

Packaged Gas/Electric Rooftop Units

Precedent[™] YSC060-120 50 Hz

Introduction

Precedent™ ...The same Trane quality... with added flexibility. Precedent is a flexible line of packaged units that covers a wide variety of applications.

Reliatel™ microprocessor controls provide superior flexibility for the simplest to the most sophisticated applications. In addition to controls, Precedent offers many other outstanding features and option choices.

With its sleek compact cabinet, rounded corners and beveled top, it may just be the most aesthetically pleasing packaged unit on the planet. And, of course, Precedent carries the Trane reputation for excellence, quality, and reliability. It's hard to stop a Trane.

From simple applications, to the most complex, Precedent has the solution.

Contents

Introduction
Features and Benefits
Application Considerations
Selection Procedure
Model Number Description
General Data
Performance Data
Zone Controls
Electrical Data
Jobsite Connection
Dimensional Data
Weights
Mechanical Specifications

Unit Cabinet

The compact cabinet with rounded corners takes up less room and is less costly to ship. The beveled and ribbed top is not only aesthetically pleasing, it is designed to prevent water from pooling.

Single Point Power

A single electrical connection powers the unit.

Compressors

Precedent[™] contains the best compressor technology available to achieve the highest possible performance. Our compressor line includes Trane built Climatuff[™] reciprocating and scrolls.

Easy Access Panels

Easy access panels reduce the number of possible water entry points.

Low Ambient Cooling

All Precedent units have cooling capabilities down to -18°C (0°F) as standard.

Easy Access Panels

Remove two screws for access to the standardized internal components and wiring.

Easy-Adjust Idler Arm

With the Easy-Adjust Idler Arm, the belt and sheaves can be quickly adjusted without moving the mounted fan motor. The result is a major savings in time and money.

Colored And Numbered Wiring

You save time and money tracing wires and diagnosing the unit.

Convertible Units

- The units ship in a downflow configuration. They can be easily converted to horizontal by simply moving two panels.
- Units come complete with horizontal duct flanges so the contractor doesn't have to field fabricate them. These duct flanges are a time and cost saver.

Unit Base

For added water integrity, Precedent has a raised 29 mm (11/8") lip around the unit's downflow supply and return to prevent water from blowing into the ductwork.

Patented Condenser Coil

Precedent boasts a patented 1+1+1 Hybrid coil, permanently gapped for easy cleaning.

Sloped Drain Pans

Every Precedent unit has a noncorrosive, removable, double-sloped drain pan that's easy to clean and reversible to allow installation of drain trap on either side of the unit.

Through the Base Condensate

Every unit includes provisions for through the base condensate drain connections. This allows the drain to be connected through the roof curb instead of a roof penetration.

Foil-Faced Insulation

All panels in the Evaporator section of the unit have cleanable foil-faced insulation. All edges are either captured or sealed to ensure no fibers get into the airstream.

Standardized Components

 Components are placed in the same location on all Precedent[™] units.
 Familiarize yourself with one Precedent and you are familiar with every Precedent.

Easy Access Low Voltage Terminal Board

Precedent's Low Voltage Terminal Board is external to the electrical control cabinet. It is extremely easy to test operation of all unit functions. This is another cost and time saving installation feature.

Low Voltage Connections

The wiring of the low voltage connections to the unit and the zone sensors is as simple as 1-1, 2-2, and 3-3. This simplified system makes it easy for the installer to wire.

Single-Side Service

Single-side service is standard on all Precedent units.

Progressive Tubular Heat Exchanger

The compact cabinet features a tubular heat exchanger in low, medium and high heat capacities.

The heat exchanger is fabricated using stainless steel burners and corrosion-resistant aluminized steel tubes as standard on all models. It has an induced draft blower to pull the gas mixture through the burner tubes. The heater has a direct spark ignition system which doubles as a safety device to prove the flame.

Flexible Applications

- Only two roof curbs for the 5-10 ton Precedent line. . .simplifies curb selection.
- ReliaTel microprocessor controls to meet either the simple or the more complex application.
- Low or high gas heat capacities.
- Airflow is outstanding. The Precedent can replace an older machine with old ductwork and, in many cases, improve comfort through better air distribution.
- Belt drive —standard or oversized supply fan motors meet a wide airflow range.
- Precedent offers ultimate flexibility.
 Options and components are not prepackaged at the factory. Units are built to order in our standard "shortest in the industry"ship cycle time.

Micro Controls

Several years ago, Trane was the first to introduce microprocessor controls into the Light Commercial Market. That design, along with immeasurable experience, has provided the technology for Trane's second-generation ReliaTel™ microprocessor controls.

ReliaTel Micro:

- Provides unit control for heating, cooling, and ventilating by utilizing input from sensors that measure outdoor and indoor temperature.
- Improves quality and reliability through the use of time-tested microprocessor controls and logic.
- Prevents the unit from short cycling, considerably improving compressor life.
- Ensures that the compressor will run for a specific amount of time, which allows oil to return for better lubrication, enhancing the reliability of the compressor.
- Reduces the number of components required to operate the unit, thereby reducing possibilities for component failure.

- Eliminates the need for field-installed components with its built-in anti-shortcycle timer, time delay relay and minimum "on" time controls. These controls are factory tested to assure proper operation.
- Requires no special tools to run the Precedent unit through its paces during testing. Simply place a jumper between Test 1 and Test 2 terminals on the Low Voltage Terminal Board and the unit will walk through its operational steps. The unit automatically returns control to the zone sensor after stepping through the test mode a single time, even if the jumper is left on the unit.
- As long as the unit has power and the LED is lit, the Micro is operational. The light indicates that the Micro is functioning properly.
- Features expanded diagnostic capabilities when used with Trane's Integrated Comfort[™] Systems.
- As an energy benefit, softens electrical "spikes" by staging on fans, compressors and heaters.
- The Intelligent Fallback or Adaptive Control is a benefit to the building occupant. If a component goes astray, the unit will continue to operate at predetermined temperature set points.
- Intelligent Anticipation is a standard feature of the Micro. Functioning constantly, the Micro and zone sensors work together in harmony, to provide tight comfort control.

Factory-installed Options

Hinged Access Doors

These doors permit easy access to the filter, fan/heat, and compressor/control sections. They reduce the potential roof damage from screws or sharp access door corners.

Economizer

Equipped with either dry bulb, reference or comparative enthalpy sensing, this feature provides free cooling as the outdoor temperature and/or humidity decreases. Economizers, correctly installed, offer valuable energy savings. Factory-installed economizers save time and ensure proper installation.

Phase Monitor

Phase monitor shall provide 100% protection for motors and compressors against problems caused by phase loss, phase imbalance, and phase reversal. Phase monitor is equipped with an LED that provides an ON or FAULT indicator.

Clogged Filter/Fan Fail Switches

These sensors allow a zone sensor service light or Integrated Comfort System to indicate a dirty filter or a fan that's not working. The field installation charges for these valuable feedback devices often eliminate them from consideration. Factory installation can make such features a good investment.

COMM3/4 Communication Interface Available factory or field-installed. This module, when applied with ReliaTel™, easily interfaces with Trane's Integrated Comfort™ System.

The following options round-out the complete line of Precedent™ options:

- 0 50% Manual or Motorized Outside Air
- Discharge Air Sensor
- Hail Protection Quality Coil Guards
- Wide array of Zone Sensors and Thermostats
- Liquid Propane Conversion Kits
- Factory built Roof Curb

One of Our Finest Assets:

Trane Sales Representatives are a Support group that can assist you with:

- Product
- Application
- Service
- Training
- Special Applications
- Specifications
- Computer Programs and much more

Precedent has the features and benefits that make it first class in the light commercial rooftop market. Designed with input from field contractors and engineers, its airflow performance is outstanding.

Precedent...The same Trane quality...with added flexibility.

Quality And Reliability Testing

- All Precedent[™] designs were rigorously rain tested at the factory to ensure water integrity.
- Actual shipping tests were performed to determine packaging requirements. Units were test shipped around the country to determine the best packaging.
- Factory shake and drop tests were used as part of the package design process to help assure that the unit arrives at the job site in top condition.
- Rigging tests include lifting a unit into the air and letting it drop one foot, assuring that the lifting lugs and rails hold up under stress.

- We perform a 100% coil leak test at the factory. The evaporator and condenser coils are leak tested at 1375 kPa (200 psig) and pressure tested to 3100 kPa (450 psig).
- All parts are inspected at the point of final assembly. Sub-standard parts are identified and rejected immediately.
- The requirement for cycle testing of heat exchangers is 10,000 cycles by ANSI Z21.47. This is the standard required by both UL and AGA for cycle test requirments. Trane requires the design to be tested to 2½ times this current standard.
- Every unit receives a 100% unit run test before leaving the production line to make sure it lives up to rigorous Trane requirements.

We test designs at our factory not on our customers!

VariTrac[™]

VariTrac

When Trane's changeover VAV System for light commercial applications is coupled with Precedent, it provides the latest in technological advances for comfort management systems and can allow thermostat control in every zone served by VariTrac.

Application Considerations

Application of this product should be within the cataloged airflow and cooling considerations.

Low Ambient Cooling

The Precedent[™] line features, as standard, low ambient cooling down to -18°C (0°F). Contact your local Trane Representative for more assistance with low ambient cooling applications.

Barometric Relief

This product offers an optional barometric relief damper for use in conjunction with economizer option. This option consists of gravity dampers which open with increased pressure. As the building air pressure increases, the pressure in the unit return air section also increases, opening the dampers and relieving the conditioned space.

NOTE: THE EFFECTIVENESS OF BAROMETRIC RELIEF DAMPER DURING ECONOMIZING OPERATION IS SYSTEM RELATED. PRESSURE DROP OF THE RETURN AIR SYSTEM SHOULD BE CONSIDERED TO CONTROL BUILDING PRESSURIZATION.

Heating Operation

The heat exchanger is manufactured with aluminized steel. To prevent condensation within the heat exchanger, do not exceed 50% outside air.

Condensate Trap

The evaporator is a draw-thru configuration. A trap must be field provided prior to start-up on the cooling cycle.

Clearance Requirements

The recommended clearances identified with unit dimensions should be maintained to assure adequate service, maximum capacity and peak operating efficiency. Actual clearances which appear inadequate should be reviewed with the local Trane sales personnel.

Unit Pitch

These units have reversible sloped condensate drain pans. Units must be installed level; any unit slope must be toward side of unit where condensate drain is connected.

Selection Procedures - SI Units

Cooling Capacity

Step 1 — Calculate the building's total and sensible cooling loads at design conditions. Use the Trane calculation form or any other standard accepted method.

Example: The following are the building cooling requirements:

- a. Electrical Characteristics: 380-415/50/3
- Summer Design Conditions: Entering Evaporator Coil: 27° DB/ 19° WB Outdoor Ambient: 35°
- c. Total Cooling Load: 16.5 kW
- d. Sensible Cooling Load: 11.8 kW
- e. Airflow: 3400 m³/h External Static Pressure: 125 Pa
- f. Downflow Configuration

Step 2 — Size the equipment using Table PD-1 to match the cooling loads at design conditions.

Table PD-1 shows that a YSC060AD has a gross cooling capacity of 17.8 kW and 14.4 kW sensible capacity at 35 DB ambient and 3400 m³/h with 27 DB/ 19 WB air entering the evaporator.

Use the following formula to calculate fan motor heat, which can be found in the notes in Table PD-8:

Fan motor heat (kW) $= 1.144 \times (Fan kW) + 0.132$

For example: With 3400 m³/h and 125 Pa, specified by the engineer, Table PD-8 shows 0.73 kW for a high heat model.

Fan motor heat = 1.144 x 0.73 + 0.132 = 0.97kW Net Total Cooling = 17.8 kW - 0.97 = 16.8 kW Net Sensible Cooling Capacity 14.4 kW - 0.97 = 13.4 kW.

Heating Capacity

Step 1 — Calculate the building heating load using the Trane calculation form or other standard accepted method.

Step 2 — Size the system heating capacity to match the calculated building heating load. The following are building heating requirements:

- a. Total heating load of 17.6 kW
- b. 3400 m³/h
- c. Fuel Natural gas

For the YSC060AD there are two heating capacities available, 19.6 kW and 29.3 kW input models shown in Table PD-32. The output capacities of these furnaces are 15.7 kW and 23.4 kW respectively. The high heat model with 23.4 kW best matches the building requirements, indicating a YHC060AD* should be selected.

Air Delivery Selection

External static pressure drop through the air distribution system has been calculated to be 150 Pa. Enter Table PD-8 for a YSC060AD*H at 3400 m³/h and 150 Pa static pressure. The standard motor will give the desired airflow.

Accessory Selection

Select accessories needed to accommodate the application.

Selection Procedures - IP Units

Cooling Capacity

Step 1 — Calculate the building's total and sensible cooling loads at design conditions. Use the Trane calculation form or any other standard accepted method.

Example: The following are the building cooling requirements:

- a. Electrical Characteristics: 380-415/50/3
- Summer Design Conditions: Entering Evaporator Coil: 80° DB/ 67° WB Outdoor Ambient: 95°
- c. Total Cooling Load: 58 MBh
- d. Sensible Cooling Load: 42 MBh
- e. Airflow: 2000 cfm External Static Pressure: .6 in wg
- f. Downflow Configuration

Step 2 — Size the equipment using Table PD-1a to match the cooling loads at design conditions.

Table PD-1a shows that a YSC060AD has a gross cooling capacity of 62.0 MBh and 46.4 MBh sensible capacity at 95 DB ambient and 2000 cfm with 80 DB/ 67 WB air entering the evaporator.

Use the following formula to calculate fan motor heat, which can be found in the notes in Table PD-8a:

Fan motor heat (MBh) = $2.915 \times (Fan bhp) + 0.451$

For example: With 2000 cfm and 0.60 inches, specified by the engineer, Table PD-8a shows 1.06 bhp for a high heat model.

Fan motor heat = 2.915 x 1.06 + 0.451 = 3.5 MBh Net Total Cooling = 62.0 MBh - 3.5 = 58.5 MBh Net Sensible Cooling Capacity 46.4 MBh - 3.5 = 42.9 MBh.

Heating Capacity

Step 1 — Calculate the building heating load using the Trane calculation form or other standard accepted method.

Step 2 — Size the system heating capacity to match the calculated building heating load. The following are building heating requirements:

- a. Total heating load of 70.0 MBh
- b. 2000 cfm
- c. Fuel Natural gas

For the YSC060AD there are two heating capacities available, 67 MBh and 100 MBh input models shown in Table PD-32. The output capacities of these furnaces are 54 MBh and 80 MBh respectively. The high heat model with 80 MBh best matches the building requirements, indicating a YSC060AD*H should be selected.

Air Delivery Selection

External static pressure drop through the air distribution system has been calculated to be 0.6 inches of water. Enter Table PD-8a for a YSC060AD*H at 2000 cfm and 0.60 static pressure. The standard motor will give the desired airflow.

Accessory Selection

Select accessories needed to accommodate the application.

Model Number Description

<u>Y S C 060 A D R L A ** C 0 0 0 0 0 0 0 0 0 0 0 1</u> 1 2 3 4,5,6 7 8 9 10 11 12,13 14 15 16 17 18 19 20 21 22 23 24 25

Digit 1 - Unit Function

Y = DX Cooling, Gas Heat

Digit 2 - Efficiency

S = Standard Efficiency

Digit 3 - Airflow

C = Convertible

Digits 4,5,6 - Nominal Gross Cooling Capacity (MBh)

	<u>kW</u>	<u>Tons</u>
060	= 17.6	5
072	= 21.1	6
090	= 26.4	7.5
102	= 29.9	8.5
120	= 35.1	10

Digit 7 - Major Design Sequence

A = First

Digit 8 - Unit Voltage

D = 380-415/50/3

Digit 9 - Unit Controls

R = ReliaTel[™] Microprocessor

Digit 10 - Heating Capacity

L = Low H = High

Digit 11 - Minor Design Sequence

A = First Sequence

Digits 12, 13 - Service Sequence

** = Factory Assigned

Digit 14 - Fresh Air Selection

0 = No Fresh Air

A = Manual Outside Air Damper 0-50%

B = Motorized Outside Air Damper 0-50%

C = Economizer, Dry Bulb 0-100% without Barometric Relief

D = Economizer, Dry Bulb 0-100% with Barometric Relief

E = Economizer, Reference Enthalpy 0-100% without Barometric Relief

F = Economizer, Reference Enthalpy 0-100% with Barometric Relief

G = Economizer, Comparative Enthalpy 0-100% without Barometric Relief

H = Economizer, Comparative Enthalpy 0-100% with Barometric Relief

Digit 15 - Supply Fan/Drive Type/Motor

0 = Standard Drive

1 = Oversized Motor

Digit 16 - Hinged Service AccessFilters

0 = Standard Panels/Standard Filters A = Hinged Access Panels/Standard Filters

B = Standard Panels/50 mm (2")
Pleated Filters

C = Hinged Access Panels/50 mm 2" Pleated Filters

Digit 17 - Condenser Coil Protection

0 = Standard Coil

1 = Standard Coil with Hail Guard

2 = Epoxy Coated Condenser Coil

3 = Epoxy Coated Condenser Coil with Hail Guard

Digit 18 - Through the Base Provisions

0 = No Through the Base Provisions

Digit 19 - Disconnect/Circuit Breaker/Phase Monitor (3 phase only)

0 = No Disconnect or Circuit Breaker

3 = Phase Monitor Only (No Disconnect, No Circuit Breaker)

Digit 20 - Convenience Outlet

0 = No Convenience Outlet

Digit 21 - Communications Options

0 = No Communications Interface

1 = Comm-3/4 Communications Interface

2 = Comm-5 Communications Interface

Digit 22 - Refrigeration System Option

0 = Standard Refrigeration System

Digit 23 - Refrigeration Controls

0 = No Refrigeration Control

Digit 24 - Smoke Detector

0 = No Smoke Detector

Digit 25 - Monitoring Controls

0 = No Monitoring Control

1 = Clogged Filter Switch

2 = Fan Failure Switch

3 = DischargeAir Sensing Tube

4 = Clogged Filter Switch and Fan Fail
Switch

5 = Clogged Filter Switch and Discharge Air Sensing Tube

6 = Fan Fail Switch and Discharge Air Sensing Tube

7 = Clogged Filter and Fan Fail Switches and Discharge Air Sensing Tube

General Data

Table GD-1 — General Data

Table GD-1 — General Data							•			
		tible Units 060AD		tible Units 072AD		rtible Units C090AD		tible Units 102AD		rtible Units C120AD
Cooling Performance 1										
Gross Capacity - kW (MBh)	18.2	(62.0)	23.2	(79.0)	26.	7 (91.0)	31.1	(106.0)	34.9	(119.0)
COP (EER) ²		(10.2)		3 (10.5)		2 (10.3)		(10.3)		9 (10.2)
Nominal Airflow - m³/h (cfm)		(2000)		(2400)		0 (3000)		(3400)		0 (4000)
Rated Airflow - m ³ /h (cfm)		(2000)		(2100)		0 (2625)		(3000)		0 (3500)
Net Capacity - kW (MBh)		(59.0)		(75.0)		2 (86.0)		(102.0)		I (113.0)
System Power - kW		5.78		7.14		8.35		9.9		11.08
Heating Performance ³						0.00				
Heating Models	Low - G80	High - G120	Low - G120	High G-200	Low - G120	High G-200	Low - G150	High G-250	Low - G150	Hiah G-250
Heating Input - kW (MBH)	19.6 (67)	29.3 (100)	29.3 (100)	48.9 (167)	29.3 (100)	48.9 (167)	36.7 (125)	60.9 (208)	36.7 (125)	60.9 (208)
Heating Output - kW (MBH)	15.7 (54)	23.4 (80)	23.4 (80)	39.1 (134)	23.4 (80)	39.1 (134)	29.3 (100)	48.7 (166)	29.3 (100)	48.7 (166)
Steady State Efficiency %	90	90	90	90	90	90	90	90	90	90
No. Burners	2	3	3	4	3	4	3	5	3	5
No. Stages	1	1	1	2	1	2	2	2	2	2
Gas Connection Pipe Size - in.	3/4 NPT	3/4 NPT	3/4 NPT	3/4 NPT	3/4 NPT	3/4 NPT	3/4 NPT	3/4 NPT	3/4 NPT	3/4 NPT
Compressor	3/4 141 1	3/4 (1)	3/4 (1)	3/4 111 1	3/4 141 1	3/4 141 1	3/4 111 1	3/4 111 1	3/4 111 1	3/4 111 1
Number - Type	1-Clima	tuff Scroll	1-Trane	3-D Scroll	1-Trans	e 3-D Scroll	2-Clima	tuff Scroll	2-Clim	atuff Scroll
Outdoor Sound Rating dB ⁴		80		85	1 Hund	85		83	2 011111	79
Outdoor Coil - Type		nced		nced	1:	anced		nced	1:	anced
Tube Size in. OD		3125		3125		.3125		3125		.3125
Face Area - m² (sq ft)		(10.96)		(13.88)		(13.88)		(18.89)		(25.92)
Rows / FPI		/ 17		/ 17		2 / 17		/ 17		2 / 17
Indoor Coil - Type		nced		nced		anced		nced		anced
Tube Size OD - in.		3125		3125		.3125		3125		.3125
Face Area - m² (sq ft)		(6.68)		? (9.89)		.3125 2 (9.89)		(12.36)		.3123 5 (12.36)
Rows / FPI		/ 16		/ 16		2 (3.63) 3 / 16		/ 16		1 / 16
Refrigerant Control		Orifice		t Orifice		rt Orifice		Orifice		rt Orifice
Drain Connection No. / Size - in.		75 NPT		75 NPT		7.75 NPT		75 NPT		.75 NPT
Outdoor Fan - Type	.,	peller		peller		opeller		peller		opeller
No. Used / Diameter - in.		/ 22		/ 26		1 / 26		/ 26		1 / 26
Drive Type / No. Speeds	-	/ 22 ect / 1		/ 26 ect / 1		rect / 1		/ 20 ect / 1		rect / 1
CFM		900		100		5200		500		5800
No. Motors / kW (HP)		30 (0.40)		6 (0.75)		5200 56 (0.75)		6 (0.75)		56 (0.75)
Motor RPM		950 950		950		950		950		950
Belt Drive Indoor Fan - Type		ntrifugal		ntrifugal		entrifugal		ntrifugal		entrifugal
No. Used	1000	1	.000	1		1	1000	1	, 0 0	1
Fan Diameter x Width - mm (in.)	280 X 29	30 (11 x 11)	305 X 30)5 (12 x 12)	305 X 3	05 (12 x 12)	381 X 39	31 (15 x 15)	381 X 3	81 (15 x 15)
Drvie Type / No. Speeds		able Speed		iable Speed		riable Speed		able Speed		riable Speed
No. Motors	Doit / Vali	1	Boit, van	1	Boil / Val	1	Boit, van	1	Doit / Vai	1
Standard Motor Power - kW (HP)	11	(1.5)	11	(1.5)	11	5 (2.0)	15	(2.0)	2	2 (3.0)
Oversized Motor Power - kW (HP)	1.1	-		5 (2.0)		2 (3.0)		(3.0)	۷.,	- (0.0)
Motor RPM - Standard / Oversized	14	50 / -) / 1450		0 / 2850		/ 2850	25	350 / -
Motor Frame Size		56 56		56	143	56		56	20	56
Filters - Type Furnished		waway		waway	Thre	owaway		waway	Thre	owaway
(No.) Size Reccommended - mm		X 762 X 25		X 635 X 50		X 635 X 50		X 635 X 50		X 635 X 50
(No.) Size Reccommended - in.		X 30 X 1		X 25 X 2		X 25 X 2		X 25 X 2	. ,	X 25 X 2
Refrigerant Charge - kg (lbs) of R-22		(8.2)		7 (8.2)		5 (10.0)		I - 3.8 (8.3)		1 - 3.4 (7.5)
non-goldin Ondige - Ng (100/ Of N-22	3.7	(3.2)	3.7	(3.2)	4.0	, 10.0/		2 - 2.0 (4.4)		2 - 3.3 (7.3)
N							Circuit 2		Circuit	2 3.3 (1.3)

Notes:

1. Cooling Performance is rated at 35.0 C (95 F) ambient, 26.7 C (80 F) entering dry bulb, 19.4 C (67 F) entering wet bulb. Gross capacity does not include the effect of fan motor heat. Net capacity includes the effect of fan motor heat. Units are suitable for operation to ± 20 % of nominal airflow.

2. EER are rated at ARI conditions.

3. Heating Performance limit settings and rating data were established and approved under laboratory test conditions using American National Standards Institute standards. Ratings shown are for elevations up to 2000 feet. For elevations above 2000 feet, ratings should be reduced at the rate of 4% for each 1000 feet above sea level.

