ES704 – Instrumentação Básica

05 – Medição de temperatura

Eric Fujiwara

Unicamp - FEM - DSI

Índice

Índice:

- 1) Termômetro de expansão térmica;
- 2) Termorresistor;
- 3) Termopar;
- 4) Termômetro de radiação;
- 5) Outros métodos;
- Questionário;
- Referências;
- Exercícios.

1. Termômetro de expansão térmica

1.1. Termômetro de líquido em vidro:

- O líquido armazenado no bulbo sofre expansão volumétrica com o aumento da temperatura T. O deslocamento linear sobre o capilar indica o valor de T;
- Tipos de termômetros:
 - · Imersão total;
 - Imersão parcial;
 - Imersão completa.

1. Termômetro de expansão térmica

1.2. Termômetro bimetálico:

- Formado por materiais com coeficientes de expansão térmica dissimilares, causando curvatura da estrutura, posteriormente convertida em deslocamento sobre uma escala;
- Tipos de termômetros:
 - · Helicoidal;
 - Espiral.

1. Termômetro de expansão térmica

1.2. Termômetro bimetálico:

Helicoidal e espiral.

2. Termorresistor

• 2.1. RTD:

- Termorresistor (RTD): dispositivo condutor cuja resistividade ρ varia com a temperatura.
 - O condutor (fio metálico) é instalado em um suporte isolante, e então encapsulado para proteger o fio dos efeitos do ambiente.

RTD (Resistance Temperature Detector)

2. Termorresistor

2.1. RTD:

Variação linear da resistência elétrica:

$$R(T) = R_0[1 + \alpha(T - T_0)]$$
 (5.1)

- Onde R₀ e T₀ são valores de referência;
- O material mais utilizado é a platina, devido à alta sensibilidade e faixa de operação;
- RTDs são interrogados com ponte de Wheatstone.

Table 8.2 Temperature Coefficient of Resistivity for Selected Materials at 20°C

Substance	$\alpha \ [^{\circ}C^{-1}]$
Aluminum (Al)	0.00429
Carbon (C)	-0.0007
Copper (Cu)	0.0043
Gold (Au)	0.004
Iron (Fe)	0.00651
Lead (Pb)	0.0042
Nickel (Ni)	0.0067
Nichrome	0.00017
Platinum (Pt)	0.003927
Tungsten (W)	0.0048

2. Termorresistor

2.2. Termistor:

- Dispositivo semicondutor, pode apresentar coeficiente de temperatura negativo (NTC) ou positivo (PTC);
- Variação não-linear da resistência com a temperatura:

$$R(T) = R_0 \exp\left[\beta \left(\frac{1}{T} - \frac{1}{T_0}\right)\right] \tag{5.2}$$

3.1. Termopar:

- Circuito composto por 2 condutores elétricos de materiais dissimilares, sendo que eles possuem pelo menos uma conexão elétrica;
 - Junção: conexão elétrica entre os materiais, obtida por solda ou outro tipo de contato;
 - A tensão de saída do circuito do termopar é função da temperatura da junção.

• 3.1. Termopar:

Tipos de termopares:

Table 8.4 Thermocouple Designations

Material Combination			
Type	Positive	Negative	Applications
E	Chromel(+)	Constantan(-)	Highest sensitivity (<1000°C)
J	Iron(+)	Constantan(-)	Nonoxidizing environment (<760°C)
K	Chromel(+)	Alumel(-)	High temperature (<1372°C)
S	Platinum/ 10% rhodium	Platinum(-)	Long-term stability high temperature (<1768°C)
T	Copper(+)	Constantan(-)	Reducing or vacuum environments (<400°C)

3.1. Termopar:

Tipos de termopares:

Table 8.5 Standard Thermocouple Compositions^a

Туре	Wire		
	Positive	Negative	Expected Systematic Uncertainty ^b
S	Platinum	Platinum/10% rhodium	±1.5°C or 0.25%
R	Platinum	Platinum/13% rhodium	±1.5°C
В	Platinum/30% rhodium	Platinum/6% rhodium	$\pm 0.5\%$
T	Copper	Constantan	± 1.0 °C or 0.75%
J	Iron	Constantan	$\pm 2.2^{\circ}$ C or 0.75%
K	Chromel	Alumel	± 2.2 °C or 0.75%
E	Chromel	Constantan	$\pm 1.7^{\circ}$ C or 0.5%
Alloy Des	signations		

Constantan: 55% copper with 45% nickel Chromel: 90% nickel with 10% chromium

Alumel: 94% nickel with 3% manganese, 2% aluminum, and 1% silicon

^aFrom Temperature Measurements ANSI PTC 19.3-1974.

