Preliminaries

Expectation-Maximization

Let **Y** be the random vector of observed data, whose realizations **y** we call **observed data**. Similarly, let **X** be the random vector of **missing** data whose realizations **x** we do not observe. Our aim is to find the maximum likelihood estimator ψ_{MLE} of the *complete-data* likelihood $p(\mathbf{x}, \mathbf{y} \mid \psi)$ but since realizations **x** are missing we aim instead to maximize the incomplete-data likelihood $p(\mathbf{y} \mid \psi)$.

Algorithm 1: Expectation-Maximization

- 1 Initialize ψ_0 randomly.
- 2 until convergence:
- 3 Expectation Step: Calculate expectation of complete-data log-likelihood.

$$Q(\boldsymbol{\psi} \mid \boldsymbol{\psi}_k) = \mathbb{E}_{p(\mathbf{x} \mid \mathbf{y}, \boldsymbol{\psi}_k)} \left[\log p(\mathbf{x}, \mathbf{y} \mid \boldsymbol{\psi}) \right]$$

4 Maximization Step: Maximize the expectation with respect to ψ

$$\psi_{k+1} := \underset{\psi \in \Psi}{\operatorname{arg\,max}} Q(\psi \mid \psi_k)$$

5 Check convergence of the sequence $(\psi_k)_k$.

The EM algorithm has the powerful property that an increase in the $Q(\psi \mid \psi_k)$ function will force an increase at least as big in the incomplete-data likelihood $p(\mathbf{y} \mid \psi)$. The method was introduced more rigorously by Dempster et al. [1977] although the correct proof of convergence for cases when $p(\mathbf{x}, \mathbf{y} \mid \psi)$ does not follow a distribution in the exponential family was provided later by Wu [1983].

Robbins-Monro Procedure

Suppose we want to find the root θ_* of a function $h(\theta)$ of which we can only obtain noisy measurements $H(\theta, \mathbf{X})$ where \mathbf{X} is a random vector and $\mathbb{E}[H(\theta, \mathbf{X})] = h(\theta)$. Then under some regularity conditions the following iterative scheme converges to one of the roots

$$\boldsymbol{\theta}_n = \boldsymbol{\theta}_{n-1} + \gamma_n H(\boldsymbol{\theta}_{n-1}, \mathbf{X}_n)$$

where $(\gamma_n)_n$ is a non-negative sequence of step-sizes converging to 0. This procedure was first introduced by Robbins and Monro [1951] in the context of finding the value θ_* of a regression function $h(\theta)$ giving $h(\theta_*) = \alpha$.

General Form of Stochastic Approximations

Benveniste et al. [1990] provides an extensive study of the general form of stochastic approximation algorithms

$$\boldsymbol{\theta}_{n+1} = \boldsymbol{\theta}_n + \gamma_{n+1} H(\boldsymbol{\theta}_n, \mathbf{X}_{n+1}) + \gamma_{n+1}^2 \rho_{n+1}(\boldsymbol{\theta}_n, \mathbf{X}_{n+1})$$

where $\boldsymbol{\theta}_n \in \mathbb{R}^d$ is the parameter of interest, $\mathbf{X}_n \in \mathbb{R}^k$ is considered to be a random vector representing the **state** of the system, $(\gamma_n)_n$ are step sizes, $H: \mathbb{R}^d \times \mathbb{R}^k \to \mathbb{R}^d$ now represents how $\boldsymbol{\theta}$ changes due to new observations of \mathbf{X}_n and $\rho_{n+1}: \mathbb{R}^d \times \mathbb{R}^k \to \mathbb{R}^d$ represents a perturbation. The Robbins-Monro procedure can then be seen as the special case with no perturbation, additional restrictions on the evolution of the state vector \mathbf{X}_n and additional conditions regarding the step sizes γ_n .

Curved Exponential Family

If a probability density function can be expressed as follows we say it belongs to the exponential family.

$$p(\mathbf{z} \mid \boldsymbol{\psi}) \propto \exp\left(-\xi(\boldsymbol{\psi}) + \langle T(\mathbf{z}), \phi(\boldsymbol{\psi}) \rangle\right)$$

If the dimension of ψ is less than the dimension of $\phi(\psi)$ then we say the family is *curved*.

Context of the Stochastic Approximation EM Algorithm

Setting and Pseudo-Algorithm

Suppose the complete-data likelihood has a distribution in the curved exponential family

$$p(\mathbf{x}, \mathbf{y} \mid \boldsymbol{\psi}) \propto \exp\left(-\xi(\boldsymbol{\psi}) + \langle \widetilde{\theta}(\mathbf{x}), \phi(\boldsymbol{\psi}) \rangle\right)$$

where the dependence on the observed data implicit. If computation of the following integral is **intractable**

$$\mathbb{E}_{p(\mathbf{x}|\mathbf{y},\boldsymbol{\psi})}\left[\widetilde{\theta}(\mathbf{X})\right] = \int \widetilde{\theta}(\mathbf{x}) p(\mathbf{x} \mid \mathbf{y}, \boldsymbol{\psi}) d\mathbf{x}$$

then the Maximum Likelihood Estimate ψ_{MLE} can be found with the following algorithm.

