Numerical Solutions to Partial Differential Equations

numpde_lecture_21_c8_2.pdf

School of Mathematical Sciences Peking University A Posteriori Error Estimate

的BVP

The Residual and Error of Finite Element Solutions

Mixed BVP of Poisson Equation on Polygonal Region in \mathbb{R}^2

Ch8 FEM误差控制与自适应方法P265

• Consider the boundary value problem of the Poisson equation 2D Poisson方程

$$\begin{cases}
-\triangle u = f, & x \in \Omega, \\
u = 0, & x \in \frac{\partial \Omega_0}{\partial \nu}, & \frac{\partial u}{\partial \nu} = g, & x \in \frac{\partial \Omega_1}{\partial \nu},
\end{cases} (8.1.1)$$

where Ω is a polygonal region in \mathbb{R}^2 , $\frac{\partial \Omega_0}{\partial \Omega_0}$ is a relative closed subset in $\partial \Omega$ with positive 1-dimensional measure,

$$\frac{\partial \Omega = \partial \Omega_0 \cup \partial \Omega_1, \ \partial \Omega_0 \cap \partial \Omega_1 = \emptyset,}{f \in \mathbb{L}^2(\Omega), \ g \in \mathbb{L}^2(\partial \Omega_1).}$$

LA Posteriori Error Estimate

The Residual and Error of Finite Element Solutions

Mixed BVP of Poisson Equation on Polygonal Region in \mathbb{R}^2

• consider the standard weak form of the problem:

标准弱形式

$$\begin{cases} \text{Find} & u \in \mathbb{V} \text{ such that} \\ \int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx + \int_{\partial \Omega_{1}} g \, v \, ds, \quad \forall v \in \mathbb{V}, \end{cases} \tag{8.1.2}$$

where
$$\mathbb{V}=\left\{v\in\mathbb{H}^1(\Omega):v|_{\partial\Omega_0}=0\right\}$$
;

考虑协调FEM

 consider the conforming finite element method based on a family of regular class C⁰ type (1) Lagrange triangular elements.

R.A. Verfuert, A review of a posteriori error estimation and adaptive mesh-refinement techniques, Chichester: Wiley-Teubner, 1996.

A Theorem on the Relation of Residual and Error of a FE Solution

1 Define the residual operator $R: \mathbb{V} \to \mathbb{V}^*$ of the problem by

残量算子

$$R(v)(w) \stackrel{\mathsf{def}}{=} \int_{\Omega} f \ w \ dx + \int_{\partial \Omega_1} g \ w \ ds - \int_{\Omega} \nabla v \cdot \nabla w \ dx, \quad \forall w \in \mathbb{V}.$$

2 The dual norm of the residual of a finite element solution u_h :

残量的对偶范数

$$||R(u_h)||_{\mathbb{V}^*} = \sup_{\substack{w \in \mathbb{V} \\ ||w||_{1,2,\Omega} = 1}} \left\{ \int_{\Omega} fw \, dx + \int_{\partial \Omega_1} gw \, ds - \int_{\Omega} \nabla u_h \cdot \nabla w \, dx \right\}$$

Theorem 8.1 (残量范数与FE解H1范数下误差的之间关系)

Let $u \in \mathbb{V}$, $u_h \in \mathbb{V}_h$ be the weak solution and the finite element solution of the problem respectively. Then, there exists a constant $C(\Omega)$, which depends only on Ω , such that

残量与解误差之 间的关系

$$||R(u_h)||_{\mathbb{V}^*} \le ||u-u_h||_{1,2,\Omega} \le C(\Omega) ||R(u_h)||_{\mathbb{V}^*}.$$

(8.1.3)

Remarks on Residual Dual Norm Estimation

- ① We hope to develop a formula, which is easily computed and involves only available data such as f, g, uh and geometric parameters of the triangulation and thus is usually called an a posteriori error estimator, to evaluate the dual norm of the residual. 数(用系显得到一个易于计算的公式,它只涉及可用的数据,如f,g,uh和三角网的几何参数,因此通常称为后验误差估计子,用于估计残差的对偶范数.
- ② Recall that in the a priori error estimates, the polynomial invariant interpolation operator plays an important role. For example, write w as $(w \Pi_h w) + \Pi_h w$ can have some advantage. $\frac{(w \Pi_h w)}{\text{cf.} h} + \frac{1}{10} \frac{1}{1$
- However, the Lagrange nodal type interpolation operators require the function to be at least in C⁰.

