Task 1 Download the dataset

The Churn_Modelling.csv dataset is downloaded

Task 2 Load the Dataset

Task 3 Perform Visualizations

Univariate Analysis

```
df['Age'].mean()
    38.9218

df['Balance'].median()
    97198.54000000001
```

▼ Bivariate Analysis

```
import matplotlib.pyplot as plt
import seaborn as sns
```

```
sns.barplot(x = df['Exited'] , y = df['Balance']);
```


Multi Variate Analysis

```
sns.heatmap(df.corr());
```


sns.pairplot(df)

▼ Task 4 Perform descriptive statistics on the dataset

df.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance
coun	t 10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000
meai	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000
4						N .

Task 5 Handle the Missing values

```
df.isnull().sum()
     RowNumber
     CustomerId
                         0
     Surname
                         0
     CreditScore
                         0
                         0
     Geography
     Gender
                         0
     Age
                         0
     Tenure
                         0
     Balance
                         0
     NumOfProducts
                         0
     HasCrCard
     IsActiveMember
                         0
     EstimatedSalary
                         0
     Exited
     dtype: int64
```

There are no null values present in the given dataset

Task 6 Find the outliers and replace the outliers

sns.boxplot(df['EstimatedSalary']);

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

sns.boxplot(df['Tenure']);

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

sns.boxplot(df['Balance']);

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

sns.boxplot(df['NumOfProducts']);

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning


```
outliers=[]
def detect_outliers(data):
    threshold=3
    mean = np.mean(data)
    std =np.std(data)
    for i in data:
        z_score= (i - mean)/std
        if np.abs(z_score) > threshold:
            outliers.append(y)
            return outliers
outlier_pt=detect_outliers(df)
outlier_pt
```

Task 7 Check for Categorical columns and perform encoding

```
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):
        Column
                                    Non-Null Count Dtype
                                    -----
      ----
---
                               10000 non-null int64
10000 non-null int64
10000 non-null object
       RowNumber
 0
       CustomerId
Surname
 1
 2 Surname 10000 non-null object
3 CreditScore 10000 non-null int64
4 Geography 10000 non-null object
5 Gender 10000 non-null object
6 Age 10000 non-null int64
7 Tenure 10000 non-null int64
8 Balance 10000 non-null float64
9 NumOfProducts 10000 non-null int64
10 HasCrCard 10000 non-null int64
 2
      Surname
 11 IsActiveMember 10000 non-null int64
 12 EstimatedSalary 10000 non-null float64
 13 Exited
                                    10000 non-null int64
dtypes: float64(2), int64(9), object(3)
```

<class 'pandas.core.frame.DataFrame'>

from sklearn.preprocessing import LabelEncoder

memory usage: 1.1+ MB

le = LabelEncoder()

```
df['Geography'] = le.fit_transform(df['Geography'])

df['Gender'] = le.fit_transform(df['Gender'])
```

df

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	В
0	1	15634602	Hargrave	619	0	0	42	2	
1	2	15647311	Hill	608	2	0	41	1	83

Task 8 and Task 10 Split the data into dependent and independent variables

df.drop(columns = ['RowNumber'])

	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	Num
0	15634602	Hargrave	619	0	0	42	2	0.00	
1	15647311	Hill	608	2	0	41	1	83807.86	
2	15619304	Onio	502	0	0	42	8	159660.80	
3	15701354	Boni	699	0	0	39	1	0.00	
4	15737888	Mitchell	850	2	0	43	2	125510.82	
9995	15606229	Obijiaku	771	0	1	39	5	0.00	
9996	15569892	Johnstone	516	0	1	35	10	57369.61	
9997	15584532	Liu	709	0	0	36	7	0.00	
9998	15682355	Sabbatini	772	1	1	42	3	75075.31	
9999	15628319	Walker	792	0	0	28	4	130142.79	
10000 rows × 13 columns									

```
x = df.iloc[: , 0:13].values
y = df.iloc[: , 13:14].values
```

from sklearn.model_selection import train_test_split

```
xtrain , xtest , ytrain , ytest = train_test_split(x , y , test_size = 0.3 , random_state = 0
```

((7000, 13), (3000, 13))

xtrain.shape , xtest.shape

Task 9 Scale the independent variables

```
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import StandardScaler

n = MinMaxScaler()
s = StandardScaler()

x = df[['Age', 'Tenure']].values
y = df['Gender'].values

n_xtrain = n.fit_transform(xtrain)

n_xtest = n.fit_transform(xtest)
```