Теория вероятностей. Лекция четвертая Независимость и марковость

Дмитрий Валерьевич Хлопин glukanat@mail.ru

Институт математики и механики им. Н.Н.Красовского

25.09.2018

Напомним:

Задача теории вероятностей — рассчитать вероятность сложных событий. Как?

При выполненной гипотезе — условная вероятность; объединение по гипотезам — формула полной вероятности; вероятность *a posteriori* — формула Байеса.

Вывод. Подалгебры только затем учить надо, что они вероятность в соответствие имеющейся информации приводят.

Замечание в минус. Пока всё это работает только для конечного числа гипотез, ненулевой вероятности каждая.

Замечание в плюс. Строить σ -алгебру не требуется, достаточно ввести вероятность на полукольце.

Напомним: умножение σ -алгебр

Даны Ω',Ω'' и их σ -алгебры $\mathcal{F}',\mathcal{F}''$; рассмотрим следующую σ -алгебру над $\Omega'\times\Omega''$:

$$\mathcal{F}' \otimes \mathcal{F}'' \stackrel{\triangle}{=} \sigma \{ A \times B \, | \, A \in \mathcal{F}', B \in \mathcal{F}'' \}.$$

Подумать: как ввести вероятность \mathbb{P} на $\mathcal{F}'\otimes\mathcal{F}''$, если известны вероятности $\mathbb{P}_1:\mathcal{F}'\to[0,1],\ \mathbb{P}_2:\mathcal{F}''\to[0,1]$? Требуем:

$$\mathbb{P}(A \times \Omega'') = \mathbb{P}_1(A)$$
 для каждого $A \in \mathcal{F}'$, $\mathbb{P}(\Omega' \times B) = \mathbb{P}_2(B)$ для каждого $B \in \mathcal{F}''$.

Факт: Такие вероятности задать можно, но при этом уже $\mathbb{P}(A \times B)$ не восстанавливается однозначно.

Нужна дополнительная информация...

Способ первый: независимость событий

Житейское определение: "знание того, произошло B или не произошло, не влияет на вероятность события A".

Определение — A и B независимы, если $\mathbb{P}(A|B) = \mathbb{P}(A)$ — не вполне корректно.

События $A, B \in \mathcal{F}$ называют независимыми, если

$$\mathbb{P}(A)\mathbb{P}(B) = \mathbb{P}(A \cap B).$$

Независимость большего числа событий

События $(A_{\alpha})_{\alpha \in \mathfrak{A}}$ называют попарно независимыми, если для любых различных $\alpha, \beta \in \mathfrak{A}$ события A_{α}, A_{β} независимы. События $(A_{\alpha})_{\alpha \in \mathfrak{A}}$ называют независимыми в совокупности, если для всякого конечного набора $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathfrak{A}$ выполнено

$$\mathbb{P}(\cap_{i=1}^n A_{\alpha_i}) = \prod_{i=1}^n \mathbb{P}(A_{\alpha_i}).$$

Это разные определения!

Пример 1. (Бернштейн) Грани тетраэдра раскрашены в серый, бурый, малиновый цвета, а последняя — в серо-буро-малиновую полосочку. Все грани считаем равновероятными. События C,B,M — на выпавшей грани имеется серый, бурый, малиновый цвет соответственно. Тогда все эти события попарно независимы, но не независимы в совокупности.

Подумать: а если взять счетное пересечение вместо конечного?

Независимость. Простейшие свойства [с-но]

- $1^o \varnothing$ и Ω независимы с любым событием A;
- 2^o если A,B независимы и $A\cap B=\emptyset$, то или $\mathbb{P}(A)$, или $\mathbb{P}(B)$ равно нулю;
- 3^o если A,B независимы, то \bar{A},B независимы, A,\bar{B} независимы, \bar{A},\bar{B} независимы;
- 4^o если A,B_1 независимы, A,B_2 независимы и $B_1\cap B_2$ = Ø, то A и $B_1\cup B_2$ также независимы;
- 5^o если A, B_i независимы для любого натурального i, а события B_i попарно не пересекаются, то A и $\cup_{i \in \mathbb{N}} B_i$ также независимы;
- 6^o [С-но; 1 балл] Если A, B_i независимы для любого натурального i, и независимы в совокупности $A\cap B_1$, $A\cap B_2, \ldots, A\cap B_k, \ldots$, то для любого $B\in\sigma\{B_1,\ldots,B_k,\ldots\}$ множества A и B также независимы.

