Московский Физико-Технический Институт (государственный университет)

Петля гистерезиса (динамический метод)

Цель работы

Исследование предельных петель гистерезиса и начальных кривых намагничивания для нескольких ферромагнитных образцов; определение магнитных характеристик материалов, чувствительность каналов X и Y осциллографа и постоянную времени τ интегрирующей цепочки.

В работе используются

автотрансформатор, понижающий трансформатор, амперметр и вольтметр, резистор, делитель напряжения, интегрирующая цепочка, электронный осциллограф, тороидальные образцы с двумя обмотками.

Экспериментальная установка

Действующее значение переменного тока в обмотке N_0 измеряется амперметром A. Последовательно с амперметром включено сопротивление R_0 , напряжение с которого подается на вход X электронного осциллографа. Это напряжение пропорционально току в обмотке N_0 , а следовательно и напряженности H магнитного поля в образце.

Для измерения магнитной индукции B с измерительной обмотки N_u на вход интегрирующей RC-цепочки подается напряжение $U_{\tt u}(U_{\tt ex})$, пропорциональное \dot{B} , а, с выхода снимается напряжение $U_c(U_{\tt ewx})$, пропорциональное величине B, а подается на вход Y.

Теория

Измерение напряжения с помощью осциллографа

Исследуемый сигнал подается на вход X; длина 2x горизонтальной черты, наблюдаемой на экране, характеризует удвоенную амплитуду сигнала.

Если известна чувствительность усилителя K_x в вольтах на деление шкалы экрана, то удвоенная амплитуда напряжения определяется произведением

$$2U_{X,0} = 2x \cdot K_x$$

Напряжение, подаваемое на вход Y определяется аналогично.

Калибровку осей осциллографа можно использовать для построения кривой гистерезиса в координатах B и H:

Зная величину сопротивления R_0 , с которого снимается сигнал, можно определить чувствительность канала по току $K_{XI}=\frac{K_x}{R_0}$ [А/дел]; затем, используя формулу

$$H = \frac{IN_0}{2\pi R} \tag{1}$$

определить цену деления шкалы в А/м.

Используя формулу

$$B = \frac{R_{\text{\tiny H}} C_{\text{\tiny H}} U_{\text{\tiny BbIX}}}{S N_{\text{\tiny H}}} \tag{2}$$

можно рассчитать цену деления вертикальной шкалы в теслах.

Проверка калибровки горизонтальной оси ЭО с помощью амперметра

проводится при закороченной обмотке N_0 . Эта обмотка с помещенным в нее ферромагнитным образцом является нелинейным элементом, так что ток в ней не имеет синусоидальной формы, и это не позволяет связать амплитуду тока с показаниями амперметра.

$$m_X = \frac{2\sqrt{2}R_0 I_{s\phi}}{2x} [B/дел] \tag{3}$$

Проверка калибровки вертикальной оси ЭО с помощью вольтметра

Сигнал с обмотки 12,6 В понижающего трансформатора подается на делитель напряжения. Часть этого напряжения снимается с делителя с коэффициентом деления $K_{\rm Д}$ (1/10 или 1/100) и подается на вход Y. Мультиметр V измеряет напряжение $U_{\rm эф}$ на этих же клеммах делителя.

Далее по формуле

$$m_Y = \frac{2\sqrt{2}U_{9\Phi}}{2u}[B/дел] \tag{4}$$

можно рассчитать чувствительность канала Y.

Постоянная времени *RC*-цепочки

Рассчитывается по формуле

$$RC = \frac{U_{\text{BX}}}{\Omega U_{\text{BLIY}}} \tag{5}$$

Задание

Измерение петли гистерезиса

- 1. Соберем схему экспериментальной установки. Подберем ток питания в намагничивающей обмотке, так чтобы на экране ЭО наблюдалась предельная петля гиперэкстезиса. Сфотографируем данную картину и запишем значения коэффициентов усиления K_x и K_y осциллографа и действующее значение тока I в намагничивающей обмотке.
- 2. По экрану ЭО измерим полную ширину и высоту ($[2X_s]$ и $[2Y_s]$), соответствующие удвоенной амплитуде колебания напряженности H_s и индукции B_s поля в образце в состоянии насыщения.
- 3. По экрану ЭО измерим двойные амплитуды для коэрцитивного поля $[2X_c]$ и остаточной индукции $[2Y_r]$.
- 4. Процедем измерение начальной кривой намагничивания. Плавно уменьшая амплитуду намагничивания до нуля, будем фиксировать по экрану осциллографа положения крайних точек, наблюдаемых частных петель. Запишем материал образца и параметры тороида.
- 5. Повторим измерения пп. 1-4 для остальных катушек.

Калибровка осциллографа

- 6. Проведем калибровку горизонтальной оси осциллографа, для этого не разбирая экспериментальную установку «закоротим» намагничивающую обмотку N_0 .
 - Измерим длину наблюдаемой развертки по оси X, при некотором фиксированном токе I, близком к току насыщения петли гистерезиса. Проведем измерения для всех значений K_x , использовавшихся в работе.
- 7. Для проверки калибровки вертикальной оси ЭО подключим вольтметр и осциллограф к делителю 1:100 и сравним показания вольтметра и осциллографа. Оценим погрешность измерений амплитуды с помощью осциллографа.

