ML Assignment-2

Group Details

Tangeda Sai Sharan	2017A7PS0241H
Sanjiv Yelthimar Shenoy	2017A7PS0224H
Manish Kumar Bachhu	2017A7PS0036H

Logistic Regression – Question – 1

1. Design Decisions:

1.1. Dataset Scaling:

We used "Standard Scalar" to scale the dataset, this methods scales the data so that each column has Mean = 0, variance = 1

We used numpy here and everywhere else to remove loops, thereby increasing the efficiency of the code

Then the dataset was randomly shuffled using numpy's random.shuffle()

1.2. Train-Validate-Test Split:

The dataset was split into 3 parts

Train-Data: 70%
Validation-Data: 10%
Test-Data: 20%

1.3. Train and Validate:

We wrote a function called train_and_validate which takes a type of regularization as parameter and performs training followed by finding the best Lambda for regularization. The code prints 3 outputs, clearly showing Normal, Ridge(L2), Lasso(L1) norms applied on a initialization distribution and accuracy is taken on test data set, those results are mentioned in the tables below

1.4. Determining the important feature:

After all the weights were updated, the absolute value of the weights was taken, then the maximum value of resulting absolute weights was taken as the most important feature. Reasons for taking this assumption(Justification):

- Weights of features determine the how much the feature plays role in deciding the result
- If a weight is negative it doesn't mean that it is not important, just that it negatively affects the results
- Hence in-order to consider this we took the absolute value of weights and then we chose the maximum value

1.5. Blog References supporting our approach:

https://machinelearningmastery.com/calculate-feature-importance-with-python/

- https://towardsdatascience.com/model-based-feature-importance-d4f6fb2ad403
- https://stackoverflow.com/questions/34052115/how-to-find-the-importance-of-the-features-for-a-logistic-regression-model

2. Test Results with Different Initialization distributions:

a)Gaussian

Regularization	Test Accuracy	Test Fscore	Most Important Feature (variance of Wavelet Transformed image with)	Least Important Feature (curtosis of Wavelet Transformed image with)
None	98.545	0.9836	Col No: 1 and weight: 0.3667	Col No: 3 and weight: 0.01993
Ridge	98.545	0.9836	Col No: 1 and weight: 0.06418	Col No: 3 and weight: 0.00328
Lasso	98.181	0.9795	Col No: 1 and weight: 0.0166	Col No: 3 and weight: 0.000346

b) Random:

Regularization	Test Accuracy	Test Fscore	Most Important Feature (variance of Wavelet Transformed image with)	Least Important Feature (curtosis of Wavelet Transformed image with)
None	99.636	0.9957	Col No: 1 and weight: 0.03426	Col No: 3 and weight: 0.00190
Ridge	99.272	0.9915	Col No: 1 and weight: 0.01751	Col No: 3 and weight: 0.001219
Lasso	99.272	0.9915	Col No: 1 and weight: 0.01875	Col No: 3 and weight: 0.000793

c) Uniform:

Regularization	Test Accuracy	Test Fscore	Most Important Feature (variance of Wavelet Transformed image with)	Least Important Feature (curtosis of Wavelet Transformed image with)
None	99.272	0.9918	Col No: 1 and weight: 0.2941	Col No: 3 and weight: 0.01819
Ridge	99.272	0.9918	Col No: 1 and weight: 0.1662	Col No: 3 and weight: 0.01038
Lasso	99.272	0.9877	Col No: 1 and weight: 0.04238	Col No: 3 and weight: 0.00278

Finding the Best Lambda for Regularization:

Weight Initialisation	Ridge	Lasso
Gaussian	Best Lambda for maximum accuracy: 0.1 Best Validation Accuracy: 100.0	Best Lambda for maximum accuracy: 0.2 Best Validation Accuracy: 100.0
Random	Best Lambda for maximum accuracy: 0.7 Best Validation Accuracy: 99.27	Best Lambda for maximum accuracy: 0.7 Best Validation Accuracy: 98.54
Uniform	Best Lambda for maximum accuracy: 0.1 Best Validation Accuracy: 97.81	Best Lambda for maximum accuracy: 0 Best Validation Accuracy: 97.81