

Document Image Analysis (lab session)

July 2015

Alicia Fornés afornes@cvc.uab.es

VISUM Summer School

VISion Understanding and Machine intelligence

Contents

- Word Spotting using Dynamic Time Warping (DTW)
- Writer Identification using Bag of Words

DYNAMIC TIME WARPING

Time Sequences Alignment

Dynamic Time Warping (DTW)

DTW computes the distance between two time series optimizing the alignment

DTW can distort (warp) the time axis, compressing or expanding when necessary

MATLAB: f_compare_vectors_DTW.m

DTW: Example with 1-D signals

X	1	4	7	9	3	6	9	7	2	1
2	1	5	30	79	80	96	145	170	170	171
5	17	2	6	22	26	27	43	47	56	72
7	53	11	2	6	22	23	27	27	52	88
3	57	12	18	38	6	15	51	43	28	32
2	58	16	37	67	7	22	64	68	28	29
8	107	32	17	18	32	11	12	13	49	77
8	156	48	18	18	43	15	12	13	49	98
4	165	48	27	43	19	19	37	21	17	26
2	166	52	52	76	20	35	68	46	17	18

$$D(i,j) = \min \left\{ D(i,j-1) \\ D(i-1,j) \\ D(i-1,j-1) \right\} + d(x_i, y_i)$$

Distance = 18

Normalize by the length of the path

$$\operatorname{dist}(\mathbf{X}, \mathbf{Y}) = D(M, N)/K$$

Path? → Backtracking Final distance = 18/10

DTW: Example with 1-D signals

DTW Matching:

DYNAMIC TIME WARPING-BASED WORD SPOTTING

DTW-based Word Spotting

- Word Segmentation
- Features: Profiles
- Matching: Dynamic Time Warping

T.M. Rath, R. Manmatha: Word Image Matching Using Dynamic Time Warping. CVPR (2), pp. 521-527, 2003.

MATLAB: main_wordSpotting.m

Rath and Manmatha 2003

Feature Extraction

For each column of the word, extract 4 features

f1: upper profile

f2: lower profile

f3: number of foreground pixels

f4: number of transitions (gaps)

Rath and Manmatha 2003

Matching: Dynamic Time Warping (DTW)

The distance at each point is the square of the euclidean distance between 4-dimensional vector

$$D(i,j) = \min \left\{ D(i,j-1) \atop D(i-1,j) \atop D(i-1,j-1) \right\} + d(x_i,y_i) \qquad d(x_i,y_j) = \sum_{k=1}^d (x_{i,k} - y_{j,k})^2$$

$$d(x_i, y_j) = \sum_{k=1}^{d} (x_{i,k} - y_{j,k})^2$$

Comparison with a fixed-length descriptor: Zoning

Improvements

Disadvantages

Depends on a good word segmentation

Complexity $O(n^2) \rightarrow Slow$ method, hardly scalable

All distances between words have to be computed

Optimizations → Sakoe-Chiba band

WRITER IDENTIFICATION WITH BAG OF WORDS

Bag of Words

Textural features

Grey-Scale (Gray-Level) Co-occurrence Matrices

GSCM_{d, α}(a,b) = number of pairs (Pixel1,Pixel2) with a distance **d** and angle α , with color **a** and **b**

In binary images we have only 2 levels (black-white)

MATLAB: main_writer_identification.m

Results

*** CLASSIFICATION ***

- Test Image 1, TestPages\wA_p002.png is writer: 05, min distance to page: TrainPages/w-05/p002.png
- Test Image 2, TestPages\wA_p010.png is writer: 01, min distance to page: TrainPages/w-01/p008.png
- Test Image 3, TestPages\wB_p003.png is writer: 02, min distance to page: TrainPages/w-02/p005.png
- Test Image 4, TestPages\wB_p004.png is writer: 02, min distance to page: TrainPages/w-02/p007.png
- Test Image 5, TestPages\wC_p008.png is writer: 03, min distance to page: TrainPages/w-03/p010.png
- Test Image 6, TestPages\wC_p009.png is writer: 02, min distance to page: TrainPages/w-02/p005.png
- Test Image 7, TestPages\wD_p001.png is writer: 04, min distance to page: TrainPages/w-04/p004.png
- Test Image 8, TestPages\wD_p005.png is writer: 04, min distance to page: TrainPages/w-04/p003.png
- Test Image 9, TestPages\wE_p006.png is writer: 05, min distance to page: TrainPages/w-05/p008.png
- Test Image 10, TestPages\wE_p007.png is writer: 05, min distance to page: TrainPages/w-05/p009.png

Ground-truth:

wA= writer 1, wB= writer 2, wC= writer 3, wD= writer 4, wE= writer 5

Shape Descriptor: Zoning

- The image is divided in *n* x *m* cells.
- For each cell the mean of gray levels is computed and all these values are joined in a feature vector of length n x m.

MATLAB: f_compute_glcm.m → compute_glcm = 0; % if 0, compute Zoning

Comparison with a shape-based descriptor: Zoning

*** CLASSIFICATION ***

- Test Image 1, TestPages\wA_p002.png is writer: 05, min distance to page: TrainPages/w-05/p002.png
- Test Image 2, TestPages\wA_p010.png is writer: 04, min distance to page: TrainPages/w-04/p010.png
- Test Image 3, TestPages\wB_p003.png is writer: 02, min distance to page: TrainPages/w-02/p009.png
- Test Image 4, TestPages\wB_p004.png is writer: 02, min distance to page: TrainPages/w-02/p001.png
- Test Image 5, TestPages\wC_p008.png is writer: 03, min distance to page: TrainPages/w-03/p005.png
- Test Image 6, TestPages\wC_p009.png is writer: 03, min distance to page: TrainPages/w-03/p003.png
- Test Image 7, TestPages\wD_p001.png is writer: 01, min distance to page: TrainPages/w-01/p001.png
- Test Image 8, TestPages\wD_p005.png is writer: 04, min distance to page: TrainPages/w-04/p008.png
- Test Image 9, TestPages\wE_p006.png is writer: 03, min distance to page: TrainPages/w-03/p004.png
- Test Image 10, TestPages\wE_p007.png is writer: 05, min distance to page: TrainPages/w-05/p009.png

Ground-truth:

wA= writer 1, wB= writer 2, wC= writer 3, wD= writer 4, wE= writer 5

Tired of Toy-examples?

Try with more challenging datasets:

- Word Spotting: <u>http://transcriptorium.eu/~icdar15kws/</u>
- Writer Identification at the ICDAR/GREC 2011 Competition: http://www.cvc.uab.es/cvcmuscima/

Still want more? There are many competitions at ICDAR conferences:

- http://2015.icdar.org/program/competitions/
- http://www.icdar2013.org/program/competitions
- etc.

