Wydział: FiIS	Imię i nazwisko: 1. Piotr Moszkowicz 2. Wiktor Jasiński		Rok: Drugi	Grupa: PN 14:40	Zespół: 1
PRACOWNIA FIZYCZNA WFiIS AGH		Nr ćwiczenia: 13			
Data wykonania: 25.03.2019	Data oddania: 1.04.2019	Zwrot do popr. 8.04.2019	Data oddania: 15.04.2019	Data zaliczenia	OCENA

Ćwiczenie nr 13: Współczynnik lepkości

Cel ćwiczenia:

Wyznaczenie współczynnika lepkości gliceryny metodą Stokesa, zapoznanie się z własnościami cieczy lepkiej. [1]

1. Aparatura

- 1. Przyrząd do badania spadania kulki w cieczy (rys. w1)
- 2. Zestaw kulek
- 3. Śruba mikrometryczna
- 4. Suwmiarka
- 5. Waga cyfrowa

Rys. w1. Przyrząd do pomiaru współczynnika lepkości metodą Stokesa. (Z – zacisk służący do odzysku kulek)

2. Wykonanie ćwiczenia

- 1. Wybrane do pomiaru kulki należy dokładnie wytrzeć z resztek gliceryny, a następnie rozłożyć na arkuszu bibuły, jednocześnie nadając każdej z nich numer. Po wykonaniu jakiegokolwiek pomiaru, użyta kulka powinna zawsze zostać wytarta i odłożona na miejsce.
- 2. Zmierz średnice wszystkich wybranych kulek za pomocą śruby mikrometrycznej. Wyniki zapisz w Tabeli 1.
- 3. Zważ wszystkie kulki przy użyciu dostępnej wagi. Wyniki zapisz w Tabeli 1.
- 4. Ustaw na rurze dwa znaczniki w odległości około 80 cm tak, aby górny znacznik znajdował się co najmniej 20 cm poniżej poziomu cieczy w rurze. Zanotuj odległość znaczników w Tabeli 1.
- 5. Odczytaj wartość średnicy używanego cylindra. Dane wpisz do Tabeli 1.
- 6. Każdą z kulek należy wrzucić do rury, a następnie zmierzyć za pomocą stopera czas, w którym będzie ona opadała pomiędzy znacznikami. Wynik zapisz w Tabeli 1. Zwróć uwagę aby kulki opadały środkiem cylindra, a nie blisko ścianek oraz aby nie było do nich doczepionych pęcherzyków powietrza (wyjaśnij, dlaczego). Każdy pomiar, który nie spełnia powyższych wymogów należy powtórzyć.

- 7. Wyciągnij kulkę z cylindra poprzez kran umieszczony na jego dolnym końcu. Aby nie dopuścić do wylewania się gliceryny z cylindra należy posłużyć się zaciskaczem umieszczonym na wężyku. Gliceryna powinna ściekać do podstawionego pod wężykiem naczynia. Jeśli zachodzi potrzeba uzupełnienia gliceryny w cylindrze, należy przelać ją ostrożnie z naczynia lejąc po ściankach cylindra tak, aby wytworzyć jak najmniej pęcherzyków powietrza.
- 8. Po skończonych pomiarach należy zanotować temperaturę otoczenia, w której wykonywane było doświadczenie.

3 Wstęp teoretyczny

3.1 Lepkość

Właściwość płynów i plastycznych ciał stałych charakteryzująca ich tarcie wewnętrzne wynikające z przesuwania się względem siebie warstw płynu podczas przepływu (nie jest to natomiast opór przeciw płynięciu powstający na granicy płynu i ścianek naczynia, w warstwie granicznej.). [2]

3.2 Przepływ laminarny

Przepływ, który zachodzi przy małej prędkości, której prędkość graniczną możemy obliczyć na podstawie liczby Reynoldsa. Jest to przepływ uwarstwiony, w którym płyn w równoległych warstwach przepływa bez zakłóceń między nimi. [3]

3.3 Przepływ turbulentny

Przepływ, w którym jego parametry takie jak prędkość, ciśnienie i gęstość zmieniają się w sposób chaotyczny. [4]

3.4 Liczba Reynoldsa

Jedna z liczb podobieństwa stosowanych w mechanice płynów. Liczba ta pozwala oszacować występujący podczas ruchu płynu stosunek sił bezwładności do sił lepkości. [6] Wzór:

$$Re = \frac{v \cdot l \cdot \rho}{\eta} \tag{1}$$

3.5 Prawo Archimedesa

Prawo Archimedesa głosi, że na ciało (częściowo lub całkowicie) zanurzone w płynie (cieczy, gazie lub plazmie) działa pionowa, skierowana ku górze siła wyporu F_w której wartość jest równa ciężarowi płynu wypartego przez to ciało [5]:

$$F_w = m_p \cdot g = \rho_q \cdot g \cdot V \tag{2}$$

gdzie:

 m_p - masa wypieranego płynu

 ρ_g - gęstość płynu

 \boldsymbol{g} - przyspieszenie ziemskie

V - objętość wypieranego płynu

4 Wyniki pomiarów

Droga spadania kulki: $\Delta l = 820mm$ $u_b(\Delta l) = 2mm$ Średnica cylindra: D = 39mm $u_b(D) = 2mm$ Temperatura: $Tmp = 21.5\,^{\circ}\text{C}$ $u_b(Tmp) = 1\,^{\circ}\text{C}$ $u_b(m) = 0.001g$ Średnica: $u_b(d) = 0.01mm$ Czas: $u_b(t) = 0.01s$

Nr. pomiaru	Nr. kulki	Średnia kulki d [mm]	Masa kulki m [g]	Czas spadku kulki Δt [s]	Wsp. lepkości η $[Pa \cdot s]$
1	1	4.90	0.253	6.15	2.13
2	1	4.90	0.253	6.19	2.15
3	1	4.90	0.253	6.25	2.17
4	1	4.90	0.253	6.14	2.13
5	1	4.90	0.253	6.19	2.15
6	2	3.98	0.175	7.66	2.16
7	2	3.98	0.175	7.53	2.16
8	2	3.98	0.175	7.54	2.15
9	2	3.98	0.175	7.59	2.16
10	2	3.98	0.175	7.56	2.17
11	3	3.96	0.110	9.68	2.60
12	3	3.96	0.110	9.69	2.56
13	3	3.96	0.110	9.75	2.56
14	3	3.96	0.110	9.72	2.58
15	3	3.96	0.110	9.60	2.57
16	4	4.88	0.254	6.12	2.07
17	4	4.88	0.254	6.12	2.09
18	4	4.88	0.254	6.10	2.07
19	4	4.88	0.254	6.12	2.08
20	4	4.88	0.254	6.15	2.09
21	5	4.98	0.259	9.68	1.71
22	5	4.98	0.259	9.69	1.71
23	5	4.98	0.259	9.75	1.72
24	5	4.98	0.259	9.72	1.72
25	5	4.98	0.259	9.60	1.70

Tabela 1: Wyniki pomiarów i obliczonych wartości η dla kolejnych kulek

Nr. kulki	Wsp. lepkości η $[Pa \cdot s]$
1	2.14
2	2.16
3	2.57
4	2.08
5	1.71

Tabela 2: Wartości średnia współczynnika lepkości dla każdej z kulek

Wartość średnia współczynnika lepkości $\eta = 2.13 Pa \cdot s$

Niepewność typu A: $u_A(\eta) = 0.28 Pa \cdot s$

Niepewność złożona typu B:

$$u_c(\eta) = \sqrt{\left[\frac{\partial \eta}{\partial m} \cdot u(m)\right]^2 + \left[\frac{\partial \eta}{\partial \rho} \cdot u(\rho)\right]^2 + \left[\frac{\partial \eta}{\partial d} \cdot u(d)\right]^2 + \left[\frac{\partial \eta}{\partial g} \cdot u(g)\right]^2 + \left[\frac{\partial \eta}{\partial t} \cdot u(t)\right]^2 + \left[\frac{\partial \eta}{\partial l} \cdot u(l)\right]^2 + \left[\frac{\partial \eta}{\partial D} \cdot u(D)\right]^2}$$

$$= 0.16Pa \cdot s$$

Przy liczeniu niepewności rozszerzonej ustalamy $\mathbf{k}=\mathbf{2},$ oraz mnożymy $u_A,$ gdyż jest większe.

Niepewność rozszerzona: $U(\eta) = 2 \cdot u_A(\eta) = 0.56 \ Pa \cdot s$

Prędkość spadania kulki nr. 4 $v=\frac{\Delta l}{\Delta t}=$ 133.33 $\frac{mm}{s}$

Niepewność złożona typu B: $u_b(v) = \sqrt{\left[\frac{\partial v}{\partial l} \cdot u(l)\right]^2 + \left[\frac{\partial v}{\partial t} \cdot u(t)\right]^2} = 2.182 \frac{mm}{s}$

Niepewność rozszerzona: $U(v) = 2 \cdot u_b(v) = 4.36 \frac{mm}{s}$

Liczba Reynoldsa dla kulki nr. 4: R = 0.39 (obliczona ze wzoru 1)

Niepewność złożona typu B:
$$u_b(R) = \sqrt{\left[\frac{\partial R}{\partial v} \cdot u(v)\right]^2 + \left[\frac{\partial R}{\partial l} \cdot u(l)\right]^2 + \left[\frac{\partial R}{\partial \rho} \cdot u(\rho)\right]^2 + \left[\frac{\partial R}{\partial \eta} \cdot u(\eta)\right]^2}$$

= 0.0307

Niepewność rozszerzona: $U(R) = 2 \cdot u_b(R) = 0.062$

5 Wyniki

Zgodnie z informacjami zamieszczonymi poniżej nasz pomiar biorąc pod uwagę niepewność pomiarową jest zgodny z wartością tablicową:

$$|\eta - \eta_{dosw}| < u(\eta)$$

 $|1.945 - 2.13| < 0.32$
 $0.185 < 0.32$

Wsp. lej	pkości $\eta \ [Pa \cdot s]$	Niepewność rozszerzona $U(\eta)$ $[Pa \cdot s]$
	2.13	0.56

Tabela 3: Zestawienie wyników

6 Bibliografia

- [1] http://www.fis.agh.edu.pl/~pracownia.fizyczna/cwiczenia/13.wykon.pdf
- [2] https://pl.wikipedia.org/wiki/Lepko%C5%9B%C4%87
- [3] https://pl.wikipedia.org/wiki/Przep%C5%82yw'laminarny
- [4] https://encyklopedia.pwn.pl/haslo/przeplyw-turbulentny;3963563.html
- [5] https://pl.wikipedia.org/wiki/Prawo Archimedesa
- [6] https://pl.wikipedia.org/wiki/Liczba Reynoldsa