This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publicati n numb r:

07-063961

(43)Date of publication of application: 10.03.1995

(51)Int.CI.

G02B 6/42 G02B 7/00 H01L 33/00

(21)Application number: 05-234145

(71)Applicant:

OKI ELECTRIC IND CO LTD

(22)Date of filing:

26.08.1993

(72)Inventor:

HATTORI KAZUKI

(54) METHOD FOR ASSEMBLING OPTICAL SEMICONDUCTOR MODULE AND JIG USED FOR THE SAME

(57)Abstract:

PURPOSE: To provide a method for assembling an optical semiconductor module capable of easily aligning the centers on a lens holder part side and an optical fiber side at the time of assembling and coupling and improving optical accuracy by averting the deviation in parallelism with each other even at the time of assembling and coupling and a jig to be used for this method.

CONSTITUTION: An optical fiber 7 side and a lens holder part 4 side ar fixed to each other in the state of bringing the optical fiber 7 side into contact with the lens holder part 4 arranged in a setting hole 12 of a first block 11A which has the setting hole 12 for holding the lens holder part 4 having the optical semiconductor element atop the block and is formed as a projecting hemispherical surface 13 on its base side by using the jig 11 consisting of the block 11A described above and a second block 11B having a recessed hermispherical surface 14 receiving the projecting hemispherical surface 13 and freely rotatably holding the first block 11A.

LEGAL STATUS

[Date of request for examination]

27.08.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19) 日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平7-63961

(43) 公開日 平成7年(1995) 3月10日

(51) Int. Cl. 6

識別記号

FΙ

G02B 6/42

7/00

9317-2K B 8102-2K

H01L 33/00

審査請求 未請求 請求項の数5 FD (全6頁)

(21) 出願番号

特願平5-234145

(22) 出願日

平成5年(1993)8月26日

(71) 出願人 000000295

冲電気工業株式会社

東京都港区虎ノ門1丁目7番12号

(72) 発明者 服部 一樹

東京都港区虎ノ門1丁目7番12号 沖電気

工業株式会社内

(74) 代理人 弁理士 船橋 國則

(54) 【発明の名称】光半導体モジュールの組立方法及びこれに用いる治具

(57) 【要約】

【目的】 組立結合時にレンズホルダー部側と光ファイバー側との間の調芯が簡単に行え、かつ組立結合時にも互いの平行度がズレないようにして光学精度を向上させることができる光半導体モジュールの組立方法及びこれに用いる冶具を提供する。

【構成】 光半導体素子2を有するレンズホルダー部4を保持するセット孔12を上面に有して底面側が凸状の半球面13として形成されている第1のブロック11Aと、凸状の半球面13を受けて第1のブロック11Aを回転自在に保持した凹状の半球面14を有する第2のブロック11Bとでなる冶具11を使用し、第1のブロック11Aのセット孔12に配置されたレンズホルダー部4に光ファイバー7側を接触させた状態で光ファイバー7側とレンズホルダー部4側との間を固定するようにした。

?

【特許請求の範囲】

【請求項1】 光半導体素子を有するレンズホルダー部を光ファイバー側に取り付けてなる光半導体モジュールの組立方法において、

1

前記レンズホルダー部を保持する保持部を上面に有して 底面側が凸状の半球面として形成されている第1のブロックと、前記凸状の半球面を受けて前記第1のブロック を回転自在に保持した凹状の半球面を有する第2のブロックとでなる冶具を使用し、

前記第1のブロックの保持部に配置された前記レンズホルダー部に前記光ファイバー側を接触させた状態で前記 光ファイバー側と前記レンズホルダー部側との間を固定することを特徴とする光半導体モジュールの組立方法。

【請求項2】 前記光ファイバー側と前記レンズホルダー部側との間をスポット溶接で固定するようにした請求項1に記載の光半導体モジュールの組立方法。

【請求項3】 光半導体素子を有するレンズホルダー部を光ファイバー側に取り付けてなる光半導体モジュールの組立に使用する冶具において、

前記レンズホルダー部を保持する保持部を上面に有して 20 底面側が凸状の半球面として形成されている第1のプロックと、前記凸状の半球面を受けて前記第1のプロックを回転自在に保持した第2のプロックとを備えたことを特徴とする冶具。

