF1_RFIN_A	A-band External LNA input	N/A	AI
95	WF2_RFIN_A	A-band External LNA input	N/A	AI
86	WF3_RFIN_A	A-band External LNA input	N/A	Al
WIFI Analog	j interface			
38	WF0_IP	WF0 IF TRX IQ signals	N/A	AIO
37	WF0_IN	WF0 IF TRX IQ signals	N/A	AIO
36	WF0_QP	WF0 IF TRX IQ signals	N/A	AIO
35	WF0_QN	WF0 IF TRX IQ signals	N/A	AIO
42	WF1_IP	WF1 IF TRX IQ signals	N/A	AIO
41	WF1_IN	WF1 IF TRX IQ signals	N/A	AIO
40	WF1_QP	WF1 IF TRX IQ signals	N/A	AIO
39	WF1_QN	WF1 IF TRX IQ signals	N/A	AIO
49	WF2_IP	WF2 IF TRX IQ signals	N/A	AIO
48	WF2_IN	WF2 IF TRX IQ signals	N/A	AIO
47	WF2_QP	WF2 IF TRX IQ signals	N/A	AIO
46	WF2_QN	WF2 IF TRX IQ signals	N/A	AIO
53	WF3_IP	WF3 IF TRX IQ signals	N/A	AIO
52	WF3_IN	WF3 IF TRX IQ signals	N/A	AIO
51	WF3_QP	WF3 IF TRX IQ signals	N/A	AIO
<u>i</u>	_		<u> </u>	

50	WF3_QN	WF3 IF TRX IQ signals	N/A	AIO	
Digital IC	Os		'	.	
22	PAD_DIG_RESETB	Hardware reset from companion modem	PU/PD	DI	DVDDIO
21	PAD_CBA_RESETB	software reset from companion modem	PU/PD	DI	DVDDIO
23	PAD_XO_REQ	XO enable control from companion modem	PU/PD	DI	DVDDIO
24	PAD_SLP_CLK	Sleep CLK input	PU/PD	DI	DVDDIO
28	TOP_DATA	TOP 2-wire data signal	PU/PD	DIO	DVDDIO
27	TOP_CLK	TOP 2-wire clock signal	PU/PD	DI	DVDDIO
29	BT_CLK	BT 2-wire clock signal	PU/PD	DI	DVDDIO
30	BT_DATA	BT 2-wire data signal	PU/PD	DIO	DVDDIO
58	PAD_WF_WRI8	WF high speed control bus	PU/PD	DIO	DVDDIO
59	PAD_WF_WRI7	WF high speed control bus	PU/PD	DIO	DVDDIO
60	PAD_WF_WRI6	WF high speed control bus	PU/PD	DIO	DVDDIO
61	PAD_WF_WRI5	WF high speed control bus	PU/PD	DIO	DVDDIO
62	PAD_WF_WRI4	WF high speed control bus	PU/PD	DIO	DVDDIO
63	PAD_WF_WRI3	WF high speed control bus	PU/PD	DIO	DVDDIO
64	PAD_WF_WRI2	WF high speed control bus	PU/PD	DIO	DVDDIO
66	PAD_WF_WRI1	WF high speed control bus	PU/PD	DIO	DVDDIO
65	PAD_WF_WRI0	WF high speed control bus	PU/PD	DIO	DVDDIO
68	PAD_PMU_POR_B_V18	Chip enable from companion modem	PU/PD	DI	DVDDIO

Table 2-2 MT7975PN common pin descriptions

3 Electrical Characteristics

3.1 **Absolute maximum rating**

Symbol	Parameters	Maximum rating	Unit
VDD33	3.3V Supply Voltage	-0.3 to 3.6	V
VDD18	1.8V Supply Voltage	-0.3 to 1.89	V
T _{STG}	Storage Temperature	-40 to +125	°C
VESD	ESD protection (HBM)	2000	V
VESD	ESD protection (CDM)	+/- 250	V

Table 3-1 Absolute maximum rating

3.2 Recommended operating range

Symbol	Rating	MIN	TYP	MAX	Unit
VDD33	3.3V Supply Voltage	3	3.3	3.6	V
VDD18	1.8V Supply voltage	1.71	1.8	1.89	V
Tjunction	Industry junction operating temperature	-20	25	125	°C
TAMBIENT	Ambient Temperature	-10	-	70	°C

Table 3-2 Recommended operating range

3.3 **Power Supply Specifications**

The following tables list the power supply requirements for VDD18 and VDD33.

Table 3-3. AVDD18 specifications

Test item	Min.	Typ.	Max.	Unit	Notes
Output voltage, VDD	1.71	1.8	1.89	V	
Output current				mA	

Table 3-4. AVDD33 specifications

Test Item	Min	Тур	Max	Unit	Notes
Output voltage	3.0	3.3	3.6	V	
Output current				mA	

3.4 **Digital Logic Characteristics**

MT7975PN's timing characteristics and interface protocols are shown here, including some general comments.

3.4.1 Timing Diagram Convention

Figure 3-1 shows the conventions used with timing diagram throughout this document.

Figure 3-1. Timing diagram conventions

3.4.2 Rising/Falling Time Definition

Figure 3-2 is the rising and falling timing diagram. The actual signal timing curve is related to the external load conditions. See 錯誤! 找不到參照來源。 for the operating conditions of digital logics.

Figure 3-2. Rising and falling times diagram

Table 3-5. Operating conditions of digital logics

Parameter	Min.	Typ.	Max.	Unit	Notes
VDDIO, supply of IO Power	3	3.3	3.6	V	
VIH, input logic high voltage	o.7*VDD		VDD+0.5	V	
VIL, input logic low voltage			o.3*VDDIO	V	
VOH (DC), DC output high voltage	o.7*VDD		VDD+0.5	V	VDD=min, I _{OH} =1.5mA
VOL (DC), DC output low voltage			o.3*VDD	V	VDD=min, I _{OL} =1.5mA

3.4.3 Protocols

There are three main interfaces for MT7975PN:

- 2-wire top control interface: Generally used for all systems (Wi-Fi)
- 9-wire bus: High-speed interface, for Wi-Fi

3.4.3.1 2-Wire

The 2-wire bus of MT7975PN is mainly used as below:

- Top control interface, the main interface to access Wi-Fi/TOP command registers
- .

The bit number of SDATA depends on different operating conditions, as shown in Figure 3-3.

Figure 3-3. 2-wire SPI timing diagram

3.4.3.2 9-bit Bus

MT7975PN has a dedicated 9-bit bus to control the Wi-Fi radio. The related control definitions depend on operating modes and conditions. The protocol is shown in <u>Figure 3-4</u>.

MediaTek Confidential

© 2021 MediaTek Inc.

Page 14 of 23

Figure 3-4. Wi-Fi 9-wire SPI access

3.5 MT7975PN TOP Building Blocks

3.5.1 Thermal ADC

A low-speed ADC converts the output of thermal sensor. The temperature coverage range is between -40°C and 120°C. The chip top control may do corresponding adjustment (such as PA/TX gain switching) based on such temperature information.

3.6 **Wi-Fi**

MT7975PN Wi-Fi is a high performance and highly-integrated A-band RF transceiver fully compliant with IEEE 802.11 a/ac/ax/b/g/n standards. A novel RF front-end topology is implemented to achieve maximum hardware sharing between 5GHz Wi-Fi and Bluetooth with integrated TR-switches. MT7975PN also features a self-calibration scheme to compensate the process and temperature variation to maintain high performance. The calibration is performed automatically right after the system boot-up.

3.6.1 5GHz Wi-Fi Tx

The 5G transmitter utilizes the most cost efficient direct up architecture and integrates a high performance PA with on-chip balun. The data are digitally modulated in the baseband processor from the companion baseband chip, then up-converted to 5GHz RF channels through the DA converter, low-pass filter, IQ up-converter and power amplifier. The power amplifier is capable of transmitting 22dBm OFDM power.

3.6.2 5GHz Wi-Fi Rx

Direct down-conversion receiver architecture is also used in 5G Wi-Fi Rx, which consists of a high linearity, low noise figure single-ended LNA with on-chip integrated T/R switch, a quadrature passive mixer and a bandwidth-programmable low-pass filter with DC offset cancellation embedded.

3.6.3 5GHz Wi-Fi Sx

A-band Sx adopts LO architecture while VCO frequency is different from RF frequency to avoid TX pulling. Thus, it is composed of PLL, offset LO mixer and a repeater. In MT7975PN application, major Sx supply voltage is 1.8V, and internal cap-less LDO regulates this 1.8V into 1.35V for core circuit operation. Sx generates I/Q quadrature phase to TRX mixer.

4 XO and Bootstrap

4.1 XTAL oscillator

The table below lists the requirement for the XTAL.

Parameter	Value
Frequency	40MHz
Frequency stability	±10 ppm @ 25℃
Operation temperature	<-40deg , >60deg
range	
ESR	Max <30ohm
CL	10.5p~12.0p
TS	TS min >=10ppm/pF
DL	>=100uW
Dimension	2520

Table 4-1 XTAL oscillator requirement

5 Mechanical Information

5.1 **Device Physical Dimension/Part Number**

MT7975PN uses DRQFN package. The physical dimension is shown in Figure 5-1.

MEDIATEK
MT7975PN
DDDD-XXXXX
XXXXXXX

MT7975PN: PART NAME
DDDD: DATE CODE
XXXX: LOT NUMBER

Figure 5-1. Physical dimension of MT7975PN

SEATING PLANE

SIDE VIEW

ltem		Symbol	MIN.	NOM.	MAX.
total height		А	0.80	0.85	0.90
stand off		A1	0.00	0.02	0.05
mold thickness		A2	0.65	0.70	0.75
leadframe thickness		А3	0.15 REF.		
lead width		b1	0.18	0.22	0.30
		b 2	0.15	0.20	0.25
	Χ	D	10.4	10.5	10.6
package size	Υ	E	8.90	9.00	9.10
E-PAD size	Χ	D2	6.90	7.00	7.10
E-FMD Size	Υ	E2	5.40	5.50	5.60
lead length		L	0.30	0.40	0.50
lead pitch		еT	0.50 bsc		
		е	0.40 bsc		
		eR	0.65 bsc		
lead arc		R1	0.09 0.14		0.14
redd dic		R2	0.075	75	
Lead to E—PAD tolerance		K	0.20		
Package profile of a surface		aaa	0.10		
Lead position		ььь	0.10		
Paralleliam		ccc	0.10		
Lead position		ddd	0.05		
Lead profile of a surface		eee	0.08		
Epad position		fff	0.10		

Figure 5-2. Physical dimension of MT7975PN

5.2 **Ordering Information**

Order No.	Marking	Temperature range	Package
MT7975PN	MT7975PN	-10°C ~ 70°C	DRQFN

ESD CAUTION

MT7975PN is ESD (electrostatic discharge) sensitive device and may be damaged with ESD or spike voltage. Although MT7975PN is with built-in ESD protection circuitry, please handle with care to avoid the permanent malfunction or the performance degradation.