Algoritmi paraleli și distribuiți Calcul matriceal

Mitică Craus

Universitatea Tehnică "Gheorghe Asachi" din Iași

Cuprins	Introducere	Transpusa unei matrice	Inmulțirea de matrice pătractice	Comentarii bibliografice
		0	0	

Cuprins

Introducere
Transpusa unei matrice
Descriere
Pseudocod
Implementare
Exemplu de execuție
Complexitatea
Inmulțirea de matrice pătractice
Descriere
Pseudocod
Implementare
Exemplu de execuție
Complexitatea
Comentarii bibliografice

Cuprins	Introducere	Transpusa unei matrice	Inmulțirea de matrice pătractice	Comentarii bibliografice
		0 00000	0	

Introducere

- Calculul matricial se pretează extrem de bine la procesare paralelă.
- Natura regulată a matricelor constituie un atu de neegalat pentru abordări specifice calculului paralel.
- Vom studia în această lecție problemele transpusei unei matrice și produsului de matrice.

• Dată fiind matricea pătratică $A_{n\times n}=(a_{i,j})_{i,j=0,1,\dots,n-1}$, se cere să se calculeze matricea $A_{n\times n}^T=(a_{i,j}^T)_{i,j=0,1,\dots,n-1}$, pentru care

$$a_{i,j}^T = a_{j,i}, \ (\forall)i,j = 0,1...,n-1$$

- Fără calcule.
- Doar mișcări de elemente.
- Timpul secvențial $T_s(n) = O(n^2)$.

Algoritmul secvențial standard - pseudocod

- Notatii:
 - A[0..n-1,0..n-1] este un tablou bidimensional, de dimensiune $n \times n$.
- Premise:
 - Datele de intrare sunt memorate în tabloul A.
 - Datele finale vor fi memorate în tabloul A.

Transpunere_Matrice(A, n)

- for i = 0 to n-1
- do for j = i + 1 to n 1
- do Interschimba(A[i,j],A[j,i])

INTERSCHIMBA(A[i,j],A[j,i])

- $temp \leftarrow A[i,j]$
- 2 $A[i,j] \leftarrow A[[j,i]$ 3 $A[j,i] \leftarrow temp$

Exemplu de execuție a algoritmului de transpunere a unei matrice pe o plasă de unități de procesare

(0,0)	(1,0)	(2,0)	(3,0)
P ₀	P ₁	P ₂	P ₃
(0,1)	(1,1)	(2,1)	(3,1)
P ₄	P ₅	P ₆	P ₇
(0,2)	(1,2)	(2,2)	(3,2)
P ₈	P ₉	P ₁₀	P ₁₁
(0,3)	(1,3)	(2,3)	(3,3)
P ₁₂	P ₁₃	P ₁₄	P ₁₅

Figura 1: Exemplu de execuție a algoritmului de transpunere a unei matrice 4x4 pe o plasă de unități de procesare

Algoritmul recursiv - pseudocod

- Notaţii:
 - A[0..n-1,0..n-1] este un tablou bidimensional, de dimensiune $n \times n$.
- Premise:
 - $n = 2^m$.
 - Datele de intrare sunt memorate în tabloul A.
 - Matricea A este divizată în patru blocuri: stânga-sus, dreapta-sus, stânga-jos, dreapta-jos.
 - Datele finale vor fi memorate în tabloul A.

```
TRANSPUNERE_MATRICE_RECURSIV(A[0..n-1,0..n-1])

1 /* Interschimbarea blocurilor st\hat{a}nga-jos cu dreapta-sus */

2 for i=\frac{n}{2} to n-1

3 do for j=0 to \frac{n}{2}-1

4 do Interschimba(A[i,j],A[i-\frac{n}{2},j+\frac{n}{2}],)

5 Transpunere_Matrice_Recursiv(A[0..\frac{n}{2}-1,0..\frac{n}{2}-1])

6 Transpunere_Matrice_Recursiv(A[0..\frac{n}{2}-1,\frac{n}{2}..n-1])

7 Transpunere_Matrice_Recursiv(A[\frac{n}{2}..n-1,0..\frac{n}{2}-1])

8 Transpunere_Matrice_Recursiv(A[\frac{n}{2}..n-1,\frac{n}{2}..n-1])
```