4. Outdoor Sound rating shown is tested in accordance with ARI Standard 270. For more information refer to Performance Data Table "Sound Power Level".

5. Refrigerant charge is an approximate value. For a more precise value, see unit nameplate and service literature.

Table PD-1 — Gross Cooling Capacities (kW) - YSC060AD - (SI)

											Ar	nbien	t Temp	eratur	e (C)										
	Enter.			3	0					3	35					4	0					45	;		
	Dry																								
	Bulb									En	tering	Wet E	Bulb Te	empera	ture (C)									
m³/h	Temp	16		19	9	2	2	10	3	1	9	2	2	1	6	1	9	2	22	16		19)	22	2
Airflow	(C)	TGC SI	HC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC
	24	16.2 13	3.9	18.5	11.3	19.9	8.3	15.0	13.3	17.4	11.3	19.3	8.0	13.9	12.7	16.1	10.7	18.4	7.5	12.7	12.1	14.7	9.5	17.3	7.0
2000	27	16.7 16	6.7	18.6	14.1	20.0	11.1	15.8	15.8	17.4	13.6	19.4	10.8	14.8	14.8	16.1	13.0	18.5	10.3	13.8	13.8	14.7	12.3	17.3	9.8
3060	30	18.1 18	8.1	18.7	16.9	20.2	13.6	17.2	17.2	17.7	16.5	19.5	13.5	16.2	16.2	16.5	15.9	18.5	13.1	15.1	15.1	15.1	15.1	17.3	12.6
	33	19.3 19	9.3	19.2	19.2	20.3	16.2	18.5	18.5	18.5	18.5	19.6	16.1	17.6	17.6	17.6	17.6	18.7	15.9	16.6	16.6	16.6	16.6	17.5	15.4
	24	16.7 14	4.8	18.8	11.8	20.1	8.6	15.5	14.2	17.8	11.3	19.5	8.3	14.2	13.5	16.5	11.4	18.7	7.7	13.1	12.9	15.0	10.8	17.6	7.2
3400	27	17.5 17	7.5	18.9	14.9	20.2	11.4	16.5	16.5	17.8	14.4	19.6	11.2	15.4	15.4	16.5	13.8	18.8	10.8	14.4	14.4	15.1	13.1	17.6	10.3
3400	30	18.8 18	8.8	19.1	17.9	20.4	14.1	17.9	17.9	18.2	17.6	19.7	14.1	16.9	16.9	17.0	17.0	18.8	13.8	15.8	15.8	15.8	15.8	17.7	13.4
	33	19.8 19	9.8	19.8	19.8	20.6	16.8	19.2	19.2	19.2	19.2	19.9	16.9	18.3	18.3	18.3	18.3	19.0	16.8	17.4	17.4	17.4	17.4	17.9	16.4
	24		5.6	19.1	12.3	20.2	8.8	15.9	15.0	18.1	11.8	19.7	8.5	14.6	14.3		11.2	18.9	7.9	13.4	13.4	15.3	11.4	17.8	7.5
3740	27		8.1	19.2	15.5	20.4	11.6	17.1	17.1	18.2		19.8	11.5	16.0	16.0		14.6	19.0	11.3	14.9	14.9	15.4	13.9		
3740	30		9.3	19.5	18.7	20.6	14.5	18.5	18.5	18.6		20.0		17.6	17.6	17.6	17.6	19.1	14.4	16.5	16.5	16.5	16.5	17.9	
	33	20.2 20	0.2	20.2	20.2	20.8	17.4	19.6	19.6	19.6	19.6	20.2	17.6	18.9	18.9	18.9	18.9	19.3	17.6	18.0	18.0	18.0	18.0	18.3	17.4
	24		6.4	19.3	12.6	20.3	9.1	16.2	15.8	18.4	12.2	19.8	8.8	14.9	14.9	17.1	11.7	19.0	8.1	13.9	13.9	15.5	12.1	18.0	7.7
4080	27	18.6 18	8.6	19.4	16.1	20.5	12.3	17.7	17.7	18.4	15.8	19.9	11.8	16.6	16.6	17.2	15.3	19.1	11.6	15.4	15.4	15.8	14.6	18.1	11.2
4000	30		9.7	19.7	19.4	20.7	14.9	19.0	19.0	19.0	19.0	20.1	15.0	18.1	18.1	18.1	18.1	19.3	15.0	17.1	17.1	17.1	17.1	18.2	
	33	20.5 20	0.5	20.5	20.5	20.9	17.9	20.0	20.0	20.0	20.0	20.4	18.2	19.3	19.3	19.3	19.3	19.5	18.3	18.4	18.4	18.4	18.4	18.6	18.2

Table PD-1a - Gross Cooling Capacities (MBH) - YSC060AD - (IP)

											Ar	nbien	t Temp	eratur	e (F)										
	Enter.			8	5					9	5					10	05					11	5		
	Dry																								
	Bulb									En	tering	Wet E	Bulb Te	mpera	ture ((F)									
CFM	Temp	6	1	6	7	7	'3	6	1	6	7	7	'3	6	1	6	. 7	7	'3	61		67	,	73	}
Airflow	(F)	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC								
	75	56.1	47.1	64.4	37.0	68.8	25.1	51.6	44.7	60.6	36.7	66.9	23.9	47.0	42.4	55.6	34.5	64.0	22.6	42.4	40.1	50.2	30.3	60.0	20.8
4000	80	57.3	56.5	64.6	45.8	69.3	34.2	53.3	53.3	60.7	43.9	67.3	32.9	49.5	49.5	55.7	41.6	64.2	31.4	45.7	45.7	50.4	39.2	60.1	29.6
1800	85	61.3	61.3	64.9	54.5	69.7	42.0	57.7	57.7	61.0	52.9	67.6	41.4	53.9	53.9	56.3	50.7	64.4	40.3	50.0	50.0	51.2	48.3	60.2	38.4
	90	65.0	65.0	65.8	63.3	70.4	49.7	62.1	62.1	62.4	62.2	68.0	49.7	58.5	58.5	58.5	58.5	64.6	48.8	54.4	54.4	54.4	54.4	60.3	47.2
	75	57.5	49.8	65.4	38.5	69.3	25.5	53.0	47.5	61.8	38.7	67.5	24.4	48.3	45.1	56.9	36.6	64.7	23.0	43.7	42.8	51.3	34.2	60.9	21.4
0000	80	59.3	59.3	65.6	47.9	69.8	35.4	55.7	55.7	62.0	46.4	68.0	34.2	51.6	51.6	57.1	44.1	65.0	32.7	47.7	47.7	51.5	41.6	61.0	30.9
2000	85	63.6	63.6	66.0	57.3	70.5	43.1	60.3	60.3	62.5	56.2	68.3	43.0	56.4	56.4	58.0	54.1	65.2	42.1	52.2	52.2	52.8	51.7	61.2	40.6
	90	66.9	66.9	67.2	66.5	71.1	51.4	64.4	64.4	64.4	64.4	68.9	51.8	61.0	61.0	61.0	61.0	65.6	51.3	57.1	57.1	57.1	57.1	61.5	50.1
	75	58.8	52.5	66.1	39.8	69.6	25.9	54.3	50.2	62.8	38.1	67.9	24.9	49.4	47.8	58.0	38.6	65.3	23.4	44.8	44.8	52.2	36.2	61.6	21.7
0000	80	61.5	61.5	66.4	49.8	70.3	36.8	57.8	57.8	63.0	48.6	68.3	35.0	53.6	53.6	58.2	46.5	65.6	33.9	49.4	49.4	52.6	44.0	61.8	32.2
2200	85	65.4	65.4	67.0	59.8	71.0	44.6	62.4	62.4	63.7	59.2	69.0	44.3	58.7	58.7	59.4	57.4	66.0	43.8	54.3	54.3	54.3	54.3	62.0	42.5
	90	68.4	68.4	68.4	68.4	71.7	52.8	66.1	66.1	66.1	66.1	69.6	53.6	63.1	63.1	63.0	63.0	66.4	53.6	59.3	59.3	59.3	59.3	62.4	52.7
	75	60.0	55.1	66.6	40.8	70.0	26.4	55.5	52.8	63.6	39.6	68.3	25.3	50.6	50.4	59.0	37.4	65.7	24.0	46.2	46.2	53.1	38.2	62.2	22.1
0.400	80	63.2	63.2	67.1	51.4	70.7	37.7	59.6	59.6	63.8	50.7	68.8	35.8	55.4	55.4	59.2	48.8	66.2	35.0	51.1	51.1	53.5	46.3	62.4	33.4
2400	85	66.7	66.7	67.8	62.0	71.5	45.3	64.1	64.1	64.8	61.9	69.5	45.5	60.5	60.5	60.8	60.6	66.6	45.2	56.3	56.3	56.2	56.2	62.7	44.3
	90	69.5	69.5	69.5	69.5	72.1	54.1	67.4	67.4	67.4	67.4	70.2	55.3	64.6	64.6	64.5	64.5	67.1	55.7	61.1	61.1	61.0	61.0	63.2	55.1

Notes:

1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.

^{2.} TGC = Total Gross Capacity
3. SHC = Sensible Heat Capacity

Notes:

1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.

2. TGC = Total Gross Capacity

3. SHC = Sensible Heat Capacity

Table PD-2 - Gross Cooling Capacities (kW) - YSC072AD - (SI)

										An	nbient	Temp	erature	(C)										
	Enter.		30						3	5					4	.0					45	;		
	Dry																							
	Bulb								En	tering	Wet E	Bulb Te	mpera	iture ((C)									
m³/h	Temp	16	19		2	2	10	3	1	9	2	2	1	6	1	9	2	2	16	i	19)	22	2
Airflow	(C)	TGC SHC	TGC S	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC
	24	20.9 17.5	23.3 1	14.6	24.6	10.3	19.7	16.8	22.4	13.6	24.0	9.9	18.4	16.1	21.2	12.9	23.2	9.4	17.1	15.4	19.7	12.9	22.0	9.0
0070	27	21.6 21.2	23.4	17.4	24.8	13.5	20.4	20.4	22.5	17.0	24.1	13.3	19.4	19.4	21.2	16.4	23.3	12.8	18.2	18.2	19.8	15.7	22.1	12.3
3670	30	22.9 22.9	23.6 2	20.6	25.0	16.5	22.1	22.1	22.7	20.4	24.3	16.3	21.0	21.0	21.5	19.9	23.5	16.1	19.9	19.9	20.2	19.2	22.2	15.6
	33	24.0 24.0	24.1 2	23.8	25.2	19.4	23.4	23.4	23.3	23.3	24.5	19.3	22.5	22.5	22.4	22.4	23.6	19.3	21.4	21.4	21.4	21.4	22.3	18.8
	24	21.5 18.5	23.6	15.2	24.8	10.6	20.3	17.9	22.8	14.2	24.2	10.1	19.0	17.2	21.6	13.6	23.4	9.8	17.6	16.4	20.1	12.9	22.3	9.3
4000	27	22.3 22.3	23.8 1	18.1	25.1	14.5	21.3	21.3	22.9	17.9	24.3	13.6	20.2	20.2	21.6	17.3	23.6	13.4	19.0	19.0	20.2	16.6	22.4	12.8
4080	30	23.6 23.6	24.0 2	21.6	25.3	17.6	22.9	22.9	23.2	21.5	24.6	16.8	21.8	21.8	22.0	21.1	23.7	16.7	20.7	20.7	20.8	20.5	22.5	16.3
	33	24.6 24.6	24.6 2	24.6	25.5	20.0	23.9	23.9	23.9	23.9	24.8	20.1	23.1	23.1	23.1	23.1	23.9	20.1	22.1	22.1	22.1	22.1	22.7	19.8
	24	22.0 19.5	23.9 1	15.8	25.0	10.7	20.8	18.9	23.1	14.7	24.4	10.4	19.5	18.2	21.9	14.2	23.5	10.1	18.1	17.4	20.5	13.5	22.5	9.6
4490	27	22.9 22.9	24.0 1	18.7	25.3	13.9	22.1	22.1	23.2	18.6	24.5	13.9	20.9	20.9	22.0	18.2	23.7	13.6	19.7	19.7	20.6	17.6	22.6	13.3
4490	30	24.1 24.1	24.3 2	22.4	25.5	17.4	23.4	23.4	23.5	22.4	24.8	17.3	22.5	22.5	22.5	22.2	23.9	17.2	21.3	21.3	21.3	21.3	22.8	17.0
	33	25.0 25.0	25.0 2	25.0	25.7	20.7	24.4	24.4	24.4	24.4	25.1	20.8	23.7	23.7	23.7	23.7	24.2	20.8	22.6	22.6	22.6	22.6	23.1	20.7
	24	22.4 20.3	24.1 1	16.3	25.2	10.9	21.2	19.8	23.2	15.1	24.5	10.7	19.9	19.1	22.2	14.7	23.6	10.3	18.5	18.4	20.8	14.0	22.7	9.9
4900	27	23.4 23.4	24.3 1	19.3	25.5	14.5	22.6	22.6	23.4	19.2	24.7	14.7	21.5	21.5	22.3	19.0	23.8	14.0	20.3	20.3	20.9	18.4	22.8	13.7
4500	30	24.5 24.5			25.6	17.8	23.8	23.8	23.9	23.2	25.0	17.8	23.0	23.0	23.0	23.0	24.1	17.7	21.8	21.8	21.8	21.8	23.0	17.7
	33	25.4 25.4	25.4 2	25.4	25.9	21.2	24.8	24.8	24.8	24.8	25.3	21.4	24.1	24.1	24.1	24.1	24.4	21.4	23.1	23.1	23.1	23.1	23.4	21.6

Table PD-2a _ Gross Cooling Capacities (MBH) - YSC072AD - (IP)

								Ambi	ent Tem	peratur	e (F)										
	Enter.		85				95					10	05					11	5		
	Dry																				
	Bulb						Enter	ing We	et Bulb T	emper	ature ((F)									
CFM	Temp	61	67	73	61		67		73	6	31	6	57	7	3	61		67	,	73	
Airflow	(F)	TGC SHC	TGC SHC	TGC SHC	TGC	SHC	TGC S	HC TO	SC SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC
	75	72.2 59.1	80.6 47.1	85.1 31.0	67.5	56.5	77.7 4	4.1 82	.7 29.6	62.6	53.9	73.0	41.8	79.9	28.0	57.4	51.2	67.5	39.2	75.5	26.0
0100	80	73.8 70.7	81.0 56.1	85.8 42.2	69.4	68.2	77.9 5	5.0 83	.4 40.7	65.0	65.0	73.1	52.6	80.4	39.0	60.6	60.6	67.6	50.0	75.8	36.8
2160	85	77.7 77.7	81.4 66.3	86.3 51.7	74.3	74.3	78.2 6	5.6 83	.8 50.1	70.3	70.3	73.6	63.5	80.7	49.2	66.0	66.0	68.3	61.0	76.1	47.4
	90	81.3 81.3	82.4 76.3	87.1 59.8	78.8	78.8	79.4 7	6.0 84	.6 59.4	75.1	75.1	75.3	74.6	81.3	59.0	70.8	70.8	70.7	70.7	76.6	57.4
	75	74.2 62.5	81.6 49.2	85.7 31.5	69.3	59.9	78.7 4	6.0 83	.4 30.1	64.4	57.3	74.2	43.7	80.2	28.5	59.1	54.6	68.9	41.1	76.3	26.6
2400	80	76.1 75.0	82.1 58.2	86.5 43.7	72.1	72.1	79.0 5	7.4 84	.2 42.1	67.9	67.9	74.4	55.4	80.9	40.4	63.3	63.3	69.0	53.0	76.8	38.4
2400	85	80.0 80.0	82.6 69.1	86.8 52.8	77.1	77.1	79.5 6	8.7 84	.7 51.6	73.1	73.1	75.3	67.3	81.4	50.7	68.7	68.7	70.1	65.0	77.2	49.4
	90	83.3 83.3	83.8 79.7	87.1 61.5	80.7	80.7	80.9 7	9.4 85	.5 61.5	77.5	77.5	77.5	77.5	82.1	61.1	73.3	73.3	73.3	73.3	77.8	60.2
	75	75.8 65.6	82.3 50.7	86.2 32.0	71.0	63.2	79.4 4	9.8 84	.0 30.7	66.0	60.6	75.4	45.6	80.7	29.0	60.6	57.8	70.0	42.9	77.0	27.2
2640	80	78.1 78.1	82.9 60.1	87.2 44.1	74.6	74.6	79.8 5	9.4 84	.7 44.3	70.3	70.3	75.6	58.1	81.2	41.3	65.7	65.7	70.1	55.7	77.6	39.8
2040	85	81.7 81.7	83.6 71.6	88.2 54.0	79.1	79.1	80.5 7	1.3 85	.4 53.6	75.4	75.4	76.6	70.7	82.0	52.1	70.9	70.9	71.6	68.7	78.1	51.3
	90	84.8 84.8	85.0 82.5	89.1 62.3	82.3	82.3	82.3 8	2.3 86	.1 61.2	79.4	79.4	79.4	79.4	82.8	63.0	75.2	75.2	75.2	75.2	78.7	62.8
	75	77.0 68.3	82.9 52.2	86.6 32.5	72.5	66.4	80.0 5	1.4 84	.5 31.2	67.5	63.7	76.2	47.1	81.2	29.5	62.1	61.0	70.8	44.7	77.6	27.8
2000	80	79.6 79.6	83.7 61.8	87.6 44.7	76.6	76.6	80.6 6	1.3 85	.4 44.0	72.4	72.4	76.5	60.5	81.8	42.1	67.7	67.7	71.1	58.2	78.1	40.9
2880	85	83.0 83.0	84.4 73.9	88.7 54.9	80.4	80.4	81.5 7	3.9 86	5.2 54.1	77.1	77.1	77.8	73.8	82.7	53.5	72.7	72.7	72.9	71.9	78.8	53.0
	90	85.9 85.9	86.0 85.0	89.6 65.2	83.6	83.6	83.6 8	3.6 87	.0 63.2	81.0	81.0	81.0	81.0	83.5	65.0	76.8	76.8	76.8	76.8	79.5	65.3

^{1.} All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.

2. TGC = Total Gross Capacity

3. SHC = Sensible Heat Capacity

Notes:

1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.

2. TGC = Total Gross Capacity

3. SHC = Sensible Heat Capacity

Table PD-3 - Gross Cooling Capacities (kW) - YSC090AD - (SI)

											Ar	nbien	t Temp	eratur	e (C)										
	Enter.			3	0					3	5					4	0					45	5		
	Dry																								
	Bulb									En	tering	Wet E	Bulb Te	empera	ture (C)									
m³/h	Temp	16		1	9	2	2	16	6	1	9	2	2	1	6	1	9	2	2	16	i	19)	22	2
Airflow	(C)	TGC S	HC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC
	24	24.5 2	1.6	26.9	17.1	28.1	12.0	22.7	20.6	25.8	16.3	27.7	11.5	20.8	19.6	24.1	15.4	26.8	11.0	19.0	18.7	22.0	14.8	25.6	10.3
4500	27	25.4 2	5.4	27.1	21.1	28.5	15.9	24.1	24.1	25.9	20.8	27.8	15.9	22.5	22.5	24.3	20.0	27.0	15.5	20.9	20.9	22.2	19.0	25.7	14.8
4590	30	27.0 2	7.0	27.4	25.3	28.7	19.5	26.0	26.0	26.4	25.3	28.1	19.7	24.8	24.8	25.0	24.8	27.1	19.6	23.2	23.2	23.1	23.1	25.8	19.2
	33	28.1 2	8.1	28.1	28.1	29.0	23.3	27.5	27.5	27.5	27.5	28.4	23.6	26.5	26.5	26.5	26.5	27.4	23.9	25.3	25.3	25.3	25.3	26.1	23.6
	24	25.1 2	3.0	27.2	18.1	28.4	12.4	23.4	22.1	26.2	17.1	27.8	11.9	21.4	21.1	24.6	16.8	27.1	11.3	19.7	19.7	22.5	15.3	25.9	10.7
5100	27	26.3 2	6.3	27.4	22.0	28.6	16.3	25.1	25.1	26.4	22.0	28.0	16.2	23.6	23.6	24.9	21.4	27.2	16.0	21.9	21.9	22.8	20.4	26.0	15.6
5100	30	27.6 2	7.6	27.8	26.4	29.0	20.2	26.8	26.8	27.0	26.8	28.3	20.4	25.7	25.7	25.7	25.7	27.4	20.6	24.3	24.3	24.3	24.3	26.2	20.4
	33	28.6 2	8.6	28.6	28.6	29.3	24.1	28.1	28.1	28.1	28.1	28.7	24.6	27.3	27.3	27.3	27.3	27.8	25.0	26.2	26.2	26.2	26.2	26.6	25.1
	24		4.2	27.4	18.4	28.4		24.0	23.5	26.5	18.3		12.2	22.0	22.0	25.1	17.1	27.3	11.7	20.4	20.4	22.9	16.2	26.2	
5610	27		6.9	27.7	22.8	28.8	16.5	25.9	25.9	26.8	23.0	28.3	16.7	24.5	24.5	25.4		27.4	16.5	22.8	22.8	23.5	21.8		
5010	30	28.0 2	8.0	28.1	27.3	29.1	20.6	27.4	27.4	27.4	27.4	28.7	21.2	26.5	26.5	26.4	26.4	27.7	21.4	25.2	25.2	25.2	25.2	26.5	21.4
	33	28.9 2	8.9	28.9	28.9	29.5	24.7	28.5	28.5	28.5	28.5	29.1	25.6	27.8	27.8	27.8	27.8	28.1	26.0	26.8	26.8	26.8	26.8	27.0	26.3
	24	26.1 2	5.4	27.6	18.5	28.5	12.7	24.5	24.5	26.7	19.1	28.1	12.5	22.8	22.8	25.4	18.0	27.4	12.0	21.1	21.1	23.4	17.0	26.3	11.4
6120	27	27.3 2	7.3	27.9	23.4	28.9	16.8	26.5	26.5	27.1	23.9	28.5	17.1	25.3	25.3	25.8	23.8	27.7	17.0	23.6	23.6	24.1	23.1	26.5	16.9
0120	30	28.3 2	8.3	28.4	28.1	29.2	21.0	27.8	27.8	27.8	27.8	28.8	21.8	27.0	27.0	27.0	27.0	27.9	22.1	25.8	25.8	25.8	25.8	26.8	22.3
	33	29.1 2	9.1	29.1	29.1	29.6	25.2	28.8	28.8	28.8	28.8	29.3	26.4	28.2	28.2	28.2	28.2	28.4	26.9	27.3	27.3	27.3	27.3	27.4	27.4

Table PD-3a - Gross Cooling Capacities (MBH) - YSC090AD - (IP)

											Ar	nbien	t Temp	eratur	e (F)										
	Enter.			8	5					9	5		-			10)5					11	5		
	Dry																								
	Bulb									En	tering	Wet E	Bulb Te	mpera	ture (F)									
CFM	Temp	6	1	6	7	7	3	6′	l	6	7	7	3	6	i1	6	7	7	3	61		67	,	73	3
Airflow	(F)	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC
	75	84.4	72.7	92.7	55.2	96.6	35.6	77.7	69.1	89.4	52.6	95.2	34.0	70.4	65.4	83.4	50.6	92.5	32.0	63.7	61.9	75.3	46.9	88.2	29.8
0700	80	86.5	86.5	93.3	67.5	97.8	48.9	81.2	81.2	89.6	66.8	96.2	48.4	75.1	75.1	83.8	64.0	93.1	46.6	69.4	69.4	75.8	60.3	88.5	44.1
2700	85	91.5	91.5	94.2	80.6	98.9	59.9	87.7	87.7	90.6	80.8	97.2	60.5	82.5	82.5	85.1	78.8	93.5	59.5	76.4	76.4	77.7	75.2	88.8	58.1
	90	95.1	95.1	95.7	93.2	100.0	71.0	92.6	92.6	92.5	92.5	97.5	71.8	88.7	88.7	88.7	88.7	94.3	72.6	83.7	83.7	83.6	83.6	89.5	71.8
	75	86.5	77.3	93.5	56.9	97.1	36.1	80.0	73.9	90.6	56.4	95.8	34.6	72.6	70.1	85.2	52.3	93.2	32.7	65.6	65.6	76.9	49.9	89.1	30.5
2000	80	89.4	89.4	94.3	70.0	98.3	52.8	84.9	84.9	91.0	70.2	96.9	49.4	78.8	78.8	85.6	68.2	93.9	48.9	72.7	72.7	77.8	64.5	89.6	46.3
3000	85	93.6	93.6	95.4	83.8	99.4	61.1	90.6	90.6	92.2	85.2	98.0	62.3	86.1	86.1	87.3	84.2	94.5	61.9	80.1	80.1	80.1	80.1	90.0	61.2
	90	96.8	96.8	97.0	96.7	100.5	72.8	94.8	94.8	94.8	94.8	99.0	75.4	91.5	91.5	91.4	91.4	95.4	75.8	87.0	87.0	87.0	87.0	90.9	75.9
	75	88.1	81.3	94.3	59.1	97.5	36.7	82.1	78.5	91.4	58.6	96.2	35.2	74.1	74.1	86.4	54.8	93.7	33.4	68.1	68.1	78.5	51.2	89.8	31.2
2200	80	91.4	91.4	95.1	72.1	98.7	50.2	87.6	87.6	92.1	73.3	97.4	50.3	82.2	82.2	87.1	72.0	94.5	49.7	75.6	75.6	79.7	68.7	90.4	48.3
3300	85	95.1	95.1	96.2	86.6	99.8	62.1	92.7	92.7	93.6	89.0	98.5	63.8	88.8	88.8	89.2	89.1	95.2	64.0	83.5	83.5	83.5	83.5	90.9	63.9
	90	97.9	97.9	97.9	97.9	101.0	74.3	96.4	96.4	96.3	96.3	99.7	77.5	93.5	93.5	93.5	93.5	96.3	78.6	89.4	89.4	89.4	89.4	92.1	79.5
	75	89.5	85.0	95.1	60.6	97.8	37.2	84.0	83.1	92.2	60.7	96.6	35.7	76.7	76.7	87.5	57.3	94.1	34.0	70.4	70.4	80.0	53.8	90.4	31.9
2600	80	92.9	92.9	95.6	74.0	99.0	50.8	89.7	89.7	93.0	76.0	97.8	51.0	84.8	84.8	88.3	75.6	95.2	50.9	78.1	78.1	81.6	72.8	90.9	49.5
3600	85	96.2	96.2	96.9	88.9	100.2	63.1	94.2	94.2	94.7	92.3	99.0	65.1	90.7	90.7	90.7	90.7	95.8	65.8	86.0	86.0	86.0	86.0	91.7	66.3
	90	98.7	98.7	98.7	98.7	101.3	75.7	97.5	97.5	97.5	97.5	100.1	79.4	94.9	94.9	94.9	94.9	97.0	81.1	91.2	91.2	91.2	91.2	93.0	82.7

^{1.} All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.

