САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МАТЕМАТИКО-МЕХАНИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ФИЗИЧЕСКОЙ МЕХАНИКИ

МЕТОДЫ ИЗМЕРЕНИЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ СИСТЕМЫ

Отчёт по лабораторной работе №1

«Многократные прямые измерения физических величин и обработка результатов наблюдений»

Выполнил студент: Невзоров Никита Иванович группа: 23.Б12-мм

Проверил: Профессор Морозов Виктор Александрович

Содержание

1	Введение						
	1.1	Цель работы					
	1.2	Решаемые задачи					
2	Основная часть						
	2.1	Теоретическая часть					
	2.2	Эксперимент					
		2.2.1 Ход эксперимента					
	2.3	Обработка данных					
		2.3.1 Код программы					
	2.4	Таблицы					
		2.4.1 Грубые измерения					
		2.4.2 Точные измерения					
3	Pac	четы					
4	Гра	фики					
5	Вы	вол					

1 Введение

1.1 Цель работы

Цель данной лабораторной работы – освоение методики использования измерительного прибора для многократного прямого измерения физической величины, а также выполнение статистической обработки серии результатов наблюдений при прямых измерениях.

1.2 Решаемые задачи

- 1. Освоить методику использования измерительного прибора для многократного прямого измерения физической величины.
- 2. Выполнить статистическую обработку серии результатов наблюдений при прямых измерениях.

2 Основная часть

2.1 Теоретическая часть

Основные понятия, используемые в работе:

• Среднее арифметическое — наилучшее значение измеряемой величины:

$$x = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

где x_i — результаты отдельных наблюдений, n — количество измерений.

• Относительная погрешность для частотомера Ч3-32:

$$\gamma = \pm \left(\gamma_0 + \frac{1}{f_x \cdot T}\right) \cdot 100\%,$$

где $\gamma_0=5\times 10^{-7}$ — основная относительная погрешность, f_x — измеряемая частота в Γ ц, T — время измерения в с.

• Погрешность прибора:

$$\Delta f_{\text{приб}} = \gamma \cdot f_{\text{cp}}$$

• Дисперсия:

$$\sigma^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

• Средняя квадратичная погрешность:

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

• Погрешность среднего значения:

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

2.2 Эксперимент

Для выполнения работы использовался частотомер Ч3-32 для измерения частоты следования импульсов, задаваемых генератором Γ 5-15.

Рис. 1: Блок-схема установки для измерения периода и частоты следования импульсов

2.2.1 Ход эксперимента

- 1. Включение приборов и настройка генератора импульсов
- 2. Проведение серии измерений (10 раз на грубой шкале и 50 раз на точной шкале)
- 3. Запись результатов измерений в таблицу

2.3 Обработка данных

Для обработки результатов измерений была разработана программа на С++.

2.3.1 Код программы

Листинг 1: Вычисление среднего значения

```
double mean_f = 0.0;
for (int i = 0; i < n; i++) {
    mean_f += freq[i];
}
mean_f /= n;</pre>
```

Листинг 2: Вычисление дисперсии

```
double variance = 0.0;
for (int i = 0; i < n; i++) {
    double dev = freq[i] - mean_f;
    variance += dev * dev;
}
variance /= (n-1);</pre>
```

Листинг 3: Вычисление СКО

```
double std_dev = sqrt(variance);
```

Таблицы 2.4

2.4.1 Грубые измерения

№ п.п.	Диапазон показаний (кГц)	Результаты f_i (к Γ ц)	Погрешность $\Delta f_{\text{приб}}$ (к Γ ц)
1	$0-10^5$	4.53	0.01
2	$0-10^5$	4.54	0.01
3	$0-10^5$	4.54	0.01
4	$0-10^5$	4.52	0.01
5	$0-10^5$	4.52	0.01
6	$0-10^5$	4.54	0.01
7	$0-10^5$	4.52	0.01
8	$0-10^5$	4.54	0.01
9	$0-10^5$	4.55	0.01
10	$0-10^5$	4.54	0.01