Независимость σ -алгебр

Конечный набор σ -подалгебр $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_n$ независим, если любой конечный набор множеств A_i $(A_i \in \mathcal{F}_i)$ независим; σ -подалгебры $(\mathcal{F}_{\alpha})_{\alpha \in \mathfrak{A}}$ независимы, если любой их конечный набор независим.

Пример 2. Тривиальная σ -алгебра $\{\varnothing,\Omega\}$ независима с любой другой подалгеброй алгебры \mathcal{F} .

Факт. Свойство независимости наследуется: независимость сохраняется при переходе от независимой алгебры к некоторой ее подалгебре.

Подумать: более общее определение независимости σ -подалгебр $\overline{\mathcal{F}_1,\mathcal{F}_2,\dots},\mathcal{F}_n$ — потребовать $\mathbb{P}(\cdot|\mathcal{F}_j)=\mathbb{P}(\cdot)$ на \mathcal{F}_i для всех различных i,j.

Подумать: а как задать независимость "функций"?

Умножение независимых σ -алгебр

Даны Ω',Ω'' и их σ -алгебры $\mathcal{F}',\mathcal{F}''$; рассмотрим следующую σ -алгебру над $\Omega'\times\Omega''$:

$$\mathcal{F}' \otimes \mathcal{F}'' \stackrel{\triangle}{=} \sigma \{ A \times B \, | \, A \in \mathcal{F}', B \in \mathcal{F}'' \}.$$

Вопрос: как ввести вероятность \mathbb{P} на $\mathcal{F}' \otimes \mathcal{F}''$, если известны вероятности $\mathbb{P}_1 : \mathcal{F}' \to [0,1], \mathbb{P}_2 : \mathcal{F}'' \to [0,1]$? Недостаточно потребовать:

$$\mathbb{P}(A \times \Omega'') = \mathbb{P}_1(A)$$
 для каждого $A \in \mathcal{F}'$, $\mathbb{P}(\Omega' \times B) = \mathbb{P}_2(B)$ для каждого $B \in \mathcal{F}''$.

[С-но; 1 балл] Докажите, что дополнительное требование — σ -алгебры $\mathcal{F}'\otimes\{\Omega''\}$ и $\{\Omega'\}\otimes\mathcal{F}'$ независимы — восстанавливает вероятность $\mathbb P$ однозначно.

Умножение счетного числа независимых σ -алгебр

Дано счетное число вероятностных пространств $(\Omega_k, \mathcal{F}_k, \mathbb{P}_k)$. Пространство элементарных исходов их произведения:

$$\bar{\Omega} \stackrel{\triangle}{=} \Omega_1 \times \Omega_2 \times \cdots \times \Omega_k \times \ldots;$$

 σ -алгебра для него строится так:

$$\bar{\mathcal{F}}_{k} \stackrel{\triangle}{=} \left\{ \Omega_{1} \times \dots \times \Omega_{k-1} \times A \times \Omega_{k+1} \times \Omega_{k+2} \times \dots \mid A \in \mathcal{F}_{k} \right\} \quad \forall k \in \mathbb{N};$$

$$\bar{\mathcal{F}} \stackrel{\triangle}{=} \sigma \left(\cup_{k \in \mathbb{N}} \bar{\mathcal{F}}_{k} \right).$$

Для однозначного задания вероятности $\mathbb P$ достаточно определить вероятность на σ -алгебрах $\bar{\mathcal F}_k$:

$$\mathbb{P}(\Omega_1 \times \cdots \times \Omega_{k-1} \times A \times \Omega_{k+1} \times \Omega_{k+2} \times \dots) = \mathbb{P}_k(A) \quad \forall k \in \mathbb{N}, A \in \mathcal{F}_k$$

и потребовать независимость этих σ -алгебр. Подумать: почему достаточно? [1 балл]

Снова независимые испытания Бернулли

Пространство состояний в одном испытании $\Omega \stackrel{\triangle}{=} \{\text{"ycnex"}, \text{"неудача"}\},$ вероятность успеха в одном испытании $\mathbb{P}(\text{"ycnex"}) = p$. Пространство элементарных исходов счетного числа испытаний:

$$\bar{\Omega} \stackrel{\triangle}{=} \{X : \mathbb{N} \to \Omega\} = \Omega^{\mathbb{N}} = \Omega \times \Omega \times \cdots \times \Omega \times \ldots,$$

 σ -алгебра для счетного числа испытаний:

$$\bar{\mathcal{F}} \stackrel{\triangle}{=} \sigma \{ \Omega^k \times \{\text{"ycnex"}\} \times \bar{\Omega} \mid k \in \mathbb{N} \cup \{0\} \}$$

$$= \sigma \{ \{ X \in \bar{\Omega} \mid X_k = \text{"ycnex"}\} \mid k \in \mathbb{N} \}.$$

