

DESCRIPTION

IMAGE PROCESSING APPARATUS, ROBOT APPARATUS AND IMAGE PROCESSING
METHOD

Technical Field

The present invention relates to an image processing apparatus, a robot apparatus and an image processing method. For example, the present invention is suitably applied to a pet robot which acts like a quadruped animal.

Background Art

There has been conventionally developed an image processing system in which an image input device such as a video camera is connected to a general-purpose calculator such as a personal computer or a work station so that image data input from the image input device is processed in the calculator. The calculator in such an image processing system is provided with plural image processing objects for performing image processing such as color detection or motion detection, thereby subjecting the input image data to plural image processing.

Consequently, in the calculator in the image processing system, the image data input from the image input device is temporarily stored in a frame buffer, and then, the image data is transferred from the frame buffer to a memory, to which a CPU

(Central Processing Unit) for executing each of the image processing objects can directly make access, or the image data is read by direct access of each of the image processing objects to the frame buffer.

Alternatively, besides the image processing system in which the image input device is connected to the general-purpose calculator, there has been developed an incorporation type image processing apparatus in which an image input device is previously incorporated in a general-purpose calculator. Such an incorporation type image processing apparatus includes a DSP (Digital Signal Processor) for executing specific image processing, is configured such that single image processing can be performed at a high speed by directly writing image data in a memory in the DSP.

In the image processing system in which the image input device is connected to the general-purpose calculator, a time taken for transferring the image data is liable to be increased in proportion to the number of image processing objects which are executed by the CPU, with an attendant problem of a long time required for the image processing. Incidentally, a method for temporarily storing the image data in the frame buffer to then transfer it to the memory is disclosed in, for example, Japanese Patent Laid-open No. 8-297585. However, this method raises problems that a transferring speed becomes low by a time required for temporarily storing the image data in the frame buffer, and

PPDUSN 1600
further, that the CPU cannot perform other processing till the completion of the data transfer since the CPU transfers the data. Moreover, a method for reading the image data by direct access by each of the image processing objects to the frame buffer raises problems that portability is poor since the CPU directly makes access to the frame buffer as hardware and that safety of data protection cannot be secured, in addition to slow access to the data.

On the other hand, the incorporation type image processing apparatus uses the DSP which can perform only specific image processing, thereby making it difficult to simultaneously perform plural image processing or write a program independent of hardware.

Disclosure of the Invention

In view of the above-described problems, the present invention has proposed an image processing apparatus, a robot apparatus and an image processing method, in which plural image processing independent of each other can be executed in parallel at a high speed.

In order to solve the above-described problems, according to the present invention, an image processing method comprises the steps of: producing address information for use in storing, in storage means, plural image data sequentially input from image input means, so as to sequentially transfer and store the image data to and in the storage means based on the produced address

information; and informing each of plural image processing means of the address information of the storage means in which image data to be read is stored upon request of the image data to be read by each of the plural image processing means. Thus, each of the image processing means can read each of image data to be read directly from the storage means based on the informed address information so as to subject it to predetermined image processing. In this way, it is possible to perform plural independent image processing in parallel at a high speed with the simple configuration.

Brief Description of Drawings

Fig. 1 is a schematic view showing a pet robot in a preferred embodiment according to the present invention.

Fig. 2 is a block diagram illustrating the circuit configuration of the pet robot.

Fig. 3 is a block diagram illustrating the configuration of a signal processing circuit.

Fig. 4 is a block diagram illustrating the configuration of an FBK/CDT.

Fig. 5 is a chart schematically illustrating the data structure of a DMA list.

Fig. 6 is a diagram schematically illustrating the structure of software.

Fig. 7 is a flowchart illustrating an image processing method by the pet robot.

Fig. 8 is a flowchart illustrating the image processing method by the pet robot.

Fig. 9 is a diagram schematically illustrating the configuration of an image processing object.

Best Mode for Carrying Out the Invention

A preferred embodiment according to the present invention will be described below in reference to the drawings.

(1) Configuration of Pet Robot

In Fig. 1, reference numeral 1 denotes a pet robot having the entire appearance like an animal and is configured by connecting a head portion 2 corresponding to a head, a main body portion 3 corresponding to a body, leg portions 4A to 4D corresponding to legs and a tail portion 5 corresponding to a tail to each other. The pet robot is made to act like an actual quadruped animal by actuating the head portion 2, the leg portions 4A to 4D and the tail portion 5 with respect to the main body portion 3.

The head portion 2 is provided at predetermined positions thereof with CCD (Charge Coupled Device) cameras 10 which correspond to eyes and constitute image input means, microphones 11 which correspond to ears and collect a voice, and a speaker 12 which corresponds to a mouth and produces a voice. Furthermore,

the head portion 2 is provided with a touch sensor 14 for detecting a contact by a hand of a user or the like, and a distance sensor 15 for detecting a distance to an obstacle which may be present forward in the direction of movement of the pet robot 1.

The main body portion 3 is provided with a battery 16 at a position corresponding to a belly. Moreover, an electronic circuit (not shown) for controlling the entire action of the pet robot 1 is housed inside the battery 16.

Articulations of the leg portions 4A to 4D, articulations connecting the leg portions 4A to 4D to the main body portion 3, articulations connecting the main body portion 3 to the head portion 2, articulations connecting the main body portion 3 to the tail portion 5 and so on are connected via respective actuators 17₁ to 17_n, to be thus driven under the control of the electronic circuit housed inside the main body portion 3. The actuators 17₁ to 17_n are driven such that the head portion 2 is wagged vertically and laterally, the tail portion 5 is wagged, or the leg portions 4A to 4D are moved to walk or run. Therefore, the pet robot 1 can act like an actual quadruped animal.

