

Fermi Estimation

0.000

What is the average	height of	your group	(cm))?
		,	/	

Short answer text

How fast does human hair grow (km/h)?

Short answer text

If every living person stood crammed together side-by-side, how large of an area would they occupy (km²)?

Fermi Estimation

Fermi Estimation

What is the average height of your group (cm)?

Short answer text

np.median(height), np.median(hair), np.median(people)

(170.0, 2.489999999999998e-08, 1000.0)

How fast does human hair grow (km/h)?

Short answer text

hair: 1.7e-08

If every living person stood crammed together side-by-side, how large of an area would they occupy (km2)?

humans: 1000 km²

Vox Populi

Middlemost estimate: 1207 lbs True weight: 1198 lbs (0.8% under)

787 estimates

The Wisdom of Crowds

- Diversity of opinion: Each person should have private information even if it's just an eccentric interpretation of the known facts.
- Independence: People's opinions aren't determined by the opinions of those around them.
- Decentralization: People are able to specialize and draw on local knowledge.
- Aggregation: Some mechanism exists for turning private judgments into a collective decision.

COGS 108 Data Science in Practice

Linear modeling

COGS 108 Data Science in Practice

Linear modeling
Intro to statistics

Distributions

Distributions

Distributions

Normal

 $\label{eq:local_local$

Lognormal

Exponential

Poisson

0.8

0.7

Data distributions

Data distributions

Student's t-test

Student's t-test

...brewing a batch of beer is a time consuming and expensive process, so in order to draw conclusions from experimental methods applied to just a few batches, Gosset had to figure out the role of chance in determining how a batch of beer had turned out. Guinness frowned upon academic publications, so Gosset had to publish his results under the modest pseudonym, "Student."

Don't trust your data (or narratives)

Don't trust your data (or narratives)

Don't trust your data (or narratives)

Aline

```
y = mx + b
intercept
```

Aline

$$slope$$
 $y = mx + b$
 $intercept$

$$y = mx + b$$
 $intercept$

intercept
$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
slope

Visualize your data!

Visualize your data!

Same Stats, Different Graphs:

Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing

COGS 108 Data Science in Practice

Distributions and outliers

$$y = mx + b$$
 $intercept$

intercept
$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
slope

$$y = mx + b$$
 $intercept$

intercept
$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
slope

```
intercept
y_i = \beta_0 + \beta_1 x_i + \varepsilon_i
slope
```

```
parameter intercept residual error y_i = \beta_0 + \beta_1 x_i + \epsilon_i slope parameter
```

```
parameter intercept residual error y_i = \beta_0 + \beta_1 x_i + \epsilon_i slope parameter
```

Goal: find values for the parameters to provide a "best" fit for the data

```
parameter intercept residual error y_i = \beta_0 + \beta_1 x_i + \epsilon_i slope parameter
```

Goal: find values for the parameters to provide a "best" fit for the data

how?

```
parameter intercept residual error y_i = \beta_0 + \beta_1 x_i + \epsilon_i slope parameter minimize this!
```

```
parameter residual error y_i = \beta_0 + \beta_1 x_i + \epsilon_i slope parameter minimize this!
```

how?

```
parameter intercept residual error y_i = \beta_0 + \beta_1 x_i + \epsilon_i slope parameter
```

$$\frac{n}{\sum_{i=1}^{n} \varepsilon_{i}^{2}}$$

```
parameter intercept residual error y_i = \beta_0 + \beta_1 x_i + \epsilon_i slope parameter
```

$$\min \sum_{i=1}^{n} \varepsilon_i^2 \quad \text{why squared?}$$

```
parameter intercept y_i = \beta_0 + \beta_1 x_i + \epsilon_i slope parameter
```

$$\min \sum_{i=1}^{n} \varepsilon_{i}^{2}$$

$$y_{i} - \beta_{0} - \beta_{1} x_{i} = \varepsilon_{i}$$

```
parameter intercept residual error y_i = \beta_0 + \beta_1 x_i + \epsilon_i slope parameter
```

