Unidade II: Somatórios (∑)

Instituto de Ciências Exatas e Informática Departamento de Ciência da Computação

Agenda

- Motivação
- Notação
- Relações de Recorrência e Somas Múltiplas
- Manipulação de Somas
- Alguns Métodos Gerais

Agenda

- Motivação∑
- Notação
- Relações de Recorrência e Somas Múltiplas
- Manipulação de Somas
- Alguns Métodos Gerais

Principal Motivação na Ciência da Computação

• Levantamento de custo (e.g., tempo e memória) de algoritmos

 O custo de um algoritmo é a soma dos custos das suas operações

• Mostre o somatório dos n primeiros números inteiros

Mostre o somatório dos n primeiros números inteiros


```
Ciência da Computação
```

```
int somatorio(int n){
    int soma = 0;
    for(int i = 1; i <= n; i++){
        soma += i;
    }
    return soma;
}</pre>
```

```
\sum_{i=1}^{i} i
```

Mostre o somatório dos n primeiros números inteiros

Ciência da Computação

```
int somatorio(int n){
    int soma = 0;
    for(int i = 1; i <= n; i++){
        soma += i;
    }
    return soma;
}</pre>
```


Mostre o somatório dos n primeiros números inteiros

Ciência da Computação

```
Matemática
```

```
int somatorio(int n){
    int soma = 0;
    for(int i = 1; i <= n; i++){
        soma += i;
    }
    return soma;
}</pre>
```

condição de parada

Mostre o somatório dos n primeiros números inteiros

Ciência da Computação

```
Matemática
```

```
int somatorio(int n){
   int soma = 0;
   for(int i = 1; i <= n; i++){
      soma += i;
   }
   return soma;
}</pre>
```

```
\frac{\mathbf{termo}}{\sum_{i=1}^{i}}
```

 O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Quantas comparações entre registros ele realiza?

```
for (int i = 0; i < (n - 1); i++) {
    int menor = i;
    for (int j = (i + 1); j < n; j++){
        if (array[menor] > array[j]){
            menor = j;
        }
     }
     swap(menor, i);
}
```

O Algoritmo de Seleção é uma solução conhecida para a ordenação

interna. Quantas comparações entre registros ele realiza?

```
for (int i = 0; i < (n - 1); i++) {
    int menor = i;
    for (int j = (i + 1); j < n; j++){
        if (array[menor] > array[j]){
            menor = j;
        }
     }
     swap(menor, i);
}
```

i	0	1	2	3	n-2
c(i) = (n - (i+1))	n-1	n-2	n-3	n-4	 1

$$n-2$$

$$\sum_{i=0}^{n-1} (n-i-1)$$

Agenda

- Motivação
- Notação

- Relações de Recorrência e Somas Múltiplas
- Manipulação de Somas
- Alguns Métodos Gerais

Variações da Notação Sigma

$$\sum_{i=1}^{i \le n} a_i = \sum_{1}^{n} a_i = \sum_{1 \le i \le n}^{i \le n} a_i$$

Resolva os somatórios abaixo:

a)
$$\sum_{n=1}^{4} n^2 = ?$$

d)
$$\sum_{1}^{3} (2i + x) = ?$$

b)
$$\sum_{1}^{4} 3i = ?$$

e)
$$\sum_{0}^{5} i \cdot (i-1) \cdot (5-i) = ?$$

c)
$$\sum_{1}^{4} (3 - 2i) = ?$$

f)
$$\sum_{m=1}^{4} 8k - 6m = ?$$

$$\sum_{n=1}^{4} n^2 = ?$$

Escolha 1 resposta:

$$1+2+3+4$$

$$\bigcirc 1^2 + 2^2 + 3^2 + 4^2$$

$$(1+2+3+4)^2$$

$$1^2 + 4^2$$

$$\sum_{n=1}^{4} n^2 = ?$$

Escolha 1 resposta:

