Dynamic Programming

日月卦長

- ●給你 2 × n 的地板
- 你要用 2 × 1 的磁磚將其鋪滿
- 請問有幾種方法?

• 觀察這些方法

●得到關係式

•
$$f_n = \begin{cases} 1, & n \le 1 \\ f_{n-1} + f_{n-2}, & n > 1 \end{cases}$$

●得到關係式

•
$$f_n = \begin{cases} 1 & , n \le 1 \\ f_{n-1} + f_{n-2}, n > 1 \end{cases}$$

很慢 $O(2^n)$

DP的本質:避免重覆計算

```
long long f(int n) {
  if (n <= 1) return 1;
  return f(n - 1) + f(n - 2);
}</pre>
```



```
map<int, long long> DP;
long long f(int n) {
  if (n <= 1) return 1;
  if (DP.count(n)) return DP[n];
  return DP[n] = f(n - 1) + f(n - 2);
}</pre>
```

Dynamic Programming

•無後效性: 相同的參數會得到相同的答案

• 重複子問題: 過程中相同的參數會重複出現

• 最佳子結構: 原問題的最佳解其子問題的解也是最佳的

Longest Increasing Subsequence

- https://leetcode.com/problems/longest-increasing-subsequence/
- •輸出最長遞增子序列長度

• Input: S = [0,3,1,6,2,2,7,-1]

• Output: 4 其中一個最長遞增子序列為: [0,1,2,7]

dfs(i) 計算 S[i] 為結尾的 LIS

```
vector<int> S;
int dfs(int i) {
 int ans = 0;
 for (int j = 0; j < i; ++j) {
   if (S[i] > S[j])
      ans = max(ans, dfs(j));
 return ans + 1;
int solve() {
 int ans = 0;
 for (int i = 0; i < S.size(); ++i)
    ans = max(ans, dfs(i));
  return ans;
```

避免重複計算

```
vector<int> S;
vector<int> DP;
int dfs(int i) {
 if(DP[i]) return DP[i];
 int ans = 0;
 for (int j = 0; j < i; ++j) {
   if (S[i] > S[j])
      ans = max(ans, dfs(j));
 return DP[i] = ans + 1;
int solve() {
 DP.assign(S.size(), 0);
 int ans = 0;
  for (int i = 0; i < S.size(); ++i)
    ans = max(ans, dfs(i));
  return ans;
```

時間複雜度

●遞迴通常都不太好算時間複雜度

• 但因為我們避免重複計算 $dfs(0)\sim dfs(n-1)$ 只會各被計算一次

• 每次計算 dfs 的過程都是 O(n)

• 所以總共 $n \times O(n) = O(n^2)$

知道計算的順序就能用迴圈做

```
vector<int> S;
int solve() {
  vector<int> DP(S.size());
 int ans = 0;
  for (int i = 0; i < S.size(); ++i) {
   DP[i] = 0;
   for (int j = 0; j < i; ++j) {
     if (S[i] > S[j])
       DP[i] = max(DP[i], DP[j]);
   DP[i] += 1;
    ans = max(ans, DP[i]);
  return ans;
```

狀態、狀態轉移式 state transition equation

● 設 DP_i 表示以 S[i] 為結尾時的 LIS 長度

狀態

xD/yD 表示法

●表示該 DP 的時間複雜度為 $O(n^{x+y})$

- 大多數 DP 時間複雜度 = 狀態數 × 狀態轉移時間
 - 狀態數有 $O(n^x)$
 - 狀態轉移時間 $O(n^y)$

• EX: 剛剛的 LIS 是 1D/1D 的 DP ,複雜度 $O(n^{1+1}) = O(n^2)$

作法分類

• Top Down: 用遞迴, 記錄所有狀態的計算結果避免重複計算

• Botton Up: 知道每個狀態的計算順序,按造順序推出目標狀態通常用迴圈就能搞定

一般思考流程

想不到轉移式、複雜度太高

Longest Common Subsequence

- https://leetcode.com/problems/longest-common-subsequence/
- •輸出兩字串的最長共同子序列長度

• Input: A = "abcde", B = "aceb"

Output: 3

最長共同子序列為:"ace"

Step 1: 定義狀態

● 設 *DP_{x,y}* 表示 *A*[0~x], *B*[0~y] 的 LCS 長度

A[0]	A[1]	A[2]	 A[x]
	1		

B[0]	B[1]	B[2]		B[y]
------	------	------	--	------

 Case A[x] == B[y]

