



# FCC PART 15.247 TEST REPORT

For

## ZIONCOM ELECTRONICS (SHENZHEN) LTD.

Building A1-A2, Lantian Science and Technology Park, Xinyu Road, Xinqiao Henggang Block, Shajing Street, Baoan District, Shenzhen, China

**FCC ID: X7DIP04325** 

**Product Name:** Report Type: AC1200 Wireless Dual Band Gigabit Original Report Router **Report Number:** RDG171206018-00B **Report Date:** 2018-06-26 Jerry Zhang Jerry Zhang EMC Manager Reviewed By: Bay Area Compliance Laboratories Corp. (Dongguan) **Test Laboratory:** No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

**Note:** This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA\* or any agency of the Federal Government. \* This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "\*".

# **TABLE OF CONTENTS**

| GENERAL INFORMATION                                                     | 4  |
|-------------------------------------------------------------------------|----|
| PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)                      |    |
| OBJECTIVE                                                               |    |
| RELATED SUBMITTAL(S)/GRANT(S)                                           |    |
| TEST METHODOLOGY                                                        |    |
| TEST FACILITY                                                           |    |
|                                                                         |    |
| SYSTEM TEST CONFIGURATION                                               |    |
| DESCRIPTION OF TEST CONFIGURATIONEUT EXERCISE SOFTWARE                  |    |
| EQUIPMENT MODIFICATIONS                                                 |    |
| LOCAL SUPPORT EQUIPMENT LIST AND DETAILS                                | 9  |
| SUPPORT CABLE LIST AND DETAILS                                          |    |
| BLOCK DIAGRAM OF TEST SETUP                                             |    |
| SUMMARY OF TEST RESULTS                                                 | 11 |
| FCC §15.247 (i) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE) | 12 |
| APPLICABLE STANDARD                                                     | 12 |
| FCC §15.203 - ANTENNA REQUIREMENT                                       | 14 |
| APPLICABLE STANDARD                                                     |    |
| Antenna Connector Construction                                          | 14 |
| FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS                           | 15 |
| APPLICABLE STANDARD                                                     |    |
| EUT SETUP                                                               |    |
| EMI TEST RECEIVER SETUP.                                                |    |
| TEST PROCEDURE                                                          |    |
| CORRECTED AMPLITUDE & MARGIN CALCULATION                                |    |
| TEST EQUIPMENT LIST AND DETAILS<br>TEST DATA                            |    |
| FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS                  |    |
| APPLICABLE STANDARD                                                     |    |
| EUT SETUP                                                               |    |
| EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP                             | 20 |
| Test Procedure                                                          |    |
| CORRECTED AMPLITUDE & MARGIN CALCULATION                                |    |
| TEST EQUIPMENT LIST AND DETAILS                                         |    |
| TEST DATA                                                               |    |
| FCC §15.247(a) (2)–6 dB EMISSION BANDWIDTH                              |    |
| APPLICABLE STANDARD                                                     |    |
| TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS                          |    |
| TEST DATA                                                               |    |
| FCC §15.247(b) (3) - MAXIMUM PEAK CONDUCTED OUTPUT POWER                | 38 |
| APPLICABLE STANDARD                                                     | 38 |
| TEST PROCEDURE                                                          | 38 |

| TEST EQUIPMENT LIST AND DETAILS                          | 38 |
|----------------------------------------------------------|----|
| TEST DATA                                                |    |
| FCC §15.247(d)– 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE | 40 |
| APPLICABLE STANDARD                                      | 40 |
| TEST PROCEDURE                                           |    |
| TEST EQUIPMENT LIST AND DETAILS.                         | 40 |
| TEST DATA                                                | 41 |
| FCC §15.247(e) - POWER SPECTRAL DENSITY                  | 46 |
| APPLICABLE STANDARD                                      |    |
| TEST PROCEDURE                                           | 46 |
| TEST EQUIPMENT LIST AND DETAILS                          | 46 |
| TEST DATA                                                | 46 |

### **GENERAL INFORMATION**

### **Product Description for Equipment under Test (EUT)**

|                        | <b>EUT Name:</b>        | AC1200 Wireless Dual Band Gigabit Router |
|------------------------|-------------------------|------------------------------------------|
|                        | <b>EUT Model:</b>       | A3000RU                                  |
| M                      | <b>Sultiple Models:</b> | IP04325                                  |
|                        | FCC ID:                 | X7DIP04325                               |
| Rated                  | Input Voltage:          | DC 12V from adapter                      |
| 4.7                    | Model:                  | DCP007B122000U                           |
| Adapter<br>Information | Input:                  | 100-240Vac ~ 50/60Hz ,0.6A               |
| inioi mation           | Output:                 | DC12V, 2A                                |
| External Dimension:    |                         | 20.5cm(L)*16cm(W)*6.6cm(H)               |
| Serial Number:         |                         | 171206018                                |
| EUT                    | <b>Received Date:</b>   | 2017.12.06                               |

Note: The series product, models IP04325 are electrically identical with the model A3000RU, we selected A3000RU for fully testing .The difference between them was explained in the attached declaration letter.

### **Objective**

This report is prepared on behalf of *ZIONCOM ELECTRONICS (SHENZHEN) LTD*. in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communications Commission's rules.

The tests were performed in order to determine the compliance of the EUT with FCC Rules Part 15-Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

#### Related Submittal(s)/Grant(s)

FCC Part 15E NII submissions with FCC ID: X7DIP04325.

### **Test Methodology**

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices. And KDB 558074 D01 DTS Meas Guidance v04.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan).

### **Measurement Uncertainty**

| Parameter                         | Measurement Uncertainty                                                                                                                                |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Occupied Channel Bandwidth        | ±5 %                                                                                                                                                   |
| RF output power, conducted        | ±0.61dB                                                                                                                                                |
| Power Spectral Density, conducted | ±0.61 dB                                                                                                                                               |
| Unwanted Emissions, radiated      | 30M~200MHz: 4.58 dB for Horizontal, 4.59 dB for Vertical 200M~1GHz: 4.83 dB for Horizontal, 5.85 dB for Vertical 1G~6GHz: 4.45 dB, 6G~26.5GHz: 5.23 dB |
| Unwanted Emissions, conducted     | ±1.5 dB                                                                                                                                                |
| Temperature                       | ±1 ℃                                                                                                                                                   |
| Humidity                          | ±5%                                                                                                                                                    |
| DC and low frequency voltages     | ±0.4%                                                                                                                                                  |
| Duty Cycle                        | 1%                                                                                                                                                     |
| AC Power Lines Conducted Emission | 3.12 dB (150 kHz to 30 MHz)                                                                                                                            |

### **Test Facility**

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 897218,the FCC Designation No. : CN1220.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062D.

### SYSTEM TEST CONFIGURATION

### **Description of Test Configuration**

The system was configured for testing in Engineering Mode, which was provided by the manufacturer.

The device has 2 external antennas for 2.4GHz and 2 external antennas for 5GHz. For 2.4GHz band, 11 channels are provided:

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|
| 1       | 2412               | 7       | 2442               |
| 2       | 2417               | 8       | 2447               |
| 3       | 2422               | 9       | 2452               |
| 4       | 2427               | 10      | 2457               |
| 5       | 2432               | 11      | 2462               |
| 6       | 2437               | /       | /                  |

For 802.11b, 802.11g, and 802.11n ht20 modes were test with channel 1,6,11.

For 802.11n ht40 mode was tested with channel 3, 6, 9.

The worst-case data rates are determined to be as follows for each mode based upon investigations by measuring the average power and PSD across all data rates bandwidths, and modulations. The device supports SISO in all modes, and MIMO in 802.11n modes, per pretest, MIMO was the worst mode and reported for 802.11n modes.

