

计算机组成原理

Principles of Computer Organization

第 11 讲 计算机中数的运算V

各种除法、浮点四则运算

主讲教师: 石 侃

shikan@ict.ac.cn

2025年4月7日

(1) 恢复余数法

6.3

例6.24 x = -0.1011 y = -0.1101 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$

解: $[x]_{\mathbb{R}} = 1.1011$ $[y]_{\mathbb{R}} = 1.1101$ $[y^*]_{\mathbb{A}} = 0.1101$ $[-y^*]_{\mathbb{A}} = 1.0011$

(1) $x_0 \oplus y_0 = 1 \oplus 1 = 0$

② 被除数(余数)	商	说明
0.1011	0.0000	
+ 1.0011		+[-y*] _补 (进行x*-y*作比较
1.1110	0	余数为负,上商 0
+ 0.1101		恢复余数 +[y*]*
0.1011	0	恢复后的余数
逻辑左移 1.0110	0	←1(余数和商同时左移)
+ 1.0011		+[-y*] _*
0.1001	0 1	余数为正,上商1
逻辑左移 1.0010	0 1	←1
+ 1.0011		+[-y*] _{*\}

例6.24(续) 回顾第一章除法操作中的寄存器(表1.3) ACC 商 被除数(余数) 说 MQ 位后的余数 余数为正,上商1 0.0101 0 1 1 的绝对值。 ← 1 逻辑左移 因此需确保 0.1010 011 这些值要恢 +[-y*]_{*} + 1.0011 复为正数日 最后为正。 余数为负,上商0 1.1101 0110 后一步得 到的是真正 恢复余数+[火*]* 0.1101 余数的绝对 恢复后的余数 0.1010 0110 值R*左移4 位,而R的 逻辑左移 1.0100 0110 实际符号位 应与被除数 +[-y*]_补 1.0011 一致,即从 被除数直接 余数为正 01101 0.0111 获得,所以 真正余数应 $\frac{x^*}{v^*} = 0.1101$ 为 上商5次 移4次 -0.00000111 $[\frac{x}{y}]_{\mathbb{R}}$ = 0.1101对于小数除法, 第一次上商判溢出 余数为正 上商1 余数为负 上商 0,恢复余数

6.3

明

为什么是 逻辑左 移,而不 是算术左

移?

因为这里 的移动是 表示竖式 运算过程 中的移 动,而不 是数值变

الملل	工山工		化
	ACC	MQ	X
加法	被加数 和		加数
减法	被减数		减数
乘法	乘积高位	乘数 乘积低位	被乘数
除法	被除数 余数	商	除数

(2) 不恢复余数法(原码加减交替除法)6.3

• 恢复余数法运算规则

对Ri左移一位后减去除数

余数
$$R_i > 0$$
 上商 "1", $2R_i - y^*$

$$2(R_i+y^*)-y^*=2R_i+y^*$$

再左移一位后减去除数

• 不恢复余数法运算规则

余数
$$R_i > 0$$
 上商"1"

$$2R_i - y^*$$

正、1、移、减

余数
$$R_i < 0$$
 上商 "0" $2R_i + y^*$

负、0、移、加

加减交替(注:一减后面不一定是一加)

例 6.25 x = -0.1011 y = -0.1101 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$ 6.3

解:	0.1011	0.0000		
	+1.0011		+[-火*]*(减除数,	判断溢出)
逻辑	1.1110	0	余数为负,上商0	
左移	1.1100	0	←1	$[x]_{\text{@}} = 1.1011$
	+0.1101		+[y*] _补	[y] _原 = 1.1101
逻辑	0.1001	0 1	余数为正,上商1	
左移	1.0010	0 1	←1	$[x^*]_{\not \models} = 0.1011$
	+1.0011		+[- <i>y</i> *] _{ネト}	$[y^*]_{\mbox{$*$}} = 0.1101$
逻辑	0.0101	011	余数为正,上商1	
左移	0.1010	011	←1	$[-y^*]_{\mbox{$\stackrel{.}{\uparrow}$}} = 1.0011$
	+1.0011		+[-火*]	正、1、移、减
逻辑	1.1101	0110	余数为负,上商 0	正、1、核、城
左移	1.1010	0110	←1	负、0、移、加
	± 0.1101		+[y*] _补	X O O A A A A A
真正余数	为 0 . 0 1 1 1	01101	全数为正、上商1	

