

Overview

Federated intelligent terminals for automatic monitoring of stuttering speech in different contexts

Contribution

- The first time that FL^[1] has been applied to stuttering scenarios
- Verify that XGBoost-based FL has comparable performance with centralised learning for stuttering classification
- Introduce Shapley values to measure changes in feature importance

Fig.1 The framework of federated intelligent terminals

[1] FL(Federated Learning)

Motivation

- Monitoring of stuttering is crucial to speech therapy.
- Evaluation of stuttering by speech therapists can be influenced by too much manual subjective intervention
 - Comprehensive evaluation in various contexts is required.
 - The therapist's evaluation might be influenced by many factors
 - communication situation
 - psychological factors
 - ☐ linguistic complexity
 - personal subjectivity
- Problem of data security.

So we propose the federated intelligent terminals for automatic monitoring of stuttering speech in different contexts!

Method-Data and Explainable

Data Preparation

- The experimental data are taken from the Kassel State of Fluency (KSoF) corpus.^[1]
 - > Train: 23 speakers
 - > Devel: 6 speakers
 - ➤ Sample number: 3,471
 - Length of each audio: 3-second
 - Classes: 8
 - Feature: 4,096 dimensions extracted by auDeep.

Shapley[2] value Tool

Fairly **evaluate feature contributions** by assigning each feature a numerical value to represent its impact.

Table.1 The Distribution of annotations in KSoF dataset

Stuttering Labels	KSoF [%]
Block (Bl)	20.74
Prolongation (Pro)	12.02
Sound Repetition (Snd)	14.76
Word/Phrase Repetition (Wd)	3.88
Modified Speech Technique (Mod)	24.75
Interjection (Int)	24.44
No Dysfluencies (Nd)	12.97
Unintelligible (Ul)	5.77

[1] The data can be accessed by request from the Kassel State of Fluency (KSoF) dataset at https://zenodo.org/record/6801844

[2] SHAP (SHapley Additive exPlanations) is a game-theoretic method to explain the output of ML models.https://shap.readthedocs.io.

Method-Centralised model

XGBoost Ensemble Learning Model

Positive:

- ✓ Good at parallel computing
- ✓ Highly scalable
- ✓ Uses minimal resources for algorithmic optimization
- ✓ Has flexible portability and precise libraries

Object Function:

$$Obj^{(t)} = \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t)}) + \sum_{i=1}^{t} \Omega(f_i)$$

$$\approx \sum_{i=1}^{n} \left[g_i f_i(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right] + \Omega(f_i)$$

i refers to the ith sample, $\widehat{y}_i = \sum_{k=1}^K f_k(x_i)$.

$$\underline{g_i} = \partial_{\widehat{v}^{(t-1)}} l(y_i, \widehat{y}^{(t-1)})$$
 and $\underline{h_i} = \partial_{\widehat{v}^{(t-1)}}^2 l(y_i, \widehat{y}^{(t-1)})$

the first order gradient

the second order gradient

Method-Federated model

The framework is based on **FATE**[1].

The XGBoost-based horizontal FL steps:

- a) Clients hold different training samples and train the ensemble tree model.
- b) For each feature, the client accumulates the **gradient** of its samples' loss.
- c) Clients send the gradient to the server.
- d) The server aggregates the gradients from the clients and finds out the best weights.
- e) The server broadcasts the best weights to clients.

[1] FATE (Federated AI Technology Enabler) supports the FL architecture, as well as the secure computation and development of various ML algorithms. https://github.com/FederatedAI/FATE

```
Algorithm 1: Implementation of XGBoost-based
horizontal FL
   Input: N, the number of the clients, where the i^{th}
            client holds n_i instance spaces
   Input: d, feature dimension
   Input: x, the dataset matrix
   Output: the best split point for the current instance
 1 /*On clients*/
2 for each client i = 1 to N - 1 do
       Propose each feature's values by percentiles to
         form feature bins
       for each feature bin do
            Accumulate the q, h of all sample spaces in
             this feature bin to get G, H
       end
7 end
 8 /*On federated server */
 9 for each client i = 1 to N - 1 do
       for each feature m = 1 to d - 1 do
            g_l = g_l + \text{Decrypt}(G \text{ feature } bins)
            h_l = h_l + \text{Decrypt}(H \text{ feature } bins)
           g_r = g - g_l, h_r = h - h_l
            Score =
             Max(Score, \frac{1}{2} \left[ \frac{g_l^2}{h_l + \lambda} + \frac{g_r^2}{h_r + \lambda} - \frac{g^2}{h + \lambda} \right] - \gamma)
15
16 end
17 Broadcast the m_{opt} and the corresponding threshold
     value to all clients to split
```

Result

- (a) Tree depth for XGBoost
- (b) Tree number for XGBoost

(c) Tree depth for FL

(d) Tree number for FL

Fig.2 Model performance variation (UAR and UF₁ in [\%]) between centralised learning and federated learning

$$UF_1 = \frac{2*TPc}{2*TPc + FPc + FNc}$$

$$UAR = \frac{\sum_{i=1}^{N_c} Recall_i}{N_c}$$

Evaluation matrix: UAR and UF1

- XGBoost is optimal with 50 trees and depth 5
- FL is optimal with 50 trees and depth 3

(a) XGBoost confusion matrix

(b) FL confusion matrix

Fig.3 Normalised confusion matrix (in [\%]) of true labels and predicted labels between centralised learning and federated learning.

Conclusion

- FL has considerable privacy-preserving advantages over centralised learning
- Offered a valid verification and basis for the FL paradigm on automatic monitoring of stuttering is provided
- Shapley values can fairly evaluate the contribution of features
- Future work: lightweight models and the deployment of FITs models on devices

(a) The contribution of significant auDeep_features from all class predictions for the XGBoost model (average feature importance).

(b) The contribution of significant auDeep_features from all class predictions for the FL model (average feature importance).

Fig.4 The features sorted by the mean of Shapley values for all class predictions

THANKS

Yongzi Yu^{1†}, **Wanyong Qiu**^{1†}, Chen Quan¹, Kun Qian^{1*}, Zhihua Wang², Yu Ma¹, Bin Hu^{1*}, Bjoern W. Schuller³ and Yoshiharu Yamamoto²

- 1 School of Medical Technology, Beijing Institute of Technology, Beijing, China
- 2 Educational Physiology Laboratory, The University of Tokyo, Japan
- 3 GLAM -- Group on Language, Audio, & Music, Imperial College London, UK

