

CS208: Applied Privacy for Data Science Overview & Attacks on Privacy

School of Engineering & Applied Sciences
Harvard University

January 25, 2022

Course Staff

- Instructors
 - Salil Vadhan
 - James Honaker
 - Wanrong Zhang
- Teaching Fellows
 - Daniel Alabi
 - Jayshree Sarathy
 - Mike Shoemate (half time)
 - Connor Wagaman (half time)

To do before Thursday

- Use a name placard in class
- Fill out class background survey
- Check that you can access our platforms: Ed, Perusall, Panopto
- Read the guidelines for reading & commenting
- Watch the video (posted on Panopto) from the preview session if you haven't already done so
- Comment on and read the readings assigned for Thurs
- Review updated syllabus for covid & auditor policies
- Look out for PS1 (due Wed 2/2), Section & OH this week. (Future psets will be due on Fridays, PS2 due 2/11).

Data Privacy: The Problem

Given a dataset with sensitive information, such as:

- Census data
- Health records
- Social network activity
- Telecommunications data

- Academic research
- Informing policy
- Identifying subjects for drug trial
- Searching for terrorists
- Market analysis
-

How can we:

- enable "desirable uses" of the data
- while protecting the "privacy" of the data subjects?

Privacy Models from Theoretical CS

Model	Utility	Privacy	Who Holds Data?		
Differential Privacy	statistical analysis of dataset	individual-specific info	trusted curator		
Secure Multiparty Computation	any query desired	everything other than result of query	original users (or semi-trusted delegates)		
Fully Homomorphic (or Functional) Encryption	any query desired	everything (except possibly result of query)	untrusted server		

DP Theory

Differential privacy research has

- many intriguing theoretical challenges
- rich connections w/other parts of CS theory & mathematics
- e.g. cryptography, learning theory, game theory & mechanism design, convex geometry, pseudorandomness, optimization, approximability, communication complexity, statistics, ...

Differential Privacy Deployed

Apple

Google

Microsoft

Uber

Meta

Harvard Privacy Tools Project

http://privacytools.seas.harvard.edu/

Computer Science, Law, Social Science, Statistics

OpenDP

http://opendp.org/

A community effort to build a trustworthy and open-source suite of differential privacy tools that can be easily adopted by custodians of sensitive data to make it available for research and exploration in the public interest.

Why?

- Channel the collective advances on science & practice of DP
- Enable wider adoption of DP
- Address high-demand, compelling use cases
- Provide a starting point for custom DP solutions
- · Identify important research directions for the field

Class Goals

By the end of the course, we hope that you will all be able to:

- Identify and demonstrate risks to privacy in data science settings,
- Correctly match differential privacy technology with an application,
- Safely implement privacy solutions, and experimentally validate the performance and utility of algorithms,
- Understand differential privacy at a level sufficient to engage in research about best practices in implementation, apply the material in practice, and/or connect it to other areas,
- Analyze the ethical and policy implications of differential privacy deployments,
- Formulate and carry out an interesting, short-term independent research project, and present the work in both written and oral form.

Course Elements

- Asynchronous readings or videos to comment on
- Lecture/discussion and practicum class meetings (live-streamed for students in isolation & recorded to create open-access materials)
- Problem sets, approx. weekly. Mix of analytical and experimental problems.
- Weekly section and office hours
- Final project

Grading: approx. 1/3 participation, 1/3 problem sets, 1/3 project

Ethics, Law, and Society

- Analyze differential privacy deployments from various perspectives
 - Ethics: How does differential privacy alter ethical considerations around collecting sensitive data for <u>public interest</u> purposes?
 - Law and policy: What is the relationship between differential privacy and existing regulatory standards for privacy protection?
 - Science & Technology Studies: How does differential privacy reflect and shape <u>power</u> <u>dynamics</u> among data subjects, data holders, and researchers?
- Identify critiques, gaps, points of tension, and possible solutions

Reidentification via Linkage

\ /			
Name	Sex	Blood	HIV?
Chen	F	В	Υ
Jones	M	Α	N
Smith	М	0	N
Ross	M	0	Υ
Lu	F	Α	N
Shah	M	В	Υ
/			

Uniquely identify > 60% of the US population [Sweeney `00, Golle `06]

Deidentification via Generalization

Position Problem Prob

Example:

Name	Sex	Blood		HIV?
*	F	В		Υ
*	M	А		N
*	M	0		N
*	M	0		Υ
*	F	Α		N
*	M	В		Υ

K-Anonymity [Sweeney `02]

Position Po

Example: a 4-anonymous output

Zip code	Age	Nationality
130**	<30	*
130**	<30	*
130**	<30	*
130**	<30	*
130**	>40	*
130**	>40	*
130**	≥ 40	*
130**	≥40	*
130**	3*	*
130**	3*	*
130**	3*	*
130**	3*	*

Intuition: your privacy is protected if I can't isolate you.

