06

Акустостимулированное преобразование радиационных дефектов в y-облученных кристаллах кремния n-типа

© Я.М. Олих, Н.Д. Тимочко, А.П. Долголенко

Институт физики полупроводников им. В.Е. Лашкарёва НАН Украины, Киев, Украина

E-mail: jaroluk3@ukr.net

Институт ядерных исследований НАН Украины, Киев, Украина

Поступило в Редакцию 24 января 2006 г.

Представлены результаты исследования влияния ультразвуковой (УЗ) обработки ($f_{\rm US}\sim 4\div 30\,{\rm MHz},\,W_{\rm US}\sim 0.1\div 2\,{\rm W/cm^2})$ на электрическую активность радиационных дефектов в γ -облученных ($D=10^8,\,10^9\,{\rm rad}$) кристаллах n-Si с различным содержанием кислорода ($\sim 10^{18}\,{\rm u} < 5\cdot 10^{15}\,{\rm cm^{-3}}$). Из анализа температурных ($100\div 300\,{\rm K}$) зависимостей холловских характеристик в предположении многоуровневой структуры центров определены их энергетическое положение и концентрации. Показано, что основными акустоактивными дефектами, изменяющими свойства материала при УЗ обработке, являются: в тигельных образцах — A-центры ($E_c-0.20$) eV и дивакансии ($E_c-0.26$) eV; в зонных образцах — дивакансии и/или комплексы $P_s-C_i(E_c-0.23)$ eV.

PACS: 72.50.+b, 61.82.Fk

Известно, что ультразвуковые (УЗ) волны активно взаимодействуют с системой дефектов кристалла и могут быть использованы как для исследований свойств дефектов структуры, так и для управления параметрами материала в целом. Физический механизм УЗ действия на свойства полупроводников определяется взаимодействием упругих и электрических полей УЗ волны и дефектов кристалла [1,2]. Воздействие жесткого излучения (γ -лучей, электронов высоких энергий, нейтронов и т.п.) на кристаллы вызывает появление первичных радиационных дефектов (РД) — вакансий и междоузельных атомов (пары Френкеля), взаимодействие которых с различными несовершенствами структуры может приводить к образованию электрически и оптически активных центров [3]. Традиционным способом восстановления нарушенных свойств облученных материалов является их отжиг; альтернативным —

5*

Рассчитанные значения глубины уровней E_{ai} и их концентрации N_{ai} для электрически активных дефектов, определяющих проводимость γ -облученных образцов n-Si, а также значения концентраций кислорода и углерода $(N_{\rm O},N_{\rm C})$ в исходных образцах соответственно

Образец	Состояние образца (последовательно)	Номера кривых на рисунках	$E_{ai},$ eV	N_{ai} , $10^{13} \mathrm{cm}^{-3}$	Тип дефекта
	Исходный	1			
Si-Cz $n \sim 2.54 \cdot 10^{14} \text{cm}^{-3}$	γ ₁ -облу- чение	2	$E_c - 0.405$ $E_c - 0.205$ $E_c - 0.190$	11.9 13.2 0.5	$? + O_i [6]$ V - O [7] ? + N [8]
$N_{\rm O} \sim 9.5 \cdot 10^{17} {\rm cm}^{-3}$	УЗО	3	$E_c - 0.405$ $E_c - 0.205$ $E_c - 0.190$	14.4 9.0 2.0	? + O _i [6] V-O [7] VO+N
$N_{\rm C} \sim 3.0 \cdot 10^{16} {\rm cm}^{-3}$	γ ₂ -облу- чение	4	$E_c - 0.424$ $E_c - 0.261$	13.4 12.6	V_2^- [7,9] V_2^- [7]
Рис. 1	УЗО	5	$E_c - 0.424$ $E_c - 0.261$ $E_c - 0.240$	13.9 9.5 2.6	V_{2}^{-} [7,9] V_{2}^{-} [7] V_{2}^{-} + C
Si-Fz	Исходный	1			
$n \sim 4.8 \cdot 10^{13} \mathrm{cm}^{-3}$ $N_{\rm O} < 5 \cdot 10^{15} \mathrm{cm}^{-3}$	γ ₁ -облу- чение	2	$E_c - 0.424$ $E_c - 0.230$	1.3 5.2	V_2^- [7.9] V_2^- , $P_s - C_i$ [10]
$N_{ m C} \sim 10^{16} { m cm}^{-3}$ Рис. 2	УЗО	3	$E_c - 0.424$ $E_c - 0.230$	1.7 3.2	V_2^- [7.9] V_2^- , $P_s - C_i$ [10]

