1.	Considere o	seguinte	programa	escrito en	n <i>assembl</i> y	∕ do	Y86:

I1:		\$200,%edx
I2:	movl	\$700000,%eax
I3Ciclo:	movl	0(%eax), %ebx
I4:	movl	1000(%eax), %ecx
I5:	addl	%ebx, %ecx
I6:	movl	%ecx, 3000(%eax)
I7:	addl	4, %eax

subl 4, %edx

jnz I3ciclo

18:

19:

Classe	CPI
Aritméticas/movimento de dados	1
Acessos à memória	3
Controlo de fluxo	2

Calcule o tempo de execução do programa num processador com uma frequência de relógio de 1GHz, considerando o CPI de cada uma das classes de instruções indicado na tabela. Considere que todos os dados e código cabem na *cache* do processador.

2. Indique de que forma as opções utilizadas na compilação dum programa podem influenciar o tempo de execução desse programa. Fundamente a sua resposta com base na expressão: Texe = #I x CPI x Tcc.

Nome:	Número:

3.	Indique, de que forma um aumento do grau de "associatividade" da cache pode influenciar de forma positiva e/ou negativa o desempenho de uma arquitetura.
4.	Um engenheiro pretende adquirir um novo computador, podendo optar por uma máquina com uma <i>cache</i> maior (Mc) ou uma máquina com uma frequência 1,2 vezes superior (Mf). Considere que o CPlcpu é igual em ambas as máquinas, e que é igual a 2x CPlmem de Mc. Sabendo que para o tipo de programas que pretende executar o <i>miss rate</i> de instruções e de dados na máquina Mf é 1,1 vezes maior do que na máquina Mc, indique, justificando, qual a máquina que terá melhor desempenho.

Nome: ______ Número: _____

5. Considere as duas alternativas seguintes para a soma de todos os elementos de uma matriz de dimensão h[N][2].

```
Soma 1

int soma1(int h[][2], int N) {
   int soma2(int h[][2], int N) {
   int soma2(int h[][2], int N) {
     int soma2(int h[][2], int N) {
     int soma2(int h[][2], int N) {
      int soma2(int h[][2], int N) {
      int soma2(int h[][2], int N) {
      int soma2(int h[][2], int N) {
      int soma2(int h[][2], int N) {
      int soma2(int h[][2], int N) {
          soma += h[y][0];
          soma += h[y][0];
          soma += h[y][0];
          soma += h[y][1];
      }
      return(soma);
}
```

Indique, justificando, qual das duas alternativas para implementação é mais amigável da hierarquia da memória.

Nome: ______ Número: _____