



# BGP EVPN Solution in Enterprise Campus

Catalyst 9000









## Agenda

- Introduction and Overview
- Product Matrix and Scale
- Underlay Network
- Overlay Network
- Fabric Interworking
- Multicast over VXLAN
- Wireless Integration and Services
- Conclusion



## Enterprise fabric architectures

# Collaboration Intent Mobility networking Infrastructure

**SD-Access** 

- Leading architecture for enterprise providing seamless mobility and enhanced security
- Integrated Automation, Assurance Analytics capabilities driven from Cisco DNA-Center
- Integrated Wireless capabilities driving consistent policies across wired and wireless networks



- Industry based solution providing interoperability with 3<sup>rd</sup> party devices
- Solution for Brownfield environments MPLS, VPLS, Multi-VRF, GRE.
- Single Overlay Solution from campus to datacenter, all the way to cloud
- DIY based provisioning and automation for fabric deployment



Patent

Filed | Issued 400+ 150+



## **BGP EVPN Drivers in Enterprise**

#### **Network Extension**









- Bridge connection between across Core network
- User devices are virtually in common L2 segment
- Logical topologies with deterministic overlay Layer 2 network infrastructure.

cisco live!

#### **Network Segmentation**









- Routed connection at first-hop gateway
- User devices are segmented across Core network
- Logical overlay IP routed network providing flexible topology support

## **BGP EVPN Solution For Enterprise**





#### **VxLAN Overview**

#### **VXLAN Concepts**

- VXLAN Overlay
  - A VXLAN Overlay or VXLAN segment is a Layer-2 broadcast domain identified by the VNID that extends or tunnels traffic from one VTEP to another.
- VXLAN Tunnel End Point (VTEP)
  - A VTEP is a device that provides both encapsulation and de-capsulation of classical Ethernet and VXLAN packets to and from a VXLAN segment
  - Each VTEP may have the following types of interfaces:
    - Switchport interfaces on the local LAN segment to support localendpoints
    - Layer-3 interfaces to the transport IP network
    - SVI interfaces
- VXLAN Gateway
  - A VTEP that bridges traffic between VXLAN segments



### **VxLAN Packet Structure**



### EVPN Primer --- MP-BGP Review

#### Virtual Routing and Forwarding (VRF)

Layer-3 segmentation for tenants' routing space

#### Route Distinguisher (RD):

8-byte field, VRF parameters; unique value to make

VPN IP routes unique: RD + VPN IP prefix Selective distribute VPN routes:

Route Target (RT): 8-byte field, VRF parameter, unique value to define the import/export rules for VPNv4 routes

#### VPN Address-Family:

Distribute the MP-BGP VPN routes





#### **EVPN Control Plane**

#### EVPN Control Plane -- Host and Subnet Route Distribution

#### **BGP Update**

- Host-MAC
- Host-IP
- Internal IP Subnet
- External Prefixes



- Use MP-BGP with EVPN Address Family on leaf nodes to distribute internal host MAC/IP addresses, subnet routes and external reachability information
- MP-BGP enhancements to carry up to 100s of thousands of routes with reduced convergence time



## **BGP EVPN System Role**

#### **BORDER:**

A gateway point of between EVPN fabric and external network domain.

#### **INTERMEDIATE:**

A Layer 2 or Layer 3 (IP/MPLS) Underlay network system providing basic transport and forwarding plane.

#### SPINE:

An BGP EVPN reflects the L2/L3 VPN prefixes providing hierarchical neighbor peering, learning and distribution point.

#### VTEP:

An origination and termination point of VXLAN enabled overlay network.





### **C9K VXLAN BGP EVPN Solution**

End-to-End Design and Interoperability



## Cisco BGP EVPN Strategy and Solution

#### **Goals: Single Unified Solution**



- Common cross-OS goals to have single unified BGP EVPN solution
- Consistent end-to-end solution architecture with feature parities across any network tier
- Any system in any role providing complete interoperability inside and outside EVPN fabric domain



## **BGP EVPN Inter-Domain Routing**

Extended

Data-Center 世世世 **↔** Segmented

Single Site - Inter-domain EVPN fabric Hierarchical control-plane for better scale Spine and Leaf BGP peering in separate domain Spine-to-Spine BGP Peering EVPN prefix exchange Next-Hop-Unchanged

BGP FVPN Peers

Leaf

Spine

Spine

Leaf

# Product Matrix and Scale



cisco live!

