410251: Deep Learning Group A

Assignment No.: 1

Title of the Assignment: Linear regression by using Deep Neural Network: Implement Boston housing price prediction problem by Linear regression using Deep Neural Network. Use Boston House price prediction dataset.

Objective of the Assignment: Students should be able to perform Linear regression by using Deep Neural network on Boston House Dataset.

Prerequisite:

- 1. Basic of programming language
- 2. Concept of Linear Regression
- 3. Concept of Deep Neural Network

Contents for Theory:

- 1. What is Linear Regression
- 2. Example of Linear Regression
- 3. Concept of Deep Neural Network
- 4. How Deep Neural Network Work
- 5. Code Explanation with Output

What is Linear Regression?

Linear regression is a statistical approach that is commonly used to model the relationship between a dependent variable and one or more independent variables. It assumes a linear relationship between the variables and uses mathematical methods to estimate the coefficients that best fit the data.

Deep neural networks are a type of machine learning algorithm that are modelled after the structure and function of the human brain. They consist of multiple layers of interconnected neurons that process data and learn from it to make predictions or classifications.

Linear regression using deep neural networks combines the principles of linear regression with the power of deep learning algorithms. In this approach, the input features are passed through one or more layers of neurons to extract features and then a linear regression model is applied to the output of the last layer to make predictions. The weights and biases of the neural network are adjusted during training to optimize the performance of the model.

This approach can be used for a variety of tasks, including predicting numerical values, such as stock prices or housing prices, and classifying data into categories, such as detecting whether an image contains a particular object or not. It is often used in fields such as finance, healthcare, and image recognition.

Example Of Linear Regression:

A suitable example of linear regression using deep neural network would be predicting the price of a house based on various features such as the size of the house, the number of bedrooms, the location, and the age of the house.

In this example, the input features would be fed into a deep neural network, consisting of multiple layers of interconnected neurons. The first few layers of the network would learn to extract features from the input data, such as identifying patterns and correlations between the input features.

The output of the last layer would then be passed through a linear regression model, which would use the learned features to predict the price of the house.

During training, the weights and biases of the neural network would be adjusted to minimize the difference between the predicted price and the actual price of the house. This process is known as gradient descent, and it involves iteratively adjusting the model's parameters until the optimal values are reached.

Once the model is trained, it can be used to predict the price of a new house based on its features. This approach can be used in the real estate industry to provide accurate and reliable estimates of house prices, which can help both buyers and sellers make informed decisions.

Concept of Deep Neural Network:

A deep neural network is a type of machine learning algorithm that is modelled after the structure and function of the human brain. It consists of multiple layers of interconnected nodes, or artificial neurons, that process data and learn from it to make predictions or classifications.

Each layer of the network performs a specific type of processing on the data, such as identifying patterns or correlations between features, and passes the results to the next layer. The layers closest to the input are known as the "input layer", while the layers closest to the output are known as the "output layer".

The intermediate layers between the input and output layers are known as "hidden layers". These layers are responsible for extracting increasingly complex features from the input data, and can be deep (i.e., containing many hidden layers) or shallow (i.e., containing only a few hidden layers).

Deep neural networks are trained using a process known as back propagation, which involves adjusting the weights and biases of the nodes based on the error between the predicted output and the actual output. This process is repeated for multiple iterations until the model reaches an optimal level of accuracy.

Deep neural networks are used in a variety of applications, such as image and speech recognition, natural language processing, and recommendation systems. They are capable of learning from vast amounts of data and can automatically extract features from raw data, making them a powerful tool for solving complex problems in a wide range of domains.

How Deep Neural Network Work-

Boston House Price Prediction is a common example used to illustrate how a deep neural network can work for regression tasks. The goal of this task is to predict the price of a house in Boston based on various features such as the number of rooms, crime rate, and accessibility to public transportation.

Here's how a deep neural network can work for Boston House Price Prediction:

- 1. **Data preprocessing:** The first step is to pre-process the data. This involves normalizing the input features to have a mean of 0 and a standard deviation of 1, which helps the network learn more efficiently. The dataset is then split into training and testing sets.
- 2. **Model architecture:** A deep neural network is then defined with multiple layers. The first layer is the input layer, which takes in the normalized features. This is followed by several

hidden layers, which can be deep or shallow. The last layer is the output layer, which predicts

the house price.

3. Model training: The model is then trained using the training set. During training, the

weights and biases of the nodes are adjusted based on the error between the predicted output

and the actual output. This is done using an optimization algorithm such as stochastic gradient

descent.

4. Model evaluation: Once the model is trained, it is evaluated using the testing set. The

performance of the model is measured using metrics such as mean squared error or mean

absolute error.

