Mesocosm experiment plots

Matthew Malishev^{1*} David Civitello ¹

 $^{1}\ Department\ of\ Biology,\ Emory\ University,\ 1510\ Clifton\ Road\ NE,\ Atlanta,\ GA,\ USA,\ 30322$

Contents

0	2
Overview	_
Install dependencies	2
Get data	2
Load data	2
Set plotting graphics	3
Mesocosm1 data sheet	4
Snail size per tank	4
Snail diameter (mm) distribution	5
Snail size over time (weeks)	8
	10
	11
	15
<u>.</u>	16
	17
	19
1	20
r r r r r	22
	22
00	23
, 60	$\frac{25}{25}$
v	
	27
Size class vs Egg mass (with schisto)	28
Egg Mass per Week	30

Date: 2018-08-02 R version: 3.5.0

 $Corresponding\ author:\ matthew.malishev@gmail.com$

This document can be found at https://github.com/darwinanddavis/UsefulCode

TO DO

How much of the population does the sampling effort capture?

Overview

This document uses the schisto mesocosm 2016 data to explore cercariae production from snail hosts of different body sizes (diameter in mm and mass in mg) over a 14 week period under high and low N/P nutrient conditions. Host reproduction (egg masses) is also calculated.

Install dependencies

Get data

```
wd <- params$dir # working dir is set in yaml header
setwd(paste0(wd,"/"))
f <- "meso1.csv"
f2 <- "meso2.csv"</pre>
```

Load data

```
meso1 <- read.table(f,header=T,sep=",", row.names=NULL,stringsAsFactors=FALSE, strip.white=TRUE) # read
meso2 <- read.table(f2,header=T,sep=",",row.names=NULL,stringsAsFactors=FALSE, strip.white=TRUE) # read
colnames(meso2)[2] <- "NP" # fix col names</pre>
meso2$Week <- as.integer(meso2$Week)</pre>
str(meso2)
'data.frame': 768 obs. of 9 variables:
$ Tank : int 1 2 3 4 5 6 7 8 9 10 ...
        : chr "High" "Low" "Low" "High" ...
 $ Size : chr "Small" "Intermediate" "Intermediate" "Small" ...
 $ Schisto: chr "No" "Yes" "Yes" "Yes" ...
 $ Date : chr "24/05/16" "24/05/16" "24/05/16" "24/05/16" ...
 $ Week : int 1 1 1 1 1 1 1 1 1 ...
 $ Eggs : int 0 0 1 0 0 0 7 10 1 0 ...
 $ Phyto_F: num 2585 1005 1327 1399 2341 ...
 $ Peri_F : num 7301 4711 7253 8212 4293 ...
meso1[is.na(meso1)] <- 0 ; meso2[is.na(meso2)] <- 0 # remove NAs
mass <- 0.0096*(meso1$Diameter^3) # add mass to df
meso1$Mass <- mass
Outlier
print("Outlier"); meso1[which(meso1$Mass==max(meso1$Mass)),]
[1] "Outlier"
# A tibble: 1 x 9
                             Snail Diameter Cercariae Week Sampling_Effort Mass
  Tank Picture Name Date
                                                                     <dbl> <dbl>
* <int> <chr>
                    <chr>
                             <chr>
                                      <dbl>
                                                <int> <int>
                    29/06/16 143
    38 P1001057
                                       50.5
                                                    0
                                                                          3 1239.
```

```
outlier <- 0 # remove outlier from data?
if(outlier==1){meso1 <- subset(meso1, Mass<max(Mass))}</pre>
Cleaning Snail and Date cols
#unique(meso1$Snail)
#unique(meso1$Date)
sapply(meso1, function(x) sum(nchar(x))) # check number of characters in each col
           Tank
                    Picture Name
                                              Date
                                                              Snail
                                                                            Diameter
                                                                                             Cercariae
          84102
                           367153
                                            358163
                                                              86955
                                                                               239237
                                                                                                 46575
           Week Sampling_Effort
                                              Mass
                                            668838
          58976
                            46116
Set Cex sizes
cex cer <- (meso1$Cercariae+1)/1000</pre>
cex sam <- meso1$Sampling Effort/1.5
cex_diam <- meso1$Diameter/3</pre>
```

