Лабораторная работа №6

Задача об эпидемии

Левкович Константин Анатольевич

Содержание

1	Целі	Цель работы												
2	Выполнение лабораторной работы													
	2.1	Теоретическое введение	5											
	2.2	Задание	6											
	2.3	Графики	7											
3	Выв	ОДЫ	9											

Список иллюстраций

2.1	Первый случай												7
	Первый случай без S(0)												8
2.3	Второй случай												8

1 Цель работы

- 1. Рассмотреть простейшую модель эпидемии.
- 2. Построить графики изменения числа особей в каждой из трех групп.
- 3. Рассмотреть, как будет протекать эпидемия.

2 Выполнение лабораторной работы

2.1 Теоретическое введение

Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - S(t) — восприимчивые к болезни, но пока здоровые особи. Вторая - I(t) — это число инфицированных особей, которые также при этом являются распространителями инфекции. И третья - R(t) — это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения I^* считаем, что все больные изолированы и не заражают здоровых. Когда $I(t)>I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$\frac{\partial S}{\partial t} = \begin{cases} -\alpha S, I(t) > I^* \\ 0, I(t) \le I^* \end{cases}$$

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится, т.е.:

$$\frac{\partial I}{\partial t} = \begin{cases} -\alpha S - \beta I, I(t) > I^* \\ -\beta I, I(t) \le I^* \end{cases}$$

А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни)

$$\frac{\partial R}{\partial t} = \beta I$$

Постоянные пропорциональности:

- α коэффициент заболеваемости
- β коэффициент выздоровления

Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(0) \leq I^*$ и $I(0) > I^*$

2.2 Задание

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=8439) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=86, А число здоровых людей с иммунитетом к болезни R(0)=25. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0).

Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

- 1. если $I(0) \leq I^*$
- 2. если $I(0) > I^*$

$$\alpha = 0.35$$

$$\beta = 0.13$$

2.3 Графики

Динамика изменения числа людей в каждой из трех групп в случае, когда $I(0) \leq I^*$ с начальными условиями I(0)=86, R(0)=25, S(0)=8328. Коэффициенты $\alpha=0.35, \beta=0.13$. (рис. -@fig:001). График изменения числа людей в группе здоровых людей с иммунитетом, а также в группе инфицированных особей (рис. -@fig:002).

Рис. 2.1: Первый случай

Рис. 2.2: Первый случай без S(0)

Динамика изменения числа людей в каждой из трех групп в случае, когда $I(0)>I^*$ с начальными условиями I(0)=86, R(0)=25, S(0)=8328. Коэффициенты $\alpha=0.35$, $\beta=0.13$. (рис. -@fig:003)

Рис. 2.3: Второй случай

3 Выводы

- 1. Построил графики изменения числа особей в каждой из трех групп.
- 2. Рассмотрел, как будет протекать эпидемия в разных случаях.