Stochastic Optimisation - Assessed Problem Sheet 1

Dom Hutchinson (170 1111)

November 6, 2020

Answer 1.

Let X_1, \ldots, X_n be IID random variables each modelling how many drinks each attendee drank after their first (We assume all attendees have at least one drink). For this scenario we have that $\mathbb{E}[X_i] = \frac{7}{2} - 1 = \frac{5}{2}$ and $X_i \geq 0$ for all i.

Thus, by Markov's Inequality, we have that

$$\forall i \in [1, 100] \quad \mathbb{P}(X_i \ge 6 - 1) \le \frac{\mathbb{E}[X_i]}{6 - 1} = \frac{5/2}{5} = \frac{1}{2}$$

Meaning, out of the 100 attendees at most $100 \times \frac{1}{2} = 50$ attendees had at least 6 drinks.

Consider a scenario where fifty guests drank 3 drinks and the other fifty drank 4 drinks. This scenarios fulfils the requirements that all attendees have at least one drink and on average each attendee had $\frac{7}{2}$ drinks. In this scenario no attendees have at least 6 drinks, thus the lower bound for the number of attendees who had at least 6 drink is 0.

The number of attendees who had at least 6 drinks is between 0 and 50.

Answer 2.

Let $X \sim \text{Poisson}(\lambda)$ where λ is unknown, π_0 be the prior distribution for λ and $\pi_1(\cdot|n)$ be the posterior distribution for λ , given the value n was sampled from X. This means

$$\pi_1(\lambda|n) \propto \pi_0(\lambda)p_{\lambda}(n)$$

where $p_{\lambda}(n) := \mathbb{P}(X = n)$ given $X \sim \text{Poisson}(\lambda)$.

Suppose $\pi_0 \sim \text{Gamma}(\alpha, \beta)$ and note that

$$p_{\lambda}(n) = \frac{\lambda^n e^{-\lambda}}{n!}$$
 and $\pi_0(\lambda) = \frac{\lambda^{\alpha - 1} e^{-\lambda \beta}}{\Gamma(\alpha) \beta^{\alpha}}$

As we are considering proportionality wrt λ , we can ignore terms which do not involve λ . Giving

$$p_{\lambda}(n) \propto \lambda^n e^{-\lambda}$$
 and $\pi_0(\lambda) \propto \lambda^{\alpha-1} e^{-\lambda \beta}$

Using these results we can build an expression for the posterior $\pi_1(\cdot|n)$

$$\pi_{1}(\lambda|n) \propto \pi_{0}(\lambda)p_{\lambda}(n)$$

$$\propto \left(\lambda^{\alpha-1}e^{-\lambda\beta}\right) \cdot \left(\lambda^{n}e^{-\lambda}\right)$$

$$= \lambda^{n+\alpha-1}e^{-\lambda(\beta+1)}$$

By comparing this expression to that of a Gamma distribution we have that

$$\pi_1(\lambda|n) \sim \text{Gamma}(\alpha+n,\beta+1)$$

Answer 3.

Consider a two-armed bandit where the rewards from each arm are modelled by IID random variables X_1, X_2 each with distribution Poisson(λ_i) with means λ_1, λ_2 unknown.

Here I give a version of the Thompson Sampling algorithm for solving the multi-armed bandit problem for this bandit, with a round limit T.

- I. Define a Gamma(α, β) distribution prior for the mean of each arm, with the values of α, β chosen arbitrarily (Perhaps $\alpha = \beta = 1$).
- II. To start the t^{th} round, sample $\hat{\mu}_1(t)$ from the prior for arm one and $\hat{\mu}_2(t)$ from the prior for arm two.
- III. If $\hat{\mu}_1(t) \geq \hat{\mu}_2(t)$ then play arm one; otherwise, play arm two. Let n denote the observed reward from the played arm.
- IV. Suppose the prior for the mean of the played arm at the start of this round was a $Gamma(\alpha_t, \beta_t)$ distribution. Define the posterior for the mean of the played arm to be a $Gamma(\alpha_t + n, \beta_t + 1)$ distribution.
- V. For the non-played arm, define the posterior for its mean to be the same as its prior at the start of this round.
- VI. Repeat steps II.-V. until T rounds have been played. Use the posteriors from round t as the priors for round t + 1.
- N.B. After round t the posterior for the mean of arm i will be a $Gamma(\alpha + Y_t, \beta + N_t)$ distribution where Y_t is the sum-total reward received from playing arm i in the first t rounds and N_t is the number of times arm i was played in the first t rounds.