<110> PARANHOS-BACCALA, Glaucia '

KOMURIAN-PRADEL, Florence

BEDIN, Frederic

SODOYER, Mireille

OTT, Catherine

MALLET, Francois

PERRON, Herve

MANDRAND, Bernard

<120> RETROVIRAL NUCLEIC MATERIAL AND NUCLEOTIDE FRAGMENTS, IN
PARTICULAR ASSOCIATED WITH MULTIPLE SCLEROSIS AND/OR RHEUMATOID
ARTHRITIS, FOR DIAGNOSTIC, PROPHYLACTIC AND THERAPEUTIC USES

<130> 103514

<140> US/09/319,156

<141> 1999-11-02

<150> PCT/FR98/01460

<151> 1998-07-07

<150> FR/97/08816

<151> 1997-07-07

<160> 45

<170> PatentIn version 3.1

<210>	1						
<211>	34						
<212>	DNA						
<213>	MSRV	7					
	1 ctgc	agatcgattt	tttttttt	tttt			34
<210>	2						
<211>	30						
<212>	DNA						
<213>	MSRV	I					
<400>	2 aagc	cacccaagaa	ctcttaactt				30
J	5 -	,					
<210>	3						
<211>	30					,	
<212>	DNA						
<213>	MSR	7					
<400> ccaata	3 gcca	gaccattata	tacactaatt				30
	_						
<210>	4						
<211>	310						
<212>	DNA						
<213>	MSR	I					
<400> gcttata	4 agaa	ggacccctag	tatggggtaa	tcccctctgg	gaaaccaagc	cccagtactc	60
agcagga	aaaa	atagaatagg	aaacctcaca	aggacatact	ttcctcccct	ccagatggct	120
agccact	tgag	gaaggaaaaa	tactttcacc	tgcagctaac	caacagaaat	tacttaaaac	180

ccttcaccaa accttccact taggcattga tagcacccat cagatggcca aattattatt tactqqacca qqccttttca aaactatcaa gaagatagtc aggggctgtg aagtgtgcca aagaaataat <210> <211> 103 <212> PRT <213> MSRV <220> <221> misc feature <222> (26)..(26)<223> Xaa = any amino acid <400> 5 Leu Ile Glu Gly Pro Leu Val Trp Gly Asn Pro Leu Trp Glu Thr Lys Pro Gln Tyr Ser Ala Gly Lys Ile Glu Xaa Glu Thr Ser Gln Gly His 20 Thr Phe Leu Pro Ser Arg Trp Leu Ala Thr Glu Glu Gly Lys Ile Leu 35 40 45 Ser Pro Ala Ala Asn Gln Gln Lys Leu Leu Lys Thr Leu His Gln Thr 50 55 Phe His Leu Gly Ile Asp Ser Thr His Gln Met Ala Lys Leu Phe 70

240

300

310

Glu Val Cys Gln Arg Asn Asn 100 90

Thr Gly Pro Gly Leu Phe Lys Thr Ile Lys Lys Ile Val Arg Gly Cys

6
635
DNA

<213> MSRV

<400> ccctqtatct ttaacctcct tqttaaqttt qtctcttcca gaatcaaaac tqtaaaacta 60 120 caaattgttc ttcaaatgga gcaccagatg gagtccatga ctaagatcca ccgtggaccc ctggaccggc ctgctagccc atgctccgat gttaatgaca ttgaaggcac ccctcccgag 180 240 gaaatctcaa ctgcacaacc cctactatgc cccaattcag cgggaagcag ttagagcggt 300 catcagccaa cctccccaac agcacttggg ttttcctgtt gagagggggg actgagagac 360 aggactagct ggatttccta ggccaacgaa gaatccctaa gcctagctgg gaaggtgact gcatccacct ctaaacatgg ggcttgcaac ttagctcaca cccgaccaat cagagagctc 420 actaaaatgc taattaggca aaaataggag gtaaagaaat agccaatcat ctattgcctg 480 agagcacagc gggagggaca aggatcggga tataaaccca ggcattcgag ccggcaacgg 540 caacccctt tgggtccct cctttgtat gggcgctctg ttttcactct atttcactct 600 attaaatctt gcaactgaaa aaaaaaaaaa aaaaa 635

<210> 7

<211> 77

<212> PRT

<213> MSRV

<400> 7

Pro Cys Ile Phe Asn Leu Leu Val Lys Phe Val Ser Ser Arg Ile Lys 1 5 10 15

Thr Val Lys Leu Gln Ile Val Leu Gln Met Glu His Gln Met Glu Ser 20 25 30

Met Thr Lys Ile His Arg Gly Pro Leu Asp Arg Pro Ala Ser Pro Cys 35 40 45

Ala Gln Pro Leu Leu Cys Pro Asn Ser Ala Gly Ser Ser 65 70 75

<210> 8

<211> 32

<212> DNA

<213> MSRV

<400> 8 tggggttcca tttgtaagac catctgtagc tt

32

<210> 9

<211> 1481

<212> DNA

<213> MSRV

<400> 9 atggccctcc cttatcatac ttttctcttt actgttctct tacccccttt cgctctcact 60 gcaccccctc catgctgctg tacaaccagt agctcccctt accaagagtt tctatgaaga 120 acqcqqcttc ctqqaaatat tqatqcccca tcatatagga gtttatctaa gggaaactcc 180 accttcactg cccacacca tatgccccgc aactgctata actctgccac tctttgcatg 240 catgcaaata ctcattattg gacagggaaa atgattaatc ctagttgtcc tggaggactt 300 ggagccactg tctgttggac ttacttcacc cataccagta tgtctgatgg gggtggaatt 360 caaggtcagg caagagaaaa acaagtaaag gaagcaatct cccaactgac ccggggacat 420 agcaccccta gcccctacaa aggactagtt ctctcaaaac tacatgaaac cctccgtacc 480 catactegee tggtgageet atttaatace acceteacte ggetecatga ggteteagee 540 caaaacccta ctaactgttg gatgtgcctc cccctgcact tcaggccata catttcaatc 600 cctgttcctg aacaatggaa caacttcagc acagaaataa acaccacttc cgttttagta 660 ggacctcttg tttccaatct ggaaataacc catacctcaa acctcacctg tgtaaaattt 720 agcaatacta tagacacaac cagctcccaa tgcatcaggt gggtaacacc tcccacacga 780

atagtctgcc	taccctcagg	aatattttt	gtctgtggta	cctcagccta	tcattgtttg	840
aatggctctt	cagaatctat	gtgcttcctc	tcattcttag	tgccccctat	gaccatctac	900
actgaacaag	atttatacaa	tcatgtcgta	cctaagcccc	acaacaaaag	agtacccatt	960
cttccttttg	ttatcagagc	aggagtgcta	ggcagactag	gtactggcat	tggcagtatc	1020
acaacctcta	ctcagttcta	ctacaaacta	tctcaagaaa	taaatggtga	catggaacag	1080
gtcactgact	ccctggtcac	cttgcaagat	caacttaact	ccctagcagc	agtagtcctt	1140
caaaatcgaa	gagctttaga	cttgctaacc	gccaaaagag	ggggaacctg	tttattttta	1200
ggagaagaac	gctgttatta	tgttaatcaa	tccagaattg	tcactgagaa	agttaaagaa	1260
attcgagatc	gaatacaatg	tagagcagag	gagcttcaaa	acaccgaacg	ctggggcctc	1320
ctcagccaat	ggatgccctg	ggttctcccc	ttcttaggac	ctctagcagc	tctaatattg	1380
ttactcctct	ttggaccctg	tatctttaac	ctccttgtta	agtttgtctc	ttccagaatt	1440
gaagctgtaa	agctacagat	ggtcttacaa	atggaacccc	a		1481

