Machine Learning / Tree based methods

Decision Trees

Regression

Variance

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{n} (x_i - c)^2$$

 $c=\bar{x}$ produce the lowest value of σ^2

Domain partitioning

$$f(x_1, x_2) = y$$

Step 1, find *j* and *s* that Minimize:

$$\sum_{i:x_i \in R_1(j,s)} (y_i - \bar{y}_{R_1})^2 + \sum_{i:x_i \in R_2(j,s)} (y_i - \bar{y}_{R_2})^2$$

j = 1, ..., ns = cuttoff

Decision Trees

Classification

Proportions

$$p_{mk} \coloneqq \frac{1}{N_m} \sum_{x_i \in R_m} \mathbb{I}(y_i = k)$$

$$N = 7$$

$$p_{m1} = \frac{1}{7}$$

$$p_{m2} = \frac{2}{7}$$

$$p_{m3} = \frac{4}{7}$$

Misclassification measure

$$H(X_m) = 1 - \max_k(p_{mk})$$

$$\frac{2}{3} + \frac{1}{4} = \frac{11}{12}$$

Misclassification measure

$$H(X_m) = 1 - \max_k(p_{mk})$$

$$S_2$$

$$\frac{2}{3} + \frac{1}{4} = \frac{11}{12}$$

$$\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$$

Misclassification measure

$$H(X_m) = 1 - \max_k(p_{mk})$$

$$\frac{2}{3} + \frac{1}{4} = \frac{11}{12}$$

$$\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$$

Impurity functions. Gini Index

$$H(X_m) = \sum_k p_{mk} (1 - p_{mk})$$

- Find the maximum of y = x(1 x)
- Plot y

If only 2 classes, consider the following 2 cases

Impurity functions

$$p_{mk} \coloneqq \frac{1}{N} \sum_{x_i \in R_m} \mathbb{I}(y_i = k)$$

$$H(X_m) = 1 - \max_k(p_{mk})$$

Misclassification

$$H(X_m) = \sum_{k} p_{mk} (1 - p_{mk})$$
 Gini Index

$$H(X_m) = -\sum_{l} p_{mk} \log(p_{mk})$$
 Entropy

Iris dataset

```
petal length (cm) <= 2.45
               gini = 0.667
              samples = 150
           value = [50, 50, 50]
              class = setosa
                            False
         True
                      petal width (cm) <= 1.75
   gini = 0.0
                              gini = 0.5
 samples = 50
                           samples = 100
value = [50, 0, 0]
                         value = [0, 50, 50]
 class = setosa
                          class = versicolor
                 gini = 0.168
                                        gini = 0.043
                samples = 54
                                       samples = 46
               value = [0, 49, 5]
                                     value = [0, 1, 45]
              class = versicolor
                                      class = virginica
```


Homework assigment

Train and fine-tune a Decision Tree for the moons dataset.

- a. Generate a moons dataset using make_moons (n_samples=10000, noise=0.4).
- b. Split it into a training set and a test set using train_test_split().
- c. Use grid search with cross-validation (with the help of the GridSearchCV class) to find good hyperparameter values for a DecisionTreeClassifier.

Hint: try various values for max leaf nodes.

d. Train it on the full training set using these hyperparameters, and measure your model's performance on the test set. You should get roughly 85% to 87% accuracy.

Decision Trees advantages and disadvantages

- Are simple to understand and interpret
- Have value even with little hard data
- A decision tree does not require normalization or scaling of data
- Help determine worst, best and expected values for different scenarios

- High variance
- They are often relatively inaccurate
- Rectangular domains

Diverse

Ensemble methods

$$\hat{f}_{avg}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^b(x)$$

Theoretical origin

Variance of Sample mean:

Let $Z_1, ..., Z_n$ be n random variables i.i.d., each with variance σ^2 . The variance of the mean \bar{Z} of the observations is given by σ^2/n .

Classification (Voting)

Hard (majority) voting, i.e., the mode

Soft voting (argmax of probabilities)

	Class A	Class B
Classifier 1	99%	1%
Classifier 2	49%	51%
Classifier 3	49%	51%
Ensemble	(99 + 49 + 49) / 3 =65.7%	

Bagging (Bootstrap Aggregation. Parallel-wise model fitting)

Bootstraping. Sampling instances with replacement

Out Of Bag Error (oob 63+37).

Predictor 0	Predictor 1	Predictor 2	Predictor 3	Predictor 4	Label

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html

Random Forests

Multiple Decision Trees, each grown by sampling predictor variables

Predictor 0	Predictor 1	Predictor 2	Predictor 3	Predictor 4	Label

Boosting Sequentially

Aurelien, 2019. Page 207

Video Trevor Hastie - Gradient Boosting Machine Learning

Random

Forest

https://github.com/GeostatsGuy/PythonNumericalDemos/blob/master/SubsurfaceDataAnalytics_PolygonalRegression.ipynb

Accuracy assessment (Confusion Matrix, Precision

$$F_1$$
 score $=\frac{2}{\frac{1}{P}+\frac{1}{R}}$

Accuracy assessment (Confusion Matrix, Precision

>>> from sklearn.metrics import precision_score, recall_score
>>> precision_score(y_train_5, y_train_pred) # == 4096 / (4096 + 1522)
0.7290850836596654
>>> recall_score(y_train_5, y_train_pred) # == 4096 / (4096 + 1325)
0.7555801512636044

$$F_1$$
 score $=\frac{2}{\frac{1}{P}+\frac{1}{R}}$

of All digits

Homework assigment

Train and fine-tune a SVM, Random Forest, ANN, Extra-Trees, AdaBoost for the moons dataset.

a. Generate a moons dataset using

```
make_moons(n_samples=10000, noise=0.4).
```

b. Split it into a training set and a test set using

```
train_test_split().
```

c. Measure your model's performance on the test set.