

NOTICE

Not for use or disclosure outside the
Bell System except under written agreement.

Prepared for the Microprocessor System Department and the Continuing Education Department by Technical Documentation Department, Bell Laboratories, 1978

ORGANIZATION

This hexadecimal (hex.) coding chart allows you to translate your program assembly language into a machine code that the MAC-8 microprocessor can store, manipulate, and process. The chart comprises the following parts:

Part 1 — Dyadic Instructions

A dyadic instruction is defined as having two operands, one designated as the source and one designated as the destination. The result of the operation is stored in the destination. The dyadic instructions consist of the following operations.

- Move
- · Arithmetical add and subtract
- Logical AND, OR, exclusive OR, compare, and test

All dyadic operations use both 8- and 16-bit operands, except test which uses 8-bit operands only.

Part 2 — Monadic Instructions

A monadic instruction is defined as having one operand that serves as the source and the destination, but is designated as the destination. The monadic instructions consist of the following operations.

- Zero
- Negate
- Increment
- Decrement
- Complement
- · Arithmetical shift
- Logical shift
- Rotate 8
- Rotate 9

All monadic operations use 8-bit operands; the zero, increment, and decrement operations use both 8- and 16-bit operands.

PA-800517 Issue 1, December 1978

Part 3 – Miscellaneous Dyadic and Monadic Instructions

These instructions consist of the following operations.

- Find, clear, count ones, and load address into 16-bit register
- Register pointer manipulation (load, bump, and debump)
- Stack pointer manipulation (load, logical add, arithmetical add)
- Condition register manipulation (set and clear)
- Memory stack save and restore (push and pop)

Part 4 — Transfer Instructions : Unconditional and Condition Register Bit Conditional

Transfer instructions alter the order of instruction execution. These instructions come in two forms: one form is unconditional and uses abbreviated addressing modes; the other form is conditional and is dependent upon a particular condition bit being set or cleared. The condition bits are neg, zero, ovfl, carry, ones, odd, enable, flag, lt, lteq, llteq, hom, shovfl, and always. The last six bits are logical combinations of the first eight bits. The unconditional and bit conditional instructions consist of the following operations.

- Branch (unconditional jump)
- Conditional jump (local or global)
- Unconditional call
- Conditional call
- Unconditional return
- Conditional return

Part 5 - Transfer Instructions: Register Bit Conditional and Miscellaneous

These instructions consist of the following operations.

- Conditional jump (local only)
- Halt
- No operation (nop)

Part 6 - Summary of Machine Codes

Meaning

replace x with y

GLOSSARY

To unde and sym

nderstand the hex. coding	g chart, you have to become familiar with the designations	хΛу	bit-by-bit exclusive OR of x and y				
indois and their meaning	is that are listed below	$\mathbf{x} \mid \mathbf{y}$	bit-by-bit inclusive OR of x and y				
		x & y	bit-by-bit AND of x and y				
Memory Register Identi Designation	ification Meaning	x y	x minus y				
ad	a register used as the destination	x + y	x plus y				
as	a register used as the source	*x	the contents of the memory address(es) pointed to by x; if x represents a 16-bit number, *x represents the contents				
bd	b register used as the destination		of that 16-bit number used as an address				
bs	b register used as the source	*x++	after operating on the contents of the memory				
dd	b register used as a pointer to 16-bit data		address(es) pointed by x, increment x; if two successive memory addresses are referenced by				
ds	b register used as a pointer to 16-bit data		the instruction, x is incremented by 2				
		*(x + N)	the contents of the memory address that is N addresses above the address pointed to by x				
MAC-8 Microprocessor			addresses above the address pointed to by x				
Designation	Meaning	X	the value of x negated (2s complement)				
cr	condition register	++x	the value of x incremented by 1				
pc	program counter	x	the value of x decremented by 1				
rp	register pointer	$\sim_{\mathbf{X}}$	the value of x complemented (1s complement)				
sp	stack pointer	x*2	x arithmetically shifted left one bit (multiplied by 2)				
Number Identification Designation	Meaning	x/2	x arithmetically shifted right one bit (divided by 2)				
М	8-bit immediate data or address offset	x<<1	x logically shifted left one bit				
N	8-bit immediate data or address offset	x>>1	x logically shifted right one bit				
V	16-bit immediate data or address	x<<<1	x rotated left one bit				
w	16-bit immediate data or address	x>>>1	x rotated right one bit				
		x\$<<1	x rotated left through carry one bit				
		x>>\$1	x rotated right through carry one bit				
		•	.1 11 0				

Symbols

x = y

Register and Number Operation Symbols
In the following, x and y are used to denote the contents of registers, contents of memory addresses, or immediate data.

the address of x &х

nontrue condition (where x represents a register bit) !x

HOW TO USE THE HEX. CODING CHART

To translate your program into hex. code, you have to examine each assembly language instruction, determine its type (dyadic, monadic, etc.) and, within the type, what kind of operation is performed (move, add, etc.). For example, if you want to move the contents of register a3 to register a7, the assembly language instruction is

$$a7=a3$$

This is a dyadic instruction for a move between registers operation. If you look in Part 1 of the chart, under the Addressing Mode (the Register and Register entry) and Move columns, you will find the corresponding instruction

> ad=as 80 ds

The operation code (opcode) is 80. It is followed by the a register that is used as the destination, which is register a7, and the a register that is used as the source, which is register a3. So, the hex. code is 80 73, a 2-byte instruction.

Memory Before and After Execution of 80 73

To move the contents of register al2 to the address pointed to by register b4, the assembly language instruction is

*b4=a12

This is a dyadic instruction for a move operation between an indirect address and a register, and in Part 1 of the chart, under the Addressing Mode (the Indirect and Register entry) and Move columns, you will find the corresponding instruction

> *bd=as ds

The opcode is 81, and it is followed by the b register that is used as a pointer to the destination, which is register b4, and the a register that is used as the source, which is register a12. So, the hex. code is 81 4C, a 2-byte instruction.

Note: Register b4 is assumed to contain address 1A50.

Memory Before and After Execution of 81 4C

3

This is a dyadic instruction for an add operation between an indirect address and immediate data, and in Part 1, under the Addressing Mode (the Indirect and Immediate entry) and Add columns, you will find the corresponding instruction

*bd=*bd+N A9 dF N

The opcode is A9, and it is followed by the **b** register that is used as the pointer to the destination, which is register b8, hex. digit F, and the number that is to be added, which is 72. So, the hex. code is A9 8F 72, a 3-byte instruction.

Note: Register b8 is assumed to contain address 1A65

PA-800517 Issue 1, December 1978

To compare the contents of the memory address 18AB with the number 56, the assembly language instruction is

*18AB-56

This is a dyadic instruction for a compare operation between a direct address and immediate data, and in Part 1, under the Addressing Mode (the Direct and Immediate entry) and Compare columns, you will find the corresponding instruction

*W-N
B1
FF
W(LO)
W(HI)
N

The opcode is B1 FF. It is followed by the low contents (eight least significant bits) and the high contents (eight most significant bits) of the address, which are AB and 18, respectively, and the number with which the contents of the address are to be compared, which is 56. So, the hex. code is B1 FF AB 18 56, a 5-byte instruction.

Note: No changes occur in memory contents as a result of the comparison; however, since the result of the comparison is negative, the neg bit in the cr is set to 1.

To place all zeros in the memory address pointed to by register b3 and then increment that address, the assembly language instruction is

This is a monadic instruction for a zero operation with automatic incrementing of the indirect address, and in Part 2, under the Addressing Mode (the Automatic Increment entry) and Zero columns, you will find the corresponding instruction

The opcode is 23, and it is followed by the register that is used as the destination, which is register b3, and 0. So, the hex. code is 23 30, a 2-byte instruction.

Note: Register b3 is assumed to initially contain address 1A80.

Memory Before and After Execution of 23 30

To jump to address 1850, the assembly language instruction is

(The prefix 0x tells the assembler that the following number is a hex. number.)

This is a transfer instruction for an unconditional jump operation, and in Part 4, under the Jump Instructions and Always columns, you will find the corresponding instruction

The opcode is 59. It is followed by the low contents (eight least significant bits) and the high contents (eight most significant bits) of the address to which the jump is to be made, which are 50 and 18, respectively. So, the hex. code is 59 50 18, a 3-byte instruction.

You can also use the instruction

if (condition) goto *W (where the condition is always)

49 FF W(LO) W(HI)

However, the hex. code is 49 FF 50 18, a 4-byte instruction.

Memory Before and After Execution of 59 50 18

To call the subroutine at the address pointed to by register b10 if the zero condition is not met, the assembly language instruction is

This is a conditional transfer instruction, and in Part 4, under the Call Instructions and Zero columns, you will find the corresponding instruction

if(!condition)*bd() (where the condition is zero)

61

d1

The opcode is 61, and it is followed by the register that contains the address of the subroutine to be called, which is register b10, and 1. So, the hex. code is 61 A1, a 2-byte instruction.

Memory Before and After Execution of 61 A1

Zero Condition Met

Zero Condition Not Met

To jump seven locations ahead of the first instruction byte in your program if bit 3 of register a14 is a 1, the assembly language instruction is

(The offset is 5 rather than 7 because the pc will contain an address two above that of the first instruction byte.)

This is a register bit conditional transfer instruction, and in Part 5, under the Jump Instructions and Bit No. 3 columns, you will find the corresponding instruction

The opcode is 5A, and it is followed by the register number, the bit number, and the number of locations to be jumped. So, the hex. code is 5A E3 05, a 3-byte instruction.

