Solutions for Problems 3.13, 3.18, and 3.19

3.13. For this manipulator, we can easily find the coordinates of the end-effector position o = $[o_x, o_y, o_z]^T$ as:

$$o_x = (d_3 + 1)\cos(\theta_1)$$
 ; $o_y = (d_3 + 1)\sin(\theta_1)$; $o_z = d_2 + 1$. (1)

 $o_x = (d_3 + 1)\cos(\theta_1)$; $o_y = (d_3 + 1)\sin(\theta_1)$; $o_z = d_2 + 1$. (1) Hence, given the desired end-effector position as $d = [d_x, d_y, d_z]^T$, we can solve for the joint variables (θ_1, d_2, d_3) as:

$$\theta_1 = \text{Atan2}(d_x, d_y)$$
 ; $d_2 = d_z - 1$; $d_3 = -1 + \sqrt{d_x^2 + d_y^2}$ (2)

where Atan2 denotes the two-argument arc-tangent function wherein Atan2(x,y) is essentially $\tan^{-1}(y/x)$, but with the signs of x and y also taken into account.

3.18. The choice of the D-H coordinate frames and the corresponding D-H table are shown below.

	a_i	α_i	d_i	θ_i
Link 1	0	-90°	0	θ_1^*
Link 2	0	90^o	d_2	θ_2^*
Link 3	0	0	d_3^*	0
Link 4	0	-90°	0	θ_4^*
Link 5	0	90^o	0	θ_5^*
Link 6	0	0	d_6	θ_6^*

Hence, the homogeneous transformation matrices A_1, \ldots, A_6 and the homogeneous transformation

$$A_{1} = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} ; A_{2} = \begin{bmatrix} c_{2} & 0 & s_{2} & 0 \\ s_{2} & 0 & -c_{2} & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} ; A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} ; A_{5} = \begin{bmatrix} c_{5} & 0 & s_{5} & 0 \\ s_{5} & 0 & -c_{5} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} ; A_{6} = \begin{bmatrix} c_{6} & -s_{6} & 0 & 0 \\ s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & 1 & d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(3)$$

$$A_{4} = \begin{bmatrix} c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad ; \quad A_{5} = \begin{bmatrix} c_{5} & 0 & s_{5} & 0 \\ s_{5} & 0 & -c_{5} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad ; \quad A_{6} = \begin{bmatrix} c_{6} & -s_{6} & 0 & 0 \\ s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & 1 & d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(4)

$$H_6^0 = A_1 A_2 A_3 A_4 A_5 A_6 (5)$$

To solve the inverse kinematics for this manipulator given the desired end-effector position d and desired orientation R, the desired coordinates of the wrist center o_c^0 are found as

$$o_c^0 = d - d_6 R[0, 0, 1]^T (6)$$

Here, d_6 is the distance from the wrist center to the origin of the end-effector coordinate frame. Computing $A_1A_2A_3$ and $A_4A_5A_6$, we get

$$H_{3}^{0} = A_{1}A_{2}A_{3} = \begin{bmatrix} c_{1}c_{2} & -s_{1} & c_{1}s_{2} & d_{3}c_{1}s_{2} - d_{2}s_{1} \\ c_{2}s_{1} & c_{1} & s_{1}s_{2} & d_{2}c_{1} + d_{3}s_{1}s_{2} \\ -s_{2} & 0 & c_{2} & d_{3}c_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_{6}^{3} = A_{4}A_{5}A_{6} = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{6}s_{4} - c_{4}c_{5}s_{6} & c_{4}s_{5} & d_{6}c_{4}s_{5} \\ c_{4}s_{6} + c_{5}c_{6}s_{4} & c_{4}c_{6} - c_{5}s_{4}s_{6} & s_{4}s_{5} & d_{6}s_{4}s_{5} \\ -c_{6}s_{5} & s_{5}s_{6} & c_{5} & d_{6}c_{5} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

$$(7)$$

$$H_6^3 = A_4 A_5 A_6 = \begin{bmatrix} c_4 c_5 c_6 - s_4 s_6 & -c_6 s_4 - c_4 c_5 s_6 & c_4 s_5 & d_6 c_4 s_5 \\ c_4 s_6 + c_5 c_6 s_4 & c_4 c_6 - c_5 s_4 s_6 & s_4 s_5 & d_6 s_4 s_5 \\ -c_6 s_5 & s_5 s_6 & c_5 & d_6 c_5 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$
(8)

