제24장 전기적인 특성

개요 절대적인 최대 값

표 24-1. 절대적인 최대 값

Parameter	Symbol	Rating		Unit
DC Supply Voltage	V _{DDi}	1.8V V _{DD}	2.7	
	V _{DDIO}	3.3V V _{DD}	3.8	
DC Input Voltage	V _{IN}	3.3V Input buffer	3.8	V
		3.3V Interface / 5V Tolerant input buffer	6.5	
DC Output Voltage	V _{out}	3.3V Output buffer	3.8	
DC Input (Latch-up) Current	I _{IN}	± 200	•	mA
Storage Temperature	T _{STG}	- 65 to 150		°C

추천하는 동작 조건

표 24-2. 추천하는 동작 조건

Parameter	Symbol	Rating		Unit
DC Supply Voltage for Internal	V_{DDi}	1.8V V _{DD}	1.8 ± 0.15	
DC Supply Voltage for I/O Block	V _{DDIO}	3.3V V _{DD}	3.3 ± 0.3	X.
DC Supply Voltage for Analog Core	V _{DD}	3.3V V _{DD}	3.3 ± 5%	
DC Input Voltage	V _{IN}	3.3V Input buffer	3.3 ± 0.3	٧
		3.3V Interface / 5V Tolerant input buffer	3.0 - 5.25	
DC Output Voltage	V _{out}	3.3V Output buffer	3.3 ± 0.3	
Operating Temperature	T _{OPR}	Commercial	0 to 70	°C

D.C. 전기 특성

표 24-3과 24-4는 표준의 LVCMOS I/O 버퍼 용 DC 전기 특성을 규정하고 있다.

표 24-3. Normal I/O 패드 DC 전기 특성

 $(V_{DD} = 3.3V \pm 0.3V, T_A = 0 \text{ to } 70 \text{ }^{\circ}\text{C})$

Symbol	Parameters	Condition	Min	Type	Max	Unit
V _{IH}	High level input voltage	*				
	LVCMOS interface		2.0			V
V _{IL}	Low level input voltage			-2		
	LVCMOS interface		2		0.8	V
VT	Switching threshold			1.4		٧
VT+	Schmitt trigger, positive-going threshold	CMOS			2.0	٧
VT-	Schmitt trigger, negative-going threshold	CMOS	0.8			٧
I _{IH}	High level input current	· · ·	-01	-57	F150 00	
	Input buffer	$V_{IN} = V_{DD}$	-10		10	μΑ
I _{IL}	Low level input current	•	•	•		
	Input buffer	V _{IN} = V _{SS}	-10		10	μΑ
	Input buffer with pull-up		-60	-33	-10	
V _{OH}	High level output voltage			79	1	
	Type B6	I _{OH} = -6 mA				
	Type B8	I _{OH} = -8 mA	2.4			V
	Type B12	I _{OH} = -12 mA				
V _{OL}	Low level output voltage		1			
	Type B6	$I_{OL} = 6 \text{ mA}$				
	Type B8	I _{OL} = 8 mA	=		0.4	V
	Type B12	I _{OL} = 12 mA			1	

주의할 점:

- 1. Type B6은 6mA의 출력 드라이버 셀을 의미한다.
- 2. Type B8은 8mA의 출력 드라이버 셀을 의미한다.
- 3. Type B12은 12mA의 출력 드라이버 셀을 의미한다.

표 24-4. USB DC 전기 특성

Symbol	Parameter	Condition	Min	Max	Unit
V _{IH}	High level input voltage		2.5		V
V _{IL}	Low level input voltage			0.8	V
Iн	High level input current	Vin = 3.3V	-10	10	μΑ
I _{IL}	Low level input current	Vin = 0.0V	-10	10	μΑ
V _{OH}	Static Output High	15KΩ to GND	2.8	3.6	V
V _{OL}	Static Output Low	1.5KΩ to 3.6V		0.3	V

