### Some common rejection regions

Suppose 
$$T = \frac{\hat{\partial} - h_0}{SE(\hat{\partial})}$$

Suppose  $T = \frac{\hat{\theta} - \theta_0}{SE(\hat{\theta})}$ . When the is true, we expect T to be close to zero.

Tobs = Observed value of DO T.

In this case, it is often easy to guess  $\mathcal{R}$ .

Case 1:  $H_0: \theta = \theta_0$  against  $H_1: \theta \neq \theta_0$ Reject 17/ large => 17/>c, where c is some possitive entoff.

Case 2:  $H_0: \theta = \theta_0$  against  $H_1: \theta > \theta_0$ 

Rijonel to if T>C Trome positive outoff

Reject to if T < C some negative cutoff. | =PET> cx | the is true]

Case 3:  $H_0: \theta = \theta_0$  against  $H_1: \theta < \theta_0$  Take  $c = c_{\kappa}$ , then split  $H_n: \theta \in C$ 

Compute the critical point in a way that ensures that the level of the test equals the prescribed a.

I Take e= 4x then PLTAR I want = PLT < 4x | Ho is true ]=x

the null dist. of T is symmetric, then "CIX = -CX

#### The corresponding level $\alpha$ tests:

Suppose  $c_{\alpha}$  is such that  $P(T > c_{\alpha} | \theta = \theta_0) = \alpha$ .



Case 1:  $H_0: \theta = \theta_0$  against  $H_1: \theta \neq \dot{\theta}_0$ 



Case 2:  $H_0: \theta = \theta_0$  against  $H_1: \theta > \theta_0$ 

 $\mathcal{R} = \{T > c_{\alpha}\}, \text{ i.e., reject } H_0 \text{ when } T > c_{\alpha}, \text{ otherwise accept it.}$ 

Case 3:  $H_0: \theta = \theta_0$  against  $H_1: \theta < \theta_0$ 

 $\mathcal{R} = \{T < \frac{c_{i}}{W}c_{i}\}, \text{ i.e., reject } H_0 \text{ when } T < \frac{c_{i}}{W}c_{i}, \text{ otherwise accept} \}$ it.

### Hypothesis testing (continued)

We can perform a level  $\alpha$  test by comparing  $T_{\rm obs}$  with the critical point. But how strong is the evidence against the null? This is formally measured by p-value. Let's play a game to motivate its definition.

My bag has 10 small balls. I claim that 8 are red and 2 are blue. I will bet 3 people a candy bar that a blue ball will come up. My chances are not very good but I will take them anyway.

| trial # | PKC vs? | color drawn | winner |
|---------|---------|-------------|--------|
| 1       | Bjont   | blue        | pie    |
| 2       | Neefu   | bluc        | 1 ~    |
| 3       | Nisha   | Slue        | pice   |

Q. Does is it seem reasonable that I would win ... times in 3 trials if the bag contained 2 blue balls?

Not:

13/30

| Let's cast this problem as a test of hypothesis. $X = \begin{cases} 1 & \text{if blue}' \\ 0 & \text{of } w \end{cases}$ Hypotheses:  How $p = 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Hypotheses: $P = 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| T and $T_{obs}$ $T = X_1 + X_2 + X_3 = H$ blue balls drawn $T = X_1 + X_2 + X_3 = H$ blue balls drawn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Null distribution $T$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| <b>Q.</b> What is the actual chance of getting $T_{\text{obs}}$ if $H_0$ is true?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| What does it indicate about $H_0$ ?  Of $T=3$   $H_0$ is true                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Right Ho if $T > c_{R} w_{ge}$ .  Q. What is the actual chance of getting $T_{obs}$ if $H_0$ is true?  What does it indicate about $H_0$ ? $= P[T=3] \text{ Ho is true}]$ $= (0.2)(0.2)(0.2) = 0.008$ Very small one give rare give rare give rare give rare of the is true $f(x,y) = f(x,y) $ |  |  |  |

p-value: The probability of getting a T that is as extreme or

more extreme than  $T_{\rm obs}$  assuming that  $H_0$  is true.

The strength of the strength of the Ho is true.

The strength of the Ho is true.

The strength of the Ho is true. Smaller the p-value, stronger the evidence against  $H_0$ .

Level  $\alpha$  test. Point T

- Level  $\alpha$  test: Reject  $H_0$  if p-value  $\leq \alpha$ .
- Another interpretation of p-value: The smallest level of significance at which  $H_0$  is rejected.

• Advantage of p-value over critical point: p-value summizes the strength of windence Q. Is p-value =  $P(H_0 \text{ is true})$ ? P-value P-val

- $H_0$  is either true or not true, but we don't know the truth. Certainly,  $H_0$  is not a random quantity.
- p-value tells us how likely our  $T_{\rm obs}$  is (or something more extreme) if  $H_0$  is true.

If  $H_1: 0 > 0_0 \Rightarrow T \ge Tops$ .  $H_1: 0 < 0_0 \Rightarrow T \ge Tops$ .  $H_1: 0 \ne 0_0 \Rightarrow T \ge Tops$   $H_1: 0 \ne 0_0 \Rightarrow T \ge Tops$ 

proble is the prob. If one of these prosignitions around to is true.

# Summary of steps in a hypothesis test: $\mathcal{T} = \frac{\widehat{\partial} - \theta_0}{\widehat{\mathcal{SE}(\mathcal{O})}}$ • Formulate $H_0$ and $H_1 > \frac{\mathcal{SV} - \mathcal{A} + \mathcal{V} + \mathcal{A}}{\widehat{\mathcal{SE}(\mathcal{O})}}$

- Find a test statistic T and get its null distribution
- Compute  $T_{obs}$
- Use the null distribution to compute either the critical point or the p-value for the test.

• State your conclusion. in Layman terms with, accept or right Ho

### Some specific tests

## One-sample tests for $\mu$ where $X \sim N(\mu, \sigma^2)$

Case 1: z-test (known  $\sigma^2$ ):  $H_0: \mu = \mu_0$ Test statistic:  $\overline{X} - \mu \omega$   $\overline{Z} = \frac{\overline{X} - \mu \omega}{6 \sqrt{N}}$ Null dist.:  $\overline{X} \sim N \left( \frac{N}{N} \right) \frac{1}{N} \frac{1$ Critical point for the level a test: if Ho is true. One-sided alternative: Hi: 0>00 => critical Pt. 11 2x Two-sided alternative: HI: OLOO > critical pt. 15 April + Of Do => evitical pt. 15 Zat2

p-value: