Solutions for HW 5

◊ Problem 7.18:

The runs for the experiment are shown below with the corresponding blocks.

						MnSO ₄	
			Glucose	NH_4NO_3	FeSO ₄	(g dm ⁻³ x 10 ⁻	У
R	lun	Block	(g dm ⁻³)	(g dm ⁻³)	(g dm ⁻³ x 10 ⁻⁴)	2)	(CMC) ⁻¹
	1	Block 2	20.00	2.00	6.00	4.00	23
	2	Block 1	60.00	2.00	6.00	4.00	15
	3	Block 1	20.00	6.00	6.00	4.00	16
	4	Block 2	60.00	6.00	6.00	4.00	18
	5	Block 1	20.00	2.00	30.00	4.00	25
	6	Block 2	60.00	2.00	30.00	4.00	16
	7	Block 2	20.00	6.00	30.00	4.00	17
	8	Block 1	60.00	6.00	30.00	4.00	26
	9	Block 1	20.00	2.00	6.00	20.00	28
	10	Block 2	60.00	2.00	6.00	20.00	16
	11	Block 2	20.00	6.00	6.00	20.00	18
	12	Block 1	60.00	6.00	6.00	20.00	21
	13	Block 2	20.00	2.00	30.00	20.00	36
	14	Block 1	60.00	2.00	30.00	20.00	24
	15	Block 1	20.00	6.00	30.00	20.00	33
	16	Block 2	60.00	6.00	30.00	20.00	34

The analysis of the experiment shown below identifies the contribution of the blocks. By reducing the SS_E and MS_E the AD and CD interactions now appear to be significant.

Response	1	у		
ANO	VA for sele	cted factoria	al model	
Analysis of v	ariance tabl	e [Partial su	m of squares - Type III1	

•	Sum of	•	Mean	F	p-value	
Source	Squares	df	Square	Value	Prob > F	
Block	6.25	1	6.25			
Model	713.00	8	89.13	50.93	< 0.0001	significant
A-Glucose	42.25	1	42.25	24.14	0.0027	
B-NH4NO3	0.000	1	0.000	0.000	1.0000	
C-FeSO4	196.00	1	196.00	112.00	< 0.0001	
D-MnSO4	182.25	1	182.25	104.14	< 0.0001	
AB	196.00	1	196.00	112.00	< 0.0001	
AD	12.25	1	12.25	7.00	0.0382	
ВС	20.25	1	20.25	11.57	0.0145	
CD	64.00	1	64.00	36.57	0.0009	
Residual	10.50	6	1.75			
Cor Total	729.75	15				

The Model F-value of 50.93 implies the model is significant. There is only a 0.01% chance that a "Model F-Value" this large could occur due to noise.

Values of "Prob > F" less than 0.0500 indicate model terms are significant. In this case A, C, D, AB, AD, BC, CD are significant model terms.

♦ Problem 7.23

Block Effect =
$$\bar{y}_{Block1} - \bar{y}_{Block2} = \frac{406}{8} - \frac{715}{8} = \frac{-309}{8} = -38.625$$

This is the block effect estimated in Example 7.2 plus the additional 20 units that were added to each observation in block 2. All other effects are the same.

Source of	Sum of	Degrees of	Mean	
Variation	Squares	Freedom	Square	F_0
A	1870.56	1	1870.56	89.93
C	390.06	1	390.06	18.75
D	855.56	1	855.56	41.13
AC	1314.06	1	1314.06	63.18
AD	1105.56	1	1105.56	53.15
Blocks	5967.56	1	5967.56	
Error	187.56	9	20.8	
Total	11690.93	15		

significant

Design Expert Output

Response: Filtration in gal/hr
ANOVA for Selected Factorial Model
Analysis of variance table [Partial sum of squares]

	Sum of		Mean	F	
Source	Squares	DF	Square	Value	Prob > F
Block	5967.56	1	5967.56		
Model	5535.81	5	1107.16	53.13	< 0.0001
Α	<i>1870.56</i>	1	<i>1870.56</i>	89.76	< 0.0001
C	390.06	1	390.06	<i>18.72</i>	0.0019
D	<i>855.56</i>	1	<i>855.56</i>	41.05	0.0001
AC	<i>1314.06</i>	1	<i>1314.06</i>	63.05	< 0.0001
AD	1105.56	1	<i>1105.56</i>	<i>53.05</i>	< 0.0001
Residual	187.56	9	20.84		
Cor Total	11690.94	15			

The Model F-value of 53.13 implies the model is significant. There is only a 0.01% chance that a "Model F-Value" this large could occur due to noise.

Values of "Prob > F" less than 0.0500 indicate model terms are significant. In this case A, C, D, AC, AD are significant model terms.

♦ Problem 8.4

I = ABD = ACE = BCDE

	I - ADD - ACL - DCDL											
Α	(ABD)	=BD	Α	(ACE)	=CE	Α	(BCDE)	=ABCDE	A=BD=CE=ABCDE			
В	(ABD)	=AD	В	(ACE)	=ABCE	В	(BCDE)	=CDE	<i>B=AD=ABCE=CDE</i>			
C	(ABD)	=ABCD	C	(ACE)	=AE	C	(BCDE)	=BDE	C=ABCD=AE=BDE			
D	(ABD)	=AB	D	(ACE)	=ACDE	D	(BCDE)	=BCE	<i>D=AB=ACDE=BCE</i>			
Ε	(ABD)	=ABDE	Ε	(ACE)	=AC	Ε	(BCDE)	=BCD	E=ABDE=AC=BCD			
BC	(ABD)	=ACD	BC	(ACE)	=ABE	ВС	(BCDE)	=DE	BC=ACD=ABE=DE			
BE	(ABD)	=ADE	BE	(ACE)	=ABC	BE	(BCDE)	=CD	BE=ADE=ABC=CD			

Α	В	С	D=AB	E=AC		
-	-	-	+	+	de	6
+	-	-	-	-	а	9
-	+	-	-	+	be	35
+	+	-	+	-	abd	50
-	-	+	+	-	cd	18
+	-	+	-	+	ace	22
-	+	+	-	-	bc	40
+	+	+	+	+	abcde	63

The main A, B, C, and D are large. However, recall that we are really estimating A+BD+CE, B+AD, C+DE and D+AD. There are other possible interpretations of the experiment because of the aliasing.

esign Expert			1	· · · · · · · · · · · · · · · · · · ·	mont occurs		
Response:	Yield						
AN	OVA for Selec	ted Facto	orial Model				
Analysis of	variance table	[Partial	sum of squares	i]			
	Sum of		Mean	F			
Source	Squares	DF	Square	Value	Prob > F		
Model	2815.50	4	703.88	94.37	0.0017	significant	
Α	<i>253.13</i>	1	<i>253.13</i>	33.94	0.0101		
В	2211.12	1	2211.12	296.46	0.0004		
C	231.13	1	231.13	30.99	0.0114		
D	120.13	1	120.13	16.11	0.0278		
Residual	22.38	3	7.46				
Cor Total	2837.88	7					
a 0.17% cha	nce that a "Mo		the model is sig lue" this large co	ould occur due	,		
Std. Dev.	2.73		R-Squared	0.9921			
Mean	30.38		j R-Squared	0.9816			
C.V.	8.99		d R-Squared	0.9439			
PRESS	159.11	Ade	eq Precision	25.590			
	Coefficient		Standard	95% CI	95% CI		
Factor	Estimate	DF	Error	Low	High	VIF	
Intercept	30.38	1	0.97	27.30	33.45		
A-Aperture	5.63	1	0.97	2.55	8.70	1.00	
/ / / perture					0.7 0		
	Time16.63	1	0.97	13.55	19.70	1.00	

0.97

6.95

08.0

1.00

Final Equation in Terms of Coded Factors:

1

3.87

Yield = +30.38 +5.63 * A +16.63 * B +5.37 * C +3.87 * D

D-Mask Dimension

Final Equation in Terms of Actual Factors:

Aperture small
Mask Dimension Small
Yield =
-6.00000
+0.83125 * Exposure Time
+0.71667 * Develop Time

Aperture large

```
Mask Dimension
                Small
          Yield
      +5.25000
                  * Exposure Time
      +0.83125
      +0.71667
                  * Develop Time
      Aperture
                small
Mask Dimension
                Large
          Yield
      +1.75000
      +0.83125
                  * Exposure Time
      +0.71667
                  * Develop Time
      Aperture large
Mask Dimension
                Large
          Yield
     +13.00000
      +0.83125
                  * Exposure Time
                  * Develop Time
      +0.71667
```

♦ Problem 8.5

We could fold over the original design by changing the signs on the generators D = AB and E = AC to produce the following new experiment.

