tact performing an elementary row operation on A & Mmxn can be described using matrix multiplication. Defn In= 01 $\overline{L_{LXL}} \xrightarrow{\text{typeI}} : R_1 \iff R_2 \implies \left[\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array} \right] = \overline{E}_1$ typell: $R_1 \rightarrow \lambda R_1 \lambda + 3$ $\left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right] = E_1$ type III: $R_2 \rightarrow R_2 + \lambda R_1 \lambda t_2$ $\left[\begin{array}{c} 1 \\ \lambda \end{array}\right] = E_3$ Theorem 2 er E be the elementary matrix obtained from In by performing row operation R (E = E(R))For any A & Mmxn the Product E(R)-A is equal to the matrix obtained from A by performing R. $E_{1} \cdot \begin{bmatrix} a b \\ d \end{bmatrix} = \begin{bmatrix} c d \\ a b \end{bmatrix}$

$$E_{2}\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ \lambda c & \lambda d \end{bmatrix}$$

$$E_{3}\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c_{t}\lambda a & d_{t}\lambda b \end{bmatrix}$$

Cor Each elementary matrix is invertible.

 $\mathbb{Z}: R_i \hookrightarrow R_j \qquad \mathbb{R}^{-1}: R_j \hookrightarrow R_i$

 $R: Ri \rightarrow \lambda Ri$ $R': Ri \rightarrow \frac{1}{2}Ri$

R: Ri-> Ri+ARy R-1: Ri-> Ri-ARy

Proof: $E(R)E(R') = I_n$

Theorem For every $A \in M_{mxn}$, there is a finite set of elementary matrices $E_1 - E_K \in M_{mxn}$ such that $E_K \cdot E_{K-1} - - E_1 A$ is in RREF.

Theorem $A \in M_{nxn}$ is invertible if and only if there is a finite set of elementary matrices $E_1, \dots, E_K \in M_{nxn}$ such that $E_K \cdots E_1 A = I_n$

$A^{-1} = E_{K} - E_{I}$ and $A = E_{I}^{-1} E_{L}^{-1} - E_{K}^{-1}$ Cor A is invertible if and only if it can be written as a product of elementary matrices. Recall: rank of $T: V \rightarrow W$ is dim(R(T))Def ^R The rank of $A \in M_{mxn}$, rank(A),

is the rank of $L_A : \mathbb{R}^n \to \mathbb{R}^m \dim(\mathbb{R}(\mathbb{A}) = \operatorname{rank}(A)$

Prop if $B \in M_{m \times m}$ is invertible, then rank(BA) = rank(BA) $= rank(BA) = rank(L_{BA})$ $= dim(R(L_{BA}))$ $R(L_{BA}) = \{L_{BA}(v) \mid v \in \mathbb{R}^n\} \subset \mathbb{R}^m$ $= \{(BA)(v) \mid v \in \mathbb{R}^n\}$ $= \{B(A(v)) \mid v \in \mathbb{R}^n\}$ $= L_{B}\{A(v) \mid v \in \mathbb{R}^n\}$

 $L_{\mathcal{B}}: \mathbb{R}^m \longrightarrow \mathbb{R}^m$

Define $\widehat{L}_B : R(\underline{L}_A) \rightarrow \underline{L}_B(R(\underline{L}_A)) \cdot R(\underline{L}_{BA})$
IB is invertible Since B is invertible => B
1'S invortible,
So dim (R(LA)) = dim(R(LBA))
rank(A) = rank(BA)
Cor Elementary row operations don't change rank.
Cot rank $(A) = rank(RREF(A))$