 (但是, Lagrange节点型插值算子需要函数至少是CO的。
- Here, we need to introduce a polynomial invariant interpolation operator for functions in 田¹. 这里需要引入一个H中函数的多项式不变的插值算子

Notations on a Family of Regular Triangular Triangulations $\{\mathfrak{T}_h(\Omega)\}_{h>0}$

- **①** $\mathcal{E}(K)$, $\mathcal{N}(K)$: the sets of all edges and vertices of $K \in \mathfrak{T}_h(\Omega)$.
- ② Denote \mathcal{E}_h := $\bigcup_{K \in \mathfrak{T}_h(\Omega)} \mathcal{E}(K)$, \mathcal{N}_h := $\bigcup_{K \in \mathfrak{T}_h(\Omega)} \mathcal{N}(K)$. 区域三角剖分中的所有边和顶点集
- ③ $\mathcal{N}(E)$: the sets of all vertices of an edge $E \in \mathcal{E}_h$. 边E的所有顶点集合
- ④ $\mathcal{E}_{h,i}$:= $\left\{ E \in \mathcal{E}_h : \overset{\circ}{E} \subset \partial \Omega_i \right\}$, $\mathcal{N}_{h,i}$:= $\mathcal{N}_h \cap \partial \Omega_i$, i=0,1. 区域三角剖分中的在区域边界上的所有边 / 顶点的集合,其中i=0,1为第一类和第二类边界
- $oldsymbol{\mathcal{E}_{h,\Omega}}=\mathcal{E}_h\setminus (\mathcal{E}_{h,0}\cup\mathcal{E}_{h,1}), \ \mathcal{N}_{h,\Omega}=\mathcal{N}_h\setminus (\mathcal{N}_{h,0}\cup\mathcal{N}_{h,1}).$ 区域三角剖分中的在区域内所有边 / 顶点的集合

A Posteriori Error Estimate

The Residual and Error of Finite Element Solutions

Notations on a Family of Regular Triangular Triangulations $\{\mathfrak{T}_h(\Omega)\}_{h>0}$

The corresponding finite element function space:

FF কি প্রকাশ

$$egin{align*} \mathbb{V}_h = \{v \in \mathbb{C}(ar{\Omega}) : v|_K \in \mathbb{P}_1(K), orall K \in \mathfrak{T}_h(\Omega), v(x) = 0, orall x \in \mathcal{N}_{h,0} \}. \ \mathbb{C}$$
以至三角剖分中的在区域第一类边界上的所有顶点的集合

7 / 37

A Posteriori Error Estimate

The Residual and Error of Finite Element Solutions

The Clément Interpolation Operator $I_h: \mathbb{V} \to \mathbb{V}_h$

非光滑函数的插值【Clement插值】

Definition 8.1

Nh·区域三角剖分中的所有顶占集合

For any $v \in \mathbb{V}$ and $x \in \mathcal{N}_h$, denote $\pi_x v$ as the $\mathbb{L}^2(\omega_x)$ projection of v on $\mathbb{P}_1(\omega_x)$, meaning $\pi_x v \in \mathbb{P}_1(\omega_x)$ satisfies

_x: 以x为顶点的所有单元集合, 也称宏单元

$$\int_{\omega_{\mathsf{x}}} \mathsf{v} \, \mathsf{p} \, \mathsf{d} \mathsf{x} = \int_{\omega_{\mathsf{x}}} (\pi_{\mathsf{x}} \mathsf{v}) \, \mathsf{p} \, \mathsf{d} \mathsf{x}, \quad \forall \mathsf{p} \in \mathbb{P}_{1}(\omega_{\mathsf{x}}).$$

The Clément interpolation operator $I_h: \overline{\mathbb{V}} \to \overline{\mathbb{V}}_h$ is defined by

$$I_h v(x) \stackrel{\mathrm{def}}{=} (\pi_x v)(x), \ \ orall x \in \mathcal{N}_{h,\Omega} \cup \mathcal{N}_{h,1}; \qquad I_h v(x) = 0, \ \ orall x \in \mathcal{N}_{h,0}.$$
在区域内所有顶点+在第2类边界上的所有顶点

