

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Variable Compleja I Examen XV

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2024-2025

Asignatura Variable Compleja I.

Curso Académico 2022-23.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Javier Merí de la Maza.

Descripción Convocatoria Ordinaria.

Fecha 22 de Junio de 2023.

Duración 3.5 horas.

Ejercicio 1 (2.5 puntos). Integrando una conveniente función sobre la poligonal Γ_R dada por

$$[-R, R, R + \pi i, -R + \pi i, -R]$$

con $R \in \mathbb{R}^+$, calcular la integral:

$$\int_{-\infty}^{+\infty} \frac{\cos(x)}{e^x + e^{-x}} \, dx.$$

Ejercicio 2 (2.5 + 1.5 puntos). Sea $f \in \mathcal{H}(\mathbb{C}^*)$ y supongamos que f diverge en 0 y en ∞ . Probar que f se anula en algún punto de \mathbb{C}^* .

■ Extra Demostrar que, de hecho, f se anula al menos dos veces (contando multiplicidad) y que tiene un número finito de ceros.

Ejercicio 3 (2.5 puntos). Para cada $n \in \mathbb{N} \cup \{0\}$, sea $f_n : \mathbb{C} \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_n^{n+1} \frac{\cos(t+z^2) + \sin(t^2 - z)}{1 + t^4} dt$$

para todo $z \in \mathbb{C}$.

- 1. Probar que $f_n \in \mathcal{H}(\mathbb{C})$.
- 2. Probar que la serie de funciones entera $\sum_{n\geqslant 0} f_n$ converge en $\mathbb C$ y que su suma es una función entera.

Ejercicio 4 (2.5 puntos). Sean $f, g \in \mathcal{H}(\mathbb{C})$ de modo que

$$f\left(g\left(\frac{1}{n}\right)\right) = \frac{1}{n^3}$$

para todo $n \in \mathbb{N}$. Probar que una de las funciones es un polinomio de grado uno y que la otra es un polinomio de grado tres.

Ejercicio 1 (2.5 puntos). Integrando una conveniente función sobre la poligonal Γ_R dada por

$$[-R, R, R + \pi i, -R + \pi i, -R]$$

con $R \in \mathbb{R}^+$, calcular la integral:

$$\int_{-\infty}^{+\infty} \frac{\cos(x)}{e^x + e^{-x}} \, dx.$$

Veamos en primer lugar en qué puntos se anula el denominador de mi función a integrar:

$$e^z + e^{-z} = 0 \implies e^{2z} = -1 \implies 2z \in \operatorname{Log}(-1) = i\operatorname{Arg}(-1) = i(\pi + 2\pi\mathbb{Z}) \implies z \in i\pi(1/2 + \mathbb{Z}).$$

Sea por tanto $A = i\pi (1/2 + \mathbb{Z})$. Definimos la función:

$$\begin{array}{cccc} f: & \mathbb{C} \setminus A & \longrightarrow & \mathbb{C} \\ & z & \longmapsto & \frac{e^{iz}}{e^z + e^{-z}} \end{array}$$

Notemos que $f \in \mathcal{H}(\mathbb{C} \setminus A)$, y que $A' = \emptyset$, por lo que podemos aplicar el Teorema de los Residuos. Como \mathbb{C} es homológicamente conexo, podemos aplicar el Teorema de los Residuos para cualquier ciclo Σ en $\mathbb{C} \setminus A$. Para todo $R \in \mathbb{R}^+$, consideramos la poligonal siguiente:

$$\Gamma_R = [-R, R] + [R, R + \pi i] - [-R + \pi i, R + \pi i] - [-R, -R + \pi i]$$

representada en la Figura 1, donde:

$$[-R,R]: [-R,R] \longrightarrow \mathbb{C}$$

$$t \longmapsto t$$

$$[R,R+\pi i]: [0,\pi] \longrightarrow \mathbb{C}$$

$$t \longmapsto R+it$$

$$[-R+\pi i,R+\pi i]: [-R,R] \longrightarrow \mathbb{C}$$

$$t \longmapsto t+i\pi$$

$$[-R,-R+\pi i]: [0,\pi] \longrightarrow \mathbb{C}$$

$$t \longmapsto -R+it$$

Por el Teorema de los Residuos, tenemos que:

$$\int_{\Gamma_R} f(z) dz = 2\pi i \sum_{z_0 \in A} \operatorname{Res}(f, z_0) \operatorname{Ind}_{\Gamma_R}(z_0).$$

