NEURONALE NETZE

Handschriftliche Zahlen erkennen

Jasper Gude

28. November 2023 Carl-Friedrich-Gauß-Gymnasium

2.1 Modellierung des Problems

2.2 Modellierung des Problems

2.3 Modellierung des Problems

3.1 Überführung auf eine Netzstruktur

28px × 28px

3.2 Überführung auf eine Netzstruktur

Modellierung

3.3 Überführung auf eine Netzstruktur

3.4 Überführung auf eine Netzstruktur

3.5 Überführung auf eine Netzstruktur

4.1 Gewichtungen setzen

Inputs

Gewichte

Linearkombination

$$w_0x_0+w_1x_1+\cdots+w_nx_n$$

(

Modellierung

>

4.2 Gewichtungen setzen

Linearkombination

$$w_0x_0+w_1x_1+\cdots+w_nx_n$$

4.3 Gewichtungen setzen

Inputs

Gewichte

Linearkombination

$$w_0x_0+w_1x_1+\cdots+w_nx_n$$

<

Modellierung

>

4. Gewichtungen setzen

Inputs

Gewichte

Linearkombination

$$w_0x_0+w_1x_1+\cdots+w_nx_n-b$$

0

Modellierung

>

5 Zahlenbereich begrenzen

6.1 Alles zusammen setzen

Aktivierungsfunktion

$$a_0^{(1)} = \sigma(w_0^{(0)}a_0 + w_1^{(0)}a_1 + \dots + w_n^{(0)}a_n - b)$$

6.2 Alles zusammen setzen

Aktivierungsfunktion

$$a_0^{(1)} = \sigma(w_0^{(0)}a_0 + w_1^{(0)}a_1 + \dots + w_n^{(0)}a_n - b)$$

$$\begin{bmatrix} a_0^{(1)} \\ a_1^{(1)} \\ \vdots \\ a_n^{(1)} \end{bmatrix} = \sigma \left(\begin{bmatrix} w_{0,0} & w_{0,1} & \cdots & w_{0,n} \\ w_{1,0} & w_{1,1} & \cdots & w_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{k,0} & w_{k,1} & \cdots & w_{k,n} \end{bmatrix} \begin{bmatrix} a_0^{(0)} \\ a_1^{(0)} \\ \vdots \\ a_n^{(0)} \end{bmatrix} + \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_k \end{bmatrix} \right)$$

6.3 Alles zusammen setzen

Aktivierungsfunktion

$$\vec{a^{(1)}} = \sigma(W\vec{a^{(0)}} + \vec{b})$$

$$\begin{bmatrix} a_0^{(1)} \\ a_1^{(1)} \\ \vdots \\ a_n^{(1)} \end{bmatrix} = \sigma \left(\begin{bmatrix} w_{0,0} & w_{0,1} & \cdots & w_{0,n} \\ w_{1,0} & w_{1,1} & \cdots & w_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{k,0} & w_{k,1} & \cdots & w_{k,n} \end{bmatrix} \begin{bmatrix} a_0^{(0)} \\ a_1^{(0)} \\ \vdots \\ a_n^{(0)} \end{bmatrix} + \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_k \end{bmatrix} \right)$$

7.1 Fehler bestimmen

7.2 Fehler bestimmen

Jasper Gude

Hockenheim, 28. November 2023