

32 位微控制器

HC32L110 / HC32F003 / HC32F005 系列 硬件开发指南

适用对象

色川川多		
系列	产品型号	
HC32L110	HC32L110C6UA	
	HC32L110C6PA	
	HC32L110C4UA	
	HC32L110C4PA	
	HC32L110B6PA	
	HC32L110B4PA	
HC32F003	HC32F003C4UA	
	HC32F003C4PA	
HC32F005	HC32F005C6UA	
	HC32F005C6PA	
	HC32F005D6UA	

目 录

1	摘要	4
2	电源	5
3	复位电路	6
4	GPIO	7
5	晶振电路设计	8
	5.1 电路设计	8
	5.2 电路 layout	9
6	常用接口设计	11
	6.1 UART接口设计	11
	6.2 SWD接口设计	12
	6.3 I2C接口设计	13
7	芯片封装 PCB Layout	14
8	应用电路(最小系统,仅供参考)	15
9	华大 HC32F003/HC32F005 与友商产品 X003 系列引脚配置比较	16
	9.1 TSSOP20 引脚配置差异	16
10	其他信息	17
11	版本信息 & 联系方式	18

表目录

表 1	华大芯片与友商芯片 TSSOP20 引脚配置差异列表	17
	图目录	
图 1	去耦电容	. 5
图 2	NRST 电路	. 6
图 3	外部高速晶振示意图	. 8
	外部低速晶振示意图	
图 5	晶振电路地线隔离环	. 9
图 6	晶振电路整体布局、滤波、包地隔离设计示意图	10
图 7	UART接口设计示意图	11
图 8	SWD 接口设计示意图	12
图 9	I2C接口设计示意图	13
图 10)芯片最小系统设计参考图	15

1 摘要

本篇应用笔记主要介绍基于 HC32L110 / HC32F003 / HC32F005 系列芯片的外围硬件设计,包含电源、GPIO、晶振、UART、SWD、I2C、器件封装、最小系统参考硬件设计等内容。 注意:

一本应用笔记为 HC32L110 / HC32F003 / HC32F005 系列的应用补充材料,不能代替用户手册,具体功能及寄存器的操作等相关事项请以用户手册为准。

应用笔记 Page 4 of 18

2 电源

每组电源(DVCC/AVCC)都需要一个去耦电容 4.7uF + 旁路电容 0.1uF, PCB 布局时, 电容尽量靠近相应电源引脚。

芯片的 VCAP 引脚: LDO 内核供电输出 Pin(仅限内部电路使用,需外接 4.7uF + 10nF 的去耦电容);不能在外部连接任何负载。

所有的电源(DVCC/AVCC)和地(DVSS/AVSS)引脚必须始终连接在 MCU 工作电压范围内的供电系统上。

图 1 去耦电容

MCU工作电压范围: 1.8V≤DVCC/AVCC≤5.5V。

应用笔记 Page 5 of 18

3 复位电路

设计时,请在 RESETB 引脚和地(DVSS)之间接电容,与上拉电阻形成 RC 迟延电路;应用中如果不使用 RESETB,必须将 RESETB 通过电阻(推荐 4.7K)上拉到 DVCC。

图 2 NRST 电路

应用笔记 Page 6 of 18

4 GPIO

最多可提供 16个 GPIO 端口,其中部分 GPIO 与模拟端口复用。每个端口由独立的控制寄存器位来控制。支持边沿触发中断和电平触发中断,可从各种超低功耗模式下把 MCU 唤醒到工作模式。支持 Push-Pull CMOS 推挽输出、Open-Drain 开漏输出。内置上拉电阻、下拉电阻,带有施密特触发器输入滤波功能。输出驱动能力可配置,最大支持 12mA 的电流驱动能力。16个通用 IO 可支持外部异步中断。

注意:

- 当不使用 NRST 功能时, RESETB 端口也可以配置为 GPIO 输入端口 P00。

应用笔记 Page 7 of 18

5 晶振电路设计

5.1 电路设计

高速外部时钟(XTH)可以使用一个 4~32MHz 的晶体/陶瓷谐振器构成的振荡器产生。两个引脚都有负载电容,在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

