MINISTÈRE DE L'EDUCATION NATIONALE ET DE L'ALPHABETISATION

REPUBLIQUE DE COTE D'IVOIRE

MON ECOLE A LA MAISON

SECONDAIRE

1^{ère}C MATHEMATIQUES CÔTE D'IVOIRE - ÉCOLE NUMÉRIQUE

Durée: 10 heures

Code:

COMPETENCE 3 : Traiter une situation relative à la géométrie du

plan, à la géométrie de l'espace et aux

transformations du plan.

Thème 1 : Géométrie du plan.

LEÇON 2 : BARYCENTRE

A -SITUATION D'APPRENTISSAGE

Au cours d'une séance de travaux pratiques, les élèves d'une classe de première scientifique découvrent le dispositif ci-dessous.

Ce dispositif est une plaque triangulaire ABC de masse négligeable. On suspend à chacun de ses sommets des solides de masse $(m_A = 2g)$; $(m_B = 5g)$ et $(m_C = 3g)$.

Les élèves veulent déterminer en quel point G, accrocher le fil pour que la plaque reste en équilibre.

L'un des élèves affirme que le point G cherché doit vérifier la relation : $2\overrightarrow{GA} + 5\overrightarrow{GB} + 3\overrightarrow{GC} = \overrightarrow{0}$, mais n'arrive pas à justifier son affirmation. Ils décident de s'organiser pour déterminer la position exacte de G.

B- RESUME DE COURS

I. <u>Barycentre de deux points pondérés</u>

1. Point pondéré

Définition

Soit A est un point du plan et a un réel non nul, on appelle point pondéré, le couple (A, a).

Exemple: les couples (A, 2); (B, -5). Sont des points pondérés

2. Propriété et Définition

A et B sont deux points du plan, a et b sont deux nombres réels tels que : $a + b \neq 0$.

Il existe un point G et un seul tel que : $a\overrightarrow{GA} + b\overrightarrow{GB} = \overrightarrow{0}$

Ce point G est appelé barycentre des points pondérés (A, a) et (B, b).

Notation

Le barycentre G de deux points pondérés (A, a) et (B, b) se note :

$$G = bar \{(A, a); (B, b)\}$$

$$G = bar \begin{array}{|c|c|c|c|} \hline A & B \\ \hline a & b \\ \hline \end{array}$$

Exercice de fixation

Soient A, B et G trois points du plan tels que : $2\overrightarrow{GA} - 3\overrightarrow{BG} = \overrightarrow{0}$.

A partir de cette égalité vectorielle, détermine les points pondérés, pour lesquels G est le barycentre.

Solution

$$2\overrightarrow{GA} - 3\overrightarrow{BG} = \overrightarrow{0} \Leftrightarrow 2\overrightarrow{GA} + 3\overrightarrow{GB} = \overrightarrow{0}$$
. Donc G est le barycentre des points pondérés $(A, 2)$ et $(B, 3)$. On note $G = bar\{(A, 2); (B, 3)\}$

a. Consequence

G = bar
$$\{(A, a); (B, b)\} \Leftrightarrow \overrightarrow{AG} = \frac{b}{a+b} \overrightarrow{AB}$$

Exemple

G= bar
$$\{(A,2); (B,-3)\} \Leftrightarrow \overrightarrow{AG} = \frac{-3}{2+(-3)} \overrightarrow{AB} = 3\overrightarrow{AB}$$

De même

G= bar
$$\{(A, 2); (B, -3)\} \Leftrightarrow \overrightarrow{BG} = \frac{2}{2 + (-3)} \overrightarrow{BA} = -2 \overrightarrow{BA}$$

b. Théorème : Le barycentre de deux points A et B appartient à la droite (AB)

Exercice de fixation

Soient A,B et K trois points du plan tels que : $-2\overrightarrow{KB} - 2\overrightarrow{BA} - 5\overrightarrow{AB} = \overrightarrow{0}$

Justifie que K appartient à la droite (AB).

On a:
$$-2\overrightarrow{KB} - 2\overrightarrow{BA} - 5\overrightarrow{AB} = \overrightarrow{0} \Leftrightarrow -2\overrightarrow{KB} + 2\overrightarrow{AB} - 5\overrightarrow{AB} = \overrightarrow{0}$$

 $\Leftrightarrow -2\overrightarrow{KB} - 3\overrightarrow{AB} = \overrightarrow{0}$
 $\Leftrightarrow -2\overrightarrow{KB} - 3\overrightarrow{AK} - 3\overrightarrow{KB} = \overrightarrow{0}$
 $\Leftrightarrow -5\overrightarrow{KB} + 3\overrightarrow{KA} = \overrightarrow{0}$
 $\Leftrightarrow K = \text{bar}\{(A, 3); (K, -5)\} \Leftrightarrow K \in (CD)$

Remarque

- Si les coefficients sont de même signe, alors le barycentre G∈ [AB]
- Si les coefficients sont de signes contraires, alors le barycentre G∈ (AB)\[AB]
- Si les coefficients sont égaux, alors le barycentre G est le milieu de [AB]

3. Propriétés

a. Homogénéité du barycentre

Propriété

Soit k un nombre réel non nul et deux points pondérés (A, a) et (B, b).

G est barycentre des points pondérés (A, a) et (B, b) équivaut à G est barycentre des points pondérés (A, ka) et (B, kb).

Exercice de fixation

On donne $G = bar \{(A,2); (B,7)\}$

Détermine le nombre réel α tel que G=bar{(A, α);(B,21)}

Solution

On a G = bar $\{(A,2);(B,7)\}$. Comme $21 = 3 \times 7$, alors $a = 2 \times 7 = 14$. Donc G=bar $\{(A,14);(B,21)\}$

b. Isobarycentre

Définition

Le barycentre des points pondérés (A, α) et (B, α) où $\alpha \neq 0$ est appelé l'isobarycentre des points A et B, c'est le milieu de [AB].

Exemple: $G=bar \{(A,3);(B,3)\}$ équivaut à G est l'isobarycentre des points A et B G est le milieu du segment [AB].

c. Conservation du barycentre par projection

Propriété

Le projeté du barycentre de deux points pondérés est le barycentre des projetés de ces points affectés des mêmes coefficients.

Exercice de fixation

Soit $G = bar \{(A, a); (B, b)\}$ et P une projection tel que : P(A) = A', P(B) = B' et P(G) = G'. Quel est le barycentre des points pondérés (A', a) et (B', b).

Comme G = bar
$$\{(A, a); (B, b)\}$$
 et que $P(A) = A', P(B) = B', P(G) = G',$ alors: G' = bar $\{(A', a); (B', b)\}$

d. Réduction de la somme : $a\overrightarrow{MA} + b\overrightarrow{MB}$

Propriété

Soit (A, a) et (B, b) deux points pondérés tels que $a + b \neq 0$ et G leur barycentre.

Pour tout point M du plan on a : $a\overrightarrow{MA} + b\overrightarrow{MB} = (a + b)\overrightarrow{MG}$.

Exercice de fixation

Soit le barycentre K des points pondérés (C,3) et (D,1). Pour tout point M du plan exprime $3\overrightarrow{MC} + \overrightarrow{MD}$ en fonction de \overrightarrow{MK} .

Solution Pour tout point M du plan, $3\overrightarrow{MC} + \overrightarrow{MD} = 4\overrightarrow{MK}$

Remarque Lorsque a + b = 0, alors $a\overrightarrow{MA} + b\overrightarrow{MB} = a\overrightarrow{MA} - a\overrightarrow{MB} = a(\overrightarrow{MA} - \overrightarrow{MB}) = a\overrightarrow{BA}$.

e. Coordonnées du barycentre

Propriété

Le plan est muni du repère $(0, \vec{i}, \vec{j})$.

Si $A(x_A; y_A)$, $B(x_B; y_B)$ et si G est le barycentre de (A, a) et (B, b), alors $G(\frac{ax_A + bx_b}{a + b}, \frac{ay_A + by_b}{a + b})$

Exercice de fixation

Soit A (1,2) et B (-1,3) dans le repère (O ; \vec{i} , \vec{j})

Détermine les coordonnées du barycentre G du système $\{(A, -1); (B, 2)\}$ dans un repère $(O; \vec{i}, \vec{j})$

Solution: $G(\frac{-1\times 1+2(-1)}{-1+2}; \frac{-1\times 2+2\times 3}{-1+2}); G(-3; 4)$

II. Barycentre de trois points pondérés

1. Définition et propriété

Soit (A, a), (B, b) et (C, c) trois points pondérés tels que $a + b + c \neq 0$.

Il existe un unique point G vérifiant $a\overrightarrow{GA} + b\overrightarrow{GB} + c\overrightarrow{GC} = \overrightarrow{0}$.

Le point G s'appelle le barycentre des points pondérés (A, a), (B, b) et (C, c).

