HOMEWORK 1

APC 523: Numerical Algorithm for Scientific Computing

Due: Oct.10

PROBLEM 1

Let
$$x = 2^k (1 + \sum_{i=1}^{\infty} 2^{-i} b_i)$$
, where $k = floor(\log_2 x)$ or $x = 1b_1b_2 \cdots b_k.b_{k+1}b_{k+2} \cdots$

case 1: if
$$b_{p+1} = 1$$
, then $rd(x) = 2^k (1 + \sum_{i=1}^p 2^{-i} b_i + 2^{-p})$

$$\Rightarrow \left| \frac{x - rd(x)}{x} \right| = \frac{2^k (-2^{-p} + \sum_{i=p+1}^\infty 2^{-i} b_i)}{2^k (1 + \sum_{i=1}^\infty 2^{-i} b_i)} \le 2^{-p} - \sum_{i=p+1}^\infty 2^{-i} b_i \le 2^{-p}$$

case 2: if
$$b_{p+1} = 0$$
, then $rd(x) = 2^k (1 + \sum_{i=1}^p 2^{-i}b_i)$

$$\Rightarrow \left| \frac{x - rd(x)}{x} \right| = \frac{2^k (\sum_{i=p+1}^\infty 2^{-i}b_i)}{2^k (1 + \sum_{i=1}^\infty 2^{-i}b_i)} \le \sum_{i=p+1}^\infty 2^{-i}b_i \le \sum_{i=p+1}^\infty 2^{-i} \le 2^{-p}$$

Therefore,
$$\Rightarrow \left| \frac{x - rd(x)}{x} \right| \le 2^{-p}$$

PROBLEM 2

- (a) The result is 244.71
- (b) Upto k = 17, the result does not change with 5 digits precision. The exact value is $e^{5.5} = 244.692$, so relative error = $7.36(10^{-5})$
- (c) Upto k = 17, the result does not change with 5 digits precision, which is 244.70. The exact value is $e^{5.5} = 244.692$, so relative error = $3.27(10^{-5})$

(d)

(4)			
	# of terms k	result	relative error $(e^{-5.5} = 0.00408677)$
i	25	0.038363	0.0613
ii	19	0.0040000	0.0212
iii	17	0.0000	1
iv	17	0.0000	1

Methods iii and iv converge most quickly, but least accurate. Method ii has lowest error.

Empirically, adding from right to left is better and results in less error.

- (e) | propose algorithm:
- (i) compute $e^{0.5}$ (adding from left to right)
- (ii) divide $e^{0.5}$ by e = 2.7183 repeatedly for 6 times.

<u>Validation</u>: result = 0.004086 relative error = $1.88(10^{-4})$ # of terms k = 4

PROBLEM 3

(a)
(i)
$$fl(x*x) = x^2(1+\epsilon)$$

$$fI(x^{2}(1+\epsilon)*x) = x^{3}(1+2\epsilon)$$
...
$$fI(x^{n-1}(1+(n-2)\epsilon)*x) = x^{n}(1+(n-1)\epsilon)$$
(ii)
$$fI(\ln x) = \ln x(1+\epsilon)$$

 $fI(\ln x) = \ln x(1+\epsilon)$ $fl(n*Inx(1+\epsilon)) = n\ln x(1+\epsilon)^2 \approx n\ln x(1+2\epsilon)$ $fl(e^{n\ln x(1+2\epsilon)}) = x^n e^{2\epsilon}(1+\epsilon) \approx x^n(1+3\epsilon)$

When n-1 < 3 or n < 4, repeated multiplication is more accurate than log-exponential method.

(i)
$$x^{a(1+\epsilon_a)} = x^a x^{a\epsilon_a} = x^1 e^{a\epsilon_a \ln x} \approx x^a (1 + a\epsilon_a \ln x)$$

(ii)
$$(x(1+\epsilon+x))^a = x^a(1+\epsilon_x)^a \approx x^a(1+a\epsilon_x)$$

when $x \to 0, \infty$ or |a| becomes large, the relative error is substantial.

