Sequence

$$\{f(n)\}_{n=k}^{\infty} = f(k), f(k+1), \dots, f(n), \dots$$

Some basic *lim* rules:

$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

$$\lim_{n \to \infty} \frac{\ln n}{n} = 0$$

$$\lim_{n \to \infty} \frac{\sin n}{n} = 1$$

$$\lim_{n \to \infty} x^n = 0, |x| < 1$$

$$\lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x$$

$$\lim_{n \to \infty} \frac{x^n}{n!} = 1, x > 0$$

$$\lim_{n \to \infty} \frac{x^n}{n!} = 0$$

Series

Geometric series:
$$S_{\infty}=rac{a}{1-r}$$
 , $|r|<1$; a: first term, r: multiplicative factor. Btw, $S_n=\sum_{n=0}^{\infty}a(r)^n$

Telescoping series: Plug in numbers and evaluate.

Test	Conditions	Conclusion	Use this
n th term test Always try this first	$\lim_{n\to\infty}a_n$	If $\lim_{n \to \infty} a_n \neq 0$, the series $\sum a_n$ diverges.	to show a series diverges. We can't use this test to show a series converges.
Integral test	f(x) is continuous, positive, and decreasing.	$\sum_{n=k}^{\infty} f(n) \ and \int_{k}^{\infty} f(x) dx$ either both converge or both diverge .	
** p-Series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	Series converges if and only if $p > 1$.	
Comparison test	$0 \le a_n \le b_n$	If $\sum_{n=k}^{\infty} a_n$ di $\sum_{n=k}^{\infty} b_n$ di	Find the essential behavior and use this to bound the sequence (above and below).
		If $\sum_{n=k}^{\infty} b_n$ con $\sum_{n=k}^{\infty} a_n$ con	

	1	T	T
Limit comparison test	$a_n, b_n > 0$	- If $L>0$, then S_a and S_b	Note: a_n is the given
	a_n	both converge or diverge.	function and b_n is the
	$\lim_{n\to\infty} \frac{a_n}{b_n} = L$	- If $L=0$, and S_b converges,	function you are
	n l	then S_a converges.	comparing it to.
		- If $L=\infty$, and S_b diverges,	
		then S_a diverges.	
Ratio test	$a_n > 0$	If $\rho < 1$, then S_n converges.	Great for series involving
	$\rho = \lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right $	If $\rho > 1$, then S_n diverges.	factorials.
	$n \rightarrow \infty \mid a_n \mid$	If $\rho = 1$, inconclusive.	
Root test	$a_n > 0$	If $\rho < 1$, then S_n converges.	Great when a_n is
	1 1	If $\rho > 1$, then S_n diverges.	something to the power
	$\rho = \lim_{n \to \infty} (a_n)^{\frac{1}{n}}$		of n .
		If $\rho = 1$, inconclusive.	
Alternating series test	i. a_n is positive .	∞	Use when there's
	$ ii. a_{n+1} \le a_n.$	$\sum_{n=N} (-1)^n a_n \text{converges.}$	sometime alternating, i.e
	$ m \alpha_{n+1} = \alpha_n.$	n=N	$(-1)^n$ and $(-1)^{n+1}$.
	iii. a_n decreases to 0	\sim	
	as $n \to \infty$.	For a series $\sum_{n=N}^{\infty} a_n$,	** Be careful when
		$\overline{n=N}$	seeing something like
		Absolutely converge if,	$\sin/\cos(n\pi)$, they might
		$ S_n $ con.	alternate too!
		Conditionally converge if,	
		$ \mathcal{S}_n $ con and $ \mathcal{S}_n $ di.	
		Absolutely diverge if, S_n di.	
	L .		

^{** =} important; con = converge; di = diverge

Error analysis:
$$\int_{N+1}^{\infty} f(x) \, dx \le \left| \sum_{n=k}^{\infty} f(n) - \sum_{n=k}^{N} f(n) \right| \le \int_{N}^{\infty} f(x) \, dx$$

Calculus of power series

$$\frac{d}{dx}\left(\sum_{n=0}^{\infty}c_n(x-a)^n\right) = \sum_{n=0}^{\infty}c_nn(x-a)^{n-1}$$

$$\int \left(\sum_{n=0}^{\infty} c_n (x-a)^n\right) dx = \sum_{n=0}^{\infty} \frac{c_n}{n+1} (x-a)^{n+1} + \mathcal{C} \text{ . To find } \mathcal{C} \text{ we can evaluate at } x=a.$$

Taylor series

Taylor series for
$$f(x)$$
 at $x = a$, $f(a) \approx \sum_{k=0}^{\infty} f^{(k)}(a) \frac{(x-a)^k}{k!}$

, for |x| < 1 When a = 0, it is called Maclaurin series.

$$P_k(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \dots + f^{(k)}(a)\frac{(x - a)^k}{k!}$$
Order: 0 1 2 3 ... k

Important Taylor series (or Maclaurin series because a = 0):

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k, |x| < 1 \qquad sinx = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} \qquad cosx = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$$

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} x^k, {\alpha \choose k} = \frac{\alpha^k}{k!} = \frac{\alpha(\alpha-1)(\alpha-2) \dots (\alpha-(k-1))}{k!}$$

$$\frac{1}{\sqrt{1+x}} = \sum_{k=0}^{\infty} \frac{(-1)^k (2k)!}{4^k (k!)^2} x^k \qquad tan^{-1}x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{2k+1}, |x| \le 1$$

$$\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^k}{k}, -1 < x \le 1$$

Error approximation

|ACTUAL - ESTIMATE| = |ERROR|

$$|f(x) - P_n(x)| = |R_n(x)| \le \frac{M|x - a|^{n+1}}{(n+1)!}$$
, $M = \max |f^{(n+1)}(t)|$ between x and a .