# Aggregating Distortions in Networks with Multi-Product Firms

Yasutaka Koike-Mori UCLA Antonio Martner UCLA

UCLA IO proseminar May 29, 2024

### **Motivation**

- Aggregate TFP is the main source of income differences between countries
  - It is also a measure of our ignorance, ie, it is a residual
- In distorted economies:
  - $\Delta$  Aggregate TFP =  $\Delta$  Technology +  $\Delta$  Allocative Efficiency
- Assumption: Single good firms  $\implies$  no inefficiency within firms
- What if firms are multi-product objects that engage in joint production?

- Central Banks around the world have been estimating aggregate TFP growth for at least 60 years
  - With better data now, but same theory
- What are the lessons derived from a residual?
  - It is informative but hard to interpret
- We make an effort to shrink the TFP residual component using product level data
  - By unpacking between vs. within firm forces shaping aggregate TFP growth

# This Paper: Theory

- Growth accounting in economies with distortions
  - Bagaee & Farhi (2020) + Multi-product joint production firms
  - Heterogeneous wedges (markups) shape allocative efficiency
- Multi-product joint production firms influence aggregate TFP growth
  - Non-parametric sufficient statistic to include its TFP growth effect

Introduction

# This Paper: Measurement and Application

- Measurement for Chile: Product-level markups + firm-to-firm product level IO matrix
  - Markups: Off-the-shelf estimation + Control for input and output prices
  - IO matrix: Captures direct and indirect role product-level distortions: "Within firm Allocative Efficiency"
- Application: Aggregate TFP growth decomposition of one decade for Chile
  - During Covid and successive high inflation years, between firm Allocative Efficiency is decreasing while within firm Allocative Efficiency is increasing.

### Literature

- Aggregation in (in)efficient production networks
  - Liu (2019); Bigio and La'O (2020); Baqaee and Farhi (2020); Baqaee et al. (2023); Kikkawa (2022); Osotimehin and Popov (2023); Davila and Schaab (2023); Hulten (1978)
- Joint production
  - Hall (1973, 1988): Powell and Gruen (1968): Diewert (1971): Lau (1972): Ding (2023): Carrillo et al. (2023): Argente et al. (2021): Boehm and Oberfield (2023)
  - Estimation: Dhyne et al. (2017, 2022); Valmari (2023); Cairncross and Morrow (2023)
- Multi-product firms in General Equilibrium
  - Klette and Kortum (2004); Bernard et al. (2010); Mayer et al. (2014)

# Testing non-joint production

- Common view of multi-product firms: A collection of independent products (Klette and Kortum (2004); Bernard et al. (2010))
- Test for non-joint production in the spirit of Ding (2023)
  - Null hypothesis: sales of a given product are unaffected by demand shocks to the firm's other products
  - B2B transactions data + Covid lockdown as a negative demand shock

### Testing non-joint production: Covid lock-downs

#### Data

- Monthly B2B product level transactions for Chilean firms (Jan-Apr 2020)
  - value, product id, quantity, price, buyer and seller location

#### Demand shocks

- Main product: Highest sales in Jan-Feb 2020
- Shock to non-main products of firm *i*:

$$\phi_{it}^{-m} = \sum_{c} \left( \mathsf{Share}_{ic,\mathsf{Jan-Feb\ 2020}}^{-m} \right) imes \left( \mathsf{Lockdown}_{c,t} \right)$$

- Lockdown by destination county c: Lockdown<sub>c,t</sub> =  $\{0,1\}$
- Share  $\frac{-m}{ic \cdot lan \cdot Feb}$ : Pre-Covid sales share among non-main products of firm *i* to county *c*

### Lockdown area and shock to non-main products



(a) Lockdown counties April 2020



(b) Non-main product lockdown share:  $\phi_{i\mathsf{April}}^{-m}$ 

# Testing non-joint production: Estimation Strategy

$$\log Y_{it}^m = \alpha + \beta_1 \phi_{it}^{-m} + \beta_X X_{it} + \varepsilon_{it}$$

where  $Y \in [Sales, Quantity]$  conditioning i to be a non-lockdown area

- X: input price index for firm i, and fixed effects
- If  $\phi_{it}^{-m}$  is significant, the null hypothesis of non-joint production is rejected