-0.00000111

例6.25 结果

6.3

$$\textcircled{1} x_0 \oplus y_0 = 1 \oplus 1 = 0$$

$$2 \frac{x^*}{y^*} = 0.1101$$

$$\therefore \ [\frac{x}{y}]_{\mathbb{R}} = 0.1101$$

特点 上商 n+1 次

第一次上商判溢出

少于恢复 余数法

移 n 次,加(或负数补码的加法) n+1 次 用移位的次数判断除法是否结束

6.3 (3) 原码加减交替除法硬件配置 有问题吗 0 n n 左移 加 $(\mathbf{Q_n} = \mathbf{0})$ 移位和加控制逻辑 n+1 位加法器 减(Q_n=1 控制门 溢出标记 除法标记 商符

A(被除数原码)、 X(除数原码)、 Q(商) 均 <math>n+1 位用 Q_n 控制加或者减除数

计数器C

n

(3) 原码加减交替除法及其硬件配置

6.3

正、1、移、减 负、0、移、加

A(被除数原码)、 X(除数原码)、 Q(商)均<math>n+1位寄存器用 Q_n 控制加或者减除数

4. 补码除法(加减交替法)

- 6.3
- (1) 商值的确定 (先判断够不够减,再议上0还是上1)
 - ① 比较被除数和除数绝对值的大小

x与y同号

$$x = 0.1011$$
 $[x]_{\frac{1}{N}} = 0.1011$ $[x]_{\frac{1}{N}} = 1.1101$ $[x]_{\frac{1}{N}} = 1.1101$

 $[R_i]_{*k} = 0.1000$

"不够减"

$$x = 0.1011$$
 $y = -0.0011$

y = 0.1011

$$[x]_{3/2} = 0.1011$$

$$[y]_{36} = 1.1101$$

$$x = -0.0011$$
 $[x]_{3/2} = 1.1101$
 $y = 0.1011$ $[y]_{3/2} = 0.1011$

$$[x]_{\stackrel{?}{\Rightarrow}} = 0.1011$$
 $+ [y]_{\stackrel{?}{\Rightarrow}} = 1.1101$
 $[R_i]_{\stackrel{?}{\Rightarrow}} = 0.1000$

$$[x]_{\uparrow\uparrow} = 1.1101$$
 $+ [y]_{\uparrow\uparrow} = 0.1011$
 $[R_i]_{\uparrow\uparrow} = 0.1000$

小结

$[x]_{\dagger}$ 和 $[y]_{\dagger}$	求 $[R_i]$ 补	$[R_i]_{{\wedge}}$ 与 $[y]_{{\wedge}}$
同号	$[x]_{ egh} - [y]_{ egh}$	同号,"够减"
异号	$[x]_{ ext{?}} + [y]_{ ext{?}}$	异号,"够减"

② 商值的确定 末位恒置"1"法

X.XXXXX

可能存在误差2-163

[x]_补与 [y]_补同号 正商

按原码上商

"够减"上"1"

"不够减"上"0"

[x]_补与 [y]_补异号 负商

按反码上商

"够减"上"0" "不够减"上

小结

Î	[x] _补 与[y] _补	商	$[R_i]_{{ ext{$\lambda$}}}$ 与 $[y]_{{ ext{$\lambda$}}}$		商值
	同 号	正	够减 (同号) 不够减 (异号)	1 0	原码上商
	异号	负	够减 (异号) 不够减(同号)	0 1	反码上商

回顾前一页

[x] _补 和[y] _补	求 $[R_i]_{i}$	$[R_i]_{{ au}}$ 与 $[y]_{{ au}}$
同号	$[x]_{\dagger \leftarrow} [y]_{\dagger \leftarrow}$	同号,"够减"
异号	$[x]_{i}+[y]_{i}$	异号,"够减"