(2) Circuit Configuration of Pet Robot

Fig. 2 is a diagram illustrating the circuit configuration of the pet robot 1. A CPU (Central Processing Unit) 20 is adapted to control the entire operation of the pet robot 1. The CPU 20 reads

a control program stored in a flash ROM (Read Only Memory) 21 via a bus B1 as required, and reads a control program stored in a memory card 22, which is inserted into a PC (Personal Computer) card slot (not illustrated), via a PC card interface 23 and the bus B1 in sequence, and then, transfers and stores the read control programs to and in a DRAM (a Dynamic Random Access Memory) 24 as storage means. The CPU 20 reads and executes the control programs transferred to the DRAM 24 so as to control various circuits of the pet robot 1.

A signal processing circuit 30 is adapted to perform various signal processing under the control of the CPU 20. As illustrated in Fig. 3, the signal processing circuit 30 includes a host interface 31 to be connected to the CPU 20 (Fig. 2), a ROM interface 32 to be connected to the flash ROM 21 (Fig. 2), and a DRAM interface 33 to be connected to the DRAM 24 (Fig. 2). The signal processing circuit 30 is connected to the CPU 20, the flash ROM 21 and the DRAM 24 via the bus B1.

The signal processing circuit 30 includes a bus arbiter 34 for performing arbitration (an arbitrating operation of a bus-use right). The bus arbiter 34 is connected to the host interface 31, the ROM interface 32 and the DRAM interface 33 via another bus B2.

Back to Fig. 2, the pet robot 1 includes potentiometers 40₁ to 40_N which respectively detect a driving quantity in the actuators 17₁ to 17_N for driving the articulations. The actuators 17₁ to 17_N, the potentiometers 40₁ to 40_N, the touch sensor 14, the distance

sensor 15, the microphones 11 and the speaker 12 are connected in a tree topology to a serial bus host controller 45 (Fig. 3) in the signal processing circuit 30 via hubs 41₁ to 41_N. As illustrated in Fig. 3, the serial bus host controller 45 is connected to the bus arbiter 34 via a further bus B3, so that information on an angle detected by each of the potentiometers 40₁ to 40_N, information on a contact detected by the touch sensor 14 and information on a distance to an obstacle detected by the distance sensor 15 are transferred to and stored in the DRAM 24 (Fig. 2) via the bus B3, the bus arbiter 34, the bus B2, the DRAM interface 33 and the bus B1 (Fig. 2) in sequence.

An FBK/CDT (Filter Bank/Color Detection) 46 is to be connected to the CCD camera 10 (Fig. 2). The FBK/CDT 46 takes image data at plural resolutions while performing color recognition of the image data picked up by the CCD camera 10. The taken image data is transferred to and stored in the DRAM 24 (Fig. 2) via the bus arbiter 34 and the DRAM interface 33 in sequence.

An IPE (Inner Product Engine) 47 comprises a two-dimensional digital filter. The IPE 47 produces an edge image, in which the boundary between a floor and a wall or the boundary between walls is emphasized, when image data is supplied from the DRAM 24 (Fig. 2) via the DRAM interface 33 and the bus arbiter 34 in sequence, and then, returns and stores the produced edge image to and in the DRAM 24 (Fig. 2) via the bus arbiter 34 and the DRAM interface 33 in sequence.

A DMA (Direct Memory Access) controller 48 functions as a bus master in charge of data transfer. For example, the DMA controller 48 reads image data from a buffer (not illustrated) of the FBK/CDT 46, and then, transfers it to the DRAM 24 (Fig. 2), or reads image data from the DRAM 24 (Fig. 2) and transfers it to the IPE 47 so as to transfer an edge image as a result calculated by the IPE 47 to the DRAM 24 (Fig. 2).

A DSP (Digital Signal Processor) 49 subjects a voice signal to predetermined data processing when the voice signal indicating, e.g., a command of a user is input from the microphones 11 (Fig. 2) via the hubs 41_x to 41_{x-2}, the serial bus host controller 45 and the bus B3 in sequence, and then, transfers and stores voice information resulting from the predetermined processing to and in the DRAM 24 (Fig. 2) via the bus arbiter 34 and the DRAM interface 33 in sequence.

A serial bus 50 is an interface to be connected to a remote computer (not illustrated) such as a personal computer (PC), and further, is connected to the bus arbiter 34 via the bus B3. A peripheral interface 51 to be connected to the bus arbiter 34 via the bus B3 in a similar manner is connected to a serial port 52 and a parallel port 53 for the purpose of connection to remote computers, and further, is connected to a battery manager 51 for the purpose of connection to the battery 16 (Fig. 2). The battery manager 51 transfers and stores information on a battery remaining quantity informed by the battery 16 to and in the DRAM 24 via the

peripheral interface 51, the bus arbiter 34 and the DRAM interface 33 in sequence. A timer 55 functions as a clock housed inside the pet robot 1, and is connected to the bus arbiter 34 via the bus B3.

The CPU 20 autonomously determines a next operation based on various kinds of information developed in the DRAM 24, and then, produces a drive signal in accordance with the determined operation. The CPU 20 sends the drive signal to each of the actuators 17, to 17_n via the host interface 31, the bus arbiter 34, the serial bus host controller 45 and the hubs 41₁ to 41_n in sequence housed inside the signal processing circuit 30, so as to drive each of the actuators 17, to 17_n, thereby allowing the pet robot 1 to act autonomously.

The CPU 20 produces voice information based on various kinds of information developed in the DRAM 24, and sends the voice information to the DSP 49 via the host interface 31 and the bus arbiter 34 in sequence. Thereafter, the DSP 49 converts the voice information into a voice signal, and then, outputs the voice signal through the speaker 12 via the serial bus host controller 45 and the hub 41_x in sequence.

