NOTES DE COURS : GRADIENTS ET DÉRIVÉES DIRECTIONNELLES

HERMAN GOULET-OUELLET

Table des matières

1.	Rappels: dérivées partielles	1
2.	Dérivées directionnelles	2
3.	Gradient	3
4.	Points critiques	5

1. Rappels : dérivées partielles

Définition 1. Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de n variables. La dérivée partielle de f par rapport à x_i est définie par la limite (si elle existe) :

$$\frac{\partial f}{\partial x_i}(x_1,\dots,x_n) = \lim_{h \to 0} \frac{f(x_1,\dots,x_{i-1},x_i+h,x_{i+1},\dots,x_n) - f(x_1,\dots,x_n)}{h}$$

Pour une fonction de deux variables f(x,y) on a deux dérivées partielles :

$$\frac{\partial f}{\partial x}(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}, \qquad \frac{\partial f}{\partial y}(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}.$$

• Pour calculer la dérivée partielle par rapport à une variable donnée, on traite les autres variables comme des constantes.

Exemple 2. Calculons les dérivées partielles de $f(x,y) = 3\sin(x) - 2\cos(y) - xy$.

Réponse :
$$\frac{\partial f}{\partial x}(x,y) = 3\cos(x) - y$$
 et $\frac{\partial f}{\partial y}(x,y) = 2\sin(y) - x$.

1 La dérivée partielle par rapport à x au point a est égale à la pente de la droite tangente passant par (a, f(a)) dans la direction parrallèle à l'axe des x.

Date: 4 avril 2025.

FIGURE 1. Droite tangente au graphe de $f(x,y) = 3\sin(x) - 2\cos(y) - xy$ dans la direction parallèle à l'axe des x passant par le point (1,1,f(1,1)).

2. Dérivées directionnelles

Définition 3. Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de n variables. La dérivée directionnelle de f dans la direction $u \in \mathbb{R}^n$, $u \neq 0$, est définie par la limite (si elle existe)

$$\nabla_{\boldsymbol{u}} f(\boldsymbol{x}) = \lim_{h \to 0} \frac{f(\boldsymbol{x} + h\boldsymbol{u}) - f(\boldsymbol{x})}{h}, \quad \text{où } \boldsymbol{x} = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

6 Pour tout scalaire $k \neq 0$, on a $\nabla_{ku} f = k \nabla_{u} f$. On peut donc se restreindre au cas où u est un *vecteur unitaire*, c'est-à-dire dont la norme euclidienne vaut 1 :

$$\|\mathbf{u}\| = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2} = 1.$$

Dans le cas de \mathbb{R}^2 , les vecteurs unitaires sont de la forme

$$\mathbf{u} = (\cos(\theta), \sin(\theta)), \quad \theta \in [0, 2\pi).$$

Pour un vecteur de cette forme, la dérivée directionnelle d'une fonction f(x,y) de deux variables est, par définition,

$$\nabla_{\boldsymbol{u}} f(x,y) = \lim_{h \to 0} \frac{f(x + h\cos(\theta), y + h\sin(\theta)) - f(x,y)}{h}$$

- Quand $\theta = 0$, $\mathbf{u} = (1,0)$ et on retrouve $\nabla_{\mathbf{u}} f = \partial f / \partial x$.
- Quand $\theta = \frac{\pi}{2}$, $\mathbf{u} = (0,1)$ et on retrouve $\nabla_{\mathbf{u}} f = \partial f / \partial y$.
- \bullet La dérivée directionnelle dans la direction u au point a est égale à la pente de la droite tangente passant par a dans la direction u.

En d'autres mots, la droite tangente admet la description paramétrique :

$$D = \{ (\boldsymbol{a} + t\boldsymbol{u}, f(\boldsymbol{a}) + t\nabla_{\boldsymbol{u}} f(\boldsymbol{a})) \mid t \in \mathbb{R} \}.$$

Dans le cas d'une fonction de deux variables, cette description prend la forme :

$$D = \{(a_1 + tu_1, a_2 + tu_2, f(a_1, a_2) + t\nabla_{\boldsymbol{u}} f(a_1, a_2)) \mid t \in \mathbb{R}\}.$$

FIGURE 2. Droite tangente au graphe de $f(x) = 3\sin(x) - 2\cos(y) - xy$ dans la direction u = (3/5, 4/5) passant par le point (1, 1, f(1, 1)). Les droites tangentes dans la direction de l'axe des x et des y sont est indiquées en noir.

1 Calculer $\nabla_{\boldsymbol{u}} f(\boldsymbol{x})$ directement à partir de la définition est possible, mais difficile.