Notation : G = bar $\{(A, a); (B, b); (C, c)\}$

Exercice de fixation

Soient A, B, C et G quatre points du plan tels que : $\overrightarrow{AG} + 2\overrightarrow{BG} + \overrightarrow{GC} = \overrightarrow{0}$

A partir de cette égalité vectorielle, détermine les points pondérés, pour lesquels G est le barycentre.

$$\overrightarrow{AG} + 2\overrightarrow{BG} + \overrightarrow{GC} = \overrightarrow{0} \iff \overrightarrow{AG} + 2\overrightarrow{BG} - \overrightarrow{CG} = \overrightarrow{0}$$

Donc G = bar $\{(A, 1); (B, 2); (C, 1)\}$ car $1 + 2 + 1 \neq 0$

Consequence

$$a\overrightarrow{GA} + b\overrightarrow{GB} + c\overrightarrow{GC} = \overrightarrow{0}$$
 équivaut à $\overrightarrow{AG} = \frac{b}{a+b+c}\overrightarrow{AB} + \frac{c}{a+b+c}\overrightarrow{AC}$

$$-2\overrightarrow{GA} + 6\overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$$
 équivaut à $\overrightarrow{AG} = \frac{6}{5}\overrightarrow{AB} + \frac{1}{5}\overrightarrow{AC}$

2. Propriétés

a. Homogénéité du barycentre

Propriété

Soit k un nombre réel non nul et trois points pondérés (A, a), (B, b) et (C, c). G est barycentre des points pondérés (A, a), (B, b) et (C, c) équivaut à G est barycentre des points pondérés (A, ka), (B, kb) et (C, kc).

Exercice de fixation

On donne $G = bar \{(A,1); (B,-7); (C,-4)\}$

Détermine les nombres réels a et c tels que $G = bar\{(A, a); (B, \frac{14}{3}); (C, c)\}$

Solution

On a G = bar {(A,1);(B,-7); (C, -4)}. Comme
$$\frac{14}{3} = -\frac{2}{3} \times (-7)$$
, alors $a = -\frac{2}{3} \times 1 = -\frac{2}{3}$ et $c = -\frac{2}{3} \times (-4) = \frac{8}{3}$
Donc $G = bar \{ (A, -\frac{2}{3}); (B, \frac{14}{3}); (C, \frac{8}{3}) \}$

b. Isobarycentre

Définition

Le barycentre des points pondérés (A, α) , (B, α) et (C, α) où $\alpha \neq 0$ est appelé L'isobarycentre des trois points A, B et C.

Exemple

$$-4\overrightarrow{GE} - 4\overrightarrow{GH} - 4\overrightarrow{GF} = \overrightarrow{0}$$
 équivaut à G est l'isobarycentre de E, F et H.

Remarque

L'isobarycentre de trois points non alignés A, B et C est le centre de gravité du triangle ABC.

c. Réduction de la somme : $a\overrightarrow{MA} + b\overrightarrow{MB} + c\overrightarrow{MC}$

Propriété

Soit (A, a), (B, b) et (C, c) trois points pondérés tels que $a + b + c \neq 0$ et G leur barycentre.

Pour tout point M du plan on a : $a\overrightarrow{MA} + b\overrightarrow{MB} + c\overrightarrow{MC} = (a + b + c)\overrightarrow{MG}$

Exercice de fixation

Soit le barycentre E des points pondérés (A, -1), (B, 4) et (C, -7).

Pour tout point M du plan exprime $-\overrightarrow{MA} + 4\overrightarrow{MB} - 7\overrightarrow{MC}$ en fonction de \overrightarrow{ME} .

$$-\overrightarrow{MA} + 4\overrightarrow{MB} - 7\overrightarrow{MC} = -4\overrightarrow{ME}$$

Remarque

Lorsque a + b + c = 0, $a\overrightarrow{MA} + b\overrightarrow{MB} + c\overrightarrow{MC}$ est indépendant du point M.

Exemples
$$a\overrightarrow{MA} + b\overrightarrow{MB} + (-a - b)\overrightarrow{MC} = a\overrightarrow{CA} + b\overrightarrow{CB}$$

 $-2\overrightarrow{MA} + 5\overrightarrow{MB} - 3\overrightarrow{MC} = 5\overrightarrow{AB} - 3\overrightarrow{AC}$

d. Coordonnées du barycentre

Propriété

Le plan est muni du repère $(0, \vec{i}, \vec{j})$.

