CONCOURS SMF JUNIOR

ÉQUIPE TISANE

Problème 1

Auteurs : Chloé Papin Etienne Perrot Victor Quach

May 11, 2017

1 Problème 1

Pour tout entier $r \in \mathbb{N}$, on définit l'opérateur Δ_r par

$$\Delta_r: \left| \begin{array}{ccc} \mathbb{C}[X] & \longrightarrow & \mathbb{C}[X] \\ f & \longmapsto & f(X^r) - f(X) \end{array} \right|$$

Notre problème se reformule donc ainsi : étant donnés deux entiers p,q multiplicativement indépendants et deux polynômes f et g à coefficients complexes sans terme constant tels que

$$\Delta_q(f) = \Delta_p(g)$$

montrer qu'il existe $h \in \mathbb{C}[X]$ tel que $\Delta_p(h) = f$ et $\Delta_q(h) = g$.

Le noyau de Δ_p est \mathbb{C} . Un développement montre que pour tous $p, q \in \mathbb{N}$, les opérateurs commutent : $\Delta_p \circ \Delta_q = \Delta_q \circ \Delta_p$. Une conséquence de cette propriété est que l'image de Δ_p est stable par Δ_q et réciproquement. Ainsi, on peut déjà établir l'inclusion

$$\operatorname{Im}\Delta_p \circ \Delta_q \subset \operatorname{Im}\Delta_p \cap \operatorname{Im}\Delta_q$$

Le développement de ce problème va essentiellement servir à démontrer l'inclusion réciproque.

Théorème 1.1. Soit $p, q \in \mathbb{N}$ deux entiers multiplicativement indépendants. Alors $Im\Delta_p \cap Im\Delta_q = Im\Delta_p \circ \Delta_q$.

Preuve:

Sans perte de généralité on peut supposer p>q. On suppose de plus q>1 car le résultat est trivial pour q=1.

D'après ce qui précède, on sait déjà que : ${\rm Im}\Delta_p\circ\Delta_q\subset {\rm Im}\Delta_p\cap {\rm Im}\Delta_q$

On raisonne par l'absurde pour montrer l'inclusion inverse. On peut donc fixer un polynôme non nul $P = \sum_{k>0} c_k X^k$ tel que : $P \in \operatorname{Im}\Delta_p \cap \operatorname{Im}\Delta_q$ et $P \notin \operatorname{Im}\Delta_p \circ \Delta_q$.

Quitte à retrancher à P des polynômes de la forme $\Delta_p \circ \Delta_q(X^n)$ qui appartiennent à $\operatorname{Im}\Delta_p \circ \Delta_q$ et donc à $\operatorname{Im}\Delta_p \cap \operatorname{Im}\Delta_q$ (qui sont des espaces vectoriels), et qui sont de degré npq, on peut supposer que, pour tout $n \in \mathbb{N}$, $c_{npq} = 0$.

Soient $f_1(X) = \sum_{k\geq 0} a_k X^k$ et $f_2(X) = \sum_{k\geq 0} b_k X^k$ tels que $P = \Delta_p(f_1) = \Delta_q(f_2)$. Quitte à retrancher leur terme constant, on peut supposer que f_1 et f_2 ont un terme constant nul.

$$P(X) = f_1(X^p) - f_1(X) = f_2(X^q) - f_2(X)$$

Alors, pour $n \in \mathbb{N}$,

$$0 = c_{npq} = a_{nq} - a_{npq} = b_{np} - b_{npq}$$

Cette première relation implique (par une récurrence immédiate, comme les coefficients de f_1 et de f_2 sont nuls après un certain rang) :

$$\forall n \in \mathbb{N}, \quad a_{nq} = b_{np} = 0 \tag{1}$$

En regardant les autres coefficients de P, on remarque que :

Si
$$np$$
 n'est pas divisible par q , $c_{np} = a_n - a_{np} = -b_{np} = 0$ (2)

Si
$$nq$$
 n'est pas divisible par p , $c_{nq} = b_n - b_{nq} = -a_{nq} = 0$ (3)

Si
$$k$$
 n'est divisible ni par p ni par q , $b_k = a_k$ (4)

Soit A et B les ensembles définis par :

$$A = \{k \in \mathbb{N} \text{ tels que } p \nmid k \text{ et } a_k \neq 0\}$$

et

$$B = \{k \in \mathbb{N} \text{ tels que } q \nmid k \text{ et } b_k \neq 0\}$$

L'ensemble A est non vide, sinon en utilisant (1), on aurait $f_1 = 0$, puis P = 0.

