Math 501 Homework (§6.1, Derivatives)

Problem 12. If r > 0 is rational and $f : \mathbb{R} \to \mathbb{R}$:

$$f(x) := \begin{cases} x^r \sin(1/x), & x \neq 0 \\ 0, & x = 0. \end{cases}$$

Determine those values of r for which f'(0) exists.

Solution. First consider $x^s, s = m/n \in \mathbb{Q}$.

When x < 0, $\lim_{x\to 0^-} x^s = 0$ for n odd, but does not exist for n even (**even roots** of negative numbers aren't real). Therefore

$$\lim_{x \to 0} x^s = \begin{cases} 0, & n \text{ odd} \\ DNE, & n \text{ even.} \end{cases}$$
 (12.1)

Now for f'(0) to exist, $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0} \frac{f(x)}{x}$ must exist (definition of Derivative).

For $x \neq 0$, using $-1 \leq \sin(1/x) \leq 1$ we can write $-|x^{r-1}| \leq f(x)/x \leq |x^{r-1}|$, or

$$-|g(x)| \le \frac{f(x)}{x} \le |g(x)|, \text{ for } g(x) := x^{r-1}$$
 (12.2)

Case I: 0 < r < 1.

Let s=1-r>0, or $g(x)=x^s, s=m/n\in\mathbb{Q}$. We know from (12.1) that $\lim_{x\to 0}g(x)=0$ is defined **only when** n **is odd.**

Case II: $r \geq 1$.

Let s = r - 1 > 0, and $g(x) = x^s$, $s = m/n \in \mathbb{Q}$. As above, $\lim_{x\to 0} g(x) = 0$ is defined **only when** n **is odd.**

Hence all r = m/n, n odd, lead to $\lim_{x\to 0} |g(x)| = -\lim_{x\to 0} |g(x)|$. Using **Squeeze Theorem** and (12.2) this is a sufficient condition for $\lim_{x\to 0} \frac{f(x)}{x} = 0$ hence the existence of f'(0).