

AD-A167 487

THE EFFECTS OF CYCLOPEGIA ON THE VISUAL CONTRAST
SENSITIVITY FUNCTION(U) ARMY AEROMEDICAL RESEARCH LAB
FORT RUCKER AL W G BACHMAN ET AL. FEB 86 USAARL-86-2

1/1

UNCLASSIFIED

F/G 6/5

NL

MICROFON

CHART

(12)

USAARL Report No. 86-2

AD-A167 407

THE EFFECTS OF CYCLOPEGIA ON THE VISUAL CONTRAST SENSITIVITY FUNCTION

By
William G. Bachman
Isaac Behar

DTIC
ELECTED
MAY 05 1986
S D
A D

SENSORY RESEARCH DIVISION

February 1986

86 5 020

Approved for public release, distribution unlimited

USAARL

FILE COPY

NOTICE

Qualified Requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of Address

Organizations receiving reports from the US Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

BRUCE C. LEIBRECHT
LTC, MS
Director, Sensory Research
Division

Released for Publication:

J. D. LaMOTHE
LTC, MS
Chairman, Scientific
Review Committee
DUDLEY R. PRICE
Colonel, MC
Commanding

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER USAARL Report No. 86-2	2. GOVT ACCESSION NO. <i>AD-A167407</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) The Effect of Cycloplegia on the Visual Contrast Sensitivity Function	5. TYPE OF REPORT & PERIOD COVERED	
7. AUTHOR(s) William G. Bachman and Isaac Behar	6. PERFORMING ORG. REPORT NUMBER	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Sensory Research Division US Army Aeromedical Research Laboratory Fort Rucker, AL 36362-5000	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS <i>3E162777A879,164</i>	
11. CONTROLLING OFFICE NAME AND ADDRESS US Army Medical Research and Development Command Fort Detrick Frederick, MD 21701-5012	12. REPORT DATE February 1986	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES 22	
	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Contrast Sensitivity Function Cycloplegia Glare Vision		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) See reverse side.		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT.

Contrast sensitivity assessment is one of several emergent techniques being considered for inclusion in a visual standards test battery for the Army, particularly for the evaluation of Army aviators. Since a cycloplegic refraction is required for initial selection of candidates for Class I and Class IA flying duty, it is important to determine what effect, if any, cycloplegia has on the contrast sensitivity function. Twelve subjects, officers in preparation for flight training, who had passed a recent Class I flight physical, were tested. Contrast sensitivity functions were obtained under normal ambient conditions and in the presence of a glare source, both under manifest and cycloplegic conditions. Cycloplegia produced a small reduction in contrast sensitivity under normal ambient conditions, and a greater reduction under glare conditions. For both conditions, the cycloplegia effect was greater for the higher spatial frequency gratings than for the lower

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Acknowledgments

The authors wish to acknowledge the valued contributions to this project of LTC Bruce Leibrecht, Ms. Carolyn Johnson, SGT Rosalinda Ibanez, SSG Nonilon Fallaria, and SGT Marshall Smith.

Accesion For	
NTIS CRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution / _____	
Availability Codes	
Dist	Avail and/or Special
A-1	

TABLE OF CONTENTS

	PAGE NO.
Introduction	3
Method	5
Results	8
Discussion	11
Conclusions	11
References	12
Appendices	
A. Repeated measures ANOVA summary table	15
B. List of manufacturers	16

LIST OF TABLES

TABLE NO.	PAGE NO.
I Mean optical correction	5
II Mean pupillary diameter	5

LIST OF FIGURES

FIGURE NO.	PAGE NO.
1 Contrast sensitivity functions for manifest and cycloplegic conditions directly com- pared	8
2 Contrast sensitivity functions for glare and no glare conditions directly compared	10

INTRODUCTION

Contrast sensitivity assessment has become a major tool for evaluating human spatial vision (Schade, 1956; Campbell, 1983). The contrast sensitivity function (CSF) characterizes the threshold sensitivity of the visual system to sinusoidal variations in contrast over a wide range of target sizes or spatial frequencies. The performance of the visual system is measured over an entire range rather than at specific high frequencies as is done in Snellen letter or Landolt C visual acuity determination.

Comerford (1983) stated that the CSF provides several advantages over other vision tests commonly used in clinical practice. First, it provides a measure of the integrity of both central and peripheral vision requiring similar judgments on the part of the patient. Second, for low spatial frequency stimuli, the detection of the grating requires the integration of visual information over a large expanse of the retina. Third, while better acuity generally indicates the patient's ability to see small details in the environment, the CSF also measures the ability to see large details. These details, which are analogous to low frequency sensitivity, provide input to facial recognition, figure-ground judgments, and other important information relating to the ability to function in the environment. Fourth, the CSF is a sensitive indicator of small differences in visual function.

