Lecture 2

Multiple Linear Regression: Estimation and Inference

Reading: Faraway 2014 Chapters 2.1 - 2.6, 3.1 - 3.2; 3.5; ISLR 2021 Chapter 3.2

DSA 8020 Statistical Methods II

Whitney Huang Clemson University

Agenda

- Multiple Linear Regression
- 2 Estimation & Inference
- Assessing Model Fit

Notes

Notes

Multiple Linear Regression (MLR)

Goal: To model the relationship between two or more predictors (x's) and a response (y) by fitting a **linear equation** to observed data $\{y_i, x_{1,i}, x_{2,i}, \dots, x_{p-1,i}\}_{i=1}^n$:

 $y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \dots + \beta_{p-1} x_{p-1,i} + \varepsilon_i, \quad \varepsilon_i \stackrel{i.i.d.}{\sim} \text{N}(0, \sigma^2)$

We are interested in studying the relationship between the number of plant species (Species) and the following geographic variables: Area, Elevation, Nearest, Scruz, Adjacent.

	Estimation and Inference
)	Multiple Linear Regression
,	

Multiple Linear

Notes			

Data: Species Diversity on the Galapagos Islands

ata: Spe	cies i	Jiversi	ty on	the G	alapa	gos	isianas	5
		Endemics	Area	Elevation	Nearest			
Baltra	58		25.09	346	0.6	0.6	1.84	
Bartolome	31		1.24	109	0.6	26.3	572.33	
Caldwell			0.21	114	2.8	58.7	0.78	
Champion	25		0.10	46	1.9	47.4	0.18	
Coamano			0.05		1.9	1.9	903.82	
Daphne.Major	18		0.34	119	8.0	8.0	1.84	
Daphne.Minor	24	0	0.08	93	6.0	12.0	0.34	
Darwin	10		2.33	168	34.1	290.2	2.85	
Eden			0.03		0.4	0.4	17.95	
Enderby			0.18	112	2.6	50.2	0.10	
Espanola	97	26	58.27	198	1.1	88.3	0.57	
Fernandina	93	35	634.49	1494	4.3	95.3	4669.32	
Gardner1	58		0.57	49	1.1	93.1	58.27	
Gardner2			0.78	227	4.6	62.2	0.21	
Genovesa	40	19	17.35	76	47.4	92.2	129.49	
Isabela	347	89	4669.32	1707	0.7	28.1	634.49	
Marchena			129.49	343	29.1	85.9	59.56	
Onslow			0.01	25	3.3	45.9	0.10	
Pinta	104		59.56	777	29.1	119.6	129.49	
Pinzon	108	33	17.95	458	10.7	10.7	0.03	
Las.Plazas			0.23	94	0.5	0.6	25.09	
Rabida	70	30	4.89	367	4.4		572.33	
SanCristobal	280	65	551.62	716	45.2	66.6	0.57	
SanSalvador	237	81	572.33	906	0.2	19.8	4.89	
SantaCruz	444	95	903.82	864	0.6	0.0	0.52	
SantaFe	62	28	24.08	259	16.5	16.5	0.52	
SantaMaria	285		170.92	640	2.6	49.2	0.10	
Seymour	44	16	1.84	147	0.6	9.6	25.09	
Tortuga	16	8	1.24	186	6.8	50.9	17.95	
Wolf			2.85	253	34.1	254.7	2.33	

How Do Geographic Variables Affect Species Diversity?

IΝ	U	ιŧ	25	•

Notes

Let's Take a Look at the Correlation Matrix

Here we compute the correlation coefficients between the response (Species) and predictors (all the geographic variables)

Regression: Estimation and Inference
CLEMS N
Multiple Linear Regression

Multiple Linear

Notes			

Combining Two Pieces of Information in One Plot

Notes			
-			

$\textbf{Model 1: Species} \sim \textbf{Elevation}$

Notes			

Model 1 Fit

$$\begin{split} \hat{\text{Species}} &= 11.33511 + 0.20079 \times \text{Elevation}, \\ \hat{\sigma} &= 78.66, \, \text{R}^2 = 0.5454 \end{split}$$

Notes			

$\textbf{Model 2: Species} \sim \textbf{Elevation} + \textbf{Area}$

Model 2 Fit

 $\hat{\sigma}=79.34,\, R^2=0.554$ Species = 17.10519 + 0.17174 × Elevation + 0.01880 × Area,

Notes			

$\textbf{Model 3: Species} \sim \textbf{Elevation} + \textbf{Area} + \textbf{Adjacent}$

Call:
lm(formula = Species ~ Elevation + Area + Adjacent, data = gala)
Residuals:
Min 1Q Median 3Q Max
-124.064 -34.283 -8.733 27.972 195.973
Coefficients:
Estimate Std. Error t value Pr(> t)
(Intercept) -5.71893
Elevation 0.31498 0.05211 6.044 2.2e-06 ***
Area -0.02031 0.02181 -0.931 0.36034
Adjacent -0.07528 0.01698 -4.434 0.00015 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
D. 1. J.
Residual standard error: 61.01 on 26 degrees of freedom
Multiple R-squared: 0.746, Adjusted R-squared: 0.7167
F-statistic: 25.46 on 3 and 26 DF, p-value: 6.683e-08

