Spring 2017 MAE3134: Final Exam

11 May 2017

Resources allowed: Open notes/book, cal	lculator, ruler. No computers or mobile dev	vices
Name:	GWID:	

Prob. 1	Prob. 2	Prob. 3	Prob. 4	Prob. 5	Prob. 6	Prob. 7	Prob. 8	Total
10	5	20	20	10	5	10	20	100

Problem 1 Elon Musk, CEO of SpaceX and Tesla Motors, has a background in physics but unfortunately has never passed a Linear Dynamics course. His newest space vehicle must satisfy the following second order time response specifications for a unit step input:

- Percent Overshoot must be less than 5%,
- Peak time less than 1s,
- Settling Time less than 5 s.

Elon needs your help to choose a set of poles which will satisfy the specifications and save humanity from impending disaster.

- 1. On the s-plane, or complex plane, map out the acceptable regions where you could locate poles and meet the requirements.
- 2. Label the specifications lines and show your work.
- 3. Choose a set of poles that will meet the requirements.

Problem 2 The frequency response of two systems are shown in Fig. 1. Using the plots, circle the correct descriptions:

Figure 1: Frequency Response

- 1. Which of the following statements are true about the damping ratios of the two systems?
 - (a) The damping coefficients are the same.
 - (b) The damping coefficient of G_1 is greater than the damping coefficient of G_2 .
 - (c) The damping coefficient of G_2 is greater than the damping coefficient of G_1 .
 - (d) Not enough information to make any statements about the damping ratio.
- 2. Which of the following statements are true about the general form of G_1 ?
 - (a) It is a first order system.
 - (b) It must have two free s terms in the denominator since the phase ends at 180° .
 - (c) It must have two free s terms in the numerator since the final magnitude slope is 40 dB per decade.
 - (d) None of the above.

Problem 3 The transfer functions of three systems are given as follows:

$$G_1 = \frac{1}{s^2 + 0.2s + 1},$$
 $G_2 = \frac{2s + 4}{s^2 + 0.5s + 4},$ $G_3 = \frac{-2s + 4}{s^2 + 0.5s + 4}.$

You should accomplish the following tasks:

- 1. Match each Bode plot shown in Fig. 2a with the appropriate transfer function by indicating on each plot the correct transfer function (i.e. G_1 , G_2 , or G_3). Explain the reasoning that lead to your solution.
- 2. Match each response plot shown in Fig. 2b with the correct transfer function by indicating on each plot the correct transfer function. The same input of $u = 2 \sin 2t$ is applied to each system. Explain the reasoning for your solution. Note: Figs. 2a and 2b are not in the same order.

Figure 2: Problem 3 Bode and Sinusoidal Responses

Problem 4 A transfer function is defined as

$$G(s) = \frac{500(s+40)}{s^2 + 8s + 25}.$$

- 1. Draw the asymptotic Bode plots for this system.
- 2. What is the steady state output for an input of $u = 5 \sin 25t$?

 ${\bf Problem~5} \quad {\bf Given~the~state~space~representation~defined~as}$

$$\dot{\boldsymbol{x}} = A\boldsymbol{x} + B\boldsymbol{u},$$
$$\boldsymbol{y} = C\boldsymbol{x} + D\boldsymbol{u},$$

DERIVE the expression for the transfer function $\frac{Y(s)}{U(s)}$.

 $\textbf{Problem 6} \quad \text{List at least two advantages of state-space or "modern control" techniques as compared to "classical control" approaches.$

Problem 7 For the electrical system in Fig. 4:

- 1. Find the differential equations of motion for the system.
- 2. Find the state space representation of the system with your state vector defined as

$$\boldsymbol{x} = \begin{bmatrix} q_1 & i_1 & q_2 & i_2 \end{bmatrix}^T,$$

where q_1, i_1 represent the charge and current in the left loop while q_2, i_2 represent the charge and current in the right loop. The output is defined as

$$y = \begin{bmatrix} q_1 & q_2 \end{bmatrix}^T.$$

Figure 4: Electrical Circuit

Problem 8 Consider the electrical circuit shown in Fig. 5:

- 1. Find the differential equations which govern the behavior of the electrical system.
- 2. Construct the state space representation of the system. Assume the desired output is the charge in the system.
- 3. Find the output response of the system assuming zero initial conditions and a step input of $u(t)=24\,\mathrm{V}$

Figure 5: Electrical Circuit

LAPLACE TRANSFORM TABLE

Time Function	LaPlace Transform
δ (t)	. 1
	1
u(t)	$\frac{1}{2}$
	$\frac{\frac{1}{s^2}}{\frac{1}{s^3}}$
t	$\frac{1}{2}$
	S ⁻
t ²	$\frac{1}{2}$
$\frac{t^2}{2}$ t^{k-1}	s ³
tk-1	<u>(k−1)!</u>
•	$\frac{(k-1)!}{s^k}$
e ^{—at}	1
	s+a 1
te ^{-at}	1
	$(s+a)^2$
k_1 _at	$\frac{(s+a)^2}{\frac{(k-1)!}{(s+a)^k}}$
t ^{k-1} e ^{-at}	$\frac{\sqrt{2}}{(2+2)^k}$
	(s + a)
1-e ^{-at}	
	s(s + a)
$t-\frac{1-e^{-at}}{}$	<u>a</u>
t	$s^2(s+a)$
$1-(1+at)e^{-at}$	a ²
1-(1+at)e	
	$s(s+a)^2$
e ^{-at} -e ^{-bt}	b-a
	(s+a)(s+b)
sin bt	<u>b</u>
	s^2+b^2
cos bt	<u>s</u>
	$\overline{s^2+b^2}$
t sin bt	2bs
	$\frac{1}{(s^2+b^2)^2}$
t cos bt	s^2-b^2
t cos bi	sb-
	$(s^2+b^2)^2$
e ^{-at} sin bt	h
C SIII UL	$\frac{(s+a)^2 + b^2}{\frac{s+a}{(s+a)^2 + b^2}}$
_ at	S+8
e ^{-at} cos bt	(1.1.2.1.2
	(s+a) ⁻ +b ⁻