The ability to detect small differences in visual function can have a significant application in the military, especially in the aviation environment. For example, Ginsburg *et al.* (1982) and Ginsburg, Easterly, and Evans (1983) demonstrated that contrast sensitivity was found to be better than visual acuity for predicting a pilot's performance in detecting small low contrast targets both in aircraft simulators and in the field. Contrast sensitivity testing also is being conducted by NASA on space shuttle flights to determine the effects of low gravity on vision.

Contrast sensitivity testing currently is used in the Army primarily in the area of research. It is used in special medical cases to determine the effect on visual function of eye pathology, e.g., an aviator with a developing cataract. Contrast sensitivity assessment is one of several emergent techniques being considered for inclusion in a visual standards test battery for the Army. This battery would offer the potential for characterizing individual differences not now captured with standard visual testing.

Instruments and methods for contrast sensitivity determination have existed almost exclusively in the research environment. Arden (1978) developed the first practical clinical test of contrast sensitivity using gratings printed on plates. A clinical contrast sensitivity screening instrument has been introduced (Ginsburg *et al.*, 1984), as well as an automated refractor which measures contrast sensitivity and displays results digitally as visual acuity (CooperVision Dicon AR5000*). Also now available to the clinician are spatial frequency charts similar to acuity charts which are designed to be used for both distance and near testing (Ginsburg, 1984). Therefore, contrast sensitivity testing is becoming more useful in clinical vision evaluation and screening.

Because of growing acceptance and ease of use, as well as practical importance to Army aviation, contrast sensitivity testing would appear to be an important tool in the evaluation of potential Army aviators. Army Regulation 40-501, Change 34, indicates that a cycloplegic refraction is required for initial selection of candidates for Class I and Class IA flying duty. Cycloplegia, in this case, is defined by Cline, Hoffstetter, and Griffin (1980) as an artificially induced paralysis of the ciliary muscle and the power of accommodation, usually accompanied by a dilated pupil. It is relevant therefore to determine what effect, if any, cycloplegia has on the contrast sensitivity function.

Several previous studies have examined the effects on the CSF by drugs that modify the pupillary or accommodative dynamics. Singh *et al.* (1981) determined that mydriasis alone without paralysis of accommodation did not affect contrast sensitivity in normal older (50 to 84 years) observers. Baker *et al.* (1983) found that for subjects who had been given atropine intramuscularly, there was a small loss of sensitivity at the highest tested spatial frequency (20 cycles per degree). Campbell and Green (1965) demonstrated the effect on contrast sensitivity of various artificial pupil sizes under atropinized conditions. Using neutral density filters to compensate for the change in retinal illumination due to the changes in pupil area, they found a progressive reduction of contrast sensitivity as the pupil was made larger. Kay and Morrison (1985) replicated the Campbell and Green study except that changes in retinal illumination associated with changes in pupil size were not compensated for in order to simulate natural viewing. They found that the low spatial frequency portion of the CSF "was only

* See Appendix B

"marginally affected by pupil diameter" as well as the high spatial frequency portion which "was also relatively unaffected by pupil diameter."

The contrast sensitivity function measured under normal clinical conditions does not provide information for all situations encountered by a subject in his or her daily environment. Paulsson and Sjostrand (1980) used a bright light glare source introduced into the visual field in order to enhance the effects of intraocular light scattering on the CSF. In the same vein, Carney and Jacobs (1984) stated that the contrast sensitivity function can be sensitized by the presence of a glare source to allow a more accurate determination of any visual loss.

The purpose of this study then was to evaluate the effect of cycloplegia on the contrast sensitivity function. This was done in a manner simulating clinical conditions as closely as possible as well as with the introduction of a glare source. Subjects were candidates for flight training at Fort Rucker, Alabama.

METHOD

Subjects

Twelve subjects were used, 11 males and 1 female. All were aged 22 or 23, except one who was 27. All were officers in preparation for flight training at the Army Aviation Center at Fort Rucker, Alabama, who had passed a recent Class I flight physical, and were free of eye disease. All subjects received an intraocular pressure test (Reichert* noncontact tonometer) and were within normal limits.

