CASS ALTSHULER 2737 RUSSELL ST. ASH. 9627 BERKELEY, CALIFORNIA

ARCTURUS

ARCTURUS RADIO TUBE COMPANY NEWARK, NEW JERSEY

K	101	E.	61 C3		0.0	0.8	10.0	30.0	8	0.0	8.1	00 03	11.7	11.1	а. 1.		o. 0	or or
INTERELECTRODE	CAPACITANCE MMFD.	NPUT CUTPU	3.1		3	0,	3.0 E	5.3	3.5	in in	3.4	8.5	0.0	8.9	5.8	\vdash	•	80.83
ğ	PACITA	2					1	.00%	†				• 016	T	8		٥ . ه	
		GRID PLATE	_		•	8,1	9.	, .	8.1	80	0.0	5.7	-	o.		_	-	0.8
	RATED POWER OUTPUT	WATTS			\$88g	888				8888	2	375		8				-
NTS	RATED PLATE	OHMS			2113 8003 8003	200 200 200 200 200 200 200 200 200 200				14,000 18,000 18,700	000 .8 £	7,000 5,700	100,000 100,000	7,000				
COEFFICIENTS	TRAMS AMPLIFI- CONDUC-CATION TANCE CATION			00	000	0 0 0 0 0 0	240.0	0.00	000 000	0000	888	88	0*084	0°04	0.039		815.0 815.0 870.0	0°6
	NANG ONDUC ANCE	150 160 160 160 160 160 160 160 160 160 16		725 800	1200 1200 1200 1200 1200 1200 1200 1200	253 2650 2650	200	1000	235 1150 150	945 1000 1000 145	200	925 1050	640	1450	560(4) 600(4) 620(4)		1050 1050	480
AVERAGE	PLATE RESIS- TAME			10.00 10.00	6,000 8,150	88.4 000 000 000 000	725,000 525, 000	400 400 600 000 000	8 900 4 600	000 TT 000 6 000 6	11,000 10,300 10,300	4.100 5.600	950,000	000*09	400,000 600,000 1,000,000		250,000 500,000 360,000	009'11
ŁTS	£ 5.																	
RRE	224						0.4 8.6	444 087					00	3.0	1.00		1.0	
ELECTRODE CURRENTS	PLATE			2 KG	10.0 16.0 18.0	8°9°4	1°8	0.4 0.4 0.4	9 12 19 9 12 19	0084RR 885-R09	88 88 80 00 E	0.8 8.81	00HH	34.5	2 2 2 2 2 2 2 2		8 0° 8	000
ELECT	A KENT	AND S	0.85		1.25	0.25	0.18	1.75	1,06	1.75	90°0	0.13	90.0	0.86	90°0		0.30	0.30
	64																	
01.75)	မ်																	
ا چ	62						45.0 67.5	20.00% 75.0 90.0					45.0 67.5 67.5 67.5	135.0	67.5 67.5 67.5		67.5 90.0	
POTENTIAL	ษี	(NEGATIVE)		90	88.0 89.0	4.5 9.0 18.5	1.5	88 P.O.O.	7.0 10.0 14.5	30.0(4) 23.0(4) 6.0 9.0 13.5	4.5 9.0 13.5	30.08	4. 5(4) 5.0(4) 3.0	3°21	8.0 8.0 0.8		1.5	10°0(4)
RODE	PLATE		85.5 6.0.34	90.0 185.0	250.0 350.0	90.0 125.0 180.0	135.0 135.0	250.0 180.0 180.0 250.0	90.0 125.0 180.0	250.0 20.0 20.0 126.0 250.0	90.0 135.0 180.0	135.0 180.0	126.0 180.0 135.0 180.0	135.0	67.5 135.0 180.0		90°0 136°0 180°0	90°0 180°0 90°0
		HEATER	5.0		7.5	5.0	8.5	2 . S	1.5	۵ 8	0*3	0°8	0*8	0°3	0°8		6.8	6.8
4	STTW	,	æ		ž	CE .	(iù)	M	Sign (R	(m)	S.	in,	£	Re .		M	H
	OPERATION		DETECTOR	AMPLIFIER	AMPLIFIER CLASS A	DETECTOR OR AMPLIFIER AMPLIFIER	AMPLIFIER	DETECTOR BIASED (1) AMPLIFIER	AMPLIFIER	DETECTOR BIASED(2) AMPLIFIER	DETECTOR OR AMPL. AMPLIFIER	POWER AMPLIFIER	DETECTOR BIASED(S) AMPLIFIER	CLASS A	SUPER-CONTROL R.F. AMPLIFIER	PE 51	AMPLIFIER	DETECTOR BIASEDW
	CLASS		TRIODE		TRIODE	TRIODE	TETRODE	TETRODE	TRIODE	TRIODE	TRIODE	TRIODE	TETRODE	PENTODE	PENTODE	USE TYPE	TETRODE	TRIODE
	TYPE		4-10			12-A		42	26									

