Задача 1

Найти длины векторов \mathbf{x} и \mathbf{y} , их скалярное произведение и угол между ними, если их координаты в некотором ортонормированном базисе имеют вид:

1.
$$\mathbf{x} = \{1, 2, 3, 4\}, \ \mathbf{y} = \{-1, 1, 1, -1\}.$$

2.
$$\mathbf{x} = \{2, -1, 1, -2\}, \ \mathbf{y} = \{-2, 1, -2, 1\}.$$

Ответ:

1.
$$\|\mathbf{x}\| = \sqrt{30}$$
, $\|\mathbf{y}\| = \sqrt{4}$, $(\mathbf{x}, \mathbf{y}) = 0$, векторы \mathbf{x} и \mathbf{y} ортогональны.

2.
$$\|\mathbf{x}\| = \sqrt{10}$$
, $\|\mathbf{y}\| = \sqrt{10}$, $(\mathbf{x}, \mathbf{y}) = -9$, $\cos(\varphi) = -\frac{9}{10}$.

Задача 2 (*)

Пусть $\{\mathbf{f}\} = \{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\}$ – некоторый базис евклидова пространства.

Используя процедуру ортогонализации Грама-Шмидта, построить ортонормированный базис, если координаты векторов $\{\mathbf{f}\}$ в некотором ортонормированном базисе имеют вид:

1.
$$\mathbf{f}_1 = \{1,0,0\}, \ \mathbf{f}_2 = \{1,1,0\} \ \text{if } \mathbf{f}_3 = \{1,1,1\}.$$

2.
$$\mathbf{f}_1 = \{0,1,2\}, \ \mathbf{f}_2 = \{1,2,0\} \ \text{if } \mathbf{f}_3 = \{2,0,1\}.$$

3.
$$\mathbf{f}_1 = \{-1,1,0\}, \ \mathbf{f}_2 = \{1,-1,1\} \ \text{if } \mathbf{f}_3 = \{0,1,-1\}.$$

Ответ

1.
$$\mathbf{e}_1 = \{1,0,0\}, \ \mathbf{e}_2 = \{0,1,0\} \ \text{if } \mathbf{e}_3 = \{0,0,1\}.$$

2.
$$\mathbf{e}_1 = \frac{1}{\sqrt{5}} \{0,1,2\}, \ \mathbf{e}_2 = \frac{1}{\sqrt{105}} \{5,8,-4\} \ \text{if } \mathbf{e}_3 = \frac{1}{\sqrt{21}} \{4,-2,1\}.$$

3.
$$\mathbf{e}_1 = \frac{1}{\sqrt{2}} \{-1,1,0\}, \ \mathbf{e}_2 = \{0,0,1\} \ \text{if } \mathbf{e}_3 = \frac{1}{\sqrt{2}} \{1,1,0\}.$$

Задача 3 (*)

Пусть $\{\mathbf{f}\} = \{\mathbf{f}_1, \mathbf{f}_2, ..., \mathbf{f}_n\}$ – ортогональный базис евклидова пространства.

Доказать, что любой вектор x евклидова пространства может быть представлен в виде

$$\mathbf{x} = \sum_{i=1}^{n} \xi_{i} \mathbf{f}_{i}$$
, где $\xi_{i} = \frac{(\mathbf{x}, \mathbf{f}_{i})}{\|\mathbf{f}_{i}\|^{2}}$, $i = 1, 2, ..., n$.

Задача 4 (*)

Пусть \mathbf{S} — матрица перехода от ортонормированного базиса $\{\mathbf{e}\} = \{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n\}$ к базису $\{\mathbf{e}'\} = \{\mathbf{e}'_1, \mathbf{e}'_2, ..., \mathbf{e}'_n\}$.

Доказать, что базис $\{\mathbf{e'}\}$ — ортонормированный тогда и только тогда, когда матрица \mathbf{S} — ортогональная, т.е. $\mathbf{S}^{-1} = \mathbf{S}^{\mathrm{T}}$.

Задача 5

Доказать, что модуль определителя ортогональной матрицы равен единице.

11.03.2018 20:54:28 стр. 1 из 1