Metode Simpleks Minimum

Perhatian

 Untuk menyelesaikan Persoalan Program Linier dengan Metode Simpleks untuk fungsi tujuan memaksimumkan dan meminimumkan caranya BERBEDA.

Perhatian

 Model matematika dari Permasalahan Program Linier dapat dinyatakan dalam bentuk Sistem Persamaan Linier AX = B sebagai berikut :

Bentuk Umum Model Persoalan Program Linier

- Fungsi Tujuan:
 - Minimumkan $Z = C_1 X_1 + C_2 X_2 + ... + C_n X_n$
- Bisa dibuat dlm bentuk matriks sbb:

$$Z = \begin{bmatrix} C_1 & C_2 & \dots & C_n \end{bmatrix} \quad \begin{vmatrix} X_2 \\ \vdots \\ X_n \end{vmatrix}$$

Batasan:

•
$$a_{11}X_1 + a_{12}X_2 + \dots + a_{1n}X_n \le or \ge b_1$$

•
$$a_{21}X_1 + a_{22}X_2 + \dots + a_{2n}X_n \le or \ge b_2$$

•
$$a_{m1}X_1 + a_{m2}X_2 + \dots + a_{mn}X_n \le or \ge b_m$$

Bisa ditulis dlm bentuk matriks sbb:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{21} & & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} \le or \ge \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Langkah Penyelesaian Simpleks Minimum

- Mengubah semua kendala ke Bentuk Kanonik dengan menambah variabel Slack S. Variabel slack yang ada dimasukkan (ditambahkan) ke fungsi sasaran dan diberi koefisien 0.
- 2. Jika dalam matriks A sudah terbentuk Matriks Identitas maka disusun tabel awal simpleks sebagai berikut :

	•	C ₁									
C _i	Xi Xj	X ₁	X ₂	••	X _n	S ₁	S ₂		V ₁	b _i	R _i
C ₁	X ₁	a ₁₁	a ₁₂		a _{1n}					b ₁	R_1
•••	•	•••	•••	:				:			
C_{m}	X_{m}	a _{m1}						:		b _m	R_{m}
	Z_{j}	Z_1	Z_2	•	Z _n			••			
	Z_{j} - C_{j}	Z ₁ - C ₁	Z ₂ - C ₂		Z_n - C_n						

Keterangan

- Baris C_i diisi dengan para koefisien Fungsi Tujuan (sasaran)
- Baris X_i diisi dengan nama-nama perubah (variabel) yang ada.
- Kolom X_i diisi dengan nama-nama perubah yang menjadi basis (variabel yang menyusun matriks Identitas).
- Kolom C_i diisi dengan para koefisien perubah yang menjadi basis
- Kolom b_i diisi dengan para konstanta fungsi kendala (Nilai Sebelah Kanan/NSK).
- Baris Z_j diisi dengan rumus: $Z_j = \sum_{i=1}^{n} C_i a_{ij}, j = 1,...,n$
- Kolom Ri diisi dengan rumus Ri = b_i / a_{ik} (a_{ik} = elemenelemen yang berada dalam kolom kunci, dan R_i dihitung hanya untuk $a_{ik} \ge 0$)

Langkah Penyelesaian Simpleks Minimum (Lanjutan)

Jika belum terbentuk matriks identitas (I_n), maka matriks identitas dimunculkan dengan menambah peubah semu dan diberi notasi V. Perubah semu yang ada dimasukan di fungsi sasaran dengan koefisien sebesar (+M), dengan M adalah bilangan yang cukup besar.

М

Contoh

- Meminimumkan $Z = 22 X_1 + 6 X_2$
- Fungsi Kendala:
 - \Box a). 11X₁ + 3X₂ ≥ 33
 - \Box b). 8X1 + 5X2 ≤ 40
 - \Box c). 7X1 + 10X2 ≤ 70, dan X1 ≥ 0, X2 ≥ 0

×

Bentuk Baku

- Meminimumkan $Z = 22 X_1 + 6 X_2$
- Fungsi Kendala:
 - \Box a). 11X1 + 3X2 1S1 + 0S2 + 0S3 = 33
 - \Box b). 8X1 + 5X2 + 0S1 + 1S2 + 0S3 = 40
 - \Box c). 7X1 + 10X2 + 0S1 + 0S2 + 1S3 = 70, dan
 - $\square X_1, X_2, S_1, S_2, S_3 \ge 0$

Jika ditulis dalam matriks

$$\begin{pmatrix} 11 & 3 & -1 & 0 & 0 \\ 8 & 5 & 0 & 1 & 0 \\ 7 & 10 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X1 \\ X2 \\ S1 \\ S2 \\ S3 \end{pmatrix} = \begin{pmatrix} 33 \\ 40 \\ 70 \end{pmatrix}$$

Its not identity matrix

м

Supaya muncul matriks identitas

- Ditambah peubah semu V_k ke kendala
 - $\square 11X1 + 3X2 1S1 + 0S2 + 0S3 + 1V1 = 33$
 - $\square 8X1 + 5X2 + 0S1 + 1S2 + 0S3 + 0V1 = 40$
 - \Box 7X1 + 10X2 + 0S1 + 0S2 + 1S3 + 0V1= 70, Bisa ditulis menjadi
 - $\Box 11X1 + 3X2 + 1V1 + 0S2 + 0S3 1S1 = 33$
 - $\square 8X1 + 5X2 + 0V1 + 1S2 + 0S3 + 0S1 = 40$
 - □7X1 + 10X2 + 0V1 + 0S2 + 1S3 + 0S1 = 70, dan X₁, X₂, S₁, S₂, S₃, V1, V2≥ 0

Jika ditulis dalam matriks

M

Fungsi Tujuan Menjadi

- $Z = 22 X_1 + 6 X_2 + MV1 + 0S1 + 0S2 + 0S3$
 - □ Dengan M adalah bilangan yang sangat besar

Pemeriksaan terhadap nilai Z_j - C_j.

