Distribution of Quadratic Forms

Quadratic Forms

If **A** is a symmetric matrix and **y** is a vector, the product $\mathbf{y}^{\mathbf{T}}\mathbf{A}\mathbf{y} = \sum_{i} a_{ii}y_{i}^{2} + \sum_{i\neq j} a_{ij}y_{i}y_{j}$ is called a quadratic form.

Theorem 4.4a

Let $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\mathbf{a} = [a_1, ..., a_p]^T$. Then, $\mathbf{a^T}\mathbf{x} = \sum_{i=1}^p a_i x_i \sim \mathcal{N}_1(\mathbf{a^T}\boldsymbol{\mu}, \mathbf{a^T}\boldsymbol{\Sigma}\mathbf{a})$. Remark: In this form, we can show that certain sum of squares have X^2 distributions.

Remark: It can be shown that $\mathbf{y}^{\mathbf{T}}\mathbf{I}\mathbf{y} = \mathbf{y}^{\mathbf{T}}(\mathbf{I} - \frac{1}{n}\mathbf{J})\mathbf{y} + \mathbf{y}^{\mathbf{T}}(\frac{1}{n}\mathbf{J})\mathbf{y}$.

Sum of Squares Properties

(1)
$$\mathbf{I} = (\mathbf{I} - \frac{1}{n}\mathbf{J}) + (\frac{1}{n}\mathbf{J})$$
, (2) $\mathbf{I}, \mathbf{I} - \frac{1}{n}\mathbf{J}, \frac{1}{n}\mathbf{J}$ are idempotent; and (3) $(\mathbf{I} - \frac{1}{n}\mathbf{J})(\frac{1}{n}\mathbf{J}) = \mathbf{O}$. Theorem 5.2a (Mean and Variances)

If y is a random vector with mean μ and covariance matrix Σ , and A is a symmetric matrix of constants, then $\mathbb{E}(\mathbf{y}^{T}\mathbf{A}\mathbf{y}) = \operatorname{tr}(\mathbf{A}\boldsymbol{\Sigma}) + \boldsymbol{\mu}^{T}\mathbf{A}\boldsymbol{\mu}$.

Theorem 5.2b-d (Mean and Variances)

If $\mathbf{y} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then

$$M_{\mathbf{y^T A y}}(t) = |\mathbf{I} - 2t\mathbf{A}\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}\boldsymbol{\mu^T}[\mathbf{I} - (\mathbf{I} - 2t\mathbf{A}\boldsymbol{\Sigma})^{-1}]\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}\right\}$$

 $\operatorname{Var}(\mathbf{y^T A y}) = 2\operatorname{tr}[(\mathbf{A}\boldsymbol{\Sigma})^2] + 4\boldsymbol{\mu^T A \Sigma A \mu}$

$$\operatorname{Var}(\mathbf{y^T}\mathbf{Ay}) = 2\operatorname{tr}[(\mathbf{A}\mathbf{\Sigma})^2] + 4\boldsymbol{\mu^T}\bar{\mathbf{A}}\mathbf{\Sigma}\boldsymbol{A}\boldsymbol{\mu}$$

 $Cov(\mathbf{y}, \mathbf{y}^T \mathbf{A} \mathbf{y}) = 2 \mathbf{\Sigma} \mathbf{A} \boldsymbol{\mu}$

Let **B** be a $k \times p$ matrix of constants. Then $Cov(\mathbf{By}, \mathbf{y^T Ay}) = 2B\Sigma A\mu$.

Theorem 5.2e (Mean and Variances)

Let $\mathbf{v} = \begin{vmatrix} \mathbf{y} \\ \mathbf{x} \end{vmatrix}$ be a partitioned random vector with mean vector and covariance vector matrix given by

 $\begin{bmatrix} \boldsymbol{\mu_y} \\ \boldsymbol{\mu_x} \end{bmatrix}$ and $\begin{bmatrix} \boldsymbol{\Sigma_{yy}} & \boldsymbol{\Sigma_{yx}} \\ \boldsymbol{\Sigma_{xy}} & \boldsymbol{\Sigma_{xx}} \end{bmatrix}$, respectively, where \mathbf{y} is $p \times 1$, \mathbf{x} is $q \times 1$, $\boldsymbol{\Sigma_{yx}}$ is $p \times q$. Let \mathbf{A} be a $q \times p$ matrix of constants. Then $\mathbb{E}(\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{y}) = \mathrm{tr}(\mathbf{A}\boldsymbol{\Sigma}_{yx}) + \boldsymbol{\mu}_{x}^{T}\mathbf{A}\boldsymbol{\mu}_{y}$.

Central Chi-Square Distribution

Let $z_1,...,z_n$ be iid $\mathcal{N}(0,1)$ random variables. Since the z_i 's are independent, the random vector $\mathbf{z} = [z_1, ..., z_n]^T$ is distributed as $\mathcal{N}_n(0, \mathbf{I}_n)$. Furthermore, $\sum_{i=1}^n z_i^2 = \mathbf{z}^T \mathbf{z}$ is $\chi^2(n)$.

Theorem 5.3a

If
$$u \sim \chi^2(n)$$
, then (1) $\mathbb{E}(u) = n$, (2) $\operatorname{Var}(u) = 2n$, and (3) $M_u(t) = \frac{1}{(1-2t)^{n/2}}$.

