NUMÉRATION - CODAGE Questionnaire – QCM

Cocher les cases ou répondre dans l'espace réservé

1. Trouver *l'équivalent décimal* des plus grands nombres de quatre chiffres (A₃A₂A₁A₀) dans les systèmes de numération binaire, décimal et hexadécimal.

binaire : 2 à la puissance 4 - 1 = 15 décimal : 9999 hexadécimal: FFFF = 1111 1111 1111

2. Convertir en décimal, en décimal codé binaire (code BCD) et en hexadécimal, le nombre N suivant : N = (11010001)2

(209) 10 (209)BCD (D1) 16

3. Convertir les nombres suivants en base 10 et en base 2 :

```
$1FF = (0001111111111)2

(15 + 15*16 + 16*16) 10

$10 = (16)10

(10010011)_{BCD} = (93) 10
```

4- Soit le nombre (1234567)₁₀

le chiffre 5 est de rang : ☐ 3

☐ 2
☐ 100
☐ autre

5-	- Soit le même nombre (1234567) ₁₀		
	le rang du chiffre 7 :	□7	
		□1	
		□ 0	
		□ autre	
6-	La conversion du nombre (000101110001) _{BCD} en son équivalent en décimal donne :		
	□ 171 □ 369	\Box 103 \Box autre et lequel ?	
7-	La conversion du nombre $(000101110001)_2$ en son équivalent en hexadécimal donne :		
	□ АВ □ ВА	\Box 171 \Box autre et lequel ?	
8-	Donner l'équivalent en décimal du nombre N = (1111) ₂		
	□ 10 □ 11	□ 1000 □ □ Vautre et lequel ?	15
9-	Ecrire les nombres suivants sou $(1AF)_{16} = \cdots$ $(11101)_2 =$	ous forme polynomiale (ou forme développée)	
10-	- La conversion du nombre (110	00001) ₂ en son équivalent en hexadécimal donne	≘:
	□ C1 □ 105	5 □ 75 □ autre et lequel ?	61
11-	L- La conversion du nombre (11000011) ₂ en son équivalent en décimal donne :		
	□ 123 □ C3	□ 103 □ autre et lequel ?	195
12-	- Donner l'équivalent en hexadé	écimal du nombre N = (11110000) ₂ F0	

13-	Un microprocesseur est caractérisé par un bus de données sur 8 lig	nes et un bus d'adresses
	sur 16 lignes. Quelle est la taille de l'espace mémoire adressable ?	64 ko

14- Pour le microprocesseur précédent, combien dispose-t-on d'adresses ?

65536

15- Indiquer la parité des messages binaires suivants :

xor=1 si nbr impair de bits à 1

10000011 □ pair □ impair

16- Représentation Binaire des nombres négatifs

On dispose d'1 octet pour écrire des nombres avec leur signe algébrique.

Donner en code binaire l'équivaut des nombres décimaux suivants : +127, +63, +4 ainsi que la représentation des nombres négatifs : -127, -63, -4 en utilisant le complément vrai.

+127 = 0111 1111 -127 = (0111 1111) complément +1 = 1000 0001

+63= 0011 1111 (format 8 bit)

17 -	Ecrire sur un octet (8 bits) les nombres A et B, en utilisant le complément à 2 pour représenter	
les nombres négatifs.		

$$A = (+113)_{10}$$

$$B = (-26)_{10}$$

A=

B=

18- Déterminer la valeur décimale des deux nombres écrits en complément à 2 :

$$C = 11010011$$

$$D = 01111001$$

C=

D=

19- Quel est le plus grand nombre binaire **positif** que l'on peut écrire sur 8 bits en complément à 2 ?

Donner son équivalent en base 10 ?

127

20- Quel est le plus petit nombre binaire négatif que l'on peut écrire sur 8 bits en complément à 2 ?

Donner son équivalent en base 10 ?

-128