RICOH

R1114x SERIES

LOW NOISE 150mA LDO REGULATOR

NO.EA-094-0512

OUTLINE

The R1114x Series are CMOS-based voltage regulator ICs with high output voltage accuracy, low supply current, low ON-resistance, and high ripple rejection. Each of these ICs consists of a voltage reference unit, an error amplifier, resistor-net for voltage setting, a current limit circuit, and a chip enable circuit.

These ICs perform with low dropout voltage and a chip enable function. The line transient response and load transient response of the R1114x Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication equipment.

The output voltage of these ICs is fixed with high accuracy. Since the packages for these ICs are SOT-23-5, SC-82AB, and SON1612-6 therefore high density mounting of the ICs on boards is possible.

FEATURES

Low Supply Current	Typ. 75μA
Standby Mode	Typ. 0.1μA
Low Dropout Voltage	. Typ. 0.22V (Iouт=150mA 3.0V Output type)
High Ripple Rejection	Typ. 70dB (f=1kHz 3.0V Output type)
	Typ. 60dB (f=10kHz)
Low Temperature-Drift Coefficient of Output Voltage	. Typ. ±100ppm/°C
Excellent Line Regulation	. Typ. 0.02%/V
High Output Voltage Accuracy	±2.0%
Small Packages	SOT-23-5/SC-82AB/SON1612-6
Output Voltage	Stepwise setting with a step of 0.1V in
	the range of 1.5V to 4.0V is possible
Built-in Fold Back Protection Circuit	. Typ. 40mA (Current at short mode)
• Ceramic capacitors are recommended to be used with this IC	. $C_{IN}=C_{OUT}=1\mu F$ (Vout<2.5V)
	$C_{\text{IN}}\!\!=\!\!1\mu\text{F, Cout}\!\!=\!\!0.47\mu\text{F (Vout} \geqq 2.5\text{V)}$

APPLICATIONS

- Power source for portable communication equipment.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.

BLOCK DIAGRAMS

SELECTION GUIDE

The output voltage, version, and the taping type for the ICs can be selected at the user's request. The selection can be made with designating the part number as shown below;

$$\begin{array}{cccc} R1114x\underline{xx}1x\underline{-xx} & \leftarrow \text{Part Number} \\ & \uparrow \uparrow & \uparrow \uparrow \\ & \text{a b} & \text{c} & \text{d} \end{array}$$

Code	Contents	
а	Designation of Package Type: N: SOT-23-5 D: SON1612-6 Q: SC-82AB	
b	Setting Output Voltage (Vout): Stepwise setting with a step of 0.1V in the range of 1.5V to 4.0V is possible.	
С	Designation of Active Type: A: active low type B: active high type D: active high, with auto discharge	
d	Designation of Taping Type: Ex. TR (refer to Taping Specifications; TR type is the standard direction.)	

PIN CONFIGURATION

PIN DESCRIPTIONS

• R1114Q

Pin No.	Symbol	Description
1	CE or CE	Chip Enable Pin
2	GND	Ground Pin
3	Vоит	Output pin
4	V_{DD}	Input Pin

• R1114N

Pin No.	Symbol	Description
1	V _{DD}	Input Pin
2	GND	Ground Pin
3	CE or CE	Chip Enable Pin
4	NC	No Connection
5	Vouт	Output pin

• R1114D

Pin No.	Symbol	Description
1	V_{DD}	Input Pin
2	GND	Ground Pin
3	Vouт	Output pin
4	NC	No Connection
5	GND	Ground Pin
6	CE or CE	Chip Enable Pin

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
Vin	Input Voltage	6.5	V
Vce	Input Voltage (CE or CE Pin)	6.5	V
Vouт	Output Voltage	-0.3~V _{IN} +0.3	V
Іоит	Output Current	200	mA
	Power Dissipation (SOT-23-5)*1	420	
P _D	Power Dissipation (SC82-AB)*1	380	mW
	Power Dissipation (SON1612-6)*1	500	
Topt	Operating Temperature Range	-40~85	°C
Tstg	Storage Temperature Range	−55 ~ 125	°C

^{*1} For Power Dissipation, please refer to PACKAGE INFORMATION to be described.