【請求項4】 前記第2のブロック側には、前記凸状の半球面と前記凹状の半球面との間にエアーベアリングを形成するエアーを供給するためのエアー吹き出し口を設けた請求項3に記載の冶具。

【請求項5】 前記凸状の半球面と前記凹状の半球面と の間に複数のボールベアリングを介装した請求項3に記 30 載の冶具。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、光通信の応用分野で使用される光半導体モジュールの組立方法及びこれに用いる治具に関するものである。

[0002]

【従来の技術】図4及び図5は従来の光半導体モジュールにおける組立装置の一例を示すもので、図4はその概略断面図で、図5はその一部を破断して示す斜視図である。

【0003】図4及び図5において、半導体モジュール1は、光半導体素子2と光学レンズ3が同軸的に保持されているレンズホルダー部4を、ファイバースリーブ5及びパイプ6を介してケーブル状の光ファイバー7の一端に同軸的に取り付けた構造になっている。

【0004】そして、光半導体素子2により放出された 光が光学レンズ3にて集光され、これが光ファイバー7 内に伝送されて行くものである。

【0005】次に、この半導体モジュール1の組立につ 50 問題があった。

- いて説明する。組立に先だって、光半導体素子2と光学レンズ3を同軸的に組み込んであるレンズホルダー部4と、ファイバースリーブ5及びパイプ6が取り付けられた光ファイバー7が用意される。

【0006】また、これと同時に、治具としてレンズホルダー部固定用ブロック51が用意される。このレンズホルダー部固定用ブロック51は、中心に上下方向に貫通されたセット孔52が形成されており、上面側よりレンズホルダー部4の一端を緩く差し込んでセットできる10 状態になっている。

【0007】そして、先ず、レンズホルダー部4の一端をセット孔52に差し込んで、このレンズホルダー部4をレンズホルダー部固定用ブロック51にセットする。次に、組立装置のパイプクランプチャック60でパイプ6を保持させた状態で光ファイバー7を下降させ、パイプ6をレンズホルダー部4に接触させる。

【0008】次いで、図示せぬ微調整機構によりレンズホルダー部固定用ブロック51と共にレンズホルダー部4を水平面内でX-Y方向に移動させ、光ファイバー7とレンズホルダー部4との光学的な調芯を図る。この調芯では、レンズホルダー部4により集光された光半導体素子2の光がパイプ6で保持されたファイバースリーブ5の中心にある光ファイバー7へ最大の効率にて結合される位置が高精度に選ばれる。

【0009】また、調芯後は、この状態でパイプ6とレンズホルダー部4とが接触している部分をスポット溶接にて固定すると組立が完了する。なお、図中符号10で示す部分は、そのスポット溶接点を示している。

[0010]

40

【発明が解決しようとする課題】しかしながら、上述した従来の組立時における調芯では、例えば図4中に二点鎖線で示すパイプ6、光ファイバー7、ファイバースリーブ5のように、レンズホルダー部4に対して全体に傾いた状態で調芯が行われる場合もあり、この場合ではパイプ6とレンズホルダー部4の間に隙間 δ が生ずる。すなわち、この場合での光ファイバー7側の光軸は、符号11bに示す光軸となり、レンズホルダー部4の光軸11aとは異なっている。しかし、この場合でも光学的には理想の光学結合が得られている。

【0011】そこで、この隙間 δ が生じている状態では、レンズホルダー部4とパイプ δ との間に互いの光軸を直線的に一致させようとする反力が働き、この状態でスポット溶接を行うと、このとき既に微調整機構により調整されていた位置が、隙間 δ がゼロになる方向に直される。すると、この直されたことによって、理想的な光結合状態にあったレンズホルダー部4の光軸11aの上に光ファイバー7の光軸が直され、光学的にズレが発生することになる。このズレは許容量とされる数 μ mを大幅に越えて理想の光学結合が得られなくなる場合もあり問題があった

