RECUPERATORIO DEL PRIMER PARCIAL 11/7/19

1	2	3	4	5	Calificación

Nombre y Apellido:

Número de libreta:

Ejercicio 1. Franco tiene diez cartas, numeradas del 1 al 10, las mezcla y coloca boca abajo. Lanza un dado y da vuelta tantas cartas como indica el dado.

- (a) Si en el dado salió un número impar, ¿cuál es la probabilidad de que el 2 quede boca arriba?
- (b) ¿Cuál es la probabilidad de que el número boca arriba más grande sea el 9?
- (c) Si el número más grande boca arriba es el 9, ¿cuál es la probabilidad de que en el dado haya salido el 3?

Ejercicio 2. En un "game" de tenis gana el primero que consigue 4 puntos. Salvo en el caso que lleguen a estar 3 a 3, en este caso gana el primero que alcanza una diferencia de 2. Ana y Beto juegan un game de tenis. En cada punto tienen probabilidad 0,5 de ganar, excepto cuando Beto está a punto de ganar el game. En este caso se pone nervioso y su probabilidad de ganar es 0,4.

- (a) ¿Cuál es la probabilidad de que gane Ana?
- (b) Dado que ganó Ana, ¿cuál es la probabilidad que haya ganado 4 a 0?

Ejercicio 3. La medida, en milimetros, del perímetro del dedo de una persona sigue una distribución normal de parámetros $\mu = 60$ y $\sigma^2 = 16$. El talle 1 de anillo es para dedos de menos de 50 mm de perímetro, el talle 2 para quienes tiene dedos entre 50 y 65 mm, y los restantes talle 3.

- (a) Hallar la distribución del talle de anillo.
- (b) ¿Cuál debería ser la longitud máxima del perímetro del talle 1 si se quiere que lo use 33% de las personas?
- (c) En una tienda, un cliente acaba de comprar un anillo de talle 2, ¿cuál es la probabilidad de que su dedo mida más de 60 mm de perímetro?
- (d) Si en una tienda entran personas al azar a comprar anillos, ¿cuál es la probabilidad de que el cuarto anillo vendido sea el primero de talle 2?

Ejercicio 4. Sean X e Y variables aleatorias con densidad conjunta $f_{(X,Y)}(x,y) = e^{-y} \mathbf{1}_{\{0 \le x \le y\}}$.

- (a) Calcular $\mathbb{P}(X+Y>7\mid X<2)$.
- (b) En una carrera participan n competidores. El competidor i demora un tiempo dado por una variable $X_i \sim X$ independiente del resto de los competidores. ¿Cuál es la probabilidad que el competidor 1 gane?
- (c) En una carrera participan 3 competidores. El competidor i demora un tiempo dado por una variable $Y_i \sim Y$ independiente del resto de los competidores. Hallar la distribución de la llegada del último corredor.

Ejercicio 5. Sean X e Y variables aleatorias independientes con distribución $\mathcal{N}(0, \sigma^2)$. Sea (ρ, θ) la expresión de (X, Y) en coordenadas polares, es decir $(X, Y) = (\rho \cos(\theta), \rho \sin(\theta))$, con $\rho \geq 0$ y $0 \leq \theta < 2\pi$.

- (a) Probar que ρ se distribuye Rayleigh de parámetro σ^2 .
- (b) Hallar la probabilidad de que el par (X,Y) caiga en la región sombreada

donde los circulos tiene radio σ y 2σ .

Recordar: $W \sim Rayleigh(\lambda)$ si $f_W(w) = \frac{w}{\lambda} \exp\left(-\frac{w^2}{2\lambda}\right) \mathbf{1}_{(0,+\infty)}(w)$.