Exemplu de execuție a algoritmului recursiv de transpunere a unei matrice

(0,0) (0,1)	(0,2) (0,3)	(4,0) (4,1)	(4,2) (4,3)
,		<i></i>	
(1,0) (1,1)	(1,2) (1,3)	(5,0) /(5,1)	(5,2) (5,3)
(2,0) (2,1)	(2,2) (2,3)	(6,0) (6,1)	(6,2) (6,3)
·		`	
(3,0) (3,1)	(3,2) (3,3)	(7,0) (7,1)	(7,2) (7,3)
(0,4) (0,5)	(0,6) (0,7)	(4,4) (4,5)	(4,6) (4,7)
	····>		
(1,4) (1,5)	(1,6) (1,7)	(5,4) (5,5)	(5,6) (5,7)
(2,4) (2,5)	(2,6) (2,7)	(6,4) (6,5)	(6,6) (6,7)
·		·	
(3,4) (3,5)	(3,6) (3,7)	(7,4) (7,5)	(7,6) (7,7)

Figura 2: Exemplu de execuție a algoritmului recusrsiv de transpunere a unei matrice 8x8

Exemplu de execuție a algoritmului recursiv de transpunere a unei matrice - continuare

	(0,0)	(1,0)	(2,0)	(3,0)	(4,0)	(5,0)	(6,0)	(7,0)
	(0,1)	(1,1)	(2,1)	(3,1)	(4,1)	(5,1)	(6,1)	(7,1)
	(0,2)	(1,2)	(2,2)	(3,2)	(4,2)	(5,2)	(6,2)	(7,2)
	(0,3)	(1,3)	(2,3)	(3,3)	(4,3)	(5,3)	(6,3)	(7,3)
	(0,4)	(1,4)	(2,4)	(3,4)	(4,4)	(5,4)	(6,4)	(7,4)
	(0,5)	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	(7,5)
	(0,6)	(1,6)	(2,6)	(3,6)	(4,6)	(5,6)	(6,6)	(7,6)
ı	(0,7)	(1,7)	(2,7)	(3,7)	(4,7)	(5,7)	(6,7)	(7,7)

Figura 3: Exemplu de execuție a algoritmului recusrsiv de transpunere a unei matrice 8x8

Implementare pe hipercub

- 1 Hipercubul este divizat în 4 subcuburi cu $\frac{p}{4}$ procesoare.
- 2 Sferturile de matrice (quadranții) sunt mapate recursiv pe cele 4 subcuburi astfel:
 - cubul 00* conține sfertul stânga-sus al matricei A;
 - cubul 01* contine sfertul *dreapta-sus* sfert al matricei A;
 - cubul 10* conține sfertul stânga-jos al matricei A;
 - cubul 11* conține sfertul dreapta-jos al matricei A.
- 3 Se interschimbă blocurile stânga-jos cu dreapta-sus.
- 4 Se repetă pașii 1-3 în fiecare subcub.

•0

Algoritmul recursiv implementat pe hipercub - pseudocod

Notatii:

H este un hipercub cu m dimensiuni.

0

- i este indicele unității de procesare care executa algoritmul de transpunere a unei matrice A.
- *M* este blocul care urmează a fi transmis de o unitate de procesare câtre partener.

Premise:

• Inițial, fiecare unitate de procesare p_i deține un bloc B_i din matricea A, conform cu regula de mapare, care urmează a fi transmis unei unități de procesare plasate într-un nod al hipercubului H.

```
Transpunere_Matrice_pe_Hipercub(H, m, i, B_i)
      M \leftarrow B_i
      for k \leftarrow m-1 downto 0 step 2
      do partener \leftarrow i xor 2^k
          if (bit_k(i) + bit_{k-1}(i) = 1)
            then trimite M catre partener
            else primeste M de la partener
  7
          partener \leftarrow i \times xor 2^{k-1}
  8
          if (bit_k(i) + bit_{k-1}(i) \neq 1)
  9
            then trimite M catre partener
10
            else primeste M de la partener
11
                  B_i \leftarrow M
      Transpunere_Matrice(B_i, \frac{n^2}{n})
12
```

Exemplu de execuție a algoritmului de transpunere a unei matrice pe hipercub

Figura 4: Exemplu de execuție a algoritmului de transpunere pe hipercub a unei matrice 4x4

Complexitatea implementării pe hipercub algoritmului recursiv de transpunere a unei matrice

Teorema (1)

Complexitatea timp a algoritmului recursiv de transpunere a unei matrice $A_{n\times n}$, implementat pe un hipercub cu p unități de procesare este $O(\frac{n^2}{p}\log p)$. Eficiența algoritmului este $O(\frac{1}{\log n})$.

Demonstrație.

Divizarea recursivă se oprește când dimensiunea blocului este $\frac{n^2}{p}$. Numărul de pași de interschimbare de blocuri este $\log_4 p = \frac{\log_2 p}{2}$; fiecare pas de interschimbare se realizează pe două dintre dimensiunile hipercubului (două muchii). Timpul de transfer al unui bloc de dimensiune $\frac{n^2}{p}$ este $O(\frac{n^2}{p})$. Transpunerea locală necesită $O(\frac{n^2}{p})$ timp.