Set plotting graphics

```
plot_it <- function(manuscript,bg,cp,alpha,family){ # plotting function (plot for MS or not, set bg col
  graphics.off()
  if(manuscript==0){
    if(bg=="black"){
      colvec<-magma(200,1)</pre>
      par(bg = colvec[1],col.axis="white",col.lab="white",col.main="white",fg="white",bty="n",las=1,mar.
      border=adjustcolor("purple",alpha=0.5)
    }else{
      colvec<-bpy.colors(200)</pre>
      par(bg = colvec[1],col.axis="white",col.lab="white",col.main="white",fg="white",bty="n",las=1,mar
      border=adjustcolor("blue",alpha=0.5)
    }
  }else{
     graphics.off()
    par(bty="n",las=1,family=family)
  # color palettes
  # ifelse(manuscript==1,colvec<-adjustcolor(brewer.pal(9,cp)[9], alpha = alpha),colvec <- adjustcolor(
   # colfunc <<- colorRampPalette(brewer.pal(9,cp),alpha=alpha)</pre>
  colfunc <<- adjustcolor(brewer.pal(9,cp),alpha=alpha) # USES <<- OPERATOR
}
# Setting ggplot theme graphics
plot_it_gg <- function(bg){ # bg = colour to plot bg, family = font family</pre>
  if(bg=="white"){
    bg <- "white"
    fg <- "black"
  theme_tufte(base_family = "HersheySans") +
    theme(panel.border = element blank(), panel.grid.major = element blank(), panel.grid.minor = element
    theme(axis.line = element_line(color = fg)) +theme(axis.ticks = element_line(color = fg)) + theme(p
}
  }# end gg
```

Set plotting parameters

```
print("1/0, set colour, set colour palette 'display.brewer.all()',set alpha for col,set font")
plot_it(0,"blue","YlOrRd",1,"HersheySans") # set col function params
plot_it_gg("white") # same as above

# set colors you want
col <- "lightblue"
col2 <- "orange"

Get only infected snails

# get only infected snails
meso1_II <- subset(meso1, subset=Cercariae>0)
meso1_UU <- subset(meso1, subset=Cercariae==0)</pre>
```

Mesocosm1 data sheet

Snail size per tank

Shell diameter (mm) per tank

Shell diameter (mm) over 14 weeks


```
with(meso1,t.test(Diameter,Tank)) # t.test
```

```
data: Diameter and Tank
t = -292.62, df = 54631, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
   -19.45781 -19.19889
sample estimates:
mean of x mean of y
5.822942 25.151292</pre>
```

Snail diameter (mm) distribution

Welch Two Sample t-test

```
par(bty="n", las = 1)
#plot_it(0,"blue","YlOrRd",1,"HersheySans") # set col function params
den <- density(meso1$Diameter)
xlim <- round_any(max(den$x),10,ceiling)</pre>
```

Overall shell diameter (mm) over 14 weeks


```
main=paste0("Shell diameter (mm) over ",max(meso1$Week)," weeks"))
polygon(den, col=adjustcolor(col,alpha=0.5),border=col) # fill AUC
abline(v=mean(meso1_UU$Diameter),col=col,lty=3,ylim=c(0,ylim)) # get mean
par(new=T)
# Infected
den2 <- density(meso1_II$Diameter)</pre>
plot(den2,
     col=adjustcolor(col2,alpha=0.5),
     xlim=c(0,xlim),
     ylim=c(0,ylim),
     xlab="",
    ylab="",
     main="")
polygon(den2, col=adjustcolor(col2,alpha=0.5),border=col2) # fill AUC
abline(v=mean(meso1_II$Diameter),col=col2,lty=3,ylim=c(0,ylim)) # get mean
par(family="mono")
legend("right",legend=c("Uninfected","Infected"),col=c(col,col2),
       bty="n",pch=20,pt.cex=1.5,cex=0.7,y.intersp = 0.5, xjust = 0.5,
       title="",title.adj = 0.3,
       # text.font=2,
       trace=T,inset=0.1)
```

Shell diameter (mm) over 14 weeks


```
xchar= 1.181 ; (yextra,ychar)= -0.003635 0.003635 points2( 46.65 46.65 , 0.1 0.09637 , pch= 20 20 , ...)
```

Snail size over time (weeks)

