1 Introduction

As an example of Metropolis method, in this assignment, I simulated 2-D Ising model in a rectangular lattice with periodic boundary condition.

$$energy = -J \sum_{j} \sum_{i < j} \sigma_i \sigma_j \tag{1}$$

where σ can be -1 or +1.

Probability has shown as Boltzmann function $e^{-\beta E}$ where β is proportional to inverse of temperature.

2 Algorithm

1. initial state:

$$grid = Rand((-1,1), size = (l * l)$$

- 2. Monte-Carlo steps:
 - (a) Randomly choose one element (S) in the grid for a change in its energy.
 - (b) E(S) = -E(S)
 - (c) check if this change can be accepted. if $\Delta E < 0$ then accept. else $Rand(0,1) < \frac{e^{-\beta E(s)}}{e^{-\beta E(i)}}$ then accept.
- 3. Loop (2).

In this assignment I simulate 2-D Ising model using mentioned algorithm, and calculate correlation length, magnetization, heat capacity, and magnetic susceptibility .

To speed up the algorithm, assume we want to change the energy of S_{ij} from E to -E. In this situation, $\Delta E = -2S_{ij}(S_{i+1j} + S_{i-1j} + S_{ij+1} + S_{ij-1})$. So, ΔE will be divisible to 2 and must be $\Delta E = (-8, -4, 0, 4, 8)$. We can calculate the Boltzmann factor for these five cases and call them during the main loop.