MATH 7310 Homework 4

James Harbour

February 22, 2022

Problem 1

(i): Let $(X, \Sigma), (Y, \mathcal{F})$ be two measurable spaces and let $\phi : X \to Y$ be measurable. Given a measure ν on Σ , define $\phi_*(\nu) : \mathcal{F} \to [0, +\infty]$ by $\phi_*(\nu)(E) = \nu(\phi^{-1}(E))$. Prove that $\phi_*(\nu)$ is a measure.

(ii): If $x \in [0,1]$, a binary expansion for x is a sequence $(a_n)_{n=1}^{\infty} \in \{0,1\}^{\mathbb{N}}$ so that $x = \sum_{n=1}^{\infty} a_n 2^{-n}$. Let N be the set of $x \in [0,1]$ whose binary expansion is not unique. Show that N is a Borel set of measure 0.

Proof. The set of all points in [0,1] with nonunique binary expansion is precisely the set of all points of the form 2^{-n} for $n \in \mathbb{N} \cup \{0\}$. Thus, $N = \bigcup_{n=0}^{\infty} \{2^{-n}\}$ is Borel as singletons are Borel. As N is a countable set, it follows that m(N) = 0.

(iii): Let $C \subseteq [0,1]$ be the middle thirds Cantor set. For $k \in \mathbb{N}$, define

$$\phi_k, \phi : [0,1] \setminus N \to \mathbb{R}$$

by $\phi_k(\sum_{n=1}^{\infty} a_n 2^{-n}) = \sum_{n=1}^{k} 2a_n 3^{-n}$ and $\phi(\sum_{n=1}^{\infty} a_n 2^{-n}) = \sum_{n=1}^{\infty} 2a_n 3^{-n}$ for all $(a_n)_{n=1}^{\infty} \in \{0,1\}^{\mathbb{N}}$. Show that ϕ_k , ϕ are Borel and that $\phi_k([0,1] \setminus N)$ and $\phi([0,1] \setminus N)$ are subsets of C.

Proof. Noting that $\phi = \sup_k \phi_k$, it suffices to show that each ϕ_k is Borel. We claim that ϕ_k is in fact a finite linear combination of step functions. For $(a_1, \ldots, a_k) \in \{0, 1\}^k$ consider the set

$$I_{(a_1,\dots,a_k)} = \left\{ x \in [0,1] \setminus N : x = \sum_{n=1}^k a_k 2^{-k} + \sum_{j=k+1}^\infty b_j 2^{-j} \text{ where } b_j \in \{0,1\} \right\}$$

Note that ϕ_k is constant on each I_a for and is equal to $\sum_{n=1}^k a_n 2^{-n}$ for each $a \in \{0,1\}^k$, and each $x \in [0,1] \setminus N$ lies in some I_k , so

$$\phi_k = \sum_{(a_1, \dots, a_k) \in \{0,1\}^k} \left(\sum_{n=1}^k a_n 2^{-n} \right) \mathbb{1}_{I_{(a_1, \dots, a_k)}}.$$

Note that each element of the images of ϕ and ϕ_k have ternary decompositions with only 0s or 2s, so they clearly lie in the Cantor set.

(iv): Set $\mu = \phi_*(m)$, where m is the Lebesgue measure on [0,1]. Show that $\mu(C^c) = 0$ and that there is a unique, increasing continuous function $f:[0,1] \to [0,1]$ so that f(0) = 0 and $\mu([a,b]) = f(b) - f(a)$ for all $0 \le a < b \le 1$. (In particular, f(1) = 1).

Proof. Note that $\mu(C^c) = m(\phi^{-1}(C^c)) = m(\emptyset) = 0$. Moreover, μ is a Borel measure which is finite on compact sets, so there exists an increasing right continuous function $f:[0,1] \to [0,1]$ such that $\mu = \mu_f$, namely, $f(x) = \mu((0,x])$. Then f(0) = 0. As such f is determined up to a constant and f(0) has been specified, f is unique. That f is continuous follows from the previous homework and the fact that μ is diffuse.

