MANUFACTURE OF SEMICONDUCTOR ELEMENT

Publication number: JP6216035 (A)

Publication date: 1994-08-05

Inventor(s): ROBAATO FURANKU KAARISETSUKU J
Applicant(s): AMERICAN TELEPHONE & TELEGRAPH

Classification:

- international: H01L21/205; H01L21/20; H01L33/00; H01S5/00; H01S5/227;

H01L21/02; H01L33/00; H01S5/00; (IPC1-7): H01L21/205;

H01S3/18

- European: H01L21/20; H01L21/20B6; H01L33/00G3; H01S5/227

Application number: JP19920069740 19920 219 Priority number(s): US19910661743 19910227

Abstract of JP 6216035 (A)

PURPOSE: To selectively deposit InP by allowing at least one of layers deposited on a substrate to contain phosphor indi um and allowing a gas for deposition to have an organic constituent that contains halogen. CONSTITUTION: In the case of a laser device, an n-InP substrate 2 is used, the second layer of indium gallium arsenic phosphor is deposited, a mask material is deposited, a strip is formed, RIE treatment is made, and then selective epitaxy is treated to the structure. The selective epitaxy is performed by a precursor for indium, a precursor for phosp hor, and an organic hal ide. The used precursor gas has indium alkyl along with a phosphor source, thus generating InP with a sufficient quality.

Also published as:

GB2253304 (A) US5153147 (A)

Data supplied from the esp@cenet database — Worldwide

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-216035

(43)公開日 平成6年(1994)8月5日

(51) Int.Cl.⁵

識別記号

庁内整理番号

FI

技術表示箇所

HO1L 21/205 H01S 3/18

審査請求 有 請求項の数7 FD (全 5 頁)

(21)出願番号

特願平4-69740

(22)出願日

平成4年(1992)2月19日

(31)優先権主張番号 661743

(32)優先日

1991年2月27日

(33)優先権主張国

米国(US)

(71)出願人 390035493

アメリカン テレフォン アンド テレグ

ラフ カムパニー

AMERICAN TELEPHONE

AND TELEGPAPH COMPA

NY

アメリカ合衆国 10013-2412 ニューヨ

ーク ニューヨーク アヴェニュー オブ

ジ アメリカズ 32

(74)代理人 弁理士 三俣 弘文

最終頁に続く

(54) 【発明の名称】 半導体素子の製造方法

(57) 【要約】

【目的】 In Pを選択的に堆積する半導体素子の製造 方法を提供する。

【構成】 本発明の半導体導体素子の製造方法は、堆積 層の少なくとも1つはリン化インジウムを含み、前記リ ン化インジウムはインジウム有機ガスと、リンとを含む ガスを堆積することによって形成し、前記堆積用ガスは 更にハロゲンを含有する有機成分を有することを特徴と する。

10

1

【特許請求の範囲】

【請求項1】 基板上に一連の層を堆積するステップを 有する半導体素子の製造方法において、

前記層の少なくとも1つはリン化インジウムを含み、前記リン化インジウムはインジウム有機ガスと、リンとを含むガスを堆積することによって形成し、

前記堆積用ガスは更にハロゲンを含有する有機成分を有することを特徴とする半導体素子の製造方法。

【請求項2】 前記半導体素子はレザーであることを特徴とする請求項1の方法。

【請求項3】 リン化インジウムを基板の選択された領域に堆積させることを特徴とする請求項1の方法。

【請求項4】 インジウム有機ガスはインジウムトリア ルキル(indium trialkyl)を含有する ことを特徴とする請求項1の方法。

【請求項5】 前記ハロゲン含有有機成分はトリクロロ エタン(trichloroethane)を含有する ことを特徴とする請求項4の方法。

【請求項6】 前記ハロゲン有機成分はクロロエタン (chloroethane) を含有することを特徴と 20 する請求項1の方法。

【請求項7】 前記ハロゲン含有有機成分は塩素、臭素、ヨー素からなるグループから選択された成分を含有することを特徴とする請求項1の方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体素子の製造方法に関し、特にInPを含有する素子の製造方法に関する。

[0002]