 這個例子中 x,y 必然是LCS的一部分所以

$$DP_{x,y} = DP_{x-1,y-1} + 1$$

Case A[x] != B[y] 這個例子中 x,y <u>都各自可能是LCS的一部分</u> 所以

$$DP_{x,y} = \max\{DP_{x-1,y}, DP_{x,y-1}\}$$

•

$$DP_{x,y} = \begin{cases} 0 & , x < 0, y < 0 \\ DP_{x-1,y-1} + 1 & , A[x] = B[y] \\ \max\{DP_{x-1,y}, DP_{x,y-1}\}, A[x] \neq B[y] \end{cases}$$

時間複雜度

- -2D/0D
- 狀態數 × 轉移時間
- $\bullet |A| \times |B| \times O(1) = O(|A||B|)$

Longest Palindromic Subsequence

- https://leetcode.com/problems/longest-palindromic-subsequence/
- •輸出最長迴文子序列長度

• Input: S = "bbbab"

Output: 4

最長迴文子序列為:"bbbb"

Step 1: 定義狀態

● 設 $DP_{l,r}$ 表示 $S[l\sim r]$ 的最長迴文子序列長度

S[I]	S[l+1]	S[I+2]		S[r]
------	--------	--------	--	------

S[I]	S[l+1]	S[l+2]	 S[r]

Case S[I] == S[r]

這個例子中 x,y 必然是最長迴文的一部分 所以

$$DP_{l,r} = DP_{l+1,r-1} + 2$$

S[I]	S[l+1]	S[I+2]	 S[r]

Case S[I] != S[r]

這個例子中 x,y都各自可能最長迴文的一部分 所以

$$DP_{l,r} = \max\{DP_{l+1,r}, DP_{l,r-1}\}$$

•

$$DP_{l,r} = \begin{cases} r - l + 1 &, r - l + 1 \leq 1 \\ DP_{l+1,r-1} + 2 &, S[l] = S[r] \\ \max\{DP_{l+1,r}, DP_{l,r-1}\}, S[l] \neq S[r] \end{cases}$$

Botton Up: 由小到大枚舉區間

```
int solve(string S) {
  int n = S.size();
  vector<vector<int>> DP(n, vector<int>(n));
  for (int i = 0; i < n; ++i) DP[i][i] = 1;
  for (int len = 2; len <= n; ++len) {
    for (int 1 = 0; 1 + len <= n; ++1) {
      int r = 1 + len - 1;
      if (S[1] == S[r]) DP[1][r] = DP[1 + 1][r - 1] + 2;
      else DP[1][r] = max(DP[1 + 1][r], DP[1][r - 1]);
  return DP[0][n - 1];
```

時間複雜度

- -2D/0D
- 狀態數 × 轉移時間
- $|S|^2 \times O(1) = O(|S|^2)$

特殊優化

資料結構優化 矩陣快速冪

Longest Increasing Subsequence

- https://leetcode.com/problems/longest-increasing-subsequence/
- •輸出最長遞增子序列長度

• Input: S = [0,3,1,6,2,2,7,-1]

 $O(n \log n)$

•Output: 4 其中一個最長遞增子序列為: [0,1,2,7]

這裡計算太慢了

```
vector<int> S;
int solve() {
  vector<int> DP(S.size());
 int ans = 0;
  for (int i = 0; i < S.size(); ++i) {
   DP[i] = 0;
   for (int j = 0; j < i; ++j) {
     if (S[i] > S[j])
       DP[i] = max(DP[i], DP[j]);
   DP[i] += 1;
    ans = max(ans, DP[i]);
  return ans;
```

V[i]: 紀錄滿足 DP[x] = i 的最小值

DP 0 1 2 3 4 5 6 7

\	1	2	3	4	5
V					

DP 0 1 2 3 4 5 6 7
1

V	1	2	3	4	5
V	-7				

c	0	1	2	3	4	5	6	7	
3	-7	10	9	2	3	8	8	1	

DP 0 1 2 3 4 5 6 7
1 2

W	1	2	3	4	5
V	-7	10			

c	0	1	2	3	4	5	6	7	
3	-7	10	9	2	3	8	8	1	

DP	0	1	2	3	4	5	6	7
DF	1	2	2					

\/	1	2	3	4	5
V	-7	9			

c	0	1	2	3	4	5	6	7	
3	-7	10	9	2	3	8	8	1	

DP	0	1	2	3	4	5	6	7
DF	1	2	2	2				

\/	1	2	3	4	5
V	-7	2			

c	0	1	2	3	4	5	6	7	
3	-7	10	9	2	3	8	8	1	

DP	0	1	2	3	4	5	6	7
DF	1	2	2	2	3			

\/	1	2	3	4	5
V	-7	2	3		

C	0	1	2	3	4	5	6	7	
3	-7	10	9	2	3	8	8	1	

DP	0	1	2	3	4	5	6	7
DF	1	2	2	2	3	4		

M	1	2	3	4	5
V	-7	2	3	8	

S	0						6	
3	-7	10	9	2	3	8	8	1

DP	0	1	2	3	4	5	6	7
DP	1	2	2	2	3	4	4	

\/	1	2	3	4	5
V	-7	2	3	8	

C	0	1	2	3	4	5	6	7	
3	-7	10	9	2	3	8	8	7	

DD	0	1	2	3	4	5	6	7
DP	1	2	2	2	3	4	4	2

V 1 2 3 4 5 -7 1 3 8

V 陣列永遠遞增, 利用二分搜!

