International Rectifier

IRF7309PbF

HEXFET® Power MOSFET

- Generation V Technology
- Ultra Low On-Resistance
- Dual N and P Channel Mosfet
- Surface Mount
- Available in Tape & Reel
- Dynamic dv/dt Rating
- Fast Switching
- Lead-Free

S1 III D1 G1 III D1 S2 III D2 G2 III D2 P-CHANNEL MOSFET Top View

	N-Ch	P-Ch
V _{DSS}	30V	-30V
R _{DS(on)}	0.050Ω	0.10Ω

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design for which HEXFET Power MOSFETs are well known, provides the designer with an extremely efficient device for use in a wide variety of applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra-red, or wave soldering techniques. Power dissipation of greater than 0.8W is possible in a typical PCB mount application.

Absolute Maximum Ratings

	Parameter	Ma	Units	
		N-Channel	P-Channel	
I _D @ T _A = 25°C	10 Sec. Pulse Drain Current, VGS @ 10V	4.7	-3.5	Α
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	4.0	-3.0	Α
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	3.2	-2.4	А
I _{DM}	Pulsed Drain Current O	16	-12	Α
P _D @ T _A = 25°C	Power Dissipation (PCB Mount)**	1.	W	
	Linear Derating Factor (PCB Mount)**	0.0	11	W/°C
V _{GS}	Gate-to-Source Voltage	± 2	20	V
d∨/dt	Peak Diode Recovery dv/dt 2	6.9	-6.0	V/ns
T _{J.} T _{STG}	Junction and Storage Temperature Range	-55 to	+ 150	°C

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
R _{0JA}	Junction-to-Amb. (PCB Mount, steady state)**	Ş 	(-3	90	°C/W

^{**} When mounted on 1" square PCB (FR-4 or G-10 Material).
For recommended footprint and soldering techniques refer to application note #AN-994.

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	We analyze the		Тур.	Max.	Units	Conditions
/ _{(BR)DSS}	Drain-to-Source Breakdown Voltage	N-Ch		_	-	V	$V_{GS} = 0V, I_D = 250\mu A$
(BR)USS	Brain-to-cource Breakdown Voltage	P-Ch	-30	-	1	V	$V_{GS} = 0V$, $I_{D} = -250\mu A$
ΔV _{(BR)DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient	N-Ch	-	0.032	l	V/°C	Reference to 25°C, b = 1mA
74(RK)D223711	Breakdown voltage remp. Coefficient	P-Ch	<u> </u>	0.037	1	VIC	Reference to 25°C, b = -1mA
		N-Ch	_	_	0.050		V _{GS} = 10V, I _D = 2.4A 3
D	Static Drain-to-Source On-Resistance	IN-CII	_	— D.08	0.080	Ω	V _{GS} = 4.5V, I _D = 2.0A (3)
R _{DS(ON)}	Static Dialii-to-Source Off-Resistance	P-Ch	-	_	0.10		V _{GS} = -10V, I _D = -1.8A 3
		P-Cii	_	_	0.16		V _{GS} = -4.5V, I _D = -1.5A ③
N A CONTRACTOR	Gate Threshold Voltage	N-Ch	1.0	_	_	1	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
$V_{GS(th)}$	Gate Threshold Voltage	P-Ch	-1.0	_	_	V	V _{DS} = V _{GS} , I _D = -250µA
 20	Faunard Tananan direkanan	N-Ch	5.2	_	_	_	V _{DS} = 15V, I _D = 2.4A 3
g fs	Forward Transconductance	P-Ch	2.5	_	_	S	V _{DS} = -24V, I _D = -1.8A 3
		N-Ch	-	_	1.0		V _{DS} = 24V, V _{GS} = 0V
	Desirate Comment	P-Ch	-	-	-1.0	i i	V _{DS} = -24V, V _{GS} = 0V
DSS	Drain-to-Source Leakage Current	N-Ch	_	=	25	μΑ	V _{DS} = 24V, V _{GS} = 0V, T _J = 125°C
		P-Ch	_	_	-25	1	V _{DS} = -24V, V _{GS} = 0V, T _L = 125°C
GSS	Gate-to-Source Forward Leakage	N-P	_	-	±100		V _{GS} = ± 20V
		N-Ch	_	_	25		
Q_g	Total Gate Charge	P-Ch		-	25	1 1	N-Channel
_		N-Ch	_	_	2.9	пC	$I_D = 2.6A, V_{DS} = 16V, V_{GS} = 4.5V$
Q_{gs}	Gate-to-Source Charge	P-Ch			2.9		
	0 1 1 5 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	N-Ch) <u> </u>	_	7.9		P-Channel
Q_{gd}	Gate-to-Drain ("Miller") Charge	P-Ch	_		9.0		$I_D = -2.2A$, $V_{DS} = -16V$, $V_{GS} = -4.5V$
1 0000 €0	Turne On Dalan Time	N-Ch	_	6.8			ARN WOOD USE
d(on)	Turn-On Delay Time	P-Ch		11	_	1	N-Channel
		N-Ch		21	_	1	$V_{DD} = 10V$, $I_D = 2.6A$, $R_G = 6.0\Omega$,
r	Rise Time	P-Ch		17	_		$R_{\text{D}} = 3.8\Omega$
	N SYNTHESIS IN THESE	N-Ch	_	22	_	ns	3
d(off)	Turn-Off Delay Time	P-Ch		25	_		P-Channel
	Y_ 7(972)	N-Ch		7.7	_		$V_{DD} = -10V$, $I_{D} = -2.2A$, $R_{G} = 6.0\Omega$,
t _f	Fall Time	P-Ch	_	18			$R_D = 4.5\Omega$
L _D	Internal Drain Inductace	N-P	_	4.0	_		Between lead tip
LS	Internal Source Inductance	N-P	_	6.0	_	nΗ	and center of die contact
		N-Ch	_	520	_		Proper security was
C _{iss}	Input Capacitance	P-Ch		440	_		N-Channel
	0.1.0	N-Ch		180			$V_{GS} = 0V, V_{DS} = 15V, f = 1.0MHz$
C _{oss}	Output Capacitance	P-Ch		200	_	pF	
	B T (6)	N-Ch		72			P-Channel
C _{rss}	Reverse Transfer Capacitance	P-Ch		93		4 !	$V_{GS} = 0V, V_{DS} = -15V, f = 1.0MHz$

