

An Introduction to X-Parameters*

ECE 451: Advanced Microwave Measurements

Thomas Comberiate

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

tcomber2@illinois.edu

*X-Parameters is a registered trademark of Agilent Technologies.

Scattering Parameters

$$A_{1} = \frac{(V_{\text{in}} + Z_{\text{c}}I_{\text{in}})}{2\sqrt{Z_{\text{c}}}} \quad A_{2} = \frac{(V_{\text{out}} + Z_{\text{c}}I_{\text{out}})}{2\sqrt{Z_{\text{c}}}}$$

$$B_{1} = \frac{(V_{\text{in}} - Z_{\text{c}}I_{\text{in}})}{2\sqrt{Z_{\text{c}}}} \quad B_{2} = \frac{(V_{\text{out}} - Z_{\text{c}}I_{\text{out}})}{2\sqrt{Z_{\text{c}}}} \quad \begin{array}{c} I_{\text{in}} \\ + \quad A_{1} \\ \hline V_{\text{in}} \\ - \quad B_{1} \end{array}$$

$$B_{1} = S_{11}A_{1} + S_{12}A_{2} \quad \begin{array}{c} I_{\text{out}} \\ + \quad A_{1} \\ \hline V_{\text{in}} \\ - \quad B_{1} \end{array}$$

$$B_{2} = S_{21}A_{1} + S_{22}A_{2} \quad \begin{array}{c} I_{\text{out}} \\ + \quad A_{1} \\ \hline V_{\text{in}} \\ - \quad B_{1} \\ \hline \end{array}$$

$$C = \text{characteristic impedance of the measurement system}$$

- Models all linear time-invariant behavior.
- Can model time-invariant nonlinear devices in the small-signal case.
- What about the large-signal case?

Nonlinear Functions with Single-Tone Stimuli

Nonlinear Functions with Multi-Tone Stimuli

Nonlinear Functions with Commensurate Tone Stimuli

- A set of pure tones are commensurate if all the tones in the set are located on a frequency grid $f_k = kf_0$ defined by f_0 , called the fundamental.
- Output tones will all land on the same frequency grid and have a same common period.

Nonlinear Scattering Waves

 Break incident and scattered waves into their commensurate tone components, called pseudowaves.

Z_C = characteristic impedance of the measurement system

$$B_1 = F_1(A_1, A_2)$$

$$B_2 = F_2(A_1, A_2)$$

$$B_{1,k} = F_{1,k}(A_{1,1}, A_{1,2}, A_{1,3}, ... A_{2,1}, A_{2,2}, A_{2,3}, ...)$$

$$B_{2,k} = F_{2,k}(A_{1,1}, A_{1,2}, A_{1,3}, ..., A_{2,1}, A_{2,2}, A_{2,3}, ...)$$

Cross-Frequency Phase for Commensurate Tones

- Defined as the phase of each pseudowave when the fundamental, A_{1,1}, has zero phase.
- $B_{2,3}$ can be related to $A_{2,2}$ in magnitude and phase.

Nonlinear Scattering Functions

$$B_{p,k} = F_{p,k}(A_{1,1}, A_{1,2}, A_{1,3}, ..., A_{2,1}, A_{2,2}, A_{2,3}, ...)$$

 Scattered pseudowave determined by a complicated time-invariant scattering function that depends on the magnitude and phase of each incident pseudowave.

Time-Invariance Property of Nonlinear Scattering Function

$$F_{p,k}(A_{1,1}e^{j\theta},A_{1,2}(e^{j\theta})^2,A_{1,3}(e^{j\theta})^3,...)$$

$$=F_{p,k}(A_{1,1},A_{1,2},A_{1,3},...)(e^{j\theta})^k$$

Shifting all of the inputs by the same time means that different harmonic components are shifted by different phases.