\overline{A}	В	С	D=-AB	E=-AC		
_	-	-	-	-	(1)	7
+	-	-	+	+	ade	10
-	+	-	+	-	bd	32
+	+	-	-	+	abe	52
-	-	+	-	+	ce	15
+	-	+	+	-	acd	21
-	+	+	+	+	bcde	41
+	+	+	-	-	abc	60

Α	(-ABD)	=-BD	Α	(-ACE)	=-CE	P	١	(BCDE)	=ABCDE	A=-BD=-CE=ABCDE
В	(-ABD)	=-AD	В	(-ACE)	=-ABCE	Е	3	(BCDE)	=CDE	B=-AD=-ABCE=CDE
C	(-ABD)	=-ABCD	C	(-ACE)	=-AE		_	(BCDE)	=BDE	C=-ABCD=-AE=BDE
D	(-ABD)	=-AB	D	(-ACE)	=-ACDE)	(BCDE)	=BCE	D=-AB=-ACDE=BCE
Ε	(-ABD)	=-ABDE	Е	(-ACE)	=-AC	E		(BCDE)	=BCD	E=-ABDE=-AC=BCD
BC	(-ABD)	=-ACD	BC	(-ACE)	=-ABE	Е	3C	(BCDE)	=DE	BC=-ACD=-ABE=DE
BE	(-ABD)	=-ADE	BE	(-ACE)	=-ABC	Е	BE.	(BCDE)	=CD	BE=-ADE=-ABC=CD

Assuming all three factor and higher interactions to be negligible, all main effects can be separated from their two-factor interaction aliases in the combined design.

♦ Problem 8.13

I=CDEF=ABCG=ABDEFG, Resolution IV

	Α							
	А	В	C	D	Ε	F=CDE	G=ABC	
1	-	-	-	-	-	-	-	(1)
2	+	-	-	-	-	-	+	ag
3	-	+	-	-	-	-	+	bg
4	+	+	-	-	-	-	-	ab
5	-	-	+	-	-	+	+	cfg
6	+	-	+	-	-	+	-	acf
7	-	+	+	-	-	+	-	bcf
8	+	+	+	-	-	+	+	abcfg
9	-	-	-	+	-	+	-	df
10	+	-	-	+	-	+	+	adfg
11	-	+	-	+	-	+	+	bdfg
12	+	+	-	+	-	+	-	abdf
13	-	-	+	+	-	-	+	cdg
14	+	-	+	+	-	-	-	acd
15	-	+	+	+	-	-	-	bcd
16	+	+	+	+	-	-	+	abcdg

17	-	-	-	-	+	+	-	ef
18	+	-	-	-	+	+	+	aefg
19	-	+	-	-	+	+	+	befg
20	+	+	-	-	+	+	-	abef
21	-	-	+	-	+	-	+	ceg
22	+	-	+	-	+	-	-	ace
23	-	+	+	-	+	-	-	bce
24	+	+	+	-	+	-	+	abceg
25	-	-	-	+	+	-	-	de
26	+	-	-	+	+	-	+	adeg
27	-	+	-	+	+	-	+	bdeg
28	+	+	-	+	+	-	-	abde
29	-	-	+	+	+	+	+	cdefg
30	+	-	+	+	+	+	-	acdef
31	-	+	+	+	+	+	-	bcdef
32	+	+	+	+	+	+	+	abcdef
								q