<211> 493

<212> PRT

<213> MSRV

<220>

<221> misc_feature

<222> (39)..(39)

<223> Xaa = any amino acid

<400> 10

Met Ala Leu Pro Tyr His Thr Phe Leu Phe Thr Val Leu Leu Pro Pro $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Phe Ala Leu Thr Ala Pro Pro Pro Cys Cys Cys Thr Thr Ser Ser Ser 20 25 30

Pro Tyr Gln Glu Phe Leu Xaa Arg Thr Arg Leu Pro Gly Asn Ile Asp 35 40 45

Ala Pro Ser Tyr Arg Ser Leu Ser Lys Gly Asn Ser Thr Phe Thr Ala His Thr His Met Pro Arg Asn Cys Tyr Asn Ser Ala Thr Leu Cys Met His Ala Asn Thr His Tyr Trp Thr Gly Lys Met Ile Asn Pro Ser Cys Pro Gly Gly Leu Gly Ala Thr Val Cys Trp Thr Tyr Phe Thr His Thr Ser Met Ser Asp Gly Gly Gly Ile Gln Gly Gln Ala Arg Glu Lys Gln Val Lys Glu Ala Ile Ser Gln Leu Thr Arg Gly His Ser Thr Pro Ser Pro Tyr Lys Gly Leu Val Leu Ser Lys Leu His Glu Thr Leu Arg Thr His Thr Arg Leu Val Ser Leu Phe Asn Thr Thr Leu Thr Arg Leu His Glu Val Ser Ala Gln Asn Pro Thr Asn Cys Trp Met Cys Leu Pro Leu His Phe Arg Pro Tyr Ile Ser Ile Pro Val Pro Glu Gln Trp Asn Asn Phe Ser Thr Glu Ile Asn Thr Thr Ser Val Leu Val Gly Pro Leu Val Ser Asn Leu Glu Ile Thr His Thr Ser Asn Leu Thr Cys Val Lys Phe Ser Asn Thr Ile Asp Thr Thr Ser Ser Gln Cys Ile Arg Trp Val Thr

Pro Pro Thr Arg Ile Val Cys Leu Pro Ser Gly Ile Phe Phe Val Cys

Gly Thr Ser Ala Tyr His Cys Leu Asn Gly Ser Ser Glu Ser Met Cys 275 280 Phe Leu Ser Phe Leu Val Pro Pro Met Thr Ile Tyr Thr Glu Gln Asp 290 295 Leu Tyr Asn His Val Val Pro Lys Pro His Asn Lys Arg Val Pro Ile 305 320 Leu Pro Phe Val Ile Arg Ala Gly Val Leu Gly Arg Leu Gly Thr Gly Ile Gly Ser Ile Thr Thr Ser Thr Gln Phe Tyr Tyr Lys Leu Ser Gln 345 Glu Ile Asn Gly Asp Met Glu Gln Val Thr Asp Ser Leu Val Thr Leu 360 355 Gln Asp Gln Leu Asn Ser Leu Ala Ala Val Val Leu Gln Asn Arg Arg 380 370 375 Ala Leu Asp Leu Leu Thr Ala Lys Arg Gly Gly Thr Cys Leu Phe Leu 395 385 390 Gly Glu Glu Arg Cys Tyr Tyr Val Asn Gln Ser Arg Ile Val Thr Glu 410 415 405 Lys Val Lys Glu Ile Arg Asp Arg Ile Gln Cys Arg Ala Glu Glu Leu 425 430 420

Gln Asn Thr Glu Arg Trp Gly Leu Leu Ser Gln Trp Met Pro Trp Val 435 440 445

Leu Pro Phe Leu Gly Pro Leu Ala Ala Leu Ile Leu Leu Leu Leu Phe 450 455 460

Gly Pro Cys Ile Phe Asn Leu Leu Val Lys Phe Val Ser Ser Arg Ile 465 470 475 480

Glu Ala Val Lys Leu Gln Met Val Leu Gln Met Glu Pro \$485\$

<210> 11

```
<211> 32
```

<212> DNA

<213> MSRV

<400> 11

tcaaaatcga agagctttag acttgctaac cg

32

<210> 12

<211> 1329

<212> DNA

<213> MSRV

<220>

<221> misc_feature

<222> (594)..(594)

<223> n = a, g, c or t/u

<220>

<221> misc_feature

<222> (602)..(602)

<223> n = a, g, c or t/u

<220>

<221> misc_feature

<222> (1232)..(1232)

<223> n = a, g, c or t/u

<400> 12

tcaaaatcga agagctttag acttgctaac cgccaaaaga gggggaacct gtttatttt 60
aggggaagaa tgctgttagt atgttaatca atctggaatc attactgaga aagttaaaga 120

aatttgagat cgaatataat gtagagcaga ggaccttcaa aacactgcac cctggggcct 180

<211> 162

<212> PRT

<213> MSRV

<220>

<221> misc feature

<222> (26)..(26)

<223> Xaa = any amino acid

<220>

<221> misc_feature

<222> (42)..(42)

<223> Xaa = any amino acid

<220>

<221> misc_feature

<222> (46)..(46)