Defining Phase Reference

 Can use time-invariance to separate magnitude and phase dependence of one incident pseudowave.

$$B_{p,k} = F_{p,k}(A_{1,1}, A_{1,2}, A_{1,3}, ...)$$

$$= F_{p,k}(|A_{1,1}|, A_{1,2}P^{-2}, A_{1,3}P^{-3}, ...)P^{k}$$
Shifting reference to zero phase of $A_{1,1}$.
$$P = \frac{A_{1,1}}{|A_{1,1}|} = e^{j\arg(A_{1,1})}$$

$$0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad \frac{1}{1 \text{ time (ns)}} \quad 1.2 \quad 1.4 \quad 1.6 \quad 1.8 \quad 2$$

$$0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad \frac{1}{1 \text{ time (ns)}} \quad 1.2 \quad 1.4 \quad 1.6 \quad 1.8 \quad 2$$
T. M. Comberiate

Commensurate Tones X-Parameter Formalism

- Define $X_{p,k}^{(FB)}(|A_{1,1}|, A_{1,2}P^{-2}, A_{1,3}P^{-3},...)$ $= F_{p,k}(A_{1,1}, A_{1,2}, A_{1,3},...)P^{-k}$ $\downarrow \bigcup$ $B_{p,k} = X_{p,k}^{(FB)}(|A_{1,1}|, A_{1,2}P^{-2}, A_{1,3}P^{-3},...)P^{k}$
- · Still difficult to characterize this nonlinear term.
- If only one incident pseudowave, $A_{1,1}$, is large then the other smaller inputs can be linearized about the large-signal response of $F_{p,k}$ to only $A_{1,1}$.

Linearization of $F_{p,k}$ about $A_{1,1}$

$$B_{p,k} = F_{p,k} (|A_{1,1}|, A_{1,2}P^{-2}, ..., A_{1,K}P^{-K}, ...) P^{k}$$

$$\approx F_{p,k} (|A_{1,1}|, 0, ..., 0, ...) P^{k}$$

$$+\sum_{\substack{q=1,l=1\\(q,l)\neq 1}}^{q=N,l=K} \left[\frac{\partial F_{p,k}}{\partial (A_{q,l}P^{-l})} \Big|_{|A_{1,1}|} A_{q,l}P^{k-l} + \frac{\partial F_{p,k}}{\partial ((A_{q,l}P^{-l})^*)} \Big|_{|A_{1,1}|} A_{q,l}^*P^{k+l} \right]$$

1-Tone X-Parameter Formalism

Incident Waves

Approximates

Scattered Waves

frequency

T. M. Comberiate

frequency

1-Tone X-Parameter Formalism

Simple nonlinear map

Linear harmonic map function of incident wave

Linear harmonic map function of conjugate of incident wave

- X-parameters of type FB, S, and T fully characterize the nonlinear function.
- Depend on
 - frequency
 - large signal magnitude, $|A_{1,1}|$
 - DC bias

X-Parameters Collapse to S-Parameters in Small-Signal Limit

$$B_{p,k} \approx X_{p,k}^{(FB)} \cdot P^k + \sum_{\substack{q=1,\, l=1\\ (q,l) \neq (1,1)}}^{q=N,\, l=K} X_{p,k;q,l}^{(S)} \cdot A_{q,l} \cdot P^{k-l} + \sum_{\substack{q=1,\, l=1\\ (q,l) \neq (1,1)}}^{q=N,\, l=K} X_{p,k;q,l}^{(T)} \cdot A_{q,l}^* \cdot P^{k+l}$$

As $A_{I,I}$ shrinks, the conjugate terms and harmonic terms vanish:

$$B_{p,1} \approx X_{p,1}^{(FB)} \cdot P + \sum_{q=2}^{q=N} X_{p,1;q,1}^{(S)} \cdot A_{q,1}$$

Remove unnecessary harmonic index and assume 2-port:

$$B_1 \approx X_1^{(FB)} \cdot P + X_{1,2}^{(S)} \cdot A_2$$

 $B_2 \approx X_2^{(FB)} \cdot P + X_{2,2}^{(S)} \cdot A_2$

$$X_p^{(FB)} \cdot P = S_{p1} |A_1| P = S_{p1} A_1$$
 for small A_1 and $P \equiv \arg(A_1)$:
 $B_1 = S_{11} A_1 + S_{12} A_2$

$$B_2 = S_{21}A_1 + S_{22}A_2$$

T. M. Comberiate

Generating X-Parameters

- Traditional Generation
 - Simulated using harmonic balance.
 - Measured with a nonlinear vector network analyzer (NVNA).

Harmonic Balance

Assume nodal voltages can be represented with Fourier series and solve for the Fourier coefficients.

$$V(t) = \text{Re} \left[\sum_{k_1=0}^{K_1} \sum_{k_2=0}^{K_2} \cdots \sum_{k_n=0}^{K_n} V_{k_1,k_2,\dots,k_n} e^{j2\pi(k_1f_1+\dots+k_nf_n)t} \right]$$

ECE 451 T. M. Comberiate 17

ECE 451

18

Generating X-Parameters with Harmonic Balance

- Need to set proper values for:
 - Frequency range
 - Fundamental power
 - DC bias
- X-parameter measurements are unidirectional because of large-signal fundamental $|A_{1,1}|$ on one port.
- Different types of X-parameter ports:

X-Parameter Generation Example

Nonlinear Vector Network Analyzer (NVNA)

PNA-X

- Four ports.
- Two filtered microwave sources.
- Microwave combiner.

Amplitude Calibration

- Necessary for any nonlinear measurement because linear property of homogeneity does not apply.
- Measures power and is controlled via GPIB.

Phase Calibration

- Enables cross-frequency phase measurement.
- Takes frequency input from external microwave source.

ECE 451

T. M. Comberiate

23

Vector Calibration

- Can use ECal.
- Based on eight-term error model.
- Works for forward, reverse, and combined stimuli.

Large-Signal X-Parameter Extraction

- Apply large-signal stimulus $A_{1,1}$ without any small-signal stimulus.
- Measure the response at all ports and harmonics of interest.
- $X_{p,k}^{(FB)}$ term is the measured response to the large-signal stimulus at port p and harmonic k

Offset-Phase Small-Signal X-Parameter Extraction

- Apply large-signal stimulus $A_{1,1}$ and one small-signal stimulus $A_{q,l}$ at zero phase.
- Measure the response at all ports and harmonics of interest.
- Apply large-signal stimulus $A_{1,1}$ and one small-signal stimulus $A_{q,l}$ at 90° phase.
- Measure the response at all ports and harmonics of interest.
- Use both measurements to extract

$$X_{p,k;q,l}^{(S)}$$
 and $X_{p,k;q,l}^{(T)}$.

Using X-Parameters

- Traditional Uses
 - Modeling mixers and amplifiers in steadystate simulations for RF systems.
 - Can be used to determine nonlinear figures of merit.
 - 1-dB Compression Point
 - AM/AM and AM/PM
 - Third Order Intercept

behavior at internal node.

Cascading S-Parameter Blocks

ECE 451 T. M. Comberiate 27

Cascading X-Parameter Blocks

These equations a the internal node must always be satisfied:

$$B_{1,k}^{(1)} = A_{1,k}^{(2)},$$

 $A_{1,k}^{(2)} = B_{2,k}^{(1)}$
for all values of k .

ECE 451

T. M. Comberiate

Using X-Parameters in Simulation

Can construct entire receiver chains made of S- and X-parameter blocks.

X-Parameter Extensions

- Multiple Large Signals
- DC Components of Scattered Waves
 - DC current port bias: $X^{(Z)}_{p,k}$
 - DC voltage port bias: $X^{(Y)}_{p,k}$
- Memory Effects