ТЕКТОНИКА И ВУЛКАНОТЕКТОНИКА КЛЮЧЕВСКОЙ ГРУППЫ ВУЛКАНОВ

В.А. Ермаков

Институт физики Земли РАН, Москва. E-mail: ermak@ifz.ru

Толкование тектонических и вулканотектонических структур до сих пор неоднозначно, поэтому вначале обсудим коротко наше понимание этих понятий. Известные советские геологи В.И. Влодавец [1940], Б.И. Пийп [1956], А.Е. Святловский [1988], возглавлявшие в разное время Камчатскую вулканологическую станцию, дали разное толкование этих терминов. В.И. Влодавец относил к вулканотектоническим структурам кальдеры, соммы, секторные грабены, горсты, оползни (шарры), круговые или радиальные трещины, то есть малые тектонические формы, которые непосредственно связаны с постройками крупных вулканов и являются следствием развития магматических очагов или вулканических каналов. Наиболее крупные структуры такого типа – кальдеры; они могут объединять несколько вулканов. Поперечник молодых кальдер составляет 5-10, максимум до15-18км [Леонов и др., 2004]; в древних, например, в меловых структурах, диаметры кальдер заметно больше. Б.И. Пийп и А.Е. Святловский относили к вулканотектоническим любые по размерам структуры при условии их связи с массовыми проявлениями вулканизма. Так, Пийп полагал, что вся часть Центральной Камчатской депрессии (далее ЦКД), занятая Ключевской группой вулканов (КГВ), относится к вулканотектонической структуре с круговыми ограничениями (разломами?) диаметром до 80км. Близкого мнения придерживался Святловский, который разделял парадоксальное определение Г. Клооса о том, что «магматизм есть тектоника высокоподвижного расплава». А.Е. Святловский и др.[1988], развивая концепцию океанского телескопированного рифтогенеза, считал вулканотектоническими огромные структуры океанского дна. В этом случае структуры имеют региональный и даже глобальный характер, при этом их связи с вулканизмом могут быть парагенетическими. связанными с некоторым третьим фактором, например, с планетарными гравитационными, конвекционными или ротационными силами. А.Н. Заварицкий [1955], знаток камчатской вулканологии, который также стоял у истоков Ключевской вулканологической станции, выделил главные «тектонические линии», контролирующие деятельность вулканов Камчатки, связав их формирование с существованием сейсмофокальной зоны. Выделенные им линии фактически являются глубинными разломами, которые контролируют формирование и деятельность вулканов. Представления автора этого сообщения близки к идеям Влодавца и Заварицкого. Масштабные тектонические процессы на наш взгляд не имеют отношения к вулканотектонике. С учетом этого рассмотрим главные тектонические структуры КГВ.

Особенности региональной тектоники представлены на рис. 1 [по Ермакову, 1977]. Общая площадь вулканизма Ключевской группы вулканов 8500км², а ее объем за четвертичный период 4010км³. На верхней врезке отражены морфометрические особенности вулканического нагорья, а на основном рисунке – главные дизъюнктивные структуры этой части ЦКД. Изогипса 800м хорошо показывает примерный контур меридионального поднятия, выраженного и в поле силы тяжести (положительной аномалией). Высота захороненного поднятия фундамента не более 500м. Из анализа ксенолитов и гравиметрических данных следует, что в фундаменте фиксируется высокое положение ультраосновных пород и амфиболизированых базальтоидов в контакте с кремнями. Поднятие обрамляется с запада и востока субмеридиональными периферическими впадинами, Козыревской и Хапиченской, формирующимися с позднего палеогена или с миоцена, активно проседающими и в настоящее время; менее выразительные поперечные структуры (Ключевской грабен и Толбачинская депрессия) также отражены на схеме площадями с высотой 50-200м. Интенсивное опускание Ключевского грабена в позднем плейстоцене и в голоцене привело к прекращению деятельности вулканов Харчинский и Заречный, расположенных за пределами КГВ, напротив п. Ключи. Таким образом, можно говорить о синхронных компенсационных опусканиях по периферии вулканического нагорья. Вулканы с высотами более 2500-3000м формирует принципиально иную морфоструктуру, связанную с развитием глубинного

¹ Моя первая публикация [Ермаков, 1965], как раз посвященная вулканотектонике КГВ, была выполнена под руководством А.Е. Святловского, который в ту пору был начальником вулканостанции. Хотя в публикации были представлены идеи В.И. Влодавца, А.Е. Святловский одобрил ее без колебаний. Это – очевидное свидетельство его великодушия и демократизма.