^bUse greater value; these limits of error do not include installation errors.

3.2. Efeito termoelétrico:

- Quando um condutor elétrico é submetido a um gradiente de temperaturas, ocorrem fluxos de energia térmica e de energia elétrica;
- Este efeito pode ser explorado para obter a relação entre a emf e a diferença de temperaturas nas junções;
- Em um circuito com termopar, ocorrem 3 efeitos:
 - 1) Efeito Seebeck;
 - 2) Efeito Peltier;
 - 3) Efeito Thomson.

3.2. Efeito termoelétrico:

- Efeito Seebeck: a emf é gerada pela diferença de temperatura entre as junções do circuito. A emf só depende da temperatura nas extremidades do condutor, e não do gradiente de temperatura ou distância entre as extremidades;
- Efeito Peltier: uma corrente conduzida na junção gera dissipação de potência por efeito Joule → absorver ou dissipar potência na outra junção para manter o equilíbrio térmico;
- **Efeito Thomson:** dissipação de potência devido ao gradiente de temperaturas ao longo do condutor;
- Se a corrente é nula (tensão de circuito aberto), somente o efeito Seebeck é considerado.

3.3. Leis dos termopares:

- Circuito de termopares: Seja um circuito de termopar com duas junções, utilizado para media a diferença entre as temperaturas T_1 e T_2 ;
 - A junção de referência é mantida a uma temperatura constante previamente conhecida (T_2) ;
 - A **junção de medição** é utilizada para medir uma temperatura desconhecida (T_1) com base na emf obtida.

- 3.3. Leis dos termopares:
 - 1) Lei dos materiais homogêneos: são necessários pelos menos dois materiais condutores para construir um circuito de termopar;
 - 2) Lei dos materiais intermediários: a emf produzida por junções parasitas (fio de cobre) são anuladas na emf de saída do termopar;
 - 3) Lei das temperaturas intermediárias: seja e_{12} a emf da junção T_1 com referência T_2 , e e_{23} a emf junção T_2 com referência T_3 , para a junção T_1 com referência T_3 ,

$$e_{13} = e_{12} + e_{23} (5.3)$$

- 3.4. Circuitos com termopares:
 - Circuito básico: junção de medição e de referência;
 - A junção de referência pode ser um banho de gelo (0°C) ou uma junção eletrônica para compensar a emf de saída;
 - Datasheets geralmente possuem referência a 0°C.

- 3.4. Circuitos com termopares:
 - Termopilha: termopares em série. A emf é saída é amplificada pelo número de junções de medição.

- 3.4. Circuitos com termopares:
 - Paralelo: termopares em paralelo. A temperatura é dada pela média das emfs produzidas por cada junção.

4. Termômetro de radiação

- 4.1. Radiação térmica:
 - Espectro de emissão do corpo negro:

$$E_b(\lambda) = \frac{2\pi hc^2}{\lambda} \left[\exp\left(\frac{hc}{k\lambda T} - 1\right) \right]^{-1}$$
 (5.4)

 Onde c é a velocidade da luz, h é a constante de Planck e k é a constante de Boltzmann;

4. Termômetro de radiação

4.2. Termômetros IR:

- Termômetro IR;
- Câmera térmica.

4. Termômetro de radiação

4.3. Pirômetro:

5. Outros métodos

- 5.1. Outros métodos de medição de temperartura:
 - Termômetro de pressão: baseado na expansão térmica de um fluido confinado em um tubo;
 - **Termômetro de quartzo**: temperatura afeta a frequência de ressonância;
 - Termômetro acústico: velocidade do som em um gás varia com a temperatura;
 - Termômetro piroelétrico: produção de carga elétrica em resposta a um fluxo de calor;
 - Termômetro de fibra óptica: variação do índice de refração com a temperatura, ou espalhamento Raman estimulado -> medição distribuída de temperatura ao longo da fibra.

Questionário

Questionário:

- 1) Identifique quais sistemas para medição de temperatura são invasivos e não-invasivos. Qual é o mecanismo de transferência de calor que ocorrem em cada um deles?
- 2) Qual é diferença entre RTD, termistor e termopar?
- 3) Como funciona a malha de controle de temperatura de um computador? Que tipo de sensor é utilizado? Por que é necessário regular a temperatura do sistema?
- 4) Por que a tensão gerada por um termopar depende dos materiais que compõem a junção?

