続 腕の見せ所が満載なFPGA開発ボードの すすめ

自己紹介

- 井田 健太
- FPGAの論理設計屋だった気がする
 - Vivadoぽちぽちマンは望月さんに引き継 いでもらいました
- 最近は組込みRust屋になった気がする

前回までのおさらい

- 中国のFPGAボードメーカー ALINX の Xilinx Zynq Ultrascale+ボード AXU5EV-P を紹介
 - XCZU5EV搭載 (KV260とかと同じ型式)
 - 豊富なインターフェースを搭載
 - PCle Gen3 x2
 - SFP+スロット x2
 - HDMI In/Out
 - etc...

AXU5EV-Pを使って 試したいこと

- Alveo U50のような 10GbE で入出力 しつつ、ホストとPCle で通信したい
- AXU5EV-PはSFP+スロット 付きのPCIeカード形状の FPGAボードなのでぴったり

AXU5EV-Pの購入元

- <u>Amazon.com</u> もしくは aliexpress
- 現時点での価格: \$1660
 - \$1 = ¥ 145 で24万円強
- (余談) 筆者購入時より7万円くらい上がっている... 円安37/

AXU5EV-Pの問題点

- 前回発表時は 10GbE 通信が出来なかった
- 原因: AXU5EV-Pに搭載されているクロックが10GbE用ではない
 - 10GbEには156.25[MHz] もしくは 161.13[MHz] のクロックが必要
 - 10GbE = 10.3125[Gbps] = 156.25[MHz] * 66 = 161.13[MHz] * 64
- なぜか125[MHz]のクロックがGTHに接続されている
 - (GTPのGbE用と間違ったんでは...)
 - GTH用回路図に

10GbEクロックがない問題の対策

- 1. FPGA内部で156.25[MHz] を作ってGTHに突っ込む
- 2. クロックの部品を張り替える
- 3. GTHのFractional-N機能を使って125[MHz]から10.3125[GHz]を作る

GTHの構成

- GTHにつき
 - QPLL (高周波発振用PLL) x2
 - GTチャネル (高速SERDES) x4
- GTチャネルにつき
 - CPLL (低周波発振用PLL) x1
- AXU5EV-PはGTHが1つのFPGAを 使用
 - SFP+とPCIeで共用

AXU5EV-PでのGTHの構成

FPGA内部で156.25[MHz] を 作る

- AXU5EV-Pには200[MHz]のPL用クロックが ついている
- MMCMをつかって内部で156.25[MHz]を合成
 - 出力ジッタ最小の構成
- GTGREFCLKからGTHに入力
- UG576では GTGREFCLKは**使うな**と書かれ ている

FPGA内部で156.25[MHz] を 作る

- GTGREFCLKからGTHに入力
- UG576では GTGREFCLKは**使うな**と書かれ ている
 - FPGA内部ロジックからのクロックだとジッタが許容範囲外になる
 - 電源雑音など

続 腕の見せ所が満載なFPGA開発ボードのすすめ

試した結果

- QPLLのクロックが安定せず
 - UG576記載通り
- ここまでが前回発表までの内容

クロックの部品を張り替える(1/4)

- AXU5EV-PのGTH用リファレンスクロックは SiTimeの SiT9121 シリーズ
 - SiT9121AI-2B1-33E125.000000
 - 3.3V LVDS, 125[MHz], 3.2[mm]x2.5[mm], ±20[ppm]
- 同系列の 156.25[MHz]品 **SiT9121AI-2B1-33E156.250000**
- DigiKey, Mouserなどで取り扱いあり
- と、おもいきや、在庫がない!
 - 半導体不足の影響か...

クロックの部品を張り替える(2/4)

- SiT9121AI-2BF-XXS156.250000G の在庫はあった
 - LVDS, 156.25[MHz], 3.2[mm]x2.5[mm] までは同一
 - 。 "F" なので ±10[ppm]
 - "XX" なので 2.25~3.63[V]
 - 。 "S" なので Standbyピン
 - c.f. "E"はOutput Enableなので論理が逆
- Output Enableだけどうにかすれば使えそう

クロックの部品を張り替える(3/4)

- SiT9121のStandby/Output Enableピンの仕様
 - Standby:
 - H または NC でクロック出力有効
 - L でスリープ状態
 - Output Enable:
 - H または NC でクロック出力有効
 - L でクロック出力がHi-Z
- AXU5EV-Pでは H にプルアップされてるのでそのままつかえる

クロックの部品を張り替える(4/4)

- マルツのDigiKey提携を利用して4つほど注文
 - 1つ1236円... 結構いい値段します
- 手元に届いてはいるが、まだ試していない
- もう少し非侵襲的な方法での解決を模索したい

GTHのFractional-N機能を試 す(1/2)

- QPLLに搭載されている非整数比のクロック を生成する機能
- 通常のPLLはVCOからの出力を1/N分周した ものを位相比較器にいれてフィードバック 制御する
- Fractional-Nでは、分周器の代わりにSDM (ΣΔ変調器) をつかって、端数での分周を行う

GTHのFractional-N機能を試す(2/2)

- 疑問:ΣΔ変調とか、ジッタ増えそうだけど大丈夫なのか?
- XAPP1276にFractional-NVCXOの代替をするという内容のアプリケーションノートがあるので大丈夫そうと判断
 - https://docs.xilinx.com/v/u/en-US/xapp1276-vcxo
- GbE単体デザインを作って試してみる

