

Keren Zhou George Mason University kzhou6@gmu.edu


```
a = torch.randn(64, 32)
b = torch.randn(32, 64)
c = torch.randn(64, 64)
d = torch.mm(a, b)
e = c + d
```

Model	Graph	Kernel	Device
PyTorch	• XLA/HLO	• CUDA	• GPU
TensorFlow	TVM/Relay	• HIP	• CPU
• JAX	PyTorch/fx	OpenCL	• FPGA

Model	Graph	Kernel	Device
PyTorchTensorFlowJAX	XLA/HLOTVM/RelayPyTorch/fx	CUDAHIPOpenCL	 GPU CPU FPGA

```
__global__
void mm(float *a, float *b,
float *c) {
    float *a_tile;
    float *b_tile;
    ...
}
```

Model	Graph	Kernel	Device
PyTorchTensorFlowJAX	XLA/HLOTVM/RelayPyTorch/fx	CUDAHIPOpenCL	 GPU CPU FPGA

Model	Graph	Kernel	Device
PyTorchTensorFlowJAX	XLA/HLOTVM/RelayPyTorch/fx	CUDAHIPOpenCL	• GPU • CPU • FPGA

Model	Graph	Kernel	Device
PyTorch	• XLA/HLO	• CUDA	• GPU
TensorFlow	• TVM/Relay	• HIP	• CPU
• JAX	• PyTorch/fx	• OpenCL	• FPGA

Features

TorchDynamo

Captures PyTorch programs safely using Python Frame Evaluation Hooks

AOTAutograd

Generating ahead-of-time backward traces

PrimTorch

Canonicalizes ~2000+ PyTorch operators down to a closed set of ~250 primitive operators

TorchInductor

- Deep learning compiler that generates fast code for multiple accelerators and backends
- For NVIDIA and AMD GPUs, it uses OpenAI Triton as a key building block

Overview

Graph Tracers Prior to PyTorch 2.0

- torch.jit.trace
 - Tracing at C++ level
 - Does not capture any control flow done in Python
- torch.jit.script
 - Static Python AST analysis (i.e., visit_<syntax_name>)
 - An unimplemented component of Python makes the entire program unfit for capture
- Lazy tensors
 - Hashing the graph to avoid recompilation
 - Recompilation if any part of the graph is changed
- torch.fx.symbolic_trace
 - Tracing at python level using proxy objects
 - Silently incorrect results due to random functions and global variables

PEP 523 - Adding a frame evaluation API to CPython

- Expand CPython's C API to allow a per-interpreter function to handle the evaluation of frame
 - seval_frame = _PyEval_EvalFrameDefault by default

```
typedef struct {
    ...
    _PyFrameEvalFunction eval_frame;
} PyInterpreterState;

PyObject *
PyEval_EvalFrameEx(PyFrameObject *frame, int throwflag)
{
    PyThreadState *tstate = PyThreadState_GET();
    return tstate->interp->eval_frame(frame, throwflag);
}
```

TorchDynamo

Default Python Behavior

Torch Dynamo Behavior

TorchInductor

- The default "user-defined" compiler
 - Implemented in Python
- Decomposition
 - Log2 -> log * log2_scale
- Lowering
 - Use Python functions to define the bodies of loops
- Scheduling
 - Determine which kernels should be fused to achieve the best performance
- Code generation
 - GPU
 - IR->Triton Python code
 - CPU
 - IR->OpenMP/C++

Usage

- torch.compile
 - model=None
 - required
 - fullgraph=False
 - dynamic=False
 - backend='inductor'
 - mode=None
 - reduce-overhead
 - max-autotune
 - options=None
 - disable=False

Function

```
compiled_module = torch.compile(module, ...)
```

Decorator

```
@torch.compile(fullgraph=True)
def foo(x):
    return torch.sin(x) + torch.cos(x)
```

Example

```
import torch. dynamo
import torch
def f(x):
  return torch.sin(x)**2 + torch.cos(x)**2
x = torch.ones(256, requires_grad=True, device='cuda')
y = torch.ones_like(x)
torch._dynamo.reset()
compiled_f = torch.compile(f)
out = torch.nn.functional.mse_loss(compiled_f(x),
y).backward()
```

