STSCI 4780 Relationships between variables: Regression, 2

Tom Loredo, CCAPS & SDS, Cornell University

© 2020-04-16

Agenda

- Recap of linear regression setup
- Connection to least squares
- Posterior normality
- Nonlinear curve fitting
 - ► Separable nonlinear models & Jaynes-Bretthorst algorithm
 - ► (Spectrum analysis)

Simple normal linear regression

$$y_i = f(x_i; \theta) + \epsilon_i; \quad \epsilon_i \sim \text{Norm}(0; \sigma^2)$$

$$f(x; \theta) = \sum_{\alpha=1}^{M} A_{\alpha} g_{\alpha}(x)$$

- Parameters are M coefficients/amplitudes: $\theta = \{A_{\alpha}\}$, $\alpha = 1$ to M
- Regression function is *linear wrt* A_{α} (not necessarily wrt x!)
- M basis functions $g_{\alpha}(x)$
 - Polynomials: $\{1, x, x^2, \ldots\}$ (or orthogonal polynomials)
 - Sinusoids/Fourier series: $\{\sin(\omega x), \cos(\omega x), \ldots\}$ (with ω fixed/known)
- PDFs for errors are normal

Likelihood function

Abbreviating $f_i = f(x_i; \{A_\alpha\}) = f_i(\{A_\alpha\}),$

$$p(\{y_i\}|\{x_i\},\{A_\alpha\}) = \frac{1}{\sigma^N(2\pi)^{N/2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^N (y_i - f_i)^2\right]$$
$$= \frac{1}{\sigma^N(2\pi)^{N/2}} e^{-Q/2\sigma^2}$$

$$Q(\lbrace A_{\alpha} \rbrace) = \sum_{i=1}^{N} (y_i - f_i)^2$$

$$= \sum_{i=1}^{N} \left(y_i - \sum_{\alpha=1}^{M} A_{\alpha} g_{\alpha i} \right)^2$$

$$= \sum_{i=1}^{N} y_i^2 + \sum_{i=1}^{N} \left(\sum_{\alpha=1}^{M} A_{\alpha} g_{\alpha i} \right)^2 - 2 \sum_{i=1}^{N} y_i \sum_{\alpha=1}^{M} A_{\alpha} g_{\alpha i}$$

Vector notation

Eliminate Roman (data) indices by denoting such quantities as *N*-vectors: $\vec{f} = [f_1, \dots, f_N]^T$, etc.

Model expresses \vec{f} as a sum of M basis vectors:

$$ec{y} = ec{f}(\{A_{lpha}\}) + ec{\epsilon}; \qquad ec{f}(\{A_{lpha}\}) = \sum_{lpha=1}^{M} A_{lpha} ec{g}_{lpha}$$

Quadratic form is the squared magnitude of the misfit vector:

$$Q(\lbrace A_{\alpha}\rbrace) = \left[\vec{y} - \vec{f}(\lbrace A_{\alpha}\rbrace)\right]^{2}$$

$$= y^{2} + f^{2} - 2\vec{y} \cdot \vec{f}$$

$$= y^{2} + \sum_{\alpha\beta} A_{\alpha}A_{\beta}\vec{g}_{\alpha} \cdot \vec{g}_{\beta} - 2\sum_{\alpha} A_{\alpha}\vec{y} \cdot \vec{g}_{\alpha}$$

Posterior mode

Adopt a flat prior; the posterior mode (the MAP estimate—"maximum a posteriori") is then the maximum likelihood estimate (MLE), which satisfies (for $\gamma=1$ to M)

$$\left. \frac{\partial Q}{\partial A_{\gamma}} \right|_{A=\hat{A}} = \left. 2 \sum_{\beta} \hat{A}_{\beta} \vec{g}_{\beta} \cdot \vec{g}_{\gamma} - 2 \vec{y} \cdot \vec{g}_{\gamma} \right. = 0$$

Let $\hat{\vec{f}} \equiv \sum_{\beta} \hat{A}_{\beta} \vec{g}_{\beta}$ (function estimate at the mode); then

$$\hat{\vec{f}} \cdot \vec{g}_{\gamma} = \vec{y} \cdot \vec{g}_{\gamma}$$

The modal model is the one whose projection on each basis function matches the data's projection on each basis function

In terms of the $M \times M$ model metric matrix, $\eta_{\alpha\beta} \equiv \vec{g}_{\alpha} \cdot \vec{g}_{\beta}$,

$$\sum_eta \eta_{\gammaeta} \hat{\mathsf{A}}_eta = ec{\mathsf{y}} \cdot ec{\mathsf{g}}_\gamma$$

