LINEAR

MODELS

Introduction

- n (explanatory) variables x_1, \ldots, x_n
- n response variables y_1, \ldots, y_n

Problem Statement

• find f(x) to match data and give good prediction

How to choose y=f(x)?

• minimize errors $e_i = |f(x_i) - y_i|$

Error Criteria

• minimize errors

Minimize:
$$Err(x) = \frac{1}{2}e_i^2$$

Polynomial Functions

$$f(x,W) = w_n x^n + w_{n-1} x^{n-1} + \dots + w_1 x + w_0$$

- $\bullet n$ is the degree
- $W = (w_n, w_{n-1}, \dots, w_1, w_0)$ weights
- linear in W:

$$f(x, W_1 + W_2) = f(x, W_1) + f(x, W_2)$$

- not linear in x (for n > 1): $f(x+z,W) \neq f(x,W) + f(z,W)$
- linear models vs. linear functions

Example: Polynomials

- how to address underfitting?
- increase model complexity

Python Code

```
import numpy as np
from sklearn.metrics import mean_squared_error, r2_score
x = np.array([1, 2, 3, 4, 6, 8])
y = np.array([1, 1, 5, 8, 3, 5])
degree = 1
weights = np.polyfit(x,y, degree)
model = np.poly1d(weights)
predicted = model(x)
rmse = np.sqrt(mean_squared_error(y,predicted))
r2 = r2_score(y,predicted)
> weights
weights: [ 0.47058824 1.95098039]
> model(9)
6.18627
> rmse
2.20997441798
```

0.204418418951

>r2

Linear Polynomial

rmse = $2.21, r^2 = 0.20, y_7 = 6.18$

Python Code

```
import numpy as np
import matplotlib.pyplot as plt
x = np.array([1, 2, 3, 4, 6, 8])
y = np.array([1, 1, 5, 8, 3, 5])
id_list = ['1','2','3','4','5','6']
degree = 1
weights = np.polyfit(x,y, degree)
model = np.poly1d(weights)
x_{points} = np.linspace(0.75, 9.5, 1000)
y_points = model(x_points)
ax, fig = plt.subplots()
plt.xlim(0, 10)
plt.ylim(0, 10)
plt.xlabel('X')
plt.ylabel('Y', rotation=0)
plt.plot(x_points, y_points, lw=4, color='blue')
plt.scatter(x, y, color='black', s=200)
for i, txt in enumerate(id_list):
    plt.text(x[i]+0.2, y[i]+0.2, txt, fontsize=10)
x_new = 9
y_new = model(x_new)
plt.scatter(x_new, y_new, color='blue', edgecolor='k', s=400)
plt.plot([x_new, x_new],[0, y_new], color='black', ls='dotted')
plt.text(x_{new} + 0.4, y_{new} + 0.2, '7', fontsize=10)
plt.show()
```

Linear Polynomial with Noise

rmse =
$$2.18, r^2 = 0.16, y_7 = 5.86$$

0.161827384707

Python Code

```
import numpy as np
from sklearn.metrics import mean_squared_error, r2_score
x = np.array([1, 2, 3, 4, 6, 8])
y = np.array([1, 1, 5, 8, 3, 5])
noise = np.random.normal(loc=0, scale=0.1, size=(6,))
y = y + noise
weights = np.polyfit(x,y, degree)
model = np.poly1d(weights)
predicted = model(x)
rmse = np.sqrt(mean_squared_error(y,predicted))
r2 = r2_score(y,predicted)
> weights
weights: [ 0.4018573  2.24487251]
> model(9)
5.86158818758
> rmse
2.17709017809
>r2
```

Quadratic Polynomial

$$rmse = 1.79, r^2 = 0.48, y_7 = 2.43$$

Python Code

```
import numpy as np
from sklearn.metrics import mean_squared_error, r2_score

x = np.array([1, 2, 3, 4, 6, 8])
y = np.array([1, 1, 5, 8, 3, 5])
degree = 2
weights = np.polyfit(x,y, degree)
model = np.poly1d(weights)
predicted = model(x)
rmse = np.sqrt(mean_squared_error(y,predicted))
r2 = r2_score(y,predicted)
```

- > weights
- [-0.26774648 2.89605634 -1.94971831]
- > model(9)
- 2.42732394366
- > rmse
- 1.79461243805
- >r2
- 0.475371869224

Quadratic Polynomial with Noise

$$rmse = 1.71, r^2 = 0.48, y_7 = 1.93$$

Cubic Polynomial

$$rmse = 1.62, r^2 = 0.58, y_7 = 6.48$$

Python Code

```
import numpy as np
from sklearn.metrics import mean_squared_error, r2_score

x = np.array([1, 2, 3, 4, 6, 8])
y = np.array([1, 1, 5, 8, 3, 5])
degree = 3
weights = np.polyfit(x,y, degree)
model = np.poly1d(weights)
predicted = model(x)
rmse = np.sqrt(mean_squared_error(y,predicted))
r2 = r2_score(y,predicted)
> weights
```

- [0.08811052 -1.44167642 7.22280401 -5.9]
- > model(9)
- 6.4812020294
- > rmse
 - 1.61723561985
- >r2
- 0.573953675095

