AFRE 835: Introductory Econometrics

Chapter 3: Multiple Regression Analysis: Estimation

Spring 2017

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

1 / 29

Introduction

- The simple regression model illustrates many of the basic concepts in econometric modeling.
- However, we typically want to take into account how our dependent variable depends upon multiple regressors.
- For example, considering some earlier examples, we might expect
 - School performance (y) to depend, not only on class size, but also on teacher experience, innate ability, and the ability of classmates;
 - Wages earned (y) to depend, not only on years of schooling, but also on experience and innate ability;
 - Soybean yields (y) to depend, not only on fertilizer application rates, but also on rainfall, soil quality, and field slope;
 - Local pollution levels (y) to depend, not only on policies restricting vehicle usage, but also on mass transit options and local climate;
 - Housing prices (y) to depend, not only on local environmental amenities, but also on local shopping and schooling, as well as housing characteristics:
 - Health outcomes (y) to depend, not only on hospital visits, but also on a person's initial health conditions.

Introduction

- With additional regressors, we can more *explicitly* control for other factors that influence our dependent variable of interest.
- This, in turn, improves our ability to make claims about the *ceteris* paribus (all else equal) impact of one of our explanatory variables.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

3 / 20

Outline

- 1 The Multiple Regression Model
 - Models with Two Independent Variables
 - Models with k Independent Variables
- 2 The Mechanics and Interpretation of OLS
 - Deriving the OLS Estimator
 - Interpreting OLS
 - Goodness of Fit
- 3 The Expected Value of the OLS Estimators
- The Variance of the OLS Estimators
- 5 Efficiency of OLS: The Gauss-Markov Theorem

Models with Two Independent Variables

- Wooldridge (p. 69) provides two examples generalizing models introduced in chapter 2;
 - Modeling hourly wage as a function of years of education and years of experience.

$$wage = \beta_0 + \beta_1 educ + \beta_2 exper + u \tag{1}$$

 Modeling student test scores as a function of average per student expenditures and average family income

$$avgscore = \beta_0 + \beta_1 expend + \beta_2 avginc + u$$
 (2)

- In each case, we can now *explicitly* hold constant the effects of the second variable when trying to estimate the *ceteris paribus* impact of the first.
- We still have to make assumptions of how u is related to each of the explanatory variables.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

5 / 29

The Multiple Regression Model

Models with Two Independent Variables

The General Regression Model with Two Independent Variables

The general form of the model in this case becomes;

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \tag{3}$$

where β_0 , β_1 , and β_2 are all parameters to be estimated.

- The interpretations of the parameters are similar to what we found in the simple regression model.
 - β_0 is the intercept, measuring the value of y when $x_1 = 0$, $x_2 = 0$ and u = 0.
 - β_1 measures the change in y for each unit change in x_1 holding all other factors fixed; i.e.,

$$\beta_1 = \frac{\Delta y}{\Delta x_1}$$
 if $\Delta x_2 = 0$ and $\Delta u = 0$. (4)

 β_2 measures the change in y for each unit change in x_2 holding all other factors fixed; i.e.,

$$\beta_2 = \frac{\Delta y}{\Delta x_2}$$
 if $\Delta x_1 = 0$ and $\Delta u = 0$. (5)

The General Regression Model with Two Independent Variables (cont'd)

- For each of the slope parameters, the interpretation requires holding all other factors fixed, including both the other observable factor (e.g., x_2 in the case of β_1) and the unobservable factors (i.e., u).
- Holding the observable factors fixed is straightforward, but holding the unobservable factors fixed is harder because they are unobservable.
- As in the simple regression model context, we instead have to rely on assumptions about the relationship between the observable and unobservable factors.
- The key assumption we will need is an extension of the zero conditional mean assumption; i.e.,

$$E(u|x_1,x_2) = 0. (6)$$

• Given this assumption, $E(y|x_1,x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

7 / 29

The Multiple Regression Model

Models with Two Independent Variables

Nonlinear Models

- The multiple regression model can also be used to incorporate nonlinear effects of an independent variable.
- For example, we might allow the impact of education to be nonlinear by specifying:

$$wage = \beta_0 + \beta_1 educ + \beta_2 educ^2 + u \tag{7}$$

- In this case, β_1 no longer captures the change in wage due to a change in education, holding everything else fixed, since we cannot change educ without also changing educ².
- Instead,

$$\frac{\Delta wage}{\Delta educ} \approx \frac{\partial wage}{\partial educ} = \beta_1 + 2\beta_2 educ \tag{8}$$

• We might, for example, expect $\beta_1 > 0$, with $\beta_2 < 0$.