Calculemos ahora los índices de los polos. Para cada $k \in \mathbb{Z}^*$, tenemos que:

$$|\operatorname{Im}(i(1/2+k)\pi)| = |(1/2+k)\pi| > \pi$$

Por tanto, para todo $R \in \mathbb{R}^+$, tenemos que:

$$\operatorname{Ind}_{\Gamma_{R}}\left(i\left(\frac{1}{2}+k\right)\pi\right)=0 \quad \text{para todo } k \in \mathbb{Z}^{*}$$
$$\operatorname{Ind}_{\Gamma_{R}}\left(i\left(\frac{1}{2}\right)\pi\right)=1.$$

Figura 1: Poligonal de integración Γ_R del Ejercicio 1.

Por tanto, tenemos que:

$$\int_{\Gamma_R} f(z) dz = 2\pi i \operatorname{Res}(f, i(1/2)\pi).$$

Antes de calcular el residuo, calculemos las integrales resultantes. Tenemos que:

$$\int_{[-R,R]} f(z) dz = \int_{-R}^{R} \frac{e^{iz}}{e^z + e^{-z}} dz$$

Tomando límite con $R \to +\infty$, la parte que nos interesa es la parte real. Por tanto, vamos por buen camino. Calculamos el resto de las integrales:

$$\left| \int_{[R,R+\pi i]} f(z) \, dz \right| \leqslant \pi \cdot \sup \left\{ \left| \frac{e^{iz}}{e^z + e^{-z}} \right| : z \in [R,R+\pi i] \right\}$$

donde, para todo $z \in [R, R + \pi i]^*$, tenemos que:

$$\begin{aligned} |e^{iz}| &= e^{-\operatorname{Im} z} \leqslant e^0 = 1 \\ |e^z + e^{-z}| &\geqslant ||e^z| - |e^{-z}|| = |e^{\operatorname{Re} z} - e^{-\operatorname{Re} z}| = |e^R - e^{-R}| = e^R - e^{-R}. \end{aligned}$$

Por tanto, tenemos que:

$$\left| \int_{[R,R+\pi i]} f(z) \, dz \right| \leqslant \pi \cdot \frac{1}{e^R - e^{-R}}.$$

Como esta expresión es válida para cualquier R>0, podemos hacer $R\to +\infty$ y tenemos que:

$$\lim_{R \to +\infty} \int_{[R,R+\pi i]} f(z) \, dz = 0.$$

Veamos ahora qué ocurre con la integral sobre el segmento $[-R, -R + \pi i]$:

$$\left| \int_{[-R,-R+\pi i]} f(z) \, dz \right| \leqslant \pi \cdot \sup \left\{ \left| \frac{e^{iz}}{e^z + e^{-z}} \right| : z \in [-R,-R+\pi i] \right\}$$

donde, para todo $z \in [-R, -R + \pi i]^*$, tenemos que:

$$\begin{aligned} |e^{iz}| &= e^{-\operatorname{Im} z} \leqslant e^0 = 1 \\ |e^z + e^{-z}| &\geqslant \left| |e^z| - |e^{-z}| \right| &= \left| e^{\operatorname{Re} z} - e^{-\operatorname{Re} z} \right| = \left| e^{-R} - e^{R} \right| = e^{R} - e^{-R}. \end{aligned}$$

Por tanto, tenemos que:

$$\left| \int_{[-R,-R+\pi i]} f(z) \, dz \right| \leqslant \pi \cdot \frac{1}{e^R - e^{-R}}.$$

Como esta expresión es válida para cualquier R>0, podemos hacer $R\to +\infty$ y tenemos que:

$$\lim_{R \to +\infty} \int_{[-R,-R+\pi i]} f(z) \, dz = 0.$$

Veamos ahora qué ocurre con la integral sobre el segmento $[-R + \pi i, R + \pi i]$:

$$\int_{[-R+\pi i,R+\pi i]} f(z) dz = \int_{-R}^{R} f(t+i\pi) dt = \int_{-R}^{R} \frac{e^{i(t+i\pi)}}{e^{t+i\pi} + e^{-(t+i\pi)}} dt = \int_{-R}^{R} \frac{e^{it}e^{-\pi}}{e^{t}e^{i\pi} + e^{-t}e^{-i\pi}} dt =$$

$$= e^{-\pi} \int_{-R}^{R} \frac{e^{it}}{-e^{t} - e^{-t}} dt = -e^{-\pi} \int_{-R}^{R} \frac{e^{it}}{e^{t} + e^{-t}} dt = -e^{-\pi} \int_{-R}^{R} f(t) dt.$$

Por tanto, uniendo todas las integrales que hemos calculado, y tomando el límite con $R \to +\infty$, tenemos que:

$$2\pi i \operatorname{Res}(f, i(1/2)\pi) = (1 + e^{-\pi}) \int_{-\infty}^{+\infty} f(z) dz$$

Ahora calculemos el residuo en el punto $i(1/2)\pi$:

$$\lim_{z \to i \cdot \frac{\pi}{2}} \left(z - i \cdot \frac{\pi}{2}\right) f(z) = \lim_{z \to i \cdot \frac{\pi}{2}} \left(z - i \cdot \frac{\pi}{2}\right) \cdot \frac{e^{iz}}{e^z + e^{-z}}$$

Por el Teorema de la Regla de L'Hôpital, tenemos que:

$$\lim_{z \to i \cdot \frac{\pi}{2}} \left(z - i \cdot \frac{\pi}{2}\right) f(z) = e^{-\frac{\pi}{2}} \cdot \lim_{z \to i \cdot \frac{\pi}{2}} \frac{1}{e^{z} - e^{-z}} = e^{-\frac{\pi}{2}} \cdot \frac{1}{e^{i \cdot \frac{\pi}{2}} - e^{-i \cdot \frac{\pi}{2}}} = e^{-\frac{\pi}{2}} \cdot \frac{1}{i - (-i)} = e^{-\frac{\pi}{2}} \cdot \frac{1}{2i}$$

Por tanto, sabemos que f tiene un polo simple en $i \cdot \frac{\pi}{2}$, y que:

Res
$$\left(f, i \cdot \frac{\pi}{2}\right) = e^{-\frac{\pi}{2}} \cdot \frac{1}{2i}$$
.

Por tanto, tenemos que:

$$\int_{-\infty}^{+\infty} f(z) dz = \frac{2\pi i \operatorname{Res}\left(f, i \cdot \frac{\pi}{2}\right)}{1 + e^{-\pi}} = \frac{\pi e^{-\frac{\pi}{2}}}{1 + e^{-\pi}}.$$

Por tanto, como buscamos la parte real de la integral anterior, tenemos que:

$$\int_{-\infty}^{+\infty} \frac{\cos(x)}{e^x + e^{-x}} dx = \operatorname{Re}\left(\int_{-\infty}^{+\infty} f(z) dz\right) = \operatorname{Re}\left(\frac{\pi e^{-\frac{\pi}{2}}}{1 + e^{-\pi}}\right) = \frac{\pi e^{-\frac{\pi}{2}}}{1 + e^{-\pi}}$$

Ejercicio 2 (2.5 + 1.5 puntos). Sea $f \in \mathcal{H}(\mathbb{C}^*)$ y supongamos que f diverge en 0 y en ∞ . Probar que f se anula en algún punto de \mathbb{C}^* .

• Extra Demostrar que, de hecho, f se anula al menos dos veces (contando multiplicidad) y que tiene un número finito de ceros.

