CSCI 357: Algorithmic Game Theory

Lecture 5: Myerson's Lemma

Shikha Singh

Announcements and Logistics

- Assignment 2 due by 11 pm today (updated time)
 - After lecture 4-5 pm in this room
- Assignment 1: feedback returned, student solutions posted on GLOW
- Assignment 3 will be a partner assignment
 - Work together on all problems and submit a joint write up
 - Please fill out https://tinyurl.com/357partner by tomorrow (Fri) noon
 - Form has a link to a google doc to help you coordinate!
 - Can also use Slack to coordinate if

HW 1 Feedback

- Common issues:
 - Not justifying answers such as why an outcome is an equilibrium
 - Differentiating definitions for fixed a_{-i} vs for all a_{-i}
 - Action profile (a_i, a_{-i}) is important to distinguish i from other's actions
- Question 3 proofs: formalizing the contradiction
 - Intuitively, the idea is simple but the game changes at each step of the algorithm
 - Formalizing requires reasoning about the changes
 - We are trying to show what is left is NE of the original game
- Look at student solutions
 - Ask questions if the feedback is not clear

HW 1 Feedback

- If only a single strategy profile s survives iterated elimination of weakly dominated strategies, then s is a PNE of the original game.
- Proof sketch: Assume that s is not a pure-strategy Nash of the game
 - There exists a player i who is not playing a best response in s, that is, $s=(s_i,s_{-i})$ and $\exists s_i'$ s.t. $u_i(s_i',s_{-i})>u_i(s_i,s_{-i})$
 - Let S^t denote the action available to players at step t
 - Since only one strategy profile survives, s_i' must have been eliminated at some time step t because it was weakly dominated by some action s'': $u_i(s_i', a_{-i}) \le u_i(s_i'', a_{-i}) \, \forall a_{-i} \in S_{-i}^t$
 - s_{-i} must be part of S_{-i}^t : because it is never eliminated
 - Similarly a_i'' must have been eliminated, and so on, $u_i(a_i', a_{-i}) \le u(a_i', a_{-i}) \le \dots \le u_i(a_i, a_{-i}) \Rightarrow \Leftarrow \blacksquare$

HW₂

• $\mathbf{Q2.}$ If S is the set of colluders then their total utility is

$$u_S(\mathbf{b}) = \begin{cases} \left(\sum_{i \in S} v_i\right) - p & \text{if any } j \in S \text{ wins the item and pays } p \\ 0 & \text{otherwise} \end{cases}$$

- Perfectly shareable item (or rather think of it as a service)
- Each bidder still needs to enter a bid (but colluders can coordinate)
- Question asks for necessary and sufficient conditions on valuations in S such that collusion gives better total u_S than honest bidding
- Break it up into case where truthful bidding would lead to win/losse
 - You may use $B = \max_{j \notin S} b_j$ (max bid outside) in your condition/analysis
- Q4c. Strategy is a mapping from information available to action

Last Time

- Analyze single item (sealed bid) auctions
- Second price (Vickrey auctions) are strategyproof (DSIC) and maximize surplus in linear time
- Ran a first price auction:
 - We will discuss the results on Monday, stay tuned!
- Meantime, think about
 - pros and cons of first-price vs second-price auction
 - downsides of sealed-bid auctions compared to ascending/ descending

Today: Single Parameter

- General characterization of strategyproof (DSIC) mechanisms in single-parameter settings
 - Valuation for whatever allocation a bidder receives can be captured by a single number

n buyer with private valuations which can be described by a **single number** v_i

Multiple items

Example: k identical goods

- \bullet Simple example of single-parameter setting: we have k copies on an item
- Feasible allocation is then $X = (x_1, ..., x_n) \subseteq \{0,1\}^n$, where $x_i = 1$ if bidder gets an copy; 0 otherwise and $\sum x_i \le k$

n buyers, each has private value v_i for a single copy of the item

Sponsored Search Model [Edelman & Varian]

- Every time someone searches a query, an auction is
 run in real time to decide: which advertisers links are
 shown, in what order, and how they are charged
- We look at a simplified but effective model to study sponsored search auction
- Items for sale are k slots for sponsored links on a page
- Bidders (advertisers) have a standing bid on a keyword that was searched on
- Slots higher up on the page are more valuable than low
 - Users more likely to click on them

Sponsored Search Model [Edelman & Varian]

