Lecture 10

Inference for One Population Mean

Text: Chapter 5

STAT 8010 Statistical Methods I February 18, 2020

Statistical Inferences

Estimation

Confidence Intervals

Hypothesis Testing

Whitney Huang Clemson University

Statistical Inferences

Point/Interval Estimation

Confidence Intervals

- Statistical Inferences
- Point/Interval Estimation
- 3 Confidence Intervals
- 4 Hypothesis Testing

Statistical Inference

Statistical Infere

Confidence Intervals

For the rest of the semester, we will focus on conducting statistical inferences for the following tasks:

- Estimating one population mean
- Comparing two population means
- Comparing more than two population means
- Estimating population proportions
- Estimating relationship between two quantitative variables

• We use statistics of a sample to infer the population **Example:** sample mean (\bar{X}) ; sample variance (s_X^2)

UNIVERSIT

oint/Interval

Confidence Intervals

Population Mean

CLEMS

UNIVERSITY

Inference for One

Statistical Informace

Point/Interval Estimation

Confidence Intervals

Hypothesis Testing

Goal: To estimate the population mean using a (representative) sample:

Goal: To estimate the population mean using a (representative) sample:

• The sample mean, $\bar{X}_n = \frac{\sum_i^n X_i}{n}$, is a reasonable point estimate of the population mean μ_X

Statistical interences

Estimation

Goal: To estimate the population mean using a (representative) sample:

• The sample mean, $\bar{X}_n = \frac{\sum_i^n X_i}{n}$, is a reasonable point estimate of the population mean μ_X

Statistical interences

Estimation

Goal: To estimate the population mean using a (representative) sample:

- The sample mean, $\bar{X}_n = \frac{\sum_i^n X_i}{n}$, is a reasonable point estimate of the population mean μ_X
- Need to quantify the level of uncertainty of the point estimate ⇒ Interval estimation

Statistical Inferences

Estimation

Confidence Intervals

Hypothesis Testing

Goal: To estimate the population mean using a (representative) sample:

- The sample mean, $\bar{X}_n = \frac{\sum_i^n X_i}{n}$, is a reasonable point estimate of the population mean μ_X
- Need to quantify the level of uncertainty of the point estimate ⇒ Interval estimation

Statistical Inferences

Estimation

Confidence Intervals

Hypothesis Testing

Population Mean

CLEMS

UNIVERSITY

Statistical Inferences

Estimation

Confidence Intervals

Hypothesis Testing

Goal: To estimate the population mean using a (representative) sample:

- The sample mean, $\bar{X}_n = \frac{\sum_{i=1}^{n} X_i}{n}$, is a reasonable point estimate of the population mean μ_X
- Need to quantify the level of uncertainty of the point estimate ⇒ Interval estimation
- Need to figure out the sampling distribution of \bar{X}_n in order to construct interval estimates \Rightarrow Central Limit Theorem (CLT)

Central Limit Theorem (CLT)

CLT

The sampling distribution of \bar{X}_n will become approximately normally distributed as the sample size (n) becomes "large", regardless of the shape of the population distribution!

Let X_1, X_2, \cdots, X_n be a random sample from a population X with $\mu = \mathbb{E}[X]$ and $\sigma^2 = \text{Var}[X]$. Then $\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n} \stackrel{d}{\to} \mathbb{N}(\mu, \frac{\sigma^2}{n})$ as $n \to \infty$.

Statistical Inferences

stimation

CLT In Action

- Generate 100 (n) random numbers from an Exponential distribution (population distribution)
- Compute the sample mean of these 100 random numbers
- Repeat this process 120 times

Inference for One Population Mean

Statistical Interences

Estimation

Confidence intervals

nypotriesis resti

CLT: Sample Size (n) and the Normal Approximation

Why CLT is important?

$$\bar{X}_n \approx \mathrm{N}(\mu, \frac{\sigma^2}{n})$$

- The distribution of \bar{X}_n is center around the true mean μ
- The variance of \bar{X}_n is decrease with n
- With normality approximation of the sampling distribution of \bar{X}_n , we can perform interval estimation about μ
- Applications: Confidence Interval, Hypothesis testing