【従来の技術】InP材料系、例えば、InP、InG aP、InGaAsPの半導体レザー素子は、特に光通 信の応用において重要である。このようなレザー素子の 形成は一連の層、n型InP層、四元化合物(合金)領 域層、p型InP層、四元のインジウムガリュウム層、 リンの層を形成することによってなされる。このような 層は、この後、パターン形成されて、図1に示すような メサを形成する。同図において、活性領域1と、n型1 nP層2と、p型InP層3と、四元合金の上層4とか らなる。このメサの側面はパッシベーション処理がなさ 40 れ、汚染を阻止し、後続の処理に対し、機械的な完全性 を提供し、活性層内の効率的な導波に必要な屈折率の差 を提供する。しかし、ここに用いられている材料及び構 造を選択することにより、過大な電流リーク(すなわ ち、10μA以上)がパッシベーション領域を介して、 メサ領域から他の基板、あるいは別のメサ領域に流れる のを防ぐようになされる。

【0003】一般的には、この絶縁 (パッシベーション) の形成は図2の絶縁領域7内に適切に塗布された I n P 材料からなる一連の逆バアスされた p - n 接合領 50

域、及び/または、半絶縁を形成することによりなされる。このような In P材料が直接メサを含む基板上に堆積されると、図3に示すような成長構造が形成され、これは受け入れがたいものである。このような構造が形成されるのは In Pの堆積は領域7のみならず、メサ8の上にもできるからである。

2

【0004】このような構造を回避するために、図4のマスク9がパッシベーション領域を成長させる前に、メサ形成の間、エッチングマスク層をアンダカットすることにより、メサに約2μmの大きさで覆いかぶせるように(オーバーハング)に形成される。このオーバーハング構造により、図3に示すような成長構造が阻止され、マスク(図示せず)は指定された形状のメサの上に存在する。

【0005】しかし、このようなアンダカット領域を形成するには、プラズマエッチングではなく、ウェットエッチングが必要である。しかし、プラズマエッチングは一般的により簡単に制御でき、隣接領域の形状が改善されるので好ましい。パッシベーション領域にのみ成長させ、メサ領域には成長させないような選択的成長プロセスは図4に示すようなオーバーハング構造の必要がなくなるが、この選択的成長プロセスは、一般的にはInPには利用可能ではなく、かくして、プラズマエッチングは適用できない。

【0006】上に述べたように、InPの選択的成長プロセスはレザー素子の製造には好ましいものであり、光電子集積回路の形成のような応用には有益であると考えられている。様々な試みがGaAsの選択的成長のためになされたが、これらのアプローチは、InPにはそのまま利用できるものではない。例えば、有機金属気相成長法(MOCVD)のGaAsの形成はアルシン(arsine)とトリエチルガリュウム(triethylgallium)のようなプリカーサガスを用いてなされる。クエック他によりJournal of Crystal Growth(99巻 ,324(1990)号)により記載されたように、塩化物、例えば、ジエチルガリュウム塩化物をガリュウム源に用いることにより、窒化シリコンまたは二酸化シリコンに比較して、GaAsの選択的成長ができると記載されている。

【0007】しかし、InPを形成するために、類似の反応は厳密な制限がある。ジエチルインジウム塩化物の蒸気圧は50℃で1トール以下である。それゆえに、充分なインジウムプレカーサガスを供給するために、すなわち、0.1sccm以上の流れを提供するためには、ジエチルインジウム塩化物は室温以上の温度に加熱しなければならない。堆積装置内にガス流の堆積を阻止するためには、ガスの導入パス全部をそれに応じて加熱しなければならない。この要件はもちろん可能ではあるが、商業的な応用に対しては、実際的ではない。

[0008]

3

【発明が解決しようとする課題】GaAsの選択的堆積に関する研究にはヒ素含有プレカーサガス内に塩素の使用を含む。例えば、アゾーレとデュグランドによる「応用物理学レータ(Applied Physics Letters)」、58(2)、128(1991)の記載によれば、ヒ素トリ塩化物はトリメチルガリュウムとAsH。と共に使用されて、マスクされた領域に対し、半導体材料上にGaAsの選択的成長を成し得る。InPの選択的成長に対し、リン化三塩化物の類似の使用は実際的ではない。このリン化三塩化物は腐食性があり、堆積装置の製造とその操作が比較的複雑である。それゆえに、InPの堆積に選択的なアプローチが望まれてはいるが、そのような方法は未だ報告されていない。【0009】

