泛函分析复习

Gau Syu

2013年1月1日

Preface

这是 2012 年下半年南开大学数学科学学院研究生课程"泛函分析"的期末复习五道题目。该课程由安桂梅老师讲授。

Contents

Pe	e <mark>rface</mark>	1
1	半范数与局部凸空间	2
2	值域定理	4
3	可分性	8
4	内积空间与正交补	8
5	闭算子	9
6	补充	10
	6.1 准范数	10
	6.2 商空间	10
	6.3 Hilbert 空间上的伴随算子	10
	6.4 正交投影	11
In	dev	19

1 半范数与局部凸空间

题目 1 设 $\{p_{\alpha}\}_{\alpha\in\Lambda}$ 是 X 上分离点的半范数族,则由其生成的拓扑是 Hausdorff 的。

定义 1. X 是域 \mathbb{K} (\mathbb{R} 或 \mathbb{C}) 上的线性空间, X 上的实值函数 p 满足

- 1) (次可加性) $p(x+y) \leqslant p(x) + p(y), \forall x, y \in X$;
- 2) (绝对齐性) $p(\lambda x) = |\lambda| p(x), \forall \lambda \in \mathbb{K}, x \in X$

则称 $p \in X$ 上的一个半范数。

命题 2. 设 p 是线性空间 X 上的半范数,则

- 1) p(0) = 0;
- 2) $|p(x) p(y)| \le p(x y)$;
- 3) $p(x) \ge 0$;
- 4) $\ker p \neq X$ 的子空间。

证明. 1) p(0) = p(0x) = |0|p(x) = 0;

- 2) 因为 $p(x) = p(x y + y) \le p(x y) + p(y)$, 且 p(y x) = p(x y);
- 3) $p(x) \ge |p(x) P(0)| \ge 0$;
- 4) $\forall \alpha, \beta \in \mathbb{K}, x, y \in \ker p$,

$$p(\alpha x + \beta y) \leqslant p(\alpha x) + p(\beta y) = |\alpha|p(x) + |\beta|p(y) = 0 + 0 = 0$$

注. 可见半范数就是范数定义中去掉 $p(x) = 0 \Rightarrow x = 0$ 这一条。

定义 3. 对于线性空间 X 中的集合 M,

- 1) 若 $\forall x, y \in M, 0 \le \alpha \le 1, \alpha x + (1 \alpha)y \in M$,则称 M 是凸的;
- 2) 若 $\forall x \in M, |\lambda| \leq 1, \lambda x \in M$,则称 M 是平衡的;
- 3) 若 M = -M, 则称 M 是对称的;
- 4) 若 $\forall x \in X$,存在 $\varepsilon > 0$,使得当 $0 < |\alpha| \le \varepsilon$ 时, $\alpha x \in M$,则称 M 是吸收的。

命题 4. 对任给的半范数 p 和实数 r > 0,

$$M = \{x \in X \mid p(x) < r\}, M' = \{x \in X \mid p(x) <= r\}$$

均是平衡的、吸收的凸集。

证明. 先证 M 是凸集: $\forall x, y \in M, 0 \le \alpha \le 1$,

$$p(\alpha x + (1 - \alpha)y) \leqslant |\alpha|p(x) + |1 - \alpha|p(y) < \alpha r + (1 - \alpha)r = r$$

所以 $\alpha x + (1 - \alpha)y \in M$ 。

再证 M 是平衡集: $\forall x \in M, |\lambda| \leq 1$,

$$p(\lambda x) = |\lambda| p(x) \le p(x) < r$$

所以 $\lambda x \in M$ 。

最后证 M 是吸收集: $\forall x \in X$, 不妨设 p(x) > 0, 则

$$p(\frac{rx}{2p(x)}) = \frac{r}{2p(x)}p(x) = \frac{r}{2} < r$$

对 M' 的证明类似。

定义 5. 设 K 是线性空间 X 中的子集,则

$$\mu_K(x) \stackrel{\text{def}}{=} \inf \left\{ \alpha \middle| \alpha > 0, \frac{1}{\alpha} x \in K \right\}$$

