

-自动化学院学科核心课-

验测链式与自动化

测量误差与数据处理 (6)

本节内容: 动态实验数据的处理方法

- 10、随机过程及其特征
- 11、随机过程特征量的实际估计
- 12、动态测量误差及其评定

动态测量数据举例

轴承振动数据

电力系统24小时电压监测数据

轮廓仪测量表面粗 糙度的记录曲线

两分量地震仪观测数据

对自变量的每个给定值,重复多次测量,会得到 完全不同的测量结果,这种函数关系称之为随机 函数。

■ 问题?

自变量是时间? 随机过程 随机过程 自变量是空间? 随机场 随机函数

■ 关键问题?

随机函数如何表示呢?

一般测量中多用含义2描述 ,理论分析中多采用含义3 进行研究。

把x(t)看作是**样本集合**时,x(t)意味着一组时间函数的集合。

把x(t)看作是一个<mark>样本</mark>时,x(t)意味着一个具体的时间函数。

若 $t = t_1$,则x(t)意味着一组**随机** 变量集合 $x_1(t_1), x_2(t_1), \dots, x_n(t_1)$

■ 三种定义的内涵?

总体上? 一个样本? 一组变量?

随机过程的统计特征

- 随机变量和随机过程的区别 随机变量是一维的 随机过程是两维的
- 随机变量的描述 (回忆下随机误差) 概率分布函数、算术平均值、标准差
- 随机过程的描述 特征? 不是一个数,而是一个函数 四种统计函数
- (1)概率密度函数,(2)均值、方差和方均值,(3)自相关函数,(4)谱密度函数

$$P[x < x(t) \le (x + \Delta x)] = \lim_{T \to \infty} \frac{T[x < x(t) \le (x + \Delta x)]}{T}$$

描述随机数据落在 给定区间内的概率

$$f(x) = \lim_{\Delta x \to 0} \frac{P[x < x(t) \le (x + \Delta x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\lim_{T \to \infty} \frac{T[x < x(t) \le (x + \Delta x)]}{T}\right]$$

$$P[x_1 < x(t) \le x_2] = \int_{x_1}^{x_2} f(x) dx = F(x_2) - F(x_1)$$

- 概率、概率密度函数、概率分布函数
- 概率密度函数和概率分布函数的关系? 互为微积分的关系

概率密度函数

均值、方差和均方差

对于自变量t的每个给定值, $m_x(t)$ 等于随机函数x(t)在该时刻的所有数值的平均值,即:

一阶原点矩,反应了中心趋势

$$m_{x}(t) = E[x(t)]$$

对于自变量t的每个给定值,D[x(t)]等于随机函数x(t)在该时刻对均值偏差平方的平均值,即:

二阶原点矩,反应了离散程度

$$D[x(t)] = E[\{x(t) - m_x(t)\}^2]$$

- 问题
- 二阶原点矩反映了什么?

既反映中心趋势,又 反应了离散程度

自相关函数

■问题

均值和方差是表征随机过程在各个孤立时刻的统计特征的重要参数不同时刻间?

■ 自相关函数

$$R_{\chi}(t, t + \tau)$$

$$= E[\{x(t) - m_{\chi}(t)\} \times \{x(t + \tau) - m_{\chi}(t + \tau)\}]$$

$$\rho_{X}(t,t+\tau) = \frac{R_{X}(t,t+\tau)}{\sigma_{X}(t)\sigma_{X}(t+\tau)}$$

谱密度函数

- 问题的提出? 指标均是时域内的 频域指标?
- 随机函数的振幅和相位是随机的,不能做出确定的频谱图,但随机过程的均方值可用来表示随机函数的强度。
- 谱密度函数

$$G_{\mathcal{X}}(f, \triangle f) = \frac{\varphi_{\mathcal{X}}^{2}(f, \triangle f)}{\triangle f}$$

