Scilab Textbook Companion for Basic Electronics by R. K. Garg, A. Dixit and P. Yadav¹

Created by
Mohd Gufran
B.Tech
Electronics Engineering
Uttrakhand Technical University
College Teacher
NA
Cross-Checked by
K. V. P. Pradeep

June 2, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Basic Electronics

Author: R. K. Garg, A. Dixit and P. Yadav

Publisher: University Science Press, New Delhi

Edition: 1

Year: 2008

ISBN: 978-81-318-0640-1

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Semiconductor Materials And Junction Diode	5
2	Diode Applications	32
3	Zener Diode And LED	50
4	Bipolar Junction Transistor	64
5	Transistor Amplifier	90
6	Operational Amplifiers	114
7	Junction Field Effect Transistor	134
8	Metal Oxide Semiconductor Field Effect Transistor	150

List of Scilab Codes

Exa 1.1	Drift velocity	5
Exa 1.2	Intrinsic Conductivity	6
Exa 1.3	Intrinsic carrier concentration	6
Exa 1.4	Conductivity of Si sample	7
Exa 1.5	Conductivity of the copper	7
Exa 1.6	Concentration of holes and electrons	8
Exa 1.7	Resistivity of Ge sample	9
Exa 1.8		10
Exa 1.9	Value of temperature	11
Exa 1.10		11
Exa 1.11	Conductivity and resistivity of an intrinsic sample	12
Exa 1.12		13
Exa 1.14		14
Exa 1.15	Doping level and drift velocity	14
Exa 1.17	Conductivity mobility and drift velocity	15
Exa 1.18	Concentration of holes and electrons	16
Exa 1.19	Hall angle	16
Exa 1.20		17
Exa 1.21		18
Exa 1.22	Dopping needed	18
Exa 1.23		19
Exa 1.24		20
Exa 1.25	Dopping efficiency of sample	20
Exa 1.26		21
Exa 1.28		21
Exa 1.29		22
Exa 1.30		23
Exa 1.31		24

Exa 1.32	VOlage drop across the forward bias diode 24
Exa 1.33	Space charge capacitance of Ge diode 25
Exa 1.34	Transition capacitance
Exa 1.35	Transition capacitance
Exa 1.36	Voltage
Exa 1.37	Drain current
Exa 1.38	Vo and ID
Exa 1.39	Current in each branch
Exa 1.40	Operating Point
Exa 1.43	Voltages
Exa 1.44	I1 and I2
Exa 1.45	Output waveform
Exa 2.1	Average current and load voltage
Exa 2.2	Input AC power
Exa 2.3	Output DC voltage and current
Exa 2.7	PIV rating
Exa 2.9	PIV of diode
Exa 2.10	Average load current and rectification efficiency 36
Exa 2.11	Output waveform
Exa 2.12	Idc and Irms
Exa 2.13	Ripple factor
Exa 2.14	Mean and rms load current and output efficiency 39
Exa 2.15	Output voltage for a complete cycle
Exa 2.17	DC output voltage PIV and rectification efficiency 41
Exa 2.18	DC output voltage and output frequency 41
Exa 2.21	Filter capacitor
Exa 2.22	Designing of a filter for full wave circuit
Exa 2.23	Output voltage current and ripple
Exa 2.24	Percentage ripple
Exa 2.25	Peak output voltage
Exa 2.26	Peak output voltage
Exa 2.27	IR and IRmax
Exa 2.28	Output voltage and voltage across R
Exa 2.29	Output waveform
Exa 2.30	Output voltage
Exa 2.31	Output voltage
Exa 3.1	Resistance of device
Exa 3.2	Terminal voltage

Exa 3.3	Value of IZM
Exa 3.4	Maximum power dissipation
Exa 3.5	Value of VL VR VZ and PZ
Exa 3.6	Range of value of Vi
Exa 3.7	Whether zener diode operating in Breakdown region .
Exa 3.8	Zener current
Exa 3.9	Current flowing through resistance R
Exa 3.10	Value of VL IL IR and IZ
Exa 3.11	Maximum value of Ri
Exa 3.12	Output voltage and current through the zener diode .
Exa 3.13	value of VZ IZ and PZ
Exa 3.14	Value of VL IL IZ and IR
Exa 3.15	Value of RLmin
Exa 3.16	Minimum value of R
Exa 3.17	Power dissipation in zener diode
Exa 3.18	Value of RL
Exa 3.19	Range of possible load current
Exa 4.1	Base current
Exa 4.2	Collector and base current
Exa 4.3	value of Bita
Exa 4.4	Base current
Exa 4.5	Value of IC using alpha and bita
Exa 4.6	Value of alpha and bita
Exa 4.7	Collector and emitter current
Exa 4.8	Collector current
Exa 4.9	Value of IC and VCE
Exa 4.10	DC laod line
Exa 4.11	Emitter current and collector voltage
Exa 4.12	Value of RB
Exa 4.13	Q point and stability factor
Exa 4.15	Value of R1 R2 and RE
Exa 4.19	Region of transistor
Exa 4.20	Vo and minimum value of RC
Exa 4.21	Q point value
Exa 4.23	Value of RE
Exa 4.24	Limiting value of R1 and R2
Exa 4.25	Values of resistors
Exa 4.26	VBB to saturate the transistor

Exa 4.27	IC and Vo 8	1
Exa 4.28	ICO and VCEQ	2
Exa 4.29	ICQ and VCEQ	3
Exa 4.30	Q point	4
Exa 4.34	Beta VCC and RB	5
Exa 4.36	Load line	6
Exa 4.37	VCE and IE	7
Exa 4.38	Zi Zo and Av	8
Exa 5.1	Value of C and hfe	0
Exa 5.2	Value of C	1
Exa 5.3	Paraller and seried resonant frequency and Q factor . 9	1
Exa 5.4	h parameters	2
Exa 5.5	h parameters	3
Exa 5.7	Value of Ai Av Avs Ri and Ro	3
Exa 5.10	Ai Ri Av and gammaO	4
Exa 5.11	Ai Ri Av Ro Ro1 and Ap	6
Exa 5.13	Voltage gain current gain and power gain 9	8
Exa 5.14	Gain of negative feedback amplifier	9
Exa 5.15	Value of A and B	9
Exa 5.16	Change in overall gain	0
Exa 5.17	Feedback Factor	0
Exa 5.18	output and input voltage	1
Exa 5.19	Required feedback ration	2
Exa 5.20	Distortion and new value of input required 10	2
Exa 5.21	Gain input voltage output voltage with feedback 10	3
Exa 5.22	Input and output impedance	4
Exa 5.23	Gain and frequency responce	5
Exa 5.24	Feedback fraction	6
Exa 5.25	Percentage reduction in harmonic distortion 10	6
Exa 5.26	Minimum gain required for oscillation	7
Exa 5.27	Stability of an amplifier	7
Exa 5.29	Frequency of oscillations	8
Exa 5.30	Range of variable capacitor	9
Exa 5.31	Operating frequency and feedback fraction 11	0
Exa 5.32	Value of capacitor of oscillatory	1
Exa 5.33	Value of C	1
Exa 5.34	Frequency of oscillations	2
Exa 5.36	Frequency of oscillations	2

Exa	6.m.1	CMRR
Exa	6.m.2	Closed loop gain
Exa	6.m.3	Range of voltage gain
Exa	6.m.4	Range of output voltage
Exa	6.m.5	Minimum and maximum closed loop voltage gain 116
Exa	6.m.6	Maximum and minimum closed loop voltage gain 117
Exa	6.m.7	Closed loop voltage gain
Exa	6.m.8	Closed loop voltage gain
Exa	6.m.9	Output voltage
Exa	6.m.10	Voltage produced at output terminal
Exa	6.m.11	Output voltage
Exa	6.m.12	Output voltage
		Output voltage
Exa	6.m.15	Maximum loop voltage gain
Exa	6.m.18	Output voltage and percentage error due to common
		mode
Exa	6.m.19	Input impedance voltage gain and power gain 123
Exa	6.m.21	Output voltage
Exa	6.m.22	Output voltage
Exa	6.m.25	Current through RL resistor
Exa	6.1	Common mode gain
Exa	6.2	Slew rate
Exa	6.3	Slew rate
Exa	6.4	Closed loop voltage gain and input impedance 127
Exa	6.5	R1 and R2
Exa	6.6	Output voltage
Exa	6.7	R1 and Rf
Exa	6.8	Output voltage
Exa	6.9	R1 and Rf
Exa	6.10	R1 and Rf
Exa	6.11	Output voltage
Exa	6.13	Output voltage
Exa	6.14	Closed loop differential gain and output voltage 132
Exa	7.1	Transfer characteristics
Exa	7.2	Drain current
Exa	7.3	Value of RS and RD
Exa	7.4	VDS and VGS
Exa	7.5	Pinch off voltage and chanel half width 136

Exa 7.6	VGS gm Rs and Rd	137
Exa 7.7	VGS IDQ VDS VD VG and VS	138
Exa 7.8	Value of RGS	139
Exa 7.9	AC drain resistance	140
Exa 7.10	Transconductance	140
Exa 7.11	Id and gm	141
Exa 7.12	Pinch off voltage for Si and Ge	141
Exa 7.14	gm rd Zi Zo and Av	142
Exa 7.16	Voltage gain	143
Exa 7.17	Quiescent drain current drain to source voltage and Av	144
Exa 7.18	Voltage gain and change in output voltage	145
Exa 7.19	Change in output voltage	146
Exa 7.20	Vds Id and VGS	147
Exa 7.21	IDQ VGSQ and VDS	148
Exa 8.1	Transfer Characteristics	150
Exa 8.2	Value of VDS	151
Exa 8.3	Drain curent	151
Exa 8.4	Value of ID	152
Exa 8.5	IDQ and VDS	152

Chapter 1

Semiconductor Materials And Junction Diode

Scilab code Exa 1.1 Drift velocity

```
1 // Exa 1.1
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 miu = 0.2; // in m^2/V-s
8 V = 100; // in mV
9 V = V * 10^{-3}; // in V
10 \ d = 0.5; // in mm
11 d = d * 10^-3; // in m
12 // \text{ mobility}, \text{ miu} = Vd/E \text{ and}
13 E = V/d;
14 // Drift velocity,
15 Vd = miu*E; // in m/s
16 disp(Vd, "The electron drift velocity in m/s is");
17 // Time required,
18 T = d/Vd;//in sec
19 T=T*10^6; // in
```

20 disp(T,"The time required for an electron to move across the thickness in micro seconds is");

Scilab code Exa 1.2 Intrinsic Conductivity

Scilab code Exa 1.3 Intrinsic carrier concentration

```
1 // Exa 1.3
2 clc;
3 clear;
4 close;
5 format('e',10)
6 // Given data
7 rho = 0.50; // in ohm-m
8 q = 1.6*10^-19; // in C
9 miu_n = 0.39; // in m^2/V-s
10 miu_p = 0.19; // in m^2/V-s
11 sigma = 1/rho; // in (ohm-m)^-1
```

Scilab code Exa 1.4 Conductivity of Si sample

```
1 // Exa 1.4
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ N_D} = 10^21; // \text{ in /m}^3
8 N_A = 5*10^20; // in /m^3
9 NdasD = N_D-N_A; // in /m<sup>3</sup>
10 n = NdasD; // in /m^3
11 miu_n = 0.18; // in m<sup>2</sup>/V-s
12 q = 1.6*10^-19; // in C
13 // The conductivity of silicon,
14 sigma = q*n*miu_n; // in (ohm-m)^-1
15 disp(sigma,"The conductivity of Si sample in (ohm-m)
      ^{-1} is");
```

Scilab code Exa 1.5 Conductivity of the copper

```
1 // Exa 1.5
2 clc;
3 clear;
4 close;
5 format('e',8)
6 // Given data
```

```
7 At = 63.54; // atomic weight of copper
8 d = 8.9; // density in gm/cm^3
9 n = 6.023*10^23/At*d; // in electron/cm^3
10 q = 1.63*10^-19; // in C
11 miu = 34.8; // in m^2/V-s
12 // The conductivity of copper,
13 sigma = n*q*miu; // in mho/cm
14 disp(sigma, "The conductivity of copper in mho/cm is");
```

Scilab code Exa 1.6 Concentration of holes and electrons

```
1 // Exa 1.6
2 clc;
3 clear;
4 close;
5 format('e',9)
6 // Given data
7 sigma = 100; // in (ohm-m)^-1
8 \text{ n_i} = 2.5*10^13; // \text{ in /cm}^3
9 miu_n = 3800; // in cm<sup>2</sup>/V-s
10 miu_p = 1800; // in cm<sup>2</sup>/V-s
11 q = 1.6*10^-19; // in C
12 // Conductivity of a p-type germanium, sigma = q*p*
      miu_p or
13 p = sigma/(q*miu_p); // in /cm^3
14 disp(p, "Concentration of holes in a p-type Ge in /cm
      ^3 is"):
15 // The concentration of electrons in a p-type Ge
16 n = (n_i^2)/p_i // in /cm^3
17 disp(n, "The concentration of electrons in a p-type
      Ge in /\text{cm}^3 is");
18 //Given for Si
19 sigma = 0.1; // in (ohm m)^-1
20 miu_n= 1300; // in cm<sup>2</sup>/V-sec
```

```
21  n_i = 1.5*10^10; // in /cm^3
22  //sigma = q*n*miu_n;
23  n = sigma/(q*miu_n); // in /cm^3
24  disp(n, "The concentration of electrons in n-type Si in /cm^3 is");
25  // The concentration of holes in n-type Si
26  p = (n_i^2)/n; // in /cm^3
27  disp(p, "The concentration of holes in n-type Si in / cm^3 is");
```

Scilab code Exa 1.7 Resistivity of Ge sample

```
1 // Exa 1.7
2 clc;
3 clear:
4 close;
5 format('v',6)
6 // Given data
7 \text{ miu_n} = 3800; // \text{ cm}^2/\text{V-s}
8 \text{ miu_p} = 1800; // \text{ cm}^2/\text{V-s}
9 \text{ n_i} = 2.5*10^13; // in /cm^3
10 Nge = 4.41*10^22; // in /cm<sup>3</sup>
11 q = 1.602*10^-19; // in C
12 impurity = 10^8;
13 // The number of donor atoms,
14 N_D = Nge/impurity; //in /cm^3
15 // The number of holes
16 p = (n_i^2)/N_D; // in /cm^3
17 // Conductivity of an N-type Ge,
18 sigma = q*N_D*miu_n; // in (ohm-cm)^-1
19 // The resistivity of the Ge
20 rho = 1/sigma; // in ohm-cm
21 disp(rho,"The resistivity of a dopped Ge in ohm-cm
      is");
```

Scilab code Exa 1.8 Resistivity of intrinsic Si

```
1 // Exa 1.8
2 clc;
3 clear;
4 close;
5 format('e',8)
6 // Given data
7 Nsi = 4.96*10^22; // in /cm<sup>3</sup>
8 \text{ n_i} = 1.52*10^10; // in /cm^2
9 q = 1.6*10^-19; // in C
10 miu_n = 0.135; // in <math>m^2/V - s
11 miu_n = miu_n * 10^4; // in cm^2/V-s
12 miu_p = 0.048; // in m<sup>2</sup>/V-s
13 \min_p = \min_p * 10^4; // in  cm^2/V-s
14 // The conductivity of an intrinsic silicon,
15 sigma = q*n_i*(miu_n+miu_p); // in (ohm-cm)^-1
16 // The resistivity of intrinsic silicon
17 rho = 1/sigma; // in ohm-cm
18 disp(rho, "The resistivity of intrinsic silicon in
      ohm—cm is");
19 format('v',5)
20 \text{ impurity} = 50*10^6;
21 // The number of donor atoms,
22 \text{ N_D} = \text{Nsi/impurity}; // \text{ in } /\text{cm}^3
23 // Total free electrons,
24 n = N_D; // in /cm^3
25 // Total holes in a doped Si,
26 p = (n_i^2)/n; // in /cm^3
27 // Conductivity of a doped Si,
28 sigma = q*n*miu_n; // in (ohm-m)^-1
29 // The resistivity of doped silicon
30 rho = 1/sigma; // in ohm-cm
31 disp(rho,"The resistivity of doped silicon in ohm-cm
```

```
is");
```

Scilab code Exa 1.9 Value of temperature

```
1 // Exa 1.9
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 N_D= 5*10^28/(2*10^8);
8 // The Fermi level, E_F= E_C if,
9 N_C= N_D;
10 // Formula N_C= 4.82*10^21*T^(3/2)
11 T= (N_C/(4.82*10^21))^(2/3);// in K
12 disp(T,"The value of temperature in K is:")
```

Scilab code Exa 1.10 Minority carrier concentration

```
1 // Exa 1.10
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 n_i = 1.5*10^16; //m^3
8 impurity = 10^20;
9 minority = (n_i^2)/impurity; // in atoms/m^3
10 q = 1.6*10^-19; // in C
11 rho = 2*10^3; // in ohm-m
12 // The miniority carrier concentration
13 miu_n = 1/(q*rho*n_i*2); // in m^2/V-s
```

```
14 disp(miu_n, "The miniority carrier concentration in m
      ^2/V-s is");
15 n = impurity;
16 // The conductivity,
17 sigma = q*impurity*miu_n; // in (ohm-m)^-1
18 // The resistivity
19 rho = 1/sigma; //in
                        ohm-m
20 disp(rho, "The resistivity in ohm-m is");
21 \text{ kT} = 0.026; // \text{ in eV}
22 \quad n_o = n;
23 // The position of Fermi level
24 E_FdividedEi = kT*log(n_o/n_i); // in eV
25 disp(E_FdividedEi,"The position of Fermi level in eV
       is : ");
26 format('e',8)
27 // Minority carrier concentration
28 M = ((n_i*2)^2)/n_o; // in atoms/cm^3
29 disp(M, "Minority carrier concentration in atoms/cm<sup>3</sup>
       is");
```

Scilab code Exa 1.11 Conductivity and resistivity of an intrinsic sample

```
1 // Exa 1.12
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 d = 5.0*10^22; // in atoms/cm^3
8 impurity = 10^8; // in atoms
9 N_D = d/impurity;
10 n_i = 1.45*10^10;
11 n = N_D;
12 //Low of mass action, n*p = (n_i^2);
13 p = (n_i^2)/n; // in /cm^3
```

```
14  q = 1.6*10^-19; // in C
15  miu_n = 1300; // in cm/V-s
16  n_i = n;
17  //The Conductivity
18  sigma = q*miu_n*n_i; // in (ohm-cm)^-1
19  // The resistivity
20  rho = 1/sigma; // in ohm-cm
21  disp(rho, "The resistivity in ohm-cm is");
```

Scilab code Exa 1.12 Resistivity

```
1 // Exa 1.12
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 d = 5.0*10^2; // in atoms/cm^3
8 impurity = 10^8; // in atoms
9 N_D = d/impurity;
10 n_i = 1.45*10^10;
11 \quad n = N_D;
12 //Low of mass action, n*p = (n_i^2);
13 p = (n_i^2)/n; // in /cm^3
14 q = 1.6*10^-19; // in C
15 miu_n = 1300; // in cm/V-s
16 \quad n_i = n;
17 //The Conductivity
18 sigma = q*miu_n*n_i; // in (ohm-cm)^-1
19 // The resistivity
20 rho = 1/sigma; // in ohm-cm
21 disp(rho, "The resistivity in ohm-cm is");
```

Scilab code Exa 1.14 Minority carrier concentration

```
1 // Exa 1.14
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ n_i} = 1.5*10^10; // \text{ in electrons/cm}^3
8 \text{ N_D} = 10^17; // \text{ in electrons/cm}^3
9 n = N_D; // in electrons/cm<sup>3</sup>
10 // The minority carrier concentration
11 p = (n_i^2)/n; // in holes/cm^3
12 disp(p,"The minority carrier concentration in holes/
      cm^3 is");
13 \text{ kT} = 0.026;
14 // The location of Fermi level
15 E_FminusEi = kT*log(N_D/n_i); // in eV
16 disp(E_FminusEi,"The location of Fermi level in eV
      is");
```

Scilab code Exa 1.15 Doping level and drift velocity

```
1 // Exa 1.15
2 clc;
3 clear;
4 close;
5 format('e',9)
6 // Given data
7 V = 1;// in V
8 I = 8;// in mA
9 I = I * 10^-3;// in A
10 R = V/I;// in ohm
11 l = 2;// in mm
12 l = l * 10^-1;// in cm
```

```
13 b = 2; // \text{ in mm}
14 b = b * 10^-1; // in cm
15 A = 1*b; // in cm<sup>2</sup>
16 L = 2; // in cm
17 // R = (rho*L)/A;
18 sigma = L/(R*A); // in (ohm-cm)^-1
19 // n = N_D;
20 miu_n = 1300; // in cm<sup>2</sup>/V-s
21 q = 1.6 * 10^-19; // in C
22 // sigma = n*q*miu_n;
23 N_D = sigma/( miu_n*q ); // in /cm^3
24 disp(N_D, "The doping level in /cm<sup>3</sup> is");
25 d = 2;
26 E = V/d;
27 // The drift velocity
28 Vd = miu_n * E; // in cm/s
29 disp(Vd,"The drift velocity in cm/sec is");
```

Scilab code Exa 1.17 Conductivity mobility and drift velocity

```
1 // Exa 1.17
2 clc;
3 clear;
4 close;
5 format('e',9)
6 // Given data
7 l = 1000; // in ft
8 l = l * 12*2.54; // in cm
9 R = 6.51; // in ohm
10 rho = R/l; // in ohm/cm
11 // The conductivity
12 sigma = 1/rho; // in mho/cm
13 sigma = sigma * 10^2; // in mho/m
14 D= 1.03*10^-3; // in m
15 A= %pi*D^2/4; // in m^2
```

```
disp(sigma, "The conductivity in mho/m is");
q = 1.6*10^-19; // in C
n = 8.4*10^28; // in electrons/m^3
// sigma = n*q*miu;
miu = sigma/(n*q); // in m^2/V-s
disp(miu, "The mobility in m^2/V-s is");
T = 2;
// The drift velocity
V = T/(n*q*A); // in m/s
disp(V, "The drift velocity in m/s is");
```

Scilab code Exa 1.18 Concentration of holes and electrons

```
1 // Exa 1.18
2 clc;
3 clear;
4 close;
5 format('e',8)
6 // Given data
7 \text{ N_D} = 2*10^16; // \text{ in /cm}^3
8 \text{ N_A} = 5*10^15; // \text{ in /cm}^3
9 // The concentration of holes
10 Pp = N_D - N_A; // in /cm<sup>3</sup>
11 disp(Pp, "The concentration of holes in /cm<sup>3</sup> is");
12 n_i = 10^12;
13 // The concentartion of electrons
14 \text{ n_p} = (\text{n_i^2})/\text{Pp}; // \text{ in } /\text{cm}^3
15 disp(n_p, "The concentartion of electrons in /cm<sup>3</sup> is
       ");
```

Scilab code Exa 1.19 Hall angle

```
1 // Exa 1.19
```

```
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 rho = 0.005; // in ohm-m
8 Bz = 0.48; // in Wb/m^2
9 R_H = 3.55*10^-4; // in m^3/C
10 ExByJx= rho;
11 // R_H = Ey/(Bz*Jx);
12 EyByJx= R_H*Bz;
13 // The hall angle
14 theta_H = atand(EyByJx/ExByJx); // in
15 disp(theta_H,"The hall angle in degree is");
```

Scilab code Exa 1.20 Voltage between contact

```
1 // Exa 1.20
2 clc;
3 clear;
4 close;
5 format('v',9)
6 // Given data
7 R_H = 3.55 * 10^-4; // in m^3/C
8 \text{ Ix} = 15; // \text{ in mA}
9 \text{ Ix} = \text{Ix} * 10^{-3}; // \text{ in A}
10 A = 15*1; // in mm
11 A = A * 10^-6; // in m^2
12 Bz = 0.48; // in Wb/m<sup>2</sup>
13 Jx = Ix/A; // in A/m^2
14 // R_H = Ey/(Bz*Jx);
15 Ey = R_H*Bz*Jx; // in V/m
16 // voltage between contacts
17 Voltage = Ey*Ix;//in V
18 disp(Voltage, "The voltage between contacts in V is")
```

;

Scilab code Exa 1.21 Concentration of donar atoms

```
1 // Exa 1.21
2 clc;
3 clear;
4 close;
5 format('e',8)
6 // Given data
7 A = 0.001; // in cm^2
8 \ 1 = 20; // in \ m
9 1 = 1 * 10^-4; // in cm
10 V = 20; // in V
11 I = 100; // in mA
12 I = I * 10^--3; // in A
13 R = V/I; // in ohm
14 // R = 1/(sigma*A);
15 sigma = 1/(R*A); // in (ohm-cm)^-1
16 miu_n = 1350; // in cm^2/V-s
17 q = 1.6*10^-19; // in C
18 // sigma = n*q*miu_n or
19 // The concentration of donor atoms
20 n = sigma/(q*miu_n); // in cm<sup>-3</sup>
21 disp(n, "The concentration of donor atoms in cm^-3 is
      ");
```

Scilab code Exa 1.22 Dopping needed

```
1 // Exa 1.22
2 clc;
3 clear;
4 close;
```

```
5 format('e',8)
6 // Given data
7 R = 2; // in k ohm
8 R = R * 10^3; // in ohm
9 L = 200; // in m
10 L = L * 10^--4; // in cm
11 A = 10^-6; // in cm<sup>2</sup>
12 miu_n = 8000; // in cm^2/V-s
13 q = 1.6*10^-19; // in C
14 \quad n = '0.9 * N_D';
15 // R = (rho*l)/A= (1/(n*q*miu_n))*(l/A);
16 // \text{rho} = L/(R*q*miu_n*A);
17 n = L/(R*q*miu_n*A); // in /cm^-3
18 // The doping needed
19 \text{ Nd} = n/0.9
20 disp(Nd, "The doping needed in cm^-3 is");
```

Scilab code Exa 1.23 Position of Fermi level

```
1 // Exa 1.23
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 KT = 26*10^-3;
8 Nd = 10^15;
9 n_i = 1.5*10^10;
10 // The position of the Fermi level
11 E_FminusE_Fi = KT*log(abs( Nd/n_i )); // in eV
12 disp(E_FminusE_Fi, "The position of the Fermi level in eV is");
```

Scilab code Exa 1.24 Concentration of donar atoms added

Scilab code Exa 1.25 Dopping efficiency of sample

```
1 // Exa 1.25
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 \text{ Nd} = 10^18;
8 R = 10; // in ohm
9 A = 10^-6; // in cm<sup>2</sup>
10 L = 10; // in mm
11 L = L * 10^--4; // in cm
12 miu_n = 800; // in cm<sup>2</sup>/V-s
13 q = 1.6*10^-19; // in C
14 / Formula used, n = L/(q*miu_n*A*R)
15 n = L/(q*miu_n*A*R); // in cm^-3
16 // The percentage doping efficiency
```

```
17 doping = (n/Nd)*100; // % doping efficiency in %
18 disp(doping, "The percentage doping efficiency in %
        is");
```

Scilab code Exa 1.26 Flowing current

```
1 // Exa 1.26
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Io = 2*10^-7; // in A
8 \ V = 0.1; // in V
9 // Current through the diode under forward bias,
10 I = Io*( (%e^(40*V))-1 ); // in A
11 I = I * 10^6; // in
                       Α
12 disp(I,"The current through the diode under forward
     bias in A is");
13
14 // Note: Calculated value of I in the book is wrong.
```

Scilab code Exa 1.28 Dynamic resistance

```
1  // Exa 1.28
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  T = 125; // in degree C
8  T = T + 273; // in K
9  V_T = T/11600;
```

Scilab code Exa 1.29 Voltage

```
1 // Exa 1.29
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ Eta} = 1;
8 V_T = 0.026;
9 // I = Io*( (\%e^(V/(Eta*V_T))) - 1 ) and I = -Io;
10 // I = -0.9*Io;
11 // -0.9*Io = Io*( (\%e^(V/(Eta*V_T))) - 1 );
12 V = Eta*V_T*\log(0.1); // in V
13 V = V * 10^3; // in mV
14 disp(V, "The voltage in mV is");
15 V = 0.05; // in V
16 // The ratio of diode current with a forward bias to
       current with a reverse bias
17 If_by_Ir= ((\%e^(V/V_T))-1)/((\%e^(-V/V_T))-1);
18 disp(If_by_Ir,"The ratio of diode current with a
     forward bias to current with a reverse bias is");
```

Scilab code Exa 1.30 Factor

```
1 // Exa 1.30
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 // Io150 = Io25 * 2^{((150-25)/10)};
8 //Io150 = 5800*Io25;
9 T = 150; // in degree C
10 T = T + 273; // in K
11 V_T = 8.62*10^-5 * T; // in V
12 V = 0.4; // in V
13 Eta = 2;
14 Vt = 0.026; // in V
15 // The factor by which current will get multiplied
16 I150byI25= 5800*%e^(V/(Eta*V_T))/%e^(V/(Eta*Vt));
17 disp(I150byI25,"The factor by which current will
```

Scilab code Exa 1.31 Operating Point

```
1 // Exa 1.31
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R = 1; // in ohm
8 V = 5; // in V
9 V1 = 0.5; // in V
10 R1 = 1; // in k ohm
11 R1 = R1 * 10^3; // in ohm
12 // V - (I_D *R1) - (I_D *R) - V1 = 0;
13 I_D = (V-V1)/(R1+R); // in A
14 I_D = I_D * 10^3; // in mA
15 V_D = (I_D*10^-3*R) + V1; // in V
16 disp("The operating point of the diode is: "+string
      (V_D)+" V, "+string(I_D)+" mA")
```

Scilab code Exa 1.32 VOlage drop across the forward bias diode

```
1 // Exa 1.32
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Eta = 1;
8 kT = 26; // in meV
9 // (%e^((e*V1)/kT)) = 2 or
```

```
10 //The voltage drop across the forward biased diode
11 V1 = log(2)*kT;// in mV
12 V1 = V1*10^-3;// in V
13 disp(V1,"The voltage drop across the forward biased diode, in V is");
```

Scilab code Exa 1.33 Space charge capacitance of Ge diode

```
1  // Exa 1.33
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  epsilon_Ge = 16/(36*%pi*10^11); // in F/cm
8  d = 2*10^-4; // in cm
9  A = 1; // in mm^2
10  A = A * 10^-2; // in cm^2
11  epsilon_o = epsilon_Ge; // in F/cm
12  // The space charge capacitance
13  C_T = (epsilon_o*A)/d; // in F
14  C_T = C_T * 10^12; // in pF
15  disp(C_T,"The space charge capacitance in pF is");
```

Scilab code Exa 1.34 Transition capacitance

```
1  // Exa 1.34
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  D = 0.102; // in cm
```

```
8 A = (%pi*(D^2))/4; // in cm^2
9 sigma_p = 0.286; // in (ohm-cm)^-1
10 q = 1.6*10^-19; // in C
11 miu_p = 500;
12 // Formula used, sigma_p = q*miu_p*N_A;
13 N_A = sigma_p/(q*miu_p); // in atoms/cm^3
14 V1 = 5; // in V
15 V2 = 0.35; // in V
16 Vb = V1+V2; // in V
17 // The transition capacitance,
18 C_T = 2.92*10^-4*((N_A/Vb)^(1/2))*A; // in pF/cm^2
19 disp(C_T, "The value of C_T in pf/cm^2 is");
```

Scilab code Exa 1.35 Transition capacitance

```
1 // Exa 1.35
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 C_T1 = 15; // in pF
8 Vb1 = 8; // in V
9 Vb2 = 12; // in V
10 // C_T1/C_T2 = (Vb2/Vb1)^(1/2);
11 C_T2 = C_T1 * ((Vb1/Vb2)^(1/2)); // in pF
12 disp(C_T2, "The value of C_T for reverse bias in pF
is");
```

Scilab code Exa 1.36 Voltage

```
1 // Exa 1.36
2 clc;
```

```
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 V_T = 0.026; // in V
8 Eta = 1;
9 I = '-0.9*Io';
10 // T = Io*((%e^(V/(Eta*V_T)))-1);
11 // I = Io*((%e^(V/(Eta*V_T)))-1);
12 V = log(0.1)*V_T; // in V
13 V = V * 10^3; // in mV
14 disp(V,"The voltage in mV is");
```

Scilab code Exa 1.37 Drain current

```
1 // Exa 1.37
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Vin = 20;// in V
8 \text{ Vgamma} = 0.7; // in V
9 R = 20; // in k ohm
10 R = R * 10^3; // in ohm
11 // Vin - (I_D * Vin) - Vgamma = 0 \text{ or}
12 // The value of LD,
13 I_D = (Vin-Vgamma)/R; // in A
14 I_D = I_D * 10^3; // in mA
15 disp(I_D, "Part (a) : The value of I_D for first
      circuit in mA is");
16
17 // Part (b)
18 Vin= 10; // in V
19 Vgamma = 0.7; // in V
```

```
20 R = 100; // in k ohm
21 // Drain current,
22 I_D= Vin/R; // in mV
23 disp(I_D, "Part (b) : The value of I_D for second circuit in mA is ")
```

Scilab code Exa 1.38 Vo and ID

```
1 // Exa 1.38
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R1 = 1; // in k ohm
8 R1 = R1 * 10^3; // in ohm
9 R2 = 2; // in k ohm
10 R2 = R2 * 10^3; // in ohm
11 V = 10; // in V
12 V1 = 0.7; // in V
13 // V * (I_D*R1) - (R2*I_D) - V1 = 0;
14 I_D = (V-V1)/(R1+R2); // in A
15 I_D = I_D * 10^3; // in mA
16 disp(I_D, "The value of I_D in mA is");
17 // The output voltage,
18 Vo = (I_D*10^-3 * R2) + V1; // in V
19 disp(Vo, "The value of Vo in V is");
```

Scilab code Exa 1.39 Current in each branch

```
1 // Exa 1.39
2 clc;
3 clear;
```

```
4 close;
5 format('v',6)
6 // Given data
7 V = 10; // in V
8 R = 10; // in ohm
9 // Current through resistance,
10 I = V/R; // in A
11 disp(I,"Part (a): The current through resistance in A is: ")
12 disp("Part (b): Current through 10 ohm resistance will be Zero")
13 disp("Part (c): Current will be zero")
14 disp(I,"Part (d): The diode will be ON and current in A is: ")
```

Scilab code Exa 1.40 Operating Point

```
1 // Exa 1.40
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Vth= 0.5; // in V
8 R_F = 1*10^3; // in ohm
9 \ V = 5; // in \ V
10 // Applying KVL for loop, V-Vd-R_F*Ii = 0 (i)
11 // \text{When I i} = 0
12 Vd= V; // in V
13 // When Vd= 0
14 Ii= V/R_F; // in A
15 // From eq(i)
16 Ii= (V-Vth)/R_F;//in A
17 Vd= V-R_F*Ii; // in V
18 disp("The operating point is : "+string(Vd)+" V, "+
```

```
string(Ii*10^3) +" mA")
```

Scilab code Exa 1.43 Voltages

```
1 // Exa 1.43
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 V_CC = 6; // in V
8 Vr = 0.6; // in V
9 V1= V_CC; // in V
10 V2 = V1-Vr; // in V
11 disp(V1, "The voltage at V1 in volts is:")
12 disp(V2, "The voltage at V2 in volts is:")
```

Scilab code Exa 1.44 I1 and I2

```
1  // Exa 1.44
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  V_T = 0.7; // in V
8  V = 5; // in V
9  R = 2; // in k ohm
10  R = R * 10^3; // in ohm
11  Vs = 0.7;
12  Vx = Vs+V_T; // in V
13  // The value of I1
14  I1 = (V-Vx)/R; // in A
```

Scilab code Exa 1.45 Output waveform

```
1  // Exa 1.45
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  Rf = 300; // in ohm
8  V = 0.5; // in V
9  R = 600; // in ohm
10  Vi = 2; // in V
11  // The output voltage
12  Vo = (Vi-V)*( R/(R+Rf) ); // in V
13  disp(Vo, "The value of Vo in V is");
```

Chapter 2

Diode Applications

Scilab code Exa 2.1 Average current and load voltage

```
1 // Exa 2.1
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 N2 = 4;
8 N1 = 1;
9 R_L = 1*10^3; // in ohm
10 Vm = 40; // in V
11 V_{\text{Lav}} = V_{\text{m}}/\%pi; // in V
12 // The average load voltage
13 V_LDC = V_Lav; // in V
14 disp(V_LDC, "The average load voltage in V is");
15 Im = Vm/R_L; // in A
16 I_DC = Im/\%pi; // in A
17 I_DC= I_DC*10^3; // in mA
18 disp(I_DC, "The average load current in mA is");
19 I_DC = I_DC * 10^-3; // in A
20 // The RMS voltage
21 V_Lrms = Vm/2; // in V
```

```
22 disp(V_Lrms, "The RMS voltage in V is");
23 // The RMS current
24 Irms = V_Lrms/R_L; // in A
25 Irms= Irms*10^3; // in mA
26 disp(Irms, "The RMS current in mA is");
27 Irms= Irms*10^-3; // in A
28 / \text{Eta} = (P_ODC/P_iAC) * 100;
29 \text{ I_Loc} = \text{I_DC}; // \text{ in A}
30 P_ODC = (I_Loc^2)*R_L; // in W
31 P_iAC = (Irms^2)*R_L; // in W
32 // The efficiency of rectification
33 Eta = (P_ODC/P_iAC)*100; // in \%
34 disp(Eta,"The efficiency of rectification in \% is");
35 \text{ V2rms} = \text{Vm/sqrt}(2);
36 \text{ I2rms} = \text{Irms}; // \text{ in A}
37 // The value of TUF
38 TUF = ((P_ODC)/(V2rms*I2rms))*100; // in \%
39 disp(TUF,"The value of TUF in \% is");
40 // The ripple factor
41 Gamma = (sqrt((V_Lrms^2)-(V_LDC^2)))/V_LDC;
42 Gamma = round(Gamma * 100); // in \% done by own
43 disp(Gamma, "The ripple factor in % is");
```

Scilab code Exa 2.2 Input AC power

```
1 // Exa 2.2
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Rf = 10; // in ohm
8 R_L = 1; // in k ohm
9 R_L = R_L * 10^3; // in ohm
10 Vi = 230; // in V
```

```
11 Vm = Vi*sqrt(2);
12 //I_DC = Im/\%pi;
13 I_DC = Vm/((R_L+Rf)*\%pi); // in A
14 Irms = Vm/((R_L+Rf)*2);// in A
15 // The input ac power
16 P_{iAC} = (Irms^2)*(Rf+R_L); // in W
17 disp(P_iAC, "The input ac power in W is");
18 // The output ac power
19 P_{ODC} = (I_{DC^2})*R_L; // in W
20 disp(P_ODC, "The output ac power in W is");
21 // The efficiency
22 Eta = (P_ODC/P_iAC)*100; // in \%
23 disp(Eta,"The efficiency in \% is");
24 // The percentage regulation
25 R = (Rf/R_L)*100; // in \%
26 disp(R, "The percentage regulation in \% is");
27
28 // Note: The calculated value of input a.c. power in
       the book is wrong.
```

Scilab code Exa 2.3 Output DC voltage and current

```
1 // Exa 2.3
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 V1 = 230; // in V
8 N2= 1;
9 N1 = 4;
10 R_L = 1; // in k ohm
11 R_L = R_L * 10^3; // in ohm
12 Vd = 0.7; // in V
13 // VLDC = (Vm-Vd)/%pi; // in V
```

```
14  V2 = V1*(N2/N1); // in V
15  // Vm = sqrt(2)*Vrms;
16  Vm = sqrt(2)*V2; // in V
17  // The output dc voltage
18  V_LDC = (Vm-Vd)/%pi; // in V
19  disp(V_LDC, "The output dc voltage in V is");
20  // The current for a load resistance
21  I_LDC = V_LDC/R_L; // in A
22  I_LDC = I_LDC * 10^3; // in mA
23  disp(I_LDC, "The current for a load resistance in mA is");
```

Scilab code Exa 2.7 PIV rating

```
1 // Exa 2.7
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R1 = 2.2; // in k ohm
8 R2 = 2.2; // in
                  kohm
9 R3 = 4.7; // in k ohm
10 R = (R2*R3)/(R2+R3); // in k ohm
11 Vin = 200;
12 // Vo = (R/(R1+R)) * Vin;
13 // The PIV rating for first diode
14 Vomax = round(R/(R1+R)*Vin); // in V
15 disp(Vomax,"The PIV rating for first diode in V is:
      ")
16 Rdas = (R1*R3)/(R1+R3); // in k ohm
17 // Vo = (Rdas/(R1+Rdas))*(-Vin);
18 // The PIV rating for second diode
19 Vomax=round(Rdas/(R1+Rdas)*Vin);// in V
20 disp(Vomax,"The PIV rating for second diode in V is
```

: ")

Scilab code Exa 2.9 PIV of diode

```
1 // Exa 2.9
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 // Vi = 15* sind (314*t);
8 \text{ Vm} = 15; // \text{ in V}
9 R_L = 1; // in k ohm
10 R_L = R_L * 10^3; // in ohm
11 Im = Vm/R_L; // in A
12 Im = Im * 10^3; // in mA
13 Idc = Im/\%pi;//in mA
14 // The average current
15 I_Dav = Idc; // in mA
16 disp(I_Dav, "The average current in mA is");
17 // The RMS current
18 I_Drms = Im/2; // in mA
19 disp(I_Drms, "The RMS current in mA is");
20 // The peak diode current
21 I_Dpeak = Im; // in mA
22 disp(I_Dpeak,"The peak diode current in mA is");
23 // The PIV of diode
24 PIV = 2*Vm; // in V
25 disp(PIV, "The PIV of diode in V is");
```