Si
$$A(x_A; y_A)$$
, $B(x_B; y_B)$, $C(x_c; y_c)$ et si G est le barycentre de (A, a) , (B, b) et (C, c) , alors
$$G(\frac{ax_A + bx_b + cx_c}{a + b + c}, \frac{ay_A + by_b + cy_c}{a + b + c})$$

Exercice de fixation

Soit A (1,2), B (-1,3) et C (0,-2) dans le repère (O; \vec{i} , \vec{j})

Détermine les coordonnées du barycentre G du système $\{(A,-1);(B,2);(C,3)\}$ dans un repère (O; \vec{i} , \vec{j})

Solution: $G(\frac{-3}{4}; \frac{-2}{4})$

3. Barycentre partiel Propriété et définition

Soient (A, a) ; (B, b) et (C, c) trois points pondérés tels que $:a + b + c \neq 0$ et $a + b \neq 0$. Si G est le barycentre du système $\{(A, a); (B, b); (C, c)\}$ et H le barycentre du système $\{(A, a); (B, b)\}$ alors G est le barycentre du système $\{H, (a + b); (C, c)\}$.

H est appelé barycentre partiel des points pondérés (A, a); (B, b).

Exercice de fixation

Soit
$$G = bar\{(A, 1); (B, 2); (C, 3)\}$$

Exprime G comme l'isobarycentre de deux points.

Soit
$$H = bar\{(A, 1); (B, 2)\}$$

Comme $G = bar\{(A, 1); (B, 2); (C, 3)\}$ alors $G = bar\{(H, 3); (C, 3)\}$. G est donc l'isobarycentre de H et C.

Remarque

On ne change pas le barycentre de trois points pondérés en remplaçant deux d'entre eux par leur barycentre partiel (s'il existe) affecté de la somme des deux coefficients à condition que cette somme soit non nulle.

III. Barycentre de quatre points pondérés

1. Définition et propriété

Soit (A,a),(B,b),(C, c) et (D, d) quatre points pondérés tels que $a + b + c + d \neq 0$. Il existe un unique point G vérifiant : $a\overrightarrow{GA} + b\overrightarrow{GB} + c\overrightarrow{GC} + d\overrightarrow{GD} = \overrightarrow{0}$. Le point G s'appelle le barycentre des points pondérés (A, a), (B, b), (C, c) et (D, d).

Notation: G = bar $\{(A, a); (B, b); (C, c); (D, d)\}$

Remarque : L'isobarycentre des sommets d'un parallélogramme est le centre de ce parallélogramme.

Exercice de fixation

Soient A, B, C,D et G des points du plan tels que : $\overrightarrow{GA} - \overrightarrow{GB} + \overrightarrow{4GC} - 2\overrightarrow{GD} = \overrightarrow{0}$ A partir de cette égalité vectorielle, détermine les points pondérés, pour lesquels G est le barycentre.

Solution

$$\overrightarrow{GA} - \overrightarrow{GB} + \overrightarrow{4GC} - 2\overrightarrow{GD} = \overrightarrow{0} \Leftrightarrow G = \text{bar } \{(A, 1); (B, -1); (C, 4); (D, -2)\}$$

$$car \ 1 - 1 + 4 - 2 \neq 0$$

2. Conséquence

Si $a + b + c + d \neq 0$ et $G = \text{bar } \{(A, a); (B, b); (C, c); (D, d)\}$, alors pour tout point M du plan, $a\overrightarrow{MA} + b\overrightarrow{MB} + c\overrightarrow{MC} + d\overrightarrow{MD} = (a + b + c + d)\overrightarrow{MG}$.

Exemple

Soit H = bar
$$\{(A, 4); (B, -2); (C, 4); (D, -5)\}$$

Pour tout point M du plan, on a : $4\overrightarrow{MA} - 2\overrightarrow{MB} + 4\overrightarrow{MC} - 5\overrightarrow{MD} = \overrightarrow{MH}$

IV. Ligne de niveau d'une application f:

1. Définition

Soit f une application du plan dans \mathbb{R} et k un nombre réel. la ligne de niveau k de l'application f est l'ensemble des points M du plan tels que f(M) = k.

Exemple

Soit O un point du plan et f l'application du plan dans \mathbb{R} qui à tout point M associe la distance OM.

La ligne de niveau 3 de f est l'ensemble des points M tels que OM = 3; C'est donc le cercle de centre O et de rayon 3.

2. Ligne de niveau de l'application $M \mapsto aMA^2 + bMB^2$

Propriété

Soit A et B deux points distincts du plan, a et b deux nombres réels tous non nuls. f l'application du plan dans \mathbb{R} tel que : $f(M) \mapsto aMA^2 + bMB^2$

Si $a + b \neq 0$, on désigne par G le barycentre des points pondérés (A, a) et (B, b).

la ligne de niveau k de l'application f est : soit l'ensemble vide, soit le point G, soit un cercle de centre G.

Exercice de fixation

On donne deux points A et B tels que AB = 12.

Soit l'application $f: M \mapsto MA^2 + MB^2$

Détermine la ligne de niveau 122 de f.

Solution

Soit *G* l'isobarycentre de *A* et *B*.

La ligne de niveau 122 de f est l'ensemble des points M tels que : $MA^2 + MB^2 = 122$.

$$MA^{2}+MB^{2} = 122 \Leftrightarrow (\overrightarrow{MG} + \overrightarrow{GA})^{2} + (\overrightarrow{MG} + \overrightarrow{GB})^{2} = 122$$

$$\Leftrightarrow MG^{2} + GA^{2} + 2(\overrightarrow{MG}.\overrightarrow{GA}) + MG^{2} + GB^{2} + 2(\overrightarrow{MG}.\overrightarrow{GB}) = 122$$

$$\Leftrightarrow 2MG^{2} + GA^{2} + GB^{2} + 2\overrightarrow{MG}(\overrightarrow{GA} + \overrightarrow{GB}) = 122$$

$$\Leftrightarrow 2MG^{2} + GA^{2} + GB^{2} = 122 \text{ car } \overrightarrow{GA} + \overrightarrow{GB} = \overrightarrow{0}$$

Comme G est le milieu du segment [AB], alors GA = GB = 6

Donc
$$2MG^2 + GA^2 + GB^2 = 122 \Leftrightarrow 2MG^2 + 36 + 36 = 122$$

$$\Leftrightarrow MG^2 = 25$$
$$\Leftrightarrow MG = 5$$

la ligne de niveau 122 de f est le cercle de centre G et de rayon 5.

3. Ligne de niveau de l'application $M \mapsto \frac{MA}{MB}$ Propriété

Soit A et B deux points distincts du plan \mathcal{P} et f l'application de $\mathcal{P}\setminus\{B\}$ dans \mathbb{R} tel que : $f(M)\mapsto \frac{MA}{MB}$ la ligne de niveau k de l'application f est :

- La médiatrice de [AB] si k = 1
- Un cercle de centre G si $k \neq 1$

Exercice de fixation

Soit A et B deux points du plan tels AB = 6

Détermine la ligne de niveau 3 de l'application $f: M \mapsto \frac{MA}{MB}$

Solution

La ligne de niveau 3 de l'application $f: M \mapsto \frac{MA}{MB}$ est l'ensemble des points M tels que $\frac{MA}{MB} = 3$.

$$\frac{MA}{MB} = 3 \iff MA^2 - 9MB^2 = 0$$

Soit
$$G = bar \{(A, 1); (B, -9)\}$$

$$MA^{2} - 9MB^{2} = 0 \Leftrightarrow (\overrightarrow{MG} + \overrightarrow{GA})^{2} - 9(\overrightarrow{MG} + \overrightarrow{GB})^{2} = 0$$

$$\Leftrightarrow MG^{2} + GA^{2} + 2(\overrightarrow{MG}.\overrightarrow{GA}) - 9MG^{2} - 9GB^{2} - 18(\overrightarrow{MG}.\overrightarrow{GB}) = 0$$

$$\Leftrightarrow -8MG^{2} + GA^{2} - 9GB^{2} + 2\overrightarrow{MG}(\overrightarrow{GA} - 9\overrightarrow{GB}) = 0$$

$$\Leftrightarrow -8MG^{2} + GA^{2} - 9GB^{2} = 0 \operatorname{car} \overrightarrow{GA} - 9\overrightarrow{GB} = \overrightarrow{0}$$

Comme
$$\overrightarrow{GA} - 9\overrightarrow{GB} = \overrightarrow{0}$$
, alors $\overrightarrow{GA} = 9\overrightarrow{GB}$ donc $GA^2 = 81GB^2$
On a donc $-8MG^2 + GA^2 - 9GB^2 = 0 \Leftrightarrow -8MG^2 + 72GB^2 = 0$
 $\Leftrightarrow MG^2 = 9GB^2$
 $\Leftrightarrow MG = 3GB$

la ligne de niveau 0 de f est le cercle de centre G et de rayon 3GB.

C- SITUATION COMPLEXE

Au cours d'une séance de travaux pratiques, les élèves d'une classe de première scientifique découvrent le dispositif ci-dessous.

Ce dispositif est une plaque triangulaire ABC de masse négligeable. On suspend à chacun de ses sommets des solides de masse ($m_A = 2g$); ($m_B = 5g$) et ($m_C = 3g$).

Les élèves veulent déterminer en quel point G, accrocher le fil pour que la plaque reste en équilibre.

Détermine la position exacte du point G, en expliquant ta démarche.

Solution

Pour déterminer la position du point G, je vais utiliser des notions de barycentre.

Pour cela, je vais:

- Déterminer H, le barycentre partiel du système $\{(A, 2); (C, 3)\}$
- Déterminer le point G, barycentre du système $\{(A,2); (B,5); (C,3)\}$
- Préciser la position de G.

Déterminons H, le barycentre partiel du système {(A, 2); (C, 3)}

On a:
$$2\overrightarrow{HA} + 3\overrightarrow{HC} = \overrightarrow{0}$$
 donc $\overrightarrow{AH} = \frac{3}{5}\overrightarrow{AC}$

Déterminons le point G, barycentre du système $\{(A, 2); (B, 5); (C, 3)\}$

On a:
$$G = bar\{(A, 2); (B, 5); (C, 3)\} donc G = bar\{(H, 5); (B, 5)\}$$

G est l'isobarycentre des point H et B.

Donc la position exacte du point G est le milieu de [BH].

D-EXERCICES

Exercice 1

Soient A, B et H trois points tels que : $5\overrightarrow{HA} + 2\overrightarrow{HB} = \overrightarrow{0}$. Complète les pointillés pour que la phrase soit vraie.

H est le barycentre des points pondérés

Solution

H est le barycentre des points pondérés (A;5) (B;2)

Exercice 2

Soient A et B deux points distincts.

- 1) Justifie qu'il existe un point G barycentre des points (A, 3) et (B, 2).
- 2) Exprime \overrightarrow{AG} en fonction de \overrightarrow{AB} , puis place G.
- 3) Soit M un point du plan. Ecris en fonction de \overline{MG} , $3\overline{MA} + 2\overline{MB}$.

Solution

1) Justifions qu'il existe un point G barycentre des points (A, 3) et (B, 2).

On a $2 + 3 = 5 \neq 0$ alors le barycentre des points (A, 3) et (B, 2) existe.

2) Exprimons \overrightarrow{AG} en fonction de \overrightarrow{AB} , puis place G.

Comme $G = bar \{(A, 3); (B, 2)\}; alors$

$$\overrightarrow{AG} = \frac{2}{5}\overrightarrow{AB}$$

3) Soit M un point du plan. Ecris en fonction de \overrightarrow{MG} , $3\overrightarrow{MA} + 2\overrightarrow{MB}$

Comme G = bar $\{(A, 3); (B, 2)\}$; alors $3\overrightarrow{MA} + 2\overrightarrow{MB} = 5\overrightarrow{MG}$

Exercice 3

Sur la figure ci-dessous, on donne les points A, B et G alignés sur une droite régulièrement graduée. Ecris G comme barycentre des points A et B avec des coefficients à préciser.

Solution

On a: G est le barycentre des points pondérés (A,2); (B, 1)

Exercice 4

Construis le barycentre de (A, 2); (B, -1) et (C, 4) où BC = 6 cm.

Solution

Soit G le barycentre de (A, 2); (B, -1) et (C, 4) Alors on a : $\overrightarrow{AG} = \frac{-1}{5}\overrightarrow{AB} + \frac{4}{5}\overrightarrow{AC}$.

Exercice 5

ABC est un triangle et G est le barycentre de (A,1); (B, 4); (C, -3).

- 1) Construis le barycentre de H de (B, 4) et (C, -3)
- 2) Justifie que G est l'isobarycentre de points A et H.
- 3) Construis le point G.
- 4) Soit A (1,-2) , B (-3,-2) et C (-1,0) dans le repère $(O;\vec{i},\vec{j})$, détermine les coordonnées du barycentre G.

Solution

- 1) Construisons le barycentre de H de (B, 4) et (C, -3) On a $\overrightarrow{BH} = \frac{-3}{1} \overrightarrow{BC} = -3 \overrightarrow{BC}$
- 2) Justifions que G est l'isobarycentre de points A et H.

$$G = bar \{(A, 1); (B, 4); (C, -3)\};$$

Comme
$$H = bar \{(B, 4); (C, -3)\}$$

Alors $G = bar \{(H, 1); (A, 1)\}$ d'après la propriété du barycentre partiel.

Par suite G est le milieu de [HA]

3) Construction du point G.

4)
$$G(\frac{1-12+3}{2}, \frac{-2-8}{2}), G(-4, -5)$$

Exercice 6

Soit ABC un triangle équilatéral tel que AB = 8 (l'unité est le centimètre).

H est le milieu de [BC].

- a) Construis le barycentre G des points pondérés (A,2); (B,1) et (C,1).
- b) Quel est l'ensemble (D_I) des points M tels que $2 \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}$ soit colinéaire à \overrightarrow{BC} et de même sens que \overrightarrow{BC} ? Construis (D_I) .
- c) Quel est l'ensemble (D_2) des points M tels que

$$||2 \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}|| = 2|| \overrightarrow{MB} + \overrightarrow{MC}||.$$

Construis (D_2) .

- d) Quel est l'ensemble (C_I) des points M tels que 2 $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}$ soit orthogonal à $\overrightarrow{MB} + \overrightarrow{MC}$. Construis (C_I) .
- e) Quel est l'ensemble (C_2) des points M tels que $\|2 \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\| = 8\sqrt{7}$. Construis (C_2) . Montre que (C_2) contient le point B.

Solution

a) Construisons le barycentre G des points pondérés (A,2); (B,1) et (C,1).

$$G = bar \{(A, 2); (B, 1); (C, 1)\}$$

Comme H est le milieu de [BC]. Alors par application du barycentre partiel

 $G = bar \{(A, 2); (H; 2)\} donc G est le milieu de [AH].$

b) Déterminons l'ensemble (D_I)

Soit M un point du plan ;
$$M \in (D_1) \iff 2 \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \lambda \overrightarrow{BC}$$
 ; $\lambda \in \mathbb{R}$ $\iff 4 \overrightarrow{MG} = \lambda \overrightarrow{BC}$:

Si
$$\lambda = 0$$
; $\overrightarrow{MG} = 0 \Leftrightarrow M = G$

Si $\lambda \neq 0$ alors (D_I) est la demi-droite passant par G parallèle à (BC) dirigée dans le sens du vecteur \overrightarrow{BC}

c) Déterminons l'ensemble (D_2)

Soit M un point du plan ; $M \in (D_2) \Leftrightarrow \|2 \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\| = 2 \|\overrightarrow{MB} + \overrightarrow{MC}\|$. Comme H est le milieu de [BC] ; $\overrightarrow{MB} + \overrightarrow{MC} = 2\overrightarrow{MH}$

D'ou
$$M \in (D_2) \Leftrightarrow \| 4 \overrightarrow{MG} \| = 2 \| 2 \overrightarrow{MH} \|.$$

D'ou $M \in (D_2) \Leftrightarrow \| \overrightarrow{MG} \| = \| \overrightarrow{MH} \|.$
D'ou $M \in (D_2) \Leftrightarrow MG = MH.$

Donc (D_2) est la médiatrice du segment [GH]

d) Déterminons l'ensemble (C_l)

Soit M un point du plan ;
$$M \in (C_1) \Leftrightarrow (2 \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC})(\overrightarrow{MB} + \overrightarrow{MC}) = 0$$

 $\Leftrightarrow (8 \overrightarrow{MG})(\overrightarrow{MH}) = 0$
 $\Leftrightarrow \overrightarrow{MG}.\overrightarrow{MH} = 0$

Donc (C_1) est le cercle de diamètre le segment [GH]

e) déterminons l'ensemble (C_2)

Soit M un point du plan ;
$$M \in (C_2) \Leftrightarrow \|2 \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\| = 8\sqrt{7}$$
.
 $\Leftrightarrow \|4 \overrightarrow{MG}\| = 8\sqrt{7}$.
 $\Leftrightarrow MG = 2\sqrt{7}$.

Donc (C_2) est le cercle de centre G et de rayon $2\sqrt{7}$

FIGURE

Exercice 7

Chacun des côtés d'un triangle ABC est partagé en trois segments de même longueur grâce aux points : I et J sur [AB], K et L sur [BC], M et N sur [CA]. Démontrer que les droites (IL), (JM) et (KN) sont concourantes.

