

HOME DOWNLOAD SALES EBOOK SITE MAP

Kruskal-Wallis Test

A collection of data samples are **independent** if they come from unrelated populations and the samples do not affect each other. Using the **Kruskal-Wallis Test**, we can decide whether the population distributions are identical *without* assuming them to follow the **normal distribution**.

Example

In the built-in data set named **airquality**, the daily air quality measurements in New York, May to September 1973, are recorded. The ozone density are presented in the data frame column Ozone.

```
> head(airquality)
  Ozone Solar.R Wind Temp Month Day
1    41    190   7.4   67   5   1
2    36    118   8.0   72   5   2
.....
```

Problem

Without assuming the data to have normal distribution, test at .05 significance level if the monthly ozone density in New York has identical data distributions from May to September 1973

Solution

The null hypothesis is that the monthly ozone density are identical populations. To test the hypothesis, we apply the kruskal test function to compare the independent monthly data. The p-value turns out to be nearly zero (6.901e-06). Hence we reject the null hypothesis.

```
> kruskal.test(Ozone ~ Month, data = airquality)

Kruskal-Wallis rank sum test

data: Ozone by Month
Kruskal-Wallis chi-squared = 29.267, df = 4, p-value = 6.901e-06
```

Answer

At .05 significance level, we conclude that the monthly ozone density in New York from May to September 1973 are *nonidentical* populations.

< Mann-Whitney-Wilcoxon Test	up Kruskal-Wallis test	Simple Linear Regression >		
Tags: Elementary Statistics with R airquality		non-parametric	head	kruskal.test

Search this site:

Search

R Tutorial eBook

R Tutorials

R Tutorials
R Introduction
Elementary Statistics with R
Qualitative Data
Quantitative Data
Numerical Measures
Probability Distributions
Interval Estimation
Hypothesis Testing
Type II Error
Inference About Two
Populations
Goodness of Fit
Analysis of Variance
Non-parametric Methods
Sign Test
Wilcoxon Signed-Rank Test
Mann-Whitney-Wilcoxon Test
Kruskal-Wallis Test
Simple Linear Regression
Multiple Linear Regression
Logistic Regression

GPU Computing with R

Recent Articles

- Installing CUDA Toolkit 7.5 on Fedora 21 Linux
 September 10, 2015
- Installing CUDA Toolkit 7.5 on Ubuntu 14.04 Linux
 September 10, 2015
- Hierarchical Linear Model
 July 22, 2013
- Bayesian Classification with Gaussian Process
 January 6, 2013

Copyright © 2009 - 2016 Chi Yau All Rights Reserved Theme design by styleshout Fractal graphics by zyzstar Adaptation by Chi Yau