

7

A-4

0300
2408PATENT
0104-0328P

IN THE U.S. PATENT AND TRADEMARK OFFICE

Applicant: CLAESSEN, Ingvar et al. Conf.:

Appl. No.: 09/838,328 Group: UNASSIGNED

Filed: April 20, 2001 Examiner: UNASSIGNED

For: METHOD AND DEVICE FOR VIBRATION CONTROL

LETTERAssistant Commissioner for Patents
Washington, DC 20231

June 14, 2001

Sir:

Under the provisions of 35 U.S.C. § 119 and 37 C.F.R. § 1.55(a), the applicant(s) hereby claim(s) the right of priority based on the following application(s):

<u>Country</u>	<u>Application No.</u>	<u>Filed</u>
SWEDEN	9803605-6	October 22, 1998

A certified copy of the above-noted application(s) is(are) attached hereto.

If necessary, the Commissioner is hereby authorized in this, concurrent, and future replies, to charge payment or credit any overpayment to Deposit Account No. 02-2448 for any additional fee required under 37 C.F.R. §§ 1.16 or 1.17; particularly, extension of time fees.

Respectfully submitted,

BIRCH, STEWART, KOLASCH & BIRCH, LLP

By Joe McKinney Muncy #32,334

P.O. Box 747
Falls Church, VA 22040-0747
(703) 205-8000

KM/asc
0104-0328P

Attachment

PRV

PATENT- OCH REGISTRERINGSVERKET
Patentavdelningen

09/838 528
Attorney Docket No. 0104-0328P
April 20, 2001
CLAESSON Ingvar et al.
Birch, Stewart, Kolasch & Birch, LLP
(703) 205-8000
Intyg
Certificate

Härmed intygas att bifogade kopior överensstämmer med de
handlingar som ursprungligen ingivits till Patent- och
registreringsverket i nedannämnda ansökan.

This is to certify that the annexed is a true copy of
the documents as originally filed with the Patent- and
Registration Office in connection with the following
patent application.

(71) Sökande Ingvar Claesson, Helsingborg SE
 Applicant (s) Lars Håkansson, Helsingborg SE
 Thomas Lagö, Bankeryd SE

(21) Patentansökningsnummer 9803605-6
 Patent application number

(86) Ingivningsdatum 1998-10-22
 Date of filing

Stockholm, 2001-05-07

För Patent- och registreringsverket
For the Patent- and Registration Office

Hjördis Segerlund
Hjördis Segerlund

Avgift
Fee 170:-

METOD OCH ANORDNING FÖR STYRNING AV VIBRATIONERTekniskt område

Föreliggande uppfinning avser en metod och en anordning för styrning av vibrationer, och närmare bestämt en metod, en anordning och en verktygshållare för styrning 5 av vibrationer vid skärande bearbetning.

Bakgrundsteknik

Vid skärande bearbetning, såsom svarvning, borrhning, fräsning eller hyvling, uppkommer dynamisk rörelse mellan verktyg och arbetsstykke. Rörelsen beror till stor del på 10 att spånbildningsprocessen, dvs avlägsnandet av det i allmänhet förhållandevis hårda materialet från arbetsstycket, ger en dynamisk excitation av verktyget, och särskilt verktygshållaren. Den dynamiska excitationen leder till en dynamisk rörelse, i form av exempelvis 15 elastisk böjning eller torsion, hos verktyget och verktygshållaren. Spånformningsprocessen är till stora delar stokastisk och excitationen visar sig i form av verktygs- vibrationer och buller. Förutom att därigenom ge upphov till arbetsmiljöproblem påverkar den dynamiska rörelsen 20 även jämnheten hos arbetsstyckets yta och verktygets livslängd.

Det är därför angeläget att så långt som möjligt reducera den dynamiska rörelsen. Det är känt att vibrationsproblemet har ett nära samband med den dynamiska 25 styvheten i maskinens konstruktion och arbetsstyckets material. Man har därför lyckats reducera problemet något genom att utforma maskinens konstruktion på sätt som ökar den dynamiska styvheten.

En viktig del av konstruktionen är själva verktygshållaren. Det skärande verktyget, exempelvis ett svarvskär, ett frässkär eller ett borrhskär, är styvt uppburat 30 av verktygshållaren. Därmed överförs de vibrationer som uppkommer mellan den skärande eggen och arbetsstycket i stort sett fullständigt till verktygshållaren. Det är

till och med ofta så att det är bristande dynamisk styvhets hos verktygshållaren som är ett huvudproblem.