8.5	0.0	T			0.8			3.0	10.0	8.0	8.	6.8
17		+	-	-	4.6			2.0	5.0	1.6	83.82	5.2
8	2.5	+	†	 	2:	<u> </u>		0.6	2000	1,5	8	100
	•	_	5 8	<u> </u>		6.6		6	ļ <u>. </u>	1	8	•
200		2000	900es 2000/es		2000 2000 2000	1250 16000kg 20000/kg		2400 3400 4600		75 160 350		
8,500 13,500		7,000	4.500		2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6.400 1.300		4,100 3,670 4,350		20,000 20,000 20,000		250,000
100.0	360.0 750.0 1050.0	0.222	0.0		ន ម ម ម	9.0		20 20 20 E	350.0	888	13.8	1500.0
976	96007 100007 106007	2200	2500		1850 2000 2100	2550		2000 2100 2100	11600	750 975 1100	1450	1225(2)
102,000	375,000 750,000 1,000,000	200,000	45,000 35,000		1,900 1,750 1,670	2,580		1,900	300,000 400,000	11,000 8,500 7,500	9,500	1,500,000
0.03	444 644	9.0	45			2 2		ļ	00 00 00 00			1,0
000	ರಾಗ್ ಹೆದ್ದರ	34.0	0.4		31.0	28 0.89 0.09		45 55 0 0 0 0 0	ភភ សភ	8.00	0°9	2.0
0.30	0.30	0.70	0.30		1.50	1.76		1.25	1.75	1.00	1.00	1,00
												(23)
100.0	000000	250.0	95.0 135.0			250.0 <i>k</i> 21 ± .0 <i>k</i> 31 ± .0 <i>k</i> 31			0.06 0.06 0.06			100.0
9.0	300 700 700 700 700 9	16.5	20.02		31.5 50.0 56.0	33.0 ± .0/m ± .0/m		63.0 70.0 84.0	3.0 3.0 7.0	10.5 13.5 20.0	3°91 13°04)	6.0 (zi) 3.0
100.0 135.0	90°0 180°0 80°0 180°0 250°0	250.0	96.0 136.0		180.0 250.0 275.0	250.0 (18) 300.0 400.0		250.0 400.0 450.0	180.0 250.0 250.0	135.0 180.0 250.0	250.0 250.0	250.0 250.0
6.3	8.9	6.3	25.0 (11)		9 °≈	2.5		7.5	2.5	9*2	8.6	2.5
H	Ħ	H	H		-			May .	H	H	H	H
AMPLIFIER CLASS A	SUPER-CONTROL R.F. AMPLIFIER MODULATOR	ELASS A	AMPLIFIER CLASS A	TYPE 39-44	AMPLIFIER CLASS A	AMPLIFIER CLASS A AMPLIFIER CLASS B	PE PZ	AMPLIFIER CLASS A	VARIABLE-MU AMPLIFIER MODULATOR	AMPLIFIER (20) CLASS A	DETECTOR BIASED(2) AMPLIFIER	DETECTOR BIASED() AMPLIFIER CLASS A
PENTODE	39-44 PENTODE	PENTODE	PENTODE	USE TYF	TRIODE	TETRODE	USE TYPE	TRIODE	TETRODE	DUPL EX DIODE TRIODE	TRIODE	PENTODE
38	39-44	42	43	44	45	46	47	90	51	55	56	57

- 1. For use os a grid lesk detector 250-volts plots; soreon up to 70-volto; capacity .00025-mfd; resistance 1-5 megohms; grid return to cathode.
 - 2. For use os a grid leak detector 90-volts plate; capecity .00025-mfd; resistance 1-5 megohms; grid return to cethode.
- 3. Screen gr, -20 to -45-volts; adjuct gr to give 0.1 mm. with no e.c. input signal.
- 4. Adjust g1 bias for plate current of 0.2 ma. with no a.c. input signal.
- 5. For use as a grid leak detoctor 135-volto plate; .00025-mfd; resistance 1-5 megohms; scroon up to 45 volts; plate load 100,000 ohms; grid return to cathode.
- Mutual conductance at g. -22.5 volts is approximately 15 u-mhos.

ů,

- 7. Kutual conductance at g. -42.5 Wolts is approximately 2 u-mhos.
- 8. This grid bias is minimum for oscillator peak potential of 6.0 volts.
- 9. Total harmonic distortion 11%.
- 10. Total harmonic distortion 9%.
- 11. Heater to cathode potential should not exceed 90 volts d.c. as measured between negative heater terminal and cothode.

- 12. Grid ga adjacent to plate is connected to plate.
- 13. g, and g, are connccted togother to serve as control grid.
- .4. Posk plate current (per tube) 150 mo. and maximum ploto discipation (por tube) 10 wotts.
- 15. Peak plate current (per tube) 200 ms. and maximum plote dissipation (per tube) 10 watts.
- 16. Maximum continuous power output for two tubes 20-watts.
- 17. Maximum signal potential (rus per tube) 40 volts.
- 18. Maximum signs! potential (rms per tube) 41 volts.
- 19. Mutual conductance at g: -40 wolts is approximately 15.0 u-mhos, and at -50 ia 0.
- 20. Diode unite used for half-wave and full-wave detection, and ave arrangement.
- 21. Sereen g, , 20 to 60-welts, edjust g to give 0.2 ms, with ne input signel.
 - . Gut-off of cathode current occurs at -7 volts (g).
- 23. Suppressor (g) connected to esthode at socket.