PyTorch Code -> Prims IR -> Triton Code -> Machine Code

Example - Prims IR

```
class GraphModule(torch.nn.Module):
    def forward(self, primals_1: f32[256]):
        # File: /home/keren/code/test.py:7, code: return torch.sin(x)**2 + torch.cos(x)**2
        sin: f32[256] = torch.ops.aten.sin.default(primals_1)
        pow_1: f32[256] = torch.ops.aten.pow.Tensor_Scalar(sin, 2)
        cos: f32[256] = torch.ops.aten.cos.default(primals_1)
        pow_2: f32[256] = torch.ops.aten.pow.Tensor_Scalar(cos, 2)
        add: f32[256] = torch.ops.aten.add.Tensor(pow_1, pow_2); pow_1 = pow_2 = None
        return [add, sin, primals_1, cos]
```

Example - Triton Code

```
@pointwise(size hints=[256], filename= file , meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': 0,
'constants': {}, 'mutated_arg_names': [], 'configs': [instance_descriptor(divisible_by_16=(0, 1, 2),
equal to 1=())]})
@triton.jit
def triton (in ptr0, out ptr0, xnumel, XBLOCK : tl.constexpr):
  xnumel = 256
  xoffset = tl.program_id(0) * XBLOCK
  xindex = xoffset + tl.arange(0, XBLOCK)[:]
  xmask = xindex < xnumel
  x0 = xindex
  tmp0 = tl.load(in_ptr0 + (x0), xmask)
  tmp1 = tl.sin(tmp0)
  tmp2 = tmp1 * tmp1
  tmp3 = tl.cos(tmp0)
  tmp4 = tmp3 * tmp3
  tmp5 = tmp2 + tmp4
  tl.store(out ptr0 + (x0 + tl.zeros([XBLOCK], tl.int32)), tmp5, xmask)
```

Benefits

- Robustness
 - Capture a single graph for most models
 - Fallback to partial graphs is needed
- Speed
 - ~1.5x faster than the eager mode

Geometric mean speedup

Compiler		huggingface	
eager	1.00x	1.00x	1.00x
aot_eager	1.00x	1.00x	1.00x
inductor	1.59x	1.59x	1.41x
inductor_no_cudagraphs	1.30x	1.51x	1.39x

Handwritten Low Level Code VS Automated Generation

- Low flexibility
 - Fine-tune for every shape/data type/algorithm
 - Employ assembly instructions
 - •
- High performance
 - Apply sophisticated instruction/operator scheduling
 - Simplify code
 - •

- High flexibility
 - Build upon existing operators
 - No need to recompile
 - •
- Low performance
 - Not fine-tuned for specific shapes
 - Intermediate memory movement

•

Triton is a Python-Like Language

- PyTorch compatible
 - Inputs can be PyTorch tensors or custom data-structures (e.g., tensors of pointers)
- Python syntax
 - All standard python control flow structure (for/if/while/return) are supported
 - Python code is lowered to Triton IR

The Programming Language Design Triangle

- Triton focuses on usability and performance
 - The language features supported by triton is a subset of Python
 - No dict
 - No meta-programming
 - No slicing
 - No indexing
 - •

CUDA Terminologies

- Parallelism
 - Grid
 - One for each kernel (Pre-Hopper)
 - Block/Warp/Thread
- Memory
 - Global
 - Visible to all threads
 - Shared
 - Private to each block
 - Local
 - Private to each thread

CUDA vs Triton

	CUDA	Triton
Memory	Global/Shared/Local	Automatic
Parallelism	Threads/Blocks/Warps	Mostly Blocks
Tensor Core	Manual	Automatic
Vectorization	.8/.16/.32/.64/.128	Automatic
Async SIMT	Support	Limited
Device Function	Support	Support

Using Triton, you only need to know that a program is divided into multiple blocks

Vector Addition (Single Block)

- → Z[:] = X[:] + Y[:]
 - → Without boundary check

```
import triton.language as tl
import triton
```

```
N = 1024
x = torch.randn(N, device='cuda')
y = torch.randn(N, device='cuda')
z = torch.randn(N, device='cuda')
```

Vector Addition (Boundary Check)

- → Z[:] = X[:] + Y[:]
 - → With boundary check

```
import triton.language as tl
import triton
@triton.jit
def _add(z_ptr, x_ptr, y_ptr, N):
    # same as torch.arange
    offsets = tl.arange(0, 1024)
    # create 1024 pointers to X, Y, Z
    x_ptrs = x_ptr + offsets
    y_ptrs = y_ptr + offsets
    z_ptrs = z_ptr + offsets
    # load 1024 elements of X, Y, Z
    # do computations
    z = x + y
    # write-back 1024 elements of X, Y, Z
N = 1024
x = torch.randn(N, device='cuda')
y = torch.randn(N, device='cuda')
z = torch.randn(N, device='cuda')
```

