Tema 3: Cálculo integral en \mathbb{R}^n

Primitivas de algunas funciones
elementales

$$\int x^a dx = \frac{x^{a+1}}{a+1} + C,$$

$$a \in \mathbb{R}, \ a \neq -1$$

$$\int a^x \ln a \, dx = a^x + C$$

$$a \in \mathbb{R}, \ a > 0$$

$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$$

Otras primitivas

$$\iint_D f(x,y)\,dx\,dy = \iint_{D^*} (f\circ \boldsymbol{T})(u,v) \big| \mathrm{det}(J\boldsymbol{T}(u,v)) \big| du dv$$

donde JT(u,v) es la matriz jacobiana de la biyección continua $T:D^*\to D$

Coordendas polares

$$T: \; \left\{ egin{aligned} x = r & \cos \theta, \\ y = r & \sin \theta. \end{aligned} \; \left| \det(JT(r, \theta)) \right| = r, \end{aligned}
ight.$$

$$\left| \mathsf{det}(Joldsymbol{T}(r, heta))
ight| = r$$
 ,

$$T^{-1}$$
:
$$\begin{cases} r(x,y) = \sqrt{x^2 + y^2} \\ \theta(x,y) = \arctan \frac{y}{x} \end{cases}$$

Cambio de variable en \mathbb{R}^3

$$\iiint_{Q} f(x,y,z) dx dy dz = \iiint_{Q^*} (f \circ T)(u,v,w) |\det(JT(u,v,w))| du dv dw$$

donde $J{m T}(u,v,{m w})$ es la matriz jacobiana de la biyección continua ${m T}:Q^* o Q$

Coordendas cilíndricas

$$egin{aligned} m{T} : & \left\{ egin{aligned} x = r \, \cos heta \,, \ y = r \, \sin heta \,, \ z = z \,. \end{aligned}
ight. & \left| \det(J m{T}(r, heta, z))
ight| = r \,, \end{aligned}$$

$$\left| \det(Joldsymbol{T}(r, heta,z))
ight| = r$$
 ,

Coordendas esféricas

$$T: \begin{cases} x = \rho \cos \theta \sin \phi, \\ y = \rho \sin \theta \sin \phi, \\ z = \rho \cos \phi. \end{cases} |\det(JT(\rho, \theta, \phi))| = \rho^2 \sin \phi,$$

Tema 4: Cálculo vectorial

Campo conservativo

 \blacksquare Un campo vectorial F se dice conservativo si existe un campo escalar f, la función potencial, tal que

$$\mathbf{F} = \nabla f$$

Campo conservativo: condición necesaria y suficiente en \mathbb{R}^2

$$\frac{\partial F_1(x,y)}{\partial y} = \frac{\partial F_2(x,y)}{\partial x}$$

Campo conservativo: condición necesaria en \mathbb{R}^3

$$\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x} \,, \quad \frac{\partial F_1}{\partial z} = \frac{\partial F_3}{\partial x} \,, \quad \frac{\partial F_2}{\partial z} = \frac{\partial F_3}{\partial y} \,.$$

Las líneas de campo (curvas integrales) satisfacen la ecuación diferencial en \mathbb{R}^2

$$\frac{dx}{F_1(x,y)} = \frac{dy}{F_2(x,y)} \,.$$

Integral de un campo escalar sobre una curva

• Sea una función $f: \mathbb{R}^m \to \mathbb{R}$ con $m \in \{2,3\}$ y $\boldsymbol{x}: [a,b] \to \mathbb{R}^m$ una parametrización de una curva Γ . Se define la integral de f sobre Γ como

$$\int_{\Gamma} f \, ds := \int_{a}^{b} f(\boldsymbol{x}(t)) . \|\boldsymbol{x}'(t)\| dt \, .$$

Integral de un campo vectorial sobre una curva

■ Sea $F: \mathbb{R}^m \to \mathbb{R}^m$, con $m \in \{2,3\}$ un campo vectorial, y $r: [a,b] \to \mathbb{R}^m$ una parametrización de una curva Γ . Se define la integral del campo vectorial F sobre la curva Γ como

$$\int_{\Gamma} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \left(\mathbf{F} (\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt} \right) dt$$

Independencia del camino

Sea F un campo vectorial suave definido en un domino abierto y conexo D. Entonces son equivalentes las siguientes afirmaciones:

1. F_{a} es conservativo en D.

2. $\oint_{\Gamma} \mathbf{F} \cdot d\mathbf{r} = 0$ para toda curva Γ cerrada y suave en D.

3. Dados dos puntos cualesquiera $A,B\in D$, la integral $\int_{\Gamma} {m F}\cdot d{m r}$ tiene el mismo valor para toda curva suave a trozos desde A hasta B. Si f es una función potencial, $\int_{\Gamma} {m F}\cdot d{m r} = f(B) - f(A)$

Teorema de Green en el plano

$$\oint_{\Gamma} \mathbf{F} \cdot d\mathbf{r} = \oint_{\Gamma} F_1(\mathbf{x}, \mathbf{y}) \, d\mathbf{x} + F_2(\mathbf{x}, \mathbf{y}) \, d\mathbf{y} = \iint_{D} \left(\frac{\partial F_2}{\partial \mathbf{x}} - \frac{\partial F_1}{\partial \mathbf{y}} \right) \, d\mathbf{x} \, d\mathbf{y}$$

