Problemes d'Equacions Diferencials II

Grau en Enginyeria Matemàtica i Física

BLOC 1: TEORIA FONAMENTAL

- 1. Siguin X i Y dos camps vectorials de classe C^1 en \mathbb{R}^n . Siguin p i q punts d'equilibri dels respectius camps i suposeu que existeix una conjugació de X a Y de classe C^1 d'un entorn de p a un entorn de q. Proveu que DX(p) i DY(q) són aplicacions lineals semblants.
- **2.** Sigui $f: U \subset \longrightarrow$ de classe C^2 i tal que $0 \in U$, f(0) = 0 i f'(0) = a amb a > 0 (respectivament, a < 0). Demostreu que el camp vectorial unidimensional $\dot{x} = f(x)$ és localment topològicament conjugat a $\dot{x} = x$ (respectivament, $\dot{x} = -x$). Per fer això:
 - a) Demostreu que $\dot{x} = f(x)$ és localment C^1 conjugat a $\dot{x} = ax$. (Indicació: Escriviu $f(x) = x\bar{f}(x)$ per una funció \bar{f} adequada).
 - b) Demostreu que $\dot{x} = ax$ amb a > 0 (respectivament, a < 0) és topològicament conjugat a $\dot{x} = x$ (respectivament, $\dot{x} = -x$).

Nota: Aquest resultat és una versió senzilla del Teorema de Hartman. Es tracta només del cas 1-dimensional, amb hipòtesis de diferenciabilitat més fortes.

3. Sigui $F: I \subset \longrightarrow$, de classe C^1 . Considerem el sistema conservatiu unidimensional $\ddot{x} = F(x)$, o equivalentment, el sistema

$$\begin{cases} \dot{x} = v, \\ \dot{v} = F(x). \end{cases} \tag{1}$$

Proveu:

- a) L'energia E=T+V és una integral primera de (1), on $T(v)=\frac{v^2}{2}$ (energia cinètica) i V'=-F (V és l'energia potencial).
- b) Els punts d'equilibri són sobre l'eix x, i tota òrbita periòdica és simètrica respecte a l'eix x i el talla.

- c) Si $V(x_1) = V(x_2) = h$, $V'(x_1)V'(x_2) \neq 0$ i V(x) < h quan $x_1 < x < x_2$, llavors (1) té una òrbita periòdica passant pels punts $(x_1, 0)$ i $(x_2, 0)$.
- d) Si $F(x) \neq 0$ per tot x tal que $0 < |x x_0| < a$ i $F(x_0) = 0$, llavors (1) té un centre (respectivament, una sella) en $(x_0, 0)$ si $V''(x_0) > 0$ (respectivament, < 0). Què passa si x_0 és un punt d'inflexió de V?
- 4. Estudieu l'espai de fases de:

a)
$$x'' = -x$$
 (molla), b) $x'' = -\sin x$ (pèndol), c) $x'' = -\frac{1}{x^2}$ (gravitació).

- 5. Feu l'esquema del retrats de fase en cadascun dels següents casos:
- a) $\ddot{\theta} + 2\alpha\dot{\theta} + \sin\theta = 0$ (pèndol amortit, $\alpha > 0$);
- b) $\ddot{\theta} + \sin \theta = \beta$ (pèndol sotmès a un moment de força constant), distingint els casos $|\beta| < 1$ i $|\beta| > 1$;
- c) $\ddot{\theta} + 2\alpha\dot{\theta} + \sin\theta = \beta$ (pèndol amortit i sotmès a un moment de força constant). Els pèndols sense amortiment tenen òrbites periòdiques i òrbites homoclíniques (connexions de punts fixos). En poden tenir els amortits?
- **6.** Siguin X_1 i X_2 camps vectorials de classe \mathcal{C}^1 a oberts $\Delta_1, \Delta_2 \subset^n$ respectivament. Veure que si X_1 i X_2 són topològicament conjugats i X_1 te una integral primera, aleshores també en té X_2 .
- 7. Sigui $\gamma = \{\phi(t, p_0), t \in [0, T]\}$ una òrbita periòdica de x' = f(x), on $x \in U \subset^n$ i f és una funció de classe C^r , $r \ge 1$. Proveu que $\frac{\partial}{\partial p_0} \phi(T, p_0)$ sempre té $f(p_0)$ com a vector propi de valor propi 1.
- 8. Sigui $X:^2 \longrightarrow^2$ el camp donat per $(x,y) \longmapsto (-y + (1-x^2-y^2)x, x + (1-x^2-y^2)y)$. Trobeu les òrbites periòdiques i l'aplicació de Poincaré associada.
- 9. Considereu el sistema d'equacions

$$\begin{cases} x' = xy + 12, \\ y' = x^2 + y^2 - 25. \end{cases}$$

(a) Determineu els punts d'equilibri del sistema i estudieu la seva estabilitat.

- (b) Demostreu que existeix una òrbita γ continguda en el quart quadrant tal que té com α -límit un punt P i ω -límit un punt Q, amb $P \neq Q$. Passa el mateix en el segon quadrant?
- 10. El següent sistema d'equacions diferencials modela dues poblacions en competència pels recursos:

$$x(1-x-\frac{1}{2}y),y(2-x-2y),$$

on x(t) i y(t) denoten el número d'individus de les respectives poblacions a temps t.

