Heaps

Kuan-Yu Chen (陳冠宇)

2018/12/10 @ TR-212, NTUST

Review

- Shortest path algorithms
 - Minimum spanning tree
 - Prim's algorithm
 - Kruskal's algorithm
 - Dijkstra's algorithm

Binary Heap

- A **binary heap** is a complete binary tree in which every node satisfies the heap property
 - Min Heap

If B is a child of A, then $key(B) \ge key(A)$

Max Heap

If B is a child of A, then $key(A) \ge key(B)$

Heap – Insertion

- Inserting a new value into the heap is done in the following two steps:
 - Consider a max heap *H* with *n* elements
 - 1. Add the new value at the bottom of *H*
 - 2. Let the new value rise to its appropriate place in H

Example

• Consider a max heap and insert 99 in it

Heap – Deletion

- An element is always deleted from the root of the heap
- Consider a max heap *H* having *n* elements, deleting an element from the heap is done in the following three steps:
 - 1. Replace the root node's value with the last node's value
 - 2. Delete the last node
 - 3. Sink down the new root node's value so that H satisfies the heap property

Example.

Delete the root node's value from a given max heap H

Example..

• Delete the root node's value from a given max heap *H*

Binomial Tree

- A binomial tree is an ordered tree
 - A binomial tree B_i with order i has 2^i nodes
 - A binomial tree of order 0 has a single node
 - The height of a binomial tree B_i is i
 - A binomial tree of order i has a root node whose children are the root nodes of binomial trees of order i-1, i-2, \cdots , 2, 1,

and 0

Binomial Heap

- A binomial heap *H* is a set of binomial trees
 - Every binomial tree in *H* satisfies the minimum heap property

Binomial Heap with Linked List

Minimum Value in Binomial Heap

• Since a binomial heap is heap-ordered, the node with the minimum value in a particular binomial tree will appear as a root node in the binomial heap

Fibonacci Heaps.

- A Fibonacci heap is a collection of trees
 - It is loosely based on binomial heaps
 - Fibonacci heaps differ from binomial heaps as they have a more relaxed structure
 - The trees in a Fibonacci heap are **not** constrained to be binomial trees

Fibonacci Heaps..

- Fibonacci heap *H* is generally accessed by a pointer called min[*H*] which points to the root that has a minimum value
 - If the Fibonacci heap H is empty, then min[H] = NULL

Schedule

12/3	Advanced Graphs	
12/5	Shortest Path Algorithms	
12/10		
12/12		
12/17		
12/19		
12/22	Make-up Class for 12/31?	
12/24		
12/26		
12/31	Bridge Holiday	
1/2	Study Day	
1/7	Final Exam	

Questions?

kychen@mail.ntust.edu.tw