

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL DE CÓRDOBA

ELECTRÓNICA APLICADA III

TP1: Oscilador Hartley

Integrantes:

Albornoz Georgina	49689
Pereyra Estefanía	50039
Quero Josué	50209
Trasobares Daniel	50281

Año: 2009

Profesor: Ing. Oros, Ramón

Enunciado del T. P. Nº1: OSCILADOR HARTLEY

Integrantes del grupo:

- 1. Trasobares Daniel
- 2. Quero Josué
- 3. Albornoz Georgina
- 4. Pereyra Estefania
- 1. Diseñar e implementar un oscilador Hartley que cumpla con las siguientes especificaciones:
- $A. \quad f_0 = 5 \ Mhz$
- B. $V_{CC} = 12 \text{ V}$
- C. $R_L = 150\Omega$
- D. $P_L = 5mW$
- 2. Efectuar las siguientes mediciones:
 - A. Medir y graficar la tensión en la carga en función del tiempo
 - B. Medir la potencia aplicada a la carga

Trazado del circuito:

Modelo equivalente. Circuito de RF:

Selección de los componentes principales:

Se selecciona el transistor BF495, porque se conoce las hojas de datos de los parámetros Y, y se adapta perfectamente para los requerimientos.

$$\begin{aligned} &\mathsf{F}_{\mathsf{T(tip)}} \!\!=\!\! 200\mathsf{MHz} > \!\! > \!\! 5\mathsf{MHz} \\ &\mathsf{P}_{\mathsf{C(máx)}} \!\!\! = \!\! 300\mathsf{mW} > \!\! > \!\! 5\mathsf{mW} \end{aligned}$$

Determinación de la polarización

Para una buena estabilidad de la I_C , la tensión V_{R1} deberá ser grande. Los parámetros Y están dados para V_{CE} =10V, pero si se varía la V_{CE} en $\pm 20\%$, los parámetros Y varían en menor proporción que si se varía la I_C . Por lo tanto se adopta

$$V_{R1} = 4V$$
 $V_{CE} = 8V$

Para excursión simétrica máxima de I_C se sabe que

$$I_C = \frac{V_{CE}}{R'_L} \quad \text{pero} \quad P_L = \frac{V_{CE}^2}{2R'_L} \qquad \therefore \qquad I_c = \frac{2P_L}{V_{CE}} = \frac{2*5\text{mW}}{8V} = 1.25\text{mA}$$

Los parámetros Y están dados para I_C = 1, 3, y 5 mA Si bien 1mA sería suficiente, se utilizará 3mA. Por lo que

$$I_C = 3mA \,, \qquad V_{CE} = 8V \,\,y \,\, P_{C(sin\,se \bar{n}al)} = I_C * V_{CE} = 24mW \ll P_{C_M\acute{e}x} \,$$

Cálculo de R1 y R2:

$$V_{\text{CE}} = \frac{I_{\text{C}}}{h_{\text{FE}}} R_2 + V_{\text{BE}} \qquad \therefore \qquad R_2 = h_{\text{FE}} \frac{V_{\text{CE}} - V_{\text{BE}}}{I_{\text{C}}} \qquad \qquad h_{\text{FE}\,(\text{tip})\text{SmA}} = 75$$

$$R_2 = 75 \frac{8V - 0.7V}{3mA} = 182500 \ \Omega \approx 180 \ K\Omega$$

$$R_z = 180 \ K\Omega$$

$$V_{cc} - I_c * R_1 - V_{CE} = 0$$
 :

$$R_1 = h_{FE} \frac{V_{CC} - V_{CE}}{I_C} = \frac{12V - 8V}{3mA} = 1333 \ \Omega \approx 1.2 \ K\Omega$$

$$R_1 = 1.2 \ K\Omega$$

Cálculo de C4 y el equivalente paralelo R´L y C´4:

$$P_{L(ef)} = \frac{\hat{I}^2 * R_L}{2} \ \therefore \ \hat{I} = \sqrt{\frac{2P_L}{R_L}} = \sqrt{\frac{2*5*10^{-3}}{150}} = 8.16 \ \text{mA}$$

$$Z = \frac{^{\wedge}V}{\hat{I}} = \frac{8V}{8.16*10^{-3}A} = 979,795~\Omega$$

$$Z = \sqrt{R_L^2 + \left(\frac{1}{\omega C_4}\right)^2} \ \ \div$$

$$C_4 = \frac{1}{\omega \sqrt{Z^2 - R_L^2}} = \frac{1}{2\pi * 5 * 10^6 \sqrt{979.795^2 - 150^2}} = 32.87 \ pF \ \approx 33 \ pF$$

$$J\omega C_4' + \frac{1}{R_L'} = \frac{1}{R_L + \frac{1}{J\omega C_4}} = \frac{J\omega C_4}{1 + J\omega C_4 R_L} * \frac{1 - J\omega C_4 R_L}{1 - J\omega C_4 R_L} = \frac{(\omega C_4)^2 R_L + J\omega C_4}{1 + (\omega C_4 R_L)^2}$$

$$C'_4 = \frac{C_4}{1 + (\omega C_4 R_L)^2} = 32.22 \text{ pF} \qquad \qquad R'_L = R_L \frac{1 + (\omega C_4 R_L)^2}{(\omega C_4 R_L)^2} = 6.352 \text{ K}\Omega$$