谱密度函数

$$\triangle f \to 0$$
时, $\Rightarrow G_X(f) = \lim_{\triangle f \to 0} \frac{\varphi_X^2(f, \triangle f)}{\triangle f} \Rightarrow \varphi_X^2(f)$

$$=\int\limits_{0}^{\infty}G_{x}(f)df$$

单边谱密度,反应了频谱域内随机过程的变化

$$S_X(f) = \frac{1}{2}G_X(f)$$

双边谱密度

$$\varphi_X^2 = \int_0^\infty G_X(f) df = \frac{1}{2\pi} \int_0^\infty G_X(\frac{w}{2\pi}) dw$$

- 谱密度是非负的实偶函数
- 谱密度函数与自相关函数互为傅里叶变换

11. 随机过程特征量的实际估计

对于实际动态测试数据,若为随机信号,从理论上计算出其统计特征(均值、方差、自相关函数、功率谱密度)几乎不可能,因此需要利用统计实验的研究方法估计出它们的统计特性

条件1: N个样本X(t)

条件2: 平稳随机过程

- 平稳随机过程: 在工程实际中的随机过程大多是接近平稳的随机过程,对于具有N个样本的平稳随机过程通常采用总体平均法(几何平均法)求其特征量的估计
- 各态历经随机过程:对于各态历经随机过程则可采用时间平均 法求其特征量的估计值

11. 随机过程特征量的实际估计

平稳随机过程

■ 基本特点

- (1) 均值为常数,即: m(t)=常数
- (2) 方差为常数,即: D(t)=常数
- (3) 自相关函数不应随t的推移而变化
- , $\mathbb{H}: R(t,t+\tau)=R(\tau)$

■ 注意事项

未考虑概率密度等其他特征,因此称为 宽平稳

随机函数或广义平稳随机函数; 特征量的求取基于实验结果开展。

11. 随机过程特征量的实际估计 总体平均法

假设随机过程X(t)经过多次重复实验取得了N个样本函数,等间距的 t1, t2,···,tM截取采样记录,从而得到N*M个离散化采样点。

x(t)												
2(1)	t_1	t ₂	of the factors of	t _m	1 2 to 1 4	t_n						
$x_1(t)$	$x_1(t_1)$	$x_1(t_2)$	p	$x_1(t_m)$		$x_1(t_n)$						
$x_2(t)$	$x_2(t_1)$	$x_2(t_2)$	J. J. T. C	$x_2(t_m)$		$x_2(t_n)$						
:	:											
$x_N(t)$	$x_N(t_1)$	$x_N(t_2)$	CARLABUS	$x_N(t_m)$	List F. Lider in	$x_N(t_n)$						

均值函数: $\hat{\mu}(t_k) = m_X(t_k) = \frac{1}{N} \sum_{i=1}^{N} x_i(t_k)$

方差函数: $\hat{\sigma}^2(t_k) = D_X(t_k) = \frac{1}{N-1} \sum_{i=1}^{N} \left[x_i(t_k) - m_X(t_k) \right]^2$

自协方 差函数 $\hat{R}_{X}(t_{k},t_{l}) = \frac{1}{N-1} \sum_{i=1}^{N} [x_{i}(t_{k}) - m_{X}(t_{k})][x_{i}(t_{l}) - m_{X}(t_{l})]$ 总体平均法,或几何平均法。

相关系 数函数

从有限个样本总体

中,按不同时刻求

出随机数据各特征

量的估计值,称为

11. 随机过程特征量的实际估计 计算实例1

在线纹比长仪上对0~1000mm线纹尺测量6次,所得各段长度对公称值偏差 Δ 见下表(各尺寸段单位:mm,表中偏差值单位: μ m)

e d					尺寸包	及/mm				
序号	0~100	0~200	0~300	0~400	0~500	0~600	0~700	0~800	0~900	0~1 000
1.15	0.18	0.34	0.63	1. 20	1.51	2. 02	2. 22	2.62	2.54	2.64
2	0.30	0.38	0.70	1. 26	1.55	2. 10	2.26	2.66	2.56	2.66
3	0.30	0.42	0.67	1. 22	1.52	2.01	2.16	2.69	2.60	2.67
4	0.25	0.34	0.69	1. 22	1.54	1.96	2.22	2.72	2. 64	2.66
5	0.30	0.38	0.73	1.30	1.58	2.03	2. 28	2.71	2.69	2.71
6	0.33	0.44	0.76	1, 28	1.60	2.08	2.31	2.78	2.70	2.81

