

선박 교통 혼잡도 예측 서비스 Shipforesight 201801783 김승우 201902668 김예빈

201902726 이예서

- 1 Background
- 2 Progress
- 3 New Stargety
- 4 Vision

Part 1 Background

해양사고란?

해양사고 관련 근황

작년 해양사고 2863건...사망·실종자는 99명

해양사고 중 84% 는 인적과실!!

해양사고란?

Background

해양사고 관련 근황

대형 선박 사고일 경우 피해 금액은 "수백억" 이상!! 해양오염, 인명 피해 등 막대한 피해 발생!

항해사를 위한 서비스(1)

Background

실제 서비스 "vessel finder" 의 인천 부근 사진)

항해사를 위한 서비스(1)

Background

현재 위치만 알 수 있다.

실시간 렌더링이 안되어 어느 방향으로 가고 있는지 알 수 없다.

항해사를 위한 서비스(2)

Background

한국형 e-navigation service

선박 운항자가 24시간 모니터링하고 있기에는 힘들다.

혼잡도가 낮은 지역에서는 항해사가 신경을 덜 써도.... 그런데 언제 어디서 혼잡도가 높은데?

왜 교통 혼잡도 예측인가?

Background

선박 경로의 미래 혼잡도를 안다면 미리 대응할 수 있어 운항자의 피로도, 부담감을 줄일 수 있다. Background

ShipForesight

ShipForesight의 기능

Background

선박의 예측 경로를 표시한다.

특정 Gate에서의 혼잡도를 확인한다.

About Features Works Blog Help Contacts

© All rights Reserved. Neoscorp Inc.

ShipForesight의 기능

Background

©Saebyeol Yu. Saebyeol's PowerPoint

ShipForesight의 기능

Background

선박 정보 확인 기능

Part 2 Progress

Progress

Hakola, L. (2020). Marine Traffic Modelling in Ice-Covered Waters: Year-Round Modelling in the Baltic Sea. Retrieved from https://github.com/hakola/marine-traffic-modelling

AIS

(Automatic Identification System)

선박의 움직임을 추적하고 모니터링하는 데 사용되는 시스템

Strategy Progress

Korea sea Grid at regular intervals

AIS Data visualization

2

Progress

Data to Node

Nodeize Data

Heatmap the frequency of the data

This shows the weight of the node

Progress

Route predict based on A* algorithm

Store in all route queues using A* algorithm

Red node: start point Purple node: end point

> Route1 red line Route2 green line Route3 orange line Route4 yellow line

Route selection process

Progress

Sum of weights

```
[Route1] 0.5900 - 0.4900 - 0.5633 [Route2] 0.2489 - 0.3755 - 0.5167 - 0.5022 - 0.4162 [Route3] 0.1104 - 0.2711 - 0.2241 - 0.2767 - 0.3017 - 0.3162 - ... - 0.2155 [Route4] 0.2489 - 0.3755 - 0.5167 - 0.4327 - 0.3029 - 0.1948 - ... - 0.1103 - 0.0989 - [exclude]
```

Mean of weights exceeds threshold

Progress

2 특정 mmsi 값의 선박 거동 예측 결과

2 특정 gate 를 지나는 빈도수 확인

Progress

배들의 경로를 유추하고 사용자 지정 특정 Gate들을 지난 빈도수 확인

```
In [276]: interface.coords
Out[276]: [((126.13440882091456, 35.9549223781572),
            (126.33154143740201, 35.82051377600666)),
           ((126.03584251267083, 35.63234173299591),
            (126.2688174230651, 35.64130230647262)),
           ((126.31362029044861, 34.27033456453713),
            (126.48387118650595, 34.41370374016437))
           ((127.64874573847729, 34.74524495880236),
            (127.92652351625506, 34.5122700484081)),
           ((129.56630846249163, 36.23270015593498),
            (129.75448050550239, 36.03556753944753))
           ((130.5250898244988, 37.415495854859714),
            (130.69534072055615, 37.3617324139995))]
In [277]: interface.conge
```

Progress

노드의 가중치를 이용한 Cost 계산을 통해 선박의 과거 항해 패턴 기반으로 경로를 예측할 수 있다.