Scilab code Exa 2.10 Average load current and rectification efficiency

```
1 // Exa 2.10
```

```
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R_L = 1; // in k ohm
8 R_L = R_L * 10^3; // in ohm
9 Rf = 1; // in ohm
10 R2 = 2; // in ohm
11 N1 = 4;
12 N2 = 1;
13 V1rms = 240; // in V
14 V2rms = (N2/N1)*V1rms; // in V
15 Vm = sqrt(2)*V2rms;// in V
16 // The average load current
17 I_LDC = (2*Vm)/(%pi*(R2+Rf+R_L)); // in A
18 I_LDC= I_LDC *10^3; // in mA
19 disp(I_LDC, "The average load current in mA is");
20 I_LDC= I_LDC *10^-3; // in A
21 // The average load voltage at no load
22 \text{ V_NL} = (2*\text{Vm})/\text{%pi}; // \text{ in V}
23 disp(V_NL,"The average load voltage at no load in V
      is");
24 // The average load voltage at full load
25 \text{ V_LDC} = \text{I_LDC*R_L}; // \text{ in V}
26 disp(V_LDC, "The average load voltage at full load in
       V is");
27 // The percentage load regulation
28 Per_loadReg= (V_NL-V_LDC)/V_LDC*100;// in \%
29 disp(Per_loadReg,"The percentage load regulation in
     % is : ")
30 Im = Vm/(R_L+R2+Rf); // in A
31 Irms = Im/2; // in A
32 \text{ P_iAC} = (Vm^2)/(2*(R2+Rf+R_L)); // \text{ in } W
33 P_ODC = (I_LDC^2)*R_L; // in W
34 // The rectification efficiency
35 Eta = (P_ODC/P_iAC)*100; // in \%
36 disp(Eta," The rectification efficiency in \% is");
```

Scilab code Exa 2.11 Output waveform

```
1 // Exa 2.11
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R1 = 2; // in k ohm
8 R2 = 2; // in k ohm
9 V_AB = 20; // in V
10 Vo = V_AB*(R1/(R1+R2)); // in V
11 // The required PIV
12 V_AC = Vo; // in V
13 disp(V_AC, "The required PIV in V is");
```

Scilab code Exa 2.12 Idc and Irms

```
1 // Exa 2.12
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Vrms = 10; // in V
8 r_f = 0.3; // in ohm
9 R_L = 2; // in ohm
10 Vm = sqrt(2)*Vrms; // in V
11 Im = Vm/(R_L+r_f); // in A
12 // The value of Idc
13 Idc = Im/%pi; // in A
```

```
14 disp(Idc,"The value of Idc in A is");
15 // The RMS value of output current
16 Irms = Im/2;// in A
17 disp(Irms,"The RMS value of output current in A is")
;
```

Scilab code Exa 2.13 Ripple factor

```
1 // Exa 2.13
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Vdc = 50; // in V
8 Vrms = 5; // in V
9 // The ripple factor,
10 Gamma = Vrms/Vdc;
11 disp(Gamma, "The ripple factor is");
```

Scilab code Exa 2.14 Mean and rms load current and output efficiency

```
1 // Exa 2.14
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Vrms = 50; // in V
8 r_f = 20; // in ohm
9 R_L = 980; // in ohm
10 Vm = sqrt(2)*Vrms; // in V
11 Im = (Vm)/(R_L+r_f);
```

```
12 // The mean load current
13 Idc = (2*Im)/%pi; // in A
14 Idc = round(Idc * 10^3); // in mA
15 disp(Idc, "The mean load current in mA is");
16 // The RMS load current
17 Irms = Im/sqrt(2); // in A
18 Irms = Irms*10^3; // in mA
19 disp(Irms, "The RMS load current in mA is");
20 a = 0.812; // assumed
21 // The output efficiency
22 Eta = a/(1+(r_f/R_L));
23 Eta = Eta * 100; // in %
24 disp(Eta, "The output efficiency in % is");
```

Scilab code Exa 2.15 Output voltage for a complete cycle

```
1 // Exa 2.15
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 V = 10; // in V
8 V1 = 2.5; // in V
9 R = 1; // in Mohm
10 R = R * 10^6; // in ohm
11 i = (V-V1)/R; // in A
12 i = i * 10^6; // in A
13 // The output voltage for a complete cycle
14 Vo1 = (i*10^-6*R)+V1;//in V
15 disp(Vo1,"The output voltage for a complete cycle in
      V is");
16 // The output voltage for half neagtive cycle
17 Vo2 = V1; // in V
18 disp(Vo2,"The output voltage for half negative cycle
```

```
in V is");
```

Scilab code Exa 2.17 DC output voltage PIV and rectification efficiency

```
1 // Exa 2.17
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 V1 = 230; // iin V
8 N2 = 1;
9 N1 = 5;
10 R_L = 100; // in ohm
11 V2 = V1*N2/N1; // in V
12 Vrms = V2;// in V
13 Vs = V2/2; // in V
14 Vm = sqrt(2)*Vs; // in V
15 // The dc output voltage
16 Vdc = (2*Vm)/\%pi;//in V
17 disp(Vdc, "The dc output voltage in V is");
18 // The PIV value
19 PIV = round(2*Vm); // in V
20 disp(PIV, "The PIV value in V is");
21 // The rectification efficiency
22 Eta = 0.812;
23 Eta = Eta*100; // in \%
24 disp(Eta, "The rectification efficiency in \% is");
```

Scilab code Exa 2.18 DC output voltage and output frequency

```
1 // Exa 2.18
2 clc;
```

```
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 V1 = 220; // in V
8 N2 = 1;
9 \text{ N1} = 10;
10 R_L = 250; // in ohm
11 V2 = V1 * (N2/N1); // in V
12 Vm = sqrt(2)*V2; // in V
13 Im = Vm/R_L; // in A
14 Iav = (2*Im)/\%pi;//in A
15 Idc = Iav; // in A
16 // The dc output volatge
17 Vdc = Idc* R_L; // in V
18 disp(Vdc, "The dc output volatge in V is");
19 Pdc = (Idc^2)*R_L; // in W
20 Irms = (Im)/sqrt(2);// in A
21 Pac = (Irms^2)*R_L;// in W
22 // The rectification efficiency
23 Eta = (Pdc/Pac)*100; // in \%
24 disp(Eta, "The rectification efficiency in \% is");
25 // The peak inverse volatge
26 PIV = Vm; // in V
27 disp(PIV, "The peak inverse volatge in V is");
28 \text{ f_in} = 50; // \text{ in Hz}
29 // The output frequency
30 \text{ f_out = } 2*f_in; // in Hz
31 disp(f_out, "The output frequency in Hz is");
32
33 // Note: The answer of rectification efficiency in
      the book is not accurate.
```

Scilab code Exa 2.21 Filter capacitor

```
1 // Exa 2.21
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R_F = 0.01;
8 \text{ Vdc} = 30; // \text{ in } V
9 R_L = 1; // in k ohm
10 R_L = R_L * 10^3; // in ohm
11 Idc = Vdc/R_L; // in A
12 Idc = Idc * 10^3; // in mA
13 // Vdc = Vm - ((5000*Idc)/C);
14 Gamma = 0.01; // ripple factor
15 / Gamma = 2900 / (C*R_L);
16 C = 2900/(Gamma*R_L); // in F
17 Vm = Vdc + ((5000*Idc*10^-3)/C);//in V
18 // The input voltage required
19 V2 = (2*Vm)/sqrt(2); // in V
20 disp(V2, "The input voltage required in V is");
21
22
  //Note: The value of Vm in the book is not accurate,
       So the answer in the book is wrong.
```

Scilab code Exa 2.22 Designing of a filter for full wave circuit

```
1  // Exa 2.22
2  clc;
3  clear;
4  close;
5  format('v',7)
6  // Given data
7  V_L = 25; // in V
8  I_L = 200; // in mA
9  I_L = I_L * 10^-3; // in A
```

```
10 R_L = V_L/I_L; // in ohm
11 Gamma = 3/100;
12 //Gamma = 1/(6*sqrt(2)*(omega^2)*L*C);
13 f = 50; // in Hz
14 omega = 2*%pi*f; // in rad/sec
15 //LC = 1/( 6*sqrt(2)*(omega^2)*Gamma)
16 L = R_L/(3*omega); // in H
17 disp(L,"The value of L in H is");
18 C = 1/( 6*sqrt(2)*(omega^2)*Gamma*L ); // in F
19 C = C * 10^6; // in F
20 disp(C,"The value of C in F is");
```

Scilab code Exa 2.23 Output voltage current and ripple

```
1 // Exa 2.23
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ Vm} = 15; // \text{ in V}
8 // The output voltage
9 Vdc = (2*sqrt(2)*Vm)/\%pi;//in V
10 disp(Vdc, "The output voltage in V is");
11 R_L = 5; // in ohm
12 Idc = Vdc/R_L;//in A
13 disp(Idc, "The current in A is");
14 L = 50; // in mH
15 L = L * 10^-3; // in H
16 \ C = 1000; // in \ F
17 \ C = C * 10^-6; // in F
18 f = 50; // in Hz
19 omega = 2*\%pi*f; // in rad/sec
20 // The ripple factor
21 Gamma = 1/(6*sqrt(2)*(omega^2)*L*C);
```

```
disp(Gamma, "The ripple factor is");
// Im =Vm/X_L = (Vm*sqrt(2))/(2*%pi*f*L);
Im = (Vm*sqrt(2))/(2*%pi*f*L);// in A
I_Lmin = Im;// in A
// The maximum value of R_L
R_Lmax = Vdc/I_Lmin;// in ohm
disp(R_Lmax, "The maximum value of R_L in ohm is");
```

Scilab code Exa 2.24 Percentage ripple

```
1 // Exa 2.24
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 f = 50; // in Hz
8 \text{ Vrms} = 280; // \text{ in } V
9 Vm = sqrt(2)*Vrms; // in V
10 V_{Lmax} = Vm; // in V
11 Idc = 100; // in mA
12 Idc = Idc * 10^-3; // in A
13 C2 = 10; // in F
14 C2 = C2 * 10^-6; // in F
15 C1 = C2; // in F
16 R_L = V_Lmax/Idc; // in ohm
17 L = 104; // in H
18 omega = 2*\%pi*f; // in rad/sec
19 // The percentage ripple
20 Gamma = sqrt(2)/(8*omega^3*C1*C2*L*R_L)*100; // in \%
21 disp(Gamma, "The percentage ripple in % is");
22
23 // Note: There is calculation error to find the
      value of gamma, So the answer in the book is
      wrong.
```

Scilab code Exa 2.25 Peak output voltage

```
1 // Exa 2.25
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Vin = 15; // in V
8 // Peak output voltage,
9 Vout = Vin; // in V
10 disp(Vout, "Peak output voltage in V is");
```

Scilab code Exa 2.26 Peak output voltage

```
1 // Exa 2.26
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R_L = 2; // in k ohm
8 R_L = R_L * 10^3; // in ohm
9 R = 2; // in k ohm
10 R = R * 10^3; // in ohm
11 Vin = 5; // in V
12 // The peak output voltage
13 Vout = (R_L/(R+R_L))*Vin; // in V
14 disp(Vout, "The peak output voltage in V is");
```

Scilab code Exa 2.27 IR and IRmax

```
1 // Exa 2.27
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ Vi} = 10; // \text{ in V}
8 \ V1 = 6; // in \ V
9 R = 10; // \text{ in k ohm}
10 R = R * 10^3; // in ohm
11 // The value of i_Rmax
12 i_Rmax = (Vi-V1)/R; // in A
13 i_{Rmax} = i_{Rmax} * 10^3; // in mA
14 Vi = -10;// in V
15 V1 = 8; // in V
16 // The value of i_R
17 i_R = (Vi+V1)/R; // in A
18 i_R = i_R * 10^3; // in mA
19 disp(i_Rmax, "The value of i_Rmax in mA is : ")
20 disp(i_R, "The value of i_R in mA is : ")
```

Scilab code Exa 2.28 Output voltage and voltage across R

```
1  // Exa 2.28
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  Vout = -0.7; // in V
8  V = -12; // in V
9  // The output voltage
10  V_R = V-Vout; // in V
```

```
11 disp(V_R, "The output voltage in V is");
```

Scilab code Exa 2.29 Output waveform

```
1 // Exa 2.29
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ Vin} = 10; // \text{ in } V
8 V1 = 2; // in V
9 // Vin -V_C - V1 = 0;
10 V_C = Vin - V1; // in V
11 // During positive half cycle the output voltage
12 Vout = Vin-V_C; // in V
13 disp(Vout, "During positive half cycle the output
      voltage in V is : ")
14 Vin = -10; // in V
15 V1 = 8; // in V
16 // Vin-V1-Vout = 0;
17 // During negative half cycle the output voltage
18 Vout = Vin-V1; // in V
19 disp(Vout, "During negative half cycle the output
      voltage in V is : ")
```

Scilab code Exa 2.30 Output voltage

```
1 // Exa 2.30
2 clc;
3 clear;
4 close;
5 format('v',6)
```

```
6 // Given data
7 Vin = 10; // in V
8 V1 = 2; // in V
9 // Vin-V_C+V1 = 0;
10 V_C = Vin+V1; // in V
11 //During positive half cycle the output voltage
12 Vout = Vin-V_C; // in V
13 disp(Vout, "During positive half cycle the output
     voltage in V is");
14 Vin = -10; // iin V
15 V1 = 12; // in V
16 // Vin-V1-Vout = 0;
17 //During negative half cycle the output voltage
18 Vout = Vin-V1; // in V
19 disp(Vout, "During negative half cycle the output
      voltage in V is");
```

Scilab code Exa 2.31 Output voltage

```
1  // Exa 2.31
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  Vi = 20; // in V
8  V1 = 5; // in V
9  Vc = Vi-V1; // in V
10  Vo = -5; // in V
11  // The value of Vo,
12  Vo = Vi+Vc; // in V
13  disp(Vo, "The value of Vo in V is");
```

Chapter 3

Zener Diode And LED

Scilab code Exa 3.1 Resistance of device

```
1 // Exa 3.1
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 	 I1 = 30; // in mA
8 	ext{ I2 = 20; // in mA}
9 delI_Z = I1-I2; // in mA
10 delI_Z = delI_Z * 10^-3; // in A
11 V1 = 5.75; // in V
12 V2 = 5.6; // in V
13 delV_Z = V1-V2;// in V
14 // The resistance of the device
15 \text{ r}_Z = \text{delV}_Z/\text{delI}_Z; // \text{ in ohm}
16 disp(r_Z, "The resistance of the device in ohm is");
```

Scilab code Exa 3.2 Terminal voltage

```
1 // Exa 3.2
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 V_Z = 4.7; // in V
8 r_Z = 15; // in ohm
9 I_Z = 20; // in mA
10 I_Z = I_Z * 10^-3; // in A
11 // The terminal voltage
12 VdasZ = V_Z + (I_Z*r_Z); // in V
13 disp(VdasZ, "The terminal voltage in V is");
```

Scilab code Exa 3.3 Value of IZM

```
1 // Exa 3.3
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 P_ZM = 500; // in mW
8 P_ZM = P_ZM * 10^-3; // in W
9 V_Z = 6.8; // in V
10 // The value of I_ZM
11 I_ZM = P_ZM/V_Z; // in A
12 I_ZM = I_ZM * 10^3; // in mA
13 disp(I_ZM, "The value of I_ZM in mA is");
```

Scilab code Exa 3.4 Maximum power dissipation

```
1 // Exa 3.4
```

```
2 clc;
3 clear;
4 close;
5 format('v',8)
6 // Given data
7 P_ZM = 1500; // in mW
8 Deratingfactor = 3.33; // in mW
9 T1 = 85; // in degree C
10 T2 = 60; // in degree C
11 total = Deratingfactor*(T1-T2); // total derating factor in mW
12 // The maximum power dissipation
13 P_ZM = P_ZM - total; // in mW
14 disp(P_ZM,"The maximum power dissipation in mW is");
```

Scilab code Exa 3.5 Value of VL VR VZ and PZ

```
1 // Exa 3.5
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 \text{ R_L} = 1.2; // \text{ in k ohm}
8 R_L = R_L * 10^3; // in ohm
9 Vi = 16; // in V
10 R = 1; // in k ohm
11 R = R * 10^3; // in ohm
12 // The value of V<sub>-</sub>L
13 V_L = (R_L * Vi) / (R + R_L); // in V
14 disp(V_L, "The value of V_L in V is");
15 V_Z = 10; // in V
16 // The value of V<sub>R</sub>
17 V_R = Vi-V_L; // in V
18 disp(V_R, "The value of V_R in V is");
```

```
19  // The value of I_Z
20  I_Z = 0; // in A
21  disp(I_Z, "The value of I_Z in A is");
22  // The value of P_Z
23  P_Z = V_Z*I_Z; // in W
24  disp(P_Z, "The value of P_Z in W is");
```

Scilab code Exa 3.6 Range of value of Vi

```
1 // Exa 3.6
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R_L = 1.2; // in k ohm
8 R_L = R_L * 10^3; // in ohm
9 R = 220; // in ohm
10 V_Z = 20; // in V
11 // The minimum value of Vi
12 Vimin = ((R_L+R)/R_L)*V_Z; // in V
13 disp(Vimin, "The minimum value of Vi in V is");
14 \quad I_L = V_Z/R_L; // in A
15 I_ZM = 60; // in mA
16 I_ZM = I_ZM * 10^-3; // in A
17 // I_ZM = I_R-I_L;
18 I_Rmax = I_ZM + I_L;
19 // The maximum value of Vi
20 Vimax = (I_Rmax*R)+V_Z; // in V
21 disp(Vimax, "The maximum value of Vi in V is");
```

Scilab code Exa 3.7 Whether zener diode operating in Breakdown region

```
1 // Exa 3.7
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 R_L = 1; // in k ohm
8 R_L = R_L * 10^3; // in ohm
9 R = 270; // in ohm
10 V = 18; // in V
11 V_Z = 10; // in V
12 V_L = (R_L/(R_L+R))*V; // in V
13 if V_L > V_Z then
       disp("As the value of V_L ("+string(V_L)+" V) is
14
           greater than the value of V_Z ("+string(V_Z)
          +" V), So")
15 disp("The zener diode is operating in the breakdown
      region.");
16 end
```

Scilab code Exa 3.8 Zener current

```
1 // Exa 3.8
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 V1 = 18; // in V
8 V2 = 10; // in V
9 R = 250; // in ohm
10 I_R = (V1-V2)/R; // in A
11 I_R = I_R * 10^3; // in mA
12 R_L = 1; // in k ohm
13 R_L = R_L * 10^3; // in ohm
```

```
14  I_L = V2/R_L; // in A
15  I_L = I_L * 10^3; // in mA
16  // I_R = I_L + I_Z;
17  // So, the value of zener current
18  I_Z = I_R - I_L; // in mA
19  disp(I_Z, "The value of zener current in mA is");
```

Scilab code Exa 3.9 Current flowing through resistance R

```
1 // Exa 3.9
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R = 10; // in k ohm
8 R = R * 10^3; // in ohm
9 Vi = 20; // in V
10 V_Z = 10; // in V
11 I_L = 1; // in mA
12 I_L = I_L * 10^-3; // in A
13 R_L = 10; // in k ohm
14 R_L = R_L * 10^3; // in ohm
15 V_L = (R_L/(R_L+R))*Vi; // in V
16 // The current flowing through the resistance
17 I = (Vi-V_Z)/R; // in A
18 I = I * 10^3; // in mA
19 disp(I,"The current flowing through the resistance
      in mA is");
```

Scilab code Exa 3.10 Value of VL IL IR and IZ

```
1 // Exa 3.10
```

```
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R = 200; // in
                    ohm
8 \text{ Vi} = 20; // \text{ in V}
9 V_Z = 10; // in V
10 R_L = 300; // in ohm
11 P_{Zmax} = 400; // in mW
12 // The value of V<sub>-</sub>L
13 V_L = (R_L/(R_L+R))*Vi; // in V
14 disp(V_L, "The value of V_L in V is");
15 V_L = V_Z; // in V
16 // The value of I_{-}L
17 I_L = V_L/R_L; // in A
18 I_L = I_L * 10^3; // in mA
19 disp(I_L, "The value of I_L in mA is");
20 // The value of I_R
21 I_R = (Vi-V_Z)/R; // in A
22 I_R = I_R * 10^3; // in mA
23 disp(I_R, "The value of I_R in mA is");
24 // The value of I_Z
25 \quad I_Z = I_R - I_L; // in \quad mA
26 disp(I_Z, "The value of I_Z in mA is");
27 // V_L >= V_Z \text{ and } V_L = R_L * V_i / (R_L + R)
28 // So, the minimum value of R<sub>-</sub>L
29 R_L= R*V_Z/(Vi-V_Z); // in ohm
30 disp(R_L, "The minimum value of R_L in ohm is:")
```

Scilab code Exa 3.11 Maximum value of Ri

```
1 // Exa 3.11
2 clc;
3 clear;
```

```
4 close;
5 format('v',6)
6 // Given data
7 I_Z = 0.2; // in A
8 R = 10; // in ohm
9 V_Z = 8 + (R*I_Z); // in V
10 I_Lmin = V_Z/R; // in A
11 I_Zmax = 0.2; // in A
12 Vimax = 15; // in V
13 // The minimum value of R
14 Rimin = (Vimax-V_Z)/(I_Zmax+I_Lmin); // in ohm
15 disp(Rimin, "The minimum value of R in ohm is");
16
17 // Note: The calculation in the book is not accurate , So the answer in the book is not accurate.
```

Scilab code Exa 3.12 Output voltage and current through the zener diode

```
1 // Exa 3.12
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R_L = 10; // in k ohm
8 R_S = 5; // in k ohm
9 \ V_S = 12; // in V
10 V_Z = 8; // in V
11 V_L = (R_L/(R_S+R_L))*V_S; // in V
12 //The output voltage
13 Vo = V_L; // in V
14 disp(Vo, "The output voltage in V is");
15 // The voltage drop across R_S
16 R_S = V_S - V_O; // in V
17 disp(R_S, "The voltage drop across R_S in V is");
```