- (a) Trobeu els punts fixos del sistema i determineu el seu caràcter.
- (b) Proveu que el model està ben definit, és a dir, que el primer quadrant (incloent els eixos), és invariant.
- (c) Feu un esbós qualitatiu del retrat de fase del sistema al primer quadrant. (Buscant, a més, les isoclines horitzontals i verticals).
- (d) Quins són els conjunts omega límit dels punts del primer quadrant? Poden ser òrbites periòdiques?
- (e) Interpreteu el model i els resultats obtinguts.
- 11. (a) Donada l'equació $(x^2 y^2 1)dx + ydy = 0$, trobeu un factor integrant i resoleu-la.
 - (b) Considereu el sistema d'equacions

$$\begin{cases} x' = y, \\ y' = -x^2 + y^2 + 1. \end{cases}$$

Calculeu els punts d'equilibri i estudieu el seu caràcter lineal.

- (c) Dibuixeu el retrat de fase (varietats lineals, punts d'equilibri, \dots) usant tota la informació anterior.
- (d) Descriviu els conjunts α -límit i ω -límit dels punts del pla.
- 12. Proveu que el sistema d'equacions

$$\begin{cases} x' = 2x - x^5 - xy^4, \\ y' = y - y^3 - yx^2, \end{cases}$$

no té cap òrbita periòdica. (Indicació: Estudieu els eixos de coordenades.)

13. Considereu el sistema d'equacions

$$\begin{cases} x' = x(y^2 - 4), \\ y' = y(x^2 - 4). \end{cases}$$

- (a) Trobeu els punts d'equilibri i determineu el seu caràcter.
- (b) Trobeu *totes* les rectes *invariants* del sistema, i justifiqueu el mètode que feu servir per trobar-les. (Una recta del pla és invariant pel sistema si conté tota la òrbita de cada un dels seus punts).
- (c) Trobeu les isoclines horitzontals i verticals del sistema i estudieu les direccions del camp restringides a aquestes isoclines.
- (d) Demostreu que el sistema no té cap òrbita periòdica.
- (e) A partir de la informació dels apartats anteriors feu un esbós qualitatiu del retrat de fases del sistema.

14. Considereu el sistema d'equacions

$$\begin{cases} x' = \frac{1}{2}x^2 + y^2 - 3, \\ y' = xy + y^2. \end{cases}$$

- (a) Trobeu els punts d'equilibri i determineu el seu caràcter lineal.
- (b) Trobeu les isoclines horitzontals i verticals del sistema, i esbrineu si alguna d'elles és a més una recta invariant del sistema. Determineu les direccions del camp sobre aquestes isoclines.
- (c) Aquest sistema té quatre rectes invariants amb pendent diferent de zero. Trobeu-les. (Indicació: Observeu que el camp és simètric respecte a l'origen. Penseu també com han de ser els punts de tall entre rectes invariants i/o isoclines.)
- (d) Fent ús de l'apartat anterior i d'algún resultat vist a teoria, demostreu que el sistema no té òrbites periòdiques.
- (e) Usant els apartats anteriors, feu un esbós qualitatiu del retrat de fase del sistema.
- 15. Sigui $\dot{x} = X(x)$ un camp vectorial \mathcal{C}^1 definit a un obert U de 2 . Sigui γ una òrbita periòdica tal que la component connexa acotada de $^2 \setminus \{\gamma\}$,

diem D, és dins U. Demostreu que

$$\int_D \operatorname{div} X(x) dx = 0.$$

Quina és la propietat de ∂D que utilitzem realment?

16. Considerem el sistema d'equacions al pla

$$(1-x^2)(x+2y),(1-y^2)(-2x+y).$$

- (a) Trobeu 4 rectes invariants i dibuixeu la dinàmica sobre les mateixes.
- (b) Calculeu els punts fixos, feu la seva classificació lineal i afegiu aquesta informació al dibuix anterior. (Nota: Hi ha 9 punts fixos, agrupats en tres famílies, i no fa falta fer l'anàlisi de tots, només d'un representant de cada família.)
- (c) Escriviu el sistema en coordenades polars i vegeu que queda de la forma

$$\begin{cases} \dot{r} = r - f(\theta)r^3, \\ \dot{\theta} = -2 + g(\theta)r^2. \end{cases}$$

Es pot veure, a més, que $\frac{3-\sqrt{5}}{4} \leqslant f(\theta) \leqslant \frac{3+\sqrt{5}}{4}$. (Això és informació que us donem).

- (d) Considerem el cercle de radi $R=\sqrt{\frac{2}{3}}$, centrat a l'origen. Demostreu que la divergència és positiva a l'interior d'aquest cercle i, per tant, no pot contenir cap òrbita periòdica. Demostreu que el cercle és negativament invariant, és a dir, que el camp vectorial sobre la seva frontera apunta "cap enfora".
- (e) Observeu que la integral de la divergència del camp sobre el quadrat $[-1,1] \times [-1,1]$ és zero. Demostreu llavors que el camp vectorial no té cap òrbita periòdica. Quins són llavors els conjunts α i ω -límit de punts de $(-1,1) \times (-1,1)$?