Cubic Polynomial with Noise

$$rmse = 1.62, r^2 = 0.53, y_7 = 4.67$$

Degree 4 Polynomial

$$rmse = 0.06, r^2 = 0.99, y_7 = 28.40$$

Python Code

```
import numpy as np
from sklearn.metrics import mean_squared_error, r2_score
x = np.array([1, 2, 3, 4, 6, 8])
y = np.array([1, 1, 5, 8, 3, 5])
degree = 4
weights = np.polyfit(x,y, degree)
model = np.poly1d(weights)
predicted = model(x)
rmse = np.sqrt(mean_squared_error(y,predicted))
r2 = r2_score(y,predicted)
> weights
\begin{bmatrix} 0.13271053 & -2.26207602 & 12.38399123 \end{bmatrix}
 -23.39108187 14.15189474
> model(9)
28.3957894737
> rmse
0.0594811877479
>r2
0.999423672303
```

Degree 4 Polynomial with Noise

$$rmse = 0.05, r^2 = 0.99, y_7 = 26.71$$

Degree 5 Polynomial

$$rmse = 0.06, r^2 = 0.99, y_7 = 34.0$$

0.999423672303

Python Code

```
import numpy as np
from sklearn.metrics import mean_squared_error, r2_score
x = np.array([1, 2, 3, 4, 6, 8])
y = np.array([1, 1, 5, 8, 3, 5])
degree = 5
weights = np.polyfit(x,y, degree)
model = np.poly1d(weights)
predicted = model(x)
rmse = np.sqrt(mean_squared_error(y,predicted))
r2 = r2_score(y,predicted)
> weights
[ 6.54761905e-03 -4.76190476e-03 -1.21
 8.79761905e+00 -1.80452381e+01 1.145
> model(9)
34.0
> rmse
0.0594811877479
>r2
```

Degree 5 Polynomial with Noise

$$rmse = 0.05, r^2 = 0.99, y_7 = 22$$

Comparing Polynomial Fitting

Comparing Polynomial Fitting with Noise

Comparing Polynomial Fitting

degree	RMSE	r^2	prediction $f(x_7)$
1	2.21	0.20	6.18
2	1.79	0.48	2.43
3	1.62	0.58	6.48
4	0.06	0.99	28.40
5	0.06	0.99	34.0

- hor higher degree, we capture existing data
- but unable to generalize well
- bias vs. variance trade-off

Effect of Noise

degree	original data: $y(x)$	$y(x_7)$
1	0.47x + 1.95	6.18
2	$-0.27x^2 + 2.90x - 1.95$	2.43
3	$0.09x^3 - 1.44x^2 + 7.22x - 5.98$	6.48
4	$0.13x^4 - 2.26x^3 + 12.38x^2 - 23.39x + 14.15$	28.40
5	$6.55x^5 - 4.76x^4 + 1.21x^3 + 8.80x^2 - 1.80x + 1.15$	34.0
degree	Noisy data: $z(x)$	$z(x_7)$
1	0.40x + 2.24	5.86
2	$-0.28x^2 + 2.94x - 1.83$	1.93
3	$0.06x^3 - 1.07x^2 + 5.86x - 4.56$	4.67
4	$0.13x^4 - 2.30x^3 + 12.83x^2 - 24.93x + 15.69$	26.71
5	$-0.05x^5 + 0.24x^4 - 3.15x^3 + 1.57x^2 - 2.92x + 1.79$	22.20

- small variations could result in large changes in high-degree coefficients
- difficult to generalize

Bias vs. Variance

$$Err(x) = Bias^2 + Variance$$

+ Irreducible Error

- bias: measures accuracy of average prediction
- variance: measures sensitivity to data set
- models trade bias and variance

Bias vs. Variance

low bias, low variance

low bias, high variance

high bias, low variance

high bias, high variance

• ideal: low variance, low bias

Underfitting

degree	original data: $y(x)$	$y(x_7)$
1	0.47x + 1.95	6.18
degree	Noisy data: $z(x)$	$z(x_7)$
1	0.40x + 2.24	5.86

• high bias, low variance

Bias vs. Variance

degree	original data: $y(x)$	$y(x_7)$
3	$0.09x^3 - 1.44x^2 + 7.22x - 5.98$	6.48
_		
degree	Noisy data: $z(x)$	$z(x_7)$

• low bias, high variance

Overfitting

degree	original data: $y(x)$	$y(x_7)$
5	$6.55x^5 - 4.76x^4 + 1.21x^3 + 8.80x^2 - 1.80x + 1.15$	34.0
degree	Noisy data: $z(x)$	$z(x_7)$
5	$-0.05x^5 + 0.24x^4 - 3.15x^3 + 1.57x^2 - 2.92x + 1.79$	22.20

• high bias, low variance

How to Choose Polynomial Models

- want to avoid high degree polynomials
 - 1. choose a class such as linear functions
 - 2. use regularization to lower coefficients

$$Err(x) = \frac{1}{2}e_i^2 + \frac{\lambda}{2}|W|^2$$

Concepts Check:

- (a) linear functions vs. linear models
- (b) polynomial functions
- (c) fitting with polynomials
- (d) effect of noise
- (e) bias vs. variance
- (f) overfitting
- (g) trade-offs in linear models