

Theoretische Grundlagen der Informatik

Tutorium 1

Institut für Kryptographie und Sicherheit

whois tutor

Michael Vollmer Michael@trollbu.de Tutorium-Nummer: 20 Mittwoch 15:45, SR -109

Organisatorisches – Zum Übungsbetrieb

- Abgabe: Handschriftlich in Gruppen
 - Bis zu 3 Personen als Gruppe
 - Erste Abgabe legt die Gruppe fest
 - Jede Person muss ein eigenes Blatt abgeben (mit Namen der Gruppenteilnehmer, falls vorhanden)
- Schein:
 - Klausurbonus (1 Notenschritt)
 - (Mindestens) Bei allen bis auf einem Blatt 50% Punkte
- korrigierte Übungsblätter gibt es im Tutorium
 - Bei Nichtabholung: Büro 274 Montags 14:00-15:00

Organisatorisches – Zum Tutorium

- Tutoriumsfolien
 - http://tinyurl.com/tgitutws1314
- E-Mail-Liste geht rum
- Stoff soll wiederholt werden
- Dabei Fokus auf Übungsbetrieb
- Fragen/Vorschläge/Anmerkungen willkommen!

Deterministische endliche Automaten

Ein deterministischer endlicher Automat *M* ist ein 5-Tupel

$$M = (Q, \Sigma, \delta, s, F).$$

- Q: endliche Zustandsmenge
- Σ: endliches Alphabet
- δ : Zustandsübergangsfunktion $Q \times \Sigma \to Q$
- s: Startzustand ∈ Q
- F: Endzustandsmenge ⊆ Q

Nichtdeterministische endliche Automaten

Ein nichtdeterministischer endlicher Automat *M* ist ein 5-Tupel

$$M = (Q, \Sigma, \delta, s, F).$$

- Q: endliche Zustandsmenge
- Σ: endliches Alphabet
- δ : Zustandsübergangsfunktion $Q \times (\Sigma \cup \varepsilon) \rightarrow \mathcal{P}(Q)$
- s: Startzustand ∈ Q

Tutoriumsmaterial von Michael Vollmer

• F: Endzustandsmenge $\subseteq Q$

NEA: Beispiel

- Eingabe: abb
 - $q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{b} \emptyset$
 - $q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_1 \xrightarrow{b} q_2$
 - akzeptiert
- Eingabe: aba
 - $q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_1 \xrightarrow{a} \emptyset$
 - $q_0 \stackrel{a}{\rightarrow} q_1 \stackrel{b}{\rightarrow} q_2 \stackrel{a}{\rightarrow} \emptyset$
 - akzeptiert nicht

Rechtslineare Grammatiken

Eine Grammatik G = (T, V, S, P)

- *T* = Menge der Terminale (a.k.a. Alphabet der Sprache)
- V = Menge der Nichtterminale (zu T disjunkt)
- $S \in V = \text{Startsymbol}$
- $P \subset V^+ \times (V \cup T)^*$ = Menge der Produktionen

bei der alle Produktionen so aussehen:

- lacksquare $A
 ightarrow \epsilon$
 - A ∈ V
 - ϵ ist leeres Wort (in der Vorlesung auch λ)
- $A \rightarrow bC$
 - \bullet $A, C \in V$

Tutoriumsmaterial von Michael Vollmer

b ∈ T

heißt rechtslinear bzw. regulär.

Reguläre Ausdrücke

A ist ein regulärer Ausdruck über dem Alphabet Σ wenn:

- $A = \epsilon$
- $A = x \in \Sigma$
- $A = B^* = \{\epsilon, B, BB, BBB, \ldots\}$
- $A = B^+ = \{B, BB, BBB, \ldots\}$
- $A = B \cdot C = \{BC\}$
- $A = B \mid C = B + C = \{B, C\}$

Wobei B und C ebenfalls reguläre Ausdrücke über Σ sind.

Bitte deutlich schreiben:

$$B^+C \neq B+C$$

Chompsky Typ 3

Eine Sprache ist von Chompsky Typ 3, wenn...

