PCS 3225 Sistemas Digitais II

Síntese de Circuitos Seqüenciais

7-6 – State Machine Synthesis Using Transition Lists (Wakerly, 4ed, páginas 577-580)

Andrade, Marco Túlio Carvalho de Professor Responsável

versão: Setembro de 2.017

© Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

State Machine Synthesis Using Transition Lists

- Uma vez que o Diagrama de Transição de Estados de uma FSM está pronto a maior parte do trabalho criativo do *design* (projeto) está concluído. O restante poderá ser levado a cabo com ferramentas de CAD.
- Do conteúdo da seção 7.5 do livro texto Wakerly, 4ª edição, sabe-se que é possível extrair uma Lista de Transição a partir da Tabela de Transição de Estados e da Codificação de Estados adotada para uma FSM.

© Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

s	Q2	Q1	Q0	Transition Expression	S *	Q2=	Q1*	QO
IDLE	0	0	0	(LEFT + RIGHT + HAZ)'	IDLE	0	0	0
IDLE	0	0	0	LEFT · HAZ' · RIGHT'	L1	0	0	1
IDLE	0	0	0	HAZ + LEFT · RIGHT	LR3	1	0	0
IDLE	0	0	0	RIGHT · HAZ' · LEFT'	R1	I	0	I
L1	0	0	1	HAZ'	L2	0	1	1
L1	0	0	1	HAZ	LR3	1	0	0
L2	0	1	1	HAZ'	L3	0	1	0
L2	0	1	1	HAZ	LR3	1	0	0
L3	0	1	0	1	IDLE	0	0	0
R1	1	0	1	HAZ'	R2	1	1	1
R1	1	0	1	HAZ	LR3	1	0	0
R2	1	1	1	HAZ'	R3	1	1	0
R2	1	1	1	HAZ	LR3	1	0	0
R3	1	1	0	1	IDLE	0	0	0
LR3	1	0	0	1 Tab 7-14 página 576	IDLE	0	0	0

- Lista de Transição X Equações de Transição:
- Na síntese de FSM a partir de **Lista de Tran-**sição o primeiro passo é a obtenção de um
 conjunto de **Equações de Transição** que
 definem cada variável **V*** de **Próximo Estado**em termos do **Estado Atual** e das **Entradas**.
- Lista de Transição Trata-se de uma Tabela da Verdade Híbrida, na qual combinações das variáveis de estado para o estado atual são listadas explicitamente e combinações de entradas são listadas algebricamente.

© Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

■ Equações de Transição:

 $V^* = \Sigma_i$ (termos-produto de transição)

Onde i consiste nas linhas da Tabela de Transição e cujo valor de $V^* = 1$.

■ Exemplo da Lista de Transição da Tabela 7-14, página 576.

A transition equation for a next-state variable V* can be written using a sort of hybrid canonical sum:

$$V* = \sum_{\text{transition-list rows where } V* = 1} (\text{transition p-term})$$

© Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

State Machine Synthesis Using Transition Lists

```
\begin{array}{l} Q2* = Q2' \cdot Q1' \cdot Q0' \cdot (HAZ + LEFT \cdot RIGHT) \\ + Q2' \cdot Q1' \cdot Q0' \cdot (RIGHT \cdot HAZ' \cdot LEFT') \\ + Q2' \cdot Q1' \cdot Q0 \cdot (HAZ) \\ + Q2' \cdot Q1 \cdot Q0 \cdot (HAZ) \\ + Q2 \cdot Q1' \cdot Q0 \cdot (HAZ') \\ + Q2 \cdot Q1' \cdot Q0 \cdot (HAZ') \\ + Q2 \cdot Q1 \cdot Q0 \cdot (HAZ') \\ + Q2 \cdot Q1 \cdot Q0 \cdot (HAZ') \\ + Q2 \cdot Q1 \cdot Q0 \cdot (HAZ') \\ + Q2 \cdot Q1 \cdot Q0 \cdot (HAZ) \end{array}
\begin{array}{l} Baseado \ na \ Lista \ de \ Transição \ da \ Tabela \ 7-14, \ a \ Equação \ de \ Transição \ de \ \textbf{Q}_2^* \ na \ Máquina \ T-bird \ pode \ ser \ escrita \ como \ uma \ soma \ de \ 8 \ termos-produto. \end{array}
```

