

Introduction

- □ Functional Dependency (FD) is a many to one relationship from one set of attributes to another in a given relation
- Two aspects of dependency
- Case a: the values of a given relation at a given point in time
- Case b: the set of all possible values that the given relation may assume at different time

FIRST

s#	status	city	p#	qty
s1	20	London	p1	100
s1	20	London	p2	100
s2	10	Paris	p1	200
s2	10	Paris	p2	200
s3	10	Paris	p2	300
s4	20	London	p2	400
s4	20	London	p4	500
s4	20	London	p5	600
s5	20	Kolkata	p1	200

@SKG 11/5/2020

Functional Dependency

- Let r be a relation and let X and Y be arbitrary subsets of the set of attributes of r.
- Then we say Y is functionally dependent on X- in symbols

$$X \rightarrow Y$$

- (or X functionally determines Y)- if and only if, each X value in r has associated with it precisely one Y value in r
- Whenever two tuples of r agree in their X value, they also agree on their Y value

@SKG 11/5/2020

Examples of FDs

$\{s\#\} \rightarrow \{city\}$
$\{\text{city}\} \rightarrow \{\text{status}\}$
$\{s\#,p\#\} \rightarrow \{qty\}$
${s\#,p\#} \rightarrow {city}$
$ \left\{ \texttt{s\#,p\#} \right\} \! \rightarrow \! \left\{ \texttt{s\#} \right\} $
$ \big\{ \texttt{s\#,p\#} \big\} \!\! \to \! \big\{ \texttt{s\#,p\#,city,qty} \big\} $

FIF	FIRST				
s#	status	city	p#	qty	
s1	20	London	p1	100	
s1	20	London	p2	100	
s2	10	Paris	p1	200	
s2	10	Paris	p2	200	
s3	10	Paris	p2	300	
s4	20	London	p2	400	
s4	20	London	p4	500	
s4	20	London	p5	600	
s5	20	Kolkata	p1	200	

Functional Dependency

- Determinant and Dependent of FD
- Singleton set
- FD holds for all time
- Integrity Constraint

$$X \rightarrow Y$$

 $s# \rightarrow city$ $\{s#,p#\} \rightarrow qty$

@SKG 11/5/2020

Functional Dependency

- If X is a candidate key of a relation R then all attributes Y of R is functionally dependent on X
- ❖ p # ⑩ { p # , pname, color, weight, city}
- the **B**s not *trivial* and A is not candidate key then R will involve some

REDUNDANCY

 $s\# \rightarrow cit \mathring{y}^{5/2020}$

FIRST

s#	status	city	p#	qty
s1	20	London	p1	100
s1	20	London	p2	100
s2	10	Paris	p1	200
s2	10	Paris	p2	200
s3	10	Paris	p2	300
s4	20	London	p2	400
s4	20	London	p4	500
s4	20	London	p5	600
s5	20	Kolkata	p1	200

Trivial and Nontrivial FDs

Trivial FD: R.H.S is the subset of LHS

$$\{s\#,p\#\}\rightarrow \{s\#\}$$

Nontrivial FD

$$\{s\#,p\#\} \rightarrow \{aity\}$$
 $\{s\#,p\#\} \rightarrow \{s\#,p\#,city,qty\}$

@SKG 11/5/2020

Transitive Dependency

- ➤ Let us have R(A,B,C)
- FDs: A→B and B→C holds true for R
- ➤Then we say that A→C also holds for R
- ➤ The FD A→C is a transitive FD..... C is transitively

dependent on A via B

Transitive Dependency

FIRST

s#	status	city	p#	qty
s1	20	London	p1	100
s1	20	London	p2	100
s2	10	Paris	p1	200
s2	10	Paris	p2	200
s3	10	Paris	p2	300
s4	20	London	p2	400
s4	20	London	p4	500
s4	20	London	p5	600
s5	20	Kolkata	p1	200

@SKG 11/5/2020 9

Closure of a Set of Dependencies

❖Some FDs might imply other

❖ The set of all FDs that are implied by a given set F of FDs is called the closure of F

