Clase nº18

Cálculo II

Universidad de Valparaíso Profesor: Juan Vivanco

8 de Octubre 2021

Objetivo de la clase

► Calcular áreas en coordenadas polares.

Recorder:
. Aima del circulo de redo r:

. Trex de un sector circular de aingulo o es

Cálculo de áreas en coordenadas polares

En conta subintendo vamos a elegir EiciR, tel que

Ei a Toi,, oi], con i=1,2,3,...,n.

EI & (01-1,101) | con (=1,12,3,..., 1/2

 $\lambda_{i} = \frac{1}{2} \cdot (\theta_{i} - \theta_{i-1})$

Luego, um a phoxima cont del vien businde es $A \approx \sum_{i=1}^{n} A_i = \sum_{i=1}^{n} \frac{1}{2} \cdot \left[f(\epsilon_i) \right]^2 \cdot (0_i - 0_{i-1})$ Cuendo $n \to \infty$, el vien businede está dede por

Counds $n \rightarrow \infty$, el a'rea butcada est $A = \int_{A}^{B} \frac{1}{2} \left[f(0) \right]^{2} d\theta.$

Ejemplo 61

Encuentre el área acotada por la curva $r = 2 + \cos\theta$ y los ángulos $\theta = 0$ y $\theta = \frac{\pi}{2}$.

$$I = \frac{1}{2} \int_{0}^{2\pi} [2 + \cos^{2} \theta]^{2} d\theta$$

$$= \frac{1}{2} \int_{0}^{2\pi} u + u \cos \theta + \cos^{2} \theta d\theta$$

$$=\frac{1}{2}.40\int_{0}^{\frac{\pi}{2}}+2\sin\theta\int_{0}^{\frac{\pi}{2}}+\frac{1}{2}\int_{0}^{\frac{\pi}{2}}\frac{1+\cos(2\theta)}{2}d\theta$$

$$= 2 \cdot \frac{1}{2} + 2 \cdot \left(\sin \left(\frac{\pi}{2} \right) - \sin \theta \right) + \frac{1}{4} \theta / \frac{\pi}{2} + \frac{1}{4} \cdot \frac{\sin(1\theta)}{2} / \frac{\pi}{2}$$

$$= +2 + \frac{1}{4} \cdot \frac{\pi}{2} + \frac{1}{8} \cdot \left(S_{1N} \left(2 \cdot \frac{\pi}{2} \right) - S_{1N} (0) \right)$$

Ejemplo 62

Encuentre el área encerrada por la curva $r=2\sin(3\theta)$.

$$2 \sin (30) = 0$$
 (=) $\sin (30) = 0$
(=) $30 = k\pi$ $= k\pi$
(=) $0 = \frac{k\pi}{3}$
• $\sin k = 0$
• $\sin k = 1$ entones $0 = \frac{\pi}{3}$
• $\sin k = 1$ entones $0 = 2\pi$

· si n= 3 entonies 0 = T.

lucgo, el (v. A. v. star dela por

$$A_1 = \int_0^{\frac{\pi}{3}} \frac{1}{2} \cdot \left[f(\theta) \right]^2 d\theta = \frac{1}{2} \int_0^{\frac{\pi}{3}} 2 \cdot \sin(3\theta) d\theta$$
 $= \frac{1}{2} \cdot \int_0^{\frac{\pi}{3}} 4 \cdot \sin^2(3\theta) d\theta$

$$= \frac{1}{2} \cdot \int_{0}^{\pi} \frac{4 \cdot \sin^{2}(3\theta)}{4 \cdot \sin^{2}(3\theta)} d\theta$$

$$= 2 \cdot \int_{0}^{\pi} \frac{1 - \cos(6\theta)}{2} d\theta$$

$$= 2 \int_{0}^{\frac{\pi}{3}} \frac{1 - (x_{1}(6))}{2} d\theta$$

$$= 0 \int_{0}^{\frac{\pi}{3}} - \int_{0}^{\frac{\pi}{3}} (x_{1}(6)) d\theta$$

 $= \frac{\pi}{3} - \frac{\sin(6\theta)}{6}$

= I - 1 (5 in (6. II) - 5 in (6.0)

= II. ..., el vivu buscede es # [u]

Ejemplo 63

Encuentre el área en el interior del círculo $r=5\cos\theta$ y fuera del cardioide $r=2+\cos(\theta)$.

Ejercicios propuestos

1. Calcular el área encerrada por la curva $r = 3\sin(2\theta)$.

Bibliografía

	Autor	Título	Editorial	Año
1	Stewart, James	Cálculo de varias variables: trascendentes tempranas	México: Cengage Learning	2021
2	Burgos Román, Juan de	Cálculo infinitesimal de una variable	Madrid: McGraw- Hill	1994
3	Zill Dennis G.	Ecuaciones Diferenciales con Aplicaciones	Thomson	2007
4	Thomas, George B.	Cálculo una variable	México: Pearson	2015

 $Pue de \ encontrar \ bibliografía \ complementaria \ en \ el \ programa.$