Théorème 4. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de deux variables et $\mathbf{u} = (u_1, u_2) \in \mathbb{R}^2$. En tout point $(x, y) \in \mathbb{R}^2$ où f est différentiable,

$$\nabla_{\mathbf{u}} f(x,y) = u_1 \frac{\partial f}{\partial x}(x,y) + u_2 \frac{\partial f}{\partial y}(x,y).$$

(On verra la définition de différentiable dans un prochain cours. Pour l'instant on ne travaillera qu'avec des fonctions différentiables.)

Exemple 5. Soit la fonction $f(x,y) = 3\sin(x) - 2\cos(y) - xy$, et $\mathbf{u} = (\cos(\theta), \sin(\theta))$, où $\theta = \arccos(3/5)$. Calculons $\nabla_{\mathbf{u}} f(x,y)$ en utilsant le théorème.

Réponse:
$$\nabla_{\mathbf{u}}(x,y) = \frac{3}{5}(\cos(x) - y) + \frac{4}{5}(\sin(y) - x).$$

Corollaire 6. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de deux variables. En tout point $(a, b) \in \mathbb{R}^2$ où f est différentiable, toutes les droites tangentes au graphe de f passant par (a, b, f(a, b)) sont contenues dans le plan d'équation

$$z - f(a, b) = \frac{\partial f}{\partial x}(a, b) \cdot (x - a) + \frac{\partial f}{\partial y}(a, b) \cdot (y - b)$$

appelé plan tangent.

Example 7. Calculons l'équation du plan tangent au graphe de $f(x,y) = -(x^2 + xy + y^2)$ passant par le point (-1/2, 1/2, -1/4).

Réponse : l'équation du plan tangent est z = x/2 - y/2 + 1/4.

3. Gradient

Définition 8. Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction réelle de n variables. Le gradient de f est la fonction

$$\nabla f(\boldsymbol{x}) = \left(\frac{\partial f}{x_1}(\boldsymbol{x}), \dots, \frac{\partial f}{x_n}(\boldsymbol{x})\right), \quad \text{où } \boldsymbol{x} = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

FIGURE 3. Plan tangent au graphe de $f(x,y) = -(x^2 + xy + y^2)$ passant par le point (-1/2, 1/2, -1/4).

Autrement dit, $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$.

Exemple 9. Soit la fonction $f(x, y, z) = x^2 - xyz - z^2$. Calculons le gradient $\nabla f(x, y, z)$. Réponse : $\nabla f(x, y, z) = (2x - yz, -xz, -2z - xy)$.

Définition 10. Étant donné deux vecteurs $u, v \in \mathbb{R}^n$, on définit leur produit scalaire par

$$\boldsymbol{u} \cdot \boldsymbol{v} = \sum_{i=1}^n u_i v_i.$$

Proposition 11. (Propriétés du produit scalaire.)

- (1) $\boldsymbol{u} \cdot \boldsymbol{v} = \|\boldsymbol{u}\| \|\boldsymbol{v}\| \cos(\theta)$, où θ est l'angle entre \boldsymbol{u} et \boldsymbol{v} .
- (2) $|\boldsymbol{u} \cdot \boldsymbol{v}| \leq ||\boldsymbol{u}|| \, ||\boldsymbol{v}||$ (inégalité de Cauchy–Schwarz).
- (3) $\mathbf{u} \cdot \mathbf{v} = 0 \iff \mathbf{u} \perp \mathbf{v} \ (\mathbf{u} \text{ et } \mathbf{v} \text{ sont perpendiculaires}).$
- $(4) \mathbf{u} \cdot \mathbf{u} = \|\mathbf{u}\|^2.$

Théorème 12. (Formule du gradient.) Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction réelle de n variables et $u \in \mathbb{R}^n$. En tout point $a \in \mathbb{R}^n$ où f est différentiable,

$$\nabla_{\boldsymbol{u}} f(\boldsymbol{a}) = \nabla f(\boldsymbol{a}) \cdot \boldsymbol{u}.$$

- Pour n=2 on retrouve la formule énoncée précédemment.
- La preuve utilise la règle de dérivation en chaîne multivariée (prochain cours).

Exemple 13. Calculons le gradient $\nabla f(\mathbf{x})$ et la dérivée directionnelle $\nabla_{\mathbf{u}} f(\mathbf{x})$ pour les exemples suivants :

a)
$$f(x,y) = x^2 - xy + 3y^2$$
, $u = (\frac{3}{5}, \frac{4}{5})$, $a = (\frac{5}{2}, \frac{5}{7})$.
 $Réponse: \nabla f(x,y) = (2x - y, -x + 6y)$ et $\nabla_{\boldsymbol{u}} f(\boldsymbol{a}) = 4$.