称为 K 的Minkowski 泛函。

由定义可知 $K \subset L \Rightarrow \mu_K \geqslant \mu_L$ 。

命题 6. 线性空间 X 中的平衡吸收凸集 K 的 Minkowski 泛函 μ_K 是 X 上的半范数。

定义 7. 一个线性空间 X 上赋予一个使得加法和数乘运算连续的拓扑 τ ,则称 (X,τ) 为拓扑线性空间。

注. 拓扑线性空间的拓扑基可由 0 点的邻域基平移得到,故称 0 点的邻域基称为局部基。

注. 设 X 是一个拓扑线性空间,U 是 0 点的一个凸邻域,则 U 包含一个 0 点的平衡的、吸收的凸邻域。

定义 8. 设 (X,τ) 是拓扑线性空间,如果 τ 的局部基全由凸集组成,则称为局部凸拓扑线性空间,简称局部凸空间。

定理 9. 设 P 是线性空间 X 上的半范数族, 对每个 $p \in P$ 及自然数 n, 记

$$V(p,n) \stackrel{\text{def}}{=} \left\{ x \in X \middle| p(x) < \frac{1}{n} \right\}$$

其所有有限交构成的集合记为 \mathcal{B} , 则 \mathcal{B} 是平衡的凸的局部基。这样就由 P 诱导出一个 X 上的局部凸拓扑,称为由半范数族 P 生成的拓扑。

证明. 首先,由命题4,每个 V(p,n) 都是 0 点的平衡的凸邻域,进一步地,它们的有限交也是 0 点的平衡的凸邻域。

然后证明加法运算连续: 注意到加法运算在 0 处是连续的当且仅当对于任何 0 的邻域 U 存在另一个 0 的邻域 V 使得 V+V 被包含在 U 中。

设 $U \neq 0$ 点的一个邻域,则存在 $p_i \in P, n_i \in \mathbb{N}, i = 1, 2, \dots, k$,使得

$$U \supset V(p_1, n_1) \cap \cdots \cap V(p_k, n_k)$$

令 $V = V(p_1, 2n_1) \cap \cdots \cap V(p_k, 2n_k)$,则由次可加性得 $V + V \subset U$ 。

最后证明乘法运算连续: 即 $\forall x \in X, \alpha \in \mathbb{K}, U \in N(0)$,存在 ε 和 $V \in N(0)$,当 $|\beta - \alpha| < \varepsilon, y - x \in V$ 时, $\beta y - \alpha x \in U$ 。

取 V 同上,由于 V 平衡,所以当 $s\geqslant 1, x\in sV, t=s(1+|\alpha|s)^{-1}, |\beta-\alpha|< s^{-1}, y\in x+tV\in N(x)$ 时就有

$$\beta y - \alpha x = \beta (y - x) + (\beta - \alpha) x$$
$$\in \beta t V + s^{-1} s V$$
$$\subset V + V \subset U$$

命题 10. 设 (X,τ) 是局部凸空间,则必有一族 X 上的半范数 P 使得 V(p,n) 是 τ 的局部基。

证明. 设 U 是 0 点的一个凸邻域,则 U 包含一个 0 点的平衡的吸收的凸邻域 V,令 μ_V 为其 Minkowski 泛函,则 μ_V 是半范数,所有这样的半范数构成的半范数族生成该局部凸拓扑。

定义 11. 设 $\{p_{\alpha}\}_{\alpha\in\Lambda}$ 是线性空间 X 上的一族半范数,如果

$$\forall \alpha \in \Lambda, p_{\alpha}(x) = 0 \Longrightarrow x = 0$$

则称 $\{p_{\alpha}\}_{{\alpha}\in\Lambda}$ 分离X 中的点。

定理 12. 由分离点的半范数族决定的的局部凸空间是 Hausdorff 的, 反之亦然。

证明. 首先证明 $\forall x \neq 0 \in X$, x 和 0 可由开集分离:

事实上,因为 $x \neq 0$,由于P分离点,故存在 $p \in P$ 使得p(x) > 0,取自然数n使得np(x) > 2,则

$$V(p,n)\cap (x+V(p,n))=\left\{y\in X \middle| p(y)<\frac{1}{n}, p(y-x)<\frac{1}{n}\right\}$$