Procedures

Subjects were refracted at a distance of three meters using both standard subjective refraction and static retinoscopy to determine spherical and cylindrical components. Refraction was accomplished under both manifest (undilated) and cycloplegic (dilated) conditions. See Table I for the mean optical correction under both conditions. The subjects then wore the best possible optical correction (spectacles) to minimize blur at 3 m for whichever condition was being tested. Optical corrections, to include plano results, were provided using a standard trial frame. All subjects resolved 20/20 or 20/15 with each eye unaided as well as with spectacle corrections. Acuities were measured using the Baylor Video Acuity Tester (B-VAT)* which has a 12" diagonal CRT for video display of target sizes from

20/10 to 20/400. Mean luminance of the screen was held at 26.5 fL which was identical to the mean luminance of the contrast sensitivity testing screen.

Pupil diameters were measured for all subjects. Diameters were measured with a PD rule to the nearest 0.5 mm while the subject viewed the contrast sensitivity display. This was accomplished with and without glare under both undilated and dilated conditions. See Table II for the mean pupillary diameters.

Diopters

	Sphere	Cylinder
Manifest	+0.09	-0.36
Cyclopegic	+0.46	-0.34

TABLE I. Mean optical correction.

	Manifest	Cyclopegic
No glare	4.92	8.08
Glare	3.08	8.08

TABLE II. Mean pupillary diameter.

Cycloplegia was induced using 1 percent CycloGel* (cyclopentolate) which is a diagnostic parasympatholytic drug administered directly in the eye. Each subject received one drop in each eye followed by a second drop after 5 minutes. Cyclopentolate blocks the responses of the sphincter muscle of the iris and the accommodative muscle of the ciliary body to cholinergic stimulation, producing pupillary dilation (mydriasis) and paralysis of accommodation (cycloplegia).

Contrast Sensitivity Measurement

Testing was conducted in a room in which all surfaces, walls, ceiling, and floor were matte black. Room illumination was provided by four recessed ceiling incandescent lamps adjusted to provide 12 fc at the observer's table. The contrast sensitivity functions were obtained with a Nicolet Optronics CS2000 Contrast Sensitivity Testing System*. The video display had a mean luminance of 26.5 fL, and at the 3-meter viewing distance, subtended 4.4 degrees by 5.6 degrees. For a glare source, the display was surrounded by a high intensity (4300 fL) fluorescent lamp (Aristo DA-17*) which was masked so that no direct light reached the screen. The choice of a surrounding glare source instead of a more commonly used laterally placed small glare source was based on the findings of Miller *et al.* (1972) that the former was less fatiguing and helped the subjects maintain fixation on the centrally located display.

The contrast threshold was measured using a variation of the method of increasing contrast (Ginsburg and Cannon, 1983), which is similar to an ascending method of limits psychophysical procedure. On each trial, the display contrast began near zero and after a variable delay increased under computer control uniformly at a rate at which 50 percent contrast would be reached in 45 s. The subject's task was to depress a response switch immediately upon detecting the emergence of a grating pattern on the display screen. Each subject was tested on 3 separate days, the first of which was for training. For half of the subjects, testing on the second and third day was under manifest and cycloplegic conditions, respectively, while for the remaining subjects the order of conditions was reversed. On the training day, they received verbal instructions followed by 18 practice trials consisting of three trials at each spatial frequency: 0.5, 1, 2, 4, 8, and 16 cpd, in an intermixed random order. This then was repeated with the glare source turned on. On each test day, the subject received five warm-up trials (one trial each at 0.75, 1.5, 3, 6, and 12 cpd in random order) followed by a random series of 36 trials consisting of 6 trials at each of the spatial frequencies 0.5 to 16 cpd. Following a short break, this 41-trial set was repeated with the glare source turned on. For each subject, mean log threshold contrast was calculated for each

combination of conditions: manifest-glare source off, cycloplegic-glare source off, manifest-glare source on, cycloplegic-glare source on.

RESULTS

The mean contrast sensitivity (reciprocal of group mean contrast threshold) as a function of spatial frequency is presented graphically in Figure 1. The upper left panel summarizes the results for the two conditions with the glare source turned off, while the upper right panel summarizes the results with the glare source turned on. For both no glare ($F=5.76$, $df=1,11$, $p<.036$) and glare ($F=9.79$, $df=1,11$, $p<.01$), contrast sensitivity is superior under manifest compared to cycloplegic conditions for all spatial frequencies except the lowest spatial frequency (0.5 cpd) under glare. The log ratios of the mean contrast thresholds for each spatial frequency with

Figure 1. Contrast sensitivity functions (upper panels) and visuograms (lower panels) obtained under manifest and cycloplegic conditions, with and without glare. CSFs for manifest and cycloplegic conditions are directly compared.

and without cycloplegia constitute visuograms (Lundh and Arlinger, 1984), and are plotted in the lower panels of this figure.