Memory Before and After Execution of 5A E3 05

Condition Not Met

Condition Met

PART 1.— DYADIC INSTRUCTIONS

					abie marmoerions					
ADDRESSING				OPERA	TION					ATION E RANGE
MODE	MOVE	XOR	OR	AND	SUBTRACT	ADD	COMPARE	TEST	d	s
Register and	ad=as	ad=ad∧as	ad=ad as	ad=ad&as	ad=ad-as	ad=ad+as	ad—as	test(ad,as)	0-15	0-14
Register	80	88	90	98	Α0	A8	В0	В8		
	ds	ds	ds	ds	ds	ds	ds	ds		
Register and	ad=N	ad=ad∧N	ad=ad N	ad=ad&N	ad=ad-N	ad=ad+N	ad-N	test(ad,N)	0-15	
Immediate	80	88	90	98	A0	A8	В0	B8		
	dF	dF	dF	dF	dF	dF	dF	dF		
	N	N	N	N	N	N	N	N		
Register and	ad=*bs	ad=ad∧*bs	ad=ad *bs	ad=ad&*bs	ad=ad-*bs	ad=ad+*bs	ad—*bs	test(ad,*bs)	015	0-14
Indirect	85	8D	95	9D	A5	AD	B5	BD		
	ds	ds	ds	ds	ds	ds	ds	ds		
Register and	ad=*W	ad=ad∧*W	ad=ad ∣*W	ad=ad&*W	ad=ad-*W	ad=ad+*W	ad-*W	test(ad,*W)	0-15	
Direct	85	8D	95	9D	A5	AD	B5	BD		
	dF	dF	dF	dF	dF	dF	dF	dF		
	W(LO)	W(LO)	W(LO)	W(LO)	W(LO)	W(LO)	W(LO)	W(LO)		
	W(HI)	W(HI)	W(HI)	W(HI)	W(HI)	W(HI)	W(HI)	W(HI)		
Register and	ad=*bs++	ad=ad Λ *bs++	ad=ad *bs++	ad=ad& * bs++	ad=ad*bs++	ad=ad+*bs++	ad-*bs++	test(ad,*bs++)	0-15	0-15
Automatic Increment	87	8F	97	9F	A7	AF	В7	BF		
increment	ds	ds	ds	ds	ds	ds	ds	ds		
Register and	ad=*(bs+N)	$ad=ad\Lambda^*(bs+N)$	ad=ad(*(bs+N)	ad=ad&*(bs+N)	ad=ad*(bs+N)	ad=ad+*(bs+N)	ad-*(bs+N)	test(ad,*(bs+N))	0-15	0-14
Offset	86	8E	96	9E	A6	AE	В6	BE		
Memory	ds	ds	ds	ds	ds	ds	ds	ds		
	N	N	N	N	N	N	N	N		
Register and	ad=*(sp+N)	$ad=ad\Lambda*(sp+N)$	ad=ad *(sp+N)	ad=ad&*(sp+N)	ad=ad-*(sp+N)	ad=ad+*(sp+N)	ad-*(sp+N)	test(ad,*(sp+N))	0-15	
Offset Stack	86	8E	96	9E	A6	AE	B6	BE		
	dF	dF	dF	dF	dF	dF	dF	dF		
	N	N	N	N	N	N	N	N		
Indirect and	*bd=as	*bd=*bd∧as	*bd=*bd as	*bd=*bd&as	*bd=*bd—as	*bd=*bd+as	*bd—as	test(*bd,as)	0-14	0-14
Register	81	89	91	99	A1	A9	B1	В9		
	ds	ds	ds	ds	ds	ds	ds	ds		
Indirect and	*bd=N	*bd=*bd\N	*bd=*bd N	*bd=*bd&N	*bd=*bd-N	*bd=*bd+N	*bd-N	test(*bd,N)	0-14	
Immediate	81	89	91	99	A1	A9	B1	В9		
	dF	dF	dF	dF	dF	dF	dF	dF		
	N	N	N	N	N	N	N	N		
Indirect and	*dd=bs	*dd=*dd∧bs	*dd=*dd bs	*dd=*dd&bs	*dd=*dd-bs	*dd=*dd+bs	*ddbs		0-14	0- 14
16-Bit	C1	C9	D1	D9	E1	E9	F1			
Register See Note	ds	ds	ds	ds	ds	ds	ds			

PART 1 — DYADIC INSTRUCTIONS (Continued)

ADDRESSING				OPERAT	ION					ATION- E RANGE
MODE	MOVE	XOR	OR	AND	SUBTRACT	ADD	COMPARE	TEST	d	s
Indirect and	*dd=W	*dd=*dd∧W	*dd=*dd W	*dd=*dd&W	*dd=*dd-W	*dd=*dd+W	*dd-W		0-14	
16-Bit Immediate See Note	C1 dF W(LO) W(HI)	C9 dF W(LO) W(HI)	D1 dF W(LO) W(HI)	D9 dF W(LO) W(HI)	E1 dF W(LO) W(HI)	E9 dF W(LO) W(HI)	F1 dF W(LO) W(HI)			
Automatic	*bd++=as	*bd++=*bd++Aas	*bd++=*bd++ as	*bd++=*bd++&as	*bd++=*bd++-as	*bd++=*bd++ + as	*bd++-as	test(*bd++,as)	015	014
Increment and Register	83 ds	8B ds	93 ds	9B ds	A3 ds	AB ds	B3 ds	BB ds		
Automatic	*bd++=N	$*bd++=*bd++\Lambda N$	*bd++=*bd++ N	*bd++=*bd++&N	*bd++=*bd++-N	*bd++=*bd++ + N	*bd++-N	test(*bd++,N)	015	
Increment and Immediate	83 dF N	8B dF N	93 dF N	9B dF N	A3 dF N	AB dF N	B3 dF N	BB dF N		
Automatic	*dd++=bs	*dd++=*dd++ \(\Lambda\) bs	*dd++=*dd++ bs	*dd++=*dd++&bs	*dd++=*dd++bs	*dd++=*dd++ + bs	*dd++-bs		015	014
Increment and 16-Bit Register See Note	C3 ds	CB ds	D3 ds	DB ds	E3 ds	EB ds	F3 ds			
Automatic	*dd++=W	*dd++=*dd++\\	*dd+->*dd+++W	*dd++=*dd++&W	*dd++=*dd++W	*dd++=*dd++ + W	*dd++-W		015	
Increment and 16-Bit Immediate See Note	C3 dF W(LO) W(HI)	CB dF W(LO) W(HI)	D3 dF W(LO) W(HI)	DB dF W(LO) W(HI)	E3 dF W(LO) W(HI)	EB dF W(LO) W(HI)	F3 dF W(LO) W(HI)			
Offset Memory and	*(bd+N)=as	*(bd+N)=*(bd+N) Λ as	*(bd+N)=*(bd+N) as	*(bd+N)=*(bd+N)&as	*(bd+N)=*(bd+N)-as	*(bd+N)=*(bd+N)+as	*(bd+N)—as	test (*(bd+N),as)	014	014
Register	82 ds N	8A ds N	ទ2 cis N	9A ds ïN	A2 ds N	AA cis N	B2 ds N	BA ds N		
Offset Memory and	*(bd+N)=M	*(bd+N)=*(bd+N) ^ M	*(bd+N)= *(bd+N) M	*(bd+N)=*(bd+N)&M	*(bd+N)=*(bd+N)-M	*(bd+N)=*(bd+N)+M	* (bd+N)M	test(*(bd+N),M)	014	
Immediate	82 dF N M	8A df N M	92 dF N M	9A dF N M	A2 dF N M	AA dF N M	B2 dF N M	BA dF N M		
Offset Memory and	*(bd+N)= *(bs+M)	*(bd+N)=*(bd+N)∆ *(bs÷M)	*(bd+N)=*(bd+N) *(bs+M)	*(bd+N)=*(bd+N)& *(bs+M)	*(bd+N)=*(bd+N) *(bs+M)	*(bd+N)=*(bd+N)+ *(bs+M)	*(bd+N)— *(bs+M)	test(*(bd+N), *(bs+M))	0-14	014
Offset Memory	C4 ds M N	CC ds M N	D4 ds M N	DC ds M N	F.4 ds M N	EC ds M N	F4 ds M N	FC ds M N		

PART 1 — DYADIC INSTRUCTIONS (Continued)

				OPERAT	ION					IATION- E RANGE
ADDRESSING MODE	MOVE	XOR	OR	AND	SUBTRACT	ADD	COMPARE	TEST	d	s
Offset Memory and	*(bd+N)= *(sp+M)	*(bd+N)=*(bd+N)A *(sp+M)	*(bd+N)=*(bd+N) *(sp+M)	*(bd+N)=*(bd+N)& *(sp+M)	*(bd+N)=*(bd+N) *(sp+M)	*(bd+N)=*(bd+N)+ *(sp+M)	*(bd+N) - *(sp+M)	test(*(bd+N), *(sp+M))	0-14	
Offset Stack	C4 dF	CC dF	D4 dF	DC dF	E4 dF	EC dF	F4 dF	FC dF		
	M N	M N	M N	M N	M N	M N	M N	M N		
Offset Memory and	*(dd+N)=bs	*(dd+N)=*(dd+N) \(\text{bs} \)	*(dd+N)=*(dd+N) bs	*(dd+N)=*(dd+N)&bs	*(dd+N)=*(dd+N)-bs	*(dd+N)=*(dd+N)+bs	*(dd+N)—bs		0—14	014
16-Bit Register See Note	C2	CA	D2	DA	E2	EA	F2			
266 MOLE	ds N	ds N	ds N	ds N	ds N	ds N	ds N			
Offset Memory and	*(dd+N)=W	*(dd+N)=*(dd+N) Λ W	*(dd+N)=*(dd+N) W	*(dd+N)=*(dd+N)&W	*(dd+N)=*(dd+N)-W	*(dd+N)=*(dd+N)+W	*(dd+N)-W		0-14	
16-Bit Immediate	C2	CA	D2	DA	E2	EA	F2			
See Note	dF	dF	dF	dF	dF	dF	dF N			
	N W(LO)	N W(LO)	N W(LO)	N W(LO)	N W(LO)	N W(LO)	W(LO)			
	W(HI)	W(HI)	W(HI)	W(HI)	W(HI)	W(HI)	W(HI)			
Direct and Register	*W=as	*W==*WAas	*W=*W as	*W=*W&as	*W=*W-as	*W=*W+as	*Was	test(*W,as)		0-14
negister	81 Fs	89 Fs	91 Fs	99 Fs	A1 Fs	A9 Fs	B1 Fs	B9 Fs		
	W(LO)	w(LO)	W(LO)	w(LO)	W(LO)	W(LO)	W(LO)	W(LO)		
	W(HI)	W(HI)	W(HI)	W(HI)	W(HI)	W(HI)	W(HI)	W(HI)		
Direct and	*W=N	*W=*WAN	*W=*WIN	*W=*W&N	*W=*W-N	*W=*W+N	*W-N	test(*W,N)		
Immediate	81	89	91	99	A1	A9	B1 FF	B9 FF		
	FF W(LO)	FF W(LO)	FF W(LO)	FF W(LO)	FF W(LO)	FF W(LO)	W(LO)	W(LO)		
	W(HI)	W(HI)	W(HI)	W(HI)	W(HI)	W(HI)	M(HI).	W(HI)		
	N	N	N	N	N	N	N	N		
Direct	*W=bs	*W=*W∧bs	*W=*W bs	*W=*W&bs	*W=*W-bs	*W=*W+bs	*W-bs			0- 14
and 16-Bit Register	C1	C9	D1	D9	E1	E9	F1			
See Note	Fs W(LO)	Fs W(LO)	Fs W(LO)	Fs W(LO)	Fs W(LO)	Fs W(LO)	Fs W(LO)			
	W(HI)	W(HI)	W(HI)	₩(HI)	W(HI)	M(HI)	W(HI)			
Direct	*W=V	*W=*W^\	*W=*W V	*W=*W&V	*W=*WV	*W=*W+V	*W-V			
and 16-Bit	C1	C9	D 1	D9	E1	E9	F1			
Immediate See Note	FF	FF	FF	FF.	FF.	FF.	FF W(LO)			
Jes Mule	W(LO) W(HI)	W(LO) W(HI)	W(LO) W(HI)	W(LO) W(HI)	W(LO) W(HI)	W(LO) W(HI)	W(LO) W(HI)			
	V(LO)	V(LO)	V(LO)	V(LO)	V(LO)	V(LO)	V(LO)			
	V(HI)	V(HI)	V(HI)	V(HI)	∨(HI)	V(H1)	V(HI)			

PART 1 - DYADIC INSTRUCTIONS (Continued)

