Moderators and Mediators

14 Oct 2011 CPSY 501 Dr. Sean Ho Trinity Western University

Please download:

- Peattie2.sav
- ExamAnxiety.sav

Outline for today

- Moderators
 - Assessment: test if we have moderation
 - Interpretation
 - Example: Peattie marital satisfaction dataset
- Mediators
 - Assessment
 - Example: Exam Anxiety toy dataset
 - Interpretation
 - MacArthur model

Moderators in Regression

Definition: A moderator is a variable that interacts with the predictors and the outcome, changing the degree or direction of relationship

Effect of moderation

Does the level of working alliance moderate the effect of confrontational counsellor intervention on client outcome?

Low Confrontational intervention High

Asking good RQs

- RQ1: Does working alliance moderate client outcome?
 - No good: moderation requires at least three variables: IV, DV, and Mod
- RQ2: Does working alliance moderate the relationship between confrontational intervention and client outcome?
 - IV: confrontational intervention
 - DV: client outcome
 - Mod: working alliance

Regression vs. ANOVA

- We can test for moderation in either a regression or ANOVA model:
- Regression: scale-level IV and Mod
- ANOVA: categorical IV and Mod

- Remember that regression and ANOVA are really two sides of the same coin: both are general linear model
- Today we'll focus on moderators in regression
 - Assume IV, Mod, and DV are all scale-level

Testing for Moderation

- Centre the predictor and moderator:
 - Compute: IV (IV mean) → IV_ctr
- Create the interaction term:
 - Compute: IV_ctr * Mod_ctr → IVxMod
- Run regression model:
 - Centred predictor and centred moderator go in blocks in normal order
 - Interaction term goes in a subsequent block
- If the interaction term is significant, you have a moderator (common in CPSY research!)

Interpreting Moderators

- If we have moderation, the main effects (effects of each variable by itself) must be reinterpreted
- The presence of a moderating effect indicates that the relationship between the predictor and the outcome variable is different for different kinds of people (as defined by the moderator)
- Theory is needed to determine how to interpret the interactions.
- Analytically, we need to graph the interaction to understand what is going on.

Example: Peattie, 2004

- Birgitte Peattie's thesis on marriage, stress, & sanctification.
 - Dataset: Peattie2.sav
- RQ: Do joint religious activities buffer the effect of negative life events on marital satisfaction?
 - DV: Marital Satisfaction (Mar_sat)
 - IV: Negative Life Events (NLE, stress)
 - Mod: Joint Religious Activities (JRA)
- Buffering: high levels of a "buffer" weaken the impact of stress
 - → interaction!

Preparing Variables

- (1) Centre predictor (NLE)
 - First calculate the mean: Analyze → Descrip.
 - Transform → Compute: NLE 5.1250
 Target Variable: NLE_ctr
- (2) Centre moderator (JRA) (but don't centre DV!)
- (3) Create interaction term
 - Multiply centred predictor and moderator:
 - Transform → Compute: NLE_ctr * JRA_ctr
 Target Variable: NLE_x_JRA

Testing Moderation in Regr.

- Analyze → Regression → Linear:
- Dependent: Mar_sat
 - Block 1: centred predictors: NLE_ctr
 - Block 2: centred moderators: JRA_ctr
 - Block 3: Interaction term(s): NLE_x_JRA
- Statistics: R² change, Part/Partial, Collinearity, Durbin-Watson
- Save: Standardized Resid., Cook's, Leverage
- Plots: ZPRED vs. ZRESID, ZPRED vs. SRESID

