Tầng liên kết và các mạng LAN: Nội dung

- 5.1 Giới thiệu, các dịch vụ
- 5.2 Phát hiện và sửa lỗi
- 5.3 Các giao thức đa truy nhập
- 5.4 Các mạng LAN
 - Đinh địa chỉ, ARP
 - Ethernet
 - Các switch
 - Các VLAN

- 5.5 Chuyển mạch nhãn đa giao thức (MPLS)
- 5.6 Mạng trung tâm dữ liệu
- 5.7 Vòng đời của một yêu cầu web

Tầng liên kết 5-41

Địa chỉ MAC và ARP

- Dia chỉ IP 32-bit:
 - Địa chỉ tầng mạng cho giao diện
 - Được dùng cho việc chuyển tiếp gói tin tại tầng 3 (tầng mạng)
- Địa chỉ MAC (hoặc LAN/vật lý/Ethernet):
 - Chức năng: được dùng "cục bộ" để lấy frame từ một giao diện với một giao diện được kết nối vật lý khác (cùng mạng)
 - Địa chỉ MAC có 48 bit (cho hầu hết các LAN) được ghi sẵn trong bộ nhớ ROM của NIC, (đôi khi cũng được thiết lập bởi phần mềm)
 - Ví du: 1A-2F-BB-76-09-AD

Ký hiệu trong hệ cơ số 16 (mỗi "số" biểu diễn cho 4 bit)

Địa chỉ LAN (tiếp)

- Việc cấp phát địa chỉ MAC được quản lý bởi IEEE
- Nhà sản xuất mua phần không gian địa chỉ MAC (để đảm bảo là duy nhất)
- So sánh:
 - Địa chỉ MAC: như số chứng minh nhân dân
 - Địa chỉ IP: như số điện thoại
- ♦ Địa chỉ MAC phẳng → có thể di chuyển
 - Có thể chuyển card từ LAN này sang LAN khác
- Địa chỉ phân cấp IP không thể di chuyển
 - Địa chỉ IP phụ thuộc vào IP subnet mà nút được gắn vào

ARP: address resolution protocol

Hỏi: Làm thế nào để xác định địa chỉ MAC của một giao diện khi biết đia chỉ IP?

Bảng ARP: mỗi nút IP (host, router) trên LAN có một bảng ARP.

- Ánh xạ địa chỉ IP/MAC cho một số nút LAN:
 - < địa chỉ IP; địa chỉ MAC; TTL>
- TTL (Time To Live): thời gian sau đó ánh xạ địa chỉ sẽ bị hủy (thường là 20 phút)

Tầng liên kết 5-45

Giao thức ARP: cùng LAN

- A muốn gửi datagram tới B
 - Địa chỉ MAC của B không có trong bảng ARP của A.
- A quảng bá (broadcasts) gói tin truy vấn ARP, chứa địa chỉ IP của B
 - Địa chỉ MAC đích = FF-FF-FF-FF-FF
 - Tất cả các nút trên LAN đều nhân truy vấn ARP
- B nhận được gói tin ARP, sẽ trả lời A với địa chỉ MAC của mình.
 - Frame được gửi tới địa chỉ MAC của A (unicast)

- A ghi lại cặp địa chỉ IPto-MAC trong bảng ARP của nó cho đến khi thông tin bị timeout.
 - Trạng thái mềm: thông tin này sẽ bị timeout trừ khi được làm mới lai.
- ARP là "plug-and-play":
 - Các nút tạo ra bảng ARP của nó mà không cần bất kỳ sự can thiệp nào từ nhà quản trị mạng.

Định địa chỉ: định tuyến tới LAN khác

Tình huống: gửi datagram từ A tới B qua R

- Tập trung vào định địa chỉ tại IP (datagram) và tầng MAC (frame)
- Giả thiết A biết địa chỉ IP của B
- Giả thiết A biết địa chỉ IP của router hop đầu tiên, là R (thì như thế nào?)
- Giả thiết A biết địa chỉ MAC của R (thì như thế nào?)