Statistical Inferences

Estimation

Confidence Intervals

Confidence Intervals (CIs) for μ

Inference for One Population Mean

Statistical Inferences

Point/Interval Estimation

Confidence Intervals

lypothesis Testing

 \bullet Let's assume we know the population variance σ^2 (will relax this assumption later on)

Confidence Intervals (CIs) for μ

Inference for One Population Mean

Statistical Inferences

Point/Interval Estimation

Confidence Intervals

lypothesis Testing

 \bullet Let's assume we know the population variance σ^2 (will relax this assumption later on)

- Let's assume we know the population variance σ^2 (will relax this assumption later on)
- $(1 \alpha) \times 100\%$ CI for μ :

$$\left[\bar{X}_n-z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}},\bar{X}_n+z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}\right],$$

where $z_{\frac{\alpha}{2}}$ is the $1 - \frac{\alpha}{2}$ percentile of $Z \sim N(0,1)$

- Let's assume we know the population variance σ^2 (will relax this assumption later on)
- $(1 \alpha) \times 100\%$ CI for μ :

$$\left[\bar{X}_n-z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}},\bar{X}_n+z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}\right],$$

where $z_{\frac{\alpha}{2}}$ is the $1 - \frac{\alpha}{2}$ percentile of $Z \sim N(0,1)$

Confidence Intervals (CIs) for μ

Statistical Inferences

Point/Interval Estimation

Hypothesis Testing

- Let's assume we know the population variance σ^2 (will relax this assumption later on)
- $(1-\alpha) \times 100\%$ CI for μ :

$$\left[\bar{X}_n - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X}_n + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right],$$

where $z_{\frac{\alpha}{2}}$ is the $1-\frac{\alpha}{2}$ percentile of $Z\sim N(0,1)$

• $\frac{\sigma}{\sqrt{n}}$ is the standard error of \bar{X}_n , that is, the standard deviation of its sampling distribution

Inference for One Population Mean

CLEMS N UNIVERSITY

Statistical Inferences

Point/Interval Estimation

Vontidence Intervals

Ivpothesis Testing

For any $\alpha \in (0,1)$:

$\mathbb{P}\left(\bar{X}_n - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X}_n + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$ $= \mathbb{P}\left(-z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \le \bar{X}_n - \mu \le z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$ $= \mathbb{P}\left(-z_{\frac{\alpha}{2}} \le \frac{\bar{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} \le z_{\frac{\alpha}{2}}\right)$ $=\mathbb{P}\left(-z_{\alpha} \leq Z \leq z_{\alpha}\right)$ $=\Phi(z_{\frac{\alpha}{2}})-\Phi(-z_{\frac{\alpha}{2}})$ $=1-\frac{\alpha}{2}-\frac{\alpha}{2}=1-\alpha$

Making Sense of Confidence Intervals Cont'd

Inference for One

Point/Interval

Estimation

Example: Average Height

We measure the heights of 40 randomly chosen men, and get a mean height of 5'9" (≈175cm). Suppose we know the standard deviation of men's heights is 4" (≈10cm). Find the 95% confidence interval of the true mean height of ALL men.

Point/Interval

Confidence Intervals

WORLD HEIGHT CHART(MALE)

Average Height Example Cont'd

Population Mean

Inference for One

Average Height Example Cont'd

Population Mean

Inference for One

- **Output** Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- **2** Population standard deviation: $\sigma = 4$ inches

- **Output** Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- **2** Population standard deviation: $\sigma = 4$ inches

- Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- 2 Population standard deviation: $\sigma = 4$ inches
- Standard error of $\bar{X}_{n=40} = \frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{40}} = 0.63$ inches

- Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- 2 Population standard deviation: $\sigma = 4$ inches
- Standard error of $\bar{X}_{n=40} = \frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{40}} = 0.63$ inches

