ELEC 344 - 201: Applied Electronics and Electromechanics

Instructor: Ignacio Galiano Zurbriggen

TAs: Daniel Hsu, Abbas Arshadi, Matthieu Amyotte, Jorge May

Tutorial 4

1) Using the magnetic circuit in Figure 1:

- $l_1 = 6cm$; $l_2 = 4cm$; $l_3 = 2.75cm$; $l_{ag} = 0.5cm$
- The core is of uniform thickness, t = 2cm
- The width of branch $l_1 = 2cm$
- The width of branches l_2 , l_3 and $l_{ag} = 1cm$
- Iron core $\mu_r = 5000$; Air gap $\mu_r = 1$; $\mu_0 = 4\pi * 10^{-7}$
- V = 10V; $R = 0.1\Omega$; N = 1000
- a) Determine the total reluctance of the magnetic circuit R_{tot} .
- b) What is the total magnetic flux ϕ induced in the magnetic circuit?
- c) What happens when the inductor's saturation current is exceeded?
- d) What considerations should be made to ensure the magnetic core does not saturate?

Figure 1 – Example Magnetic Circuit

Figure 2 illustrates the real transformer model derived in class.

- a) Using the ammeter (A), voltmeter (V) and wattmeter (W) measurements determine L_m and R_c using the *Open Circuit Test*. What assumptions are made? Are there any special considerations needed to be taken into account?
- b) Using the ammeter (A), voltmeter (V) and wattmeter (W) measurements determine L_{l1} , L'_{l2} , r_1 and r'_2 using the *Short Circuit Test*. What assumptions are made? Are there any special considerations needed to be taken into account?

Figure 2 – Real Transformer Model