```
. .
         CHAPTER 5: Two Dimensional Analytical Geometry # (1)
        Egn of the circle 12-132+19-12=12
           center (hik) and radius = 1.
    2. Egg of a circle in general form 22 ey2+29x+2fy+c = 0
          centre (-3,-5) » radius = Vg2+fe-c.
       Equation of a circle with (71.41) (22.42) as enternittens
        of one of the diameter is (2-21) (2-40) +14-41) 19-40)=0
    4) Equation of tangent ( at ( >1) on circle noty + 297+2940=0
             771+391+9(7+91)+f (4+91)+c=0
             and normal
          and ya, -xy, +914-A1) - f (2-31)=0.
    5) Condition for the line y=mn+1 to be a tangent to the
                                                           Equation
        Loni Us
                                                Point of
                                 Condition to be
                                                            tangent
                  2 quation
                                                 Contact
          Conic
                                    fangens
                  28+4 = 4 = 4 =
                                 (2= a2(1+m2)
     1- circle
                                                            y=ma+ 1
                  y2 = 40x
     2. Parabola
                                  C = 9
                                                (品,温)
                  32 + 42 =1
                                               (- im , b2) Y=mat Vamore
    3) Ellipse
                                 C2=9 m2+ 62
                                 C = 9ml-52
                                               (-alm 1-b2) y=mn + Value
        Hyperbola
                    9t - 42 El
         Tangent and Normal
                                                        Equation of normal
                                   Equation of fargent
                    Equation
        cure
                                 cartesian grom
                                                      1) 74,-47,=0
                     22+42=42
                                  @ ma1+541 = 42
      1) circle
                                                     Onsino-ywso=0
                                 10 Parametric John
                                  nusu+ysinu=q
                                                     1) 24,+24=294/
                                () 49, = 20(x+21)
                    y2=400
    (1) Paralola
                                in yt = n tat 2
                                                    JD y+n+ = 4 +3+2a+
                                                   (1) 42m + 624 - 12-11
                                 (1) 3/2/ + 2/2/ =/
                     光光日
   HD Ellipse
                                 (1) 2 cose + 451/4 = 1 (1) 4m - 67 50 - 62-62
                     (1) 92m + by = 9766
         Hyperbola
                                                   (il) an + by - at be
     BIT. BITLOTIL BI, M. Sc. B Ed . M. Phil. Ph. D.
        முதுகளை ஆசிரியர் (கணிதம்)
          அக மேற்றிலைப்பள்ளி
        Caraligany, antidium (Dt)
                                                 Scanned by CamScanner
```



```
www.Padasalai.Net
                                        www.TrbTnpsc.com
     47x +8x +4+x +4x = 3
      1-1121120 =0
       ( rt10) (r+2) = 0
     (x +10)2+ (y+10)2
   2+100+20 +42+106+209=100
4) Find the equation of the circle with centre (2,3) and
   passing through the intersection of the lines 32-24-1=0
   and forty - 27 = 0
           centre (2,3) = (hik)
    Point or intersection .
               4m+y-27=0 -1
                                      BT. ATUTE A, M.Sc., B Ed., M.Phil., Ph.D.
            321-214 = 1
                                         முதுகலை ஆசிரியர் (கணிதம்)
            8 m+ 28 = 54
                                          அரசு மேல்நிலைப்பள்ளி
                                        கோவிந்தவாடி, காஞ்சிபுரம் (Dt)
                          put in O
           15-24 -1=0
       sign of circle Le (m-h) + 1y-k)2 = y2 - B
      passing through point
                   (5-2)^{2}+(7-3)^{2}-\gamma^{2}
3^{2}+4^{2}=\gamma^{2}
      ·· 3 => (x-2)2+(y-3)2=25.
          2-4n+4+42-6y+9-65 = 0
          2+4 -42-6y-12 = 0
   Oboain the equation of the circle for which (3,4)
   and (2,-7) are the ends of a diametin -
                                                 (31.14) = (31.4)
  Sola (7-71) 176-42) + (4-91)(4-42) = "
                                                 (72142) = (2,-7)
       (カー3) (カー2) チ (サーチ)(サナフ) = 0
    n-57+6+42+34-28=0
      n2+42-57+34-28 =0.
```

6) Find the equation of the circle through the points (110) (-110) and (011) Soln Let the points (1,0) (-1,0) = (0,1) If two points lie any where on the circumference but diametrically opposite each other . Then the radius of the circle won't be minimum : (1.0) & (0,1) form the end points of diameter (m/21) (m-12) 14 (11-4) (4-4) (1-4) Radius se unit circle (~=1) centre (0,0) (x-h)2+14-k)2= x1 (x-0)2+(y-0)2=12 (-1,0) also pare through this Circle. (-1) -10=12. : 22+42=1 he the equation of the circle through lte points (1,0) & (-1,0) & (0,1) A circle of area 911 square units has two of its diameters along the lines 31-14 = 5 + 2-4=1 Find the equation of the circle area of a circle \$72 = 9 B 2-4 =1 for get centre of the circle. BIT. BITUTLE, M.Sc., B.Ed., M. முதுகலை ஆசிரியர் (கண அரசு மேல்நிலைப்பள்ள் கோவிந்தவாடி, காஞ்சிபுரம் (ட 344 =5 centro (h.le) = (312) + 2=9 (7x-h)2-(14-12)2 = 12 (3-B)2+14-2)2 = 9. 2-+9-69 +5-49+4 = 9 2-67-47-44 +4 = 0.

n-54-48 =0

In eph be saryth =0 10+2+K = 0 Af (212)

1.5244-12 = Le 29 ng hormal

16) Determine whether the points (-2,1), (0,0) and (-4,-3) lie outside, on or enside the circle noty2-5x+24-5=0 22442-52424-5 =0 At1-211) (-2)2+12-5(-1)+2(1)-5 = 4+1+10+2-5 = 12 >0. :. (-2,1) lies out side the circle 0+0-0+0-5 = -5 20 (11) 4+ (0,0) (0,0) lies in side the circu (410° (-4,-5) (-4)2(-3)2-5(-4)42(-5)-5 = 16+9+20+6-5 = 8470 (-4,-3) lies out side the circle. Find the centre and vadino of the following circles 1) matery+2)2 =0. Compare with (n-h)2+4-4) 324y2-163-44+4=0 29=6 =5=-4 c=4. 9=3 f=-1. centre (-9,-f) = (-3,2) Radius 7= \ \ 92+ f'-c = \ \ 9+ 4 -4 = 3. But contout of m se ut : (11) 22+y-x+29-3=0. Chinaman Wallying (o c = - 3. Disco Ground haven's Consolitanny, anglish, Centre (-3, -3) = (1/2, -1) Radius Vg2+1-C= V +1+3: V 1+4+12 = V 17 = V12 C = 1 9=-3/2 5=1

Canto
$$(-9, -5) = (3_{12} - 1)$$
 $Y = \sqrt{9^{2} + 1^{2} - c} = \sqrt{\frac{9}{6} + 1 - t} = \frac{3}{2}$.

A) If the equation $3n^{2} + (3-p)ny + 2y^{2} - 2pn = 8p2$

Represente a circle find $f \ge 2$. Here detaining the centre and vadius of the circle.

Solo $3n^{2} + (3-p)ny + 2y^{2} - 2pn = 8p2$ Represent a circle means $circle$ means $coeff = coeff =$

Find the equation of the parabola in each of the cases given below. (V Yours (410) and direction n=-4. Equation a gaparabola be a = 4. (Distance AF = 4 unit) .. y2 = 414) x (11) passes through (2,-3) and symmetric about yanis Zan og a parabola be 2= -4 ay AL(21-3) 4=-4a(-3) 1 = 3 a =) [a = 13 BIT. EMILITE A. LA SC., B.Ed., M.PNL, Ph.D. முதுகளை ஆசிரியர் (கணிதம்) 2=-4(1) と Mes - Commission கோவித்தமாகு, காருகியுரம் (Dt) 3 x = - 47 (11) verten (11-2) and focus (4,-2) Soln as Distance VF = 3 units. sang a parabola be (4-15)2 = 4 a (2-h) = (hik) =(1,-2) (y+2)2=4(3)(n-1)2 (4+2) = 12 (2-1) (iv) Sind points of latus sectum (4, 8) and (4,8) (4,5) = Distance between VF is 4 unit. 42 = 4 ax 42=4147 x 192=162 2) Find the equation of the ellipse in each of the cases given below (i) foi (±3,0), e=1/2

(1)
$$a = 3$$
 $a = 1/2$
 a

(1) length of latus rectum 4, distance between foil (1) 4v2 and major aris as yanis $2ae = 4 \sqrt{2}$. $\frac{b^2}{a} = 4^2$ $ae = 2\sqrt{2}$ b2= 92 (1-e2)

29 = 92 - 42 = 2 2a = a2 - (2x2) =) a2 - 8 - 29 = 0 (a-4) (1+2) 2 t a=4 a=-2 (is not possible)

=) 92=16 b2 = 2a = 2(4) = 8 $\frac{y^2}{12} + \frac{y^2}{2} = 1$

நா. காமாட்சி, M Sc. B Ed., M Phil, Ph.D. முகுகலை ஆசிசியர் (கணிதம்) அரசு பேற்றிவைப்பள்ளி கோவித்தவாடி, காஞ்சியும் (Dt)

32 + 42 =1.

3) Find the equation of the hyperbola in each of the cases given below.

i) foi (±2.0) eccentricity = $\frac{3}{2}$.

Solo ae = 2 e = $\frac{3}{2}$. $9(\frac{3}{2}) = 2$ $9 = \frac{4}{3}$. $9 = \frac{4}{3}$.

b= a2(e2-1)= (=1)= (=1)= (=1)

= 20 3 - 3 - 3 - 1 2 - 16 x $93^{2} - \frac{9y^{2}}{20} = 1$

Centre (211) one of the foil (811) and Corresponding direction n=4.

$$\frac{\mathcal{D}}{\mathcal{D}}$$
 = $\frac{\rho c}{a/e} = \frac{b}{4}$

$$c^2 = \frac{3}{2}$$

$$e = \frac{\sqrt{3}}{\sqrt{2}} \text{ fir. attunt. Al, MSc. B.Ed. M.Phil. Ph.D. (physions) self-fluid (available)}$$

$$\frac{b^2}{b^2} = 4^2 (e^2 - 1)$$

$$\frac{b^2}{b^2} = 4^2 (e^2 - 1)$$

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} = \frac{$$

$$b^{2} = 24 \left(\frac{3}{2} - 1\right) = 24 \left(\frac{1}{2}\right) = 12.$$

$$\therefore (2-h)^{2} - (4-1e)^{2} = 1.$$

$$(h.k) = (211)$$

passing through (5,-2) and length of the Fransverse anto along namis and length sunits

Soln Transverse length (19=8)

$$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1$$
at $(s_{1} - 2)$

$$\frac{25}{16} - \frac{4}{b^{2}} = 1$$

$$25^{-16} = \frac{4}{b^2} = \frac{4}{16} = \frac{4}{b^2}$$

$$b^2 = \frac{16xy}{9} = \frac{64}{9}$$

Verten be (1,-2) = (h,1c)

ill) Foulus (0+h.+a+k) = (0+1,2-2) = (1,-4)

ii) squay the directria

(14) Length of latus lectum is 49

=4x2 = 8unib

நா. காமாட்சி, M.Sc. B Ed. M.Ph. Ph.D. முதுக்கை ஆசிரியர் (கணிதம்) அரசு மேல்திவைப்பள்ளி கோவிந்தவாடி, காஞ்சியும் (Dt)

(3)

42-44-82+12 =0.

(1)

$$(y^2-4y^2=8x-12-1)$$

 $(y-2)^2=8x-12+4$ = 8x-8 = 8(x-1)

vertex (1,2) = (hik)

(ii) sun of the direction
$$x = -a + h = -2 + 1 = -1$$

10 Length of latus sector is 4 a = 4 x 2 = 8 ands.

I dentify the type of conic and find centre, four, vertices and derestries of each of the following

$$a^{2} = 25$$
 $e^{2} = (1 - \frac{9}{25}) = (1 - \frac{9}{25}) = \frac{25 - 9}{25} = \frac{16}{25}$

About centre = (0,0), vertex (±0,0) = (±500)

Four (tale, 0) = (±4,0)

Verten be (1, -2) = (h, 1c) (3) ill) Foucus (0+h.+a+k) = (0+1,+9-2) = (1,-4) ii) squay the directria = y+k+9=0 9-2+2 = 0 (11) Length of latus lectum is 49 =4x2 = 8unib. BIT, CUTUME OF, M.Sc. B.Ed. M.Ph. Ph.D. டுமுகை ஆசிரியர் (கணிதம்) அக்க மேற்றிகைப்பள்ளி y2-4y-87+12 =0. (1) கோவித்தவாடி, காஞ்சியும் (Dt) 42-44 = 82-12. = 87-8 =8(7-1) (y-2)2 = 82-12+4. (4-2)2 = 8(2-1) 42 = 8 X y= y-2 x = 2-1 n = X+1 vertex (1,2) = (h,K) (i) Four (a+h, 0+k) = (2+1, 0+2) = (3,2) (ii) sun of the direction x = -a + h = -2 + 1 = -110 Lengton of latus rectas is 4 9 = 4 x 2 = 8 ands. Identify the type of conic and find centre, four, vertices and directions of each of the following. リューナ学二、 it is ellipse. a² = 25 b (1- 42) = (1- 4) = 25-9 = 16 al = 5(4)=4 About centre = (0,0), voltex (±9,0) = (±5,0) For (‡ ae, 0) = (± 4, 0)

111 centre (0,0)

(1) Fater (=, ±4) = (0, ±4)

(1) Foci (0,±25) = (0,=5)

(1) Egn of the direction y = = 1/e = = 1/5/5 = = 1/5 상=크트.

6) prove that the length of the laters rectum of the hypericla = - 42 = 16 262

soln The latur sectum LL' of an hyperbola 72-42 =1 passes through (as, 41).

222 - 412 =1 e2-1 = 4,2

(: e2 = 1 + 52) y,2 = 62 (e2-1)

= 12 (/ 1/2 /1)

நா. சாடி சி. M.Sc., B.Ed., M.Phil., Ph.D. 4,2 54 . Cate to a party of the கோவிந்தவாடி, காஞ்சாதம் (Dt)

リニ ナ 二

end points of latus rectums are

(ae, b2/a) 2 (ae, -b2/a) :. 11 = 62 + 62 = ...

LL' = 26/a. Here proved.

