Encryption using s^2 -mod-n

Software Security

Steffen Helke

Chair of Software Engineering

3rd December 2018

Prime Factorization

Definition

The prime factorization of a natural number n is the product

$$n = p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_k^{e_k}$$

where p_1, \ldots, p_k are different prime numbers in pairs and the exponents are positive natural numbers, i.e. $e_1, \ldots, e_k \in \mathbb{N}^+$

Algorithms

- Pollard's rho algorithm
- Quadratic sieve algorithm
- Number field sieve
- → No polynomial algorithm for prime factor decomposition has been found yet!

Steffen Helke: Software Security, 3rd December 2018

Objectives of today's lecture

- → Getting to know the requirements of a strong cryptographic pseudo-random bit generator
- → Understanding the principles of the *Pseudo One-Time-Pad*, which corresponds to the symmetric variant of s^2 -mod-n
- \rightarrow Being able to apply the *asymmetric variant* of s^2 -mod-n based on calculating square roots of the residue class ring of n for decryption

Pseudo One-Time-Pad s²-mod-n

Fundamentals of Number Theory

Factorization is hard

There is no polynomial algorithm to efficiently calculate the prime numbers p and q from a given n, so that $p \cdot q = n$ applies

Implications

There are two other algorithms that are as hard as factorization

- 1 Calculating a square root mod n
- 2 Testing for a square $\text{mod } n^1$
- → However, if you know p and q, then both tasks can be solved efficiently, e.g. root extraction using the CRA (Chinese Remainder Algorithm)!

Steffen Helke: Software Security, 3rd December 2018

information Vernam-Chiffre Authentication theoretical (one-time pad) active time-pad with crypto-GMR attack s2-mod-ngraphi-Generator cally System with passive against. Generator mathe-

RSA

Authentikation

digital

signature system

RSA

sym.

sym.

system

authentication

DES/AES

Symmetric-key und Asymmetric-key Concelation

Concelation

+ asym.

asym.

system

concelation

Source: Andreas Pfitzmann: Security in IT-Networks, 2013

DES/AES

Steffen Helke: Software Security, 3rd December 2018

matical

Two Variants for s^2 -mod-n

sym.

sym.

system

concelation

System

Security level

well

3

searched chaos

Symmetric-key Version of s²-mod-n

Functioning of the Symmetric-key Version

Components of the secret key

- 1 Product of two prime numbers p and q with $n = p \cdot q$
- **2** Randomly chosen initial value s with $s \in \mathbb{Z}_n^*$,

where
$$\mathbb{Z}_n^* = \{a : \mathbb{Z}_n \mid gcd(a, n) = 1\}$$
 and $\mathbb{Z}_n = \{0, \dots, n-1\}$

Calculation of the pseudo-random bit sequence

- **1** Calculate in each step s_{i+1} with $s_{i+1} = s_i^2 \mod n$
- 2 Select the last bit in each step $b_i = s_i \mod 2$

Encryption and decryption

→ Add (or subtract) the pseudo-random bit sequence to the plaintext or ciphertext using the XOR-Operation simular to the One-Time Pad

¹Also called the *quadratic* residuacity problem

Example Calculation Symmetric-key Variant

Given the following key

- n = 77 with $n = 7 \cdot 11$ and inital value s = 64

Calculating s-sequence

Calculating Bit-sequence

 $-64^2 \equiv 15 \mod 77$

 $-15 \equiv 1 \mod 2$

 $-15^2 \equiv 71 \mod 77$

- $71 \equiv 1 \mod 2$

 $-71^2 \equiv 36 \mod 77$

 $-36 \equiv 0 \mod 2$

 $-36^2 \equiv 64 \mod 77$

 $-64 \equiv 0 \mod 2$

Encryption

- The pseudo-random bit sequence 1100 is added to the plaintext 0011 using XOR, so that we get the ciphertext 1111

Steffen Helke: Software Security, 3rd December 2018

Steffen Helke: Software Security, 3rd December 2018

Functioning of the Asymmetric-key Version

Components Secret Key

Components Public Key

- Two prime numbers p and q with $p \equiv q \equiv 3 \mod 4$
- Product n with $n = p \cdot q$

Encryption

- **1** Create a bit sequence with s^2 -mod-n-method for a randomly selected start value s
- 2 Add the bit sequence to the plain text to calculate the ciphertext, then send the ciphertext and a last s_{k+1} that was not used for the encryption

Decryption

- **1** Determine the bit sequence using p und q by successively extracting the square roots² from s_{k+1}
- 2 Calculate the plaintext using XOR operation

Problem

Assuming *n* people want to communicate in pairs, so you need *k* different keys with $k = n \cdot (n-1)/2$

Examples

- for n = 100 we obtain k = 4.950 keys
- for n = 1000 we obtain k = 499.500 keys
 - → Quadratic increase

Solution

- Asymmetric encryption requires only $k = 2 \cdot n$ different keys
- Keys for symmetric encryption can afterwards be exchanged using asymmetric encryption

Asymmetric-key Version of s²-mod-n

7

Only use roots that are themselves squares again

Computing Square Roots

Computing a square root is hard

There is no polynomial algorithm to calculate a square root for mod n if you do not know the prime factors p und q

Procedure if you know the prime factors

- 1 Calculate the square roots for mod p and mod q using the following formulas
 - $-y_p = y^{\frac{p+1}{4}} \bmod p$
 - $-y_q=y^{\frac{q+1}{4}} \bmod q$
 - → Note: Formulas are only valid for $p \equiv q \equiv 3 \mod 4$
- **2** Calculate the square root for mod n from y_p and y_q using the *Chinese Remainder Algorithm* (CRA)

Example s²-mod-n **Asymmetric-key Encryption**

The following prime numbers are given

- p = 3 and q = 7 with $n = p \cdot q = 21$
- We assume further on that $p \equiv q \equiv 3 \mod 4$ is fulfilled

Assumption: The following root is to be calculated

$$-y=\sqrt{4}\equiv ?$$

Task: How can a square root be calculated efficiently?

$$- y = \sqrt{4} \equiv 2 \equiv 5 \equiv 16 \equiv 19 \mod 21$$

Steffen Helke: Software Security, 3rd December 2018

Steffen Helke: Software Security, 3rd December 2018

12

How to calculate the square roots for modulo p and q?