#### **EUT Exercise Software**

The software "MP\_TEST" was used for testing, which was provided by manufacturer. The maximum power was configured as below table, that provided by the manufacturer:

| Software and version |         |           | MP_TEST   |         |         |
|----------------------|---------|-----------|-----------|---------|---------|
| Mode                 | Channel | Frequency | Data Rate | Power   | r Level |
| Wiode                | Chamie  | (MHz)     | (Mbps)    | Chain 0 | Chain 1 |
|                      | Low     | 2412      | 1         | 51      | 51      |
| 802.11b              | Middle  | 2437      | 1         | 51      | 51      |
|                      | High    | 2462      | 1         | 52      | 52      |
|                      | Low     | 2412      | 6         | 46      | 47      |
| 802.11g              | Middle  | 2437      | 6         | 47      | 48      |
|                      | High    | 2462      | 6         | 48      | 49      |
| 802.11n              | Low     | 2412      | MCS0      | 48      | 46      |
| 802.11h<br>ht20      | Middle  | 2437      | MCS0      | 50      | 48      |
| 11120                | High    | 2462      | MCS0      | 49      | 47      |
| 002.11               | Low     | 2422      | MCS0      | 46      | 45      |
| 802.11n<br>ht40      | Middle  | 2437      | MCS0      | 48      | 47      |
| 11140                | High    | 2452      | MCS0      | 46      | 45      |

The maximum duty cycle as following table:

| Test mode    | T <sub>on</sub> (ms) | T <sub>on+off</sub> (ms) | Duty Cycle<br>(%) |
|--------------|----------------------|--------------------------|-------------------|
| 802.11b      | 100                  | 100                      | 100               |
| 802.11g      | 100                  | 100                      | 100               |
| 802.11n ht20 | 100                  | 100                      | 100               |
| 802.11n ht40 | 100                  | 100                      | 100               |

### 802.11b



Date: 7.DEC.2017 16:40:15

### 802.11g



Date: 7.DEC.2017 16:40:34

### 802.11n ht20



Date: 7.DEC.2017 16:41:14







Date: 7.DEC.2017 16:41:49

### **Equipment Modifications**

No modification was made to the EUT.

### **Local Support Equipment List and Details**

| Manufacturer | Description    | Model | Serial Number |
|--------------|----------------|-------|---------------|
| DELL         | Laptop         | PP11L | QDS-BRCM1017  |
| Kinston      | USB Flash Disk | 4G    | /             |

### **Support Cable List and Details**

| Cable Description | Shielding Type | Ferrite Core | Length (m) | From Port           | То   |
|-------------------|----------------|--------------|------------|---------------------|------|
| RJ45 Cable        | yes            | No           | 10         | RJ45 Port of Laptop | EUT  |
| RJ45 Cable*4      | yes            | No           | 10         | EUT                 | Load |
| Adapter Cable     | No             | No           | 1.36       | Adapter             | EUT  |

### **Block Diagram of Test Setup**



### SUMMARY OF TEST RESULTS

| FCC Rules                              | Description of Test                      | Result     |
|----------------------------------------|------------------------------------------|------------|
| FCC \$15.207 (i) & \$1.1310 & \$2.1091 | Maximum Permissible Exposure (MPE)       | Compliance |
| §15.203                                | Antenna Requirement                      | Compliance |
| §15.207 (a)                            | AC Line Conducted Emissions              | Compliance |
| §15.205, §15.209,<br>§15.247(d)        | Spurious Emissions                       | Compliance |
| §15.247 (a)(2)                         | 6 dB Bandwidth                           | Compliance |
| §15.247(b)(3)                          | Maximum Conducted Output Power           | Compliance |
| §15.247(d)                             | 100 kHz Bandwidth of Frequency Band Edge | Compliance |
| §15.247(e)                             | Power Spectral Density                   | Compliance |

# FCC §15.247 (i) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

### **Applicable Standard**

According to subpart 15.247(i)and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

| (B) Limits for General Population/Uncontrolled Exposure |                                  |                                  |                        |                          |  |
|---------------------------------------------------------|----------------------------------|----------------------------------|------------------------|--------------------------|--|
| Frequency Range (MHz)                                   | Electric Field<br>Strength (V/m) | Magnetic Field<br>Strength (A/m) | Power Density (mW/cm²) | Averaging Time (minutes) |  |
| 0.3–1.34                                                | 614                              | 1.63                             | *(100)                 | 30                       |  |
| 1.34–30                                                 | 824/f                            | 2.19/f                           | *(180/f²)              | 30                       |  |
| 30–300                                                  | 27.5                             | 0.073                            | 0.2                    | 30                       |  |
| 300–1500                                                | /                                | /                                | f/1500                 | 30                       |  |
| 1500-100,000                                            | /                                | /                                | 1.0                    | 30                       |  |

f = frequency in MHz; \* = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

#### **Calculation formula:**

Prediction of power density at the distance of the applicable MPE limit

 $S = PG/4\pi R^2$  = power density (in appropriate units, e.g. mW/cm<sup>2</sup>);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \le 1$$

### **Calculated Data:**

| Frequency<br>(MHz)          | Ante  | nna Gain  | Conducted<br>output power<br>including Tune-<br>up Tolerance |        | Evaluation<br>Distance<br>(cm) | Power Density (mW/cm²) | MPE<br>Limit<br>(mW/cm²) |
|-----------------------------|-------|-----------|--------------------------------------------------------------|--------|--------------------------------|------------------------|--------------------------|
|                             | (dBi) | (numeric) | (dBm)                                                        | (mW)   |                                |                        |                          |
| 2412-2462                   | 5     | 3.16      | 28                                                           | 630.96 | 20.00                          | 0.40                   | 1.0                      |
| 5150-5250<br>&<br>5725-5850 | 5     | 3.16      | 20                                                           | 100.00 | 20.00                          | 0.06                   | 1.0                      |

The 2.4GHz band and 5GHz band can transmit simultaneously:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}}$$

$$=S_{2.4}/S_{limit-2.4} + S_5/S_{limit-5}$$

$$=0.46$$

Result: The device meet FCC MPE at 20 cm distance

### FCC §15.203 - ANTENNA REQUIREMENT

### **Applicable Standard**

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.
- c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

#### **Antenna Connector Construction**

The EUT have 2 external antennas for 2.4G Band, which was permanently attached to the Unit, both antenna gains are 5dBi. Please refer to the EUT photo.

Result: Compliance.

### FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

### **Applicable Standard**

FCC§15.207(a)

### **EUT Setup**



Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207.

The spacing between the peripherals was 10 cm.

The adapter was connected to the main lisn with a 120 V/60 Hz AC power source.

### **EMI Test Receiver Setup**

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

| Frequency Range  | IF B/W |  |  |
|------------------|--------|--|--|
| 150 kHz – 30 MHz | 9 kHz  |  |  |

#### **Test Procedure**

During the conducted emission test, the adapter was connected to the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

### **Corrected Amplitude & Margin Calculation**

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$
  
$$C_f = A_C + VDF$$

Herein,

V<sub>C</sub> (cord. Reading): corrected voltage amplitude

V<sub>R</sub>: reading voltage amplitude A<sub>c</sub>: attenuation caused by cable loss VDF: voltage division factor of AMN

C<sub>f</sub>: Correction Factor

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

### **Test Equipment List and Details**

| Manufacturer | Description        | Model     | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|--------------|--------------------|-----------|------------------|---------------------|-------------------------|
| R&S          | EMI Test Receiver  | ESCS 30   | 830245/006       | 2016-12-08          | 2017-12-08              |
| R&S          | L.I.S.N            | ESH2-Z5   | 892107/021       | 2017-09-01          | 2018-09-01              |
| R&S          | Two-line V-network | ENV 216   | 3560.6550.12     | 2016-12-08          | 2017-12-08              |
| Unknown      | Coaxial Cable      | C-NJNJ-50 | C-0200-01        | 2017-09-05          | 2018-09-05              |
| R&S          | Test Software      | EMC32     | Version8.53.0    | N/A                 | N/A                     |

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

### **Environmental Conditions**

| Temperature:       | 24.8℃    |
|--------------------|----------|
| Relative Humidity: | 40%      |
| ATM Pressure:      | 101.2kPa |

The testing was performed by Ade Xiao on 2017-12-07.