På senare tid har man därför inriktat sig på att öka själva verktygshållarens dynamiska styvhets med hjälp av 5 aktiv teknik för att därigenom styra verktygets respons. Det innehåller att man tillämpar aktiv styrning av verktygvibrationerna.

Den aktiva styrningen innefattar införandet av sekundära vibrationer, eller motvibrationer, i verktyget 10 med hjälp av en sekundär källa, som ofta benämnes aktuator. Aktuatorn drivs så att motvibrationerna interfererar destruktivt med verktygvibrationerna.

I US-4 409 659 visas ett exempel på en sådan styrenhet. En ultraljudsaktuator är anordnad på verktygshållaren och skapar motvibrationer i verktyget. Aktuatorns 15 drivström styrs i beroende av fysiska parametrar som mäts och med hjälp av aktuatorns arbete hålls inom definierade gränser. Denna konstruktion är klumpig eftersom aktuatorn utgör en förhållandevis stor komponent som måste monteras 20 utanpå en lämplig yta hos verktygshållaren. Dessutom är riktningsverkan inte helt distinkt.

I JP-63 180 401 visas en helt annan lösning där aktuatorn är inbyggd i verktygshållaren som håller ett svarvskär. Ett lateralt genomgående hål med rektangulärt 25 tvärsnitt är upptaget i verktygshållaren. En piezoelektrisk aktuator är i serie med en lastdetektor inspänd mellan de väggar som avgränsar hålet i verktygshållarens längdriktning. Lastdetektorn avkänner vibrationerna och används av en styrenhet för att via aktuatorn alstra motvibrationer som reducerar den dynamiska rörelsen. Denna 30 konstruktion medför ett kraftigt ingrepp i verktygshållaren och visar samtidigt att konstruktören inte haft kunskap om excitationsprocessens kärna. Ingreppet motverkar nämligen syftet med konstruktionen genom att det reducerar verktygshållarens styvhets i de viktigaste riktningarna, framför allt vertikalt, vilket i sig medför större 35 vibrationsproblem alternativt medför att verktygshålla-

rens dimensioner måste ökas väsentligt för att styvheten skall bibehållas. Vid svarvning skapar det roterande verktyget en nedåtriktad kraft på skäreggen. När eggen håller emot bryts material loss från arbetsstycket. Där-
5 vid uppkommer huvuddelen av vibrationerna. I JP-63 180 401 tänker man sig istället från att arbets-
styckets yta är ojämn (vågmönstrad) och därigenom huvudsakligen exciterar verktygshållaren i dess längdriktnings. Via aktuatorn alstrar man en svängning i motfas mot våg-
10 mönstret och uppnår därigenom ett konstant skärdjup.

Det finns således ett behov av en lösning som styr de mest väsentliga vibrationerna vid skärande bearbetning, såsom svarvning, fräsning, borrning eller hyvling, och som ger minimal negativ påverkan, såsom skrymmande
15 utskott eller dynamiskt försvagande ingrepp, och ändå har god verkan.

Sammanfattnings av uppföringen

Ett ändamål med föreliggande uppföring är att åstadkomma en anordning och en metod för styrning av
20 verktygvibrationer, vilken anordning och vilken metod har ingen eller åtminstone försumbar negativ påverkan på verktygets dimensioner.

Ett annat ändamål med föreliggande uppföring är att åstadkomma en anordning och en metod för styrning av
25 verktygvibrationer, vilken anordning och vilken metod har ingen eller åtminstone försumbar negativ påverkan på verktygets mekaniska egenskaper.

Ytterligare ett ändamål med uppföringen är att åstadkomma en anordning och en metod för styrning av
30 verktygvibrationer, vilken anordning och vilken metod ger en riktad och direkt styrning av verktygvibrationerna.

Ännu ett ändamål med uppföringen är att åstadkomma en anordning och en metod för styrning av verktygvibrationer, vilken anordning och vilken metod möjliggör styrning av verktygvibrationer i valbar riktning.

Ändamålen med avseende på en anordning uppnås med en anordning för styrning av vibrationer i en maskin för skärande bearbetning, varvid maskinen innefattar ett skärande verktyg som uppbärs av en verktygshållare, varvid anordningen innefattar en styrenhet och till styrenheten anslutbara omvandlarorgan innefattande en vibrationssensor och en aktuator, och varvid aktuatoren innefattar ett aktivt element som omvandlar en av styrenheten över det aktiva elementet anbringad växelspänning till dimensionsförändringar. Anordningen kännetecknas av att nämnda aktiva element är inrättat att bättas in i verktygshållarens kropp och att nämnda aktiva element är inrättat att bättas in så att nämnda dimensionsförändringar bibringar verktygshållarens kropp vridande moment.

