Clock Model: Vilar et al 2002, PNAS. Mechanisms of Noise-resistance in genetic oscillators.

Circadian Clock Oscillator Model:

	Reaction	k _{on} (or k _f)	k _{off}	k_a^{3D} (or k_f)	k _b	σ
1	PmrA→PrmA+mRNA_A	50s ⁻¹	-	50s ⁻¹	-	-
2ab	PrmA+A⇒PrmA_bound	602μM ⁻¹ s ⁻¹	50s ⁻¹	4888.6nm ³ μs ⁻	244.5s ⁻	5nm
3	PrmA_bound →PrmA_bound+mRNA_A	500s ⁻¹	-	500s ⁻¹	-	-
4	PrmR→PrmR+mRNA_R	0.01s ⁻¹	-	0.01s ⁻¹	-	-
5ab	PrmR+A⇒PrmR_bound	602μM ⁻¹ s ⁻¹	100s ⁻¹	4888.6nm ³ μs ⁻	489s ⁻¹	5nm
6	PrmR_bound →PrmR_bound+mRNA_R	50s ⁻¹	-	50s ⁻¹	-	-
7	$mRNA_A \longrightarrow mRNA_A + A$	50s ⁻¹	-	50s ⁻¹	-	-
8	mRNA_R→mRNA_R+R	5s ⁻¹	-	5s ⁻¹	-	-
9	$A+R\longrightarrow C$	1204μM ⁻¹ s ⁻¹	-	356263nm ³ µs ⁻	-	8nm
10	$C \longrightarrow R$	1s ⁻¹	-	1s ⁻¹	-	-
11	A→Null	1s ⁻¹	-	1s ⁻¹	-	-
12	R—→Null	0.2s ⁻¹	-	0.2s ⁻¹	-	-
13	mRNA_A → Null	10s ⁻¹	-	10s ⁻¹	-	-
14	mRNA_R-Null	$0.5s^{-1}$	-	0.5s ⁻¹	-	-

For all species $D_t=10\mu m^2/s$, and $D_R=0$.

 $V=4.188 \mu m^3$

Initial copies are 0 except for prmA=1 and prmR=1.

Use Δt=10μs, density can get high and 50μs is above suggested max time-step.

DATA FILES:

This directory contains A(t) R(t) for NERDSS trajectory. First column is Iteration, time=Itr*50us. ar_iter_regDecay_NERDSS.dat

And for slower decay: ar_iter_slowDecay_NERDSS.dat

Files for ODE from Virtual Cell: ARode_vstime.dat Files from PDE from Virtual Cell: ARpde_vstime.dat

Fig 1. NERDSS simulations give periods of 24.5s, 24.75, 6.45s lag. ODE/PDE is 25.12, 25.12 and 6.55s. Based on FFt with zeropad to 5000s.

Fig 2. FFT of NERDSS A/R oscillations vs time, after zero padding to 500s. Largest amplitude is for oscillations at a period of 24.2658s, from this trajectory.

Fig 3. With slow R decay, (reaction #12, we drop the rate from 0.2 to 0.05 s⁻¹) oscillations disappear in deterministic solution but persist in stochastic simulations. Here, the single-particle NERDSS simulations were run for 1000s, producing oscillations with periods of 63.3 and 64.1s, or about twice as slow as the original model. The lag between A and R slowed to 7.95s.