PROBLEM 4

(a)
$$(\text{cond } f)(x) = |\frac{xf'}{f}| = \frac{x}{e^x - 1} \le 1 \text{ because } e^x - 1 > x$$

(b)
$$f_{A}(x) = [1 - e^{-x}(1 + EPS)](1 + EPS) \approx (1 - e^{-x})(1 - \frac{e^{-x}}{1 - e^{-x}}EPS)(1 + EPS) \approx (1 - e^{-x})(1 + \frac{EPS}{1 - e^{-x}})$$

$$f_{A}(x) = f(x_{A}) \Rightarrow |f_{A}(x) - f(x)| = |f(x_{A}) - f(x)| \approx f(x)\frac{EPS}{1 - e^{-x}} \approx |f'(x)||x - x_{A}|$$

$$\Rightarrow |\frac{x - x_{A}}{x}| \approx |\frac{f(x)}{xf'(x)}\frac{EPS}{1 - e^{-x}}|$$

$$\Rightarrow (\text{cond } A)(x) \approx \frac{1}{EPS}|\frac{x - x_{A}}{x}| \approx \frac{1}{(1 - e^{-x})(\text{cond } f)(x)} = \frac{e^{x}}{x}$$

(c)

The root cause of ill conditioning is that when x is small, $1 - e^{-x}$ introduces a large error.

$$(d)+(e)$$

 $1-e^{-x} < 2^{-b}$ implies that less than less than b bits are lost, so the minimum allowed x should be

$$x = \ln(1 - 2^{-b})$$

In addition, the relative error should be

$$\epsilon = \frac{EPS}{1 - e^{-x}} = 2^b EPS$$

# bits lost	min x	relative error
1	0.693	2^{-51}
2	0.288	2^{-50}
3	0.134	2^{-49}
4	0.0645	2^{-48}

- Yes, I propose the algorithm using Taylor expansion. (i) Find $e^x 1 = \sum_{n=1}^{20} \frac{x^n}{n!}$ (20 terms should be sufficiently convergent) (ii) Find $f_A(x) = \frac{\sum_{n=1}^{20} \frac{x^n}{n!}}{1 + \sum_{n=1}^{20} \frac{x^n}{n!}}$

PROBLEM 5

 $n_{stop} = 17$, converges to 1.

.op = - ,	3
n	result
n result 10^1	2.5937424601000
10^{2}	2.7048138294215
10 ³	2.7169239322356
10 ⁴	2.7181459268249
10 ⁵	2.7182682371923
10 ⁶	2.7182804690958
10 ⁷	2.7182816941321
108	2.7182817983474
10 ⁹	2.7182820520116
$10^{1}0$	2.7182820532348
$10^{1}1$	2.7182820533571
$10^{1}2$	2.7185234960372
$10^{1}3$	2.7161100340869
$10^{1}4$	2.7161100340870
$10^{1}5$	3.0350352065493
$10^{1}6$	1.00000000000000
10 ¹ 7	1.00000000000000

This is caused by the following reasons:

- 1. As n gets large, $(1 + \frac{1}{n}(1 + EPS))^n = (1 + \frac{1}{n})^n(1 + 10n\log(n)EPS$, and the relative error will increase with n.
- 2. When $n = 10^{16}$, $\frac{1}{n} < EPS$, $1 + \frac{1}{n} \approx 1 \Rightarrow (1 + \frac{1}{n})^n \approx 1$

PROBLEM 6

To explain this phenomenon let's define $f_1(x) = x^{2^{-52}}$, $f_2(x) = x^{2^{52}}$, such that our algorithm is $f_A(x) = f_2 \circ f_1(x) = x$

Let's first look at $f_1(x)$, it can be shown that if $x = e^y$, where $e^y << 2^{52}$, then

$$f_1(x) = e^{y(2^{-52})}$$

 $\approx 1 + y * 2^{-52}$
 $= 1 + y * EPS$

Therefore,

if
$$x \in [1, e)$$
, $f_1(x) < 1 + EPS \approx 1 \Rightarrow f_A(x) = 1$;
if $x \in [e, e^2)$, $f_1(x) \in [1 + EPS, 1 + 2 * EPS) \approx 1 + EPS \Rightarrow f_A(x) = (1 + EPS)^{2^{52}}$;
if $x \in [e^2, e^3)$, $f_1(x) \in [1 + 2 * EPS, 1 + 3 * EPS) \approx 1 + 2 * EPS \Rightarrow f_A(x) = (1 + 2 * EPS)^{2^{52}}$

