Algebra 2

 $Luka\ Horjak\ (luka.horjak@student.fmf.uni-lj.si)$

9. oktober 2021

Kazalo Luka Horjak

Kazalo

L	Osn	ovne algebrske strukture
	1.1	Linearne operacije
	1.2	Polgrupe in monoidi
	1.3	Grupe

Uvod Luka Horjak

Uvod

V tem dokumentu so zbrani moji zapiski s predavanj predmeta Algebra 2 v letu 2021/22. Predavatelj v tem letu je bil prof. dr. Matej Brešar.

Zapiski niso popolni. Manjka večina zgledov, ki pomagajo pri razumevanju definicij in izrekov. Poleg tega nisem dokazoval čisto vsakega izreka, pogosto sem kakšnega označil kot očitnega ali pa le nakazal pomembnejše korake v dokazu.

Zelo verjetno se mi je pri pregledu zapiskov izmuznila kakšna napaka – popravki so vselej dobrodošli.

1 Osnovne algebrske strukture

1.1 Linearne operacije

Definicija 1.1.1. Binarna operacija * na neprazni množici S je preslikava *: $S \times S \to S$. Po dogovoru namesto *(x, y) pišemo x * y.

Definicija 1.1.2. Naj bo * binarna operacija na S. Element $e \in S$ je nevtralni element ali enota, če za vsak $x \in S$ velja

$$x * e = e * x = x$$
.

Definicija 1.1.3. Naj bo * binarna operacija na S. Element $e \in S$ je levi nevtralni element, če za vsak $x \in S$ velja

$$e * x = x$$
.

Podobno je e desni nevtralni element, če za vsak $x \in S$ velja

$$x * e = x$$
.

Trditev 1.1.4. Veljajo naslednje trditve:

- i) Če je e' levi in e'' desni nevtralni element, je e' = e'' = e, kjer je e nevtralni element.
- ii) Če nevtralni element obstaja, je enolično določen.
- iii) Levih/desnih nevtralnih elementov je lahko več.

Dokaz. Za prvo točko preprosto opazimo, da je

$$e' = e' * e'' = e''.$$

Sledi, da je e' levi in desni nevtralni element, torej je e' = e.

Druga točka je direktna posledica prve. Če sta e in f nevtralna elementa, je namreč e levi, f pa desni nevtralni element, zato je e = f.

Za dokaz tretje trditve si oglejmo operaciji $*_1, *_2 \colon \mathbb{N} \to \mathbb{N}$, ki delujeta s predpisi $x *_1 y = x$ in $x *_2 y = y$ za vse naravne x in y. Vidimo, da so vsa naravna števila desni nevtralni element prve in levi nevtralni element druge operacije.

Definicija 1.1.5. Operacija * na S je:

- i) asociativna, če za vse $a, b, c \in S$ velja a * (b * c) = (a * b) * c,
- ii) komutativna, če za vse $a, b \in S$ velja a * b = b * a.

Definicija 1.1.6. Naj bo $T \subseteq S$ in * operacija na S. Množica T je zaprta za *, če za vse $t_1, t_2 \in T$ velja $t_1 * t_2 \in T$. Pravimo, da je * $notranja^1$ binarna operacija za T.

¹ Zunanja binarna operacija je preslikava $*: K \times S \to S$.

8. oktober 202

1.2 Polgrupe in monoidi

Definicija 1.2.1. Algebrske strukture so množice, opremljene z eno ali več binarnimi operacijami, ki izpolnjujejo določene aksiome.

Definicija 1.2.2. Množica S z operacijo * je polgrupa, če je * asociativna. Polgrupam z nevtralnim elementom pravimo monoid.

Opomba 1.2.2.1. Če je S polgrupa, oklepajev ni potrebno postavljati.

Opomba 1.2.2.2. V polgrupah z x^n označujemo $\underbrace{x * \cdots * x}_{n}$.

Definicija 1.2.3. Naj bo (S, *) monoid z enoto e.

- i) $y \in S$ je levi inverz $x \in S$, če je y * x = e.
- ii) $z \in S$ je desni inverz $x \in S$, če je x * z = e.
- iii) $w \in S$ je inverz $x \in S$, če je x * w = w * x = e.

Pravimo, da je x obrnljiv, če ima inverz.

Trditev 1.2.4. Naj bo S monoid. Če obstajata taka $l, d \in S$, da za nek $x \in S$ velja lx = xd = e, velja l = d.

Dokaz. The proof is obvious and need not be mentioned.

Posledica 1.2.4.1. Obrnljiv element ima samo en inverz. Če je x obrnljiv, je $xy = e \iff yx = e.$

Opomba 1.2.4.2. Inverz elementa x označimo z x^{-1} . Očitno je $(x^{-1})^{-1} = x$. Označimo še $x^{-n} = (x^{-1})^n = (x^n)^{-1}$ in $x^0 = e$.

Trditev 1.2.5. Če sta $x, y \in S$ obrnljiva, je obrnljiv tudi xy z inverzom $y^{-1}x^{-1}$.

Dokaz. The proof is obvious and need not be mentioned.

Trditev 1.2.6. Naj bo $x \in S$ obrnljiv. Potem za vse $y, z \in S$ velja

$$xy = xz \implies y = z$$
 in $yx = zx \implies y = z$.

Dokaz. The proof is obvious and need not be mentioned.

1.3 Grupe

Definicija 1.3.1. Monoidu, v katerem so vsi elementi obrnljivi, pravimo grupa.

Definicija 1.3.2. Grupi, v kateri je operacija komutativna, pravimo abelova.

Definicija 1.3.3. Grupa G je končna, če obstaja tak $n \in \mathbb{N}$, da je |G| = n. Številu n pravimo red grupe G.

Trditev 1.3.4. Naj bo S monoid. Potem je $\{x \mid x \in S \land x \text{ je obrnljiv}\}$ grupa.

Definicija 1.3.5. Grupam reda 1 pravimo trivialne grupe.

Definicija 1.3.6. Simetrična grupa množice X je množica

$$Sim(X) = \{ f \mid f \colon X \to X \land f \text{ je bijektivna} \}$$

z operacijo kompozitum. Če je |X| = n, označimo $Sim(X) = S_n$.

Opomba 1.3.6.1. V nadaljevanju namesto z e enoto označimo z 1. Za operacije pišemo \cdot , razen v abelovih grupah, kjer jo označimo s +.

Stvarno kazalo

Algebrska struktura, 5Grupa, 6 Abelova, 6 Končna, 6 Red, 6 Simetrična, 6 Trivialna, 6 Polgrupa, monoid, grupa, 5 \mathbf{B} Binarna operacija, 4 Asociativna, 4 Inverz, 5 Komutativna, 4 Nevtralni element, 4 Notranja, zunanja, 4 Zaprta množica, 4