7) Show that the absolute value of difference of the focal distances of any point p on the hyperbola is the length of its transverse ans

8. Identify the type of conic and find centre, fow, vertices and directions of each of the following.

(i) $(3-3)^2 + (y-4)^2$ 225It is ellipse. $a^2 = 289$ $a = \pm 17$ $e = \sqrt{1-\frac{5^2}{2}} = \sqrt{1-\frac{225}{289}} = \sqrt{\frac{289-225}{289}} = \sqrt{\frac{17}{8}} = \frac{289}{8}$ i) Centres (3, +) = (h, k)(ii) Vertices (tro, $\pm a + K$) = $(3, \pm 17+4)$ $= (3, \pm 17+4)$ Generalization of the properties of the prope

 $e^2 = \frac{289}{225}$: $e = \frac{17}{15}$ நா. காமாட்சி, M.Sc. B Ed . M Phil. Ph.D. முத்தை ஆசிரியர் (கனிதம்) அரசு மேற்றிலைப்பள்ளி கோலிந்தவளு, காஞ்சிடிரம் (Dt) $ae = 15(\frac{12}{15}) = 17$ $a/e = \frac{15}{12} = \frac{425}{17}$

T 22 3323	.Net	www.TrbTnpsc.com
X = 3+3	y = y - 4	@
→ × × -3	9= 4+4. Referred to X = 4	Referend 10 31 + 4 N=x-3 y= y+y
1. 6. 6.	C(0,0)	C (-3, 4)
is centre	V (± 0,10)	
,10 Veatices	V: (+15:0)	V ₁ (12,4) V ₂ (-18,4)
	N2 (-1510)	V2(-18/4)
in Foci	F (± ae, 0)	F1 (14, 4)
	F. (17,6)	F2(-20,4)
	F2-1-17:0)	141
in Direction	X= ± a/e = ± 225	$3 = \frac{225}{17} - 3 = \frac{174}{17}$
	77 - 17	x = - 225-3 = - 276
a= t+	b2 = 16	VE1 F,
$a = \pm 5$ $e = \sqrt{1 + \frac{b^2}{a}}$ $ae = 5r(\sqrt{4})$ $a/e = 5$	$\frac{1}{2} = \sqrt{\frac{1+\frac{16}{25}}{25}} = \sqrt{\frac{41}{25}} = $	
$a = \pm 5$ $e = \sqrt{1 + \frac{b^2}{a}}$ $ae = 5r(\sqrt{4})$	1+16 = V+1 25 = V+1 35 = V+1 41 = 35 V+1 Y= Y+2	தா. காமாட்சி, M.Sc., B.Ed., M.Phil. Ph.D. முதுகலை ஆசிரியர் (கண்டும்) அரசு மேல்நிலைப்பள்ளி கோவிந்தவாடி, காஞ்சிடிம் (Lit)
$a = \pm 5$ $e = \sqrt{1 + \frac{b^2}{a}}$ $ae = 5r(\sqrt{\frac{a}{a}})$ $a/e = 5$ $x = 9 + 1$	11 = VIII = VIII - 125 -	தா. காமாட்சி, M.Sc. B.Ed. M.Phil. Ph.D. முதுக்கை ஆசிரியர் (கண்டும்) அரசு மேல்நிலைப்பள்ளி கோவித்தவாடி, காஞ்சியும் (D.) இரசு கேல்நிலைப்பள்ளி கோவித்தவாடி, காஞ்சியும் (D.)
$a = \pm 5$ $e = \sqrt{1 + \frac{b^2}{a}}$ $ae = 5r(\sqrt{\frac{a}{a}})$ $a/e = 5$ $x = 9 + 1$	1+16 = V+1 25 = V+1 35 = V+1 41 = 35 V+1 Y= Y+2	இர. காமாட்சி, M.Sc. B.Ed. M.Ph.I. Ph.D. முதுக்கை ஆசிரியர் (கண்டும்) அரசு மேல்நிலைப்பள்ளி கோவிந்தவாடி, காஞ்சியும் (□:) இரசுமை சி. அ. 2. 9 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4
$a = \pm 5$ $e = \sqrt{1 + \frac{b^2}{a}}$ $ae = 5r(\sqrt{\frac{a}{a}})$ $x = 3 + 1$ $x = x - 1$ $x = x + 1$	11 = VIII = VIII - 125 -	(-1, 2)
$a = \pm 5$ $e = \sqrt{1 + \frac{b^2}{a}}$ $ae = 5r(\sqrt{\frac{a}{a}})$ $a/e = 5$ $x = 9 + 1$ $y = x - 1$	11 = V+1 (4) = V+1 (4) = 35 (4) = 35 (4) = 35 (4) = 47 2 = 472 Peferred to X & Y (1010)	(-1, 2) VEI F. F. F. En. காமாட்சி, M.Sc. B.Ed. M.Phil. Ph.D. முத்தமை ஆசிரியர் (கண்டும்) அரசு மேல்நிலைப்பள்ளி கோவிந்தவாடி, காஞ்சியும் (ロ1)
$a = \pm 5$ $e = \sqrt{1 + \frac{b^2}{a}}$ $ae = 5r(\sqrt{\frac{a}{a}})$ $x = \frac{a}{a} = 5$ $x = \frac{a}{a} + 1$ $x = x - 1$	11 16 = V41 - 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V41 5 Eπ. anumi δl, MSc. B Ed. M Phil. Ph. D. (1995 and 2) δlimin (accipital) 21
$a = \pm 5$ $e = \sqrt{1 + \frac{b^2}{a}}$ $ae = 5r(\sqrt{4})$ $a' = 5$ $x = n+1$ $y = x-1$ $y = x+1$ $y = x+1$ $y = x+1$ $(0, \pm a)$	1+16 = \(\frac{41}{25} = \frac{41}{25} = \frac{41}{25} = \frac{41}{25} = \frac{7}{25} = \frac{7}{25} = \frac{7}{41} \\ \(\frac{7}{3} = \frac{7}{41} \\ \(\frac	(-1, 2) VEI F. F. F. En. காமாட்சி, M.Sc. B.Ed. M.Phil. Ph.D. முத்தமை ஆசிரியர் (கண்டும்) அரசு மேல்நிலைப்பள்ளி கோவிந்தவாடி, காஞ்சியும் (ロ1)

