Standard calculus stuff

$e^{jz} = \cos z + j\sin z$	$\sin z = \frac{1}{2j} \left(e^{jz} - e^{-jz} \right)$	$\cos z = \frac{1}{2} \left(e^{jz} + e^{-jz} \right)$	$\mathbf{A}^{-1} = \frac{1}{ \mathbf{A} } \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$
$\iint_{\mathcal{D}} f(x, y) dx dy = \int_{\mathcal{D}_1} f_1(x) dx \int_{\mathcal{D}_2} f_2(y) dy$		Polar coordinates: $x = u \cos v$; $y = u \sin v$	
$\iint_{\mathcal{D}} f(x,y) dx dy = \iint_{\mathcal{D}'} f\left(x(u,v), y(u,v)\right) J(u,v) du dv ; J(u,v) = \left \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u} \right $			

Dirac delta stuff

$\int \delta(x+a)f(x)dx = f(-a)$	$\delta(x+a) * \delta(x+b) = \delta(x+a+b)$
$\delta(x+u,y+v) = \delta(x+u)\delta(y+v)$	$f(x,y) = \iint f(u,v) \delta(x-u,y-v) du dv$
$\delta(ax) = \frac{1}{ a }\delta(x); \ \delta(ax, by) = \frac{1}{ ab }\delta(x, y)$	$f(x,y)\delta(x+a,y+b) = f(-a,-b)\delta(x+a,y+b)$
$\int_{\mathcal{D}} \delta(x+a) dx = \begin{cases} 1, & -a \in \mathcal{D} \\ 0, & -a \notin \mathcal{D} \end{cases}$	$f(x,y) * \delta(x+a,y+b) = f(x+a,y+b)$ Delta function Delta function
$\delta(u,v) = \mathbf{A}^{-1} \delta(x,y); \binom{u}{v} = \mathbf{A} \binom{x}{y}$	= *

Convolution stuff

Convolution (linear & shift-invariant):
$$f * g(x,y) = \iint f(u,v) \ g(x-u,y-v) \ du \ dv$$

Cross-correlation: $f * g(x,y) = f(x,y) * g(-x,-y)^* = \iint f(u,v) \ g(u-x,v-y)^* \ du \ dv$