4

3

【0012】本発明は、上記問題点に鑑みてなされたものであり、その目的は組立結合時にレンズホルダー部側と光ファイバー側との間の調芯が簡単に行え、かつ組立結合時にも互いの平行度がズレないようにして光学精度を向上させることができる光半導体モジュールの組立方法及びこれに用いる治具を提供することにある。

[0013]

【課題を解決するための手段】この目的は、本発明にあっては、光半導体素子を有するレンズホルダー部を光ファイバー側に取り付けてなる光半導体モジュールの組立 10方法において、前記レンズホルダー部を保持する保持部を上面に有して底面側が凸状の半球面として形成されている第1のブロックと、前記凸状の半球面を受けて前記第1のブロックを回転自在に保持した凹状の半球面を有する第2のブロックとでなる冶具を使用し、前記第1のブロックの保持部に配置された前記レンズホルダー部に前記光ファイバー側を接触させた状態で前記光ファイバー側と前記レンズホルダー部側との間を固定する組立方法によれ達成される。好ましくは、前記光ファイバー側と前記レンズホルダー部側との間はスポット溶接で固定 20する。

【0014】また、この目的は、本発明にあっては、光 半導体素子を有するレンズホルダー部を光ファイバー側 に取り付けてなる光半導体モジュールの組立に使用する 冶具において、前記レンズホルダー部を保持する保持部 を上面に有して底面側が凸状の半球面として形成されて いる第1のブロックと、前記凸状の半球面を受けて前記 第1のブロックを回転自在に保持した第2のブロックと を備えた冶具を用いることにより達成される。また、前 記第2のブロック側に、前記凸状の半球面と前記凹状の 半球面との間にエアーベアリングを形成するエアーが供 給されるためのエアー吹き出し口を設けても良く、ある いは前記凸状の半球面と前記凹状の半球面との間に複数 のボールペアリングを介装しても良い。

[0015]

【作用】これによれば、第1のブロックの保持部に配置されたレンズホルダー部に光ファイバー側を接触させると、光ファイバーに対して第1のブロックと共にレンズホルダー部が自由に回動されて向きを変えることができ、この回動で光ファイバー側と前記レンズホルダー部40との間では平面合せが行われ、この状態で前記光ファイバー側と前記レンズホルダー部側との間を固定すると光学的に精度の高い組立が可能になる。

[0016]

【実施例】以下、本発明の実施例について図面を用いて 詳細に説明する。なお、本実施例では図4及び図5に示 した光半導体モジュールと同じ構造の光半導体モジュー ルを組み立てる場合を一例として説明する。したがっ て、以下説明する本実施例において、図4及び図5と同 一符号を付して説明するものは図4及び図5と同一のも 50 のを示している。

【0017】図1及び図2は本発明の一実施例としての 組立装置を示すもので、図1はその概略断面図、図2は その一部を破断して示す斜視図である。

【0018】図1及び図2において、この組立装置は、 光半導体モジュール1を冶具11を用いて組み立てている状態で示している。

【0019】さらに詳述すると、冶具11は、大きくは第1のブロック11Aと第2のブロック11Bとで構成されている。

【0020】このうち、第1のブロック11Aは、上面の略中心に光半導体モジュール1のレンズホルダー部4を保持するための保持部としてのセット孔12が下面側に向かって形成されており、このセット孔12にレンズホルダー部4の一端を緩く差し込んでセットできる状態になっている。また、第1のブロック部11Aの下面側は凸状の半球面13として形成されており、これにより第1のブロック11Aは全体として半球状に作られている。

【0021】一方、第2のブロック11Bは、上面に第1のブロック11Aの半球面13を受けて、第1のブロック11Aを回転自在に保持する凹状の半球面14を有している。また、第2のブロック11Bには、半球面14に開口されたエアー吹き出し口15がエアールーム16に通じて設けられている。なお、このエアールーム16内には、孔17を通して空気またはN,ガスが供給される。同時に、これが半球面13内に受けられている半球面14と半球面13との間にエアー吹き出し口15より微少量流され、この半球面14と半球面13との間にエアーベアリングを形成し、第1のブロック11Aが第2のブロック11Bに対して摩擦抵抗を少なくして自由に回動し易くしている。