$$qn^{2} - y^{2} - 36n - 6y + 18 = 0.$$

$$qn^{2} - 36n - y^{2} - 6y = -18$$

$$q(n^{2} - 4n) - (y^{2} + 6y) = -18$$

$$q(n^{2} - 4n) - (y^{2} + 6y) = -18 + 36 - 9.$$

$$q(n^{2} - 4n)^{2} - (y^{2} + 3)^{2} = -18 + 36 - 9.$$

$$q(n^{2} - 2)^{2} - (y^{2} + 3)^{2} = 9$$

$$q(n^{2} - 2)^{2} - (y^{2} + 3)^{2} = 1$$

$$q(n^{2} - 2)^{2} - (y^{2} + 3)^{2} = 1$$
if is hyperbola on Vani

www.Padasalai.Net

= 1

$$a^2 = 9$$
 $b^2 = 1$

$$\alpha = 3 \times \sqrt{10} = \sqrt{10}$$
 $\chi = 3 - 2$
 $\gamma = 9 + 3$
 $\gamma = \frac{3}{\sqrt{10}/3} = \frac{9}{\sqrt{10}}$
 $\chi = \chi + 2$
 $\chi = \chi + 2$
 $\chi = \chi + 3$

VI-13	Referred to X 4 y	Referred to 31 24 2-x+2 y=4-3
vertes (±a,0)	C (0,0) V1 (3,0) V2 (-3,0)	(2,-3) V,(5,-3 V2(-1,-3)
ii) Foci (±ae10)	F1 (Vio, 0) F2 (-Vio, 0)	F1 (2+V10,-3) F2 (2-V10,-3)
ill direction	X= ± 2/e = ± 2/10	$2 = \frac{9}{\sqrt{10}} + 2$ $= -\frac{9}{\sqrt{10}} + 2$

நா. காமாட்சி, M.Sc., B.Ed., M.Phi முதுகலை ஆசிரியர் (கணிதம்) அரசு மேல்நிலைப்பள்ளி கோலிந்துவாடி, காஞ்சிபுரம் (Dt)

Exercise 5:3

Identifying the conics from the general equation of the conic.

An2+Bny+cy2+Dn+Ey+F=0

(i) A=c=1, B=0 D=-2h, E=-2k, F=(h2+k2-x2)

Which is a circle (n-h)2+ty-k)2= 12.

(ii) B=0 and either Arre=0 which is parabola.

(iii) A+c = A and c are the same signs it is ellipse (iv) A+c = A and c are of opposite signs, it is hyperbola.

(v) A=c and B=D=E=F=0 it is n2+y2=0.

(vi) A=c=f = B=D=E=0 it is n2+y2=0.

(vi) A=c=f = B=D=E=0 it is n2+y2=0.

(vi) A=c=f = B=D=E=0 it is n2+y2=0.

(vii) A=c=r and creation.

(vii) A=0 or c+0 and ofters are zeros the general equation yield coordinate asses.

(viii) A=-c and create are zero. =) n2-y2=0

I identify the type of conic section of each of the

equations.

Squation condition type of the consc.

1. $2n^2-y^2=7$.

4. Hyper bola

2. $3n^2+3y^2-4x+2y$ +10=03. $3n^2+2y^2=14$ 4. $n^2+y^2+x-y=0$ 1. $y^2+y^2+x-y=0$ 1. $y^2+y^2+x-y=0$ 1. $y^2+y^2+x-y=0$ 1. $y^2+y^2+x-y=0$ 1. $y^2+y^2+x-y=0$ 2. $y^2+y^2+x-y=0$ 3. $y^2+y^2+x-y=0$ 4. $y^2+y^2+x-y=0$ 5. $y^2+4x+50y$ -25t=04. $y^2+4x+3y+4=0$ 2. Parabola

Scanned by CamScanner

Exercise 5:4

1. Find the equation of the two tangents that can be drawn from (5,2) to the ellipse 222+742=14.

Solh 27 + 74 = 14 32+ 42 =1 $y = m\eta + \sqrt{4^2m^2+b^2}$ $q^2 = 7 \quad b^2 = 2$

t poores through (5,2) $2 = 5m + \sqrt{7m^2 + 2}$

2-5m = V7m2+2 (2-5m)2 = (7m2+2)

4+25m2-20m=7m2+2

Ign of tanget (b m=1 (y-2)=1(2-5) (i) m= = y-2 = = 1 (n-5)

94-18=2-5 7-94+13=0

: Sing tangent Le n-y-3=0 4 2-94+13=0. 18 m2 - 20m +2 =0

2. Find the equation of fangents to the hyperbola $\frac{n^2}{16} - \frac{y^2}{64} = 1$ which is parallel to 10n - 3y + 7 = 0.