Models with k Independent Variables

• Extending the multiple regression model to include *k* independent variables proceeds in the obvious way, with

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u \tag{9}$$

• The key assumption we now need for the relationship between u and the x's becomes

$$E(u|x_1, x_2, \dots, x_k) = 0.$$
 (10)

• Given this, our population regression function (PRF) becomes

$$E(y|x_1, x_2, \dots, x_k) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$
 (11)

• Departures from the PRF (the error term u) are essentially noise with an average value of zero in the population regardless of the value of the observable regressors (the \times 's).

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

9 / 29

The Mechanics and Interpretation of OLS

Deriving the OLS Estimator

OLS Estimator

- Suppose that we have n observations selected at random from the population; i.e., $\{(y_i, x_{i1}, \dots, x_{ik}) : i = 1, \dots, n\}$, where now x_{ik} denotes the value of the kth variable for the i^{th} observation.
- The OLS estimator of our parameters minimizes the sum of squared residuals; i.e.,

$$\min_{\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k} \sum_{i=1}^n \hat{u}_i^2 = \min_{\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k} \sum_{i=1}^n \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_k x_{ik} \right)^2$$

where

$$\hat{u}_{i} = y_{i} - \hat{y}_{i} = y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{i1} - \dots - \hat{\beta}_{k} x_{ik}$$
 (12)

denotes our fitted residual.

OLS Estimator (cont'd)

 The first order conditions for this minimization problem can be written as:

$$0 = \sum_{i=1}^{n} \left[y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \beta_k x_{ik} \right]$$

$$0 = \sum_{i=1}^{n} x_{i1} \left[y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \beta_k x_{ik} \right]$$

$$\vdots$$

$$0 = \sum_{i=1}^{n} x_{ik} \left[y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \beta_k x_{ik} \right]$$

• Just as was the case of the simple regression model, these can be written as the sample counterparts to the moment conditions E(u) = 0 and $Cov(x_i u) = 0$, j = 1, ..., k.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

11 / 29

The Mechanics and Interpretation of OLS

Deriving the OLS Estimator

An Explicit Formula for the OLS Estimator

- Writing out an explicit formula for the OLS estimator is easy to do using matrix algebra.
- Let
 - $\mathbf{y} = (y_1, \dots, y_n)'$ be an $n \times 1$ column vector containing the dependent variables:
 - $\mathbf{x}_i = (1, x_{i1}, \dots, x_{ik})$ be a $1 \times (k+1)$ row vector of regressors for individual i (including a constant);
 - $\mathbf{x} = [x_1' \ x_2' \ \cdots \ x_n']'$ be an $n \times (k+1)$ matrix, stacking the n row vectors of regressors x_1 through x_n .
 - $\mathbf{u} = (u_1, \dots, u_n)'$ be an $n \times 1$ column vector containing the error terms; and
 - $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_k)'$ be a $(k+1) \times 1$ column vector containing the error terms

An Explicit Formula for the OLS Estimator (cont'd)

Our linear model then becomes

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix} \boldsymbol{\beta} + \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$

$$= \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \vdots \\ \boldsymbol{x}_n \end{bmatrix} \boldsymbol{\beta} + \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$

$$(13)$$

... or more simply

$$\mathbf{y} = \mathbf{x}\boldsymbol{\beta} + \mathbf{u} \tag{14}$$

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

13 / 29

The Mechanics and Interpretation of OLS Interpreting OLS

An Explicit Formula for the OLS Estimator (cont'd)

The OLS Estimator solves

$$\min_{\hat{\beta}_{0},\hat{\beta}_{1},...,\hat{\beta}_{k}} \sum_{i=1}^{n} \left(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{i1} - \dots - \hat{\beta}_{k} x_{ik} \right)^{2}$$

$$= \min_{\hat{\beta}} \left(\mathbf{y} - \mathbf{x} \hat{\boldsymbol{\beta}} \right)' \left(\mathbf{y} - \mathbf{x} \hat{\boldsymbol{\beta}} \right)$$

$$= \min_{\hat{\beta}} \left[\mathbf{y}' \mathbf{y} - 2 \hat{\boldsymbol{\beta}}' \mathbf{x}' \mathbf{y} + \hat{\boldsymbol{\beta}}' \mathbf{x}' \mathbf{x} \hat{\boldsymbol{\beta}} \right] \tag{15}$$

