

- Poiché l'unità elementare di informazione in un elaboratore è il bit, che corrisponde alle due cifre 0 e 1, in modo naturale viene utilizzato il sistema di numerazione posizionale in base 2
- Fissato il numero di bit k da utilizzare nella rappresentazione
 - si converte il numero di partenza nella base 2
 - 2. si antepongono bit uguali a 0 al numero determinato fino ad ottenere complessivamente esattamente k bit

NB: l'aggiunta dei bit pari a 0 nel passo 2. è necessaria perché nella memorizzazione del numero bisogna specificare per ogni bit (anche per i più significativi che convenzionalmente non indichiamo quando pari a 0) lo stato del relativo dispositivo bistabile; in caso contrario si potrebbero avere errori di rappresentazione.

Esempio

$$10:2 = 5 con resto 0$$

$$2:2 = 1 con resto 0$$

Quindi 43=101011₂, la cui rappresentazione a 8 bit è

00101011

- Chiaramente, fissato il numero di bit k, è possibile rapprentare al più 2^k numeri interi, che vanno da 0 (0...0) a 2^k-1 (1...1)
- Quindi, l'intervallo dei numeri rappresentabile con k bit è [0,2^k-1]
- Overflow (trabocco): errore che si verifica quando si tenta di rappresentare un numero al di fuori dell'intervallo, ad esempio quando il risultato di un'operazione aritmetica è troppo grande

Esercizi di conversione tra basi diverse (1/2)

- Convertire in binario i seguenti numeri in base 10
 - 143, 312, 91, 123
- Convertire in base 10 i seguenti numeri binari
 - 1011, 1000111, 1010001, 111111000
- Convertire in base 10 i seguenti numeri in base esadecimale
 - 1AB0, ABCD, F0E1, 1234
- Convertire in base 10 i seguenti numeri ottali
 - 76022, 1010, 6663, 1234
- Convertire i seguenti numeri decimali in notazione esadecimale e ottale
 - 3500, 531
- Convertire i seguenti numeri dalla base 16 alle basi 8, 4 e 2
 - D15, 64, ABCD, FFE

- 1) Convertire in binario i seguenti numeri in base 10 143, 312, 91, 123
- 2) Convertire in base 10 i seguenti numeri binari 1011, 1000111, 1010001, 11111000

- 1) Convertire in binario i seguenti numeri in base 10 143, 312, 91, 123
- 2) Convertire in base 10 i seguenti numeri binari 1011, 1000111, 1010001, 11111000

$$1000111 =$$

$$1.2^{\circ} + 1.2^{\circ} + 1.2^{\circ} + 1.2^{\circ} =$$

$$= 1 + 2 + 4 + 64 = 71$$

- Convertire in base 10 i seguenti numeri in base esadecimale
 - •1AB0, ABCD, F0E1, 1234
- Convertire in base 10 i seguenti numeri ottali
 - **•**76022, 1010, 6663, 1234

$$\frac{3}{1010} = \frac{1.8}{1.8} + 1.4 = 4 + 512 = 520$$

Esercizi di conversione tra basi diverse (2/2)

- Convertire i seguenti numeri dalla base 8 alle basi 16, 4 e 2
 - 67201, 10777, 73601, 64
- Convertire i seguenti numeri
 - 201102 da base 3 a base 16
 - 3201 da base 4 a base 7
 - 303 da base 4 a base 6
 - 754 da base 9 a base 16
- Convertire i seguenti numeri dalla base 9 alla base 3
 - 82704, 64, 108887, 12345
- Convertire i seguenti numeri dalla base 3 alla base 9
 - 211200212, 21022, 20001, 202101

SOMMA

$$0+0=0$$

$$0+1=1$$

1+1=0 e riporto di1

ESEMPIO

11 111 riporti

11 001 011 + I addendo

01 101 110 = II addendo

100 111 001

SOTTRAZIONE

$$0 - 0 = 0$$

0-1=1 e prestito di 1

ESEMPIO

come nell'aritmetica decimale, i riporti/prestiti rappresentano quantità addizionali da sommare/sottrarre

Aritmetica Binaria: moltiplicazione

La moltiplicazione richiede il calcolo dei prodotti parziali e la loro somma, così come nella classica aritmetica in base 10

0x0=0	
0x1=0	

1x0=0

1x1=1

ESEMPIO

- Chiaramente la divisione per 0 non è definita
- Come nell' aritmetica classica in base 10, la divisione prevede sottrazioni tra parti del dividendo e del divisore

ESEMPIO

Codifica numeri interi (positivi e negativi)

- Esistono diverse codifiche
- Tra le più note:
 - rappresentazione in modulo e segno
 - più semplice e diretta
 - rappresentazione in complemento a 2
 - ha il pregio di poter effettuare somme algebriche, ossia la sottrazione a-b equivale ad effettuare la somma a+(-b)
 - a livello di circuteria elettronica ciò consente di poter effettuare somme e sottrazioni in modo unificato tramite un unico dispositivo sommatore che opera sulle codifiche di a e -b
 - ... (tra un po' di slides ci ritorniamo)...

- Rappresentazione in modulo e segno a *k* bit:
 - 1 bit per il segno, solitamente il più significativo posto ad 0
 per indicare il segno + e ad 1 per indicare il segno –
 - k-1 bit per il modulo o valore assoluto, secondo la codifica dei numeri naturali
- L' intervallo dei numeri rappresentabili quindi è
 [-(2^{k-1}-1), 2^{k-1}-1]
- Si noti che esistono due codifiche possibili per il numero 0, ossia 00...0 (corrispondente a +0) e 10...0 (corrispondente a -0)

Rappresentazione in modulo e segno a k=8 bit dei numeri 26 e -26

26:2 = 13 con resto 0

13:2 = 6 con resto 1

6:2 = 3 con resto 0

3:2 = 1 con resto 1

1:2 = 0 con resto 1

Quindi $26=11010_2$, per cui

1. rappresentazione di 26: 00011010

2. rappresentazione di -26: 10011010

• Rappresentazione in complemento a 2 a *k* bit.

Valore binario $b_3b_2b_1b_0$	Notazione modulo e segno	Notazione complemento a 2
0000	+ 0	0
0001	+ 1	+ 1
0010	+ 2	+2
0011	+ 3	+ 3
0100	+4	+4
0101	+ 5	+ 5
0110	+ 6	+ 6
0111	+7	+7
1000	- 0	- 8
1001	- 1	- 7
1010	- 2	- 6
1011	- 3	- 5
1100	- 4	- 4
1101	- 5	- 3
1110	- 6	- 2
1111	- 7	- 1

Poiché esiste un 'unica codifica del numero 0 (-0 non viene rappresentato), l'intervallo dei numeri rappresentabili è
 [-2^{k-1}, 2^{k-1}-1]

- I numeri non negativi coincidono con la rappresentazione in modulo e segno
- Infatti la rappresentazione di un numero non negativo si ottiene semplicemente convertendolo in binario
- La rappresentazione di un numero negativo -N si ottiene facendo la conversione in binario a k bit del numero 2^k-N
- Una semplice regola di conversione:
 - si converte in binario a k bit il numero N
 - si complementano tutti i bit
 - si somma 1
- Oppure: si complementano tutti i bit da sinistra verso destra, fino all'ultimo bit pari ad 1 escluso

Cour plemento BIT A PAT

1011001 Lamelements 0100110 +