## Catalyst 9000 - Product Support and Role

| Catalyst 9000  | Role                  |  |  |
|----------------|-----------------------|--|--|
| Catalyst 9200  | Unsupported           |  |  |
| Catalyst 9300  | Leaf   Spine          |  |  |
| Catalyst 9400  | Leaf   Spine          |  |  |
| Catalyst 9500  | Leaf   Spine          |  |  |
| Catalyst 9500H | Leaf   Spine   Border |  |  |
| Catalyst 9600  | Leaf   Spine   Border |  |  |



## Catalyst 9000 - BGP EVPN Scale Matrix

|                           | C9300         | C9400 - Sup1XL | C9500         | С9500-Н         | C9600           |
|---------------------------|---------------|----------------|---------------|-----------------|-----------------|
| EVPN Bridge-Domain (VLAN) | 225           | 225            | 225           | 225             | 225             |
| Core VLAN                 | 225           | 225            | 225           | 225             | 225             |
| VNI                       | 225           | 225            | 225           | 225             | 225             |
| VTEP Peers                | 200           | 200            | 200           | 200             | 200             |
| MAC ( Local + Remote)     | 32000         | 64000          | 64000         | 80000           | 80000           |
| VRF                       | 255           | 255            | 255           | 1000            | 1000            |
| Routes (v4 / v6)          | 8000 / 4000   | 144000 / 56000 | 64000 / 32000 | 200000 / 100000 | 200000 / 100000 |
| Host Routes (v4 / v6)     | 24000 / 12000 | 48000 / 24000  | 48000 / 24000 | 80000 / 40000   | 80000 / 40000   |

Refer to Product Datasheet for other feature scale



## Underlay Network



## **Unicast Routing**

#### **Internal BGP**



Any choice of IGP to build Underlay unicast routing Spine and Leaf may be direct/in-direct attachment Route-Reflector on Spine and Leaf's as Clients

#### **External BGP**



Single Routing Protocol for Underlay and Overlay IPv4 AF to build Underlay and advertise routes. L2VPN AF to build EVPN peering



Spine

Leaf

## Multicast Routing

#### **Underlay Multicast**

Spine

Leaf



Multicast RP integrated on Spine or separate system
Non-overlapping Multicast Group for different purpose
Recommended to large scale EVPN deployments
Default MDT Group Range for Overlay TRM Multicast

# Overlay Network Topologies



## L3VNI - Network Segmentation and Routing



#### **Routing**

- First-Hop Distributed Gateway at Access
- Access Network policy enforcement point
- Network address routing across fabric
- Data plane segmentation thru VXLAN
- IPv4 / v6 support



## IRB - Distributed AnyCast Gateway



#### **Routing + Bridging**

- First-Hop Distributed Anycast Gateway at Access
- Bridge in same VLAN across Leaf's in fabric
- Route locally based on local routing policy
- Access Network policy enforcement point
- Host + Network address routing across fabric
- Data plane segmentation thru VXLAN
- IPv4 / v6 support



## IRB - Centralized Gateway



#### **Remote Routing + Bridging**

- Multi-Hop Centralized Gateway
- Bridge in same VLAN across Leaf's in fabric
- Route remotely based on remote routing policy
- · Access Network policy enforcement point
- Host address routing across fabric
- Data plane segmentation thru VXLAN
- IPv4 / v6 support



## L2 – Layer 2 Network Extensions



#### **Bridging**

- IP Gateway beyond EVPN fabric
- Bridge in same VLAN across Leaf's in fabric
- Route outside fabric based on remote routing policy
- · Access Network policy enforcement point
- Host address routing across fabric
- Data plane segmentation thru VXLAN
- IPv4 / v6 support



## L2 - Hub-n-Spoke Network Extension



#### **Bridging**

- IP Gateway beyond EVPN fabric
- Border L2 Leaf Hub. Layer 2 Leaf Spokes.
- Point-to-Point L2VNIs to Hub
- Route outside fabric based on remote routing policy
- Access Network policy enforcement point
- Host address routing across fabric
- Data plane segmentation thru VXLAN
- IPv4 / v6 support



## Private VLAN Integration with EVPN



#### Routing + Private VLAN Bridging (Community VLAN)





# EVPN Fabric InterWorking



## Catalyst 9000 - L3 Leaf Design Alternatives



Design 2 - Dual-Home StackWise Virtual Leaf





- Layer 3 Multipath requirement varies based on Leaf design Standalone vs StackWise Virtual
- The Standalone mode support traditional L2 with challenges, FHRP, variable scale/performance and redundancy
- The StackWise Virtual mode enables hardware accelerated multi-homing Active/Active load sharing with protocolindependent and deterministic network resiliency without operational complexities.

Distributed I eaf

Access

## Catalyst 9000 - L2 Leaf Design Support

#### **Dual-Home StackWise Virtual Leaf**



**Distributed** Leaf

Access



- Layer 2 Multipath in Standalone Mode is not supported.
- Cisco StackWise Virtual technologies supports Active/Active Layer 2 Multi-homing without any additional protocol dependencies and operational complexities
- Cisco StackWise Virtual member switch supports distributed VXLAN forwarding with BGP control-plane protocol redundancy using standard SSO/NSF

cisco live!

## Catalyst 9000 - Layer 2 Border-Leaf Support



- Layer 2 Network Extension to classic STP or "stitched" across VPLS enabled overlay network
- Single system solution supporting interworking function between EVPN and MPLS LDP overlay infrastructure
- Full IRB support for 802.1Q handoff and Bridging-only support for VPLS handoff



BRKENS-2003

## Catalyst 9000 - Layer 3 Border-Leaf Support

MPLS PE





Multi-VRF

MPLS PE Border-Leaf



- Layer 3 Network Segmentation to per-hop Multi-VRF with 802.1Q based segmentation.
- Single system solution supporting interworking function between EVPN and MPLS LDP overlay infrastructure
- Full EVPN to MPLS VPN route and label propagation support for IPv4 and IPv6 prefixes between two overlay networks.

