

Clase 3

Manipulación de tablas

Taller de Análisis de datos I | UC | 28 de julio, 2023

- 1. Tablas de datos
- 2. Manipulación con dplyr

- 3. Fundir tablas de datos
- 4. Transformaciones globales
- 5. Manipulación de variables

Tablas de datos

Recordemos lo que es una tabla de datos

Manipulación de datos con dplyr

Una de las claves para trabajar con dplyr son los pipes: %>% o ▷

dplyr functions work with pipes and expect **tidy data**. In tidy data:

- El primer argumento siempre es un tibble o data.frame
- El resto de los argumentos indican los parametros de lo que queremos hacer
- El resultado siempre tiene estructura de tibble o data frame

Transformación usando vectores

Transformación usando vectores

Row functions return a subset of rows as a new table.

filter(.data, ..., .preserve = FALSE) Extract rows that meet logical criteria. filter(mtcars, mpg > 20)

select(.data, ...) Extract columns as a table. select(mtcars, mpg, wt)

arrange(.data, ..., .by_group = FALSE) Order rows by values of a column or columns (low to high), use with **desc()** to order from high to low.

arrange(mtcars, mpg)
arrange(mtcars, desc(mpg))

Fundir tablas de datos

Unión por filas

bind_rows(..., .id = NULL)
Returns tables one on top of the other as a single table. Set .id to a column name to add a column of the original table names (as pictured).

add_row(.data, ..., .before = NULL, .after = NULL)
Add one or more rows to a table.
add_row(cars, speed = 1, dist = 1)

Fundir tablas de datos

Unión por columnas

Α	В	С	D
а	t	1	3
b	u	2	2
С	٧	3	NA

left_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ..., keep = FALSE, na_matches = "na") Join matching values from y to x.

right_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ..., keep = FALSE, na_matches = "na") Join matching values from x to y.

inner_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ..., keep = FALSE, na_matches = "na") Join data. Retain only rows with matches.

b u 2 2 c v 3 NA

full_join(x, y, by = NULL, copy = FALSE,
suffix = c(".x", ".y"), ..., keep = FALSE,
na_matches = "na") Join data. Retain all
values, all rows.

Fundir tablas de datos

Unión por columnas

Use **by = c("col1", "col2", ...)** to specify one or more common columns to match on. left_join(x, y, by = "A")

Use a named vector, **by** = **c("col1"** = **"col2")**, to match on columns that have different names in each table. left_join(x, y, by = c("C" = "D"))

Use **suffix** to specify the suffix to give to unmatched columns that have the same name in both tables.

Transformaciones globales

Reorganización

Reshape Data - Pivot data to reorganize values into a new layout.

pivot_longer(data, cols, names_to = "name",
values_to = "value", values_drop_na = FALSE)

"Lengthen" data by collapsing several columns into two. Column names move to a new names_to column and values to a new values_to column.

pivot_longer(table4a, cols = 2:3, names_to ="year", values_to = "cases")

pivot_wider(data, names_from = "name", values_from = "value")

The inverse of pivot_longer(). "Widen" data by expanding two columns into several. One column provides the new column names, the other the values.

pivot_wider(table2, names_from = type, values_from = count)

Transformaciones globales

Separación

Split Cells - Use these functions to split or combine cells into individual, isolated values.

unite(data, col, ..., sep = "_", remove = TRUE,
na.rm = FALSE) Collapse cells across several
columns into a single column.

unite(table5, century, year, col = "year", sep = "")

separate(data, col, into, sep = "[^[:alnum:]]+",
remove = TRUE, convert = FALSE, extra = "warn",
fill = "warn", ...) Separate each cell in a column
into several columns. Also extract().

separate(table3, rate, sep = "/",
into = c("cases", "pop"))

separate_rows(data, ..., sep = "[^[:alnum:].]+", convert = FALSE) Separate each cell in a column into several rows.

separate_rows(table3, rate, sep = "/")

Manipulación de variables

Generación de nuevas variables

MAKE NEW VARIABLES

Apply **vectorized functions** to columns. Vectorized functions take vectors as input and return vectors of the same length as output (see back). **vectorized function**

mutate(.data, ..., .keep = "all", .before = NULL,
.after = NULL) Compute new column(s). Also
add_column(), add_count(), and add_tally().
mutate(mtcars, gpm = 1 / mpg)

transmute(.data, ...**)** Compute new column(s), drop others.

transmute(mtcars, gpm = 1 / mpg)

rename(.data, ...) Rename columns. Use **rename_with()** to rename with a function.

rename(cars, distance = dist)

Análisis de variables

Descriptivos

Apply **summary functions** to columns to create a new table of summary statistics. Summary functions take vectors as input and return one value (see back).

Análisis de variables

Descriptivos

summarise() applies summary functions to columns to create a new table. Summary functions take vectors as input and return single values as output.

summary function

COUNT

POSITION

mean() - mean, also mean(!is.na())
median() - median

LOGICAL

mean() - proportion of TRUE's
sum() - # of TRUE's

ORDER

dplyr::first() - first value
dplyr::last() - last value
dplyr::nth() - value in nth location of vector

RANK

quantile() - nth quantile
min() - minimum value
max() - maximum value

SPREAD

IQR() - Inter-Quartile Rangemad() - median absolute deviationsd() - standard deviationvar() - variance

Análisis de variables:

Agrupamiento por columnas

Use **group_by(**.data, ..., .add = FALSE, .drop = TRUE**)** to create a "grouped" copy of a table grouped by columns in ... dplyr functions will manipulate each "group" separately and combine the results.

Use **rowwise(**.data, ...**)** to group data into individual rows. dplyr functions will compute results for each row. Also apply functions to list-columns. See tidyr cheat sheet for list-column workflow.

ungroup(x, ...) Returns ungrouped copy of table. ungroup(g_mtcars)

Uso de tuberías

Referencias

Wickham, H., & Grolemund, G. (2016). R for data science: import, tidy, transform, visualize, and model data. "O'Reilly Media, Inc.". Cap. 9 al 12. Recurso en línea: https://r4ds.hadley.nz/

Urdinez, F., & Cruz, A. (2020). R for Political Data Science: A Practical Guide. CRC Press. Cap. 1 al 4. Recurso en línea en español: https://arcruz0.github.io/libroadp/

Posit Cheatsheets ("hojas de trucos"): https://posit.co/resources/cheatsheets/?type=posit-cheatsheets/

Página oficial de Tidyverse: https://www.tidyverse.org/

Clase 3

Manipulación de tablas

28 de julio, 2023

2 José D. Conejeros | **☑** jdconejeros@uc.cl | **۞** JDConejeros