Graphical Models

Adrian Barbu

What is a Graphical Model?

Example: Medical Diagnosis

- Observed data:
 - Symptoms
 - Medical tests
 - Circumstances
- Unknowns:
 - Cause (disease)

Visit to Asia X_1

Smoking X_2

Tuberculosis X_3

Lung Cancer $|X_4|$

Tuberculosis or Cancer $|X_6|$

Bronchitis 2

XRay Result X_7

Dyspnea X_8

Probabilities

- Want to find most probable disease given the observations
- Can represent whole process by a joint probability

$$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$$

- 28 states
- Not all are needed
- No medical insight
- Need too much training data
- Encode domain knowledge into relationships between variables
 - Need less training data
- Inference
 - Find most probable unknown states given observations

Dependency Graph

Probabilistic Graphical Models

- Representation of the dependencies using a graph
 - Nodes= random variables
 - Edges= dependencies among variables
 - Edge absence= conditional independence
 - Directed: cause → effect
 - Undirected: bidirectional relationship

Joint probability factors:

 $P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$ $= P(X_1)P(X_2)P(X_3|X_1)P(X_4|X_2)P(X_5|X_2)$ $\cdot P(X_6|X_3, X_4)P(X_7|X_6)P(X_8|X_5, X_6)$

Advantages of PGM

- Why is this good?
 - Each probability involves fewer variables
 - Need fewer samples to train
 - Not so prone to overfitting
 - Total number of bins is smaller
 - Before were 2⁸=256 bins
 - Now 2+2+4+4+4+8+4+8=36
 - 8 times fewer bins
 - Easier to find the best solution
 - Explore the graph structure
 - Faster than exhaustive search of all possibilities
 - Incorporation of domain knowledge
 - Avoids impossible solutions

Two types of PGM

- Directed edges
 - Model causality relationships
 - Bayesian Network or Directed Graphical Model
 - DAG=Directed Acyclic Graph
- Undirected edges
 - Model symmetric correlations between variables
 - Markov Random Field or Undirected Graphical Model

Bayesian Network:

Factorization Theorem:

Given a DAG, the most general form of the probability distribution that is consistent with the graph factors according to "node given its parents":

$$P(\mathbf{X}) = \prod_{i=1}^{d} P(X_i | \mathbf{X}_{\pi_i})$$

- $lackbox{\textbf{X}}_{\pi_i}$ is the set of parents of X_i
- d = number of nodes (variables) in the graph

Bayesian Network Properties

- Markov Blanket
 - Parents
 - Children
 - Co-parents (parents of the children)
- Conditional Independence
 - Any node is conditional independent of any other node not in its Markov Blanket
- Joint distribution from:
 - Local conditional distributions
 - DAG structure

Conditional Independence

Common parent

- Knowing C decouples A and B
- A and B are conditionally independent given C

Chain

Knowing B decouples A and C

- A and C are conditionally independent given B
- Common child
 - A and B are independent
 - Knowing C couples them together
 - A or B can explain-away the observation C

Explain Away Example

- Graph nodes:
 - B=battery, F=fuel, G=gauge
- B and F are independent

$$P(B = 1) = 0.9, P(F = 1) = 0.9$$

- Unreliable fuel gauge: P(G = 1|B = 1, F = 1) = 0.8 P(G = 1|B = 1, F = 0) = 0.2 P(G = 1|B = 0, F = 1) = 0.2P(G = 1|B = 0, F = 0) = 0.1
- Suppose we observe G = 0
- Want P(F = 0|G = 0)

Explain Away Example

Bayes Rule:

$$P(F = 0|G = 0) = \frac{P(G = 0|F = 0)P(F = 0)}{P(G = 0)}$$

We compute

$$P(G = 0) = \sum_{B} \sum_{F} P(G = 0|B, F)P(B)P(F) = 0.315$$

$$P(G = 0|F = 0) = \sum_{B} P(G = 0|B, F = 0)p(B) = 0.81$$

So we get

$$P(F = 0|G = 0) = \frac{0.81 \cdot 0.1}{0.315} = 0.257$$

If we observe that B = 0, we get

$$P(F = 0|G = 0, B = 0) = \frac{P(G = 0|B = 0, F = 0)P(F = 0)}{\sum_{F} P(G = 0|B = 0, F)P(F)} = 0.111$$