Using the concept of kinematic decoupling, we will solve for the first three joint variables (θ_1 , θ_2 , d_3) to place the wrist center at the desired location and then solve for the last three joint variables $(\theta_4, \theta_5, \theta_6)$ to set the desired angular orientation of the end-effector. With o being the end-effector position, it can be seen that $o - d_6 R_6^0[0, 0, 1]^T = [d_3 c_1 s_2 - d_2 s_1, d_2 c_1 + d_3 s_1 s_2, d_3 c_2]^T$. Hence, if the desired location of the wrist center is found using (6) as $o_c^0 = [x_c, y_c, z_c]^T$, then to find θ_1 , θ_2 , and d_3 , we need to solve the equations

$$x_c = d_3 c_1 s_2 - d_2 s_1 \tag{9}$$

$$y_c = d_2 c_1 + d_3 s_1 s_2 \tag{10}$$

$$z_c = d_3 c_2. (11)$$

Hence,

$$\theta_2 = \cos^{-1}\left(\frac{z_c}{d_3}\right) \tag{12}$$

Also,
$$x_c^2 + y_c^2 + z_c^2 = d_3^2 + d_2^2$$
. Therefore,

$$d_3 = \sqrt{x_c^2 + y_c^2 + z_c^2 - d_2^2}.$$
(13)

From the solutions for θ_2 and d_3 in equations (12) and (13), we can then find θ_1 using equations (9) and (10) which are of the form $Ac_1 + Bs_1 = x_c$ and $As_1 - Bc_1 = y_c$ where $A = d_3s_2$ and $B=-d_2$. This pair of equations for θ_1 is identical in form to the equations in the solution of Problem 3.11 in Homework 5. Hence, using the same solution method as in that problem, we see that $\theta_1 = \text{Atan2}(x_c, y_c) - \text{Atan2}(d_3s_2, d_2)$ where Atan2 denotes the two-argument arc-tangent function wherein Atan2(x,y) is essentially $\tan^{-1}(y/x)$, but with the signs of x and y also taken into account. From equation (12), we get two solutions for θ_2 . If d_3 is constrained to be positive, (13) gives us a unique solution for d_3 . Once θ_2 and d_3 are specified, we get a unique solution for θ_1 as described above. Hence, in general, we get two solutions for the inverse position kinematics given the desired position of the wrist center.