$$1+2+3+4$$

$$(1+2+3+4)^2$$

$$1^2 + 4^2$$

$$\sum_{1}^{4} 3i = ?$$

$$\sum_{1}^{4} 3i = ?$$

Neste material, a menos que dito o contrário, a notação \sum_{1}^{n} incrementa o índice i. Para evitar ambiguidade, podemos usar a notação $\sum_{i=1}^{n}$

$$\sum_{1}^{4} 3i = (3.1) + (3.2) + (3.3) + (3.4) = 30$$

$$\sum_{1}^{4} 3i = 3 \cdot \sum_{1}^{4} i = 3 \cdot (1 + 2 + 3 + 4) = 30$$

$$\sum_{1}^{4} (3 - 2i) = ?$$

$$\sum_{1}^{4} (3 - 2i) = (3 - (2 \cdot 1)) + (3 - (2 \cdot 2)) + (3 - (2 \cdot 3)) + (3 - (2 \cdot 4)) = -8$$

$$\sum_{1}^{4} (3-2i) = \sum_{1}^{4} 3-2\sum_{1}^{4} i = (3+3+3+3)-2(1+2+3+4) = -8$$

$$\sum_{1}^{4} (3-2i) = 3 \sum_{1}^{4} 1 - 2 \sum_{1}^{4} i = 3(1+1+1+1) - 2(1+2+3+4) = -8$$

$$\sum_{1}^{3} (2i + x) = ?$$

$$\sum_{1}^{3} (2i + x) = 2(1+2+3) + (x+x+x) = 12 + 3x$$

$$\sum_{0}^{5} i \cdot (i-1) \cdot (5-i) = ?$$

$$\sum_{0}^{5} i \cdot (i-1) \cdot (5-i) = 0 \cdot (-1) \cdot 5 + 1 \cdot 0 \cdot 4 + 2 \cdot 1 \cdot 3 + 3 \cdot 2 \cdot 2 + 4 \cdot 3 \cdot 1 + 5 \cdot 4 \cdot 0 = 0 + 0 + 6 + 12 + 12 + 0 = 30$$

$$\sum_{m=1}^{4} 8k - 6m = ?$$

Escolha 1 resposta:

$$8k-6+8k-12+8k-18+8k-24$$

$$2+4+6+8$$

$$8-6m+16-6m+24-6m+32-6m$$

$$0+2+4+6$$

$$\sum_{m=1}^{4} 8k - 6m = ?$$

Escolha 1 resposta:

$$2+4+6+8$$

$$8-6m+16-6m+24-6m+32-6m$$

$$0+2+4+6$$

Exercício Resolvido (4)

Podemos afirmar que
$$\sum_{0}^{5}$$
 i. (i-1). (5-i) = \sum_{2}^{4} i. (i-1). (5-i)? Justifique.

Exercício Resolvido (4)

Podemos afirmar que
$$\sum_{0}^{5}$$
 i. (i-1). (5-i) = \sum_{2}^{4} i. (i-1). (5-i)? Justifique.

Sim, pois como os termos a_0 , a_1 e a_5 são iguais a zero, o resultado dos dois somatórios é igual a $(a_2 + a_3 + a_4)$

Exercício Resolvido (5)

Considere a soma 4 + 25 + 64 + 121.

Qual expressão é igual à soma acima?

Escolha todas as respostas aplicáveis:

$$\sum_{i=0}^{3} (i^2 + 2i + 4)$$

$$\sum_{i=0}^{3} (3i+2)^2$$

Nenhuma das anteriores

Exercício Resolvido (5)

Considere a soma 4 + 25 + 64 + 121.

Qual expressão é igual à soma acima?

Escolha todas as respostas aplicáveis:

$$\sum_{i=0}^{3} (i^2 + 2i + 4)$$

$$\sum_{i=0}^{3} (3i+2)^2 = (3x0+2)^2 + (3x1+2)^2 + (3x2+2)^2 + (3x3+2)^2 = 4+25+64+121$$

Nenhuma das anteriores

Agenda

- Motivação
- Notação
- Relações de Recorrência e Somas Múltiplas

- Manipulação de Somas
- Alguns Métodos Gerais

Relações de Recorrência

Assunto discutido na disciplina FPAA

Técnica usada para calcular somas

Exemplo

$$S_0 = a_0$$

 $S_n = S_{n-1} + a_n$, para n > 0

Quais são os valores da sequência abaixo?