• Several matrix differentiation rules help in solving this problem:

$$\frac{\partial \pmb{a}' \pmb{b}}{\partial \pmb{b}} = \frac{\partial \pmb{b}' \pmb{a}}{\partial \pmb{b}} = \pmb{a}$$
 where \pmb{a} and \pmb{b} are $n \times 1$ vectors. $\frac{\partial \pmb{b}' \pmb{A} \pmb{b}}{\partial \pmb{b}} = 2 \pmb{A} \pmb{b}$ for a symmetric matrix \pmb{A} .

2017 Herriges (MSU)

An Explicit Formula for the OLS Estimator (cont'd)

• The resulting first order conditions for this maximization are:

$$\mathbf{0}_{(k+1)\times 1} = -2\mathbf{x}'\mathbf{y} + 2(\mathbf{x}'\mathbf{x})\hat{\boldsymbol{\beta}}$$

$$\Rightarrow$$

$$\hat{\boldsymbol{\beta}} = (\mathbf{x}'\mathbf{x})^{-1}\mathbf{x}'\mathbf{y}$$
(16)

where $\mathbf{0}_{(k+1)\times 1}$ is a $(k+1)\times 1$ column vector.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

15 / 29

The Mechanics and Interpretation of OLS

Interpreting OLS

Interpreting OLS

 Recall that the population regression function (PRF), given the zero conditional mean assumption, is given by

$$E(y|x_1, x_2, \dots, x_k) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$
 (17)

- Note that $\beta_0 = E(y|x_1 = 0, x_2 = 0, \dots, x_k = 0)$.
- With OLS, and a random sample, we can construct an estimate of the PRF, the sample regression function (SRF) given by:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k \tag{18}$$

- The SRF can, in turn, be used for prediction and counterfactual analysis.
- For example, using the SRF, we can predict changes in y given changes in any or all of the regressors, with

$$\Delta \hat{y} = \hat{\beta}_1 \Delta x_1 + \hat{\beta}_2 \Delta x_2 + \dots + \hat{\beta}_k \Delta x_k \tag{19}$$

2017 Herriges (MSU)

Interpreting OLS (cont'd)

• If we set all but $\Delta x_1 = 0$, we get

$$\Delta \hat{y} = \hat{\beta}_1 \Delta x_1 \text{ given } \Delta x_2 = \Delta x_3 = \dots = \Delta x_k = 0$$
 (20)

or equivalently

$$\frac{\Delta \hat{y}}{\Delta x_1} = \hat{\beta}_1 \text{ given } \Delta x_2 = \Delta x_3 = \dots = \Delta x_k = 0$$
 (21)

- Thus, $\hat{\beta}_1$ provides an estimate of the partial effect of a change in x_1 on y, holding everything else constant.
- This is also known as the *ceteris paribus* effect of x_1 .
- The other slope terms have a similar interpretations.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

17 / 29

The Mechanics and Interpretation of OLS Interpreting

The "Partialling Out" Interpretation of $\hat{\beta}_k$

Consider again the two regressor case, with

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \tag{22}$$

- The OLS estimator for β_1 can be constructed using 2-step process:
 - Step 1: Estimate the following equation using OLS

$$x_1 = \delta_0 + \delta_1 x_2 + r_1 \tag{23}$$

and form the residuals $\hat{r}_1=x_1-\hat{x}_1=x_1-\left(\hat{\delta}_0+\hat{\delta}_1x_2\right)$.

2 Step 2: Estimate the following equation using OLS

$$y = \gamma_0 + \gamma_1 \hat{r}_1 + v \tag{24}$$

• One can show that $\hat{\beta}_1 = \hat{\gamma}_1$. This is numerically true, not just approximately true.

