High School Olympiads

Remove New Topic

Parallelogram to find angle

circumcircle geometry

parallelogram

Source: All Russian MO 2015, grade 10, problem 2

silouan

Aug 7, 2015, 5:38 pm

② ☑ PM #1

3804 posts

Given is a parallelogram ABCD, with AB < AC < BC. Points E and F are selected on the circumcircle ω of ABC so that the tangenst to ω at these points pass through point Dand the segments AD and CE intersect.

It turned out that $\angle ABF = \angle DCE$. Find the angle $\angle ABC$.

A. Yakubov, S. Berlov

vanstraelen

Aug 7, 2015, 10:20 pm

◎ ②PM #2

2804 posts

66 silouan wrote:

Given is a parallelogram ABCD, with AB < AC < BC. Points E and F are selected on the circumcircle ω of ABC so that the tangenst to ω at these points pass through point D and the segments AD and CE intersect.

It turned out that $\angle ABF = \angle DCE$. Find the angle $\angle ABC$.

Can this text be read as

Points E and F are selected on the circumcircle ω of ABC so that the tangents to ω at these points pass through point D and through the intersection of the segments AD and CE?

silouan 3804 posts Aug 8, 2015, 4:26 am

◎ ②PM #3

No, the text is as it was given. The meaning of the condition that AD and CE intersect is to avoid different configurations.

Luis González 3883 posts

Aug 9, 2015, 7:36 am

◎ ②PM #4

Denote by O the center of ω . Parallel from B to AC cuts DC,DA at Y,Z. Since ω becomes 9-point circle of $\triangle DYZ$, then it cuts DC again at the projection P of Z on DC. Since $\angle ABF = \angle DCE \Longrightarrow AF = EP \Longrightarrow AEFP$ is isosceles trapexoid with bases $EF \parallel AP \Longrightarrow DO \perp (EF \parallel AP) \Longrightarrow DO$ is perpendicular bisector of $\overline{AP} \Longrightarrow$ $DP = DA = AZ = AP \Longrightarrow \triangle DAP$ is equilateral $\Longrightarrow \angle ABC = \angle ADP = 60^{\circ}$.

Quick Reply

© 2016 Art of Problem Solving

Terms

Privacy

Contact Us

About Us

Copyright © 2016 Art of Problem Solving