Seminar On Bounded Sets

Cameron Dart Math 348

April 4, 2016

Question 4. Find the lub and glb of the following sets.

Exercise
$$A = \{x | x = 2^{-p} + 3^{-q}, \forall p, q \in \mathbb{N} \}$$
. let $(p, q) = (1, 1)$ $\therefore x = 2^1 + 3^2 = 5$ $lub(A) = 5$

let
$$p, q = b$$

 $x = \lim_{b \to \infty} 2^{-b} + 3^{-b}$
 $x = 0$
 $\therefore \text{glb}(A) = 0$

Exercise
$$B = \{x | (x \in (0,1)) \land (x \in \mathbb{R}) \}$$
. $glb(B) = 0$ $lub(B) = 1$

Question 6. Which of the following statements are true and which are false? Give adequate reasons for you answer.

Exercise B.
$$(\forall r \in \mathbb{R})(\exists B \subset Q)(r = glb(B))$$

False.

Since \mathbb{R} is uncountable by Cantor's Diagonal argument and \mathbb{Q} is countable also by Cantor's Diagonal argument. It cannot be true that there is a map from all real numbers to a set in which the glb of that set is a real number.

Exercise D. If the greatest lower bound of a set of real numbers exists but is not a member of the set, then the set must be infinite, and have a subsequence that converges to its greatest lower bound.

Let A be an infinite set and A_n be a subsequence

$$(\alpha = glb(A)) \land (\alpha \notin A) \implies (|A| = \infty) \land (\lim_{An \to \infty} = glb(A))$$

True.

By definition of glb, $(glb(A) = \alpha)(\forall x \in A)(\alpha \leq x)$ however, it is not necessarily true that $(\alpha \in A)$

If (|A| = n) where $(n \in \mathbb{Z})$ and is finite then $\alpha \in A$

If this is not the case then there must exist some subsequence A_n such that as $A_n \to \infty = L$ where $L = \alpha$

Question 7. Prove that the cubic equation $x^3 - x - 1 = 0$ has a real root by showing that any root of the equation is the lub of a suitable set.

let
$$A = \{x | x^3 - x - 1 < 0\}, c = glb(A), f(x) = x^3 - x - 1$$

Since f is continuous on the interval $(-\infty, \infty)$ and $(f(0) = -1) \land (f(2) = 3)$ by the Intermediate value theorem we know that f has is a real root somewhere on the interval of [0,2]

Choose this 'suitable set' to be S where $S = \{x|x^3 - x - 1 < 0\}$ and c is the lub of S. We can use binary search on different values of x where $x \in \mathbb{R}$ to determine the value of C.