ADDRESSING				OPERA:	FION					ATION— E RANGE
MODE	MOVE	XOR	OR	AND	SUBTRACT	ADD	COMPARE	TEST	d	8
Offset Stack and	*(sp+N)=as	*(sp+N)=*(sp+N) \(\Lambda\) as	*(sp+N)=*(sp+N) as	*(sp+N)=*(sp+N)&as	*{sp+N}=*(sp+N)-as	*(sp+N)=*(sp+N)+as	*(sp+N)—as	test(*(sp+N),as)		014
Register	82	8A	92	9A	A2	AA	B2	ВА		
	Fs	Fs	Fs	Fs	Fs	Fs	Fs	Fs		
	N	N	N	N	N	N	N	N		
Offset Stack and	*(sp+N)=M	$*(sp+N)=*(sp+N)_{\Lambda}M$	*(sp+N)=*(sp+N) M	*(sp+N)=*(sp+N)&M	*(sp+N)=*(sp+N)-M	*(sp+N)=*(sp+N)+M	*(sp+N)M	test(*(sp+N),M)		
Immediate	82	8A	92	9A	A2	AA	B2	ВА		
	FF	FF	FF	ĖF	FF	FF	FF	FF		
	N	N	N	N	N	N	N	N		
	М	M	M	M	M	M	M	M		
Offset Stack and	*(sp+N)= *(bs+M)	*(sp+N)=*(sp+N) \\ *(bs+M)	*(sp+N)=*(sp+N) *(bs+M)	*(sp+N)=*(sp+N)& *(bs+M)	*(sp+N)=*(sp+N} *(bs+M)	*(sp+N)=*(sp+N)+ *(bs+M)	*(sp+N)=*(bs+M)	test(*(sp+N), *(bs+M))		014
Offset Memory	C4	CC	D4	DC	E4	EC	F4	FC		
	Fs	Fs	Fs	Fs	Fs	Fs	Fs	Fs		
	M	M	М	M	M	M	M	M		
	N	N	N	N	N	N	N	N		
Offset Stack and	*(sp+N)= *(sp+M)	*(sp+N)=*(sp+N) *(sp+M)	*(sp+N)=*(sp+N) *(sp+M)	*(sp+N)=*(sp+N)& *(sp+M)	*(sp+N)=*(sp+N) *(sp+M)	*(sp+N)=*(sp+N)+ *(sp+M)	*(sp+N)=*(sp+M)	test(*(sp+N), *(sp+M))		
Offset Stack	C4	CC	D4	DC	E 4	EC	F4	FC		
Otton	FF	FF	FF	FF	FF	FF	FF	FF		
	M	M	M	M	M	M	M	M		
	N	N	N	N	N	N	N	N		
Offset Stack and 16-Bit Register	*(dsp+N)=bs	*(dsp+N)= *(dsp+N)	*(dsp+N)= *(dsp+N) bs	*(dsp+N)≔ *(dsp+N)&bs	*(dsp+N)= sd-(N+qsb) *	*(dsp+N)= *(dsp+N)+bs	*(dsp+N)—bs			014
See Note	C2	CA	D2	DA	E2	EA	F2			
000 14010	Fs	Fs	Fs	Fs	Fs	Fs	Fs			
	N	N	N	N	N	N	N			
Offset Stack and 16-Bit Immediate	*(dsp+N)=W	*(dsp+N)= *(dsp+N)∧W	*(dsp+N)= *(dsp+N) W	*(dsp+N)= *(dsp+N)&W	*(dsp+N)= *(dsp+N)—W	*(dsp+N)= *(dsp+N)+W	*(dsp+N)—W			
See Note	C2	CA	D2	DA	E2	EA	F2			
	FF	FF.	FF	FF	FF	FF	FF			
	N	N	N	N	N	N	N			
	W(LO)	W(LO)	W(LO)	W(LO)	W(LO)	W(LO)	W(LO)			
	W(HI)	W(HI)	W(HI)	W(HI)	W(HI)	W(HI)	W(HI)			

DESTINATION-

PART 1 - DYADIC INSTRUCTIONS (Continued)

				OPERA	TION				SOURC	E RANGE
ADDRESSING MODE	MOVE	XOR	OR	AND	SUBTRACT	ADD	COMPARE	TEST	d	s
16-Bit	bd=bs	bd=bd∧bs	bd=bd bs	bd=bd&bs	bd=bd-bs	bd=bd+bs	bdbs		0-15	0- 14
Register and	CO	C8	D0	D8	E0	E8	F0			
16-Bit	ds	ds	ds	ds	ds	ds	ds			
Register									0-15	
16-Bit	bd=W	b d =bd∧W	bd=bd W	bd=bd&W	bd=bdW	bd=bd+W	bdW		0-15	
Register and 16-Bit	C0	C8	D0	D8 dF	E0 dF	E8 dF	F0 dF			
Immediate	dF W(LO)	dF W(LO)	dF W(LO)	W(LO)	W(LO)	W(LO)	w(Lo)			
	W(EO)	W(HI)	W(HI)	W(HI)	W(HI)	W(HI)	W(HI)			
16-Bit	bd=*ds	bd=bd∧*ds	bd=bd *ds	bd=bd&*ds	bd=bd-*ds	bd=bd+*ds	bd-*ds		0-15	0-14
Register and	C5	CD	D5	DD	E5	ED	F5			
Indirect See Note	ds	ds	ds	ds	ds	ds	ds			
						bd=bd+*W	bd=*W		0-15	
16-Bit	bd=*W	bd=bd∧*W	bd=bd *W	bd=bd&*W	bd=bd*W				0 10	
Register and Direct	C5	CD dF	D5 dF	DD dF	E5 dF	ED dF	F5 dF			
See Note	dF W(LO)	W(LO)	W(LO)	W(LO)	w(LO)	W(LO)	W(LO)			
	W(HI)	W(HI)	W(HI)	W(HI)	W(HI)	W(HI)	W(HI)			
16-Bit	bd=*ds++	bd=bdA*ds++	bd=bd *ds++	bd=bd&*ds++	bd=bd-*ds++	bd=bd+*ds++	bd-*ds++		0-15	015
Register and	C7	CF	D7	DF	E7	EF	F7			
Automatic Increment	ds	ds	ds	ds	ds	ds	ds			
See Note										
16-Bit	bd=*(ds+N)	$bd=bd\Lambda^*(ds+N)$	bd=bd *(ds+N)	bd=bd&*(ds+N)	bd=bd-*(ds+N)	bd=bd+*(ds+N)	bd-*(ds+N)		0-15	0-14
Register and	C6	CE	D6	DE	E6	EE	F6			
Offset Memory See Note	ds N	ds N	ds N	ds N	ds N	ds N	ds N			
	IN		IN							
16-Bit	bd=*(dsp+N)	bd=bd∧*(dsp+N)	bd=bd+(dsp+N)	bd=bd&*(dsp+N)	bd=bd-*(dsp+N)	bd=bd+*(dsp+N)	bd-*(dsp+N)		0-15	
Register and Offset Stack	C6	CE	D6	DE	E6	EE	F6 dF			
Offset Stack See Note	dF N	dF N	dF N	dF N	dF N	dF N	ar N			
	IN	IN	14	14	••	• •				

PART 2 — MONADIC INSTRUCTIONS

OPERATION

ADDRESSING						SH ARITH	IFT METICAL		IIFT IICAL	ROY	ATE 8	ROT	ATE 9	DESTINATION RANGE
MODE	ZERO	NEGATE	INCREMENT	DECREMENT	COMPLEMENT	LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT	d
Register	ad=0	ad=-ad	++ad	ad	ad≔∼ad	ad=ad*2	ad=ad/2	ad=ad<<1	ad≕ad>>1	ad=ad<<<1	ad=ad>>>1	ad=ad\$<<1	ad≔ad >>\$1	015
	20 d0	24 d0	28 d0	28 d8	2C d0	30 d1	30 dF	38 d1	38 dF	34 d1	34 dF	3C d1	3C dF	
Indirect	* bd=0	*bd=-*bd	++*bd	*bd	*bd=~*bd	*bd=*bd*2	*bd=*bd/2	*bd=*bd<<1	*bd==*bd>>1	*bd=*bd<<<1	*bd=*bd>>>1	*bd=*bd\$ <<1	*bd=*bd>>\$1	0-14
	21 d0	25 d0	29 d0	29 d8	2D d0	31 d1	31 dF	39 d1	39 dF	35 d1	35 dF	3D d1	3D dF	
Automatic Increment	*bd++≕0	*bd++= *bd++	++*bd++	*bd++	*bd++= ~*bd++	*bd++= *bd++*2	*bd++= *bd++/2	*bd++= *bd++<<1	*bd++= *bd++>>1	*bd++= *bd++<<<1	*bd++= *bd++>>>1	*bd++= *bd++\$<<1	*bd++:= *bd++>>\$1	0-15
	23 d0	27 d0	2B d0	2B d8	2F d0	33 d1	33 dF	3B d1	3B dF	37 d1	37 dF	3F d1	3F dF	
Offset Memory	*(bd+N)=0	*(bd+N)= *(bd+N)	++*(bd+N)	*(bd+N)	*(bd+N)= ~*(bd+N)	*(bd+N)= *(bd+N)*2	*(bd+N)= *(bd+N)/2	*(bd+N)= *(bd+N)<<1	*(bd+N)= *(bd+N)>>1	*(bd+N)= *(bd+N)<<<1	* (bd+N)= *(bd+N)>>>1	*(bd+N)= *(bd+N)\$<<1	*(bd+N)= *(bd+N)>>\$1	0-14
	22 d0 N	26 d0 N	2A d0 N	2A d8 N	2E d0 N	32 d1 N	32 dF N	3A d1 N	3A dF N	36 d1 N	36 dF N	3E d1 N	3E dF N	
Direct	*W≃0	*W=*W	++*W	*W	*W=~*W	*W=*W*2	*W∹*W/2	*W=*W<<1	*W=*W>>1	*W=*W<<<1	*W=*W>>>1	*W=*W\$<<1	*W==*W>>\$1	
	21 F0 W(LO) W(HI)	25 F0 W(LO) W(HI)	29 F0 W(LO) W(HI)	29 F8 W(LO) W(HI)	2D F0 W(LO) W(HI)	31 F1 W(LO) W(HI)	31 FF W(LO) W(HI)	39 F1 W(LO) W(H1)	39 FF W(LO) W(HI)	35 F1 W(LO) W(HI)	35 FF W(LO) W(HI)	3D F1 W(LO) W(HI)	3D FF W(LO) W(HI)	
Offset Stack	*(sp+N)=0	*(sp+N)= -*(sp+N)	++*(sp+N)	*(sp+N)	*(sp+N)= ~*(sp+N)	*(sp+N)= *(sp+N)*2	*(sp+N)= *(sp+N)/2	*(sp+N)= *(sp+N)<<1	*(sp+N)= *(sp+N)>>1	*(sp+N)= *(sp+N)<<<1	*(sp+N)= *(sp+N)>>>1	*(sp+N)= *(sp+N)\$<<1	*(sp+N)= *(sp+N)>>\$1	
	22 F0 N	26 F0 N	2A F0 N	2A F8 N	2E F0 N	32 F1 N	32 FF N	3A F1 N	3A FF N	36 F1 N	36 FF N	3E F1 N	3E FF N	
_ 16-Bit	bd=0		++bd	bd										015
Register	60		68	68										5 .0

PART 3 - MISCELLANEOUS DYADIC AND MONADIC INSTRUCTIONS

SPECIAL ADDRESSING							DESTIN SOURCE	ATION- E RANGE
MODE			OPERAT	TON			d	S
Register and Register	FIND LEFT ONES	FIND, CLEAR LEFT ONES	COUNT ONES					
	ad=flo(as)	ad=floc(as)	ad=bitsum(as)				0-15	0-15
	OC ds	4C ds	0E ds					
16-Bit Register	LOAD REGISTER ADDRESS	LOAD INSTRUCTION ADDRESS	LOAD MEMORY ADDRESS	LOAD STACK ADDRESS	BYTE SWAP	SIGN EXTEND		
	bd=&bs	bd=&*pc	bd=&*(bs+N)	bd=&*(sp+N)	swap(bd)	extend(bd)	0-15	0-14
	6D ds	6D dF	6F ds N	6F dF N	6A d0	62 d0		
	LOGICAL ADD REGISTER	LOGICAL ADD IMMEDIATE	ARITHMETICAL ADD REGISTER	ARITHMETICAL ADD IMMEDIATE				
	bd=bd+ logical (as)	bd=bd+ logical (N)	bd=bd+as	bd=bd+N			0-14	0-14
	75 ds	75 dF N	7D ds	7D dF N				
rp See Note	LOAD IMMEDIATE	LOAD REGISTER	BUMP 4	BUMP 8	DEBUMP 4	DEBUMP 8		
	rp=W	rp=bs	rp=rp+8	rp=rp+16	rp=rp-8	rp=rp−16		0-14
	4D OF W(LO) W(HI)	4D 0s	42	43	4A	4B		
sp	LOAD IMMEDIATE	LOAD REGISTER	LOGICAL ADD REGISTER	LOGICAL ADD IMMEDIATE	ARITHMETICAL ADD REGISTER	ARITHMETICAL ADD IMMEDIATE		
	sp=W	sp=bs	sp≔sp+ logical (as)	sp=sp+ logical (N)	sp=sp+as	sp=sp+N		0-14
	0D 0F W(LO) W(HI)	OD Os	75 Fs	75 FF N	7D Fs	7D FF N		

Note: The last three bits of the rp are always 0s.