Referências

Referências:

- W.D. Callister, Materials Science and Engineering: an Introduction, Willey, 2007.
- R.S. Figliola, D.E. Beasley, Theory and Design for Mechanical Measurements, Wiley, 2011.
- D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics, Willey, 2007.
- A.S. Morris, Measurement & Instrumentation Principles, Butterworth Heinemann, 2001.
- J.G. Webster, H. Eren (Ed.) Measurement, Instrumentation, and Sensors Handbook, CRC Press, 2014.

- **Ex. 5.1)** Um termopar do tipo J (Fe-Constantan) é utilizado para medir uma temperatura T_1 .
 - a) Para a junção de referência em $T_2 = 0$ °C, foi obtida uma emf de 9,669 mV. Determine T_1 .
 - b) A junção de referência seja submetida a 30°C, resultando em uma emf de 8,132 mV. Determine a temperatura medida pela junção de medição.

- **Ex.** 5.1)
 - a) Referência a 0°C:

• Consultando o datasheet do termopar tipo J, para $T_2 = 0$ e $e_{12} = 9.669$ mV, $T_1 = 180$ °C.

- **Ex. 5.1)**
 - b) Referência a 30°C:
 - Referência a $T_2 = 30$ °C \rightarrow lei das temperaturas intermediárias.

 $e_{13} = e_{12} + e_{23}$

Ex. 5.1)

- b) Referência a 30°C:
 - A referência agora é $T_2 = 30$ °C. Para $T_3 = 0$, $e_{23} = 1.537$ mV;
 - A tensão medida é $e_{12}=8.132$ mV. Pela lei da temperaturas intermediárias, $e_{13}=e_{12}+e_{23}=9.669$ mV;
 - Finalmente, do datasheet, para $T_3 = 0$ e $e_{13} = 9.669$ mV, $T_1 = 180$ °C.

- **Ex. 5.2)** Seja um RTD de platina interrogado através de uma ponte de Wheatstone ($E_i = 5$ V). O RTD possui resistência $R_0 = 25 \Omega$ ($T_0 = 0$ °C). A ponte se encontra inicialmente equilibrada. Determine a temperatura para os casos:
 - a) Modo nulo: após a variação de temperatura, a ponte é equilibrada com $R_1 = 35 \Omega$;
 - b) Modo de deflexão: supondo a ponte equilibrada com R₁ = 25 Ω, a tensão de saída é E_o = 0.62 V. após a variação de temperatura.

Ex. 5.2)

- a) Modo nulo:
 - RTD: $R_0 = 25 \ \Omega@T_0 = 0$ °C, $\alpha = 0.003925$ °C⁻¹ (Pt);
 - Ponte equilibrada (0°C):

$$-\frac{R_2}{R_3} = \frac{R_1}{R_4} \to R_1 = R_4 = 35 \ \Omega;$$

• Ajuste de resistência:

$$- R_4 = 35 = R_0[1 + \alpha(T - T_0)] = 25[1 + 0.003925(T - 0)];$$

$$- T = 101.9$$
°C

- **Ex. 5.2)**
 - b) Modo de deflexão:
 - Tensão de saída:

$$-E_o = E_i \left(\frac{R_2}{R_2 + R_3} - \frac{R_1}{R_1 + R_4} \right) \Rightarrow \frac{0.62}{5} = \frac{100}{200} - \frac{25}{25 + R_4} \Rightarrow R_4 = 41.5 \ Ω;$$

• Temperatura do RTD:

$$- R_4 = R_0[1 + \alpha(T - T_0)] \Rightarrow T = 168$$
°C.

■ Ex. 5.3) Um termopar tipo S (Pt/10% Rh-Pt) é utilizado para medir a temperatura de um forno. Foi obtida uma emf de 5,975 mV para a junção de referência a 50°C. Determine a temperatura no forno.

Ex. 5.3)

- Temopar tipo S:
 - $T_2 = 50$ °C, $T_3 = 0 \rightarrow e_{23} = 0.299$ mV;
 - $e_{13} = e_{12} + e_{23} = 6.274 \text{ mV};$
 - $T_3 = 0 \rightarrow T_1 = 700$ °C.

- Ex. 5.4) Uma termopilha formada por quatro termopares tipo J apresenta tensão de saída de 26,536 mV. As junção de referência é posicionada a 0°C.
 - a) Determine a temperatura medida pela termopilha.

- **Ex. 5.4)**
 - a) Termopilha:
 - Tensão para um termopar:

$$-e_o = \frac{26.563}{4} = 6.634 \text{ mV};$$

• Temperatura: tabela do termopar J @0°C:

$$- T = 125$$
°C.