Rezultă că timpul total este $O(\frac{n^2}{p}\log p)$. Costul este $O(n^2\log p)$ - nu este optimal.

00

Inmulțirea de matrice pătractice - formularea problemei

• Date fiind matricele pătratice $A_{n\times n}=(a_{i,j})_{i,j=0,1,\dots,n-1}$ și $B_{n\times n}=(b_{i,j})_{i,j=0,1,\dots,n-1}$, se cere să se calculeze matricea pătratică $C_{n\times n}=(c_{i,i})_{i,i=0,1,\dots,n-1}$, conform cu formula

$$c_{i,j} = \sum_{k=0}^{n-1} a_{i,k} \times b_{k,j}, \ (\forall) i, j = 0, 1, \dots, n-1$$

• Timpul secvențial $T_s(n) = O(n^3)$.

Algoritmul secvențial standard - pseudocod

- Notatii:
 - A[0..n-1,0..n-1], B[0..n-1,0..n-1] și C[0..n-1,0..n-1] sunt tablouri bidimensionale. de dimensiune $n\times n$.
- Premise:
 - Datele de intrare sunt memorate în tablourile A şi B;
 A[i,j] = a_{i,i}, B[i,j] = b_{i,i}, i,j = 0,1,...,n-1.
 - Datele finale vor fi memorate în tabloul C.

```
INMULTIRE_MATRICE(A, B, n)

1 for i = 0 to n - 1

2 do for j = 0 to n - 1

3 do C[i, j] \leftarrow 0

4 for k = 0 to n - 1

5 do C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]

6 return C
```

Algoritmul înmultirii de blocuri- pseudocod

Notatii:

- A[0..n-1,0..n-1], B[0..n-1,0..n-1] și C[0..n-1,0..n-1] sunt tablouri bidimensionale, de dimensiune $n \times n$.
- Matricele A și B sunt divizate în blocuri $A_{i,k}$ și respectiv $B_{k,j}$, de dimensiuni $\frac{n}{q} \times \frac{n}{q}$.
- INMULTIRE_MATRICE $(A_{i,k}, B_{k,j}, \frac{n}{q})$ semnifică înmulțirea blocului $A_{i,k}$ cu $B_{k,j}$ și returnarea rezultatului $A_{i,k} \times B_{k,j}$.

Premise:

- Datele de intrare sunt memorate în tablourile A și B.
- Datele finale vor fi memorate în tabloul C.

```
INMULTIRE_MATRICE_BLOCURI(A, B, n, q)

1 for i = 0 to q - 1

2 do for j = 0 to q - 1

3 do C_{i,j} \leftarrow 0

4 for k = 0 to q - 1

5 do C_{i,j} \leftarrow C_{i,j} + \text{Inmultire\_Matrice}(A_{i,k}, B_{k,j}, \frac{n}{q})

6 return C
```

Implementarea standard

procesare.

• Arhitectura naturală este cea cu topologie de tip plasă, cu $p = q^2$ unităti de

- Fiecare unitate de procesare $p_{i,j}$ dispune în memoria locală de blocul $A_{i,j}$ și un bloc $B_{i,i}$ și calculează $C_{i,i}$.
- Pentru a calcula $C_{i,j}$, unitatea de procesare $p_{i,j}$ are nevoie de $A_{i,k}$ și $B_{k,i}, k = 0, 1, \dots, q-1.$
- Pentru fiecare k, blocurile $A_{i,k}$ și $B_{k,j}$ sunt obținute printr-o difuzie toți-la-toți pe linii și apoi pe coloane.

000

- Similar cu implementarea standard, dar cu consum mai mic de memorie.
- Fiecare bloc este procesat la momente diferite, în locuri diferite. Pentru aceasta blocurile sunt deplasate ciclic.
- Sunt executați √p − 1 pași de înmulțiri și adunari locale de blocuri, urmate de deplasări ciclice la stânga (în A) și în sus (în B).
- La final este executată o înmulţire şi o adunare locală de blocuri.

