```
In [50]:
            import numpy as np
            import pandas as pd
            import matplotlib.pyplot as plt
            import warnings
           warnings.filterwarnings('ignore')
 In [3]:
           filepath = './cases-brazil-states.csv'
           brasil data = pd.read csv(filepath)
           brasil data.head()
              epi_week
                          date country
                                         state
                                                  city newDeaths deaths newCases totalCases deat
 Out[3]:
                        2020-
           0
                     9
                                  Brazil
                                            SP TOTAL
                                                                0
                                                                        0
                                                                                    1
                                                                                               1
                        02-25
                        2020-
                                                                0
                                                                        0
           1
                                  Brazil TOTAL TOTAL
                                                                                               1
                        02-25
                        2020-
           2
                                                                        0
                                                                                   0
                                  Brazil
                                            SP TOTAL
                                                                0
                                                                                               1
                        02-26
                        2020-
           3
                                  Brazil TOTAL TOTAL
                                                                        0
                                                                                               1
                        02-26
                        2020-
                                            SP TOTAL
           4
                                  Brazil
                                                                0
                                                                        0
                                                                                               1
                        02 - 27
          5 rows × 26 columns
 In [6]:
           brasil data["state"].unique()
           array(['SP', 'TOTAL', 'RJ', 'BA', 'ES', 'DF', 'AL', 'MG', 'RS', 'GO',
 Out[6]:
                   'PE', 'PR', 'RN', 'SC', 'AM', 'MS', 'SE', 'CE', 'AC', 'PA', 'PB', 'TO', 'PI', 'AP', 'MA', 'MT', 'RO', 'RR'], dtype=object)
In [22]:
           df = brasil data[brasil data["state"] == "GO"]
           df.head()
                                                   city newDeaths deaths newCases totalCases
                epi_week
                            date country state
                                                                                                   dea
Out[22]:
                           2020-
            70
                       11
                                    Brazil
                                            GO TOTAL
                                                                 0
                                                                         0
                                                                                     3
                                                                                                3
                           03-12
                          2020-
            85
                       11
                                    Brazil
                                            GO TOTAL
                                                                 0
                                                                         0
                                                                                     0
                                                                                                3
                           03-13
                           2020-
           100
                       11
                                    Brazil
                                            GO TOTAL
                                                                         0
                                                                                     1
                           03-14
                          2020-
           117
                       12
                                    Brazil
                                            GO TOTAL
                                                                 0
                                                                         0
                                                                                     0
                                                                                                4
                           03-15
                           2020-
                                                                 0
                                                                         0
                                                                                     5
                                                                                                9
           135
                       12
                                    Brazil
                                            GO TOTAL
                           03-16
```

5 rows × 26 columns

In [180...

df[["recovered"]].iloc[100:140]

Out[180...

recovered

date_fmt	
2020-06-20	2686.0
2020-06-21	2686.0
2020-06-22	2686.0
2020-06-23	2686.0
2020-06-24	2686.0
2020-06-25	4170.0
2020-06-26	4170.0
2020-06-27	4170.0
2020-06-28	4170.0
2020-06-29	4170.0
2020-06-30	4170.0
2020-07-01	4170.0
2020-07-02	6073.0
2020-07-03	6073.0
2020-07-04	6073.0
2020-07-05	6073.0
2020-07-06	6073.0
2020-07-07	6073.0
2020-07-08	6073.0
2020-07-09	9598.0
2020-07-10	10223.0
2020-07-11	10407.0
2020-07-12	10480.0
2020-07-13	11011.0
2020-07-14	11521.0
2020-07-15	12119.0
2020-07-16	12427.0
2020-07-17	12516.0
2020-07-18	12513.0
2020-07-19	12513.0
2020-07-20	12934.0
2020-07-21	14815.0
2020-07-22	15951.0
2020-07-23	44774.0

recovered

date_fmt	
2020-07-24	47069.0
2020-07-25	49001.0
2020-07-26	49998.0
2020-07-27	52262.0
2020-07-28	54425.0
2020-07-29	56413.0

In [185... df[["totalCases" , "totalCases_per_100k_inhabitants"]].iloc[100:140]

Out[185...

