Lecture 08

Automated Reasoning KE for Propositional, Predicate and Modal Logic

Jeremy Pitt

Department of Electrical & Electronic Engineering

Imperial College London, UK

Email: j.pitt _at_ imperial _dot_ ac _dot_ uk

Phone: (int) 46318

Office: 1010 EEE

Aims and Objectives

Aims

- To introduce a calculus for sound and complete reasoning in propositional, predicate and modal logics
 - * Calculus: any system of symbolic representation admitting manipulating according to given rules
- To discuss data structures and algorithms for a Prolog implementation

Objectives

 Understand the issues in the specification and implementation of proof procedures for various logics

Motivation

- Compute **logical consequence**, i.e. the **entailment** relation \models
 - \models is a 2-place (binary) relation, between sets of formulas and formulas
 - A set of formulas S (**premises**) and a single formula p (**conclusion**) are in this relation ($S \models p$) if every valuation that makes each member $s \in S$ true, also makes p true
 - The Deduction Theorem states

$$(S \models p) \cong (S - \{s\}) \models (s \to p)$$

So let

$$S' = \bigwedge_{i=1}^{n} s_i = s_1 \wedge s_2 \wedge \ldots \wedge s_n$$

Then

$$(S \models p) \cong \{\} \models (S' \to p)$$

Issues with Entailment

- Problems with using semantics
 - We can't pre-compute \models and look up membership
 - Truth tables for propositional logic are exponential in the number of symbols
 - Can't even use truth tables for predicate logic; can't check an infinite number of interpretations
- Therefore use syntax instead, i.e. the proves relation ⊢
- However
 - Many different methods of specifying/computing a proves relation
 - * Sequent calculus, natural deduction, conversion to normal form, ...
 - $* \vdash_{SC}$, \vdash_{ND} , \vdash_{NF} , ...
 - Have to show that the method is sound and complete
- We will use proof by refutation

Proof by Refutation

- Prolog's proof procedure
 - Representation of formulas: Horn clauses (certain type of normal form)
 - Query Q treated as $\neg Q$
 - Algorithm: Depth first search
 - Use resolution as the inference rule
 - Build: a search tree
 - Aim: derive empty query (contradiction)
 - So deduce Q (and if Q was p(X), instances of X which satisfy p(X))

By Contrast

The calculus KE

- Representation of formulas: standard form (using Prolog operators)
- Query Q treated as $\neg Q$
- Algorithm: search for a refutation by expanding $\neg Q$ according to, but 'clearing away', the logical structure of Q
- Inference rules: elimination rules (resolution is just one instance)
- Build: a tree, called a tableau or a KE-tree, with formulas labelling nodes
- Aim: derive closure
- And so:
 - * Theorem proving (true for all valuations, interpretations or models)
 - * Model building (find a valuation, interpretation or model that satisfies the formulas)

Basis of KE

- Consider the formula $F = ((p \to q) \land (q \to r)) \to (p \to r)$
 - A complex formula F consists of sub-formulas joined by a connective
 - Likewise sub-formulas, until you get to the literals

- Proof by refutation
 - If F is a tautology, then always a 1 in the final (leftmost) column
 - Look for a 1 for $\neg F$, and **fail to find it**
 - Provided you are guaranteed to find it if it exists
 - If a formula is a contradiction, then its DNF $\cong 0$
 - Therefore construct the DNF of $\neg F$, and show it is $\cong 0$

KE Proof Procedure (1)

- KE Proof Procedure: To prove $\vdash_{KE} F$
 - Start from $\neg F$
 - Build a KE-tree, with nodes labelled by formulas (nodes=formulas)

- In a KE-tree
 - Each branch θ_i represents a conjunction of the formulas
 - KE-tree T represents a disjunction of branches $T=\theta_1 \vee \theta_2 \vee \ldots \vee \theta_n$

KE Proof Procedure (2)