 $\frac{5016}{16} \frac{2^{2}}{16} - \frac{1}{64} = 1$ $\frac{1024 - 34}{16} + \frac{1}{64} = 1$ $\frac{1024 - 34}{16} + \frac{1}{9} = 1$ $\frac{1024 - 34}{16} + \frac{1}{9} = 1$ $\frac{1024 - 34}{16} = \frac{1}{9} = \frac{1}{9} = 1$

 $\sqrt{a^2m^2-b^2} = \sqrt{\frac{16}{9}} = \sqrt{\frac{1600-64}{9}} = \sqrt{\frac{1600-576}{9}}$

 $=\sqrt{\frac{1024}{9}}=\frac{3L}{3}$

Egn of tangent to the hyperbole

y = ma + V q2m2-62

9 = 뜯 x ± 플

날드 음 거 +길

34 = 102 +32 107-39+32=0

BT. BTIDTE &, M.Sc., B.Ed., M.Phil., Ph.D. முதுக்கை ஆசிரியர் (கணிதம்) Age Guaidenesiastel Caraligany, காஞ்சியும் (Dt)

or y= 10 01 - 32 34=102-32 102-34-32=0.

A And the equation of the tangent to the parabola 42=16 x perpendicular to 2 x + 2y + 3 = 0. 42=16 x 27+29+3=0 49=16 2+4+3 =0 The equation of the line which is perpendicular Jo 71+y+3/2 =0 is n-y fe =0. -0 .: O=) [n-y+4 =0] 3) Show that the line n-y+4=0 is a fargent to the ellipse n2+3y2=12 Also find the co-ordinates of the point of contact. solly y=mn+c be tangent to n2+242=12 The condition is c2= a2m2+b2. n2+342=12 12 + 1 = 1 12 + 1 = 4 $c^2 = 4^2 m^2 + b^2$ BIT, EMILITIL A, M.Sc. B Ed. M. Phil., Ph.D. முதுகளை ஆசிகியர் (கணிதம்) அரசு மேற்றிலைப்பள்ளி கோவிந்தவாடி, காஞ்சிபுரம் (Dt) 42= 12(1) +4 .. Given like touches tangent 22+3y2=12. Point of contact (-q2m, -62) $= \left(\frac{-12(1)}{4}, \frac{4}{4}\right) = \left(\frac{-3}{1}\right)$ 6) Find the equation of the tangent and normal to hyperbola 12 n2 - 992=108 at a= 93 (Hint case parametric form)

Soln Eqn of the tangent to hyperbole be
$$24$$
 $\frac{x \sec \alpha}{\alpha} = \frac{y \tan \alpha}{b} = 1$

Given. $12 \frac{n^2}{1} - 9y^2 = 108$
 $12 \frac{n^2}{108} - 9y^2 = 1$
 $3^2 - y^2 = 1$
 $3^2 = 1$
 $3 = 2 \cdot 3$
 $3 = 3 \cdot 3$
 3

1) Prove that the point of intersection of the tangents at frandtz on the parabola y==qan is

latitz, a(ti+tz)]

Solo Sin of the tangent of parabola 9 = 49 he

yt = x + at2 -0

4+2 = 2 + 8+2 - B

y (+1-+2) = a (+12-+32) y (+1+/+2) = a (+1++2) (+1/+2)

y = a (+, ff2) Bir. amont 8, MSc. BEd. M.Phil. Ph.D. முதுக்கை ஆசிரியர் (கணிதம்)

0 =) tialti+62) = x + ati2 2 = a t/2 + a t = 2 + 2 t = 2 அரசு மேற்நிலையாள்ளி

.. Point of Intersection be (atitz, altitz)

8) of the normal at the point to on the parabola again of the point

to then prove that $t_2 = -(t_1 + \frac{2}{t_1})$

y = 4 a x 99, = 49 (2+21)

391 = 29 (2+21)

At (ati2, 2ati) => 417Ati) = RA(7+ati2) 7= +x + a +1

: stope of targent be to

Sobje of normal be -1 =- 61.