Average Height Example Cont'd

- O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- Population standard deviation: $\sigma = 4$ inches
- Standard error of $\bar{X}_{n=40} = \frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{40}} = 0.63$ inches
- 95%CI: Need to find $z_{0.05/2} = 1.96$ from the Z-table

Average Height Example Cont'd

- O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- Population standard deviation: $\sigma = 4$ inches
- Standard error of $\bar{X}_{n=40} = \frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{40}} = 0.63$ inches
- 95%CI: Need to find $z_{0.05/2} = 1.96$ from the Z-table

- Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- **②** Population standard deviation: $\sigma = 4$ inches
- § Standard error of $\bar{X}_{n=40} = \frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{40}} = 0.63$ inches
- **95%CI:** Need to find $z_{0.05/2} = 1.96$ from the Z-table
- **95%** CI for μ_X is:

$$[69 - 1.96 \times 0.63, 69 + 1.96 \times 0.63]$$

= [67.77, 70.23]

Properties of Confidence Intervals

• In contrast with the point estimate, \bar{X}_n , a $(1-\alpha)\%$ CI is an interval estimate, where the **length of CI** reflects our estimation uncertainty

Statistical Inferences

Point/Interval Estimation

Confidence Intervals

Properties of Confidence Intervals

• In contrast with the point estimate, \bar{X}_n , a $(1-\alpha)\%$ CI is an interval estimate, where the **length of CI** reflects our estimation uncertainty

Statistical Inferences

Point/Interval Estimation

Confidence Intervals

• Typical α values: 0.01, 0.05, 0.1 \Rightarrow 99%, 95%, 90% confidence intervals. Interpretation: If we were to take random samples over and over again, then $(1-\alpha)\%$ of these confidence intervals will contain the true μ

• Typical α values: 0.01, 0.05, 0.1 \Rightarrow 99%, 95%, 90% confidence intervals. Interpretation: If we were to take random samples over and over again, then $(1-\alpha)\%$ of these confidence intervals will contain the true μ

Properties of Confidence Intervals

• In contrast with the point estimate, \bar{X}_n , a $(1 - \alpha)\%$ CI is an interval estimate, where the **length of CI** reflects our estimation uncertainty

• Typical α values: $0.01, 0.05, 0.1 \Rightarrow 99\%, 95\%, 90\%$ confidence intervals. **Interpretation**: If we were to take random samples over and over again, then $(1 - \alpha)\%$ of these confidence intervals will contain the true μ

• The length of a CI depends on

Statistical Inferences

Point/Interval Estimation

Confidence Intervals

• In contrast with the point estimate, \bar{X}_n , a $(1-\alpha)\%$ CI is an interval estimate, where the **length of CI** reflects our estimation uncertainty

• Typical α values: $0.01, 0.05, 0.1 \Rightarrow 99\%, 95\%, 90\%$ confidence intervals. **Interpretation**: If we were to take random samples over and over again, then $(1 - \alpha)\%$ of these confidence intervals will contain the true μ

• The length of a CI depends on

Statistical Inferences

Estimation

Confidence Intervals

- Typical α values: $0.01, 0.05, 0.1 \Rightarrow 99\%, 95\%, 90\%$ confidence intervals. **Interpretation**: If we were to take random samples over and over again, then $(1 \alpha)\%$ of these confidence intervals will contain the true μ
- The length of a CI depends on
 - Population Standard Deviation: σ

Statistical Inferences

Estimation

Confidence Intervals

- Typical α values: $0.01, 0.05, 0.1 \Rightarrow 99\%, 95\%, 90\%$ confidence intervals. **Interpretation**: If we were to take random samples over and over again, then $(1 \alpha)\%$ of these confidence intervals will contain the true μ
- The length of a CI depends on
 - Population Standard Deviation: σ

Statistical Inferences

Estimation

Confidence Intervals

- Typical α values: $0.01, 0.05, 0.1 \Rightarrow 99\%, 95\%, 90\%$ confidence intervals. **Interpretation**: If we were to take random samples over and over again, then $(1 \alpha)\%$ of these confidence intervals will contain the true μ
- The length of a CI depends on
 - Population Standard Deviation: σ
 - Confidence Level: 1α

