Лагранжа:

Ньютона (разделённые разности):

$$\begin{split} f(x_0) + \sum_{k=1}^n & \left(f(x_0...x_k) \cdot \prod_{j=0}^{k-1} \left(x - x_j \right) \right) \\ f(x_i...x_{i+k}) &= \frac{f(x_{i+1}...x_{i+k}) - f(x_i, x_{i+k-1})}{x_{i+k} - x_i} \end{split}$$

Последовательно считаем $f(x_0), f(x_0, x_1), ..., f(x_0...x_n)$

Ньютона (конечные разности):

$$\Delta^k y_i = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_i$$

$$\Delta^0 y_i = y_i$$

Пусть $h=x_1-x_0$. Тогда:

1. X лежит в левой половине отрезка и пусть $t = \frac{X - x_0}{h}$:

$$N_n(x) = \Delta^0 y_i + t \Delta^1 y_i + \frac{t(t-1)}{2!} \Delta^2 y_i + \ldots + \frac{t(t-1)\cdots(t-n+1)}{n!} \Delta^n y_i$$

x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$	$\Delta^5 y_i$	$\Delta^6 y_i$
x_0	y_0	Δy_0	$\Delta^2 y_0$	$\Delta^3 y_0$	$\Delta^4 y_0$	$\Delta^5 y_0$	$\Delta^6 y_0$
x_1	y_1	Δy_1	$\Delta^2 y_1$	$\Delta^3 y_1$	$\Delta^4 y_1$	$\Delta^5 y_1$	
x_2	y_2	Δy_2	$\Delta^2 y_2$	$\Delta^3 y_2$	$\Delta^4 y_2$		
x_3	y_3	Δy_3	$\Delta^2 y_3$	$\Delta^3 y_3$			
x_4	y_4	Δy_4	$\Delta^2 y_4$				
x_5	y_5	Δy_5					
<i>x</i> ₆	y_6						

2. X лежит в правой половине отрезка и пусть $t = \frac{X - x_n}{h}$:

$$N_n(x) = \Delta^0 y_n + t \Delta^1 y_{n-1} + \frac{t(t+1)}{2!} \Delta^2 y_{n-2} + \dots + \frac{t(t+1) \cdots (t+n-1)}{n!} \Delta^n y_0$$

Nº	xi	y _i	$\Delta \mathbf{y_i}$	$\Delta^2 \mathbf{y_i}$	$\Delta^3 \mathbf{y_i}$	$\Delta^4 y_i$
0	0, 1	1, 25	$\Delta y_0 = 1, 13$	$\Delta^2 y_0 = 0, 28$	$\Delta^3 \mathbf{y_0} = -0, 04$	$\Delta^4 y_0 = -0, 15$
1	0, 2	2,38	$\Delta y_1 = 1,41$	$\Delta^2 y_1 = 0, 24$	$\Delta^3 \mathbf{y_1} = -0, 19$	
2	0,3	3,79	$\Delta \mathbf{y}_2 = 1, 65$	$\Delta^2 \mathbf{y}_2 = 0, 05$		
3	0,4	5,44	$\Delta y_3 = 1, 7$			
4	0, 5	7, 14				

$$\Gamma$$
аусса: Пусть $h=x_1-x_0, t=rac{x-x_0}{h}$