AI알고리즘을 활용한 유동 위험보험료 기반 자율주행 Lv.4 자동차보험 -BaaS 환경에서

Next Level 김가영, 김유정, 이준영, 이준호, 임도현

목차

- 자율주행시대의 도래와 자동차보험제도 변화
- · 자율주행차량 제조사의 보험업계 침투-BBI보험

기획배경

1. 자율주행시대의 도래와 자동차보험제도 변화

- ✓ 자율주행차 : 운전자의 조작 없이 스스로 운전이 가능한 자동차. 자율주행시스템(ADS)이 동적운전업무 담당.
- ✓ 2020년 5월 1일, "자율주행자동차 사용화 촉진 및 지원에 관한 법률" : 자율주행자동차 상용화 과정 상 보험가입의무 지정
- ✓ 주요 손보사 : 자율주행차 관련 사고 보험상품을 판매하고 있으나 업무용 자동차보험 약관의 특별약관 형태로만 판매할 뿐, 합리적인 요율 계산이 어려워 개인용 별도 상품의 판매는 이뤄지지 않음.

기획배경

1. 자율주행시대의 도래와 자동차보험제도 변화

자료: 국토교통부 보도자료(2022. 5. 26), "자율주행차 안전성 높인다. 레벨3 안전기준 개정 추진"

- ✓ 조건부 완전자율주행 단계인 레벨4는 대중교통은 2025년, 승용차는 2027년 상용화될 예정
- ✓ 당장 다가오는 4단계 자율주행
 시대에 대한 대비책 필요

Lv.4 자율주행 시대를 대비하여 운전자가 가입할 수 있는, 합리적인 위험보험료 계산 과정을 거친 보험상품의 필요성 증대

기획배경

2. 자율주행차량 제조사의 보험업계 침투-BBI보험

운전행동 연계보험(BBI, Behavior Based Insurance)

- 차량에 설치한 카메라와 센서 등을 통해 수집한 운전습관을 AI알고리즘으로 분석해 보험료를 산정하는 상품
- 테슬라, GM, 포드 등 자율주행차 산업을 선도하는 전통 자동차 제조사들의 보험 시장 진입
- 방대한 데이터로 정밀한 사고위험 분석 및 사고 보상 시스템을 보유, 보험사들의 전통적 사업영역을 잠식할 가능성
- 머스크 테슬라 CEO "향후 보험 사업이 테슬라 전체 매출의 30~40%를 차지할 것"

자율주행시대의 변화하는 자동차기술 및 보험 제도에 발맞추어 디지털 역량 강화를 바탕으로 보험사들의 생존전략 확보 필요성 대두

"운전 중 외부 위험요소를 계산하고 이를 보험가입자의 기존 정보와 결합하여 합리적인 유동 위험보험료를 산출하는 자율주행 자동차보험상품"

비즈니스모델

- ✓ AI 알고리즘을 통해 차량 외부정보를 실시간으로 수치화하여 위험도를 계산, 기존 보험 가입자의 정보와 함께 보험료 계산
- ✓ BaaS 서비스를 활용하여 차량의 주행데이터와 이를 가공할 알고리즘은 클라우드에 보관, 스마트 컨트랙트로 보험금 청구 간소화
- ✓ 목표고객: 자율주행차량 운전자. Lv.4 자율주행시대에서도 운행자에게 일정 부분 사고의 책임 소재가 있을 것으로 전망

차량 및 모빌리티를 이용한 날만, 주행상황에서 노출된 위험도 만큼만 보험료 지불

스마트 컨트랙트 기술이 적용되어 운행이 끝나면 바로 요금 정산 후 지불 가능, 사고시 빠른 보험금 처리

비즈니스모델

밸류체인

- 윌 기본 보험료
- 보험료 산정 과정
- 위험 보험료

최종 보험료 = 윌 기본 보험료 + 위험 보험료

f(차종)

f(위험도, 주행 거리)

윌 기본보험료

● GLM(일반화 선형모형) 활용

: 실제 자동차 보험 사고 데이터의 분포가 GLM에서 가정할 수 있는 오차항의 분포와 매우 흡사

기존 일반 차량의 보험료 계산 시 연령, 운전자 범위, 운전경력, 성별 등이 변수

자율주행차량 특성에 맞추어 보험료 계산

: 자율주행차량의 차종을 핵심 변수로 설정

모형계산과정

위험보험료 산정과정

Xgboost, Random Forest 등의 머신러닝 모델 활용하여 사고에 영향을 미치는 변수 및 가중치 얻고, 선형식 도출

위험도를 바탕으로 최종 보험료 산정

자율 주행 사고에 대한 데이터 수집

실시간으로 데이터를 전달 받아 위험도 측정

프로토타입 위험보험료 산정과정

논문 내용

"자율주행자동차 사고 데이터 기반 사고 요인 도출 연구"

- -> 캘리포니아 자율 주행 사고 데이터 분석한 논문
- ✓ 종속변수: 자율주행자동차 사고정도 (Avinjury)
- ✓ 다른 15개의 변수에서 의미 있는 변수 및 가중치 도출
- → 머신러닝 기법 중 과적합이 최소화되는 Random Forest 적용하여 오른쪽 그래프와 같이 중요 변수 / 가중치 시각화
- ✓ 최종 선정된 변수 중 중요도가 0.01 이하인 변수, 충돌 유형 등 사고 이후에 알 수 있는 변수 제외하여 나머지 변수와 가중치로 model 구성

중요 변수 및 가중치

논문 출처: https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10675781

위험보험료 변수 및 가중치

변수별 가중치를 곱한 값을 모두 더하여 최종 위험도 도출 (가중치의 합이 0.78이므로 최종 위험도는 * 1.28)

위험도 = (0.24 * MPC2 + 0.22 * MPC1 + 0.14 * Time + 0.1 * Lighting + 0.05 * R_surface + 0.03 * Weather) * 1.28 0 <= 외부 위험도 <= 1

위험보험료 Sample Image

일반적인 상황

위험도 0.5 초과한 상황

위험보험료 Sample Video

- ✓ 주행 거리: 0.3km, km당 요금: 33.9원
- 1. 주행 시뮬레이션 영상에 프레임별 상황에 맞도록 임의 데이터 할당
- 2. 우측에는 실시간 Risk를, 좌측 하단에는 Risk mean과 위험보험료를 표시
- 3. 주행환경이 위험할 때는 Risk 를 빨간색으로 표시

출처: https://www.youtube.com/watch?v=HXjuBbAdRJI

최종 위험보험료 식

위험 보험료 = (0.5 + 월 평균 위험도) x km당 요금 x 주행 거리(km)

일반적인 상황에서의 위험도: 0.5

✓ 퍼마일보험

- 주행거리 당 보험료가 산정됨
- 캐롯손해보험이 운전습관연계보험인 UBI보험으로써 출시

퍼마일보험의 성격을 응용, 보험사가 위험도 계산식을 자체개발하여 자율주행차량에 적절한 보험상품을 만든다는 점에서 차별화

서비스 적용 환경: BaaS

• 보험사의 이점

서비스 적용 환경: BaaS

- 유동 위험보험료 서비스의 효과적인 적용을 위한 BaaS 환경 제안

✓ BaaS(Blockchain as a Service)

- 클라우드 기반으로 블록체인 서비스를 개발, 테스트할 수 있도록 블록체인 시스템의 구성요소 및 필요기능을 제공하는 환경
- 블록체인 서비스 개발 시 클라우드를 활용함으로써 개발 편의성과 서비스 간 상호 호환성, 안정성 확보 가능

감사합니다