<223> Xaa = any amino acid

<400> 13

Gln Asn Arg Arg Ala Leu Asp Leu Leu Thr Ala Lys Arg Gly Gly Thr
1 10 15

Cys Leu Phe Leu Gly Glu Glu Cys Cys Xaa Tyr Val Asn Gln Ser Gly 20 25 30

Ile Ile Thr Glu Lys Val Lys Glu Ile Xaa Asp Arg Ile Xaa Cys Arg 35 40 45

Ala Glu Asp Leu Gln Asn Thr Ala Pro Trp Gly Leu Leu Ser Gln Trp 50 55 60

Met Pro Trp Thr Leu Pro Phe Leu Gly Pro Leu Ala Ala Ile Ile Phe 65 70 75 80

Leu Leu Phe Gly Pro Cys Ile Phe Asn Phe Leu Val Lys Phe Val 85 90 95

Ser Ser Arg Ile Glu Ala Val Lys Leu Gln Ile Val Leu Gln Met Glu 100 105 110

Pro Gln Met Gln Ser Met Thr Lys Ile Tyr Arg Gly Pro Leu Asp Arg 115 120 125

Pro Ala 130	-	, Leu	Cys	Ser	135	vaı	ASN	Asp	me	140	Val	IIIL	PIO	PIO	
Glu Glu 145	ılle	e Ser	Thr	Ala 150	Gln	Pro	Leu	Leu	His 155	Ser	Asn	Ser	Val	Gly 160	
Ser Ser															
<210>	14													•	
<211>	21														
<212>	DNA														
<213>	MSRV	7													
<400> ggcattg	14 Jata	gcaco	ccato	ca g											21
<210>	15														
<211>	21														
<212>	DNA														
<213>	MSRV	7													
<400> catgtca	15 icca	gggto	ggaat	ta g											21
<210>	16														
<211>	758														
<212> ·	DNA														
<213>	MSRV	7													
<400>	16														
ggcattg	ata	gcaco	ccato	ca g	atggo	ccaaa	tca	attai	tta	ctg	gacca	ıgg	cctt	ttcaaa	60
actatca	agc	agata	agggo	cc c	gtgaa	agcat	gc	caaaq	gaaa	taat	cccc	tg	cctta	atcgcc	120
atgttcc	ttc	aggag	gaaca	aa a	gaaca	aggco	: at	tacco	cagg	ggaa	agact	gg	caact	tagatt	180
ttaccca	cat	ggcca	aaato	gt c	aggga	atttc	age	catci	cact	agto	ctggg	ıca (gata	ctttca	240

ctggtt	gggt	ggagtcttct	ccttgtagga	cagaaaagac	ccaagaggta	ataaaggcac	300
taatga	aata	attcccagat	ttggacttcc	cccaggatta	cagggtgaca	atggccccgc	360
tttcaa	iggct	gcagtaaccc	agggagtatc	ccaggtgtta	ggcatacaat	atcacttaca	420
ctgtgc	ctgg	aggccacaat	cctccagaaa	agtcaagaaa	atgaatgaaa	cactcaaaga	480
tctaaa	aaag	ctaacccaag	aaacccacat	tgcatgacct	gttctgttgc	ctataacctt	540
actaag	gaatc	cataactatc	ccccaaaaag	caggacttag	cccatacgag	atgctatatg	600
gatggc	cttt	cctaaccaat	gaccttgtgc	ttgactgaga	aatggccaac	ttagttgcag	660
acatca	cctc	cttagccaaa	tatcaacaag	ttcttaaaac	atcacaggga	acctgtcccc	720
gagagg	gaggg	aaaggaacta	ttccaccctg	gtgacatg			758
<210>	17		·				
			.•				
<211>	25						
<212>	DNA						
<213>	MSR	V					
<400>	17						25
cggaca	itcca	aagtgatggg	aaacg				23
<210>	18						
<211>	26						
<212>	DNA						
<213>	MSR	J					
<400>	18						
ggacag	gaaa	gtaagactga	gaaggc				26
<210>	19						
<211>	26						
<212>	DNA						
<213>	MSRV	7					

<400> cctagaa	19 acgt	attctggaga	attggg				26
<210>	20						
<211>	26						
<212>	DNA						
<213>	MSRV	J					
<400> tggctct	20 caa	tggtcaaaca	tacccg				2.6
<210>	21						
<211>	1513	1					
<212>	DNA						
<213>	MSRV	J .					
<400> cctagaa	21 acgt	attctggaga	attgggacca	atgtgacact	cagacgctaa	gaaagaaacg	60
		ttctgcagta					120
gcttcct	tgag	ggaagtataa	attataacat	catcttacag	ctagacctct	tctgtagaaa	180
ggaggg	caaa	tggagtgaag	tgccatatgt	gcaaactttc	ttttcattaa	gagacaactc	240
acaatta	atgt	aaaaagtgtg	gtttatgccc	tacaggaagc	cctcagagtc	cacctcccta	300
cccago	cgtc	ccctccccga	ctccttcctc	aactaataag	gacccccctt	taacccaaac	360
ggtccaa	aaag	gagatagaca	aaggggtaaa	caatgaacca	aagagtgcca	atattccccg	420
attatgo	ccc	ctccaagcag	tgagaggagg	agaattcggc	ccagccagag	tgcctgtacc	480
tttttct	tctc	tcagacttaa	agcaaattaa	aatagaccta	ggtaaattct	cagataaccc	540
tgacgg	ctat	attgatgttt	tacaagggtt	aggacaatcc	tttgatctga	catggagaga	600
tataat	gtta	ctactaaatc	agacactaac	cccaaatgag	agaagtgccg	ctgtaactgc	660
agcccga	agag	tttggcgatc	tttggtatct	cagtcaggcc	aacaatagga	tgacaacaga	720
ggaaaga	aaca	actcccacag	gccagcaggc	agttcccagt	gtagaccctc	attgggacac	780
agaatca	agaa	catggagatt	ggtgccacaa	acatttgcta	acttgcgtgc	tagaaggact	840
gaggaaa	aact	aggaagaagc	ctatgaatta	ctcaatgatg	tccactataa	cacagggaaa	900

ggaagaaaat	cttactgctt	ttctggacag	actaagggag	gcattgagga	agcatacctc	960
cctgtcacct	gactctattg	aaggccaact	aatcttaaag	gataagttta	tcactcagtc	1020
agctgcagac	attagaaaaa	acttcaaaag	tctgccttag	gcccggagca	gaacttagaa	1080
accctattta	acttggcatc	ctcagttttt	tataatagag	atcaggagga	gcaggcgaaa	1140
cgggacaaac	gggataaaaa	aaaaaggggg	ggtccactac	tttagtcatg	gccctcaggc	1200
aagcagactt	tggaggctct	gcaaaaggga	aaagctgggc	aaatcaaatg	cctaataggg	1260
ctggcttcca	gtgcggtcta	caaggacact	ttaaaaaaga	ttatccaagt	agaaataagc	1320
cgcccccttg	tccatgcccc	ttacgtcaag	ggaatcactg	gaaggcccac	tgccccaggg	1380
gatgaagata	ctctgagtca	gaagccatta	accagatgat	ccagcagcag	gactgagggt	1440
gcccggggcg	agcgccagcc	catgccatca	ccctcacaga	gccccgggta	tgtttgacca	1500
ttgagagcca	a					1511