Par ailleurs, soit $k \in A$. Puisque $a_k \neq 0$, on sait également d'après (1) que q ne divise pas k. Donc k n'est ni divisible par p, ni par q, ce qui montre que $b_k = a_k$, mais alors $k \in B$. D'où $A \subset B$. Par symétrie, A = B.

Soit $n \in \mathbb{N}^*$ tel que $a_n \neq 0$. On le décompose en $n = kp^m$, avec $p \nmid k$.

L'hypothèse $a_n \neq 0$ permet d'écrire $q \nmid n$. Alors, pour tout r < m, kp^r n'est pas divisible par q et donc $a_{kp^{r+1}} = a_{kp^r}$.

Par conséquent, pour tout $r \leq m$, $a_{kp^r} = a_k$. En particulier $a_n = a_k$ et donc $k \in A$

Ainsi, il existe une fonction $\varphi_A: k \in A \longmapsto \varphi(k) \in \mathbb{N}$ telle que :

$$f_1(X) = \sum_{k \in A} a_k \left(\sum_{0 \le i \le \varphi_A(k)} X^{kp^i} \right).$$

En développant $f_1(X^p) - f_1(X)$ et en simplifiant la somme télescopique, on en déduit que

$$P(X) = \sum_{k \in A} a_k \left(X^{kp^{\varphi_A(k)+1}} - X^k \right).$$

(Et dans cette somme, aucun monôme n'apparaît plusieurs fois par unicité de l'écriture $n=kp^r$ où $p\nmid k$)

De la même façon, on peut écrire

$$P(X) = \sum_{l \in B} b_l (X^{kp^{\varphi_B(l)+1}} - X^l)$$

Soit maintenant $k \in A$.

Alors, d'après ce qui précède,

$$n = kp^{\varphi_A(k)+1} \in B \cup \{lq^{\varphi_B(l)+1} | l \in B\}.$$

Or n est divisible par p, donc $b_n = 0$ et $n \notin B$.

Donc il existe un (unique) $l \in B$ tel que $n = lq^{\varphi_B(l)+1}$.

Comme A=B, on peut ainsi définir l'application ψ de A dans A qui à k associe $\psi(k)=l$ défini comme au-dessus.

Par construction de ψ , il existe s,t des entiers strictement positifs tels que $\psi(k)=k\frac{p^s}{a^t}$.

Or A est un ensemble fini non vide, donc il existe $k \in A$ et n > 0 tels que $\psi^n(k) = k$.

Il existe donc s, t des entiers strictement positifs tels que $k = \psi^n(k) = k \frac{p^s}{q^t}$.

Donc
$$\frac{p^s}{q^t} = 1$$
, ce qui contredit l'hypothèse d'indépendance multiplicative.

Nous avons maintenant tous les éléments pour répondre au problème. Soient p et q deux entiers multiplicativement indépendants. Supposons que l'on aie f, g deux polynômes à coefficients complexes sans terme constant tels que

$$f(X^q) - f(X) = g(X^p) - g(X)$$

On pose $H := f(X^q) - f(X) = g(X^p) - g(X)$. On reconnaît $H = \Delta_q(f) = \Delta_p(g)$. Ainsi, $H \in \text{Im}\Delta_p \cap \text{Im}\Delta_q$.

Grâce au théorème, nous en déduisons

$$H \in \operatorname{Im}\Delta_p \circ \Delta_q$$

Il existe ainsi $h \in \mathbb{C}[X]$ tel que $H = \Delta_p \circ \Delta_q(h) = \Delta_q \circ \Delta_p(h)$. On peut supposer h(0) = 0 mais ce n'est pas important.

Alors on a $\Delta_q(f) = \Delta_q \circ \Delta_p(h)$ donc $f - \Delta_p(h) \in \mathbb{C}$. Comme ni f, ni $\Delta_p(h)$ n'ont de terme constant, on en déduit $f = \Delta_p(h)$. De même, on montre $g = \Delta_q(h)$.

Nous avons donc montré l'existence d'un polynôme h sans terme constant tel que

$$h(X^p) - h(X) = f(X)$$
 et $h(X^q) - h(X) = g(X)$

ce qui conclut ce problème.