Работа №2: Определение постоянной Хаббла

Выполнил: Павел Соболев

Задачи

- Получить спектр галактики в скоплении, используя моделируемый с помощью компьютера телескоп и спектрометр;
- Измерив длины волн линий Н и К (Са II) в спектре, определить Доплеровское смещение;
- Определить видимую звездную величину галактики;
- Вычислить расстояние, используя видимую и абсолютную величины;
- Определить значение постоянной Хаббла.

Ход выполнения и результаты

В ходе работы с виртуальным телескопом и спектрометром были получены следующие данные:

Таблица 1: Звездные величины и длины волн

Скопление	Код объекта	Зв. величина	K Ca II (λ,I)	H Ca II (λ,I)	G Band (λ, I)
Ursa Major II	uma2-1	16.87	4484.0,0.465	_	_
Ursa Major I	uma1-3	14.49	4130.0, 0.315	4167.0, 0.315	_
Coma Berenices	Coma1	12.30	4012.0, 0.255	4048.0, 0.265	4391.0, 0.605
Bootes	Boot1	16.52	4445.0, 0.465	4485.0, 0.485	_
Corona Borealis	CrBor1	15.08	4209.0, 0.330	4246.0, 0.345	_
Sagittarius	GAS	10.98	3973.0, 0.235	4008.0, 0.255	4348.0, 0.600

Пропуски означают отсутствие линии в наблюдаемом участке спектра.

Звездные величины были пересчитаны в расстояния согласно

$$M = m + 5 - 5 \log D$$
, $\implies \log D = (m - M + 5) / 5$,

где абсолютная звездная величина M полагается равной -22^m для всех объектов.

Замеры линий были пересчитаны в доплеровские смещения и скорости согласно

$$\Delta \lambda = \lambda_{\text{измер.}} - \lambda_{\text{станд.}},$$

$$v_K = c \frac{\Delta \lambda_K}{\lambda_{K, \text{станд.}}}, \quad v_H = c \frac{\Delta \lambda_H}{\lambda_{H, \text{станд.}}},$$

где $\lambda_{K,\text{станд.}} = 3933.67$ Å, $\lambda_{H,\text{станд.}} = 3968.847$ Å, c = 299792.458 км/с.

Результаты вычислений:

Таблица 2: Расстояния и скорости

Скопление	Код объекта	Расстояние	Скорость
Ursa Major II	uma2-1	594.29	41941.69 ± 76.21
Ursa Major I	uma1-3	198.61	14965.22 ± 53.65
Coma Berenices	Coma1	72.44	5974.31 ± 53.65
Bootes	Boot1	505.83	38978.89 ± 53.65
Corona Borealis	CrBor1	260.62	20959.28 ± 53.65
Sagittarius	GAS	39.45	2977.45 ± 53.65

Построенная на основе этих данных диаграмма Хаббла выглядит следующим образом:

Рис. 1: Диаграмма Хаббла

Коэффициент вписанной прямой (он же постоянная Хаббла) равен 74.151 ± 0.077 км/с/Мпк.