- ... sie durch eine reguläre, z.B. rechtslineare, Grammatik angegeben werden kann.
- ... sie durch einen regulären Ausdruck angegeben werden kann.
- ... ein endlicher Automat angegeben werden kann, der genau diese Sprache akzeptiert.

Gegeben sei der folgende endliche Automat:

 $\mathcal{M} = (\mathcal{Q}, \Sigma, \delta, \mathcal{S}, \mathcal{F}) \text{ mit } \Sigma = \{a, b\}, \ \mathcal{Q} = \{\mathcal{S}, \mathcal{B}, \mathcal{C}, \mathcal{D}\}, \ \mathcal{F} = \{\mathcal{B}, \mathcal{C}\} \text{ und } \delta \text{ gegeben durch:}$

- Geben Sie die von diesem Automaten akzeptierte Sprache in einem regulären Ausdruck an!
- 2. Um was für einen Automaten handelt es sich?
- 3. Konstruieren Sie einen äquivalenten endlichen Automaten, der nur einen einzigen Endzustand besitzt!
- 4. Geben Sie eine linkslineare Grammatik für die Sprache dieses Automaten an, die keine überflüssigen Nichtterminale und Regeln enthält!

- 1. Formulieren Sie einen regulären Ausdruck über dem Alphabet $\Sigma = \{0, 1\}$, der jedes beliebige Wort erfasst, wobei die vorletzte Ziffer 0 sein soll!
- 2. Geben Sie eine rechtslineare Grammatik an.
- 3. Geben Sie einen dazugehörigen Automaten an, der diese Sprache akzeptiert!

Akzeptor → **Grammatik**

Umwandlung von einem endlichen Akzeptor $M = (Q, \Sigma, \delta, q_0, F)$ in eine rechtslineare Grammatik G = (T, V, S, P):

- 1. $T := \Sigma$.
- 2. $\forall q \in Q$ ein Nichtterminalsymbol in V definieren, wobei S q_0 zugeordnet ist.
- 3. $P:=\{(X \to tY) \mid (q_X,t)=q_Y \in \delta\} \cup \{(Z \to \lambda) \mid q_Z \in F\}.$ Wobei X, Y und Z jene Nichtterminalsymbole sind, welche q_X , q_Y , bzw. q_Z zugeordnet sind.

Gegeben sei der folgende endliche Akzeptor \mathcal{M} mit dem Eingabealphabet $\Sigma = \{a, b, c, d\}$:

- 1. Welche Sprache $\mathcal{L}(\mathcal{M})$ wird von dem Akzeptor \mathcal{M} akzeptiert?
- 2. Konstruieren Sie aus $\mathcal M$ eine rechtslineare Grammatik, die $\mathcal L(\mathcal M)$ erzeugt!

Konstruktion eines Akzeptors aus einer linearen Grammatik

Gegeben: rechtslineare Grammatik G = (T, V, S, P)Gesucht: endlicher Akzeptor $M = (Q, \Sigma, \delta, q_0, F)$

- 1. $\Sigma := T$
- 2. $Q := \{q_X \mid X \in V\}$
 - $q_0 = q_S$
- 3. $\delta := \{(q_X, t) \rightarrow q_Y \mid (X \rightarrow tY) \in P\}$
- 4. $F := \{ q_X \mid (X \to \lambda) \in P \}$

Die Sprache \mathcal{L} sei durch den regulären Ausdruck $(aa^*b^*)^*cc^*$ definiert.

- 1. Geben Sie eine rechtslineare Grammatik ${\mathcal G}$ an, die ${\mathcal L}$ erzeugt!
- 2. Konstruieren Sie aus $\mathcal G$ einen endlichen Akzeptor, der $\mathcal L$ akzeptiert!