PROBLEM 7

(a) $w(x) = x^{20} - 210x^{19} + 20615x^{18} - 1256850x^{17} + 53327946x^{16} - 1672280820x^{15} + 40171771630x^{14} - 756111184500x^{13} + 11310276995381x^{12} - 135585182899530x^{11} + 1307535010540395x^{10} - 10142299865511450x^9 + 63030812099294896x^8 - 311333643161390640x^7 + 1206647803780373360x^6 - 3599979517947607200x^5 + 8037811822645051776x^4 + 5575812828558562816x^3 - 4642984320068847616x^2 - 8752948036761600000x + 2432902008176640000$

(c)	
δ	max root
10-8	(20.647582887998496+1.1869261883090942j)
10^{-6}	(23.149016020150878+2.740984637982632j)
10^{-4}	(28.40021241591655+6.5104342165628175j)
10^{-2}	(38.478183617151515+20.83432358712749j)

(d) Let $a_{19} = -210 - 2^{-23}$, roots 16, 17 become 16.73074488+2.8126249j, 16.73074488-2.8126249j

(e)

(i) To find (cond Ω_k)(\vec{a}), let's impose a perturbation on a_l , such that $a_l(1+\epsilon_l)$ results in a new root $\Omega_k(1+\epsilon_k)$

By definition, $a_0 + a_1\Omega_k + \cdots + a_n\Omega_k^n = 0$. In addition, after perturbation, we have

$$0 = a_0 + a_1 \Omega_k (1 + \epsilon_k) + \dots + a_l (1 + \epsilon_l) \Omega_k^l (1 + \epsilon_k)^l + \dots + a_n \Omega_k^n (1 + \epsilon_k)^n$$

$$= a_1 \Omega_k (\epsilon_k) + a_2 \Omega_k^2 (2\epsilon_k) + \dots + a_l \Omega_k^l (l\epsilon_k + \epsilon_l) + \dots + a_n \Omega_k^n (n\epsilon_k)$$

$$= p'(\Omega_k) \Omega_k \epsilon_k + a_l \Omega_k^l \epsilon_l$$

$$\Rightarrow \Gamma_{kl} = \left| \frac{\epsilon_k}{\epsilon_l} \right| = \left| \frac{a_l \Omega_k^l}{p'(\Omega_k) \Omega_k} \right|$$

Therefore,

$$(\operatorname{cond} \Omega_k)(\vec{a}) = \sum_{l=0}^n |\frac{a_l \Omega_k^l}{p'(\Omega_k)\Omega_k}|$$

(11)	
Ω_k	(cond Ω_k)(\vec{a})
14	251350894804.7394
16	104194884779.65079
17	71181306412.37926
20	35518935656.3619
(iii)	

There is no smart algorithm because the problem is by nature ill-conditioned.

PROBLEM 8

(a)

Use the recurrence relation
$$y_{n-1} = \frac{e-y_n}{n}$$

$$y_{k-1} = \frac{e-y_k(1+\epsilon_k)}{k} = \frac{e-y_k}{k}(1+\frac{y_k}{e-y_k}\epsilon_k)$$

$$\Rightarrow \epsilon_{k-1} = \frac{y_k}{e-y_k}\epsilon_k$$

Estimation of Upper Bound:

$$y_k \le \int_0^1 ex^k dx = \frac{e}{k+1} \Rightarrow \epsilon_{k-1} \le \frac{e}{e^{-\frac{e}{k+1}}} = \frac{1}{k} \epsilon_k$$

$$\Rightarrow \epsilon_k \le (\frac{1}{k})^{N-k} \epsilon_N$$

$$\Rightarrow (\text{cond } g_k)(y_N) \le (\frac{1}{k})^{N-k}$$

(b)

$$\epsilon_N = 1 \Rightarrow \epsilon_k \le (\frac{1}{k})^{N-k} \epsilon_N = (\frac{1}{k})^{N-k}$$

 $\Rightarrow N \ge k + \log_k(1/\epsilon)$

(c)
$$\epsilon = EPA = 2.2(10^{-16}) \Rightarrow N = 20 - \log_{20}(2.2) + 16\log_{20}(10) = 32.03 \approx 33$$

(d)

From Wolfram : $y_{20} = 0.12380$

 $N = 33 \Rightarrow y_{20} = 0.12380$, so the result can be verified.