Multiprocesadores Ejercicio 1: Simulando y cocinando con el Intel 7290F

Barea López, Daniel

8-febrero-2017

Tiempo dedicado (aproximado): 1.5 horas

Resumen

Se trata de calcular disipación total, tiempo de simulación y coste según la información publicada en [1].

Cuestiones

1. ¿Cuántos micros caben en la superficie de la vitrocerámica?

El diámetro de la vitrocerámica son 22 cm, por lo que tiene un área de $\pi \cdot 110^2 = 38013.27 \, mm^2$.

Las dimensiones del micro son $20.5 \times 31.5 \text{ mm}$, ocupando un área de $645.8 \text{ } mm^2$.

Sin tener en cuenta la geometría de la vitrocerámica, se podrían colocar un máximo de $38013.27/645.8 = 58 \, \text{micros}$ en el área de la vitrocerámica.

2. ¿Cuánto disiparía el multiprocesador equivalente?

La potencia máxima del 7290F son 260 W (Thermal Design Power). 58 micros consumirían como máximo $58 \cdot 260 = \mathbf{15.08} \, \mathbf{kW}$.

3. Velocidad de pico del multiprocesador (FLOP/ciclo).

Para cada core:

Sin multiply/add	Con multiply/add
${\color{red}{}}{32\mathrm{FLOP/ciclo}}$	$64\mathrm{FLOP/ciclo}$

4. Tiempo simulaciones aerodinámicas del avión sin multiply/add, para los tres casos.

$$R = 72 \, cores \cdot 1.50 \, GHz \cdot 32 \, FLOP/ciclo = 3456 \, GFLOPS$$

Ala, estacionario	Ala, turbulento	Avión, turbulento
$\frac{10^{18} FLOP}{3456 \cdot 10^9 FLOPS} = 3.35 ext{dias}$	$rac{10^{20} FLOP}{3456 \cdot 10^9 FLOPS} = 334.89 ext{dias}$	$\frac{10^{23} FLOP}{3456 \cdot 10^9 FLOPS} = 917.53 ext{años}$

5. Coste simulaciones, a $0.12 \in \text{kWh}$.

$$precio por hora = 0.26 \, kW \cdot 0.12 \, \pounds/kWh = 0.0312 \, \pounds/h$$

Ala, estacionario	Ala, turbulento	Avión, turbulento
$3.35 d$ í $as \cdot 0.0312 £/h = 2.51 £$	$334.89\mathrm{dias}\cdot0.0312\mathrm{\pounds}/h=250.77\mathrm{\pounds}$	$917.53 a \ os \cdot 0.0312 \pounds/h = 250771.96 \pounds$

Referencias

[1] SODANI, Avinash, et al. "Knights landing: Second-Generation Intel Xeon Phi Product". IEEE Micro, 2016, vol. 36, no 2, p. 34-46.