5. Model prediction: Finally, the trained model can be used to make predictions on new data,

such as predicting the price of a new house in Boston based on its features.

6. By using a deep neural network for Boston House Price Prediction, we can obtain accurate

predictions based on a large set of input features. This approach is scalable and can be used for

other regression tasks as well.

Boston House Price Prediction Dataset-

Boston House Price Prediction is a well-known dataset in machine learning and is often used

to demonstrate regression analysis techniques. The dataset contains information about 506

houses in Boston, Massachusetts, USA. The goal is to predict the median value of owner-

occupied homes in thousands of dollars.

The dataset includes 13 input features, which are:

CRIM: per capita crime rate by town

ZN: proportion of residential land zoned for lots over 25,000 sq.ft.

INDUS: proportion of non-retail business acres per town

CHAS: Charles River dummy variable (1 if tract bounds river; 0 otherwise)

NOX: nitric oxides concentration (parts per 10 million)

RM: average number of rooms per dwelling

AGE: proportion of owner-occupied units built prior to 1940

DIS: weighted distances to five Boston employment centers

RAD: index of accessibility to radial highways

TAX: full-value property-tax rate per \$10,000

PTRATIO: pupil-teacher ratio by town

B: 1000(Bk - 0.63) ^2 where Bk is the proportion of black people by town

LSTAT: % lower status of the population

The output variable is the median value of owner-occupied homes in thousands of dollars (MEDV).

To predict the median value of owner-occupied homes, a regression model is trained on the dataset. The model can be a simple linear regression model or a more complex model, such as a deep neural network.

After the model is trained, it can be used to predict the median value of owner-occupied homes based on the input features. The model's accuracy can be evaluated using metrics such as mean squared error or mean absolute error. Boston House Price Prediction is a example of regression analysis and is often used to teach machine learning concepts. The dataset is also used in research to compare the performance of different regression models.

Conclusion- In this way we can Predict the Boston House Price using Deep Neural Network.

Assignment No.: 2

Title of the Assignment: Binary classification using Deep Neural Networks Example: Classify movie reviews into positive" reviews and "negative" reviews, just based on the text content of the reviews. Use IMDB dataset

Objective of the Assignment: Students should be able to Classify movie reviews into positive reviews and "negative reviews on IMDB Dataset.

Prerequisite:

- 1. Basic of programming language
- 2. Concept of Classification
- 3. Concept of Deep Neural Network

Contents for Theory:

- 1. What is Classification
- 2. Example of Classification
- 3. How Deep Neural Network Work on Classification
- 4. Code Explanation with Output

What is Classification?

Classification is a type of supervised learning in machine learning that involves categorizing data into predefined classes or categories based on a set of features or characteristics. It is used to predict the class of new, unseen data based on the patterns learned from the labelled training data.

In classification, a model is trained on a labelled dataset, where each data point has a known class label. The model learns to associate the input features with the corresponding class labels and can then be used to classify new, unseen data.

For example, we can use classification to identify whether an email is spam or not based on its content and metadata, to predict whether a patient has a disease based on their medical records and symptoms, or to classify images into different categories based on their visual features. Classification algorithms can vary in complexity, ranging from simple models such as decision trees and k-nearest neighbours to more complex models such as support vector machines and

neural networks. The choice of algorithm depends on the nature of the data, the size of the dataset, and the desired level of accuracy and interpretability.

Classification is a common task in deep neural networks, where the goal is to predict the class of an input based on its features. Here's an example of how classification can be performed in a deep neural network using the popular MNIST dataset of handwritten digits.

The MNIST dataset contains 60,000 training images and 10,000 testing images of handwritten digits from 0 to 9. Each image is a grayscale 28x28 pixel image, and the task is to classify each image into one of the 10 classes corresponding to the 10 digits.

We can use a convolutional neural network (CNN) to classify the MNIST dataset. A CNN is a type of deep neural network that is commonly used for image classification tasks.

How Deep Neural Network Work on Classification-

Deep neural networks are commonly used for classification tasks because they can automatically learn to extract relevant features from raw input data and map them to the correct output class.

The basic architecture of a deep neural network for classification consists of three main parts: an input layer, one or more hidden layers, and an output layer. The input layer receives the raw input data, which is usually pre-processed to a fixed size and format. The hidden layers are composed of neurons that apply linear transformations and nonlinear activations to the input features to extract relevant patterns and representations. Finally, the output layer produces the predicted class labels, usually as a probability distribution over the possible classes.

During training, the deep neural network learns to adjust its weights and biases in each layer to minimize the difference between the predicted output and the true labels. This is typically done by optimizing a loss function that measures the discrepancy between the predicted and true labels, using techniques such as gradient descent or stochastic gradient descent.