【課題を解決するための手段】MOCVDようにリンとインジウムのプレカーサガスと共に水素塩化物を導入することによって、選択的成長を形成する試みは、GaAsの選択的成長に対しては、ヒ素化三塩化物、あるいはジエチルガリュウム塩化物の使用を含むような方法から予測されるようには、選択的成長は形成されなかった。しかし、意外なことに有機ハロゲン化物(例えば、MOCVD法により、InPの堆積に際し、リン源とインジウム源と一緒にした塩化物)の使用は、マスクされた誘電体に対し、半導体材料上に選択的成長が可能となる(本明細書において、ハロゲン化物とは少なくともハロゲン原子を含む有機物の総称である)。このようにして、完全な成長が達成できる。

【0010】本発明の方法は、半導体レザー構造のパッシベーション領域の形成と共に使用されるのが望ましく、レザー活性領域の形成に対し、プラズマエッチング 30が使用できる。図5に示す構造は選択的InP堆積と共にプラズマエッチング技術を用いて、形成できる。

【0011】本発明の方法は、カーボン不純物の許容できないレベルをもたらすものではなく、またInPのn領域、p領域、または、半絶縁領域を形成するのに対し、ドーピングができなくなるものでもない。また、マスク端部に隣接する領域、あるいは、表面を含む堆積層の形状が改善される。

[0012]

【実施例】本発明の製造方法は、InPの選択的堆積を 40 含むものである。本明細書において、InPという用語はInPとドーパントのような他の成分を含むものである。非選択的成長に対し、堆積層の形状は改善され、平面化のような応用に対しても、本発明の方法は有益である。しかし、本発明の方法は選択的成長の観点から説明する。

【0013】本発明の方法が適用される適度な素子は、 レザー、LED、検知器、トランジスタなどである。こ のような素子の形成に関する記述は「光ファバー通信 (Optical Fiber Telecommun 50 られるべきではない。

ications II)」, (著者: S. E. MillerとI. P. Kaminow) Academic Press会社, 1988, pp. 467-630に記載されている。例えば、レザー素子の場合には、n-InP基板が用いられ、インジウムガリュウムヒ素リンの四元金属の堆積は「GaInAsP合金半導体(GaInAsP Alloy Semiconductors)」, pp. 11-103, T. P. Pearsal1, ed., John WileyとSons, 1982年に記載されている。InPの堆積は上記のPearsal1の文献に記載されている。

4

【0014】そして、インジウムガリュウムヒ素リンの第二層が堆積される。 $S1O_2$ 、またはSixNyのようなマスク材料は、その後に堆積されて、光リソグラフィ的に形状が決定され、約 1μ mの幅のストリップが形成される。そして、この構造物は反応性イオンエッチング(RIE)処理されて、この処理の条件は、水素カーボンベースにしたエッチングガスと100KHzから14MHzの間のプラズマ周波数で、0.2から0.8W/cm²のパワーでもって、そして、ガス圧は5から100mTorro範囲である。

【0015】その後、選択性エピタキシがこの構造物に処理される。同様な素子の製造シーケンスは光集積回路のような応用に用いられ、選択性エピタキシ以外の他のステップは論文「InGasP- Tidy」K-YLiou他が「IEEE Journal of Quantum Electrons」、Vol. 26、p. 1376(1990年)に記載されている。

【0016】本発明のエピタキシ(例えば、選択的エピタキシ)は、インジウム用プリカーサ、リン用プリカーサ、ドーパントプリカーサ(必要ならば)及び有機ハロゲン化物(例えば、塩化物、これはインジウムプリカーサとは異なる)を用いてなされる。インジウム堆積用のプリカーサガスは論文「有機金属蒸気相エピタキシ(Organometallic VaporーPhase Epitaxy)」G.B.Stringfellow,アカデミクプレス(Academic Press)、1989年に記載されている。

【0017】この用いられているプリカーサガスは、これに限定されるものではなく、一般的にインジウムアルキル(例、トリメチルインジウムとトリエチルインジウム)、ここで、アルキルは好ましくは1-6カーボン原子をリン源と共に(例、ホスフィン)と共に有し、充分な品質のInPを生成する。

【0018】ハロゲン化物はある反応温度で分解し、インジウムと反応する物体を有するハロゲンを生成する。 臭化物、塩化物、ヨー化物を含むハロゲン化物が有益である。しかし、フ化物は一般的に過剰反応を示し、用いられるべきではない。 5

【0019】用いられているドーパントの種類はp型 層、n型層、または、半絶縁層に依存する。半絶縁層用 の適当なプリカーサガスに関しては、米国特許第471 6130号(1987年12月29日発行)に記載され ている。p型材料及びn型材料に対して、適当なドーパ ント材は上記のStringfellowの文献に記載 されている。

【0020】上に説明したように、有機ハロゲン化物 (少なくとも1つのハロゲン分子を含む有機化合物)の 選択は、それが分解して、インジウム源に対して、分解 10 温度から100℃以内の温度で原子、または、分子を含 有する反応性ハロゲンを放出するように選択される。こ の目的のために、一般的な有機ハロゲン化物はインジウ ム源に対してはトリクロロエタン、トリエチル、あるい は、トリエチルインジウムのようなアルキルハロゲン化 物である。

【0021】インジウム源に対するハロゲン化物の濃度 は0.05/1から1/1の範囲にある。選択的堆積に 必要な量は、プリカーサガスの型、種類と濃度、成長温 度、反応圧力、反応容器に依存する。制御サンプルを用 20 いて、選択性の特定の程度に必要な正確な比率を決定て きる。選択性の程度は不必要な堆積でカーバーされるマ スクの領域のパーセントで決定される。一般的に望まし いことはウェハの10%以下がメサマスクの50%以下 にカーバーされることである。

【0022】本明細書で用いられるマスクという用語 は、堆積が必要とされない領域を指す。マスクまたはマ スクエッジの上部において、全部成長しないように、本 発明の方法によりなされる。

【0023】この有機塩化物は、従来の反応処理システ 30 ムによりプリカーサガス流内に導入される。有機塩化物 が液体の場合は、適当な温度まで加熱され、キャリアガ ス流に晒されるバブラー(気泡気体通過装置)でもっ て、好ましい結果を得る。H2キャリアガスのようなキ ャリアガスにとって、バブラーの温度は-20℃から2 0℃の範囲で、適当な有機塩化物濃度を生成でき、すな わち、ガス濃度は0.01から0.15atmである。

【0024】バブラの下流の付加的なH2ガスによる希 釈は有機塩化物の濃度を所望の値(10-6から10-3 a tmの間)にまで下げるのに有効である。有機塩化物は 40 ガス状の場合には、処理流内に直接導入することができ る。液体の場合には、キャリアガスは比較的純粋で、不 純物は堆積されたInPには導入されない。一般的に、 充分なキャリアガスがバブラーを通して、流れて、キャ リアガスと有機塩化物の飽和した組成を生成する。この ガス流は必ずしも飽和しておらず、より細かい制御がこ れを用いてなされる。

【0025】InPの選択的堆積は、成長が回避される べき場所に比較して、成長して欲しい場所の材料に依存 長が望ましくない場所のSi〇2のような材料に比較し て、「nPのような半導体材料上に堆積することにより 達成される。

【0026】以下の例は本発明の製造方法を使用するに 際しての条件を述べたものである。

【0027】具体例1

標準的なレザー素子構造はn-InP基板、0.5 μm n-InPパッファ層、0.1μmInGaAs P四元 合金層、 0.8μ mp-InPクラッド層と 0.05μ mInGaAsP四元合金キャップ層からなり、これら は、SiO2の3000オングストロームとマイクロボ ジット1450のポジティブホトレジストの1.5μm 厚さの層でもって、被覆される。これらの層の堆積はV LSIFO/DVS. M. Sze, McGraw Hi 11 Book会社、1983, 第7章に記載されてい 3.