<211> 352

<212> PRT

<213> MSRV

<400> 22

Leu Glu Arg Ile Leu Glu Asn Trp Asp Gln Cys Asp Thr Gln Thr Leu $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Arg Lys Lys Arg Phe Ile Phe Phe Cys Ser Thr Ala Trp Pro Gln Tyr 20 25 30

Pro Leu Gln Gly Arg Glu Thr Trp Leu Pro Glu Gly Ser Ile Asn Tyr 35 40 45

Asn Ile Ile Leu Gln Leu Asp Leu Phe Cys Arg Lys Glu Gly Lys Trp 50 55 60

Ser Glu Val Pro Tyr Val Gln Thr Phe Phe Ser Leu Arg Asp Asn Ser 65 70 75 80

Gln Leu Cys Lys Lys Cys Gly Leu Cys Pro Thr Gly Ser Pro Gln Ser 85 90 95

Pro	Pro	Pro	Tyr 100	Pro	Ser	Val	Pro	Ser 105	Pro	Thr	Pro	Ser	Ser 110	Thr	Asn
Lys	Asp	Pro 115	Pro	Leu	Thr	Gln	Thr 120	Val	Gln	Lys	Glu	Ile 125	Asp	Lys	Gly
Val	Asn 130	Asn	Glu	Pro	Lys	Ser 135	Ala	Asn	Ile	Pro	Arg 140	Leu	Cys	Pro	Leu
Gln 145	Ala	Val	Arg	Gly	Gly 150	Glu	Phe	Gly	Pro	Ala 155	Arg	Val	Pro	Val	Pro 160
Phe	Ser	Leu	Ser	Asp 165	Leu	Lys	Gln	Ile	Lys 170	Ile	Asp	Leu	Gly	Lys 175	Phe
Ser	Asp	Asn	Pro 180	Asp	Gly	Tyr	Ile	Asp 185	Val	Leu	Gln	Gly	Leu 190	Gly	Gln
Ser	Phe	Asp 195	Leu	Thr	Trp	Arg	Asp 200	Ile	Met	Leu	Leu	Leu 205	Asn	Gln	Thr
Leu	Thr 210	Pro	Asn	Glu	Arg	Ser 215	Ala	Ala	Val	Thr	Ala 220	Ala	Arg	Glu	Phe
Gly 225	Asp	Leu	Trp	Tyr	Leu 230	Ser	Gln	Ala	Asn	Asn 235	Arg	Met	Thr	Thr	Glu 240
Glu	Arg	Thr	Thr	Pro 245	Thr	Gly	Gln	Gln	Ala 250	Val	Pro	Ser	Val	Asp 255	Pro
His	Trp	Asp	Thr 260		Ser	Glu	His	Gly 265	Asp	Trp	Cys	His	Lys 270	His	Leu
Leu	Thr	Cys 275	Val	Leu	Glu	Gly	Leu 280	Arg	Lys	Thr	Arg	Lys 285	Lys	Pro	Met
Asn	Туг 290	Ser	Met	Met	Ser	Thr 295	Ile	Thr	Gln	Gly	Lys 300	Glu	Glu	Asn	Leu
Thr 305	Ala	Phe	Leu	Asp	Arg 310	Leu	Arg	Glu	Ala	Leu 315	Arg	Lys	His	Thr	Ser 320

Leu Ser Pro Asp Ser Ile Glu Gly Gln Leu Ile Leu Lys Asp Lys Phe 325 330 Ile Thr Gln Ser Ala Ala Asp Ile Arg Lys Asn Phe Lys Ser Leu Pro 340 345 <210> 23 <211> 30 <212> DNA <213> MSRV <400> 23 30 tgctggaatt cgggatccta gaacgtattc <210> 24 <211> 30 <212> DNA <213> MSRV <400> 24 30 agttctgctc cgaagcttag gcagactttt <210> 25 <211> 398 <212> PRT <213> MSRV <400> 25 Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 10 Arg Gly Ser His Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg 20 25

Ile Leu Glu Arg Ile Leu Glu Asn Trp Asp Gln Cys Asp Thr Gln Thr

40

35

Leu Arg Lys Lys Arg Phe Ile Phe Phe Cys Ser Thr Ala Trp Pro Gln Tyr Pro Leu Gln Gly Arg Glu Thr Trp Leu Pro Glu Gly Ser Ile Asn Tyr Asn Ile Ile Leu Gln Leu Asp Leu Phe Cys Arg Lys Glu Gly Lys Trp Ser Glu Val Pro Tyr Val Gln Thr Phe Phe Ser Leu Arg Asp Asn Ser Gln Leu Cys Lys Lys Cys Gly Leu Cys Pro Thr Gly Ser Pro Gln Ser Pro Pro Pro Tyr Pro Ser Val Pro Ser Pro Thr Pro Ser Ser Thr Asn Lys Asp Pro Pro Leu Thr Gln Thr Val Gln Lys Glu Ile Asp Lys Gly Val Asn Asn Glu Pro Lys Ser Ala Asn Ile Pro Arg Leu Cys Pro Leu Gln Ala Val Arg Gly Gly Glu Phe Gly Pro Ala Arg Val Pro Val Pro Phe Ser Leu Ser Asp Leu Lys Gln Ile Lys Ile Asp Leu Gly Lys Phe Ser Asp Asn Pro Asp Gly Tyr Ile Asp Val Leu Gln Gly Leu Gly Gln Ser Phe Asp Leu Thr Trp Arg Asp Ile Met Leu Leu Leu Asn Gln Thr Leu Thr Pro Asn Glu Arg Ser Ala Ala Val Thr Ala Ala Arg Glu Phe Gly Asp Leu Trp Tyr Leu Ser Gln Ala Asn Asn Arg Met Thr Thr

Glu Glu Arg Thr Thr Pro Thr Gly Gln Gln Ala Val Pro Ser Val Asp 275 280 Pro His Trp Asp Thr Glu Ser Glu His Gly Asp Trp Cys His Lys His 300 290 295 Leu Leu Thr Cys Val Leu Glu Gly Leu Arg Lys Thr Arg Lys Lys Pro 310 315 Met Asn Tyr Ser Met Met Ser Thr Ile Thr Gln Gly Lys Glu Glu Asn Leu Thr Ala Phe Leu Asp Arg Leu Arg Glu Ala Leu Arg Lys His Thr 345 Ser Leu Ser Pro Asp Ser Ile Glu Gly Gln Leu Ile Leu Lys Asp Lys Phe Ile Thr Gln Ser Ala Ala Asp Ile Arg Lys Asn Phe Lys Ser Leu 370 375 380 Pro Lys Leu Ala Ala Leu Glu His His His His His 390 395 <210> 26 378 <211> <212> PRT <213> MSRV <400> 26 Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Ile Leu Glu Arg

