Solutions to 1st Mid-Semester Exam

Note that the explanations given here are more detailed than required in the answers given by the examinees!

Question 1 (6 Marks)

Write the following functions writing in *increasing* order of asymptotic growth.

- $\lfloor \sqrt{n} \rfloor$ (Integer part of square root of n.)
- $2^n/10^{10}$
- (n-100)/2
- $\log(n+6)$
- $\sin(n)$
- $n^2 n 1$

Solution. The order is

$$\sin(n), \log(n+6), |\sqrt(n)|, (n-100)/2, n^2-n-1, 2^n/10^{10}$$

Some justifications:

- $\sin(n)$ is $\Theta(1)$.
- $\log(n+6) \sim \log(n)$.
- $\lfloor \sqrt{(n)} \rfloor \sim \sqrt{n}$.
- (n-100)/2 is $\Theta(n)$.
- $n^2 n 1$ is $\Theta(n^2)$.
- $2^n/10^{10}$ is $\Theta(2^n)$.

Question 2 (7 Marks)

Given the function f(n) defined by the following recursion:

- f(n) = n for $n \le 2$. $f(n) = 5 \cdot f(n-3) + 2 \cdot f(n-2) + f(n-1)$ for $n \ge 3$

Compare f(n) using o or O (as appropriate), to the following functions

- a. $g_0(n) = n^3$.
- b. $g_1(n) = 2^n$.
- c. $g_2(n) = 3^n$.

Solution. We note by induction on n:

- 1. $f(n) \ge 0$ for all n and f(n) > 0 for all n > 1.
- 2. This implies that f(n) > f(n-1) for all n. So f(n) is increasing.

3. This implies that

$$f(n) = 5 \cdot f(n-3) + 2 \cdot f(n-2) + f(n-1)$$
$$> (5+2+1)f(n-3) = 8f(n-3) = 2^3 f(n-3)$$

By induction on n, this means that for n > 0, we have:

$$f(3n+1) > 2^{3n+1}f(1)/2$$

$$f(3n+2) > 2^{3n+2}f(2)/4$$

$$f(3n+3) > 2^{3n+3}f(3)/8$$

Since f(1), f(2), f(3) are positive, it follows that 2^n is O(f(n)).

Since n^3 is $o(2^n)$, we see that n^3 is o(f(n)).

We note that $f(0) < 3^0$, $f(1) < 3^1$ and $f(2) < 3^2$. By induction on n:

$$f(n) < 5 \cdot 3^{n-3} + 2 \cdot 3^{n-2} + 3^{n-1} = (5 + 2 \cdot 3 + 3^2)3^{n-3} = 20 \cdot 3^{n-3} < 3^n$$

It follows that f(n) is $O(3^n)$.

With a little sharper analysis we can show that 2^n is o(f(n)) and f(n) is $o(3^n)$.

Question 3 (7 Marks)

Given an algorithm add that takes two multi-digit numbers \underline{a} and \underline{b} and returns the sum $\underline{c} = \underline{a} + \underline{b}$. Also given that it uses p + q basic operations where \underline{a} has length p and b has length q.

Count the number of operations of the following algorithm addlist which adds together a list $L = (\underline{a_1}, \dots, \underline{a_k})$ of multi-digit numbers assuming that:

- All the multi-digit numbers a_i have the same length p.
- The only operations to be counted occur during the computation of add.
- We want the number of operations in terms of k and p.
- We want to look at the worst case (the maximum number of operations).

define addlist(L):

```
if length of L is 1:

return \underline{a_1}, the first (and only!) element of L

else:

Put L' as the list obtained from L by removing \underline{a_1}.

return add(a_1, addlist(L'))
```

Solution. Let T(k, p) denote the number of invocations of add when the input consists of a list of length k of multi-digit numbers of size p.

We note that T(1, p) = 0 since the algorithm returns the single element of the list without the need to invoke add.

Next, we note that for $k \geq 2$, we have T(k,p) = T(k-1,p) + (p+U(k-1,p)) where U(k-1,p) is the length of the output of the algorithm on the input of k-1 multi-digit numbers of size p.

Now, each addition can result in one extra digit. So $U(k,p) \leq 1 + U(k-1,p)$ for $k \geq 2$ and U(1,p) = p.

By induction on k, we deduce that $U(k, p) \leq (k - 1) + p$.

Since we are looking at the *worst-case*, we use T(k,p) = T(k-1,p) + p + ((k-2)+p) for $k \ge 2$.

By induction on k, this gives us T(k,p) = 2(k-1)p + (k-1)(k-2)/2.

A finer analysis will note that the extra-digit is not obtained for all k.

We note that when k is o(p) (small lists of large numbers), then the growth in complexity is O(p) (linear), whereas when p is O(k) (large lists of numbers), the growth is $O(k^2)$ (quadratic).