Peattie Data: Model Summary

If the interaction term is significant, we have moderation

Model Summary ^d							
			Change Statistics Std.				
Model	R			R F Square Chang Change e	g df1	df2	Sig. F Change
1	.335ª	.112	.1041.39996	.112 13.91	1 1	110	.000
2	.350 ^b	.122	.1061.39834	.010 1.25	6 1	109	.265
3	.391°	.153	.1301.37987	.031 3.93	7 1	108	.050

a. Predictors: (Constant), NLE_Cent

b. Predictors: (Constant), NLE_Cent, JRA_Cent

c. Predictors: (Constant), NLE_Cent, JRA_Cent, NLE_JRA_Int

Peattie: Coefficients Table

			Coefficien	nts ^a				
			Unstandardi	zed Coeffi		Standardi zed Coefficien ts		
	Model		В	S	Std. Error	Beta	t	Sig.
1 1	1	(Constant)		5.601	.132		42.338	.000
		NLE_Cent		120	.032	335	-3.730	.000
	2	(Constant)		5.600	.132		42.385	.000
		NLE_Cent		108	.034	302	-3.195	.002
		JRA_Cent		105	.093	.106	1.121	.265
	3	(Constant)		5.672	.135		41.925	.000
		NLE_Cent		081	.036	224	-2.220	.028
		JRA_Cent		.088	.092	.089	.952	.343
		NLE_JRA_Int		.037	.019	.195	1.984	.050

a. Dependent Variable: Marital Satisfaction

ModGraph: Moderation Tool

- Paul Jose's ModGraph tool:
 - Helps us visualize the moderating relationship: how the PV predicts the DV depending on the level of the Mod
- Jose, P.E. (2008). ModGraph-I: A programme to compute cell means for the graphical display of moderational analyses: The internet version, Version 2.0. Victoria University of Wellington, Wellington, New Zealand.

http://www.victoria.ac.nz/psyc/paul-jose-files/modgraph/modgraph.php

Peattie: Using ModGraph

- Select "Continuous Moderator": Data Entry
- Chart Labels:
 - Title: "Peattie (2004)"
 - X-axis (IV): "Negative Life Events"
 - Y-axis (DV): "Marital Satisfaction"
 - Moderator: "Joint Religious Activities"

ModGraph: Data Entry

- All B values (unstandardized slopes) should come from the full (last) regression model!
- Main effect:
 - \bullet B=-.081, mean=0 (centred), SD=4.1157
- Moderating:
 - \bullet B=.088, mean=0 (centred), SD=1.4979
- Interaction term and constant:
 - \bullet B=.037
 - Constant: 5.672

ModGraph: Results

Interpreting Interactions

- Slope of IV regression lines differs for various levels of the moderating variable
- Peattie study example:
 - In general, negative life events have a negative impact on marital satisfaction,
 - However, joint religious activities weaken this negative relationship

Outline for today

- Moderators
 - Assessment: test if we have moderation
 - Interpretation
 - Example: Peattie marital satisfaction dataset
- Mediators
 - Assessment
 - Example: Exam Anxiety
 - Interpretation
 - MacArthur model

Mediators: Definition

- A mediator is a "generative mechanism" by which a predictor influences an outcome var:
 - IV has a significant relationship with DV,
 - Med has sig. relshp. with both IV and DV, but
 - When Med is included in the model, the relationship between IV and DV disappears
- Partial mediation: if the IV-DV relationship is merely weakened rather than disappearing
- Theory must support placing the mediator "between" the IV and DV in some sense

Mediators: Block diagram

Examples of mediators

- Predictor: Childhood trauma
 - Mediator: Depression
 - Outcome: Eating psychopathology
- Predictor: Disease severity
 - Mediator: Intrusiveness of illness
 - Outcome: Psychological distress
- Predictor: Therapy program
 - Mediator: Catharsis, problem solving, ...
 - Outcome: Psychological well-being

Testing for Mediators

- Are all three variables significantly correlated?
- Is there a relationship to mediate?
 - Run regression without the mediator: sig.?
- Is there a relationship between IV and Med?
 - Run a simple regression with IV as predictor and Med as outcome: is it significant?
- Back to the original regression model, include the mediator in the model (in the same block as the predictor)
 - Keep any other predictors as-is in the model

Example: Exam Anxiety

- Dataset: ExamAnxiety.sav
 - (Toy dataset from the textbook)
- RQ: does exam anxiety mediate the relationship between studying time and exam performance?
 - IV: time spent studying
 - Med: exam anxiety
 - DV: exam performance
- First check if all three are correlated:
 - Analyze → Correlate → Bivariate

