МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра	теоретических	основ
компьютерной	безопасности	И
криптографии		

Классификация бинарных отношений и системы замыканий

ОТЧЁТ ПО ДИСЦИПЛИНЕ «ПРИКЛАДНАЯ УНИВЕРСАЛЬНАЯ АЛГЕБРА»

студентки 3 курса 331 группы специальности 10.05.01 Компьютерная безопасность факультета компьютерных наук и информационных технологий Шуликиной Анастасии Александровны

Преподаватель		
профессор, д.фм.н.		В. А. Молчанов
	подпись, дата	

СОДЕРЖАНИЕ

BI	ЗЕДЕ	ЕНИЕ.		3
1	Цель работы и порядок её выполнения			
2	Teop	RNC		5
	2.1	2.1 Виды и классификация бинарных отношений		
		2.1.1	Отношение эквивалентности	5
		2.1.2	Отношение квазипорядка	6
		2.1.3	Отношение частичного порядка	6
	2.2	Систе	мы замыкания на множестве бинарных отношений	6
		2.2.1	Алгоритмы построения основных замыканий бинарных	
			отношений	7
3	Про	граммн	ная реализация рассмотренных алгоритмов	9
	3.1	Резул	ьтаты тестирования программы	9
	3.2	2 Код программы, на основе рассмотренных алгоритмов, на язы-		
		ке С+	+	9

ВВЕДЕНИЕ

В данной лабораторной работе поставлена задача рассмотрения основных свойств бинарных отношений, их классификация и замыкание, а также написание алгоритмов для опредления классификации и замыкания бинарного отношения.

1 Цель работы и порядок её выполнения

Цель работы – изучение основных свойств бинарных отношений и операций замыкания бинарных отношений.

Порядок выполнения работы:

- 1. Разобрать основные определения видов бинарных отношений и разработать алгоритмы классификации бинарных отношений.
- 2. Изучить свойства бинарных отношений и рассмотреть основные системы замыкания на множестве бинарных отношений.
- 3. Разработать алгоритмы построения основных замыканий бинарных отношений.

- 2 Теория
- 2.1 Виды и классификация бинарных отношений

Бинарным отношением между элементами A и B называется любое подмножество ρ множества $A \times B$, то есть $\rho \subset A \times B$.

По определению, бинарным отношением называется множество пар. Если ρ – бинарное отношение (т.е. множество пар), то говорят, что параметры x и y связаны бинарным отношением ρ , если пара $\langle x,y \rangle$ является элементом ρ , т.е. $\langle x,y \rangle \in \rho$.

Бинарное отношение $\rho \subset A \times B$ называется:

- рефлекисвным, если $(a, a) \in \rho$ для любого $a \in A$;
- симметричным, если $(a,b) \in \rho \Rightarrow (b,a) \in \rho$;
- антисимметричным, если $(a,b) \in \rho$ и $(b,a) \in \rho \Rightarrow a=b$;
- транзитивным, если $(a,b) \in \rho$ и $(b,c) \in \rho \Rightarrow (a,c) \in \rho$. Существует три основных типа бинарных отношений:
- отношение эквивалентности
- отношение квазипорядка
- отношение частичного порядка

2.1.1 Отношение эквивалентности

Бинарное отношение ε на множестве A называют отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Алгоритм проверки отношения на эквивалентность:

- 1. Из определения, для того, чтобы бинарное отношение являлось отношением эквивалентности, оно должно включать в себя свойства рефлексивности, симметричности и транзитивности. Поэтому первым делом производится проверка на рефлексивность, симметричность и транзитивность.
- 2. Выполняется операция & всех результатов.
- 3. Производится проверка на истинность или ложность. Если получившееся значение – истинно, то отношение является отношением эквивалентности, если ложно, то отношение отношением эквивалентности не является.

2.1.2 Отношение квазипорядка

Бинарное отношение ε на множестве A называют отношением квазипорядка, если оно рефлексивно и транзитивно.

Алгоритм проверки отношения на отношение квазипорядка:

- 1. Из определения, для того, чтобы бинарное отношение являлось отношением квазипорядка, оно должно включать в себя свойства рефлексивности и транзитивности. Поэтому первым делом производится проверка на рефлексивность и транзитивность.
- 2. Выполняется операция & всех результатов.
- 3. Производится проверка на истинность или ложность. Если получившееся значение – истинно, то отношение является отношением квазипорядка, если ложно, то отношение отношением квазипорядка не является.

2.1.3 Отношение частичного порядка

Бинарное отношение ε на множестве A называют отношением частичного порядка, если оно рефлексивно, антисимметрично и транзитивно.

