# Resumo de Inferência Estatística

#### Sumário

- Aula 1: O que é e para que serve Inferência Estatística?
- Aula 2: Distribuição a priori e a posteriori
- Aula 3: Prioris conjugadas e função de perda
- Aula 4: Estimadores de Bayes e EMV
- Aula 5: EMV
- Aula 6: Método dos momentos e suficiência
- Aula 7: Suficiência conjunta e mínima, teorema de Rao-Blackwell
- Aula 8: Admissibilidade e viés
- Aula 9: Eficiência
- Aula 10: Distribuição de uma estatística amostral e qui-quadrado
- Aula 11: Distribuição da média e variância amostrais
- Aula 12: Distribuição t de Student e intervalos de confiança
- Aula 13: Intervalos de confiança e Quantidades Pivotais
- Aula 14: Testes de hipótese I
- Aula 15: Testes de hipótese II
- Aula 16: Testes de hipótese III
- Aula 17: Testes e conjuntos de confiança
- Aula 18: Teste t I
- Aula 19: Teste t II
- Aula 20: Teste f
- Aula 21: Regressão Linear I
- Aula 22: Regressão Linear II

### Aula 1: O que é e para que serve Inferência Estatística?

Definição 1 (Modelo estatístico: informal)  $Um\ modelo\ estatístico\ consiste\ na\ identificação\ de\ variáveis\ aleatórias\ de\ interesse\ (observáveis\ e\ potencialmente\ observáveis),\ na\ especificação\ de\ uma\ distribuição\ conjunta\ para\ as\ variáveis\ aleatórias\ observáveis\ e\ na\ identificação\ dos\ parâmetros\ (\theta)\ desta\ distribuição\ conjunta.$  Às vezes é conveniente assumir que os parâmetros são variáveis aleatórias\ também, mas para isso é preciso especificar uma distribuição\ conjunta\ para\  $\theta$ .

Definição 2 (Modelo estatístico: formal) Seja  $\mathcal{X}$  um espaço amostral qualquer,  $\Theta$  um conjunto nãovazio arbitrário e  $\mathcal{P}(\mathcal{X})$  o conjunto de todas as distribuições de probabilidade em  $\mathcal{X}$ . Um modelo estatístico paramétrico é uma função  $P:\Theta\to\mathcal{P}(\mathcal{X})$  que associa a cada  $\theta\in\Theta$  uma distribuição de probabilidade  $P_{\theta}$  em  $\mathcal{X}$ .

Definição 3 (Afirmação probabilística) Dizemos que uma afirmação é probabilística quando ela utiliza conceitos da teoria de probabilidade para falar de um objeto.

Definição 4 (Inferência Estatística) Uma inferência estatística é uma afirmação probabilística sobre uma ou mais partes de um modelo estatístico.

**Definição 5 (Estatística)** Suponha que temos uma coleção de variáveis aleatórias  $X_1, X_2, ..., X_n \subseteq \mathbf{R}^n$  e uma função  $r: \mathbf{X} \to R^m$ . Dizemos que a variável aleatória  $T = r(X_1, X_2, ..., X_n)$  é uma estatística.

**Definição 6 (Permutabilidade)** Uma coleção finita de variáveis aleatórias  $X_1, X_2, ..., X_n$  com densidade conjunta f é dita **permutável** se

$$f(x_1, x_2, \dots, x_n) = f(x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(n)})$$
(1)

para qualquer permutação  $\pi = \{\pi(1), \pi(2), \dots, \pi(n)\}$  dos seus elementos. Uma coleção finita é permutável se qualquer subconjunto finito é permutável.

# Aula 2: Distribuição a priori e a posteriori

Definição 7 (Distribuição a priori) Se tratamos o parâmetro  $\theta$  como uma variável aleatória, então a distribuição a priori  $\acute{e}$  a distribuição que damos a  $\theta$  antes de observarmos as outras variáveis aleatórias de interesse. Vamos denotar a função de densidade/massa de probabilidade da priori por  $\xi(\theta)$ .

Definição 8 (Distribuição a posteriori) Considere o problema estatístico com parâmetros  $\theta$  e variáveis aleatórias observáveis  $X_1, X_2, \ldots, X_n$ . A distribuição condicional de  $\theta$  dados os valores observados das variáveis aleatórias,  $\mathbf{x} := \{x_1, x_2, \ldots, x_n\}$  é a distribuição a posteriori de  $\theta$ , denotamos por  $\xi(\theta \mid \mathbf{x})$  a f.d.p./f.m.p. condicional a  $X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n$ .

Teorema 1 (Distribuição a posteriori: derivação) Considere a amostra aleatória  $X_1, X_2, ..., X_n$  de uma distribuição com f.d.p./f.m.p.  $f(x \mid \theta)$ . Se a distribuição a priori é  $\xi(\theta)$ , temos

$$\xi(\theta \mid x) = \frac{\xi(\theta) \prod_{i=1}^{n} f(x_i \mid \theta)}{g_n(x)}, \ \theta \in \Omega$$
 (2)

Chamamos  $g_n(x)$  de distribuição marginal de  $X_1, X_2, \ldots, X_n$ .

Definição 9 (Função de verossimilhança) Quando encaramos a f.d.p./f.m.p.  $f(x_1, x_2, ..., x_n \mid \theta)$  como uma função do parâmetro  $\theta$ , chamamos esta função de função de verossimilhança, e podemos denotá-la como  $L(\theta; x)$  ou, quando a notação não criar ambiguidade, simplesmente  $L(\theta)$ .

### Aula 3: Prioris conjugadas e função de perda

**Definição 10 (Hiper-parâmetros)** Seja  $\xi(\theta \mid \phi)$  a distribuição a priori para o parâmetro  $\theta$ , indexada por  $\phi \in \Phi$ . Dizemos que  $\phi$  é(são) o(s) **hiper-parâmetro(s)** da priori de  $\theta$ .

