Exercise 2.1

- **Q.1** Identity which of the following rational and irrational numbers?
- $\sqrt{3}$ (i) Irrational number
- (ii) Rational number
- (iii) Irrational number
- (iv) Rational number
- **(v)** 7.25 Rational number
- $\sqrt{29}$ (vi) Irrational number
- **Q.2** Convert the following fractions into decimal fractions.
- **(i)**

Solution: $\frac{17}{25}$

$$\begin{array}{r}
 0.68 \\
 25) 170 \\
 \hline
 -150 \\
 \hline
 200 \\
 -200
\end{array}$$

$$\frac{17}{25} = 0.68 \, \text{Ans}$$

Solution:
$$\frac{19}{4}$$

$$\frac{4.75}{4)19.000}$$

$$\frac{19}{4}$$

$$\frac{4.75}{16}$$

$$\frac{30}{28}$$

$$\frac{28}{20}$$

$$\underline{20}$$

$$= 4.75 \text{ Ans}$$

(iii)
$$\frac{37}{8}$$
Solution: $\frac{57}{8}$

8)
$$57$$

$$\frac{-56}{10}$$

$$\frac{8}{20}$$

$$\frac{-16}{40}$$

$$\frac{40}{0}$$

$$= \frac{57}{8}$$

$$= 7.125 \text{ Ans}$$

(iv)
$$\frac{205}{18}$$
Solution: $\frac{205}{18}$

$$\frac{11.388}{18)205.000}$$

18
70
-54
160
-144
160
-144
16

$$\frac{208}{18} = 11.3888 = 11.3889$$
 Ans

(v)
$$\frac{5}{8}$$

Solution: $\frac{5}{8}$
 $\frac{.625}{8)5.000}$
 $\frac{48}{20}$
 $\frac{-16}{40}$
 $\frac{-40}{0}$

$$\frac{5}{8}$$
 = 0.625 **Ans**

(vi)
$$\frac{25}{38}$$

Solution: $\frac{25}{38}$

$$\frac{0.65789...}{250}$$

$$\frac{-228}{220}$$

$$\frac{-190}{300}$$

$$\frac{-266}{340}$$

$$\frac{-304}{360}$$

$$\frac{-342}{18}$$

38

= 0.65789 Ans

Q.3 Which of the following statements are true and which are false?

- $\frac{2}{3}$ is an irrational number. (i) False
- (ii) π is an irrational number. True
- is a terminating fraction. (iii) False
- $\frac{3}{4}$ is a terminating fraction. (iv) True
- $\frac{4}{5}$ is a recurring fraction. **(v)** False

Q.4 Represent the following numbers on the number line.

(i)
$$\frac{2}{3}$$

(ii)
$$-\frac{4}{5}$$

(iii)
$$1\frac{3}{4}$$

(iv)
$$-2\frac{5}{8}$$

(v)
$$2\frac{3}{4}$$

(vi) $\sqrt{5}$

By Pythagoras theorem

 $(Hypoteneus)^2 = (Base)^2 + (Perpencicular)^2$

$$\left(\overline{OB}\right)^2 = \left(2\right)^2 + \left(1\right)^2$$

$$\left(\overline{OB}\right)^2 = 4 + 1$$

$$\left(\overline{OB}\right)^2 = 5$$

Taking square root on both sides

$$\sqrt{\left(\overline{OB}\right)^2} = \sqrt{5}$$

$$\overline{OB} = \sqrt{5}$$

Q.5 Give a rational number between

$$\frac{3}{4}$$
 and $\frac{5}{9}$

Solution:

Required No between

$$\frac{3}{4} \text{ and } \frac{5}{9}$$

$$= \left[\frac{3}{4} + \frac{5}{9}\right] \div 2$$

$$= \left[\frac{27 + 20}{36}\right] \div 2$$

$$= \left[\frac{47}{36}\right] \div 2$$

$$= \frac{47}{36} \times \frac{1}{2}$$

$$= \frac{47}{72} \text{ Ans}$$

Q.6 Express the following recurring decimals as the rational number

$$\frac{p}{q}$$
 where p,q are integer and $q \neq 0$.

(i) $0.\overline{5}$ Solution:

$$x = 0.\overline{5}$$

$$x = 0.555...$$

$$10 \times x = 10 \times 0.555\dots$$

$$10x = 5.555...$$

$$10x = 5 + 0.555...$$

$$10x = 5 + x$$

$$10x - x = 5$$

$$9x = 5$$

$$x = \frac{5}{9}$$

$$\therefore 0.\overline{5} = \frac{5}{9} \text{ Ans}$$

(ii) $0.\overline{13}$

Solutions:

Suppose

$$x = 0.\overline{13}$$

$$x = 0.131313...$$

$$100^x x = 100 \times 1.131313...$$

$$100x = 13.1313...$$

$$100x = 13 + 0.1313...$$

$$100x = 13 + x$$

$$100x - x = 13$$

$$99x = 13$$

$$x = \frac{13}{99}$$

$$0.\overline{13} = \frac{13}{99}$$
 Ans

(iii) 0.67

Solutions:

$$x = 0.67$$

$$x = 0.676767...$$

$$100 \times x = 100 \times 0.676767...$$

$$100x = 67.6767...$$

$$100x = 67 + 0.6767...$$

$$100x = 67 + x$$

$$100x - x = 67$$

$$99x = 67$$

$$x = \frac{67}{99}$$

$$\therefore 0.\overline{67} = \frac{67}{99}$$
 Ans

Last Updated: September 2020

Report any mistake at freeilm786@gmail.com

[WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM] [PAGE: 5 OF 5]