Chemical Process Systems

- Large-scale, continuous
- Operated at steady state
- Need transient behavior for control

Chemical System Modeling

Conservation Laws

Input + Generation = Output + Consumption + Accumulation

Engineer's Guide to Chemistry

Mol – mass of material which has the same number of molecules as are present in 12 mass units of C^{12} .

g-mol (or mol)
$$-6.023 \times 10^{23}$$
 molecules

kg-mol (or kmol)
$$-6.023 \times 10^{26}$$
 molecules

lb-mol (or E94)
$$-2.732 \times 10^{26}$$
 molecules

$$e.g.~1~\mathrm{mol}~\mathrm{CH_2O}$$
 has mass (12 + 2 + 16) = 30 g

or 200 g
$$CH_2O$$
 is $200/30 = 6.67$ mol

Chemical Equations

$$a\mathrm{Fe_2O_3} + b\mathrm{CO} \rightarrow c\mathrm{Fe} + d\mathrm{CO_2}$$

Choose $\alpha = 1$ (most complex molecule)

Then c = 2 to balance Fe

Also b = d to balance C

"Guess" b until O's balance. b = d = 3.

$$\mathrm{Fe_2O_3} + 3\mathrm{CO} \rightarrow 2\mathrm{Fe} + 3\mathrm{CO_2}$$

Elements of Chemical Processing Systems

- Mixer
- Divider
- $\bullet Separator$
- Reactor

Mixer (Steady-state)

$$\begin{array}{c}
0 & 0 & 0 \\
\text{Input + Cen.} &= \text{Output + Cons.} + \text{Accum.}
\end{array}$$

For each component

$$n_{i_{\text{out}}} = n_{i_1} + n_{i_2}$$

Total

$$n_{\text{out}} = n_1 + n_2 \text{ where } n = \sum n_i$$

 n_{i_1} is the number of moles of species i in stream 1.

 n_1 is the total number of moles in stream 1.

Multiple streams

Divider (Steady state)

$$n_{i_1} + n_{i_2} = n_{i_{in}}$$

$$n_1 + n_2 = n_{\rm in}$$

also

$$x_{i_1} = x_{i_2} = x_{i_{\text{in}}}$$
 $x_{i_s} = \frac{n_{i_s}}{n_s}$

 x_{i_1} is the *mole fraction* of species i in stream 1.

Multiple Streams

Separator (Steady state)

Specify split fraction

$$t_{i_s} = \frac{n_{i_s}}{n_{i_{\rm in}}}$$

 t_{i_1} is the split fraction of species i with respect to stream 1.

$$n_{i_1} = t_{i_1} n_{i_{i_n}}$$
 $n_{i_2} = (1 - t_{i_1}) n_{i_{i_n}}$

Multiple streams

Steady State Example

Material Balances

Mixer

$$\begin{split} n_{\rm A3} &= (0.4)(200) + (0.04)(150) = 86 \text{ lb/hr} \\ n_{\rm K3} &= (0.6)(200) = 120 \text{ lb/hr} \\ n_{\rm W3} &= (0.96)(150) = 144 \text{ lb/hr} \end{split}$$

Separator

$$n_{\rm A4} = (0.9)(86) = 77.4 \ {\rm lb/hr}$$

 $n_{\rm A5} = (0.1)(86) = 8.6 \ {\rm lb/hr}$
 $n_{\rm K4} = n_{\rm K3} = 120 \ {\rm lb/hr}$
 $n_{\rm W5} = n_{\rm W3} = 144 \ {\rm lb/hr}$

Example (Steady State with Recycle

Mixer

$$n_{\rm A2} = 45 + 0.9 \ n_5 \tag{1}$$

$$n_{\rm B2} = 55 + 0.1 \, n_5 \tag{2}$$

Separator

$$n_{A3} = n_{A2} \tag{3}$$

$$n_{\rm B3} = \frac{n_{\rm B2}}{3} \tag{4}$$

$$n_{\rm B4} = n_4 = \frac{2}{3} n_{\rm B2} \tag{5}$$

Divider

$$n_{\rm A3} = 0.9 \ n_6 + 0.9 \ n_5 \tag{6}$$

$$n_{\rm B3} = 0.1 \, n_6 + 0.1 \, n_5 \tag{7}$$

Set of linear algebraic equations. Solve using linear algebra or substitution.

Combine (1), (3), and (6)

$$45 + 0.9 n_5 = 0.9 n_6 + 0.9 n_5$$

 $\Rightarrow n_6 = \frac{45}{0.9} = 50 \text{ mol/s}$

Combine (2), (4), (7)

$$55 + 0.1 n_5 = 3 (0.1 n_6 + 0.1 n_5)$$

 $= 15 + 0.3 n_5$
 $\Rightarrow n_5 = \frac{40}{0.2} = 200 \text{ mol/s}$

Also

$$n_{\rm A2} = n_{\rm A3} = 45 + 0.9 \ (200) = 225 \ {\rm mol/s}$$
 $n_{\rm B2} = 55 + 0.1 \ (200) = 75 \ {\rm mol/s}$
 $n_{\rm B3} = \frac{75}{3} = 25 \ {\rm mol/s}$
 $n_{\rm B4} = \frac{2}{3} (75) = 50 \ {\rm mol/s}$

Note Without Recycle

$$n_{\text{A3}} = n_{\text{A1}} = 45 \text{ mol/s}$$

$$n_{\text{B3}} = \frac{n_{\text{B1}}}{3} = \frac{55}{3} = 18.3 \text{ mol/s}$$

$$x_{\text{A3}} = \frac{n_{\text{A3}}}{n_3} = \frac{45}{45 + 18.3} = 0.71 = 71\% \text{ vs. } 90\%$$