The "Partialling Out" Interpretation of $\hat{\beta}_k$ (cont'd)

Mathematically,

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \hat{r}_{i1} y_i}{\sum_{i=1}^n \hat{r}_{i1}^2}$$
 (25)

- The residuals \hat{r}_1 measure the portion of x_1 that is not related to x_2 ; i.e., we have "partialled out" (or "controlled for") that part of x_1 that is related to x_2 .
- $\hat{\beta}_1$ then captures that part of x_1 unrelated to x_2 that explains the variation in y.
- ullet A similar result can be obtained for \hat{eta}_2
- One can extend this result to the case with *k* regressors.
- The residuals \hat{r}_1 are then obtained by regressing x_1 on all the other regressors.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

19 / 29

The Mechanics and Interpretation of OLS

Interpreting OLS

Mathematical Properties of the OLS Estimator

- The mathematical properties of the OLS estimator carry over from the simple regression model to the multiple regression model context in obvious ways.
- In particular, letting $\hat{u}_i \equiv y_i \hat{y}_i$ denote residual for individual i,
 - The sample average of the residuals is zero and $\bar{y}=\hat{\hat{y}}.$
 - The sample covariance between each independent variable and \hat{u}_i is zero and the sample covariance between \hat{y} and \hat{u}_i is zero.
 - The point $(\bar{x}_1,\ldots,\bar{x}_k,\bar{y})$ is on the fitted regression line.

Goodness of Fit

• We saw in the previous chapter that R^2 provides one measure of how well a given model "fits" the data, where

$$R^{2} = \frac{SSE}{SST} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} \in [0, 1]$$
 (26)

- The same metric can be used the multiple regression context.
- The R^2 has all of the same advantages and disadvantages we saw in the simple regression model.
- Another representation of the R^2 statistic is

$$R^{2} = \frac{\left[\sum_{i=1}^{n} (y_{i} - \bar{y})(\hat{y}_{i} - \bar{\hat{y}})\right]}{\left[\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}\right] \left[\sum_{i=1}^{n} (\hat{y}_{i} - \bar{\hat{y}})^{2}\right]}$$
(27)

which is just the sample correlation between y_i and \hat{y}_i .

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

21 / 29

The Expected Value of the OLS Estimators

The Expected Value of the OLS Estimators

- Under conditions similar to those discussed in chapter 2, the OLS estimator will be unbiased.
- It is important to keep in mind the distinction between the estimator and the estimates.
 - An *estimator* is a rule for combining data to produce a numerical value for a population parameter; the form of the rule does not depend upon the particular sample obtained.
 - ... In the case of OLS, the estimator is $\hat{\beta} = (x'x)^{-1}x'y$.
 - An *estimate* is the numerical value taken on by an estimator for a particular sample of data.
 - The estimator is a random variable, because it is a function of random variables, whereas an estimate is not.

First Four Assumptions and the Unbiasedness of OLS

MLR.1 (Linear in Parameters): In the population, the dependent variable y is related to the independent variables x_1, \ldots, x_k and the error u as

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u.$$
 (28)

MLR.2 (Random Sampling): We have a random sample size of n, $\{(x_{i1},\ldots,x_{ik},y_i):i=1,\ldots,n\}$, following the population model (28). MLR.3 (No Perfect Collinearity): None of the independent variables are constant and there are no exact *linear* relationships among the independent variables.

MLR.4 (Zero Conditional Mean): The error u has an expected value of zero given any value of the explanatory variable; i.e.,

$$E(u|x_1,\ldots,x_k)=0 (29)$$

• Theorem 3.1: Under assumptions MLR.1 through MLR.4, the OLS estimator is unbiased; i.e., $E(\hat{\beta}_j) = \beta_j$ for j = 0, ..., k.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

23 / 29

The Expected Value of the OLS Estimators

Specification Errors

- There are two obvious specification errors that we might worry about:
 - 1. Including an irrelevant variable.
 - Suppose the true model is

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \tag{30}$$

and we estimate

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u \tag{31}$$

- OLS is still an unbiased estimator, since *unbiasedness* holds regardless of the true value of the parameters, even $\beta_i = 0$.
- Including an irrelevant variable will, however, impact the variance of the OLS estimator.
- 2. Omitting a Relevant Variable
 - For example, if (30) is the true model and we estimate.

$$y = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \tilde{u} \tag{32}$$

Omitted Variables Bias

- It turns out that there is a simple relationship between between the OLS estimator for $\tilde{\beta}_1$ and the OLS estimator for β_1 .
- Specifically,

$$\hat{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \hat{\delta}_1 \tag{33}$$

where $\hat{\delta}_1$ is the OLS estimator for δ_1 in a simple regression of x_2 on x_1 .

