

AUTOMATIZACIÓN Y ROBÓTICA

CURSO 2022/2023

Tema 6. Interfaces HMI. Sistemas SCADA. Comunicaciones Ethernet

Tema 6. Interfaces HMI. Sistemas SCADA. Comunicaciones Ethernet

- > Introducción
- > Interfaces HMI en la automatización.
 - > Representación de los datos.
- ➤ Sistemas SCADA.
- > Comunicaciones Ethernet.

INTRODUCCIÓN

Introducción

- Interfaz entre humano y máquina:
 - HMI: Human-Machine Interface.
 - Es el conjunto de dispositivos hardware y herramientas software que permiten a un operador interaccionar con un sistema automatizado para:
 - Transmitir órdenes.
 - Conocer el estado del sistema, y de su entorno.

- Interfaces hardware: pulsadores, interruptores, teclados, pilotos, indicadores, etc.
- Interfaces software: basadas en programas de ordenador.

Parte operativa:

Introducción

- Interfaz entre humano y máquina:
 - HMI: Human-Machine Interface.
 - Interfaces hardware avanzadas:
 - Joysticks y dispositivos 3D. Muchos incluyen realimentación háptica o de fuerza.
 - Mandos con acelerómetros.
 - Exoesqueletos.
 - Visualización con monitores y gafas 3D
 - Visualización HMD (Head-Mounted Display).

http://www.sensics.com - http://www.nvisinc.com

Monitor HD 3D de Sansug y tarjeta de video y gafas de Nvidia

PHANTOM Omni – Sensable Technologies http://www.sensable.com/

Introducción

- Interfaz entre humano y máquina:
 - HMI: Human-Machine Interface.
 - Interfaces software gráficas:
 - Interfaces 2D y 3D.
 - Realidad Virtual y Realidad Aumentada.

INTERFACES HMI EN LA AUTOMATIZACIÓN

Niveles de automatización

- Se consideran tres niveles de información:
 - ERP: Enterprise Resource Planning.
 - MES: Manufacturing Execution System.
 - Control.
- Cada nivel requiere sus interfaces:
 - Control.
 - Botoneras, indicadores, y paneles de operador.
 - Indicadores y mandos de emergencia.
 - MES.
 - Sistemas SCADA.
 - Sistemas de operación y monitorización remotas.
 - <u>ERP</u>.
 - Aplicaciones de gestión y planificación.

HMI en la automatización

- Las interfaces en entornos industriales tienen unos requerimientos específicos:
 - <u>Robustez</u>. Capacidad de aguante al entorno industrial. Muy importante en los niveles inferiores.
 - <u>Seguridad de la información</u>. Autentificación y cifrado. Muy importante sobre todo a niveles superiores y en comunicaciones.
 - <u>Escalabilidad</u>. Capacidad de ampliación o modificación.
 - <u>Tolerancia a fallos</u>. Puede ser necesario disponer de interfaces redundantes.

Pantallas HMI industriales:

- Paneles o terminales gráficos. Pantalla táctil. Múltiples interfaces (serie/Ethernet) y protocolos (servicios web).
- Controladores (PLC) o PCs industriales.

HMI en la automatización

Control remoto.

- <u>Telemetría o monitorización</u>: Vigilancia a distancia de las variables que muestras el estado de un sistema.
- <u>Teleoperación</u>: Gobernar a distancia (teleoperar) un dispositivo (teleoperado) por un ser humano (operador).
- <u>Telemanipulación</u>: Gobernar a distancia un manipulador con el que se manejarán objetos.
- <u>Telerrobótica</u>: Programación, monitorización y control de un robot a distancia.
- <u>Telepresencia</u>: Cuando el sistema de teleoperación hace que el operador que maneja un dispositivo remoto tenga la sensación de encontrarse físicamente en el entorno de ese dispositivo.

Representación de los datos

- Datos.
 - Los valores que se leen o representan en la HMI se corresponden con parámetros o variables de los dispositivos de un sistema controlado y/o monitorizado.
 - Los tipos de variables más comunes son:
 - Números enteros (Z) y reales (R).
 - Caracteres alfanuméricos.
 - Cadenas de caracteres.

Pero las CPUs y los sistemas de comunicación digitales se basan en el sistema binario, guyas valores con 0 y 1

binario, cuyos valores son 0 y 1.

SISTEMAS SCADA

- SCADA: Supervisory Control and Data Acquisition
 - Control con supervisión y adquisición de datos.
 - Herramienta software que hace de interfaz entre el nivel de control y los de producción y de gestión.