Tầng liên kết 5-47

Định địa chỉ: định tuyến tới LAN khác

- A tạo IP datagram với IP nguồn A, đích B
- A tạo frame tầng liên kết với địa chỉ MAC của R là đích, frame chứa IP datagram từ A-tới-B

Định địa chỉ: định tuyến tới LAN khác Frame được gửi từ A tới R Frame được nhân tại R, datagram được chuyển lên tầng IP MAC src: 74-29-9C-E8-FF-55 MAC dest: E6-E19-60e1718B141B111.111 IP src: 111.11111111111222.222.222.222 | IP dest: 222 222.222 ΙP Eth Eth Phy Phy В 111.111.111.111 222 222 222 222 74-29-9C-E8-FF-55 49-BD-D2-C7-56-2A 222.222.222.220 1A-23-F9-CD-06-9B 111.111.111.110 222.222.222.221 E6-E9-00-17-BB-4B 88-B2-2F-54-1A-0F CC-49-DE-D0-AB-7D Tầng liên kết 5-49

Định địa chỉ: định tuyến tới LAN khác

- R chuyển tiếp datagram với địa chỉ IP nguồn A, đích B
- R tạo frame tầng liên kết với địa chỉ MAC của B là đích, frame chứa IP datagram từ A-tới-B

Tầng liên kết và các mạng LAN: Nội dung

- 5.1 Giới thiệu, các dịch vụ
- 5.2 Phát hiện và sửa lỗi
- 5.3 Các giao thức đa truy nhập
- 5.4 Các mạng LAN
 - Đinh địa chỉ, ARP
 - Ethernet
 - Các switch
 - Các VLAN

- 5.5 Chuyển mạch nhãn đa giao thức (MPLS)
- 5.6 Mạng trung tâm dữ liệu
- 5.7 Vòng đời của một yêu cầu web

Ethernet

"Thống trị" công nghệ mạng LAN có dây:

- * Rẻ hơn \$20 cho NIC
- Công nghệ LAN được sử dụng phổ biến đầu tiên
- Đơn giản, rẻ hơn so với token LAN và ATM
- Giữ tốc độ trung bình từ: 10 Mbps 10 Gbps

Phác họa Ethernet của Metcalfe

Tầng liên kết 5-53

Ethernet: cấu trúc vật lý

- Bus: phổ biến cho đến giữa thập niên 90
 - Tất cả các nút đều nằm trong vùng tranh chấp (có thể tranh chấp với các nút khác)
- * Star (hình sao): chiếm ưu thế hiện nay
 - Switch hoạt động ở trung tâm
 - Mỗi "chi nhánh" (văn phòng, spoke) chạy một giao thức Ethernet (riêng) (các nút không tranh chấp với nút khác)

Cấu trúc Frame của Ethernet

Gửi IP datagram (hoặc gói giao thức tầng mạng khác) đã được đóng gói trong frame của Ethernet

Trường preamble:

- 7 byte với mẫu 10101010 được theo sau bởi một byte với mẫu 10101011.
- Được dùng để đồng bộ tốc độ của bên nhận, bên gửi.

Tầng liên kết 5-55

Cấu trúc Frame của Ethernet (tiếp)

- Các trường địa chỉ (nguồn và đích): 6 byte địa chỉ MAC nguồn và đích
 - Nếu adapter nhận frame với địa chỉ đích phù hợp, hoặc địa chỉ quảng bá (ví dụ: gói ARP), thì nó sẽ chuyển dữ liệu trong frame tới giao thức tầng mạng.
 - Ngược lại, adapter sẽ bỏ qua frame
- Trường type: chỉ ra giao thức tầng cao hơn (thường là IP nhưng cũng có thể là giao thức khác, ví dụ như Novell IPX, AppleTalk)
- Trường CRC: kiểm tra mã vòng dư thừa tại phía nhận
 - Phát hiện có lỗi: hủy bỏ frame

Ethernet: truyền không tin cây, không hướng kết nối

- Không hướng kết nối: không có bắt tay giữa bên NIC gửi và bên NIC nhận
- Không tin cậy: NIC nhận không gửi báo nhận (ACK) hoặc NACK) cho NIC gửi
 - Dữ liệu trong các frame đã bị hủy chỉ được khôi phục lại khi bên gửi khởi tạo việc dùng giao thức truyền tin cây (rdt) ở tầng trên (ví dụ: TCP), còn không thì dữ liệu đó sẽ bi mất.
- Giao thức MAC của Ethernet: CSMA/CD

Tầng liên kết 5-57

Chuẩn Ethernet 802.3: tầng liên kết và tầng vật lý

- Có nhiều chuẩn Ethernet khác nhau
 - Giao thức MAC và định dạng frame chung
 - Tốc độ khác nhau: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10G bps
 - Phương tiện tầng vật lý khác nhau: cáp quang, cáp