In the absence of glare, the loss in contrast sensitivity caused by cycloplegia is minimal for the lower spatial frequencies, but increases monotonically between 2 and 16 cpd. In the presence of glare, the effect of cycloplegia in reducing sensitivity is somewhat greater (except for 0.5 cpd) than it was without glare, and the reduction with increasing spatial frequency is essentially monotonic. An overall repeated measures analysis of variance was performed on these data and a summary table is presented in Appendix A. The main effects of cycloplegic condition ($F=8.92$, $df=1,11$, $p=.012$) and spatial frequency ($F=177.17$, $df=5,55$, $p<.0001$) are highly significant, while the main effect of glare is not significant.

However the interaction of glare and cycloplegic condition, is significant ($F=6.03$, $df=1,11$, $p=.032$), reflecting the greater separation of the manifest and cycloplegic conditions in the presence of glare rather than in its absence. A significant interaction between cycloplegic condition and spatial frequency ($F=2.95$, $df=5,55$, $p=.020$) reflects the greater separation of the manifest and cycloplegic conditions at the higher spatial frequencies than at the lower spatial frequencies. Finally, a significant interaction between glare and spatial frequency ($F=7.74$, $df=5,55$, $p<.0001$) reflects the superior contrast sensitivity in the presence of glare at the lowest spatial frequency (0.5 cpd), but reduced contrast sensitivity in the presence of glare at the intermediate spatial frequencies (2 to 8 cpd), replicating a pattern of results previously found (Behar, 1984).

The comparison of the effects of glare versus no glare is facilitated by the replot of the data in Figure 2. It can be seen that contrast sensitivity is superior in the presence of glare at the lowest spatial frequency (0.5 cpd) when tested under both manifest and cycloplegic conditions. For the remaining spatial frequencies, important differences exist. Under manifest conditions, with the eye in its normal physiological state, no glare sensitivity is evident; contrast sensitivity is equivalent in the presence of the glare source and in its absence. On the other hand, under cycloplegic conditions, considerable glare sensitivity is evident, especially in the middle spatial frequencies (2 to 8 cpd).

Figure 2. Contrast sensitivity functions (upper panels) and visuograms (lower panels) obtained under manifest and cycloplegic conditions, with and without glare. CSFs for glare and no glare conditions are directly compared.

DISCUSSION

The purpose of this study was to evaluate the effect of cycloplegia on the contrast sensitivity function in a group that is required to have a cycloplegic refraction in order to pass a flight physical. The results indicate that there is a small, but significant loss of sensitivity under dilated conditions and that this loss is magnified by the introduction of glare. Since subjects wore corrections for the test viewing distance, these reductions can be attributed primarily to differences in pupil size in the various conditions. An increase in the size of the pupil increases retinal illuminance, thus would be expected to improve contrast sensitivity especially to higher spatial frequencies (Owsley *et al.*, 1985; Wright and Drasdo, 1985). On the other hand, the larger pupil suffers greater levels of aberrations and reduced depth of field resulting in impairment of contrast sensitivity (Campbell and Gubisch, 1966). When both factors were allowed to operate in opposition, as in the present study, in that of Kay and Morrison (1985), and in that of Singh *et al.* (1981), relatively small changes in the CSF were found. Singh's subjects were between the ages of 50 and 84 years, so would be expected to have reduced pupils associated with senile meiosis (Said and Sawires, 1972). The mydriatic induced dilated pupil in these subjects resulted in a very large increase in retinal illumination that should favor an improvement in the CSF; however, the degradation in retinal image quality accompanying the larger pupil evidently exactly canceled the illumination advantage leaving the CSF unchanged. In the present study, since the subjects were only in their 20s, the increase in retinal illumination was considerably less, so the more potent factor was the reduction in retinal image quality, resulting in a small net impairment of the CSF.

CONCLUSIONS

If the contrast sensitivity function is to be obtained during the flight physical, it should be obtained prior to the administration of cycloplegia. If the CSF is determined after cycloplegia, then it is most important to avoid viewing with a glare source in the field of view (such as a desk lamp or uncovered window) in order to avoid a biased assessment.