Regression geometry

Sums of squares in normal-based likelihood exponents makes normal linear regression look like Euclidean geometry in N-D space, with projections into the M-D subspace spanned by the model basis

The metric generalizes the Pythagorean theorem to non-orthonormal coordinates

Geometry for linear regression, M = 2 bases, N = 3 samples

$$\vec{x} = [0,1,2]^T; \quad \vec{y} = [3,-2,4]^T$$

$$f(x) = A_1 + A_2 x$$

$$\begin{array}{ccc} g_1(x) = 1 & \rightarrow & \vec{g_1} = [1, 1, 1]^T \\ g_2(x) = x & \rightarrow & \vec{g_2} = [0, 1, 2]^T \end{array}$$

Produced with GeoGebra Classic 5 See "LinearModelVectors.ggb"

Connections to least squares estimation

For a flat prior and fixed σ , the posterior mode minimizes

$$Q(\{A_{\alpha}\}) = \sum_{i=1}^{N} [y_i - f_i(\{A_{\alpha}\})]^2$$

→ the flat-prior mode gives the *least squares estimates of the amplitudes*

The $N \times M$ matrix of model vector coordinates $[g_{\alpha i}]^T$ is the *design* matrix; it is often denoted $\mathbf{X} = X_{i\alpha}$, even though it consists of *response* values (the model basis in the y space—functions of x_i s)

The $M \times M$ metric

$$\eta_{lphaeta}\equivec{g}_{lpha}\cdotec{g}_{eta}=\sum_{i}g_{lpha i}g_{eta i}=\mathbf{X}^{\mathsf{T}}\mathbf{X}$$

is sometimes called the Gram matrix or Gramian matrix

The mode condition

$$\sum_eta \eta_{lphaeta} \hat{\mathcal{A}}_eta = ec{\mathcal{y}} \cdot ec{\mathcal{g}}_lpha$$

is a set of M equations called the *normal equations* when expressed in terms of the design matrix

Posterior is multivariate normal

Write $A_{\alpha} = \hat{A}_{\alpha} + \delta A_{\alpha}$ (expressing A_{α} 's in terms of δA_{α} 's); then

$$Q(\lbrace A_{\alpha} \rbrace) = (\vec{y} - \vec{f})^{2} = \left(\vec{y} - \sum_{\alpha} \hat{A}_{\alpha} \vec{g}_{\alpha} - \sum_{\beta} \delta A_{\beta} \vec{g}_{\beta} \right)^{2}$$

$$= \left(\vec{y} - \sum_{\alpha} \hat{A}_{\alpha} \vec{g}_{\alpha} \right)^{2} + \left(\sum_{\alpha} \delta A_{\alpha} \vec{g}_{\alpha} \right)^{2}$$

$$- 2 \left(\sum_{\beta} \delta A_{\beta} \vec{g}_{\beta} \right) \cdot \left(\vec{y} - \sum_{\alpha} \hat{A}_{\alpha} \vec{g}_{\alpha} \right)$$

$$= Q_{\min} + \left(\sum_{\alpha} \delta A_{\alpha} \vec{g}_{\alpha} \right) \cdot \left(\sum_{\beta} \delta A_{\beta} \vec{g}_{\beta} \right)$$

$$- 2 \sum_{\beta} \delta A_{\beta} \left(\vec{g}_{\beta} \cdot \vec{y} - \sum_{\beta} \hat{A}_{\alpha} \eta_{\alpha\beta} \right) \leftarrow \text{mode cond'n}$$

$$egin{aligned} Q(\{A_{lpha}\}) &= Q_{\min} + \sum_{lpha} \sum_{eta} \delta A_{lpha} \delta A_{eta} \eta_{lphaeta} \ &= r^2 + \sum_{lpha} \sum_{eta} (A_{lpha} - \hat{A}_{lpha}) \eta_{lphaeta} (A_{eta} - \hat{A}_{eta}) \end{aligned}$$

where $\vec{r} \equiv \vec{y} - \hat{\vec{f}}$ is the *residual vector* between the data and the best-fit model

The posterior is thus a multivariate normal (MVN) distribution for $A = \{A_{\alpha}\}$:

$$egin{split} p(\{A_lpha\}|ec{y},\sigma) &\propto rac{1}{\sigma^N} \exp\left[-rac{Q(\{A_lpha\})}{2\sigma^2}
ight] \ &\propto rac{1}{\sigma^N} \exp\left[-rac{r^2}{2\sigma^2}
ight] \exp\left[-rac{1}{2}(A-\hat{A})\cdot \mathbf{V}^{-1}\cdot (A-\hat{A})
ight] \end{split}$$