Vector Addition (Autotune)

- → Z[:] = X[:] + Y[:]
 - → Each block computes TILE elements
- → @triton.autotune
 - → Select the best config based on the execution time
 - → We don't want to build complex autotune policies into Triton

```
@triton.autotune(configs=
    [triton.Config('TILE': 128),
     triton.Config('TILE': 256)]
@triton.jit
def _add(z_ptr, x_ptr, y_ptr, N):
    # same as torch.arange
    offsets = tl.arange(0, TILE)
    offsets += tl.program id(0)*TILE
    # create TILE pointers to X, Y, Z
   x_ptrs = x_ptr + offsets
    y ptrs = y_ptr + offsets
    z ptrs = z ptr + offsets
    # load TILE elements of X, Y, Z
   x = tl.load(x_ptrs, mask=offset<N)</pre>
    y = tl.load(y ptrs, mask=offset<N)
    # do computations
    z = x + y
    # write-back TILE elements of X, Y, Z
    t1.store(z ptrs, z, mask=offset<N)</pre>
N = 1024
x = torch.randn(N, device='cuda')
y = torch.randn(N, device='cuda')
z = torch.randn(N, device='cuda')
grid = lambda args: (triton.cdiv(N, args["TILE"]), )
_add[grid](z, x, y, N)
```

Triton JIT-Compilation Workflow

Optimization Passes

- MLIR general optimizations
 - CSE, DCE, Inlining, ...
- TritonGPU specific optimizations
 - Pipeline
 - Prefetch
 - Matmul accelerate
 - Coalesce
 - Remove layout
- TritonNVIDIAGPU specific optimizations
 - TMA Materialization
 - TMA Multicast
 - Async Dot
 - Warp Specialization

Layout Encoding in TritonGPU

- A specification that maps data distribution to threads to better utilize the underlying hardware
 - Suppose we have a 2x2 tensor and 8 threads
 - Layout $(0, 0) = \{0, 4\}$
 - Layout(0, 1) = {1, 5}
 - Layout $(1, 0) = \{2, 6\}$
 - Layout $(1, 1) = \{3, 7\}$
 - It means that
 - data(0, 0) is stored on thread 0 and thread 4
 - data(0, 1) is stored on thread 1 and thread 5
 - data(1, 0) is stored on thread 2 and thread 6
 - data(1, 1) is stored on thread 3 and thread 7

Blocked Layout

- The most basic layout in Triton
- Assign a default layout initially
- Optimize the layout based on global memory load/store ops
- A 2d blocked layout example
 - sizePerThread = {2, 2}
 - threadsPerWarp = {8, 4}
 - warpsPerCTA = {1, 2}
 - CTAsPerCGA = {1, 1}
 - order = $\{1, 0\}$
 - Row major

Shared Layout

- Specify how data is stored on shared memory
 - Use 2D-swizzling or padding to avoid bank conflicts
- Triton doesn't manage shared memory explicitly
 - Shared memory is only used when involving data exchange across threads
 - Convert from one layout to another

Dot Operand Layout

- mma.m16n8k16
 - A [m,k] X B [k,n] + C [m, n] = D [m, n]

R\C	0 1	2 3	4 5	6 7	8 9	10 11	12 13	14 15
0	T0:{a0,a1}	T1:{a0,a1}	T2:{a0,a1}	T3:{a0,a1}	T0:{a4,a5}	T1:{a4,a5}	T2:{a4,a5}	T3:{a4,a5}
1	T4:{a0,a1}	T5:{a0,a1}	T6:{a0,a1}	T7:{a0,a1}	T4:{a4,a5}	T5:{a4,a5}	T6:{a4,a5}	T7:{a4,a5}
2	_							
	4-				•			
7	T28:{a0,a1}	T29:{a0,a1}	T30:{a0,a1}	T31:{a0,a1}	T28:{a4,a5}	T29:{a4,a5}	T30:{a4,a5}	T31:{a4,a5}
8	T0:{a2,a3}	T1:{a2,a3}	T2:{a2,a3}	T3:{a2,a3}	T0:{a6,a7}	T1:{a6,a7}	T2:{a6,a7}	T3:{a6,a7}
9	T4:{a2,a3}	T5:{a2,a3}	T6:{a2,a3}	T7:{a2,a3}	T4:{a6,a7}	T5:{a6,a7}	T6:{a6,a7}	T7:{a6,a7}
10	_			→				
	4				-			
15	T28:{a2,a3}	T29:{a2,a3}	T30:{a2,a3}	T31:{a2,a3}	T28:{a6,a7}	T29:{a6,a7}	T30:{a6,a7}	T31:{a6,a7}

