Apuntes de clase

José Antonio de la Rosa Cubero

Proposición 1. Si G tiene orden |G| = 30, entonces $n_3 = 1$ o $n_5 = 1$, y en cualquier caso, G es resoluble.

Demostración. $|G| = 30 = 2 \cdot 3 \cdot 5$ y por tanto $n_3 | 10$ y $n_3 \equiv 1 \mod 3$, luego $n_3 = 1$ o $n_3 = 10$.

 $n_5|6 \text{ y } n_5 \equiv 1 \mod 5$, luego $n_5 = 1 \text{ o } n_3 = 6$.

Supongamos que $n_3=10$ y $n_5=6$ simultáneamente. Sean P_i con $1\leq i\leq 10$ los 3-subgrupos de Sylow.

Como $|P_i| = 3$, entonces $P_i \cap P_j = \{1\}$ y por tanto en $\bigcup (P_i \setminus \{1\})$ hay 20 elementos de orden 3.

Sean Q_i con $1 \le i \le 6$ los 5-subgrupos de Sylow. Como $|Q_i| = 5$, entonces $Q_i \cap Q_j = \{1\}$ y por tanto en $\bigcup (Q_i \setminus \{1\})$ hay 24 elementos de orden 5.

Tenemos que $30 = |G| \ge 20 + 24 = 44$, que es una contradicción.

Si $n_3 = 1$, existe un único $P \subseteq G$ con orden 3 que es resoluble y |G/P| = 10 que es resoluble. Luego G es resoluble.

Si $n_5 = 1$, existe un único $Q \leq G$ con orden 5 resoluble y |G/P| = 6 que es resoluble. Luego G es resoluble.

Proposición 2. Todo grupo de orden pq con p y q primos distintos, es resoluble.

Demostración. Suponemos p > q. Sabemos que $n_p|q$ y entonces $q \equiv 1$ mód p, es decir, q = 1 + kp, en contradicción con que p > q.

Por tanto $n_p = 1$ y con ello se deduce que G es resoluble.

Proposición 3. Todo grupo de orden p^2q con p y q primos distintos, es resoluble.

Demostración. Si p > q, entonces razonando como en el caso anterior, $n_p = 1$ y G es resoluble.

Si p < q tenemos que $n_q | p^2$ y $n_q \equiv 1 \mod q$. Como $n_q \neq p$, tenemos que $n_q = 1$ o $n_q = p^2$.

En el primer caso, existe un único Q normal en G de orden q resoluble y como $|G/Q| = p^2$ es resoluble por ser un p-grupo, G es resoluble.

Si $n_q = p^2$, sea P_i con $1 \le i \le p^2$ los q-subgrupo de Sylow de G. Cada uno tiene orden q y la intersección de dos de ellos es el grupo trivial.

Entonces en $\bigcup (P_i \setminus \{1\})$ hay $(q-1)p^2$ elementos. Como $|G| = p^2q$ nos quedan p^2 elementos en el grupo G que son los que forman el único subgrupo de Sylow de G.

Tenemos que $|Q_1|=|Q_2|=p^2$ y como existe un $x\in Q_2$ que no está en Q_1 , tenemos que $n_p=1$, luego G es resoluble.

Proposición 4. Si $|G| = p_1p_2p_3$, primos distintos tales que $p_3 > p_1p_2$, entonces G es resoluble.

 $Demostración.\ n_{p_3}|p_1p_2$ y $n_{p_3}\equiv 1\mod p_3.$ Veamos que necesariamente $n_{p_3}=1.$

Si $n_{p_3} = p_1$ tenemos que $p_1 \equiv 1 \mod p_3$ y por tanto $p_1 = 1 + kp_3$.

$$p_1p_2 = p_2 + kp_3p_2 > p_3 > p_1p_2$$

Del mismo modo $n_{p_3} \neq p_2$.

Si $n_{p_3}=p_1p_2$, entonces $p_1p_2\equiv 1\mod p_3$ y por tanto $p_1p_2=1+tp_3$ luego $p_1p_2>p_3>p_1p_2$.

Finalmente tenemos que la única posibilidad es que $n_{p_3} = 1$, luego existe un Q normal con orden p_3 que es resoluble. Como G/Q, que tiene orden p_1p_2 es resoluble (por la proposición anterior), tenemos que G es resoluble.

Proposición 5. Sea G un p-grupo y X un G-conjunto finito. Entonces:

$$|X| \equiv |\text{Fix}(X)| \mod p$$

Demostración. Supongamos que $|G| = p^k$.

$$|X| = |\operatorname{Fix}(X)| + \sum_{x \notin \operatorname{Fix}(X)} |O(x)|$$
$$= |\operatorname{Fix}(X)| + \sum_{x \notin \operatorname{Fix}(X)} [G : \operatorname{Stab}_{G}(x)]$$

 $x\notin \mathrm{Fix}(x)$ si y solo si|O(x)|>1 si y solo si $[G:\mathrm{Stab}_G(x)]>1.$

Como $[G : \operatorname{Stab}_G(x)]|p^k$, tenemos que $[G : \operatorname{Stab}_G(x)] = p^r$.

Por tanto $p|\sum_{x\notin \text{Fix}(X)}[G:\text{Stab}_G(x)]$, de lo que se sigue la fórmula que se quiere demostrar.

Definición 1 (Subgrupo transitivo). Un subgrupo $G \leq S_n$ se dice transitivo si la acción de G sobre $X = \{1, \ldots, n\}$ es transitiva.

Decir que G es transitiva equivale a decir que tiene una única órbita. Equivalentemente, un subgrupo es transitivo si y solo si para cualesquiera $i,j\in X$ existe $\sigma\in G$ tal que $\sigma(i)=j$.

En particular, S_n es transitivo.