표 24-5. S3C2410X 파워 서플라이 전압과 전류

Parameter	Value	Unit	Condition
Typical V _{DDi} / V _{DDIO}	1.8 / 3.3	V	
Max. Operating frequency (FCLK)	203	MHz	
Max. Operating frequency (HCLK)	101.5	MHz	
Max. Operating frequency (PCLK)	50.7	MHz	
Typical normal mode power NOTE(3) (Total V _{DDi} + V _{DDIO})	297	mW	NOTE(1)
Typical normal mode power NOTE(3) (Total V _{DDi} + V _{DDIO})	224	mW	NOTE(2)
Typical idle mode power NOTE(3) (Total V _{DDi} + V _{DDIO})	122	mW	FCLK = 203MHz (F:H:P = 1:2:4)
Typical slow mode power NOTE(3) (Total V _{DDi} + V _{DDIO})	33	mW	FCLK = 12MHz (F:H:P = 1:1:1)
Maximum Power_OFF mode power Typical Power_OFF mode power NOTE(3)	80 8	uA uA	@1.95V/3.6V, Room temperature All other I/O static.
Maximum RTC power Typical RTC power NOTE(3)	63 3	uA uA	@1.95V/3.6V, Room temperature X-tal = 32.768KHz for RTC

주의할 점:

- 1. I/O 캐쉬:ON, MMU:ON, SRAM 코드, FCLK:HCLK:PCLK=203MHz:101.5MHz:50.7MHz :LCD ON(320 X 240 X 16bpp X 60Hz, 컬러 TFT):타이머 내부 모드(5채널 구동)
- :오디오(IIS&DMA, CDCLK=16.9MHz, LRCK=44.1KHz):내부 데이터 quick sort(65536 EA)
- 2. WinCE 3.0 MPEG 플래이
- 3. Room 온도 특성

표 24-6. CLKCON 레지스터에 의해서 감소되는 전류(FCLK@202.8MHz)

(Unit: mA)

Peripherals	NFC	LCD	USBH	USBD	Timer	SDI	UART	RTC	ADC	IIC	IIS	SPI	Total
Current	2.9	5.8	0.4	2.9	0.5	1.9	3.6	0.4	0.4	0.6	0.5	0.5	20.4

주의할 점: 이 표는 각 주변장치의 전력소비를 나타내고 있다. 예로, IIS를 사용하지 않고 CLKCON 레지스터에서 IIS 블록을 턴-오프 하면 0.5mA의 소비를 줄일 수 있다.

그림 24-1. 일반적인 전압/주파수 범위 (VDDIO=3.3V, @실내 온도 & SMDK2410 보드)

A.C. 전기적인 특성

그림 24-2. XTIpll 클럭 타이밍

그림 24-3. EXTCLK 클럭 입력 타이밍

그림 24-4. EXTCLK가 PLL 없이 사용되는 경우의 EXTCLK/HCLK

그림 24-5. EXTCLK가 사용되는 경우의 HCLK/CLKOUT/SCLK

그림 24-6. 매뉴얼 리셋 입력 타이밍

그림 24-7. 파워-온 오실레이션 셋팅 타이밍

그림 24-8. 오실레이션 셋팅 타이밍을 반환하는 파워-오프 모드

그림 24-9. ROM/SRAM Burst 읽기 타이밍(I) (Tacs=0, Tcos=0, Tacc=2, Toch=0, Tcah=0, PMC=0, DW=16비트)

그림 24-10. ROM/SRAM Burst 읽기 타이밍(II) (Tacs=0, Tcos=0, Tacc=2, Toch=0, Tcah=0, PMC=0, ST=1, DW=16비트)

그림 24-11. ROM/SRAM 사이클의 외부 버스 요청 (Tacs=0, Tcos=0, Tacc=8, Toch=0, Tcah=0, PMC=0, ST=0)

그림 24-12. ROM/SRAM 읽기 타이밍(I) (Tacs=2, Tcos=2, Tacc=4, Toch=2, Tcah=2, PMC=0, ST=0)

그림 24-13. ROM/SRAM 읽기 타이밍(II) (Tacs=2, Tcos=2, Tacc=4, Toch=2, Tcah=2사이클, PMC=0, ST=1)

그림 24-14. ROM/SRAM 쓰기 타이밍(I)

(Tacs=2, Tcos=2, Tacc=4, Toch=2, Tcah=2, PMC=0, ST=0)

그림 24-15. ROM/SRAM 쓰기 타이밍(II) (Tacs=2, Tcos=2, Tacc=4, Toch=2, Tcah=2, PMC=0, ST=1)

그림 24-16. 외부 nWAIT 읽기 타이밍 (Tacs=0, Tcos=0, Tacc=6, Toch=0, Tcah-0, PMC=0, ST=0)