Transpusa unei matrice O O O O O O O

Inmulți ○ ○○ **○○** ○○○

Algoritmul lui Cannon - pseudocod

Notaţii:

12

return $C_{i,i}$

- P este o plasă formată din $qxq = \sqrt{p}x\sqrt{p} = p$ unități de procesare.
- $p_{i,j}$ este unitatea de procesare care execută algoritmul de inmultire de blocuri.
- M_2 este blocul care urmează a fi transmis de $p_{i,j}$ către $p_{i\ominus 1,j}$.
- M_3 este blocul calculat de $p_{i,j}$.
- ullet \oplus și \ominus semnifică adunarea și scăderea modulo q.
- Premise: Inițial, fiecare $p_{i,j}$ deține în memoria locală blocurile $A_{i,j}$ și $B_{i,j}$.
- Rezultate: Fiecare unitate de procesare $p_{i,j}$ calculează blocul $C_{i,j}$.

```
INMULTIRE_MATRICE_CANNON(A_{i,i}, B_{i,i}, n, q, p_{i,i})
       M_1 \leftarrow A_{i,i}; M_2 \leftarrow B_{i,i}
     ALINIERE_INITIALA(M_1, M_2, n, q, p_{i,i})
  3 M_3 \leftarrow 0
                                                                             ALINIERE_INITIALA(M_1, M_2, n, q, p_{i,i})
  4 /*q-1 pași de înmulțiri și adunari de blocuri /*
                                                                                   for k \leftarrow 1 to i
                                                                                   do trimite M_1 catre p_{i,j \ominus 1}
  5 for k \leftarrow 0 to q-2
       do M_3 = M_3 + \text{Inmultire\_Matrice}(M_1, M_2, n/q)
                                                                                        primeste M_1 de la p_{i,i \oplus 1}
           trimite M_1 catre p_{i,i \ominus 1}
                                                                                   for k \leftarrow 1 to j
           primeste M_1 de la p_{i,j\oplus 1}
                                                                                   do trimite M_2 catre p_{i \ominus 1,i}
           trimite M_2 catre p_{i \ominus 1,i}
                                                                                        primeste M_2 de la p_{i \oplus 1,i}
           primeste M_2 de la p_{i \oplus 1,j}
 10
 11
       C_{i,i} \leftarrow M_3 + \text{INMULTIRE\_MATRICE}(M_1, M_2, n/q)
```

•00

Exemplu de execuție a algoritmului lui Cannon

Alinierea inițială

Figura 5: Exemplu de execuție a algoritmului lui Cannon

000

Exemplu de execuție a algoritmului lui Cannon

A si B după alinierea inițială Pozițiile blocurilor după prima deplasare

Figura 6: Exemplu de execuție a algoritmului lui Cannon

00

Exemplu de execuție a algoritmului lui Cannon

A _{0,3} B _{3,0}	$A_{0,0} \\ B_{0,1}$	${ m A}_{0,1} \\ { m B}_{1,2}$	$A_{0,2} \\ B_{2,3}$
A _{1,0}	$\begin{array}{c} A_{1,l} \\ B_{l,l} \end{array}$	A _{1,2}	A _{1,3}
B _{0,0}		B _{2,2}	B _{3,3}
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,0}
B _{1,0}	B _{2,1}	B _{3,2}	B _{0,3}
A _{3,2}	A _{3,3}	A _{3,0}	A _{3,1}
B _{2,0}	B _{3,1}	B _{0,2}	B _{1,3}

Pozițiile blocurilor după a II-a deplasare Pozițiile blocurilor dupa a III-a deplasare

Figura 7: Exemplu de execuție a algoritmului lui Cannon

Complexitatea algoritmului lui Cannon

Teorema (2)

Complexitatea timp a algoritmului lui Cannon este $O(\frac{n^3}{p})$. Eficiența algoritmului este O(1).

Demonstrație.

Numărul de transmisii și primiri de blocuri M_1 efectuate de $p_{i,j}$ este $i+q-1=i+\sqrt{p}-1$. Numărul de transmisii și primiri de blocuri M_2 efectuate de $p_{i,j}$ este tot $j+q-1=j+\sqrt{p}-1$. Se observă că $p_{q-1,q-1}$ efectuează cele mai multe transmisii și primiri de blocuri, $q-1+q-1=2(q-1)=2(\sqrt{p}-1)$. Rezultă pentru deplasările de blocuri o complexitate timp de $O(\frac{n^2}{p}\sqrt{p})$. Numărul înmulțirilor și adunărilor efectuate de o unitate de procesare este $O((\frac{n}{\sqrt{p}})^3\sqrt{p})=O(\frac{n^3}{p})$; $O((\frac{n}{\sqrt{p}})^3)$ pentru fiecare înmulțire și adunare de blocuri. Costul este $O(p)O(\frac{n^3}{p})=O(n^3)$.

Comentarii bibliografice

- Capitolul Calcul matricial are la bază cartea
 V. Kumar, A. Grama A. Gupta & G Karypis, Introduction to Parallel Computing: Design and Analysis of Algorithms, Addison Wesley, 2003 și ediția mai veche
 - V. Kumar, A. Grama A. Gupta & G Karypis, Introduction to Parallel Computing: Design and Analysis of Algorithms, Benjamin-Cummings, 1994