ExamAnxiety: Correlations

Correlations

		Time Spent	Exam Performance	
		Revising	(%)	Exam Anxiety
Time Spent Studying	Pearson Correlation	1.000	.397**	709**
	Sig. (2-tailed)		.000	.000
	N	103	103	103
Exam Performance (%)	Pearson Correlation	.397**	1.000	441**
	Sig. (2-tailed)	.000)	.000
	N	103	103	103
Exam Anxiety	Pearson Correlation	709*	441**	1.000
	Sig. (2-tailed)	.000	.000)
	N	103	103	103
** Correlation is signified	ant at the 0.01 level (2 tailed)			

^{**.} Correlation is significant at the 0.01 level (2-tailed).

ExamAnxiety: Main effect

- Next, we check to see if there is a main effect between study time and exam performance
 - If not, then there is no relationship to be mediated!
- Analyze → Regression → Linear:
 - Dependent: Exam Performance
 - Block 1: Time Spent Revising
 - If we had any other predictors (including other moderators), we'd include them according to their blocks

Main effect: Results

Change Statistics

a. Predictors: (Constant), Time Spent Studying

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
·	(Constant)	45.321	3.503		12.938	.000
>	Time Spent Studying	.567	.130	.397	4.343	.000

a. Dependent Variable: Exam Performance (%)

ExamAnxiety: IV to Med

- Now we must evaluate the relationship between the predictor and the mediator:
- Analyze → Regression → Linear:
 - Dependent: Exam Anxiety
 - Block 1: Time Spent Revising
 - For this side analysis, we don't need any other variables, just simple regression

Predictor to Mediator: Results

ExamAnxiety: Full Model

- Finally, we run the full regression model, now including the mediator in the same block as the predictor:
- Analyze → Regression → Linear:
 - Dependent: Exam Performance
 - Block 1: Time Spent Revising, Exam Anxiety
 - Any other predictors/moderators would be included according to plan
- See if the mediator is significant in the model, but the predictor is now no longer significant

Full Model: Output

Change Statistics

Coefficients^a

a. Predictors: (Constant), Exam Anxiety, Time Spent Studying

Unstandardized	Standar

rdized Coefficients Coefficients

	Model	B S	td. Error	Beta	t	Sig.
	1 (Constant)	87.833	17.047		5.152	.000
k. .	Time Spent Studying	.241	.180	.169	1.339	.184
	Exam Anxiety	485	.191	321	-2.545	.012

a. Dependent Variable: Exam Performance (%)

UNIVERSITY

ExamAnxiety: Block Diagram

- Study time influences exam performance indirectly, via the mediator of exam anxiety
- Report p-values and effect sizes (β , R^2)

MedGraph: mediation tool

- Paul Jose's MedGraph:
 - Tool to visualize the mediation relationship
 - http://www.victoria.ac.nz/psyc/paul-josefiles/medgraph/medgraph.php
- Sobel test: one way to check partial mediation
 - Kristopher Preacher and Andrew Hayes
 - http://people.ku.edu/~preacher/sobel/sobel.htm
 - May have problems with power

Interpreting Mediators

- Conclude that what appeared to be a real relationship between the predictor and outcome is actually an indirect relationship, and due to the mediator variable.
- Report:
 - Relationships (β , R^2) between the predictor and the outcome variable before and after the mediator is entered into the model
 - Relationships between the mediator and predictor, and between mediator and outcome variable (in the final model)

Moderation or Mediation?

- Does the level of dyadic coping employed by a couple change the impact that emotional expression has on a couple's stress level?
- Is the relationship between quality of relationships and depression best understood by considering social skills?
- Does psychotherapy reduce distress by its ability to inspire hope in clients?

The rules of thumb for discerning between moderation and mediation are somewhat fluid!

