Rate law and Rate constant

- **97.** The order of a reaction with rate equals $kC_A^{3/2}C_B^{-1/2}$ is
 - (a) 2

- (b) 1
- (c) $-\frac{1}{2}$
- (d) $\frac{3}{2}$
- **98.** If the rate expression for a chemical reaction is given by Rate = $k[A]^m[B]^n$
 - (a) The order of the reaction is m
 - (b) The order of the reaction is n
 - (c) The order of the reaction is m + n
 - (d) The order of the reaction is m-n
- **99.** The half-life period of a first order reaction is 100 sec. The rate constant of the reaction is
 - (a) $6.93 \times 10^{-3} sec^{-1}$
 - (b) $6.93 \times 10^{-4} sec^{-1}$
 - (c) $0.693 \, sec^{-1}$
 - (d) $69.3 \, sec^{-1}$
- **100.** For the first order reaction with rate constant k, which expression gives the half-life period? (Initial concentration = a)
 - (a) $\frac{1^2}{k}$
- (b) $\frac{1}{ka}$
- (c) $\frac{0.693}{k}$
- (d) $\frac{3}{2ka^2}$

101. The rate constant of a first order reaction whose half-life is 480 seconds, is

CHMICAL KINETICS

- (a) $2.88 \times 10^{-3} sec^{-1}$
- (b) $1.44 \times 10^{-3} sec^{-1}$
- (c) $1.44 \, sec^{-1}$
- (d) $0.72 \times 10^{-3} sec^{-1}$
- **102.** The conversion of $A \rightarrow B$ follows second order kinetics. Doubling the concentration of A will increase the rate of formation of B by a factor
 - (a) 1/4
- (b) 2
- (c) 1/2
- (d) 4
- **103.** The reaction $2FeCl_3 + SnCl_2 \rightarrow 2FeCl_2 + SnCl_4$ is an example of
 - (a) First order reaction
 - (b) Second order reaction
 - (c) Third order reaction
 - (d) None of these
- 104. If reaction between A and B to give C shows first order kinetics in A and second order in B, the rate equation can be written as
 - (a) Rate = $k[A][B]^{1/2}$
 - (b) Rate = $k[A]^{1/2}[B]$
 - (c) Rate = $k[A][B]^2$
 - (d) Rate = $k[A]^2[B]$
- **105.** For a first order reaction, the half-life period is independent of

- (a) Initial concentration
- (b) Cube root of initial concentration
- (c) First power of final concentration
- (d) Square root of final concentration
- 106. Order of a reaction can have
 - (a) +ve values
 - (b) Whole number values
 - (c) Fractional values
 - (d) All of the above
- **107.** The order of the reaction occurring by following mechanism should be
 - (i) $A_2 \rightarrow A + A$ (fast)
 - (ii) $A + B_2 \rightarrow AB + B$ (slow)
 - (iii) $A + B \rightarrow$ (fast)
 - (a) $1\frac{1}{2}$
 - (b) $3\frac{1}{2}$
 - (c) 2
 - (d) None of these
- **108.** For the reaction $A \rightarrow B$, the rate law expression is : Rate = k[A]

Which of the following statements is incorrect

- (a) The reaction is said to follow first order kinetics
- (b) The half life of the reaction will depend on the initial concentration of the reactant

- (c) *k* is constant for the reaction at a constant temperature
- (d) The rate law provides a simple way of predicting the concentration of reactants and products at any time after the start of the reaction
- 109. If initial concentration is reduced to its 1/4th in a zero order reaction, the time taken for half of the reaction to complete
 - (a) Remains same
 - (b) Becomes 4 times
 - (c) Becomes one-fourth
 - (d) Doubles
- **110.** For a reaction whose rate expression is ·

Rate $= k[A]^{1/2}[B]^{3/2}$, the order would be

- (a) 1.5
- (b) 2

ESTD: 20(c)3

- (d) 1
- **111.** For the reaction $A \rightarrow B$, the rate increases by a factor of 2.25 when the concentration of A is increased by 1.5. What is the order of the reaction
 - (a) 3

(b) 0

(c) 2

(d) 1

IIT-JEE CHEMISTRY

112. For the reaction H_2 +

 $Cl_2 \xrightarrow{\text{Sunlight}} 2HCl$ taking place on water, the order of reaction is

(a) 1

(b) 2

(c) 3

(d) 0

113. For a first order reaction, rate constant is $0.6932hr^{-1}$, then half-life for the reaction is

- (a) 0.01hr
- (b) 1hr
- (c) 2hr
- (d) 10hr
- (e) 0.1hr

114. The rate constant of a reaction is $0.69 \times 10^{-1} \ min^{-1}$ and the initial concentration is $0.2 moll^{-1}$. The half-life period is

- (a) 400 sec
- (b) 600 sec
- (c) 800 sec
- (d) 1200 sec

115. The rate constant of a first order reaction is 3×10^{-6} per second. If the initial concentration is 0.10 m, the initial rate of reaction is

- (a) $3 \times 10^{-5} ms^{-1}$
- (b) $3 \times 10^{-6} ms^{-1}$
- (c) $3 \times 10^{-8} ms^{-1}$
- (d) $3 \times 10^{-7} ms^{-1}$

116. Certain bimolecular reactions which follow the first order kinetics are called

- (a) First order reactions
- (b) Unimolecular reactions
- (c) Bimolecular reactions
- (d) Pseudounimolecular reactions

117. The rate law of the reaction $A + 2B \rightarrow \text{Product}$ is given by $\frac{d[dB]}{dt} = k[B^2]$.

If A is taken in excess, the order of the reaction will be

(a) 1

(b) 2

(c) 3

(d) 0

118. For a first order reaction A oproduct, the rate of reaction at $[A] = 0.2 moll^{-1}$ is $1.0 imes 10^{-2} moll^{-1} min^{-1}$. The half life period for the reaction is

- (a) 832 s
- (b) 440 s
- (c) 416 s
- (d) 13.86 s

