ETP1 Lab 3 Report

Jan-Malte Lübcke, Christopher Klix, Jannik Erdmann, Raphael Weinhart December 17, 2022

Contents

Ι	Zielsetzung	V
II		/ II VII VII
II:	Versuche	1
1	Dehnungsmessstreifen 1.1 Ohmmeter 1.1.1 Durchführung 1.1.2 Messdaten 1.1.3 Auswertung	2 2 2 2 2
2	Wheatstonebrücke 2.1 Widerstandsmessung 2.1.1 Durchführung 2.2 Messdaten 2.3 Auswertung	3 3 4 4
3	Übertragungsfunktion 3.1 Messung 1	5 5 6 6 6 7 8
4	Wägeeinrichtung (Viertelbrücke) 4.1 Vorbereitung	9 10 10
5	Wägeeinrichtung (Vollbrücke) 5.1 Messung	11 11 12

6 Auswertung 13

List of Figures

2.1	Abgeglichene Wheatstonebrücke zur Bestimmung von R_1	3
3.1	Wheatstonebrücke	5
3.2	Plot der Spannungsmessung der Wheatstonebrücke	7
3.3	Plot der Spannungsberechnung der Wheatstonebrücke	8
4.1	Wägeeinrichtung (Viertelbrücke)	9
4.2	Plot der Spannungsmessung der Viertelbrücke	10
5.1	Wägeeinrichtung (Vollbrücke)	11

List of Tables

1.1	Widerstandsmessung mittels Multimeter	2
	Spannungsmessung der Wheatstonebrücke	
4.1	Spannungsmessung der Viertelbrücke	10
	Messdaten der Vollbrücke bei Belastung des Biegebalkens	

I Zielsetzung

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

\mathbf{II}

Allgemeine Berechnungsgrundlagen

Allgemeine Berechnungsgrundlagen

Konzepte

- Grundlagen der Netzwerkanalyse
- Ermittlung einer linearen Ersatzspannungsquelle
 - Ermittlung des Innenwiderstandes R_i
 - Spannung der idealen Ersatzspannungsquelle U_{ab} = Spannung zwischen den Messpunkten a & b.
 - Leistungsanpassung
- Kirchoff'schen Gesetze
 - Knotenregel:

Die Summe aller ein und ausfliesenden Ströme in einem Knoten sind Null.

- Maschenregel

Die Summe aller Spannungen entlang eines Maschenumlaufes ist gleich Null.

• Superpositionsprinzip in Schaltkreisen

Formeln

Ohm'sche Gesetz

$$U = R \cdot I$$

Widerstände in Reihe

$$\sum_{i=1}^{n} R_i = R_{ges}$$

Widerstände in Parallel

$$\sum_{i=1}^{n} \frac{1}{R_i} = R_{ges}^{-1}$$

$$\left[\sum_{i=1}^{n} \frac{1}{R_i}\right]^{-1} = R_{ges}$$

Spannungsteiler

$$U_i = U_0 \cdot \frac{R_i}{R_{qes}}$$

Leistungsanpassung für lineare Ersatzspannungsquelle

Leistung ist maximal, wenn R_i gleich R_L ist.

$$P_{max} = \frac{U_0^2}{4R_i}$$

Widerstandsmessung - Relativer Fehler bei stromrichtiger Messung

$$e_{rel} \approx \frac{R_{i_A}}{R_x}$$

wobei R_x der zu messende Widerstand ist.

Widerstandsmessung - Relativer Fehler bei spannungsrichtiger Messung

$$e_{rel} \approx -\frac{R_x}{R_{i_V}}$$

wobei R_x der zu messende Widerstand ist.

${ m III}$ ${ m Versuche}$

Bestimmung des Widerstandes eines Dehnungsmessstreifens

In diesem Versuch wird ein auf einem Biegebalken angebrachten Dehnungsmessstreifen untersucht. Der Widerstand des Dehnungsmessstreifen wird einmal im unbelasteten und einmal im belsteten Zustand gemessen.

1.1 Widerstandsmessung mittels Ohmmeter

1.1.1 Durchführung

Die Belastung erfolgt durch das Gewicht eines 200g schweren Körpers, welcher an die Spitze des Biegebalkens gehängt wird. Die Widerstandsmessung erfolgt mittels eines digitalen Multimeters ME-TRAHit 18S.