Multiple Linear Regression: Estimation and Inference
Multiple Linear Regression

Notes		

"Full Model"

```
Multiple Linear
Regression:
Estimation and
Inference

CLEMS

Multiple Linear
Regression

Estimation &
Inference

Assessing Model
Fit
```

MLR Topics

Similar to SLR, we will discuss

- Estimation
- Inference
- Diagnostics and Remedies

We will also discuss some new topics

- Model Selection
- Multicollinearity

N	otes	

Notes

Multiple Linear Regression in Matrix Notation

Given the actual data, we can write MLR model as:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{1,1} & x_{2,1} & \cdots & x_{p-1,1} \\ 1 & x_{1,2} & x_{2,2} & \cdots & x_{p-1,2} \\ \vdots & \cdots & \ddots & \vdots & \vdots \\ 1 & x_{1,n} & x_{2,n} & \cdots & x_{p-1,n} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

It will be more convenient to put this in a matrix representation as:

$$y = X\beta + \varepsilon$$

Error Sum of Squares (SSE)

$$=\sum_{i=1}^n \left(y_i-\left(eta_0+\sum_{j=1}^{p-1}eta_jx_{j,i}
ight)
ight)^2$$
 can be expressed as:

$$(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})$$

Next, we are going to find $\hat{\beta}=(\hat{\beta}_0,\hat{\beta}_1,\cdots,\hat{\beta}_{p-1})$ to minimize SSE as our estimate for $\beta=(\beta_0,\beta_1,\cdots,\beta_{p-1})$

multiple Lilleal
Regression:
Estimation and
Inference
CLEMS#N
Multiple Linear

IS&N

Notes

Multiple Linear Regression Estimation &

Assessing Model

Estimating Regression Coefficients

We apply method of least squares to minimize $(y-X\beta)^T(y-X\beta)$ to obtain $\hat{\beta}$

• The resulting least squares estimate is

$$\hat{\boldsymbol{\beta}} = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

(see $\mbox{LS_MLR.pdf}$ for the derivation)

Fitted values:

$$\hat{\boldsymbol{y}} = \boldsymbol{X}\hat{\boldsymbol{\beta}} = \boldsymbol{X} \left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{y} = \boldsymbol{H} \boldsymbol{y}$$

Residuals:

$$e = y - \hat{y} = (I - H)y$$

Estimation of σ^2

Similar as we did in SLR

we did in SER
$$\hat{\sigma}^2 = \frac{e^T e}{n-p}$$

$$= \frac{(y-X\hat{\beta})^T (y-X\hat{\beta})}{n-p}$$

$$= \frac{\text{SSE}}{n-p}$$

$$= \text{MSE}$$

Notes

Notes

Geometrical Representation of the Estimation eta

Projecting the observed response \boldsymbol{y} into a space spanned by \boldsymbol{X}

Source: Linear Model with R 2nd Ed, Faraway, p. 15

Multiple Linear Regression: Estimation and Inference	
CLEMS N	
Estimation & Inference	

Notes			

Analysis of Variance (ANOVA) Approach to Regression

Partitioning Sums of Squares

• Total sums of squares in response

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

We can rewrite SST as

$$\begin{split} \sum_{i=1}^{n} (y_i - \bar{y})^2 &= \sum_{i=1}^{n} (y_i - \hat{y}_i + \hat{y}_i - \bar{y})^2 \\ &= \underbrace{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}_{\text{``Error'': SSE}} + \underbrace{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}_{\text{Model: SSR}} \end{split}$$

Multiple Linear Regression: Estimation and Inference
CLEMS N
Estimation & Inference

Notes

Partitioning Total Sums of Squares: A Graphical Illustration

Notes			

ANOVA Table & F**-Test**

To answer the question: Is at least one of the predictors x_1, \cdots, x_{p-1} useful in predicting the response y?

Source	df	SS	MS	F Value
Model	p-1	SSR	MSR = SSR/(p-1)	MSR/MSE
Error	n-p	SSE	MSE = SSE/(n-p)	
Total	n-1	SST		

 \bullet F-Test: Tests if the predictors $\{x_1,\cdots,x_{p-1}\}$ collectively help explain the variation in y

- $H_0: \beta_1 = \beta_2 = \dots = \beta_{p-1} = 0$
- H_a : at least one $\beta_k \neq 0$, $1 \leq k \leq p-1$
- $\bullet \ F^* = \tfrac{\text{MSR}}{\text{MSE}} = \tfrac{\text{SSR}/(p-1)}{\text{SSE}/(n-p)} \overset{H_0}{\sim} F_{p-1,n-p}$
- Reject H_0 if $F^* > F_{1-\alpha,p-1,n-p}$

	Multiple Linear Regression: Estimation and Inference
	CLEMS#N
SE	Estimation & Inference