REFERENCES

- Department of the Army. 1983. Army Regulation 40-501, Change 34. Medical services standards of medical fitness. Headquarters, Department of the Army, Washington, DC.
- Arden, G.B. 1978. The importance of measuring contrast sensitivity in cases of visual disturbance. British Journal of Ophthalmology. 62:198-209.
- Baker, R., Adams, A., Jampolsky, A., Brown, B., Haegerstrom-Portnoy, G., and Jones, R. 1983. Effects of atropine on visual performance. Military Medicine, 148:530-535.
- Behar, I. 1984. The effects of haze and glare on visual contrast sensitivity--preliminary results. In Proceedings of the Tri-Service Aeromedical Research Panel Fall Technical Meeting. NAMRL Monograph - 33, November, 1984.
- Campbell, F.W. 1983. Why do we measure contrast sensitivity? Behavioral Brain Research. 10:87-97.
- Campbell, F.W. and Green, D.G. 1965. Optical and retinal factors affecting visual resolution. Journal of Physiology. 181:576-593.
- Campbell, F.W. and Gubisch, R.W. 1966. Optical quality of the human eye. Journal of Physiology (London). 186: 558-578.
- Carney, L.G. and Jacobs, R.J. 1984. Mechanisms of visual loss in corneal edema. Archives of Ophthalmology. 102: 1068-1071.
- Cline, D., Hofstetter, H.W., and Griffin, J.R. 1980. Dictionary of Visual Science. Radnor, PA: Chilton Book Company.
- Comerford, J.P. 1983. Vision evaluation using contrast sensitivity functions. American Journal of Optometry & Physiological Optics. 60:394-398.
- Ginsburg, A.P. 1984. A new contrast sensitivity vision test chart. American Journal of Optometry & Physiological Optics. 61:403-407.

- Ginsburg, A.P., Evans, D.W., Sekuler, R., and Harp, S.A. 1982. Contrast sensitivity predicts pilots' performance in aircraft simulators. American Journal of Optometry & Physiological Optics. 59:105-109.
- Ginsburg, A.P., Easterly, J., and Evans, D.W. 1983. Contrast sensitivity target detection field performance of pilots. Proceedings, Human Factors Society.
- Ginsburg, A.P., and Cannon, M.W. 1983. Comparison of three methods for rapid determination of threshold contrast sensitivity. Investigative Ophthalmology and Visual Science. 24:798-802.
- Ginsburg, A.P., Evans, D.W., Cannon, M.W., Jr., Owsley, C., and Mulvanny, P. 1984. Large-sample norms for contrast sensitivity. American Journal of Optometry & Physiological Optics. 61:80-84.
- Kay, C.D. and Morrison, J.D. 1985. The effects of pupil size and defocus on contrast sensitivity in man. Journal of Physiology. 367,15P.
- Lundh, B.L. and Arlinger, S. 1984. Three dB-scales for the standardized visuogram. Vision Research. 24:889-890.
- Miller, D., Jernigan, M.E., Molnar, S., Wolf, E., and Newman, J. 1972. Laboratory evaluation of a clinical glare tester. Archives of Ophthalmology. 87:324-332.
- Owsley, C., Gardner, T., Sekuler, R., and Lieberman, H., 1985. Role of the crystalline lens in the spatial vision loss of the elderly. Investigative Ophthalmology and Visual Science. 26:1165-1170.
- Paulsson, L.-E. and Sjostrand, J. 1980. Contrast sensitivity in the presence of a glare light theoretical concepts and preliminary clinical studies. Investigative Ophthalmology and Visual Science. 19:401-406.
- Said, F.S. and Sawires, W.S. 1972. Age dependence of changes in pupil diameter in the dark. Optica Acta. 19: 359-361.
- Schade, O.H. 1956. Optical and photoelectric analog of the eye. Journal of the Optical Society of America. 46: 721-739.

Singh, H., Cooper, R.L., Alder, V.A., Crawford, G.J., Terrell, A., and Constable, I.J. 1981. The Arden grating acuity: effect of age and optical factors in the normal patient, with prediction of the false negative rate in screening for glaucoma. British Journal of Ophthalmology. 65:518-524.

Wright, C.E. and Drasdo, N. 1985. The influence of age on the spatial and temporal contrast sensitivity function. Documenta Ophthalmologica. 59:385-395.