(3) Transfer of Image Data

Here, explanation will be made on a transfer method for transferring the image data input from the CCD camera 10 to the DRAM 24. As illustrated in Figs. 2 and 3, the image data picked up by the CCD camera 10 is input into the FBK/CDT 46 in the signal

processing circuit 30, is subjected to predetermined image processing in the FBK/CDT 46, and thereafter, is transferred to the DRAM 24 via the bus arbiter 34 and the DRAM interface 33 in sequence under the control of the DMA controller 48.

Then, the DMA controller 48 reads a DMA list created by the CPU 20 from the DRAM 24 via the bus arbiter 34 and the DRAM interface 33 in sequence, and then, transfers the image data based on information on the transfer source or transfer destination of the image data written in the DMA list. Consequently, when the CPU 20 rewrites the DMA list, the DMA controller 48 can transfer the image data output from the FBK/CDT 46 to an arbitrary position on the DRAM 24. In this way, in the pet robot 1, the image data is transferred to and developed in the DRAM 24, so that fast data processing can be achieved by the effective use of a cache function of the CPU 20.

Hereinafter, the image data transferring method will be specifically described in reference to Fig. 4 which is a block diagram illustrating the configuration of the FBK/CDT 46. The image data picked up by the CCD camera 10 is composed of parallel data of 8 bits, a clock signal and a synchronous signal. The image data is input into an input image interface 60 of the FBK/CDT 46, in which the image data is converted into a predetermined format, and then, is supplied to a filter calculator 61.

The CPU 20 is adapted to determine various kinds of filter coefficients based on the control programs stored in the DRAM 24 so as to send and store the determined filter coefficients to and in a parameter storage 62. The filter calculator 61 subjects the input image interface 61 to filter calculation by using the filter coefficients stored in the parameter storage 62, thereby producing image data at plural resolutions while performing the color recognition of the supplied image data.

Buffers 63A and 63B each having a storage capacity enough to store image data of one line are provided at a rear stage of the filter calculator 61. Consequently, the filter calculator 61 sends and stores the produced image data per line to and in the buffers 63A and 63B alternately. At this time, a DMA interface 64 reads the image data of one line from one of the buffers 63A and 63B while storing the image data of one line in the other of the buffers 63A and 63B, and then, transfers the read image data of one line to the DRAM 24 based on an instruction from the DMA controller 48 so as to transfer plural image data to the DRAM 24 in sequence. Since the buffers 63A and 63B have only a storage capacity of two lines in total, it is possible to achieve the FBK/CDT 46 of a simple configuration with a small storage capacity.

The above-described image data transfer is performed by the DMA controller 48 functioning as a bus master. That is, the DMA interface 64 sends a transfer requesting signal, which is called a

DMA request, to the DMA controller 48 (Fig. 3) when the image data of one line is stored in either one of the buffers 63A and 63B.

Upon receipt of the DMA request, the DMA controller 48 (Fig. 3) first acquires the use right of the buses B1 to B3, and subsequently, reads the DMA list from the DRAM 24 (Fig. 2) based on an address of the DMA list which is informed by the CPU 20.

The DMA controller 48 (Fig. 3) sequentially produces addresses on the DRAM 24 (Fig. 2) as a transfer destination of the image data based on the DMA list, and then, issues a writing signal to each of the buses B1 to B3. The FBK/CDT 46 reads the image data stored in the buffers 63A and 63B so as to send them to the bus B3 in sequence in synchronism with the writing signals to the buses B1 to B3.

The image data output from the FBK/CDT 46 is written in the DRAM 24 at the same time when it is output from the FBK/CDT 46, so that the image data can be transferred at a remarkably high speed. Since the transfer destination of the image data is set in accordance with the DMA list, the DMA controller 48 can transfer the image data at an arbitrary position on the DRAM 24.

The FBK/CDT 46 withdraws the DMA request for the DMA controller 48 so as to cancel the transfer of the image data if every image data stored in the buffers 63A and 63B is gone. In view of this, the DMA controller 48 writes, in the DMA list, information on the data quantity of the image data transferred till the timing when the DMA request is withdrawn, so as to

release the buses B1 to B3. When a DMA request is supplied again, the DMA controller 48 reads the above-described DMA list from the DRAM 24 so as to perform subsequent transfer.

Here, Fig. 5 illustrates the data structure of a DMA list 70. This DMA list 70 is composed of data of 10 words, each of which is composed of data of 32 bits. A default source start address 73 is a start address of a transfer source; and a default destination start address 74 is a start address of a transfer destination.

A default transfer size 75 signifies a transfer quantity of image data to be transferred once. A loop enable (Loopen) 76 is a flag for repeatedly using the DMA list; a byte (Byte) 77, a flag for determining a transfer unit; and an I/O memo (Iomem) 78, a flag indicating that image data is transferred from a transfer source, to which an address is not assigned, to a transfer destination, to which an address is assigned. A bus out (Busout) 79 is a flag indicating whether the image data is transferred from or to the DRAM 24; and an interruption enable (Inten) 80, a flag for generating interruption upon completion of the transfer.

A source address skip 81 shows a quantity of addresses, which are skipped at the transfer source after the image data written in the default transfer size 75 has been transferred by the transfer quantity, wherein only a part of a region of an image is extracted and transferred in accordance with the set quantity of the addresses. A destination address skip 82 shows a quantity of addresses, which are skipped at the transfer destination, wherein

another image can be embedded in a part of a region in the image in accordance with the set quantity of the addresses.

