Содержание

1	Лекци	я 1	2
	1.1	Расписание и формат обучения	2
	1.2	Комментарии к первой лабораторной работе	2
	1.3	Погрешности и устойчивость	2
	1.4	Модели на основе ОДУ	3
	1.5	Явные методы Рунге-Кутта	3
		1.5.1 Метод Эйлера (p=1)	4
		1.5.2 Численный метод Рунге-Кутта (p=2)	4
		1.5.3 Метод Пикара (приближённый аналитический метод)	5
2	Лекци	я 2	6
	2.1	Геометрическое истолкование полученных результатов	6
	2.2	Методы Рунге-Кутта 4-го порядка точности	7
	2.3	Замечания о методах Рунге-Кутта	8
	2.4	Распространение метода Рунге-Кутта 4-то порядка на систему дифференци-	
		альных уравнений	8
	2.5	Применение метода Пикара	8
	2.6	Неявный метод Эйлера	9
	2.7	Метод Гира	10
	2.8	Замечание о многошаговых методах	10
3	Лекци	я 3	11
	3.1	Методы на основе ОДУ. Краевая задача	11
	3.2	Приближённый метод	11
	3.3		12
	3.4	Метод Галеркина	12
	3.5	Интегральный метод наименьших квадратов	13
	3.6	Дискретный метод наименьших квадратов	14
	3.7	Метод стрельбы (численный)	14
4	Лекци	я 4	15
	4.1	Особенности метода стрельбы	15
	4.2		15
	4.3	Задача Коши	16
	4.4	Разностный метод. Основные понятия	16
	4.5	Решение СЛАУ методом прогонки	17
5	Лекци	я 5	19
	5.1		19
	5.2	Кравевая задача	19
	5.3	Решение нелинейного уравнения второго порядка	19

1.1 Расписание и формат обучения

Приём лабораторных:

Среда: 15:40 - 17:15, 237л

17:25 - 19:00 237л

Суббота: 13:50 - 15:25 243л

15:40 - 17:15 243л

Модули:

М1: 5 неделя, минимум 12 баллов, максимум 20 баллов, одна лабораторная

М2: 12 неделя, минимум 12 баллов, максимум 20 баллов, две лабораторные

МЗ: 17 неделя, минимум 18 баллов, максимум 30 баллов, одна лабораторная

Сдано больше двух лабораторных - автомат на экзамене.

1.2 Комментарии к первой лабораторной работе

$$\begin{cases} u'(x) = x^2 + u^2 u(0) = 0
\end{cases}$$
(1.1)

Результат:

- значения для $x \in [0, x_{max}]$ с заданным шагом h
- приближения Пикара с 1 по 4 порядок
- до второго знака после запятой точность
- график функции в интервале $[-x_{max}, x_{max}]$

1.3 Погрешности и устойчивость

Погрешности, возникающие при моделировании:

- Погрешность модели
- Погрешность метода
- Погрешность исходных данных
- Погрешность округления

Устойчивость - задача называется устойчивой (корректной), если решение единственно и устойчиво по входным данныхм. Плохо обусловленная задача: $\delta y = C \delta x, C >> 0$

1.4 Модели на основе ОДУ

Все дополнительные условия заданы в одной точке - задача Коши.

Все дополнительные условия заданы в разных точках - краевая задача.

Задача Коши:

$$u'(x) = f(x, u)$$

$$u(\xi) = \eta$$

Решением данной задачи является сведение уравнения к производным первого порядка при помощи замены переменных:

$$u^{n}(x) = f(x, u, u', ..., u^{n-2}, u^{n-1})$$

 $u^{(k)} = u_{k}$

$$\begin{cases}
 u'_{k} = u^{(k+1)} = u_{k+1}, 0 \leqslant k \leqslant n - 2 \\
 u'_{n} = f(x, u_{0}, u_{1}, u_{2}, ..., u_{n-1})
\end{cases}$$
(1.2)

 $u_0 \equiv u$

$$u_k(\xi) = \eta_k, 0 \leqslant k \leqslant n - 1$$

Методы решения:

- Аналитические
- Приближенно аналитические
- Численные

Для оценки точности численных методов можно использовать правило Рунге, заключающееся в том, что если мы рассчитаем функцию с шагом h и h/2, то точность в x_i будет выражаться как: $\frac{|y_{i,h}-y_{i,h/2}|}{2^p-1}$, где р - порядок точности.

