Ryerson University Department of Electrical and Computer Engineering

ELE302: Electric Networks Final Examination, December, 2005 Duration: 3 hours

Student's Name:		
Student's Number:	Section:	
T.Ghorab		
S. Karim		
F. Mohammadi		

NOTES:

- 1. Please **TICK** mark against the name of your professor.
- 2. This is a **Closed Book** examination. No aids other than the approved calculators are allowed.
- 3. Answer all questions.
- 4. Laplace Table is provided in the back of this question paper.
- 5. No questions are to be asked in the examination hall. If needed, make any valid assumptions to solve the question, but please state clearly the assumptions used.

Question No.	Mark of each question	Mark obtained
Q1	20	
Q2	20	
Q3	20	
Q4	20	
Q5	20	
Q6	20	
	Total:	

Q1:Part-A

In the circuit shown in Figure-1, the switch is opened after a long time at t = 0.

(a) Calculate
$$v_c(0+)$$
, $i_L(0+)$, $\frac{dv_c}{dt}(0+)$ and $\frac{di_L}{dt}(0+)$ [6]

(b) Write the differential equation of
$$v_c(t)$$
. [4]

Figure-1

Q1: Part-B

The circuit response of a circuit due to impulse excitation is given as

$$h(t) = 5e^{-2t} \sin 4t \cdot u(t)$$
. Determine the step response of the circuit.

[10]

Q2:

(a) Draw the Laplace Transformed equivalent circuit of Figure-2, when $v_c(0) = 1V$ and $i_L(0) = 1A$. [5]

(b) Solve for $v_L(t)$. [15]

Figure-2

Q3: Part-A

Derive the transfer function $H(s) = \frac{V_0(s)}{V_i(s)}$ of the circuit shown in Figure-3A. [10]

Figure-3A

Q3: Part-B

Construct the Bode plots of amplitude in dB and phase in degrees of the following transfer function.

$$H(s) = \frac{100 \, s^2}{(s+50)(s+200)}$$

Use the graph paper attached with this question paper.

[10]

dВ 0

Q4: Part-A

- (a) Figure-4A shows a mutually coupled circuit. Write the mesh equations. [5]
- (b) If R1 = 1 Ω , X1=X2=X3=Xc = 2 Ω , and X13 = X31 = 1.5 Ω , solve the voltage V_0 across the capacitor.

[5]

Figure-4A

Q4: Part-B

In Figure-4B , T1 and T2 are two ideal transformers. Calculate the power output in the 1.5 Ω resistance. [5]

Q5: Figure-5 is a balanced 3-phase circuit of 60 Hz frequency. The line voltages in RMS for abc phase sequence are given as:

$$V_{AB} = 220 \angle 0^{\circ} \ V, \ V_{BC} = 220 \angle -120^{\circ} \ V, \ and \ V_{CA} = 220 \angle 120^{\circ} \ V.$$

- (a) When $Z = 3+j6 \Omega$, calculate the line currents without the capacitors in the circuit. [5]
- (b) Calculate the power factor, the total complex power, total real power and total reactive power without the capacitors in the circuit. [4]
- (c) Calculate the capacitor C per phase needed to improve the total power factor to one. [6]
- (d) Calculate the new line current after the capacitors are connected. [5]

Q6: Part-A

Figure-5A shows a periodic voltage function.

- (a) Calculate the Fourier coefficients in terms of n, where n is the number of harmonics present.
- (b) Write the expression of v(t) as function of first four (non -zero) terms of the Fourier series.

Figure-5A

Q6: Part-B

The Fourier series of the source $v_s(t)$ in Figure-6B is given as $v_s = 5 + \sum_{n=1}^{\infty} (\frac{10}{n^2} \sin n\omega_0 t)$,

where n is odd integer and ω_o = 50 rad/sec.

Find the dc- and 2^{nd} harmonic components in $V_o(t)$.

[10]

Laplace Table

 $\underline{\mathbf{f}(\mathbf{t})}$ \rightarrow

F(s)

 $\delta(t)$

1

Ku(t)

K/s

t.u(t)

 $1/s^2$

$$f(t-a)u(t-a)$$

 $e^{-as}F(s)$

$$e^{-at} u(t)$$

$$e^{-at} f(t)$$

$$F(s+a)$$

$$w/(s^2+w^2)$$

$$s/(s^2+w^2)$$

$$\frac{s+a}{\left(s+a\right)^2+w^2}$$

$$e^{-at} \sin(wt)$$
. $u(t)$

$$\frac{w}{(s+a)^2+w^2}$$

$$\frac{df(t)}{dt}$$

$$s F(s) - f(0^{-})$$

$$\frac{d^2 f(t)}{dt^2}$$

$$s^2F(s) - s f(0^-) - f'(0^-)$$

$$\int_{-\infty}^{t} f(q) dq$$

$$\frac{F(s)}{s} + \int_{-\infty}^{0} f(q) dq$$