COMBINATORICS

⇒ duylower

A collection of K sets S1, Sz. Sx is a sunflower with k petals and a core 'y' if

→ y can be an empty set ϕ

NOTE: if you take a large no of sets, it is quaranteed a surflewer is present

for a w-uniform family of sets, size of set = w

Sungeower Lemma

- Erdos, Rado - 1960s

let F be a w-uniform family of sets if IFI > w! (K-1) then F contains a surflower. (K-surflower)

Proof: (by Induction on w- set rize)

BASE CASE : W= 1

IF1 7 K-1

atteast K sets (disjoint) since sets are distinct > K disjoint sets

=) emply core => ensures surflower.

SHOULTION STEP: Statement true for assumed W 5 h-1 where h > 1

Let w = h

1F1 > 1 (K-1) 4

y + contain k-pairmise disjoints sets, then done

else let Si. Sz. Sz be a maximal subjamily of F which who pairwise dijaint (LKK)

1 Si Sz .. Sis - pairwise diffaint subjamily of F with & K K-

Let T = SIUSEUSS USL

4 Th HITTING SET & F

4 any set of F will have a non-comply interestion with the sitting set prag: let SEF, have an empty intersection them it would have been included in T but T was maximal = CONTRADICTION

TWO INFERENCES

1. The a hitting set

2. ITI = le (pair nive disjoint) It & (K-1) x

let Tientains dem => {x1, x2. x1, x1} and F = 35,52, ... SL, Su1 ... 5, 21(k-1) }

I zeT such that a is present in > h (k-1) sets in F = (x-1)1 (K-1)x-1

let Fz : 9 SEF : ZES3-

1Fx 1 > (r-1) 1 (K-1) Y-1

4 Fx 3 → after removing or from every set in

((r-1) uniform family

By induction hypo,

Fx' contains K-surflower.

let J (K.W) denote the minimum number of w-sized sets required to ensure the presence of k-surpower

(K-1)W < (K,w) < wi (k-1)W+1

To prove: (K-1) we f(K, w)

Take sets A1, A2. Aw with (k-1) elements in each set take one element from each set

Set Size = W

and IFI = (K-1) w =) (K-1) options from each set

Surfrewer Conjecture for a fixed k

I (K,W) < c w where C = C(K)

Improved bound

I (K,W) * (log w) (1+0(1))

I (K,W) * (log w) (3 depends of k.

In] = 71,2,3,..., n3

no. of subsets = 2" (n-element)

smallet subset size = \$\phi\$ (empty)

INTERSECTING FAMILY

How large can an intersecting family of subsets of Int be?
if we I dement

4 no of subsets => 2ⁿ⁻¹ (Intersecting family)

2ⁿ⁻¹ ? Size of largest intersecting > 2ⁿ⁻¹
jamily of subsets of [n]

for upper bound,

Take a set A & its complement revoluting subset 167)

the court take both A & A in introsecting family

NOTE: Size of a largest K-uniform family of subsets of Int that is intuiting.

ho of subsets of size k: "Ck

leut since k>n/2 (overlap guaranteed)

thus

any 2 sets by size k will have common elements

CASE 1: n < 2k (K> n/2) size of largest k-uniform family of subsets of [n] which are interecting = nck CASE 1: N > 2K (K < N/2) fix I element and take subsets of site (k-1) from (n-1) elemente the lower bound =) "- CK-1 * ERDOS - KO-RADO [1960s] Jon 17/2K n-1 Size of largest

C K-Uniform intersecting

K-1

Jamily let F be a k-uniform interesting family of subsets of [n] that is intersecting Further n>2k IFI 5 1-1 C PROOF (Katoma, 1970s) For Example, K=3 F = { 1,2,33 12,3,41 1,5,23, 12,3,53] 6: be a circular permutation of [1]

