Logistic Regression (Binary classification) Classification algorithm, not a regression problem

 O/P feature will be categorical data, and that will be binary.

Datant	Panfrail		data, and that will be bi
Study hours	O/p {Binery (akgorius}		9.
2	Foil	Study of	OP PASSIFAEL
3	Fail	hours	
4	Fail		
5	Pass		Logistic Regionion
6	Pass	0 to 1	1/201215 Kalentina
7	Pass		
12	Pars	New Kilver Regres	son Classification Problems.
	<u>*</u> - X-/ * - :	lin X	0.5 => 0 0.5 => 1
	//	\ (>	0.5 => 1 (
*			· · · · · · · · · · = · · · · · · · · · · · · · · · ·

1 Pass

Or fail

Shedy

Now Shedy

Why we cannot use Lincer Regression for Classification?

1) Outlier {Bost fit line Change}

2) >1 and <0 {Squark line} And we can't squash the line in linear regression.

$$J(\theta_0,\theta_1) = \frac{1}{2\pi} \sum_{i=1}^{m} \frac{h_{\theta}(n)^{(i)} - y^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{1}{2\pi} \sum_{i=1}^{m} \frac{h_{\theta}(n)^{(i)} - y^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{1}{2\pi} \sum_{i=1}^{m} \frac{h_{\theta}(n)^{(i)} - y^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{h_{\theta}(n)^{(i)} - y^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{h_{\theta}(n)^{(i)} - y^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{h_{\theta}(n)^{(i)} - y^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{h_{\theta}(n)^{(i)} - y^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{h_{\theta}(n)^{(i)} - y^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{h_{\theta}(n)^{(i)} - y^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{h_{\theta}(n)^{(i)} - y^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{h_{\theta}(n)^{(i)} - y^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{h_{\theta}(n)^{(i)} - y^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{h_{\theta}(n)^{(i)} - y^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{h_{\theta}(n)^{(i)} - y^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{h_{\theta}(n)^{(i)} - y^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{h_{\theta}(n)^{(i)} - y^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{h_{\theta}(n)^{(i)} - y^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{h_{\theta}(n)^{(i)} - y^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{h_{\theta}(n)^{(i)} - h_{\theta}(n)^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{h_{\theta}(n)^{(i)} - h_{\theta}(n)^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{h_{\theta}(n)^{(i)} - h_{\theta}(n)^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{h_{\theta}(n)^{(i)} - h_{\theta}(n)^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{h_{\theta}(n)^{(i)} - h_{\theta}(n)^{(i)}}{h_{\theta}(n)^{(i)}} = \frac{1}{1+e^{-2}}; \pi = \theta_0 f \theta_1 \pi_1$$

$$\frac{h_{\theta}(n)^{(i)} - h_{\theta}(n)^{(i)}}{h_{\theta}(n)^{(i$$

L Also Called

- Log loss Cost function used in how well the model's predictions
 - Log loss quantifies the labels (0 or 1).

By using log loss, it will be convex function.

$$J(\theta_0,\theta_1) = -L \stackrel{m}{\leq} \left(y^{(i)} \log \left(h_{\theta}(\mathbf{x})^{(i)}\right) + \left(1-y^{(i)}\right) \log \left(1-h_{\theta}(\mathbf{x})^{(i)}\right)\right)$$

Minimize (0s+ function J(00,01) by changing 00 & 01

Convergence Algorithm Report J:0 and 1 θ_{1} , θ_{0} , θ_{1} , θ_{2} , θ_{3} , θ_{4} , θ_{5} , θ_{5} , θ_{6} , θ_{7} , θ_{1})