

Course > Week 2 > Home... > hw1_se...

hw1_search_q13_a*_cscs

Question 13: A*-CSCS

0.0/2.0 points (graded)

Recall that a dictionary, also known as a hashmap, works as follows:

Inserting a key-value pair into a dictionary when the key is not already in the dictionary adds the pair to the dictionary:

```
\begin{array}{l} \textit{dict} \leftarrow \text{ an empty dictionary} \\ \textit{dict}[\text{``key''}] \leftarrow \text{``value''} \\ \\ \textit{print } \textit{dict}[\text{``key''}] \\ \rightarrow \text{``value''} \end{array}
```

Updating the value associated with a dictionary entry is done as follows:

```
dict["key"] ← "new value"

print dict["key"]

→ "new value"
```

We saw that for A^* graph search to be guaranteed to be optimal the heuristic needs to be consistent. In this question we explore a new search procedure using a dictionary for the closed set, A^* -graph-search-with-Cost-Sensitive-Closed-Set (A^* - CSCS).

```
function A*-CSCS-GRAPH-SEARCH(problem, fringe, strategy) return a solution, or failure

closed ← an empty dictionary
fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

if fringe is empty then return failure

node ← REMOVE-FRONT(fringe, strategy)
if GOAL-TEST(problem, STATE[node]) then return node

if STATE[node] is not in closed or COST[node] < closed[STATE[node]] then

closed[STATE[node]] ← COST[node]

for child-node in EXPAND(node, problem) do
fringe ← INSERT(child-node, fringe)
end
end
```

Rather than just inserting the last state of a node into the closed set, we now store the last state paired with the cost of the node. Whenever A^* - CSCS considers expanding a node, it checks the closed set. Only if the last state is not a key in the closed set, or the cost of the node is less than the cost associated with the state in the closed set, the node is expanded.

For $\operatorname{regular} A^*$ graph search which of the following statements are true?

lacklesign If $m{h}$ is consistent, then $m{A^*}$ graph search finds an optimal solution. lacklesign

Consistency ensures that the first time we expand a state, the cost to that state is optimal. This is important for A* graph search, because the first time a state is expanded, it will go in the closed set, and it will NEVER be expanded again.

Submit

1 Answers are displayed within the problem

problem

0.0/2.0 points (graded)

In each of the following parts, select all true statements about A^* -CSCS

🗹 If \pmb{h} is admissible, then $\pmb{A^*}$ - CSCS finds an optimal solution. 🗸

lacktriangledown If $m{h}$ is consistent, then $m{A^*}$ - CSCS finds an optimal solution. $m{\checkmark}$

There are two changes between A*-CSCS and normal A* graph search.

- 1) The closed set of states is now a dictionary: (key, value) = (state, cost of state)
- 2) We will expand a state S if S is not in the closed set OR the current cost of S is better than the last best cost of S we've found

We do not need consistency for A*-CSCS, because we can expand a state once suboptimally, and then expand it again in a more optimal way. So both are true.

-		1					
\langle	11	n	r	Υ	٦	ı	Ť
$_{-}$	ч	\sim	1	н	ч	ı	L

1 Answers are displayed within the problem

problem

0.0/2.0 points (graded)

- ✓ If h is admissible, then A^* CSCS will expand at most as many nodes as A^* tree search. ✓
- ✓ If h is consistent, then A^* CSCS will expand at most as many nodes as A^* tree search. ✓

A* tree search will expand every state that comes off of the fringe, while A*-CSCS will only expand the states that meet both conditions. Therefore, A* tree search will always expand more nodes than A*-CSCS, regardless of the heuristic value. So both are true.

Submit

1 Answers are displayed within the problem

problem

0.0/2.0 points (graded)

- lacksquare If $m{h}$ is admissible, then $m{A^*}$ CSCS will expand at most as many nodes as $m{A^*}$ graph search.
- If h is consistent, then A^* CSCS will expand at most as many nodes as A^* graph search. \checkmark

When we have a consistent heuristic, the new condition in A*-CSCS (the current cost of S is better than the last best cost of S we've found) will never be true, because every time we expand a state S, the cost to that state would be optimal. Therefore, given a consistent

heuristic, A*-CSCS will expand the same states as A* graph search.

When we have an admissible heuristic, A*-CSCS may re-expand some of the states in the closed set, while A* graph search will never re-expand any states, so A*-CSCS will expand more states.

So admissible is false, consistent is true.

Submit

1 Answers are displayed within the problem

© All Rights Reserved