Conclusion Progress

2

사용자 지정 특정 해안(Gate)의 배들의 경로를

[미래 특정 해안 Traffic 예측 가능하다.]

자신의 선박이 추후 지날 해안의 교통상태를 예측할 수 있어 그 해안에 도착하기전 미리 대비할 수 있다.

Progress

이 방법의 보완 방향

실시간 예측을 위한 시간 복잡도 문제

현재 방법은 실시간 예측에 적합하지 않다. (계산 시간 하루 이상 소요)

어떤 Input에 유사한 값의 Predict된 값이 서버에서 미리 계산되어 있다면..? **Progress**

이 방법의 보완 방향

목적지 설정 문제

A* 알고리즘 특성상 target 지점을 설정해야 하지만 실시간 AIS 데이터에는 목적지가 명시되어 있지 않다.

기존 데이터를 이용해 항해 패턴을 분석한다면.. 목적지 정보 없이도 경로를 예측할 수 있지 않을까?

Part 3 New Stargety

Stargety

Use LSTM Model

LSTM

시계열 기반 데이터 AIS데이터의 특성을 생각해 RNN 계열의LSTM 모델을 적용

- 1. 시계열 데이터 처리
- 2. 다변량 데이터 처리
- 3. 데이터 패턴 학습

Dataset Analyze

Stargety

Raw to Preprocessed

index	위도	경도	SOG	COG	Heading
count	9563274.0	9563274.0	9563274.0	9563274.0	9563274.0
mean	35.28371652774076	127.71703531521149	5.554327911131686	166.52030663348143	182.55513164215517
std	1.2742057176906616	1.5477469876563184	6.269847030173003	107.69414529064484	111.8734525182579
min	32.0000033333333	124.0	0.0	0.0	0.0
25%	34.59969374999997	126.420083333333	0.0	65.5	73.0
50%	35.08034	127.732576666667	1.8	175.5	193.0
75%	36.047056250000026	129.1515	10.9	254.3	281.0
max	39.7455016666667	131.99994	40.0	359.0	359.0

- filter(위도 32~40, 경도 124~132, SOG 40이하, COG 0~359 ,Heading 0~359)
- 결측치 제거
- 이상치 확인
- 선종별/크기별 MMSI 유일 값 개수

선종별/크기별 MMSI 유일 값 그래프

Data Feature 추출 전략

Stargety

AIS Dataset

MMSI 위치 속도 방향 선수각 무게 선박 type etc

위도, 경도를 이용한 선박 경로 특징 추출 (시작점 - 종료점 이동방향, 거리)

> SOG -> 운송 속도 변화율 COG -> 방향 변화율

선박의 6DOF 운동 방정식 -> 위치, 속도, 가속도 등 선박의 운동 변화율 추출

6 DOF Equation of vessel domain

Stargety

Surge Equation
Sway Equation
Heave Equation
Roll Equation
Yaw Equation
Pitch Equation

SOLVE

〈 Parameter Needs 〉 외력항(파도에 의한 외력) -〉해양 환경 관측 데이터 선박의 기본 정보 -〉AIS Data

Output

선박의 운동을 예측 위치 속도 가속도 회전각도 회전속도 회전 가속도

Data feature 추출

모델 제작

모델 검증

Part 4 Vision

활용방안 및 기대효과

미래에 갈 해역에 대해 혼잡도를 보고, 초기 대응이 가능하다.

24시간 집중해야 하는 항해사의 피로도를 줄여줄 수 있다.

활용방안 및 기대효과

항만관리자

항만 근처 혼잡도를 미리 파악해 항만 교통 안전 정책을 수립하는데 도움이 된다

선박들의 충돌사고 없이 효율적으로 접이안 할 수 있는 방법을 미리 계획할 수 있다.

