SPECIFICATION

NOVEL POLYPEPTIDES

TECHNICAL FIELD

The present invention relates to a fusion polypeptide comprising a polypeptide having a granulocyte colony stimulating factor (hereinafter referred to as "G-CSF") activity and a polypeptide having a platelet growth factor (thrombopoietin, hereinafter referred to as "TPO") activity, and DNA which codes for the fusion polypeptide. Since the fusion polypeptide of the present invention can form and amplify platelets and neutrophils simultaneously, it is useful for the treatment of anemia and the like.

BACKGROUND ART

Blood comprises hematopoietic cells such leukocytes, platelets and the like. erythrocytes, These hematopoietic cells mature from only one kind of pluripotential blood stem cell through various differentiation steps. steps undergo complex regulation by a group of proteinous factors which are generally referred to as cytokines. certain type of cytokine takes part in the differentiation and multiplication of various hematopoietic cells. On the other hand, a certain type of hematopoietic cell undergoes regulation of its differentiation and multiplication by various types of cytokines. This is called overlapping cytokine actions. Among

these cytokine members, TPO and G-CSF are considered to have small overlapping actions.

Platelets are formed by the fragmentation of megakaryocytes, a hematopoietic cell which has large nucleus and is present mainly in bone marrow. Platelets are essential for forming blood clots at damaged portions in blood vessels. Platelets also play important roles in not only blood coagulation but also injury healing by releasing proteins having other functions at the damaged portions. A significant decrease in the number of platelets may be fatal, because the body may easily bleed.

G-CSF is a cytokine which accelerates activation of neutrophils, a member of the leukocytes, and differentiation of neutrophils from their precursor cells. Neutrophils exert the first defense action when invaded by foreign enemies such as bacteria, viruses and the like. When the number of neutrophils is decreased, the body becomes defenseless against infection, and this too is also often fatal.

Current medical treatment of cancers often cause side effects in which pluripotential blood stem cells are damaged by the administration of a chemotherapeutic drug, irradiation of X-rays or bone marrow transplantation for the treatment of leukemia, thus decreasing the number of all hematopoietic cells. Apparently, it is markedly beneficial for thrombopenia and leukopenia patients to amplify the number of these cells by

the administration of cytokine, to suppress bleeding tendency and preventing infectious diseases.

*** 20 ji gan ja moot

A cytokine which can amplify platelets and neutrophils simultaneously has not been found, and there is no medicine having such an effect.

Leukemia inhibiting factors, stem cell factors, macrophage colony stimulating factors, granulocyte/macrophage colony stimulating factors, erythropoietin, interleukin (IL)-3, IL-6, IL-11, megakaryocyte colony stimulating factors and the like are known as substances which amplify platelets or enhance differentiation and multiplication of megakaryocytes [Metcalf et al., Blood, 80, 50-56 (1990); Hunt et al., Blood, 80, 904-911 (1992); Examined Japanese Patent Publication No. 6-11705; Hoffman et al., Blood Cells, 13, 75-86 (1987); Mazur et al., Exp. Hematol., 15, 1123-1133 (1987); McNiece et al., Exp. Hematol., 16, 807-810 (1988); Lu et al., Brit. J. Hematol., 70, 149-156 (1988); Ishibashi et al., Proc. Natl. Acad. Sci. USA, 86, 5953-5957 (1989); WO 95/21919; WO 95/18858]. understood that these many cytokine members amplify platelets by overlapping actions. Recently, it was revealed that a receptor ligand called c-mpl is a cytokine which has the highest activity among platelet amplifying factors and acts directly [de Sauvage et al., Nature, 369, 533 (1994)].

As substances which multiply granulocytes, the above-mentioned IL-3, macrophage colony stimulating factors, granulocyte/macrophage colony stimulating factors and the like

are known, but G-CSF has the highest activity in terms of multiplying neutrophils selectively [Nicola et al., J. Biol. Chem., 258, 9017 (1983)]. With regard to a polypeptide in which two different kinds of cytokine are fused, there are reports in Japanese Published Unexamined International Patent Application No. 500116/94, U.S. Patent 5,359,035, Exp. Hematol., 21, 647-655 (1993) and ibid., 18, 615 (1990) and the like.

However, nothing is known about a fusion polypeptide in which TPO is used as one of the fused cytokines.

An object of the present invention is to provide a fusion polypeptide which can produce and amplify platelets and neutrophils simultaneously. This fusion polypeptide allows the formation of megakaryocyte colonies and neutrophil colonies and the differentiation or maturation of megakaryocyte precursor and neutrophil precursor can be controlled.

DISCLOSURE OF THE INVENTION

The present invention relates to a fusion polypeptide which comprises a polypeptide having G-CSF activity and a polypeptide having TPO activity and DNA which codes for the fusion polypeptide. Also disclosed are fusion polypeptides in which a polypeptide having G-CSF activity and a polypeptide having TPO activity are fused via a spacer peptide and DNA which codes for the fusion polypeptide; and a polypeptide in which the fusion polypeptide comprising a polypeptide having G-

CSF activity and a polypeptide having TPO activity is chemically modified with a polyethylene glycol derivative. Also provided are anemia-treating compositions containing the fusion polypeptide as an active ingredient.

The fusion protein of the present invention has no mouse IL-3 activity.

As the polypeptide having G-CSF activity for use in the present invention, any protein may be used with the proviso that it has the requisite G-CSF activity, such as a polypeptide having the amino acid sequence shown in Table 1 [Nature, 319, 415 (1986)].

Also useful is a protein which has an amino acid sequence derived from the amino acid sequence shown in Table 1 by substitution, deletion or addition more amino acids, and examples thereof include hG-CSF derivatives shown in Table 2 and described in Japanese published Unexamined Patent Application No. 267299/88, Japanese Published Unexamined Patent application No. 299/88, and Japanese Published Unexamined International Patent Application No. 500636/88.