1.1.2 Messdaten

	METRAHit 18S	
Weight		
0g	700.7Ω	
200g	700.8Ω	

Table 1.1: Widerstandsmessung mittels Multimeter.

1.1.3 Auswertung

Es wurde eine Widerstandsänderung von $\Delta R = +100 \mathrm{m}\Omega$ gemessen. Diese Erhöhung des Widerstandes lässt durch die Änderung der materialen Abmessungen innerhalb des Dehnstreifens beschreiben. Denn der auf der Oberseite des Biegebalkens befestigte Dehnmessstreifen wird durch die Biegung des Balkens gestreckt. Dies führt zu einer Verlängerung bzw. Dehnung des Drahtes im Dehnessstreifen. Diese Verlängerung führt zusätzlich zu einer Querkontraktion, also einer Verkleinerung des Querschnittes. Nach der Formel $R = \rho \cdot \frac{l}{A}$ ergibt sich dann ein erhöhter Widerstandswert, da die Querschnittsfläche A im Nenner verkleinert wird und die Leiter Länge l im Zähler vergrößert.

Bestimmung des Widerstandes eines Dehnungsmessstreifens nach dem Abgleichverfahren mit einer Wheatstonebrücke

Die Brückenschaltung ist gemäß der Schaltung 2.1 aufzubauen. Für R_1 ist der Dehnungsmessstreifen-Widerstand des unbelasteten Biegebalkens zu verwenden. Der Widerstand R_2 ist mit einer Präzisionswiderstandsde Typ 4107 aufzubauen. Für die Referenz-Widerstände R_3 und R_4 sind Präzisionswiderstände mit $1k\Omega$ aus dem hps Board zu verwenden.

Figure 2.1: Abgeglichene Wheatstonebrücke zur Bestimmung von R_1

Die Versorgunsspannung U_0 ist auf 6V einzustellen. Die Spannung U_{ab} wird mit einem Multimeter $METRAHit\ TECH$ gemessen. Die Brückenspannung U_{ab} ist durch Veränderung des Widerstandes R_2 über die Präzisions-Widerstandsdekade abzugleichen. Der Widerstand R_1 ist unter den Abgleichbedingungen und der Kenntnis über R_2 und R_3 und R_4 zu bestimmen.

2.1 Widerstandsmessung mittels Wheatstonebrücke

2.1.1 Durchführung

Die Brückenschaltung wurde gemäß der Schaltung 2.1 aufgebaut. Die Widerstandsdekade R_2 wurde stufenweise verstellt, bis das Multimeter einen Abgleich von 0V anzeigt hat.

2.2 Messdaten

$$R_2 = 699.6\Omega \tag{2.1}$$

2.3 Auswertung

Aufgrund des Prinzips der Wheatstonebrücke und der Messung aus Versuch 1, dass der unbelastete Widerstand des Dehnungsmessstreifens $700\mathrm{m}\Omega$ beträgt, wurde vorher schon vermutet, dass sich ein Abgleich bei $R_2\approx700\Omega$ einstellt. Ein Abgleich der Messbrücke, i.e., $U_{ab}=0\mathrm{V}$, wurde bei $R_2=699.6\Omega$ erreicht. Die Abweichung zu Versuch 1 ergibt sich durch die Widerstandsmessung über die Spannung (Messbrücke) und der Toleranz der Widerstände R_2 und R_3 und R_4 .

Ermittlung der Übertragungsfunktion der Wheatstonebrücke

In diesem Versuch wird eine Wheatstonebrücke auf ihre Empfindlichkeit und einen Linearitätsfehler bei unterschiedlichen Brückenverhältnissen untersucht. Dies geschieht rechnerisch als auch messtechnisch mittels unterschiedlichen Präzisionswiderständen und variabel einstellbaren Widerstandsdekaden.