может быть ультразвук [4], не только для отжига РД, а и для управления свойствами материала и характеристиками приборов, изготовленных на его основе.

Целью данной работы было исследование процессов перестройки РД под действием УЗ обработки (УЗО) в кристаллах кремния n-типа с разным содержанием кислорода. Для исследований выбраны два типа бездислокационных кристаллов Si: a) Si—Cz, полученный методом

Чохральского, с удельным сопротивлением $\rho \approx 35\,\Omega$ · cm; b) Si–Fz, полученный методом зонной плавки в вакууме с $\rho \approx 140\,\Omega$ · cm. Содержание фоновых примесей кислорода $N_{\rm O}$ и углерода $N_{\rm C}$ приведено в таблице. Измерения концентрации электронов n(T) выполнены методом эффекта Холла в интервале температур $T=100\div300\,{\rm K}$. Для создания в образцах Si "акустоактивных" дефектов, электрическая активность которых изменялась бы при УЗО, образцы облучались γ -квантами $^{60}{\rm Co}$, дозами: $\gamma_1 \sim 10^8\,{\rm rad} \approx 1.9 \cdot 10^{17}\,\gamma/{\rm cm}^2\,{\rm u}\,\gamma_2 \sim 10^9\,{\rm rad} \approx 1.9 \cdot 10^{18}\,\gamma/{\rm cm}^2$.

Внесенные радиационные нарушения оказались устойчивыми. После γ -облучения часть образцов подвергалась УЗО (продольные волны, частота $4 \div 30$ MHz, интенсивность $1 \div 2$ W/cm², длительность обработки $\sim 10^4$ s, температура $< 70^{\circ}$ C). В отличие от радиационных, изменения n(T), наведенные УЗО оказывались неустойчивыми и через определенное время (несколько суток) параметры образца релаксировали к предыдущему устойчивому состоянию. Отметим, что УЗО исходных, необлученных образцов не приводила к заметным изменениям их электрофизических характеристик.

Результаты измерений n(T) на разных этапах обработки приведены на рис. 1 и 2. Для исходных образцов (кривые I) n(T) не зависит от температуры, что соответствует полной ионизации мелких доноров — атомов фосфора. С целью определения концентрации N_{ai} и энергетического положения уровней E_{ai} электрически активных РД в исследуемых образцах нами проведен теоретический анализ n(T). Предполагалось, что общая концентрация $n(T) = n_0(T) + n_1(T) + n_2(T) - 2N_b + N_{ai}$, где $n_i(T)$ — составляющие концентрации носителей в зоне проводимости за счет тепловой ионизации соответствующих глубоких акцепторных уровней (i=0,1,2), а $N_b=N_d-N_{a0}$.

Расчет $n_i(T)$ производился с помощью следующей системы уравнений [5]:

$$n_i(T) = \frac{1}{2} \left(N_d - N_{ai} - n_{11} \right) \left(\sqrt{1 + \frac{4 N_d n_{11}}{(N_d - N_{ai} - n_{11})^2}} + 1 \right). \tag{1}$$

Здесь $n_{11}=gN_c\exp(-E_{ai}/kT)$ — концентрация электронов в зоне проводимости при совпадении положений уровня Ферми и акцепторного уровня, g=2 — фактор вырождения акцепторного уровня; N_d,N_{ai} — концентрации исходных доноров и радиационных акцепторов соответственно; N_c — плотность состояний в зоне проводимости.