#CiscoLive



## Catalyst 9000 - Multi-Function Role Support





**Border-Leaf** 





Border-Leaf Spine

- Layer 3 Network Segmentation to per-hop Multi-VRF with 802.1Q based segmentation.
- Single system solution supporting interworking function between EVPN and MPLS LDP overlay infrastructure
- Full EVPN to MPLS VPN route and label propagation support for IPv4 and IPv6 prefixes between two overlay networks.



# Multicast over VXLAN



### Tenant Routed Multicast Architecture



- TRM enables Multicast over VXLAN enabled network for Layer 3 network segments. NXOS Compatible
- Integrated PIM RP and PIM-SM in Underlay support enables fabric-enabled source and receivers Multicast forwarding topologies.
- VTEP provides integrated PIM RP function



#### Tenant Routed Multicast Architecture



- TRM enables Multicast over VXLAN enabled network for Layer 3 network segments. NXOS Compatible
- Integrated PIM RP and PIM-SM in Underlay support enables fabric-enabled source and receivers Multicast forwarding topologies.
- Layer 2 TRM support planned for future release. By default Multicast applications follows flood-n-learn mechanics.

#### TRM / MPLS mVPN Interworking



- TRM enables Multicast over VXLAN enabled network for Layer 3 network segments. NXOS Compatible
- Integrated PIM RP and PIM-SM in Underlay support enables fabric-enabled source and receivers Multicast forwarding topologies.
- Layer 2 TRM support planned for future release. By default Multicast applications follows flood-n-learn mechanics.

EVPN Overlay Network Services



#### Wireless Integration in EVPN Networks



- Transparent Wireless network integration into BGP EVPN fabric network
- Underlay CAPWAP communication between AP and WLC. User Policy enforcement maintains at WLC.
- VTEP in Wireless aggregation can overlay network traffic based on routing policy.



## VXLAN QoS Management



- Trust-Boundary and policy enforcement at network edge.
- Per-hop Underlay QoS policy provides differentiated service treatment for combined underlay and overlay traffic class
- QoS policy and marking at Border supports default or user-defined policy with interworking external network domain



BRKFNS-2003

#### Per-VNI BUM Rate-Limiter



- Protect BUM traffic at network edge ports limiting flood across Layer 2 and EVPN fabric network domain
- Deterministic per VNI Multicast BUM traffic flood protecting Enterprise backbone network performance
- MQC QoS based policer associated to L2VNI performing Multicast-based replication mode



BRKENS-2003

#### VXLAN Aware Flexible NetFlow



- Maximum 128K VxLAN enabled flows per Catalyst 9600/9500-H
- Supports v4 and v6 protocols
- Bi-directional flow detection over the NVE interface
- Rapid Overlay network data flow learning rate support (every 500ms)

| Flow record fields  | Packet data |
|---------------------|-------------|
| Source Address      | 10.1.1.11   |
| Destination Address | 20.1.1.200  |
| Source Port         | 47321       |
| Destination Port    | 80          |
| IP Protocol         | 6           |
| TCP Flags           | 0x1A        |
| Source SGT          | 0           |
| Interface           | nve10       |
| Flow direction      | input       |
| VNID                | 6000        |
| VXLAN Flags         | 1           |
| VXLAN SRC VTEP      | 1.1.1.1     |
| VXLAN DST VTEP      | 2.1.1.1     |



## Bonjour Overlay Network Challenges



- Extended mDNS flood-domain across network infrastructure
- Ingress-Replication model to handle BUM traffic on EVPN may impact backbone network performance
- Multicast-Replication model is better but still not scalable when expecting 20000-25000 pps mDNS per VTEP in the network



#### Distributed Bonjour Overlay Network Architecture



- Eliminate mDNS with end-to-end service-routing architecture
- Extended mDNS suppression and flood-control management at L2 boundary Wired/Wireless or VPLS
- Policy based distributed Bonjour cache management at first-hop BGP EVPN VTEP and Wired/Wireless gateway
- Scalable control-plane architecture for Wired/Wireless and BGP EVPN without impacting end-to-end performance

BRKENS-2003

## Catalyst 9000 EVPN Reference



cisco life!

## Configuration Guide

**BGP EVPN VXLAN Overview** 

Configuring EVPN VXLAN Layer 2 Overlay Network

Configuring EVPN VXLAN Layer 3 Overlay Network

Configuring EVPN VXLAN Integrated Routing and Bridging

Configuring Tenant Routed Multicast

Troubleshooting BGP EVPN VXLAN

Feature History and Information for BGP EVPN VXLAN



 $https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst9600/software/release/17-2/configuration\_guide/vxlan/b\_172\_bgp\_evpn\_vxlan\_9600\_cg.html$ 





# Thank you





