Tacotron 2:

NATURAL TTS SYNTHESIS BY CONDITIONING WAVENET ON MEL SPECTROGRAM PREDICTIONS

Общий поход к TTS

Character/Phoneme

Character/Phoneme

Figure 2: Different types of TTS model [4]

Fully End-to-End TTS Model

Vocoder

Waveform

Waveform

Text Analysis

Comparison of State-Of-The-Art TTS models **INPUT OUTPUT VOCODER BACKBONE**

Character / phoneme

Character / phoneme

Character / phoneme

DATASET (HOUR) (S-M*)

Internal North American

English (24.6) (S)

Internal US English (25) (S)

Internal English speech

dataset (20)

MOS

4.5±0.06

4.39

4:15 ± 0:25

NAME

Tacotron 2

Transformer TTS

ClariNet

TYPE

Autoregressive

Autoregressive

Autoregressive

ARCHITECTURE

RNN + Encoder-

Decoder + Attention

Transformer-based

CNN-based

WaveNet	Autoregressive	PixelCNN	Linguistic Features	Wav	-	North American English (24.6) (S)	4.21±0.081
						Mandarin Chinese (34.8) (S)	4.08±0.085
Deep Voice	Autoregressive	CNN-based	Character / phoneme	Linguistic Features	WaveNet	Internal English Speech (20) (S) (Synthesized Duration and F0)	2.00±0.23
						Subset of the Blizzard 2013 (20.5)	2.67±0.37
Deep Voice 2	Autoregressive	CNN-based	Character / phoneme	Linguistic Features	WaveNet	VCTK (44) (M)	3.53±0.12
						Audiobooks (238) (M)	2.97±0.17
Deep Voice 3	Autoregressive	Fully CNN-based + attention + Seq2Seq	Character / phoneme	Acoustic Features	Griffin-Lim	VCTK (44) (M)	3.01 ±0.29
					WORLD		3.44±0.32
					WaveNet		-
CHAR2WAV	Autoregressive	Seq2Seq RNN	Character / Phoneme	Wav	SampleRNN	-	-
Tacotron	Autoregressive	RNN + Encoder- Decoder + Attention	Character / phoneme	Acoustic Features	Griffin-Lim	Internal North American English (24.6) (S)	3.82±0.085

WaveNet

WaveNet

WaveNet

Acoustic

Features

Acoustic

Features

Wav

Tacotron

• Сходства со Tacotron 2:

- RNN
- Encoder and Decoder + Attention
- Спектрограмма как промежуточное представление

Отличия:

- Более сложная архитектура
- Линейная спектрограмма
- GLA в качестве вокодера

Figure 1: Model architecture. The model takes characters as input and outputs the corresponding raw spectrogram, which is then fed to the Griffin-Lim reconstruction algorithm to synthesize speech.

Спектрограмма

Получается с помощью преобразования Фурье на коротких фрагментах звукового сигнала

Мел-спектрограмма

Мел – единица измерения, основана на психо-физиологическом восприятии звука человеком и

логарифмически зависит от частоты.

Человеческое ухо более чувствительно к изменениям звука на низких частотах, чем на высоких.

Мел-спектрограмма получается из спектрограммы с помощью формулы:

$$m = 2595 \log_{10} \left(1 + rac{f}{700}
ight) = 1127 \ln \left(1 + rac{f}{700}
ight)$$

Tacotron 2

WaveNet

Causal

Conv

Input

Causal convolutions

The joint probability of a waveform $\mathbf{x} = \{x_1, \dots, x_T\}$

Output Dilation = 8

Output

Hidden Layer Dilation = 4

Hidden Layer Dilation = 2

Hidden Layer Dilation = 1

Input

WaveNet: MoL

Теперь работаем с мел-спектрограммой вместо лингвистических признаков Discretized 10-component mixture of logistic distributions (MoL) вместо Softmax Функция потерь = NLLLoss от настоящего сэмпла

