Performance evaluation of ASR in different scenarios

Alexia

*ASR: automatic speech recognition

Background – goal of the project

Background

The different philosophies in ASR:

- Whisper is open-source, research-focused, and designed for general robustness.
- Google's Speech-to-Text is a production-grade API optimized for real-time accuracy and scalability.

Background – Open AI's Whisper

2022; 680kh

Transformer-based encoder-decoder model

30-second chunks $\rightarrow log$ -Mel spectrogram

Background – Open AI's Whisper

Multitask:

- Detect language,
- Generate timestamps,
- Translate speech into English from other languages.

Open-source:

- free
- can run it locally on our own machines
- full control over privacy and fine-tuning.

Slow & not optimized for streaming.

Background – Google Speech to Text

cloud-based API service

Fast, scalable

Background

Conformer Transducer:

- Convolutional layers— to capture local audio features
- Transformer layers— to understand the broader context.
- Optimized for real-time transcription

Supports over 100 languages

Paid service & cloud-based — privacy trade-offs & usage limits.

Offers domain-specific customization with things like phrase hints.

Background – goal of the project

Dataset 1: Crema_df 😀 😭 😥 😫

D1: Data exploration

From 91 actors

memory usage: 116.4+ KB

	Emotions	Patn
0	Disgust	/kaggle/input/cremad/AudioWAV/1028_TSI_DIS_XX.wav
1	Нарру	/kaggle/input/cremad/AudioWAV/1075_IEO_HAP_LO.wav
2	Нарру	/kaggle/input/cremad/AudioWAV/1084_ITS_HAP_XX.wav

D1: Data exploration

```
# Initialize new column
df['Transcript Human'] = None
# Define pattern-transcript mappings
pattern transcript = {
    '_DFA_': "Don't forget the jacket.",
    '_IEO_': "It's 11 o'clock",
    '_IOM_':"I'm on my way to the meeting.",
    '_ITH_':"I think I have a doctor's point.",
    ' ITS ':"I think I have seen this before.",
    ' IWL ':"I would like a new alarm clock.",
    '_IWW_':"I wonder what this is about.",
    ' MTI ': "Maybe tomorrow it will be cold.",
    '_TAI_':"The airplane is almost full.",
    ' TIE ':"That is exactly what happened.",
    ' TSI ':"The surface is slick.".
    '_WSI_':"We'll stop in a couple of minutes.",
# Apply mappings
for pattern, transcript in pattern_transcript.items():
```

Angry •

• Нарру

Disgusting

Neutral

Fear

1

Sad

D2: Data exploration

Dataset 2:

<class 'pandas.core.frame.DataFrame'> Index: 2140 entries, 32 to 2171 Data columns (total 12 columns):

Data	ta cotumns (totat 12 cotumns).					
#	Column	Non-Null Count	Dtype			
0	age	2140 non-null	float64			
1	age_onset	2140 non-null	float64			
2	birthplace	2136 non-null	object			
3	filename	2140 non-null	object			
4	native_language	2140 non-null	object			
5	sex	2140 non-null	object			
6	speakerid	2140 non-null	int64			
7	country	2135 non-null	object			
8	file_missing?	2140 non-null	bool			
9	Unnamed: 9	0 non-null	float64			
10	Unnamed: 10	0 non-null	float64			
11	Unnamed: 11	1 non-null	object			
dtype	dtypes: bool(1), float64(4), int64(1), object(6)					

memory usage: 202.7+ KB

	age	age_onset	birthplace	filename	native_language	sex	speakerid	country	file_missing?	Unnamed: 9	Unnamed: 10	Unnamed: 11	Path
32	27.0	9.0	virginia, south africa	afrikaans1	afrikaans	female	1	south africa	False	NaN	NaN	NaN	/kaggle/input/speech- accent- archive/recordings
33	40.0	5.0	pretoria, south africa	afrikaans2	afrikaans	male	2	south africa	False	NaN	NaN	NaN	/kaggle/input/speech- accent- archive/recordings
34	43.0	4.0	pretoria, transvaal, south africa	afrikaans3	afrikaans	male	418	south africa	False	NaN	NaN	NaN	/kaggle/input/speech- accent- archive/recordings

D2: Data exploration

D2: Data exploration - native language distribution

D2: Data exploration

Speaker Distribution by Age Group and Gender

Background – goal of the project

M1D1

```
from transformers import pipeline
import torchaudio
import torch
from tqdm import tqdm
# load ASR model (Whisper)
asr = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=0 if torch.cuda.is_available() else -1)
# Create function to transcribe with error handling
def safe_transcribe(path):
    try:
        return asr(path)["text"]
    except Exception as e:
        print(f"Error on {path}: {e}")
        return ""
# Apply with progress bar
tqdm.pandas()
crema df['Transcript'] = crema df['Path'].progress apply(safe transcribe)
```

M1D1

	Emotions	Path	Transcript	Transcript_Human
0	Disgust	/kaggle/input/cremad/AudioWAV/1028_TSI_DIS_XX.wav	This surface is slick.	The surface is slick.
1	Нарру	/kaggle/input/cremad/AudioWAV/1075_IEO_HAP_LO.wav	It's 11 o'clock.	It's 11 o'clock
2	Нарру	/kaggle/input/cremad/AudioWAV/1084_ITS_HAP_XX.wav	I think I've seen this before.	I think I have seen this before.
3	Disgust	/kaggle/input/cremad/AudioWAV/1067_IWW_DIS_XX.wav	I wonder what this is about.	I wonder what this is about.
4	Disgust	/kaggle/input/cremad/AudioWAV/1066_TIE_DIS_XX.wav	That is exactly what happened.	That is exactly what happened.

