

Carnegie Mellon University

Thesis Proposal:

Design of Hybrid Lattice Support Structures Considering Practical Additive Manufacturing Constraints

Lisha White, PhD. Candidate, Carnegie Mellon University

Committee Members:

Dr. Jonathan Cagan¹, Dr. Yongjie Jessica Zhang¹ Dr. Anthony Rollett², Dr. Guanglu Zhang¹

- 1. Carnegie Mellon University, Department of Mechanical Engineering
- 2. Carnegie Mellon University Department of Material Science and Engineering

Purpose/

Objective

)hi 12

Obj. 2.

Obj. 2.:

Obj. 3.1

Obj. 3

. Obj. 3

Conclusions 2

Additive Manufacturing (AM) of Metals¹

Motivation

Laser Powder Bed Fusion (LPBF)

Layer-wise addition of material to create a part using a high-power laser to melt metal alloy powder¹

Geometric Inaccuracy: Residual Stress

- - Thermal Cycle³ •Rapid heating with steep gradients
 - Rapid solidification with high cooling
 - Melt-back involving simultaneous melting and remelting

Model of one layer of stress for laser powder bed fusion(a) Heating phase and (b) cooling phase³

structures

Methods to generate Support

•Lattice Structures^{5,8-10}

-0.001 -0.002

0.005

0.015

0.02

0.025

0.03

Conclusions

5

0.035

Motivation

Purpose^{5,9}:

Support Structures

36.40mm

0.003

0.001 0.002 0.003 0.004

0.005

0.01

0.025

0.03

0.02

0.015

L[m]

Motivation Purpose/ Objective 1 Objective 2 Objective 3 Conclusions
Obj. 1.1 Obj. 1.2 Obj. 2.1 Obj. 2.2 Obj. 3.1 Obj. 3.2 Obj. 3.3

Lattices

Artificial microscopic structures with strategically designed geometry to control properties on the macroscopic level^{12,13}

Lattice Support Structures¹²⁻¹⁴

- Self-supporting structure
- Light-weight design
- Tailorable physical properties
- Ease of powder removal

Lattice Structures in Nature¹²

Motivation | Purpose/ | Obj. 1.1 | Obj. 1.2 | Obj. 2.1 | Obj. 2.2 | Obj. 3.1 | Obj. 3.2 | Obj. 3.3 | Conclusions

Commonly Used Optimizers

7

Gradient-Based Optimizer^{15,16}

- Ideal for continuous design variables
- Fast convergence
- May only find local optima

Non-Gradient-Based Optimizers¹⁶⁻¹⁸

- Ideal for non-differentiable design variables
- Slow convergence
- Not been applied to optimizing lattice support structures in LPBF

urpose

Objective 1

2

2.1

Obj. 2.2

ODJ. 3. I

70j. 3.2

uj. 3.3

Existing Optimizers to Optimize Heat Dissipation Utilizing Lattice Support Structures

Optimize periodic unit cell^{9,14}

- Minimize thermal compliance⁹
- •Did not consider non-uniform heat distribution

Optimize density distribution^{4,10,11,19}

- Minimize thermal gradient w.r.t density¹⁷
 - Accumulated error from approximations
 - Limited AM constraints

What is an efficient approach designers can employ for the generation of support structures that adhere to AM constraints?

What modifications can be made to existing optimization approaches for application to design lattice support structures?

10

Thesis Statement

Lattice support structure design for additive manufacturing (AM) is performed by reframing the optimization problem as a configuration optimization problem to maximize the dissipation of heat while constraining residual stress. By utilizing a modified non-gradient-based optimizer coupled with homogenization approximation to generate support structures, designers can create manufacturable lattice support structures for complex components optimized for the major functionality of heat dissipation while adhering to AM constraints for practical utilization, including structural integrity.

Thesis Statement

11

By utilizing a modified non-gradient-based optimizer coupled with homogenization approximation to generate support structures, designers can create manufacturable lattice support structures for complex components optimized for the major functionality of heat dissipation while adhering to AM constraints for practical utilization, including structural integrity.

Objective 1: Coupling Simulated Annealing and Homogenization to Design Thermally Conductive Hybrid Lattice Support Structures for LPBF

Objecti

. 1.2

bj. 2.1

Obj. 3.1

Obj.

oj. 3.3

12

Thesis Statement

By utilizing a modified non-gradient-based optimizer coupled with homogenization approximation to generate support structures, designers can create manufacturable lattice support structures for complex components optimized for the major functionality of heat dissipation while adhering to AM constraints for practical utilization, including structural integrity.