Алгоритм проверки отношения на отношение частичного порядка:

- 1. Из определения, для того, чтобы бинарное отношение являлось отношением частичного порядка, оно должно включать в себя свойства рефлексивности, антисимметричности и транзитивности. Поэтому первым делом производится проверка на рефлексивность, антисимметричность и транзитивность.
- 2. Выполняется операция & всех результатов.
- 3. Производится проверка на истинность или ложность. Если получившееся значение истинно, то отношение является отношением частичного порядка, если ложно, то отношение отношением частичного порядка не является.

2.2 Системы замыкания на множестве бинарных отношений

Замыканием отношения R относительно свойства P называется такое множество R*, что:

- 1. $R \subset R*$
- 2. R* обладает свойством P.
- 3. R* является подмножеством любого другого отношения, содержащего R и обладающего свойством P.

То есть R* является минимальным надмножеством множества R, выдерживается P.

Множество Z подмножеств множества A называется системой замыканий, если оно замкнуто относительно пересечений, т.е. выполняется $\cap B \in Z$ для любого подмножества $B \subset Z$.

В частности, для $\oslash \subset Z$ выполняется $\cap \oslash = A \in Z$

На множестве всех бинарных отношений между элементами множества A^2 следующие множества являются системами замыканий:

- 1. Z_r множество всех рефлексивных бинарных отношений между элементами множества A,
- 2. Z_s множество всех симметричных бинарных отношений между элементами множества A,
- 3. Z_t множество всех транзитивных бинарных отношений между элементами множества A,
- 4. $Z_eq Eq(A)$ множество всех отношений эквивалентности на множестве A.

Множество Z_{as} всех антисимметричных бинарных отношений между элементами множества A не является системой замыкания.

На множестве $P(A^2)$ всех бинарных отношений между элементами множества A следующие отображения являются операторами замыканий:

- 1. $f_r(\rho) = \rho \cup \triangle_A$ наименьшее рефлексивное бинарное отношение, содержащее отношение $\rho \subset A^2$,
- 2. $f_s(\rho) = \rho \cup \rho^{-1}$ наименьшее симметричное бинарное отношение, содержащее отношение $\rho \subset A^2$,
- 3. $f_t(\rho) = \bigcup_{n=1}^{\infty} \rho^n$ наименьшее транзитивное бинарное отношение, содержащее отношение $\rho \subset A^2$,
- 4. $f_e q(\rho) = f_t f_s F_r(\rho)$ наименьшее отношение эквивалентности, содержащее отношение $\rho \subset A^2$.
- 2.2.1 Алгоритмы построения основных замыканий бинарных отношений

Построение замыкания отношения относительно свойствам рафлексивности.

1. Для начала необходимо создать пустой список для хранения пар замыканий.

- 2. Задать цикл i от 1 до N. Если $M_{ii} = 0$, пару (i, i) добавить в замыкание рефлксивность и замыкание эквивалентности.
- 3. Это замыкание бинарного отношения ρ относительно рефлексивности. Трудоёмкость O(N).

Построение замыкания отношения относительно свойствам симметричности.

- 1. Для начала необходимо создать пустой список для хранения пар замыканий.
- 2. Задать цикл i от 1 до N и цикл по j от 1 до N. Если $M_{ii}=0$ и $M_{ji}=0$, добавить пару (j,i) добавить в замыкание симметричности и замыкание эквивалентнгости.
- 3. Это замыкание бинарного отношения ρ относительно симметричности. Трудоёмкость $O(N^2)$.

Построение замыкания отношения относительно свойствам транзитивности.

- 1. Для начала необходимо создать копию матрицы исходного бинарного отношения.
- 2. Задать цикл n от 1 до N, цикл k от 1 до N, цикл i от 1 до N и цикл по j от 1 до N. Если $M_{ki}=M_{ij}=1$ и $M_{ki}=0$, добавить пару (k,k) добавить в замыкание транзитивности и замыкание эквивалентности.
- 3. Это замыкание бинарного отношения ρ относительно транзитивности. Трудоёмкость $O(N^4)$.

Построение замыкания отношения относительно свойствам эквивалентности.

- 1. Необходимо по очереди вызвать алгоритмы построения замыкания рефлексивности, симметричности и транзитивности.
- 2. Это эквивалентное замыкание бинарного отношения ρ . Трудоёмкость $O(N^4) = O(N + N^2 + N^4)$.

- 3 Программная реализация рассмотренных алгоритмов
- 3.1 Результаты тестирования программы

На рисунке 1 можно увидеть работу, реализуемой программы, по рассмотренным алгоритмам.