-			4		TRODE	POTENTIA	IALS (V	(VOLTS)	ELEC	ELECTRODE CURRENTS	RRENTS	S AVERAGE	AGE	COEFFICIENTS	CIENTS		INTER	NTERELECTRODE	RODE
	CLASS	OPERATION	1317IW	FILA- MENT	PLATE	5	89	S ₃	FILA- MENT 4 OR	F PLATE	25 25 25	PLATE 3 RESIS- TANCE	TRANS- COMOUC TANCE		PLATED	RATED POWER DUTPUT	CAP.	CAPACITANCE MMFD.	ğ
			3	HEATER		(NEGATIVE)						-	1	FACTOR		WATTS	PIAT	E E	2
	PENTODE	VARIABLE-MU AMPLIFIER MODUL A TOR	×	8.5	250.0 250.0	3.0 10.00	100.0	(23)	1.00	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3.0	800,000	30 1600km	DEM 1280.0	0•		.00	7 5.8	6.8
u.	PENTODE	AMPL.CLASS A TRIODE AMPL.CLASS A PENTODE AMPL.CLASS B TRIODE	я	2.5	250.0 250.0	28.0 18.0	250.0(2) 250.0(2)	2502s (27)	2.00	35.0	0.6	2,400	2600	1000	000	3000			
		PER TUBE TWO TUBES			400.0	# O(3)	(2)0° #	4004		13,0%	*				axe00°9	80000			
	TRIODE	AMPLIFIER CLASS A	Stq.	0.0	90.0 136.0 180.0	16.5 27.0 40.5			0.25	17.3		2,170 1,820 1,750	70 1400 20 1650 50 1700		3.0 3.0 3.00 8.00 4.800	185 790	7.6	3.7	2.1
	DUPLEX DIODE TRIODE	AMPLIFIER (33) CLASS A	믒	8.9	250.0	2.0		-	0.30	0.8		91,000	00 1100	0.001 0	0.		1.7	7:1	3.8
1	ш	DETECTOR BIASED®	×	8.3	250.0 250.0	3.0	100.0	(34)	0.30	2.3	9.0	1,600,000	00 12504	3,000,0	000 002	_	•00	4.4	10.6
	PENTODE	AMPLIFIER CLASS A	×	6.3	180.0 250.0 250.0	000	75.0 100.0 125.0	(34)	0°30	10.5	000	1,000,000	145049 30 145049 30 165049	067 1100.0 000 1160.0 000 990.0	000		•000	4.4	10.6
	PUPLEX	AMPLIFIER CLASS B	H	6.3	180.0 (4/)	0.1			09.0	7.542	2			-	7,000/2	(22) 5500(43)		_	_
. ^	DUPLEX	RECTIFIER FULL-WAVE	ł	0.3	350.0 (44) 400.0 (44) 550.0 (45)				2.00	<u> </u>									
	DIODE	HALF-WAVE		*******	350.0 (52) 400.0 (52) 550.0 (53)					250 250 250 250 250 250 250									.,
	DIODE	RECTIFIER HALF-WAVE	4	7.5	700.0				1,25	86.04	3		V V					_	
	UPLEX IODE FRCURY VAPORU	1	Sing	2.5	500.0 (47)				3,00	125.04	5				(69)				
	DUPLEX DIODE MERCURY VAPOR		ß.	5.0	500,0 (47)				3.00	250.04	ò		O'T O		(69)				
	DUPLEX	RECTIFIER FULL-WAVE	Ħ	6.3	225.0 (5/)				09.0	0 20 0									
	DUPLEX DIODE TRIODE	AMPLIFIER (20) CLASS A	Ħ	6.3	136.0 180.0 250.0	10.5 13.5 20.0			0.30	8 6 0		11,000 8,500 7,500	00 750 00 975 00 1100	000	25 20.000 23 20.000	75 160 350	1.5	1.6	4.3
	PFNTODF	AMPLIFIER CLASS A TRIODE AMPLIFIER CLASS A PENTODE	Ħ	6.3	160.0 180.0 163.0 180.0	20.0 22.5 17.0	160,022 180,022 163,023 180,023	160(25) 180(25) (27)	0.40	20.0	81 KB	3,000 2,750 79,000 82,500	00 1570 50 1700 00 1575 00 1635	0 4.7 0 125.0 135.0	7.000 .7 6.500 .000 8.000	300 400 1250 1500	ala Manada an W		
		AMPLIFIER CLASS B TRIODE - PER TUBE TWO TUBES			0.081	± 0 (52)	± °O(52)	18000		3.0(5)	Ĝ.				13,600(%)	(22) 2500(54)	an and State		
	TRIODE	DETECTOR OR	ß,	3.3	90.0	4.5			8.	2.5		16,500	00 425	9	9.		8.8	2.5	2.5
		DETECTOR OR	2	3.3	0.06	4.5			8.	20.23		15,500	00 425		9.9		3.3	2.5	2.5
	1 \	AMPLIFIER CLASS A	24	0.0	180.0	0.01	180.0	(55)	.25	0.32	7.5	30,000	2000	0*09 0	.0 7.000	800			
4 8 2	PENTODE	AMPLIFIER CLASS A	E4	2.5	250.0	36.5	250.0	(55)	1.76		0.9	000*09	00 2500	160.0	000.7 0.	2700	1,5	8.7	13.2
. 0	PFNTODE	AMPLIFIER CLASS A	-	2.5	250.0	16.6	250.0	(30)	20 %	36.0	8.2	38.000	3160	g	4	2000			