经典的插值要求被插值函数v(x)光滑,例如在三角形K上过其三个顶点的一次插值Pi(v)可以用面积坐标表示。此时要求v(x)是C0(\bar{K}),同时有误差估计|v-Pi(v)|_{m,K}\leq c*h^{2-m} |v|_{2,T},m\in [0,2].若v是L1函数,如何构造v的连续的分片多项式插值,并具有与经典插值相同的误差阶。Clement提出了这种所谓局部正则化插值【王烈衡&许学军,P136】

The Clément Interpolation Operator $I_h: \mathbb{V} \to \mathbb{V}_h$

- **1** The Clément interpolation operator is well defined on $\mathbb{L}^1(\Omega)$.
- ② If $v \in \mathbb{P}_1(\omega_x)$, then $(\pi_x)v(x) = v(x)$, $\forall x \in \omega_x$.
- \bullet If $v \in \mathbb{P}_1(\tilde{\omega}_K)$, then $I_h v(x) = v(x)$, $\forall x \in K$.
- 4 It is in the above sense that the Clément interpolation operator is polynomial (more precisely \mathbb{P}_1) invariant.

A Posteriori Error Estimate

The Residual and Error of Finite Element Solutions

Error Estimates of the Clément Interpolation Operator I_h

Clement插值算子Ih的局部误差估计

Lemma 8.1

There exist constants $C_1(\theta_{\min})$ and $C_2(\theta_{\min})$, which depend only on the smallest angle θ_{\min} of the triangular elements in the triangulation $\mathfrak{T}_h(\Omega)$, such that, for any given $K \in \mathfrak{T}_h(\Omega)$, $E \in \mathcal{E}_h$ and $v \in \mathbb{V}$,

$$\|v-I_{h}v\|_{0,2,K} \le C_{1}(heta_{\min}) \, h_{K} \, |v|_{1,2, ilde{\omega}_{K}}, \ \|v-I_{h}v\|_{0,E} := \|v-I_{h}v\|_{0,2,E} \le C_{2}(heta_{\min}) \, h_{K}^{1/2} |v|_{1,2, ilde{\omega}_{E}}.$$

与E有公共顶点的所有边集台

The Residual and Error of Finite Element Solutions

Error Estimates of the Clément Interpolation Operator Ih

- More general properties and proofs on the Clément interpolation operator may be found in [8, 31].

An Upper Bound for the Dual Norm of the Residual $R(u_h)$

Lemma 8.2 (残量R(uh)的上界估计)

There exists a constant $C(\theta_{\min})$, where $\frac{\theta_{\min}}{\theta_{\min}}$ is the smallest angle of the triangular elements in the triangulation $\mathfrak{T}_h(\Omega)$, such that

$$\frac{\Re \mathbb{E}_{(W)}^{g}(uh)}{\int_{\Omega} f \ w \ dx + \int_{\partial \Omega_{1}} g \ w \ ds - \int_{\Omega} \nabla u_{h} \cdot \nabla w \ dx} \\
\leq \frac{1}{C(\theta_{\min}) \|w\|_{1,2,\Omega} \left\{ \sum_{K \in \mathfrak{T}_{h}(\Omega)} h_{K}^{2} \|f\|_{0,2,K}^{2} + \sum_{E \in \mathcal{E}_{h,1}} h_{E} \|g - \nu_{E} \cdot \nabla u_{h}\|_{0,E}^{2} \\
+ \sum_{E \in \mathcal{E}_{h},\Omega} h_{E} \|[\nu_{E} \cdot \nabla u_{h}]_{E}\|_{0,E}^{2} \right\}^{1/2}, \quad \forall w \in \mathbb{V}, \tag{8.1.5}$$

The Residual and Error of Finite Element Solutions

Proof of the Lemma — An Upper Bound for the Residual $R(u_h)$

where in the theorem, ν_E is an arbitrarily given unit normal of E if $E \in \mathcal{E}_{h,\Omega}$, and is the unit outward normal of Ω if $E \in \mathcal{E}_{h,1}$, $[\varphi]_E$ is the jump of φ across E in the direction of ν_E , i.e. $[\varphi]_E(x) = \lim_{t \to 0+} \varphi(x + t\nu_E) - \lim_{t \to 0+} \varphi(x - t\nu_E), \quad \forall x \in E.$