2. TGC = Total Gross Capacity

3. SHC = Sensible Heat Capacity

NOTES:

1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.

2. TGC = Total Gross Capacity

3. SHC = Sensible Heat Capacity

Table PD-4 - Gross Cooling Capacities (kW) - YSC102AD - (SI)

							A	mbien	t Temp	eratur	e (C)										
	Enter.		30				35					4	0					45	;		
	Dry																				
	Bulb						Enterin	g Wet I	Bulb Te	empera	ature ((C)									
m³/h	Temp	16	19	22		16	19	2	22	1	6	1:	9	2	22	16		19)	22	!
Airflow	(C)	TGC SHC	TGC SHO	C TGC SH	C TG	SHC	TGC SHO	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC :	SHC	TGC	SHC	TGC	SHC
	24	28.0 24.3	31.5 19.5	33.4 14	1 26.0	23.3	30.0 18.7	32.5	13.5	23.9	22.2	27.8	17.7	31.3	12.9	21.6	21.6	25.4	17.3	29.7	12.2
E200	27	29.0 28.4	31.6 24.3	33.6 18	7 27.4	1 27.1	30.1 23.6	32.7	18.5	25.6	25.6	28.0	22.7	31.4	17.8	23.9	23.9	25.6	21.6	29.8	17.1
5200	30	31.0 31.0	31.9 29.0	33.9 23	0 29.	7 29.7	30.5 28.6	32.9	22.8	28.1	28.1	28.1	28.1	31.5	22.5	26.3	26.3	26.5	25.7	29.9	22.0
	33	32.6 32.6	32.7 32.1	34.1 27	3 31.0	31.6	31.6 31.4	33.2	27.3	30.4	30.4	30.3	30.3	31.8	27.2	28.9	28.9	28.8	28.8	30.2	26.8
	24	28.8 25.8	31.9 20.4	33.6 14	4 26.8	3 24.8	30.5 19.6	32.8	13.9	24.2	24.2	28.5	18.7	31.6	13.4	22.5	22.5	26.0	17.6	30.1	12.6
5780	27	30.1 29.8	32.1 25.4	34.0 19	2 28.0	28.6	30.7 25.0	32.9	19.1	26.8	26.8	28.8	24.2	31.7	18.6	25.0	25.0	26.3	23.1	30.2	17.9
3760	30	32.0 32.0	32.5 30.5	34.2 23	7 30.9	30.9	30.9 30.9	33.2	23.7	29.4	29.4	29.4	29.4	31.9	23.6	27.6	27.6	27.7	27.2	30.3	23.2
	33	33.4 33.4	33.4 33.2	34.5 28	1 32.0	32.6	32.5 32.5	33.6	28.5	31.4	31.4	31.4	31.4	32.3	28.5	30.0	30.0	30.0	30.0	30.8	28.3
	24	29.5 27.3	32.2 21.1	00.0			31.0 20.9		14.4	25.1	25.1	29.1	19.6	31.8	13.8		22.9	26.5	18.5	30.4	12.9
6360	27	31.0 31.0	32.5 26.5		7 29.	7 29.7	31.2 26.3			27.9	27.9		25.6	32.0	19.2		26.0	27.0	24.5		18.7
0300	30	32.7 32.7	33.0 31.7		-		31.7 31.7			30.4	30.4	30.5	29.9	32.3	24.5		28.8	28.8	28.6		24.3
	33	34.0 34.0	34.0 34.0	34.8 28	9 33.2	2 33.2	33.2 33.2	33.9	29.5	32.1	32.1	32.1	32.1	32.7	29.7	30.9	30.9	30.9	30.9	31.3	29.7
	24	30.1 28.7	32.5 21.7			27.9	31.3 21.4		14.7	26.0	26.0		20.4	32.2	14.2		23.9	27.0	19.4	30.6	13.3
6940	27	31.7 31.7	32.8 27.4				31.6 27.4			28.8	28.8		26.9	32.3	19.7		26.9	27.6	25.9		19.4
0340	30	33.2 33.2	33.2 33.2		-		32.4 31.7		25.2	31.2			30.9	32.6	25.4	-	29.7	29.7	29.7	31.0	25.3
	33	34.4 34.4	34.4 34.4	35.2 30	0 33.	7 33.7	33.7 33.7	34.2	30.4	32.9	32.9	32.9	32.9	33.1	30.8	31.5	31.5	31.5	31.5	31.4	31.4

Table PD-4a - Gross Cooling Capacities (MBH) - YSC102AD - (IP)

							Α	mbient Tem	oeratur	e (F)					
	Enter.		85				95				105			115	
	Dry														
	Bulb						Entering	Wet Bulb T	empera	iture (F)				
CFM	Temp	61	67	73	61		67	73	6	1	67	73	61	67	73
Airflow	(F)	TGC SHC	TGC SHC	TGC SHC	TGC	SHC	TGC SHC	TGC SHC	TGC	SHC	TGC SHC	TGC SHC	TGC SHC	TGC SHC	TGC SHC
	75	96.7 81.9	109.1 63.4	115.0 42.2	89.1	78.1	104.0 60.7	112.1 40.4	81.2	74.1	96.3 59.2	107.9 38.3	73.7 70.3	87.0 55.2	102.4 35.8
2000	80	98.2 98.2	109.4 78.3	116.1 58.1	92.7	90.8	104.2 76.3	113.0 56.2	85.7	85.2	96.6 72.9	108.5 53.9	79.3 79.3	87.4 68.8	102.7 51.3
3060	85	105.0 105.0	110.2 93.1	117.3 70.8	100.0	100.0	105.0 91.8	113.6 70.4	93.6	93.6	98.0 88.8	108.9 68.7	86.8 86.8	89.2 84.7	103.1 66.7
	90	110.4 110.4	111.6 107.4	118.0 84.0	106.5	106.5	106.4 106.4	114.4 83.5	101.4	101.4	101.7 99.6	109.6 83.1	94.8 94.8	94.9 94.6	103.5 81.6
	75	99.3 87.0	110.2 65.9	115.6 42.9	91.8	83.2	105.8 63.7	112.9 41.1	83.6	79.1	98.7 60.6	108.8 39.0	75.2 75.2	89.0 58.6	103.4 36.5
3400	80	102.5 100.4	110.9 81.6	116.9 59.2	96.7	95.9	106.0 80.4	113.8 58.8	89.7	89.7	99.0 77.4	109.6 56.1	82.9 82.9	89.7 73.3	103.9 53.5
3400	85	108.4 108.4	111.9 97.4	118.2 72.7	104.1	104.1	107.2 97.0	114.6 72.7	98.2	98.2	100.8 94.9	110.1 71.5	91.0 91.0	91.0 91.0	104.2 70.0
	90	113.2 113.2	113.1 113.1	119.5 86.5	109.7	109.7	109.9 107.6	115.6 86.6	105.1	105.1	105.1 104.4	111.0 86.9	99.4 99.4	99.2 99.2	105.1 86.0
	75	101.6 91.8	111.3 67.8	116.2 43.6	94.3	88.2	107.1 66.5	113.5 41.8	84.7	84.7	100.4 63.0	109.5 39.6	78.4 76.4	90.9 59.0	104.2 37.1
3740	80	105.4 104.4	112.1 84.5	117.6 60.0	100.3	100.3	107.4 84.0	114.7 59.4	93.4	93.4	100.9 81.6	110.0 57.9	86.1 86.1	91.7 77.7	104.8 55.6
3740	85	111.0 111.0	113.3 101.2	118.9 74.2	107.0	107.0	108.9 101.7	116.0 74.8	101.8	101.8	101.8 101.8	111.2 73.8	94.9 94.9	94.9 94.9	105.3 72.9
	90	115.2 115.2	115.2 115.2	120.3 88.6	112.1	112.1	112.1 111.1	116.5 89.3	107.8	107.8	107.7 107.7	112.1 90.2	102.6 102.6	102.6 102.6	106.4 90.0
	75	103.5 96.3	112.1 69.5	116.6 43.8	94.9	94.9	107.9 68.7	114.0 42.5	87.5	87.5	101.8 65.6	110.0 40.3	80.7 79.5	92.4 61.7	104.8 37.8
4080	80	107.9 107.9	113.0 87.1	118.1 60.8	103.1	103.1	108.6 87.3	115.3 60.3	96.8	96.8	102.5 85.6	110.7 59.5	89.1 89.1	93.7 82.0	105.4 57.5
4000	85	112.9 112.9	114.4 104.5	119.5 75.5	109.3	109.3	110.4 105.7	116.7 76.5	104.5	104.5	104.5 104.5	111.9 76.7	98.2 98.2	98.6 96.7	106.2 75.5
	90	116.7 116.7	116.7 116.7	120.9 90.6	113.9	113.9	113.8 113.8	117.9 92.9	109.9	109.9	109.8 109.8	113.0 93.2	104.9 104.9	104.9 104.9	107.5 93.5

All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.
 TGC = Total Gross Capacity
 SHC = Sensible Heat Capacity

Notes:

1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.

2. TGC = Total Gross Capacity

3. SHC = Sensible Heat Capacity

Table PD-5 - Gross Cooling Capacities (kW) - YSC120AD - (SI)

											Ar	nbien	t Temp	erature	e (C)										
	Enter.			3	0					3	15					4	0					45	;		
	Dry																								
	Bulb									En	tering	Wet E	Bulb Te	mpera	iture (C)									
m³/h	Temp	16	3	1	9	2	22	10	3	1	9	2	2	1	6	1	9	2	2	16	i	19)	22	2
Airflow	(C)	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC	TGC	SHC								
	24	31.9	28.6	35.3	22.8	37.2	15.9	29.6	27.4	33.6	21.7	36.5	15.4	27.1	26.2	31.0	20.5	35.2	14.8	24.6	24.6	28.4	19.9	33.2	14.0
6100	27	33.4	33.4	35.5	28.2	37.7	21.4	31.6	31.6	33.9	27.8	36.7	21.4	29.5	29.5	31.3	26.6	35.3	20.7	27.5	27.5	28.9	25.5	33.3	19.9
6120	30	35.5	35.5	36.0	33.8	38.1	26.5	34.2	34.2	34.5	33.8	37.0	26.7	32.3	32.3	32.2	32.2	35.5	26.6	30.4	30.4	30.4	30.4	33.4	25.9
	33	37.1	37.1	37.1	37.1	38.5	31.6	36.2	36.2	36.2	36.2	37.3	31.9	34.8	34.8	34.8	34.8	35.9	32.3	33.2	33.2	33.2	33.2	34.0	31.8
	24	32.7	30.4	35.7	23.8	37.5	16.3	30.5	29.3	34.2	22.8	36.8	15.9	27.8	27.8	31.9	21.8	35.5	15.3	25.7	25.7	29.0	21.2	33.7	14.5
6800	27	34.5	34.5	36.0	29.5	38.0	21.9	32.9	32.9	34.5	29.4	37.0	22.0	30.9	30.9	32.3	28.5	35.7	21.7	28.7	28.7	29.7	27.4	33.8	21.0
0000	30	36.3	36.3	36.6	35.4	38.4	27.4	35.3	35.3	35.3	35.3	37.3	27.6	33.7	33.7	33.7	33.7	35.9	27.8	31.8	31.8	31.7	31.7	34.0	27.5
	33	37.9	37.9	37.8	37.8	38.9	32.8	37.0	37.0	37.0	37.0	37.8	33.3	35.9	35.9	35.9	35.9	36.5	33.9	34.4	34.4	34.4	34.4	34.7	33.8
	24	33.5	32.2	36.0	24.7	37.8	16.9	31.1	31.1	34.7	23.9	37.0	16.3	28.9	28.9	32.4	22.9	35.8	15.7	26.6	26.6	29.6	22.5	34.1	14.9
7480	27	35.3	35.3	36.4	30.6	38.2	22.4	34.0	34.0	35.0	30.8	37.4	22.7	32.0	32.0	33.0	30.2	36.0	22.5	29.9	29.9	30.5	29.1	34.2	22.0
7400	30	37.0	37.0	37.0	37.0	38.7	28.1	36.1	36.1	36.1	36.1	37.9	28.9	34.7	34.7	34.7	34.7	36.4	29.1	32.9	32.9	32.9	32.9	34.5	29.0
	33	38.4	38.4	38.3	38.3	39.2	33.7	37.7	37.7	37.7	37.7	38.4	34.9	36.7	36.7	36.7	36.7	37.0	35.4	35.3	35.3	35.3	35.3	35.3	35.3
	24	33.9	33.9	36.3	24.9	37.9	17.3	32.0	32.0	35.0	25.6	37.5	16.1	29.8	29.8	32.8	23.9	36.1	16.2	27.5	27.5	29.8	23.6	34.4	15.3
8160	27	35.9	35.9	36.7	31.7	38.5	22.8	34.8	34.8	35.5	32.2	37.7	23.2	32.9	32.9	33.6	31.9	36.3	23.2	30.6	30.6	30.6	30.6	34.5	23.0
0100	30	37.5	37.5	37.5	37.5	38.9	28.8	36.7	36.7	36.7	36.7	38.1	29.8	35.5	35.5	35.5	35.5	36.7	30.2	33.7	33.7	33.7	33.7	34.9	30.5
	33	38.8	38.8	38.7	38.7	39.5	34.6	38.4	38.4	38.2	38.2	38.7	36.1	37.3	37.3	37.3	37.3	37.4	36.7	36.0	36.0	36.0	36.0	36.0	36.0

- 1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.

 2. TGC = Total Gross Capacity

 3. SHC = Sensible Heat Capacity

Table PD-5a - Gross Cooling Capacities (MBH) - YSC120AD - (IP)

							Ar	nbient Temp	erature	(F)					
	Enter.		85				95			. ,	105			115	
	Dry														
	Bulb						Entering	Wet Bulb Te	mperati	ure (F	=)				
CFM	Temp	61	67	73	61		67	73	61		67	73	61	67	73
Airflow	(F)	TGC SHC	TGC SHC	TGC SHC	TGC	SHC	TGC SHC	TGC SHC	TGC S	SHC	TGC SHC	TGC SHC	TGC SHC	TGC SHC	TGC SHC
	75	109.9 96.4	122.1 73.8	128.5 47.6	101.2	92.1	116.7 70.3	125.9 45.7	91.8	87.5	107.7 67.7	121.6 43.4	82.1 82.1	97.2 63.2	115.0 40.9
2000	80	113.5 113.5	122.6 90.4	129.9 65.7	106.6	106.6	117.1 89.2	127.2 65.0	99.0	99.0	108.4 85.4	122.2 62.4	91.0 91.0	98.2 81.0	115.2 59.7
3600	85	120.2 120.2	123.8 108.0	131.3 80.9	115.2	115.2	118.5 107.9	127.8 81.5	108.1 1	08.1	110.5 104.9	122.6 80.6	100.3 100.3	100.3 100.3	115.4 78.4
	90	125.4 125.4	125.4 125.4	132.7 96.3	121.8	121.8	121.8 121.8	128.7 97.3	116.41	16.4	116.4 116.4	123.6 98.2	109.2 109.2	109.2 109.2	116.4 97.0
	75	112.7 102.4	123.1 75.6	129.3 48.4	104.2	98.3	118.5 73.6	126.9 46.6	93.7	93.7	109.9 70.9	122.7 44.3	85.6 85.6	99.3 67.2	116.5 41.9
4000	80	117.3 117.3	124.1 94.1	130.8 66.9	111.1	111.1	119.0 94.0	128.2 66.8	103.5 1	03.5	110.8 90.8	123.5 65.3	95.2 95.2	100.8 86.6	116.8 62.5
4000	85	123.2 123.2	125.6 112.8	132.3 82.9	119.0	119.0	120.8 114.1	129.5 84.5	112.5 1	12.5	112.5 112.5	124.1 84.2	104.9 104.9	104.8 104.8	117.1 83.0
	90	127.9 127.9	127.9 127.9	133.8 99.2	124.9	124.9	124.9 124.9	130.8 102.4	120.2 1	20.2	120.2 120.2	125.3 103.1	113.9 113.9	113.8 113.8	118.4 102.9
	75	115.1 108.2	124.5 77.5	130.0 49.2	107.0	104.4	119.8 77.6	127.6 47.4	97.3	97.3	111.7 73.2	123.6 45.2	88.7 88.7	101.1 71.1	117.6 42.7
4400	80	120.1 120.1	125.3 97.3	131.6 67.9	114.9	114.9	120.6 98.4	129.0 68.2	107.3 1	07.3	112.9 96.1	124.5 68.1	98.9 98.9	103.1 92.0	118.0 65.1
4400	85	125.5 125.5	127.0 116.9	133.1 84.7	121.9	121.9	122.8 119.6	130.5 87.0	116.4 1	16.4	116.3 116.3	125.3 88.0	108.7 108.7	108.7 108.7	118.4 87.0
	90	130.0 130.0	129.7 129.7	134.7 101.8	127.3	127.3	127.2 127.2	131.9 105.9	123.0 1	23.0	123.0 123.0	126.7 107.5	117.2 117.2	117.2 117.2	120.2 108.4
	75	117.1 113.2	125.5 81.7	130.6 50.0	108.8	108.8	120.8 80.6	128.3 48.2	100.5 1	00.5	113.2 76.3	124.3 46.1	91.6 91.6	102.7 72.1	118.5 43.6
4800	80	122.3 122.3	126.5 100.7	132.2 68.9	117.8	117.8	122.0 102.4	129.8 69.5	110.5 1	10.5	114.9 101.3	125.7 69.3	102.2 102.2	105.2 97.3	119.0 67.7
4000	85	127.2 127.2	128.4 121.1	133.8 86.3	124.1	124.1	124.1 124.1	131.2 89.2	119.01	19.0	119.0 119.0	126.5 90.9	112.0 112.0	112.0 112.0	119.7 90.9
	90	131.3 131.3	131.5 131.5	135.4 104.2	129.3	129.3	129.0 129.0	132.8 108.9	125.2 1	25.2	125.2 125.2	127.8 111.4	119.8 119.8	119.8 119.8	121.7 113.3

- Notes:

 1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat.

 2. TGC = Total Gross Capacity

 3. SHC = Sensible Heat Capacity

Table PD-6 - Belt Drive Evaporator Fan Performance - YSC060AD*L - Low Heat - Downflow Configuration - (SI)

External Static Pressure (Pascals) 25 50 125 150 175 200 225 250 RPM RPM RPM RPM RPM m3/h **RPM** kW kW kW kW kW **RPM** kW **RPM** kW RPM kW kW RPM kW 1.12 Nom kW Standard Motor & Low Static Drive 1.12 Nom kW Std Mtr & Drive 2720 716 0.28 768 0.32 816 0.36 863 0.39 909 0.44 953 0.50 993 0.55 1031 0.60 1067 0.65 1101 0.70 3060 791 0.38 840 0.43 884 0.47 927 969 0.56 1010 0.61 1049 1087 1122 0.79 1156 0.85 0.51 0.67 0.73 3400 867 0.51 914 0.56 955 0.61 994 0.66 1033 0.71 1070 0.76 1107 0.82 1143 0.88 1178 0.95 1212 1.02 3740 944 0.66 989 0.73 1027 0.78 1063 0.84 1099 0.89 1134 0.94 1168 0.99 1202 1.05 1235 1267 0.85 1168 4080 1022 1064 0.92 1101 0.98 1135 1.04 1.10 1200 1.16 1233 1.22

			Exte	ernal Sta	atic Press	ure (Pas	cals)			
	27	75	30	00	32	25	35	50	37	75
m3/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
		1.12	Nom kV	V Stand	ard Moto	or & Driv	/e			
2720	1135	0.75	1166	0.80	1198	0.85	1228	0.91	1258	0.96
3060	1188	0.90	1218	0.96	1249	1.01	1279	1.07	1307	1.13
3400	1244	1.08	1273	1.14	1303	1.20	1332	1.27	-	-
3740	1300	1.27	-	-	-	-	-	-	-	-
4080	-	-	-	-	-	-	-	-	-	-

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.12 kW - Fan Motor Heat (\dot{k} W) = 1.144 x Fan kW + 0.132

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-6a - Belt Drive Evaporator Fan Performance - YSC060AD*L - Low Heat - Downflow Configuration - (IP)

								Externa	Static P	ressure	(Inches c	of Water)								
	0.1	10	0.2	20	0.	30	0.4	40	0.	50	0.0	60	0.7	70	0.8	80	0.9	90	1.0)0
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
				1-1/	2 HP Sta	andard N	/lotor &	Low Sta	tic Drive						1-1/	2 HP St	d Moto	r & Driv	/e	
1600	716	0.37	768	0.43	816	0.48	863	0.53	909	0.60	953	0.67	993	0.74	1031	0.81	1067	0.87	1101	0.94
1800	791	0.51	840	0.57	884	0.63	927	0.69	969	0.75	1010	0.82	1049	0.90	1087	0.99	1122	1.06	1156	1.14
2000	867	0.68	914	0.76	955	0.82	994	0.89	1033	0.95	1070	1.02	1107	1.10	1143	1.18	1178	1.27	1212	1.36
2200	944	0.89	989	0.97	1027	1.05	1063	1.12	1099	1.19	1134	1.26	1168	1.33	1202	1.41	1235	1.51	1267	1.60
2400	1022	1.14	1064	1.23	1101	1.32	1135	1.40	1168	1.48	1200	1.55	1233	1.63	-	-	-	-	-	-

			Exte	ernal Sta	atic Press	ure (Inc	hes of W	ater)		
	1.1	10	1.:	20	1.3	30	1.4	40	1.	50
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
		1-1/	2 HP Sta	ndard N	/lotor & [Orive				
1600	1135	1.01	1166	1.07	1198	1.14	1228	1.22	1258	1.29
1800	1188	1.21	1218	1.28	1249	1.36	1279	1.44	1307	1.51
2000	1244	1.45	1273	1.53	1303	1.61	1332	1.70	-	-
2200	1300	1.70	-	-	-	-	-	-	-	-
2400	-	-	-	-	-	-	-	-	-	-

Data Includes Pressure Drop Due To Wet Coils And Filters. 1 1/2 HP - Fan Motor Heat (MBH) = $2.915 \times Fan BHP + 0.451$ Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Performance