Objective 1: Coupling Simulated Annealing and Homogenization to Design Thermally Conductive Hybrid Lattice Support Structures for LPBF

Objective 2: Designing Thermally Conductive Hybrid Lattice Support Structures Constrained by Residual Stress and Deformation for LPBF

13

Thesis Statement

By utilizing a modified non-gradient-based optimizer coupled with homogenization approximation to generate support structures, designers can create manufacturable lattice support structures for complex components optimized for the major functionality of support structures of heat dissipation while adhering to AM constraints for practical utilization, including structural integrity.

- **Objective 1:** Coupling Simulated Annealing and Homogenization to Design Thermally Conductive Hybrid Lattice Support Structures for LPBF
- Objective 2: Designing Thermally Conductive Hybrid Lattice Support Structures Constrained by Residual Stress and Deformation for LPBF
- **Objective 3:** Extending Lattice Support Structure Design to Curved Interfaces

bj. 3.3

Overview

Objective 1: Coupling
Simulated Annealing and
Homogenization to Design
Thermally Conductive Hybrid
Lattice Support Structures for
LPBF

Objective 1.1: Maximize heat dissipation

Objective 1.2: Expedite evaluation and design exploration Objective 2: Designing
Thermally Conductive Hybrid
Lattice Support Structures
Constrained by Residual
Stress and Deformation for
LPBF

Objective 2.1: Incorporating structural Constraints

Objective 2.2:
Expediting thermal and structural property predictions

Objective 3: Extending
Lattice Support
Structure Design to
Curved Interfaces

Objective 3.1:
Calibrating for
Structural Accuracy

Objective 3.2: Designing for complex surfaces

Objective 3.3:
Validating framework experimentally

Obj. 1.1

Objective 1

(SC)

(FC) (BV)

 $X = [X_1, X_2, ..., X_n]$ to

 $Q_{out} = Q(x),$

subject to KT = q

Find

minimize

Purpose/

 $V(x) < \varepsilon_v * V_{max}$ and $A(x) < \varepsilon_A * A_{max}$

Physical properties of the unit cells for AlSi10Ma

Unit Cell	K _{eff} [W/m°C]	Volume [mm³]	Area _{XY} [mm²]	Area _{XZ} [mm²]		
Solid	110	8	4	4		
SC	12.37	1.82	2.31	2.31		
BV	24.39	2.82	0.567	1.30		
FC	39.43	3.69	0.846	3.24		

Plate

Obj. 1.1

16

Conclusions

Defining design domain and boundary conditions

Equivalent Flash Heating Part-Scale^{10,23,24}:

Layer-by-Layer Temperature

Equivalent steady-state:

$$\begin{cases} \nabla \cdot (K \nabla T) + \mathbf{q} = 0 \\ T(x, y, 0) = T_{base} \\ T(x, y, g) = T_{source} \end{cases}$$

Objective 1

Obj. 1.2

Conclusions

17

Simulated Annealing (SA)

Analogous to the annealing of metals Stages:

- High temperature: **Exploration** $(1 \rightarrow 3)$
- Mid-temperature: Intermediate $(3 \rightarrow 5)$
- Low temperature: Fine-tuning($5 \rightarrow 6$)

Probabilistic acceptance of designs:

$$P_{acc} = exp\left(-\frac{O_2 - O_1}{T'_k}\right)$$

Annealing Schedule:

$$T_{k+1} = \alpha * T'_{k}$$

Pros:

- Wider exploration of design space
- Allows hill climbing even at later stages $(3 \rightarrow 4)$

Cons:

Computationally expensive

18

Flowchart of Traditional SA Optimizer

Flowchart of modified-SA Optimizer

Obj. 1.2

Objective 1

.

21

Case Study of Cantilever Beam

 Op_{ex} : Objective = -1,900 W, Volume = 615 mm³, Area = 106 mm².

Comparison of support designs*

	Q _{out} [W]	Volume V(x) [mm³]	Area A(x) [mm²]	SC/BV/FC	Constraint Satisfaction V(x) < 750 A(x) < 140
Solid	4,546	1,800	280	0/0/0	No
SC Only	1,196	409	161	225/0/0	No
BV Only	1,607	634	57	0/225/0	Yes
FC Only	2,124	830	120	0/0/225	No
Op _{Avg}	1,887 (15.0)	745 (5.56)	108 (4.94)	18/58/149 (3.23/5.43/5.34)	Yes

*standard deviation in ()

Compared to BV Only

Average of ~16% Heat dissipation

Obj. 2.1

Ob

Objective 2

Obj. 3.1

Obj.

