В данном проекте наша задача понять, какой тариф приносит «Мегалайну» больше денег, для того чтобы скорретировать рекламный бюджет. В нашем распоряжении данные 500 пользователей «Мегалайна»: кто они, откуда, каким тарифом пользуются, сколько звонков и сообщений каждый отправил за 2018 год. Нужно проанализировать поведение клиентов и сделать вывод — какой тариф лучше.

#### Описание тарифов

Тариф «Смарт» Ежемесячная плата: 550 рублей Включено 500 минут разговора, 50 сообщений и 15 Гб интернет-трафика Стоимость услуг сверх тарифного пакета: минута разговора: 3 рубля сообщение: 3 рубля 1 Гб интернет-трафика: 200 рублей

Тариф «Ультра» Ежемесячная плата: 1950 рублей Включено 3000 минут разговора, 1000 сообщений и 30 Гб интернет-трафика Стоимость услуг сверх тарифного пакета: минута разговора: 1 рубль сообщение: 1 рубль 1 Гб интернет-трафика: 150 рублей «Мегалайн» всегда округляет вверх значения минут и мегабайтов. Если пользователь проговорил всего 1 секунду, в тарифе засчитывается целая минута.

#### Описание данных

Таблица users (информация о пользователях):

user\_id — уникальный идентификатор пользователя

first name — имя пользователя

last name — фамилия пользователя

age — возраст пользователя (годы)

reg\_date — дата подключения тарифа (день, месяц, год)

churn\_date — дата прекращения пользования тарифом (если значение пропущено, то тариф ещё действовал на момент выгрузки данных)

city — город проживания пользователя

tariff — название тарифного плана

Таблица calls (информация о звонках):

id — уникальный номер звонка

call date — дата звонка

duration — длительность звонка в минутах

user id — идентификатор пользователя, сделавшего звонок

Таблица messages (информация о сообщениях):

id — уникальный номер сообщения

message date — дата сообщения

user id — идентификатор пользователя, отправившего сообщение

Таблица internet (информация об интернет-сессиях):

```
id — уникальный номер сессии

mb_used — объём потраченного за сессию интернет-трафика (в мегабайтах)

session_date — дата интернет-сессии

user_id — идентификатор пользователя

Таблица tariffs (информация о тарифах):

tariff_name — название тарифа

rub_monthly_fee — ежемесячная абонентская плата в рублях

minutes_included — количество минут разговора в месяц, включённых в абонентскую плату

messages_included — количество сообщений в месяц, включённых в абонентскую плату

mb_per_month_included — объём интернет-трафика, включённого в абонентскую плату (в мегабайтах)

rub_per_minute — стоимость минуты разговора сверх тарифного пакета (например, если в тарифе 100 минут разговора в месяц, то со 101 минуты будет взиматься плата)

rub_per_message — стоимость отправки сообщения сверх тарифного пакета

rub_per_gb — стоимость дополнительного гигабайта интернет-трафика сверх тарифного пакета (1 гигабайт = 1024 мегабайта)
```

# Шаг 1. Откроем файл с данными и изучим общую информацию.

#### In [141]:

```
import pandas as pd #uмпорт необходимых библиотек
import matplotlib.pyplot as plt #uмпортируем библиотеку для построения графика
import numpy as np
from functools import reduce
from scipy import stats as st
```

Все данные оператора в датафрейме bi

#### In [142]:

```
bi=pd.read_excel("data.xlsx")
```

#### In [143]:

bi

#### Out[143]:

|        | phone        | paysum | paycount | maxpayment | CAT | citycount | federalOkrugsCount |
|--------|--------------|--------|----------|------------|-----|-----------|--------------------|
| 0      | 9.001992e+09 | 1475.0 | 20.0     | 300.0      | 1.0 | 2.0       | 2.0                |
| 1      | 9.002024e+09 | 280.0  | 8.0      | 60.0       | 3.0 | 1.0       | 1.0                |
| 2      | 9.002024e+09 | 1953.0 | 26.0     | 200.0      | 1.0 | 2.0       | 2.0                |
| 3      | 9.002032e+09 | 50.0   | 1.0      | 50.0       | 3.0 | 1.0       | 1.0                |
| 4      | 9.002194e+09 | 2644.0 | 54.0     | 100.0      | 3.0 | 4.0       | 2.0                |
|        |              |        |          |            |     |           |                    |
| 156755 | NaN          | NaN    | NaN      | NaN        | NaN | NaN       | NaN                |
| 156756 | NaN          | NaN    | NaN      | NaN        | NaN | NaN       | NaN                |
| 156757 | NaN          | NaN    | NaN      | NaN        | NaN | NaN       | NaN                |
| 156758 | NaN          | NaN    | NaN      | NaN        | NaN | NaN       | NaN                |
| 156759 | NaN          | NaN    | NaN      | NaN        | NaN | NaN       | NaN                |

156760 rows × 17 columns

<

Разделим датасет на 2 датафрейма b1 - данные по абонентам, звонившим клиенту и b2 - случайная выборка абонентов

# In [144]:

```
b1=bi[['paysum','paycount','maxpayment','CAT','citycount','federalOkrugsCount','payment
Regions']]
```

#### In [145]:

```
b2=bi[['paysum2','paycount2','maxpayment2','CAT2','citycount2','federalOkrugsCount2','p
aymentRegions2']]
```

Проведем предобработку данных

# In [146]:

```
b1=b1.dropna()
b2=b2.dropna()
```

```
In [147]:
```

```
b1.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 63837 entries, 0 to 63836
Data columns (total 7 columns):
                      63837 non-null float64
paysum
                      63837 non-null float64
paycount
maxpayment
                      63837 non-null float64
                      63837 non-null float64
CAT
                      63837 non-null float64
citycount
federalOkrugsCount
                      63837 non-null float64
                      63837 non-null float64
paymentRegions
dtypes: float64(7)
memory usage: 3.9 MB
In [148]:
b2.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 156760 entries, 0 to 156759
Data columns (total 7 columns):
                       156760 non-null float64
paysum2
                       156760 non-null int64
paycount2
maxpayment2
                       156760 non-null float64
CAT2
                       156760 non-null int64
citycount2
                       156760 non-null int64
                       156760 non-null int64
federalOkrugsCount2
                       156760 non-null int64
paymentRegions2
dtypes: float64(2), int64(5)
memory usage: 9.6 MB
In [149]:
b1['paysum']=b1['paysum'].astype('int')
b1['paycount']=b1['paycount'].astype('int')
b1['maxpayment']=b1['maxpayment'].astype('int')
b1['CAT']=b1['CAT'].astype('int')
b1['citycount']=b1['citycount'].astype('int')
b1['federalOkrugsCount']=b1['federalOkrugsCount'].astype('int')
b1['paymentRegions']=b1['paymentRegions'].astype('int')
In [150]:
b2['paysum2']=b2['paysum2'].astype('int')
b2['paycount2']=b2['paycount2'].astype('int')
b2['maxpayment2']=b2['maxpayment2'].astype('int')
b2['CAT2']=b2['CAT2'].astype('int')
b2['citycount2']=b2['citycount2'].astype('int')
b2['federalOkrugsCount2']=b2['federalOkrugsCount2'].astype('int')
b2['paymentRegions2']=b2['paymentRegions2'].astype('int')
```