Next, to find θ_4 , θ_5 , and θ_6 , note that the rotation matrix part of $H_6^3 = A_4 A_5 A_6$ in (8) is exactly of the form of the Euler angle (Z - Y - Z) rotation matrix representation. Hence, θ_4 , θ_5 , and θ_6 are the Euler angles (ϕ, θ, ψ) corresponding to the desired rotation matrix R_6^3 , which is $(R_3^0)^T R$ where R is the given rotation matrix corresponding to the desired end-effector orientation and R_0^0 is the rotation matrix corresponding to the first three joint variables $(\theta_1, \theta_2, d_3)$. We know the rotation matrix R_3^0 from (7). Hence, from the solutions that we found above for the first three joint variables $(\theta_1, \theta_2, d_3)$, we find R_3^0 and therefore find the desired value of R_6^3 as $(R_3^0)^T R$. Then, from this desired R_6^3 matrix, we can find θ_4 , θ_5 , and θ_6 using the standard way of finding Euler angles corresponding to a given rotation matrix, i.e., denoting the $(i,j)^{th}$ element of this desired R_6^3 matrix by \tilde{r}_{ij} , we have $\theta_5 = \cos^{-1}(\tilde{r}_{33})$, which gives us two possible values of θ_5 , one of which has a positive value of s_5 and the other a negative value of s_5 . Then, we have $\theta_6 = \text{Atan2}(-\tilde{r}_{31}, \tilde{r}_{32})$ for the case of positive s_5 and $\theta_6 = \text{Atan2}(\tilde{r}_{31}, -\tilde{r}_{32})$ for the case of negative s_5 . Similarly, using the (1,3) and (2,3) elements of the desired R_6^3 matrix, we see that $c_4s_5=\tilde{r}_{13}$ and $s_4s_5=\tilde{r}_{23}$. Hence, $\theta_4 = \text{Atan2}(\tilde{r}_{13}, \tilde{r}_{23})$ for the case of positive s_5 and $\theta_4 = \text{Atan2}(-\tilde{r}_{13}, -\tilde{r}_{23})$ for the case of negative s_5 . In the special case that $\tilde{r}_{33}=1$, we get $\theta_5=0$ and we can only find $\theta_4+\theta_6$, but not the individual angles θ_4 and θ_6 uniquely. Similarly, in the special case that $\tilde{r}_{33} = -1$, we get $\theta_5 = \pi$ and we can only find $\theta_4 - \theta_6$, but not the individual angles θ_4 and θ_6 uniquely.

3.19. The forward kinematics of the PUMA 260 manipulator was written in Problem 3.10 in Homework 5. To solve the inverse kinematics for this manipulator given the desired end-effector position d and desired orientation R, the desired coordinates of the wrist center o_c^0 are

$$o_c^0 = d - d_6 R[0, 0, 1]^T (14)$$

Here, d_6 is the distance from the wrist center to the origin of the end-effector coordinate frame. From the forward kinematics we found in Problem 3.10 in Homework 5, we find that with o being the end-effector position,

$$o - d_6 R_6^0 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} d_4(c_1 c_2 s_3 + c_1 c_3 s_2) + d_2 s_1 + a_2 c_1 c_2 \\ d_4(c_2 s_1 s_3 + c_3 s_1 s_2) - d_2 c_1 + a_2 c_2 s_1 \\ d_1 - d_4(c_2 c_3 - s_2 s_3) + a_2 s_2 \end{bmatrix}$$
(15)

Hence, if the desired location of the wrist center is found using (14) as $o_c^0 = [x_c, y_c, z_c]^T$, then we see from (15) that to find θ_1 , θ_2 , and θ_3 , we need to solve the equations

$$x_c = d_4 c_1 s_{23} + d_2 s_1 + a_2 c_1 c_2 (16)$$

$$y_c = d_4 s_1 s_{23} - d_2 c_1 + a_2 c_2 s_1 \tag{17}$$

$$z_c = d_1 - d_4 c_{23} + a_2 s_2. (18)$$

Hence, $x_c^2 + y_c^2 + (z_c - d_1)^2 = d_4^2 + d_2^2 + a_2^2 + 2a_2d_4(c_2s_{23} - s_2c_{23}) = d_4^2 + d_2^2 + a_2^2 + 2a_2d_4s_3$. Therefore, $\theta_3 = \sin^{-1}\left(\frac{x_c^2 + y_c^2 + (z_c - d_1)^2 - d_4^2 - d_2^2 - a_2^2}{2a_2d_4}\right)$ Once the solution for θ_3 has been found from (19), we can use equation (18) to find θ_2 since this

equation is equivalent to $(a_2+d_4s_3)s_2-d_4c_3c_2=z_c-d_1$, i.e., an equation of the form $Ac_2+Bs_2=C$, the solution for which can be written as

$$\theta_2 = -\text{Atan2}(B, A) + \sin^{-1}\left(\frac{C}{\sqrt{A^2 + B^2}}\right).$$
 (20)