Continuous-space Fourier transform stuff

$F(\omega_x, \omega_y) = \iint f(x, y) e^{-jx\omega_x} e^{-jy\omega_y} dx dy$	$f(x,y) = \frac{1}{4\pi^2} \iint F(\omega_x, \omega_y) e^{jx\omega_x} e^{jy\omega_y} d\omega_x d\omega_y$	
$F(\omega_x, \omega_y)G(\omega_x, \omega_y) = \iint f * g(x, y)e^{-jx\omega_x}e^{-jy\omega_y} dx dy$		
$ullet$ Duality: $F(x,y) \stackrel{ ext{Fourier}}{\longrightarrow} 4\pi^2 f(-\omega_x,-\omega_y)$	$\delta(x,y) \stackrel{ ext{Fourier}}{\longrightarrow} 1$	
Translation: $f(x + x_0, y + y_0) \xrightarrow{\mathcal{F}} F(\omega_x, \omega_y) e^{j(x_0\omega_x + y_0\omega_y)}$	$1 \stackrel{\text{Fourier}}{\longrightarrow} 4\pi^2 \delta(\omega_x, \omega_y)$	
• Modulation: $f(x,y)e^{jx\omega_{0x}+jy\omega_{0y}} \xrightarrow{\text{Fourier}} F(\omega_x - \omega_{0x}, \omega_y - \omega_{0y})$	$e^{-\frac{1}{\sigma}(x^2+y^2)} \stackrel{\mathcal{F}}{\rightarrow} \pi \sigma e^{-\frac{\sigma}{4}(\omega_x^2+\omega_y^2)}$	
• Differentiation: $\partial_x^k \partial_y^l f(x,y) \stackrel{\text{Fourier}}{=} (j\omega_x)^k (j\omega_y)^l F(\omega_x,\omega_y)$		
$ \begin{array}{ccc} \bullet \text{ Moments:} & x^k y^l f(x,y) \stackrel{\text{Fourier}}{\to} j^{k+l} \partial_{\omega_x}^k \partial_{\omega_y}^l F(\omega_x,\omega_y) \\ \bullet \text{ Affine transformation}^a: & f(\mathbf{Ar}) \stackrel{\text{Fourier}}{\to} \left \det(\mathbf{A}^{-1}) \right F\left((\mathbf{A}^{-1})^{T} \omega\right) \\ \end{array} $	$f_1(x)f_2(y) \xrightarrow{\text{Fourier}} F_1(\omega_x)F_2(\omega_y)$	
• Hermitian symmetry: $f^*(x,y) \xrightarrow{\text{Fourier}} F^*(-\omega_x, -\omega_y)$	$\operatorname{rect}(x)\operatorname{rect}(y) \stackrel{\operatorname{Fourier}}{\longrightarrow} \operatorname{sinc}\left(\frac{\omega_x}{2\pi}\right)\operatorname{sinc}\left(\frac{\omega_y}{2\pi}\right)$	
$ullet$ Parseval theorem: $4\pi^2 \langle f,g angle = \langle F,G angle$	$\operatorname{sinc}(x)\operatorname{sinc}(y) \xrightarrow{\operatorname{Fourier}} \operatorname{rect}\left(\frac{\omega_x}{2\pi}\right)\operatorname{rect}\left(\frac{\omega_y}{2\pi}\right)$	
${}^a ext{e.g., scaling} \Leftrightarrow \mathbf{A} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : f(ax, by) \xrightarrow{\mathrm{Fourier}} ab ^{-1} F(a^{-1}\omega_x, b^{-1}\omega_y).$	$\sum_{k,l} \delta(x-k,y-l) \stackrel{\text{Fourier}}{\longrightarrow} 4\pi^2 \sum_{k,l} \delta(\omega_x - 2\pi k, \omega_y - 2\pi l)$	
Affine: set $f(x,y) = g(ax,by)$; $\mathbf{A} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$	$\operatorname{rect}(x)$ is the function $\underbrace{\overset{\uparrow}{\underset{-1/2}{}}}_{-1/2} \underbrace{\overset{1}{\underset{-1/2}{}}}_{-1/2} \underbrace{\operatorname{sinc}(x)}_{-1/2} = \underbrace{\frac{\sin(\pi x)}{\pi x}}_{-1/2}$	
$\sin ax \xrightarrow{\mathcal{F}} -j\pi \left(\delta(\omega-a)-\delta(\omega+a)\right)$	$\cos ax \stackrel{\mathcal{F}}{\to} \pi \big(\delta(\omega - a) + \delta(\omega + a) \big)$	
$\sin(ax + by) \xrightarrow{\mathcal{F}} 2j\pi^2 \left(\delta(\omega_x + a)\delta\right)$	$(\omega_y + b) - \delta(\omega_x - a)\delta(\omega_y - b)$	
$\cos(ax + by) \stackrel{\mathcal{F}}{\to} 2\pi^2 \left(\delta(\omega_x - a)\delta(\omega_y - b) + \delta(\omega_x + a)\delta(\omega_y + b) \right)$		
Property Function Fourier Transform	Property Function Fourier Transform	
Inverse $\hat{f}(t) = 2\pi f(-\omega)$	Scaling $f(kt) = \left \frac{1}{k} \right \hat{f} \left(\frac{1}{k} \omega \right)$	
Convolution $f_1 \star f_2(t)$ $\hat{f}_1(\omega) \hat{f}_2(\omega)$	Time derivatives $f^{(p)}(t) = (i\omega)^p \hat{f}(\omega)$	
Multiplication $f_1(t) f_2(t) = \frac{1}{2\pi} \hat{f}_1 \star \hat{f}_2(\omega)$	Frequency derivatives $(-it)^p f(t) = \hat{f}^{(p)}(\omega)$	
$F(\omega_x, \omega_y) = F(-\omega_x, -\omega_y)^*$ for real-valued $f(x, y)$	$\delta(x+y) \stackrel{\mathcal{F}}{\to} 2\pi \delta(\omega_x - \omega_y)$	

Filter stuff

ritter stuff				
Normalised gaussian filter:	Original	Gaussian	Directional blur	High-pass
$h = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$		-0-	Lien	
Low-pass: $H(\pm \infty, \pm \infty) = 0$ High-pass: $H(0, 0) = 0$				

Sampling stuff

Invariance stuff

Radiography stuff

tudiography start		
Relativistic KE = $\frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}} - mc^2$	Beer's Law: $I = I_0 e^{-\mu \Delta x}$	E = hf
Compton shift: $E' = E \left(1 + (1 - \cos \theta) \frac{E}{mc^2} \right)^{-1}$	$\frac{1}{2} = e^{-\mu \text{ HVL}}$	$HVL = \frac{\ln 2}{\mu}$

H ionisation energy = $13.6 \text{eV} = 2.18 \times 10^{-18} \text{J}$

Local contrast:
$$C = \frac{I_t - I_b}{I_b}$$

$$SNR = C \sqrt{\overline{photon count}}$$

$$I(x,y) = \int_0^\infty E \cdot S_0(E) e^{-\int_0^{r(x,y)} \mu(s,E,x,y) \, ds} \, dE \, ; r(x,y) = \sqrt{d^2 + x^2 + y^2} = \frac{d}{\cos \theta}$$

1 rem = 0.87 roentgen

Computed Tomography stuff

$$g(l,\theta) = \int \mu(l\cos\theta - s\sin\theta, l\sin\theta + s\sin\theta) ds$$

Filtered backprojection formula

Consider the 1D "ramp" filter $c(\ell)$ characterized by $C(\omega) = |\omega|$.