由表列出的6次测量数据可见,<mark>线纹尺刻划偏差是空间坐标L的函数</mark>,而且多次重复测量,不能获得规律性的结果。因此,线纹尺的测量可看做是随机过程,每次测量可看作是随机过程的一个样本。

11. 随机过程特征量的实际估计 计算实例1

参数		3 . 31 [4]								
	0~100	0~200	0~300	0~400	0~500	0~600	0~700	0~800	0~900	0~1 000
$m_x/\mu\mathrm{m}$	0. 277	0.383	0.697	1. 247	1.550	2.033	2. 242	2.697	2. 622	2.692
$\sigma_x/\mu m$	0.054	0.041	0.045	0.039	0.035	0.050	0.053	0.055	0.066	0.062

可算出每个尺寸段的均值和方差,

*₩*П

$$m_x(0 \sim 100) = \frac{1}{6}(0.18 + 0.30 + 0.30 + 0.25 + 0.30 + 0.30) \,\mu\text{m}$$

= 0.277 \,\text{\mu}m

$$\sigma_x(0 \sim 100) = \left\{ \frac{1}{6-1} [(0.18 - 0.277)^2 + (0.30 - 0.277)^2 + (0.27$$

$$(0.25 - 0.277)^2 + (0.30 - 0.277)^2 + (0.33 - 0.277)^2$$
 $\Big\}^{1/2} \mu m$ = 0.054 \mu m

均值变化较大,而方差变化 范围则稳定在一个较小范围 规律性误差——系统误差

/	W. Y	it,	1
(2)	4	4	14
(A	1))
	''		1:1

P 1	尺寸段/mm											
序号	0~100	0~200	0~300	0~400	0~500	0~600	0~700	0~800	0~900	0~1 000		
1.5	0.18	0.34	0.63	1. 20	1.51	2. 02	2. 22	2.62	2.54	2.64		
2	0.30	0.38	0.70	1. 26	1.55	2. 10	2.26	2.66	2.56	2.66		
3	0.30	0.42	0.67	1. 22	1.52	2.01	2.16	2.69	2.60	2. 67		
4	0.25	0.34	0.69	1. 22	1.54	1.96	2.22	2.72	2. 64	2.66		
5	0.30	0.38	0.73	1.30	1.58	2. 03	2. 28	2.71	2.69	2.71		
6	0.33	0.44	0.76	1.28	1.60	2. 08	2.31	2.78	2.70	2.81		
B	0~100	0~200	0~300	0~400	0~500	0~600	0~700	0~800	0~900	0~1 000		
$m_x/\mu \mathrm{m}$	0.277	0.383	0.697	1. 247	1.550	2.033	2. 242	2.697	2. 622	2.692		
$\sigma_x/\mu m$	0.054	0.041	0.045	0.039	0.035	0.050	0.053	0.055	0.066	0.062		

$$\rho_{x}(0 \sim 300, 0 \sim 100) = \{ (0.63 - 0.697)(0.18 - 0.277) + (0.70 - 0.697)(0.30 - 0.277) + (0.67 - 0.697)(0.30 - 0.277) + (0.69 - 0.697)(0.25 - 0.277) + (0.73 - 0.697)(0.30 - 0.277) + (0.76 - 0.697)(0.33 - 0.277) \}$$

