# Machine Learning from Data

Lecture 6: Spring 2021

### Today's Lecture

- Bounding the Growth Function  $\gamma \gamma_{\mu}(\gamma)$
- Models are either Good or Bad
- The VC Bound

## Putting Everything Together



• The growth function:

The growth function  $m_{\mathcal{H}}(N)$  considers the worst possible  $\mathbf{x}_1, \dots, \mathbf{x}_N$ .

 $m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \dots, \mathbf{x}_N} |\mathcal{H}(\mathbf{x}_1, \dots, \mathbf{x}_N)|.$ 



1) Can we bound  $m_h(N)$  by a polynomial in N? 2) Can we replace |h| by  $m_h(N)$  in the generalization bound? Pump han: N=4 (16) -> 14 1-D positive vay: N=2(4) -> 3 2-D rectangle: N=5 mn(5) <2 -> my(N) drops below 2<sup>N</sup>
-> A break-point is any k for which mylk) 42<sup>k</sup>

I give you a set of  $k^*$  points  $\mathbf{x}_1, \dots, \mathbf{x}_{k^*}$  on which  $\mathcal{H}$  implements  $< 2^{k^*}$  dichotomys.

- (a)  $k^*$  is a break point.
- (b)  $k^*$  is not a break point.
- (c) all break points are  $> k^*$ .
- (d) all break points are  $\leq k^*$ .
- (e) we don't know anything about break points.

For every set of  $k^*$  points  $\mathbf{x}_1, \dots, \mathbf{x}_{k^*}$ ,  $\mathcal{H}$  implements  $< 2^{k^*}$  dichotomys.

- $\sqrt{(a)} k^*$  is a break point.  $\longrightarrow$  definition
  - (b)  $k^*$  is not a break point.
- $\checkmark$  (c) all  $k \ge k^*$  are break points.
  - (d) all  $k < k^*$  are break points.
  - (e) we don't know anything about break points.

To show that k is *not* a break point for  $\mathcal{H}$ :



- $\checkmark$  (a) Show a set of k points  $\mathbf{x}_1, \dots \mathbf{x}_k$  which  $\mathcal{H}$  can shatter.
- $\rightarrow$ (b) Show  $\mathcal{H}$  can shatter any set of k points.
  - (c) Show a set of k points  $\mathbf{x}_1, \dots \mathbf{x}_k$  which  $\mathcal{H}$  cannot shatter.
  - (d) Show  $\mathcal{H}$  cannot shatter any set of k points.

$$\sqrt{\text{(e)}}$$
 Show  $m_{\mathcal{H}}(k) = 2^k$ . (similar to (9))

To show that k is a break point for  $\mathcal{H}$ :



- (a) Show a set of k points  $\mathbf{x}_1, \dots \mathbf{x}_k$  which  $\mathcal{H}$  can shatter.
- (b) Show  $\mathcal{H}$  can shatter any set of k points.
- (c) Show a set of k points  $\mathbf{x}_1, \dots \mathbf{x}_k$  which  $\mathcal{H}$  cannot shatter.
- (d) Show  $\mathcal{H}$  cannot shatter any set of k points.
- (e) Show  $m_{\mathcal{H}}(k) > 2^k$ .

#### Back to the puzzle

How many dichotomies can you list on 4 points so that no 2 is shattered.



# The combinatorial relationship

B(N, K): The manimum no of data points subset of size k is shattend.

B(N,K)

How many dichotomies can you list on 4 points so that no subset of 3 is shattered.

| $\mathbf{x}_1$ | $\mathbf{x}_2$ | $\mathbf{x}_3$ | $\mathbf{x}_4$ | _ |     |
|----------------|----------------|----------------|----------------|---|-----|
| 0              | 0              | 0              | 0              | 7 |     |
| 0              | 0              | 0              | •              |   |     |
| 0              | 0              | •              | 0              |   |     |
| 0              | •              | 0              | 0              |   |     |
| •              | 0              | 0              | 0              |   | 11  |
| 0              | 0              | •              | •              |   | 1 1 |
| 0              | •              | 0              | •              |   |     |
| •              | 0              | 0              | •              |   |     |
| 0              | •              | •              | 0              |   |     |
| •              | 0              | •              | 0              |   |     |
| •              | •              | 0              | 0              |   |     |

$$B(N,K)$$
  
 $B(4,3)=[]$ 

Based on prefix's we will segregate the dichotomics.