Non-Central Chi-Square Distribution

Let $y_1,...,y_n$ be random variables independently distributed as $\mathcal{N}(\mu_i,1)$, so that $\mathbf{y} \sim \mathcal{N}_n(\boldsymbol{\mu},\boldsymbol{I}_n)$, where $\mu = [\mu_1, ..., \mu_n]^T$. The density of $v = \sum_{i=1}^n y_i^2 = \mathbf{y^T} \mathbf{y}$ is called the **non-central chi-square distribution** and is denoted by $\chi^2(n, \lambda)$, where λ is the noncentrality parameter given by $\lambda = \frac{1}{2} \sum_{i=1}^{n} \mu_i^2 = \frac{1}{2} \mu^T \mu$. Remark: λ is not an eigenvalue.

Theorem 5.3b

If
$$v \sim \chi^2(n,\lambda)$$
, then **(1)** $\mathbb{E}(v) = n + 2\lambda$, **(2)** $\operatorname{Var}(v) = 2n + 8\lambda$, and **(3)** $M_v(t) = \frac{1}{(1-2t)^{n/2}} \exp\left\{-\lambda \left(1 - \frac{1}{1-2t}\right)\right\}$

Remark: The mean of $v = \sum_{i=1}^{n} y_i^2$ is greater than the mean of $u = \sum_{i=1}^{n} (y_i - \mu_i)^2$.

If
$$v_1, \ldots, v_k$$
 are independently distributed as $\chi^2(n_i, \lambda_i)$, then $\sum_{i=1}^k v_i$ is distributed as $\chi^2\left(\sum_{i=1}^k n_i, \sum_{i=1}^k \lambda_i\right)$.

1

Non-Central Chi-Square Distribution

Corollary

If $\lambda = 0$, then $\mathbb{E}(v)$, Var(v), and $M_v(t)$ reduce to $\mathbb{E}(u)$, Var(u), and $M_u(t)$ for the central chi-square distribution. Thus, $\chi^2(n,0) = \chi^2(n)$

If u_1, \ldots, u_k are independently distributed as $\chi^2(n_i)$, then $\sum_{i=1}^k u_i$ is distributed as $\chi^2(\sum_{i=1}^k n_i)$

Central F-distribution

If $u \sim \chi^2(p)$ and $v \sim \chi^2(q)$, where u and v are independent, then $w = \frac{u/p}{v/q}$ has a (central) F distribution with p and q degrees of freedom.

Central t-distribution

If $z \sim \mathcal{N}(0,1)$ and $u \sim \chi^2(q)$, where z and u are independent, then $t = \frac{z}{\sqrt{u/p}}$ has a (central) t distribution with p degrees of freedom.

Theorem

If $u \sim \chi^2(p)$ and $v \sim \chi^2(q)$, and u and v are independent, then $w = \frac{u/p}{v/q} \sim F(p,q)$. The mean and variance of w are given by: $\mathbb{E}(w) = \frac{q}{q-2}$, $Var(w) = \frac{2q^2(p+q-2)}{p(q-1)^2(q-4)}$

If $u \sim \chi^2(p,\lambda)$ and $v \sim \chi^2(q)$, where u and v are independent, $z = \frac{u/p}{v/q}$ has the non-central F distribution with noncentrality parameter λ , denoted by $F(p,q,\lambda)$, where λ is the same noncentrality parameter as in the non-central chi-square distribution.

Remark: The mean of z, $\mathbb{E}(z) = \frac{q}{q-2}(1+\frac{2\lambda}{p})$, is greater than the mean for the central F distribution. Non-Central t-distribution

If $y \sim \mathcal{N}(\mu, 1), u \sim \chi^2(p)$, where y and u are independent, then $t = \frac{y}{\sqrt{u/p}}$ is said to have a noncentral t distribution with p degrees of freedom and noncentrality parameter μ , denoted by $t(p,\mu)$. Furthermore, if $y \sim \mathcal{N}(\mu, \sigma^2)$, then $t = \frac{y/\sigma}{\sqrt{u/p}} \sim t(p, \frac{\mu}{\sigma})$ and $\frac{y}{\sigma} \sim \mathcal{N}(\frac{\mu}{\sigma}, 1)$ Distribution of Quadratic Forms - Theorem 5.5

Let $y \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, **A** be a symmetric matrix of constants of rank r, and $\lambda = \frac{1}{2}\boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu}$. Then, $\mathbf{y}^T \mathbf{A} \mathbf{y} \sim$ $\chi^2(r,\lambda)$ iff $A\Sigma$ is idempotent.

Independence of Linear and Quadratic Forms - Theorem 5.6

Suppose that **B** is a $k \times p$ matrix of constants, **A** is a $p \times p$ symmetric matrix of constants, and $y \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then **By** and $\mathbf{y^T} \mathbf{A} \mathbf{y}$ are independent iff $\mathbf{B} \boldsymbol{\Sigma} \mathbf{A} = \mathbf{O}$.

Let **A** and **B** be symmetric matrix of constants. If $y \sim \mathcal{N}_p(\mu, \Sigma)$, then $\mathbf{y^T} \mathbf{A} \mathbf{y}$ and $\mathbf{y^T} \mathbf{B} \mathbf{y}$ are independent iff $\mathbf{A}\mathbf{\Sigma}\mathbf{B} = \mathbf{O}$.