Table PD-7 - Belt Drive Evaporator Fan Performance - YSC060AD*L - Horizontal Configuration (SI)

								Externa	I Static P	ressure	(Pascals)									
	2	5	5	0	7	5	10	00	12	25	15	50	17	75	20	00	22	5	25	0
m3/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
		1.12	2 Nom I	kW Std	Motor 8	& Low \$	Static D	rive				1.13	2 Nom I	κW Sta	ndard I	Viotor 8	Drive)		
2720	788	0.33	850	0.38	911	0.44	964	0.49	1011	0.55	1055	0.61	1097	0.66	1137	0.72	1176	0.78	1213	0.84
3060	871	0.45	927	0.51	983	0.57	1035	0.64	1082	0.70	1124	0.76	1164	0.83	1201	0.89	1239	0.95	1275	1.02
3400	956	0.60	1006	0.67	1057	0.74	1106	0.81	1153	0.88	1195	0.95	1233	1.02	1270	1.09	1305	1.16	1339	1.23
3740	1042	0.78	1088	0.85	1133	0.93	1179	1.01	1224	1.09	1266	1.16	1305	1.24	1340	1.32	-	-	-	
4080	1129	1.00	1171	1.08	1213	1.16	1255	1.25	1296	1.33	-	-	-	-	-	-		-	-	-

			E	xternal	Static Pre	essure (Pascals)			
	2	75	3	300	32	25	35	50	37	' 5
m3/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
		1.12	Nom kV	N Stand	ard Moto	or & Driv	ve			
2720	1248	0.91	1282	0.97	1314	1.04	1344	1.11	1374	1.18
3060	1310	1.09	1344	1.16	-	-	-	-	-	-
3400	1373	1.30	-	-		-	-	-	-	-
3740	-	-	- -	-	-	-	-	-	-	-
4080	-	-	-	-	-	-	-	-	-	-

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.12 kW - Fan Motor Heat (kW) = 1.144 x Fan kW + 0.132

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-7a - Belt Drive Evaporator Fan Performance - YSC060AD*L - Horizontal Configuration - (IP)

								External	Static P	ressure	(Inches c	of Water))							
	0.1	10	0.3	20	0.0	30	0.4	40	0.	50	0.6	60	0.	70	0.	80	0.9	90	1.0	00
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
		1-1/	2 HP Sta	andard I	/lotor &	Low Sta	tic Drive					1-1/	2 HP Sta	ndard N	/lotor &	Drive				
1600	788	0.44	850	0.51	911	0.59	964	0.66	1011	0.74	1055	0.81	1097	0.89	1137	0.97	1176	1.05	1213	1.13
1800	871	0.60	927	0.68	983	0.77	1035	0.85	1082	0.94	1124	1.02	1164	1.11	1201	1.19	1239	1.28	1275	1.37
2000	956	0.80	1006	0.89	1057	0.99	1106	1.08	1153	1.18	1195	1.27	1233	1.36	1270	1.46	1305	1.55	1339	1.65
2200	1042	1.05	1088	1.15	1133	1.25	1179	1.35	1224	1.46	1266	1.56	1305	1.66	1340	1.77	1375	-	-	-
2400	1129	1.34	1171	1.45	1213	1.56	1255	1.67	1296	1.78	-	-	-	-	-	-	-		-	-

			E	cternal S	Static Pre	ssure (Ir	nches of \	Water)		
	1	.10	1.	20	1.	30	1.4	0	1.5	0
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
		1-1/	2 HP Sta	ndard N	/lotor & I	Orive				
1600	1248	1.21	1282	1.30	1314	1.39	1344	1.48	1374	1.58
1800	1310	1.46	1344	1.55	-	-	-	-	-	-
2000	1373	1.75	-	-	-	-	-	-	-	-
2200	-	-	-	-	-	-	-	-	-	-
2400	-	-	-	-	-	-	-	-	-	-

Data Includes Pressure Drop Due To Wet Coils And Filters. 1 1/2 HP - Fan Motor Heat (MBH) = 2.915 x Fan BHP + 0.451

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-8 - Belt Drive Evaporator Fan Performance - YSC060AD*H - High Heat - Downflow Configuration - (SI)

								External	Static P	ressure	(Pascals)									
	2	5	5	0	7	5	10	00	12	25	15	50	17	' 5	20	00	22	5	25	i0
m3/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
		1.12 Nom kW Standard Motor & Low Static Drive												1.12	Nom k	W Std I	/ltr & D	Orive		
2720	734	0.29	784	0.33	833	0.37	879	0.41	924	0.46	967	0.52	1007	0.57	1043	0.62	1078	0.67	1113	0.72
3060	813	0.40	859	0.45	903	0.49	945	0.53	987	0.58	1027	0.64	1066	0.70	1103	0.76	1137	0.82	1169	0.87
3400	894	0.54	936	0.59	976	0.64	1014	0.69	1052	0.73	1089	0.79	1126	0.85	1162	0.92	1196	0.98	1229	1.05
3740	974	0.70	1014	0.76	1051	0.82	1087	0.87	1122	0.92	1156	0.98	1190	1.03	1224	1.10	1257	1.17	1288	1.24
4080	1055	0.90	1093	0.97	1127	1.03	1160	1.09	1193	1.15	1225	1.20	1256	1.26	1288	1.32	-	-	-	-

			Е	xternal	Static Pro	essure (Pascals)			
	2	75	3	800	32	25	35	50	37	' 5
m3/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
		1.12	Nom kV	V Stand	ard Moto	or & Driv	ve			
2720	1145	0.77	1177	0.82	1208	0.87	1238	0.93	1268	0.98
3060	1202	0.93	1232	0.98	1262	1.04	1290	1.09	1319	1.15
3400	1260	1.11	1289	1.17	1319	1.24	1347	1.30	-	-
3740	1320	1.32	-	-	-	-	-	-	-	-
4080	-	-	-	-	-	-	-	-	-	-

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.12 kW - Fan Motor Heat (kW) = 1.144 x Fan kW + 0.132

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-8a - Belt Drive Evaporator Fan Performance - YSC060AD*H - High Heat - Downflow Configuration - (IP)

								External	Static P	ressure	(Inches c	of Water)								
	0.1	10	0.:	20	0.3	30	0.4	40	0.	50	0.0	60	0.7	70	0.8	80	0.9	0	1.0)0
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	1-1/	2 HP St	tandard I	Vlotor &	Low Sta	atic Drive	е									1-1/	2 HP St	d Moto	or & Dri	ve
1600	734	0.39	784	0.44	833	0.49	879	0.55	924	0.62	967	0.69	1007	0.76	1043	0.83	1078	0.89	1113	0.96
1800	813	0.54	859	0.60	903	0.66	945	0.72	987	0.78	1027	0.86	1066	0.94	1103	1.02	1137	1.09	1169	1.17
2000	894	0.72	936	0.79	976	0.86	1014	0.92	1052	0.98	1089	1.06	1126	1.14	1162	1.23	1196	1.32	1229	1.41
2200	974	0.94	1014	1.02	1051	1.10	1087	1.17	1122	1.24	1156	1.31	1190	1.38	1224	1.47	1257	1.57	1288	1.67
2400	1055	1.21	1093	1.30	1127	1.38	1160	1.46	1193	1.54	1225	1.61	1256	1.69	1288	1.77	-	-	-	-

		1.10	1	.20	1.	30	1.	40	1.	50
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
		1-1/	2 HP Sta	ndard N	/lotor & [Drive				
1600	1145	1.03	1177	1.10	1208	1.17	1238	1.24	1268	1.31
1800	1202	1.24	1232	1.32	1262	1.39	1290	1.47	1319	1.55
2000	1260	1.49	1289	1.57	1319	1.66	1347	1.74	-	-
2200	1320	1.77	-	-	-	-	-	-	-	-
2400	-	-	-	-	-	-	-	-	-	-

Notes:
Data Includes Pressure Drop Due To Wet Coils And Filters.
1 1/2 HP - Fan Motor Heat (MBH) = 2.915 x Fan BHP + 0.451

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-9 - Belt Drive Evaporator Fan Performance - YSC060AD*H - High Heat - Horizontal Configuration (SI)

								Externa	I Static P	ressure	(Pascals)									
	2	5	5	0	7	5	10	00	12	25	15	50	17	7 5	20	00	22	5	25	0
m3/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
		1.12	Nom kV	V Std M	otor & L	ow Stati	c Drive					1.12	Nom kV	V Stand	ard Mot	or & D	rive			
2720	809	0.34	871	0.40	930	0.46	980	0.51	1026	0.57	1069	0.63	1111	0.68	1151	0.74	1189	0.80	1225	0.87
3060	895	0.47	951	0.54	1006	0.60	1056	0.66	1100	0.73	1141	0.79	1180	0.85	1218	0.92	1255	0.98	1290	1.05
3400	983	0.63	_ 1033	0.70	1083	0.77	1131	0.84	1176	0.91	1216	0.98	1253	1.05	1289	1.13	1323	1.20	1357	1.27
3740	1072	0.83	1117	0.90	1163	0.98	1209	1.06	1251	1.14	1292	1.21	1329	1.29	-	-	-	-	-	-
4080	1161	1.06	1203	1.14	1245	1.23	1287	1.31	-	-	-	-	-	-	-	-	-	-	-	-

			Е	xternal	Static Pre	essure (Pascals)			
		275	3	800	32	25	35	0	37	'5
m3/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
			1.12	Nom k	W Stand	ard Mot	or & Driv	re		
2720	1260	0.93	1293	0.99	1324	1.06	1355	1.13	1383	1.20
3060	1324	1.12	1357	1.19	1390	1.26	-	-	-	-
3400	-	-	-	-	-	-	- -	-	-	-
3740	-	-	-	-	-	-	-	-	-	-
4080	-	-	-	-	-	-	-	-	-	-

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.12 kW - Fan Motor Heat (kW) = 1.144 x Fan kW + 0.132 Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-9a - Belt Drive Evaporator Fan Performance - YSC060AD*H - High Heat - Horizontal Configuration - (IP)

								Externa	Static P	ressure	(Inches c	of Water)							
	0.1	10	0.2	20	0.3	30	0.4	40	0.	50	0.0	60	0.	70	0.	80	0.9	90	1.0	00
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	1-1/2 HP Standard Motor & Low Static Drive												1-1/	2 HP St	andard	Motor &	& Drive			
1600	809	0.46	871	0.54	930	0.61	980	0.69	1026	0.76	1069	0.84	1111	0.92	1151	1.00	1189	1.08	1225	1.16
1800	895	0.64	951	0.72	1006	0.81	1056	0.89	1100	0.97	1141	1.06	1180	1.14	1218	1.23	1255	1.32	1290	1.41
2000	983	0.85	1033	0.94	1083	1.04	1131	1.13	1176	1.23	1216	1.32	1253	1.41	1289	1.51	1323	1.60	1357	1.70
2200	1072	1.11	1117	1.21	1163	1.32	1209	1.42	1251	1.52	1292	1.63	1329	1.73	-	-	-	-	-	-
2400	1161	1.42	1203	1.53	1245	1.64	1287	1.76	-	-	-	-	-	-	-	-	-	-	-	-

				Externa	al Static	Pressu	re (Incl	hes of	f Wate	r)	
	1.	10	1.2	20	1.30	0		1.40		1.50	
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BI	HP F	RPM B	HP
		1-1	/2 HP St	andard	Motor 8	& Drive	,				
1600	1260	1.24	1293	1.33	132	4 1.4	12 ′	1355	1.52	1383	1.60
1800	1324	1.50	1357	1.59	139	0 1.6	S9	-	-	-	-
2000		-	-	-	-	-		-	-	-	-
2200	-	-	-	-	-	-		-	-	-	-
2400	-	-	-	-	-	-		-	-	-	-

Notes

Data Includes Pressure Drop Due To Wet Coils And Filters. 1 1/2 HP - Fan Motor Heat (MBH) = 2.915 x Fan BHP + 0.451

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-10 - Belt Drive Evaporator Fan Performance - YSC072AD*L - Low Heat - Downflow Configuration - (SI)

1.12 Nom kW Standard Motor & Low Static Drive 1.12 Nom kW Standard Motor & Drive 3260 - -									I	External	Static Pr	essure (F	Pascals)								
1.12 Nom kW Standard Motor & Low Static Drive 1.12 Nom kW Standard Motor & Drive 3260 - -		2	.5	5	50	7	5	10	00	1:	25	15	50	17	75	20	00	22	.5	25	0
3260 532 0.22 592 0.27 646 0.32 695 0.37 740 0.43 783 0.48 824 0.54 864 0.61 901 0. 3670 570 0.28 624 0.33 677 0.39 725 0.45 768 0.51 809 0.57 848 0.63 886 0.70 923 0. 4080 556 0.30 610 0.36 659 0.41 707 0.48 755 0.55 798 0.61 838 0.67 876 0.74 912 0.81 947 0.	m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
3670 570 0.28 624 0.33 <u>677 0.39</u> 725 0.45 768 0.51 809 0.57 848 0.63 886 0.70 923 0. 4080 556 0.30 610 0.36 <u>659 0.41</u> 707 0.48 755 0.55 798 0.61 838 0.67 876 0.74 912 0.81 <u>947 0.</u>		1.12	2 Nom k	W Stand	lard Mot	or & Lov	v Static	Drive					1.12	Nom kV	V Stand	ard Mot	or & D	rive			
4080 556 0.30 610 0.36 659 0.41 707 0.48 755 0.55 798 0.61 838 0.67 876 0.74 912 0.81 947 0.	3260	-	-	532	0.22	592	0.27	646	0.32	695	0.37	740	0.43	783	0.48	824	0.54	864	0.61	901	0.67
	3670	-	-	570	0.28	624	0.33	677	0.39	725	0.45	768	0.51	809	0.57	848	0.63	886	0.70	923	0.77
4400 004 0.00 000 0.00 0.00 0.01 744 0.00 700 0.00 0.70 0.00 0.70 0.00 0.0	4080	556	0.30	610	0.36	659	0.41	707	0.48	755	0.55	798	0.61	838	0.67	876	0.74	912	0.81	947	0.88
4490 601 0.39 <u>652 0.45</u> 698 0.51 741 0.58 786 0.65 828 0.72 868 0.79 905 0.86 939 0.93 973 1.	4490	601	0.39	652	0.45	698	0.51	741	0.58	786	0.65	828	0.72	868	0.79	905	0.86	939	0.93	973	1.01
4890 646 0.49 694 0.57 737 0.62 778 0.69 818 0.77 859 0.85 898 0.93 936 1.00 970 1.08 100 <u>3</u> 1.	4890	646	0.49	694	0.57	737	0.62	778	0.69	818	0.77	859	0.85	898	0.93	936	1.00	970	1.08	1003	1.16

1.12 Nom kW Standard Motor & Hi Static Drive

				Externa	I Static P	ressure	(Pascals)			
	27	75	30	00	32	25	35	50	37	75
CFM	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
	1.12	Nom k	N Std N	lotor	1.12	Nom k	W Stand	ard Mot	or	
		& Drive			& H	i Static I	Drive			
3260	937	0.73	970	0.79	1004	0.85	1036	0.91	1067	0.97
3670	957	0.83	992	0.90	1024	0.97	1057	1.04	1086	1.11
4080	981	0.95	1014	1.02	1046	1.10	1077	1.18	1108	1.25
4490	1007	1.08	1038	1.16	1070	1.24	1100	1.32	1130	1.40
4890	1034	1.24	1066	1.32	1095	1.40	1124	1.48	1154	1.57
				1.50	Nom kV	V Over-S	Sized Mo	tor		
					& H	igh Stat	ic Drive			

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.12 kW - Fan Motor Heat (kW) = $1.144 \times \text{Fan kW} + 0.132$ 1.50 kW - Fan Motor Heat (kW) = $1.178 \times \text{Fan kW} + 0.464$

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-10a - Belt Drive Evaporator Fan Performance - YSC072AD*L - Low Heat - Downflow Configuration - (IP)

			•									•							
							Externa	al Static	Pressure	(Inches	of Wate	r)							
.1	0	.2	20	.3	80	.۷	10	.5	50	.6	60	.7	70	3.	80	.9	0	1.0	00
RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
1-1/	2 HP S1	andard	Motor &	Low Sta	atic Drive	,				1-1/	2 HP St	andard N	/lotor &	Drive					
-	-	532	0.29	592	0.36	646	0.43	695	0.50	740	0.57	783	0.65	824	0.73	864	0.81	901	0.89
-	-	570	0.37	624	0.45	677	0.53	725	0.61	768	0.68	809	0.76	848	0.85	886	0.94	923	1.03
556	0.41	610	0.48	659	0.56	707	0.64	755	0.73	798	0.82	838	0.90	876	0.99	912	1.08	947	1.18
601	0.52	652	0.61	698	0.69	741	0.77	786	0.87	828	0.97	868	1.06	905	1.16	939	1.25	973	1.35
646	0.66	694	0.76	737	0.84	778	0.93	818	1.03	859	1.13	898	1.24	936	1.35	970	1.45	1003	1.55
	RPM 1-1/ - - 556 601	1-1/2 HP St 556 0.41 601 0.52	RPM BHP RPM 1-1/2 HP Standard - 532 - 570 556 0.41 610 601 0.52 652	RPM BHP RPM BHP 1-1/2 HP Standard Motor & - - 532 0.29 - - 570 0.37 556 0.41 610 0.48 601 0.52 652 0.61	RPM BHP RPM BHP RPM 1-1/2 HP Standard Motor & Low Stan	RPM BHP RPM BHP RPM BHP 1-1/2 HP Standard Motor & Low Static Drive - - 532 0.29 592 0.36 - - 570 0.37 624 0.45 556 0.41 610 0.48 659 0.56 601 0.52 652 0.61 698 0.69	RPM BHP RPM BHP RPM BHP RPM 1-1/2 HP Standard Motor & Low Static Drive - - 532 0.29 592 0.36 646 - - 570 0.37 624 0.45 677 556 0.41 610 0.48 659 0.56 707 601 0.52 652 0.61 698 0.69 741	.10 .20 .30 .40 RPM BHP RPM BHP BHP RPM BHP BPM BHP BHP BHP BHP BPM BHP BPM BHP BHP	.10 .20 .30 .40 .5.5 RPM BHP RPM BHP RPM BHP RPM RPM 1-1/2 HP SHP SHP RPM BHP CR CR<	.10 .20 .30 .40 .50 RPM BHP RPM BPM BPM BPM	.10 .20 .30 .30 .40 .50 .50 .66 RPM BHP RPM BHP RPM BHP RPM BHP RPM 1-1/2 HP Standard Motor & Low Static Drive 1-1/2 - - 532 0.29 592 0.36 646 0.43 695 0.50 740 - - 570 0.37 624 0.45 677 0.53 725 0.61 768 556 0.41 610 0.48 659 0.56 707 0.64 755 0.73 798 601 0.52 652 0.61 698 0.69 741 0.77 786 0.87 828	.10 .20 .30 .40 .50 .50 .60 HP RPM BHP RPM BHP	RPM BHP RPM RPM	RPM BHP RPM	External Static Pressure (Inches of Water) RPM BHP RPM RPM	RPM BHP RPM	Static Pressure Control Con	State State Pressure Control Contro	External Static Pressure (Inches of Water) 1.0

1-1/2 HP Standard Motor & Hi Static Drive

			Exte	rnal Sta	tic Press	ure (Incl	nes of Wa	ater)		
	1.1	10	1.3	20	1.3	30	1.4	40	1.	50
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	1-1/	2 HP Sto	d Mtr		1-1/	2 HP St	andard N	lotor &		
		& Drive			Hi S	Static Di	rive			
1920	937	0.98	970	1.05	1004	1.13	1036	1.22	1067	1.30
2160	957	1.12	992	1.21	1024	1.30	1057	1.40	1086	1.48
2400	981	1.27	1014	1.37	1046	1.48	1077	1.58	1108	1.68
2640	1007	1.45	1038	1.56	1070	1.66	1100	1.77	1130	1.88
2880	1034	1.66	1066	1.77	1095	1.87	1124	1.99	1154	2.11
				2 HI	Over-Si	zed Mot	tor & Hi	Static D	rive	

Data Includes Pressure Drop Due To Wet Coils And Filters. 1 1/2 HP - Fan Motor Heat (MBH) = 2.915 x Fan BHP + 0.451 2 HP - Fan Motor Heat (MBH) = 3.000 x Fan BHP + 0.500

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Definite Furpose Wood's, Specificary Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-11 - Belt Drive Evaporator Fan Performance - YSC072AD*L - Horizontal Configuration (SI)

								l	External	Static Pr	essure (l	Pascals)								
	2	5	5	0	7	5	10	00	1:	25	15	50	17	75	20	00	22	5	25	0
m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
		1.12	Nom kV	N Std M	tr &					1.12	Nom kV	V Standa	ard Moto	or & Dri	ve					
		Low	Static [Orive																
3260	-	-	586	0.25	645	0.31	695	0.35	741	0.41	785	0.47	828	0.53	870	0.59	913	0.66	952	0.72
3670	584	0.28	629	0.33	685	0.38	735	0.45	779	0.50	820	0.56	860	0.63	898	0.70	937	0.77	976	0.84
4080	640	0.38	679	0.43	726	0.48	775	0.55	819	0.62	858	0.68	896	0.74	932	0.81	967	0.89	1002	0.97
4490	696	0.49	732	0.54	770	0.60	816	0.66	860	0.74	899	0.82	935	0.88	970	0.95	1004	1.03	1036	1.11
4890	752	0.62	786	0.68	818	0.74	858	0.81	900	0.88	940	0.97	977	1.05	1010	1.13	1042	1.20	1072	1.27
			1.12	Nom k	W Stand	ard Mot	tor & Driv	/e					1.12 No	m kW S	Standard	Motor	& Hi St	atic Dri	ve	

				Externa	I Static P	ressure	(Pascals)			
	27	75	30		32		35		37	75
CFM	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
			1.12	Nom k	W Stand	ard Mot	or & Hi S	Static Dr	rive	
3260	990	0.78	1027	0.85	1063	0.92	1096	0.99	1129	1.06
3670	1012	0.90	1048	0.98	1082	1.05	1117	1.12	1149	1.20
4080	1038	1.04	1072	1.12	1106	1.20	1139	1.27	1169	1.35
4490	1067	1.19	1100	1.28	1132	1.36	1164	1.45	1194	1.53
4890	1103	1.36	1134	1.45	1163	1.54	1191	1.63	1221	1.72
		150	Nom kV	V Over-9	Sized Mo	tor & H	i Static D	rive		

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.12 kW - Fan Motor Heat (kW) = 1.144 x Fan kW + 0.132 1.50 kW - Fan Motor Heat (kW) = 1.178 x Fan kW + 0.464

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-11a - Belt Drive Evaporator Fan Performance - YSC072AD*L - Horizontal Configuration - (IP)

								Externa	al Static	Pressure	(Inches	of Water	-)							
	.1	0	.2	20	.3	30	.4	10		50	.6	60	.7	0	3.	80	.9	0	1.0	00
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	1-1/	2 HP St	tandard	Motor &	Low Sta	atic Drive	,		1-1/	2 HP Sta	ndard N	/lotor &	Drive							
1920	-	-	586	0.33	645	0.41	695	0.48	741	0.55	785	0.63	828	0.71	870	0.79	913	0.88	952	0.96
2160	584	0.38	629	0.44	685	0.52	735	0.60	779	0.67	820	0.75	860	0.84	898	0.94	937	1.03	976	1.12
2400	640	0.50	679	0.57	726	0.64	775	0.74	819	0.83	858	0.91	896	0.99	932	1.09	967	1.19	1002	1.29
2640	696	0.65	732	0.73	770	0.80	816	0.89	860	1.00	899	1.10	935	1.19	970	1.28	1004	1.38	1036	1.49
2880	752	0.83	786	0.92	818	0.99	858	1.08	900	1.18	940	1.30	977	1.41	1010	1.51	1042	1.60	1072	1.70
	0 752 0.83 786 0.92 818 0.99 858 1.08 1-1/2 HP Standard Motor & Drive												1-1/	2 HP St	d Motor	& Hi St	tatic Dri	ve		

			Exte	rnal Sta	tic Press	ure (Incl	hes of Wa	ater)		
	1.1	10	1.3	20	1.3	30	1.4	40	1.9	50
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
			1-1/	2 HP St	andard N	lotor &	Hi Static	Drive		
1920	990	1.05	1027	1.14	1063	1.24	1096	1.33	1129	1.42
2160	1012	1.21	1048	1.31	1082	1.40	1117	1.50	1149	1.61
2400	1038	1.40	1072	1.50	1106	1.60	1139	1.71	1169	1.81
2640	1067	1.60	1100	1.71	1132	1.83	1164	1.94	1194	2.05
2880	1103	1.82	1134	1.94	1163	2.07	1191	2.19	1221	2.31
			2 H	P Over-S	ized Mo	tor & Hi	Static D	rive		

Data Includes Pressure Drop Due To Wet Coils And Filters.