FIGURE 4. Graphe de la fonction $f(x,y) = xy/(x^2 + y^2)$.

- b) $\sin(3x)\cos(3y)$, $\mathbf{u} = (\frac{5}{13}, \frac{12}{13})$, $\mathbf{a} = (\pi, \frac{\pi}{2})$. $R\acute{e}ponse: \nabla f(x,y) = (3\cos(3x)\cos(3y), -3\sin(3x)\sin(3y)) \text{ et } \nabla_{\mathbf{u}}f(\mathbf{a}) = 0$.
- c) $f(x_1, x_2, x_3) = x_1 x_3 + x_1^2 x_2 + x_2 x_3 + x_2^2 + 3x_3^2$, $\mathbf{u} = (\frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4}, \frac{\sqrt{3}}{2})$, $\mathbf{a} = (1, -2, \frac{3}{2})$. $R\'{e}ponse: \nabla f(x_1, x_2, x_3) = (2x_1 + x_3, 2x_2 + x_3 1, x_1 + x_2 + 6x_3)$ et $\nabla_{\mathbf{u}} f(\mathbf{a}) = 4\sqrt{3}$.

A La formule du gradient ne fonctionne pas si la fonction n'est pas différentiable.

Exemple 14. Soit $f(x,y) = xy/(x^2 + y^2)$ si $(x,y) \neq (0,0)$ et f(0,0) = 0. Le gradient ∇f existe partout, y compris en (0,0). Cependant f n'est pas différentiable en (0,0) et les dérivées directionnelles $\nabla_{\boldsymbol{u}} f(0,0)$ n'existent pas pour $\boldsymbol{u} \notin \{(0,1),(1,0)\}$.

Corollaire 15. En tout point $a \in \mathbb{R}^n$ où f est différentiable :

- (1) Le gradient $\nabla f(\mathbf{a})$ donne la direction qui maximise la croissance instantanée.
- (2) Dans les directions perpendiculaires à $\nabla f(a)$, la croissance instantané est nulle.

Ce corollaire est très utile pour résoudre des problèmes d'optimisation. Il est à la base de l'algorithme du gradient, dont la variante appelée algorithme du gradient stochastique est utilisée en apprentissage automatique.

Soit $f(x,y) = 4 - (\cos^2(x/2) + \cos^2(y/2))^2$. La figure 5 illustre f et ∇f (représenté sur le plan z = 0).

4. Points critiques

Rappelons que les points critiques d'une fonction $f: \mathbb{R} \to \mathbb{R}$ d'une seule variable sont les points $x \in \mathbb{R}$ tels que f'(x) = 0.

Si la fonction est deux fois différentiable alors les points critiques peuvent prendre trois différentes formes :

- (1) maximum local, quand f''(x) < 0.
- (2) minimum local, quand f''(x) > 0.
- (3) point d'inflexion, quand f''(x) = 0.

FIGURE 5. Graphe et gradient de la fonction $f(x,y) = 4 - (\cos^2(x/2) + \cos^2(y/2))^2$.

Définition 16. Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de n variables. On appelle point critique un point $\mathbf{x} \in \mathbb{R}^n$ tel que $\nabla f(\mathbf{x}) = 0$.

Pour trouver les points critiques d'une fonction de n variables, il faut donc résoudre un système à n équations et n inconnues :

$$\begin{cases} \frac{\partial f}{\partial x_1}(x_1, x_2, \dots, x_n) &= 0\\ \frac{\partial f}{\partial x_2}(x_1, x_2, \dots, x_n) &= 0\\ \vdots\\ \frac{\partial f}{\partial x_n}(x_1, x_2, \dots, x_n) &= 0 \end{cases}$$

Exemple 17. Trouvons les points critiques de la fonction $f(x_1, x_2, x_3) = x_1x_3 + x_1^2 - x_2 + x_2x_3 + x_2^2 + 3x_3^2$.

Réponse : On a $\nabla f(x_1,x_2,x_3)=(x_3+2x_1,\ -1+x_3+2x_2,\ x_1+x_2+6x_3).$ Donc les points critiques sont les solutions du système

$$\begin{cases} 2x_1 & + x_3 = 0 \\ 2x_2 + x_3 = 1 \\ x_1 + x_2 + 6x_3 = 0. \end{cases}$$

En utilisant notre trousse à outils d'algèbre linéaire, on trouve un seul point critique, soit $(\frac{1}{20}, \frac{11}{20}, \frac{-1}{10})$.