Minkraediva A set SEF is "present" in 6 y dements of 5 are present contiguously in the permutation (order does not matter) From the example \$1,2,33, \$1,5,23 our present in permutation F: Intersecting, K-uniform with 6: How many sets of F circular permutation ?? since all are interesting sets, we wouldn't have non-interesting we can have atmost k sets of Family F that can appearing contiguously Coverlapping: exclude I element each time enty k are would be possible because the (k+1) mare would be disjoint with the 1st are. G: [(S, 6): SEF is present in the circular] permutation 6 1F|K1(n-K)| < |G| < (n-1)|K gays in how no of k sets possible many no of circular punutations no of ways to choose stremt (Size of family)

for a dit |S| - k elements arranged in K! and rest element in (n-K)!

the for a let 5, can be present in k! (n-k)! circular permutations

Hence,

1F| k! (n-k) 1 & (n-1) ! K

|F| < (n-1) | K (n-k) | K|

(n-1)-(k-1) (k-1)

IFI & "-1 C K-1

boof by contradiction (for lower bound) suppose we had (x-1) antichour partitions.

AL, AZ . AB ... AY-1

we can't take 2 elements from a anti-chain, since they are uncomparable

but ++ longest chain (contradiction)

But Silworth proover that,

minimum no of partitions = &

Proof: P - (x, x)

FOH any 150 ST, we define

Ai = { x EX; the length of longert chain terminating at x is is }

FOM eg.

A4 . 1 11,2,33 , 11,2,43, 11,3,43, 22,3,43 3.

4 Longest Chain ending with \$1,2,33 is 4 ξφ. \$13, \$1,27, \$1,2,337 or \$φ, \$23, \$2,33, \$1,2,333 etc.

Claim: for every 15ist. At it an antichain since no 2 elements can be part of 2 tell than Ai would be disjoint.

so, the it we prove Ai is an autichain, we prove the dilworth theorem since there are "h' autichaus

Proof: suppose Ai what an antichain.

=> x, y & Ai such that x x y

But then, length of longest chain ending at y

should be > i+1

because since x & Ai length of longest chain ending at z = i

thus length of longest chain ending at y > I+1

But this contradicts,

So, our assumption x x y is jake

there for 1 = i = r. Ai is an autichain the the min no of partitions which are autichain = h

DILWORTH THEOREM 2

let $P = (X, \times)$ be a poset, let 'n' be the length of a largest antichain. Hun the elements of X can be partioned into 'x' chains.

longut autidiani of length = 6

cham partitions 14. 313, 11,23, 11,2,33 11,2,3, 433 : 183 , 21,33, 21,3,433 1 123, 12,31, 12,3,433 1 1143 : {3,43 Maximum no of chaud = n teach of length I where 1X1=n can we have less than & chains let have (4-1) chains, but thus would contradict the fact theat is is longest audichain (each clement from each chain) Minimum no of chains = &. Proof: Induction of IX Base Cour : IXI=1 length of longut antichain = 1 purtitions possible = 1 s element only -> chain and antichain. Induction step: Assure the statement is true for all posets dyind on x with 1X1 5 n-1 To prove : let P = (x, d) be a poset where IXI=n. Let 26 X be a maximal element of P(x, x) 4 there is no element y = X, y = x Such that the ty x = 4. For Example x => {1,2,3,4 ? in preveq

let P'= (X \ 223, 5) be a subposet of P; where r'+ length of long.

By industion hypothesis.

1911 = n-1

then elements of x? can be partitioned into x? chains

let these chain be C. Co. Co. Co. Cr.

XIKI	ZIKZ	X7Ki*	×H2KT*
X13	723		
212	X21	Xia	×2,2
Zu	×21	X ₁	Xx',
Ci	C1	Ci	Cy,

x' = (1 U(2 U(3 -- U(1 -- U(r' (disjoint union)

CASE1: n'< n

there x'= H-1 fonly removed 1 element 3.

thus length of longest chain would atmost decrease by 1

x" = (1 &(1 & Cy-1 (Y-1) chains

and let (r = 9x3 (removed element)

And hence

(r chains) _ proved

CASE 2: H'=H

thus for x', we used in chain but 223 is left out Subcases:

ý jor any xiki where Isisr

then, would simply add its to chain to and X would be partioned in x chain

Subcase 2

if we don't gind any xixisx. the only way to undude or, is to break the existing chains and reorder them to include * [x]

let us define elemente,

x2j: > highest element in c; that is present in an articlain of length & in P'

{ xij1, x2j2 xxjx 3 is an antichair of length 4 in P' by contradiction, suppose see it mot a antichain.