1 1/2 HP - Fan Motor Heat (MBH) = 2.915 x Fan BHP + 0.451

2 HP - Fan Motor Heat (MBH) = 3.000 x Fan BHP + 0.500

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All
Cataloged Conditions. Using The Full Horsepower Range
Of Our Fan Motors As Shown In OurTabular Data Will
Not Result In Nuisance Tripping Or Premature Motor
Failure. Our Product's Warranty Will Not Be Affected.

Table PD-12 - Belt Drive Evaporator Fan Performance - YSC072AD*H - High Heat - Downflow Configuration - (SI)

								E	External	Static Pr	essure (F	Pascals)								
	2	5	5	0	7	5	10	00	12	25	1!	50	17	75	20	00	22	5	25	0
m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
				1.12	Nom kV	V Standa	ard Moto	or & Lov	v Static I	Orive				1.12	Nom k	N Stand	dard Mo	tor & l	Drive	
3260	-	-	586	0.26	641	0.31	690	0.37	735	0.42	779	0.48	820	0.54	859	0.60	896	0.66	932	0.72
3670	577	0.29	631	0.34	684	0.40	731	0.46	773	0.52	814	0.58	854	0.64	891	0.71	928	0.78	963	0.84
4080	630	0.38	678	0.44	727	0.50	773	0.57	814	0.64	853	0.70	890	0.77	926	0.84	961	0.91	994	0.98
4490	684	0.49	728	0.56	772	0.63	815	0.70	857	0.77	894	0.84	929	0.91	963	0.98	996	1.06	1028	1.14
4890	738	0.63	779	0.69	818	0.77	860	0.85	899	0.93	936	1.01	970	1.08	1003	1.16	1035	1.24	1066	1.32
																			-71	

1.50 Nom kW Over-Sized Motor & High Static Drive

				Externa	I Static P	ressure	(Pascals)								
	27	75	30	00	32	25	35	50	37	75					
CFM	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW					
	1.12	Nom k	W Std M	lotor			1.12	Nom k	W Std M	tr					
	& Drive & Hi Static Drive														
3260	968	0.78	1000	0.84	1033	0.90	1063	0.96	1094	1.03					
3670	996	0.91	1028	0.98	1061	1.05	1091	1.12	1121	1.18					
4080	1027	1.05	1058	1.13	1090	1.21	1118	1.28	1149	1.36					
4490	1060	1.22	1090	1.29	1120	1.38	1150	1.46	1178	1.54					
4890	1096	1.40	1125	1.48	1155	1.57	1181	1.66	1210	1.75					
		1.50	Nom kV	V Over-9	Sized Mo	tor & Hi	igh Statio	Drive							

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.12 kW - Fan Motor Heat (kW) = $1.144 \times \text{Fan kW} + 0.132$ 1.50 kW - Fan Motor Heat (kW) = $1.178 \times \text{Fan kW} + 0.464$ Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-12a - Belt Drive Evaporator Fan Performance - YSC072AD*H - High Heat - Downflow Configuration - (IP)

								Externa	al Static	Pressure	(Inches	of Wate	r)							
	.10 .20 .30 .40										.6	60	.7	70	3.	30	.9	0	1.0	00
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	1-1/2 HP Standard Motor & Low Static Drive												1-1/	2 HP St	andard	Motor &	& Drive			
1920	-	-	586	0.35	641	0.42	690	0.49	735	0.56	779	0.64	820	0.72	859	0.80	896	0.88	932	0.96
2160	577	0.38	631	0.46	684	0.54	731	0.62	773	0.69	814	0.78	854	0.86	891	0.95	928	1.04	963	1.13
2400	630	0.51	678	0.59	727	0.68	773	0.77	814	0.85	853	0.94	890	1.03	926	1.12	961	1.22	994	1.31
2640	684	0.66	728	0.75	772	0.84	815	0.94	857	1.04	894	1.13	929	1.22	963	1.32	996	1.42	1028	1.52
2880	738	0.84	779	0.93	818	1.03	860	1.14	899	1.24	936	1.35	970	1.45	1003	1.56	1035	1.66	1066	1.77
																			_	

2 HP Over-Sized Motor & Hi Static Drive

			Exte	rnal Sta	tic Press	ure (Inch	nes of Wa	ater)		
	1.1	10	1.3	20	1.3	30	1.4	40	1.	50
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
		1-1/	2 HP Sto	Mtr			1-1/	2 HP Sto	d Motor	&
			& Drive				Hi S	Static Dr	ive	
1920	968	1.05	1000	1.13	1033	1.21	1063	1.29	1094	1.38
2160	996	1.22	1028	1.31	1061	1.41	1091	1.50	1121	1.59
2400	1027	1.41	1058	1.51	1090	1.62	1118	1.72	1149	1.82
2640	1060	1.63	1090	1.74	1120	1.85	1150	1.96	1178	2.07
2880	1096	1.88	1125	1.99	1155	2.11	1181	2.22	1210	2.34
			2 HI	P Over-S	ized Mo	tor & Hi	Static D	rive		

Notes

Data Includes Pressure Drop Due To Wet Coils And Filters. 1 1/2 HP - Fan Motor Heat (MBH) = $2.915 \times Fan BHP + 0.451 \times P - Fan Motor Heat (MBH) = <math>3.000 \times Fan BHP + 0.500 \times P - Fan Motor Heat (MBH) = 3.000 \times Fan BHP + 0.500 \times P - Fan Motor Heat (MBH) = <math>3.000 \times Fan BHP + 0.500 \times P - Fan Motor Heat (MBH) = 3.000 \times P - Fan Motor Heat (MBH) = <math>3.000 \times Fan BHP + 0.500 \times P - Fan Motor Heat (MBH) = 3.00$

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-13 - Belt Drive Evaporator Fan Performance - YSC072AD*H - High Heat - Horizontal Configuration (SI)

									External	Static Pr	essure (F	Pascals)								
	2	5	5	0	7	5	10	00	1:	25	15	50	17	75	20	00	22	5	25	0
m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
		1.12	Nom k	N Standa	ard Moto	or & Lov	v Static I	Drive				1.12	Nom kV	V Stand	lard Mot	or & D	rive			
3260	579	0.24	639	0.30	690	0.35	736	0.40	780	0.46	824	0.52	866	0.59	907	0.65	947	0.71	986	0.78
3670	636	0.33	692	0.39	741	0.46	784	0.51	826	0.57	865	0.64	903	0.71	943	0.78	979	0.84	1017	0.91
4080	696	0.45	746	0.51	794	0.58	836	0.64	874	0.70	911	0.77	947	0.84	982	0.92	1017	1.00	1051	1.07
4490	757	0.58	802	0.64	847	0.72	888	0.80	924	0.86	959	0.93	993	1.00	1026	1.08	1058	1.17	1089	1.25
4890	818	0.74	858	0.81	900	0.88	940	0.97	977	1.05	1010	1.13	1042	1.20	1073	1.27	1104	1.36	1133 4	1.45
			1.12	Nom k	N Stand	ard Mot	or & Driv	ve								1.50	Nom I	W Ove	er-Sized	Motor
																& F	ligh Sta	tic Driv	e	

				Externa	I Static P	ressure	(Pascals)			
	27	' 5	30	0	32	25	35	50	37	' 5
CFM	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
					1.12	Nom k	W Stand	ard Mot	tor	
						& F	li Static D	Prive		
3260	1023	0.84	1059	0.92	1093	0.98	1126	1.06	1156	1.12
3670	1053	0.98	1087	1.06	1121	1.13	1153	1.21	1185	1.29
4080	1085	1.15	1119	1.23	1151	1.30	1182	1.38	1214	1.47
4490	1122	1.34	1153	1.42	1184	1.50	1215	1.59	-	-
4890	1163	1.54	1192	1.64	1221	1.72	-	-	-	-
		1.50	Nom kV	V Over-S	Sized Mo	tor & H	i Static D	rive		

1.12 Nom kW Std Mtr & Hi Static Drive

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.12 kW - Fan Motor Heat (kW) = $1.144 \times Fan \, kW + 0.132$ 1.50 kW - Fan Motor Heat (kW) = $1.178 \times Fan \, kW + 0.464$

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-13a - Belt Drive Evaporator Fan Performance - YSC072AD*H - High Heat - Horizontal Configuration - (IP)

				-						_			_							
								Extern	al Static	Pressure	(Inches	of Wate	r)							
	.1	0	.2	20	.3	30	.4	10		50	.6	60	.7	'0	3.	30	.9	0	1.0)0
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
		1-1/	2 HP St	andard I	Vlotor &	Low Sta	tic Drive	,					1-1/	2 HP S1	andard	Motor &	& Drive			
1920	579	0.33	639	0.40	690	0.47	736	0.54	780	0.62	824	0.70	866	0.79	907	0.87	947	0.95	986	1.04
2160	636	0.45	692	0.53	741	0.61	784	0.68	826	0.76	865	0.85	903	0.95	943	1.04	979	1.13	1017	1.23
2400	696	0.60	746	0.68	794	0.78	836	0.86	874	0.94	911	1.03	947	1.13	982	1.23	1017	1.34	1051	1.44
2640	757	0.78	802	0.86	847	0.96	888	1.07	924	1.16	959	1.25	993	1.35	1026	1.45	1058	1.56	1089	1.68
2880	818	1.00	858	1.08	900	1.18	940	1.30	977	1.41	1010	1.51	1042	1.61	1073	1.71	1104	1.82	1133	1.94
				1-1/	2 HP Sta	ındard N	lotor & I	Orive									2 H	P Over	-Sized N	Jotor
																	& F	li Statio	Drive	
																	1		-	

			Exte	rnal Sta	tic Press	ure (Incl	nes of Wa	ater)		
	1.	10	1.3	20	1.3	30	1.4	40	1.	50
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
					1-1/2 H	IP Stand	dard Mot	or & Hi	Static Dr	ive
1920	1023	1.13	1059	1.23	1093	1.32	1126	1.42	1156	1.51
2160	1053	1.32	1087	1.42	1121	1.52	1153	1.62	1185	1.72
2400	1085	1.54	1119	1.65	1151	1.75	1182	1.85	1214	1.96
2640	1122	1.79	1153	1.90	1184	2.01	1215	2.13	-	-
2880	1163	2.07	1192	2.19	1221	2.31	-	-	-	-
			2 HI	Over-S	Sized Mo	tor & Hi	Static D	rive		

1-1/2 HP Std Motor & Hi Static Drive

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 1 1/2 HP - Fan Motor Heat (MBH) = 2.915 x Fan BHP + 0.451 2 HP - Fan Motor Heat (MBH) = 3.000 x Fan BHP + 0.500 Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Performance

Table PD-14 - Belt Drive Evaporator Fan Performance - YSC090AD*L - Low Heat - Downflow Configuration - (SI)

									External	Static Pr	essure (F	Pascals)								
	2	5	5	0	7	5	10	00	1:	25	15	50	17	75	20	00	22	5	25	0
m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
				1.50	Nom kV	V Standa	ard Moto	or & Lov	v Static I	Orive			1.50	Nom k	W Stand	dard Mo	otor & D	Orive		
4080	-	-	-	-	676	0.44	726	0.50	773	0.57	815	0.64	854	0.70	891	0.77	928	0.84	963	0.91
4590	-	-	682	0.50	727	0.57	770	0.64	814	0.71	856	0.79	895	0.86	931	0.94	965	1.01	998	1.08
5100	693	0.59	738	0.66	780	0.73	819	0.80	858	0.88	898	0.96	936	1.05	972	1.13	1006	1.21	1038	1.29
5610	753	0.77	795	0.85	834	0.92	871	1.00	906	1.08	942	1.17	978	1.26	1014	1.35	1048	1.44	1080	1.53
6120	814	0.97	853	1.07	890	1.15	925	1.23	958	1.31	991	1.40	1023	1.50	1057	1.60	1088	1.70	1121	1.80
			•																7	

2.24 Nom kW Over-Sized Motor & Hi Static Drive

				Externa	I Static P	ressure	(Pascals)			
	27	' 5	30	00	32	25	35	50	37	75
CFM	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
			1.50	Nom k	W Stand	ard Mot	tor & Driv	re		
4080	996	0.98	1028	1.06	1061	1.14	1092	1.21	1122	1.29
4590	1031	1.16	1062	1.24	1093	1.32	1123	1.41	1153	1.49
5100	1070	1.38	1099	1.46	1128	1.54	1158	1.63	1185	1.72
5610	1110	1.62	1139	1.71	1167	1.80	1195	1.89	1222	1.98
6120	1151	1.90	1181	2.00	1208	2.10	1236	2.20	1261	2.29
	2.24	Nom k	W Over-	Sized M	otor & H	Static	Drive			

← 1.50 Nom kW Standard Motor & Hi Static Drive

1.50 Nom kW Standard Motor & Hi Static Drive

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.50 kW - Fan Motor Heat (kW) = 1.178 x Fan kW + 0.464 2.24 kW - Fan Motor Heat (kW) = 1.138 x Fan kW + 0.139

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-14a - Belt Drive Evaporator Fan Performance - YSC090AD*L - Low Heat - Downflow Configuration - (IP)

								Extern	al Static	Pressure	(Inches	of Wate	r)							
	.1	0	.2	20	.3	30	.4	40	.5.	50	.6	60	.7	0	3.	30	.9	0	1.0	00
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
			2 H	P Stand	ard Mot	or & Lov	v Static I	Drive						2 H	P Standa	ard Mot	or & Di	ive		
2400	-	-	-	-	676	0.59	726	0.67	773	0.77	815	0.85	854	0.94	891	1.03	928	1.12	963	1.22
2700	-	-	682	0.68	727	0.76	770	0.85	814	0.95	856	1.06	895	1.16	931	1.25	965	1.35	998	1.45
3000	693	0.79	738	0.89	780	0.97	819	1.07	858	1.18	898	1.29	936	1.40	972	1.52	1006	1.63	1038	1.73
3300	753	1.03	795	1.14	834	1.23	871	1.33	906	1.45	942	1.56	978	1.69	1014	1.81	1048	1.94	1080	2.06
3600	814	1.31	853	1.44	890	1.55	925	1.65	958	1.76	991	1.88	1023	2.01	1057	2.14	1088	2.28	1121	2.41

3 HP Over-Sized Motor & Drive

			Exte	rnal Sta	tic Press	ure (Inch	nes of Wa	ater)		
	1.1	10	1.3	20	1.3	30	1.4	40	1.	50
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
			2 HI	P Standa	ard Moto	r & Driv	е			
2400	996	1.32	1028	1.42	1061	1.52	1092	1.63	1122	1.73
2700	1031	1.56	1062	1.66	1093	1.78	1123	1.89	1153	2.00
3000	1070	1.85	1099	1.95	1128	2.07	1158	2.19	1185	2.31
3300	1110	2.18	1139	2.29	1167	2.42	1195	2.54	1222	2.66
3600	1151	2.55	7 1181	2.68	1208	2.81	1236	2.95	1261	3.07
		/	/	3 HI	Over-Si	zed Mtr	& Hi Sta	tic Drive	•	

2 HP Standard Motor & **Hi Static Drive**

2 HP Standard Motor & Hi Static Drive

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 2 HP - Fan Motor Heat (MBH) = $3.000 \times \text{Fan BHP} + 0.500$ 3 HP - Fan Motor Heat (MBH) = $2.900 \times \text{Fan BHP} + 0.475$

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All lested to Operate Heilably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-15 - Belt Drive Evaporator Fan Performance - YSC090AD*L - Horizontal Configuration (SI)

								E	External	Static Pr	essure (F	Pascals)								
	2	5	5	0	7	5	10	00	12	25	15	50	17	75	20	00	22	5	25	0
m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
		1.50	Nom k\	N Stand	ard Moto	or & Lov	v Static I	Orive					1.50	Nom k	W Stand	dard Mo	otor & [Orive		
4080	-	-	694	0.44	745	0.50	793	0.58	835	0.64	874	0.70	911	0.77	948	0.85	982	0.92	1017	1.00
4590	725	0.54	760	0.60	801	0.66	847	0.73	889	0.82	927	0.89	963	0.96	997	1.03	1030	1.11	1061	1.19
5100	798	0.73	830	0.79	862	0.86	902	0.93	943	1.01	981	1.10	1017	1.19	1050	1.27	1081	1.34	1111	1.42
5610	872	0.96	901	1.03	929	1.10	961	1.17	998	1.25	1036	1.34	1071	1.44	1104	1.54	1135	1.63	1164	1.71
6120	946	1.23	973	1.31	1000	1.38	1025	1.45	1057	1.54	1091	1.62	1125	1.72	1158	1.83	1189	1.95	1219/	7 2.05
														2.24	Nom I	kW Ove	r-Sized			
														Mot	or & Hi	Static I	Orive			

				Externa	al Static P	ressure	(Pascals))							
	27	75	30	00	32	25	3!	50	37	75					
CFM	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW					
	1.50 Nom kW Std Mtr & Drive 1.50 Nom kW Std Mtr & Hi Static Drive														
	& Hi Static Drive														
4080	1053	1.08	1087	1.15	1121	1.23	1153	1.31	1185	1.39					
4080 1053 1.08 1087 1.15 1121 1.23 1153 1.31 118 4590 1093 1.28 1124 1.37 1156 1.45 1187 1.54 12															
5100	1141	1.51	1170	1.60	1198	1.70	1227	1.80	1255	1.89					
5610	1192	1.79	1220	1.88	1247	1.98	1272	2.07	1299	2.18					
6120	1246	2.14	1272	2.23	1298	2.32	1323	2.41	1348	2.52					
		2 24	Nom k	V Over-	Sized Mo	tor & H	i Static D)rive							

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.50 kW - Fan Motor Heat (kW) = 1.178 x Fan kW + 0.464 2.24 kW - Fan Motor Heat (kW) = 1.138 x Fan kW + 0.139

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

1.50 Nom kW Std Mtr & Hi Static Drive

2 HP Std Mtr & Hi Static Drive

Table PD-15a - Belt Drive Evaporator Fan Performance - YSC090AD*L - Horizontal Configuration - (IP)

								Externa	al Static	Pressure	(Inches	of Wate	r)							
	.1	0	.2	20	.3	30	.4	.0	.5	0	.6	60	.7	0	3.	30	.9	0	1.0)0
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
			2 H	P Std M	otor & L	ow Stat	ic Drive						2 H	Stand	ard Mot	or & Dr	ive			
2400	-	-	694	0.59	745	0.67	793	0.77	835	0.86	874	0.94	911	1.03	948	1.13	982	1.23	1017	1.34
2700	725	0.73	760	0.80	801	0.88	847	0.98	889	1.09	927	1.19	963	1.28	997	1.38	1030	1.48	1061	1.60
3000	798	0.98	830	1.06	862	1.15	902	1.24	943	1.35	981	1.48	1017	1.60	1050	1.70	1081	1.80	1111	1.90
3300	872	1.28	901	1.38	929	1.47	961	1.56	998	1.67	1036	1.80	1071	1.93	1104	2.07	1135	2.19	1164	2.30
3600	946	1.65	973	1.75	1000	1.85	1025	1.95	1057	2.06	1091	2.17	1125	2.31	1158	2.46	1189	2.61 7	1219	2.75
															3 H	P Over-S	Sized M	otor /		
															& H	i Static	Drive			

			Exte	rnal Sta	tic Press	ure (Ind	nes of Wa	ater)		
	1.1	10	1.	20	30	1.4	40	1.	50	
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	2 HI	P Standa	ard Moto	or & Driv		2 H	P Standa	ard Moto	r	
				& H	i Static	Drive				
2400	1053	1.44	1087	1.55	1121	1.65	1153	1.76	1185	1.86
2700	1093	1.71	1124	1.83	1156	1.95	1187	2.06	1218	2.18
3000	1141	2.02	1170	2.15	1198	2.28	1227	2.41	1255	2.54
3300	1192	2.41	1220	2.52	1247	2.65	1272	2.78	1299	2.92
3600	1246	2.87	1272	2.99	1298	3.11	1323	3.24	1348	3.37
			3 H	P Over-S	ized Mo	tor & Hi	gh Static	Drive		

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 2 HP - Fan Motor Heat (MBH) = $3.000 \times \text{Fan BHP} + 0.500$ 3 HP - Fan Motor Heat (MBH) = $2.900 \times \text{Fan BHP} + 0.475$

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor

Failure. Our Product's Warranty Will Not Be Affected.

Table PD-16 - Belt Drive Evaporator Fan Performance - YSC090AD*H - High Heat - Downflow Configuration - (SI)

								External	Static Pr	essure (F	Pascals)								
2	5	5	0	7	5	10	00	12	25	15	50	17	75	20	00	22	5	25	50
RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
		1.50	Nom k	W Stand	ard Mot	or & Lov				1.50	Nom k	W Stand	dard Mo	otor & [Orive				
-	-	697	0.46	745	0.53	790	0.60	830	0.66	869	0.73	906	0.80	941	0.87	976	0.94	1009	1.01
717	0.55	760	0.62	804	0.69	847	0.77	887	0.85	922	0.92	958	0.99	991	1.07	1024	1.14	1055	1.22
787	0.74	826	0.81	865	0.89	905	0.98	943	1.06	979	1.15	1012	1.23	1044	1.31	1075	1.39	1105	1.47
858	0.97	894	1.05	929	1.13	965	1.22	1001	1.32	1036	1.41	1068	1.50	1099	1.59	1129	1.68	1157	1.77
930	1.24	963	1.33	995	1.42	1028	1.51	1061	1.61	1093	1.71	1126	1.82	1157	1.92	1185	2.02	1212	2.11
	- 717 787 858	717 0.55 787 0.74 858 0.97	RPM kW RPM 697 717 0.55 760 787 0.74 826 858 0.97 894	RPM kW RPM kW 1.50 Nom k² - 697 0.46 717 0.55 760 0.62 787 0.74 826 0.81 858 0.97 894 1.05	RPM kW RPM kW RPM 1.50 Nom kW Stand - 697 0.46 745 717 0.55 760 0.62 804 787 0.74 826 0.81 865 858 0.97 894 1.05 929	RPM kW RPM kW RPM kW 1.50 Nom kW Standard Mot - - 697 0.46 745 0.53 717 0.55 760 0.62 804 0.69 787 0.74 826 0.81 865 0.89 858 0.97 894 1.05 929 1.13	RPM kW RPM kW RPM kW RPM - - 697 0.46 745 0.53 790 717 0.55 760 0.62 804 0.69 847 787 0.74 826 0.81 865 0.89 905 858 0.97 894 1.05 929 1.13 965	25 75 100	25 50 75 100 11 RPM kW RPM kW RPM kW RPM RPM RPM RPM RPM KBM 60.53 790 0.60 830 717 0.55 760 0.62 804 0.69 847 0.77 887 787 0.74 826 0.81 865 0.89 905 0.98 943 858 0.97 894 1.05 929 1.13 965 1.22 1001	25 75 100 1.25 RPM kW RPM kW RPM kW RPM kW Static Drive - - 697 0.46 745 0.53 790 0.60 830 0.66 717 0.55 760 0.62 804 0.69 847 0.77 887 0.85 787 0.74 826 0.81 865 0.89 905 0.98 943 1.06 858 0.97 894 1.05 929 1.13 965 1.22 1001 1.32	25 50 75 100 125 118 RPM kW APM A	25 5 7 1							

2.24 Nom kW Over-Sized Motor & Hi Static Drive

				Externa	I Static P	ressure	(Pascals))		
	27	75	30	00	32	25	35	50	37	7 5
CFM	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
	1.50	Nom k	W Std M	tr & Dri	ve		1.50	Nom k	W Std M	otor
				& H	i Static I	Drive				
4080	1042	1.09	1073	1.17	1104	1.24	1134	1.32	1163	1.40
4590	1086	1.30	1117	1.39	1146	1.47	1174	1.56	1203	1.65
5100	1134	1.56	1163	1.65	1191	1.74	1218	1.83	1245	1.92
5610	1185	1.86	1212	1.95	1238	2.04	1265	2.14	1292	2.24
6120	1239	2.21	1265	2.31	1290	2.40	1316	2.51	1340	2.61
		2.24	Nom kV	V Over-9	Sized Mo	tor & H	i Static D	rive		

Notes: Data Includes Pressure Drop Due To Wet Coils And Filters. 1.50 kW - Fan Motor Heat (kW) = 1.178 x Fan kW + 0.464 2.24 kW - Fan Motor Heat (kW) = 1.138 x Fan kW + 0.139