MVN for the A's with (marginal) means \hat{A}_{α} , inverse covariance matrix $\mathbf{V}^{-1} = \boldsymbol{\eta}/\sigma^2$, and covariance matrix

$$\mathbf{V} = \sigma^2 \boldsymbol{\eta}^{-1}$$

Consequences of posterior normality

Joint HPD regions for coefficients

Write
$$p(A|\vec{y},\sigma) = Ce^{-\chi^2/2}$$
 with
$$\chi^2(A) = \frac{Q(A)}{\sigma^2} = \frac{r^2}{\sigma^2} + \Delta\chi^2(A),$$
 with $\Delta\chi^2(A) \equiv (A - \hat{A}) \cdot \mathbf{V}^{-1} \cdot (A - \hat{A})$

An HPD region with probability C is bounded by a surface of constant density, i.e., a surface of constant $\Delta\chi^2(A) = \Delta\chi^2_{\rm crit}$, chosen so

 $\Rightarrow p(A|\vec{v},\sigma) \propto e^{-\Delta\chi(A)^2/2}$

$$C = \int_{\Delta\chi^2 < \Delta\chi^2_{
m crit}} {
m d}^M A \; p(A|ec{y},\sigma)$$

Normality \rightarrow choose $\Delta\chi^2_{\rm crit}$ so that C is the probability that $\chi^2 < \Delta\chi^2_{\rm crit}$ in the χ^2 distribution with M degrees of freedom

Uncertain σ

Adopt a log-flat prior for σ , i.e., $p(\sigma) \propto 1/\sigma$; then as a function of σ , the posterior is

$$p(\sigma, A|\vec{y}) \propto \frac{1}{\sigma^{N+1}} e^{-Q(A)/2\sigma^2}$$

Marginalize over σ just as we did for normal (μ, σ) inference; this gives

$$p(\sigma, A|\vec{y}) \propto \left[1 + \frac{\Delta Q(A)}{r^2}\right]^{-N/2},$$

where
$$\Delta Q(A) \equiv (A - \hat{A}) \cdot \boldsymbol{\eta} \cdot (A - \hat{A})$$

This is a multivariate Student's t distribution

Marginalizing over coefficients

- Marginalizing over a subset of coefficients is straightforward using the fact that MVN conditional distributions are normal with fixed variance; can show the marginal is proportional to the profile likelihood
- Marginalizing over all coefficients can be done analytically by diagonalizing the metric \rightarrow the MVN normalization constant is $\sqrt{\det \mathbf{V}}$

Conjugate priors

Since the likelihood function is MVN with respect to A, a MVN prior for A is a *conjugate prior*, resulting in a posterior that remains MVN

Heteroskedastic cases

If the errors are correlated rather than IID, then the quadratic form is a double sum using the noise covariance matrix, **E**:

$$Q(A) = \sum_{i,j} [y_i - f_i(A)][\mathbf{E}^{-1}]_{ij}[y_j - f_j(A)]$$

A special case is independent but *heteroskedastic* errors, for which

$$Q(A) = \sum_{i} \frac{[y_i - f_i(A)]^2}{\sigma_i^2}$$

This corresponds to weighted least squares or minimum χ^2 fitting of linear models (with full **E** it's generalized LS)

These generalizations can be easily accommodated simply by (1) removing σ^2 everywhere, and (2) redefining vector dot products using **E** as a metric on the *N*-D space of y_i coordinates:

$$\vec{a} \cdot \vec{b} \equiv \sum_{ij} a_i [\mathbf{E}^{-1}]_{ij} b_j$$

All results are *unchanged* by this (but marginalization over σ is no longer relevant)

Bayesian nonlinear curve fitting & least squares Setup

Data $D = \{y_i\}$ are measurements of an underlying function $f(x; \theta)$ at N sample points $\{x_i\}$. Let $f_i(\theta) \equiv f(x_i; \theta)$:

$$y_i = f_i(\theta) + \epsilon_i, \qquad \epsilon_i \sim N(0, \sigma_i^2)$$

We seek learn θ , or to compare different functional forms (model choice, M).