# Testing non-joint production: Results

|                                | In S <sub>imt</sub> |                    |                    |                    | In Q <sub>imt</sub> |                    |                    |                    |
|--------------------------------|---------------------|--------------------|--------------------|--------------------|---------------------|--------------------|--------------------|--------------------|
|                                | (1)                 | (2)                | (3)                | (4)                | (5)                 | (6)                | (7)                | (8)                |
| $eta_1$                        | -0.147***           | -0.267***          | -0.263***          | -0.172***          | -0.151***           | -0.224***          | -0.277***          | -0.196***          |
| Product FE                     | ✓                   | ✓                  | ✓                  | ✓                  | <b>√</b>            | ✓                  | ✓                  | ✓                  |
| Firm FE                        | X                   | ✓                  | ✓                  | ✓                  | ×                   | ✓                  | ✓                  | ✓                  |
| Destination county FE          | X                   | Χ                  | ✓                  | ✓                  | X                   | X                  | ✓                  | ✓                  |
| Month-290 product code FE      | X                   | X                  | X                  | ✓                  | X                   | X                  | X                  | ✓                  |
| Observations $R^2$             | 1,555,795<br>0.506  | 1,518,448<br>0.591 | 1,518,448<br>0.591 | 1,518,448<br>0.613 | 1,556,544<br>0.682  | 1,519,198<br>0.759 | 1,519,198<br>0.759 | 1,519,198<br>0.771 |
| *** p<0.01, ** p<0.05, * p<0.1 |                     |                    |                    |                    |                     |                    |                    |                    |

Rejecting the null hypothesis motivates the need for joint production setups

### Joint Production

Let t(q, x) be a transformation function:

$$t(\mathbf{q},\mathbf{x})=0,$$

x:input vector, q; output vector

#### **Assumptions:**

- (a) CRS:  $t(\mathbf{q}, \mathbf{x}) = 0$  imples  $t(\lambda \mathbf{q}, \lambda \mathbf{x}) = 0$
- (b) Separability between Input and output bundles:  $t(\mathbf{q}, \mathbf{x}) = -g(\mathbf{q}) + f(\mathbf{x})$

Example Constant-Elasticity of Transformation and CES Input (CET-CES):

$$\underbrace{\left(\sum_{g} q_{ig}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}}}_{\text{Output bundle}} = A\underbrace{\left(\omega_{L} L^{\frac{\sigma-1}{\sigma}} + \omega_{K} K^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}}_{\text{Input Bundle}}$$

### Setup for Joint Production within Supply Chains

- Firm  $i \in N$  produces product  $g \in G$  grouped in vector  $q_i, g$
- Use intermediate inputs  $g' \in G$  form firm  $j \in N$  grouped in vector  $x_{i,g'}$  and factors as inputs

Setup

Joint production with CRS and separability:

$$F_{i}^{Q}\left(\left\{\underbrace{q_{ig}}_{\text{outputs}}\right\}_{i\in N,g\in G}\right)=A_{i}F_{i}^{X}\left(\left\{\underbrace{\underbrace{x_{i,jg'}}_{\text{Intermediate product }g'\text{ from j}}}_{j\in N,g'\in G}\right\},$$

Cost minimization charging product-level markups

$$p_{ig} = mc_{ig} \cdot \mu_{ig}$$

### Households

Representative household:

$$U = U(q_{ig},...,q_{NG})$$

**Budget constraint** 

$$\sum_{i \in N} \sum_{g \in G} p_{ig} q_{ig} = \sum_{f \in \{L,K\}} w_f L_f + \sum_{i \in N} \sum_{g \in G} (1 - 1/\mu_{ig}) p_{ig} q_{ig} + T$$

Resource Constraint:

$$q_{ig} = q_{ig}^H + \sum_{j \in N} x_{jig}, \quad \sum_{i \in N} L_i = L, \quad \sum_{i \in N} K_i = K$$