Written as F+

F+ is a superset of F

Inference Rules (Armstrong's Axioms)

❖Let A,B,C, W be arbitrary subsets of the

set of attributes of the given relation R

❖IR1: REFLEXIVITY: If B is a subset of A

Then A→B holds true

FIRST

s#	status	city	p#	qty
s1	20	London	p1	100
s1	20	London	p2	100
s2	10	Paris	p1	200
s2	10	Paris	p2	200
s3	10	Paris	p2	300
s4	20	London	p2	400
s4	20	London	p4	500
s4	20	London	p5	600
s5	20	Kolkata	p1	200

@SKG 11/5/2020

Inference Rules (Armstrong's Axioms)

❖Let A,B,C, W be arbitrary subsets of the set of attributes of the given relation R

❖IR1: REFLEXIVITY: If B is a subset of A Then A→B holds true

❖IR2: AUGMENTATION If A→B then AC→BC

(Notation: AC stands for AUC)

❖IR3: TRANSITIVE: If A→B and B→C, then A→C

❖These rules are

@SKG

≻complete (Given a set S of FDs, all FDs implied by S can be derived from S using the rules)

>sound (No additional FDs can be derived)

11/5/2020 12

Inference Rules (Armstrong's Axioms)

Some additional inference rules :

- > Self Determination: A→A
- Decomposition: If A → BC, then A → B and A → C
- >Union: If A → B and A → C, then A → BC
- ➤ Composition: If A→B and C→D , Then AC→ BD
- ➤ Psuedotransitivity: If A → B and WB→C, then WA → C

These inference rules, as well as any other inference rules, can be deduced from IR1, IR2, and IR3 (completeness property)

@SKG 11/5/2020 13

Inference Rules (Armstrong's Axioms)

•Example:

- •Consider a relation R with attributes A,B,C,D,E, F and the FDs
 - ❖ A→BC
 - ◆ B→E
 - CD→EF
- •Show that FD AD→F holds for R and is thus a member of the closure of the given set.

F Closure (F+)

- Closure of set of Functional Dependencies
- Given a set F set of functional dependencies, there are certain other functional dependencies that are logically implied by F
 - For e.g.: If $A \to B$ and $B \to C$, then we can infer that $A \to C$
- The set of all functional dependencies logically implied by F is the closure of F
- We denote the closure of F by F*

@SKG 11/5/2020 15

F Closure example

```
• R = (A, B, C, G, H, I)

F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H\}
```

- Some members of F+
 - A → F
 - by transitivity from A → B and B → H
 - AG → I
 - by augmenting $A \to C$ with G, to get $AG \to CG$ and then transitivity with $CG \to I$
 - . CG → HI
 - by augmenting CG → I to infer CG → CGI, and augmenting of CG → H to infer CGI → HI, and then transitivity

F Closure

• To compute the closure of a set of functional dependencies F:

```
F += F

repeat

for each functional dependency f in F+

apply reflexivity and augmentation rules on f

add the resulting functional dependencies to F |

for each pair of functional dependencies f<sub>1</sub> and f<sub>2</sub> in F +

if f<sub>1</sub> and f<sub>2</sub> can be combined using transitivity

then add the resulting functional dependency to F +

until F | does not change any further
```

NOTE: We shall see an alternative procedure for this task later

@SKG 11/5/2020 17

Closure of a set of Attributes

- □ Closure of a set of attributes Z/ with respect to F is the set Z+/ + of all attributes that are functionally determined by Z/
- □Z+ can be calculated by repeatedly applying IR1, IR2, IR3 using the FDs in F
- □Given a relation R, a set Z of attributes R, and a set F of FDs that hold for R→ can be used to determine the set of all attributes of R(Z+) that are functionally dependent on Z→ Closure Z+ of Z under F.