So B = 0 explained away the G = 0

D-separation

Problem

 Find whether some groups of nodes are conditionally independent

Reason

- Can compute each independent group separately
- Faster inference

- X is d-separated from Y given Z if one cannot send a "Bayes ball" from X to Y
 - Z can be known (=dark) or not
 - Notation: $dsep_G(X, Y|Z)$

D-separation and Independence

 Define all independence properties obtained from the dseparation

$$I(G) = \{X \perp \!\!\!\perp Y | Z : \mathsf{dsep}_G(X, Y | Z)\}$$

$$I(G) = \{ X_1 \perp \!\!\!\perp X_2$$
 $X_2 \perp \!\!\!\perp X_4$
 $X_2 \perp \!\!\!\perp X_4 | X_1$
 $X_2 \perp \!\!\!\perp X_4 | \{X_1, X_3\}$
 $X_3 \perp \!\!\!\perp X_4 | X_1$
 $X_4 \perp \!\!\!\perp \{X_2, X_3\} | X_1 \}$

Equivalence Theorem

 A distribution satisfies I(G) if and only if it factors according to the graph G.

Conditional Probability Tables (CPT)

A ⁰	0.3
A ¹	0.7

B ⁰	0.4
B ¹	0.6

	A ⁰ B ⁰	A ⁰ B ¹	A ¹ B ⁰	A ¹ B ¹
C ₀	0.4	1	0.9	0.8
C ¹	0.6	0	0.1	0.2

	C ₀	C ¹
D^0	0.3	0.5
D ¹	0.7	0.5

P(A, B, C, D) = P(A)P(B)P(C|A, B)P(D|C)

Conditional Probability Density Functions (CPD)

P(A, B, C, D) = P(A)P(B)P(C|A, B)P(D|C)

Conditionally Independent Observations

Variables in plate are replicated conditionally independent given model parameters

Example: Gaussian Model

- Generative model (Naïve Bayes)
 - Bayes Rule

$$P(\mu, \sigma | y_1, ..., y_N) = \frac{P(y_1, ..., y_N | \mu, \sigma) P(\mu, \sigma)}{P(y_1, ..., y_N)}$$

- i.i.d assumption
- Model parameters: μ, σ
- Likelihood = P(Observations|Parameters):

$$P(y_1, ..., y_N | \mu, \sigma) = \prod_{i=1}^{N} P(y_i | \mu, \sigma) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} e^{-(y_i - \mu)^2 / 2\sigma^2}$$

Example: Gaussian Model

- Prior on model parameters
 - Assume parameters independent

$$P(\mu, \sigma) = P(\mu | \alpha) P(\sigma | \beta)$$

- Possible priors $P(\mu|\alpha)$
 - Parametric:
 - Gaussian
 - Student t distribution
 - ...
 - Non-parametric
 - Histogram
 - Parzen windows

Markov Random Fields

Undirected Graph:

 A node is conditionally independent of every other node given its direct neighbors

Probability Distribution

- A set of cliques = complete subgraphs
- A set of potential functions on the cliques

Pros and cons:

- Easy to compute the probability
- Hard to obtain samples from the probability
- Hard to find max probability configuration

Conditional Independence

G undirected graph

- B separates A and C if every path from A to C passes through a node in B $\operatorname{sep}_G(A,C|B)$
- A probability distribution satisfies the *Global Markov Property* if for any disjoint *A*, *B*, *C*, such that *B* separates *A* and *C* then *A* is independent of *C* given *B*:

$$I(G) = \{A \perp \!\!\!\perp C | B : \operatorname{sep}_G(A, C | B)\}$$

Cliques

- Clique:
 - A complete subgraph G'=(V',E') of G=(V,E)
 - Complete means fully connected
- Maximal clique
 - A clique such that there is no other clique that includes it
- Example:
 - Max-cliques:
 - {A,B,C}, {B,C,D}
 - Other cliques:
 - {A,B}, {A,C}, {B,C}
 - {B,D}, {C,D}
 - {A}, {B}, {C}, {D}