然而

$$\begin{cases} p(y) < \frac{1}{n} \\ p(y-x) < \frac{1}{n} \end{cases} \implies p(x) \leqslant p(y) + p(y-x) < 2n$$

与 np(x) > 2 矛盾, 故 $V(p,n) \cap (x + V(p,n)) = \emptyset$ 。

对于 $x \neq y$, 若已有开集 U, V 分离 0 和 x - y, 则

$$\begin{cases} 0 \in U \\ x - y \in V \end{cases} \Longrightarrow \begin{cases} x \in y + V \\ y \in y + U \end{cases}$$
$$U \cap V = \varnothing \Longrightarrow (y + U) \cap (y + V) = \varnothing$$

反之,若 X 是 Hausdorff 的局部凸空间,则取半范数族 P 为其局部基的 Minkowski 泛函。 $\forall x \neq 0$,由 Hausdorff 性,存在 0 点邻域 U,使得 $x \notin U$ 。进一步地,可取为邻域基中的元 V,使得 $x \notin V$,于 是 $\mu_V \neq 0$,这就证明了半范数族 P 分离 X 中的点。

2 值域定理

题目 2 设 T 为从赋范线性空间 E 到 E_1 内的线性算子,且有 $\overline{\mathcal{D}(T)} = E$,那么,为了 T^{-1} 存在且连续(即 $T \in \text{Inv}(\mathcal{B}(\mathcal{D}(T), E_1))$)必须且只须 $\mathcal{W}(T^*) = E^*$,即 T^* 满值域。

证明. 1) "⇒": 如果 T^{-1} 存在且连续,须证对任意的 $f \in E^*$,存在 $g \in E_1^*$,使得 $T^*(g) = f$ 。 首先定义 $\mathcal{W}(T) \subset E_1$ 上的有界线性泛函

$$g_0(y) \stackrel{\text{def}}{=} f(T^{-1}(y)), y \forall y \in \mathcal{W}(T)$$

从而由 Hahn-Banach 定理,可得到 g_0 的一个保范延拓 $g \in g \in E_1^*$ 。又由于

$$g(T(x)) = g_0(T(x)) = f(T^{-1}(T(x))) = f(x), \forall x \in \mathcal{D}(T)$$

故 $g \in \mathcal{D}(T^*), T^*(g) = f$ 。

2) "=": 为证 T^{-1} 存在,只须证 T 是 1-1 对应的。

若 T(x)=0,则任取 $f\in E^*$,由假设 $\mathcal{W}(T^*)=E^*$,故存在 $g\in \mathcal{D}(T^*)$,使得 $f=T^*(g)$,于是

$$f(x) = (T^*(g))(x) = g(T(x)) = g(0) = 0$$

故 x = 0。

为证 T^{-1} 是连续的,只须证 T^{-1} 是有界线性算子:

 $\forall y \in \mathcal{W}(T), ||y|| \leq 1$,任取 $f \in E^*$,由假设 $\mathcal{W}(T^*) = E^*$,故存在 $g \in E_1^*$,使得 $f = T^*(g)$ 。由于

$$|f(T^{-1}(y))| = |(T^*(g))(T^{-1}(y))|$$
$$= |g(TT^{-1}(y))|$$
$$= |g(y)| \le ||g||$$

故由共鸣定理1得

$$\sup\{||T^{-1}(y)|| \mid ||y|| \le 1, y \in \mathcal{W}(T)\} < \infty$$

题目 3 设 T 是从赋范线性空间 E 到 E_1 内的线性算子,且有 $\overline{\mathcal{D}(T)}=E$,那么,为了 $(T^*)^{-1}$ 存在,必须且只须有 $\overline{\mathcal{W}(T)}=E_1$ 。

证明. 1) " \Longrightarrow ": 反之,假如存在 $y_1 \in E_1$ 且 $y_1 \notin \overline{\mathcal{W}(T)}$,则注意到 $\overline{\mathcal{W}(T)}$ 是 E_1 内的一个闭线性子空间,因此由分割性定理可知,存在 $g_1 \in E_1^*$,使得

$$g_1(y_1) = 1, g_1(y) = 0, \forall y \in \overline{\mathcal{W}(T)}$$

由此得

$$g_1(T(x)) = 0, \forall x \in \mathcal{D}(T)$$

于是

$$g_1 \in \mathcal{D}(T^*), T^*(g_1) = 0$$

由假设, T^* 存在线性逆算子,故 T^* 是 1-1 对应的,于是 $g_1=0$,与前面取法矛盾。

2) " \longleftarrow ":只须证 T^* 是 1-1 对应的。

如果存在泛函 $g_0 \in E_1^*$,使得

$$T^*(g_0) = 0$$

则

$$g_0(T(x)) = (T^*(g_0))(x) = 0, \forall x \in \mathcal{D}(T)$$

即 $g_0|_{\mathcal{W}(T)}=0$ 。由假设 $\overline{\mathcal{W}(T)}=E_1$ 以及 g_0 在 E_1 上连续,故 $g_0=0$ 。

题目 4 设 T 是从赋范线性空间 E 到 E_1 内的线性算子,且有 $\overline{\mathcal{D}(T)}=E$,那么,当 E_1 为 "第二纲"赋范线性空间且有 $\mathcal{W}(T)=E_1$ 时, $(T^*)^{-1}$ 存在且连续。

 $^{^{-1}}$ 注意到共轭空间 E^* 一定是 Banach 空间,将 $T^{-1}(y)$ 视为 E^* 上的连续线性泛函。

证明. 首先,由前一题可知 $(T^*)^{-1}$ 存在。下证 $(T^*)^{-1}$ 有界: 若不然,则由于 $(T^*)^{-1}$ 非有界,故存在列 $\{g_n\}\subset E_1^*$,使得

$$||g_n|| = 1, ||T^*(g_n)|| \to 0 (n \to \infty)$$

于是,可定义:

$$g_n' = \frac{g_n}{||T^*(g_n)||} (n \in \mathbb{N})$$

此时

$$\lim_{n \to \infty} ||g_n'|| = \lim_{n \to \infty} \frac{||g_n||}{||T^*(g_n)||} = \lim_{n \to \infty} \frac{1}{||T^*(g_n)||} = \infty$$
(2.0.1)

另外,由定理假设 $E_1 = \mathcal{W}(T)$ 知, $\forall y \in E_1$,存在 $x \in E$ 使得 y = T(x)。于是

$$|g'_n(y)| = |g'_n(T(x))| = |(T^*g'_n)(x)|$$

 $\leq ||T^*g'_n||||x|| = ||x|| < \infty, \forall y \in E_1$

由 E_1 第二纲以及推广的共鸣定理,得 $\{||g_n'||\}$ 是有界数列,与式2.0.1矛盾。

定义 13. 从赋范线性空间 E 到 E_1 内的线性算子 T 称为有界的,如果存在 $\lambda > 0$ 使得

$$||Tx|| \le \lambda ||x||, \forall x \in E$$

- 注. 等价的条件是将有界集映到有界集。
- 注. 反之,若算子 T 非有界,则存在 E 中的点列 $\{x_n\}$,使得

$$||Tx_n|| = 1, ||x_n|| \to 0 (n \to \infty)$$

定义 14. 从赋范线性空间 E 到 E_1 内的全体有界线性算子构成的赋范空间记为 $\mathcal{B}(E,E_1)$ 。特别地, $\mathcal{B}(E,\mathbb{K})$ 称为 E 的共轭空间,记作 E^* 。

定理 15. 赋范线性空间 $\mathcal{B}(E,E_1)$ 完备, 当且仅当 E_1 完备。

推论 16. 赋范线性空间 E 的对偶空间 E^* 是 Banach 空间。

定义 17. 线性空间 E 上的泛函 p(x) 称为

1) 次加的,如果

$$p(x+y) \leqslant p(x) + p(y), \forall x, y \in E$$

2) 正齐性的,如果

$$p(\alpha x) = \alpha p(x), \forall \alpha \geqslant 0, x \in E$$

定理 18 (Hahn-Banach 延拓定理). 若

- 1) E 是实线性空间, $E_0 \subset E$ 是其线性子空间;
- (2) p(y) 是 E 上的次加正齐性泛函, $f_0(y)$ 是定义在子空间 E_0 上的实线性泛函,且满足

$$f_0(y) \leqslant p(y), \forall y \in E_0$$

则必存在定义在整个空间 E 上的实线性泛函 f(y),满足

1) $f(y) = f_0(y), \forall y \in E_0$;

