Appl.No. 09/990,965 Amdt. Dated May 30, 2006 Reply to Office Action of February 27, 2006

Listing of Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

1. (Previously presented) A transmitter for use in optical communication 1 2 system, said transmitter comprising 3 a means for generating a stream of RZ optical pulses in which 4 alternate ones of such pulses have essentially orthogonal 5 polarizations, and 6 a means for modulating the phases of said optical pulses as a 7 function of input data applied to said transmitter thereby encoding said input data onto said stream of RZ optical pulses, 8 9 wherein said modulating means is a Differential Phase Shift Keying 10 (DPSK) modulator. 1 2. (Cancelled) The invention defined in claim 1 wherein said modulating 2 means is a phase shift keyed (PSK) modulator. 3. (Cancelled) The invention defined in claim 1 wherein said modulating 1 2 means is arranged to modulate said optical pulses in accordance with 3 the differences between successive bits in the said input data. 1 4. (Previously presented) A transmitter for use in optical communication 2 system, said transmitter comprising 3 a means for generating a first and a second stream of RZ optical 4 pulses in which pulses in said first stream have essentially 5 orthogonal polarizations with respect to pulses in said second 6

stream, and

Appl.No. 09/990,965 Amdt. Dated May 30, 2006 Reply to Office Action of February 27, 2006

r	neans for mo	dulating ⁻	the pha	se of said	optical pulses ir	said first
	and second	d streams	s as a fu	nction of fi	rst and second s	streams of
	input data	applied	to said	transmitte	er, respectively,	thereby
	encoding s	aid first a	nd seco	nd streams	of RZ optical pu	ılses,
V	vherein said n (DPSK) mo		g mean	s is a Diffei	rential Phase Sh	nift Keying
	(DESK) IIIO	uuialor.				

- 5. (Original) The invention defined in claim 4, wherein the said first and second stream of optical pulses each have same first wavelength, and wherein said transmitter further includes a wavelength division multiplexer for combining the output of the said modulation means with at least a second modulated optical signal having a wavelength different from said first wavelength.
- (Original) The invention defined in claim 4, wherein said optical pulses are solitons.
 - 7. (Previously presented) An optical communication system arranged to transmit at least one stream of input data from a transmitter to a remote receiver, said system comprising
 - a transmitter for generating a stream of RZ optical pulses in which alternate ones of such pulses have essentially orthogonal polarizations, and for modulating the phase of said optical pulses as a function of said input data applied to said transmitter thereby encoding said input data onto said stream of optical pulses, wherein said modulation is in a Differential Phase Shift Keying (DPSK) modulation format, and

11

Appl.No. 09/990,965 Amdt. Dated May 30, 2006 Reply to Office Action of February 27, 2006

11	an optical communication channel for transmitting the phase
12	modulated optical pulses from said transmitter to said remote
13	receiver.
1	8. (Original) The invention defined in claim 7 wherein said system further
2	includes a demodulator for recovering said at least one stream of input
3	data from said modulated optical pulses at said remote receiver.
1	9. (Previously presented) A method for transmitting input data using an
2	optical communication system, said method comprising the steps of
3	generating a stream of RZ optical pulses in which alternate ones of
4	such pulses have essentially orthogonal polarizations, and
5	modulating the phases of said optical pulses as a function of said
6	input data thereby encoding said input data onto said stream of
7	RZ optical pulses,
8	wherein said modulation is in a Differential Phase Shift Keying
9	(DPSK) modulation format.
1	10. (Cancelled) The invention defined in claim 9 wherein said modulating
2	step includes phase shift keying of said optical pulses in a PSK
3	modulator.
1	11. (Cancelled) The invention defined in claim 9 wherein said modulating
2	step includes modulating said optical pulses in accordance with the
3	differences between successive bits in the said input data.
1	12. (Previously presented) A method for transmitting input data using an
2	optical communication system, said method comprising the steps of

 Appl.No. 09/990,965 Amdt. Dated May 30, 2006 Reply to Office Action of February 27, 2006

generati	ing firs	t and	secon	d stream	is of RZ	coptical pul	ses in which
pulse	es in	said	first	stream	have	essentially	orthogonal
pola	rizatior	s with	respec	ct to puls	es in sa	id second s	tream, and
modulat	ing the	phase	of sai	id optica	l pulses	in said first	and second
strea	ıms as	a func	tion of	first and	second	streams of	input data,
resp	ectively	y, there	by en	coding s	aid first	and second	streams of
input	data d	onto fire	st and	second	streams	of RZ optica	al puises,
wherein	said	modula	ation i	s in a	Differen	tial Phase	Shift Keying
(DPS	SK) mo	dulatio	n form	at.			

- 13. (Original) The method defined in claim 12, wherein said first and second streams of optical pulses each have same first wavelength, and wherein said method further includes the step of combining, in a wavelength division multiplexer, the phase modulated optical pulses generated in said modulation step with at least a second modulated optical signal having a wavelength different from said first wavelength.
- 14. (Original) The invention defined in claim 12 wherein the said optical pulses are solitons.
- 15. (Previously presented) An optical communication method for transmitting at least one stream of input data from a transmitter to a remote receiver, said method comprising steps of:

generating a stream of RZ optical pulses in which alternate ones of such pulses have essentially orthogonal polarizations, and modulating the phase of said pulses as a function of said input data applied to said transmitter thereby encoding said input data into said stream of RZ optical pulses,

Appl.No. 09/990,965 Amdt. Dated May 30, 2006 Reply to Office Action of February 27, 2006

9	wherein said modulation is in a Differential Phase Shift Keying
10	(DPSK) modulation format, and
11	transmitting the modulated optical pulses from said transmitter to
12	said remote receiver via an optical communication channel.
1	16. (Original) The invention defined in claim 15 wherein said method
2	further includes demodulating said modulated pulses received at said
3	remote receiver to recover said at least one stream of input data.