REPEATED MEASURES ANOVA SUMMARY TABLE

SOURCE	SUM OF SQUARES	DEGREES OF FREEDOM	MEAN SQUARE	F	TAIL PROB.	GREENHOUSE GEISSER PROB.	HUYNH FELDT PROB.
1 MEAN ERROR	1079.16514	1	1079.16514	4000.89	0.0000		
	2.56705	11	0.26973				
2 CYCLO ERROR	0.36894	1	0.36894	8.92	0.0124		
	0.45490	11	0.04135				
3 GLARE ERROR	0.00451	1	0.00451	0.23	0.6417		
	0.21687	11	0.01972				
4 CG ERROR	0.03777	1	0.03777	6.03	0.0320		
	0.06893	11	0.00627				
5 SPAFREQ ERROR	25.35698	5	5.07140	177.17	0.0000	0.0000	
	1.57436	55	0.02862				
6 CS ERROR	0.13308	5	0.02662	2.95	0.0193	0.0452	0.0252
	0.49622	55	0.00902				
7 GS ERROR	0.25264	5	0.05053	7.47	0.0000	0.0013	0.0003
	0.37224	55	0.00677				
8 CGS ERROR	0.05753	5	0.01151	2.05	0.0959	0.1354	0.1137
	0.30885	55	0.00562				
TERM	EPSILON FACTORS FOR DEGREES OF FREEDOM ADJUSTMENT						
5	GREENHOUSE-GEISSER HUYNH-FELDT						
6	0.3804	0.4572					
7	0.6175	0.8860					
8	0.5082	0.6737					
	0.5263	0.7068					

APPENDIX B

Alcon Laboratories, Inc.
P. O. Box 1959
6201 South Freeway
Fort Worth, TX 76134

Aristro Grid Lamp Products, Inc.
65 Harbor Road
Fort Washington, NY 11050

CooperVision Diagnostics
7356 Trade Street
San Diego, CA 92121

Mentor O & O Inc.
South Shore Park
Hingham, MA 02043

Nicolet Biomedical Division
5225-4 Verona Road
P. O. Box 4287
Madison, WI 53711-0287

Reichert Scientific Instruments
P. O. Box 123
Buffalo, NY 14240

INITIAL DISTRIBUTION

Commander
US Army Natick Research and
Development Center
ATTN: Documents Librarian
Natick, MA 01760

Commander
US Army Research Institute of
Environmental Medicine
Natick, MA 01760

Naval Submarine Medical Research
Laboratory
Medical Library, Naval Sub Base
Box 900
Groton, CT 06340

US Army Avionics Research and
Development Activity
ATTN: SAVAA-P-TP
Fort Monmouth, NJ 07703-5401

Commander/Director
US Army Combat Surveillance and
Target Acquisition Laboratory
ATTN: DELCS-D
Fort Monmouth, NJ 07703-5304

US Army Research and Development
Support Activity
Fort Monmouth, NJ 07703

ATTN: DR
US Army Research and Development
Support Activity
Fort Monmouth, NJ 07703

US Army Research and Development
Support Activity
ATTN: DR
Fort Monmouth, NJ 07703

US Army Research and Development Center
ATTN: DR (DR) (ATTN: G. Kvdd)
Warminster, PA 18974

Commander
Man-Machine Integration System
Code 602
Naval Air Development Center
Warminster, PA 18974

Naval Air Development Center
Technical Information Division
Technical Support Detachment
Warminster, PA 18974

Commander
Naval Air Development Center
ATTN: Code 6021 (Mr. Brindle)
Warminster, PA 18974

Dr. E. Handler
Human Factors Applications, Inc.
295 West Street Road
Warminster, PA 18974

Commanding Officer
Naval Medical Research and
Development Command
National Naval Medical Center
Bethesda, MD 20014

Under Secretary of Defense for
Research and Engineering
ATTN: Military Assistant for
Medical and Life Sciences
Washington, DC 20301

Director
Army Audiology and Speech Center
Walter Reed Army Medical Center
Washington, DC 20307-5001

COL Franklin H. Top, Jr., MD
Walter Reed Army Institute
of Research
Washington, DC 20307-5100

Commander
US Army Institute of Dental Research
Walter Reed Army Medical Center
Washington, DC 20307-5300

HQ DA (DASG-PSP-O)
Washington, DC 20310

Naval Air Systems Command
Technical Library Air 950D
Rm 278, Jefferson Plaza II
Department of the Navy
Washington, DC 20361

Naval Research Laboratory Library
Code 1433
Washington, DC 20375

Naval Research Laboratory Library
Shock & Vibration Information Center
Code 5804
Washington, DC 20375

Harry Diamond Laboratories
ATTN: Tech Information Branch
2800 Powder Mill Road
Adelphi, MD 20783-1197

Director
US Army Human Engineering Laboratory
ATTN: Technical Library
Aberdeen Proving Ground, MD
21005-5001

US Army Materiel Systems
Analysis Agency
ATTN: Reports Processing
Aberdeen Proving Ground, MD
21005-5017

Commander
US Army Test & Evaluation Command
ATTN: AMSTE-AD-H
Aberdeen Proving Ground, MD
21005-5055