**Definição 11 (Priori conjugada)** Suponha que  $X_1, X_2, \ldots$  sejam condicionalmente independentes dado  $\theta$ , com f.d.p./f.m.p.  $f(x \mid \theta)$ . Defina

$$\Psi = \left\{ f : \Omega \to (0, \infty), \int_{\Omega} f dx = 1 \right\}$$
 (3)

onde  $\Omega$  é o espaço de parâmetros. Dizemos que  $\Psi$  é uma **família de distribuições conjugadas** para  $f(x \mid \theta)$  se  $\forall f \in \Psi$  e toda realização  $\boldsymbol{x}$  de  $X = X_1, X_2, \dots, X_n$ 

$$\frac{f(\boldsymbol{x}\mid\boldsymbol{\theta})f(\boldsymbol{\theta})}{\int_{\Omega}f(\boldsymbol{x}\mid\boldsymbol{\theta})f(\boldsymbol{\theta})d\boldsymbol{\theta}}\in\Psi\tag{4}$$

Teorema 2 (Distribuição a posteriori da média de uma normal) Suponha que  $X_1, X_2, \ldots, X_n$  formam uma amostra aleatória com distribuição normal e com média desconhecida  $\theta$  e variância  $\sigma^2 > 0$ , conhecida e fixa. Suponha que  $\theta \sim Normal(\mu_0, v_0^2)$  a priori. Então

$$\xi(\theta \mid x, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(\frac{(\theta - \mu_1)^2}{2v_1^2}\right),\tag{5}$$

onde

$$\mu_1 := \frac{\sigma^2 \mu_0 + n v_0^2 \overline{x}_n}{\sigma^2 + n v_0^2} \text{ e } v_1^2 := \frac{\sigma^2 v_0^2}{\sigma^2 + n v_0^2}$$

$$\tag{6}$$

**Definição 12 (Priori imprópria)** Seja  $\xi: \Lambda \to (0, \infty), \Omega \subseteq \Lambda$ , uma função tal que  $\int_{\Omega} \xi(\theta) d\theta = \infty$ . Se utilizamos  $\xi$  como uma p.d.f. para  $\theta$ , dizemos que  $\xi$  é uma **priori imprópria** para  $\theta$ .

**Definição 13 (Estimador)** Sejam  $X_1, X_2, \ldots, X_n$  variáveis aleatórias com distribuição conjunta indexada por  $\theta$ . Um **estimador** de  $\theta$  é qualquer função real  $\delta$ :  $X_1, X_2, \ldots, X_n \to \mathbb{R}^d, d \ge 1$ .

**Definição 14 (Estimativa)** Dizemos que o valor de  $\delta$  avaliado nas realizações de  $X_1, X_2, \ldots, X_n$ ,  $\boldsymbol{x} = \{x_1, x_2, \ldots, x_n\}$ ,  $\delta(\boldsymbol{x})\}$  é uma **estimativa** de  $\theta$ .

Definição 15 (Função de perda) Uma função de perda é uma função real em duas variáveis

$$L: \Omega \times \mathbb{R}^d \to \mathbb{R},\tag{7}$$

em que dizemos que o estatístico perde  $L(\theta,a)$  se o parâmetro vale  $\theta$  e a estimativa dada vale a.

## Aula 4: Estimadores de Bayes e EMV

Definição 16 (Estimador de Bayes) Considere a perda esperada a posteriori:

$$E_{\theta|x}[L(\theta, a)] = E[L(\theta, a) \mid x] = \int_{\Omega} L(\theta, a) \xi(\theta \mid x) d\theta$$
 (8)

Dizemos que  $\delta^*$  é um **estimador de Bayes** se, para toda realização X=x,

$$E[L(\theta, \delta^*(x)) \mid x] = \min_{a \in A} E[L(\theta, a) \mid x]. \tag{9}$$

Em outras palavras, um estimador de Bayes é uma função real dos dados que minimiza a perda esperada com respeito à posteriori dos parâmetros.

<sup>&</sup>lt;sup>1</sup>p.d.f. - "probability density function" ou função de densidade de probabilidade

Teorema 3 ( $\delta^*$  sob perda quadrática) Seja  $\theta$  um parâmetro tomando valores reais. Sob perda quadrática,

$$\delta^*(x) = E[\theta \mid X = x] = \int_{\Omega} \theta \xi(\theta \mid x) d\theta \tag{10}$$

Teorema 4 ( $\delta^*$  sob perda absoluta) Suponha que a função de perda é dada por

$$L(\theta, \delta^*) = |\theta - \delta^*|. \tag{11}$$

Dizemos que a função de perda é **absoluta**. Seja  $\theta$  um parâmetro tomando valores na reta. Sob perda absoluta,  $\delta^*(x)$  é a **mediana** a posteriori, isto é,

$$\int_{\infty}^{\delta^*(x)} \xi(\theta \mid x) d\theta = \frac{1}{2} \tag{12}$$

Definição 17 (Estimador consistente) Seja  $\delta_1, \delta_2, \dots, \delta_n$  uma sequência de estimadores de  $\theta$ . Se quando  $n \to \infty$  a sequência convergente para  $\theta$ , dizemos que esta é uma sequência consistente de estimadores.

Definição 18 (Estimador de máxima verossimilhança) Para cada possível vetor (de observações) x, seja  $\delta(x) \in \Omega$  um valor de  $\theta \in \Omega$  de modo que a função de verossimilhança,  $L(\theta) \propto f(x \mid \theta)^2$ , atinge o máximo. Dizemos que  $\hat{\theta} = \delta(\mathbf{X})$  é o estimador de máximo verossimilhança de  $\theta$  (Fisher, 1922)<sup>3</sup>. Quando observamos  $\mathbf{X} = x$ , dizemos que  $\delta(x)$  é uma estimativa de  $\theta$ . Dito de outra forma:

$$\max_{\theta \in \Omega} f(\boldsymbol{X} \mid \theta) = f(\boldsymbol{X} \mid \hat{\theta}). \tag{13}$$

#### Famílias Conjugadas

Se  $X_1,\ldots,X_n$  são iid e seguem a distribuição da coluna "Dados" na tabela 1. **Notações**:  $\bar{x}_n=\frac{1}{n}\sum_{i=1}^n x_i;\quad y=\sum_{i=1}^n x_i$ 

| Dados                   | Priori                 | Posteriori                                                                                                                     |
|-------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| $Bernoulli(\theta)$     | $Beta(\alpha, \beta)$  | $Beta(\alpha + y, \beta + n - y)$                                                                                              |
| $Poisson(\theta)$       | $Gama(\alpha, \beta)$  | $Gama(\alpha + y, \beta + n)$                                                                                                  |
| $Normal(\mu, \sigma^2)$ | $Normal(\mu_0, v_0^2)$ | Normal $\left(\frac{\sigma^2 \mu_0 + n v_0^2 \bar{x}_n}{\sigma^2 + n v_0^2}, \frac{\sigma^2 v_0^2}{\sigma^2 + n v_0^2}\right)$ |

Table 1: Famílias Conjugadas

 $Gama(\alpha, \beta)$ 

#### Aula 5: EMV

Teorema 5 (Invariância do EMV) Considere uma função  $\phi: \Omega \to \mathbb{R}$ . Se  $\hat{\theta}$  é um EMV para  $\theta$ , então  $\phi(\hat{\theta})$  é um EMV para  $\omega = \phi(\theta)$ .

