

## (Tris{2-[{(5-hydroxypyridin-2-yl)- $\kappa$ N]-methylideneimino- $\kappa$ N}ethyl}amine)zinc dinitrate

Maksym Seredyuk,<sup>a\*</sup> Kateryna O. Znoviyak,<sup>a</sup> Matti Haukka,<sup>b</sup> Vadim A. Pavlenko<sup>a</sup> and Nadezhda A. Bokach<sup>c</sup>

<sup>a</sup>National Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01033 Kyiv, Ukraine, <sup>b</sup>Department of Chemistry, University of Joensuu, PO Box 111, 80101 Joensuu, Finland, and <sup>c</sup>Department of Chemistry, St. Petersburg State University, Universitetsky Pr. 26, 198504 Stary Peterhof, Russian Federation  
Correspondence e-mail: mcs@univ.kiev.ua

Received 27 October 2011; accepted 12 November 2011

Key indicators: single-crystal X-ray study;  $T = 120\text{ K}$ ; mean  $\sigma(\text{C}-\text{C}) = 0.003\text{ \AA}$ ;  $R$  factor = 0.029;  $wR$  factor = 0.064; data-to-parameter ratio = 11.9.

In the complex cation of the title compound,  $[\text{Zn}(\text{C}_{24}\text{H}_{27}\text{N}_7\text{O}_3)](\text{NO}_3)_2$ , the tripododal tris{[2-(5-hydroxypyridin-2-yl)methylideneiminoethyl]amine ligand is coordinated to the Zn atom through the three pyridine and three imino N atoms. The coordination sphere of the Zn atom is based on an octahedron with a significant distortion towards trigonal prismatic, the twist angle being  $45.58(9)^\circ$ . The crystal packing is formed by *L* and *D* antipodes arranged in layers disposed parallel to the *b* axis. Strong O–H···O hydrogen bonding exists between the hydroxy groups of the ligand and the nitrate anion.

### Related literature

For structural and magnetic studies of related tripodand-based complexes of iron(II), see: Seredyuk *et al.* (2007, 2008, 2011). For related structures, see: Petrusenko *et al.* (1997); Krämer & Fritsky (2000); Świątek-Kozłowska *et al.* (2000); Wörl *et al.* (2005); Sachse *et al.* (2008); Moroz *et al.* (2010).



### Experimental

#### Crystal data

|                                                                              |                                          |
|------------------------------------------------------------------------------|------------------------------------------|
| $[\text{Zn}(\text{C}_{24}\text{H}_{27}\text{N}_7\text{O}_3)](\text{NO}_3)_2$ | $V = 5458.2(3)\text{ \AA}^3$             |
| $M_r = 650.92$                                                               | $Z = 8$                                  |
| Monoclinic, $C2/c$                                                           | Mo $K\alpha$ radiation                   |
| $a = 28.0587(12)\text{ \AA}$                                                 | $\mu = 0.97\text{ mm}^{-1}$              |
| $b = 10.3677(2)\text{ \AA}$                                                  | $T = 120\text{ K}$                       |
| $c = 19.1322(8)\text{ \AA}$                                                  | $0.30 \times 0.23 \times 0.12\text{ mm}$ |
| $\beta = 101.277(2)^\circ$                                                   |                                          |

#### Data collection

|                                                                                        |                                        |
|----------------------------------------------------------------------------------------|----------------------------------------|
| Nonius KappaCCD diffractometer                                                         | 13185 measured reflections             |
| Absorption correction: multi-scan ( <i>DENZO/SCALEPACK</i> ; Otwinowski & Minor, 1997) | 4754 independent reflections           |
| $T_{\min} = 0.764$ , $T_{\max} = 0.871$                                                | 3823 reflections with $I > 2\sigma(I)$ |
|                                                                                        | $R_{\text{int}} = 0.024$               |

#### Refinement

|                                 |                                                                        |
|---------------------------------|------------------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.029$ | H atoms treated by a mixture of independent and constrained refinement |
| $wR(F^2) = 0.064$               | $\Delta\rho_{\text{max}} = 0.48\text{ e \AA}^{-3}$                     |
| $S = 1.05$                      | $\Delta\rho_{\text{min}} = -0.39\text{ e \AA}^{-3}$                    |
| 4754 reflections                |                                                                        |
| 400 parameters                  |                                                                        |

**Table 1**  
Hydrogen-bond geometry ( $\text{\AA}$ ,  $^\circ$ ).

| $D-\text{H}\cdots A$     | $D-\text{H}$ | $\text{H}\cdots A$ | $D\cdots A$ | $D-\text{H}\cdots A$ |
|--------------------------|--------------|--------------------|-------------|----------------------|
| O3–H3o···O6              | 0.80 (3)     | 1.90 (3)           | 2.698 (2)   | 173 (3)              |
| O1–H1o···O7              | 0.82 (3)     | 1.80 (3)           | 2.597 (2)   | 163 (3)              |
| O2–H2o···O4 <sup>i</sup> | 0.78 (3)     | 1.84 (3)           | 2.593 (3)   | 162 (3)              |

Symmetry code: (i)  $-x + \frac{3}{2}, -y + \frac{1}{2}, -z + 1$ .

Data collection: *COLLECT* (Bruker–Nonius, 2000); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2003); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2011); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Presidential Grant for young researchers (Project F32/248–2011). Financial support from the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041) and the Russian Foundation for Basic Research (grant No. 11–03–90417) is also gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2030).

### References

- Brandenburg, K. (2011). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker–Nonius (2000). *COLLECT*. Bruker–Nonius BV, Delft, The Netherlands.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). *J. Appl. Cryst.* **36**, 1103.
- Krämer, R. & Fritsky, I. O. (2000). *Eur. J. Org. Chem.* pp. 3505–3510.
- Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). *Inorg. Chem.* **49**, 4750–4752.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

# metal-organic compounds

---

Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). *Polyhedron*, **16**, 267–274.

Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). *Synthesis*, **5**, 800–806.

Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Galyametdinov, Y., Kusz, J. & Gütlich, P. (2008). *J. Am. Chem. Soc.* **130**, 1431–1439.

