Assignment 2 Interpolation

- 1. When do we use Lagrange's interpolation?
- 2. Can we use Divided Difference and Lagrange's with equally spaced data?
- 3. When do we use forward difference interpolation?
- 4. State the backward difference interpolation.
- 5. Explain Cubic Spline Interpolation.
- 6. What do you understand by extrapolation?
- 7. Evaluate the values of f (0.4) using Lagrange's interpolation formula for the table of values given below.

X	0.3	0.5	0.6
f(x)	0.61	0.69	0.72

8. Evaluate the values of f (2) using Newton's Divided Difference interpolation formula for the table of values given below.

x	-1	0	3	6	7
f(x)	3	-6	39	822	1611

9. Which interpolation method is best suited for the following data? Compute the value of $\underline{f(0.5)}$ by using suitable interpolation on the following table of data.

X	0	1	2	3	4
f(x)	1	4	16	64	256

10. Which interpolation method is best suited for the following data? Compute the value of f(7.5) by using suitable interpolation on the following table of data.

X	3	4	5	6	7	8
f(x)	28	65	126	217	344	513

11. Calculate Cubic Splines. Then find: y(0.5)

X	0	1	2
f(x)	10	20	30

Solution

- 7. 0.65
- 8.6
- 9. Forward difference -0.10156
- 10. Backward difference 422.875
- 11. 15