Then, with θ_2 and θ_3 known from equations (20) and (19), we can find θ_1 using equations (16) and (17) since these equations are of the form $Ac_1+Bs_1=x_c$ and $As_1-Bc_1=y_c$ where $A=d_4s_{23}+a_2c_2$ and $B = d_2$, the solution for which can be written as $\theta_1 = \text{Atan2}(x_c, y_c) + \text{Atan2}(d_4s_{23} + a_2c_2, d_2)$. From equation (19), we get two possible solutions for θ_3 and from (20), we get two possible solutions for θ_2 . Once θ_2 and θ_3 are specified, we get a unique solution for θ_1 . Hence, in general, we get four solutions for the inverse position kinematics given the desired position of the wrist center.

Using the concept of kinematic decoupling, we can solve for the first three joint variables (θ_1 , θ_2 , θ_3) to place the wrist center at the desired location and then solve for the last three joint variables $(\theta_4, \theta_5, \theta_6)$ to set the desired angular orientation of the end-effector. This part is identical to the calculation of θ_4 , θ_5 , and θ_6 in the solution of Problem 3.18 above.

For this manipulator, we have

$$H_{3}^{0} = A_{1}A_{2}A_{3} = \begin{bmatrix} c_{1}c_{2}c_{3} - c_{1}s_{2}s_{3} & s_{1} & c_{1}c_{2}s_{3} + c_{1}c_{3}s_{2} & d_{2}s_{1} + a_{2}c_{1}c_{2} \\ c_{2}c_{3}s_{1} - s_{1}s_{2}s_{3} & -c_{1} & c_{2}s_{1}s_{3} + c_{3}s_{1}s_{2} & a_{2}c_{2}s_{1} - d_{2}c_{1} \\ c_{2}s_{3} + c_{3}s_{2} & 0 & s_{2}s_{3} - c_{2}c_{3} & d_{1} + a_{2}s_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_{6}^{3} = A_{4}A_{5}A_{6} = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{6}s_{4} - c_{4}c_{5}s_{6} & c_{4}s_{5} & d_{6}c_{4}s_{5} \\ c_{4}s_{6} + c_{5}c_{6}s_{4} & c_{4}c_{6} - c_{5}s_{4}s_{6} & s_{4}s_{5} & d_{6}s_{4}s_{5} \\ -c_{6}s_{5} & s_{5}s_{6} & c_{5} & d_{4} + d_{6}c_{5} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

$$(21)$$

$$H_6^3 = A_4 A_5 A_6 = \begin{bmatrix} c_4 c_5 c_6 - s_4 s_6 & -c_6 s_4 - c_4 c_5 s_6 & c_4 s_5 & d_6 c_4 s_5 \\ c_4 s_6 + c_5 c_6 s_4 & c_4 c_6 - c_5 s_4 s_6 & s_4 s_5 & d_6 s_4 s_5 \\ -c_6 s_5 & s_5 s_6 & c_5 & d_4 + d_6 c_5 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$
 (22)

Note that the rotation matrix part of $H_6^3 = A_4 A_5 A_6$ in (22) is exactly of the form of the Euler angle (Z - Y - Z) rotation matrix representation. Hence, θ_4 , θ_5 , and θ_6 are the Euler angles (ϕ, θ, ψ) corresponding to the desired rotation matrix R_6^3 , which is $(R_3^0)^T R$ where R is the given rotation matrix corresponding to the desired end-effector orientation and R_3^0 is the rotation matrix corresponding to the first three joint variables $(\theta_1, \theta_2, \theta_3)$. We know the rotation matrix R_3^0 from (21) as a function of $(\theta_1, \theta_2, \theta_3)$. Hence, from the solutions that we found above for the first three joint variables $(\theta_1, \theta_2, \theta_3)$, we find R_3^0 and therefore the desired value of R_6^3 as $(R_3^0)^T R$. Then, from this desired R_6^3 matrix, we can find θ_4 , θ_5 , and θ_6 using the standard way of finding Euler angles corresponding to a given rotation matrix, exactly as in the solution for Problem 3.18 above.