Table of Contents

1.	Data	: Tables & Columns	
	1.	To create a data table	2
	2.	To create an exchange rate table	2
	3.	Data cleaning and summarizing required data in one table (fact_summary)	2
		New Columns (fact_summary)	
2.	Business Question: Exercise 1		
	1.	Business Question 1. (KPIs)	4
	2.	Business Question 2.	4
	3.	Business Question 3.	4
3.	Busir	ness Question: Exercise 2	5
	1.	Business Question 1.	5
	2.	Business Question 2.	5
	3.	Business Question 3.	5
	4.	Business Question 4.	6
	5.	Business Question 5.	6
4.	Business Question: Exercise 3		
	1.	Business Question 1.	8
	2.	Business Question 2.	8
	3.	Business Question 3.	8
	4.	Business Question 4.	9
	5.	Business Question 5.	9
	6.	Business Question 6.	9
	7.	Business Question 7.	9

1. Data: Tables & Columns

1. To create a data table

Use this prompt:

create a date table that has the dates from 03-01-2025 (March 1st, 2025) to 05-31-2025 (May 31st, 2025)

2. To create an exchange rate table

Use this prompt:

Create an exchange_rate table for the period from March 1st, 2025, to May 17th, 2025. Use the following API request sample to fetch historical exchange rates:

response = requests.get(f'https://openexchangerates.org/api/historical/2024-10 21.json?app_id=<Replace your app id here>&symbols=INR')

Replace the date for each in the URL with each date within the specified range.

3. Data cleaning and summarizing required data in one table (fact_summary)

Use this prompt:

Create a Python code that:

1. Load data from:

- fact_order_line table
- dim products sheet (skip first row, use second row as headers)
- dim customers sheet (skip first row, use second row as headers)
- Exchange Rate sheet (skip first row, use second row as headers)

2. Cleans the data:

- Convert product id and customer id to numeric
- Strip whitespace from IDs Remove rows with NULL IDs
- Convert IDs to integers
- Convert dates to datetime

3. Merges the tables:

- Orders with products using product id

- Result with customers using customer id
- Result with exchange rates using order_placement_date
 - 4. Calculates total amounts:
- For USD currency: price_USD * USD_INR_Rate * order_qty
- For INR currency: price_INR * order_qty

5. Clean final output:

- Drop intermediate columns: price_USD, price_INR, currency, Date, USD_INR_Rate
- Keep only essential columns: order details, IDs, dates, quantities, delivery information, and total_amount (in INR)

4. New Columns (fact_summary)

- 1. **backorder qty** = order qty delivery qty
- 2. order_cycle_time_days = actual_delivery_date order_placement_date
- 3. **delivery_delay_days** = actual_delivery_date agreed_delivery_date
- 4. **in_full_percent** = delivery_qty / order_qty * 100
- 5. **on_time_flag** = 1 if actual_delivery_date <= agreed_delivery_date else 0
- 6. category_demand_variability = Std Dev of order qty per week (needs grouping)
- 7. **week_of_year** = Extract from dim_date_table using order_placement_date
- 8. **lead time variability = STDDEV(order cycle time days)**

2. Business Question: Exercise 1

1. Creating Business KPIs

Use this **Prompt:**

Create the following KPIs

- 1. Total Order Lines
- 2. Line Fill Rate
- 3. Volume Fill Rate
- 4. Total Orders
- 5. On Time Delivery %
- 6. In Full Delivery %
- 7. On Time In Full %
- 8. Order Cycle Time
- 9. Perfect Order Rate
- 10. Backorder Rate
- 11. Demand Variability
- 12. Inventory Turnover Rate (if inventory data available)
- 13. Delivery Reliability Index
- 14. Lead Time Variability
- 15. Average Unit Fill % per Order

2. Top Customers

Use this Prompt:

Create the following KPIs

Show me top 5 customers based on order value and their OTIF %, IF %, OT %.

Also add the customer name, customer ID and city in the table

3. Top Customers (India)

Use this Prompt:

Show me top 5 customers in India based on order value and their OTIF %, IF %, OT %.

Also add the customer name, customer ID and city in the table

3. Business Question: Exercise 2

1. Quantify the revenue loss attributed to undelivered orders. Revenue Loss from Undelivered Orders (in Millions):

Prompt:

Using fact_summary, calculate revenue loss per customer as:

- revenue_loss = (order_qty delivery_qty) * unit price (converted to INR). If currency is USD,
 use exchange rate from exchange rate sheet based on order placement dat
- 2. Sum total revenue value (order_qty * unit price in INR)
- 3. Show output with:
 - customer_id, customer_name, city, currency, total_order_value_INR, total revenue loss INR, % revenue loss
- 4. Sort customers by total revenue loss INR descending

2. Identify customers with the most significant On-Time, In Full (OTIF) discrepancies

Prompt Title: Customers with OTIF Gaps

Using fact_order_line and dim_target_orders, generate a table of customers with largest OTIF discrepancies:

- 1. Calculate actual otif% = % of order lines where On Time In Full = 1
- 2. Join with dim_target_orders on customer_id
- 3. Calculate otif gap% = actual otif% otif target%
- 4. Include: customer id, customer name, city, actual otif%, otif target%, otif gap%
- 5. Sort by otif gap% ascending (most negative gaps first)
- 6. Show Top 10 customers

3. Determine product categories that exhibit low 'In Full' delivery rates.

Prompt:

Using fact_order_line and dim_product, generate a table showing product categories with lowest In Full delivery rates:

- 1. Join fact order line with dim product on product id
- 2. Group by category
- 3. For each category, calculate:
 - a. total order qty = sum(order qty)

- b. total delivery qty = sum(delivery qty)
- c. in_full% = total_delivery_qty / total_order_qty * 100
- 4. Sort by in full% ascending
- 4. Calculate the average delay time for late deliveries.

Prompt Title: Average Delay in Late Deliveries

Using fact order line (and dim product for category), generate delay analysis:

- 1. Filter rows where actual_delivery_date > agreed_delivery_date
- 2. Create a new column:

```
delay_days = actual_delivery_date - agreed_delivery_date (in days)
```

Calculate:

```
average_delay_days overall
average_delay_days grouped by:
    customer_id, customer_name (join with dim_customer)
    category (join with dim_product)
    Also include count of late orders
```

Display:

Table 1: overall average delay

Table 2: customer-wise delays

Table 3: category-wise delays

5. Identify product categories with the lowest 'In Full' delivery rates. What could this indicate about supply chain bottlenecks?

Prompt:

- 1. Look at product delivery data from:
 - Orders table
 - Product table
 - Date table
- 2. Find the 5 product categories with the lowest delivery success (based on how much was delivered vs ordered).
- 3. For each week and category, calculate:

- Delivery success percentage (in-full %)
- Total quantity ordered
- Number of orders
- Average quantity per order
- 4. Add an insight label for each week:
 - If delivery % is below 60% and order volume is high \rightarrow label as "Potential Supply Issue"
 - ullet If delivery % changes a lot from one week to the next ullet label as "Unstable Fulfillment"
 - $\bullet \quad \text{If none of the above} \to \text{label as "Stable"}$

4. Business Question: Exercise 3

1. Creating Business KPIs:

Prompt:

- 1. In-Full %
- 2. On-Time Delivery %
- 3. OTIF %
- 4. Order Cycle Time (days)
- 5. Average Delivery Delay (days)
- 6. Lead Time Variability
- 7. Category Demand Variability
- 8. Total Backorder Quantity

1. Which product categories are facing the highest fulfilment and delivery challenges?

Prompt:

"Filter the most recent 4 weeks. Aggregate by category: total backorder_qty, average in_full_percent, and average delivery_delay_days. Return the five categories with (a) the highest backorder_qty, (b) in_full_percent < 90, and (c) avg delivery_delay_days > 2. Include counts of total orders and suggest probable root causes."

2. Are any customers consistently missing OTIF targets?

Prompt:

"For each customer_id, compute weekly OTIF %

(on_time_flag = 1 AND in_full_percent = 100). Identify customers whose 4-week rolling average OTIF % < 85. Return customer name, city, weekly OTIF %, and variance from 85 % threshold."

3. Where is lead-time variability threatening service levels?

Prompt:

"Group by category and calculate lead_time_variability (stddev of order_cycle_time_days) for the past quarter. Flag categories where variability > 3 days. Show avg order cycle time days alongside variability."

4. Which weeks experienced the worst demand swings and did that impact service?

Prompt:

"Aggregate order_qty by week_of_year and category. Compute week-over-week % change. Highlight weeks with demand increase > 30 % or decrease < -20 %. For those weeks, show corresponding in_full_percent and on_time_delivery %."

5. Do long delivery delays correlate with larger backorders?

Prompt:

"Using last 8 weeks of data, build a scatter of avg_delivery_delay_days vs.

avg_backorder_qty at the customer—category level. Return points in the upper-right
quadrant (delay > 3 days AND backorder qty > 100 units) and list them in a table."

6. Which customers are improving—or worsening—in order cycle time?

Prompt:

"Calculate 3-week rolling average of order_cycle_time_days per customer. Compute the slope of the trend line. List top 5 customers with the steepest positive slope (worsening) and top 5 with steepest negative slope (improving)."

7. Are metro and non-metro customers served differently?

Prompt:

"Tag each city as 'Metro' or 'Non-Metro'. For the past two months, compare Metro vs. Non-Metro on (a) avg in_full_percent, (b) avg on_time_delivery %, (c) avg order_cycle_time_days, and (d) total backorder_qty. Highlight the metric with the largest performance gap."