Title - Case study (Market Basket Analysis)

Problem statement: A mail has no of items for sale. Build a required patabase to develop BA +I tool for considering one aspects of growth of the business such as organization of products based on demand + patterns.

Input: Transaction Database and minimum support

Output: Frequent item sets. Association Rules + graphical representation of rules as per confidences + 1° F+.

pre-Labi - 1 knowledge of R programming language 2 Concept & theory of Apriori agasithm

Theory:

By convention, the algorithm assume that items within a transaction or itemset are sorted in lexicographic order. It employees an iterative approach known as a level-wise search, where item. set are used to explore k itemset first, the set of frequent 1- itemsets is found by ocanning the database to accumulate the count for each item 4 collecting those item that satisfy minimum support. The resulting set is denoted as LL. Next, Le is used to find Le, the set of frequent 2-item set, which is then used to find L3 & so on, until no move frequent k- itemset can be found

Pooja

of frequent itemsets, an important property canted appoint property is used to reduce the search space

Apriori Property - All nonempty subsets of a trequent itemset must also be trequent.

This property is based on the following observation.

It an itemset A does not satisfy the minimum support threshold, minimum then A is not frequent i.e. p(A) < minimum. If an item B is added to the itemset A, then resulting itemset is Aug can't ocur move (requenty than A therefor Aug is not frequent either that is p(AUB) < minimum.

A two-step process is used to find Ly from Ly-1
for K7,2

I. The join steps - To find Ly is set of candidate k-itemset is generated by joining Lk-1 with itself. This set of candidate is denoted by Ck. Let 12 be itemset in Lk-1 the notation li[j] refers to jth item in 1; Thus in 1; the last item the next to the last item are given respectively by 1. [k-1] to 1. [k-2]. Any two Itemset Lk-1 are joined if their first (k-2) items are in common. That is, members '1 and '2 are joined if (1. [f] = 12 [1]^(1. [2]=11/7])

^....^(11. [k-2] = 12 [k-2])^(11.[k-1] < 1. [k-1]) The Condition simply ensure that no duplicates are generated. The resulting itemsel formed by joining 11 and 12 is { 11 [1], 1, [2], ... 1, [k-2], 1, [k-1]].

	Date: / /20				
	be cause of the set of LK,				
	ainough all frequent K-itemsel are				
	members may or may nat				
	the database to determine				
	minimum support count of each candidate in C.				
	tellminate any itemset that does not meet the				
	This would the given I				
	nowwer a can be huge + 80 this could be very				
9	ansuming to eliminate the intrequent itemsets				
	The Aprilot property is used as follows. Anu(k-1)				
	itemset that is not frequent cannot be a subset				
-	of a frequent k-itemset. Hence if any (k-1) itemset				
	itemset of a candidate k-Itemset is not in Lku				
	then the candidate cannot be prequent.				
+	An Example of the use of the Apriori Agorithm.				
	We illustrate the use of Aprironi algorithm for				
-	finding frequent itemsets in our transaction database				
9	o in the first iteration of agorithm each item				
1	is a member of set of candidates 1-itemsets, CI				
+	The agosithm simply scans all the transaction in				
1	order to count the number of occurance of				
	each item.				
	CI Support LI Support				
	itemset count itemset count				
	{1} 6 {1} C				
	{2} 7 {2} 7				
	{3} 6 (3} 6				
	{4} 2 {4} 2				
	{5} 2 (5) ²				
	{c} L				

To discover the set of frequent 2-itemset, 1,2, the agonithm joins Li with self w to generate candidate itemset set of 2-itemset, C2. Note that no candidate are removed from C2 during the prunning step.

ca itemset	C2 itemset	Support Count
{1,2}	{1,2}	4
{P.3}	{ 1.3}	4
{1,43	21,43	1
{ 115}	{1,5}	2
{2,3}	{2,3}	4
{ 2,4}	{2,4}	2
{2,5}	{215}	2
{3,4}	{3,4}	0
{3,5}	{3,5}	1
[415]	{4,5}	0

Next the transaction in D are scaned the support cound of each candidate in C2 is accumulated. The set of Frequent 2-itemset, L2, is determined. consisting of those Candidate 2-itemset in C2 having minimum support.

La itemset	Support Gunt
{1,2}	4
{1,3}	4
£7,43	2
{2,3}	4
{2.4}	2
{2,5}	2

	Date: / /20
	Next Co is generated by joining L2 itself
	The result is Co = {{1,2,3}, {1,2,5}, {1,3,5}}
	{2,3,4}, {2,3,5}, {2,4,5}}, 03 is pumed using
	Apriori property. All nonempty subsets of frequent
	itemset must also be frequent. From way each
	candidate at as is formed.
	the candidate set
	since {2,3} is a frequent itemset, we keep \$1,2,3}ing
-	since {2,5} is a frequent itemset, we keep {1,2,5} in co
	since f315) is not frequent itemset, we remove {1,315) from a
	since {3,47 is not frequent itemset, we remove {2,3,47 from co
	since {315} is not frequent itemset, we remove {2,315} from 3
	since {415} is not frequent itemset, we remove {21415] from CB
	Therefore after pruning as given by
	Q3 itemset
	{1, 2, 3}
	{1,2,5}
	The transaction in D are scanned to determine 13
0	nonsisting of those candidates - 3 itemsets in Co
	having at least minimum support.
	c3 itemset Support Qunt
+	{1,2,3} 2
	{1,2,5} 2
	since both 3-itemset in a have the least minimum
	Support, L3 is given by
	L3 itemset Support Count
	{1; 0;3} 2
	{1,2,5}
	Finally L3 joined with itself to generate a
	candidate set of 4-itemset C4.
	Pooja

this result in a single itemset {112,915}. However the itemset is pruned since its subset {3,5} is not frequent thus C4=0 and algorithm terminate, having found all of the frequent itemsets.

Execution Guidelines:-

- 1. Install . packages 'arules', 'arules viz', from Cron minor through HTTP ...
- e. Use data set 'Grocenies'
- 8. Use appriori function in R to get itemset providing length of item set & support.
- 4. Crenerate rules using apronifunction in R toget itemset & support set.
- 5 plot rules for given confidence
- G. Plot graph of visualizing the high lift rules.

Analysis - 1. Observe the graphs for generated rules with different support confidence + lift.

e. observe top rules & use this patterns for organization of products.

Conclusion :-

Thus the Gnoceaies dataset is used to generale nules t applied rules for organization of products based on patterns t demand. Frequent itemset are found using apriori algorithm based on rule data mining technique observations are recorded in terms of graph.