





Snapshot taken at t = 9+ of Example 5. cancelling-predicate -new I matches target address in stack



| predicate-use (at code execution time) | co condition for I execution | tons and the same of the same | -                 | bc <sub>2</sub> 1                    | - pc <sub>2</sub> | $-\frac{bc_2+bc_2=1}{bc_1+bc_2}$       | - p <sub>4</sub> =1 | bc <sub>6</sub> ·p <sub>4</sub> 1   | 90g -                                                                              | - bc <sub>6</sub> +bc <sub>6</sub> =1            | - p <sub>6</sub> =1 | Equations - for "T": p <sub>1</sub> =p <sub>out</sub> =p <sub>in</sub> +cp <sub>in</sub> ; for "B": p <sub>out</sub> =bc·p <sub>in</sub> ; cp <sub>out</sub> =bc·p <sub>in</sub> |
|----------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------|-------------------|----------------------------------------|---------------------|-------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |                              | Lont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | p <sub>1</sub> =1 | $p_2 = \overline{bc_2}$              | •                 | $cp_2 \frac{\overline{bc}_2 + bc_2}{}$ | ,                   | bc <sub>6</sub> ·p <sub>4</sub>     | ı                                                                                  | cp <sub>6</sub> bc <sub>6</sub> +bc <sub>6</sub> | 1                   | =p <sub>in</sub> +cp <sub>in</sub>                                                                                                                                               |
| <del>*</del>                           | g                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                 | 0                                    | 0                 | $cp_2$                                 | 0                   | 0                                   | 0                                                                                  | ငှာ                                              | 0                   | -p out                                                                                                                                                                           |
| signmer<br>ime)                        | a   a                        | <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                 | ~                                    | $\sigma_{c}$      | ۵۲ م                                   | $\sigma_{_{4}}$     | $\sigma_{_{4}}$                     | $\sigma_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | ح <sub>م</sub>                                   | صّ                  | "T": p <sub>1</sub> =                                                                                                                                                            |
| predicate-assignment<br>(at load time) | "                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | empty             | $B_2 \boxed{1 \left[P_2\right] 400}$ | $B_2 1 P_2 400$   | empty                                  | empty               | B <sub>6</sub> 1 P <sub>6</sub> 800 | B <sub>e</sub> 1 P <sub>e</sub> 800                                                | empty                                            | empty               | Equations - for                                                                                                                                                                  |
|                                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | z = x  op  y      | if (bc <sub>2</sub> ) goto 400       |                   |                                        |                     | if (bc <sub>6</sub> ) goto 800      |                                                                                    |                                                  |                     |                                                                                                                                                                                  |
|                                        | 0                            | כחחב                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | B                                    | _ <sub>E</sub>    | <b>_</b> ₄                             | <u>-</u> ]          | B                                   | -1                                                                                 | ∞                                                | _6                  |                                                                                                                                                                                  |
| , .                                    | load                         | aduless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100               | 200                                  | 300               | 400                                    | 200                 | 009                                 | 200                                                                                | 800                                              | 006                 |                                                                                                                                                                                  |
|                                        | load                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~                 | 7                                    | က                 | 4                                      | 2                   | 9                                   | _                                                                                  | ∞                                                | တ                   |                                                                                                                                                                                  |

FIG. 3



| predicate-use (at code execution time) | cp <sub>out</sub> p <sub>1</sub> - condition for I execution |              | bc <sub>2</sub> 1                      | - bc <sub>2</sub> | bc <sub>4</sub> +p <sub>2</sub> bc <sub>4</sub> :p <sub>2</sub> 1          | - bc <sub>2</sub> ·bc <sub>4</sub>                                         | $-bc_4 \cdot bc_2 + bc_4 \cdot bc_2 = bc_2$ | - <u>bc</u> 2   | $- \overline{bc_2 + bc_2} = 1$                  |       | Equations - for "T": p <sub>1</sub> =p <sub>out</sub> =p <sub>in</sub> +cp <sub>in</sub> ; for "B": p <sub>out</sub> =bc·p <sub>in</sub> ; cp <sub>out</sub> =bc·p <sub>in</sub> |
|----------------------------------------|--------------------------------------------------------------|--------------|----------------------------------------|-------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------|-----------------|-------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | o d                                                          |              | $p_2 = \overline{bc_2}$                | •                 | bc <sub>4</sub> +p <sub>2</sub>                                            | ı                                                                          | p <sub>6</sub> .cp <sub>4</sub>             |                 | cp <sub>2</sub> p <sub>6</sub> +cp <sub>2</sub> | •     | =p <sub>in</sub> +cp <sub>ir</sub>                                                                                                                                               |