Scilab code Exa 3.13 value of VZ IZ and PZ

```
1 // Exa 3.13
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 R_S = 1; // in k ohm
8 R_L = 1.2; // in k ohm
9 \ V_Z = 10; // in V
10 V_S = 16; // in V
11 V_L = (R_L/(R_L+R_S))*V_S; // in V
12 //The value of I_{-}Z
13 I_Z = 0; // in A
14 disp(I_Z, "The value of I_Z in A is");
15 // The value of P<sub>Z</sub>
16 P_Z = 0;
17 disp(P_Z, "The value of P_Z is");
18 //The value of Vo
19 Vo = V_L; // in V
20 disp(Vo, "The value of Vo in V is");
```

Scilab code Exa 3.14 Value of VL IL IZ and IR

```
1 // Exa 3.14
2 clc;
3 clear;
```

```
4 close;
5 format('v',6)
6 // Given data
7 R_L = 200; // in ohm
8 Vin = 20; // in V
9 V_Z = 10; // in V
10 P_{Zmaz} = 400; // in mW
11 R_S = 220; // in ohm
12 //The value of V<sub>L</sub> with 200 ohm
13 V_L = (R_L/(R_S+R_L))*Vin; // in V
14 disp(V_L, "The value of V_L with 200 ohm in V is");
15 // The value of I_Z with 200 ohm
16 I_Z = 0; // in A
17 disp(I_Z, "The value of I_Z with 200 ohm in A is");
18 // The value of I_L with 200 ohm
19 I_L = Vin/(R_S+R_L)*10^3; // in mA
20 disp(I_L, "The value of I_L with 200 ohm in mA is");
21 //The value of I_R with 200 ohm
22 I_R = I_L; // in mA
23 disp(I_R, "The value of I_R with 200 ohm in mA is");
24 R_L = 50; // in ohm
25 V_L = (R_L/(R_S+R_L))*Vin;//in V
26 //The value of I<sub>L</sub> with 50 ohm
27 I_L = Vin/(R_S+R_L)*10^3; // in mA
28 disp(I_L, "The value of I_L with 50 ohm in mA is");
29 // The value of I_R with 50 ohm
30 I_R = I_L; // in mA
31 disp(I_R, "The value of I_R with 50 ohm in mA is");
32 // The value of I<sub>Z</sub> with 50 ohm
33 I_Z = 0; // in A
34 disp(I_Z, "The value of I_Z with 50 ohm in A is");
35 disp(V_L, "The value of V_L with 50 ohm in V is");
```

Scilab code Exa 3.15 Value of RLmin

```
1 // Exa 3.15
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 V_Z = 15; // in V
8 Vin = 24; // in V
9 R = 27; // in ohm
10 I = (Vin-V_Z)/R; // in A
11 // The minimum value of R_L
12 R_Lmin = V_Z/I; // in ohm
13 disp(R_Lmin, "The minimum value of R_L in ohm is");
```

Scilab code Exa 3.16 Minimum value of R

```
1 // Exa 3.16
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ R} = 50; // \text{ in ohm}
8 \text{ Vin} = 10; // \text{ in } V
9 \ V_Z = 6; // in V
10 I = (Vin-V_Z)/R; //in A
11 I = I * 10^3; // in mA
12 I_Zmin = 5; // in mA
13 // I = I_Z + I_L;
14 I_Rmax = I-I_Zmin; // in mA
15 // The minimum value of R
16 R = V_Z/(I_Rmax*10^-3); // in ohm
17 disp(R, "The minimum value of R in ohm is");
```

Scilab code Exa 3.17 Power dissipation in zener diode

```
1 // Exa 3.17
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R = 150*10^3; // in ohm
8 R_L = 75; // in k ohm
9 R_L = R_L * 10^3; // in ohm
10 V_Z = 15; // in V
11 Vin = 50; // in V
12 R_Z = 0;
13 Rth = (R*R_L)/(R+R_L); // in ohm
14 Vth = Vin * ( R_L/(R_L+R) ); // in V
15 I_Z = Vth/Rth; // in A
16 // The power dissipation in the zener diode
17 P_Z = V_Z * I_Z; // in W
18 P_Z = P_Z * 10^3; // in mW
19 disp(P_Z, "The power dissipation in the zener diode
     in mW is");
20
21 // Note: The calculation in the last line is wrong
     as 15*0.333 = 5 mW not 0.5mW, So the answer in
      the book is wrong.
```

Scilab code Exa 3.18 Value of RL

```
1 // Exa 3.18
2 clc;
3 clear;
```

```
4 close;
5 format('v',4)
6 // Given data
7 R = 222; // in ohm
8 Vin = 20; // in V
9 V_Z = 10; // in V
10 P = 400; // in mW
11 P = P*10^-3; // in W
12 \quad I_Zmax = P/V_Z; // in A
13 //I = I_Z + I_L;
14 I = (Vin-V_Z)/R; //in A
15 I_Lmin = I - I_Zmax; // in mA
16 // The value of R<sub>-</sub>L
17 R_L = V_Z/I_Lmin; // in ohm
18 R_L = R_L * 10^- 3; // in k ohm
19 disp(R_L, "The value of R_L in k ohm is");
```

Scilab code Exa 3.19 Range of possible load current

```
1 // Exa 3.19
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R = 12; // in k ohm
8 Vin = 6.3; // in V
9 \ V_Z = 4.8; // in V
10 I = (Vin-V_Z)/R*10^3; // in mA
11 I_Z = 5; // in mA
12 // Maximum value of load current,
13 I_{\text{Lmax}} = I - I_{Z}; // \text{ in } mA
14 I_Z = 100; // in mA
15 // Minimum value of load current,
16 I_Lmin = I - I_Z; // in mA
```

```
17 disp("The range of possible load current is: "+
      string(I_Lmin)+" mA <= I_L <= "+string(I_Lmax)+"</pre>
      mA")
18 // Minimum value of load resistance,
19 R_Lmin= I_Lmin*10^-3*V_Z; // in ohm
20 // Maximum value of load resistance,
21 R_Lmax = I_Lmax * 10^-3 * V_Z; // in ohm
22 disp("The range of possible load resistance is: "+
      string(R_Lmin)+" ohm <= R_L <= "+string(R_Lmax)+"</pre>
       ohm")
23 // The power rating required for load resistance
24 \text{ P}_{\text{Zmax}} = I_{\text{Lmax}}*10^{-3}*V_{\text{Z}}; // \text{ in } W
25 P_Zmax= P_Zmax*10^3; // in mW
26 disp(P_Zmax,"The power rating required for load
      resistance in mW is");
27
28 // Note: The calculated value of P_Zmax is wrong as
      120*10^{-}-3*4.8 = 576 \text{ mW not } 5.76 \text{ mW}
```

Chapter 4

Bipolar Junction Transistor

Scilab code Exa 4.1 Base current

```
1 // Exa 4.1
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ Alpha} = 0.98;
8 Vo = 4.9; // in V
9 R_L = 5; // in k ohm
10 R_L = R_L * 10^3; // in ohm
11 I_C = Vo/R_L; // in A
12 I_C = I_C * 10^3; // in mA
13 // Alpha = I_C/I_E;
14 I_E = I_C/Alpha; // in mA
15 // The base current
16 \quad I_B = I_E - I_C; // in mA
17 disp(I_B, "The base current in mA is");
```

Scilab code Exa 4.2 Collector and base current

```
1  // Exa 4.2
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  Alpha = 0.95;
8  I_CBO = 5* 10^-3; // in mA
9  I_E = 3; // in mA
10  // The collector current
11  I_C = (Alpha*I_E)+I_CBO; // in mA
12  disp(I_C, "The collector current in mA is");
13  // The base current
14  I_B = I_E-I_C; // in mA
15  disp(I_B, "The base current in mA is");
```

Scilab code Exa 4.3 value of Bita

```
1 // Exa 4.3
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ Alpha} = 0.9;
8 // For alpha = 0.9, the value of Beta
9 Beta = Alpha/(1-Alpha);
10 disp(Beta, "For alpha = 0.9, the value of Beta is");
11 Alpha = 0.99;
12 // For alpha = 0.99, the value of Beta
13 Beta = Alpha/(1-Alpha);
14 disp(Beta, "For alpha = 0.99, the value of Beta is");
15 \text{ Alpha} = 0.98;
16 // For alpha = 0.98, the value of Beta
17 Beta = Alpha/(1-Alpha);
```

```
18 disp(Beta, "For alpha = 0.98, the value of Beta is");
```

Scilab code Exa 4.4 Base current

```
1 // Exa 4.4
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R_C = 2; // in k ohm
8 R_C = R_C * 10^3; // in ohm
9 \ V = 2; // in \ V
10 // The collector current
11 I_C = V/R_C; // in A
12 Beta = 50;
13 // The base current
14 I_B = I_C/Beta; // in A
15 I_B = I_B * 10^6; // in A
16 disp(I_B, "The base current in A is");
```

Scilab code Exa 4.5 Value of IC using alpha and bita

```
1 // Exa 4.5
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Beta = 49;
8 I_E = 12; // in mA
9 I_B = 240; // in A
10 I_B = I_B * 10^-3; // in mA
```

```
11 Alpha = Beta/(1+Beta);
12 //Using alpha rating, the value of collector current
...
13 I_C = Alpha*I_E; // in mA
14 disp(Alpha, "The value of alpha is: ")
15 disp(I_C, "Using alpha rating, the value of I_C in mA is");
16 //Using beta rating, the value of collector current,
17 I_C = Beta*I_B; // in mA
18 disp(I_C, "Using bita rating, the value of I_C in mA is");
```

Scilab code Exa 4.6 Value of alpha and bita

```
1 // Exa 4.6
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Alpha = 0.975;
8 Beta = Alpha/(1-Alpha);
9 // The value of beta,
10 disp(Beta, "The value of Beta is");
11 Beta = 200;
12 // The value of alpha,
13 Alpha = Beta/(1+Beta);
14 disp(Alpha, "The value of Alpha is");
```

Scilab code Exa 4.7 Collector and emitter current

```
1 // Exa 4.7
2 clc;
```

```
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ Alpha} = 0.98;
8 I_C0 = 5; // in A
9 I_CO = I_CO * 10^-3; // in mA
10 I_B = 100; // in A
11 I_B = I_B * 10^-3; // in mA
12 Beta = Alpha/(1-Alpha);
13 // The collector current
I_{C} = Beta*I_B + (1+Beta)*I_CO; // in mA
15 disp(I_C, "The collector current in mA is");
16 // The emitter current
17 I_E = I_C+I_B; // in mA
18 disp(I_E, "The emitter current in mA is");
```

Scilab code Exa 4.8 Collector current

```
1 // Exa 4.8
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 \text{ I}_{CBO} = 10; // \text{ in } A
8 I_CBO = I_CBO * 10^-6; // in A
9 \text{ Beta} = 50;
10 h_FE = Beta;
11 I_B = 0.25; // in mA
12 I_B = I_B * 10^-3; // in A
13 // The collector current
14 I_C = (Beta*I_B) + ((1+Beta)*I_CBO); //in A
15 I_C = I_C * 10^3; // in mA
16 disp(I_C, "The collector current in mA is");
```

```
17 T2 = 50; // in degree C
18 T1 = 25; // in degree C
19 I_CBOat25 = 10; // in A
20 I_CBOat50 = I_CBOat25 * (2^((T2-T1)/10)); // in A
21 I_CBOat50 = I_CBOat50 * 10^-6; // in A
22 //The new collector current
23 I_C = (Beta*I_B) + ((1+Beta)*I_CBOat50); // in A
24 I_C = I_C * 10^3; // in mA
25 disp(I_C,"The new collector current in mA is");
```

Scilab code Exa 4.9 Value of IC and VCE

```
1 // Exa 4.9
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ V\_BE} = 0.6; // \text{ in V}
8 \text{ V_CC} = 10; // in V
9 \text{ Beta} = 60;
10 R_B = 20; // in k ohm
11 R_B = R_B * 10^3; // in ohm
12 R_C = 300; // in ohm
13 // V_{CC} - (I_{B}*R_{B})-V_{BE} = 0;
I_B = (V_CC - V_BE)/R_B; // in A
15 // The collector current
16 \quad I_C = Beta*I_B; // in A
17 I_C= I_C*10^3; // in mA
18 disp(I_C, "The collector current in mA is");
19 // V_{CC} - (I_{C} * R_{C}) - V_{CE} = 0;
20 // The collector emitter voltage
21 \text{ V_CE} = \text{V_CC} - (\text{I_C*10^-3*R_C}); // \text{ in V}
22 disp(V_CE, "The collector emitter voltage in V is");
```

Scilab code Exa 4.10 DC laod line

```
1 // Exa 4.10
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ V}_{BE} = 0.6; // \text{ in V}
8 \text{ V_CE} = 0; // \text{ in V}
9 R_C = 2; // in k ohm
10 R_C = R_C * 10^3; // in ohm
11 V_{CC} = 9; // in V
12 Beta= 2;
13 R_B = 8; // in k ohm
14 R_B = R_B * 10^3; // in ohm
15 // V_{CC} - (I_{C} * R_{C}) - V_{CE} = 0;
16 I_C = V_CC/R_C; // in A
17 I_C= I_C*10^3; // in mA
18 V_CE = V_CC; // in V
19 plot([V_CE,0],[0,I_C]);
20 xlabel("V_CE in volts");
21 ylabel("I_C in mA");
22 title("DC load line")
23 I_C = I_C *10^-3; // in A
I_B = (V_CC - V_BE)/R_B; // in A
25 // Collector emitter voltage, V_{CE} = V_{CC} - (I_{C*R_C})
       = V_{CC} - (Beta*10^{-} - 3*I_{B}*R_{C});
26 \text{ V_CE} = \text{V_CC} - (\text{Beta*I_B*R_C}); // \text{ in V}
27 // Collector current,
28 \text{ I_C} = \text{Beta*I_B}; // \text{ in A}
29 I_C = I_C * 10^3; // in mA
30 disp("The operating point is: "+string(V_CE)+" V, "
      +string(I_C)+" mA")
```

Scilab code Exa 4.11 Emitter current and collector voltage

```
1 // Exa 4.11
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 \text{ V_CC} = 12; // \text{ in V}
8 \text{ Beta} = 100;
9 R = 600; // in k ohm
10 R = R * 10^3; // in ohm
11 R1 = 600; // in ohm
12 //Applying KVL to input side, V_{CC} - (I_{E}*R1) - (I_{B}*R1)
      R) - V_BE = 0
13 I_B = V_CC/(R+(Beta*R1)); // in A
14 I_C = Beta*I_B; // in A
15 I_E = I_C+I_B; // in A
16 // Applying KVL to output side
17 V_{CE} = V_{CC} - (I_{E*R1}); // in V
18 I_E = I_E * 10^3; // in mA
19 disp(I_E, "The emitter current in mA is");
20 disp(V_CE, "The collector voltage in V is");
```

Scilab code Exa 4.12 Value of RB

```
1 // Exa 4.12
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
```

```
7  I_C = 6.4; // in mA
8  I_C = I_C * 10^-3; // in A
9  V_CE = 8.4; // in V
10  Beta = 80;
11  V_CC= 10; // in V
12  R = 250; // in ohm
13  R_E = 500; // in ohm
14  I_B = I_C/Beta; // in A
15  // Applying KVL to the input side, V_CC - (I_B*R_B) - V_BE - (I_E*R1) = 0 or
16  R_B = (V_CC-(Beta+1)*R_E*I_B)/I_B
17  R_B = R_B * 10^-3; // in k ohm
18  disp(R_B, "The value of R_B in k ohm is");
```

Scilab code Exa 4.13 Q point and stability factor

```
1 // Exa 4.13
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 \text{ Beta} = 44;
8 R_L = 1.51 * 10^3; // in ohm
9 R_E = 270; // in ohm
10 V_{CC} = 4.5; // in V
11 R2 = 2.7 * 10^3; // in ohm
12 R1 = 27 * 10^3; // in ohm
13 R_C = 1.5 * 10^3; // in ohm
14 Vth = V_{CC} * (R2/(R1+R2)); // in V
15 Rth = (R1*R2)/(R1+R2); // in ohm
16 // Applying KVL to input circuit, Vth - (I_B*Rth) -
      V_BE - (I_E * R_E) = 0 \text{ or }
17 I_C = (Vth*Beta)/(Rth + (Beta*R_E)); // in A
                                                        (On
      putting I_C= Beta*I_B and V_BE=0)
```

Scilab code Exa 4.15 Value of R1 R2 and RE

```
1 // Exa 4.15
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 S = 12;
8 \text{ V_CC} = 16; // \text{ in V}
9 R_C = 1.5 * 10^3; // in ohm
10 V_{CE} = 8; // in V
11 V_BE = 0.2; // in V
12 I_C = 4; // in mA
13 I_C = I_C * 10^-3; // in A
14 \text{ Beta} = 50;
15 // Vth = V_{CC}*(R2/(R1+R2)) and Rth = (R1*R2)/(R1+R2)
16 //Applying KVL to input side, Vth - I_B*Rth - V_BE -
       I_E * R_E = 0
                                 ( i )
17 I_B = I_C/Beta; // in A
18 I_E = I_B*(1+Beta); // in A
```

```
19 // Applying KVL to output section,
20 R_E = (V_CC - (I_C*R_C) - V_CE)/I_E; // in ohm
21 //S = ((Rth+R3)*(1+Beta))/(Rth + ((1+Beta)*R_E))
                      (ii)
22 Rth= R_E*(1+Beta-S-Beta*S)/(S-1-Beta); // in ohm
V_BN = V_BE + I_E * R_E; // in V
24 Vth= V_BN+I_B*Rth;// in V
25 // Vth = V_{CC}*R2/(R1+R2) and Rth = R2*R1/(R1+R2), So
     Vth = V_{CC}*Rth/R1
26 R1= V_CC*Rth/Vth; // in ohm
27 R2= R1*Rth/(R1-Rth);// in ohm
28 R1= round(R1*10^-3); // in k ohm
29 R2= R2*10^-3; // in k ohm
30 R_E = R_E * 10^- - 3; // in k ohm
                                    is : ")
31 disp(R1,"The value of R1 in k
                                     is : ")
32 disp(R2, "The value of R2 in k
33 disp(R_E, "The value of R_E in k is:")
```

Scilab code Exa 4.19 Region of transistor

```
1 // Exa 4.19
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 h_FE = 100;
8 R = 50; // in k ohm
9 R = R * 10^3; // in ohm
10 R1 = 3; // in k ohm
11 R1 = R1 * 10^3; // in ohm
12 V1 = 10; // in V
13 V2 = 5; // in V
14 V_BE = 0.8; // in V
15 V_CE = 0.2; // in V
```

```
16 //Applying KVL in input side, V2 - (R*I_B)-V_BE = 0;
17 I_B = (V2 - V_BE)/R; // in A
18 I_B = I_B * 10^3; // in mA
19 //Applying KVL to output side, V1 - (R1*I_C) - V_CE
     = 0;
20 I_C = (V1-V_CE)/R1; // in A
21 I_C = I_C * 10^3; // in mA
22 I_Bmin = I_C/h_FE; // in mA
23 if I_B>I_Bmin then
       disp("As the value of I_B ("+string(I_B)+" mA)
24
          is greater than the value of I_Bmin ("+string
          (I_Bmin) + mA),")
25
       disp("So the transistor will be in saturation
          region.")
26 \text{ end}
```

Scilab code Exa 4.20 Vo and minimum value of RC

```
1 // Exa 4.20
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 V_BE = 0.8; // in V
8 \text{ V_CE= 0.2; // in V}
9 \text{ Beta} = 100;
10 h_FE = Beta;
11 V1 = 3; // in V
12 \ V2 = -10; // in V
13 R_B = 7*10^3; // in ohm
14 R_E = 3*10^3; // in ohm
15 R_C = 500; // in ohm
16 //Applying KVL to input side, V1 - (I_B+I_C)*Rc -
      V_BE_{sat} - (R1*I_B) = 0 \text{ or } I_B*(R_B+R_C)+I_C*R_C=
```

```
V1–V_BE
                             ( i )
17 // Applying KVL to output side, V2+I_C*R_E+V_CE+R_C
      *(I_B+I_C) = 0 \text{ or } I_B*R_C+I_C*(R_C+R_E) = -V2-
      V_{-}CE
                          ( i i )
18 A = [(R_B + R_C) R_C; R_C (R_C + R_E)];
19 B= [V1-V_BE -V2-V_CE];
20 C=B*A^-1; // Solving eq(i) and (ii) by matrix method
21 I_B = C(1); // in A
22 I_C= C(2); // in A
23 I_B=I_B*10^3; // in mA
24 I_C=I_C*10^3; // in mA
25 I_Bmin= I_C/h_FE; // in mA
26 if I_B>I_Bmin then
       disp("Part (a) :")
27
       disp("As the value of I_B ("+string(I_B)+" mA)
28
          is greater than the value of L-Bmin ("+string
          (I_Bmin) + mA),
       disp("So the transistor will be in saturation
29
          region.")
30 end
31 Vo= -V_CE_-(I_B+I_C)*10^-3*R_C; // in V
32 disp(Vo, "Part (b): The value of Vo in volts is: ")
33 V_BEactive= 0.7; // in V
34 \text{ V}_BC = -0.5;
35 / V_BN = (1 + Beta) * (V1 - V_BEactive) * R_C / (R_B + (1 + Beta) *
      R_{-}C)
                  (iii)
36 / V_{CN} = Beta*R_E*(V1-V_BEactive)/(R_B+(1+Beta)*R_C)
                       (iv)
37 // and V_BC= V_BN-V_CN, so from eq(iii) and (iv)
38 \text{ R_C= (V_BC*R_B+Beta*R_E*(V1-V_BEactive))/((1+Beta)*(}
      V1-V_BEactive)-V_BC*(1+Beta));// in ohm
39 disp(R_C, "Part (c) : The value of R_C in ohm is : ")
40
41 // Note: 1 In the book, the calculated value of
      I_B i.e 0.14mA is wrong.
                 In the book the calculated value of R<sub>-</sub>C
42 // Note: 2
                   is wrong. we can easily check that on
       i.e 819
       putting 0.819 k in the last step.
```