1.5 Явные методы Рунге-Кутта

$$u'(x) = f(x, u)$$

$$u(\xi) = \eta$$

$$a \leqslant x \leqslant b$$

Рисунок 1.1 — Значения на числовой прямой

$$w_N = \{x_i : a = x_0 < x_1 \dots < x_N\}$$

 $w_n = \{x_i : x_i = a + ih, i = \overline{0, N}\}$
 $y_i \to y(x_i)$

Сходимость разностного решения к точному на отрезке:

$$\forall x_i \in [a, b] : |y_i - u_i| \to 0, h \to 0 (i \to \infty)$$

1.5.1 Метод Эйлера (p=1)

$$u_{i+1} = u_i + h_i \cdot u'_i + \frac{h^2}{2!} u''_i + \frac{h^3}{3!} u'''_i + \dots$$
 здесь $u'_i = u'(x_i); u''_i = u''(x_i)...$

 $y_{i+1} = y_i + h \cdot f(x_i, u_i)$, если $|y_i - u_i| = o(h^2)$, при $h \to 0$, то метод имеет р-й порядок точности.

1.5.2 Численный метод Рунге-Кутта (р=2)

$$u_{i+1} = u_i + hu'_i + \frac{h^2}{2}u''_i + \dots$$

$$u'_i = f_i = f(x_i, u_i)$$

$$u''_i = (u'_i) = \frac{d}{dx}f = f'_{x_i} + f'_{u_i} \cdot f_i$$

$$y_{i+1} = y_i + hf_i + \frac{h^2}{2}(f'_{x_i} + f'_{y_i} \cdot f_i), (p = 2), (2)$$

$$u''_i = \frac{f(x+\gamma h, y+\delta h) - f(x, y)}{\Delta x}$$

$$y_{i+1} = y_i + hf_i + \frac{h^2}{2}(\frac{f(x+\gamma h, y+\delta h) - f(x, y)}{\Delta x}) = y_i + h[\beta f(x_i, y_i) + \alpha f(x_i + \gamma h, y_i + \delta h)]$$
(3)
$$y_{i+1} = y_i + h[\beta f(x_i + y_i) + \alpha (f(x_i, y_i) + f'_x \gamma h + f'_y \delta h)] = y_i + h[(\alpha + \beta) f(x_i, y_i) + \alpha \gamma h f'_x + \alpha \delta h f'_y]$$
(4)

Сравним (2) и (4):

$$\begin{cases}
\alpha + \beta = 1 \\
\alpha \gamma = \frac{1}{2} \\
\alpha \delta = \frac{1}{2} f(x_i, y_i)
\end{cases}$$
(1.3)

$$\begin{cases} \beta = 1 - \alpha \\ \gamma = \frac{1}{2\alpha} \\ \delta = \frac{1}{2\alpha} f(x_i, y_i) \end{cases}$$
 (1.4)

Из (3) видим, что:

$$y_{i+1}=y_i+h[(1-lpha)f(x_i,y_i)+lpha f(x_i+rac{1}{2lpha}h,y_i+rac{h}{2lpha}f(x_i,y_i))],$$
 на практике $lpha=1,lpha=rac{1}{2}$

1.5.3 Метод Пикара (приближённый аналитический метод)

$$u'(x) = f(x, u(x))$$

$$\frac{du}{dx} = f(x, u(x))$$

$$u(x) = u(\xi) + \int_{\xi}^{x} f(t, u(t))dt$$

$$y^{(\delta+1)}(x) = u(\xi) + \int_{\xi}^{x} f(t, y^{(\delta)}(t))dt$$

В лабораторной показать Пикара нужной точности (от 1 до 4).

$$y_{n+1} = y_n + h_n[(1-\alpha)f(x_n, y_n) + \alpha f(x_n + \frac{h_n}{2\alpha}, y_n + \frac{h_n}{2\alpha}f(x_n, y_n))] + O(\max h_n^2)$$

2.1 Геометрическое истолкование полученных результатов

Рассмотрим для $\alpha = 1$:

$$y_{n+1} = y_n + h_n f(x_n + \frac{h_n}{2}, y_n + \frac{h_n}{2} f(x_n, y_n))$$

- 1) $y_{n+\frac{1}{2}} = y_n + \frac{h_n}{2} f(x_n, y_n)$
- 2) $y'_n = f(x_n + \frac{h_n}{2}, y_{n+\frac{1}{2}})$
- 3) $y_{n+1} = y_n + h_n y_n'$

Рисунок 2.1 — Геометрические результаты для a=1

Рассмотрим для $\alpha = \frac{1}{2}$:

$$y_{n+1} = y_n + \frac{h_n}{2} [f(x_n, y_n) + f(x_n + \frac{h_n}{2}, y_n + \frac{h_n}{2} f(x_n, y_n))]$$