# In [151]:

#### b1.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 63837 entries, 0 to 63836

Data columns (total 7 columns):

paysum 63837 non-null int64
paycount 63837 non-null int64
maxpayment 63837 non-null int64
CAT 63837 non-null int64
citycount 63837 non-null int64
federalOkrugsCount 63837 non-null int64
paymentRegions 63837 non-null int64

dtypes: int64(7)
memory usage: 3.9 MB

#### In [152]:

#### b2.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 156760 entries, 0 to 156759

Data columns (total 7 columns):

 paysum2
 156760 non-null int64

 paycount2
 156760 non-null int64

 maxpayment2
 156760 non-null int64

 CAT2
 156760 non-null int64

 citycount2
 156760 non-null int64

 federalOkrugsCount2
 156760 non-null int64

 paymentRegions2
 156760 non-null int64

dtypes: int64(7) memory usage: 9.6 MB

Просмотрим данные

# In [153]:

b1

# Out[153]:

| paysum | paycount                                                          | maxpayment                                                                                                                                                                             | CAT                                                                                                                                                                                                                      | citycount                                                                                                                                                                                                                                                                       | federalOkrugsCount                                                                                                                                                                                                                                                                                                                                                                                                             | paymentRegion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1475   | 20                                                                | 300                                                                                                                                                                                    | 1                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 280    | 8                                                                 | 60                                                                                                                                                                                     | 3                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1953   | 26                                                                | 200                                                                                                                                                                                    | 1                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 50     | 1                                                                 | 50                                                                                                                                                                                     | 3                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2644   | 54                                                                | 100                                                                                                                                                                                    | 3                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |                                                                   |                                                                                                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 35     | 2                                                                 | 20                                                                                                                                                                                     | 3                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 264    | 4                                                                 | 100                                                                                                                                                                                    | 3                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1070   | 32                                                                | 50                                                                                                                                                                                     | 3                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 380    | 11                                                                | 50                                                                                                                                                                                     | 3                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 390    | 8                                                                 | 100                                                                                                                                                                                    | 3                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | 1475<br>280<br>1953<br>50<br>2644<br><br>35<br>264<br>1070<br>380 | 1475       20         280       8         1953       26         50       1         2644       54             35       2         264       4         1070       32         380       11 | 1475     20     300       280     8     60       1953     26     200       50     1     50       2644     54     100            35     2     20       264     4     100       1070     32     50       380     11     50 | 1475     20     300     1       280     8     60     3       1953     26     200     1       50     1     50     3       2644     54     100     3             35     2     20     3       264     4     100     3       1070     32     50     3       380     11     50     3 | 1475       20       300       1       2         280       8       60       3       1         1953       26       200       1       2         50       1       50       3       1         2644       54       100       3       4                35       2       20       3       2         264       4       100       3       3         1070       32       50       3       2         380       11       50       3       2 | 1475       20       300       1       2       2         280       8       60       3       1       1         1953       26       200       1       2       2         50       1       50       3       1       1         2644       54       100       3       4       2                 35       2       20       3       2       1         264       4       100       3       3       2         1070       32       50       3       2       2         380       11       50       3       2       1 |

63837 rows × 7 columns

In [154]:

b2

Out[154]:

|        | paysum2                 | paycount2 | maxpayment2 | CAT2 | citycount2 | federalOkrugsCount2 | paymei |  |
|--------|-------------------------|-----------|-------------|------|------------|---------------------|--------|--|
| 0      | 100                     | 1         | 100         | 3    | 1          | 1                   |        |  |
| 1      | 997                     | 30        | 100         | 2    | 2          | 1                   |        |  |
| 2      | 150                     | 1         | 150         | 3    | 1          | 1                   |        |  |
| 3      | 100                     | 1         | 100         | 3    | 1          | 1                   |        |  |
| 4      | 2234                    | 9         | 1000        | 1    | 1          | 1                   |        |  |
|        |                         |           |             |      |            |                     |        |  |
| 156755 | 9208                    | 44        | 3560        | 1    | 4          | 2                   |        |  |
| 156756 | 850                     | 9         | 150         | 3    | 2          | 2                   |        |  |
| 156757 | 1300                    | 12        | 200         | 3    | 5          | 4                   |        |  |
| 156758 | 510                     | 5         | 110         | 3    | 1          | 1                   |        |  |
| 156759 | 35805                   | 53        | 1500        | 1    | 2          | 2                   |        |  |
| 156760 | 156760 rows × 7 columns |           |             |      |            |                     |        |  |

# In [155]:

```
b1['paysum']=b1['paysum'].astype(int)
```

Выведем основные статистические показатели по датафреймам

# In [156]:

b1.describe()

# Out[156]:

|       | paysum        | paycount     | maxpayment    | CAT          | citycount    | federalOkrug |
|-------|---------------|--------------|---------------|--------------|--------------|--------------|
| count | 6.383700e+04  | 63837.000000 | 63837.000000  | 63837.000000 | 63837.000000 | 63837.       |
| mean  | 4.485407e+03  | 21.158419    | 777.457854    | 2.770776     | 2.845434     | 1.           |
| std   | 2.130068e+04  | 24.824073    | 6098.786561   | 0.606050     | 2.169042     | 0.           |
| min   | -6.450000e+03 | 1.000000     | 2.000000      | 1.000000     | 1.000000     | 1.           |
| 25%   | 4.900000e+02  | 6.000000     | 100.000000    | 3.000000     | 2.000000     | 1.           |
| 50%   | 1.250000e+03  | 14.000000    | 150.000000    | 3.000000     | 2.000000     | 2.           |
| 75%   | 3.110000e+03  | 28.000000    | 300.000000    | 3.000000     | 3.000000     | 2.           |
| max   | 2.474908e+06  | 1278.000000  | 786802.000000 | 3.000000     | 63.000000    | 9.           |
| <     |               |              |               |              |              | >            |

# In [157]:

b2.describe()

# Out[157]:

|       | paysum2       | paycount2     | maxpayment2  | CAT2          | citycount2    | federalOkı |
|-------|---------------|---------------|--------------|---------------|---------------|------------|
| count | 1.567600e+05  | 156760.000000 | 1.567600e+05 | 156760.000000 | 156760.000000 | 156        |
| mean  | 5.635824e+03  | 22.002150     | 7.668550e+02 | 2.692945      | 2.247933      |            |
| std   | 9.156113e+04  | 121.307225    | 7.665428e+03 | 0.604950      | 2.209693      |            |
| min   | -6.652000e+03 | 1.000000      | 0.000000e+00 | 1.000000      | 1.000000      |            |
| 25%   | 5.000000e+02  | 5.000000      | 1.000000e+02 | 3.000000      | 1.000000      |            |
| 50%   | 1.300000e+03  | 13.000000     | 1.500000e+02 | 3.000000      | 2.000000      |            |
| 75%   | 3.037000e+03  | 27.000000     | 3.400000e+02 | 3.000000      | 3.000000      |            |
| max   | 2.202990e+07  | 45383.000000  | 1.363558e+06 | 3.000000      | 624.000000    |            |
| <     |               |               |              |               |               | >          |

