Отчет по лабораторной работе №6

Дисциплина: Администрирование локальных сетей

Лобанова Полина Иннокентьевна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	12
5	Контрольные вопросы	13
Сп	Список литературы	

Список иллюстраций

3.1	Схема сети
3.2	Начальная настройка маршрутизатора
3.3	Настройка порта на коммутаторе
3.4	Настройка интерфейсов маршрутизатора
3.5	Команда ping для одной vlan
3.6	Команда ping для разных vlan
3.7	Передвижение пакета ICMP
3.8	Содержимое передаваемого пакета

Список таблиц

1 Цель работы

Настроить статическую маршрутизацию VLAN в сети.

2 Задание

- 1. Добавить в локальную сеть маршрутизатор, провести его первоначальную настройку.
- 2. Настроить статическую маршрутизацию VLAN.
- 3. При выполнении работы необходимо учитывать соглашение об именовании.

3 Выполнение лабораторной работы

1. В логической области проекта разместила маршрутизатор Cisco 2811, подключила его к порту 24 коммутатора msk-donskaya-pilobanova-sw-1.

Рис. 3.1: Схема сети

2. Сконфигурировала маршрутизатор, задав на нём имя, пароль для доступа к консоли, настроила удалённое подключение к нему по ssh.

```
Router>en
Routerfconf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #hostname msk-donskaya-pilobanova-gw-1
msk-donskaya-pilobanova-gw-1(config) #line vty 0 4
msk-donskaya-pilobanova-gw-1(config-line) #password cisco
msk-donskaya-pilobanova-gw-1(config-line) #fexit
msk-donskaya-pilobanova-gw-1(config-line) #password cisco
msk-donskaya-pilobanova-gw-1(config-line) #password cisco
msk-donskaya-pilobanova-gw-1(config-line) #password cisco
msk-donskaya-pilobanova-gw-1(config-line) #password cisco
msk-donskaya-pilobanova-gw-1(config-line) #sxit
msk-donskaya-pilobanova-gw-1(config) #exit
msk-donskaya-pilobanova-gw-1(config) #sexive password-encryption
msk-donskaya-pilobanova-gw-1(config) #susername admin privilege 1 secret cisco
msk-donskaya-pilob
```

Рис. 3.2: Начальная настройка маршрутизатора

3. Настроила порт 24 коммутатора msk-donskaya-pilobanova-sw-1 как trunkпорт.

```
msk-donskaya-pilobanova-sw-l>en
Password:
msk-donskaya-pilobanova-sw-lfconf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-pilobanova-sw-l(config)#interface f0/24
msk-donskaya-pilobanova-sw-l(config-if)#switchport mode trunk
msk-donskaya-pilobanova-sw-l(config-if)#^Z
msk-donskaya-pilobanova-sw-l#
%SYS-5-CONFIG_I: Configured from console by console
msk-donskaya-pilobanova-sw-l#wr mem
```

Рис. 3.3: Настройка порта на коммутаторе

4. На интерфейсе f0/0 маршрутизатора msk-donskaya-pilobanova-gw-1 настроила виртуальные интерфейсы, соответствующие номерам VLAN. Согласно таблице IP-адресов задала соответствующие IP-адреса на виртуальных интерфейсах.

```
msk-donskaya-pilobanova-gw-l (config-subif) #interface f0/0.2

msk-donskaya-pilobanova-gw-l (config-subif) #encapsulation dot10 2

msk-donskaya-pilobanova-gw-l (config-subif) #description management

msk-donskaya-pilobanova-gw-l (config-subif) #description management

msk-donskaya-pilobanova-gw-l (config-subif) #interface f0/0.3

* Invalid input detected at '^' marker.

msk-donskaya-pilobanova-gw-l (config-subif) #interface f0/0.3

msk-donskaya-pilobanova-gw-l (config-subif) #interface f0/0.3

msk-donskaya-pilobanova-gw-l (config-subif) #interface f0/0.3

msk-donskaya-pilobanova-gw-l (config-subif) #interface f0/0.3

msk-donskaya-pilobanova-gw-l (config-subif) #interface f0/0.10

msk-donskaya-pilobanova-gw-l (config-subif) #description servers

msk-donskaya-pilobanova-gw-l (config-subif) #interface f0/0.101

msk-donskaya-pilobanova-gw-l (config-subif) #interface f0/0.101

msk-donskaya-pilobanova-gw-l (config-subif) #description dot10 101

msk-donskaya-pilobanova-gw-l (config-subif) #description dot10 102

msk-donskaya-pilobanova-gw-l (config-subif) #description dot10 102

msk-donskaya-pilobanova-gw-l (config-subif) #interface f0/0.102

msk-donskaya-pilobanova-gw-l (config-subif) #description dot10 102

msk-donskaya-pilobanova-gw-l (config-subif) #interface f0/0.102

msk-donskaya-pilobanova-gw-l (config-subif) #interface f0/0.103

msk-donskaya-pilobanova-gw-l (config-subif) #interface f0/0.104

msk-donskaya-pilobanova-gw-l (config-subif)
```