Ändamålen med avseende på en metod uppnås med en metod för styrning av vibrationer vid skärande bearbetning, innefattande att avkänna en verktygshållares vibrationer under pågående bearbetning och att alstra styrvibrationer i verktygshållaren, med hjälp av åtminstone ett aktivt element som är elektriskt styrbart till dimensionsförändringar. Metoden kännetecknas av steget att bättta in nämnda aktiva element i verktygshållarens kropp och att, för alstringen av styrvibrationerna, bibringa verktygshållarens kropp vridande moment genom att alstra åtminstone en styrspänning och anbringa styrspänningen över nämnda aktiva element och genom att variera styrspänningen i beroende av de avkända vibrationerna.

Idén att enligt uppförningen bättta in åtminstone ett aktivt element i verktygshållaren innebär ett minimalt ingrepp i verktygshållaren och utnyttjar samtidigt det aktiva elementets snabbhet och dimensionsförändringsförmåga på ett optimalt sätt. Inbäddningen gör det möjligt att effektivare överföra dimensionsförändringen direkt till verktygshållarens kropp och med full verkningsgrad.

Den kända tekniken enligt JP-63 180 401 där aktuatorelementet ligger fritt med undantag för gavelytorna ger ett svängrum för utböjning hos aktuatorelementet, varvid

kraft går förlorad. Inbäddningen har även fördelen att anordningen är användbar i praktiken eftersom den är skyddad mot skärvätskor och spän. De kända anordningarna är möjliga användbara för laboratoriebruk men inte i
5 industrierverksamhet.

Anordningen är inrättad att bibringa verktygshållaren ett vridande moment genom placeringen av det (de) aktiva elementet (-en). Det motsvarande aktuatorelementet i JP-63 180 401 är medvetet anordnat så att dimensions-
10 förändringen sker utmed verktygshållarens längdaxel, vilket inte ger något vridande moment. Det beror på ovan-
nämnda bristande kunskaper om vad som primärt orsakar vibrationsproblemen. Man har således inte insett att de
15 viktigaste excitationskrafterna har helt andra riktningar än parallellt med nämnda längdaxel. Även med den insikten
är emellertid konstruktionen enligt JP-63 180 401 inte enkelt anpassningsbar för någon annan montering än den
visade.

Det aktiva elementet enligt uppförningen kan göras
20 litet. Därigenom är det enkelt att bygga in det aktiva elementet i verktygshållaren vid tillverkningen av det-
samma utan att verktygshållarens mekaniska egenskaper på-
verkas negativt. Dessutom medför det att elementet är
eftermonterbart i befintliga verktygshållare.

25 Vidare är monteringen flexibel så tillvida att det aktiva elementet är monterbart med valfri orientering.
Därigenom går det att uppnå maximal styrbarhet för vibrationer med i stort sett vilken riktning som helst.

Kort beskrivning av ritningarna

30 Uppfinningen kommer nedan att beskrivas närmare genom utföringsformer under hänvisning till den åtföljande ritningen, där:

Fig 1 i en perspektivvy exemplifierar kraftpåverkan
på ett skärande verktyg;

35 Fig 2 i en genomskärningsvy schematiskt visar en utföringsform av uppförningen tillämpad på ett verktyg för svarvning;

Fig 3 visar ett blockschema över styrning enligt utföringsformen i fig 2; och

Fig 4 visar en annan utföringsform av uppfinningen tillämpad på ett verktyg för fräsning.

5 Detaljerad beskrivning av utföringsformer

En grundläggande avsikt med uppfinningen är att motverka uppkomsten av vibrationer som ger buller, slitage och ytojämnhet i samband med skärande bearbetning av ett arbetsstykke. Ovan har orsakssambanden för uppkomsten av vibrationer vid skärande bearbetning beskrivits. Genom en korrekt utförd vibrationsstyrning enligt uppfinningen undanröjs problemen och en god ytfinish uppnås.

I fig 1 visas ett exempel på krafter som ett verktyg 1, i det här fallet ett svarvskär, utsätts för på grund 15 av bearbetningen av ett arbetsstykke 2. Verktyget 1 upp- bärts av en verktygshållaren 3, med vilken verktyget 1 är stumt förbundet. Arbetsstycket 2 roterar i pilens A riktning. Verktygshållaren 3 rör sig i en matningsriktning, som anges av pilen B. Arbetsstyckets 2 rotation och verk- 20 tygshållarens 3 rörelse ger tillsammans en kraftresultant som åskådliggörs med pilen f. Kraftresultanten f kan de- las upp i komposanter f_f , f_p och f_v . Av fig 1 framgår att den dominerande komposanten är f_v , som betecknar den kraft som erfordras för att avlägsna material från ar- 25 betsstycket 2.