合并 简化 为

$[R_i]_{{ ext{$\lambda$}}}$ 与 $[y]_{{ ext{$\lambda$}}}$	商值
同 号	1
异 号	0

(2) 商符的形成

6.3

除法过程中自然形成

(3) 新余数的获得

加减交替

$[R_i]_{{\mathbb{A}}}$ 和 $[y]_{{\mathbb{A}}}$	商	新余数
同号	1	$2[R_i]_{\stackrel{?}{\uparrow}} + [-y]_{\stackrel{?}{\uparrow}}$
异号	0	$2[R_i]_{i} + [y]_{i}$

同、1、移、减

异、0、移、加

设x = -0.1011 y = 0.1101 求 $[\frac{x}{y}]$ 并还原成真值

6.3

解: $[x]_{\dagger} = 1.01$	101 [y] _补 =	= <mark>0</mark> .1101 [$[-y]_{\stackrel{*}{\uparrow}}=1$.001	1
1.0101	0.0000				
+0.1101		[x] _补 和 [y] _补 昇	号做加法		
逻辑 0.0010	1	$[R_i]_{{ ext{$ ext{$}$}}}$ 和 $[y]_{{ ext{$ ext{$}$}}}$	一 司号上"1"	,	
左移 >0.0100	1	← 1			
+1.0011		+[-y] _补			
逻辑 1.0111	10	异号上"0"	$[R_i]$ 补和 $[y]$ 补	商	新余数
左移 >0.1110	10	←1	同号	1	$2[R_i]_{\not\uparrow\downarrow} + [-y]_{\not\uparrow\downarrow}$
+0.1101		+[y] _{ネト}	异 号	0	$2[R_i]_{\stackrel{?}{\uparrow}\downarrow} + [y]_{\stackrel{?}{\uparrow}\downarrow}$
逻辑 1.1011	100	异号上"0"			
左移 >1.0110	100	←1	$\therefore \left[\frac{x}{y}\right]$	· 」 补= 1	1.0011
+0.1101		+[<i>y</i>] _{₹ŀ}		x =	- 0.1101
逻辑 0.0011	1001	同号上"1"		\overline{y}	
左移 9110	1001	算机组成原理末位恒	置"1"		337

例 6.26	已知 $x = 0.1001$, $y = 0$.	1101,求	$\left[\frac{x}{y}\right]_{x}$
--------	-----------------	-------------	--------	--------------------------------

解:由x=0.1001, y=0.1101

$$[x]_{++} = 0.1001, [y]_{++} = 0.1101, [-y]_{++} = 1.0011$$

其运算过程如表 6.26 所示。

得

$[R_i]_{{ au}}$ 和 $[y]_{{ au}}$	商	新余数
同号	1	$2[R_i]_{\dot{\uparrow}\dot{\uparrow}} + [-y]_{\dot{\uparrow}\dot{\uparrow}}$
异 号	0	$2[R_i]_{\nmid i} + [y]_{\nmid i}$

表 6.26 例 6.26 的运算过程

被除数(余数)	商	说明			
0.1001	0.0000				
+ 1.0011		[z] * 与[y] * 同号, +[-y] *			
1.1100	0	[R]*与[y]*异号,上商"0"			
1.10.0.0	0	←1 位			
+ 0 . 1 1 0 1		+ [y] **			
0.0101	0 1	[R]*与[y]*同号,上商"1"			
Ò.1010	0 1	←1 位			
+ 1.0011		+[-7]*			
1.1101	010	[R]*与[y]*异号,上商"0"			
1.1010	010	←1 位			
+ 0 . 1 1 0 1		+ [7] *			
0.0111	0101	[R]*与[y]*同号,上商"1"			
0.1110	01011	←1 位,末位商恒置"1"			

