

Agenda

- How Does the Attack Work?
- How to Compute the Discrete Log?
- Live Demo

Exploiting Export Ciphers in TLS

Burkhardt, Derwisch, Goßen, Lockenvitz 2021-08-06

TLS Handshake - Ephemeral Diffie-Hellman

ClientHello: I can speak DHE_3DES, DHE_AES128, ...

ServerHello: Let's talk DHE_AES128

Certificate

ServerKeyExchange: 1024 bit prime, g, g^{Ys} (signed)

ServerHelloDone

$$k = (g^{Ys})^{Yc}$$
 ClientKeyExchange: g^{Yc}

$$k = (g^{Yc})^{Ys}$$

Finished: Hash(handshake)

Finished: Hash(handshake)

GET /

Burkhardt, Derwisch, Goßen, Lockenvitz 2021-08-06

Exploiting Export

Ciphers in TLS

Chart 3

• •

TLS Handshake - Ephemeral Diffie-Hellman

ClientHello: I can speak DHE_3DES, DHE_AES128, ...

Compute Ys

ClientHello: I can speak DHE_EXPORT_DES40

ServerHello: Let's talk DHE_AES128

ServerHello: Let's talk DHE_EXPORT_DES40

Certificate

ServerKeyExchange: 512 bit prime, g, g^{Ys} (signed)

ServerHelloDone

k = (q^{Ys})^{Yc} Clie

ClientKeyExchange: gYc

 $k = (g^{Yc})^{Ys}$

Finished: Hash(handshake)

Finished: Hash(handshake)

GET /

Finished: Hash(handshake)

Finished: Hash(handshake)

GET /

Exploiting Export Ciphers in TLS

Burkhardt, Derwisch, Goßen, Lockenvitz 2021-08-06

Computing the Discrete Log: Four Phases

- Discrete Log can be computed with enough resources
- Four phases where only the last one depends on the public key
- We did a pre-computation for a 512 bit prime

Exploiting Export Ciphers in TLS

Burkhardt, Derwisch, Goßen, Lockenvitz 2021-08-06

Cluster & Runtime

Cluster (Future SOC Lab):

- 15 nodes, each 40 CPU cores, 1 TiB RAM
- Only effectively used during early stages
- MPI usage was not efficient to parallelize tasks
- Linear algebra was executed on only 1 node

Runtime:

- Polynomial selection ~7,600 core-hours (~2 days)
- Sieving ~21,400 core-hours (~5 days)
- Linear algebra ~15,000 core-hours (~2 weeks)
- Descent ~25 core-min (~80 s)

Exploiting Export Ciphers in TLS

Burkhardt, Derwisch, Goßen, Lockenvitz 2021-08-06

Why Are Pre-Computations Worth It?

Source	Popularity	Prime
Apache	82%	9fdb8b8a004544f0045f1737d0ba2e0b 274cdf1a9f588218fb435316a16e3741 71fd19d8d8f37c39bf863fd60e3e3006 80a3030c6e4c3757d08f70e6aa871033
mod_ssl	10%	d4bcd52406f69b35994b88de5db89682 c8157f62d8f33633ee5772f11f05ab22 d6b5145b9f241e5acc31ff090a4bc711 48976f76795094e71e7903529f5a824b
(others)	8%	(463 distinct primes)

Table 1: **Top 512-bit DH primes for TLS.** 8.4% of Alexa Top 1M HTTPS domains allow DHE_EXPORT, of which 92.3% use one of the two most popular primes, shown here.

- Pre-computation of two 512 bit DH primes for TLS is enough to attack
 ~78,000 of Alexa Top 1M HTTPS domains
- Attacking 1024 bit and above is currently only achieved by state-level adversaries

Exploiting Export Ciphers in TLS

Burkhardt, Derwisch, Goßen, Lockenvitz 2021-08-06

Nation-State Actors

NSA suspected to use a similar approach for passive IPSec VPN decryption

Exploiting Export Ciphers in TLS

Burkhardt, Derwisch, Goßen, Lockenvitz 2021-08-06

Live Demo

Exploiting Export Ciphers in TLS

Burkhardt, Derwisch, Goßen, Lockenvitz 2021-08-06

Impact of the Attack

	Vulnerable servers, if the attacker can precompute for				
	all 512-bit groups	all 768-bit groups	one 1024-bit group	ten 1024-bit groups	
HTTPS Top 1M w/ active downgrade HTTPS Top 1M HTTPS Trusted w/ active downgrade HTTPS Trusted	45,100 (8.4%) 118 (0.0%) 489,000 (3.4%) 1,000 (0.0%)	45,100 (8.4%) 407 (0.1%) 556,000 (3.9%) 46,700 (0.3%)	205,000 (37.1%) 98,500 (17.9%) 1,840,000 (12.8%) 939,000 (6.56%)	309,000 (56.1%) 132,000 (24.0%) 3,410,000 (23.8%) 1,430,000 (10.0%)	
IKEv1 IPv4 IKEv2 IPv4	_	64,700 (2.6%) 66,000 (5.8%)	1,690,000 (66.1%) 726,000 (63.9%)	1,690,000 (66.1%) 726,000 (63.9%)	
SSH IPv4	-	-	$3,600,000 \ (25.7\%)$	$3,600,000 \ (25.7\%)$	

Exploiting Export Ciphers in TLS

Burkhardt, Derwisch, Goßen, Lockenvitz 2021-08-06