Aufgabe: Orientierungstreue von Diffeomorphismen

- 1. Sei $\Phi \colon U \stackrel{\cong}{\longrightarrow} V$ ein Diffeomorphismus zwischen offenen Mengen $U, V \subset \mathbb{R}^n$. Man zeige: Ist U wegzusammenhängend, so ist Φ entweder orientierungserhaltend oder orientierungsumkehrend.
- 2. Sei $U = B_1 \cup B_2 \subset \mathbb{R}^n$ die disjunkte Vereinigung zweier offener Bälle. Man zeige: Es gibt einen Diffeomorphismus $\Phi \colon U \mapsto U$, der weder orientierungserhaltend noch orientierungsumkehrend ist.

Lösung

Teil (a) Wir müssen zeigen, dass ein Diffeomorphismus $\Phi: U \to V$ mit wegzusammenhängendem U entweder überall orientierungserhaltend oder überall orientierungsumkehrend ist.

Betrachten wir die Abbildung

$$f: U \to \mathbb{R}, \quad f(x) = \det(D\Phi(x))$$

wobei $D\Phi(x)$ die Jacobi-Matrix von Φ an der Stelle x bezeichnet.

Schritt 1: Die Funktion f ist stetig.

Da Φ ein Diffeomorphismus ist, ist Φ insbesondere stetig differenzierbar. Die Einträge der Jacobi-Matrix $D\Phi(x)$ sind die partiellen Ableitungen von Φ, welche nach Voraussetzung stetig sind. Die Determinante ist eine stetige Funktion der Matrixeinträge, somit ist $f(x) = \det(D\Phi(x))$ als Komposition stetiger Funktionen stetig.

Schritt 2: Es gilt $f(x) \neq 0$ für alle $x \in U$.

Da Φ ein Diffeomorphismus ist, ist Φ insbesondere lokal invertierbar. Nach dem Satz über die Umkehrfunktion ist dies genau dann der Fall, wenn $\det(D\Phi(x)) \neq 0$ für alle $x \in U$.

Schritt 3: Das Bild f(U) ist zusammenhängend.

Da U wegzusammenhängend ist, ist U insbesondere zusammenhängend. Das stetige Bild einer zusammenhängenden Menge ist zusammenhängend, also ist $f(U) \subset \mathbb{R}$ zusammenhängend.

Schritt 4: Es gilt entweder $f(U) \subset (0, \infty)$ oder $f(U) \subset (-\infty, 0)$. Aus Schritt 2 wissen wir, dass $0 \notin f(U)$. Also gilt $f(U) \subset \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$.

Angenommen, es existieren $x_1, x_2 \in U$ mit $f(x_1) > 0$ und $f(x_2) < 0$. Dann wäre $f(U) \cap (-\infty, 0) \neq \emptyset$ und $f(U) \cap (0, \infty) \neq \emptyset$. Dies würde bedeuten, dass f(U) als Teilmenge von $(-\infty, 0) \cup (0, \infty)$ nicht zusammenhängend wäre, was ein Widerspruch zu Schritt 3 ist.

Folglich gilt entweder $f(U) \subset (0, \infty)$ oder $f(U) \subset (-\infty, 0)$.

Schlussfolgerung:

- Falls $\det(D\Phi(x)) > 0$ für alle $x \in U$, dann ist Φ orientierungserhaltend.
- Falls $\det(D\Phi(x)) < 0$ für alle $x \in U$, dann ist Φ orientierungsumkehrend.

Damit ist gezeigt, dass Φ entweder orientierungserhaltend oder orientierungsumkehrend ist.

Teil (b) Wir konstruieren einen Diffeomorphismus $\Phi: U \to U$ mit $U = B_1 \cup B_2$, wobei B_1 und B_2 disjunkte offene Bälle sind, der weder orientierungserhaltend noch orientierungsumkehrend ist.

Ohne Beschränkung der Allgemeinheit können wir annehmen:

$$B_1 = \{ x \in \mathbb{R}^n : ||x - c_1|| < r_1 \}$$
 (1)

$$B_2 = \{ x \in \mathbb{R}^n : ||x - c_2|| < r_2 \}$$
 (2)

wobei $||c_1 - c_2|| > r_1 + r_2$, sodass $B_1 \cap B_2 = \emptyset$.

Wir definieren $\Phi: U \to U$ durch:

$$\Phi(x) = \begin{cases} x & \text{falls } x \in B_1\\ 2c_2 - x & \text{falls } x \in B_2 \end{cases}$$

Schritt 1: Φ ist wohldefiniert.

Da B_1 und B_2 disjunkt sind, ist Φ eindeutig definiert. Für $x \in B_2$ gilt:

$$||2c_2 - x - c_2|| = ||c_2 - x|| = ||x - c_2|| < r_2$$

Also ist $\Phi(x) = 2c_2 - x \in B_2$ für alle $x \in B_2$. Trivialerweise gilt $\Phi(x) \in B_1$ für alle $x \in B_1$.

Schritt 2: Φ ist bijektiv.

Die Einschränkung $\Phi|_{B_1}$ ist die Identität, also bijektiv von B_1 nach B_1 . Die Einschränkung $\Phi|_{B_2}$ ist eine Punktspiegelung an c_2 . Diese ist involutorisch, d.h., $\Phi \circ \Phi = \text{id}$ auf B_2 , also bijektiv von B_2 nach B_2 . Da $\Phi(B_1) = B_1$ und $\Phi(B_2) = B_2$, ist $\Phi : U \to U$ bijektiv.

Schritt 3: Φ ist ein Diffeomorphismus.

Auf B_1 ist $\Phi(x) = x$, also $D\Phi(x) = I_n$ (die $n \times n$ Einheitsmatrix). Auf B_2 ist $\Phi(x) = 2c_2 - x$, also $D\Phi(x) = -I_n$.

Da B_1 und B_2 offen und disjunkt sind, ist Φ auf ganz U beliebig oft differenzierbar. Die Umkehrabbildung ist $\Phi^{-1} = \Phi$ (da Φ involutorisch ist), welche ebenfalls glatt ist.

Schritt 4: Φ ist weder orientierungserhaltend noch orientierungsumkehrend. Wir berechnen:

$$\det(D\Phi(x)) = \begin{cases} \det(I_n) = 1 > 0 & \text{falls } x \in B_1\\ \det(-I_n) = (-1)^n & \text{falls } x \in B_2 \end{cases}$$

Für *n* ungerade gilt $det(-I_n) = -1 < 0$. In diesem Fall:

- Auf B_1 ist $\det(D\Phi(x)) > 0$, also ist Φ dort orientierungserhaltend.
- Auf B_2 ist $\det(D\Phi(x)) < 0$, also ist Φ dort orientierungsumkehrend.

Da Φ auf einem Teil von Uorientierungserhaltend und auf einem anderen Teil orientierungsumkehrend ist, ist Φ weder (überall) orientierungserhaltend noch (überall) orientierungsumkehrend.

Anmerkung: Für n gerade ist $\det(-I_n) = 1 > 0$. In diesem Fall können wir stattdessen auf B_2 die Abbildung $\Phi(x) = S(x-c_2)+c_2$ verwenden, wobei S eine Spiegelung an einer Hyperebene durch den Ursprung ist (z.B. $S(x_1, x_2, \ldots, x_n) = (-x_1, x_2, \ldots, x_n)$). Dann gilt $\det(S) = -1$, und wir erhalten wieder einen Diffeomorphismus, der auf B_1 orientierungserhaltend und auf B_2 orientierungsumkehrend ist.