Lead Scoring Case Study

Submitted By- Durgesh Kumar

PROBLEM STATEMENT

- X Education in the Ed-Tech Industry sells online courses to industry professionals.
- It's lead conversion is very poor.
- The company wants to assign Lead Score to each lead using Machine Learning Model. ASSUMPTIONS
- Unique value variables like 'Prospect ID' and Single value variables are dropped as they do not provide any significant information.
- Variables with high missing values and data imbalances are also not considered

APPROACH FOLLOWED

- 1. Data Cleaning and Data Manipulation
- 2. Exploratory Data Analysis
- 3. Data Pre-processing
- 4. Model Building Logistic Regression Model
- 5. Model Evaluation
- 6. Predictions
- 7. Conclusions and Recommendations

Notable EDA Conclusions

In [6]: df.head()

Out[6]:

	Prospect ID	Lead Number	Lead Origin	Lead Source	Do Not Email	Do Not Call	Converted	TotalVisits	Time Spent on Website	Page Views Per Visit		Get updates on DM Content	Lead Profile	City	Asymmetrique Activity Index	Asymmetriqu Profile Inde
0	7927b2df- 8bba-4d29- b9a2- b8e0beafe820	660737	API	Olark Chat	No	No	0	0.0	0	0.0		No	Select	Select	02.Medium	02.Mediu
1	2a272438- 5132-4138- 80fa- dcc88c88f482	660728	API	Organic Search	No	No	0	5.0	674	2.5	•••	No	Select	Select	02.Medium	02.Mediu
2	8cc8c611- a219-4f35- ad23- fdfd2656bd8a	660727	Landing Page Submission	Direct Traffic	No	No	1	2.0	1532	2.0	•••	No	Potential Lead	Mumbai	02.Medium	01.Hiç
3	0cc2df48-7cf4- 4e39-9de9- 19797f9b38cc	660719	Landing Page Submission	Direct Traffic	No	No	0	1.0	305	1.0		No	Select	Mumbai	02.Medium	01.Hiç
4	3256f628- e534-4826- 9d63- 4a8b88782852	660681	Landing Page Submission	Google	No	No	1	2.0	1428	1.0		No	Select	Mumbai	02.Medium	01.Hig

5 rows × 37 columns

Notable EDA

4 rows × 25 columns

NOTE: Following columns have only one unique value:

- . 'I agree to pay the amount through cheque',
- 'Get updates on DM Content'.
- · 'Update me on Supply Chain Content',
- 'Receive More Updates About Our Courses',
- 'Magazine'

These columns are of no use as they have only one category of response from customer and can be dropped:

Dropping columns of no use for modeling

NOTE: Columns such as:

- 'Last Notable Activity'
- · 'City'
- 'Country'
- 'How did you hear about X Education'
- 'Lead Profile'
- 'Converted'
- · 'What matters most to you in choosing a course'

Dropping columns of no use for modeling

NOTE: Columns such as:

- 'Last Notable Activity'
- · 'City'
- 'Country'
- · 'How did you hear about X Education'
- 'Lead Profile'
- 'Converted'
- . 'What matters most to you in choosing a course'

Above columns do not add any value to the model. Dropping these columns will remove unnecessary data from the dataframe.

- · Working Professionals going for the course have high chances of joining it.
- Unemployed leads are the most in terms of Absolute numbers.

Above columns do not add any value to the model. Dropping these columns will remove unnecessary data from the dataframe.

NOTE: Following columns have data which is highly skewed:

- · 'Do Not Call',
- 'Search',
- · 'Newspaper Article',
- · 'X Education Forums',
- 'Newspaper',
- · 'Digital Advertisement',
- · 'Through Recommendations'.

Hence these columns will be dropped as they will not add any value to the model. Morever, Skewed variables can affect the performance of logistic regression models, as they can lead to biased or inaccurate parameter estimates.

Finding out conversion rate

Converted = (sum(df['Converted'])/len(df['Converted'].index))*100
Converted

converted

37.85541106458012

Currently, lead Conversion rate is 37.85% only

The top three variables that contribute most towards the probability of a lead getting converted are

- •Total Time Spent on Website
- Lead Source_Welingak Website
- Lead Source_Reference

Presence of outliers can be seen clearly

Inference

- Median for converted and not converted leads is almost same.
- · Nothing conclusive can be said on the basis of Page Views Per Visit.

Inference

The conversion rate is high for Total Visits, Total Time Spent on Website and Page Views Per Visit

NOTABLE EDA CONCLUSIONS (CONT.)

Dropping highly correlated dummy variables

RESULTS

- ROC Curve
- 96% of the area is under ROC curve.
- Classification Probability of lead conversion by the model is very high

The ROC Curve should be a value close to 1. We are getting a good value of 0.81 indicating a good predictive model.

NOTABLE EDA CONCLUSIONS (CONT.)

- 0.3 is the optimum point to take it as a cut-off probability.
- Accuracy : 77.45%
- Sensitivity :71.58%
- Specificity: 80.79%

From the curve above, 0.3 is the optimum point to take it as a cutoff probability.

RECOMMENDATIONS

Follow ups through calls and emails with high conversion probability leads is suggested.

- Focus more on customers who spend a lot of time on the company's website as their conversion rate is high as per EDA.
- Providing special offers to customers who are highly interested and are seen visiting back to the website.
- Leads who have Tags such as 'Ringing', 'Switched Off', 'Invalid Number' can be avoided as the probability of them converting is very low.

Thank You!