Taller 2 - Componentes

Maria Fernanda Piñeros

23/5/2021

1

${\bf Contents}$

1 Punto 1

1.1	Descargar datos
1.2	Eliminamos los datos atípicos
1.3	Estadística descriptiva
1.4	Análisis de correlación
1.5	Test de barlett
1.6	Gráfico de sedimentaci+on y varianza acumulada
1.7	Identificación de los individuos y creación del valor del indice para cada individuo 9
1.8	Especificación de modelos para explicar X1 y X2
1 P	unto 1
Los sigu	uientes puntos deben realizarse posterior a la limpieza de valores atípicos. Indique los valores omitidos.
La base son:	de datos punto 1 contiene 11 indicadores económicos y sociales de 96 países. Las variables observadas
X_1 =	Tasa anual de crecimiento de la población,
X_2 =	Tasa de mortalidad infantil por cada 1000 nacidos vivos.
X_3= 1	Porcentaje de mujeres en la población activa.
X_4= 1	PNB en 1995 (en millones de dólares).
X_5= 1	Producción de electricidad (en millones kW/h).
X_6= 1	Líneas telefónicas por cada 1000 habitantes,
X_7=	Consumo de agua per cápita,
X_8= 1	Proporción de la superficie del país cubierta por bosques,
X_9= 1	Proporción de forestación anual,
X_10=	Consumo de energía per cápita,
X_11=	Emisión de CO2 per cápita.

1.1 Descargar datos

```
library(readxl)
setwd("C:/Users/ASUS/Desktop/Universidad/R_LaSalle")
Datos<- read_excel('Base punto 1.xlsx')</pre>
```

1.2 Eliminamos los datos atípicos

Se realiza un análisis gráfico por medio de diagramas de caja para detectar datos atípicos o outliers, los cuales serán eliminados .

```
par(mfrow=c(3,4))
boxplot(Datos$'X 1', main = "X1 con outliers", col=2)
boxplot(Datos$'X 2', main = "X2 con outliers", col=2)
boxplot(Datos$'X 3', main = "X3 con outliers", col=2)
boxplot(Datos$'X 4', main = "X4 con outliers", col=2)
boxplot(Datos$'X 5', main = "X5 con outliers", col=2)
boxplot(Datos$'X 6', main = "X6 con outliers", col=2)
boxplot(Datos$'X 7', main = "X7 con outliers", col=2)
boxplot(Datos$'X 8', main = "X8 con outliers", col=2)
boxplot(Datos$'X 8', main = "X8 con outliers", col=2)
boxplot(Datos$'X 9', main = "X9 con outliers", col=2)
boxplot(Datos$'X 10', main = "X10 con outliers", col=2)
boxplot(Datos$'X 11', main = "X11 con outliers", col=2)
```


Luego, definimos una función para eliminar todos los datos atíticos que no se encuentren entre el cuantil 0,5 y 0,95

```
impute_outliers <- function(x, removeNA = TRUE){
  quantiles <- quantile(x, c(0.05, 0.95), na.rm = removeNA)
  x[x<quantiles[1]] <- mean(x, na.rm = removeNA)
  x[x>quantiles[2]] <- median(x, na.rm = removeNA)
  x
}</pre>
```

La cual aplicaremos a cada variable desde x1 hasta x11, obteniendo una base de datos sin valores atípicos.

```
Datos$'X 1' <- impute_outliers(Datos$'X 1',)
Datos$'X 2' <- impute_outliers(Datos$'X 2',)
Datos$'X 3' <- impute_outliers(Datos$'X 3',)
Datos$'X 4' <- impute_outliers(Datos$'X 4',)
Datos$'X 5' <- impute_outliers(Datos$'X 5',)
Datos$'X 6' <- impute_outliers(Datos$'X 6',)
Datos$'X 7' <- impute_outliers(Datos$'X 7',)
Datos$'X 8' <- impute_outliers(Datos$'X 8',)
Datos$'X 9' <- impute_outliers(Datos$'X 9',)
Datos$'X 10' <- impute_outliers(Datos$'X 10',)
Datos$'X 11' <- impute_outliers(Datos$'X 11',)</pre>
```

De esta forma, al volver a graficar los diagramas de caja después de eliminar los datos atípicos tenemos que:

1.3 Estadística descriptiva

Tabla generada mediante:

library(stargazer) stargazer(Datos, type = "text")

Table 1: Estadistica descriptiva

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
X 1	96	1.871	1.240	-1	0.9	2.7	6
X 2	96	39.062	32.138	4	11	56.5	124
X 3	96	37.281	8.774	13	31	44	51
X 4	96	116,587.400	223,602.000	1,353	8,014.2	109,221.8	1,451,051
X 5	96	69,261.320	134,978.100	6	4,675.8	65,783.5	928,083
X 6	96	165.125	195.991	2	15.5	231.5	681
X 7	96	509.844	574.629	7	178.5	662	4,575
X 8	96	27.333	20.025	0	10	42.2	77
X 9	96	0.553	1.348	-4	-0.03	1.2	5
X 10	96	1,854.427	$2,\!239.285$	20	287.8	2,553.5	10,531
X 11	96	4.554	5.222	0.100	0.700	7.050	33.900