MacArthur Model

- The current definitions and procedures for assessing moderation and mediation are largely due to Baron and Kenny (1986)
- MacArthur model is a more general approach:
 - Is IV correlated with DV? (can be ok if not)
 - Is Med correlated with DV? (try Spearman)
 - Show that the effect of IV on DV can be explained at least in part by Med: can use linear regression or other means
 - If interaction of IV*Med significantly predicts
 DV, this can be evidence of mediation, too

MacArthur vs. Baron+Kenny

- Both rely on prior theory to tell us temporal sequencing of IV → Med → DV
- B+K explicitly tests the IV → Med relationship
 - MacArthur relies on temporal sequencing
- MacArthur tests for interaction of IV*Med on DV
 - B+K does not test interaction (moderation)
- B+K adopts assumptions of linear regression (e.g., parametricity, linearity)
 - MacArthur is flexible to other non-param.
 methods: even correlation can be Spearman

Further Reading

■ The original Baron+Kenny paper:

Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research:
 Conceptual, strategic and statistical considerations.
 Journal of Personality and Social Psychology, 51, 1173-1182.

Comparison of B+K to MacArthur model:

- Kraemer, H. C., Kiernan, M., Essex, M., & Kupfer, D. J. (2008).
 How and why criteria defining moderators and mediators
 differ between the Baron & Kenny and MacArthur approaches.
 Health Psychology 27, S101–S108.
- Checklist for moderators / mediators:
 - Assessing Mediators and Moderators.doc

Outline for today

- Moderators
 - Assessment: test if we have moderation
 - Interpretation
 - Example: Peattie marital satisfaction dataset
- Mediators
 - Assessment
 - Example: Exam Anxiety
 - Interpretation
 - MacArthur model

Journal Article: Missirlian, et al.

- Missirlian, T. M., Toukmanian, S. G., Warwar, S. H., & Greenberg, L. S. (2005). Emotional Arousal, Client Perceptual Processing, and the Working Alliance in Experiential Psychotherapy for Depression. Journal of Consulting and Clinical Psychology, 73(5), 861-871.
- We skimmed this before; now we can understand it more fully!
- RQ: "...client emotional arousal, perceptual processing, and the working alliance, together, would be a better predictor of therapy outcome than any one of these variables alone"

Methodology

- Participants: 32 of 500 individuals recurited met criteria for inclusion – screened to ensure mild to moderate levels of depression (no comorbid dx, no Axis-II dx, no medications, not receiving treatment elsewhere)
- Method: participants were randomly assigned to 1 of 11 possible therapists to complete between 14 and 20 manualized sessions
- Depression (BDI) was measured pre-treatment
- 4 outcome measures were collected at 3 phases (early, middle, late) in the therapeutic

rocess

IVs: Therapeutic Processes

- Emotional Arousal: Two independent and blind raters used video tape + transcript to rate on the Client Emotional Arousal Scale-III
- Perceptual Processes: Two other independent judges watched the same tapes, rating on Levels of Client Perceptual Processing (from 'recognition' at one end to 'integration' at other)
- Working Alliance: Clients completed (self-rated) the Working Alliance Inventory at the end of each session.

DVs: Therapeutic Outcomes

- Depression: Beck Depression Inventory (BDI)
- Self-esteem: Rosenberg Self-Esteem Scale (SES)
- Stress due to Interpersonal Sources: Inventory of Interpersonal Problems (IIP)
- Psychopathology: Global Symptom Index (GSI) of the Symptom Checklist-90 (SCL-90)

Analysis Method?

- What kind of a design are we working with?
 - Longitudinal: Correlations between variables observed over time
 - Procedure: Manualized therapy for clients with depression
 - Measures: Coding of transcripts of therapy sessions (arousal, perceptions) and some self-report measures (BDI, WAI)
- A series of hierarchical regression analyses test the predictive ability of the three therapeutic process measures in relation to the four come measures.

