MATH 271: Proof Portfolio

Micah Sherry

December 9, 2024

Sample Direct Proof (problem 7.34)

If gcd(a, c) = gcd(b, c) = 1, then gcd(ab, c) = 1.

Proof. Assume gcd(a, c) = gcd(b, c) = 1, So, $\exists w, x, y, z \in \mathbb{Z}$ such that 1 = aw + cx and 1 = by + cz (by proposition 7.1 page 152). Let d denote the gcd(ab, c), therefore d|c and d|ab. So, $\exists m, n$ such that c = dm and ab = dn. Consider,

$$1 = aw + cx$$

 $b = abw + cby$ (multiplying both sides by b.)
 $= dnw + dmby$ (substituting c for dm and ab for dn.)
 $= d(nw + mby)$ (let k denote $nw + mby$.)

Therefore b = dk. Now consider,

$$\begin{split} 1 &= by + cz \\ &= dky + dmz \\ &= d(ky + mz) \\ &= dj \end{split} \qquad \text{(substituting c for dm, and b for dk)}$$

This implies that d|1, therefore, d=1 (because 1 only has divisors -1, and 1; and 1 > -1). Therefore the gcd(ab, c) = 1, so the proposition holds.

Sample Indirect Proof (problem 5.10)

Suppose $x, y, z \in \mathbb{Z}$ and $x \neq 0$, If $x \nmid yz$ then $x \nmid y$ and $x \nmid z$

Proof. Consider the contrapositive: if $x \mid y$ or $x \mid z$ then $x \mid yz$. Without loss of generality let x divide y. So, $\exists k \in \mathbb{Z}$ such that y = xk

$$yz = (xk)z$$
$$yz = x(kz)$$

Let n denote kz, Then yz can be expressed as yz = xn and n is an integer. So, x divides yz (by definition of divisibility). Thus the contrapositive holds and so does the original statement.

Sample Proof by Cases (problem 7.22)

If $n \in \mathbb{Z}$ then $4|n^2$ or $4|(n^2-1)$

Proof. Let $n \in \mathbb{Z}$ be given, notice there are two cases for n: odd and even.

Case 1: n is odd. So, $\exists k \in \mathbb{Z}$ such that n = 2k + 1. Consider,

$$n^{2} - 1 = (2k + 1)^{2} - 1$$
$$= 4k^{2} + 4k + 1 - 1$$
$$= 4(k^{2} + k).$$

So 4 divides $n^2 - 1$ when n is odd.

Case 2: n is even. So, $\exists k \in \mathbb{Z}$ such that n = 2k. Consider,

$$n^2 = (2k)^2$$
$$= 4(k^2).$$

So, 4 divides n^2 when n is even. Since 4 divides n^2 or $n^2 - 1$, the proposition holds.

Sample Proof by Contradiction (problem 6.8)

Suppose $a, b, c \in \mathbb{Z}$. If $a^2 + b^2 = c^2$ then a or b is even

Proof. Assume for the sake of contradiction that $a^2 + b^2 = c^2$, and a and b are odd. Then $\exists k, n \in \mathbb{Z}$ such that a = 2k + 1 and b = 2n + 1. So,

$$c^{2} = a^{2} + b^{2}$$

$$= (2k + 1)^{2} + (2k + 1)^{2}$$

$$= 4k^{2} + 4k + 1 + 4n^{2} + 4n + 1$$

$$= 4(k^{2} + n^{2} + k + n) + 2.$$

let $m = k^2 + n^2 + k + n$ Therefore $c^2 = 4m + 2$.

Case 1: c is even. Then c=2j for some $j\in\mathbb{Z}$. Then $c^2=4j^2$. This is a contradiction because we have established that c^2 is of the form 4m+2

Case 2: c is odd. Then c = 2j + 1 for some $j \in \mathbb{Z}$. Then $c^2 = 4j^2 + 4j + 1 = 4(j^2 + j) + 1$. This is a contradiction because we have established that c^2 is of the form 4m + 2.

Since both cases for c leads to a contradiction the original statement holds.

Sample Disproof (problem 9.2)

For every natural number n, the integer $2n^2 - 4n + 31$ is prime.

Proof. consider the counterexample n=31, then

$$2n^{2} - 4n + 31 = 2(31)^{2} - 4(31) + 31$$
$$= 31(2(31) - 4 + 1)$$
$$= 31(59).$$

Therefore $2n^2 - 4n + 31$ is not prime for all n (because it is divisible by 31 and 59). Thus the proposition is false.

Sample Induction Proof (problem 10.26)

Concerning the Fibonacci sequence, prove that $\sum_{i=1}^{n} F_i^2 = F_n F_{n+1}$.

Proof. Base Case: Consider the base case n = 1.

$$\sum_{i=1}^{1} F_i^2 = F_1^2 = 1 \text{ and } F_1 F_2 = 1 * 1 = 1$$

therefore the base case holds.

Induction Hypothesis: Assume $\sum_{i=1}^k F_i^2 = F_k F_{k+1}$ is true for some k. Inductive step: Now consider the case when n = k + 1.

$$\sum_{i=1}^{k+1} F_i^2 = \sum_{i=1}^k F_i^2 + F_{k+1}^2$$

$$= F_k F_{k+1} + F_{k+1}^2$$

$$= F_{k+1}(F_k + F_{k+1})$$
 (by the induction hypothesis)
$$= F_{k+1}(F_k + F_{k+1})$$
 (by definition of the Fibonacci sequence)

Since the base case holds and $S_k \implies S_{k+1}$ by the principle of mathematical induction, the statement is true $\forall n \in \mathbb{N}$