ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO

Aula 8

Cap. 2.2 – Autômato com pilha (cont.)

Profa. Ariane Machado Lima ariane.machado@usp.br

Cap 2.2 – Autômato com pilha (AP)

 Autômato finito com uma memória adicional (leitura e escrita DO TOPO da pilha)

• Lembram de B = $\{0^n1^n \mid n >= 0\}$?

Cap 2.2 – Autômato com pilha (AP)

Determinísticos e não-determinísticos

- NÃO são equivalentes
 - Autômatos a pilha não determinísticos reconhecem mais linguagens

 Autômatos a pilha não-determinísticos são equivalentes a gramáticas livres de contexto

Definição formal

DEFINIÇÃO 2.13

Um autômato com pilha é uma 6-upla $(Q, \Sigma, \Gamma, \delta, q_0, F)$, onde Q, Σ , Γ e F são todos conjuntos finitos, e

- 1. Q é o conjunto de estados,
- 2. Σ é o alfabeto de entrada,
- 3. Γ é o alfabeto de pilha,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ é a função de transição,
- 5. $q_0 \in Q$ é o estado inicial, e
- **6.** $F \subseteq Q$ é o conjunto de estados de aceitação.

Exemplo

 $\{0^n 1^n | n \geq 0\}$. Suponha que M_1 seja $(Q, \Sigma, \Gamma, \delta, q_1, F)$

$$Q = \{q_1, q_2, q_3, q_4\},\,$$

$$\Sigma = \{0,1\},\,$$

$$\Gamma = \{0, \$\},$$

$$F = \{q_1, q_4\}, e$$

 δ é dada pela tabela abaixo, na qual entradas em branco significam \emptyset .

E	entrada:	0			1			$ $ ϵ		
	Pilha:	0	\$	ε	0	\$	ε	0	\$	ε
	q_1			•		•				$\{(q_2,\$)\}$
	q_2			$\{(q_2,\mathtt{0})\}$	$\{(q_3,\boldsymbol{\varepsilon})\}$					10.354 37 3840
	q_3				$\{(q_3, \boldsymbol{\varepsilon})\}$				$\{(q_4, oldsymbol{arepsilon})\}$	
	q_4									

EXEMPLO 2.16

$$\{a^ib^jc^k|\ i,j,k\geq 0\ e\ i=j\ {\rm ou}\ i=k\}$$

Empilho quando leio a's, e desempilho quando leio b's ou c's?

$$\{a^i b^j c^k | i, j, k \ge 0 \text{ e } i = j \text{ ou } i = k\}$$

Empilho quando leio a's, e desempilho quando leio b's ou c's?

Aqui não-determinismo é essencial!

EXEMPLO 2.18

Nesse exemplo, damos um AP M_3 que reconhece a linguagem $\{ww^{\mathcal{R}} | w \in \{0,1\}^*\}$. Lembremo-nos de que $w^{\mathcal{R}}$ significa w escrita de trás para a frente.

Nesse exemplo, damos um AP M_3 que reconhece a linguagem $\{ww^{\mathcal{R}}| w \in \{0,1\}^*\}$. Lembremo-nos de que $w^{\mathcal{R}}$ significa w escrita de trás para a frente. Segue a descrição informal do AP.

Comece empilhando os símbolos que são lidos. A cada ponto, adivinhe não-deterministicamente se o meio da cadeia foi atingido e, se tiver sido, passe a desempilhar um símbolo para cada símbolo lido, checando para garantir que eles sejam os mesmos. Se eles forem sempre os mesmos e a pilha esvaziar ao mesmo tempo em que a entrada terminar, aceite; caso contrário, rejeite.

Equivalência entre APN e GLC

TEOREMA 2.20 -----

Uma linguagem é livre-do-contexto se e somente se algum autômato com pilha a reconhece.

Autômato com pilha NÃO DETERMINÍSTICO!!!

Equivalência entre APN e GLC

LEMA 2.21

Se uma linguagem é livre-do-contexto, então algum autômato com pilha a reconhece.

Ideia da prova:

Uma LLC é gerada por uma GLC

Mostrar como converter uma GLC em um APN equivalente

- Uma gramática aceita uma cadeia w se, começando pela variável inicial, chega-se a uma cadeia apenas de símbolos terminais (w) após uma sequência de derivações diretas (substituições de variáveis).
- Um autômato aceita uma cadeia w se, começando pelo estado inicial, chega-se ao estado final após uma sequência de mudança de estados (transições)
- Simular cada substituição por uma transição

- O APN começa empilhando a variável inicial na pilha (na transição do estado inicial para o estado intermediário)
- O estado intermediário possui transições para ele mesmo, em cada uma fazendo uma substituição (derivação) na cadeia que está na pilha
- O APN vai para o estado final quando não há mais substituições a serem feitas
- Ex:

$$S o aTb \mid b$$
 $T o Ta \mid \varepsilon$

- Problemas a serem resolvidos:
 - O que fazer quando há várias opções de substituição?
 - Como empilhar uma cadeia (e não apenas um símbolo)?
 - Se só podemos ler o topo da pilha, o que fazer quando a primeira variável da forma sentencial não estiver no topo da pilha?

- Problema 1: O que fazer quando há várias opções de substituições?
 - Aproveitar o não determinismo

 Problema 2: Como empilhar uma cadeia, e não simplesmente um símbolo?