Teorema 6 (Consistência do EMV) Defina  $l(\theta) := \log f_n(x \mid \theta)$  e assuma que  $X_1, \ldots, X_n \sim f(\theta_0)$ , isto é, que  $\theta_0$  é o valor verdadeiro do parâmetro. Denote  $E_{\theta_0}[g] := \int_{\mathcal{X}} g(x, \theta_0) f(x \mid \theta_0) dx$ . Suponha que

- $f(x_i \mid \theta)$  tem o mesmo suporte;
- $\theta_0$  é o ponto inferior de  $\Omega$ ;

 $\operatorname{Exp}(\overline{\theta})$ 

 $<sup>^2 \</sup>propto$  - é um operador matemático binário que indica que o valor esquerdo é proporcional ao valor direito.

<sup>&</sup>lt;sup>3</sup>Ronald Aylmer Fisher (1890-1962), biólogo e estatístico inglês.

- $I(\theta)$  é diferenciável;
- $\hat{\theta}_{EMV}$  é única solução de  $I'(\theta) = 0$ .

 $Ent\~ao$ 

$$\hat{\theta}_{EMV} \to \theta$$

#### Aula 6: Método dos momentos e suficiência

**Definição 19 (Método dos momentos)** Suponha que  $X_1, \ldots, X_n$  formam uma sequânica aleatória com distribuição conjunta  $f_n(X_1, \ldots, X_n \mid \theta), \theta \in \Omega \subseteq \mathbb{R}^k$  e que o k-ésimo momento existe. Defina  $\mu_j(\theta) = E[X_1^j \mid \theta]$  e suponha que  $\mu: \Omega \to \mathbb{R}^k$  é biunívoca, de modo que sua inversa é

$$\theta = M(\mu_1(\theta), \dots, \mu_k(\theta)).$$

Dados os momentos amostrais  $m_j := \frac{1}{n} \sum_{i=1}^n X_i^j, j = 1, \dots, k$  o estimador de momentos (EMM) de  $\theta$  é

$$\hat{\theta}_{EMM} = M(m_1, \dots, m_k).$$

Teorema 7 (Consistência do EMM) Suponha que  $X_1, \ldots, X_n$  formam uma amostra aleatória com distribuição conjunta  $f_n(X_1, \ldots, X_n \mid \theta), \theta \in \Omega \subseteq \mathbb{R}^k$  e que o k-ésimo momento existe. Suponha que a inversa M existe e é continua. Então o EMM é consistente para  $\theta$ .

Definição 20 (Estatística suficiente) Seja  $X_1, \ldots, X_n$  uma amostra aleatória de uma distribuição indexada pelo parâmetro  $\theta$ . Seja  $T = r(X_1, \ldots, X_n)$  uma estatística. Dizemos que T é uma estatística suficiente para  $\theta$  se e somente se

$$f(X_1, \dots, X_n \mid T = t, \theta) = f(X_1, \dots, X_n \mid T = t, \theta'), \forall \theta, \theta' \in \Omega, \tag{14}$$

isto é, se a distribuição condicional da amostra dado o valor da estatística não depende de  $\theta$ .

Definição 21 (Aleatorização auxiliar) Suponha que T é suficiente para  $\theta$ . O processo de simular  $X'_1, \ldots, X'_n$  dado que  $T = r(X_1, \ldots, X_n)$  de modo que

$$f(X_1, \dots, X_n \mid \theta) = f(X_1', \dots, X_n' \mid \theta), \forall \theta \in \Omega, \tag{15}$$

é chamado de aleatorização auxiliar (em inglês, auxiliary randomisation).

**Teorema 8 (Teorema de fatorização)** Suponha que  $X_1, \ldots, X_n$  perfazem uma amostra aleatória com f.d.p./f.m.p.  $f(x \mid \theta), \theta \in \Omega$ . Uma estatística  $T = r(X_1, \ldots, X_n)$  é suficiente para  $\theta$  se, e somente se, para todo  $x \in \mathcal{X}$  e  $\theta \in \Omega$  existem u e v não negativos tal que

$$f_n(x \mid \theta) = u(x)v[r(x), \theta]. \tag{16}$$

Definição 22 (Suficiência conjunta) Dizemos que um conjunto de estatísticas  $T = \{T_1, \ldots, T_n\}$  é suficiente (conjuntamente) se que a distribuição condicional conjunta de  $X_1, \ldots, X_n$  dado  $T_1 = t_1, \ldots, T_n = t_n$  não dependentes de  $\theta$ .

#### Aula 7: Suficiência conjunta e mínima, teorema de Rao-Blackwell

Definição 23 (Estatísticas de ordem) Seja  $X = X_1, \dots, X_n$  uma amostra aleatória. Dizemos que  $Y_1, \dots, Y_n$  são estatísticas de ordem se  $Y_1$  é o menor valor de X,  $Y_2$  é o segundo menor valor e assim sucessivamente.

Teorema 9 (Estatísticas de ordem são suficientes conjuntas)  $Seja X_1, \ldots, X_n$  uma amostra aleatória com f.d.p./f.m.p.  $f(x \mid \theta)$ . As estatísticas de ordem  $Y_1, \ldots, Y_n$  são suficientes conjuntas para  $\theta$ .

