BCNF Decomposition and Candidate Key Analysis

Consider the relation schema R(ABCDEFG) with the following functional dependencies:

A -> C

B -> A

CD -> B

E -> F

G -> E

- i. Determine if "CDG" and "BCE" are candidate keys. Justify your answer.
- ii. Decompose the schema into BCNF and explain the decomposition process

Part i: Determine if "CDG" and "BCE" are Candidate Keys

We must compute closures of **CDG** and **BCE** to check whether they are **superkeys** (i.e., their closure contains **all attributes in R**) and **minimal** (i.e., no subset of them is also a superkey).

1. Check if CDG is a candidate key

We compute (CDG)+

Start: $CDG \rightarrow \{C, D, G\}$

- $CD \rightarrow B \Rightarrow add B$
- $B \rightarrow A \Rightarrow add A$
- $A \rightarrow C \Rightarrow$ already there
- $A \rightarrow C \Rightarrow OK$
- $G \rightarrow E \Rightarrow add E$
- $E \rightarrow F \Rightarrow add F$

So $(CDG)^+ = \{C, D, G, B, A, E, F\}$ \rightarrow Contains: A, B, C, D, E, F, G So **CDG** is a superkey

Now check if it's minimal:

• Try removing **C**:

$$\circ \quad (DG)^+ = \{D, G\}$$

- $G \rightarrow E \rightarrow F$, nothing else
- No CD \rightarrow B \rightarrow A etc.
 - ⇒ Doesn't work

• Try removing **D**:

$$\circ$$
 (CG)⁺ = {C, G}

- $\bullet \quad G \to E \to F$
- CD → B: CD missing⇒ Doesn't work
- Try removing **G**:

$$\circ \quad (CD)^+ = \{C, D\}$$

- $\bullet \quad CD \to B \to A \to C$
- But G → E → F missing
 ⇒ Doesn't work

CDG is minimal → So CDG is a candidate key

2. Check if BCE is a candidate key

Compute (BCE)+

Start: BCE \rightarrow {B, C, E}

- $B \rightarrow A \Rightarrow add A$
- $A \rightarrow C \Rightarrow$ already present
- $E \rightarrow F \Rightarrow add F$
- $CD \rightarrow B$ need D and C
- $G \rightarrow E G$ not present

Still missing D, $G \rightarrow So$ try getting D We don't have any FD giving us D or G

So
$$(BCE)^+ = \{B, C, E, A, F\}$$

 \rightarrow Missing D, G \Rightarrow Not a superkey

So BCE is not a candidate key

Answer for (i):

- **CDG** is a candidate key (justified by closure)
- BCE is not a candidate key

Part ii: BCNF Decomposition

Step 1: Recall BCNF Rule:

A relation is in **BCNF** if for **every non-trivial functional dependency** $X \rightarrow Y$, **X** is a superkey of the relation.

So, for each FD, check:

Is the LHS a superkey? → If not, decompose

A relation is in **BCNF** if for every FD $X \rightarrow Y$, **X** is a superkey.

Step 1: Find violations of BCNF

A relation violates **BCNF** if there is a non-trivial functional dependency $X \rightarrow Y$ where X is not a superkey.

We'll check each FD:

 $A^+ = \{A, C\} \rightarrow \text{Not all attributes}$

⇒ A is not a superkey ⇒ violates BCNF

 \rightarrow Decompose on A \rightarrow C

New relations:

- $R_1(A, C)$
- R₂(A, B, D, E, F, G)

Now decompose R₂(A, B, D, E, F, G)

FDs in R₂:

- $B \rightarrow A$
- $CD \rightarrow B \rightarrow \text{not in } R_2 \text{ (no C)}$
- $E \rightarrow F$
- $G \rightarrow E$

Let's test $\mathbf{B} \to \mathbf{A}$ in \mathbb{R}_2

B⁺ = {B, A}
 → Not all attributes ⇒ violates BCNF

Decompose R_2 on $\mathbf{B} \to \mathbf{A}$

New relations:

- $R_3(B, A)$
- $R_4(B, D, E, F, G)$

Now decompose R₄(B, D, E, F, G)

FDs left: $E \rightarrow F$, $G \rightarrow E$

Check $E \rightarrow F$

FD	Is X a superkey?	Violation?
$A \rightarrow C$	$A^+ = \{A, C\} \rightarrow \mathbf{X}$	Yes
$B \rightarrow A$	$B^+ = \{B, A, C\} \rightarrow \mathbf{X}$	Yes
$CD \rightarrow B$	$CD^+ = \{C, D, B, A, C\} \rightarrow Partial \rightarrow X$	Yes
$E \rightarrow F$	$E^+ = \{E, F\} \rightarrow \mathbf{X}$	Yes
$G \rightarrow E$	$G^+ = \{G, E, F\} \rightarrow \mathbf{X}$	Yes

All FDs violate BCNF ⇒ Decompose repeatedly

When a relation Ri violates BCNF:

decompose **Ri** using the violating **functional dependency**:

(where $\boldsymbol{\alpha}$ is not a superkey and the dependency is non-trivial)

BCNF Decomposition Rule:

You create two new relations:

i. $Ri_1 = \alpha \cup \beta$

This relation captures the functional dependency.

It includes the **left-hand side** (α) and **right-hand side** (β) of the FD.

ii.
$$Ri_2 = Ri - (\beta - \alpha)$$

This is the remaining attributes of the original Ri, excluding the attributes in β that are not already in α .