Correlation: Check Assumptions

- NO perfect multicollinearity: no perfect linear relationship between two or more predictors
- Linearity: Assume the relationship we're modelling is a linear one

Table 2
Pearson Product-Moment Correlations on Pretreatment and Posttreatment Outcome Measures and Process Measures by Time

	Pretreatment					Posttreatment			
Variable	BDI	RSE	IIP	SCL-90-R	BDI	RSE	IIP	SCL-90-R	
Early								/	
Arousal	06	.14	14	.08	36*	.20	17	24	
LCPP	18	02	15	.00	35*	.09	34	51**	
WAI	.03	.27	07	.23	20	.39*	07	29	
Middle									
Arousal	.16	.04	19	.01	56**	.33	27	60**	
LCPP	13	05	22	04	54**	.17	48**	80**	
WAI	.03	.08	.03	.24	42*	.29	18	38*	
Late									
Arousal	.15	11	.13	.07	36*	.09	12	36*	
LCPP	01	.03	02	.24	44*	.21	37*	66**	
WAI	05	.02	.24	.33	50**	.20	.02	33	

Note. N = 32. Arousal = modal arousal; LCPP = Levels of Client Perceptual Processing (high); WAI = Working Alliance Inventory; BDI Depression Inventory; RSE = Rosenberg Self-Esteem Scale; IIP = Inventory of Interpersonal Problems; SCL-90-R = Symptom Checklist-90-Revised. * p < .05. ** p < .01.

Results: Mid-Therapy Arousal' adds only marginal

'Arousal' adds only marginal Unique improvement over Perceptual Processes

Table 3

<u>Summary of Hierarchical Regression Analysis for Middle Therapy</u> Variables Predicting Depressive Symptomatology at Therapy Termination

Variable	$R_{ m total}$	R_{change}	$R_{ m total}^2$	R_{change}^2	F_{change}	df	β
Step 1							
BDI (pre)	.093	093	.009	.009	0.25	1, 29	093
Step 2							
BDI (pre)	ı	026					026
Middle arousal	.550	542	.303	.294	11.81	1, 28	546**
Step 3					1		
BDI (pre)		101					105
Middle arousal		.289					343†
Middle LCPP	.637	321	.406	.103	4.69	1, 27	383*
Step 4					1		
BDI (pre)		100					104
Middle arousal		235					304
Middle LCPP	1	.297					363†
Middle WAI	.642	077	.412	.006	0.26	1, 26	093

Note. N = 31. Pre = pretreatment; BDI = Beck Depression Inventory; LCPP = Levels of Client Perceptual Processing (high); WAI = Working Alliance Inventory. $\dagger p < .07$. *p < .05. **p < .01.

Emotional Arousal & Perceptual Processes significantly increased prediction for Depression

Results: Late-Therapy

LCPP adds only 'marginally significant' unique improvement over WAI

Table 4
Summary of Hierarchical Regression Analysis for Late Therapy Variables Predicting Depressive
Symptomatology at Therapy Termination

Variable	$R_{ m total}$	$R_{ m change}$	$R_{ m total}^2$	$R_{ m change}^2$	F_{change}	df	β
Step 1							
BDI (pre) Step 2	.093	093	.009	.009	0.25	1, 29	093
BDI (pre)		.100					100
Late LCPP Step 3	.454	444	.206	.197	7.00	1, 28	444*
BDI (pre)		119			l .		119
Late LCPP	505	270	242	126	5.50	1 27	119 292†
Late WAI	.585	368	.342	.136	5.57	1, 27	399*

Note. N = 31. Pre = pretreatment; BDI = Beck Depression Inventory; LCPP = Levels of Client Perceptual Processing (high); WAI = Working Alliance Inventory. $\dagger p < .10$. * p < .05.

Adding Working Alliance on top of Perceptual Processing improved prediction of depressive symptoms (explaining 34% of the variance)

Limitations? Future work?

- Small sample size (n=32): limited power
 - But don't dismiss results simply because of "marginal significance" – look at effect size
- Homogenous sample: selecting for only mild to moderate depression doesn't mirror the reality of the clinical world
- Self-report inventories for outcome measures: influenced by "demand characteristics"?
- Later regression models are built based on results of earlier regression tests: inflated "experiment-wise" Type-I error?