Seredyuk, M., Gaspar, A. B., Kusz, J., Bednarek, G. & Gütlich, P. (2007). *J. Appl. Cryst.* **40**, 1135–1145.

Seredyuk, M., Gaspar, A. B., Kusz, J. & Gütlich, P. (2011). *Z. Anorg. Allg. Chem.* **637**, 965–976.

Sheldrick, G. M. (2008). *Acta Cryst. A* **64**, 112–122.

Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). *J. Chem. Soc. Dalton Trans.* pp. 4064–4068.

Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). *Dalton Trans.* pp. 27–29.

## **supplementary materials**

*Acta Cryst.* (2011). E67, m1791-m1792 [doi:10.1107/S1600536811048094]

## (Tris{2-[{(5-hydroxypyridin-2-yl- $\kappa$ N)methylideneimino- $\kappa$ N]ethyl}amine)zinc dinitrate

**M. Seredyuk, K. O. Znoviyak, M. Haukka, V. A. Pavlenko and N. A. Bokach**

### Comment

As a part of our study of the tripodand-based 3d-metal complexes (Seredyuk *et al.*, 2007; Seredyuk *et al.*, 2008; Seredyuk *et al.*, 2011), we report the crystal structure of the title compound.

The tripod ligand tris[2-(5-hydroxy-2-pyridylmethyleneimino)ethyl]amine coordinates to the metal centre through the three pyridine and three imino N atoms (Fig. 1). The coordination polyhedron of the zinc ion in the complex molecule is a distorted trigonal antiprism with the twist angle equal to 46.71 (8) $^{\circ}$ . The tertiary capping N1 atom lies on the pseudo  $C_3$ -axis of the molecule and is situated at 2.972 (2) Å from the Zn center. The average values for the Zn–N<sup>py</sup> and the Zn–N<sup>im</sup> bond lengths differ significantly and are 2.265 (2) and 2.132 (2) Å, respectively. Similar differences in the geometrical parameters have been observed before in the related zinc complexes (Petrusenko *et al.*, 1997; Świątek-Kozłowska *et al.*, 2000; Wörl *et al.*, 2005). The C—C and C—N bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Krämer & Fritsky, 2000; Sachse *et al.*, 2008; Moroz *et al.*, 2010).

The crystal packing is formed by *L* and *D* antipodes arranged in layers disposed parallel to the *b* axis (Fig. 2). A strong hydrogen bonding is settled between hydroxy groups of the ligand and nitrate anions [2.593 (3)–2.698 (3) Å].

### Experimental

To a stirred boiling mixture of 5-hydroxy-picinaldehyde (Seredyuk *et al.*, 2008) (0.5 g, 0.406 mmol) and Zn(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O (0.403 g, 0.136 mmol) in ethanol was added tris(2-aminoethyl)amine (0.198 g, 0.136 mmol). The obtained mixture was kept boiling for 15 min and then transferred into a fridge and left at 4°C overnight. The crystalline precipitate was filtered off, washed with a small portion of cold ethanol and air dried. Recrystallization in a thermostat from boiling methanol provided colorless crystalline material. ESI MS (*rel. int.*): *m/z* 587 [M+NO<sub>3</sub>]<sup>+</sup> (17%), 524 [M–H]<sup>+</sup> (100%) 264 [M]<sup>++</sup> (18%). Calc for C<sub>24</sub>H<sub>27</sub>N<sub>9</sub>O<sub>9</sub>Zn: C, 44.28, H, 4.18, N, 19.37. Found C, 44.20, H, 4.28, N, 19.27.

### Refinement

The OH hydrogen atoms were located from the difference Fourier map, and their positional and thermal parameters were refined freely. The CH hydrogen atoms were positioned geometrically and refined as riding atoms, with C–H = 0.95–0.99 Å and with *U*<sub>iso</sub> = 1.2 *U*<sub>eq</sub>(parent atom).

# supplementary materials

---

## Figures



Fig. 1. The title molecule with displacement ellipsoids drawn at the 50% probability level. Dashed lines show hydrogen bonds between complex cations and nitrate anions [symmetry code: (i)  $1.5-x, 0.5-y, 1-z$ ].



Fig. 2. Projection of the molecular packing along the  $a$  axis. Dashed lines correspond to hydrogen bonds between complex cations and nitrate anions.

## (Tris{2-[{(5-hydroxypyridin-2-yl-κN)methylideneimino- κN]ethyl}amine}zinc dinitrate

### Crystal data

|                                    |                                                         |
|------------------------------------|---------------------------------------------------------|
| $[Zn(C_{24}H_{27}N_7O_3)](NO_3)_2$ | $F(000) = 2688$                                         |
| $M_r = 650.92$                     | $D_x = 1.584 \text{ Mg m}^{-3}$                         |
| Monoclinic, $C2/c$                 | Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ \AA}$ |
| Hall symbol: -C 2yc                | Cell parameters from 3966 reflections                   |
| $a = 28.0587 (12) \text{ \AA}$     | $\theta = 1.5\text{--}25.5^\circ$                       |
| $b = 10.3677 (2) \text{ \AA}$      | $\mu = 0.97 \text{ mm}^{-1}$                            |
| $c = 19.1322 (8) \text{ \AA}$      | $T = 120 \text{ K}$                                     |
| $\beta = 101.277 (2)^\circ$        | Block, colorless                                        |
| $V = 5458.2 (3) \text{ \AA}^3$     | $0.30 \times 0.23 \times 0.12 \text{ mm}$               |
| $Z = 8$                            |                                                         |

### Data collection

|                                                                                  |                                                                     |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Nonius KappaCCD diffractometer                                                   | 4754 independent reflections                                        |
| Radiation source: fine-focus sealed tube                                         | 3823 reflections with $I > 2\sigma(I)$                              |
| horizontally mounted graphite crystal                                            | $R_{\text{int}} = 0.024$                                            |
| Detector resolution: 9 pixels $\text{mm}^{-1}$                                   | $\theta_{\text{max}} = 25.0^\circ, \theta_{\text{min}} = 2.9^\circ$ |
| $\varphi$ scans and $\omega$ scans with $\kappa$ offset                          | $h = -27 \rightarrow 33$                                            |
| Absorption correction: multi-scan<br>(DENZO/SCALEPACK; Otwinowski & Minor, 1997) | $k = -12 \rightarrow 10$                                            |
| $T_{\text{min}} = 0.764, T_{\text{max}} = 0.871$                                 | $l = -22 \rightarrow 20$                                            |
| 13185 measured reflections                                                       |                                                                     |

