# Project 6: Inverse Design of Optimal Airfoil Geometries

PRESENTERS:
ISHAN DUTTA AND HARVIR GHUMAN

### Problem Overview

Use an existing data set to train and test a model that can predict airfoil geometries based on the given boundary conditions:

- Angle of attack
- Mach Number
- Reynold's Number
- > Target Lift Coefficient

### Data Visualization



Feature Relationship showing correlations between boundary conditions

### Mach Number vs Angle of Attack



## Data Visualization

- Slight Linear correlation
- There is no clear physical relationship between Mach number and Angle of attack

### Target Lift Coeffecient vs Angle of Attack



## Data Visualization

- Slight Linear correlation
- Lift Coefficient and angle of attack have negative correlation, but generally it is positive

### Data Visualization



Airfoil geometries vary from simple to extremely complex and impractical

### Visualization Insights



- ➤ Airfoil Geometry: High Dimensional Representation
  - Each Airfoil represented by 192 (x, y) pairs
  - Dimensionality reduction necessary to reduce model complexity and speed up convergence
  - Wide variety of airfoil geometries (transonic to supersonic regime)
- These linear correlations did not seem to apply accurately to real world
  - Complex, impractical airfoil geometries
- ➤ Generally, 2 boundary conditions won't always have a strong linear correlation even if they are related
- Hard to visualize relationship between boundary conditions and (x, y) geometry without physics model

## Data Preprocessing

- ➤ 4 input features: Mach Number, Reynolds number, Lift Coefficient, Angle of Attack
  - Mach Number: 0.8 1.4
  - Reynolds Number: 0.2 1.0E8
  - > Lift Coefficient: 0.3 0.8
  - ➤ Angle of Attack: -2 9 degrees
- Standardized above input features to have a mean of 0 and standard deviation of 1
- No feature scaling performed on Airfoil Geometry



### Scree Plot 0.08 **Explained Variance** 0.06 0.02 0.00 10 0 8 **Latent Dimension**

### Baseline Model

- > PCA Dimensionality Reduction:
  - ➤ Reduce Airfoil Geometry size:
    - Initial: 995 x 192 x 2 (Airfoil x Point x coordinates)
    - Final: 10
- ➤ 80-20 Train Test Split
- No Feature Scaling



### Baseline Model

- Deep Neural Network
  - Input Layer: 3 Neurons
  - ➤ Hidden Layer 1 (ReLu): 12 Neurons
  - Hidden Layer 2 (ReLu): 24 Neurons
  - Output Layer: 10 Neurons
- Adam Optimizer:
  - Learning Rate: 0.1
- MSE Loss Function
- Training:
  - $\triangleright$  N = 100 Epochs
  - Batch size = 16

```
Epoch 0: Train Loss = 0.0316, Test Loss = 0.0255

Epoch 20: Train Loss = 0.0020, Test Loss = 0.0015

Epoch 40: Train Loss = 0.0019, Test Loss = 0.0016

Epoch 60: Train Loss = 0.0019, Test Loss = 0.0016

Epoch 80: Train Loss = 0.0019, Test Loss = 0.0016

Epoch 100: Train Loss = 0.0020, Test Loss = 0.0016
```



### Baseline Model Results

- High learning rate could have led to overshoot in minimization of cost function
- Model is underfitting due to lack of feature scaling and poor hyperparameter tuning
- ➤ Batch size too small leading to noisy gradients

# Baseline Model Insights

- Regularization could help improve generalization on unseen data
- MSE was penalizing large errors too severely leading to inaccurate generalizations
- Airfoil 890 is an example of the model not generalizing well and memorizing instead
  - Cross validation can help the model account for more complex geometries



- PCA Dimensionality Reduction:
  - reduce Airfoil Geometry size from 995 x 384 to latent dimension of 10
- ➤ K Fold CV
  - $\triangleright$  K = 6 Folds
  - ➤ 10 % held out of CV for testing on unseen data
- Huber Loss Function
  - Reduce impact of outliers while sensitive to small errors
  - Combination of MSE and MAE
  - Delta = 0.001





- Deep Neural Network
  - > Input Layer: 4 Neurons
  - ➤ Hidden Layer 1 (Tanh): 32 Neurons
  - ➤ Hidden Layer 2 (ReLu): 64 Neurons
  - Output Layer: 10 Neurons
- Adam Optimizer:
  - Learning Rate: 0.01
  - Weight Decay: 1e-6
    - L2 Regularization but weight update rule
- > Training:
  - $\triangleright$  N = 120 epochs
  - Batch Size = 72







## Final Model Insights

- Weight Decay helped improve generalization
- Learning rate was tuned better to reduce overshoot
- Change from MSE to Huber improved robustness
- This is a dimension reduction coupled with a nonlinear regressor problem
- K Fold CV guaranteed that model saw and learned more complex geometries it hadn't before
- Still not perfect overshoot of shape
  - Limitations of PCA



# Final Model Insights



Reconstruction Error MSE (Original Space): 0.000073

### Future Work

- Model could have better data compression to capture nonlinearity of geometry in reduced space
- Autencoder could help with the nonlinearity of data compression and reconstruction
- Bigger dataset or wider variety of airfoils to evaluate true performance of model and possibly more design parameters
- Computer Vision Model



# Questions?

### Contributions

- Thanks to Harvir Ghuman for:
  - Building the PCA pipeline code for dimensionality reduction
  - Building the final neural network model architecture and tuning hyperparameters
  - Creating insightful data visualizations of feature relationships
  - Testing final model on test data set
  - Creating data visualizations showcasing our final model performance
- Thanks to Ishan Dutta for:
  - Building our baseline neural network architecture in PyTorch
  - Testing our baseline model on test data
  - Providing his expertise in Aerospace engineering to our data visualization results
  - Implementing a new cross validation strategy in the final model
  - Communicating our baseline model results to audience

## Github Link

https://github.com/Hghn02/Inverse-Design-of-Optimal-Airfoil-Geometry