Differential Equations

The system of equations representing the interaction between humans (H(t)) and aliens (A(t)), considering alien-induced diseases and crop impact, is given by:

$$\frac{dH}{dt} = r_H (1 - \delta_F)(1 - \text{cropImpact})H - \delta_D H A$$

$$\frac{dA}{dt} = r_A A - \gamma A - \lambda H$$

Where: - $r_H(1 - \delta_F)(1 - \text{cropImpact})$ is the effective human population growth rate, accounting for fertility reduction and crop impact. - If the effective growth rate becomes negative, it is set to zero to prevent unrealistic behavior.

Constants and Their Meanings

- $r_H = 0.03$: Human population growth rate (birth rate).
- $r_A = 0.005$: Alien population growth rate.
- $\gamma = 0.00001$: Alien death rate due to environmental adaptation challenges.
- $\lambda = 0.00002$: Alien death rate due to human resistance.
- $\delta_D=0.00001$: Disease-induced human mortality rate caused by alien diseases.
- $\delta_F = 0.5$: Reduction factor for human fertility due to alien-induced diseases.
- cropImpact = 0.4: Reduction in human population growth rate due to alien crop impact.

Terms in the Equations

- $r_H(1 \delta_F)(1 \text{cropImpact})H$: Human population growth rate, adjusted for fertility reduction and crop impact.
- $-\delta_D HA$: Loss of human population due to alien-induced diseases.
- $r_A A$: Natural alien population growth.
- $-\gamma A$: Alien losses due to environmental adaptation challenges.
- $-\lambda H$: Alien losses due to human resistance.

Initial Conditions and Simulation Details

• Initial human population: $H_0 = 500$.

• Initial alien population: $A_0 = 200$.

• Time span: $t \in [0, 500]$ days.