totalCases totalCases_per_100k_inhabitants

date_fmt		
2020-06-20	15450	220.13709
2020-06-21	15904	226.60584
2020-06-22	17085	243.43315
2020-06-23	18014	256.66987
2020-06-24	19280	274.70829
2020-06-25	20377	290.33873
2020-06-26	21441	305.49898
2020-06-27	21865	311.54028
2020-06-28	22165	315.81479
2020-06-29	23379	333.11229
2020-06-30	24910	354.92653
2020-07-01	26145	372.52324
2020-07-02	26318	374.98821
2020-07-03	27502	391.85826
2020-07-04	28526	406.44858
2020-07-05	28526	406.44858
2020-07-06	30187	430.11510
2020-07-07	32001	455.96161
2020-07-08	33367	475.42486
2020-07-09	34627	493.37779
2020-07-10	35706	508.75177
2020-07-11	36273	516.83058
2020-07-12	36556	520.86287
2020-07-13	37333	531.93384
2020-07-14	38299	545.69775
2020-07-15	39474	562.43957

totalCases totalCases_per_100k_inhabitants

	date_fmt				
	2020-07-16	40544	577.68531		
	2020-07-17	40718	580.16452		
	2020-07-18	40795	581.26165		
	2020-07-19	40782	581.07642		
	2020-07-20	41433	590.35210		
	2020-07-21	45254	644.79506		
	2020-07-22	48682	693.63842		
	2020-07-23	51423	732.69316		
	2020-07-24	54154	771.60542		
	2020-07-25	55567	791.73835		
	2020-07-26	56250	801.46997		
	2020-07-27	59043	841.26563		
	2020-07-28	61613	877.88390		
	2020-07-29	64250	915.45682		
[n [51]:	df["date_fm	nt"] = df["dat	te"].apply(pd.to_datetime);		
In [55]:	<pre>df = df.set_index("date_fmt")</pre>				
In []:	df.				
[n [69]:	plt.figure(figsize=(9, 9	9))		
		rotation=90) ["newCases"])			
Out[69]:	[<matplotlib< th=""><th>o.lines.Line2</th><th>D at 0x7f9815d62370>]</th></matplotlib<>	o.lines.Line2	D at 0x7f9815d62370>]		


```
In [77]:
          df.columns
         'deaths_per_100k_inhabitants', 'totalCases_per_100k_inhabitants',
                'deaths_by_totalCases', 'recovered', 'suspects', 'tests',
                'tests_per_100k_inhabitants', 'vaccinated',
                'vaccinated_per_100_inhabitants', 'vaccinated_second',
                'vaccinated_second_per_100_inhabitants', 'vaccinated_single', 'vaccinated_single_per_100_inhabitants', 'vaccinated_third',
                'vaccinated third per 100 inhabitants'],
               dtype='object')
In [100...
          a = df.groupby(["epi_week"]).agg({
              "newCases": "mean",
              "newDeaths": "mean",
              "recovered": "max",
              "totalCases": "max"
          })
          а
```

newCases newDeaths recovered totalCases

NaN

4

0.000000

1.333333

epi_week

11

Out[100...

epi_week				
12	2.285714	0.000000	NaN	20
13	5.142857	0.142857	NaN	56
14	6.714286	0.142857	NaN	103
15	15.142857	1.142857	NaN	209
•••				
143	1276.000000	18.285714	873149.0	904909
144	595.571429	16.571429	874557.0	909078
145	1484.857143	11.428571	874557.0	919472
146	993.857143	3.857143	874557.0	926429
147	0.000000	0.000000	874557.0	926429

newCases newDeaths recovered totalCases

90 rows × 4 columns

```
In [74]: plt.figure(figsize=(9, 9))
    plt.xticks(rotation=90)
    plt.plot(a["newCases"])

# 0 - 40
```

Out[74]: [<matplotlib.lines.Line2D at 0x7f9816380460>]


```
In [ ]:
In [76]:
    plt.figure(figsize=(9, 9))
        plt.xticks(rotation=90)
        plt.plot(a["newDeaths"])
```

Out[76]: [<matplotlib.lines.Line2D at 0x7f98167bd2e0>]


```
In [ ]:
In [91]:
          POP = 6523000
          S = 6523000 # 6,523 milhões (População de Goias)
          I = 1.33
                      # semana 11
          R = 0
                       # nossos dados começam na EPI 21
          S, I, R
Out[91]: (6523000, 1.33, 0)
In [89]:
          # k \in [1/15, 1/5] e b \in [0, 5].
          b = 0.998 # taxa de contatio
          k = 1/14 # tempo de recuperacao
          b, k
Out[89]: (0.998, 0.07142857142857142)
In [93]:
            = S / POP
          i = I / POP
          r = R / POP
```

```
s, i, r
```

```
Out[93]: (1.0, 2.0389391384332365e-07, 0.0)
```

```
In [217... # S + I + R = N
# S = N - I - R
# I =

POP = 926429
#POP = 6523000 // 2

a["R"] = a["recovered"].fillna(0)
a["I"] = a["totalCases"]
a["S"] = POP - a["totalCases"]

a["s"] = a["s"] / POP
a["i"] = a["I"] / POP
a["r"] = a["R"] / POP
a
```

