

Classifying Safe Water Sources

Potential Potables

By: William Grennan

Earth's Most Valuable Resource

- Fresh Water accounts for only ~2.5% of all water on earth
- But not all fresh water is safe to drink
- Water Pollution takes many forms
 - pH imbalance
 - Clarity
 - Toxic substances
 - Etc.

How Can Data Science Help?

- 9 key measurements can be taken from the water sources quickly
 - pH, Hardness, Dissolved Solids, Chloramines, Dissolved Sulfates, Conductivity, Organic Carbon, Trihalomethanes, and Turbidity
- Using these measurements, we can narrow the search
- 2 Objectives depending on need
 - Precision Quickly find water most likely to be safe
 - Recall Identify sources that were previously overlooked

What Successes Can We Find?

- Data modeling can be tricky
- Lots of measurement overlap between the classes
- Decision Trees and Forests tend to perform better than Logistic Regression

Directly Compare the Models in Streamlit

- Selectable Model
- View Model Hyperparameters
- Viewable ROC Chart
- AdjustableConfusion Matrix

Conclusions

- XGBoost and Random Forests perform the best on test data
- Current modeling is too risky for a definitive answer
- Further scientific study may find more reliable measurements

Testing Data	Accuracy	ROC AUC
XGBoost	61.28 %	57.25 %
KN Neighbor	60.82 %	56.26 %
Random Forest	64.02 %	60.82 %

Appendix (Pair Plot)