- $1) \overline{y_{n+1}} = y_n + h_n f(x_n, y_n)$
- 2) $y'_{n+1} = f(x_n + h_n, \overline{y_{n+1}})$
- 3) $y'_{cp} = \frac{1}{2}(f(x_n, y_n) + y'_{n+1})$
- 4) $y_{n+1} = y_n + h_n \cdot y'_{cp}$

Рисунок 2.2 — Геометрические результаты для а = 1/2

2.2 Методы Рунге-Кутта 4-го порядка точности

Формула обеспечивает переход из узла n в узлел n + 1:

$$y_{n+1} = y_n + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6}$$

$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf(x_n + \frac{h}{2}, y_n + \frac{k_1}{2})$$

$$k_3 = hf(x_n + \frac{h}{2}, y_n + \frac{k_2}{2})$$

$$k_4 = hf(x_n + h, y_n + k_3)$$

Посмотрим, как формируется порядок точности в специальном варианте правой части:

Посмотрим, как формируется
$$u'(x) = f(x)$$
 $y_{n+1} = y_n + \int\limits_{x_n}^{x_{n+1}} f(x) dx$ При $\alpha = \frac{1}{2}$ $y_{n+1} = y_n + \frac{h}{2}(f(x_n) + f(x_{n+1}))$ По методу трапеции:

$$R_{trap} \leqslant \frac{x_N - x_O}{12} h^2 \cdot max |f'(x)|$$
 Рунге-Кутт 4-го порядка:
$$y_{n+1} = y_n + \frac{h}{6} (f(x_n) + 4f(x_n + \frac{h}{2}) + f(x_n + h)) - \text{метод Симпсона}$$
 $R_{simp} \leqslant \frac{x_n - x_O}{190 \cdot 16} h^4 \cdot max |f^{IV}(x)|, x_o \leqslant x \leqslant x_n$

2.3 Замечания о методах Рунге-Кутта

- 1) методы явные позволяет за строго зафиксированное количество шагов перейти из одного узла в другой
 - 2) позволяет производить расчёты с переменным шагом
- 3) если нужных производынх при интегрировании нет, то применение метода Симпсона бессмысленно, т.е. метод трапеции, треугольника и тд.
 - 2.4 Распространение метода Рунге-Кутта 4-то порядка на систему дифференциальных уравнений

На примере метода Рунге-Кутта 4-го порядка рассмотрим распространить результат на систему дифференциальных уравнений.

$$\begin{cases} u' = f(x, u, v) \\ v' = \phi(x, u, v) \\ u(\xi) = \eta_1 \\ v(\xi) = \eta_2 \end{cases}$$

$$(2.1)$$

$$u = y, v = z$$

$$\begin{aligned} y_{n+1} &= y_n + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6} \\ z_{n+1} &= z_n + \frac{q_1 + 2q_2 + 2q_3 + q_4}{6} \\ k_1 &= hf(x_n, y_n, z_n), q_1 = h\phi(x_n, y_n, z_n) \\ k_2 &= hf(x_n + \frac{h}{2}, y_n + \frac{k_1}{2}, z_n + \frac{q_1}{2}), q_2 = h\phi(x_n + \frac{h}{2}, y_n + \frac{k_1}{2}, z_n + \frac{q_1}{2}) \\ k_3 &= hf(x_n + \frac{h}{2}, y_n + \frac{k_2}{2}, z_n + \frac{q_2}{2}), q_3 = h\phi(x_n + \frac{h}{2}, y_n + \frac{k_2}{2}, z_n + \frac{q_2}{2}) \\ k_4 &= hf(x_n + \frac{h}{2}, y_n + \frac{k_3}{2}, z_n + \frac{q_3}{2}), q_2 = h\phi(x_n + \frac{h}{2}, y_n + \frac{k_3}{2}, z_n + \frac{q_3}{2}) \end{aligned}$$

Способ рассчёта выше применяется в вычислениях во второй лабораторной работе.

2.5 Применение метода Пикара

Возвращаясь к методу Пикара, сформулируем условие сходимости приближённого решения к точке.

- решение в ограниченной области
- правая часть f непрерывна
- условия Липшеца: $a \leqslant x \leqslant b, |f(x, u_1) f(x, u_2)| \leqslant \mathcal{L}|u_1 u_2|$

2.6 Неявный метод Эйлера

$$u' = f(x, u)$$

В явном методе Эйлера - $y_{n+1} = y_n + hf(x_n, y_n)$

В неявном методе Эйлера - $y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$ Последствия:

- 1) Решения может не быть, либо может быть несколько
- 2) Для решения уравнения необходимо подобрать метод

Применяется часто, поскольку является устойчивым.