# GDP by Explicitly Aggregating Firm-Level Data

GDP definition

$$GDP = \sum_{i \in N} \sum_{g \in g} p_{ig} q_{ig}$$

Firm GDP shares

$$b_i = egin{cases} rac{p_{ig}q_{ig}}{GDP} & ext{if } i \in N, g \in G \ 0 & ext{otherwise} \end{cases}$$

Factor GDP shares

$$\Lambda_L = \frac{w_L L}{GDP}, \quad \Lambda_K = \frac{w_K K}{GDP}$$

Network Aggregation

# Input-Output Objects (1)

Cost-based input-output matrix  $(\tilde{\Omega})$  of dimensions  $(NG+F)^2$ .

$$\tilde{\Omega}_{ig,jg'} = \frac{\text{Value of product g' from firm j used by firm i}}{\text{Firm i total cost}} = \frac{p_{jg'}x_{i,jg'}}{\sum_{j,g'}p_{jg'}x_{i,jg'} + \sum_{f}w_{f}L_{if}}$$

- Separability implies that shares are common for all g within i
- Cost-based Leontief inverse matrix  $(\tilde{\Psi})$  accounts for products' direct and indirect cost exposures through supply chains.

$$\tilde{\Psi} \equiv (I - \tilde{\Omega})^{-1} = I + \tilde{\Omega} + \tilde{\Omega}^2 + \dots$$

Network Aggregation

• Cost-based Domar weights  $\tilde{\lambda}$  ( $\tilde{\Lambda}$  for factors)

$$ilde{\lambda}' = b' ilde{\Psi}$$

- Cost-based Domar weights capture the impact of product-level cost shocks on GDP.
- Firm-level cost-based Domar weight and within-firm product share

$$egin{aligned} ilde{\lambda}_{\it i} = \sum_{\it g} ilde{\lambda}_{\it ig}, & s_{\it ig} = rac{\lambda_{\it ig}}{\sum_{\it g} ilde{\lambda}_{\it ig}} \end{aligned}$$

# Network product distortion

#### Network product distortion

$$\Xi_{ig} = rac{sales_{ig}/\mu_{ig}}{ ilde{\lambda}_{ig}}$$

- Summarizes the cumulative downstream distortion of product *g* from firm *i*
- In the presence of markups, the impact of product-level cost shocks on GDP  $(\tilde{\lambda}_{ia})$ exceeds markup-adjusted product sales (costs)  $\implies \Xi_{ia} < 1$

# Relative network product distortion

#### Relative network product distortion

$$\xi_{ig} = \frac{\Xi_{ig}}{\Xi_{i}}$$

- $\Xi_i = \sum_{\alpha} (sales_{i\alpha}/\mu_{i\alpha}) / \sum_{\alpha} \tilde{\lambda}_{i\alpha}$  is firm *i* average distortion
- Ranks product distortions within firms
- As smaller  $\xi_{ia}$  is, good g is relatively more distorted within firm i because good g is relatively more under-produced than the average firm i good

### Within-firm AF

Within Firm 
$$AE = \sum_{i \in N} \tilde{\lambda}_i Cov_{s_i} \left( d \log \boldsymbol{p}_i, \underbrace{\boldsymbol{\xi}_i}_{Product \ Distortion} \right)$$

where  $d \log \mathbf{p}_i = (d \log p_{i1}, ..., d \log p_{iG})$  and  $\boldsymbol{\xi}_i = (\xi_{i1}, ..., \xi_{iG})$ 

- $Cov_{s_i}(d \log \mathbf{p}_i, \boldsymbol{\xi}_i) > 0$ : within-firm Allocative Efficiency increases
- $\downarrow$  price of more distorted goods  $\Rightarrow \downarrow$  accumulated wedge in the downstream supply chain
- Sum up firm-level covariances using cost-based Domar weights,  $\lambda_i$

$$\Delta \text{ Between-Firm Allocative Efficiency} = \underbrace{-\sum_{f} \tilde{\Lambda}_{(f)} d \log \Lambda_{f}}_{(a)} \underbrace{-\sum_{i} \tilde{\lambda}_{i} d \log \mu_{i}}_{(b)}$$