- Slots higher up on the page more likely to be clicked
 - Quantified through click-through-rates (CTRs)
 - CTR α_j of a slot j is the probability of clicks it is expected to receive
 - Reasonable to assume $\alpha_1 \geq \alpha_2 \geq \ldots \geq \alpha_n$
- Simplifying assumption. CTR of a slot is independent of its occupant, that is, doesn't depend on the quality of the ad
- Assume advertisers have a private valuation v_i for each click on its link: value derived from slot j by advertiser i is $v_i \cdot \alpha_i$

Example: Sponsored Search

- A **feasible allocation** is an assignment of bidders to slots, such that each slot is assigned to at most one bidder and each bidder is assigned at most one slot, that is, $X = (x_1, x_2, ..., x_n)$
 - where $x_i = \alpha_j$, the click through of slot j if bidder i is assigned to it; otherwise $x_i = 0$ if bidder is unassigned

n buyers, each has private value of v_i "per click" they get

k slots, with different click-through rates α_j

Example: Public Project

- Single parameter settings are more general than auctions
- For example, deciding whether or not to build a public project that can be used by everyone can be modeled by the allocation $X = \{(0,...,0), (1,...,1)\}$
- Auctions are a special case of general mechanisms
- Auctions involve transfer of goods and money but this is not necessary for the results we will study

auction	mechanism
bidder	agent
bid	report
valuation	valuation

Table 3.1: Correspondence of terms in auctions and mechanisms. An auction is the special case of a mechanism that is designed for the exchange of goods and money.

Sealed-Bid Mechanism

- We will focus on sealed-bid mechanisms that
 - Collect bids/reports $\mathbf{b} = (b_1, ..., b_n)$
 - Choose a feasible allocation rule $\mathbf{x}(\mathbf{b}) \in X \subseteq \mathbb{R}^n$
 - Choose payments $\mathbf{p}(\mathbf{b}) \in \mathbb{R}^n$
- Such mechanisms are called direct-revelation mechanism
 - Mechanisms that ask agents to report their private value up front
- Quasilinear utility: $u_i(\mathbf{b}) = v_i \cdot x_i(\mathbf{b}) p_i(\mathbf{b})$ on the bid profile \mathbf{b}
- We will focus on payment rules that satisfy
 - $p_i(\mathbf{b}) \ge 0$: sellers can't pay the bidders
 - $p_i(0,\mathbf{b}_{-i}) = 0$: a zero bid leads to a zero payment

Design Approach

Our goal is to **maximize surplus** $\underset{i=1}{\operatorname{argmax}} (x_1, \dots, x_n) \in X$ $\sum_{i=1}^n v_i x_i$

- Challenge: jointly design two pieces: who gets what, and how much do they pay
 - Not enough to figure out who wins, if don't charge them the right amount
- Usually, the recipe we will follow:
 - Step 1. Assume truthful bids, and decide how to allocate so as to maximize surplus (in polynomial time)
 - **Step 2.** Using the allocation in step 1, decide how to charge payments so as that the mechanism is strategyproof (DSIC)

k identical goods: Allocation

- Collect sealed bids
- ullet Who should we give the k items to maximize surplus (assuming truthful bids)
 - Top k bidders
- Question. What should we charge them so that truth telling is dominant strategy?

n buyers, each has private value v_i for a single copy of the item

Sponsored Search: Allocation

How do we do we assign slots to maximize $\sum_{i=1}^{n} b_i x_i$?

- Greedy allocation is optimal (can be showed by an exchange argument)
- Recall that CTR rates $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_k$
- Sort and relabel bids $b_1 \ge b_2 \ge \cdots \ge b_n$
- Assign jth highest bidder to jth highest slot
- Can we create a payment rule (an analog of second-price rule) that makes the greedy allocation incentive compatible?
 - What is the analog of the second-price auction here?

Towards a General Characterization

- Question. Can any allocation rule be paired with a payment rule such that the mechanism is strategyproof (truthtelling is a dominant strategy)?
 - When is this possible and how should we design the payment rule?
- Myerson's lemma gives a **general characterization** of allocation rules that can be turned into a truthful (DSIC) mechanism
- And tells us exactly how to design payment rules to achieve that

Myerson's Lemma: Informal

- In a fixed-parameter setting,
 - an allocation rule x can be made dominant-strategy incentive compatible if and only if x is monotone (non decreasing), and
 - if x is monotone, there is a unique payment rule p such that (x, p) is DSIC.
- Question of whether there exists a payment that makes an allocation DSIC (a difficult to answer question) reduced to a question of whether a rule is "monotone": a computation/operational question

Monotone Allocation Rule

• Definition (Monotone allocation rule).