## *Refinement*

|                                 |                                                                                     |
|---------------------------------|-------------------------------------------------------------------------------------|
| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                      |
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                |
| $R[F^2 > 2\sigma(F^2)] = 0.029$ | Hydrogen site location: inferred from neighbouring sites                            |
| $wR(F^2) = 0.064$               | H atoms treated by a mixture of independent and constrained refinement              |
| $S = 1.05$                      | $w = 1/[\sigma^2(F_o^2) + (0.0217P)^2 + 8.7493P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 4754 reflections                | $(\Delta/\sigma)_{\max} = 0.001$                                                    |
| 400 parameters                  | $\Delta\rho_{\max} = 0.48 \text{ e \AA}^{-3}$                                       |
| 0 restraints                    | $\Delta\rho_{\min} = -0.39 \text{ e \AA}^{-3}$                                      |

## *Special details*

**Experimental.** The OH hydrogen atoms were located from the difference Fourier map, and their positional and thermal parameters were refined freely. The CH hydrogen atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 - 0.99 Å and with  $U_{\text{iso}} \sim 1.2 U_{\text{eq}}$  (parent atom).

**Geometry.** All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement.** Refinement of  $F^2$  against ALL reflections. The weighted  $R$ -factor  $wR$  and goodness of fit  $S$  are based on  $F^2$ , conventional  $R$ -factors  $R$  are based on  $F$ , with  $F$  set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating  $R$ -factors(gt) etc. and is not relevant to the choice of reflections for refinement.  $R$ -factors based on  $F^2$  are statistically about twice as large as those based on  $F$ , and  $R$ -factors based on ALL data will be even larger.

## *Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\text{\AA}^2$ )*

|     | $x$          | $y$           | $z$           | $U_{\text{iso}}^*/U_{\text{eq}}$ |
|-----|--------------|---------------|---------------|----------------------------------|
| Zn1 | 0.634474 (9) | 0.16452 (2)   | 0.235644 (13) | 0.01525 (8)                      |
| O1  | 0.58450 (6)  | 0.16550 (16)  | 0.50553 (8)   | 0.0220 (4)                       |
| O2  | 0.79699 (7)  | 0.28797 (17)  | 0.44693 (11)  | 0.0340 (5)                       |
| O3  | 0.72303 (6)  | -0.23705 (16) | 0.42204 (9)   | 0.0266 (4)                       |
| O4  | 0.74429 (6)  | 0.03487 (17)  | 0.48994 (9)   | 0.0332 (4)                       |
| O5  | 0.81700 (7)  | 0.03610 (17)  | 0.55434 (10)  | 0.0438 (5)                       |
| O6  | 0.80039 (6)  | -0.07908 (17) | 0.45764 (9)   | 0.0322 (4)                       |
| O7  | 0.56606 (5)  | 0.26383 (16)  | 0.62224 (8)   | 0.0268 (4)                       |
| O8  | 0.51315 (6)  | 0.33927 (16)  | 0.68067 (8)   | 0.0258 (4)                       |
| O9  | 0.49886 (7)  | 0.3452 (2)    | 0.56617 (9)   | 0.0595 (7)                       |
| N1  | 0.58398 (6)  | 0.20629 (17)  | 0.08571 (9)   | 0.0185 (4)                       |
| N2  | 0.61171 (6)  | 0.35640 (16)  | 0.20881 (9)   | 0.0151 (4)                       |
| N3  | 0.60926 (6)  | 0.23962 (16)  | 0.33387 (9)   | 0.0158 (4)                       |
| N4  | 0.67412 (7)  | 0.10515 (17)  | 0.15702 (10)  | 0.0200 (4)                       |