- KE Calculus specifies a number of rules
 - The rules specify how to convert one KE-tree T into another T^+
 - * Select a branch θ
 - * Analyse a formula P on the branch (according to the rules)
 - * Extend the branch with new formulas (according to the rules)
 - Aim is to construct a **closed** KE-tree T^{\times}

KE Calculus Rules (1)

• Single premise rules: only extend the branch on which the formula occurs

$$\begin{array}{c|c} p \wedge q & \neg(p \vee q) & \neg(p \rightarrow q) \\ \hline p & \neg p & p & \hline \\ q & \neg q & \neg q & \hline \end{array}$$

 Two premise rules (major and minor premise): both premises must be on the same branch – only extend that branch

• Branching rule: 0-premise rule, any branch, any time, any formula (but see later)

KE Calculus Rules (2)

• More two premise rules (same branch, etc.)

Closure rule (same branch)

$$\frac{p}{\neg p}$$

Smullyan's Uniform Notation

- A useful shorthand identifying components of a formula
 - Conjunctive alpha formulas

$$\begin{array}{cccc}
\alpha & \alpha_1 & \alpha_2 \\
p \wedge q & p & q \\
\neg(p \to q) & p & \neg q \\
\neg(p \lor q) & \neg p & \neg q
\end{array}$$

Disjunctive beta formulas

$$\beta \qquad \beta_1 \qquad \beta_2 \\
\neg (p \land q) \qquad \neg p \qquad \neg q \\
p \rightarrow q \qquad \neg p \qquad q \\
p \lor q \qquad p \qquad q$$

- Complements
 - The complement of a positive formula P is $\neg P$
 - The complement of a negative formula $\neg P$ is P
 - Denote the complement of a formula p by p^c

• The rules can be expressed succinctly

alpha	beta		closure	PB (branching)	beta simplification	
$\frac{\alpha}{\alpha_1}$ α_2	$\frac{\beta}{\beta_1^c}$	$\frac{\beta}{\beta_2^c}$	P P^c	$\stackrel{\textstyle \frown}{P}^c$	eta eta eta eta 1	eta_2

Beta simplification

- If a component of a beta formula is already on the branch, the formula can be analysed without extending the branch
- For example, $p \lor q$ and p occurs on a branch. Applying PB gives
 - * Either:
 - p (no new information) and $\neg p$ (immediate closure)
 - * Or:
 - q (must have $\neg p$, so could have closed) and $\neg q$ (no new information)

Proofs in KE

- A branch θ of a KE-tree is **closed** if both P and $\neg P$ occur on the branch
- A KE-tree is (atomically) closed of every branch is closed
 - Atomic closure requires P to be a literal
- a KE **proof** of P is a closed KE-tree for $\neg P$
- P is a theorem if $\vdash_{\mathit{KE}} P$
- P is a logical consequence of S if $S \vdash_{KE} P$
 - This is the same as $\vdash_{\mathit{KE}} S' \to P$
 - So we are looking for a closed KE-tree for $\neg(S' \to P)$
 - So the root of the tree is all the premises in S, and the negation of the conclusion $\neg P$

Starting a KE Proof

$$\neg(S' \to P)$$

$$\neg((s_1 \land s_2 \land \dots \land s_n) \to P)$$

$$\neg((s_1 \land s_2 \land \dots \land s_n) \to P)$$

$$(s_1 \land s_2 \land \dots \land s_n)$$

$$\neg P$$

$$\neg((s_1 \land s_2 \land \dots \land s_n) \to P)$$

$$(s_1 \land s_2 \land \dots \land s_n)$$

$$\neg P$$

$$\downarrow s_1$$

$$\downarrow s_1$$

$$\downarrow (s_2 \land \dots \land s_n)$$

Examples

Try proving some theorems

$$-p \to (q \to p)$$

$$-((p \to q) \to p) \to p$$

$$-((p \to q) \land (q \to r)) \to (p \to r)$$

$$-((p \to r) \land (q \to r)) \to ((p \lor q) \to r)$$

$$-(p \to (q \to r)) \to ((p \to q) \to (p \to r))$$

$$-(p \land (q \lor r)) \leftrightarrow ((p \land q) \lor (p \land r))$$

$$-(p \lor (q \land r)) \leftrightarrow ((p \lor q) \land (p \lor r))$$

Try proving some logical consequences

\leftrightarrow and eta formulas

$$\begin{array}{c|ccccc} \eta & \eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\ \hline P \leftrightarrow Q & P & Q & \neg P & \neg Q \\ \neg (P \leftrightarrow Q) & P & \neg Q & \neg P & Q \\ \end{array}$$

eta
$$\dfrac{\eta}{\eta_{1,x}} \dfrac{\eta}{\eta_{2,y}}$$

- With the note that "if x = 1 then y = 2 else [x = 2] y = 1"
- If (on some branch) you have an η formula (negated or un-negated) and one component of either pair (on the same branch), then that branch can be extended with the other component (of the same pair).
- ullet Proving a formula $\neg(P\leftrightarrow Q)$? think PB

Open Branches and Model Building

In a KE-tree

- Each branch represents the conjunction of formulas appearing on it
- The tree itself represents the disjunction of its branches
- If a branch is closed, it is because some p and -its complement cannot both be true
- Otherwise, if we have analysed all the formulas on the branch, then there is a valuation for all the literals which
 - * Satisfies the premises, and
 - * Falsifies the conclusion

Model building

- Rather than looking to see if every branch is closed, check to see if any branch (ideally just one) is open
- Instead of adding the negated conclusion, add the formula and look for an open branch

Consistency Checking

- In the *Obligatio Game*, a finite number n of rounds is chosen, depending on the severity of the exam. The examiner then gives the candidate successive assertions, $\phi_1, \phi_2, \ldots, \phi_n$ that she has to either accept or reject as each one is put forward. In the former case, ϕ_i is added to the candidate's stock of commitments; in the latter case, the negation $\neg \phi_i$ is added.
- The candidate passes the exam if she maintains the consistency of her stock of commitments throughout all n assertions.
- The KE calculus can be used show which sequences of answers will ensure that the student passes the exam.
- ullet Try to construct a KE-proof for each possible sequence of accept and reject.

Obligatio Game: Example (1)

- Suppose a candidate is exposed (successively) to the following three (n=3) assertions:
 - 1. $q \vee \neg (p \vee r)$
 - 2. $p \rightarrow q$
 - **3.** *q*
- It is necessary to check

$$-q \lor \neg (p \lor r)$$
, $p \to q$, q

$$-q \vee \neg (p \vee r), p \rightarrow q, \neg q$$

$$-q \vee \neg (p \vee r), \neg (p \rightarrow q), q$$

$$-q \vee \neg (p \vee r), \neg (p \rightarrow q), \neg .q$$

$$-\neg (q \lor \neg (p \lor r)), p \to q, q$$

$$-\neg (q \lor \neg (p \lor r)), p \to q, \neg q$$

$$-\neg(q\vee\neg(p\vee r)), \neg(p\rightarrow q), q$$

$$-\neg (q \lor \neg (p \lor r)), \neg (p \to q), \neg q$$

Obligatio Game: Example (2)

$$\begin{array}{cccc} 1 & q \vee \neg (p \vee r) & \text{assertion 1} \\ 2 & \neg (p \rightarrow q) & \text{assertion 2} \\ 3 & q & \text{assertion 3} \\ 4 & p & (\alpha, 2) \\ 5 & \neg q & (\alpha, 2) \\ & \times & (3, 5) \end{array}$$

Soundness

- Some definitions/observations
 - A set of formulas S is satisfiable if there is valuation which makes all the formulas in S true
 - A branch θ on a KE-tree T is satisfiable if every formula on the branch is satisfiable
 - A KE-tree T is satisfiable if some branch of T is satisfiable

• 'Lemmas':

