$\begin{array}{c} \textbf{Projeto Mathematical Ramblings} \\ \textbf{mathematical ramblings.blogspot.com} \end{array}$

Seja Auma $m\ge n$ matriz, Buma $n\ge r$ matriz, e I_n a matriz identidade de ordem n. Mostre que

- $\bullet AI = A;$
- \bullet IB = B.

Demonstração:

Um elemento na posição (i,k) de AI é $\sum_{j=1}^{n} a_{ij}\alpha_{jk}$.

Como $\alpha_{jk} = 0$ para $j \neq k$ e $\alpha_{jk} = 1$ para j = k, $\sum_{j=1}^{n} a_{ij} \alpha_{jk} = a_{ik}$.

Analogamente para IB.

Quod Erat Demonstrandum.

Documento compilado em Thursday 17th June, 2021, 17:39, tempo no servidor.

Última versão do documento (podem haver correções e/ou aprimoramentos): "bit.ly/mathematicalramblings_public".

Sugestões, comunicar erros: "a.vandre.g@gmail.com".

 ${\it Atribuição-Não Comercial-Compartilha Igual~(CC~BY-NC-SA)}.$