MA 214: Introduction to numerical analysis Lecture 15

Shripad M. Garge. IIT Bombay

(shripad@math.iitb.ac.in)

2021-2022

Divided differences as a function

We are now considering the divided differences as a function of x by

$$f[x_0,\ldots,x_n,x].$$

Since the divided difference gives the difference between p_n and p_{n+1} , we have the following:

Let $f:[a,b] \to \mathbb{R}$, $x_0, x_1, \dots, x_n \in [a,b]$ be given as usual and let P_n be the corresponding interpolating polynomial.

Then, for any point $x \in [a, b]$,

$$f(x) = p_n(x) + (x - x_0)(x - x_1) \cdots (x - x_n) f[x_0, x_1, \dots, x_n, x].$$

Osculating polynomials

Let $f:[a,b] \to \mathbb{R}$ be continuously differentiable for $r \gg 0$.

Taylor's theorem gives a polynomial Q(x) at $x_0 \in [a, b]$ such that

$$\frac{d^k f(x_0)}{dx^k} = \frac{d^k Q(x_0)}{dx^k}$$

for k = 0, ..., m for $m \le r$.

Lagrange's theorem gives a polynomial P_k at distinct x_0, \ldots, x_k in [a, b] such that

$$f(x_i) = P_k(x_i)$$

for $i = 0, \ldots, k$.

Can we ask for both these properties in a single polynomial?

Osculating polynomials

Let f be as above, x_0, \ldots, x_n be distinct nodes in [a, b] and assume that for each node x_i an integer $m_i \ge 0$ is prescribed.

Is there a polynomial P(x) such that

$$\frac{d^k P(x_i)}{dx^k} = \frac{d^k f(x_i)}{dx^k}$$

for $k = 0, ..., m_i$ and i = 0, ..., n?

Such a polynomial is called the osculating polynomial for f with the nodes x_i and the corresponding non-negative integers m_i .

If n = 0 then we have the Taylor's theorem while if $m_i = 0$ for all i then we have the Lagrange's theorem.

Hermite polynomials

We are interested in the particular case of $m_i = 1$ for all i.

These are the Hermite polynomials.

Given a function f on nodes x_0, x_1, \ldots, x_n , the Hermite polynomial H_{2n+1} agrees with f on each x_i and, the derivative, H'_{2n+1} agrees with f' on each x_i .

Thus, at the points $(x_i, f(x_i))$, H_{2n+1} has the same shape as the function f because the tangents to f and to H_{2n+1} agree.

We will study the Hermite polynomials, see their construction and also study the corresponding errors.

Initial cases

Let f be given on nodes x_0 and x_1 and assume that we want to find a polynomial H such that

$$H(x_0) = f(x_0), H(x_1) = f(x_1), H'(x_0) = f'(x_0)$$
 and $H'(x_1) = f'(x_1)$.

Let L_0 and L_1 denote the Lagrange polynomials. We then define, for i=0,1:

$$H_i(x) = [1 - 2(x - x_i)L_i'(x_i)]L_i^2(x).$$

Then $H_i(x_j) = \delta_{i,j}$ and

$$H_i'(x_j) = -2L_i'(x_i)L_i^2(x_j) + \left[1 - 2(x_j - x_i)L_i'(x_i)\right]\left[2L_i(x_j)L_i'(x_j)\right] = 0.$$

6/13

Initial cases

We further define

$$\hat{H}_i(x) = (x - x_i)L_i^2(x).$$

Then $\hat{H}_i(x_j) = 0$ and

$$\hat{H}'_{i}(x_{j}) = L_{i}^{2}(x_{j}) + (x_{j} - x_{i})2L_{i}(x_{j})L'_{i}(x_{j}) = \delta_{i,j}.$$

Finally, we define

$$H = \left[f(x_0)H_0 + f(x_1)H_1 \right] + \left[f'(x_0)\hat{H_0} + f'(x_1)\hat{H_1} \right].$$

Note that the degree of H is ≤ 3 .

General case

Let f be defined on x_0, \ldots, x_n and let L_i denote the Lagrange polynomials.

We define

$$H_i(x) = [1 - 2(x - x_i)L_i'(x_i)]L_i^2(x)$$

so that

$$H_i(x_j) = \delta_{i,j}$$

and

$$H'_{i}(x_{j}) = -2L'_{i}(x_{i})L_{i}^{2}(x_{j}) + [1 - 2(x_{j} - x_{i})L'_{i}(x_{i})][2L_{i}(x_{j})L'_{i}(x_{j})]$$

= 0.