Out[217	newCases	newDeaths	recovered	totalCases	1	R	S
epi_week							

epi_week								
11	1.333333	0.000000	NaN	4	4	0.0	926425	0.9999
12	2.285714	0.000000	NaN	20	20	0.0	926409	0.9999
13	5.142857	0.142857	NaN	56	56	0.0	926373	0.9999
14	6.714286	0.142857	NaN	103	103	0.0	926326	0.9998
15	15.142857	1.142857	NaN	209	209	0.0	926220	0.9997
•••			•••					
143	1276.000000	18.285714	873149.0	904909	904909	873149.0	21520	0.0232
144	595.571429	16.571429	874557.0	909078	909078	874557.0	17351	0.0187
145	1484.857143	11.428571	874557.0	919472	919472	874557.0	6957	0.0075
146	993.857143	3.857143	874557.0	926429	926429	874557.0	0	0.0000
147	0.000000	0.000000	874557.0	926429	926429	874557.0	0	0.0000

90 rows × 10 columns

```
In [218...
    plt.figure(figsize=(9, 5))

    plt.plot(a["s"], label='s(t)')
    plt.plot(a["i"], label='i(t)')
    plt.plot(a["r"], label='r(t)')

    plt.legend()
```

Out[218... <matplotlib.legend.Legend at 0x7f98199c5940>


```
In [206...
b = 0.998 # taxa de contatio
k = 1/14 # tempo de recuperacao

i = 0.001
s = 1 - i

dt = 1

print(f"s={s}, i={i}")

dados = []

for t in range(100):
    st, it = -b*s*i, (b*s - k)*i
    s, i = s + st*dt, i + it*dt

#print(f"s={s}, i={i}")
    dados.append((s,i))

dados = np.array(dados)
```

```
plt.figure(figsize=(9, 5))

plt.plot(dados[:,0], label='s(t)')
plt.plot(dados[:,1], label='i(t)')

plt.legend()
```

Out[207... <matplotlib.legend.Legend at 0x7f9819357580>

s=0.999, i=0.001

In []:


```
In [233...

def predizer(b = 0.998, k = 1/14, i = 0.001, dt = 1, steps = 100):
    s = 1 - i

    dt = 1

    dados = []

    for t in range(steps):
        st, it = -b*s*i, (b*s - k)*i

        s, i = s + st*dt, i + it*dt

        dados.append((s,i))

    dados = np.array(dados)

    return dados
```

```
In [236... montar_grafico(i = 0.01)
```

1.0

```
s(t)
                                                                                 i(t)
          0.8
          0.6
          0.4
          0.2
          0.0
                             20
                                          40
                                                       60
                                                                    80
                                                                                 100
In [237...
           a["i"]
          epi_week
Out[237...
                  0.000004
          11
          12
                  0.000022
          13
                  0.000060
          14
                  0.000111
          15
                  0.000226
          143
                  0.976771
          144
                  0.981271
          145
                  0.992491
                  1.000000
          146
          147
                  1.000000
          Name: i, Length: 90, dtype: float64
In [242...
           dados = predizer(b = 0.998, k = 1/14, i = 0.000004, steps = 90)
 In [ ]:
In [243...
           # \sum t(i(t)-dsi(t))2
           eq = np.sum((a["i"] - dados[:,1])**2)
           eq
Out[243... 26.452089577392563
In [244...
           def calc_erro_quadratico(b, k, i):
               dados = predizer(b, k, i, steps = 90)
               eq = np.sum((a["i"] - dados[:,1])**2)
               return eq
 In [ ]:
In [245...
           calc\_erro\_quadratico(b = 0.998, k = 1/14, i = 0.000004)
```

EP Mat Aplicada Out[245... 26.452089577392563 In [247... 1/15, 1/5 # k Out[247... (0.0666666666666667, 0.2) In [248... 0, 5 # b Out[248... (0, 5) In []: In []:

In []: