EXERCICE 1

On considère un disque homogène de rayon r=5cm pouvant tourner autour d'un axe fixe (Δ) sans frottements.

Le moment d'inertie du disque par rapport (Δ) noté J_{Δ}

On enroule sur le disque un fil inextensible et sa masse négligeable, et à l'extrémité de ce fil on accroche un corps (S) sa masse est m=50g.le fil ne **glisse pas** sur le disque . voir le figue 1.

On libère le disque sans vitesse initiale à l'instant t=0s.

La figure 2 représente la variation de z En fonction de t² de centre d'inertie du corps (S)

On donne : $g = 9.8 \text{ m.s}^{-2}$

- Trouver le valeur de l'accélération du corps (S)
- 2 Deduire la nature du mouvement
- 3 Quelle est la distance parcourue par le corps (S) à l'instant t=1s
- 4 Quelle la nature du mouvement du disque
- **5** Calculer le nombre du tours n effectués par le disque pendant la duré $\Delta t = t_1 t_0$
- 6 En appliquant la deuxième loi de Newton sur (S) pour trouver la valeur de la force appliquée par le fil sur le corps (S).
- $oldsymbol{\circ}$ En appliquant le relation fondamentale de la dynamique sur disque pour la valeur de moment d'inertie ${f J}_{\Delta}$

EXERCICE 2

20 *min*

 \vec{k}

(S)

Les études dynamiques et énergétiques des systèmes mécanique dans différentes situations permettent de déterminer quelques caractéristiques liées aux propriétés du système étudié et la connaissance de son évolution temporelle .

Cet exercice a pour objectif l'étude de deux situations mécaniques indépendantes .

La poulie joue un rôle essentiel dans un ensemble d'appareils mécaniques et électromécaniques, parmi-elles les grues qui soulèvent des charges que l'homme ne peut soulever manuellement ou avec des moyens rudimentaires.

On modélise la grue par une poulie (\mathcal{P}) homogène de rayon r = 20 cm capable de tourner autours d'un axe horizontal

(Δ) fixe confondu avec son axe de symétrie, et un corps solide (S_1) de masse $m_1 = 50$ kg relié à la poulie (\mathcal{P}) par un fil inextensible de masse négligeable passant par la gorge de la poulie et ne glisse pas dessus au cours du mouvement .

 J_{Δ} représente le moment d'inertie de la poulie par rapport à l'axe de rotation Δ .

La poulie (\mathcal{P}) tourne sous l'action d'un moteur qui applique sur elle un couple moteur de moment constant $\mathcal{M} = 104.2 \text{ N.m.}$, et le corps (S₁) se déplace vers le haut sans vitesse initiale.

On repère la position du centre d'inertie G_1 du corps (S_1) à un instant t par la cote z dans le référentiel (O, \overline{k}) supposé galiléen (Figure 1).

 $(S_1) - \text{fil }) \text{ , montrer que l'expression de l'accélération } a_{G_1} \text{ du mouvement de } G_1 \quad a_{G_2} = \frac{\mathcal{M}.r - m.g.r^2}{m.r^2 + J_{\Delta}}$ 1-2- L'étude expérimentale du mouvement de G_1 a permis d'obtenir l'équation horaire : $z = 0.2.t^2$, avec z en mètre et t en seconde .

Déterminer le moment d'inertie J_{Λ}