

CYCLE 08 – ANALYSE DE LA CHAINE D'INFORMATION DES SYSTÈMES CHAPITRE 1 : SYSTÈMES COMBINATOIRES

EXERCICESD'APPLICATION

Compétences Visées :

- A3-C8 : Description fonctionnelle des systèmes de traitement de l'information.
 - A3-C8.1 : Architecture générale de la chaîne d'information.
 - A3-C8 S2 : Identifier et décrire les composants associés au traitement de l'information.

Exercice 1. CODAGE DE L'INFORMATION

Q 1. Compléter le tableau suivant :

Décimal	Binaire	Hexa.	BCD	Réfléchi
5				
	1101			
		13		
			10110	
				10110

Exercice 2. CODEUR INCRÉMENTAL

Un axe linéaire est équipé d'un moteur pouvant atteindre 5000 tr/min. Ce moteur est équipé d'un codeur incrémental constitué d'un disque muni de deux pistes ainsi que de trois sous-systèmes permettant de repérer les fentes sur les pistes : une DEL et un photorécepteur.

La piste extérieure est composée de n fentes. Deux DEL (A et B) détectent le passage des fentes sur cette piste.

La piste intérieure est percée d'une seule fente. Le détecteur noté Z permet de détecter le passage de cette fente. Il permet de fixer une référence (POM – Prise d'Origine Machine) permettant alors connaître la position absolue.

Le codeur dispose de 2000 fentes par tour.

Q 1. Donner la résolution du capteur.

- Q 2. Quelle doit être la fréquence d'échantillonnage minimal du système d'acquisition pour traiter l'information ?
- Q 3. Les deux LED sont décalées « d'un quart de fente ». Réaliser le chronogramme des sorties A et B lorsque le codeur tourne dans le sens direct puis dans le sens indirect. Réaliser un troisième graphe indiquant l'état du compteur.
- Q 4. Expliquer comment détecter le sens de rotation du codeur.
- Q 5. Expliquer comment la gestion des fronts permet d'obtenir une meilleure résolution du codeur.

Exercice 3. CODEUR ABSOLU

On souhaite s'équiper d'un codeur absolu. La précision recherchée est de 0,1°.

- Q 1. Combien de pistes seront nécessaires pour atteindre la précision attendue.
- Q 2. Combine de fentes faudrait-il pour un codeur incrémental équivalent.
- Q 3. Indépendamment de la question 1, griser les deux disques suivants en utilisant un codage binaire naturel et un codage binaire réfléchi.
- Q 4. Conclure sur l'intérêt du code réfléchi, notamment lorsqu'une des LED de la rampe est décalée.

Exercice 4. LAMPES SUR UN ESCALATOR

Soient 4 lampes permettant d'éclairer un escalator. L'allumage de ces 3 lampes est régit par l'état de 3 détecteurs de présence.

On donne la table de vérité.

a	b	c	L_1	L_2	L_3	L_4
0	0	0	0	0	0	0
0	0	1	0	0	0	1
0	1	1	0	0	1	1
0	1	0	0	1	1	0
1	1	0	1	1	0	0
1	1	1	1	1	1	1
1	0	1	1	0	0	1
1	0	0	1	0	0	0

- Q 1. Donner l'expression de L_1 , L_2 , L_3 et L_4 .
- Q 2. Déterminer L_1 et L_2 en utilisant le produit canonique.
- Q 3. Représenter l'équation de L_1 sous forme de logigramme.

Exercice 5. ALGÈBRE DE BOOLE

Q 1. Simplifier les équations suivantes :

- $S_5 = (\bar{a}b + ab + a\bar{b})(c\bar{d} + \bar{c}\bar{d}) + \bar{c}d(\bar{a}b + ab);$
- $\square \quad S_6 = b\bar{c}\bar{d} + ab\bar{d} + \bar{a}bc\bar{d}.$

Q 2. Tracer le logigramme des équations précédentes.

Exercice 6. ALLUMER LA LUMIÈRE

Trois interrupteurs a, b et c commandent l'allumage de deux lampes R et S suivant les conditions suivantes :

- dès qu'un ou plusieurs interrupteurs sont activés, la lampe *R* doit s'allumer ;
- □ la lampe *S* ne doit s'allumer que si au moins deux interrupteurs sont activés.
- Q 1. Calculer les expressions des fonctions binaires *R* et *S* et dessiner le logigramme.