$$= \frac{\rho_{X}(t, t + \tau)}{\sigma_{X}(t, t + \tau)(0.69 - 0.697)^{2} + (0.70 - 0.697)^{2} + (0.76 - 0.697)^{2} + (0.76 - 0.697)^{2} + (0.76 - 0.697)^{2}] \times$$

$$= \frac{R_{X}(t, t + \tau)(0.69 - 0.697)^{2} + (0.73 - 0.697)^{2} + (0.76 - 0.697)^{2}] \times$$

$$= \frac{\sigma_{X}(t)\sigma_{X}(t + t)(0.18 - 0.277)^{2} + (0.30 - 0.277)^{2} + (0.30 - 0.277)^{2} + (0.30 - 0.277)^{2} + (0.30 - 0.277)^{2} + (0.30 - 0.277)^{2} + (0.30 - 0.277)^{2} + (0.30 - 0.277)^{2} \}^{1/2} \approx 0.84$$

				-										
No.		t_k /mm												
Territoria de la constitución de	t_l/mm	0 ~ 100	0 ~ 200	0 ~ 300	0 ~ 400	0 ~ 500	0 ~ 600	0 ~ 700	0 ~ 800	0 ~ 900	0 ~ 1000			
	0 ~ 100	1	0. 82	0. 84	0. 75	0. 72	0. 50	0. 40	0.71	0. 63	0.68			
	0 ~ 200		ſ	0. 62	0. 49	0. 53	0. 52	0. 25	0. 61	0. 47	0. 76			
	0 ~ 300			1	0. 90	0. 98	0. 45	0. 79	0. 86	0. 87	0. 87			
	0 ~400				1	0. 98	0. 56	0. 80	0. 57	0. 72	0. 60			
	0 ~ 500					1	0. 48	0. 63	0. 79	0. 84	0. 88			
	0 ~ 600						1	0. 63	0. 07	-0.02	0. 45			
	0 ~ 700							1	0. 49	0. 57	0. 72			
	0 ~ 800								1	0. 91	0. 86			

相关函数值不随刻线间隔拉长而减小,标准自相关函数从刻线零位开始迅 0.81 速下降,并稳定在0.6~0.7,这表明刻线偏差数据具有自相关性,因此测 1 量结果并非纯粹的随机函数,其中包含有规律性误差。

100mm 的 ρ_x (0 ~ 200, 0 ~ 100) = 0.82; ρ_x (0 ~ 300, 0 ~ 200) = 0.62; ρ_x (0 ~ 400, 0 ~ 300) = 0.90…, 取平均值:

$$\rho_{100} = \frac{1}{9}(0.82 + 0.62 + 0.90 + 0.98 + 0.48 + 0.63 + 0.49 + 0.91 + 0.81) = 0.74$$

同理可计算间隔为 200, 300, …, 900mm 各尺寸段的标准相关函数值, 见下表:

$(t_k - t_l)$ /mm	0	100	200	300	400	500	600	700	800	900
ρ_{x}	1	0. 74	0. 62	0. 57	0. 65	0. 64	0. 64	0. 68		
				•				3. 00	0. 70	0. 68

11. 随机过程特征量的实际估计

小结

- 进一步的分析?
- 分析过程 确认是随机过程 采用总体平均法进行特征指标的计算 计算完后分析规律
- 关键问题 深刻理解平稳随机过程的内涵

11. 随机过程特征量的实际估计

各态历经随机过程

- 1. 基本特点
 - 一个样本反映所有样本特征
- 2. 如何判断?