| ŧ                                      | g                                                            | 0            | 0                                      | 0                 | 0                                                                          | 0                                                                          | cp <sub>4</sub>                             | 0               | $cp_2$                                          | 0     | =p <sub>out</sub>                                                                                                                                                                |
| signmel<br>ime)                        | p <sub>in</sub> =p <sub>r</sub> cp <sub>in</sub>             | _            | <del></del>                            | <b>ل</b>          | ٥²                                                                         | $\sigma_{_{4}}$                                                            | $\sigma_{4}$                                | <b>م</b>        | ص                                               | ح«    | "T": p <sub>1</sub> :                                                                                                                                                            |
| predicate-assignment<br>(at load time) | stack<br>B v p TA                                            | emb          | $B_2 \boxed{1 \left  P_2 \right  800}$ | $B_2 1 P_2 800$   | B <sub>4</sub> 1 P <sub>4</sub> 600<br>B <sub>2</sub> 1 P <sub>2</sub> 800 | B <sub>4</sub> 1 P <sub>4</sub> 600<br>B <sub>2</sub> 1 P <sub>2</sub> 800 | $B_2 1 P_2 800$                             | $B_2 1 P_2 800$ | empty                                           | empty | Equations - for                                                                                                                                                                  |
|                                        |                                                              | z = x  op  y | if (bc <sub>2</sub> ) goto 800         |                   | if (bc <sub>4</sub> ) goto 600                                             |                                                                            |                                             |                 |                                                 |       |                                                                                                                                                                                  |
|                                        | epoo                                                         |              | $B_2$                                  | _£                | $B_4$                                                                      | _s                                                                         |                                             | -1              | _ <sub>∞</sub>                                  | _6    |                                                                                                                                                                                  |
|                                        | address code                                                 | 100          | 200                                    | 300               | 400                                                                        | 200                                                                        | 009                                         | 700             | 800                                             | 006   |                                                                                                                                                                                  |
| 13.                                    | load<br>time                                                 | <b>-</b>     | 7                                      | က                 | 4                                                                          | 2                                                                          | 9                                           | 7               | œ                                               | တ     |                                                                                                                                                                                  |



| REAL OF THE PARTY |                                                              |              |                                     |                                     |                                                                            |                                                                            |                                                                            |                                                                            |                                                             |       |                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------|-------------------------------------|-------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| predicate-use<br>(at code execution time)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cp <sub>out</sub> p <sub>l</sub> - condition for l execution | -            | <b>ν</b> -                          | $\frac{\overline{bc}_2}{}$          | ~                                                                          | $\overline{bc_4}$ , $\overline{bc_2}$                                      | $(\overline{bc}_4 \cdot \overline{bc}_2) + bc_2 = \overline{bc}_4 + bc_2$  | bc <sub>4</sub> +bc <sub>2</sub>                                           | $\overline{bc}_4 + bc_2 + (bc_4 \cdot \overline{bc}_2) = 1$ | 1     | Equations - for "T": p <sub>1</sub> =p <sub>out</sub> =p <sub>in</sub> +cp <sub>in</sub> ; for "B": p <sub>out</sub> =bc·p <sub>in</sub> ; cp <sub>out</sub> =bc·p <sub>in</sub> <b>FIG. 5</b> |
| pr<br>at cod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cp <sub>out</sub>                                            |              | $bc_2$                              | 1                                   | bc <sub>4</sub> .p <sub>2</sub>                                            | ı                                                                          | •                                                                          | 1                                                                          | •                                                           | •     | for "E                                                                                                                                                                                         |