Test Mode: Transmitting (Wi-Fi 802.11b mode low channel was the worst)

### AC120 V, 60 Hz, Line:



| Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | Bandwidth<br>(kHz) | Line | Corr. (dB) | Margin (dB) | Limit<br>(dBµV) | Comment    |
|--------------------|---------------------|--------------------|------|------------|-------------|-----------------|------------|
| 0.198249           | 52.3                | 9.000              | L1   | 10.6       | 11.4        | 63.7            | Compliance |
| 0.270502           | 43.1                | 9.000              | L1   | 10.3       | 18.0        | 61.1            | Compliance |
| 0.304845           | 45.6                | 9.000              | L1   | 10.1       | 14.5        | 60.1            | Compliance |
| 0.322331           | 41.3                | 9.000              | L1   | 10.1       | 18.3        | 59.6            | Compliance |
| 0.399703           | 41.5                | 9.000              | L1   | 10.0       | 16.4        | 57.9            | Compliance |
| 0.585926           | 41.6                | 9.000              | L1   | 9.8        | 14.4        | 56.0            | Compliance |

| Frequency (MHz) | Average<br>(dBμV) | Bandwidth<br>(kHz) | Line | Corr. (dB) | Margin (dB) | Limit<br>(dBµV) | Comment    |
|-----------------|-------------------|--------------------|------|------------|-------------|-----------------|------------|
| 0.198249        | 38.5              | 9.000              | L1   | 10.6       | 15.2        | 53.7            | Compliance |
| 0.304845        | 26.6              | 9.000              | L1   | 10.1       | 23.5        | 50.1            | Compliance |
| 0.399703        | 27.5              | 9.000              | L1   | 10.0       | 20.4        | 47.9            | Compliance |
| 0.590613        | 32.0              | 9.000              | L1   | 9.8        | 14.0        | 46.0            | Compliance |
| 1.190776        | 22.5              | 9.000              | L1   | 9.8        | 23.5        | 46.0            | Compliance |
| 1.967177        | 22.6              | 9.000              | L1   | 9.7        | 23.4        | 46.0            | Compliance |

### Report No.: RDG171206018-00B

### AC120 V, 60 Hz, Neutral:



| Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | Bandwidth<br>(kHz) | Line | Corr. (dB) | Margin (dB) | Limit<br>(dBµV) | Comment    |
|--------------------|---------------------|--------------------|------|------------|-------------|-----------------|------------|
| 0.196675           | 51.1                | 9.000              | N    | 10.6       | 12.6        | 63.7            | Compliance |
| 0.292938           | 44.9                | 9.000              | N    | 10.2       | 15.5        | 60.4            | Compliance |
| 0.495646           | 38.1                | 9.000              | N    | 9.9        | 18.0        | 56.1            | Compliance |
| 0.595338           | 39.9                | 9.000              | N    | 9.8        | 16.1        | 56.0            | Compliance |
| 0.687153           | 35.5                | 9.000              | N    | 9.8        | 20.5        | 56.0            | Compliance |
| 1.209904           | 30.5                | 9.000              | N    | 9.8        | 25.5        | 56.0            | Compliance |

| Frequency<br>(MHz) | Average<br>(dBµV) | Bandwidth<br>(kHz) | Line | Corr. (dB) | Margin (dB) | Limit<br>(dBµV) | Comment    |
|--------------------|-------------------|--------------------|------|------------|-------------|-----------------|------------|
| 0.196675           | 32.9              | 9.000              | N    | 10.6       | 20.8        | 53.7            | Compliance |
| 0.402900           | 28.2              | 9.000              | N    | 10.0       | 19.6        | 47.8            | Compliance |
| 0.590613           | 35.5              | 9.000              | N    | 9.8        | 10.5        | 46.0            | Compliance |
| 1.082190           | 25.0              | 9.000              | N    | 9.8        | 21.0        | 46.0            | Compliance |
| 1.190776           | 25.2              | 9.000              | N    | 9.8        | 20.8        | 46.0            | Compliance |
| 1.488418           | 23.4              | 9.000              | N    | 9.7        | 22.6        | 46.0            | Compliance |

### FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

### **Applicable Standard**

FCC §15.247 (d); §15.209; §15.205;

### **EUT Setup**

#### **Below 1GHz:**



#### **Above 1GHz:**



The radiated emission Below 1GHz tests were performed in the 3 meters chamber test site A, above 1GHz tests were performed in the 3 meters chamber test site B, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

The spacing between the peripherals was 10 cm.

### **EMI Test Receiver & Spectrum Analyzer Setup**

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

30MHz-1000MHz:

| Measurement | RBW     | Video B/W | IF B/W |  |
|-------------|---------|-----------|--------|--|
| QP          | 120 kHz | 300 kHz   | 120kHz |  |

1GHz-25GHz:

| Measurement | Duty cycle | RBW  | Video B/W |
|-------------|------------|------|-----------|
| PK          | Any        | 1MHz | 3 MHz     |
| AV          | >98%       | 1MHz | 10 Hz     |
|             | <98%       | 1MHz | 1/T       |

Note: T is minimum transmission duration

#### **Test Procedure**

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

### **Corrected Amplitude & Margin Calculation**

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

### **Test Equipment List and Details**

| Manufacturer             | Description       | Model                      | Serial<br>Number   | Calibration<br>Date | Calibration<br>Due Date |
|--------------------------|-------------------|----------------------------|--------------------|---------------------|-------------------------|
| EMCO                     | Passive Loop      | 6512                       | 9706-1206          | 2017-03-05          | 2020-03-04              |
| Sunol Sciences           | Antenna           | JB3                        | A060611-1          | 2017-11-10          | 2020-11-10              |
| R&S                      | EMI Test Receiver | ESCI                       | 100224             | 2017-12-11          | 2018-12-11              |
| HP                       | Amplifier         | 8447D                      | 2727A05902         | 2017-09-05          | 2018-09-05              |
| Unknown                  | Coaxial Cable     | C-NJNJ-50                  | C-0400-01          | 2017-09-05          | 2018-09-05              |
| Unknown                  | Coaxial Cable     | C-NJNJ-50                  | C-0075-01          | 2017-09-05          | 2018-09-05              |
| Unknown                  | Coaxial Cable     | C-NJNJ-50                  | C-1000-01          | 2017-09-05          | 2018-09-05              |
| Farad                    | Test Software     | EZ-EMC                     | V1.1.4.2           | N/A                 | N/A                     |
| ETS-Lindgren             | Horn Antenna      | 3115                       | 000 527 35         | 2016-01-05          | 2019-01-04              |
| E-Microwave              | Band-stop Filters | OBSF-2400-2483.5-<br>S     | OE01601525         | 2017-06-16          | 2018-06-16              |
| Micro-tronics            | High Pass Filter  | HPM50111                   | S/N-G217           | 2017-06-16          | 2018-06-16              |
| Ducommun<br>Technolagies | Horn Antenna      | ARH-4223-02                | 1007726-01<br>1304 | 2016-11-18          | 2019-11-18              |
| Quinstar                 | Amplifier         | QLW-18405536-JO            | 15964001001        | 2017-06-27          | 2018-06-27              |
| Agilent                  | Spectrum Analyzer | E4440A                     | SG43360054         | 2017-01-04          | 2018-01-04              |
| Agilent                  | Spectrum Analyzer | E4440A                     | SG43360054         | 2018-01-04          | 2019-01-04              |
| Unknown                  | Coaxial Cable     | C-SJSJ-50                  | C-0800-01          | 2017-09-05          | 2018-09-05              |
| Unknown                  | Coaxial Cable     | C-2.4J2.4J-50              | C-0700-02          | 2017-06-27          | 2018-06-27              |
| MITEQ                    | Amplifier         | AFS42-00101800-<br>25-S-42 | 2001271            | 2017-09-05          | 2018-09-05              |