Closure of Attribute Sets(+)

- Given a relation R, and set of attributes , define the closure of under F (denoted by +) as the set of attributes that are functionally determined by under F
- Algorithm to compute +, the closure of under F
 result := ;
 while (changes to result) do
 for each X → Y in F do
 begin
 if X ⊆ result then result := result ∪ Y
 end

@SKG 11/5/2020 19

Example of Attribute Set Closure

```
R = (A, B, C, G, H, I)
```

- \blacksquare $F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$
- □ Find (AG)+ of the set of attributes {AG} under the set of FDs

```
1. result = AG
```

@SKG

2.
$$result = ABG$$
 $(A \rightarrow B)$

3.
$$result = ABCG \quad (A \rightarrow C)$$

3. $result = ABCGH (CG \rightarrow H \text{ and } CG \subseteq AGBC)$

4. result = ABCGHI (CG \rightarrow I and CG \subseteq AGBCH)

Is AG a candidate key?

11/5/2020

20

Example of Attribute Set Closure

- □ Is AG a candidate key?
 - 1. Is AG a super key?

1. Does
$$AG \rightarrow R$$
? == Is $(AG)^+ \supseteq R$

2. Is any subset of AG a superkey?

1. Does
$$A \rightarrow R$$
? == Is $(A)^+ \supseteq R$

2. Does $G \rightarrow R$? == Is $(G)^+ \supseteq R$

@SKG 11/5/2020 21

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

□ Testing for Superkey:

To test if X is a superkey, we compute X+, and check if X+ contains all attributes of R.

□ Testing Functional Dependencies

- To check if a functional dependency $\alpha \to \beta$ holds (or, in other words, is in F+), just check if $\beta \subseteq \alpha$ +.
- That is, we compute α* by using attribute closure, and then check if it contains β.
- Is a simple and cheap test, and very useful

□ Computing closure of F

■ For each $\gamma \subseteq R$, we find the closure γ^+ , and for each $S \subseteq \gamma^+$, we output a functional dependency $\gamma \to S$.

Example of Attribute Set Closure

- □ Example:
- \square R = (A, B, C, D, E, F)
- $\Box F = \{A \rightarrow BC, E \rightarrow CF, B \rightarrow E, CD \rightarrow EF\}$
- □ Compute the closure (*AB*)+ of the set of attributes {*AB*} under the set of FDs

@SKG 11/5/2020

Cover

- Let S1 and S2 be two set of FDs.
- If every FD implied by S1 is implied by S2 i.e., S1+ is a subset of S2+ → S2 is a cover of S1
- If S2 is a cover of S1 and S1 is a cover of S2 →
 S1+= S2+ → S1 and S2 are equivalent

Canonical Cover

- Sets of functional dependencies may have redundant dependencies that can be inferred from the others
 - ✓ For example: $A \to C$ is redundant in: $\{A \to B, B \to C\}$
 - ✓ Parts of a functional dependency may be redundant
 - ✓ E.g.: on RHS: $\{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$ can be simplified to $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$ ✓ E.g.: on LHS: $\{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$ can be simplified to $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$
- Intuitively, a canonical cover of F is a "minimal" set of functional dependencies equivalent to F, having no redundant dependencies or redundant parts of dependencies

@SKG 11/5/2020 25

Canonical Cover: RHS

- $\blacksquare \{A \to B, B \to C, A \to CD\} \to \{A \to B, B \to C, A \to D\}$
 - (1) $A \rightarrow CD \Rightarrow A \rightarrow C$ and $A \rightarrow D$ (2) $A \rightarrow B$, $B \rightarrow C \Rightarrow A \rightarrow C$
 - A + = ABCD
- - $A \rightarrow B$, $B \rightarrow C \Rightarrow A \rightarrow C$
 - $A \rightarrow C$. $A \rightarrow D \Rightarrow A \rightarrow CD$
 - · A+ = ABCD

Canonical Cover: LHS

- - $A \rightarrow B$, $B \rightarrow C \rightarrow A \rightarrow C \rightarrow A \rightarrow AC$

11/5/2020

- $A \rightarrow AC$, $AC \rightarrow D \rightarrow A \rightarrow D$
- A+=ABCD
- - $A \rightarrow D \rightarrow AC \rightarrow D$
 - AC+ = ABCD

