CS 440: Introduction to Artificial Intelligence Lecture 22, Nov 30, 2015

Matthew Stone

December 1, 2015

Games-Recap

A *game* is an environment with rewards that depend on the action of more than one agent.

- Games with turns tic-tac-toe, checkers, chess, backgammon, go
- Games with simultaneous moves
 Rock-paper-scissors, prisoner's dilemma, sealed-bid auctions
- Approaches in the two cases are different

Games with Turns

Intuitively like planning

- Map out the future
- Anticipate that you will make good choices
- Expect that your opponent will make good choices
- Work backwards to what you should do now

Games with Turns

Wind up with a strategy

- Describes optimal play
- Given optimal (or possible) play by opponent

Games with simultaneous play

Intuitively like solving an equation

- Your move depends on your opponent's move
- Their move depends on yours
- You choose them simultaneously
- Good strategies "balance" the decisions

Example: Rock-paper-scissors

R and C choose actions jointly. C gets these payoffs:

		С		
		rock	paper	scissors
	rock	0	1	-1
R	paper	-1	0	1
	scissors	1	-1	0

Example: Rock-paper-scissors

Need to be unpredictable

- ▶ If R knows what C is going to do, R can win
- ▶ If C knows what R is going to do, C can win

If both guess any move randomly with probability $\frac{1}{3}$, neither can exploit the other

Different needs for AI techniques

Games with turns

- manage large search spaces
- develop good heuristics and approximations
- (only secondarily) learn specifically about opponent

Games with simultaneous play

- learn specifically about opponent
- (less so) develop good heuristics and approximations
- ▶ (only secondarily) manage search

Simple Games

Variant of search problem

- ► Two players, A and B
- ► Set of states *S*
- Initial state s_I
- Possible actions in each state
 Specifies which player moves, if any
 Players alternate
- Transition model: Takes state and action and gives new state
- Outcome: Says the score in the final state

Simple Games

Variant of search problem

- Like planning search
 Need to systematically explore states
 (want to find a win, in this case)
 work backwards from outcome to what to do next
- Twist: need to account for decisions we do not control
- Idea: assume other agent plays optimally
 Change objectives and use your own search to predict their actions

Two players:

- A maximizes score
- B minimizes the score

Predict play and outcome recursively

If s is a final state stop, outcome is the score you get (just like decision models)

If s is a decision for A compute the policies and scores for the subtrees at s take policy that gives you the best score (just like decision models)

If s is a decision for B compute the policies and scores for the subtrees at s take the policy that gives you the **worst** score (B wants to win!)

Discussion

Minimax—pros

- Guaranteed to find winning strategy provided one exists, and algorithm converges
- Finds values for all nodes in the tree can play best response to any opponent

Minimax—cons

Number of states too large to search in practice

Improve minimax by discarding irrelevant possibilities

Intuitive example

Image from Wikipedia

Improve minimax by discarding irrelevant possibilities

- Keep track of lower bound α interested in values above α
- Keep track of upper bound β interested in values below β
- Discard subtrees if out of bounds

Heuristics

Evaluation functions

- Cut off search at some depth
- Estimate values there (even though game is not done)
- Common to use features and function approximation
- Opportunity for learning

Another Example—Cooperative Games

Driving game

		С	
		left right	
R	left	1,1	0,0
	right	0,0	1,1

Notation: Payoffs are $U_A(s_R, s_C)$ – the utility for agent A of the outcome where R plays s_R and C plays s_C .

Equilibrium

Intuitively—fixed point for choice:

- R wouldn't change what R would do, knowing that C is going to play as C does
- C wouldn't change what C would do, knowing that R is going to play as R does

Strategy

Two notions

- Pure strategy: choice of one course of action by a player
- Mixed strategy: probability distribution over courses of action, (chosen randomly with specified probabilities)

Best response

▶ Pure strategy s_1^* is a *best response* for player 1 to pure strategy s_2 for player 2 if

$$U_1(s_1^*, s_2) \geq U_1(s_1, s_2)$$

for all alternative (pure) strategies s_1

Example

		С	
		left right	
R	left	1,1	0,0
	right	0,0	1,1

Strategy left for *R* is best response to left for *C*Strategy right for *R* is best response to right for *C*Strategy left for *C* is best response to left for *R*Strategy right for *C* is best response to right for *R*

Best response

Mixed strategy p_1^* is a *best response* for player 1 to mixed strategy p_2 for player 2 if

$$\sum U_1(s_1, s_2) \times p_1^*(s_1) \times p_2(s_2) \ge \sum U_1(s_1, s_2) \times p_1(s_1) \times p_2(s_2)$$

for all alternative mixed strategies p_1

Example

Best response for R when C plays .5 paper and .5 scissors

		С		
		rock	paper	scissors
	rock	0	1	-1
R	paper	-1	0	1
	scissors	1	-1	0

Example

Best response for R when C plays .5 paper and .5 scissors

		С		
		rock	paper	scissors
	rock	0	1	-1
R	paper	-1	0	1
	scissors	1	-1	0

always play scissors

Equilibrium

A pair of strategies (p_1^*, p_2^*) is an equlibrium just in case

- p_1^* is best response for player 1 to p_2^*
- p_2^* is best response for player 2 to p_1^*

Example

		С	
		left right	
R	left	1,1	0,0
	right	0,0	1,1

Strategy left for *R* is best response to left for *C*Strategy right for *R* is best response to right for *C*Strategy left for *C* is best response to left for *R*Strategy right for *C* is best response to right for *R*

Example

		С	
		left	right
R	left	1,1	0,0
	right	0,0	1,1

Equilibria include

- R plays right and C plays right
- ▶ R plays left and C plays left

Zero Sum Games

		С	
		heads tails	
R	heads	1,-1	-1,1
	tails	-1,1	1,-1

Zero Sum Games

		С	
		heads tails	
R	heads	1,-1	-1,1
	tails	-1,1	1,-1

Equilibrium is a mixed strategy

R and C both play heads half the time and tails half the time

Observation

		С	
		heads tails	
R	heads	1,-1	-1,1
	tails	-1,1	1,-1

R chooses both h and t

- R is rational, so both h and t must look good
- Suppose C plays h with probability q
- ► R gets -q + (1-q) = 1 2q from h
- ▶ R gets q (1 q) = 2q 1 from t
- ▶ Must be same payoff: $1 2q = 2q 1 \Rightarrow q = 0.5$

