Homogeneous Linear Systems

A system of linear equations is said to be **homogeneous** if it can be written in the form $A\mathbf{x} = \mathbf{0}$ where A is an $m \times n$ matrix and $\mathbf{0}$ is the zero vector in \mathbb{R}^m . Such a system $A\mathbf{x} = \mathbf{0}$ always has at least one solution, namely, $\mathbf{x} = \mathbf{0}$ (the zero vector in \mathbb{R}^n). This zero solution is usually called the **trivial solution**. For a given equation $A\mathbf{x} = \mathbf{0}$, the important question is whether there exists a **nontrivial solution**, that is, a nonzero vector \mathbf{x} that satisfies $A\mathbf{x} = \mathbf{0}$. The Existence and Uniqueness Theorem in Section 1.2 (Theorem 2) leads immediately to the following fact

(Theorem 2) leads immediately to the following fact. Example:-2x - 3y = 0 -x + 2y = 0 $2X_1 - X_2 + 3X_3 = \boxed{1}$ $X_2 + X_3 = D$ $X_1 - X_3 = D$ $X_2 - X_3 = D$ $X_1 - X_3 = D$ $X_2 - X_3 = D$ $X_1 - X_3 = D$ $X_2 - X_3 = D$ $X_1 - X_3 = D$ $X_2 - X_3 = D$ $X_1 - X_3 = D$ $X_2 - X_3 = D$ $X_3 - X_4 = D$ $X_4 - X_5 = D$ $X_1 - X_2 = D$ $X_2 - X_3 = D$ $X_3 - X_4 = D$ $X_4 - X_5 = D$ $X_1 - X_2 = D$ $X_2 - X_3 = D$ $X_3 - X_4 = D$ $X_4 - X_5 = D$ $X_5 - X_5 = D$ X $\begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ Homogenon System 2(0) - 3(0) = 0Ax=0 0+0=0 A x = 0 - 1 homoge non-trivial non-trivial toes not exil צוגם

Existence of Nontrivial Solution of Homogenous system

The homogeneous equation Ax = 0 has a <u>nontrivial solution</u> if and only if the equation has at least one free variable.

Example: -
$$2 \times +3 \times = 0$$
 \Rightarrow Homogen system .- $\times + \times = 0$ \Rightarrow Homogen s

EXAMPLE 1 Determine if the following homogeneous system has a nontrivial solution. Then describe the solution set.

$$3x_{1} + 5x_{2} - 4x_{3} = 0$$

$$\delta(\frac{1}{3}t) + 0 - 2t = 0$$

$$6x_{1} + x_{2} - 8x_{3} = 0$$

$$8t - 2t = 0$$

$$6x_{1} + x_{2} - 8x_{3} = 0$$

$$A_{1} = \begin{bmatrix} 3 & 5 & -4 & | & 0 \\ & 1 & -2 & | & | & | & | \\ & 6 & 1 & -2 & | & | & | & | \\ & 6 & 1 & -2 & | & | & | & | \\ & 6 & 1 & -3 & | & 0 & | & | \\ & 6 & 1 & -3 & | & 0 & | & | \\ & 6 & 1 & -3 & | & 0 & | & | \\ & 6 & 1 & -3 & | & 0 & | & | \\ & 6 & 1 & -3 & | & 0 & | & | & | \\ & 7 & 3 & 5 & -4 & | & 0 & | & | \\ & 7 & 4 & 1 & 1 & 1 & 1 \\ & 7 & 4 & 1 & 1 & 1 & 1 \\ & 7 & 4 & 1 & 1 & 1 & 1 \\ & 7 & 4 & 1 & 1 & 1 & 1 \\ & 7 & 4 & 1 & 1 & 1 & 1 \\ & 7 & 4 & 1 & 1 & 1 & 1 \\ & 7 & 4 & 1 & 1 & 1 & 1 \\ & 7 & 4 & 1 & 1 & 1 & 1 \\ & 7 & 4 & 1 & 1 & 1 & 1 \\ & 7 & 4 & 1 & 1 & 1 & 1 \\ & 7 & 4 & 1 & 1 & 1 \\ & 7 & 4 & 1 & 1 & 1 \\ & 7 & 4 & 1 & 1 & 1 \\ & 7 & 4 & 1 & 1 & 1 \\ & 7 & 1 & 1 & 1 &$$

Applications of Linear System

Network Flow

Systems of linear equations arise naturally when scientists, engineers, or economists study the flow of some quantity through a network. For instance, urban planners and traffic engineers monitor the pattern of traffic flow in a grid of city streets. Electrical engineers calculate current flow through electrical circuits. And economists analyze the distribution of products from manufacturers to consumers through a network of wholesalers and retailers. For many networks, the systems of equations involve hundreds or even thousands of variables and equations.

