BANDANA - Body Area Network Device-to-device Authentication Using Natural Gait

Dominik Schürmann, Arne Brüsch, Stephan Sigg and Lars Wolf

presented by William Xie

Pairing protocols

Drawbacks

- Good for one-time paring for limited devices
- Non-scalable large number of devices
- Cannot frequently change identity
- Not seamless

BANDANA

 Secure pairing scheme among on-body devices based on common movement patterns due to colocation on the same body¹

Paper contributions

- BANDANA pairing protocol
- verification based on large-scale datasets
- security analysis

Gait cycle detection

Quantization

Transfer reliability vector

Error correction

- Sensor data: 3-axis accelerometer and gyroscope
- Madgwick's algorithm z-axis normalization
 - Keep only z-axis
- Bandpass filter (Type II Chebyshev)

Gait cycle detection

Quantization

Transfer reliability vector

Error correction

Find auto correlation

$$\mathbf{a} = (a_1, \dots a_k, \dots a_n)$$

$$a_k = \frac{1}{(n-k)\sigma^2} \sum_{t=1}^{n-k} z_{t+k}.\overline{z_t}$$

Find auto correlation

$$\mathbf{a} = (a_1, \dots a_k, \dots a_n)$$

$$a_k = \frac{1}{(n-k)\sigma^2} \sum_{t=1}^{n-k} z_{t+k} . \overline{z_t}$$

High correlation

Find auto correlation

$$\boldsymbol{a}=(a_1,\ldots a_k,\ldots a_n)$$

$$a_k = \frac{1}{(n-k)\sigma^2} \sum_{t=1}^{n-\kappa} z_{t+k}.\overline{z_t}$$

Low correlation

Find local argmax a

$$\boldsymbol{\zeta} = \{\zeta_1, \ldots, \zeta_i, \ldots \zeta_m\}.$$

They represent a collection of time shift k which yields the highest correlations

$$\delta_{mean} = \left\lceil \frac{\sum_{i=1}^{m-1} \zeta_{i+1} - \zeta_i}{m-1} \right\rceil$$

• Look for minimum in each period with deviation τ

$$\mu = \{\mu_1, \dots, \mu_i, \dots, \mu_{m-1}\};$$

$$\mu_i = \arg\min(z_{\zeta_i-\tau}, z_{\zeta_i-\tau+1}, \dots, z_{\zeta_i+\delta_{mean}+\tau}).$$

Split input into gait cycles (2 period)

$$Z = \{Z_1, ..., Z_i, ..., Z_q\}$$

$$Z_i = (z_{\mu_{i-1}}, ..., z_{\mu_i}, ..., z_{\mu_{i+1}-1});$$

$$i = \{1, 3, ..., q\}$$

Gait cycle detection

Quantization

Transfer reliability vector

Error correction

Quantization

• Energy difference between Z_i and average \boldsymbol{Z}

$$\widetilde{f} = \begin{cases} 1, & \text{if } \sum A - Z > 0 \\ 0, & \text{otherwise} \end{cases}$$

Reliability vector: $r \propto$ energy difference

Gait cycle detection

Quantization

Transfer reliability vector

Error correction

Transfer reliability vector

- with a random value to a pairing device.
- Compare it against received random value so both devices uses the identical r
- Sort $\widetilde{\boldsymbol{f}}$ with ordering of \boldsymbol{r}

Gait cycle detection

Quantization

Transfer reliability vector

Error correction

Error correction and Authentication

- using BCH code with user defined bit errors
- J-PAKE to generate shared secret

Gait cycle detection

Quantization

Transfer reliability vector

Error correction

 Normalized z-axis signals have high spectral coherence for same subjects, low for different

subjects

• Noise < 0.5 Hz and > 10 Hz 2

Inter-body

					r ATA		
	chest	Foreatt	nead	shin	प्राविध	upperat	Waist
chest	1.0	0.82	0.74	0.78	0.78	0.88	0.81
forearm	0.82	1.0	0.8	0.81	0.88	0.89	0.89
head	0.74	0.8	1.0	0.8	0.76	0.77	0.78
shin	0.78	0.81	0.8	1.0	0.77	0.78	0.8
thigh	0.78	0.88	0.76	0.77	1.0	0.85	0.84
upperarm	0.88	0.89	0.77	0.78	0.85	1.0	0.88
waist	0.81	0.89	0.78	0.8	0.84	0.88	1.0

Security:

- Mimic gait
- Brute force
- Video recording
- Attach malicious device

Discussions

- Dataset choices
- Why N = 128?
- Very long authentication time and tries per day
- 80% Threshold
- Different, non-periodic motion
- Not enough details on deliberate attacks

References

- Schürmann, Dominik, et al. "BANDANA--Body Area Network Device-to-device Authentication using Natural gAit." arXiv preprint arXiv:1612.03472 (2016).
- Lester, Jonathan, Blake Hannaford, and Gaetano Borriello. ""Are You with Me?"—Using Accelerometers to Determine If Two Devices Are Carried by the Same Person." International Conference on Pervasive Computing. Springer Berlin Heidelberg, 2004.