- 1. Applying a KE rule to a satisfiable KE-tree yields another satisfiable KE-tree (check each rule)
- 2. A closed KE-tree is not satisfiable
 - * Every branch contains P and $\neg P$ (for some P)
 - * No valuation makes both P and $\neg P$ true

- If there is a closed KE-tree for S, then S is not satisfiable
 - Suppose there is a closed KE-tree for S, and S is satisfiable
 - Then by (1), every KE-tree derived from S is satisfiable, including T^{\times}
 - But by (2), there are no closed, satisfiable tableau
 - Contradiction
- Therefore, if $\vdash_{\mathit{KE}} S$, then $\models S$
 - If $\vdash_{KE} S$, then there is a closed KE-tree for $\neg S$
 - If there is a closed KE-tree for $\neg S$, then $\neg S$ is not satisfiable
 - Therefore S is a tautology, so $\models S$

Completeness (Sketch)

- Analytic restriction: Only apply the PB branching rule to sub-formulas
- ullet Suppose S is a tautology, then construct a (restricted) KE-tree for $\neg S$
 - Apply all the rules to all the formulas
 - Continue until no more rules can be applied all the formulas have been analysed
 - This process must terminate (the rules only ever generate subformulas)
 - Let T^{\times} be the final tableau
- Suppose T^{\times} is not atomically closed
 - Let θ be one of the non-closed branches
 - * If $\neg\neg p$ occurs on θ , and has been analysed, then so does p
 - * If α occurs on θ , and has been analysed, then so do α_1 and α_2
 - * If eta occurs on heta, and has been analysed, then so do either eta_1 or eta_2

- By definition, this is a Hintikka Set
- By Hintikka's Lemma, this is set is satisfiable (sketch later)
- This set must include $\neg S$, because $\neg S$ is on every branch
- Therefore there is a valuation that satisfies $\neg S$, so S is not a tautology
- This is a contradiction
- ullet Therefore T^{\times} is atomically closed
- Therefore, if $\models S$, then $\vdash_{\mathit{KE}} S$

Completeness (Sketch Sketch)

- Hintikka set: maximally consistent set satisfying sub-formula property
- ullet A set of propositional formulas H is a (propositional) Hintikka set provided the following four conditions hold:
 - For propositional atoms p, not both $p \in H$ and $-p \in H$
 - For all formulas ϕ , if $\neg \neg \phi \in H$, then $\phi \in H$
 - For alpha formulas α , if $\alpha \in H$, then $\alpha_1 \in H$ and $\alpha_2 \in H$
 - For beta formulas β , if $\alpha \in H$, then $\beta_1 \in H$ or $\beta_2 \in H$
- Hintikka's Lemma: Proof (sketch)
 - Construct a model $\mathcal M$ from H such that for every atom $p\in H$, and only those atoms, $\models_{\mathcal M} p$
 - Show by structural induction for all formulas $\phi \in H$ that $\models_{\mathcal{M}} \phi$

Notes on Proof Method

- KE rules are non-deterministic
 - Say what can be done, not what should be done
 - * Pick any formula to analyse next
 - * Not use some formulas at all
 - * Use some formulas more than once
 - * Close on complex formulas
 - * Branch on any formula
- Usual to apply restrictions
 - Analytic restriction: obey the sub-formula property (for branching)
 - Strictness: only analyse a formula once on a branch
 - Closure: only close on literal (atomic closure)
 - Order does not matter, provided every formula is analysed at least once
- These restrictions don't affect soundness and completeness

Algorithm for Satisfiability

- Data Structure
 - -U list of 'unvisited' formulas
 - -V list of 'visited' formulas
 - -L list of literals
 - -G list of analysed formulas
- (In the sequel, L1++L2 is a function which returns L3 in the relation append(L1, L2, L3).)
- Query: ?- ke([-F], [], [], []).