Cálculo de L:

Como N1 va a resultar mucho menor que N2, en la práctica C4 queda en paralelo con L, junto con C3 y alguna suceptancia positiva o negativa que brinde el transistor. Suponiendo C3=85pF (luego se recalculará en base a los criterios de oscilación) compuesto por 68pF//trimmer de 30pF (CTrim \cong C/3). Luego se recalcula C3, una vez fijado el valor de L.

$$L \cong \frac{1}{(2\pi f)^2 (C_2 + C_4^*)} = \frac{1}{(2\pi * 5 * 10^6)^2 (85 * 10^{-12} + 32,22 * 10^{-12})} = 8,643 \ \mu H$$

Se construirá una bobina de ese orden. Se usará porque se dispone, un alambre esmaltado de ϕ =0,3 mm y forma de *prespan* de 7 mm de ϕ exterior.

ф	esp/cm	0	esp/cm	ф	esp/cm
0,1	90	0,3	30	0,6	15,6
0,15	60	0,35	26	0,7	13,5
0,2	45	0,4	23	0,8	11,8
0,25	36	0,5	19	0,9	10,5
				1,0	9,4

Se conoce con buena exactitud la cantidad de espiras juntas por cm para un diámetro en mm de alambre de cobre esmaltado En nuestro caso $\lambda = \frac{n}{30} (cm)$

Las fórmulas siguientes son prácticas y precisas para calcular L.

Se eligió: $\Phi = 0.3 \text{ mm}$ y D = 7 mm

$$\lambda = \frac{N}{30}(cm)$$

Usando la ec. (1), se da valores a N hasta hallar L, y luego se verifica si era correcto usar (1).

	N	L (μH)
$\lambda = \frac{70}{30}$	50 70 80	6,67 9,8 11,4

Se adopta N=70,

$$\lambda = 2,33 \text{ cm} > D/3 = 0,233 \text{ cm } \lambda$$

Por lo tanto se usa la ecuación:

$$L = \frac{D^2 N^2}{\lambda + 0.45 D} * 10^{-2}$$

$$L = \frac{(0.7cm)^2 * 70^2 * 10^{-2}}{2.33cm + 0.45 * 0.7cm} = 9.0775 \mu H$$

Cálculo de RP de la bobina L:

Ejemplo numérico: Sea D=5cm; λ =2,5 cm. Alambre espaciado de un diámetro, o sea d/s=0,5. Frecuencia f=4MHz.

De las curvas para λ /D=0,5 y D/s=0,5 Sale φ =0,52. El Q resulta de Q=75*5*0,52*2=390

El Q así calculado es el de la sola bobina por resistencia ohmica y por efecto pelicular. En aplicaciones prácticas o durante las mediciones, este valor queda disminuido por: resistencias en las soldaduras y conexiones, efecto de metales en el campo magnético de la bobina; pérdidas dieléctricas.

Usando el monograma del Packmann, se calcula Q.

$$\frac{\lambda}{D} = \frac{2,33cm}{0.7cm} = 3,32 \quad \text{y espiras juntas (eje de las } x = 1) \rightarrow \varphi = 0.72$$

$$Q = 75 * D * \phi * \sqrt{f[MHz]} = 75 * 0.7cm * 0.72 * \sqrt{5} = 84.52$$

$$Q = 84.52$$

Al Q obtenido, lo disminuyo un 20% por pérdidas en el circuito quedando Q $\approx 67,\!616$

$$X_p = \omega L_p$$

$$Q_P={R_P\over N_P}/\chi_P$$

$$R_P=Q_P*X_P=Q\omega L=67.616*2\pi*5*10^6 Hz*9.0775 \mu H$$

$$R_P=19.282~k\Omega$$

Modelo equivalente y criterio de oscilación:

Este es el modelo de pequeña señal, donde $N=N_1+N_2$; y $L=L_1+L_2+2M$

 $[Y_T] = [Y_{tr}] + [Y_1] + [Y_2] + [Y_3]$ Se aplicará el teorema de la superposición, válido para sistemas lineales, suponiendo que el modelo es válido en régimen estacionario. Se analizará las admitancias por separado.

$$\mathbf{Y}_{\text{tr}} = \begin{bmatrix} \mathbf{y}_{\text{ie}} & \mathbf{y}_{\text{re}} \\ \\ \\ \mathbf{y}_{\text{fe}} & \mathbf{y}_{\text{oe}} \end{bmatrix}$$