所以
$$\left[\frac{x}{y}\right]_{ij} = 0.1011$$

(4) 小结

6.3

- ▶补码除法共上商 n+1 次 (末位恒置 1) 第一次为商符
- >第一次商可判溢出
- ▶加n次 移n次
- > 用移位的次数判断除法是否结束
- ▶精度误差最大为 2⁻ⁿ

(5) 补码除和原码除(加减交替法)比较 6.3

	原码除	补码除
商符	$x_0 \oplus y_0$	自然形成
操作数	绝对值补码	补码
上商原则	余数的正负	比较余数和除数的符号
上商次数	n +1	n +1
加法次数	n +1	n 因为末位商恒置为1
移位	逻辑左移	逻辑左移
移位次数	n	n

 $[x^*]_{\stackrel{*}{\nearrow}} - [y^*]_{\stackrel{*}{\nearrow}}$

或 $[x^*]_{\stackrel{}{\mathbb{A}}}$ + $[-y^*]_{\stackrel{}{\mathbb{A}}}$

第一步操作

同号 $[x]_{i}$ - $[y]_{i}$ ^{或 $[x]_{i}$}

作业

- (hw5)
- 习题:
 - 6.20 (原码一位乘、原码两位乘、补码一位 乘Booth算法必做,补码两位乘选做)
 - -6.23
 - 6.21 (原码加减交替除法,补码加减交替除法)
- 本次作业提交截止时间:
 - 4月14日上课前提交

Moore's Second Law

Moore's Law: 2X Transistors / chip every 2 years

The cost of a chip fab doubles every four years

Neil C. Thompson and Svenja Spanuth, "The Decline of Computers as a General Purpose Technology", Communications of the ACM, March 2021

6.4 浮点四则运算

一、浮点加减运算

$$x = S_x \cdot 2^{j_x}$$

$$y = S_y \cdot 2^{J_y}$$

1. 对阶(使得两数的小数点对齐)

(1) 求阶差

S: 一般为绝对值小于 1的规格化数

$$\Delta j = j_x - j_y = \begin{cases} = 0 & j_x = j_y \\ > 0 & j_x > j_y \end{cases} \begin{cases} x \text{ in } y \text{ 看齐} & S_x \leftarrow 1, j_x - 1 \\ y \text{ in } x \text{ 看齐} & \checkmark S_y \rightarrow 1, j_y + 1 \end{cases}$$
$$< 0 & j_x < j_y \end{cases} \begin{cases} x \text{ in } y \text{ 看齐} & \checkmark S_x \leftarrow 1, j_x + 1 \\ y \text{ in } x \text{ 看齐} & \checkmark S_y \leftarrow 1, j_y - 1 \end{cases}$$

(2) 对阶原则 小阶向大阶看齐 (即阶小的尾数向右移,阶码++,直至两个阶码相等) 例如 $x = 0.1101 \times 2^{01}$ $y = (-0.1010) \times 2^{11}$ 6.4 求 x+y

解: $[x]_{\stackrel{?}{\uparrow}} = 00, 01; 00.1101$ $[y]_{\stackrel{?}{\uparrow}} = 00, 11; 11.0110$

1. 对阶

① 求阶差
$$[\Delta j]_{\hat{A}} = [j_x]_{\hat{A}} - [j_y]_{\hat{A}} = 00,01$$

+ 11,01
11,10

阶差为负 (-2) $\therefore S_x \rightarrow 2$ $j_x + 2$

② 对阶 $[x]_{*} = 00, 11; 00.0011$

2. 尾数求和

$$[S_x]_{rac{\lambda}{1}}$$
 = 00.0011 对阶后的 $[S_x]_{rac{\lambda}{1}}$ + $[S_y]_{rac{\lambda}{1}}$ = 11.0110 11.1001 $\therefore [x+y]_{rac{\lambda}{1}}$ = 00, 11; 11. 1001

