决策树&随机森林

决策树模型

相比朴素贝叶斯分类,决策树的优势在于构造过程不需要任何领域知识或参数设置,因此在实际应用中,对于探测式的知识发现,决策树更加适用。

■□ 决策树的工作原理

这个女生的决策过程就是典型的分类决策树。相当于对年龄、外貌、收入和是否公务员等特征将男人分为两个类别:见或者不见。

母亲:给你介绍个对象。

女儿: 年纪多大了?

母亲: 26。

女儿:长的帅不帅?

母亲: 挺帅的。

女儿: 收入高不?

母亲:不算很高,中等情况。

女儿: 是公务员不?

母亲: 是, 在税务局上班呢。

女儿:那好,我去见见。

基本思想:通过一系列精心构思的关于属性的基本问题,可以解决分类问题。

每当一个问题得到答案,那么后续的问题也随之而来,直到找到 类标号。

■■ 决策树的工作原理

决策树模型呈树形结构,一种由结点和有向边组成的层次化结构。

■ 决策树的工作原理

分裂: 属性测试条件

■■不纯度

有很多度量可以用来确定划分记录的最佳方法,这些度量用划分前和划分后记录的类分布定义。

设p(i|t)表示给定结点t中属于类i的记录所占的比例。

• 熵: Entropy(t) =
$$-\sum_{i=0}^{c-1} p(i|t) \log_2 p(i|t)$$

• 基尼指数: $Gini(t) = 1 - \sum_{i=0}^{c-1} [p(i|t)]^2$

Classification error(t) = $1 - \max[p(i|t)]$

选择最佳划分的度量通常是根据划分后子女结点不纯性的程度。不纯的程度越低,类分布就越倾斜。

■ 信息增益-ID3

离散属性 a 的取值 $\{a^1, a^2, a^3, ... a^V\}$:

 D^{ν} : D 中在 a 上取值 = a^{ν} 的样本集合

以属性 a 对数据集 D 进行划分所获得的信息增益为:

$$Gain(D,a) = Ent(D) - \sum_{v=1}^{V} \frac{|D^v|}{|D|} Ent(D^v)$$
 划分前的信息熵 划分后的信息熵 第 v 个分支的权重,样本越多越重要

■ 信息增益-ID3

信息增益示例:

该数据集包含17个 训练样例,结果有2个类别|y| = 2,其中正例占 $P_1 = \frac{8}{17}$ 反例占 $P_2 = \frac{9}{17}$

根结点的信息熵为

$$Ent(D) = -\sum_{k=1}^{2} p_k log_2^{p_k}$$

$$= -\left(\frac{8}{17} log_2^{\frac{8}{17}} + \frac{9}{17} log_2^{\frac{9}{17}}\right) = 0.998$$

周志华老师《机器学习》西瓜数据集

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1 1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
- 8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沅闷	稍糊	稍凹	硬滑	
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白 .	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	,沉闷	稍糊	稍凹	硬滑	否

■ 信息增益-ID3

- 以属性 "色泽"为例,其对应的 3 个数据子集分别为 D^1 (色泽=青绿), D^2 (色泽=乌黑), D^3 (色泽=浅白)
- 子集 D^1 包含编号为 $\{1,4,6,10,13,17\}$ 的 6个样例,其中正例占 $p_1 = \frac{3}{6}$,反例占 $p_2 = \frac{3}{6}$, D^2 , D^3 同理,3个结点的信息熵为:

Ent(
$$D^1$$
) = $-(\frac{3}{6}\log_2\frac{3}{6} + \frac{3}{6}\log_2\frac{3}{6}) = 1.000$
Ent(D^2) = $-(\frac{4}{6}\log_2\frac{4}{6} + \frac{2}{6}\log_2\frac{2}{6}) = 0.918$
Ent(D^3) = $-(\frac{1}{5}\log_2\frac{1}{5} + \frac{4}{5}\log_2\frac{4}{5}) = 0.722$

• 属性"色泽"的信息增益为

Gain(D,色泽) = Ent(D) -
$$\sum_{v=1}^{3} \frac{|D^{v}|}{|D|}$$
Ent(D^v)
= $0.998 - (\frac{6}{17} \times 1.000 + \frac{6}{17} \times 0.918 + \frac{5}{17} \times 0.722)$
= 0.109

■■ 信息增益-ID3

• 同样的方法,计算其他属性的信息增益为

$$Gain(D, 根蒂) = 0.143$$
 $Gain(D, 敲声) = 0.141$ $Gain(D, 纹理) = 0.381$ $Gain(D, 脉部) = 0.289$ $Gain(D, 触感) = 0.006$

• 显然,属性"纹理"的信息增益最大,其被选为划分属性

■ 信息增益率-C4.5

信息增益率 (gain ratio): C4.5 中使用

信息增益的问题: 对可取值数目较多的属性有所偏好

例如:考虑将"编号"作为一个属性

信息增益率: $Gain_ratio(D, a) = \frac{Gain(D, a)}{IV(a)}$

其中
$$IV(a) = -\sum_{v=1}^{V} \frac{|D^v|}{|D|} \log_2 \frac{|D^v|}{|D|}$$

属性a 的可能取值数目越多(即 V 越大),则IV(a) 的值通常就越大

启发式: 先从候选划分属性中找出信息增益高于平均水平的, 再从中选取增益率最高的

■■ 基尼指数-CART

基尼指数 (gini index): CART 中使用

$$Gini(D) = \sum_{k=1}^{|\mathcal{Y}|} \sum_{k' \neq k} p_k p_{k'}$$

$$|\mathcal{Y}|$$

 $\operatorname{Gini}(D) = \sum_{k=1}^{|\mathcal{Y}|} \sum_{k' \neq k} p_k p_{k'}$ 反映了从 D 中随机抽取两个样例, 其类别标记不一致的概率

$$=1 - \sum_{k=1}^{|\mathcal{Y}|} p_k^2 \ .$$

 $=1-\sum_{k=0}^{|\mathcal{Y}|}p_k^2$. Gini(D) 越小,数据集 D 的纯度越高

属性a 的基尼指数:
$$\operatorname{Gini_index}(D,a) = \sum_{v=1}^{V} \frac{|D^v|}{|D|} \operatorname{Gini}(D^v)$$

在候选属性集合中, 选取那个使划分后基尼指数最小的属性

	二元的	分类的	连续的	类
Tid	有房者	婚姻状况	年收入	拖欠贷款者
1	是	单身	125K	否
2	否	己婚	100K	否
3	否	单身	70K	否
4	是	已婚	120K	否
5	否	离异	95K	是
6	否	已婚	60K	否
7	是	离异	220K	否
8	否	单身	85K	是
9	否	已婚	75K	否
10	否	单身	90K	是

最佳划分的度量-二元的
$$Gini = 1 - \left(\frac{0}{3}\right)^2 - \left(\frac{3}{3}\right)^2 = 0$$
= 元的 分类的 连续的 类

Gini =
$$1 - \left(\frac{3}{7}\right)^2 - \left(\frac{4}{7}\right)^2 = \frac{24}{49}$$

Gini =
$$\left(\frac{3}{10}\right) \times 0 + \left(\frac{7}{10}\right) \times \frac{24}{49} = \frac{12}{35}$$

■■ 最佳划分的度量-二元的

Gini =
$$1 - \left(\frac{2}{8}\right)^2 - \left(\frac{6}{8}\right)^2 = \frac{3}{8}$$

Tid	有房者	婚姻状况	年收入	拖欠贷款者
1	是	单身	125K	否
2	否	已婚	100K	否
3	否	单身	70K	香
4	是	已婚	120K	否
5	否	离异	95K	是
6	否	已婚	60K	否
7	是	离异	220K	否
8	否	单身	85K	是
9	否	已婚	75K	否
10	否	单身	90K	是

$$Gini = \left(\frac{4}{10}\right) \times 0 + \left(\frac{6}{10}\right) \times \frac{1}{2} = \frac{3}{10}$$

Gini =
$$1 - \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = \frac{1}{2}$$

Gini =
$$1 - \left(\frac{0}{4}\right)^2 - \left(\frac{4}{4}\right)^2 = 0$$

Gini =
$$1 - \left(\frac{3}{6}\right)^2 - \left(\frac{3}{6}\right)^2 = \frac{1}{2}$$

最佳划分的度量-连续的

对应的划分点,依次循环,计算对应的Gini指数

→ 进一步优化,只考虑类标签由跳转的情况。将候选划分点的个数,从11个下降到2个。

■■三种不同的决策树

• ID3:

取值多的属性,更容易使数据更纯,其信息增 益更大。

训练得到的是一棵庞大且深度浅的树:不合理。

• C4.5 采用信息增益率替代信息增益

• CART

以基尼系数替代熵 最小化不纯度,而不是最大化信息增益

建树和剪枝

■■建树

决策树归纳算法

决策树终止生长条件:同一类或者 小于某个阈值

```
TreeGrowth(E, F)
1: if stopping_cond(E, F) = true then
                               ▶创建叶结点
2:
    leaf = createNode()
                                添加叶结点的标签,通过Classfy()来计算占比
    leaf.label = Classify(E)
                                比较大的类,为该节点的标签。
4:
    return leaf
5: else
                            创建根结点
                                         选择要划分哪个属性, 以及属性划
    root = createNode()
7:
    root.test_cond = find_best_split(E, F)
                                         分条件
    令 V = \{v \mid v \neq v \text{ root.test\_cond} \text{ 的一个可能的输出}\}
                                               如果是CART,只有二路划分
    for 每个 v∈ V do
10:
    ▶ 递归调用,创建内部结点和叶结点
11:
     child = TreeGrowth(E_v, F)
     将 child 作为 root 的派生结点添加到树中,并将边(root-child)标记为 v
13:
    end for
14: end if
15: return root
```

■■剪枝

建立决策树之后,可以进行树剪枝以减小决策树的规模。决策树过大容易受所谓过分拟合现象的影响。 通过修建初始决策树的分支,剪枝有助于提高决策树的泛化能力。

先剪枝 (提前终止规则)