$$\min \sum_{i=1}^{n} \varepsilon_{i}^{2}$$

$$y_{i} - \beta_{0} - \beta_{1} x_{i} = \varepsilon_{i}$$

$$\min \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

 $\label{eq:local_local$

parameter intercept residual error
$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
 slope parameter

$$\beta_0 = \mu_y - \beta_1 \mu_x$$

$$\beta_1 = r_{xy} \frac{\sigma_y}{\sigma_x}$$

 $\label{eq:local_local$

```
parameter intercept y_i = \beta_0 + \beta_1 x_i + \epsilon_i slope parameter
```



```
parameter intercept y_i = \beta_0 + \beta_1 x_i + \epsilon_i slope parameter
```

$$\beta_0 = \mu_y - \beta_1 \mu_x$$

parameter intercept
$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
 $slope$ parameter

$$\beta_0 = \mu_y - \beta_1 \mu_x$$

when we see the average value of x, we predict the average value of y

parameter intercept residual error
$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
 slope parameter

$$\beta_0 = \mu_y - \beta_1 \mu_x$$

when we see the average value of x, we predict the average value of y

$$\beta_1 = r_{xy} \frac{\sigma_y}{\sigma_x}$$

parameter intercept residual error
$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
 slope parameter

$$\beta_0 = \mu_y - \beta_1 \mu_x$$

when we see the average value of x, we predict the average value of y

$$\beta_1 = r_{xy} \frac{\sigma_y}{\sigma_x}$$

 $\beta_1 = r_{xy} \frac{\sigma_y}{\sigma_x}$ when the input increases $\omega_y \omega_x$, and prediction increases by the x,y correlation

r = 0.899192316859; p = 7.04649901141e-08

r = 0.899192316859; p = 7.04649901141e-08

r = 0.0982029696446; p = 0.680415082529

r = 0.0982029696446; p = 0.680415082529

r = 0.702033103659; p = 0.000559678419262

Simpson's Paradox

Simpson's Paradox

Simpson's Paradox

Simpson's Paradox - Real world example

Example 2—Airlines on-time data: Here are numbers of flights on time and delayed for two airlines at five airports in June 1991. The table shows that Alaska Airlines outperforms America West at all 5 cities. If you collapse the table over city, it appears that America West outperforms Alaska.

Alaska Airlines

America West Airlines

	On time	Delayed	Delay%	On time	Delayed	Delay%
LA	497	62	11.1%	694	117	14.4%
Phoenix	221	12	5.4%	4840	415	7.9%
San Diego	212	20	8.6%	383	65	14.5%
San Fran.	503	102	16.9%	320	129	28.7%
Seattle	1841	305	14.2%	201	61	23.3%
Total	3274	501	13.3%	6438	787	10.9%

- Totally contrived example:
 - You and a friend are both avid gamers

Totally contrived example:

- You and a friend are both avid gamers
- You are also both kind of competitive

Totally contrived example:

- You and a friend are both avid gamers
- You are also both kind of competitive
- You make a friendly wager: you'll both play a question-answering game twice, and whomever has the best record, wins

Totally contrived example:

- You and a friend are both avid gamers
- You are also both kind of competitive
- You make a friendly wager: you'll both play a question-answering game twice, and whomever has the best record, wins

• Dayl:

• you: 98/99 (98.99%)

Dayl:

• them: |/| (100%)

Totally contrived example:

- You and a friend are both avid gamers
- You are also both kind of competitive
- You make a friendly wager: you'll both play a question-answering game twice, and whomever has the best record, wins
- Dayl:
 - you: 98/99 (98.99%)
- Day2:
 - you: 0/1 (0%)

- Dayl:
 - them: I/I (100%)
- Day2:
 - them: 1/99 (1.01%)

Totally contrived example:

- You and a friend are both avid gamers
- You are also both kind of competitive
- You make a friendly wager: you'll both play a question-answering game twice, and whomever has the best record, wins

• Dayl:

- you: 98/99 (98.99%)
- Day2:
 - you: 0/1 (0%)
- Total:
 - you: 98/100 (98%)

• Dayl:

- them: \(\(\begin{aligned} \text{100}\% \)
- Day2:
 - them: 1/99 (1.01%)
- Total:
 - them: 2/100 (2%)

