

Sharper Bounds for ℓ_p Sensitivity Sampling

David P. Woodruff and Taisuke Yasuda

Sampling for Efficient Machine Learning

• Empirical risk minimization: minimize $f: X \to \mathbb{R}_{>0}$ of the form

$$f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})$$

• Sampling: we seek a subset $S \subseteq [n]$ and weights w_i for $i \in S$ s.t.

for all
$$\mathbf{x} \in X$$
,
$$\sum_{i \in S} w_i \cdot f_i(\mathbf{x}) = (1 \pm \varepsilon) \sum_{i=1}^n f_i(\mathbf{x})$$
 (1)

Approximate the objective fn for every $x \in X$

- . Why sample?
 - Reduce training/inference resources (time, memory, communication)
 - Reduce number of labels needed
 - Preserves sparsity and structure

Question. How small can the sample *S* be to achieve the guarantee (1)?

Sensitivity Sampling

- Classic technique for achieving (1): sensitivity sampling
 - [Langberg-Schulman 2010, Feldman-Langberg 2011]
 - Define **sensitivity scores**:

$$\sigma_i = \sup_{\mathbf{x} \in X} \frac{f_i(\mathbf{x})}{f(\mathbf{x})} = \sup_{\mathbf{x} \in X} \frac{f_i(\mathbf{x})}{\sum_{j=1}^n f_j(\mathbf{x})}$$

This can often be approximated efficiently

- Idea: Sample the *i*th example, $i \in [n]$ with probability p_i proportional to the sensitivity scores
 - Probability $p_i = \min\{1, \sigma_i/\alpha\}$, weight $p_i = 1/w_i$
- Prior work: sensitivity sampling is very effective!
- Provable guarantees for a wide class of ERM problems

Theorem [FL11]. Sensitivity sampling gives guarantee (1) with $|S| = \tilde{O}\left(\varepsilon^{-2} \mathfrak{S} d\right)$, for VC dimension d and total sensitivity $\mathfrak{S} = \sum_{i=1}^{n} \sigma_i$

- Nearly optimal sampling guarantees for least squares regression

Sensitivity Sampling for ℓ_p Linear Regression

• ℓ_p linear regression:

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^p = \sum_{i=1}^n |\langle \mathbf{a}_i, \mathbf{x} \rangle - \mathbf{b}_i|^p$$

- **A** is an $n \times d$ design matrix, **b** is an n-dim target vector
 - WLOG assume $\mathbf{b} = 0$
- Sensitivity sampling immediately applies!

VC dimension d, total sensitivity $\mathfrak{S} \leq \begin{cases} d^{p/2} & p > 2 \\ d & p \leq 2 \end{cases}$

- Sampling bound [FL11]:

$$|S| = \tilde{O}\left(\varepsilon^{-2}\mathfrak{S}d\right) \le \begin{cases} \tilde{O}\left(\varepsilon^{-2}d^{p/2+1}\right) & p > 2\\ \tilde{O}\left(\varepsilon^{-2}d^{2}\right) & p \le 2 \end{cases}$$

- But we know this bound is loose for p = 2!
 - ▶ [Drineas-Mahoney-Muthukrishnan 2006]
 - $|S| = \tilde{O}(\varepsilon^{-2}d) \text{ for } p = 2$

Question. How small can the sample S be with sensitivity sampling for \mathcal{E}_p linear regression?

Our Results

Theorem [WY23]. For \mathcal{C}_p linear regression, sensitivity sampling gives guarantee (1) with

$$|S| = \begin{cases} \tilde{O}\left(\varepsilon^{-2}\mathfrak{S}^{2-2/p}\right) & p > 2\\ \tilde{O}\left(\varepsilon^{-2}\mathfrak{S}^{2/p}\right) & p \leq 2 \end{cases} \leq \begin{cases} \tilde{O}\left(\varepsilon^{-2}d^{p-1}\right) & p > 2\\ \tilde{O}\left(\varepsilon^{-2}d^{2/p}\right) & p \leq 2 \end{cases}$$

- The analysis of [FL11] is loose
- Upper bound is nearly tight for $p \le 2$; there exist matrices $\bf A$ that require $\Omega(\mathfrak{S}^{2/p})$ samples

Sample Complexity Bounds for ℓ_p Sensitivity Sampling

Comparison to Lewis Weights

- Sample complexity comparison between
 - Lewis weight sampling [Cohen-Peng 2015]
- Sensitivity sampling with small \mathfrak{S} ($d^{p/2}$ for p < 2, d for p > 2)
 - Low rank + sparse, polynomial feature maps, etc...
- Sensitivity sampling with large \mathfrak{S} (d for p < 2, $d^{p/2}$ for p > 2)

	Lewis weights	Sensitivity, small &	Sensitivity, large 🛎
<i>p</i> < 2	$\tilde{O}(\varepsilon^{-2}d)$	$\tilde{O}(\varepsilon^{-2}d)$	$\tilde{O}(\varepsilon^{-2}d^{2/p})$
<i>p</i> > 2	$\tilde{O}(\varepsilon^{-2}d^{p/2})$	$\tilde{O}(\varepsilon^{-2}d^{2-2/p})$	$\tilde{O}(\varepsilon^{-2}d^{p-1})$

Sharpest known bounds for inputs with small total sensitivity &

Applications: noisy \mathcal{E}_p polynomial regression

Techniques

- [Feldman-Langberg 2011] analysis of sensitivity sampling
 - Prove that (1) holds for a fixed $x \in X$ with high probability
- Union bound over a fine discretization of X
- [Bourgain-Lindenstrauss-Milman 1989] analysis of Lewis weights
- Improve the union bound via chaining arguments
- Relies on special structure of Lewis weights
- Key question: can ℓ_p sensitivity sampling use similar chaining arguments, without using the special structure of Lewis weights?
- Yes! Lewis weights are a way to use ℓ_2 sensitivity sampling (aka leverage score sampling) for ℓ_p sampling
- ℓ_p sensitivity sampling is also related to ℓ_2 sensitivity sampling:

Lemma [WY23]. ℓ_p sensitivities are within a $n^{p/2-1}$ factor away from the ℓ_2 sensitivities.

Open Directions

- Are there better sampling algorithms when **©** is small?
- · Can guarantees for sensitivity sampling be improved in other settings?