 $oldsymbol{0}$ Since u_h is the finite element solution, we have

$$\frac{R(u_h)(v_h) := \int_{\Omega} f v_h \, dx + \int_{\partial \Omega_1} g v_h \, ds - \int_{\Omega} \nabla u_h \cdot \nabla v_h \, dx = 0, \quad \forall v_h \in \mathbb{V}_h.}{\text{In particular, } R(u_h)(w) = R(u_h)(w - I_h w), \text{ for all } w \in \mathbb{V}.}$$

Proof of the Lemma — An Upper Bound for the Residual $R(u_h)$

Applying the Green's formula on every element K, denoting ν_K as the unit exterior normal of ∂K , and noticing $u_h|_K \in \mathbb{P}_1(K)$ and thus $\triangle u_h = 0$ on each element, we obtain $\int_{\mathbb{R}} \nabla u_h \cdot \nabla v \, dx = \sum_{h} \int_{\mathbb{R}} \nabla u_h \cdot \nabla v \, dx$

$$\int_{\Omega} \nabla u_h \cdot \nabla v \, dx = \sum_{K \in \mathfrak{T}_h(\Omega)} \int_{K} \nabla u_h \cdot \nabla v \, dx$$

$$\stackrel{\text{Green With}}{=} \sum_{K \in \mathfrak{T}_h(\Omega)} \left\{ -\int_{K} \Delta u_h \, v \, dx + \int_{\partial K} \nu_K \cdot \nabla u_h \, v \, dx \right\}$$

$$= \sum_{E \in \mathcal{E}_h, 1} \int_{E} \nu_E \cdot \nabla u_h \, v \, ds + \sum_{E \in \mathcal{E}_h, 2} \int_{E} [\nu_E \cdot \nabla u_h]_E \, v \, ds, \quad \forall v \in \mathbb{V}.$$

区域二色到公内的左区域第2米边里上的底方边

区域三角剖分中的在区域内的所有边

The Residual and Error of Finite Element Solutions

..... $\leq \sum (A1) + \sum (A2) + \sum (A3)$

Proof of the Lemma — An Upper Bound for the Residual $R(u_h)$

Thus, recall
$$R(u_h)(w) = R(u_h)(w - I_h w)$$
, we have
$$\int_{\Omega} f w \, dx + \int_{\partial \Omega_1} g w \, ds - \int_{\Omega} \nabla u_h \cdot \nabla w \, dx = \sum_{K \in \mathfrak{T}_h(\Omega)} \int_{K} f (w - I_h w) \, dx + \sum_{E \in \mathcal{E}_{h,1}} \int_{E} (g - \nu_E \cdot \nabla u_h)(w - I_h w) \, ds - \sum_{E \in \mathcal{E}_{h,\Omega}} \int_{E} [\nu_E \cdot \nabla u_h]_{E} (w - I_h w) \, ds,$$

$$\mathfrak{g}_{2 \not = 0} \mathfrak{g}_{2 \not = 0} \mathfrak{g}_{3 \not= 0} \mathfrak{g}_{4 \not= 0} \mathfrak{g}_{$$

Proof of the Lemma — An Upper Bound for the Residual $R(u_h)$

By the Cauchy-Schwarz inequality and Lemma 8.1, we have

(A1)
$$\int_{K} f(w-I_{h}w) dx \leq \|f\|_{0,2,K} \|w-I_{h}w\|_{0,2,K} \leq C_{1} h_{K} \|f\|_{0,2,K} \|w\|_{1,2,\tilde{\omega}_{K}},$$

(A2)
$$\int_{E} (g - \nu_{E} \cdot \nabla u_{h})(w - I_{h}w) ds \leq \|g - \nu_{E} \cdot \nabla u_{h}\|_{0,E} \|w - I_{h}w\|_{0,E}$$
$$\leq C_{2} h_{E}^{1/2} \|g - \nu_{E} \cdot \nabla u_{h}\|_{0,E} \|w\|_{1,2,\tilde{\omega}_{E}},$$

(A3)
$$\int_{E} [\nu_{E} \cdot \nabla u_{h}]_{E} (w - I_{h}w) ds \leq \|[\nu_{E} \cdot \nabla u_{h}]_{E}\|_{0,E} \|w - I_{h}w\|_{0,E}$$
$$\leq C_{2} h_{E}^{1/2} \|[\nu_{E} \cdot \nabla u_{h}]_{E} \|_{0,E} \|w\|_{1,2,\tilde{\omega}_{E}}.$$

