PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICA

PRIMER SEMESTRE DE 2017

Profesor: Gabriela Fernandez – Ayudante: Constanza Barriga y Ruben Soza

Calculo II - MAT1620

Ayudantía 7

27 de Abril de 2017

1. Sea $f(x,y) = y\cos(x-y)$. Demuestre que esta función es diferenciable y encuentre el valor estimado de $f\left(\frac{5}{2},\frac{3}{2}\right)$.

- 2. Sea z = f(x, y), donde $x = r^2 + s^2$, y = 2rs y f de clase C^2 . Calcule $\frac{\partial z}{\partial r \partial s}$.
- 3. Encuentre y clasifique los puntos críticos de $f(x,y) = x^3 + 3xy^2 15x 12y$.
- 4. Encuentre los puntos en el cono $z^2 = x^2 + y^2$ que minimizan la distancia al punto (4,2,0).
- 5. Encuentre los extremos globales de $f(x,y) = xy^2$ en la región

$$D = \{(x, y) \in \mathbb{R}^2 \mid x \ge 1, \ x^2 + y^2 \le 3\}.$$

6. Pruebe que el máximo valor de $x^2y^2z^2$ bajo $x^2+y^2+z^2=R^2$ corresponde a $\frac{R^6}{27}$. Con esto, demuestre que

$$\sqrt[3]{x^2y^2z^2} \leqslant \frac{x^2 + y^2 + z^2}{6}$$

Propuesto.

1. Considere la función

$$f(x,y) = \frac{1}{4}x^4 - x^2y^2 + y^2.$$

Encuentre el máximo y el mínimo de f en la región dada por las ecuaciones $x \ge 0, y \ge 0$ y $x^2 + y^2 \le 9$. Determine además los extremos locales situados en el interior de esta región y clasifíquelos.

- 2. Sea $f(x,y) = 3x^4 4x^2y + y^2 = (x^2 y)(3x^2 y)$.
 - a) Demuestre que (0,0) es punto crítico de f.
 - b) Demuestre directamente que, a lo largo de toda recta por el origen, f alcanza un mínimo en (0,0).
 - c) Determine si (0,0) es máximo local, mínimo local o punto silla.

3. En este problema demostraremos que la curva

$$C = \{(x, y) \in \mathbb{R}^2 \mid x^4 + x^3y + y^4 = 1\}$$

es acotada, es decir, existe M>0 tal que para todo $(x,y)\in C$ se cumple que $|x|\leqslant M$ e $|y|\leqslant M$. Para esto:

- a) Demuestre que $x^3y > \frac{3}{4}$ si $x^4 + y^4 = 1$
- b) Demuestre que $x^3y > \frac{3}{4}(x^4 + y^4)$ para todo $(x, y) \in \mathbb{R}^2$
- c) Use la información anterior para concluir.