그림 24-17. 외부 nWAIT 쓰기 타이밍 (Tacs=0, Tcos-0, Tacc=4, Toch=0, Tcah=0, PMC=0, ST=0)

그림 24-18. 마스크 롬 single 읽기 타이밍 (Tacs=2, Tcos=2, Tacc=8, PMC=01/10/11)

그림 24-19. 마스크 롬 consecutive 읽기 타이밍 (Tacs=0, Tcos=0, Tacc=3, Tpac=2, PMC=01/10/11)

그림 24-20. SDRAM single burst 읽기 타이밍(Trp=2, Trcd=2, Tcl=2, DW=16비트)

그림 24-21. SDRAM의 외부 버스 요청 타이밍(Trp=2, Trcd=2, Tcl=2)

그림 24-22. SDRAM MRS 타이밍

그림 24-23. SDRAM single 읽기 타이밍(I) (Trp=2, Trcd=2, Tcl=2)

그림 24-24. SDRAM single 읽기 타이밍(II) (Trp=2, Trcd=2, Tcl=3)

그림 24-25. SDRAM 오토 리프레쉬 타이밍(Trp=2, Trc=4)

그림 24-26. SDRAM 페이지 Hit-Miss 읽기 타이밍(Trp=2, Trcd=2, Tcl=2)

그림 24-27. SDRAM 셀프 리프레쉬 타이밍(Trp=2, Trc=4)

그림 24-28. SDRAM single 쓰기 타이밍(Trp=2, Trcd=2)

그림 24-29. SDRAM 페이지 Hit-Miss 쓰기 타이밍(Trp=2, Trcd=2, Tcl=2)

그림 24-30. 외부 DMA 타이밍(핸드쉐이크, single 전송)

그림 24-31. TFT LCd 컨트롤러 타이밍

그림 24-32. IIS 인터페이스 타이밍

그림 24-33. IIC 인터페이스 타이밍

그림 24-34. SD/MMC 인터페이스 타이밍

그림 24-35. SPI 인터페이스 타이밍(CPHA=1, CPOL=1)

그림 24-36. 낸드 플래쉬 어드레스/커맨드 타이밍

그림 24-37. 낸드 플래쉬 타이밍

표 24-7. 클럭 타이밍 상수

(V_{DDi,} V_{DDalive,} V_{DDiarm} = 1.8 V \pm 0.15 V, T_A = 0 to 70 °C, V_{DDMOP} = 3.3V \pm 0.3V)

Parameter	Symbol	Min	Тур	Max	Unit
Crystal clock input frequency	f _{XTAL}	10	=	20	MHz
Crystal clock input cycle time	t _{XTALCYC}	50	=	100	ns
External clock input frequency	f _{EXT}	-	-	66	MHz
External clock input cycle time	t _{EXTCYC}	15.0	1=1	<u> </u>	ns
External clock input low level pulse width	t _{EXTLOW}	7	, -	(,	ns
External clock to HCLK (without PLL)	t _{EX2HC}	3	7 2 3	9	ns
HCLK (internal) to CLKOUT	t _{HC2CK}	3	-	11	ns
HCLK (internal) to SCLK	t _{HC2SCLK}	0		3	ns
External clock input high level pulse width	t _{EXTHIGH}	4	-	1 4 - 1	ns
Reset assert time after clock stabilization	t _{RESW}	4	148		XTIpII or EXTCLK
PLL Lock Time	t _{PLL}	200	s s		uS
Power_OFF mode return oscillation setting time	t _{OSC2}	-		65536	XTIpII or EXTCLK
The interval before CPU runs after nRESET is released.	t _{RST2RUN}	i a	7	Ser.	XTIpli or EXTCLK

표 24-8. ROM/SRAM 버스 타이밍 상수

 $(V_{DDi,}\,V_{DDalive,}\,V_{DDiarm} = 1.8\;V \pm 0.15\;V,\,T_{A} = 0\;to\;70\;^{\circ}C,\,V_{DDMOP} = 3.3V \pm 0.3V)$