Proof of the Lemma — An Upper Bound for the Residual $R(u_h)$

- **5** The number of element in ω_x , $\sharp \omega_x \leq C_3 = 2\pi/\theta_{\min}$, $\forall x \in \mathcal{N}_h$.
- **6** Each element K has three vertices, each edge E has two vertices.
- Therefore, $\sharp \widetilde{\omega}_{K} \leq 3C_{3}$, $\forall K \in \mathfrak{T}_{h}$, $\sharp \widetilde{\omega}_{E} \leq 2C_{3}$, $\forall E \in \mathcal{E}_{h}$.
- Thus, we have

$$\left[\sum_{K \in \mathfrak{T}_{h}(\Omega)} \|w\|_{1,2,\tilde{\omega}_{K}}^{2} + \sum_{E \in \mathcal{E}_{h,\Omega} \cup \mathcal{E}_{h,1}} \|w\|_{1,2,\tilde{\omega}_{E}}^{2}\right]^{1/2} \leq \sqrt{5} C_{3} \|w\|_{1,2,\Omega}.$$
(8.1.6)

9 The conclusion of the lemma follows as a consequence of **3**, **4** and **8** with $C(\theta_{\min}) = \sqrt{5C_3} \max\{C_1(\theta_{\min}), C_2(\theta_{\min})\}$.

A Theorem on the a Posteriori Error Estimate

Theorem 🤵 🤈

As a corollary of Theorem 8.1 and Lemma 8.2, we have the following a posteriori error estimate of the finite element solution:

where $C = C(\theta_{\min}) C(\Omega)$ is a constant depending only on Ω and the smallest angle θ_{\min} of the triangulation $\mathfrak{T}_h(\Omega)$.

• The righthand side term above essentially gives an upper bound estimate for the \mathbb{V}^* -norm of the residual $R(u_h)$, which can be directly used as a posteriori error estimator for the upper bound of the error of the finite element solution.

(8.1.7)的右端本质上给出的是残量在V的对偶空间V*中的范数的上界估计, 可以将其用作后验误差估计子来估计FEM解的误差上界。

A Practical a Posteriori Error Estimator

- ① For convenience of analysis and practical computations, f and g are usually replaced by some approximation functions, say by $f_K = \frac{1}{|K|} \int_K f \, dx$ and $g_E = h_E^{-1} \int_E g \, ds$.
- 2 A practical a posteriori error estimator of residual type:

$$\eta_{R,K} \stackrel{\text{def}}{=} \left\{ h_K^2 \| f_K \|_{0,2,K}^2 + \sum_{E \in \mathcal{E}(K) \cap \mathcal{E}_{h,1}} h_E \| g_E - \nu_E \cdot \nabla u_h \|_{0,E}^2 \right\}$$

实用的残量型后验误差估计子

$$+\frac{1}{2}\sum_{E\in\mathcal{E}(K)\cap\mathcal{E}_{h,\Omega}}h_{E}\left\|[\nu_{E}\cdot\nabla u_{h}]_{E}\right\|_{0,E}^{2}\right\}^{1/2}.$$

3 In applications, f_K and g_E can be further replaced by the numerical quadratures of the corresponding integrals.

(8.1.8)

Error Estimate Based on the Practical a Posteriori Error Estimator

Theorem 8.3 P270

For the constant $C = C(\theta_{\min}) C(\Omega)$ in Theorem 8.2, the following a posteriori error estimate holds:

$$||u - u_h||_{1,2,\Omega} \le C \left\{ \sum_{K \in \mathfrak{T}_h(\Omega)} \eta_{R,K}^2 + \sum_{K \in \mathfrak{T}_h(\Omega)} h_K^2 ||f - f_K||_{0,2,K}^2 + \sum_{E \in \mathcal{E}_{h,1}} h_E ||g - g_E||_{0,E}^2 \right\}^{1/2}.$$

(8.1.9)

Remark: Generally speaking, for h sufficiently small, the first term on the righthand side represents the leading part of the error. Therefore, in practical computations, $\eta_{R,K}$ alone is often used to estimate the local error, particularly in a mesh adaptive process.

一般地说、当h充分小时,上式右端的第1项往往反映了误差的主要部分,因此实际计算中,常用\eta_R,K来估计局部误差,特别时在作网格自适应时

Reliability of an a Posteriori Error Estimator

8.2节 后验误差估计子的可靠性和有效性

1 The a posteriori error estimators given in Theorem 8.2 and 8.3 provide upper bounds for the error of the finite element solution u_h in the \mathbb{V} -norm.

