

C2prog 使用教程

目录

C2prog 使用教程	1
第一章 C2prog 软件的安装	2
第二章 C2prog 下的 SCIA 串口烧写	6
2.1 使用 CCS 生成. hex 文件	6
2.2 设置硬件 B00T 方式	9
2.3 使用 C2prog 软件完成串口烧写	13
第三章 串口烧写中的常见错误总结	16
3.1 引导模式 硬件配置 错误	16
3.2 hex 文件格式错误	17
3.3 波特率设置错误	18
第四章 C2prog 下的 JTAG 仿真器烧写	18
4.1 烧写流程	18
4.2 加密问题	22

第一章 C2prog 软件的安装

首先我们需要来安装 TI DSP 的软件开发环境 C2prog。该软件既可以实现常规的 仿真器烧写,也可以使用 SCI 或 CAN 进行程序烧写,这里我们只介绍关于 YANXU-28335 一体板 SCIA 串口烧写相关的内容。

注意: 安装前先关闭杀毒软件和 360、电脑管家等安全防护软件, 否则点击安装程序可能会出现警告, 强行安装可能会出现文件丢失。双击 C2Prog_v1.8.6-2.exe 文件, 出现如下图 1-1 所示界面:

图 1-1

点击 NEXT, 在下个界面选择"I accept the agreement", 再点击"Next" 如下图 1-2 所示:

图 1-2

点击 "Browse" 选择安装路径(注意:路径不可以有中文),点击 "Next"见下图 1-3 所示:

图 1-3

勾选中间的"TI Emupack", 然后继续点击"Next"直到见到下图 1-4:

图 1-4

选择"Install"开始安装,安装完成后的界面如下图 1-5 所示:

图 1-5

把中间的"View readme.txt"勾掉,然后点击"Finish"即可。

第二章 C2prog下的 SCIA 串口烧写

SCIA 串口烧写需要. hex 执行文件,该文件可以通过 CCS 编译工程直接生成,这里就要用到 CCS 软件, CCS 具体的安装和使用方法请参考研旭 CCS6. 0 教程。

2.1 使用 CCS 生成. hex 文件

C2prog 是将. hex 文件烧录进 DSP 中,故首先 通过 CCS 生成相应. hex 文件,下面我以 CCS6. 0 为基础简单介绍一下如何在 CCS 下编译生成. hex 文件。

首先,打开 CCS6.0 软件,选择菜单栏 View 下面的"Project Explorer"项目,打 workspace 里保存的工程,右击其中一个工程,如定时器程序,如下图 2-1-1 所示:

图 2-1-1

选择最下方的"Properties"打开属性窗口,然后点击"C2000 Hex Utility", 在打开的窗口勾选"Enable C2000 Hex Utility",如下图 2-1-2 所示:

图 2-1-2

点击 "C2000 Hex Utility"下面的"General Options",确保设置如下图 2-1-3 所示:

图 2-1-3

再点击 "C2000 Hex Utility"下面的"Output Format Options",设置如下图 2-1-4 所示:

图 2-1-4

最后点击"OK"保存,重新编译工程,就会在工程的 Debug 目录下生成烧写用的. hex 文件,如下图 2-1-5 所示:

图 2-1-5

2.2 设置硬件 BOOT 方式

引导加载程序(BootLoader-在 TI 给的应用手册中有讲的很详细)是位于片内引导 ROM 中的程序,它在复位后执行。引导加载程序用于在加电后将代码从外部源传输到内部存储器(即将 I/O 口接收到的代码 固化到 FLASH 中)。

在 28335 数据手册(资料里有)中,有各种引导模式的配置方式,如下图 2-2-1 所示:

MODE	GPIO87/XA15	GPIO86/XA14	GPIO85/XA13	GPIO84/XA12	MODE
F	1	1	1	1	Jump to Flash
Е	1	1	1	0	SCI-A boot
D	1	1	0	1	SPI-A boot
С	1	1	0	0	I2C-A boot
В	1	0	1	1	eCAN-A boot
Α	1	0	1	0	McBSP-A boot
9	1	0	0	1	Jump to XINTF x16
8	1	0	0	0	Jump to XINTF x32
7	0	1	1	1	Jump to OTP
6	0	1	1	0	Parallel GPIO I/O boot
5	0	1	0	1	Parallel XINTF boot
4	0	1	0	0	Jump to SARAM
3	0	0	1	1	Branch to check boot mode
2	0	0	1	0	Branch to Flash, skip ADC calibration
1	0	0	0	1	Branch to SARAM, skip ADC calibration
0	0	0	0	0	Branch to SCI, skip ADC calibration

Table 2-3. Boot Mode Selection(1)

图 2-2-1

常用的 JTAG 烧录模式即为上图中的"Jump to Flash"模式,即 GPI084、85、86、87 均为高电平时 DSP 从 Flash 里读取程序启动。 我们要使用 SCIA 串口烧写,就要把 B00T 方式设置为上图中的 SCI-A boot,即串口 A 启动,需要 GPI084 为低电平,GPI085、86、87 为高电平。YAXU-28335 一体板上有一组拨码开关 S2,平常我们全部拨到 1 即高电平上拉状态,在串口烧写时我们要把 GPI084 给低电平,需要把最左边的开关拨到 0 上,如下图 2-2-2 和图 2-2-3 所示:

⁽¹⁾ All four GPIO pins have an internal pullup.

