NVIDIA交互式GPU训练平台: DIGITS

AGENDA

开源免费的深度学习管理工具

- 1. DIGITS诞生背景及功能简介
- 2. DIGITS 的训练数据集导入
- 3. DIGITS 的基本模型训练操作:图片分类
- 4. DIGITS 用于目标检测
- 5. DIGITS 用于图像分割
- 6. DIGITS 迁移学习的使用
- 7. DIGITS Plugin的使用

传统的深度学习开发界面

- DL frameworks, Caffe, etc. aimed at computer scientist not data scientist
- Juggle multiple files & windows
- Handcrafted visualizations
- Manual log file parsing
- Manual experiment logging
- Model editing in Lua IDE files

```
.Sequential {
[input \rightarrow (1) \rightarrow (2) \rightarrow (3) \rightarrow (4) \rightarrow (5) \rightarrow (6) \rightarrow (7)
(1): nn.SpatialConvolutionMM(3 -> 64, 5x5)
(2): nn. Tanh
(3): nn.Sequential {
  [input -> (1) -> (2) -> (3) -> (4) -> output]
  (1): nn.Square
  (2): nn.SpatialAveragePooling(2,2,2,2)
  (3): nn.MulConstant
(4): nn.SpatialSubtractiveNormalization
(5): nn.SpatialConvolutionMM(64 -> 64, 5x5)
(6): nn. Tanh
(7): nn.Sequential {
  [input \rightarrow (1) \rightarrow (2) \rightarrow (3) \rightarrow (4) \rightarrow output]
  (1): nn.Square
  (2): nn.SpatialAveragePooling(2,2,2,2)
  (3): nn.MulConstant
  (4): nn.Sgrt
(8): nn.SpatialSubtractiveNormalization
(9): nn.Reshape(1600)
(10): nn.Linear(1600 -> 128)
(11): nn. Tanh
(12): nn.Linear(128 -> 10)
```


NVIDIA'S DIGITS

交互式深度学习GPU训练系统

- 简化通用的深度学习任务如:
 - 管理数据
 - 在多GPU系统上设计并训练神经网络
 - 使用高级可视化界面,监控实时性能
- 完全的交互式界面,使得数据科学家可以专注在设计及训练网络,节约编程及调试代码的时间
- 开源、免费

NVIDIA DIGITS

交互式深度学习GPU训练平台

数据加载

配置神经网络

监控训练过程

校验训练精度

DIGITS - HOME

DIGITS - DATASET

New Image Class	ificatio	n Dataset	ckillam (Logout)	Info ≁ Abo			
mage Type ⊙		Use Image Folder					
Color		Training Images •					
Image size (Width x Height) •		folder or URL					
256 x 256		Minimum samples per class ❸	Maximum samples per class ②				
Resize Transformation 0		2					
Squash		% for validation 9	% for testing ②	% for testing Q			
See example		25	0				
		☐ Separate test images folder					
DB backend			v				
		dina O					
Image Enco			v				
	Group Name	,					
	Dataset Nam	ne					
	Create						

Different options will be presented based upon the task

DIGITS - MODEL

Differences may exist between model tasks

DIGITS- 模型编程入口及可视化

MODIFY THE NETWORK

Adding filters and ReLU layer

```
layer {
        name: "pool1"
        type: "Pooling"
layer {
        name: "reluP1"
        type: "ReLU"
        bottom: "pool1"
        top: "pool1"
layer {
        name: "reluP1"
```

```
layer {
  name: "conv1"
  type: "Convolution"
        convolution_param {
        num output: 75
layer {
        name: "conv2"
        type: "Convolution"
        convolution param {
        num_output: 100
```

scaled conv1 pool1 conv2 loss (SoftmaxWithLoss)

pool1

(MAX Pooling)

kernel size: 2

stride: 2 pad: 0

pool1

conv2 (Convolution)

kernel size: 5

stride: 1

pad: 0

MODIFY THE NETWORK

12 **ON INVIDIA**

文件

DIGITS 的功能

图像分类

98% Dog 2% Cat

Classify images into classes or categories

Object of interest could be anywhere in the image

Find instances of objects in an image

Objects are identified with bounding boxes

Partition image into multiple regions

Regions are classified at the pixel level

DIGITS 的训练数据集导入

DIGITS: 图片分类的训练数据集格式

DIGITS: 图片分类

创建用于训练的数据集:

- 1. 定义图像类型、尺寸、变换方式等
- 2. 定义图片数据集在服务器中的地址 或者网络中的地址
- 3. 定义训练集和验证集的比例大小以 及详细信息
- 4. 定义图片的编码格式以及训练集的 格式
- 5. 给数据集命名