Parameter	Symbol	Min	Тур	Max	Unit
ROM/SRAM Address Delay	t _{RAD}	3		11	ns
ROM/SRAM Chip select Delay	t _{RCD}	2	-	9	ns
ROM/SRAM Output enable Delay	t _{ROD}	2	i.	8	ns
ROM/SRAM read Data Setup time.	t _{RDS}	4	-	-	ns
ROM/SRAM read Data Hold time.	t _{RDH}	0	-2	=	ns
ROM/SRAM Byte Enable Delay	t _{RBED}	2	175	8	ns
ROM/SRAM Write Byte Enable Delay	t _{RWBED}	2	_	10	ns
ROM/SRAM output Data Delay	t _{RDD}	3	<u> </u>	12	ns
ROM/SRAM external Wait Setup time	t _{WS}	5	1700	=:	ns
ROM/SRAM external Wait Hold time	t _{WH}	0	-		ns
ROM/SRAM Write enable Delay	t _{RWD}	2	<u> </u>	9	ns

표 24-9. 메모리 인터페이스 타이밍 상수(3.3V)

(V_{DDi,} V_{DDalive,} V_{DDiam} = 1.8 V \pm 0.15 V, T_A = 0 to 70 °C, V_{DDMOP} = 3.3V \pm 0.3V)

Parameter	Symbol	Min	Тур	Max	Unit
SDRAM Address Delay	t _{SAD}	2	(<u>Add</u>	7	ns
SDRAM Chip Select Delay	t _{SCSD}	2	=	6	ns
SDRAM Row active Delay	t _{SRD}	1		5	ns
SDRAM Column active Delay	t _{SCD}	1	(<u>=1</u> -1	5	ns
SDRAM Byte Enable Delay	t _{SBED}	2	V	6	ns
SDRAM Write enable Delay	t _{SWD}	2	:==:	6	ns
SDRAM read Data Setup time	t _{SDS}	4	-	8 <u>—</u> 8	ns
SDRAM read Data Hold time	t _{SDH}	0	150	15-2	ns
SDRAM output Data Delay	t _{SDD}	2	-	7	ns
SDRAM Clock Enable Delay	T _{cked}	2	=	5	ns

표 24-10. 외부 버스 요청 타이밍 상수

(V_{DD} = 1.8 V \pm 0.15 V, T_A = 0 to 70 °C, V_{EXT} = 3.3V \pm 0.3V)

Parameter	Symbol	Min	Тур.	Max	Unit
eXternal Bus Request Setup time	t _{XnBRQS}	2	7. = 4	5	ns
eXternal Bus Request Hold time	t _{XnBRQH}	-	-	1	ns
eXternal Bus Ack Delay	t _{XnBACKD}	9		11	ns
HZ Delay	t _{HZD}	4	=	12	ns

표 24-11. DMA 컨트롤 모듈 신호 타이밍 상수

 $(V_{DD} = 1.8 \text{ V} \pm 0.15 \text{ V}, T_A = 0 \text{ to } 70 \,^{\circ}\text{C}, V_{EXT} = 3.3 \text{V} \pm 0.3 \text{V})$

Parameter	Symbol	Min	Тур.	Max	Unit
eXternal Request Setup	t _{XRS}	2	===	6	ns
aCcess to Ack Delay when Low transition	t _{CADL}	9	=	11	ns
aCcess to Ack Delay when High transition	t _{CADH}	9	 .	11	ns
eXternal Request Delay	t _{XAD}	2	_		SCLK

표 24-12. TFT LCD 컨트롤러 모듈 신호 타이밍 상수

 $(V_{DD} = 1.8 \text{ V} \pm 0.15 \text{ V}, T_{A} = 0 \text{ to } 70 \,^{\circ}\text{C}, V_{EXT} = 3.3 \text{V} \pm 0.3 \text{V})$

Parameter	Symbol	Min	Тур	Max	Units
Vertical sync pulse width	Tvspw	VSPW + 1	-	-	Phclk (note1)
Vertical back porch delay	Tvbpd	VBPD+1	-	-	Phclk
Vertical front porch dealy	Tvfpd	VFPD+1		=	Phclk
VCLK pulse width	Tvclk	1	=	裏	Pvclk (note2)
VCLK pulse width high	Tvclkh	0.5	=	=	Pvclk
VCLK pulse width low	Tvclkl	0.5	<u>525</u> 9	<u>122</u> 5	Pvclk
Hsync setup to VCLK falling edge	Tl2csetup	0.5	=	=	Pvclk
VDEN set up to VCLK falling edge	Tde2csetup	0.5	-	-	Pvclk
VDEN hold from VCLK falling edge	Tde2chold	0.5	E	=	Pvclk
VD setup to VCLK falling edge	Tvd2csetup	0.5	=	=	Pvclk
VD hold from VCLK falling edge	Tvd2chold	0.5	<u>525</u> 9	228	Pvclk
LEND width	Tlewidth		1	=	Pvclk
LEND hold from VCLK rising edge	Tle2chold	3	-	-	ns
VSYNC setup to HSYNC falling edge	Tf2hsetup	HSPW + 1	-	-	Pvclk
VSYNC hold from HSYNC falling edge	Tf2hhold	HBPD + HFPD + HOZVAL + 3	=	-	Pvclk