- Baqaee and Farhi (2020)
  - (a) If (a) < 0 resources are reallocated to the more monopolized (underproduced) part of the economy  $\Rightarrow \Delta^-$  Factor shares  $\Rightarrow \Delta^+$  TFP
  - (b) Factor reallocation due to markup changes must be discounted to capture the pure factor changes effect

Network Aggregation

Combining between firm and within-firm Allocative Efficiency:

$$\Delta \mathit{TFP} = \underbrace{\sum_{i} \tilde{\lambda}_{i} d \log A_{i} - \sum_{i} \tilde{\lambda}_{i} d \log \mu_{i} - \sum_{f} \tilde{\Lambda}_{(f)} d \log \Lambda_{f}}_{\text{Between-Firm AE}} + \underbrace{\sum_{i} \tilde{\lambda}_{i} \mathit{Cov}_{s_{i}} \left( d \log \boldsymbol{p}_{i}, \boldsymbol{\xi}_{i} \right)}_{\text{Within-Firm AE}}$$

- If firms are single-product, within-firm AE converges to zero: Bagaee and Farhi (2020).
- Without markups, between-firm AE also converges to zero. TFP changes are due to technology; Hulten (1978).

### Data and measurement: overview

- Product-Level and Domar weights,  $\tilde{\lambda}_i$ : from B2B transaction details
- Product Network Distortion  $\xi_{ia}$ , markup: joint production from Dhyne, Petrin, Smeets & Warzynski (2022) markup estimation
- Factor Shares,  $d \log p$  and TFP: observable

# Product level aggregation

- Products are aggregated from around 15 million products to 290 product codes
  - Product-level output and material usage price indices by firms are built using standard Tornqvist indices
- We allow firms to produce at most 5 of the 290 available product codes
  - Product codes are restricted to account for at least 20% of the firm's total sales
  - All other goods that represent less than 20% are grouped into a composite good that combines all the remaining products.



### TFP decomposition after Covid: Only Between firm AE

$$d\log \mathit{TFP} = \underbrace{\sum_{i} \tilde{\lambda}_{i} d\log A_{i} - \sum_{f} \tilde{\Lambda}_{f} d\log \Lambda_{f} - \sum_{i} \tilde{\lambda}_{i} d\log \mu_{i}}_{\text{Residual}} + \underbrace{\sum_{i} \tilde{\lambda}_{i} \mathit{Cov}_{S_{i}} \left( d\log p_{i}, \xi_{i} \right)}_{\text{Within-Firm AE}}$$

### TFP cumulative change (2014=0)



### TFP decomposition after Covid: Full decomposition

$$d\log \mathit{TFP} = \underbrace{\sum_{i} \tilde{\lambda}_{i} d\log A_{i} - \sum_{f} \tilde{\Lambda}_{f} d\log \Lambda_{f} - \sum_{i} \tilde{\lambda}_{i} d\log \mu_{i}}_{\text{Residual}} + \underbrace{\sum_{i} \tilde{\lambda}_{i} \mathit{Cov}_{s_{i}} \left( d\log \mathbf{p}_{i}, \boldsymbol{\xi}_{i} \right)}_{\text{Within-Firm AE}}$$

### TFP cumulative change (2014=0)



# Within firm AE: Covid + high inflation (2019-2022)

Aggregate cumulative contribution by product categories of firm's main product (2019=0)



Contribution of firm with product 
$$c = \sum_{i \in N_C} \tilde{\lambda}_i Cov_{\mathcal{S}_i} (d \log \pmb{p}_i, \pmb{\xi}_i)$$

### Conclusion

- TFP growth being a residual is informative but hard to interpret
  - Reducing the residual by adding within firm wedges might inform about forces driving TFP growth
- Allocative efficiency explains the bulk of aggregate TFP growth in chile after 2019
  - While resources are increasingly missalocated between firms, within firm resources allocation improved in stressed parts of the cycle