| ٣                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P <sub>out</sub>                                             |              | $p_2 = \frac{1}{bc_2}$              |                                     | bc <sub>4</sub> +p <sub>2</sub>                                            | ı                                                                          | p <sub>4</sub> .cp <sub>2</sub>                                            | 1                                                                          | cp <sub>4</sub> p <sub>6</sub> +cp <sub>4</sub>             | •     | =p <sub>in</sub> +cp <sub>in</sub> ;                                                                                                                                                           |
| ţ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p <sub>in</sub> =p <sub>r</sub> cp <sub>in</sub>             | 0            | 0                                   | 0                                   | 0                                                                          | 0                                                                          | $cp_2$                                                                     | 0                                                                          | cp<br>4                                                     | 0     | =p <sub>out</sub> =                                                                                                                                                                            |
| ignme<br>me)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | p <sub>in</sub> =p <sub>r</sub>                              | -            | ~                                   | $\overline{D}_{2}$                  | $\sigma_{c}$                                                               | $\sigma_4$                                                                 | $\sigma_{4}$                                                               | ص                                                                          | ൨                                                           | ഫ്    | T": p <sub>1</sub>                                                                                                                                                                             |
| predicate-assignment<br>(at load time)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | stack B v p TA                                               |              | B <sub>2</sub> 1 P <sub>2</sub> 600 | B <sub>2</sub> 1 P <sub>2</sub> 600 | B <sub>2</sub> 1 P <sub>2</sub> 800<br>B <sub>2</sub> 1 P <sub>2</sub> 600 | B <sub>4</sub> 1 P <sub>4</sub> 800<br>B <sub>2</sub> 1 P <sub>2</sub> 600 | B <sub>2</sub> 1 P <sub>4</sub> 800<br>B <sub>2</sub> 0 P <sub>2</sub> 600 | B <sub>2</sub> 1 P <sub>4</sub> 800<br>B <sub>2</sub> 0 P <sub>2</sub> 600 | empty                                                       | empty | Equations - for "T" <i>FIG. 5</i>                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              | z = x  op  y | if $(bc_2)$ goto $600$              |                                     | if (bc <sub>4</sub> ) goto 800                                             |                                                                            |                                                                            |                                                                            |                                                             |       |                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | code                                                         |              | $B_2$                               | <u>_</u> °                          | Д                                                                          | _9                                                                         |                                                                            | 1                                                                          |                                                             | _6    |                                                                                                                                                                                                |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | load<br><u>time</u> <u>address code</u>                      | 100          | 200                                 | 300                                 | 400                                                                        | 200                                                                        | 009                                                                        | 200                                                                        | 800                                                         | 006   |                                                                                                                                                                                                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | load<br>time                                                 | _            | 7                                   | က                                   | 4                                                                          | 2                                                                          | ဖ                                                                          | 7                                                                          | ∞                                                           | တ     |                                                                                                                                                                                                |



| M.           |         |                   | predicate-ass<br>(at load ti       | nt                                                                                                                  | predicate-use (at code execution time) |                  |                                  |                                 |                                                                                                                                                                                   |
|--------------|---------|-------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------|----------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| load<br>time | address | <u>code</u>       |                                    | stack B v p TA                                                                                                      | p <sub>in</sub> =p <sub>r</sub>        | cp <sub>in</sub> | P <sub>out</sub>                 | cp <sub>out</sub>               | p <sub>i</sub> - condition<br>for I execution                                                                                                                                     |
