To find the equations for params, we take log likelihood of the distribution:

$$LL = \sum_{n=1}^{N} \left\{ -\frac{1}{2} \log 2\pi \sigma_u^2 - \frac{1}{2\sigma_u^2} \left(x_{u,n} - \left(\sum_{c \in x_{\pi_u}} w_{uc} x_{uc,n} + w_{u0} \right) \right)^2 \right\}$$
 (1)

We'll proceed to find the parameters for each node independently, and so dropping the u subscript from here on. Further, to avoid confusion, let's call the output node y, and the parents of y (which will our inputs) as x_c for c^{th} parent/input. y_n is the n^{th} output observation for the node in consideration, and $x_{c,n}$ is the n^{th} observation for the c^{th} input.

$$LL = \sum_{n=1}^{N} \left\{ -rac{1}{2} \mathrm{log}(2\pi\sigma^{2}) - rac{1}{2\sigma^{2}} \Biggl(y_{n} - \Biggl(\sum_{c \in x_{\pi}} w_{c} x_{c,n} + w_{0} \Biggr) \Biggr)^{2}
ight\}$$

Since we will be working with matrices, let's also define the required matrices for these variables:

$$W = egin{bmatrix} w_0 \ w_1 \ w_2 \ dots \ w_c \end{bmatrix}$$
 , $dim(W) = (c+1) imes 1$ is our weights matrix including w_0 . $Y = egin{bmatrix} y_1 \ y_2 \ y_3 \ dots \ y_n \end{bmatrix}$, $dim(Y) = n imes 1$ where n is the

total number of samples.

$$X = egin{bmatrix} 1 & x_{1,1} & x_{2,1} & x_{3,1} & \dots & x_{c,1} \ 1 & x_{1,2} & x_{2,2} & x_{3,2} & \dots & x_{c,2} \ 1 & x_{1,3} & x_{2,3} & x_{3,3} & \dots & x_{c,3} \ dots & & & & & \ 1 & x_{1,n} & x_{2,n} & x_{3,n} & \dots & x_{c,n} \end{bmatrix}$$
 , $dim(X) = n imes (c+1)$, and $x_{i,j}$ is $j^{ ext{th}}$ observation sample for $i^{ ext{th}}$ input

variable/parent. For notational convenience, we define $x_{0,i}=1$ for all i.

Going back to our LL equation, for MLE, we take partial derivatives w.r.t. our weight parameters $\{w_0, w_1, w_2, \cdots, w_c\}$ and setting them to 0 one by one. That yields (c+1) equations. For w_i , the equation is:

$$rac{\partial (LL)}{\partial w_i} = \sum_{n=1}^N \left(y_n - (w_0 x_{0,n} + w_1 x_{1,n} + \ldots + w_c x_{c,n})
ight) \! x_{i,n} = 0$$

Solving this further, and moving the summations in:

$$w_0\sum_{n=1}^N x_{0,n}x_{i,n} + w_1\sum_{n=1}^N x_{1,n}x_{i,n} + w_2\sum_{n=1}^N x_{2,n}x_{i,n} + w_3\sum_{n=1}^N x_{3,n}x_{i,n} + \cdots + w_c\sum_{n=1}^N x_{c,n}x_{i,n} = \sum_{n=1}^N y_nx_{i,n}$$

We have (c+1) such equations for each w_i with $i \in [0,c]$. This is a system of (c+1) equations in (c+1) variables which can be uniquely solved. With the above matrix definitions, we can write the combined matrix replacement for the above equations as:

$$(X^T \times X) \times W = X^T \times Y$$

which is what we have implemented in code.

To solve for variance σ^2 , we again take partial derivative of $LL\ w.\ r.\ t\ \sigma^2$ and set it to 0, which after some simplification gives:

$$\sigma^2 = rac{1}{N} \Biggl(\sum_{n=1}^N \left(y_n - \left(w_0 x_{0,n} + w_1 x_{1,n} + w_2 x_{2,n} \cdots w_c x_{c,n}
ight)
ight)^2 \Biggr)$$

which can be rewritten in matrix form as:

$$\sigma^2 = rac{1}{N}[\left(XW-Y
ight)^T imes\left(XW-Y
ight)]$$