Semi-Thue-Systeme

Ein Semi-Thue-System besteht aus

- einem nichtleeren Alphabet A
- einer Produktionsmenge $P \subset \{A^* \to A^*\}$

Beispiel:

und

$$A = \{a, b, c\}$$

 $P = \{ab \rightarrow c, bc \rightarrow a, aa \rightarrow \epsilon, cc \rightarrow \epsilon\}$

Beispieleingaben:

$$\begin{array}{c} \mathsf{abc} \ \Rightarrow \mathsf{cc} \Rightarrow \epsilon \\ \ \Rightarrow \mathsf{aa} \Rightarrow \epsilon \\ \mathsf{aab} \ \Rightarrow \mathsf{b} \\ \ \Rightarrow \mathsf{ac} \end{array}$$

Produktionen sind nicht immer eindeutig.

Scholtens Kaffeedosenspiel

Gegeben:

- Dose mit (endlich vielen) weißen und schwarzen Bohnen (mindestens einer).
- Spielregeln: Nehme zufällig 2 Bohnen aus der Dose
 - Falls die Bohnen die gleiche Farbe haben, so lege eine schwarze in die Dose zurück.
 - Falls die Bohnen verschiedene Farben haben, so lege nur die weiße Bohne zurück.

Behauptungen:

- 1. Spiel terminiert immer mit genau einer Bohne in der Dose.
- Das Ergebnis ist nur von den Farben der Bohnen abhängig.

Kaffeebohnen in Semi-Thue

Semi-Thue-System:

- $A = \{ S, W \}$
- $P = \{ SW \rightarrow W, WS \rightarrow W, SS \rightarrow S, WW \rightarrow S \}$

Behauptungen:

- Die Ersetzungen terminieren immer mit Termlänge 1
- Das Ergebnis ist unabhängig von der Reihenfolge der Regelanwendungen

Beweis der Terminierung durch Induktion

- Induktionsanfang: Term der Länge 1
 Keine Regel anwendbar, also terminiert mit Länge 1
- Induktionsvoraussetzung: Jeder Term mit einer beliebig aber festen Länge n terminiert mit Länge 1.
- Induktionsschritt: Term mit Länge n + 1
 - Da n mindestens 1 ist, besitzt der Term mindestens Länge 2. Also ist auf jeden Fall eine Regel anwendbar
 - Jede Regel ersetzt einen Subterm der Länge 2 mit einem Term der Länge
 1. Nach einer Regelanwendung besitzt der Restterm also nun die Länge n.
 - Nach Induktionsvoraussetzung terminiert dieser Restterm mit Länge 1.

Beweis der Unabhängigkeit durch Induktion

- Behauptung: Wenn der Term eine ungerade Anzahl an W enthält, terminiert die Term mit W als letztes Zeichen.
- Beweis:
 - Induktionsanfang: Term ist L\u00e4nge 1. Falls der Term eine ungerade Anzahl an W enth\u00e4lt, terminiert der Term mit W.
 - Induktionsvoraussetzung: Behauptung gilt für alle Terme mit einer beliebig aber festen Länge n.
 - Induktionsschritt: Term mit Länge n + 1:
 - Die Regeln $\{$ SW \rightarrow W, WS \rightarrow W, SS \rightarrow S $\}$ erhalten die Anzahl von W im Term.
 - \blacksquare Die Regel { WW \rightarrow S } veringert die Anzahl von W im Term um 2.
 - Falls die Anzahl W im Term ungerade war, bleibt dies auch nach Regelanwendung erhalten. Nach Regelanwendung besitzt der Term die Restlänge n und es gilt die Induktionsvoraussetzung.

Analoger Beweis: Bei gerade Anzahl an W im Term, ist S das letzte Zeichen im Term.

Bis zum nächsten Mal!

Lizenzen

Dieses Werk ist unter einem "Creative Commons Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland"-Lizenzvertrag lizenziert. Um eine Kopie der Lizenz zu erhalten, gehen Sie bitte zu http://creativecommons.org/licenses/by-sa/3.0/de/ ozterschreiben Sie an Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

Davon ausgenommen sind das Titelbild, welches aus der März-April 2002 Ausgabe von American Scientist erschienen ist und ohne Erlaubnis verwendet wird, sowie das KIT Beamer Theme. Hierfür gelten die Bestimmungen der jeweiligen Urheber.