Shell diameter (mm) over time (weeks) ~ 1000 eggs inoculated at 0,2,4,6 weeks

```
abline(h=mean(meso1$Diameter),col=col,lty=3)
par(new=T)
points(x=c(1,3,5,7),y=rep(ylim/2,4),pch="~",col="red")# add inoculation points
# un/infected
boxplot(Diameter~Week, data=meso1_UU,
        # xlim=c(0,max(meso1$Week)),
       ylim=c(0,ylim),
       col = col,
       notch = T,xlab="Week",ylab="Diameter (mm)",
       main=paste0("Shell diameter (mm) over ",max(meso1$Week)," weeks \n(uninfected snails)"),
       xaxs = "i", yaxs = "i"
abline(h=mean(meso1_UU$Diameter),col=col,lty=3)
par(new=T)
points(x=c(1,3,5,7),y=rep(ylim/2,4),pch="~",col="red")# add inoculation points
# infected
boxplot(Diameter~Week, data=meso1_II,
        # xlim=c(0,max(meso1$Week)),
        ylim=c(0,ylim),
       col = col2,
       notch = T,xlab="Week",ylab="Diameter (mm)",
       main=paste0("Shell diameter (mm) over ",max(meso1$Week)," weeks \n (infected snails)"),
       xaxs = "i", yaxs = "i"
)
abline(h=mean(meso1_II$Diameter),col=col,lty=3)
points(x=c(1,3),y=rep(ylim/2,2),pch="~",col="red")# add inoculation points
```

Shell diameter (mm) over 14 weeks

Shell diameter (mm) over 14 weeks (infected snails)

Snail size over time (weeks) per tank

Snail size density over time for all tanks (total = 48) have been saved as 'Size_per_tank_over_time.pdf' in /Users/malishev/Documents/Emory/research/mesocosm

 $\sim\!\!1000$ eggs inoculated at 0,2,4,6 weeks

```
#### size dist per tank over time ('Snail size over time (weeks)' but for each tank)
# Plot Tanks with large nutrients at the beginning versus tanks with lower nutrients
# Pick high and low nutrient tanks to compare

# Focus on diameter rather than biomass

# Eight replicates per size class and NP combo: six received schisto, two didn't. (Replication factor)

# Select tank #. Max 48
tank <- 45

par(bty="n", las = 1)
#plot_it(0, "blue", "YlOrRd", 1, "HersheySans") # set col function params
layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE)) # plot stacked plots</pre>
```

snail <- subset(meso1, subset=Tank==tank) # get tank level individuals</pre>

```
ggplot(snail, aes(x = Diameter, y = as.factor(Week), fill=..x..)) + # geom_density_ridges()
# scale = overlap
geom_density_ridges_gradient(scale = 5, size=0.2,color="black", rel_min_height = 0.01,panel_scaling=T
geom_density_ridges(scale = 5, size=0.2,color="black", rel_min_height = 0.01,fill="white",alpha=0.2) #
geom_density_ridges(scale = 5, size=0.2,color="white", rel_min_height = 0.01,fill=col,alpha=0.5) +
scale_fill_viridis(name = "Diameter", alpha=0.1, option = "magma",direction=-1) + # "magma", "inferno
xlim(c(0,25)) +
labs(title = paste0("Snail diameter over ",max(meso1$Week)," weeks for tank ",tank)) +
xlab("Snail diameter (mm)") +
ylab("Week") +
plot_it_gg("white")
```


Body mass (mg) over time (weeks)

(Soft tissue dry mass in mg = 0.0096 * Diameter [in mm]^3) $\sim\!\!1000$ eggs inoculated at 0,2,4,6 weeks

