```
In [1]:
        import numpy as np
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
In [2]: df=pd.read csv("madrid 2010.csv")
In [3]: df.head()
Out[3]:
               date BEN
                          CO EBE MXY NMHC
                                                   NO 2
                                                             NOx OXY
                                                                            O 3 PM10
              2010-
              03-01
                    NaN 0.29 NaN
                                    NaN
                                          NaN 25.090000 29.219999 NaN 68.930000
                                                                                  NaN
            01:00:00
              2010-
              03-01
                    NaN 0.27 NaN
                                          NaN 24.879999 30.040001
         1
                                   NaN
                                                                  NaN
                                                                            NaN
                                                                                  NaN
            01:00:00
              2010-
         2
              03-01
                                          NaN 17.410000 20.540001 NaN 72.120003
                    NaN 0.28
                              NaN
                                    NaN
                                                                                  NaN
            01:00:00
              2010-
              03-01
                    0.38 0.24 1.74
                                          0.05 15.610000 21.080000 NaN 72.970001
                                    NaN
                                                                                 19.41
                                                                                        7.870
            01:00:00
              2010-
              03-01
                    0.79 NaN 1.32 NaN
                                          NaN 21.430000 26.070000 NaN
                                                                            NaN 24.67 22.030
            01:00:00
In [4]: df=df.dropna()
In [5]: | df.columns
Out[5]: Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_
         3',
                'PM10', 'PM25', 'PXY', 'SO_2', 'TCH', 'TOL', 'station'],
               dtype='object')
```

```
In [6]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 6666 entries, 11 to 191927
Data columns (total 17 columns):
 #
     Column
              Non-Null Count Dtype
     -----
 0
     date
              6666 non-null
                              object
 1
     BEN
              6666 non-null
                              float64
                              float64
 2
     CO
              6666 non-null
 3
     EBE
              6666 non-null
                              float64
 4
     MXY
              6666 non-null
                              float64
 5
     NMHC
              6666 non-null
                            float64
 6
                             float64
     NO_2
              6666 non-null
 7
                            float64
     NOx
              6666 non-null
 8
     OXY
              6666 non-null
                              float64
 9
     0 3
              6666 non-null
                            float64
```

10 PM10 6666 non-null float64

11 PM25 6666 non-null float64 12 PXY float64 6666 non-null

float64 13 SO 2 6666 non-null 14 TCH 6666 non-null float64 15 TOL 6666 non-null float64

16 station 6666 non-null int64

dtypes: float64(15), int64(1), object(1)

memory usage: 937.4+ KB

```
In [7]: |data=df[['CO','station']]
```

Out[7]:

	СО	station
11	0.18	28079024
23	0.23	28079099
35	0.17	28079024
47	0.21	28079099
59	0.16	28079024
191879	0.26	28079099
191891	0.16	28079024
191903	0.28	28079099
191915	0.16	28079024
191927	0.25	28079099
	_	_

6666 rows × 2 columns

In [8]: data.plot.line(subplots=True)

Out[8]: array([<Axes: >, <Axes: >], dtype=object)

In [9]: b=data[0:50]
b.plot.bar()

Out[9]: <Axes: >

In [10]: data.plot.hist()

Out[10]: <Axes: ylabel='Frequency'>

In [11]: data.plot.area()

Out[11]: <Axes: >

In [12]: data.plot.box()

Out[12]: <Axes: >


```
Dataset 10 - Jupyter Notebook
In [13]: data.plot.scatter(x='CO',y='station')
Out[13]: <Axes: xlabel='CO', ylabel='station'>
                    +2.8079e7
              100
                90
               80
                70
           station
               60
               50
                40
               30
                          0.2
                                                   0.8
                                  0.4
                                                                             1.4
                                           0.6
                                                            1.0
                                                                     1.2
                                                                                     1.6
                                                     CO
In [14]: | x=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
          'PM10', 'PXY', 'SO_2', 'TCH', 'TOL']]
          y=df['station']
```

```
In [15]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

Out[16]: <matplotlib.collections.PathCollection at 0x13c4b393510>


```
In [17]: print(lr.score(x_test,y_test))
print(lr.score(x_train,y_train))
```

- 0.43366150940207937
- 0.42459842684297244

Ridge and Lasso

```
Dataset 10 - Jupyter Notebook
In [18]: from sklearn.linear model import Ridge,Lasso
         rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
         print(rr.score(x_test,y_test))
         print(rr.score(x_train,y_train))
         la=Lasso(alpha=10)
         la.fit(x_train,y_train)
         0.42233021912700675
         0.41222990289857164
Out[18]:
                Lasso
          Lasso(alpha=10)
In [19]: la.score(x_test,y_test)
Out[19]: 0.18385205544759098
         ElasticNet
In [20]: from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[20]:
          ▼ ElasticNet
          ElasticNet()
In [21]: en.coef_
Out[21]: array([-0.00000000e+00, 2.05990497e-01, 2.54434006e+00, -9.08623254e-01,
                -1.15272971e+00, 2.95491345e-03, -1.23823147e-01, 4.79258603e-01,
```

Evaluation Metrics