Markov Random Field Probability

Given:

- An undirected graph G
- Define a set C of cliques of G
- Define a set of potential functions $\psi_c(\mathbf{x}_c)$, $\forall c \in C$
 - Encourage certain configurations

MRF probability:

$$P(\mathbf{x}) = P(x_1, ..., x_N) = \frac{1}{Z} \prod_{c \in C} \psi_c(\mathbf{x}_c)$$

where Z is the partition function

$$Z = \sum_{\mathbf{x}} \prod_{c \in C} \psi_c(\mathbf{x}_c)$$

Example with Max-cliques

C=all max-cliques

$$P(x_1, ..., x_4) = \frac{1}{Z} \psi_1(x_1, x_2, x_3) \psi_2(x_2, x_3, x_4)$$

$$Z = \sum_{x_1, x_2, x_3, x_4} \psi_1(x_1 x_2 x_3) \psi_2(x_2 x_3 x_4)$$

- For discrete $x_1, ..., x_4$, we can represent $P(x_1, ..., x_4)$ with two 3D tables (histograms) instead of one 4D table.
 - Avoid overfitting

Example with Sub-cliques

C=all 2D cliques

$$P(x_1, ..., x_4) = \frac{1}{Z} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3)$$
$$\cdot \psi_{23}(x_2, x_3) \psi_{24}(x_2, x_4) \psi_{34}(x_3, x_4)$$

$$Z = \sum_{x_1, x_2, x_3, x_4} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \psi_{23}(x_2, x_3) \psi_{24}(x_2, x_4) \psi_{34}(x_3, x_4)$$

- For discrete $x_1, ..., x_4$, we can represent $P(x_1, ..., x_4)$ with five 2D tables instead of one 4D table.
 - Avoid overfitting
 - But it might be a weaker model

Clique Potentials

Clique potentials are not probabilities

$$P(A, B, C) = P(A)P(B|A)P(C|B)$$

$$= P(B)P(A|B)P(C|B)$$

$$= P(C)P(B|C)P(A|B)$$

$$= P(A, B)P(C|B)$$

- We cannot have only marginal probabilities, e.g. P(A)
- We cannot have only conditional probabilities, e.g. P(B|A)
- Probability = all clique potentials + partition function Z

Exponential Form

Since all cliques are positive, can use exponential form

$$\psi_c(\mathbf{x}_c) = \exp[-\phi_c(\mathbf{x}_c)]$$

- $\phi_c(\mathbf{x}_c)$ is also called potential
- Obtain exponential form of the probability

$$P(\mathbf{x}) = \frac{1}{Z} \exp[-\sum_{c \in C} \phi_c(\mathbf{x}_c)] = \frac{1}{Z} \exp[-H(\mathbf{x})]$$

 \blacksquare $H(\mathbf{x})$ is called the free energy

$$H(\mathbf{x}) = \sum_{c \in C} \phi_c(\mathbf{x}_c)$$

- Exponential form
 - In physics is called Boltzmann distribution
 - In statistics, it is called log-linear model

Example: Boltzmann Machine

Boltzmann Machine:

- Binary node values $x_i = \pm 1$
- Fully connected graph G
- Pairwise potentials $\phi_{ij}(x_i, x_j)$
- Probability distribution:

$$P(x_1, ..., x_4) = \frac{1}{Z} \exp[-\sum_{i,j} \phi_{ij}(x_i, x_j)]$$

$$= \frac{1}{Z} \exp[-\sum_{i,j} \theta_{ij} x_i x_j - \sum_{i} \alpha_i x_i]$$

Energy:

$$H(\mathbf{x}) = \sum_{i,j} (x_i - \mu_i) \theta_{ij} (x_j - \mu_j) = (\mathbf{x} - \mu)^T \Theta(\mathbf{x} - \mu)$$

