B.E. Second Semester (C.B.S.) / B.E. Second Semester (Fire Engineering)

Materials Chemistry Paper - III

P. Pages: 2 Time: Two Hours

KNT/KW/16/7204

Max. Marks: 40

Notes: 1. All questions carry marks as indicated.

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- Solve Question 5 OR Questions No. 6. 4.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Due credit will be given to neatness and adequate dimensions.
- Diagrams and chemical equations should be given whenever necessary. 7.
- Illustrate your answers whenever necessary with the help of neat sketches. 8.
- 9. Use of non programmable calculator is permitted.
- Discuss the reaction, Mechanism wherever necessary. 10.
- Calculate G.C.V. and N.C.V. of a gaseous fuel at S.T.P. from following data obtained during Boy's calorimeter experiment:

Vol. of gaseous fuel burnt at STP = $0.093 \,\mathrm{m}^3$

Weight of water used for cooling = 23.5 kg

Weight of steam condensed = 0.39 kg.

Temperature of inlet water = 24.1°C

Temperature of outlet water = 33.8° C

Latent Heat of water vapour condensed = 540 kcal/kg.

- Discuss the significance of ultimate analysis of coal. b)
- Describe the principles of Rocket Propulsion. c)

OR

- 2. Explain determination of calorific value of a solid fuel by using Bomb Calorimeter. a)
 - Write informative notes on any two: b)
 - i) **Biodiesel**
 - ii) Solar Energy
 - Classification of Rocket Propellants
- 3. a) A coal sample has following composition

$$C = 62.4\%$$
, $H = 4.1\%$, $O = 6.9\%$

$$N = 1.2\%$$
, $S = 0.8\%$, Moisture = 15.1%

and Ash = 9.5%

Calculate:

- Minimum air required in m³ at NTP for 1kg of this sample.
- q₀ composition of dry products by volume if 45% excess air is supplied. ii)
- Explain Fischer Tropsch Process for manufacturing of synthetic gasoline. b)

OR

KNT/KW/16/7204 P.T.O

4.	a)	What is Compression ratio? How does it affect the power output and efficiency of internal combustion engine?	3
	b)	What is catalytic cracking? Explain fluid bed catalytic cracking with a neat labeled diagram.	5
	c)	Write short note on any two:	4
		i) Cetane number.	
		ii) Antiknocking agents in petrol.	
		iii) Advantages of catalytic cracking over thermal cracking.	
5.	a)	What are greases? State the conditions under which they are used.	3
	b)	Give significance of following:	2
. /	1	1) Flash & fire point	
3	1.3	2) Cloud & Pour point	
	c)	A Lubricating oil has the same viscosity as standard naphthenic and paraffinic type oils at 210°F. Their viscosities at 100°F are 350 SUS, 480 SUS and 230 SUS respectively. Find the viscosity index of the oil.	3
		OR	
6.	a)	Explain mechanism of Boundary Lubrication.	3
	b)	What are the requisites of lubricants to be used in following machinery: 1) Refrigeration	3
		2) Steam Turbine	1)
	(U)	3) IC engine.	16
	c)	Explain Graphite as solid lubricant.	2
7.	a)	What are conducting polymers? Explain synthesis, properties and applications of Poly pyrrole.	4
	b)	State general properties and applications of Liquid Crystal Polymers.	3
	c)	Give synthesis and application of Polylactic acid as a biodegradable polymer.	3
		OR	
8.	a)	Give an account of applications of nanomaterials in Medicine and Environment.	4
6	b)	What are Carbon nanotubes? Explain its types.	3
	c)	Write the classification and application of composite materials.	3