PART 3 - MISCELLANEOUS DYADIC AND MONADIC INSTRUCTIONS (Continued)

SPECIAL ADDRESSING					DESTINA SOURCE I	
MODE		OPERATIO	ON		d	s
cr	SET CERTAIN BITS	CLEAR CERTAIN BITS				
See Note	set (N)	ctear (N)				
	01	03				
	N	N				
Stack	SAVE 8-BIT REGISTER	SAVE 16-BIT REGISTER	SAVE rp	SAVE cr		
	push (as) 06	push (bs) 46	push (rp) 47	push (cr) 07		0–15
	Os	Os				
Stack	RESTORE 8-BIT	RESTORE 16-BIT	RESTORE	RESTORE		
	REGISTER	REGISTER	rp	cr		
	ad=pop()	bd=pop()	rp=pop()	cr=pop()	0-15	
	04	44	45	05		
	d0	d0				

Note: The bits to be set or cleared are determined by the location of 1s in N. The order of the bits of the cr is as follows: 7, flag; 6, enable; 5, odd; 4, ones; 3, carry; 2, ovfl; 1, zero; 0, neg.

PART 4 – TRANSFER INSTRUCTIONS: UNCONDITIONAL AND CONDITION REGISTER BIT CONDITIONAL

							CONDITIO	ON						DESTINATION	
JUMP INSTRUCTIONS	UNCONDITIONAL (ALWAYS)	NEG	ZERO	OVFL	CARRY	ONES	ODD	ENABLE	FLAG	LT	LTEQ	LLTEQ	номос	SHOVFL	RANGE d
goto *W	59 W(LO) W(HI)														
goto *(pc+N)	58 N														
if(condition) goto *W	49 FF W(LO) W(HI)	49 F0 W(LO) W(HI)	49 F1 W(LO) W(HI)	49 F2 W(LO) W(HI)	49 F3 W(LO) W(HI)	49 F4 W(LO) W(HI)	49 F5 W(LO) W(HI)	49 F6 W(LO) W(HI)	49 F7 W(LO) W(HI)	49 F8 W(LO) W(HI)	49 F9 W(LO) W(HI)	49 FA W(LO) W(HI)	49 FB W(LO) W(HI)	49 FC W(LO) W(HI)	
if(!condition) goto *W	41 FF W(LO) W(HI)	41 F0 W(LO) W(HI)	41 F1 W(LO) W(HI)	41 F2 W(LO) W(HI)	41 F3 W(LO) W(HI)	41 F4 W(LO) W(HI)	41 F5 W(LO) W(HI)	41 F6 W(LO) W(HI)	41 F7 W(LO) W(HI)	41 F8 W(LO) W(HI)	41 F9 W(LO) W(HI)	41 FA W(LO) W(HI)	41 FB W(LO) W(HI)	41 FC W(LO) W(HI)	
if(condition) goto *bd	49 dF	49 d0	49 d1	49 d2	49 d3	49 d4	49 d5	49 d6	49 d7	49 d8	49 d9	49 dA	49 dB	49 dC	0—14
if(!condition) goto *bd	41 dF	41 d0	41 d1	41 d2	41 d3	41 d4	41 d5	41 d6	41 d7	41 d8	41 d9	41 dA	41 dB	41 dC	0-14
if(condition) goto *(bd+N)	48 dF N	48 d0 N	48 d1 N	48 d2 N	48 d3 N	48 d4 N	48 d5 N	48 d6 N	48 d7 N	48 d8 N	48 d9 N	48 dA N	48 dB N	48 dC N	0-14
if(!condition) goto *(bd+N)	40 dF N	40 d0 N	40 d1 N	40 d2 N	40 d3 N	40 d4 N	40 d5 N	40 d6 N	40 d7 N	40 d8 N	40 d9 N	40 dA N	40 dB N	40 dC N	0-14
if(condition) goto *(pc+N)	48 FF N	48 F0 N	48 F1 N	48 F2 N	48 F3 N	48 F4 N	48 F5 N	48 F6 N	48 F 7 N	48 F8 N	48 F9 N	48 FA N	48 FB N	48 FC N	
if(!condition) goto *(pc+N)	40 FF N	40 F0 N	40 F1 N	40 F2 N	40 F3 N	40 F4 N	40 F5 N	40 F6 N	40 F7 N	40 F8 N	40 F9 N	40 FA N	40 FB N	40 FC N	

PART 4 - TRANSFER INSTRUCTIONS: UNCONDITIONAL AND CONDITION REGISTER BIT CONDITIONAL (Continued)

	UNCONDITIONAL						CONDI	TION							DESTINATION
CALL INSTRUCTIONS	(ALWAYS)	NEG	ZERO	OVFL	CARRY	ONES	ODD	ENABLE	FLAG	LT	LTEQ	LLTEQ	номос	SHOVFL	RANGE d
*W()	79 W(LO) W(HI)														
if(condition) *W()	69 FF W(LO) W(HI)	69 F0 W(LO) W(HI)	69 F1 W(LO) W(HI)	69 F2 W(LO) W(HI)	69 F3 W(LO) W(HI)	69 F4 W(LO) W(HI)	69 F5 W(LO) W(HI)	69 F6 W(LO) W(HI)	69 F7 W(LO) W(HI)	69 F8 W(LO) W(HI)	69 F9 W(LO) W(HI)	69 FA W(LO) W(HI)	69 FB W(LO) W(HI)	69 FC W(LO) W(HI)	
if(!condition) *W()	61 FF W(LO) W(HI)	61 F0 W(LO) W(HI)	61 F1 W(LO) W(HI)	61 F2 W(LO) W(HI)	61 F3 W(LO) W(HI)	61 F4 W(LO) W(HI)	61 F5 W(LO) W(HI)	61 F6 W(LO) W(HI)	61 F7 W(LO) W(HI)	61 F8 W(LO) W(HI)	61 F9 W(LO) W(HI)	61 FA W(LO) W(HI)	61 FB W(LO) W(HI)	61 FC W(LO) W(HI)	
if(condition) *bd()	69 dF	69 d0	69 d1	69 d2	69 d3	69 d4	69 d5	69 d6	69 d7	69 d8	69 d9	69 dA	69 dB	69 dC	014
if(!condition) *bd()	61 dF	61 d0	61 d1	61 d2	61 d3	61 d4	61 d5	61 d6	61 d7	61 d8	61 d9	61 dA	61 dB	61 dC	0—14
RETURN INSTRUCTIONS															
return	66														
i return()	67														
if(condition) return	64 0F	64 00	64 01	64 02	64 03	64 04	64 05	64 06	64 07	64 08	64 09	64 0A	64 0B	64 0C	
if(!condition) return	65 0F	65 00	65 01	65 02	65 03	65 04	65 05	65 06	65 07	65 08	65 09	65 0A	65 0B	65 0C	

PART 5 – TRANSFER INSTRUCTIONS: REGISTER BIT CONDITIONAL AND MISCELLANEOUS

	REGISTER BIT NUMBER (n)									
JUMP INSTRUCTIONS	0	1	2	3	4	5	6	7	RANGE s	
if(bit(n,as)) goto *(pc+N)	5A	5A	5A	5A	5A	5A	5A	5A	0-15	
	s0	s1	s2	s3	s4	s5	s6	s7		
	N	N	N	N	N	N	N	N		
if(!bit(n,as)) goto *(pc+N)	52	52	52	52	52	52	52	52	0-15	
	sO	s1	s2	s3	s4	s 5	s6	s7		
	N	N	N	N	N	N	N	N		
if(bit(n,*bs)) goto *(pc+N)	5B	5B	5B	5B	5B	5B	5B	5B	0-15	
	sO	s1	s2	s3	s4	s 5	s6	s7		
	N	N	N	N	N	N	N	N		
if(!bit(n,*bs)) goto *(pc+N)	53	53	53	53	53	53	53	53	0-15	
	sO	s1	s2	s3	s4	s5	s6	s7		
	N	N	N	N	N	N	N	N		
if(bit(n,*bs++)) goto *(pc+N)	7B	7B	7B	7B	7B	7B	7B	7B	0-15	
	s0	s1	s2	s3	s4	s5	s6	s7		
	N	N	N	N	N	N	N	N		
if(!bit(n,*bs++)) goto *(pc+N)	73	73	73	73	73	73	73	73	0—15	
	s0	s1	s2	s3	s4	s 5	s6	s7		
	N	N	N	N	N	N	N	N		

MISCELLANEOUS

halt() 78

nop() 7F

Note 1: Register bit number 7 is the most significant bit.

Note 2: N is a positive or negative number (signed 2s complement).

PART 6 - SUMMARY OF MACHINE CODES

			NE CODE	E		ASSEMBLY LANGUAGE	ADDRESSING		CONDITION
1	2	3	4	5	6	INSTRUCTION	MODE	OPERATION	CONDITION (See Note)
01	N					set(N)	cr	Set Certain Bits	M
03	N					clear(N)	cr	Clear Certain Bits	M
04	d 0					ad=pop()	Stack	Restore 8-Bit Register	N.
05						cr=pop()	Stack	Restore cr	S
06	0s					push(as)	Stack	Save 8-Bit Register	Ň
07						push(cr)	Stack	Save cr	N
0C	ds					ad=flo(as)	Register and Register	Find Left Ones	F
0D	Os					sp=bs	sp	Load Register	N:
0D	0F	W(LO)	W(HI)			sp=W	sp	Load Immediate	N
0E	ds					ad=bitsum(as)	Register and Register	Count Ones	F
20	d0					ad=0	Register	Zero	F
21	d0					*bd=0	Indirect	Zero	F
21	F0	W(LO)	W(HI)			*W=0	Direct	Zero	F
22	d0	N				*(bd+N)=0	Offset Memory	Zero	F
22	F0	N				*(sp+N)=0	Offset Stack	Zero	F
23	d 0					*bd++=0	Automatic Increment	Zero	F
24	d0					ad=-ad	Register	Negate	Α
25	d0					*bd=-*bd	Indirect	Negate	Α
25	F0	W(LO)	W(HI)			*W=-*W	Direct	Negate	Α
26	d0	N				*(bd+N) = -*(bd+N)	Offset Memory	Negate	Α
26	F0	N				*(sp+N) = -*(sp+N)	Offset Stack	Negate	Α
27	d0					*bd++=-*bd++	Automatic Increment	Negate	Α
28	d0					++ad	Register	Increment	Α
28	d8					_ad	Register	Decrement	Α
29	d0					++* bd	Indirect	Increment	Α
29	d8	W(1 0)				*bd	Indirect	Decrement	Α
29	F0		W(HI)			++*W	Direct	Increment	Α
29	F8		W(HI)			*W	Direct	Decrement	Α
2A	q0	N				++*(bd+N)	Offset Memory	Increment	Α
2A	d8	N				*(bd+N)	Offset Memory	Decrement	Α
2A	F0	N				++*(sp+N)	Offset Stack	Increment	Α
2A	F8	N				*(sp+N)	Offset Stack	Decrement	Α
2B	d0					++*bd++	Automatic Increment	Increment	Α
2B 2C	48					*bd++	Automatic Increment	Decrement	Α
2C 2D	d0					ad=∼ad	Register	Complement	F
2D 2D	d0	W//LO\	14//1111			*bd= ~ *bd	Indirect	Complement	F
20	F0	W(LO)	w(HI)			* W= \sim * W	Direct	Complement	F