# In [158]:

b1.boxplot(figsize=(10, 5), column='paysum')

# Out[158]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f53cede9290>



#### In [159]:

b2.boxplot(figsize=(10, 5), column='paysum2')

# Out[159]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f53cee8afd0>



#### In [160]:

```
b2.boxplot(figsize=(10, 5), column='paycount2')
```

#### Out[160]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f53cc047d50>



Есть выбросы по сумме платежей, по максимальной сумме платежа, по количеству платежей. Присутствуют отрицательные значения суммы платежей за период. Количество городов, в которых платили абоненты тоже с выбросами (63 города за период), у абонентов случайной выборки в 2 раза меньше. Максимальная сумма платежей за период у абонентов случайной выборки достигает 22029895, что в 9 раз больше, чем у абонентов, звонивших клиенту. Средняя Сумма платежей за период у абонентов, звонивших клиенту, меньше на 1200 чем у случайной выборки клиентов. Средний максимальный платеж незначительно выше у абонентов, звонивших клиенту. Присутствует зависимость количества платежей, максимальной суммы платежа между суммой платежей, которая отсутствует у абонентов из случайной выборки. Удалим выбросы, так как возможно допущена ошибка в данных.

#### In [161]:

b1=b1.query('paysum>0 and paysum<200000 and citycount<30 and paycount<80')

#### In [162]:

b2=b2.query('paysum2>0 and paysum2<200000 and citycount2<30 and paycount2<80')

# In [163]:

b1.describe()

# Out[163]:

|       | paysum        | paycount     | maxpayment   | CAT          | citycount    | federalOkrugs |
|-------|---------------|--------------|--------------|--------------|--------------|---------------|
| count | 61924.000000  | 61924.000000 | 61924.000000 | 61924.000000 | 61924.000000 | 61924.0       |
| mean  | 3462.309944   | 18.262919    | 662.667883   | 2.784316     | 2.763242     | 1.7           |
| std   | 9479.040712   | 16.369518    | 2008.027197  | 0.588985     | 1.963756     | 0.€           |
| min   | 2.000000      | 1.000000     | 2.000000     | 1.000000     | 1.000000     | 1.0           |
| 25%   | 460.000000    | 6.000000     | 100.000000   | 3.000000     | 2.000000     | 1.0           |
| 50%   | 1190.000000   | 13.000000    | 150.000000   | 3.000000     | 2.000000     | 2.0           |
| 75%   | 2819.250000   | 26.000000    | 300.000000   | 3.000000     | 3.000000     | 2.0           |
| max   | 194298.000000 | 79.000000    | 80703.000000 | 3.000000     | 29.000000    | 9.0           |

# In [164]:

b2.describe()

# Out[164]:

|       | paysum2       | paycount2     | maxpayment2   | CAT2          | citycount2    | federalOl |
|-------|---------------|---------------|---------------|---------------|---------------|-----------|
| count | 151025.000000 | 151025.000000 | 151025.000000 | 151025.000000 | 151025.000000 | 15        |
| mean  | 3226.884880   | 17.392326     | 624.647085    | 2.706724      | 2.185492      |           |
| std   | 9171.802641   | 16.262292     | 2335.976871   | 0.587429      | 1.386977      |           |
| min   | 1.000000      | 1.000000      | 1.000000      | 1.000000      | 1.000000      |           |
| 25%   | 500.000000    | 5.000000      | 100.000000    | 3.000000      | 1.000000      |           |
| 50%   | 1220.000000   | 12.000000     | 150.000000    | 3.000000      | 2.000000      |           |
| 75%   | 2750.000000   | 25.000000     | 300.000000    | 3.000000      | 3.000000      |           |
| max   | 199650.000000 | 79.000000     | 180925.000000 | 3.000000      | 29.000000     |           |
| <     |               |               |               |               |               | >         |

Построим гистограмму, показывающую кому платили абоненты: 1 – платили один раз в QIWI WALLET, 2 – платили в пользу других провайдеров, 3 – платили в пользу сотовых операторов.

#### In [165]:

b1['CAT'].hist(figsize=(20, 10))

# Out[165]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f53cbfcc550>



# In [166]:

b2['CAT2'].hist(figsize=(20, 10))

# Out[166]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f53cbf53510>



В обеих выборках максимальное количество абонентов платили в пользу операторов, а вот на втором месте случайная выборка платила в пользу случайных провайдеров, а абоненты, звонившие клиенту, платили в qiwi один раз

# In [167]:

b1['citycount'].hist(figsize=(10, 5), bins=110)

# Out[167]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f53cbe71d10>



# In [168]:

b1.boxplot(figsize=(10, 5), column='citycount')

# Out[168]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f53cbd17450>



#### In [169]:

b2['citycount2'].hist(figsize=(10, 5),bins=110)

# Out[169]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f53cbc81550>



Построим гистограмму, отражающую количество федеральных округов из которых платили абоненты.

# In [170]:

b1['federalOkrugsCount'].hist(figsize=(20, 10), bins=40)

# Out[170]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f53cbab9b10>



#### In [171]:

b2['federalOkrugsCount2'].hist(figsize=(20, 10), bins=40)

#### Out[171]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f53cba0c410>



Можно сделать вывод о том, что в большинство абонентов, звонивших клиенту, чаще платят в 2 федеральных округах, а большинство абонентов случайной выборки платят в одном федеральном округе.

#### In [172]:

b1['paymentRegions'].hist(figsize=(20, 10), bins=40)

# Out[172]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f53cb919f10>



#### In [173]:

b2['paymentRegions2'].hist(figsize=(20, 10), bins=40)

# Out[173]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f53cbafef50>



По регионам оплаты значительной разницы между двумя выборками нет.

Провердем корреляционный анализ, чтобы выявить взаимосвязи внутри датафрейма

# In [174]:

b1.corr()

# Out[174]:

|                    | paysum    | paycount  | maxpayment | CAT       | citycount | federalOkrugsCoı |
|--------------------|-----------|-----------|------------|-----------|-----------|------------------|
| paysum             | 1.000000  | 0.360144  | 0.737366   | -0.488195 | 0.168835  | 0.1386           |
| paycount           | 0.360144  | 1.000000  | 0.197151   | -0.202967 | 0.443742  | 0.3412           |
| maxpayment         | 0.737366  | 0.197151  | 1.000000   | -0.503662 | 0.124028  | 0.1144           |
| CAT                | -0.488195 | -0.202967 | -0.503662  | 1.000000  | -0.066155 | -0.0678          |
| citycount          | 0.168835  | 0.443742  | 0.124028   | -0.066155 | 1.000000  | 0.5959           |
| federalOkrugsCount | 0.138609  | 0.341284  | 0.114422   | -0.067891 | 0.595933  | 1.0000           |
| paymentRegions     | -0.050644 | -0.089059 | -0.044794  | -0.019932 | -0.181584 | -0.0796          |
| <                  |           |           |            |           |           | >                |

#### In [175]:

b2.corr()