=) 2 elements are related in above set

4 Hure exist xiji & xxjx

this would mean

where xxjx a xiji

in an antichain consist of xxjx werant have any elements in the chain a which are below xiji

but somebody from a must be present in that antichain to make a length 4.

so, somebody from higher hierarchy in it how to be include & (xiji xik.

but that would contradict the jack that xiji was the hignest element in a in any antichain

=> no 2 elements are related => {ziji, ziji. xrjv3 antichain.

let N = { 21je. 22je ... 2iji ... 27jy } Ques: 4 A = A'U Ex 3 an antichain in P? No, this would result in (7+1) length antichain Contradiction =) one of the ziji is comparable to Ex3 wince 723 is a maximal set XIII K X. Ci = 2 xi1, xi2 xiji ... xi xi 3. and (i' = {xi1, xi2.... xiji, x} and Di' = 121 jin ... ziki} lut P" = ((X \ Ci') , K) Claim: length of largest autichain in P" is 5 7-1 because removing (i', we remove ziji - which was taking part in longest antichain of length "x" thus antichain length decrease by 1 By induction hypothesis X/G' can be partioned into (k-1) chain X can be partiolioned into & chains (by addition of (i')

* HALL'S THEDREM proof using Dilworthi theorem 2 G Graph = (V,E) V(G) > Vertices set ; E(G) > edges set 4 = VCG) X VCG) Dealing with simple undirected graphs. Independent set of vertices in a vertices in the set have an edge between them Bipartite graph A graph 4 is bipartite if its ventices can be partitioned with 2 parts say A & B, such that thou is no edge between any 2 vertices that belong to the same part example: A & B are independent itself. Subset of the edge set of a graph such that no 2 edges Matching in a graph. shake an endpoint example: d M. Eag, bj, cd 3. Match verkx = {a,b,c,d,j,g3 unmatched vertex = {e}. with a given matching say m, a vertex V is said to be a matched voitex is 3 some edge in M that how Voi an endpoint

HALL'S THEOREM let 6 be a bipartite graph with bipartition 2A, B3. Then 6 has a matering that anather all the vertices of A if and only if a catufier the Hall's condition Hall's condition ¥ S ⊆ A , | N₆(S) | > | S| 4 neighbourhood of 5 in 6 M= { aibi, azba, aabu }. Let 5 = { 91,92 } NG(S) = { b1, b2, b33 Hence | Ny (S) 1 > 151 Similarly for 5 = 2 91, 92, 033 S = 2933 Ny (5) = 2 01, b2, b3, b43. Ny (5) = 263, b43 Proof: FORWARD: if G has matching that matches all vertices in A, then G statisfu Halli condition trivial. If we a matching & independent sets thus for every subset SSA there would be alleast 151 neighbours in B endpoints of the making edges

BACKWARD =) if Halls condition true, then to has a matching that matches are the verbiss en A given a bipartite graph, 4 5. 151 5 [N. (5)] exercise proof by dilworth theorem 2 * operner's Theorem (1928) let F be a jamily of subsets of [n] Further, it is given that F is an audichain under the containment relation (subset relation) > P = (Powerset In1, 5) Then, IFI & "CINNI Size of largest autichain < ncn/2 For Example : n=4 Have diagram: 21,2,3,43 22,3,43 21,2,33 \$1,2,43 ows of the ibngsit 12,33 many syste c hom | largest antichain | \$ 40, = 6 diff come town

house using olihoorth.