Objetivos:

- Disminuir costes de monitorización de una instalación.
- Acceso inmediato a todos los parámetros de un sistema.
- Detección de fallos y planificación del mantenimiento.
- Ergonomía: facilitar la relación entre usuario y proceso.
- Puesta en marcha rápida, y fácil aprendizaje y utilización.
- Explotación de datos para una mejor gestión.
- Flexibilidad en la modificación de parámetros.
- Arquitectura abierta para poder crecer o adaptarse.
- Conectividad del control con otros sistemas de la empresa.

Funciones.

- Adquisición de datos. Recoger y procesar la información recibida de los dispositivos del proceso.
- Monitorización. Representación de las variables del sistema en tiempo real (cumpliendo los requerimientos de tiempo).
- **Supervisión**. Permitir al operador observar las variables y tomar decisiones de mando.
- Control o mando. Permitir al operador modificar el funcionamiento del proceso mediante:
 - Cambio de las consignas de los controladores locales.
 - Operación directa sobre los accionamientos.
- Reconocimiento de alarmas y eventos, para mostrarlos al operador, de forma que pueda actuar, y para registrarlos.
- Gestión de bases de datos, en donde se registran las variables adquiridas. Se requieren bases de datos de baja latencia.
- Análisis de información. Generación de gráficos e informes.
- **Comunicación**. Intercambio de información con diversos dispositivos de campo y con otras aplicaciones.
- Programación y cálculo. Para realizar cálculos con algoritmos complejos, con mucha resolución, o con gran cantidad de datos.

- Arquitectura y equipos.
 - <u>RTU (Remote Terminal Units)</u>: equipos esclavos remotos de la planta que proporcionan y utilizan datos.
 - MTU (Master Terminal Unit): Equipo maestro central, o centro de control, desde donde se controla el proceso.
 - Red de comunicaciones: Desde una red de planta como Ethernet, hasta una conexión a través de Internet.

MTU: 1) Comunicación con el proceso.

Las aplicaciones de diseño SCADA suelen soportan múltiples protocolos de comunicación industriales.

2) Interfaz de usuario (HMI).

Normalmente basado en esquemas sinópticos de la planta. Se pueden atender terminales clientes con solo la interfaz.

- 3) Almacenamiento de datos.

 Se usa una base de datos donde almacenar información para generar gráficas o estadísticas.
- 4) Almacenamiento de archivos. Backups, configuraciones...

Módulos software.

El software de un sistema SCADA suele ser modular. Así los entornos de desarrollo permiten crear sistemas SCADA para múltiples aplicaciones, y los SCADA son fáciles de ampliar.

Dependiendo de la potencia del entorno de desarrollo se dispone de más o menos módulos. Los

típicos son:

• Configuración del entrono de trabajo (1).

Interfaz gráfica del operador (HMI) (2).

Registros e históricos (3).

- Archivado de datos.
- Tendencias: Evolución de variables.
- Alarmas y eventos.
- Comunicaciones (4).
- Generación de informes.
- Control de procesos.

History	2011	-05-11 Acknowledg	Acknowledge All		
Time Stamp	Group	Message	Value		
2011-05-11 02:10:32		Cooker Over Heat	25		
2011-05-11 02:10:17		Cooker Over Heat	25		
2011-05-11 02:09:51		Cooker Over Heat	42		
2011-05-11 02:09:36		Cooker Over Heat	56		
2011-05-11 02:09:11		Cooker Over Heat	31		
2011-05-11 02:08:32		Cooker Over Heat	31		
2011-05-11 01:50:35		Cooker Over Heat	55		
2011-05-11 01:49:22		Cooker Over Heat	55		

S	Select Communication Driver						
	Select a co	ommur	rication driver to be installed from the list below. The	-			
	Driver	ID	Description	1			
	₽,7TIZU	16	Ideo Izumi interlace driver	11			
	₽,7TKYD	41	KDYD DirectNet Driver	ш			
	37TL2FDL	6	Siemens SINEC L2 driver using AG-AG protocol	ш			
	■7TL2FMS	24	Profibus FMS protocol driver	ш			
	🖳 7TLE GO	50	IBSS32 Datafile Driver	ш			
	₹7TMELFX	82	Mitsubishi Melsec-FX Serial protocol driver	(
L	₽,7TMELSQ	79	Mitsubishi Melsec-D Serial protocol driver	1			

Ejemplos: comerciales y de acceso libre

- Ignition.
- Vijeo Citect y Vijeo Designer de Schneider Electric.
- WinCC de Siemens.
 Comerciales
- Cx-Supervisor de Omron.
- Lookout y LabView de National Instruments.
- InTouch de Wonderware.
- Pulse SCADA.
- IGSS: Interactive Graphical SCADA System (http://www.igss.com).
- IntegraXor de ECAVA (http://www.integraxor.com)

Acceso libre

COMUNICACIONES ETHERNET

- Ventajas de Ethernet
 - Ethernet se utiliza cada vez más en automatización por diferentes motivos:
 - La tecnología Ethernet es sencilla y bien conocida.
 - Muchos equipos comunes disponen de conexión Ethernet.
 - Existe una amplia infraestructura fuera del entorno industrial.
 - Facilidad de conexión con otras redes y con Internet.
 - No se requiere licencias especiales para su puesta en marcha.

- Ventajas de Ethernet
 - Sobre Ethernet se puede usar los protocolos TCP/IP para interconectar redes y unificar el direccionamiento.
 - Sobre TCP/IP se pueden usar protocolos estándar:
 - Herramientas básicas de ICMP, como el "ping".
 - Administración a través de servicios Web, FTP o SMTP.
 - Ethernet se puede enviar fácilmente sobre protocolos de otras redes como 802.11, enlaces WAN...
 - Gran ancho de banda.

Real-Time sobre Ethernet:

- Para comunicaciones de tiempo real y deterministas se requieren protocolos adicionales a Ethernet: RTP (Real Time Protocol) sobre UDP, conexiones TCP, u otros específicos.
- Incorporar los protocolos TCP/IP en dispositivos simples es complicado porque se requieren bastantes recursos.
- Las tramas de Ethernet tienen un tamaño mínimo bastante grande, y la eficiencia es baja si usa para mensajes pequeños:

- NRT/RT Ethernet:
 - Tiempo de ciclo > 100 ms.
 - Basado en TCP/IP sobre Ethernet con CSMA/CD.
 - Para aplicaciones poco exigentes.
 - Los datos de E/S viajan directamente sobre tramas IEEE 802.3, usando VLAN para definir 7 niveles de prioridad. El trafico RT tiene mas prioridad que TCP/IP.
 - También puede usarse un protocolo de tiempo real sobre UDP,
 lo que permite la interconexión de redes y destinos multicast.

Hay muchas, pero destacan los siguientes:

Nombre	Protocolos
Modbus-TCP	TCP/IP
PROFINET IO	RTP sobre UDP/IP
Ethernet/IP (EIP)	TCP, UDP, CIP
HSE: Foundation Fieldbus High Speed Ethernet	TCP/IP
Ethernet Powerlink	TCP/IP
EtherCAT	EtherCAT, EtherCAT/UDP
FL-Net (OPCN-2)	UDP/IP

MODBUS

Modbus

- Es un protocolo estándar sencillo y versátil.
 - No es más eficiente y rápido, pero está muy extendido y es soportado por muchos equipos.
- Fue ideado en 1979 para los PLCs Modicon
 - Hoy en día la marca Modicon pertenece de Schneider Electric.
- Está especificado por la MODBUS Organization:
 - http://www.modbus.org
- Las especificaciones son de acceso libre y gratuito.

Modbus

- Define una arquitectura de tres niveles.
 - MODBUS + MODBUS/serie + Conexión serie.
 - MODBUS + MOSBUS/TCP + [TCP/IP + LAN].
- Comunicación clienteservidor:
 - Cliente = maestro.
 - Servidor = esclavo.

- Define un protocolo maestro-esclavo muy sencillo.
- Modo unicast:
 - El maestro envía una petición (request) a un esclavo concreto.
 - El esclavo contesta con una respuesta (response).
 - La petición puede ser para:
 - Enviar valores al esclavo.
 - Pedir valores al esclavo.

Maestro

Modo broadcast:

 El maestro envía una petición (request) a todos los esclavos conectados al bus.

 Los esclavos aceptan la petición y la procesan, pero no responden nada.

 La petición sirve para enviar los mismos valores a todos los esclavos.

Maestro

- Todas las peticiones que envía el maestro llevan asociado un código de función que indica al esclavo la operación que debe realizar.
- Los códigos de función soportados por un dispositivo dependen de las funciones que realiza.

Códigos de función más comunes de MODBUS					
Código decimal	Código hexadecimal	Función	Tipo de datos		
1	16#01	Leer estado de marcas y salidas digitales (bobinas)	Bit		
2	16#02	Leer estado de entradas digitales	Bit		
3	16#03	Leer registros	Entero 16 bits		
4	16#04	Leer entradas analógicas	Entero 16 bits		
5	16#05	Forzar valor de una salida digital (bobina)	Bit		
6	16#06	Establecer valor de un registro	Entero 16 bits		
15	16#0F	Forzar múltiples marcas o salidas digitales (bobinas)	Bit		
16	16#10	Establecer múltiples registros	Entero 16 bits		

- Cuando el maestro envía una petición solicitando una función al esclavo, tiene que indicar qué valor o valores del esclavo se ven afectados.
 - Una función puede afectar a más de un valor.
- Los valores del esclavo pueden ser estos objetos:
 - Bobinas (coils). Bits de salida o de marcas en memoria.
 - Entradas digitales (discrete input). Valores de bit de las entradas.
 - Entradas analógicas (input registers). Valores enteros de los ADC.
 - Registros (holding registers). Valores enteros en memoria.

