Linear Programming: The Simplex Method

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

April 3, 2024

Linear programming and simplex method

- Today, linear programming and the simplex method continue to hold sway as the most widely used of all optimisation tools.
- The technique is to formulate linear models and solve them with simplex-based software.
- Often, the situations they model are actually non-linear.
- But linear programming is appealing,
 - advanced state of the software,
 - guaranteed convergence to a global minimum,
 - uncertainty in the model makes a linear model more appropriate than an overly complex non-linear model.

Non-linear Programming Might be the Future !!!

- Non-linear programming may replace linear programming as the method of choice in some applications as the non-linear software improves.
- A new class of methods known as interior-point methods has proved to be faster for some linear programming problems.
- But the continued importance of the simplex method is assured for the foreseeable future.

LINEAR PROGRAMMING

Linear programs have:

- linear objective function;
- linear constraints;
- which may include both equalities and inequalities.
- The feasible set is a polytope, a convex, connected set with flat, polygonal faces.
- Owing to the linearity of the objective function its contours are planar.
- Figure below depicts a linear program in two-dimensional space, in which the contours of the objective function are indicated by dotted lines.

LINEAR PROGRAMMING

Figure: A linear program in two dimensions with solution at x^*

• The solution in this case is unique-a single vertex.

Solution to Linear Programs

- The solution to a linear program could be non-unique as well.
- It could be an entire edge instead of just one vertex.
- In higher dimensions, the set of optimal points can be a single vertex, an edge or face, or even the entire feasible set.
- The problem has no solution if the feasible set is empty (infeasible case);
- or if the objective function is unbounded below on the feasible region (the unbounded case)

Standard Form of Linear Programs

Linear programs are usually stated and analysed in the following standard form:

Linear Program

min
$$c^T x$$
, subject to $Ax = b$, $x \ge 0$, (1)

where

- c and x are vectors in \mathbb{R}^n ,
- b is a vector in \mathbb{R}^m and A is an $m \times n$ matrix

Transforming to Standard Form

Consider the form:

$$\min c^T x, \quad \text{subject to } Ax \le b \tag{2}$$

without any bounds on x.

 By introducing a vector of <u>slack variables</u> z the inequality constraints can be converted to equalities.

min
$$c^T x$$
, subject to $Ax + z = b$, $z \ge 0$, (3)

 Still not all variables (x) are constrained to be non-negative as in the standard form.

Transforming to Standard Form

 It is dealt by splitting x into non-negative and non-positive parts.

$$x = x^{+} - x^{-}, x^{+} = \max(x, 0) \ge 0 \text{ and } x^{-} = \max(-x, 0)$$

• Now the above considered problem can be written as:

$$\min \begin{bmatrix} c \\ -c \\ 0 \end{bmatrix} \begin{bmatrix} x^+ \\ x^- \\ z \end{bmatrix} \text{ s.t. } \begin{bmatrix} A & -A & I \end{bmatrix} \begin{bmatrix} x^+ \\ x^- \\ z \end{bmatrix} = b, \begin{bmatrix} x^+ \\ x^- \\ z \end{bmatrix} \ge 0,$$

• The above system is now in the standard form.

Transforming to Standard Form

• Inequality constraints of the form $x \le u$ and $Ax \ge b$ can be converted to equality constraints by adding or subtracting slack variables.

$$x \le u \Leftrightarrow x + w = u, \ w \ge 0,$$

 $Ax \ge b \Leftrightarrow Ax - y = b \ y \ge 0$

- We subtract the variables from the left hand side, they are known as surplus variables.
- We add the variables to the left hand side, they are known as deficit variables.
- By simply negating c "maximise" objective max c^Tx can be converted to "minimise" form min $-c^Tx$.

LINEAR PROGRAMMING

- The linear program is said to be infeasible if the feasible set is empty.
- The problem is considered to be unbounded if the objective function is unbounded below on the feasible region.
- That is, there is a sequence of points x_k in the feasible region such that $c^T x_K \downarrow -\infty$.
- Unbounded problems have no solution.
- For the standard formulation , we will assume throughout that m < n.
- Otherwise, the system Ax = b contains redundant rows, or is infeasible, or defines a unique point.
- When $m \ge n$, factorisations such as the QR or LU factorisation can be used to transform the system Ax = b to one with a coefficient matrix of full row rank.

- Optimality conditions can be derived from the first-order conditions, the Karush-Kuhn-Tucker (KKT) conditions.
- Convexity of the problem ensures that these conditions are sufficient for a global minimum.
- Do not need to refer to the second-order conditions, which are not informative because the Hessian of the Lagrangian is zero.
- The LICQ condition is not required to be enforced here as the KKT results continue to hold for dependent constraints provided they are linear, as is the case here.

- The Lagrange multipliers for linear problems are partitioned into two vectors λ and s.
- Where $\lambda \in \mathbb{R}^m$ is the multiplier vector for the equality constraints Ax = b.
- While $s \in \mathbb{R}^n$ is the multiplier vector for the bound constraints x > 0.
- Using the definition we can write the Lagrangian function:

$$\mathscr{L}(x,\lambda,s) = c^{\mathsf{T}}x - \lambda^{\mathsf{T}}(Ax - b) - s^{\mathsf{T}}x. \tag{4}$$

• The first-order necessary conditions for x^* to be a solution of the linear programming problem (1) are, if there exists λ and s such that:

$$A^{T}\lambda + s = c, (5)$$

$$Ax = b, (6)$$

$$x\geq 0, \tag{7}$$

$$s \ge 0,$$
 (8)

$$x_i s_i = 0, \ i = 1, 2, \dots, n.$$
 (9)

• The last condition, which is the complementarity condition, which says that at-least either one of x_i or s_i is zero, can be written alternatively as

$$x^T s = 0$$

• Let (x^*, λ^*, s^*) denote a vector triple that satisfy the KKT conditions, then

$$c^T x^* = (A^T \lambda^* + s^*)^T x^* = (Ax^*)^T \lambda^* = b^T \lambda^*$$
 (10)

- The first order KKT conditions for optimality for LPP is indeed sufficient.
- Let \bar{x} be any other feasible point, so that $A\bar{x} = b$ and $\bar{x} \ge 0$.

$$c^{T}\bar{x} = (A^{T}\lambda^{*} + s^{*})^{T}\bar{x}$$
$$= b^{T}\lambda^{*} + \bar{x}^{T}s^{*}$$
$$\geq b^{T}\lambda^{*} = c^{T}x^{*}$$

- The above inequality tells that no other feasible point can have a lower objective value than c^Tx^* .
- To say more the feasible point \bar{x} is optimal if and only if

$$\bar{x}^T s^* = 0$$

otherwise the inequality is strict.

• When $s_i^* > 0$ then we must have $\bar{x}_i = 0$ for all solutions \bar{x} of the LPP.