

Universidad de Carabobo. Facultad de Ciencias y Tecnología. Ďepartamento de Matemática. Métodos Numéricos I.

Asignación 1

1. El valor de la intersección, de la recta que pasa por los puntos (x_0, y_0) y (x_1, y_1) , con el eje x se puede encontrar mediante las expresiones

$$x = \frac{x_0 y_1 - x_1 y_0}{y_1 - y_0}$$
 y $x = x_0 - y_0 \frac{x_1 - x_0}{y_1 - y_0}$

Muestre que ambas fórmulas son algebraicamente correctas.

Usando los puntos $(x_0, y_0) = (1.31; 3.24)$ y $(x_1, y_1) = (1.93; 4.76)$ y una aritmética de redondeo correcto a tres dígitos, calcule la intersección de la recta con el eje x con ambas expresiones. Compare los resultados obtenidos con el valor exacto. (Recuerde aplicar redondeo correcto en cada operación aritmética)

- 2. Hallar el épsilon de la máquina para un computador personal, usando el agoritmo visto en clase. Para ello use como lenguaje de programación Matlab.
- 3. Determinar el número positivo x más pequeño de la forma $x=2^{-k}$ (k entero no negativo) tal que $10^5+x\neq 10^5$. Note que este enunciado es idéntico al que define al épsilon de la máquina, con la única diferencia que se ha reemplazado la condición 1+x=1 por $10^5+x=10^5$. Compare con el resultado obtenido en el enunciado anterior. ¿Qué se puede concluir? Justifique su respuesta.
- 4. Elabore un algoritmo recursivo en Matlab que permita obtener el valor $x_n = \frac{1}{3^n}$ mediante la fórmula definida por:

$$x_{n+1} = Ax_n + \left(\frac{1 - 3A}{9}\right) x_{n-1}$$

con los valores iniciales $x_0 = 1.0$ y $x_1 = 1/3$. Siendo A un dato de entrada. Muestre como el algoritmo se hace inestable a medida que el valor A es grande, mientras que si 0 < A < 1 el algoritmo es estable. Realice diversas pruebas y muestre una tabla donde se compare el valor exacto y su aproximación, y así mismo calcule y muestre para cada uno su error absoluto y relativo.

5. Suponga que fl(y) es una aproximación de y con un redondeo a k cifras. Demuestre las cotas para el error absoluto E_a y el error relativo E_r si se usa una técnica de aproximación por truncamiento o por redondeo correcto.

6. Escriba un código en Matlab que genere mil datos aleatorios de orden 10^{-5} , y que calcule $a=10^{12}+x_1+\cdots+x_{1000}$ y $b=x_1+\cdots+x_{1000}+10^{12}$ ¿Son a y b iguales? De no ser así, explique por qué y diga cuál es el más exacto.

7. Sea
$$f(x) = \frac{1 - \cos(x)}{x^2}$$

- (a) Demuestre que $0 \le f(x) \le 0.5$ para todo $x \in \mathbb{R} \{0\}$. Además, demuestre que es posible extender la definición de f(x) a todo \mathbb{R} . Luego, grafique la función en el intervalo [-3,3].
- (b) Evalúe la función f(x) en el punto $x=1.2\times 10^{-8}$. ¿Qué observa?, ¿es confiable este resultado?, ¿por qué? Explique.
- (c) Usando el hecho de que $\cos(x) = 1 2\sin^2(x/2)$, la función dada se puede reescribir como $f(x) = \frac{1}{2} \left(\frac{\sin(x/2)}{x/2}\right)^2$. Evalúe de nuevo en el punto $x = 1.2 \times 10^{-8}$, esta vez usando la nueva expresión de f(x). ¿Qué obtuvo? Analice el resultado y explique lo que sucede.
- 8. Sea \mathbb{F} el sistema de punto flotante caracterizado por $\beta=2$,(base), n=4(precisión), $m=-1,\,M=2$, cada número en el conjunto \mathbb{F} está representado por $\pm(.d_1d_2\ldots d_n)_\beta\beta^e$ donde $m\leq e\leq M$
 - (a) ¿Cuál es el número más pequeño en valor absoluto del sistema F?
 - (b) Demuestre que 3/4 y 5/16 pertenecen al sistema \mathbb{F} , pero la suma "verdadera" de estos no pertenece a \mathbb{F} .
 - (c) Suponga que el tipo de error introducido en la representación de un número real en el sistema \mathbb{F} es por redondeo. Como queda representado el numero 3/4+5/16 en \mathbb{F} . esto es:

$$\frac{3}{4} \oplus \frac{5}{16} = fl(\frac{3}{4} + \frac{5}{16})$$

(d) Encuentre el épsilon de la máquina.