주의할 점:

- 1. HSYNC 주기
- 2. VCLK 주기

표 24-13. IIS 컨트롤러 모듈 신호 타이밍 상수

 $(V_{DD} = 1.8 \text{ V} \pm 0.15 \text{ V}, T_{A} = 0 \text{ to } 70 \,^{\circ}\text{C}, V_{EXT} = 3.3 \text{V} \pm 0.3 \text{V})$

Parameter	Symbol	Min	Тур.	Max	Unit
IISLRCK delay time	t _{LRCK}	0.7	223	1.4	ns
IISDO delay time	t _{SDO}	8.0	-	1.7	ns
IISDI Input Setup time	t _{SDIS}	6.2	-	16.3	ns
IISDI Input Hold time	t _{SDIH}	0.1	<u>1945</u>	0.1	ns
CODEC clock frequency	f _{CODEC}	1/16	=	1	f _{IIS_BLOO}

표 24-14. IIC 버스 컨트롤러 모듈 신호 타이밍

 $(V_{DD} = 1.8 \text{ V} \pm 0.15 \text{ V}, T_A = 0 \text{ to } 70 \,^{\circ}\text{C}, V_{EXT} = 3.3 \text{V} \pm 0.3 \text{V})$

Parameter	Symbol	Min	Тур.	Max	Unit
SCL clock frequency	f _{SCL}		=	std. 100 fast 400	kHz
SCL high level pulse width	t _{SCLHIGH}	std. 4.0 fast 0.6			μs
SCL low level pulse width	t _{SCLLOW}	std. 4.7 fast 1.3		3 - 2	μs
Bus free time between STOP and START	t _{BUF}	std. 4.7 fast 1.3	<u>-2.85</u>	357	μs
START hold time	t _{STARTS}	std. 4.0 fast 0.6	-	s— s	μS
SDA hold time	t _{SDAH}	std. 0 fast 0	=	std fast 0.9	μs
SDA setup time	t _{SDAS}	std. 250 fast 100	-	-	ns
STOP setup time	t _{STOPH}	std. 4.0 fast 0.6	, T	4E.\	μs

주의할 점: Std. 는 표준 모드를, fast는 빠른 모드를 말한다.

- 1. IIC 데이터 홀딩 시간(tSDAH)은 최소 Ons이다. (IIC 데이터 홀딩 시간은 IIC 스펙 v2.1에서 표준/빠른 버스 모드에 대해서 최소 Ons이다.) Ons인지 아닌지를 알아보려면 자신의 IIC 디바이스의 데이터 홀딩 시간을 체크한다.
- 2. IIC 컨트롤러는 IIC 버스 디바이스(표준/빠른 버스 모드)만 지원하며, C 버스 디바이스는 지원하지 않는다.

표 24-15. SD/MMC 인터페이스 송/수신 타이밍 상수

(V_{DD} = 1.8 V \pm 0.15 V, T_A = 0 to 70 °C, V_{EXT} = 3.3V \pm 0.3V)

Parameter	Symbol	Min	Тур.	Max	Unit
SD Command output Delay time	t _{SDCD}	0.5	:=	1.3	ns
SD Command input Setup time	t _{SDCS}	5.8	·=	15.2	ns
SD Command input Hold time	t _{SDCH}	0.1) H -	0.1	ns
SD Data output Delay time	t _{SDDD}	0.3	-	0.6	ns
SD Data input Setup time	t _{SDDS}	6.3	Ė	15.3	ns
SD Data input Hold time	t _{SDDH}	0.1) () -	0.1	ns

표 24-16. SPI 인터페이스 송/수신 타이밍 상수

 $(V_{DD} = 1.8 \text{ V} \pm 0.15 \text{ V}, T_{\Delta} = 0 \text{ to } 70 \text{ °C}, V_{EXT} = 3.3 \text{V} \pm 0.3 \text{V})$