IleLeuGluAsn 20Trp Asp 20GlnCys Asp 25Thr GlnThr Leu Arg 30Lys 30ArgPhe 35Phe Phe Cys Ser Thr 40Ala Trp Pro GlnTyr Pro Leu Gln 45GlyArg GluThr Trp Leu Pro GluGlySer Ile Asn Tyr Asn Ile Ile 50

Leu 65	Gln	Leu	Asp	Leu	Phe 70	Cys	Arg	Lys	Glu	Gly 75	Lys	Trp	Ser	Glu	Val 80
Pro	Tyr	Val	Gln	Thr 85	Phe	Phe	Ser	Leu	Arg 90	Asp	Asn	Ser	GÌn	Leu 95	Cys
Lys	Lys	Cys	Gly 100	Leu	Cys	Pro	Thr	Gly 105	Ser	Pro	Gln	Ser	Pro 110	Pro	Pro
Tyr	Pro	Ser 115	Val	Pro	Ser	Pro	Thr 120	Pro	Ser	Ser	Thr	Asn 125	Lys	Asp	Pro
Pro	Leu 130	Thr	Gln	Thr	Val	Gln 135	Lys	Glu	Ile	Asp	Lys 140	Gly	Val	Asn	Asn
Glu 145	Pro	Lys	Ser	Ala	Asn 150	Ile	Pro	Arg	Leu	Cys 155	Pro	Leu	Gln	Ala	Val 160
Arg	Gly	Gly	Glu	Phe 165	Gly	Pro	Ala	Arg	Val 170	Pro	Val	Pro	Phe	Ser 175	Leu
Ser	Asp	Leu	Lys 180	Gln	Ile	Lys	Ile	Asp 185	Leu	Gly	Lys	Phe	Ser 190	Asp	Asn
Pro	Asp	Gly 195	Tyr	Ile	Asp	Val	Leu 200	Gln	Gly	Leu	Gly	Gln 205	Ser	Phe	Asp
Leu	Thr 210	Trp	Arg	Asp	Ile	Met 215	Leu	Leu	Leu	Asn	Gln 220	Thr	Leu	Thr	Pro
Asn 225	Glu	Arg	Ser	Ala	Ala 230	Val	Thr	Ala	Ala	Arg 235	Glu	Phe	Gly	Asp	Leu 240
Trp	Tyr	Leu	Ser	Gln 245	Ala	Asn	Asn	Arg	Met 250	Thr	Thr	Glu	Glu	Arg 255	Thr
Thr	Pro	Thr	Gly 260	Gln	Gln	Ala	Val	Pro 265	Ser	Val	Asp	Pro	His 270	Trp	Asp
Thr	Glu	Ser 275	Glu	His	Gly	Asp	Trp 280	Cys	His	Lys	His	Leu 285	Leu	Thr	Cys

Val	Leu 290	Glu	Gly	Leu	Arg	Lys 295	Thr	Arg	Lys	Lys	Pro 300	Met	Asn	Tyr	Ser	
Met 305	Met	Ser	Thr	Ile	Thr 310	Gln	Gly	Lys	Glu	Glu 315	Asn	Leu	Thr	Ala	Phe 320	
Leu	Asp	Arg	Leu	Arg 325	Glu	Ala	Leu	Arg	Lys 330	His	Thr	Ser	Leu	Ser 335	Pro	
Asp	Ser	Ile	Glu 340	Gly	Gln	Leu	Ile	Leu 345	Lys	Asp	Lys	Phe	Ile 350	Thr	Gln	
Ser	Ala	Ala 355	Asp	Ile	Arg	Lys	Asn 360	Phe	Lys	Ser	Leu	Pro 365	Lys	Leu	Ala	
Ala	Ala 370	Leu	Glu	His	His	His 375	His	His	His							
<210)> :	27														
<211	L> :	25														
<212	2> :	DNA														
<213	3> 1	MSRV														
<400 cttg		27 ggt (gcata	aacca	ag gọ	gaat										25
<210)> :	28														
<211	.> :	20														
<212	?> 1	DNA			•											
<213	3> [MSRV														
<400 tgtc		28 tgt g	getec	ctgat	cc											20
<210)> 2	29														
<211	.> 2	25														

<212> DNA

<213> MSRV

<400> ctatgto		ttggactgtt	tgggt				25
<210>	30						
<211>	764						
<212>	DNA						
<213>	MSRV	7					
<400> tgtccgd	30 ctgt	gctcctgatc	cagcacaggc	gcccattgcc	tctcccaatt	gggctaaagg	60
cttgcca	attg	ttcctgcaca	gctaagtgcc	tgggttcatc	ctaatcgagc	tgaacactag	120
tcactg	ggtt	ccacggttct	cttccatgac	ccatggcttc	taatagagct	ataacactca	180
ctgcat	ggtc	caagattcca	ttccttggaa	tccgtgagac	caagaacccc	aggtcagaga	240
acacaa	ggct	tgccaccatg	ttggaagcag	cccaccacca	ttttggaagc	agcccgccac	300
tatctt	ggga	gctctgggag	caaggacccc	aggtaacaat	ttggtgacca	cgaagggacc	360
tgaatco	cgca	accatgaagg	gatctccaaa	gcaattggaa	atgttcctcc	caaggcaaaa	420
atgccc	ctaa	gatgtattct	ggagaattgg	gaccaatttg	accctcagac	agtaagaaaa	480
aaatgad	ctta	tattcttctg	cagtaccgcc	ctggccacga	tatcctcttc	aagggggaga	540
aacctg	gcct	cctgagggaa	gtataaatta	taacaccatc	ttacagctag	acctgttttg	600
tagaaaa	agga	ggcaaatgga	gtgaagtgcc	atatttacaa	actttcttt	cattaaaaga	660
caactc	gcaa	ttatgttaac	agtgtgattt	gtgttcctac	acggaagccc	tcagattcta	720
ctcccca	accc	ccggcatctc	ccctgaatcc	ctccccaact	tatt		764
<210>	31						
<211>	800						
<212>	DNA						
<213>	MSR	J					
<400> tgtccgd	31 ctgt	gctcctgatc	cagcacaggc	gcccattgcc	tctcccaatt	gggctaaagg	60

cttgccattg ttcctgcaca gctaagtgcc tgggttcatc ctaatcgagc tgaacactag 120 180 tcactqqqtt ccacqqttct cttccatqac ccatqqcttc taataqaqct ataacactca ctgcatggtc caagattcca ttccttggaa tccgtgagac caagaacccc aggtcagaga 240 300 acacaaggct tgccaccatg ttggaagcag cccaccacca ttttggaagc ggcccgccac tatcttggga gctctgggag caaggacccc caggtaacaa tttggtgacc acgaagggac 360 ctgaatccgc aaccatgaag ggatctccaa agcaattgga aatgttcctc ccaaggcaaa 420 480 aatgccccta agatgtattc tggagaattg ggaccaatct gaccctcaga cagtaagaaa aaaaatgact tatattette tgeagtaceg eetggeeacg gatateetet teaaggggga 540 gaaacctggc ctcctgaggg aagtataaat tataacacca tcttacagct agacctgttt 600 tgtagaaaag gaggcaaatg gagtgaagtg ccatatttac aaactttctt ttcattaaaa 660 720 qacaactcgc aattatgtaa acagtgtgat ttgtgtccta caggaagccc tcagatctac ctccctaccc cggcatctcc ctgactcctt ccccaactaa taaggaccca cttcagccca 780 800 aacagtccaa aaggacatag

