Loan Prediction Using Machine Learning Models in R

Objective

To build a predictive model to determine loan approval using applicant data.

Data Description

- Features: Gender, Married, Dependents, Education, Self-Employed, ApplicantIncome, CoapplicantIncome, LoanAmount, LoanAmountTerm, CreditHistory, PropertyArea, LoanStatus.
- **Target Variable:** LoanStatus (Y = Approved, N = Not Approved).

Data Cleaning and Preprocessing

- Loaded and inspected data.
- Removed underscores from column names for consistency.
- Feature Engineering:
 - Created TotalIncome = ApplicantIncome + CoapplicantIncome
- Handling Missing Values:
 - o Identified missing values.

> NAvalues[NAvalues> 0]						
Gend	er Marri	ed Dependents	SelfEmployed			
	13	3 15	32			

colSums(is.na(data))						
LoanID	Gender	Married				
0	0	0				
Dependents	Education	SelfEmployed				
0	0	0				
ApplicantIncome	CoapplicantIncome	LoanAmount				
0	0	22				
LoanAmountTerm	CreditHistory	PropertyArea				
14	50	0				
LoanStatus	TotalIncome					
0	0					

- Replaced empty strings with NA.
- o Imputation Strategy:
 - Categorical columns: Mode imputation (to avoid bias in tabular, survey-like datasets).
 - LoanAmount: Imputed with mean (post outlier removal using KDE).
 - LoanAmountTerm: Imputed with median (due to skewness).
 - CreditHistory: Imputed with mode.

• Outlier Handling:

```
> # Making a Histogram
> hist(data$TotalIncome,freq=FALSE,col = "red", main ="Fitting KDE over Total
Income",xlab = "Total Income")
>
> # Add kernel density line
> lines(density(data$TotalIncome),col="green",lwd = 2)
```



```
> loanamount <- na.omit(data$LoanAmount)
> # plot histogram
> hist(loanamount,freq = FALSE,breaks = 30,xlim = c(0, 800),
col = "cyan", main = "Distribution of Loan Amount",xlab = "L
oan Amount")
> # Add density curve
> lines(density(loanamount), col = "red", lwd = 2)
```


- o Plotted KDE and histograms for TotalIncome and LoanAmount.
- o Identified right-skewness and trimmed extreme outliers before imputation.

Exploratory Data Analysis & Insights

• Correlation Analysis:

```
> numericdata <- data[sapply(data, is.numeric)]
> cormatrix <- cor(numericdata, use = "complete.obs")
> library(corrplot)
> corrplot(cormatrix, method = "color", addCoef.col = "black", number.cex = 0.7,
+ tl.col = "black", tl.srt = 45)
```


- Found a positive correlation (~0.62) between LoanAmount and TotalIncome, indicating applicants generally request amounts within their repayment capabilities.
- Approval Patterns Identified: Higher approval rates for:

- Males, Married applicants, Zero dependents, Graduates, Salaried employees,
 Clean credit history and Semiurban residents
- Feature Selection:
 - o Dropped LoadID, ApplicantIncome, and CoapplicantIncome post TotalIncome creation.
- Encoding:
 - o Converted categorical variables to numeric using factor() for modelling.

Model Building

- Data Split:
 - o Training: 80% (491 samples)

- o Testing: 20% (123 samples)
- Models Applied:
 - Decision Tree

- No scaling required.
- Accuracy (~0.845)
- Random Forest
 - Ensemble of 100 trees.
 - Accuracy (~0.854)
- Logistic Regression
 - Applied after feature scaling.
 - Used probabilistic prediction for binary classification.
 - Accuracy (~0.846)

Testing on New Data

- Applied trained models (Decision Tree, Random Forest, Logistic Regression) on test.csv after replicating preprocessing steps.
- Ensured consistency in pipeline and readiness for deployment.

Results Summary

Metric	Decision Tree	Random Forest	Logistic Regression
Accuracy	~0.73	~0.78	~0.76
Precision	High	Higher	Moderate
Recall	Moderate	Higher	Moderate
F1 Score	Moderate	Higher	Moderate
Type 1 Error Rate	Low	Lower	Low
Type 2 Error Rate	Higher	Lower	Moderate

Random Forest outperformed other models with higher accuracy and balanced precision-recall trade-off.