# **New Plant Disease Detection**

CSML1020 Course Project

Jerry Khidaroo CSML1020 – Group 3 York University Toronto, ON Canada jkhidaroo@gmail.com Paul Doucet
CSML1020 – Group 3
York University
Toronto, ON Canada
pidoucet@gmail.com

# **ABSTRACT**

This paper will explore the classification of plant images to identify new plant diseases using a machine learning model.

The dataset was obtained from Kaggle and consists of over 87,000 rgb images of healthy and diseased crop leaves labeled by plant and disease type in 38 different classes.

## **CCS CONCEPTS**

• Artificial Intelligence • Machine Learning • Image Classification

## 1 Introduction

The problem we will examine is a supervised multi-class image classification problem. The goal is to investigate which supervised machine learning models will give the best results in classifying the images from our dataset in the predefined categories.

2 Existing Work

| Plant Desease Classifictaion-VGG16  https://www.kaggle.com/wiwidsetiawan/plant-desease-classifictaion-vgg16                             | Example of classification using the VGG16 pre trained model               |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| ImageNet: A Large-Scale Hierarchical Image Database, 2009.  https://ieeexplore.ieee.org/document/5206848                                | ImageNet database documentation                                           |
| Fork of Plant Diseases Classification Using incep3  https://www.kaggle.com/vimaladit/fork-of-plant-diseases-classification-using-incep3 | Example of classification using the Inception Version 3 pre trained model |

Plant Diseases Classification Using AlexNet

https://www.kaggle.com/vipoooool/ plant-diseases-classification-usingalexnet Example classification using the AlexNet pre trained model

# 3 Methodology

### 3.1 Data Preparation

The dataset was downloaded from the Kaggle website: https://www.kaggle.com/vipoooool/new-plant-diseases-dataset

The dataset did not need any manipulation as it was previously divided into a useable directory structure for training and validation as well as several test images.

**Table 1: Dataset Parsed from Category Folder Names** 

|    | plant                             | condition                            | count | status    | disease  |
|----|-----------------------------------|--------------------------------------|-------|-----------|----------|
| 0  | Tomato                            | Target_Spot                          | 50    | unhealthy | spot     |
| 1  | Tomato                            | Early_blight                         | 50    | unhealthy | blight   |
| 2  | Apple                             | healthy                              | 50    | healthy   | healthy  |
| 3  | Tomato                            | healthy                              | 50    | healthy   | healthy  |
| 4  | Blueberry                         | healthy                              | 50    | healthy   | healthy  |
| 5  | Grape                             | healthy                              | 50    | healthy   | healthy  |
| 6  | Peach                             | healthy                              | 50    | healthy   | healthy  |
| 7  | Cherry_(including_sour)           | Powdery_mildew                       | 50    | unhealthy | mildew   |
| 8  | Tomato                            | Leaf_Mold                            | 50    | unhealthy | mold     |
| 9  | Apple                             | Black_rot                            | 50    | unhealthy | rot      |
| 10 | Squash                            | Powdery_mildew                       | 50    | unhealthy | mildew   |
| 11 | Corn_(maize)                      | Northern_Leaf_Blight                 | 50    | unhealthy | blight   |
| 12 | Strawberry                        | Leaf_scorch                          | 50    | unhealthy | scorch   |
| 13 | Pepper,_bell                      | healthy                              | 50    | healthy   | healthy  |
| 14 | Orange                            | Haunglongbing_(Citrus_greening)      | 50    | unhealthy | greening |
| 15 | Potato                            | Late_blight                          | 50    | unhealthy | blight   |
| 16 | Tomato                            | Late_blight                          | 50    | unhealthy | blight   |
| 17 | Strawberry                        | healthy                              | 50    | healthy   | healthy  |
| 18 | Tomato                            | Tomato_Yellow_Leaf_Curl_Virus        | 50    | unhealthy | virus    |
| 19 | Corn_(maize)                      | Common_rust                          | 50    | unhealthy | rust     |
| 20 | Raspberry                         | healthy                              | 50    | healthy   | healthy  |
| 21 | Tomato                            | Tomato_mosaic_virus                  | 50    | unhealthy | virus    |
| 22 | Pepper,_bell                      | Bacterial_spot                       | 50    | unhealthy | spot     |
| 23 | ${\sf Cherry\_(including\_sour)}$ | healthy                              | 50    | healthy   | healthy  |
| 24 | Tomato                            | Septoria_leaf_spot                   | 50    | unhealthy | spot     |
| 25 | Peach                             | Bacterial_spot                       | 50    | unhealthy | spot     |
| 26 | Apple                             | Cedar_apple_rust                     | 50    | unhealthy | rust     |
| 27 | Tomato                            | Bacterial_spot                       | 50    | unhealthy | spot     |
| 28 | Grape                             | Esca_(Black_Measles)                 | 50    | unhealthy | measles  |
| 29 | Grape                             | Leaf_blight_(Isariopsis_Leaf_Spot)   | 50    | unhealthy | spot     |
| 30 | Corn_(maize)                      | Cercospora_leaf_spot_Gray_leaf_spot  | 50    | unhealthy | spot     |
| 31 | Apple                             | Apple_scab                           | 50    | unhealthy | scab     |
| 32 | Grape                             | Black_rot                            | 50    | unhealthy | rot      |
| 33 | Potato                            | healthy                              | 50    | healthy   | healthy  |
| 34 | Corn_(maize)                      | healthy                              | 50    | healthy   | healthy  |
| 35 | Potato                            | Early_blight                         | 50    | unhealthy | blight   |
| 36 | Soybean                           | healthy                              | 50    | healthy   | healthy  |
| 37 | Tomato                            | Spider_mites_Two-spotted_spider_mite | 50    | unhealthy | mite     |