Рисунок 1 – Тест программы №1

3.2 Код программы, на основе рассмотренных алгоритмов, на языке C++
#include <iostream>
using namespace std;
int symmetry1 = 0, reflexivity1 = 0, transitivity1 = 0;
void symmetry(int** a, int n)
{
 int antisymmetry1 = 0;

```
for (int i = 0; i < n; i++)
          \left\{ \right.
                     \  \, \text{for}\  \, (\, i\, n\, t\  \  \, j\  \, =\  \, 0\, ;\  \  \, j\  \, <\  \, n\, ;\  \  \, j\, +\! +)
                               if (a[i][j] != a[j][i])
                                          antisymmetry1++;
                               else symmetry1++;
                     }
          }
          if (symmetry1 == 1)
          cout << "relation is symmetric" << endl;</pre>
          else if (antisymmetry1 == 1)
          cout << "relation is antisymmetric" << endl;</pre>
}
void reflexivity(int** a, int n)
\left\{ \right.
          for (int i = 0; i < n; i++)
          {
                     for (int j = 0; j < n; j++)
                               if (a[i][i] == 1)
                               reflexivity1++;
                     if (reflexivity1 >= 1) {
                     cout << "relation is reflexive" << endl;</pre>
                     }
                     else
                     cout << "relation is antireflexive" << endl;</pre>
          }
```

```
}
void transitivity(int** a, int n)
\left\{ \right.
         int not transitivity 1 = 0;
         for (int i = 0; i < n; i++)
         {
                  for (int j = 0; j < n; j++)
                           if (a[i][j])
                           {
                                    for (int k = 0; k < n; k++)
                                    {
                                    if (a[j][k] && !a[i][k])
                                    not_transitivity1++;
                                    else
                                    transitivity1++;
         }
         if (not transitivity1 == 1)
         cout << "relation is not transitive" << endl;</pre>
         else if (transitivity1 == 1)
         cout << "relation is transitive" << endl;</pre>
}
```

```
void pr symmetry(int** a, int n)
\left\{ \right.
           for (int i = 0; i < n; i++)
           for (int j = 0; j < n; j++)
           if (a[i][j] = 1)
           a[j][i] = 1;
}
void pr reflexivity(int** a, int n)
\left\{ \right.
           for (int i = 0; i < n; i++)
           a[i][i] = 1;
}
void pr transitivity (int ** a, int n)
\left\{ \right.
           for (int i = 0; i < n; i++)
           \left\{ \right.
                      \  \, \text{for} \  \, (\, i\, n\, t \  \  \, j \  \, = \  \, 0\, ; \  \  \, j \  \, < \  \, n\, ; \  \  \, j + +)
                                 for (int k = 0; k < n; k++)
                                  if (a[j][k] = 1)
                                 for (int p = 0; p < n; p++)
                                             if (a[k][p] = 1)
                                             a[j][p] = 1;
                                 }
                                 }
                      }
           }
```

```
}
void pr(int** a, int n, int number)
{
         int** a1;
         a1 = new int* [n];
         for (int i = 0; i < n; i++)
                  a1[i] = new int[n];
                  \quad \text{for (int j = 0; j < n; j++)} \quad
                           a1[i][j] = a[i][j];
                  }
         }
            (number = 1)
         \Big\{
                  pr_symmetry(a1, n);
                  cout << "symmetric closure" << endl;</pre>
            (number = 2)
         i f
         {
                  pr reflexivity (a1, n);
                  cout << "reflexivity closure" << endl;</pre>
            (number = 3)
         {
                  pr_transitivity(a1, n);
                  cout << "transitive closure" << endl;</pre>
         }
            (number = 4)
         {
                  pr symmetry (a1, n);
                  pr_reflexivity(a1, n);
                  pr transitivity (a1, n);
```

```
cout << "equivalence closure" << endl;</pre>
        }
        for (int i = 0; i < n; i++) {
                 for (int j = 0; j < n; j++)
                 cout << a1[i][j] << ', ';
                 cout << endl;
        }
}
int main()
{
        setlocale(LC ALL, "RUS");
        int n;
        cout << "n=";
        cin >> n;
        int** a;
        a = new int* [n];
        cout << "Enter matrix \n";</pre>
        for (int i = 0; i < n; i++)
        {
                 a[i] = new int[n];
                 for (int j = 0; j < n; j++)
                          cin >> a[i][j];
        symmetry (a, n);
        reflexivity (a, n);
         transitivity (a, n);
        if (symmetry1 = 1 \&\& reflexivity1 = 1)
                          && transitivity 1 = 1)
```

}

ЗАКЛЮЧЕНИЕ

В ходе выполнения лабораторной работы были рассмотрены основные свойства бинарных отношений, виды бинарных отношений, при определённых комбинациях свойств, а такжке изучена система замыканий на множестве бинарных отношений. Также были разработаны алгоритмы определения свойств отношений и их классификации.