Пример:

$$u' = -\alpha u, \alpha > 0$$

аналитическое решение: $u(x) = ce^{-\alpha x}$

Рисунок 2.3 — Сравнение явного и неявного метода Эйлера

$$y_{n+1} = y_n - \alpha y_n h = y_n (1 - \alpha h), 1 - \alpha h > 0, h < \frac{1}{2}$$

Применение явного метода может привести к расходящимся решениями и имеет ограничения на α . Чем больше α , тем больше шаг.

Неявный метод:

$$y_{n+1}=y_n-\alpha y_{n+1}h$$
 $y_{n+1}=rac{y_n}{1+lpha h}$ - ограничений на h нет.

В общем виде:

$$\sum_{k=0}^m a_k y_{n-k} = h(f(x_n,y_n))$$
 $m=1, a_0=1, a_1=-1$ $y_n-y_{n-1}=hf(x_n,y_n)$ - метод Эйлера.

2.7 Метод Гира

При
$$m=2$$
:
$$\frac{3}{2}y_n-2y_{n-1}+\frac{1}{2}y_{n-2}=hf(x_n,y_n)+O(h^2)$$
 При $m=3$:
$$\frac{11}{3}y_n-3y_{n-1}+\frac{3}{2}y_{n-2}-\frac{1}{3}y_{n-3}=hf(x_n,y_n)+O(h^3)$$

Формул более высокого порядка точности не существует. Благоприятны с точки устойчивости решений.

2.8 Замечание о многошаговых методах

В многошаговых методах для получения решения в неизвестном узле необходимо знать значения в определённом количестве предыдущих узлов.

3.1 Методы на основе ОДУ. Краевая задача

Дифференциальное вторение второго порядка может быть сведено к уравнению певрого порядка. В самом общем виде краевая задача формулируется следующим образом:

$$\begin{cases} u'_k(x) = f_k(x, u_1, u_2, ..., u_n), k = \overline{1, n} \\ \phi_k(\xi_k, u_1(\xi_k), u_2(\xi_k), ..., u_n(\xi_k)) = 0, k = \overline{1, n} \end{cases}$$
(3.1)

Методы решения:

- Аналитические
- Приближённые
- Численные

3.2 Приближённый метод

Все функции от х - заданные, надо найти и.

$$\begin{cases} u'(x) + p(x)u'(x) + g(x)u(x) = f(x) \\ \alpha_1 u'(a) + \beta_1 u(a) = y_1 \\ \alpha_2 u'(a) + \beta_2 u(a) = y_2 \\ a \leqslant x \leqslant b \end{cases}$$

$$(3.2)$$

$$Lu = u'(x) + p(x)u'(x) + g(x)u(x)$$

$$l_a u = \alpha_1 u' + \beta_1 u$$

$$l_b u = \alpha_2 u' + \beta_2 u$$

$$\begin{cases}
Lu = f(x)(1) \\
l_a u = y_1(2.1) \\
l_n u = y_2(2.2)
\end{cases}$$
(3.3)

Решение ищем в виде:

$$y(x) = u_0(x) + \sum_{k=1}^{n} C_k u_k(x)$$

$$u_k(x) \to \begin{cases} L_a u_k = 0 \\ L_b u_k = 0 \end{cases}$$

$$(3.4)$$

$$R(x, C_1, C_2, ...C_n) = Ly - f(x) = Lu_0(x) + \sum_{k=1}^n C_k Lu_k(x) - f(x)$$

3.3 Метод коллокаций

Выбираем множество точек $x_i, i = 1, ...n$

$$R(x, C_1, C_2, ...C_n) = 0, i = \overline{1, n}$$

Пример:

$$\begin{cases} u^{n} + (1+x^{2})u + 1 = 0\\ u(-1) = 0, u(1) = 0\\ -1 \le x \le 1 \end{cases}$$
 (3.5)

$$u_0(x) = 0, u_1(x) = x^{2k-2}(1-x^2), k = 1, 2, ...n$$

Точки коллокации - $n=2, x_1=0, x_2=0.5$

$$y(x) = C_1(1 - x^2) + C_2(x^2 - x^4)$$

$$R(x, C_1, C_2) = 1 - C_1(1 + x^4) + C_2(2 - 11x^2 - x^6)$$

Приравниваем полученное выше выражение к нулю в точках коллокации:

$$x = 0, C_1 - 2C_2 = 1$$

$$x = 0.5, 1.0625C_1 + 0.7656C_2 = 1$$

Решение: $C_1 = 0.9568, C_2 = -0.0216$

Окончательное решение: $y(x) = 0.1568(1-x^2) - 0.0216(x_2-x_4)$

Чем больше точек коллокация. тем лучше полученная фукнция будет совпадать с точным решением.