続腕の見せ所が満載なFPGA開発ボードのすすめ

GT Wizardの 設定

- 一部をExampleDesign側に置くよう に設定
- IBERTを有効化

プロジェクト の作成

GTHの設定は複雑なので、example designを元にデザインを作成する

続 腕の見せ所が満載なFPGA開発ボードのすすめ

余談:RTLモジュール使用時の便利機能(1/7)

- Vivado 2019くらい?から、IP Integratorに簡単にRTLモジュールを配置する機能が追加された
- *.v ファイルをD&Dするだけ
 - 。 (*.sv だと怒られるのはどうにかしてほしい...)
- 仕組みは、IP Packagerのインターフェース自動推論とほぼ同じ

余談:RTLモジュール使用時の便利機能(2/7)

- 欠点:自動推論がうまくいかなくて困ったことになる
 - クロック周りの設定とかでIP IntegeratorのValidationで怒られたりする
 - リセットの極性... n がついてれば負論理だが、正論理は...

余談:RTLモジュール使用時の便利機能(3/7)

- 欠点:自動推論がうまくいかなくて困ったことになる
 - クロック周りの設定とかでIP IntegeratorのValidationで怒られたりする
 - リセットの極性... n がついてれば負論理だが、正論理は...

余談:RTLモジュール使用時の便利機能(4/7)

- UG994のRTLモジュールのところにいろいろ書いてある
 - https://docs.xilinx.com/r/en-US/ug994-vivado-ipsubsystems/Referencing-RTL-Modules
- 様々な属性を記述することにより、RTLモジュールのインターフェースやクロック周波数のプロパティを設定可能
 - X_INTERFACE_INFO , X_INTERFACE_PARAMETER など
- 今回はGT WIzardで生成したモジュールをIP Integratorに配置するのに利用

余談:RTLモジュール使用時の便利機能(5/7)

- クロック出力のクロック周波数を FREQ_HZ に設定
 - 156.25[MHz]を設定

```
// TX/RX clocks
(* X_INTERFACE_PARAMETER = "FREQ_HZ 156250000, ASSOCIATED_BUSIF tx_mii_0:stat_tx_local_fault_0" *)
output wire tx_clk,
(* X_INTERFACE_PARAMETER = "FREQ_HZ 156250000,..." *)
output wire rx_clk,
```

余談:RTLモジュール使用時の便利機能(6/7)

- リセットの極性を POLARITY に設定
 - ACTIVE_HIGH

```
// User-provided ports for reset helper block(s)
(* X_INTERFACE_PARAMETER = "POLARITY ACTIVE_HIGH" *)
input wire hb_gtwiz_reset_clk_freerun_in,
(* X_INTERFACE_PARAMETER = "POLARITY ACTIVE_HIGH" *)
input wire hb_gtwiz_reset_all_in,
```

余談:RTLモジュール使用時の便利機能(7/7)

- MIIのインターフェース定義
 - X_INTERFACE_MODE で SLAVE MASTER 設定
 - MONITOR にも出来る模様

```
// MII signals for port 0
  (* X_INTERFACE_MODE = "SLAVE" *)
  (* X_INTERFACE_INFO = "xilinx.com:display_xxv_ethernet:user_int_ports:* tx_mii_0 tx_mii_d" *)
  input wire [63:0] tx_mii_d_0,
  (* X_INTERFACE_INFO = "xilinx.com:display_xxv_ethernet:user_int_ports:* tx_mii_0 tx_mii_c" *)
  input wire [ 7:0] tx_mii_c_0,
  (* X_INTERFACE_MODE = "MASTER" *)
  (* X_INTERFACE_INFO = "xilinx.com:display_xxv_ethernet:user_int_ports:* rx_mii_0 rx_mii_d" *)
  output wire [63:0] rx_mii_d_0,
  (* X_INTERFACE_INFO = "xilinx.com:display_xxv_ethernet:user_int_ports:* rx_mii_0 rx_mii_c" *)
  output wire [ 7:0] rx_mii_c_0,
```

Ethernetフレーム生成回路(1/2)

```
tx_tvalid <= state > 0;
if( tx_tvalid && tx_tready ) begin
   state <= state + 1;
end
case(state)
   0: begin
      interval_counter <= interval_counter + 1;</pre>
      if( interval_counter == 10'd1023 ) begin
          interval_counter <= 0;</pre>
          state <= 1:
       end
   1: begin tx_tdata \le 64'h0123456789abcdef; tx_tkeep \le 8'hff; tx_tlast \le 0; end
   2: begin tx_tdata <= 64'hdeadbeefcafebeef; tx_tkeep <= 8'hff; tx_tlast <= 0; end
   3: begin tx_tdata <= 64'h00000000000000000; tx_tkeep <= 8'hff; tx_tlast <= 0; end
   endcase
```

Ethernetフレーム生成回路(2/2)

- 単純に64bit (8バイト) x 10のデータをひたすらAXI Streamから出力するロジック
- 10GbE MACのAXIS入力に接続して、10GbEから送信
- 10GbE MACのAXIS出力のTREADYを常に 1 にして、データを捨てるようにする
 - IP Integrator上のILAで観測する

続 腕の見せ所が満載なFPGA開発ボードのすすめ

動作確認

まとめ

- Fractional-Nをつかって10GbE Ethernetの送信は成功するようになった
- 受信側はもうすこし調整が必要そう
- 最悪の場合は、調達した発信器に張り替えることを検討中