Example: Ising/Potts Models

- Nodes on a grid
- Node values (labels):
 - \pm 1 for Ising model
 - 1...N>2 for Potts model
- Edges only with the 4 neighbors

$$P(\mathbf{x}) = \frac{1}{Z} \exp\left[-\sum_{i,j} \theta_{ij} I(x_i \neq x_j) - \sum_{i} \alpha_i x_i\right]$$

- E.g.
 - Nodes are pixels
 - $\theta_{ij} = \theta > 0$ encourages nearby pixels to have same label
 - α_i form the "external field" (the data term, the likelihood)

Application: Image Denoising

- Ising model $P(\mathbf{x}) = \frac{1}{Z} \exp[-\theta \sum_{i} x_i x_j \alpha \sum_{i} x_i \eta \sum_{i} x_i y_i]$
- **Parameters**
 - $\theta = 1$
 - α =0
 - $\eta = 2.1$
- Result depends on:
 - Model
 - Algorithm

Original image

Restored with ICM

Restored with min-cut

Example: Protein-Protein Interaction Networks

Genealogy of Graphical Models

Zoubin Ghahramani and Sam Roweis

http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html

Learning Graphical Models

Task:

- Given training data
- Find "best" DAG and CPD
 - (A)
- (B)
- C
- $oldsymbol{D}$

$$(A, B, C, D, E) = (00110)$$

$$(A, B, C, D, E) = (00010)$$

$$(A, B, C, D, E) = (00111)$$

• • •

$$(A, B, C, D, E) = (01110)$$

	A ⁰ B ⁰	A ⁰ B ¹	A^1B^0	A ¹ B ¹
C_0	0.4	1	0.9	0.8
C ¹	0.6	0	0.1	0.2

A ⁰	0.3
A ¹	0.7

B ⁰	0.4
B ¹	0.6

Conditional Probability Tables

Bayesian Learning Approach

- Θ= all unknown parameters
 - Graph structure (preferably not)
 - Probabilities
- Bayes Rule $P(\Theta|y_1,...,y_N) \propto P(y_1,...,y_N|\Theta)P(\Theta)$
- Find the mean ⊕

$$\Theta = \int \Theta P(\Theta|y_1, ..., y_N) d\Theta$$

- Sampling ⊕
 - Use MCMC
 - Tricky if graph structure is in Θ
 - Sometimes use uniform $P(\Theta)$

Inference

Graphical Models

- Compact Representation of a probability distribution P Inference:
- Answer queries about P.
- Examples:
 - Is node X independent on node Y given nodes Z,W?
 - Probability of X=true if (Y=false and Z=true)=?
 - What is the joint distribution of (X,Y) if Z=false?
 - What is the likelihood when assigning values to all variables?
 - What is the most likely assignment of values to all or a subset the nodes, knowing other nodes?

Query 1: Likelihood

- Some variables have been observed
 - Say the variables are $E = \{x_{k+1}, ..., X_n\}$
 - They form the evidence
 - Are assigned some value vector e
- Compute probability of the evidence

$$P(e) = \sum_{x_1} ... \sum_{x_k} P(x_1, ..., x_k, e)$$

- Aka likelihood of e
- Need to integrate all other variables
- Need to know the partition function (for MRF)

Query 2: Conditional Probability

 Conditional probability distribution of the remaining variables given the evidence

$$P(X|e) = \frac{P(X,e)}{P(e)} = \frac{P(X,e)}{\sum_{x} P(X=x,e)}$$

the a posteriori belief in X, given evidence e

If we query a subset Y of the variables X={Y,Z}, we integrate out (don't care about) Z:

$$P(Y|e) = \sum_{z} P(Y, Z = z|e)$$

integrate out = marginalization

Applications of the A-posteriori Belief

Prediction:

- Probability of an outcome given the starting condition
- The query node is a descendent of the evidence
- E.g.: Probability of lung cancer, if smoking

Diagnosis:

- Probability of disease/fault given symptoms
- The query node an ancestor of the evidence
- E.g.: Probability of cancer given X-ray result and dyspneea
- Direction of information flow ≠ direction of edges in GM
 - Inference combines evidence from all parts of the graph

Query 3: Most Probable Assignment

- Find most probable values for variables Y
- Given evidence e
- Ignore the rest Z of variables

$$MPA(Y|e) = \arg\max_{y} P(y|e) = \arg\max_{y} \sum_{z} P(y,z|e)$$

■ The maximum a posteriori assignment for Y given e

Applications of MPA

Classification

Find most likely label, given the evidence

Explanation

■ Find the most likely scenario, given the evidence

Observations:

The MPA of a variable depends on its "context"- the set of variables being jointly queried

Example:

R /		Λ		\/	4
IVI	P	А	OI	Χ	

• MPA of (X, Y) = (0, 0)

X	Υ	P(X,Y)
0	0	0.4
0	1	0.05
1	0	0.25
1	1	0.3

Inference Complexity

Theorem:

- For a general GM, computing $P(X = x \mid e)$ is NP-hard.
- We cannot find a general procedure that works efficiently for arbitrary GMs

But

- Approximate (suboptimal) solutions always exist
- For particular families of GMs, there are provably efficient exact procedures

Inference Algorithms

- Exact algorithms
 - The elimination algorithm
 - The junction tree algorithms
 - Efficient for some graphs, otherwise exponential
- Approximate inference techniques
 - Stochastic simulation / sampling methods
 - Markov chain Monte Carlo methods
 - Variational algorithms
 - Belief Propagation
 - Tradeoff speed/accuracy

Variable Elimination on Chains

- Say E is observed E=e
- Query: Compute P(e)

$$P(e) = \sum_{a} \sum_{b} \sum_{c} \sum_{d} P(a, b, c, d, e)$$

- Exponential number of terms
- Using the chain structure we have

$$P(e) = \sum_{d} \sum_{c} \sum_{b} \sum_{a} P(a)P(b|a)P(c|b)P(d|c)P(e|d)$$
$$= \sum_{d} \sum_{c} \sum_{b} P(c|b)P(d|c)P(e|d) \sum_{a} P(a)P(b|a)$$

Variable Elimination on Chains

- Actually $\sum_{a} P(a)P(b|a) = P(b)$
- Compute and memorize all P(b)
- We eliminated A
- We now have

$$P(e) = \sum_{d} \sum_{c} \sum_{b} P(c|b)P(d|c)P(e|d)P(b)$$
$$= \sum_{d} \sum_{c} P(d|c)P(e|d) \sum_{b} P(c|b)P(b)$$

- Compute and memorize all $P(c) = \sum_{b} P(b)P(c|b)$
- We eliminated B

Variable Elimination on Chains

- Repeat the same trick for C and D
 - Compute and memorize all P(c)
 - Then compute and memorize all P(d)
- Now we get what we want

$$P(e) = \sum_{d} P(e|d)P(d)$$

- Similar to dynamic programming
 - Save computation by memorization
- Time complexity
 - Each step costs $O(|Val(X_i)| \cdot |Val(X_{i+1})|)$ operations: $O(kn^2)$
 - Brute force= $O(n^k)$ (n=|Val(X_i)|, k = chain length)

Variable Elimination on General DGMs

Idea:

- Write the full probability $P(x_1, ..., x_n) = \prod P(x_i | parents(X_i))$
- Integrate out the variables that are not in the query and are not observed

$$P(x_1, e) = \sum_{x_k} \dots \sum_{x_2} \prod_i P(x_i | parents(X_i))$$

- Choose a good elimination order
- Iterate
 - Move all irrelevant terms outside of innermost sum
 - Compute innermost sum and memorize its values
 - Insert the new term into the product
- Obtain the final result

$$P(x_1|e) = \frac{P(x_1,e)}{P(e)}$$

- Query: P(b|h)
- Full probability

$$P(a,b,c,d,e,f,g,h) = P(a)P(b)P(c|a)$$
$$\cdot P(d|b)P(f|b)P(e|c,d)P(g|e)P(h|e,f)$$