Рис. 1. Температурные зависимости концентрации электронов в образце Si—Cz на разных этапах его обработки. Кривые: I — исходное состояние; 2 — после γ_1 -облучения; 3 — после γ_1 -облучения и УЗО; 4 — после γ_2 -облучения; 5 — после γ_2 -облучения и УЗО. Точки — эксперимент, слошные линии — расчет.

Рис. 2. Si-Fz образец. Кривые 1-3 обозначают то же, что и на рис. 1.

Также предполагается, что точечные дефекты распределены по объему кристалла Si равномерно, а $N_{ai} < N_d$ и полупроводник невырожденный $(N_d < 10^{15} \, {\rm cm}^{-3})$. Результаты теоретического расчета n(T) представлены на рис. 1 и 2 сплошными линиями (кривые 2-5). Значения N_{ai} находятся путем сопоставления рассчитанной зависимости n(T)с экспериментальной; при этом задаются значения E_{ai} (i = 0, 1, 2)и с помощью системы уравнений (1) подбираются соответствующие им N_{ai} до совпадения расчетной кривой с экспериментальными точками. Рассчитанные значения E_{ai} и N_{ai} приведены в таблице. Для Si-Cz образцов найдено, что в результате γ_1 -облучения определяющими n(T) оказались акцепторные уровни $(E_c - 0.424 \,\mathrm{eV}), (E_c - 0.205 \,\mathrm{eV})$ и $(E_c-0.19\,\mathrm{eV})$; а для Si-Fz — уровни $(E_c-0.405\,\mathrm{eV})$ и $(E_c-0.23\,\mathrm{eV})$. Согласно данным многочисленных исследований [6-11 и др.], эти уровни могут принадлежать в первом случае дивакансии V_2^- , A-центру (V-O) и неизвестному комплексу, предположительно содержащему азот (? + N) соответственно; а во втором — дивакансии V_2^{-1} и/или бистабильному комплексу "фосфор с углеродом" $P_s - C_i$.

Наблюдаемые при УЗО динамические (обратимые) изменения n(T)могут происходить в результате некоторых коррелированных преобразований как близко между собой расположенных дефектных комплексов, так и подвижных примесных атомов [10]. Исходя из наших результатов (см. таблицу), можно определенным образом конкретизировать этот механизм УЗ преобразований РД в *n*-Si. Как известно, междоузельные атомы азота N_i и углерода C_i обладают малой энергией активации и подвижны при комнатной температуре. Полагаем, что для образцов Si-Cz комплекс V-O ($E_c-0.205\,\mathrm{eV}$), с исходной концентрацией после y_1 -облучения $N_{(V-O)} = 13.2 \cdot 10^{13} \,\mathrm{cm}^{-3}$, при УЗО модифицируется атомом подвижной примеси (возможно, азота) и превращается в комплекс $V{
m O} + N$ с уровнем $(E_c - 0.19\,{
m eV})$ [8]. При этом уменьшается концентрация $N_{(V-O)} = 9.0 \cdot 10^{13} \,\mathrm{cm}^{-3}$ и возрастает $N_{(VO+N)} = 2.0 \cdot 10^{13} \,\mathrm{cm}^{-3}$ соответственно. После прекращения УЗО происходит освобождение атомов азота и "медленное" возвращение всей системы дефектов в исходное (до УЗО) состояние.

В результате УЗО образцов Si-Fz наблюдается уменьшение концентрации уровня $(E_c-0.23\,\mathrm{eV})$, возможно, это уровень дивакансии V_2^{--} и/или пары P_s-C_i [10]. Предполагаем, что часть их "временно" распадается, а часть переходит в другое состояние. После прекращения УЗО образцов Si-Fz, как и для Si-Cz, происходит релаксация в исходное состояние.

С увеличением дозы облучения до $\gamma_2 \sim 10^9\,\mathrm{rad}$ в Si-Cz в системе электрически активных дефектов преобладают дивакансии V_2^{-1} ($E_c-0.261\,\mathrm{eV}$) с концентрацией $N_{(V_2^{-1})}=12.6\cdot 10^{13}\,\mathrm{cm}^{-3}$. Теперь электроны находятся на этом более глубоком уровне и уровень А-центра ($E_c-0.204\,\mathrm{eV}$) уже не проявляется. При УЗО, как и при отжиге дивакансий [12], наиболее подвижные атомы примеси, предположительно C_i , частично освобождаются со стоков и локализируются вблизи V_2^{-1} , возмущая при этом их энергетическое положение. В результате уменьшается $N_{(V_2^{-1})}=9.5\cdot 10^{13}\,\mathrm{cm}^{-3}$ и возникает уровень ($E_c-0.24\,\mathrm{eV}$) с концентрацией $N_{(V_2^{-1}+C)}=2.6\cdot 10^{13}\,\mathrm{cm}^{-3}$. После выключения УЗО C_i покидают V_2^{-1} и происходит восстановление уровня $N_{(V_2^{-1})}=12.6\cdot 10^{13}\,\mathrm{cm}^{-3}$, система дефектов возвращается в исходное состояние.

Таким образом, впервые обнаружены акустоактивные дефекты в γ -облученных кристаллах n-Si, как в безкислородных, так и в кислородсодержащих. Показано, что основными акустоактивными дефектами являются: в Si—Cz образцах — A-центры (E_c – 0.20) eV и дивакансии (E_c – 0.26) eV; в Si—Fz — дивакансии и/или комплексы P_s — C_i (E_c – 0.23) eV. Предполагается, что УЗО стимулирует "локальную диффузию" отдельных примесных атомов с образованием новых нестабильных комплексов, а происходящее при этом частичное восстановление электрофизических параметров облученных n-Si, создающее иллюзию отжига РД, в целом таковым не является.

Приносим благодарность В.М. Бабичу и В.И. Хивричу за помощь в постановке эксперимента и обсуждении полученных результатов.

Список литературы

- [1] Подолян А.А., Хиврич В.И. // Письма в ЖТФ. 2005. Т. 31. В. 10. С. 11–16.
- [2] Парчинский П.Б., Власов С.И., Муминов С.И. и др. // Письма в ЖТФ. 2000. Т. 26. В. 10. С. 40–45.
- [3] Конозенко И.Д., Семенюк А.К., Хиврич В.И. Радиационные эффекты в кремнии. Киев: Наук. думка, 1974. 200 с.
- [4] Олих Я.М., Карась Н.И. // ФТП. 1996. Т. 30. В. 8. С. 1455-1459.
- [5] Долголенко А.П., Литовченко П.Г., Варенцов М.Д., Гайдар Г.П. // Сб. науч. трудов Института ядерных исследований. Киев, 2003. № 1(9). С. 63–68.
- [6] Brosious P.R. // Proc. Conf. "Defects and Radiation Effects in Semiconductors". Nice-1978. Bristol-London, Inst. of Phys. 1979. N 46. P. 248.

- [7] Asghar M., Zafar Iqbal M., Zafar N. // J. Appl. Phys. 1993. V. 73. N 8. P. 3698–3708.
- [8] Tokumaru Y., Okushi H., Masui T., Abe Y. // Jpn. J. Appl. Phys. Part 2. 1982.N 21. P. L443.
- [9] *Moll M., Fretwurst E., Kuhnke M. Lindström G.* // Nucl. Instr. and Meth. B. 2002. V. 186. P. 100–110.
- [10] Asom M.T., Benton J.L., Sauer R., Kimerling L.C. // Appl. Phys. Lett. 1987.
 N 4. P.256–258.
- [11] Jellilson G.E. // J. Appl. Phys. 1982. V. 53. N 8. P. 5715–5719.
- [12] Абдуллин Х.А., Мукашев Б.Н., Тамендаров М.Ф. и др. // ФТП. 1990. Т. 24. В. 2. С. 391–392.