TABLE 1

X ThrProLeuG	lyProAlaS	erSerLe	uProGln	SerPheLeul	.e11
1	5		10		15
LysCysLeuGluG	InValArgi	vsT+eG1:	nGlv4 en	ClyAloAloI	. 7.1
	20	91	101 ynsp 5		.eu
GlnGluLysLeuC		20 Jan 175	1 C 22 a U ; a	30 D==Cl==Cl==T	
35	Jonitalini	40	1032U12		.eu
	icCarlanci	40 ••11.n.≓-	·T41	45	
ValLeuLeuGlyH 50	12261761161	Allebio	DITPALA.		er
	G T 10 Tal	55		60	
CysProSerGlnAl	arenginre	uAlaGly		SerGlnLeuH	is
65	70	_	75		
SerGlyLeuPheLe	ulyrGlnGl	yLeuLeu	GlnAlaI	LeuGluGlyI	le
8U .	85		90		05
SerProGluLeuGl	yProThrLe	uAspThr	LeuGlnI	euAspValA	la
10	IU .	105		110	
AspPheAlaThrTh	rIleTrpGl	nGl nMe t	GlnGlnI	euGlvMetA	1 2
115		120		125	
ProAlaLeuGlnPr	oThrGinGl	vAlaMet1	Profia	hallacardi	1.
130	139	2	itoniai	40	ld
PheGlnArgArgAl	aGlvGlvVai	l LeuVal/	1 U-020-1	40 ialanci-ca	
145	150	rrcuiall	155	12Feng1H26	; [
PheLeuGluValSe:		Loudral	100	1 - C1 - D	
160	165	TENTISE	11SLEUA		
•••	109	1	170	174	
(X	represen	its H o	r Met.)	

TABLE 2

	_		_		_																	
		يَ ا		1)		*	*			*		*		Ser								
Substituted amino acid in hG-CSF derivatives	atives			s		<u>د</u> َ ا		k)		Ala		Thr		Tyr		Årg		Ser				
		-		j)		j)		j)		j)		j)		1	•	,	k		Arg		*	+
	o acid in hG-CSF deriv		i)		Jac	Thr			Arg		Ser		Ser									
			,	Ile		Thr			Arg Arg Arg		Ser		Ser									
			;	Asn			3	25.8	P.L.G	Ser		Ser										
				*		Thr	Thr		ST.	Sor	Ser		Ser									
		(e)		Arg	,	Thr	_	Arg Arg Arg Arg Arg		Ser		Ser										
		ф ф	(g)			Ile		Arg		Ser	-	Ser	_									
		Ô				Ile	1	Arg	†	Ser	1	Ser	⊸									
	p)			Val Cys		Ile		Arg	1	Ser		Ser										
		a)		*		Glu Ile Ile		Lys		Ser		Ser										
Position from N-terminal amino acid (hG-CSF in Table 1)		("S-CSF IN TABLE I)	107 TO	TRC (LUL)	1, 7, 7	ord (nen)		4th (Gly)		oth (Pro)		17th (Cys)										

*: unsubstituted amino acid

As the polypeptide having TPO activity for use in the present invention, any protein may be used with the proviso that it has the requisite TPO activity, such as the c-mp1 ligand which is a polypeptide having the amino acid sequence shown in Table 3 [Nature, 369, 533 (1994)], as well as leukemia inhibiting factors, stem cell factors, macrophage colony stimulating factors, granulocyte/macrophage colony stimulating factors, erythropoietin, interleukin (IL)-3, IL-6, IL-11, megakaryocyte colony stimulating factors and the like.

TABLE 3

```
SerProAlaProProAlaCysAspLeuArgValLeuSerLysLeu
                                                   5
         LeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysPro
                                                                                           25
         GluValHisProLeuProThrProValLeuLeuProAlaValAsp
         PheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAla
         GlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyValMet
        AlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeu
       GlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGln
                                             95
       SerLeuLeuGlyThrGlnLeuProProGlnGlyArgThrThrAla
                                          110
      HisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeu
                                                                                    130
      ArgGlyLysValArgPheLeuMetLeuValGlyGlySerThrLeu
      CysValArgArgAlaProProThrThrAlaValProSerArgThr
                                                                                    160
     SerLeuValLeuThrLeuAsnGluLeuProAsnArgThrSerGly
    LeuLeuGluThrAsnPheThrAlaSerAlaArgThrThrGlySer
                                        185
                                                                                   190
    GlyLeuLeuLysTrpGlnGlnGlyPheArgAlaLysIleProGly
                                                                                  205
    LeuLeuAsnGlnThrSerArgSerLeuAspGlnIleProGlyTyr
                                       215
. LeuAsnArgIleHisGluLeuLeuAsnGlyThrArgGlyLeuPhe
                                      230
   ProGlyProSerArgArgThrLeuGlyAlaProAspIleSerSer
  GlyThrSerAspThrGlySerLeuProProAsnLeuGlnProGly
                                      260
  TyrSerProSerProThrHisProProThrGlyGlnTyrThrLeu
                                                                                280
  PheProLeuProThrLeuProThrProValValGInLeuHis
                                     290
                                                                                295
 ProLeuLeuProAspProSerAlaProThrProThrProThrSer
                                    305
                                                                               310
 ProLeu Leu Asn Thr Ser Tyr Thr II is Ser Gln Asn Leu Ser Gln
GluGly
          332
```

The polypeptide having G-CSF activity and the other polypeptide having TPO activity, which constitute the fused polypeptide of the present invention, are not particularly limited, provided that they contain respective activity-producing portions. For example, when the c-mpl ligand is used as the polypeptide having TPO activity, it may contain an amino acid sequence of the 153rd and 154th positions counting from the N-terminal amino acid.

