$\label{eq:Leçon concernées:209-210-212-(213)-(224)-241-(264)-410-411-412-413-414-(423).}$

1. Suites de fonctions

1.1. Rappels.

- (1) une limite simple de fonctions positives ou nulles est positive ou nulle.
 - une limite simple de fonctions croissantes est croissante.
 - une limite simple de fonctions convexes est convexe.
 - une limite simple de fonctions k-lipschitziennes est k-lipschitzienne (k constant).
 - une limite simple de fonctions linéaires est linéaire.
- (2) Une limite localement uniforme de fonctions continues est continue.
- (3) Une limite uniforme sur tout compact de fonctions continues est continue.
- (4) Si (f_n) converge simplement vers la fonction f et si (f'_n) converge localement uniformément vers une fonction g alors f est dérivable et f' = g.
- (5) Soit (f_n) une suite de fonctions définies sur un intervalle I (à valeurs dans un evn de dimension finie E) continues sur I. Si la suite (f_n) converge uniformément sur tout compact vers la fonction f alors pour tous $a,b \in I$ on a $\lim_{n\to\infty} \int_a^b f_n = \int_a^b f$. De plus, pour a fixé, les fonctions $x \mapsto \int_a^x f_n$ convergent uniformément sur tout compact vers la fonction $x \mapsto \int_a^x f$.

1.1.1. Étude pratique.

Exercice 1.1 On définit une suite (g_n) par

$$g_n(x) = \frac{1}{(1+x^2)^n}$$
 pour $x \in \mathbf{R}$.

Étudier la convergence de la suite (g_n) .

Exercice 1.2 On définit une suite (u_n) par

$$u_n(x) = e^{-nx} \sin(nx) \text{ pour } x \in \mathbf{R}_+.$$

- (1) Étudier la convergence simple de la suite de fonctions (u_n) sur $[0, +\infty[$.
- (2) Étudier la convergence uniforme sur $[a, +\infty[$ avec a > 0.
- (3) Étudier la convergence uniforme sur $[0, +\infty[$.

Exercice 1.3 On définit une suite de fonctions $f_n:[0,1]\to \mathbf{R}$ par $f_0=0$ et, pour tout $n\in \mathbf{N}$ et tout $x\in I=[0,1],$

$$f_{n+1}(x) = f_n(x) + \frac{1}{2} (x - (f_n(x))^2).$$

- (1) Montrer que la suite (f_n) converge simplement sur I vers la fonction $x \mapsto \sqrt{x}$.
- (2) Démontrer que, pour tout entier $n \geq 1$,

$$0 \le \sqrt{x} - f_n(x) = \sqrt{x} \left(1 - \frac{\sqrt{x}}{2} \right)^n.$$

(3) En déduire que la convergence est uniforme sur I.

Exercice 1.4 Pour tout $n \in \mathbb{N}^*$, on définit $f_n : \mathbb{R} \to \mathbb{R}$ par

$$g_n(x) = \sqrt{x^2 + \frac{1}{n}}.$$

Montrer que chaque f_n est de classe \mathscr{C}^1 et que la suite (f_n) converge uniformément sur \mathbf{R} . Déterminer sa limite.

Exercice 1.5 Soit, pour $n \in \mathbb{N}$, f_n la fonction définie sur \mathbb{R}_+ par

$$f_n(x) = \left(1 - \frac{x}{n}\right)^n \text{ si } x \in [0, n[\text{ et } f_n(x) = 0 \text{ si } x \ge n.$$

Étudier le mode de convergence de (f_n) .

Exercice 1.6 Pour tout entier strictement positif n on définit la fonction

$$f_n: x \mapsto \frac{1}{n} \mathbb{1}_{[0,n]}.$$

Étudier la convergence de la suite (f_n) sur \mathbf{R} puis celle de $\int_{\mathbf{R}} f_n(t) dt$. 1.1.2. Étude théorique.

Exercice 1.7 Soient I un intervalle de \mathbf{R} et (g_n) une suite de fonctions convexes de I dans \mathbf{R} . Montrer que si (g_n) converge simplement vers f, alors f est convexe sur I.

Exercice 1.8 Soit (P_n) une suite de fonctions polynômes de \mathbf{R} dans \mathbf{R} . On suppose que cette suite converge uniformément vers une fonction f sur \mathbf{R} . Montrer que la fonction f est polynomiale.

Exercice 1.9 Soient I et J deux intervalles de \mathbb{R} . Soient (f_n) une suite de fonctions de I dans J convergeant uniformément vers une fonction $f: I \to J$.

- Montrer que si g est uniformément continue sur J, la suite de fonctions $(g \circ f_n)$ converge uniformément.
- Soit $f_n \colon \mathbf{R}_+ \to \mathbf{R}$ définie par

$$f_n(x) = x + \frac{1}{n}.$$

Montrer que la suite de fonctions (f_n) converge uniformément mais pas (f_n) . Conclusion?