- 2) $f(y) \leqslant p(y), \forall y \in E$.
- 注. 将定理中的"次加正齐性"控制泛函 p(x) 换成凸泛函时结论任成立。其中<mark>凸泛函</mark>是指

$$p(\lambda x + (1 - \lambda)y) \leq \lambda p(x) + (1 - \lambda)p(y), \forall \lambda \in [0, 1], x, y \in E$$

定义 19. 线性空间 E 上的泛函 p(x) 称为绝对齐性的,如果

$$p(\alpha x) = |\alpha| p(x), \forall \alpha \in \mathbb{K}, x \in E$$

定理 20 (Hahn-Banach 延拓定理). 若

- 1) E 是复线性空间, $E_0 \subset E$ 是其复线性子空间;
- 2) p(y) 是 E 上的次加绝对齐性泛函, $f_0(y)$ 是定义在子空间 E_0 上的复线性泛函, 且满足

$$|f_0(y)| \leq p(y), \forall y \in E_0$$

则必存在定义在整个空间 E 上的复线性泛函 f(y),满足

- 1) $f(y) = f_0(y), \forall y \in E_0$;
- 2) $|f(y)| \leq p(y), \forall y \in E$.

定理 21 (Hahn-Banach 保范延拓定理). 设 E 为赋范线性空间, E_0 为其线性子空间, f_0 为 E_0 上定义的连续线性泛函,则在 E 上必存在连续线性泛函 f,使得

- 1) $f|_{E_0} = f_0$;
- 2) $||f|| = ||f_0||$.

命题 22 (足够多有界线性泛函存在). 设 E 为赋范线性空间,则 $\forall x_0 \in E, ||x_0|| \neq 0$,存在 $f_1 \in E^*$,使得

$$f_1(x_0) = ||x_0||, ||f_1|| = 1$$

推论 23. 设 E 为赋范线性空间, $x,y \in E$, 则为使 x = y 必须且只须 $\forall f \in E^*$, 均有 f(x) = f(y)。

定理 24 (分割性定理). 设 E 是赋范线性空间, $E_0 \subset E$ 是其线性子空间, 则 $\forall x_1 \in E$, 若

$$d = d(x_1, E_0) \stackrel{\text{def}}{=} \inf_{y \in E_0} ||x_1 - y|| > 0$$

则存在 $f_1 \in E^*$, 使得

$$f_1(x) = \begin{cases} 1 & x = x_1 \\ 0 & x \in E_0 \end{cases}$$

 $\mathbb{E}||f_1|| = \frac{1}{d}$.

定理 25 (Banach-Steinhaus 定理(共鸣定理)). 给定赋范线性空间 X 和 Y,其中 X 是完备的,若算子族 $\{T_{\alpha}\}_{\alpha\in\Lambda}\subset\mathcal{B}(X,Y)$ 是逐点连续的(即 $\forall x\in X$, $\{||T_{\alpha}(x)||\}_{\alpha\in\Lambda}$ 都是有界数集),则必是一致连续的(即 $\{||T_{\alpha}||\}_{\alpha\in\Lambda}$ 是有界数集)。

定义 26. (X,d) 为距离空间, $A \subset X$,若 \forall 开集 $G \subset X$,存在开集 $G_0 \subset G$ 使得 $G_0 \cap A = \emptyset$,则称 A 在 X 中稀疏。集合 A 称为第一纲的,如果它是可数个稀疏集的并,否则称为第二纲的。

定理 27 (推广的 Banach-Steinhaus 定理 (共鸣定理)). 给定赋范线性空间 X 和 Y, 其中 X 是第二纲的,若算子族 $\{T_{\alpha}\}_{\alpha\in\Lambda}\subset\mathcal{B}(X,Y)$ 在 X 的一个第二纲的子集上是逐点连续的,则必一致连续。