Algorithm 2: SAEM

- ı Initialize ψ_0 randomly, and choose large step size γ_1 . Set $\gamma_0=1$ and $\boldsymbol{\theta}_{-1}=\mathbf{0}$
- 2 until convergence:
- 3 Sample $\mathbf{x}_k^{(1)}, \dots, \mathbf{x}_k^{(m_k)}$ from $p(\mathbf{x} \mid \mathbf{y}, \boldsymbol{\psi}_k)$ and calculate

$$\boldsymbol{\theta}_k \leftarrow \boldsymbol{\theta}_{k-1} + \gamma_k \left(\frac{1}{m_k} \sum_{j=1}^{m_k} \widetilde{\theta}(\mathbf{x}_k^{(j)}) - \boldsymbol{\theta}_{k-1} \right)$$

4 Maximize stochastic approximation of conditional expectation.

$$\psi_{k+1} := \underset{\psi \in \Psi}{\operatorname{arg max}} -\xi(\psi) + \langle \boldsymbol{\theta}_k, \phi(\psi) \rangle$$

5 Compute averaged sequence of parameters

$$\overline{\boldsymbol{\psi}}_{k+1} \leftarrow \overline{\boldsymbol{\psi}}_k + \frac{1}{n} \left(\boldsymbol{\psi}_{k+1} - \overline{\boldsymbol{\psi}}_k \right)$$

6 Check convergence of the averaged sequence.

Additional Details and Literature Review

- Step Size and Averaged Sequence: Polyak [1990] showed that using a step size γ_k that goes to zero slower than 1/k (but not too slow) will guarantee that the averaged sequence $(\overline{\psi}_k)_k$ will reach its limit at an optimum rate. It is suggested to use $\gamma_k = k^{-2/3}$. In other words, we can use larger step sizes that might make $(\psi_k)_k$ diverge, but might still allow $(\overline{\psi}_k)_k$ to converge.
- Averaged Sequence Equivalence: Delyon et al. [1999], when presenting the SAEM algorithm, noticed that while the original paper by Polyak [1990] suggested to consider $(\overline{\theta}_k)_k$ one can equivalently (and more appropriately) use averaging on the iterates of the original parameter ψ_k .
- Convergence of Stochastic Approximations: This topic goes beyond the scope of the lecture, however, a good resource to learn the tools and techniques to prove convergence for such algorithms are covered in Benveniste et al. [1990]. A simpler stochastic approximation version of the EM algorithm has been proposed by Gu and Li [1998] and exploits the fact that maximizing an expectation is equivalent to finding the stationary points of the gradient, which is a root-finding problem so under regularity conditions Robbins-Monro procedure can be applied.

References

- Albert Benveniste, Pierre Priouret, and Michel Métivier. Adaptive Algorithms and Stochastic Approximations. Springer-Verlag, Berlin, Heidelberg, 1990. ISBN 0-387-52894-6.
- Bernard Delyon, Marc Lavielle, and Eric Moulines. Convergence of a stochastic approximation version of the em algorithm. *Ann. Statist.*, 27(1):94–128, 03 1999. doi: 10.1214/aos/1018031103. URL https://doi.org/10.1214/aos/1018031103.
- A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm. *Journal of the Royal Statistical Society. Series B (Methodological)*, 39(1):1–38, 1977. ISSN 00359246. URL http://www.jstor.org/stable/2984875.
- Ming Gao Gu and Shaolin Li. A stochastic approximation algorithm for maximum-likelihood estimation with incomplete data. *Canadian Journal of Statistics*, 26(4):567–582, 1998. doi: 10.2307/3315718. URL https://onlinelibrary.wiley.com/doi/abs/10.2307/3315718.
- Boris Polyak. New stochastic approximation type procedures. Avtomatica i Telemekhanika, 7:98–107, 01 1990.
- Herbert Robbins and Sutton Monro. A stochastic approximation method. Ann. Math. Statist., 22(3):400–407, 09 1951. doi: 10.1214/aoms/1177729586. URL https://doi.org/10.1214/aoms/1177729586.
- C. F. Jeff Wu. On the convergence properties of the em algorithm. *Ann. Statist.*, 11(1):95–103, 03 1983. doi: 10.1214/aos/1176346060. URL https://doi.org/10.1214/aos/1176346060.