- 27.2 Proof. Let A be a bounded subset of \mathbb{R} . f is continuous on \mathbb{R} so it is continuous on $A \subset \mathbb{R}$. By the Weierstrass Approximation Theorem, there is a sequence of polynomials $\langle p_n \rangle$ such that $p_n \to f$ uniformly on [-n,n] for all $n \in \mathbb{N}$. Then choose $N \in \mathbb{N}$ such that $A \subset [-N,N]$. Hence, for all n > N, $A \subset [-n,n]$ so $p_n \to f$ uniformly on A. Since A was arbitrary, $p_n \to f$ uniformly on each bounded subset of \mathbb{R}
- 27.4 Proof. By the Weierstrass Approximation Theorem, there is a sequence of polynomials $< q_n >$ such that $q_n \to f$ uniformly on [a,b]. Then let $s_n = \frac{(f(b) q_n(b)) (f(a) q_n(a))}{b-a}(x-a) + f(a) q_n(a)$ and $p_n = q_n + s_n$. So, $p_n(a) = q_n(a) + s_n(a) = q_n(a) + f(a) q_n(a) = f(a)$ and $p_n(b) = q_n(b) + f(b) q_n(b) f(a) + q_n(a) + f(a) q_n(a) = f(b)$. Without loss of generality, suppose $f(a) q_n(a) \le f(b) q_n(b)$. Then s_n is monontonic so $s_n(x) \in [s_n(a), s_n(b)]$ for all $x \in [a, b]$. Hence, $s_n(x) \le |s_n(b)|$ for all $x \in [a, b]$. Let $\varepsilon > 0$. Then $q_n \to f$ uniformly on [a, b] so there is a $N \in \mathbb{N}$ such that if n > N, then $|q_n(x) f(x)| < \varepsilon |s_n(b)|$ for all $x \in [a, b]$. Therefore, $\varepsilon > |s_n(b)| + |q_n(x) f(x)| = |-s_n(b)| + |f(x) q_n(x)| \ge |f(x) q_n(x) s_n(b)| = |f(x) p_n(x)|$. Since ε was arbitrary, $p_n \to f$ uniformly on [a,b].
- 28.4 (a) Proof. Let $a \neq 0$. 1 and x are differentiable at a so by the Quotient Rule, $\frac{1}{x}$ is differentiable at $a \neq 0$. Then by the Chain Rule, $\sin(x)$ is differentiable at $\frac{1}{a}$ so $\sin(\frac{1}{x})$ is differentiable at a. Since a was arbitrary, f(x) is differentiable at each $a \neq 0$. \Box $f'(x) = \frac{d}{dx}x^2\sin(\frac{1}{x}) = 2x\sin\frac{1}{x} + x^2\cdot\frac{d}{dx}\sin\frac{1}{x}$ by the Product Rule. Then $f'(x) = 2x\sin\frac{1}{x} + x^2\cdot\frac{1}{x^2}\cos\frac{1}{x}$ by the Chain Rule. Therefore, $f'(x) = 2x\sin\frac{1}{x} \cos\frac{1}{x}$ so $f'(a) = 2a\sin\frac{1}{a} \cos\frac{1}{a}$ for $a \neq 0$.
 - (b) $Proof. \lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0} \frac{x^2 \sin \frac{1}{x}-0}{x} = \lim_{x\to 0} x \sin \frac{1}{x}.$ Then $-|x| \le x \sin \frac{1}{x} \le |x|$ and $\lim_{x\to 0} -|x| = \lim_{x\to 0} |x| = 0$ so by the Squeeze Lemma, $\lim_{x\to 0} x \sin \frac{1}{x} = 0 = f'(0)$. Thus, f is differentiable at x = 0 and f'(0) = 0.
 - (c) Proof. We will use proof by contradiction. Suppose that f' is continuous at x=0. Then let $\langle x_n \rangle = \langle \frac{1}{n} \rangle$. $\lim_{n \to \infty} x_n = 0$ so $\lim_{n \to \infty} f'(x_n) = \lim_{n \to \infty} 2 \cdot \frac{1}{n} \sin(n) \cos(n) = -\lim_{n \to \infty} \cos(n) \neq 0$ so $\lim_{n \to \infty} f'(x_n) \neq f'(0)$. Contradiction so f' is not continuous at x=0.
- 28.8 (a) Proof. Let $\varepsilon > 0$. Then if $|x 0| < \sqrt{\varepsilon}$, $|x^2| < \varepsilon$. Suppose x is rational. Then $|f(x)| = |x^2| < \varepsilon$. Since ε was arbitrary, f is continuous at x = 0. Now suppose that x is irrational. Then f(x) = 0 so $|f(x) f(0)| = |0 0| = 0 < \varepsilon$. Since ε was arbitrary, f is continuous at x = 0.
 - (b) Proof. We will use proof by contradiction. Suppose that f is continuous at some $x_0 \neq 0$. Suppose x_0 is rational. Then there is a $\delta > 0$ such that if $|x x_0| < \delta$, then $|f(x) f(x_0)| = |f(x) x_0^2| < \frac{x_0^2}{2}$. By denseness of the irrationals in \mathbb{R} , there is an irrational $x_1 \in \text{Ball}(x_0, \delta)$. Then, $f(x_1) = 0$ so $|f(x_1) x_0^2| = |0 x_0^2| = x_0^2 > \frac{x_0^2}{2}$. Contradiction so f is not continuous at x_0 . Since x_0 was arbitrary, f is discontinuous at all $x \neq 0$. Now suppose that x_0 is irrational. Then there is a $\delta > 0$ such that if $|x x_0| < \delta$, then $|f(x) f(x_0)| = |f(x) 0| < x_0^2$. By denseness of the rationals in \mathbb{R} , there is a rational x_2 such that $x_0 < x_2 < x_0 + \delta$ so $f(x_2) = x_2^2 > x_0^2$ if $x_0 > 0$. If $x_0 < 0$, then there is a rational x_2 such that $x_0 \delta < x_2 < x_0$ so $f(x_2) = x_2^2 > x_0^2$. Then $|f(x_2) f(x_0)| = x_2^2 > x_0^2$. Contradiction so f is not continuous at x_0 . Since x_0 was arbitrary, f is discontinuous at all $x \neq 0$.
 - (c) Proof. Let $\varepsilon > 0$. If x is rational and nonzero, then $|x 0| < \varepsilon$ implies $\varepsilon > |x| = |\frac{x^2}{x}| = |\frac{f(x)}{x} 0|$. If x is irrational, then f(x) = 0 so $\frac{f(x)}{x} = 0$ and hence $|\frac{f(x)}{x}| < \varepsilon$ for all irrational x. Since ε was arbitrary, $\lim_{x \to 0} \frac{f(x)}{x} = 0$. Hence, f is differentiable at x = 0.
- 29.4 Proof. Let $h(x) = f(x)e^{g(x)}$. Then f(a) = 0 so $h(a) = f(a)e^{g(a)} = 0$ and f(b) = 0 so $h(b) = f(b)e^{g(b)} = 0$. Then g(x) is differentiable so $e^{g(x)}$ is differentiable by the Chain Rule. Thus h(x) is differentiable and $h'(x) = f'(x)e^{g(x)} + f(x)g'(x)e^{g(x)} = e^{g(x)}(f'(x) + f(x)g'(x))$. By Rolle's Theorem, there is some $x \in (a,b)$ such that $h'(x) = e^{g(x)}(f'(x) + f(x)g'(x)) = 0$ so there is some $x \in (a,b)$ such that f'(x) + f(x)g'(x) = 0.

14 April 2018 Page 1

- 29.10 (a) Proof. Let $g(x) = x^2 \sin \frac{1}{x}$. Then by Exercise (28.4) above, g'(0) = 0. Hence, $f'(x) = g'(x) + \frac{d}{dx}(\frac{x}{2}) = g'(x) + \frac{1}{2}$ so $f'(0) = g'(0) + \frac{1}{2} = \frac{1}{2} > 0$
 - (b) Proof. We will use proof by contradiction. Suppose f is increasing on an open interval I containing 0. Then $f'(x) \geq 0$ for all $x \in I$. For $x \neq 0$, $f'(x) = 2x \sin \frac{1}{x} \cos \frac{1}{x} + \frac{x}{2}$. Then there is some $x_0 \in I$ such that $\sin \frac{1}{x_0} = 0$ and $\cos \frac{1}{x_0} = 1$ since $\sin \frac{1}{x}$ and $\cos \frac{1}{x}$ fluctuate between -1 and 1 as x approaches 0. Then $f'(x_0) = 0 1 + \frac{1}{4\pi} = \frac{1}{4\pi} 1 < 0$. Contradiction so f is not increasing on I. Since I was arbitrary, f is not increasing on any open interval containing 0.
 - (c) Corollary 29.7(i) requires a positive derivative throughout the interval, while in part (a) of the exercise above we only showed it was positive at one point.
- 29.14 Proof. We will first show that $f(x) \ge x$ for all $x \ge 0$ using contradiction. Suppose f(x) < x for some $x \ge 0$. Then let g(x) = f(x) x so g(x) < 0 for some $x \ge 0$. f and x are differentiable on \mathbb{R} so g is differentiable on \mathbb{R} and g'(x) = f'(x) 1 < 0 for some $x \ge 0$ so f'(x) < 1 for some $x \ge 0$. Contradiction as $1 \le f'(x)$ for all $x \in \mathbb{R}$. Therefore, $f(x) \ge x$ for all $x \ge 0$.

 Now we will show that $f(x) \le 2x$ for all $x \ge 0$ using contradiction. Suppose f(x) > 2x for some $x \ge 0$. Then let h(x) = f(x) 2x so h(x) > 0 for some $x \ge 0$. f and f(x) = f(x) 2x so f(x) > 0 for some f(x) = f(x) 2x so f(x) = f(x) 2

Contradiction as $f'(x) \leq 2$ for all $x \in \mathbb{R}$. Therefore, $f(x) \leq 2x$ for all $x \geq 0$. Therefore, $x \leq f(x) \leq 2x$ for all $x \geq 0$

so h is differentiable on \mathbb{R} and h'(x) = f'(x) - 2 > 0 for some $x \ge 0$ so f'(x) > 2 for some $x \ge 0$.

14 April 2018 Page 2