REPORT

Experiment 1: Optical Transmission and Operation Point

1.

1.	
$V_{\mathrm{led,DC}}\left(V ight)$	8.8
$V_{out, DC}(V)$	2.8

V_{emit} and V_{out} waveform (**DC coupling**)

輸入的直流電壓先經過 LED 的 voltage drop 後,發出紅外光的直流訊號,而後透過光電晶體將光子轉為光電流是為 I_B 。而後透過該電晶體將 Base 端電流放大從 Emitter 端出去,從而將無線的訊號可視化在示波器上。使我們能夠確定該光電晶體是確實有接收到 LED 所發出的紅外光訊號。

waveform in node "emit" and "out."

Out(AC coupling): ease to observe the peak to peak value and the shape of the waveform

在這個小題,我們將輸入的直流電壓改為有直流成分的交流電輸入,黃色的線為 $V_S - V_D$,為 emit 端子的輸出,而藍色的線為 out 在交流耦合(AC coupling)的情況下的輸出。為何要使用 Ac coupling 呢? 為了要能夠清楚的觀察到交流的小訊號,因此把直流的成分濾掉。可以觀察到這邊經由光電晶體收到的訊號與我們所輸入的訊號皆為 sine wave,證明他真的有收到正確的訊號。

Experiment 2: Gain Stage - BJT Common Emitter Configuration

$V_{B}(V)$	$V_{C}(V)$	$V_{E}(V)$	Vs,pp(V)	Vc,pp(V)	Ve,pp(V)
1.09	8.6	0.50	0.48	0.2	0.4

Vs and Vc waveform

黄色的線為 Vs 而藍色的線為 Vc

隨著 Vs 的變大,流進 BJT 的 Ic 也會隨之增加,這表示 Vcc 在經過 diode 的時候降壓會更多,使得 Vc 會較小,因此 Vs 與 Vc 是為反向的關係,與實驗結果相符。

Vs and Ve waveform

黄色的線為 Vs 而藍色的線為 Ve

隨著 Vs 的增加流出 BJT 的電流 Ie 也會隨之增加,因此由 $V_e = I_e R_4$ 可以知道 V_e 也會隨之變大,因此可以推出 Vs 與 Ve 的關係為同向,與實驗結果相符。

Experiment 3: IR Transmitter / Receiver

$V_{B}(V)$	$V_{C}(V)$	$V_{E}(V)$	Vs,pp(V)	Ve,pp(V)	Vout,pp(V)
0.97	7.03	0.32	0.48	0.4	6

Vs and Ve waveform

Dc coupling Ac coupling

這邊的 Vs 與 Ve 的關係與 EXP2 相同,可以推出 Vs 與 Ve 之間的關係為同向,與實驗做出來的波形符合。

Vs and out waveform

黄線為 Vs 而藍線為 out

這邊的推導較為複雜,我將其分為三個部分來做討論。

⟨case1⟩ Vs 到 LED:

假如 Vs 增加,BJT 流入的電流 Ic 也會隨之增加,又 LED 發出的光強度是與電流大小成正相關。

〈case2〉LED 到光電晶體:

隨著 LED 的光強度增加,光電晶體所收到的光子數量變多,意味著流入 Phototransistor 的電流 Ic 也會增加,因此 C2 電容正極的接腳的電壓會減少,因此到目前為止可以知道 Vs 與電容正極的接腳的電壓關係為反向。

〈case3〉電容到微分器:

由微分器公式:

$$V_{out} = -R_f C \frac{dv}{dt}$$

WLOG 假設 $v(t) = -AV_s = -A\sin(2\pi ft), A > 0$ (加負號是因為與 Vs 反向)

將其帶入微分器公式後可得:

$$V_{out} = (AR_f C 2\pi f) \cos(2\pi f t) = B \cos(2\pi f t + 90^\circ - 90^\circ) = B \sin(2\pi f t + 90^\circ), B > 0$$

由此可以推出 Vout 事實上是與 Vs 同向,只不過會有大約 90deg 的相位差,與實驗結果大致相符。