Definição 24 (Suficiência mínima) Uma estatística T é dita mínima suficiente se T é suficiente e é função de qualquer outra estatística suficiente. Um vetor  $T = \{T_1, \ldots, T_n\}$  é dito minimamente suficiente conjunto se é função de qualquer outro valor de estatísticas suficientes conjuntas.

Teorema 10 (EMV e Bayes são suficientes) Se a função de verossimilhança admite fatorização pelo Teorema 8, os estimadores de Bayes e de máxima verossimilhança são estatísticas minimamente suficientes.

Definição 25 (Notação conveniente) É conveniente definir que para  $g: \mathcal{X}^n \to \mathbb{R}$ , escrevemos

$$E_{\theta}[g] = \int_{\mathcal{X}} \cdots \int_{\mathcal{X}} g(\boldsymbol{x}) f_n(\boldsymbol{x} \mid \theta) dx_1 \cdots dx_n = \int_{\mathcal{X}} g(\boldsymbol{x}) f_n(\boldsymbol{x} \mid \theta) d\boldsymbol{x}$$
(17)

Definição 26 (Erro quadrático médio)

$$R(\theta, \delta) := E_{\theta} \left[ \left\{ \delta(\mathbf{X}) - \theta \right\}^{2} \right]. \tag{18}$$

Definição 27 (Estimador condicionado)

$$\delta_0(\mathbf{T}) := E_\theta \left[ \delta(\mathbf{X}) \mid \mathbf{T} \right]. \tag{19}$$

Teorema 11 (Teorema de Rao-Blackwell) Seja  $\delta(X)$  um estimador, T uma estatística suficiente para  $\theta$  e seja  $\delta_0(T)$  como na Definição 27. Então vale que

$$R(\theta, \delta_0) < R(\theta, \delta)$$

Além disso, se  $R(\theta, \delta) < \infty$  e  $\delta(\mathbf{X})$  não é função de  $\mathbf{T}$ , vale a desiqualdade estrita:

$$R(\theta, \delta_0) < R(\theta, \delta)$$

#### Aula 8: Admissibilidade e viés

**Definição 28 (Admissibilidade)** Um estimador  $\delta$  é dito inadmissível se existe outro estimador  $\delta_0$  tal que  $R(\theta, \delta_0) \leq R(\theta, \delta), \forall \theta \in \Omega$  e existe  $\theta' \in \Omega$  tal que  $R(\theta', \delta_0) < R(\theta', \delta)$ . Nesse caso, dizemos que  $\delta_0$  domina  $\delta$ . O estimador  $\delta_0$  é admissível se (e somente se) não há nenhum estimador que o domine.

Definição 29 (Estimador não-viesado) Um estimador  $\delta(\mathbf{X})$  de uma função  $g(\theta)$  é dito não-viesado se  $E_{\theta}[\delta(\mathbf{X})] = g(\theta)$ ,  $\forall \theta \in \Omega$ . Um estimador que não atende a essa condição é dito viesado. E o víes de  $\delta$  é definido como  $B_{\delta}(\theta) := E_{\theta}[\delta(\mathbf{X})] - g(\theta)$ .

Teorema 12 (Estimador não-viesado da variância) Seja  $X = \{X_1, \dots, X_n\}$  uma amostra aleatória, com  $E[X_1] = m$  e  $Var(X_1) = v < \infty$ . Então

$$\delta_1(\mathbf{X}) = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X}_n)^2$$

é um estimador não-viesado de v.

#### Aula 9: Eficiência

**Definição 30 (Informação de Fisher)** Seja X uma variável aleatória com f.d.p./f.m.p.  $f(x \mid \theta)$ ,  $\theta \in \Omega \subseteq \mathbb{R}$ . Suponha que  $f(x \mid \theta)$  é duas vezes diferenciável com respeito a  $\theta$ . Defina  $\lambda(x \mid \theta) = \log f(x \mid \theta)$  e

$$\lambda'(x \mid \theta) = \frac{\partial \lambda(x \mid \theta)}{\partial \theta} \quad e \quad \lambda''(x \mid \theta) = \frac{\partial^2 \lambda(x \mid \theta)}{\partial \theta^2}$$
 (20)

Definimos a informação de Fisher como

$$I(\theta) = E_{\theta} \left[ \left\{ \lambda'(x \mid \theta) \right\}^{2} \right] \stackrel{(1)}{=} -E_{\theta} \left[ \lambda''(x \mid \theta) \right] = Var_{\theta} \left( \lambda'(x \mid \theta) \right). \tag{21}$$

Teorema 13 (Informação de Fisher em uma amostra aleatória)  $Seja~X = \{X_1, \dots, X_n\}$  uma amostra aleatória e seja  $I_n = E_{\theta}[-\lambda_n''(X \mid \theta)]$  a informação de Fisher da amostra. Então

$$I_n(\theta) = nI(\theta)$$

Teorema 14 (Teorema de Cramér-Rao) Seja  $X = \{X_1, \ldots, X_n\}$  uma amostra aleatória, onde f.d.p./f.m.p. tem as mesmas premissas da Definição 30. Supondo que T = r(X) é uma estatística com variância finita. Seja  $m(\theta) = E_{\theta}(T)$  uma função diferenciável de  $\theta$ . Então,

$$Var_{\theta}(T) \ge \frac{[m'(\theta)]^2}{nI(\theta)},$$
 (22)

com igualdade apenas se existem u e v tal que

$$T = u(\theta)\lambda'_n(\boldsymbol{X} \mid \theta) + v(\theta).$$

Definição 31 (Estimador eficiente) Um estimador  $\delta(X)$  é dito eficiente de (sua esperança)  $m(\theta)$  se

$$Var_{\theta}(\delta) = \frac{[m'(\theta)]^2}{nI(\theta)}.$$

# Aula 10: Distribuição de uma estatística amostral e qui-quadrado

Definição 32 (Distribuição qui-quadrado) Dizemos que uma variável aleatória Y tem distribuição qui-quadrado com m graus de liberdade quando

$$f_Y(y) = \frac{1}{2^{m/2}\Gamma(m/2)} y^{m/2-1} e^{-y/2}, y > 0$$
(23)

Vemos que Y tem função geradora de momentos:

$$\psi(t) = \left(\frac{1}{1 - 2t}\right)^{m/2}, t < 1/2.$$

Teorema 15 (Soma de variáveis aleatórias qui-quadrado)  $Se X_1, \ldots, X_n$  são variáveis aleatórias independentes com graus de liberdade  $m_i$ , então  $W = \sum_{i=1}^n X_i$  tem distribuição qui-quadrado com graus de liberdade  $m = \sum_{i=1}^n m_i$ .