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

### **Test Data**

### **Environmental Conditions**

| Temperature:       | 25.6~26.3 °C    |
|--------------------|-----------------|
| Relative Humidity: | 30.3~45 %       |
| ATM Pressure:      | 101.2~101.6 kPa |

<sup>\*</sup> The testing was performed by Blake Yang and Suny Cen on 2017-12-11 and 2018-06-09.

Test Result: Compliance, please Refer to the following data

Test Mode: Transmitting

### 1) 30MHz-1GHz(802.11b low channel was the worst)

### **Horizontal:**



| Frequency<br>(MHz) | Receiver<br>Reading<br>(dBuV) | Detector | Correction<br>Factor<br>(dB/m) | Cord.<br>Amp.<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|-------------------------------|----------|--------------------------------|---------------------------|-------------------|----------------|
| 48.4300            | 36.59                         | QP       | -11.09                         | 25.50                     | 40.00             | 14.50          |
| 69.7700            | 35.12                         | QP       | -11.32                         | 23.80                     | 40.00             | 16.20          |
| 198.7800           | 38.15                         | QP       | -6.45                          | 31.70                     | 43.50             | 11.80          |
| 287.0500           | 32.68                         | QP       | -3.88                          | 28.80                     | 46.00             | 17.20          |
| 375.3200           | 31.47                         | QP       | -2.77                          | 28.70                     | 46.00             | 17.30          |
| 566.4100           | 34.28                         | QP       | 0.32                           | 34.60                     | 46.00             | 11.40          |

### Vertical:



| Frequency<br>(MHz) | Receiver<br>Reading<br>(dBuV) | Detector | Correction<br>Factor<br>(dB/m) | Cord.<br>Amp.<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|-------------------------------|----------|--------------------------------|---------------------------|-------------------|----------------|
| 48.4300            | 40.69                         | QP       | -11.09                         | 29.60                     | 40.00             | 10.40          |
| 68.8000            | 41.17                         | QP       | -11.47                         | 29.70                     | 40.00             | 10.30          |
| 141.5500           | 36.37                         | QP       | -6.27                          | 30.10                     | 43.50             | 13.40          |
| 224.9700           | 40.28                         | QP       | -6.78                          | 33.50                     | 46.00             | 12.50          |
| 324.8800           | 37.03                         | QP       | -3.93                          | 33.10                     | 46.00             | 12.90          |
| 374.3500           | 36.78                         | QP       | -2.78                          | 34.00                     | 46.00             | 12.00          |

### 2) 1-25GHz:

802.11b(Chain 1 was the worst)

|                    |                          | ceiver                 | Rx A           | ntenna        | Cable        | Amplifier    | Corrected          |                   |                |  |
|--------------------|--------------------------|------------------------|----------------|---------------|--------------|--------------|--------------------|-------------------|----------------|--|
| Frequency<br>(MHz) | Reading (dBµV)           | Detector<br>(PK/QP/AV) | Polar<br>(H/V) | Factor (dB/m) | loss<br>(dB) | Gain<br>(dB) | Amplitude (dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |  |
|                    | Low Channel: 2412 MHz    |                        |                |               |              |              |                    |                   |                |  |
| 2412.00            | 70.05                    | PK                     | Н              | 28.12         | 1.81         | 0.00         | 99.98              | N/A               | N/A            |  |
| 2412.00            | 65.97                    | AV                     | Н              | 28.12         | 1.81         | 0.00         | 95.90              | N/A               | N/A            |  |
| 2412.00            | 83.56                    | PK                     | V              | 28.12         | 1.81         | 0.00         | 113.49             | N/A               | N/A            |  |
| 2412.00            | 78.65                    | AV                     | V              | 28.12         | 1.81         | 0.00         | 108.58             | N/A               | N/A            |  |
| 2390.00            | 30.25                    | PK                     | V              | 28.08         | 1.80         | 0.00         | 60.13              | 74.00             | 13.87          |  |
| 2390.00            | 18.30                    | AV                     | V              | 28.08         | 1.80         | 0.00         | 48.18              | 54.00             | 5.82           |  |
| 4824.00            | 55.92                    | PK                     | V              | 32.95         | 3.19         | 37.20        | 54.86              | 74.00             | 19.14          |  |
| 4824.00            | 52.53                    | AV                     | V              | 32.95         | 3.19         | 37.20        | 51.47              | 54.00             | 2.53           |  |
| 7236.00            | 45.37                    | PK                     | V              | 35.81         | 4.77         | 37.27        | 48.68              | 74.00             | 25.32          |  |
| 7236.00            | 34.86                    | AV                     | V              | 35.81         | 4.77         | 37.27        | 38.17              | 54.00             | 15.83          |  |
|                    | Middle Channel: 2437 MHz |                        |                |               |              |              |                    |                   |                |  |
| 2437.00            | 70.16                    | PK                     | Н              | 28.17         | 1.82         | 0.00         | 100.15             | N/A               | N/A            |  |
| 2437.00            | 66.11                    | AV                     | Н              | 28.17         | 1.82         | 0.00         | 96.10              | N/A               | N/A            |  |
| 2437.00            | 82.72                    | PK                     | V              | 28.17         | 1.82         | 0.00         | 112.71             | N/A               | N/A            |  |
| 2437.00            | 77.84                    | AV                     | V              | 28.17         | 1.82         | 0.00         | 107.83             | N/A               | N/A            |  |
| 4874.00            | 54.79                    | PK                     | V              | 33.05         | 3.26         | 37.21        | 53.89              | 74.00             | 20.11          |  |
| 4874.00            | 51.60                    | AV                     | V              | 33.05         | 3.26         | 37.21        | 50.70              | 54.00             | 3.30           |  |
| 7311.00            | 46.02                    | PK                     | V              | 36.01         | 4.64         | 37.36        | 49.31              | 74.00             | 24.69          |  |
| 7311.00            | 35.78                    | AV                     | V              | 36.01         | 4.64         | 37.36        | 39.07              | 54.00             | 14.93          |  |
|                    |                          |                        | Hi             | gh Channe     | 1: 2462 M    | ΙΗz          |                    |                   |                |  |
| 2462.00            | 69.73                    | PK                     | Н              | 28.22         | 1.83         | 0.00         | 99.78              | N/A               | N/A            |  |
| 2462.00            | 65.84                    | AV                     | Н              | 28.22         | 1.83         | 0.00         | 95.89              | N/A               | N/A            |  |
| 2462.00            | 82.68                    | PK                     | V              | 28.22         | 1.83         | 0.00         | 112.73             | N/A               | N/A            |  |
| 2462.00            | 77.37                    | AV                     | V              | 28.22         | 1.83         | 0.00         | 107.42             | N/A               | N/A            |  |
| 2483.50            | 29.14                    | PK                     | V              | 28.27         | 1.84         | 0.00         | 59.25              | 74.00             | 14.75          |  |
| 2483.50            | 18.23                    | AV                     | V              | 28.27         | 1.84         | 0.00         | 48.34              | 54.00             | 5.66           |  |
| 4924.00            | 54.20                    | PK                     | V              | 33.15         | 3.27         | 37.22        | 53.40              | 74.00             | 20.60          |  |
| 4924.00            | 50.41                    | AV                     | V              | 33.15         | 3.27         | 37.22        | 49.61              | 54.00             | 4.39           |  |
| 7386.00            | 45.72                    | PK                     | V              | 36.20         | 4.51         | 37.46        | 48.97              | 74.00             | 25.03          |  |
| 7386.00            | 35.44                    | AV                     | V              | 36.20         | 4.51         | 37.46        | 38.69              | 54.00             | 15.31          |  |

