Bayesian Reinforcement Learning

Inference on Transition Dynamics

Haochen Wu 12/18/2019

Introduction

Background

Markov Decision Process <S,A,T,R>

Motivation

- Exploration-Exploitation Dilemma
- Planning under unknown system dynamics

Objectives

- Parameterize the transition dynamics for inference
- Maintain the belief on transition probability distribution
- Find the policy that naturally optimizes the expected total reward given exploration-exploitation dilemma

Problem Formulation

- Bayesian Reinforcement Learning is defined as a tuple $\langle \overline{S}, A, \overline{T}, R \rangle$
 - \circ \overline{S} : $S \times B$ is defined by augmenting the physical world state s and belief state $b(\theta)$ on transition dynamics
 - S, A, R are the same as the regular MDP
 - $\overline{T}: S \times B \times A \times S \times B \to [0,1]$, transition probability from augmented state (s,b) to (s',b') under action a
 - $\overline{T}(s,b,a,s',b') = \Pr(s',b'|s,b,a) = \Pr(s'|s,b,a)\Pr(b'|s,b,a,s')$
 - The first term could be easily determined under given belief over the transition model parameters
 - In the second term, b' is the posterior distribution over transition parameters given prior b and data (s, a, s)
- Dirichlet Distribution Conjugate Prior
 - Let $\theta_{s,a}^{s'}$ denote each transition parameter, satisfying $\sum_{s' \in S} \theta_{s,a}^{s'} = 1$, which is the standard |S| 1 simplex.
 - \circ Transition dynamics for each state-action pair could be modeled as a Dirichlet Distribution denoted as $Dir(\alpha)$
 - \circ α is a vector of |S| real numbers. $b(\theta_{s,a}) \sim Dir(\alpha)$
- Belief Monitoring using Bayes Rule $-b'(\theta_{s,a}) \propto \Pr(s'|s,a,\theta_{s,a}) b(\theta_{s,a}|s,a,s')$
 - $\circ \quad Dir(\alpha'_{s,a}) \propto \theta_{s,a}^{s'} Dir(\alpha_{s,a}) = \theta_{s,a}^{s'} \prod_{s'' \in S} \theta_{s,a}^{s''} \alpha_{s,a}^{s''} 1$
 - O Given data (s, a, s), the belief update on transition parameters becomes $\alpha_{s,a}^{s'} = \alpha_{s,a}^{s'} + 1$

Methods

- Offline approach is computationally intractable
 - Belief space is infinite and continuous.
 - Parameterizing the distribution still has a large number of states.
- Proposed algorithm
 - Thompson Sampling sampling from the posterior belief
 - choose the action that maximizes the expected reward over the samples
 - Treating Thompson Sampling as a trial of playing a game
 - Experience Replay with Thompson Sampling
 - **E**liminates ϵ -greedy exploration-exploitation dilemma
 - Keeps a memory of past behaviors and randomly samples previous transitions
 - Speeds up the credit propagation and adapt to recent experiences

Algorithm 2 Bayesian RL with Experience Replay

```
1: Initialize replay memory \mathcal{D} with capacity N
   Initialize prior \{\alpha_{a,s}\} for transition parameters
    while max episode is not reached do
       s = s_0
       while max iteration is not reached do
          Sample \theta_{a,s}^k from \alpha_{a,s}, \forall a \in A, s \in S
          for i = 1 : k \text{ do}
             Q_i(s, a) = solveMDP(\theta^i)
          end for
          \overline{Q}(s,a) = \frac{1}{k} \sum_{i} Q_i(s,a)
10:
          a^* = argmax_a \overline{Q}(s, a)
11:
          Execute a^* and receive data (s, a, s', r)
          Store (s, a, s', r) into \mathcal{D}
          Randomly select a minibatch (s, a, s', r) from \mathcal{D}
14:
           \alpha_{s,a}^{s'} = \alpha_{s,a}^{s'} + 1
15:
       end while
18: end while
```


Reward:
Action a: 10 at state 5
Action b: 2 at each state

Chain Problem

- The agent would get comfortable with taking action b
- Bayesian RL would help the agent step out of its comfort zone
- Expected Regret [1]
 - The lose amount of not taking an optimal action in each step
 - Equivalent but more convenient measure of expected total reward
- Posteriors on Transition Dynamics

n_s	Ep_r	$Score_b$	$Score_a$
10	59	0.1356	0.1463
30	56	3.9107	15.2500
60	53	2.0000	18.5319
100	36	3.0278	18.1250

400	-	M			oles oles
300	-				
Regret		MAN	1		
100		M.	M.		_
0	-			₩.XXXXXX	
-100 (0 10 20	30 40 50 Episo		80 90	100

[1] Agrawal and Goyal, ICAIS, 2013

Conclusions

- Model the problem as Bayesian Reinforcement learning
 - Learning the parameters of system transition dynamics
 - Solving the exploration-exploitation dilemma
 - Find the optimal action under uncertain transition to maximize the expected total rewards
- Experience Replay with Thompson Sampling
 - An online algorithm to interact with the environment while monitoring the belief over transition parameters
 - Q-Value is approximated by Thompson Sampling
 - The algorithm could be extended to inferring the transition dynamics and learning the Q-Value in parallel by representing the Q-Value as Q-Network

