Several people had questions about calculating byteOffset for the binary map file

based on Row & Col sent in, assuming you've perhaps swapped them to make sure Row > Col since we're only storing the lower-left triangle.

(Let's NOT calculate RRN from Row & Col first, and then calculate byteOffset based on RRN).

It's: sizeOfHeaderRec + sizeOfRowsBeforeThisRow + sizeOfColsBeforeThisColumnInThisRow where all numbers are shorts (2 bytes)

Let's assume HeaderRec is just a single short (check the specs, I don't remember).

Suppose you had a 5x5 square matrix (N = 5).

		0	1	2	3	4
0						
1	- [10				
2	- [20	30			
3	- [40	50	60		
4		70	80	90	99	

Stored in the file it's:

```
DATA VALUES: HeaderRec 10 20 30 40 50 60 70 80 90 99
BYTE NUMBERS: 0-1 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-19 20-21
```

Say we want Row 4, Col 3 which has the value 99.

```
sizeOfHeaderRec = 2 bytes
sizeOfRowsBeforeThisRow = (1 + 2 + 3) * 2 bytes = 12 bytes
sizeOfColsBeforeThisColumnInThisRow = (1 + 2) * 2 bytes = 6 bytes
```

byteOffset = 2 + 12 + 6 = 20 OK, that's right

What's the generic formula for the sum of the first M numbers? (M * (M+1)) / 2

In the sizeOfRows... calculation that's the sum of the first Row-1 numbers, or ((Row-1)*(Row-1+1))/2

In the sizeOfCols... calculation that's the sum of the first Col-1 numbers, or ((Col-1) * (Col-1+1)) / 2

Say we want Row 1, Col 0, which has the value 10.

byteOffset =
$$2 + ((R * (R-1)) / 2) + ((C * (C-1)) / 2)$$

= $2 + ((1* 0) / 2) + ((0* -1) / 2)$
= $2 + 0 + 0$
= 2 OK, that's right