Quais são os valores da sequência abaixo?

i	0	1	2	3	4	5	6	
fib(i)	1	1	2	3	5	8	13	•••

$$fat(4) = ?$$

$$fat(1) = 1$$

$$fat(n) = n \cdot fat(n-1)$$

```
fat(4) = 4 \cdot fat(3)
```

$$fat(3) = 3 \cdot fat(2)$$

$$fat(2) = 2$$
. $fat(1)$, contudo, sabemos que $fat(1) = 1$

$$fat(4) = 4 \cdot fat(3)$$

$$fat(3) = 3 \cdot fat(2)$$

$$fat(2) = 2.1$$

$$fat(1) = 1$$

$$fat(n) = n \cdot fat(n-1)$$

$$fat(4) = 4 \cdot fat(3)$$

$$fat(3) = 3.2$$

$$fat(4) = 4.6$$

$$fat(4) = 24$$

Somas Múltiplas

• Os termos de um somatório podem ser especificados por dois ou mais índices, por exemplo:

$$\sum_{1 \le i, j \le 3} a_i.b_j = a_1.b_1 + a_1.b_2 + a_1.b_3 + a_2.b_1 + a_2.b_2 + a_2.b_3 + a_3.b_1 + a_3.b_2 + a_3.b_3$$

Somas Múltiplas

 Outra forma de representação é utilizando dois somatórios, por exemplo:

$$\sum_{1 \le i, j \le 3} a_i b_j = \left(\sum_{j \le 3} a_i\right) \left(\sum_{j \le 3} b_j\right)$$

Agenda

- Motivação
- Notação
- Relações de Recorrência e Somas Múltiplas
- Manipulação de Somas

Alguns Métodos Gerais

Frase de [GRAHAM, 95]

A chave do sucesso na manipulação de somas está na habilidade de transformar uma soma em outra mais

simples ou mais perto de algum objetivo

Agenda

- Motivação
- Notação
- Relações de Recorrência e Somas Múltiplas
- Manipulação de Somas∑
- Alguns Métodos Gerais
- Regras Básicas de Transformação
- Propriedades

Agenda

- Motivação
- Notação
- Relações de Recorrência e Somas Múltiplas
- Manipulação de Somas

- Alguns Métodos Gerais
- Regras Básicas de Transformação
- Propriedades

Regras Básicas de Transformação

- Distributividade
- Associatividade
- Comutatividade

Distributividade

• Permite mover constantes para dentro ou fora de um somatório

$$\sum_{i \in I} c \cdot a_i = c \cdot \sum_{i \in I} a_i$$

Por exemplo, temos:

$$c.a_{-1} + c.a_0 + c.a_1 = c.(a_{-1} + a_0 + a_1)$$

Distributividade

• Permite mover constantes para dentro ou fora de um somatório

$$\sum_{i \in I} c \cdot a_i = c \cdot \sum_{i \in I} a_i$$

• Outro exemplo, foi dado no Exercício Resolvido 3b e repetido abaixo:

$$\sum_{i=3}^{4} 3i = 3 \cdot \sum_{i=3}^{4} i = 3 \cdot (1 + 2 + 3 + 4) = 30$$

1

1

Distributividade

• Permite mover constantes para dentro ou fora de um somatório

$$\sum_{i \in I} c \cdot a_i = c \cdot \sum_{i \in I} a_i$$

Também se aplica à divisão

$$\sum_{i \in I} \frac{a_i}{c} = \frac{1}{c} \cdot \sum_{i \in I} a_i$$

Associatividade

 Permite quebrar um somatório em partes ou unificá-las em um somatório

$$\sum_{i \in I} (a_i + b_i) = \sum_{i \in I} a_i + \sum_{i \in I} b_i$$

• Por exemplo, temos:

$$(a_{-1} + b_{-1}) + (a_0 + b_0) + (a_1 + b_1) = (a_{-1} + a_0 + a_1) + (b_{-1} + b_0 + b_1)$$