%laneid:{fragments}

Row\Col 1 2 7 $T0: \begin{pmatrix} b0 \\ b1 \end{pmatrix}$ $T4: \begin{pmatrix} b0 \\ b1 \end{pmatrix}$ $_{T28:}$ b0 0 1 $T3: \begin{pmatrix} b0 \\ b1 \end{pmatrix}$ $T7: \begin{pmatrix} b0 \\ b1 \end{pmatrix}$ 6 T31: b17 $_{T28:}^{b2}$ $T0: {b2 \brace b3}$ $T4: {b2 \brace b3}$ 9 $T7: \begin{cases} b2 \\ b3 \end{cases}$ 14 T31:{ 15

%laneid:{fragments}

B: fp16

A: fp16

MMA Layout

- mma.m16n8k16
 - A [m,k] X B [k,n] + C [m, n] = D [m, n]

R\C	0 1	2 3	4 5	6 7	8 9	10 11	12 13	14 15
0	T0:{a0,a1}	T1:{a0,a1}	T2:{a0,a1}	T3:{a0,a1}	T0:{a4,a5}	T1:{a4,a5}	T2:{a4,a5}	T3:{a4,a5}
1	T4:{a0,a1}	T5:{a0,a1}	T6:{a0,a1}	T7:{a0,a1}	T4:{a4,a5}	T5:{a4,a5}	T6:{a4,a5}	T7:{a4,a5}
2	_				_			
	4-				•			
7	T28:{a0,a1}	T29:{a0,a1}	T30:{a0,a1}	T31:{a0,a1}	T28:{a4,a5}	T29:{a4,a5}	T30:{a4,a5}	T31:{a4,a5}
8	T0:{a2,a3}	T1:{a2,a3}	T2:{a2,a3}	T3:{a2,a3}	T0:{a6,a7}	T1:{a6,a7}	T2:{a6,a7}	T3:{a6,a7}
9	T4:{a2,a3}	T5:{a2,a3}	T6:{a2,a3}	T7:{a2,a3}	T4:{a6,a7}	T5:{a6,a7}	T6:{a6,a7}	T7:{a6,a7}
10	-			→				
	4-				-			
15	T28:{a2,a3}	T29:{a2,a3}	T30:{a2,a3}	T31:{a2,a3}	T28:{a6,a7}	T29:{a6,a7}	T30:{a6,a7}	T31:{a6,a7}

Row\Col	0 1	2 3	4 5	6 7
0	T0: {c0, c1}	T0: {c0, c1} T1: {c0, c1}		T3: {c0, c1}
1	T4: {c0, c1}	T5: {c0, c1}	T6: {c0, c1}	T7: {c0, c1}
2	-			<u> </u>
	•			
7	T28: {c0, c1}	T29: {c0, c1}	T30: {c0, c1}	T31: {c0, c1}
8	T0:{c2, c3}	T1:{c2, c3}	T2:{c2, c3}	T3:{c2, c3}
9	T4:{c2, c3}	T5:{c2, c3}	T6:{c2, c3}	T7:{c2, c3}
10				
	+			
15	T28:{c2, c3}	T29:{c2, c3}	T30:{c2, c3}	T31:{c2, c3}

%laneid:{fragments}

%laneid:{fragments}

A: fp16

C or D: fp16

Analysis Passes

- Shared memory
 - Alias
 - Liveness
 - Barrier
- Pointer alignment
 - Axisinfo
- Call graph
 - "noinline" functions

Figure 2

Ecosystem

Dev Time VS Performance

Triton Performance

- It takes <25 lines of code to write a Triton kernel on par with cuBLAS
- Arbitrary ops can be "fused" before/after the GEMM while the data is still on-chip
 - leading to large speedups over PyTorch/cublas

Backend Status