Opción Complicada y sin el Extra

Sea $f \in \mathcal{H}(\mathbb{C}^*)$ tal que:

$$\lim_{z \to 0} f(z) = +\infty \qquad \text{y} \qquad \lim_{z \to +\infty} f(z) = +\infty.$$

Supongamos por reducción al absurdo que f no tiene ceros. Entonces, podemos definir:

$$g: \ \mathbb{C}^* \ \longrightarrow \ \mathbb{C}$$

$$z \ \longmapsto \ \frac{1}{f(z)}$$

Notemos que q es holomorfa en \mathbb{C}^* . Veamos cómo definirla en el origen:

$$\lim_{z \to 0} g(z) = \lim_{z \to 0} \frac{1}{f(z)} = 0$$

donde hemos usado que $f(z) \to +\infty$ cuando $z \to 0$. Por tanto, podemos definir (notemos el abuso de notación):

$$g: \ \mathbb{C} \longrightarrow \mathbb{C}$$

$$z \longmapsto \begin{cases} 0 & \text{si } z = 0 \\ \frac{1}{f(z)} & \text{si } z \in \mathbb{C}^*. \end{cases}$$

Como $g \in \mathcal{H}(\mathbb{C}^*)$ y g continua en el origen, por el Teorema de Extensión de Riemann, tenemos que $g \in \mathcal{H}(\mathbb{C})$. Veamos ahora que g es acotada en \mathbb{C} . Para todo $R \in \mathbb{R}^+$, como g es continua y $\overline{D}(0,R)$ es compacto, tenemos que $g(\overline{D}(0,R))$ es acotado. Además, veamos el comportamiento de g en el infinito:

$$\lim_{z \to +\infty} g(z) = \lim_{z \to +\infty} \frac{1}{f(z)} = 0$$

donde hemos usado que $f(z) \to +\infty$ cuando $z \to +\infty$. Por tanto, tenemos que g es acotada en \mathbb{C} . Por el Teorema de Liouville, tenemos que g es constante, pero esto es una contradicción, puesto que f no es constante. Por tanto, f tiene al menos un cero. Por tanto, $\exists z_0 \in \mathbb{C}^*$ y $g \in \mathcal{H}(\mathbb{C})$ con $g(z_0) \neq 0$ tal que:

$$f(z) = (z - z_0)g(z)$$

Veamos ahora que el número de ceros de f es finito y mayor o igual que 2 (contando multiplicidad). Supongamos que f tiene un número infinito de ceros (que sabemos que será numerable). Consideramos la siguiente sucesión de ceros:

$$\{z_n\}_{n\in\mathbb{N}}\subset Z(f)$$

Como f diverge en $+\infty$, sabemos que $\{z_n\}_{n\in\mathbb{N}}$ está acotada, por lo que admite una parcial $\{z_{n_k}\}_{k\in\mathbb{N}}$ que converge a un punto $z_0\in\mathbb{C}$:

$$\{z_{n_k}\}_{k\in\mathbb{N}}\to z_0\in\mathbb{C}.$$

Supongamos que $z_0 = 0$. Consideramos la sucesión de imágenes de los ceros:

$$\{f(z_{n_k})\}_{k\in\mathbb{N}} = \{f(0)\}_{k\in\mathbb{N}} = \{0\}_{k\in\mathbb{N}} \to 0$$

No obstante, esto contradice el hecho de que f diverge en el origen. Por tanto, $z_0 \neq 0$. Como hemos encontrado un punto de acumulación de Z(f) en \mathbb{C}^* , tenemos que f es idénticamente nula, lo que contradice el hecho de que f diverge en el origen. Por tanto, f tiene un número finito de ceros.