Fig 2 exemplifierar en utföringsform av anordningen enligt uppfinningen och hur denna utföringsform används vid svarvning. I fig 2 visas, i en längsgående genomskärningsvy, schematiskt ett verktyg i form av ett svarvskär 30 21 och en verktygshållare i form av en svarvskärshållare 23, vilka motsvarar verktyget 1 respektive verktygshållaren 3 i fig 1. Ett roterande arbetsstykke visas i tvär- snitt vid 22. Anordningen enligt uppfinningen är i detta exempel anbringad för att minska/motverka de vibrationer 35 som kraftkomposanten f_v ger upphov till och som visas med pilen C. Anordningen innehåller omvandlarorgan, som utgörs av plattformiga sensorer 24, 25 och plattformiga

aktuatorer 26, 27. Aktuatorerna 26, 27 innehåller aktiva element, här ett element vardera, vilka i denna utföringsform utgörs av piezokeramelement, som ändrar dimension när en elektrisk spänning anbringas över dem. Dimensionsförändringen står i ett förhållande till spänningen. Ett piezokeramelement kan i sin tur vara utfört som en enhet eller med fördel vara uppbyggt som en så kallad stack och/eller av flera delelement. Således kan elementet vara en solid kropp eller flera individuella men 10 sammansatta och samverkande kroppar. Sensorerna 24, 25 utgörs av piezoelektriska kristaller som alstrar en elektrisk spänning när de utsätts för kraftpåverkan. Anordningen innehåller vidare en styrenhet 28, som är elektriskt ansluten till sensorerna 24, 25 och aktuatorerna 15 26, 27 via en ledning 29, som innehåller ett flertal ledare. Av tydighetsskäl visas i verktygshållaren 23 enbart de ledare 30-33 som är anslutna till aktuatorerna 26, 27, men ledare finns givetvis även till sensorerna 24, 25.

20 De aktiva elementen, dvs piezokeramelementen, 26, 27 är inbäddade i verktygshållaren 23. I det här fallet, och såsom en föredragen utföringsform är inbäddningen en ingjutning. Ingjutningen utförs genom att det för varje aktivt element 26, 27 utformas en urtagning i verktygs- 25 hållarens 23 kropp, varefter det aktiva elementet 26, 27 placeras däri och gjuts över. Det aktiva elementet 26, 27 limmas företrädesvis mot urtagningens bottentyta. Sensorerna 24, 25 är ingjutna på motsvarande sätt som de aktiva elementen. Ledarna 30-33 är också ingjutna i verktygshållaren 23.

30 Omvandlarorganen 24-27 är parvis motstående och parallellt anordnade, i form av ett sensorpar 24, 25 och ett aktuatorpar 26, 27. En övre sensor 24 av sensorerna 24, 25 är anordnad nära verktygshållarens 23 ovansida 35 23a, och en undre sensor 25 av sensorerna 24, 25 är anordnad nära verktygshållarens 23 undersida 23b. Aktuatorerna 26, 27 är anordnade på motsvarande sätt, dvs med en

övre och en undre aktuator 26 respektive 27 anordnade nära verktygshållarens 23 ovansida 23a respektive undersida 23b.