E?n of normal at
$$(at_1^2, 2qt_1)$$
 is

$$\frac{y-2qt_1}{y-at_1^2} = -t_1$$

$$y-2qt_1 = -t_1(n-at_1^2)$$

$$y-2qt_1 = -t_1(n-at_1^2)$$

$$y-2qt_1 = -t_1(qt_2^2-qt_1^2)$$

$$2qt_2-2qt_1 = -t_1(qt_2^2-qt_1^2)$$

$$2q(t_2-t_1) = t_1 a(t_1^2-t_1^2)$$

$$2q(t_2-t_1) = -qt_1(t_2-t_1)(t_1+t_2)$$

$$2(t_2-t_1) + (t_2+t_1)t(t_1+t_2) = 0$$

$$(t_2-t_1) + (t_2+t_1)t(t_1+t_2) = 0$$

$$t_1 \neq t_2$$

$$t_1 \neq t_2$$

$$t_1 \neq t_2 = -t_1$$

$$t_2 = -t_1$$

$$t_2 = -t_1$$

$$t_1 = t_2$$

$$t_1 = -t_1$$

$$t_2 = -t_1$$

$$t_2 = -t_1$$

$$t_1 = t_2$$

$$t_2 = -t_1$$

$$t_1 = t_2$$

$$t_2 = -t_1$$

$$t_2 = -t_1$$

$$t_1 = t_2$$

$$t_2 = -t_1$$

$$t_2 = -t_1$$

$$t_1 = t_2$$

$$t_2 = -t_1$$

$$t_2 = -t_1$$

$$t_2 = -t_1$$

$$t_1 = t_2$$

$$t_2 = -t_1$$

$$t_2 = -t_1$$

$$t_2 = -t_1$$

$$t_1 = t_2$$

$$t_2 = -t_1$$

$$t_2 = -t_1$$

$$t_3 = t_4$$

$$t_4 = -t_4$$

$$t_4 = t_4$$

$$t_5 = -t_6$$

$$t_6 = t_6$$

$$t_7 =$$

Encreise 5.5 1. A bridge has a parabolic arch that is som high in the contre and 30m wide at the bottom. Find the height of the arch 6m. from the centre on ether sides. Selin

PQ= 2a = 30m

Point Q be (\$5, -10). Ein of en parabola n2 = -4 ay. -0

Q lies on parabola. 162 = -4 e(-10)

かっ = 一州 (2条) リ = 2° = - 225 y

het BIL. 4,) lies on parabole on amenid, MSC. BEd. MPN. Ph.D. (450) கோவிந்தவாடி, காஞ்சியும் (Dt)

AB = AC-BC = 10 - 8 = 50 -8 = 42

AB. = 8.4m .. The heigh of the arch 6m from the centur

2. A tunel through a mountain for a four lane highway is to have a elliptical opening. The total width of the highway (not the opening) is to be 16m and the height at the edge of the road. must be sufficient for a mick 4m high to clear if the highest point of the opening is to be 5m approximately. How wide must be opening be?

Soln
$$AB = 2a = 11$$

$$a = 8$$

$$b = 5$$

$$E ? n of the ellipse be
$$\frac{n^2}{4^2} + \frac{y^2}{5^2} = 1$$

$$\frac{n^2}{5^4} + \frac{y^2}{2^5} = 1$$
Let $P(3...4)$ lies on ellipse.$$

31,2 + 42 =1 71 = 1-16 = 25-16 = 9 3, = 64/25 HI = 8x3 = 24 = 4.8.

vide = 2x, = 2x4.8= q. Lm.

At a water fountain, water attains a manimum height of 4m at horizontal distance of 0.5m from its origin. If the path of water is a parabola. Find the height of water at a horizontal distance of 0.75 m from the point of origin

soln

9=92467+c. it passes througho(6,0), B10.5,4)

and Ection.

BIT, BATTOTTLA, M.Sc., B.Ed., M. முறுகலை ஆசிரியர் (கல அரசு மேற்றிகைப்பள் கோவிந்தவாடி, காஞ்சிய

C 50

(N AL ECTIO)

(ii) At B(0.5.4)

4 = 0.25 a +0.56+c = 0

0.25a +0.5b = 4 -0

Parabolic cable of a 60m portion of the Groudbed of a suspension bridge are positioned as shown below. Vertical cables are to be spaced every 6m along this portion of the road bed calculate the lengths these vertical cables from the vertex. Yesten be U(0,3) = (hik) 2a = 60 m .. Let A= B be (30,-16) and Egn of the parabola be (2-b)2 = 4a (4-K). -0 B(30,16) lies on 10 :. y = 0.52+3 = 3.52 m. : y = 2.52 m 12 = 4a (y-3) (1) When n=12 (4-3) 4 (30× 20 4 × 13 BT. CATURE O, M.Sc., B.Ed. M.Phil. Ph.D. முறுக்காய ஆகிரியர் (கணிறம்) அரசு மேற்றிகைப்பள்ளி 149 x 13 கோவிந்தவாடி, காஞ்சியும் (DI) 30x30 a) 2.08+3 = y tower is in the 6) lass section of a Nuclear cooling of a hyperbola with equation fourer is 150 m tall kind the distance from the top of the tower to the centre of the hyportola is

half the distance from the base of the tower to the centre of the hyperbola Find the diameter of the 30 top and base of the town. Sdr Given. p+ 2p = 150 Distance from the top of the tower Distance from the base of the town be 100. Egn of hyperbola is 32 - 42 =1 302 - 502 1 19 9 = 50m Then $\frac{5^2}{30^2} = 1 + \frac{50^2}{44^2} = 1 + 1.29$ 302 = 2.29 x2= 302 (2.29) 2 = 30 V2.29 = 45.35. n= 45.35 m A, M.Sc., B Ed., M.Phi., Ph.D. ு பிரியர் (கணிதம்) 22 - (-100)2 = / $\frac{\lambda^2}{30^2} : 1 + \frac{(100)^2}{40^2} = 1 + 5.17 = 6.17$ h" = 302 (6.17) n = 30 V6.17 2 = 74.51.m

7)

A rod of length 12m moves with its ends always touching the covardinate area. The lower of a point P on the rod. which is 0.3m from the end in Contact with or aris is an ellipse. Find the cocarticity.

