

Regularização de um problema inverso linear

Prof. André L. A. dos Reis

Objetivos da aula

- * Os problemas mal postos
- * O problema visto de uma perspectiva matemática
- * Regularização de Tikhonov de Ordem Zero e de Ordem Um
- * Exemplo:
 - A Camada equivalente

Os problemas malpostos

O que procuramos na inversão é um conjunto de parâmetros que minimize a distância entre o vetor de dados observados e o vetor de dados preditos pelo modelo.

Matematicamente, este é um processo de otimização no qual queremos minimizar a norma euclidiana de uma função que mede a distância entre os dois vetores!

Formulação matemática

Matematicamente, este é um processo de otimização no qual queremos minimizar a norma euclidiana de uma função que mede a distância entre os dois vetores!

$$\varphi(\mathbf{p}) = \parallel \mathbf{d}^o - \mathbf{d}^p \parallel_2$$

Função de ajuste

$$\nabla \varphi(\mathbf{p}) = \mathbf{0}$$

Quando falamos em minimizar uma função, significa que queremos tomar o gradiente desta função e igualarmos a zero.

Formulação matemática

Uma vez que esta função é minimizada...

$$(\mathbf{G}^T\mathbf{G})\mathbf{p}^{\sharp} = \mathbf{G}^T\mathbf{d}^o$$

Estimador de mínimos quadrados

Matriz de sensibilidade: Mede a sensibilidade do i-ésimo dado em relação ao j-ésimo parâmetro.

$$\mathbf{G} = \begin{bmatrix} g_{11} & \cdots & g_{1m} \\ \vdots & \ddots & \vdots \\ g_{n1} & \cdots & g_{nm} \end{bmatrix} \longrightarrow g_{ij} = \frac{\partial f_i(\mathbf{p})}{\partial p_j}$$

Devido a própria natureza do problema inverso, os dados geofísicos não são capazes para descrever os fenômenos que queremos estudar.

Por este motivo, dizemos que o problema é malposto. Ou seja, ele sofre com: falta de unicidade, instabilidade ou inexistência da solução.

Existência: quando o problema inverso não admite alguma solução exata para a descrição dos dados observados.

Unicidade: a existência de diversos conjuntos de parâmetros que ajustam um mesmo conjunto de dados.

Instabilidade: pequenas perturbações nos dados geram diferentes soluções (conjuntos de parâmetros) para o problema inverso.

Problema malposto

Combinações de **diferentes geometrias e/ou distribuições de densidade**ajustam um **mesmo conjunto de dados**

Problema malposto

Combinações de **diferentes geometrias e/ou distribuições de densidade**ajustam um **mesmo conjunto de dados**

O problema de um ponto de vista matemático

$$(\mathbf{G}^T\mathbf{G})\mathbf{p}^\sharp = \mathbf{G}^T\mathbf{d}^o$$

$$(\mathbf{G}^T\mathbf{G})\mathbf{p}^{\sharp} = \mathbf{G}^T\mathbf{d}^o$$

$$\mathbf{A}\mathbf{p}^{\sharp} = \mathbf{t}$$

$$(\mathbf{G}^T\mathbf{G})\mathbf{p}^\sharp = \mathbf{G}^T\mathbf{d}^o$$

O vetor em vermelho é combinação linear dos vetores em verde

$$\mathbf{A}\mathbf{p}^{\sharp}=\mathbf{t}$$

$$(\mathbf{G}^T\mathbf{G})\mathbf{p}^\sharp = \mathbf{G}^T\mathbf{d}^o$$

O vetor em vermelho é combinação linear dos vetores em verde

$$\mathbf{A}\mathbf{p}^{\sharp}=\mathbf{t}$$

A dependência linear entre os vetores em verde nos dá uma pista do condicionamento deste sistema linear

Exemplo em 2D

Existe somente uma única combinação de p_1 e p_2 que nos fazer reproduzir o vetor em vermelho

Exemplo em 2D

Existe somente uma única combinação de p_1 e p_2 que nos fazer reproduzir o vetor em vermelho

Exemplo em 2D

Perceba que nessa situação existem diversas combinações de p_1 e p_2 que reproduzem o vetor em vermelho.

Exemplo em 2D

Perceba que nessa situação existem diversas combinações de p_1 e p_2 que reproduzem o vetor em vermelho.

Exemplo em 2D

Perceba que nessa situação existem diversas combinações de p_1 e p_2 que reproduzem o vetor em vermelho.

Neste caso diz-se que o sistema linear é mal condicionado

Exemplo em 2D

Neste caso diz-se que o sistema linear é mal condicionado

Regularização de Tikhonov (Ordem Zero e Ordem Um)

condicionadas as matrizes envolvidas nas soluções de problemas lineares e não lineares

A regularização tem como objetivo tornar bem

Matematicamente, o que queremos é minimizar uma função tal como:

$$\Gamma(\mathbf{p}) = \varphi(\mathbf{p}) + \mu\theta(\mathbf{p})$$

Função Objetivo

O primeiro termo é a **função de ajuste** e o segundo termo é a **função** regularizadora. O parâmetro de regularização é dado por µ.