Associatividade

 Permite quebrar um somatório em partes ou unificá-las em um somatório

$$\sum_{i \in I} (a_i + b_i) = \sum_{i \in I} a_i + \sum_{i \in I} b_i$$

• Também se aplica à subtração:
$$\sum_{i \in I} (a_i - b_i) = \sum_{i \in I} a_i - \sum_{i \in I} b_i$$

Associatividade

 Permite quebrar um somatório em partes ou unificá-las em um somatório

$$\sum_{i \in I} (a_i + b_i) = \sum_{i \in I} a_i + \sum_{i \in I} b_i$$

• Outro exemplo, foi dado no Exercício Resolvido 3c e repetido abaixo:

$$\sum_{1}^{4} (3-2i) = \sum_{1}^{4} 3-2\sum_{1}^{4} i = (3+3+3+3)-2(1+2+3+4) = -8$$

Comutatividade

Permite colocar os termos em qualquer ordem

$$\sum_{i \in I} a_{i} = \sum_{p(i) \in I} a_{p(i)}$$

• Por exemplo, temos:

$$a_{-1} + a_0 + a_1 = a_1 + a_{-1} + a_0$$

Exemplo de Aplicação da Comutatividade

 Os programas abaixo apresentam o mesmo resultado devido a regra de comutatividade

```
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
soma += mat[i][j];
```

```
for(int j = 0; j < n; j++) //invertendo os fors
  for(int i = 0; i < n; i++)
     soma += mat[i][j];</pre>
```

```
for(int i = n-1; i >= 0; i--) //decrementando
for(int j = n-1; j >= 0; j--)
soma += mat[i][j];
```

Resumo das Regras Básicas de Transformação

Distributividade

$$\sum_{i \in I} c \cdot a_i = c \cdot \sum_{i \in I} a_i$$

Associatividade

$$\sum_{i \in I} (a_i + b_i) = \sum_{i \in I} a_i + \sum_{i \in I} b_i$$

Comutatividade

$$\sum_{i \in I} a_i = \sum_{p(i) \in I} a_{p(i)}$$

Exercício Resolvido (6)

• Aplique associatividade para unificar os dois somatórios abaixo:

$$\sum_{3}^{n} a_{i} + \sum_{1}^{n} b_{i}$$

Exercício Resolvido (6)

Aplique associatividade para unificar os dois somatórios abaixo:

$$\sum_{3}^{n} a_{i} + \sum_{1}^{n} b_{i}$$

=
$$(a_3 + a_4 + a_5 + ... + a_n) + (b_1 + b_2 + b_3 + ... + b_n)$$

$$= b_1 + b_2 + \sum_{i=3}^{n} (a_i + b_i)$$

$$= -a_1 - a_2 + \sum_{i=1}^{n} (a_i + b_i)$$

Exercício Resolvido (7)

Mostre (e justifique) se cada expressão abaixo é verdadeira ou falsa:

a) ()
$$\sum_{k=0}^{200} k^3 = \sum_{k=1}^{200} k^3$$
;

b) ()
$$\sum_{p=0}^{1000} (3+p) = 3 + \sum_{p=0}^{1000} p;$$

c) ()
$$\sum_{\ell=1}^{n} (3\ell) = 3 \sum_{\ell=1}^{n} \ell;$$

d)
$$\left(\right) \sum_{k=0}^{12} k^p = \left(\sum_{k=0}^{12} k \right)^p$$
;

e) ()
$$\sum_{t=8}^{32} (3+t) = 75 + \sum_{t=8}^{32} t$$
.

