gem.md 2025-05-02

Quantum Neural Network Performance with Error Mitigation on IEEE Dataset

Overview

This document provides a structured overview and performance comparison of different Quantum Neural Network (QNN) models evaluated using the IEEE dataset. All models were trained using **PennyLane's lightning.qubit** simulator with **8 qubits**, over a short training period of **3 epochs**. The emphasis was on evaluating how various **Quantum Error Mitigation (QEM)** techniques affect the performance and stability of the QNN.

Quantum Models Evaluated

1. QNN with No Mitigation (Baseline)

- Serves as the control model.
- No error mitigation techniques were applied.
- Allows us to evaluate the raw impact of quantum noise on model accuracy and training dynamics.

Quantum Error Mitigation (QEM) Techniques

2. QNN with Zero-Noise Extrapolation (ZNE)

- **Core Idea**: Artificially increases the noise in the quantum circuit and then extrapolates back to the zero-noise limit.
- Process:
 - 1. Executes the same quantum circuit multiple times, each time with scaled gate noise.
 - 2. Extrapolates measurement results to the limit where noise strength = 0.
- Advantages:
 - Software-level technique; no hardware change needed.
 - Applicable to a wide range of quantum devices.
- Challenges:
 - Requires more executions.
 - Sensitive to the scaling method used.

3. QNN with Probabilistic Error Cancellation (PCE)

- Core Idea: Simulates an ideal (noiseless) circuit by sampling noisy operations and statistically cancelling errors.
- Process:
 - 1. Decompose noisy gates into a linear combination of ideal gates.
 - 2. Run multiple executions and apply weighted averaging to cancel out noise.
- Advantages:
 - Can in principle fully cancel noise.
 - Theoretically exact mitigation if sufficient samples are used.

gem.md 2025-05-02

- Challenges:
 - Requires exponentially more samples as noise increases.
 - Computationally expensive.
- $\mathscr O$ Best performing model in this study.

4. QNN with Virtual Distillation

- **Core Idea**: Improves state fidelity by preparing multiple copies of a quantum state and projecting onto the purified subspace.
- Process:
 - 1. Prepare 2 or more noisy copies of the quantum state.
 - 2. Apply joint measurements to estimate a higher fidelity result.
- Advantages:
 - Enhances signal-to-noise ratio significantly.
- Challenges:
 - Requires more qubits (to store multiple copies).
 - May increase circuit depth and gate count.

Performance Comparison

All models were trained for **3 epochs** only. This limited training period aims to simulate real-world constraints in quantum training scenarios and test the efficacy of QEM methods under minimal learning steps.

Model Type	Accuracy (3rd Epochs)	Loss (3rd Epochs)	Notes
QNN (No Mitigation)	0.9617	0.3385	Baseline performance, susceptible to noise
QNN + ZNE	0.3392	0.7225	Computational expensive, worst performance
QNN + PCE	0.9617	0.5482	Best performance , especially under low epoch count. More stable than baseline
QNN + Virtual Distillation	0.9248	0.5919	Improved stability over baseline, minor gains

Conclusions

- **Probabilistic Error Cancellation (PCE)** showed the **best accuracy and loss trends**, even within the limited 3-epoch training window.
- Virtual Distillation offers an easy-to-implement strategy with modest improvements.
- Eventhough the 3rd accuracy of QNN without Mitigation and PCE is same, the 1st accuracy of them has a significant gap. The 1st accuracy of QNN without mitigation is 0.4992 (49.9%) while QNN with PCE give a more stable result with 0.9617 (96.2%) since the first training process. However the 3rd epochs' loss of QNN without Mitigation still outperform the model with PCE.

qem.md 2025-05-02

• The results underscore the importance of **choosing appropriate QEM methods** depending on the available hardware resources, noise characteristics, and performance goals.