阥

K

 \mathbf{K}

盐

铋

昆 明 理 工 大 学 试 卷 (A)

考试科目: 大学物理 I 考试日期: 2015年6月24日 命题教师: 命题组

跖卫	选择题	填空题	计算题				3 A
题号			1	2	3	4	总分
评分							
阅卷人							

物理基本常量:

真空的磁导率: $\mu_0 = 4\pi \times 10^{-7}$ H/m; 真空的电容率 $\varepsilon_0 = 8.85 \times 10^{-12}$ F/m; 电子静止质量: $m_e = 9.11 \times 10^{-31}$ kg; 1 nm= 10^{-9} m; 1 eV = 1.602×10^{-19} J; 基本电荷: $e = 1.602 \times 10^{-19}$ C; 普朗克常数: $h = 6.63 \times 10^{-34}$ J·s 摩尔气体常数 R=8.31 J/mol·K

- 一、选择题 (每题 3 分,共 33 分) 答案请填在 [] 中 1、质点作曲线运动, \vec{r} 表示位置矢量, \vec{v} 表示速度, \vec{a} 表示加速度,s 表示路程, a_{t} 表示切向加速度。下列表达式中,正确的是: []
 - (A) ds/dt = v
- (B) dr/dt = v
- (C) dv/dt = a
- (D) $\left| \frac{d\vec{v}}{dt} \right| = a_{t}$
- 2、以下四种运动形式中,加速度 \bar{a} 保持不变的运动是: []
 - (A) 单摆的运动
- (B) 匀速率圆周运动

(C) 抛体运动

- (D) 行星的椭圆轨道运动
- 3、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴 O 旋转,初始状态为静止悬挂。现有一个小球自左方水平打击细杆。设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 []
 - (A) 只有机械能守恒
 - (B) 只有动量守恒
 - (C) 机械能、动量和角动量均守恒
 - (D) 只有对转轴O的角动量守恒

4、已知地球的质量为m,太阳的质量为M,地心与日心的距离为R,引力常数

- 为 G,则地球绕太阳作圆周运动时的轨道角动量为:

- (A) $Mm\sqrt{G/R}$ (B) $\sqrt{GMm/R}$ (C) $m\sqrt{GMR}$ (D) $\sqrt{GMm/2R}$
- 5、边长为a 的正方形薄板静止于惯性系K 的xov 平面内,且两边分别与x、v 轴 平行, 今有惯性系 K'以 0.8c (c 为真空中光速) 的速度相对于 K 系沿 x 轴作匀速直 线运动,则从 K'系测得薄板的面积为: []

- (A) $0.6a^2$ (B) $0.8a^2$ (C) a^2 (D) $a^2/0.6$
- 6、某核电站年发电量为 100 亿度, 它等于 36×10¹⁵ J 的能量, 如果这是由核材料的 全部静止能转化产生的,则需要消耗的核材料的质量为: []

 - (A) 12×10^7 kg (B) $(1/12)\times10^7$ kg (C) 0.8kg (D) 0.4kg
- 7、有一边长为 a 的正方形平面, 在其中垂线上距 中心 0 点 $\frac{a}{2}$ 处,有一电量为 q 的正点电荷,如图 所示,则通过该平面的电场强度通量为: []

- (A) $\frac{4}{6}\pi q$ (B) $\frac{q}{4\pi\varepsilon_0}$ (C) $\frac{q}{6\varepsilon_0}$ (D) $\frac{q}{3\pi\varepsilon_0}$

- (A) $\frac{-q}{8\pi\varepsilon_0 a}$ (B) $\frac{q}{8\pi\varepsilon_0 a}$ (C) $\frac{-q}{4\pi\varepsilon_0 a}$ (D) $\frac{q}{4\pi\varepsilon_0 a}$

- 9、电流由长直导线 1 沿切向经 a 点流入一个电阻均 匀分布的圆环,再由点 b 沿切向从圆环经长直导线 2 流出。已知直导线上的电流强度为I,圆环的半径为 R,且a、b和圆心O在同一直线上。设长直载流导线
- 1、2 和圆环在O点产生的磁感强度分别为 \vec{B}_1 、 \vec{B}_2 ,和