Also included in the polypeptide of the present invention is a polypeptide in which a polypeptide having G-CSF activity and a polypeptide having TPO activity are fused via a spacer peptide. As the spacer peptide, any sequence may be used with the proviso that it does not spoil the G-CSF activity and TPO activity. For example, the peptide shown in Table 4 can be used as the spacer peptide.

TABLE 4

Linker

(GlyGlyGlySer)3Arg (SerGlyGlyGly)4Arg

SerGlyGlyGlyArg

(SerGlyGlyGly)4

SerGlyGlyGly

(GlyGlyGlySer);

(GlyGlyGlySer)2

Examples of the fusion polypeptide of the present invention include a polypeptide having the amino acid sequence shown in Sequence ID No. 1, 2 or 3 and a polypeptide derived from the amino acid sequence of the fusion polypeptide by addition, deletion or substitution of one or more amino acids within such a range that the G-CSF activity and TPO activity are not spoiled, having a homology of 40% or more with the amino acid sequence of the polypeptide. The homology is preferably 60% or more, and more preferably 80% or more.

The substitution, deletion or addition of amino acids can be carried out in accordance with known methods described for example in Nucleic Acid Research, 10, 6487 (1982); Proc. Natl. Acad. Sci., USA, 79, 6409 (1982); Proc. Natl. Acad. Sci., USA, 81, 5662 (1984); Science, 224, 1431 (1984); PCT WO 85/00817; Nature, 316, 601 (1985); Gene, 34, 315 (1985); Nucleic Acid Research, 13, 4431 (1985); and "Current Protocols in Molecular Biology", Chap. 8, Mutagenesis of Cloned DNA, John Wiley & Sons, Inc. (1989).

Also included in the fusion polypeptide of the present invention is a peptide having an amino acid sequence in which a secretion signal peptide is added to the N-terminal amino acid of the above-mentioned polypeptide; examples include a polypeptide having the amino acid sequence shown in Sequence ID No. 1, 7 or 9

In addition, a fusion polypeptide having G-CSF activity and TPO activity, in which at least one amino group of the

above-mentioned polypeptide is chemically modified with a polyalkylene glycol derivative, is also included in the fusion polypeptide of the present invention.

Examples of the polyalkylene derivative include a polyethylene glycol derivative, a polypropylene glycol derivative, a polyoxyethylene-polyoxypropylene copolymer derivative and the like. Polyethylene glycol-succinimidyl propionate is preferred.

The fusion polypeptide chemically modified with a polyethylene glycol derivative can be prepared in accordance with the method described in Japanese Examined Patent Publication No. 96558/95.

The DNA which codes for the fusion polypeptide (hereinafter referred to as "TPO-CSF") of the present invention can be obtained by polymerase chain reaction (PCR) and the like based on the known nucleotide sequences of a polypeptide having TPO activity and a polypeptide having G-CSF activity. It can also be obtained by chemical synthesis.

Examples of DNA which codes for TPO-CSF include a DNA Containing a nucleotide sequence that codes for a polypeptide having the amino acid sequence shown in Sequence ID No. 1, 2 or 3 or a polypeptide derived from the amino acid sequence of the polypeptide by substitution, deletion or addition of one or more amino acids but having the G-CSF activity and TPO activity, such as a DNA which contains the nucleotide sequence shown in Sequence ID NOS: 4, 6 or 8

Other examples are DNA's in which mutation such as substitution mutation, deletion mutation, insertion mutation or the like is introduced into the above-mentioned DNA within such a range that the G-CSF activity and TPO activity are not spoiled, which can be obtained, for example, by colony hybridization or plaque hybridization using a DNA containing the nucleotide sequence shown in Sequence ID, NOS:4,6078 as a probe.

An example is a DNA which is identified by carrying out hybridization of a membrane filter on which colony- or plaque-originated DNA is fixed, at 65°C in the presence of 0.7 to 1.0 M sodium chloride using a DNA containing the nucleotide sequence shown in Sequence ID, No. 1, 5 or 6 as a probe, and subsequently washing the resulting filter at 65°C in 0.1 to 2-fold SSC solution (1-fold SSC contains 150 mM sodium chloride and 15 mM sodium citrate).

The hybridization techniques are described in "Molecular Cloning, A laboratory manual", second edition (edited by Sambrook, Fritsch and Maniatis, Cold Spring Harbor Laboratory Press, 1989).

All polypeptides encoded by the DNA defined in the foregoing are included in the TPO-CSF.

Examples of plasmids containing the TPO-CSF-encoding DNA include pBS-T153LND28, pBS-T154ND28 and pBS-T153ND28LN1. Escherichia coli TLN-1 as a colon bacillus containing pBS-T153LND28 and Escherichia coli TN-1 as a colon bacillus

containing pBS-T154ND28 have been deposited on February 16, 1995, in National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, Higashi 1-1-3, Tsukuba-shi, Ibaraki, Japan (the postal code: 305), and have been assigned the designations as FERM BP-5001 and FERM BP-5002, respectively.

In order to express the thus obtained TPO-CSF-encoding gene (hereinafter referred to as "TPO-CSF gene") in a host, a DNA fragment containing the TPO-CSF gene is first cleaved into a TPO-CSF gene-containing DNA of an appropriate length with restriction enzymes or DNA hydrolyzing enzymes and inserted into downstream site of a promoter gene on an expression vector and then the thus DNA-inserted expression vector is introduced into a host suitable for the expression vector.

