

RAJALAKSHMI INSTITUTE OF TECHNOLOGY

(An Autonomous Institution, Affiliated to Anna University, Chennai)

DEPARTMENT OF CSE (ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING)

ACADEMIC YEAR 2025 – 2026

SEMESTER III

ARTIFICIAL INTELLIGENCE LABORATORY

MINI PROJECT REPORT

REGISTER NUMBER	2117240030127
NAME	SAKTHI J
PROJECT TITLE	STUDENT RESULT CLASSIFICATION SYSTEM
FACULTY IN-CHARGE	MS.M.BHAVANI

Signature of Faculty In-charge

INTRODUCTION

- The Student Result Classification System is an AI-based program that classifies students as **Pass** or **Fail** according to their performance in attendance, internal marks, and final exam marks. It eliminates manual evaluation and ensures quick, consistent, and fair classification.
- In traditional systems, teachers manually assess each student's performance, which is time-consuming and may lead to human bias or errors. The proposed system uses simple AI rule-based logic to automate this process. It checks whether a student meets the minimum thresholds in all categories to pass, ensuring uniform evaluation standards.
- This system can be viewed as a **rule-based AI model**, where each student's data is processed using a set of conditions. If the conditions are satisfied, the student is classified as *Pass*; otherwise, *Fail*. It demonstrates how decision-making logic can be implemented efficiently using basic programming

PROBLEM STATEMENT

- Manually evaluating and classifying student results requires significant time and can lead to inconsistencies in decision-making. Teachers need to check attendance records, internal marks, and final marks for each student before concluding whether the student has passed or failed.
- There is a need for an intelligent system that automatically classifies student results based on predefined criteria, ensuring accuracy and saving time for educators.

GOAL

- The goal of this project is to develop an automated Student Result Classification System that:
- Analyzes each student's attendance, internal marks, and final marks.
- Classifies them as *Pass* or *Fail* based on defined rules.
- Displays results clearly in a tabular format.
- This project shows how simple AI logic can enhance academic evaluation through automation and consistency.

THEORETICAL BACKGROUND

Automation in Education:

Automationplays an important role in reducing repetitive tasks in educational systems. Tasks like grading and classification can be automated using computer programs that apply consistent rules for evaluation.

AI and Rule-Based Systems:

ArtificialIntelligenceprovidesmechanisms for decision-making through logical rules. In this system, *if-else* conditions act as AI rules that classify results. For example:

- If Attendance ≥ 70 , Internal Marks ≥ 50 , and Final Marks $\geq 60 \rightarrow Pass$
- Else \rightarrow Fail

Justification:

Thisapproach avoids subjective judgment and ensures equal evaluation criteria for all students. It is efficient, transparent, and easy to modify for different academic institutions.

ALGORITHM EXPLANATION WITH EXAMPLE

- > Start the program.
- Input student details: name, attendance, internal marks, and final marks.
- If attendance ≥ 70 and internal ≥ 50 and final $\geq 60 \rightarrow$ classify as Pass.
- Else classify as Fail.
- Display results for all students.
- Show summary of total, passed, and failed students.
- ➤ Stop.
- Example:

If a student has 85% attendance, 78 internal marks, and 82 final marks, the conditions are met — the system classifies the student as **Pass**.