Teorema 16 (Distribuição do quadrado de uma variável aleatória Normal padrão) Se

$$X \sim Normal(0,1), Y = X^2$$

então, tem distribuição qui-quadrado com m=1.

### Aula 11: Distribuição da média e variância amostrais

Teorema 17 (Independência da média e variância amostrais na Normal)  $Seja X_1, \ldots, X_n$  uma amostra aleatória de uma distribuição Normal com parâmetros  $\mu$  e  $\sigma^2$ ,  $\overline{X}_n$  e a variância amostral  $\overline{S}_n^2$ , são independentes. Ademais,  $\overline{X}_n \sim Normal (\mu, \sigma^2)$  e  $\overline{S}_n^2 \sim Gama(\frac{n-1}{2}, \frac{n}{2n^2})$ 

### Aula 12: Distribuição t de Student e intervalos de confiança

Definição 33 (A distribuição t de Student)  $Tome, Y \sim Qui - quadrado(m)$   $e Z \sim Normal(0, 1)$  e defina a variável aleatória

$$X = \frac{Z}{\sqrt{\frac{Y}{m}}}.$$

Dizemos que X tem distribuição t de Student com m graus de liberdade. E sabemos que

$$f_X = \frac{\Gamma(\frac{m+1}{2})}{\sqrt{m\pi}\Gamma(\frac{m}{2})} \left(1 + \frac{x^2}{m}\right)^{-\frac{m+1}{2}}, \quad x \in (-\infty, +\infty).$$

Teorema 18 (Distribuição amostral do estimador não-viesado da variância) Considere o estimador

$$\hat{\sigma}' = \sqrt{\frac{\Delta^2}{n-1}},$$

onde  $\Delta^2 = \sum_{i=1}^n (X_i - \overline{X}_n)^2$ . Então, vale que

$$\frac{\sqrt{n}(\overline{X}_n - \mu)}{\hat{\sigma}'} \sim \text{Student}(n-1)$$

Teorema 19 (Intervalo de confiança) Seja  $\mathbf{X} = \{X_1, \dots, X_n\}$  uma amostra aleatória, onde cada uma tem p.d.f.  $f(x \mid \theta)$ , e considere uma função real  $g(\theta)$ . Sejam  $A(\mathbf{X})$  e  $B(\mathbf{X})$  duas estatísticas de modo de valha

$$P(A(\mathbf{X}) < q(\theta) < B(\mathbf{X})) > \gamma. \tag{24}$$

Dizemos que  $I(\mathbf{X}) = (A(\mathbf{X}, B(\mathbf{X}))$  é um intervalo de confiança de  $100\gamma\%$  para  $g(\theta)$ . Se a designaldade for uma igualdade para todo  $\theta \in \Omega$ , dizemos que o intervalo é **exato**.

# Aula 13: Intervalos de confiança e Quantidades Pivotais

Definição 34 (Intervalo de confiança unilateral) Seja  $X = \{X_1, \dots, X_n\}$  uma amostra aleatória, onde cada uma tem p.d.f.  $f(x \mid \theta)$ , e considere uma função real  $g(\theta)$ . Seja A(X) uma estatística que

$$P(A(\mathbf{X}) < g(\theta)) \ge \gamma, \quad \forall \theta \in \Omega$$

dizemos que o intervalo aleatório  $(A(\mathbf{X}), \infty)$  é chamado de intervalo de confiança **unilateral** de  $100\gamma\%$  para  $g(\theta)$  (ou ainda, de intervalo de confiança **inferior** de  $100\gamma\%$  para  $g(\theta)$ ). O intervalo  $(-\infty, B(\mathbf{X}))$ , com

$$P(g(\theta) < B(\mathbf{X})) \ge \gamma, \quad \forall \theta \in \Omega$$

é definido de forma análoga, e é chamado de intervalo de confiança **superior** de  $100\gamma\%$  para  $g(\theta)$ . Se a desigualdade é uma igualdade para todo  $\theta \in \Omega$ , os intervalos são chamados **exatos**.

Definição 35 (Quantidade pivotal) Seja  $X = \{X_1, \ldots, X_n\}$  uma amostra aleatória com p.d.f.  $f(x \mid \theta)$ . Seja  $V(X, \theta)$  uma variável aleatória cuja distribuição é a mesma para todo  $\theta \in \Omega$ . Dizemos que  $V(X, \theta)$  é uma quantidade pivotal.

Teorema 20 (Intervalo de confiança unilateral) Seja  $\mathbf{X} = \{X_1, \dots, X_n\}$  uma amostra aleatória com p.d.f.  $f(x \mid \theta)$ . Suponha que existe uma quantidade pivotal V, com c.d.f. continua G. Assuma que existe  $r(v, \mathbf{x})$  estritamente crescente em v para todo  $\mathbf{x}$ . Finalmente, tome  $0 < \gamma < 1$  e  $\gamma_1 < \gamma_2$  de modo que  $\gamma_2 - \gamma_1 = \gamma$ . Então as estatísticas

$$A(\mathbf{X}) = r(G^{-1}(\gamma_1), \mathbf{X}),$$

$$B(\mathbf{X}) = r(G^{-1}(\gamma_2), \mathbf{X}),$$

são os limites de um intervalo de confiança de  $100\gamma\%$  para  $g(\theta)$ .

## Aula 14: Testes de hipótese I

Definição 36 (Hipótese nula e hipótese alternativa) Considere o espaço de parâmetros  $\Omega$  e defina  $\Omega_0, \Omega_1 \subset \Omega$  de modo que  $\Omega_0 \cup \Omega_1 = \Omega$  e  $\Omega_0 \cap \Omega_1 = \emptyset$ . Definimos

$$H_0 := \theta \in \Omega_0$$
,

$$H_1 := \theta \in \Omega_1$$
,

E dizemos que  $H_0$  é a **hipótese nula** e  $H_1$  é a **hipótese alternativa**. Se  $\theta \in \Omega_1$ , então dizemos que rejeitamos a hipótese nula. Por outro lado, se  $\theta \in \Omega_0$ , então dizemos que não rejeitamos ou falhamos em rejeitar  $H_0$ .

