

Мотивация

Задачи

- 1. Visual question-answering
- 2. Captioning
- 3. Visual dialogue

Еще мотивация

- Хотим генеративную модель, понимающую и текст и картинки
- Хотим как в GPT-3 уметь in-context few-shot

Как бы мы это делали?

Вход:

<image> Что изображено на этой картинке?

Embeddings:

img_1, word_1, word_2, ... word_k

Трансформер:

Большой желтый кот

Архитектура

Vision Encoder

- Взяли свой продвинутый ResNet (NFNet)
- Обучили его как CLIP
- Заморозили

Perceiver Resampler

- Принимает на вход feature-map
 произвольной длины
- Выдает **feature-map** фиксированной длины

Language Encoder

- GPT-like моделька Chinchilla (70В)
- Никак не дообучали
- Заморозили
- Добавили обучаемые слои Cross-Attention

Cross Attention

Опять архитектура

Flamingo

Данные

- 1. Веб-страницы с картинками
- 2. Картинки с описаниями
- 3. Короткие видосики с описаниями

Взвешиваем лосс

Эксперименты!

Figure 2: **Flamingo results overview.** *Left*: Our largest model, dubbed *Flamingo*, outperforms state-of-the-art fine-tuned models on 6 of the 16 tasks we consider with no fine-tuning. For the 9 tasks with published few-shot results, *Flamingo* sets the new few-shot state of the art. *Note:* We omit RareAct, our 16th benchmark, as it is a zero-shot benchmark with no available fine-tuned results to compare to. *Right*: Flamingo performance improves with model size and number of shots.

Flamingo

Больше экспериментов!

Method	VQAV2		COCO	VATEX	VizWiz		MSRVTTQA	VisDial		YouCook2	TextVQA		HatefulMemes
	test-dev	test-std	test	test	test-dev	test-std	test	valid	test-std	valid	valid	test-std	test seen
₹ 32 shots	67.6	(28)	113.8	65.1	49.8	= 1	31.0	56.8	: ::=:	86.8	36.0	:=	70.0
Fine-tuned	82.0	<u>82.1</u>	138.1	84.2	<u>65.7</u>	65.4	47.4	61.8	59.7	118.6	57.1	54.1	<u>86.6</u>
SotA	81.3 [†]	81.3 [†]	149.6 [†]	81.4 [†]	57.2 [†]	60.6 [†]	46.8	75.2	75.4 [†]	138.7	54.7	73.7	84.6 [†]
	[133]	[133]	[119]	[153]	[65]	[65]	[51]	[79]	[123]	[132]	[137]	[84]	[152]

Table 2: Comparison to SotA when fine-tuning Flamingo. We fine-tune Flamingo on all nine tasks where Flamingo does not achieve SotA with few-shot learning. Flamingo sets a new SotA on five of them, outperforming methods (marked with †) that use tricks such as model ensembling or domain-specific metric optimisation (e.g., CIDEr optimisation).

Конец

Conclusion. We proposed Flamingo, a general-purpose family of models that can be applied to image and video tasks with minimal task-specific training data. We also qualitatively explored interactive abilities of *Flamingo* such as "chatting" with the model, demonstrating flexibility beyond traditional vision benchmarks. Our results suggest that connecting pre-trained large language models with powerful visual models is an important step towards general-purpose visual understanding.

Flamingo

Источники

- 1. DeepMind Paper
- 2. DeepMind <u>Blogpost</u>
- 3. Small <u>Overview</u>
- 4.

Для справки

NFNet

Resampler


```
def perceiver_resampler(
  x_f, # The [T, S, d] visual features (T=time, S=space)
  time_embeddings, # The [T, 1, d] time pos embeddings.
  x, # R learned latents of shape [R, d]
  num_layers, # Number of layers
"""The Perceiver Resampler model."""
# Add the time position embeddings and flatten.
x_f = x_f + time_embeddings
x_f = flatten(x_f) \# [T, S, d] \rightarrow [T * S, d]
 # Apply the Perceiver Resampler layers.
for i in range(num_layers):
   # Attention.
  x = x + attention_i(q=x, kv=concat([x_f, x]))
   # Feed forward.
  x = x + ffw_i(x)
 return x
```

Masking details

Figure 7: **Interleaved visual data and text support.** Given text interleaved with images/videos, e.g. coming from a webpage, we first process the text by inserting <image> tags at the locations of the visual data in the text as well as special tokens (<BOS> for "beginning of sequence" or <EOC> for "end of chunk"). Images are processed independently by the Vision Encoder and Perceiver Resampler to extract visual tokens. At a given text token, the model only cross-attends to the visual tokens corresponding to the last preceding image/video. ϕ indicates which image/video a text token can attend or 0 when no image/video is preceding. In practice, this selective cross-attention is achieved through masking – illustrated here with the dark blue entries (unmasked/visible) and light blue entries (masked).