MEMORIA PRACTICA3

a) Medir el tiempo de ejecución del bucle

Opción -O0	Opción -O2
25'942.4 ms	20'014.5 ms

b) Desarrollar el algoritmo de Padding y realizar las modificaciones correspondientes en el código. Para el mismo número de iteraciones de los bucles, medir tiempo de ejecución del bucle.

```
\label{eq:calculamos} \begin{array}{l} \text{Calculamos el stride del siguiente algoritmo:} \\ \text{for(int k=0; k<200; k++)} \{ \\ \text{for(int i = 0; i < 2176; i++)} \{ \\ \text{for(int j = 0; j < 2176; j++)} \{ \\ \text{A[j][i] = A[j][i] * k + B[i][j] * C[j][i] + 3.14 * D [i][j] } \\ \} \\ \} \\ \} \end{array}
```

3					
Calculamos el valor de FA para cada matriz					
FA(A)	2176* j + i	2176* j + i			
FA(B)	2176* i + j	2176* i + j			
FA(C)	2176 * j + i	2176 * j + i			
FA(D)	2176 * i + j	2176 * i + j			
Calculamos el stride de cada matriz					
	x=i	x=j	x=k		
Stride(A,x)	1	2176	0		
Stride(B,x)	2176	1	0		
Stride(C,x)	1	2176	0		
Stride(D,x)	2176	1	0		
Calculamos el valor de SetStride de cada matriz					
	x=i	x=j	x=k		
SetStride(A,x)	0 (64)	8	0 (64)		
SetStride(B,x)	8	0 (64)	0 (64)		
SetStride(C,x)	0 (64)	8	0 (64)		
SetStride(D,x)	8	0 (64)	0 (64)		
Calculamos la ocupación de la caché debida a las referencias a un array X en un bucle Y					
	x=i	x=j	x=k		
GCD(SetStrike(A,x),64)	64	8	64		
GCD(SetStrike(B,x),64)	8	64	64		
GCD(SetStrike(C,x),64)	64	8	64		
GCD(SetStrike(D,x),64)	8	64	64		

NewStride(C,x)	17	2192	16		
NewStride(D,x)	17	17	16		
Calculamos el valor de SetStride del nuevo stride					
	x=i	x=j	x=k		
SetStride(NewStride(A,x),x)	1	1	16		
SetStride(NewStride(B,x),x)	9	1	16		
SetStride(NewStride(C,x),x)	1	9	16		
SetStride(NewStride(D,x),x)	1	1	16		
Calculamos la ocupación de la caché debida a las referencias a un array X en un bucle Y					
	x=i	х=ј	x=k		
GCD(SetStrike(A,x),64)	1	1	16		
GCD(SetStrike(B,x),64)	1	1	16		
GCD(SetStrike(C,x),64)	1	1	16		
GCD(SetStrike(D,x),64)	1	1	16		

Aplicamos el algoritmo de padding y obtenemos los siguientes resultados:

Opción -O0	Opción -O2
58.726 ms	51.965 ms

c) Para los resultados obtenidos en los casos de ejecución anteriores, realizar la comparación de tiempos de ejecución con las distintas opciones de optimización en la compilación (defecto, O0 y O2)

Si observamos los tiempos de cómputo, comprobamos que al aplicar la opción -O2 se produce un tiempo inferior al obtenido con la opción -O0.

Además, el tiempo de cómputo al realizar el padding también disminuye si lo comparamos a los tiempos obtenidos sin aplicar el padding.

d) Justificar resultados, aportando características hardware del equipo donde se han realizado las pruebas

Cuando no se aplica el padding, la ocupación de la caché se realiza del siguiente modo: Se rellenan 64 filas de la caché y se utiliza una. Esto provoca un mayor tiempo de ejecución del algoritmo.

Al aplicar el padding, se rellenan 64 filas de la caché y se utilizan las 64 filas de la caché. Esto produce una reducción notable del tiempo de ejecución del algoritmo, tal y como se muestran en los datos obtenidos anteriormente.

Al utilizar GCD, tenemos que el número de set donde se pueden ubicar referencias a X en Ik son 64/GCD(X,Ik).

Dado que el valor de GCD con padding es 1, tenemos que la ocupación de la caché es máxima; en cambio, si no aplicamos padding la ocupación de la caché no es máxima

Las características hardware del equipo empleado son las siguientes:

Procesador del equipo Entorno de desarrollo Herramienta de desarrollo Compilador empleado Intel Core i7-8565U Ubuntu 20.04.3 C++ G++ version 9.3.0

Características de la memoria caché L1

data line size Associativity 4x32 KB (4 bloques de 32 KB) 64 B 8-way set

Numero de palabras por bloque: 16 Calculamos el número de líneas por vía:

$$\frac{32 \, KB}{8} = \frac{4 \, KB}{via} \rightarrow \frac{\frac{4 \, KB}{via}}{\frac{64 \, B}{via}} = \frac{64 \, lineas}{via}$$