IMPLEMENTATION AND CODE

```
# ------
# STUDENT RESULT CLASSIFICATION SYSTEM
# ------
# AIM:
```

```
To classify students as Pass or Fail based on Attendance,
      Internal Marks, and Final Marks using simple AI logic.
# Step 1: Define Student Data
students = [
   {"Name": "Arun", "Attendance": 85, "Internal_Marks": 78, "Final_Marks": 82},
    {"Name": "Bala", "Attendance": 60, "Internal Marks": 55, "Final Marks": 50},
   {"Name": "Chitra", "Attendance": 75, "Internal_Marks": 68, "Final_Marks":
70},
    {"Name": "Deepa", "Attendance": 45, "Internal_Marks": 42, "Final_Marks": 35},
   {"Name": "Elango", "Attendance": 90, "Internal_Marks": 82, "Final_Marks":
88},
   {"Name": "Fathima", "Attendance": 55, "Internal_Marks": 48, "Final_Marks":
45},
   {"Name": "Ganesh", "Attendance": 80, "Internal_Marks": 74, "Final_Marks":
75},
    {"Name": "Harini", "Attendance": 40, "Internal_Marks": 39, "Final_Marks":
40},
    {"Name": "Ishaan", "Attendance": 78, "Internal_Marks": 70, "Final Marks":
73},
    {"Name": "Jaya", "Attendance": 66, "Internal_Marks": 60, "Final_Marks": 65}
# Step 2: Define classification function
def classify_student(attendance, internal, final):
   Function to classify students as Pass or Fail.
   The rule is based on simple threshold values:
    - Attendance must be at least 70%
   - Internal marks must be 50 or more
    - Final exam marks must be 60 or more
   if attendance >= 70:
        if internal >= 50:
            if final >= 60:
                return "Pass"
            else:
                return "Fail"
        else:
           return "Fail"
    else:
```

```
return "Fail'
# Step 3: Function to display student data neatly
def display_header():
   print("\n  STUDENT RESULT CLASSIFICATION SYSTEM")
   print("-" * 65)
   print("{:<10} {:<12} {:<15} {:<15} {:<10}".format(</pre>
        "Name", "Attendance", "Internal_Marks", "Final_Marks", "Result"
    ))
   print("-" * 65)
# Step 4: Display each student's result
def display results(students):
   Loops through the student list and prints
   their marks along with classification result.
   for student in students:
       name = student["Name"]
        attendance = student["Attendance"]
        internal = student["Internal_Marks"]
       final = student["Final Marks"]
        result = classify_student(attendance, internal, final)
        # print each student's details in a table format
        print("{:<10} {:<12} {:<15} {:<15} {:<10}".format(</pre>
            name, attendance, internal, final, result
        ))
# Step 5: Display analysis summary
def display_summary(students):
   """ Displays number of students who passed and failed.
   This gives an overall summary of the class performance.
   """ passed = 0 failed = 0
```

```
for student in students:
       result= classify_student(student["Attendance"],
                                 student["Internal_Marks"],
                                 student["Final_Marks"])
       ifresult =="Pass":
           passed+=1
       else:
           failed+=1
   total = len(students)
   print("-" * 65)
   print(f"TotalStudents : {total}")
                          : {passed}")
   print(f"Passed
                          failed}")
   print(f"Failed
   print("-" * 65)
# Step 6: Main Program Execution
def main():
   display_header() display_results(students) display_summary(students)
   print("\n√ Classification Completed Successfully!\n")
   print("This simple AI-based program uses rule-based logic instead of complex
ML models.")
   print("Each student's result is predicted using manually set conditions.\n")
# Run the program
if __name__ == "__main__":
   main()
```

OUTPUT

		Internal_Marks	Final_Marks	Result
Arun	85	 78	82	Pass
Bala	60	55	50	Fail
Chitra	75	68	70	Pass
Deepa	45	42	35	Fail
	90	82	88	Pass
Fathima	55	48	45	Fail
Ganesh	80	74	75	Pass
Harini	40	39	40	Fail
Ishaan	78	70	73	Pass
Jaya	66	60	65	Fail
Total Stu	dents : 10			
Passed	: 5			
Failed	: 5			

RESULTS AND FUTURE ENHANCEMENT

Results:

The project successfully classifies students' results using simple AI rule-based logic. The system produces accurate, unbiased, and fast classification results compared to manual evaluation.

Future Enhancements:

- Integrate real student data from a database or Excel sheet.
- Add a Graphical User Interface (GUI) for easier use.
- Extend to include grade prediction (A, B, C, etc.).
- Implement using machine learning for adaptive grading

Git Hub Link of the project and	https://github.com/sakthi-janakiraman/Ai-mini-project-		
report	/tree/8d45a16b742284db984d51d007d500f237db8945		

Student Result Classification System

REFERENCES

- > Python Programming for Beginners John Zelle
- Artificial Intelligence: A Modern Approach Stuart Russell & Peter Norvig
- TutorialsPoint Python Decision Making
- GeeksforGeeks Rule-Based Systems in AI
- Towards Data Science Introduction to Automation in Education