<210> 32

<211> 65

<212> PRT

<213> MSRV

<400> 32

Pro Met Ala Ser Asn Arg Ala Ile Thr Leu Thr Ala Trp Ser Lys Ile 1 5 10 15

Pro Phe Leu Gly Ile Arg Glu Thr Lys Asn Pro Arg Ser Glu Asn Thr 20 25 30

Arg Leu Ala Thr Met Leu Glu Ala Ala His His His Phe Gly Ser Ser 35 40 45

Pro Pro Leu Ser Trp Glu Leu Trp Glu Gln Gly Pro Gln Val Thr Ile 50 55 60

Trp 65

<210>	33	
<211>	26	
<212>	DNA	
<213>	MSRV	
<400>		0.6
tcatgca	aact gcactcttct ggtccg	26
<210>	34	
<211>	28	
<212>	DNA	
<213>	MSRV	
<400>		28
tcttgca	acta acctccactg tccgttgg	20
<210>	35	
<211>	28	
<212>	DNA	
<213>	MSRV	
<400>	35	28
attecte	cagt aacaatttgg tgaccacg	20
<210>	36	
<211>	31	
<212>	DNA	
<213>	MSRV	
<400>	36 ctaa gagggtactt cctttggtag g	31

<210>	37	
<211>	25	
<212>	DNA	
<213>	MSRV	
	37	25
ctacgca	aggt ctcagggatg agctt	
<210>	38	
<211>	33	
<212>	DNA	
<213>	MSRV	
	38	33
eggeagi	tagc agtcttagta tctgaagcag tta	J.
<210>	39	
<211>	28	
<212>	DNA	
<213>	MSRV	
<400>	39	28
ggtacgg	gagg gtttcatgta gttttgag	20
<210>	40	
<211>	1247	
<212>	DNA	
<213>	MSRV	
<220>		
<221>	misc_feature	

<222> (1240)..(1240)

<223> n = a, g, c or t/u

<220>

<221> misc_feature

<222> (1246)..(1246)

<223> n = a, g, c or t/u

<400> 40	~~~	++	202000000	taataccaca	caacaaccat	60
	gccatcatca					
atggctagca	tgactggtgg	acagcaaatg	ggtcggatcc	tagaacgtat	tctggagaat	120
tgggaccaat	gtgacactca	gacgctaaga	aagaaacgat	ttatattctt	ctgcagtacc	18 0
gcctggccac	aatatcctct	tcaagggaga	gaaacctggc	ttcctgaggg	aagtataaat	240
tataacatca	tcttacagct	agacctcttc	tgtagaaagg	agggcaaatg	gagtgaagtg	300
ccatatgtgc	aaactttctt	ttcattaaga	gacaactcac	aattatgtaa	aaagtgtggt	360
ttatgcccta	caggaagccc	tcagagtcca	cctccctacc	ccagcgtccc	ctccccgact	420
ccttcctcaa	ctaataagga	cccccttta	acccaaacgg	tccaaaagga	gatagacaaa	480
ggggtaaaca	atgaaccaaa	gagtgccaat	attccccgat	tatgccccct	ccaagcagtg	540
agaggaggag	aattcggccc	agccagagtg	cctgtacctt	tttctctctc	agacttaaag	600
caaattaaaa	tagacctagg	taaattctca	gataaccctg	acggctatat	tgatgtttta	660
caagggttag	gacaatcctt	tgatctgaca	tggagagata	taatgttact	actaaatcag	720
acactaaccc	caaatgagag	aagtgccgct	gtaactgcag	cccgagagtt	tggcgatctt	780
tggtatctca	gtcaggccaa	caataggatg	acaacagagg	aaagaacaac	tcccacaggc	840
cagcaggcag	ttcccagtgt	agaccctcat	tgggacacag	aatcagaaca	tggagattgg	900
tgccacaaac	atttgctaac	ttgcgtgcta	gaaggactga	ggaaaactag	gaagaagcct	960
atgaattact	caatgatgtc	cactataaca	cagggaaagg	aagaaaatct	tactgctttt	1020
ctggacagac	taagggaggc	attgaggaag	catacctccc	tgtcacctga	ctctattgaa	1080
ggccaactaa	tcttaaagga	taagtttatc	actcagtcag	ctgcagacat	tagaaaaaac	1140
ttcaaaagtc	tgcctaagct	tgcggccgca	ctcgagcacc	accaccacca	ccactgagat	1200
ccggctgcta	acaaagcccg	aaaggaagct	gagttgggtn	gtggcna		1247

<211> 1186

<212> DNA

<213> MSRV

<400> 41 60 atggctagca tgactggtgg acagcaaatg ggtcggatcc tagaacgtat tctggagaat tgggaccaat gtgacactca gacgctaaga aagaaacgat ttatattctt ctgcagtacc 120 180 gcctggccac aatatcctct tcaagggaga gaaacctggc ttcctgaggg aagtataaat 240 tataacatca tcttacagct agacctcttc tgtagaaagg agggcaaatg gagtgaagtg 300 ccatatgtgc aaactttctt ttcattaaga gacaactcac aattatgtaa aaagtgtggt ttatgcccta caggaagccc tcagagtcca cctccctacc ccagcgtccc ctccccgact 360 420 ccttcctcaa ctaataagga ccccccttta acccaaacgg tccaaaagga gatagacaaa 480 qqqqtaaaca atgaaccaaa gagtgccaat attccccgat tatgccccct ccaagcagtg agaggaggag aattcggccc agccagagtg cctgtacctt tttctctctc agacttaaag 540 600 caaattaaaa tagacctagg taaattctca gataaccctg acggctatat tgatgtttta 660 caagggttag gacaatcctt tgatctgaca tggagagata taatgttact actaaatcag 720 acactaaccc caaatgagag aagtgccgct gtaactgcag cccgagagtt tggcgatctt tggtatctca gtcaggccaa caataggatg acaacagagg aaagaacaac tcccacaggc 780 840 cagcaggcag ttcccagtgt agaccetcat tgggacacag aatcagaaca tggagattgg tgccacaaac atttgctaac ttgcgtgcta gaaggactga ggaaaactag gaagaagcct 900 atgaattact caatgatgtc cactataaca cagggaaagg aagaaaatct tactgctttt 960 ctggacagac taagggaggc attgaggaag catacctccc tgtcacctga ctctattgaa 1020 1080 ggccaactaa tcttaaagga taagtttatc actcagtcag ctgcagacat tagaaaaaac 1140 ttcaaaagtc tgcctaagct tgcggccgca ctcgagcacc accaccacca ccactgagat 1186 ccggctgcta acaaagcccg aaaggaagct gagttggctg gtggca

