

Dipartimento di Matematica Corso di Laurea Triennale in Matematica

Fisica I con Laboratorio

Professore:Prof. Ignazio Bombaci

Autore: Camilla Poscia

Indice

1	Grandezze fisiche e loro misurazione				
	1.1 Grandezze e unità di misura	2			
	1.1.1 Grandezze fisiche	4			
2	Vettori in fisica				
	2.1 Prodotti scalari e vettoriali	4			
3	Cinematica del punto	5			

Capitolo 1

Grandezze fisiche e loro misurazione

1.1 Grandezze e unità di misura

La fisica è una scienza quantitativa, basata su misure, quindi su esperimenti. Ciascuna misura presuppone la scelta di una unità di misura e di strumenti di misurazione.

Le unità di misura possono essere: fondamentali (permettono di esprimere l'unità di misura di ogni altra grandezza fisica) e derivate.

Le grandezze fondamentali che interessano a noi per questo corso sono quelle relative alla meccanica che, nel SI (Sistema Internazionale) sono: la **lunghezza** (metro - m), la **massa** (chilogrammo - kg) e il **tempo** (secondo - s).

Alcuni esempi di grandezze derivate sono la velocità, che è definita (come vedremo) $v = \frac{\Delta s}{\Delta t}$ con unità di misura $\frac{m}{s}$ e l'accelerazione, cioè $v = \frac{\Delta v}{\Delta t}$. L'unità di misura si ottiene a partire da quelle della velocità $(\frac{m}{s})$ e del tempo (s), che quindi fa ottenere: $\frac{m}{s \cdot s} = \frac{m}{s^2}$. In fisica è utile conoscere i prefissi per i multipli e i sottomultipli di una grandezza, che sono riassunti

In fisica è utile conoscere i prefissi per i multipli e i sottomultipli di una grandezza, che sono riassunti in figura 1.1

1.1.1 Grandezze fisiche

Le grandezze fisiche si suddividono in scalari, vettoriali e tensoriali.

- Grandezze scalari : Fissata un'unità di misura, sono caratterizzate da un numero e si indicano con una lettera maiuscola o minuscola (ad es. temperatura T). Un esempio di grandezza scalare è la pressione P con unità di misura Pa (Pascal). Essendo la pressione il rapporto tra una forza e una superficie, si avrà che $1Pa = 1\frac{N}{m^2} = 1\frac{Kg}{ms^2}$
- Grandezze vettoriali: Hanno intensità cioè il modulo o norma (indicata con $||\overrightarrow{v}||$ e sempre ≥ 0), direzione e verso. Alcuni esempi sono il vettore spostamento $\overrightarrow{\Delta}$, velocità \overrightarrow{v} e forza \overrightarrow{F} . In fisica, le grandezze vettoriali vengono rappresentate graficamente come dei segmenti orientati chiamati vettori, che sono approfonditi al capitolo 2.

fattore di moltiplicazione	prefisso	simbolo	valore
10 ²⁴	yotta	Y	1 000 000 000 000 000 000 000 000
10 ²¹	zetta	Z	1 000 000 000 000 000 000 000
10 ¹⁸	exa	E	1 000 000 000 000 000 000
10 ¹⁵	peta	Р	1 000 000 000 000 000
10 ¹²	tera	Т	1 000 000 000 000
10 ⁹	giga	G	1 000 000 000
10 ⁶	mega	M	1 000 000
10 ³	chilo	k	1 000
10 ²	etto	h	100
10 ¹	deca	da	10
10 ⁻¹	deci	d	0.1
10 ⁻²	centi	С	0.01
10 ⁻³	milli	m	0.001
10 ⁻⁶	micro	μ	0.000 001
10 ⁻⁹	nano	n	0.000 000 001
10 -12	pico	р	0.000 000 000 001
10 -15	femto	f	0.000 000 000 000 001
10 ⁻¹⁸	atto	а	0.000 000 000 000 000 001
10 ⁻²¹	zepto	Z	0.000 000 000 000 000 001
10 -24	yocto	у	0.000 000 000 000 000 000 000 001

Figura 1.1: Multipli e sottomultipli nel SI

Capitolo 2

Vettori in fisica

Le grandezze vettoriali si indicano come dei segmenti orientati la cui lunghezza è proporzionale all'intensità e la freccetta ne indica il verso.

Nelle grandezze vettoriali sono definite le stesse operazioni che valgono per gli spazi vettoriali in matematica.

Spazi vettoriali Uno spazio vettoriale su un campo \mathbb{K} è un insieme V che ha per elementi dei vettori e su cui sono definite due operazioni:

- somma: $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{r}$
- prodotto di un vettore per uno scalare: $\overrightarrow{ak} = \overrightarrow{b}$ $\forall k \in \mathbb{R}$

Queste due operazioni soddisfano le seguenti proprietà, che quindi valgono anche nel caso dei vettori:

• proprietà commutativa: $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$

2.1 Prodotti scalari e vettoriali

Prodotto scalare Il prodotto scalare tra due vettori dà come risultato una grandezza scalare che, come visto nella sezione 1.1.1 è un numero seguito da una unità di misura. Il prodotto scalare si definisce come:

$$\overrightarrow{a} \cdot \overrightarrow{b} = |a||b|cos(\theta)$$

in cui |a| e |b| sono rispettivamente i moduli dei vettori \overrightarrow{a} e \overrightarrow{b} e θ è l'angolo tra essi compreso, che si misura a partire dal primo fino al secondo vettore.

Ad esempio, se $a\perp b$, cioè i due vettori sono perpendicolari (l'angolo tra essi compreso è $\frac{\pi}{2}$) allora $\overrightarrow{a}\cdot \overrightarrow{b}=0$ perché $\cos(\frac{\pi}{2})=0$.

Proprietà Il prodotto scalare soddisfa alcune proprietà:

- commutativa: $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$;
- distributiva: $\overrightarrow{a} \cdot (\beta \overrightarrow{b} + \gamma \overrightarrow{c}) = \beta \overrightarrow{a} \cdot \overrightarrow{b} + \gamma \overrightarrow{a} \cdot \overrightarrow{c};$
- $\overrightarrow{a} \cdot \overrightarrow{a} = a^2$, cioè il prodotto scalare tra due vettori \overrightarrow{a} è pari al quadrato del modulo del vettore.

4

Capitolo 3

Cinematica del punto