The circular restricted three body problem (CR3BP) is a special case of the three body problem. In the CR3BP (much like in Keplerian 2-body dynamics), we neglect the mass of satellite S, while treating the larger celestial body B_1 and smaller celestial body B_2 as point masses. Crucially, these bodies must orbit one another in circular orbits. In other words, they both orbit about their inertially fixed barycenter c at constant velocity and distance.

Figure 1: Geometry. S is the satellite, B are the celestial bodies. \hat{z} implied out of page. The bodies are always along the x axis, as the c frame rotates with them

Because \hat{x} points from c to B_2 , which is not inertially stationary, the xyz frame is rotating. Specifically, it is rotating positively about z. Because the celestial bodies are in a circular orbit, their rates of rotation about c are constant. This means that the xyz frame rotates at a constant rate of $\overline{\omega} = \Omega \hat{z}$

We can also find a relationship between x_1 , x_2 , r_{12} , m_1 , and m_2 . Because c is the barycenter,

$$x_1 m_1 = x_2 m_2$$

Kinematics

The transport theorem states that the inertial (fixed f frame) derivative of a vector u (expressed in the rotating c frame) is

$$\frac{\mathrm{d}^f \overline{u}}{\mathrm{d}t} = \frac{\mathrm{d}^c \overline{u}}{\mathrm{d}t} + \overline{\omega}^{cf} \times \overline{u}$$

Where $\frac{\mathrm{d}^f}{\mathrm{d}t}$ denotes the derivative in the coordinates of the fixed frame f, and $\frac{\mathrm{d}^c}{\mathrm{d}t}$ denotes derivative in the coordinates of the rotating frame c, and $\overline{\omega}^{cf}$ denotes the angular velocity of c in f. For this case, $\overline{\omega}^{cf} = \Omega \hat{z}$.

For a position vector \overline{r} , we will find the velocity $\overline{v} = \dot{\overline{r}}$ and acceleration $\overline{a} = \ddot{\overline{r}}$. Note that dot notation implies inertial.

$$v = r$$

$$= \frac{\mathrm{d}^{c}\overline{r}}{\mathrm{d}t} + \overline{\omega}^{cf} \times \overline{r}$$

$$= \overline{v}^{c} + (\Omega \hat{z} \times \overline{r})$$

$$\overline{a} = \dot{\overline{v}}$$

$$= \frac{\mathrm{d}^{c}}{\mathrm{d}t} (\overline{v}^{c} + (\Omega \hat{z} \times \overline{r})) + \overline{\omega}^{cf} \times (\overline{v}^{c} + (\Omega \hat{z} \times \overline{r}))$$

$$= \frac{\mathrm{d}^{c}}{\mathrm{d}t} (\overline{v}^{c} + (\Omega \hat{z} \times \overline{r})) + \Omega \hat{z} \times (\overline{v}^{c} + (\Omega \hat{z} \times \overline{r}))$$

$$= \overline{a}^{c} + (\Omega \hat{z} \times \overline{v}^{c}) + \Omega \hat{z} \times (\overline{v}^{c} + (\Omega \hat{z} \times \overline{r}))$$

$$= \overline{a}^{c} + (\Omega \hat{z} \times \overline{v}^{c}) + (\Omega \hat{z} \times \overline{v}^{c}) + \Omega \hat{z} \times (\Omega \hat{z} \times \overline{r})$$

$$= \overline{a}^{c} + 2 (\Omega \hat{z} \times \overline{v}^{c}) - \Omega^{2} \overline{r}$$

$$\overline{v} = \overline{v}^{c} + (\Omega \hat{z} \times \overline{v}^{c})$$

$$\overline{a} = \overline{a}^{c} + 2 (\Omega \hat{z} \times \overline{v}^{c})$$

Now we will solve for Ω . Note that, because c is the center of mass of B_1 and B_2 ,

$$F_{\text{on2}} = -\frac{Gm_1m_2}{r_{12}^2}\hat{x}$$

$$p_2\bar{a}_2^f = -\frac{Gm_1m_2}{r_{12}^2}\hat{x}$$

$$\left(\overline{a} + 2\left(\Omega \hat{z} \times \overline{x}^e\right)^0 - \Omega^2 \overline{r}\right) = \frac{Gm_1}{r_{12}^2}$$

$$-\Omega^2 x_2 \hat{x} = -\frac{Gm_1}{r_{12}^2}\hat{x}$$

$$\Omega^2 x_2 = \frac{Gm_1}{r_{12}^2}$$

$$\Omega = \sqrt{\frac{Gm_1}{x_2 r_{12}^2}}$$