

African Institute for Mathematical Sciences - AMMI

29.08.2025

ARTICLE PRESENTATION AND **IMPLEMENTATION**

Image-to-Image Translation with Conditional Adversarial Networks

Phillip Isola

Jun-Yan Zhu

Tinghui Zhou Alexei A. Efros

Berkeley AI Research (BAIR) Laboratory, UC Berkeley

{isola, junyanz, tinghuiz, efros}@eecs.berkeley.edu

Presented By: Audrey DJIOSSEU TIODO

Academic Year 2024 - 2025

PRESENTATION OUTLINE

INTRODUCTION

Goal of the Paper

EXPERIMENTS & RESULTS

ANALYSIS

KEY CONTRIBUTIONS

CONCLUSION & REFERENCES

INTRODUCTION

1. Problem: translating an image from one domain to another (e.g., edges \rightarrow photo, map \rightarrow satellite, grayscale \rightarrow color).

2. Limitation of traditional methods: each task required a hand-crafted algorithm and a specific loss function.

GOAL OF THE PAPER

➤ Provide a **general framework** using **Conditional GANs (cGANs)** for diverse image-to-image translation tasks.

> Key idea: instead of manually designing losses, let the model learn the loss function directly.

METHODOLOGY

Conditional GAN (cGAN):

- \triangleright Generator G(x,z): produces an image from the input.
 - \triangleright Discriminator D(x,y): decides if the pair (input, output) is real or generated.

Objective function: adversarial loss + L1 distance \rightarrow sharp and realistic outputs, reducing blurriness.

$$L_{cGAN}(G,D) = L_{GAN}(G,D) + \lambda L_1(G)$$

- $ullet L_{GAN}(G,D) = \mathbb{E}_{x,y}[\log D(x,y)] + \mathbb{E}_{x,z}[\log(1-D(x,G(x,z)))]$
- $L_1(G) = \mathbb{E}_{x,y,z}[||y G(x,z)||_1]$

Architecture:

- \triangleright Generator: U-Net with skip connections \rightarrow preserves low-level details.
- \triangleright Discriminator: **PatchGAN** \rightarrow focuses on local image patches, enforcing texture realism.

EXPERIMENTS & RESULTS

Tested tasks:

- ➤ semantic labels → photo (Cityscapes,Facades),
- ➤ sketch/edges → photo,
- \triangleright map \leftrightarrow aerial photos,
- \triangleright grayscale \rightarrow color,
- \triangleright day \rightarrow night,

Findings:

- ➤ cGAN produces sharper and more realistic images compared to L1/L2 losses.
- ➤ Perceptual tests (Amazon Mechanical Turk): generated images fooled humans about 20–25% of the time.
- ➤ Works well even with small datasets; efficient inference (< 1 sec per image on GPU).

ANALYSIS

Loss	Per-pixel acc.	Per-class acc.	Class IOU
Encoder-decoder (L1)	0.35	0.12	0.08
Encoder-decoder (L1+cGAN)	0.29	0.09	0.05
U-net (L1)	0.48	0.18	0.13
U-net (L1+cGAN)	0.55	0.20	0.14

> Loss comparison

L1 only \rightarrow blurry. L1 + cGAN \rightarrow best balance of realism and accuracy.

- ➤ Patch size: 70×70 PatchGAN gave the best trade-off between local realism and global consistency.
- ➤ U-Net vs encoder-decoder: U-Net significantly outperforms plain encoder-decoder networks. 7

KEY CONTRIBUTIONS

- A simple but **unified framework** for many image-to-image tasks.
- ➤ Showed that **learning the loss function** is more effective than hand-crafting it.
- ➤ Released **pix2pix code**, which became widely adopted in research and creative applications.

CONCLUSION

- Conditional GANs are a powerful solution for structured image-to-image translation.
- L1 may still work better.
- ❖ Impact: inspired follow-up works such as pix2pixHD, CycleGAN, and many more.

REFERENCE

Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2017.

THANK YOU FOR YOUR ATTENTION