Definição 37 (Hipótese simples e hipótese composta) Dizemos que uma hipótese  $H_i$ , é simples, se  $\Omega_i = \{\theta_i\}$ , isto é, se a partição correspondente é um único ponto. Uma hipótese é dita composta se não é simples.

Definição 38 (Hipótese unilateral e hipótese bilateral) Uma hipótese da forma  $H_0: \theta \leq \theta_0$  ou  $H_0: \theta \geq \theta_0$  é dita unilateral ("one-sided"), enquanto hipóteses da forma  $H_0: \theta \neq \theta_0$  são ditas bilaterais ("two-sided").

# Aula 15: Testes de hipótese II

Definição 39 (Região crítica) O conjunto

$$S_1 := \{ \boldsymbol{x} : |\overline{X}_n - \mu_0| \ge c \}$$

é chamado de região crítica do teste.

Definição 40 (Região de rejeição) Se  $R \subseteq \mathbb{R}$  é tal que "rejeitamos  $H_0$  se  $T \in R$ ", então R é chamada uma região de rejeição para a estatística T e o teste associado.

**Definição 41 (Função poder)** Seja δ um procedimento de aceitação/rejeição como visto anteriormente. A **função poder** é definida como

$$\pi(\theta \mid \delta) := P(\mathbf{X} \in S_1 \mid \theta) = P(T \in R \mid \theta), \ \theta \in \Omega$$
 (25)

<sup>&</sup>lt;sup>4</sup>c.d.f. - cumulative distribution function

Definição 42 (Tipos de erros) Tipos de erros que podem ser cometidos

| Nome         | $Erro\ cometido$                                     |  |
|--------------|------------------------------------------------------|--|
| Erro tipo I  | Rejeitar $H_0$ quando ela é <b>verdadeira</b> .      |  |
| Erro tipo II | Falhar em rejeitar $H_0$ quando ela é <b>falsa</b> . |  |

Definição 43 (Tamanho/nível de um teste) Dizemos que um teste,  $\delta$ , tem tamanho ou nível de significância  $\alpha(\delta)$ , com

$$\alpha(\delta) := \sup_{\theta \in \Omega_0} \pi(\theta \mid \delta).$$

### Aula 16: Testes de hipótese III

Definição 44 (O p-valor) Para cada t, seja  $\delta_t$  o teste que rejeita  $H_0$  se  $T \geq t$ . Então, quando T = t, o p-valor vale

$$p(t) := \sup_{\theta \in \Omega_0} \pi(\theta \mid \delta_t) = \sup_{\theta \in \Omega_0} P(T \ge t \mid \theta)$$
(26)

ou seja, o **p-valor** é o tamanho do teste  $\delta_t$ .

### Aula 17: Testes e conjuntos de confiança

Definição 45 (Intervalos de confiança e testes são equivalentes) Suponha que dispomos de dados  $X = \{X_1, \ldots, X_n\}$  com f.d.p. comum  $f(x \mid \theta)$ , e estamos interessados em testar as hipóteses:

$$H_0: g(\theta) = g_0,$$
  
$$H_1: g(\theta) \neq g_0,$$

de modo que existe um teste  $\delta_{g_0}$  com nível  $\alpha_0$  destas hipóteses. Para cada  $\mathbf{X} = \mathbf{x}$ , defina

$$w(\mathbf{x}) = \{g_0 : \delta_{g_0} \text{ n\~ao rejeita } H_0 \text{ dado que } \mathbf{X} = \mathbf{x}\}.$$

Fazendo o nível de confiança do intervalo  $\gamma = 1 - \alpha_0$ , temos

$$P(g(\theta_0) \in w(\mathbf{X}) \mid \theta = \theta_0) \ge \gamma, \ \forall \theta_0 \in \Omega.$$

Definição 46 (Conjunto de confiança) Se um conjunto aleatório w(X) satisfaz

$$P(q(\theta_0) \in w(\mathbf{X}) \mid \theta = \theta_0) > \gamma$$

para todo  $\theta_0 \in \Omega$ , então chamamos w(X) de um conjunto de confiança para  $g(\theta)$ .

Teorema 21 (Testando hipóteses a partir de conjuntos de confiança) Suponha que dispomos de dados  $X = \{X_1, \ldots, X_n\}$  com f.d.p. comum  $f(x \mid \theta)$  e que w(X) é um conjunto de confiança para uma função de interesse  $g(\theta)$ . Então para todo valor  $g_0$  assumido por  $g(\theta)$  existe um teste  $\delta_{g_0}$ , de nível  $\alpha_0$  que rejeita  $H_0: g(\theta) = g_0$  se e somente se  $g(\theta_0) = g_0 \notin w(X)$ .

Teorema 22 (Teste de razão de verossimilhanças) A estatística

$$\wedge(\mathbf{x}) = \frac{\sup_{\theta \in \Omega_0 f_n(\mathbf{x}|\theta)}}{\sup_{\theta \in \Omega f_n(\mathbf{x}|\theta)}}$$

é chamada um estatística de razão de verossimilhanças. Um teste de razão de verossimilhanças,  $\delta_k$ , é um teste que rejeita  $H_0$  se  $\wedge(\mathbf{x}) \leq k$  para uma constante k.

Teorema 23 (Teorema de Wilks) Suponha que temos um espaço de parâmetros com k coordenadas,  $\theta = (\theta_1, \dots, \theta_n)$  e desejamos testar a hipótese (simples) da forma

$$H_0: \theta_j = \theta_0^j, \ j = 1, \dots, k,$$

$$H_1: \theta_j \neq \theta_0^j, \ j = 1, \dots, k.$$

Então, sob condições de regularidade, temos que, à medida que  $n \to \infty$ ,

$$-2\log \wedge (\boldsymbol{x}) \stackrel{\mathrm{d}}{\to} X^2(k)$$

#### Aula 18: Teste t I

Definição 47 (Teste não viesado) Suponha que desejamos testar a hipótese

$$H_0: \theta \in \Omega_0,$$

$$H_1: \theta \in \Omega_1$$
,

através do teste  $\delta$ . Dizemos que  $\delta$  é não-viesado se (e somente se) para  $\theta \in \Omega_0$  e  $\theta' \in \Omega_1$ , vale

$$\pi(\theta \mid \delta) \le \pi(\theta' \mid \delta),$$

ou seja, se a função poder é pelo menos tão grande no espaço onde  $H_0$  é falsa  $(\Omega_1)$  quando no espaço em que  $H_0$  é verdadeira  $(\Omega_0)$ .