One of the key advantages of deep neural networks for classification is their ability to learn hierarchical representations of the input data. In a deep neural network with multiple hidden layers, each layer learns to capture more complex and abstract features than the previous layer, by building on the representations learned by the earlier layers. This hierarchical structure allows deep neural networks to learn highly discriminative features that can separate different classes of input data, even when the data is highly complex or noisy.

Overall, the effectiveness of deep neural networks for classification depends on the choice of architecture, hyperparameters, and training procedure, as well as the quality and quantity of the training data. When trained properly, deep neural networks can achieve state-of-the-art performance on a wide range of classification tasks, from image recognition to natural language processing.

IMDB Dataset: The IMDB dataset is a large collection of movie reviews collected from the IMDB website, which is a popular source of user-generated movie ratings and reviews. The dataset consists of 50,000 movie reviews, split into 25,000 reviews for training and 25,000 reviews for testing.

Each review is represented as a sequence of words, where each word is represented by an integer index based on its frequency in the dataset. The labels for each review are binary, with 0 indicating a negative review and 1 indicating a positive review.

The IMDB dataset is commonly used as a benchmark for sentiment analysis and text classification tasks, where the goal is to classify the movie reviews as either positive or negative based on their text content.

The dataset is challenging because the reviews are often highly subjective and can contain complex language and nuances of meaning, making it difficult for traditional machine learning approaches to accurately classify them.

Conclusion- In this way we can Classify the Movie Reviews by using DNN.

Assignment No.: 3

Title of the Assignment: Use MNIST Fashion Dataset and create a classifier to classify fashion clothing into categories.

Objective of the Assignment: Students should be able to Use MNIST Fashion Dataset and create a classifier to classify fashion clothing into categories.

Prerequisite:

- 1. Basic of programming language
- 2. Concept of Classification
- 3. Concept of Deep Neural Network

Contents for Theory:

- 1. What is Classification
- 2. Example of Classification
- 3. What is CNN?
- 4. How Deep Neural Network Work on Classification
- 5. Code Explanation with Output

What is Classification?

Classification is a type of supervised learning in machine learning that involves categorizing data into predefined classes or categories based on a set of features or characteristics. It is used to predict the class of new, unseen data based on the patterns learned from the labeled training data.

In classification, a model is trained on a labeled dataset, where each data point has a known class label. The model learns to associate the input features with the corresponding class labels and can then be used to classify new, unseen data.

For example, we can use classification to identify whether an email is spam or not based on its content and metadata, to predict whether a patient has a disease based on their medical records and symptoms, or to classify images into different categories based on their visual features. Classification algorithms can vary in complexity, ranging from simple models such as decision trees and k-nearest neighbors to more complex models such as support vector machines and

neural networks. The choice of algorithm depends on the nature of the data, the size of the dataset, and the desired level of accuracy and interpretability.

Example- Classification is a common task in deep neural networks, where the goal is to predict the class of an input based on its features. Here's an example of how classification can be performed in a deep neural network using the popular MNIST dataset of handwritten digits.

The MNIST dataset contains 60,000 training images and 10,000 testing images of handwritten digits from 0 to 9. Each image is a grayscale 28x28 pixel image, and the task is to classify each image into one of the 10 classes corresponding to the 10 digits. We can use a convolutional neural network (CNN) to classify the MNIST dataset. A CNN is a type of deep neural network that is commonly used for image classification tasks.

What us CNN – Convolutional Neural Networks (CNNs) are commonly used for image classification tasks, and they are designed to automatically learn and extract features from input images. Let's consider an example of using a CNN to classify images of handwritten digits.

In a typical CNN architecture for image classification, there are several layers, including convolutional layers, pooling layers, and fully connected layers.

Here's a diagram of a simple CNN architecture for the digit classification task:

The input to the network is an image of size 28x28 pixels, and the output is a probability distribution over the 10 possible digits (0 to 9).

The convolutional layers in the CNN apply filters to the input image, looking for specific patterns and features. Each filter produces a feature map that highlights areas of the image that match the filter. The filters are learned during training, so the network can automatically learn which features are most relevant for the classification task.

The pooling layers in the CNN down sample the feature maps, reducing the spatial dimensions of the data. This helps to reduce the number of parameters in the network, while also making the features more robust to small variations in the input image.

The fully connected layers in the CNN take the flattened output from the last pooling layer and perform a classification task by outputting a probability distribution over the 10 possible digits.

During training, the network learns the optimal values of the filters and parameters by minimizing a loss function. This is typically done using stochastic gradient descent or a similar optimization algorithm.

Once trained, the network can be used to classify new images by passing them through the network and computing the output probability distribution. Overall, CNNs are powerful tools for image recognition tasks and have been used successfully in many applications, including object detection, face recognition, and medical image analysis.