Exercício Resolvido (7)

Mostre (e justifique) se cada expressão abaixo é verdadeira ou falsa:

a)
$$(\checkmark)$$
 $\sum_{k=0}^{200} k^3 = \sum_{k=1}^{200} k^3;$

b)
$$(\mathbf{X}) \sum_{p=0}^{1000} (3+p) = 3 + \sum_{p=0}^{1000} p;$$

c)
$$(1) \sum_{\ell=1}^{n} (3\ell) = 3 \sum_{\ell=1}^{n} \ell;$$

d)
$$(X) \sum_{k=0}^{12} k^p = \left(\sum_{k=0}^{12} k\right)^p$$
;

e)
$$(\checkmark) \sum_{t=8}^{32} (3+t) = 75 + \sum_{t=8}^{32} t.$$

Exercício Resolvido (8)

 Prove que os somatórios abaixo são iguais. Em sua resposta, use a propriedade comutativa

$$\sum_{0 \le i \le 4} (3 + 2.i) = \sum_{0 \le i \le 4} (3 + 2.(4-i))$$

 Prove que os somatórios abaixo são iguais. Em sua resposta use a propriedade comutativa

$$\sum_{0 \le i \le 4} (3 + 2.i) = \sum_{0 \le i \le 4} (3 + 2.(4-i))$$

No segundo,
$$(3 + 2.[4-0]) + (3 + 2.[4-1]) + (3 + 2.[4-2]) + (3 + 2.[4-3]) + (3 + 2.[4-4])$$

Logo, por comutatividade, temos apenas a alteração da ordem dos elementos

 Prove que os somatórios abaixo são iguais. Em sua resposta use a propriedade comutativa

$$\sum_{0 \le i \le 4} (3 + 2.i) = \sum_{0 \le i \le 4} (3 + 2.(4-i))$$

No segundo,
$$(3 + 2.[4-0]) + (3 + 2.[4-1]) + (3 + 2.[4-2]) + (3 + 2.[4-3]) + (3 + 2.[4-4])$$

Logo, por comutatividade, temos apenas a alteração da ordem dos elementos

Observação: (n-i) "simula" um decremento no valor de i

 Aplique as regras de transformação para obter a fórmula fechada da soma S_n dos elementos de uma Progressão Aritmética (PA)

$$S_n = \sum_{0 \le i \le n} (a + b.i)$$

Recordando Progressão Aritmética

• Uma PA é uma sequência cuja razão (diferença) entre dois termos consecutivos é constante. Por exemplo, 5, 7, 9, 11, 13, ...

Cada termo da PA será a_i = a + b.i, onde a é o termo inicial; b, a razão; e, i, a ordem do termo

Na sequência acima, a e b são iguais a 5 e 2, respectivamente. Logo, temos: (5 + 2.0), (5 + 2.1), (5 + 2.2), (5 + 2.3), (5 + 2.4), ...

Recordando Progressão Aritmética

• Exercício: Mostre os valores de a e b na sequência 1, 4, 7, 10, 13, ...

Recordando Progressão Aritmética

• Exercício: Mostre os valores de a e b na sequência 1, 4, 7, 10, 13, ...

Os valores a e b são 1 e 3, respectivamente, logo, temos:

 Aplique as regras de transformação para obter a fórmula fechada da soma S_n dos elementos de uma Progressão Aritmética (PA)

$$S_n = \sum_{0 \le i \le n} (a + b.i)$$

 Aplique as regras de transformação para obter a fórmula fechada da soma S_n dos elementos de uma Progressão Aritmética (PA)

$$S_n = \sum_{0 \le i \le n} (a + b.i)$$

 Aplicando a comutatividade, podemos somar do maior para o menor, trocando i por (n-i):

$$S_n = \sum_{0 \le (n-i) \le n} [a + b.(n-i)]$$

 Aplique as regras de transformação para obter a fórmula fechada da soma S_n dos elementos de uma Progressão Aritmética (PA)

$$S_n = \sum_{0 \le i \le n} (a + b.i)$$

 Aplicando a comutatividade, podemos somar do maior para o menor, trocando i por (n-i):

$$S_{n} = \sum_{0 \le (n-i) \le n} [a + b.(n-i)] = \sum_{0 \le i \le n} [a + b.(n-i)] = \sum_{0 \le i \le n} [a + b.n - b.i]$$

