RUTA MAS CORTA

Encuentre la ruta más corta de 1 a todos los nodos

Nota: Solo en este ejercicio, asuma que distTo y edgeTo comienzan con el índice 1

V	DistTo []	EdgeTo[]
→ 1	0.0	-
2	7.0	1 → 2
3	9.0	1 → 3
4		
5		
6	14.0	1 → 6

V	DistTo[]	EdgeTo[]
1	0.0	-
→ 2	7.0	1 → 2
3	9.0	1 → 3
4	22.0	1 → 6
5		
6	14.0	1 → 6

V	DistTo[]	EdgeTo[]
1	0.0	-
2	7.0	1 → 2
→ 3	9.0	1 → 3
4	20.0	3 → 4
5		
6	14.0	1 → 6

V	DistTo[]	EdgeTo[]
1	0.0	-
2	7.0	1 → 2
3	9.0	1 → 3
4	20.0	3 → 4
5	20.0	6 → 5
→ 6	11.0	3 → 6

La ruta mas corta que se puede tomar es:

V	DistTo[]	EdgeTo[]
1	0.0	-
2	7.0	1 → 2
3	9.0	1 → 3
4	20.0	3 → 4
5	20.0	6 → 5
6	11.0	3 → 6