3. 规格化

6.4

(1) 规格化数的定义

$$r=2 \qquad \frac{1}{2} \leq |S| < 1$$

(2) 规格化数的判断

S>0	规格化形式	$S \le 0$	规格化形式
真值	$0.1 \times \times \cdots \times$	真值	$-0.1 \times \times \cdots \times$
原码	$0.1 \times \times \cdots \times$	原码	$1.1 \times \times \cdots \times$
补码	$0.1 \times \times \cdots \times$	补码	$1.0 \times \times \cdots \times$
反码	$0.1 \times \times \cdots \times$	反码	$1.0 \times \times \cdots \times$

原码 不论正数、负数,第一数位为1,即为规格化形式

补码 符号位和第一数位不同,即为规格化形式

特例

$$S = -\frac{1}{2} = -0.100 \cdots 0$$

$$[S]_{\mathbb{R}} = 1.100 \cdots 0$$

$$[S]_{\nmid h} = \boxed{1.1} 0 0 \cdots 0$$

: [-1] 不是规格化的数 (规定)

$$S = -1$$

$$[S]_{3} = 1.0000 \cdots 0$$

· [-1]_{*} 是规格化的数(规定)

即尾数出现 00.0 ××···×或 11.1 ××···×时

尾数左移一位,阶码减1,直到数符和第一数位不同为止

上例 $[x+y]_{\dagger} = 00, 11; 11.1001$

左规后 $[x+y]_{\stackrel{?}{=}} = 00, 10; 11.0010$

负数的补码左移补0 还是1?

$$x + y = (-0.1110) \times 2^{10}$$

(4) 右规

尾数溢出不是浮点运算溢出

当尾数溢出(>1)时,需右规

即尾数出现 01. ×× ···×或 10. ×× ···×时

尾数右移一位, 阶码加1

例6.27 $x = 0.1101 \times 2^{10}$ $y = 0.1011 \times 2^{01}$ 6.4

x+y (除阶符、数符外,阶码取 3 位,尾数取 6 位)

解:
$$[x]_{\uparrow \downarrow} = 00,010;00.110100$$

 $[y]_{\uparrow \downarrow} = 00,001;00.101100$

① 对阶

$$[\Delta j]_{\stackrel{?}{\Rightarrow}} = [j_x]_{\stackrel{?}{\Rightarrow}} - [j_y]_{\stackrel{?}{\Rightarrow}} = 00,010 \\ + 11,111 \\ \hline 100,001$$
阶差为 +1 $: S_y \to 1, j_y + 1$
 $: [y]_{\stackrel{?}{\Rightarrow}'} = 00,010;00.010110$

②尾数求和

$$[S_x]_{\stackrel{}{\mathbb{A}}} = 00.110100$$
 $+ [S_y]_{\stackrel{}{\mathbb{A}}} = 00.010110$ 对阶后的 $[S_y]_{\stackrel{}{\mathbb{A}}}$, 200.001010 尾数溢出需右规

③右规

6.4

 $[x+y]_{3b} = 00, 010; 01.001010$

右规后

 $[x+y]_{3} = 00,011;00.100101$

 $\therefore x+y=0.100101\times 2^{11}$

4. 舍入

移动时认为此数为正数 (最高符号位为0), 所以正数补码移动补0

在对阶和右规过程中,可能出现尾数末位丢失引起误差,需考虑舍入

- (1) 0 舍 1 入法
- (2) 恒置"1"法

例 6.28
$$x = (-\frac{5}{8}) \times 2^{-5}$$
 $y = (-\frac{7}{8}) \times 2^{-4}$

求 x-y (除阶符、数符外, 阶码取 3 位, 尾数取 6 位)

解:

$$x = (-0.101000) \times 2^{-101}$$

$$y = (0.111000) \times 2^{-100}$$

$$[x]_{3} = 11,011;11.011000$$

$$[y]_{*} = 11, 100; 00. 111000$$

①对阶

$$[\Delta j]_{\stackrel{?}{\uparrow}} = [j_x]_{\stackrel{?}{\uparrow}} - [j_y]_{\stackrel{?}{\uparrow}} = 11,011$$

$$+ 00,100$$

$$11,111$$

阶差为
$$-1$$
 $\therefore S_x \longrightarrow 1$, j_x+1

 $[x]_{*k'} = 11, 100; 11.101100$

② 尾数求和

$$[S_x]_{\frac{1}{7}} = 11.101100$$

+ $[-S_y]_{\frac{1}{7}} = 11.001000$
110.110100

③右规

$$[x-y]_{\begin{subarray}{l} \begin{subarray}{l} \begin{subarray}{$$

$$\therefore x - y = (-0.100110) \times 2^{-11}$$
$$= (-\frac{19}{32}) \times 2^{-3}$$