M1D2

Path Transcript_Corr M1_transcript

/kaggle/input/speech- accent- archive/recordings	Please call Stella. Ask her to bring these thi	Please call Stella, ask her to bring these th
/kaggle/input/speech- accent- archive/recordings	Please call Stella. Ask her to bring these thi	Please call Stella, ask her to bring these th
/kaggle/input/speech- accent- archive/recordings	Please call Stella. Ask her to bring these thi	Please call Stella, ask her to bring these th


```
[ ] from google.colab import files
    uploaded = files.upload()
     Choose files No file chosen
                                    Upload widget is only available when the c
    to enable.
    Saving molten-complex-457317-d9-dab85b056fab.json to molten-co
    from google.colab import drive
    drive.mount('/content/drive')
    Drive already mounted at /content/drive; to attempt to forcibl
[ ] import os
    audio_dir = "/content/drive/MyDrive/AudioWAV/"
    if os.path.exists(audio dir):
        print("Files in AudioWAV folder:")
        print(os.listdir(audio_dir)[:10]) # Print first 10 files
    else:
        print("AudioWAV directory not found!")
   Files in AudioWAV folder:
```

['1079_WSI_DIS_XX.wav', '1079_TIE_FEA_XX.wav', '1079_TIE_ANG_X

```
from google.cloud import speech
from tadm import tadm
client = speech.SpeechClient()
def transcribe audio(file path):
    flac_path = convert_wav_to_flac(file_path)
   with open(flac_path, "rb") as audio_file:
        content = audio file.read()
    audio = speech.RecognitionAudio(content=content)
    config = speech.RecognitionConfig(
        encoding=speech.RecognitionConfig.AudioEncoding.FLAC.
        sample_rate_hertz=16000, # adjust if different
        language code="en-US"
    try:
        response = client.recognize(config=config, audio=audio)
        return " ".join([result.alternatives[0].transcript for result in response.results])
    except Exception as e:
        print(f"Error for {file path}: {e}")
        return ""
```



```
free 60mins
```

```
# Extract speaker ID from the path (corrected regex)
crema_df['Speaker'] = crema_df['FileName'].str.extract(r'^(\d+)_')
crema_df_filtered = crema_df[crema_df['Speaker'].isin(['1001', '1002', '1003', '1004', '1005'])]
```

Total duration of the audio = $12 \times 6 \times 5 \times 2.5 = 900$ seconds (12 Reading passage *6 emotions * 5 actors * average audio length)

	FileName	Path	Transcript	Speaker	Transcript_Human
7000	1001_DFA_ANG_XX.wav	/content/drive/MyDrive/AudioWAV/1001_DFA_ANG_X	don't forget a jacket	1001	Don't forget the jacket.
7001	1001_DFA_DIS_XX.wav	/content/drive/MyDrive/AudioWAV/1001_DFA_DIS_X	don't forget a jacket	1001	Don't forget the jacket.
7002	1001_DFA_HAP_XX.wav	/content/drive/MyDrive/AudioWAV/1001_DFA_HAP_X	don't forget a jacket	1001	Don't forget the jacket.

Asp_filtered = asp_df.head(40)

Total duration of the audio = $30 \times 40=1200$ seconds

Path	Transcript_Corr	Transcript_GG
/content/drive/MyDrive/AudioWAV2/wav/afrikaans	Please call Stella. Ask her to bring these thi	please call Stella asked her to bring these th
/content/drive/MyDrive/AudioWAV2/wav/afrikaans	Please call Stella. Ask her to bring these thi	please call Stella asked her to bring these th
/content/drive/MyDrive/AudioWAV2/wav/afrikaans	Please call Stella. Ask her to bring these thi	please call Stella asked her to bring these th

Evaluation

METEOR

- Metric for Evaluation of Translation with Explicit ORdering
- evaluates based on [Precision + Recall], Synonym matching, Stemming, and Word order.

Evaluation

Word Error Rate (WER)

- most widely used metric for evaluating speech-to-text models.
- percentage of errors (insertions, deletions, and substitutions) made by the model in its transcript compared to a human-generated ground truth transcript.
- A lower WER indicates better accuracy.

BertScore:

A metric that uses pre-trained language model embeddings to calculate the cosine similarity between the generated text and the reference text

Evaluation

Dataset **WER BERTScore** 0 M1D1 0.193777 0.976976 M1D2 0.341617 0.948523 0.378032 0.963611 M2D1 3 M2D2 0.298188 0.949644

Ethical Evaluation

70-80% accuracy != scientific excellence (Google's principles)

Offers notable social advantages.

Provides valuable insights into appropriate deployment contexts and limitations

Limitations & Further Improvements

- Dataset Diversity (recordings of conversations among multiple individuals, audio from songs, etc...)
- Implement supplementary technical metrics alongside human evaluations
- Model Diversity
- Appropriate safeguard providing opt-out options

Model	CNN Usage	Main Architecture	
Wav2Vec 2.0	Feature extraction	CNN + Transformer	
DeepSpeech 2	Initial layers	CNN + Bi-LSTM	
Whisper	Encoder front-end	CNN + Transformer	
Listen, Attend, Spell (LAS)	Optional preprocessing	CNN + RNN + Attention	

