

Architectures for Rainfall Property Estimation From Polarimetric Radar

Scott Collis¹ scollis@anl.gov, Scott Giangrande², Jonathan Helmus¹ and Silke Troemel³

1: Argonne National Laboratory Argonne, IL United States

2: Brookhaven National Laboratory, Upton, NY United States 3: Meteorologisches Institut der Universität Bonn, Bonn, Germany

CLIMATE RESEARCH FACILITY

Introducton

- Numerical simulations of decadal climate are done at resolutions far courser than the natural scale of precipitation. To even have a chance of understanding future precipitation extremes we must reconcile the relation between the statistics of broad-scale precipitation and high resolution observations.
- To this end The Department of Energy's ARM Climate Research Facility operates a network of 5 and 3 cm scanning radar systems.
- Fixed sites are at the Azores, Barrow on the North Slope of Alaska and a multi-scale heterogeneous network on the Southern Great Plains of Oklahoma.

ACHIEVING INSIGHT WITH THE COMMUNITY: THE PYTHON ARM RADAR TOOLKIT

- Weather radars are not a new invention, first academic mention in Bent et al. (1943).
- Massive advances in computing and radar software has not kept up.
- They Python ARM Radar Toolkit, Py-ART is a data model driven architecture for interactively and offline processing of active remote sensing data. Open source and, using GitHub, community based.
- Part of a larger growing international community of codes, see Heistermann et al. (2014)
- Twenty four forks, eight active contributors from multiple agencies and nations. Broad user base.

Links

The Python ARM Radar

This is an open source poster for notebooks, code and tex:

RAW DATA TO QUANTITATIVE PRECIPITATION ESTIMATES

- Raw collected radar data in engineering units is unsuitable for comparison with model
- Shorter wavelength radar have a higher attenuation cross section. However Signal to noise in phase information much higher and calibration insensitive.
- Measured phase is a mix of propagation phase, phase shift on backscatter and artifacts: $\phi_{dp}^{signal}(r) = \phi_{dp}^{prop}(r) + \delta(r) + E(r)$.
- When calculating Specific Differential Phase, K_{dp} only the propagation component should be considered, $\kappa_{dp} = \frac{d\phi_{dp}^{prop}(r)}{dr}$.
- Method of Giangrande et al. (2013) used to extract ϕ_{dp}^{prop} and a 20 point sobel filter $\mathcal{K}_{dp} = \phi_{dp}^{prop} * f_{20} = \sum_{M=0}^{19} \phi_{dp}(r-M) f(M)$ where f(M)is a linear ramp through zero.

- ▶ Specific attenuation is calculated using K_{dp} and Z_e using a method after Gu et al. (2011) and is used as a an estimator for rainfall using a method after Ryzhkov et al. (2014).
- ▶ In Giangrande et al. (2014) it was shown that specific attenuation at short wavelengths performed as well as retrievals at S-band wavelengths.

MAPPING: OBJECTIVE ANALYSIS

- ▶ Radar data is on , θ and ϕ coordinates, there is a need to estimate on different coordinates systems (Cartesian, Sigma, pressure).
- Py-ART tags each gate with an estimate of its central coordinate and inserts these into a cloud.
- For propagation insensitive variables (not radial velocity or ϕ_{dp}), gates can be drawn from mulitple radars to be estimated onto a single grid.

▶ In Py-ART the act of gridding takes in a *n-tuple* of radar objects and returns a grid object which can be saved to a CF-Radial complaint file.

mesh_mapped_x = pyart.map.grid_from_radars((xnw_radar,xsw_radar,xse_radar), grid_shape=(35, 401, 401), grid_limits=((0, 17000), (-50000, 40000), (-60000, 40000)), $grid_origin = (36.57861, -97.363611),$ fields=['corrected reflectivity', 'rain rate A', 'reflectivity'], refl_field='corrected_reflectivity', max refl=100.)

ADVECTIVE INTERPOLATION

- Simply accumulating precipitation retrievals by integrating can create a "chain of pearls effect" due to the lack of spatial coherency between successive radar scans.
- ► This can create false information and skew any interpretation of the scale of rainfall.
- The solution is to calculate the image advection and then generate sub-temporal-scale images and average:

- ▶ In a nice novel twist (we Py-ART developers love applying math to radar) the advection can be determined from the cross correlation phase between the two images, $r = \mathcal{F}^{-1} \{C\}$.
- Borrowing liberally from Wikipedia:

- where \mathcal{F} is the Fourier transform, * is the complex conjugate and \circ represents element wise multiplication.
- Summing sub-sample advective interpolation steps results in an accumulation that is less effected by lack of temporal resolution.
- ► As an added bonus this technique can be used the temporal resolution in point estimates by effectively projecting the spatial to the temporal dimension.

REFERENCES

Bent, A. E., Massachusetts Institute of Technology., and Radiation Laboratory., 1943: Radar echoes from atmospheric phenomena. Radiation Laboratory, Massachusetts Institute of Technology, [Cambridge,

Giangrande, S. E., S. Collis, A. K. Theisen, and A. Tokay, 2014: Precipitation estimation from the ARM distributed radar network during the MC3e campaign. J. Appl. Meteor. Climatol., doi:10.1175/JAMC-D-13-0321.1

URL http://journals.ametsoc.org/doi/abs/10.1175/JAMC-D-13-0321.1

Giangrande, S. E., R. McGraw, and L. Lei, 2013: An application of linear programming to polarimetric radar differential phase processing. Journal of Atmospheric and Oceanic Technology, 30, 1716–1729, doi:10.1175/JTECH-D-12-00147.1.

URL http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-12-00147.1

Gu, J.-Y., A. Ryzhkov, P. Zhang, P. Neilley, M. Knight, B. Wolf, and D.-I. Lee, 2011: Polarimetric attenuation correction in heavy rain at c band. J. Appl. Meteor. Climatol., 50, 39–58, doi:10.1175/2010JAMC2258.1.

URL http://journals.ametsoc.org/doi/abs/10.1175/2010JAMC2258.1

Heistermann, M., S. Collis, M. J. Dixon, S. Giangrande, J. J. Helmus, B. Kelley, J. Koistinen, D. B. Michelson, M. Peura, T. Pfaff, and D. B. Wolff, 2014: The emergence of open source software for the weather radar community. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-13-00240.1.

URL http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-13-00240.1

Ryzhkov, A., M. Diederich, P. Zhang, and C. Simmer, 2014: Potential utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking. J. Atmos. Oceanic *Technol.*, **31**, 599–619, doi:10.1175/JTECH-D-13-00038.1.

URL http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-13-00038.1