Figure 3.1: Wheatstonebrücke

Die Brückenschaltung wird nach Schaltskizze 3.1 aufgebaut. Die Widerstände R_1 und R_2 werden mit 2 Präzisionswiderstandsdekaden Typ 4107 aufgebaut. Die Widerstände R_3 und R_4 werden mit Fixwiderständen mit 0.02% Toleranz aufgebaut. Die Versorgunsspannung beträgt $U_0=6$ V. Die Spannung U_{ab} wird mit einem Multimeter $METRAHit\ Tech$ gemessen.

3.1 Messung 1

3.1.1 Durchführung

Im ersten Messdurchlauf werden für die Widerstandsverhältnis

$$a_1 = \frac{R_4}{R_3} = \frac{1k\Omega}{1k\Omega} \tag{3.1}$$

gewählt. Der Widerstand R_1 wird an der Widerstandsdekade auf 700 Ω . Der Widerstand R_2 wird so eingestellt, dass die Brücke abgeglichen ist, also die Spannung U_{ab} möglichst 0V anzeigt. Nun wird R_1 auf 400 Ω gestellt und in 100 Ω Schritten bis 1.3k Ω gesteigert. Es wird die jeweilige Spannung U_{ab} erfasst.

3.2 Messung 2

3.2.1 Durchführung

Im zweiten Messdurchlauf werden für die Widerstandsverhältnis

$$a_2 = \frac{R_4}{R_3} = \frac{100\Omega}{1k\Omega} \tag{3.2}$$

gewählt. Der Widerstand R_1 wird an der Widerstandsdekade auf 700 Ω . Der Widerstand R_2 wird so eingestellt, dass die Brücke abgeglichen ist, also die Spannung U_{ab} möglichst 0V anzeigt. Nun wird R_1 auf 400 Ω gestellt und in 100 Ω Schritten bis 1.3k Ω gesteigert. Es wird die jeweilige Spannung U_{ab} erfasst.

3.3 Messdaten

a_1	= 1	und	a_2	= 0	1
α		unu	W 2.	- 0	• +

	METRAHit TECH (U) Voltage		
	$[a_1]$ Messung 1 $[a_2]$ Messung 2		
400Ω	0.820V	0.349V	
500Ω	0.500V	0.192V	
600Ω	0.231V	0.082V	
700Ω	0.000 V	0.001V	
800Ω	-0.200V	-0.062V	
900Ω	-0.375V	-0.112V	
$1 \mathrm{k}\Omega$	-0.530V	-0.153V	
$1.1 \mathrm{k}\Omega$	-0.667V	-0.186V	
$1.2\mathrm{k}\Omega$	-0.790V	-0.215V	
$1.3\mathrm{k}\Omega$	-0.901V	-0.244V	

Table 3.1: Spannungsmessung der Wheatstonebrücke.

Figure 3.2: Plot der Spannungsmessung der Wheatstonebrücke.

Berechnungen 3.4

$$U_{ab} = U_0 \cdot \frac{a}{(1+a)^2} \cdot \frac{\Delta R_1}{R_1} \tag{3.3}$$

$$a_1 = \frac{1k\Omega}{1k\Omega} \quad \Rightarrow R_1 = 700\Omega \tag{3.4}$$

$$a_{1} = \frac{1k\Omega}{1k\Omega} \Rightarrow R_{1} = 700\Omega$$

$$a_{2} = \frac{100\Omega}{1k\Omega} \Rightarrow R_{1} = 70\Omega$$
(3.4)

⁽a) Spannungsberechnung für a_1 .

Table 3.2: Spannungsberechnung der Wheatstonebrücke.

⁽b) Spannungsberechnung für a_2 .

Figure 3.3: Plot der Spannungsberechnung der Wheatstonebrücke.

3.5 Auswertung

Betrachtet man die Graphen, ist zu erkennen, dass der Graph für das Brückenverhältnis a=1 deutlich steiler verläuft, als der Graph zum Brückenverhältnis a=0.1. Daraus ist zu schließen, dass ein Brückenverhältnis von a=1, empfindlicher gegenüber einer Veränderung von R_1 ist als ein Brückenverhältnis von a=0.1. Also ist hier eine größere Spannungsänderung an U_{ab} zu messen, pro Ohm Widerstandsänderung von R_1 . Die Berechnung mittels der Näherungs-Formel mag für kleine Verstimmungen

 $\frac{\Delta R}{R_1}$

ausreichend genau sein, doch weißt zu große Fehler bei derart großen Verstimmungen auf. Dies liegt daran, dass die Formel eine Linearität annimmt und lediglich die werte entlang einer Tangente, angelegt an den Abgleichpunkt berechnet. Wählt man also große Verstimmungen für die Berechnung, wird man auch einen großen Linearitätsfehler erhalten.

