ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Компьютерные сети Лабораторная №2

> Выполнил: Беляков Дмитрий Группа: Р33122 Преподаватель: Маркина Т. А.

1. Краткая постановка задачи:

Исследовать качество передачи сигналов в зависимости от свойств канала при использовании различных способов логического и физического кодирования.

2. Исходное сообщение: Беляков Д. С.

Шестнадцатеричный код: C1 E5 EB FF EA EE E2 20 C4 2E 20 D1 2E

Двоичный код: 11000001 11100101 11101011 11111111 11101010 11101110 11100010 00100000

11000100 00101110 00100000 11010001 00101110

Длина сообщения: 13 байт (104 бит)

Сообщение: \FFEBE5C1

3.

4. Шестнадцатеричный код сообщения			Метод кодирования				
	\FFEBE5C1		NRZ	RZ	M-II	4B/5B	Scramb
	Номер	min	2	2	24	8	10
Полоса пропускан ия идеальног	гармоник	max	28	26	60	36	30
	Частоты,	min	0.3	0.3	3.8	1.0	1.6
<i>0</i> канала связи	МГц	max	4.4	4.1	9.4	4.5	4.7
Минимальная полоса пропускания идеального канала связи, МГц		•	4.1	3.8	5.6	5.5	3.1
Уровень шума		max	0.08	0.02	0.12	0	0.03
Уровень <i>рассинхронизации</i>		max	0.43	0.4	0.2	0.01	0.03
Уровень граничного напряж.		max	0.09	0.02	1	0	0.04
Процент ошибок при тах уров минимальной полосе пропуска КС			2.91	2.1	0.11	0	2.7
Уровень шума		cp.	0.05				
Уровень <i>рассинхронизации</i>		cp.	0.21				
Уровень граничного напряж.		ср.	0.23				
	Гармоник	min	2	10	20	2	2
Полоса пропускан	И	max	38	66	60	38	30
ия реального	Частоты,	min	0.3	1.6	3.1	0.3	0.3
канала связи	МГц	max	5.9	10.3	9.4	5.9	4.7
Требуемая полоса пропускания реального канала связи			5.6	8.7	6.3	5.6	4.4

Анализ: для идеального канала лучшим выбором кодирова ния будет скремблирование, так как имеет наименьшую полосу пропускания. Самые устойчивые к шумам способы — NRZ и Манчестерский, к рассинхронизации — NRZ и RZ. Для манчестерского способа можно выставить наибольший уровень граничного напряжения — значит, уровень сигнала шума в таком случае может быть достаточно большим. Процент ошибок при максимальных уровнях шума, рассинхронизации и граничных напряжений показало себя избыточное кодирование, однако уровень шума и напряжения = 0, а уровень рассинхроназации довольно мал,

следовательно лучшим будем считать RZ. Для реального канала лучшим будет способ скремблирования, так как имеет наименьшую полосу пропускания.

Бывод: исходя из проделанной работы можно сделать вывод, что одним из лучших методов физического кодирования будет NRZ, так обладает наименьшей полосой пропускания, а значит - потребуется меньше затрат на реализацию передачи сообщения, однако, стоит заметить, что манчестерский код лучше противостоит шумам, также его полоса пропускания меньше всего изменилась при переходе от идеального канала к реальному, также ему нет необходимости в установки граничного значения напряжения, так как для его интерпретации используются переходы от одного состояния к другому, а не значения сигналов. Что же касается логического кодирования, то лучше себя показывает скремблирование, у которого и полоса меньше и он более устойчив шумам и десинхронизации.

6. Т.И. Алиев, В.В. Соснин, Д.Н. Шинкарчук «КОМПЬЮТЕРНЫЕ СЕТИ И ТЕЛЕКОММУНИКАЦИИ: ЗАДАНИЯ И ТЕСТЫ»