Jo prove the largest ontichain < n C n/2

we will prove,

the elements by the poset P = (fower Set ([n]), ⊆)

can be partitioned into (n) chains

in general Hasse diagram

for Ai, Bi un below level (going bottom to lenter)

Ai & Bi a Satisfy Halls condition 1 Bl > 1A1

thus Ai & Bi have a matching

Similarly for Ai, Bi in above mid level (top to center)

Ai a Bi Gallity Halls condition IBI > IAI

Ai a Bi have modeling

Shicking matching from bottom to mid and top to mid. we form chain partition

50 maximum chain (maximum elements in centur level)

Ή Hure would be elements in center level which are not used, can be taken as single element chains H all elements in center Chain level included in chain (separate) minimum chains n Cnfg ## LYM snequality let F be a jamily of subselv of [n] Further, F is an antichain under the containment relation (subset) where, F = EAI, Az ... Am] n C | ATI is maximised for 1Ail = 1/2 (middle now elements) thus, prooving 1 ym inequality implies spermes theorem Proof: F = 1 A1, A2, A3... Am 3

To show: \$\frac{n}{n} \left| < 1 let 6 be a linear pumutation of [17] For a set AitF we say hi is present in 6 ig

Ai is present in a if the elements of Ai are precisely

Eq Ai = { 3,5.63 61: 1243567... Ai not present (even though exist dements)
62: 563214... Ai present

let G = { (6, Ai) : 6 is any permedation of [n] and } Ai EF is present in 6

161 < n1. 1

p° in a given permutation only
1 subset can be present.

of h elements. (atmost).

no two subsets would be subsets of each other,

they are antichains

to in one permutation, there will be atmost 1 set that
would be present.

For a given set Ai, the no of permutations that it can be present = 1Aill (n-1Ail)!

elements of Air Gremaining elements

Hence for each Ai, summation over m

 $\sum_{i=1}^{n} |A_{i}^{s}| |(n-1A_{i}^{s}|)| \leq |A_{i}^{s}|$

Z laili (n-lail) | < n| 1 41 IAILI (n-IAIL)!

Prog > Let " (ATUBI) = X = Ix1, x2, x3 xn3 LU AT IXI-D Let 6 be a permutation of \$x,x2 xn3 (11 ways) 6: x3 x3 x1 x1 x5 ... xn ... x10 ... x12 A B1 = { \$5, \$10, \$113 . The pair (Ni, Bi) is "present" in 6 of X 24, every element of Ai, appears before every element of Bi let G = {(6, (Ai, Bi)) = 6 is a permetation of x, Ai, Bi are sets present in the 2 sequences given in thm. (Ai, Bi) is present in 6 F: X5 Y5 X10 X11 X1 X12 X9 X4 X4. Aj = 1x11 x113 Ai = {x3, X103 . Bj = 1710 18, xu3 Bi = 2x11, x13 . (Aj, Bj) not present (Ai, Bi) present How many pairs can be present in 1 permutation => 1 because if (Ai, Bi) is pregient Ai appears first then Bi then AinBj = d & Ajn Bi = p Aj will have elements of Bi & Bj will have clements of Ai => Aj dements will not some before Bj

4. Co no of pairs present un each perm. no of permutations for a given (Ai. Bi), can be be present in How many perm ?? at & bi cluments can be arranged in alb! remainining k elements be 21.71. XX -+ KI ways take one such arrangement so how (ai+bi) elements can be placed in remaining elementarrangenment > to linear k perm → K+1 spaces to be filled. choose (ai+bi) locations from the spaces Repetition allowed. (Choosing relement n elements with rep allowed n+r-1 Cr)) ; K= n-ai-bi Ceai+bi For a given (Ai, Bi) Total ways: ail bil k! Cai+bi =) ail bil (n-ai-bi)! n! (ai+bi) (n-ai-bi) 1 n|a||b|| =) n| (ai+bi)| (ai+bi)|/a||b| 2) (ai+bi)1

