

Project elektronica 3

Lorenz Put: Lorenz.Put@student.ap.be

Michiel Mulder: Michiel.Mulder@student.ap.be

Wat we hebben bereikt

Outline

- Inleiding
- Probleemstelling
- Probleemoplossing
 - Projectplan
 - Informatie & componenten
 - Schema ontwerpen
 - Testschakeling breadboard
 - Opstellen code
 - Ontwerpen PCB
- Conclusie

I. Inleiding

- Project Elektronica 3
- Auto
 - Remote control
 - Vooruit en achteruit
 - Links en rechts
 - Stoppen
 - (Brug)

2. Probleemstelling

Auto

Project

"Hoe vervolledigen we een project dat erin bestaat een auto geautomatiseerd te laten functioneren?"

3. Probleemoplossing - outline

- Projectplan
- Informatie & componenten
- Schema ontwerpen
- Testschakeling breadbord
- Opstellen code
- Ontwerpen PCB

3.1 Projectplan & Gantt- chart

Eindverslag

Overzicht verdeling

(Zie portfolio map '7. Eigen relevante toevoegingen')

•	Projectp	lan	Beide
---	----------	-----	-------

- Info & componenten
 Beide
- Multisim schema Beide
- Testschakeling breadbord Beide
 - H-bruggen Michiel
 - IR-schakeling + combineren Lorenz
- Matrixboard Michiel
- PCB
 Michiel
- Opstellen code Lorenz
 - + Functies & bibliotheken integreren Lorenz

3.2 Informatie vergaren + componenten verzamelen

Keuze tussen
 Infrarood

of

Bluetooth

3.2 Informatie vergaren + componenten verzamelen

Keuze tussen

IC

of

Zelfgebouwde H-bruggen

3.3 Schema ontwerpen

Transistoren

Multimeter-XMM2 -4.294 mA

f MOSFET's

3.3 Schema ontwerpen

Origineel

(A)

GND

Bewerkt

28-1-2015

B

3.4 Testschakeling breadbord

3.5 Opstellen code – Test H-brug(gen)

MotoraansturingTest§

```
/*Dit programma moet de motor vooruit & achteruit laten rijden*/
const int leftOne = 2;
const int leftTwo = 3;

void setup()
{
    Serial.begin(9600);
    pinMode(leftOne, OUTPUT);
    pinMode(leftTwo, OUTPUT);
}

//Dit programma zet 2 pinnen op hoog of op laag.
//Dit werd gebruikt om de H-bruggen te testen.
void loop()
{
    digitalWrite(leftOne, LOW);
    digitalWrite(leftTwo, HIGH);
}
```

MotoraansturingTest §

```
/*Dit programma moet de motor vooruit a achteruit laten rijden*/
const int leftOne = 2;
const int leftTwo = 3;
const int rightOne = 4;
const int rightTwo = 5;
void setup()
  Serial.begin(9600);
 pinMode(leftOne, OUTPUT);
 pinMode(leftTwo, OUTPUT);
 pinMode(rightOne, OUTPUT);
  pinMode(rightTwo, OUTPUT);
//Dit programma zet 4 pinnen op hoog of op laag.
//Dit werd gebruikt om de H-bruggen te testen.
void loop()
  digitalWrite(leftOne, LOW);
  digitalWrite(leftTwo, HIGH);
  digitalWrite(rightOne, LOW);
  digitalWrite(rightTwo, HIGH);
```