Assume that what is known of the image f(x,y) is its Radon projections $\mathcal{R}_{\theta}f$ at all angles between 0 and π radians (i.e., 0 to 180 degrees). Then, the image f(x,y) can be reconstructed as follows

• Filter the projections using the ramp filter: $h_{\theta}(\ell) = c(\ell) * \mathcal{R}_{\theta} f(\ell)$

2 Backproject the result:
$$f(x,y) = \frac{1}{2\pi} \int_0^{\pi} h_{\theta}(x\cos\theta + y\sin\theta) d\theta$$

^acalculus in the sense of distributions shows that $c(\ell) = -\frac{1}{\sigma \ell^2}$.

Radon transform:

 $\mathcal{R}_{\theta}f(l) = \int f(l\cos\theta - s\sin\theta, l\sin\theta + s\sin\theta) ds$ $= \iint f(x,y)\delta(x\cos\theta + y\sin\theta - l)\,dx\,dy$

$$\begin{cases} x = l\cos\theta - s\sin\theta \\ y = l\sin\theta + s\sin\theta \end{cases}$$

Fourier slice theorem: $\mathcal{F}_l(\mathcal{R}_{\theta}f(l)) = \mathcal{F}_{x,y}(f(\omega\cos\theta,\omega\sin\theta))$

 $\mathcal{R}_{\theta}f(l) = \frac{1}{2\pi} \int \mathcal{F}_{x,y} (f(\omega \cos \theta, \omega \sin \theta)) e^{j\omega l} d\omega$

Hounsfield unit: $h = 1000 \times \frac{\mu - \mu_{\text{water}}}{1000}$

$$\mathcal{R}_{\theta}(I_1 *_{x,y} I_2)(l) = (\mathcal{R}_{\theta}I_1 *_l \mathcal{R}_{\theta}I_2)(\theta, l)$$

$$\mathcal{F}_{l}\left(\mathcal{R}_{\theta}\left(I_{1}*_{x,y}I_{2}\right)(l)\right) = \mathcal{F}_{x,y}\left(\left(I_{1}*_{x,y}I_{2}\right)(\omega\cos\theta,\omega\sin\theta)\right) = \mathcal{F}_{l}\left(\mathcal{R}_{\theta}I_{1}(l)\right)\mathcal{F}_{l}\left(\mathcal{R}_{\theta}I_{2}(l)\right) = \mathcal{F}_{l}\left(\left(\mathcal{R}_{\theta}I_{1}*_{l}\mathcal{R}_{\theta}I_{2}\right)(\theta,l)\right)$$

Magnetic Resonance Imaging stuff

Rotating frame

T₁ excitation: $M_z(t) = M_0 \cos(\gamma B_1 t)$ **T₂ excitation:** $M_{xy}(t) = jM_0 \cos(\gamma B_1 t)$

T₁ relaxation: $M_z(t) = M_0 - (M_0 - M_{z,initial})e^{-\frac{t}{T_1}}$

T₂ relaxation: $M_{xy}(t) = M_{xy,initial}e^{-\frac{t}{T_2}}$

Laboratory frame

 T_1 excitation: $M_z(t) = M_0 \cos(\gamma B_1 t)$

T₂ excitation: $M_{xy}(t) = jM_0 \cos(\gamma B_1 t) e^{-j\gamma B_0 t}$

 T_1 relaxation: $M_z(t) = M_0 - (M_0 - M_{z,initial})e^{-\frac{1}{T_1}}$

T₂ relaxation: $M_{xy}(t) = M_{xy,initial}e^{-\frac{t}{T_2}}e^{-j\gamma B_0 t}$

Spin echo

Angle linear interpolation

Larmor frequency:
$$\omega = \omega_0 + \gamma G_z z$$
; $z = \frac{\omega - \omega_0}{\gamma G_z}$

$$FOV_{\chi} = \frac{2\pi}{\chi TC}$$

Bandwidth: $\Delta \omega = \gamma G_z \Delta z \Rightarrow \omega' \in \left[\omega \pm \frac{1}{2} \Delta \omega\right]$ $FOV_x = \frac{2\pi}{\gamma T_G \chi}$ $FOV_y = \frac{2\pi}{\gamma T_p \Delta G_y}$

