Three problems are discarded and three new problems are added in boldface.

CSCE 222-501 Discrete Structures for Computing Fall 2014 – Hyunyoung Lee

Problem Set 7

Due dates: Electronic submission of hw7.tex and hw7.pdf files of this homework is due on 11/3/2014 before 23:59 on csnet.cs.tamu.edu. Please do not archive or compress the files. A signed paper copy of the pdf file is due on 11/4/2014 at the beginning of class.

Name: Eric E. Gonzalez

Resources. Discrete Mathematics and its Applications 7th Ed.(Rosen)

On my honor, as an Aggie, I have neither given nor received any unauthorized aid on any portion of the academic work included in this assignment. Furthermore, I have disclosed all resources (people, books, web sites, etc.) that have been used to prepare this homework.

Signature:

Problem 1. Section 6.1, Exercise 14, page 396

Solution.

The number of strings with length $n = 2^n$, providing 2^n numbers of choices. The number of bit strings with 1 at the beginning and end = n - 2 choices. The number of strings with 1s at the beginning and end is 2^{n-2} .

Problem 2. Section 6.1 Exercise 16, page 396

Solution.

Let S= the number of possible strings with x Let T= the number of possible strings without x $S=26^4=456976$ $T=25^4=390625$ S-T=456976-390625=66351

Problem 3. Section 6.1, Exercise 32, page 397

Solution.

- (a) 26^8
- (b) 26 * 25 * 24 * 23 * 22 * 21 * 20 * 19
- (c) 25^7
- (d) 25 * 24 * 23 * 22 * 21 * 20 * 19
- (e) 25^6
- $(f) 25^6$
- (g) 25^4
- (h) $2(26^6) 26^4$

Problem 4. Section 6.1, Exercise 70, page 398

Solution.

 $n=2^n$ by the Product Rule

So,
$$2^n = 2^{2^n}$$

Thus, there are 2^{2^n} different truth tables for n variables.

Problem 5. Section 6.2, Exercise 8, page 405

Solution.

 $f: S \to T \text{ and } |S| \ge |T|$

$$|T| = n$$
 and $|S| \ge n + 1$

As such, n+1 elements are set to map to n elements.

So, by pigeon-hole principle, at least one pair of elements maps to the same spot, making $f(s_1) = f(s_2)$.

Therefore, the function f is not one-to-one.

Problem 6. Section 6.2, Exercise 16, page 405

Solution.

If we arrange the set into pairs that add to 16, then we get (1,15),(3,13),(5,11),(7,9). Since there are 4 pairs of numbers that add to 16, we need to choose at least 5 to ensure that two numbers will be a matching pair and add up to 16.

Problem 7. Section 6.2, Exercise 46, page 407

Solution.

Assume each box contains at most $n_i - 1$ objects.

If n is the maximum number of objects that can be placed into a t number of boxes, then:

$$n = n_1 - 1 \dots + n_t - 1$$

$$= n_1... + ... n_t - t$$

$$< n_t - t + 1$$

It is not possible to place all $n_t - t + 1$ into the t boxes. As such, for some i, the *i*th box must contain at least n_i objects.

Problem 8. Section 6.3, Exercise 12, page 413

Solution.

(a)
$$\binom{12}{2} = 220$$

(b)
$$\binom{12}{0} + \binom{12}{1} + \binom{12}{2} + \binom{12}{2} = 299$$

(a)
$$\binom{12}{3} = 220$$

(b) $\binom{10}{0} + \binom{12}{1} + \binom{12}{2} + \binom{12}{3} = 299$
(c) $\binom{12}{3} + \binom{12}{4} + \binom{12}{5} + \binom{12}{6} + \binom{12}{7} + \binom{12}{8} + \binom{12}{9} + \binom{12}{10} + \binom{12}{11} + \binom{12}{12} = 4017$
(d) $\binom{12}{6} = 924$

(d)
$$\binom{12}{6} = 924$$

Problem 9. Section 6.3 Exercise 18 on page 413

Solution.

(a)
$$2^8 = 256$$

(b)
$$\binom{8}{3} = 56$$

(b)
$$\binom{8}{3} = 56$$

(c) $\binom{8}{5} + \binom{8}{4} + \binom{8}{3} + \binom{8}{2} + \binom{8}{1} + \binom{8}{0} = 219$
(d) $\binom{8}{4} = 70$

(d)
$$\binom{8}{1} = 70$$

Problem 10. Section 6.3, Exercise 22, page	41	14
---	----	----

Solution.
(a) $7! = 5040$
(b) $6! = 720$
(c) $5! = 120$
(d) $5! = 120$
(e) $4! = 24$
(f) 0, as there are no permutations available. B can't be followed by both A
and F simultaneously.
C 1' C 4 T ' 14 401
Section 6.4, Exercise 14, page 421
Section 6.4, Exercise 16, page 421
bection 6.4, Exercise 16, page 421
Section 6.4, Exercise 38, page 422 (read the hint carefully!)
(
Checklist:
□ Did you add your name?
□ Did you disclose all resources that you have used?
(This includes all people, books, websites, etc. that you have consulted)
□ Did you sign that you followed the Aggie honor code?
□ Did you solve all problems?
□ Did you submit (a) your latex source file and (b) the resulting pdf file of your
homework on csnet?

 $\hfill\Box$ Did you submit (c) a signed hardcopy of the pdf file in class?