Multiple Linear Regression Model

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon$$

Remark: To estimate β_i 's, we will use a sample of n observations on y and the associated x variables. The model for the i^{th} observation is: $y_i = \beta_0 + \beta_1 x_i 1 + \cdots + \beta_p x_i p + \varepsilon_i$, i = 1, ..., n

Assumptions

$$\mathbb{E}(\varepsilon_i) = 0$$
 for $i = 1, \ldots, n$, or equivalently, $\mathbb{E}(y_i) = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}$

$$\operatorname{Var}(\varepsilon_i) = \sigma^2 \text{ for } i = 1, \dots, n, \text{ or equivalently, } \operatorname{Var}(y_i) = \sigma^2$$

$$Cov(\varepsilon_i, \varepsilon_j) = 0$$
 for all $i \neq j$, or equivalently, $Cov(y_i, y_j) = 0$

Linear Regression Model

$$\left(\begin{array}{c} y_1 = \beta_0 + \beta_1 x_{11} + \dots + \beta_p x_{1p} + \varepsilon_1 \\ y_2 = \beta_0 + \beta_1 x_{21} + \dots + \beta_p x_{2p} + \varepsilon_2 \\ \vdots \\ y_n = \beta_0 + \beta_1 x_{n1} + \dots + \beta_p x_{np} + \varepsilon_n \end{array} \right) \Rightarrow \left[\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_n \end{array} \right] = \left[\begin{array}{cccc} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{array} \right] \left[\begin{array}{c} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{array} \right] + \left[\begin{array}{c} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{array} \right]$$

 $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ where

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \ \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}, \ \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix}, \ \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix} \quad ; \mathbb{E}(\varepsilon) = \mathbf{0}, \ \mathrm{Var}(\varepsilon) = \sigma^2 \mathbf{I}.$$

Remark: Equivalently, $\mathbb{E}(\mathbf{y}) = \mathbf{X}\beta$

Remark:

- 1. We generally assume n > p + 1 and rank(\mathbf{X}) = p + 1.
- 2. If n or if there's a linear relationship among the x's, then X will not have full column
- 3. If the values of x_{ij} 's are planned/chosen, then **X** contains the experimental design and is sometimes called the design matrix.
- 4. The β parameters are called the (partial) regression coefficients.

Estimating: Least Squares Approach

Goal: Find estimators that minimize the sum of the squared deviations of the n observed y's from their predicted values \hat{y} .

We seek the estimators $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ that minimizes $S(\beta) = \sum_{i=1}^n \varepsilon_i^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = (\mathbf{y} - \mathbf{X}\beta)^\top (\mathbf{y} - \hat{y}_i)^2$ $\mathbf{X}\beta) = \|\mathbf{y} - \mathbf{X}\beta\|^2$

Remark: The predicted value $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$ estimates $\mathbb{E}(y_i)$, not y_i . **OLS Estimator: Theorem 7.3a**

If $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, where \mathbf{X} is $n \times (p+1)$ of rank (p+1) < n, then the value of $\hat{\boldsymbol{\beta}} = \left[\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p\right]^{\top}$ that minimizes the sum of the squared deviations $S(\beta)$ is $\hat{\beta} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$.

Remark:

1. Note that $\mathbf{X}^{\mathbf{T}}\mathbf{X}$ contains products of columns of \mathbf{X} , while $\mathbf{X}^{\mathbf{T}}\mathbf{y}$ contains products of the columns of \mathbf{X} and \mathbf{y}

$$\mathbf{X}^{\top}\mathbf{X} = \begin{bmatrix} n & \sum_{i} x_{i1} & \sum_{i} x_{i2} & \cdots & \sum_{i} x_{ip} \\ \sum_{i} x_{i1} & \sum_{i} x_{i1}^{2} & \sum_{i} x_{i1} x_{i2} & \cdots & \sum_{i} x_{i1} x_{ip} \\ \sum_{i} x_{i2} & \sum_{i} x_{i1} x_{i2} & \sum_{i} x_{i2}^{2} & \cdots & \sum_{i} x_{i2} x_{ip} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sum_{i} x_{ip} & \sum_{i} x_{i1} x_{ip} & \sum_{i} x_{i2} x_{ip} & \cdots & \sum_{i} x_{ip}^{2} \end{bmatrix} \quad \mathbf{X}^{\top}\mathbf{y} = \begin{bmatrix} \sum_{i} y_{i} \\ \sum_{i} x_{i1} y_{i} \\ \vdots \\ \sum_{i} x_{ip} y_{i} \end{bmatrix}$$

- 2. If $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$, then $\hat{\boldsymbol{\varepsilon}} = \mathbf{y} \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{y} \hat{\mathbf{y}}$ is known as the **residual vector**.
- 3. The residual vector estimates ε in the model and can be used to check the assumptions of the
- 4. We can also write $\hat{\boldsymbol{\varepsilon}}$ as $\hat{\boldsymbol{\varepsilon}} = \mathbf{y} \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{y} \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} = \left[\mathbf{I} \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\right]\mathbf{y} = \mathbf{H}\mathbf{y},$ where $\mathbf{H} = \mathbf{I} - \mathbf{X} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top}$ is both symmetric and idempotent.