- Case 1: ke([F|U], V, L, G)
 - if F is a literal
 - * if $F^c \in L$ return unsatisfiable
 - * otherwise return ke(U, V, [F|L], G)
 - if F is an alpha formula (alpha(F, A1, A2))
 - * return ke([A1, A2|U]++V, [], L, [F|G])
 - if F is a beta formula (beta(F, B1, B2))
 - * if $B1 \in U ++V ++L ++G$ return ke(U, V, L, [F|G])
 - * if $B1^c \in U ++V ++L ++G$ return ke([B2|U]++V, [], L, [F|G])
 - * if $B2 \in U ++V ++L ++G$ return ke(U, V, L, [F|G])
 - * if $B2^c \in U ++V ++L ++G$ return ke([B1|U]++V, [], L, [F|G])
 - * otherwise, return ke(U, [F|V], L, G)
- Case 2: ke([], [F|V], L, G) returns
 - F is a beta formula (beta(F, B1, B2))
 - return ke([F, B1|V], [], L, G) AND ke([F, B1c|V], [], L, G)

KE for (Propositional) Modal Logic

- Need to know in which world a formula is true
- To do this, use **prefixes**
 - A prefix σ is a name for a possible world
 - Formulas will be **labelled** by a prefix, $\sigma: P$
 - $-\sigma:P$ means P is true in the world labelled (named) σ
- ullet The prefix system is designed so that it can syntactically determined if worlds so labelled are in the accessibility relation R
 - A prefix is a non-empty finite sequence of integers
 - [1], [1, 2], [1, 4, 17] are all valid prefixes
 - [1] labels the 'real' world
- This system allows syntactic recognition of accessibility although different prefixes may name the same world

Proof Rules for Modal KE (1)

- To prove P, build a KE-tree for $[1]: \neg P$
- Try to construct a model for $\neg P$ such that we are guaranteed to find it, if it exists
- If the process fails, so there is no model for $\neg P$, then P must be true in every model
- In any one world, normal KE inference rules apply, e.g.:

$$\begin{array}{c|c} \sigma: p \wedge q & \sigma: p \rightarrow q \\ \hline \sigma: p \\ \sigma: q & \hline \sigma: p & \hline \sigma: p \\ \hline \sigma: q & \hline \sigma: p & \hline \sigma: p \\ \hline \end{array}$$

• Must be in the same world to close a branch

Proof Rules for Modal KE (2)

- To define proof rules for modal formulas, need the following terminology
 - A prefix σ occurs on a branch if it labels a formula on the branch
 - A prefix σ is **available** on a branch if it occurs on a branch
 - A prefix σ is **unrestricted** on a branch if it not an initial segment (strict sub-segment or equals) of any prefix that occurs on the branch
 - * Suppose [1,2,3] occurs on a branch
 - * [1,2,3] is available on the branch
 - * [1], [1,2] and [1,2,3] are restricted on the branch
- Then the rules are:

• Global Rule: any branch can be extended with $\sigma: F$, for any available σ and instance F of the characteristic formula for the specific modal logic

Example

1	[1]:	$\neg(\Box(p\to q)\to(\Box p\to\Box q))$	¬ conc
2	[1]:	$\Box(p \to q)$	lpha, 1
3	[1]:	$\neg(\Box p \to \Box q)$	lpha, 1
4	[1]:	$\Box p$	lpha, 3
5	[1]:	$\neg \Box q$	lpha, 3
6	[1, 1]:	$\neg q$	♦, 5
7	[1, 1]:	p o q	□, 2
8	[1, 1]:	p	□, 4
9	[1, 1]:	q	eta, 7, 8
		×	close, 6, 9

Counter Example

Can now build a counter-model

-
$$W = \{[1], [1, 1], [1, 2]\}$$

- $R = \{([1], [1, 1]), ([1], [1, 2])\}$
- $|p| = \{[1, 1]\}, |\neg q| = \{[1, 1]\}$