Anordningen fungerar enligt följande. När verktyget 5 21 och verktygshållaren 23 under pågående svarvning vibrerar upp och ned enligt pilen C utsätts sensorerna 24, 25 för omväxlande drag- och tryckkrafter. Varje sensorer 24, 25 alstrar då en spänning som varierar i takt med kraftvariationerna. Sensorspänningarna detekteras och 10 analyseras av styrenheten 28. Styrenheten 28 alstrar två styrspänningar, i form av växelspänningar, som matas till var sin aktuator 26 respektive 27 och anbringas över piezokeramelementen 26, 27. Piezokeramelementen 26, 27 är långsträckta i verktygshållarens 23 längdled och ledarna 15 30-33, är två och två anslutna till var sitt piezokeram-element 26, 27 i deras framändar 26a respektive 27a och bakändar 26b respektive 27b. När aktuatorerna 26, 27 spänningssätts medelst styrspänningarna förlängs piezokeramelementen 26, 27 således i högre eller mindre grad 20 beroende på spänningarnas storlek. Med andra ord erhåller varje piezokeramelement 26, 27 en dimensionsförändring i sin längdled, vilket i föreliggande exempel även är verktygshållarens 23 längdled. Piezokeramelementen 26, 27 har företrädesvis kraftförmedlingsytor, i detta fall deras 25 gavelytor vid ändarna 26a, 26b, 27a, 27b, som anligger direkt mot ytor i verktygshållarens 23 kropp. Vidare är piezokeramelementen 26, 27 belägna på avstånd från verktygshållarens 23 centrumaxel I-I. Med uttrycket "på avstånd från centrumaxeln" avses generellt att piezokeram-elementens 26, 27 geometriska centrumaxlar inte sammanfaller med verktygshållarens 23 geometriska centrumaxel. 30 Om centrumaxlarna skulle sammanfalla så skulle inget vridande moment åstadkommas utan enbart en ren längdförändring av verktygshållaren 23. I den föredragna utföringsformen är piezokeramelementen 26, 27 ytnära, eller grunt, placerade för att momentarmarna skall bli så långa som möjligt. I det föreliggande exemplet är den dominerande 35

vibrationen vertikal, vilket innebär att de krafter som induceras med hjälp av piezokeramelementen 26, 27 i första hand strävar att böja verktygshållarens 23 ände uppåt och nedåt.

5 De vridande momenten verkar således kring en axel som är vinkelrät mot centrumaxeln I-I och styrs så att de arbetar i motfas mot de vridande moment som arbetsstycket 22 inducerar vid bearbetningen genom sin rotation. Därmed minskas vibrationerna. Styrenheten 28 alstrar således sådana styrspänningar att de medelst aktuatorerna 26, 27 inducerade krafterna ligger i motfas mot de av sensorerna 24, 25 detekterade krafterna.

10 Styrenheten 28 är valbar bland många olika typer, exempelvis analog, återkopplad styrenhet, konventionell 15 PID-regulator, adaptiv regulator eller någon annan, i en aktuell tillämpning lämplig styrenhet. Styrenheten strävar företrädesvis efter att styra vibrationerna mot ett optimalt tillstånd. Styrningen kan exempelvis innebära att minimera vibrationerna i någon eller alla riktningar, 20 varvid det optimala tillståndet kan vara helt utsläckta vibrationer. Det finns många kända styralgoritmer att välja bland. Strävan är att finna den mest effektiva för en viss tillämpning. Vad beträffar den ovan beskrivna utföringsformen för svarvtillämpningen sker analysen av 25 sensorsignalerna, dvs de av sensorerna alstrade spänningarna, och alstringen av styrsignalerna, dvs styrspänningarna, till piezokeramelementen 26, 27 enligt följande.

30 En föredragen utföringsform av det styrsystem som styrenheten 28, sensorerna 24, 25 och piezokeramelementen 26, 27 tillsammans utgör är återkopplad och baserad på en så kallad "Filtered-X LMS-algoritm". Denna algoritm är i sig förvisso känd för fackmannen inom teknikområdet. I 35 fig 3 visas ett ekvivalent blockschema över det återkopplade styrsystemet i en digital beskrivning.

Block 301, som även är betecknat C, representerar det dynamiska systemet som styrs, vilket innehåller

aktuatorerna 26, 27 och sensorerna 24, 25. De övriga blocken representerar en realisering av nämnda algoritm. Block 305 representerar ett FIR-filter med justerbara koefficienter, block 307 representerar ett adaptivt koefficientjusteringsorgan, och block 309 representerar en modell (C^*) av det dynamiska systemet 301.

Sett ur ett funktionsmässigt, matematiskt perspektiv utgör det dynamiska systemet ett framfilter, vars utsignal, dvs det dynamiska systemets respons, är $y_c(n)$. Koefficientjusteringsorganet 307 strävar efter att optimera FIR-filtrets koefficienter så att en felsignal $e(n)$ minimeras. Felsignalen $e(n) = d(n) - y_c(n)$, där $d(n)$ är en önskvärd utsignal. Bestämningen av felsignalen görs med hjälp av en summerare 311. För att säkerställa att koefficientjusteringsorganet konvergerar varje gång oavsett utgångstillstånd matas det med en referenssignal $r(n)$ från modellen 309 av framfiltret.