#### Out[175]:

| federalOkrug | citycount2 | CAT2      | maxpayment2 | paycount2 | paysum2   | . <u> </u>          |
|--------------|------------|-----------|-------------|-----------|-----------|---------------------|
| (            | 0.159287   | -0.346577 | 0.695275    | 0.317469  | 1.000000  | paysum2             |
| (            | 0.398009   | -0.117212 | 0.129987    | 1.000000  | 0.317469  | paycount2           |
| (            | 0.093384   | -0.261197 | 1.000000    | 0.129987  | 0.695275  | maxpayment2         |
| -(           | -0.034029  | 1.000000  | -0.261197   | -0.117212 | -0.346577 | CAT2                |
| (            | 1.000000   | -0.034029 | 0.093384    | 0.398009  | 0.159287  | citycount2          |
| ,            | 0.442151   | -0.070473 | 0.098716    | 0.233364  | 0.148246  | federalOkrugsCount2 |
| -(           | -0.179525  | -0.058648 | -0.076348   | -0.047877 | -0.102825 | paymentRegions2     |

Наблюдается небольшая отрицательная зависимость между тем, кому платили клиенты и суммой платежа за период у абонентов, звонивших клиенту. У случайной выборки эта зависимость меньше. Так же у абонентов, звонивших клиенту, зависимость количества платежей и максимального платежа незначительно выше, чем у абонентов случайной выборки.

#### In [176]:

```
calls=pd.read_csv("/datasets/calls.csv") #прочитаем и разделим на столбцы информацию, с
лившуюся в одну строчку
calls.info() # изучаю общую информацию по дата фрейму
calls.head(100)
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 202607 entries, 0 to 202606 Data columns (total 4 columns): 202607 non-null object call\_date 202607 non-null object
duration 202607 non-null float64
user\_id 202607 non-null int64 dtypes: float64(1), int64(1), object(2) memory usage: 6.2+ MB

#### Out[176]:

|    | id      | call_date  | duration | user_id |
|----|---------|------------|----------|---------|
| 0  | 1000_0  | 2018-07-25 | 0.00     | 1000    |
| 1  | 1000_1  | 2018-08-17 | 0.00     | 1000    |
| 2  | 1000_2  | 2018-06-11 | 2.85     | 1000    |
| 3  | 1000_3  | 2018-09-21 | 13.80    | 1000    |
| 4  | 1000_4  | 2018-12-15 | 5.18     | 1000    |
|    |         |            |          |         |
| 95 | 1000_95 | 2018-10-15 | 9.88     | 1000    |
| 96 | 1000_96 | 2018-07-03 | 9.22     | 1000    |
| 97 | 1000_97 | 2018-10-26 | 0.33     | 1000    |
| 98 | 1000_98 | 2018-11-18 | 7.68     | 1000    |
| 99 | 1000_99 | 2018-07-30 | 14.01    | 1000    |

100 rows × 4 columns

#### In [177]:

```
#округлим значение длительности звонков в большую сторону, изменим тип на целочисленное
значение
calls['duration']=np.ceil(calls['duration'], out=None).astype('int')
calls.head(100)
```

#### Out[177]:

|    | id      | call_date  | duration | user_id |
|----|---------|------------|----------|---------|
| 0  | 1000_0  | 2018-07-25 | 0        | 1000    |
| 1  | 1000_1  | 2018-08-17 | 0        | 1000    |
| 2  | 1000_2  | 2018-06-11 | 3        | 1000    |
| 3  | 1000_3  | 2018-09-21 | 14       | 1000    |
| 4  | 1000_4  | 2018-12-15 | 6        | 1000    |
|    |         |            |          |         |
| 95 | 1000_95 | 2018-10-15 | 10       | 1000    |
| 96 | 1000_96 | 2018-07-03 | 10       | 1000    |
| 97 | 1000_97 | 2018-10-26 | 1        | 1000    |
| 98 | 1000_98 | 2018-11-18 | 8        | 1000    |
| 99 | 1000_99 | 2018-07-30 | 15       | 1000    |

100 rows × 4 columns

#### In [178]:

```
#избавимся от звонков длительностью 0.0 секунд, так как скорее всего это недозвоны
calls=calls.query('duration>0')
calls.head(20)
calls.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 162994 entries, 2 to 202606
Data columns (total 4 columns):
id
            162994 non-null object
call_date
            162994 non-null object
duration
            162994 non-null int64
user id
            162994 non-null int64
dtypes: int64(2), object(2)
memory usage: 6.2+ MB
```

Удалила все недозвоны, сократили таблицу на 25%.

#### In [179]:

```
#меняю тип данных в столбце с датой звонка
calls['call_date']=pd.to_datetime(calls['call_date'])
```

#### In [180]:

```
#добавляю отдельный столбец с месяцем звонка
calls['month']=calls['call_date'].dt.month
```

#### In [181]:

```
#создаю сводную таблицу п опользователю и месяцу звонка
calls_pivot=calls.pivot_table(index=('user_id', 'month'), values='duration', aggfunc='su
m')
calls_pivot
data_calls = calls_pivot.reset_index() #создаю из сводной таблицы датафрейм
data_calls.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3168 entries, 0 to 3167
Data columns (total 3 columns):
user_id
           3168 non-null int64
month
           3168 non-null int64
duration
          3168 non-null int64
```

dtypes: int64(3) memory usage: 74.4 KB

#### In [182]:

data\_calls

#### Out[182]:

|      | user_id | month | duration |
|------|---------|-------|----------|
| 0    | 1000    | 5     | 159      |
| 1    | 1000    | 6     | 172      |
| 2    | 1000    | 7     | 340      |
| 3    | 1000    | 8     | 408      |
| 4    | 1000    | 9     | 466      |
|      |         |       |          |
| 3163 | 1498    | 10    | 247      |
| 3164 | 1499    | 9     | 70       |
| 3165 | 1499    | 10    | 449      |
| 3166 | 1499    | 11    | 612      |
| 3167 | 1499    | 12    | 492      |
|      |         |       |          |

3168 rows × 3 columns

#### In [183]:

```
internet=pd.read_csv("/datasets/internet.csv") #прочитаем файл по интернету
internet.info() # изучаю общую информацию по датафрейму
internet.head(100)
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 149396 entries, 0 to 149395 Data columns (total 5 columns): Unnamed: 0 149396 non-null int64 id 149396 non-null object 149396 non-null float64 mb\_used session\_date 149396 non-null object 149396 non-null int64 user id dtypes: float64(1), int64(2), object(2) memory usage: 5.7+ MB

#### Out[183]:

|    | Unnamed: 0 | id      | mb_used | session_date | user_id |
|----|------------|---------|---------|--------------|---------|
| 0  | 0          | 1000_0  | 112.95  | 2018-11-25   | 1000    |
| 1  | 1          | 1000_1  | 1052.81 | 2018-09-07   | 1000    |
| 2  | 2          | 1000_2  | 1197.26 | 2018-06-25   | 1000    |
| 3  | 3          | 1000_3  | 550.27  | 2018-08-22   | 1000    |
| 4  | 4          | 1000_4  | 302.56  | 2018-09-24   | 1000    |
|    |            |         |         |              |         |
| 95 | 95         | 1000_95 | 250.35  | 2018-06-29   | 1000    |
| 96 | 96         | 1000_96 | 544.22  | 2018-05-28   | 1000    |
| 97 | 97         | 1000_97 | 568.45  | 2018-10-14   | 1000    |
| 98 | 98         | 1000_98 | 775.25  | 2018-07-13   | 1000    |
| 99 | 99         | 1000_99 | 318.88  | 2018-07-27   | 1000    |