US Army Ordnance Center
& School Library
Bldg 3071
Aberdeen Proving Ground, MD
21005-5201

Director
US Army Ballistic Research Laboratory
ATTN: DRXBR-OD-ST Tech Reports
Aberdeen Proving Ground, MD
21005-5066

US Army Environmental Hygiene
Agency Library
Bldg E2100
Aberdeen Proving Ground, MD 21010

Commander
US Army Medical Research Institute
of Chemical Defense
ATTN: SGRD-UV-AO
Aberdeen Proving Ground, MD
21010-5425

Technical Library
Chemical Research & Development Center
Aberdeen Proving Ground, MD
21010-5423

Commander
US Army Medical Research
& Development Command
ATTN: SGRD-RMS (Mrs. Madigan)
Fort Detrick, Frederick, MD
21701-5012

Commander
US Army Medical Research Institute
of Infectious Diseases
Fort Detrick, Frederick, MD 21701

Commander
US Army Medical Bioengineering
Research & Development Laboratory
ATTN: SGRD-UBZ-I
Fort Detrick, Frederick, MD 21701

Dr. R. Newburgh
Director, Biological Sciences Division
Office of Naval Research
600 North Quincy Street
Arlington, VA 22217

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Commander
US Army Materiel Command
ATTN: AMCDE-S (CPT Broadwater)
5001 Eisenhower Avenue
Alexandria, VA 22333

US Army Foreign Science and
Technology Center
ATTN: MTZ
220 7th Street, NW
Charlottesville, VA 22901-3346

Commandant
US Army Aviation Logistics School
ATTN: ATSQ-TDN
Fort Eustis, VA 23604

Director, Applied Technology Lab
USARTL-AVSCOM
ATTN: Library, Bldg 401
Fort Eustis, VA 23604

US Army Training and
Doctrine Command
ATTN: ATCD-ZX
Fort Monroe, VA 23651

US Army Training and
Doctrine Command
ATTN: Surgeon
Fort Monroe, VA 23651-5000

Structures Laboratory Library
USARTL-AVSCOM
NASA Langley Research Center
Mail Stop 266
Hampton, VA 23665

Aviation Medicine Clinic
TMC #22, SAAF
Fort Bragg, NC 28305

Naval Aerospace Medical
Institute Library
Bldg 1953, Code 102
Pensacola, FL 32508

US Air Force Armament Development
and Test Center
Eglin Air Force Base, FL 32542

Command Surgeon
US Central Command
MacDill AFB, FL 33608

US Army Missile Command
Redstone Scientific Information Center
ATTN: Documents Section
Redstone Arsenal, AL 35898-5241

Air University Library
ACU LSE
Maxwell AFB, AL 36112

Commander
US Army Aeromedical Center
Fort Rucker, AL 36362

Commander
US Army Aviation Center & Fort Rucker
ATTN: ATZQ-CDR
Fort Rucker, AL 36362

Directorate of Combat Developments
Bldg 507
Fort Rucker, AL 36362

Directorate of Training Development
Bldg 502
Fort Rucker, AL 36362

Chief
Army Research Institute Field Unit
Fort Rucker, AL 36362

Chief
Human Engineering Labs Field Unit
Fort Rucker, AL 36362

Commander
US Army Safety Center
Fort Rucker, AL 36362

Commander
US Army Aviation Center & Fort Rucker
ATTN: ATZQ-T-ATL
Fort Rucker, AL 36362

US Army Aircraft Development
Test Activity
ATTN: STEBG-MP-QA
Cairns AAF, Ft Rucker, AL 36362

President
US Army Aviation Board
Cairns AAF, Ft Rucker, AL 36362

US Army Research & Technology
Laboratories (AVSCOM)
Propulsion Laboratory MS 302-2
NASA Lewis Research Center
Cleveland, OH 44135

AFAMRL/HEX
Wright-Patterson AFB, OH 45433

US Air Force Institute of Technology
(AFIT/LDEE)
Bldg 640, Area B
Wright-Patterson AFB, OH 45433

University of Michigan
NASA Center of Excellence
in Man-Systems Research
ATTN: R.G. Snyder, Director
Ann Arbor, MI 48109

Henry L. Taylor
Director, Institute of Aviation
Univ of Illinois - Willard Airport
Savoy, IL 61874

John A. Dellinger, MS, ATP
Univ of Illinois - Willard Airport
Savoy, IL 61874

Commander
US Army Aviation Systems Command
ATTN: DRSAV-WS
4300 Goodfellow Blvd
St Louis, MO 63120-1798

Project Officer
Aviation Life Support Equipment
ATTN: AMCPO-ALSE
4300 Goodfellow Blvd
St Louis, MO 63120-1798

