

CSE340: Computer Architecture

Chapter 3 Practice Problems

- 1. Consider A = 5ED8 and B = 3C91 as signed 16-bit hexadecimal numbers. **Determine** whether A B causes overflow or not. Show all the necessary work.
- 2. **Calculate** the product of the two hexadecimal unsigned 4-bit integers C and A using the long-multiplication approach (using the hardware with one 4-bit register and two 8-bit registers). Consider C as multiplicand and A as multiplier in the calculation. You have to show the contents of each register on each step in an iteration.
 - *Hint: The values of C and A in decimal are 12 and 10 respectively.*
- 3. **Calculate** the product of the two hexadecimal unsigned 4-bit integers C and A using the optimized-multiplication approach (using the hardware with one 4-bit register and one 8-bit register). Consider C as the multiplicand and A as the multiplier in the calculation. You have to show the contents of each register on each step in an iteration.

Hint: The values of C and A in decimal are 12 and 10 respectively.

BRAC University

Solutions:

2's complement of $B = 1100\ 0011\ 0110\ 1111$

No overflow because subtraction of two positive numbers will not cause overflow. Moreover, subtracting B from A should result in a positive number and MSB bit 0 of the result shows it is a positive number.

2.
$$(C)_{16} \times (A)_{16} = (12)_{10} \times (10)_{10} = (120)_{10} \text{ OR } (1100)_2 \times (1010)_2 = (0111\ 1000)_2$$

Iteration	Step	Mutiplicand (8bits) (M1)	Multiplier (4bits) (M2)	r (4bits) (M2) Product (8bts)	
0	init	0000 1100	10 10	0000 0000	
1	No opt	0000 1100	1019	6000 0000	
	M1 ←-	0001 1000	1010	0000 0000	
	M2->	0001 1000	0101	0 000 0000	
2	And	0001 1000	0191	0001 1000	
	M1←	0011 0000	0101	0001 1000	
	M2→	0011 0000	0010	0001 1000	
3	No Opt	0011 0000	0010	0001 1000	
	M ₁ ←	0110 0000	9010	0001 1000	
	$M_2 \rightarrow$	0110 0000	0001	0001 1000	
4	Add	0110 0000	1000	0001 1110	
	M1←	1100 0000	0001	01(1)000	
	M2→	1100 0000	0000	0111 (800 (ANS.)	

BRAC University

3. $(C)_{16} \times (A)_{16} = (12)_{10} \times (10)_{10} = (120)_{10} \text{ OR } (1100)_2 \times (1010)_2 = (0111\ 1000)_2$

Iteration	Step	Multiplicand (4bits) (Mult)	Product (8bits) (Prod)
0	Initialization	1100	0000 /dlo
1	No Opt.	1100	0000 1010
	Prod >> 1	1100	0000 DID!
2	Addition	1101	IDIO OCII
	Prod >> 1	1100	DIID ODID
3	No Opt.	11 00	0110 0010
	Prod >> 1	1100	1000 1100
4	Addition	1100	1111 0001
	Prod >> 1	1100	0111 1000 (Ans.)