图 3 外部高速晶振示意图

低速外部时钟(XTL)可以使用一个 32.768KHz 的晶体/陶瓷谐振器构成的振荡器产生。两个引脚都有负载电容。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

图 4 外部低速晶振示意图

应用笔记 Page 8 of 18

注意:

- 在阅读晶振厂商的提供的 datasheet 时,参数负载电容 CL(Load capacitance),是指电路中跨接晶体两端的总的有效电容,不是晶振外接的匹配电容;另外,在计算晶振电路的匹配电容值时,需要把晶振电路 PCB 的 layout 走线到地的寄生电容考虑进去。

5.2 电路 layout

- 外部晶振单元和负载电容应尽可能靠近芯片端。
- 外部晶振信号线走线应尽量短。走线宽度不要太细,最细也不要低于芯片 pin 的宽度。
- 在晶振局部电路相邻层 layer,应该有一个完整的覆地。
- 应该在外部晶振周边用地线做保护隔离环(guard ring),地环线需要充分接地(多过地 孔),减少外部晶振信号与其他信号之间的相互窜扰。(参考图 5)
- 晶振电路要注意局部信号干净,力避外部干扰。在晶振电路附近或相邻 layer 层尽量不要 走线,尤其不允许走高速线、电源线、时钟线等。

图 5 晶振电路地线隔离环

应用笔记 Page 9 of 18

图 6 晶振电路整体布局、滤波、包地隔离设计示意图

应用笔记 Page 10 of 18

6 常用接口设计

6.1 UART接口设计

UART接口设计,建议 TX/RX 信号线接 4.7KΩ上拉电阻接电源。

图 7 UART接口设计示意图

应用笔记 Page 11 of 18

6.2 **SWD**接口设计

SWD 接口设计,建议 SWCLK/SWDIO 信号线接 4.7KΩ上拉电阻接电源。

图 8 SWD 接口设计示意图

应用笔记 Page 12 of 18

6.3 I2C接口设计

I2C 接口设计,建议 I2C_SCL/I2C_SDA 信号线接 $1K\Omega$ 上拉电阻接电源。

图 9 I2C 接口设计示意图

应用笔记 Page 13 of 18

7 芯片封装 PCB Layout

请参考我司发布的芯片数据手册的"封装信息"章节。请严格按照数据手册规格来设计芯片 封装 Layout。另外,我们提供该系列芯片的所有 PCB 封装库,请参考 http://www.hdsc.com.cn/mcu.htm。

应用笔记 Page 14 of 18

8 应用电路(最小系统,仅供参考)

图 10 芯片最小系统设计参考图

应用笔记 Page 15 of 18

9 华大 HC32F003/HC32F005 与友商产品 X003 系列引脚配置比较

9.1 TSSOP20 引脚配置差异

图 11 HC32F003/HC32F005 与 X003 引脚配置比较图

应用笔记 Page 16 of 18

表 1 华大芯片与友商芯片 TSSOP20 引脚配置差异列表

芯片型号	HC32L110C6PA/ HC32L110C4PA /HC32F005C6PA/ HC32F005C4PA	x003
Pin17	P27/SWDIO	PC7
Pin18	P31/SWCLK	PD1/SWIM

说明:

- 华大的芯片 Pin17/Pin18 构成 SWD 烧录口, 友商的芯片 Pin18 为单线程序烧录口 SWIM。

10 其他信息

技术支持信息: www.hdsc.com.cn

应用笔记 Page 17 of 18

11 版本信息 & 联系方式

日期	版本	修改记录
2019/6/14	Rev1.0	初版发布。

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@hdsc.com.cn

网址: http://www.hdsc.com.cn/mcu.htm

通信地址: 上海市张江高科园区碧波路 572 弄 39 号

邮编: 201203

应用笔记 AN0050021C