As the host, any host capable of expressing the intended gene can be used. Examples thereof include microbial strains belonging to the genera *Escherichia*, *Serratia*, *Corynebacterium*, *Brevibacterium*, *Pseudomonas*, *Bacillus* and the like, as well as yeast strains, animal cell hosts and the like.

Useful as the expression vector is a vector which can replicate by itself in the above-mentioned host or can be inserted into its chromosome and has a promoter at a site where transcription of the TPO-CSF gene can be made.

When a microorganism such as *Escherichia coli* or the like is used as the host, it is desirable that the TPO-CSF expression vector can replicate by itself in the microorganism

ITTLE LE .

and comprises a promoter, a ribosome binding sequence, the TPO-CSF gene and a transcription termination sequence. It may also contain a regulatory gene.

Examples of the expression vector include pBTrp2, pBTacl and pBTac2 (all available from Boehringer-Mannheim Co.), pKYP10 (Japanese Published Unexamined Patent Application No. 110600/83), pKYP200 [Agric. Biol. Chem., 48, 669 (1984)], pLSA1 [Agric. Biol. Chem., 53, 277 (1989)], pGEL1 [Proc. Natl. Acad. Sci., USA, 82, 4306 (1985)], pBluescript (available from STRATAGENE Co.), pTrs30 [prepared from Escherichia coli JM109/pTrs30 (FERM BP-5407)], pTrs32 [prepared from Escherichia coli JM109/pTrs32 (FERM BP-5408)], pAGE107 [Japanese Published Unexamined Patent Application No. 22979791; Miyaji et al., Cytotechnology, 3, 133 (1990)], pAS3-3 (Japanese Published Unexamined Patent Application No. 227075/90) and pAMoERC3Sc CDM8 [Brian Seed et al., Nature, 329, 840 (1987)].

As the promoter, any one capable of exerting expression in a host such as *Escherichia coli* or the like can be used. Examples thereof include promoters originated from *Escherichia coli*, phages and the like, such as $\underline{\text{trp}}$ promoter ($\underline{\text{Ptrp}}$), $\underline{\text{lac}}$ promoter ($\underline{\text{Plac}}$), $\underline{\text{PL}}$ promoter, $\underline{\text{PR}}$ promoter and the like. Also useful are artificially designed and modified promoters such as a promoter prepared by connecting two $\underline{\text{Ptrp}}$ promoters in series ($\underline{\text{Ptrpx}}$ 2), $\underline{\text{tac}}$ promoter and the like.

As the ribosome binding sequence, any sequence capable of exerting expression in a host such as *Escherichia coli* or

the like can be used, but it is desirable to use a plasmid in which the ribosome binding sequence and the initiation codon are arranged with an appropriate distance (for example, 6 to 18 bases).

The second secon

Any gene which codes for TPO-CSF can be used as the TPO-CSF gene, but it is desirable to use the gene by substituting its bases in such a manner that the DNA sequence of the gene has codons most suitable for its expression in host microorganisms.

Although the transcription termination sequence is not always necessary for the expression of the gene, it is desirable to arrange the transcription termination sequence preferably just downstream of the structural gene.

Examples of the host include Escherichia coli XL1-Blue, Escherichia coli XL2-Blue, Escherichia coli DH1, Escherichia coli DH5 α, Escherichia coli MC1000, Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JM109, Escherichia coli HB101, Escherichia coli No. 49, Escherichia coli W3110, Escherichia coli NY49, Bacillus subtilis, **Bacillus** amyloliquefacience, Brevibacterium immariophilum ATCC 14068, Brevibacterium saccharolyticum ATCC 14066, Brevibacterium flavum ATCC 14067, Brevibacterium lactofermentum ATCC 13869, Corynebacterium glutamicum ATCC 13032, Corynebacterium acetoacidophilum ATCC 13870, Microbacterium ammoniaphilum ATCC 15354 and the like.

When a yeast strain is used as the host, YEp13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419) or the like may be used as the expression vector.

Any type of promoter can be used, provided that it can exert expression in yeast strain hosts. Examples thereof include promoters of genes of hexose kinase and the like glycolytic pathway enzymes, gal 1 promoter, gal 10 promoter, heat shock protein promoter, MF α l promoter, CUP 1 promoter and the like.

Examples of the host include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, Schwanniomyces alluvius and the like.

When animal cells are used as the host, examples of useful expression vectors include pcDNA I/Amp, pcDNA I, pcDM8 (all available from Funakoshi Co., Ltd.), pcDNA 3 (available from Invitrogen Co.), pAGE248, pAGE210 and the like.

Any promoter capable of exerting expression in the animal cell hosts can be used. For example, the promoter of human CMV IE (immediate early) gene may be used. Also, the enhancer of human CMV IE gene may be used together with the promoter.

Any gene which codes for TPO-CSF can be used as the TPO-CSF gene.

In general, only a portion of TPO-CSF expressed from the gene is secreted into the extracellular moiety, so that, in order to effect positive extracellular secretion of TPO-CSF from the host, it is desirable to prepare and use a gene having a sequence in which a nucleotide sequence coding for a signal peptide is added to the gene, in accordance with the method of Paulson et al. [C. Paulson et al., J. Biol. Chem., 264, 17619 (1989)] and the method of Lowe et al. [John. B. Lowe et al., Proc. Natl. Acad. Sci., USA, 86, 8227 (1989); John. B. Lowe et al., Genes Develop., 4, 1288 (1990)].

As the host, namalwa cells, HBT5637 (Japanese Published Unexamined Patent Application No. 299/88), COS cells, CHO cells and the like may be used.

