Lecture 16: Sept 25

Last time

• Transformations of Random Variables

Today

- One-page one-sided letter-size cheat sheet for midterm 1
- Expected Values
- Moments

Expected Values

Definition The expected value or mean of a random variable g(X), denoted by Eg(X), is

$$Eg(X) = \begin{cases} \int_{-\infty}^{\infty} g(x)f(x)dx & \text{if } X \text{ is continuous} \\ \sum_{x \in \mathcal{X}} g(x)\Pr(X = x) & \text{if } X \text{ is discrete} \end{cases}$$

Provided the integral or summation exists.

If we let g(X) = X, then we get

$$EX = \begin{cases} \int_{-\infty}^{\infty} x f(x) dx & \text{if } X \text{ is continuous} \\ \sum_{x \in \mathcal{X}} x \Pr(X = x) & \text{if } X \text{ is discrete} \end{cases}$$

Example (Exponential mean) Suppose X has an exponential distribution with parameter λ , $X \sim Exp(\lambda)$, that is, it has pdf given by

$$f_X(x) = \frac{1}{\lambda} e^{-x/\lambda}, \quad 0 \leqslant x < \infty, \lambda > 0.$$

Find out EX.

Solution:

Example (Binomial mean) if X has a binomial distribution, $X \sim Binomial(n, p)$, its pmf is given by

$$\Pr(X = x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, \dots, n,$$

where n is a positive integer, $0 \le p \le 1$, and for every fixed pair n and p the pmf sums to 1. Find out EX.

Solution:

The process of taking expectations is a linear operation, which means that the expectation of a linear function of X can be easily evaluated by noting that for any constants a and b, such that

$$E(aX + b) = aEX + b$$

Theorem Let X be a random variable and let a, b, and c be constants. Then for any functions $g_1(x)$ and $g_2(x)$ whose expectations exist,

- 1. $E(ag_1(X) + bg_2(X) + c) = aEg_1(X) + bEg_2(X) + c$.
- 2. If $g_1(x) \ge 0$ for all x, then $Eg_1(X) \ge 0$.
- 3. If $g_1(x) \ge g_2(x)$ for all x, then $Eg_1(X) \ge Eg_2(X)$.
- 4. If $a \leq g_1(x) \leq b$ for all x, then $a \leq Eg_1(X) \leq b$.

Proof: