6.630 Solution to Problem Set 4

Solution P4.1

Combine $\overline{\overline{\epsilon}}$ and $\overline{\overline{\sigma}}$ to form a new permittivity tensor

$$\overline{\overline{\epsilon_c}} = \begin{pmatrix} \epsilon + i\frac{\sigma}{\omega} & 0 & 0\\ 0 & \epsilon + i\frac{\sigma}{\omega} & 0\\ 0 & 0 & \epsilon_z + i\frac{\sigma_z}{\omega} \end{pmatrix}$$

This is a uniaxial medium. For a wave propagating in \hat{x} direction, we need to consider two cases: (1) Oridanary wave, $k^{(o)} = \omega \sqrt{\mu_o(\epsilon + i\frac{\sigma}{\omega})}$; (2) Extraordinary wave, $k^{(e)} = \omega \sqrt{\mu_o(\epsilon_z + i\frac{\sigma_z}{\omega})}$.

The extraordinary wave is polarized in \hat{z} direction while the ordinary wave is polarized in \hat{y} direction. Since σ_z is much larger than σ , extraordinary wave will decay much faster. So the wave coming out of a piece of polaroid will be only \hat{y} polarized.

Solution P4.2

- (a) $\alpha = 1$, $\beta = \pi/2$
- (b) The \hat{x} polarized wave is an ordinary wave. $k_y = \omega \sqrt{\mu_o 4\epsilon_o} = 2k_o$
- (c) Let $(k^{(o)} k^{(e)})d = \pi + 2n\pi$. The minimum d to satisfy this condition is $\lambda_o/2$

Solution P4.3

(a) Method 1

First, consider the transmission line right of the break point. When the break occurs, $I_r = I_0 + I_+ = 0$, where I_+ is the generated current. So, $I_+ = -I_0$, So, $V_+ = I_+ Z_o = -I_o Z_o$

Then, consider the transmission line left of the break point. When the break occurs, $I_l = I_0 + I_- = 0$, where I_- is the generated current. So, $I_- = -I_0$, So, $V_- = -I_- Z_o = I_o Z_o$

(a) Method 2

Consider the situation before the break occurs. In general there are two waves on the line, one propagating in the positive z-direction and one propagating in the negative z-direction.

$$V(z) = V_o = V_+ + V_-$$

 $I(z) = I_o = \frac{1}{Z_o}(V_+ - V_-)$

Solving for V_+ and V_- we get,

$$V_{+} = \frac{1}{2}(V_{o} + Z_{o}I_{o})$$

$$V_{-} = \frac{1}{2}(V_{o} - Z_{o}I_{o})$$

At the point of the break there is an open circuit at which the V_+ and V_- waves will be reflected generating $V'_- = \Gamma V_+$ and $V'_+ = \Gamma V_-$ respectively, where $\Gamma = 1$.

To determine the current, we can use the above analysis to relate, V'_{+} to I'_{+} and V'_{-} to I'_{-} .

(b) The current, I_o can be found from

$$P_{dc} = I_o V_o = 1 \times 10^9 W$$

 $\Rightarrow I_o = \frac{1 \times 10^9}{6 \times 10^5} = \frac{1}{6} \times 10^4 A$

The peak voltage is then given by,

$$V_{peak} = V_o + Z_o I_o = 1433 \text{ kV}$$

Solution P4.4

(a) We can find the length of the transmission by,

$$\ell = \frac{(3 \times 10^8 \text{ m/s})(10^{-8} \text{ s})}{2} = 1.5 \text{m}$$

(b) Since the transmission line extends to infinity, we can terminate the line with an impedance of Z_0 without introducing reflection. The terminal load, instead of R_f , becomes $Z_L = R_f || Z_0$

Since
$$V = V_{+}(1 + \Gamma_{L})$$

 $V = 0.25 \text{V}$ $V_{+} = 0.5 \text{V}$
Hence $\Gamma_{L} = -\frac{1}{2} = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}}$
 $Z_{L} = \frac{1}{3} Z_{0}, \quad \frac{R_{L} Z_{0}}{R_{L} + Z_{0}} = \frac{Z_{0}}{3}$
 $R_{L} = \frac{Z_{0}}{2}$