Scilab code Exa 4.21 Q point value

```
1 // Exa 4.21
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 \text{ V_CC} = 10; // \text{ in V}
8 R_C = 10; // in k ohm
9 R_C = R_C * 10^3; // in ohm
10 R_B = 100*10^3; // in ohm
11 \text{ Beta\_dc} = 100;
12 V_BE = 0.7; // in V
13 // Applying KVL to input section, V_{CC} = (I_{E}*R_{E}) +
       (I_B*R_B) + V_BE or
14 I_C = (V_CC-V_BE)/(R_C + (R_B/Beta_dc)); // in A
15 V_CE = V_CC - (I_C*R_C); // in V
16 I_C=I_C*10^3; // in mA
17 disp("DC load line shown in figure.")
18 disp("Q-points : "+string(V_CE)+" V, "+string(I_C)+"
      mA")
19 I_Csat = V_CC/R_C*10^3; // in mA
20 V_{CEcutoff} = V_{CC}; // in V
21 plot([V_CEcutoff ,0],[0,I_Csat]);
22 xlabel("V_CE in volts");
23 ylabel("I_{-}C in mA")
24 title("DC load line")
```

Scilab code Exa 4.23 Value of RE

```
1 // Exa 4.23
2 format('v',5)
3 clc;
4 clear;
5 close;
6 // Given data
7 \text{ V_CC} = 24; // \text{ in V}
8 \text{ V_CE= } 12; // \text{ in V}
9 Rc = 5; // in k ohm
10 Rc = Rc * 10^3; // in ohm
11 Beta = 100;
12 I_C = 2; // in mA
13 I_C = I_C * 10^-3; // in A
14 //Applying KVL to the output section, V_{CC} = (I_{C} *
      R_{-}C) + V_{-}CE + (I_{-}E*R_{-}E) or
15 // (V_{CC-V_{CE}})/I_{C} = Rc + R_{E}*(1+(1/Beta))
      putting I_E = I_C + I_B and I_B = I_C / Beta
16 R_E = (((V_CC-V_CE)/I_C)-Rc)*(1/(1+(1/Beta)));//in
17 disp(R_E, "The value of R_E in ohm is");
```

Scilab code Exa 4.24 Limiting value of R1 and R2

```
1  // Exa 4.24
2  format('v',7)
3  clc;
4  clear;
5  close;
6  // Given data
7  S = 3;
8  Beta = 100;
9  I_C = 2; // in mA
10  I_C = I_C * 10^-3; // in A
11  R_E = 990; // in ohm
12  V_CC = 24; // in V
```

Scilab code Exa 4.25 Values of resistors

```
1 // Exa 4.25
2 format('v',7)
3 clc;
4 clear;
5 close;
6 // Given data
7 I_C = 5 * 10^-3; // in A
8 \text{ V_CE} = 8; // \text{ in V}
9 \text{ V}_{E} = 6; // \text{ in V}
10 S = 10;
11 h_fc = 200;
12 Beta = h_fc;
13 V_{CC} = 20; // in V
14 V_BE = 0.6; // in V
15 I_B = I_C/Beta; // in A
16 \quad I_E = I_C + I_B; // in A
17 // I_{-}C * R_{-}C = V_{-}CC - V_{-}CE - V_{-}E;
18 R_C = (V_CC - V_CE - V_E)/I_C; // in ohm
```

```
19 R_C = R_C * 10^-3; // in k ohm
20 disp(R_C, "The value of R_C in k ohm is");
21 R_C = R_C * 10^3; // in ohm
22 //Voltage at point E, V_E = I_E * R_E;
23 R_E = V_E/I_E; // in ohm
24 R_E = R_E * 10^-3; // in k ohm
25 disp(R_E, "The value of R_E in k ohm is");
26 \text{ R}_{E} = \text{R}_{E} * 10^{3}; // \text{ in ohm}
27 // S = ((Beta+1)*(R_B+R_E))/(R_B+(R_E*(1+Beta))),
      where R_B = R1*R2/(R1+R2)
28 R_B = ((R_E*(1+Beta))-(S*R_E*(1+Beta)))/(S-(1+Beta))
       );// in ohm
29 // Vth = V_{CC}*(R2/(R1+R2)) = V_{CC}*(R_B/R1)
30 // Applying KVL we get, Vth= I_B*R_B+V_BE+V_E or
31 Vth = (I_B*R_B) + V_BE + V_E; // in V
32 R1 = (V_CC/Vth)*R_B; // in ohm
33 R1= R1*10^-3; // in k ohm
34 disp(R1, "The value of R1 in k ohm is");
35 R2 = (R1*Vth)/(V_CC-Vth); // in k ohm
36 disp(R2, "The value of R2 in k ohm is");
```

Scilab code Exa 4.26 VBB to saturate the transistor

```
1  // Exa 4.26
2  format('v',5)
3  clc;
4  clear;
5  close;
6  // Given data
7  V_CEsat = 0.1; // in V
8  V_BEsat = 0.6; // in V
9  h_fc = 50;
10  Beta = h_fc;
11  V_CC = 12; // in V
12  R_C = 1; // in k ohm
```

```
13  R_C = R_C * 10^3; // in ohm
14  R_B = 10; // in k ohm
15  R_B = R_B * 10^3; // in ohm
16  // The collector current,
17  I_C = (V_CC-V_CEsat)/R_C; // in A
18  I_B = I_C/Beta; // in mA
19  // The value of V_BB to saturate the transistor
20  V_BB = (I_B*R_B) + V_BEsat; // in V
21  disp(V_BB, "The value of V_BB to saturate the transistor in V is");
```

Scilab code Exa 4.27 IC and Vo

```
1 // Exa 4.27
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 \text{ V_CC} = 30; // in V
8 R1 = 90; // in k ohm
9 R1 = R1 * 10^3; // in ohm
10 R2 = 45; // in k ohm
11 R2 = R2 * 10^3; // in
                          ohm
12 R_C = 5; // in k ohm
13 R_C = R_C * 10^3; // in ohm
14 R_E = 5; // in k ohm
15 R_E = R_E * 10^3; // in ohm
16 V_BE = 0.6; // in V
17 h_FE = 100;
18 Beta = h_FE;
19 I_CBO = 10; // in A
20 I_CBO = I_CBO * 10^-6; // in A
21 V_BB = V_CC*(R2/(R1+R2)); // in V
22 Vth = V_BB; // in V
```

```
23 R_BB = (R1*R2)/(R1+R2); // in ohm
24 Rth= R_BB; // in ohm
25 I_C = (V_CC-V_BE)/((Rth/Beta)+R_E);//in A
26 \text{ I\_CEO} = (Beta+1)*I\_CBO; // in A
27 // The value of I_C
28 I_C = I_C - I_C = 0; // in A
29 I_C = I_C * 10^3; // in mA
30 disp(I_C, "The value of I_C in mA is");
31 // The value of Vo
32 Vo = V_CC - (I_C*10^-3*R_C); // in V
33 disp(Vo, "The value of Vo in V is");
34
35 // Note: In the book, the putted value of V_CC (i.e.
      20 V ) to evaluate the value of I_C is wrong, so
      the value of I_C in the book is wrong and due to
      this the value of Vo is also wrong.
```

Scilab code Exa 4.28 ICO and VCEQ

```
1 // Exa 4.28
2 format('v',6)
3 \text{ clc};
4 clear;
5 close;
6 // Given data
7 \text{ Beta} = 130;
8 \text{ V}_BE = 0.7; // \text{ in V}
9 \ V_{CC} = 18; // in V
10 R1 = 510; // in k ohm
11 R1 = R1 * 10^3; // in ohm
12 R2 = 510; // in k ohm
13 R2 = R2 * 10^3; // in ohm
14 R_C = 9.1; // in k ohm
15 R_C = R_C * 10^3; // in ohm
16 R_E = 7.5*10^3; // in ohm
```

Scilab code Exa 4.29 ICQ and VCEQ

```
1 // Exa 4.29
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 \text{ V_CC} = 18; // \text{ in V}
8 \text{ V}_BE = 0.7; // \text{ in } V
9 R1 = 510; // in k ohm
10 R1 = R1 * 10^3; // in ohm
11 Beta = 130;
12 R_E = 7.5; // in k ohm
13 R_E = R_E * 10^3; // in ohm
14 R_C = 9.1; // in k ohm
15 R_C = R_C * 10^3; // in ohm
16 // The value of I_CQ
17 I_CQ = (V_CC - V_BE)/((R1/Beta) + R_E + (R_E/Beta)); //
      in A
```

Scilab code Exa 4.30 Q point

```
1 // Exa 4.30
2 format('v',5)
3 clc;
4 clear;
5 close;
6 // Given data
7 \text{ V_CC} = 10; // \text{ in V}
8 \text{ Beta} = 90;
9 \text{ V}_BE = 0.7; // in V
10 R_E = 4.7; // in k ohm
11 R_E = R_E * 10^3; // in ohm
12 R_B = 250; // in k ohm
13 R_B = R_B * 10^3; // in ohm
14 R = 1.2; // in k ohm
15 R = R * 10^3; // in ohm
16 //Applying KVL for input loop, V_{CC} = R_{E*I_E} + R_{B*I_E}
      I_B + V_BE + I_E*R or
17 I_CQ = (Beta*(V_CC-V_BE))/(((1+Beta)*(R_E+R))+R_B)
      ; // in A
                   (On putting I_-E = I_-C+I_-B and I_-B =
      I_C/Beta)
18 I_CQ=I_CQ*10^3; // in mA
19 disp(I_CQ, "The value of I_CQ in mA is");
20 I_CQ=I_CQ*10^-3; // in A
21 //Applying KVL for output loop, V_{CC} = ((I_{CQ} + (I_{CQ})))
      Beta) *R_E)+V_CEQ + ((I_CQ+(I_CQ/Beta))*R)
22 V_CEQ = V_CC - ( (I_CQ+(I_CQ/Beta)) * (R_E+R) );//
```

Scilab code Exa 4.34 Beta VCC and RB

```
1 // Exa 4.34
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 I_B = 20; // in
8 I_B = I_B * 10^-6; // in A
9 R_C = 2.7; // in k ohm
10 R_C = R_C * 10^3; // in ohm
11 V_CE = 7.3; // in V
12 V_BE = 0.7; // in V
13 R_E = 0.68; // in k ohm
14 R_E = R_E * 10^3; // in ohm
15 V_E = 2.1; // in V
16 I_E = V_E/R_E; // in A
17 I_C = I_E - I_B; // \text{ in A } (as I_E = I_C + I_B)
```

```
18  Beta = I_C/I_B;
19  disp(Beta, "The value of beta is");
20  // Applying KVL to the output loop,
21  V_CC = (I_C*R_C) +V_CE + (I_E*R_E); // in V
22  disp(V_CC, "The value of V_CC in V is");
23  // Applying KVL to the output loop, V_CC = (I_B*R_B) +V_BE+(I_E*R_E) or
24  R_B = (V_CC-V_BE-(I_E*R_E))/I_B; // in ohm
25  R_B= R_B*10^-3; // k ohm
26  disp(R_B, "The value of R_B in k ohm is");
```

Scilab code Exa 4.36 Load line

```
1 // Exa 4.36
2 format('v',5)
3 clc;
4 clear;
5 close;
6 // Given data
7 \text{ V_CC} = 20; // \text{ in V}
8 R_C = 3.3; // in k ohm
9 R_C = R_C * 10^3; // in ohm
10 R_B = 1; // in Mohm
11 R_B = R_B * 10^6; // in ohm
12 V_CE = V_CC; // in V
13 I_C = V_CC/R_C; // in A
14 I_C=I_C*10^3; // in mA
15 // Plotting of the DC load line,
16 plot([V_CE,0],[0,I_C]);
17 xlabel("V_CE in volts.");
18 ylabel("I_C in mA.");
19 title ("DC load line.")
20 disp(I_C, "At saturation, the value of I_C in mA is:
21 disp(V_CE, "At cut off, the value of V_CE in volts is
```

```
: ")
22 disp("DC load line shown in figure.");
```

Scilab code Exa 4.37 VCE and IE

```
1 // Exa 4.37
2 format('v',6)
3 \text{ clc};
4 clear;
5 close;
6 // Given data
7 \text{ Beta} = 100;
8 \text{ Rth} = 1.8; // \text{ in k ohm}
9 \text{ V_CC} = 10; // \text{ in V}
10 R2 = 2.2; // in k ohm
11 R2 = R2 * 10^3; // in ohm
12 R1 = 10; // in k ohm
13 R1 = R1 * 10^3; // in ohm
14 R_C=3.6*10^3; // in ohm
15 R_E = 1; // in k ohm
16 R_E = R_E * 10^3; // in ohm
17 V_BE = 0.7; // in V
18 Vth = (R2/(R1+R2))*V_CC; // in V
19 Rth = (R1*R2)/(R1+R2); // in ohm
20 // Applying KVL for input loop, Vth = (I_B*Rth)+V_BE
      +(I_E*R_E) or
  I_E = (Vth-V_BE)/(R_E+(Rth/(Beta+1))); // in A
      On putting I_E = (Beta+1)*I_B
22 I_E = I_E * 10^3; // in mA
23 disp(I_E, "The value of I_E in mA is");
24 I_B = I_E/(Beta+1); // in mA
25 \quad I_C = I_E - I_B; // \text{ in } mA
\frac{26}{Applying} KVL for output loop, V_{CC} = (I_{C*R_C}) +
      V_{CE} + (I_{E}*R_{E})
V_{CE} = V_{CC} - (I_{C*10^{-3*}R_C}) - (I_{E*10^{-3*}R_E}); //
```

```
in V 28 disp(V_CE, "The value of V_CE in V is");
```

Scilab code Exa 4.38 Zi Zo and Av

```
1 // Exa 4.38
2 format('v',5)
3 \text{ clc};
4 clear;
5 close;
6 // Given data
7 \text{ h_fe} = 110;
8 \text{ h_ie} = 1.6; // \text{ in k ohm}
9 \text{ h_ie} = \text{h_ie} * 10^3; // \text{ in ohm}
10 h_re = 2*10^-4;
11 h_oe = 20*10^-6; // in A/V
12 R_B = 470; // in k ohm
13 R_B = R_B * 10^3; // in ohm
14 R_C = 4.7; // in k ohm
15 Ri= 1.51*10^3;// in ohm
16 R_C = R_C * 10^3; // in ohm
17 Rin = h_{ie} - ( (h_{fe}*h_{re}*R_C)/(1+(h_{oe}*R_C)) ); //
      in ohm
18 // The value of Zi,
19 Zi = (R_B*Ri)/(R_B+Ri); // in ohm
20 Zi = Zi *10^-3; // in k ohm
21 disp(Zi, "The value of Zi in k ohm");
22 Zi= Zi*10^3; // in ohm
23 R_L = R_C; // in ohm
24 // The voltag gain,
25 \text{ Av} = -h_fe/(Zi*(h_oe+(1/R_L)));
26 disp(Av, "The value of Av is");
27 \text{ Rs} = 0; // \text{ in ohm}
28 // The value of Zo
29 Zo = 1/(h_oe-((h_fe*h_re)/(Zi+Rs)));// in ohm
```

```
30 Zo= Zo*10^-3; // k ohm
31 disp(Zo, "The value of Zo in k ohm is");
```

Chapter 5

Transistor Amplifier

Scilab code Exa 5.1 Value of C and hfe

```
1 // Exa 5.1
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R_C = 10; // in k ohm
8 R_C = R_C * 10^3; // in ohm
9 f = 2; // in kHz
10 f = f * 10^3; // in Hz
11 R = 8; // in k ohm
12 R = R * 10^3; // in ohm
13 //Formula, f = 1/(2*\%pi*R*C*sqrt(6+((4*R_C)/R)));
14 C = 1/(2*\%pi*R*f*sqrt(6+((4*R_C)/R))); // in F
15 C = C*10^6; // in
16 disp(C, "The value of capacitor in F is");
17 h_fe = 23+29*R/R_C+4*R_C/R;
18 disp(h_fe, "The value of h_fe is: ")
```

Scilab code Exa 5.2 Value of C

```
1  // Exa 5.2
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  f = 10; // in kHz
8  f = f * 10^3; // in Hz
9  R = 100; // in k ohm
10  R = R * 10^3; // in ohm
11  //Formula used, f = 1/(2*%pi*R*C);
12  C = 1/(2*%pi*R*f); // in F
13  C = round(C * 10^12); // in pF
14  disp(C, "The value of capacitor in pF is");
```

Scilab code Exa 5.3 Paraller and seried resonant frequency and Q factor

```
1 // Exa 5.3
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 C = 0.06; // in pF
8 C = C * 10^-12; // in F
9 L = 0.5; // in H
10 R = 10; // in k ohm
11 R = R * 10^3; // in ohm
12 Cm = 1; // in pF
13 Cm = Cm * 10^-12; // in F
14 // The parallel resonant frequency
15 f_p = (1/(2*\%pi))*(sqrt((C+Cm)/(L*C*Cm)));//in
     Hz
```

```
16 f_p= f_p*10^-3; // in kHz
17 disp(f_p, "The parallel resonant frequency in kHz is"
    );
18 // The series resonant frequency
19 f_s = 1/(2*%pi*(sqrt(L*C))); // in Hz
20 f_s= f_s*10^-3; // in kHz
21 disp(f_s, "The series resonant frequency in kHz is ")
    ;
22 omega_s = 2*%pi*f_s*10^3; // in rad/sec
23 // The Q factor of the crystal
24 Q = (omega_s*L)/R;
25 disp(Q, "The Q factor of the crystal is");
```

Scilab code Exa 5.4 h parameters

```
1 // Exa 5.4
2 \text{ clc};
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R1 = 6; // in ohm
8 R2 = 4; // in ohm
9 R3 = 4; // in ohm
10 h11 = R1+( (R2*R3)/(R2+R3) ); // in ohm
11 disp(h11, "The value of h11 in ohm is");
12 // i2 = -i *1/2 and h21 = i2/i1 = (-i1/2)/2, So
13 \text{ h21} = -1/2;
14 disp(h21, "The value of h21 is");
15 // V1 = V2/2 and h12 = V1/V2 = (V2/2)/2, SO
16 \text{ h} 12 = 1/2;
17 disp(h12, "The value of h12 is");
18 Zo = R2+R3; // output resistance in ohm
19 h22 = 1/Z_0; // in mho
20 disp(h22, "The value of h22 in mho is");
```

Scilab code Exa 5.5 h parameters

```
1 // Exa 5.5
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R1 = 3; // in ohm
8 R2 = 6; // in ohm
9 R3 = 2; // in ohm
10 // V1 = (R1*I1) +
                      (R2*(I1+I2)) = ((R1+R2)*I1)+(R2*I2)
      ) (i)
11 // V2 = (R3*I2) + (R2*(I1+I2)) = (R2*I1) + ((R1+R3)*
      I2) (ii)
12 // Standard h-parameter equation
13 //V1= h11*I1 + h12*I2 and V2= h21*I1 + h22*I2
14 // Comparing eq (i) and (ii) with standard equaation
     , we get
15 \text{ h11} = R1 + R2;
16 disp(h11, "The value of h11 is");
17 \text{ h}12 = R2;
18 disp(h12, "The value of h12 is");
19 \text{ h21} = R2;
20 disp(h21, "The value of h21 is");
21 h22 = R2 + R3;
22 disp(h22, "The value of h22 is");
```

Scilab code Exa 5.7 Value of Ai Av Avs Ri and Ro

```
1 // Exa 5.7
```

```
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ h_ic} = 1.1; // \text{ in } \text{ k ohm}
8 \text{ h_ic} = \text{h_ic} * 10^3; // \text{ in ohm}
9 \text{ h_rc} = 1;
10 h_fc = -51;
11 h_oc = 25; // in A /V
12 h_{oc} = h_{oc} * 10^{-6}; // in A/V
13 R_L = 10; // in k ohm
14 R_L = R_L * 10^3; // in ohm
15 R_S = R_L; // in ohm
16 // The current gain,
17 Ai = -h_fc/(1+(h_oc*R_L));
18 disp(Ai, "The value of Ai is");
19 // The value of Ri
20 Ri = h_ic+(h_rc*Ai*R_L); // in ohm
21 Ri= Ri*10^-3; // in k ohm
22 disp(Ri, "The value of Ri in k ohm is");
23 Ri= Ri*10^3; // in ohm
24 // The value of A<sub>-</sub>V
25 \text{ A_V} = (\text{Ai*R_L})/\text{Ri};
26 disp(A_V, "The value of A_V is");
27 Gamma_o = h_oc - ((h_fc*h_rc)/(h_ic+R_S)); // in
      mho
28 // The value of Ro
29 Ro = round(1/Gamma_o); // in ohm
30 disp(Ro, "The value of Ro in ohm is");
31 \quad A_VS = (A_V*Ri)/(Ri+R_S);
32 disp(A_VS, "The value of A_VS is");
```

