ME 766: HW1

Name:- Kiran Chandrakant Dapkar

Roll No:- 170050020

Q1-

following files are attached that contains code:

trapezoidal_serial.c trapezoidal_parallel.c montecarlo_serial.c montecarlo_parallel.c

Q2-

Convergence study

i) Trapezoidal Serial

kiran@kiran-V	irtualBox:~/ME766	gcc trapezoidal	_serial.c -lm
kiran@kiran-V	irtualBox:~/ME766	./a.out	
Sample Size	Area	Absolute Error	Avg. Time
2	0.785398	1.214602	0.000009
5	1.749107	0.250893	0.000003
10	1.934983	0.065017	0.000001
20	1.983600	0.016400	0.000002
50	1.997369	0.002631	0.000003
100	1.999342	0.000658	0.000005
200	1.999836	0.000164	0.000011
500	1.999974	0.000026	0.000017
1000	1.999993	0.000007	0.000034
10000	2.000000	0.000000	0.000356

ii) MonteCarlo Serial

```
kiran@kiran-VirtualBox:~/ME766$ gcc montecarlo serial.c -lm
kiran@kiran-VirtualBox:~/ME766$ ./a.out
Sample Size
                 Area
                                  Absolute Error
                                                   Avg. Time
5
                 1.884955
                                  0.115045
                                                   0.000016
10
                 2.513274
                                  0.513274
                                                   0.000003
50
                 1.822123
                                  0.177877
                                                   0.000007
100
                 1.790707
                                  0.209293
                                                   0.000012
500
                 2.035752
                                  0.035752
                                                   0.000066
1000
                 1.991769
                                  0.008231
                                                   0.000091
10000
                 2.007477
                                  0.007477
                                                   0.000913
100000
                 2.001194
                                  0.001194
                                                   0.008017
1000000
                 2.000013
                                  0.000013
                                                   0.074062
5000000
                 2.000159
                                  0.000159
                                                   0.359304
```

Q3-

i) Trapezoidal parallel

kiran@kiran-Vi	rtualBox:~/ME7	66\$./a.out	The state of the s		100 m 1 km 100	
Sample size =	1000000					
#Threads	1st run	2nd run	3rd run	4th run	5th run	Avg. Time
2	0.120069	0.083835	0.088194	0.086423	0.088477	0.093400
4	0.120002	0.089005	0.082337	0.094280	0.094900	0.096105
6	0.130848	0.084779	0.098099	0.072238	0.068921	0.090977
8	0.104462	<u>0</u> .068766	0.071490	0.069566	0.072735	0.077404

ii) Monte Carlo

kiran@kiran-Vir Sample size =	rtualBox:~/ME7 100000000	66\$./a.out				
#Threads	1st run	2nd run	3rd run	4th run	5th run	Avg. Time
2	0.000066	0.000018	0.000017	0.000017	0.000017	0.000027
4	0.000104	0.000048	0.000047	0.000047	0.000047	0.000059
6	0.000133	0.000076	0.000076	0.000086	0.000130	0.000100
8	0.000152	0.000105	0.000105	0.000105	0.000121	0.000117

Q4-

for n = 1000000

Trapezoidal serial code takes much time than parallel code. Also in parallel openmp code thread = 8 takes lesser time than (thread = 2,4,6).

for n = 100000000

Montecarlo serial code also takes much time than parallel code. Here thread = 2 is taking lesser time other threads also average time is very less than serial here.