Ch 35 Diffraction & Polarization

tags: #LessonPlan, #SingleSlitDiffraction, #DiffractionGrating, #X-RayDiffraction

Objective

- I. Solve problems involving **Diffraction**
 - By first identifying what type of diffraction:
 - 1. Single Slit
 - 2. Grating
 - 3. X-Ray
 - and then identifying the corresponding **path difference** Δs

Content Review

REMARK: diffraction occurs when waves encounter obstacles while interference occurs when two waves meet each other.

Double-Slit Interference

The **path difference** Δs equation is given by

$$\Delta s = d \sin heta = egin{cases} m \lambda & [ext{maxima}] \ (m + rac{1}{2}) \lambda & [ext{minima}] \end{cases} \qquad m = 0, \pm 1, \pm 2, \pm 3, \ldots$$

where d is the distance between the slits.

Single-Slit Diffraction

The **path difference** Δs equation is given by

$$\Delta s = D \sin \theta = m\lambda, \qquad m = \pm 1, \pm 2, \pm 3, \dots$$
 [minima]

where D is the width of the slit.

Diffraction Grating

The **path difference** Δs equation is given by

$$\Delta s = d \sin \theta = m \lambda$$
 $m = 0, 1, 2, ...$ [maxima]

where d is the separation between adjacent slits.

X-Ray Diffraction

The **path difference** Δs equation is given by

Bragg's equation:
$$\Delta s = m\lambda = 2d\sin\phi$$
 $m = 1, 2, 3, ...$ [maxima]

where d is the spacing between atomic layers and ϕ is the angle of incidence (measured from the horizontal!)

[10mins]

Guided Practice

Single-Slit Diffraction #1

Light of wavelength $780\,\mathrm{nm}$ passes through a slit $1\times10^{-3}\,\mathrm{mm}$ wide. How wide is the central maximum on a screen $20\,\mathrm{cm}$

- (a) in degrees
- (b) in centimeters

Single-Slit Diffraction #2

If a slit diffracts $580\,\mathrm{nm}$ light so that the diffraction maximum is $6\,\mathrm{cm}$ wide on a screen $2.20\,\mathrm{m}$ away, what will be the width of the diffraction maximum for light with a wavelength of $460\,\mathrm{nm}$?

[30mins]

Group Activity

Diffraction Grating

At what angle will $480\,\mathrm{nm}$ light produce a second-order maximum when falling on a grating whose slits are $1.35\times10^{-3}\,\mathrm{cm}$ apart?

X-Ray Diffraction

X-rays of wavelength $0.138\,\mathrm{nm}$ fall on a crystal whose atoms, lying in planes, are spaced $0.285\,\mathrm{nm}$ apart. At what angle ϕ (relative to the horizontal) must the X-rays be directed if the first diffraction maximum is to be observed?

Solutions

Single-Slit Diffraction #1

- (a) $heta=98^\circ$
- (b) $d = 46 \, \text{cm}$

Single-Slit Diffraction #2

$$\Delta y = 4.8\,\mathrm{cm}$$

Diffraction Grating

$$heta=4.1^\circ$$

X-Ray Diffraction

$$\phi=14.0^\circ$$