Notes			

Testing Individual Predictor

- ullet We can show that $\hat{oldsymbol{eta}}\sim \mathrm{N}_p\left(oldsymbol{eta},\sigma^2\left(oldsymbol{X}^Toldsymbol{X}
 ight)^{-1}
 ight)$ $\hat{\beta}_k \sim \mathrm{N}(\beta_k, \sigma_{\hat{\beta}_k}^2)$
- Perform t-Test:
 - $H_0: \beta_k = 0$ vs. $H_a: \beta_k \neq 0$
 - $\bullet \ \ \frac{\hat{\beta}_k \beta_k}{\hat{SE}(\hat{\beta}_k)} \sim t_{n-p} \Rightarrow t^* = \frac{\hat{\beta}_k}{\hat{SE}(\hat{\beta}_k)} \stackrel{H_0}{\sim} t_{n-p}$
 - Reject H_0 if $|t^*| > t_{1-\alpha/2,n-p}$
- Confidence interval for β_k :

$\hat{\beta}_k \pm t_{1-\alpha/2,n-p} \hat{SE}(\hat{\beta}_k)$

Confidence Intervals and Confidence Ellipsoids

Comparing with individual confidence interval, confidence ellipsoids can provide additional information when inference with multiple parameters is of interest. A $100(1-\alpha)\%$ confidence ellipsoid for β can be constructed using:

$$(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^T \boldsymbol{X}^T \boldsymbol{X} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \le p \hat{\sigma}^2 F_{p, n-p}^{\alpha}.$$

Multiple Linear Regression: Estimation and Inference
CLEMS N
Estimation & Inference

Ν	O.	b۵	•
11	u	ιυ	

Notes

Quantifying Model Fit using Coefficient of Determination \mathbb{R}^2

• Coefficient of determination \mathbb{R}^2 describes proportional of the variance in the response variable that is predictable from the predictors

$$R^2 = \frac{\mathsf{SSR}}{\mathsf{SST}} = 1 - \frac{\mathsf{SSE}}{\mathsf{SST}}, \quad 0 \leq R^2 \leq 1$$

- R^2 increases with the increasing p, the number of the predictors
 - Adjusted $R^2,$ denoted by $R_{\rm adj}^2=1-\frac{{\rm SSE}/(n-p)}{{\rm SST}/(n-1)}$ attempts to account for p

Notes			

R^2 vs. $R^2_{ m adj}$ Example

Suppose the true relationship between response y and predictors (x_1,x_2) is

$$y = 5 + 2x_1 + \varepsilon,$$

where $\varepsilon \sim N(0,1)$ and x_1 and x_2 are independent to each other. Let's fit the following two models to the "data"

Model 1:
$$y=\beta_0+\beta_1x_1+\varepsilon^1$$

Model 2: $y=\beta_0+\beta_1x_1+\beta_2x_2+\varepsilon^2$

Question: Which model will "win" in terms of \mathbb{R}^2 ?

Let's conduct a Monte Carlo simulation to study this

Notes

Outline of Monte Carlo Simulation

- Generating a large number (e.g., M=500) of "data sets", where each has exactly the same $\{x_{1,i},x_{2,i}\}_{i=1}^n$ but different values of response $\{y_i=5+2x_{1,i}+\varepsilon_i\}_{i=1}^n$
- $\textbf{3} \ \, \text{Fitting model 1: } y = \beta_0 + \beta_1 x_1 + \varepsilon^1 \text{ (true model) and model 2: } y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon^2 \text{, respectively for each simulating data set and calculating their } R^2 \text{ and } R^2_{adj}$
- Summarizing $\{R_j^2\}_{j=1}^M$ and $\{R_{adj,j}^2\}_{j=1}^M$ for model 1 and model 2

. . .

Notes

An Example of Model 1 Fit

> summary(fit1)

Residual standard error: 0.8393 on 28 degrees of freedom Multiple R-squared: 0.8313, Adjusted R-squared: 0.8253 F-statistic: 138 on 1 and 28 DF, p-value: 2.467e-12

Multiple Linear Regression: Estimation and Inference
CLEMS#N
Assessing Model Fit

Notes			

An Example of Model 2 Fit

```
> summary(fit2)
```

Residual standard error: 0.8301 on 27 degrees of freedom Multiple R-squared: 0.8408, Adjusted R-squared: 0.8291 F-statistic: 71.32 on 2 and 27 DF, p-value: 1.677e-11

\mathbb{R}^2 : Model 1 vs. Model 2

Notes			

R^2_{adj} : Model 1 vs. Model 2

Takeaways:

- $\bullet \ R^2$ always pick the more "complex" model (i.e., with more predictors), even the simpler model is the true model
- $\bullet \ R^2_{adj}$ has a better chance to pick the "right" model

Notes		

Summary

These slides cover:

- Parameter Estimation of MLR
- Inference: F-test and t-test; Confidence intervals/ellipsoids
- ullet Assessing Model Fit: R^2 and $R^2_{
 m adj}$
- Monte Carlo Simulation

R functions to know:

- image.plot in the fields library and scatter3D in the plot3D library for visualization
- anova for computing the ANOVA table

Notes			
Notes			
Notes			