A source/destination end address 83 is an end address of the transfer destination or the transfer source. A next DMA list pointer 84 is a pointer for writing an address of a DMA list to be read next.

A current source start address 85 is a start address of the transfer source, which is written when the transfer is interrupted on the way. A current destination start address 86 is a start address of the transfer destination, which is written when the transfer is interrupted on the way.

A current status 87 is a region in which there is written a transfer quantity at the time when the transfer is interrupted during the transfer in the transfer quantity written in the default transfer size 75. A busy 88 is a flag which is erected when the transfer is interrupted on the way. A done count 89 is adapted to count up upon every completion of the transfer.

(4) Configuration of Software

Here, the configuration of software of a control program 100 for controlling the operation of the pet robot 1 will be described below in reference to Fig. 6. A device driver layer 101 is located at a lowermost layer of the control program, and includes a device driver set 102 composed of a software group for achieving an interface to hardware such as a device driver for the FBK/CDT.

A robotics server object 103 is located over the device driver layer 101, and is configured by a virtual robot 104 composed of a software group for providing an interface for making access to the hardware of the pet robot 1, a power manager 105 composed of a software group for managing switching of a power source, a device driver manager 106 composed of a software group for managing other various device drivers, and a designed robot 107 composed of a software group for managing the mechanism of the pet robot 1.

A middleware layer 108 is located over the robotics server object 103, and is composed of a software group for performing image processing or voice processing. An application layer 109 is composed of a software group for determining an action of the pet robot 1 based on the processing result obtained by the software group composing the middleware layer 108.

A manager object 110 is configured by an object manager 111 and a service manager 112. The object manager 111 is composed of a software group for managing starting or ending of the software groups composing the robotics server object 103, the middleware layer 108 and the application layer 109. The service manager 112 is composed of a software group for managing connection of the objects based on connection information between the objects written in a connection file stored in the memory card 22.

(5) Image Processing Method

Now, by the use of flowcharts of Figs. 7 and 8, explanation will be made below on the case where plural image processing such as color detection, motion detection and obstacle detection are simultaneously performed in parallel. First, in step SP2 following step SP1, the CPU 20 starts the FBK/CDT driver 102A so as to initialize the FBK/CDT 46.

Subsequently, in step SP3, the CPU 20 starts the robotic server object 103 so as to start the virtual robot 104. The virtual robot 104 produces, on the DRAM 24, plural common memories 120 for storing the image data therein, and then, sets information on an attribute of an image such as an image size in the FBK/CDT driver 102A. Moreover, upon completion of the start of the robotic server object 103, the CPU 20 subsequently starts the image processing objects constituting the middleware layer 108. Incidentally, the storage capacity of the produced shared memory 120 can be easily changed in accordance with the instruction of the virtual robot 104.

In step SP4, the virtual robot 104 informs the FBK/CDT driver 102A of an address of a desired shared memory 120 out of the plural common memories 120 produced on the DRAM 24, and further, issues, to the FBK/CDT driver 102A, a read request for requesting the transfer of the image data to the shared memory 120 at the informed address.

In step SP5, the FBK/CDT driver 102A constitutes data transfer means together with the virtual robot 104 and the DMA

controller 48, produces the DMA list 121 for transferring the image data to a designated shared memory 120 upon receipt of the read request, and then, stores the DMA list 121 in the DRAM 24. At this moment, the FBK/CDT driver 102A informs the DMA controller 48 of the address of the DMA list 121 stored in the DRAM 24, and thereafter, allows the image data to be output to the FBK/CDT 46.

In step SP6, when the image data of one field is transferred to the designated shared memory 120, the FBK/CDT 46 generates interruption with respect to the FBK/CDT driver 102A so as to start software called an interruption handler. Subsequently, in step SP7, the interruption handler informs the virtual robot 104 of completion of the transfer of the image data.

In step SP8, the virtual robot 104 searches for the shared memory region where the reference times measuring counter is 0, and in step SP9, delivers it as the address of the shared memory 120 to be transferred to the FBK/CDT driver 102A so as to issue the read request. Thereafter, the routine returns to step SP5, and the above-described operation is repeated.

On the other hand, the CPU 20 performs processing in accordance with the flowchart shown in Fig. 8 along with processing in Fig. 7. After starting this flowchart at step SP0, the CPU 20 judges whether or not the start of the image processing objects constituting the middleware layer 108 has been completed in the following step SP9. If it is judged that the start of the image processing objects has been completed already, the routine

proceeds to step SP11. To the contrary, if it is judged that the start of the image processing objects has not been completed yet, the routine waits until the start has been completed.

In step SP11, the service manager 112 of the manager object 110 informs each of image processing objects of an image processing object at a destination to be connected upon completion of the start of the image processing objects of the middleware layer 108, and then, opens communication paths among the image processing objects. In this case, the service manager 112 connects, to the virtual robot 104, an image processing object 125 for color detection, an image processing object 126 for motion detection and an image processing object 127 for edge detection. Moreover, the service manager 112 connects an image processing object 128 for barycenter calculation to the image processing object 125 for color detection, and connects another image processing object 129 for barycenter calculation to the image processing object 126 for motion detection. Furthermore, the service manager 112 hierarchically connects an image processing object 130 for obstacle detection and an image processing object 131 for coordinates conversion to the image processing object 127 for edge detection. Incidentally, the connections among these image processing objects can be changed. Various kinds of processing can be performed by changing the connection interrelationship among the image processing objects.

In step SP13, the service manager 112 sends a start signal to each of the image processing objects upon completion of the connection among the image processing objects. Upon receipt of this, each of the image processing objects sends a data requesting signal to the image processing object at the destination to be connected in the lower layer based on connection information written in a connection file.