Introduction of TPO-CSF gene-containing DNA into animal cells can be effected by any method, provided that it can introduce DNA into animal cells. For electroporation method [Miyaji et al., Cytotechnology, 3, 133 a calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), a lipofection method [Philip L. Felgner et al., Proc. Natl. Acad. Sci., USA, <u>84</u>, 7413 (1987)] and the like may be used. Isolation and cultivation of a transformant can be effected in accordance with the method described in Japanese Published Unexamined Patent Application No. 227075/90 Japanese or Published Unexamined Patent Application No. 257891/90.

TPO-CSF can be produced by cultivating the thus obtained transformant in accordance with the usually used cultivating method.

When a transformant obtained by using Escherichia coli, yeast or the like microorganism as the host is cultivated, the medium may be either a natural medium or a synthetic medium, with the proviso that it contains carbon sources, nitrogen sources, inorganic salts and the like which can be assimilated by the microorganism and cultivating of the transformant can be made efficiently.

As the carbon sources, those which can be assimilated by respective microorganisms are used, which include carbohydrates such as glucose, fructose, sucrose, molasses containing them, starch, starch hydrolyzates and the like, organic acids such as acetic acid, propionic acid and the like and alcohols such as ethanol, propanol and the like.

Examples of useful nitrogen sources include ammonia, ammonium salts of various inorganic and organic acids, such as ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate and the like, and other nitrogen-containing compounds, as well as peptone, meat extract, yeast extract, corn steep liquor, casein hydrolyzate, soybean cake and soybean cake hydrolyzate, various fermented microbial cells and digests thereof.

Examples of useful inorganic materials include potassium dihydrogenphosphate, dipotassium hydrogenphosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like.

Cultivation is carried out under aerobic conditions by shaking, submerged-aerial stirring or the like. The temperature for the cultivation is preferably 15 to 40°C, and the period for the cultivation is generally 16 to 96 hours. The medium pH is controlled at 3.0 to 9.0 during the cultivation. Adjustment of the pH is carried out using an inorganic or organic acid, an alkaline solution, urea, calcium carbonate, ammonia and the like.

As occasion demands, antibiotics such as ampicillin, tetracycline and the like may be added to the medium during the cultivation.

When a microorganism transformed with an expression vector prepared using an inducible promoter is cultivated, an inducer may be added to the medium as occasion demands. For example, isopropyl- β -D-thiogalactopyranoside (IPTG) or the like may be added to the medium when a microorganism transformed with an expression vector prepared using <u>lac</u> promoter is cultivated, or indoleacetic acid (IAA) or the like when a microorganism transformed with an expression vector prepared using <u>trp</u> promoter is cultivated.

When a transformant obtained using animal cells as the host is cultivated, generally used RPMI 1640 medium, MEM medium (manufactured by Eagle Co. or GibcoBRL Co.), D-MEM medium (manufactured by GibcoBRL Co.) or any one of these media further supplemented with fetal bovine serum and the like may be used.

The cultivation is carried out, for example, in the presence of 5% CO₂. The temperature for the cultivation is preferably 35 to 37%C, and the period for the cultivation is generally 3 to 7 days.

As occasion demands, antibiotics such as kanamycin, penicillin and the like may be added to the medium during the cultivation.

Productivity can be increased using a gene amplification system in which dihydrofolate reductase gene and the like are used, in accordance with the method described in Japanese Published Unexamined Patent Application No. 227075/90.

The TPO-CSF of the present invention obtained in this manner can be purified by commonly used protein purification techniques.

For example, when the TPO-CSF is not secreted into outside moiety of the host cells, a culture broth of the transformant is subjected to centrifugation to collect cells in the culture broth, and the thus collected cells are washed and then disrupted using a sonicator, French press, Manton Gaulin homogenizer, Dynomil or the like, thereby obtaining a cell-free extract. Thereafter, the cell-free extract is subjected to centrifugation, and the TPO-CSF is purified from the resulting supernatant fluid making use of various techniques including salting out with ammonium sulfate or the like salt, anion exchange chromatography on diethylaminoethyl (DEAE)-Sepharose or the like, hydrophobic chromatography on Butylsepharose,

Phenylsepharose or the like, molecular sieve-aided gel filtration and various types of electrophoresis such as isoelectric focusing and the like.

When the TPO-CSF is secreted, purified TPO-CSF can be obtained from a culture filtrate of the transformant in the same manner as the case of the above-mentioned treatment of cell-free extract supernatant.

When produced in *Escherichia coli* cells, it can be purified efficiently by the combination of the above-mentioned method with the method described in Japanese Published Unexamined Patent Application No. 267292/88.

Also, it is possible to produce the TPO-CSF of the present invention in the form of its fusion protein with another protein and to purify the product by affinity chromatography using a substance having affinity for the fused protein. For example, it is possible to produce the TPO-CSF of the present invention as its fusion protein with protein A and purify it by an immunoglobulin G-aided affinity chromatography, in accordance with the method of Lowe et al. [John. B. Lowe et al., Proc. Natl. Acad. Sci., USA, 86, 8227 (1989); John. B. Lowe et al., Genes Develop., 4, 1288 (1990)].

In addition, it can also be purified by affinity chromatography using antibodies specific for a polypeptide which has G-CSF activity, such as antibodies specific for G-CSF.

The TPO-CSF of the present invention can be used as it is or as pharmaceutical compositions in various dosage forms.

The pharmaceutical compositions of the present invention are produced by mixing an effective amount of TPO-CSF as the active ingredient uniformly with pharmacologically acceptable carriers.

Preferably, these pharmaceutical compositions may be prepared in the form of unit dose packages suitable for injection.