- Need to eliminate A,C,D,E,F,G,H
- Start with H, memorize the marginal $m_h(e, f) = P(h_0|e, f)$
- Obtain

$$P(a,b,c,d,e,f,g,h_0) = P(a)P(b)P(c|a)$$
$$\cdot P(d|b)P(f|b)P(e|c,d)P(g|e)m_h(e,f)$$

- Memorize $m_g(e) = \sum_{q} P(g|e)$
- Eliminate G

$$P(a, b, c, d, e, f, h_0) = \sum_{g} P(a)P(b)P(c|a)$$

$$\cdot P(d|b)P(f|b)P(e|c, d)P(g|e)m_h(e, f)$$

$$= P(a)P(b)P(c|a)P(d|b)P(f|b)$$

$$\cdot P(e|c, d)m_g(e)m_h(e, f)$$

- Memorize $m_a(c) = \sum_a P(c|a)P(a)$
- Eliminate A

$$P(b,c,d,e,f,h_0) = P(b)P(d|b)P(f|b)$$
$$\cdot P(e|c,d)m_a(c)m_g(e)m_h(e,f)$$

- Memorize $m_f(b, e) = \sum_f P(f|b)m_h(e, f)$
- Eliminate F

$$P(b, c, d, e, h_0) = P(b)P(d|b)P(e|c, d)$$
$$\cdot m_a(c)m_g(e)m_f(b, e)$$

- Memorize $m_c(d, e) = \sum_c P(e|c, d) m_a(c)$
- Eliminate C

 $P(b, d, e, h_0) = P(b)P(d|b)m_c(d, e)m_g(e)m_f(b, e)$

- Eliminate E

$$P(b,d,h_0) = P(b)P(d|b)m_e(b,d)$$

- Memorize $m_d(b) = \sum_d P(d|b) m_e(b,d)$
- Eliminate D

$$P(b, h_0) = P(b)m_d(b)$$

- Obtain the final result $P(b|h_0) = \frac{P(b,h_0)}{P(h_0)}$

Time Complexity of Variable Elimination

Look at one elimination step, when we memorize

$$m_x(x_1, ..., x_k) = \sum_{x} \prod_{i=1}^{\kappa} m_i(x, x_{c_i})$$

- We compute this for all values of $(x_1, ..., x_k)$
- Memory requirement $\prod_{i=1}^{k} |Val(x_i)|$
- For each entry, we need k|Val(x)| multiplications and |Val(x)| additions
- Totally
 - $| k|Val(x)|\prod_{i=1}^{k}|Val(x_i)|$ multiplications
 - $|Val(x)|\prod_{i=1}^{k}|Val(x_i)|$ additions
- Exponential in number of variables in the intermediate factor
 - Prefer elimination orders with few of variables in each factor

Variable Elimination

- in each clique (memorized marginal)
- Finding the optimum ordering is NP hard
 - Heuristics can be used
- Also works for undirected GMs

The Junction-Tree

Works on undirected GM

 For directed GM, convert them to undirected by moralization

Build the junction tree:

- 1. Choose an ordering of the nodes and use Node Elimination to obtain a set of elimination cliques.
- 2. Build a complete cluster graph over the elimination cliques.
- 3. Weight each edge {U,V} by |U∩V| and compute a maximum-weight spanning tree.

Properties of the Junction-Tree

- Singly connected: there is exactly one path between each pair of clusters.
- Covering: for each clique C of G there is some cluster node N such that C ⊂ N.
- Running intersection: for each pair of clusters B and C containing i, each cluster on the unique path between B and C also contains i.
- Different junction trees are obtained using
 - Different elimination orders
 - Different maximum-weight spanning trees.

Decomposable Probabilities

Definition: A factorized probability

$$P(\mathbf{x}) = P(x_1, ..., x_N) = \frac{1}{Z} \prod_{c \in C} \psi_c(\mathbf{x}_c)$$

is decomposable if there is a junction tree with cluster set C.