Важное предположение. Испытания независимы в совокупности, то есть

$$\mathbb{P}(X_i = \text{"ycnex"}) = p = \mathbb{P}(X_i = \text{"ycnex"}|X_{j_1} = \omega_{j_1}, X_{j_2} = \omega_{j_2}, \dots, X_{j_k} = \omega_{j_k})$$
 при любых различных $i, j_1, \dots, j_k \in \mathbb{N}$, всех $\omega_{j_1}, \omega_{j_2}, \dots, \omega_{j_k} \in \Omega$. Теперь вероятность на $\widehat{\mathcal{F}}$ однозначно восстанавливается требованием

 $\mathbb{P}(X_k = \text{"ycnex"}) = p$ для всех $k \in \mathbb{N}$.

Процессы с дискретным временем и конечным числом состояний

Пространство возможных состояний в каждый момент времени — некоторое конечное множество Ω . Определим

$$\begin{split} \bar{\Omega} &\stackrel{\triangle}{=} & \{X: \mathbb{N} \cup \{0\} \to \Omega\} = \Omega^{\mathbb{N} \cup \{0\}} = \Omega \times \Omega \times \dots \times \Omega \times \dots, \\ \bar{\mathcal{F}} &\stackrel{\triangle}{=} & \sigma\{\Omega^k \times \{\omega\} \times \bar{\Omega} \,|\, \omega \in \Omega, \ k \in \mathbb{N} \cup \{0\}\} \\ &= & \sigma\{\{X \in \bar{\Omega} \,|\, X_k = \omega\} \,|\, \omega \in \Omega, \ k \in \mathbb{N} \cup \{0\}\}. \end{split}$$

Конечно, можно задать вероятность правилом

$$\mathbb{P}(X_i = \omega_i) = p_i = \mathbb{P}(X_i = \omega_i | X_{j_1} = \omega_{j_1}, X_{j_2} = \omega_{j_2}, \dots, X_{j_k} = \omega_{j_k}),$$

но можно интереснее.

Способ второй: марковское свойство

Житейское определение: "будущее X_{k+1} не зависит от прошлого X_0, \ldots, X_{k-1} при фиксированном настоящем X_k ".

Марковское свойство

$$\mathbb{P}(X_{k+1} = \omega_{k+1} | X_k = \omega_k) =$$
= $\mathbb{P}(X_{k+1} = \omega_{k+1} | X_k = \omega_k, X_{k-1} = \omega_{k-1}, \dots, X_0 = \omega_0)$

для любых $k\in\mathbb{N},\omega_0,\dots,\omega_{k+1}\in\Omega$ таких, что условная вероятность в правой части равенства существует;

в общем случае, в терминах независимости "функций" X_i :

$$\mathbb{P}(X_{k+1}|X_k) \equiv \mathbb{P}(X_{k+1}|X_k, X_{k-1}, \dots, X_0) \qquad \forall k \in \mathbb{N}.$$

Марковские цепи, І

Пространство возможных состояний $\Omega \stackrel{\triangle}{=} \{1,\dots,n\}$. Примем

$$\begin{split} \bar{\Omega} &\stackrel{\triangle}{=} & \{X: \mathbb{N} \cup \{0\} \to \Omega\} = \Omega^{\mathbb{N} \cup \{0\}} = \Omega \times \Omega \times \dots \times \Omega \times \dots, \\ \bar{\mathcal{F}} &\stackrel{\triangle}{=} & \sigma\{\Omega^k \times \{\omega\} \times \bar{\Omega} \,|\, \omega \in \Omega, k \in \mathbb{N} \cup \{0\}\}. \end{split}$$

Последовательность $(X_k)_{k\in\mathbb{N}\cup\{0\}}$ называется цепью Маркова, если

$$\mathbb{P}(X_k|X_{k-1}) = \mathbb{P}(X_k|X_{k-1},\ldots,X_0) \qquad \forall k \in \mathbb{N}.$$

Матрицы $Q^{(k)} = (q_{ij}^{(k)})_{n \times n} \stackrel{\triangle}{=} (\mathbb{P}(X_k = j | X_{k-1} = i))_{n \times n}, \ k \in \mathbb{N},$ называют матрицами переходов (матрицами вероятностей переходов, матрицами переходных вероятностей).

Марковские цепи, ІІ

Пространство возможных состояний: $\Omega = \{1, \dots, n\}$.

