

Aufgabenblatt 5

Statistik - Sommersemester 2024 - Prof. Dr. Sandra Eisenreich

Aufgabe 1. *

- (a) Sie werfen 20 mal mit einer Münze und bekommen 6-mal Kopf, 14-mal Zahl. Was ist das statistische Modell, und was ist der Maximum Likelihood Schätzwert für die Wahrscheinlichkeit *p* von Zahl?
- (b) Sie würfeln 20mal mit einem Würfel und erhalten 3-mal eine 1, 6-mal eine 2, 2-mal eine 3, 3-mal eine 4, 2-mal eine 5, und 4-mal eine 6. Was ist Ihr Schätzwert für den Erwartungswert der Zufallsvariable *X* = "Augenzahl bei einem Mal Würfeln"?
- (c) Wie ist der Schätzer für den Mittelwert definiert, wenn X_i das Ergebnis des i-ten Würfelns ist?

Aufgabe 2.

10-maliges Würfeln mit 2 Würfeln ergibt die Paare (2,4), (5,6), (2,2), (6,2), (2,6), (5,1), (5,6), (6,4), (4,4), (3,1).

- Berechnen Sie Mittelwert und Varianz für die Augensummen dieser Stichprobe.
- Geben Sie einen Schätzwert für die Wahrscheinlichkeit eines "Pasches" an.
- Geben Sie einen Schätzwert für den Erwartungswert der Augensumme ab.
- Geben Sie einen Schätzwert für die Varianz der Augensumme ab.
- Zeigen Sie, dass bei idealen Würfeln die Wahrscheinlichkeit, dass bei 10 Würfen 0, 1 oder 2 Pasch vorkommen, bei über 75% liegt.
- Wie lange müssen Sie durchschnittlich auf einen Pasch warten?

Aufgabe 3.

Die Zufallsvariable X sei poissonverteilt mit unbekanntem Parameter λ . Ihnen liegt folgende Stichprobe vor: x = (3,4,5,7,6) Was ist der Maximum Likelihood Schätzwert für den Parameter λ = Erwartete Anzahl der Vorkommnisse? Gehen Sie dabei wie folgt vor:

- Wie ist die Poisson-Verteilung definiert?
- Berechnen Sie aus der Stichprobe x die Loglikelihood Funktion LL_x in Abhängigkeit von λ .
- Leiten Sie die Loglikelihood Funktion $LL_x(\lambda)$ nach zweimal nach λ ab.
- Berechnen Sie die Nullstellen von $LL'_x(\lambda)$ und prüfen Sie nach, welche davon Maxima von LL_x sind.
- Das Maximum ist der Likelihood Schätzwert für λ .

Aufgabe 4.

Die Zufallsvariable X bezeichne die Wartezeit im Wartezimmer Ihres Hausarztes. Wir nehmen an, X ist exponentialverteilt mit unbekanntem Parameter $\lambda > 0$. Die letzten 5 Mal, als Sie beim Arzt waren, haben Sie 15, 20, 21, 16 und 13 Minuten warten müssen. Berechnen Sie den Maximum-Likelihood Schätzwert für λ anhand dieser Stichprobe. Gehen Sie dabei wie folgt vor:

- Wie ist die Dichte der Exponentialverteilung definiert?
- Berechnen Sie aus der Stichprobe x die Loglikelihood Funktion LL_x zur Dichte in Abhängigkeit von λ .
- Leiten Sie die Loglikelihood Funktion $LL_x(\lambda)$ nach zweimal nach λ ab.
- Berechnen Sie die Nullstellen von $LL'_x(\lambda)$ und prüfen Sie nach, welche davon Maxima von LL_x sind.
- Das Maximum ist der Likelihood Schätzwert für λ .

Wie lange müssen Sie im Schnitt bei Ihrem Hausarzt warten?

Aufgabe 5.

Wir führen Lineare Regression an einem einfachen Beispiel aus. Gegeben sei folgende drei Datenpunkte: $((x_1,y_1),(x_2,y_2),(x_3,y_3))=((1,1),(2,2),(3,1)).$

- Malen Sie zuerst die Punkte auf und begründen Sie grafisch, warum die "Durschnittsgerade" parallel zur *x*-Achse sein muss. Hinweis: Symmetrie.
- Beschreiben Sie diese Gerade $f_{\theta}(x)$ mit nur einem Parameter θ .
- Als zugrundeliegende Wahrscheinlichkeitsverteilung nehmen wir dann die Normalverteilung $N(y|f_{\theta}(x),1)$ an. Berechnen Sie die Loglikelihood-Funktion zur Stichprobe $\{(1,1),(2,2),(3,1)\}$.
- Berechnen Sie daraus den Maximum Likelihood-Schätzwert für θ .
- *** Angenommen, wir nehmen für θ die a-priori-Verteilung $P(\theta) = \mathcal{N}(0,1)$ an. Was ist dann der Maximum A Posteriori Schätzwert für θ ?