

ScienceDirect

Neuroscience Research

www.elsevier.com/locate/neures

Neuroscience Research 58 (2007) 215-217

Corrigendum

Corrigendum to "Theta oscillation in the human anterior cingulate cortex during all-night sleep: An electrocorticographic study" [Neurosci. Res. 50 (2004) 331–341]

Masaki Nishida ^{a,b}, Nobuhide Hirai ^{a,c}, Fumikazu Miwakeichi ^c, Taketoshi Maehara ^{d,e}, Kensuke Kawai ^d, Hiroyuki Shimizu ^d, Sunao Uchida ^{a,f,*}

a Department of Sleep Disorders Research, Tokyo Institute of Psychiatry, Tokyo, Japan
b Section of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
c Department of Psychiatry, Jichi Medical School, Tochigi, Japan
d Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital, Fuchu, Japan
c Neurosurgery, Department of Brain Medical Science, Tokyo Medical and Dental University, Tokyo, Japan
f School of Sport Sciences, Waseda University, 2-579-15, Mikajima, Tokorozawa, Saitama 359-1192, Japan

Available online 28 March 2007

The authors regret that Tables 1–2 and Figs. 4–7 inclusive of this paper were printed incorrectly in the published issue. These are now reproduced correctly as follows.

Fig. 4 shows raw signals and power spectra of Case 1.

Table 1 Summary of the demographic and clinical information for each patient

Patient	Age/ gender	Location of ICEs	Derivation	Focus	MRI finding	Implant type	Administered AEDs	Surgical procedure
1	35/M	INT, bil. OFC, bil. frontal pole	BP	Right prefrontal lobe	Cortical atrophy	Strip, grid	CBZ 800, PHT300, CZP1.5	MST
2	32/M	Upper INT, right OFC, left Rolandic area	BP	Left frontal lobe	None	Strip, grid	VPA 1200, PB 120, ZNS 300	Frontal cortical excision MST
3	47/M	INT, right DLPFC	MP/A1	Left frontal lobe	None	Strip, grid	VPA 900, CBZ 900, DZP11	Frontal cortical excision MST
4	20/M	Bil.OFC, bil.MTL	MP/A1	Unknown	Right hippocampal atrophy	Grid	VPA 1000, CBZ 500, ZNS 500	Not performed
5	37/F	Bil.OFC, bil.MTL	BP	H.MTL	Right hippocampal atrophy	Grid	VPA 800, PHT 275, PB 120	Right temporal lobectomy
6	26/M	Bil.OFC, bil.MTL	MP/A1	Left temporal lobe	Right hippocampal atrophy, diffuse cortical atrophy	Grid	VPA 2000, PHT 375, PB 90, CZP 2.0, DZP5.0	Not performed
7	39/M	Bil.OFC, bil.MTL	MP/A1	Left MTL	None	Grid	CBZ 600, PHT 220, PB 110.CLB 10	Resection of left temporal region
8	24/M	Bil.OFC, bil.MTL	BP	Right OFC, right temporal lobe, left insular	None	Grid	CBZ 800, PHT 200	Resection of right frontal region
9	28/M	Bil.OFC, bil.MTL	BP	Right temporal lobe	None	Grid	PHT 200, ZNS 300	Right temporal lobectomy
10	27/F	Bil.OFC, bil.MTL	MP/A1	Rt.MTL	Rt.hippo-campal atrophy	Grid	VPA 300, CBZ 400, DZP 15	Resection of Rt.temporal

DOI of original article: 10.1016/j.neures.2004.08.004.

^{*} Corresponding author at: Department of Sleep Disorders Research, Tokyo Institute of Psychiatry, Tokyo, Japan. Tel.: +81 4 2947 6771; fax: +81 4 2947 6808. E-mail addresses: sunao@waseda.jp, s_uchida@nirs.go.jp (S. Uchida).

Fig. 5. Power spectra showing the theta enhancement of the cingulate ECoG in wake state and in REM sleep. Similar montages were used for all the patients. Yellow shaded areas indicate statistically significant differences of power in that respective band between the two behavioral states shown (Mann–Whitney U-test, p < 0.05). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of the article.)

Fig. 6. Power spectrum of the orbitofrontal ECoG when comparing wake and SWS. The shaded area indicates the statistical significance of power in the band (Mann–Whitney U-test, p < 0.05).

Fig. 7. Power spectrum of the orbitofrontal ECoG when comparing SWS and REM sleep. The shaded area indicates the statistical significance of power in the band (Mann–Whitney U-test, p < 0.05).

Table 2 Average duration, density and mean frequency of each theta wave in three anterior cingulate patients

	Wake θ			REM θ			
	Duration (s)	Density (%)	Mean frequency (Hz)	Duration (s)	Density (%)	Mean frequency (Hz)	
Case 1	5.11 ± 1.62	39.3	5.29 ± 0.84	$3.54 \pm 1.32^*$	16.8*	5.01 ± 0.79	
Case 2	5.11 ± 1.95	22.4	6.35 ± 0.20	$1.93 \pm 0.63^*$	2.8^*	6.23 ± 0.04	
Case 3	4.55 ± 1.29	77.0	7.36 ± 0.52	$2.15 \pm 1.00^*$	8.6*	7.07 ± 0.72	

In comparison with the theta waves between the time the patient was awake and the time the patient was in REM sleep, significant differences were recognized in both the duration and density (non-paired Student's *t*-test).

^{*} p < 0.05.