Regularização de Tikhonov de Ordem Zero (ou Norma Mínima)

$$\Gamma(\mathbf{p}) = \varphi(\mathbf{p}) + \mu\theta(\mathbf{p})$$

Função Objetivo

$$\theta(\mathbf{p}) = \mathbf{p}^T \mathbf{p}$$

Função regularizadora

$$(\mathbf{G}^T\mathbf{G} + \mu \mathbf{I})\mathbf{p}^{\sharp} = \mathbf{G}^T\mathbf{d}^o$$

Estimador de mínimos quadrados regularizado (Norma mínima)

Regularização de Tikhonov de Ordem Um (ou Suavidade)

$$\Gamma(\mathbf{p}) = \varphi(\mathbf{p}) + \mu\theta(\mathbf{p})$$

Função Objetivo

$$\theta(\mathbf{p}) = \mathbf{p}^T \mathbf{R}^T \mathbf{R} \mathbf{p}$$

Função regularizadora

$$(\mathbf{G}^T\mathbf{G} + \mu \mathbf{R}^T\mathbf{R})\mathbf{p}^{\sharp} = \mathbf{G}^T\mathbf{d}^o$$

Estimador de mínimos quadrados regularizado (Suavidade)

Exemplo

A Camada equivalente

propriedade física por uma distribuição bidimensional.

De acordo com a Teoria do Potencial é possível **recuperar o**

efeito gerado por uma distribuição tridimensional de

também, mais recentemente, interpretação dos corpos em

Em geral, esta técnica serve para processamentos de dados

potenciais (dados de gravidade ou magnéticos), como

subsuperfície.

Camada equivalente $|\mathbf{r} - \mathbf{r}''| = \sqrt{(x - x'')^2 + (y - y'')^2 + (z - z_c)^2}$ $B_{\alpha}^{\dagger}(\mathbf{r})$ Uma camada **contínua** e **infinita**

As **componentes do campo** são dadas por:

$$B_{\alpha}^{\dagger}(\mathbf{r}) = \gamma_m \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} p(\mathbf{r}'') \, \hat{\mathbf{u}}(I, D) \cdot \partial_{\alpha} \nabla \frac{1}{\| \mathbf{r} - \mathbf{r}'' \|_{2}} \, dS''$$

O problema geofísico

Fonte magnética 3D

Recuperar o efeito de uma fonte 3D por uma **camada plana** abaixo da superfície de observação

$$oldsymbol{\Delta}\mathbf{T}^o = egin{bmatrix} \Delta T_1 \ dots \ \Delta T_n \end{bmatrix}$$

Vetor de dados observados

Camada equivalente

Modelagem direta

A **anomalia de campo total predita** no i-ésimo ponto de observação gerada por uma **fonte equivalente** é dada por:

Camada equivalente

$$\Delta T_i^p = \gamma_m \hat{\mathbf{F}}_0^T \mathbf{M}_{ij} \mathbf{m} p_j$$

Esferas de volume unitário, que associamos uma mesma direção de magnetização

$$\mathbf{M}_{ij} = \begin{bmatrix} \partial_{xx} \frac{1}{l_{ij}} & \partial_{xy} \frac{1}{l_{ij}} & \partial_{xz} \frac{1}{l_{ij}} \\ \partial_{yx} \frac{1}{l_{ij}} & \partial_{yy} \frac{1}{l_{ij}} & \partial_{yz} \frac{1}{l_{ij}} \\ \partial_{zx} \frac{1}{l_{ij}} & \partial_{zy} \frac{1}{l_{ij}} & \partial_{zz} \frac{1}{l_{ij}} \end{bmatrix}$$

Hessiana

$$l_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_c)^2}$$

Distância entre o i-ésimo ponto e a j-ésima fonte equivalente

Modelagem direta

A **anomalia de campo total predita** no i-ésimo ponto de observação gerada por uma **fonte equivalente** é dada por:

Camada equivalente

$$\Delta T_i^p = \gamma_m \hat{\mathbf{F}}_0^T \mathbf{M}_{ij} \mathbf{m} p_j$$

$$\mathbf{p} = \begin{bmatrix} p_1 \\ \vdots \\ p_m \end{bmatrix}$$

O vetor de parâmetros

A inversão dos dados

Fonte magnética 3D

Queremos estimar uma distribuição de momentos que minimize a distância entre os dados observados e os dados preditos gerados pela camada!

$$\Gamma(\mathbf{p}) = \varphi(\mathbf{p}) + \mu\theta(\mathbf{p})$$

Função objetivo

$$(\mathbf{G}^T\mathbf{G} + \mu\mathbf{I})\mathbf{p}^{\sharp} = \mathbf{G}^T\mathbf{\Delta}\mathbf{T}^o$$

Estimador de mínimos quadrados (Norma mínima)

$$(\mathbf{G}^T\mathbf{G} + \mu \mathbf{R}^T\mathbf{R})\mathbf{p}^{\sharp} = \mathbf{G}^T \mathbf{\Delta} \mathbf{T}^o$$

Estimador de mínimos quadrados (Suavidade)

Camada equivalente

Referências Bibliográficas

Aster, R. C., Thurber C. H. & Borchers, B., 2018, Parameter estimation and inverse problems. Third Edition. Academic Press

Blakely, R. J., 1996, Potential theory in gravity and magnetic applications: Cambridge University Press.

Dampney, C. N. G., 1969, The equivalent source technique: Geophysics, 34, 39–53, doi: 10.1190/1.1439996.

Leão, J. W. D., and J. B. C. Silva, 1989, Discrete linear transformations of potential field data: Geophysics, 54, 497–507, doi: 10.1190/1.1442676.

Oliveira, V. C., Jr., V. C. F. Barbosa, and L. Uieda, 2013, Polynomial equivalent layer: Geophysics, 78, no. 1, G1–G13, doi: 10.1190/geo2012-0196.1.

Reis, A. L. A. Reis, Oliveira Jr, V. C., and Barbosa, V. C. F., (2020). Generalized positivity constraint on magnetic equivalent layers. Geophysics, 85(6), 1-45.

Até breve!