I matematiska termer kan man uttrycka verkan av uppfinnningen som att den ändrar verktygshållarens överföring och närmare bestämt ändrar egenskaperna hos en eller flera framkanaler, där varje framkanal är förknippad med en excitationsriktning. Detta betraktelsesätt är likvärdigt med att verkan av uppfinnningen är att styrvibrationer alstras vilka styrvibrationer påverkar verktygshållarens vibrationer. Det skall således påpekas att framkanalen ofta inte kan betraktas som tidsinvariant, dvs traditionell linjär systemteori är ofta inte tillämplig. Systemet är vanligtvis olinjärt.

Uppfinningen är inte bara tillämplbar för svarvning utan fungerar även för annan typ av skärande bearbetning, såsom fräsning eller borrning, varvid den ovan beskrivna styralgoritmen också är tillämplig.

Vid fräsning roterar inte arbetsstycket utan själva verktyget och dess verktygshållare. I fig 4 visas en fräsverktygshållare 41, vars rotationsriktning anges med en pil. Fräsverktygshållaren 41 har inbäddade sensorer och aktiva element, varav två aktiva element 45, 47 visas

schematiskt. De mest betydande vibrationer som uppkommer vid fräsning är orsakade av torsion av fräsverktygshållaren 41 på grund av skäreggarnas 43 ingrepp i arbetsstyckets material. Fräsverktygshållaren 41 utsätts även 5 för en viss böjning. Kraftresultanterna är främst skruvformigt riktade kring fräsverktygshållarens 41 rotationsaxel. En föredragen placering av de aktiva elementen 45, 47b är därför i ett band kring fräsverktygshållaren 41 så att de aktiva elementen har en huvudsaklig utsträckning 10 och samtidigt verkansriktning skruvformigt kring verktygshållarens 41 rotationsaxel. Därmed verkar de åstadkomna vridande momenten huvudsakligen i samma riktningar som nämnda torsion. En tänkbar variant till eller kombination med den skruvformiga placeringen är dock även att 15 placerade aktiva elementen parallellt med rotationsaxeln.

Vid borrning roterar, liksom vid fräsning, verktyg och verktygshållare. Borrar har ett verktyg i form av ett borrskär som uppbärs av en verktygshållare. Skäret är i allmänhet fastsvetsat på hållaren. Det finns dock även så 20 kallade snabbstålsborr, varvid verktygshållare och verktyg är utformade i samma ämne. Även i det fallet innefattar dock borret definitionsmässigt ett verktyg i form av själva skäret i borrets ände och en verktygshållare i form av den resterande delen av borret. Vid borrning liknar förhållandena de förhållandena som råder vid fräsning. 25 En klar skillnad ligger dock i matningsriktningen, som vid borrning är parallell med verktygshållarens rotationsaxel, medan den är vinkelrätt mot verktygets rotationsaxel vid fräsning. En annan skillnad är att hela 30 verktyget ligger an mot arbetsstycket vid borrning medan det endast är en partiell anliggning vid fräsning. Vid borrning är därför vibrationerna nästan uteslutande torsionsrelaterade. Aktiva element och sensorer anordnas ungefär som i fräsfallet, men i större vinkel mot rotationsaxeln.

Även vibrationer i hyvelverktyg och andra skärande verktyg kan styras i enlighet med uppfinitionen.

En alternativ placering av sensor är i svarvfallet mellan själva skäret och verktygshållaren, dvs under skäret. I det fallet används en tryckkänslig sensor.

Sensorerna kan för övrigt vara av någon av flera 5 olika typer. Utöver ovannämnda är exempelvis accelerometrar och trådtöjningsgivare tänkbara. De senare är dock mindre lämpliga än de piezoelektriska sensorerna sett ur miljösynpunkt.

Även de aktiva elementen kan vara av olika typer 10 inom ramen för uppfinningen. I framtiden är sannolikt ännu tunnare element än dagens möjliga, exempelvis i form av piezofilm (PZT). Den för närvarande föredragna typen är dock piezokeramelement.

De ovan beskrivna placeringarna av sensorerna och 15 aktuatorerna är exempel på placeringar och många varianter är tänkbara, såsom en kombination av de visade eller andra antal aktuatorer. Exempelvis i svarvfallet kan man anordna två par aktuatorer i varje riktning eller flera aktuatorer bredvid de visade. I sitt enklaste utförande 20 innehåller anordningen enligt uppfinningen endast en aktuator som innehåller ett aktivt element. Detta ger dock ett mer olinjärt styrsystem, vilket orsakar onödiga styrtekniska svårigheter. Det är därför en fördel att balansera systemet genom att, såsom i den i fig 2 visade 25 utföringsformen, anordna de aktiva elementen parvis motstående, dvs mitt emot varandra på varsin sida om verktygshållarens centrumaxel. En ännu högre linjäritet uppnås om varje aktuator dessutom utformas av två aktiva element som förenas, exempelvis genom limning, med varandra 30 och mot varandra till ett dubbelement. Dubbellementet blir visserligen dubbelt så tjockt som ett enkelt element, men ger å andra sidan mer dynamisk effekt, vilket ibland är att föredra.