Integral de un campo escalar sobre una superficie

Sea una función $f: \mathbb{R}^3 \to \mathbb{R}$ y $T: D \subset \mathbb{R}^2 \to \mathbb{R}^3$ una parametrización de una superficie S. Se define la integral de f sobre la superficie S como

$$\iint_{S} f \, dS := \iint_{D} f(x(u,v), y(u,v), z(u,v)) \| \boldsymbol{T}_{u} \times \boldsymbol{T}_{v} \| \, du \, dv \, .$$

Elemento infinitesimal de superficie dS con la parametrización trivial

■ Si S puede ser expresada en la forma z=g(x,y), podemos hacer uso de la parametrización trivial T(x,y)=(x,y,g(x,y)). En tal caso $T_x\times T_y=(-g_x,-g_y,1)$, y el elemento infinitesimal de superficie es

$$dS = \|T_x \times T_y\| dx dy = \sqrt{1 + g_x^2 + g_y^2} dx dy.$$

Integral de un campo vectorial sobre una superficie

■ Dado un campo vectorial F, se define el flujo de F a través de la superficie orientable S como la integral sobre S de la componente normal de F.

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} (\mathbf{F} \cdot \mathbf{n}) \, dS$$

Divergencia

lacktriangle La divergencia de un campo vectorial F se define como

$$div \mathbf{F} = \nabla \cdot \mathbf{F} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot (F_1, F_2, F_3) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$

Rotacional

■ El rotacional de un campo vectorial es

$$rot \mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix} = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} , \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x} , \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right)$$

Teorema de la Divergencia

$$\oint_{\Gamma} (\boldsymbol{F} \cdot \boldsymbol{n}) \, ds = \iint_{D} div \boldsymbol{F} \, dx \, dy \quad (\text{en } \mathbb{R}^{2})$$

$$\iint_{S} (\mathbf{F} \cdot \mathbf{n}) \, dS = \iiint_{Q} \operatorname{div} \mathbf{F} \, dx \, dy \, dz \quad (\text{en } \mathbb{R}^{3})$$

Teorema de Stokes

$$\oint_{\Gamma} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} (rot \mathbf{F} \cdot \mathbf{n}) \, dS$$

Apéndice A: Algunos elementos de geometría

Parametrización de algunas curvas en \mathbb{R}^2						
Ecuación en cartesianas	Una parametrización	Otra parametrización	Curva	Curva		
$x^2 + y^2 = r^2$	$\begin{cases} x(t) = r \cos t, \ t \in [0, 2\pi] \\ y(t) = r \sin t, \ t \in [0, 2\pi] \end{cases}$	$\begin{cases} x(t) = r\cos(2t), \ t \in [0, \pi] \\ y(t) = r\sin(2t), \ t \in [0, \pi] \end{cases}$		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\begin{cases} x(t) = a\cos t, \ t \in [0, 2\pi] \\ y(t) = b\sin t, \ t \in [0, 2\pi] \end{cases}$	$\begin{cases} x(t) = a \operatorname{sen} t, \ t \in [0, 2\pi] \\ y(t) = b \operatorname{cos} t, \ t \in [0, 2\pi] \end{cases}$				
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\begin{cases} x(t) = a \sec t, t \in [0, 2\pi] \\ y(t) = b \tan t, t \in [0, 2\pi] \end{cases}$					
$y^3 = x^2$	$\begin{cases} x(t) = t^3, \ t \in \mathbb{R} \\ y(t) = t^2, \ t \in \mathbb{R} \end{cases}$	Dog.	10			
	$\begin{cases} x(t) = a e^{bt} \cos t, \\ y(t) = a e^{bt} \sin t, \end{cases}$	$t \in \mathbb{R}$ $t \in \mathbb{R}$ $(a > 0, b < 0)$				

Parametrización de algunas superficies en \mathbb{R}^3				
Ecuación en implícitas	Una parametrización	Superficie		
$x^2 + y^2 + z^2 = r^2$ Esfera	$\begin{cases} x(\phi, \theta) = r \cos \theta \sin \phi, \\ y(\phi, \theta) = r \sin \theta \sin \phi, \\ z(\phi, \theta) = r \cos \phi, \end{cases}$			
$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Elipsoide	$\begin{cases} x(\alpha, \theta) = a \cos \theta \sin \phi, \\ y(\alpha, \theta) = b \sin \theta \sin \phi, \\ z(\alpha, \theta) = c \cos \phi, \end{cases}$			
$z^2 = x^2 + y^2$ Cono	$\begin{cases} x(\rho, \theta) = \rho \cos \theta, \\ y(\rho, \theta) = \rho \sin \theta, \\ z(\rho, \theta) = \rho, \end{cases}$			
$x^2-y^2-z^2=-1$ Hiperboloide de 1 hoja	$\begin{cases} x(\rho, \theta) = \pm \sqrt{\rho^2 - 1}, \\ y(\rho, \theta) = \rho \cos \theta, \\ z(\rho, \theta) = \rho \sin \theta, \end{cases}$			
$x^2-y^2-z^2=1$ Hiperboloide de 2 hojas	$\begin{cases} x(\rho, \theta) = \pm \sqrt{\rho^2 + 1}, \\ y(\rho, \theta) = \rho \cos \theta, \\ z(\rho, \theta) = \rho \sin \theta, \end{cases}$			
$a^2 = x^2 + y^2$ Cilindro	$\begin{cases} x(\rho, \theta) = a \cos \theta, \\ y(\rho, \theta) = a \sin \theta, \\ z(\rho, \theta) = \rho, \end{cases}$			
$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Paraboloide elíptico	$\begin{cases} x(u, v) = a u, \\ y(u, v) = b v, \\ z(u, v) = u^2 + v^2, \end{cases}$			