Outer

Outlier

```
par(bty="n", las = 1)
\#plot_it(0,"blue","YlOrRd",1,"HersheySans") \# set col function params
layout(matrix(c(1,1,2,3), 2, byrow = TRUE))# plot stacked plots
ylim <- round_any(max(meso1$Mass),100,ceiling)</pre>
boxplot(Mass~Week, data=meso1,
        # xlim=c(0,max(meso1$Week)),
       ylim=c(0,ylim),
        col = col,
        notch = T,xlab="Week",ylab="Dry body mass (mg)",
        main=paste0("Body mass (mg) over ",max(meso1$Week)," weeks"),
       xaxs = "i", yaxs = "i"
)
abline(h=mean(meso1$Mass),col=col,lty=3)
points(x=c(1,3,5,7),y=rep(ylim/3,4),pch="~",col="red")# add inoculation points
### uninfected ###
boxplot(Mass~Week, data=meso1_UU,
        # xlim=c(0,max(meso1$Week)),
        ylim=c(0,ylim),
       col = col,
       notch = T,xlab="Week",ylab="Dry body mass (mg)",
        main=paste0("Body mass (mg) over ",max(meso1$Week)," weeks \n(uninfected)"),
       xaxs = "i", yaxs = "i"
)
abline(h=mean(meso1$Mass),col=col,lty=3)
points(x=c(1,3,5,7),y=rep(ylim/3,4),pch="~",col="red")# add inoculation points
### infected ###
ylim <- round_any(max(meso1_II$Mass),100,ceiling)</pre>
boxplot(Mass~Week, data=meso1_II,
        # xlim=c(0,max(meso1$Week)),
        ylim=c(0,ylim),
        col = col2,
        notch = F,xlab="Week",ylab="Dry body mass (mg)",
        main=paste0("Body mass (mg) over ",max(meso1$Week)," weeks \n(infected)"),
        xaxs = "i", yaxs = "i"
)
abline(h=mean(meso1$Mass),col=col2,lty=3)
points(x=c(1,3),y=rep(ylim/1.2,2),pch="~",col="red")# add inoculation points
```

Body mass (mg) over 14 weeks

Body mass (mg) over 14 weeks

Week

Body mass (mg) over 14 weeks (infected)

Without outlier

0

0

Outlier

```
outer <- meso1[which(meso1$Mass==max(meso1$Mass)),][,c("Mass","Cercariae")] # identify outlier
outer
# A tibble: 1 x 2
   Mass Cercariae
* <dbl>
            <int>
1 1239.
par(bty="n", las = 1)
#plot_it(0, "blue", "YlOrRd", 1, "HersheySans") # set col function params
layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE)) # plot stacked plots
ylim <- round_any(max(meso1$Mass),100,ceiling)</pre>
boxplot(Mass~Week, data=meso1,
        outline = F,
        # xlim=c(0, max(meso1$Week)),
        ylim=c(0,60),
        col = col,
        notch = T,xlab="Week",ylab="Dry body mass (mg)",
```

12

```
main=paste0("Body mass (mg) over ",max(meso1$Week)," weeks without outlier"),
        xaxs = "i", yaxs = "i"
abline(h=mean(meso1$Mass),col=col,lty=3)
points(x=c(1,3,5,7),y=rep(ylim/3,4),pch="~",col="red")# add inoculation points
### uninfected ###
boxplot(Mass~Week, data=meso1 UU,outline=F,
        # xlim=c(0,max(meso1$Week)),
       ylim=c(0,60),
       col = col,
       notch = T,xlab="Week",ylab="Dry body mass (mg)",
       main=paste0("Body mass (mg) over ",max(meso1$Week)," weeks \n(uninfected)"),
       xaxs = "i", yaxs = "i"
)
abline(h=mean(meso1$Mass),col=col,lty=3)
points(x=c(1,3,5,7),y=rep(ylim/3,4),pch="~",col="red")# add inoculation points
### infected ###
ylim <- round_any(max(meso1_II$Mass),100,ceiling)</pre>
boxplot(Mass~Week, data=meso1_II,
        # xlim=c(0,max(meso1$Week)),
       ylim=c(0,ylim),
       col = col2,
       notch = F,xlab="Week",ylab="Dry body mass (mg)",
       main=paste0("Body mass (mg) over ",max(meso1$Week)," weeks \n(infected)"),
       xaxs = "i", yaxs = "i"
)
abline(h=mean(meso1$Mass),col=col2,lty=3)
points(x=c(1,3),y=rep(ylim/1.2,2),pch="~",col="red")# add inoculation points
```

Body mass (mg) over 14 weeks without outlier

Snail size and number of cercariae produced

Point size by cercariae number

Number of cercarie for each snail length (mm)

Linear log

```
# summary(with(meso1,lm(log(Cercariae)~Diameter))) # linear log
```

Snail mass and cercariae produced (mg)

Number of cercariae for each log snail mass (mg)