разлома СВ простирания и расположенных вдоль него протяженных зон ареального вулканизма. К крупнейшим вулканам относятся Плоских сопки, Ключевской и Камень, Плоский и Острый Толбачики.

Важной тектонической структурой является система широтных грабенов с ограничениями типа сбросо-сдвигов (?), представленная долинами р.р. Студеная, Ключ Тундровый, стыкующимися в районе экструзий Плотины. Эта локальная структура является частью системы трансформных разломов, пересекающих центральную и восточную части Камчатки с формированием рифта ЦКД [Ермаков и др., 1974]. Структура хорошо выражена в магнитном поле.

Рис. 1. Соотношение разломов разной глубинности в районах Северной группы вулканов.

1 — зона глубинных разломов; 2 — разломы консолидированного фундамента; 3 — разломы мезокайнозойского структурного яруса; 4 — вулканы: черный кружок — действующие, двойной светлый — потухшие; 5 — интрузии высокомагнитных габбро (?) — магнитные аномалии. Двойной кружок на крайнем ЮЗ в полосе глубинного разлома — плиоценовый вулкан Николка (Кинчоклок). На врезке в левом углу показана морфометрическая схема Ключевской группы вулканов. Изолинии высот в метрах. Лавовое основание поднимается до 2000 м, наибольшие высоты вулканов — почти до 5 тыс. м. Аномалия рельефа в средней части рисунка соответствует широтной тектонической долине р. Студеная. Врезка внизу справа показывает соотношения меридионального ряда вулканов с разломами других направлений. Черные точки — действующие вулканы: Ключевской, Безымянный, Плоский Толбачик.

На бортах захороненного грабена располагаются вулканы Безымянный² и группа Зиминых сопок; в этой части его ширина достигает 15км, но в настоящее время борта грабена сужены. Вулкан Безымянный лишь морфоструктурно связан с гигантскими вулканами; он располагается на склоне Камня, поэтому его иногда рассматривают как сателлит вулканов Ключевского или Камня, что не имеет никаких оснований. Названная широтная структура делит КГВ на две резко различающиеся части: северную, с наиболее интенсивным и существенно базальтовым вулканизмом, и южную, в которой вулканическая активность заметно меньше, в особенности в стороне от глубинного разлома (группы Зиминых и Удиных сопок), зато здесь заметно больший объем имеют породы средне-кислого состава.

Схема дизъюнктивной тектоники составлена с использованием общих геолого-геофизических данных, в частности данных гравиметрии. Выделена зона глубинного разлома, соответствующая ареальным образованиям и базальт-андезибазальтовой формации [Ермакову, 1977], его протяженность в поле развития КГВ достигает 100км. Вторая группа разломов (широтных и долготных) объединяется в ортогональную систему и связана с блоками кристаллического цоколя; именно эти разломы формируют упомянутое выше меридиональное поднятие. Меридиональная система разломов контролирует высокую активность ряда вулканов от Зиминых сопок до Ключевского вулкана; этому ряду соответствует значительный градиент силы тяжести. Наконец, паутина мелких разломов неглубокого заложения относится к оперяющим производным той и другой систем разломов, они реализованы в основном в верхней, осадочной оболочке. Интересно соотношение глубинных и ортогональных систем разломов. Первые, несомненно, более глубокие, достигающие верхней мантии, но они более молодые, чем разломы ортогональной системы. Протяженный Камчатский разлом на границе Восточно-Камчатского хребта с ЦКД в мезомасштабе оказывается составленным из коротких участков ортогональных разломов. Его протяженность не отражает глубинности, он исчезает на глубинах менее 20км (по ГСЗ); так же самое, известный разлом Сан-Андреас в Северной Америке выполаживается на глубинах 20-25км, расщепляясь на ряд исчезающих пологих трещин. Возможно, что нижняя кора в силу ее высокой пластичности (на долгих временах) не имеет дизъюнктивного отражения в рельефе, как это характерно для верхней коры.