Injections for use in injection administration can be prepared by using a carrier such as distilled water, a salt solution of sodium chloride or of a mixture of sodium chloride with other inorganic salts, a sugar solution of mannitol, lactose, dextran, glucose or the like, an amino acid solution of glycine, arginine or the like, an organic acid solution, an organic base solution or a mixture solution comprising a salt solution and a sugar solution. In that case, the composition can be made into solutions, suspensions or dispersions in the usual way using auxiliaries which include an osmotic pressure adjusting agent, a plant oil such as sesame oil or soybean oil and a surface active agent such as lecithin or a nonionic surface active agent. These solutions can be made into solid preparations by powder making, freeze drying and the like means, which are dissolved again prior to their use.

The above-mentioned pharmaceutical compositions which contain the TPO-CSF of the present invention as the active

ingredient are useful for the treatment anemia or patients who become anemic as a result of treatment of diseases.

BRIEF EXPLANATION OF THE DRAWINGS

Fig. 1 is an illustration showing construction of a plasmid containing DNA which codes for TPO-ND28 (1).

Fig. 2 is an illustration showing construction of a plasmid containing DNA which codes for TPO-ND28 (2).

Fig. 3 is an illustration showing construction of a plasmid containing DNA which codes for TPO-ND28 (3).

BEST MODE OF CARRYING OUT THE INVENTION

Example 1 Preparation of DNA which codes for TPO-CSF

A DNA which codes for TPO-CSF was prepared in the following manner, using a DNA which codes for a polypeptide ND28 in which the 1st position amino acid residue of the amino acid sequence of human G-CSF was substituted by alanine (Ala), and the 3rd position amino acid by threonine (Thr), the 4th position amino acid by tyrosine (Tyr), the 5th position amino acid by arginine (Arg) and the 17th position amino acid by serine (Ser) (Japanese Published Unexamined Patent Application No. 267292/88) as a DNA which codes for a polypeptide having G-CSF activity, and a DNA that codes for a polypeptide having the amino acid sequence of Table 3 (de Sauvage et al., Nature, 369, 533 (1994); hereinafter referred to as "TPO") as a DNA which codes for a polypeptide having TPO activity. The fusion

polypeptide of TPO and ND28 is abbreviated as TPO-ND28 hereinafter.

1. Preparation of TPO gene

A TPO-encoding gene (hereinafter referred to as "TPO gene") for use in the preparation of TPO-ND28 was obtained by PCR in the following manner on the basis of the nucleotide sequence reported by de Sauvage et al. [Nature, 369, 533 (1994)].

A DNA shown in Sequence ID No. 7 containing 5' end nucleotide sequence of the TPO gene (hereinafter referred to as "primer 1") and a DNA shown in Sequence ID No. 8 containing 3' end nucleotide sequence of the TPO gene (hereinafter referred to as "primer 2") were synthesized using 380A DNA synthesizer of Applied Biosystems, Inc. In order to facilitate the cloning, a restriction enzyme recognition sequence was added to the terminus of each primer.

Amplification and cloning of the TPO gene translation region sequence were carried out by reverse transcription PCR using the primers 1 and 2, human liver poly A⁺ mRNA (manufactured by Clontech Co., product No. CL 6510-1) mRNA and SuperScript Preamplification System for First Strand cDNA Synthesis Kit (manufactured by Gibcobra Co.).

A 0.013 ml portion of aqueous solution containing 1,000 ng of human liver poly A^+ mRNA and 500 ng of oligo(dt) 12-18 (included in the kit) was treated at 70°C for 10 minutes and then allowed to stand in ice for 1 minute.

The resulting solution was mixed with 0.002 ml of ten times-concentrated synthesis buffer, 0.001 ml of 10 mM dNTP mix, 0.002 ml of 0.1 M DTT and 0.001 ml of SuperScript II RT (200 kU/ml) (all included in the kit), and the mixture was allowed to stand at room temperature for 10 minutes and then incubated at 42°C for 50 minutes. After completion of the incubation, the mixture was heated at 90°C for 5 minutes to terminate the reverse transcription reaction.

The reaction solution was mixed with 0.001 ml of \underline{E} . \underline{coli} RNase H (2,000 U/ml; included in the kit) and incubated at 37°C for 20 minutes.

A 0.1 ml portion of a reaction solution containing 0.005 ml of the above reaction solution, 400 nM of the primer 1, 400 nM of the primer 2, 20 mM of Tris-HCl (pH 8.2), 10 mM of potassium chloride, 0.01 mg/ml of bovine serum albumin (hereinafter referred to as "BSA"), 2 mM of magnesium chloride, 6 mM of ammonium sulfate, 0.1% Triton X-100, 10% dimethyl sulfoxide (hereinafter referred to as "DMSO"), 0.05 mM of deoxyadenosine triphosphate (hereinafter referred "dATP"), 0.05 mM of deoxycytidine triphosphate (hereinafter referred to as "dCTP"), 0.05 mM of deoxyguanosine triphosphate (hereinafter referred to as "dGTP") and deoxythymidine triphosphate (hereinafter referred to as "dTTP") was mixed with 2.5 units of Pfu polymerase (manufactured by Stratagene Co.) to carry out PCR using PERKIN ELMER CETUS DNA Thermal Cycler (manufactured by Takara Shuzo Co., Ltd.) by 35

time repetition of a three step incubation at 94°C for 45 seconds, at 50°C for 1 minute and at 72°C for 2 minutes.

The resulting reaction solution was subjected to phenol/chloroform extraction and ethanol precipitation, and the thus obtained precipitate was dissolved in 0.015 ml of TE buffer [10 mM Tris-HCl (pH 8.0) and 1 mM ethylenediaminetetraacetic acid (hereinafter referred to as "EDTA")].

The thus prepared solution was mixed with restriction enzymes $\underline{\text{Hind}}$ III and $\underline{\text{Kpn}}$ I to cleave the DNA amplified by PCR.

The resulting solution was subjected to an agarose gel electrophoresis, and a HindIII-KpnI treated DNA of about 1.1 kb was isolated from the agarose gel.