General case

Further

$$\hat{H}_i(x) = (x - x_i)L_i^2(x).$$

Then

$$\hat{H}_i(x_j) = 0$$

and

$$\hat{H}'_{i}(x_{j}) = L_{i}^{2}(x_{j}) + (x_{j} - x_{i})2L_{i}(x_{j})L'_{i}(x_{j})
= \delta_{i,j}.$$

Finally, we define

$$H_{2n+1}(x) = \sum_{i} f(x_i)H_i(x) + \sum_{i} f'(x_i)\hat{H}_i(x).$$

Note that the degree of H_{2n+1} is indeed $\leq 2n+1$.

Example

Find the Hermite polynomial that agrees with the following data:

$$\begin{array}{c|cccc} x & f(x) & f'(x) \\ \hline -1 & 2 & -8 \\ 0 & 1 & 0 \\ 1 & 2 & 8 \end{array}$$

Here, $x_0 = -1$, $x_1 = 0$ and $x_2 = 1$. Then

$$L_0(x) = \frac{1}{2}x(x-1), \quad L_1(x) = 1 - x^2, \quad L_2(x) = \frac{1}{2}x(x+1),$$

$$L_0'(x) = \frac{1}{2}(2x-1), \quad L_1'(x) = -2x, \quad L_2'(x) = \frac{1}{2}(2x+1).$$

Now, we compute the H and \hat{H} -polynomials.

Example, continued

We begin with

$$H_0(x) = [1 - 2(x - x_0)L'_0(x_0)]L_0^2(x)$$

$$= \left[1 - 2(x + 1)\frac{-3}{2}\right]\frac{1}{4}x^2(x - 1)^2$$

$$= \frac{(3x + 4)x^2(x - 1)^2}{4}.$$

Similarly,
$$H_1(x) = (1 - x^2)^2$$
 and $H_2(x) = \frac{(-3x + 4)x^2(x + 1)^2}{4}$.

Further,

$$\hat{H}_0(x) = \frac{(x+1)x^2(x-1)^2}{4}, \ \hat{H}_1(x) = x(1-x^2)^2, \ \hat{H}_2(x) = \frac{(x-1)x^2(x+1)^2}{4}.$$

Example, continued

The final answer then is

$$H(x) = \sum_{i} f(x_{i})H_{i}(x) + \sum_{i} f'(x_{i})\hat{H}_{i}(x)$$

$$= 2 \frac{(3x+4)x^{2}(x-1)^{2}}{4} + 1(1-x^{2})^{2} + 2 \frac{(-3x+4)x^{2}(x+1)^{2}}{4} + (-8) \frac{(x+1)x^{2}(x-1)^{2}}{4} + 8 \frac{(x-1)x^{2}(x+1)^{2}}{4}$$

$$= 3x^{4} - 2x^{2} + 1.$$

One checks that

$$H(-1) = 2$$
, $H(0) = 1$, $H(1) = 2$.

Further, $H'(x) = 12x^3 - 4x$ and hence

$$H'(-1) = -8$$
, $H'(0) = 0$ $H'(1) = 8$.

MA 214: Introduction to numerical analysis Lecture 16

Shripad M. Garge. IIT Bombay

(shripad@math.iitb.ac.in)

2021-2022

Hermite polynomials

We are studying Hermite interpolating polynomials.

Given a function f on nodes x_0, x_1, \ldots, x_n , the Hermite polynomial H_{2n+1} agrees with f on each x_i and the derivative H'_{2n+1} agrees with f' on each x_i .

In fact,

$$H_{2n+1}(x) = \sum_{i} f(x_i)H_i(x) + \sum_{i} f'(x_i)\hat{H}_i(x)$$

where

$$H_i(x) = [1 - 2(x - x_i)L'_i(x_i)]L_i^2(x)$$

and

$$\hat{H}_i(x) = (x - x_i)L_i^2(x).$$

The L_i are, of course, the Lagrange polynomials for the data $(x_i, f(x_i))$.

Error for H_{2n+1}

Let $f:[a,b] \to \mathbb{R}$ be (2n+2)-times continuously differentiable.

Let x_0, \ldots, x_n be distinct nodes in [a, b] and let H_{2n+1} be the Hermite polynomial for the data $(x_i, f(x_i), f'(x_i))$.

Then for every $x \in [a, b]$ there exists $\xi(x) \in (a, b)$ such that

$$f(x) = H_{2n+1}(x) + \frac{(x-x_0)^2 \cdots (x-x_n)^2}{(2n+2)!} f^{(2n+2)}(\xi(x)).$$

Let us check this for the example we considered in the last lecture.

Error for the example

Our data was:

X	f(x)	f'(x)
-1	2	-8
0	1	0
1	2	8

The error formula is

$$f(x) = H_5(x) + \frac{(x+1)^2 x^2 (x-1)^2}{6!} f^{(6)}(\xi(x)).$$

Here the function was $f(x) = x^8 + 1$, hence $f^{(6)}(x) = 20160x^2$ and we computed

$$H_5(x) = 3x^4 - 2x^2 + 1.$$

Error for the example

We compute

$$f(x) - H_5(x) = (x^8 + 1) - (3x^4 - 2x^2 + 1)$$

$$= x^2(x^6 - 3x^2 + 2)$$

$$= x^2(x - 1)^2(x^4 + 2x^3 + 3x^2 + 4x + 2)$$

$$= x^2(x - 1)^2(x + 1)^2(x^2 + 2)$$

Hence
$$\xi(x)^2 = \frac{x^2 + 2}{28}$$
 and

$$\xi(x) = \sqrt{\frac{x^2 + 2}{28}}.$$

For
$$x \in [-1, 1]$$
, $\xi(x) \in (-1, 1)$.

This is the error for our data with the function $f(x) = x^8 + 1$.

Divided differences and H_{2n+1}

We can compute the Hermite polynomial H_{2n+1} using divided differences, which is where we see yet another application of the definition of the divided differences as a function.

Let x_0, x_1, \dots, x_n be distinct nodes and let the values of f and f' at these numbers be given.

Define a new sequence $z_0, z_1, \ldots, z_{2n+1}$ by $z_{2i} = z_{2i+1} = x_i$ for all $i = 0, \ldots, n$. We then construct the table of divided differences for these nodes, z_i , with $f[z_{2i}, z_{2i+1}] = f[x_i, x_i] = f'(x_i)$.

We then compute the Hermite polynomial using the formula

$$H_{2n+1}(x) = f[z_0] + \sum_{k=1}^{2n+1} f[z_0, \dots, z_k](x-z_0) \cdots (x-z_{k-1}).$$

Divided differences and H_{2n+1}

z	f(z)	First divided differences	Second divided differences		
$z_0 = x_0$	$f[z_0] = f(x_0)$	$f[z_0, z_1] = f'(x_0)$			
$z_1 = x_0$	$f[z_1] = f(x_0)$		$f[z_0, z_1, z_2] = \frac{f[z_1, z_2] - f[z_0, z_1]}{z_2 - z_0}$		
		$f[z_1, z_2] = \frac{f[z_2] - f[z_1]}{z_2 - z_1}$	f[]		
$z_2 = x_1$	$f[z_2] = f(x_1)$	$f[z_2, z_3] = f'(x_1)$	$f[z_1, z_2, z_3] = \frac{f[z_2, z_3] - f[z_1, z_2]}{z_3 - z_1}$		
$z_3 = x_1$	$f[z_3] = f(x_1)$	f[62,63] = f(61)	$f[z_2, z_3, z_4] = \frac{f[z_3, z_4] - f[z_2, z_3]}{z_4 - z_2}$		
		$f[z_3, z_4] = \frac{f[z_4] - f[z_3]}{z_4 - z_3}$			
$z_4 = x_2$	$f[z_4] = f(x_2)$	£[]	$f[z_3, z_4, z_5] = \frac{f[z_4, z_5] - f[z_3, z_4]}{z_5 - z_3}$		
$z_5 = x_2$	$f[z_5] = f(x_2)$	$f[z_4, z_5] = f'(x_2)$			

19/13

Our earlier example

Our data was (-1,2,-8), (0,1,0) and (1,2,8).

This gives $H_5(x) = 3x^4 - 2x^2 + 1$.

Error due to higher degree polynomials

Our study until now concerned the approximation of arbitrary functions on closed intervals using a single polynomial.

However, high-degree polynomials can oscillate erratically, that is, a minor fluctuation over a small portion of the interval can induce large fluctuations over the entire range.

Let us see an example of this phenomenon.

To approximate the top profile of the duck, we choose points along the curve through which we want the approximating curve to pass.

More points are used when the curve is changing rapidly.

The nodes and the corresponding function values are

X	0.9	1.3	1.9	2.1	2.6	3.0	3.9
f(x)	0.9	1.5	1.85	2.1	2.6	2.7	2.4
X	4.4	4.7	5.0	6.0	7.0	8.0	9.2
f(x)	2.15	2.05	2.1	2.25	2.3	2.25	1.95
X	10.5	11.3	11.6	12.0	12.6	13.0	13.3
f(x)		0.9	0.7	0.6	0.5	0.4	0.25

This data gives a degree 20 interpolating polynomial.

Let us now superimpose the graph of this interpolating polynomial over the back of our flying duck.

It produces a very strange illustration of the back of our duck.