Stream Short Text Document Clustering

Chanon Jenakom and Methawee Apinainarong

March 28, 2018

Abstract

Short text documents, such as instant messages, SMS, or news headlines, have been increasingly useful for data analysis in recent times. Furthermore, these text documents are presented in real time, requiring a form of stream clustering technique. A data stream is a continuously generated sequence of data for which the characteristics of the data evolve over time. In this paper, we propose a short text document clustering technique which supports continuous data streams in real time using E-Stream algorithm as a stream clustering technique, Distributed Word Representation for representing each document, and Word Mover's Distance as the distance metric. It is expected that this proposed algorithm will offer a new way to effectively represent short text documents in real-time and offer meaningful patterns for future analysis.

1 Introduction

In social media, stream short text documents are text documents that contain very few words, such as instant messages, SMS, or news headlines that are ordered sequences of documents that arrive in timely order. Different from data in traditional static databases, data streams are continuous, unbounded, usually come with high speed and have a data distribution that often changes with time. Therefore, developing data mining techniques to handle the large volume of short text documents from data stream has become an important goal. Short text clustering is already a challenging task; due to the sparsity and noise, they provide very few contextual clues for applying traditional data mining techniques; therefore, short documents require different or more adapted approaches. The representation of short-text segments needs to get enriched by incorporating information about correlation between terms. Data streams, because of their unique features, have further posed many new challenges to short text document clustering. There are three main challenges: single access of data, unbounded data, and real-time response. In addition to the aforementioned challenges, applying stream clustering to short text documents requires an efficient method to represent and store documents for computation of clusters. In this paper, the focus is on developing a new clustering algorithm that is suitable for clustering short text documents from differing sources of data streams. Some previously proposed algorithms are chosen as a basis for developing this stream short text document clustering algorithm. Then, the result and performance of the proposed algorithm will be shown on a webbased application.

2 Literature Summary

Table 1: Six papers on stream clustering and Short text document clustering, with their scopes and goals.

Paper	Scope	Goal
E-Stream [1]	Propose	Stream Clus-
	stream clus-	tering (SC)
	tering that	
	supports five	
	evolutions	
Similarity	Compare	Document
Measures [2]	and analyze	Distance
	document	(DD)
	distance	
	measures	
SE-Stream	Propose	Stream Clus-
[3]	stream clus-	tering (SC)
	tering that	
	supports	
	high dimen-	
	sional data	
	streams	
Distributed	Present	Document
Represen-	several ex-	Representa-
tations of	tensions	tion (DR)
Words [4]	that improve	
	both the	
	quality of	
	the vectors	
	and the	
	training	
	speed	
Supervised	Propose	Document
Word	an efficient	Distance
Mover's	technique	(DD)
Distance [5]	to learn a	
	supervised	
	metric	

Paper	Scope	Goal
Short Text	Presents a	Document
Document	method for	Distance
Clustering	clustering	(DD) and
[6]	short text	Document
	documents	Representa-
		tion (DR)

Based on the research papers' goals, we can divide these papers into three categories: stream clustering (SC), document distance (DD), and document representation (DR). E-Stream [1] and SE-Stream [3] discuss about two stream clustering algorithms where SE-Stream is an extension of E-Stream. Similarity Measures for Text Document Clustering [2], Supervised Word Mover's Distance [5], and Short Text Document Clustering [6] papers then discuss about commonly used document distance metrics. Similarity Measures for Text Document Clustering paper compares five metrics and their performance, while Supervised Word Mover's Distance and Short Text Document Clustering papers focus on one specific metric. Short Text Document Clustering and Distributed Representations of Words [4] discuss two Distributed Word Representation algorithms, where one is a supervised extension of the former.

Table 2: Six papers on stream clustering and Short text document clustering, with their algorithms and performances.

Paper	Algorithm	Performance
E-Stream [1]	E-Stream	Polynomial
		with respect
		to the num-
		ber clusters

Paper	Algorithm	Performance
Similarity	Euclidean	The averaged
Measures [2]	Distance, Co-	KL diver-
	sine Similar-	gence and
	ity, Jaccard	Pearson coef-
	Coefficient,	ficient tend to
	Pearson	outperform
	Correlation	the cosine
	Coefficient,	similarity
	Averaged	the Jaccard
	Kullback-	coefficient,
	Leiber Diver-	except for
	gence	the classic
		dataset
SE-Stream	SE-Stream	Quadratic
[3]		with re-
		spect to the
		number of
		dimensions
Distributed	Distributed	This results
Represen-	Word and	in a great
tations of	Phrase Rep-	improvement
Words [4]	resentation	in the quality
		of the learned
		word and
		phrase repre-
		sentations
Supervised	Supervised	S-WMD
Word	Word	manages
Mover's	Mover's	to capture
Distance [5]	Distance	difference in
		words based
		on the con-
		text of the
		article

Paper	Algorithm	Performance
Short Text	Distributed	The combina-
Document	Word Rep-	tion between
Clustering	resentation	the two al-
[6]	and Word	gorithms
	Mover's	outperforms
	Distance	others signifi-
		cantly

From the performance comparison between stream clustering algorithms, SE-Stream has better performance since it tried to reduce the number of dimensions in the incoming data before using them to compute the clusters. In addition to that, while there are many document distance metrics that are used, Word Mover's Distance is generally the most popular.

References

- [1] Komkrit Udommanetanakit, T. R., and Kitsana Waiyamai (2007), E-Stream: Evolution-Based Technique for Stream Clustering. *LNCS*, 4632, pp. 605-615.
- [2] Huang, A. (2008). Similarity Measures for Text Document Clustering. NZCSRSC, pp. 49-56.
- [3] Rattanapong Chairukwattana, T. K., Thanawin Rakthanmanon, Kitsana Waiyamai. (2013). Evolution-Based Clustering of High Dimensional Data Streams with Dimension Projection. ICSEC, pp. 190-195.
- [4] Tomas Mikolov, I. S., Kai Chen, Greg Corrado, Jeffrey Dean. (2015). Distributed Representations of Words and Phrases and their Compositionality. pp. 1-9.

- [5] Gao Huang, C. G., Matt J. Kusner, Yu Sun, Kilian Q. Weinberger, Fei Sha. (2016). Supervised Word Mover's Distance. NIPS, 30, pp. 1-9.
- [6] Supavit KONGWUDHIKUNAKORN, K. W. (2017). Short Text Document Clustering using Distributed Word Representation and Document Distance. Walailak J Sci and Tech, 14, pp. 1-13.