The image processing object 125 for color detection, the image processing object 126 for motion detection and the image processing object 127 for edge detection are configured to read the image data sequentially supplied from the FBK/CDT 46 at field intervals different from each other. The virtual robot 104 grasps the image data to be read respectively by the image processing objects 125 to 127 among the supplied image data.

Consequently, in step SP14, the virtual robot 104 actuates as informing means upon receipt of the data requesting signal from the image processing objects 125 to 127, so as to inform each of the image processing objects 125 to 127 of an ID (Identification, i.e., address information) assigned to the shared memory 120 storing therein the image data to be read by each of the image processing objects 125 to 127. At this time, the virtual robot 104 counts the number of informed image processing objects 125 to 127 with respect to each of the IDs, of which the image processing objects 125 to 127 are informed, by the use of a reference times

measuring counter contained in the virtual robot 104, and then, stores the counted number therein.

At this moment, the virtual robot 104 actuates as transfer control means. Therefore, the virtual robot 104 writes the image data over the shared memory 120 in which the counted number is 0 so as to store the image data in sequence without writing the image data supplied from the FBK/CDT 46 over the shared memory 120 of the ID in which the number counted by the reference times measuring counter is not 0, thereby avoiding erroneous deletion of the image data which may be read by each of the image processing objects 125 to 127.

In step SP15, each of the image processing objects 125 to 127 reads the image data from the shared memory to which the informed ID is assigned. At this time, each of the image processing objects 125 and 126 may read the image data stored in one and the same shared memory 120. However, since the shared memory 120 is a read only memory, each of the image processing objects 125 to 127 can read the image data without any mutual interference.

In this way, each of the image processing objects 125 to 127 reads the image data from the desired shared memory 120, and thereafter, subjects the read image data to predetermined image processing so as to send the processing result to each of the objects 128 to 130 at the upper layer in step SP16, and ends the image processing to the data requesting signal in step SP17.

In the following step SP18, each of the image processing objects 125 to 127 sends a data requesting signal for requesting next image data to the virtual robot 104 based on the connection information written in the connection file. In step SP19, upon receipt of the data requesting signal, the virtual robot 104 subtracts the counted number of the reference times measuring counter stored in a manner corresponding to the ID, of which any of the image processing objects 125 to 127 sending the data requesting signal is informed, every time the data requesting signal is supplied. When the counted number becomes 0, the virtual robot 104 releases the protection of the image data stored in the shared memory 120 to which the ID having the counted number of 0 is assigned. Thus, the routine returns to step SP14, and then, the operation is repeated.

Namely, the image processing object 125 for color detection detects a color from the read image data, and then, sends the processing result to the image processing object 128 for barycenter calculation so as to calculate the position of the detected color. Furthermore, the image processing object 126 for motion detection detects a motion region from the image data, and then, sends the processing result to the image processing object 129 for barycenter calculation so as to calculate the position or size of the detected motion region. Moreover, the image processing object 127 for edge detection detects an edge from the image data, and then, sends the processing result to the image

processing object 130 for obstacle detection so as to calculate the position of the obstacle. Thereafter, the image processing object 131 for coordinates conversion converts the coordinates of the position of the obstacle. Subsequently, the routine returns to step SP18, and the next processing follows.

In this way, since each of the image processing objects 125 to 127 reads the image data from the shared memory 120 produced on the DRAM 24, it is possible to achieve the general-purpose image processing objects independent of the CCD camera 10, thus combining the plural general-purpose image processing objects so as to facilitate various kinds of image processing.

(6) Operations and Effects

With the above-described configuration, the virtual robot 104 sequentially designates rewritable common memories 120 out of the plural common memories 120 produced on the DRAM 24, and sends the addresses of the designated common memories 120 to the FBK/CDT driver 102A.

The FBK/CDT driver 102A sequentially produces the DMA lists based on the addresses of the designated common memories 120, and stores them in the DRAM 24. The DMA controller 48 sequentially transfers the image data from the FBK/CDT 46 to the designated common memories 120 based on the DMA lists developed in the DRAM 24. In this manner, the image data obtained from the CCD camera 10 is transferred onto the DRAM 24, to which each of the image

processing objects 125 to 127 can directly make access, thereby shortening a time required for the transfer of the image data and enhancing the safety of memory management.

The virtual robot 104 manages the image data to be read by each of the image processing objects 125 to 127 out of the image data stored in the common memories 120. Thus, the virtual robot 104 informs each of the image processing objects 125 to 127 of the address of the shared memory 120 storing therein the image data to be read upon receipt of the data requesting signal sent from each of the image processing objects 125 to 127.

Each of the image processing objects 125 to 127 reads the image data from the shared memory 120 based on the informed address, and subjects the read image data to predetermined image processing.

At this time, the virtual robot 104 stores the image processing objects 125 to 127, which are informed of the address of the shared memory 120, in the shared memory 120 storing therein the image data to be read, and then, prohibits the image data from being transferred from the FBK/CDT 46 to the shared memory 120 until next data requesting signals are supplied from all of the stored image processing objects 125 to 127.

Consequently, it is possible to securely protect the image data to be read while the plural independent image processing objects 125 to 127 are executed in parallel without any mutual interference.

With the above-described configuration, when the image data to be read is requested by each of the image processing objects 125 to 127, each of the image processing objects 125 to 127 is informed of the ID of the shared memory 120 storing therein the image data to be read, so that each of the image processing objects 125 to 127 can directly read the image data stored on the DRAM 24 based on the informed ID. Thus, it is possible to perform the plural independent image processing in parallel at a high speed with the simple configuration.

