

Learning Causally Disentangled Representations via the Principle of Independent Causal Mechanisms

Aneesh Komanduri¹, Yongkai Wu², Feng Chen³, and Xintao Wu¹ University of Arkansas, Fayetteville, AR, USA ² Clemson University, Clemson, SC, USA ³ University of Texas at Dallas, Richardson, TX, USA

Overview

goal of causal representation learning is to map low-level data to highlevel concepts that are causally related.

***** Motivation

- There is a lack of a unified definition disentanglement from the perspective of independent causal mechanisms (i.e., recovering the true causal mechanisms).
- causal models parameterized to be linear additive noise and are not general enough to accurately model causal mechanisms.

Our Contributions

- We propose a new definition of causal disentanglement inspired by the principle of independent causal mechanisms.
- We propose ICM-VAE, a learning framework to flexibly learn causally disentangled representations with a causally factorized prior.
- We show identifiability of causal mechanisms up to permutation equivalence and empirically show disentanglement and counterfactual generation capability.

Preliminaries

Structural Causal Model (SCM)

- \Leftrightarrow SCM $\mathcal{M} = \langle \mathcal{Z}, \mathcal{E}, F \rangle$
 - Exogenous noise variables $\epsilon = \{\epsilon_1, \epsilon_2, ..., \epsilon_n\}$, and distribution $p(\epsilon)$
 - Endogenous causal variables $z = \{z_1, z_2, ..., z_n\}$
 - Functions $F = \{f_1, f_2, \dots, f_n\} \rightarrow z_i = f_i(\epsilon_i, z_{pa_i})$
 - Independent Causal Mechanisms: $p(z_1, ..., z_n) = \prod_{i=1}^n p(z_i | z_{pa_i})$

Generative Model Identifiability

- ❖ <u>Identifiability</u>: Can we recover true generative factors up to trivial transformation?
- **\Delta** Definition. Let \sim be an equivalence relation on θ . A generative model is
- \sim -identifiable if $p_{\theta}(x) = p_{\hat{\theta}}(x) \implies \theta \sim \theta$
- \clubsuit Identifiable Variational Autoencoder (iVAE) condition on auxiliary info u:

$$p_{T,\lambda}(z|u) = \prod_{i} h_i(z_i) \exp\left[\sum_{j=1}^k T_{i,j}(z_i) \lambda_{i,j}(u) - \psi_i(u)\right]$$
\Limint Linear-equivalent (recovery up to linear transformation):

$$\mathbf{T}(g^{-1}(x)) = A\hat{\mathbf{T}}(\hat{g}^{-1}(x)) + b, \forall x \in \mathcal{X}$$

 $A^T \boldsymbol{\lambda}(u) + c = \hat{\boldsymbol{\lambda}}(u)$

Permutation-equivalent (recovery up to reordering):

$$P\hat{z} = [z_{\pi(1)}A_1^T, z_{\pi(2)}A_2^T, \dots, z_{\pi(n)}A_n^T]^T$$

$$\tilde{z}_2$$

Causal Mechanism Equivalence

- * <u>Issue</u>: Learned mechanisms may be different than true underlying mechanisms but produce same marginal distribution
- * Idea: What if we consider disentanglement from a causal mechanism perspective? $p_{\theta}(z_i|z_{\mathbf{pa}_i}) = p_{\hat{\theta}}(z_i|z_{\mathbf{pa}_i})$
- * Three *sufficient* conditions for causal mechanism equivalence
 - 1. z and \hat{z} must be permutation equivalent

References.

- 2. Equivalence of conditional sufficient statistics: $\mathbf{T}_i(z_i|z_{\mathbf{pa}_i}) = D_{ij}\hat{\mathbf{T}}_j(z_j|z_{\mathbf{pa}_i})$
- 3. Natural parameter mechanism equivalence: $\lambda_i(z_{\mathbf{pa}_i}, u) = D_{ij}\hat{\lambda}_j(z_{\mathbf{pa}_i}, u)$
 - ⇒ Causal Mechanism Permutation Equivalent and Causally Disentangled

ICM-VAE Framework

Structural Causal Flow

* Causal mechanisms parameterized by affine-form autoregressive flow

$$z = f^{\text{RF}}(\epsilon)$$

$$z_{i} = f_{i}(\epsilon_{i}; z_{\mathbf{p}\mathbf{a}_{i}}) = \exp(a_{i}) \cdot \epsilon_{i} + b_{i}$$

$$\log \prod_{i} \left| \frac{\partial \epsilon_{i}}{\partial z_{i}} \right| = \sum_{i} \log \left| \frac{\partial f_{i}^{\text{RF}}(\epsilon_{i}; \epsilon_{\mathbf{p}\mathbf{a}_{i}})}{\partial \epsilon_{i}} \right|^{-1} = \sum_{i} a_{i} \begin{pmatrix} \epsilon_{1} \\ \epsilon_{2} \\ \epsilon_{3} \\ \epsilon_{4} \end{pmatrix} \mapsto \begin{pmatrix} f_{1}(\epsilon_{1}) \\ f_{2}(\epsilon_{2}) \\ f_{3}(\epsilon_{3}, z_{1}, z_{2}) \\ f_{4}(\epsilon_{4}, z_{1}, z_{2}) \end{pmatrix} = \begin{pmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix}$$

Causal Disentanglement Prior

Prior causally factorizes latent space and disentangles causal mechanisms Bijective map $(z_{pa_i}, u_i) \mapsto z_i \text{ via} \qquad p_{\theta}(z|u) = \prod_{i=1}^n p_{\theta}(z_i|z_{pa_i}, u_i) = \prod_{i=1}^n p(u_i) \left| \frac{\partial \boldsymbol{\lambda}_i(u_i; z_{pa_i})}{\partial u_i} \right|^{-1}$

autoregressive $p_{\theta}(z_i|z_{\mathbf{pa}_i},u_i) = h_i(z_i) \exp(\mathbf{T}_i(z_i|z_{\mathbf{pa}_i}) \boldsymbol{\lambda}_i(G_i^z \odot z,u_i) - \psi_i(z,u))$ normalizing flow causal mechanisms -

Learning Objective

* Maximize the following evidence lower bound (ELBO)

$$\log p_{\theta}(x, u) \ge \mathbb{E}_{\epsilon, z \sim q_{\phi}(\epsilon, z \mid x, u)} \Big[\log p_{\theta}(x \mid \epsilon) + \log p_{\theta}(x \mid z) \\ -\beta \{ \log q_{\phi}(\epsilon \mid x, u) + \log q_{\phi}(z \mid x, u) \\ -\log p(\epsilon) - \log p_{\theta}(z \mid u) \} \Big]$$

Theorem (Identifiability of ICM-VAE)

- 1. The set $\{x \in X \mid \phi_{\xi}(x) = 0\}$ has measure zero
- 2. Decoder (mixing function) g is diffeomorphic onto its image
- 3. Sufficient statistics T_i are diffeomorphic
- 4. **Sufficient Variability:** The conditional distribution depends sufficiently strongly on the derived parents z_{pa_i} and labels u_i
 - $\rightarrow \theta$ and $\hat{\theta}$ are causal mechanism permutation equivalent (i.e., causal mechanisms are identified uniquely) and $\hat{\theta}$ is causally disentangled

Empirical Evaluation

* Experiments on Pendulum, Flow, and CausalCircuit image datasets with nonlinear ground-truth mechanisms and n = 4 continuous-valued causal factors

Causal Disentanglement

- ❖ High disentanglement (D), completeness (C), and interventional robustness (IRS) indicates causal mechanism disentanglement.
- ❖ ICM-VAE disentangles causal factors significantly better than other causal and acausal baselines.

Dataset	Model	D	C	IRS
Pendulum	β-VAE	0.182	0.285	0.449
	iVAE	0.483	0.385	0.670
	CausalVAE	0.885	0.539	0.817
	SCM-VAE	0.764	0.475	0.829
	ICM-VAE (Ours)	0.997	$\boldsymbol{0.882}$	0.869
Flow	β -VAE	0.308	0.332	0.452
	iVAE	0.730	0.481	0.674
	CausalVAE	0.819	0.522	0.707
	SCM-VAE	0.854	0.483	0.811
	ICM-VAE (Ours)	0.988	0.598	0.893
CausalCircuit	β -VAE	0.692	0.442	0.982
	iVAE	0.745	0.541	0.992
	CausalVAE	0.886	0.625	0.994
	SCM-VAE	0.867	0.652	0.993
	ICM-VAE (Ours)	$\boldsymbol{0.982}$	0.689	0.999

Counterfactual Generation