Y₁:

$$Y_1 = \begin{bmatrix} \frac{1}{R_p} + j\omega C_3 & -\frac{1}{R_p} - j\omega C_3 \\ \\ -\frac{1}{R_p} - j\omega C_3 & \frac{1}{R_p} + j\omega C_3 \end{bmatrix}$$

Y₂:

$$v_1=I_1\,j\omega L_1-I_2\,j\omega M$$

$$v_2 = -l_1 j \omega M + l_2 j \omega L_2$$

$$\left[\vee \right] = \left[Z \right] \left[1 \right] \qquad \qquad \left[Z \right]^{-1} \left[\vee \right] = \left[Z \right]^{-1} \left[Z \right] \left[1 \right]$$

$$[Z]^{-1}[V] = [1][I] : [I] = [Z]^{-1}[V] : [Y] = [Z]^{-1}$$

$$[Z] = \begin{bmatrix} j\omega L_1 & -j\omega M \\ -j\omega M & j\omega L_2 \end{bmatrix}$$

$$\Delta Z = -\omega^2 L_1 L_2 + \omega^2 M^2 = -\omega^2 \left(L_1 L_2 - M^2 \right)$$

$$[Z]^{-1} = \begin{bmatrix} \frac{j\omega L_2}{\Delta Z} & \frac{j\omega M}{\Delta Z} \\ \\ \frac{j\omega M}{\Delta Z} & \frac{j\omega L_1}{\Delta Z} \end{bmatrix} = [Y_2] \quad \rightarrow \qquad [Y_2] = \begin{bmatrix} -\frac{jL_2}{\omega \left(L_1L_2-M^2\right)} & -\frac{jM}{\omega \left(L_1L_2-M^2\right)} \\ \\ -\frac{jM}{\omega \left(L_1L_2-M^2\right)} & -\frac{jL_1}{\omega \left(L_1L_2-M^2\right)} \end{bmatrix}$$

Y3:

Sumando $[Y_{tr}]+[Y_1]+[Y_2]+[Y_3]$, queda $[Y_T]$, y es:

$$\begin{bmatrix} Y_T \end{bmatrix} = \begin{bmatrix} g_{ie} + \frac{1}{R_p} + j \begin{bmatrix} b_{ie} + \omega C_3 - \frac{L_2}{\omega(L_1L_2 - M^2)} \end{bmatrix} & g_{re} - \frac{1}{R_p} + j \begin{bmatrix} b_{re} - \omega C_3 - \frac{M}{\omega(L_1L_2 - M^2)} \end{bmatrix} \end{bmatrix}$$

$$\begin{bmatrix} g_{fe} - \frac{1}{R_p} + j \begin{bmatrix} b_{fe} - \omega C_3 - \frac{M}{\omega(L_1L_2 - M^2)} \end{bmatrix} \end{bmatrix}$$

$$\begin{bmatrix} g_{fe} - \frac{1}{R_p} + j \begin{bmatrix} b_{fe} - \omega C_3 - \frac{M}{\omega(L_1L_2 - M^2)} \end{bmatrix} \end{bmatrix}$$

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Y_i & Y_r \\ Y_f & Y_o \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

$$\therefore V_2 = -I_1 \frac{Y_f}{\Delta Y_T} + I_2 \frac{Y_i}{\Delta Y_T}$$

Cuando $I_1=I_2=0$, y $V_2\neq 0$, aplicando el criterio de ganancia infinita, para poder tener salida aunque la entrada sea igual a cero, la condición necesaria y suficiente es que el determinante de la matriz $\begin{bmatrix} Y \end{bmatrix}$ sea igual a cero $\therefore Y_1 Y_0 - Y_f Y_r = 0$ que equivale a $\frac{Y_f Y_r}{Y_1 Y_0} = 1$. Esto implica MOD=1; FASE=0 (son dos ecuaciones porque es una función compleja)

que equivale a
$$\frac{Y_f Y_r}{Y_i Y_o} = 1$$
 . Esto implica MOD=1; FASE=0 (son dos ecuaciones porque es una función compleja)

Las incógnitas que hay que resolver son dos: C3 y la derivación de L, por lo tanto, el problema tiene una única solución.

Cálculo de C1:

C₂ está en serie con el circuito tanque, que está sintonizado en f₀. También, con aproximación se puede decir que:

$$X_{c1} \ll R_P / / R'_L$$
 :

$$C_1 \gg \frac{1}{\omega(R_F//R_L')} = \frac{1}{2\pi .5 MHz. (19.282 K\Omega //6.352 K\Omega)} = 6.66 \ FF$$

Se elige C1= 10nF. Pero, C1 también debe impedir que el ripple de 100Hz pase al oscilador, modulándolo.

$$R_1 C_1 >> \frac{1}{100 \, Hz}$$
 $C_1 >> \frac{1}{R_1 * 100} = \frac{1}{1,2 * 10^3 * 100} = 8,33 \, \mu F$

Se elige entonces, $C1 = 100 \mu F$ en paralelo con 10 nF.

