Image Matching Challenge

Longbin Jin

Recap: Image Matching System

우리가 할 일:

Image dataset

Preprocessing

- Point processing
 - Gray scale / HSI
 - Contrast stretching
- Area processing
 - Noise filtering
 - Edge
 - Sharpening
 - Morphological
- Deep Learning

여긴 생략

indexing 작업

Feature extraction = indexer

- Color
 - Color histogram
- Texture
 - LBP
 - GLCM
 - Law's texture
- Shape
 - Harris corner
 - SIFT
 - HoG
- Deep Learning

Classification

- Similarity
 - Distance
 - Cosine similarity
- ML classifier
 - KNN
 - SVM
 - •
- Deep Learning

Image Matching System Challenge 1 & 2

Image dataset

- Point processing
 - Gray scale / HSI
 - Contrast stretching
- Area processing
 - Noise filtering
 - Edge
 - Sharpening
 - Morphological
- Deep Learning

Feature extraction

- CHALLENGE 1
- Low/mid-level
 - Color
 - Texture
 - Shape
- CHALLENGE 2
- High-level
 - CNNs

5/31에 실습

- Similarity
 - Distance
 - Cosine similarity
- ML classifier
 - KNN

CHALLENGE 2

Convolutional Neural Networks (CNNs)

will be covered in next class

Extract CNN output feature vectors

Pytorch-based CNN practice in 5.31 (online)

Softmax FC 1000 FC 4096 FC 4096 Pool

VGG16

DB Images (train image)

- link
 - git clone https://github.com/folfcoder/recaptcha-dataset.git
- Classes (without mountain)

Bicycle (800)

Bridge (553)

Bus (1229)

Car (3578)

Chimney (56)

Crosswalk (1260)

Hydrant (972)

Motorcycle (101)

Palm (932)

Traffic Light (811)

Representing DB images by feature vectors

feature 잘 정의되었는지 검증하고 와야함

Explore and save the best feature sets using cross-validation in DB image

Representing DB images by feature vectors

You can save up to three feature sets for each CHALLENGE

Query Images (test image)

- Total 100 images
 - 10 images for each class

```
query image = test image 총 100개
```

- Query Images will be available on 12 June (Mon)
 - We provide query images in class, without label

Query folder structure

```
query
|__query1.png
|__query2.png
|__ ... ...
|__query100.png
```


During the Challenge

Step 1. representing query images by your own feature sets

Step2. Calculate the similarity between features of all DB Images and given query Image

Tasks for the CHALLENGE

그래서 knn을 하는거고, k값은 우리가 조절하면 됨

task 1 : class를 정확히 맞추는 것

Task1: Classification

10개 안에 몇개를 맞추냐

task 2: 검색 시스템으로서의 검증

Task2: Retrieval

During the Challenge

Step3. Classification Result (Task 1): Classify and tag the label for every query image Step4. Retrieval Result (Task 2): Retrieve top ranked 10 images for every query image

Classification Result (Task 1)

Outputs

- 100 dimension array
- Save the results as csv file for each attempt

```
1 predict_labels = classifier.predict(test_features)
2 print(predict_labels) # array(100)
['Bridge' 'Crosswalk' 'Bicycle' 'Bicycle' 'Bridge' 'Bicycle' 'Car'
'Bicycle' 'Bicycle' 'Bicycle' 'Bridge' 'Bus' 'Traffic Light' 'Chimney'
 'Hydrant' 'Traffic Light' 'Bridge' 'Bridge' 'Bridge' 'Bridge' 'Bus' 'Bus
 'Motorcycle' 'Motorcycle' 'Bus' 'Bus' 'Bus' 'Crosswalk' 'Chimney
 'Bridge' 'Car' 'Crosswalk' 'Bridge' 'Bicycle' 'Chimney' 'Car' 'Bridge
'Bus' 'Traffic Light' 'Bus' 'Bicycle' 'Bicycle' 'Chimney' 'Car
'Chimney' 'Traffic Light' 'Car' 'Chimney' 'Hydrant' 'Crosswalk' 'Bus
 'Bicycle' 'Bicycle' 'Bridge' 'Hydrant' 'Crosswalk' 'Bicycle' 'Bicycle'
'Bicycle' 'Traffic Light' 'Bicycle' 'Bus' 'Bridge' 'Bicycle' 'Car' 'Bus
'Crosswalk' 'Bicycle' 'Chimney' 'Chimney' 'Bicycle' 'Hydrant' 'Bicycle'
 'Bus' 'Crosswalk' 'Motorcycle' 'Bicycle' 'Bicycle' 'Bicycle' 'Bridge
'Chimney' 'Bicycle' 'Bridge' 'Hydrant' 'Bridge' 'Chimney' 'Bicycle'
'Bicycle' 'Bus' 'Traffic Light' 'Car' 'Bridge' 'Chimney' 'Crosswalk'
'Chimney' 'Bridge' 'Crosswalk' 'Hydrant' 'Bridge'
1 import csv
3 with open('c1_t1_a1.csv','w') as file :
      write = csv.writer(file)
      for i, predict_label in enumerate(predict_labels):
          write.writerow([f'query{i+1}.png', predict_label])
```

결과물 이렇게 제출해야함

c1_t1_a1.csv

que 1	ry image name query1.png	class Car
2	query2.png	Car
3	query3.png	Car
4	query4.png	Traffic Light
5	query5.png	Bus
6	query6.png	Motorcycle
7	query7.png	Bicycle
8	query8.png	Hydrant
9	query9.png	Bus
10	query10.png	Bicycle
11	query11.png	Chimney
12	query12.png	Bicycle
		•
96	query96.png	Bus
97	query97.png	Bicycle
98	query98.png	Bicycle
99	query99.png	Bus
100	query100.png	Hydrant