Tacotron 2

Bidirectional LSTM

• Проходим LSTM сначала в одну сторону потом обратно

Location Sensitive Attention

$$\alpha_{i} = Attend(s_{i-1}, \alpha_{i-1}, h); \quad \alpha_{i,j} = \exp(e_{i,j}) / \sum_{j=1}^{L} \exp(e_{i,j})$$

$$e_{i,j} = Score(s_{i-1}, h_{j}),$$

$$f_{i} = F * \alpha_{i-1}.$$

$$e_{i,j} = w^{\top} \tanh(Ws_{i-1} + Vh_{j} + Uf_{i,j} + b)$$

$$e_{i,j} = Score(s_{i-1}, h_j),$$

$$f_i = F * \alpha_{i-1}.$$

$$e_{i,j} = w^{\top} \tanh(Ws_{i-1} + Vh_j + Uf_{i,j} + b)$$

 $y_i \sim Generate(s_{i-1}, g_i),$

$$s_i = Recurrency(s_{i-1}, g_i, y_i)$$

Эксперименты и результаты:

Обучение

- Для обеих нейросетей используем teacher-forcing, оптимизируем Adam
- Для FPN используем batch size = 64 и один GPU
- Для WaveNet используем batch size = 128 и 32 GPU с синхронным обновлением
- Учимся на Internal US English dataset 24.6 часа речи от одного спикера
- Текст нормализован

Эксперименты и результаты:

Оценка

- MOS сравним с ground truth
- -0.270 ± 0.155 в side-by-side сравнении с человеческой речью по шкале от -3 до 3.

System	MOS
Parametric	3.492 ± 0.096
Tacotron (Griffin-Lim)	4.001 ± 0.087
Concatenative	4.166 ± 0.091
WaveNet (Linguistic)	4.341 ± 0.051
Ground truth	4.582 ± 0.053
Tacotron 2 (this paper)	$\textbf{4.526} \pm \textbf{0.066}$

Table 1. Mean Opinion Score (MOS) evaluations with 95% confidence intervals computed from the t-distribution for various systems.

Fig. 2. Synthesized vs. ground truth: 800 ratings on 100 items.

Эксперименты и результаты:

Ablation Studies

- Обучение и синтез WaveNet на ground truth и predicted сэмплах
- Разные промежуточные представления и вокодеры
- Разный размер WaveNet

	Synthesis			
Training	Predicted	Ground truth		
Predicted Ground truth	4.526 ± 0.066 4.362 ± 0.066	4.449 ± 0.060 4.522 ± 0.055		

Table 2. Comparison of evaluated MOS for our system when WaveNet trained on predicted/ground truth mel spectrograms are made to synthesize from predicted/ground truth mel spectrograms.

System	MOS
Tacotron 2 (Linear + G-L) Tacotron 2 (Linear + WaveNet) Tacotron 2 (Mel + WaveNet)	3.944 ± 0.091 4.510 ± 0.054 4.526 ± 0.066

Table 3. Comparison of evaluated MOS for Griffin-Lim vs. WaveNet as a vocoder, and using 1,025-dimensional linear spectrograms vs. 80-dimensional mel spectrograms as conditioning inputs to WaveNet.

Total layers	Num cycles	Dilation cycle size	Receptive field (samples / ms)	MOS
30	3	10	6,139 / 255.8	4.526 ± 0.066
24	4	6	505 / 21.0	4.547 ± 0.056
12	2	6	253 / 10.5	4.481 ± 0.059
30	30	1	61 / 2.5	3.930 ± 0.076

Table 4. WaveNet with various layer and receptive field sizes.

Заключение

- Tacotron 2 нейронная TTS модель, совмещающая seq2seq нейронную сеть для генерации мел-спектрограммы и модифицированный WaveNet вокодер
- Совмещает в себе парадигмы рекуррентных нейронных сетей, энкодер-декодер и механизм внимания для предсказания акустических признаков
- Модель не опирается не требует комплексного feature engineering-a
- Просодия Tacotron и качество аудио WaveNet позволяют в совокупности достичь state-of-the-art результата синтеза, близкого к настоящей человеческой речи
- https://google.github.io/tacotron/publications/tacotron2/ примеры работы Tacotron 2