【0022】次に、この冶具11を用いての半導体モジュール1の組立手順を説明する。組立に先だって、光半導体素子2と光学レンズ3を同軸的に保持して組み込んであるレンズホルダー部4と、ファイバースリーブ5及びパイプ6が取り付けられた光ファイバー7が用意される。

【0023】また、これと同時に、治具11が用意され、第1のブロック11Aのセット孔12にレンズホルダー部4の一端を差し込んで、このレンズホルダー部4を第1のブロック11Aにセットする。

【0024】次に、半球面14と半球面13との間にエアーを流してエアーベアリングを形成し、第1のプロック11Aが第2のブロック11Bに対して摩擦抵抗を少なくして自由に回動し易くし、この状態において組立装置のパイプクランプチャック60でパイプ6を保持して光ファイバー7を下降させ、パイプ6をレンズホルダー部4に軽く接触させる。

【0025】次いで、図示せぬ微調整機構により冶具1

5

1と共にレンズホルダー部4を水平面内でX-Y方向に移動させる。すると、半球面13と半球面14との間は自由に回動できる状態になっているので、パイプ6とレンズホルダー部4との間に傾きが存在する調整が行われたとしても、この傾き状態に直されて光ファイバー7とレンズホルダー部4との光学的な調芯が図られる。そして、この調芯で、レンズホルダー部4により集光された光半導体素子2の光がパイプ6で保持されたファイバースリーブ5の中心にある光ファイバー7へ最大の効率にて結合される位置が高精度に選ばれる。

【0026】また、調芯後は、この状態でパイプ6とレンズホルダー部4とが接触している部分をスポット溶接にて固定すると組立が完了する。この場合、半球面13と半球面14との間は自由に回動できる状態になっているので、パイプ6とレンズホルダー部4との間に傾きが存在していても、この傾きを保ったまま保持される。

【0027】なお、上記実施例では、調芯及びスポット 溶接は、半球面13と半球面14との間に供給している エアーを止めた、あるいは供給した、何れの状態であっても差し支えないものである。また、半球面13と半球 20 面14との間が最初から滑らかに形成されて摩擦抵抗が 少ない場合には、必ずしもエアーを供給してエアーベアリングを形成しなくても差し支えないものである。さらに、半球面13と半球面14との間を滑らかにして摩擦抵抗を少なくする手段としてはエアーベアリングに変えてオイルペアリングでも良く、また例えば図3に示すように半球面13と半球面14との間にボールベアリング20を介装した構造にしても差し支えないものである。

【0028】また、パイプ6とレンズホルダー部4との間をスポット溶接するときに、両接触面に例えばエポキ 30シ樹脂、シリコン樹脂を介在させ、その後自然硬化または加熱硬化させるようにしても良い。この場合では、溶接等で密接面が汚染されるのを、これらの樹脂により防止され、信頼性を向上させることができる。

[0029]

【発明の効果】以上説明したとおり、本発明によれば、第1のプロックの保持部に配置されたレンズホルダー部に光ファイバー側を接触させると、光ファイバーに対して第1のプロックと共にレンズホルダー部が自由に回動されて向きを変えることができ、この回動で光ファイバー側と前記レンズホルダー部との間では平面合せが行われ、この状態で前記光ファイバー側と前記レンズホルダー部側との間を固定すると光学的に精度の高い組立が可能になる等の効果が期待できる。

【図面の簡単な説明】

【図1】本発明の一実施例として示す組立装置の概略断面図である。

【図2】本実施例装置の一部を破断して示す斜視図である。

【図3】本発明の一変形例を示す概略断面図である。

【図4】従来の組立装置の一例を示す概略断面図であ

【図5】従来の同上装置の一部を破断して示す斜視図で 0 ある。

【符号の説明】

1 半導体モジュール	2 光半導体素子
3 光学レンズ	4 レンズホルダ
一部	
5 ファイバースリーブ	6 パイプ
7 光ファイバー	11 冶具
11A 第1のブロック	11B 第2のブ
ロック	
12 セット孔 (保持部)	13 凸状の半球
面	

15 エアー吹き

14 凹状の半球面

出し口

20 ボールベアリング

[図1] [図2]

本発明疫量の変形例

【図5】

従来装置の断面図

供来装置の斜視 図