Al Course

Dr. Mürsel Taşgın

Support Vector Machines

- Developed by Vapnik et al. (1995) at AT&T Bell laboratories
- Supervised learning model; it can be used for classification and regression analysis
- Linear model

How it works

- Given a set of training examples, an SVM model learns from data to assign new examples to one category or the other
- Hyperplanes
- Margins

Support Vector Machines – *Linear separability*

linearly separable

not linearly separable

A linear classifier has the form: $f(x) = w^T x + b$

- In 2D, the discriminant is a line
- w is the normal to the line, and b is the bias
- w is known as weight vector

A linear classifier has the form: $f(x) = w^T x + b$

• In 3D, the discriminant is a plane and in upper dimensions (n-D), it is a *hyperplane*

Given linearly separable data x_i labelled into two categories $y_i = \{-1, 1\}$,

Find a weight vector w such that the discriminant function

$$f(x) = w^T x + b$$

separates the categories for i=1,..,N

How can we find this separating hyperplane?

The Perceptron Algorithm

Write classifiers as $f(x_i) = w^T x_i + w_0 = w^T x_i$

- Initialize w = 0
- Cycle through the data points
- If x_i is misclassified, correct labels $\{x_i, y_i\}$
- Loop until all data is correctly classified

- Initialize w = 0
- Cycle though the data points { x_i, y_i }
 - if \mathbf{x}_i is misclassified then $\mathbf{w} \leftarrow \mathbf{w} + \alpha \operatorname{sign}(f(\mathbf{x}_i)) \mathbf{x}_i$
- · Until all the data is correctly classified

X₂

before update

after update

- if the data is linearly separable, then the algorithm will converge
- Convergence can be slow
- Separating line close to training data
- We would prefer a larger margin for generalization

What is the best w?

maximum margin solution: most stable under perturbations of the inputs

•denotes +1

°denotes -1

Support Vector Machines - Margins

Classifier margin

Support Vector Machines – Support Vectors

Support Vector Machines – Support Vectors

Support Vector Machines – Support Vectors

Goal: 1) Correctly classify all training data

$$wx_i + b \ge 1 \quad \text{if } y_i = +1 \\ wx_i + b \le 1 \quad \text{if } y_i = -1 \\ y_i(wx_i + b) \ge 1 \quad \text{for all i } 2$$
2) Maximize the Margin same as minimize
$$\frac{M}{2} = \frac{2}{|w|}$$

We can formulate a Quadratic Optimization Problem and solve for w and b

Minimize
$$\Phi(w) = \frac{1}{2} w^t w$$

subject to $y_i(wx_i + b) \ge 1 \quad \forall i$

SVM – Optimization

Learning the SVM can be formulated as an optimization:

$$\max_{\mathbf{w}} \frac{2}{||\mathbf{w}||} \text{ subject to } \mathbf{w}^{\top} \mathbf{x}_i + b \overset{\geq}{\leq} \frac{1}{-1} \quad \text{if } y_i = +1 \\ \leq -1 \quad \text{if } y_i = -1 \quad \text{for } i = 1 \dots N$$

Or equivalently

$$\min_{\mathbf{w}} ||\mathbf{w}||^2$$
 subject to $y_i \left(\mathbf{w}^{ op} \mathbf{x}_i + b \right) \geq 1$ for $i = 1 \dots N$

 This is a quadratic optimization problem subject to linear constraints and there is a unique minimum

Support Vector Machines – Slack Variables

- Hard Margin: So far we require all data points be classified correctly
 - No training error
- What if the training set is noisy?
- Solution 1: use very powerful kernels

OVERFITTING!

Non-linear SVMs

- Datasets that are linearly separable with some noise work out great:
- But what are we going to do if the dataset is just too hard?

How about... mapping data to a higher-dimensional space:

$$\phi(x) = x^2$$

This data becomes linearly separable after a quadratic transformation to 2-dimensions.

$$\phi(x) = x^2$$

This data becomes linearly separable after a quadratic transformation to 2-dimensions.

$$\phi(x) = x \mod 2$$

This transformation allows us to linearly separate the even and odd X1 values in 2 dimensions.

$$\phi(\mathbf{x}) = \phi\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right) = \begin{pmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{pmatrix}$$

Non-linear SVMs: Feature spaces

General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

Nonlinear SVM - Overview

- SVM locates a separating hyperplane in the feature space and classify points in that space
- It does not need to represent the space explicitly, simply by defining a kernel function
- The kernel function plays the role of the dot product in the feature space.

Handling data that is not linearly separable

· introduce slack variables

$$\min_{\mathbf{w} \in \mathbb{R}^d, \xi_i \in \mathbb{R}^+} ||\mathbf{w}||^2 + C \sum_{i=1}^N \xi_i$$

subject to

$$y_i\left(\mathbf{w}^{\top}\mathbf{x}_i + b\right) \ge 1 - \xi_i \text{ for } i = 1 \dots N$$

linear classifier not appropriate

Solution 1: use polar coordinates

- Data is linearly separable in polar coordinates
- Acts non-linearly in original space

$$\Phi: \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \to \left(\begin{array}{c} r \\ \theta \end{array}\right) \quad \mathbb{R}^2 \to \mathbb{R}^2$$

Solution 2: map data to higher dimension

$$\Phi: \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \to \left(\begin{array}{c} x_1^2 \\ x_2^2 \\ \sqrt{2}x_1x_2 \end{array}\right) \quad \mathbb{R}^2 \to \mathbb{R}^3$$

- Data is linearly separable in 3D
- This means that the problem can still be solved by a linear classifier

Support Vector Machines – Kernel Trick

Kernel Trick

- Classifier can be learnt and applied without explicitly computing $\Phi(x)$
- All that is required is the kernel $k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\top} \mathbf{z})^2$
- Complexity of learning depends on N (typically it is $O(N^3)$) not on D

It allows us to operate in the original feature space without computing the coordinates of the data in a higher dimensional space.

Kernel Definition:

A function that takes as its input vectors in the original space and returns dot product of vectors in the feature space is called a kernel function.

Support Vector Machines – Kernel Trick

For non-linear to linear SVM

Naive method:

- We find a kernel function for higher dimension
- Map all the data to higher space
- Find the separation plane
- ** Time-complexity may is too high

Kernel Trick:

- Without computing the coordinates of the data in higher space, simply compute inner products between images of pairs in feature space
- Computationally cheaper

Example kernels

- Linear kernels $k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\top} \mathbf{x}'$
- Polynomial kernels $k(\mathbf{x}, \mathbf{x}') = \left(1 + \mathbf{x}^{\top} \mathbf{x}'\right)^d$ for any d > 0
 - Contains all polynomials terms up to degree d
- Gaussian kernels $k(\mathbf{x}, \mathbf{x}') = \exp(-||\mathbf{x} \mathbf{x}'||^2/2\sigma^2)$ for $\sigma > 0$
 - Infinite dimensional feature space

References

- https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f
- https://web.cs.hacettepe.edu.tr/~pinar/courses/VBM687/lectures/SVM.pdf
- https://www.cs.toronto.edu/~hinton/csc2515/notes/lec10svm.ppt