B ₃ ,则圆心处磁感强度的大小: []
(A) $B = 0$, $\exists heta B_1 = B_2 = B_3 = 0$
(B) $B \neq 0$,因为虽然 $B_3 = 0$,但 $\vec{B}_1 + \vec{B}_2 \neq 0$
(C) $B \neq 0$, 因为 $B_1 \neq 0$, $B_2 \neq 0$, $B_3 \neq 0$
(D) $B=0$,因为虽然 $B_1 \neq 0$, $B_2 \neq 0$, 但 $\vec{B}_1 + \vec{B}_2 = 0$, $B_3 = 0$
10、一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性均
匀电介质,则电场强度的大小 E 、电容 C 、电压 U 和电场能量 W 四个量各自与充
入介质前相比较,增大(↑)或减小(↓)的情形为:[
(A) $E \downarrow$, $C \uparrow$, $U \downarrow$, $W \downarrow$ (B) $E \uparrow$, $C \uparrow$, $U \uparrow$, $W \uparrow$
(C) $E \downarrow$, $C \uparrow$, $U \uparrow$, $W \downarrow$ (D) $E \uparrow$, $C \downarrow$, $U \downarrow$, $W \uparrow$
11、在自感系数 $L=0.05$ mH 的线圈中,流过 $I=0.8$ A 的电流。在切断电路后经
过 $t = 100$ μs 的时间,电流强度近似变为零,回路中自感电动势为: []
(A) $0.8V$ (B) $0.4V$ (C) $0.2V$ (D) $0.3V$
二、填空题(共 32 分)
1、质点沿半径为 R 的圆周运动,运动方程为 $\theta=2t^2+3$ (SI),则 t 时刻质点的法
向加速度大小为 $a_{\rm n}$ =
2、在 x 轴上作变加速直线运动的质点,已知其初速度为 v_0 ,加速度 $a=Ct^2$ (C
为常量),则其速度与时间的关系为 $v=$ (m/s)。
3、一水平的匀质圆盘,可绕通过盘心的竖直光滑固定轴自由转动。圆盘质量为 M ,
半径为 R ,对轴的转动惯量为 $\frac{1}{2}MR^2$,当圆盘以角速度 ω_0 转动时,有一质量为 m
的子弹沿盘的直径方向射入并嵌入在盘的边缘上。子弹射入后,圆盘的角速度
ω=。
4、已知惯性系S'相对于惯性系S以 $0.5c$ 的匀速度沿 x 轴的负方向运动,若从S'系的坐

标原点O'沿x轴正方向发出一束光波,则按爱因斯坦的相对论,在S系中的观察	È
者测得此光波的波速为。	
5、设某微观粒子的总能量是它的静止能量的 K 倍,则其运动速度的大小(请用真空中的光速 c 表示)为。	世
6 、在点电荷 $+ q$ 和 $- q$ 的静电场中,作出如图所示的三个闭合面 S_1 、 S_2 、 S_3 ,则	
通过这些闭合面的电场强度通量 $\iint_S \bar{E} \cdot d\bar{s}$ 分别是:	
$oldsymbol{\Phi}_1 = \underline{\hspace{1cm}}, \hspace{1cm} oldsymbol{\Phi}_2 = \underline{\hspace{1cm}}, \hspace{1cm} oldsymbol{\Phi}_3 = \underline{\hspace{1cm}}, \hspace{1cm} oldsymbol{S}_2 = \underline{\hspace{1cm}},$	
S_1 \sim^2 S_3 7、自感系数 $L=0.2$ H 的螺线管中通以 $I=4$ A 的电流时,螺线管存储的磁场能量	线
为 $W=$ (J)。	
8、两根长直导线通有电流 I ,图示有三种环路:在每种情况下, $\oint \vec{B} \cdot d\vec{l}$ 各等于:	
(对环路 a); (对环路 b); (对环路 c)。	丛
9、圆铜盘水平放置在均匀磁场中, B 的方向垂直盘面向上。当磁场随时间均匀减少时,从下往上看感应电动势的方向为,感生电场的方向为。(填	K
"顺时针"或"逆时针")。 $10、圆形平行板电容器,从q=0开始充电,充 电过程中,极板间某点P处电场强度\bar{E}的方$	得
电过程中,极极间来点 I 处电场强度 E 的为 $P^{lacktright}$ 向为,磁场强度 \bar{H} 的 \uparrow 方向为。	
三、 计算题 (共 35 分) 1、(10分)如图所示,设两重物的质量分别为 <i>m</i> ₁ 和 <i>m</i> ₂ ,且 <i>m</i> ₁ > <i>m</i> ₂ ,定滑轮的半径为 <i>r</i> ,对转轴的转动惯量为 <i>J</i> ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计。设开始时系统静止,试求(1)滑轮的角加速度α,(2)重物的加速度 <i>a</i> ,(3) <i>t</i> 时刻	裕

滑轮的角速度ω。

蹈

対

領

K

图

线

卦

(約

2、(10分) 一电容器由两个同轴圆筒组成,内筒半径为a,外筒半径为b,筒长都是L,内、外筒分别带有等量异号电荷+Q和-Q,设b-a<<a,L>>b,可以忽略边缘效应,求:(1) 半径r处(a<r<b) 的电场强度的大小E;(2) 两极板间电势差的大小U;(3) 圆柱形电容器的电容C;(4) 电容器贮存的电场能量W。

、(10 分)如图所示,一长直导线载有交流电流 $I=I_0\sin\omega t$,旁边有一矩形线 圈 ABCD,长为 l,宽为 b-a,线圈和导线在同一平面内,长边与导线平行,试 求: (1) 穿过回路 ABCD 的磁通量 Φ ; (2) 回路 ABCD 中的感应电动势 ε_i 。

、(5 分)设快速运动的 π 介子的能量约为 E=3000 MeV,而这种介子在静止时的能量为 E_0 =100MeV,若这种介子的固有寿命是 τ_0 = 2×10^{-6} s,求它在实验室中可以运动的距离。