@SKG

27

Extraneous Attributes

- \succ Consider a set F of functional dependencies and the functional dependency $\alpha \to \beta$ in F.
 - Attribute A is extraneous in α if $A \in \alpha$ and F logically implies $(F \{\alpha \rightarrow \beta\}) \cup \{(\alpha A) \rightarrow \beta\}$.
 - Attribute A is extraneous in β if $A \in \beta$ and the set of functional dependencies $(F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\}$ logically implies F.
- > Note: implication in the opposite direction is trivial in each of the cases above, since a "stronger" functional dependency always implies a weaker one
 - Example: Given $F = \{A \to C, AB \to C\}$ B is extraneous in $AB \to C$ because $\{A \to C, AB \to C\}$ logically implies $A \to C$ (i.e. the result of dropping B from $AB \to C$).
 - Example: Given $F = \{A \rightarrow C, AB \rightarrow CD\}$ **C is extraneous in $AB \rightarrow CD$ since $AB \rightarrow C$ can be inferred even after deleting C**Info/2020 28

Testing if an Attribute is Extraneous

- ightarrow Consider a set F of functional dependencies and the functional dependency lpha
 ightarrow eta in F.
- ightharpoonup To test if attribute $A \in \alpha$ is extraneous in α
 - 1. compute $(\{\alpha\} A)^+$ using the dependencies in F
 - 2. check that $(\{\alpha\} A)^+$ contains β ; if it does, A is extraneous in α
- \triangleright To test if attribute $A \in \beta$ is extraneous in β
 - 1. compute α^+ using only the dependencies in $F' = (F \{\alpha \to \beta\}) \cup \{\alpha \to (\beta A)\},$
 - 2. check that α^+ contains A; if it does, A is extraneous in β

@SKG 11/5/2020 29

Canonical Cover

- \triangleright A canonical cover for F is a set of dependencies F_c such that
 - F logically implies all dependencies in F_c and
 - F_c logically implies all dependencies in F_c and
 - No functional dependency in F_c contains an extraneous attribute, and
 - Each left side of functional dependency in F_c is unique.
- of FDs
 Irreducible
 set of FDs

Minimal Set

To compute a canonical cover for F: repeat

Use the union rule to replace any dependencies in F $\alpha_1 \to \beta_1$ and $\alpha_1 \to \beta_2$ with $\alpha_1 \to \beta_1$ β_2 Find a functional dependency $\alpha \to \beta$ with an extraneous attribute either in α or in β If an extraneous attribute is found, delete it from $\alpha \to \beta$ until F does not change

Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied

Computing a Canonical Cover

```
\triangleright R = (A, B, C)
     F = \{A \rightarrow BC\}
             B \rightarrow C
             A \rightarrow B
           AB \rightarrow C
\triangleright Combine A \rightarrow BC and A \rightarrow B into A \rightarrow BC
        • Set is now \{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}
\triangleright A is extraneous in AB \rightarrow C
        • Check if the result of deleting A from AB \rightarrow C is implied by the other dependencies
               Yes: in fact, B \rightarrow C is already present!
        • Set is now \{A \rightarrow BC, B \rightarrow C\}
\succ C is extraneous in A \rightarrow BC
        • Check if A \rightarrow C is logically implied by A \rightarrow B and the other dependencies
              Yes: using transitivity on A \rightarrow B and B \rightarrow C.
                      Can use attribute closure of A in more complex cases
\triangleright The canonical cover is: A \rightarrow B
                                            11/5/2020C
```

Irreducible set of Functional Dependencies

- R(p#, pname, color, wt, city)
- The set of FDs:
 - ❖p # →pname
 - ❖p # →color
 - p # →wt
 - **♦**p # →city

Irreducible set of Functional Dependencies

- ☐ A set F of FD is said to be irreducible if and only if it satisfies the following
- > The RHS (the dependent) of every FD in F involves just one attribute, i.e., it is a singleton set
- ➤ The LHS (the determinant) of every FD in F is irreducible in turn-meaning that no attribute can be discarded from the determinant without changing the closure F + → Such an FD is called Left irreducible
- No FD in F can be discarded from F without changing the closure F+ ,i.e., without converting F into some set not equivalent to F