■ Algumas manipulações e simplificações Algébricas conduzem a:

$$Q2* = Q2' \cdot Q1' \cdot Q0' \cdot (HAZ + RIGHT)$$
$$+ Q2' \cdot Q0 \cdot (HAZ)$$
$$+ Q2 \cdot Q0$$

© Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

$$Q1* = Q2' \cdot Q1' \cdot Q0 \cdot (HAZ')$$

$$A \text{ de } Q_1^* \text{ na Máquina}$$

$$T\text{-bird pode ser escrita}$$

$$como \text{ uma soma de 4}$$

$$\text{termos-produto.}$$

$$+ Q2 \cdot Q1' \cdot Q0 \cdot (HAZ')$$

$$+ Q2 \cdot Q1 \cdot Q0 \cdot (HAZ')$$

Algumas manipulações e simplificações
 Algébricas conduzem a:

$$Q1* = Q0 \cdot HAZ'$$

© Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

State Machine Synthesis Using Transition Lists

$$\begin{array}{lll} Q0* &=& Q2' \cdot Q1' \cdot Q0' \cdot (LEFT \cdot HAZ' \cdot RIGHT') \\ &+& Q2' \cdot Q1' \cdot Q0' \cdot (RIGHT \cdot HAZ' \cdot LEFT') \\ &+& Q2' \cdot Q1' \cdot Q0 \cdot (HAZ') \\ &+& Q2 \cdot Q1' \cdot Q0 \cdot (HAZ') \end{array} \begin{array}{ll} A \ de \ \textbf{Q_0}^* \ na \ Máquina \\ T-bird \ pode \ ser \ escrita \\ como \ uma \ soma \ de \ 4 \\ termos-produto. \end{array}$$

 Algumas manipulações e simplificações Algébricas conduzem a:

@ Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 < Sínt. Circ. Seq. > PCS 3225 Sistemas Digitais II

- Sabe-se que **Equações de Transição** não são **Equações de Excitação**.
- O que deve ser feito é que se encontrem quais são os valores de excitação D_i^* (para um FF tipo D) ou $J_i^* K_i^*$ (para um FF tipo JK) para que, uma vez no Estado $S(Q_2Q_1Q_0)$, a FSM evolua para o Estado $S^*(Q_2^* Q_1^* Q_0^*)$:

$$J_2^* e K_2^* ou D_2^* \Rightarrow Q_2^*$$
 $J_1^* e K_1^* ou D_1^* \Rightarrow Q_1^*$
 $J_0^* e K_0^* ou D_0^* \Rightarrow Q_0^*$

© Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

9

State Machine Synthesis Using Transition Lists

Therefore, if the transition equation for a

state variable Qi* is

Qi* = expression

then the excitation equation for the corresponding D flip-flop input is

Di = expression

É óbvio que se o FF é do tipo D a derivação das Equações de Excitação a partir das Equações de Transição é muito simples!

© Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

■ Existem outras maneiras de se obter Equações de Transição e de Excitação. Se a coluna de um Estado particular conta com menos 0s que 1s, pode ser vantajoso escrever as Variáveis de Transição em termos de 0s nesta coluna:

Complemento(V*) = Σ_i (termos-produto de transição)

Onde i consiste nas linhas da Tabela de Transição e cujo valor de $V^* = 0$.

$$V^{*'} = \sum_{\text{transition-list rows where } V^{*} = 0} (\text{transition p-term})$$

© Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

11

State Machine Synthesis Using Transition Lists

■ Se a coluna de um Estado particular conta com menos 0s que 1s, pode ser vantajoso escrever as Variáveis de Transição em termos de 0s nesta coluna. Deste modo:

To obtain an expression for a next-state variable V* directly, using the 0s in the transition list, we can complement the righthand side of the general V*' equation using DeMorgan's theorem, obtaining a sort of hybrid canonical product:

$$V* = \prod_{\text{transition-list rows where } V* = 0} (\text{transition s-term})$$

© Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

13

Another State Machine Design Example

- The Guessing Game, seção 7.7, página 580.
 - 4 entradas G1, G2, G3 e G4 ligadas a 4 botões;
 - 4 saídas L1, L2, L3 e L4 ligadas a 4 LEDs, no padrão "1-out-of-4";
 - cada ciclo de *clock* o padrão é rodado uma posição a uma frequência do *clock* próxima de 4 Hertz;
 - Adivinhações são feitas apertando os botões, o que determina uma escolha Gi;
 - Se no próximo pulso de *clock*, após o aperto do botão escolhido, Gi é igual ao LED aceso houve acerto (o jogo para, saída ERR mantém mesmo valor), caso contrário saída ERR é ativada.

© Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

- Uma Lista de Transição que corresponde ao Diagrama de Transição de Estados (Figura 7-60, página 581) pode ser vista na Tabela 7-15, página 583.
- Na obtenção de uma expressão para Q₂* observa-se na Tabela 7-15 ela pode ser expressa como uma soma de 10 produtos ou como um produto de 6 somas. Opta-se por representar Q₂* pelos seus 0s da Tabela 7-15.

© Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

17

Another State Machine Design Example

■ Opta-se por representar $\mathbf{Q_2}^*$ pelos seus 0s da Tabela 7-15, ou seja, obter a representação de " $\mathbf{Q_2}^*$ " ($\mathbf{Q_2}^*$ complementado):

```
\begin{array}{rcl} Q2*' &=& Q2' \cdot Q1' \cdot Q0' \cdot (G1' \cdot G2' \cdot G3' \cdot G4') \\ &+& Q2' \cdot Q1' \cdot Q0 \cdot (G1' \cdot G2' \cdot G3' \cdot G4') \\ &+& Q2' \cdot Q1 \cdot Q0 \cdot (G1' \cdot G2' \cdot G3' \cdot G4') \\ &+& Q2' \cdot Q1 \cdot Q0' \cdot (G1' \cdot G2' \cdot G3' \cdot G4') \\ &+& Q2 \cdot Q1' \cdot Q0' \cdot (G1' \cdot G2' \cdot G3' \cdot G4') \\ &+& Q2 \cdot Q1' \cdot Q0 \cdot (G1' \cdot G2' \cdot G3' \cdot G4') \\ &=& (Q2' + Q1') \cdot (G1' \cdot G2' \cdot G3' \cdot G4') \end{array}
```

@ Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 < Sínt. Circ. Seq. > PCS 3225 Sistemas Digitais II

$$\begin{array}{lll} Q1* &=& Q2' \cdot Q1' \cdot Q0 \cdot (G1' \cdot G2' \cdot G3' \cdot G4') \\ &+& Q2' \cdot Q1 \cdot Q0 \cdot (G1' \cdot G2' \cdot G3' \cdot G4') \\ &=& Q2' \cdot Q0 \cdot G1' \cdot G2' \cdot G3' \cdot G4' \\ Q0* &=& Q2' \cdot Q1' \cdot Q0' \cdot (G1' \cdot G2' \cdot G3' \cdot G4') \\ &+& Q2' \cdot Q1' \cdot Q0' \cdot (G2 + G3 + G4) \\ &+& Q2' \cdot Q1' \cdot Q0 \cdot (G1' \cdot G2' \cdot G3' \cdot G4') \\ &+& Q2' \cdot Q1' \cdot Q0 \cdot (G1 + G3 + G4) \\ &+& Q2' \cdot Q1 \cdot Q0 \cdot (G1 + G2 + G4) \\ &+& Q2' \cdot Q1 \cdot Q0' \cdot (G1 + G2 + G3) \\ &+& Q2 \cdot Q1' \cdot Q0 \cdot (G1 + G2 + G3 + G4) \end{array}$$

© Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

Another State Machine Design Example Table 7-15 Transition list for guessing-game machine. Current State Next State Output Transition Expression Q2 Q1 Q0 L1 L2 L3 L4 ERR G1' G2' G3' G4' 0 S1 0 0 G1 · G2' · G3' · G4' SOK 0 SI 0 0 G2 + G3 + G4SERR 1 S2 $\text{G1}' \cdot \text{G2}' \cdot \text{G3}' \cdot \text{G4}'$ S3 G1' - G2 - G3' - G4' SOK 1 G1 + G3 + G4 SERR 1 0 G1' · G2' · G3' · G4' S3 S4 0 0 0 G1' · G2' · G3 · G4' 53 SOK 0 0 0 S3 1 G1 + G2 + G4SERR 0 0 G1' - G2' - G3' - G4' S1 0 0 0 0 0 **S4** 0 G1' - G2' - G3' - G4 SOK 0 S4 G1 + G2 + G3SERR 1 SOK 0 G1 + G2 + G3 + G4 SOK SOK G1' - G2' - G3' - G4' SERR G1 + G2 + G3 + G4 SERR 1 0 0 SERR G1' - G2' - G3' - G4' S1 0 0 0 0 © Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

- Pode ser útil determinar, dentre as variáveis de saída L₁, L₂, L₃, L₄ e ERR (Tabela 7-15, página 583) quais serão seus próximos valores, L₁*, L₂*, L₃*, L₄* e ERR*.
- Para exemplificar a obtenção de basta procurar na Tabela 7-15 quantas e quais as situações em que o Estado S₁ (onde L₁ deve acender) é o Próximo Estado a ser atingido.
- Procedimento semelhante é usado na obtenção das expressões das demais variáveis de saída.

© Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

Current State			9		Next State			Output					
s	Q2	Q1	QO	Transition Expression	S *	Q2	Q1*	Q0	L1	L2	L3	L4	ERR
S1	0	0	0	G1' G2' G3' G4'	S2	0	0	1	1	0	0	0	0
S1	0	0	0	G1 · G2' · G3' · G4'	SOK	1	0	0	1	0	0	0	0
S1	0	0	0	G2 + G3 + G4	SERR	1	0	1	1	0	0	0	0
S2	0	0	1	G1' · G2' · G3' · G4'	S3	0	1	1	0	1	0	0	0
S2	0	0	1	G1' · G2 · G3' · G4'	SOK	1	0	0	0	1	0	0	0
S2	0	0	1	G1 + G3 + G4	SERR	1	0	1	0	1	0	0	0
S3	0	1	1	G1' - G2' - G3' - G4'	S4	0	1	0	0	0	1	0	0
S3	0	1	1	G1' · G2' · G3 · G4'	SOK	1	0	0	0	0	1	0	0
S3	0	1	1	G1 + G2 + G4	SERR	1	0	J T	* 0	0	1	0	0
S4	0	1	0	G1' · G2' · G3' · G4'	S1	0	0	0	1 0	0	0	l	0
S4	0	1	0	G1' · G2' · G3' · G4	SOK	1	0	0	0	0	0	1	0
S4	0	1	0	G1 + G2 + G3	SERR	1	0	1	0	0	0	1	0
SOK	1	0	0	G1 + G2 + G3 + G4	SOK	1	0	0	* 0	0	0	0	0
SOK	1	0	0	G1' · G2' · G3' · G4'	(S1)	0	0	0	1 0	0	0	0	0
SERR	1	0	1	G1 + G2 + G3 + G4	SERR	1	0	_L T	* ()	0	0	0	1
SERR	1	0	1	G1' · G2' · G3' · G4'	S1	0	0	0	1 0	0	0	0	1

- Sabe-se que as saídas da máquina são função apenas do Estado Atual. Uma combinação diferente de valores de saída é produzida em cada Estado definido, podendo-se utilizar os valores das saídas como Variáveis de Estado.
- Pode-se associar, a cada Estado definido, um código que represente a combinação requerida do conjunto de saídas para aquele Estado.
- Este tipo de associação, *output-coded state assignment*, pode resultar em um conjunto de equações de transição mais simples.

© Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

Tal	ble 7	7-16	Tran	sitio	n list for	guessing-game machine u	sing outpo	uts as	s stat	e var	riable	S.	
	С	urren	t Sta	te			Next State						
s	L1	L2	L3	L4	ERR	Transition Expression	S *	L1*	L2*	L3*	L4*	ERR*	
S1	1	0	0	0	0	G1' - G2' - G3' - G4'	S2	0	1	0	0	0	
S1	1	0	0	0	0	G1 · G2' · G3' · G4'	SOK	0	0	0	0	0	
S1	1	0	0	0	0	G2 + G3 + G4	SERR	0	0	0	0	1	
S2	0	1	0	0	0	G1' · G2' · G3' · G4'	S3	0	0	1	0	0	
S2	0	1	0	0	0	G1' · G2 · G3' · G4'	SOK	0	0	0	0	0	
S2	0	1	0	0	0	G1 + G3 + G4	SERR	0	0	0	0	1	
S3	0	0	1	0	0	G1' · G2' · G3' · G4'	S4	0	0	0	1	0	
S3	0	0	1	0	0	G1' · G2' · G3 · G4'	SOK	0	0	0	0	0	
S3	0	0	1	0	0	G1 + G2 + G4	SERR	0	0	0	0	1	
S4	0	0	0	I	0	G1' · G2' · G3' · G4'	S1	1	0	0	0	0	
S4	0	0	0	1	0	G1' · G2' · G3' · G4	SOK	0	0	0	0	0	
S4	0	0	0	1	0	G1 + G2 + G3	SERR	0	0	0	0	1	
SOK	0	0	0	0	0	G1 + G2 + G3 + G4	SOK	0	0	0	0	0	
SOK	0	0	0	0	0	G1' - G2' - G3' - G4'	S1	1	0	0	0	0	
SERR	0	0	0	0	1	G1 + G2 + G3 + G4	SERR	0	0	0	0	1	
SERR	0	0	0	0	1	G1' · G2' · G3' · G4'	S1	1	0	0	0	0	

