

## [Definition 11] VC dimension

The VC dimension of a family of functions H with boolean outputs is the maximum number of points that can be shortered by  $H: VC(H) = \sup\{n: s(H, n) = 2^n\}$ 

Note: To show a class H has VC dimension of,

(i) upper bound: show d+1 points can't be shuttered;

(ii) lower bound: show d points can be shattered.

[Theorem 10] finite-dimentional function class

Let  $F \subseteq \{f: X \rightarrow IR\}$ . Let  $H = \{x \mapsto 1\}\{f(x) \ge 0\}$ :  $f \in F\}$ .

Then we have  $VC(H) \in dim(F)$ 

Pf: for any n > dim(F),  $x_1, \dots, x_n$  are given.

Consider  $M(f) := [f(x_1), \dots, f(x_n)] \in \mathbb{R}^n$ 

M := {M(f): f ∈ F } is linear space. dim(M) ≤ dim(F).

Since n> dim(f) = dim(IN), = 0 + CCIR" s.t. M(f)-c=0

for all  $f \in F$ . Without loss of generality,  $\{C_i > 0\} \neq \emptyset$ . Then  $\sum_{C_i > 0} C_i f(x_i) + \sum_{C_i \leq 0} C_i f(x_i) = 0$  for all  $f \in F$ .

Suppose H shatters (XI) ..., Xny, we could find a heH s.t.

h(Xi) = 1 whenever C: >0 and h(Xi) = 0 whenever C: <0 we have  $\sum_{C:>0} C: h(Xi) + \sum_{C:<0} C: h(Xi) >0$ , but  $h \in F$ , which is a contradiction.

Therefore, H can't shatter fx1, xn's for any choise of