Let Q(M1, -7.5) also dies on parabola

The water stike the ground at 3V3m. 9) on lighting a rocket cracker it gets projected in a parabolic path and reaches a manimum height of parabolic path and reaches a manimum beight of projecti 4m. when it is 6m away from the point of projection.

Finally it maches the ground 12m away from the

Starting point. Find the angle of projection.

Eqn of the parabola be $n^2 = -4ay - -0$ B16,-4) lies on Parabola. $6^2 = -4a(-4)$ $\frac{3b}{16} = a$.. $a = \frac{9}{4}$

0 =) n= -9(=) y @

need to find estope at (-6, -4)

$$\frac{dy}{dx} = \frac{23}{3}$$

$$A+(-6,-4)$$
 $\frac{dy}{dn} = \frac{2(-6)}{-9} = \frac{12}{9} = \frac{4}{3}$

 $25 n^2 + 81 + 90 n - 9 n^2 - 90 n - 9 y^2 - 225 = 0$ $25 n^2 + 81 + 90 n - 9 n^2 - 90 n - 9 y^2 - 225 = 0$ $16 n^2 - 9 y^2 - 16 y = 0$ $16 n^2 - 9 y^2 = 16 y$ $16 n^2 - 9 y^2 = 16 y$ $\frac{n^2}{9} - \frac{y^2}{16} = 1$ $\frac{n^2}{9} - \frac{y^2}{16} = 1$

2. Choose the most appropriate answer.

1. The equation of the circle powering through (1,5) and (4,1) and touching yards is not you to 19 + 2 1471 + 34-19)-0 Where I is equal to.

2. The eccentricity of the hyperbola whose laters becken is 8 and conjugate aris is equal to half the distance between the faci is

 $2^{2} = \frac{16}{12} = \frac{4}{3}$

The circle n2+y2 = 421 + 84 +5 intersects live line 3n-tyem at two distinu points if. Solo L: 3n-4y=m (x-2)2+1y-4)2= 25

C(214) Y=5

BIT. BITLUIN . A., M.Sc., B.Ed., M.Phit., Ph.D. முதுகலை ஆசிரியர் (கணிதம்) ATH Cushfleneouvaiell கோவித்தவாடி, காஞ்சியும் (Ot) 🔻


```
T) The equation of the normal to the circle 22+32-24-3491=0
   which is parallel to ste line 27+44 = 3 is
   Solm parallel line be 24+44+ A=0
      Centu be (-9,-f) = (1,1)
       which lies on line
                                                          9 = -1
              27+44 -6 =0 =) n+24 = 3
   If p(x,y) be any point on 162 +2542 = 400 with foci
    F. (3,6) and Fz (-3,0) then PF, + PF2.
               1622+254e = 400
      PFI+PF2 = major anio = Da = 2x 5 = (0. Ano 3)
   The radius of the circle pensing through the point (6,2) two of whose diameter are noy = 6 and norsy = 4 is
   solve nty = 4 - 6
       point be (8,-2)
     arother point (6,2)
      ladius = V(m2-91) = 1(2-91)2 = V(8-6)2+(2+2)2 = V2+42
                   = V4+16 = V20 = 2-V5.
    The area of quadricatoral formed with foci of the hyporbola \frac{n^2}{q^2} - \frac{y^L}{b^2} = 1 and \frac{n^L}{q^L} - \frac{y^L}{b^2} = -1 \chi(0, be)
```


242 e2 = 262

Scanned by CamScanner

TIT. CATLOTTE OF, M.Sc., B.Ed., M.Phil., Ph.D. முதுகலை ஆசிரியர் (கணிதம்)

அக மேல்நிலைப்பள்ளி கோவிந்தவாடி, காஞ்சியும் (Dt)

24) The values of m gar which the line y.
$$mn+2V5 + 6v$$
 the hyperbola $16n^2 - 9y^2 = 14y$ are the roots of $n^2 - (n+b)n^2 - 4 = 0$ Then the Value of $(n+b)$ is

Soln $n^2 = q$ $n^2 = 16$
 $n^2 = q - 16$
 $n^2 = 16$

நா. காமாட்சி, M.Sc., B.Ed., M.Phil., Ph.D. முதுக்கை ஆசிரியர் (கணிதம்) அரசு வேல்திகண்டன்சி கோவிந்தவார், காஞ்சியும் (DI)