CP Violation In and Beyond The Standard Model

Two Higgs Doublet Model Type II Corrections to Flavour Observables

Matthew Rossetter

February 26, 2020

The Standard Model

➤ One of the great achievements of the 20th Century, the Standard Model:

$$\mathcal{L} = \underbrace{-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}}_{\text{gauge fields}} \underbrace{+i\bar{\Psi}\cancel{D}\Psi}_{\text{fermions}} \underbrace{+(D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi) - V(\Phi)}_{\text{Higgs}} \underbrace{-Y_{ij}\bar{\Psi}_{i}\Phi\Psi_{j} + h.c.}_{\text{Yukawa}}$$
(1)

- ➤ A gauge field theory describing matter and its interactions with 25 fundamental particles
- ► Each particle is described by a field transforming under the gauge groups of the Standard Model: $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$
- ➤ Has successfully described most particle phenomena we have observed to date

1. Introduction

Unsolved Problems of the Standard Model

- Quantum gravity; Dark matter; Neutrino masses
- \blacktriangleright Deviations between experiment and theory, e.g. $\mathcal{R}(\mathit{K}^{(*)})$
- ➤ Sakharov Criteria for Baryogenesis:
 - 1. Baryon Number Violation found in Sphalerons
 - 2. C and CP Violation present but not enough
 - 3. First Order Phase Transition only if $m_h < 60 \,\text{GeV}$

To answer these questions, we need to consider models to extend our physics Beyond the Standard Model. These models should:

- > preserve predictions in agreement with experiment
- ➤ agree with experimental bounds
- ➤ follow the structures of gauge field theory for a physical model, e.g. renormalisability

The Two Higgs Doublet Model Type II

In the Standard Model:

➤ One complex Higgs doublet, 4 scalar fields:

$$\Phi_1 = \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_0 + i\phi_3 \end{pmatrix} \tag{2}$$

- ➤ 3 fields "eaten" by W[±], Z bosons; 1 real field left, h
- ➤ Introduce the Hermitian conjugate for masses of all fermions

In 2HDM:

Add a second doublet, now 8 scalar fields

$$\Phi_2 = \begin{pmatrix} \phi_5 + i\phi_6 \\ \phi_4 + i\phi_7 \end{pmatrix} \tag{3}$$

- ➤ Now 5 fields left H^{\pm} , H^0 , h^0 , A^0
- ➤ No need for Hermitian conjugate
- ▶ In Type II, Φ_1 couples to down quarks; Φ_2 to up quarks and charged leptons

Why Two Higgs Doublet Model?

- ➤ Minimal Extension to SM
- ➤ Limited number of new parameters:
 - ightharpoonup Masses of H^{\pm} , H^0 , A^0 ; VEV ratio $\tan \beta = \frac{v_2}{v_1}$; scalar mixing angle
- ➤ Sakharov Criteria:
 - 1. Baryon Number Violation Sphalerons
 - 2. C and CP violation more of it
 - 3. First Order Phase Transition now present
- ➤ Charged weak currents gain additional decay paths, replacing W^{\pm} with H^{\pm} allows for easy constraining

First Inputs

- \blacktriangleright 1 σ scan
- ➤ Leptonic, mixing, and radiative
- ightharpoonup No real constraint on an eta
- ► $m_{H^+} > 340 \,\text{GeV}$

Statistical Fitting of Scans

- Aimed to replicate process of original paper (see below)
- ➤ Scanned at 95% CL
- $ightharpoonup \chi^2$ fit to 1σ
- ➤ Replicated $m_{H^+} \gtrsim 316 \, \text{GeV}$, 95% CL

O Deschamps et al, Phys. Rev. D82 (2010) 073012, arxiv:0907.5135 [hep-ph]

New Inputs

$$\blacktriangleright$$
 $B_s \rightarrow \mu^+\mu^-$

$$\blacktriangleright R(D^{(*)}) = \frac{\Gamma[B \to D^{(*)} \tau \nu]}{\Gamma[B \to D^{(*)} l \nu]}$$

- \triangleright 2HDM historically struggles fitting both $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$
- ➤ Does this kill the 2HDM?

Extended Global Fit

- ightharpoonup Added $B_s
 ightarrow \mu^+ \mu^-$ and $\mathcal{R}(D)$
- $ightharpoonup \mathcal{R}(D^*)$ not included
- ➤ 95% CL: $m_{H^+} > 390 \,\text{GeV}$
- ► 1σ : $m_{H^+} > 530 \,\text{GeV}$
- $\blacktriangleright \tan \beta \gtrsim 2$

2. Global Fits

CKM Element Modifications

- ➤ CKM Matrix contains information of quark mixing
- ► In SM, a 3×3 unitary matrix
- Measurements would be incorrect in 2HDM; e.g. from leptonic decays, modified as

$$V_{ij} = \frac{V_{ij}^{SM}}{(1 + r_H)^2} \tag{4}$$

- ➤ Exclusive measurements from light quark mesons would have negligible change
- ightharpoonup Possibility to improve unitarity constraints, e.g. second row currently sums to >1
- ➤ Space for a fourth generation?

Four Generations?

Why SM4?

- ▶ 3×3 CKM $\rightarrow 4 \times 4$; 1 CP-violating phase to 3
- \blacktriangleright New heavy quarks, t' and b', extra loop diagrams to change decay widths
- ➤ A simple extension, and no reason for 3, so why not 4?

Exclusion of Chiral SM4:

- ► Light neutrinos measured precisely as $N_{\nu} = 3$
- ➤ SM4 gluon fusion \approx 9 times SM3 gluon fusion from heavy quarks

SM4 with 2HDM Type II

- ➤ A Chiral SM4 not excluded with 2HDM
- ➤ Introduce a "wrong sign" limit to cancel new Higgs couplings

$$\kappa_{u} = -\kappa_{d,l} \tag{5}$$

For $\tan \beta \gg 2$, the wrong sign limit yields

$$\cos(\beta - \alpha) = \frac{2}{\tan \beta}, \qquad \cos(\beta - \alpha) = \sin 2\beta$$
 (6)

- ightharpoonup These are equivalent in the large an eta limit
- ➤ Relations allow us to reduce free parameters of SM4×2HDM
- ➤ Aim to extend 2HDM scans to SM4 and constrain model using flavour observables

4. Questions

Any Questions?

