4 janvier 2017 Prob-Stat, L2 Info

Durée: 2h

Calculatrice autorisée - Aucun document

(formulaire stat en dernière page)

NOTES:
Exercice 1 : ______/ 6

Exercice 2 : ______/ 10

Exercice 3 : ______/ 4

TOTAL: ______

N'oubliez pas d'indiquer votre nom. Colle disponible quand vous rendez la copie. Donnez vos réponses à la suite de chaque question, aux endroits prévus.

Pas de point pour réponse sans justification et détails des calculs
RESULTATS AVEC DEUX chiffres significatifs.

Barème approximatif entre parenthèses. Formulaire proba/stat en dernière page.

Exercice 1

- 1. On vous donne le début du fichier de données sur les ordinateur étudié en cours.
- > Computers[1:10,]

	price	speed	hd	ram	screen	cd	multi	premium	ads	trend
1	1499	25	80	4	14	no	no	yes	94	1
2	1795	33	85	2	14	no	no	yes	94	1
3	1595	25	170		15	no	no	yes	94	1
4	1849	25	170	8	14	no	no	no	94	1
5	3295	33	340	16	14	no	no	yes	94	1
6	3695	66	340	16	14	no	no	yes	94	1
7	1720	25	170	4	14	yes	no	yes	94	1
8	1995	50	85	2	14	no	no	yes	94	1
9	2225	50	210	8	14	no	no	yes	94	1
10	2575	50	210	4	15	no	no	yes	94	1

i. (1 pt) A quoi est égal Xv= Computers\$hd[1:8]?

XV [1] 80 85 170 170 340 340 170 85

ii. (4 pts) Donnez les valeurs pour les sorties de la fonction BP(Xv) vue en TP (écrivez ces 8 valeurs juste au dessus des traits noirs).

> BP(XV)						
h1	moust-bas	Q1	med	DIQ	Q3	moust-haut	h2
-170	80	85	170	170	255	340	510

iii. (1 pt) Tracer le boxplot

Exercice 2

On échantillonne n valeurs d'une variable aléatoire normale X de paramètres μ et σ - les valeurs de X sont comprises entre 0 et 350 avec des effectifs (**\$counts** ci-dessous) pour chacun des 7 intervalles entre 0 et 350.

1. (4 pts) On donne ci-dessous le programme qui produit l'objet h contenant les données utilisées pour tracer l'histogramme.

On ne vous donne ni n, ni mu, ni sig - vous avez ce qu'il faut pour obtenir/estimer ces trois quantités.

Complétez partout où il y a des traits noirs -

nombre n d'observations= 7 + 34 + 135 + 183 + 103 + 35 + 3 = 500

```
> sum(Xv)
[1] 85306.7
> sum(Xv*Xv)
[1] 15966507
> sd(Xv)
[1] 53.1952
> mean(Xv)
[1] 170.613
> windows()
> s1=seq(0, 350,by=50)
> h=hist(Xv,breaks=s1, freq=F,ylim=c(0,0.01))
> h
$breaks
[1] 0 50 100 150 200 250 300 350
$counts
[1] 7 34 135 183 103 35 3
$density
[1] 0.00028 0.00136 0.00540 0.00732
0.00412 0.00140 0.00012
```


2. (1 pts) Tracez l'histogramme des densités en complétant tous les éléments dans le diagramme - en particulier indiquez la bonne valeur pour l'entier k (qui peut être soit positif soit négatif) et qui définit la valeur maximum 10^k sur les ordonnées.

3. i. (2 pt) Quelles valeurs utilise-t-on pour les estimations des paramètres μ et σ ?

 μ_{est} : mean(Xv) = 170.613

 σ_{est} : sd(Xv)= 53.195

ii. Calculer aux valeurs suivantes la densité de la loi normale avec ces paramètres :

En 100:

En 170.613: ____

En 250: ____

- iii. (1 pts) Utilisez ces valeurs pour tracer grossièrement sur le diagramme de 2 la densité de la loi normale dont est issue l'échantillon.
- 4. (2 pts) Donnez l'intervalle de confiance à 90% pour μ .

$$D:=\frac{S}{\sqrt{n}}\cdot 1.645=3.913$$
 intervalle est
$$\mu_{\mbox{est}}-D=166.7$$
 à
$$\mu_{\mbox{est}}+D=174.527$$

Exercice 3

Un contrôleur de qualité qui commence à travailler à 8h vérifie un téléphone par minute qui sortent d'une chaine de montage. La probabilité qu'un téléphone soit défectueux est **p**.

1. (2pts) Donner la loi du nombre de minutes jusqu'a ce que le contrôleur trouve le premier téléphone défectueux: nom de la loi et probabilités (pas de fonction R).

Loi géométrique - la probabilité que le premier téléphone defectueux ("succès") soit trouvé au kème contrôle est $(1-p)^{k-1}p$.

2. Donner la loi du nombre de téléphones défectueux trouvés en 1h: nom de la loi et probabilités (pas de fonction R).

sur n=60 expériences, le nombre de "succès" suit loi binomiale -

proba de k succes est
$$\frac{n!p^k(1-p)^{n-k}}{k!(n-k)!}$$

Application numérique: p=0.012

- 3. (2pts) Calculer:
- i. Le nombre d'heures en moyenne jusqu'à ce que le contrôleur trouve un premier téléphone défectueux.

espérance 1/p de loi géométrique est nombre moyen de minutes - donc nombre moyen

d'heures est
$$\frac{1}{p \cdot 60} = 1.389$$

ii. Le nombre moyen de téléphones défectueux trouvés en 1h.

espérance de la loi binomiale: $np = 60 \times 0.012 = 0.72$

Petit formulaire statistique: sans détails, à vous de savoir ce qui est quoi

$$\sqrt{\frac{S2}{n-1} - \frac{So^2}{n(n-1)}}$$

Densité, espérance, écart-type	Fonction de répartition F(b)
$\frac{exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right)}{\sigma\sqrt{2\pi}} = dnorm(x, \mu, \sigma)$	$\int_{-\infty}^{b} \frac{exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right)}{\sigma\sqrt{2\pi}} dx = \text{pnorm}(b, \mu, \sigma)$
espérance=μ, écart-type=σ	
$\lambda \exp(-\lambda x) = \deg p(x, \lambda)$	$1 - \exp(-\lambda b) = \exp(b, \lambda)$
espérance=écart-type= 1/λ	
$(1-p)^{k-1} p = dgeom(k-1, p)$	
espérance=1/p; écart-type= $\sqrt{1-p}/p$	
$n! p^k (1-p)^{n-k}$	
$\frac{n! p^k (1-p)^{n-k}}{k! (n-k)!} = dbinom(k, n, p)$	
espérance=np; écart-type = $\sqrt{np(1-p)}$	
$\frac{(\lambda t)^k}{k!} \exp(-\lambda t) = \text{dpois}(k, \lambda t)$ espérance=\lambda t; écart-type=\sqrt{\lambda t}	
espérance= λt ; écart-type= $\sqrt{\lambda t}$	