```
In [25]: from sklearn import metrics
    print(metrics.mean_absolute_error(y_test,prediction))
    print(metrics.mean_squared_error(y_test,prediction))
    print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))

30.937956313297153
    1077.5214941638412
    32.82562252515314
```

Logistics Regression

```
In [26]: from sklearn.linear_model import LogisticRegression

In [27]: feature_matrix=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'C' 'PM10', 'PXY', 'SO_2', 'TCH', 'TOL']]
    target_vector=df[ 'station']

In [28]: from sklearn.preprocessing import StandardScaler
    fs=StandardScaler().fit_transform(feature_matrix)
    logr=LogisticRegression(max_iter=10000)
    logr.fit(fs,target_vector)
    logr=LogisticRegression(max_iter=10000)
    logr.fit(fs,target_vector)
    logr.score(fs,target_vector)

Out[28]: 0.8660366036603661

In [29]: observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
    logr.predict_proba(observation)

Out[29]: array([[0., 1.]])
```

Random Forest

```
In [31]: parameters={'max_depth':[1,2,3,4,5],
    'min_samples_leaf':[5,10,15,20,25],
    'n_estimators':[10,20,30,40,50]
}
```

In [32]: from sklearn.model_selection import GridSearchCV
 grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="acgrid_search.fit(x_train,y_train)

```
In [33]: rfc_best=grid_search.best_estimator_
    from sklearn.tree import plot_tree
    plt.figure(figsize=(80,40))
    plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b']
```

```
Out[33]: [Text(0.581081081081081, 0.9166666666666666, 'EBE <= 1.005\ngini = 0.5\nsampl
                                          es = 2919\nvalue = [2321, 2345]\nclass = b'),
                                               Text(0.3108108108108108, 0.75, 'TOL <= 1.135 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459 | 0.459
                                           value = [2241, 1248] \setminus class = a'),
                                               Text(0.14864864864864866, 0.583333333333334, 'TOL <= 0.575\ngini = 0.23\nsa
                                          mples = 1010\nvalue = [1377, 211]\nclass = a'),
                                               Text(0.08108108108109, 0.416666666666667, 'BEN <= 0.315\ngini = 0.024\ns
                                           amples = 457\nvalue = [721, 9]\nclass = a'),
                                               Text(0.05405405405405406, 0.25, 'PM10 <= 7.825\ngini = 0.063\nsamples = 170
                                           \nvalue = [267, 9]\nclass = a'),
                                              Text(0.02702702702703, 0.083333333333333, 'gini = 0.174\nsamples = 50\n
                                           value = [75, 8] \setminus ass = a'),
                                               Text(0.08108108108109, 0.0833333333333333, 'gini = 0.01 \nsamples = 120 \n
                                          value = [192, 1] \setminus ass = a'),
                                               Text(0.10810810810810811, 0.25, 'gini = 0.0\nsamples = 287\nvalue = [454, 0]
                                           \nclass = a'),
                                              Text(0.21621621621623, 0.416666666666667, 'PXY <= 0.975\ngini = 0.36\nsa
                                           mples = 553\nvalue = [656, 202]\nclass = a'),
                                               Text(0.16216216216216217, 0.25, 'TCH <= 1.345\ngini = 0.136\nsamples = 276\n
                                          value = [405, 32] \setminus class = a'),
                                               Text(0.13513513513513514, 0.0833333333333333, 'gini = 0.011\nsamples = 117
                                           \nvalue = [186, 1]\nclass = a'),
                                               Text(0.1891891891891892, 0.08333333333333333, 'gini = 0.217 \nsamples = 159 \n
                                           value = [219, 31] \setminus nclass = a'),
                                               Text(0.2702702702703703, 0.25, 'NMHC <= 0.285\ngini = 0.481\nsamples = 277\n
                                          value = [251, 170] \setminus nclass = a'),
                                               Text(0.24324324324326, 0.083333333333333, 'gini = 0.492\nsamples = 197
                                           \nvalue = [132, 170]\nclass = b'),
                                              Text(0.2972972972973, 0.0833333333333333, 'gini = 0.0\nsamples = 80\nval
                                           ue = [119, 0] \setminus nclass = a'),
                                               Text(0.47297297297297, 0.58333333333334, 'CO <= 0.205\ngini = 0.496\nsa
                                          mples = 1192\nvalue = [864, 1037]\nclass = b'),
                                               Text(0.40540540540540543, 0.416666666666667, 'NO_2 <= 20.965 \\ lini = 0.242
                                           \nsamples = 146 \nvalue = [219, 36] \nclass = a'),
                                               Text(0.3783783783783784, 0.25, 'NOx <= 23.47\ngini = 0.299\nsamples = 114\nv
                                           alue = [161, 36] \setminus (161)
                                               Text(0.35135135135135137, 0.0833333333333333, 'gini = 0.23\nsamples = 104\n
                                          value = [157, 24]\nclass = a'),
                                               Text(0.40540540540543, 0.083333333333333, 'gini = 0.375 \nsamples = 10 \n
                                          value = [4, 12]\nclass = b'),
                                               Text(0.43243243243246, 0.25, 'gini = 0.0\nsamples = 32\nvalue = [58, 0]\n
                                           class = a'),
                                               Text(0.5405405405405406, 0.41666666666666666, 'SO_2 <= 8.625 \setminus injury = 0.477 \setminus injury = 
                                          amples = 1046\nvalue = [645, 1001]\nclass = b'),
                                               Text(0.4864864864864865, 0.25, '0_3 <= 41.58 \setminus i = 0.383 \setminus samples = 167 \setminus i = 0.4864864864864864865
                                          alue = [193, 67] \setminus ass = a',
                                               Text(0.4594594594595, 0.083333333333333333, 'gini = 0.141 \nsamples = 110 \n
                                          value = [157, 13] \setminus nclass = a'),
                                               Text(0.5135135135135135, 0.0833333333333333, 'gini = 0.48 \nsamples = 57 \nva
                                          lue = [36, 54] \setminus class = b'),
                                               Text(0.5945945945945946, 0.25, 'NOx <= 72.185 \setminus ini = 0.44 \setminus ini = 879 \setminus ini = 0.44 \setminus ini = 879 \setminus ini = 0.44 \setminus ini = 879 \setminus i
                                          alue = [452, 934] \setminus class = b'),
                                               Text(0.5675675675675675, 0.08333333333333333, 'gini = 0.347 \nsamples = 695 \n
                                          value = [242, 842] \setminus class = b'),
                                               Text(0.6216216216216216, 0.0833333333333333, 'gini = 0.424 \nsamples = 184 \n
                                          value = [210, 92]\nclass = a'),
                                               Text(0.8513513513513513, 0.75, '0_3 \le 82.525 \mid 0.127 \mid 0.127
```