Aufbau einer Wägeeinrichtung mit dem Biegestab (Viertelbrücke)

Eine Wägeeinrichtung mit Brückenschaltung ist nach Schaltskizze 4.1 aufzubauen und zu untersuchen. Für R_1 ist der Widerstand R_1 der 4 Dehnungsmessstreifen-Widerstände des Biegebalkens zu verwenden. R_3 und R_4 sind Präzisionswiderstände mit

$$R_3 = R_4 = 1k\Omega \quad (0.02\% \quad \text{Toleranz}) \tag{4.1}$$

aus dem hps Board. Die Versorgunsspannung beträgt $U_0 = 6$ V. Die Brückenspannung U_{ab} wird mit einem Digitalmultimeter $METRAHit\ TECH$ gemessen.

Figure 4.1: Wägeeinrichtung (Viertelbrücke)

Die Brückenspannung ist ohne Belastung des Biegebalkens durch Variation von R_2 so gut wie möglich auf $U_{ab} = 0$ V abzugleichen. Es ist die Brückenspannung U_{ab} bei Belastung des Biegebalkens mit:

$$m = 0$$
g, 100 g, 200 g, 300 g, 400 g, 500 g (4.2)

zu messen. Die Empfindlichkeit der Anordung für m = 500g ist zu bestimmen.

4.1 Vorbereitung

Siehe Berechnungsgrundlagen für Brückenempfindlichkeit.

4.2 Messung

Die Schaltung wurde gemäß der Versuchsbeschreibung aufgebaut. Der Biegebalken ist unbelastet. Die Widerstandsdekade R_2 wurde stufenweise verstellt, bis das Multimeter einen Abgleich von 0V anzeigt hat.

Der Biegebalken wurde nacheinander mit den Gewichten $m=0\mathrm{g},100\mathrm{g},200\mathrm{g},300\mathrm{g},400\mathrm{g},500\mathrm{g}$ belastet und die Brückenspannung U_{ab} wurde vom Multimeter abgetragen. Die Empfindlichkeit der Brücke wurde für $m=500\mathrm{g}$ errechnet.

4.3 Messdaten

$$R_1$$
 at $0\Omega = 700.7\Omega$
 $R_2 = 700.3\Omega$

	METRAHit TECH	
	(U) Voltage	
0g	0.0000V	
100g	-0.0004V	
200g	-0.0006V	
300g	-0.0008V	
400g	-0.0011V	
500g	-0.0013V	

Table 4.1: Spannungsmessung der Viertelbrücke.

Figure 4.2: Plot der Spannungsmessung der Viertelbrücke.

Aufbau einer Wägeeinrichtung mit dem Biegestab (Vollbrücke)

Im folgenden Versuch wird durch einen parallel geschalteten Widerstand R_a bei einer Wheatstone-Brückenschaltung der Nullpunktfehler kompensiert und so ein exakter Nullabgleich ermöglicht. Dieser Fehler tritt meist bei Vollbrücken auf, die im Ausschlagverfahren betrieben werden, bedingt durch die Toleranten der Widerstände. Die Versorgungspannung U_0 wird wieder auf 6V eingestellt und die Brückenspannung U_{ab} wird mit dem Digitalmultimeter $METRAHit\ TECH$ gemessen.

Figure 5.1: Wägeeinrichtung (Vollbrücke)

5.1 Messung

Mit Hilfe einer Präzisions-Widerstandsdekade ist der Widerstand R_a so einzustellen das die Ausgleichsbedingung $U_{ab} = 0$ V erfüllt ist. Um den richtigen Widerstand zu finden zu dem R_a parallel geschalten werden muss, wird geschaut bei welchem Widerstand die Anzeige einen kleinen Ausschlag oder einen Polaritätswechsel durch den Nulldurchgang anzeigt. Im nächsten Schritt wird am freischwingenden Ende des Biegebalkens die Last erhöht und parallel dazu die Brückenspannung U_{ab} mit dem Digitalmultimeter erfasst.

