Weakly-Supervised Grammar-Informed Bayesian CCG Parser Learning

Dan Garrette UT-Austin

Chris Dyer CMU

Jason Baldridge UT-Austin

Noah A. Smith CMU

Annotating parse trees by hand is extremely difficult.

Can we learn new parsers cheaply?

Can we learn new parsers cheaply?

(cheaper = less supervision)

When supervision is *scarce*, we have to be *smarter* about data.

- Unannotated text
- Incomplete tag dictionary: word → {tags}

Used for part-of-speech tagging for 20+ years

Good tagger performance even with low supervision

```
[Ravi & Knight, 2009]
[Das & Petrov, 2011]
[Garrette & Baldridge, 2013]
[Garrette et al., 2013]
```

Combinatory Categorial Grammar (CCG)

Every word token is associated with a category

Every word token is associated with a category

Categories **combine** to form categories of larger constituents

[Steedman, 2000] [Steedman and Baldridge, 2011]

np/n n

the dog

np s\np

dogs sleep

the lazy dogs wander

the lazy dogs wander

np/n

the lazy dogs wander

np/n n/n

np

the	lazy	dogs	wander
np/n	n/n	n	
	np	np	
		(s\np)/np	

the	lazy	dogs	wander
np/n	n/n	n	n
	np	np	n/n
		(s\np)/np	np/n
			s\np

np/n n/n n s\np
the lazy dogs wander

Why CCG?

Machine Translation

[Weese, Callison-Burch, and Lopez, 2012]

Semantic Parsing

[Zettlemoyer and Collins, 2005]

Type-supervised learning for CCG is highly *ambiguous*

Type-supervised learning for CCG is highly *ambiguous*

Penn Treebank parts-of-speech

Type-supervised learning for CCG is highly *ambiguous*

Penn Treebank parts-of-speech

48 tags

Type-supervised learning for CCG is highly *ambiguous*

Penn Treebank parts-of-speech

CCGBank Categories

48 tags

Type-supervised learning for CCG is highly *ambiguous*

Penn Treebank parts-of-speech

48 tags

CCGBank Categories

1,300+ categories

Our Strategy

The grammar formalism *itself* can be used to guide learning

Our Strategy

Incorporate *universal knowledge* about grammar into learning

Universal Knowledge

the lazy dog

buy := $(s_b \mid np)/np$

e.g. "Opponents don't buy such arguments."

buy := (s_b\np)/np appears **342** times in CCGbank

e.g. "Opponents don't **buy** such arguments."

buy := (s_b\np)/np appears **342** times in CCGbank

e.g. "Opponents don't buy such arguments."

buy := $(((s_b \mid p)/pp)/pp)/np$

"Tele-Communications agreed to **buy** half of Showtime Networks from Viacom for \$ 225 million." pp pp

buy := $(s_b \mid np)/np$

appears 342 times in CCGbank

e.g. "Opponents don't buy such arguments."

buy := $(((s_b \mid p)/pp)/pp)/np$

appears once

"Tele-Communications agreed to **buy** half of Showtime Networks from Viacom for \$ 225 million." pp pp

 $(s_b \mid np) / np$

 $(s_b \mid np)/np$

transitive verb: (he) hides (the money)

 $(s_b \mid np) / np$

transitive verb: (he) hides (the money)

 $((s_b \mid p)/np)/((s_b \mid p)/np)$

adverb: (he) quickly (hides) (the money)

 $a \longrightarrow \{s, np, n, ...\}$

 $A \longrightarrow B/C$

 $A \longrightarrow B \setminus C$

 $a \longrightarrow \{s, np, n, ...\}$ $p_{atom}(a)$

 $A \longrightarrow B/C$

 $A \longrightarrow B \setminus C$

$$a \longrightarrow \{s, np, n, ...\}$$
 $p_{atom}(a) \times p_{term}$

$$A \longrightarrow B/C$$

$$A \longrightarrow B \setminus C$$

$$a \longrightarrow \{s, np, n, ...\}$$
 $p_{atom}(a) \times p_{term}$

$$p_{atom}(a) \times p_{term}$$

$$A \longrightarrow B/C$$

$$A \longrightarrow B \setminus C$$

$$a \longrightarrow \{s, np, n, ...\}$$
 $p_{atom}(a) \times p_{term}$

$$p_{atom}(a) \times p_{term}$$

$$A \longrightarrow B/C$$

$$A \longrightarrow B \setminus C$$

$$a \longrightarrow \{s, np, n, ...\}$$
 $p_{atom}(a) \times p_{term}$

$$p_{atom}(a) \times p_{term}$$

$$A \longrightarrow B/C$$

$$A \longrightarrow B \setminus C$$

 \rightarrow {s, np, n,...} $p_{atom}(a) \times p_{term}$ Pterm × Pfwd × Pmod B/C Pterm X Pfwd $p_{term} \times \overline{p_{fwd}} \times p_{mod}$ Pterm × Pfwd

Prefer Likely Categories

np/n n/n n s\np
the lazy dogs wander

Prefer Likely Categories

Prefer Likely Categories

Type-Supervised Learning

unlabeled corpus

tag dictionary

Type-Supervised Learning

unlabeled corpus

tag dictionary

same as POS tagging

Type-Supervised Learning

unlabeled corpus

tag dictionary

same as POS tagging

universal properties of the CCG formalism

Priors (simple is good)

PCFG

the lazy dogs wander

the	lazy	dogs	wander
np/n	n/n	n	n
	np	np	n/n
		(s\np)/np	np/n
			s\np

Results

CCG Parsing Results

CCG Parsing Results

CCG Parsing Results

Conclusion

Using universal grammatical knowledge can make better use of weak supervision