100 rows × 5 columns

#### In [184]:

```
#меняю тип данных в столбце с датой сессии в интернете
internet['session_date']=pd.to_datetime(internet['session_date'])
```

#### In [185]:

```
#добавляю отдельный столбец с месяцем сессии в интернете
internet['month']=internet['session_date'].dt.month
```

# In [186]:

```
#создаю сводную таблицу п опользователю и месяцу звонка
internet_pivot=internet.pivot_table(index=('user_id','month'), values='mb_used', aggfun
c='sum')
internet_pivot
```

# Out[186]:

#### mb\_used

| user_id | month |          |
|---------|-------|----------|
|         | 5     | 2253.49  |
|         | 6     | 23233.77 |
| 1000    | 7     | 14003.64 |
|         | 8     | 14055.93 |
|         | 9     | 14568.91 |
|         |       |          |
| 1498    | 10    | 20579.36 |
|         | 9     | 1845.75  |
| 4.400   | 10    | 17788.51 |
| 1499    | 11    | 17963.31 |
|         | 12    | 13055.58 |

3203 rows × 1 columns

#### In [187]:

```
data internet = internet pivot.reset index() #создаю из сводной таблицы датафрейм
data_internet
```

#### Out[187]:

|      | user_id | month | mb_used  |
|------|---------|-------|----------|
| 0    | 1000    | 5     | 2253.49  |
| 1    | 1000    | 6     | 23233.77 |
| 2    | 1000    | 7     | 14003.64 |
| 3    | 1000    | 8     | 14055.93 |
| 4    | 1000    | 9     | 14568.91 |
|      |         |       |          |
| 3198 | 1498    | 10    | 20579.36 |
| 3199 | 1499    | 9     | 1845.75  |
| 3200 | 1499    | 10    | 17788.51 |
| 3201 | 1499    | 11    | 17963.31 |
| 3202 | 1499    | 12    | 13055.58 |

3203 rows × 3 columns

#### In [188]:

```
#Превратим Мb в Gb
data_internet['mb_used']=data_internet['mb_used']/1024
```

#### In [189]:

```
#переименуем столбец и переименуем столбец в Gb
data_internet.columns=['user_id','month','gb_used']
```

#### In [190]:

```
#округлим значение Gb в большую сторону, изменим тип на целочисленное значение
data_internet['gb_used']=np.ceil(data_internet['gb_used'], out=None).astype('int')
data_internet.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3203 entries, 0 to 3202
Data columns (total 3 columns):
user id
          3203 non-null int64
           3203 non-null int64
month
          3203 non-null int64
gb_used
dtypes: int64(3)
memory usage: 75.2 KB
```

#### In [191]:

```
messages=pd.read_csv("/datasets/messages.csv") #прочитаем информацию
messages.info() # изучаю общую информацию по датафрейму
messages.head(10)
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 123036 entries, 0 to 123035
Data columns (total 3 columns):
id
               123036 non-null object
message_date 123036 non-null object
               123036 non-null int64
user_id
dtypes: int64(1), object(2)
```

# Out[191]:

memory usage: 2.8+ MB

|   | id     | message_date | user_id |
|---|--------|--------------|---------|
| 0 | 1000_0 | 2018-06-27   | 1000    |
| 1 | 1000_1 | 2018-10-08   | 1000    |
| 2 | 1000_2 | 2018-08-04   | 1000    |

3 1000\_3 2018-06-16 1000 4 1000\_4 2018-12-05 1000

5 1000\_5 1000\_6 2018-11-19 1000

2018-06-20

1000

1000\_7 2018-10-29 1000 2018-06-25 1000

1000 8 1000 9 2018-12-18 1000

# In [192]:

```
#меняю тип данных в стольце с датой сообщения
messages['message_date']=pd.to_datetime(messages['message_date'])
```

# In [193]:

```
#добавляю отдельный столбец с месяцем сообщения
messages['month']=messages['message_date'].dt.month
```

#### In [194]:

```
#создаю сводную таблицу по пользователю и месяцу сообщения
messages_pivot=messages.pivot_table(index=('user_id', 'month'), values=("id"), aggfunc=
'count')
messages pivot
messages_pivot.columns=['messages_used'] #меняю заглавие столбца
data_messages = messages_pivot.reset_index() #создаю из сводной таблицы датафрейм
data_messages.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 2717 entries, 0 to 2716 Data columns (total 3 columns): 2717 non-null int64 user id month 2717 non-null int64 2717 non-null int64 messages\_used dtypes: int64(3)

memory usage: 63.8 KB

#### In [195]:

```
tariffs=pd.read_csv("/datasets/tariffs.csv") #прочитаем и разделим на столбцы информаци
ю, слившуюся в одну строчку
tariffs.info() # изучаю общую информацию по дата фрейму
tariffs.head(10)
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2 entries, 0 to 1
Data columns (total 8 columns):
messages_included
                       2 non-null int64
mb_per_month_included 2 non-null int64
minutes_included
                        2 non-null int64
rub_monthly_fee
                       2 non-null int64
                       2 non-null int64
rub_per_gb
rub_per_message
                       2 non-null int64
                      2 non-null int64
2 non-null int64
rub_per_minute
tariff_name
                         2 non-null object
dtypes: int64(7), object(1)
memory usage: 256.0+ bytes
```

#### Out[195]:

|   | messages_included | mb_per_month_included | minutes_included | rub_monthly_fee | rub_per_ |
|---|-------------------|-----------------------|------------------|-----------------|----------|
| 0 | 50                | 15360                 | 500              | 550             | 2        |
| 1 | 1000              | 30720                 | 3000             | 1950            | 1        |
| < |                   |                       |                  |                 | >        |

#### In [196]:

```
#изменим значения Мб на Гб в столбце тарифов
tariffs['mb per month included']=tariffs['mb per month included']/1024
```

#### In [197]:

tariffs

#### Out[197]:

|   | messages_included | mb_per_month_included | minutes_included | rub_monthly_fee | rub_per_ |
|---|-------------------|-----------------------|------------------|-----------------|----------|
| 0 | 50                | 15.0                  | 500              | 550             | 2        |
| 1 | 1000              | 30.0                  | 3000             | 1950            | 1        |
|   |                   |                       |                  |                 |          |
| < |                   |                       |                  |                 | >        |

#### In [198]:

#изменим название столбца  $tariff\_name$  и  $mg\_per\_month\_included$ , чтобы дальше объединить таблицу по тарифу tariffs.columns=['messages\_included','gb\_per\_month\_included','minutes\_included','rub\_mo nthly\_fee','rub\_per\_gb','rub\_per\_message','rub\_per\_minute','tariff']

# In [199]:

```
# изменим тип на целочисленное значение
tariffs['gb_per_month_included']=tariffs['gb_per_month_included'].astype('int')
```

# In [200]:

tariffs

#### Out[200]:

|   | messages_included | gb_per_month_included | minutes_included | rub_monthly_fee | rub_per_ |
|---|-------------------|-----------------------|------------------|-----------------|----------|
| 0 | 50                | 15                    | 500              | 550             | 2        |
| 1 | 1000              | 30                    | 3000             | 1950            | 1        |
| < |                   |                       |                  |                 | >        |

#### In [201]:

```
users=pd.read_csv("/datasets/users.csv") #прочитаем файл с информацией о пользователях
users.info() # изучаю общую информацию по дата фрейму
users.head(10)
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 500 entries, 0 to 499 Data columns (total 8 columns): user\_id 500 non-null int64 500 non-null int64 age churn\_date 38 non-null object city 500 non-null object first\_name 500 non-null object last\_name 500 non-null object reg\_date 500 non-null object tariff 500 non-null object tariff 500 non-null object dtypes: int64(2), object(6) memory usage: 31.4+ KB

# Out[201]:

|   | user_id | age | churn_date | city             | first_name | last_name | reg_date   | tariff |
|---|---------|-----|------------|------------------|------------|-----------|------------|--------|
| 0 | 1000    | 52  | NaN        | Краснодар        | Рафаил     | Верещагин | 2018-05-25 | ultra  |
| 1 | 1001    | 41  | NaN        | Москва           | Иван       | Ежов      | 2018-11-01 | smart  |
| 2 | 1002    | 59  | NaN        | Стерлитамак      | Евгений    | Абрамович | 2018-06-17 | smart  |
| 3 | 1003    | 23  | NaN        | Москва           | Белла      | Белякова  | 2018-08-17 | ultra  |
| 4 | 1004    | 68  | NaN        | Новокузнецк      | Татьяна    | Авдеенко  | 2018-05-14 | ultra  |
| 5 | 1005    | 67  | NaN        | Набережные Челны | Афанасий   | Горлов    | 2018-01-25 | smart  |
| 6 | 1006    | 21  | NaN        | Ульяновск        | Леонид     | Ермолаев  | 2018-02-26 | smart  |
| 7 | 1007    | 65  | NaN        | Москва           | Юна        | Березина  | 2018-04-19 | smart  |
| 8 | 1008    | 63  | NaN        | Челябинск        | Рустэм     | Пономарёв | 2018-12-19 | smart  |
| 9 | 1009    | 24  | NaN        | Пермь            | Василиса   | Блинова   | 2018-03-22 | smart  |

#### In [202]:

```
#удалим ненужные столбцы с именем пользователей, дата подключения тарифа тоже не будет
нами использоваться
users.drop(['churn_date','first_name', 'last_name'], axis='columns', inplace=True)
```

#### In [203]:

```
#объединим датафреймы по столбцу user id
data1= [users, data_calls, data_internet, data_messages]
data_final = reduce(lambda left,right: pd.merge(left,right,how="outer"), data1)
data final.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3222 entries, 0 to 3221
```

Data columns (total 9 columns): user id 3222 non-null int64 age 3176 non-null float64 city 3176 non-null object reg date 3176 non-null object tariff 3176 non-null object month 3214 non-null float64 3168 non-null float64 duration gb\_used 3203 non-null float64 messages\_used 2717 non-null float64 dtypes: float64(5), int64(1), object(3) memory usage: 251.7+ KB

#### In [204]:

#объединим таблицу со срезом с таблицей тарифов, чтобы было проще посчитать переплату data2=[data final,tariffs] #data final\_tariffs=reduce(lambda left,right: pd.merge(left,right,on='tariff'), data2) data\_final\_tariffs=reduce(lambda left,right: pd.merge(left,right,how="outer"),data2) data\_final\_tariffs.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3222 entries, 0 to 3221
Data columns (total 16 columns):
user id
                         3222 non-null int64
```

3176 non-null float64 age city 3176 non-null object reg\_date 3176 non-null object tariff 3176 non-null object month 3214 non-null float64 duration 3168 non-null float64 gb used 3203 non-null float64 2717 non-null float64 messages\_used messages\_included 3176 non-null float64 gb\_per\_month\_included 3176 non-null float64 minutes included 3176 non-null float64 3176 non-null float64 rub\_monthly\_fee 3176 non-null float64 rub\_per\_gb 3176 non-null float64 rub\_per\_message 3176 non-null float64 rub\_per\_minute dtypes: float64(12), int64(1), object(3)

memory usage: 427.9+ KB

#### In [205]:

```
print("Количество пропусков:") #считаю все пропуски
print(data_final_tariffs.isnull().sum())
```

Количество пропусков: 0 user\_id 46 age city 46 46 reg\_date tariff 46 month 8 duration 54 gb used 19 messages\_used 505 messages\_included 46 46 gb\_per\_month\_included minutes\_included 46 46 rub\_monthly\_fee rub\_per\_gb 46

46

46

# In [206]:

rub\_per\_message rub\_per\_minute

dtype: int64

```
#заменяем NAN в столбцах duration,qb used, messages used на медианное значение этого ст
duration_median=data_final_tariffs['duration'].median() # нашла медиану звонков
data_final_tariffs['duration'].fillna(duration_median, inplace=True)
gb_used_median=data_final_tariffs['gb_used'].median() # нашла медиану Гб
data_final_tariffs['gb_used'].fillna(gb_used_median, inplace=True)
messages used median=data final tariffs['messages used'].median() # нашла медиану сообщ
ений
data_final_tariffs['messages_used'].fillna(messages_used_median, inplace=True)
```

#### In [207]:

```
#parameters of df= ['duration', 'qb used', 'messages used']
#for z in parameters of df:
    data_final['z']=data_final['z'].astype('int')
data final tariffs['messages used']=data final tariffs['messages used'].astype('int')
data final tariffs['gb used']=data final tariffs['gb used'].astype("int")
data final tariffs['duration']=data final tariffs['duration'].astype("int")
```

#### In [208]:

```
#добавила функцию, которая будет перебирать значения длительности звонков и сравнивать
их с лимитом по тарифу
def calls_revenue(row):
    try:
        duration = row['duration']
        minutes_of_tariff = row['minutes_included']
        rub_per_minute=row['rub_per_minute']
        count=(duration-minutes_of_tariff)*rub_per_minute
        if duration> minutes_of_tariff:
            return count
        return 0
    except:
        print('')
data_final_tariffs['calls_revenue'] = data_final_tariffs.apply(calls_revenue, axis=1)
```

#### In [209]:

```
#добавила функцию, которая будет перебирать значения количества смс и сравнивать их с л
имитом по тарифу
#и вычислять доплату за превышение тарифа
def messages revenue(row):
    try:
        messages_used = row['messages_used']
        messages_included = row['messages_included']
        rub_per_message=row['rub_per_message']
        count=(messages_used-messages_included)*rub_per_message
        if messages used> messages included:
            return count
        return 0
    except:
        print('')
data_final_tariffs['messages_revenue'] = data_final_tariffs.apply(messages_revenue, axi
s=1)
```

#### In [210]:

```
#добавила функцию, которая будет перебирать значения МБ интернета и сравнивать их с лим
итом по тарифу
#и вычислять доплату за превышение тарифа
def internet_revenue(row):
    try:
        gb_used = row['gb_used']
        gb per month included = row['gb per month included']
        rub_per_gb=row['rub_per_gb']
        count=(gb used-gb per month included)*rub per gb
        if gb_used> gb_per_month_included:
            return count
        return 0
    except:
        print('')
data final tariffs['internet revenue'] = data final tariffs.apply(internet revenue, axi
s=1)
```

#### In [211]:

```
#посчитаем помесячную выручку с каждого пользователя
data_final_tariffs['revenue_total']=data_final_tariffs['internet_revenue']+data_final_t
ariffs['calls_revenue']+data_final_tariffs['messages_revenue']+data_final_tariffs['rub_
monthly fee']
data_final_tariffs.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3222 entries, 0 to 3221
Data columns (total 20 columns):
user_id
                        3222 non-null int64
                        3176 non-null float64
age
                        3176 non-null object
city
reg_date
                        3176 non-null object
tariff
                        3176 non-null object
                        3214 non-null float64
month
duration
                       3222 non-null int64
                       3222 non-null int64
gb_used
messages_used
                        3222 non-null int64
messages_included 3176 non-null float64
gb_per_month_included 3176 non-null float64
                        3176 non-null float64
minutes_included
                        3176 non-null float64
rub_monthly_fee
rub_per_gb
                        3176 non-null float64
rub_per_message
                        3176 non-null float64
                        3176 non-null float64
rub_per_minute
calls_revenue
                        3222 non-null float64
messages_revenue
                        3222 non-null float64
internet_revenue
                        3222 non-null float64
                        3176 non-null float64
revenue_total
dtypes: float64(13), int64(4), object(3)
memory usage: 528.6+ KB
```

#### In [212]:

```
#удалим пустые строки в столбие общий доход
data_final_tariffs.dropna(subset=['revenue_total'], inplace=True)
```

#### In [213]:

data\_final\_tariffs

#### Out[213]:

|      | user_id | age  | city        | reg_date       | tariff | month | duration | gb_used | messages_use |
|------|---------|------|-------------|----------------|--------|-------|----------|---------|--------------|
| 0    | 1000    | 52.0 | Краснодар   | 2018-05-<br>25 | ultra  | 5.0   | 159      | 3       | 2            |
| 1    | 1000    | 52.0 | Краснодар   | 2018-05-<br>25 | ultra  | 6.0   | 172      | 23      | 6            |
| 2    | 1000    | 52.0 | Краснодар   | 2018-05-<br>25 | ultra  | 7.0   | 340      | 14      | 7            |
| 3    | 1000    | 52.0 | Краснодар   | 2018-05-<br>25 | ultra  | 8.0   | 408      | 14      | 8            |
| 4    | 1000    | 52.0 | Краснодар   | 2018-05-<br>25 | ultra  | 9.0   | 466      | 15      | 5            |
|      |         |      |             |                |        |       |          |         |              |
| 3171 | 1498    | 68.0 | Владикавказ | 2018-07-<br>19 | smart  | 10.0  | 247      | 21      | 4            |
| 3172 | 1499    | 35.0 | Пермь       | 2018-09-<br>27 | smart  | 9.0   | 70       | 2       | 1            |
| 3173 | 1499    | 35.0 | Пермь       | 2018-09-<br>27 | smart  | 10.0  | 449      | 18      | 4            |
| 3174 | 1499    | 35.0 | Пермь       | 2018-09-<br>27 | smart  | 11.0  | 612      | 18      | 5            |
| 3175 | 1499    | 35.0 | Пермь       | 2018-09-<br>27 | smart  | 12.0  | 492      | 13      | 6            |

3176 rows × 20 columns

# Шаг 3. Проанализируем данные

### In [214]:

```
#tariff_month_mean_pivot=data_final_tariffs.pivot_table(index=('tariff', 'month'), value
s=('duration', 'messages_used','gb_used'))
#tariff month mean pivot
#построим сводную таблицу, чтобы посмотреть, сколько в среднем минут разговора,
#сколько сообщений и какой объём интернет-трафика требуется пользователям каждого тариф
а в месяц
#tariff_month_mean_pivot=tariff_month_mean_pivot.reset_index()
```

#### In [215]:

```
#для удобства анализа разделим по тарифу на 2 среза
smart=data_final_tariffs.query('tariff=="smart"')
print("Общий доход от клиентов Смарт", smart["revenue_total"].sum())
print("Количество пользователей тарифа Смарт",len(smart))
print("Средняя выручка тарифа Смарт", smart["revenue_total"].sum()/len(smart))
ultra=data_final_tariffs.query('tariff=="ultra"')
print("Общий доход от клиентов Ультра", ultra["revenue_total"].sum())
print("Количество пользователей тарифа Ультра",len(ultra))
print("Средняя выручка тарифа Ультра", ultra["revenue_total"].sum()/len(ultra))
```

Общий доход от клиентов Смарт 2869851.0 Количество пользователей тарифа Смарт 2223 Средняя выручка тарифа Смарт 1290.9811066126856 Общий доход от клиентов Ультра 1973400.0 Количество пользователей тарифа Ультра 953 Средняя выручка тарифа Ультра 2070.7240293809023

#### In [216]:

```
#строю гистограммы в цикле для использованных минут, смс, гб для 2х срезов на одном гра
фике
parameters=['duration', 'messages_used','gb_used']
for i in parameters:
    print("График для параметра", i)
    ax = smart.plot(kind='hist', y=i, histtype='step', range=(0, 1000), bins=50, linewi
dth=5, alpha=0.7, label='smart')
    ultra.plot(kind='hist', y=i, histtype='step', range=(0, 1000), bins=50, linewidth=5
, alpha=0.7, label='ultra', ax=ax, grid=True, legend=True)
    plt.xlabel(i,fontsize=14)
    plt.ylabel('Количество пользователей', fontsize=14)
    plt.show()
    print("Данные для тарифа Смарт")
    print(smart[i].describe())#применяю метод describe() там же
    standard_deviation = np.std(smart[i], ddof=1)
    print ("Стандартное отклонение равно", standard_deviation)
    variance=np.var(smart[i], ddof=1)
    print("Дисперсия равна", variance)
    print()
    print("Данные для тарифа Ультра")
    print(ultra[i].describe())
    standard deviation = np.std(ultra[i], ddof=1)
    print ("Стандартное отклонение равно", standard_deviation)
    variance=np.var(ultra[i], ddof=1)
    print("Дисперсия равна", variance)
    print()
```

### График для параметра duration



Данные для тарифа Смарт count 2223.000000 mean 419.465137 std 188.909137 2.000000 min 25% 285.000000 50% 423.000000 75% 545.500000 1435.000000 max

Name: duration, dtype: float64

Стандартное отклонение равно 188.90913698882778

Дисперсия равна 35686.6620378637

Данные для тарифа Ультра count 953.000000 547.120672 mean std 304.653473 min 1.000000 25% 311.000000 50% 526.000000 75% 756.000000 1673.000000 max

Name: duration, dtype: float64

Стандартное отклонение равно 304.65347293989356

Дисперсия равна 92813.73857433845

График для параметра messages\_used



Данные для тарифа Смарт count 2223.000000 38.644175 mean std 24.895493 min 1.000000 20.000000 25% 50% 38.000000 75% 51.000000 143.000000 max

Name: messages\_used, dtype: float64

Стандартное отклонение равно 24.895493015491255

Дисперсия равна 619.7855724843739

# Данные для тарифа Ультра

count 953.000000 56.187828 mean std 40.704889 min 1.000000 25% 31.000000 50% 38.000000 75% 78.000000 224.000000 max

Name: messages used, dtype: float64

Стандартное отклонение равно 40.70488917740895

Дисперсия равна 1656.8880029451445

График для параметра gb\_used



