DUST Project - Identification and Obfuscation of Security and Behavioral Vulnerabilities in IoT

Fernando Nakayama PhD

Center for Computational Security sCience (CCSC)

Belo Horizonte – Brazil July 17, 2024

DUST Project Objectives

- Identify security threats in IoT environments
 - Research line #1
- Obfuscate security and behavioral vulnerabilities in IoT
 - Research line #2

Information leakage (side-channel)

Information leakage (side-channel) - traffic classification

Machine learning algorithms for accurate flow-based network traffic classification: Evaluation and comparison

Volume 67, Issue 6, June 2010, Pages 451-467

Murat Sovsal a ≥ . Ece Guran Schmidt b ≥ ≥

Identification of threats - profiling and classification

Traffic features to build a behavior profile

Identification of vulnerabilities - profiling and classification

- Selected vulnerability Portscanner
 - Profile built with multiple attack examples (data fusion)
 - Tested with different datasets (topologies)

Port Scanner

Identification of vulnerabilities - selected result

57.7% confidence

Obfuscation against information leakage - AML

99.3% confidence

Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." *arXiv preprint arXiv:1412.6572* (2014).

Kurakin, Alexey, Ian J. Goodfellow, and Samy Bengio. "Adversarial examples in the physical world." Artificial intelligence safety and security. Chapman and Hall/CRC, 2018. 99-112.

DUST Project Obfuscation against information leakage

- Obfuscation against traffic classification models
- Different data structures (features, size, etc)
- Reverse AML

\$CCSC

DUST Project

Obfuscation against information leakage - AML

Replication

Adaptation

Evaluation

Obfuscation against information leakage - AML

Adversarial network configuration

LeakyReLU(Linear(10,64))
LeakyReLU(BN(Linear(64,128)))
LeakyReLU(BN(Linear(128,256)))
Tahn(BN(Linear(256,10)))
nn.Linear(10,2)

Adversarial attacks techniques

Carlini-Wagner (CW2)

Fast gradient sign method (FGSM)

DUST Project Obfuscation against information leakage - results

Obfuscation against information leakage - models integration

Obfuscation against information leakage - models integration

Identification and Obfuscation of Security and Behavioral Vulnerabilities in IoT

- 2 research lines
 - Identification of threats
 - Obfuscation of threats using AML
- Behaviour profile network traffic
- Adversarial samples network traffic

fernandonakayama@ufpr.br fernandonakayama@gmail.com