(v): Show that $f(2\sum_{n=1}^k a_n 3^{-n}) = \sum_{n=1}^k a_n 2^{-n}$ for all $k \in \mathbb{N}$ and all $(a_n)_{n=1}^k \in \{0,1\}^k$. If (a,b) is an open interval disjoint from C, show that f(b) = f(a).

Proof.
$$(a,b) \subseteq C^c$$
, so $\mu((a,b)) \le \mu(C^c) = 0$.

Problem 2

Let $f:[0,1] \to [0,1]$ be the Cantor function, and let g(x) = f(x) + x.

(a): Prove that g is a bijection from [0,1] to [0,2] and $h=g^{-1}$ is a continuous map from [0,2] to [0,1].

Proof. Note that g is strictly monotone increasing and continuous, so g is injective. As g(1) = 2, by the intermediate value theorem g is surjective. Morover, as g is a strictly monotone bijection between intervals, g^{-1} is continuous.

(b): If C is the Cantor set, m(g(C)) = 1.

Proof. Write $C^c = \bigcup_{j=1}^{\infty} I_j$ where $I_j = (a_j, b_j)$ for some $a_j < b_j$. Note that, as $(a_j, b_j) \subseteq C^c$, so f is constant on (a_j, b_j) . Moreover,

$$g|_{I_j}(x) = f(x) + x = a_j + x \implies g(I_j) = I_j$$

$$m(g(C)) = 2 - m(g(C^c)) = 2 - \sum_{j=1}^{\infty} m(g(I_j)) = 2 - \sum_{j=1}^{\infty} m(I_j) = 2 - m(C^c) = 2 - 1 = 1$$

(c): By exercise 29 of chapter 1, g(C) contains a Lebesgue nonmeasurable set A. Let $B = g^{-1}(A)$. Then B is Lebesgue measurable but not Borel.

Proof. To see that B is Lebesgue measurable, note that $B = g^{-1}(A) \subseteq g^{-1}(g(C)) = C$ and m(C) = 0, so by completeness, B is Lebesgue measurable. As g is a homeomorphism and A = g(B), if B were Borel then so would A be, which is absurd as A is non-measurable.

(d): There exist a Lebesgue measurable function F and a continuous function G on \mathbb{R} such that $F \circ G$ is not Lebesgue measurable.

Proof. Take $F = \mathbb{1}_B$. As B is Lebesgue measurable, so is $\mathbb{1}_B$. Take G = g. Then $(F \circ G)^{-1}(\{1\}) = (G^{-1} \circ F^{-1})(\{1\}) = g^{-1}(B) = A$, which is not measurable, so $F \circ G$ is not Lebesgue measurable.

Problem 3

Prove that the following hold if and only if the measure μ is complete:

(a): If f is measurable and $f = g \mu$ -a.e., then g is measurable.

Proof.

 \Longrightarrow : Suppose that μ is complete. Let f be measurable and suppose that f=g almost everywhere. Let $N=\{x:f(x)\neq g(x)\}$. If $E\subseteq\mathbb{C}$ is measurable, then

$$g^{-1}(E) = \{x : g(x) \in E \text{ and } f(x) = g(x)\} \cup \{x : g(x) \in E \text{ and } f(x) \neq g(x)\} = f^{-1}(E) \cup (g^{-1}(E) \cap N),$$

which is measurable by completeness of μ and measurability of f.

 $\underline{\longleftarrow}$: Let $N \in \Sigma$ with $\mu(N) = 0$ and suppose that $F \subseteq N$. Then $\mathbb{1}_N = \mathbb{1}_F$ on $X \setminus N$, so $\mathbb{1}_N = \mathbb{1}_F$ μ -a.e. whence by hypothesis $\mathbb{1}_F$ is measurable so $F \in \Sigma$.

(b): If f_n is measurable for $n \in \mathbb{N}$ and $f_n \to f$ μ -a.e., then f is measurable.

Proof.

 $\underline{\Longrightarrow}$: Suppose μ is complete. Let f_n is measurable for $n \in \mathbb{N}$ and $f_n \to f$ μ -a.e. Let $N = \{x : f_n(x) \not\to f(x)\}$. Then $f_n \mathbb{1}_{X \setminus N} \to f \mathbb{1}_{X \setminus N}$ pointwise. Thus, $f \mathbb{1}_{X \setminus N}$ is measurable. But $f \mathbb{1}_{X \setminus N} = f$ μ -a.e., so by part (a), f is measurable.

 $\underline{\longleftarrow}$: Let $N \in \Sigma$ such that $\mu(N) = 0$. Suppose that $E \in \Sigma$. Then there exist simple functions $\{\phi_n\}_{n=1}^{\infty}$ with $0 \le |\phi_1| \le |\phi_2| \le \cdots \le |\mathbb{1}_N|$ and $\phi_n \to \mathbb{1}_N$ pointwise. On $X \setminus N$, $\phi_n \mathbb{1}_N = \phi_n \mathbb{1}_F$, so $\phi_n \mathbb{1}_N = \phi_n \mathbb{1}_F$ almost everywhere whence by part (a) $\phi_n \mathbb{1}_F$ is measurable. On $X \setminus N$, $\phi_n \mathbb{1}_F \to \mathbb{1}_N \mathbb{1}_F = \mathbb{1}_N$, so $\phi_n \to \mathbb{1}_F$ almost everywhere, whence by assumption $\mathbb{1}_F$ is measurable i.e. F is measurable.

Problem 4

If $f \in L^+$ and $\int f d\mu < +\infty$, show that $\{x : f(x) = \infty\}$ is a null set and that $\{x : f(x) > 0\}$ is σ -finite.

Proof. Suppose, for the sake of contradiction, that $\mathcal{N} := \{x : f(x) = \infty\} = f^{-1}(\{\infty\}) \in \Sigma$ has positive measure. Let $\{\phi_n\}_{n\in\mathbb{N}}$ be a sequence of simple functions (valued in $[0,+\infty]$) with $0 \le \phi_1 \le \phi_2 \le \cdots \le f$ such that $\phi_n \to f$ pointwise. For $n \in \mathbb{N}$, define a new simple function ϕ'_n by

$$\phi_n' = \phi_n \mathbb{1}_{X \setminus \mathcal{N}} + n \cdot \mathbb{1}_{\mathcal{N}}.$$

Note that, as $\phi_n \equiv \phi'_n$ on $X \setminus \mathcal{N}$ and $\phi'_n \leq f$ on \mathcal{N} , it follows that $0 \leq \phi'_1 \leq \phi'_2 \leq \cdots \leq f$ as well. Moreover, for $n \in \mathbb{N}$, as $\phi'_n \geq n \cdot \mathbb{1}_{\mathcal{N}}$, we have that

$$\int f d\mu \ge \int \phi'_n d\mu \ge \int n \cdot \mathbb{1}_{\mathcal{N}} d\mu = n \cdot \mu(\mathcal{N}) \to \infty \text{ as } n \to \infty.$$

Thus, $\int f d\mu = +\infty$, contradicting the assumption.

Let $X = \{x : f(x) > 0\}$ and consider the sets $\{A_n\}_{n=0}^{\infty}$ given by $A_0 = f^{-1}(\{\infty\}), A_n = f^{-1}([\frac{1}{n}, \frac{1}{n-1}))$ for $n \ge 1$. Then

$$X = \bigsqcup_{n=0}^{\infty} A_n$$

Suppose, for the sake of contradiction, that X is not σ -finite. Then, as $\mu(A_0) = 0$, some A_k for $k \ge 1$ must have infinite measure. As $f \ge f \cdot \mathbb{1}_{A_k} \ge \frac{1}{n} \mathbb{1}_{A_k}$, it follows that

$$\int f \, d\mu \ge \int f \cdot \mathbb{1}_{A_k} \, d\mu \ge \int \frac{1}{n} \mathbb{1}_{A_k} \, d\mu = \frac{1}{n} \mu(A_k) = \infty,$$

contradicting the assumption that $\int f d\mu < \infty$.

Problem 5

If $f \in L^+$, let $\lambda(E) = \int_E f \, d\mu$ for $E \in \Sigma$. Prove that λ is a measure on Σ , and that for any $g \in L^+$, $\int g \, d\lambda = \int f g \, d\mu$.

