참고 그림

본문에 *가 표기된 그림을 컬러로 확인할 수 있습니다.

그림 3-1 시맨틱 분할 결과(이번 장에서 작성할 학습된 모델 사용)

1단계 화상을 475×475로 리사이즈

2단계 화상을 PSPNet 네트워크에 입력

3단계 PSPNet 출력이 최댓값인 클래스 추출(클래스 수×475×475)의 배열 → (475×475)의 배열

4단계 3단계의 출력(475×475) 배열을 화상의 원 크기로 되돌린다.

그림 3-2 PSPNet을 활용한 시맨틱 분할의 4단계 흐름

데이터 색상과 물체의 대응 정보

B-ground	Aero plane	Bicycle	Bird	Boat	Bottle	Bus
Car	Cat	Chair	Cow	Dining-Table	Dog	Horse
Motorbike	Person	Potted-Plant	Sheep	Sofa	Train	TV/Monitor

추론 결과 오버랩

그림 3-14 구축한 PSPNet을 활용한 시맨틱 분할 결과(색상과 물체의 대응 정보는 참고 문헌^[8]을 참조)

그림 4-1 자세 추정 결과

1단계 화상을 368×368로 리사이즈

2단계 화상을 오픈포즈 네트워크에 입력

3단계 부위와 PAFs에서 링크를 결정하고 원래 화상의 크기로 되돌리기

그림 4-6 오픈포즈를 활용한 자세 추정의 3단계 흐름

그림 4-19 테스트 화상의 오픈포즈 자세 추정 결과

그림 6-5 인코더 E의 작성 방법에 따른 차이(웹 페이지^[4]에서 그림을 인용하여 게재)