严格证明随机信号各态历经十分复杂甚至无法证明。

因此工程实践中,一个常用的充要条件是:当随机过程的自相关函数随时间差下降得足够快时,具有均值各态历经性。

一个更常见的充分条件是: 自相关函数随时间差趋于无穷而趋于o m

$$R_r(\tau) \rightarrow 0$$
 当 $\tau \rightarrow \infty$

■ 3. 计算方法

$$m_{x} = \lim_{\tau \to \infty} \frac{1}{T} \int_{0}^{T} x(t) dt$$

$$D_{x} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} (x(t) - m_{x})^{2} dt$$

$$m_{\chi} = \frac{1}{n} \sum_{i=1}^{n} x(t_i) D_{\chi} = \frac{1}{n} \sum_{i=1}^{n} (x_i - m_{\chi})^2$$

11. 随机过程特征量的实际估计 计算实例2

飞机水平飞行,其垂直负荷数N(t)在200s内每隔2s记录一次。考虑负重的变化是各态历经随机过程,试求其特征量

i	N(t)	i	N(t)	i	N(t)	i	N(t)	i	N(t)
1	1.0	21	0.5	41	1.5	61	1.3	81	0.9
2	1.3	22	1.0	42	1.0	62	1.6	82	1.3
3	1.1	23	0.9	43	0.6	63	0.8	83	1.5
4	0.7	24	1.4	44	0.9	64	1.2	84	1, 2
5	0.7	25	1.4	45	0.8	65	0.6	85	1.4
6	1.1	26	1.0	46	0.8	66	1.0	86	1, 4
7	1.3	27	1.1	47	0.9	67	0.6	87	0.8
8	0.8	28	1.5	48	0.9	68	0.8	88	0, 8
9	0.8	29	1.0	49	0.6	69	0.7	89	1, 3
10	0.4	30	0.8	50	0.4	70	0.9	90	1.0
11	0.3	31	1.1	51	1.2	71	1.3	91	0, 7
12	0.3	32	1.1	52	1.4	72	1.5	92	1.1
13	0.6	33	1.2	53	0.8	73	1.1	93	0.9
14	0.3	34	1.0	54	0.9	74	0.7	94	0,9
15	0.5	35	0.8	55	1.0	75	1.0	95	1.1
16	0.5	36	0.8	56	0.8	76	0.8	96	1. 2
17	0.7	37	1.2	57	0.8	77	0.6	97	1, 3
18	0.8	38	0.7	58	1.4	78	0.9	98	1.3
19	0.6	39	0.7	59	1.6	79	1.2	99	1.6
20	1.0	40	1.1	60	1.7	80	1.3	100	1.5

$$m_{\chi} = \frac{1}{100} \sum_{i=1}^{100} N(t_i) = 0.9604$$
, $D_X = \frac{1}{100} \sum_{i=1}^{100} (N(t_i) - m_{\chi})^2 = 0.1045$

r/s	0	2	4	6	8	10	12	14	7.1.7
$\rho(\tau)$	1	0.505	0. 276	0.277	0. 231	-0.015	0.014	0.071	

用指数函数拟合 $\rho(\tau) = e^{-0.257|\tau|}$

$$\hat{R}_X(\tau) = \hat{D}_X \hat{\rho}_X(\tau) + \hat{m}_X^2 = 0.1045 e^{-0.257 |\tau|} + 0.9604$$

根据自相关函数和谱密度函数互为傅里叶变换

$$\hat{s}(\omega) = 2 \int_{0}^{+\infty} \hat{R}_{X}(\tau) \cos(\omega \tau) d\tau :$$

11. 随机过程特征量的实际估计

计算实例3

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier.com/locate/eswa

Bearing performance degradation assessment using locality preserving projections

Jian-Bo Yu*

$$RMS = \left(\frac{1}{N} \sum_{i=0}^{N} x_i^2\right)^{1/2}, \quad 方均值 \quad \psi_X^2(t) = E[x^2](t)$$

Crest factor =
$$\frac{\max |x_i|}{RMS}$$
, 方均值

Kurtosis =
$$\frac{1}{N} \sum_{i=0}^{N-1} (x_i - \bar{x})^4 / \sigma^4$$
, 均值、方差 (3)

Skewness =
$$\frac{1}{N} \sum_{i=0}^{N-1} (x_i - \bar{x})^3 / \sigma^3$$
, 均值、方差

$$P-P = x_{max} - x_{min}$$

(5)