De aktiva elementen är formmässigt inte bundna till 35 att vara rätblocksformiga och plattformiga som de visade elementen, utan formen kan variera beroende på tillämpning. Plattformigheten är dock en fördel, eftersom den

bidrar till att minimera elementets volym. Vidare är långsträckthet en god formegenskap som också bidrar till att elementet får en liten volym. Det är därför att föredra att dimensionsförändringarna sker i elementets längd-
5 led.

Hur de aktiva elementen anordnas i verktygshållaren kan variera och har förvisso också inverkan på formen. Utöver den ovan beskrivna, föredragna monteringen där elementen visserligen limmas mot urtagningens botten men
10 två motstående kraftförmedlingsytor väsentligen alstrar de vridande momenten är andra alternativ möjliga. Ett sådant innebär att dimensionsförändringen helt överförs via limförbandet, vilket i princip är möjligt med dagens mest hållfasta lim. Även andra varianter rymms inom ramen
15 för uppfinningen.

Övergjutningen av det aktiva elementet görs med lämpligt material. Som exempel är plastmaterial värd att påpeka. Att föredra är dock om i vart fall ett lock av metall anordnas överst och i jämnhöjd med den övriga
20 verktygshållarytan.

PATENTKRAV

1. Anordning för styrning av vibrationer i en maskin
5 för skärande bearbetning, vilken maskin innehåller ett
skärande verktyg (21, 43) som uppbärs av en verktygshållare (3, 23, 41), varvid anordningen innehåller en styr-
enhet (28) och till styrenheten anslutbara omvandlarorgan
10 innehållande en vibrationssensor (24, 25) och en aktuator (26, 27, 45, 47), och varvid aktuatorn innehåller ett
aktivt element (26, 27, 45, 47) som omvandlar en av styr-
enheten till aktuatorn matad växelspanning till dimen-
sionsförändringar, kännetecknade av att
nämnda aktiva element är inrättat att bättas in i verk-
15 tygshållarens kropp och att nämnda aktiva element är in-
rättat att bättas in så att nämnda dimensionsförändringar
bibringar verktygshållarens kropp vridande moment.

2. Anordning enligt patentkrav 1, känne-
tecknad av att nämnda aktiva element (26, 27, 45,
47) är inrättat att bättas in med sin centrumaxel på av-
stånd från verktygshållarens (3, 23, 41) centrumaxel.

3. Anordning enligt patentkrav 1 eller 2,
kännetecknad av att nämnda aktiva element
(26, 27, 45, 47) är inrättat att bättas in nära verktygs-
hållarens (3, 23, 41) yta.

4. Anordning enligt något av föregående patentkrav, kännetecknad av att nämnda aktiva element (26, 27, 45, 47) är plattformigt.

5. Anordning enligt något av föregående patentkrav,
30 kännetecknad av att nämnda aktuator (26, 27,
45, 47) innehåller ett dubbelement, som utgörs av två
med varandra via varsin storyta förbundna aktiva element.

6. Anordning enligt något av föregående patentkrav, kännetecknad av att nämnda aktiva element (26, 27, 45, 47) utgörs av ett piezokeramelement.

7. Metod för styrning av vibrationer vid skärande bearbetning, innefattande att avkänna en verktygshållares

vibrationer under pågående bearbetning och att alstra
styrvibrationer i verktygshållaren, med hjälp av åtmin-
stone ett aktivt element som är elektriskt styrbart till
dimensionsförändringar, kännetecknad av att
5 bätta in nämnda aktiva element i verktygshållarens kropp
och att, för alstringen av styrvibrationerna, bibringa
verktygshållarens kropp vridande moment, genom att alstra
åtminstone en styrspänning och anbringa styrspänningen
över nämnda aktiva element och genom att variera styr-
10 spänningen i beroende av de avkända vibrationerna.