• Como $S_n \ge [a + b.i] = [a + b.n - b.i]$, podemos afirmar que: $0 \le i \le n$ $0 \le i \le n$

$$2S_{n} = \sum_{0 \le i \le n} [a + b.i] + \sum_{0 \le i \le n} [a + b.n - b.i]$$

• Como $S_n \ge [a + b.i] = [a + b.n - b.i]$, podemos afirmar que: $0 \le i \le n$

$$2S_{n} = \sum_{0 \le i \le n} [a + b.i] + \sum_{0 \le i \le n} [a + b.n - b.i]$$

• Aplicando associatividade, podemos combinar os dois somatórios:

$$2S_n = \sum_{0 \le i \le n} [a + b.i + a + b.n - b.i]$$

• Como $S_n \ge [a + b.i] = [a + b.n - b.i]$, podemos afirmar que: $0 \le i \le n$ $0 \le i \le n$

$$2S_{n} = \sum_{0 \le i \le n} [a + b.i] + \sum_{0 \le i \le n} [a + b.n - b.i]$$

$$2S_{n} = \sum_{0 \le i \le n} [a + b.i + a + b.n - b.i] = \sum_{0 \le i \le n} [2.a + b.n]$$

• Simplificando, temos

Usando distributividade, temos:

$$2S_n = \sum_{0 \le i \le n} [2.a + b.n] = (2.a + b.n) \cdot \sum_{0 \le i \le n} 1$$

Lembre que [2.a + b.n] não depende de i, logo, pode "sair" do somatório

Substituindo o somatório:

• Substituindo o somatório:

$$2S_n = (2.a + b.n)(n+1)$$

Substituindo o somatório:

$$2S_n = (2.a + b.n)(n+1)$$

• Dividindo por dois, temos:

$$S_n = \sum_{0 \le i \le n} [a + b.i] = (2a + bn)(n+1)$$

• Sabendo a fórmula da soma de uma progressão aritmética qualquer, mostre a fórmula para o somatório de $0 + 1 + 2 + 3 + ... + n = \sum_{0 \le i \le n} i$. Em tempo, esse é o somatório de Gauss.

$$S_n = \sum_{0 \le i \le n} [a + b.i] = (2a + bn)(n+1)$$

• Sabendo a fórmula da soma de uma progressão aritmética qualquer, mostre a fórmula para o somatório de $0 + 1 + 2 + 3 + ... + n = \sum_{\substack{0 \le i \le n}} i$. Em tempo, esse é o somatório de Gauss.

Resposta: Nesse caso, temos uma progressão cujos valores a e b são zero e um, respectivamente

$$S_{n} = \sum_{0 \le i \le n} [0 + 1.i] = (2.0 + 1.n).(n+1) = \underline{n.(n+1)}$$
2

 Dada a fórmula fechada do somatório dos n primeiros números inteiros, mostre um algoritmo mais eficiente que o apresentado abaixo:

```
int somatorio(int n){
    int soma = 0;
    for(int i = 1; i <= n; i++){
        soma += i;
    }
    return soma;
}</pre>
```

 Dada a fórmula fechada do somatório dos n primeiros números inteiros, mostre um algoritmo mais eficiente que o apresentado abaixo:

```
int somatorio(int n){
    int soma = 0;
    for(int i = 1; i <= n; i++){
        soma += i;
    }
    return soma;
}</pre>
```

```
int somatorio(int n){
    return ((n * (n+1))/2);
}
```


• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos que ele realiza $\sum_{0 \le i \le n-2} (n - i - 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos que ele realiza $\sum_{0 \le i \le n-2} (n - i - 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

Aplicando associatividade, temos:

$$\sum_{0 \le i \le n-2} (n-i-1) = \sum_{0 \le i \le n-2} - \sum_{0 \le i \le n-2} i - \sum_{0 \le i \le n-2} 1$$

• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos que ele realiza $\sum_{0 \le i \le n-2} (n - i - 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos que ele realiza $\sum_{0 \le i \le n-2} (n - i - 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

• Simplificando, temos:

$$\sum_{0 \le i \le n-2} (n-i-1) = n(n-1) - \sum_{0 \le i \le n-2} i - (n-1)$$

• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos que ele realiza $\sum_{0 \le i \le n-2} (n - i - 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