ELECTRICAL CHARACTERISTICS

• R1114xxx1A

Topt=25°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Vouт	Output Voltage	V _{IN} = Set V _{OUT} +1V 1mA ≤ I _{OUT} ≤ 30mA	×0.980		×1.020	V
l ouт	Output Current	Vin-Vout = 1.0V	150			mA
ΔVουτ/ΔΙουτ	Load Regulation	V _{IN} = Set V _{OUT} +1V 1mA ≤ I _{OUT} ≤ 150mA		22	40	mV
VDIF	Dropout Voltage	Refer to the ELECTRICAL CHARA VOLTAGE	ACTERIS	STICS by	OUTPU	Т
Iss	Supply Current	VIN = Set Vour+1V, Iout = 0mA		75	95	μΑ
Istandby	Supply Current (Standby)	VIN = Set Vout+1V VCE = VDD		0.1	1.0	μА
ΔVουτ/ΔVιν	Line Regulation	$\label{eq:vout} \begin{array}{l} \mbox{Vout} > 1.7\mbox{V}, \\ \mbox{Set Vout} + 0.5\mbox{V} \leq \mbox{Vin} \leq 6.0\mbox{V} \\ \mbox{(Vout} \leq 1.7\mbox{V}, 2.2\mbox{V} \leq \mbox{Vin} \leq 6.0\mbox{V}) \\ \mbox{Iout} = 30\mbox{mA} \end{array}$		0.02	0.10	%/V
RR	Ripple Rejection			70 60		dB
Vin	Input Voltage		2.0		6.0	V
ΔV _{OUT} / Δ Topt	Output Voltage Temperature Coefficient	$\begin{array}{l} \text{Iout} = 30\text{mA} \\ -40^{\circ}\text{C} \leq \text{Topt} \leq 85^{\circ}\text{C} \end{array}$		±100		ppm /°C
Ilim	Short Current Limit	Vout = 0V		40		mA
Rpu	CE Pull-up Resistance		0.7	2.0	8.0	МΩ
Vceh	CE Input Voltage "H"		1.5		6.0	V
Vcel	CE Input Voltage "L"		0.0		0.3	V
en	Output Noise	BW = 10Hz to 100kHz		30		μVrms

• R1114xxx1B/D

Topt=25°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Vоит	Output Voltage	V _{IN} = Set V _{OUT} +1V 1mA ≦ I _{OUT} ≦ 30mA	×0.980		×1.020	V
l ouт	Output Current	VIN-VOUT = 1.0V	150			mΑ
ΔVουτ/ΔΙουτ	Load Regulation	V _{IN} = Set V _{OUT} +1V 1mA ≦ I _{OUT} ≦ 150mA		22	40	mV
VDIF	Dropout Voltage	Refer to the ELECTRICAL CHAI VOLTAGE	RACTER	ISTICS b	y OUTP	UT
Iss	Supply Current	VIN = Set Vour+1V, Iout = 0mA		75	95	μΑ
Istandby	Supply Current (Standby)	V _{IN} = Set V _{OUT} +1V V _{CE} = GND		0.1	1.0	μΑ
ΔVουτ/ΔVιν	Line Regulation	Vout > 1.7V, Set Vout+0.5V \leq Vin \leq 6.0V (Vout \leq 1.7V, 2.2V \leq Vin \leq 6.0V) lout = 30mA		0.02	0.10	%/V
RR	Ripple Rejection			70 60		dB
Vin	Input Voltage		2.0		6.0	V
ΔVουτ/ΔΤ	Output Voltage Temperature Coefficient	$I_{OUT} = 30mA$ -40°C \le Topt \le 85°C		±100		ppm /°C
Ішм	Short Current Limit	Vout = 0V		40		mA
R _{PD}	CE Pull-down Resistance		0.7	2.0	8.0	МΩ
VCEH	CE Input Voltage "H"		1.5		6.0	V
VCEL	CE Input Voltage "L"		0.0		0.3	V
en	Output Noise	BW = 10Hz to 100kHz		30		μVrms
RLow	On Resistance of Nch for auto-discharge (Only for D version)	Vce = 0V		60		Ω

• ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE

 $Topt = 25^{\circ}C$

	Dropout Voltage		
Output Voltage Vouт (V)	V _{DIF} (V)		
	Condition	Тур.	Max.
Vout = 1.5	Iоит = 150mA	0.38	0.70
Vout = 1.6		0.36	0.65
Vout = 1.7		0.34	0.60
1.8 ≦ Vouт ≦ 2.0		0.32	0.55
2.1 ≦ Vouт ≦ 2.7		0.28	0.50
2.8 ≦ V _{OUT} ≦ 4.0	0.22		

TECHNICAL NOTES

When using these ICs, consider the following points:

Phase Compensation

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor Cout with good frequency characteristics and ESR (Equivalent Series Resistance). (Note: If additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.)

PCB Layout

Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor with a capacitance value as much as $1.0\mu F$ or more between V_{DD} and GND pin, and as close as possible to the pins.

Set external components, especially the output capacitor, as close as possible to the ICs, and make wiring as short as possible.

TEST CIRCUITS

Fig.1 Standard test Circuit

Fig.2 Supply Current Test Circuit

Fig.3 Ripple Rejection, Line Transient Response Test Circuit

Fig.4 Load Transient Response Test Circuit

TYPICAL APPLICATIONS

(External Components)

Output Capacitor; Ceramic 0.47µF (Set Output Voltage in the range from 2.5 to 4.0V)

Ceramic $1.0\mu F$ (Set Output Voltage in the range from 1.5 to 2.4V)

Input Capacitor; Ceramic 1.0µF

TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current (Topt=25°C)

2) Output Voltage vs. Input Voltage (Topt=25°C)

3) Supply Current vs. Input Voltage (Topt=25°C)

R1114x

4) Output Voltage vs. Temperature

5) Supply Current vs. Temperature

6) Dropout Voltage vs. Temperature

R1114x

7) Dropout Voltage vs. Set Output Voltage (Topt=25°C)

8) Ripple Rejection vs. Input Bias Voltage (Topt=25°C, C_{IN}=none, C_{OUT}=ceramic0.47μF)

R1114x

9) Ripple Rejection vs. Frequency (C_{IN}=none)

R1114x281x

10) Input Transient Response (Ioυτ=30mA, CiN=none, tr=tf=5μs, Coυτ=Ceramic 0.47μF)

11) Load Transient Response (tr=tf=0.5 μ s, C_{IN}=Ceramic 1.0 μ F)

12) Turn-on/off speed with CE pin (D version)

R1114x401D (V_{IN}=5.0V, C_{IN}=Ceramic 0.47μF, C_{OUT}=Ceramic 0.47μF)

ESR vs. Output Current

When using these ICs, consider the following points:

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor Cout with good frequency characteristics and ESR (Equivalent Series Resistance) of which is in the range described as follows:

Measuring Circuit for white noise; R1114xxx1B/D

The relations between I_{OUT} (Output Current) and ESR of an output capacitor are shown below. The conditions when the white noise level is under 40µV (Avg.) are marked as the hatched area in the graph.

(Note: If additional ceramic capacitors are connected to the Output Pin with Output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.)

<Measurement conditions>

(1) $V_{IN}=V_{OUT}+1V$

(2) Frequency Band: 10Hz to 2MHz (3) Temperature: -40°C to 25°C

R1114x

100

10

1

0.1

0.01

30

60

Load Current IOUT (mA)

ESR (Ω)

R1114x211x CIN=Ceramic 0.47μF, COUT=Ceramic 0.47μF

90

120

• SOT-23-5 (SC-74A)

Unit: mm

PACKAGE DIMENSIONS

TAPING SPECIFICATION

TAPING REEL DIMENSIONS

(1reel=3000pcs)

POWER DISSIPATION (SOT-23-5)

This specification is at mounted on board. Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: (Power Dissipation (SOT-23-5) is substitution of SOT-23-6.)