3 可分性

题目 5 可分距离空间 X 的任意非空子集 X_0 必可分。

证明. 由 X 可分, 故存在可数稠密子集 $\{x_n\}$ 。

由于是距离空间,故可作一列开球 $\{O(x_n, \frac{1}{m}) \mid n, m \in \mathbb{N}\}$,并且

$$X = \bigcup_{n,m} O(x_n, \frac{1}{m})$$

对于任意非空子集 $X_0 \subset X$,有

$$X_0 = \bigcup_{n,m} (X_0 \cap O(x_n, \frac{1}{m}))$$

于是可从每个非空的 $X_0 \cap O(x_n, \frac{1}{m})$ 中取出一元。显见这些元的全体 $\{y_k\}$ 至多可数。下面只须证 $\{y_k\}$ 稠于 X_0 :

 $\forall y \in X_0, \varepsilon > 0$,由于 $\{x_n\}$ 在 X 中稠密,故存在 x_{n_0} 及 $m_0 > \frac{2}{\varepsilon}$,使 $y \in O(x_{n_0}, \frac{1}{m_0})$ 。 因此, $X_0 \cap O(n_0, \frac{1}{m_0}) \neq \varnothing$,故必存在 $y_{k_0} \in \{y_k\}$,使得 $y_{k_0} \in X_0 \cap O(n_0, \frac{1}{m_0})$ 于是

$$d(y, y_{k_0}) \le d(y, x_{n_0}) + d(x_{n_0}, y_{k_0}) < \frac{1}{m_0} + \frac{1}{m_0} < \varepsilon$$

即 $\{y_k\}$ 在 X_0 中稠密。故 X_0 可分。

定义 28. (X,d) 为一个距离空间, $A,B\subset (X,d)$,若 B 的每一个点的每一个邻域中均含有 A 中的点,则称 A 在 B 中稠密。

命题 29. A 在 B 中稠密 $\Longleftrightarrow \overline{A} \supset B \Longleftrightarrow \forall x \in B$,存在 $\{x_n\} \subset A$,使得 $x_n \overset{d}{\to} x$ $\Longrightarrow \forall \varepsilon > 0, \bigcup_{x \in A} O(x, \varepsilon) \supset B$

定义 30. (X,d) 为一个距离空间,若 (X,d) 中存在可数的稠密子集,则称 (X,d)可分。

4 内积空间与正交补

题目 6 A 是内积空间 U 的子集,则 A^{\perp} 是 U 的闭子空间。

定义 31. 设 E 是线性空间,在乘积空间 $E \times E$ 上定义有有序二元泛函 (,),如果 $\forall x,y,z \in E,\alpha,\beta \in \mathbb{K}$,其满足

- 1) (x,x) >= 0,且 (x,x) = 0 当且仅当 x = 0;
- 2) (x,y) = (y,x);
- 3) $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$

则称 (,) 为 E 上的内积,称定义了内积的线性空间 E 为内积空间。

定理 32 (Cauchy-Schwarz 不等式). 设 E 为内积空间,则 $\forall x,y \in E$,有

$$|(x,y)|^2 \leqslant (x,x)(y,y)$$

且等号成立当且仅当 x,y 线性相关。

定义 33. 令 $||x|| = \sqrt{(x,x)}$,则 ||x|| 成为 E 上的范数。若 E 在该范数下成为 Banach 空间,则称为Hilbert 空间。

命题 34. 内积 (x,y) 是关于 x 和 y 的二元连续函数,即

$$\lim_{n \to \infty} x_n = x, \lim_{n \to \infty} y_n = y \Longrightarrow \lim_{n \to \infty} (x_n, y_n) = (x, y)$$

命题 35 (勾股定理). 设 U 是内积空间, $x,y \in U$ 。若 $x \perp y$, 则

$$||x + y||^2 = ||x||^2 + ||y||^2$$

定义 36. 设 U 是内积空间

- 1) 对于 $x, y \in U$, 如果 (x, y) = 0, 则称 x = y 正交,记作 $x \perp y$;
- 2) 设 $\emptyset \neq A \subset U, x \in U$, 如果 $\forall y \in A, (x, y) = 0$, 则称 x 与 A正文, 记作 $x \perp A$;
- 3) 类似可定义两个子集的正交;
- 4) 设 $\emptyset \neq A \subset U$,把与 A**正**交的元全体记为 A^{\perp},称为 A 的**正**交补。

