Lecture 13

Function Composition

Monday, Feb. 17

In This Lecture...

- Creating beautiful compositions (of functions)!
- Being very careful about the order in which things are written!
- Determining how properties of functions work for compositions!

Definition 13.0: Function Composition

Let $f: X \to Y$ and $g: Y \to Z$ be functions. The **composition** of g and f is the function $g \circ f: \underline{X \to Z}$ defined by $(g \circ f)(x) = g(f(x))$ for all $x \in X$.

Solution with the order $g \circ f$, the inner function f is applied first!

Find formulas for the compositions $g \circ f$ and $f \circ g$, if possible.

(a) $f: \mathbb{Z} \to \mathbb{Z}$ defined by $f(n) = n^2 + 2n$ and $g: \mathbb{Z} \to \mathbb{Q}$ defined by $g(n) = \frac{n}{2}$.

Solution

The composition $g \circ f$ is a function with domain \mathbb{Z} and codomain \mathbb{Q} . For any $n \in \mathbb{Z}$, we have

$$(g \circ f)(n) = g(f(n)) = g(n^2 + 2n) = \frac{n^2}{2} + n.$$

The composition $f \circ g$ is not defined, since the codomain of g (which is \mathbb{Q}) doesn't match the domain of f (which is \mathbb{Z}).

(b) $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ defined by $f(A) = A \cup \{0\}$ and $g: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ defined by $g(A) = A \setminus \{0\}$

Solution

For the composition $g \circ f$ and any $A \in \mathcal{P}(\mathbb{N})$, we have

$$(g \circ f)(A) = g(f(A)) = g(A \cup \{0\}) = (A \cup \{0\}) \setminus \{0\}.$$

Here, we are adding the element 0 to the set and then removing it. The net result is the same as simply removing 0, meaning $(g \circ f)(A) = A \setminus \{0\}$.

For the composition $f \circ g$ and any $A \in \mathcal{P}(\mathbb{N})$, we have

$$(f\circ g)(A)=f(g(A))=f(A\setminus\{0\})=(A\setminus\{0\})\cup\{0\}.$$

This time, we are removing the element 0 from the set and then putting it in. The net result is the same as adding 0 to the set, meaning $(f \circ g)(A) = A \cup \{0\}$.

Definition 13.1: Identity Function

Let X be a set. The **identity function** on X is the function $id_X : X \to X$ defined by:

$$id_X(x) = x$$
 for all $x \in X$

Prove that for any function $f: X \to Y$, $f \circ id_X = f = id_Y \circ f$.

2

Solution

Proof: Let $f: X \to Y$ be a function. First, we will show that $f \circ id_X = f$. From $id_X: X \to X$ and $f: X \to Y$, we see that the composition is a function with domain X and codomain Y, which match the domain and codomain of f. For any $x \in X$, we have

$$(f \circ id_X)(x) = f(id_X(x)) = f(x)$$

by definition of the identity function, which establishes $f \circ id_X = f$.

The proof that $id_Y \circ f = f$ is similar. We have $f: X \to Y$ and $id_Y: Y \to Y$, so the composition is a function with domain X and codomain Y, the same as f. For any $x \in X$, we have

$$(\mathrm{id}_Y \circ f)(x) = \mathrm{id}_Y(f(x)) = f(x)$$

by definition of the identity function, giving us $id_Y \circ f = f$.

3

(a) Prove that if f and g are injective, then $g \circ f$ is injective.

Let $f: X \to Y$ and $g: Y \to Z$ be functions.

Solution

Proof: Let $f: X \to Y$ and $g: Y \to Z$ be injections. To show that $g \circ f$ is injective, let $a, b \in X$ with $(g \circ f)(a) = (g \circ f)(b)$. We can write this as g(f(a)) = g(f(b)). As g is injective, this implies f(a) = f(b), and as f is injective, we have a = b. Thus $g \circ f$ is injective.

(b) Prove that if f and g are surjective, then $g \circ f$ is surjective.

Solution

Proof: Let $f: X \to Y$ and $g: Y \to Z$ be surjections. To show that $g \circ f$ is surjective, let $z \in Z$. As g is surjective, there exists a $y \in Y$ such that g(y) = z. As f is surjective, there exists an $x \in X$ such that f(x) = y. Putting these together, we have

$$(g\circ f)(x)=g(f(x))=g(y)=z,$$

proving that $g \circ f$ is surjective.

(c) Prove that if f and g are bijective, then $g \circ f$ is bijective.

Solution

Proof: Let $f: X \to Y$ and $g: Y \to Z$ be bijections. Then f and g are both injective and both surjective. By part (a), the composition $g \circ f$ is injective, and by part (b), the composition $g \circ f$ is surjective, so $g \circ f$ is bijective.