Computer Engineering Department National University of Technology Islamabad, Pakistan

Introduction to Data Mining Practice Exercise 11

Name: <u>Muhammad Sami Uddin Rafay</u>

Roll Number: <u>F18604013</u>

Submitted To: Dr. Kamran Javed

Date: <u>02 February 2020</u>

Practice Exercise 10

Supervised Machine Learning | KNN

Objective:

• Implement KNN using Fisher iris Data.

Equipment/Software Required:

• Python (Spyder 4.0 Anaconda Distribution)

Background:

How Does KNN Work?

- 1. Select no. of k of neighbors
- 2. Calculate the Euclidean distance of k no. of neighbors
- 3. Take the nearest neighbors as per the calculated Euclidean Distance
- 4. Among these k neighbors, count no. of data points in each category
- 5. Assign the new data points to that category for which the no. of neighbor is maximum
- 6. Our Model is ready

Code:

importing Libraries

import pandas as pd import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsClassifier import seaborn as sns

Loading iris dataset

fisher_iris=pd.read_csv(r"C:\Users\User\Documents\IrIs.csv")

Before implementing KNN on fisher_iris Data frame let's do some data quality assessment

Converting fisher_iris as a Data Frame

fisher_iris=pd.DataFrame(fisher_iris)

Printing the head of fisher_iris Data Frame

print("Head of Data : \n",fisher_iris.head())

Printing shape/ Dimentions fisher_iris of Data Frame

```
print("\n")
print("Shape of Data : \n",fisher_iris.shape)
```

Printing statistics of fisher_iris Data Frame

```
print("\n")
print("Statistics of Data : \n", fisher_iris.describe())
# Splitting the test and train Data
X = fisher_iris[["petal_length","petal_width"]]
y = fisher_iris[["species"]]
KNN=KNeighborsClassifier(n_neighbors=5)
KNN.fit(X,y)
# New Point
newpoint= [[5, 1.45]]
# New Point 2
newpoint2 = [[5, 1.45], [6,2], [2.75, 0.75]]
# Predicting New Point
Predict_NewPoint=KNN.predict(newpoint)
# Predicting New Point 2
Predict_NewPoint2=KNN.predict(newpoint2)
# Printing Predicted Results
Distances, Indexes=KNN.kneighbors(X=newpoint2, n neighbors=5, return distance=True)
print(Predict_NewPoint)
print(Predict_NewPoint2)
print(Distances)
print(Indexes)
# plot for first point
plt.figure(1)
iris=sns.load_dataset('iris')
sns.scatterplot(x='petal_length',y='petal_width',data=iris,hue='species')
plt.plot(5,1.5,'x', color='k')
plt.grid(True)
# plot for Second point
plt.figure(2)
iris=sns.load_dataset('iris')
sns.scatterplot(x='petal_length',y='petal_width',data=iris,hue='species')
plt.plot(5,1.45,'x', color='k')
plt.plot(6,2,'x', color='k')
plt.plot(2.75,0.75,'x', color='k')
plt.grid(True)
plt.show()
```

Output:

Head of Data:

5.1 3.5 1.4 0.2 Iris-setosa

0 4.9 3.0 1.4 0.2 Iris-setosa

1 4.7 3.2 1.3 0.2 Iris-setosa

2 4.6 3.1 1.5 0.2 Iris-setosa

3 5.0 3.6 1.4 0.2 Iris-setosa

4 5.4 3.9 1.7 0.4 Iris-setosa

Shape of Data:

(149, 5)

Statistics of Data:

	sepal-length	sepal-width	petal-length	petal-width
count	149.000000	149.000000	149.000000	149.000000
mean	5.848322	3.051007	3.774497	1.205369
std	0.828594	0.433499	1.759651	0.761292
min	4.300000	2.000000	1.000000	0.100000
25 %	5.100000	2.800000	1.600000	0.300000
50 %	5.800000	3.000000	4.400000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

New Point 1 Prediction

['Iris-versicolor']

New Point 2 Prediction

['Iris-versicolor' 'Iris-virginica' 'Iris-versicolor']

Distances

[[0.05 0.1118	0.1118	3034	0.1118	034	0.1802	7756]
[0.14142136	0.14142136	0.2	0.2828	4271	0.2828	4271]
[0.43011626	0.6041523	0.6041	523	0.7905	6942	0.79056942]]

Indexes

[[119	52	72	133	83]
[102	130	125	108	104]
[98	57	93	79	60]]

Graphs:

Results and Discussions: As the target attribute is "species" column of iris dataset so according to trained KNN model both of new point and new point 2 are predicted as ['Iris-versicolor' 'Iris-virginica' 'Iris-versicolor'].
Note: The starting Index of dataset in Python is zero and in MATLAB is one , so don't confuse with indexes of predicted neighbors. Distances are predicted same in both Programming Languages.
Conclusion:
K-Nearest Neighbours is the supervised machine learning algorithm used for classification and regression. It manipulates the training data and classifies the new test data based on distance metrics. It finds the k-nearest neighbours to the test data, and then classification is performed by the majority of class labels. KNN also be used to detect anomaly by setting a threshold based on distances. We can use features of data as threshold like mean, mode, median, minimum and maximum subjected to application.