@SKG 11/5/2020 33

Irreducible set of Functional Dependencies

> The RHS (the dependent) of every FD in F involves just one attribute ,i.e., it is a singleton set

p#→ {pname, color}

p#→ color

p#→ wt

p#→ city

p#→ pname

p#→ color

p#→ wt

p#→ city

@SKG

11/5/2020 34

Irreducible set of Functional Dependencies

➤ The LHS (the determinant) of every FD in F is irreducible in turn-meaning that no attribute can be discarded from the determinant without changing the closure F⁺ → Such an FD is called Left irreducible

@SKG 11/5/2020 38

Irreducible set of Functional Dependencies

No FD in F can be discarded from F without changing the closure F+ ,i.e., without converting F into some set not equivalent to F

> $p\#, \rightarrow p\#$ $p\# \rightarrow pname$ $p\#, \rightarrow color$ $p\# \rightarrow pname$ $p\# \rightarrow wt$ $p\# \rightarrow city$ $p\# \rightarrow city$

Irreducible set of Functional Dependencies

- * Example: Consider a relation R(A, B, C, D) and FDs
- \star A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C, AC \rightarrow D
- Compute an irreducible set of FDs that is equivalent to this given set

Solution:

 $A \rightarrow B$

 $B \rightarrow C$

 $A \rightarrow D$

@SKG 11/5/2020 37

Equivalence of Sets of Functional Dependencies

- Let F & G are two functional dependency sets.
 - These two sets F & G are equivalent if F+ = G+
 - Equivalence means that every functional dependency in F can be inferred from G, and every functional dependency in G an be inferred from F
- F and G are equal only if
 - F covers G: Means that all functional dependency of G are logically numbers of functional dependency set F→F⊇G.
 - G covers F: Means that all functional dependency of F are logically members of functional dependency set G⇒G⊇F

Practice problem

@SKG

1. For: A \rightarrow BC, CD \rightarrow E, E \rightarrow C, D \rightarrow AEH, ABH \rightarrow BD, DH \rightarrow BC

11/5/2020

```
Find if a given functional dependency is implied from a set of Functional Dependencies:
```

```
a. Check: BCD → H
b. Check: AED→C

2. For: AB → CD, AF → D, DE → F, C → G, F → E, G → A
a. Check: CF → DF
b. Check: BG → E
c. Check: AF → G
d. Check: AB → EF

3. For: A → BC, B → E, CD → EF
a. Check: AD → F

■ Find Candidate Key using Functional Dependencies:
1. Relational Schema R(ABCDE). Functional dependencies: AB → C, DE → B, CD → E
2. Relational Schema R(ABCDE). Functional dependencies: AB → C, C → D, B → EA
```

3NF Decomposition

- ➤ R= ABCDEFGH
- ➤ FD={ A→B, ABCD→E, EF→GH, ACDF→EG }
- Compute Canonical cover:
 - Make RHS a single attribute: $\{A \rightarrow B, ABCD \rightarrow E, EF \rightarrow G, EF \rightarrow H, ACDF \rightarrow E, ACDF \rightarrow G\}$
 - Minimize LHS: ACD→E instead of ABCD→E
 - Eliminate redundant FDs:
 - ✓ Can ACDF → E be removed?
 - ✓ Can ACDF→G be removed?
- Canonical cover= { A→B, ACD→E, EF→G, EF→H }
- ➤ Super key= ACDF
- > 3NF decomposition: { AB, ACDE, EFG, EFH, } U {ACDF}

3NF Decomposition

- ➤ R= CSJDPQV
- > FD={C CSJDPQV, SD P, JP C,J S}
- Compute Canonical cover:
 - Make RHS a single attribute:
 - Minimize LHS:
 - Eliminate redundant FDs:
 - ✓ Can be removed?
 - ✓ Can be removed?
- Canonical cover=
- Super key=
- > 3NF decomposition: {CJDQV, JPC, JS, SDP}