Определение параметров RC-ячейки

8. Измерим постоянную времени RC-ячейки τ_u . Измерим отношение входного и выходного напряжений U_{ex}/U_{ewx} ячейки с помощью осциллографа. Рассчитаем постоянную времени.

9. Сравним результат с расчетом непосредственно через R_u и $_u$, указанными на установке.

Ход работы

Петля гистерезиса

	Пермаллой	Феррит	Кремнистое железо
N_0 , витков	40	35	35
$N_{\it M}$, витков	200	400	350
$S, c M^2$	3,8	3	1,2
$2\pi r, cM;$	24	25	10

Таблица 1. Некоторые характеристики образцов.

Запишем параметры установки.

R_0 , O_M	0,3
$R_{\it M}$, Ом	20
$C_{\mathcal{U}}, \ \mathcal{M}\kappa \Phi$	20

Таблица 2. Некоторые параметры установки.

	Величина	σ	Величина	σ	Величина	σ
	Пермаллой		Феррит 1000нн		Кремнистое железо	
Петля		4000				
$I_{9\Phi}, A$	0,690	0,001	1,060	0,001	1,000	0,001
[2x(c)], ед	9,2	0,2	10,0	0,2	9,6	0,2
[2y(s)], ед	4,0	0,2	5,2	0,2	7,2	0,2
K_x , м $\mathrm{B}/\mathrm{дел}$	100	0	100	0	100	0
K_y , м $\mathrm{B}/\mathrm{дел}$	100	0	20	0	50	0
<i>H</i> , (A/м)/дел	0,556	0	0,467	0	1,167	0
H_c , A/M	5,12	0,11	4,67	0,09	11,21	0,23
В, Тл/дел	0,526	0	0,067	0	0,476	0
B_s , Тл	2,11	0,11	0,347	0,013	3,42	0,09

Таблица 3. Данные, полученные из петли гистерезиса.

Проверка калибровки оси Х

Отключаем намагничивающую обмотку от цепи, соединив оба провода, идущих к обмотке, на одной из ее клемм.

Подбираем такой ток, чтобы горизонтальная прямая занимала большую часть экрана. Рассчитаем чувствительность канала m_X по формуле (3).

Результаты смотри в таблице 4.

Проверка калибровки оси Ү

Разберем цепь. Соединим вход Y с клеммами делителя "1/100-земля". Не меняя рабочего коэффициента K_Y , подберем с помощью трансформатора напряжение, при котором вертикальная прямая занимает почти весь экран. Измеряем длину 2y. Запишем данные из двух вышеизложенных пунктов в таблицу. Рассчитаем m_Y по формуле (4).

	Величина	σ
m_X , $[\mathrm{B}/\mathrm{дел}]$	0,092	0,002
K_X , [В/дел]	0,1	0
m_Y , [В/дел]	0,0198	0,0004
K_Y , [В/дел]	0,02	0
m_Y , [В/дел]	0,0964	0,0006
K_Y , [В/дел]	0,1	0

Таблица 4. Калибровка осей осциллографа.

По таблице видим, что соответствующие K и m равны с точностью до погрешности.

Расчет au постоянной времени для цепочки

Запишем все полученные данные в таблицу и посчитаем τ по формуле (5) и через параметры установки.

	Значение	Ошибка
$U_{\rm BX}$, B	6,5	0,2
$U_{\text{вых}}, B$	0,048	0,002
$ au_{\mathrm{reop}}, \mathrm{c}$	0,43	0,02
$ au_{\scriptscriptstyle 9KCII},\mathrm{c}$	0,40	0

Таблица 5. Измерение τ .

Начальный кривые намагничивания

Зарисуем графики начальных кривых намагничивания для наших образцов.

По графикам определим $\mu_{\text{диф}} = dB/dH$. Значения для $\mu_{\text{диф}}$ запишем прямо на графиках. Красная прямая будет отражать начальное значение дифференциальной магнитной проницаемости, а черная максимальное значение. Для Феррита начальное и максимальное значение совпадают.

Сравним H_c , B_s и $\mu_{\text{лиф}}$ с табличными.

	Ампл.	Fe-Ni	Fe-Si	Феррит
эксп	H_c , A/M	$5,12 \pm 0,11$	$11,21 \pm 0,23$	$4,67 \pm 0,09$
табл	$ I_c, \Lambda ^{\mathrm{M}}$	5,6	12	4-100
эксп	B_s , Тл	$2,11 \pm 0,11$	$3,42 \pm 0,09$	$0,347 \pm 0,013$
табл	D_s , 1.11	1,6	2,01	0,3-0,4
эксп	.,	$0,47 \pm 0,03$	$0,544 \pm 0,018$	$0,434 \pm 0,064$
табл	$\mu_{ ext{ iny Ha} ext{ iny Ha}}$	$1, 2 \cdot 10^3$	$9 \cdot 10^{3}$	10 - 2000
эксп		$6,149 \pm 0,347$	$6,512 \pm 0,209$	$0,434 \pm 0,064$
табл	$\mu_{ ext{makc}}$	$3,5\cdot 10^3$	$4 \cdot 10^4$	10 - 2000

Таблица 6. Сверка с табличными значениями.