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-16a - Belt Drive Evaporator Fan Performance - YSC090AD*H - High Heat - Downflow Configuration - (IP)

								Externa	al Static	Pressure	(Inches	of Wate	r)							
	.1	0	.2	20	.3	80	.4	Ю	.5	50	.6	60	.7	0	3.	80	.9	0	1.0	00
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
			2 H	P Stand	ard Mot	or & Lov					2 H	P Standa	ard Mot	or & Di	ive					
2400	-	-	697	0.62	745	0.71	790	0.80	830	0.89	869	0.98	906	1.07	941	1.16	976	1.26	1009	1.36
2700	717	0.74	760	0.83	804	0.93	847	1.03	887	1.13	922	1.23	958	1.33	991	1.43	1024	1.53	1055	1.64
3000	787	0.99	826	1.09	865	1.20	905	1.31	943	1.42	979	1.54	1012	1.64	1044	1.76	1075	1.87	1105	1.98
3300	858	1.30	894	1.41	929	1.52	965	1.64	1001	1.77	1036	1.89	1068	2.01	1099	2.13	1129	2.25	1157	2.37
3600	930	1.66	963	1.78	995	1.90	1028	2.03	1061	2.16	1093	2.30	1126	2.43	1157	2.57	1185	2.70	1212	2.83
													3 HI	P Over-S	Sized Mo	otor & [Drive			

			Exte	rnal Sta	tic Press	ure (Incl	nes of Wa	ater)		
	1.1	10	1.3	20	1.3	30	1.	40	1.	50
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
							2 H	P Standa	ard Moto	r&
	2 HI	P Standa	ard Moto	Hi S	Static Di	rive				
2400	1042	1.46	1073	1.56	1104	1.67	1134	1.77	1163	1.87
2700	1086	1.75	1117	1.86	1146	1.97	1174	2.09	1203	2.21
3000	1134	2.09	1163	2.21	1191	2.33	1218	2.45	1245	2.58
3300	1185	2.49	1212	2.61	1238	2.74	1265	2.87	1292	3.01
3600	1239	2.96	1265	3.09	1290	3.22	1316	3.36	1340	3.49
			3 HI	P Over-S	ized Mtr	& Hi St	atic Drive	е		

Data Includes Pressure Drop Due To Wet Coils And Filters. 2 HP - Fan Motor Heat (MBH) = $3.000 \times \text{Fan BHP} + 0.500$ 3 HP - Fan Motor Heat (MBH) = $2.900 \times \text{Fan BHP} + 0.475$

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-17 - Belt Drive Evaporator Fan Performance - YSC090AD*H - High Heat - Horizontal Configuration (SI)

								Е	xternal	Static Pr	essure (F	Pascals)								
	2	5	5	0	7	5	10	00	12	25	15	50	17	75	20	00	22	5	25	0
m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
	1.50	Nom k	W Stand	lard Mo	tor		1.50	Nom k	N Stand	ard Mot	or & Driv	/e								
	& Lo	ow Stat	ic Drive																	
4080	713	0.46	764	0.53	811	0.61	851	0.67	889	0.73	926	0.80	962	0.88	997	0.95	1031	1.03	1067	1.11
4590	790	0.64	837	0.71	880	0.80	919	0.88	955	0.94	989	1.01	1022	1.09	1054	1.17	1086	1.26	1117	1.35
5100	869	0.87	910	0.94	950	1.03	989	1.12	1023	1.21	1056	1.28	1086	1.36	1116	1.43	1146	1.52	1175	1.62
5610	949	1.14	985	1.22	1023	1.30	1058	1.40	1092	1.51	1124	1.60	1154	1.68	1182	1.77	1210	1.85	1 237	1.94
6120	1029	1.47	1061	1.55	1096	1.64	1130	1.74	1162	1.85	1193	1.96	1222	2.06	1250	2.16	1276	2.25/	1302	2.34
											Nom kV									
										Mot	or & Hi S	Static Dri	ive		\					

External Static Pressure (Pascals) 275 300 350 325 375 RPM RPM kW RPM kW RPM kW RPM kW kW **CFM** 1.50 Nom kW Std Mtr 1.50 Nom kW Standard Motor & Drive & Hi Static Drive 4080 1101 1.26 1197 1.42 1229 1.50 1.19 1134 1166 1.34 4590 1148 1.43 1180 1.52 1210 1.60 1241 1.69 1269 1.78 1.81 1260 1.91 1287 2.00 2.10 5100 1204 1.72 1316 5610 1264 2.04 1290 2.14 1316 2.25 1342 2.36 1367 2.46 6120 1352 2.53 1376 2.64 1401 2.87 1327 2.43 2.75 1425 2.24 Nom kW Over-Sized Motor & Hi Static Drive

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.50 kW - Fan Motor Heat (kW) = 1.178 x Fan kW + 0.464 2.24 kW - Fan Motor Heat (kW) = 1.138 x Fan kW + 0.139

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-17a - Belt Drive Evaporator Fan Performance - YSC090AD*H - High Heat - Horizontal Configuration - (IP)

								Externa	al Static	Pressure	(Inches	of Wate	r)							
	.1	0	.2	20	.3	80	.4	-0	.5	0	.6	0	.7	0	3.	30	.9	0	1.0	00
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	2 HI	P Std Me	otor & Lo	ow Stati	c Drive						2 HF	Standa	ard Moto	r & Driv	/e					
2400	713	0.62	764	0.71	811	0.81	851	0.89	889	0.97	926	1.07	962	1.17	997	1.28	1031	1.38	1067	1.48
2700	790	0.86	837	0.96	880	1.07	919	1.17	955	1.26	989	1.36	1022	1.46	1054	1.57	1086	1.69	1117	1.80
3000	869	1.16	910	1.26	950	1.38	989	1.50	1023	1.62	1056	1.72	1086	1.82	1116	1.92	1146	2.04	1175	2.17
3300	949	1.53	985	1.63	1023	1.75	1058	1.88	1092	2.02	1124	2.15	1154	2.26	1182	2.37	1210	2.48	7 1237	2.60
3600	1029	1.97	1061	2.07	1096	2.19	1130	2.33	1162	2.48	1193	2.63	1222	2.77 ^	1250	2.89	1276	3.01	1302	3.13
								3 HI	P Over-S	ized Mot	tor & Hi	Static D	rive	\						
											1									

2 HP Std Mtr & Hi Static Drive

1.50 Nom kW Std Mtr

& Hi Static Drive

			Exte	rnal Sta	itic Press	ure (Incl	nes of Wa	ater)		
	1.1	10	1.	20	1.3	30	1.4	40	1.	50
CFM	RPM	PM BHP 2 HP Std Mtr		BHP	RPM	BHP	RPM	BHP	RPM	BHP
	2 HI	Std M	tr & Driv	е			2 HI	Standa	ard Moto	r
							& H	i Static	Drive	
2400	1101	1.59	1134	1.69	1166	1.80	1197	1.90	1229	2.02
2700	1148	1.92	1180	2.04	1210	2.15	1241	2.27	1269	2.39
3000	1204	2.30	1232	2.43	1260	2.56	1287	2.69	1316	2.82
3300	1264	2.74	1290	2.87	1316	3.02	1342	3.16	1367	3.30
3600	1327	3.26	1352	3.39	1376	3.54	1401	3.69	1425	3.85
			3 H	P Over-S	Sized Mo	tor & Hi	gh Static	Drive		

Notes

Data Includes Pressure Drop Due To Wet Coils And Filters. 2 HP - Fan Motor Heat (MBH) = 3.000 x Fan BHP + 0.500 3 HP - Fan Motor Heat (MBH) = 2.900 x Fan BHP + 0.475 Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Performance

Table PD-18 - Belt Drive Evaporator Fan Performance - YSC102AD*L - Low Heat - Downflow Configuration - (SI)

									External	Static Pr	essure (F	Pascals)								
	2	5	5	0	7	5	10	00	1:	25	15	50	17	75	20	00	22	.5	25	0
m³/h	RPM	PM kW RPM kW RPM k 1.50 Nom kW S				kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
		1.50 Nom kW Standard Motor & Low Static Drive													1.50	Nom k	W Std	VItr & D	Prive	
4620	-	-	-	-	610	0.44	651	0.53	691	0.62	729	0.70	766	0.80	799	0.89	831	0.99	861	1.10
5200	-	-	617	0.49	656	0.56	693	0.65	731	0.75	766	0.84	800	0.94	834	1.04	865	1.15	895	1.25
5780	628	0.54	667	0.63	704	0.71	739	0.80	772	0.90	806	1.00	838	1.11	870	1.22	900	1.33	931	1.45
6350	684	0.70	719	0.79	754	0.89	787	0.98	817	1.08	848	1.19	879	1.31	908	1.43	937	1.54	966	1.66
6930	740	0.89	772	0.99	805	1.09	836	1.20	865	1.30	893	1.41	921	1.53	949	1.65	977	1.78	1004	1.92

2.24 Nom kW Over-Sized Motor & High Static Drive

_									External	Static Pr	essure (F	Pascals)								
	27	75	30	00	32	25	35	50	37	75	40	00	42	25	45	50	47	5	50	0
m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
			1.50	Nom k	W Stand	ard Mot	or & Driv	re												
4620	890	1.21	917	1.31	944	1.43	970	1.54	996	1.66	1022	1.77	1048	1.89	1071	2.01	1096	2.13	1118	2.25
5200	924	1.37	951	1.48	978	1.61	1003	1.73	1027	1.85	1051	1.98	1075	2.11	1098	2.23	1122	2.36	1144	2.49
5780	959	1.56	986	1.68	1012	1.80	1037	1.93	1061	2.06	1084	2.19	1108	2.33	1130	2.46	1153	2.61	1174	2.75
6350	993	1.79	1020	1.91	1046	2.04	1071	2.17	1096	2.30	1119	2.44	1141	2.58	1163	2.72	1185	2.87	1207	3.02
6930	1030	2.04	1056	2.18	1082	2.31	1106	2.44	1131	2.58	1154	2.72	1176	2.86	1199	3.01	1220	3.16	1241	3.31
								2.24	Nom kV	V Over-S	Sized Mo	tor & Hi	igh Statio	Drive						

Notes:
Data Includes Pressure Drop Due To Wet Coils And Filters.
1.50 kW - Fan Motor Heat (kW) = 1.178 x Fan kW + 0.464
2.24 kW - Fan Motor Heat (kW) = 1.138 x Fan kW + 0.139

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-18a - Belt Drive Evaporator Fan Performance - YSC102AD*L - Low Heat - Downflow Configuration - (IP)

		External Static Pressure (Inches of Water)																		
	.1	0	.2	20	.3	30	.4	10		50	.6	60	.7	0	3.	30	.9	0	1.0	00
CFM	RPM							BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
		2 HP Standard Motor & Low Static Drive													2 H	P Stand	ard Mo	tor & D	rive	
2720	-	-	-	-	610	0.59	651	0.71	691	0.83	729	0.94	766	1.07	799	1.19	831	1.33	861	1.47
3060	-	-	617	0.65	656	0.76	693	0.87	731	1.00	766	1.13	800	1.26	834	1.40	865	1.54	895	1.68
3400	628	0.72	667	0.84	704	0.96	739	1.07	772	1.20	806	1.35	838	1.49	870	1.64	900	1.79	931	1.94
3740	684	0.94	719	1.06	754	1.19	787	1.32	817	1.45	848	1.59	879	1.75	908	1.91	937	2.07	966	2.23
4080	740	1.20	772	1.32	805	1.47	836	1.61	865	1.74	893	1.89	921	2.05	949	2.21	977	2.39	1004	2.57

3 HP Over-Sized Motor & Drive

								Extern	al Static	Pressure	(Inches	of Wate	r)				-		-	
	1.	10	1.:	20	1.	30	1.	40	1.	50	1.	60	1.	70	1.	80	1.9	90	2.0	00
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
				2 HF	Standa	rd Moto	r & Drive	•												
2720	890	1.62	917	1.76	944	1.91	970	2.07	996	2.22	1022	2.38	1048	2.54	1071	2.69	1096	2.86	1118	3.02
3060	924	1.84	951	1.99	978	2.15	1003	2.32	1027	2.48	1051	2.65	1075	2.82	1098	2.99	1122	3.17	1144	3.34
3400	959	2.09	986	2.25	1012	2.42	1037	2.59	1061	2.77	1084	2.94	1108	3.13	1130	3.31	1153	3.50	1174	3.68
3740	993	2.39	1020	2.56	1046	2.73	1071	2.90	1096	3.08	1119	3.27	1141	3.45	1163	3.64	1185	3.84	1207	4.04
4080	1030	2.74	1056	2.92	1082	3.10	1106	3.28	1131	3.46	1154	3.65	1176	3.83	1199	4.03	1220	4.23	1241	4.44
									3 H	P Over-S	ized Mo	tor & Dr	ive							

Data Includes Pressure Drop Due To Wet Coils And Filters. 2 HP - Fan Motor Heat (MBH) = 3.000 x Fan BHP + 0.500 3 HP - Fan Motor Heat (MBH) = 2.900 x Fan BHP + 0.475

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-19 - Belt Drive Evaporator Fan Performance - YSC102AD*L - Horizontal Configuration (SI)

								E	External	Static Pr	essure (F	Pascals)								
	2	5	5	0	7	5	10	00	12	25	15	50	17	7 5	20	00	22	5	25	0
m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
	1.50	Nom k	W Stand	ard Mot	or & Lov	v Static	Drive				1.50	Nom k	W Stand	ard Mot	or & Dri	ive				
4620	610	0.44	657	0.52	700	0.60	747	0.70	793	0.80	837	0.91	873	1.00	905	1.09	935	1.18	963	1.27
5200	675	0.61	718	0.70	757	0.78	794	0.87	837	0.98	879	1.10	919	1.22	955	1.34	987	1.44	1014	1.54
5780	742	0.82	779	0.91	817	1.01	851	1.10	885	1.21	923	1.33	962	1.46	999	1.59	1033	1.72	1066	1.85
6350	810	1.07	842	1.16	878	1.27	911	1.38	941	1.49	972	1.60	1006	1.73	1041	1.87	1076	2.02	1109	2.17
6930	878 1.37 907 1.47 939 1.58 971 1.70		1000	1.82	1029	1.94	1056	2.06	1087	2.20	1120	2.35	1151	2.50						
											2.24	Nom k	W Over-S	Sized M	otor & F	ligh Sta	atic Driv	е		

									External	Static Pr	essure (F	Pascals)								
	27	5	30	00	32	25	35	50	37	75	40	00	42	25	45	50	47	5	50	0
m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
	1.50	Nom k	W Std M	tr & Dri	ve															
4620	989	1.36	1015	1.45	1038	1.53	1062	1.62	1085	1.71	1108	1.80	1129	1.88	1152	1.98	1172	2.06	1194	2.16
5200	1042	1.64	1067	1.74	1092	1.84	1115	1.94	1138	2.04	1159	2.14	1180	2.23	1200	2.33	1221	2.43	1241	2.53
5780	1093	1.97	1118	2.08	1144	2.19	1167	2.30	1190	2.41	1212	2.52	1233	2.63	1253	2.74	1273	2.85	1292	2.96
6350	1140	2.31	1169	2.45	1195	2.58	1219	2.70	1242	2.83	1264	2.95	1286	3.07	1307	3.19	1326	3.31	-	-
6930	1182	2.66	1213	2.83	1241	2.98	1268	3.14	1292	3.28	-	-	-	-	-	-	-	-	-	-
							2.24	Nom k	W Over-9	Sized Me	otor & Hi	igh Stat	ic Drive							

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.50 kW - Fan Motor Heat (kW) = $1.178 \times Fan \, kW + 0.464 \times 2.24 \, kW$ - Fan Motor Heat (kW) = $1.138 \times Fan \, kW + 0.139 \times Fa$

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-19a - Belt Drive Evaporator Fan Performance - YSC102AD*L - Horizontal Configuration - (IP)

								Externa	al Static	Pressure	(Inches	of Wate	r)							
	1.1	10	1.	20	1.	30	1.	40	1.	50	1.	60	1.	70	1.	80	1.9	90	2.0	00
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
		2 HF	Standa	rd Moto	r & Low	Static D	rive						2 HI	P Stand	ard Mot	or & Dr	ive			
2720								0.93	793	1.08	837	1.22	873	1.35	905	1.47	935	1.58	963	1.70
3060	675	0.82	718	0.93	757	1.05	794	1.17	837	1.32	879	1.48	919	1.64	955	1.79	987	1.94	1014	2.07
3400	742	1.09	779	1.21	817	1.35	851	1.48	885	1.62	923	1.78	962	1.96	999	2.13	1033	2.31	1066	2.48
3740	810	1.44	842	1.56	878	1.70	911	1.85	941	1.99	972	2.14	1006	2.32	1041	2.51	1076	2.71	1109	2.90
4080	878	1.84	907	1.97	939	2.12	971	2.28	1000	2.44	1029	2.60	1056	2.76	1087	2.95	1120	3.16	1151	3.36
													3 HI	P Over-S	Sized Me	otor & I	Orive			

								Extern	al Static	Pressure	(Inches	of Wate	r)							
	1.1	10	1.3	20	1.3	30	1.4	40	1.	50	1.0	60	1.	70	1.3	80	1.9	90	2.0)0
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	2 HI	Standa	ard Moto	or & Driv	re						3 HI	P Over-S	Sized Mo	tor & D	rive					
2720	989	1.82	1015	1.94	1038	2.05	1062	2.17	1085	2.29	1108	2.41	1129	2.53	1152	2.65	1172	2.77	1194	2.89
3060	1042	2.20	1067	2.34	1092	2.47	1115	2.60	1138	2.74	1159	2.87	1180	3.00	1200	3.13	1221	3.26	1241	3.40
3400	1093	2.64	1118	2.78	1144	2.94	1167	3.08	1190	3.23	1212	3.38	1233	3.53	1253	3.67	1273	3.82	1292	3.97
3740	1140	3.10	1169	3.28	1195	3.46	1219	3.63	1242	3.79	1264	3.96	1286	4.12	1307	4.28	1326	4.44	-	-
4080	1182	3.57	1213	3.79	1241	4.00	1268	4.21	1292	4.40	-	-	-	-	-	-	-	-	-	-
								3 HI	Over-Si	zed Mo	or & Dri	ve								

Data Includes Pressure Drop Due To Wet Coils And Filters. 2 HP - Fan Motor Heat (MBH) = $3.000 \times \text{Fan BHP} + 0.500$ 3 HP - Fan Motor Heat (MBH) = $2.900 \times \text{Fan BHP} + 0.475$

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-20 - Belt Drive Evaporator Fan Performance - YSC102AD*H - High Heat - Downflow Configuration - (SI)

	2	5	5	0	7	5	10	00	12	25	15	50	17	75	20	00	22	5	25	0
m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
		1.50 Nom kW Standard Motor & Low Static Drive												Nom k	W Stan	dard Mo	otor & D	rive		
4620	-	-	-	-	636	0.50	676	0.58	716	0.67	752	0.76	787	0.85	819	0.96	850	1.06	879	1.17
5200	-	-	648	0.55	686	0.63	723	0.73	759	0.82	794	0.92	827	1.02	859	1.13	890	1.23	918	1.34
5780	667	0.62	704	0.71	738	0.80	772	0.90	805	1.00	837	1.11	869	1.22	900	1.33	929	1.44	959	1.56
6350	726	0.81	761	0.91	792	1.00	823	1.10	854	1.21	884	1.33	914	1.45	943	1.57	971	1.69	999	1.81
6930	786	1.03	818	1.14	848	1.24	877	1.34	905	1.46	933	1.58	961	1.71	988	1.84	1015	1.97	1041	2.10

2.24 Nom kW Over-Sized Motor & High Static Drive

									External	Static Pr	essure (F	Pascals)								
	27	75	30	00	32	25	35	50	37	75	40	00	42	25	45	50	47	5	50	0
m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
		1.50	Nom k\	N Stand	ard Moto	or & Driv	/e													
4620	907	1.27	934	1.39	960	1.50	987	1.62	1013	1.73	1038	1.85	1064	1.97	1087	2.09	1111	2.21	1134	2.34
5200	946	1.46	971	1.58	997	1.70	1023	1.83	1047	1.95	1070	2.08	1094	2.21	1117	2.34	1140	2.47	1163	2.60
5780	986	1.68	1011	1.80	1037	1.93	1061	2.06	1085	2.19	1107	2.33	1130	2.46	1151	2.60	1174	2.75	1194	2.88
6350	1025	1.94	1051	2.06	1077	2.19	1100	2.32	1123	2.46	1147	2.61	1168	2.75	1189	2.89	1211	3.04	1231	3.19
6930	1067	2.23	1092	2.36	1117	2.50	1140	2.64	1164	2.78	1187	2.92	1208	3.07	1229	3.22	-	-	-	-
								2.24	Nom kV	N Over-S	Sized Mo	tor & H	igh Statio	Drive						

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.50 kW - Fan Motor Heat (kW) = 1.178 x Fan kW + 0.464 2.24 kW - Fan Motor Heat (kW) = 1.138 x Fan kW + 0.139

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range of Our Fan Motors
As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-20a - Belt Drive Evaporator Fan Performance - YSC102AD*H - High Heat - Downflow Configuration - (IP)

-								Extern	al Static	Pressure	(Inches	of Wate	r)							
	1.1	10	1.	20	1.3	30	1.	40	1.	50	1.	60	1.	70	1.8	30	1.9	0	2.0)0
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
		2 HP Standard Motor & Low Static Drive												2 H	P Standa	ard Mot	or & Dr	ive		
2720	-	-	-	-	636	0.66	676	0.78	716	0.90	752	1.02	787	1.15	819	1.28	850	1.42	879	1.56
3060	-	-	648	0.73	686	0.85	723	0.97	759	1.10	794	1.24	827	1.37	859	1.51	890	1.65	918	1.80
3400	667	0.84	704	0.95	738	1.07	772	1.20	805	1.34	837	1.49	869	1.64	900	1.79	929	1.94	959	2.09
3740	726	1.09	761	1.22	792	1.34	823	1.47	854	1.62	884	1.78	914	1.94	943	2.11	971	2.26	999	2.43
4080	786	1.38	818	1.53	848	1.66	877	1.80	905	1.95	933	2.12	961	2.29	988	2.46	1015	2.64	1041	2.82

3 HP Over-Sized Motor & Drive

								Extern	al Static	Pressure	(Inches	of Wate	r)							
	1.1	10	1.	20	1.	30	1.	40	1.	50	1.	60	1.	70	1.	80	1.9	90	2.0)0
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
			2 H	P Standa	ard Moto	r & Driv	е													
2720	907	907 1.71 934 1.86 960 2.0						2.17	1013	2.32	1038	2.48	1064	2.64	1087	2.80	1111	2.97	1134	3.14
3060	907 1.71 934 1.86 946 1.96 <u>971 2.11</u>		997	2.28	1023	2.45	1047	2.62	1070	2.79	1094	2.96	1117	3.13	1140	3.31	1163	3.49		
3400	986	2.25	1011	2.41	1037	2.59	1061	2.76	1085	2.94	1107	3.12	1130	3.30	1151	3.48	1174	3.69	1194	3.87
3740	1025	2.60	1051	2.77	1077	2.94	1100	3.12	1123	3.30	1147	3.50	1168	3.68	1189	3.88	1211	4.08	1231	4.28
4080	1067	2.99	1092	3.17	1117	3.36	1140	3.54	1164	3.73	1187	3.92	1208	4.12	1229	4.32	-	-	-	-
									3 H	P Over-S	ized Mo	tor & Dr	ive							

Data Includes Pressure Drop Due To Wet Coils And Filters. 2 HP - Fan Motor Heat (MBH) = 3.000 x Fan BHP + 0.500 3 HP - Fan Motor Heat (MBH) = 2.900 x Fan BHP + 0.475

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-21 - Belt Drive Evaporator Fan Performance - YSC102AD*H - High Heat - Horizontal Configuration (SI)

								E	External	Static Pr	essure (F	Pascals)								
	2	5	5	0	7	5	10	00	12	25	15	50	17	75	20	00	22	5	25	0
m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
	1.50	Nom k	W Std M	ltr & Lov	v Static I	Drive					1.50	Nom k	W Stand	ard Mo	tor & Dri	ive				
4620	651						787	0.79	831	0.89	869	0.99	901	1.08	931	1.17	959	1.26	986	1.35
5200	722	0.70	761	0.79	798	0.88	841	1.00	883	1.11	923	1.23	958	1.35	989	1.45	1017	1.55	1045	1.65
5780	793	0.94	830	1.04	863	1.14	898	1.25	937	1.37	975	1.51	1011	1.64	1045	1.77	1075	1.89	1103	2.01
6350	865	1.23	899	1.34	930	1.45	961	1.56	994	1.68	1028	1.82	1063	1.96	1097	2.11	1129	2.26	1159	2.40
6930	937	1.57	970	1.70	999	1.81	1027	1.93	1055	2.05	1085	2.19	1118	2.34	1150	2.50	1181	2.66	1211	2.82
									2.24	Nom k	W Over-9	Sized Mo	otor & Hi	igh Stat	tic Drive					