# 3.2 Data Exploration

The dataset consists of images of plant leaves in various conditions. The following graphs, show the distribution of this data.



Figure 1: Number of images by plant



Figure 2: Relative image percentages by health status



Figure 3: Number of images by disease

### 3.3 Data Preprocessing

The following data preprocessing methods will be evaluated to determine the best data augmentation for our input layer:

- Random Shear
- Random Brightness
- Random Zoom

The following methods were omitted because the dataset was already pre-processed with those methods:

- Random Horizontal Shift
- Random Vertical Shift
- Random Horizontal Flip
- Random Vertical Flip



Figure 4: Data Augmentation Visualization for Random Brightness



Figure 5: Data Augmentation Visualization for Random Zoom



Figure 6: Data Augmentation Visualization for Random Shear

Table 2: Preprocessing Results Based on Baseline VGG16 Model with Transfer Learning

|   | Pre-Prosessing Steps                                                        | Validation Accuracy |
|---|-----------------------------------------------------------------------------|---------------------|
| 0 | rescale=1./255                                                              | 0.91                |
| 1 | rescale=1./255, shear_range=0.2                                             | 0.94                |
| 2 | rescale=1./255, zoom_range=0.2                                              | 0.92                |
| 3 | rescale=1./255, shear_range=0.2, zoom_range=0.2                             | 0.92                |
| 4 | rescale=1./255, shear_range=0.2, zoom_range=0.2, brightness_range=[0.2,1.0] | 0.90                |

# 3.4 Data Augmentation Methods Selected

The results obtained for the preprocessing indicate that the shear range method gave the best results and will be used going forward.

|   |   | Pre-Prosessing Steps            | Validation Accuracy |
|---|---|---------------------------------|---------------------|
| 1 | 1 | rescale=1./255, shear_range=0.2 | 0.94                |

### 3.5 Model Evaluation & Selection

We will be evaluating a number of pre-trained models with transfer learning as well as several models that we define.

### 3.5.1 Custom Defined Models

#### 3.5.1.1 Custom Defined Model A

The first iteration of the custom defined model had the following layers

```
def get_model_A():
    classifier = Sequential()
    classifier = Sequential()
    classifier.add(lonv2D(32, (3, 3), activation='relu', kernel_initializer='he_uniform'))
    classifier.add(lonv2D(64, (3, 3), activation='relu', kernel_initializer='he_uniform'))
    classifier.add(lonv2D(128, (3, 3), activation='relu', kernel_initializer='he_uniform'))
    classifier.add(lonv2D(128, (3, 3), activation='relu', kernel_initializer='he_uniform'))
    classifier.add(latten())
    classifier.add(latten())
    classifier.add(Dense(128, activation='relu', kernel_initializer='he_uniform'))
    classifier.add(Dense(128, activation='softmax'))

    opt = SGD(lr=0.001, momentum=0.9)
    classifier.comple(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
```





