$$\begin{cases} 7+11 = 2+1 \pmod{5} \\ 18 = 3 \pmod{5} \\ 7\cdot11 = 2\cdot1 \pmod{5} \\ 7\cdot7 = 2 \pmod{5} \end{cases}$$

$$d_2 = \sigma_2 \pmod{d}$$

```
{\bf ALGORITHM\,5\ \ Modular\ Exponentiation.}
```

procedure *modular exponentiation*(b: integer, $n = (a_{k-1}a_{k-2} \dots a_1a_0)_2$, m: positive integers)

x := 1

 $\underline{power} := b \mod m$

for i := 0 **to** k - 1

if $a_i = 1$ then $x := (x \cdot power) \mod m$

 $power := (power \cdot power) \mod m$

return $x \{ x \text{ equals } b^n \text{ mod } m \}$

m mod
$$m = r$$
?

$$3^{644} \mod 645 = r? = 36$$

$$n = (644)_{10} = (1010000.100)_{2}$$

x = 1 power = b mod m = 3 mod 645

$$a_0 = 0$$
, $x = 1$, 3^2 mod $645 = 9$
 $a_1 = 0$, $x = 1$, 9^2 mod $645 = 81$
 $a_2 = 1$, $x = 1.81$ mod $645 = 81$, 81^2 mod $645 = 111$
 $a_3 = 0$, $x = 81$, 111^2 mod $645 = 66$ $a_7 = 1, x = 81$

$$a_1 = 0$$
, $\chi = 81$, $66^2 \mod 645 = 486$
 $a_2 = 0$, $\chi = 81$ $486^2 \mod 645 = 126$

$$a_5 = 0$$
, $\chi = 81$ 486^2 mod $695 = 126$
 $a_6 = 0$, $\chi = 81$ 126^2 mod $695 = 396$

$$a_7 = 1$$
, $x = 81 \times 396 \mod 645$

$$= 471$$
 $396^2 \mod 645 = 81$
 $a_8 = 0$, $x = 471$, $81^2 \mod 645 = 111$
 $a_9 = 1$, $x = 471 \times 111 \mod 645 = 36$

$$= 111^2 \mod 645 = 66$$