周兴铭院士科研成就——"一生就是做了那么几台机器"

- 先后参加晶体管计算机、集成电路计算机、百万次级大型计算机研制,在锗晶体管 电路抗高温稳定性、TTL信号传输抗干扰以及快速除法算法等方面做出创新性工作
- 中国第一台巨型计算机银河I主机系统负责人,中国第一台全数字实时仿真计算机银河仿I总负责人,中国第一台面向科学/工程计算的并行巨型计算机银河II总设计师,在总体方案、CPU结构、可靠性及RAS技术方案、系统接口协议等方面做出创新性工作,攻克若干技术难关
- 研究领域还包括: 高性能计算、移动计算和微处理器体系结构

原创: Daniel Stori {turnoff.us}

文字翻译: LCTT@GHLandy

图文合成: LCTT@GHLandy {GHLandy.com}

World's First Computer "Bug" (Sep 9, 1947)

https://www.nationalgeographic.org/thisday/sep9/worlds-first-computer-bug/ https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

复习:

- 1. 除法运算: "加(减)"和"左移"实现
- 2. 原码除法:符号位和数值位分开运算。数值部分用无符号数除法实现。可用于浮点数尾数除法运算。
 - ① 恢复余数法:核心操作是"试商" 如果试商失败(余数为负,不够减),则上商0,并恢复余数,然后再执行下一轮操作 如果试商成功,则上商1,直接下一轮操作
 - ② 不恢复余数法(加减交替法):核心是将"本轮恢复余数"操作合并到"下一轮试商"操作中。 正、1、移、减; 负、0、移、加

余数 $R_i > 0$ 上商 "1" $2R_i - y^* \rightarrow +[-y^*]_{i}$ 余数 $R_i < 0$ 上商 "0" $2R_i + y^* \rightarrow +[y^*]_{i}$

- 3. 补码除法:符号位和数值位一起运算。可用于整数除法运算。
 - ① 不恢复余数法(加减交替法):同、1、移、减; 异、0、移、加
- 4. 注意区别[-y*]_补和[-y]_补
 - ① 原码除法中使用[-y*]*
 - ② 补码除法中使用[-y]**

$[R_i]_{{ au}}$ 和 $[y]_{{ au}}$	商	新余数
同号	1	$2[R_i]_{\stackrel{*}{\uparrow}} + [-y]_{\stackrel{*}{\uparrow}}$
异 号	0	$2[R_i]_{\stackrel{*}{\rightarrow}} + [y]_{\stackrel{*}{\rightarrow}}$

5. 在除法运算之前先做检查:被除数不等于 0、除数不能为 0

复习:

- 6. 关于余数的三点说明
 - ① 在原码除法中,若最后一次上商为0,不论采用恢复余数还是不恢复余数法,都需要进行一次显式的恢复余数操作
 - ② 教材中原码除法竖式最后一行的"余数"如何变为"真实余数"?仅 右移n位?例6.24和6.25的结果是否正确?
 - ③ 补码除法中的商末位恒置1法,不仅可致商的精度损失,也会得到错误的余数。请自行核对教材P266例6.26和例6.27的结果
- 7. 浮点数运算:由多个ALU+移位器实现
- 8. 浮点加减法
 - ① 阶码对阶操作: 求阶差, 小阶向大阶看齐
 - ② 尾数求和操作:对阶后两个尾数按定点加减法规则计算
 - ③ 尾数规格化操作: 左规提高有效位数、右规避免尾数溢出
 - ④ 尾数舍入操作:对阶和右规中可能产生舍入还需要进行其他操作吗?