<210> 42

<211> 2030

<212> DNA

<213> MSRV

<400> 42 atggccctcc cttatcatac ttttctcttt actgttctct tacccccttt	cgctctcact	60
gcaccccctc catgctgctg tacaaccagt agctcccctt accaagagtt	tctatgaaga	120
acgcggcttc ctggaaatat tgatgcccca tcatatagga gtttatctaa	gggaaactcc	180
accttcactg cccacaccca tatgccccgc aactgctata actctgccac	tctttgcatg	240
catgcaaata ctcattattg gacagggaaa atgattaatc ctagttgtcc	tggaggactt	300
ggagccactg tctgttggac ttacttcacc cataccagta tgtctgatgg	gggtggaatt	360
caaggtcagg caagagaaaa acaagtaaag gaagcaatct cccaactgac	ccggggacat	420
agcaccccta gcccctacaa aggactagtt ctctcaaaac tacatgaaac	cctccgtacc	480
catactcgcc tggtgagcct atttaatacc accctcactc ggctccatga	ggtctcagcc	540
caaaacccta ctaactgttg gatgtgcctc cccctgcact tcaggccata	catttcaatc	600
cctgttcctg aacaatggaa caacttcagc acagaaataa acaccacttc	cgttttagta	660
ggacctcttg tttccaatct ggaaataacc catacctcaa acctcacctg	tgtaaaattt	720
agcaatacta tagacacaac cagctcccaa tgcatcaggt gggtaacacc	tcccacacga	780
atagtctgcc taccctcagg aatatttttt gtctgtggta cctcagccta	tcattgtttg	840
aatggctctt cagaatctat gtgcttcctc tcattcttag tgccccctat	gaccatctac	900
actgaacaag atttatacaa tcatgtcgta cctaagcccc acaacaaaag	agtacccatt	960
cttccttttg ttatcagagc aggagtgcta ggcagactag gtactggcat	tggcagtatc	1020
acaacctcta ctcagttcta ctacaaacta tctcaagaaa taaatggtga	catggaacag	1080
gtcactgact ccctggtcac cttgcaagat caacttaact ccctagcagc	agtagtcctt	1140
caaaatcgaa gagctttaga cttgctaacc gccaaaagag ggggaacctg	tttattttta	1200
ggagaagaac gctgttatta tgttaatcaa tccagaattg tcactgagaa	agttaaagaa	1260
attcgagatc gaatacaatg tagagcagag gagcttcaaa acaccgaacg	ctggggcctc	1320
ctcagccaat ggatgccctg ggttctcccc ttcttaggac ctctagcagc	tctaatattg	1380
ttactcctct ttggaccctg tatctttaac ctccttgtta agtttgtctc	ttccagaatt	1440
gaagctgtaa agctacagat ggtcttacaa atggaacccc agatggagtc	catgactaag	1500
atccaccgtg gacccctgga ccggcctgct agcccatgct ccgatgttaa	tgacattgaa	1560
ggcacccctc ccgaggaaat ctcaactgca caacccctac tatgccccaa	ttcagcggga	1620

ě	agcagttaga	gcggtcatca	gccaacctcc	ccaacagcac	ttgggttttc	ctgttgagag	1680
(gggggactga	gagacaggac	tagctggatt	tcctaggcca	acgaagaatc	cctaagccta	1740
(gctgggaagg	tgactgcatc	cacctctaaa	catggggctt	gcaacttagc	tcacacccga	1800
•	ccaatcagag	agctcactaa	aatgctaatt	aggcaaaaat	aggaggtaaa	gaaatagcca	1860
ě	atcatctatt	gcctgagagc	acagcgggag	ggacaaggat	cgggatataa	acccaggcat	1920
	tcgagccggc	aacggcaacc	ccctttgggt	ccctccctt	tgtatgggcg	ctctgttttc	1980
į	actctatttc	actctattaa	atcttgcaac	tgaaaaaaaa	aaaaaaaaa		2030

<211> 2055

<212> DNA

<213> MSRV

<400> 60 cagcaacccc ctttgggtcc cctcccattg tatgggagct ctgttttcac tctatttcac 120 tctattaaat catgcaactg cactcttctg gtccgtgttt tttatggctc aagctgagct 180 tttgttcgcc atccaccact gctgtttgcc accgtcacag acccgctgct gacttccatc 240 cctttggatc cagcagagtg tccgctgtgc tcctgatcca gcacaggcgc ccattgcctc 300 teccaattgg getaaagget tgccattgtt cetgcacage taagtgeetg ggtteateet 360 aatcgagctg aacactagtc actgggttcc acggttctct tccatgaccc atggcttcta atagagetat aacacteact geatggteea agatteeatt eettggaate egtgagaeea 420 agaaccccag gtcagagaac acaaggcttg ccaccatgtt ggaagcagcc caccaccatt 480 ttggaagcag cccgccacta tcttgggagc tctgggagca aggaccccag gtaacaattt 540 600 ggtgaccacg aagggacctg aatccgcaac catgaaggga tctccaaagc aatgggaaac 660 gttccccccg aggcaaaaat gcccctagaa cgtattctgg agaattggga ccaatgtgac 720 actcagacgc taagaaagaa acgatttata ttcttctgca gtaccgcctg gccacaatat 780 cctcttcaag ggagagaaac ctggcttcct gagggaagta taaattataa catcatctta 840 cagctagacc tcttctgtag aaaggaggc aaatggagtg aagtgccata tgtgcaaact 900 ttcttttcat taagagacaa ctcacaatta tgtaaaaagt gtggtttatg ccctacagga agccctcaga gtccacctcc ctaccccagc gtcccctccc cgactccttc ctcaactaat 960

