

Data Models and Mathematical Foundations

Pooja T S

Computer Applications

Data Models and Mathematical Foundations

Introduction to Databases and Applications

Pooja T S

Computer Applications

PES

What is Data?

- Data is a collection of raw facts, figures, or observations stored electronically.
- ► Characteristics:
 - Raw and unprocessed
 - Uninterpreted until context is added
 - Exists in various forms: text, numbers, images, multimedia
- **Example:**

Student ID: 10234

Name: Rahul

Marks: 88

- Data vs Information:
 - Data = raw facts (e.g., "88")
 - Information = processed data with meaning (e.g., "Rahul scored 88 in Mathematics")

PES

Introduction to Databases

- Definition of Database
 - A structured collection of data, stored and managed electronically.
 - Supports efficient storage, retrieval, and manipulation of information.
 - Example: Student records in a university.
- Key Features:
 - Organized
 - Accessible
 - Manageable
- ightharpoonup Real-life Analogy: A library with categorized books ightharpoonup a database with structured data.

Database and its Applications Introduction to Databases

Figure: Databases can be stored and accessed through the cloud

PES

Key Terms in DBMS

- Important Definitions:
 - Database Organized collection of structured data.
 - DBMS Software to manage and operate databases.
 - Schema Blueprint/structure of the database.
 - Instance Actual data at a specific point in time.
 - Tuple (Record) A row in a table.
 - Attribute (Field) A column in a table.
 - Primary Key Unique identifier for a record.
 - Foreign Key Attribute linking two tables.
 - Normalization Process to reduce redundancy.
 - ACID Properties Atomicity, Consistency, Isolation, Durability.

Database and its Applications Applications of Databases

Figure: Real World Applications

Database and its Applications Why Do We Need Databases?

- Problems with Traditional File Systems:
 - Data redundancy
 - Inconsistency
 - Difficulty in retrieval
 - Lack of security
- How Databases Solve These Issues:
 - Centralized control and consistency
 - Efficient querying
 - Stronger security

Database and its Applications Why Use Databases?

- Data Integrity consistency across operations
- Security controlled access
- Scalability handles large datasets
- Concurrency supports multiple users simultaneously
- Data Independence
- Reduced Redundancy
- Efficient Querying

Database and its Applications Database Components

Figure: Components of a Database

Database and its Applications Database Components

- ► **Hardware** Physical devices where the database runs. Example: Servers, storage devices, hard disks.
- Software Programs that manage the database. Example: DBMS like MySQL, Oracle.
- ▶ Data The actual information stored in the database. Example: Student records, employee details, sales transactions.
- ► Access Language The language used to interact with the database. Example: SQL (Structured Query Language).
- ► Procedures Rules and methods to use/manage the database. Example: Backup procedures, security policies, user guidelines.

Database and its Applications Database Management System (DBMS)

- Software that manages databases
- Provides interface between users/applications and the database
- Ensures data independence and abstraction

PES

Metadata in DBMS

- Definition: Metadata is "data about data."
- Purpose:
 - Describes the structure of the database.
 - Defines tables, attributes, data types, and constraints.
 - Includes indexing, storage details, and relationships.
- Stored in: Data Dictionary or System Catalog.
- Example:
 - Table: Students
 - Metadata: {Name: VARCHAR(50), ID: INT PRIMARY KEY, Marks: INT}

PES

Database State / Instance

- ► The data stored in the database at a particular moment in time.
- Characteristics:
 - Represents a snapshot of the database.
 - Can change frequently as updates, insertions, and deletions occur.
 - Must always conform to the database schema.
- Difference:
 - Schema The structure (remains mostly unchanged).
 - Instance/State The actual content (changes over time).
- **Example:**
 - Schema: Students(id, name, marks)
 - Instance: {(101, 'Rahul', 88), (102, 'Anita', 92)}

PES

Types of DBMS

- Relational DBMS (RDBMS) based on tables (e.g., PostgreSQL, MySQL)
- NoSQL DBMS flexible, schema-less (e.g., MongoDB)
- Hierarchical/Network DBMS legacy models

PES

Database Users

End Users

- People who use applications to interact with the database.
- Example: Students checking results, customers shopping online.

Application Programmers

- Write software that uses the database.
- Example: Developers creating apps for banking or e-commerce.

Database Administrators (DBA)

- Manage the database system, ensure security, backup, and performance.
- Example: IT staff handling university or hospital databases.

System Analysts / Designers

- Design the database structure and define how data should be stored and accessed.
- Example: Planning how student data is organized.

PES

Database Languages

- Data Definition Language (DDL) schema creation
- Data Manipulation Language (DML) insert, update, delete
- Data Query Language (DQL) SELECT queries

Database and its Applications Databases in Modern Applications

- Cloud Databases scalable, managed, cost-effective (e.g., AWS RDS, Google Firestore, MongoDB Atlas)
- Big Data Integration works with Hadoop/Spark to handle volume, velocity, and variety of data
- AI/ML-ready Databases support vector search, predictive analytics, and recommendations (e.g., Pinecone, Oracle AI features)
- Multi-Model Databases support relational, document, graph, and key-value models in one system
- Edge Databases enable real-time processing close to IoT devices
- Serverless Databases auto-scale and charge only for usage

Database and its Applications Summary

- Databases store and manage structured data
- DBMS provides tools for secure and efficient use
- Different models serve different applications
- ▶ Databases are critical in nearly all modern domains

Database and its Applications Food for thought!!!!

- Think of an application you use daily (e.g., Zomato, Instagram, Banking App). Identify:
 - What kind of data is stored?
 - How is it organized?

Thank You

Pooja T S
Assistant Professor
Department of Computer Applications
poojats@pes.edu

080-26721983 Extn: 233