# A Corollary

#### **Theorem:**

If  $\Sigma \models \tau$ , then there is a finite  $\Sigma_0 \subseteq \Sigma$  such that  $\Sigma_0 \models \tau$ .

Proof: by contradiction.

Suppose that  $\Sigma_0 \not\models \tau$  for all finite  $\Sigma_0 \subseteq \Sigma$ 

 $\Rightarrow \Sigma_0; \neg \tau$  is satisfiable for all finite  $\Sigma_0 \subseteq \Sigma$ 

(Note that  $\Gamma \models \sigma$  iff  $\Gamma$ ;  $\neg \sigma$  is unsatisfiable)

- $\Rightarrow \Sigma; \neg \tau$  is finitely satisfiable
- $\Rightarrow \Sigma; \neg \tau$  is satisfiable

 $\Rightarrow \Sigma \not\models \tau$ 

# Summary

- Sentential logic: syntax and semantics
- Compactness theorem
   a tool for proving an infinite set is satisfiable
- Limited expressiveness

# CS 209 First Order Logic

## **Outline**

- First order languages
- Structures and semantics
- Models and logical implication
- Definability
- Homomorphism theorem

# A First Order Language(s): Alphabet

A first order logic language consists of the following symbols:

### Logic symbols

- 1. Parentheses: (,)
- 2. Sentential connectives: ∧, ¬
- 3. Variables:  $x, y, z, x_1, x_2, ...$
- 4. Equality symbol (optional): ≈

#### **Parameters**

- 1. Quantifier symbol: ∀
- 2. Constant symbols:  $c_1$ ,  $c_2$ , ...
- 3. For each positive integer n, n-ary function symbols: f, g, ...
- 4. For each positive integer n, n-ary predicate symbols: P, Q, ...

# **Example FO Logic Languages**

- Concerning numbers
  - $\circ$  Number theory :  $\langle 0, \approx, <, succ, +, \times \rangle$
  - Rational numbers and linear arithmetic :  $\langle (q)_{q \in \mathbb{Q}}, \approx, <, + \rangle$
  - $\circ$  Real closed field :  $\langle 0, 1, \approx, <, +, \times \rangle$
- Database query languages
  - $\circ \langle \mathbf{dom}, Employees, Products, ..., \rangle$
- Suggestions?

### **Terms**

The set of *terms* consists of the following elements:

- Constant symbols,
- Variables, and
- Expressions of form  $ft_1 \cdots t_n$ , where f is an n-ary function symbol and  $t_1, ..., t_n$  are terms.

We may also write a term  $ft_1 \cdots t_n$  as  $f(t_1, ..., t_n)$  for readability

### Well-Formed Formulas

A well-formed formula (wff) is one of the following:

- (atomic)  $\approx t_1 t_2$ where  $t_1$ ,  $t_2$  are terms,
- (atomic)  $Pt_1 \cdots t_n$ where P is an n-ary predicate symbols and  $t_1, \ldots, t_n$  are terms,
- $(\varphi \land \psi)$ ,  $(\neg \varphi)$ , or  $(\forall x \varphi)$ where  $\varphi$ ,  $\psi$  are wffs and x is a variable

$$\left(\left(\forall x_{p}(\forall b_{l_{1}} \approx x_{1} \gamma_{2})\right) \land P_{x_{1}}\right)$$

### Free Variables

A variable x occurs free in a wff  $\varphi$  if one of the following holds:

- $\varphi$  is atomic and x occurs in  $\varphi$ ,
- $\varphi$  is  $(\psi_1 \wedge \psi_2)$  and x occurs free in  $\psi_1$  or  $\psi_2$ ,
- $\varphi$  is  $(\neg \psi)$  and x occurs free in  $\psi$ , or
- $\varphi$  is  $(\forall y \psi)$ , x occurs free in  $\psi$ , and x, y are distinct variables

A wff  $\varphi$  is a *sentence* if no variables occur free in it

$$\left( \begin{array}{ccc} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

### First Order Structure

A *structure* of a first order language  $\mathcal{L}$  is a mapping  $\mathfrak{A}$  over the parameters of  $\mathcal{L}$  such that  $\mathfrak{A}$  maps

- 1. the quantifier  $\forall$  to a nonempty set denoted as  $|\mathfrak{U}|$  (called the *universe*),
- 2. each constant symbol c to an element  $c^{\mathfrak{A}}$  in the universe  $|\mathfrak{A}|$ ,
- 3. each n-ary function symbol f to an n-ary function  $f^{\mathfrak{A}}: |\mathfrak{A}|^n \to |\mathfrak{A}|$ , and
- 4. each n-ary predicate symbol P to an n-ary relation  $P^{\mathfrak{A}} \subseteq |\mathfrak{A}|^n$

