Procedural Content Generation

Abe Vos

Juni 2022

Procedurele Content Generatie

- Parameters
- Stochasticiteit
- ▶ Procedurele functie

Stochastische processen

- ► Modelleer proces met kansverdeling
- ▶ Neem steekproeven voor generatie

Simultane kansverdelingen

- Stochast met meerdere dimensies
 - $X = X_1, \cdots, X_D$
- ► Simultane kansverdeling over alle componenten
- Moeilijk te berekenen

Markov Ketens

- Vervang simultane kansverdeling door voorwaardelijke kansverdeling
 - $\qquad \qquad p(X_1, X_2, \cdots, X_D) = p(X_1) p(X_2 | X_1) \cdots p(X_D | X_{D-1})$
- Voorwaardelijke kansberekeningen
 - ▶ Bigrams/Ngrams in tekst
 - Makkelijk te berekenen
- Nuttig voor reeksen

Volgende stap

- Simultane kansverdeling
- Reeks data: voorwaardelijke kansverdeling
- Afbeeldingen: transformeer simpele kansverdeling

Principal Component Analysis

Principiële componenten

- Projecteer datapunten op vector
- Vind vector die variantie van datapunten maximaliseert
- Orthogonale vectoren

Getransformeerde datapunten

- ▶ Principiële componenten v en w
- $lackbox{ Genereer normaal verdeeld punt } x=(x_1,x_2)$
- Transformeer punt: $x_1 \mathbf{v} + x_2 \mathbf{w}$

Latente vector model

- Generatief model
- Neem steekproef van eenvoudige kansverdeling
- Transformeer punt naar steekproef van ingewikkelde kansverdeling
- Transformatie kan in beide richtingen

Eigenfaces

- ▶ PCA voor gezichten
- ► Afbeelding als vector

Figure 6: Decompositie van gezicht

Autoencoders

PCA

- Lineair
- Makkelijk te berekenen
- ▶ Beperkte resultaten
- Schaalt niet goed naar grote datasets

Figure 7: Autoencoder architectuur

Autoencoders

- Encoder: input naar latente vector
- Decoder: latente vector naar output
- Train model om output op input te laten lijken

Informatie bottleneck

- Dwing autoencoder om alleen belangrijke informatie te behouden
- Latente vector is "samenvatting" van input

Voorbeelden van bottlenecks

- ▶ Dimensies latente vector ≪ dimensies input/output
- Voeg ruis toe aan verborgen lagen
 - Diffusion model
- Punten in latente vector volgen kansverdeling
 - Bijvoorbeeld normaal verdeling

Variational Autoencoder

- Encoder produceert twee outputs
 - Parameters voor normaalverdeling
- Error functie heeft twee componenten
 - Verschil tussen input en output $((x-f(x))^2)$
 - ► Kullback-Leibler divergentie van parameters uit encoder

Kullback-Leibler Divergentie

- Genereer punten met kansverdeling q(X = x)
- ▶ Doe alsof punten uit kansverdeling p(X = x) komen
- - Hoe verbaast zijn we over de resultaten van q(x) als we p(x) verwachten?

Voordelen van bottleneck

- ▶ Mogelijke afbeeldingen ≫ mogelijke latente vectoren
- ▶ Prop afbeeldingen uit dataset efficiënt in latente ruimte
- Meeste punten in latente ruimte komen overeen met datapunten

Generatie met autoencoder

- Genereer punt in latente ruimte
 - ▶ Vaak met standaard normaalverdeling
- ► Transformeer punt met decoder model

Unsupervised learning

- Afbeeldingen zonder labels
- Latente ruimte omschrijft abstracte eigenschappen van input
 - ► Encoder leert nuttige informatie uit input te halen
- Gebruik encoder als basis voor neuraal netwerk
 - Transfer learning

Figure 8: Interpolatie in latente ruimte

Convolutional Neural Networks

Neurale netwerken voor afbeeldingen

- Input: afbeelding 32x32 pixels; 3 kleuren
 - ▶ 3072 input neuronen
- Eerste verborgen laag: 1000 neuronen
- Ruim drie miljoen parameters!

