CS 511, Fall 2024, Lecture Slides 29, Part III Analytic Tableaux for Classical First-Order Logic (How to Handle Equality)

Assaf Kfoury

23 October 2024

How to Handle Equality with the Tableau Method

There are three basic approaches when \approx is introduced in the syntax of FOL:

<u>Approach 1:</u> We introduce a new binary predicate symbol "eq" and substitute it for every occurrence of "≈". After which, we explicitly axiomatize "eq" as a congruence relation and include the axioms in the set of premises.

- An axiomatization of "eq" as a congruence is in Definition 61, pages 41-42, in [EML.Chapter_4.pdf] (posted on Piazza).
- ► This is the simplest of the three approaches, but also the least efficient (if it is implemented as part of an automated tool).

How to Handle Equality with the Tableau Method

There are three basic approaches when \approx is introduced in the syntax of FOL:

- <u>Approach 1</u>: We introduce a new binary predicate symbol "eq" and substitute it for every occurrence of "≈". After which, we explicitly axiomatize "eq" as a congruence relation and include the axioms in the set of premises.
 - An axiomatization of "eq" as a congruence is in Definition 61, pages 41-42, in [EML.Chapter_4.pdf] (posted on Piazza).
 - ► This is the simplest of the three approaches, but also the least efficient (if it is implemented as part of an automated tool).
- Approach 2: We add **expansion rules** and **closure rules** to the two earlier methods, ground tableaux and free-variable tableaux, which can handle " \approx ".
 - ▶ A few pointers to *Approach 2* are given in the following slides.

How to Handle Equality with the Tableau Method

There are three basic approaches when \approx is introduced in the syntax of FOL:

- Approach 1: We introduce a new binary predicate symbol "eq" and substitute it for every occurrence of "≈". After which, we explicitly axiomatize "eq" as a congruence relation and include the axioms in the set of premises.
 - An axiomatization of "eq" as a congruence is in Definition 61, pages 41-42, in [EML.Chapter_4.pdf] (posted on Piazza).
 - ► This is the simplest of the three approaches, but also the least efficient (if it is implemented as part of an automated tool).
- <u>Approach 2</u>: We add **expansion rules** and **closure rules** to the two earlier methods, ground tableaux and free-variable tableaux, which can handle "≈".
 - ▶ A few pointers to *Approach 2* are given in the following slides.
- <u>Approach 3</u>: (Applicable to second tableau method, *free-variable tableaux*, only.) We take equalities and inequalities between terms into account when searching for substitutions to close paths, using what is called **E-unification** ("unification modulo an equational theory").
 - ► The most sophisticated of the three approaches and the most efficient in implementations. Nothing about E-unification in these slides (lack of time!).

Alternative ways of adding expansion/closure rules to the Approach 2:

For the *ground-tableaux* method, we can add what are called *Jeffrey's Rules* (3 rules):

$$\begin{array}{ccc}
\varphi(t) & \varphi(t) \\
\underline{t \approx s} & \underline{s \approx t} \\
\varphi(s) & \underline{\chi}
\end{array}$$

where $\{t,s\}$ are arbitrary ground terms, and wff $\varphi(s)$ is obtained by substituting s for one occurrence of t in wff $\varphi(t)$.

Alternative ways of adding expansion/closure rules to the Approach 2:

For the ground-tableaux method, we can add what are called Jeffrey's Rules (3 rules):

$$\begin{array}{ccc}
\varphi(t) & \varphi(t) \\
\underline{t \approx s} & \underline{s \approx t} \\
\varphi(s) & \underline{\gamma(t \approx t)}
\end{array}$$

where $\{t,s\}$ are arbitrary ground terms, and wff $\varphi(s)$ is obtained by substituting s for one occurrence of t in wff $\varphi(t)$.

For the ground-tableaux method, we can alternatively add Reeves' Rules (4 rules):

$$\frac{P(t_1,\ldots,t_n)}{\neg P(s_1,\ldots,s_n)} \qquad \frac{\neg (f(t_1,\ldots,t_n) \approx f(s_1,\ldots,s_n))}{\neg ((t_1 \approx s_1) \wedge \cdots \wedge (t_n \approx s_n))} \qquad \frac{t \approx s}{s \approx t} \qquad \frac{\neg (t \approx t)}{X}$$

where $\{t, s, t_1, \dots, t_n.s_1, \dots, s_n\}$ are arbitrary ground terms, P is an arbitrary n-ary predicate symbol, and f is an arbitrary n-ary function symbol.

example for *ground-tableaux* method (first TABLEAU method)

with *Jeffrey's Rules*: Prove validity of $\varphi \stackrel{\text{def}}{=} \exists x \forall y (x \approx y) \rightarrow \forall v \forall w (v \approx w)$

 φ is equivalent to $\neg(\exists x \forall y (x \approx y)) \lor \forall v \forall w (v \approx w)$