Measurement Conditions

	Standard Land Pattern	
Environment	Mounting on Board (Wind velocity=0m/s)	
Board Material	Glass cloth epoxy plactic (Double sided)	
Board Dimensions	40mm × 40mm × 1.6mm	
Copper Ratio	Top side : Approx. 50% , Back side : Approx. 50%	
Through-hole	φ0.5mm × 44pcs	

Measurement Result

(Topt=25°C,Tjmax=125°C)

	Standard Land Pattern	Free Air
Power Dissipation	420mW	250mW
Thermal Resistance	θja=(125–25°C)/0.42W=263°C/W	400°C/W

Power Dissipation

Measurement Board Pattern

() IC Mount Area Unit : mm

RECOMMENDED LAND PATTERN

• SC-82AB Unit: mm

PACKAGE DIMENSIONS

TAPING SPECIFICATION

TAPING REEL DIMENSIONS

(1reel=3000pcs)

POWER DISSIPATION (SC-82AB)

This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

Measurement Conditions

	Standard Land Pattern	
Environment	Mounting on Board (Wind velocity=0m/s)	
Board Material	Glass cloth epoxy plactic (Double sided)	
Board Dimensions	40mm × 40mm × 1.6mm	
Copper Ratio	Top side: Approx. 50%, Back side: Approx. 50%	
Through-hole	φ0.5mm × 44pcs	

Measurement Result

(Topt=25°C,Tjmax=125°C)

	Standard Land Pattern	Free Air
Power Dissipation	380mW	150mW
Thermal Resistance	θja=(125–25°C)/0.38W=263°C/W	667°C/W

Power Dissipation

Measurement Board Pattern

() IC Mount Area (Unit : mm)

RECOMMENDED LAND PATTERN

• SON1612-6 Unit: mm

PACKAGE DIMENSIONS

TAPING SPECIFICATION

TAPING REEL DIMENSIONS

(1reel=4000pcs)

Power Dissipation (SON1612-6)

This specification is at mounted on board.

Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

Measurement Conditions

	Standard Land Pattern		
Environment	Mounting on Board (Wind velocity=0m/s)		
Board Material	Glass cloth epoxy plactic (Double sided)		
Board Dimensions	40mm × 40mm × 1.6mm		
Copper Ratio	Top side : Approx. 50%, Back side : Approx.50%		
Through-hole	φ0.5mm × 24pcs		

Measurement Result

(Topt=25°C.Timax=125°C)

	(Topt 20 0,Tjmax 120 0)
	Standard Land Pattern
Power Dissipation	500mW
Thermal Resistance	θja=(125–25°C)/0.5W=200°C/W

39

Power Dissipation

() IC Mount Area Unit : mm

RECOMMENDED LAND PATTERN

R1114N SERIES MARK SPECIFICATION

• SOT-23-5 (SC-74A)

①, ②, ③ : Product Code (refer to Part Number vs. Product Code)

4, 5 : Lot Number

• Part Number vs. Product Code

Part Number	Product Code			
Part Number	1	2	3	
R1114N151A	4	1	5	
R1114N161A	4	1	6	
R1114N171A	4	1	7	
R1114N181A	4	1	8	
R1114N191A	4	1	9	
R1114N201A	4	2	0	
R1114N211A	4	2	1	
R1114N221A	4	2	2	
R1114N231A	4	2	3	
R1114N241A	4	2	4	
R1114N251A	4	2	5	
R1114N261A	4	2	6	
R1114N271A	4	2	7	
R1114N281A	4	2	8	
R1114N291A	4	2	9	
R1114N301A	4	3	0	
R1114N311A	4	3	1	
R1114N321A	4	3	2	
R1114N331A	4	3	3	
R1114N341A	4	3	4	
R1114N351A	4	3	5	
R1114N361A	4	3	6	
R1114N371A	4	3	7	
R1114N381A	4	3	8	
R1114N391A	4	3	9	
R1114N401A	4	4	0	
R1114N281A5	4	4	1	

