$11a_{190} (K11a_{190})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{42} - u^{41} + \dots - u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 42 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{42} - u^{41} + \dots - u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{8} - u^{6} + u^{4} + 1 \\ -u^{10} + 2u^{8} - 3u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{8} - u^{6} + u^{4} + 1 \\ -u^{8} + 2u^{6} - 2u^{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{26} - 5u^{24} + \dots + u^{2} + 1 \\ -u^{26} + 6u^{24} + \dots + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{39} + 8u^{37} + \dots + 6u^{5} - 2u^{3} \\ u^{41} - 9u^{39} + \dots - 3u^{5} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{21} + 4u^{19} + \dots + 2u^{3} - u \\ u^{23} - 5u^{21} + \dots - 3u^{5} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{21} + 4u^{19} + \dots + 2u^{3} - u \\ u^{23} - 5u^{21} + \dots - 3u^{5} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$\overset{\cdot}{=} 4u^{40} - 36u^{38} + 4u^{37} + 168u^{36} - 32u^{35} - 516u^{34} + 136u^{33} + 1152u^{32} - 384u^{31} - 1972u^{30} + \\ 796u^{29} + 2700u^{28} - 1276u^{27} - 3092u^{26} + 1648u^{25} + 3116u^{24} - 1780u^{23} - 2872u^{22} + \\ 1668u^{21} + 2424u^{20} - 1388u^{19} - 1832u^{18} + 1020u^{17} + 1244u^{16} - 640u^{15} - 796u^{14} + 324u^{13} + \\ 484u^{12} - 124u^{11} - 256u^{10} + 28u^9 + 112u^8 + 8u^7 - 48u^6 - 20u^5 + 24u^4 + 16u^3 - 8u^2 - 2$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{42} - u^{41} + \dots - u + 1$
c_2	$u^{42} + 19u^{41} + \dots - u + 1$
c_3, c_4, c_8 c_9	$u^{42} + u^{41} + \dots + 3u + 1$
c_5, c_7	$u^{42} + u^{41} + \dots - 12u + 4$
c_{10}	$u^{42} + 13u^{41} + \dots + 2109u + 283$
c_{11}	$u^{42} - 3u^{41} + \dots - u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{42} - 19y^{41} + \dots + y + 1$
c_2	$y^{42} + 9y^{41} + \dots - 11y + 1$
c_3, c_4, c_8 c_9	$y^{42} + 49y^{41} + \dots + y + 1$
c_5, c_7	$y^{42} - 35y^{41} + \dots - 328y + 16$
c_{10}	$y^{42} - 19y^{41} + \dots - 701527y + 80089$
c_{11}	$y^{42} + y^{41} + \dots + 37y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.958451 + 0.182027I	-1.50976 + 0.22408I	-7.80723 - 0.81667I
u = -0.958451 - 0.182027I	-1.50976 - 0.22408I	-7.80723 + 0.81667I
u = -0.794065 + 0.558308I	8.84617 + 2.25274I	4.58162 - 3.46798I
u = -0.794065 - 0.558308I	8.84617 - 2.25274I	4.58162 + 3.46798I
u = 1.059210 + 0.106332I	0.18706 + 2.88066I	-2.91592 - 4.70329I
u = 1.059210 - 0.106332I	0.18706 - 2.88066I	-2.91592 + 4.70329I
u = 0.534293 + 0.761914I	13.9445 - 3.9233I	5.91216 + 2.83813I
u = 0.534293 - 0.761914I	13.9445 + 3.9233I	5.91216 - 2.83813I
u = 0.814354 + 0.428559I	1.05337 - 1.87068I	3.39079 + 4.68483I
u = 0.814354 - 0.428559I	1.05337 + 1.87068I	3.39079 - 4.68483I