Opción Directa y que, además, incluye el apartado extra

Como f diverge en el origen, sabemos que el 0 es un polo de orden $k \in \mathbb{N}$ de f. Por tanto, $\exists \Psi \in \mathcal{H}(\mathbb{C})$ tal que:

$$f(z) = \frac{\Psi(z)}{z^k} \qquad \forall z \in \mathbb{C}^*$$

donde $\Psi(0) \neq 0$. De esta forma:

$$\Psi(z) = z^k f(z) \qquad \forall z \in \mathbb{C}^*.$$

Puesto que conocemos el comportamiento de f en el infinito, sabemos que $\Psi(z)$ diverge en el infinito. Por tanto, como $\Psi \in \mathcal{H}(\mathbb{C})$ y Ψ diverge en el infinito, por el Corolario del Corolario del Teorema de Casorati, tenemos que Ψ es un polinomio. Estudiemos ahora el grado de Ψ . Haciendo uso de que f diverge en el infinito, tenemos que:

$$\lim_{z \to +\infty} f(z) = \lim_{z \to +\infty} \frac{\Psi(z)}{z^k} = +\infty$$

Este es un límite de un cociente de polinomios que diverge, por lo que el grado del numerador es mayor que el grado del denominador. Por tanto, se tiene deg $\Psi = m \in \mathbb{N}$, donde m > k. Por el Teorema Fundamental del Álgebra, sabemos que Ψ tiene m raíces. Como sabemos que:

$$f(z) = \frac{\Psi(z)}{z^k} \qquad \forall z \in \mathbb{C}^*,$$

Sabemos que $Z(f) = Z(\Psi)$, y por tanto f tiene m ceros.

Ejercicio 3 (2.5 puntos). Para cada $n \in \mathbb{N} \cup \{0\}$, sea $f_n : \mathbb{C} \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_n^{n+1} \frac{\cos(t+z^2) + \sin(t^2 - z)}{1 + t^4} dt$$

para todo $z \in \mathbb{C}$.

1. Probar que $f_n \in \mathcal{H}(\mathbb{C})$.

Definimos la siguiente función:

$$\Phi: [n, n+1] \times \mathbb{C} \longrightarrow \mathbb{C}$$

$$(t, z) \longmapsto \frac{\cos(t+z^2) + \sin(t^2 - z)}{1 + t^4}$$

Veamos que Φ está bien definida; es decir, que no se anula el denominador. Como $t \geq n \geq 0$, tenemos que $1+t^4 \geq 1 > 0$. Por tanto, Φ está bien definida. Por tanto, Φ es continua y, fijado $t \in [n, n+1]$, tenemos que la aplicación $z \mapsto \Phi(t, z)$ es holomorfa en \mathbb{C} . Por tanto, por el Teorema de Holomorfía de Integrales dependientes de Parámetros, tenemos que $f_n \in \mathcal{H}(\mathbb{C})$.

2. Probar que la serie de funciones entera $\sum_{n\geqslant 0} f_n$ converge en $\mathbb C$ y que su suma es una función entera.

Sea $K \subset \mathbb{C}$ compacto. Veamos que la serie de funciones converge uniformemente en K. Para cada $n \in \mathbb{N}$, $z \in K$, tenemos que:

$$|f_n(z)| = \left| \int_n^{n+1} \frac{\cos(t+z^2) + \sin(t^2 - z)}{1 + t^4} dt \right|$$

$$\leq \sup \left\{ \left| \frac{\cos(t+z^2) + \sin(t^2 - z)}{1 + t^4} \right| : t \in [n, n+1] \right\}$$

donde hemos hecho uso de que:

$$\begin{split} |1+t^4| &= 1+t^4 \geqslant 1+n^4 \\ |\cos(t+z^2) + \sin(t^2-z)| \leqslant |\cos(t+z^2)| + |\sin(t^2-z)| = \\ &= |\cos(t)\cos(z^2) - \sin(t)\sin(z^2)| + |\sin(t^2)\cos(z) + \cos(t^2)\sin(z)| \leqslant \\ &\leqslant |\cos(t)\cos(z^2)| + |\sin(t)\sin(z^2)| + |\sin(t^2)\cos(z)| + |\cos(t^2)\sin(z)| \leqslant \\ &\leqslant |\cos(z^2)| + |\sin(z^2)| + |\cos(z)| + |\sin(z)| \end{split}$$

En importante destacar que no podemos acotar el seno y el coseno complejos.