```
Данные для тарифа Смарт
count
         2223.000000
           16.339631
mean
            5.739569
std
            0.000000
min
25%
           13.000000
50%
           17.000000
75%
           20.000000
           38.000000
max
```

Name: gb\_used, dtype: float64

Стандартное отклонение равно 5.7395691989334505

Дисперсия равна 32.94265458934557

Данные для тарифа Ультра 953.000000 count 19.660021 mean std 9.658988 0.000000 min 25% 12.000000 50% 19.000000 75% 27.000000 49.000000 max

Name: gb\_used, dtype: float64

Стандартное отклонение равно 9.658988433712109

Дисперсия равна 93.29605756258431

# Вывод:

Для удобства восприятия данных гистограммы были построены на одном графике.

Для параметра минуты разговора средним значением для Смарт является 419 минут, что на 30% меньше, чем среднее значение у тарифа Ультра - 547 минут. Стандартное отклонение по тарифу Смарт равно 188.90913698882778, Дисперсия равна 35686.6620378637. По тарифу Ультра Стандартное отклонение равно 304.65347293989356, Дисперсия равна 92813.73857433845. Данные обоих тарифов распределены нормально. Так как количество пользователей тарифа Смарт 2223 человек, что в 2,3 раза больше, чем количество пользователей тарифа Ультра 953 человек, купол гистограммы тарифа Смарт значительно выше, чем у тарифа Ультра.



Для параметра количество сообщений для тарифа Смарт средним значением является 38 сообщений, у Тарифа Ультра 56 сообщений, что больше на 47%. Стандартное отклонение равно 24.895493015491255 и Дисперсия равна 619.7855724843739 у тарифа Смарт. Стандартное отклонение равно 40.70488917740895 и Дисперсия равна 1656.8880029451445 у Тарифа Ультра. Гистограмма для параметра количество сообщенийимеет распределение с дополнительными значениями справа, отображает частоту значений в скошенном вправо наборе данных. Его также называют датасетом с положительной скошенностью, ведь дополнительные значения находятся со стороны положительного направления оси.



Для параметра объем трафика для тарифа Смарт среднее значение 16 Гб, для тарифа Ультра 19 Гб. Для тарифа Смарт стандартное отклонение равно 5.7395691989334505, дисперсия равна 32.94265458934557. Для тарифа Ультра стандартное отклонение равно 9.658988433712109, дисперсия равна 93.29605756258431. Распределение гистограммы нормальное.



# Шаг 4. Проверим гипотезы

#### In [217]:

```
#НО Размер средней выручки пользователей тарифов «Ультра» равен размеру средней выручки
пользователей тарифов «Смарт»
#Н1 Средняя выручка пользователей тарифов «Ультра» и «Смарт» различается
smart revenue_mean = smart['revenue_total']
ultra_revenue_mean= ultra['revenue_total']
alpha = .05 # критический уровень статистической значимости
results = st.ttest ind(
    smart revenue mean,
    ultra revenue mean)
print('p-значение: ', results.pvalue)
if (results.pvalue < alpha): #сравним получившееся р-значение с заданным уровнем статис
тической значимости)
    print("Отвергаем нулевую гипотезу")
else:
    print("Не получилось отвергнуть нулевую гипотезу")
```

р-значение: 1.243578945624517e-155 Отвергаем нулевую гипотезу

Вывод: Средняя выручка пользователей тарифов «Ультра» и «Смарт» различается.

За нулевую гипотезу принимаем положительное предположение о том, что размер средней выручки пользователей тарифов «Ультра» равен размеру средней выручки пользователей тарифов «Смарт». За альтернативную гипотезу берем: Средняя выручка пользователей тарифов «Ультра» и «Смарт» различается. Для проверки использовали сравнение р-значения с заданным уровнем статистической значимости. За уровень значимости используется значение 0.05, такую вероятность ошибки считаем допустимой.

#### In [218]:

```
#НО Средняя выручка пользователей из Москвы равна выручке пользователей из других регио
HOB
#Н1 средняя выручка пользователей из Москвы отличается от выручки пользователей из друг
их регионов
moscow = data_final_tariffs.query('city=="MockBa"')
regions=data final tariffs.query('city!="MockBa"')
moscow_revenue_mean=moscow['revenue_total']
regions_revenue_mean= regions['revenue_total']
alpha = .05 # критический уровень статистической значимости
results = st.ttest ind(
   moscow_revenue_mean,
    regions revenue mean)
print('p-значение: ', results.pvalue)
if (results.pvalue < alpha): #сравним получившееся р-значение с заданным уровнем статис
тической значимости)
    print("Отвергаем нулевую гипотезу")
else:
    print("Не получилось отвергнуть нулевую гипотезу")
```

р-значение: 0.4687688284421999 Не получилось отвергнуть нулевую гипотезу

Вывод: Средняя выручка пользователей из Москвы равна выручке пользователей из других регионов

За нулевую гипотезу принимаем положительное предположение о том, что Средняя выручка пользователей из Москвы равна выручке пользователей из других регионов. За альтернативную гипотезу берем: средняя выручка пользователей из Москвы отличается от выручки пользователей из других регионов. Для проверки использовали сравнение р-значения с заданным уровнем статистической значимости. За уровень значимости используется значение 0.05, такую вероятность ошибки считаем допустимой.

# Общий вывод

В данном проекте нашей задачей было понять, какой тариф приносит «Мегалайну» больше денег, для того чтобы скорретировать рекламный бюджет. Были проанализированы данные 500 пользователей «Мегалайна»: кто они, откуда, каким тарифом пользуются, сколько звонков и сообщений каждый отправил за 2018 год. Общий доход от клиентов Смарт 2869851.0, что на 45% больше, чем общий доход от клиентов Ультра 1973400.0. В основном это из-за того, что пользователей Смарта в 2,33 раза больше, но так же проанализировав среднюю выручку пользователей разных тарифов, можно сделать вывод о том, что пользователи ультра редко превышают лимит своего тарифа. Средняя выручка тарифа Смарт превышает стоимость тарифа в 2 раза, что говорит о том, что пользователям не хватает лимитов по тарифу, но тем не менее они предпочитают оставаться на тарифе Смарт и доплачивать разницу за перерасход минут, смс и гб.