(4)

Impulse factor =
$$\frac{\max |x_i|}{\frac{1}{N}\sum_{i=0}^{N-1}|x_i|},$$

(6)

$$\text{Margin factor} = \frac{\max |x_i|}{\left(\frac{1}{N}\sum_{i=0}^{N-1}|x_i|^{1/2}\right)^2}.$$

(7)

Time domain	Frequency domain
RMS (F _{rms})	PMM (F_{PMM})
Kurtosis (F_k)	Envelope-based frequency domain
Skewness (F _s)	$PMM(F_{EPMM})$
Crest factor (F _{cf})	Time-frequency domain (wavelet
Peak-to-peak (Fpp)	Wavelet energy (F_{we1}, F_{we2})
Impulse factor (Fif)	
Margin factor (F_{mf})	

相对有用的特征,如

Fig. 8. RMS of the tested bearings on their full cycle life.

$$RMS = \left(\frac{1}{N} \sum_{i=0}^{N} x_i^2\right)^{1/2},$$

20 Bearing 2 of Testing 2 18 Bearing 2 of Testing 3 Bearing 4 of Testing 3 16 14 12 Kurtosis 10 8 6 2 500 1000 1500 2000 2500 0 Time (time unit: 20 min)

Fig. 9. Kurtosis of the tested bearings on their full cycle life.

Kurtosis =
$$\frac{1}{N} \sum_{i=0}^{N-1} (x_i - \bar{x})^4 / \sigma^4$$
,

根据各态历经随机过程特点,可以考虑试试自相关函数?

将特征压缩至2维,方法-

将特征压缩至2维,方法二

将特征压缩至1维: 方法1 轴承全生命周期该特 征的变化过程

- 动态测量误差的评定参数
- 动态误差处理流程
- 动态测量误差的数学模型
- ■总结

- 原则 按随机过程的处理方法进行处理
- 评定参数 与静态误差分析对应 系统误差 随机误差

■ 参数特点

系统误差:确定性变化规律随机误差:随机性变化规律

- 动态测量数据的组合模型
- 动态测量数据X(t),由确定性函数f(t)和随机函数Y(t)组成
- f(t)可进一步划分为非周期函数d(t)和周期函数p(t)

$$X(t) = f(t) + Y(t) = d(t) + p(t) + Y(t)$$

- 动态测量数据X(t),由被测量真实值 $X_0(t)$ 及测量误差e(t)组成
- 真实值 $X_0(t)$ 由确定性真实值 $f_0(t)$ 和随机性真实值 $Y_0(t)$ 组成;
- 误差e(t)由系统误差 $e_s(t)$ 和随机误差 $e_r(t)$ 组成。

$$X(t) = X_0(t) + e(t) = f_0(t) + Y_0(t) + e_s(t) + e_r(t)$$

= $d_0(t) + p_0(t) + Y_0(t) + e_s(t) + e_r(t)$

 $d_0(t)$, $p_0(t)$ 分别为确定性成分的真实值 $f_0(t)$ 的非周期分量和周期分量

动态误差处理流程

动态误差处理流程

(一) 数据截断和采样

为了避免原始数据太多,避免引入粗大误差,经分析后截取原始数据中的一部分进行处理,称为截断。

对重复测量过程,截取长度至少应包括被测量全长或一个动态测量全过程。 动态测量数据常常是时间的连续函数,为了数据处理上的方便,往往只按一

定的时间间隔离散化取值, 称为采样。

采样间隔应满足香农采样定理:即为了能从采样数据复现原来信号中频率不大于频率为 F_m 的成分,最大采样时间间隔 Δ_{max} 为:

$$\Delta_{\max} = \frac{1}{2F_m}$$

动态误差处理流程

(二)剔除异点

在动态测量原始数据中会混入一些虚假数据,即异点。异点由粗大误差引起的,要剔除异点先检测出异点。其基本思想是认为正常数据是"平滑"的,而异点是"突变"的。关键是在于产生平滑估计和选取K。

