

Offline-03 Report

Mahir Labib Dihan

October 19, 2024

Contents

1	Intr	oduction	2	
2	Rur 2.1 2.2	ning the Code for Testing Requirements	3 3	
3	Model Architectures			
	3.1	Model 1	4	
	3.2	Model 2	4	
	3.3	Model 3	4	
4	Res	ılts	6	
	4.1	Model 1	6	
		4.1.1 Learning Rate 0.005	6	
		4.1.2 Learning Rate 0.001	7	
		4.1.3 Learning Rate 0.0005	8	
		4.1.4 Learning Rate 0.0001	9	
	4.2	Model 2	10	
		4.2.1 Learning Rate 0.005	10	
		4.2.2 Learning Rate 0.001	11	
		4.2.3 Learning Rate 0.0005	12	
		4.2.4 Learning Rate 0.0001	13	
	4.3	Model 3	14	
		4.3.1 Learning Rate 0.005	14	
		4.3.2 Learning Rate 0.001	15	
		4.3.3 Learning Rate 0.0005	16	
		4.3.4 Learning Rate 0.0001	17	
5	Cor	clusion 1	I &	

Introduction

This report presents the results of training three different deep learning models with four different learning rates. For each learning rate, four figures are generated, resulting in a total of 48 figures. Each page contains four figures.

Running the Code for Testing

This chapter provides instructions for running the code to test the models using the provided IPython Notebook ('.ipynb' file).

2.1 Requirements

You can install the required packages using the following command:

```
pip install -r requirements.txt
```

2.2 Testing the Model

To test the best model (model_1905072.pickel), execute all the cells above the training section. We will skip the training section since we don't want to train. Then execute the testing section, and the model's performance on the test set will be displayed.

Model Architectures

3.1 Model 1

```
[
    Flatten((28,28)),
    Dense(784, 256), BN(256), ReLU(), Dropout(0.2),
    Dense(256, 10), Softmax()
]
```

3.2 Model 2

```
[
    Flatten((28,28)),
    Dense(784, 180), BN(180), ReLU(), Dropout(0.2),
    Dense(180, 80), BN(80), ReLU(), Dropout(0.2),
    Dense(80, 10), Softmax()
]
```

3.3 Model 3

```
[
    Flatten((28,28)),
    Dense(784, 150), BN(150), ReLU(), Dropout(0.2),
    Dense(150, 100), BN(100), ReLU(), Dropout(0.2),
    Dense(100, 50), BN(50), ReLU(), Dropout(0.2),
    Dense(50, 10), Softmax()
]
```

Results

4.1 Model 1

4.1.1 Learning Rate 0.005

Validation Macro F1: 0.8864245142748702

Figure 4.1: Results for Model 1 with Learning Rate 0.005

4.1.2 Learning Rate 0.001

Validation Macro F1: 0.88624269319234

Figure 4.2: Results for Model 1 with Learning Rate 0.001

4.1.3 Learning Rate 0.0005

Validation Macro F1: 0.8906490850647055

Figure 4.3: Results for Model 1 with Learning Rate 0.0005

4.1.4 Learning Rate 0.0001

Validation Macro F1: 0.8876554145603317

Figure 4.4: Results for Model 1 with Learning Rate 0.0001

4.2 Model 2

$4.2.1 \quad \text{Learning Rate } 0.005$

Validation Macro F1: 0.8787974897971365

Figure 4.5: Results for Model 2 with Learning Rate 0.005

4.2.2 Learning Rate 0.001

Validation Macro F1: 0.8832774164110841

Figure 4.6: Results for Model 2 with Learning Rate 0.001

4.2.3 Learning Rate 0.0005

Validation Macro F1: 0.8851833832069353

Figure 4.7: Results for Model 2 with Learning Rate 0.0005

4.2.4 Learning Rate 0.0001

Validation Macro F1: 0.8848096291513313

Figure 4.8: Results for Model 2 with Learning Rate 0.0001

4.3 Model 3

4.3.1 Learning Rate 0.005

Validation Macro F1: 0.8747083763582907

Figure 4.9: Results for Model 3 with Learning Rate 0.005

4.3.2 Learning Rate 0.001

Validation Macro F1: 0.8792131651389061

Figure 4.10: Results for Model 3 with Learning Rate 0.001

4.3.3 Learning Rate 0.0005

Validation Macro F1: 0.8769000025009104

Figure 4.11: Results for Model 3 with Learning Rate 0.0005

4.3.4 Learning Rate 0.0001

Validation Macro F1: 0.8774710502825878

Figure 4.12: Results for Model 3 with Learning Rate 0.0001

Conclusion

Best Model: 1, Learning Rate: 0.0005, Validation F1 Score: 0.8906, Test

Accuracy: 0.8924