ANNUAL (SEE SPECIAL BULLETIN) 2A5 PENTODE CLASS A 2A7 HEPTODE MODULATOR DUPLEX AMPLIFIER 2B7 DIODE AMPLIFIER PENTODE AMPLIFIER A. 523 DUPLEX FECTIFIER A. 523 DUPLEX FECTIFIER A. 6A7 HEPTODE IDENTICAL TO B.	JLLETIN)	=	0.3		-				00-1										سنبر
PENTODE HEPTODE DUPLEX DIODE PENTODE DUPLEX DIODE HEPTODE	00121	ш	6.3		_				0.40										
HEPTODE DUPLEX DIODE PENTODE DUPLEX DIODE HEPTODE	SS A	н	2.5	250.0	16.5	250.0	(36)		1,75	34.0	6.5	70	100,000	8800	0°033	7.000	3000		
DUPLEX DIODE PENTODE DUPLEX DIODE HEPTODE	MODUL ATOR	ш	8.5	0.033	(56)	250.0	1000	-3.0 (89)	08°0	4.0	3.5 2.0		300,000	476(0)				(Seguffethife)	al
PENTODE DUPLEX DIODE HEPTODE	LIFIER (20) OR I.F.	Ħ	9 °8	100.0 180.0 850.0	000	100.0 75.0 100.0	(34) (34) (34)		08.0	8 4 O	1.7	1,00	300 000	95060 84060 100060	285.0 840.0 800.0				
DUPLEX DIODE HEPTODE	AMPLIFIER A.F.			250.0	6. 4 Oro	0.00	(54) (54)				173	3		1125/62		800,000			
HEPTODE	RECTIFIER FULL-WAVE	-	0.0	500.0					3.00	250.0									
	IDENTICAL TO 2A7 EXCEPT HEATER	×	6.3				-		02.0										
6B7 DUPLEX IDENTICAL TO 2B7	ICAL TO 2B7	н	6.3						0.30										
1223 DIODE RECTIFIER	LIFIER WAVE	Ħ	12.5 (3) 225.0	225.0					0.30	0.09									
12 Z S DUPLEX FULL-	RECTIFIER FULL-WAVE VOLTAGE DOUBLER	Ħ	12.6 6.3	22 5. 0 22 5. 0					0.30	60.0									
2525 OUPLEX DIODE BECTIFIE BOUBLERAVE	CE BOUBLERAVE	н	25.0	125.0					0.30	100.0									

- ₽3. For use as a grid leak detector 250-volts plate; soreen up to 70-volts; cepacity .00025-wfd; resistance 1-5 megohms; grid return to cathode.
- Diode units used for half-wave and full-wave detection, and ave arrangement.
- Screen gz , 20 to 60-volts, adjust g, to give 0.2 ma. with no input signal.
- Mutual conductance at g1 -40 volts is approximately 10 u-mhos and et -50 is
- This grid bias is minimum for oscillator peak voltage of 9.0-volts.
- Grids (g_z) and (g_s) are connected to plate when operated as clase "A" amplifier. 88.
- Grid (g3) tied to cathode.
- Grid (gz) is screen only. 28.
- Grids (g1) and (g2) tied together and average dissipation is 1.5-watta (max.). 88
- Grid (gs) tied to plate. 8
- Dynamic peak plate current 200 ms. and average plate dissipation 10-watta (max.). 31.
- Plate to plate. 32.
- The triode unit is hi-mu and the diode units are used in various detector arrangements. 33.
- Grid (gs) connected to cathode at socket as suppressor. 34.
- Both the internal shield surrounding plate and grid (g2) tied internally to pin 3. 35.
- Mutual conductance approximately 0 (cathode current cut-off) at g1. -7.5 volts.
- Mutual conductance at g1 -25 volts is approximately 10, and at -32,5 is 2.
- Mutual conductance at g. -35 volts is approximately 10, and at -42.5 ie 2.
- Mutual conductance at g. -45 wolte is approximately 10, and at -52.5 is 2.
- Both internal shield aurrounding plate and cathode connected internally to pin 5.
- Average plate dissipation 7-watts (max.).
- Static plate current 7.5 ma. and dynamic peak plate current (per plete) 90 ma. (max.).