A *network* consists of a set of points called *junctions*, or *nodes*, with lines or arcs called *branches* connecting some or all of the junctions. The direction of flow in each branch is indicated, and the flow amount (or rate) is either shown or is denoted by a variable.

EXAMPLE 2 The network in Fig. 2 shows the traffic flow (in vehicles per hour) over several one-way streets in downtown Baltimore during a typical early afternoon. Determine the general flow pattern for the network.

_	intersection	riow in Fig	ow out	
X1 + x2 = 300	A	$300 + 500 = x_1$	$+x_2$	Tok
$x_2 - x_3 + x_4 = 300$	В	$ x_2 + x_4 = 30$	$00 + x_3$	$X_3 = 900$ — 5
$x_y + x_5 = 500$	С	$100 + 400 = x_4$	$+x_5$	
4 + x5 = 600	D	$x_1 + x_5 = 60$	-	
₹3 = 5 00 -				
X_1	X ₂ X ₃	χ _γ χ _ζ /	/	
_	_	•	(17 (B	<i>∞</i>]
[1]	٥	II .	. 3	ம
D	<i>I</i>			in l
0	0 0	1 1 X	(3)	
1	/ —1 0 0 0 0	o x	(4	
Lo	0 1	o oll x	15] [4	م
			Ž	$\frac{b}{a}$
	A	2 = b		$A \times = 0$ homo
		0 0 800		AY = b Nm-tra
A	0 1 -1	0 300 500 -D 1-D 600	9 Ry-R),
	0 0	500		
	1-1 0-1 0-	-0 0-0 1-0 600	200	
	10001	0 0) you		
Xı	X ₂ X ₃ X ₄	X5		
, K		0 800]		
$X_{\overline{1}} = t = 100 \text{ A}_{0} \stackrel{R}{=} 0$ 0 0 0 0	① -I I	0 300 Ry+	£2	
р	0 0 0	0 45		
X2-4007	0 0 ①	מוז ו	€> R3	0=0
	U C O	7	1+123 - P	
Xy = SOD-t = NOO P.C	P.C P.C P.C	×	5 - Ry	
7.74	n	· 	1. 1. 3	Λα21
$X_{2} - X_{3} = 300 \text{Rank} (A)$	$+) = \underline{y} = \kappa \alpha n$	$K(H) \rightarrow S$	sy stem i	s consistante
Y ₂ - 3 ₅₀ + y ₃ - χ ₄				£ ≤ 5000 1/2
$\chi_{2} = 300 + y_{3} - x_{4}$ $\chi_{2} = 700 - (500 + 1) \times (7.5 \times 1.5) \times (7.5 \times 1.5)$	JY1 - BASIC	X5 = free va	riche	Kg = t: t={011121-7
12 = 700- (Sm-1)	77.4			73
Y2 = 200+t = 300 No of	Variable	Rank (A) = Paul	A ₂ 1	Xy+X5= 500
10 07	•		1.4.4	XM = 200 - X2
	5 √	4		
$x_1 + x_2 = 800$	\checkmark			xy = 500 - € ->
$\chi_1 = 200 - \chi_2$			Y1. >. \	500 -t 7/0
$X_1 = 200 - (200 + 1)$	t = 100		"1 7 D	500 -t 7,0 (500 >, t)
71 - 600 - +	_			سنسا

Intersection

Flow in

Flow out

tve
$$\begin{aligned}
\chi_{3} &= t & t \leq 200 \\
\chi_{4} &= 200 - t
\end{aligned}$$

$$\begin{aligned}
\chi_{3} &= 5 & t \leq 200 \\
\chi_{2} &= 5 & t \leq 200
\end{aligned}$$

$$\begin{aligned}
\chi_{2} &= 60 - t \\
\chi_{1} &= 200 - 5 + t
\end{aligned}$$

$$\begin{aligned}
\chi_{3} &= 5 & t \leq 200 \\
\downarrow \chi_{1} &= 200 - 5 + t
\end{aligned}$$