Part Number	Product Code			
Fait Number	1	2	3	
R1114N151B	5	1	5	
R1114N161B	5	1	6	
R1114N171B	5	1	7	
R1114N181B	5	1	8	
R1114N191B	5	1	9	
R1114N201B	5	2	0	
R1114N211B	5	2	1	
R1114N221B	5	2	2	
R1114N231B	5	2	3	
R1114N241B	5	2	4	
R1114N251B	5	2	5	
R1114N261B	5	2	6	
R1114N271B	5	2	7	
R1114N281B	5	2	8	
R1114N291B	5	2	9	
R1114N301B	5	3	0	
R1114N311B	5	3	1	
R1114N321B	5	3	2	
R1114N331B	5	3	3	
R1114N341B	5	3	4	
R1114N351B	5	3	5	
R1114N361B	5	3	6	
R1114N371B	5	3	7	
R1114N381B	5	3	8	
R1114N391B	5	3	9	
R1114N401B	5	4	0	
R1114N281B5	5	4	1	

Don't Normalism	Product Code			
Part Number	1	2	3	
R1114N151D	6	1	5	
R1114N161D	6	1	6	
R1114N171D	6	1	7	
R1114N181D	6	1	8	
R1114N191D	6	1	9	
R1114N201D	6	2	0	
R1114N211D	6	2	1	
R1114N221D	6	2	2	
R1114N231D	6	2	3	
R1114N241D	6	2	4	
R1114N251D	6	2	5	
R1114N261D	6	2	6	
R1114N271D	6	2	7	
R1114N281D	6	2	8	
R1114N291D	6	2	9	
R1114N301D	6	3	0	
R1114N311D	6	3	1	
R1114N321D	6	3	2	
R1114N331D	6	3	3	
R1114N341D	6	3	4	
R1114N351D	6	3	5	
R1114N361D	6	3	6	
R1114N371D	6	3	7	
R1114N381D	6	3	8	
R1114N391D	6	3	9	
R1114N401D	6	4	0	
R1114N281D5	6	4	1	

R1114Q SERIES MARK SPECIFICATION

• SC-82AB

①, ② : Product Code (refer to Part Number vs. Product Code)

③, ④: Lot Number

• Part Number vs. Product Code

Part Number	Product Code		
Part Number	1	2	
R1114Q151A	J	F	
R1114Q161A	J	G	
R1114Q171A	J	Н	
R1114Q181A	J	J	
R1114Q191A	J	K	
R1114Q201A	K	Α	
R1114Q211A	K	В	
R1114Q221A	K	С	
R1114Q231A	K	D	
R1114Q241A	K	Е	
R1114Q251A	K	F	
R1114Q261A	K	G	
R1114Q271A	K	Н	
R1114Q281A	K	J	
R1114Q291A	K	K	
R1114Q301A	L	Α	
R1114Q311A	L	В	
R1114Q321A	L	С	
R1114Q331A	L	D	
R1114Q341A	L	Е	
R1114Q351A	L	F	
R1114Q361A	L	G	
R1114Q371A	L	Н	
R1114Q381A	L	J	
R1114Q391A	L	K	
R1114Q401A	М	Α	
R1114Q281A5	М	В	

ici code		
Part Number	Produ	ct Code
rait Number	1	2
R1114Q151B	N	F
R1114Q161B	N	G
R1114Q171B	N	Н
R1114Q181B	N	J
R1114Q191B	N	K
R1114Q201B	Р	Α
R1114Q211B	Р	В
R1114Q221B	Р	С
R1114Q231B	Р	D
R1114Q241B	Р	Е
R1114Q251B	Р	F
R1114Q261B	Р	G
R1114Q271B	Р	Н
R1114Q281B	Р	J
R1114Q291B	Р	K
R1114Q301B	Q	Α
R1114Q311B	Q	В
R1114Q321B	Q	С
R1114Q331B	Q	D
R1114Q341B	Q	Е
R1114Q351B	Q	F
R1114Q361B	Q	G
R1114Q371B	Q	Н
R1114Q381B	Q	J
R1114Q391B	Q	K
R1114Q401B	R	Α
R1114Q281B5	R	В