定理8.2和8.3中的后验误差估计子给出了有限元解误差的上界

- ② Such a property is called the reliability of the a posteriori error estimator. 后验误差估计子的可靠性
- 3 In general, the reliability of an a posteriori error estimator can be understood in the sense of a constant times

一般地,可以在相差一个常数倍的意义下理解后验误差估计

Reliability of an a Posteriori Error Estimator

Definition 8.2

Let \underline{u} and \underline{u}_h be the solution and the finite element solution of the variational problem. Let $\underline{\eta}_h$ be an a posteriori error estimator. If there exists a constant $\underline{\widehat{C}}$ independent of \underline{h} such that

$$\|u-u_h\|_{1,2,\Omega}\leq \widehat{C}\,\eta_h.$$

Then, the a posteriori error estimator η_h is said to be reliable, or has reliability.

- Reliability guarantees the accuracy.
- 2 To avoid mesh being unnecessarily refined and have the computational cost under control, efficiency is required.

为了避免网格被不必要地细分,和有可控的计算开销,需要有效性

Efficiency of an a Posteriori Error Estimator

Definition 8.3

Let $\frac{u}{u}$ and $\frac{u}{u}$ be the solution and the finite element solution of the variational problem. Let η_h be an a posteriori error estimator. If, for any given $h_0 > 0$, there exists a constant $C(h_0)$ such that

$$\frac{\widetilde{C}(h_0)^{-1}}{\|u-u_h\|_{1,2,\Omega}} \leq \eta_h \leq \frac{\widetilde{C}(h_0)}{\|u-u_h\|_{1,2,\Omega}}, \quad \forall h \in (0, h_0),$$
(8.2.1)

Then, the a posteriori error estimator η_h is said to be efficient, or has efficiency. In addition, if the constant $C(h_0)$ is such that 后验误差估计子是有效的

$$\lim_{h_0\to 0+}\widetilde{C}(h_0)=1,$$

Then, the a posteriori error estimator η_h is said to be asymptotically exact. 后验误差估计子是渐近精确的

a Posteriori Local Error Estimator and the Local Error

- In applications, to efficiently control the error, we hope to refine the mesh only on the regions where the local error is relatively large.
 为了有效地控制误差,我们希望只对局部误差较大的区域进行网格细化
- ② Therefore, in addition to a good estimate of the global error of a finite element solution, what we expect more on an a posteriori error estimator is that it can efficiently evaluate the local error.

 But,除了能很好地估计角配元解的整体误差外,我们更期望后验误差估计子,它能有效地估计局部误差。

a Posteriori Local Error Estimator and the Local Error

8 Recall $\int_{\Omega} \nabla (u - u_h) \cdot \nabla w \, dx = R(u_h)(w)$, and the a posteriori local error estimator of residual type is given as

$$\eta_{R,K} = \left\{ h_K^2 \| f_K \|_{0,2,K}^2 + \sum_{E \in \mathcal{E}(K) \cap \mathcal{E}_{h,1}} h_E \| g_E - \nu_E \cdot \nabla u_h \|_{0,E}^2 + \frac{1}{2} \sum_{E \in \mathcal{E}(K) \cap \mathcal{E}_{h,\Omega}} h_E \| [\nu_E \cdot \nabla u_h]_E \|_{0,E}^2 \right\}^{1/2}.$$
(8.1.8)

④ We hope, by choosing proper test functions w, to establish relationship between the local error of $u-u_h$ and the three terms in $\eta_{R,K}$. $_{\text{$K$}}$ 我们希望通过适当选择试验函数w建立u-uh的局部误差和eta中三项的关

Relate Terms in $\eta_{R,K}$ to the Local Errors of $u-u_h$

1 Notice that f_K is piecewise constant, $\forall w \in \mathbb{V}$, we have

$$\int_{K} f_{K}(f_{K}w) dx = |f_{K}|^{2} \int_{K} w dx = |K|^{-1} \left(\int_{K} w dx \right) \|f_{K}\|_{0,2,K}^{2},$$

② If we take a positive $\underline{w} \in \mathbb{H}^1_0(K)$, called a bubble function on K, then, the above equation will establish a relation between $\|f_K\|^2_{0,2,K}$ and the local error of $(\underline{u}-\underline{u}_h)|_K$ through

$$\frac{\int_{K} \nabla(u - u_{h}) \cdot \nabla(f_{K}w) dx = R(u_{h})(f_{K}w)}{= \int_{K} f(f_{K}w) dx + \int_{K} (f - f_{K})(f_{K}w) dx}.$$