Snail size per tank

```
Shell diameter (mm)
Select tank #. max 48
```

```
polygon(den, col=adjustcolor(col,alpha=0.5),border=col) # fill AUC
abline(v=mean(snail$Diameter),col=col,lty=3,ylim=c(0,ylim)) # get mean
title(main=paste0("Shell diameter (mm) distribution for tank #",tank),
      xlab="Shell diameter (mm)")
title(ylab="Density",line=3.5)
### uninfected ###
snail UU <- subset(snail,subset=Cercariae==0)</pre>
den <- density(snail_UU$Diameter) # get diameter density</pre>
xlim <- round any(max(den$x),10,ceiling)</pre>
ylim <- round_any(max(den$y),0.05,ceiling)</pre>
plot(den,
     col=adjustcolor(col,alpha=0.5),
     xlim=c(0,xlim),ylim=c(0,ylim),
     xlab="",ylab="",main=""
)
polygon(den, col=adjustcolor(col,alpha=0.5),border=col) # fill AUC
abline(v=mean(snail_UU$Diameter),col=col,lty=3,ylim=c(0,ylim)) # get mean
title(main=paste0("Uninfected snails in tank #",tank),
      xlab="Shell diameter (mm)")
title(ylab="Density",line=3.5)
### infected ###
snail_II <- subset(snail,subset=Cercariae>0)
if(length(snail II$Tank)>0){
  den2 <- density(snail_II$Diameter) # get diameter density</pre>
  plot(den2,
       col=adjustcolor(col2,alpha=0.5),
       xlim=c(0,xlim),ylim=c(0,ylim),
       xlab="",ylab="",main=""
  polygon(den2, col=adjustcolor(col2,alpha=0.5),border=col2) # fill AUC
  abline(v=mean(snail_II$Diameter),col=col2,lty=3,ylim=c(0,ylim)) # get mean
  title(main=paste0("Infected snails in tank #",tank),
        xlab="Shell diameter (mm)")
}else{
  plot(0,0,type="n");title(main=paste0("Infected snails in tank #",tank)); text(0,0.5,paste0("No cercar
```

Shell diameter (mm) distribution for tank #2

Uninfected snails in tank #2

Infected snails in tank #2

Cercariae production over time

Cercariae shed over 90 mins per week ~ 1000 eggs inoculated at 0,2,4,6 weeks Snail abundance over time (weeks)

Cercariae production over 14 weeks

Tank cercariae production over time per tank

[1] 400

```
Select tank #. max 48

tank <- 9

par(bty="n", las = 1)
#plot_it(0, "blue", "YlOrRd", 1, "HersheySans") # set col function params
cer_total <- 0 # set ylim either to max for tank (1) or max across all tanks (6100)

snail <- subset(meso1, subset=Tank==tank) # get tank level individuals
snail <- subset(snail, subset=Cercariae>0) # get only cercariae
xlim <- max(meso1$Week) # uses total num of weeks
ylim <- round_any(max(snail$Cercariae),100,ceiling)
ifelse(cer_total==1,ylim <- round_any(max(meso1$Cercariae),100,ceiling),ylim <- round_any(max(snail$Cercariae))</pre>
```

```
par(mfrow=c(1,1))
if(length(snail$Cercariae)>0){
  with(snail,plot(Cercariae~Week,
                  col=adjustcolor(col,alpha=0.5),
                  type="h",
                  lwd=5,
                  xlim=c(0,xlim),ylim=c(0,ylim),
                  xlab="",ylab="",main=""
  ))
  abline(h=mean(snail$Cercariae),col=col,lty=3,ylim=c(0,ylim)) # get mean
  title(main=paste0("Cercariae production for tank ",tank," over ",max(meso1$Week)," weeks"),
        xlab="Week")
  title(ylab="Number of cercariae shed in 90 mins",line=3.5)
  par(new=T)
  points(x=c(0,2,4,6),y=rep(max(snail$Cercariae)/3,4),pch="~",cex=1.5,col="red")# add inoculation point
}else{print(paste0("No cercariae in tank #",tank))}
```