1.4 Análisis de correlación

MEdiante un cuadro de correlación analizaremos las varibales con mayor coeficiente de correlación

```
library(corrplot)
```

```
## corrplot 0.84 loaded
```

```
library(dplyr)
```

```
addCoef.col = "black",
tl.col="red",
tl.srt=90,
tl.cex = 0.9,
diag=FALSE,
is.corr = F)
```


Mediante esta matriz, seleccionamos unicamente las varibales que se correlacionen a un grado igual o mayor de 0.5 en valor absoluto con 3 variables o más.

De este modo sólo quedan las variables:

X1, X2, X6, X10, X11

```
Datos<- Datos %>%
select("X 1", "X 2", "X 6", "X 10", "X 11")
```

1.5 Test de barlett

```
library(psych)
cortest.bartlett(Datos,n=96)
```

R was not square, finding R from data

```
## $chisq
## [1] 239.2585
##
## $p.value
## [1] 9.804989e-46
##
## $df
## [1] 10
```

Note que el p valor es menor al 0.05. Por tanto se rechaza a favor de la hipotesis alternativa. De este modo al menos dos varianzas son diferentes.

1.6 Gráfico de sedimentaci+on y varianza acumulada

```
cpe<-prcomp(Datos,scale=T)
names(cpe)

## [1] "sdev" "rotation" "center" "scale" "x"</pre>
```

1.6.1 GRáfico de sedimentación

```
library("factoextra")

## Warning: package 'factoextra' was built under R version 4.0.5

## Loading required package: ggplot2

## ## Attaching package: 'ggplot2'

## The following objects are masked from 'package:psych':

## ## %+%, alpha

## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa

fviz_eig(cpe,choice = "eigenvalue", addlabels = TRUE, axes = 1,ylim = c(0,5))
```


Note que únicamente 1 barra es mayor a 1. Por tanto, me recomienda analizar 1 solo componente. Esto con la consideración que igualmente tendremos el 68% de la información.

1.6.2 Varianza acumulada

```
library(ggplot2)
prop_varianza <- cpe$sdev^2 / sum(cpe$sdev^2);prop_varianza*100</pre>
```

[1] 67.292575 11.221694 9.429866 7.611452 4.444413

Este criterio me recomienda usar 3 componentes, ya que son los que superan el 0.8 en la gráfica de varianza acumulada.

1.7 Identificación de los individuos y creación del valor del indice para cada individuo

Encontramos que X1 y X2 están correlacionadas y X6, X10 y X11 están correlacioandas igualmente en dirección diferente. Graficamente podríamos sugerir que X2 y X10 tienen mayor poder explicativo.

fviz_pca_ind(cpe,addEllipses=F)

fviz_pca_biplot(cpe)

1.8 Especificación de modelos para explicar X1 y X2

Para esto vamos a hacer un modelo lineal e interpretaremos si los coeficientes son significativos al 5% de confianza

1.8.1 X1

Para esto tomaremos las varibales que según la matriz de correlación estuvieron por encima del 50% en valor absoluto en el coeficiente de correlación. Estas son: X2, X6, X10 y X11

1.8.2 X2

Para esto tomaremos las varibales que según la matriz de correlación estuvieron por encima del 50% en valor absoluto en el coeficiente de correlación. Estas son: X2, X6, X10 y X11

```
library(stargazer)
```

##
Please cite as:

Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.

R package version 5.2.2. https://CRAN.R-project.org/package=stargazer

```
Reg2 <- lm('X 2' ~ 'X 1'+'X 6'+ 'X 10' + 'X 11', data = Datos)
stargazer(Reg1, Reg2, type = "text", digits=3, omit.stat = c("f", 'ser'))</pre>
```

	Dependent variable:			
	'X 1'	'X 2'		
	(1)	(2)		
'X 2'	0.013***			
	(0.003)			
'X 1'		10.577***		
		(2.741)		
'X 6'	-0.001	-0.035**		
k o	(0.001)	(0.016)		
'X 10'	-0.0002**	0.002		
	(0.0001)	(0.002)		
'X 11'	-0.027	-2.478***		
	(0.030)	(0.808)		
Constant	1.796***	28.303***		
00110	(0.216)	(7.509)		
	Ç — — - ,	(
Observations	96	96		
R2	0.525	0.499		
Adjusted R2	0.504	0.477		

Note que para X1, las variables X6 y X11 no son significativas y para X2 la variable X10 no es significativa.