## supplementary materials

---

|      |             |               |              |            |
|------|-------------|---------------|--------------|------------|
| N5   | 0.71145 (6) | 0.20475 (16)  | 0.28566 (10) | 0.0180 (4) |
| N6   | 0.56701 (6) | 0.06303 (16)  | 0.20400 (9)  | 0.0156 (4) |
| N7   | 0.64650 (6) | -0.03002 (16) | 0.29422 (9)  | 0.0149 (4) |
| N8   | 0.78803 (7) | -0.00173 (19) | 0.50157 (11) | 0.0266 (5) |
| N9   | 0.52514 (6) | 0.31521 (17)  | 0.62315 (9)  | 0.0190 (4) |
| C1   | 0.57457 (8) | 0.3445 (2)    | 0.08296 (11) | 0.0212 (5) |
| H1A  | 0.5415      | 0.3611        | 0.0916       | 0.025*     |
| H1B  | 0.5763      | 0.3777        | 0.0350       | 0.025*     |
| C2   | 0.61165 (8) | 0.4145 (2)    | 0.13889 (11) | 0.0196 (5) |
| H2A  | 0.6444      | 0.4072        | 0.1271       | 0.024*     |
| H2B  | 0.6032      | 0.5071        | 0.1397       | 0.024*     |
| C3   | 0.59253 (7) | 0.4176 (2)    | 0.25399 (11) | 0.0162 (5) |
| H3   | 0.5801      | 0.5020        | 0.2431       | 0.019*     |
| C4   | 0.58951 (7) | 0.35904 (19)  | 0.32235 (11) | 0.0149 (5) |
| C5   | 0.56781 (7) | 0.4207 (2)    | 0.37240 (11) | 0.0171 (5) |
| H5   | 0.5545      | 0.5046        | 0.3630       | 0.020*     |
| C6   | 0.56555 (8) | 0.3599 (2)    | 0.43585 (11) | 0.0176 (5) |
| H6   | 0.5507      | 0.4007        | 0.4706       | 0.021*     |
| C7   | 0.58551 (7) | 0.2375 (2)    | 0.44754 (11) | 0.0158 (5) |
| C8   | 0.60739 (7) | 0.1816 (2)    | 0.39515 (11) | 0.0167 (5) |
| H8   | 0.6215      | 0.0985        | 0.4038       | 0.020*     |
| C9   | 0.62025 (8) | 0.1637 (2)    | 0.04540 (12) | 0.0239 (5) |
| H9A  | 0.6407      | 0.2379        | 0.0372       | 0.029*     |
| H9B  | 0.6037      | 0.1303        | -0.0016      | 0.029*     |
| C10  | 0.65213 (9) | 0.0588 (2)    | 0.08562 (12) | 0.0254 (5) |
| H10A | 0.6323      | -0.0189       | 0.0895       | 0.031*     |
| H10B | 0.6780      | 0.0351        | 0.0594       | 0.031*     |
| C11  | 0.72019 (8) | 0.1053 (2)    | 0.17658 (12) | 0.0229 (5) |
| H11  | 0.7400      | 0.0734        | 0.1455       | 0.028*     |
| C12  | 0.74247 (8) | 0.1546 (2)    | 0.24709 (13) | 0.0210 (5) |
| C13  | 0.79224 (8) | 0.1498 (2)    | 0.27344 (14) | 0.0298 (6) |
| H13  | 0.8134      | 0.1144        | 0.2453       | 0.036*     |
| C14  | 0.81062 (8) | 0.1967 (2)    | 0.34045 (15) | 0.0307 (6) |
| H14  | 0.8446      | 0.1947        | 0.3590       | 0.037*     |
| C15  | 0.77898 (8) | 0.2468 (2)    | 0.38054 (13) | 0.0248 (6) |
| C16  | 0.72922 (8) | 0.2496 (2)    | 0.35089 (12) | 0.0204 (5) |
| H16  | 0.7074      | 0.2846        | 0.3781       | 0.024*     |
| C17  | 0.54127 (8) | 0.1244 (2)    | 0.07905 (11) | 0.0207 (5) |
| H17A | 0.5486      | 0.0382        | 0.0615       | 0.025*     |
| H17B | 0.5143      | 0.1624        | 0.0440       | 0.025*     |
| C18  | 0.52591 (8) | 0.1106 (2)    | 0.15087 (12) | 0.0205 (5) |
| H18A | 0.5151      | 0.1953        | 0.1661       | 0.025*     |
| H18B | 0.4984      | 0.0496        | 0.1466       | 0.025*     |
| C19  | 0.56437 (8) | -0.0477 (2)   | 0.23137 (11) | 0.0162 (5) |
| H19  | 0.5354      | -0.0968       | 0.2184       | 0.019*     |
| C20  | 0.60524 (7) | -0.1008 (2)   | 0.28262 (11) | 0.0153 (5) |
| C21  | 0.60142 (8) | -0.2162 (2)   | 0.31789 (11) | 0.0196 (5) |
| H21  | 0.5719      | -0.2636       | 0.3089       | 0.024*     |
| C22  | 0.64107 (8) | -0.2615 (2)   | 0.36629 (12) | 0.0219 (5) |

|     |             |             |              |             |
|-----|-------------|-------------|--------------|-------------|
| H22 | 0.6391      | -0.3396     | 0.3915       | 0.026*      |
| C23 | 0.68378 (8) | -0.1907 (2) | 0.37740 (11) | 0.0189 (5)  |
| C24 | 0.68483 (8) | -0.0745 (2) | 0.34015 (11) | 0.0172 (5)  |
| H24 | 0.7140      | -0.0256     | 0.3480       | 0.021*      |
| H1O | 0.5743 (11) | 0.204 (3)   | 0.5368 (16)  | 0.052 (10)* |
| H3O | 0.7447 (11) | -0.185 (3)  | 0.4311 (15)  | 0.046 (9)*  |
| H2O | 0.7795 (11) | 0.332 (3)   | 0.4639 (15)  | 0.041 (10)* |