Scilab code Exa 5.10 Ai Ri Av and gammaO

```
1 // Exa 5.10
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ h_ie} = 1.5; // \text{ in ohm}
8 h_fe = 100;
9 \text{ h_re} = 3 * 10^-4;
10 h_oe = 25 * 10^-6; // in
11 V_{CC} = 20; // in V
12 R1 = 50 * 10^3; // in ohm
13 R2 = 5 * 10^3; // in ohm
14 R_C = 5 * 10^3; // in ohm
15 R_L = 10 * 10^3; // in ohm
16 R_S = 1; // in k ohm
17 Ri= 1.4*10^3; // in ohm
18 R_B = (R1*R2)/(R1+R2); // in ohm
19 R_Ldesh = R_L*R_C/(R_L+R_C); // in ohm
20 // Current gain for transisor,
21 Ai= -h_fe/(1+h_oe*R_Ldesh);
22 // \text{ Overall current gain}, A_I = Ai + Ib / I = Ai + R_B / (R_B + Ib)
      Ri)
23 A_I = Ai*R_B/(R_B+Ri);
24 disp(A_I,"The overall current gain is: ")
25 // Part (ii)
26 R_i = R_B * Ri/(R_B * Ri); // in k ohm
27 disp(R_i, "The value of Ri in k ohm is:")
28 // Part (iii)
29 Av= A_I*R_Ldesh/Ri; // voltage gain for transistor
30 // overall voltage gain,
31 A_VS = Av*R_i/(R_S+R_i);
32 disp(A_VS, "The value of A_VS is : ")
33 // Part (iv)
34 R_S=R_S*10^3; // in ohm
35 \text{ R_Sdesh} = \text{R_S*R_B/(R_S+R_B)}; // \text{ in ohm}
36 \text{ gamma_o= h_re*h_fe/(h_ie+R_Sdesh)-h_oe;// in mho}
37 gamma_o = round(gamma_o*10^6); // in
```

Scilab code Exa 5.11 Ai Ri Av Ro Ro1 and Ap

```
1 // Exa 5.11
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R_S = 800; // in ohm
8 R_L = 2; // in k ohm
9 R_L = R_L * 10^3; // in ohm
10 h_ie = 1.1; // in k ohm
11 h_ie = h_ie * 10^3; // in ohm
12 h_fe = 50;
13 h_oe = 25; // in ohm
14 \text{ h_oe} = \text{h_oe} * 10^-6; // in ohm
15 \text{ h_re} = 2.5*10^-4;
16
17 // Part (a) : Exact analysis
18 disp("Part (a) : Exact analysis")
19 // The current gain
20 Ai_exact = -h_fe/(1+(h_oe*R_L));
21 disp(Ai_exact, "The current gain is");
22 // The input resistance
23 Ri = h_ie + (h_re*Ai_exact*R_L); // in ohm
24 Ri= Ri*10^-3; // in k ohm
25 disp(Ri,"The input resistance in k ohm is");
26 Ri= Ri*10^3; // in ohm
27 \text{ A_V} = (\text{Ai_exact*R_L})/\text{Ri};
28 // The voltage gain,
```

```
29 \quad A_VS = (A_V*Ri)/(Ri+R_S);
30 disp(A_VS, "The voltage gain is");
31 Gamma_o = h_oe - ((h_re*h_fe)/(h_ie+R_S)); // in
      mho
32 // The output resistance
33 Ro = 1/Gamma_o; // in ohm
34 \text{ Ro} = \text{Ro} * 10^{-3}; // \text{ k ohm}
35 disp(Ro, "The output resistance in k ohm is");
36 \text{ Ro} = \text{Ro} * 10^3; // \text{ ohm}
37 // The power gain,
38 \text{ Ap} = Ai_exact*A_V;
39 disp(Ap, "The power gain is");
40 // The output terminal resistance
41 Rot = (Ro*R_L)/(Ro+R_L); // in ohm
42 Rot= Rot*10^-3; // in k ohm
43 disp(Rot,"The output terminal resistance in k ohm is
      ");
44 Rot= Rot*10^3; // in ohm
45
46 // Part (b) : Approximate analysis
47 disp("Part (b) : Approximate analysis")
48 \text{ h_re = 0};
49 \text{ h_oe} = 0;
50 \text{ Ai_app} = -h_fe/(1+(h_oe*R_L));
51 disp(Ai_app, "The value of Ai is");
52 Ri = h_ie+(h_re*Ai_app*R_L);
53 disp(Ri,"The value of Ri in ohm is");
54 \text{ A_V} = \text{Ai_app*R_L/Ri};
55 \text{ A_VS} = (-A_V*h_ie)/(R_S+h_ie);
56 disp(A_VS, "The value of A_VS is");
57 \text{ Gamma_o} = 18.42// \text{ in } \text{ ohms}
58 \text{ Gamma_o} = \text{Gamma_o} * 10^-6; // in mho
59 // // The output resistance
60 Ro = 1/Gamma_o; // in ohm
61 Ro = Ro *10^-3; // k ohm
62 disp(Ro, "The output resistance in k ohm is");
63 Ro = Ro *10^3; // ohm
64 \text{ Ap} = Ai_app*A_V;
```

```
disp(Ap, "The value of Ap is");
//The output terminal resistance, Rot = (Ro*R_L)/(Ro
+R_L) = 20;// in k ohm
Rot = 20; // in k ohm
disp(Rot, "The output terminal resistance in k ohm is
");
Rot = Rot*10^3; // in ohm
// Percentage error
Per_error = abs((Ai_exact-Ai_app)/Ai_exact*100); // in
%
disp(Per_error, "The percentage error in % is");
```

Scilab code Exa 5.13 Voltage gain current gain and power gain

```
1 // Exa 5.13
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R_S = 600; // in ohm
8 \text{ r_i} = 400; // \text{ in ohm}
9 Vs = 1; // in mV
10 Vs = Vs * 10^-3; // in V
11 //Input voltage
12 Vi = Vs*(r_i/(R_S+r_i)); // in V
13 // Input current
14 Ii = Vs/(R_S+r_i); // in A
15 Vo = 100; // in mV
16 Vo = Vo * 10^-3; // in V
17 R_L = 5; // in k ohm
18 R_L = R_L * 10^3; // in ohm
19 // Output current
20 Io = Vo/R_L; // in A
21 // voltage gain
```

```
22 A_V = Vo/Vi ;
23 disp(A_V, "The voltage gain is");
24 // current gain
25 A_I = Io/Ii;
26 disp(A_I, "The current gain is");
27 // Power gain
28 P = A_V * A_I;
29 disp(P, "The power gain is");
```

Scilab code Exa 5.14 Gain of negative feedback amplifier

```
1 // Exa 5.14
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 A = 125;
8 Beta = 1/10;
9 // Gain of negative feedback
10 Af = A/(1+(A*Beta));
11 disp(Af, "The gain of negative feedback is");
```

Scilab code Exa 5.15 Value of A and B

```
1  // Exa 5.15
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  Af = 100;
8  Vi = 0.6; // in V
```

```
9 Vo =Af*Vi; // in V
10 Vi = 50; // in mV
11 Vi = Vi * 10^-3; // in V
12 // Internal gain of amplifier,
13 A = Vo/Vi;
14 disp(A, "The value of A is:");
15 B= ((A/Af)-1)/A;
16 disp(B, "The value of B is");
```

Scilab code Exa 5.16 Change in overall gain

Scilab code Exa 5.17 Feedback Factor

```
1 // Exa 5.17
2 clc;
3 clear;
4 close;
```

```
5 format('v',7)
6 // Given data
7 \text{ Zo} = 12.6; // \text{ in k ohm}
8 \text{ Zo} = \text{Zo} * 10^3; // \text{ in ohm}
9 A = 60; // in dB
10 A = 10^{(A/20)}
11 Zof = 500; // in ohm
12 // Zof = Zo/(1+(A*Beta));
13 Beta = ((Zo/Zof)-1)/A;
14 disp(Beta, "The value of feed back factor is");
15 // Part (ii)
16 dAbyA = 20/100; // change in gain of basic amplifier
17 dAf_byAf = dAbyA*1/(1+A*Beta)*100; //change in overall
       gain
            in
18 disp(dAf_byAf," The change in overall gain for 20~\%
      change in gain of the basic amplifier in % is");
19
20 // Note: In the book, there is calculation error to
      find the value of dAf/Af
```

Scilab code Exa 5.18 output and input voltage

```
1  // Exa 5.18
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  Vo = 36; // in V
8  Vi = 0.028; // in V
9  A = Vo/Vi;
10  Vf = 1.2;
11  Vo = 100;
12  Beta = Vf/Vo;
13  // Gain with feedback
```

```
14  Af = A/(1+(A*Beta));
15  Vs = Vi; // in V
16  // Output voltage
17  Vo = Af*Vs; // in V
18  disp(Vo, "The output voltage in V is");
19  //Df = D/(1+(A*Beta));
20  DbyDf = 7/1;
21  ABeta = (DbyDf)-1;
22  Af = A/(1+(ABeta));
23  Vo = 36; // in V
24  // The input voltage,
25  Vs = Vo/Af;
26  disp(Vs, "The input voltage is");
```

Scilab code Exa 5.19 Required feedback ration

```
1 // Exa 5.19
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 dAf_byAf = 10/100;
8 dAbyA = 10;
9 A = 1000;
10 // dAf_byAf = dAbyA*(1/(1+(A*Beta)));
11 // The required feed back
12 Beta = ((dAbyA/dAf_byAf)-1)/A;
13 disp(Beta, "The required feed back is");
14 Af = A/(1+(A*Beta)); // closed loop voltage gain
15 disp(Af, "The closed loop voltage gain is");
```

Scilab code Exa 5.20 Distortion and new value of input required

```
1 // Exa 5.20
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Vi= 10*10^-3;// input voltage in V
8 A=1000; // open loop voltage gain
9 Do= 10; //second harmonic distortion in %
10 feedback = 40; //feedback in dB
11 feedback= 10^(feedback/20);
12 // feedback= 1+A*bita or
13 bita= (feedback-1)/A
14 Af = A/(1+A*bita);
15 // New value of second harmonic distortion,
16 Df = Do/(1+A*bita); // in \%
17 disp(Df," The new value of second harmonic
      distortion in % is : ")
18 // New value of input required,
19 Vs= Vi*(1+A*bita);// in V
20 disp(Vs,"The new value of input required in volts is
      : ")
```

Scilab code Exa 5.21 Gain input voltage output voltage with feedback

```
1 // Exa 5.21
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 D = 10/100;
8 Df = 1/100;
9 A = 200;
10 Vs = 10; // in mV
```

```
11 Vs = Vs * 10^-3; // in V
12 // Df = D/(1+A*Beta);
13 Beta = (((D/Df)-1)/A);
14 // gain with feedback
15 Af = A/(1+(A*Beta));
16 disp(Af, "The gain with feedback is : ");
17 // The output voltage
18 Vo = Af*Vs; // in V
19 disp(Vo, "The output voltage in V is : ");
20 // The input voltage
21 Vin = Df+(-Beta*Vo); // in V
22 disp(Vin, "The input voltage in V is : ");
```

Scilab code Exa 5.22 Input and output impedance

```
1 // Exa 5.22
2 clc;
3 clear;
4 close;
5 format('v',8)
6 // Given data
7 A = 10000;
8 \text{ Beta} = 0.02;
9 Zi = 1; // in k ohm
10 Zi = Zi * 10^3; // in ohm
11 Zo = 10; // in k ohm
12 Zo = Zo * 10^3; // in ohm
13 // The input impedance
14 Zif = Zi*(1+(A*Beta)); // in ohm
15 Zif = Zif *10^-3; // in k ohm
16 disp(Zif, "The input impedance in k ohm is");
17 // The output impedance
18 Zof = Zo/(1+(A*Beta)); // in ohm
19 Zof = Zof *10^-3; // in k ohm
20 disp(Zof,"The output impedance in k ohm is");
```

```
21  
22 // Note: In the book, there is calculation error to find the value of Zof because 10/201 will be 0.04975 not 0.4975
```

Scilab code Exa 5.23 Gain and frequency responce

```
1 // Exa 5.23
2 \text{ clc};
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 A = 400;
8 \text{ Beta} = 0.01;
9 // The gain with feedback
10 Af =A/(1+(A*Beta));
11 disp(Af, "The gain with feedback is");
12 	 f_L = 200; // in Hz
13 // The Lower cut-off frequency with feedback
14 f_LF = f_L/(1+(A*Beta)); // in Hz
15 disp(f_LF, "The Lower cut-off frequency with feedback
       in Hz is");
16 	 f_H = 40; // in kHz
17 f_H = f_H * 10^3; // in Hz
18 // The Upper cut-off frequency with feedback
19 f_HF = f_H*(1+(A*Beta)); // in Hz
20 f_HF = f_HF * 10^- - 3; // in k Hz
21 disp(f_HF,"The Upper cut-off frequency with feedback
       in kHz is");
22
23 // Note: In the book, there is calculation error to
      find the value of gain with feedback i.e. Af, so
      the answer in the book is wrong.
```

Scilab code Exa 5.24 Feedback fraction

```
1 // Exa 5.24
2 clc;
3 clear;
4 close;
5 // Given data
6 format('v',6)
7 A = 4000;
8 R1 = 1; // in k ohm
9 R1 = R1 * 10^3; // in ohm
10 R2 = 9; // in k ohm
11 R2 = R2 * 10^3; // in ohm
12 Beta = R1/(R1+R2);// feedback fraction
13 disp(Beta, "The feedback fraction is");
14 // The overall voltage gain with feedback
15 Af = A/(1+(A*Beta));
16 disp(Af, "The overall voltage gain with feedback is")
17 Vs = 2; // in mV
18 //Af = Vo/Vs;
19 // The output voltage
20 Vo = Af*Vs;// in mV
21 disp(Vo, "The output voltage in mV is");
```

Scilab code Exa 5.25 Percentage reduction in harmonic distortion

```
1 // Exa 5.25
2 clc;
3 clear;
4 close;
5 format('v',6)
```

```
6 // Given data
7 A = 54.8;
8 A = 20 * log(A);
9 Beta = 1/50; // feedback factor
10 // gain with feedback
11 Af = A/(1+(A*Beta));
12 // Distortion with feedback, Df = D/(1+(A*Beta))
13 Df = 1;
14 D = 12;
15 Pd = (Df/D)*100; // percenatge change in distortion in %
16 disp(Pd, "The percentage reduction in harmonic distortion in % is");
```

Scilab code Exa 5.26 Minimum gain required for oscillation

```
1 // Exa 5.26
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 // Part(iii)
8 Vf_byVo= 1/3;
9 bita= Vf_byVo;
10 // A*bita>=1 or
11 // The minimum gain required for oscillation
12 Amin= 1/bita;
13 disp(Amin, "The minimum gain required for oscillation is:")
```

Scilab code Exa 5.27 Stability of an amplifier

```
1 // Exa 5.27
2 clc;
3 clear;
4 close;
5 format('v',9)
6 // Magnitude of loop gain, Mag-Tf= bita*100/(sqrt
     (1+(f/10^5)^2)^3
7 // Phase of loop gain, P_Tf = -3*atand(f/10^5)
                                                       (ii
8 f_{180} = tand(180/3)*10^5; // from eq(ii), frequency at
       which phase becomes -180
9 bita= 0.20;
10 T_f_{180} = bita*100/(sqrt(1+(f_{180}/10^5)^2))^3; // from
       eq (i), the magnitude of loop gain at f-180 for
      bita = 0.20
11 disp(T_f_180, "The magnitude of loop gain for beta =
      0.20 \text{ is} : ")
12 bita= 0.02;
13 T_f_{180} = bita*100/(sqrt(1+(f_{180}/10^5)^2))^3; // from
       eq (i), the magnitude of loop gain at f-180 for
      bita = 0.20
14 disp(T_f_180, "The magnitude of loop gain for beta =
      0.20 \text{ is} : ")
15 disp("Hence system is unstable for beta=0.20 and
      stable for beta= 0.02 because at beta= 0.20 gain
      is greater than 1.")
```

Scilab code Exa 5.29 Frequency of oscillations

```
1 // Exa 5.29
2 clc;
3 clear;
4 close;
5 format('v',6)
```

```
6  // Given data
7  L = 0.01; // in H
8  C = 10; // in pF
9  C = C * 10^-12; // in F
10  // The frequency of oscillation
11  f = 1/(2*%pi*sqrt(L*C)); // in Hz
12  f = f * 10^-3; // in kHz
13  disp(f, "The frequency of oscillation in kHz is");
14
15  // Note: In the book, the calculation is wrong.
```

Scilab code Exa 5.30 Range of variable capacitor

```
1 // \text{Exa} 5.30
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 L = 150; // in
8 L = L * 10^-6; // in H
9 // f = 1/(2*\%pi*sqrt(L*C)) or C = 1/(4*\%pi^2*f^2*L)
10 / \text{For } f = 500 \text{ kHz}
11 f1 = 500; // in kHz
12 	ext{ f1 = f1 * 10^3; // in Hz}
13 C1 = 1/(4*\%pi^2*f1^2*L); // in F
14 / \text{For } f = 1500 \text{ kHz}
15 f2 = 1500; // in kHz
16 	ext{ f2} = 	ext{f2} * 10^3; // in Hz
17 C2 = 1/(4*\%pi^2*f2^2*L); // in F
18 C1= C1*10^12; // in pF
19 C2 = C2*10^12; // in pF
20 disp("The required capacitor range is: "+string(C2)
      +" pF to "+string(C1)+" pF")
21
```

Scilab code Exa 5.31 Operating frequency and feedback fraction

```
1 // Exa 5.31
2 \text{ clc};
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 L = 100; // in
8 L = L * 10^-6; // in H
9 \quad A = 10;
10 C1 = 0.001; // in F
11 C1 = C1 * 10^-6; // in F
12 C2 = 0.01; // in F
13 C2 = C2 * 10^-6; // in F
14 \ C = (C1*C2)/(C1+C2); // in F
15 f = 1/(2*\%pi*sqrt(L*C)); // in Hz
16 f = round(f * 10^-3); // in kHz
17 disp(f,"The operating frequency in kHz is");
18 Beta = C1/C2; // feedback fraction
19 disp(Beta, "The feed back fraction is");
20 //Minimum gain to sustain oscillations, Amin*Beta =
      1;
21 Amin = 1/Beta;
22 disp(Amin,"The minimum gain to sustain oscillation
      is"):
23 // A = R_{-}C/R_{-}E;
24 \text{ R_C} = 2.5; // \text{ in ohm}
25 R_E = R_C/A; // in ohm
26 disp(R_E, "The emitter resistance in ohm is");
```

Scilab code Exa 5.32 Value of capacitor of oscillatory

```
1 // Exa 5.32
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ L1} = 0.1; // \text{ in mH}
8 L1 = L1 * 10^-3; // in H
9 L2 = 10; // in mH
10 L2 = L2 * 10^-3; // in H
11 L = 150; // in H
12 L = L * 10^-6; // in H
13 f = 4110; // in kHz
14 f = f * 10^3; // in Hz
15 //Frequency of oscillations, f = 1/(2*\%pi*sqrt(L*C))
16 C = 1/(4*(\%pi^2)*(f^2)*L); // in F
17 C = round(C * 10^12); // in pF
18 disp(C, "The value of capacitor in pF is");
```

Scilab code Exa 5.33 Value of C

```
1 // Exa 5.33
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 f = 1;// in kHz
8 f = f * 10^3;// in Hz
9 R = 10;// in k ohm
10 R = R * 10^3;// in ohm
11 omega = 2*%pi*f;//in rad/sec
```

```
12 phi = 60; // in degree
13 // tand(phi) = Alpha_C/R = 1/(omega*C*R);
14 C = 1/(omega*R*tand(phi)); // in F
15 C = C * 10^6; // in F
16 disp(C, "The value of C in F is");
```

Scilab code Exa 5.34 Frequency of oscillations

```
1 // Exa 5.34
2 clc;
3 clear;
4 close;
5 format('v',8)
6 // Given data
7 R2 = 200; // in k ohm
8 R2 = R2 * 10^3; // in ohm
9 R1 = R2; // in ohm
10 C2 = 250; // in pF
11 C2 = C2 * 10^-12; // in F
12 C1 = C2; // in F
13 R = R2; // in ohm
14 C = C2; // in F
15 // Frequency of oscillations,
16 f = 1/(2*\%pi*R*C); // in Hz
17 disp(f, "The frequency in Hz is");
18
19 // Note: The answer in the book is not accurate.
```