802.11g(Chain 1 was the worst)

| 002.115(0 | 802.11g(Chain 1 was the worst) |            |       |            |            |           |               |           | ı      |  |
|-----------|--------------------------------|------------|-------|------------|------------|-----------|---------------|-----------|--------|--|
| Frequency | Re                             | ceiver     | Rx A  | ntenna     | Cable      | Amplifier | Corrected     | Limit     | Margin |  |
| (MHz)     | Reading                        | Detector   | Polar | Factor     | loss       | Gain      | Amplitude     | (dBµV/m)  | (dB)   |  |
| (WIIIZ)   | (dBµV)                         | (PK/QP/AV) | (H/V) | (dB/m)     | (dB)       | (dB)      | $(dB\mu V/m)$ | (αΒμ ٧/Π) | (ub)   |  |
|           | Low Channel: 2412 MHz          |            |       |            |            |           |               |           |        |  |
| 2412.00   | 69.13                          | PK         | Н     | 28.12      | 1.81       | 0.00      | 99.06         | N/A       | N/A    |  |
| 2412.00   | 60.05                          | AV         | Н     | 28.12      | 1.81       | 0.00      | 89.98         | N/A       | N/A    |  |
| 2412.00   | 81.27                          | PK         | V     | 28.12      | 1.81       | 0.00      | 111.20        | N/A       | N/A    |  |
| 2412.00   | 72.74                          | AV         | V     | 28.12      | 1.81       | 0.00      | 102.67        | N/A       | N/A    |  |
| 2390.00   | 38.16                          | PK         | V     | 28.08      | 1.80       | 0.00      | 68.04         | 74.00     | 5.96   |  |
| 2390.00   | 21.82                          | AV         | V     | 28.08      | 1.80       | 0.00      | 51.70         | 54.00     | 2.30   |  |
| 4824.00   | 51.57                          | PK         | V     | 32.95      | 3.19       | 37.20     | 50.51         | 74.00     | 23.49  |  |
| 4824.00   | 37.26                          | AV         | V     | 32.95      | 3.19       | 37.20     | 36.20         | 54.00     | 17.80  |  |
| 7236.00   | 45.83                          | PK         | V     | 35.81      | 4.77       | 37.27     | 49.14         | 74.00     | 24.86  |  |
| 7236.00   | 35.13                          | AV         | V     | 35.81      | 4.77       | 37.27     | 38.44         | 54.00     | 15.56  |  |
|           |                                |            | Mic   | ldle Chann | el: 2437 l | MHz       |               |           |        |  |
| 2437.00   | 69.15                          | PK         | Н     | 28.17      | 1.82       | 0.00      | 99.14         | N/A       | N/A    |  |
| 2437.00   | 60.24                          | AV         | Н     | 28.17      | 1.82       | 0.00      | 90.23         | N/A       | N/A    |  |
| 2437.00   | 81.42                          | PK         | V     | 28.17      | 1.82       | 0.00      | 111.41        | N/A       | N/A    |  |
| 2437.00   | 72.94                          | AV         | V     | 28.17      | 1.82       | 0.00      | 102.93        | N/A       | N/A    |  |
| 4874.00   | 50.08                          | PK         | V     | 33.05      | 3.26       | 37.21     | 49.18         | 74.00     | 24.82  |  |
| 4874.00   | 37.16                          | AV         | V     | 33.05      | 3.26       | 37.21     | 36.26         | 54.00     | 17.74  |  |
| 7311.00   | 46.12                          | PK         | V     | 36.01      | 4.64       | 37.36     | 49.41         | 74.00     | 24.59  |  |
| 7311.00   | 36.05                          | AV         | V     | 36.01      | 4.64       | 37.36     | 39.34         | 54.00     | 14.66  |  |
|           |                                |            | Hi    | gh Channe  | 1: 2462 M  | IHz       |               |           |        |  |
| 2462.00   | 70.35                          | PK         | Н     | 28.22      | 1.83       | 0.00      | 100.40        | N/A       | N/A    |  |
| 2462.00   | 61.07                          | AV         | Н     | 28.22      | 1.83       | 0.00      | 91.12         | N/A       | N/A    |  |
| 2462.00   | 81.73                          | PK         | V     | 28.22      | 1.83       | 0.00      | 111.78        | N/A       | N/A    |  |
| 2462.00   | 72.41                          | AV         | V     | 28.22      | 1.83       | 0.00      | 102.46        | N/A       | N/A    |  |
| 2483.50   | 37.21                          | PK         | V     | 28.27      | 1.84       | 0.00      | 67.32         | 74.00     | 6.68   |  |
| 2483.50   | 20.91                          | AV         | V     | 28.27      | 1.84       | 0.00      | 51.02         | 54.00     | 2.98   |  |
| 4924.00   | 49.53                          | PK         | V     | 33.15      | 3.27       | 37.22     | 48.73         | 74.00     | 25.27  |  |
| 4924.00   | 36.85                          | AV         | V     | 33.15      | 3.27       | 37.22     | 36.05         | 54.00     | 17.95  |  |
| 7386.00   | 45.63                          | PK         | V     | 36.20      | 4.51       | 37.46     | 48.88         | 74.00     | 25.12  |  |
| 7386.00   | 35.17                          | AV         | V     | 36.20      | 4.51       | 37.46     | 38.42         | 54.00     | 15.58  |  |