Parameter	Symbol	Min	Тур.	Max	Unit
SPI MOSI Master Output Delay time	t _{SPIMOD}	1.0	(1)	4.2	ns
SPI MOSI Slave Input Setup time	t _{SPISIS}	0.1	<u> 200</u> 4	0.1	ns
SPI MOSI Slave Input Hold time	t _{SPISIH}	0.8	=	1.8	ns
SPI MISO Slave output Delay time	t _{SPISOD}	8.2	-	21.4	ns
SPI MISO Master Input Setup time	t _{SPIMIS}	5.6	=	14.7	ns
SPI MISO Master Input Hold time	t _{SPIMIH}	0.1	Ξ.	0.1	ns

표 24-17. USB의 전기적인 특성

(V_{DD} = 1.8 V \pm 0.15 V, T_A = 0 to 70 °C, V_{EXT} = 3.3V \pm 0.3V)

Parameter	Symbol	Condition	Min	Max	Unit
Supply Current					
Suspend Device	ICCS			10	μA
Leakage Current		J i.			
Hi-Z state Input Leakage	ILO	0V < VIN < 3.3V	-10	10	μΑ
Input Levels	0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00		99E.		
Differential Input Sensitivity	VDI	(D+) – (D-)	0.2		
					V
Differential Common Mode Range	VCM	Includes VDI range	0.8	2.5	
Single Ended Receiver Threshold	VSE		0.8	2.0	
Output Levels					
Static Output Low	VOL	RL of 1.5Kohm to 3.6V		0.3	V
Static Output High	VOH	RL of 15Kohm to GND	2.8	3.6	
Capacitance			_		
Transceiver Capacitance	CIN	Pin to GND		20	pF

표 24-18. USB Full Speed 출력 버퍼의 전기적인 특성

(V_{DD} = 1.8 V \pm 0.15 V, T_A = 0 to 70 °C, V_{EXT} = 3.3V \pm 0.3V)

Parameter	Symbol	Condition	Min	Max	Unit
Driver Characteristics					
Transition Time				,	
Rise Time	TR	CL = 50pF	4.0	2.0	ns
Fall Time	TF	CL = 50pF	4.0	2.0	
Rise/Fall Time Matching	TRFM	(TR/TF)	90	110	%
Output Signal Crossover Voltage	VCRS		1.3	2.0	٧
Drive Output Resistance	ZDRV	Steady state drive	28	43	ohm

표 24-19. USB Low speed 출력 버퍼의 전기적인 특성

 $(V_{DD} = 1.8 \text{ V} \pm 0.15 \text{ V}, T_A = 0 \text{ to } 70 \text{ }^{\circ}\text{C}, V_{EXT} = 3.3 \text{V} \pm 0.3 \text{V})$

Parameter	Symbol	Condition	Min	Max	Unit
Driver Characteristics			***		
Transition Time					
Rising Time	TR	CL = 50pF	75		ns
		CL = 350pF		300	
Falling Time	TF	CL = 50pF	75		
		CL = 350pF		300	
Rise/Fall Time Matching	TRFM	(TR / TF)	80	120	%
Output Signal Crossover Voltage	VCRS		1.3	2.0	٧

표 24-20. 낸드 플래쉬 인터페이스 타이밍 상수

(V_{DDi,} V_{DDalive,} V_{DDiarm} = 1.8 V \pm 0.15 V, T_A = 0 to 70 °C, V_{DDIO} = 3.3V \pm 0.3V)

Parameter	Symbol	Min	Max	Unit
NFCON Chip Enable delay	t _{CED}	122	6.2	ns
NFCON CLE delay	t _{CLED}	1875	7.1	ns
NFCON ALE delay	t _{ALED}	-	7.5	ns
NFCON Write Enable delay	t _{WED}	142	7.2	ns
NFCON Read Enable delay	t _{RED}		7.1	ns
NFCON Write Data Setup time	t _{WDS}		6.5	ns
NFCON Write Data Hold time	t _{WDH}	1.7	=	ns
NFCON Read Data Setup requirement time	t _{RDS}	0.3	<u>121</u> ;	ns
NFCON Read Data Hold requirement time	t _{RDH}	0.3	-	ns