It retains α (because it's shared between Ri1 and Ri2) and any other attributes that weren't part of $\beta.$

Why this works:

 Ri_{1} preserves the FD $\alpha \rightarrow \beta$

 $\mbox{\bf Ri}_{z}$ keeps the rest of the schema but still includes α (needed for a lossless join)

Together, they let you reconstruct the original Ri using a natural join

Example

Let's say we have a relation:

Ri = (A, B, C, D)

Functional Dependency: A → B

 $\alpha = A$

 $\beta = B$

Now apply the BCNF decomposition:

i. $Ri_1 = \alpha \cup \beta = A \cup B = (A, B)$

 \rightarrow This holds the dependency A \rightarrow B.

ii. $Ri_2 = Ri - (\beta - \alpha)$

 $\rightarrow \beta - \alpha = B - A = \{B\}$

 \rightarrow Ri - {B} = (A, B, C, D) - {B} = (A, C, D)

 \rightarrow So Ri₂ = (A, C, D)

Now we have:

 $Ri_1 = (A, B) - FD: A \rightarrow B$

Ri₂ = (A, C, D) — remaining attributes with A retained for lossless join

Intuition:

We split off the part of the relation where the FD holds cleanly (Ri₁) The rest of the relation (Ri₂) keeps everything else but ensures α (A) is still there so we can join it back

• $E^+ = \{E, F\}$ \Rightarrow Not a superkey \Rightarrow violates BCNF

Decompose on $E \rightarrow F$

New relations:

- R₅(E, F)
- R₆(B, D, E, G)

Now check $R_6(B, D, E, G)$

Only relevant FD: $G \rightarrow E$

G⁺ = {G, E}
 → Not all attributes ⇒ violates BCNF

Decompose on $G \rightarrow E$

Final relations:

- $R_7(G, E)$
- R₈(B, D, G)

Final BCNF Decomposition:

- 1. $\mathbf{R}_1(\mathbf{A}, \mathbf{C})$ from $\mathbf{A} \to \mathbf{C}$
- 2. $\mathbf{R}_3(\mathbf{B}, \mathbf{A})$ from $\mathbf{B} \to \mathbf{A}$
- 3. $\mathbf{R_5}(\mathbf{E}, \mathbf{F})$ from $\mathbf{E} \to \mathbf{F}$
- 4. $\mathbf{R}_7(\mathbf{G}, \mathbf{E})$ from $\mathbf{G} \to \mathbf{E}$
- 5. $R_8(B, D, G)$ no violating FD \Rightarrow BCNF

Final Answer:

(i) Candidate Keys:

- CDG is a candidate key
- BCE is not a candidate key

(ii) BCNF Decomposition:

The relation **R(ABCDEFG)** is decomposed into:

- $R_1(A, C)$
- R₃(B, A)
- R₅(E, F)
- $R_7(G, E)$
- R₈(B, D, G)

Definition of BCNF

A relation schema R is in BCNF if for every non-trivial functional dependency $\alpha \to \beta$, one of the following must be true:

- $\alpha \rightarrow \beta$ is trivial, i.e., $\beta \subseteq \alpha$
- α is a superkey of R

2. How to Check BCNF

To test if a functional dependency **violates BCNF**:

- Compute α^+ (closure of α)
- If α^+ contains all attributes in **R**, then α is a superkey \Rightarrow BCNF holds
- Otherwise, the dependency violates BCNF

Note: It's okay to only check dependencies in F, not F⁺, when checking the **original relation**, but **not enough** when testing **a decomposed relation**.

For decompositions, you **must check F**⁺ as **hidden dependencies** (e.g., A \rightarrow C from A \rightarrow B, B \rightarrow C) can exist.

3. Example:

 $R = (A, B, C), F = \{A \rightarrow B, B \rightarrow C\}$

- Candidate key: A
- But $B \rightarrow C$ violates BCNF because B is **not** a superkey
- So, decompose:
 - \circ R1 = (A, B) with A \rightarrow B \rightarrow **BCNF**
 - \circ R2 = (B, C) with B \rightarrow C \rightarrow **BCNF**

This decomposition is:

- Lossless-join
- Dependency preserving

4. Important Caution in BCNF Decomposition

However, using only F is incorrect when testing a relation in a decomposition of R...

This is **important**.

Example:

• $R = (A, B, C, D), F = \{A \rightarrow B, B \rightarrow C\}$

- F^+ includes $A \rightarrow C$
- After decomposition:
 - \circ R1 = (A, B) check using F, fine
 - o R2 = (A, C, D) none of F's FDs include only A, C, D You **might think** R2 is in BCNF

But from F^+ , we know $A \to C$ exists \Rightarrow violates **BCNF**

Thus, F^+ must be used when testing BCNF after decomposition.

5. BCNF Decomposition Algorithm

- 1. Start with result = {R}
- 2. While there is a relation Ri in result not in BCNF:
 - a. Find a dependency $\alpha \rightarrow \beta$ in Ri that violates BCNF
 - b. Replace Ri with two schemas:

i. Ri1 =
$$\alpha \cup \beta$$

ii. Ri2 = Ri -
$$(\beta - \alpha)$$

3. Repeat until all Ri are in BCNF

Guarantees:

- Lossless-join
- But not always dependency preserving

6. Example: Dependency Not Preserved in BCNF

- $R = (J, K, L), F = \{JK \rightarrow L, L \rightarrow K\}$
- Candidate keys = JK, JL
- R is **not in BCNF**
- Any decomposition will lose the dependency $JK \rightarrow L$

So: Not all BCNF decompositions preserve all functional dependencies