Teoremas y demostraciones

Análisis matemático I

Contenido

Definicion (limite formal)
Definición (límite intuitivo)
Teorema (unicidad del límite)
Teorema (del emparedado)
Definición (continuidad en un punto)
Teorema (Bolzano)
Teorema (valor intermedio)
Teorema (Weierstrass — máximos y mínimos)
Definición (derivada)
Teorema (diferenciabilidad implica continuidad)
Teorema (Fermat)
Teorema (Rolle)
Teorema (Lagrange)
Teorema (valor medio)
Teorema (L'Honital)

Límites:

Definición (límite formal).

$$\lim_{x \to c} f(x) = L \iff \forall \epsilon > 0 \ \exists \ \delta > 0 \ : 0 < |x - c| < \delta \Longrightarrow |f(x) - L| < \epsilon$$

Definición (límite intuitivo). Decir que $\lim_{x\to c} f(x) = L$ significa que cuando x está cerca pero diferente de c, entonces f(x) está cerca de L.

Teorema (unicidad del límite). Si el límite de una función existe, entonces es único.

Teorema (del emparedado). Sean f, g y h funciones que satisfacen $f(x) \leq g(x) \leq h(x) \forall x$ cercano a c, excepto posiblemente c. Si $\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$, entonces $\lim_{x \to c} g(x) = L$.

Demostración. Sea $\epsilon > 0$. Elegimos δ_1 tal que

$$0 < |x - c| < \delta_1 \Longrightarrow L - \epsilon < f(x) < L + \epsilon$$

y δ_2 tal que

$$0 < |x - c| < \delta_2 \Longrightarrow L - \epsilon < h(x) < L + \epsilon$$

Elegimos δ_3 de modo que

$$0 < |x - c| < \delta_3 \Longrightarrow f(x) \leqslant g(x) \leqslant h(x)$$

Sea $\delta = \min\{\delta_1, \delta_2, \delta_3\}$. Entonces

$$0 < |x - c| < \delta \Longrightarrow L - \epsilon < f(x) \le g(x) \le h(x) < L + \epsilon$$

Concluímos que $\lim_{x\to c} g(x) = L$

Continuidad:

Definición (continuidad en un punto). Sea f definida en un intervalo abierto que contiene a c. Decimos que f es continua en c si

$$\lim_{x \to c} f(x) = f(c)$$

Teorema (Bolzano). Sea f una función continua y definida en [a,b]. Si se cumple que f(a) < 0 < f(b) o f(b) < 0 < f(a), entonces existe un punto $c \in (a,b)$ tal que f(c) = 0.

Demostraci'on. Sea funa función continua y definida en [a,b] y f(a) < 0 < f(b). Sea C_+ un conjunto tal que

$$C_+ = \{x \in [a,b]/f(x) \geqslant 0\}$$

Sea $c \in [a, b]$ el supremo del conjuto C_+ , entonces $\exists [c - \delta, c + \delta] = signo \ de \ f(c)$ (por teorema de la conservación del signo). Si suponemos que f(c) < 0 c deja de ser una mínima cota superior. Si suponemos que f(c) > 0 c nuevamente deja de ser mínima cota superior. Entonces la única opción posible es que f(c) = 0. \Box

Teorema (valor intermedio). Sea f una función continua y definida en [a,b] y $k \in (a,b)$ tal que f(a) < k < f(b), entonces existe $c \in (a,b)$ tal que f(c) = k.

Demostración. Sea f una función continua en [a,b] y $k \in (a,b)$ tal que f(a) < k < f(b). Sea g(x) = f(x) - k entonces

$$g(a) = f(a) - k \Longrightarrow g(a) < 0$$

$$g(b) = f(b) - k \Longrightarrow g(b) > 0$$

Es decir que g(a) < 0 < g(b) y por teorema de Bolzano existe un punto $c \in (a,b)$ tal que g(c) = 0, entonces

$$g(c) = 0$$

$$g(c) = f(c) - k$$

$$0 = f(c) - k$$

$$f(c) = k$$

Teorema (Weierstrass — máximos y mínimos). Sea f una función continua y definida en [a,b] entonces $\exists x_1, x_2 \in [a,b]$ tal que $f(x_1) \leqslant f(x) \leqslant f(x_2) \forall x \in [a,b]$.

Derivada:

Definición (derivada). La derivada de un función f es otra función f' cuyo valor en cualquier x es

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \frac{dy}{dx}$$

Teorema (diferenciabilidad implica continuidad). Si f'(c) existe, entonces f es continua en c.

Demostración. Sea f una función tal que

$$f(x) = f(x)$$

$$f(x) = f(c) + \frac{f(x) - f(c)}{x - c} \cdot (x - c)$$

Por lo tanto,

$$\begin{split} &\lim_{x\to c} f(x) = \lim_{x\to c} \left[f(c) + \frac{f(x) - f(c)}{x - c} \cdot (x - c) \right] \\ &= \lim_{x\to c} f(c) + \lim_{x\to c} \frac{f(x) + f(c)}{x - c} \cdot \lim_{x\to c} x - c \\ &= f(c) + f'(c) \cdot 0 \\ &\lim_{x\to c} f(x) = f(c) \end{split}$$

Teorema (Fermat). Sea f una función definida en (a,b), si alcanza un máximo o mínimo local en c, y si f'(c) existe en el punto c, entonces f'(c) = 0.

Demostración. Sea f una función definida en (a,b) y c un máximo local. Supongamos que $\exists f'(c)$, entonces

$$f'(c) = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h}$$

siendo

$$f'(c) = \frac{f(c+h) - f(c)}{h} \leqslant 0$$
 para $\lim_{h \to 0^+} f(c)$

у

$$f'(c) = \frac{f(c+h) - f(c)}{h} \geqslant 0$$
 para $\lim_{h \to 0^-} f(c)$

entonces,

$$f'(c) = 0$$

Teorema (Rolle). Sea f una función continua en [a,b] y derivable en (a,b). Si f(a) = f(b), entonces existe un punto $c \in (a,b)$ tal que f'(c) = 0.

Demostraci'on.

Teorema (Lagrange).

Teorema (valor medio).

Teorema (L'Hopital).