• One can, in turn, show that

$$E(\hat{\tilde{\beta}}_1) = \beta_1 + \beta_2 \delta_1 \tag{34}$$

- The implications:
 - OLS will be unbiased if either $\beta_2=0$ or $\delta_1=0$.
 - The size and direction of the bias will depend on the sign and size of $\beta_2\delta_1$
- With multiple regressors, the sign and size of the bias is less clear.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

25 / 29

The Variance of the OLS Estimators

The Variance of the OLS Estimators

- Assumption MLR.5 (Homoskedasticity): The error u has the same variance given any values of the explanatory variables; i.e., $Var(u|x_1,...,x_k) = \sigma^2$.
- Theorem 3.2: Under Assumptions MLR.1 through MLR.5

$$Var(\hat{\beta}_j|\mathbf{x}) = \frac{\sigma^2}{SST_j(1 - R_j^2)}$$
(35)

where

$$SST_{j} = \sum_{i=1}^{n} (x_{ij} - \bar{x}_{j})^{2}$$
 (36)

and R_j^2 is the R^2 from a regression of x_j on all the other covariates (including a constant).

• Equation (35) makes clear what factors influence $Var(\hat{\beta}_j|\mathbf{x})$.

The Variance of the OLS Estimators (cont'd)

 In matrix notation, using only assumptions MLR.1 through MLR.4, we have

$$Cov(\hat{\beta}|\mathbf{x}) = E\{[\hat{\beta} - \beta][\hat{\beta} - \beta]'|\mathbf{x}\}\$$

$$= E\{[(\mathbf{x}'\mathbf{x})^{-1}\mathbf{x}'\mathbf{y} - \beta][(\mathbf{x}'\mathbf{x})^{-1}\mathbf{x}'\mathbf{y} - \beta]'|\mathbf{x}\}\$$

$$= E\{[\beta + (\mathbf{x}'\mathbf{x})^{-1}\mathbf{x}'\mathbf{u} - \beta][\beta + (\mathbf{x}'\mathbf{x})^{-1}\mathbf{x}'\mathbf{u} - \beta]'|\mathbf{x}\}\$$

$$= E\{[(\mathbf{x}'\mathbf{x})^{-1}\mathbf{x}'\mathbf{u}][(\mathbf{x}'\mathbf{x})^{-1}\mathbf{x}'\mathbf{u}]'|\mathbf{x}\}\$$

$$= (\mathbf{x}'\mathbf{x})^{-1}E\{\mathbf{x}'\mathbf{u}\mathbf{u}'\mathbf{x}|\mathbf{x}\}(\mathbf{x}'\mathbf{x})^{-1}$$
(37)

- These are the so-called robust variances.
- Adding assumption MLR.5, equation (37) reduces to

$$Cov(\hat{\boldsymbol{\beta}}|\boldsymbol{x}) = \sigma^2(\boldsymbol{x}'\boldsymbol{x})^{-1}$$
(38)

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

27 / 29

The Variance of the OLS Estimators

Estimating σ^2

- In practice, one will almost never know σ^2 .
- Assumptions MLR.1 through MLR.5 are jointly known as *The Gauss-Markov assumptions*.
- Theorem 3.3: Under the Gauss-Markov assumptions, $\hat{\sigma}^2$ is an unbiased estimator of σ^2 ; i.e.,

$$E\left(\hat{\sigma}^2\right) = \sigma^2. \tag{39}$$

where

$$\hat{\sigma}^2 = \frac{1}{n-k-1} \sum_{i=1}^n \hat{u}^2 = \frac{SSR}{n-k-1}$$
 (40)

• The standard error of \hat{eta}_j becomes

$$se(\hat{\beta}_j) = \frac{\hat{\sigma}}{\sqrt{SST_j(1 - R_j^2)}} \tag{41}$$

The Gauss-Markov Theorem

- Theorem 3.4: Under Assumptions MLR.1 through MLR.5, the OLS estimator $(\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k)$ are the best linear unbiased estimators (BLUE's) of $\beta_0, \beta_1, \dots, \beta_k$, respectively, where
 - best means lowest variance;
 - linear refers to the fact that the estimator, say $\check{\beta}$, is a linear function of the data on the dependent variable; e.g.,

$$\check{\beta}_j = \sum_{i=1}^n w_{ij} y_i \tag{42}$$

• So, among all possible linear unbiased estimators, OLS provides the lowest variance estimator given assumptions MLR.1 through MLR.5.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

29 / 29