Retrieval Result (Task 2)

- Outputs
 - 100x10 dimension array
 - Save the results as csv file for each attempt

Retrieval Result (Task 2)

- Outputs
 - 100x10 dimension array
 - Save the results as csv file for each attempt

엑셀 파일을 제출 각 챌린지의 피쳐들 마다 (최대 3개) 파일 제출

c1_t2_a1.csv

	A	В	С	D	E	F	G	Н	I	J	K
1	query1.png	Bridge	Traffic Lig	Bus	Bridge	Bridge	Palm	Car	Motorcycl	Crosswalk	Car
2	query2.png	Hydrant	Crosswalk	Crosswalk	Motorcycle	Bicycle	Car	Crosswalk	Motorcycl	Palm	Hydrant
3	query3.png	Car	Bicycle	Bicycle	Bridge	Palm	Crosswalk	Motorcycle	Bicycle	Chimney	Motorcycle
4	query4.png	Motorcycle	Crosswalk	Bicycle	Bridge	Motorcycle	Bicycle	Motorcycle	Car	Bicycle	Bicycle
5	query5.png	Bridge	Bus	Bridge	Bridge	Traffic Ligi	Motorcycl	Car	Palm	Bridge	Hydrant
6	query6.png	Motorcycle	Chimney	Bicycle	Motorcycle	Crosswalk	Hydrant	Motorcycle	Crosswalk	Hydrant	Car
7	query7.png	Traffic Ligi	Hydrant	Car	Bus	Motorcycle	Car	Motorcycle	Bus	Bridge	Motorcycle
8	query8.png	Bicycle	Bridge	Motorcycle	Crosswalk	Motorcycle	Crosswalk	Car	Palm	Motorcycl	Bicycle
					_	_	_	_	_		<u>-</u>
96	query96.png	Chimney	Traffic Ligi	Palm	Bus	Hydrant	Palm	Car	Bus	Bicycle	Motorcycle
97	query97.png	Motorcycle	Bridge	Car	Car	Bridge	Chimney	Palm	Palm	Car	Motorcycle
98	query98.png	Crosswalk	Motorcycle	Palm	Bicycle	Bridge	Crosswalk	Car	Palm	Bicycle	Bicycle
99	query99.png	Hydrant	Traffic Ligi	Hydrant	Hydrant	Crosswalk	Hydrant	Bicycle	Palm	Chimney	Motorcycle
100	query100.png	Bridge	Palm	Traffic Ligi	Bridge	Motorcycle	Hydrant	Crosswalk	Bridge	Motorcycl	Traffic Light

https://colab.research.google.com/drive/1nC_YMtHQn1GYMzBUGRS3esftKS8YKAZn?hl=ko#scrollTo=Ad4y-3QSh5mA

Ranking

- Task1: Classification
 - 1. Highest accuracy of all attempts
 - 2. Ties will be broken by F1 score SAN F1 AAA BE
- Task2: Retrieval
 - 1. Highest (average) Top-10 accuracy of all attempts
 - 2. Ties will be broken by number of attempts

	Α	В	С	D	E	F	G	Н	1	J	K
1	query1.png	Bridge	Traffic Ligl	Bus	Bridge	Bridge	Palm	Car	Motorcycl	Crosswalk	Car
2	query2.png	Hydrant	Crosswalk	Crosswalk	Motorcycle	Bicycle	Car	Crosswalk	Motorcycl	Palm	Hydrant
3	query3.png	Car	Bicycle	Bicycle	Bridge	Palm	Crosswalk	Motorcycle	Bicycle	Chimney	Motorcycle
4	query4.png	Motorcycle	Crosswalk	Bicycle	Bridge	Motorcycle	Bicycle	Motorcycle	Car	Bicycle	Bicycle
5	query5.png	Bridge	Bus	Bridge	Bridge	Traffic Ligi	Motorcycl	Car	Palm	Bridge	Hydrant
6	query6.png	Motorcycl	Chimney	Bicycle	Motorcycle	Crosswalk	Hydrant	Motorcycle	Crosswalk	Hydrant	Car

Matching Results

- You should upload
 - Output files
 - c1_t1_a1.csv, c1_t1_a2.csv, c1_t1_a3.csv
 - c1_t2_a1.csv, c1_t2_a2.csv, c1_t2_a3.csv
 - c2_t1_a1.csv, c2_t1_a2.csv, c2_t1_a3.csv
 - c2_t2_a1.csv, c2_t2_a2.csv, c2_t2_a3.csv
 - Python code (.py or .ipynb)
 - c1_t1_a1.ipynb, c1_t1_a2.ipynb, c1_t1_a3.ipynb
 - c1_t2_a1.ipynb, c1_t2_a2.ipynb, c1_t2_a3.ipynb
 - c2_t1_a1.ipynb, c2_t1_a2.ipynb, c2_t1_a3.ipynb
 - c2_t2_a1.ipynb, c2_t2_a2.ipynb, c2_t2_a3.ipynb
 - DB features file (.npy or .pkl or others) if necessary

Tips & Tricks

- Normalize the features

 feature = 많이 쓴다고 좋은거 아님, 핵심적인 feature를 잘 찾아보기
 - Normalize the features to have zero mean and unit variance
 - e.g. Concatenation(Norm(GLCM), Norm(histogram))
- Consider using a dimensionality reduction technique
 - It works well on low-dimension data (compact features)
- Cross-validation
 - try different hyperparameter values and keep the values that lead to the best performance on the validation set