**802.11n ht20(2Tx was the worst)** 

| Б                  | Re                    | eceiver                | Rx A           | ntenna        | Cable        | Amplifier    | Corrected             | T                 | 24             |  |
|--------------------|-----------------------|------------------------|----------------|---------------|--------------|--------------|-----------------------|-------------------|----------------|--|
| Frequency<br>(MHz) | Reading (dBµV)        | Detector<br>(PK/QP/AV) | Polar<br>(H/V) | Factor (dB/m) | loss<br>(dB) | Gain<br>(dB) | Amplitude<br>(dBμV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |  |
|                    | Low Channel: 2412 MHz |                        |                |               |              |              |                       |                   |                |  |
| 2412.00            | 70.85                 | PK                     | Н              | 28.12         | 1.81         | 0.00         | 100.78                | N/A               | N/A            |  |
| 2412.00            | 62.06                 | AV                     | Н              | 28.12         | 1.81         | 0.00         | 91.99                 | N/A               | N/A            |  |
| 2412.00            | 85.13                 | PK                     | V              | 28.12         | 1.81         | 0.00         | 115.06                | N/A               | N/A            |  |
| 2412.00            | 76.61                 | AV                     | V              | 28.12         | 1.81         | 0.00         | 106.54                | N/A               | N/A            |  |
| 2390.00            | 42.25                 | PK                     | V              | 28.08         | 1.80         | 0.00         | 72.13                 | 74.00             | 1.87           |  |
| 2390.00            | 22.83                 | AV                     | V              | 28.08         | 1.80         | 0.00         | 52.71                 | 54.00             | 1.29           |  |
| 4824.00            | 53.69                 | PK                     | V              | 32.95         | 3.19         | 37.20        | 52.63                 | 74.00             | 21.37          |  |
| 4824.00            | 40.62                 | AV                     | V              | 32.95         | 3.19         | 37.20        | 39.56                 | 54.00             | 14.44          |  |
| 7236.00            | 45.25                 | PK                     | V              | 35.81         | 4.77         | 37.27        | 48.56                 | 74.00             | 25.44          |  |
| 7236.00            | 35.17                 | AV                     | V              | 35.81         | 4.77         | 37.27        | 38.48                 | 54.00             | 15.52          |  |
|                    |                       |                        | Mic            | ldle Chann    | el: 2437 l   | MHz          |                       |                   | _              |  |
| 2437.00            | 72.36                 | PK                     | Н              | 28.17         | 1.82         | 0.00         | 102.35                | N/A               | N/A            |  |
| 2437.00            | 61.52                 | AV                     | Н              | 28.17         | 1.82         | 0.00         | 91.51                 | N/A               | N/A            |  |
| 2437.00            | 85.56                 | PK                     | V              | 28.17         | 1.82         | 0.00         | 115.55                | N/A               | N/A            |  |
| 2437.00            | 76.31                 | AV                     | V              | 28.17         | 1.82         | 0.00         | 106.30                | N/A               | N/A            |  |
| 4874.00            | 52.36                 | PK                     | V              | 33.05         | 3.26         | 37.21        | 51.46                 | 74.00             | 22.54          |  |
| 4874.00            | 39.29                 | AV                     | V              | 33.05         | 3.26         | 37.21        | 38.39                 | 54.00             | 15.61          |  |
| 7311.00            | 46.13                 | PK                     | V              | 36.01         | 4.64         | 37.36        | 49.42                 | 74.00             | 24.58          |  |
| 7311.00            | 35.78                 | AV                     | V              | 36.01         | 4.64         | 37.36        | 39.07                 | 54.00             | 14.93          |  |
|                    |                       |                        | Hi             | gh Channe     |              | IHz          |                       |                   |                |  |
| 2462.00            | 70.24                 | PK                     | Н              | 28.22         | 1.83         | 0.00         | 100.29                | N/A               | N/A            |  |
| 2462.00            | 61.52                 | AV                     | Н              | 28.22         | 1.83         | 0.00         | 91.57                 | N/A               | N/A            |  |
| 2462.00            | 84.07                 | PK                     | V              | 28.22         | 1.83         | 0.00         | 114.12                | N/A               | N/A            |  |
| 2462.00            | 75.62                 | AV                     | V              | 28.22         | 1.83         | 0.00         | 105.67                | N/A               | N/A            |  |
| 2483.50            | 43.55                 | PK                     | V              | 28.27         | 1.84         | 0.00         | 73.66                 | 74.00             | 0.34           |  |
| 2483.50            | 22.53                 | AV                     | V              | 28.27         | 1.84         | 0.00         | 52.64                 | 54.00             | 1.36           |  |
| 4924.00            | 51.90                 | PK                     | V              | 33.15         | 3.27         | 37.22        | 51.10                 | 74.00             | 22.90          |  |
| 4924.00            | 38.76                 | AV                     | V              | 33.15         | 3.27         | 37.22        | 37.96                 | 54.00             | 16.04          |  |
| 7386.00            | 46.35                 | PK                     | V              | 36.20         | 4.51         | 37.46        | 49.60                 | 74.00             | 24.40          |  |
| 7386.00            | 34.28                 | AV                     | V              | 36.20         | 4.51         | 37.46        | 37.53                 | 54.00             | 16.47          |  |

802.11n ht40(2Tx was the worst)

| Б                  | Re                    | eceiver                | Rx A           | ntenna        | Cable        | Amplifier    | Corrected             | T,                | 3.6            |  |
|--------------------|-----------------------|------------------------|----------------|---------------|--------------|--------------|-----------------------|-------------------|----------------|--|
| Frequency<br>(MHz) | Reading (dBµV)        | Detector<br>(PK/QP/AV) | Polar<br>(H/V) | Factor (dB/m) | loss<br>(dB) | Gain<br>(dB) | Amplitude<br>(dBμV/m) | Limit<br>(dBμV/m) | Margin<br>(dB) |  |
|                    | Low Channel: 2422 MHz |                        |                |               |              |              |                       |                   |                |  |
| 2422.00            | 69.87                 | PK                     | Н              | 28.14         | 1.81         | 0.00         | 99.82                 | N/A               | N/A            |  |
| 2422.00            | 60.52                 | AV                     | Н              | 28.14         | 1.81         | 0.00         | 90.47                 | N/A               | N/A            |  |
| 2422.00            | 82.17                 | PK                     | V              | 28.14         | 1.81         | 0.00         | 112.12                | N/A               | N/A            |  |
| 2422.00            | 72.77                 | AV                     | V              | 28.14         | 1.81         | 0.00         | 102.72                | N/A               | N/A            |  |
| 2390.00            | 43.03                 | PK                     | V              | 28.08         | 1.80         | 0.00         | 72.91                 | 74.00             | 1.09           |  |
| 2390.00            | 23.09                 | AV                     | V              | 28.08         | 1.80         | 0.00         | 52.97                 | 54.00             | 1.03           |  |
| 4844.00            | 50.68                 | PK                     | V              | 32.99         | 3.22         | 37.20        | 49.69                 | 74.00             | 24.31          |  |
| 4844.00            | 37.82                 | AV                     | V              | 32.99         | 3.22         | 37.20        | 36.83                 | 54.00             | 17.17          |  |
| 7266.00            | 46.73                 | PK                     | V              | 35.89         | 4.72         | 37.31        | 50.03                 | 74.00             | 23.97          |  |
| 7266.00            | 35.12                 | AV                     | V              | 35.89         | 4.72         | 37.31        | 38.42                 | 54.00             | 15.58          |  |
|                    |                       |                        | Mic            | ldle Chann    | el: 2437 l   | MHz          |                       |                   |                |  |
| 2437.00            | 71.83                 | PK                     | Н              | 28.17         | 1.82         | 0.00         | 101.82                | N/A               | N/A            |  |
| 2437.00            | 62.14                 | AV                     | Н              | 28.17         | 1.82         | 0.00         | 92.13                 | N/A               | N/A            |  |
| 2437.00            | 85.32                 | PK                     | V              | 28.17         | 1.82         | 0.00         | 115.31                | N/A               | N/A            |  |
| 2437.00            | 76.25                 | AV                     | V              | 28.17         | 1.82         | 0.00         | 106.24                | N/A               | N/A            |  |
| 4874.00            | 50.46                 | PK                     | V              | 33.05         | 3.26         | 37.21        | 49.56                 | 74.00             | 24.44          |  |
| 4874.00            | 37.52                 | AV                     | V              | 33.05         | 3.26         | 37.21        | 36.62                 | 54.00             | 17.38          |  |
| 7311.00            | 46.35                 | PK                     | V              | 36.01         | 4.64         | 37.36        | 49.64                 | 74.00             | 24.36          |  |
| 7311.00            | 37.18                 | AV                     | V              | 36.01         | 4.64         | 37.36        | 40.47                 | 54.00             | 13.53          |  |
|                    |                       |                        | Hi             | gh Channe     | 1: 2452 M    | ſHz          |                       |                   |                |  |
| 2452.00            | 71.20                 | PK                     | Н              | 28.20         | 1.83         | 0.00         | 101.23                | N/A               | N/A            |  |
| 2452.00            | 61.73                 | AV                     | Н              | 28.20         | 1.83         | 0.00         | 91.76                 | N/A               | N/A            |  |
| 2452.00            | 80.02                 | PK                     | V              | 28.20         | 1.83         | 0.00         | 110.05                | N/A               | N/A            |  |
| 2452.00            | 70.74                 | AV                     | V              | 28.20         | 1.83         | 0.00         | 100.77                | N/A               | N/A            |  |
| 2483.50            | 40.13                 | PK                     | V              | 28.27         | 1.84         | 0.00         | 70.24                 | 74.00             | 3.76           |  |
| 2483.50            | 23.46                 | AV                     | V              | 28.27         | 1.84         | 0.00         | 53.57                 | 54.00             | 0.43           |  |
| 4904.00            | 51.35                 | PK                     | V              | 33.11         | 3.30         | 37.21        | 50.55                 | 74.00             | 23.45          |  |
| 4904.00            | 38.64                 | AV                     | V              | 33.11         | 3.30         | 37.21        | 37.84                 | 54.00             | 16.16          |  |
| 7356.00            | 45.63                 | PK                     | V              | 36.13         | 4.56         | 37.42        | 48.90                 | 74.00             | 25.10          |  |
| 7356.00            | 34.85                 | AV                     | V              | 36.13         | 4.56         | 37.42        | 38.12                 | 54.00             | 15.88          |  |





