

Technische Informatik: Abgabe 8

Michael Mardaus Andrey Tyukin

15. Dezember 2013

Exercise 8.1 (JK Flipflop Ringcounter)

@Andrey You wanted to try to get to that circuit, right? It should work out if you name the states naturally from 000 to 111.

Exercise 8.2 (JK Flipflip for 4 equal inputs)

First we make one input signal w out of the w_1 and w_2 to make the automaton simpler. Therefore we XOR the two signals to one. If both signals are equal XOR makes w=0. If they are different XOR will be w=1. The state diagram for the automaton:

State	Next state										
		w =	: 0								
$y_2y_1y_0$	$Y_2Y_1Y_0$	J_2K_2	J_1K_1	J_0K_0	$Y_2Y_1Y_0$	J_2K_2	J_1K_1	J_0K_0	z		
000	001	0d	0d	1d	000	0d	0d	0d	0		
001	010	0d	1d	d1	000	0d	0d	d1	0		
010	011	0d	d0	1d	000	0d	d1	0d	0		
011	100	1d	d1	d1	000	0d	d1	d1	0		
100	100	d0	0d	0d	000	d1	0d	0d	1		
101	ddd	dd	dd	dd	000	dd	dd	dd	d		
110	ddd	dd	dd	dd	000	dd	dd	dd	d		
111	ddd	dd	dd	dd	000	dd	dd	dd	d		

This leads to these K-maps:

J_0	y_1y_0				J_1		y_1	y_0		J_2	$y_1 y_0$			
wy_2	00	01	11	01	wy_2	00	01	11	01	wy_2	00	01	11	01
00	1	d	d	1	00		1	d	d	00			1	
01		d	d	d	01		d	d	d	01	d	d	d	d
11		d	d	d	11		d	d	d	11	d	d	d	d
10		d	d		10			d	d	10				

K_0	$y_1 y_0$			K_1	$y_1 y_0$				K_2	$y_1 y_0$				
wy_2	00	01	11	01	wy_2	00	01	11	01	wy_2	00	01	11	01
00	d	1	1	d	00	d	d	1		00	d	d	d	d
01	d	d	d	d	01	d	d	d	d	01		d	d	d
11	d	d	d	d	11	d	d	d	d	11	1	d	d	d
10	d	1	1	d	10	d	d	d	1	10	d	d	d	d

These K-maps lead us to:

$$\begin{array}{rcl} J_0 & = & \bar{w}\bar{y}_2 \\ J_1 & = & \bar{w}y_0 \\ J_2 & = & \bar{w}y_1y_0 \\ K_0 & = & 1 \\ K_1 & = & w+y_0 \\ K_2 & = & w \end{array}$$

Which brings us to this circuit:

Exercise 8.3 (TODO)

TODO Andrey?