TEMA 3 Conservação da energia mecânica

Quando um corpo é abandonado de certa altura, ele cai e vai aumentando sua velocidade durante a queda. Então, você pode se perguntar: de onde vem a energia cinética que esse corpo ganha durante a queda?

Neste tema, você vai estudar um importante princípio que ajuda a responder a essa questão: o princípio da conservação da energia.

🔑 O QUE VOCÊ JÁ SABE?

A figura ao lado mostra um menino se divertindo ao descer por um tobogã. Reflita sobre a situação e responda:

- Que tipo de energia ele tem quando está na parte mais alta do tobogã?
- Que tipo de energia mecânica ele possui durante a descida?
- Qual energia ele possui ao chegar na água?

Depois de estudar o tema, releia seus apontamentos e pense se você alteraria suas respostas.

≽ Energia mecânica e sua conservação

Quando um corpo está num local mais alto do que outro, ele possui energia potencial gravitacional. Essa energia pode ser utilizada para gerar movimento, fazendo o corpo se deslocar do ponto mais alto para o mais baixo.

Nesse processo, a energia potencial gravitacional vai se transformando em energia cinética durante a descida. Na parte mais baixa, essa energia potencial acaba totalmente transformada em energia cinética. Portanto, se não houver forças de atrito, a energia mecânica do sistema será totalmente conservada, ou seja, a soma das energias cinética e potencial será sempre a mesma nas diferentes

partes do movimento. Nesse caso, o sistema é chamado de **conservativo**, já que conserva a energia mecânica.

A energia cinética de um corpo pode ser facilmente transformada em outras formas de energia mecânica, como a gravitacional ou a elástica. Se você lançar um objeto para o alto, verá que, enquanto ele sobe, sua velocidade diminui até atingir a altura máxima. Nesse instante, ele para e começa a cair.

Enquanto o objeto sobe, ocorre a transformação da energia ciné-

tica em potencial gravitacional, e, quando desce, ocorre o inverso, com a transformação de energia potencial gravitacional em energia cinética. Por isso, sua velocidade aumenta durante a queda.

Da mesma forma, a energia cinética de um atleta pode ser transformada em energia potencial elástica ao, por exemplo, deformar uma cama elástica.

Energia mecânica no lançamento de uma bola.

Exemplo

Um corpo de massa 2 kg é abandonado a partir do repouso de uma altura de 1,8 m em relação ao solo. Determine a velocidade do corpo ao atingir o solo. Dado: $g=10 \text{ m/s}^2$. Despreze atritos e resistência do ar.

Dissipação da energia mecânica

Quando forças de atrito agem, uma parte da energia mecânica é dissipada, geralmente transformada em energia térmica (calor) e energia sonora (barulho). É o que acontece, por exemplo, quando você bate palmas ou esfrega as mãos para aquecê-las. Nesse caso, o sistema

O símbolo "∆" (lê-se "delta") é utilizado para indicar variação de determinada grandeza.

é dissipativo, porque a energia se dissipa e a variação da energia mecânica (ΔE_m) corresponde ao trabalho da força de atrito (τ_{fat}), ou seja, $\Delta E_m = \tau_{fat}$, em que ΔE_m é a variação entre a energia mecânica final e a inicial ($E_f - E_i$).

Física - Volume 2

Energia: movimento e transformação

Esse vídeo apresenta o conceito de energia, especifica e aprofunda as diversas formas de energia mecânica e sua conservação. Como faz uma síntese dos temas estudados, ele pode ajudá-lo a problematizar e a sistematizar os conhecimentos construídos durante seus estudos.

ATIVIDADE 1 Montanha-russa

Em um parque de diversões, um carrinho com 10 kg de massa passeia por um trecho de uma montanha-russa, passando por A com velocidade de 8 m/s, por B com velocidade de 9 m/s, e por C com velocidade de 5 m/s, conforme mostra a figura a seguir.

1 Determine os valores da energia cinética, potencial gravitacional e mecânica do carrinho nos pontos A, B e C indicados na figura, anotando os resultados no quadro a seguir.

Ponto	Energia cinética (J)	Energia potencial gravitacional (J)	Energia mecânica (J)
Α			
В			
С			

2 O sistema é conservativo?	Justifique sua resposta
-----------------------------	-------------------------

DESAFIO

Uma das modalidades presentes nas olimpíadas é o salto com vara. As etapas de um dos saltos de um atleta estão representadas na figura:

Desprezando-se as forças dissipativas (resistência do ar e atrito), para que o salto atinja a maior altura possível, ou seja, o máximo de energia seja conservada, é necessário que

- a) a energia cinética, representada na etapa I, seja totalmente convertida em energia potencial elástica, representada na etapa IV.
- b) a energia cinética, representada na etapa II, seja totalmente convertida em energia potencial gravitacional, representada na etapa IV.
- c) a energia cinética, representada na etapa I, seja totalmente convertida em energia potencial gravitacional, representada na etapa III.

Atleta corre com a vara

Atleta apoia a vara no chão

Atleta atinge certa altura

Atleta cai em um colchão

- d) a energia potencial gravitacional, representada na etapa II, seja totalmente convertida em energia potencial elástica, representada na etapa IV.
- e) a energia potencial gravitacional, representada na etapa I, seja totalmente convertida em energia potencial elástica, representada na etapa III.

Enem 2011. Prova azul. Disponível em: http://download.inep.gov.br/educacao_basica/enem/provas/2011/01_AZUL_GAB.pdf. Acesso em: 17 out. 2014.

HORA DA CHECAGEM

Atividade 1 - Montanha-russa

- 1 Utilizando a fórmula $E_c = \frac{m \cdot v^2}{2}$ e substituindo os valores dados, então
- para o ponto A: $E_c = \frac{10 \cdot 8^2}{2} = 320 \text{ J};$
- para o ponto B: $E_c = \frac{10 \cdot 9^2}{2} = 405 \text{ J};$
- para o ponto C: $E_c = \frac{10 \cdot 5^2}{2} = 125 \text{ J}.$

Nesse caso, a energia potencial é gravitacional e pode ser calculada pela fórmula $E_g=m\cdot g\cdot h.$ Substituindo os valores dados:

- para o ponto A: $E_g = 10 \cdot 10 \cdot 4 = 400 \text{ J};$
- para o ponto B: $E_g = 10 \cdot 10 \cdot 1 = 100 \text{ J}$;
- para o ponto C: $E_g = 10 \cdot 10 \cdot 6 = 600$ J.

Como a energia mecânica é a soma das energias cinética e potencial, então:

- para o ponto A: $E_m = 320 + 400 = 720 J$;
- para o ponto B: $E_m = 405 + 100 = 505 J$;
- para o ponto C: $E_m = 125 + 600 = 725 J$.

Ponto	Energia cinética (J)	Energia potencial gravitacional (J)	Energia mecânica (J)
A	320	400	720
В	405	100	505
С	125	600	725

2 Como ocorre variação da energia mecânica, o sistema não é conservativo. Fatores como resistência do ar e atrito dissipam energia.

Desafio

Alternativa correta: c. A máxima altura ocorre quando toda a energia cinética adquirida pelo atleta enquanto corre for transformada em potencial gravitacional, sem perdas por atrito ou deformação da vara ou do colchão.

Registro de dúvidas e comentários				