1.
$$f(x) = e^{x} \left(e^{x} + 1 - \frac{x}{e^{x}} - \frac{2}{e^{x}} \right)$$

$$\lim_{x\to+\infty} f(x) = \left(\lim_{x\to+\infty} e^{x}\right) \left(\lim_{x\to+\infty} \left(e^{x}+1-\frac{x}{e^{x}}-\frac{2}{e^{x}}\right)\right)$$

$$= \left(+\infty\right) \left(+\infty+1-0-0\right) =$$

$$= \left(+\infty\right) \left(+\infty\right) = +\infty$$

2.
$$\lim_{x\to -\infty} f(x) = 0 + 0 - (-\infty) - 2 = +\infty - 2 = +\infty$$

3.
$$\lim_{x\to+\infty} \left(e^{2x} + e^{x} - x - \lambda - (-x - \lambda) \right) =$$

$$\lim_{x\to+\infty} \left(e^{2x} + e^{x} \right) = +\infty + \infty = +\infty = 7 \text{ Non}$$

Donc, la droite D n'est pas asymptate en +00.

$$\lim_{x \to -\infty} \left(e^{2x} + e^{x} - x - \lambda - (-x - \lambda) \right) =$$

$$= \lim_{x \to -\infty} \left(e^{2x} + e^{x} \right) = 0 + 0 = 0 \implies 0 \text{ and }$$

Donc, la droite D est asymptote en - ao.

4. Étude de signe de:
$$f(x) - (-x-2) = e^{2x} + e^{x}$$

$$e^{2x} + e^{x}$$
 est toujours positif sur R.

Danc $f(x) - (-x-2) > 0$ sur R.

Alors, C est au-dessus de D.

Ex 2

$$f(x) = 2 \left(e^{x} + 1\right) \left(e^{x} - \frac{1}{2}\right)$$

$$2 \text{ est positif: } e^{x} + 1 \text{ est positif.}$$

$$e^{x} - \frac{1}{2} > 0 \iff e^{x} > \frac{1}{2} \iff x > \ln\left(\frac{1}{2}\right)$$

$$\frac{x}{2} + \frac{1}{2} \iff \frac$$

E×3

$$f(x) = x^2 - 1 - \ln(x)$$
 $D_t = Jo; +\infty[$

- 1. $\lim_{x\to 0} f(x) = 0 1 (-\infty) = -1 + \infty = +\infty$
- 2. lim f(x) = +00 danc x = 0 est asymptote verticale

3.
$$f(x) = x \left(x - \frac{1}{x} - \frac{\ln(x)}{x} \right)$$

$$\lim_{x \to +\infty} f(x) = (+\infty) \left(+\infty - 0 - 0 \right) = +\infty$$

$$f(x) = (2x-1)e^{2x}$$
 $D_f = \mathbb{R}$

*	-00		1/2		+00
2~-1			ф	+	
eex			+		
f(x)	_	-	ф	+	

$$f(x) = (e^{2x} - 2)(e^{2x} + 1)$$
 $D_f = \mathbb{R}$

1.
$$\lim_{x \to +\infty} f(x) = (+\infty - 2)(+\infty + 1) = (+\infty)(+\infty) = +\infty$$

$$f(x) = \lambda e^{2x} \left(\lambda e^{2x} - 1 \right)$$
 $D_t = \mathbb{R}$

2 est positif; ez est positif

 $2e^{2x}-1>0$ => $e^{2x}>\frac{1}{2}$ => $2x>\ln\frac{1}{2}$ => $x>\frac{1}{2}\ln\frac{1}{2}$

*	- 110	12	ln 'z		+00
2			+		
el×			+		
2e2x - 1		_	ф	+	
f(x)		_	ф	+	

Ex 7

Ensemble de définition:

Solution: 2-x23

$$ln(x^2) = ln(2) + ln(x+1)$$

Ensemble de définition:

$$\chi^2 > 0$$
 $\angle = > \chi \neq 0$
 $\chi + 1 > 0 \angle = > \chi > -1$

$$= > D = J - 1; 0 [U] 0; +\infty[$$

Solution:
$$ln(x^2) = ln(L(x+1))$$

$$\alpha^2 = 2(x+1)$$

$$\chi^2 - 2\chi - 2 = 0$$

$$\Delta = (-2)^2 - 4 \times 1 \times (-2) = 4 + 8 = 12$$

$$x_1 = \frac{-(-2)-\sqrt{12}}{2} = \frac{2-\sqrt{12}}{2} = 1-\sqrt{3}$$

$$\chi_2 = \frac{-(-2) + \sqrt{12}}{2} = \frac{2 + \sqrt{12}}{2} = 1 + \sqrt{3}$$

E × 10

$$e^{hx} - \lambda e^{3x} = 0$$
 (=> $e^{3x}(e^{x} - 2) = 0$
(=> $e^{x} - \lambda = 0$ (=> $e^{x} = \lambda = 0$) (=> $e^{x} = \lambda = 0$

- 1. 1995 ms 360 ; 2005 ms 380
- 2. $x \rightarrow \text{année}$ $g(x) \rightarrow \text{concentration}$
 - 2a. La courbe est très proche d'une droite.
 - 2b. Arnold: q(x) = 2x 3630

$$g(1095) = 2 \times 1995 - 3630 = 360$$

Donc l'expression qui modélise le mieux

l'évolution de la concentration est celle d'Arnold.

lc.
$$g(x) = 450 \Rightarrow 2x - 3630 = 450 \Leftrightarrow x = 2040$$