

IoT FL와 SplitNN 비교

SHI JINGYAO 202255072

Related Work Purpose

- 1. 라즈베리 파이를 이용한 연합 학습이 적절한지 (라즈베리 파이 성능)
 - GPU가 없어 서버에 비해 성능이 부족한데 FL에 대처할 수 있을까?
- 2. Non-IID Data
 - 센서는 측정 시간에 따라 측정 대상이 다르므로 데이터 분포는 달라진다

Paper

- 제목: End-to-End Evaluation of Federated Learning and Split Learning for Internet of Things(2020)
- FL과 SplitNN은 서로 다른 유형의 데이터 분포에서 비교
 - 학습 시간
 - 학습 결과
 - 통신 트래픽 (communication traffic)

(b) SplitNN with seven layers

Data Set

- 1. 심전도(ECG): MIT-BIH Arrhythmia[21]는 부정맥 진단을 위한 ECG 신호 분류 또는 탐지 모델에 널리 사용되는 데이터 세트
 - Class 5개: N (normal beat), L (left bundle branch block), R (right bundle branch block), A (atrial premature contraction), and V (ventricular premature contraction)
- Speech Command(SC): SC에는 여러 개의 one-second.wav 오디오 파일이 포함되어 있다.
 - Class 10개: 각 샘플에는 영어로 된 단어는 "0", "1", "2", "3", "4", "5", "6", "7", "8" 및 "9"의 10가지 범주를 사용

Dataset	# of labels	Input size	# of samples	Model Architecture	Total Parameters	Total Model Accuracy (Centralized data)
ECG	5	124	26,490	4conv + 2dense 1D CNN	68,901	97.78%
Speech Command (SC)	10	8,000	32,187	4conv + 2dense 1D CNN	522,586	85.29%

테스트 환경

- Raspberry Pi 장치(클라이언트)가 2개에서 5개일 때 FL과 SplitNN을 비교
- 테스트 한 모델은
 - 1D CNN layers(4개)
 - Dense layers(2개)

비교 결과

- 5개의 데이터 클래스 사용(각 클라이언트에 무작위로 할당)
 - 클라이언트가 다 5개 클래스일 때 결과 가장 좋다.
 - SplitNN은클래스 분배가 다를 경우 학습하지 않는다
 - FL은 Non-IID Data의 상황에 더 적합

Related Work Purpose

- 목표: 라즈베리파이 작업시간 다른의 경우에서 어떻게 학습
- 제목: Asynchronous Online Federated Learning for Edge Devices with Non-IID Data