*Atomic displacement parameters ( $\text{\AA}^2$ )*

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$      |
|-----|--------------|--------------|--------------|--------------|--------------|---------------|
| Zn1 | 0.01257 (13) | 0.01396 (13) | 0.01942 (14) | 0.00079 (10) | 0.00361 (10) | -0.00027 (11) |
| O1  | 0.0257 (9)   | 0.0234 (9)   | 0.0185 (9)   | 0.0036 (7)   | 0.0079 (7)   | 0.0033 (7)    |
| O2  | 0.0229 (10)  | 0.0248 (10)  | 0.0474 (12)  | 0.0004 (8)   | -0.0096 (9)  | -0.0060 (9)   |
| O3  | 0.0275 (10)  | 0.0210 (9)   | 0.0264 (9)   | 0.0007 (8)   | -0.0067 (8)  | 0.0040 (7)    |
| O4  | 0.0195 (9)   | 0.0450 (11)  | 0.0349 (10)  | -0.0054 (8)  | 0.0052 (8)   | -0.0108 (8)   |
| O5  | 0.0396 (11)  | 0.0296 (10)  | 0.0500 (12)  | -0.0054 (8)  | -0.0213 (10) | -0.0024 (9)   |
| O6  | 0.0293 (10)  | 0.0373 (10)  | 0.0331 (10)  | 0.0027 (8)   | 0.0136 (8)   | 0.0017 (8)    |
| O7  | 0.0161 (9)   | 0.0407 (10)  | 0.0246 (9)   | 0.0085 (7)   | 0.0062 (7)   | 0.0018 (7)    |
| O8  | 0.0283 (9)   | 0.0355 (10)  | 0.0152 (8)   | 0.0071 (8)   | 0.0081 (7)   | -0.0018 (7)   |
| O9  | 0.0454 (12)  | 0.1089 (19)  | 0.0204 (10)  | 0.0417 (13)  | -0.0030 (9)  | -0.0021 (11)  |
| N1  | 0.0197 (10)  | 0.0170 (9)   | 0.0189 (10)  | 0.0016 (8)   | 0.0037 (8)   | -0.0005 (8)   |
| N2  | 0.0136 (9)   | 0.0152 (9)   | 0.0160 (9)   | -0.0010 (7)  | 0.0019 (8)   | -0.0004 (7)   |
| N3  | 0.0134 (9)   | 0.0156 (9)   | 0.0179 (10)  | 0.0000 (7)   | 0.0019 (8)   | -0.0016 (8)   |
| N4  | 0.0205 (11)  | 0.0156 (9)   | 0.0253 (11)  | 0.0023 (8)   | 0.0080 (9)   | 0.0014 (8)    |
| N5  | 0.0144 (10)  | 0.0125 (9)   | 0.0276 (11)  | 0.0006 (7)   | 0.0051 (8)   | 0.0046 (8)    |
| N6  | 0.0141 (9)   | 0.0164 (9)   | 0.0164 (10)  | 0.0013 (7)   | 0.0029 (8)   | -0.0013 (8)   |
| N7  | 0.0164 (10)  | 0.0132 (9)   | 0.0158 (9)   | 0.0000 (7)   | 0.0049 (8)   | -0.0026 (7)   |
| N8  | 0.0264 (12)  | 0.0262 (11)  | 0.0271 (12)  | -0.0070 (9)  | 0.0048 (10)  | 0.0067 (9)    |
| N9  | 0.0194 (10)  | 0.0203 (10)  | 0.0162 (10)  | -0.0005 (8)  | 0.0009 (8)   | -0.0002 (8)   |
| C1  | 0.0254 (12)  | 0.0208 (12)  | 0.0169 (11)  | 0.0041 (10)  | 0.0027 (10)  | 0.0038 (10)   |
| C2  | 0.0238 (12)  | 0.0172 (12)  | 0.0191 (12)  | 0.0024 (9)   | 0.0076 (10)  | 0.0021 (9)    |
| C3  | 0.0135 (11)  | 0.0123 (11)  | 0.0221 (12)  | -0.0002 (9)  | 0.0017 (9)   | -0.0003 (9)   |
| C4  | 0.0109 (11)  | 0.0140 (11)  | 0.0197 (12)  | -0.0003 (8)  | 0.0025 (9)   | -0.0016 (9)   |
| C5  | 0.0154 (11)  | 0.0124 (11)  | 0.0231 (12)  | -0.0009 (9)  | 0.0032 (9)   | -0.0031 (9)   |
| C6  | 0.0157 (11)  | 0.0182 (12)  | 0.0194 (12)  | -0.0018 (9)  | 0.0051 (9)   | -0.0064 (9)   |
| C7  | 0.0139 (11)  | 0.0184 (11)  | 0.0145 (11)  | -0.0045 (9)  | 0.0017 (9)   | -0.0009 (9)   |
| C8  | 0.0134 (11)  | 0.0151 (11)  | 0.0206 (12)  | 0.0008 (9)   | 0.0011 (9)   | 0.0004 (9)    |
| C9  | 0.0281 (13)  | 0.0266 (12)  | 0.0179 (12)  | -0.0021 (11) | 0.0066 (10)  | -0.0045 (10)  |
| C10 | 0.0282 (13)  | 0.0250 (13)  | 0.0256 (13)  | 0.0021 (10)  | 0.0114 (11)  | -0.0080 (10)  |
| C11 | 0.0218 (13)  | 0.0177 (12)  | 0.0330 (14)  | 0.0033 (10)  | 0.0145 (11)  | 0.0045 (10)   |
| C12 | 0.0152 (11)  | 0.0158 (11)  | 0.0333 (13)  | 0.0008 (9)   | 0.0082 (10)  | 0.0069 (10)   |
| C13 | 0.0171 (12)  | 0.0225 (13)  | 0.0515 (17)  | 0.0025 (10)  | 0.0110 (12)  | 0.0025 (12)   |
| C14 | 0.0108 (12)  | 0.0218 (13)  | 0.0561 (18)  | 0.0002 (10)  | -0.0021 (12) | 0.0007 (12)   |
| C15 | 0.0178 (12)  | 0.0127 (11)  | 0.0396 (15)  | -0.0018 (9)  | -0.0046 (11) | 0.0041 (10)   |
| C16 | 0.0166 (12)  | 0.0138 (11)  | 0.0299 (13)  | -0.0007 (9)  | 0.0025 (10)  | 0.0034 (9)    |
| C17 | 0.0206 (12)  | 0.0204 (12)  | 0.0190 (12)  | 0.0016 (9)   | -0.0017 (10) | -0.0012 (9)   |
| C18 | 0.0147 (11)  | 0.0201 (11)  | 0.0254 (13)  | 0.0015 (9)   | 0.0007 (10)  | 0.0010 (10)   |

## supplementary materials

---

|     |             |             |             |              |             |             |
|-----|-------------|-------------|-------------|--------------|-------------|-------------|
| C19 | 0.0141 (11) | 0.0180 (12) | 0.0180 (12) | -0.0026 (9)  | 0.0067 (9)  | -0.0054 (9) |
| C20 | 0.0163 (11) | 0.0150 (11) | 0.0153 (11) | 0.0001 (9)   | 0.0048 (9)  | -0.0024 (9) |
| C21 | 0.0218 (12) | 0.0179 (11) | 0.0196 (12) | -0.0045 (9)  | 0.0053 (10) | -0.0018 (9) |
| C22 | 0.0322 (14) | 0.0164 (11) | 0.0174 (12) | -0.0021 (10) | 0.0053 (10) | 0.0016 (9)  |
| C23 | 0.0231 (12) | 0.0185 (12) | 0.0140 (11) | 0.0044 (9)   | 0.0010 (9)  | -0.0026 (9) |
| C24 | 0.0180 (12) | 0.0150 (11) | 0.0186 (12) | -0.0004 (9)  | 0.0040 (10) | -0.0037 (9) |

