Instituto de Ciências Exatas e Biológicas - ICEB

Departamento de Computação - DECOM

PROGRAMAÇÃO DE COMPUTADORES I BCC701 Aula Prática 06 1

Analise os códigos abaixo para o cálculo das médias aritméticas de dois ou mais números quaisquer.

Média Aritmética de 2 Números

```
n = 2;
a = input("DIGITE UM VALOR: ");
b = input("DIGITE UM VALOR: ");
media = (a + b) / n;
2 repetições do comando input
```

Média Aritmética de 3 Números

```
n = 3;
a = input("DIGITE UM VALOR: ");
b = input("DIGITE UM VALOR: ");
c = input("DIGITE UM VALOR: ");
media = (a + b + c) / n;
3 repetições do comando input
```

Média Aritmética de 4 Números

```
n = 4;
a = input("DIGITE UM VALOR: ");
b = input("DIGITE UM VALOR: ");
c = input("DIGITE UM VALOR: ");
d = input("DIGITE UM VALOR: ");
media = (a + b + c + d) / n;
4 repetições do comando input
```

• • •

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Média Aritmética de 8 Números

```
n = 8;
a = input("DIGITE UM VALOR: ");
b = input("DIGITE UM VALOR: ");
c = input("DIGITE UM VALOR: ");
d = input("DIGITE UM VALOR: ");
e = input("DIGITE UM VALOR: ");
f = input("DIGITE UM VALOR: ");
g = input("DIGITE UM VALOR: ");
h = input("DIGITE UM VALOR: ");
media = (a + b + c + d + e + f + g + h) / n;
```

Média Aritmética Utilizando o Comando for

Observações:

- 1. Inicializa-se com zero a variável que acumula o somatório (fora do laço);
- 2. a variável contadora (contador) tem a função de "contar" quantas vezes o bloco será repetido. Assim, se n = 3, ela assume os valores 1, 2 e 3, nesta ordem;
- 3. somente quando o laço **for** é encerrado que a média é calculada, fazendo-se a divisão por n (quantidade de números fornecidos pelo teclado).

Instituto de Ciências Exatas e Biológicas - ICEB

Departamento de Computação - DECOM

Exercício 1

Valor de uma Série

O valor aproximado de uma série com n termos é calculado pelo somatório:

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \cdots + \frac{1}{2 * n}$$

Codifique um programa Scilab que solicite ao usuário um valor para n, e a seguir, calcule o valor do somatório. As entradas e saídas de dados seguem o modelo de execução abaixo.

Exemplo

CÁLCULO DO SOMATÓRIO DA SÉRIE
-----DIGITE A QUANTIDADE DE PARCELAS: 4

VALOR DO SOMATÓRIO COM 4 PARCELAS: 1.04167

Instituto de Ciências Exatas e Biológicas - ICEB

Departamento de Computação - DECOM

Exercício 2

Valor de uma Série

O valor aproximado de uma série com n termos é calculado pelo somatório:

$$\frac{1}{4} - \frac{3}{8} + \frac{5}{16} - \frac{7}{32} + \frac{2 * i - 1}{2^{i+1}} - \cdots$$

onde i é o número da parcela do somatório.

Codifique um programa Scilab que solicite ao usuário um valor para n, e a seguir, calcule o valor do somatório. As entradas e saídas de dados seguem o modelo de execução abaixo.

Exemplo

CÁLCULO DO SOMATÓRIO DA SÉRIE

----DIGITE A QUANTIDADE DE PARCELAS: 5

VALOR DO SOMATÓRIO COM 5 PARCELAS: 0.10938

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Exercício 3

Cálculo de Somatório

Faça um programa para calcular o valor de S, dado por:

$$S = \frac{1}{N} + \frac{2}{N-1} + \frac{3}{N-2} + \dots + \frac{N-1}{2} + \frac{N}{1}$$

onde N é fornecido pelo usuário através do teclado.

As entradas e saídas de dados seguem o modelo de execução abaixo. Utilize o comando **for**.

Exemplo 1

CÁLCULO DO SOMATÓRIO DE UMA SÉRIE
DIGITE A QUANTIDADE DE TERMOS: 10
SOMATÓRIO COM 10 TERMOS: 22.2187

Exemplo 2

Exemplo 3

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Exercício 4

Valor Aproximado de π

O valor aproximado do número π pode ser calculado através da seguinte série:

$$S = 1 - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \frac{1}{9^3} \cdots$$

sendo
$$\pi = \sqrt[3]{S \times 32}$$

Codifique um programa Scilab que calcule e imprima o valor de π . O usuário deve informar o número de parcelas do somatório. Utilize o comando **for**. A seguir, alguns exemplos de execução do programa.