### 3.5.1.2 Custom Defined Model B

For the second iteration, the optimizer was changed from Stochastic Gradient Descent with a learning rate of 0.001 and momentum of 0.9 to 'adam'.

```
def get_model_B():
    classifier = Sequential()
    classifier = Sequential()
    classifier = Sequential()
    classifier = Add(MaxPooling2D((2, 2)))
    classifier = Add(MaxPooling2D((2, 2)))
    classifier = Add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_uniform'))
    classifier = Add(MaxPooling2D((2, 2)))
    classifier = Add(MaxPooling2D((2, 2)))
    classifier = Add(MaxPooling2D((2, 2)))
    classifier = Add(MaxPooling2D((2, 2)))
    classifier = Add(Clasten())
    classifier = Add(Dense(128, activation='relu', kernel_initializer='he_uniform'))
    classifier = Add(Dense(128, activation='relu', kernel_initializer='he_uniform'))
    classifier = Compile(Optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    return classifier
```





### 3.5.1.3 Custom Defined Model C

For the third iteration, the filter for the third 2D Convolutional Layer was updated from 128 to 256.



#### 3.5.1.4 Custom Defined Model D

For the fourth and final iteration of the custom defined model, a dropout layer was added.

```
def get_model_D():
    classifier = def(Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_uniform'))
    classifier.add(MaxPooling2D((2, 2)))
    classifier.add(Conv2D(34, (3, 3), activation='relu', kernel_initializer='he_uniform'))
    classifier.add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_uniform'))
    classifier.add(Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_uniform'))
    classifier.add(Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_uniform'))
    classifier.add(Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_uniform'))
    classifier.add(Dense(128, activation='relu', kernel_initializer='he_uniform'))
    classifier.dd(Dense(128, activation='softmax'))
    classifier.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    return classifier
```





|   | Classifier | Accuracy | Loss | Validation Accuracy | Validation Loss |
|---|------------|----------|------|---------------------|-----------------|
| 0 | Model_A    | 0.86     | 0.43 | 0.88                | 0.37            |
| 1 | Model_B    | 0.96     | 0.11 | 0.91                | 0.31            |
| 2 | Model_C    | 0.96     | 0.12 | 0.90                | 0.34            |
| 3 | Model_D    | 0.95     | 0.15 | 0.91                | 0.31            |

The Model\_D iteration gave the best accuracy for the custom defined classifiers and will be used for further evaluation.

# 3.5.2 Benchmarks for Pre-Trained Models with Transfer Learning

The accuracy and loss were evaluated for each of the three base pretrained models: VGG16; ResNet50; InceptionV3; Alexnet .

# 3.5.2.1 VGG16 Base Model with Transfer Learning







# 3.5.2.2 ResNet50 Base Model with Transfer Learning

| Model: "sequential_1"                                |                    |          |  |  |  |  |
|------------------------------------------------------|--------------------|----------|--|--|--|--|
| Layer (type)                                         | Output Shape       | Param #  |  |  |  |  |
| resnet50 (Model)                                     | (None, 7, 7, 2048) | 23587712 |  |  |  |  |
| flatten_1 (Flatten)                                  | (None, 100352)     | 9        |  |  |  |  |
| dense_1 (Dense)                                      | (None, 38)         | 3813414  |  |  |  |  |
| Total params: 27,401,126                             |                    |          |  |  |  |  |
| Trainable params: 3,813,<br>Non-trainable params: 23 |                    |          |  |  |  |  |





# 3.5.2.3 InceptionV3 Base Model with Transfer Learning

| Model: "sequential_2"                                                                       | Output Shane       | Param #  |  |  |  |  |
|---------------------------------------------------------------------------------------------|--------------------|----------|--|--|--|--|
| Layer (type)                                                                                | Output Shape       | Param #  |  |  |  |  |
| inception_v3 (Model)                                                                        | (None, 5, 5, 2048) | 21802784 |  |  |  |  |
| flatten_2 (Flatten)                                                                         | (None, 51200)      | 0        |  |  |  |  |
| dense_2 (Dense)                                                                             | (None, 38)         | 1945638  |  |  |  |  |
| Total params: 23,748,422<br>Trainable params: 1,945,638<br>Non-trainable params: 21,802,784 |                    |          |  |  |  |  |
|                                                                                             |                    |          |  |  |  |  |