3.4 Метод Галеркина

$$u_0(x), u_1(x), ..., u_m(x)$$
 - система ортогональных линейно-независимых функций, $a \leqslant x \leqslant b$ $\int\limits_a^b f(x)u_i(x)dx = 0, i = \overline{1,m} \Rightarrow f(x) = 0$ $\int\limits_a^b R(x,C_1,C_2,...,C_n)u_idx = 0, i = \overline{1,m}$ $\int\limits_a^b u_m Ludx + \sum\limits_{k=1}^n C_k \int\limits_a^b u_k Ludx - \int\limits_a^b u_m f(x)dx = 0, m = 1,2,...n$

Пример:

$$\begin{cases} u'' + xu' + u = 2x \\ u(x) = 1 \\ u(1) = 0 \\ 0 \le x \le 1 \end{cases}$$

$$(3.6)$$

$$u_0(x) = 1 - x$$

$$u_1(x) = x^k(1 - x), k = 1, 2, ...n$$

$$n = 3$$

$$y(x) = (1 - x) + C_1x(1 - x) + C_2x^2(1 - x) + C_3x^3(1 - x)$$

$$R(x, C_1, C_2, C_3) = 1 + 3x + C_1(-2 + 2x - 3x^2) + C_2(2 - 6x + 3x^2 - 4x^4) + C_3(6x - 12x^2 + 4x^3 - 5x^4)$$

Выполняя процедуру Галёркина, получим систему интегралов от трёх функций:

$$\int_{0}^{1} R(x, C_{1}, C_{2}, C_{3})(x - x^{2})dx = 0$$

$$\int_{0}^{1} R(x, C_{1}, C_{2}, C_{3})(x^{2} - x^{3})dx = 0$$

$$\int_{0}^{1} R(x, C_{1}, C_{2}, C_{3})(x^{3} - x^{4})dx = 0$$

В результате получим систему из трёх уравнений:

$$133C_1 + 63C_2 + 36C_3 = -70$$

$$140C_1 + 108C_2 + 79C_3 = -98$$

$$264C_1 + 252C_2 + 211C_3 = -210$$

В результате получаем следующие коэффициенты: $C_1 = -0.209$, $C_2 = -0.789$, $C_3 = 0.209$ $y(x) = (1-x)(1-0.209x-0.789x^2+0.209x^3)$

3.5 Интегральный метод наименьших квадратов

$$\int\limits_{a}^{b}\Phi^{2}(x,C_{1},C_{2},...,C_{n})dx\to min$$

$$\frac{d\Phi}{dC_{2}}=0,\int\limits_{a}^{b}2R(x,C_{1},...C_{n})\frac{dR}{dC_{2}}dx=0,k=1,2,...n$$
 Пример:

Из метода коллокаций:

$$R(x) = 1 - (1+x^{2})C_{2} + (2-11x^{2} - x^{6})C_{2}$$

$$\frac{1d\Phi}{2dC_{1}} = -\int_{0}^{1} (1 - (1+x^{2})C_{1} + (2-11x^{2} - x^{6})C_{2})(1+x^{2})dx = 0$$

$$\frac{1d\Phi}{2dC_{2}} = -\int_{0}^{1} (1 - (1+x^{4})C_{1} + (2-11x^{2} - x^{6})C_{2})(2-11x^{2} - x^{6})dx = 0$$

$$\begin{cases} \frac{68}{45}C_{1} + \frac{3548}{1155}C_{2} = \frac{5}{4} \\ \frac{3548}{1155}C_{1} + \frac{63404}{4035}C_{2} = \frac{38}{91} \end{cases}$$
(3.7)

$$C_1 = 0.985, C_2 = -0.078$$

 $y(x) = 0.985(1 - x^2) - 0.078(x^2 - x^4)$

3.6 Дискретный метод наименьших квадратов

$$\Phi = \sum_{i=1}^{N} R^2(x, C_1, C_2, ..., C_n) \to min$$

Если взять N»n, то метод будет работать. Если взять N=n, то метод перейдёт в метод колло-каций, надо будет показать в лабе.