Exemplo 1

Exemplo 2

CÁLCULO APROXIMADO DO VALOR DE PI
-----DIGITE A QUANTIDADE DE PARCELAS: 20

VALOR DE PI COM 20 PARCELAS: 3.14158424

Exemplo 3

CÁLCULO APROXIMADO DO VALOR DE PI
-----DIGITE A QUANTIDADE DE PARCELAS: 100

VALOR DE PI COM 100 PARCELAS: 3.14159259

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Exercício 5

Exemplo de Função

O A função y(t) é definida por:

$$y(t) = \frac{-3t^2 + 5}{3t^2 + 5}, para t \ge 0$$

$$3t^2 + 5, para t < 0$$

para valores de t pertencentes ao intervalo [-9; 9], com incrementos de 0,5. Escreva um programa Scilab para gerar a tabela abaixo; também plote o gráfico da função. A seguir,

	olo de execução do pr	ograma.
	A FUNÇÃO y(t) ======	
t	у(t) ======	
-9.0 -8.5	248.0000 221.7500	
-8.0	197.0000	
-7.5	173.7500	
-7.0	152.0000	
-6.5	131.7500	·
-6.0	113.0000	Arquivo Ferramentas Editar ?
-5.5	95.7500	Janela gráfica número 0
-5.0	80.0000	
-4.5	65.7500	Gráfico da função y(t)
-4.0	53.0000	250 7 0 1 1 1 1 1 1 1 1
-3.5 -3.0	41.7500	200
-3.0 -2.5	32.0000 23.7500	
-2.5 -2.0	17.0000	150
-2.0 -1.5	11.7500	100
-1.0	8.0000	50
-1.0 -0.5	5.7500	0000
0.0	5.0000	> 0
0.5	4.2500	-50
1.0	2.0000	.100
1.5	-1.7500	
2.0	-7.0000	.150
2.5	-13.7500	-200
3.0	-22.0000	-250
3.5	-31.7500	-10 -8 -6 -4 -2 0 2 4 6 8 10
4.0	-43.0000	τ
4.5	-55.7500	
5.0	-70.0000	
5.5	-85.7500	
6.0	-103.0000	
6.5	-121.7500	
7.0	-142.0000	
7.5	-163.7500	
8.0	-187.0000	
8.5	-211.7500	
9.0	-238.0000	

Instituto de Ciências Exatas e Biológicas - ICEB

Departamento de Computação - DECOM

Exercício 6

Festa na UFOP

No ginásio da UFOP ocorrerá a festa Baranga 2014. O ingresso masculino será de R\$ 15,50 e o feminino será de R\$ 8,40.

Um calouro ficou encarregado de operar um programa SciLab, o qual é executado da seguinte forma:

- Quando chega um homem na festa, ele digita 'h'; quando chega uma mulher na festa ele digita 'm'. O calouro não tem noção de quantas pessoas irão à festa.
- 2. Quando o calouro quiser encerrar a entrada de dados ele digita 'q'.

No momento que a entrada de dados for encerrada, o programa calcula quanto foi arrecadado com os ingressos masculinos e com os ingressos femininos. Também é calculado o total arrecadado.

Codifique o programa operado pelo calouro.

A seguir, dois exemplos de execução desse programa.

Execução 1:

=xoouşuo II								
QUEM CHEGOU?	(h ou	m	ou	q):	W			
QUEM CHEGOU?	(h ou	m	ou	q) :	i			
QUEM CHEGOU?	(h ou	m	ou	q) :	p			
QUEM CHEGOU?	(h ou	m	ou	q) :	q			
FESTA BARANGA 2014!								
QUANTIDADE DE HOMENS: 0								
QUANTIDADE DE	MULHERE	ES: 0						
TOTAL ARRECADA	ADO -	HOME	MS:	R\$	0.000			
TOTAL ARRECADA	M - OCA	JLHER	ES:	R\$	0.000			
TOTAL ARRECADA	ADO NA	FES	TA:	R\$	0.000			

Execução 2:

QUEM C	HEGOU?	(h	ou	m	ou	q):	m
QUEM C	HEGOU?	(h	ou	m	ou	q) :	m
QUEM C	HEGOU?	(h	ou	m	ou	q) :	h
QUEM C	HEGOU?	(h	ou	m	ou	q) :	m
QUEM C	HEGOU?	(h	ou	m	ou	q) :	h
QUEM C	HEGOU?	(h	ou	m	ou	q) :	m
QUEM C	HEGOU?	(h	ou	m	ou	q) :	h
QUEM C	HEGOU?	(h	ou	m	ou	q) :	q
FESTA	BARANGA	2014	!				
QUANTI	DADE DE	HC	MENS	3: 3			
QUANTI	DADE DE I	MULH	ERES	S: 4			
TOTAL	ARRECADA	DO -	·	IOME	MS:	R\$	46.50
TOTAL	ARRECADA	DO -	MUI	HER	ES:	R\$	33.60
TOTAL	ARRECADA	DO	NA	FES	TA:	R\$	80.10

Universidade Federal de Ouro Preto – UFOP Instituto de Ciências Exatas e Biológicas – ICEB Departamento de Computação – DECOM

Exercício 7

Refaça os exercícios 3 e 4 utilizando o comando while.