Likelihood

$$p(D|\theta, M) = \prod_{i=1}^{N} \frac{1}{\sigma_{i}\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{y_{i} - f_{i}(\theta)}{\sigma_{i}}\right)^{2}\right]$$

$$\propto \exp\left[-\frac{1}{2} \sum_{i} \left(\frac{y_{i} - f_{i}(\theta)}{\sigma_{i}}\right)^{2}\right]$$

$$= \exp\left[-\frac{\chi^{2}(\theta)}{2}\right]$$

Posterior

For prior density $\pi(\theta)$,

$$p(\theta|D,M) \propto \pi(\theta) \exp\left[-\frac{\chi^2(\theta)}{2}\right]$$

If you have a least-squares or χ^2 code:

- Think of $\chi^2(\theta)$ as $-2 \log \mathcal{L}(\theta)$.
- Bayesian inference amounts to exploration and numerical integration of $\pi(\theta)e^{-\chi^2(\theta)/2}$.
- If noise level is uncertain, keep the $1/\sigma_i$ factors (dropped above!) and include noise parameters in inference (e.g., scale all σ_i by a parameter, α)
- If any of the parameters appear linearly, our linear regression results show that their likelihood function—conditional on the remaining parameters—will be MVN → analytical simplifications

Important Case: Separable Nonlinear Models

A (linearly) separable model has parameters $\theta = (A, \psi)$:

- Linear amplitudes $A = \{A_{\alpha}\}$
- Nonlinear parameters ψ

 $f(x; \theta)$ is a linear superposition of M nonlinear components $g_{\alpha}(x; \psi)$:

$$y_i = \sum_{lpha=1}^M A_lpha g_lpha(x_i;\psi) + \epsilon_i$$
 or $\vec{y} = \sum_lpha A_lpha \vec{g}_lpha(\psi) + \vec{\epsilon}$.

Recall: "linear/nonlinear" refers to how the predictions depend on the *parameters*, not how they depend on the sample location!

Examples

Polynomials (simple or orthogonal); $\psi = \emptyset$:

$$f(x) = A_0 + A_1 x + A_2 x^2 + A_3 x^3$$

= $A_0 + A_1 x + A'_2 (2x^2 - 1) + A'_3 (4x^3 - 3x), \quad x \in [-1, 1]$
= $A_0 g_0(x) + A_1 g_1(x) + A'_2 g_2(x) + A'_3 g_3(x)$

Sinusoids; $\psi = \omega$:

$$f(x) = A\cos(\omega x + \phi)$$

$$= A_1\cos\omega x + A_2\sin\omega x$$

$$= A_1g_1(x,\omega) + A_2g_2(x,\omega)$$

Chirps: $\psi = (\omega, \alpha)$:

$$f(x) = A\cos(\alpha x^2 + \omega x + \phi)$$
, inst. freq. $= \omega + 2\alpha x$
= $A_1\cos(\alpha x^2 + \omega x) + A_2\sin(\alpha x^2 + \omega x)$

Exponentials;
$$\psi = (\tau_1, \tau_2, ...)$$
: $f(x) = A_1 e^{-x/\tau_1} + A_2 e^{-x/\tau_2} + \cdots$

The Jaynes-Bretthorst Algorithm

Why separable structure is important: You can marginalize over A analytically \rightarrow Jaynes-Bretthorst algorithm ("Bayesian Spectrum Analysis & Param. Estimation" 1988)

Algorithm is closely related to linear least squares, diagonalization (eigenvectors/values), and SVD

Goals:

- ullet Estimate the nonlinear parameters ψ
- Estimate amplitudes
- Compare rival models

The log-likelihood is a quadratic form in A_{α} ,

$$\begin{split} \mathcal{L}(A,\psi) & \propto & \frac{1}{\sigma^N} \exp\left[-\frac{Q(A,\psi)}{2\sigma^2}\right] \\ \text{with} & Q & = & \left[\vec{y} - \sum_{\alpha} A_{\alpha} \vec{g}_{\alpha}\right]^2 \\ & = & \left[\vec{y} - \sum_{\alpha} A_{\alpha} \vec{g}_{\alpha}\right] \cdot \left[\vec{y} - \sum_{\beta} A_{\beta} \vec{g}_{\beta}\right] \\ & = & y^2 - 2 \sum_{\alpha} A_{\alpha} \vec{y} \cdot \vec{g}_{\alpha} + \sum_{\alpha,\beta} A_{\alpha} A_{\beta} \eta_{\alpha\beta} \\ & \text{where, as before,} & & \eta_{\alpha\beta}(\psi) = \vec{g}_{\alpha}(\psi) \cdot \vec{g}_{\beta}(\psi) \end{split}$$

We seek to integrate out the amplitudes, but completing the square is complicated because of the nontrivial metric $\eta_{\alpha\beta}$

Change the basis for \vec{f} from \vec{g}_{α} to an *orthonormal basis* \vec{h}_{μ} :

$$ec{g}_{lpha} = \sum_{\mu} \mathsf{a}_{lpha\mu} ec{h}_{\mu} \qquad ext{with } ec{h}_{\mu} \cdot ec{h}_{
u} = \delta_{\mu
u}$$

which implies $\vec{h}_{\mu} = \sum_{\alpha} (a^{-1})_{\mu\alpha} \vec{g}_{\alpha}$. Note $a = a(\psi)$.