m
2 n1 & G & n1
I=I (ai+bi)
⇒ ∑ 1 ≤ 1 prooved
izi (qitbi)
(a)
Francisco
COROLLARY
let (A1, Az Am) and (B1, 62 Bs Bm) be two
Sequences of acts such that ATOB, O all is
let IAII & a . IBII & b . Vie [m]
them m < (a+b)
Proof :
<u>→</u> 1 < 1
(ai+bi)
and -
\(\sum \)
Z 1 5 Z 1 (maximising ai + bi (ai)
thus
m si
a+b(a
=) m = (a+b)
special case. A1 = a 18i1= b & i \in [m] A1 A2 Am
By a hitting out for 182.83 Bmj Bi Br Br
62 w a hilting set for 16,6 5=1
to a many or

n n n

property of \$A1,A2 Am3 is that if we remove any set from it, then the resulting family has a resulting bitting set of size b.

In author words \$A. A2 ... Am3 is a minimal family that has no hitting set of size b.

"Skew" version of Bollobas Thun.

Let (A, Az. Am) & (B, Bz. Bm) be 2 sequenced

of sets such that \(\) i, \(\) \

The state of the s

also if IAilsa & 18il & b

m < a+6 ca.

& Application of Bollobas Then =) system of distinct representations a system of sets S1, S1, S2. Sk is the k-tuple (x1, 72, 73 ... xx) such that distinu 9 VIETKI Xie Si Vije [K] Rizj xizxj Further (x1, x2. xx) is a system of STRONG system of distinct representations is i) Vife[k] i=j => xi¢ 5j (additional property) ai) VIETKI , xi65i Eq. S1 = 93,4,5,93 S2 = 91,2,4,87 S8 = 91.4,7,57 (3,2,7) -+ strong tuple of 81,52,53. => Theorem [Fusio, Tuza, 1985] let F be a family of size greater than (TK) Further every set in F a of size at most r Then I some " K+1" but in F that how ra strong system of distinct representation Proof: Arrange the sets in Fin non-increasing order of their sizes Let F = 151, 52 ... Sm 3. > 15ml i where m > THE GE 1811 7, 15117/158 7/

Assume for the sake of contradiction that no k+1 sets in F home strong system of dut rep" given my (r+k) and 1511\$57 15,1 >, 1521 >,1531 1511 >, 15j1 ... >, 15m1 let us define another family TI T2 T3 ... Ti Ti TK Ti in a minimal nitting set for (51/5j , 52/5j, 5(j-1/5j) all will be no empty because of non-increasing tack I is a minimal set that intersects all 51/5j . 52/5j . 53/5j ... 51/5j .. 5j-1/5j Property: Y ele Tj & SL , RKj => SENTj = 1 EL] So for 2 sequences (S1, 52, 53... SK) and (T, T2, T3, TK) ⇒ 51 n 11 = 0 since It = set intersect with (51/51, 52/51 ... 51-1/1) 4 wont consist any element of Si" =) 1511 <r = |Tilsk (maximum size when Tk = minamasset (Si/k Sk-1/k) a Claim Proof: Suppose of ITII > K+1 J = 1e, a ... OK+1 .. J. Let sibe a set such that Tinsi = ei , So .. Tinso = es ... SK+1 -- Tj 1 SK+1 = EK+1 => (K+1) tuple (E1, 12 -- CK) - system 4 shows there exist (K+1) set in F that have strong system but we assume that no (k+1) sets exist, thus our claim is true. contradiction

thu.

- =7 Si, Sp ... Sm
- 9 T1 T2 ... Tm
- a) 5in Ti = \$
- b) 1511 Fr
- c) to ITIISK

skewed version of Bolobas Theorem

but this contradice the fact that mo T+kcr

Hure our assumption is wrong that nok+1 subsollection F has strong system of Representation.

