1.1 Definitions and Notations

Basic Definitions

- Set: A collection of objects, called elements.
 - Notation: Sets are represented by uppercase letters; elements by lowercase letters.
 - Example: If a is in set A, we write $a \in A$. If not, $a \notin A$.

Subset

- Subset: A set B is a subset of A if every element in B is also in A.
 - Notation: $B \subseteq A$ if every element of B is in A.
 - Extensionality Principle: Two sets are equal if they contain the same elements.
 - * Equality: A = B if $A \subseteq B$ and $B \subseteq A$.

Set Representation

- Listing Elements: If a set has finite elements, list them as $\{a_1, a_2, \dots, a_n\}$.
- Describing by Properties: If a set contains elements satisfying a property P, represent it as $\{x \mid x \text{ satisfies } P\}$.

Set Operations

- 1. Union $(A \cup B)$: Elements in A or B.
- 2. Intersection $(A \cap B)$: Elements in both A and B.
- 3. **Difference** $(A \setminus B)$: Elements in A but not in B.
- 4. Symmetric Difference $(A\Delta B)$: Elements in either A or B, but not in both.

Properties of Set Operations

- Associative: $(A \cup B) \cup C = A \cup (B \cup C)$
- Commutative: $A \cup B = B \cup A$
- **Distributive**: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

1.2 Important Set Types

- **Empty Set** (\emptyset) : The unique set with no elements.
- Singleton: A set with only one element.
- Universal Set (V): The fixed larger set within which all sets are considered.
- Complement: For a set A in the universal set V, the complement $\overline{A} = V \setminus A$.

Complement Properties

- Identity: $A \cup \emptyset = A$, $A \cap V = A$
- Double Complement: $(\overline{A}) = A$
- De Morgan's Laws:
 - $\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$

1.3 Families of Sets

- **Definition**: A collection of sets, often noted as \mathcal{A}, \mathcal{B} , etc.
- Union of Families: $\bigcup A = \{x \mid \exists A \in A : x \in A\}$
- Intersection of Families: $\bigcap A = \{x \mid \forall A \in A : x \in A\}$

1.4 Power Set

- **Definition**: The set of all subsets of a set A, including \emptyset and A itself.
 - Notation: 2^A or $\mathcal{P}(A)$
 - **Example**: For $A = \{0, 1\}, \mathcal{P}(A) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$

1.5 Cartesian Product

- **Definition**: An ordered pair where order matters, denoted as (a, b).
 - For sets A_1, \ldots, A_n , the **Cartesian product** is $A_1 \times \cdots \times A_n = \{(a_1, \ldots, a_n) \mid a_i \in A_i\}.$
 - **Example**: If $A = \{1, 2\}$ and $B = \{x, y\}$, $A \times B = \{(1, x), (1, y), (2, x), (2, y)\}$

Key Points to Remember

- Set: A collection of elements denoted with uppercase letters.
- Subset: $B \subseteq A$ means all elements in B are in A.
- **Empty Set** (\emptyset) : Unique set with no elements.
- Union (\cup) and Intersection (\cap): Basic operations to combine sets.
- Complement: For set A, $\overline{A} = V \setminus A$.
- Power Set: Set of all subsets of A.
- Cartesian Product: Ordered pairs from multiple sets.