Exercice 1.10 Soit (g_n) une suite croissante de fonctions continues sur un intervalle I = [a, b] de \mathbf{R} . Montrer que si (g_n) converge simplement vers une fonction continue g sur I, alors la convergence est uniforme.

Exercice 1.11 Soit f_n une suite de fonctions qui converge uniformément vers 0 sur tout intervalle $I_a = [0, a]$ avec 0 < a < 1 et soit g une fonction continue sur [0, 1] nulle en 1.

- On suppose qu'il existe M tel que pour tout n on ait $||f_n||_I \leq M$. Montrer que la suite $g \cdot f_n$ converge uniformément vers 0 sur I = [0,1].
- On suppose désormais que $f_n(x) = n \cos^n x$ et $g(x) = \sin(x)$. Étudier la suite $g \cdot f_n$ sur [0,1] (convergence simple, convergence uniforme).

Exercice 1.12 [Théorème de Weierstraß, application]

(1) Pour tout entier n on pose $a_n = \int_{-1}^{1} (1 - t^2)^n dt$ et on considère la fonction $\varphi_n : [-1, 1] \to \mathbf{R}$ définie par

$$\varphi_n(x) = \frac{1}{a_n} \left(1 - x^2 \right)^n.$$

- (a) Montrer que pour tout $n, a_n \ge \frac{1}{n+1}$.
- (b) Montrer que pour tout $\alpha \in]0,1]$, la suite (φ_n) converge uniformément vers 0 sur $[\alpha,1]$.
- (c) Soit f une fonction continue nulle hors de [-1/2, 1/2]. On définit, pour tout $x \in \mathbf{R}$, une fonction f_n par

$$f_n(x) = \int_{-1}^1 f(x-t)\varphi_n(t) \, \mathrm{d}t.$$

Montrer que f_n est une fonction polynomiale sur [-1/2, 1/2] nulle hors de [-3/2, 3/2] et que la suite (f_n) converge uniormément vers f sur \mathbf{R} .

- (d) En déduire que si f est une fonction continue sur un intervalle [a, b] de \mathbf{R} , alors f est, sur cet intervalle, limite uniforme d'une suite de fonctions polynomiales.
- (2) Soit $f:[a,b]\to \mathbf{R}$ une fonction continue. On suppose que, pour tout $k\geq 0$, on a $\int_a^b f(t)t^k\,\mathrm{d}t=0$. Montrer que f est la fonction nulle.

2. SÉRIES DE FONCTIONS

2.1. Généralités.

- (1) La somme d'une série (localement) uniformément convergente de fonctions continues est continue.
- (2) Si la série $\sum f_n$ converge simplement vers la fonction f et si la série des dérivées $\sum f'_n$ converge localement uniformément vers une fonction g alors f est dérivable et $f' = g = \sum_n f'_n$.

- (3) La somme d'une série de fonctions continues convergeant uniformément sur tout compact est continue.
- (4) Si les fonctions $f_n: I$ (intervalle) à valeurs dans un evn de dimension finie E sont continues sur I et $\sum f_n$ converge uniformément sur tout compact vers la fonction f alors pour tous $a, b \in I$ on a $\sum_n \int_a^b f_n = \int_a^b f$ De plus, pour a fixé, la série de fonctions $x \mapsto \int_a^x f_n$ converge uniformément sur tout compact vers la fonction $x \mapsto \int_a^x f$.
- (5) La convergence normale (localement normale, normale sur tout compact) entraı̂ne la convergence uniforme (localement uniforme, uniforme sur tout compact).

Exercice 2.13 Étudier la convergence de la série $\sum f_n$ où, pour tout $x \in \mathbf{R}$ et tout $n \in \mathbf{N}^*$

$$f_n(x) = \frac{1}{n^2 + x^2}.$$

Exercice 2.14 Étudier la convergence de la série $\sum f_n$ où, pour tout $x \in \mathbf{R}$ et tout $n \in \mathbf{N}^*$

$$f_n(x) = \frac{(-1)^n}{n+x^2}.$$

Exercice 2.15 On pose $u_n(x) = (-1)^{n+1} x^{2n+2} \ln x$ pour $x \in]0,1]$ et $u_n(0) = 0$.

- (1) Calculer $\sum_{n=0}^{+\infty} u_n(x)$..
- (2) Montrer que la série des u_n converge uniformément sur [0,1].
- (3) En déduire l'égalité

$$\int_0^1 \frac{\ln x}{1+x^2} \, \mathrm{d}x = \sum_{n=0}^\infty \frac{(-1)^{n+1}}{(2n+1)^2} \, .$$

Exercice 2.16 Soit $(a_n)_{n \in \mathbb{N}}$ une suite réelle positive et décroissante. Pour tout $n \in \mathbb{N}$, on définit une fonction u_n par :

$$u_n(x) = a_n x^n (1 - x)$$
 $x \in [0, 1].$

- (1) Montrer la convergence simple de la série de fonctions $\sum u_n$.
- (2) Étudier la convergence normale de cette série.
- (3) À quelle condition sur la suite (a_n) cette série est-elle uniformément convergente?