Scilab code Exa 5.36 Frequency of oscillations

```
1 // Exa 5.36
2 clc;
3 clear;
```

```
4 close;
5 format('v',5)
6 // Given data
7 \text{ C1} = 300; // \text{ in pF}
8 \text{ C2} = 100; // \text{ in pF}
9 Ceq = (C1*C2)/(C1+C2); // in pF
10 Ceq = Ceq * 10^--12; // in F
11 L = 50; // in H
12 L = L * 10^-6; // in H
13 // The frequency of oscillation
14 f = 1/(2*\%pi*sqrt(L*Ceq)); // in Hz
15 f = f * 10^-6; // in MHz
16 disp(f, "The frequency of oscillation in MHz is");
17 // For maintaining oscillation, A_loop >=1 and
      Aopenloop*Beta = 1;
18 // Beta = C2/C1;
19 Aopenloop = C1/C2;
20 disp(Aopenloop," The minimum gain for maintaining
      oscillation is");
```

Chapter 6

Operational Amplifiers

Scilab code Exa 6.m.1 CMRR

```
1 // Exa Misc. 6.1
2 clc;
3 clear;
4 close;
5 format('e',8)
6 // Given data
7 Vid = 1; // in mV
8 \text{ Vo} = 120; // \text{ in mV}
9 \text{ V}_{\text{CM}} = 1; // \text{ in mV}
10 Ad = Vo/Vid;
11 Vo = 20; // in
12 Vo = Vo * 10^-3; // in mV
13 \quad A_CM = V_O/V_CM;
14 Vo = 120; // in mV
15 // The value of CMRR for the circuit
16 CMRR = Vo/A_CM;
17 disp(CMRR, "The value of CMRR for the circuit is");
```

Scilab code Exa 6.m.2 Closed loop gain

```
1 // Exa Misc. 6.2
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ R1} = 10; // \text{ in k ohm}
8 R_F = 1000; // in k ohm
9 // Vin/R1 = -Vo/R_F and Vo/Vin = Ao = -R_F/R1
10 Ao = abs(-R_F/R1); // in k ohm
11 disp(Ao, "The closed loop gain is");
12 Vin = 30; // in mV
13 Vin = Vin * 10^-3; // in V
14 // The output voltage,
15 Vo =-Ao*Vin; // in V
16 disp(Vo, "The output voltage in V is");
17
18 // Note: The loop gain will be unit less.
```

Scilab code Exa 6.m.3 Range of voltage gain

```
1 // Exa Misc. 6.3
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R1min = 10; // in k ohm
8 R1max = 20; // in k ohm
9 R_F = 300; // in k ohm
10 // The closed loop voltage gain corresponding to R1min,
11 Ao_min = -R_F/R1min;
12 // The closed loop voltage gain corresponding to R1max,
```

```
13 Ao_max = -R_F/R1max;
14 disp("The range of voltage gain is : "+string(Ao_max
     )+" to "+string(Ao_min));
```

Scilab code Exa 6.m.4 Range of output voltage

```
1 // Exa Misc. 6.4
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R_F = 500; // in k ohm
8 R_desh = 20; // in k ohm
9 Vin = 0.5; // in V
10 \text{ Rd_desh} = 0;
11 R1min = 20; // in k ohm
12 R1max = 50; // in k ohm
13 // Ao = Vo/Vin = (1+(R_F/R_1));
14 Vo_max = Vin*(1+(R_F/R1min)); // output voltage
      corresponding to R1min
15 Vo_min = Vin*(1+(R_F/R1max)); // output voltage
      corresponding to R1max
16 disp("Range of output voltage is: "+string(Vo_min)+
     " volts to "+string(Vo_max)+" volts.");
```

Scilab code Exa 6.m.5 Minimum and maximum closed loop voltage gain

```
1 // Exa Misc. 6.5
2 clc;
3 clear;
4 close;
5 format('v',6)
```

```
6  // Given data
7  R1 = 2; // in k ohm
8  Rdas = 2; // in k ohm
9  R_Fmin = 2; // in k ohm
10  R_Fmax = 102; // in k ohm
11  // Ao = -R_F/R1;
12  // The minimum closed loop voltage gain
13  Aomin = -R_Fmin/R1;
14  disp(Aomin, "The minimum closed loop voltage gain is"
        );
15  //The maximum closed loop voltage gain
16  Aomax = -R_Fmax/R1;
17  disp(Aomax, "The maximum closed loop voltage gain is"
        );
```

Scilab code Exa 6.m.6 Maximum and minimum closed loop voltage gain

```
1 // Exa Misc. 6.6
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R1 = 10; // in k ohm
8 R_F = 0;
9 // Ao = (1+(R_F/R1));
10 // The minimum closed loop voltage gain
11 Aomin = (1+(R_F/R1));
12 disp(Aomin, "The minimum closed loop voltage gain is"
     );
13 R_F = 100; // in k ohm
14 // The maximum closed loop voltage gain
15 Aomax = (1+(R_F/R1));
16 disp(Aomax, "The maximum closed loop voltage gain is"
     );
```

Scilab code Exa 6.m.7 Closed loop voltage gain

```
1 // Exa Misc. 6.7
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 R1 = 220; // in ohm
8 R_F = 47; // in k ohm
9 R_F = R_F * 10^3; // in ohm
10 // The closed loop voltage for switch position -1
11 Ao = -R_F/R1;
12 disp(Ao," The closed loop voltage for switch position
     -1 is");
13 R_F = 18; // in k ohm
14 R_F = R_F * 10^3; // in ohm
15 // The closed loop voltage for switch position -2
16 Ao = -R_F/R1;
17 disp(Ao, "The closed loop voltage for switch position
     -2 \text{ is ")};
18 R_F = 39; // in k ohm
19 R_F = R_F * 10^3; // in ohm
20 // The closed loop voltage for switch position -3
21 Ao = -R_F/R1;
22 disp(Ao,"The closed loop voltage for switch position
     -3 is");
```

Scilab code Exa 6.m.8 Closed loop voltage gain

```
1 // Exa Misc. 6.8
```

```
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R_F = 120; // in k ohm
8 \text{ Rdas1} = 6; // \text{ in } k \text{ ohm}
9 Rddas1 = 3; // in k ohm
10 R1 = Rdas1; // in k ohm
11 // For switch position -1, the closed loop voltage
      gain,
12 Ao = 1+(R_F/R1);
13 disp(Ao, "The closed loop voltage gain for switch
      position -1 is : ");
14 R1 = (Rdas1*Rddas1)/(Rdas1+Rddas1); // in k ohm
15 // For switch position -2, the closed loop voltage
      gain,
16 \text{ Ao} = 1 + (R_F/R1);
17 disp(Ao, "The closed loop voltage gain for switch
      position -2 is : ");
```

Scilab code Exa 6.m.9 Output voltage

```
1 // Exa Misc. 6.9
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R_F = 20; // in k ohm
8 R1 = 20; // in k ohm
9 R2 = 10; // in k ohm
10 Vin1 = 2; // in V
11 Vin2 = 1; // in V
12 // The output voltage, by using super position
```

```
theorm

13 Vo = ((-R_F/R1)*Vin1) + ((1+(R_F/R1))*Vin2);

14 disp(Vo, "The output voltage is");
```

Scilab code Exa 6.m.10 Voltage produced at output terminal

```
1  // Exa Misc. 6.10
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  R_F = 60; // in ko hm
8  R1 = 20; // in k ohm
9  Vin1 = 2; // in V
10  Vin2 = 0.1; // in V
11  // The output voltage, by using super position theorm,
12  Vo = ((-R_F/R1)*Vin1) + ((1+(R_F/R1))*Vin2); // in V
13  disp(Vo, "The output voltage in V is");
```

Scilab code Exa 6.m.11 Output voltage

```
1 // Exa Misc. 6.11
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R1 = 10; // in k ohm
8 R2 = 20; // in k ohm
9 R3 = 10; // in k ohm
10 R_F = 20; // in k ohm
```

```
11  Vin1 = 2; // in V
12  Vin2 = 1; // in V
13  // The output voltage,
14  Vo = ((-R_F/R1)*Vin1) - ((R_F/R2)*Vin2); // in V
15  disp(Vo, "The output voltage in V is");
```

Scilab code Exa 6.m.12 Output voltage

```
1 // Exa Misc. 6.12
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R_F = 20; // in k ohm
8 R1 = 10; // in k ohm
9 R2 = 20; // in k ohm
10 Vin1 = 2; // in V
11 Vin2 = 2; // in V
12 Vin3 = 2; // in V
13 // The output voltage, by using super position
     theorm,
14 Vo = ((-R_F/R1)*Vin1) + (-Vin2*R_F/R2+Vin2) + ((R_F)
     /(((R1*R2)/(R1+R2))))*Vin3);//in V
15 disp(Vo,"The voltage is appeared at the output
     terminal in V is");
```

Scilab code Exa 6.m.13 Output voltage

```
1 // Exa Misc. 6.13
2 clc;
3 clear;
4 close;
```

```
5  format('v',6)
6  // Given data
7  R1 = 20; // in k ohm
8  R3 = 10; // in k ohm
9  R2 = R3; // in k ohm
10  R_F = 20; // in k ohm
11  Vin1 = 2; // in V
12  Vin2 = 2.1; // in V
13  // The input voltage at non-inverting terminal,
14  V_A = (R2*Vin2)/R1; // in V
15  // The output voltage, by using super position theorm,
16  Vo = ((-R_F/R1)*Vin1) + ((1+(R_F/R1))*(R1/(R2+R3))* V_A); // in V
17  disp(Vo, "The output voltage in V is");
```

Scilab code Exa 6.m.15 Maximum loop voltage gain

```
// Exa Misc. 6.15
clc;
clcar;
close;
format('v',6)
   // Given data
   //Output voltage of the amplifier, Vo = (1+(Rf/Rin))
       *Vin and voltage gain, Av = Vo/Vin = 1+(Rf/Rin))

Rf = 0;
Rin = 2; // in k ohm
Avmin = 1+(Rf/Rin);
Rf = 100; // in k ohm
// The maximum loop voltage gain
Avmax = 1+(Rf/Rin);
disp(Avmax, "The maximum loop voltage gain is");
```

Scilab code Exa 6.m.18 Output voltage and percentage error due to common mode

```
1 // Exa Misc. 6.18
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Ad = 5*10^5; // differential mode gain
8 \text{ CMRR} = 80; // \text{ in dB}
9 A_CM = Ad/(10^(CMRR/20)); // common mode gain
10 V1 = 745; // in V
11 V1 = V1 * 10^-6; // in V
12 V2 = 740; // in V
13 V2 = V2 * 10^-6; // in V
14 // \text{CMRR} = 20 * \log (\text{Ad/A\_CM});
15 // //output voltage in differential mode gain
16 Vod = Ad*(V1-V2); // in V
17 disp(Vod,"The output voltage in differential mode
      gain in volts is: ")
18 //output voltage due to common mode gain
19 Vo_{CM} = A_{CM}*((V1+V2)/2); //in V
20 disp(Vo_CM, "The output voltage due to common mode
      gain in volts is: ")
21 Pr = (Vo_CM/Vod)*100;// percentage error in \%
22 disp(Pr, "The percentage error due to common mode in
     % is")
```

Scilab code Exa 6.m.19 Input impedance voltage gain and power gain

```
1 // Exa Misc. 6.19
```

```
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R1 = 1; // in Mohm
8 // The input impedance
9 Rin = R1; // in Mohm
10 disp(Rin, "The input impedance in Mohm is");
11 R2 = 1; // in Mohm
12 // The voltage gain
13 Avf = -R2/R1; // Voltage gain
14 disp(Avf, "The voltage gain is");
```

Scilab code Exa 6.m.21 Output voltage

```
1 // Exa Misc. 6.21
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 i1 = 1; //input current for first op-amp in mA
8 i1 = i1 * 10^-3; // in A
9 R_F = 1; // in k ohm
10 R_F = R_F * 10^3; // in ohm
11 // Output voltage at first op-amp stage
12 Vo = -i1*R_F; // in V
13 R1 = 10; // in k ohm
14 R2 = 1; // in k ohm
15 // The output voltage,
16 \text{ Vg1} = \text{Vo}*(1+(R1/R2)); // \text{ in V}
17 disp(Vg1, "The output volatge in V is");
```

Scilab code Exa 6.m.22 Output voltage

```
1 // Exa Misc. 6.22
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ R}_{S3} = 10; // \text{ in k ohm}
8 R_S2 = R_S3; // in k ohm
9 R_S1 = R_S3; // in k ohm
10 Rf = 10; // in k ohm
11 Vs1 = 0.2; // in V
12 Vs2 = 0.5; // in V
13 Vs3 = 0.8; // in V
14 // I = I1 + 6I2 + I3;
15 // I = (Vs1/R_S1) + (Vs2/R_S2) + (Vs3/R_S3);
16 // I = - If;
17 // Vo = -If *Rf;
18 Vo = (Rf/R_S1)*(Vs1+Vs2+Vs3); // in V (as R_S1= R_S2)
     =R_S3
19 disp(Vo, "The value of Vo in volts is: ");
20 disp("But the supply voltage of 10 V is used, so the
       op-amp will reach in saturation.");
21 disp("Hence, output voltage is -10 volts.")
```

Scilab code Exa 6.m.25 Current through RL resistor

```
1 // Exa Misc. 6.25
2 clc;
3 clear;
4 close;
```

```
5 format('v',6)
6 // Given data
7 //Ratio of R2/R1 = R3/R4 = 4 and R_L = -Vi/R3
8 Vi = 3.7; // in V
9 R3 = 2; // in k ohm
10 R3 = R3 * 10^3; // in ohm
11 // The current through R_L,
12 I_L = -Vi/R3; // in A
13 I_L = I_L * 10^3; // in mA
14 disp(I_L, "The current through R_L in mA is");
```

Scilab code Exa 6.1 Common mode gain

```
1  // Exa 6.1
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  CMRR = 10^5;
8  Ad = 10^5;
9  // CMRR = Ad/A_CM;
10  // The common mode gain of the op—amp
11  A_CM = Ad/CMRR;
12  disp(A_CM, "The common mode gain of the op—amp is");
```

Scilab code Exa 6.2 Slew rate

```
1 // Exa 6.2
2 clc;
3 clear;
4 close;
5 format('v',6)
```

```
6 // Given data
7 del_V = 20; //change in voltage in V
8 del_t = 4; //change in time in S
9 SR = del_V/del_t; //slew rate in V/ S
10 disp(SR, "The slew rate in V/ S is");
```

Scilab code Exa 6.3 Slew rate

```
1 // Exa 6.3
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 del_V = 0.75; // chagne in voltage in V
8 del_t = 50; // change in time in ns
9 // The slew rate
10 SR = del_V/(del_t*10^-3); // in s
11 disp(SR, "The slew rate in V/ -sec is");
```

Scilab code Exa 6.4 Closed loop voltage gain and input impedance

```
1 // Exa 6.4
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R1 = 1; // in k ohm
8 R_F = 4.7; // in k ohm
9 //The closed loop voltage gain, Ao = Vo/Vin = -R_F/R1;
10 Ao = -R_F/R1;
```

```
11 disp(Ao, "The closed loop voltage gain is");
12 // The input impedance
13 Ri = R1; // in k ohm
14 disp(Ri, "The input impedance in k ohm is");
```

Scilab code Exa 6.5 R1 and R2

Scilab code Exa 6.6 Output voltage

```
1  // Exa 6.6
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  R1 = 20; // in k ohm
8  R_F = 300; // in k ohm
9  Vin = 1.25; // in V
```

```
10  // Ao = Vo/Vin = -R_F/R1;
11  Ao = -R_F/R1;
12  // Output voltage,
13  Vo = Ao*Vin; // in V
14  disp(Vo, "The output voltage in V is");
```

Scilab code Exa 6.7 R1 and Rf

```
1 // Exa 6.7
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Ao = -4; // in V/V
8 R_T= 100;// total resistance in k ohm
9 / R1 + R_F = R_T
                            ( i )
10 // Ao = -R_F/R1
                                (ii)
                                              (From eq (i)
11 R_F = R_T/(1-1/A_0); // in k ohm
       and (ii))
12 R1= -R_F/Ao; // in k ohm
13 disp(R1, "The value of R1 in k ohm is");
14 disp(R_F, "The value of R_F in k ohm is");
```

Scilab code Exa 6.8 Output voltage

```
1 // Exa 6.8
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R1 = 15; // in k ohm
```

```
8 R_F = 450; // in k ohm
9 Vin = -0.25; // in V
10 // Vo = Ao*Vin
11 Vo = (1+R_F/R1)*abs(Vin); // in V (on putting, Ao = 1+(R_F/R1))
12 disp(Vo, "The output voltage in V is");
```

Scilab code Exa 6.9 R1 and Rf

```
1 // Exa 6.9
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Ao = 1.5; // \text{ in } V/V
8 R = 10; // in k ohm
9 // Ao = (1+(R_F/R1))
10 disp("The relation of R1 and R_F can be implemented
      in two ways : ");
11 disp("(i)): When R_F = R \mid \mid R, in this condition")
12 // When R<sub>-</sub>F= R || R
13 R1= R; //in k ohm
14 R_F= R1*(Ao-1); // in k ohm
15 disp(R1, "The value of R1 in k ohm is: ");
16 disp(R_F, "The value of R_F in k ohm is:")
17 // When both resistor connected in series
18 disp("(ii): When both resistor connected in series,
       in this condition")
19 R1= 2*R; // in k ohm
20 R_F= R1*(Ao-1); // in k ohm
21 disp(R1, "The value of R1 in k ohm is:");
22 disp(R_F, "The value of R_F in k ohm is:")
```

Scilab code Exa 6.10 R1 and Rf

```
1 // Exa 6.10
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Ao = 10;
8 // Ao = (1+(R_F/R1));
9 //Given that maximum value of resistor should not exceed 30 k , so we select
10 R_F = 27; // in k ohm
11 R1 = R_F/(Ao-1); // in k ohm
12 disp(R_F, "The value of R_F in k ohm is");
13 disp(R1, "The value of R1 in k ohm is");
```

Scilab code Exa 6.11 Output voltage

```
1 // Exa 6.11
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Va = 0.2; // in V
8 Vb = -0.5; // in V
9 Vc = 0.8; // in V
10 Ra = 33; // in k ohm
11 Rb = 22; // in k ohm
12 Rc = 11; // in k ohm
13 R_F = 66; // in k ohm
```

```
14 // Using Superposition theorm, the output voltage
15 Vo = (-((R_F/Ra)*Va)) -(((R_F/Rb)*Vb)) -(((R_F/Rc)*Vc));// in V
16 disp(Vo, "The output voltage in V is");
```

Scilab code Exa 6.13 Output voltage

```
1 // Exa 6.13
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Va = 6; // in V
8 Vb = -3; // in V
9 Vc = -0.75; // in V
10 Ra = 10; // \text{ in k ohm}
11 Rb = 2.5; // in k ohm
12 Rc = 4; // in k ohm
13 R_F = 10; // in k ohm
14 // The output voltage
15 Vo = (-((R_F/Ra)*Va)) - (((R_F/Rb)*Vb)) - (((R_F/Rc)*Va))
      Vc));// in V
16 disp(Vo, "The output voltage in V is");
```

Scilab code Exa 6.14 Closed loop differential gain and output voltage

```
1 // Exa 6.14
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
```

```
7 R1 = 100; // in ohm
8 R2 = R1; // in ohm
9 R3 = 3.9; // in k ohm
10 R3 = R3 * 10^3; // in ohm
11 R_F = R3; // in ohm
12 Vx = -3.2; // in V
13 Vy = -3; // in V
14 // output voltage due to Vx, Vox = -(R_F/R_1)*Vx and
      due to Vy, Voy = (R3/(R2+R3)) * (1+(R_F/R1))*Vy
  // \text{ Vo} = \text{Vox} + \text{Voy} = -(R_F/R_1)*Vx + (R_F/R_1)*Vy
      as R1=R2 and R3=Rf)
16 //So, Aod = Vo/(Vx-Vy) = -R_F/R1;
17 \text{ Aod} = -R_F/R1;
18 disp(Aod, "The closed loop differential gain is");
19 Vo = (-R_F/R1)*(Vx-Vy); // in V
20 disp(Vo, "The output voltage in V is");
```

Chapter 7

Junction Field Effect Transistor

Scilab code Exa 7.1 Transfer characteristics

```
1 // Exa 7.1
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 I_DSS = 14; // in mA
8 \text{ V\_GSoff} = -6; // \text{ in V}
9 V_{GS} = 0:-0.1:V_{GS} in V
10 I_D = I_DSS*(1-V_GS/V_GSoff)^2; // in mA
11 // Ploting of the dc transfer characteristics
12 plot(V_GS,I_D);
13 xlabel("V_GS in volts")
14 ylabel("I_D in mA")
15 title("Transfer characteristics of a JFET")
16 disp ("Transfer characteristics of a JFET shown in
      figure.")
```

Scilab code Exa 7.2 Drain current

```
1 // Exa 7.2
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 I_DSS = 30; // in mA
8 V_GSoff = -8; // in V
9 V_GS = -5; // in V
10 // The value of drain current
11 I_D = I_DSS * ((1-(V_GS/V_GSoff))^2); // in mA
12 disp(I_D, "The value of drain current in mA is");
```

