Problem Solving and Search in Al

Practical Work by Robin Boeltzig & Lukas Zimmermann

How to use

- 1. Open input.py
- 2. Change the value for "input_table" to whatever input matrix you want

 Note: The matrix needs to be entered in one line, as seen in the example below.
- 3. Change the value for "maxiter" to the desired number of iterations for the Iterated Hill Climber
- 4. Run input.py

Example:

Input Matrix: 33

041322 132302 241302

→ input_table = "3 3 0 4 1 3 2 2 1 3 2 3 0 2 2 4 1 3 0 2"

General workflow of the solver

- 1. Input matrix gets processed
- 2. Generate input graph (Disjunctive Graph Model)
- 3. Generate initial solution through bidirectional algorithm
- 4. Use iterative hill climbing method to optimize solution
- 5. Output: Critical Path and makespan of the schedule.

Neighbourhood function of G: Set of all graphs which differ from G in the direction of exactly one disjunctive arc.

Benchmark results compared to optimal solution

name	optimum	maxiter = 20	difference	maxiter = 200	
la01	666	848	27%	770	16%
la02	655	804	23%		
la03	597	805	35%		
la04	590	772	31%		
la05	593	697	18%		

la06	926	1163	26%	1078	16%
la07	890	1108	24%		
la08	863	1134	31%		
la09	951	1140	20%		
la10	958	1092	14%		
la11	1222	1496	22%	1395	14%
la12	1039	1285	24%		
la13	1150	1496	30%		
la14	1292	1470	14%		
la15	1207	1731	43%		
la16	945	1089	15%		
la17	784	848	8%		
la18	848	943	11%		
la19	842	951	13%		
la20	902	1027	14%		

Sources

For this project, we have used various articles and lecture slides to find approaches to the problem. They are listed below:

Disjunctive Graph Model:

- http://www.or.uni-bonn.de/lectures/ss10/scheduling_data/sched10_5.pdf
- http://www.kecl.ntt.co.jp/as/members/yamada/galbk.pdf
- https://acrogenesis.com/or-tools/documentation/user_manual/manual/ls/jobshop_def
 data.html

Bidirectional Algorithm to determine feasible solutions:

 Dell'Amico, Mauro & Trubian, Marco. (1993). Applying Tabu Search to the Job-Shop Scheduling Problem. Annals of Operations Research. 41. 231-252. 10.1007/BF02023076.

Calculation of longest path from source to sink:

<a href="https://github.com/csirmaz/dag_longest_path/blob/master/dag_longest_path/dag_longest_path/blob/master/dag_longest_path/dag_longest_path/blob/master/dag_longest_path/dag_longest_path/blob/master/dag_longest_path/blob/master/dag_longest_path/dag_longest_path/blob/master/dag_longest_pat