Relate Terms in $\eta_{R,K}$ to the Local Errors of $u-u_h$

3 Similarly, by taking proper bubble functions, we can also establish the relationship between the local error of $u-u_h$ and the terms

$$\|g_E - \nu_E \cdot \nabla u_h\|_{0,E}^2, \qquad \|[\nu_E \cdot \nabla u_h]_E\|_{0,E}^2,$$

which are also piecewise constant functions.

Triangular Element Bubble Functions and Edge Bubble Functions

• Let $\lambda_{K,i}$, i=1,2,3 be the area coordinates of $K\in \mathfrak{T}_h(\Omega)$, define the triangular bubble function \mathfrak{b}_K as

$$\mathfrak{b}_{K}(x) = \begin{cases}
27 \,\lambda_{K,1}(x) \,\lambda_{K,2}(x) \,\lambda_{K,3}(x), & \forall x \in K; \\
0, & \forall x \in \Omega \setminus K.
\end{cases}$$

Triangular Element Bubble Functions and Edge Bubble Functions

② For a given edge $E \in \mathcal{E}_{h,\Omega}$, let $\omega_{\underline{E}} = K_1 \cup K_2$, let $\lambda_{K_i,j}$, j=1,2,3 be the area coordinates of K_i , denote the vertex of K_i which is not on E as the third vertex of K_i , define the edge bubble function \mathfrak{b}_E as

$$\mathfrak{b}_{\mathcal{E}}(x) = \begin{cases} 4 \, \lambda_{K_{i},1}(x) \, \lambda_{K_{i},2}(x), & \forall x \in K_{i}, & i = 1,2; \\ 0, & \forall x \in \Omega \setminus \omega_{\mathcal{E}}. \end{cases}$$

Triangular Element Bubble Functions and Edge Bubble Functions

③ For a given edge $E \in \mathcal{E}_{h,\partial\Omega}$, let $\omega_E = K'$, denote the vertex of K' which is not on E as the third vertex of K', define the edge bubble function \mathfrak{b}_E as

$$\mathfrak{b}_{\mathcal{E}}(x) = \begin{cases} 4 \, \lambda_{K',1}(x) \, \lambda_{K',2}(x), & \forall x \in K'; \\ 0, & \forall x \in \Omega \setminus K'. \end{cases}$$

Properties of the Bubble Functions

Lemma 8.3

(1) For any given $K \in \mathfrak{T}_h(\Omega)$ and $E \in \mathcal{E}_h$, the bubble functions \mathfrak{b}_K and \mathfrak{b}_E have the following properties:

$$\operatorname{supp} \frac{\mathfrak{b}_{\mathcal{K}}}{\mathcal{K}} \subset \mathcal{K}, \quad 0 \leq \mathfrak{b}_{\mathcal{K}} \leq 1, \quad \max_{x \in \mathcal{K}} \mathfrak{b}_{\mathcal{K}}(x) = 1;$$

$$\operatorname{supp} \mathfrak{b}_{E} \subset \omega_{E}, \ 0 \leq \mathfrak{b}_{E} \leq 1, \ \max_{x \in E} \mathfrak{b}_{E}(x) = 1;$$

$$\int_{E} \mathfrak{b}_{E} \, ds = \frac{2}{3} h_{E};$$

(*3)

(*1)

(*2)

Properties of the Bubble Functions

Lemma 8.3(续)

(2) there exists a constant \hat{c}_i , $i=1,\ldots,6$, which depends only on the smallest angle of the triangular triangulation $\mathfrak{T}_h(\Omega)$, such that

$$\hat{c}_1 h_K^2 \le \int_K b_K dx = \frac{9}{20} |K| \le \hat{c}_2 h_K^2;$$
 (*4)