Exercice 2.17 Pour $x \in \mathbf{R}$ et $n \ge 1$, on note $u_n(x) = \frac{\ln(1 + n^2 x^2)}{n^2 \ln(1 + n)}$.

- (1) Déterminer le domaine de convergence D de la série $\sum_{n\geq 1} u_n(x)$.
- (2) On note S(x) sa somme, montrer que S est une fonction de classe C^1 sur D.

Exercice 2.18 Soit f une fonction continue sur I = [0, 1]. Pour tout entier n on pose $u_n(x) = x^n f(x)$. Montrer que la suite $(u_n)_{n \in \mathbb{N}}$ converge uniformément sur I si et seulement si f(1) = 0. Montrer que la série de terme général u_n converge uniformément sur [0, 1] si et seulement si f(1) = 0, f est dérivable au point 1 et f'(1) = 0.

2.2. Séries entières.

Exercice 2.19 Déterminer le rayon de convergence des séries entières suivantes :

1.
$$\sum_{n} \frac{(1+i)^{n} z^{3n}}{n \cdot 2^{n}}$$
 2. $\sum_{n \ge 1} \ln \left(1 + \sin \frac{1}{n}\right) x^{n}$ 3. $\sum_{n \ge 1} \left(\exp(1/n) - 1\right) x^{n}$ 4. $\sum_{n} a^{\sqrt{n}} z^{n}$, $a > 0$ 5. $\sum_{n} z^{n!}$ 6. $\sum_{n} n^{\ln n} z^{n}$

Exercice 2.20 Soit $\sum_n a_n z^n$ et $\sum_n b_n z^n$ deux séries entières de rayon de convergence respectif ρ_1 et ρ_2 . Montrer que le rayon de convergence R de la série $\sum_n a_n b_n z^n$ vérifie $R \ge \rho_1 \rho_2$. A-t-on toujours égalité?

Exercice 2.21 Soit $f(z) = \sum_n a_n z^n$ une série entière de rayon de convergence R > 0 et soit $r \in]0, R[$.

- (1) Montrer que, pour tout entier k, la série de fonctions $\theta \mapsto \sum_n a_n r^n e^{i(n-k)\theta}$ converge normalement sur $[0, 2\pi]$.
- (2) En déduire que pour tout $k \in \mathbb{N}$, on a

$$2\pi r^k a_k = \int_0^{2\pi} f(re^{i\theta}) e^{-ik\theta} d\theta.$$

(3) Application : on suppose que $R = +\infty$ et que f est bornée sur C. Montrer que f est constante.

Exercice 2.22 Soit (a_n) une suite de réels tel que $\sum_n a_n x^n$ soit de rayon de convergence 1. On note f la somme de cette série entière. On suppose de plus que la série numérique $\sum_n a_n$ converge et on note

$$R_n = \sum_{k=n+1}^{+\infty} a_k.$$

(1) Démontrer que, pour tout $x \in [0,1[$ et tout $n \ge 1,$ on a

$$f(x) - \sum_{k=0}^{+\infty} a_k = \sum_{k=0}^{n} a_k (x^k - 1) + (x - 1) \sum_{k=n+1}^{+\infty} R_k x^k + R_n (x^{n+1} - 1).$$

(2) En déduire que

$$\lim_{x \to 1^{-}} f(x) = \sum_{k=0}^{+\infty} a_k.$$

Exercice 2.23 Soit $S(x) = \sum_{n \geq 0} a_n x^n$ une série entière de rayon de convergence 1. On suppose de plus que S(x) admet une limite lorsque x tend vers 1^- et on note ℓ cette limite. On suppose enfin que $a_n = o(1/n)$. Pour $N \in \mathbb{N}$ et $x \in [0, 1]$, on note

$$A_n(x) = S(x) - \ell$$
, $B_N(x) = \sum_{n=0}^{N} (1 - x^n) a_n$, $C_N(x) = \sum_{n=N+1}^{+\infty} a_n x^n$.

- (1) Vérifier que $\sum_{n=0}^{N} a_n \ell = A_N(x) + B_N(x) C_N(x)$.
- (2) Soit $\varepsilon > 0$. Démontrer qu'il existe un entier N_0 tel que, pour tout $N \geq N_0$,

$$|C_N(x)| \le \frac{\varepsilon}{N(1-x)}.$$

(3) Démontrer que la série $\sum_n a_n$ converge et que sa somme vaut ℓ .

Exercice 2.24 Soit $f(x) = \sum_{n=0}^{+\infty} e^{-n} e^{n^2 i x}$.

- (1) Justifier que f est une fonction de classe C^{∞} sur \mathbf{R} .
- (2) Montrer que, pour chaque k, $\frac{|f^{(k)}(0)|}{k!} \ge k^k e^{-k}$.
- (3) En déduire que f n'est pas développable en série entière en 0.