* Probabilistic Method in Combinatorics Ξ > Ramsey Numbers Ques In a group of 6 people, show that there are either 8 3 mutual mends or 3 mutual enemies (strangers) -E within case there is a blue triangle (3 mutual priends) E ACDF, ADEC, AFEC, AFED ⇒ Lamplete grapin > 602 edges £ no matter, how you colour the edges of a Ks with Red or blute £ colour, you will always encounter either a BLUE K3 or a RED K3 -Proof from the vertices, like A, there are 6 edges coming. By pigeonhole principle. Hure would be alterest 3 by edges which are of same colour only 2 colours are there atleast . > 8 docures , 2 boxes , 5 pigeons => [5/2] = 3 pigeons in 1 box 6 貫 WLOG, let A has 3 red eges check for edge CD = if red > Red K3_pproposed 6 if blue this will lead to a BLUE K3 with the bad edges CD, DE, CE DODE tovial prop

Take Kn. Each edge is colored independently either given a red or blue colour & uniformly at random
P(Edge is red) = P(Edge a blue) = 1/2 (independent of other edga)
or at each edge trass a unin (unbigued)
y H → Red else T → Blue 151 kvornus
KC / (Ver) St Sx)
Pr [S. w Red K-clique] = (1/2)
4 all edges in S (*(2 edges) (52) Sy)
are red in colour.
Pr [5 is a Blue K-clique] = $\left(\frac{1}{2}\right)^{K_{C2}}$
No of Ksized Subset = nck
(SI, S2 Sn _{Cx})
BAD EVENT : One of 81, 82. Snew in either a red K-clique or a blue k-clique. Pr [Si is a red k-clique U 52 is red - U 50 k is a red] US1 is a Buse - U 50 k is a blue One [August 2 Pr [August 3 Pr [August 3 Pr [August 4 Pr [August 4 Buse]]
By union bound & Pr[AUB] & Pr[A] + Pr[B]
Pr(Bad event) $\leq \sum_{i} \Pr[S_i^i u \text{ Red } k \text{ clique}] + \Pr[S_i^i u \text{ a blue } k \text{ clique}]$ $\leq \sum_{i} (\frac{1}{2})^{k_{C_2}} + (\frac{1}{2})^{k_{C_2}} \leq \sum_{i} 2^{-k_{C_2}}$
\$ 2 (1/2) + (1/2) = 2 2
S nCk A
7
if (A < 1, there is a non-zero probability that a rawless
coloring we did contain a neither a red k-digm non
blue k-clique

Combinatorics WEEK4 Onwards

Journament

A complete graph with directed edges (oriented edges)

let T be a Tournament on n vertices, We say T satisfies the Property R. if for every set say K players / vertices in T, there is a player / vertex who has defeated everybody in S.

v defeated v Ton n vertical Tsatufiu Pk.

For Every +ve integer k, does thus always exist a Tournament on n
vertices that satisfies property be ?? Yes.

So given a +ve k what is the minimum 'n' such that satisfies PK

THEOREM: if "Ck (1-1) n-k < 1, then there is a tournament on n varies that satisfies Property Pk.

Proof: Construct a random Tournament Ton n vertices in the following - Jake a complete graph on n vertices : Kn

-+ for each edge 'e' independently orient if from > or < prob!; tous a cain (unbiased) is evient the edge e bases

on outcome of coin took.

So, what is the minimum 'n' ?? we showed that I a Ton n vertices, which satisfy Px provided $\begin{array}{c|c}
 & C_{K} & \left(1-\frac{1}{2^{K}}\right)^{N-K} & < 1 \\
 & \downarrow & \\
 & \downarrow & \\
 & \uparrow & \\
 & \downarrow & \\
 & \uparrow & \\
 & \uparrow & \\
 & \downarrow & \\
 & \uparrow & \\
 & \uparrow & \\
 & \downarrow & \\
 & \uparrow & \\
 & \downarrow & \\
 & \uparrow & \\
 & \downarrow & \\
 & \downarrow & \\
 & \uparrow & \\
 & \downarrow & \\
 & \downarrow$ (1-1)n-K 5 1 en-Klak =) $\left(\frac{en}{K}\right)^{K} \frac{1}{e^{(n-K)/2^{K}}} < 1$ (upper bounds taken) calculating, n > 2 log 2 K2 2k let J(k) be the smallest n, such that there is a tournament on n nodes their scattifies Pk CK2K & J(K) & 2/42 K2 2K (Szekeun) C-constant