Cercariae production for tank 9 over 14 weeks

Mesocosm 2 data sheet

Clean data

```
meso2$Schisto <- as.integer(as.factor(meso2$Schisto))-1# convert Y/N in Schisto col to 1/0
# convert size to integers
meso2$Size <- gsub("Intermediate","2Intermediate",meso2$Size)</pre>
meso2$Size <- gsub("Small","1Small",meso2$Size)</pre>
meso2$Size <- gsub("Large","3Large",meso2$Size)</pre>
meso2$Size <- as.integer(as.factor(meso2$Size))</pre>
### get snails with egg masses
#### First get presence of schisto
meso2 UU <- subset(meso2,Schisto==0)</pre>
meso2_II <- subset(meso2,Schisto==1)</pre>
# get uninfected snails with egg masses
eggs_UU <- subset(meso2_UU,Eggs>0)
# get infected snails with egg masses
eggs_II <- subset(meso2_II,Eggs>0)
# qet size classes
small <- subset(meso2,Size==1) #small</pre>
int <- subset(meso2,Size==2) #intermediate</pre>
large <- subset(meso2,Size==3) #large</pre>
# get NP conc
high <- subset(meso2, NP=="High") # high NP conc
low <- subset(meso2,NP=="Low") # low NP conc</pre>
```

Egg mass distribution

Distribution of number of egg masses over 14 weeks

N/P concentration v egg mass

```
par(bty="n", las = 1)
#plot_it(0,"blue","YlOrRd",1,"HersheySans") # set col function params
layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE)) # plot stacked plots
ylim=round_any(max(meso2$Eggs),10)
with(meso2, stripchart(Eggs~NP,
                      method="jitter", jitter=0.1,
                      pch=20,cex=2,
                      # cex=cex_diam,
                      col=adjustcolor(col,alpha=0.3),
                      vertical=T,
                      ylim=c(0,ylim),
                      group.names=c("High","Low"),
                      xlab="",ylab="",main="")
abline(h=mean(meso2$Eggs),col=col,lty=3)
title(main=paste0("Number of egg masses for high and low N/P levels over ",max(meso1$Week)," weeks"),
      xlab="N/P level")
```

```
title(ylab="Number of egg masses",line=3.5)
### uninfected ###
with(eggs_UU,stripchart(Eggs~NP,
                        method="jitter", jitter=0.1,
                        pch=20, cex=2,
                        col=adjustcolor(col,alpha=0.3),
                        vertical=T,
                        ylim=c(0,ylim),
                        group.names=c("High","Low"),
                        xlab="",ylab="",main="")
abline(h=mean(eggs_UU$Eggs),col=col,lty=3)
title(main=paste0("Uninfected snails"),
      xlab="N/P level")
title(ylab="Number of egg masses",line=3.5)
### infected ###
with(eggs_II,stripchart(Eggs~NP,
                        method="jitter", jitter=0.1,
                        pch=20, cex=2,
                        col=adjustcolor(col2,alpha=0.3),
                        vertical=T,
                        ylim=c(0,ylim),
                        group.names=c("High","Low"),
                        xlab="",ylab="",main="")
abline(h=mean(eggs_II$Eggs),col=col2,lty=3)
title(main=paste0("Infected snails"),
     xlab="N/P level")
```

Number of egg masses for high and low N/P levels over 14 weeks

Phyto and Peri Distribution

```
phyto = flourescence units
peri = flourescence per 2 weeks / 3.5 inch<sup>2</sup> tile (gross productivity biomass rate)
par(bty="n", las = 1)
par(mfrow=c(1,1))
#plot_it(0,"blue","YlOrRd",1,"HersheySans") # set col function params
den <- density(meso2$Phyto_F)</pre>
xlim <- round_any(max(den$x),10000,ceiling)</pre>
ylim <- round_any(max(den$y),0.0001,ceiling)</pre>
plot(den,
     col=adjustcolor(col,alpha=0.5),
     xlim=c(0,xlim),
     ylim=c(0,ylim),
     xlab="",ylab="",main=""
polygon(den, col=adjustcolor(col,alpha=0.5),border=col) # fill AUC
abline(v=mean(meso2$Phyto_F),col=col,lty=3,ylim=c(0,ylim)) # qet mean
par(new=T) # add periphyton concentration
```

```
den2 <- density(meso2$Peri_F)</pre>
plot(den2,
     col=adjustcolor(col2,alpha=0.5),
     xlim=c(0,xlim), # uses xy lims from phyto
     ylim=c(0,ylim),
     xlab="",ylab="",main=""
)
polygon(den2, col=adjustcolor(col2,alpha=0.5),border=col2) # fill AUC
abline(v=mean(meso2$Peri_F),col=col2,lty=3,ylim=c(0,ylim)) # get mean
title(main=paste0("Resource concentration over ",max(meso1$Week)," weeks"),
      xlab="Resource concentration")
title(ylab="Density",line=3.5)
par(family='mono')
legend("topright",legend=c("Phytoplankton","Periphyton"),title="Resource type",
       border="white",pch=19,ncol=1,bty="n",
       cex=0.75,
       xjust=0.5, yjust=0.5, x.intersp = 0.5, y.intersp = 0.5,
       col=c(col,col2)
)
```