Commander
US Army Aviation Systems Command
ATTN: SGRD-UAX-AL (MAJ Lacy)
Bldg 105, 4300 Goodfellow Blvd
St Louis, MO 63120

Commander
US Army Aviation Systems Command
ATTN: DRSAV-ED
4300 Goodfellow Blvd
St Louis, MO 63120

US Army Aviation Systems Command
Library & Info Center Branch
ATTN: DRSAV-DIL
4300 Goodfellow Blvd
St Louis, MO 63120

Commanding Officer
Naval Biodynamics Laboratory
P.O. Box 24907
New Orleans, LA 70189

Federal Aviation Administration
Civil Aeromedical Institute
CAMI Library AAC 64D1
P.O. Box 25082
Oklahoma City, OK 73125

US Army Field Artillery School
ATTN: Library
Snow Hall, Room 14
Fort Sill, OK 73503

Commander
US Army Academy of Health Sciences
ATTN: Library
Fort Sam Houston, TX 78234

Commander
US Army Health Services Command
ATTN: HSOP-SO
Fort Sam Houston, TX 78234-6000

Commander
US Army Institute of Surgical Research
ATTN: SGRD-USM (Jan Duke)
Fort Sam Houston, TX 78234-6200

Director of Professional Services
AFMSC/GSP
Brooks Air Force Base, TX 78235

US Air Force School
of Aerospace Medicine
Strughold Aeromedical Library
Documents Section, USAFSAM/TSK-4
Brooks Air Force Base, TX 78235

US Army Dugway Proving Ground
Technical Library
Bldg 5330
Dugway, UT 84022

Dr. Diane Damos
Department of Human Factors
ISSM, USC
Los Angeles, CA 90089-0021

US Army Yuma Proving Ground
Technical Library
Yuma, AZ 85364

US Army White Sands Missile Range
Technical Library Division
White Sands Missile Range, NM 88002

US Air Force Flight Test Center
Technical Library, Stop 238
Edwards Air Force Base, CA 93523

US Army Aviation Engineering
Flight Activity
ATTN: SAVTE-M (Tech Lib) Stop 217
Edwards AFB, CA 93523-5000

Commander
Code 3431
Naval Weapons Center
China Lake, CA 93555

US Army Combat Developments
Experimental Center
Technical Information Center
Bldg 2925
Fort Ord, CA 93941-5000

Aeromechanics Laboratory
US Army Research
& Technical Laboratories
Ames Research Center, M/S 215-1
Moffett Field, CA 94035

Commander
Letterman Army Institute of Research
ATTN: Medical Research Library
Presidio of San Francisco, CA 94129

Sixth US Army
ATTN: SMA
Presidio of San Francisco, CA 94129

Director
Naval Biosciences Laboratory
Naval Supply Center, Bldg 844
Oakland, CA 94625

Col G. Stebbing
USDAO-AMLO, US Embassy
Box 36
FPO New York 09510

Staff Officer, Aerospace Medicine
RAF Staff, British Embassy
3100 Massachusetts Avenue, NW
Washington, DC 20008

Canadian Society of Aviation Medicine
c/o Academy of Medicine, Toronto
ATTN: Ms. Carmen King
288 Bloor Street West
Toronto, Ontario M5S 1V8

Canadian Airline Pilot's Association
MAJ J. Soutendam (Retired)
1300 Steeles Avenue East
Brampton, Ontario, L6T 1A2

Canadian Forces Medical Liaison Officer
Canadian Defence Liaison Staff
2450 Massachusetts Avenue, NW
Washington, DC 20008

Commanding Officer
404 Squadron CFB Greenwood
Greenwood, Nova Scotia B0P 1NO

Officer Commanding
School of Operational
& Aerospace Medicine
DCIEM, P.O. Box 2000
1133 Sheppard Avenue West
Downsview, Ontario M3M 3B9

National Defence Headquarters
101 Colonel By Drive
ATTN: DPM
Ottawa, Ontario K1A 0K2

Commanding Officer
Headquarters, RAAF Base
POINT COOK VIC 3029
Australia

Canadian Army Liaison Office
Bldg 602
Fort Rucker, AL 36362

Netherlands Army Liaison Office
Bldg 602
Fort Rucker, AL 36362

German Army Liaison Office
Bldg 602
Fort Rucker, AL 36362

British Army Liaison Office
Bldg 602
Fort Rucker, AL 36362

French Army Liaison Office
Bldg 602
Fort Rucker, AL 36362

END

DTIC

6 - 86