3.5 Opstellen code - Toetsenbord

Auto besturen a.d.h.v. Input toetsenbord

```
Motoraansturing_InputPcFull §
void loop()
  //A.d.h.v. de letter die hier ingelezen wordt uit
  //de seriële monitor zal het programma een bepaalde functie uitvoeren.
  Inputkey = Serial.read();
  if(Inputkey == 'f')
    Forward():
  if(Inputkey == 's')
    Stop():
  if(Inputkey == '1')
    TurnLeft():
  if(Inputkey == 'r')
    TurnRight():
  if(Inputkey == 'b')
    Backward();
```

```
//Dit zign de verschillende methoden die in de loop aangeroepen worden
void Forward()
ſ
    digitalWrite(leftOne, HIGH);
    digitalWrite(leftTwo, L0W);
    digitalWrite(rightOne, L00);
    digitalWrite(rightTwo, HIGH);
void Backward()
    digitalWrite(leftOne, LOW);
    digitalWrite(leftTwo, HIGH);
    digitalWrite(rightOne, HIGH);
    digitalWrite(rightTwo, L00);
void TurnLeft()
€
    digitalWrite(leftOne, HIGH);
    digitalWrite(leftTwo, L0W);
    digitalWrite(rightOne, HIGH);
    digitalWrite(rightTwo, L00);
void TurnRight()
    digitalWrite(leftOne, LOW);
    digitalWrite(leftTwo, HIGH);
    digitalWrite(rightOne, LOW);
    digitalWrite(rightTwo, HIGH);
void Stop()
    digitalWrite(leftOne, HIGH);
    digitalWrite(leftTwo, HIGH);
    digitalWrite(rightOne, HIGH);
    digitalWrite(rightTwo, HIGH);
)
```

3.5 Opstellen code – IR remote

Uitlezen van de specifieke codes van de IR remote

IRReceiverTest

```
Pin 1 maar Vout (pin 11 van Arduino)
Pin 2 naar GND
Pin 3 near Vcc (+5v van Arduino)
*/
#include <IRremote.h>
int IRpin = 11;
IRrecv irrecv(IRpin) >
decode_results results;
void setup()
  Serial.begin(9600);
  irrerv.enableIRIn(); // Start the receiver
void loop()
  if (irrecv.decode(&results))
      Serial.println(results.value, DEC); // Print the Serial 'results.value'
      irrerv.resume(); // Receive the next value
    }
)
```


3.5 Opstellen code – IR remote

Implementeren van IR-codes

```
void loop()
  if(irrecv.decode(&results))
    //In plaat van dat er hier een letter binnen komt van de seriële monitor komt er een rijfer binnen.
    //Dit rijfer wordt dan vergeleken met waarden die via een ander programma bekomen zijn.
    //Indien de waarde gelijk zijn, wordt er een bepaalde functie uitgevoerd.
    //Deze functies staan onderaan het programma gedifinieerd.
    Serial.println(results.value, DEC);
      if(results.value == 16736925)
        Forward():
      if(results.value == 16712445)
        Stop():
      if(results.value == 16720605)
        TurnRight() :
      if(results.value == 16761405)
        TurnLeft():
      if(results.value == 16754775)
        BackWards():
    irrecv.resume();
```


3.5 Opstellen code - bibliotheek

Methoden omzetten naar bibliotheek

```
Motor.h → X
                                                                                             Motor.cpp ≠ X
                                                                                                  ⊟#include "Arduino.h"
     ∃#ifndef Motor h
      #define Motor h
                                                                                                   #include "Motor.h"
                                                                                                  □/*De constructor van de motor.
      #include "Arduino.h"
                                                                                                   Hier worden de pinnen gedifinieerd*/
      /*Dit bestand geeft een template weer van welke variabelen de ccp file zal bevatten */
                                                                                                  iclass Motor
                                                                                                       pinMode(leftOne,OUTPUT);
                                                                                                       pinMode(leftTwo,OUTPUT);
          public:
              // De constructor
                                                                                                       pinMode(rightOne,OUTPUT);
              Motor(int leftOne, int leftTwo, int rightOne, int rightTwo);
                                                                                                       pinMode(rightTwo,OUTPUT);
              //de functie forward, turnleft, turnright, achterruit en stop.
                                                                                                       /*de pinnummers worden door gegeven aan private variabelen*/
              void Forward();
                                                                                                       leftOne = leftOne;
              void TurnLeft();
                                                                                                       leftTwo = leftTwo;
                                                                                                       _rightOne = rightOne;
              void TurnRight();
              void BackWards();
                                                                                                       rightTwo = rightTwo;
              void Stop();
                                                                                                   /*de pinnen worden zo aan gestuurd dat de auto voorruit rijdt.*/
          private:
              // de private variabelen leftOne leftTwo, rightOne, rightTwo;
                                                                                                  □void Motor::Forward()
              int _leftOne;
              int leftTwo;
                                                                                                       digitalWrite( leftOne, HIGH);
              int _rightOne;
                                                                                                       digitalWrite( leftTwo, LOW);
              int rightTwo;
                                                                                                       digitalWrite( rightOne, LOW);
                                                                                                       digitalWrite( rightTwo, HIGH);
      };
       #endif
                                                                                                   /*de pinnen worden zo aan gestuurd dat de auto naar links rijdt.*/
                                                                                                  □void Motor::TurnLeft()
                                                                                                       digitalWrite( leftOne, HIGH);
                                                                                                       digitalWrite(_leftTwo, LOW);
                                                                                                       digitalWrite(_rightOne, HIGH);
                                                                                                       digitalWrite(_rightTwo, LOW);
```