Note: The Condition column identifies which bits of the cr are affected by the operation. The characters are defined as follows: A, affects the neg, odd, zero, ones, ovfl, and carry bits; F, affects neg, odd, zero, and ones bits; H, affects enable bit; M, mask determines bits affected; N, no effect; and S, byte popped determines bits affected. Illegal opcodes have no effect on the bits of the cr. The odd and ones bits are affected by all 16-bit instructions (move, exclusive OR, OR, AND, subtract, add, compare) and by 16-bit increment and decrement instructions in an undefined manner. The ovfl bit is affected by 8- and 16-bit increment and decrement instructions and by all rotate and shift instructions in an undefined manner. The conditions It, Iteq, Ilteq, homog, and shoyfl are not part of the cr but are logical combinations of the cr bits. They are derived as follows: It = neg Λ ovfl; Iteq = zero | (neg Λ ovfl); Ilteq = carry | zero; homog = zero | ones; and shoyfl = neg Λ carry.

	MACHINE CODE BYTE					ASSEMBLY LANGUAGE	ADDRESSING	ODEDATION	CONDITION
1	2	3	4	5	6	INSTRUCTION	MODE	OPERATION	CONDITION
						$*(bd+N) = \sim *(bd+N)$	Offset Memory	Complement	F
2E	d0	N				$(pa+N) = (pa+N)$ $*(sp+N) = \sim *(sp+N)$	Offset Stack	Complement	F
2E	F0	N				*bd++=~*bd++	Automatic Increment	Complement	F
2F	d0					ad=ad*2	Register	Left Arithmetical Shift	Α
30	d1					ad=ad/2	Register	Right Arithmetical Shift	Α
30	dF					*bd=*bd*2	Indirect	Left Arithmetical Shift	Α
31	d1					*bd=*bd/2	Indirect	Right Arithmetical Shift	Α
31	dF	W(I O)	\#//LII\			*W=*W*2	Direct	Left Arithmetical Shift	Α
31	F1 FF	W(LO) W(LO)	W(HI) W(HI)			*W=*W/2	Direct	Right Arithmetical Shift	Α
31 32	d1	W(LO)	VV([71])			*(bd+N)=*(bd+N)*2	Offset Memory	Left Arithmetical Shift	Α
32 32	dF	N				*(bd+N)=*(bd+N)/2	Offset Memory	Right Arithmetical Shift	Α
32 32	F1	N				*(sp+N)=*(sp+N)*2	Offset Stack	Left Arithmetical Shift	Α
32 32	FF	N				(sp+N)=*(sp+N)/2	Offset Stack	Right Arithmetical Shift	Α
33	d1	14				*bd++=*bd++*2	Automatic Increment	Left Arithmetical Shift	Α
33	dF					*bd++=*bd++/2	Automatic Increment	Right Arithmetical Shift	Α
34	d1					ad=ad <<< 1	Register	Left Rotate 8	Α
34	dF					ad=ad >>> 1	Register	Right Rotate 8	Α
35	d1					*bd=*bd <<<1	Indirect	Left Rotate 8	Α
35	dF					*bd=*bd>>>1	Indirect	Right Rotate 8	Α
35	F1	W(LO)	W(HI)			*W=*W <<< 1	Direct	Left Rotate 8	Α
35	FF	W(LO)	W(HI)			*W=*W>>>1	Direct	Right Rotate 8	Α
36	d1	N N	** (,			(bd+N)=(bd+N) <<<1	Offset Memory	Left Rotate 8	Α
36	dF	N				(bd+N)=(bd+N)>>>1	Offset Memory	Right Rotate 8	Α
36	F1	N				*(sp+N)=*(sp+N) <<< 1	Offset Stack	Left Rotate 8	Α
36	FF	N				*(sp+N)=*(sp+N) >>> 1	Offset Stack	Right Rotate 8	Α
37	d1					*bd++=*bd++<<<1	Automatic Increment	Left Rotate 8	A
37	dF					*bd++=*bd++>>>1	Automatic Increment	Right Rotate 8	Α
38	d1					ad=ad << 1	Register	Left Logical Shift	Α
38	dF					ad=ad >>1	Register	Right Logical Shift	A
39	d1					*bd=*bd<<1	Indirect	Left Logical Shift	Α
39	dF					*bd=*bd>>1	Indirect	Right Logical Shift	A
39	F1	W(LO)	W(HI)			*W=*W << 1	Direct	Left Logical Shift	A
39	FF	W(LO)	W(HI)			*W=*W >> 1	Direct	Right Logical Shift	A
3A	d1	N				*(bd+N)=*(bd+N) << 1	Offset Memory	Left Logical Shift	A
3A	dF	N				*(bd+N)=*(bd+N) >> 1	Offset Memory	Right Logical Shift	A
3A	F1	N				*(sp+N)=*(sp+N) << 1	Offset Stack	Left Logical Shift	A
3A	FF	N				*(sp+N)=*(sp+N) >> 1	Offset Stack	Right Logical Shift	A
3B	d1					*bd++=*bd++ << 1	Automatic Increment	Left Logical Shift	A
3B	dF					*bd++=*bd++>>1	Automatic Increment	Right Logical Shift	A
3C	d1					ad=ad\$ $<<$ 1	Register	Left Rotate 9	A
3C	dF					ad=ad >>\$1	Register	Right Rotate 9	A A
3D	d1					*bd=*bd\$<<1	Indirect	Left Rotate 9	A
3D	dF					*bd=*bd>>\$1	Indirect	Right Rotate 9	A
3D	F1		W(HI)			*W=*W\$ << 1	Direct	Left Rotate 9	
3D	FF	W(LO)	W(HI)			*W=*W>>\$1	Direct	Right Rotate 9	A
3E	d1	N				*(bd+N)=*(bd+N)\$ << 1	Offset Memory	Left Rotate 9	A A
3E	dF	N				*(bd+N)=*(bd+N)>>\$1	Offset Memory	Right Rotate 9	A
3F	F1	N				*(sp+N)=*(sp+N)\$ << 1	Offset Stack	Left Rotate 9	A
3F	FF	N				*(sp+N)=*(sp+N) >> \$1	Offset Stack	Right Rotate 9	
3F	d1					*bd++=*bd++\$ << 1	Automatic Increment	Left Rotate 9 Right Rotate 9	A A
3F	dF					*bd++=*bd++>>\$1	Automatic Increment	right notate 9	A

	r	MACHINE BYT				ACCEMBLY LANGUAGE	ADDDESSING		CONDITION
1	2	3	4	5	6	ASSEMBLY LANGUAGE INSTRUCTION	ADDRESSING MODE	OPERATION	
40	dc	N	See Note 1			if(!condition)goto*(bd+N)		Jump	N
40	Fc	N	See Note 1			if(!condition)goto*(pc+N)		Jump	N
41	dc		See Note 1			if(!condition)goto*bd		Jump	N
41	Fc	W(LO)	W(HI) S	See Note 1		if(!condition)goto*W		Jump	N
42						rp=rp+8	rp	Bump 4	N
43						rp=rp+16	rp	Bump 8	N
44	d 0					bd=pop()	Stack	Restore 16-Bit Register	N
45	_					rp=pop()	Stack	Restore rp	N
46	0s		•			push(bs)	Stack	Save 16-Bit Register	N
47			C N 4			push(rp)	Stack	Save rp	Ñ
48	dc	N	See Note 1			if(condition)goto*(bd+N)		Jump	N
48	Fc	N	See Note 1			if(condition)goto*(pc+N)		Jump	N
49	dc Fc	W/I O\	See Note 1			if(condition)goto*bd		Jump	N
49	FC	W(LO)	W(HI) S	ee Note 1		if(condition)goto*W		Jump	N
4A						rp=rp8	rp	Debump 4	N
4B 4C						rp=rp-16	rp	Debump 8	N
4C 4D	ds Os					ad=floc(as)	Register and Register	Find, Clear Left Ones	F
4D	05 0F	W(LO)	W(HI)			rp=bs	rp	Load Register	N
52	_	W(LO)	See Note 2			rp=W	rp	Load Immediate	N
52 53	sn	N	See Note 2			if(!bit(n,as))goto*(pc+N)		Jump	N
58	sn N	111	See Note 2			if(!bit(n,*bs))goto*(pc+N)		Jump	N
59	W(LO)	W(HI)				goto*(pc+N) goto*W		Unconditional Jump	N
5A	sn	N	See Note 2			•		Unconditional Jump	N
5B	sn	N	See Note 2			if(bit(n,as))goto*(pc+N) if(bit(n,*bs))goto*(pc+N)		Jump	N
60	d0	IN	See Note 2			bd=0	4.0 Die Deutstern	Jump	N
61	dc		See Note 1			if(!condition)*bd()	16-Bit Register	Zero	A
61	Fc	W(LO)	W(HI) Se	e Note 1		if(!condition)*W()		Call	N
62	d0	11(20)	********	oc word i		extend (bd)	16-Bit Register	Call	N
64	Oc		Se	ee Note 1		if(condition)return	10-Bit Register	Sign Extend	N
65	Oc		_	ee Note 1		if(!condition)return		Return	N
66	•		Ů.	oc NOLC 1		return		Return	N
67						i return()		Return	N
68	d0					++bd	16 Die Deutstern	Interrupt Return Increment	S
68	d8					bd	16-Bit Register	Decrement	A
69	dc		Se	e Note 1		if(condition)*bd()	16-Bit Register	Call	A
69	Fc	W(LO)	_	e Note 1		if(condition)*W()		Call	N
6A	d0	,20)	*******			swap(bd)	16-Bit Register		N
6D	ds					bd=&bs	16-Bit Register	Byte Swap Load Register Address	N
6D	dF					bd=&s bd=&*pc	16-Bit Register	•	N
6F	ds	N				bd=& pc bd=&*(bs+N)	16-Bit Register	Load Instruction Address	N
6F	dF	N				bd=&*(ss+N)	<u> </u>	Load Memory Address	N
73	sn	N	Se	e Note 2		if(!bit(n,*bs++))goto*(pc+N)	16-Bit Register	Load Stack Address	N
		• •	00			introduction party (goto (perty)		Jump	N

Note 1: c is the condition. Its value is as follows: 0, neg; 1, zero; 2, ovfl; 3, carry; 4, ones; 5, odd; 6, enable; 7, flag; 8, It; 9, Iteq; A, Ilteq; B, homog; C, shovfl; F, always.

Note 2: n is the register bit number.