Dort Number	Product Code		
Part Number	1	2	
R1114Q151D	S	F	
R1114Q161D	S	G	
R1114Q171D	S	Н	
R1114Q181D	S	J	
R1114Q191D	S	K	
R1114Q201D	Т	Α	
R1114Q211D	Т	В	
R1114Q221D	Т	С	
R1114Q231D	Т	D	
R1114Q241D	Т	Е	
R1114Q251D	Т	F	
R1114Q261D	Т	G	
R1114Q271D	Т	Н	
R1114Q281D	Т	J	
R1114Q291D	Т	K	
R1114Q301D	U	Α	
R1114Q311D	U	В	
R1114Q321D	U	С	
R1114Q331D	U	D	
R1114Q341D	U	Е	
R1114Q351D	U	F	
R1114Q361D	U	G	
R1114Q371D	U	Н	
R1114Q381D	U	J	
R1114Q391D	U	K	
R1114Q401D	V	Α	
R1114Q281D5	V	В	

R1114D SERIES MARK SPECIFICATION

• SON1612-6

① ~ ④: Product Code (refer to Part Number vs. Product Code)

5, 6: Lot Number

• Part Number vs. Product Code

Dart Number	Product Code			
Part Number	1	2	3	4
R1114D151A	F	1	5	Α
R1114D161A	F	1	6	Α
R1114D171A	F	1	7	Α
R1114D181A	F	1	8	Α
R1114D191A	F	1	9	Α
R1114D201A	F	2	0	Α
R1114D211A	F	2	1	Α
R1114D221A	F	2	2	Α
R1114D231A	F	2	3	Α
R1114D241A	F	2	4	Α
R1114D251A	F	2	5	Α
R1114D261A	F	2	6	Α
R1114D271A	F	2	7	Α
R1114D281A	F	2	8	Α
R1114D291A	F	2	9	Α
R1114D301A	F	3	0	Α
R1114D311A	F	3	1	Α
R1114D321A	F	3	2	Α
R1114D331A	F	3	3	Α
R1114D341A	F	3	4	Α
R1114D351A	F	3	5	Α
R1114D361A	F	3	6	Α
R1114D371A	F	3	7	Α
R1114D381A	F	3	8	Α
R1114D391A	F	3	9	Α
R1114D401A	F	4	0	Α
R1114D281A5	F	4	1	Α
R1114D181A5	F	4	2	Α

Part Number	Product Code			
Part Number	1	2	3	4
R1114D151B	F	1	5	В
R1114D161B	F	1	6	В
R1114D171B	F	1	7	В
R1114D181B	F	1	8	В
R1114D191B	F	1	9	В
R1114D201B	F	2	0	В
R1114D211B	F	2	1	В
R1114D221B	F	2	2	В
R1114D231B	F	2	3	В
R1114D241B	F	2	4	В
R1114D251B	F	2	5	В
R1114D261B	F	2	6	В
R1114D271B	F	2	7	В
R1114D281B	F	2	8	В
R1114D291B	F	2	9	В
R1114D301B	F	3	0	В
R1114D311B	F	3	1	В
R1114D321B	F	3	2	В
R1114D331B	F	3	3	В
R1114D341B	F	3	4	В
R1114D351B	F	3	5	В
R1114D361B	F	3	6	В
R1114D371B	F	3	7	В
R1114D381B	F	3	8	В
R1114D391B	F	3	9	В
R1114D401B	F	4	0	В
R1114D281B5	F	4	1	В
R1114D181B5	F	4	2	В

Part Number	Product Code			
Part Number	(2	3	4
R1114D151D	F	1	5	D
R1114D161D	F	1	6	D
R1114D171D	F	1	7	D
R1114D181D	F	1	8	D
R1114D191D	F	1	9	D
R1114D201D	F	2	0	D
R1114D211D	F	2	1	D
R1114D221D	F	2	2	D
R1114D231D	F	2	3	D
R1114D241D	F	2	4	D
R1114D251D	F	2	5	D
R1114D261D	F	2	6	D
R1114D271D	F	2	7	D
R1114D281D	F	2	8	D
R1114D291D	F	2	9	D
R1114D301D	F	3	0	D
R1114D311D	F	3	1	D
R1114D321D	F	3	2	D
R1114D331D	F	3	3	D
R1114D341D	F	3	4	D
R1114D351D	F	3	5	D
R1114D361D	F	3	6	D
R1114D371D	F	3	7	D
R1114D381D	F	3	8	D
R1114D391D	F	3	9	D
R1114D401D	F	4	0	D
R1114D281D5	F	4	1	D
R1114D181D5	F	4	2	D