Последовательность $(X_k)_{k\in\mathbb{N}\cup\{0\}}$ называется цепью Маркова, если

$$\mathbb{P}(X_k|X_{k-1}) = \mathbb{P}(X_k|X_{k-1},\ldots,X_0) \qquad \forall k \in \mathbb{N},$$

при этом матрицы $Q^{(k)} = (q_{ij}^{(k)})_{n \times n} \stackrel{\triangle}{=} \left(\mathbb{P}(X_k = j | X_{k-1} = i) \right)_{n \times n}, \ k \in \mathbb{N},$ называют матрицами переходов.

Подумать: а какие свойства надо потребовать от матриц $Q^{(k)}$?

Подумать: что изменится, если число состояний будет счетно?

Подумать: вероятность находится неоднозначно. Требуется также знать начальное состояние (распределение).

Стохастические матрицы

Матрица $Q = (q_{ij})_{n \times n}$ называется стохастической, если

- 1) все q_{ij} неотрицательны;
- 2) $\sum_{i=1}^{n} q_{ij} = 1$ для всех $i \in \Omega$.

Теорема 1. [С-но] Всякая матрица переходов $Q^{(k)}$ стохастическая, каждая последовательность стохастических матриц является последовательностью матриц переходов для некоторой марковской цепи.

Подумать: а почему складываем по строкам, а не по столбцам? Подумать: почему произведение стохастических матриц снова стохастическая матрица?

Марковские цепи: как считать вероятности

Теорема 2. [С-но] В марковской цепи с матрицами переходов $Q^{(k)}=(q_{ij}^{(k)})_{n\times n},$ для любых $k\in\mathbb{N},a_0,\dots,a_k\in\Omega$, выполнено

$$\mathbb{P}(X_1 = a_1, X_0 = a_0) = q_{a_0 a_1}^{(1)} \mathbb{P}(X_0 = a_0),
\mathbb{P}(X_k = a_k, \dots, X_0 = a_0) = q_{a_{k-1} a_k}^{(k)} \dots q_{a_1 a_2}^{(2)} q_{a_0 a_1}^{(1)} \mathbb{P}(X_0 = a_0),
\mathbb{P}(X_1 = a_1) = \sum_{i=1}^n q_{ia_1}^{(1)} \mathbb{P}(X_0 = i).$$

Строку μ назовем распределением, если ее элементы неотрицательны, а их сумма равна единице. Зададим распределения-строки $\mu_k \stackrel{\triangle}{=} \big(\mathbb{P}(X_k = 1), \dots, \mathbb{P}(X_k = n) \big).$

Теорема 3 (Колмогоров). [С-но] В марковской цепи с матрицами переходов $Q^{(k)}$

$$\mu_1 = \mu_0 Q^{(1)}, \ \mu_k = \mu_{k-1} Q^{(k)}, \ \mu_k = \mu_0 Q^{(1)} \dots Q^{(k)} \quad \forall k \in \mathbb{N}.$$

Подумать: что изменится, если число состояний будет счетно?

Стационарные марковские цепи

Цепь Маркова называется стационарной (однородной по времени), если $Q^{(k)} \equiv Q$, то есть если соответствующие условные вероятности не зависят от времени.

<u>Подумать</u>: нет ли в определении стационарной цепи Маркова взвешенного орграфа с петлями?

Следствие. [С-но] В стационарной марковской цепи с матрицей переходов Q = $(q_{ij})_{n\times n}$, для любых $n\in\mathbb{N}, a_0,\ldots,a_n\in\Omega_n$, выполнено

$$\mathbb{P}(X_1 = a_1, X_0 = a_0) = q_{a_0 a_1} \mathbb{P}(X_0 = a_0),
\mathbb{P}(X_n = a_n, \dots, X_0 = a_0) = q_{a_{n-1} a_n} \dots q_{a_1 a_2} q_{a_0 a_1} \mathbb{P}(X_0 = a_0),
\mu_1 = \mu_0 Q,
\mu_n = \mu_0 Q^n.$$

- 1. Введите над $\mathbb N$ хотя бы полуалгебру Π , определите конечно-аддитивную функцию из Π в $\{0,1\}$, не являющуюся счетно-аддитивной. (верхний и нижний пределы Вам в помощь...).
- 2. Докажите или опровергните тождество $\mathbb{P}(A|H) + \mathbb{P}(\bar{A}|\bar{H}) = 1$
- 3. В схеме бесконечного числа независимых испытаний Бернулли пусть $f_k(\omega)$ результат k-го испытания. Напишите отображение $f_k\#\mathbb{P}$.
- 4. Представьте независимые испытания Бернулли (с вероятностью успеха p) в виде марковской цепи, марковскую цепь можете описать в терминах матриц переходов или графа, как угодно.