Dostępna pamięć: 128 MB Limit czasu: 10 sekund

Złoty postęp

Cinomeusz i Coutolomeo wylądowali w Egipcie. Panuje tutaj faraon Re-allok VII, który właśnie rozpoczął najnowszy projekt architektoniczny. Usławszy o gościach w swoim imperium, faraon kazał sprowadzić ich do pałacu, celem poznania najnowszych nowinek architektonicznych na świecie. Coutolomeo, który niedawno poznał ciąg Fibonacciego (mający zastosowanie w architekturze), powiedział o nim faraonowi, który od razu zadecydował wybudować piramidę, która wykorzystywałaby ten ciąg.

Dla uproszczenia, budowlę opiszemy jako ciąg sąsiednich kolumn ponumerowanych kolejno od 0 do w-1. W kolumnie o numerze i leży wieża o wysokości H_i .

Teraz zadaniem Coutolomea będzie odpowiadanie, czy spójny przedział kolumn spełnia zasady ciągu Fibonacciego – czyli tytułowego złotego postępu. Ponieważ faraon jest fanatykiem arytmetyki modularnej, zależność liczymy modulo M. Przedział od kolumny a do b ($b-a \ge 2$) spełnia zasady złotego postępu gdy dla $a+2 \le i \le b$:

$$H_i \equiv H_{i-1} + H_{i-2} \pmod{M}$$

Tak więc kolumny [2, 3, 5, 8] lub [5, 5, 10, 15, 25] spełniają złoty postęp, a [1, 1, 1, 3] i [2, 3, 5, 5] nie.

Dodatkowo, budowla może się zmieniać – Coutolomeo musi być gotowy na to, że wysokość wszystkich wież w kolumnach od a do b zmieni się o x.

Wejście

W pierwszym wierszu pojawią się dwie liczby całkowite w, q oraz M ($1 \le w, q \le 10^6$, $2 \le M \le 10^9$), oznaczające szerokość budowli (ilość kolumn) oraz ilość zapytań. W następnym wierszu będzie w liczb H_i ($0 \le H_i < M$) oznaczających początkowe wysokości kolumn. W kolejnych q wierszach pojawią się zapytania jednego z dwóch rodzajów:

- ? a b Zapytanie czy kolumny na przedziale a, a + 1, ..., b 1, b spełniają złoty postęp.
- + a b x Zmiana wysokości wszystkich kolumn na przedziale a, a + 1, ..., b 1, b o x.

 $(0 \le a \le b < w, 0 \le x < M$. Dodatkowo dla zapytania ? zachodzi $b - a \ge 2$)

Wyjście

Dla każdego zapytania ? na wyjście wypisz jeden wiersz zawierający TAK jeżeli przedział spełniał złoty postęp, lub NIE w innym wypadku.

Przykłady

Wejście	Wyjście
6 7 7	TAK
0 1 1 2 3 5	TAK
? 0 5	NIE
? 0 3	TAK
+ 0 2 4	
? 0 5	
+ 2 5 5	
+ 5 5 5	
? 3 5	

Wyjaśnienie do przykładu

Zapytanie	Wysokości kolumn H (po operacji)	Wynik
? 0 5	0 1 1 2 3 5	TAK
? 0 3	0 1 1 2 3 5	TAK
+ 0 2 4	4 5 5 2 3 5	
? 0 5	4 5 5 2 3 5	NIE
+ 2 5 5	4 5 3 0 1 3	
+ 5 5 5	4 5 3 0 1 1	
? 3 5	4 5 3 0 1 1	TAK