- To convert a factorized p to a decomposable probability:
 - 1. Build a junction tree T for the GM of P.
 - 2. Initialize the potentials $\psi_c = 1$ for each cluster $c \in T$.
 - 3. Multiply each potential ψ of p into the cluster potential ψ_c of one cluster that covers its variables.

Note: This is possible only because of the covering property.

The Junction Tree Algorithm

- Input:
 - A decomposable probability
 - The associated junction tree T.
- Output: marginal densities of the cliques

Algorithm:

- Each cluster $c \in T$ knows only its local potential ψ_c and its neighbor clusters.
- Each cluster sends one message (potential function) to each neighbor.
- By combining its local potential with the messages it receives, each cluster is able to compute the marginal density of its variables.
- There are different variants of the algorithm based on what messages are passed

Message Passing

Message passing protocol:

 Cluster B sends a message to a neighbor C only after it has received messages from all neighbors except C.

One version:

- Choose one cluster R to be the root so the junction tree is directed.
- Execute Collect(R) and then Distribute(R)
- Collect(C): For each child B of C,
 - Recursively call Collect(B)
 - 2. Pass a message B \rightarrow C.
- Distribute(C): For each child B of C
 - Pass a message C → B
 - 2. Recursively call Distribute(B).

The Shafer-Shenoy Algorithm

The message from B to C is

$$\mu_{BC}(x_{B\cap C}) = \sum_{x_{B-C}} \psi_B(x) \prod_{A \in \partial B - \{C\}} \mu_{AB}(x_A)$$

- cluster B computes the product of its local potential ψ_B and the messages from all clusters except C
- marginalizes out all variables that are not in C
- sends the result to C.

Note: μ_{BC} is well-defined because of the tree structure

The cluster belief at C is

$$\beta_C(x_C) = \psi_C(x_C) \prod_{B \in \partial C} \mu_{BC}(x_{B \cap C})$$

After all messages have been passed:

$$\beta_C(x_C) \propto P(x_C)$$

The Hugin Algorithm

Maintain potential functions for each node C and edge E of the Junction Tree. Initialization:

$$\phi_C(x_C) = \psi_C(x_C),$$

$$\phi_E(x_E) = 1$$

To pass a message from B to C over edge E, update

$$\phi_E^o(x_E) = \phi_E(x_E),$$

$$\phi_E(x_E) = \sum_{x_{B-E}} \phi_B(x_E, x_{B-E}),$$

$$\phi_C(x_C) = \phi_C(x_C) \frac{\phi_E(x_E)}{\phi_E^o(x_E)}$$

After all messages have been passed:

$$\phi_C(x_C) \propto P(x_C)$$

Complexity of Junction Tree Algorithms

Junction tree algorithms memorize, multiply, and marginalize potentials:

	Tabular	Gaussian
storing ψ_C	$O(k^{ C })$	$O(C ^2)$
storing ϕ_E	$O(k^{ E })$	$O(E ^2)$
updating ϕ_E from B to C	$O(k^{ B-E })$	$O(B-E ^3 B ^2)$
number of messages ~ number of cl	usters O(V)	

Thus:

- The time and space complexity is dominated by the size of the largest cluster in the junction tree, named the width of the junction tree:
 - When using tables: complexity = exponential in the width.
 - When using Gaussians: complexity = cubic in the width.

Conclusion: Junction Tree

A generic exact inference algorithm for any GM Algorithm

- Construct junction tree: a special clique tree
- Propagate probabilities a message-passing protocol

Output:

- Marginal probabilities of all cliques
- Solves all queries in a single run

Complexity:

- exponential in the size of the maximal clique
- a good elimination order often leads to small maximal clique

Many well-known algorithms are special cases of Junction Trees

Forward-backward, Kalman filter, Sum-Product ...