An allocation rule $\mathbf{x} = (x_1, ..., x_n)$ for a single-parameter domain is monotone-non-decreasing if for every bidder i and bids \mathbf{b}_{-i} of other bidders, the allocation $x_i(z, \mathbf{b}_{-i})$ to i is non-decreasing in its bid z.

- In any single-item auction that allocates the item to the highest bidder is monotone: if you're the winner and you raise your bid (keeping other bids constant), you continue to win
- Is allocating the item to second-highest bidder monotone?

Myerson's Lemma

- Fix an single-parameter domain. We state the result for the continuous case.
- (a) An allocation rule \mathbf{x} can be made dominant-strategy incentive compatible if and only if \mathbf{x} is monotone (non decreasing).
- (b) If \mathbf{x} is monotone, there is a unique payment rule \mathbf{p} such that (\mathbf{x}, \mathbf{p}) is DSIC. This payment rule is given by the following expression for all i:

$$p_i(z, \mathbf{b}_{-\mathbf{i}}) = z \cdot x_i(z, \mathbf{b}_{-\mathbf{i}}) - \int_0^z x_i(z, \mathbf{b}_{-\mathbf{i}}) \ dz$$

where player i bids z. Keeping \mathbf{b}_{-i} fixed, we can simplify:

$$p_i(z) = z \cdot x_i(z) - \int_0^z x_i(z) dz$$

Assuming that $p_i(0) = 0$.

Myerson's Lemma

- Fix an single-parameter domain. We state the result for the discrete case.
- (a) An allocation rule \mathbf{x} can be made dominant-strategy incentive compatible if and only if \mathbf{x} is monotone (non decreasing).
- (b) If \mathbf{x} is monotone, there is a unique payment rule \mathbf{p} such that (\mathbf{x}, \mathbf{p}) is DSIC. This payment rule for all i:
- If there are ℓ points at which the allocation "jumps" before bid z, the payment at bid z

$$p_i(z) = \sum_{j=1}^{\ell} z_j \cdot [\text{jump in } x_i \text{ at } z_j]$$

Single-Item Auction

- Let's apply Myerson's lemma to a single item auction that allocates the item to highest bidder
- This allocation rule is monotone: in fact a 0/1 monotone curve
- Fixing \mathbf{b}_{-i} , we can plot bidder i allocation wrt to bid:

Single-Item Auction

- If z < B: payment is 0
- If $z \geq B$: payment is given by shaded region, that is, B
- We have recreated the Vickrey auction from Myerson's lemma
- Moreover, this payment scheme is the only way to make the allocation rule (giving to highest bidder) truthful!

Any 0/1 Allocation Mechanism

- In a single-parameter environment, let X be any 0/1 feasible allocation (each player either wins $x_i=0$ or loses $x_i=1$)
 - Example: auctioning k units of the same item to n bidders
- In such auctions, what should the winners pay?

Any 0/1 Allocation Mechanism

- In a single-parameter environment, let X be any 0/1 feasible allocation (each player either wins $x_i=0$ or loses $x_i=1$)
 - ullet Example: auctioning k units of the same item to n bidders
- In such auctions, what should the winners pay?
 - $(k+1)^{st}$ highest bid

$$p(b_i, \mathbf{b}_{-i}) = \begin{cases} 0 & \text{if } x_i(b_i, \mathbf{b}_{-i}) = 0 \\ b_i^*(\mathbf{b}_{-i}) & \text{if } x_i(b_i, \mathbf{b}_{-i}) = 1 \end{cases}$$

Sponsored-Search Auctions

- Sort bids $b_1 \ge b_2 \ge \ldots \ge b_n$ (reorder bidders in this order)
- Assign slot 1 to bidder 1, slot 2 to bidder 2, etc.
- That is, CTR $lpha_i$ of slot j gets assigned to bidder j
- What does the graph of such an allocation rule look like?
 - For intuition fix b_{-i} and think of yourself as bidder 1 slowing raising your value from 0

- If you get no slot, you pay zero
- If you get last slot, you pay the "critical" bid that you beat out to get the slot (the bid of the person just below you in sorted order)
- If you get a lower slot j better than k, what do you pay?
 - **Exercise:** come with the expression for the payment p_i of bidder who wins slot j using Myerson's rule?
- We will come back to this!