*Geometric parameters ( $\text{\AA}$ ,  $^\circ$ )*

|           |             |          |             |
|-----------|-------------|----------|-------------|
| Zn1—N2    | 2.1215 (17) | C3—C4    | 1.459 (3)   |
| Zn1—N4    | 2.1292 (18) | C3—H3    | 0.9500      |
| Zn1—N6    | 2.1468 (17) | C4—C5    | 1.387 (3)   |
| Zn1—N5    | 2.2239 (18) | C5—C6    | 1.381 (3)   |
| Zn1—N3    | 2.2711 (17) | C5—H5    | 0.9500      |
| Zn1—N7    | 2.3000 (17) | C6—C7    | 1.387 (3)   |
| O1—C7     | 1.342 (3)   | C6—H6    | 0.9500      |
| O1—H1O    | 0.82 (3)    | C7—C8    | 1.399 (3)   |
| O2—C15    | 1.341 (3)   | C8—H8    | 0.9500      |
| O2—H2O    | 0.78 (3)    | C9—C10   | 1.518 (3)   |
| O3—C23    | 1.344 (3)   | C9—H9A   | 0.9900      |
| O3—H3O    | 0.80 (3)    | C9—H9B   | 0.9900      |
| O4—N8     | 1.262 (2)   | C10—H10A | 0.9900      |
| O5—N8     | 1.230 (2)   | C10—H10B | 0.9900      |
| O6—N8     | 1.258 (3)   | C11—C12  | 1.464 (3)   |
| O7—N9     | 1.269 (2)   | C11—H11  | 0.9500      |
| O8—N9     | 1.238 (2)   | C12—C13  | 1.390 (3)   |
| O9—N9     | 1.230 (2)   | C13—C14  | 1.374 (4)   |
| N1—C17    | 1.454 (3)   | C13—H13  | 0.9500      |
| N1—C1     | 1.456 (3)   | C14—C15  | 1.383 (3)   |
| N1—C9     | 1.460 (3)   | C14—H14  | 0.9500      |
| N2—C3     | 1.273 (3)   | C15—C16  | 1.401 (3)   |
| N2—C2     | 1.467 (3)   | C16—H16  | 0.9500      |
| N3—C8     | 1.328 (3)   | C17—C18  | 1.525 (3)   |
| N3—C4     | 1.357 (3)   | C17—H17A | 0.9900      |
| N4—C11    | 1.273 (3)   | C17—H17B | 0.9900      |
| N4—C10    | 1.466 (3)   | C18—H18A | 0.9900      |
| N5—C16    | 1.334 (3)   | C18—H18B | 0.9900      |
| N5—C12    | 1.350 (3)   | C19—C20  | 1.463 (3)   |
| N6—C19    | 1.270 (3)   | C19—H19  | 0.9500      |
| N6—C18    | 1.466 (3)   | C20—C21  | 1.388 (3)   |
| N7—C24    | 1.331 (3)   | C21—C22  | 1.383 (3)   |
| N7—C20    | 1.352 (3)   | C21—H21  | 0.9500      |
| C1—C2     | 1.523 (3)   | C22—C23  | 1.385 (3)   |
| C1—H1A    | 0.9900      | C22—H22  | 0.9500      |
| C1—H1B    | 0.9900      | C23—C24  | 1.403 (3)   |
| C2—H2A    | 0.9900      | C24—H24  | 0.9500      |
| C2—H2B    | 0.9900      |          |             |
| N2—Zn1—N4 | 105.92 (7)  | C7—C6—H6 | 120.9       |
| N2—Zn1—N6 | 100.61 (6)  | O1—C7—C6 | 124.66 (19) |

|            |             |               |             |
|------------|-------------|---------------|-------------|
| N4—Zn1—N6  | 102.29 (7)  | O1—C7—C8      | 116.43 (19) |
| N2—Zn1—N5  | 98.59 (6)   | C6—C7—C8      | 118.88 (19) |
| N4—Zn1—N5  | 76.15 (7)   | N3—C8—C7      | 122.95 (19) |
| N6—Zn1—N5  | 160.36 (6)  | N3—C8—H8      | 118.5       |
| N2—Zn1—N3  | 75.58 (6)   | C7—C8—H8      | 118.5       |
| N4—Zn1—N3  | 166.90 (7)  | N1—C9—C10     | 110.56 (18) |
| N6—Zn1—N3  | 90.07 (6)   | N1—C9—H9A     | 109.5       |
| N5—Zn1—N3  | 90.75 (6)   | C10—C9—H9A    | 109.5       |
| N2—Zn1—N7  | 161.58 (6)  | N1—C9—H9B     | 109.5       |
| N4—Zn1—N7  | 92.50 (6)   | C10—C9—H9B    | 109.5       |
| N6—Zn1—N7  | 75.22 (6)   | H9A—C9—H9B    | 108.1       |
| N5—Zn1—N7  | 85.25 (6)   | N4—C10—C9     | 109.67 (18) |
| N3—Zn1—N7  | 86.40 (6)   | N4—C10—H10A   | 109.7       |
| C7—O1—H1O  | 114 (2)     | C9—C10—H10A   | 109.7       |
| C15—O2—H2O | 115 (2)     | N4—C10—H10B   | 109.7       |
| C23—O3—H3O | 113 (2)     | C9—C10—H10B   | 109.7       |
| C17—N1—C1  | 115.53 (17) | H10A—C10—H10B | 108.2       |
| C17—N1—C9  | 115.15 (17) | N4—C11—C12    | 119.8 (2)   |
| C1—N1—C9   | 114.74 (18) | N4—C11—H11    | 120.1       |
| C3—N2—C2   | 119.29 (17) | C12—C11—H11   | 120.1       |
| C3—N2—Zn1  | 116.76 (14) | N5—C12—C13    | 121.7 (2)   |
| C2—N2—Zn1  | 123.53 (13) | N5—C12—C11    | 115.69 (19) |
| C8—N3—C4   | 118.10 (18) | C13—C12—C11   | 122.6 (2)   |
| C8—N3—Zn1  | 130.39 (14) | C14—C13—C12   | 119.5 (2)   |
| C4—N3—Zn1  | 111.22 (13) | C14—C13—H13   | 120.2       |
| C11—N4—C10 | 119.50 (19) | C12—C13—H13   | 120.2       |
| C11—N4—Zn1 | 115.64 (16) | C13—C14—C15   | 119.1 (2)   |
| C10—N4—Zn1 | 124.77 (14) | C13—C14—H14   | 120.5       |
| C16—N5—C12 | 118.85 (19) | C15—C14—H14   | 120.5       |
| C16—N5—Zn1 | 128.46 (15) | O2—C15—C14    | 118.7 (2)   |
| C12—N5—Zn1 | 111.61 (14) | O2—C15—C16    | 122.5 (2)   |
| C19—N6—C18 | 119.28 (18) | C14—C15—C16   | 118.7 (2)   |
| C19—N6—Zn1 | 116.48 (14) | N5—C16—C15    | 122.2 (2)   |
| C18—N6—Zn1 | 124.15 (13) | N5—C16—H16    | 118.9       |
| C24—N7—C20 | 118.41 (18) | C15—C16—H16   | 118.9       |
| C24—N7—Zn1 | 130.39 (14) | N1—C17—C18    | 110.43 (17) |
| C20—N7—Zn1 | 110.90 (13) | N1—C17—H17A   | 109.6       |
| O5—N8—O6   | 121.8 (2)   | C18—C17—H17A  | 109.6       |
| O5—N8—O4   | 120.8 (2)   | N1—C17—H17B   | 109.6       |
| O6—N8—O4   | 117.34 (19) | C18—C17—H17B  | 109.6       |
| O9—N9—O8   | 121.13 (18) | H17A—C17—H17B | 108.1       |
| O9—N9—O7   | 118.75 (18) | N6—C18—C17    | 109.49 (17) |
| O8—N9—O7   | 120.05 (17) | N6—C18—H18A   | 109.8       |
| N1—C1—C2   | 110.47 (17) | C17—C18—H18A  | 109.8       |
| N1—C1—H1A  | 109.6       | N6—C18—H18B   | 109.8       |
| C2—C1—H1A  | 109.6       | C17—C18—H18B  | 109.8       |
| N1—C1—H1B  | 109.6       | H18A—C18—H18B | 108.2       |
| C2—C1—H1B  | 109.6       | N6—C19—C20    | 121.04 (19) |
| H1A—C1—H1B | 108.1       | N6—C19—H19    | 119.5       |