set of vertices, such that I access + EVI, ve. VK3E V * DOMINATING SET U(N(vi) +vi) = V set of V is itself a dominating set, but we are interested in minimum no of vertices & V that would satisfy the condition b dominatu ? b, a, j, c?

a d dominatu ? d, e, j, i?.

h dominatu £ h, g ?

and 89 26, a, j, c3 U2d, e, f, i3 U2h, g3 = V there can be multiple dominating sets, Here Eb,d, h3 - dominating set Defination let 9 be a graph with vertex set V(6) & edge set E(G) A set 5 = V(6) is a dominating set for 6 if every vertex in 6 is either present in 5 or 4 a neighbour ! Some vetter in S Y ve V(G) , such that (ves) or (3 ues and uve E(G)) or a neighbour. ikelyins Minimum degree :
D = min (deg (v); ve V(G)) in the above eg. 8= 1 (dig (e)-1)

Theorem let G = (V, E) be a graph on n vertices with minimum degree 371. There G has a dominating set of size at most $\frac{n}{d+1} \left(1 + \ln \left(\delta + 1\right)\right)^{0}$ PROBABILITY FUNDAMENTALS Sample Space 1 : Set of all outrones Event : Subset of 12 Random Variable $X : \Omega \to \mathbb{R}$ (function from sample space to \mathbb{R}) Exputation of x = E[x] = \(\sum_{r[X=x], x} \) Linearity = E[XX+BY] = KE[X]+BE[Y] Prost: Random Experiment: Long truet a Set 55 V(G), chance each vertex in Guidependently with probability fun set 5 5 dominatu 8 and N(S) but vertice in T are not dominated by S thus if T = 4 then 5 is dominative N(S) if T = > S is not dominating defining landon Var Xs: denote size 9 5 Yr = XT : denote wise of T

for each vertex ve V(6) Xv = 9 1 yves 7 (o otherwise) Yv = \$ 1 , 4 VET o otherwise J 1. [xv=1] = p E[Xv] = 1 p + 0 (1-p) = p. Pr[Yv=1] = vET, i.e. neither v nos N(v) are in 5 (beg(v)+1) Verhille v has > 8 neighbours not in 5 (8+1) are not in 8 Pr [Yv=1] = (1-p) deg(+)+1 Pr[Yv=1] & (1-p) 8+1 E[Yv] = (1-p) deg (V)+1 < (1-p) 8+1 $X_5 = \sum X_V$ and $Y_7 = \sum Y_V$ $V \in V(G)$ By limitely of expectations E[Xs] = E[XV] E[YT] - E[ZYV] = ZE[XV] = Z E [YV] < n(1-p)8+1 np ____ 3 4 (4)

* Deterministic Algo for dominating det of sixe n (1+1n(8+1))

Jake vertices ushose dog is maximum, and delek all the neighbour of that vertex from a

and so on

G choose a vertex vwith max number of neighbours and remove (I+d(v)) vertices from G south and includ v in dominating set

repeat wild 4 is empty

S: {v, w, v, z ...

claim: $|S| \leq \frac{n}{\delta + 1} (1 + \ln(\delta + 1))$

let at guen point in algo, your graph G=1 s, N(s), TS let 171 = b

> N(V) = neighbour of v open neighbourhood N[v] = 2v3 U N(v) close neighbourned IN[V] = (N(V) +1

ZINIVII > + (5+1)

By pigeonhale principle 3 v E V(G), that is present in > £ (S+1) such structure + (S+1) structures or baseds

and n vortice.