3.7 Метод стрельбы (численный)

$$\begin{cases} u'(x) = f(x, u, v)(3.1) \\ v'(x) = \phi(x, u, v)(3.2) \\ \Xi(u(a), v(a)) = 0(4) \\ \psi(u(b), v(b)) = 0(5) \\ a \leqslant x \leqslant b \end{cases}$$
 (3.8)

Берем некое $u(a) = \xi$, тогда из (u):

$$\Xi(\xi, u(a)) = 0 \to v(a) = \gamma(\xi)$$

Сводится к задаче Коши, решаем уравнение численно

Например, если краевое условие - линейное, то $\alpha_1 u(a) + \beta_1 v(a) = \delta_1, v(a) = \frac{\delta_1 - \alpha_1 \xi}{\beta_1}$

$$\psi(u(b,\xi),v(b,\xi)) = \overline{\psi}(\xi) \neq 0$$

4.1 Особенности метода стрельбы

Метод стрельбы называется именно так, поскольку мы за счёт подбора условия в одной краевой точки обеспечиваем условие во второй краевой точке.

4.2 Лабораторная работа №2

Исходная информация - задана система уранений:

$$\begin{cases}
F = -\frac{c}{3k(r)} \frac{du}{dr} \\
div F = ck(r)(u_p(r) - u(r)) \\
r = 0, F = 0r = R, F = m\frac{cu}{2}
\end{cases}$$
(4.1)

Решение в циллиндрических координатах, неизвестные: F(r), u(r).

F - поток, размерность - ватт на сантиметр в квадрате.

и - плотность энергии излучения - джоуль на сантиметр в кубе.

$$c = 3 \cdot 10^{10} \; \text{см/c}$$
 - скорость света.

$$u_p = rac{3.084 \cdot 10^{-4}}{e^{rac{4.709 \cdot 10^{+4}}{T}} - 1}$$
 - равновесная плотность излучения

$$k = k_0 (\frac{T}{300})^2$$
 - коэффициент поглощения

$$T(r)=(T_w-T_0)(rac{r}{R})^p+T_0$$
 - температурное поглощение

$$T_0, T_w, p$$
 - заданы

Приведём эти уравнения:

Введём безусловную координату - $Z = \frac{r}{R}$

Тогда:

$$\begin{cases}
F = -\frac{c}{3Rk(r)} \frac{du}{dz}, (1) \\
\frac{1}{R} \frac{1}{Z} \frac{d}{dZ} (ZF) = ck(r)(u_p(r) - u(r)), (2) \\
Z = 0, F = 0, (3) \\
Z = 1, F = m \frac{cu}{2}, (4)
\end{cases}$$
(4.2)

Исходные данные для отладки:

$$k_0 = 0.0008$$

$$m = 0.786$$

$$R = 0.35 \text{ cm}$$

$$T_w = 2000 \text{ K}$$

$$T_0 = 10^4 K$$

p = диапазон от 4 до 15

Получить:
$$\mathbf{u}(\mathbf{Z})$$
 и $\mathbf{F}(\mathbf{Z})$
$$T(Z) = (T_w - T_0)Z^p + T_0$$

$$\frac{1}{RZ}(F + Z\frac{dF}{dZ}) = \frac{1}{R}(\frac{F}{Z} + \frac{dF}{dZ}) = ck(Z)(u_p - u)$$

$$\lim_{Z \to 0} \frac{F}{2} = \frac{\lim_{Z \to 0} \frac{dF}{dZ}}{1} = \frac{dF}{dZ}$$

Имеем:

$$\begin{aligned} \frac{dF}{dZ} &= cK[u_p - u] - \frac{1}{R}\frac{F}{Z} \\ \frac{dF}{dZ} &= cRk[u_p - u] \\ Z &= 0, F = 0 \\ Z &= 1, F = m\frac{cu}{2} = 0 \end{aligned}$$

4.3 Задача Коши

$$Z = 0, F(0) = 0$$

$$u(0) = \xi \cdot u_p(0), \xi = 0.01, ..., 1$$

$$\psi(\xi) = F(1) - \frac{mcu(1)}{2}$$

Задача - взяв интервал кси обеспечить, чтобы определялось, как полуразность. $\xi = \frac{\xi_1 + \xi_2}{2}$ Вычисляем в цикле, пока $\left|\frac{\xi_1 - \xi_2}{\xi}\right| < \epsilon, \epsilon = 10^{-4}$

Решение задачи производится при помощи метода Рунге-Кутта 4-го порядка точности, использованное метода оправдано, поскольку нету разывов в правой части. Вывод оформлять лучше в графиках и если возможно, добавить вывод полученных значнией в файл.

