Дискретные структуры

осень 2013

Александр Дайняк

www.dainiak.com

Цели курса

• Научиться грамотно оперировать с классическими «дискретными» объектами, строго доказывать их свойства.

Зачем нужны эти знания:

- Для инженеров и учёных-прикладников это способ формализовать реальность для построения модели, алгоритма.
- Для теоретиков изучаемые абстрактные объекты естественны и красивы сами по себе.
- Для остальных хорошая «гимнастика для ума», возможность отточить навыки строгой аргументации.

Цели курса

• Познакомиться с некоторыми продвинутыми понятиями и методами доказательств.

Зачем нужны эти знания:

- Программистам для получения дополнительной интуиции при разработке алгоритмов.
- Теоретикам для пополнения своего инструментария научной работы.

Обозначения множеств и операций

• Задание множеств:

$$\{x \mid x - \text{чётное}\}$$

- Операции над множествами:
 - $A \cup B$ объединение
 - $A \cap B$ пересечение
 - *A* \ *B* разность
 - $A\Delta B$ симметрическая разность
 - $ar{A}$ дополнение
 - |A| или #A мощность

Круги Эйлера

• *A* ∪ *B* — объединение

• $A \cap B$ — пересечение

• *A* \ *B* — разность

• $A\Delta B$ — симметрическая разность

Дизъюнктное объединение

- Пишем $A \sqcup B$ вместо $A \cup B$, если хотим подчеркнуть, что $A \cap B = \emptyset$.
- Запись $A = A_1 \sqcup \cdots \sqcup A_s$ означает, что множество A разбито на части A_1, \ldots, A_s .

Подмножества

- $A' \subseteq A$ означает, что A' является подмножеством A
- $A' \subset A$ означает, что A' является подмножеством A и $A' \neq A$
- Если A множество и $k \in \mathbb{N}$, то обозначаем

$$\binom{A}{k} \coloneqq \{A' \subseteq A \mid \#A' = k\}$$

• Запись « $B \in \binom{A}{k}$ » означает, что B-k-элементое подмножество в A

Суммирование и произведение

$$\sum_{k=0}^{n} x_k = x_0 + x_1 + \dots + x_n$$

$$\prod_{k=0}^{n} x_k = x_0 \cdot x_1 \cdot \dots \cdot x_n$$

Целые части

- [x] нижняя целая часть (например, [2.7] = 2, [-6.4] = -7)
- [x] верхняя целая часть (например, [2.7] = 3, [-6.4] = -6)

Доказательства по индукции

Пусть требуется доказать, что при любых $N \in \mathbb{N}$ выполнено утверждение P(N).

По индукции это делается так:

- Доказываем при N=1.
- Доказываем, что если P(N) выполнено, то и P(N+1) тоже выполнено.

Что изучает комбинаторика

• Основной вопрос: сколько ...?

- Сколькими способами можно раздать 50 студентам 100 заданий (каждому по два задания)?
- *Сколько* слов длины n в алфавите A,C,G,T?
- Сколько тактов времени будет работать алгоритм...?
- Какой максимальный размер результата работы программы?

Правило сложения

- Пусть нужно посчитать кол-во объектов, каждый из которых обладает **ровно** одним из s свойств. Тогда s несех объектов = s несе
- $|A_1 \sqcup \cdots \sqcup A_S| = |A_1| + \cdots + |A_S|$.

Правило умножения

• Пусть объекты можно разбить на s групп, так, что в каждой группе ровно t объектов. Тогда

#объектов = $s \cdot t$

- Размещения
 - С повторениями
 - Без повторений
- Сочетания
 - С повторениями
 - Без повторений

• Рассмотрим множество из n объектов:

$$\{a_1, a_2, \dots, a_n\}$$

- Размещение (без повторений) k объектов из n- это упорядоченный набор, например, (a_4,a_7,a_3,a_{18}) при k=4
- Размещение с (допускающимися) повторениями например, (a_4, a_7, a_4, a_{18})

- Сочетание (без повторений) k объектов из n это неупорядоченный набор, например, $\{a_4,a_7,a_3,a_{18}\}$ при k=4
- Таким образом, $\{a_4,a_7,a_3,a_{18}\} \text{ и } \{a_3,a_7,a_4,a_{18}\} \text{ это одинаковые сочетания,}$ хотя $(a_4,a_7,a_3,a_{18}) \text{ и } (a_3,a_7,a_4,a_{18}) \text{ разные размещения}$

• Сочетание с повторениями — например,

$$\{a_4, a_7, a_4, a_{18}\}\$$

 $\{a_4, a_4, a_7, a_{18}\}$

• Как и в случае размещений, повторения допускаются, но **не обязаны быть**!