UNIVERSII

Point/Interval Estimation

Confidence Intervals

- Typical α values: $0.01, 0.05, 0.1 \Rightarrow 99\%, 95\%, 90\%$ confidence intervals. **Interpretation**: If we were to take random samples over and over again, then $(1 \alpha)\%$ of these confidence intervals will contain the true μ
- The length of a CI depends on
 - Population Standard Deviation: σ
 - Confidence Level: 1α

UNIVERSII

Point/Interval Estimation

Confidence Intervals

- Typical α values: $0.01, 0.05, 0.1 \Rightarrow 99\%, 95\%, 90\%$ confidence intervals. **Interpretation**: If we were to take random samples over and over again, then $(1 \alpha)\%$ of these confidence intervals will contain the true μ
- The length of a CI depends on
 - Population Standard Deviation: σ
 - Confidence Level: 1α
 - Sample Size: n

Statistical Inferences

Estimation

Confidence Intervals

Sample Size Calculation

Statistical Inferences

Confidence Intervals

- We may want to estimate μ with a confidence interval with a predetermined margin of error (i.e. $z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$)
- For example, in estimating the true mean height of All men we may want our CI to be just 0.5 inches in width
- The question is then, "how many observations do we need to take so that we have the desired margin of error?"

Sample Size Calculation Cont'd

Statistical Inferences

Estimation

Confidence Intervals

Hypothesis Testing

To compute the sample size needed to get a CI for
$$\mu$$
 with a specified margin of error, we use the formula below

$$n = \left(\frac{z_{\alpha/2} \times \sigma}{\text{Margin of error}}\right)^2$$

Exercise: Derive this formula using margin of error = $z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

Average Height Example Revisited

Compute the sample size needed in order to estimate the true mean height of All men such that the 95% CI to be 0.5 inches in width

Statistical Inferences

Estimation

Confidence Intervals

Average Height Example Revisited

Compute the sample size needed in order to estimate the true mean height of All men such that the 95% CI to be 0.5 inches in width

Statistical Inferences

Point/Interval Estimation

Confidence Intervals

- Length of CI: $2 \times z_{0.025} \frac{\sigma}{\sqrt{n}} = 2 \times$ margin of error
- **a** Want to find *n* s.t. $z_{0.025} \frac{\sigma}{\sqrt{n}} = 0.25$
- **••** We have $n = \left(\frac{1.96 \times 4}{0.25}\right)^2 = 983.4496$

Therefore, the required sample size is 984

Confidence Intervals When σ Unknown

• In practice, it is unlikely that σ is available to us

• One reasonable option is to replace σ with s, the sample standard deviation

 We need to account for this added uncertainty with a (slightly) different sampling distribution that has fatter tails

⇒ Student t Distribution (William Gosset, 1908)

Statistical Inferences

Confidence Intervals

Student t Distribution

Point/Interval

Confidence Intervals

- \bullet Recall the standardize sampling distribution $\frac{\bar{X}_n \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$
- Similarly , the studentized sampling distribution $\frac{\bar{X}_n-\mu}{\frac{\bar{X}_n}{2}}\sim t_{df=n-1}$

Confidence Intervals (CIs) for μ When σ is Unknown

CLEMS**&**N

ONIVERSII

Point/Interval

Confidence Intervals

lypothesis Testing

• $(1-\alpha) \times 100\%$ Cl for μ :

$$\left[\bar{X}_n - t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}, \bar{X}_n + t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}\right],\,$$

where $t_{\frac{\alpha}{2},n-1}$ is the $1-\frac{\alpha}{2}$ percentile of a student t distribution with the degrees of freedom = n-1

ullet is an estimate of the standard error of $ar{X}_n$

Average Height Example Revisited

Statistical Inferences

Point/Interval Estimation

Confidence Intervals

Hypothesis Testing

We measure the heights of 40 randomly chosen men, and get a mean height of 5'9" (\approx 175cm), and a standard deviation of 4.5" (\approx 11.4cm). Find the 95% confidence interval of the true mean height of ALL men.