Scilab code Exa 7.3 Value of RS and RD

```
1 // Exa 7.3
2 clc;
3 clear;
4 close;
5 format('v',4)
6 // Given data
7 I_D = 1.5; // in mA
8 I_D = I_D*10^-3; // in A
9 \text{ V_DS} = 10; // \text{ in V}
10 I_DSS = 5; // in mA
11 I_DSS = I_DSS * 10^-3; // in A
12 V_P = -2; // in V
13 V_DD = 20; // in V
14 // I_D = I_DSS*((1-(V_GS/V_P))^2);
15 // ((V_{-}GS/2)+1) = sqrt(I_{-}D/I_{-}DSS);
16 V_{GS} = 2*((sqrt(I_D/I_DSS))-1);// in V
17 V_G = 0; // in V
18 // V_{GS} = V_{G}-V_{S};
19 V_S = -V_GS; // in V
20 R_S = V_S/I_D; // in ohm
```

```
21 R_S= R_S*10^-3; // in k ohm
22 disp(R_S, "The value of R_S in k ohm is");
23 R_S= R_S*10^3; // in ohm
24 // V_DD = (I_D*R_D) + V_DS + (I_D*R_S);
25 R_D = (V_DD-V_DS-(I_D*R_S))/I_D; // in ohm
26 R_D = round(R_D * 10^-3); // in k ohm
27 disp(R_D, "The value of R_D in k ohm is");
```

Scilab code Exa 7.4 VDS and VGS

```
1 // Exa 7.4
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ V_DD} = 30; // \text{ in V}
8 R_D = 5; // in k ohm
9 R_D = R_D * 10^3; // in ohm
10 I_D = 2.5; // in mA
11 I_D = I_D * 10^-3; // in A
12 R_S = 200; // in ohm
13 // V_DD = (I_D*R_D) + V_DS + (I_D*R_S);
14 \text{ V}_DS = \text{V}_DD - (I_D*(R_D+R_S)); // in V
15 disp(V_DS, "The value of V_DS in V is");
16 // The value of V<sub>-</sub>GS
17 V_{GS} = -I_D*R_S; // in V
18 disp(V_GS, "The value of V_GS in V is");
```

Scilab code Exa 7.5 Pinch off voltage and chanel half width

```
1 // Exa 7.5
2 clc;
```

```
3 clear;
4 close;
5 format('v',4)
6 // Given data
7 Alpha = 3*10^-6; // in m
8 \text{ N_D} = 10^2; // \text{ in electrons/cm}^3
9 q = 1.6 * 10^-19; // in C
10 Epsilon_o = (36*\%pi*10^9)^-1;
11 Epsilon = 12*Epsilon_o;
12 // The pinch of voltage
13 V_P = ((q*N_D)/(2*Epsilon))*(Alpha^2); // in V
14 disp(V_P, "The pinch of voltage in V is");
15 // Part (ii)
16 format('e',9)
17 VGSbyVp = 1/2;
18 // V_{GS} = ((1-b/Alpha)^2)*V_{P}
19 // The channel half width
20 b = Alpha*( 1-sqrt(VGSbyVp)); // in m
21 b=b*10^2; // in cm
22 disp(b, "The channel half width in cm is");
```

Scilab code Exa 7.6 VGS gm Rs and Rd

```
1 // Exa 7.6
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 V_P = -2; // in V
8 I_DSS = 1.65; // in mA
9 I_D = 0.8; // in mA
10 V_DD = 24; // in V
11 // I_D =I_DSS*(( 1-(V_GS/V_P) )^2);
12 V_GS = V_P*(1-sqrt(I_D/I_DSS))
```

```
13 disp(V_GS, "The value of V_GS in V is");
14 // Part (b)
15 g_mo = (-2*I_DSS)/V_P; // in mA/V
16 g_m = g_mo*(1-(V_GS/V_P)); // in mA/V
17 disp(g_m, "The value of gm in mA/V is");
18 // Part (c)
19 // The value of R_S
20 R_S = -V_GS/(I_D*10^-3); // in ohm
21 disp(R_S, "The value of R_S in ohm is");
22 // Part (d)
23 Av = 20; //voltage gain in dB
24 \text{ Av} = 10^{(\text{Av}/20)};
25 // r_d \gg Rd and |Av| = gm*Rd
26 Rd= Av/g_m; // in k ohm
27 disp(Rd, "The value of Rd in k ohm is:")
28
29 // Note: The value of R<sub>S</sub> in the book is quite
      different from the coding output because in the
      book the calculated value of V_GS is not correct,
       correct value is -0.61
```

Scilab code Exa $7.7\,$ VGS IDQ VDS VD VG and VS

```
1  // Exa 7.7
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  I_DSS =10; // in mA
8  V_P = -8; // in V
9  V_GG = 2; // in V
10  V_GS = -V_GG; // in V
11  V_DD = 16; // in V
12  R_D = 2; // in k ohm
```

```
13 R_D = R_D * 10^3; // in ohm
14 disp(V_GS, "The value of V_GS in V is");
15 // Part (b)
16 // The value of LDQ
17 I_DQ = I_DSS * (1-V_GS/V_P)^2; // in mA
18 disp(I_DQ, "The value of I_DQ in mA is");
19 // Part (c)
20 // The value of V<sub>DS</sub>
21 \text{ V_DS} = \text{V_DD} - (I_DQ*10^-3*R_D); // in V
22 disp(V_DS, "The value of V_DS in V is");
23 // Part (d)
24 // The value of V_D
25 \text{ V_D} = \text{V_DS}; // \text{ in V}
26 disp(V_D, "The value of V_D in V is");
27 // Part (e)
28 // The value of V<sub>G</sub>
29 \quad V_G = V_GS; // in V
30 disp(V_G, "The value of V_G in V is");
31 // Part (f)
32 // The value of V<sub>-</sub>S
33 V_S = 0; // in V
34 disp(V_S, "The value of V_S in V is");
```

Scilab code Exa 7.8 Value of RGS

```
1 // Exa 7.8
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 V_GS = 10; // in V
8 I_G = 0.001; // in A
9 I_G = I_G * 10^-6; // in A
10 // The resistance between gate and source
```

```
11 R_GS = V_GS/I_G; // in ohm
12 R_GS = R_GS * 10^-6; // in Mohm
13 disp(R_GS, "The resistance between gate and source in M ohm is");
```

Scilab code Exa 7.9 AC drain resistance

```
1 // Exa 7.9
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 delV_DS = 1.5; // in V
8 delI_D = 120; // in A
9 delI_D = delI_D*10^-6; // in A
10 // The ac drain resistance of the JFET
11 r_d = delV_DS/delI_D; // in ohm
12 r_d= r_d*10^-3; // in k ohm
13 disp(r_d, "The ac drain resistance of the JFET in k ohm is");
```

Scilab code Exa 7.10 Transconductance

```
1 // Exa 7.10
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 I_D1 = 1.2; // in mA
8 I_D2 = 1.5; // in mA
9 // change in gate to source voltage,
```

```
10 delI_D = I_D2-I_D1; // in mA
11 V_GS2 = -4.10; // in V
12 V_GS1 = -4.25; // in V
13 delV_GS = V_GS2-V_GS1; // in V
14 // The transconductance
15 g_m = delI_D/delV_GS; // in mA/V
16 disp(g_m, "The transconductance in mA/V is");
```

Scilab code Exa 7.11 Id and gm

```
1 // Exa 7.11
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 I_DSS = 8.4; // in mA
8 V_P = -3; // in V
9 \text{ V}_{GS} = -1.5; // \text{ in V}
10 // The value of I_D,
11 I_D = I_DSS*((1-(V_GS/V_P))^2); // in mA
12 disp(I_D, "The value of I_D in mA is");
13 g_mo = (-2*I_DSS)/V_P; // in mA/V
14 // The value of g<sub>m</sub>
15 g_m = g_m * (1 - (V_GS/V_P)); // in mA/V
16 disp(g_m, "The value of g_m in mA/V is");
```

Scilab code Exa 7.12 Pinch off voltage for Si and Ge

```
1 // Exa 7.12
2 clc;
3 clear;
4 close;
```

```
5 format('v',6)
6 // Given data
7 rho = 10; // in ohm—cm
8 epsilon_o = 8.86*10^-12; // in c^2/Nm^2
9 \ a = 2*10^-4; // in cm
10 // V_P = q*N_A*a^2/(2*epsilon)
11 // and sigma = n*miu*q = N_A*miu*q \Rightarrow N_A = 1/(q*miu*
              ( i i )
      rho)
12 // From eq(i) and (ii), V_P = (a^2)/(2*miu_p*Epsilon)
     *rho)
13 miu_p = 500; // in cm^2/V - sec
                                 (for Si)
14 epsilon= 12*epsilon_o;// for Si
15 // The pinch off voltage for Si
16 V_P = (a^2)/(2*miu_p*epsilon*rho); //in V
17 disp(V_P, "Part (a): The pinch off voltage for Si in
       volts is : ")
18 miu_p= 1800; // in cm^2/V-sec (for Ge)
19 epsilon= 16*epsilon_o;// for Ge
20 // The pinch off voltage for Ge
21 V_P = (a^2)/(2*miu_p*epsilon*rho); //in V
22 disp(V_P, "Part (b): The pinch off voltage for Ge in
       volts is : ")
```

Scilab code Exa 7.14 gm rd Zi Zo and Av

```
1 // Exa 7.14
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 I_DSS = 16*10^-3; // in A
8 V_P = 4; // in V
9 V_GS= 2.86; // in V
10 Yos = 25; // in S
```

```
11 Yos= Yos* 10^-6; // in S
12 R_S= 2.2*10^3; // in ohm
13 //gm = gmo * (1-(V_GS/V_P)) or
14 gm = 2*I_DSS/V_P*(1-V_GS/V_P); // in A/V
15 gm = gm *10^3; // in mA/V
16 disp(gm, "Part (i): The value of gm in mS or mA/V is
      ");
17 gm = gm * 10^-3; // in A/V
18 \text{ r_d} = 1/\text{Yos}; // \text{ in ohm}
19 r_d = r_d * 10^- - 3; // in k ohm
20 disp(r_d, "The value of r_d in k ohm is");
21 \text{ r_d= r_d*10^3; // in ohm}
22 // Part (ii)
23 Zi = 1; // in Mohm
24 \text{ miu} = r_d * gm;
25 \text{ Zof\_int= r\_d/(1+miu)}
26 // The value of Zo
27 Zo= Zof_int*R_S/(Zof_int+R_S); // in ohm
28 // The value of Av
29 Av= miu*R_S/(r_d+(1+miu)*R_S);
30 disp(Zi, "Part (ii) : The value of Zi in Mohm is : "
31 disp(Zo, "Part (iii): The value of Zo in ohm is:")
32 disp(Av, "Part (iv): The value of Av is: ")
```

Scilab code Exa 7.16 Voltage gain

```
1 // Exa 7.16
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // GIven data
7 g_m = 2*10^-3; // in A/V
8 r_d = 10; // in k ohm
```

```
9 \text{ r_d} = \text{r_d} * 10^3; // \text{ in ohm}
10 R_D = 50; // in k ohm
11 R_D = R_D * 10^3; // in ohm
12 R_L = 50; // in k ohm
13 R_L = R_L * 10^3; // in ohm
14 f = 1; // in kHz
15 f = f * 10^3; // in Hz
16 \ C = 2; // in nF
17 C = C * 10^-9; // in F
18 omega= 2*%pi*f;// in radian/sec
19 R = (r_d*R_D*R_L)/((r_d*R_D)+(R_D*R_L)+(R_L*r_d));
      // in ohm
20 // The voltage gain,
21 \quad Av = -g_m*R;
22 disp(Av, "Part (a): The voltage gain is");
23 // Part (b) For small value of Cb,
24 \text{ Av} = -g_m*((r_d*R_D)/(r_d+R_D));
25 Ro = (r_d*R_D)/(r_d+R_D); // in ohm
26 \text{ X}_C = 1/(\text{omega*C}); // \text{ in ohm}
27 \text{ Av= } abs(Av)*R_L/(-\%i*X_C+Ro+R_L);
28 Mag_Av= abs(Av); // magnitude of voltage gain
29 Phase_Av= atand(imag(Av), real(Av)); // phase angle of
       voltage gain in
30 disp(Mag_Av, "Part (b) : Magnitude of voltage gain is
31 disp(Phase_Av, "The phase angle of voltage gain in
      degree is: ")
```

Scilab code Exa 7.17 Quiescent drain current drain to source voltage and Av

```
1 // Exa 7.17
2 clc;
3 clear;
4 close;
```

```
5 format('v',6)
6 // Given data
7 \text{ V_DD} = 30; // \text{ in V}
8 R_D = 12; // in k ohm
9 R_S= 1.5; // in k ohm
10 V_{GS} = -0.47; // in V
11 V_P = -2.4; // in V
12 \quad I_DSS = 3; // in \quad mA
13 I_D = poly(0, 'I_D');
I_D = I_D - I_DSS*(1-(V_GS/V_P)*I_D)^2;
15 // On solving equation by polynomial method,
      quiescent drain current
16 I_D= roots(I_D)
17 I_D = I_D(2); // in mA
18 disp(I_D,"The quiescent drain current in mA is: ")
19 V_D = round(V_DD - I_D * R_D); // in V
20 V_S = -V_GS*R_S; // in V
21 // The quiescent drain to source voltage
22 V_DS = ceil(V_D-V_S); // in V
23 disp(V_DS, "The quiescent drain to source voltage in
      volts is: ")
24 // \text{gm} = \text{gmo}*(1-V_GS/V_P) = -2*I_DSS/V_P*(1-V_GS/V_P)
    gm = -2*I_DSS/V_P*(1+V_S/V_P); //in mA/V
25
26
    // The small signal voltage gain
27
    Av = -gm * R_D;
    disp(Av,"The small signal voltage gain is: ")
28
```

Scilab code Exa 7.18 Voltage gain and change in output voltage

```
1 // Exa 7.18
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
```

```
7 I_DSS = 5.6; // in mA
8 V_P = -4; // in V
9 g_m = 2; // in mA/V
10 R_S = 10; // in k ohm
11 A_V = (g_m*R_S)/(1+(g_m*R_S));
12 Vi = 10; // in V
13 // Change in output voltage,
14 delVo = A_V*Vi; // in V
15 disp(delVo, "The changes in Vo in V is");
```

Scilab code Exa 7.19 Change in output voltage

```
1 // Exa 7.19
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ V_CC= } 24; // \text{ in V}
8 \text{ V_SS} = -12// \text{ in V}
9 R_D = 4.7; // in k ohm
10 R_S= 10; // in k ohm
11 V_P = -4; // in V
12 I_DSS= 5.6; // in mA
13 // For
14 Vi = 0;
15 I_D = poly(0, 'I_D');
16 V_GS = Vi - V_SS - I_D * R_S; // in V
17 I_D = I_D - I_DSS * (1 - V_GS / V_P)^2
18 // Evaluating the value of LD by using polynomial
      method,
19 I_D = roots(I_D); // in mA
20 I_D = I_D(2); // taking lower value
21 Vo1= V_SS+I_D*R_S; //in V
22 disp(Vo1, "For Vi= 0 V, the output voltage in volts
```

```
is : ")
23 // For
24 Vi= 10;// in V
25 I_D = poly(0, 'I_D');
26 \text{ V}_{GS} = \text{Vi}_{SS} - \text{I}_{D*R}_{S}; // \text{ in } \text{V}
27 I_D = I_D - I_DSS * (1 - V_GS / V_P)^2
28 // Evaluating the value of I_D by using polynomial
      method,
29 I_D= roots(I_D); // in mA
30 I_D = I_D(2); // taking lower value
31 Vo2= V_SS+I_D*R_S; //in V
32 disp(Vo2, "For Vi= 10 V, the output voltage in volts
      is : ")
33 del_Vo= Vo2-Vo1; // in V
34 disp("This compares well with "+string(del_Vo)+" V
      of small signal model.")
```

Scilab code Exa 7.20 Vds Id and VGS

```
1 // Exa 7.20
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ V}_DD = -60; // \text{ in } V
8 R1 = 1.3; // in Mohm
9 R1 = R1 * 10^3; // in ohm
10 R2 = 200; // in k ohm
11 I_DSS = -4; // in mA
12 V_P = 4; // in V
13 R_S= 4; // in k ohm
14 R_D= 18; // in k ohm
15 V_{GG} = V_{DD} * (R2/(R1+R2)); // in V
16 R_G = (R2*R1)/(R1+R2); // in k ohm
```

```
17  V_G = -8; // in V
18  I_D= poly(0, 'I_D');
19  V_S= I_D*R_S; // in V
20  V_GS= V_G-V_S; // in V
21  I_D= I_D-I_DSS*(1-V_GS/V_P)^2;
22  // Evaluating the value of I_D by using, polynomial method,
23  I_D= roots(I_D); // in mA
24  I_D= I_D(2); // in mA
25  V_S= I_D*R_S; // in V
26  V_GS= V_G-V_S; // in V
27  V_DS= V_DD-I_D*(R_D+R_S); // in V
28  disp(I_D, "The value of I_D in mA is:")
29  disp(V_GS, "The value of V_GS in volts is:")
```

Scilab code Exa 7.21 IDQ VGSQ and VDS

```
1 // Exa 7.21
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 I_DSS= 6; // in mA
8 \text{ V}_P = -4; // \text{ in V}
9 R_S = 0.43; // in k ohm
10 R_D= 1.2; // in k ohm
11 V_DD = 12; // in V
12 I_D = poly(0, 'I_D');
13 V_{GS} = -I_D*R_S; // in V
14 I_D = I_D - I_DSS*(1 - V_GS/V_P)^2;
15 // Evaluating the value of I<sub>D</sub> by using polynomial
      method,
16 I_D = roots(I_D); // in mA
```

```
17  I_D= I_D(2);//in mA (taking lower value)
18  V_GSQ= -I_D*R_S// in V
19  disp(I_D,"The value of I_DQ in mA is : ")
20  disp(V_GSQ,"The value of V_GSQ in volts is : ")
21  // part (b)
22  // Applying KVL, V_DD-I_D*R_D-V_DS-I_D*R_S=0 or
23  V_DS= V_DD-I_D*(R_D+R_S);// in V
24  disp(V_DS,"The value of V_DS in volts is : ")
25
26  // Note: In the book, the calculated value of I_D is wrong due to this all the answer in the book is wrong.
```

Chapter 8

Metal Oxide Semiconductor Field Effect Transistor

Scilab code Exa 8.1 Transfer Characteristics

```
1 // Exa 8.1
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 I_DSS= 10; // in mA
8 V_P = -4; // in V
9 V_GS = 0:-0.1:V_P;// in V
10 // The value of I_D,
11 I_D = I_DSS*(1-V_GS/V_P)^2; // in mA
12 plot(V_GS,I_D)
13 xlabel("V_GS in volts");
14 ylabel("I_D in mA");
15 title ("Transfer characteristics for an n-channel
      depletion - type MOSFET");
16 disp ("Transfer characteristics for an n-channel
      depletion-type MOSFET shown in figure.")
```

Scilab code Exa 8.2 Value of VDS

```
1  // Exa 8.2
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  V_DD= 20; // in V
8  V_GS = 0; // in V
9  I_DSS = 10; // in mA
10  I_P = I_DSS; // in mA
11  I_D = I_DSS; // in mA
12  R_D = 1.5; // in k ohm
13  // The drain to source voltage,
14  V_DS = V_DD - (I_D*R_D); // in V
15  disp(V_DS, "The value of V_DS in V is");
```

Scilab code Exa 8.3 Drain curent

```
1  // Exa 8.3
2  clc;
3  clear;
4  close;
5  format('v',7)
6  // Given data
7  I_Don = 5; // in mA
8  V_GS = 8; // in V
9  V_GST = 4; // in V
10  K = I_Don/((V_GS-V_GST)^2); // in mA/V^2
11  // Drain current when V_GS= 6 V
12  V_GS= 6; // in V
```

```
13  I_D = K*((V_GS-V_GST)^2); // in mA
14  disp(I_D, "The drain current in mA is");
```

Scilab code Exa 8.4 Value of ID

```
1 // Exa 8.4
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 I_Don = 10; // in mA
8 \text{ V_GS} = -12; // \text{ in V}
9 \ V_{Ton} = -3; // in V
10 if V_GS<0 then
11
       disp("Since the value of V_GS is negative, hence
           the device is P-channel")
12 end
13 K = I_Don/((V_GS-V_Ton)^2); // in mA/V
14 V_{GS} = -6; // in V
15 // The drain current,
16 I_D = K*((V_GS-V_Ton)^2); // in mA
17 disp(I_D, "The value of I_D in mA is");
18
19 // Note: The answer in the book is not accurate.
```

Scilab code Exa 8.5 IDQ and VDS

```
1 // Exa 8.5
2 clc;
3 clear;
4 close;
5 format('v',9)
```

```
6 // Given data
7 \quad I_Don = 5; // in mA
8 \text{ V_GSon} = 7; // \text{ in V}
9 \ V_T = 4; // in V
10 V_DD = 9; // in V
11 R_D = 1.2; // in k ohm
12 R_S = 0.5; // in k ohm
13 K = (I_Don)/((V_GSon-V_T)^2);// in mA/V^2
14 // The value of drain current,
15 I_D = K*((V_GSon-V_T)^2); // in mA
16 disp(I_D, "The value of I_D in mA is");
17 //The drain to source voltage, V_DS = V_DD - (I_D*
      R_{-}D) - (I_{-}D * R_{-}S);
18 V_DS = V_DD - (I_D*(R_D+R_S)); // in V
19 disp(V_DS, "The value of V_DS in V");
20
21 // Note: The answer in the book is not accurate.
```