

Problem R-11R ($C_{18}H_{22}Se_2$) You are given the structure, and asked to interpret the spectrum (complete spectrum on next page).

(a) Analyze the multiplet at δ 2.1 and report couplings.

(b) Analyze the multiplet at δ 3.7. Identify all peaks. Obtain exact shifts and report all shifts and couplings in the form: δ 0.00, $^nJ_{XY}=00$ Hz. An enlarged copy of the multiplet is shown below. The Hz values are from TMS at 0 Hz.

Problem R-11R (C₁₈H₂₂Se₂) You are given the structure, and asked to interpret the spectrum (complete spectrum on next page).

(a) Analyze the multiplet at δ 2.1 and report couplings.

Septet of doublets, ${}^{3}J_{H-H} = 6.5$, 3 Hz (H_D)

No Se satellites due to ³J_{HD-Se} can be seen for this multiplet (satellites of the larger inner peaks are buried under the outer ones)

(b) Analyze the multiplet at δ 3.7. Identify all peaks. Obtain exact shifts and report all shifts and couplings in the form: δ 0.00, $^nJ_{XY}=00$ Hz. An enlarged copy of the multiplet is shown below. The Hz values are from TMS at 0 Hz.

Main feature is the AB quartet (H_A, H_B) of the diastereotopic Se-CH₂-Ph group.

764, 753, 749, 738 Hz (marked with • and •)

$$J_{AB} = 764-753 = 11$$
Hz; $749-738 = 11$ Hz

Solve the AB quartet:

$$v_{AB}$$
 = 10.2 Hz, v_{center} = 751 Hz

$$v_A = 751\text{-}5.1 = 746 \text{ Hz}, \ \delta \ 3.73$$

$$v_B = 751 + 5.1 = 756 \text{ Hz}, \delta 3.78$$

There are selenium satellites on both sides of each peak of the AB quartet. The $^2J_{HSe}$ if slightly larger for H_B (13.5 Hz) than for H_A (11.5 Hz)

770

780

760

750

Hz

740

730

720

- There is also a doublet for H_C at 735 Hz (marked with \bullet) δ 3.67, ${}^3J = 3$ Hz (to H_D)
- One satelline only is visible (double intensity because there are 2 Se). It is about 2 Hz from central peak, so ${}^{2}J_{Hc-Se} = 4$ Hz.