Inductive Programming Lecture 5 Induction of Efficient Programs

Stephen Muggleton
Department of Computing
Imperial College, London and
University of Nanjing

30th October, 2023

Change to lecture times **Lecture 6** will be held in person at 1610 on Thursday 9th November. Lecture 7 and 8 will be held in person at 1610 on Monday 13th and 20th November.

Papers for this lecture

Paper5.1: A. Cropper and S.H. Muggleton. Learning efficient logical robot strategies involving composable objects. In Proceedings of the 24th International Joint Conference Artificial Intelligence (IJCAI 2015), pages 3423-3429. IJCAI, 2015.

Paper5.2: A. Cropper and S.H. Muggleton. Learning efficient logic programs. Machine Learning, 108:1063-1083, 2019.

Motivation

- Inductive Programming
- Few examples per task
- Short programs preferred Blumer bound
- Are shorter programs always preferable?

Permutation Sort versus Merge Sort

Program size

psort	s(L1,L2):- permute(L1,L2), sorted(L2).	
msort	s([],[]).	
	s([H T],L):- sp(H,T,L1,L2), s(L1,L3), s(L2,L4), m(L3,L4,L).	

Time complexity

psort	O(n!)
msort	O(nlog(n))

Postman [Paper5.1]

n letters and **d** places for delivery

Postman [Paper5.1]

$Metagol_D - O(nd)$

p(A,B):-p2(A,C), p(C,B).

p(A,B):-p2(A,C), gtb(C,B).

p2(A,B):- p1(A,C), gtb(C,B).

p1(A,B):-fns(A,C), take(C,B).

p1(A,B):-fnr(A,C), give(C,B).

$Metagol_O - O(n+d)$

p(A,B):-p2(A,C), p2(C,B).

p2(A,B):-p1(A,C), p2(C,B).

p2(A,B):-p1(A,C), gtb(C,B).

p1(A,B):- fns(A,C), bag(C,B).

p1(A,B):-fnr(A,C), give(C,B).

Postman mean resource complexity 50 places [Paper 5.1]

Robot Letter Sorter [Paper5.1]

$Metagol_D - O(n^2)$

rs(A,B):-rs1(A,C), rs(C,B).

rs1(A,B):-cmp(A,C), rs1(C,B).

rs1(A,B):-dec(A,C), gst(C,B).

rs(A,B):-rs1(A,C), gst(C,B).

 $Metagol_O - O(nlog(n))$

rs(A,B):- rs1(A,C), rs(C,B).

rs1(A,B):-pick(A,C), split(C,B).

rs1(A,B):-cmb(A,C), gst(C,B).

rs(A,B):-split(A,C), cmb(C,B).

Robot Letter Sorting mean resource complexity [Paper 5.1]

Duplicate Character [Paper5.2]

Examples

f([p,r,o,g,r,a,m],r). f([i,n,d,u,c,t,i,o,n],i).

Duplicate Character [Paper5.2]

$Metagol_D - O(n^2)$

 $f(A,B):-head(A,B),f_1(A,B).$

f(A,B):-tail(A,C),f(C,B).

f_1(A,B):-tail(A,C),element(C,B).

Metaopt - O(nlog(n))

f(A,B):-msort(A,C), $f_1(C,B)$.

 $f_1(A,B)$:-head(A,B), $f_2(A,B)$.

 $f_1(A,B):-tail(A,C),f_1(C,B).$

 $f_2(A,B)$:-tail(A,C),head(C,B).

Framework - Cost function Φ [Paper5.2]

Metagol _O	$\sum_{e \in E} r(H, e)$
Metaopt	$\sum_{e \in E} \operatorname{treecost}(H, e)$
General ordering	\prec_{Φ}

Framework - Cost minimisation over Version Space [Paper 5.2]

Dfn6	Version space $\mathscr{V}_{B,E}$	Hypothesis space consistent with B, E
Dfn7	Cost minimisation	$H \in \mathscr{V}_{B,E}$ and $\forall H' \in \mathscr{V}_{B,E}H \preceq_{\Phi} H'$

Metagol_O and Metaopt algorithm Cost Minimisation

Iteration	Hypothesis	
1	$ H_1 $ minimal in $\mathscr{V}_{B,E}$	
<i>i</i> > 1	$ H_i $ minimal and $H_i \prec_{\Phi} H_{i-1}$	
i = final	$\not\exists H_i \ H_i \prec_{\Phi} H_{i-1}$	
Return	$H_{\mathrm{final-1}}$	

Convergence theorem [Thm 1 Paper5.2] Given sufficiently large |E|Metaopt returns $\inf_{\preceq_{\Phi}} \mathscr{V}_{B,E}$

Duplicate Character - Median Tree Costs [Paper5.2]

(a) Tree costs

(b) Program runtimes

Duplicate Letter - Input size vs Tree Cost [Paper5.2]

(a) Tree costs

(b) Program runtimes

String Transformations - Median Tree Costs [Paper 5.2]

Summary

- Shorter programs fewer examples Blumer bound
- Shorter programs not always most efficient
- Metagol_O minimises robot energy cost
- Metaopt minimises SLD resolutions
- Both find minimal size program first
- Iteratively relax size minimising cost Φ
- Convergence theorem
- Efficiency Postman, Sorting, Duplicate, String Transform