8. Metod enligt patentkrav 7, känneteck-
nad av att avkänna verktygshållarens vibrationer
piezoelektriskt.

9. Verktygshållare, som är anordnad att uppbära ett
15 verktyg för skärande bearbetning, varvid verktygshållaren
(3, 23, 41) innehåller en aktuator (26, 27, 45, 47), vil-
ken aktuator innehåller ett aktivt element (26, 27, 45,
47) som är elektriskt styrbart till dimensionsföränd-
ringar kännetecknad av att det aktiva
20 elementet (26, 27, 45, 47) är inbäddat i verktygshålla-
rens kropp och att det därvid är anordnat att genom
nämnda dimensionsförändringar bibringa verktygshållarens
kropp vridande moment.

10. Verktygshållare enligt patentkrav 9,
25 kännetecknad av att nämnda aktiva element
(26, 27, 45, 47) är inbäddat med sin centrumaxel på av-
stånd från verktygshållarens (3, 23, 41) centrumaxel.

11. Verktygshållare enligt patentkrav 9 eller 10,
kännetecknad av att nämnda aktiva element
30 (26, 27, 45, 47) är inbäddat nära verktygshållarens (3,
23, 41) yta.

12. Verktygshållare enligt patentkrav 9, 10 eller
11, kännetecknad av att minst ett par aktiva
element är anordnat så att de i paret ingående aktiva
35 elementen är motstående anordnade på var sin sida om
verktygshållarens (3, 23, 41) centrumaxel.

13. Verktygshållare enligt något av patentkraven
9-12, känteccknad av att nämnda aktiva
element (26, 27, 45, 47) är anordnat i en urtagning i
verktygshållaren (3, 23, 41) och är forbundet med verk-
tygshållaren via ett limförband som överför åtminstone en
del av nämnda dimensionsförändring till verktygshållaren,
och att urtagningen är förseglad.

14. Verktygshållare enligt något av patentkraven
9-13, känteccknad av att nämnda aktiva
element (26, 27, 45, 47) är anordnat i en urtagning i
verktygshållaren (3, 23, 41) och har två motstående
kraftförmedlingsytter, varvid kraftförmedlingsytorna är i
anliggning mot ytor hos verktygshållarens kropp och var-
vid nämnda dimensionsförändringar ändrar avståndet mellan
kraftförmedlingsytorna, och att urtagningen är förseglad.

15. Verktygshållare enligt något av patentkraven
9-14, känteccknad av att den utgörs av en
skärhållare (3, 23) för en svarvmaskin.

16. Verktygshållare enligt något av patentkraven
9-14, känteccknad av att den utgörs av en
skärhållare (41) för en fräsmaskin och att skärhållaren
innefattar aktiva element (45, 47) som är skruvformigt
anordnade kring skärhållarens centrumaxel.

17. Verktygshållare enligt något av patentkraven
9-14, känteccknad av att den utgörs av en
skärhållare för en borrmaskin, och att skärhållaren inne-
fattar aktiva element som är skruvformigt anordnade kring
skärhållarens centrumaxel.

18. Verktygshållare enligt något av patentkraven
9-17, känteccknad av att den innehåller ett
inbäddat, piezoelektriskt sensorelement (24, 25).

19. Verktygshållare enligt något av patentkraven
9-18, känteccknad av att nämnda inbäddade
element är ingjutna i verktygshållarens kropp.

20. Verktygshållare enligt något av patentkraven
9-19, känteccknad av att nämnda aktiva
element utgörs av ett piezokeramelement.

21. Användning av en anordning enligt något av patentkraven 1-6 i en maskin, varvid maskinen är endera av en maskin för svarvning, en maskin för fräsning eller en maskin för borrnning.

SAMMANFATTNING

Uppfinningen avser en anordning för styrning av vibrationer i en maskin för skärande bearbetning, vilken
5 maskin innehåller ett skärande verktyg (21, 43) som upp-
bärs av en verktygshållare (3, 23, 41). Anordningen innehåller
bärs av en verktygshållare (3, 23, 41). Anordningen innehåller
en styrenhet (28) och till styrenheten anslutbara
10 omvandlarorgan innehållande en vibrationssensor (24, 25)
och en aktuator (26, 27, 45, 47). Aktuatoren innehåller
ett aktivt element (26, 27, 45, 47) som omvandlar en av
styrenheten till aktuatoren matad växelpänning till
dimensionsförändringar. Nämnda aktiva element är inrättat
15 att bättas in i verktygshållarens kropp och är inrättat
att bättas in så att nämnda dimensionsförändringar bibringar
verktygshållarens kropp vridande moment.

Uppfinningen avser vidare en metod för styrning av
vibrationer vid skärande bearbetning.

Uppfinningen avser även en verktygshållare.

20

25

30

Publiceringsbild = Fig 2

Fig. 1

Fig. 2

Fig. 3a

Fig. 3b

Fig. 4