Properties of $\hat{\beta}$: Theorem 7.3b-c

- 1. If $\mathbb{E}(\mathbf{y}) = \mathbf{X}\beta$, then β is an unbiased estimator for β .
- 2. If $Var(\mathbf{y}) = \sigma^2 \mathbf{I}$, the covariance matrix for $\hat{\boldsymbol{\beta}}$ is given by: $\sigma^2 (\mathbf{X}^{\top} \mathbf{X})^{-1}$.

Theorem (7.3d Gauss-Markov Theorem)

Let $\mathbf{c}^{\top}\boldsymbol{\beta}$ be a linear function of $\boldsymbol{\beta}$, where \mathbf{c} is a $(p+1)\times 1$ vector of constants. If $\mathbb{E}(\mathbf{y})=$ $\mathbf{X}\boldsymbol{\beta}$ and $\mathrm{Var}(\mathbf{y}) = \sigma^2 \mathbf{I}$, then the best linear unbiased estimator (BLUE) of $\mathbf{c}^{\top}\boldsymbol{\beta}$ (that is, with minimum variance) is $\mathbf{c}^{\top}\hat{\boldsymbol{\beta}}$.

Normal Model

Recall: The OLS estimator $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ has no assumptions on the distribution of \mathbf{y}

Assumption: $\boldsymbol{\varepsilon} \sim \mathcal{N}_n(\mathbf{0}, \sigma^2 \mathbf{I})$, or equivalently, $\mathbf{y} \sim \mathcal{N}_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$.

Maximum Likelihood Estimator: Theorem 7.6a

If $\mathbf{y} \sim \mathcal{N}_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$ (or equivalently, $\boldsymbol{\varepsilon} \sim \mathcal{N}_n(0, \sigma^2 \mathbf{I})$), where \mathbf{X} is $n \times (p+1)$ of rank (p+1) < n, the maximum likelihood estimator of $\boldsymbol{\beta}$ and σ^2 are $\hat{\boldsymbol{\beta}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$ and $\hat{\sigma}^2 = \frac{1}{n} (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})^\top (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})$.

Properties of $\hat{\beta}$ and $\hat{\sigma}^2$: Theorem 7.6b

Suppose that $\mathbf{y} \sim \mathcal{N}_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, where \mathbf{X} is $n \times (p+1)$ of rank (p+1) < n and Then the maximum likelihood estimators $\hat{\beta}$ and $\hat{\sigma}^2$ for β and σ^2 $\boldsymbol{\beta} = [\beta_0, \beta_1, \dots, \beta_p]^{\top}.$ in the normal model have the following distributional properties:

- 1. $\hat{\boldsymbol{\beta}} \sim \mathcal{N}_{p+1} \left(\beta, \sigma^2 (\mathbf{X}^\top \mathbf{X})^{-1} \right)$.
- 2. $\frac{n\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n-p-1)$, or equivalently, $\frac{(n-p-1)s^2}{\sigma^2} \sim \chi^2(n-p-1)$. 3. $\hat{\boldsymbol{\beta}}$ and $\hat{\sigma}^2$ (or s^2) are independent.

Theorem (7.6c-d)

If $\mathbf{y} \sim \mathcal{N}_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$, then:

- 1. $\hat{\boldsymbol{\beta}}$ and $\hat{\sigma}^2$ are jointly sufficient for $\boldsymbol{\beta}$ and σ^2 .
- 2. $\hat{\beta}$ and s^2 have minimum variance among all unbiased estimators.

Corollary

If $\mathbf{y} \sim \mathcal{N}_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$, then the minimum variance unbiased estimator of $\mathbf{c}^{\top}\boldsymbol{\beta}$ is $\mathbf{c}^{\top}\hat{\boldsymbol{\beta}}$, where $\hat{\boldsymbol{\beta}}$ is the maximum likelihood estimator for β .

Estimating Mean Response

Let $\theta = \mathbb{E}(\mathbf{y})$. Since $\mathbb{E}(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$, the best linear unbiased estimator (BLUE) for θ is: $\hat{\boldsymbol{\theta}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$. Under the assumption that $\mathbf{y} \sim \mathcal{N}_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, we have: $\mathbf{X}\hat{\boldsymbol{\beta}} \sim$ $\mathcal{N}_n\left(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\right)$.

Recall: Estimators

Under the assumption that $\mathbf{y} \sim \mathcal{N}_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$, the MLE are: $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ $\hat{\sigma}^2 = \frac{1}{n}(\mathbf{y} - \mathbf{y})$ $(\mathbf{X}\hat{\boldsymbol{\beta}})^{\top}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}).$

Given values of the predictors $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})$, we can estimate the value \hat{y}_i of the response.

F-Test for the General Linear Hypothesis

Recall: By the Gauss-Markov Theorem, the BLUE for $c^{\top}\beta$ is $c^{\top}\hat{\beta}$.

Goal: Test $H_0: \mathbf{C}\boldsymbol{\beta} = \mathbf{d}$ vs. $H_1: \mathbf{C}\boldsymbol{\beta} \neq \mathbf{d}$, where \mathbf{C} is $k \times (p+1)$ of rank k, and $\mathbf{d} \in \mathbb{R}^k$.