| 1            | 100     | I <sub>1</sub>    | z = x op y                         | empty                                                                                                               | 1                                      | 0                | p <sub>1</sub> =1                | -                               | 1                                                                                                                                                                                 |
| 2            | 200     | $B_2$             | if (bc₄)<br>goto 800               | B <sub>2</sub> 1 P <sub>2</sub> 1000                                                                                | 1                                      | 0                | $p_2 = \overline{bc}_2$          | bc <sub>2</sub>                 | 1                                                                                                                                                                                 |
| 3            | 300     | l <sub>3</sub>    |                                    | B <sub>2</sub> 1 P <sub>2</sub> 1000                                                                                | $P_2$                                  | 0                | -                                | -                               | bc <sub>2</sub>                                                                                                                                                                   |
| 4            | 400     | B <sub>4</sub> —  | if (bc <sub>4</sub> )<br>goto 800  | B <sub>4</sub> 1 P <sub>4</sub> 800<br>B <sub>2</sub> 1 P <sub>2</sub> 1000                                         | P <sub>2</sub>                         | 0                | bc <sub>4</sub> +p <sub>2</sub>  | bc <sub>4</sub> ·p <sub>2</sub> | 1                                                                                                                                                                                 |
| 5            | 500     | l <sub>5</sub>    |                                    | B <sub>4</sub> 1 P <sub>4</sub> 800<br>B <sub>2</sub> 1 P <sub>2</sub> 1000                                         | P <sub>4</sub>                         | 0                | -                                | -                               | $\overline{bc}_4 \cdot \overline{bc}_2$                                                                                                                                           |
| 6            | 600     | B <sub>6</sub> -  | if (bc <sub>6</sub> )<br>goto 1200 | B <sub>6</sub> 1 P <sub>6</sub> 1200<br>B <sub>4</sub> 1 P <sub>4</sub> 800<br>B <sub>2</sub> 1 P <sub>2</sub> 1000 | P <sub>4</sub>                         | 0                | bc <sub>6</sub> ·p <sub>4</sub>  | bc <sub>6</sub> ·p <sub>4</sub> | 1                                                                                                                                                                                 |
| 7            | 700     | l <sub>7</sub>    |                                    | B <sub>6</sub> 1 P <sub>6</sub> 1200<br>B <sub>4</sub> 1 P <sub>4</sub> 800<br>B <sub>2</sub> 1 P <sub>2</sub> 1000 | $P_6$                                  | 0                | -                                | -                               | <del>bc</del> <sub>6</sub> ⋅ <del>bc</del> <sub>4</sub> ⋅ <del>bc</del> <sub>2</sub>                                                                                              |
| 8            | 800     | I <sub>8</sub> ◀  |                                    | B <sub>6</sub> 1 P <sub>6</sub> 1200<br>B <sub>4</sub> 0 P <sub>4</sub> 800<br>B <sub>2</sub> 1 P <sub>2</sub> 1000 | $P_6$                                  | cp <sub>4</sub>  | p <sub>6</sub> +cp <sub>4</sub>  | - ( <del>b</del> e              | $\overline{c}_{6} \cdot \overline{bc}_{4} \cdot \overline{bc}_{2}) + (\underline{bc}_{4} \cdot \overline{bc}_{2})$ $= (\overline{bc}_{6} + \underline{bc}_{4}) \overline{bc}_{2}$ |
| 9            | 900     | l <sub>9</sub>    |                                    | B <sub>6</sub> 1 P <sub>6</sub> 1200<br>B <sub>4</sub> 0 P <sub>4</sub> 800<br>B <sub>2</sub> 1 P <sub>2</sub> 1000 | P <sub>8</sub>                         | 0                | -                                | -                               | $(\overline{bc}_6 + bc_4)\overline{bc}_2$                                                                                                                                         |
| 10           | 1000    | I <sub>10</sub>   |                                    | B <sub>6</sub> 1 P <sub>6</sub> 1200                                                                                | P <sub>8</sub>                         | cp <sub>2</sub>  | p <sub>8</sub> +cp <sub>2</sub>  | - (                             | $(\overline{bc}_6 + bc_4)\overline{bc}_2) + bc_2$                                                                                                                                 |
| 11           | 1100    | I <sub>11</sub>   |                                    | B <sub>6</sub> 1 P <sub>6</sub> 1200                                                                                | P <sub>10</sub>                        | 0                | -                                | -                               | =bc <sub>6</sub> +bc <sub>4</sub> +bc <sub>2</sub><br>(bc <sub>6</sub> +bc <sub>4</sub> )bc <sub>2</sub>                                                                          |
| 12           | 1200    | I <sub>12</sub> ◀ |                                    | empty                                                                                                               | P <sub>10</sub>                        | cp <sub>6</sub>  | p <sub>10</sub> +cp <sub>6</sub> | -                               | bc <sub>6</sub> +bc <sub>4</sub> +bc <sub>2</sub> +                                                                                                                               |
| 13           | 1300    | l <sub>13</sub>   |                                    | empty                                                                                                               | P <sub>12</sub>                        | 0                | -                                | -                               | $(bc_6 \cdot bc_4 \cdot bc_2) = 1$                                                                                                                                                |
| , .          | :       | •                 |                                    | Equations - for "T                                                                                                  | ": p <sub>1</sub> =p                   | out=pi           | +cp <sub>in</sub> ; fo           | r "B": p <sub>out</sub>         | =bc·p <sub>in</sub> ; cp <sub>out</sub> =bc·p <sub>in</sub>                                                                                                                       |