

Model Predictive Control

Lecture 4: Modeling of Reactive and Distributed Systems

John Bagterp Jørgensen

Department of Applied Mathematics and Computer Science Technical University of Denmark

02619 Model Predictive Control

Learning Objectives

After this lecture you should be able to

- 1. Model systems with chemical reaction
- 2. Model flows in pipes (time delay systems, distributed systems)
- 3. Model chemical reaction and flow in pipes
- 4. Describe why we need time-delays for modeling

Chemical Reaction in a Tank

$$A \to P$$
 $r = kC_A$

The production rate of \boldsymbol{A} is

$$R_A = -r$$

Chemical Reaction in a Tank

$$Accumulated = VC_A(t + \Delta t) - VC_A(t)$$

$$Influx = FC_{A,in}(t)\Delta t$$

$$Outflux = FC_A(t)\Delta t$$

$$Generated = R_A V \Delta t \qquad R_A = R_A(C_A(t))$$

$$A \to P \qquad r = kC_A \qquad R_A = -r$$

$$Accumulated = Influx - Outflux + \overbrace{Produced - Consumed}^{Generated}$$

Generated

Accumulated = Influx - Outflux + Produced - Consumed

$$Accumulated = VC_A(t + \Delta t) - VC_A(t)$$

$$Influx = FC_{A,in}(t)\Delta t$$

$$Outflux = FC_A(t)\Delta t$$

$$Generated = R_A V \Delta t \qquad R_A = R_A(C_A(t))$$

1.

$$VC_A(t+\Delta t)-VC_A(t)=FC_{A,in}(t)\Delta t-FC_A(t)\Delta t+R_A(C_A(t))V\Delta t$$

2.

$$\frac{C_A(t+\Delta t)-C_A(t)}{\Delta t} = \frac{F}{V} \left(C_{A,in}(t) - C_A(t) \right) + R_A(C_A(t))$$

3. $\Delta t \rightarrow 0$

$$\frac{dC_A}{dt} = \frac{F}{V} \left(C_{A,in}(t) - C_A(t) \right) + R_A(C_A(t))$$

Chemical Reaction in a Tank

Let $y(t) = C_A(t)$ and $u(t) = C_{A,in}(t)$. Then the corresponding LaPlace transform of this system can be written in the form

$$Y(s) = \frac{K}{\tau s + 1} U(s)$$

Question: What is K and τ ?

Flow in a Pipe

$$Accumulated = [C_A(t + \Delta t, z) - C_A(t, z)] S\Delta z$$

$$Influx = N_A(t, z) S\Delta t$$

$$Outflux = N_A(t, z + \Delta z) S\Delta t$$

Flow in a Pipe

$$Accumulated = [C_A(t + \Delta t, z) - C_A(t, z)] S\Delta z$$

$$Influx = N_A(t, z) S\Delta t$$

$$Outflux = N_A(t, z + \Delta z) S\Delta t$$

1.

$$\underbrace{[C_A(t+\Delta t,z)-C_A(t,z)]\,S\Delta z}_{Accumulated} = \underbrace{N_A(t,z)S\Delta t}_{Influx} - \underbrace{N_A(t,z+\Delta z)S\Delta t}_{Outflux}$$

2.
$$\frac{C_A(t+\Delta t,z)-C_A(t,z)}{\Delta t}=-\frac{N_A(t,z+\Delta z)-N_A(t,z)}{\Delta z}$$

3. $\Delta \to 0$ and $\Delta z \to 0$

$$\frac{\partial C_A}{\partial t}(t,z) = -\frac{\partial N_A}{\partial z}(t,z)$$

Differential Equation Model

$$\frac{\partial C_A}{\partial t}(t,z) = -\frac{\partial N_A}{\partial z}(t,z)$$

Initial condition

$$C_A(0,z) = C_{A0}(z)$$
 $0 \le z \le L$

Boundary condition

$$C_A(t,0) = C_{A,in}(t)$$
 $t \ge 0$

Flux (convective flow)

$$N_A(t,z) = vC_A(t,z)$$

Solution

$$C_A(t,L) = C_{A,in}(t-\tau)$$
 $\tau = \frac{L}{v}$

Let

$$y(t) = C_A(t, L)$$
$$u(t) = C_{A,in}(t)$$

then

$$y(t) = u(t - \tau)$$

or

$$Y(s) = e^{-\tau s} U(s)$$

LaPlace Transform of a Time Delay

Consider a system with the solution

$$y(t) = u(t - \tau)$$

Let Y(s) and U(s) be the LaPlace transform of y(t) and u(t)

$$Y(s) = \mathcal{L}{y(t)} = \int_0^\infty e^{-st} y(t) dt$$
$$U(s) = \mathcal{L}{u(t)} = \int_0^\infty e^{-st} u(t) dt$$

Assume u(t) = 0 for t < 0. Then

$$Y(s) = \int_0^\infty e^{-st} y(t) dt = \int_0^\infty e^{-st} u(t - \tau) dt$$
$$= \underbrace{e^{-s\tau} e^{s\tau}}_{=1} \int_0^\infty e^{-st} u(t - \tau) dt = e^{-s\tau} \int_0^\infty e^{-s(t - \tau)} u(t - \tau) dt$$
$$= e^{-\tau s} U(s)$$

Flow and Chemical Reaction in a Pipe

$$A \to P$$
 $r = kC_A$ $R_A = -r$

Flux for convective flow: $N_A = vC_A$

$$N_A = vC_A$$

$$Accumulated = [C_A(t + \Delta t, z) - C_A(t, z)] S\Delta z$$

$$Influx = N_A(t, z) S\Delta t$$

$$Outflux = N_A(t, z + \Delta z) S\Delta t$$

$$Generated = R_A S\Delta z\Delta t$$

Flow and Chemical Reaction in a Pipe

$$Accumulated = Influx - Outflux + Generated$$
 $Accumulated = [C_A(t + \Delta t, z) - C_A(t, z)] S\Delta z$
 $Influx = N_A(t, z)S\Delta t$
 $Outflux = N_A(t, z + \Delta z)S\Delta t$
 $Generated = R_AS\Delta z\Delta t$

leads to the partial differential equation

$$\frac{\partial C_A}{\partial t}(t,z) = -\frac{\partial N_A}{\partial z}(t,z) + R_A$$

with the boundary equations

$$C_A(0,z) = C_{A0}(z) \qquad 0 \le z \le L$$

$$C_A(t,0) = C_{A,in}(t) \qquad t \ge 0$$

The constitutive equations are

$$N_A = vC_A$$

$$R_A = -r \qquad r = kC_A$$

Linear Systems with Delay

$$Y(s) = G(s)U(s)$$
 $G(s) = \frac{B(s)}{A(s)}e^{-\tau_d s}$

Examples

$$G(s) = \frac{K}{\tau s + 1} e^{-\tau_d s}$$

$$G(s) = \frac{K(\beta s + 1)}{(\tau_1 s + 1)(\tau_2 s + 1)} e^{-\tau_d s}$$

Learning Objectives

After this lecture you should be able to

- 1. Model systems with chemical reaction
- 2. Model flows in pipes (time delay systems, distributed systems)
- 3. Model chemical reaction and flow in pipes
- 4. Describe why we need time-delays for modeling

Questions and Comments

John Bagterp Jørgensen jbjo@dtu.dk

Department of Applied Mathematics and Computer Science Technical University of Denmark