LIS 資料結構優化

```
vector<int> S;
int solve() {
 if (S.size() == 0) return 0;
 vector<int> V;
  V.emplace_back(S[0]);
 for (size_t i = 1; i < S.size(); ++i) {
   if (S[i] > V.back())
     V.emplace_back(s[i]);
    else
      *lower_bound(V.begin(), V.end(), S[i]) = S[i];
  return V.size(); // V 陣列的長度等同於答案
```

骨牌覆蓋

●得到關係式

•
$$f_n = \begin{cases} 1 & , n \le 1 \\ f_{n-1} + f_{n-2}, n > 1 \end{cases}$$

```
long long f(int n) {
  if (n <= 1) return 1;
  return f(n - 1) + f(n - 2);
}</pre>
```


n=4的所有方法

 $O(\log n)$

矩陣乘法

•

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix}$$
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e \\ g \end{bmatrix} = \begin{bmatrix} ae + bg \\ ce + dg \end{bmatrix}$$

觀察-使用矩陣快速冪

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} f_1 \\ f_0 \end{bmatrix} = \begin{bmatrix} f_0 + f_1 \\ f_1 \end{bmatrix} = \begin{bmatrix} f_2 \\ f_1 \end{bmatrix}$$

$$a^b$$
 我們有教過 $O(\log b)$ 的快速幂
$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} f_1 \\ f_0 \end{bmatrix} = \begin{bmatrix} f_{n+1} \\ f_n \end{bmatrix}$$

Knapsack Problem

背包問題

0-1 背包問題

- 你有一個限重為 W 的背包
- 有n 個物品,第i 個物品的重量和價格分別為 w_i, c_i
- 每個物品你可以選擇放或不放 請問在不超過背包限重的情況下,能拿到的價格總和最多為多少

• $n \le 1000, 0 \le W \le 1000, \sum c_i \le 1000$

枚舉法

●每個物品只有選或不選兩種

• 有 2^n 種可能性 $\rightarrow O(2^n)$ 枚舉所有可能

• 太慢

• 設 $DP_{x,y}$ 表示: 只考慮編號 $1\sim x$ 的物品 總價值是 y 時最少要花費的重量

• 目標答案就是

$$\max_{0 \le y \le \sum c_i} \{y \colon DP_{n,y} \le W\}$$

● 設 $DP_{x,y}$ 表示: 只考慮編號 $1\sim x$ 的物品 且背包中物品總重量剛好是 y 時的最佳總價值

• 目標答案就是

$$\max_{0 \le y \le W} \{ DP_{n, y} \}$$

• 設 $DP_{x,y}$ 表示: 只考慮編號 $1\sim x$ 的物品 且背包限重是 y 時的最佳總價值

• 目標答案就是

 $DP_{n,W}$

●考慮要不要放第 x 物品

●考慮要不要放第 x 物品

- 不放第 *x* 物品
- $DP_{x,y} = DP_{x-1,y}$

●考慮要不要放第 x 物品

- 放第 *x* 物品
- $DP_{x,y} = DP_{x-1,y-w_x} + c_x$

•
$$DP_{x,y} = \begin{cases} 0 & , x = 0 \\ \max\{DP_{x-1,y}, DP_{x-1,y-w_x} + c_x\}, x > 0 \end{cases}$$

```
int DP[MAXN][MAXW] = {};
int solve() {
  for (int x = 1; x <= n; ++x)
    for (int y = 0; y <= W; ++y) {
        DP[x][y] = DP[x - 1][y];
        if (y >= w[x])
            DP[x][y] = max(DP[x][y], DP[x - 1][y - w[x]] + c[x]);
    }
  return DP[n][W];
}
```

時間複雜度

- ●狀態數×轉移時間
- $nW \times O(1) = O(nW)$

觀察狀態轉移式

•
$$DP_{x,y} = \begin{cases} 0 & , x = 0 \\ \max\{DP_{x-1,y}, DP_{x-1,y-w_x} + c_x\}, x > 0 \end{cases}$$