### FCC §15.247(a) (2)-6 dB EMISSION BANDWIDTH

### **Applicable Standard**

According to FCC §15.247(a) (2)

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

#### **Test Procedure**

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW)  $\geq 3 \times RBW$ .
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.



### **Test Equipment List and Details**

| Manufacturer | Description       | Model       | Serial Number | Calibration<br>Date | Calibration<br>Due Date |
|--------------|-------------------|-------------|---------------|---------------------|-------------------------|
| R&S          | Spectrum Analyzer | FSP 38      | 100478        | 2016-12-08          | 2017-12-08              |
| Unknown      | Coaxial Cable     | C-SJ00-0010 | C0010/02      | Each time           | N/A                     |

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25.1°C    |
|--------------------|-----------|
| Relative Humidity: | 41 %      |
| ATM Pressure:      | 101.2 kPa |

<sup>\*</sup> The testing was performed by Harry Yang on 2017-12-07.

Test Mode: Transmitting

Test Result: Compliant.

Test performed at chain 0, please refer to the following table and plots.

| Test mode    | Frequency<br>(MHz) | 6 dB Bandwidth<br>(MHz) | Limit<br>(MHz) |
|--------------|--------------------|-------------------------|----------------|
|              | 2412               | 10.16                   | ≥0.5           |
| 802.11b      | 2437               | 10.08                   | ≥0.5           |
|              | 2462               | 10.08                   | ≥0.5           |
|              | 2412               | 16.64                   | ≥0.5           |
| 802.11g      | 2437               | 16.64                   | ≥0.5           |
|              | 2462               | 16.64                   | ≥0.5           |
|              | 2412               | 17.76                   | ≥0.5           |
| 802.11n ht20 | 2437               | 17.76                   | ≥0.5           |
|              | 2462               | 17.68                   | ≥0.5           |
|              | 2422               | 36.64                   | ≥0.5           |
| 802.11n ht40 | 2437               | 36.64                   | ≥0.5           |
|              | 2452               | 36.64                   | ≥0.5           |

### 6dB bandwidth:

### 802.11b Low Channel



Date: 7.DEC.2017 10:23:52

### 802.11b Middle Channel

Report No.: RDG171206018-00B



Date: 7.DEC.2017 10:21:44

### 802.11b High Channel



Date: 7.DEC.2017 10:19:21

### 802.11g Low Channel

Report No.: RDG171206018-00B



Date: 7.DEC.2017 10:11:21

### 802.11g Middle Channel



Date: 7.DEC.2017 10:13:54

### 802.11g High Channel

Report No.: RDG171206018-00B



Date: 7.DEC.2017 10:15:51

#### 802.11n ht20 Low Channel



Date: 7.DEC.2017 10:46:04

### 802.11n ht20 Middle Channel

Report No.: RDG171206018-00B



Date: 7.DEC.2017 10:44:23

### 802.11n ht20 High Channel



Date: 7.DEC.2017 10:41:34

### 802.11n ht40 Low Channel

Report No.: RDG171206018-00B



Date: 7.DEC.2017 10:49:54

### 802.11n ht40 Middle Channel



Date: 7.DEC.2017 10:52:22

Report No.: RDG171206018-00B



Date: 7.DEC.2017 10:54:38

# FCC §15.247(b) (3) - MAXIMUM PEAK CONDUCTED OUTPUT POWER

### Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

#### **Test Procedure**

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to test equipment.
- 3. Add a correction factor to the display.
- 4. Set the power Meter to test Peak output power, record the result as peak power.
- 5. Set the power meter to test average output power, record the result as average power.



#### **Test Equipment List and Details**

| Manufacturer | Description                  | Model       | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|--------------|------------------------------|-------------|------------------|---------------------|-------------------------|
| Agilent      | USB Wideband Power<br>Sensor | U2022XA     | MY5417006        | 2016-12-11          | 2017-12-11              |
| Unknown      | Coaxial Cable                | C-SJ00-0010 | C0010/02         | Each time           | N/A                     |

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Page 38 of 59

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25.1°C    |  |  |
|--------------------|-----------|--|--|
| Relative Humidity: | 41 %      |  |  |
| ATM Pressure:      | 101.2 kPa |  |  |

<sup>\*</sup> The testing was performed by Harry Yang on 2017-12-07.

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following table.

| Test mode    | Channel | Frequency<br>(MHz) | Max Peak C | Limit   |       |       |
|--------------|---------|--------------------|------------|---------|-------|-------|
|              |         |                    | Chain 0    | Chain 1 | Total | (dBm) |
|              | Low     | 2412               | 22.81      | 22.46   | /     | 30    |
| 802.11b      | Middle  | 2437               | 22.51      | 22.25   | /     | 30    |
|              | High    | 2462               | 22.58      | 21.92   | /     | 30    |
|              | Low     | 2412               | 24.6       | 24.56   | /     | 30    |
| 802.11g      | Middle  | 2437               | 24.67      | 24.77   | /     | 30    |
|              | High    | 2462               | 24.69      | 24.65   | /     | 30    |
|              | Low     | 2412               | 24.35      | 24.4    | 27.39 | 30    |
| 802.11n ht20 | Middle  | 2437               | 24.45      | 24.22   | 27.35 | 30    |
|              | High    | 2462               | 24.43      | 24      | 27.23 | 30    |
| 802.11n ht40 | Low     | 2422               | 23.67      | 23.36   | 26.53 | 30    |
|              | Middle  | 2437               | 23.49      | 23.39   | 26.45 | 30    |
|              | High    | 2452               | 23.83      | 23.56   | 26.71 | 30    |

Note: the maximum antenna gain is 5 dBi, the device employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01 Multiple Transmitter Output v02r01, for power measurements on IEEE 802.11 devices:

Array Gain = 0 dB (i.e., no array gain) for NANT  $\leq$  4;

So:

Directional gain =  $G_{ANT}$  + Array Gain = 5dBi < 6dBi

# FCC §15.247(d)- 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

#### **Applicable Standard**

According to FCC§15.247(d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

#### **Test Procedure**

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

#### **Test Equipment List and Details**

| Manufacturer | Description       | Model       | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|--------------|-------------------|-------------|------------------|---------------------|-------------------------|
| R&S          | Spectrum Analyzer | FSP 38      | 100478           | 2016-12-08          | 2017-12-08              |
| Unknown      | Coaxial Cable     | C-SJ00-0010 | C0010/02         | Each time           | N/A                     |

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

## **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25.1°C    |  |  |
|--------------------|-----------|--|--|
| Relative Humidity: | 41 %      |  |  |
| ATM Pressure:      | 101.2 kPa |  |  |

<sup>\*</sup> The testing was performed by Harry Yang on 2017-12-07.