	MACHINE CODE BYTE					ASSEMBLY LANGUAGE	ADDRESSING		CONDITION
1	2	3	4	5	6	INSTRUCTION	MODE	OPERATION	CONDITION
75	٠.					bd=bd+logical(as)	16-Bit Register	Logical Add Register	N
75 75	ds dF	N				bd=bd+logical(N)	16-Bit Register	Logical Add Immediate	N
	Fs	IN				sp=sp+logical(as)	sp	Logical Add Register	N
75 75	FS FF	N				sp=sp+logical(N)	sp	Logical Add Immediate	N
75 78	FF	IN				halt()		Halt	Н
78 79	W(LO)	W(H1)				*W()		Unconditional Call	N
78 78	sn	N.	See Not	a		if(bit(n,*bs++))goto*(pc+N)		Jump	N
7D	ds	.,	000 1100	•		bd=bd+as	16-Bit Register	Arithmetical Add Register	N
7D	dF	N				bd=bd+N	16-Bit Register	Arithmetical Add Immediate	N
7D	Fs					sp=sp+as	sp	Arithmetical Add Register	N
7D	FF	N				sp=sp+N	sp	Arithmetical Add Immediate	N
7.5 7.F	• • •	•••				nop()		No Operation	N
80	ds					ad=as	Register and Register	Move	F
80	dF	N				ad=N	Register and Immediate	Move	F
81	ds					*bd=as	Indirect and Register	Move	F
81	dF	N				*bd=N	Indirect and Immediate	Move	F -
81	Fs	W(LO)	W(H1)			*W=as	Direct and Register	Move	F
81	FF	W(LO)		N		*W=N	Direct and Immediate	Move	F
82	ds	N.				*(bd+N)=as	Offset Memory and Register	Move	F
82	dF	N	M			*(bd+N)=M	Offset Memory and Immediate	Move	F
82	Fs	N				*(sp+N)=as	Offset Stack and Register	Move	F
82	FF	N	М			*(sp+N)=M	Offset Stack and Immediate	Move	F
83	ds					*bd++=as	Automatic Increment and Register	Move	F
83	dF	N				*bd++=N	Automatic Increment and Immediate	Move	F
85	ds					ad=*bs	Register and Indirect	Move	F .
85	dF	W(LO)) W(HI)			ad=*W	Register and Direct	Move	F
86	ds	N				ad=*(bs+N)	Register and Offset Memory	Move	F
86	dF	N				ad=*(sp+N)	Register and Offset Stack	Move	F
87	ds					ad==*bs++	Register and Automatic Increment	Move	F
88	ds					ad=ad Λ as	Register and Register	Exclusive OR	F
88	dF	N				ad=ad Λ N	Register and Immediate	Exclusive OR	F
89	ds					*bd=*bd Λ as	Indirect and Register	Exclusive OR	F
89	dF	N				*bd=*bd Λ N	Indirect and Immediate	Exclusive OR	F
89	Fs	W(LO) W(HI)			*W=*W Λ as	Direct and Register	Exclusive OR	F
89	FF	W(LO) W(HI)	Ν		*W=*W ∧ N	Direct and Immediate	Exclusive OR	F
8A	ds	N				*(bd+N)=*(bd+N) Λ as	Offset Memory and Register	Exclusive OR Exclusive OR	F
8A	dF	N	M			*(bd+N)=*(bd+N) Λ M	Offset Memory and Immediate	Exclusive OR Exclusive OR	F
A8	Fs	N				* $(sp+N)=*(sp+N) \Lambda as$	Offset Stack and Register	Exclusive OR Exclusive OR	F
8A	FF	N	M			*(sp+N)=*(sp+N) Λ M	Offset Stack and Immediate	Exclusive OR Exclusive OR	F
8B	ds					*bd++=*bd++ \Lambda as	Automatic Increment and Register Automatic Increment and Immediate	Exclusive OR Exclusive OR	F
8B	dF	N				*bd++=*bd++ \(\Lambda\) N		Exclusive OR	F
8D	ds					ad=ad Λ *bs	Register and Indirect Register and Direct	Exclusive OR Exclusive OR	F
8D	dF	W(LO) W(HI)			ad=ad Λ *W	•	Exclusive OR	F
8E	ds	N				$ad=ad \Lambda^*(bs+N)$	Register and Offset Memory	Exclusive OR	F
8E	dF	N				$ad=ad \Lambda^*(sp+N)$	Register and Offset Stack Register and Automatic Increment	Exclusive OR	F
8F	ds					ad=ad Λ *bs++	3	OR	F
90	ds					ad=ad l as	Register and Register Register and Immediate	OR	F
90	dF	N				ad=ad N	negister and infinediate	5	

Note: n is the register bit number.

	MACHINE CODE								
		BYT	ΓE			ASSEMBLY LANGUAGE	ADDRESSING		
1	2	3	4	5	6	INSTRUCTION	MODE	OPERATION	CONDITION
								5. 2	33.1.511.612
91	ds					*bd=*bd as	Indirect and Register	OR	E
91	dF	N				*bd=*bd N	Indirect and Immediate	OR	, E
91	Fs	W(LO)	W(HI)			*W=*W as	Direct and Register	OR	, E
91	FF	W(LO)	W(HI)	N		*W=*W N	Direct and Immediate	OR	, E
92	ds	N				*(bd+N)=*(bd+N) as	Offset Memory and Register	OR	, E
92	dF	N	M			*(bd+N)=*(bd+N) M	Offset Memory and Immediate	OR	, E
92	Fs	N				(sp+N)=(sp+N) as	Offset Stack and Register	OR	, E
92	FF	N	M			*(sp+N)=*(sp+N) M	Offset Stack and Immediate	OR	, E
93	ds					*bd++=*bd++ as	Automatic Increment and Register	OR	F
93	dF	N				*bd++=*bd++ N	Automatic Increment and Immediate	OR	F
95	ds					ad=ad *bs	Register and Indirect	OR	F
95	dF	W(LO)	W(HI)			ad=ad *W	Register and Direct	OR	F F
96	ds	N				ad=ad * (bs+N)	Register and Offset Memory	OR	F
96	dF	N				ad=ad *(sp+N)	Register and Offset Stack	OR	r
97	ds					ad=ad *bs++	Register and Automatic Increment	OR	F
98	ds					ad=ad&as	Register and Register	AND	r r
98	dF	N				ad=ad&N	Register and Immediate	AND	F
99	ds					*bd=*bd&as	Indirect and Register	AND	F
99	dF	N				*bd=*bd&N	Indirect and Immediate	AND	F F
99	Fs	W(LO)	W(HI)			*W= *W&as	Direct and Register		F
99	FF	W(LO)	W(HI)	N		*W=*W&N	Direct and Immediate	AND	F -
9A	ds	N				*(bd+N)=*(bd+N)&as	Offset Memory and Register	AND	F -
9A	dF	N	M			*(bd+N)=*(bd+N)&M	Offset Memory and Immediate	AND	F
9A	Fs	N				*(sp+N)=*(sp+N)&as	·	AND	F _
9A	FF	N	М			*(sp+N)=*(sp+N)&M	Offset Stack and Register	AND	F
9B	ds					*bd++=*bd++&as	Offset Stack and Immediate	AND	F
9B	dF	N				*bd++=*bd++&N	Automatic Increment and Register	AND	F
9D	ds	.,				ad=ad&*bs	Automatic Increment and Immediate	AND	F
9D	dF	W(LO)	W(HI)			ad=ad& #W	Register and Indirect	AND	F
9E	ds	N N	** (1117			ad=ad& w ad=ad&*(bs+N)	Register and Direct	AND	F
9E	dF	N				ad=ad&*(sp+N)	Register and Offset Memory	AND	F
9F	ds	14				ad=ad& (sp+N) ad=ad&*bs++	Register and Offset Stack	AND	F
A0	ds						Register and Automatic Increment	AND	F
A0	dF	N				ad=adas ad=adN	Register and Register	Subtract	Α
A1	ds	,,				*bd=*bd –as	Register and Immediate	Subtract	Α
A1	dF	N					Indirect and Register	Subtract	Α
A1	Fs					*bd=*bd – N *W=*W-as	Indirect and Immediate	Subtract	Α
A1	FF	W(LO)	W(HI)	N			Direct and Register	Subtract	Α
A2	ds	N N	**(****)	14		*W=*W-N	Direct and Immediate	Subtract	Α
A2	dF	N	M			*(bd+N)=*(bd+N) -as	Offset Memory and Register	Subtract	Α
A2	Fs	N				*(bd+N)=*(bd+N)-M	Offset Memory and Immediate	Subtract	Α
A2	FF	N	М			*(sp+N)=*(sp+N)-as	Offset Stack and Register	Subtract	Α
A2 A3	ds	IN	141			*(sp+N)=*(sp+N) –M	Offset Stack and Immediate	Subtract	Α
A3	ds dF	N				*bd++=*bd++-as	Automatic Increment and Register	Subtract	Α
		IN				*bd++=*bd++-N	Automatic Increment and Immediate	Subtract	Α
A5	ds dF	W/LO	M//LII)			ad=ad - *bs	Register and Indirect	Subtract	Α
A5		W(LO)	W(HI)			ad=ad*W	Register and Direct	Subtract	A
A6	ds	N				ad=ad - * (bs+N)	Register and Offset Memory	Subtract	Ą
A6 A7	dF	N				ad=ad - * (sp+N)	Register and Offset Stack	Subtract	.A
~/	ds					ad=ad –* bs++	Register and Automatic Increment	Subtract	.A

