Mathematics Summer

Graph Theory

from Diestel.

Authors: Shaleen Baral

Contents

1. Basics	2
1.1. Graphs	
2. Matchings, Covering, Packing	
3. Connectivity	3
4. Flows	3
5. Hamilton Cycles	:

1. Basics

1.1. Graphs

Definition 1.1.1. A graph a pair G = (V, E) such that $E \subseteq [V]^2$. For clarity, we assume that $V \cap E = \emptyset$. The elements of V are the vertices of the graph G and the elements of E are its edges.

Definition 1.1.2. The *order* of a graph, written |G|, is the number of vertices of G. The number of edges of G is denotes by |G|. Graphs are *finite*, *infinite*, *countable* and so on according to their order.

Example: The *empty graph* is (\emptyset, \emptyset) , also denotes as \emptyset simply.

Example: A graph of order 0 or 1 is also known as a trivial graph.

Definition 1.1.3. A vertex v is *incident* with an edge e if $v \in e$; then e is an edge at v. The two vertices incident with an edge are its *endvertices* or *ends*, and an edge *joins* its ends.

Definition 1.1.4. An edge $\{x,y\}$ is usually written as xy (or yx). If $x \in X$ and $y \in Y$, then xy is an X-Y edge. The set of all X-Y edges in a set E is denoted by E(X,Y).

Remark: Instead of $E(\{x\}, Y)$ and $E(X, \{y\})$, we write E(x, Y) and E(X, y). The set of all the edges in E at a vertex v is denoted by E(v).

Definition 1.1.5. Two vertices x, y of G are adjacent or neighbors if xy is an edge of G. Two edges $e \neq f$ are adjacent if they have an end in common.

Example: If all the vertices of G are pairwise adjacent, then G is *complete*. A complete graph on n vertices is denoted K^n .

Definition 1.1.6. A set of vertices or edges is *independent* if no two of its elements are adjacent. Independent sets of vertices are also called *stable*.

Definition 1.1.7 . Let G=(V,E) and G'=(V',E'). A map $\varphi:V\to V'$ is a homomorphism from G to G' if it preserves the adjacency of vertices, that is, if $\{\varphi(x),\varphi(y)\}\in E'$ whenever $\{x,y\}\in E$.

Lemma 1.1.1: For every vertex x' in the image of $\varphi: G \to G'$, its inverse image $\varphi^{-1}(x')$ is an independent set of vertices in G.

Definition 1.1.1. If φ is bijective and its inverse φ^{-1} is also a homomorphism (i.e. $xy \in E \iff \varphi(x)\varphi(y) \in E'$ for all $x, y \in V$), we call φ an *isomorphism*. We also say G and G' are isomorphic as denoted by $G \simeq G'$ (or even simpler, G = G', when we only care about the *isomorphism type* of a given graph)

Definition 1.1.9 . An isomorphism from G to itself is an *automorphism* of G.

Definition 1.1.10. A class of graphs that is closed under isomorphism is called a *graph property*.

Example: Containing a triangle is a graph property.

Definition 1.1.11. A map taking graphs as arguments is called a *graph invariant* if it assigns equal values to isomorphic graphs.

Example: The number of vertices and the number of edges are graph invariants. The greatest number of pairwise adjacent vertices is also another one.

Definition 1.1.12 . We define $G \cup G' = (V \cup V', E \cup E')$ and $G \cap G' = (V \cap V', E \cap E')$. If $G \cap G' = \emptyset$ then G and G' are *disjoint*.

Definition 1.1.13. If $V' \subseteq V$ and $E' \subseteq E$, then G' is subgraph of G (and G a supergraph of G'), written $G' \subseteq G$. If $G' \subseteq G$ but $G' \neq G$ then G' is a proper subgraph of G.

Remark:

Definition 1.1.14 . If $G' \subseteq G$ and G' contains all the edges $xy \in E$ with $x, y \in V'$, then G' is an induced subgraph of G; we say that V' induces or spans G' in G.

Remark: If $U \subseteq V$ is any set of vertices, then G[U] denotes the graph on U whose edges are precisely the edges of G with both ends in U.

2. Matchings, Covering, Packing

- 3. Connectivity
- 4. Flows
- 5. Hamilton Cycles