## supplementary materials

---

|               |              |                |              |
|---------------|--------------|----------------|--------------|
| N2—C2—C1      | 108.90 (17)  | C20—C19—H19    | 119.5        |
| N2—C2—H2A     | 109.9        | N7—C20—C21     | 122.22 (19)  |
| C1—C2—H2A     | 109.9        | N7—C20—C19     | 116.07 (18)  |
| N2—C2—H2B     | 109.9        | C21—C20—C19    | 121.70 (19)  |
| C1—C2—H2B     | 109.9        | C22—C21—C20    | 119.3 (2)    |
| H2A—C2—H2B    | 108.3        | C22—C21—H21    | 120.3        |
| N2—C3—C4      | 120.48 (19)  | C20—C21—H21    | 120.3        |
| N2—C3—H3      | 119.8        | C21—C22—C23    | 118.8 (2)    |
| C4—C3—H3      | 119.8        | C21—C22—H22    | 120.6        |
| N3—C4—C5      | 121.93 (19)  | C23—C22—H22    | 120.6        |
| N3—C4—C3      | 115.58 (18)  | O3—C23—C22     | 119.0 (2)    |
| C5—C4—C3      | 122.49 (19)  | O3—C23—C24     | 122.3 (2)    |
| C6—C5—C4      | 119.89 (19)  | C22—C23—C24    | 118.7 (2)    |
| C6—C5—H5      | 120.1        | N7—C24—C23     | 122.6 (2)    |
| C4—C5—H5      | 120.1        | N7—C24—H24     | 118.7        |
| C5—C6—C7      | 118.2 (2)    | C23—C24—H24    | 118.7        |
| C5—C6—H6      | 120.9        |                |              |
| N4—Zn1—N2—C3  | −171.27 (15) | Zn1—N2—C2—C1   | 65.7 (2)     |
| N6—Zn1—N2—C3  | 82.56 (15)   | N1—C1—C2—N2    | −54.2 (2)    |
| N5—Zn1—N2—C3  | −93.31 (15)  | C2—N2—C3—C4    | 176.38 (18)  |
| N3—Zn1—N2—C3  | −4.76 (14)   | Zn1—N2—C3—C4   | 3.6 (2)      |
| N7—Zn1—N2—C3  | 7.6 (3)      | C8—N3—C4—C5    | 0.0 (3)      |
| N4—Zn1—N2—C2  | 16.28 (17)   | Zn1—N3—C4—C5   | 174.51 (15)  |
| N6—Zn1—N2—C2  | −89.90 (16)  | C8—N3—C4—C3    | −179.80 (18) |
| N5—Zn1—N2—C2  | 94.23 (16)   | Zn1—N3—C4—C3   | −5.3 (2)     |
| N3—Zn1—N2—C2  | −177.21 (16) | N2—C3—C4—N3    | 1.6 (3)      |
| N7—Zn1—N2—C2  | −164.89 (18) | N2—C3—C4—C5    | −178.28 (19) |
| N2—Zn1—N3—C8  | 178.92 (19)  | N3—C4—C5—C6    | −0.5 (3)     |
| N4—Zn1—N3—C8  | −82.8 (3)    | C3—C4—C5—C6    | 179.28 (19)  |
| N6—Zn1—N3—C8  | 77.97 (18)   | C4—C5—C6—C7    | 0.2 (3)      |
| N5—Zn1—N3—C8  | −82.40 (18)  | C5—C6—C7—O1    | −177.68 (19) |
| N7—Zn1—N3—C8  | 2.79 (18)    | C5—C6—C7—C8    | 0.6 (3)      |
| N2—Zn1—N3—C4  | 5.33 (13)    | C4—N3—C8—C7    | 0.8 (3)      |
| N4—Zn1—N3—C4  | 103.7 (3)    | Zn1—N3—C8—C7   | −172.41 (15) |
| N6—Zn1—N3—C4  | −95.62 (14)  | O1—C7—C8—N3    | 177.27 (18)  |
| N5—Zn1—N3—C4  | 104.01 (14)  | C6—C7—C8—N3    | −1.1 (3)     |
| N7—Zn1—N3—C4  | −170.80 (14) | C17—N1—C9—C10  | −81.2 (2)    |
| N2—Zn1—N4—C11 | 102.79 (16)  | C1—N1—C9—C10   | 141.00 (19)  |
| N6—Zn1—N4—C11 | −152.25 (15) | C11—N4—C10—C9  | −123.0 (2)   |
| N5—Zn1—N4—C11 | 7.64 (15)    | Zn1—N4—C10—C9  | 60.7 (2)     |
| N3—Zn1—N4—C11 | 8.0 (4)      | N1—C9—C10—N4   | −55.5 (2)    |
| N7—Zn1—N4—C11 | −76.84 (16)  | C10—N4—C11—C12 | 178.35 (19)  |
| N2—Zn1—N4—C10 | −80.77 (17)  | Zn1—N4—C11—C12 | −5.0 (3)     |
| N6—Zn1—N4—C10 | 24.19 (18)   | C16—N5—C12—C13 | −0.6 (3)     |
| N5—Zn1—N4—C10 | −175.92 (18) | Zn1—N5—C12—C13 | −169.65 (17) |
| N3—Zn1—N4—C10 | −175.6 (2)   | C16—N5—C12—C11 | 178.94 (18)  |
| N7—Zn1—N4—C10 | 99.60 (17)   | Zn1—N5—C12—C11 | 9.8 (2)      |
| N2—Zn1—N5—C16 | 78.54 (18)   | N4—C11—C12—N5  | −3.7 (3)     |
| N4—Zn1—N5—C16 | −177.07 (18) | N4—C11—C12—C13 | 175.7 (2)    |

|               |              |                 |              |
|---------------|--------------|-----------------|--------------|
| N6—Zn1—N5—C16 | −89.3 (3)    | N5—C12—C13—C14  | 0.2 (3)      |
| N3—Zn1—N5—C16 | 3.01 (17)    | C11—C12—C13—C14 | −179.3 (2)   |
| N7—Zn1—N5—C16 | −83.31 (17)  | C12—C13—C14—C15 | 0.6 (3)      |
| N2—Zn1—N5—C12 | −113.68 (14) | C13—C14—C15—O2  | 177.5 (2)    |
| N4—Zn1—N5—C12 | −9.30 (14)   | C13—C14—C15—C16 | −0.9 (3)     |
| N6—Zn1—N5—C12 | 78.5 (2)     | C12—N5—C16—C15  | 0.2 (3)      |
| N3—Zn1—N5—C12 | 170.79 (14)  | Zn1—N5—C16—C15  | 167.21 (15)  |
| N7—Zn1—N5—C12 | 84.46 (14)   | O2—C15—C16—N5   | −177.84 (19) |
| N2—Zn1—N6—C19 | −159.92 (15) | C14—C15—C16—N5  | 0.5 (3)      |
| N4—Zn1—N6—C19 | 91.03 (16)   | C1—N1—C17—C18   | −82.7 (2)    |
| N5—Zn1—N6—C19 | 7.9 (3)      | C9—N1—C17—C18   | 139.83 (19)  |
| N3—Zn1—N6—C19 | −84.58 (15)  | C19—N6—C18—C17  | −114.6 (2)   |
| N7—Zn1—N6—C19 | 1.68 (15)    | Zn1—N6—C18—C17  | 61.9 (2)     |
| N2—Zn1—N6—C18 | 23.52 (16)   | N1—C17—C18—N6   | −55.2 (2)    |
| N4—Zn1—N6—C18 | −85.53 (16)  | C18—N6—C19—C20  | 177.74 (18)  |
| N5—Zn1—N6—C18 | −168.71 (18) | Zn1—N6—C19—C20  | 1.0 (3)      |
| N3—Zn1—N6—C18 | 98.86 (16)   | C24—N7—C20—C21  | 1.3 (3)      |
| N7—Zn1—N6—C18 | −174.88 (17) | Zn1—N7—C20—C21  | −173.13 (16) |
| N2—Zn1—N7—C24 | −98.6 (3)    | C24—N7—C20—C19  | −179.69 (18) |
| N4—Zn1—N7—C24 | 80.29 (18)   | Zn1—N7—C20—C19  | 5.9 (2)      |
| N6—Zn1—N7—C24 | −177.66 (19) | N6—C19—C20—N7   | −5.1 (3)     |
| N5—Zn1—N7—C24 | 4.42 (18)    | N6—C19—C20—C21  | 174.0 (2)    |
| N3—Zn1—N7—C24 | −86.64 (18)  | N7—C20—C21—C22  | −0.4 (3)     |
| N2—Zn1—N7—C20 | 74.9 (2)     | C19—C20—C21—C22 | −179.4 (2)   |
| N4—Zn1—N7—C20 | −106.20 (14) | C20—C21—C22—C23 | −0.9 (3)     |
| N6—Zn1—N7—C20 | −4.15 (13)   | C21—C22—C23—O3  | −177.15 (19) |
| N5—Zn1—N7—C20 | 177.93 (14)  | C21—C22—C23—C24 | 1.3 (3)      |
| N3—Zn1—N7—C20 | 86.87 (14)   | C20—N7—C24—C23  | −0.8 (3)     |
| C17—N1—C1—C2  | 137.91 (19)  | Zn1—N7—C24—C23  | 172.30 (15)  |
| C9—N1—C1—C2   | −84.5 (2)    | O3—C23—C24—N7   | 177.91 (19)  |
| C3—N2—C2—C1   | −106.5 (2)   | C22—C23—C24—N7  | −0.5 (3)     |

*Hydrogen-bond geometry (Å, °)*

| D—H···A                  | D—H      | H···A    | D···A     | D—H···A |
|--------------------------|----------|----------|-----------|---------|
| O3—H3O···O6              | 0.80 (3) | 1.90 (3) | 2.698 (2) | 173 (3) |
| O1—H1O···O7              | 0.82 (3) | 1.80 (3) | 2.597 (2) | 163 (3) |
| O2—H2O···O4 <sup>i</sup> | 0.78 (3) | 1.84 (3) | 2.593 (3) | 162 (3) |

Symmetry codes: (i)  $-x+3/2, -y+1/2, -z+1$ .

## **supplementary materials**

**Fig. 1**



Fig. 2