 $\Delta k =$

Nuclear Imaging stuff

Nuclear imaging stuff			
$N(t) = N_0 e^{-\lambda t}$	$A(t) = \lambda N_0 e^{-\lambda t}$	$t_{1/2} = \frac{\ln 2}{\lambda}$	9
$\phi(x,y) = \frac{1}{4\pi} \int_{-\infty}^{0} \frac{A(x,y,z)}{z^2} e^{-\int_{z}^{0} \mu(x,y,z',E) dz'} dz$		$A(x, y, z) = A_{z_0}(x, y)\delta(z - z_0)$	
$Z = \sum a_k$	$(X,Y) = \frac{1}{Z} \sum a_k(x_k, y_k)$	Scintillation \$\frac{1}{b}\$	n Crystal
Resolution: $R_C(z) = \frac{d}{l}(l+b+ z)$			
Gaussian Blurring PSF: $h_C(x, y, z) = e^{-4 \ln 2 \frac{x^2 + y^2}{R_C^2}}$		Collimator	
$\phi(x,y) = \frac{A_{z_0}(x,y)}{4\pi z_0^2} e^{-\int_{z_0}^0 \mu(x,y,z_0,E) dz} * h_C(x,y, z_0)$			
Sensitivity: $\varepsilon = \frac{d^4}{16l^2(d+h)^2}$		/ V \ Point Source	
$SNR_{intrinsic} = \sqrt{\frac{number of detected photons}{number of pixels}}$		$SNR = contrast \times \sqrt{\overline{bac}}$	kground photon fluence

SPECT stuff
$$\begin{cases} x = l\cos\theta - s\sin\theta \\ y = l\sin\theta + s\cos\theta \end{cases}$$

$$\phi(l,\theta,z) = \frac{1}{4\pi} \int_{-\infty}^{R} \frac{A(x(s),y(s),z)}{(s-R)^2} e^{-\int_{s}^{R} \mu(x(s'),y(s'),z) \, ds'} \, ds$$
Bold approximation reconstruction ($\mu = 0$):
$$\Phi(l,\theta,z) = \int_{-\infty}^{\infty} A(x(s),y(s),z) \, ds$$

$$= \iint A(x,y,z)\delta(x\cos\theta + y\sin\theta - l) \, dx \, dy$$
② Ramp filtering: $h_{\theta}(l,z) = c(l) *_{l} \phi(l,\theta,z)$
③ Backprojection: $A(x,y,z) = \frac{1}{2\pi} \int_{0}^{\pi} h_{\theta}(x\cos\theta + y\sin\theta,z) \, d\theta$

PET stuff

Attenuation: $e^{-\int_{-R}^{R} \mu(x(s), y(s), z) ds}$	Radioactivity: $\int_{-R}^{R} A(x(s), y(s), z) ds$	
$\phi(l, \theta, z) = C \times e^{-\int_{-R}^{R} \mu(x(s), y(s), z) ds} \times \int_{-R}^{R} A(x(s), y(s), z) ds$		
Attenuation correction: $\phi_c(l, \theta, z) = \phi(l, \theta, z) \times e^{\int_{-R}^{R} \mu(x(s), y(s), z) ds}$		
$= \int_{-R}^{R} A(x(s), y(s), z) ds = \iint A(x, y, z) \delta(x \cos \theta + y \sin \theta - l) dx dy$		

Trigonometric identities

$\sin^2 x + \cos^2 x = 1$	$\sec^2 x - \tan^2 x = 1$	$\csc^2 x - \cot^2 x = 1 \qquad \frac{\sin kx}{x} = k \operatorname{sinc} \frac{k}{\pi} x ; \operatorname{sinc} x = \frac{\sin \pi x}{\pi x}$
$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$		$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$
$\sin 2x = 2\sin x \cos x$		$\cos 2x = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x = 2\cos^2 x - 1$
$\tan 2x = \frac{2\tan x}{1-\tan^2 x}$	$\tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}$	$\tan x = \frac{\sin 2x}{1 + \cos 2x} = \frac{1 - \cos 2x}{\sin 2x} = \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}$
$\sin 3x = 3\sin x - 4\sin^3 x$		$\cos 3x = 4\cos^3 x - 3\cos x$
$\sin x \sin y = \frac{1}{2} [\cos(x - y) - \cos(x + y)]$		$\sin x \pm \sin y = 2\sin \frac{x \pm y}{2}\cos \frac{x \mp y}{2}$
$\cos x \cos y = \frac{1}{2} [\cos(x - y) + \cos(x + y)]$		$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$
$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)]$		$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$