Sprowadzanie formuły zdaniowej do koniunkcyjnej postaci normalnej – CNF

terminologia:

- literał zmienna zdaniowa lub jej negacja
- klauzula -alternatywa literałów
- Mówimy, że klauzula c_1 absorbuje klauzulę c_2 wtedy i tylko wtedy, gdy c_1 jest podformułą c_2 . Niech α będzie formułą w koniunkcyjnej postaci normalnej CNF. Przez $ABS(\alpha)$ oznaczać będziemy formułę, z której wszystkie absorbowane klauzule zostały usunięte.

Algorytm

wejście: A – formuła logiki zdań;

wyjście: formuła w CNF

1. {Eliminacja \rightarrow i \leftrightarrow } Zastępuj w formule A

$$\begin{array}{ll} B \to C & \mathrm{przez} & \neg B \vee C \\ B \leftrightarrow C & \mathrm{przez} & (\neg B \vee C) \wedge (B \vee \neg C) \end{array}$$

tak długo, aż otrzymana formuła zawiera wyłącznie spójniki ¬, ∧, ∨.

2. {Przesuwanie ¬ "w głąb"} W formule otrzymanej w kroku 1. zastępuj

$$\neg (B \lor C)$$
 przez $\neg B \land \neg C$
 $\neg (B \land C)$ przez $\neg B \lor \neg C$
 $\neg \neg B$ przez B

tak długo, aż wszystkie wystąpienia negacji znajdą się bezpośrednio przed zmiennymi.

3. {Rozdzielenie \land przez $\lor \}$ W formule otrzymanej w kroku 2. zastępuj tak długo jak to możliwe

$$(B \wedge C) \vee D$$
 przez $(B \vee D) \wedge (C \vee D)$
 $B \vee (C \wedge D)$ przez $(B \vee C) \wedge (B \vee D)$

- 4. {Skracanie} Usuń wszystkie klauzule równoważne T (true).
- 5. {Absorpcja} Powtarzaj tak długo jak to możliwe: jeśli formuła otrzymana w kroku 4. zawiera parę klauzul c, c' takich, że c absorbuje c', to usuń c'.
- 6. Zwróć otrzymaną formułę jako CNF(A).■

Dowodzenie

Terminologia cd.

• Dwie klauzule α i β mają *opozycję*, jeśli jedna z nich zawiera literał l, a druga $\neg l$.

• Przypuśćmy, że dwie klauzule α i β mają dokładnie jedną opozycję. Rezolwentq klauzul α i β , co oznaczamy $res(\alpha,\beta)$, jest klauzula otrzymana z dyzjunkcji $\alpha \vee \beta$ przez usunięcie literałów przeciwnych oraz zredukowanie wielokrotnych wystąpień literałów do jednego. Np. $res(\neg a \vee l, a \vee d) = l \vee d$.

Algorytm skracania

Niech α będzie formułą, a $CNF(\alpha)$ koniunkcyjną postacią normalną formuły α . Koniunkcyjną postacią kanoniczną α , $CCF(\alpha)$, jest formuła otrzymana z α w sposób następujący:

- 1. $\beta := CNF(\alpha)$.
- 2. Powtarzaj tak długo jak to możliwe: jeśli β zawiera parę klauzul δ i γ , dla których istnieje rezolwenta i żadna z klauzul β nie jest podformułą $res(\delta, \gamma)$, to $\beta := \beta \wedge res(\delta, \gamma)$.
- 3. $CCF(\alpha) := ABS(\beta)$.

Mówimy, że klauzula $c \not\equiv T$ jest minimalną klauzulą implikowaną przez formułę α , wtedy i tylko wtedy, gdy formuła $\alpha \to c$ jest tautologią i jeśli $\alpha \to c'$ jest tautologią, gdzie c' jest podformułą c, to $c' \equiv c$.

Twierdzenie 1

Niech α będzie formułą. $CCF(\alpha)$ jest koniunkcją wszystkich minimalnych klauzul implikowanych przez α .

Twierdzenie 2

Literał l wynika z formuły A ($A \models l$) wtedy i tylko wtedy, gdy klauzula l występuje w $\mathrm{CCF}(\mathbf{A}).\blacksquare$

Twierdzenie 3

 $A \equiv CNF(A) \equiv CCF(A)$.