

Thapar Institute of Engineering & Technology (Deemed to be University)

Bhadson Road, Patiala, Punjab, Pin-147004

Contact No.: +91-175-2393201

Email: info@thapar.edu

Why we should study the Defects?

- Structural discontinuity and localized disorder regions are always present in real solids.
- With defects or imperfections, heterogeneity can exits on microscopic and macroscopic scales.

Many properties can be altered by the defects/impurities

For example

- Ni-, Co-, Ti- based superalloys have better mechanical properties compare to the pure metals.
- Doped semiconductors show much low resistivity compare to pure semiconductors.
- Absorption or emission of different wavelengths of light by any material can be altered with defects.

Based on Dimensionality

Some basic terms

Alloying

- In a pure material when other elements are added intentionally they are called alloying elements.
- When added small quantity it is often called doping
- o There is no difference between an 'impurity' and 'alloying

Substitution and interstitial solid solutions

alloying element B

deposition of individual alloying atoms B in the lattice of the host component A

alloying element B

Substitution and interstitial solid solutions

Some basic terms

Solid solutions

The mixing is at the atomic scale and is analogous to a liquid solution.

HUME ROTHERY RULES

Empirical rules for the formation of substitutional solid solution

- 1. The solute and solvent atoms do not differ by more than 15% in diameter.
- 2. The electronegativity difference between the elements is small.
- 3. The valency of the elements is same.
- 4. The crystal structure of the elements is same.

Additional rule

 Element with higher valency is dissolved more in an element of lower valency rather than vice-versa.

Some basic terms

Example Hume-Rothery rule

S	System		Crystal structure	Radius of atoms (Å)	Valency	Electronegativity
	Ag-Au	Ag	FCC	1.44	1	1.9
F		Αu	FCC	1.44	1	2.4
(Cu-Ni	Си	FCC	1.28	1	1.9
		Ni	FCC	1.25	2	1.8
	Ge-Si	Ge	DC	1.22	4	1.8
	GE-31	Si	DC	1.18	4	1.8

Example of a pair of elements not forming solid solution in all proportions

Examples of Alloy and

Solid solutions

Solid solutions is atomic level mixing

Point Defects (zero dimensional)

- Interstitial
- Substitutional

- Charge neutrality condition should meet.
 Means number of positive and negative from the ions should be equal (Defects in ceramics do not occur alone)
- □Size or regions of point defect ~ 1-2 atomic diameter and distorted regions can be extends to large distances
- □Point defects can be created by removal or addition or displacement of an atomic species (atoms, ions) from lattice site

Vacancy

Perfect crystal

Atom is missing from lattice site (creation of vacancy)

Lattice strain around the vacancy

Perfect Crystal

Frenkel Defect

- □Cation being smaller displaced to interstitial sites
- □Charge neutrality maintained
- ■No change in density
- □Examples: NaCl, AgBr, KCl, CaF₂

Impurities (Ionic Solids)

Example: KCI

■Substitutional cation impurity

Initial geometry

■Substitutional anion impurity

Initial geometry

Must satisfy charge neutrality condition

Replaced

Final geometry

Final geometry

Perfect Crystal

Schottky Defect

- □A Pair of anion and cation missing
- ☐ Charge neutrality maintained
- □Change in density
- □Examples: NaCl, AgBr, KCl, CaF₂

Concentration of point defects

Change in free energy of crystal when we add n point defects in one mole of crystal $\Delta G = \Delta H - T\Delta S = n\Delta H_f - kT[NlnN - (N-n)\ln(N-n) - nlnn]$

Where N is the Avogadro number

At equilibrium,

$$\frac{d\Delta G}{dn} = 0$$

$$\frac{n}{N} = \exp\left(-\frac{H_f}{RT}\right)$$

Where R is gas constant OR

$$\frac{n}{N} = \exp(-\frac{Q_d}{kT})$$

Where N, Q and k is the Avogadro number, activation energy and Boltzmann constant respectively.

$$\frac{n}{N} = \exp(-\frac{H_f}{2RT})$$

Where R is gas constant

OR

$$\frac{n}{N} = \exp\left(-\frac{Q_d}{2kT}\right)$$

Where N, Q and k is the Avogadro number, activation energy and Boltzmann constant respectively

The factor 2 appears because the energy of formation HF or Qd refers to the formation of the defect pair.

Summary

- 1. Hume-Rothery condition is for the formation of solid solutions.
- 2. Defects can alter the properties of the materials.
- 3. Frenkel and Schottky defects takes place only in ionic solids.
- 4. Charge neutrality must be maintained in ionic solids.
- 5. Solid solutions is the atomic level mixing of atoms.

<u>Assignment</u>

- 1. FCC lead has a lattice parameter of 0.4949 nm and contains one vacancy per 500 Pb atoms. Calculate (a) the density; and (b) the number of vacancies per gram of Pb.
- 2. Determination of the number of vacancies per cubic meter in gold at 900 °C. Given that the formation energy of the defect is 0.98 eV/atom, atomic weight is 197 g/mol and density of 19.32 g/cm³.
- 3. Calculate the activation energy for vacancy formation in aluminum, given that the equilibrium number of vacancies at 500 C is 7.57 x 10²³ m⁻³. The atomic weight and density for aluminum are, respectively, 26.98 g/mol and 2.62 g/cm³.
- 4. Average energy required to create Frenkel defect in an ionic crystal is 1.4 eV. Calculate the ratio of Frenkel defects at 20°C and 300°C in 1 gram of crystal.