General Proof System

- ullet Reflect the condition(s) on the accessibility relation R by accessibility conditions on prefixes
 - A prefix satisfies the
 - * **general** condition if σn is accessible from σ , for every integer n
 - * **reverse** condition if σ is accessible from σn , for every integer n
 - * **identity** condition if σ is accessible from itself
 - * **transitive** condition if σ is accessible from τ , and τ is a strict initial segment of σ
 - * **universal** condition if σ is accessible from τ , every σ and every τ
- Idea originates with Fitting (1993)
- Generalised by Pitt and Cunningham (1996) to include empty sequences, sequences with variables, and sequence unification, to provide a modal KE theorem prover for all 15 normal modal logics

Proof Rules in the General System

- For modal logic **K**, the rules remain the same
- For modal logic **S5** (only), the rules can be simplified

$$\begin{array}{ccc} \underline{i: \Box p} & \underline{i: \neg \Diamond p} & \underline{i: \neg D} \\ \underline{j: p} & \underline{j: \neg p} & \underline{j: p} & \underline{j: \neg D} \\ \end{array}$$
 for any available integer j for j new to the branch

• For the other logics, see Pitt and Cunningham (1996)

KE for Predicate Logic

- Unlike in propositional logic
 - Models can be infinite
 - There may be an infinite number of models
- So we have to use proof systems
- Extend KE proof rules for analysing quantified formulas
 - Notation: write $A_{\{c/x\}}$ for the formula resulting from replacing every occurrence of the variable x with the constant term c

$$\gamma \text{ rule } \frac{\forall x.A}{A_{\{c/x\}}} \quad \frac{\neg \exists x.A}{\neg A_{\{c/x\}}} \quad \text{for any constant } c$$

$$\delta$$
 rule $\frac{\exists x.A}{A_{\{c/x\}}}$ $\frac{\neg \forall x.A}{\neg A_{\{c/x\}}}$ for a constant c new to the branch

Example

- Consider the syllogism
 - No reptile has fur.
 - All snakes are reptiles.
 - Therefore: No snake has fur.
- Formally: prove using **KE** for predicate logic
- $\{\neg \exists x.reptile(x) \land furry(x), \forall y.snake(y) \rightarrow reptile(y)\}\$ \models $\neg \exists z.snake(z) \land furry(z)$

KE Proof

```
\neg \exists x. reptile(x) \land furry(x)
      premise
1
                        \forall y.snake(y) \rightarrow reptile(y)
     premise
3
                       \neg(\neg \exists z.snake(z) \land furry(z))
     ¬conc
                          \exists z.snake(z) \land furry(z)
4
    dne, 3
5 \quad \exists, 4
                             snake(c) \land furry(c)
6 \alpha, 5
                                   snake(c)
7 \alpha, 5
                                    furry(c)
8 \quad \forall, 2
                           snake(c) \rightarrow reptile(c)
    \beta, 8, 6
                                   reptile(c)
10 \forall, 1
                         \neg(reptile(c) \land furry(c))
11 \beta, 10, 9
                                   \neg furry(c)
      close, 7,11
```


Implementation Routes

- ullet Chief practical difficulty in implementing KE for predicate logic comes from the γ -rule
- In domains where all the constants are known, could use (a variation of) the 'Hintikka' rules
 - γ -rule: extend the branch with $A_{\{c/x\}}$ for every constant c
 - δ -rule: open n alternative branches with $A_{\{c/x\}}$ for each constant c
- The general problem is that universal quantifier rule can be used as often as is liked, and predicate logic is semi-decidable
 - If the formula is unsatisfiable, the proof procedure will stop with a closed tableau
 - If the formula is unsatisfiable, the proof procedure might stop with an open branch and all formulas analysed, or it might extend infinitely
- Various solutions, including free variables (but generally it's just nasty)

KE for Predicate Modal Logic

- This slide intentionally left blank
- Here be dragons
- And various other flimsy excuses too numerous to mention

Summary and Conclusions

- Introduced the calculus KE, a sound and complete proof procedure for automated reasoning in propositional, predicate and modal logics
- Been the basis of several implemented systems, including □KE, a theorem prover for all 15 normal modal logics, and WinKE, a windows-based pedagogic tool for teaching logic and reasoning