Alias Structure

Alias Structure			
A(CDEF)= ACDEF	A(ABCG)= BCG	A(ABDEFG)= BDEFG	A=ACDEF=BCG=BDEFG
B(CDEF)= BCDEF	B(ABCG) = ACG	B(ABDEFG)= ADEFG	<i>B=BCDEF=ACG=ADEFG</i>
C(CDEF)= DEF	C(ABCG) = ABG	C(ABDEFG)= ABCDEFG	C=DEF=ABG=ABCDEFG
D(CDEF)= CEF	D(ABCG) = ABCDG	D(ABDEFG)= ABEFG	<i>D=CEF=ABCDG=ABEFG</i>
E(CDEF)= CDF	E(ABCG) = ABCEG	E(ABDEFG)= ABDFG	<i>E=CDF=ABCEG=ABDFG</i>
F(CDEF)= CDE	F(ABCG)= ABCFG	F(ABDEFG)= ABDEG	F=CDE=ABCFG=ABDEG
G(CDEF)= CDEFG	G(ABCG) = ABC	G(ABDEFG)= ABDEF	<i>G=CDEFG=ABC=ABDEF</i>
<i>AB(CDEF)= ABCDEF</i>	AB(ABCG) = CG	<i>AB(ABDEFG)= DEFG</i>	AB=ABCDEF=CG=DEFG
AC(CDEF)= ADEF	AC(ABCG) = BG	AC(ABDEFG)= BCDEFG	AC=ADEF=BG=BCDEFG
<i>AD(CDEF)= ACEF</i>	AD(ABCG) = BCDG	<i>AD(ABDEFG)= BEFG</i>	<i>AD=ACEF=BCDG=BEFG</i>
<i>AE(CDEF)= ACDF</i>	AE(ABCG) = BCEG	AE(ABDEFG)= BDFG	AE=ACDF=BCEG=BDFG
<i>AF(CDEF)= ACDE</i>	AF(ABCG) = BCFG	AF(ABDEFG)= BDEG	<i>AF=ACDE=BCFG=BDEG</i>
AG(CDEF)= ACDEFG	AG(ABCG) = BC	AG(ABDEFG)= BDEF	AG=ACDEFG=BC=BDEF
BD(CDEF)= BCEF	BD(ABCG)= ACDG	BD(ABDEFG)= AEFG	<i>BD=BCEF=ACDG=AEFG</i>
BE(CDEF)= BCDF	BE(ABCG)= ACEG	BE(ABDEFG)= ADFG	<i>BE=BCDF=ACEG=ADFG</i>
BF(CDEF)= BCDE	BF(ABCG)= ACFG	BF(ABDEFG)= ADEG	<i>BF=BCDE=ACFG=ADEG</i>
CD(CDEF)= EF	CD(ABCG) = ABDG	CD(ABDEFG)= ABCEFG	CD=EF=ABDG=ABCEFG
CE(CDEF)= DF	CE(ABCG) = ABEG	CE(ABDEFG)= ABCDFG	CE=DF=ABEG=ABCDFG
CF(CDEF)= DE	CF(ABCG)= ABFG	CF(ABDEFG)= ABCDEG	<i>CF=DE=ABFG=ABCDEG</i>
DG(CDEF)= CEFG	DG(ABCG) = ABCD	DG(ABDEFG)= ABEF	DG=CEFG=ABCD=ABEF
EG(CDEF)= CDFG	EG(ABCG)= ABCE	EG(ABDEFG)= ABDF	<i>EG=CDFG=ABCE=ABDF</i>
FG(CDEF)= CDEG	FG(ABCG)= ABCF	FG(ABDEFG)= ABDE	FG=CDEG=ABCF=ABDE

Analysis of Variance Table

7 11 1011 7 5 15 6 1	10111011100 101010			
Source	ource Degrees of			
	Freedom			
Α	1			
B C D E F	1			
C	1			
D	1			
Ε	1			
F	1			
G	1			
AB=CG	1			
AC=BG	1			
AD	1			
ΑE	1			
AF	1			
AG=BC	1			
BD	1			
BE	1			
BF	1			
CD=EF	1			
CE=DF	1			
CF=DE	1			
DG	1			
EG	1			
FG	1			

Error	9	
Total	31	

♦ Problem 8.40

Run	Treatment Combination		А	В	С	D=ABC	V
1	(1)		-1	-1	-1	-1	8
2	ad		1	-1	-1	1	10
3	bd		-1	1	-1	1	12
4	ab		1	1	-1	-1	7
5	cd		-1	-1	1	1	13
6	ac		1	-1	1	-1	6
7	bc		-1	1	1	-1	5
8	abcd		1	1	1	1	11
		Avg (+)	8.5	4.5	8.75	11.5	
		Avg (-)	9.5	9.25	9.25	26	
		Effect	-0.5	-2.375	-0.25	-7.25	

- (a) How many factors did this experiment investigate? 4
 (b) What is the resolution of this design? IV
 (c) Calculate the estimates of the effects. See table above.
 (d) What is the complete defining relation? I = ABCD