MODBUS – Objetos de esclavo

• En función del dispositivo esclavo, los objetos de MODBUS se corresponden (o "mapean") con variables de memoria o E/S.

MODBUS – Objetos de esclavo

 El fabricante debe proporcionar la tabla de objetos que son accesibles con MODBUS, indicando sus direcciones.

Tabla de correspondencias de direcciones de objetos de un dispositivo MODBUS						
Función	Dirección Modbus	Dirección en dispositivo	Dirección IEC61131	Tipo de registro	Tipo de datos	Tipo de acceso
16#01, 16#05, 16#0F	0 a 9.999	1 a 10.000	%M0, %M1	Coils: Salidas o registros de aplicación digitales	Bits	Lectura y escritura
16#02	0 a 9.999	10.001 a 20.000	%10, %11	Discrete input: Entradas digitales	Bits	Lectura
16#04	0 a 9.999	30.001 a 40.000	%IW0, %IW1	Input Registers: Entradas analógicas	Entero 16 bits	Lectura
16#03, 16#06, 16#10	0 a 9.999	40.001 a 50.000	%MW0, %MW1	Holding Registers: Registro general de la aplicación	Entero 16 bits	Lectura y escritura

MODBUS – PDUs de aplicación

- Las PDUs (*Protocolo Data Unit*) son los bloques de datos que intercambian el maestro y los esclavos para realizar las peticiones y respuestas.
- MODBUS define PDUs para los niveles aplicación y enlace:

MODBUS/Serie - Nivel físico

 MODBUS serie está ideado para funcionar sobre un bus multipunto y semi-dúplex, como el EIA RS-485.

5.5. MODBUS

5.5. MODBUS

MODBUS/Serie - Nivel físico

 Los conectores más utilizados para el cableado de RS-485 con MODBUS son:

DB9.

• RJ-45.

Figure 24: 2W- MODBUS on RJ45 connector (required pin-out)

Female (Front view)

Device side - female connector

Male (Front view)

	143					
Silver I		PIN	Función	The Modbus Organizat		
	BRUN BERKEIU	1	RS-232 RD	http://ww	w.modbus	s.org
9	MAC Address:	2	RS-232 TD	Pin on RJ45	Pin on D9-shell	Leve requir
	7087	3	RS-232 RTS	3	3	optio
		4	RS-485 D1		_	
9	Ethernet	5	RS-485 D0	4	5	requ
		6	RS-232 CTS	5	9	requ
1	4-	7	5V 190mA	7	2	recomn
	Modbus	8	GND	8	1	requ

Schneider M340

Pin on RJ45	Pin on D9-shell	Level of requirement	IDv Circuit	ITr Circuit	EIA/TIA- 485 name	Description for IDv
3	3	optional	PMC	-	-	Port Mode Control
4	5	required	D1	D1	B/B'	Transceiver terminal 1, V1 Voltage (V1 > V0 for binary 1 [OFF] state)
5	9	required	D0	D0	A/A'	Transceiver terminal 0, V0 Voltage (V0 > V1 for binary 0 [ON] state)
7	2	recommended	VP	-	-	Positive 524 V D.C. Power Supply
8	1	required	Common	Common	C/C'	Signal and Power Supply Common

MODBUS/Serie - Limitaciones

- En un bus serie solo hay un maestro activo en un momento dado.
 - Un equipo se configura y funciona como maestro o esclavo, pero no como ambos a la vez.
 - Algunos equipos pueden conmutar entre maestro y esclavo.
 - Si se necesita conmutar un maestro a esclavo, se requiere tener reservada una dirección de esclavo para él.
- En un bus serie sólo puede haber una operación simultánea de lectura o escritura pendiente.
- Todos los equipos del bus deben utilizar los mismos parámetros de configuración serie (velocidad, paridad, bits de parada...).
 - Los parámetros se configuran al diseñar el proyecto en el entorno de programación, y no se cambian durante la ejecución.

MODBUS/TCP - Características

- Con MODBUS/TCP se usa un modelo cliente-servidor:
 - Los esclavos de MODBUS son servidores de TCP (puerto 502).
 - Los maestros de MODBUS son clientes de TCP (puerto > 1024).
- El servidor de una pasarela MODBUS/TCP puede atender varios dispositivos esclavos de MODBUS/Serie.

AUTOMATIZACIÓN Y ROBÓTICA

CURSO 2022/2023

Tema 6. Interfaces HMI. Sistemas SCADA. Comunicaciones Ethernet