EXITIOODIVIOLEO	
(^)	$\frac{\varphi \wedge \psi}{\varphi}$ ψ
(¬∧)	$\frac{\neg(\varphi \wedge \psi)}{\neg \varphi \mid \neg \psi}$
÷	
(¬¬)	$\frac{\neg\neg\varphi}{\varphi}$
(A)	$\frac{\forall x \varphi(x)}{\varphi[x := t]}$
(∃)	$\frac{\exists x \varphi(x)}{\varphi[x := c]}$

EXPANSION RULES

example for *ground-tableaux* method (first TABLEAU method)

with *Jeffrey's Rules*: Prove validity of $\varphi \stackrel{\text{def}}{=} \exists x \forall y (x \approx y) \rightarrow \forall v \forall w (v \approx w)$

 φ is equivalent to $\neg(\exists x \forall y (x \approx y)) \lor \forall v \forall w (v \approx w)$

1:0
$$\neg (\neg (\exists x \forall y (x \approx y)) \lor \forall v \forall w (v \approx w))$$
2:1
$$\neg \neg \exists x \forall y (x \approx y)$$
3:1
$$\neg \forall v \forall w (v \approx w)$$
4:2
$$\exists x \forall y (x \approx y)$$
1
$$5:3 \quad \neg \forall w (a \approx w)$$
6:5
$$\neg (a \approx b)$$
1
$$7:4 \quad \forall y (c \approx y)$$
1
$$8:7 \quad (c \approx a)$$
1
$$9:7 \quad (c \approx b)$$
1
$$10:8,9 \quad (a \approx b)$$
1
$$11:10,6 \quad \neg (a \approx a)$$

EXPANSION RULES
$$(\land) \qquad \frac{\varphi \land \psi}{\varphi} \\ \psi \\ (\neg \land) \qquad \frac{\neg (\varphi \land \psi)}{\neg \varphi \mid \neg \psi} \\ \vdots \\ (\neg \neg) \qquad \frac{\neg \neg \varphi}{\varphi} \\ (\forall) \qquad \frac{\forall x \varphi(x)}{\varphi[x := t]} \\ (\exists) \qquad \frac{\exists x \varphi(x)}{\varphi[x := c]}$$

Alternative ways of adding expansion/closure rules to the Approach 2:

For the *free-variable* method, we can add what are called *Fitting's Rules* (3 rules):

$$1: \quad \frac{T}{\sigma(T) \oplus_{\pi} \varphi(s)} \qquad \pi \in \mathit{paths}(T), \quad \{\varphi(t), (t' \approx s)\} \subseteq \mathit{WFF's}(\pi), \quad \sigma = \mathit{MGU}(t, t')$$

$$2: \quad \frac{T}{\sigma(T) \oplus_{\pi} \varphi(s)} \qquad \pi \in \textit{paths}(T), \quad \{\varphi(t), (s \approx t')\} \subseteq \textit{WFF's}(\pi), \quad \sigma = \textit{MGU}(t, t')$$

$$3: \quad \frac{T}{\sigma(T) \oplus_{\pi} \times} \qquad \pi \in \mathit{paths}(T), \quad \{ \neg(t \approx t') \} \subseteq \mathit{WFF's}(\pi), \quad \sigma = \mathit{MGU}(t,t')$$

A simpler alternative to the third rule is:

$$3': \frac{T \oplus_{\pi} \neg (t \approx t')}{\sigma(T) \oplus_{\pi} \times} \qquad \pi \in paths(T), \quad \sigma = MGU(t, t')$$

Alternative ways of adding expansion/closure rules to the Approach 2:

For the *free-variable* method, we can add what are called *Fitting's Rules* (3 rules):

$$1: \quad \frac{T}{\sigma(T) \oplus_{\pi} \varphi(s)} \qquad \pi \in \mathit{paths}(T), \quad \{\varphi(t), (t' \approx s)\} \subseteq \mathit{WFF's}(\pi), \quad \sigma = \mathit{MGU}(t, t')$$

$$2: \quad \frac{T}{\sigma(T) \oplus_{\pi} \varphi(s)} \qquad \pi \in \textit{paths}(T), \quad \{\varphi(t), (s \approx t')\} \subseteq \textit{WFF's}(\pi), \quad \sigma = \textit{MGU}(t, t')$$

$$3: \quad \frac{T}{\sigma(T) \oplus_{\pi} \times} \qquad \pi \in \mathit{paths}(T), \quad \{ \neg(t \approx t') \} \subseteq \mathit{WFF's}(\pi), \quad \sigma = \mathit{MGU}(t,t')$$

A simpler alternative to the third rule is:

3':
$$\frac{T \oplus_{\pi} \neg (t \approx t')}{\sigma(T) \oplus_{\pi} \times} \qquad \pi \in paths(T), \quad \sigma = MGU(t, t')$$

For more details and elaboration on how to handle equality with tableaux for FOL, consult:

B. Beckert, "Semantic Tableaux with Equality," J. of Logic and Computation, 7(1):39-58, 1997.

