© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°05

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Exercice 1 ★★★

Pour $p \in \mathbb{R}_+^*$, on convient que $0^p = 0$ et on pose

$$\forall x \in \mathbb{K}^n, \ \|x\|_p = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}}$$

Pour $(x, y) \in (\mathbb{R}^n)^2$, on posera $x.y = (x_1y_1, \dots, x_ny_n)$.

- 1. Soit $p \in \mathbb{R}_+^*$. Montrer que $\|.\|_p$ vérifie les propriétés de séparation et d'homogénéité.
- **2.** Soit $(p,q) \in (\mathbb{R}_+^*)^2$ tel que $\frac{1}{p} + \frac{1}{q} = 1$.
 - **a.** En utilisant la concavité de ln, montrer que pour tout $(u, v) \in (\mathbb{R}_+)^2$, $uv \leq \frac{u^p}{p} + \frac{v^q}{q}$.
 - **b.** En déduire que pour $(x,y) \in (\mathbb{K}^n)^2$, $\|x.y\|_1 \leq \|x\|_p \|y\|_q$. On pourra d'abord traiter le cas où $\|x\|_p = \|y\|_q = 1$.
- 3. Soit $p \in [1, +\infty[$. Montrer que $\|.\|_p$ vérifie l'inégalité triangulaire. On pourra remarquer pour $(x, y) \in (\mathbb{K}^n)^2$,

$$\sum_{k=1}^{n} |x_k + y_k|^p = \sum_{k=1}^{n} |x_k| |x_k + y_k|^{p-1} + \sum_{k=1}^{n} |y_k| |x_k + y_k|^{p-1}$$

- **4.** a. Soit $p \in \mathbb{R}_+^*$. Montrer que pour tout $x \in \mathbb{K}^n$, $||x||_{\infty} \le ||x||_p$.
 - **b.** Soit $(p,q) \in (\mathbb{R}_+^*)^2$ tel que p < q. Montrer que pour tout $x \in \mathbb{K}^n$, $\|x\|_q \leq \|x\|_p$, puis déterminer $\sup_{x \in \mathbb{K}^n \setminus \{0\}} \frac{\|x\|_q}{\|x\|_p}.$
- **5.** a. Soit $(p,q,r) \in (\mathbb{R}_+^*)^2$ tel que $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$. Montrer que pour $(x,y) \in (\mathbb{K}^n)^2$

$$||x.y||_r \le ||x||_p ||y||_q$$

b. Soit $(p,q) \in (\mathbb{R}_+^*)^2$ tel que p < q. Montrer que pour tout $x \in \mathbb{K}^n$,

$$||x||_p \le n^{\frac{1}{p} - \frac{1}{q}} ||x||_q$$

1

 $\text{puis déterminer } \sup_{x \in \mathbb{K}^n \setminus \{0\}} \frac{\|x\|_p}{\|x\|_q}.$

6. Soit $x \in \mathbb{K}^n$. Montrer que $||x||_{\infty} = \lim_{p \to +\infty} ||x||_p$.

© Laurent Garcin MP Dumont d'Urville

Exercice 2 ***

On pose $E = \mathcal{C}([a, b], \mathbb{K})$ et pour $p \in \mathbb{R}_+^*$, on convient que $0^p = 0$ et on pose

$$\forall f \in \mathcal{E}, \ \|f\|_p = \left(\int_a^b |f(t)|^p \ \mathrm{d}t\right)^{\frac{1}{p}}$$

- **1.** Soit $p \in \mathbb{R}_+^*$. Montrer que $\|.\|_p$ vérifie les propriétés de séparation et d'homogénéité.
- **2.** Soit $(p,q) \in (\mathbb{R}_+^*)^2$ tel que $\frac{1}{p} + \frac{1}{q} = 1$.
 - **a.** En utilisant la concavité de ln, montrer que pour tout $(u, v) \in (\mathbb{R}_+)^2$, $uv \leq \frac{u^p}{p} + \frac{v^q}{q}$.
 - **b.** En déduire que pour $(f,g)\in \mathbb{E}^2$, $\|fg\|_1\leq \|f\|_p\|g\|_q$. On pourra d'abord traiter le cas où $\|f\|_p=\|g\|_q=1$.
- 3. Soit $p \in [1, +\infty[$. Montrer que $\|.\|_p$ vérifie l'inégalité triangulaire. On pourra remarquer pour $(f, g) \in \mathbb{E}^2$,

$$\int_a^b |f(t) + g(t)|^p dt = \int_a^b |f(t)||f(t) + g(t)|^{p-1} dt + \int_a^b |g(t)||f(t) + g(t)|^{p-1} dt$$

4. a. Soit $p \in \mathbb{R}_+^*$. Pour $n \in \mathbb{N}^*$, on définit $f_n \in E$ en posant

$$f_n(t) = \begin{cases} 1 - n\frac{t - a}{b - a} & \text{si } a \le t \le a + \frac{b - a}{n} \\ 0 & \text{sinon} \end{cases}$$

Calculer $||f_n||_p$.

- **b.** Soit $(p,q) \in (\mathbb{R}_+^*)^2$ tel que p < q. Déterminer $\sup_{f \in \mathbb{E} \setminus \{0\}} \frac{\|f\|_q}{\|f\|_p}$.
- $\textbf{5.} \quad \textbf{a.} \; \operatorname{Soit} \, (p,q,r) \in (\mathbb{R}_+^*)^2 \; \mathrm{tel} \; \mathrm{que} \; \frac{1}{p} + \frac{1}{q} = \frac{1}{r}. \; \mathrm{Montrer} \; \mathrm{que} \; \mathrm{pour} \; (f,g) \in \mathrm{E}^2, \, \|fg\|_r \leq \|f\|_p \|g\|_q.$
 - **b.** Soit $(p,q) \in (\mathbb{R}_+^*)^2$ tel que p < q. Montrer que pour tout $f \in E$,

$$||f||_p \le (b-a)^{\frac{1}{p}-\frac{1}{q}} ||f||_q$$

puis déterminer $\sup_{f \in \mathbb{E} \setminus \{0\}} \frac{\|f\|_p}{\|f\|_q}$.

6. Soit $f \in E$. Montrer que $||f||_{\infty} = \lim_{p \to +\infty} ||f||_p$.