System Modeling - Part 1

July 7, 2015

Outline

Introduction

2 First Principles Modeling

Introduction

We can derive the mathematical model of a dynamic system in two ways mainly:

Physical Modeling:
 Applying the laws of physics, chemistry, thermodynamics,...
 Also called modeling from First Principles

Introduction

We can derive the mathematical model of a dynamic system in two ways mainly:

- Physical Modeling:
 Applying the laws of physics, chemistry, thermodynamics,...
 Also called modeling from First Principles
- System identification or Empirical Modeling:
 Developing models from observed or collected data

Outline

Introduction

2 First Principles Modeling

Example 1: Mass-Spring System

If spring is at rest at x = 0:

$$m \cdot \frac{d^2x}{dt^2} + k \cdot x = m \cdot g$$

Example 2: Mass-Spring Damped

Example 3: Pendulum

Dynamic equilibrium:

$$I\ddot{\theta}(t) = -mg\frac{L}{2}\sin(\theta(t))$$
 with $I = \frac{mL^2}{3}$
 $\ddot{\theta}(t) = -\frac{3g}{2I}\sin(\theta(t))$

Small deviation of $\theta(t)$:

$$\ddot{\theta}(t) = -\frac{3g}{2L}\theta(t)$$

Solving the differential equation yields the general solution:

$$\theta(t) = A\cos(\omega_0 + \phi)$$
 with $\omega_0 = \sqrt{\frac{3g}{2L}}$ and ϕ & A to be determined with the initial condition

Example 4: Inverted Pendulum

Example 5: RLC Circuit

Besides input v_{in} , two internal variables needed to determine output \Rightarrow Second-order System

Inputs	Ouputs	Choosen States
Vin	V _{out}	V_2
		i

Example 5: RLC Circuit

Equations for each component:

$$i = \frac{V_{in} - V_1}{R}$$

$$V_1 - V_2 = L \cdot \frac{di}{dt}$$

$$i = C \cdot \frac{dV_2}{dt}$$

Example 5: RLC Circuit

- Writing derivatives of state variables in function of state variables and inputs: $\begin{cases} \frac{di}{dt} = \frac{V_1 V_2}{L} = \frac{V_{in} R \cdot i V_2}{L} \\ \frac{dV_2}{dt} = \frac{i}{C} \end{cases}$
- Writing output in function of state variables and inputs: $V_{out} = V_1 V_2 = V_{in} Ri V_2$

State Space Representation

This yields the **State Space Representation** of the dynamic system. In Matrix form:

$$\begin{bmatrix} \frac{dV_2}{dt} \\ \frac{di}{dt} \end{bmatrix} = \begin{bmatrix} 0 & 1/C \\ -1/L & -R/L \end{bmatrix} \begin{bmatrix} V_2 \\ i \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} V_{in}$$
$$V_{out} = \begin{bmatrix} -1 & -R \end{bmatrix} \begin{bmatrix} V_2 \\ i \end{bmatrix} + V_{in}$$

Let:

The analogy between the other quantities follows from comparing the physical laws.

Damping:

Resistance:

$$\begin{array}{ccc}
R & i \\
V & -
\end{array}$$

$$b \leftrightarrow R$$

Spring:

$$\begin{array}{ccc}
 & & F = kx \\
 & \Rightarrow \frac{df}{dt} = k \frac{dx}{dt}
\end{array}$$

Capacitor:

Spring:

$$\begin{array}{ccc}
 & F = kx \\
 & \Rightarrow \frac{df}{dt} = k \frac{dx}{dt}
\end{array}$$

Capacitor:

Newton:

$$F = m\ddot{x}$$
$$= m\frac{d\dot{x}}{dt}$$

Coil:

$$L \leftrightarrow m$$

Example 6: Hoover dam

Define:

• Inflow of water: u(t)

• Current volume of water: x(t)

• Outflow of water: y(t)

• Water level: h(t)

Assume that $x(t) = c_1 \cdot h(t)$

What will happen when we open the gate?

Example 6: Hoover dam

Outflow depends on height:

$$y(t)=c_2\cdot h(t)$$

 The state of the system is defined by the contained volume of water:

$$\dot{x}(t) = u(t) - y(t) = u(t) - c_2 \cdot h(t)$$

• Thus a **State Space Representation** is, with $c \triangleq \frac{c_2}{c_1}$:

$$\dot{x}(t) = u(t) - c \cdot x(t) = v(t) = c \cdot x(t)$$