	MACHINE CODE BYTE					ASSEMBLY LANGUAGE	ADDRESSING		
1	2	3	4	5	6	INSTRUCTION	MODE	OPERATION	CONDITION
•	-	•	•	-	_				
A8	ds					ad=ad+as	Register and Register	Add	Α
A8	dF	N				ad=ad+N	Register and Immediate	Add	Α
A9	ds	• • • • • • • • • • • • • • • • • • • •				*bd=*bd+as	Indirect and Register	Add	Α
A9	dF	N				*bd=*bd+N	Indirect and Immediate	Add	Α
A9	Fs	W(LO)	W(HI)			*W=*W+as	Direct and Register	Add	Α
A9 A9	FF	W(LO)	W(HI)	N		*W=*W+N	Direct and Immediate	Add	Α
	ds	W(LO)	VV (1717)	1.0		(bd+N)=(bd+N)+as	Offset Memory and Register	Add	Α
AA	dF	N	М			(bd+N)=*(bd+N)+M	Offset Memory and Immediate	Add	Α
AA		N	IVI			*(sp+N)=*(sp+N)+as	Offset Stack and Register	Add	Α
AA	Fs FF	N	M			*(sp+N)=*(sp+N)+M	Offset Stack and Immediate	Add	Α
AA		IV	IVI			*bd++=*bd++ +as	Automatic Increment and Register	Add	Α
AB	ds dF	N				*bd++=*bd++ +N	Automatic Increment and Immediate	Add	Α
AB		IN				ad=ad+*bs	Register and Indirect	Add	Α
AD	ds	wu ov	\\/\{\LI\\			ad=ad+*W	Register and Direct	Add	Α
AD	dF	W(LO)	W(HI)			ad=ad+*(bs+N)	Register and Offset Memory	Add	Α
AE	ds	N				ad=ad+*(sp+N)	Register and Offset Stack	Add	Α
AE	dF	N				ad=ad+*bs++	Register and Automatic Increment	Add	Α
AF	ds					ad —as	Register and Register	Compare	Α
В0	ds					ad –N	Register and Immediate	Compare	Α
В0	dF	N				*bd—as	Indirect and Register	Compare	Α
B1	ds					*bd – N	Indirect and Immediate	Compare	Α
R1	dF	N				*W-as	Direct and Register	Compare	Α
B1	Fs	W(LO)				*W-N	Direct and Immediate	Compare	Α
B1	FF	W(LO)	W(HI)	N		*(bd+N) –as	Offset Memory and Register	Compare	Α
B2	ds	N				*(bd+N) –M	Offset Memory and Immediate	Compare	Α
B2	dF	N	M			*(sp+N)as	Offset Stack and Register	Compare	Α
82	Fs	N				* * * * * * * * * * * * * * * * * * * *	Offset Stack and Immediate	Compare	Α
B2	FF	N	M			*(sp+N) -M	Automatic Increment and Register	Compare	Α
В3	ds					*bd++-as	Automatic Increment and Immediate	Compare	Α
В3	dF	N				*bd++-N	Register and Direct	Compare	Α
85	ds					ad – *bs	Register and Direct	Compare	Α
B5	dF	W(LO)	W(HI)			ad –*W	Register and Offset Memory	Compare	Α
B 6	ds	N				ad * (bs+N)	Register and Offset Stack	Compare	Α
В6	dF	N				ad * (sp+N)	Register and Onset Stack Register and Automatic Increment	Compare	Α
B7	ds					ad – *bs++	Register and Register	Test	F
B8	ds					test (ad,as)	Register and Immediate	Test	F
88	dF	N				test(ad,N)	Indirect and Register	Test	F
В9	ds					test(*bd,as)	Indirect and Immediate	Test	F
В9	dF	N				test(*bd,N)	Direct and Register	Test	F
В9	Fs	W(LO)				test(*W,as)	Direct and Immediate	Test	F
B9	FF	W(LO)	W(HI)	N		test(*W,N)	Offset Memory and Register	Test	F
BA	ds	N				test(*(bd+N),as)		Test	E
BA	dF	N	М			test(*(bd,N),M)	Offset Memory and Immediate	Test	F
BA	Fs	N				test(*(sp+N),as)	Offset Stack and Register	Test	F
BA	FF	N	M			test(*(sp+N),M)	Offset Stack and Immediate	Test	F
ВВ	ds					test(*bd++,as)	Automatic Increment and Register	Test	F
BB	dF	N				test(*bd++,N)	Automatic Increment and Immediate	Test	F
BD	ds					test(ad,*bs)	Register and Indirect	Test	F
BD	dF	W(LO)) W(HI)			test(ad, *W)	Register and Direct	Test	F
8E	ds	N				test(ad,*(bs+N))	Register and Offset Memory	Test	, F
BE	dF	N				test(ad,*(sp+N))	Register and Offset Stack	1 62 1	•

	MACHINE COD BYTE			Ē.		ASSEMBLY LANGUAGE	ADDRESSING		
1	2	3	4	5	6	INSTRUCTIONS	ADDRESSING MODE	OPERATION	CONDITION
					•		WODE	OPERATION	
BF	ds					test(ad,*bs++)	Register and Automatic Increment	Test	F
C0	ds					bd=bs	16-Bit Register and 16-Bit Register	Move	F
C0	dF	W(LO)	W(HI)			bd=W	16-Bit Register and 16-Bit Immediate	Move	F
C1	ds					*dd=bs	Indirect and 16-Bit Register	Move	F
C1	₫F		W(HI)			*dd=W	Indirect and 16-Bit Immediate	Move	F
C1	Fs		W(HI)			*W=bs	Direct and 16-Bit Register	Move	F
C1	FF	W(LO)	W(HI)	V(LO)	V(H1)	*W=V	Direct and 16-Bit Immediate	Move	F
C2	ds	N				*(dd+N)=bs	Offset Memory and 16-Bit Register	Move	, F
C2	dF -	N	W(LO)	W(HI)		*(dd+N)≔W	Offset Memory and 16-Bit Immediate	Move	, F
C2	Fs	N				*(dsp+N)≔bs	Offset Stack and 16-Bit Register	Move	F
C2	FF	N	W(LO)	W(HI)		*(dsp+N)=W	Offset Stack and 16-Bit Immediate	Move	F
C3	ds					*dd++=bs	Automatic Increment and 16-Bit Register	Move	F
C3	₫F	W(LO)	W(H1)			*dd++=W	Automatic Increment and 16-Bit Immediate	Move	F
C4	ds	M	N			*(bd+N)=*(bs+M)	Offset Memory and Offset Memory	Move	F.
C4	dF -	M	N			*(bd+N)=*(sp+M)	Offset Memory and Offset Stack	Move	F
C4	Fs	М	N			*(sp+N)=*(bs+M)	Offset Stack and Offset Memory	Move	F
C4	FF	M	N			*(sp+N)=*(sp+M)	Offset Stack and Offset Stack	Move	F
C5	ds	W(1, 6)				bd=*ds	16-Bit Register and Indirect	Move	F
C5	dF		W(HI)			bd=*W	16-Bit Register and Direct	Move	F
C6	ds	N				bd=*(ds+N)	16-Bit Register and Offset Memory	Move	F
C6	dF	N				bd=*(dsp+N)	16-Bit Register and Offset Stack	Move	F
C7	ds					bd=*ds++	16-Bit Register and Automatic Increment	Move	F
C8	ds	W/I (0)				bd=bd ∧ bs	16-Bit Register and 16-Bit Register	Exclusive OR	F
C8 C9	dF ds	W(LO)	W(HI)			bd=bd ∧W	16-Bit Register and 16-Bit Immediate	Exclusive OR	F
C9	dF	W/LOV	14//1111			*dd=*dd Λ bs	Indirect and 16-Bit Register	Exclusive OR	F
C9	Fs	W(LO) W(LO)				*dd=*dd \(\Lambda\) W	Indirect and 16-Bit Immediate	Exclusive OR	F
C9	FF	W(LO)		V(LO)	1//(11)	*W=*W ∧ bs	Direct and 16-Bit Register	Exclusive OR	F
CA	ds	N N	VV (1717)	V(LO)	V (HT)	*W=*W \(\Lambda\) \(\text{V}\)	Direct and 16-Bit Immediate	Exclusive OR	F
CA	dF	N	W(LO)	\A//LLI\		*(dd+N)=*(dd+N) Λ bs	Offset Memory and 16-Bit Register	Exclusive OR	F
CA	Fs	N	W(LO)	VV(171)		$*(dd+N)=*(dd+N) \Lambda W$	Offset Memory and 16-Bit Immediate	Exclusive OR	F
CA	FF	N	W(LO)	W/LII		*(dsp+N)=*(dsp+N) Λ bs	Offset Stack and 16-Bit Register	Exclusive OR	F
СВ	ds	IN	W(LO)	VV(171)		*(dsp+N)=*(dsp+N) Λ W	Offset Stack and 16-Bit Immediate	Exclusive OR	F
СВ	dF	W(LO)	W(HI)			*dd++=*dd++ Λ bs	Automatic Increment and 16-Bit Register	Exclusive OR	F
CC	ds	M M	N			$*dd++=*dd++ \Lambda W$ $*(L_1,L_2) *(L_1,L_2) *(L_2,L_2)$	Automatic Increment and 16-Bit Immediate	Exclusive OR	F
CC	dF	M	N			*(bd+N)=*(bd+N) Λ *(bs+M) *(bd+N)=*(bd+N) Λ *(Offset Memory and Offset Memory	Exclusive OR	F
CC	Fs	M	N			*(bd+N)=*(bd+N) \(\Lambda \) *(sp+M)	Offset Memory and Offset Stack	Exclusive OR	F
CC	FF	M	N			$(sp+N)=(sp+N) \Lambda (bs+M)$	Offset Stack and Offset Memory	Exclusive OR	F
CD	ds	141	14			*(sp+N)=*(sp+N) Λ *(sp+M)	Offset Stack and Offset Stack	Exclusive OR	F
CD	dF	W(LO)	W(HI)			bd=bd Λ *ds	16-Bit Register and Indirect	Exclusive OR	F
CE	ds	N N	** (1117			bd−bd Λ *W	16-Bit Register and Direct	Exclusive OR	F
CE	dF	N				$bd=bd \Lambda^*(ds+N)$	16-Bit Register and Offset Memory	Exclusive OR	F
CF	ds	.,				bd=bd Λ *(dsp+N)	16-Bit Register and Offset Stack	Exclusive OR	F
D0	ds					bd=bd Λ *ds++	16-Bit Register and Automatic Increment	Exclusive OR	F
D0	dF	W(LO)	W(HI)			bd=bd bs	16-Bit Register and 16-Bit Register	OR	F
D1	ds	,	(1111			bd=bd W	16-Bit Register and 16-Bit Immediate	OR	F
D1	dF	W(LO)	W(HI)			*dd=*dd bs	Indirect and 16-Bit Register	OR	F
D1	Fs	W(LO)				*dd=*dd W	Indirect and 16-Bit Immediate	OR	F
D1	FF	W(LO)		V(LO)	V(HI)	*W=*W bs	Direct and 16-Bit Register	OR	F
		,20/		,,,,,	* (111)	*W=*W V	Direct and 16-Bit Immediate	OR	F

