绝密★启用前

2020年普通高等学校招生全国统一考试(江苏卷)

数学 I

注意事项

考生在答题前请认真阅读本注意事项及各题答题要求

- 1. 本试卷共 4 页,均为非选择题 (第1题~第20题,共20题)。本卷满分为160分,考试时间为120分钟,考试结束后请将本试卷和答题卡一并交回。
- 2. 答题前,请务必将自己的姓名、准考证号用 0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
- 3. 请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
- 4. 作答试题,必须用 0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
- 5. 如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

参考公式:

柱体的体积V = Sh, 其中S 是柱体的底面积, h 是柱体的高.

一、填空题: 本大题共 14 小题, 每小题 5 分, 共计 70 分. 请把答案填写在答题卡相应位置上.

•

- 1. 已知集合 $A = \{-1,0,1,2\}$, $B = \{0,2,3\}$, 则 $A \cap B =$ _____
- 2. 已知i 是虚数单位,则复数z = (1+i)(2-i)的实部是_____.
- 3. 已知一组数据 4,2a,3-a,5,6 的平均数为 4,则 a 的值是 _____
- 4. 将一颗质地均匀的正方体骰子先后抛掷 2 次,观察向上的点数,则点数和为 5 的概率是▲ .
- 5. 右图是一个算法流程图,若输出 y 值为 -2,则输入 x 的值是

S 数学 I 试卷 第 1 页 (共 4 页)

- 6. 在平面直角坐标系 xOy 中,若双曲线 $\frac{x^2}{a^2} \frac{y^2}{5^2} = 1 (a > 0)$ 的一条渐近线方程为 $y = \frac{\sqrt{5}}{2} x$,则该双曲线的离心率是 \triangle .
- 7. 已知 y = f(x) 是奇函数,当 $x \ge 0$ 时, $f(x) = x^{\frac{2}{3}}$,则 f(-8) 的值是 _____.
- 8. 已知 $\sin^2(\frac{\pi}{4} + \alpha) = \frac{2}{3}$,则 $\sin 2\alpha$ 的值是_____.
- 9. 如图, 六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.

已知螺帽的底面正六边形长为2cm, 高为2cm, 内孔半径为

- 0.5 cm,则此六角螺帽毛坯的体积是_____.
- 10. 将函数 $y = 3\sin(2x + \frac{\pi}{4})$ 的图象向右平移 $\frac{\pi}{6}$ 个单位长度,则平移后的图象中与 y 轴最近的对称轴的方程是 \triangle .
- 11. 设 $\{a_n\}$ 是公差为d 的等差数列, $\{b_n\}$ 是公比为q 的等比数列,已知 $\{a_n+b_n\}$ 的前n项和 $S_n=n^2-n+2^n-1(n\in \mathbf{N}^*)$,则d+q的值是______.
- 12. 已知 $5x^2y^2 + y^4 = 1(x, y \in \mathbf{R})$,则 $x^2 + y^2$ 的最小值是_____
- 13. 在 $\triangle ABC$ 中,AB=4,AC=3, $\angle BAC=90^{\circ}$,D在边BC上,

延长 AD 到 P, 使得 AP = 9, 若 $\overrightarrow{PA} = m\overrightarrow{PB} + (\frac{3}{2} - m)\overrightarrow{PC}$

(m 为常数),则CD的长度是 $_{\underline{}}$.

14. 在平面直角坐标系 xOy 中,已知 $P(\frac{\sqrt{3}}{2},0)$, A , B 是圆 $C: x^2 + (y - \frac{1}{2})^2 = 36$ 上的两

个动点,满足PA = PB,则 $\triangle PAB$ 面积的最大值是______.

二、解答题:本大题共 6 小题,共计 90 分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.

15. (本小题满分 14 分)

在三棱柱 $ABC-A_1B_1C_1$ 中, $AB\perp AC$, $B_1C\perp$ 平面ABC,E,

F 分别是 AC , B_1C 的中点.

16. (本小题满分 14 分)

在 $\triangle ABC$ 中,角 A , B , C 的对边分别为 a , b , c . 已知 a=3 , $c=\sqrt{2}$, $B=45^\circ$.