Theorem (8.4a) If $\mathbf{y} \sim \mathcal{N}_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$, then

- $\mathbf{C}\hat{\boldsymbol{\beta}} \sim \mathcal{N}_k \left(\mathbf{C}\boldsymbol{\beta}, \sigma^2 \mathbf{C} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{C}^{\top}\right)$.
- $\frac{(n-p-1)s^2}{\sigma^2} = \frac{\mathbf{y}^{\top}\mathbf{H}\mathbf{y}}{\sigma^2} \sim \chi^2(n-p-1,0).$ Remarks: Recall that $\mathbf{H} = \mathbf{I} \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}.$

Theorem (8.4f)

If $\mathbf{y} \sim \mathcal{N}_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$,

•
$$\left(\mathbf{C}\hat{\boldsymbol{\beta}} - \mathbf{d}\right)^{\top} \left[\mathbf{C}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{C}^{\top}\right]^{-1} \left(\mathbf{C}\hat{\boldsymbol{\beta}} - \mathbf{d}\right) / \sigma^{2} \sim \chi^{2}(k, \lambda)$$
, where

$$\lambda = \frac{(\mathbf{C}\boldsymbol{\beta} - \mathbf{d})^{\top} \left[\mathbf{C}^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{C} \right]^{-1} (\mathbf{C}\boldsymbol{\beta} - \mathbf{d})}{2\sigma^2} = 0 \text{ when } H_0 \text{ is true.}$$

•
$$\left(\mathbf{C}\hat{\boldsymbol{\beta}} - \mathbf{d}\right)^{\top} \left[\mathbf{C}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{C}^{\top}\right]^{-1} \left(\mathbf{C}\hat{\boldsymbol{\beta}} - \mathbf{d}\right) \text{ and } \mathbf{y}^{\top}H\mathbf{y} \text{ are independent.}$$

Remarks: $(n - p - 1)s^2 = \mathbf{y}^{\top}H\mathbf{y}$, where $H = I - \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$.

Theorem (8.4g)

Let $\mathbf{y} \sim \mathcal{N}_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$. If $H_0 : \mathbf{C}\boldsymbol{\beta} = \mathbf{d}$ is true, then

$$F = \frac{(\mathbf{C}\hat{\boldsymbol{\beta}} - \mathbf{d})^{\top} \left[\mathbf{C} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{C}^{\top} \right]^{-1} (\mathbf{C}\hat{\boldsymbol{\beta}} - \mathbf{d}) / \sigma^{2}}{k} / \frac{\mathbf{y}^{\top} H \mathbf{y} / \sigma^{2}}{n - p - 1}$$

$$F = \frac{(\mathbf{C}\hat{\boldsymbol{\beta}} - \mathbf{d})^{\top} \left[\mathbf{C}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{C}^{\top} \right]^{-1} (\mathbf{C}\hat{\boldsymbol{\beta}} - \mathbf{d})}{k \cdot \mathbf{y}^{\top} H \mathbf{y} / (n - p - 1)} \sim F(k, n - p - 1, 0).$$

Generalized Linear Hypotheses

Test for the joint effect of the explanatory variables: $H_0: \begin{vmatrix} \beta_1 \\ \vdots \\ \beta_n \end{vmatrix} = \mathbf{0}$ vs $H_1: \begin{vmatrix} \beta_1 \\ \vdots \\ \beta_p \end{vmatrix} \neq \mathbf{0}$

Effect of the *i*th variable: $H_0: \beta_i = 0$ vs $H_1: \beta_i \neq 0$,

F-Test

Decision Rule: Given significance level α , reject H_0 if $F > F_{1-\alpha}(k, n-p-1)$.

Coefficient of Determination R^2

The total sum of squares, SST, can be written as: $SST = \sum_{i=1}^{n} (y_i - \overline{y})^2 = \mathbf{y}^{\top} \mathbf{y} - n \overline{y}^2 = (\hat{\boldsymbol{\beta}}^{\top} \mathbf{X}^{\top} \mathbf{y} - n \overline{y}^2)$ $n\overline{y}^2$) + $(\mathbf{y}^{\mathsf{T}}\mathbf{y} - \hat{\boldsymbol{\beta}}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y}) = \text{SSR} + \text{SSE}.$

Remark: $\hat{\boldsymbol{\varepsilon}}^{\top}\hat{\boldsymbol{\varepsilon}} = \mathbf{y}^{\top}\mathbf{y} - \hat{\boldsymbol{\beta}}^{\top}\mathbf{X}^{\top}\mathbf{y} = SSE$

Coefficient of Determination R^2

The proportion of the total sum of squares due to regression

$$R^{2} = \frac{SSR}{SST} = \frac{\hat{\boldsymbol{\beta}}^{T} \mathbf{X}^{T} \mathbf{y} - n\overline{y}^{2}}{\mathbf{y}^{T} \mathbf{y} - n\overline{y}^{2}} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

is known as the **coefficient of determination**, or the squared multiple correlation.

- 1. The positive square root R is called the (multiple) correlation coefficient.
- 2. The ratio is a measure of model fit and provides an indication of how well the x's predict y.

Properties

- 1. The range of R^2 is $0 \le R^2 \le 1$.
- 2. $R = r_{yy}$; that is, the multiple correlation is equal to the simple correlation.
- 3. Adding a variable x to the model increases the value of R^2 .
- 4. If $\beta_1 = \beta_2 = \dots = \beta_p = 0$, then $\mathbb{E}(R^2) = \frac{p}{n-1}$.

