Step-1

(a)

Consider the eigen values of A are 1, 1, and 2

The objective is to verify that the matrix A is invertible or not.

We have three Eigen values, so the matrix A has order of 3×3 with these eigen values.

The product of the eigen values is the determinant of that matrix.

Product of the eigen values is $1 \cdot 1 \cdot 2 = 2 \neq 0$.

Since determinant of matrix A is 0, A is non-singular matrix.

We know that every non-singular matrix is invertible.

Hence, the matrix A with eigen values 1, 1, and 2 is invertible is **true**.

Step-2

(b)

Consider the eigen values of A are 1, 1, and 2

The statement is " *A* is diagonalizableâ€

The objective is to verify that the above statement is true or false.

The statement is **false**

Counter example:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

Le

Here, A is a triangular matrix, the eigen values are the diagonal entries 1, 1, and 2 which are as given in the question.

Find the eigen vectors corresponding to the Eigen value $\lambda = 1$

$$(A - \lambda I)\mathbf{x} = 0$$

$$(A - \lambda I)\mathbf{x} = 0$$

$$(A - \lambda I)\mathbf{x} = 0$$

$$(Since \lambda = 1)$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

The system of equations for the above matrix form is,

 $x_2 + x_3 = 0$ $x_{2} = 0$ $x_2 = 0$

From the above equations, we have $x_2 = x_3 = 0$ and let $x_1 = k$

Therefore, eigen vector is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} k \\ 0 \\ 0 \end{bmatrix} = k \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Therefore, the eigen space corresponding to the eigen value is $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$ Since the number of 1

Since the number of elements in eigen space is 1, geometric multiplicity for the eigen value $\lambda = 1$ is 1.

The algebraic multiplicity of eigen value $\lambda = 1$ is 2 which is not equals to the geometric multiplicity.

Therefore, the matrix A is not diagonalizable.

Therefore, the statement $\hat{a} \in \alpha A$ is diagonalizable $\hat{a} \in \beta A$ is diagonalizable.

Step-3

c)

Consider the eigen values of A are 1, 1, and 2

The statement is " *A* is not diagonalizableâ€

The objective is to verify that the above statement is true or false.

The statement is **false.**

Counter example:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

The eigen values are 1, 1, and 2

It is a diagonal matrix already.

So, it can be written as $S^{-1}AS = \Lambda$ where S is the identity matrix and the diagonal matrix Λ is A itself.

This example shows that in every matrix with eigen values 1, 1, and 2 is diagonalizable also.

Therefore, the statement $\hat{a} \in A$ is not diagonalizable $\hat{a} \in A$ is not diagonalizable.