Resource concentration over 14 weeks

Egg Mass over time v presence of schisto

 ~ 1000 eggs inoculated at 0,2,4,6 weeks

```
par(bty="n", las = 1)
#plot_it(0,"blue","YlOrRd",1,"HersheySans") # set col function params
layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE)) # plot stacked plots
meso2$Week <- as.integer(meso2$Week)</pre>
xlim <- max(meso2$Week)</pre>
ylim <- round_any(max(meso2$Eggs),10)</pre>
with(meso2, stripchart(Eggs~Week,
                      method="jitter", jitter=0.1,
                      pch=20, cex=2,
                      col=adjustcolor(col,alpha=0.5),
                      vertical=T,
                      xlim=c(0,xlim), ylim=c(0,ylim),
                      group.names=unique(meso2$Week),
                      xlab="Weeks",
                      ylab="Number of egg masses",
                      main=paste0("Number of egg masses over ",xlim," weeks")
))
abline(h=mean(meso2$Eggs),col=col,lty=3)
par(new=T)
points(x=c(0,2,4,6),y=rep(max(ylim)/3,4),pch="~",cex=1,col="red")# add inoculation points
axis(1,at=c(0,xlim),labels=c("0",""))# bookending axis tick marks
### uninfected ###
with(eggs_UU, stripchart(Eggs~Week,
                         method="jitter", jitter=0.1,
                         pch=20,cex=2,
                         col=adjustcolor(col,alpha=0.3),
                         vertical=T.
                         xlim=c(0,xlim),ylim=c(0,ylim),
                         group.names=unique(eggs_UU$Week),
                         xlab="Weeks",
                         ylab="Number of egg masses",
                         main="Uninfected")
)
par(new=T)
points(x=c(0,2,4,6),y=rep(max(ylim)/3,4),pch="~",cex=1,col="red")# add inoculation points
axis(1,at=c(0,xlim),labels=c("0","16"))# bookending axis tick marks
### infected ###
with(eggs_II, stripchart(Eggs~Week,
                         method="jitter", jitter=0.1,
                         pch=20, cex=2,
                         col=adjustcolor(col2,alpha=0.3),
                         vertical=T,
                         xlim=c(0,xlim),ylim=c(0,ylim),
                         group.names=unique(eggs_II$Week),
                         xlab="Weeks",
                         ylab="Number of egg masses",
                         main="Infected")
```

```
par(new=T)
points(x=c(0,2,4,6),y=rep(max(ylim)/3,4),pch="~",cex=1,col="red")# add inoculation points
axis(1,at=c(0,xlim),labels=c("0","16"))# bookending axis tick marks
```

Number of egg masses over 16 weeks

Size class vs Egg mass (with schisto)

```
par(bty="n", las = 1)
#### Egg masses > 0
den <- density(small$Eggs[small$Eggs>0])
den2 <- density(int$Eggs[int$Eggs>0])
den3 <- density(large$Eggs[large$Eggs>0])
xlim <- round_any(max(den2$x),100) #den2 xlim
ylim <- round_any(max(den2$y),0.01,ceiling) # den2 ylim

colvec <- c(4,6,9) # index for colfunc color palette in plot_it function
par(mfrow=c(1,1))</pre>
```

```
plot(den,
     col=adjustcolor(colfunc[colvec[1]],alpha=0.5),
     xlim=c(0,xlim),
     ylim=c(0,ylim),
     # type="h",# fills density
     xlab="Number of egg masses",
     ylab="Density",
     main="Number of egg masses for each snail size class"
)
lines(den2,col=adjustcolor(colfunc[colvec[2]])) # den2
lines(den3,col=adjustcolor(colfunc[colvec[3]])) # den3
# fill densities
polygon(den, col=adjustcolor(colfunc[colvec[1]],alpha=0.5),border=colfunc[colvec[1]]) # fill AUC
polygon(den2, col=adjustcolor(colfunc[colvec[2]],alpha=0.5),border=colfunc[colvec[2]]) # fill AUC
polygon(den3, col=adjustcolor(colfunc[colvec[3]],alpha=0.5),border=colfunc[colvec[3]]) # fill AUC
# means
abline(v=mean(small$Eggs),col=adjustcolor(colfunc[colvec[1]]),lty=3,ylim=c(0,ylim)) # get mean
abline(v=mean(int$Eggs),col=adjustcolor(colfunc[colvec[2]]),lty=3,ylim=c(0,ylim)) # get mean
abline(v=mean(large$Eggs),col=adjustcolor(colfunc[colvec[3]]),lty=3,ylim=c(0,ylim)) # qet mean
par(family="mono")
legend("right",legend=c("Small","Intermediate","Large"),col=c(colfunc[colvec[1:3]]),
       bty="n",pch=20,pt.cex=1.5,cex=0.7,y.intersp = 0.5, xjust = 0.5,
       title="Snail size class", title.adj = 0.3, text.font=2,
      trace=T,inset=0.1)
```