(7) Other Preferred Embodiments

Although in the above-described embodiment the description has been given of the case where the present invention is applied to the pet robot 1, it is understood that the present invention is not limited to such a case, but can be widely applied to other various kinds of robot apparatuses, e.g., a robot for use in the field of entertainment of games or exhibitions, an industrial robot such as a transporting robot or a construction robot, and the like.

Furthermore, although in the above-described embodiment the description has been given of the case where the present invention is applied to the pet robot 1, it is understood that the present invention is not limited to such a case, but can be widely applied to, e.g., other various kinds of image processing apparatuses

capable of performing plural image processing in parallel such as a computer capable of performing plural image processing.

Industrial Applicability

The present invention can be applied to a pet robot.

The present invention can also be applied to an image processing apparatus which executes plural processing in parallel at the same time.

JP
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15
P16
P17
P18
P19
P20
P21
P22
P23
P24
P25
P26
P27
P28
P29
P30
P31
P32
P33
P34
P35
P36
P37
P38
P39
P40
P41
P42
P43
P44
P45
P46
P47
P48
P49
P50
P51
P52
P53
P54
P55
P56
P57
P58
P59
P60
P61
P62
P63
P64
P65
P66
P67
P68
P69
P70
P71
P72
P73
P74
P75
P76
P77
P78
P79
P80
P81
P82
P83
P84
P85
P86
P87
P88
P89
P90
P91
P92
P93
P94
P95
P96
P97
P98
P99
P100
P101
P102
P103
P104
P105
P106
P107
P108
P109
P110
P111
P112
P113
P114
P115
P116
P117
P118
P119
P120
P121
P122
P123
P124
P125
P126
P127
P128
P129
P130
P131
P132
P133
P134
P135
P136
P137
P138
P139
P140
P141
P142
P143
P144
P145
P146
P147
P148
P149
P150
P151
P152
P153
P154
P155
P156
P157
P158
P159
P160
P161
P162
P163
P164
P165
P166
P167
P168
P169
P170
P171
P172
P173
P174
P175
P176
P177
P178
P179
P180
P181
P182
P183
P184
P185
P186
P187
P188
P189
P190
P191
P192
P193
P194
P195
P196
P197
P198
P199
P200
P201
P202
P203
P204
P205
P206
P207
P208
P209
P210
P211
P212
P213
P214
P215
P216
P217
P218
P219
P220
P221
P222
P223
P224
P225
P226
P227
P228
P229
P230
P231
P232
P233
P234
P235
P236
P237
P238
P239
P240
P241
P242
P243
P244
P245
P246
P247
P248
P249
P250
P251
P252
P253
P254
P255
P256
P257
P258
P259
P259
P260
P261
P262
P263
P264
P265
P266
P267
P268
P269
P270
P271
P272
P273
P274
P275
P276
P277
P278
P279
P280
P281
P282
P283
P284
P285
P286
P287
P288
P289
P290
P291
P292
P293
P294
P295
P296
P297
P298
P299
P299
P300
P301
P302
P303
P304
P305
P306
P307
P308
P309
P309
P310
P311
P312
P313
P314
P315
P316
P317
P318
P319
P319
P320
P321
P322
P323
P324
P325
P326
P327
P328
P329
P329
P330
P331
P332
P333
P334
P335
P336
P337
P338
P339
P339
P340
P341
P342
P343
P344
P345
P346
P347
P348
P349
P349
P350
P351
P352
P353
P354
P355
P356
P357
P358
P359
P359
P360
P361
P362
P363
P364
P365
P366
P367
P368
P369
P369
P370
P371
P372
P373
P374
P375
P376
P377
P378
P379
P379
P380
P381
P382
P383
P384
P385
P386
P387
P388
P389
P389
P390
P391
P392
P393
P394
P395
P396
P397
P398
P399
P399
P400
P401
P402
P403
P404
P405
P406
P407
P408
P409
P409
P410
P411
P412
P413
P414
P415
P416
P417
P418
P419
P419
P420
P421
P422
P423
P424
P425
P426
P427
P428
P429
P429
P430
P431
P432
P433
P434
P435
P436
P437
P438
P439
P439
P440
P441
P442
P443
P444
P445
P446
P447
P448
P449
P449
P450
P451
P452
P453
P454
P455
P456
P457
P458
P459
P459
P460
P461
P462
P463
P464
P465
P466
P467
P468
P469
P469
P470
P471
P472
P473
P474
P475
P476
P477
P478
P479
P479
P480
P481
P482
P483
P484
P485
P486
P487
P488
P489
P489
P490
P491
P492
P493
P494
P495
P496
P497
P498
P499
P499
P500
P501
P502
P503
P504
P505
P506
P507
P508
P509
P509
P510
P511
P512
P513
P514
P515
P516
P517
P518
P519
P519
P520
P521
P522
P523
P524
P525
P526
P527