Cálculo de C3 y N1-N2:

Primero se obtienen los datos de admitancia del transistor para Ic=3mA, VcE=10V, fo=5MHz, De las siguientes gráficas extraídas de la hoja de datos :

Yie (gie=1,3; bie=1,5)mS

Yoe (goe=8,5; boe=50) μS

Yre (gre=0; bre=-20) μ S

Yfe (gfe=99,02; bfe=-13,91)mS

$$\frac{y_r * y_f}{y_i * y_o} = \frac{(g_r + jb_r)(g_f + jb_f)}{(g_i + jb_i)(g_o + jb_o)} = \frac{(g_rg_f - b_rb_f) + j(g_fb_r + g_rb_f)}{(g_ig_o - b_ib_o) + j(g_ib_o + g_ob_i)} = \frac{A + jB}{C + jD} = P \frac{\mid F \mid}{\mid F \mid} = 1 \frac{\mid O \mid}{\mid G \mid}$$

A partir de ahora se usará el cálculo en Excel "oscilador gTP1", donde se ingresan los siguientes datos:

N:	70		Øcu[cm]	0,03			
N 1:	1		D [cm]:	0,7	diámetro	interno de la b	ol
N2:	69		f 0[MHz]:	5			
				y ie	gie	: 1,3	
				[mΩ ⁻			
				y oe	goe	.: 0,008	5
				[mΩ ⁻			
				y re	g re	: 0	
				[mΩ ⁻			,
ingrese	-> Rp=	19282	[Ω]	y fe	g fe	: 99,02)
	$R_L'=$	6352	-	[mΩ	⁻¹] b fe	: -13,9	1

Entonces los datos adoptados serán:

L 1[Hy] =	1,66E-08		L ₂ [Hy] =	8,51E-06	L [Hy] =	8,64E-06
	de aqui	M [Hy] =	6,02E-08			

Variando los datos de N1 y C3 se puede lograr los requerimientos de módulo y fase.

C3 [pF]		Módulo	fase
80		0,67047	1,48
85		0,76895	1,50
90		0,89758	1,51
95	>	1,07209	1,53
100		1,32062	1,56
105		1.69707	1.62

Se adopta N1=1 vuelta, N2=69 vueltas y C3=95pF (se utilizó uno de 100pF //con un trimmer de 50pF)

También se puede ver que para éstas condiciones asumidas y calculadas, se obtiene un comportamiento fase/módulo en función del capacitor C3 como sigue:

Cálculo de C2:

C2 está en serie con la base, se puede adoptar el siguiente criterio:

$$X_{C2} = \frac{1}{|Yie|} \ \therefore \ C_2 = \frac{|Yie|}{\omega} = \frac{\sqrt{1,3^2 + 1,5^2} * 10^{-2}}{2\pi * 5 * 10^6} = 63,18 pF$$

Se elige: C2=10 nF

Construcción de la bobina:

Al ser de alambre de ϕ =0,3 mm, los extremos se podrán fijar con algún adhesivo anaeróbico, pero sólo cuando se halla ajustado en el prototipo, sobretodo el extremo de la derivación más crítico es el de N_1 , por lo que se recomienda que se coloque en el lado superior para tener acceso al ajuste. Los extremos se deberán retorcer una vez ajustados y fijados con el adhesivo.

2.3. Circuito final

- * se desconecta C2
- * se ajusta R2 hasta que Ic= 3mA
- * se conecta C2

Tener precaución en el uso del potenciómetro R_2 , ya que un valor muy pequeño puede destruir el transistor.

R´2: Protege al transistor en el caso de que el potenciómetro R2 sea igual a 0.

R2(potenciómetro): Regula si oscila o no.

C'3(trimmer): Regula la frecuencia de oscilación.

C4: Regula la potencia sobre la carga.

Placa:

Los componentes se soldaron sobre la pista del lado de arriba (no hay que hacer huecos). A la bobina se la pegó con gotita(adhesivo).

Medición de la tensión en la carga:

Cálculo de la potencia en la carga:

$$P_L = \frac{(V_P)^2}{2R_L} = \frac{(1,3V)^2}{2.150\Omega} = 5.6mw$$

Conclusiones:

Al principio la potencia sobre la carga nos dio muy grande, por lo que tuvimos que disminuir C4 (aumenta la reactancia capacitiva).

ra obtener mayor exactitud, se utilizó para medir la bobina un puente (LCR) del laboratorio, u tuvimos el valor deseado se le colocó gotita.	na ves que