

Cloud Computing for Science

Orienting

Tutorial Goals

- An exploration of cloud computing for researchers
 - Scientists who need to go beyond their current resources
 - Computer science students who need to know what is possible
 - Data scientists who want to understand the potential of the cloud
- What will be covered
 - Cloud data services
 - VM and Container basics
 - Ways to scale: clusters, mapreduce, microservices
 - Data analytics in the cloud
 - Streaming data
 - Machine learning in the cloud

Preliminaries

- We will use Microsoft's Azure for Hands-on Exercises
 - Initializing your account
 - Download Azure Storage Explorer http://storageexplorer.com/
- Access to these slides and Jupyter Notebooks
 - From the book "Cloud Computing for Science and Engineering" by Ian Foster an Dennis Gannon, to be published soon by MIT Press.
 - The link to the book is here
 - https://Cloud4SciEng.org

We will be using Python and Jupyter

- Jupyter in the cloud
 - Go to https://notebooks.azure.com
 - Signup it's free.
 - If you are new to Jupyter do Welcome.ipynb
 - If you are new to Python do Python.ipynb
- Installing Jupyter on your laptop
 - Go to https://docs.continuum.io/anaconda/install
 - Do it. Then "Jupyter notebook" at the shell
- Better solution: install Docker
 - https://docs.docker.com/engine/installation/
- and run Jupyter in a container
 - docker run –it -p 8888:8888 dbgannon/tutorial
 - Accept security exceptions and login with "tutorial"
 - Open notebook jupyter.ipynb to see the one on the right

Orienting in the Cloud

- We will discuss three different "public clouds" and a bit about a "science private clouds"
 - Public = anybody with a credit card has access. (aka commercial cloud)
 - Private = restricted to a special group of users. (aka Community Cloud or Academic Cloud)
 - (In Europe these terms are often reversed based on ownership.)

They are:

- Amazon Web Services (AWS) 40% of all cloud resources on the planet.
- Microsoft Azure about 1/3 of AWS but growing
- Google Cloud third place
- NSF JetStream an OpenStack private cloud for US science researchers.
- There are many more clouds.
 - Public: IBM, DigitalOcean, Rackspace, 1&1, UpCloud, CityCloud, CloudSigma, CloudWatt, Aruba
 - Private Research Clouds: Aristotle, Bionimbus, Chameleon, Jetstream, RedCloud, indigodatacloud, EU-Brazil Cloud, European Open Science Cloud
- What are the pros and cons of public vs private

Pros & Cons of Public vs Private Cloud

Public cloud pros

- Massive scale
- Huge and growing list of services
- Highly competitive on pricing due to economies of scale
- Security is strong
- Freedom from managing hardware
- Hardware constantly upgraded

Cons

- Rules prohibit data moving to cloud
- Funding models may make it hard to use
- Fear of "vendor Lock-In"

Private cloud pros

- May be cheaper
- You can keep it off the Internet so data can be very safe.
- You can optimize your own hardware
- You control everything

Cons

- You are responsible for everything
- Not as many high level services
- May not really be cheaper
- You manage physical and system security

Two ways to access the cloud

Portals and SDKs

- Web Portals
 - Dashboard that allow you to see and manage your cloud resources.
- Software Development Kits (SDKs)
 - Libraries that give you the tools to manage cloud resources from a program or script.
 - Based on REST web service calls

Let's look at several Cloud Web Portals

You see links to all the standard services

You also have a search bar to find others.

To create a storage account go to S3

To launch a Virtual Machine go to EC2

Let's look at the S3 storage system

Selecting S3 we get the bucket list

Notice that it has regular objects AND folders.

Jetstream –NSF Science Cloud (OpenStack)

Jetstream is about virtual Machines for science

Generic Linux

MATLAB

Centos 7 (7.3) Development GUI Feb 24th 17 09:21 by ifischer

Centos 7 (7.3) Development GUI

CentOS 6 (6.8) Development GUI Feb 24th 17 09:19 by ifischer

Based on CentOS 6 (6.8) Development

o updated from 6.7 to 6.8

Ubuntu 14.04.3 Development GUI Feb 24th 17 09:17 by jfischer

Based on Ubuntu 14.04.3 Development

Base Ubuntu 14.04.3 + Xfce + Xfce-goodies, firefox, i ...

BioLinux 8 Feb 24th 17 09:13 by jfischer Based on Ubuntu 14.04.3 -Trusty Tahr - server - clouding

-- **REQUIRES m1.small instance ...

Intel Development (CentOS 7) Feb 24th 17 09:08 by jfischer

Intel compilers and development environment

*REQUIRES a m1.small or larger VM to la ...

MATLAB (Based on CentOS 6) Feb 24th 17 08:56 by atmoadmin

Imported Application - MATLAB (Based on CentOS 6)

R with Intel compilers (CentOS ... Feb 24th 17 08:50 by jfischer

R with Intel compilers built on CentOS 7 (7.3)

** Requires m1.small or greater sized VM * ...

Galaxy Standalone Nov 15th 16 01:49 by admin

Galaxy 16.01 Standalone - based on Ubuntu 14.04.4 LTS

This is a standalone Galaxy server ...

The Azure Portal

Selecting "+" gives this list of options.

Selecting "Storage" gives the secondary menu of types of storage apps.

To create a storage account select the top one.

give it a name,
research group and location.

Next

- A deeper look at storage
- Virtual Machines and Containers
- Scaling deployments and Microservices demo
- Analytics
- Machine Learning in the cloud