Note that the estimated coefficients $\hat{\beta}_i$ will not be zero even when the β_i 's are zero.

Remarks: 1. R^2 can also be written as

$$R^2 = \frac{(\mathbf{C}\hat{\boldsymbol{\beta}} - \mathbf{d})^{\top} \left[\mathbf{C} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{C}^{\top} \right]^{-1} (\mathbf{C}\hat{\boldsymbol{\beta}} - \mathbf{d})}{(\mathbf{C}\hat{\boldsymbol{\beta}} - \mathbf{d})^{\top} \left[\mathbf{C} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{C}^{\top} \right]^{-1} (\mathbf{C}\hat{\boldsymbol{\beta}} - \mathbf{d}) + \mathbf{y}^{\top} \mathbf{H} \mathbf{y}}$$

- 2. If all β_j 's were zero, $R^2 = 1$. If $y_i = \hat{y}_i$ for all $i, R^2 = 1$.
- 3. When p is a relatively large fraction of n, the resulting R^2 will be large, but not meaningful. To compensate for this, the adjusted R^2 can be used instead: $R_{adj}^2 = \frac{(n-1)R^2 - p}{n-p-1}$

Regression Concerns: Variable Selection

Selection Metrics

- 1. Mallow's C_p , $C_p = \frac{\text{SSR}}{s^2} (n+2p)$ where $R^2 = \frac{\text{SSR}}{\text{SST}}$ and $s^2 = \frac{\text{SSE}}{n-p-1} = \frac{y^T H y}{n-p-1}$
- 2. Akaike Information Criterion (AIC), AIC = $-2 \ln L(\hat{\beta}_p, \hat{\sigma}^2) + 2p$
- 3. Bayesian Information Criterion (BIC), BIC = $-2 \ln L(\hat{\beta}_p, \hat{\sigma}^2) + p \ln p$

Remark: Here, $L(\cdot)$ represents the likelihood function.

Regression Concerns: Multicollinearity

- 1. Some of the predictors are functions of one or more other predictors.
- 2. This problem, known as **multicollinearity**, can distort the standard error of estimate and can lead to incorrect conclusions as to which independent variables are statistically significant.
- 3. The variance inflation factor (VIF) can be used to check this. The VIF for the j^{th} predictor is the multiple R^2 when the j^{th} predictor is regressed to other predictors: $VIF_j = \frac{1}{1-R_j^2}$ Interpretation: Retain if $VIF_i < 5$, while remove if $VIF_i > 10$.

Regression Concerns: Residuals

- 1. Residuals should be uncorrelated (that is, no patterns on the plot).
- 2. Normality can be verified using a **normal Q-Q plot**, and the statistical tests **Shapiro-Wilk** test and Anderson-Darling test.

In these tests, the null hypothesis is that the data comes from a normal distribution

Motivation

- 1. Several treatments or treatment combinations are applied to randomly selected experimental
- 2. Goal: Compare treatment means

We can use analysis-of-variance and linear models to compare means!

Illustration: Case 1: $y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$

In matrix form,
$$\begin{bmatrix} y_{11} \\ y_{12} \\ y_{13} \\ y_{21} \\ y_{22} \\ y_{23} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \alpha_1 \\ \alpha_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{21} \\ \varepsilon_{22} \\ \varepsilon_{23} \end{bmatrix} \quad \text{where } \mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

Remarks:

- 1. In most ANOVA applications, there are more than two treatments considered.
- 2. We focus on **balanced models**: each treatment has the same number of observations.
- 3. The data matrix **X** is not full-rank. As such, $\mathbf{X}^{\top}\mathbf{X}$ is also not full rank and $(\mathbf{X}^{\top}\mathbf{X})^{-1}$ does not
- 4. $\boldsymbol{\beta} = \left[\mu, \alpha_1, \alpha_2\right]^{\top}$ is not unique and not estimable. That is, individual parameters μ , α_1 , α_2 cannot be uniquely estimated unless they are subject to constraints or side conditions.

One-Way ANOVA

The one-way balanced ANOVA model can be expressed as (Case 1) $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$

where
$$\mathbf{y} = \begin{bmatrix} \mathbf{y_1} \\ \mathbf{y_2} \\ \vdots \\ \mathbf{y_k} \end{bmatrix}$$
, $\mathbf{X} = \begin{bmatrix} \mathbf{j} & \mathbf{j} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{j} & \mathbf{0} & \mathbf{j} & \cdots & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{j} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{j} \end{bmatrix}$, $\boldsymbol{\beta} = \begin{bmatrix} \boldsymbol{\mu} \\ \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{bmatrix}$, and $\boldsymbol{\varepsilon} = \begin{bmatrix} \boldsymbol{\varepsilon}_1 \\ \boldsymbol{\varepsilon}_2 \\ \vdots \\ \boldsymbol{\varepsilon}_k \end{bmatrix}$.

Remark: Here, **X** is $kn \times (k+1)$, k is the number of treatments, n is the number of observations per treatment, $\mathbf{y}_i = \begin{bmatrix} y_{i1}, \dots, y_{in} \end{bmatrix}^{\top}$ and $\boldsymbol{\varepsilon}_i = \begin{bmatrix} \varepsilon_{i1}, \dots, \varepsilon_{in} \end{bmatrix}^{\top}$, \mathbf{j} and $\mathbf{0}$ are $n \times 1$, and \mathbf{y} and $\boldsymbol{\varepsilon}$ are $kn \times 1$ Note: for Case 2: $y_{ij} = \mu_i + \varepsilon_{ij}$, $\boldsymbol{\beta} = [\mu_1, \dots, \mu_k]^T$ and \boldsymbol{X} does not have the first column of 1's.