• 計算 DP_x 時只會用到 DP_{x-1} 的資訊

省略沒用到的空間

```
int DP[2][MAXW] = {};
int solve() {
  for (int x = 1; x <= n; ++x)
    for (int y = 0; y <= W; ++y) {
        DP[x & 1][y] = DP[(x & 1) ^ 1][y];
        if (y >= w[x])
            DP[x & 1][y] = max(DP[x & 1][y], DP[(x & 1) ^ 1][y - w[x]] + c[x]);
    }
  return DP[n & 1][W];
}
```

更加細緻的觀察

•
$$DP_{x,y} = \begin{cases} 0 & , x = 0 \\ \max\{DP_{x-1,y}, DP_{x-1,y-w_x} + c_x\}, x > 0 \end{cases}$$

• 計算 $DP_{x,y}$ 時只會用到 $DP_{x-1,i}$, $i \le y$ 的資訊

•
$$DP_{x,y} = \begin{cases} 0 & , x = 0 \\ \max\{DP_{x-1,y}, DP_{x-1,y-w_x} + c_x\}, x > 0 \end{cases}$$

- 計算 $DP_{x,y}$ 時只會用到 $DP_{x-1,i}$, $i \leq y$ 的資訊
- 讓 y 由大到小計算可以把陣列壓成一維


```
int DP[MAXW] = {};
int solve() {
  for (int x = 1; x <= n; ++x)
    for (int y = W; y >= w[x]; --y)
        DP[y] = max(DP[y], DP[y - w[x]] + c[x]);
  return DP[W];
}
```

完全背包問題

- 你有一個限重為 W 的背包
- 有n 種物品,第i 個物品的重量和價格分別為 w_i, c_i
- 每種物品你可以選擇放任意多個或不放 請問在不超過背包限重的情況下,能拿到的價格總和最多為多少

• $n \le 1000, 0 \le W \le 1000, \sum c_i \le 1000$

• 設 $DP_{x,y}$ 表示: 只考慮編號 $1\sim x$ 種類的物品(無論每個物品選多少個) 且背包限重是 y 時的最佳總價值

• 目標答案就是

 $DP_{n,W}$

●考慮放第 x 物品的方法

●考慮放第 x 物品的方法

- 不放第 *x* 物品
- $DP_{x,y} = DP_{x-1,y}$

●考慮放第 x 物品的方法

- 放第 x 物品(不論放多少個)
- $DP_{x,y} = DP_{x,y-w_x} + c_x$

比較:只能放一個的方法 $DP_{x,y} = DP_{x-1,y-w_x} + c_x$

•
$$DP_{x,y} = \begin{cases} 0, & x = 0 \\ \max\{DP_{x-1,y}, DP_{x,y-w_x} + c_x\}, x > 0 \end{cases}$$

時間複雜度

- ●狀態數×轉移時間
- $nW \times O(1) = O(nW)$

必讀參考書籍

• 背包九講

不直觀的狀態

UVA 10559 Blocks

- 有 $N(1 \le N \le 200)$ 個方塊排成一列,每個方塊有自己的顏色 每個顏色有不同的編號,第 i 個方塊的顏色編號是 $c_i(1 \le c_i \le n)$
- 同一個顏色的區間可以消除 若消除的區間長度為k,則可以得到 k^2 的分數,初始分數為0
- 連續一段區間被消除後,剩餘左右兩端會合併起來

• 問最多能得到多少分數

UVA 10559 Blocks

Score =
$$16 + 9 + 4 = 29$$

Step 1: 定義狀態

 \bullet 設 $DP_{l,r}$ 表示消除 $c_l \sim c_r$ 得到的最佳分數

$$DP_{l,r} = \max_{c_i = c_{i+1} = \dots = c_j} \{DP_{l,i-1} + DP_{j+1,r} + (j-i+1)^2\}$$

Step 1: 定義狀態

 \bullet 設 $DP_{l,r,k}$ 表示: 消除 $c_l \sim c_r$ 以及在 r 後面接上的 k 個與 c_r 同色的方塊的最佳分數

k 個與 c_r 同色的方塊 ... 切法1: 把r 切出來處理

$$DP_{l,r,k} = DP_{l,r-1,0} + (k+1)^2$$

程式碼

```
const int MAXN = 201;
int c[MAXN], n; // input
int dp[MAXN][MAXN][MAXN];
int dfs(int 1, int r, int k) {
 if (1 > r) return 0;
 if (dp[1][r][k]) return dp[1][r][k];
  int ans = dfs(1, r - 1, 0) + (1 + k) * (1 + k);
 for (int i = r - 1; i >= 1; --i)
   if (c[i] == c[r])
      ans = \max(ans, dfs(1, i, k + 1) + dfs(i + 1, r - 1, 0));
  return dp[l][r][k] = ans;
```

時間複雜度

- -3D/1D
- 狀態數 × 轉移時間
- $n^3 \times O(n) = O(n^4)$