Using DNA Ligation Kit Ver. 1 (manufactured by Takara Shuzo Co., Ltd.), the thus isolated DNA (50 ng) was ligated with a HindIII-KpnI cleaved 2.9 kb fragment (30 ng) of a plasmid vector pBlueScript II SK(-) having a multicloning site (manufactured by Stratagene Co.) (volume of the reaction solution: 0.018 ml).

Using this reaction solution, an Escherichia colistrain DH5 α (Library Efficiency DH5 α Competent Cell, manufactured by GibcoBRL Co.) was transformed in the usual way, and the resulting transformant was spread on LB agar medium containing 50 μ g/ml of ampicillin and cultivated overnight at 37°C.

Plasmids were isolated from several transformant strains grown on the medium in accordance with a known method [Birnboim et al., Nucleic Acids Res., 7, 1513 (1979)].

Nucleotide sequence of the insertion fragment in each plasmid was determined using Taq DyeDeoxy Terminator Cycle Sequencing Kit (manufactured by Applied Biosystems Japan Inc., product No. 401113) and ABI373A DNA Sequencer (manufactured by Applied Biosystems Japan Inc.). In determining the nucleotide sequence, six DNA's having the nucleotide sequences of Sequence ID Nos. 9 to 13 or 14 and two primers having the nucleotide sequence shown in Sequence ID No. 15 or 16 containing a nucleotide sequence in the vector were synthesized based on the nucleotide sequence of TPO gene [de Sauvage et al., Nature, 369, 533 (1994)] and used as primers for the nucleotide sequence determination.

Determination of nucleotide sequence was carried out in accordance with the instructions attached to the kit and apparatus.

Of the above-mentioned plasmids, a plasmid pBS-TPO332 which coincided with the reported nucleotide sequence of the insertion fragment of TPO gene was used in the subsequent procedures.

2. Construction and expression of DNA which codes for TPO-ND28

Using the TPO-encoding DNA obtained in Example 1-1 and the ND28-encoding DNA obtained by the method described in Japanese Published Unexamined Patent Application No. 267292/88,

a fusion polypeptide of TPO and ND28 (TPO on the N-terminal side and ND28 on the C-terminal side), TPO-ND-28, was prepared in the following manner.

1) Construction of DNA (Sequence ID No. 5) which codes for TPO-ND28 (1) [Sequence ID No. 2; a type constructed through a linker (Gly Gly Gly Ser Gly Gly Gly Ser Arg; sequence ID No. 17)]

Though the mature type TPO comprises 332 amino acids, it is reported that its shortened protein consisting of its N-terminal side 153 amino acids can show the same activity of the complete length TPO [de Sauvage et al., Nature, 369, 533 (1994)], so that a DNA which codes for TPO-ND28 (1) in which the 153 amino acids from the N-terminal of TPO, used as its N-terminal side, was fused with the complete length ND28 (174 amino acids) as the C-terminal side through a linker (Gly Gly Gly Ser Gly Gly Gly Ser Arg) was prepared in the following manner (cf. Fig. 1).

(i) Preparation of DNA which codes for the TPO moiety of TPO-ND28 (1)

In order to prepare a DNA which codes for the TPO moiety of TPO-ND28 (1) by means of PCR, a DNA primer having a nucleotide sequence (Sequence ID No. 18) which corresponds to the linker was synthesized as the 3' end primer (hereinafter referred to as "primer 3").

Using the thus synthesized primer 3 and the primer 1 and pBS-TPO332, PCR was carried out in the following manner.

A 0.1 ml portion of a reaction solution containing 10 ng of pBS-TPO332, 400 nM of the primer 3, 400 nM of the primer 1, 20 mM of Tris-HCl (pH 8.2), 10 mM of potassium chloride, 0.01 mg/ml of BSA, 2 mM of magnesium chloride, 6 mM of ammonium sulfate, 0.1% Triton X-100, 10% DMSO, 0.05 mM of dATP, 0.05 mM of dCTP, 0.05 mM of dGTP and 0.05 mM of dTTP was mixed with 2.5 units of Pfu polymerase to carry out PCR using PERKIN ELMER CETUS DNA Thermal Cycler (manufactured by Takara Shuzo Co., Ltd.) by 18 time repetition of a three step incubation at 94°C for 45 seconds, at 50°C for 1 minute and at 72°C for 1 minute.

The resulting reaction solution was subjected to phenol/chloroform extraction and ethanol precipitation, and the thus obtained precipitate was dissolved in 0.015 ml of TE buffer.

The thus prepared solution was mixed with restriction enzymes $\underline{\text{Hind}}$ III and $\underline{\text{Xba}}$ I to cleave the DNA amplified by PCR.

The resulting solution was subjected to an agarose gel electrophoresis, and a HindIII-XbaI treated DNA fragment of about 0.6 kb was isolated from the agarose gel.

Using DNA Ligation Kit Ver. 1 (manufactured by Takara Shuzo Co., Ltd.), the thus isolated DNA fragment (100 ng) was ligated with a HindIII-XbaI cleaved 2.9 kb fragment (50 ng) of pBlueScript II SK(-) (volume of the reaction solution: 0.018 ml).

Using this reaction solution, the <code>Escherichia coli</code> strain DH5 α was transformed in the usual way, and the resulting

transformant was spread on LB agar medium containing 50 $\mu g/ml$ of ampicillin and cultivated overnight at 37°C.

Plasmids were isolated from several transformant strains grown on the medium in accordance with a known method.

Nucleotide sequence of the insertion fragment in each plasmid was determined using Taq DyeDeoxy Terminator Cycle Sequencing Kit and ABI373A DNA Sequencer (manufactured by Applied Biosystems Japan Inc.). In determining the nucleotide sequence, primers having the nucleotide sequences of Sequence ID Nos. 9 to 12, 15 and 16 were used as primers for the nucleotide sequence determination.