- Пример. График дежурств.
 - Всего 50 сотрудников
 - В каждый из 30 дней месяца кто-то дежурит
- Составляем график дежурств: выбираем из всех студентов дежурных на каждый день.
 - Если важен порядок и никто не хочет дежурить дважды, то размещение без повторений
 - Если порядок не важен, и есть те, кто готов дежурить больше одного раза, то сочетание с повторениями

Сколько ...?

Пусть у нас n объектов: $\{a_1, a_2, ..., a_n\}$ Количество k-размещений с повторениями:

И так далее...

В виде «дерева подсчёта»:

на самом нижнем ярусе дерева конкретные размещения

Итого:
$$\bar{A}_n^k = n^k$$

Размещения без повторений

В виде «дерева подсчёта»

на самом нижнем ярусе дерева конкретные размещения

Итого:
$$A_n^k = n(n-1) \cdot ... \cdot (n-(k-1))$$

Факториал

•
$$n! = n(n-1)(n-2) \cdot ... \cdot 2 \cdot 1$$

- 1! = 1
- 0! = 1

«убывающая факториальная степень»
• $A_n^k = \overbrace{n(n-1) \cdot ... \cdot \left(n-(k-1)\right)}^{\text{«убывающая факториальная степень»}} = \frac{n(n-1) \cdot ... \cdot 2 \cdot 1}{(n-k)!} = \frac{n!}{(n-k)!}$

• $A_n^n = n!$ — это количество **перестановок** n объектов

Сочетания без повторений

- Сочетанию $\{a_{i_1}, a_{i_2}, \dots, a_{i_k}\}$ соответствуют k! размещений.
- Занумеруем все k-сочетания числами от 1 до M. Тогда все k-размещения можно разбить на M групп...

$$k! \cdot M = A_n^k \quad \Rightarrow \quad M = \frac{A_n^k}{k!} = \frac{n!}{k! (n-k)!}$$

Сочетания без повторений

• Только что мы получили формулу

$$C_n^k = \left| {a_1, \dots, a_n \choose k} \right| = \frac{n!}{k! (n-k)!}$$

• Числа C_n^k обозначаются ещё $\binom{n}{k}$

Сочетания с повторениями

- Метод кодирования
- Есть n объектов $\{a_1, \dots, a_n\}$. Выбрать k-сочетание значит, указать, сколько раз каждый из объектов войдёт в сочетание.
- Пусть
 - a_1 в ходит в сочетание k_1 раз,
 - ...
 - a_n входит в сочетание k_n раз.
- Закодируем это таким двоичным вектором:

$$\underbrace{1 \ \dots \ 1}_{k_1 \, \text{единиц}} \ 0 \ \underbrace{1 \ \dots \ 1}_{k_2 \, \text{единиц}} \ 0 \ \dots \ 0 \ \underbrace{1 \ \dots \ 1}_{k_n \, \text{единиц}}$$

Сочетания с повторениями

• Пример восстановления сочетания с повторениями по его коду:

$$ightarrow \{a_1, a_2, a_2, a_2, a_4\}$$
 (здесь $n=7, k=5$; элементы a_3, a_5, a_6 и a_7 в сочетание не вошли)