- o Tabel sudah minimum jika semua $Z_j C_j \le 0$.
- o Jika ada Z_j C_j > 0 (positif), maka dibuat tabel baru dengan cara sebagai berikut :
 - Menentukan kolom kunci yaitu memilih nilai Z_j - C_j yang terbesar. Sebut dengan Z_k - C_k maka kolom ke-k disebut *kolom kunci*.
 - Pada kolom ke-k dilakukan pemeriksaan terhadap nilai a_{ik}.

- o Jika untuk semua a_{ik} negatif (a_{ik} < 0) maka jawab tidak terbatas (Nilai Fungsi Tujuan tidak terbatas)/(Unbounded).
- Jika terdapat a_{ik} yang positif hitung nilai R_i, (untuk a_{ik} yang positif saja) kemudian dilanjutkan ke langkah berikutnya

- Menentukan baris kunci, yaitu nilai Ri yang terkecil, selanjutnya baris yg memuat Ri terkecil disebut baris kunci.
- Kemudian disusun tabel baru sebagai berikut (dimulai dari baris kunci baru):
 - Untuk elemen baris kunci baru:
 - elemen baris kunci baru = elemen baris kunci lama dibagi a_{ik}
 - Ountuk elemen baris yang lain:
 - elemen baris baru = elemen baris lama (a_{ik} x elemen baris r baru)
- Kemudian tentukan lagi nilai Xi, Ci, Zj, Zj Cj.

- Jadi langkah Metode Simpleks Minimum hampir sama dengan Maksimum, hanya ada beberapa perbedaaan yaitu:
 - 1. Pengubahan bentuk kanonik, koefisien dari peubah (variabel) semu (V) pada fungsi sasaran adalah +M (positif M) dimana M bilangan yang sangat besar.
 - Tabel sudah minimum jika semua nilai dari Zj -Cj ≤ 0.
 - 3. Penentuan kolom kunci berdasarkan nilai dari Zj -Cj yang paling besar yaitu (maks {Zj - Cj }).

• • Contoh Soal

- Meminimumkan : Z = 40 X1 + 80 X2
 dengan batasan/kendala/constrain:
- o X1 + X2 ≥ 4
- o $X1 + 3X2 \ge 6$ $X1 \ge 0, X2 \ge 0$

• • Penyelesaian

o Bentuk Kanonik :

$$\bullet$$
 X1 + X2 - 1S1 + 0S2 + 1 V1 + 0V2 = 4

$$\bullet$$
 X1 + 3X2 + 0S1 - 1S2 + 0 V1 + 1V2 = 6

o Meminimumkan :

$$\bullet$$
 Z = 40 X1 + 80X2 + 0S1 + 0S2 + M V1 + M V2

	C _j	40	80	0	0	М	М		
C _i	X_i	X_1	X_2	S ₁	S_2	V_1	V_2	b _i	R _i
M	V_1	1	1	-1	0	1	0	4	4
M	V_2	1	3	0	-1	0	1	6	2
	Z_{j}	2M	4M	-M	-M	М	M	10M	
	Z_i - C_i	2M-40	4M-80	-M	-M	0	0		
М	V1	2/3	0	-1	1/3	1	-1/3	2	3
80	X2	1/3	1	0	-1/3	0	1/3	2	6
	Z_{j}	(2M+80)/3	80	-M	(M-80)/3	М	(80-M)/3	2M+16 0	
	Z_{j} - C_{j}	(2M-40)/3	0	-M	(M-80)/3	0	(80-4M)/3		
40	X ₁	1	0	-3/2	1/2	3/2	-1/2	3	
80	X_2	0	1	1/2	-1/2	-1/2	1/2	1	
	Z_{j}	40	80	-20	-20	20	20	200	
	Z_{j} - C_{j}	0	0	-20	-20	20-M	20-M		

 Karena semua Zj – Cj ≤ 0, maka tabel sudah minimal, dengan nilai X₁ = 3, dan X₂ = 1, dan Zminimalnya = 200.

• • • TUGAS INDIVIDU 4

- Selesaikan Persoalan Program Linier berikut dengan Metode Simpleks.
 - 1. Meminimumkan F = 22 X1 + 6 X2
 - Fungsi Kendala :
 - $11X1 + 3X2 \ge 33$
 - $8X1 + 5X2 \ge 40$
 - $7X1 + 10X2 \le 70 \text{ dan } X1 \ge 0, X2 \ge 0$

SOLUSI: $X1 = 1,451613 X2 = 5,677419 \rightarrow Z = 66$

- Fungsi Kendala:
 - $0 3X1 + X2 \ge 4$
 - $0.5X1 + 2X2 \le 10$
 - $X1 + 2X2 \ge 3 \text{ dan } X1 \ge 0, X2 \ge 0,$

SOLUSI: X1 = 1, $X2 = 1 \rightarrow Z = 14$