P528
P529
P529
P530
P531
P532
P533
P534
P535
P536
P537
P538
P539
P539
P540
P541
P542
P543
P544
P545
P546
P547
P548
P549
P549
P550
P551
P552
P553
P554
P555
P556
P557
P558
P559
P559
P560
P561
P562
P563
P564
P565
P566
P567
P568
P569
P569
P570
P571
P572
P573
P574
P575
P576
P577
P578
P579
P579
P580
P581
P582
P583
P584
P585
P586
P587
P588
P589
P589
P590
P591
P592
P593
P594
P595
P596
P597
P598
P599
P599
P600
P601
P602
P603
P604
P605
P606
P607
P608
P609
P609
P610
P611
P612
P613
P614
P615
P616
P617
P618
P619
P619
P620
P621
P622
P623
P624
P625
P626
P627
P628
P629
P629
P630
P631
P632
P633
P634
P635
P636
P637
P638
P639
P639
P640
P641
P642
P643
P644
P645
P646
P647
P648
P649
P649
P650
P651
P652
P653
P654
P655
P656
P657
P658
P659
P659
P660
P661
P662
P663
P664
P665
P666
P667
P668
P669
P669
P670
P671
P672
P673
P674
P675
P676
P677
P678
P679
P679
P680
P681
P682
P683
P684
P685
P686
P687
P688
P689
P689
P690
P691
P692
P693
P694
P695
P696
P697
P698
P699
P699
P700
P701
P702
P703
P704
P705
P706
P707
P708
P709
P709
P710
P711
P712
P713
P714
P715
P716
P717
P718
P719
P719
P720
P721
P722
P723
P724
P725
P726
P727
P728
P729
P729
P730
P731
P732
P733
P734
P735
P736
P737
P738
P739
P739
P740
P741
P742
P743
P744
P745
P746
P747
P748
P749
P749
P750
P751
P752
P753
P754
P755
P756
P757
P758
P759
P759
P760
P761
P762
P763
P764
P765
P766
P767
P768
P769
P769
P770
P771
P772
P773
P774
P775
P776
P777
P778
P779
P779
P780
P781
P782
P783
P784
P785
P786
P787
P788
P789
P789
P790
P791
P792
P793
P794
P795
P796
P797
P798
P799
P799
P800
P801
P802
P803
P804
P805
P806
P807
P808
P809
P809
P810
P811
P812
P813
P814
P815
P816
P817
P818
P819
P819
P820
P821
P822
P823
P824
P825
P826
P827
P828
P829
P829
P830
P831
P832
P833
P834
P835
P836
P837
P838
P839
P839
P840
P841
P842
P843
P844
P845
P846
P847
P848
P849
P849
P850
P851
P852
P853
P854
P855
P856
P857
P858
P859
P859
P860
P861
P862
P863
P864
P865
P866
P867
P868
P869
P869
P870
P871
P872
P873
P874
P875
P876
P877
P878
P879
P879
P880
P881
P882
P883
P884
P885
P886
P887
P888
P889
P889
P890
P891
P892
P893
P894
P895
P896
P897
P898
P899
P899
P900
P901
P902
P903
P904
P905
P906
P907
P908
P909
P909
P910
P911
P912
P913
P914
P915
P916
P917
P918
P919
P919
P920
P921
P922
P923
P924
P925
P926
P927
P928
P929
P929
P930
P931
P932
P933
P934
P935
P936
P937
P938
P939
P939
P940
P941
P942
P943
P944
P945
P946
P947
P948
P949
P949
P950
P951
P952
P953
P954
P955
P956
P957
P958
P959
P959
P960
P961
P962
P963
P964
P965
P966
P967
P968
P969
P969
P970
P971
P972
P973
P974
P975
P976
P977
P978
P979
P979
P980
P981
P982
P983
P984
P985
P986
P987
P988
P989
P989
P990
P991
P992
P993
P994
P995
P996
P997
P998
P999
P999
P1000
P1001
P1002
P1003
P1004
P1005
P1006
P1007
P1008
P1009
P1009
P1010
P1011
P1012
P1013
P1014
P1015
P1016
P1017
P1018
P1019
P1019
P1020
P1021
P1022
P1023
P1024
P1025
P1026
P1027
P1028
P1029
P1029
P1030
P1031
P1032
P1033
P1034
P1035
P1036
P1037
P1038
P1039
P1039
P1040
P1041
P1042
P1043
P1044
P1045
P1046
P1047
P1048
P1049
P1049
P1050
P1051
P1052
P1053
P1054
P1055
P1056
P1057
P1058
P1059
P1059
P1060
P1061
P1062
P1063
P1064
P1065
P1066
P1067
P1068
P1069
P1069
P1070
P1071
P1072
P1073
P1074
P1075
P1076
P1077
P1078
P1079
P1079
P1080
P1081
P1082
P1083
P1084
P1085
P1086
P1087
P1088
P1089
P1089
P1090
P1091
P1092
P1093
P1094
P1095
P1096
P1097
P1098
P1099
P1099
P1100
P1101
P1102
P1103
P1104
P1105
P1106
P1107
P1108
P1109
P1109
P1110
P1111
P1112
P1113
P1114
P1115
P1116
P1117
P1118
P1119
P1119
P1120
P1121
P1122
P1123
P1124
P1125
P1126
P1127
P1128
P1129
P1129
P1130
P1131
P1132
P1133
P1134
P1135
P1136
P1137
P1138
P1139
P1139
P1140
P1141
P1142
P1143
P1144
P1145
P1146
P1147
P1148
P1149
P1149
P1150
P1151
P1152
P1153
P1154
P1155
P1156
P1157
P1158
P1159
P1159
P1160
P1161
P1162
P1163
P1164
P1165
P1166
P1167
P1168
P1169
P1169
P1170
P1171
P1172
P1173
P1174
P1175
P1176
P1177
P1178
P1179
P1179
P1180
P1181
P1182