Quasi-Identifiers

Zip code	Age	Nationality	Condition
130**	<30	*	AIDS
130**	<30	*	Heart Disease
130**	<30	*	Viral Infection
130**	<30	*	Viral Infection
130**	≥40	*	Cancer
130**	>40	*	Heart Disease
130**	≥40	*	Viral Infection
130**	≥40	*	Viral Infection
130**	3*	*	Cancer
130**	3*	*	Cancer
130**	3*	*	Cancer
130**	3*	*	Cancer

Q: what could go wrong?

What if no quasi-identifiers? Netflix Challenge Re-identification

[Narayanan & Shmatikov `08]

Frank

Identified NetFlix Data

Narayanan-Shmatikov Set-Up

•

Narayanan-Shmatikov Algorithm

- 1. Calculate score(aux, r') for each $r' \in \hat{x}$, as well as the standard deviation σ of the calculated scores.
- 2. Let r_1 and r_2 be the records with the largest and second-largest scores.
- 3. If $score(aux, r_1') score(aux, r_2') > \phi \cdot \sigma$, output r_1' , else output \perp .

An instantiation:
$$\operatorname{Similarity of rated by user} = \sum_{a \in \operatorname{supp}(aux)} \frac{\operatorname{Downweight movies}}{\log |\{r' \in \hat{x} : a \in \operatorname{supp}(r')\}|} \cdot \operatorname{sim}(aux_a, r'_a)$$

eccentricity $\phi = 1.5$

Narayanan-Shmatikov Results

- For the \$1m Netflix Challenge, a dataset of ~.5 million subscribers' ratings (less than 1/10 of all subscribers) was released (total of ~\$100m ratings over 6 years).
- Out of 50 sampled IMBD users, two standouts were found, with eccentricities of 28 and 15.
- Reveals all movies watched from only those publicly rated on IMDB.
- Class action lawsuit, cancelling of Netflix Challenge II.

Message: any attribute can be a "quasi-identifier"

k-anonymity across all attributes

•

Downcoding Attacks [Cohen `21]

	ZIP	Income	COVID		ZIP	Income	COVID		ZIP	Income	COVID
	91010	\$125k	Yes		9101∗	\$75–150k	*		91010	\$125-150k	*
	91011	\$105k	No		$9101 \star$	75-150k	*		$9101\star$	100-125k	*
X =	91012	\$80k	No	$\mathbf{Y} =$	9101*	\$75-150k	*	$\mathbf{Z} =$	$9101 \star$	\$75-150k	*
	20037	\$50k	No		20037	0-75k	*		20037	0-75k	No
	20037	\$20k	No		20037	0-75k	*		20037	0-75k	*
	20037	\$25k	Yes		20037	0-75k	*		20037	\$25k	Yes

- Downcoding undoes generalization
- X is the original dataset → Y is a 3-anonymized version
- Z is a downcoding: It generalizes X and refines Y

Cohen's Result

Theorem (informal): There are settings in which every minimal, hierarchical k-anonymizer (even enforced on all attributes) enables strong downcoding attacks.

Setting

 A (relatively natural) data distribution and hierarchy, which depend on k

Strength

- How many records are refined? $\Omega(N)$ (> 3% for $k \le 15$)
- How much are records refined? 3D/8 (38% of attributes)
- How often? w.p. 1 o(1) over a random dataset

Composition Attacks

- Theory [Ganti-Kasiviswanathan-Smith `08]:
 Two k-anonymous generalizations of the same dataset can be combined to be not k-anonymous.
- Practice [Cohen `21]:

Reidentification on Harvard-MIT EdX Dataset [Daries et al. `14]

- 5-anonymity enforced separately (a) on course combination, and (b) on demographics + 1 course
- Auxiliary information: LinkedIn profiles

EdX Quasi-identifiers

	Year of Birth	Gender	Country	Course 1	Course 2	Course 3	
User	2000	F	India	Yes	No	Yes	Enrolled
17				5		8	# Posts
				Yes		No	Certificate

{Year of Birth, Gender, Country, Course(i).Enrolled, Course(i).Posts} for i = 1, . . ., 16

	Year of Birth	Gender	Country	Course 1	Course 2	Course 3	
User	2000	F	India	Yes	No	Yes	Enrolled
17				5		8	# Posts
• •				Yes		No	Certificate

{Course(1).Enrolled, Course(2).Enrolled, . . ., Course(16).Enrolled

Failure of Composition

	YoB	Gender	Country	Course 1	Course 2	Course 3	
Use	2000	F	India	Yes	No	Yes	Enrolled
				5		8	# Posts
r 17				Yes		No	Certificate

If you combine the QIs:

- 7.1% uniques (34,000)
- 15.3% not 5-anonymous

Reading & Discussion for Next Time

- How should we respond to the failure of de-identification?
- Not assigned: writings claiming that de-identification works (see annotated bibliography)
- Next: what if we only release aggregate statistics?

Attacks on Aggregate Statistics

- Stylized set-up:
 - Dataset x ∈ {0,1} n .
 - (Known) person i has sensitive bit x_i .
 - Adversary gets $q_S(x) = \sum_{i \in S} x_i$ for various $S \subseteq [n]$.
- How to attack if adversary can query chosen sets S?
- What if we restrict to sets of size at least n/10?

This attack has been used on Israeli Census Bureau! (see [Ziv `13])