图 2-2-2

图 2-2-3

此外,使用 SCIA 烧写,要保证 SCIA 通信正常,建议烧写前先在 CCS 上测试一下 SCIA 串口发送。对于 YANXU-28335 一体板,使用 SCIA 通信是需要将跳帽 JMP3、JMP4 跳选到靠近串口 DB9 发送接口的一边,并将串口线连接到 SCIA 接口上,如下图 2-2-4 所示:

图 2-2-4

最后,将 USB 转串口线接到电脑上,打开设备管理器,观察端口项目下 USB 转串口线识别的端口号,如下图 2-2-5 所示,识别的就是 COM3 端口。然后右击,选择属性,在打开的窗口下选择"端口设置",观察波特率是不是 9600。如下图 2-2-6 所示:

图 2-2-4

这样,我们就完成了SCIA 串口烧写的硬件准备工作。

2.3 使用 C2prog 软件完成串口烧写

上一节已经提到了观察端口波特率大小,这里,我们也要确保串口波特率和端口一致,所以,首先我们要设置软件烧写的波特率。打开安装好的 C2prog 软件安装目录下的 targets 文件夹,如果你是默认安装路径,则地址如下 "C:\Program Files (x86)\C2Prog\targets"。在文件夹最后找到名称为"targets_delfinoA"的 XML 文档文件,如下图 2-3-1 所示:

图 2-3-1

选择打开方式为记事本,对改文件进行编辑,找到如下图 2-3-2 所示语句,修改波特率 38400-->9600,115200-->38400,如下图 2-3-3 所示:


```
🎒 targets_delfinoA - 记事本
                                                                                                                    X
文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)
                 <loadmethod>
                          <name>28235 serial</name>
                          <port>serial</port>
                          <loadset>
                                   primary>BootLoader28xxHalfDuplex/primary>
                                    <secondary />
                          </loadset>
                          <settings>
                                    primary>
                                             <bootbaud>38400</bootbaud>
                                             <boottxdelay>10</boottxdelay>
                                             <boottxburst>100</boottxburst>
                                             <br/>
<bootfile>flasher28235_210_XMHz_emu.hex</bootfile>
                                    </primary>
                                    <secondary>
                                            <loadbaud>960(;115200</loadbaud><loadtxdelay>5/loadtxdelay>
                                             <loadtxspace>1</loadtxspace>
                                   </secondary>
                          </settings>
                 </loadmethod>
                 <loadmethod>
                          <name>28235 jtag</name>
                          <port>jtag</port>
                          <loadset>
                                    primary>BootLoaderC2000Emu</primary>
                                    <secondary>CLEMUProgramLoader</secondary>
```

图 2-3-2

```
*targets_delfinoA - 记事本
                                                                                                              文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)
                <loadmethod>
                         <name>28235_serial</name>
                         <port>serial</port>
                         <loadset>
                                  primary>BootLoader28xxHalfDuplex/primary>
                                  <secondary />
                         </loadset>
                         <settings>
                                  primary>
                                          <bootbaud>9600</bootbaud>
                                          <booktxdelay>10</booktxdelay>
                                          <boottxburst>100</boottxburst>
                                          <bootfile>flasher28235_210_XMHz_emu.hex</bootfile>
                                  </primary>
                                           loadbaud>960 ;38400</padbaud>
                                          <loadtxdelay>5</loadtxd
                                          <loadtxspace>1</loadtxspace>
                                  </secondary>
                         </settings>
                 </loadmethod>
                <loadmethod>
                         <name>28235_jtag</name>
                         <port>jtag</port>
                         <loadset>
                                  <primary>BootLoaderC2000Emu</primary>
                                  <secondary>CLEMUProgramLoader</secondary>
```

图 2-3-3

保存更改,这样我们就完成了波特率设置。然后打开 C2prog 软件如下图 2-3-4 所示完成配置,其中 "Firmware Image"下选择之前生成的需要烧写的. hex 的路径,注意不要有中文; "Programming Configuration"下选择需要烧写的 DSP 类型和板上晶振频率; 密码按需求设置,这里默认不进行设置: "Port"下勾选"Serial",输入上一节中观