```
value = [80, 1097] \setminus class = b'),
  Text(0.7837837837837838, 0.5833333333333334, 'NMHC <= 0.33\ngini = 0.09\nsam
ples = 679\nvalue = [53, 1063]\nclass = b'),
  mples = 664\nvalue = [36, 1056]\nclass = b'),
  Text(0.7027027027027027, 0.25, 'SO_2 <= 8.855 \setminus gini = 0.056 \setminus gini = 659 \setminus gini = 0.056 \setminus gini = 659 \setminus gin
value = [31, 1053]\nclass = b'),
  Text(0.6756756756756757, 0.083333333333333333, 'gini = 0.408\nsamples = 20\nv
alue = [10, 25] \setminus ass = b'),
  Text(0.7297297297297, 0.08333333333333333, 'gini = 0.039 \nsamples = 639 \n
value = [21, 1028]\nclass = b'),
  Text(0.7567567567568, 0.25, 'gini = 0.469\nsamples = 5\nvalue = [5, 3]\nc
lass = a'),
  Text(0.8378378378378, 0.41666666666666666, 'EBE <= 1.845\ngini = 0.413\nsa
mples = 15\nvalue = [17, 7]\nclass = a'),
  Text(0.8108108108109, 0.25, 'gini = 0.0\nsamples = 10\nvalue = [17, 0]\nc
lass = a'),
  Text(0.8648648648648649, 0.25, 'gini = 0.0\nsamples = 5\nvalue = [0, 7]\ncla
ss = b'),
  Text(0.918918918919, 0.583333333333334, 'NOx <= 26.225\ngini = 0.493\nsa
mples = 38\nvalue = [27, 34]\nclass = b'),
  = [15, 0] \setminus nclass = a'),
  amples = 30\nvalue = [12, 34]\nclass = b'),
  Text(0.918918918919, 0.25, 'SO 2 <= 11.875\ngini = 0.105\nsamples = 25\nv
alue = [2, 34] \setminus class = b'),
  Text(0.8918918918919, 0.083333333333333, 'gini = 0.0\nsamples = 20\nval
ue = [0, 30] \setminus nclass = b'),
  Text(0.9459459459459459, 0.0833333333333333, 'gini = 0.444 \nsamples = 5 \nva
lue = [2, 4] \setminus class = b'),
  Text(0.972972972973, 0.25, 'gini = 0.0\nsamples = 5\nvalue = [10, 0]\ncla
ss = a')
```


Conclusion

```
In [34]: print("Linear Regression:",lr.score(x_test,y_test))
    print("Ridge Regression:",rr.score(x_test,y_test))
    print("Lasso Regression",la.score(x_test,y_test))
    print("ElasticNet Regression:",en.score(x_test,y_test))
    print("Logistic Regression:",logr.score(fs,target_vector))
    print("Random Forest:",grid_search.best_score_)
```

Linear Regression: 0.43366150940207937 Ridge Regression: 0.42233021912700675 Lasso Regression 0.18385205544759098 ElasticNet Regression: 0.233761726800773 Logistic Regression: 0.8660366036603661

Random Forest: 0.9297042434633519

Logistic Is Better!!!