**Definição 48 (Teste t)** Um teste  $\delta_c$  que rejeita  $H_0$  se  $U \ge c$  (equiv.  $U \le c$ ), com  $c = T^{-1}(1 - \alpha_0; n - 1)$  é chamado de um **teste t** (unicaudal) de tamanho  $\alpha_0$ .

Teorema 24 (Propriedades do teste t) Suponha que  $\delta_c$  rejeita  $H_0$  se  $U \geq c$ . Então

- $\mu = \mu_0 \Longrightarrow \pi(\mu, \sigma^2 \mid \delta_c) = \alpha_0$
- $\mu < \mu_0 \Longrightarrow \pi(\mu, \sigma^2 \mid \delta_c) < \alpha_0$
- $\mu > \mu_0 \Longrightarrow \pi(\mu, \sigma^2 \mid \delta_c) > \alpha_0$
- $\lim_{\mu \to -\infty} \pi(\mu, \sigma^2 \mid \delta_c) = 0$
- $\lim_{\mu \to +\infty} \pi(\mu, \sigma^2 \mid \delta_c) = 1$
- $\delta_c$  é não-viesado e tem tamanho  $\alpha_0$ .

Teorema 25 (P-valor para um teste t unicaudal) Suponha que observarmos U=u e seja  $T(\cdot .n-1)$  a f.d.a. de uma distribuição t de Student com n - 1 graus de liberdade. Para a hipótese

$$H_0: \mu \geq \mu_0$$

$$H_1: \mu < \mu_0$$

o p-valor vale T(u; n-1), enquanto para a hipótese

$$H_0: \mu \leq \mu_0,$$

$$H_1: \mu > \mu_0$$

o p-valor vale 1 - T(u; n - 1).

#### Aula 19: Teste t II

Teorema 26 (Teste pareado) Sejam amostras X e Y (antes e depois), tais que  $X_i \sim \text{Normal}(\mu_1, \sigma^2)$  e  $Y_i \sim \mathbb{N} \rtimes \mathbb{N} \gg \Im \ll (\mu_2, \sigma^2)$ , a hipótese

$$H_0: \mu_1 \le \mu_2$$

$$H_1: \mu_1 > \mu_2$$

Pode ser modelada com a variável  $Z_i = X_i - Y_i$   $(Z_i \sim \text{Normal}(\mu_Z = \mu_1 - \mu_2, 2\sigma^2))$ , então podemos testar hipóteses sobre  $\mu_Z$  a partir de  $\mathbf{Z}$ 

$$H_0: \mu_Z \leq 0$$

$$H_1: \mu_Z > 0$$

Teorema 27 (Teste t para duas amostras) Considere  $X = \{X_1, \ldots, X_m\}$  e  $Y = \{Y_1, \ldots, Y_n\}$ , queremos estudar a diferença das médias. Modelando em distribuição normal  $X_i \sim \text{Normal}(\mu_1, \sigma_1^2)$ ,  $i = 1, \ldots, m$  e  $Y_j \sim \text{Normal}(\mu_2, \sigma_2^2)$ ,  $j = 1, \ldots, n$ . Sob a premissa de homogeneidade  $\sigma_1^2 = \sigma_2^2 = \sigma^2$ , podemos testar a hipótese

$$H_0: \mu_1 \leq \mu_2$$

$$H_1: \mu_1 > \mu_2$$

computando a estatística

$$U = \frac{\sqrt{m+n-2}(\overline{X}_m - \overline{Y}_n)}{\sqrt{(\frac{1}{m} + \frac{1}{n})(S_X^2 + S_Y^2)}}$$

onde  $\overline{X}_m$  e  $\overline{X}_m$  são as médias e  $S_X^2$  e  $S_X^2$  são a soma das variâncias.

Teorema 28 (Relaxando a premissa de homogeneidade) Do teorema acima, podemos relaxar a premissa de igualdade das variâncias assumindo que  $\sigma_2^2 = k\sigma_1^2$ , então a estatística teste vale

$$U = \frac{\sqrt{m+n-2}(\overline{X}_m - \overline{Y}_n)}{\sqrt{(\frac{1}{m} + \frac{k}{n})(S_X^2 + \frac{S_Y^2}{n})}}$$

#### Aula 20: Teste f

**Definição 49 (A distribuição F)** Sejam  $Y \sim \text{Qui} - \text{quadrado}(m)$  e  $W \sim \text{Qui} - \text{quadrado}(n)$ . Então

$$X = \frac{Y/m}{W/n},$$

tem distribuição F com m e n graus de liberdade, com f.d.p.

$$f_X(x) = \frac{\Gamma(\frac{m+n}{2})m^{m/2}n^{n/2}}{\Gamma(\frac{n}{2})\Gamma(\frac{m}{2})} \cdot \frac{x^{m/2-1}}{(mx+n)^{(m+n)/2}}, \ x > 0,$$

Teorema 29 (Propriedades da distribuição F) 1. Se  $X \sim F(m,n)$ , então  $\frac{1}{X} \sim F(m,n)$ ;

2. Se 
$$Y \sim \text{Student}(n)$$
, então  $Y^2 \sim F(1, n)$ .

Teorema 30 (Igualdade de duas variâncias) Suponha  $X_i \sim \text{Normal}(\mu_1, \sigma_1^2), i = 1, ..., m$  e  $Y_j \sim \text{Normal}(\mu_2, \sigma_2^2), j = 1, ..., n$ . Queremos testar

$$H_0: \sigma_1^2 \le \sigma_2^2$$
  
 $H_1: \sigma_1^2 > \sigma_2^2$ 

Para isso, vamos computar a estatística de teste

$$V = \frac{S_X^2/(m-1)}{S_Y^2/(n-1)}$$

onde 
$$S_X^2 = \sum_{i=1}^m (X_i - \overline{X}_m)^2 \ e \ S_Y^2 = \sum_{j=1}^m (Y_j - \overline{Y}_m)^2$$

**Definição 50 (O teste F)** O teste F de homogeneidade (igualdade de variâncias) é o teste  $\delta_c$  que rejeita  $H_0$  de  $V \geq c$ , para uma constante positiva c.

Teorema 31 (A distribuição de V) Seja  $V = \frac{S_X^2/(m-1)}{S_Y^2/(n-1)}$ , então:

$$\frac{\sigma_2^2}{\sigma_1^2}V \sim F(m-1, n-1).$$

Além disso, se  $\sigma_1^2 = \sigma_2^2$ ,  $V \sim F(m-1, n-1)$ .

# Aula 21: Regressão Linear I

Teorema 32 (A linha de mínimos quadrados)  $Sejam(x_1, y_1), \dots, (x_n, y_n)$  uma coleção de n pontos. Suponha que estamos interessados na reta

$$y_i = \beta_0 + \beta_1 x_i. \tag{27}$$

Os valores dos coeficientes que minimizam a soma de quadrados são

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x},$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (y_i - \overline{y})(x_i - \overline{x})}{\sum_{i=1}^n (x_i - \overline{x})^2}.$$

**Definição 51 (Modelo linear)** Podemos construir um modelo estatístico explícito para a relação entre as variáveis X e Y:

$$E[Y \mid X = x_1, \dots, x_P] = \beta_0 + \beta_1 x_1 + \dots + \beta_P x_P$$
 (28)

Podemos então idealizar o seguinte modelo

$$Y_i = \beta_0 \sum_{j=1}^{P} \beta_j x_{ij} + \varepsilon_i, \ \varepsilon \sim \text{Normal}(0, \sigma^2).$$

### Aula 22: Regressão Linear II

Teorema 33 (EMV para os coeficientes de uma regressão linear (simples)) Sob as premissas já listadas, os estimadores de máxima verossimilhança para  $\theta = (\beta_0, \beta_1, \sigma^2)$  são

$$\hat{\beta}_{0EMV} = \overline{y} - \hat{\beta}_{1EMV} \overline{x},$$

$$\hat{\beta}_{1EMV} = \frac{\sum_{i=1}^{n} (y_i - \overline{y})(x_i - \overline{x})}{\sum_{i=1}^{n} (x_i - \overline{x})^2},$$

$$\hat{\sigma}^2_{EMV} = \frac{1}{n} \sum_{i=1}^{n} \left( y_i - (\hat{\beta}_{0EMV} + \hat{\beta}_{1EMV} x_i) \right)^2,$$

ou seja, os estimadores de máxima verossimilhança dos coeficientes minimizam a soma de quadrados da reta estimada.

Teorema 34 (Distribuição amostral dos estimadores dos coeficientes)

$$\begin{split} \hat{\beta}_{0EMV} \sim \text{Normal} \left( \beta_0, \sigma^2 \left( \frac{1}{n} + \frac{\overline{x}^2}{s_X^2} \right) \right), \\ \hat{\beta}_{1EMV} \sim \text{Normal} \left( \beta_0, \frac{\sigma^2}{s_X^2} \right), \\ \text{Cov} (\hat{\beta}_{0EMV}, \hat{\beta}_{1EMV}) = -\frac{\overline{x}\sigma^2}{s_X^2}, \end{split}$$

onde 
$$s_x = \sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}$$
.

Teorema 35 (Intervalos de confiança para os coeficientes de uma regressão linear) Podemos computar intervalos de confiança para os coeficientes da regressão linear de maneira muito similar ao que já vimos para o caso da média da Normal

$$\hat{\beta}_0 \pm \hat{\sigma}' c \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{s_x^2}} \quad e \quad \hat{\beta}_1 \pm c \frac{\hat{\sigma}'}{s_x},$$

$$\hat{\beta}_0 + \hat{\beta}_1 x_{pred} \pm c \hat{\sigma}' \sqrt{\frac{1}{n} + \frac{(x_{pred} - \bar{x})^2}{s^2}}$$

onde  $c = T^{-1}(1 - \frac{\alpha_0}{2}; n - 2)$  e

$$\hat{\sigma}' := \sqrt{\frac{\sum_{i=1}^{n} \left( Y_i - \hat{\beta_0} - \hat{\beta_1} x_i \right)^2}{n-2}}.$$

Definição 52 (Testes de hipóteses para o coeficiente angular) Em geral, estamos interessados em testar a hipótese

$$H_0: \beta_1 = \beta^*,$$
  
$$H_1: \beta_1 \neq \beta^*.$$

Para tanto, podemos computar a estatística

$$U_1 = s_x \frac{\hat{\beta}_1 - \beta^*}{\hat{\sigma}'},\tag{29}$$

e computar o p-valor como

$$P(U_1 \ge |u_1|) + P(U_1 \le -|u_1|). \tag{30}$$

Notando que  $U_1$  tem distribuição t de Student com n-2 graus de liberdade sob  $H_0$ , podemos computar o p-valor exatamente.

Resultados bem similares valem para testar hipóteses sobre  $\beta_0$  ou  $\hat{Y}$ .

Teorema 36 (Predição pontual) Suponha que queremos prever o valor de Y para um certo  $x_{pred}$  que não foi observado no experimento. Podemos compor nossa predição (pontual) como

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x_{pred}. \tag{31}$$

Onde a predição tem erro quadrático médio (EQM) igual a

$$E\left[(\hat{Y} - Y)^2\right] = \sigma^2 \left(1 + \frac{1}{n} + \frac{(x_{pred} - \overline{x})^2}{s_X^2}\right).$$

Teorema 37 (Intervalos de predição para  $\hat{Y}$ ) A probabilidade de  $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x_{pred}$  estar no intervalo

$$\hat{Y} \pm T^{-1} (1 - \frac{\alpha_0}{2}; n - 2) \hat{\sigma}' \sqrt{\left[1 + \frac{1}{n} + \frac{(x_{pred} - \overline{x})^2}{s_X^2}\right]},$$

 $\acute{e}$  1 –  $\alpha_0$ .