- □ 完全生成决策树之前就停止决策树的 生长。为了做到这一点,需要采用更 具有限制性的结束条件。
- □ 优点在于避免产生过分拟合训练数据 的过于复杂的子树。
- □ 很难为提前终止选择正确的阈值。阈值太高将导致拟合不足的模型,而阈值太低就不能充分地解决过分拟合的问题。

后剪枝

- □ 初始决策树按照最大规模生长,然后进行 剪枝的步骤。按照自底向上的方式修建完 全增长的决策树。
- □ 修剪有两种做法: (1) 用新的叶结点替换子树,该叶结点的类标号由树下记录中的多数类确定; (2) 用子树中最长使用的分支代替子树。
- □ 后剪枝技术倾向于产生更好的结果,因为不像先剪枝,后剪枝是根据完全增长的决策树做出的剪枝决策。
- □ 生长完全决策树的额外的计算就被浪费了。

优缺点

■ 优点

- 容易解释
- 不要求对特征做预处理
 - 能处理离散值和连续值混合的输入
 - 对特征的单调变换不敏感(只与数据的排序有关)
 - 能自动进行特征选择
 - 可处理缺失数据
- 可扩展到大数据规模

■■ 缺点

- 正确率不高: 建树过程过于贪心
 - 可作为Boosting的弱学习器 (深度不太深)
- 模型不稳定(方差大):输入数据小的变化会带来树结构的变化
 - Bagging: 随机森林
- 当特征数目相对样本数目太多时,容易过拟

Scikitlearn 中的决策树实现

Scikitlearn中的tree

- CART算法的优化实现
 - 建树:穷举搜索所有特征所有可能取值
 - 没有实现剪枝 (采用交叉验证选择最佳的树的参数)
 - 分类树: DecisionTreeClassifier
 - 回归树: DecisionTreeRegresso

DecisionTreeClassifier

- class sklearn.tree.DecisionTreeClassifier(criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_split=1e-07, class_weight=None, presort=False)
- 决策树算法特有的参数: criterion 、 splitter 、 max_depth 、 min_samples_split 、 min_samples_leaf 、 min_weight_fraction_leaf 、 max_features 、 max_leaf_nodes 、 min_impurity_split

参数	说明
criterion	用来权衡划分的质量。缺省 'gini': 即 Gini impurity。 或者 'entropy'
splitter	划分方式有三种:best, presort-best, random. 缺省:best
max_features	当进行best划分时,考虑的特征数目(个/比例). 缺省:None
max_depth	树的最大深度。缺省为:None
min_samples_split	对于一个中间节点(internal node),必须有min个samples才对它进行分割。缺省为:2
min_samples_leaf	每个叶子节点(left node),至少需要有min_samples_leaf个样本。缺省为:1
min_weight_fraction_leaf	叶子节点的样本权重占总权重的比例。缺省为:0
max_leaf_nodes	以最好优先(best-first)的方式使用该值生成树。如果为None:不限制叶子节点的数目。如果不为None,则忽略max_depth。缺省为:None
class_weight	每个类别的权重:{class_label: weight}。如果不给定,所有类别的权重均1. "balanced"模式:自动调整权重。n_samples / (n_classes * np.bincount(y))
random_state	随机种子
presort	是.否对数据进行预先排序,以便在fitting时加快最优划分。对于大数据集,使用False,对于 小数据集,使用True

随机森林

■■随机森林

- 回归树算法的缺点之一是高方差
- 一种降低算法方差的方式是平均多个模型的预测:
 - -Bagging
- 随机森林: Bagging多棵树

Bagging

- 袋装(Bagging)又称自助聚集
- 训练阶段
 - 使用自助抽样产生多个训练集
 - ◆ 有放回、等概率、等容量
 - ◆ 每个训练集跟原始数据集一样大
 - 在每个训练数据集上使用相同的算法建立基分类器
- 分类: X是待分类实例
 - 每个基分类器独立的对X产生预测,算作一票
 - 统计得票,并将X指派到得票最高的一类

■■随机森林

随机森林是专门为决策树分类器设计的集成方法。它组合多棵决策树,做出预测,其中每棵树都是基于随机向量的一个独立集合的值产生的。

- 选取的训练集数量等于样本 数量;
- 选取的特征数目: F=log2(d) +1 其中d是输入特征数目

■■随机森林

由于只是训练数据有一些不同,对回归树算法进行Bagging得到的多棵树高度相关,因此带来的方差减少有限。

- 随机森林通过
 - 随机选择一部分特征
 - 随机选择一部分样本
- 降低树的相关性
- 随机森林在很多应用案例上被证明有效,但牺牲了可解释性 森林:多棵树 随机:对样本和特征进行随机抽取

■ Scikitlearn中的RandomForest实现

sklearn.ensemble.RandomForestClassifier(n_estimators=10,criterion='gini',max_d epth=None,min_samples_split=2,min_samples_leaf=1,min_weight_fraction_leaf =0.0,max_features='auto',max_leaf_nodes=None,min_impurity_decrease=0.0,min_impurity_split=None,bootstrap=True,oob_score=False,n_jobs=1,random_state =None,verbose=0,warm_start=Fals e,class_weight=None)