Sabendo que:

$$\sum_{0 \le i \le n} i = \underline{n(n+1)} \Rightarrow \sum_{0 \le i \le n-2} i = (\underline{n-2})(\underline{n-1})$$

• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos que ele realiza $\sum_{0 \le i \le n-2} (n - i - 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

$$\sum_{0 \le i \le n-2} (n-i-1) = n(n-1) - (\underline{n-2})(\underline{n-1}) - (\underline{n-1})$$

• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos que ele realiza $\sum_{0 \le i \le n-2} (n - i - 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

$$\sum_{0 \le i \le n-2} (n-i-1) = n(n-1) - (\underline{n-2})(\underline{n-1}) - (\underline{n-1})$$

$$= 2n(\underline{n-1}) - (\underline{n-2})(\underline{n-1}) - 2(\underline{n-1})$$

• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos que ele realiza $\sum_{0 \le i \le n-2} (n - i - 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

$$\sum_{0 \le i \le n-2} (n-i-1) = n(n-1) - (n-2)(n-1) - (n-1)$$

$$= 2n(n-1) - (n-2)(n-1) - 2(n-1)$$

$$= 2n^2 - 2n - [n^2 - 3n + 2] - 2n + 2$$

• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos que ele realiza $\sum_{0 \le i \le n-2} (n - i - 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

$$\sum_{0 \le i \le n-2} (n-i-1) = n(n-1) - (\underline{n-2})(\underline{n-1}) - (n-1)$$

$$= \underline{2n(n-1) - (n-2)(n-1) - 2(n-1)}$$

$$= \underline{2n^2 - 2n - [n^2 - 3n + 2] - 2n + 2}$$

$$= \underline{n^2 - \underline{n}} = \Theta(n^2)$$

Justifique as expressões abaixo:

a)
$$\sum_{1}^{n} i = \sum_{0}^{n} i$$

b)
$$\sum_{1}^{n} a_{i} \neq \sum_{0}^{n} a_{i}$$

c)
$$\sum_{1}^{n} a_{i} = \sum_{0}^{n-1} a_{i+1}$$

Justifique as expressões abaixo:

a)
$$\sum_{1}^{n} i = \sum_{0}^{n} i$$

Resposta: Os dois somatórios são iguais, entretanto, o segundo faz uma soma a mais que é com seu primeiro termo cujo valor é zero.

Justifique as expressões abaixo:

b)
$$\sum_{1}^{n} a_{i} \neq \sum_{0}^{n} a_{i}$$

Resposta: Os somatórios são diferentes, porque, não necessariamente, o primeiro termo (a_0) é igual a zero

Justifique as expressões abaixo:

Resposta: O resultado dos dois

c)
$$\sum_{1}^{n} a_{i} = \sum_{0}^{n-1} a_{i+1}$$

Agenda

- Motivação
- Notação
- Relações de Recorrência e Somas Múltiplas
- Manipulação de Somas
- Encontrar fórmula fechada

Agenda

- Motivação
- Notação

- Procure!!!
- Adivinhe a resposta, prove por indução
- Perturbe a soma
- Relações de Recorrência e Somas Múltiplas
- Manipulação de Somas
- Alguns Métodos Gerais∑

Método Procure!!!

 Possivelmente, todas as fórmulas de somatórios que você precisará estão resolvidas na literatura, logo, procure

Método Procure!!!

 Possivelmente, todos as fórmulas de somatórios que você precisará estão resolvidas na literatura, logo, procure

Somatório do Quadrado Perfeito

 Este material explica cada método mostrando a fórmula do somatório do quadrado perfeito dos *n* primeiros inteiros

$$S_n = \sum_{0 \le i \le n} i^2 = \underline{n (n+1)(2n+1)}, para n \ge 0$$

n	0	1	2	3	4	5	6	7	8	9	10	11	12	
n ²	0	1	4	9	16	25	36	49	64	81	100	121	144	
S _n	0	1	5	14	30	55	91	140	204	285	385	506	650	