Total No. of Questions—8]

[Total No. of Printed Pages—6

Seat	
No.	1

[5252]-548

S.E. (Electrical Engineering) (Second Semester)

EXAMINATION, 2017

NETWORK ANALYSIS

(2015 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3, or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figure to the right indicate full marks.
 - (iv) Use of calculator is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) Explain the following terms in relation with network graphs: [6]
 - (i) Tree
 - (ii) Cut set
 - (iii) Tie set.
 - (b) In the circuit shown, find current I, using superposition theorem.

[7]

Or

2. (a) Find current Ix and Iy for the circuit shown in figure using mesh analysis. [6]

(b) Verify the reciprocity theorem for the voltage source and current Lx for the circuit shown in figure. [7]

3. (a) A 5 μ F capacitor is initially charged with 500 μ C. At t=0, the switch K is closed. Determine the voltage drop across the resistor at $t<\tau$ and at $t=\infty$ [6]

(b) In the network shown in figure the switch is moved from position a to b at t=0. Determine i(t) and $V_c(t)$ using Laplace transform. [6]

4. (a) As shown in circuit, switch K is changed from position 1 to position 2 at time t=0, steady state condition reached before switching. Find I, di/dt, d^2i/dt^2 at $t=0^+$. [6]

(b) In the network shown in figure was in a position a' for long time and moved to position b' at t = 0. Find the current through the capacitor for t > 0 using Laplace transform. [6]

- **5.** (a) Develop the relationship between transmission parameter and Y parameters. [6]
 - (b) Find the driving point impedance for the network shown in figure. [7]

6. (a) Find Z parameter of the network shown in figure. [6]

(b) Find the driving point admittance $Y_{11}(s)$ for the network shown in figure, and plot pole zero diagram. [7]

[5252]-548 5 P.T.O.

(<i>a</i>)	Explain the following terms in relation with filter: [6]
	(i) Pass band
	(ii) Stop band
	(iii) Cut-off frequency
(<i>b</i>)	Design a T and π section Constant-K high pass filter having
	cut-off frequency of 12 kHz and nominal impedance R_0 = 500 Ω .
	Also find: [6]
	(i) its characteristic impedance and phase constant at 24
	kHz and
	(ii) attenuation at 4 kHz
	Or
(<i>a</i>)	Derive the expression for characteristic impedance (Z_0) ,
	attenuation constant (α) and phase constant (β) of prototype
	constant-K type low pass filter from symmetrical networks. [6]
(<i>b</i>)	Design constant $-K$ high pass filter T and π section having
	$f_c = 5$ kHz and nominal characteristic impedance $R_0 = 600$ Ω .
	Design constant –K high pass filter T and π section having $f_c=5$ kHz and nominal characteristic impedance $R_0=600~\Omega$. [6]
	(a)