

1 TTa2

 $\Rightarrow \int_{-\infty}^{0} (0) - (-x^{2}e^{x} + 2ne^{x} - 2e^{x} + x^{2}e^{x}) dx +$ $\Rightarrow \int_{0}^{\infty} (0) - (-x^{2}e^{x} - 2xe^{-x} - 2e^{-x} + x^{2}e^{x}) dx$ $\Rightarrow \int_{-\infty}^{\infty} (-2ne^{x} + 2e^{x}) dx + \int_{0}^{\infty} (2xe^{x} + 2e^{-x}) dx$ $\Rightarrow \left[-2xe^{x} \right]^{0} + \left[2e^{x}dx + \int_{-\infty}^{\infty} dx \right] + \left[-2xe^{x} \right]^{-\infty} - \left[4e^{-x} \right]^{\infty}$ $\Rightarrow \left[-2xe^{x} \right]^{0} + 4\left[e^{x} \right]^{0} + \left[-2xe^{x} \right]^{0} - \left[4e^{-x} \right]^{\infty}$ $\Rightarrow \left[-2xe^{x} \right]^{0} + 4\left[e^{x} \right]^{0} + \left[-2xe^{x} \right]^{0} - \left[4e^{-x} \right]^{\infty}$ $\Rightarrow \left[-2xe^{x} \right]^{0} + 4\left[e^{x} \right]^{0} + \left[-2xe^{x} \right]^{0} - \left[4e^{-x} \right]^{0}$

	Camlin Fage Late 1
Q8.	Evaluate using cylindrical coordinates:
	i) Find the volume bounded by the X-Y plane, the paraboloid & z = x²+y² & the cylinder 2 x + y² = 4
Sol.	$ \eta = \eta \cos 0, y = \eta \sin 0, z = z , \overline{J} = \lambda \\ - \eta + y = 2z \Rightarrow \lambda^{2} = 2z \Rightarrow z = \frac{\lambda^{2}}{2} \\ - \eta + y = 4 \Rightarrow \lambda^{2} = 4 \Rightarrow \lambda = 2 $
- 1	$-n + y = 4 \Rightarrow \lambda = 4 \Rightarrow \lambda = 2$
	X-Y plane => z=0.
	· The limits are:
1:	$ \begin{array}{r} $
	Hence, the volume of this region is given by
26.	I 2 2 2 de do r
=)	1 [2] hds do
	$\frac{\pi/2}{0}\int_{0}^{2}\frac{1^{3}}{2}dxd0$
->	$\frac{1}{2} \left[\frac{\lambda^4}{8} \right]^2 ds$
\Rightarrow	\$ 2 [0] Th/2
) :a,	2/11) ausic units.

Comments lange as

Q8. Use triple integral to find volume of volid within cylinder $x^2 + y^2 = 9$ between planes z = 1, x + z = 1led. x + z = 1 x + z = 1, $x^2 + y^2 = 9$ x + z = 1 - x, $y = \pm \sqrt{9 - x^2}$ At y = 0, $x = \pm 3$

	Camlin Page Date 1 1
Q. 11.	Evaluate III 2xdv, where V is the solid
	Evaluate III 2x di, where V is the solid region under the plane 2x + 3y + z = 6 that lies in the first octant.
ol"	$2x + 3y + z = 6 \implies z = 6 - 2x - 3y$ $z = 0 \rightarrow 2x + 3y + z = 6 \implies y = 6 - 2x$
-	
	$y = 0 \rightarrow 2x + 3y + 2 = 6 \Rightarrow x = 3.$
	Hence, the limits are:
	z = 0 to $z = 6 - 2x - 3yy = 0$ to $y = 6 - 2x$
	x = 0 to $x = 3$.
	Hence, the integral is
	$\int\int\int 2x dz dy dx$
	$\int \int 2x dz dy dx$ $\int \frac{2x}{3} \left[2x \right] \left[2x \right] = \frac{2x - 3y}{3}$ $\int 2x \left[2 \right] \int 2x \left[2 \right] dy dx$
7	$\int_{3}^{3} \frac{6-72}{5} \left[2\pi \left(6 - 2\pi - 3y \right) dy dx \right]$ $\int_{3}^{3} \frac{6-72}{5} \left[(2\pi - 4\pi^{2} - 6\pi y) dy dx \right]$
-	1 (12n - 4n - 6ny) dy dx
2	$\int \left[12xy - 4x^{2}y - 6xy^{2} \right]^{\frac{3}{2}} dx$
	$\frac{3}{3}\left(12\pi\left(\frac{6-2x}{3}\right)-4\pi^{2}\left(\frac{6-2x}{3}\right)-3\pi\left(\frac{6-2x}{3}\right)^{2}\right)dx$

 $\Rightarrow \int_{0}^{3} (24x - 8x^{2} - 24x^{2} + 8x^{3} - 100x \times (36 + 4x^{2} - 24x))$ $\Rightarrow \int_{0}^{3} (24x - 12x - 8x^{4} + 8x^{2} - 12x^{4}) \times (36 + 4x^{2} - 24x)$ $\Rightarrow \int_{0}^{3} (12x - 8x^{2} + 4x^{3}) \times (12x - 8x^{2} + 4x^{4}) \times (12x - 8x^{2} + 4x^{4})$ $\Rightarrow \int_{0}^{3} (12x - 8x^{2} + 4x^{4}) \times (12x - 8x^{2} + 4x^{4}) \times (12x - 8x^{2} + 4x^{4})$ $\Rightarrow \int_{0}^{3} (12x - 8x^{2} + 4x^{4}) \times (12x - 8x^{2} + 4x^{4}) \times (12x - 8x^{2} + 4x^{4})$ $\Rightarrow \int_{0}^{3} (12x - 8x^{2} + 4x^{4}) \times (12x - 8x^{2} + 4x^{4}) \times (12x - 8x^{2} + 4x^{4})$ $\Rightarrow \int_{0}^{3} (12x - 8x^{2} + 4x^{4}) \times (12x - 8x^{2} + 4x^{4}) \times (12x - 8x^{2} + 4x^{4}) \times (12x - 8x^{2} + 4x^{4})$ $\Rightarrow \int_{0}^{3} (12x - 8x^{2} + 4x^{4}) \times (12x - 8x^{2} + 4x^{4}) \times$