Assumptions

- $\mathbb{E}(\varepsilon_{ij}) = 0$ for all i, j
- $Var(\varepsilon_{ij}) = \sigma^2$ for all i, j
- $Cov(\varepsilon_{ij}, \varepsilon_{rs}) = 0$ for all i, j
- $\varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$
- We often use the constraint (side condition) $\sum_{i=1}^{k} \alpha_i = 0$

Estimating β and σ^2

A generalized inverse of $\mathbf{X}^{\top}\mathbf{X}$ in our model is given by $(\mathbf{X}^{\top}\mathbf{X})^{-} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & \frac{1}{n} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & 1 \end{bmatrix}$ Using this, an

estimator for
$$\boldsymbol{\beta}$$
 is $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-}\mathbf{X}^{\top}\mathbf{y} = \begin{bmatrix} 0 \\ \bar{y}_{1} \\ \vdots \\ \bar{y}_{k} \end{bmatrix}$. where $\bar{y}_{i\cdot} = \frac{1}{n} \sum_{j=1}^{n} y_{ij}$.

Moreover, an estimator for σ^2 is $s^2 = \frac{\text{SSE}}{k(n-1)}$, where $\text{SSE} = \mathbf{y}^\top \mathbf{y} - \hat{\boldsymbol{\beta}}^\top \mathbf{X}^\top \mathbf{y} = \mathbf{y}^\top [\mathbf{I} - \mathbf{X} (\mathbf{X}^\top \mathbf{X})^- \mathbf{X}^\top] \mathbf{y}$.

- 1. The rank of the idempotent matrix $[\mathbf{I} \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-}\mathbf{X}^{\top}]$ is k(n-1).
- 2. s^2 is an unbiased estimator of σ^2 .
- 3. SSE can be written as

$$SSE = \mathbf{y}^{\top}\mathbf{y} - \hat{\boldsymbol{\beta}}^{\top}\mathbf{X}^{\top}\mathbf{y} = \sum_{i=1}^{k} \sum_{j=1}^{n} y_{ij}^{2} - \sum_{i=1}^{k} \bar{y}_{i\cdot}y_{i\cdot} = \sum_{ij} (y_{ij} - \bar{y}_{i\cdot})^{2} = \sum_{ij} y_{ij}^{2} - \sum_{i} \frac{y_{i\cdot}^{2}}{n},$$

where $y_{i.} = \sum_{j=1}^{n} y_{ij}$

Goal: Test H_0 : $\mu_1 = \mu_2 = \cdots = \mu_k$ vs H_1 : at least two means are unequal.

One-way ANOVA Model: Hypothesis Testing

Recall: One-way ANOVA model can be written as a linear model $y = X\beta + \varepsilon$.

Using $\mu_i = \mu + \alpha_i$, the null hypothesis for the test of equality of means can be written as H_0 : $\alpha_1 = \alpha_2 = \cdots = \alpha_k$. Assuming $\mathbf{y} \sim \mathcal{N}_{kn}(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, a hypothesis test for H_0 can be constructed using the F-distribution.

Linear Models in ANOVA

The general linear model can be expressed as $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ where \mathbf{y} is the vector of observations, \mathbf{X} is the design matrix, $\boldsymbol{\beta}$ is the vector of parameters, and $\boldsymbol{\varepsilon}$ is the error term.

One-way ANOVA Model: General Linear Hypothesis

Theorem (12.7b)

If $\mathbf{y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$, where \mathbf{X} is $N \times p$ of rank $k , if <math>\mathbf{C}$ is $m \times p$ of rank $m \leq k$ such that $\mathbf{C}\boldsymbol{\beta}$ is a set of m linearly independent estimable functions, and if $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$, then

- 1. $\mathbf{C}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{C}^T$ is nonsingular.
- 2. $\mathbf{C}\hat{\boldsymbol{\beta}} \sim \mathcal{N}_m(\mathbf{C}\boldsymbol{\beta}, \sigma^2 \mathbf{C}(\mathbf{X}^T \mathbf{X})^{-} \mathbf{C}^T)$

3.
$$\frac{SSH}{\sigma^2} = \frac{(\mathbf{C}\hat{\boldsymbol{\beta}})^T [\mathbf{C}(\mathbf{X}^T\mathbf{X})^{-}\mathbf{C}^T]^{-1}(\mathbf{C}\hat{\boldsymbol{\beta}})}{\sigma^2} \sim \chi^2(m, \boldsymbol{\lambda}), \text{ where}$$

$$\lambda = \frac{(\mathbf{C}\hat{\boldsymbol{\beta}})^T [\mathbf{C}(\mathbf{X}^T\mathbf{X})^{-}\mathbf{C}^T]^{-1} (\mathbf{C}\hat{\boldsymbol{\beta}})}{2\sigma^2}.$$

