0

, 1	
PROYECTO Charato	

HOJA _____ DE ____

Che	can to Aerodynamic	exc:	fæfur:
	(Form work + Av		
Sami	many; Criterion	(Conclusion
2,1	- Susceptibility:	X X	In Range (Anthropeda,
	Vortex excitation;	X	might be problematic (if $V_1 > 23 \%$)
2.1.2	turbulance:		Not in Range: may be ignoral.
2,1.3.2	Gerlloppij & stull Hutter	X	Critical !!
2.1.3.3 _	Classices 1 Hutter	X	Does Not satisfy the condition!

CAPLOS	FERNANDEZ	CASADO	CI
CANLOS	LUNAMOLZ	CASADO,	J.L.

PROYECTO Chacanto - Hen dynamic stability (Form work + Arches) FECHA

casting / FECHA
excitation:
1 1,2256 by/3 Air 1,2256
b = 12,6 m 1 d4 = 1,8 + 1,7 + 0,3.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
fs = 1,17 Hz
fr = 1,3 Hz
Bridge Tyre 1A.
L = 96,673 m
$m = 2 \times [(9, 5)^{9}_{44} m^{2} \times 7850)$
$+ (1m^2 \times 2400 \text{ g/m})$ $= 6306 \text{ g/m}$
= 6'506 ug/m
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜

0

	HOJA	DE	
	HOJA	_ DE	

PROYECTO_______FECHA _____

2.1.1.	Limited Sug.	Mule response - Vorter excitation.
		31 < 5 Ver = 6.5 folq Type 14;
Crit	rcal wind	Speed $\begin{cases} \frac{f_{g}-1,17H_{2}}{f_{g}-1,17H_{2}} & V_{CV} = 28,899 \text{ m}_{g} \\ \frac{f_{T}-1,3}{f_{g}-1,13} & V_{CV} = 32,11 \text{ m}_{g} \end{cases}$
	L(SHe	
b)	Vrs = 1,25 V	Vr=4000/s Vrs 5 50 m/s Vr = 20 m/s Vrs 5 25 m/s
	jt Vr	23,1192 ms Vorter excitation may happen in benling made.

OFICINA DE PROYECTOS

HOJA	DE
 FECHA	

PROYECTO-		FECHA
2.1.2	Limited South	le Respose.
		He effect is neglected.

OFICINA DE PROYECTOS

HOJA	DE	

PROYECTO-

21.3 Direct Aughture Response.	
2.1.3.1 : galloging & stall Platter	
en verticul mation - nat in categoris:	⇒ Neylerful
b) Tortioned motion:	
$V_g = 3.3 f_T b \Rightarrow V_g = 3.3(1.3 H_Z)$ $V_g = 54.054$	
2,1.3.3 classical Hutter	
$V_{RT} = 1.8 \left(1 - 1.1 \left(\frac{L_B}{L_T}\right)^2\right)^{\frac{1}{2}} \left(\frac{m_V}{J_{B3}}\right)^{\frac{1}{2}},$ $V_{RT} = 1.8 \left(1 - 1.1 \left(\frac{L_B}{L_T}\right)^2\right)^{\frac{1}{2}} \left(\frac{m_V}{J_{B3}}\right)^{\frac{1}{2}},$ $V_{RT} = 5.985 \text{ m}$	Fz = Ix+Iy = 7859 m4
$V_{R}f = 2,3316 \langle 2,5 \Rightarrow V_{R}f = 2,5$ $V_{R}f = 2,3316 \langle 2,5 \Rightarrow V_{R}f = 2,5$	A = 2, 1918 m2

OFICINA DE PROYECTOS

150	7	-	\	-
/	5	_)	
1)/	/	
	_	-		

HOJA	_ DE	

PROYECTO-

2,1,3.4	luntry Criteria	Assemptions K1A - Assemy 1.25
	Vwo = 1/3 (Vr + 2.Vd) k1A	Vds a 50m/s
	Vw.c 5 64,1 mg ~ 54m/s	Vr = 40 mg
Wo	≈ Vy = 54,056 X	Cations 6
	>> Vf = 38, 1925 X	и о д