### 3.5.2.4 Alexnet Base Model with Transfer Learning





|   | Classifier  | Accuracy | Loss | Validation Accuracy | Validation Loss |
|---|-------------|----------|------|---------------------|-----------------|
| 0 | VGG16       | 0.96     | 0.15 | 0.93                | 0.06            |
| 1 | ResNet50    | 0.98     | 1.06 | 0.03                | 135.88          |
| 2 | InceptionV3 | 0.91     | 1.60 | 0.41                | 30.40           |
| 3 | Alexnet     | 0.96     | 0.12 | 0.96                | 0.04            |

VGG16, Alexnet gave the best validation accuracy and will be used along with Custom Defined Model\_D in moving forward with our evaluation.

# 3.5.4 Hyperparameter Tuning

#### VGG16

Best Params: {'learning\_rate': 0.0001, 'epochs': 3, 'batch\_size': 32, 'activation': 'softmax'}

### Alexnet

### **Custom Defined Model D**

Best Params: {'learning\_rate': 0.001, 'epochs': 10, 'batch\_size': 32, 'activation': 'softmax'}

|   | Classifier     | Accuracy | Loss | Validation Accuracy | Validation Loss |
|---|----------------|----------|------|---------------------|-----------------|
| 0 | VGG16          | 0.96     | 0.15 | 0.93                | 0.06            |
| 1 | ResNet50       | 0.98     | 1.06 | 0.03                | 135.88          |
| 2 | InceptionV3    | 0.91     | 1.60 | 0.41                | 30.40           |
| 3 | Alexnet        | 0.96     | 0.12 | 0.96                | 0.04            |
| 4 | Model_01       | 0.88     | 2.67 | 0.65                | 20.44           |
| 5 | VGG16 HP Tuned | 0.95     | 0.19 | 0.94                | 0.27            |

Best Paramaters: {'learning\_rate': 0.0001, 'epochs': 3, 'batch\_size': 32, 'activation': 'softmax'}

# 3.5.3 Final Model and Predictions

# To Complete

# 4 Discussion

To Complete

# 5 Conclusion

To Complete

### **ACM Reference format:**

Jerry Khidaroo, Paul Doucet. 2020. New Plant Disease Detection. In *Proceedings of CSML1020 (Winter'2020). York University, Toronto, ON, Canada,* 5 pages.

## **ACKNOWLEDGMENTS**

We would like to thank Karthik Kuber, PhD, MS for his constructive suggestions during this course and development of this research work.

### REFERENCES

- [1] Wiwid Setiawan, 2020. T Plant Desease Classifictation-VGG16 https://www.kaggle.com/wiwidsetiawan/plant-desease-classifictationvgg16
- vgg16

  [2] Vimal Adit. 2019. Fork of Plant Diseases Classification Using incep3

  https://www.kaggle.com/vimaladit/fork-of-plant-diseases-classification-using-incep3
- Jason Brownlee 2019, Introduction to Python Deep Learning with Keras https://machinelearningmastery.com/introduction-python-deep-learning-library-keras/
- [4] Antrixsh Gupta 2020, How to mount Cloud Storage bucket with GCP compute engine <a href="https://medium.com/@antrixsh/how-to-mount-cloud-storage-bucket-with-gcp-compute-engine-ba7c95ad5349">https://medium.com/@antrixsh/how-to-mount-cloud-storage-bucket-with-gcp-compute-engine-ba7c95ad5349</a>
- [5] Keras Documentation, Keras Applications https://keras.io/api/applications/
- [6] Jason Brownlee 2019, How to Configure Image Data Augmentation in Keras https://machinelearningmastery.com/how-to-configure-image-dataaugmentation-when-training-deep-learning-neural-networks/
- [7] ACM Website, ACM Master Article Template https://www.acm.org/publications/proceedings-template
- [8]Acknowledgments
  - $\frac{https://elc.polyu.edu.hk/FYP/html/ack.htm\#:\sim:text=A\%20page\%20of\%20acknowledgements\%20is,in\%20carrying\%20out\%20the\%20research.}{}$
- Jason Brownlee 2019, Introduction to Python Deep Learning with Keras https://machinelearningmastery.com/introduction-python-deep-learning-library-keras/