On a :
$$I = bar\{(A, 2); (B, 1)\}$$
 ; $J = bar\{(A, 1); (B, 2)\}$; $N = bar\{(A, 2); (C, 1)\}$ $M = bar\{(A, 1); (C, 2)\}$; $K = bar\{(B, 2); (C, 1)\}$; $L = bar\{(B, 1); (C, 2)\}$ Soit $G = bar\{(A, 2); (B, 2); (C, 2)\}$ On a : $G = bar\{(A, 2); (B, 1); (B, 1); (C, 2)\} = bar\{(I, 3); (L, 3)\}$ donc $G \in (IL)$ $G = bar\{(A, 2); (C, 1); (B, 1); (C, 1)\} = bar\{(N, 3); (K, 3)\}$ donc $G \in (NK)$ $G = bar\{(A, 1); (B, 2); (A, 1); (C, 2)\} = bar\{(J, 3); (M, 3)\}$ donc $G \in (JM)$ Par conséquent, $G \in (IL) \cap (NK) \cap (JM)$

Exercice 8

On considère un parallélogramme ABCD. K est le milieu de [AD], L le milieu de [BC] et les points I et J partagent [AB] en trois parties égales.

Soit M est le quatrième sommet du parallélogramme JAKM.

Le but de l'exercice est de montrer que les points C, M, G et I sont alignés.

a) Exprime I, J, K, M et C comme barycentre des points A, B et D.
b) Montrer que les droites (BK), (DJ) et (CI) sont concourantes au point G, barycentre de (A, 1), (B, 2) et (D, 1).
c) Conclure en montrant que G et M sont

des barycentres de I et C.

Solution

a)

$$I = bar\{(A, 2); (B, 1)\}; J = bar\{(A, 1); (B, 2)\}; K = bar\{(A, 1); (D, 1)\}$$

Soit H le milieu de
$$[DB]$$
. On a : $H = bar\{(D,1); (B,1)\}$ et $C = bar\{(A,-1); (H,2)\}$, donc $C = bar\{(A,-1); (B,1); (D,1)\} = bar\{(A,-3); (B,3); (D,3)\}$

Soit E le milieu de
$$[KJ]$$
. On a : $E = bar\{(K,2); (J,2)\}$ et $M = bar\{(A,-2); (E,4)\}$, donc $M = bar\{(A,-2); (K,2); (J,2)\} = bar\{(A,-2); (A,1); (D,1); (J,2)\} = bar\{(A,-1); (D,1); (J,2)\}$ $= bar\{(A,-3); (D,3); (J,6)\} = bar\{(A,-3); (D,3); (A,2); (B,4)\} = bar\{(A,-1); (D,3); (B,4)\}$ b)

$$G = bar\{(A, 1); (B, 2); (D, 1)\} = bar\{(K, 2); (B, 2)\}. \text{ Donc } G \in (KB)$$

$$G = bar\{(A, 1); (B, 2); (D, 1)\} = bar\{(J, 3); (D, 1)\}. \text{ Donc } G \in (JD)$$

$$G = bar\{(A, 1); (B, 2); (D, 1)\} = bar\{(A, 2); (A, -1); (B, 1); (B, 1); (D, 1)\}$$

$$= bar\{(A, 2); (B, 1); (A, -1); (B, 1); (D, 1)\} = bar\{(I, 3); (C, 1)\}. \text{ Donc } G \in (IC)$$
Par conséquent, $G \in (KB) \cap (JD) \cap (IC)$

c)

On sait que : $M = bar\{(A, -1); (D, 3); (B, 4)\}$

Donc $M = bar\{(A, -3); (B, 3); (D, 3); (A, 2); (B, 1)\} = bar\{(C, 3); (I, 3)\}$, alors les points M, C et I sont alignés.

De plus $G \in (IC)$, donc les points M, C, G et I sont alignés.

Exercice 9

Soit ABC un triangle, P le symétrique de B par rapport à C, Q le point défini par $\overrightarrow{CQ} = \frac{1}{3} \overrightarrow{CA}$ et R le milieu de [AB]. Prouver que P, Q et R sont alignés.

Exercice 10

Soit un triangle ABC ; I, J et K les milieux des côtés [BC], [CA] et [AB], L est le milieu de [JC] et M le symétrique de K par rapport à B.

- a) Écris L comme barycentre et calculer 4 IL .
- b) Écris M comme barycentre et calculer 2 IM .
- c) Écris I comme barycentre. Conclus à l'alignement de I, L et M.