Number of egg masses for each snail size class


```
xchar= 3.937 ; (yextra,ychar)= -0.00109 0.00109
points2( 149.4 149.4 149.4 , 0.03055 0.02945 0.02836 , pch= 20 20 20 , ...)
```

```
### Uninfected
small_UU <- subset(small,Schisto==0)
int_UU <- subset(int,Schisto==0)
large_UU <- subset(large,Schisto==0)
### Infected
small_II <- subset(small,Schisto==1)
int_II <- subset(int,Schisto==1)
large_II <- subset(large,Schisto==1)</pre>
```

Egg Mass per Week

 \sim 1000 eggs inoculated at 0,2,4,6 weeks

```
par(bty="n", las = 1)
# set data to appropriate class
meso2$Eggs <- as.numeric(meso2$Eggs)
d <- meso2
ggplot(meso2, aes(x = Eggs, y = as.factor(Week), fill=..x..)) + # geom_density_ridges()</pre>
```

```
# geom_density_ridges_gradient(scale = 2, size=0.25, rel_min_height = 0.01,panel_scaling=T) +# scale
# scale_fill_viridis(name = "Eggs", alpha=0.5, option = "magma", direction=-1) + # "magma", "inferno",
geom_density_ridges(scale = 3, size=0.2,color="black", rel_min_height = 0.01,fill=col,alpha=0.5) +
labs(title = paste0("Number of egg masses per week ")) +
xlab("Number of egg masses") +
ylab("Week") +
# theme_ridges(grid=F,center_axis_labels = T)
plot_it_gg("white")
```



```
#### uninfected ####
par(bty="n", las = 1)
ggplot(meso2_UU, aes(x = Eggs, y = as.factor(Week), fill=..x..)) + # geom_density_ridges()
    # geom_density_ridges_gradient(scale = 2, size=0.25, rel_min_height = 0.01,panel_scaling=T) +# scale
    # scale_fill_viridis(name = "Eggs", alpha=0.5, option = "magma",direction=-1) + # "magma", "inferno",
    geom_density_ridges(scale = 3, size=0.2,color="black", rel_min_height = 0.01,fill=col,alpha=0.5) +
    labs(title = paste0("Number of egg masses per week for uninfected hosts")) +
    xlab("Number of egg masses") +
    ylab("Week") +
    # theme_ridges(grid=F,center_axis_labels = T)
```

plot_it_gg("white")


```
#### infected ####
par(bty="n", las = 1)
ggplot(meso2_II, aes(x = Eggs, y = as.factor(Week), fill=..x..)) + # geom_density_ridges()
    # geom_density_ridges_gradient(scale = 2, size=0.25, rel_min_height = 0.01, panel_scaling=T) +# scale
    # scale_fill_viridis(name = "Eggs", alpha=0.5, option = "magma", direction=-1) + # "magma", "inferno",
    geom_density_ridges(scale = 3, size=0.2,color="black", rel_min_height = 0.01,fill=col2,alpha=0.5) +
    labs(title = paste0("Number of egg masses per week for infected hosts")) +
    xlab("Number of egg masses") +
    ylab("Week") +
    # theme_ridges(grid=F,center_axis_labels = T)
    plot_it_gg("white")
```