@SKG

11/5/2020

BCNF Decomposition

- \triangleright To check if a non-trivial dependency $\alpha \rightarrow s$ causes a violation of BCNF
 - 1. compute α^+ (the attribute closure of α), and
 - 2. verify that it includes all attributes of R, that is, it is a super key of R.
- Simplified test: To check if a relation schema R is in BCNF, it suffices to check only the dependencies in the given set F for violation of BCNF, rather than checking all dependencies in F*.
 - ❖ If none of the dependencies in *F* causes a violation of BCNF, then none of the dependencies in *F*⁺ will cause a violation of BCNF either.
- However, simplified test using only F is incorrect when testing a relation in a decomposition of R
 - Consider R = (A, B, C, D, E), with $F = \{A \succeq B, BC \succeq D\}$
 - Decompose R into $R_1 = (A,B)$ and $R_2 = (A,C,D,E)$
 - Neither of the dependencies in *F* contain only attributes from
 - (A,C,D,E) so we might be mislead into thinking R_2 satisfies BCNF.
 - In fact, dependency $AC \rightarrow D$ in F^+ shows R_2 is not in BCNF.

BCNF Decomposition Algorithm

- 1. For all dependencies A > B in F+, check if A is a superkey
 - By using attribute closure
- 2. If not, then
 - Choose a dependency in F+ that breaks the BCNF rules, say A → B
 - Create R1 = A B
 - Create R2 = A (R (B A))
 - Note that: R1 ∩ R2 = A and A → AB (= R1), so this is lossless decomposition
- 3. Repeat for R1, and R2
 - By defining F1+ to be all dependencies in F that contain only attributes in R1
 - Similarly F2+

@SKG 11/5/2020 43

BCNF Decomposition Algorithm

11/5/2020

@SKG

```
result := {R}; done := false; compute F^+;

while (not done) do

if (there is a schema R_i in result that is not in BCNF)

then begin

let \alpha \to s be a nontrivial functional dependency that holds on R_i such that \alpha \to R_i is not in F^+, and \alpha \cap s = \emptyset;

result := (result -R_i) \cup (R_i -s) \cup (R_i -s) \cup (R_i -s) \cup (R_i -s) \cup (R_i -s).

Note: each R_i is in BCNF, and decomposition is lossless-join.
```

44

BCNF Decomposition Example

```
R = (A, B, C)

F = \{A \rightarrow B

B \rightarrow C\}
```

- ➤ Key = {A}
- ightharpoonup R is not in BCNF ($B \rightarrow C$ but B is not super key)
- Decomposition

$$R_1 = (B, C)$$

$$R_2 = (A, B)$$

@SKG

11/5/2020

BCNF Decomposition Example

Key = {loan_number, customer_name}

Decomposition

- R₁ = (branch_name, branch_city, assets)
- R₂ = (branch_name, customer_name, loan_number, amount)
- R₃ = (branch_name, loan_number, amount)
- R_4 = (customer_name, loan_number)
- > Final decomposition

$$R_1, R_3, R_4$$

@SKG

45

11/5/2020

46

Practice problem: BCNF Decomposition

- R = ABCDE. F = $\{A \rightarrow B, BC \rightarrow D\}$
- \blacksquare R = ABCDE. F = {A \rightarrow B, BC \rightarrow D}
- R = ABCDEH. F = $\{A \rightarrow BC, E \rightarrow HA\}$
- R = CSJDPQV. F = $\{C \rightarrow CSJDPQV, SD \rightarrow P, JP \rightarrow C, J \rightarrow S\}$
- R = ABCD. F = $\{C \rightarrow D, C \rightarrow A, B \rightarrow C\}$

ERD vs NF

- When an E-R diagram is carefully designed, identifying all entities correctly, the tables generated from the E-R diagram should not need further normalization
- However, in a real (imperfect) design, there can be functional dependencies from non-key attributes of an entity to other attributes of the entity
 - Example: an employee entity with attributes department_name and building, and a functional dependency department_name → building
 - Good design would have made department an entity
- Functional dependencies from non-key attributes of a relationship set possible, but rare --- most relationships are binary