Proof. We first show that λ is a measure. Note that $\mathbb{1}_{\emptyset}$ is the zero function on X, so $\lambda(\emptyset) = \int_{\emptyset} f \, d\mu = \int f \mathbb{1}_{\emptyset} \, d\mu = 0$. If $E, F \in \Sigma$ are such that $E \subseteq F$, then $\mathbb{1}_{E} \leq \mathbb{1}_{F} \implies f \mathbb{1}_{E} \leq f \mathbb{1}_{F}$, so by monotonicity,

$$\lambda(E) = \int f \mathbb{1}_E d\mu \le \int f \mathbb{1}_F d\mu = \lambda F.$$

Lastly, suppose that $\{A_n\}_{n\in\mathbb{N}}$ is a sequence of disjoint elements of Σ . Set $A=\bigsqcup_{i=1}^{\infty}A_i$. Let $f_n=f\cdot\mathbb{1}_{\bigsqcup_{i=1}^nA_i}$. Then $0\leq f_1\leq f_2\leq \cdots \leq f\cdot\mathbb{1}_A$ and $f_n\to f\mathbb{1}_A$ pointwise. By the monotone convergence theorem,

$$\lambda(A) = \int f \mathbb{1}_A d\mu = \lim_{n \to \infty} \int f \mathbb{1}_{\bigsqcup_{i=1}^n A_i} d\mu = \lim_{n \to \infty} \sum_{i=1}^n \int f \mathbb{1}_{A_i} d\mu = \sum_{i=1}^\infty \lambda(A_i).$$

Suppose that g is a simple function. Write $g = \sum_{i=1}^n c_i \mathbb{1}_{E_i}$ where $E_i \in \Sigma$ and $c_i \in [0, \infty)$. By definition,

$$\int g \, d\lambda = \sum_{i=1}^{n} c_i \lambda(E_i) = \sum_{i=1}^{n} c_i \int f \mathbb{1}_{E_i} \, d\mu = \int f \left(\sum_{i=1}^{n} c_i \mathbb{1}_{E_i} \right) d\mu = \int f g \, d\mu.$$

Now suppose that $g \in L^+$ is arbitrary. Then there exist a sequence of simple functions $0 \le \phi_1 \le \phi_2 \le \cdots \le g$ such that $\phi_n \to g$ pointwise. Then $0 \le f\phi_1 \le f\phi_2 \le \cdots \le fg$ and $f\phi_n \to fg$ pointwise. By applying the monotone convergence theorem twice, we see that

$$\int g \, d\lambda = \lim_{n \to \infty} \int \phi_n \, d\lambda = \lim_{n \to \infty} \int f \phi_n \, d\mu = \int f g \, d\mu \, .$$

Problem 6

If $f \in L^+$ and $\int f d\mu < \infty$, show that for every $\varepsilon > 0$ there exists an $E \in \Sigma$ such that $\mu(E) < \infty$ and $\int_E f d\mu > (\int f d\mu) - \varepsilon$.

Proof. Let $\varepsilon > 0$. By definition, there exists a simple ϕ with $0 \le \phi \le f$ such that $\int \phi \, d\mu > (\int f \, d\mu) - \varepsilon$. Write ϕ as $\phi = \sum_{i=1}^n c_i \mathbb{1}_{E_i}$ for some $E_i \in \Sigma$ and $c_i \in [0, \infty)$. Note that, as $\sum_{i=1}^n c_i \mu(E_i) = \int \phi \, d\mu \le \int f \, d\mu < \infty$, we have that $\mu(E_i) < \infty$ for all i. Set $E = \bigcup_{i=1}^n E_i$.

Noting that $\phi = \phi \mathbb{1}_E \leq f \mathbb{1}_E$, it follows that

$$\int_{E} f \, d\mu \ge \int f \mathbb{1}_{E} \, d\mu \ge \int \phi \, d\mu > (\int f \, d\mu) - \varepsilon$$

with $\mu(E) \leq \sum_{i=1}^{n} \mu(E_i) < \infty$ as desired.