单元/边 泡函数的 性质

$$\hat{c}_3 h_E^2 \le \int_{\mathcal{K}'} \mathbf{b}_E \, dx = \frac{1}{3} |K'| \le \hat{c}_4 h_E^2, \quad \forall K' \subset \omega_E; \tag{*5}$$

$$\|\nabla \mathfrak{b}_{K}\|_{0,2,K} \leq \hat{c}_{5} h_{K}^{-1} \|\mathfrak{b}_{K}\|_{0,2,K};$$

$$\|\nabla \mathfrak{b}_{\mathcal{E}}\|_{0,2,K'} \leq \hat{c}_6 h_{\mathcal{E}}^{-1} \|\mathfrak{b}_{\mathcal{E}}\|_{0,2,K'}, \ \forall K' \subset \omega_{\mathcal{E}}.$$

(*6)

(*7)

∟A Residual Type A Posteriori Error Estimator

Proof of the Efficiency of $\eta_{R,K}$ — Estimate of $\|f_K\|_{0,2,K}$

定理8.4的证明的第一部分

For any given $K \in \mathfrak{T}_h(\Omega)$, set $w_K := f_K \mathfrak{b}_K$. Then, by the properties of \mathfrak{b}_K (see Lemma 8.3), we have

$$\int_{K} f_{K} w_{K} dx \stackrel{\text{(*4)}}{=} \frac{9}{20} |K| |f_{K}|^{2} = \frac{9}{20} ||f_{K}||_{0,2,K}^{2}.$$
 (8.2.3)

2 Since $\sup w_K \subset K$, it follows

$$\int_{\partial\Omega_{\lambda}} g w_{K} ds - \int_{\Omega} \nabla u_{h} \cdot \nabla w_{K} dx \xrightarrow{\text{int}} - \nabla u_{h} |_{K} \int_{K} \nabla w_{K} dx = 0. \quad (*8)$$

uh为

次数

33 / 37

Proof of the Efficiency of $\eta_{R,K}$ — Estimate of $\|f_K\|_{0,2,K}$

$$\int_{K} f_{K} w_{K} dx = \int_{K} f w_{K} dx \bigoplus_{\bullet} \int_{K} (f - f_{K}) w_{K} dx$$

$$\stackrel{\text{(8.1.4)}}{=} \int_{K} \nabla (u - u_{h}) \cdot \nabla w_{K} dx \bigoplus_{\bullet} \int_{K} (f - f_{K}) w_{K} dx$$

$$\leq \|u - u_{h}\|_{1,2,K} \|\nabla w_{K}\|_{0,2,K} + \|f - f_{K}\|_{0,2,K} \|w_{K}\|_{0,2,K}. \tag{*g}$$

3 Thus, by $\int_{\Omega} \nabla (u - u_h) \cdot \nabla w_K dx = R(u_h)(w_K)$, we obtain

Proof of the Efficiency of $\eta_{R,K}$ — Estimate of $\|f_K\|_{0,2,K}$

4 On the other hand, since $f_{\mathcal{K}}$ is a constant, by the properties of $\mathfrak{b}_{\mathcal{K}}$ (see Lemma 8.3), we have

$$\|w_{K}\|_{0,2,K} \stackrel{\text{WK}\bar{\mathbb{R}}\times}{=} |f_{K}| \|\mathfrak{b}_{K}\|_{0,2,K} \leq |f_{K}| \left(\int_{K} \mathfrak{b}_{K} dx\right)^{1/2} \stackrel{\text{(*4)}}{=} \sqrt{\frac{9}{20}} \|f_{K}\|_{0,2,K};$$

$$\|\nabla w_{\mathcal{K}}\|_{0,2,\mathcal{K}} \overset{\text{(*6)}}{\leq} \hat{c}_5 \, h_{\mathcal{K}}^{-1} \|w_{\mathcal{K}}\|_{0,2,\mathcal{K}}.$$

Proof of the Efficiency of $\eta_{R,K}$ — Estimate of $||f_K||_{0,2,K}$

6 Combining the three inequalities obtained in **3** and **4** with $\int_K f_K w_K dx = \frac{9}{20} \|f_K\|_{0,2,K}^2 \text{ (see (8.2.3)) leads to}$

$$||f_{\mathcal{K}}||_{0,2,\mathcal{K}} \leq \sqrt{\frac{20}{9}} \, \hat{c}_5 \, h_{\mathcal{K}}^{-1} ||u - u_h||_{1,2,\mathcal{K}} + \sqrt{\frac{20}{9}} \, ||f - f_{\mathcal{K}}||_{0,2,\mathcal{K}}.$$
(8.2.4)

Similar techniques can be applied to estimate the other terms in $\eta_{R,K}$.

习题 8: 4. Page 283

Thank You!