CNNs have a wide range of applications in various fields, some of which are:

Image classification: CNNs are commonly used for image classification tasks, such as identifying objects in images and recognizing faces.

Object detection: CNNs can be used for object detection in images and videos, which involves identifying the location of objects in an image and drawing bounding boxes around them.

Semantic segmentation: CNNs can be used for semantic segmentation, which involves partitioning an image into segments and assigning each segment a semantic label (e.g., "road", "sky", "building").

Natural language processing: CNNs can be used for natural language processing tasks, such as sentiment analysis and text classification.

Medical imaging: CNNs are used in medical imaging for tasks such as diagnosing diseases from X-rays and identifying tumors from MRI scans.

Autonomous vehicles: CNNs are used in autonomous vehicles for tasks such as object detection and lane detection.

Video analysis: CNNs can be used for tasks such as video classification, action recognition, and video captioning. Overall, CNNs are a powerful tool for a wide range of applications, and they have been used successfully in many areas of research and industry.

How Deep Neural Network Work on Classification using CNN – Deep neural networks using CNNs work on classification tasks by learning to automatically extract features from input images and using those features to make predictions.

Here's how it works:

Input layer: The input layer of the network takes in the image data as input.

Convolutional layers: The convolutional layers apply filters to the input images to extract relevant features. Each filter produces a feature map that highlights areas of the image that match the filter.

Activation functions: An activation function is applied to the output of each convolutional layer to introduce non-linearity into the network.

Pooling layers: The pooling layers down sample the feature maps to reduce the spatial dimensions of the data.

Dropout layer: Dropout is used to prevent overfitting by randomly dropping out a percentage of the neurons in the network during training.

Fully connected layers: The fully connected layers take the flattened output from the last pooling layer and perform a classification task by outputting a probability distribution over the possible classes.

Softmax activation function: The softmax activation function is applied to the output of the last fully connected layer to produce a probability distribution over the possible classes.

Loss function: A loss function is used to compute the difference between the predicted probabilities and the actual labels.

Optimization: An optimization algorithm, such as stochastic gradient descent, is used to minimize the loss function by adjusting the values of the network parameters.

Training: The network is trained on a large dataset of labelled images, adjusting the values of the parameters to minimize the loss function.

Prediction: Once trained, the network can be used to classify new images by passing them through the network and computing the output probability distribution.

MNIST Dataset-

The MNIST Fashion dataset is a collection of 70,000 grayscale images of 28x28 pixels, representing 10 different categories of clothing and accessories. The categories include T-shirts/tops, trousers, pullovers, dresses, coats, sandals, shirts, sneakers, bags, and ankle boots. The dataset is often used as a benchmark for testing image classification algorithms, and it is considered a more challenging version of the original MNIST dataset which contains handwritten digits. The MNIST Fashion dataset was released by Zalando Research in 2017 and has since become a popular dataset in the machine learning community.

he MNIST Fashion dataset is a collection of 70,000 grayscale images of 28x28 pixels each. These images represent 10 different categories of clothing and accessories, with each category containing 7,000 images. The categories are as follows:

T-shirt/tops

Trousers

Pullovers

Dresses

Coats

Sandals

Shirts

Sneakers

Bags

Ankle boots

The images were obtained from Zalando's online store and are pre-processed to be normalized and cantered. The training set contains 60,000 images, while the test set contains 10,000 images. The goal of the dataset is to accurately classify the images into their respective categories. The MNIST Fashion dataset is often used as a benchmark for testing image classification algorithms, and it is considered a more challenging version of the original MNIST dataset which contains handwritten digits. The dataset is widely used in the machine learning community for research and educational purposes.

Here are the general steps to perform Convolutional Neural Network (CNN) on the MNIST Fashion dataset:

- Import the necessary libraries, including TensorFlow, Keras, NumPy, and Matplotlib.
- Load the dataset using Keras' built-in function, keras. datasets. fashion_mnist. load_data (). This will provide the training and testing sets, which will be used to train and evaluate the CNN.
- Pre-process the data by normalizing the pixel values between 0 and 1, and reshaping the images to be of size (28, 28, 1) for compatibility with the CNN.
- Define the CNN architecture, including the number and size of filters, activation functions, and pooling layers. This can vary based on the specific problem being addressed.
- Compile the model by specifying the loss function, optimizer, and evaluation metrics. Common choices include categorical cross-entropy, Adam optimizer, and accuracy metric.
- Train the CNN on the training set using the fit() function, specifying the number of epochs and batch size.
- Evaluate the performance of the model on the testing set using the evaluate() function. This will provide metrics such as accuracy and loss on the test set.
- Use the trained model to make predictions on new images, if desired, using the predict() function.

Conclusion- In this way we can Classify fashion clothing into categories using CNN.