Chasse that vin S. Shis vertex v is dominating > t (8+1) vertices of T

choose an x uniformly at random from \$1,2,3... p-13 consider any bi & B for every bie B. So, o < di < p-1 bix (moolp)

bi>0 bi>0 thun di>0 and bi cannot be a multiple of p D= 101, d2, d3 dn3 < 11,2,3 -- p-13 and we know, C= \$ K+1, K+2 ... 2k+13 5 21,2,3 ... p-13 4 sum free Subset De = 7 di da dx3 clearly be would be a sum set free of D claim: if Dc = 3d1.d2. dk3 sumfree set of D =) {b1, b2. bx } sumet free by B. Proof) suppose claim is not true =) b1 + b2 = b3 for some elements => b1x + b2x = b3x =) b1x + b2x = b3x (modp) =) d1+d2 = d3 (mod p.) contradicu {d, d2, ds. de } is a sumplex det ' Hous assumption wrong Claim is true.

To show, for some chain of 7 E [p-1] The set DAC is large > 11/3. 6 = 261, by bn 3 p=3k+2 C = 7 K+1, K+2 2k+13 sungru subset of 1/p, 101>p-1/3. D = 3 d1, d2 and was constructed by cuesting a mindonly from [p-1] and di = bix (mod p) Take any bic 8 for any 2 distinct x y & [p-1] bix \$ biy (mod) p y tru =) bi (x-y) mod p = 0 but x-y +0 bi + 0 and x, y < p so x-y cant be a multiple of p. similarly bicp cont be amulipropp and (x-y)(bi) cont be p (prime number). Thuypre { bi 1(mod p), bi2 (mod p), bi3 (mod p) bi (p-1) (mod p) 3 = [p-1] choosing x -+ uniformly randomly from cp-1] Pr [bix (mod p) & C] = 1c1 > 1 eterminate from

4 size p-1/3 P-1 3 Random Vax Xi = { | diec } i E [Xi] > 1 = How many linearly E[X] = E[X1,+X2+X3. Xn] > M.] E[X] > 11

Week-5 * Sypergraph H (V, E) Edge Set + vertex bet Es Povenset (V) (countrion of subsets of v (1-sized subsett of v) Example V= \$1,2,3,4,53. E = { 11,2,33, 21,33, 21,53 23,4,13} } { every edge has more much - Hyper edges -Ques: Colour the points / votices in v with as few colours as possible such that every hyperedge in E sees at least 2 volours we need to find the minimum colors needs Example: V= 30, b, c, d, e3 Graph E= 1 10, b3, 16, c3, 1c, d3, 2d, e3, 1e, a31 example in case of graph, same as colouring vertices such that no 2 adjacent vertices have some colour 3 colour min. Definition A hypergraph H(V,E) is K-uniform by every hyperedge is K-sized.

Clearly, graphs are 2-uniform hypergraph.

Theoxen Every kuniform hypergraph with the than 2 k-1 hyperedges is 2- whowable. Proof: let V. 21,2 ... n3 be the vertex set of H colour: for each is V, may endusty and uniformly at random assign a colour from the set & hed, Black 3 Consider a hyperedge e E E Prob [all vertices in E get red colour] = 1.

K-street hyperedge 2k Prob [" " black wlow] = 1 Frob [all vertices of e are monochromatic] = 2 = either red or black are let ei, co. em be hyperedges, E= fei, co. em3 union for all edges to be monochromatic P[(e1:monochromatic) U (e2:monochromatic) ... U (em:chromatic P[e::monochrom] + P[e2: monochrom] -- + P[em:c] m→ no of hyperedga quen: m<2K-1 Bad event : es edgle are monochromatic (cither of any edges) (union) Good event : no of the edges are monochromatic (intersection) Pr(Bad event) < 2x9 1 =1 ; Pr (Bad event) < 1 They taking comp & apply demorgan Pr (Good event) 70 Pr [ei is mono A es is not mono - A emissnot mono] 70.