Myerson's Lemma: Proof

- Part 1: An allocation x rule can be made DSIC only if x is monotone
- Part 2: A mechanism (x, p), where is x is monotone, is DSIC only if p is given by the expression in Myerson's lemma
- Part 3: Finally, we show that if the allocation x is monotone and the payment rule p is as given by the expression in the lemma then, (x, p) is DSIC
- **Recall DSIC condition**: for every agent i, every possible private valuation v_i , every set of bids \mathbf{b}_{-i} by the other agents, i's utility is maximized by bidding truthfully
- Fix an arbitrary player i and bid profile of others \mathbf{b}_{-i}
- Let x(z) and p(z) be shorthand for i's allocation $x_i(z, \mathbf{b}_{-i})$ & payment $p_i(z, \mathbf{b}_{-i})$
- Throughout the proof, we will vary the bid z and see how it changes the allocation

- Part 1. An allocation rule \mathbf{x} can be made dominant-strategy incentive compatible only if \mathbf{x} is monotone non-decreasing
- If player i (with value v) deviates and bids as if she has value z, then her utility is $v \cdot x(z) p(z)$
 - Notice: no control over your value v
- For truth telling to be a (weakly) dominant strategy for all values, must be that
 - $v \cdot x(v) p(v) \ge v \cdot x(v^{\dagger}) p(v^{\dagger})$ for all v, v^{\dagger}
- We consider two possible values z_1, z_2 with $z_1 < z_2$
 - Case 1 (Underbidding): $v=z_2$, $v^{\dagger}=z_1$
 - Case 2 (Overbidding): $v=z_1$, $v^{\dagger}=z_2$

• In case (a), where $v=z_2$ and player underbids z_1

$$z_2 \cdot x(z_2) - p(z_2) \ge z_2 \cdot x(z_1) - p(z_1)$$
 — (Ineq 1)

• In case (b), where $v=z_1$ and player overbids z_2

$$z_1 \cdot x(z_1) - p(z_1) \ge z_1 \cdot x(z_2) - p(z_2)$$
 — (Ineq 2)

- Adding both: $z_2 \cdot x(z_2) + z_1 \cdot x(z_1) \ge z_2 \cdot x(z_1) + z_1 \cdot x(z_2)$
- Rearranging: $(z_2 z_1) \cdot (x(z_2) x(z_1)) \ge 0$
 - Does this imply something about the allocation rule x?
- Since $z_2 > z_1$, this only holds if $x(z_2) \ge x(z_1)$: thus \mathbf{x} must be monotone non-decreasing \blacksquare (Part 1)

• Part 2. A mechanism **x**, **p**, where **x** is monotone can be made DSIC if and only if the payment rule **p** satisfies:

$$p(z) = z \cdot x(z) - \int_0^z x(z)dz$$

• We reuse the inequalities from part 2 of the proof:

$$z_2 \cdot x(z_2) - p(z_2) \ge z_2 \cdot x(z_1) - p(z_1)$$
— (Ineq 1)
 $z_1 \cdot x(z_1) - p(z_1) \ge z_1 \cdot x(z_2) - p(z_2)$ — (Ineq 2)

• We can upper and lower bound $p(z_2) - p(z_1)$ using them as

$$z_2 \cdot (x(z_2) - x(z_1)) \ge p(z_2) - p(z_1) \ge z_1 \cdot (x(z_1) - x(z_1))$$

$$z_2 \cdot (x(z_2) - x(z_1)) \ge p(z_2) - p(z_1) \ge z_1 \cdot (x(z_1) - x(z_1))$$

- Part 3. If the allocation x is monotone and the payment rule p is as given by the expression in the lemma then, (x, p) is DSIC
- Suppose Alice's value is $v=z_2$, and she **underbids** $v^\dagger=z_1$
- We will compare utilities $v \cdot x(v) p(v)$ and $v \cdot x(v^\dagger) p(v^\dagger)$

- $u(v,v)-u(v,v^{\dagger}) \ge 0$ because **x** is monotone non-decreasing
 - Since $v > v^{\dagger}$, we have $x(v) \ge x(v^{\dagger})$
- A similar argument proves the other case: where $v^{\dagger} > v$

Implications of Myerson's Lemma

- Very powerful characterization
- Our initial design dilemma: can we make some allocation rule \mathbf{x} DSIC by pairing it with an appropriate payment rule?
 - Difficult to reason about
- Myerson's lemma takes this question and turns into one that is more wieldy and operational: checking if \mathbf{x} is monotone
 - Usually not difficult to check
- If an allocation rule is monotone, the lemma says there is exactly one way to assign payments to make it DSIC
 - And gives us a formula for the payments!