Перечислю ряд вулканотектонических структур, которые со времени наших работ в 70-80-х годах прошлого века [Ермаков, 1965, 1969, 1977] практически не изучены: 1) Горсты или куполовидные вздутия на вершинах вулканов Острый Толбачик, Камень, Дальний Плоский. Амплитуда подъема горстов, оцененная по смещениям радиальных даек достигает десятков метров. Горсты формируются при крупных пароксизмах, связанных с внедрением вершинных экструзий. 2) Кальдеры на вулканах Зиминых сопок, вулкане Малая Удина, на плато Удинского дола, полукольцевые депрессии на СВ склонах и подножии Камня, грабен долины Паразитов на западном склоне Камня. Особенно интересна первая кальдера с поперечником 10-12км, сформированная в позднем плейстоцене до формирования конусов Овальная и Острая Зимина; в это же время образованы и различные небольшие грабены на склонах Горного Зуба. Исследование этой кальдеры важно в связи с образованием в это время в области палеократера мощной зоны алунитизации. 3) Многочисленные кратеры, соммы, радиальные и кольцевые трещины на склонах

 $^{^2}$ Показательна соответствующая ориентировка соммы и терминального купола Нового вулкана Безямянный.

стратовулканов, зафиксированные дайками. Как отмечено, формирование этих структур связано с особенностями эволюции магматических очагов и каналов вулканов.

Соотношения региональных тектонических структур и петрологические особенности вулканитов позволяют предположить следующую схему тектономагматического процесса. Базальтовые магмы глубинного разлома по-видимому поднимаются быстро, не испытывая значительных изменений. На уровнях консолидированного фундамента глубинная магма перераспределяется в соответствии с делимостью фундамента. В полости ортогональных разломов формируются магматические очаги, которые при наличии значительного тепла могли эволюционировать при большой роли контаминации. Действительно, с меридиональными разломами связаны породы с большой ролью андезитов и андезидацитов. Очаги в верхнем структурном ярусе представлены силами или лакколитами. Выход магм на поверхность обеспечивается паутиной разнообразных мелких разломов. В период, когда глубинные разломы достигают поверхности, происходит одновременное функционирование разнородых магматических источников: базальтандезибазальтовая ассоциация пород локализуется вдоль линеаментов СВ простирания, а базальтандезит-дацитовая – вдоль меридиональных или широтных. Центральная часть КГВ в районе Плотины интересна тем, что здесь пересекается меридиональный ряд вулканических тел с большой ролью андезитов и дацитов неглубокого заложения и ряд ареальных существенно базальтовых проявлений, связанных с глубинным разломом. Здесь в наибольшей степени могут быть проявлены смеси различных магматических источников. Глубинный разлом, таким образом, выполняет роль раздвига; установленный наклон этого разлома к востоку (Ермаков, 1977) обеспечивает преимущественно восточное сдвигание пластин консолидированного фундамента, т.е. собственно образование поверхностей срыва (detachment), которые в том или ином виде генерируют коровую сейсмичность. Во второй статье этого сборника с участием автора будут рассмотрены детали и особенности этих процессов с учетом данных сейсмотомографии.

Список литературы

Влодавец В.И. Ключевская группа вулканов. Тр. Камч. Вулк. Ст., вып.1. 1940 148с.

Ермаков В.А. Вулканотектоника Ключевской группы вулканов на Камчатке. Восьмая конф.молодых ученых Дальнего Востока. Владивосток, 1965, с.22-23.

Ермаков В.А. Некоторые вопросы методики картирования вулканогенных формаций на примере Ключевской группы вулканов на Камчатке. //Методика картирования вулканогенных формаций. Москва, Наука, 1969, с.62-72.

Ермаков В.А., Милановский Е.Е., Таракановский А.А. Значение рифтогенеза в формировании вулканических зон Камчатки. Вестник МГУ, сер.геол., 1974. №3, с. 3-20. **Ермаков В.А.** Формационное расчленение четвертичных вулканических пород. Недра. 1977. 225с

Заварицкий А.Н. Вулканы Камчатки. Изд-во АН СССР. М., 1955.152с

Леонов В.Л., Гриб Е.Н. Структурные позиции и вулканизм четвертичных кальдер Камчатки. Владивосток, Дальнаука. 2004. 189c

Пийп Б.И. Ключевская сопка и ее извержения в 1944-1945гг. и в прошлом. Тр. Лаб.вулк.,вып.11, 1956. 312с.

Святловский А.Е., Китайгородский Ю.И. Геодинамическая вулканология. Изд-во Недра, 1988. 256с.