Source-Drain Ratings and Characteristics

	Parameter		Min.	Тур.	Max.	Units	Conditions
4.		N-Ch		-	1.8	1.0	
S	Continuous Source Current (Body Diode)	P-Ch		-	-1.8	Α	
4	B. 18 6 1/B 1 B: 1/4	N-Ch	_	-	16	^	
SM	Pulsed Source Current (Body Diode) ©	P-Ch	-	-	-12		
	B: 1 E 13/18	N-Ch		-	1.0	٧	$T_J = 25^{\circ}C$, $I_S = 1.8A$, $V_{GS} = 0V$ 3
V_{SD}	Diode Forward Voltage	P-Ch	_	_	-1.0		$T_J = 25^{\circ}C$, $I_S = -1.8A$, $V_{GS} = 0V$ 3
		N-Ch	_	47	71	ns	N-Channel
t _{rr}	Reverse Recovery Time	P-Ch	_	53	80	113	T _{.l} = 25°C, l _F = 2.6A, di/dt = 100A/µs
_	B 8	N-Ch	_	56	84	пC	P-Channel 3
Q_{rr}	Reverse Recovery Charge	P-Ch	_	66	99	110	$T_{J} = 25^{\circ}\text{C}, I_{F} = -2.2\text{A}, di/dt = 100\text{A}/\mu\text{s}$
ton	Forward Turn-On Time	N-P Intrinsic turn-on time is neglegible (turn-on is dominated by Le+Ln)					

 ${\bf \Phi}$ Repetitive rating; pulse width limited by max. junction temperature. (See fig. 23)

② N-Channel $I_{SD} \le 2.4A$, $di/dt \le 73A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 150^{\circ}C$ P-Channel $I_{SD} \le -1.8A$, $di/dt \le 90A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 150^{\circ}C$

3 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

N-Channel

Fig 1. Typical Output Characteristics, T_J = 25°C

Fig 2. Typical Output Characteristics, $T_J = 150^{\circ}C$

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

N-Channel

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Max. Drain Current Vs. Ambient Temp.

Fig 11a. Gate Charge Test Circuit

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11b. Basic Gate Charge Waveform

Fig 12. Typical Output Characteristics, T_j = 25°C

Fig 13. Typical Output Characteristics, Tj = 150°C

www.irf.com 5

N-Channel

P-Channel

Fig 14. Typical Transfer Characteristics

Fig 15. Normalized On-Resistance Vs. Temperature

Fig 16. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 17. Typical Gate Charge Vs. Gate-to-Source Voltage

6 www.irf.com

0.1

T_J = 150°C T_J = 25°C T_J

Fig 18. Typical Source-Drain Diode Forward Voltage

0.9

 ${ extstyle -}{ extstyle V}_{ extstyle D}$, Source-to-Drain Voltage (V)

= 0V

Fig 20. Max.Drain Current Vs. Ambient Temp.

Fig 19. Maximum Safe Operating Area

Fig 21a. Switching Time Test Circuit

Fig 21b. Switching Time Waveforms

P-Channel

Fig 22b. Basic Gate Charge Waveform

Fig 23. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient **Refer to the Appendix Section for the following:**

Appendix A: Figure 24, Peak Diode Recovery dv/dt Test Circuit — See page 329.

8 www.irf.com

SO-8 Package Outline

Dimensions are shown in milimeters (inches)

SO-8 Part Marking Information (Lead-Free)

www.irf.com 9

SO-8 Tape and Reel

Dimensions are shown in milimeters (inches)

NOTES:

- NOTES:

 1. CONTROLLING DIMENSION : MILLIMETER.

 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).

 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
 - Ø 330.00 (12.992) MAX.

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.02/04

www.irf.com

10