察到的设备管理器下识别的端口号。

	C2Prog vi	.8		by codeskin.co
asher (Gdb			
Firmwar	e Image	79.0		
C:\User	s\zhuyupeng\Desktop\TI	MER0.hex		·
Progran	nming Configuration			
	28235,335		~ 30N	ИHz ∨
	20233,333		Configure	MHz Save as ehx
	20233,353			
	20233,333			Save as ehx
Port:	L OCAN OJTAG	7	Configure	Save as ehx

图 2-3-4

最后,点击"Program"开始烧写,完成后如下图 2-3-5 所示:

图 2-3-5

第三章 串口烧写中的常见错误总结

3.1 引导模式 硬件配置 错误

引导模式选错时,会出现下图所示(一直停留在此界面不动),重新仔细配置硬件选择,如图 3-1-1 所示:

图 3-1-1

3.2 hex 文件格式错误

hex 文件格式错误时,会出现下图 3-2-1 所示(一直停留在此界面不动),按照上 文所述方法生成的 hex 文件是没有错的。

图 3-2-1

3.3 波特率设置错误

参考第二章第3节内容,会卡在如下图3-3-1所示界面:

图 3-2-1

第四章 C2prog下的 JTAG 仿真器烧写

C2prog 有三种烧写方式,这里介绍最常用的 JTAG 烧写,需要用到仿真器,我们以研旭 100V3 仿真器和 YANXU-28335 一体板为基础介绍。

4.1 烧写流程

在 JTAG 烧写模式下,烧写文件的两种文件格式(即. out 文件与. hex 文件格式)均支持烧写,这里以. hex 文件为例,烧写一个定时器文件 TIMERO. hex。

首先打开 C2prog 软件进行配置,其中 "Firmware Image" 下选择需要烧写的.out

或者. hex 文件的路径,点击省略号"..."选择"Browse"搜索整个电脑磁盘目录,找到对应文件就行了,注意不要有中文;如果已经选择了路径,点击"..."还会出现选项"Remove",可以删除当前路径。如下图 4-1-1 所示:

图 4-1-1

然后在 "Programming Configuration"下选择需要烧写的 DSP 的型号(所以我们就是 28235, 28335)和板上晶振的频率(30MHz-JTAG),这里注意,需要选择带后缀 JTAG的选项,这样程序的"Port" 栏会自动跳转到 JTAG 模式,才能进行 JTAG 协议的烧写;如下图 4-1-2 所示:

4					
C2Prog	v1.8		by co	deskin.	сог
lasher Gdb					
Firmware Image					
C:\Users\zhuyupeng\Desktop	\TIMER0.hex		~		
					-
Programming Configuration					
Target: 28235,335		V 301	MHz-JTA	.G	~
		Configure	Save	as ehx.	
			To	ools	
Port:	原本是Ser	·ial,选择	后		

图 4-1-2

下面一栏的"Configure"按钮点击之后可以按需求设置密码密码,如果需要加密 或者 DSP 已经锁定,需要输入对应密码再进行烧写,这里默认不进行设置,其余两个按 钮一般不用;如下图 4-1-3 所示:

rget config	uration		>		
Code sec	urity:				by codeskin.co
Key 0	Key 1	Key 2	Key 3		
*****	*****	*****	*****		
Key 4	Key 5	Key 6	Key 7	-	
*****	*****	*****	*****	-	×
	ors to be era			~ 30N	ИНz-JTAG ∨
A B C	D E F G	Н	ı	∨ 30N Configure	MHz-JTAG ~
A B C □□□□	D E F G	H on	[1
A B C Smart s Allow C	D E F G ector selection	H on	[Save as ehx
A B C Smart s Allow C	D E F G ector selection	H on	[Save as ehx
A B C □□□□	D E F G ector selection	H on	Revert	Configure	Save as ehx

图 4-1-3

接着我们在"Select Port"下选择对应的仿真类型,这里选择"xds100v3",就

完成了烧写准备需要配置的所有内容。

C2Prog v1.8	by codeskin.co
asher Gdb	
Firmware Image	
C:\Users\zhuyupeng\Daldaa\TIMEDD have	×
Programming Conic	
Target: 28235,33	an Ports DMHz-JTAG
OK Cance	Save as ehx
	Save as enx
	Tools
Port:	

图 4-1-4

最后,点击"Program"按钮开始烧写,完成后如下图 4-1-5 所示:

图 4-1-5

4.2 加密问题

如果烧写程序时停在如下图 4-2-1 所在位置,说明密码有问题,默认密码或者之前 流程设置的密码不正确,我们需要先给板子断电,拔插仿真器,再重新给板子上电,重 复之前烧写的步骤,在过程中输入正确的烧写密码。

图 4-2-1

如下图 4-2-2 所示,为键入密码之后的状态<mark>(密码为演示密码,客户请根据具体情况设置)</mark>,确认后点击"OK"保存即可。

图 4-2-2