命题 37. 若 $x \perp y_i (i = 1, 2, \dots, n)$, 则 $\forall \alpha_i \in \mathbb{K}$, 有 $x \perp \sum \alpha_i y_i$ 。

证明.
$$(x, \sum \alpha_i y_i) = \sum \overline{\alpha_i}(x, y_i) = \sum \overline{\alpha_i} 0 = 0$$
,故 $x \perp \sum \alpha_i y_i$ 。

命题 38. 若 $x \perp y_i (n \in \mathbb{N})$, 且 $\lim_{n \to \infty} y_n = y$, 则 $x \perp y$ 。

证明.
$$(x,y) = \lim_{n\to\infty} (x,y_n) = \lim_{n\to\infty} 0 = 0$$
,故 $x\perp y$ 。

题目的证明, 由前面两个命题立得。

5 闭算子

题目 7 闭算子的定义与等价定义。

定义 39. 令 X,Y 为 \mathbb{K} 上的两个赋范线性空间,T 是从 X 到 Y 内的线性算子,对 $X\times Y$ 赋予范数 $||(x,y)||=||x||_X+||y||_Y$,如果 T 的图像 $G(T)\subset$ 是闭集,则称算子 T 是闭算子。

命题 40. T 是闭算子, 当且仅当:

 $\forall \{x_n\} \subset \mathcal{D}(T)$ 满足

$$\lim_{n \to \infty} x_n = x, \lim_{n \to \infty} Tx_n = y$$

都有 $x \in \mathcal{D}(T)$ 且 Tx = y。

证明. 一方面,如果 $x_n \to x, Tx_n \to y$,即 $(x_n, Tx_n) \to (x, y)$,则由于 T 是闭算子,故 $(x, y) \in G(T)$ 。由 G(T) 的定义知 $x \in \mathcal{D}(T)$ 且 Tx = y。

另一方面,对于 G(T) 中任何收敛列 $\{(x_n,y_n)\}$,设其极限为 (x,y),则 $x_n\to x, Tx_n\to y$,由于 $y_n=Tx_n$,从而由假设条件知 $x\in\mathcal{D}(T)$ 且 Tx=y,于是 $(x,y)=(x,Tx)\in G(T)$ 。

命题 41. 设 T 是从 X 到 Y 内的有界线性算子, 且 D(T) 是闭集, 则 T 是闭算子。

证明. $\forall \{x_n\} \subset \mathcal{D}(T)$,如果 $\lim_{n\to\infty} x_n = x, \lim_{n\to\infty} Tx_n = y$,则由 $\mathcal{D}(T)$ 闭得 $x \in \mathcal{D}(T)$,由 T 连续得 $\lim_{n\to\infty} Tx_n = Tx$,故由极限的唯一性,得 y = Tx,即 $(x,y) \in G(T)$ 。

6 补充

6.1 准范数

定义 42. 范数的定义:零元、三角不等式、绝对齐性。

准范数的定义:将范数定义中的绝对齐性换成:

a)
$$||-x|| = ||x||$$

b)
$$||a_n x|| \to 0 (a_n \to 0)$$

c)
$$||\alpha x_n|| \to 0(||x_n|| \to 0)$$

6.2 商空间

定理 43. 设 E 为一赋范线性空间, E_0 为其闭线性子空间,在商空间 E/E_0 定义

$$||\widetilde{x}|| \stackrel{\text{def}}{=} \inf_{x \in \widetilde{x}} ||x||$$

则其必为一范数,从而使 E/E_0 成为赋范空间。

定理 44. 设 E 为一赋范线性空间, E_0 为其闭线性子空间,则 E 完备当且仅当 E_0 和 E/E_0 均完备。

6.3 Hilbert 空间上的伴随算子

定义 45. 对于 $T \in \mathcal{B}(H)$, 若 (Tx,y) = (x,y'), 则 $T^*: y \to y'$ 称为 T 的伴随算子。

