Homework 4 Section 2.1

Jonathan Petersen A01236750

February 1st, 2016

7. If $a \in \mathbb{Z}$, prove that a^2 is not congruent to 2 modulo 4 or to 3 modulo 4.

By Corollorary 2.5, we see that for every $a \in \mathbb{Z}$, either $a \equiv_4 [0]_4$, $a \equiv_4 [1]_4$, $a \equiv_4 [2]_4$, or $a \equiv_4 [3]_4$. Further, by the reflexive property of congruence, $a \equiv_4 [a]_4$, which implies that $[a]_4 \in \{[0]_4, [1]_4, [2]_4, [3]_4\}$.

Finally, we can see by Theorem 2.4 that since $a \equiv_4 a$,

$$a * a \equiv_4 a * a$$
$$a^2 \equiv_4 [a] * [a]$$
$$a^2 \equiv_4 [a]^2$$

and therefore

$$\begin{split} [a]^2 &\in \{[0]_4^{\ 2}, [1]_4^{\ 2}, [2]_4^{\ 2}, [3]_4^{\ 2}\} \\ &[a]^2 &\in \{[0]_4, [1]_4, [4]_4, [9]_4\} \\ &[a]^2 &\in \{[0]_4, [1]_4, [0]_4, [1]_4\} \\ &[a]^2 &\in \{[0]_4, [1]_4\} \end{split}$$

which implies that $[a]^2 \not\equiv_4 2$ and $[a]^2 \not\equiv_4 3$

8. Prove that every odd integer is congruent to 1 modulo 4 or 3 modulo 4.

Given any odd integer, we know that the integer may be expressed as 2i+1 with $i \in \mathbb{Z}$. We also know by the definition of equivalence class that

$$[2i+1]_4 = x \in \mathbb{Z}s.t.4|x - (2i+1)$$

If we now examine the statement 4|x-(2i+1), we can see that since x-(2i+1) must be divisible by 4, x-(2i+1) must be even. Therefore, by the properties of subtraction on even and odd numbers, x-(2i+1) could only be odd when x is odd.

Finally, we also know from Corollary 2.5 that

$$[x]_4 \in \{[0]_4, [1]_4, [2]_4, [3]_4\}$$

but since x must be odd we are only left with the possibilities

$$[x]_4 \in \{[1]_4, [3]_4\}$$

Substituting for x we find that

$$[2i+1]_4 \in \{[1]_4, [3]_4\} \tag{1}$$

and indeed, if i=0 then 2i+1 must be in $[1]_4$, and if i=1 then it must be in $[3]_4$. Therefore, we know that 2i+1 must be congruent to 1 modulo 4 or 3 modulo 4, and that both cases exist \blacksquare

17. Prove that $10^n \equiv_{11} (-1)^n$ for n > 0, $n \in \mathbb{Z}$.

Since 11 = 10 - (-1), it is clear that

$$11|(10 - (-1))$$
$$10 \equiv_{11} -1$$

and so by Theorem 2.2, we can see that $10^n \equiv_{11} (-1)^n$

21. a. Show that $10^n \equiv_9 1^n$ for n > 0, $n \in \mathbb{Z}$. Similar to the logic in problem 17, we see that:

$$9|(10-1)$$
$$10 \equiv_9 1$$

So by Theorem 2.2 we find that $10^n \equiv_9 1^n \equiv_9 1$

b. Prove that every integer is congruent to the sum of its digits mod 9.

It is clear that 9|10-1. Now suppose that $9|10^n-1$. Then

$$10^{n+1} - 1 = 10(10^n) - 1$$

= $(9(10^n) + 10^n) - 1$
= $9(10^n) + 10^n - 1$

Therefore $9|10^{n+1} - 1$, and by induction it follows that $9|10^n - 1$. Now consider an arbitrary integer a expressed as

$$a = 10^{n} d_{n} + 10^{n-1} d_{n-1} + \dots + 10^{2} d_{2} + 10^{1} d_{1} + 10^{0} d_{0}$$

As we showed above, each of the terms composing a are divisible by 9, which by theorem 2.2 means that they are all congruent. Furthermore, their sums are all congruent, and therefore $a \equiv_9 10^n d_n + 10^{n-1} d_{n-1} + \ldots + 10^2 d_2 + 10^1 d_1 + 10^0 d_0$

22. a. Give an example to show that the following statement is false: If $ab \equiv_n ac$, and $a \not\equiv_n 0$, then $b \equiv_n c$.

Let a=2,b=2,c=4,n=4. Then ab=4, ac=8, and $ab\equiv_4 ac.$ Also, $a\not\equiv_4 0,$ but $b=2\not\equiv_4=4=c$

b. Prove that the above statement is true when gcd(a, n) = 1. Given the statement $ab \equiv_n ac$, we see that this may only be true if

$$n|ab - ac$$

$$n|a(b - c)$$

$$n|ak k = (b - c) : k \in \mathbb{Z}$$

By the properties of division, we know this may be true only if n|a or n|k. It then follows that if the gcd(a, n) = 1 that n does not divide a, and therefore

$$n|k$$

$$n|b-c$$

$$b \equiv_n c$$

by definition \blacksquare