u = 0.437218 + 0.793916I	13.4042 + 6.9529I	5.22220 - 3.15637I
u = 0.437218 - 0.793916I	13.4042 - 6.9529I	5.22220 + 3.15637I
u = -0.510362 + 0.737623I	5.58647 + 2.00252I	4.43798 - 4.06646I
u = -0.510362 - 0.737623I	5.58647 - 2.00252I	4.43798 + 4.06646I
u = -1.109120 + 0.092741I	8.15110 - 4.89812I	-0.84749 + 2.79086I
u = -1.109120 - 0.092741I	8.15110 + 4.89812I	-0.84749 - 2.79086I
u = -0.440224 + 0.767604I	5.20119 - 4.76095I	3.47757 + 4.70504I
u = -0.440224 - 0.767604I	5.20119 + 4.76095I	3.47757 - 4.70504I
u = -1.052970 + 0.403941I	-2.94816 + 1.84155I	-7.97014 - 0.12089I
u = -1.052970 - 0.403941I	-2.94816 - 1.84155I	-7.97014 + 0.12089I
u = 1.079910 + 0.334044I	3.19579 - 0.38496I	-4.05769 + 0.70837I
u = 1.079910 - 0.334044I	3.19579 + 0.38496I	-4.05769 - 0.70837I
u = 0.460288 + 0.731314I	3.06576 + 1.25733I	-0.386808 - 0.265317I
u = 0.460288 - 0.731314I	3.06576 - 1.25733I	-0.386808 + 0.265317I
u = 1.069990 + 0.454007I	-2.58903 - 5.04565I	-5.96481 + 8.68441I
u = 1.069990 - 0.454007I	-2.58903 + 5.04565I	-5.96481 - 8.68441I
u = -1.096730 + 0.488278I	4.21047 + 6.88158I	-1.95632 - 6.72572I
u = -1.096730 - 0.488278I	4.21047 - 6.88158I	-1.95632 + 6.72572I
u = -1.049770 + 0.605621I	3.98383 + 3.11596I	2.01311 - 1.17218I
u = -1.049770 - 0.605621I	3.98383 - 3.11596I	2.01311 + 1.17218I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.042540 + 0.627034I	12.43060 - 1.33379I	3.69918 + 2.21003I
u = 1.042540 - 0.627034I	12.43060 + 1.33379I	3.69918 - 2.21003I
u = 1.074510 + 0.592401I	1.24809 - 6.31321I	-3.41953 + 4.87109I
u = 1.074510 - 0.592401I	1.24809 + 6.31321I	-3.41953 - 4.87109I
u = -1.091090 + 0.602467I	3.27056 + 9.94153I	0.33743 - 9.11948I
u = -1.091090 - 0.602467I	3.27056 - 9.94153I	0.33743 + 9.11948I
u = 1.100260 + 0.611942I	11.4291 - 12.2349I	2.31503 + 7.47393I
u = 1.100260 - 0.611942I	11.4291 + 12.2349I	2.31503 - 7.47393I
u = -0.194284 + 0.626683I	6.70392 - 2.62174I	1.89600 + 2.88322I
u = -0.194284 - 0.626683I	6.70392 + 2.62174I	1.89600 - 2.88322I
u = 0.124492 + 0.489748I	-0.169198 + 1.278750I	-1.95713 - 5.54449I
u = 0.124492 - 0.489748I	-0.169198 - 1.278750I	-1.95713 + 5.54449I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{42} - u^{41} + \dots - u + 1$
c_2	$u^{42} + 19u^{41} + \dots - u + 1$
c_3, c_4, c_8 c_9	$u^{42} + u^{41} + \dots + 3u + 1$
c_5, c_7	$u^{42} + u^{41} + \dots - 12u + 4$
c_{10}	$u^{42} + 13u^{41} + \dots + 2109u + 283$
c_{11}	$u^{42} - 3u^{41} + \dots - u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{42} - 19y^{41} + \dots + y + 1$
c_2	$y^{42} + 9y^{41} + \dots - 11y + 1$
c_3, c_4, c_8 c_9	$y^{42} + 49y^{41} + \dots + y + 1$
c_5,c_7	$y^{42} - 35y^{41} + \dots - 328y + 16$
c_{10}	$y^{42} - 19y^{41} + \dots - 701527y + 80089$
c_{11}	$y^{42} + y^{41} + \dots + 37y + 1$