Formulas

- $-y_p = y^{\frac{p+1}{4}} \bmod p$
- $y_q = y^{\frac{q+1}{4}} \bmod q$

Computing the square roots

- $-y_3=4^{\frac{3+1}{4}}=4^1\equiv 1 \mod 3$
- $-v_7 = 4^{\frac{7+1}{4}} = 4^2 \equiv 2 \mod 7$
- \rightarrow Now we have two intermediate results y_3 and y_7

Note

- The calculation rule can only be used under the condition $p \equiv q \equiv 3 \mod 4!$

How to combine the intermediate results with CRA?

Chinese Remainder Algorithm (CRA)

$$CRA(y_p, y_q, p, q) = u \cdot p \cdot y_q + v \cdot q \cdot y_p \mod n$$

Instantiation

$$CRA(1,2,3,7) = \mathbf{u} \cdot 3 \cdot 2 + \mathbf{v} \cdot 7 \cdot 1 \mod 21$$

How to calculate the base vectors \underline{u} and \underline{v} ?

- The integer variables \underline{u} and \underline{v} must fulfill the condition $gcd(3,7) = \underline{u} \cdot 3 + \underline{v} \cdot 7 = 1$
- Values for *u* and *v* can be calculated using the *Extended Euclidean algorithm*

11

How to combine the intermediate results with CRA?

Extended Euclidean algorithm

$$7 = 2 \cdot 3 + 1$$
 $(q = s_1 \cdot p + r_1)$
 $3 = 3 \cdot 1 + 0$ $(p = s_2 \cdot r_1 + r_2)$

In reverse order, i.e. solve all equations to the rest and then insert them step by step

$$0 = 3 - 3 \cdot 1$$
 (skip this equation, because $r_2 = 0$)
$$1 = 1 \cdot 7 - 2 \cdot 3$$
 ($r_1 = q - s_1 \cdot p$)

- \rightarrow The base vectors are u = -2 and v = 1
- \rightarrow Results in the square root CRA(1,2,3,7) = 16
- → **Note**: In addition, check whether 16 is a square again

Steffen Helke: Software Security, 3rd December 2018

15

17

Why is s²-mod-n cryptographically strong?

Question

Why is the generator s^2 -mod-n (symmetric variant) an unpredictable (cryptographically stronger) Pseudo-Random Bit Generator (PRBG)?

Proof obligation

Under the factorizing assumption (resp. in our proof under the quadratic-residuosity-assumption), there is no polynomial algorithm that can distinguish the random sequence generated by the PRBG from a real random sequence Why is s²-mod-n cryptographically strong?

Proof by Contradiction

Assumption

There is a polynomial algorithm P which predicts the left continuation bit of a given k-bit sequence with a probability greater than $\frac{1}{2}$ (assuming that n of the residue class is also known)

Proof (First Step)

Then an algorithm P^* can be constructed from P, which calculates Bit B_0 of the initial value S_0 for a given value S_1

Continuation: Proof by Contradiction

Proof (Next Step)

Then an algorithm R can be constructed from P^* , which checks for a given value S^* with Jacoby symbol +1, whether S^* is a square, i.e. whether the condition $S^* \in QR_n$ holds¹

How to implement the algorithm R?

- **1** Calculate S_1 by squaring S^* with $S_1 = (S^*)^2$
- 2 Calculate from S_1 with P^* Bit B_0 of S_0
- 3 Compare B_0 with the last bit of S^*
- 4 If the bits are identical, than $S^* = S_0$ and therefore $S^* \in QR_n$

Conclusion: Proof of Contradiction

Conclusion

The algorithm R is able to perform a square test in polynomial time without knowing p and q for any S^* with Jacobi symbol +1, i.e. R is able to check, whether $S^* \in QR_n$

Proof (Last Step)

The derived statement is obviously in contradiction to the quadratic residuosity assumption, which is strongly related to the factorization assumption. This means that an attacker who can efficiently predict random numbers would also be able to factorize in polynomial time¹.

19

 $^{^1}$ It is important that S^* has the Jacobi symbol +1 (see above). If you calculate the roots of a given number in the residue class ring mod n, you obtain 4 possible roots (2 with Jacobi value +1 & 2 with Jacobi value -1). Note, only one of the roots (Q) is a square (always Jacobi value +1). Further, $-Q \mod n$ is the other root with Jacobi value +1. To prove the proof obligation $(S^*=S_0)\Leftrightarrow (S^*\ \mathrm{mod}\ 2=S_0\ \mathrm{mod}\ 2)$ you still need the property that n is odd, which is derivable from $p\equiv q\equiv 3\ \mathrm{mod}\ 4$

¹ In other words, if an attacker is unable to factorize efficient, he will also not be able to break the s²-mod-n algorithm