Bei der zweiten Messung wird die Versorgungspannung so gewählt, dass die Brückenspannung U_{ab} proportional zu der angehängten Last steigt. Diese Spannung wurde durch ausprobieren iterativ bestimmt.

5.2 Messdaten

	METRAHit TECH (U_{ab}) Voltage	
0g	-0.0005V	
100g	-0.0015V	
200g	-0.0024V	
300g	-0.0033V	
400g	-0.0043V	
500g	-0.0052V	

Table 5.1: Messdaten der Vollbrücke bei Belastung des Biegebalkens

	METRAHit TECH (U_{ab}) Voltage	Source (U_0) Voltage
100 g	0.0014 V	5.820 V
200 g	0.0023 V	$5.820~\mathrm{V}$
300 g	0.0032 V	$5.820~\mathrm{V}$
400 g	0.0041 V	$5.820~\mathrm{V}$
500 g	0.0050 V	$5.820~\mathrm{V}$

Table 5.2: Messdaten der Vollbrücke bei Anpassung von U_0

5.3 Auswertung

Die systematische Erhöhung der Belastung führt zu einem steigenden Widerstand R_1 , weshalb sich auch die Brückenspannung U_{ab} erhöht. Die Brückenempfindlichkeit ist mit

$$E_0 = 0.00214 V \Omega^{-1} \tag{5.1}$$

eher gering, da der Widerstand R_1 relativ hoch ist und die Eingangsspannung U = 6V gering ist. Die Brückenempfindlichkeit ist somit unabhängig von dem eingesetzten Gewicht und der dadurch resultierenden Widerstandeserhöhung.

In einer zusätzlichen Simulation mit falstad.com Abb XYZ - unter Optimal Bedingungen ohne Messfehler und Widerstandstoleranzen - wurden die Messergebnisse näherungsweise überprüft. Der Widerstandwert für R_1 liegt bei 701Ω (500g). Die Brückenspannung U_{ab} beträgt -1.249mV.

Auswertung

Die Zielsetzung konnte anhand der Experimente gut erfüllt werden. Es sind Erkenntnisse über die sinnvolle Anwendung der Messmethoden gewonnen worden und das Verständnis von Ersatzquellen konnte durch Abgleichen der Messung mit den Berechnungen gefestigt werden.

Die Auswertung aus den Versuchen führen zu folgenden Erkenntnissen:

- Eine Messung von kleinen Widerständen mittels Multimeter ist sehr ungenau.
- Leiterwiderstände haben einen großen Einfluss bei kleinen Widerständen.
- Analoge Multimeter sind deutlich fehleranfälliger als Digitale Multimeter.
- Stromrichtiges Messen ist besser geeignet für das Messen von großen Widerständen.
- Spannungsrichtiges Messen ist besser geeignet für das Messen von kleinen Widerständen.
- Zwei-Punkt-Methode sorgt bei kleinen Widerständen für sehr große Abweichung, die Vier-Punkt-Methode ist besser geeignet.
- Zwei- und Vier-Punkt-Methode verhalten sich beim Messen des 1kOHM Widerstandes nahezu identisch.
- Nichtlineare Widerstände stimmen nur bei sehr kleinen Strömen mit den Messungen eines Ohmmeters überein.
- Temperatur hat hier einen Einfluss auf den nichtlinearen Widerstand.
- Eine Schaltung kann durch die Berechnung des Innenwiderstands in eine Ersatzschaltung umgebaut werden.
- Die Messwerte in der Ersatzschaltung sind identisch zur Originalschaltung.

Für die nächsten Praktika empfiehlt es sich, parallel zur Versuchsdurchführung, ein Gruppenmitglied zur direkten Diagramm Erstellung zu beauftragen, um mögliche Messfehler oder anderweitige Abweichungen schnell erkennen zu können. Zudem können sofort erste Erkenntnisse gewonnen werden, was die Erstellung des Berichtes vereinfacht.