- With average power in-put of 380 milli-watte applied between grids &na and &lb.
- Operating with condensar in-put filter.
- Operating with choke in-put filter of 20-henry (min.). 45.
- Two tubes operated as full-wave rectifier delivere 170 ma. (max.) at 700 plate volte 46.
- Maximum peak inveree petential 1400-volts. 47.
- Maximum peak plate current 400 8
- Approximate internal drop 15 volte.
- Maximum peak plate current should not exceed 300 ma. 8
- Operating with either condenser or choke in-put to filter. 51.
- Grids (g1) and (g2) tied together and average dieelpation 0.35 watts (max.). 52.
- Dynamic peak plate current 75 ms. (max.). 53
- With a plate load of 9400-ohme nominal power output ie 3500 milli-watte. 54.
- Grid (g2) tied to center of filament. 55.
- Grid (g1) operating in oscillator eirouit feeding 50,000 ohms 86
- Grids (gs) and (gs) connected together. 57.
- Grid (g4) operating as control grid for modulator. 8
- Conversion conductance 475 at -3 volts grid (gs.), and 2 at -50 veits.
- Cathoda current cut-off at -17 volta g. ŝ
- Cathode surrent eut-off at -13 volts g.
- Heater-cathode potential should not exceed 100-volts. Cathode current out-off at -81 volts gi. 8
- Center tap en heater to permit dual operation.