)J. 3.3

Overview

Objective 1: Coupling
Simulated Annealing and
Homogenization to Design
Thermally Conductive Hybrid
Lattice Support Structures for
LPBF

Objective 1.1: Maximize heat dissipation

Objective 1.2: Expedite evaluation and design exploratior Objective 2: Designing
Thermally Conductive Hybrid
Lattice Support Structures
Constrained by Residual
Stress and Deformation for
LPBF

Objective 2.1: Incorporating structural constraints

Objective 2.2: Expediting thermal and structural property predictions Objective 3: Extending
Lattice Support
Structure Design to
Curved Interfaces

Objective 3.1:
Calibrating for structural accuracy

Objective 3.2: Designing for complex surfaces

Objective 3.3: Validating framework experimentally

Problem Overview

Aerospace Bracket²⁶

110

12.37

24.39

39,43

Simple Cubic 4,12,10,19

Objective 2

Obj. 2.1

(SC)

2.31

0.567

0.846

BC Vertical Struts^{20,21} Face-Centered ^{9,21,22}

Design Variables (x)

(BV)

7.4E+10

7.64E+09

3.69E+09

1.34E+10

(FC)

2.782E+10

5.419E+08

4.375E+09

1.598E+08

2.782E+10

5.419E+08

4.175E+09

6.873E+09

Find

Cantilever Beam

minimize $Q_{out} = Q(x),$

subject to

KT = q,

 $x = [x_1, x_2, ..., x_n]$ to

 $V(x) < \varepsilon_v * V_{max}$ and $A(x) < \varepsilon_A * A_{max}$ CU = F

 $\frac{\sigma^{\frac{1}{J}}}{\sigma_{\nu}} \max \leq 1$

 $U_z \le U_{max}$

Unit

Cell

Solid

SC

BV

FC

8

1.82

2.82

3.69

Physical properties of the unit cells for AlSi10Mg

7.4E + 10

7.64E+09

9.73E+09

1.95E+10

$K_{eff}\left[\frac{W}{mC}\right]$	Volume [mm³]	Area _{xy} [mm²]	Area _{YZ} [mm²]	E _{effz} [Pa]	$egin{aligned} E_{eff_{Y,X}}\ [Pa] \end{aligned}$	G_{xy} [Pa]	G_{xZ}/G [Pa]

2.31

1.30

3.24

27. Xiaohui, J., et. al (2022)

Objective 2

 $\sigma_j^{PN} > \sigma_y$:= plastic deformation

 $\sigma_i^{PN} < \sigma_v$:= elastic deformation

Obj. 2.1

Structural Constraints

P-Norm Stress^{4,28}:

Conclusions

4. Cheng, L., et. al (2019) 11. Pellens, J., et.al (2020) 30. Zhang, Z. D., et. al (2020) 31. Misiun, G., et. al (2013) 32. Liang, X., et. al (2018) 33. Chen, Q., et. al (2019)

Objective 2

1. Inherent Strain Method

(ISM) 4,11,30,31,32,33

Defining design domain and boundary conditions

 Ω_I : Inactive Layers

 Ω_A : Active

Layers

Plate

Part Scale Modeling

Obj. 2.2

Conclusions

25

2. Equivalent Flash Heating

(EFH) ^{10,23,24}

Heating $\left[\rho c \frac{dT_i(t, x)}{dt} = \nabla \cdot \left(k \nabla T_i(t, x) \right) + q(x) \right]$

Purpose/

 Ω_L : Activated layer

 Ω_{h} :Build

 Ω_{s} : Support

Domain

Framework Flowchart

Obj. 2.2 Obj. 2.1

Case Study of Cantilever Beam

 Op_{ex2} : Objective = -2,815 W, Volume = 735 mm³, Area $= 108 \text{ mm}^2$, p-Norm = 0.366, U_{sum} = 24.2 mm

Comparison of support designs*

	Q _{out}	V(x)	A(x)	P-norm Stress	Max(U _{sum}) [μm]	SC/BV/FC	V(x)<750 A(x)<140 P-norm < 0.66 Max(U _{sum}) < 32
Solid	7,128	1,800	280	0.293	8.06		No
SC Only	1,743	409	161	0.359	31.7	225/0/0	No
BV Only	2,405	634	57	0.365	30.8	0/225/0	Yes
FC Only	3,235	830	120	0.352	15.6	0/0/225	No
Op _{avg,2}	2,773 (47.1)	722 (11.7)	107 (6.82)	0.360 (0.00614)	24.0 (1.34)	27/63/133 (5.3/8.0/9.4)	Yes

