Q1: Use a truth table to decide whether this argument is valid.

p V ¬q premise 1 p \wedge ¬r premise 2 \therefore r \rightarrow q conclusion

SOLUTION: Valid.

				prem 1		prem 2	conclu
p	q	r	$\neg q$	$p \vee \neg q$	$\neg r$	$p \wedge \neg r$	$r \rightarrow q$
T	T	T	F	T	F	F	
T	T	F	F	T	T	T	T^*
T	F	T	T	T	F	F	
T	F	F	T	T	T	T	T^*
F	T	T	F	F	F	F	
F	T	F	F	F	T	F	
F	F	T	T	T	F	F	İ
F	F	F	T	T	T	F	İ

Q2: Use a truth table to decide whether this argument is valid.

p V q premise 1

q $\,\mathrm{V}\,$ r premise 2

∴ p V r conclusion

SOLUTION: NOT valid.

			prem 1	prem 2	 	conclu
p	q	r	$p \lor q$	$q\vee r$	* 	$p \lor r$
\overline{T}	T	T	T	T	 * 	T
T	T	F	T	T	 * 	T
T	F	T	T	T	*	T
T	F	F	T	F		
F	T	T	T	T	 * 	T
F	T	F	T	T	 * 	F
F	F	T	F	T		
F	F	F	F	F	 	

Q3: Test the validity of the following argument:

If two sides of a triangle are equal, then the opposite angles are equal.

Two sides of a triangle are not equal.

The opposite angles are not equal.

Answer: this argument is a fallacy.

Q4: Test the validity of the following argument:

If I study, then I will not fail mathematics.

If I do not play basketball, then I will study.

But I failed mathematics.

Therefore I must have played basketball.

Answer:

Let p be "I study,"

q be "I failed mathematics," and

r be "I play basketball."

The argument has the form:

$$p \to \neg q,$$

$$\neg r \to p,$$

q _____

T	F	F	T	T	T	T
F	(T)	T	F	(T)	F	(T)
F	T	F	F	T	T	F
F	F	T	T	T	F	T
F	F	F	T	T	T	F

T

Valid

```
1. q
```

5.
$$\neg p -> r \ [\neg r -> p \equiv \neg p -> r]$$

r [modus ponens on step 3 and 5]

Q: Construct an argument using rules of inference to show that the hypotheses

- All humans are mortal,
- All philosophers are humans, and
- Socrates is a Greek philosopher

imply the conclusion that

Socrates is mortal.

Solution:

Predicates: H(x), M(x), P(x), and G(x), for x is a human, x is mortal, x is a philosopher, and x is Greek, respectively.

Step 1: " $x(H(x) \rightarrow M(x))$	hypothesis
Step 2: $"x(P(x) \rightarrow H(x))$	hypothesis
Step 3: G(Socrates) ∧ P(Socrates)	hypothesis

Step 4: P(Socrates) simplification on Step 3

Step 5: $P(Socrates) \rightarrow H(Socrates)$ universal instantiation on Step 2 Step 6: H(Socrates) modes ponens on Steps 4 & 5 Step 7: $H(Socrates) \rightarrow M(Socrates)$ universal instantiation on Step 1 Step 8: M(Socrates) Modes ponens on Steps 6 & 7