```
Program 01: Matrix Addition
Develop a JAVA program to add TWO matrices of suitable order mxn and rxp
The input values should be read from command line arguments) and print the resultant matrix
on console.
*/
// defining package
package first;
// importing Scanner class for getting an input through keyboard
import java.util.Scanner;
// starting main method
public class MatrixAddition {
  public static void main(String[] args)
       // creating an object sc for Scanner class
       Scanner sc= new Scanner(System.in);
     // declaring variables m,n
     int m,n;
     System.out.println(" Enter the order of first matrix m and n.");
     // getting m and n as integer numbers through keyboard
     m=sc.nextInt();
     n=sc.nextInt();
  // declaring variables r,p;
     int r,p;
     System.out.println(" Enter the order of second matrix r and p.");
   // getting m and n as integer numbers through keyboard
     r=sc.nextInt();
     p=sc.nextInt();
     // Check if a positive integer
     if (r \le 0 \parallel p \le 0 \parallel m \le 0 \parallel n \le 0) {
       System.out.println("Please provide a valid positive integer for the order of the matrix");
       return;
     }
     // Check if addition is possible
```

System.out.println("Please provide same order for the both matrices.");

if (m!=r || n!=p) {

```
return;
  // Declaring three matrices with right order
  int[][] matrix1 = new int[m][n];
  int[][] matrix2 = new int[r][p];
  int[][] resultMatrix = new int[m][n];
  System.out.println("\nEnter the elements of Matrix1:");
  // Calling getMatix to get the elements of matrix1
  getMatrix(matrix1, m,n);
  System.out.println("\nEnter the elements of Matrix2 :");
  // Calling getMatix to get the elements of matrix2
  getMatrix(matrix2, r,p);
  // Print the matrices
  System.out.println("Matrix 1:");
  printMatrix(matrix1,m,n);
  System.out.println("\nMatrix 2:");
  printMatrix(matrix2,r,p);
  // Add the matrices
  addMatrices(matrix1, matrix2,m,n, resultMatrix);
  // Print the resultant matrix
  System.out.println("\nResultant Matrix (Matrix1 + Matrix2):");
  printMatrix(resultMatrix,m,n);
}
// Helper method to get a matrix with input values through keyboard
private static void getMatrix(int[][] matrix, int m, int n) {
     Scanner sc= new Scanner(System.in);
  for (int i = 0; i < m; i++) {
     for (int j = 0; j < n; j++) {
       matrix[i][j] = sc.nextInt();
     }
  }
}
// Helper method to add two matrices
private static int[][] addMatrices(int[][] matrix1, int[][] matrix2, int m, int n, int[][] resultMatrix) {
  for (int i = 0; i < m; i++) {
     for (int j = 0; j < n; j++) {
       resultMatrix[i][j] = matrix1[i][j] + matrix2[i][j];
```

```
}
     return resultMatrix;
  }
  // Helper method to print a matrix
  private static void printMatrix(int[][] matrix, int m, int n) {
        for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
               System.out.print(matrix[i][j]+" ");
        System.out.println();
  }
i/p and o/p
Enter the order of first matrix m and n.
Enter the order of second matrix r and p.
3 2
Enter the elements of Matrix1:
1
2
3
4
5
6
Enter the elements of Matrix2:
1
1
1
1
1
1
Matrix 1:
12
34
56
Matrix 2:
11
11
11
```

```
Resultant Matrix (Matrix1 + Matrix2): 2 3 4 5 6 7
```

Exercise programs

b. Matrix Subtraction

Develop a JAVA program to add TWO matrices of suitable order mxn and rxp The input values should be read from command line arguments) and print the resultant matrix on console.

c. Matrix Multiplication

Develop a JAVA program to add TWO matrices of suitable order mxn and rxp The input values should be read from command line arguments) and print the resultant matrix on console.

```
[ Hint: Matrices mx n and rxp
```

Check n should be equal to r for Matrix multiplication or should report

Perform the matrix multiplication as follows

As the result matrix order is m x p

1

```
for ( i .. for m )
  for( j...for p)
    for (k... for n or p)
      resultmatrix[i][j]=resultmatrix[i][j]+matrix1[i][k]*matrix2[k][j];
```