	MACHINE CODE BYTE					ASSEMBLY LANGUAGE	ADDRESSING		CONDITION
1	2	3	4	5	6	INSTRUCTIONS	MODE	OPERATION	CONDITION
53	ds	N				*(dd+N)=*(dd+N) bs	Offset Memory and 16-Bit Register	OR	F
D2 D2	dF	N	W(LO)	W/HI		*(dd+N)=*(dd+N W	Offset Memory and 16-Bit Immediate	OR	F
D2 D2	Fs	N	W(LO)	**(1117		(dsp+N)=*(dsp+N) bs	Offset Stack and 16-Bit Register	OR	F
	FS FF	N	W(LO)	W//LII		*(dsp+N)=*(dsp+N) W	Offset Stack and 16-Bit Immediate	OR	F
D2		IN	W(LO)	VV(1717)		*dd++=*dd++ bs	Automatic Increment and 16-Bit Register	OR	F
D3	ds dF	W(LO)	W(HI)			*dd++=*dd++ W	Automatic Increment and 16-Bit Immediate	OR	F
D3 D4		W(LO)	W(HI)			*(bd+N)=*(bd+N) *(bs+M)	Offset Memory and Offset Memory	OR	F
D4 D4	ds dF	M	N			*(bd+N)=*(bd+N) *(sp+M)	Offset Memory and Offset Stack	OR	F
D4 D4	Fs	M	N			$*(sp+N)=*(sp+N) \mid *(bs+M)$	Offset Stack and Offset Memory	OR	F
D4 D4	FF	M	N			$(sp+N) = (sp+N) \mid (sp+M)$	Offset Stack and Offset Stack	OR	F
D5	ds	141	IV			bd=bd *ds	16-Bit Register and Indirect	OR	F
D5	dF	W(LO)	W(HI)			bd=bd *W	16-Bit Register and Direct	OR	F
D6	ds	W(LO)	VV(1717)			bd=bd *(ds+N)	16-Bit Register and Offset Memory	OR	F
D6	dF	N				bd=bd *(ds+N)	16-Bit Register and Offset Stack	OR	F
D7	ds	IV				bd=bd *ds++	16-Bit Register and Automatic Increment	OR	F
D8	ds					bd=bd-r ds · ·	16-Bit Register and 16-Bit Register	AND	F
D8	dF	W(LO)	W/HI			bd=bd&W	16-Bit Register and 16-Bit Immediate	AND	F
D8	ds	W(LO)	VV(1117			*dd=*dd&bs	Indirect and 16-Bit Register	AND	F
D9	dF	W(LO)	W/H1			*dd=*dd&W	Indirect and 16-Bit Immediate	AND	F
D9	Fs	W(LO)				*W=*W&bs	Direct and 16-Bit Register	AND	F
D9	FF		W(HI)	V(LO)	V/HI)	*W=*W&V	Direct and 16-Bit Immediate	AND	F
DA	ds	N N	VV (111)	V(LO)	V ((11))	*(dd+N)=*(dd+N)&bs	Offset Memory and 16-Bit Register	AND	F
DA	dF	N	W(LO)	W(HI)		*(dd+N)=*(dd+N)&W	Offset Memory and 16-Bit Immediate	AND	F
DA	Fs	N	W(LO)	**(111)		*(dsp+N)=*(dsp+N)&bs	Offset Stack and 16-Bit Register	AND	F
DA	FF	N	W(LO)	W/HI		*(dsp+N)=*(dsp+N)&W	Offset Stack and 16-Bit Immediate	AND	F
DB	ds	11	W(LO)	**(1117		*dd++=*dd++&bs	Automatic Increment and 16-Bit Register	AND	F
DB DB	dF	W(LO)	W(HI)			*dd++=*dd++&W	Automatic Increment and 16-Bit Immediate	AND	F
DC	ds	M M	N			(bd+N)=(bd+N)&(bs+M)	Offset Memory and Offset Memory	AND	F
DC	dF	M	N			*(bd+N)=*(bd+N)&*(sp+M)	Offset Memory and Offset Stack	AND	F
DC	Fs	M	N			*(sp+N)=*(sp+N)&*(bs+M)	Offset Stack and Offset Memory	AND	F
DC	FF	M	N			*(sp+N)=*(sp+N)&*(sp+M)	Offset Stack and Offset Stack	AND	F
DD	ds	IVI	1.4			bd=bd&*ds	16-Bit Register and Indirect	AND	F
DD	dF	W(LO)	W(HI)			bd=bd&*W	16-Bit Register and Direct	AND	F
DE	ds	N N	**(1117			bd=bd&*(ds+N)	16-Bit Register and Offset Memory	AND	F
DE	dF	N				bd=bd&*(dsp+N)	16-Bit Register and Offset Stack	AND	F
DF	ds					bd=bd&*ds++	16-Bit Register and Automatic Increment	AND	F
EO	ds					bd=bdbs	16-Bit Register and 16-Bit Register	Subtract	Α
E0	dF	W(LO)	W(HI)			bd=bdW	16-Bit Register and 16-Bit Immediate	Subtract	Α
E1	ds	W(LO)	**(****)			*dd=*dd -bs	Indirect and 16-Bit Register	Subtract	Α
E1	dF	W(LO)	W(HI)			*dd=*ddW	Indirect and 16-Bit Immediate	Subtract	Α
E1	Fs	W(LO)				*W=*W-bs	Direct and 16-Bit Register	Subtract	Α
E1	FF	W(LO)		V(LO)	V(HI)	*W=*W-V	Direct and 16-Bit Immediate	Subtract	Α
E2	ds	N N	*******	. (,	*(dd+N)=*(dd+N)-bs	Offset Memory and 16-Bit Register	Subtract	Α
E2	dF	N	W(LO)	W(HI)		*(dd+N)=*(dd+N)-W	Offset Memory and 16-Bit Immediate	Subtract	Α
E2	Fs	N	,_5/	***************************************		*(dsp+N)=*(dsp+N)-bs	Offset Stack and 16-Bit Register	Subtract	Α
E2	FF	N	W(LO)	W(HI)		*(dsp+N)=*(dsp+N)-W	Offset Stack and 16-Bit Immediate	Subtract	Α
E3	ds					*dd++=*dd++-bs	Automatic Increment and 16-Bit Register	Subtract	Α
E3	dF	W(LO)	W(HI)			*dd++=*dd++-W	Automatic Increment and 16-Bit Immediate	Subtract	Α

	MACHINE CODE BYTE				•	ASSEMBLY LANGUAGE	ADDRESSING		
1	2	3	4	5	6	INSTRUCTIONS	MODE	OPERATION	CONDITION
E4	ds	М	N			* $(bd+N)=*(bd+N)-*(bs+M)$	Offset Memory and Offset Memory	Subtract	Α
E4	dF	M	N			(bd+N)=(bd+N)-(sp+M)	Offset Memory and Offset Stack	Subtract	Ä
E4	Fs	M	N			*(sp+N)=*(sp+N)-*(bs+M)	Offset Stack and Offset Memory	Subtract	Ā
E4	FF	M	N			*(sp+N)=*(sp+N)-*(sp+M)	Offset Stack and Offset Stack	Subtract	A
E5	ds					bd=bd-*ds	16-Bit Register and Indirect	Subtract	Â
E5	dF	W(LO)	W(HI)			bd=bd-*W	16-Bit Register and Direct	Subtract	A
E6	ds	N				bd=bd-*(ds+N)	16-Bit Register and Offset Memory	Subtract	Ä
E6	dF	N				bd=bd-*(dsp+N)	16-Bit Register and Offset Stack	Subtract	Â
E7	ds					bd=bd-*ds++	16-Bit Register and Automatic Increment	Subtract	A
E8	ds					bd=bd+bs	16-Bit Register and 16-Bit Register	Add	A
E8	dF	W(LO)	W(H1)			bd=bd+W	16-Bit Register and 16-Bit Immediate	Add	A
E9	ds					*dd=*dd+bs	Indirect and 16-Bit Register	Add	A
E9	dF	W(LO)	W(H1)			*dd=*dd+W	Indirect and 16-Bit Immediate	Add	A
E9	Fs	W(LO)	W(HI)			*W=*W+bs	Direct and 16-Bit Register	Add	A
E9	FF	W(LO)	W(HI)	V(LO)	V(HI)	*W=*W+V	Direct and 16-Bit Immediate	Add	A
EA	ds	N				*(dd+N)=*(dd+N)+bs	Offset Memory and 16-Bit Register	Add	A
EA	dF	N	W(LO)	W(HI)		*(dd+N)=*(dd+N)+W	Offset Memory and 16-Bit Immediate	Add	A
EA	Fs	N				*(dsp+N)=*(dsp+N)+bs	Offset Stack and 16-Bit Register	Add	A
EA	FF	N	W(LO)	W(HI)		*(dsp+N)=*(dsp+N)+W	Offset Stack and 16-Bit Immediate	Add	A
EB	ds					*dd++=*dd++ +bs	Automatic Increment and 16-Bit Register	Add	A
EB	dF	W(LO)	W(HI)			*dd++=*dd++ +W	Automatic Increment and 16-Bit Immediate	Add	A
EC	ds	M	N			*(bd+N)=*(bd+N)+*(bs+M)	Offset Memory and Offset Memory	Add	A
EC	dF	M	N			*(bd+N)=*(bd+N)+*(sp+M)	Offset Memory and Offset Stack	Add	A
EC	Fs	M	N			*(sp+N)=*(sp+N)+*(bs+M)	Offset Stack and Offset Memory	Add	A
EC	FF	M	N			*(sp+N)=*(sp+N)+*(sp+M)	Offset Stack and Offset Stack	Add	A
ED	ds					bd=bd+*ds	16-Bit Register and Indirect	Add	A
ED	dF	W(LO)	W(HI)			W*+bd=bd	16-Bit Register and Direct	Add	A
EE	ds	N				bd=bd+*(ds+N)	16-Bit Register and Offset Memory	Add	A
EE	dF	N				bd=bd+*(dsp+N)	16-Bit Register and Offset Stack	Add	Α
EF	ds					bd=bd+*ds++	6-Bit Register and Automatic Increment	Add	Α
F0	ds					bd-bs	16-Bit Register and 16-Bit Register	Compare	Α
F0	dF	W(LO)	W(HI)			bd-W	16-Bit Register and 16-Bit Immediate	Compare	Α
F1	ds					*dd-bs	Indirect and 16-Bit Register	Compare	Α
F1	dF	W(LO)				*dd-W	Indirect and 16-Bit Immediate	Compare	Α
F1	Fs	W(LO)				*W-bs	Direct and 16-Bit Register	Compare	Α
F1	FF		W(HI)	V(LO)	V(HI)	*W-V	Direct and 16-Bit Immediate	Compare	Α
F2	ds	N				*(dd+N) -bs	Offset Memory and 16-Bit Register	Compare	Α
F2	dF	N	W(LO)	W(HI)		* (dd+N) –W	Offset Memory and 16-Bit Immediate	Compare	Α
F2	Fs	N				*(dsp+N) –bs	Offset Stack and 16-Bit Register	Compare	Α
F2	FF	N	W(LO)	W(HI)		*(dsp+N) –W	Offset Stack and 16-Bit Immediate	Compare	Α
F3	ds dF	W//LC\	14//111			*dd++-bs	Automatic Increment and 16-Bit Register	Compare	Α
F3		W(LO)	W(HI)			*dd++-W	Automatic Increment and 16-Bit Immediate	Compare	Α
F4	ds dF	M	N			*(bd+N) - *(bs+M)	Offset Memory and Offset Memory	Compare	Α
F4 F4		M	N			*(bd+N) - *(sp+M)	Offset Memory and Offset Stack	Compare	Α
F4 F4	Fs FF	M	N			*(sp+N)=*(bs+M)	Offset Stack and Offset Memory	Compare	Α
F5	ds	M	N			*(sp+N)=*(sp+M)	Offset Stack and Offset Stack	Compare	Α
F5	ds dF	W/LO\	W//111			bd *ds	16-Bit Register and Indirect	Compare	Α
1 0	ur	W(LO)	vv(H1)			bd=*W	16-Bit Register and Direct	Compare	Α

MACHINE CODE BYTE										
						ASSEMBLY LANGUAGE	ADDRESSING			
1	2	3	4	5	6	INSTRUCTIONS	MODE	OPERATION	CONDITION	
F6	ds	N				bd –* (ds+N)	16-Bit Register and Offset Memory	Compare	Α	
F6	dF	N				bd * (dsp+N)	16-Bit Register and Offset Stack	Compare	Α Α	
F7	ds					bd-*ds++	16-Bit Register and Automatic Increment	Compare	Α	
FC	ds	М	N			test(*(bd+N),*(bs+M))	Offset Memory and Offset Memory	Test	F	
FC	dF	M	N			test(*(bd+N),*(sp+M))	Offset Memory and Offset Stack	Test	F	
FC	Fs	M	N			test(*(sp+N),*(bs+M))	Offset Stack and Offset Memory	Test	F	
FC	FF	М	N			test(*(sp+N),*(sp+M))	Offset Stack and Offset Stack	Test	F	

	-9							
	And the second	second t						
1		# 	7. H					
	William St.	√1.1 (2 ° 14)	April 1	175 Ha				
	ta _j	£1.3				,#		
			6.1			. 4		
		2÷			·*			
	20 (1) 20 (1)	esta de la composición dela composición de la composición dela composición de la composición de la composición de la com	W ₁ x = 1	Miles Mark	*			
	46 at 12							
		* 3 * 2						
	rest of the state	and a grant teach		e e				
		e e e		4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			est en e	
		en de la deservación de la deservación de la defenda d La defenda de la defenda d						
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
		· · · · · · · ·						
	the transfer of	100000						
	62	$N_{\rm c}$						
	1-44-1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						
		‡+			•			
	148 p. 5 p. 1	148 F188 VI						
	€# . €#	\$18 87				n de la companya de l		
	autorija šiti. Bas	gi mgai da ay	gare Disc			official forces	· '	
	4.1°	4.4	es en		.14			
1 4	8	Ç.	7₩		•	[™] P	A-800517	
							sue 1	181
						D	ecember 1978	