• Сочетаниям однозначно отвечают их коды. Значит, сочетаний ровно столько же, сколько кодов:

$$\binom{n+k-1}{k}$$

Теперь мы знаем

• Количество размещений без повторений

$$A_n^k = \frac{n!}{(n-k)!}$$

• Количество размещений с повторениями

$$\bar{A}_n^k = n^k$$

• Количество сочетаний без повторений

$$C_n^k = \frac{n!}{k! (n-k)!}$$

• Количество сочетаний с повторениями

$$\bar{C}_n^k = C_{n+k-1}^k = \frac{(n+k-1)!}{k!(n-1)!}$$

- A от <u>a</u>rrangement
- *C* от <u>c</u>ombination

Ещё комбинаторные числа

- Числа Стирлинга
- Числа Белла

Числа Стирлинга второго рода

- Количество всех способов разбить n объектов на k непустых групп
- Обозначение: S(n,k) или $\binom{n}{k}$
- Пример при n = 3, k = 2:
 - $\{a\}, \{b, c\}$
 - $\{b\}, \{a, c\}$
 - $\{c\}, \{a, b\}$
- S(3,2) = 3
- S(10,5) = 42525

Числа Белла

• Количество всевозможных способов разбить n объектов на непустые группы:

$$B_n = \sum_{k=1}^n \binom{n}{k}$$

- Пример при n = 3:
 - $\{a\},\{b\},\{c\}$
 - $\{a\}, \{b, c\}$
 - $\{b\}, \{a, c\}$
 - $\{c\}, \{a, b\}$
 - $\{a,b,c\}$
- $B_3 = 5$
- $B_{10} = 115975$

На заметку

- Отвечая на вопрос «сколько ...?», можно лучше понять исследуемые объекты.
- Числа сочетаний и размещений в основе всей комбинаторики
- Правила сложения и умножения: просто формулировать, не всегда просто применять
- Иногда удобно представлять подсчёт в виде дерева
- Числами сочетаний и размещений всё не исчерпывается
- Идея кодирования

Формула бинома Ньютона

$$(x + y)^n = (x + y)(x + y) \cdot ... \cdot (x + y)$$

$$(x+y)^n = \binom{n}{0} \cdot x^n + \binom{n}{1} \cdot x^{n-1}y + \binom{n}{2} \cdot x^{n-2}y^2 + \dots + \binom{n}{n} \cdot y^n$$

Числа $\binom{n}{k}$ называются биномиальными коэффициентами.

Полиномиальная формула

$$(x_1 + x_2 + \dots + x_l)^n = (x_1 + \dots + x_l) \cdot (x_1 + \dots + x_l) \cdot \dots \cdot (x_1 + \dots + x_l)$$

Как получить $x_1^{k_1} \cdot ... \cdot x_l^{k_l}$, где $k_1 + \cdots + k_l = n$:

Полиномиальная формула

$$(x_1 + x_2 + \dots + x_l)^n = (x_1 + \dots + x_l) \cdot (x_1 + \dots + x_l) \cdot \dots \cdot (x_1 + \dots + x_l)$$

Полиномиальные коэффициенты

$$\binom{n}{k_1}\binom{n-k_1}{k_2}\binom{n-k_1-k_2}{k_3}\cdot\ldots\cdot\binom{n-k_1-k_2-\cdots-k_{l-1}}{k_l}=$$

$$= \frac{n!}{k_1!(n-k_1)!} \cdot \frac{(n-k_1)!}{k_2!(n-k_1-k_2)!} \cdot \frac{(n-k_1-k_2)!}{k_3!(n-k_1-k_2-k_3)!} \cdot \dots$$

$$= \frac{n!}{k_1! \cdot k_2! \cdot \dots \cdot k_l!}$$

• Полиномиальные коэффициенты $\binom{n}{k_1 \ k_2 \ \dots \ k_l} \coloneqq \frac{n!}{k_1! \cdot k_2! \cdot \dots \cdot k_l!}$

Полиномиальная формула

• Формула бинома:

$$(x+y)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} \cdot x^k y^{n-k} = \sum_{k_1+k_2=n} \frac{n!}{k_1!k_2!} \cdot x^{k_1} y^{k_2}$$

• Полиномиальная формула:

$$(x_1 + x_2 + \dots + x_l)^n = \sum_{k_1 + \dots + k_l = n} \frac{n!}{k_1! k_2! \dots k_l!} \cdot x_1^{k_1} \cdot \dots \cdot x_l^{k_l}$$