Lokale features

- Afbeeldingen zijn opgebouwd uit simpelere elementen
- Afbeelding van typisch gezicht
 - Twee ogen
 - Neus
 - Mond
- Simpel neuraal netwerk moet dezelfde "features" leren herkennen op verschillende plekken

Convolutional Layer

- Herbruik dezelfde parameters op verschillende plekken in de afbeelding
- Minder parameters
- Features zijn onafhankelijk van positie

Figure 10: Convolutional Layer

Convolutional Layer

- Schuif convolution filter/kernel over de hele afbeelding
- Bereken dot-product tussen filter en onderliggende pixels op elke positie
- Sla resultaten van dot-producten op in feature map
- ► Herhaal voor alle features/verborgen neuronen

Figure 11: Convolutional Neural Network

Wat leert een CNN?

- Algemene features om een afbeelding uit op te bouwen
- Hiërarchische structuur
 - Onderste lagen: basale vormen
 - Middelste lagen: complexe vormen, textuur
 - Bovenste lagen: objecten

Figure 12: Geleerde features van CNN

Deconvolution

- Omgekeerde operatie van convolution
- ➤ Voorspel ruimtelijke "low-level" features gegeven "high-level" features
- ► Gebruikt om afbeeldingen te genereren
 - Decoder van autoencoder

Generative Adversarial Networks

Figure 13: Wazige reconstructies van de VAE

Generative Adversarial Network

- ► Generator produceert afbeeldingen
- Discriminator voorspelt of een afbeelding gegenereerd is
- Zero-sum game
 - Beide netwerken presteren beter als het andere netwerk slechter presteert

Figure 14: Architectuur van de GAN

Generator

- ▶ Neuraal netwerk met deconvolution lagen
- Input: vector z met waardes gegenereerd uit een standaard normaal verdeling
- Decoder

Discriminator

- ► CNN met 1 output
 - ▶ 0 voor de voorspelling "gegenereerd"
 - ▶ 1 voor de voorspelling "echt"
- Input: data uit de dataset of gegenereerd door generator

Procedurele generatie

- Noise, parameters, procedurele functie
- ► GAN gebruikt noise en procedurele functie
- ► GAN heeft *geen* encoder
 - ► Geen controle over gegenereerd resultaat
 - Geen parameters

MarioGAN

- Genereer representatie van Mario level met GAN
- ► Gebruik evolutie strategie om speelbaar level te vinden ► CMA-FS
- Denk terug aan wenselijke eigenschappen
 - ► Variatie (door random sampling)
 - Non-typische resultaten (door GAN)
 - Werkt met game mechanics (door CMA-ES)

Conditional GAN

- ▶ Genereer afbeeldingen met noise *en* labels
- ► Genereer afbeeldingen van een bepaalde categorie
- Geeft controle over de output van generator

Figure 16: CGAN

Pix2pix

- "Labels" kunnen ook afbeeldingen zijn
- ► Genereer label afbeeldingen a.d.h.v. afbeelding in dataset
 - ▶ Bijvoorbeeld zwart-wit afbeelding van een kleurenafbeelding

Figure 17: Toepassingen van pix2pix

Sketch2Map

- ► Genereer (hoogte)kaarten a.d.h.v. schetsen
- Training data: satelliet foto's en gegenereerde kaarten
- ► Gebruikt cGAN om schets in kaart te veranderen

Figure 18: Data pipeline

Figure 19: cGAN architectuur

(d). Perspective view of the generated map

Superresolutie

- Genereer hoge resolutie versie van input
- ▶ Training data: ongelabelde afbeeldingen met omlaag geschaalde versies
- Twee aanpakken:
 - Autoencoder
 - cGAN: (E)SRGAN

Figure 22: Max Payne

Figure 23: Originele Doom sprites

Figure 24: Superresolutie Doom sprites