1020 aaggacccc ctttaaccca aacggtccaa aaggagatag acaaaggggt aaacaatgaa 1080 ccaaagagtg ccaatattcc ccgattatgc cccctccaag cagtgagagg aggagaattc 1140 ggcccagcca gagtgcctgt acctttttct ctctcagact taaagcaaat taaaatagac 1200 ctaggtaaat tctcagataa ccctgacggc tatattgatg ttttacaagg gttaggacaa 1260 tcctttgatc tgacatggag agatataatg ttactactaa atcagacact aaccccaaat gagagaagtg ccgctgtaac tgcagcccga gagtttggcg atctttggta tctcagtcag 1320 gccaacaata ggatgacaac agaggaaaga acaactccca caggccagca ggcagttccc 1380 1440 agtgtagacc ctcattggga cacagaatca gaacatggag attggtgcca caaacatttg ctaacttgcg tgctagaagg actgaggaaa actaggaaga agcctatgaa ttactcaatg 1500 1560 atgtccacta taacacaggg aaaggaagaa aatcttactg cttttctgga cagactaagg 1620 gaggcattga ggaagcatac ctccctgtca cctgactcta ttgaaggcca actaatctta 1680 aaggataagt ttatcactca gtcagctgca gacattagaa aaaaacttca aaagtccgtc 1740 ttaggctcgg aacaaaactt agaaacccta ttgaacttgg caacctcggt tttttataat 1800 agagatcagg aggagcaggc agaatgggac aaatgggata aaaaaaaaag ggccaccgct 1860 ttagtcatgg ccctcaggca agcggacttt ggaggctctg gaaaagggaa aagctgggca aataggaagc ctaatagggc ttgcttccag tgcggtctac aaggacactt taaaaaagat 1920 1980 tgtccaaata gaaataagcc gcccccttgt ccatgcccct tacgtcaagg gaatcactgg 2040 aaggcccact gccccagggg atcaagatac tctgagtcag aagccattaa ccagatgatc 2055 cagcagcagg actga

<210> 44

<211> 1197

<212> DNA

<213> MSRV

<400> 44
ggacccgtag tatggggtaa tcccctccgg gaaaccaagc cccagtactc agaagaagaa 60
atagaatggg gaacctcacg aggacatggt ttcctccct caggatggct agccactgaa 120
gaaggaaaaa tacttttgct ggcagctaac caatggaaat tacttaaaac ccttcagcaa 180
accttccact taggcattga tagcacccat cagatagcca aatcattatt tactggacca 240

300 ggccttttca aaactatcaa gcagatagtc agggcctgtg aagtgtgcca aagaaataat 360 cccctgcctt atcgccaagc tccttcagga gaacaaagaa caggcaatta cccaagagaa gactggcaac tagattttat ccacatgcca aaatcacagg gatttcagtg tctactagtc 420 480 tgggtagata ctttcactgg ttgggcagag gccttcccct gtaggacaga aaagttccaa 540 gaggtaataa aggcactagt tcatgaagta attcccagat tcggacttcc ctgaggctta 600 cagagtgaca atggtcctgc tttcaaggcc acagtaaccc agggagtatc ccaggcgtta 660 ggtatagaat atcacttaca ctgcacctag aggccacaat cctcagggaa ggttgagaaa 720 atgaaaacac tcaaacgaca tctaaacaag ctaacccagg aaacccacct cgcatggtct 780 gctctgttgt ctatagcctt actaagaatc caaaactctc cccaaaaggc aggacttagc 840 ccatacagaa tgctgtatgg acggtccttc ctaaccaatg accttctgct tgaccaagag atggccaact tagttgcaga catcacctcc ttagccaaat atcaacaagt tcttaaaaca 900 960 ttacaaggag cctgtccccg agaggaggga aaagaaatat tccaccctgg tgtcatggta 1020 ttagtcaagt cccttccctc taattcccca tccctagaca catcctgggg aggaccctac 1080 ccagtcattt tatctatccc aactgcggtt aaagtggctg gagtggagtc ttggatacat 1140 cacactegaa teaaaceetg gatactgeeg aaggaaceeg aaaateeagg ggacaacget 1197 agctatttct ttgaacctct agaggatctg tgcctgctct tcaagcaaca accgtga

<210> 45

<211> 1718

<212> DNA

<213> MSRV

<400> 45
gagaatagca gcataagttg gctggcagaa gtagggaaag acagcaagaa gtaaagaaaa 60
aaaggagaaa gtcagagaaa gaaaaaaaga gaggaagaaa caaagaagaa cttgaagaga 120
gaaagaagta gtaaagaaaa aacagtatac cctattcctt taaaagccag ggtaaatttc 180
tgtctaccta gccaaggcat attcttctta tgtggaacat caacctatat ctgcctccc 240
actaactgga caggcaccag aaccttagtc tttctaagtc ccaacattaa cattgccca 300
ggaaatcaga ccctattggt acctgtcaaa gctaaagtcc gtcagtgcag agccatacaa 360
ctaatatccc tatttatagg gttaggaatg gctactgcta caggaactgg aatagccggt 420

480 ttatctactt cattatccta ctaccataca ctctcaaaga atttctcaga cagtttgcaa 540 gaaataatga aatctattct tactttacaa tcccaattag actctttggc agcaatgact ctccaaaacc gccgaggccc acacctcctc actgctgaga aaggaggact ctgcaccttc 600 660 ttaqqqqaaq aqtqttqttt ttacactaac cagtcaggga tagtacgaga tgccacctgg catttacagg aaagggcttc tgatatcaga caatgccttt caaactctta taccaacctc 720 780 tggagttggg caacatggct tcttccattt ctaggtccca tggcagccat cttgctgtta 840 ctcacctttg ggccctgtat ttttaagctt cttgtcaaat ttgtttcctc taggatcgaa 900 gccatcaagc tacagatggt cttacaaatg gaaccccaaa tgagttcaac taacaacttc 960 taccaaggac ccctggaacg atccactggc acttccacta gcctagagat tcccctctgg 1020 aagacactac aactgcaggg ccccttcttt gcccctatcc agcaggaagt agctagagcg 1080 qtcatcggcc aaattcccaa cagcagttgg ggtgtcctgt ttagaggggg gattgaagag tgacagcctg ctggcagcct cacagccctc gttggatctc agtgcctcct cagccttggt 1140 1200 gcccactctg gccgtgcttg aggagccttt cagcctgcca ctgcactgtg ggagcctctt tctgggctgg acaaggccgg agccagctcc ctcagcttgc agggaggtat ggagggagag 1260 1320 atgcaggcgg gaaccagggc tgcgcatggc gcttgcgggc cagcatgagt tccaggtggg 1380 cgtgggctcg gcgggcccca cactcgggca gtgaggggct tagcacctgg gccagacaga 1440 tgctgtgctc aacttcttcg ctgggcctta gctgccttcc ccgtggggca gggctacggg aacatgcagc ctgcccatgc ttgagccccc caccccgccg tgggttcytg cacagcccaa 1500 1560 gcttcccgga caagcaccac cccttatcca cggtgcccag tcccatcaac cacccaaggg ttgaggagtg cgggcacaca gcgcgggatt ggcaggcagt tccacttgcg gccttggtgc 1620 gggatccact gcgtgaagcc agctgggctc ctgagtctgg tggggacttg gagaatcttt 1680 1718 atgtctagct aagggattgt aaatacacca atcagcac