								E	External	Static Pr	essure (F	Pascals)								
	27	' 5	30	00	32	25	35	50	37	75	40	00	42	25	45	50	47	5	50	00
m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
	1.50	Nom k	W Std M	tr & Dri	ve															
4620	1011	1.43	1036	1.52	1059	1.61	1082	1.69	1104	1.78	1127	1.87	1149	1.96	1170	2.05	1191	2.14	1212	2.24
5200	1070	1.75	1094	1.85	1117	1.95	1139	2.05	1161	2.15	1182	2.24	1203	2.35	1222	2.44	1243	2.54	1262	2.64
5780	1128	2.12	1152	2.23	1176	2.34	1198	2.45	1219	2.56	1241	2.67	1261	2.78	1280	2.88	1299	2.99	1319	3.11
6350	1186	2.53	1210	2.65	1233	2.78	1256	2.90	1278	3.03	1298	3.15	1319	3.27	-	-	-	-	-	-
6930	1239	2.97	1267	3.13	1291	3.27	-	-	-	-	-	-	-	-	-	-	-	-	-	-
							2.24	Nom k	W Over-9	Sized Me	otor & H	igh Stat	ic Drive							

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 1.50 kW - Fan Motor Heat (kW) = 1.178 x Fan kW + 0.464 2.24 kW - Fan Motor Heat (kW) = 1.138 x Fan kW + 0.139

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-21a - Belt Drive Evaporator Fan Performance - YSC102AD*H - High Heat - Horizontal Configuration - (IP)

<u> </u>								Extern	al Static	Pressure	(Inches	of Wate	r)							
	1.1	10	1.	20	1.	30	1.4	40	1.	50	1.0	60	1.	70	1.8	80	1.9	90	2.0	00
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	2 HI	Std M	otor & L	ow Stati	c Drive						2 HI	P Standa	ard Moto	r & Driv	/e					
2720	651	0.69	694	0.79	740	0.92	787	1.06	831	1.20	869	1.33	901	1.45	931	1.57	959	1.69	986	1.81
3060	722	0.94	761	1.06	798	1.18	841	1.34	883	1.49	923	1.65	958	1.81	989	1.95	1017	2.08	1045	2.22
3400	793	1.26	830	1.40	863	1.53	898	1.67	937	1.84	975	2.02	1011	2.20	1045	2.37	1075	2.54	1103	2.69
3740	865	1.65	899	1.80	930	1.94	961	2.09	994	2.26	1028	2.44	1063	2.63	1097	2.83	1129	3.03	1159	3.22
4080	937	2.11	970	2.27	999	2.43	1027	2.59	1055	2.75	1085	2.94	1118	3.14	1150	3.35	1181	3.57	1211	3.78
											3 HI	P Over-S	Sized Mo	tor & D	rive					

								Extern	al Static	Pressure	(Inches	of Wate	r)							
	1.1	10	1.	20	1.	30	1.	40	1.	50	1.	60	1.	70	1.	80	1.9	90	2.0)0
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	2 HI	Std M	otor & D	rive							3 H	P Over-S	Sized Mo	tor & D	rive					
2720	1011	1.92	1036	2.04	1059	2.15	1082	2.27	1104	2.39	1127	2.51	1149	2.64	1170	2.75	1191	2.88	1212	3.00
3060				2.48	1117	2.61	1139	2.75	1161	2.88	1182	3.01	1203	3.15	1222	3.27	1243	3.41	1262	3.54
3400	1128	2.84	1152	2.99	1176	3.14	1198	3.29	1219	3.43	1241	3.58	1261	3.73	1280	3.87	1299	4.02	1319	4.17
3740	1186	3.40	1210	3.56	1233	3.73	1256	3.90	1278	4.06	1298	4.22	1319	4.39	-	-	-	-	-	-
4080	1239	3.99	1267	4.20	1291	4.39	-	-	-	-	-	-	-	-	-	-	-	-	-	-
									3 H	P Over-S	ized Mo	tor & Di	rive							

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 2 HP - Fan Motor Heat (MBH) = $3.000 \times$ Fan BHP + $0.500 \times$ Fan Motor Heat (MBH) = $2.900 \times$ Fan BHP + $0.475 \times$

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-22 - Belt Drive Evaporator Fan Performance - YSC120AD*L - Low Heat - Downflow Configuration - (SI)

								ı	External	Static Pr	essure (F	Pascals)								
	2	5	5	0	7	5	10	00	1:	25	19	50	17	75	20	00	22	5	25	0
m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
					2.24	Nom k	N Stand	ard Mot	or & Lov	v Static	Drive						2.24	1 Nom	kW Sta	ndard
																	Mo	tor & D	rive	
5440	-	-	-	-	691	0.66	727	0.75	763	0.85	798	0.95	832	1.06	863	1.16	895	1.27	924	1.39
6120	-	-	717	0.77	751	0.86	784	0.95	816	1.06	848	1.17	879	1.29	910	1.41	940	1.53	968	1.64
6800	746	0.90	780	1.00	813	1.11	843	1.21	873	1.31	902	1.43	931	1.56	959	1.69	986	1.82	1014	1.94
7480	814	1.17	845	1.29	876	1.41	905	1.52	932	1.63	959	1.74	985	1.87	1012	2.01	1037	2.14	1063	2.29
8160	883	1.50	911	1.62	940	1.75	967	1.88	993	2.00	1018	2.12	1042	2.24	1067	2.38	1091	2.53	1115	2.68

								E	External	Static Pr	essure (F	Pascals)								
	27	' 5	30	00	32	25	35	50	37	75	40	00	42	25	45	50	47	5	50	0
m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
							2.24	Nom k	W Stand	ard Mot	or & Driv	re								
5440	952	1.50	979	1.63	1004	1.75	1029	1.87	1053	2.00	1078	2.13	1101	2.27	1124	2.41	1146	2.54	1169	3.59
6120	996	1.77	1023	1.89	1049	2.02	1073	2.15	1097	2.29	1120	2.43	1142	2.56	1164	2.71	1186	2.85	1207	4.02
6800	1041	2.08	1067	2.21	1092	2.34	1117	2.48	1141	2.62	1164	2.76	1186	2.91	1208	3.06	1228	3.20	-	-
7480	1088	2.43	1113	2.57	1137	2.72	1162	2.87	1185	3.01	1207	3.16	1229	3.30	-	-	-	-	-	-
8160	1139	2.83	1161	2.99	1185	3.15	1208	3.30	-	-	-	-	-	-	-	-	-	-	-	-
									2.24	Nom k	W Stand	ard Mot	or & Hig	h Static	Drive					

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 2.24 kW - Fan Motor Heat (kW) = $1.138 \times Fan \, kW + 0.139$

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-22a - Belt Drive Evaporator Fan Performance - YSC120AD*L - Low Heat - Downflow Configuration - (IP)

								Extern	al Static	Pressure	(Inches	of Wate	r)							
	1.1	10	1.3	20	1.3	30	1.4	40	1.	50	1.	60	1.3	70	1.3	30	1.9	90	2.0	00
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
					3 HI	P Standa	rd Moto	r & Lov	Static D	Orive							3 H	P Std N	/lotor &	Drive
3200	-	-	-	-	691	0.88	727	1.00	763	1.14	798	1.28	832	1.42	863	1.56	895	1.71	924	1.86
3600	-	-	717	1.03	751	1.15	784	1.28	816	1.42	848	1.57	879	1.73	910	1.89	940	2.05	968	2.20
4000	746	1.21	780	1.35	813	1.49	843	1.62	873	1.76	902	1.92	931	2.09	959	2.26	986	2.43	1014	2.61
4400	814	1.57	845	1.73	876	1.88	905	2.03	932	2.18	959	2.34	985	2.51	1012	2.69	1037	2.88	1063	3.07
4800	883	2.02	911	2.18	940	2.35	967	2.52	993	2.68	1018	2.84	1042	3.01	1067	3.20	1091	3.39	1115	3.59

								Externa	al Static	Pressure	(Inches	of Wate	r)							
	1.1	10	1.	20	1.	30	1.4	40	1.	50	1.0	60	1.	70	1.	80	1.9	90	2.0)0
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
								3 HF	Standa	rd Moto	r & Drive	•								
3200	952	2.01	979	2.18	1004	2.34	1029	2.51	1053	2.68	1078	2.86	1101	3.04	1124	3.23	1146	3.41	1169	3.59
3600	996	2.37	1023	2.53	1049	2.71	1073	2.88	1097	3.07	1120	3.25	1142	3.43	1164	3.63	1186	3.83	1207	4.02
4000	1041	2.79	1067	2.96	1092	3.14	1117	3.33	1141	3.51	1164	3.7	1186	3.90	1208	4.10	1228	4.30	-	-
4400	1088	3.26	1113	3.45	1137	3.64	1162	3.84	1185	4.04	1207	4.23	1229	4.43	-	-	-	-	-	-
4800	1139	3.80	1161	4.00	1185	4.22	1208	4.43	-	-	-	-	-	-	-	-	-	-	-	-
										3 HI	Standa	rd Moto	r & High	Static	Drive					

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 3 HP - Fan Motor Heat (MBH) = 2.900 x Fan BHP + 0.475

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-23 - Belt Drive Evaporator Fan Performance - YSC120AD*L - Horizontal Configuration (SI)

								E	essure (F	Pascals)										
	2	5	5	0	7	5	10	00	12	25	15	50	17	' 5	20	00	22	5	25	0
m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
	2.24	Nom k	W Stand	ard Mot	or & Lov	v Static	Drive			2.24	Nom kV	V Stand	lard Mot	or & Dr	ive					
5440	719	0.72	761	0.82	798	0.91	834	1.01	875	1.13	916	1.25	955	1.38	991	1.50	1022	1.61	1050	1.72
6120	799	1.00	836	1.11	872	1.21	904	1.32	936	1.43	972	1.56	1009	1.70	1045	1.84	1079	1.98	1111	2.12
6800	881	1.35	913	1.46	947	1.58	977	1.70	1006	1.82	1035	1.94	1066	2.08	1100	2.23	1133	2.38	1165	2.54
7480	963	1.78	992	1.89	1023	2.02	1052	2.16	1079	2.28	1106	2.41	1132	2.54	1160	2.69	1189	2.85	1219	3.02
8160	1045	2.29	1072	2.41	1099	2.54	1127	2.69	1154	2.83	1179	2.97	1203	3.11	1227	3.25	_			
													2.24	Nom k	W Stand	dard Mo	otor & F	ligh Sta	atic Driv	е

									External	Static Pr	essure (F	Pascals)								
	27	75	30	00	32	25	35	50	3	75	40	00	42	25	45	50	47	5	50	00
m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
			2.24	Nom k	W Stand	ard Mot	or & Driv	/e												
5440	1077	1.83	1103	1.94	1126	2.04	1150	2.14	1171	2.24	1193	2.35	1214	2.45	1233	2.55	1253	2.65	1274	3.46
6120	1140	2.25	1165	2.37	1190	2.49	1214	2.61	1235	2.73	1257	2.85	1279	2.97	1298	3.08	1317	3.19	1338	4.10
6800	1196	2.70	1225	2.86	1252	3.00	1276	3.15	1299	3.28	-	-	-	-	-	-	-	-	-	-
7480	1250	3.19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8160	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
							2.24	Nom k	W Stand	ard Mot	or & Hia	h Static	Drive							

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 2.24 kW - Fan Motor Heat (kW) = 1.138 x Fan kW + 0.139

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-23a - Belt Drive Evaporator Fan Performance - YSC120AD*L - Horizontal Configuration - (IP)

								Externa	al Static	Pressure	(Inches	of Wate	er)							
	1.1	10	1.3	20	1.3	30	1.4	40	1.	50	1.0	60	1.	70	1.	80	1.9	90	2.0)0
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	3 HP Standard Motor & Low Static Drive												3 H	Stand	ard Mot	or & Dr	ive			
3200	719	0.97	761	1.10	798	1.22	834	1.35	875	1.51	916	1.68	955	1.85	991	2.01	1022	2.16	1050	2.31
3600	799	1.35	836	1.48	872	1.63	904	1.77	936	1.91	972	2.09	1009	2.28	1045	2.47	1079	2.66	1111	2.84
4000	881	1.81	913	1.96	947	2.12	977	2.28	1006	2.44	1035	2.60	1066	2.78	1100	2.99	1133	3.20	1165	3.41
4400	963	2.39	992	2.54	1023	2.71	1052	2.89	1079	3.06	1106	3.23	1132	3.41	1160	3.61	1189	3.82	1219	4.05
4800	1045	3.07	1072	3.23	1099	3.41	1127	3.61	1154	3.80	1179	3.98	1203	4.17	1227	4.36				
													3 H	P Stand	ard Mot	or & Hi	gh Stati	c Drive		

								Extern	al Static	Pressure	(Inches	of Wate	r)							
	1.1	10	1.	20	1.3	30	1.4	40	1.	50	1.0	60	1.	70	1.5	80	1.9	90	2.0	00
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
				3 HF	Standa	rd Moto	r & Drive	;												
3200										3.01	1193	3.15	1214	3.29	1233	3.42	1253	3.56	1274	3.71
3600	1140	3.02	1165	3.18	1190	3.34	1214	3.51	1235	3.66	1257	3.82	1279	3.98	1298	4.13	1317	4.28	1338	4.45
4000	1196	3.62	1225	3.83	1252	4.03	1276	4.22	1299	4.40	-	-	-	-	-	-	-	-	-	-
4400	1250	4.28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4800	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
								3 HF	Standa	rd Moto	r & High	Static D	rive							

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 3 HP - Fan Motor Heat (MBH) = $2.900 \times Fan BHP + 0.475$

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-24 - Belt Drive Evaporator Fan Performance - YSC120AD*H - High Heat - Downflow Configuration - (SI)

								E	External	Static Pr	essure (F	Pascals)								
	2	5	5	50	7	5	10	00	12	25	15	50	17	75	20	00	22	5	25	0
m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
				2.24	Nom k\	V Stand	ard Moto	or & Lov	v Static D	Orive						2.24	Nom l	W Sta	ndard	
																Mo	tor & D	rive		
5440	-	-	-	-	723	0.74	759	0.84	793	0.94	827	1.05	860	1.15	891	1.26	921	1.37	949	1.49
6120	721	0.78	755	0.87	787	0.96	820	1.07	851	1.18	882	1.30	913	1.42	942	1.54	971	1.66	999	1.78
6800	793	1.04	824	1.15	854	1.25	883	1.36	913	1.48	941	1.60	969	1.73	997	1.86	1024	1.99	1050	2.12
7480	866	1.36	895	1.48	923	1.59	949	1.70	976	1.83	1003	1.96	1029	2.10	1054	2.24	1079	2.38	1104	2.53
8160	939	1.75	967	1.87	992	1.99	1017	2.12	1042	2.24	1066	2.38	1090	2.52	1114	2.67	1138	2.83	1161	2.98

									External :	Static Pr	essure (F	Pascals)								
	27	5	30	00	32	25	35	50	37	75	40	00	42	25	45	50	47	5	50	0
m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
						2.24	Nom kV	V Stand	ard Moto	or & Driv	/e									
5440	976	1.61	1001	1.73	1027	1.86	1051	1.99	1075	2.12	1098	2.25	1120	2.38	1143	2.52	1166	2.66	1189	3.59
6120	1025	1.90	1052	2.03	1076	2.17	1100	2.30	1122	2.44	1145	2.58	1167	2.73	1188	2.87	1210	3.02	1230	4.02
6800	1076	2.26	1101	2.39	1126	2.53	1149	2.67	1172	2.81	1194	2.96	1216	3.12	1236	3.26	-	-	-	-
7480	1129	2.67	1153	2.81	1176	2.96	1200	3.11	1222	3.26	-	-	-	-	-	-	-	-	-	-
8160	1184	3.14	1207	3.30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
							2 24	Nom k	W Stand	ard Mot	or & Hia	h Static	Drive							

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 2.24 kW - Fan Motor Heat (kW) = 1.138 x Fan kW + 0.139

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-24a - Belt Drive Evaporator Fan Performance - YSC120AD*H - High Heat - Downflow Configuration - (IP)

								Externa	al Static	Pressure	(Inches	of Wate	r)							
	1.1	10	1.3	20	1.	30	1.4	40	1.!	50	1.0	60	1.3	70	1.8	30	1.9	90	2.0	00
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
				3 HF	Standa	rd Moto	r & Low	Static D	rive						3 HI	Stand	ard Mot	tor & D	rive	
3200	-	-	-	-	723	0.99	759	1.12	793	1.26	827	1.40	860	1.55	891	1.69	921	1.84	949	2.00
3600	721	1.04	755	1.17	787	1.29	820	1.44	851	1.59	882	1.75	913	1.90	942	2.06	971	2.22	999	2.39
4000	793	1.40	824	1.54	854	1.67	883	1.82	913	1.98	941	2.15	969	2.32	997	2.50	1024	2.67	1050	2.85
4400	866	1.83	895	1.98	923	2.13	949	2.28	976	2.45	1003	2.63	1029	2.81	1054	3.00	1079	3.20	1104	3.39
4800	939	2.34	967	2.51	992	2.67	1017	2.84	1042	3.01	1066	3.19	1090	3.38	1114	3.58	1138	3.79	1161	4.00

-								Extern	al Static	Pressure	(Inches	of Wate	r)							
	1.1	10	1.	20	1.	30	1.	40	1.	50	1.0	60	1.	70	1.	80	1.9	90	2.0	00
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
								3 HI	P Standa	rd Moto	r & Drive	•								
3200	976	2.16	1001	2.32	1027	2.49	1051	2.66	1075	2.84	1098	3.02	1120	3.19	1143	3.38	1166	3.57	1189	3.75
3600	1025	2.55	1052	2.73	1076	2.90	1100	3.09	1122	3.27	1145	3.46	1167	3.66	1188	3.85	1210	4.05	1230	4.25
4000	1076	3.03	1101	3.20	1126	3.40	1149	3.58	1172	3.77	1194	3.97	1216	4.18	1236	4.38	-	-	-	-
4400	1129	3.58	1153	3.77	1176	3.97	1200	4.17	1222	4.37	-	-	-	-	-	-	-	-	-	-
4800	1184	4.21	1207	4.42	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
								3 HI	P Standa	rd Moto	r & High	Static D	Orive							

Notes:

Data Includes Pressure Drop Due To Wet Coils And Filters. 3 HP - Fan Motor Heat (MBH) = 2.900 x Fan BHP + 0.475

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Result In Nuisance Tripping Or Premature Motor Failure.

Performance

Table PD-25 - Belt Drive Evaporator Fan Performance - YSC120AD*H - High Heat - Horizontal Configuration (SI)

								E	external	Static Pr	essure (F	Pascals)								
	2	5	5	0	7	5	10	00	12	25	15	50	17	75	20	00	22	5	25	0
m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
2.24 No	m kW S	tandard	Motor 8	k Low S	tatic Driv	re .									2.24	Nom k	W Stan	dard IV	otor &	Drive
5440	768	0.84	805	0.93	842	1.03	884	1.15	924	1.28	962	1.40	998	1.52	1028	1.64	1055	1.74	1082	1.85
6120	856	1.16	888	1.27	921	1.37	955	1.49	992	1.63	1028	1.77	1063	1.91	1096	2.05	1126	2.19	1153	2.31
6800	943	1.57	973	1.68	1002	1.80	1031	1.92	1062	2.06	1096	2.21	1129	2.36	1161	2.52	1192	2.68	1222	2.84
7480	1031	2.06	1060	2.19	1086	2.32	1113	2.45	1139	2.57	1167	2.73	1198	2.90	1228	3.07	1257	3.24	-	-
8160	1119	2.58	1146	2.79	1171	2.93	1195	3.07	1219	3.21	1243	3.36	-	-	-	-	-	-	-	-
										2.2	4 Nom l	cW Sta	ndard M	otor &	High S	tatic D	rive			

								ı	External	Static Pr	essure (F	Pascals)								
	27	' 5	30	00	32	25	35	50	37	75	40	00	42	25	45	50	47	5	50	10
m³/h	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
	2.24	Nom k	W Stand	ard Mo	tor & Driv	/e														
5440	1107	1.95	1131	2.06	1154	2.16	1176	2.27	1197	2.37	1218	2.47	1238	2.58	1257	2.68	1276	2.78	1296	3.59
6120	1178	2.43	1202	2.55	1224	2.67	1247	2.79	1268	2.91	1288	3.02	1308	3.14	1328	3.26	-	-	-	-
6800	1249	2.99	1273	3.13	1296	3.26	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7480	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8160	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
							2.24	Nom k	W Stand	ard Mot	or & Hig	h Static	Drive							

Data Includes Pressure Drop Due To Wet Coils And Filters. 2.24 kW - Fan Motor Heat (kW) = 1.138 x Fan kW + 0.139

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-25a - Belt Drive Evaporator Fan Performance - YSC120AD*H - High Heat - Horizontal Configuration - (IP)

								Extern	al Static	Pressure	(Inches	of Wate	r)							
	1.1	10	1.	20	1.3	30	1.4	40	1.	50	1.0	60	1.	70	1.8	80	1.9	90	2.0	00
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
		3 HI	P Standa	rd Moto	r & Low	Static D	rive					3 HF	Standa	rd Moto	or & Driv	re				
3200	768	1.12	805	1.25	842	1.38	884	1.54	924	1.71	962	1.88	998	2.04	1028	2.19	1055	2.34	1082	2.48
3600	856	1.56	888	1.70	921	1.84	955	2.00	992	2.19	1028	2.37	1063	2.57	1096	2.75	1126	2.93	1153	3.10
4000	943	2.10	973	2.26	1002	2.41	1031	2.58	1062	2.76	1096	2.96	1129	3.17	1161	3.38	1192	3.59	1222	3.81
4400	1031	2.76	1060	2.94	1086	3.11	1113	3.28	1139	3.45	1167	3.66	1198	3.89	1228	4.11	1257	4.34	-	-
4800	1119	3.45	1146	3.74	1171	3.93	1195	4.11	1219	4.30	1243	4.50	-	-	-	-	-	-	-	-
	1110 0.70 1140 0.74 1171 0.00 1100 4.11							3 HI	Standa	ard Moto	r & Hig	h Static	Drive							
											(Inches		,							
	1.1	10	1.	20	1.3	30	1.4	40	1.	50		60	1.	70	1.8	80	1.9	90	2.0	
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
		3 HI	P Standa	rd Moto	r & Drive	•														
3200	1107	2.62	1131	2.76	1154	2.90	1176	3.04	1197	3.17	1218	3.32	1238	3.46	1257	3.59	1276	3.73	1296	3.87
3600	1178	3.27	1202	3.42	1224	3.58	1247	3.74	1268	3.90	1288	4.05	1308	4.21	1328	4.37	-	-	-	-
4000	1249	4.01	1273	4.19	1296	4.38	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4400	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

3 HP Standard Motor & High Static Drive

Notes:

4800

Data Includes Pressure Drop Due To Wet Coils And Filters. 3 HP - Fan Motor Heat (MBH) = $2.900 \times \text{Fan BHP} + 0.475$

Factory Supplied Motors, In Commercial Equipment, Are Definite Purpose Motors, Specifically Designed And Tested To Operate Reliably And Continuously At All Cataloged Conditions. Using The Full Horsepower Range Of Our Fan Motors As Shown In Our Tabular Data Will Not Result In Nuisance Tripping Or Premature Motor Failure. Our Product's Warranty Will Not Be Affected.