Exercice 7. TRANSCODEUR

Considérons le système logique à 4 entrées x_1 , x_2 , x_3 et x_4 et 4 sorties z_1 , z_2 , z_3 et z_4 qui reçoit sur ses entrées le code binaire réfléchi d'un chiffre décimal et produit en sorties le code à excès de trois correspondant. Le code à excès de 3 d'un chiffre décimal A est égal au code binaire naturel du nombre A+3.

Un tel système est appelé transcodeur. La table de vérité suivante définit les 4 fonctions logiques réalisées par ce système.

	x_4	x_3	x_2	x_1	z_4	z_3	z_2	z_1
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	1	0	1	0	1
3	0	0	1	0	0	1	1	0
4	0	1	1	0	0	1	1	1
5	0	1	1	1	1	0	0	0
6	0	1	0	1	1	0	0	1
7	0	1	0	0	1	0	1	0
8	1	1	0	0	1	0	1	1
9	1	1	0	1	1	1	0	0

- Q 1. Écrire les expressions minimales de chacune des 4 fonctions réalisées par le transcodeur.
- Q 2. Faire le logigramme correspondant aux 4 fonctions ainsi déterminées.

Exercice 8. LOGIGRAMME

Q 1. Donner l'équation de sortie H : cette équation sera telle qu'aucun de ses termes ne soit complémenté.

Exercice 9. COFFRE-FORT DE BANQUE

D'après ressources de Florestan Mathurin.

On s'intéresse à un coffre-fort de banque dont on donne le principe de fonctionnement.

Seuls 4 responsables (notés A, B, C et D) qui possèdent un ensemble code d'accès + clef à serrure peuvent avoir accès au coffre. Le responsable A possède l'ensemble code d'accès et une clef notée a. Le responsable B possède l'ensemble code d'accès et une clef notée b. Le responsable C possède l'ensemble code d'accès et une clef notée c. Le responsable d possède l'ensemble code d'accès et une clef notée d.

- lacktriangle Le responsable A ne peut ouvrir le coffre qu'avec le responsable B ou .
- □ Les responsables *B*, *C* et *D* ne peuvent ouvrir le coffre qu'en présence d'au moins deux des autres responsables.
- Q 1. Donner le schéma des entrées sorties.
- Q 2. Construire la table de vérité contenant les entrées $a,\ b$, c et d ainsi que la sortie S (S=1: coffre ouvert S=0 coffre fermé) permettant de décrire le fonctionnement du système.
- Q 3. Donner l'équation logique non simplifiée du système du type S = f(a, b, c, d).
- Q 4. Simplifier cette équation à l'aide de l'algèbre de Boole.
- Q 5. Établir le logigramme relatif à la sortie S.

Exercice 10. ESCALATOR

Afin d'assurer la sécurité et de contrôler le nombre de personnes qui rentrent dans une ambassade, on oblige ces personnes à emprunter un escalier mécanique avec contrôle d'accès qui mène à l'étage où se situent les bureaux. On s'intéresse au fonctionnement logique de ce système.

Capteur de présence du tapis sensible bas

- Lorsqu'une personne franchi le portillon, elle pose un pied sur le tapis sensible bas (T_b) placé en bas de l'escalier. Aussitôt l'escalier se met en marche (M).
- Dès que la personne pose un pied sur l'escalier, tout en gardant l'autre sur le tapis sensible, sa présence est détectée par un capteur de présence (). Dès que ce capteur (c) est activé, un verrou (V) bloque le portillon et l'escalier continue de marcher (M).
- ☐ Tout le temps que la personne reste dans l'escalier, le verrou (V) reste activé et l'escalier continue de marcher (M).
- Dès que la personne arrive en haut de l'escalier, elle pose le pied sur le tapis sensible haut (T₁) mais il faut qu'il quitte l'escalier (c) pour que celui-ci s'arrête de marcher. Le verrou (V) reste actif.
- Lorsque la personne quitte le tapis sensible haut (T_h) , le verrou (V) est désactivé.
- Pour tout cas indésirable, toutes les actions doivent être désactivées.
- On considère que M = 1 quand l'escalier est en marche et que V = 1 quand le verrou est activé.

- Q 1. Donner le schéma des entrées sorties du système.
- Q 2. Construire la table de vérité permettant de décrire le fonctionnement du système.
- Q 3.En déduire les équations logiques simplifiées du système.
- Q 4. Construire les logigrammes permettant de décrire le fonctionnement du système.