Inference Algorithms

- Exact inference:
 - The elimination algorithm
 - Obtains one marginal probability
 - Fast on chains and trees
 - Otherwise NP hard
 - The junction tree algorithms
 - Obtains all marginal probabilities
 - Still NP hard in general
- Approximate inference
 - Stochastic simulation / sampling
 - Markov chain Monte Carlo
 - Variational algorithms

Monte Carlo Algorithms

Overview

- Draw random samples from the desired distribution
 - A stochastic representation of a complex distribution
- Marginals and other expectations can be approximated by sample-based averages $E[f(x)] \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$
- Asymptotically exact and easy to apply to arbitrary models

Challenges:

- Sampling from a given distribution
 - Many distributions are hard to sample (e.g. MRF)
- How to make better use of the samples
 - Not all sample are equally useful
- How to know when to stop sampling

Example: Naïve Sampling

 Sampling: Construct samples according to probabilities given in a Bayesian Network.

Alarm example: (Choose the right sampling sequence)

- 1) Sample from P(B) = <0.001, 0.999>, say we get B^0 .
- 2) Sample E, say we get E⁰
- 3) Sample $P(A|B^0, E^0) = <0.001, 0.999>$, say we get A^0 .

. . .

Example: Naïve Sampling

- By repeating the process we get many samples:
 - E₀B₀A₀M₀J₀
 - E₀B₀A₀M₀J₀
 - = $E^0B^0A^0M^0J^1$
 - E⁰B⁰A⁰M⁰J⁰
 - E¹B⁰A¹M¹J¹
 - E₀B₀A₀M₀J₀

Frequency counting: From the samples we get

$$P(J|A^0) = P(J,A^0)/P(A^0) = <1/5,4/5>.$$

Problems:

What if we want P(J|A¹)? We have only one sample

$$P(J|A^1) = P(J,A^1)/P(A^1) = <0,1>.$$

■ What about P(J|B¹)? No samples available

Monte Carlo Methods

- Direct Sampling
 - Obtain samples from the GM directly.
 - Very difficult to populate a high-dimensional state space
- Rejection Sampling
 - Create samples like direct sampling,
 - Only count samples which are consistent with the given evidence.
- Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC) algorithms

MCMC:

- Iterative stochastic algorithms
- Sample a probability p(X) defined for $X \in \Omega$
- Jump in a new state Y depending on the current state X with probability K(X,Y)
- Reversibility:

$$p(X)K(X,Y) = p(Y)K(Y,X), \forall X,Y \in \Omega.$$

Gibbs sampler:

- MCMC algorithm
- Changes one variable X_k at a time by sampling from the marginal probability $p(X_k|X_1,...,X_{k-1},X_{k+1},...,X_n)$

MCMC

Markov-Blanket:

 A node is independent from other nodes, given its parents, children and children's parents.

$$p(X_i|X_{-i}) = p(X_i|MB(X_i))$$

Gibbs sampling

- Create a random sample.
- At each step, choose one variable X_i and sample it from $p(X_i|MB(X_i))$ based on the values of the other variables.
- \blacksquare E.g. MB(A)={B, E, J, M}, MB(E)={A, B}

MCMC Example

Want to calculate $P(J|B^1,M^1)$

- Evidence is B¹, M¹ (fixed),
- Variables are A, E, J.
- Start from B¹E⁰A¹M¹J¹
- Randomly choose next variable (say A)
- Sample A from

$$p(A|MB(A)) = p(A|B^1, E^0, M^1, J^1)$$

say it is 0.

- New state B¹E⁰A⁰M¹J¹
- Choose next random variable (say E), sample

$$E \sim p(E|MB(E)) = p(E|B^{1}, A^{0})$$

- Obtain P(J|B¹,M¹) in two ways:
 - Frequency of J=1 during sampling
 - Average of P(J|A) during sampling (faster convergence)

Complexity of MCMC for GM

- Tradeoff speed-accuracy
- It will never reach the true probability, but
 - It will approximate it better and better
 - In an infinite amount of time, it will give the exact solution
- For large and complex graphs, it is much faster than exact inference, since only samples conditionally on the Markov blanket.

References

- M. I. Jordan. Graphical models. Statistical Science (Special Issue on Bayesian Statistics), 19, 140-155, 2004.
- http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html
- http://ai.stanford.edu/~paskin/gm-short-course/lec3.pdf