 $\alpha$ : prefix appears once  $\mathbf{V}$ 

 $\beta$ : prefix appears twice

$$B(4,3) = \alpha + 2\beta = 1$$

$$B(4,3) = \alpha + 2\beta = 1$$

$$B(4,3) = \alpha + 2\beta = 1$$

 $\frac{|B(4,3)|}{|A+B| \leq B(3,3)}$ 

Suppose a pair is Shattere d.  $\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4$ 

## Fill the table values



$$B(N,1) = 1$$

$$B(N, N) = 2^N - 1$$

$$B(N, k) \le B(N - 1, k) + B(N - 1, k - 1)$$

$$B(N, k) \le B(N - 1, k) + B(N - 1, k - 1)$$

**Analytic Bound** 

2 pax cod Proof: (Induction on N.) 1. Verify for N = 1: B(1,1)2. Suppose  $B(N,k) \leq \sum_{i=1}^{N-1} {N \choose i}$ . Lemma. 70 p

i)  $\frac{1}{k-1}$   $\frac$ B(N, K)

< Polynomial in N 2-D perception 1-D Ray (N+N 2-D Restergle dichotomies that can be mplenented, max. no. of implemented, the break points on Npoints by a M.

Subset of size k

K -> break point # Any subset of
k points is not
shattered by these
shattered by these
my(N) dichotomics  $B(N,k) \rightarrow max.$   $M_{H}(N) \leq B(N,k)$ 

Theorem: Let H be any hypotheris set:

i) M is entremely complen (Never breaks)

i) M in my (N) = 2 N + N (Not very useful) ii) H does get broken. In this case it has

a breakpoint (k). Then:

my(N) & B(N,k) & N +1

my(N)



Error bar In Hill Market Eaut LEin + 0/ In (N) —> O E out = E in (i)

 $\checkmark$  Can we get a polynomial bound on  $m_{\mathcal{H}}(N)$  even for infinite  $\mathcal{H}$ ?

Can we replace  $|\mathcal{H}|$  with  $m_{\mathcal{H}}(N)$  in the generalization bound?

Let  $\mathcal{L}$  but  $\mathcal{L}$  the form  $\mathcal{L}$  but  $\mathcal{L}$ 

#### Test

The ghost data set: a 'fictitious' data set  $\mathcal{D}'$ :





 $E'_{\rm in}$  is like a test error on N new points.

 $E_{\rm in}$  deviates from  $E_{\rm out}$  implies  $E_{\rm in}$  deviates from  $E'_{\rm in}$ .

 $E_{\rm in}$  and  $E'_{\rm in}$  have the same distribution.

$$\mathbb{P}[(E'_{\text{in}}(g), E_{\text{in}}(g)) \text{ "deviate"}] \ge \frac{1}{2} \mathbb{P}[(E_{\text{out}}(g), E_{\text{in}}(g)) \text{ "deviate"}]$$



|   | $\mathbf{x}_1$ | $\mathbf{x}_2$ | $\mathbf{x}_3$ | <br>$\mathbf{x}_N$ | $ \mathbf{x}_{N+1} $ | $\mathbf{x}_{N+2}$ | $\mathbf{x}_{N+3}$ | <br>$\mathbf{x}_{2N}$ |  |
|---|----------------|----------------|----------------|--------------------|----------------------|--------------------|--------------------|-----------------------|--|
|   | 0              | 0              | •              | <br>0              | •                    | •                  | 0                  | <br>0                 |  |
| • | _              |                |                |                    | _                    |                    |                    |                       |  |

Number of dichotomys is at most  $m_{\mathcal{H}}(2N)$ .

Abus not affect the polynomial matrix of the bound)

Up to technical details, analyze a "hypothesis set" of size at most  $m_{\mathcal{H}}(2N)$ .

#### The Vapnik-Chervonenkis Bound (VC Bound)

$$\mathbb{P}\left[|E_{\mathrm{in}}(oldsymbol{g}) - E_{\mathrm{out}}(oldsymbol{g})| > \epsilon
ight] \leq 4m_{\mathcal{H}}(2N)e^{-\epsilon^2N/8},$$

for any  $\epsilon > 0$ .

$$\mathbb{P}\left[|oldsymbol{E}_{ ext{in}}(oldsymbol{g}) - oldsymbol{E}_{ ext{out}}(oldsymbol{g})| \leq \epsilon
ight] \geq 1 - 4m_{\mathcal{H}}(2oldsymbol{N})e^{-\epsilon^2N/8},$$

for any  $\epsilon > 0$ .

$$E_{ ext{out}}(g) \leq E_{ ext{in}}(g) + \sqrt{rac{8}{N}} \log rac{4m_{\mathcal{H}}(2N)}{\delta},$$

w.p. at least  $1 - \delta$ .

# Thanks!