Average Height Example Cont'd

O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches

Inference for One Population Mean

Statistical Inferences

Point/Interval Estimation

Confidence Intervals

Average Height Example Cont'd

O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches

Inference for One Population Mean

Statistical Inferences

Point/Interval Estimation

Confidence Intervals

- O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- Sample standard deviation: s = 4.5 inches

- O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- Sample standard deviation: s = 4.5 inches

- O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- Sample standard deviation: s = 4.5 inches
- (Estimated) standard error of $\bar{X}_{n=40} = \frac{s}{\sqrt{n}} = \frac{4.5}{\sqrt{40}} = 0.71$ inches

- O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- Sample standard deviation: s = 4.5 inches
- (Estimated) standard error of $\bar{X}_{n=40} = \frac{s}{\sqrt{n}} = \frac{4.5}{\sqrt{40}} = 0.71$ inches

- Operation Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- **3** Sample standard deviation: s = 4.5 inches
- (Estimated) standard error of $\bar{X}_{n=40} = \frac{s}{\sqrt{n}} = \frac{4.5}{\sqrt{40}} = 0.71$ inches
- 95%CI: Need to find $t_{0.05/2,39} = 2.02$ from a t-table (or using a statistical software)

- Operation Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- **3** Sample standard deviation: s = 4.5 inches
- (Estimated) standard error of $\bar{X}_{n=40} = \frac{s}{\sqrt{n}} = \frac{4.5}{\sqrt{40}} = 0.71$ inches
- 95%CI: Need to find $t_{0.05/2,39} = 2.02$ from a t-table (or using a statistical software)

- Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- ② Sample standard deviation: s = 4.5 inches
- (Estimated) standard error of $\bar{X}_{n=40} = \frac{s}{\sqrt{n}} = \frac{4.5}{\sqrt{40}} = 0.71$ inches
- 95%CI: Need to find $t_{0.05/2,39} = 2.02$ from a t-table (or using a statistical software)
- **95%** CI for μ_X is:

$$[69 - 2.02 \times 0.71, 69 + 2.02 \times 0.71]$$

= [67.57, 70.43]

Hypothesis Testing

• **Hypothesis Testing**: A method for using sample data to decide between two competing claims (hypotheses) about a population characteristic (a parameter. e.g. μ)

• Examples:

- The true mean starting salary for graduates of four-year business schools is \$4,500 per month $\Rightarrow \mu$ = 4,500
- The true mean monthly income for systems analysts is at least \$6,000 $\Rightarrow \mu \ge 6,000$

Statistical Inferences
Point/Interval
Estimation
Confidence Intervals

Hypotheses

- Null Hypothesis: A claim about a parameter that is initially assumed to be true. We use H₀ to denote a null hypothesis
- Alternative Hypothesis: The competing claim, denoted by H_a
- In carrying out a test of H_0 versus H_a , the hypothesis H_0 will be rejected in favor of H_a only if sample evidence strongly suggests that H_0 is false. If the sample data does not contain such evidence, H_0 will not be rejected
- Therefore, the two possible decisions in a hypothesis test are:
 - Reject H_0 (and go with H_a)
 - Fail to Reject H₀

Statistical Inferences
Point/Interval
Estimation

Hypotheses

Statistical Inferences

Estimation

Confidence interva

Be careful setting up hypotheses:

- A statistical hypothesis test is only capable of demonstrating strong support for the alternative hypothesis H_a (by rejecting the null hypothesis H_0)
- Failing to reject H_0 does not show strong support for the null hypothesis only a lack of strong evidence against H_0 , the null hypothesis

The 2×2 Decision Paradigm for Hypothesis Testing

True State	Decision	
	Reject H_0	Fail to reject H_0
H_0 is true	Type I error	Correct
H_0 is false	Correct	Type II error

Errors in Hypothesis Testing

- \bullet The probability of a type I error is denoted by α
- The probability of a type II error is denoted by β

ONIVERSII

Estimation

Confidence Intervals