命题 46. 设 A, B 是 Hilbert 空间上的线性算子,则

1)
$$(\alpha A + \beta B)^* = \overline{\alpha} A^* + \overline{\beta} B^*$$

2)
$$A^{**} = A$$

3)
$$(AB)^* = B^*A^*$$

4)
$$I^* = I$$

5) 若
$$A^{-1}$$
 存在,则 $(A^{-1})^* = (A^*)^{-1}$ 。

命题 **47.** $T \in \mathcal{B}(H, H')$,则

$$1) \ker T = (\operatorname{im} T^*)^{\perp}$$

2)
$$\overline{\operatorname{im} T} = (\ker T^*)^{\perp}$$

定义 48. 设 $T \in \mathcal{B}(H)$, 若 $T = T^*$, 则称 T 是自伴的。

命题 49. 1) 设 A, B 自伴, 则 A + B 自伴;

2) 设
$$A$$
 自伴, $\alpha \in \mathbb{R}$, 则 αT 自伴;

$$3)$$
 设 A,B 自伴,则 AB 自伴,且 $AB=BA$;

4) 设
$$T_n$$
 自伴, 且 $||T_n - T|| \to 0$, 则 T 自伴。

命题 50. T 是自伴算子当且仅当 $\forall x \in H, (Tx, x) \in \mathbb{R}$, 且

$$||T|| = \sup_{||x||=1} |(Tx, x)|$$

定义 51. 设 $T \in \mathcal{B}(H)$, 令

$$A=\frac{T+T^*}{2}, B=\frac{T-T^*}{2}$$

则 $A,B \in \mathcal{B}(H)$ 均为自伴算子,且 $T = A + iB, T^* = A - iB$,分别称 A,B 为 T 的实部和虚部。

定义 52. 设 $T \in \mathcal{B}(H)$, 若 $TT^* = T^*T$, 则称 T 为正规算子。

命题 53. $T \in \mathcal{B}(H)$ 为正规算子当且仅当 $||Tx|| = ||T^*x||, \forall x \in H$ 。

定义 54. 设 $T \in \mathcal{B}(H)$, 若 $T^* = T^{-1}$, 则称 T 为酉算子。

6.4 正交投影

定理 55 (正交投影定理). 设 E 为 Hilbert 空间, M 为 E 内的闭线性子空间, 则 $\forall x \in E$, x 必可写成 x = y + z 的形式, 其中 $y \in M, z \in M^{\perp}$, 并且

$$||x - y|| = \inf_{y' \in M} ||x - y'||$$

此分解称为正交分解, y 称为 x 在 M 上的正交投影。

命题 56. 设 M 为 Hilbert 空间 E 内的闭线性子空间, P_M 为从 E 到 M 的正交投影, 则 P_M 满足

- 1) P_M 是 E 上的线性满算子;
- 2) $||P_M x|| \leq ||x||, \forall x \in E$;
- 3) $||P_M|| = 1 \neq 0$;
- 4) $P_M^2 = P_M$;
- 5) im $P_M = M$, ker $P_M = M^{\perp}$

命题 57. P 是正交投影算子当且仅当 P 是自伴算子且 $P^2 = P$ 。

Index

Banach-Steinhaus 定理, 7 Cauchy-Schwarz 不等式, 8 Hahn-Banach 保范延拓定理, 7 Hahn-Banach 延拓定理, 6, 7 Hilbert 空间, 9 Minkowski 泛函, 3 一致连续,7 伴随算子, 10 共轭空间,6 共鸣定理,7 内积,8 内积空间,8 凸泛函,7 凸集, 2 分割性定理,7 分离点,4 勾股定理,9 半范数,2 半范数诱导的拓扑, 3 可分空间,8 吸收集, 2 实部, 11 对称集,2 局部凸拓扑线性空间,3 局部凸空间,3 局部基,3 平衡集, 2 拓扑线性空间,3 有界线性算子,6 次加泛函,6 正交,9 正交分解,11 正交投影,11 正交投影定理,11 正交补,9 正规算子, 11

正齐性的,6

稀疏集, 7 稠密, 8 第一纲集, 7 第二纲集, 7 绝对齐性的, 7 自伴算子, 10 虚部, 11 逐点连续, 7 酉算子, 11 闭算子, 9