- If you get no slot, you pay zero
- If you get last slot, you pay the "critical" bid that you beat out to get the slot (the bid of the person just below you in sorted order)
- If you get slot $1 \le j \le k$, what do you pay?
 - **Exercise:** come with the expression for the payment of bidder who wins slot *j* using Myerson's rule?
- We will come back to this!

- Myerson's payment rule of monotone piece-wise constant allocation
- If there are ℓ points at which the allocation "jumps" before bid z, the payment at bid z

$$p_i(z) = \sum_{j=1}^{\ell} z_j \cdot [\text{jump in } x_i \text{ at } z_j]$$

• Using Myerson's lemma, the ith highest bidder (who wins slot i) should pay:

•
$$p_i(\mathbf{b}) = \sum_{j=i}^k b_{j+1} \cdot (\alpha_j - \alpha_{j+1})$$
 where $\alpha_{k+1} = 0$

The "per click payment" of bidder i who is in slot i is $\sum_{j=i}^{\kappa} b_{j+1} \cdot \frac{\alpha_j - \alpha_{j+1}}{\alpha_i}$

- Payments have a nice interpretation:
 - If you win, you pay a suitable convex combination of lower bids!

Surplus Maximization & Externality

Suppose our allocation rule is to maximize surplus, that is,

$$\mathbf{x}(\mathbf{b}) = \operatorname{argmax}_{x_1, \dots, x_n \in X} \sum_{i=1}^n b_i x_i$$

- Means pick $x_1, ..., x_n$ such that they are feasible (in X) and they maximize the sum $\sum_i b_i x_i$ for a given bid vector \mathbf{b}
- In HW: show that this rule is monotone even for non-zero allocations
 - We can always find DSIC mechanisms for the objective of surplus maximization using Myerson's lemma
- When our goal is to allocate to maximize surplus, and we restrict ourselves to 0-1 allocations single-parameter environemnts, we can give an alternate form the Myerson's payment

Externality and Myerson's Payments

 An agents externality is the change in social surplus excluding the agent, resulting from the agent's participation in the auction

$$\operatorname{argmax}_{(x_i=1,\mathbf{x}_{-i})\in X} \sum_{j\neq i} x_j b_j$$

Maximum possible surplus when i is absent (or $x_i = 0$)

Maximum possible surplus (by other winners) when i is present (and $x_i = 1$)

Externality and Myerson's Payments

- Myerson's payment for i in 0-1 allocations:
 - critical bid $b_i^*(\mathbf{b}_{-i})$, = agent i's externality
 - An agent must pay for the surplus loss it inflicts on others
- You will prove this in HW 3

$$\operatorname{argmax}_{(x_i=0,\mathbf{x}_{-i})\in X} \sum_{j\neq i} x_j b_j \qquad \operatorname{argmax}_{(x_i=1,\mathbf{x}_{-i})\in X} \sum_{j\neq i} x_j b_j$$

Maximum surplus feasible when i is absent (or $x_i = 0$) Is this always non-negative?

$$\underset{j \neq i}{\operatorname{argmax}}_{(x_i = 1, \mathbf{x}_{-i}) \in X} \sum_{j \neq i} x_j b_j$$

Maximum surplus feasible (by others) when i is present (and $x_i = 1$)

Payment computation has been reduced to computing surplus maximization

Question. Are sponsored-search auctions in real life based on our (Myerson's) theory?

Generalized Second Price Auctions

- By "historical accident," the sponsored search auctions in real life (called generalized-second price auction or GSP) are not DSIC
- In GSP, the allocation rule is the same
 - Allocate slots to highest bidders
- Payment rule: a bidder wins slot i pays the per-click bid of the winner of slot i-1 or 0 if i=k (rather than a convex combination of lower bids)
 - Some say Google incorrectly implemented Myerson's lemma
 - Most likely reason is that the payment rule of GSP is much easier to explain to advertisers and share-holders
- Which one is better for revenue?
 - We'll explore this question next week