Como K es compacto y las funciones seno, coseno y módulo son continuas, tenemos que $\exists M \in \mathbb{R}^+$ tal que:

$$M = \max\left\{|\cos(z^2)| + |\sin(z^2)| + |\cos(z)| + |\sin(z)| : z \in K\right\}.$$

Por tanto, tenemos que:

$$|f_n(z)| \leqslant \frac{M}{1+n^4} \leqslant \frac{M}{n^4} \quad \forall n \in \mathbb{N} \ y \ z \in K.$$

Por tanto, por el Test de Weierstrass, tenemos que la serie de funciones $\sum_{n\geqslant 0} f_n$ converge uniformemente en K.

Como $f_n \in \mathcal{H}(\mathbb{C})$ para todo $n \in \mathbb{N}$, por el Teorema de la Convergencia de Weierstrass, tenemos que la suma es una función entera.

Ejercicio 4 (2.5 puntos). Sean $f, g \in \mathcal{H}(\mathbb{C})$ de modo que

$$f\left(g\left(\frac{1}{n}\right)\right) = \frac{1}{n^3}$$

para todo $n \in \mathbb{N}$. Probar que una de las funciones es un polinomio de grado uno y que la otra es un polinomio de grado tres.

Definimos el siguiente conjunto:

$$A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$$

Como $A' = \{0\} \subset \mathbb{C}$, podemos aplicar el Pincipio de Identidad, y deducir que:

$$f(g(z)) = z^3 \qquad \forall z \in \mathbb{C}$$

Supongamos que g es una función entera no polinómica. Por el Corolario del Teorema de Casorati, $\exists \{z_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$ con $\{z_n\}\to\infty$ tal que:

$$\{g(z_n)\} \to 0.$$

Ese hecho, junto con la continuidad de f, nos permite deducir que:

$$\{f(g(z_n))\} \to f(0).$$

Por otro lado, $\{z_n\} \to \infty$, junto con la continuidad de f, g y que $f(g(z)) = z^3$, nos permite deducir que:

$$\{f(g(z_n))\}\to\infty.$$

Por tanto, llegamos a que la sueción $\{f(g(z_n))\}$ es a la vez convergente y divergente, lo que es una contradicción. Por tanto, g es un polinomio.

Suponemos ahora que f no es un polinomio. Por el Corolario del Teorema de Casorati, $\exists \{w_n\}_{n\in\mathbb{N}} \subset \mathbb{C}$ con $\{w_n\} \to \infty$ tal que:

$$\{f(w_n)\} \to 0.$$

Ahora, haciendo uso de que g es sobreyectiva por ser un polinomio (gracias al Teorema Fundamental del Álgebra), podemos encontrar una sucesión $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$ tal que:

$$g(z_n) = w_n \quad \forall n \in \mathbb{N}.$$

Por tanto, tenemos que:

$$\{f(g(z_n))\} = \{f(w_n)\} \to 0.$$

Por otro lado, supongamos que $\{z_n\} \to \alpha \in \mathbb{C}$. Entonces, por la continuidad de g tenemos que:

$$\{g(z_n)\} = \{w_n\} \to g(\alpha)$$

En contradicción con que $\{w_n\} \to \infty$. Por tanto, $\{z_n\} \to \infty$. Por la continuidad de f,g y que $f(g(z))=z^3$, tenemos que:

$$\{f(g(z_n))\} = \{z_n^3\} \to \infty.$$

Por tanto, llegamos a que la sueción $\{f(g(z_n))\}$ es a la vez convergente y divergente, lo que es una contradicción. Por tanto, f es un polinomio.

Por tanto, f y g son polinomios. Como $f(g(z)) = z^3$, tenemos que:

$$\deg(f)\cdot\deg(g)=3\Longrightarrow\{\deg(f),\deg(g)\}=\{1,3\}.$$

Por tanto, una de las funciones es un polinomio de grado uno y la otra es un polinomio de grado tres.