4.
$$\frac{SSE}{\sigma^2} = \frac{\boldsymbol{y}^T [\mathbf{I} - \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-} \mathbf{X}^T] \boldsymbol{y}}{\sigma^2} \sim \chi^2 (N - k).$$

5. SSH and SSE are independent.

Theorem (12.7c)

Let $\mathbf{y} \sim N_N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$, where \mathbf{X} is $N \times p$ with rank k, where $k . Let <math>\mathbf{C}$, $\mathbf{C}\boldsymbol{\beta}$, and $\hat{\boldsymbol{\beta}}$ be defined as in the previous theorem. If $H_0 : \mathbf{C}\boldsymbol{\beta} = \mathbf{0}$ is true, then

$$F = \frac{SSH/m}{SSE/(N-k)} = \frac{(\mathbf{C}\hat{\boldsymbol{\beta}})^T [\mathbf{C}(\mathbf{X}^T\mathbf{X})^-\mathbf{C}^T]^{-1} (\mathbf{C}\hat{\boldsymbol{\beta}})/m}{SSE/(N-k)} \sim F(m, N-k, 0).$$

One-way ANOVA Model: Hypothesis Testing

Note that the hypothesis $H_0: \alpha_1 = \cdots = \alpha_k$ can be written as

$$H_{0}: \begin{bmatrix} \alpha_{1} - \alpha_{2} \\ \alpha_{1} - \alpha_{3} \\ \vdots \\ \alpha_{1} - \alpha_{k} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \Rightarrow H_{0}: \begin{bmatrix} 1 & -1 & 0 & 0 & \cdots & 0 \\ 1 & 0 & -1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & 0 & \cdots & -1 \end{bmatrix} \begin{bmatrix} \mu \\ \alpha_{1} \\ \vdots \\ \alpha_{k} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \Rightarrow H_{0}: \mathbf{C}\boldsymbol{\beta} = \mathbf{0}$$

That is,
$$H_0: \mathbf{C}\boldsymbol{\beta} = \mathbf{0}$$
, where $\mathbf{C} = \begin{bmatrix} 0 & 1 & -1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & -1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & 0 & 0 & 0 & \cdots & -1 \end{bmatrix}$ is $(k-1) \times (k+1)$, and $\boldsymbol{\beta} = \mathbf{0}$

 $[\mu, \alpha_1, \dots, \alpha_k]^T$ is $(k+1) \times 1$. For Case 2: $y_{ij} = \mu_i + \varepsilon_{ij}$, C does not have the first column of 0's. Since $y \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, by previous theorem, we can use the test statistic $F = \frac{(\mathbf{C}\hat{\boldsymbol{\beta}})^T[\mathbf{C}(\mathbf{X}^T\mathbf{X})^{-}\mathbf{C}^T]^{-1}(\mathbf{C}\hat{\boldsymbol{\beta}})/(k-1)}{\mathrm{SSE}/k(n-1)} \sim F(k-1, k(n-1))$ to test the hypothesis $H_0: \alpha_1 = \dots = \alpha_k$.

One-Way ANOVA Table

Source of Variation	df	SS	$\mathbf{MS} = rac{SS}{df}$	F-statistic
Treatments	k-1	$SSH = \frac{1}{n} \sum_{i} y_{i.}^2 - \frac{y_{i.}^2}{kn}$	$\frac{SSH}{(k-1)}$	$F = \frac{\frac{SSH}{(k-1)}}{\frac{SSE}{k(n-1)}}$
Error	k(n-1)	$SSE = \sum_{ij} y_{ij}^2 - \frac{1}{n} \sum_i y_i.^2$	$\frac{SSE}{k(n-1)}$	
Total	kn-1	$SST = \sum_{ij} y_{ij}^2 - \frac{y_{}^2}{kn}$		

Testing Contrasts

A linear contrast is any linear combination of the individual group means such that the linear coefficients sum to 0: $L = \sum_{i=1}^{k} c_i \alpha_i$, where $\sum_{i=1}^{k} c_i = 0$.

- 1. For the one-way model, the contrast $\sum_{i} c_{i} \alpha_{i}$ is equivalent to $\sum_{i} c_{i} \mu_{i}$. 2. The hypothesis of interest is $H_{0}: \sum_{i} c_{i} \alpha_{i}$ or $H_{0}: \sum_{i} c_{i} \mu_{i} = 0$, which represents a comparison of means if $\sum_i c_i = 0$.

Note that the null hypothesis can be written as $H_0: \mathbf{c}^T \boldsymbol{\beta}$, where $\mathbf{c} = [0, c_1, \dots, c_k]^T$ and $\boldsymbol{\beta} = [\mu, \alpha_1, \dots, \alpha_k]^T$. Assuming $\mathbf{y} \sim \mathcal{N}_{kn}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$, H_0 can be tested using the previous theorem with m = 1 and test statistic $F = \frac{(\mathbf{c}^T \hat{\boldsymbol{\beta}})^T [\mathbf{c}^T (\mathbf{X}^T \mathbf{X})^{-} \mathbf{c}]^{-1} (\mathbf{c}^T \hat{\boldsymbol{\beta}})}{\mathrm{SSE}/k(n-1)} = \frac{(\mathbf{c}^T \hat{\boldsymbol{\beta}})^2}{s^2 [\mathbf{c}^T (\mathbf{X}^T \mathbf{X})^{-} \mathbf{c}]} \sim F(1, k(n-1))$.