Test mode: Transmitting

Test Result: Compliant. Please refer to following plots.

Chain 0:

802.11b: Band Edge, Left Side



Date: 7.DEC.2017 10:25:10

Report No.: RDG171206018-00B



Date: 7.DEC.2017 10:20:46

### 802.11g: Band Edge, Left Side



Date: 7.DEC.2017 10:12:45

# 802.11g: Band Edge, Right Side

Report No.: RDG171206018-00B



Date: 7.DEC.2017 10:17:21

### 802.11n ht20 Band Edge, Left Side



Date: 7.DEC.2017 10:47:23

## 802.11n ht20 Band Edge, Right Side

Report No.: RDG171206018-00B



Date: 7.DEC.2017 10:42:47

#### 802.11n ht40: Band Edge, Left Side



Date: 7.DEC.2017 10:51:41

#### Report No.: RDG171206018-00B

### 802.11n ht40 Band Edge, Right Side



Date: 7.DEC.2017 10:56:07

# FCC §15.247(e) - POWER SPECTRAL DENSITY

## Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

#### **Test Procedure**

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set the RBW = 3 kHz, VBW = 10 kHz, Set the span to 1.5 times the DTS bandwidth.
- 4. Use the peak marker function to determine the maximum amplitude level.

#### **Test Equipment List and Details**

| Manufacturer | Description       | Model       | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|--------------|-------------------|-------------|------------------|---------------------|-------------------------|
| R&S          | Spectrum Analyzer | FSP 38      | 100478           | 2016-12-08          | 2017-12-08              |
| Unknown      | Coaxial Cable     | C-SJ00-0010 | C0010/02         | Each time           | N/A                     |

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25.1°C    |  |  |
|--------------------|-----------|--|--|
| Relative Humidity: | 41 %      |  |  |
| ATM Pressure:      | 101.2 kPa |  |  |

<sup>\*</sup> The testing was performed by Harry Yang on 2017-12-07.

**Test Result:** Compliance

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following table and plots

| Test mode    | Channel | Frequency<br>(MHz) | PSD (dBm/3kHz) |         | Total      | Limit      |
|--------------|---------|--------------------|----------------|---------|------------|------------|
|              |         |                    | Chain 0        | Chain 1 | (dBm/3kHz) | (dBm/3kHz) |
|              | Low     | 2412               | -10.02         | -10.49  | /          | ≤8         |
| 802.11b      | Middle  | 2437               | -10.4          | -9.86   | /          | ≤8         |
|              | High    | 2462               | -10.28         | -10.95  | /          | ≤8         |
|              | Low     | 2412               | -10.69         | -10.69  | /          | ≤8         |
| 802.11g      | Middle  | 2437               | -10.46         | -10.47  | /          | ≤8         |
|              | High    | 2462               | -11.44         | -10.53  | /          | ≤8         |
| 802.11n ht20 | Low     | 2412               | -10.10         | -10.55  | -7.31      | ≤8         |
|              | Middle  | 2437               | -10.48         | -10.69  | -7.57      | ≤8         |
|              | High    | 2462               | -10.90         | -10.62  | -7.75      | ≤8         |
| 802.11n ht40 | Low     | 2422               | -13.14         | -14.93  | -10.93     | ≤8         |
|              | Middle  | 2437               | -14.14         | -14.07  | -11.09     | ≤8         |
|              | High    | 2452               | -11.91         | -15.16  | -10.23     | ≤8         |

Note: the maximum antenna gain is 5 dBi. The device employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01 Multiple Transmitter Output v02r01, for power spectral density (PSD) measurements on the devices:

Array Gain =  $10 \log(N_{ANT}/N_{SS}) dB$ .

So:

Directional gain = GANT + Array Gain = 5+10\*log(2/2) = 5 dBi

#### Chain 0:

#### Power Spectral Density, 802.11b Low Channel



Date: 7.DEC.2017 10:24:47

### Power Spectral Density, 802.11b Middle Channel

Report No.: RDG171206018-00B



Date: 7.DEC.2017 10:22:41

### Power Spectral Density, 802.11b High Channel



Date: 7.DEC.2017 10:20:15

# Power Spectral Density, 802.11g Low Channel

Report No.: RDG171206018-00B



Date: 7.DEC.2017 10:12:21

#### Power Spectral Density, 802.11g Middle Channel



Date: 7.DEC.2017 10:14:53

# Power Spectral Density, 802.11g High Channel

Report No.: RDG171206018-00B



Date: 7.DEC.2017 10:16:45

#### Power Spectral Density, 802.11n ht20 Low Channel



Date: 7.DEC.2017 10:47:04

# Power Spectral Density, 802.11n ht20 Middle Channel

Report No.: RDG171206018-00B



Date: 7.DEC.2017 10:45:18

### Power Spectral Density, 802.11n ht20 High Channel



Date: 7.DEC.2017 10:42:29

# Power Spectral Density, 802.11n ht40 Low Channel

Report No.: RDG171206018-00B



Date: 7.DEC.2017 10:51:15

### Power Spectral Density, 802.11n ht40 Middle Channel



Date: 7.DEC.2017 10:53:42

# Report No.: RDG171206018-00B

### Power Spectral Density, 802.11n ht40 High Channel



Date: 7.DEC.2017 10:55:49

#### Chain 1:

## Power Spectral Density, 802.11b Low Channel



Date: 7.DEC.2017 09:45:31

# Power Spectral Density, 802.11b Middle Channel

Report No.: RDG171206018-00B



Date: 7.DEC.2017 10:27:49

### Power Spectral Density, 802.11b High Channel



Date: 7.DEC.2017 09:53:11

# Power Spectral Density, 802.11g Low Channel

Report No.: RDG171206018-00B



Date: 7.DEC.2017 10:06:54

#### Power Spectral Density, 802.11g Middle Channel



Date: 7.DEC.2017 10:04:04

# Power Spectral Density, 802.11g High Channel

Report No.: RDG171206018-00B



Date: 7.DEC.2017 10:00:53

#### Power Spectral Density, 802.11n ht20 Low Channel



Date: 7.DEC.2017 10:32:56

## Power Spectral Density, 802.11n ht20 Middle Channel

Report No.: RDG171206018-00B



Date: 7.DEC.2017 10:35:17

### Power Spectral Density, 802.11n ht20 High Channel



Date: 7.DEC.2017 10:38:46

# Power Spectral Density, 802.11n ht40 Low Channel

Report No.: RDG171206018-00B



Date: 7.DEC.2017 11:04:18

### Power Spectral Density, 802.11n ht40 Middle Channel



Date: 7.DEC.2017 11:01:56

# Power Spectral Density, 802.11n ht40 High Channel

Report No.: RDG171206018-00B



Date: 7.DEC.2017 10:59:30

\*\*\*\*\* END OF REPORT \*\*\*\*\*