Endomorphismes commutant avec les translations

On note $\mathcal{B} = (1, X, ..., X^n)$ la base canonique de $\mathbb{R}_n[X]$.

Partie I

On considère une suites de réels deux à deux distincts : $(a_n)_{n\in\mathbb{N}}$.

Pour $n \in \mathbb{N}^*$, on note M_n la matrice carrée d'ordre n+1 dont l'élément d'indice (i,j) est a_{j-1}^{n-i+1} .

$$\text{Autrement dit}: \ M_n = \begin{pmatrix} a_0^n & a_1^n & \cdots & a_n^n \\ a_0^{n-1} & a_1^{n-1} & \cdots & a_n^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

On pose V_n son déterminant que nous allons calculer maintenant :

- $\text{1.} \qquad \text{On introduit la fonction } f: \mathbb{R} \to \mathbb{R} \ \text{ définie par} : f(x) = \begin{vmatrix} a_0^n & a_1^n & \cdots & a_{n-1}^n & x^n \\ a_0^{n-1} & a_1^{n-1} & \cdots & a_{n-1}^{n-1} & x^{n-1} \\ \vdots & \vdots & & \vdots & \vdots \\ a_0 & a_1 & \cdots & a_{n-1} & x \\ 1 & 1 & \cdots & 1 & 1 \end{vmatrix}.$
- 1.a Justifier que f est une fonction polynomiale de degré inférieur ou égal à n. Exprimer le coefficient λ de x^n dans f(x) à l'aide de l'un des termes de la suite $(V_n)_{n\in\mathbb{N}}$.
- 1.b Justifier que $a_0, a_1, ..., a_{n-1}$ sont racines de f.
- 1.c En déduire que $\forall x \in \mathbb{R}, f(x) = \lambda \prod_{k=0}^{n-1} (x a_k)$.
- 1.d Conclure: $\forall n \in \mathbb{N}^*, V_n = \prod_{0 \le i < i \le n} (a_i a_j)$.
- 2. On considère n+1 nombres réels deux à deux distincts : $a_0, a_1, ..., a_n$ et on considère la famille de polynômes : $\mathcal{C} = (P_k)_{0 < k < n}$ où $P_k = (X + a_k)^n$.
- 2.a Former la matrice représentative de la famille C relative à la base B.
- 2.b Etablir que \mathcal{C} est une base de $\mathbb{R}_n[X]$.

Partie II

On désigne par n un entier naturel non nul.

- 1. Pour tout $h \in \mathbb{R}$, on définit une application T_h en posant pour tout $P \in \mathbb{R}_n[X]$: $T_h(P) = P(X+h)$.
- 1.a Justifier que T_h est un endomorphisme de $\mathbb{R}_n[X]$.
- 1.b Quel en est le déterminant?

On désire déterminer l'ensemble E formée des endomorphismes φ de $\mathbb{R}_n[X]$ satisfaisant la propriété : $\forall h \in \mathbb{R}, \varphi \circ T_h = T_h \circ \varphi$.

- 2. Montrer que E est un sous-espace vectoriel et un sous-anneau algèbre de $\mathcal{L}(\mathbb{R}_n[X])$.
- 3. On note D l'endomorphisme de dérivation dans $\mathbb{R}_n[X]$ i.e. l'application $D: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ définie par $D: P \mapsto P'$.
- 3.a Etablir que $D \in E$.
- 3.b Justifier que $\forall k \in \{0,1,...,n\}, D^k \in E$.
- 3.c Etablir que la famille $(D^k)_{0 \le k \le n}$ est libre.

- 4. Soit $\theta: E \to \mathbb{R}_n \big[X \big]$ définie par $\theta(\varphi) = \varphi(X^n)$.
- 4.a Montrer que θ est une application linéaire.
- 4.b Etablir que θ est injective.
- 4.c Déterminer la dimension de E.
- 5. Donner une base de E.