Universidade de Aveiro Departamento de Matemática

Cálculo II - Agrupamento 4

2020/21

Folha 1: Soluções

- 1. (a)]-1,1[, sendo absolutamente convergente em todos os pontos desse intervalo.
 - (b) \mathbb{R} , sendo absolutamente convergente em todos os pontos desse intervalo.
 - (c)]-1,1], sendo simplesmente convergente em x=1 e absolutamente convergente nos restantes pontos.
 - (d) [1, 2[, sendo simplesmente convergente em x = 1 e absolutamente convergente nos restantes pontos.
 - (e) \mathbb{R} , sendo absolutamente convergente em todos os pontos desse intervalo.
 - (f) {2}, sendo absolutamente convergente nesse ponto
 - (g) [-3, -1[, sendo simplesmente convergente em x = -3 e absolutamente convergente nos restantes pontos.
 - (h) $\left[-\frac{1}{3}, \frac{1}{3}\right]$, sendo absolutamente convergente em todos os pontos desse intervalo.
 - (i) [-1,1[, sendo simplesmente convergente em x=-1 e absolutamente convergente nos restantes pontos.
 - (j) $]-\frac{4}{3}, \frac{8}{3}]$, sendo simplesmente convergente em $x = \frac{8}{3}$ e absolutamente convergente nos restantes pontos.
 - (k) [0, 4], sendo absolutamente convergente em todos os pontos desse intervalo.
 - (1) $]-\frac{1}{2},\frac{1}{2}]$, sendo simplesmente convergente em $x=\frac{1}{2}$ e absolutamente convergente nos restantes pontos.
- 2. —
- 3. (a) $T_0^3(x^3 + 2x + 1) = x^3 + 2x + 1$
 - (b) $T_{\pi}^{3}(\cos x) = -1 + \frac{(x-\pi)^{2}}{2}$
 - (c) $T_1^3(xe^x) = e + 2e(x-1) + \frac{3}{2}e(x-1)^2 + \frac{2}{3}e(x-1)^3$
 - (d) $T_0^5(\operatorname{sen} x) = x \frac{x^3}{3!} + \frac{x^5}{5!}$
 - (e) $T_0^6(\operatorname{sen} x) = x \frac{x^3}{3!} + \frac{x^5}{5!}$
 - (f) $T_1^n(\ln x) = (x-1) \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 + \dots + \frac{(-1)^{n-1}}{n}(x-1)^n$.
- 4. (a) $e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \frac{e^{\theta}}{(n+1)!} x^{n+1}$, para algum θ entre $0 \in x$.
 - (b) -
 - (c) Por exemplo, $\frac{1}{\sqrt{e}} \simeq T_0^2 f(-\frac{1}{2}) = 1 \frac{1}{2} + \frac{1}{8} = \frac{5}{8} = 0.625$, com erro inferior a $\frac{1}{6}$.
- 5. $|R_5(3)| \leq \frac{(3-\pi)^6}{6!}$
- 6. —
- 7. (a) $T_1^n(\frac{1}{x}) = 1 (x-1) + (x-1)^2 + \dots + (-1)^n(x-1)^n, \quad n \in \mathbb{N}.$
 - (b) n = 3 (ou outro superior a este).

8.
$$n = 6$$
.

10. (a)
$$\sum_{n=0}^{\infty} 3^n x^n$$
, para $-\frac{1}{3} < x < \frac{1}{3}$;

10. (a)
$$\sum_{n=0}^{\infty} 3^n x^n$$
, para $-\frac{1}{3} < x < \frac{1}{3}$;
(b) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} x^n$, para $-2 < x < 2$;
(c) $\sum_{n=0}^{\infty} (-1)^n (x-1)^n$, para $0 < x < 2$.

(c)
$$\sum_{n=0}^{\infty} (-1)^n (x-1)^n$$
, para $0 < x < 2$

11.
$$\frac{1}{x+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^{n+1}} (x-3)^n, \quad x \in]-1,7[.$$