AMENDMENTS TO THE CLAIMS

1. (previously presented): A compound of formula I

or pharmaceutically acceptable salts or diastereomers thereof, wherein:

one carbon of ring B is substituted with Z and the rest of the carbons are independently substituted with Y;

A is a ring selected from:

where D is selected from H, C₁₋₄ alkyl, halogen, amino;

W is:

- (i) NR^1R^2 where R^1 and R^2 are independently H, C_{1-4} alkyl, C_{1-4} alkylCF₃, aryl, hetaryl, C_{1-4} alkylaryl, C_{1-4} alkylhetaryl, C_{3-8} cycloalkyl, C_{2-6} alkenyl, cyclohetalkyl, C_{1-4} alkylcycloalkyl, C_{1-4} alkyl cyclohetalkyl, or R^1 and R^2 are joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR^3 ; and R^3 is selected from H, C_{1-4} alkyl, aryl, hetaryl, C_{1-4} alkyl aryl, C_{1-4} alkyl hetaryl, COR^4 where R^4 is selected from H, C_{1-4} alkyl, aryl, hetaryl; or
- (ii) H, C_{1-4} alkyl, aryl, hetaryl, C_{3-8} cycloalkyl, cyclohetalkyl, C_{1-4} alkylaryl, C_{1-4} alkylhetaryl, C_{3-8} cycloalkyl, C_{1-4} alkylcycloalkyl, C_{1-4} alkyl cyclohetalkyl;

Y is H, halogen, CN, CF₃, nitro, OH, C₁₋₄ alkyl, C₁₋₄ alkylNR⁵R⁶, C₁₋₄ alkylhetaryl, OC_{1-4} alkyl OC_{1-4} a

3-6 membered ring optionally containing an atom selected from O, S, NR⁷ and R⁷ is selected from H, C_{1-4} alkyl, aryl, hetaryl, C_{1-4} alkylaryl, C_{1-4} alkylhetaryl;

Z is selected from:

where R^8 is selected from H, C_{1-4} alkyl;

R⁹ and R¹⁰ are independently selected from H, C₁₋₄ alkyl, C₁₋₄ alkylNR¹²R¹³, C₁₋₄ alkylOR¹², C₁₋₄ alkylhetaryl or may be joined to form a 5-8 membered ring containing an atom selected from SO, or SO₂;

R¹¹ is selected from OH, OC₁₋₄ alkyl, NR¹²R¹³; n is 0-4;

where R^{12} and R^{13} are independently selected from H, C_{1-4} alkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR^{14} ; and R^{14} is selected from H, C_{1-4} alkyl.

2. (previously presented): A compound according to claim 1 wherein Z is selected from:

wherein R^8 , R^9 , R^{10} and R^{11} and n are as defined in claim 1.

3. (currently amended): A compound selected from the group consisting of:

including the pharmaceutically acceptable salts or diastereomers thereof.

4-5. (canceled)

6. (previously presented): A composition comprising a carrier and a compound according to claim 1.

- 7. (withdrawn): A method of treating a tyrosine kinase-associated disease state, the method comprising administering a therapeutically effective amount of a compound according to claim 1 or a pharmaceutical composition thereof.
 - 8. (canceled)
- 9. (withdrawn): A method of suppressing the immune system of a subject, the method comprising administering a therapeutically effective amount of a compound according to claim 1 or a pharmaceutical composition thereof.

10-13. (canceled)