Table PD-26 - Standard Motor & Sheave/Fan Speed (RPM)

			•				
Unit	6 Turns	5 Turns	4 Turns	3 Turns	2 Turns	1 Turns	
Model No.	Open	Open	Open	Open	Open	Open	Closed
YSC060AD	N/A	1036	1105	1174	1243	1312	1381
YSC072ADRL	N/A	698	751	806	859	913	967
YSC072ADRH	N/A	806	860	913	968	1022	1074
YSC090AD	859	913	967	1021	1075	1129	N/A
YSC102AD	786	836	885	934	982	1032	N/A
YSC120AD	894	950	1006	1062	1118	1174	N/A

Factory set at 3 turns open

Table PD-27 - Standard Motor & Low Static Drive Accessory Sheave/Fan Speed (RPM)

Unit	6 Turns	5 Turns	4 Turns	3 Turns	2 Turns	1 Turns	
Model No.	Open	Open	Open	Open	Open	Open	Closed
YSC060AD	N/A	691	760	829	898	967	1036
YSC072ADRL	N/A	537	590	644	698	752	806
YSC090AD	N/A	671	714	757	800	843	886
YSC102AD	N/A	629	664	701	737	773	811
YSC120AD	N/A	717	754	799	844	885	922

Factory set at 3 turns open

Table PD-28 - Standard Motor & High Static Drive Accessory Sheave/Fan Speed (RPM)

Unit	6 Turns	5 Turns	4 Turns	3 Turns	2 Turns	1 Turns	
Model No.	Open	Open	Open	Open	Open	Open	Closed
YSC060AD	N/A	1243	1311	1379	1450	1515	1588
YSC072AD	N/A	967	1021	1075	1128	1183	1235
YSC090AD	1020	1073	1127	1181	1235	1289	N/A
YSC102AD	936	981	1032	1083	1134	1182	N/A
YSC120AD	1062	1118	1174	1229	1285	1341	N/A

Factory set at 3 turns open

Table PD-29 - Oversized Motor & Drive Sheave/Fan Speed (RPM)

					•		
Unit	6 Turns	5 Turns	4 Turns	3 Turns	2 Turns	1 Turns	
Model No.	Open	Open	Open	Open	Open	Open	Closed
YSC072AD	N/A	967	1021	1075	1128	1183	1235
YSC090AD	1112	1182	1252	1322	1392	1460	N/A
YSC102AD	N/A	971	1041	1111	1181	1251	1321
YSC120AD	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Factory set at 3 turns open

Table PD-30 - Sound Power Level - dB (ref. 10⁻¹² Watts)

Unit	Octave								Overall
Model No.	63	125	250	500	1000	2000	4000	8000	dBA
YSC060AD	84	91	79	77	74	71	68	63	80
YSC072AD	83	90	86	82	79	75	70	63	85
YSC090AD	83	90	86	83	80	75	71	64	85
YSC102AD	83	89	84	81	77	72	69	62	83
YSC120AD	83	86	80	77	73	69	66	60	79

Note:

Tests follow ARI 270-95

Table PD-31 - Static Pressure Drops Through Accessories - (Pascals)

					Econom		
					OA/RA D	ampers ²	
Unit	Airflow	Standard	Pleated Filters	100% OA	100% RA	100% OA	100% RA
Model No.	(m³/h)	Filters ¹	(50 mm)	Dow	nflow	Horizo	ontal
YSC060AD	2720	25	37	30	11	30	4
	3400	37	55	46	17	46	6
	4080	55	72	64	26	64	9
YSC072AD	3260	10	17	25	2	15	5
	4080	15	22	27	5	20	5
	4890	22	30	33	10	25	10
YSC090AD	4080	15	22	27	5	20	5
	5100	25	32	35	12	30	12
	6120	35	45	52	17	62	20
YSC102AD	4620	12	20	31	7	22	10
	5780	20	27	47	15	45	15
	6930	30	40	75	17	77	22
YSC120AD	5440	17	25	42	12	35	12
	6800	27	37	65	17	75	20
	8160	40	50	85	22	87	25

Table PD-31a - Static Pressure Drops Through Accessories - (Inches of Water Column)

					Economi		
					OA/RA D	ampers ²	
Unit	Airflow	Standard	Pleated Filters	100% OA	100% RA	100% OA	100% RA
Model No.	(CFM)	Filters ¹	(2 inch)	Down	nflow	Horizo	ntal
YSC060AD	1600	0.10	0.15	0.12	0.04	0.12	0.01
	2000	0.15	0.22	0.18	0.07	0.18	0.02
	2400	0.22	0.29	0.26	0.10	0.26	0.04
YSC072AD	1920	0.04	0.07	0.10	0.01	0.06	0.02
	2400	0.06	0.09	0.11	0.02	80.0	0.02
	2880	0.09	0.12	0.13	0.04	0.10	0.04
YSC090AD	2400	0.06	0.09	0.11	0.02	80.0	0.02
	3000	0.10	0.13	0.14	0.05	0.12	0.05
	3600	0.14	0.18	0.21	0.07	0.25	0.08
YSC102AD	2720	0.05	0.08	0.12	0.03	0.09	0.04
	3400	0.08	0.11	0.19	0.06	0.18	0.06
	4080	0.12	0.16	0.30	0.07	0.31	0.09
YSC120AD	3200	0.07	0.10	0.17	0.05	0.14	0.05
	4000	0.11	0.15	0.26	0.07	0.30	0.08
	4800	0.16	0.20	0.34	0.09	0.35	0.10

Notes:

Notes:

1. Tested with standard filters. The YSC060AD has 25 mm (1 inch) standard fiters.
The YSC072AD - 120AD has 50 mm (2 inch) standard filters.
The difference in pressure drop should be considered when utilizing optional 50 mm (2 inch) pleated filters.

2. OA = Outside Adi rand RA = Return Air

^{3.} Nominal kW ratings at 380 V

Notes:

1. Tested with standard filters. The YSC060AD has 25 mm (1 inch) standard fiters.
The YSC072AD - 120AD has 50 mm (2 inch) standard filters.
The difference in pressure drop should be considered when utilizing optional 50 mm (2 inch) pleated filters.

2. OA = Outside Air and RA = Return Air
3. Nominal kW ratings at 380 V

Table PD-32 — Gas-Fired Heating Capacities for G20,G25, and G31

			,		
Unit	Furnace	Heating	Input	Heating	Output
Model No.	Model	Input kW	Input MBH	Output kW	Output MBH
YSC060*DRL	G80	19.6	67	15.7	54
YSC060*DRH	G120	29.3	100	23.4	80
YSC072*DRL	G120	29.3	100	23.4	80
YSC072*DRH	G200	48.9	167	39.1	134
YSC090*DRL	G120	29.3	100	23.4	80
YSC090*DRH	G200	48.9	167	39.1	134
YSC102*DRL	G150	36.7	125	29.3	100
YSC102*DRH	G250	60.9	208	48.7	166
YSC120*DRL	G150	36.7	125	29.3	100
YSC120*DRH	G250	60.9	208	48.7	166

Ratings shown are for elevations up to 2,000 ft. For higher elevations, reduce ratings at a rate of 4% per 1,000 ft. elevation.

Zone Controls

Zone Sensors

Zone Sensors are the building occupant's comfort control devices for Precedent™ units with ReliaTel™ control:

Manual Changeover — Heat, Cool or Off System Switch. Fan Auto or Off Switch.

One temperature setpoint lever.

Manual/Automatic Changeover — Auto, Heat, Cool or Off System Switch. Fan Auto or Off Switch. Two temperature

setpoint levers. Optional Status Indication LED lights, System On, Heat, Cool, or Service.

Remote Sensor — Sensor(s) available for all zone sensors to provide remote

sensing capabilities.

Non-Programmable Manual Auto
Changeover with Digital LCD Display —
Auto, heat, cool or off mode selection
button. Auto or off fan button. Status
indication LCD indicators - System
on,heat, cool, or service.

Programmable Night Setback — Auto or manual changeover with seven-day programming. Keyboard selection of Heat, Cool, Fan, Auto, or On. All

programmable sensors have System On, Heat, Cool, Service LED/indicators as standard. Night Setback Sensors have one (1) Occupied, one (1) Un-occupied, and two (2) Override programs per day.

Integrated Comfort[™] System — Sensor(s) available with optional

temperature adjustment and override buttons to provide central control through a Trane Integrated Comfort™ system.

Conventional Thermostats

Conventional Thermostats are the building occupant's comfort control devices when a generic thermostat is desired.

Manual Changeover — One Heat, One Cool Thermostat. Heat, Cool or Off System Switch.

Fan Auto or On Switch. Set Point Dial. Adjustable Heat Anticipator.

Automatic Changeover — One Heat, Two Cool Thermostat. Off, Auto System Switch. Auto/On Fan Switch.

Programmable Electronic Night Setback Thermostat — Heating setback and cooling setup with 7-day, programming capability. Available in two-stage heating/cooling or one-stage heating/cooling versions with automatic changeover.

Electrical Data

Table ED-1 — Unit Wiring

		Standard Indoor Fan Motor		Oversized Indoor Fan Motor		
	Unit	Minimum	Maximum Fuse	Minimum	Maximum Fuse	
Unit	Operating	Circuit	Size Or Maximum	Circuit	Size Or Maximum	
Model No.	Voltage Range	Ampacitiy	Circuit Breaker ¹	Ampacitiy	Circuit Breaker ¹	
YSC060ADR	342-456	17.7	25	17.7	25	
YSC072ADR	342-456	23.2	35	24.2	35	
YSC090ADR	342-456	24.8	35	26.5	35	
YSC102ADR	342-456	26.8	35	28.5	35	
YSC120ADR	342-456	31.2	40	31.2	40	

Table ED-2 — Electrical Characteristics - Evaporator Fan Motor - 50 Hz

		Sta	ndard Evapo	rator Fan I	Vlotor			O	ersized Evapo	rator Fan M	otor	
Unit					Ar	nps					Am	ps
Model No.	No.	Volts	Phase	HP	FLA	LRA	No.	Volts	Phase	HP	FLA	LRA
YSC060AD	1	380-415	3	1.5	4.3	25.3	-	-	-	-	-	-
YSC072AD	1	380-415	3	1.5	4.3	25.3	1	380-415	3	2.0	5.3	36.4
YSC090AD	1	380-415	3	2.0	5.3	36.4	1	380-415	3	3.0	7.0	57.0
YSC102AD	1	380-415	3	2.0	5.3	36.4	1	380-415	3	3.0	7.0	57.0
YSC120AD	1	380-415	3	3.0	7.0	57.0	-	-	-	-	-	-

Table ED-3 — Electrical Characteristics - Compressor Motor and Condenser Motor - 50 Hz

			C	ompressor M	lotor				Cor	idenser Fan N	Votor	
Unit						Α	mps				Am	ps
Model No.	No.	Volts	Phase	HP1	RPM	RLA ¹	LRA1	No.	Phase	HP	FLA	LRA
YSC060AD	1	380-415	3	5.7	2875	9.5	74.00	1	1	0.40	1.9	2.8
YSC072AD	1	380-415	3	7.5	2875	12.7	95.00	1	1	0.75	2.8	7.1
YSC090AD	1	380-415	3	8.3	2875	13.2	100.00	1	1	0.75	2.8	7.1
YSC102AD	2	380-415	3	6.0 / 3.8	2875	9.3 / 6.9	74.0 / 48.0	1	1	0.75	2.8	7.1
YSC120AD	2	380-415	3	6.0 / 4.8	2875	9.9 / 8.5	74.0 / 61.8	1	1	0.75	2.8	7.1

Table ED-4 Electrical Characteristics - Inducer Motor

Model No.	Heat	Heating Stages	Watts	HP	RPM	Volts	Phase	LRA
YSC060-090*DRL YSC060*DRH	Low High	1	21	1/35	2525	208-230	1	0.6
YSC102-120*DRL YSC072-120*DRH	Low High	2	50	1/15	2800/2550	208-230	1	0.45

Notes:
1. All units to be installed under local codes

Note: 1. Comp1/Comp2

Jobsite Connections

Typical Number Of Wires Zone Sensors

A — Manual Changeover	4
Manual/Auto Changeover	5
Manual/Auto Changeover with	
Status Indication LED's	10
Programmable Night Setback with	
Status Indication LED's	7
Thermostats	
A — 4 wires, 24-volts	
D. 2 Dayyor Wines . 1 Cround Wine /three	

B — 3 Power Wires + 1 Ground Wire (three phase) 2 Power Wires + 1 Ground Wire (single phase)

For specific wiring information, see the installation instructions.

All wiring except power wires is low voltage.

All customer supplied wiring to be copper and must conform to NEC or CEC and local electrical codes. Wiring shown dotted is to be furnished and installed by the customer.

YSC060

All dimensions are in inches/millimeters.

YSC060

All dimensions are in inches/millimeters

YSC060 — Downflow Airflow Supply and Return

YSC060 — Horizontal Airflow Supply and Return

YSC060

All dimensions are in inches/millimeters.

YSC060 - Roof Curb

YSC060 — Downflow Duct Connections — Field Fabricated

YSC072-120

YSC102 and YSC120

YSC072-120

All dimensions are in inches/millimeters.

YSC072-120 — Downflow Airflow Supply and Return

YSC072-120 — Horizontal Airflow Supply and Return

YSC072-120 — Unit Clearance and Roof Opening

YSC072-120

All dimensions are in inches/millimeters.

YSC072-120 — Roof Curb

Data

Dimensional YSC060 Options/ Accessories

YSC060 — Economizer, Manual, or Motorized Damper Hood

YSC060 - Barometric Relief Damper Hood

YSC060 - Swing Diameter for Hinged Door(s) Option

See Page 42 for Through the Base Utilities Information

Dimensional YSC072-120 Data

Options/Accessories

YSC072-120 — Economizer and Barometric Relief Damper Hoods

YSC072-120 — Swing Diameter for Hinged Door(s) Option

Weights

Table W-1 - Maximum Unit and Corner Weights and Center of Gravity Dimensions (SI)

	Maximum We	eights ⁽²⁾ (kg)		Corner Weights ⁽¹⁾ (kg)				avity (mm)
Unit								
Model No.	Shipping ⁽²⁾	Net ⁽²⁾	Α	В	С	D	Length	Width
YSC060AD	295	260	81	64	54	62	810	510
YSC072AD	398	350	113	90	64	83	990	560
YSC090AD	466	419	139	110	75	95	970	530
YSC102AD	482	434	141	114	79	100	1020	560
YSC120AD	528	481	155	126	89	111	1020	560

Notes:
(1) Corner weights are given for information only. All models must be supported continuously by a curb or equivalent frame support.
(2) Weights are approximate.

Table W-1a - Maximum Unit and Comer Weights and Center of Gravity Dimensions (IP)

			U	•					
•	Maximum We	eights (lbs)		Corner We	eights ⁽¹⁾ (lbs)		Center of G	ravity (in)	
Unit									
Model No.	Shipping ⁽²⁾	Net	Α	В	С	D	Length	Width	
YSC060AD	651	574	179	140	119	136	32	20	
YSC072AD	877	772	249	198	141	184	39	22	
YSC090AD	1028	923	306	243	165	210	38	21	
YSC102AD	1062	957	310	252	175	220	40	22	
YSC120AD	1165	1060	342	277	197	245	40	22	

Notes:
(1) Corner weights are given for information only. All models must be supported continuously by a curb or equivalent frame support.

(2) Weights are approximate.

Table W-2 - Accessory Net Weights(1) (kg)

	Net \	Neights ⁽²⁾
Accessory ⁽³⁾	YSC060	YSC072-120
Economizer	12	16
Barometric Relief	3	5
Motorized Outside Air Damper	9	14
Manual Outside Air Damper	7	12
Roof Curb	32	52
Oversized Motor	2	4
Coil Guards	5	9
Hinged Doors	5	5
Electric Heaters	7	14

Notes:

(1) Weights for options not listed are < 3 kg.

(2) Net weight should be added to unit weight when ordering factory-installed

accessories.
(3) Some accessories not available on all units.

Table W-2a - Accessory Net Weights(1) (2) (lbs)

	Net Weights ⁽²⁾				
Accessory ⁽³⁾	YSC060	YSC072-120			
Economizer	26	36			
Barometric Relief	7	10			
Motorized Outside Air Damper	20	30			
Manual Outside Air Damper	16	26			
Roof Curb	70	115			
Oversized Motor	5	8			
Coil Guards	12	20			
Hinged Doors	10	12			
Electric Heaters	15	30			
Hinged Doors	10	12			

Notes:

(1) Weights for options not listed are < 5 lbs.

2) Net weight should be added to unit weight when ordering factory-installed accessories.

(3) Some accessories not available on all units.

Mechanical Specifications

General

Units shall be convertible airflow. Operating range in cooling shall be between 46°C and -18°C (115°F and 0°F) cooling as standard from the factory for all units. All units shall be factory assembled, internally wired, fully charged with R-22, and 100 percent runtested before leaving the factory. Wiring internal to the unit shall be colored and numbered for simplified identification.

Casing

Unit casing shall be constructed of zinc coated, heavy gauge, galvanized steel. Exterior surfaces shall be cleaned, phosphatized, and finished with a weather-resistant baked enamel finish. Cabinet construction shall allow for all maintenance on one side of the unit. Service panels shall have lifting handles and be removed and reinstalled by removing only a single fastener while providing a water and air tight seal. All exposed vertical panels and top covers in the indoor air section shall be insulated with a cleanable foil faced, fireretardent permanent, odorless glass fiber material. The base of the unit shall be insulated with 13 mm, 16 kg (1/2 inch, 1 pound) density foil-faced, closed-cell material. All insulation edges shall be either captured or sealed. The unit's base pan shall have no penetrations within the perimeter of the curb other than the raised 29 mm (11/8 inch) high downflow supply/return openings to provide an added water integrity precaution, if the condensate drain backs up. The base of the unit shall have provisions for forklift and crane lifting, with forklift capabilities on three sides of the unit.

UnitTop

The top cover shall be one piece construction or, where seams exist, it shall be double-hemmed and gasket-sealed. The ribbed top adds extra strength and prevents water from pooling on unit top.

Filters

25 mm (1 inch), throwaway filters shall be standard on all 5 ton units.. The filter rack can be converted to two inch capability. 50 mm (2 inch) filters shall be factory supplied on all 6-10 ton units. Optional two inch pleated filters shall be available.

Compressors

All units shall have direct-drive, hermetic, scroll type compressors with centrifugal type oil pumps. Motor shall be suction gas-cooled and shall have a voltage utilization range of plus or minus 10 percent of unit nameplate voltage. Internal overloads shall be provided with the scroll compressors. Low and high pressure switches shall be standard.

Refrigerant Circuits

Service pressure ports, and refrigerant line filter driers shall be factory-installed as standard. An area shall be provided for replacement suction line driers.

Evaporator And Condenser Coils

Internally finned, 8 mm (5/16") copper tubes mechanically bonded to a configured aluminum plate fin shall be standard. Coils shall be leak tested at the factory to ensure pressure integrity. The evaporator coil and condenser coil shall be leak tested to 1375 kPa (200 psig) and pressure tested to 3100 kPa (450 psig). The condensate coil shall have a patent pending 1 +1+1hybrid design with slight gaps for ease of cleaning. A removeable, reversible, double-sloped condensate drain pan is standard. Provision for through the base condensate drain is standard.

Gas Heating Section

The heating section shall have a progressive tubular heat exchanger design using stainless steel burners and corrosion resistant steel throughout. An induced draft combustion blower shall be used to pull the combustion products through the firing tubes. The heater shall use a direct spark ignition (DSI) system. On initial call for heat, the combusiton blower shall purge the heat exchanger for 20 seconds before ignition After three unsuccessful ignition attempts, the entire heating system shall be locked out until manually reset at the thermostat/zone sensor. Units shall be suitable for use with natural gas or propane (field-installed kit).

Outdoor Fans

The outdoor fans shall be direct-drive, statically and dynamically balanced, draw-through in the vertical discharge position. The fan motor shall be permanently lubricated and shall have built-in thermal overload protection.

Mechanical Specifications

Indoor Fan

All units shall have belt drive motors. Units with belt drive motors shall have an adjustable idler-arm assembly for quick-adjustment to fan belts and motor sheaves. All motors shall be thermally protected. Oversized motors shall be available for high static operations.

Controls

Unit shall be completely factory wired with necessary controls and contactor pressure lugs or terminal block for power wiring. Unit shall have single point power entry as standard. Units shall provide an external location for mounting a fused disconnect device.

Microprocessor controls provide for all 24 volt control functions. With the microprocessor controls, the resident control algorithms shall make all heating, cooling, and/or ventilating decisions in response to electronic signals from sensors measuring indoor and outdoor temperatures. The control algorithm maintains accurate temperature control, minimizes drift from set point, and provides better building comfort. A centralized Microprocessor shall provide anti-short cycle timing and time delay between compressors to provide a higher level of machine protection.

Accessories/Options

Roof Curb

The roof curb shall be designed to mate with the unit's downflow supply and return openings and provide support and a watertight installation when installed properly. The roof curb design shall allow field-fabricated rectangular supply/return ductwork to be connected directly to the curb. Curb shall be shipped knocked down for field assembly and shall include wood nailer strips.

Economizer

This accessory shall be either field or factory-installed and is available with or without barometric relief. The assembly includes fully modulating 0-100 percent motor and dampers, minimum position setting, preset linkage, wiring harness with plug, spring return actuators and fixed dry bulb control. Optional solid state enthalpy and differential enthalpy control shall be either factory or field-installed. The factory-installed economizer arrives in the shipping position and shall be moved to the operating position by the installing contractor.

Phase Monitor

Phase monitor shall provide 100% protection for motors and compressors against problems caused by phase loss, phase imbalance, and phase reversal. Phase monitor is equipped with an LED that provides an ON or FAULT indicator.

Remote Potentiometer

Field-installed, the minimum position setting of economizer shall be adjusted with this accessory.

Motorized Outside Air Dampers

Factory or field-installed manually set outdoor air dampers shall provide up to 50 percent outside air. Once set, outdoor air dampers shall open to set position when indoor fan starts. The damper shall close to the full closed position when indoor fan shuts down.

Manual Outside Air Damper

Factory or field-installed rain hood and screen shall provide up to 50 percent outside air.

Oversized Motors

Factory or field-installed oversized motors shall be available for high static applications.

Discharge Air Sensing

This factory or field option provides true discharge air sensing in heating models. This sensor is a status indicator readable through Tracer™ or Tracker™.

Coil Guards

Hail protection quality coil guards shall be either factory or field-installed for condenser coil protection.

Fan Failure/Clogged Filter Switches

These factory or field-installed options allow for individual fan failure and dirty filter indication. The fan failure switch will disable all unit functions and "flash" the Service LED on the zone sensor. The dirty filter switch will light the Service LED on the zone sensor and will allow continued unit operation.

High Pressure Cutout

All units have High Pressure cutout as standard.

Hinged Access Doors

Sheet metal hinges are available factoryinstalled on the Filter/Evaporator Access Door, Indoor Fan/Heat Exchanger Door, and the Compressor/Control Access Door

Black Epoxy Coated Condenser Coil

The coil provides corrosion protection to condenser coils for seacoast application. The protection is a factory applied thermoset vinyl coating, bonded to normal aluminum fin stock. The uniform thickness of the bonded vinyl layer exhibits excellent corrosion protection in salt spray tests.

Mechanical Specifications

Control Options

Comm-3/4 Trane Communication Interface

This factory or field-installed option shall be provided to interface microprocessor controlled units with the Trane Integrated Comfort $^{\mathbb{T}}$ systems.

Comm-5 LonTalk Communication Interface

This factory or field-installed option shall be provided to allow the unit to communicate as a Trane Comm-5 device or directly with generic LonTalk Network Building Automation System Controls.

Zone Sensor

Field-installed, this accessory shall be provided to interface with the Micro equipped units and shall be available in either manual, automatic programmable with night setback, with system malfunction lights or remote sensor options.

Thermostats

Two stage heating and cooling operation or one stage heating and cooling shall be available, for field installation, in either manual or automatic changeover.

Automatic programmable electronic with night set back shall also be available.

Reference Enthalpy Control

Replaces the dry bulb control with a wet bulb changeover controller which has a fully adjustable setpoint. Enthalpy control offers a higher level of comfort control, along with energy savings potential, than the standard dry bulb control. This is due to the additional wet bulb sensing capability. This option shall be available for all units. It can be field-installed or factory-installed with the factory-installed economizer.

Differential Enthalpy Control

Replaces the standard dry bulb control with two enthalpy sensors that compare total heat content of the indoor air and outdoor air to determine the most efficient air source. This control option offers the highest level of comfort control, plus energy efficiency, available. This option shall be available for all units. It can be field-installed or factory-installed with the factory-installed economizer.

Low Ambient Cooling

All microprocessor units shall have cooling capabilities down to -18°C (0°F) as standard.

Trane A business of American Standard Companies www.trane.com

For more information, contact your local district office or e-mail us at comfort@trane.com

Literature Order Number	RT-PRC017-EN
File Number	PL-UN-000-RT-PRC017-EN-02-04
Supersedes	PL-UN-000-RT-PRC017-EN-12-03
Stocking Location	03-03 Webb/Mason 02-04 Electronic Only

Trane has a policy of continuous product and product data improvement and reserves the right to change design and specifications without notice.