1	
///	
115	
0	

PROYECTO-		

HOJA _____ DE ____

Cheento - Leor dynanie	Statel		
(Scattole			
Summany r			
Criteriou		Caneksian	
2.1 - Susceptibility	X	In Recife (further check)	
2.1.1 - Vortex excitation	X	might be problematic (if Vr 7,34 25)	
2,1,2 - turbalance			·vuel)
2.1.3.2 - Gallagay & stall flat	te /	Statisfies the condition	
2.1.3.3 - Clessical flutter			

PROYECTO Chacanto - Aero dynamic Stability (Form work) HOJA ____ DE ____

_ Suseptibility to Aeroelynamic excitat	iòn
	f= 1,2256 m/n3
2.1	(
$P_b = \left(\frac{fb^2}{m}\right) \left(\frac{16 V_r^2}{b L f_B^2}\right)$	b = 12,6 m
16 (m / bLfz)) d4 = 1,8 m
Verdone	M = 2x 9,5944 e-2m2x 7850 kg/ms = 1506 kg/m
Pb = 0,3618	7850 kg/ms = 1506 kg/ms
Vr = 20 m/s P. = 0,09045	1 2211
Vr=40m/s Pb = 0,3618 7 0,04 < Pb < 1 Vr = 20m/s > Pb = 0,09045)	fB = 2,74 Hz
Check for {2.1.1 2.1.2 2.1.3	f = 3,09 Hz
2 1-2	
(2.1.3	Bridge Tyle 1A.
	L s 96,637 m
	, -, , 0, 5,

HOJA	DE

PROYECTO-----

2.1.1	Limited Applitude verpouse - Vovter excitation
b*/ =	$ \frac{12.6}{1.18} = 7 \begin{bmatrix} >5 \\ < 10 \end{bmatrix} \rightarrow \int d_4 (1.1 \frac{b}{d_4} + 1) = Ver $ $ \frac{1}{18} = \frac{1}$
ci) f	$ \frac{J_{5} > 10^{10}}{5} $
	1 V, > 34,32 mg Vorter excitation may happen in bouly Mode.
00	Varwise chack with 3.1.

OFICINA DE PROYECTOS

	/	1
/	0	1
(5	6
-	_	

HOJA	DE	-
012 ha 1942 10 10 1		

PROYECTO_____

2.1.2 Lin. tal Amplitule Regarde
Both to end to ove greather then 14z
Threbre the elynamic Magnification effect of
Turbulance an be ignored.

HOJA	DE	

FECHA

PROYECTO—		
111012010-		

PROTECTO			FECHA
2.1.3	Diregent anyth	le Pressanse	
2.1.3.2	Gellaping and	stab flatter	
a)	Vertical motion.		
	Type 14	is not included	l. (Nat needal).
5/ 7	Tortional motion		
	Vg = 3,3 f	b >> Vg = 3,	3 (3,09 Hz) (12,6 m)
		Vy = 1	128,48 3.9
2.1.3.3			
Vat	= 1.8 (1-1.1(fg)?).	$\left(\frac{mr}{b^3}\right)^{\frac{1}{2}} > 2$.5
Vf = 1	Vat 4 b	(rs R	eicles at gypeton)

OFICINA DE PROYECTOS

1		1
-	-/	'
1	/	
	1	
	F	5

HOJA	DE
1100A	DL

PROYECTO-(Duble freh) 1/5 / Iz 1 It = 6,181e-2 A= 1,9189 e-1 Ix = 1, 07e-1 } Iz = Ix+Iy = 6,963 m 4 1 s 5,6672 m => VRE = 1,2343 < 2,5 >> VRF = 2,5 VI = (2,5)(3,09)(12,6) = 97,335 m 29 2.1.3.4 limity Criteries Vro = 1.1 (Vr + 2 Vd) KIA Assumy VV = 40 mg , Vd. 50 mg, K14. 1.85

Vwo = 669 m/s < VP } Satisfines the outstand