Resolución TP2:

Ejercicio 6 - c

Sobre la trayectoria $\alpha(t) = (2\cos(t), 4sen(t))$ con $0 \le t \le 2\pi$. Representar gráficamente y obtener una ecuación cartesiana.

Al manejar trayectorias debemos recordar lo siguiente:

$$\alpha(t) = (x(t); y(t))$$

Por lo tanto:

$$\begin{cases} x(t) = 2\cos(t) \\ y(t) = 4sen(t) \end{cases} \xrightarrow{\text{(?)}} \{ \text{que ecuacion cartesiana corresponde?}$$

Resolución NO VALIDA

$$\begin{cases} x(t) = 2\cos(t) \\ y(t) = 4sen(t) \end{cases} \rightarrow \begin{cases} arcos\left(\frac{x}{2}\right) = t \\ y = 4sen\left(arcsen\left(\frac{x}{2}\right)\right) \end{cases}$$

Resolución Correspondiente (Identidad Trigonométrica):

$$\begin{cases} sen^{2}(\alpha) + \cos^{2}(\alpha) = 1 \\ x(t) = 2\cos(t) \\ y(t) = 4sen(t) \end{cases} \rightarrow \begin{cases} x^{2} + y^{2} = 4\cos^{2}(t) + 16sen^{2}(t) \neq 1 \\ \frac{x^{2}}{4} + \frac{y^{2}}{16} = \frac{4\cos^{2}(t)}{4} + \frac{16sen^{2}(t)}{16} = 1 \end{cases}$$

Finalmente:

$$\begin{cases} x(t) = 2\cos(t) \\ y(t) = 4\sin(t) \end{cases} \rightarrow \frac{x^2}{4} + \frac{y^2}{16} = 1 \quad (Elipse)$$

Radiane s	Grado s sexag.	seno	coseno	tangente	cosecant e	secante	cotangent e
0	0°	$\frac{\sqrt{0}}{2} = 0$	$\frac{\sqrt{4}}{2} = 1$	0	∄(±∞)	1	∄(±∞)
$\frac{1}{6}\pi$	30°	$\frac{\sqrt{1}}{2} = \frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$	$\sqrt{3}$
$\frac{1}{4}\pi$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
$\frac{1}{3}\pi$	60°	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{1}}{2} = \frac{1}{2}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$
$\frac{1}{2}\pi$	90°	$\frac{\sqrt{4}}{2} = 1$	$\frac{\sqrt{0}}{2} = 0$	∄(±∞)	1	∄(±∞)	0

t	$2\cos(t)$	4sen(t)	$\alpha(t) = (2\cos(t), 4sen(t))$
0	2	0	r(0)=(2 ; 0)
$\frac{\pi}{4}$	$\sqrt{2}$	$2\sqrt{2}$	$r\left(\frac{\pi}{4}\right) = (\sqrt{2}; 2\sqrt{2})$
$\frac{\pi}{2}$	0	4	$r\left(\frac{\pi}{4}\right) = (0;4)$
π	-2	0	$r(\pi) = (-2; 0)$
$3\frac{\pi}{2}$	0	-4	$r\left(3\frac{\pi}{2}\right) = (0; -4)$
2π	2	0	$r(0) = r(2\pi) = (2;0)$

PD: se considera que $0 \le t \le 2\pi$ implica el recorrido de toda la elipse por lo que no se agrega ninguna limitación entre x, e

$$\begin{cases} \alpha(t) = \left(2\cos(t), 4sen(t)\right) \to \frac{x^2}{4} + \frac{y^2}{16} = 1 \\ 0 \le t \le 2\pi \end{cases}$$

Si el caso tratase que $0 \le t \le \pi$ implica el recorrido NO es de toda la elipse. Sino su sección superior

$$\begin{cases} \alpha(t) = \left(2\cos(t), 4sen(t)\right) \to \begin{cases} \frac{x^2}{4} + \frac{y^2}{16} = 1\\ 0 \le t \le \pi \end{cases}$$