P1183
P1184
P1185
P1186
P1187
P1188
P1189
P1189
P1190
P1191
P1192
P1193
P1194
P1195
P1196
P1197
P1198
P1199
P1199
P1200
P1201
P1202
P1203
P1204
P1205
P1206
P1207
P1208
P1209
P1209
P1210
P1211
P1212
P1213
P1214
P1215
P1216
P1217
P1218
P1219
P1219
P1220
P1221
P1222
P1223
P1224
P1225
P1226
P1227
P1228
P1229
P1229
P1230
P1231
P1232
P1233
P1234
P1235
P1236
P1237
P1238
P1239
P1239
P1240
P1241
P1242
P1243
P1244
P1245
P1246
P1247
P1248
P1249
P1249
P1250
P1251
P1252
P1253
P1254
P1255
P1256
P1257
P1258
P1259
P1259
P1260
P1261
P1262
P1263
P1264
P1265
P1266
P1267
P1268
P1269
P1269
P1270
P1271
P1272
P1273
P1274
P1275
P1276
P1277
P1278
P1279
P1279
P1280
P1281
P1282
P1283
P1284
P1285
P1286
P1287
P1288
P1289
P1289
P1290
P1291
P1292
P1293
P1294
P1295
P1296
P1297
P1298
P1299
P1299
P1300
P1301
P1302
P1303
P1304
P1305
P1306
P1307
P1308
P1309
P1309
P1310
P1311
P1312
P1313
P1314
P1315
P1316
P1317
P1318
P1319
P1319
P1320
P1321
P1322
P1323
P1324
P1325
P1326
P1327
P1328
P1329
P1329
P1330
P1331
P1332
P1333
P1334
P1335
P1336
P1337
P1338
P1339
P1339
P1340
P1341
P1342
P1343
P1344
P1345
P1346
P1347
P1348
P1349
P1349
P1350
P1351
P1352
P1353
P1354
P1355
P1356
P1357
P1358
P1359
P1359
P1360
P1361
P1362
P1363
P1364
P1365
P1366
P1367
P1368
P1369
P1369
P1370
P1371
P1372
P1373
P1374
P1375
P1376
P1377
P1378
P1379
P1379
P1380
P1381
P1382
P1383
P1384
P1385
P1386
P1387
P1388
P1389
P1389
P1390
P1391
P1392
P1393
P1394
P1395
P1396
P1397
P1398
P1399
P1399
P1400
P1401
P1402
P1403
P1404
P1405
P1406
P1407
P1408
P1409
P1409
P1410
P1411
P1412
P1413
P1414
P1415
P1416
P1417
P1418
P1419
P1419
P1420
P1421
P1422
P1423
P1424
P1425
P1426
P1427
P1428
P1429
P1429
P1430
P1431
P1432
P1433
P1434
P1435
P1436
P1437
P1438
P1439
P1439
P1440
P1441
P1442
P1443
P1444
P1445
P1446
P1447
P1448
P1449
P1449
P1450
P1451
P1452
P1453
P1454
P1455
P1456
P1457
P1458
P1459
P1459
P1460
P1461
P1462
P1463
P1464
P1465
P1466
P1467
P1468
P1469
P1469
P1470
P1471
P1472
P1473
P1474
P1475
P1476
P1477
P1478
P1479
P1479
P1480
P1481
P1482
P1483
P1484
P1485
P1486
P1487
P1488
P1489
P1489
P1490
P1491
P1492
P1493
P1494
P1495
P1496
P1497
P1498
P1499
P1499
P1500
P1501
P1502
P1503
P1504
P1505
P1506
P1507
P1508
P1509
P1509
P1510
P1511
P1512
P1513
P1514
P1515
P1516
P1517
P1518
P1519
P1519
P1520
P1521
P1522
P1523
P1524
P1525
P1526
P1527
P1528
P1529
P1529
P1530
P1531
P1532
P1533
P1534
P1535
P1536
P1537
P1538
P1539
P1539
P1540
P1541
P1542
P1543
P1544
P1545
P1546
P1547
P1548
P1549
P1549
P1550
P1551
P1552
P1553
P1554
P1555
P1556
P1557
P1558
P1559
P1559
P1560
P1561
P1562
P1563
P1564
P1565
P1566
P1567
P1568
P1569
P1569
P1570
P1571
P1572
P1573
P1574
P1575
P1576
P1577
P1578
P1579
P1579
P1580
P1581
P1582
P1583
P1584
P1585
P1586
P1587
P1588
P1589
P1589
P1590
P1591
P1592
P1593
P1594
P1595
P1596
P1597
P1598
P1599
P1599
P1600
P1601
P1602
P1603
P1604
P1605
P1606
P1607
P1608
P1609
P1609
P1610
P1611
P1612
P1613
P1614
P1615
P1616
P1617
P1618
P1619
P1619
P1620
P1621
P1622
P1623
P1624
P1625
P1626
P1627
P1628
P1629
P1629
P1630
P1631
P1632
P1633
P1634
P1635
P1636
P1637
P1638
P1639
P1639
P1640
P1641
P1642
P1643
P1644
P1645
P1646
P1647
P1648
P1649
P1649
P1650
P1651
P1652
P1653
P1654
P1655
P1656
P1657
P1658
P1659
P1659
P1660
P1661
P1662
P1663
P1664
P1665
P1666
P1667
P1668
P1669
P1669
P1670
P1671
P1672
P1673
P1674
P1675
P1676
P1677
P1678
P1679
P1679
P1680
P1681
P1682
P1683
P1684
P1685
P1686
P1687
P1688
P1689
P1689
P1690
P1691
P1692
P1693
P1694
P1695
P1696
P1697
P1698
P1699
P1699
P1700
P1701
P1702
P1703
P1704
P1705
P1706
P1707
P1708
P1709
P1709
P1710
P1711
P1712
P1713
P1714
P1715
P1716
P1717
P1718
P1719
P1719
P1720
P1721
P1722
P1723
P1724
P1725
P1726
P1727
P1728
P1729
P1729
P1730
P1731
P1732
P1733
P1734
P1735
P1736
P1737
P1738
P1739
P1739
P1740
P1741
P1742
P1743
P1744
P1745
P1746
P1747
P1748
P1749
P1749
P1750
P1751
P1752
P1753
P1754
P1755
P1756
P1757
P1758
P1759
P1759