3.5 Opstellen code - bibliotheek

- Top level
 - Black box
- Gemakkelijk te combineren met sensoren

Definitieve_versie §

```
void loop()
/*Afhankelijk van het signaal dat de IR ontvanger binnen krijgt,
sal de if structuur er voor sorgen dat een bepaalde functie
uit de motor bibliotheek gangeroepen zal worden.
  if(irrecv.decode(&results))
    Serial.println(results.value, DEC);
      if(results.value == 16736925)
       motor.Forward();
      if(results.value == 16712445)
       motor.Stop();
      if(results.value == 16720605)
        motor.TurnRight();
      if(results.value == 16761405)
        motor.TurnLeft();
      if(results.value == 16754775)
       motor.BackWards();
     //Er wordt gekekeke of de IR receiver een nieuwe waarde heeft ontvangen.
    irrecv.resume();
```


3.6 Matrixboard

3.6 Matrixboard

3.7 PCB ontwerpen

3.7 PCB ontwerpen

3.7 PCB ontwerpen

PCB Trace Amperage Chart

WWW.JOEZGRRRGE.COM PCB TRRCE RMP CHRRT REV. 1.1

The following ratings are based on 2 OZ per square foot of copper and an ambient temperature of 90 degrees F (32 deg. C)

Acceptable temperature ris	e: 50 degrees F (10 deg. C)	20617		
11/11/1/2/2	1/3/	MAX AMPERAGE		
Trace width	INTERNAL LAYER	EXTERNAL LAYER (open air)	Resistance per inch	
0.005 (5 mils)	.360 amps (360ma)	1.013 amps (1013ma)	0.0535 ohms	
0.010 (10 mils)	.602 amps (602ma)	1.616 amps (1616ma)	0.0268 ohms	
0.015 (15 mils)	.811 amps (811ma)	2.124 amps	0.0178 ohms	
0.020 (20 mils)	1.0025 amps	2.578 amps	0.01338 ohms	
0.030 (30 mils)	1.350 amps	3.387 amps	0.00892 ohms	
0.050 (50 mils)	1.966 amps	4.777 amps	0.00535 ohms	
0.060 (60 mils)	2.248 amps	5.401 amps	.00446 ohms	
0.070 (70 mils)	2.517 amps	5.991 amps	.00382 ohms	
0.080 (80 mils)	2.777 amps	6.555 amps	.003346 ohms	
0.100 (100 mils)	3.272 amps	7.617 amps	.002676 ohms	
0.125 (125 mils) 1/8"	3.855 amps	8.852 amps	.002141 ohms	
.250 (250 mils) 1/4"	6.415 amps	14.1154 amps	.00107 ohms	
.500 (500 mils) 1/2"	10.676 amps	22.509 amps	.000535 ohms	

4. Conclusie

De auto is functioneel

- Veel bijgeleerd:
 - Project en samenwerking
 - Werking H-brug
 - Toepassing Arduino
- Aandachtspunt:
 - Planning!

Demo

Demo - Brug

Vragen?

Bedankt voor u aandacht!