3

	TYPE	TYPE		RMINA			ERIST		N NO.		OVERALL	DIAMETER
TYPE	BULB	BASE	1	2	3	4	5	6	7	TOP.	HEIGHT (MAX.) INCHES	(MAX.)
01-A	8-14	¥-4	7	P	G ₁	,				CAP	4,688	1,815
10	8-17	¥-4	7	P	G,	7					5.625	2.188
12 4	3-14	<u>¥-4</u>	7	P	G,	7					4,688	1,813
22	8-140	M-4	F	P	02	P				0,	5.051	1,815
24	8-140	M-2	н	P	6 2	K	н			O,	5.051	1.818
86	8-14	¥-4	7	P	0,	7					4,688	1,813
87	8-14	¥-5	H	P	G,	K	н				4,488	1.815
3 0	8-12	8-4	7	P	a ₁	,					4,250	1.563
31	s- 18	8-4	7	P	a,	F					4.250	1,565
38	3-140	¥-4	r	P	a ₂	7				G I	5.051	1.818
33	3-14	¥-5	P	P	G ₁	02	,				4.688	1,815
34	8-140	M-4	P	P	<u> </u>	4 2	-			01	5,051	1,815
36	S-120	S-5	H	P	0-2	K	H				4,581	1,563
87	3-12	S-5	н	P	6 2	K	H			G!	4.250	1,563
					G _I							1,565
38	8-120	S-5	H	P	02	r	H			0.	4.551	
89-44 40	87-120	9-5	H	2	6 2	r	H	17		G ₁	4.531	1.815
42	87-14	14-6	H	P	0 ₂	G ₁	K	H			4.688	
43	37-14	¥-6	H	P	0 ₂	G ₁	- K	H			4.588	1.815
45	37-14	<u>u-4</u>	.	P	G ₁	7					4,588	1,813
46	8-17	¥-5		P	G ₁	G 2					5.625	2.186
BO	8-21	14-4		P	G ₁	7					5,250	2,563
51	8-140	14-5	H	P	6 2	K	H			G1	5.081	1.831
55	87-120	S-5	H	2	Pi	₽2	K	H		G ₁	4,531	1,565
56	s-12	8-5	H	P	G 1	- K	H				4.250	1.565
57	87-120	8-6	H	P	62	G3	K	H		01	4,987	1.565
88	87-120	8-5	H	P	G 2	@ 3	K	H		G I	4,957	1,565
59	87-16	¥-7	Ħ	P	6 2	G I	0 з	K	R		5.376	2,063
71-A	S-14	K-4	F	P	G ₁	F					4,688	1.815
76	37-120	8-5	H	P	P	₽2	K	H		G ₁	4.681	1.563
77	87-120	3-6	H	P	92 ⁽²⁵⁾	øз	K	H		91	4.551	1.563
78	87-120	8-6	R	P	62	63	K (40)	H		Gį	4,531	1,563
79	87-120	S-6	H	Pa	Bla	ĸ	Pb	H		GIb	4.531	1,563
30	S-17	14-4	7	Pl	P2	7					5,425	2,188
81	S-19	<u>u-4</u>	r	P		7					5.250	2.438
82	8-14	14-4	7	Pi	P ₂	r					4.688	1.813
83	87-16	14-4	7	Pı	P2	7					5.375	2,065
84	8-12	3-5	H	Pi	₽2	K	H				4.250	1.563
85	87-120	S-6	H	P	Pl	₽2	K	H		G I	4,531	1,563
9	87-120	S-5	H	P	0 2	ęз	K	H		91	4.531	1.563
9 UV	7-8	8-4¥	7	P	7	81					3,500	1.063
99 UX	7-8	5-4	P	P	G ₁	7					4,125	1,188
GA.	8-14	M-5	7	P	Q ₁	G ₂	7				4.588	1.813
PZ	8-17	¥-5	7	P	G ₁	Q ₂	7				5.525	2.188
PZH	8-17	M-7	H	P	62	<u>a,</u>	6 3	K	Ħ		5.625	2.188
DERLICH	8- 120	14-5	H	G	P	G	H			K	4.438	1.563
AP DERLICH - AUTO.	8-12	M-5	H	P	G	G	K	H		L	4,125	1.563
245	ST-14	¥-5	H	P	62	G ₁	K	H			4.688	1,813
2 47	87-120	8-7	H	P	G 3 ⁽⁵⁷⁾	62	G,	r	H	G4	4.531	1.563
8B7	37-120	S-7	H	P	6 2	₽1	P ₂	r	H	G I	4,531	1,568
523	87-16	¥-4	7	P	₽2	F					5.375	2,063
5 47	DENTICAL TO 2A7 EXCEPT HEATER]						<u> </u>
5 B 7	IDENTICAL TO 287 EXCEPT HEATER											
1223	S 7- 12	3-4	H	P	r	H					4,250	1,563
12Z5	S7-12	8-7	H	Pį	K I	H (64)	I ₂	₽2	H		4.250	1,565
2525	87-12	3-6	H	Pi	E ₁	E2	P ₂	H			4,250	1,565

EXPLANATION OF SYMBOLS

CLASS OF TUBE

Tubes are assigned names according to the number of active elements, progressing outward from the cathode; a tube with a cathode, a control grid and a plate is classified as a triode.

NUMBER ELEMENTS	CLASSIFI- CATION	NUMBER ELEMENTS	CLASSIFI- CATION
2	Diode	6	Hexode
3	Triode	7	Heptode
4	Tetrode	8	Octode
5	Pentode		

Where two separate units are contained in a single bulb, a compound name is assigned -i.e., double diode, diode triode, etc.

TUBE TYPE NUMBERS (New Tubes)

The first digit or digits indicates the filament voltage in steps of one volt. The figure 1 is used for voltages below 2.0; the figure 2, for voltages between 2.0 and 2.9; 5, voltages between 3.0 and 3.9; etc.

Next is a letter for serial designation. Rectifiers start at $^{\rm H}Z^{\rm H}$ and work backwards; all other types start at $^{\rm H}A^{\rm H}$.

The next number indicates the number of useful elements brought out to terminals.

ELECTRODE SYMBOLS

In a tube embodying a single set of elements. the electrodes are designated:

G = Grid H - Heater P = Plate K = Cathode

PLATE NOMENCLATURE

In tubes with one plate the letter "P" is employed; tubes possessing two sets of elements, as the type 75 (duplex diode triode), the plate of the triode unit is identified by the letter "P"; the two diode plates as P1 and P2.

NOTE: P_1 and P_2 always designate the plates of a diode or rectifier.

Where duplex elements are contained in a bulb each set are uniformly correlated and designated by small letters, a, b, etc. For instance, the type 79 class "B" twin amplifier; the plate and grid of one unit should be designated as Pa and Gla; the other unit Ph and Gab.

GRID NOMENCLATURE

In tubes possessing more than one grid the notations G1, G2, etc. are used. G1 is the grid nearest the cathode and the numbering runs consecutively toward the plate.

Where grids are not coaxially arranged but interlaced as in the co-planar or twin-grid construction, the grids are designated as No. A-1 grid and No. A-2 grid, eto.

PIN IDENTIFICATION

To identify the contact pins of a vacuum tube base, point the pins toward the observer so that the two heater pins (the heater terminals or pins are larger than the others) are at the top. Separate these two pins by a vertical line and the heater pin to the right is No.1.

The numbers assigned to the remaining pins progress consecutively in a clock-wise direction.

TUBE DIMENSIONS

When capital letters designate the various dimensions of a radio tube, generally the letter "A" represents the over-all height of the tube as measured from the extreme bottom of the pins to the extreme top of the tube. When a top cap is employed "A" represents the over-all height of the tube including the top cap.

- B, the largest diameter of the tube,
- C, the diameter of the dome, D, the height of the top-cap,
- E, the height from the bottom of the base
 - to the top of the dome,
- F, the height of the base, G, the length of the pins,
- H, the diameter of the base.

When a single dimension is listed it represents the average dimension; when two are entered they are maximum and minimum.

BULB SHAPE AND DIMENSIONS
A letter indicates the shape of the bulb
and a figure represents the number of eights of inches as the maximum diameter of the bulb.

When the bulb is referred to as a S-16, it describes a "straight-sloped sided" bulb similar to that of the Ol-A, the maximum diameter being 16/8" or 2".

An ST-12 bulb has a tee section at the top, commonly called a dome bulb, similar to the glass of the 25-Z-5 rectifier. "C" appended to the bulb designation indicates a top cap.

SALIENT FEATURES OF ARCTURUS TUBES

LABORATORY TESTS SHOW ARCTURUS TUBES HAVE LESS HUM

This diagram shows comparative hum output of three makes of tubes. Considerable increase in hum was shown with tubes of two manufacturers when the filament potential was increased, while the curve for Arcturus Tubes remained constant. While different manufacturers tubes were used in this test, No. 1 and 2 are among the largest in the industry and the curves are representative of the tubes in present use. The tubes of manufacturer No. 2 were found to have lower average hum than other makes investigated with the exception of Arcturus.

UNITARY STRUCTURE PRINCIPLE FOR IMPROVED PERFORMANCE

This exclusive Arcturus Unitary Structure is a decided advance and is the last word in tube ruggedness assuring uniform characteristics.

This sturdy construction insures precise spacing and grips every element firmly in position making all elements inter-dependent. This entire assembly, exceptionally rigid, is safe against distortion of elements and minimizes microphonism.

Rated as the most rugged tube construction on the market, this is another reason why Arcturus Tubes insure efficient and dependable performance, improved reception and satisfied customers.

PRECISION IN MANUFACTURE GUARDED BY 137 TESTS AND CHECKS

The average diameter of the filament used in Arcturus Tubes is like that shown by the hair-like line. Yet the precise construction of the elements in Arcturus Tubes is held to less than one-tenth of this dimension.

This precision in manufacture plus the rugged construction of Arcturus Tubes also insures uniformity of characteristics and performance in even the most critical circuits.

Guarding Arcturus quality are 137 tests and checks which each tube receives before it is shipped. Such fine workmanship and care have gained for Arcturus Tubes a world-wide acceptance for quality.