4. EXCITED STATES

Nuclei are naturally found in their lowest energy state (ground state)

BUT, like all Q.M. systems, they have higher energy levels with less binding energy.

They are denoted: ${}_Z^A X^*$

They are formed:

- after decays
- in (nuclear) reactions

Note: 2_1H does not have excited states for obvious reasons

4.1. Properties of Excited States

(a) Distribution

(b) Low levels – Single nucleon excitation

Excitation to higher levels:

involve several nucleons

not easily interpreted in terms of shell model

- (c) Excited states: unstable
 - $\rightarrow \gamma$ decay to lower energy levels

or

- → break-up (fission)
 - → lighter nuclei

$$\begin{cases} \text{lifetime} \geq 10^{\text{-16}} \text{ s} \\ \text{width } \Delta E \leq \text{few eV} \end{cases}$$

breakup
$$\begin{cases} \text{lifetime } 10^{\text{-}18} \, \text{s} - 10^{\text{-}20} \, \text{s} \\ \Delta \text{E} \leq 0.1 \, \text{MeV} \end{cases}$$

Example: excited states of ${}^{17}_{8}O$

Binding energies:

$$^{16}_{8}O + n$$
 127.62 MeV (a)

$$^{13}_{6}C + \alpha$$
 125.41 MeV (b)

- (a) is 4.15 MeV above ground state of ${}^{17}_{8}O$
- (b) is 6.35 MeV above ground state of ${}^{17}_{8}O$

Let us look at the energy levels ...

> all excited states above

- 4.15 MeV can break up into ${}^{16}_{8}O + n$
- 6.35 MeV can also break up into ${}^{13}_{6}C$ + α