### Data

- (a) Sales, materials, investment: F29 (2015-2022)
- (b) Wage bill, employment: DJ1887 (2015-2022)
- (c) Capital: F22 (2015-2022)
  - Capital stock using perpetual inventory methods combining capital stock with investment
  - UCC: interest rate inflation expectation + depreciation rate from LA-Klems database + external financing premium (5 percent)
- (d) Product, I-O matrices and output and input prices: F2F electronic receipts (2015-2022)
- (e) Official deflectors for aggregate real variables



# Data cleaning

- The final sample does not include firms with a missing variable of sales, capital, wage bill, or materials
- Winzorized labor, capital and materials shares over sales at 1% of both tails of the distribution
- Firms with negative value added (sales minus materials), less than two workers or capital less than 10.000 CLP (USD 15) are excluded



### Markup estimation

- Following Dhyne, Petrin, Smeets & Warzynski (2022)
- Cobb-Douglas production function using three inputs (K, L, M) and (aggregated) other outout  $(y^{-g})$  (lower case variables denote logs)

$$y_t^g = eta_0^g + eta_K^g k_t + eta_L^g l_t + eta_M^g m_t + \gamma_{-g}^g y_t^{-g} + \omega_{gt}$$

- GMM Estimation was performed separately by 290 product codes
- Time invariant output elasticities recover product level markup

$$\mu_g = eta_M^g \, rac{
ho_g Y_g^*}{
ho_m M_n^*}$$



# Markup estimation

Mean coefficients by 11 aggregate product categories

|                          | $\beta_m$ | $\beta_l$ | $\beta_k$ | $\gamma_{\!-g}$ |
|--------------------------|-----------|-----------|-----------|-----------------|
| Construction             | 0.82      | 0.62      | 0.02      | -0.07           |
| Energy                   | 0.82      | 0.56      | 0.16      | -0.04           |
| Manufacturing            | 0.93      | 0.41      | 0.03      | -0.09           |
| Agriculture              | 0.91      | 0.27      | 0.04      | -0.10           |
| Mining                   | 0.86      | 0.40      | 0.06      | -0.20           |
| Wholesale                | 1.84      | 0.48      | 0.05      | -0.13           |
| <b>Business Services</b> | 0.89      | 0.65      | 0.04      | -0.06           |
| Financial Services       | 0.87      | 0.49      | 0.01      | 0.09            |
| Real Estate              | 1.55      | 0.39      | 0.12      | -0.06           |
| Personal Services        | 0.90      | 0.56      | 0.01      | -0.06           |
| Transport and ICTs       | 0.84      | 0.56      | 0.02      | -0.03           |



# Markup distribution

Markup distribution by product category excluding 1 and 99 percentiles





### **Number of Products**

#### Number of products distribution

|            | 290 product code | 20% chare rule |  |  |
|------------|------------------|----------------|--|--|
|            |                  |                |  |  |
| Mean       | 12               | 2              |  |  |
| Median     | 6                | 2              |  |  |
| Sd         | 16               | 1              |  |  |
|            |                  |                |  |  |
| p1         | 1                | 1              |  |  |
| p25        | 2                | 1              |  |  |
| p25<br>p75 | 16               | 5              |  |  |
| p90        | 33               | 5              |  |  |
| p95        | 47               | 5              |  |  |
| p99        | 73               | 5              |  |  |
|            |                  |                |  |  |
| Max        | 176              | 5              |  |  |





### Within firm AE: Covid periods (2019~2021)

Aggregate contribution by product categories of firm's main product

Contribution of firm with product 
$$c = \sum_{i \in N_C} \tilde{\lambda}_i Cov_{s_i} \left( -d \log oldsymbol{p}_i, oldsymbol{\xi}_i 
ight)$$



### Within firm AE: High-inflation periods (2021~2022)

Aggregate contribution by product categories of firm's main product

Contribution of firm with product 
$$c = \sum_{i \in N_C} \tilde{\lambda}_i Cov_{s_i} \left( -d \log oldsymbol{p}_i, oldsymbol{\xi}_i 
ight)$$