 $\vec{}_{1400}$ *standard deviation in ()

Compared to BV Only

Average of ~14% Heat dissipation

Average of ~25% Distortion

P-norm

Stress

0.609

0.648

0.648

0.637

0.643

(0.0037)

Comparison of support designs*

Max(U_{sum})

[µm]

14

96.0

97.5

74.7

72.8

(2.3)

SC/BV/FC

1.776/0/0

0/1,776/0

0/0/1,776

388/589/799

(16/20/30)

Iteration History of 5 runs

 Op_{ex3} : Objective = -4,860 W, Volume = 5,264 mm3, Area = 1,201 mm2, Displacement = 74 µm and P-norm = 0.646

*standard deviation in () Satisfies **Constraints**

|Q_{out}|

12,479

3,524

4,624

6.004

4.902

(29.4)

Solid

SC

Only

BV

Only FC

Only

Opavg,3

V(x)

14,208

3,232

5,008

6,553

5.315

(36.2)

A(x)

2,368

1,367

661

1,568

1.222

(13.7)

Compared to BV Only

Average of ~5% Heat dissipation

Average of ~29% Distortion

Conclusions

28

V(x) < 5.900

A(x) < 1.360

P-norm < 0.66 $Max(U_{sum}) < 76$

No

Νo

No

No

Yes

ms Obj. 1.1

-Obj. 1.2

Obj. 2.

Ol

O

3.1

ODJ. 3

Objective 3

Obj. 3.3

29

Overview

Objective 1: Coupling
Simulated Annealing and
Homogenization to Design
Thermally Conductive Hybrid
Lattice Support Structures for
LPBF

Objective 1.1: Maximize heat dissipation

Objective 1.2: Expedite evaluation and design exploratior Objective 2: Designing
Thermally Conductive Hybrid
Lattice Support Structures
Constrained by Residual
Stress and Deformation for
LPBF

Objective 2.1: Incorporating structural constraints

Objective 2.2: Expediting thermal and structural property predictions Objective 3: Extending
Lattice Support
Structure Design to
Curved Interfaces

Objective 3.1: Calibrating for structural accuracy

Objective 3.2:
Designing for complex surfaces

Objective 3.3: Validating framework experimentally*

Conclusions

inputs for arbitrary r

Haynes 282³⁴

Nickel-based superalloy

Purpose/

- High strength
- Resistance to corrosion and oxidation
- Good creep and fatigue performance
- Applications
 - Industrial gas turbines
 - Powerplant parts

Obj. 3.1

Objective 3

Incorporating complex, curved structures for lattice support generation

1. Multisize unit cells³⁷

2. Extended unit cell library³⁸

3. Forced flat domain^{9,20,36}

32

Conclusions

components Computational Modified-SA **Predict** Deformation optimizer $\left|\sum(\boldsymbol{U_c}-\boldsymbol{U_E})^2\right|$ Experimental* .stl file Measure Deformation

- 1. Approach to incorporate design for AM constraints into optimization.
- 2. Computational modeling of transient loading to an equivalent static loading.
- 3. Further investigation into advancing the application of nongradient-based optimizers within AM.
- 4. Methodology to couple experimental within results optimization.

Conclusions

Timeline

Thank you **Questions?**

References

Conference Paper

1. White, L., Liang, X., Zhang, G., Cagan, J., and Zhang, Y. J. "Coupling Simulated Annealing and Homogenization to Design Thermally Conductive Hybrid Lattice Support Structures for LPBF". Accepted in Proceedings of the ASME 2024 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Boston, Massachusetts, 2023.

Journal Papers

- **1. White, L.**, Liang, X., Zhang, G., Cagan, J., and Zhang, Y. J. "Designing Thermally Conductive Hybrid Lattice Support Structures Constrained by Residual Stress and Deformation for LPBF". *In preparation for Journal of Mechanical Design*, 2023.
- **2. White, L.**, Seo, J., Lamprinakos, N., Zhang, G., Liang, X., Rollett, A., Cagan, J., and Zhang, Y. J. "Extending Lattice Support Structure Design to Curved Interfaces". *In preparation for journal*, 2023.