New Image Classification Dataset Use Image Folder Use Text Files Use S3 Image Type 🕢 Color Training Images @ Image size (Width x Height) @ folder or URL x 256 Minimum samples per class @ Maximum samples per class @ Resize Transformation Q Squash % for testing 0 % for validation @ Separate validation images folder Separate test images folder DB backend LMDB Image Encoding @ PNG (lossless Group Name Dataset Name

DIGITS: 图片分类

定义训练参数:

- 1. 选择已经创建好的数据集
- 2. 定义Epoch,batchsize,base_lr等训练 参数
- 3. 选择使用的训练框架
- 4. 选择或者自定义网络结构
- 5. 给训练的模型命名

NVIDIA DIGITS

图片分类校验结果输出

DIGITS: 目标检测的训练数据集格式

每张图片对应有一个和它相同名字的label文件, label文件中包含了对应图片中目标的类别和代表位置的矩形框信息

S 称	大小 压	宿居 名称	大小	压缩后大小	类型	修改时间	CRC32
.					Local Disk		
ີ 000000.png	974,013	9 📄 000000.txt	87	87	Text Document	8/6/2012 8:49 PM	8463E82E
000001.png	806,039	8 000001.txt	565	565	Text Document	8/6/2012 8:48 PM	0A7C5C2F
000002.png	981,429	9 000002.txt	164	164	Text Document	8/6/2012 8:49 PM	E087B097
000003.png	721,309	7 000003.txt	234	234	Text Document	8/6/2012 8:49 PM	4A81A2FC
000004.png	853,446	8 000004.txt	556	556	Text Document	8/6/2012 8:48 PM	3DA28D38
000005.png	967,522	9 000005.txt	400	400	Text Document	8/6/2012 8:49 PM	88BFCDE5
000006.png	811,426	8 000006.txt	486	486	Text Document	8/6/2012 8:49 PM	1E2E53AB
000007.png	884,873	8 📄 000007.txt	487	487	Text Document	4/8/2015 12:03 AM	E7828B01
000008.png	853,828	8 000008.txt	798	798	Text Document	8/6/2012 8:49 PM	76210665
000009.png	893,482	8 000009.txt	399	399	Text Document	8/6/2012 8:48 PM	7BC798E4
ີ 000010.png	716,559	7 000010.txt	1,050	1,050	Text Document	8/6/2012 8:49 PM	3EA9E58C
000011.png	806,035	8 000011.txt	740	740	Text Document	8/6/2012 8:49 PM	E17802B2
000012.png	671,005	6 000012.txt	398	398	Text Document	8/6/2012 8:48 PM	EC95EE2C
000013.png	930,121	9 000013.txt	159	159	Text Document	8/6/2012 8:49 PM	4F326C76
000014.png	886,038	8 000014.txt	236	236	Text Document	8/6/2012 8:48 PM	0365BED8
000015.png	849,070	8 📄 000015.txt	824	824	Text Document	8/6/2012 8:49 PM	B0F7048F
000016.png	782,362	7 000016.txt	1,753	1,753	Text Document	8/6/2012 8:48 PM	1308835E
000017.png	721,620	7 000017.txt	160	160	Text Document	8/6/2012 8:48 PM	FC3601E3
000018.png	826,091	8 000018.txt	1,587	1,587	Text Document	8/6/2012 8:48 PM	B28C21E7
000019.png	732,960	7 000019.txt	480	480	Text Document	8/6/2012 8:49 PM	E0F50280
000020.png	883,903	8 📄 000020.txt	82	82	Text Document	8/6/2012 8:49 PM	FA68ABF4
000021.png	839,094	8 000021.txt	815	815	Text Document	8/6/2012 8:49 PM	F70349C7
000022.png	857,360	8 000022.txt	245	245	Text Document	8/6/2012 8:49 PM	DE235CB3
000023.png	875,918	8 000023.txt	487	487	Text Document	8/6/2012 8:48 PM	4B96B1D0
000024.png	855,197	8 000024.txt	562	562	Text Document	8/6/2012 8:49 PM	8933C5D3
000025.png	821,887	8 000025.txt	726	726	Text Document	8/6/2012 8:49 PM	E006D36E
000026.png	813,636	8 000026.txt	165	165	Text Document	8/6/2012 8:49 PM	0CBE7D7E
000027.png	767,925	7 000027.txt	241	241	Text Document	8/6/2012 8:48 PM	7A56D0AA
000028.png	879,097	8 000028.txt	89	89	Text Document	8/6/2012 8:49 PM	7E1E3CC5
000000	005 507	A =					

DIGITS: 目标检测

创建用于训练的数据集:

- 1. 定义图像类型、尺寸、变换方式等
- 2. 定义图片数据集在服务器中的地址
- 3. 定义样本标签在服务器中的地址
- 4. 定义训练集和验证集的比例大小以 及详细信息
- 5. 定义图片的编码格式以及训练集的 格式
- 6. 给数据集命名

DIGITS: 目标检测

定义训练参数:

- 1. 选择已经创建好的数据集
- 2. 定义Epoch,batchsize,base_lr等训练 参数
- 3. 选择使用的训练框架
- 4. 选择或者自定义网络结构
- 5. 选择是否使用Pretrained Model
- 6. 给训练的模型命名

New Object Detection Model

NVIDIA DIGITS

目标检测校验结果输出

hbox-list

DIGITS: 图像分割的训练数据集格式

图像分割数据集中包含了图片样本,以及他们的label文件。这里的 label文件与之前的目标检测不同的地方在于,这个label文件本身也是一个图片的形式。它标注了对应的图片样本中,目标的边界。

DIGITS: 图像分割

New Segmentation Dataset

创建用于训练的数据集:

- 1. 定义图片数据集在服务器中的地址
- 2. 定义样本标签在服务器中的地址
- 3. 定义训练集和验证集的比例大小以 及详细信息
- 4. 定义图片的编码格式以及训练集的 格式
- 5. 定义样本标签的编码方式
- 6. 给数据集命名

Feature Encoding	
PNG (lossless)	▼
Label Encoding	
None	•
Encoder batch size \varTheta	
32	
Number of encoder threads \varTheta	
4	
DB backend	
LMDB	•
Enforce same shape 9	
Yes	•
Group Namo	

DIGITS: 图像分割

定义训练参数:

- 1. 选择已经创建好的数据集
- 2. 定义Epoch,batchsize,base Ir等训练 参数
- 3. 选择使用的训练框架
- 4. 选择或者自定义网络结构
- 选择是否使用Pretrained Model
- 6. 给训练的模型命名

New Image Model

segmentation1 Create

NVIDIA DIGITS

图像分割校验结果输出

■ chair ■ dog ■ tymonitor

NVIDIA DIGITS 模型输出

迁移学习在DIGITS里的使用

加载model store里的模型

© VGG-16 caffe

DetectNet (KITTI) caffe

- Image Classification: VGG-16,
- Object Detection: DetectNet

迁移学习在DIGITS里的使用

加载自己的模型

使用Plugin导入数据及自定义显示输出

GAN? 医疗影像分析? 文字语义识别? 更多类型的模型训练?

Plugin

Below is an example file tree for a data plugin:

```
sunnybook/

digitsDataPluginSunnybrook/
templates
dataset_template.html
inference_template.html
___init__.py
data.py
forms.py
MANIFEST.in
setup.py
```

```
class DatasetForm(Form):
   def validate_folder_path(form, field):
       if not field.data:
           if not os.path.exists(field.data) or not os.path.isdir(field.data):
              raise validators.ValidationError(
                   'Folder does not exist or is not reachable')
   image folder = utils.forms.StringField(
       u'Image folder',
       validators=[
           validators.DataRequired(),
          validate folder path,
       tooltip="Specify the path to the image folder"
   contour_folder = utils.forms.StringField(
       u'Contour folder',
           validators.DataRequired(),
           validate folder path,
       tooltip="Specify the path to the contour folder"
   channel_conversion = utils.forms.SelectField(
        'Channel conversion'.
       choices=[
           ('RGB', 'RGB'),
           ('L', 'Grayscale'),
       tooltip="Perform selected channel conversion."
   folder pct val = utils.forms.IntegerField(
       u'% for validation',
       default=10,
```

如何得到DIGITS

- Simple way:
- OS Ubuntu16.04
- Download link: https://developer.nvidia.com/digits

Others (from source code):

- Download NVIDIA-Caffe: https://github.com/NVIDIA/caffe
- Download Digits: https://github.com/NVIDIA/DIGITS
- More Examples: <u>https://github.com/NVIDIA/DIGITS/tree/master/examples</u>

Recommended HW/SW environment:

- GPU Compute Capability > 3.5 (Kepler and later), cuDNN v7
- OS Ubuntu16.04

深度学习培训 @ GTC CHINA 2018

6大主题全中文首发 | 6 折限时特惠 | 全配置GPU云实验环境 | 全球标准培训证书

自动驾驶感知

深度学习模型训练及部署至自动驾驶汽车核心DrivePX

计算机视觉升级版

快速入门深度学习完整实践流程

自然语言处理

用深度学习方法完成文本分类和机器翻译

查看课程和报名

游戏开发

训练深度强化学习代理玩星际争霸2

多数据类型

1天解锁计算机视觉和自然语言处理两大技能

创建数字内容

为媒体娱乐业注入"深度学习"新活力

培训咨询