- (1) 求 sin C 的值;
- (2) 在边BC上取一点D,使得 $\cos \angle ADC = -\frac{4}{5}$,求 $\tan \angle DAC$ 的值.

17. (本小题满分 14 分)

某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上,桥AB与MN平行,OO'为铅垂线(O'在AB上). 经测量,左侧曲线AO上任一点D到MN的距离 h_1 (米)与D到OO'的距离a(米)之间满足关系式 $h_1 = \frac{1}{40}a^2$;右侧曲线BO上任一点F 到MN的 距离 h_2 (米)与F 到OO'的 距离 h_3 (米)之间满足关系式 $h_4 = \frac{1}{40}a^3$;右侧曲线 $h_4 = -\frac{1}{800}b^3 + 6b$. 已知点 $h_5 = -\frac{1}{800}b^3 + 6b$.

- (1) 求桥 AB 的长度;
- (2) 计划在谷底两侧建造平行于 OO' 的桥墩 CD 和 EF ,且 CE 为 80 米,其中 C , E 在 AB 上(不包括端点). 桥墩 EF 每米造价 k (万元),桥墩 CD 每米造价 $\frac{3}{2}k$ (万元) (k>0),问 O'E 为多少 米时,桥墩 CD 与 EF 的总造价最低?

18. (本小题满分 16 分)

在平面直角坐标系 xOy 中,已知椭圆 $E: \frac{x^2}{4} + \frac{y^2}{3} = 1$ 的左、右焦点分别为 F_1 , F_2 ,点

A在椭圆 E 上且在第一象限内, $AF_2 \perp F_1F_2$, 直线 AF_1 与 椭圆 E 相交于另一点 B .

- (1) 求 △*AF*₁*F*₂ 的周长;
- (2) 在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求 $\overrightarrow{OP}\cdot\overrightarrow{QP}$ 的最小值;

(第18题)

- (3) 设点 M 在椭圆 E 上,记 $\triangle OAB$ 与 $\triangle MAB$ 的面积分别为 S_1 , S_2 , 若 S_2 = $3S_1$, 求点 M 的坐标.
- 19. (本小题满分 16 分)

已知关于 x 的函数 y = f(x), y = g(x) 与 $h(x) = kx + b(k, b \in \mathbf{R})$ 在区间 D 上恒有 $f(x) \ge h(x) \ge g(x)$.

- (1) 若 $f(x) = x^2 + 2x$, $g(x) = -x^2 + 2x$, $D = (-\infty, +\infty)$, 求 h(x) 的表达式;
- (2) 若 $f(x) = x^2 x + 1$, $g(x) = k \ln x$, h(x) = kx k, $D = (0, +\infty)$,求 k 的取值范围;
- (3) $\exists f(x) = x^4 2x^2, \quad g(x) = 4x^2 8, \quad h(x) = 4(t^3 t)x 3t^4 + 2t^2(0 < |t| \le \sqrt{2}),$ $D = [m, n] \subseteq [-\sqrt{2}, \sqrt{2}], \quad \forall \text{ i.i.} \quad n m \le \sqrt{7}.$

20. (本小题满分 16 分)

已知数列 $\{a_n\}$ $(n \in \mathbb{N}^*)$ 的首项 $a_1 = 1$,前n项和为 S_n .设 λ 与k是常数,若对一切正整数n,均有 $S_{n+1}^{\frac{1}{k}} - S_n^{\frac{1}{k}} = \lambda a_{n+1}^{\frac{1}{k}}$ 成立,则称此数列为" $\lambda \sim k$ "数列.

- (1) 若等差数列 $\{a_n\}$ 是" $\lambda \sim 1$ "数列,求 λ 的值;
- (2) 若数列 $\{a_n\}$ 是" $\frac{\sqrt{3}}{3} \sim 2$ "数列,且 $a_n > 0$,求数列 $\{a_n\}$ 的通项公式;
- (3) 对于给定的 λ ,是否存在三个不同的数列 $\{a_n\}$ 为" $\lambda \sim 3$ "数列,且 $a_n \geq 0$?若存在,求 λ 的取值范围;若不存在,说明理由.

S 数学 I 试卷 第 4 页 (共 4 页)