Rewriting \vec{f} ,

$$ec{f}(heta) = \sum_{lpha=1}^M A_lpha ec{g}_lpha(\psi) = \sum_{\mu=1}^M B_\mu(A,\psi) ec{h}_\mu(\psi)$$

with orthonormal amplitudes $B_{\mu}(A,\psi) = \sum_{lpha} A_{lpha} a_{lpha\mu}(\psi)$

Some linear algebra shows that $\eta = aa^T$, so we can get a from η via Cholesky/eigen/QR decomposition.

Now write the quadratic form in terms of the Bs instead of the As:

$$Q = y^2 - 2\sum_{\alpha} A_{\alpha} \vec{y} \cdot \vec{g}_{\alpha} + \sum_{\alpha,\beta} A_{\alpha} A_{\beta} \eta_{\alpha\beta}$$
$$= y^2 - 2\sum_{\mu} B_{\mu} \vec{y} \cdot \vec{h}_{\mu} + \sum_{\mu} B_{\mu}^2$$
$$= \sum_{\alpha} \left[B_{\mu} - \hat{B}_{\mu}(\psi) \right]^2 + r^2(\psi)$$

with $\hat{\mathcal{B}}_{\mu}(\psi) \equiv \vec{y} \cdot \vec{h}_{\mu}(\psi)$ and the residual $\vec{r}(\psi) \equiv \vec{y} - \sum_{\mu} \hat{\mathcal{B}}_{\mu} \vec{h}_{\mu}$

The posterior in terms of Bs is

$$p(B,\psi|D,I) \propto \frac{\pi(\psi)J(\psi)}{\sigma^N} \exp\left[-\frac{r^2(\psi)}{2\sigma^2}\right] \exp\left[\frac{-1}{2\sigma^2}\sum_{\mu}[B_{\mu}-\hat{B}_{\mu}(\psi)]^2\right]$$

 $J(\psi) = (\det \eta)^{1/2}$ comes from changing variables from As to Bs

Marginalize B's analytically (check the range!):

$$p(\psi|D,I) \propto \frac{\pi(\psi)J(\psi)}{\sigma^{N-M}} \exp\left[-\frac{r^2(\psi)}{2\sigma^2}\right]$$

If σ unknown, marginalize using $p(\sigma|I) \propto \frac{1}{\sigma}$.

$$p(\psi|D,I) \propto \pi(\psi)J(\psi)\left[r^2(\psi)\right]^{\frac{M-N}{2}}$$

For given ψ , r^2 is just the residual sum of squares from a least squares fit to the basis functions. We can write

$$r^{2}(\psi) = y^{2} - \sum_{\mu} \hat{B}_{\mu}^{2}(\psi)$$
$$= y^{2} - S(\psi)$$

with $S(\psi) = \sum_{\mu} [\vec{y} \cdot \vec{h}_{\mu}(\psi)]^2$, the sum of squared projections

Regression geometry for separable models

The geometry is as for linear regression, but now the basis vectors (and the subspace they span) depends on the nonlinear parameters

Application: Bayesian Spectrum Analysis

Adopt a sinusoid periodic signal model:

$$f(t) = A\cos(\omega t - \phi)$$
 parameters ω, A, ϕ
 $= A_1\cos\omega t + A_2\sin\omega t$ parameters ω, A_1, A_2
 $y_i = f(t_i) + e_i$ Gaussian error pdfs; rms= σ

Estimate ω :

$$p(\omega|D) \propto \int dA_1 \int dA_2 \ p(\omega, A_1, A_2) \mathcal{L}(\omega, A_1, A_2)$$
 $\propto p(\omega) J(\omega) \exp \left[\frac{S(\omega)}{\sigma^2} \right]$

- Equally-spaced samples: $S(\omega) \to Schuster\ periodogram$ for large N (when η is nearly diagonal) magnitude of the discrete Fourier transform (DFT) of the time series
- Unequally-spaced samples: $S(\omega) \approx Lomb\text{-}Scargle$ periodogram