

Section 3

Histogram Equalization, Filtration in Frequency Domain, and Hough Transform

Presentation by Asem Alaa

Histogram Processing: Equalization

- Intensity image (3 bits): [0-7]
- Image size = 64x64 = 4096

Step 1: Compute the discrete PDF (histogram)

Histogram Processing: Equalization

- Intensity image (3 bits): [0-7]
- Image size = 64x64 = 4096

Step 1: Compute the discrete PDF (histogram)

790 1023 850	0.19 0.25 0.21
	0.20
850	0.21
	0.21
656	0.16
329	0.08
245	0.06
122	0.03
81	0.02
	329 245 122

Step 2: Compute the discrete CDF (cumulative histogram)

i	accumulative	accumulative x 7	rounded
s0	0.19	1.33	1
s1	0.44	3.08	3
s2	0.65	4.55	5
s3	0.81	5.67	6
s4	0.89	6.23	6
s5	0.95	6.65	7
s6	0.98	6.86	7
s7	1.00	7.00	7

Step 2: Compute the discrete CDF (cumulative histogram)

Step 3: Use the previous table to map the pixels values

Step 3: Use the previous table to map the pixels values

Histogram Processing: Matching

- Intensity image (3 bits): [0-7]
- Image size = 64x64 = 4096

Histogram Processing: Matching

- Intensity image (3 bits): [0-7]
- Image size = 64x64 = 4096
- Obtain an image with an **arbitrary distribution** instead of a uniform distribution

Histogram Processing: Matching

- Intensity image (3 bits): [0-7]
- Image size = 64x64 = 4096
- Obtain an image with an **arbitrary distribution** instead of a uniform distribution
- Target distribution

Histogram Processing: Matching (cont'd) Step 1: Obtain the scaled histogram equalized values (previous example)

- s0 = 1 s1 = 3 s2 = 5 s3 = 6
- s4 = 7 s5 = 7 s6 = 7 s7 = 7

Histogram Processing: Matching (cont'd) Step 2: compute the discrete CDF of the target distribution

i	accumulative x 7	rounded
z0	0.00	0
z1	0.00	0
z2	0.00	0
z3	1.05	1
z4	2.45	2
z5	4.55	5
z6	5.95	6
z 7	7.00	7

Histogram Processing: Matching Step 2: compute the discrete CDF of the target distribution

Histogram Processing: Matching
Step 3: use the previous table to map the pixels values

Histogram Processing: Matching Step 3: use the previous table to map the pixels values

Histogram Processing: Demo

{histograms.ipnyb}

Filtration in Frequency Domain: Demo

{frequency_filter.ipnyb}