Another State Machine Design Example Table 7-17 State L1 L2 L3 L4 ERR Current-state assignment S1 X Х Х for the guessing-game X machine using don't-cares. S2 0 Х X Х S3 0 X S4 0 0 Χ SOK 0 0 0 0 SERR 0 0 0 0 © Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

Та	ble	7-18	3 Tra	ınsiti	on list for	r guessing-game machine us	sing don't-	care	state	cod	ings.	
Current State							Next State					
s	L1	L2	L3	L4	ERR	Transition Expression	S *	L1*	L2=	<i>L3</i> ≈	L48	ERR
s	1	х	х	х	х	G1' · G2' · G3' · G4'	S2	0	1	0	0	0
S	1	x	х	x	x	G1 · G2' · G3' · G4'	SOK	0	0	0	0	0
S	1	х	х	x	x	G2 + G3 + G4	SERR	0	0	0	0	1
S2	0	1	x	х	x	G1' - G2' - G3' - G4'	S3	0	0	1	0	0
S2	0	1	х	х	x	G1' · G2 · G3' · G4'	SOK	0	0	0	0	0
S2	0	1	х	x	x	G1 + G3 + G4	SERR	0	0	0	0	1
S3	0	0	1	x	x	G1' · G2' · G3' · G4'	S4	0	0	0	1	0
S3	0	0	1	x	x	G1' · G2' · G3 · G4'	SOK	0	0	0	0	0
S3	0	0	1	x	x	G1 + G2 + G4	SERR	0	0	0	0	1
S4	0	0	0	1	x	G1' · G2' · G3' · G4'	S1	1	0	0	0	0
S4	0	0	0	1	x	G1' · G2' · G3' · G4	SOK	0	0	0	0	0
S4	0	0	0	1	x	G1 + G2 + G3	SERR	0	0	0	0	1
SOK	0	0	0	0	0	G1 + G2 + G3 + G4	SOK	0	0	0	0	0
SOK	0	0	0	0	0	G1' · G2' · G3' · G4'	S1	1	0	0	0	0
SERR	0	0	0	0	1	G1 + G2 + G3 + G4	SERR	0	0	0	0	1
SERR	0	0	0	0	1	G1' - G2' - G3' · G4'	S1	1	0	0	0	0

Referencias

- Referências desta aula:
- Wakerly, 7-6 State Machine Synthesis Using Transition Lists (4ed, páginas 577-580).

 $\hbox{$\mathbb{O}$ Andrade, Bruno, Midorikawa, Simplício e Spina 2.017\,<Sínt. Circ. Seq.>\,PCS\,\,3225\,\,Sistemas\,\,Digitais\,\,II}$

Livro Texto

■ Wakerly, J.F.; *Digital Design* – *Principles & Practices*; Fourth Edition, ISBN: 0-13-186389-4, Pearson & Prentice-Hall, Upper Saddle, River, New Jersey, 07458, 2006.

© Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

31

Bibliografia Adicional Deste Assunto

- Dias, Francisco José de Oliveira; *Introdução* aos Circuitos de Chaveamento; Apostila, PEL/EPUSP, 1.980;
- Fregni, Edson; Ranzini, Edith; *Teoria da Comutação: Introdução aos Circuitos Digitais (Partes 1 e 2)*; Apostila PCS/EPUSP, Outubro de 1.999;

© Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

Bibliografia Adicional Deste Assunto

- Hill, Frederic and Peterson, Gerald; *Introduction to Switching Theory and Logical Design*; Ed. John Wiley and Sons, 1.974;
- Ranzini, Edith; *Circuitos de Chaveamento* (notas de aula); Apostila, EPUSP, 1.983.

@ Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 < Sínt. Circ. Seq. > PCS 3225 Sistemas Digitais II