 Problema 2: Como empilhar uma cadeia, e não simplesmente um símbolo?

Problema 2: Como empilhar uma cadeia, e não simplesmente um símbolo?

Sejam q e r estados do AP e suponha que a esteja em Σ_{ε} e s em Γ_{ε} . Digamos que queiramos que o AP vá de q para r quando ele lê a e desempilha s. Além do mais, queremos empilhar a cadeia inteira $u = u_1 \cdots u_l$ ao mesmo tempo. Podemos implementar essa ação introduzindo novos estados q_1, \ldots, q_{l-1} e montando a tabela de transição da seguinte maneira

$$\delta(q, a, s)$$
 deve conter (q_1, u_l) ,
 $\delta(q_1, \varepsilon, \varepsilon) = \{(q_2, u_{l-1})\},$
 $\delta(q_2, \varepsilon, \varepsilon) = \{(q_3, u_{l-2})\},$
 \vdots
 $\delta(q_{l-1}, \varepsilon, \varepsilon) = \{(r, u_1)\}.$

 Problema 3: Se só podemos ler o topo da pilha, o que fazer quando a primeira variável da forma sentencial não estiver no topo da pilha?

- Problema 3: Se só podemos ler o topo da pilha, o que fazer quando a primeira variável da forma sentencial não estiver no topo da pilha?
 - Sempre faremos a derivação mais à esquerda
 - Se o começo da forma sentencial contiver terminais, desempilho esses símbolos "casando-os" com a entrada (por meio de transições).

Exemplo

$$S
ightarrow a T b \mid b$$
 $T
ightarrow T a \mid arepsilon$

Caso Geral:

Equivalência entre APN e GLC

TEOREMA 2.20 -----

Uma linguagem é livre-do-contexto se e somente se algum autômato com pilha a reconhece.

LEMA 2.21

Se uma linguagem é livre-do-contexto, então algum autômato com pilha a reconhece.

Equivalência entre APN e GLC

TEOREM	1A 2	.20	
Uma ling a reconhe	_	é liv	re-do-contexto se e somente se algum autômato com pilha
			livre-do-contexto, então algum autômato com pilha a reco-
LEMA	2.27		
Se um au		to coi	m pilha reconhece alguma linguagem, então ela é livre-do-

 Para facilitar, vamos considerar que o APN possui as seguintes características:

- 1. Ele tem um único estado de aceitação, q_{aceita} .
- 2. Ele esvazia sua pilha antes de aceitar.
- 3. Cada transição ou empilha um símbolo (um movimento de *empilha*) ou desempilha um símbolo (um movimento de *desempilha*), mas não faz ambas as coisas ao mesmo tempo.

- G deve gerar uma cadeia x se x faz o APN ir do estado inicial ao estado de aceitação.
- Para cada par de estados (p, q), criamos uma variável A_{pq} que gere todas as cadeias x que levam o APN do estado p (com uma pilha vazia) ao estado q (com uma pilha vazia).

Neste APN:

- no estado p (com pilha vazia), o primeiro movimento é de EMPILHA.
- O último movimento é de DESEMPILHA (chegando no estado q, com pilha vazia)

26

- No camilho de p a q (reconhecendo x), 2 situações:
 - A pilha só se torna vazia novamente quando chega em q
 - A pilha se torna vazia em algum ponto do caminho, antes de chegar em q

- No camilho de p a q (reconhecendo x), 2 situações:
 - A pilha só se torna vazia novamente quando chega em q
 - A pilha se torna vazia em algum ponto do caminho, antes de chegar em g

- No camilho de p a q (reconhecendo x), 2 situações:
 - A pilha só se torna vazia novamente quando chega em q
 - A pilha se torna vazia em algum ponto do caminho, antes de chegar em g

- No camilho de p a q (reconhecendo x), 2 situações:
 - A pilha só se torna vazia novamente quando chega em q
 - A pilha se torna vazia em algum ponto do caminho, antes de chegar em q

- No camilho de p a q (reconhecendo x), 2 situações:
 - A pilha só se torna vazia novamente quando chega em q
 - A pilha se torna vazia em algum ponto do caminho, antes de chegar em g

- No camilho de p a q (reconhecendo x), 2 situações:
 - A pilha só se torna vazia novamente quando chega em q
 - A pilha se torna vazia em algum ponto do caminho, antes de chegar em g

Conversão APN em GLC (PROVA)

PROVA Digamos que $P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{aceita}}\})$ e vamos construir G. As variáveis de G são $\{A_{pq} | p, q \in Q\}$. A variável inicial é $A_{q_0,q_{\text{aceita}}}$. Agora descrevemos as regras de G.

- Para cada $p,q,r,s\in Q,\ t\in \Gamma$ e $a,b\in \Sigma_{\varepsilon}$, se $\delta(p,a,\varepsilon)$ contém (r,t) e $\delta(s,b,t)$ contém (q,ε) , ponha a regra $A_{pq}\to aA_{rs}b$ em G.
- Para cada $p,q,r\in Q$, ponha a regra $A_{pq}\to A_{pr}A_{rq}$ em G.
- Finalmente, para cada $p \in Q$, ponha a regra $A_{pp} \to \varepsilon$ em G.