

Introduction à l'informatique CM2

Antonio E. Porreca aeporreca.org/introinfo

Algorithmes!

Quadrature du cercle

$$S = \pi r^2$$

 $r\sqrt{\pi}$

THÉORÈME: La quadrature du cercle à la règle et au compas est impossible

-Ferdinand von Lindenmann, 1882

THÉORÈME: Le quadruplement du carré à la règle et au compas est bien possible

-Le petit Aléxandros (9 ans), Grèce antique

Possibilité et impossibilité en mathématiques

- Prouver que quelque chose est bien possible semble plus simple
- (Spoiler : ce n'est pas toujours le cas...)
- Pour prouver que quelque chose est impossible il faut, en général, en donner une définition rigoureuse

Calculabilité en informatique

- Les Babyloniens avaient déjà des algorithmes pour faire de l'arithmétique et de l'algèbre (–3000)
- On a dû attendre Alan M. Turing (1936) pour une formalisation satisfaisante de la notion d'algorithme
- Maintenant on sait qu'il existe des problèmes
 « bien formés » qui n'ont pas d'algorithme

Un « petit » problème sans solution algorithmique

- Entrée : une proposition arithmétique ϕ formalisée
- Par exemple : $(\forall n > 2)(\nexists x, y, z \neq 0)(x^n + y^n = z^n)$
- Sortie : **oui** si on peut prouver φ , **no** si on ne peut pas
- Ce problème n'a pas d'algorithme!

Efficacité des algorithmes

Efficacité des constructions à la règle et au compas

- Six « opérations » pour quadrupler le carré
- Est-ce qu'on peut faire mieux que ça ?
- Est-ce qu'on peut prouver qu'on ne peut pas faire mieux que ça ?
- On peut mesurer aussi la quantité d'espace (taille du papier) utilisée par une construction

Efficacité des algorithmes et complexité des problèmes

- Le nombre d'opérations dépend, de quelque façon, de la taille des données d'entrée
- Taille $n \to t(n)$ opérations (exemple : $t(n) = n^2$ ou t(n) = n + 5)
- Est-ce qu'on peut faire la même chose en moins de t(n) opérations ?
- Possible définition : complexité d'un problème = efficacité du meilleur algorithme pour le résoudre
- On peut aussi mesurer l'espace (quantité de mémoire) utilisé par un algorithme (exemple : *n* bits au-delà de la taille des données)

Algorithmes efficaces ou pas

234 +	235
	236
281 =	237
	 540
	513
515	514
	515

approximativement 3 opérations

au moins 281 opérations

234

Efficacité des algorithmes pour l'addition

- Algorithme de l'école primaire : approximativement n
 opérations pour additionner des nombres de n chiffres
- Algorithme de l'« incrémentation répétée » : au moins 10^n opérations pour des nombres de n chiffres !
- Supposons qu'on fasse une opération par seconde

En termes de secondes

nombre de chiffres

En termes de secondes

nombre de chiffres

En termes de secondes

nombre de chiffres

Combien d'étudiants y a-t-il dans la salle ?

Combien d'étudiants y a-t-il dans la salle ?

- Chaque étudiant commence avec le nombre 1 en tête
- Tant qu'il reste au moins deux étudiants debout :
 - Chaque étudiant encore debout cherche du regard un autre étudiant debout
 - Les deux étudiants s'échangent le nombre qu'ils ont en tête
 - L'un des deux étudiants s'assoit
 - L'autre additionne les deux nombres qu'il mémorise
- Le dernier étudiant debout crie le nombre qu'il a en tête

Efficacité du comptage

nombre d'etudiants

Une formalisation des algorithmes de tri : les réseaux de tri

Réseaux de tri

Réseaux de tri

Un exemple

Un exemple

Un autre réseau

Un autre réseau

Avec d'autres données

Avec d'autres données

Pas un réseau de tri!

Pas un réseau de tri!

Pas un réseau de tri!

Vérifier si un réseau est de tri

- Essayer avec toutes les entrées de n entiers naturels : mais il y en a infinies !
- Peu importent les valeurs, seul l'ordre compte : tester avec toutes les permutations de $1, \ldots, n$
- Mais il y en a n! (n factoriel), qui est même pire que 10^n

Théorème du 0-1

- Si le réseau est correcte pour toutes les entrées qui consistent de 0s et 1s, alors il est correcte pour toute entrée
- Mais il y a 2^n entrées de 0s et 1s... mieux que n! et 10^n , mais c'est quand même trop
- Parfois on préfère utiliser des maths un peu plus sophistiquées pour gagner du temps

Efficacité des réseaux de tri

Deux réseaux corrects, lequel préférez-vous ?

Efficacité des réseaux de tri

Deux réseaux corrects, lequel préférez-vous ?

Résoudre un problème

- On cherche un algorithme
- On le décrit précisément, de manière non ambigüe
- On prouve qu'il est correct
- On vérifie qu'il est efficace (idéalement, on choisit l'algorithme optimal)
- On le met en œuvre (pas dans cette UE)
- On le teste (pas dans cette UE)