Lecture notes for 2.7-2.8 public key crypto

[Hand back homework 3]

RSA

- Most? popular public key crypto system
- K length: variable ~512 to ~2048 bits
- P length: variable, must be smaller than K
- C length: same as P
- Theoretical foundation: factoring a big number is hard

Math

- Euler's totient function
 - $\phi(n) = \#$ integers < n relatively prime to n
 - If p, q prime, then $\phi(n) = (p-1)(q-1)$
- Modular exponentiation
 - Inverse of x: y s.t. $\forall m : m^{xy} = m \mod n$
 - This is the core of RSA
 - Square-free: n is square-free if it has no factor p^2 , p prime
 - Lemma 1: If n is square-free, then $x^y \mod n = x^{(y \mod \phi(n))} \mod n$ ==> if $y = 1 \mod \phi(n)$, then $x^y \mod n = x \mod n$

RSA key pairs

- Pick large primes p, q (~256 bits each)
- Let n = pq
- Choose *e* relatively prime to $\phi(n) = (p-1)(q-1)$
 - Relatively prime so has a mult inverse
 - Common value of e: 65537
 - $\langle e, n \rangle$ is public key
- Let *d* be s.t. $de = 1 \mod \phi(n)$
 - Note that $\forall m : m^{de} = m^{ed} \mod n$ = $m^{(ed) \mod \phi(n)} \mod n$ = $m \mod n$ [by Lemma 1] = m [since m < n]
 - $\langle d, n \rangle$ is public key
- p, q can be discarded (must NOT be shared!)

RSA operation

- Encryption: $c = m^e \mod n$
- Decryption: $m = c^d \mod n$
- Signing: $s = m^d \mod n$
- Verification: $m = s^e \mod n$

Public key distribution problem

- Secure distribution of public keys
- Public key infrastructure (PKI)
 - SSL, PGP

Certificate

- Signed message asserting <name, pubkey> match
- Signer must be trusted

Root of trust

- Public key that user fundamentally trusts
- Distributed via out-of-band channel (OS updates to root certs)
- "Certificate authority" (CA)

Certificate chain

- Series of certificates from root to target
- Delegation of trust
- Draw vertically:
 - root: e_c --> [<u_1, e_{u_1}>]d_c
 --> [<u_2, e_{u_2}>]d_{u_1}
 --> ...
 --> target: [<u_n, e_{u_n}>]d_{u_{n-1}}
- Research systems: SPKI SDSI

Who are roots of trust?

- SSL: many roots of trust
 - Manufacturer, not user, decides roots of trust
 - Opportunities for malicious insiders
- PGP: every user is their own root of trust
 - User decides who they certify
 - Transitivity: chain happens via sequence of user certificates
 - Do you really trust your friend's friends' friends?

Certificate revocation

- Cancel the trust assertion
 - Stolen key, fired employee
- Expiration date
- Certificate revocation lists
- Online revocation servers

Certificate formats

- Specification of fields & their meanings
- Algorithms for path verification
- Standards for revocation
- X.509: SSL, TLS, S/MIME (email), Ipsec, SSH, LDAP