Таблица 1: Результаты грубых измерений

Точные измерения 2.4.2

Таблица 2: Результаты точных измерений частоты со случайной погрешностью

№ п.п.	f_i (к Γ ц)	$d_i = f_i - \bar{f}$	$d_i^2 (к \Gamma \mathfrak{U}^2)$	$\Delta f_{\mathrm{случ},i}$		
		(кГц)		(кГц)		
1	4.552	0.009	0.000081	0.004		
2	4.546	0.003	0.000009	0.004		
3	4.554	0.011	0.000121	0.004		
4	4.566	0.023	0.000529	0.004		
5	4.562	0.019	0.000361	0.004		
6	4.556	0.013	0.000169	0.004		
7	4.544	0.001	0.000001	0.004		
8	4.548	0.005	0.000025	0.004		
9	4.558	0.015	0.000225	0.004		
10	4.554	0.011	0.000121	0.004		
11	4.550	0.007	0.000049	0.004		
12	4.550	0.007	0.000049	0.004		
13	4.544	0.001	0.000001	0.004		
14	4.558	0.015	0.000225	0.004		
15	4.550	0.007	0.000049	0.004		
16	4.574	0.031	0.000961	0.004		
17	4.562	0.019	0.000361	0.004		
18	4.572	0.029	0.000841	0.004		
19	4.558	0.015	0.000225	0.004		
20	4.557	0.014	0.000196	0.004		
21	4.556	0.013	0.000169	0.004		
22	4.542	-0.001	0.000001	0.004		
23	4.534	-0.009	0.000081	0.004		
24	4.536	-0.007	0.000049	0.004		
Продолжение на следующей странице						

Продолжение таблицы 2

продолжение таолицы 2								
№ п.п.	f_i (к Γ ц)	$d_i = f_i - \overline{f}$	$d_i^2 (к \Gamma \mathfrak{U}^2)$	$\Delta f_{\mathrm{случ},i}$				
		(кГц)		(кГц)				
25	4.540	-0.003	0.000009	0.004				
26	4.538	-0.005	0.000025	0.004				
27	4.536	-0.007	0.000049	0.004				
28	4.536	-0.007	0.000049	0.004				
29	4.540	-0.003	0.000009	0.004				
30	4.542	-0.001	0.000001	0.004				
31	4.542	-0.001	0.000001	0.004				
32	4.542	-0.001	0.000001	0.004				
33	4.540	-0.003	0.000009	0.004				
34	4.534	-0.009	0.000081	0.004				
35	4.544	0.001	0.000001	0.004				
36	4.548	0.005	0.000025	0.004				
37	4.544	0.001	0.000001	0.004				
38	4.536	-0.007	0.000049	0.004				
39	4.530	-0.013	0.000169	0.004				
40	4.536	-0.007	0.000049	0.004				
41	4.530	-0.013	0.000169	0.004				
42	4.532	-0.011	0.000121	0.004				
43	4.530	-0.013	0.000169	0.004				
44	4.515	-0.028	0.000784	0.004				
45	4.516	-0.027	0.000729	0.004				
46	4.522	-0.021	0.000441	0.004				
47	4.518	-0.025	0.000625	0.004				
48	4.524	-0.019	0.000361	0.004				
49	4.536	-0.007	0.000049	0.004				
50	4.506	-0.037	0.001369	0.004				

3 Расчеты

1. Среднее арифметическое:

$$ar{f}=4.543\,\mathrm{k}\Gamma$$
ц

2. Дисперсия:

$$\sigma^2 = 0.00020; \quad \sigma = 0.01425$$

3. Погрешность среднего:

$$\sigma_f = 0.002\,\mathrm{k}\Gamma$$
ц

4. Суммарная погрешность:

$$\Delta f_{ ext{cym}} = 0.004\, ext{к} \Gamma$$
ц

5. Окончательный результат:

$$f=4.543\pm0.004$$
 к Γ ц

4 Графики

Рис. 2: График зависимости измеренной частоты от номера наблюдения

Рис. 3: Гистограмма распределения измеренных значений частоты

5 Вывод

В ходе лабораторной работы я освоил методику проведения многократных прямых измерений физической величины с использованием электронного частотомера Ч3-32. Были выполнены следующие задачи: освоена методика использования измерительного

прибора для многократного прямого измерения физической величины, выполнена статистическая обработка серии результатов наблюдений при прямых измерениях. Полученные навыки позволяют анализировать экспериментальные данные, учитывать случайные погрешности и представлять результаты измерений.

Список литературы

 $[1] \ https://github.com/st117161/Workshop1$