[0028] 2 μ m幅で5 0 8 μ m離れたストリップが ホトレジスト層に405nmで100mJのドーズ量で もって、光リソグラフィ的に形成され、SiO2をパタ 一ン化するのに用いられる。パターンを形成するための エッチングはCF₄/O₂ (8%O₂) のプラズマで、3 00Wの無線周波数パワーのプラズマで、100scc mの流速で、300mtorrの圧力で、-80VのD Cバイアスでもって、形成される。

【0029】このパターン化されたサンプルは、その 後、標準の平行平面RIEリアクタの中でエッチングさ れて、 $1.5 \mu m$ 幅で、 $3.5 \mu m$ 高さのメサを形成す る。このエッチング条件は10%CH4/H2の100s ccmで、50mtorrで、250Wの電力、-34 0 VのD C パイアスである。このサンプルは、その後、 〇2プラズマの中で洗浄され、硫酸の中に2分間浸さ れ、脱イオン水で5分間洗浄される。

【0030】このサンプルは、その後、市販されている 低圧MOCVD反応容器内に納められる。この反応容器 は20mbarの圧力で、640℃の温度で操作され る。全体の反応容器流速は7.5SLPMで、PH3の 流速は200sccmである。トリメチルインジウム (TMI) は330 s c c mの流速のH₂を、17℃の 温度のTMIに流すことにより導入される。

【0028】トリクロロエタン (TCE) は-10℃の 温度に保持され、0.5sccmの流速のH2はトリク ロロエタンを介して、気泡を発生させられる。この条件 を用いてpドープInPとnドープInPの両方がメサ の周囲に成長し、約4 µm厚のp/n素子構造が形成さ れる。このpドーパントとnドーパントはそれぞれジメ チルジンク(dimethylzinc)とテトラエチ ルチン(tetraethyltin)を加えることに より導入される。

【0029】このサンプルは、その後、反応容器から取 する。一般的に、 10^{-4} パーセント以上の選択性は、成 50 り出され、HF酸に浸され、 SiO_2 を除去し、硫酸と

過酸化水素と水(体積比で10:1:1)の混合物で洗 浄され、p-InPとp-InGaAs (それぞれ2. $5 \mu m$ 厚と 0. $7 \mu m$ 厚) のエピタクシャル層でもっ て、水素化物気相エピタキシでもって被覆される。その 後、このサンプルは上記のMillerとKamino wの論文に記載されたような標準的な方法でもって、レ ザーに形成される。

【0030】具体例2

p型基板レザー構造を除いて、上記の具体例1に記載さ れたように準備されたサンプルはHBr、H2O2とH2 10 た素子の断面図。 〇の混合物を用いて、ウェットケミカルエッチングさ れ、レザー素子形成用のメサを生成する。このサンプル は市販の (Thomas Swan社) の大気圧MOC VD反応容器内に納められる。イオン塗布した In Pブ ロック層は760torrで、550℃で、PH:を1 0体積%含有するH₂の180sccmと5SLPMの 全流速を用いて成長される。

【0031】 TM I を通したキャリアガス流は約70s ccmで、バブラの温度は30℃であった。TCEバブ ラを介して、H2の流速は1.8sccmで、バブラの 20 温度は-10℃であった。成長後、このサンプルは取り 出され、MillerとKaminowの論文に記載さ れているような標準の技術を用いて、レザーに形成され る。

[0032]

【発明の効果】以上述べた如く、本発明の方法は、堆積 用ガスにハロゲンを含有する有機成分を有するよう構成 することにより、InPの堆積に選択的におこなうこと ができる。

8

【図面の簡単な説明】

【図1】InPの非選択的成長プロセスにより形成され た素子の断面図。

【図2】 In Pの非選択的成長プロセスにより形成され

【図3】InPの非選択的成長プロセスにより形成され た素子の断面図。

【図4】 In Pの非選択的成長プロセスにより形成され た素子の断面図。

【図5】本発明の製造方法により製造された半導体素子 の断面図。

【符号の説明】

- 1 活性層
- 2 n型InP層
- 3 p型InP層
 - 4 四元合金層
 - 7 絶縁層
 - 8 メサ
 - 9 マスク

フロントページの続き

(72)発明者 ロバート フランク カーリセック ジュ ニア アメリカ合衆国 07080 ニュージャージ ー サウス プレインフィールド、スプラ ーグ アヴェニュー 170