Data Encryption Standard (DES)

Outline

- 1. Introduction to DES
- 2. Overview of DES Algorithm
- 3. Internal Structure of DES
- 4. Security of DES

Introduction to DES

3

Classification of DES in the Field of Cryptology

DES Facts

- Data Encryption Standard (DES) encrypts blocks of size 64 bits
- Developed by IBM based on the cipher Lucifer with input from the National Security Agency (NSA)
- Standardized 1977 by the National Bureau of Standards (NBS) today called National Institute of Standards and Technology (NIST)
- Most popular block cipher until 2000
- By far best studied and cryptanalized symmetric algorithm
- Nowadays considered insecure due to the small key length of
 56 bit
- But 3DES yields very secure cipher, still widely used today.
- Replaced by the Advanced Encryption Standard (AES) in 2000

Block Cipher Primitives: Confusion and Diffusion

Claude Shannon established that two primitive operations are required to build strong encryption algorithms:

- 1. Confusion: An encryption operation where the relationship between key and ciphertext is obscured
 - Commonly achieved using substitution
 - Mixing the key values during the repeated rounds of encryption
 - Small change in key → large change in ciphertext
- 1. Diffusion: An encryption operation where the influence of one plaintext symbol is spread over many ciphertext symbols with the goal of hiding statistical properties/patterns of the plaintext
- Commonly achieved using bit permutation
- Small change in plaintext → large change in ciphertext
- Alternate both confusion and diffusion functions to build so called product ciphers

Product Ciphers

- Most of today's block ciphers are product ciphers as they consist of rounds which are applied repeatedly to the data
- Can reach excellent diffusion: changing of one bit of plaintext results on average in the change of half the output bits

Example:

Overview of DES Algorithm

Overview of DES Algorithm

 χ

Initial Permutation

Encryption Round 1

Encryption Round 16

Final

Permutation

 ν

- Encrypts blocks of size 64 bits
- Uses a key of size 56 bits
- Symmetric cipher: uses same key for encryption and decryption
- Uses **16 rounds** which all perform identical operation
- Different subkey in each round derived from main key
- Each round uses a generated subkey and the output of previous round

Encryption Round

DES Feistel Network (1)

- DES structure is a Feistel network which an approach adopted by many block ciphers
- Advantage: encryption and decryption differ only in keyschedule

- Bitwise initial permutation, then 16 rounds
 - 1. Plaintext is split into 32-bit halves L_i and R_i
 - 2. R_i is fed into the **function** f, the output of which is then XORed with L_i

Round 1

- 3. Left and right half are swapped
- Rounds can be expressed as: $L_i = R_{i-1}, \ R_i = L_{i-1} \oplus f(R_{i-1}, k_i)$

The DES Feistel Network (2)

L and R swapped again at the end of the cipher, i.e., after round 16 followed by a final permutation

Internal Structure of DES

Initial and Final Permutation

- Bitwise Permutations
- Described by tables IP and IP-1

Initial Permutation

IP								
58	50	42	34	26	18	10	2	
60	52	44	36	28	20	12	4	
62	54	46	38	30	22	14	6	
64	56	48	40	32	24	16	8	
57	49	41	33	25	17	9	1	
59	51	43	35	27	19	11	3	
61	53	45	37	29	21	13	5	
63	55	47	39	31	23	15	7	

Final Permutation

	IP^{-1}							
		48						
39	7	47	15	55	23	63	31	
38	6	46	14	54	22	62	30	
		45						
36	4	44	12	52	20	60	28	
35	3	43	11	51	19	59	27	
34	2	42	10	50	18	58	26	
33	1	41	9	49	17	57	25	

https://en.wikipedia.org/wiki/DES_supplementary_material

The f-Function

- Main operation of DES
- f-Function inputs: R_{i-1} and round key k_i
- 4 Steps:
 - 1. Expansion E
 - 2. XOR with round key
 - 3. S-box substitution
 - 4. Permutation

The Expansion Function E

1. Expansion E

main purpose: increases diffusion

E							
32		2	3	4	5		
4	5	6	7	8	9		
8	9	10	11	12	13		
12	13	14	15	16	17		
16	17	18	19	20	21		
20	21	22	23	24	25		
24	25	26	27	28	29		
28	29	30	31	32	1		

XOR Round Key

2. XOR Round Key

- Bitwise XOR of the round key and the output of the expansion function E
- Round keys are derived from the main key in the DES keyschedule (in a few slides)

The DES S-Boxes

3. S-Box substitution

- Eight substitution tables
- Each S-box maps 6 bits of input to 4 bits of output
- Non-linear and resistant to differential cryptanalysis
- Crucial element for DES security!

DES S-Box

The Permutation P

4. Permutation P

- Bitwise permutation
- Introduces diffusion
- Output bits of one S-Box affect several S-Boxes in next round

 P

 16
 7
 20
 21
 29
 12
 28
 17

 1
 15
 23
 26
 5
 18
 31
 10

 2
 8
 24
 14
 32
 27
 3
 9

 19
 13
 30
 6
 22
 11
 4
 25

Key Schedule (1)

- Derives 16 round keys (or *subkeys*) k_i of 48 bits each from the original 56 bit key
- The input key size of the DES is 64 bit: **56 bit key** and 8 bit not used:

Last bit of every byte is not used

• Permuted Choice (*PC-1*) is used to permute the key is split it into left-side and right-side (28 bits each). Not that the last bit of every byte is ignored. (the bits 8, 16, 24, 32, 40, 48, 56 and 64 are not used at all)

	Left								Right					
	57	49	41	33	25	17	9	63	55	47	39	31	23	15
PC-1	1	58	50	42	34	26	18	7	62	54	46	38	30	22
	10	2	59	51	43	35	27	14	6	61	53	45	37	29
	19	11	3	60	52	44	36	21	13	5	28	20	12	4

Key Schedule (2)

- Split key into 28-bit halves C_0 and D_0
- In **rounds** *i* = **1**, **2**, **9**, **16**, the two halves are each rotated left by one bit (i.e, Left Circular Shift)
- In **all other rounds** where the two halves are each rotated left by two bits
- In each round i Permuted Choice PC-2 selects a permuted subset of 48 bits of C_i and D_i as round key k_i

i.e. each k, is a permutation of k!

	PC-2 14 17 11 24 1 5 3 28 15 6 21 10 23 19 12 4 26 8 16 7 27 20 13 2 41 52 31 37 47 55 30 40 51 45 33 48 44 49 39 56 34 53 46 42 50 36 29 32							
14	17	11	24	1	5	3	28	
15	6	21	10	23	19	12	4	
26	8	16	7	27	20	13	2	
41	52	31	37	47	55	30	40	
51	45	33	48	44	49	39	56	
34	53	46	42	50	36	29	32	

Note: The total number of rotations:

$$4 \times 1 + 12 \times 2 = 28 \Rightarrow D_0 = D_{16}$$
 and $C_0 = C_{16}!$

Decryption

- In Feistel ciphers only the keyschedule has to be modified for decryption
- Generate the same 16 round keys in reverse order

Reversed key schedule:

- As $D_0 = D_{16}$ and $C_0 = C_{16}$ the first round key can be generated by applying *PC-2* right after *PC-1* (no rotation here!)
- All other rotations of C and D can be reversed to reproduce the other round keys resulting in:
 - No rotation in round 1.
 - One bit rotation to the right in rounds 2, 9 and 16.
 - Two bit rotations to the right in all other rounds.

Security of DES

Security of DES

- After the proposal of DES two major criticisms arose:
 - 1. Key space is too small (2⁵⁶ keys)
 - 2. S-box design criteria have been kept secret: Are there any hidden analytical attacks (backdoors), only known to the NSA?
- Analytical Attacks: DES is highly resistent to advanced cryptanalysis.
 So far there is no known analytical attack.
- Exhaustive key search: For a given pair of plaintext-ciphertext (x, y) test all 2^{56} keys until the condition $DES_k^{-1}(x)=y$ is fulfilled.
 - ⇒ Relatively easy given today's computer technology!

Triple DES – 3DES

- Triple encryption applies the DES cipher algorithm three times to each data block
- Protect against brute-force attacks without the need to design a completely new block cipher (just by effective key length up to 168 bits)

$$y = DES_{k_3}(DES_{k_2}(DES_{k_1}(x)))$$

- No practical attack known today
- Used in some legacy applications such as in banking systems but slow

Alternatives to DES

Algorithm	I/O Bit	Key lengths	Remarks
AES	128	128/192/256	DES replacement, worldwide used standard
Triple DES	64	up to 168 bits	Used for legacy applications
Mars	128	128/192/256	AES finalist
RC6	128	128/192/256	AES finalist
Serpent	128	128/192/256	AES finalist
Twofish	128	128/192/256	AES finalist

Summary

- DES was the dominant symmetric encryption algorithm from the mid-1970s to the mid-1990s. Since 56-bit keys are no longer secure, the Advanced Encryption Standard (AES) was created
- Standard DES with 56-bit key length can be broken relatively easily nowadays through an exhaustive key search
- DES is robust against analytical attacks. Its security depends heavily on S-boxes
- By encrypting with DES three times in a row, triple DES (3DES)
 is created, against which no practical attack is currently known
- The default symmetric cipher is nowadays often AES

Resources

DES Animation

http://kathrynneugent.com/des.html

DES Wikipedia page

https://en.wikipedia.org/wiki/Data Encryption Standard

DES Tool

http://des.online-domain-tools.com/