4.4 Разностный метод. Основные понятия

$$\begin{cases} u''(x) - p(x)u(x) = f(x), (5) \\ u(a) = c, (6.1) \\ u(b) = d, (6.2) \\ a \le x \le b \end{cases}$$
(4.3)

Для получения разностной схемы используется прямая разность аппроксимации производной: $u_n'' = \tfrac{u_{n-1}-2u_n+u_{n+1}}{n^2} - \tfrac{n^2}{12} u_n^{IV}(\xi), x_{n-1} \leqslant \xi \leqslant x_{n+1}, (7)$

В (7) подставляем (5):

$$\frac{y_{n-1}-2y_n+y_{n+1}}{n^2} - p_n y_n = f_n, p_n = p(x_n), f_n = f(x_n)$$

$$\begin{cases} y_{n-1} - (2 + h^2 p_n) y_n + y_{n+1} = h^2 f_n, n = 1, 2, ..., N - 1, (I) \\ y_0 = c \\ y_N = d \\ w_h = \{x_n : x_n = a + nh, n = \overline{0, N}\} \end{cases}$$

$$(4.4)$$

В результате получена СЛАУ. Матрица данной СЛАУ диагональная, поэтому решаем методом прогонки.

4.5 Решение СЛАУ методом прогонки

$$\begin{cases}
A_n y_{n-1} - B_n y_n + C_n y_{n+1} = -F_n, (7') \\
K_0 y_0 + M_0 y_1 = P_0 \\
K_N y_{N-1} + M_N y_N = P_N
\end{cases}$$
(4.5)

 $y_n = \xi_{n+1} y_{n+1} + \nu_{n+1}, (8)$

 $\xi n+1, \nu n+1$ - прогоночные коэффициенты

Запишем:

$$y_{n-1} = \xi_n y_n + \nu_n$$

Подставим в (7'):

$$y_n = \frac{C_n}{B_n - A_n \xi_n} y_{n+1} + \frac{F_n + A_n \nu_n}{B_n - A_n \xi_n}$$

Сравним с (8)Ю видим:

$$\begin{cases} \xi_{n+1} = \frac{C_n}{B_n - A_n \xi_n}, (9.1) \\ \nu_{n+1} = \frac{F_n + A_n \nu_n}{B_n - A_n \xi_n}, (9.2) \end{cases}$$
(4.6)

Алгоритм:

- 1) Прямой ход, по (9) вычисляем $\xi_n \nu_n$
- 2) Обратный ход, по (8) вычисляем y_n

Начальные значения прогоночных коэффициентов берутся из левого краевого условия:

$$y_0 = -\frac{M_0}{K_0}y_1 + \frac{P_0}{K_0} \to \xi_1 = -\frac{M_0}{K_0}, \nu_1 = \frac{P_0}{K_0}$$

Значенияе y_N находится с использованием правого краевого условия:

$$y_{N-1} = \xi_N y_N + \nu_N$$

$$K_N \xi_N y_N + K_N \nu_N + M_N y_N = P_N$$

$$y_N = \frac{P_N - K_N \nu_N}{2}$$

Покажем сходимость разностного решения к точному: $y_n \to u(x_n)$

В исходное дифференциальное уравнение подставим точное значение разностного аналога:

$$\begin{split} &\frac{u_{n-1}-2u_n+u_{n+1}}{n^2}-\frac{n^2}{12}u^{IV}(\xi)-p_nu_n=f_n\\ &u_{n-1}-(2+p_nn^2)u_n+u_{n+1}=f_n+\frac{h^2}{12}u_n^{IV}(\xi), (10)\\ &\mathrm{B}\ (\mathrm{I})\ \mathrm{подставим}\ (10):\\ &Z_n=y_n-u_n \end{split}$$

$$Z_n = y_n - u_n$$

$$Z_{n-1} - (2 + p_n h^2) Z_n + Z_{n+1} = -\frac{h^4}{12} u^{IV}(\xi)$$

$$(2 + p_n h^2) Z_n = Z_{n-1} + Z_{n+1} + \frac{h^4}{12} u^{IV}(\xi)$$

$$Z_0 = 0$$

$$Z_N = 0$$

Выберем точку
$$X_m$$
, в которой $Z_m=max|Z_n|$ $(2+p_mh^2)|Z_m|\leqslant |Z_{m-1}|+|Z_{m+1}|+\frac{h^2}{12}|u^{IV}(\xi)|$ $(2+p^mh^2)|Z_n|\leqslant 2|Z_N|+\frac{h^4}{12}|u^{IV}(\xi)|$ $p_mh^2|Z_m\leqslant \frac{h^2}{12pm}\cdot max|u^{IV}(\xi)|=o(h^2)$ При $h\to 0, |Z_m|\to 0, o(h^2)$

$$u'(x)=f(x,u)$$

$$y_{n+1}=y_n+\int\limits_{x_n}^{x_{n+1}}f(t,u(t))dt=\text{(по методу трапеции)}=y_n+h\frac{f(x_n,y_n)+f(x_{n+1},y_{n+1})}{2}$$

$$y_n+1=y_n+\frac{h}{2}(f(x_n,y_n)+f(x_{n+1},y_{n+1}))\to F(y_{n+1})=0,o(h^2)$$

5.2 Кравевая задача

Для решения применяется метод прогонки.

