

Smart Analytics for Big Time-series Data

Yasushi Sakurai (Kumamoto University)
Yasuko Matsubara (Kumamoto University)
Christos Faloutsos (Carnegie Mellon University)

Roadmap

- Motivation
- Similarity search, pattern discovery and summarization
- ✓ Non-linear modeling and forecasting
- Extension of timeseries data: tensor analysis

Part 1

Part 2

Part 3

Goal!

Conclusions – Part 1

- Similarity search:
 - Euclidean/time-warping; feature extraction and SAMs
- Feature extraction
 - DFT, DWT, SVD and ICA
- Linear forecasting
 - auto-regression (AR)
 - RLS for streams
- Stream mining
 - RLS, multi-scale windows
- Automatic mining
 - MDL

Conclusions – Part 2

- Non-linear forecasting
 - -Black box: lag-plots + k-nearest neighbors
 - -Gray box: with equations, domain knowledge
 - -differential equations
 - Logistic function
 - Lotka-Volterra equations, etc.
 - -Epidemics, SI & SIR models
 - -Hawkes Poisson process, Power law

Conclusions – Part 3

- Fundamentals for MANT
 (Multi-Aspect Non-linear Time-series)
 - Tucker/PARAFAC/tensor decomposition

- -Gibbs sampling
- Non-linear equations

Future direction

MANT forecasting

"MANT (Multi-Aspect Non-linear Time-series)"

- Web mining: e.g., web clicks{time, user, url, access device, http referrer}
- Sensor data monitoring: e.g., automobile{time, location, velocity, longitudinal/lateral acceleration}
- Medical data analysis: e.g., EHR (Electronic Health Record)
 {time, patient, medical institution, medicine}
- Ideal method for big time-series data
 - Scalable and automatic

Acknowledgements

Thanks to: JSPS KAKENHI Grant-in-Aid for Scientific Research Number JP15H02705, JP17H04681, JP16K12430, PRESTO JST, the MIC/SCOPE \#162110003. NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo, LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Disclaimer: All opinions are mine; not necessarily reflecting the opinions of the funding agencies

Questions?

{yasuko, yasushi}[at]cs.kumamoto-u.ac.jp

christos[at]cs.cmu.edu

URL

http://www.cs.kumamoto-u.ac.jp/~yasuko/TALKS/17-KDD-tut/

R1

Automatic mining (no magic numbers!)

R2

Non-linear (gray-box) modeling

R3

Large-scale tensor analysis