平滑估计可采用"中位数"的方法。

即从原始数据 $\{x_i\}$ $(i=1,2,\cdots,N+1)$ 构造一个新序列 $\{x_i'\}$:

取 x_i 中前五个数 x_1 , x_2 , x_3 , x_4 , x_5 。 按大小重新排列:

$$x(1) \le x(2) \le x(3) \le x(4) \le x(5)$$

取中位数x(3), 记为 x_3' , 然后舍去 x_1 加入 x_6 , 取 x_2 , x_3 ,

 x_4 , x_5 , x_6 中的中位数 x_4 , 以此类推得到五个中位数,

并组成相邻五个原始数据的中位数 $\{x_i'\}(i=3,4,\dots,N-1)$ 。

再用相似的方法从序列 $\{x_i'\}$ 构成相邻三个数据的中位数序列:

$$\{x_i''\}(i=4,5,\cdots,N-2)$$

最后构成序列:

$$\{x_i'''\}: x_i''' = \begin{pmatrix} x_{i-1}'' \\ 4 \end{pmatrix} + \begin{pmatrix} x_i'' \\ 2 \end{pmatrix} + \begin{pmatrix} x_{i+1}'' \\ 4 \end{pmatrix} (i = 5, 6, \dots, N-3)$$

k是数据处理者根据情况设定的适当数值。如果

 $|x_i - x_i'''| > k$,则应剔除 x_i ,并根据相邻数据平滑的假设,

用一个内插值(如线性插值)代替它。

动态误差处理流程

(三) 动态测量数据特性检验

平稳性、周期性、正态性

(四) 动态测量系统误差

若重复进行n次测量,通过测量及数据处理得到n个表示该系统误差的确定性时变量,记第1个

样本的第i个系统误差为 e_{sli} ,则应把它们的算术平均值 m_{si} 或最大值 m_{sim} 作为评定参数,即:

$$m_{si} = \sum_{l=1}^{n} \frac{e_{sli}}{n} \qquad m_{sim} = \max_{l=1}^{n} \left\{ e_{sli} \right\}$$

动态误差处理流程

(五) 动态测量随机误差

动态测量的随机误差变化规律随机,评定较为复杂。假定进行了n次重复的动态测量,记 e_{rli} 为

第1个样本的第i个随机误差,则动态测量随机误差的总体评定参数为:

总体平均值

$$\overline{e}_r(t) = \sum_{l=1}^n \frac{e_{rl}(t)}{n}$$

标准差

$$\sigma(t) = \sqrt{\frac{1}{n-1}} \sum_{l=1}^{n} \left[e_{rl}(t) - \overline{e}_{r}(t) \right]^{2}$$

$$R_{x}(t,t+\tau) = \sqrt{\frac{1}{n-1}} \sum_{l=1}^{n} \left[e_{rl}(t) - \overline{e}_{r}(t) \right] \left[e_{rl}(t+\tau) - \overline{e}_{r}(t+\tau) \right]$$

如果动态测量随机误差是各态历经的,则可以用一个误差 样本e_r(t)按时间平均的误差评定指标来评定动态测量随机 误差,且其数值应与总体平均的评定指标一致。若初始时 平均时间为0,并记平均时间为T,则评定指标为:

均值
$$\overline{e}_r = \lim_{T \to \infty} \frac{1}{T} \int_0^T e_r(t) dt$$
 标准差
$$\sigma = \sqrt{\lim_{T \to \infty} \frac{1}{T} \int_0^T \left[e_r(t) - \overline{e}_r(t) \right]^2 dt }$$

自相关函数为:

$$R_{x}(\tau) = \lim_{T \to \infty} \frac{1}{T - \tau} \int_{0}^{T} \left[e_{r}(t) - \overline{e}_{r} \right] \left[e_{r}(t + \tau) - \overline{e}_{r} \right] dt$$