$$u''(x) = p(x)u(x) = f(x), p(x) > 0$$

Для устойчивости прогонки должно выполняться это условие (является достаточным, но не является необходимым): $|B_n| > |A_n| + |C_n|$ - диагональное преобладание.

$$|y_n-u_n|\to 0, o(h^2)$$
 при $h\to 0$

5.3 Решение нелинейного уравнения второго порядка

$$u''(x) = f(x, u(x))$$

Разностная схема уравнения:

$$\frac{y_{n-1}-2y_n+y_{n+1}}{h^2} = f(x, y_n)$$

Решение уравнений:

1. Линеаризация (по Ньютону) - в данном уравнении содержится три неизвестных - y_{n-1}, y_n, y_{n+1} . $F(y_{n-1}, y_n, y_{n+1})$ - для решения данного уравнения необходимо организовать итерационный процесс. Сначала разлогаем в ряд Тейлора: $F(y_{n-1}^{(0)}, y_n^{(0)}, y_{n+1}^{(0)}) + \frac{dF}{dy_{n-1}} \left| \Delta y_{n-1}^{(S+1)} + \frac{dF}{dy_n} \right| \Delta y_n^{(S+1)} + \frac{dF}{dy_n} \left| \Delta y_n^{(S+1)} + \frac{dF}{dy_n} \right| \Delta y_n^{(S+1)}$

$$\frac{dF}{dy_{n+1}} | \Delta y_{n+1}^{(S+1)} = 0$$
, S - номер итерации.

$$F(y_{n-1}^{(0)}, y_n^{(0)}, y_{n+1}^{(0)}) = y_{n-1} - 2y_n + y_{n+1} - h^2 f(x_n, y_n) = 0$$

$$y_{n-1}^{(S)} - 2y_n^{(S)} + y_{n+1}^{(S)} - h^2 f(x_n, y_n^{(S)}) + \Delta y_{n-1}^{(S+1)} + (2 + h^2 f_n'(x_n, y_n^{(S)})) \Delta y_n^{(S+1)} + \Delta y_{n+1}^{(S+1)} = 0$$

$$\Delta y_{n-1}^{(S+1)} - (2 + h^2 f_u'(x_n, y_n^{(S)})) \Delta y_n^{(S+1)} + \Delta y_{n+1}^{(S+1)} = h^2 f(x_n, y_n^{(S)}) - y_{n-1}^{(S)} + 2y_{n-1}^{(S)} + 2y_n^{(S)} + y_{n+1}^{(S)}, (2) + 2y_n^{(S)} + 2y_n^{($$

$$\begin{aligned} y_n^{(S+1)} &= y_n^{(S)} + \Delta y_n^{(S+1)} \\ y_{n-1}^{(S+1)} &= y_{n-1}^{(S)} + \Delta y_{n-1}^{(S+1)} \\ y_{n+1}^{(S+1)} &= y_{n+1}^{(S)} + \Delta y_{n+1}^{(S+1)} \end{aligned}$$

$$\max\nolimits_{0\leqslant n\leqslant N}\left|\frac{\Delta y_n^{(S+1)}}{y_n^{(S+1)}}\right|<\xi$$

2. Простая итерация.
$$y_{n-1}^{(S+1)}-2y_n^{(S+1)}+y_{n+1}^{(S+1)}=h^2f(x_n,y_n^{(S)})$$
 Сходится, если $\frac{1}{8}(b-a)^2M_n<1, M_n=max_{1\leqslant n\leqslant N-1}|f_u''(x)|$

Сделаем замечание по поводу краевых условий:

$$\begin{cases} u(a) = c \\ u(b) = d \end{cases}$$
 (5.1)

Это условия первого рода. Второго рода - первые производные.

Условия второго рода - $\alpha u''(a) + \beta u(a) = \gamma$ - краевое условие третьего рода.

Простейщая аппроксимация:

$$\alpha \frac{y_n - y_0}{h} + \beta y_0 = \gamma, K_0 y_0 + M_0 y_1 = P_1$$

$$K_1 = \beta - \frac{\alpha}{h}$$

$$M_0 = \frac{\alpha}{h}$$

$$P_1 = \gamma$$

$$u_1 = u_0 + hu'_0 + \frac{h^2}{2}u''_0 + o(h^3)$$

$$y_1 = y_0 + h\frac{\gamma - \beta y_0}{\alpha} + \frac{h^2}{2}(f(x_0) + p(x_0)y_0)$$