Рис. 3.4: Настройка интерфейсов маршрутизатора

5. Проверила доступность оконечных устройств из разных VLAN. Сначала пропинговала dk-pavlovskaya-pilobanova-1 c dk-donskaya-pilobanova-1 (одна vlan). Далее пропинговала dk-pavlovskaya-pilobanova-1 c other-donskaya-pilobanova-1 (разные vlan)..

Рис. 3.5: Команда ping для одной vlan

Рис. 3.6: Команда ping для разных vlan

6. Используя режим симуляции в Packet Tracer, изучила процесс передвижения пакета ICMP по сети.

Рис. 3.7: Передвижение пакета ІСМР

7. Изучила содержимое передаваемого пакета и заголовки задействованных протоколов.

Рис. 3.8: Содержимое передаваемого пакета

4 Выводы

Я настроила статическую маршрутизацию VLAN в сети.

5 Контрольные вопросы

1. Охарактеризуйте стандарт IEEE 802.1Q.

Стандарт IEEE 802.1Q определяет механизм VLAN tagging (метки VLAN) в локальных сетях Ethernet. Он позволяет разделить одну физическую сеть на множество логических сетей (VLAN), изолируя трафик между ними. Это обеспечивает гибкость, безопасность и улучшенное управление сетью. Ключевые особенности:

Внедрение VLAN: 802.1Q добавляет тег к существующим Ethernet кадрам, который идентифицирует VLAN, к которому принадлежит кадр. Это позволяет маршрутизаторам и коммутаторам обрабатывать трафик на основе VLAN, направляя его только в предназначенные VLAN. Совместимость: Стандарт разработан для обеспечения совместимости с существующими Ethernet сетями. Устройства, не поддерживающие 802.1Q, могут обрабатывать помеченные кадры, игнорируя тег. Инкапсуляция: Процесс добавления тега происходит путем инкапсуляции оригинального Ethernet кадра внутри нового кадра 802.1Q. Маршрутизация VLAN: Позволяет маршрутизировать трафик между VLAN, используя маршрутизаторы или межсетевые экраны. Улучшение безопасности: Изоляция VLAN повышает безопасность сети, предотвращая несанкционированный доступ к данным. Улучшение производительности: Разделение сети на VLAN может улучшить производительность, снижая сетевую загрузку.

2. Опишите формат кадра IEEE 802.10.

Кадр 802.1Q состоит из оригинального Ethernet кадра, "обернутого" в тег 802.1Q. Это расширяет размер оригинального Ethernet кадра. Структура выглядит следующим образом:

- 1. Preamble (Преамбула): 7 байт, используется для синхронизации приемника. Остается неизменным.
- 2. Start Frame Delimiter (SFD): 1 байт, указывает начало кадра. Остается неизменным.
- 3. Ethernet Header (Заголовок Ethernet): 14 байт, включая: Destination MAC Address (MAC-адрес получателя): 6 байт. Source MAC Address (MAC-адрес отправителя): 6 байт. Ethernet Type (Тип Ethernet): 2 байта. В оригинальном кадре это поле указывает на тип протокола верхнего уровня (например, IP, ARP). В 802.10 оно заменяется тегом.
- 4. 802.1Q Tag (Ter 802.1Q): 4 байта, добавляется стандартом 802.1Q. Состоит из: TPID (Tag Protocol Identifier): 2 байта, идентификатор протокола тега. Обычно имеет значение 0х8100. Этот идентификатор показывает, что следует тег 802.1Q. TCI (Tag Control Information): 2 байта, содержит информацию о VLAN: PCP (Priority Code Point): 3 бита, приоритет кадра (QoS). CFI (Canonical Format Indicator): 1 бит, указывает на формат кадра (обычно 0). VID (VLAN ID): 12 бит, идентификатор VLAN (от 0 до 4095).
- 5. Ethernet Payload (Полезная нагрузка Ethernet): Переменная длина, данные, которые передаются.
- 6. Ethernet Frame Check Sequence (FCS): 4 байта, контрольная сумма, обеспечивающая целостность данных.

Список литературы