Differential Amplifier

Question: Given: Obtain $|A_v|$ =20dB, bandwidth = 5MHz, and V_{DD} = 1.8V, C_{LOAD} =10pF, ($\mu_n C_{ox}$ = given or take it from previous chapter of nch_25 mosfet), slew rate =5 V/ μ sec, Input common mode range = 0.8V to 1.6V, power dissipation = 0.3mW .(betaeff = $\mu_n C_{ox}(W/L)$, and $\mu_n C_{ox}$ of nch_25=276 μ A/V² and and $\mu_p C_{ox}$ of pch_25=88 μ A/V² and nmos to be used nch_25 and pmos to be used pch_25, V_{th} of nch_25=552mV and V_{th} of pch_25=500mV, V_{OV} of nmos =350mV and V_{OV} of pmos=380mV)

Answer: follow the below steps:

- 1. Make sure the transistor is in saturation region for amplifier case.
- 2. Tail current $I_0 = C_L*(Slew rate) = (10pF)*(5 V/\mu sec) = 50\mu A = I_B$
- 3. General equation of Input common mode range, i) If V_{CM} decreases, M₅ is carrying a current I₀ and M₁ and M₂ is carrying current I₀/2. For carrying a current I₀/2, the transistor

must have fixed V_{GS} , therefore if V_{CM} decreases, (here $V_{i+}=V_{i-}=V_{CM}$),

V_X decreases and M₀ will go to triode region.

$$(V_{i,CM})_{min} = V_{GS1} + V_{DSAT}(of M_5)$$

If V_{CM} increases, M₁ and M₂ gets affected and will go to triode region,

$$(V_{i,CM})_{max} = V_{DD} - V_{SG}(of M_3) + V_{th}(of M_1)$$

Note: The same logic of calculating input biasing range holds good for any circuit.

4. Output common mode range;

If V_{out} decreases, M_2 gets in triode region, and to keep it in saturation region $(V_{out})_{min} = V_{OV}(of M_5)) + (V_{OV}(of M_2)$ If V_{out} increases, M_4 gets in triode region, and to keep it in saturation region $(V_{out})_{max} = V_{DD} - V_{OV}(of M_4)$

5. Calculate g_m,

$$g_m$$
 = Bandwidth*2* π *C_L,
 g_m = 314.16 μ A/V²

6. Calculation of W/L ratio of all the Mosfets:

For M₃ and M₄: (calculate it from drain current equation in saturation region)

$$I_D = 1/2(\mu_p C_{ox}(W/L)(V_{SG} - |V_{th}|)^2$$

Note: $I_0 = 50 \mu A$ (flowing in tail mosfet M_5), the currents flowing in M_1 and $M_3 = I_0/2 = 25 \mu A$ and the currents flowing in M_2 and $M_4 = I_0/2 = 25 \mu A$. Basically, tail current flowing is divide by 2 in differential amplifier as it almost symmetrical circuit.

$$\begin{split} I_3 = I_4 = I_0/2 = 25 \mu A = & (1/2) (\mu_n C_{ox}(W/L) (V_{GS} - V_{th})^2 \\ 50 \mu = 87.2013 \mu (W/L)_{3,4} (0.38)^2 \\ (W/L)_{3,4} = 3.97 \end{split}$$

$$(W/L)_{3,4} = 4$$

For M₁ and M₂: (calculate it from g_m)

 M_1 , M_2 current flowing is $25\mu A$ ie $I_0/2$

$$\frac{\partial I}{\partial v_{GS}} = g_m = \mu_n C_{ox} (W/L)_{1,2} (V_{GS} - V_{th})$$

$$(W/L)_{1,2} = g_m^2 / (2I_D \mu_n C_{ox}) \dots \text{here } I_D = I_0 / 2$$

$$(W/L)_{1,2} = 7$$

For $M_{5,6}$: (calculate by drain current equation in saturation region and take $V_{overdrive} = V_{DSAT} = V_{GS} - V_{th} = V_{OV}$)

For M_5 and M_6 , current flowing is $50\mu A$ ie I_0 and for M_1 , M_2 , M_3 , M_4 current flowing is $25\mu A$ ie $I_0/2$

$$\begin{split} I_0 = &I_D = 1/2 (\mu_n C_{ox}(W/L)(V_{GS} - V_{th})^2 \\ 50 \mu = (1/2)(275.78 \mu)(W/L)_{5,6}(0.3)^2 \\ (W/L)_{5,6} = 4 \end{split}$$

7. For these calculated values, we will not get the desired specification and after above all the steps, we next improvise accordingly.