Determination of nucleotide sequence was carried out in accordance with the instructions attached to the kit and apparatus.

Of the above-mentioned plasmids, plasmid pBS-T153LND which coincided with the reported nucleotide sequence of the insertion fragment of TPO gene was used in the subsequent procedures.

(ii) Preparation of DNA which codes for the ND28 moiety of TPO-ND28 (1)

In order to prepare a DNA which codes for the ND28 moiety of TPO-ND28 (1) by means of PCR, a primer having a nucleotide sequence (Sequence ID No. 19) which corresponds to the linker and the amino acid sequence of ND28 was synthesized as the 5' end primer (hereinafter referred to as "primer 4"), and a primer having a nucleotide sequence (Sequence ID No. 20)

which corresponds to the C-terminal side amino acid sequence of ND28 was synthesized as the 3^{\prime} end primer (hereinafter referred to as "primer 5").

Using the thus synthesized primers and plasmid pCfBD28 (Japanese Published Unexamined Patent Application No. 267292/88), PCR was carried out in the following manner.

A 0.1 ml portion of a reaction solution containing 10 ng of pCfBD28, 400 nM of the primer 4, 400 nM of the primer 5, 20 mM of Tris-HCl (pH 8.2), 10 mM of potassium chloride, 0.01 mg/ml of BSA, 2 mM of magnesium chloride, 6 mM of ammonium sulfate, 0.1% Triton X-100, 10% DMSO, 0.05 mM of dATP, 0.05 mM of dCTP, 0.05 mM of dGTP and 0.05 mM of dTTP was mixed with 2.5 units of Pfu polymerase to carry out PCR using PERKIN ELMER CETUS DNA Thermal Cycler (manufactured by Takara Shuzo Co., Ltd.) by 18 time repetition of a three step incubation at 94°C for 45 seconds, at 50°C for 1 minute and at 72°C for 1 minute.

The resulting reaction solution was subjected to phenol/chloroform extraction and ethanol precipitation, and the thus obtained precipitate was dissolved in 0.015 ml of TE buffer.

The thus prepared solution was mixed with restriction enzymes <u>SacII</u> and <u>XbaI</u> to cleave the DNA amplified by PCR.

The resulting solution was subjected to an agarose gel electrophoresis, and a <u>SacII-Xba</u>I cleaved DNA fragment of about 0.5 kb was isolated from the agarose gel.

Using DNA Ligation Kit Ver. 1 (manufactured by Takara Shuzo Co., Ltd.), the thus isolated DNA fragment (100 ng) was ligated with a <u>SacII-XbaI</u> cleaved 2.9 kb fragment (50 ng) of pBlueScript II SK(-) (volume of the reaction solution: 0.018 ml).

Using this reaction solution, the Escherichia coli strain DH5 α was transformed in the usual way, and the resulting transformant was spread on LB agar medium containing 50 μ g/ml of ampicillin and cultivated overnight at 37°C.

Plasmids were isolated from several transformant strains grown on the medium in accordance with a known method.

Nucleotide sequence of the insertion fragment in each plasmid was determined using Taq DyeDeoxy Terminator Cycle Sequencing Kit and ABI373A DNA Sequencer. In determining the nucleotide sequence, two DNA's having the nucleotide sequence of Sequence ID No. 21 or 22 containing a nucleotide sequence of the ND28-encoding DNA and two DNA's having the nucleotide sequence of Sequence ID No. 15 or 16 containing a sequence present in the vector were used as primers for the nucleotide sequence determination.

Determination of nucleotide sequence was carried out in accordance with the instructions attached to the kit and apparatus.

Of the above-mentioned plasmids, plasmid pBS-LND28 in which the nucleotide sequence of the insertion fragment

coincided with the nucleotide sequences of the ND28 gene and primers was used in the subsequent procedures.

(iii) Preparation of DNA which codes for TPO-ND28 (1)

The DNA's respectively which code for the TPO moiety and ND28 moiety prepared in Example 1-2-1)-(i) and (ii) were fused in the following manner.

A 2,000 ng portion of pBS-T153LND was cleaved with restriction enzymes <u>Sac</u>II and <u>Xba</u>I and subjected to an agarose gel electrophoresis to isolate a DNA fragment of about 3.5 kb.

Also, a 500 ng portion of pBS-LND28 was cleaved with restriction enzymes <u>Sac</u>II and <u>Xba</u>I and subjected to an agarose gel electrophoresis to isolate a DNA fragment of about 0.5 kb.

Using DNA Ligation Kit Ver. 1 (manufactured by Takara Shuzo Co., Ltd.), the DNA fragment of about 3.5 kb (100 ng) was ligated with the DNA fragment of about 0.5 kb (100 ng) (volume of the reaction solution: 0.018 ml).

Using this reaction solution, the Escherichia coli strain DH5 α was transformed in the usual way, and the resulting transformant was spread on LB agar medium containing 50 μ g/ml of ampicillin and cultivated overnight at 37°C.

Plasmids were isolated from several transformant strains grown on the medium in accordance with a known method.

Structures of these plasmids were examined using restriction enzymes <u>Sac</u>II and <u>Xba</u>I, and plasmid pBS-T153LND28 having a structure in which both of the DNA fragments are ligated with each other was used in the subsequent procedures.

2) Construction of DNA (Sequence ID No. 4) which codes for TPO-ND28 (2) [Sequence ID No. 1; a type constructed without a linker]

A DNA which codes for TPO-ND28 (2) in which the 154 amino acids of TPO from its N-terminal were fused with the N-terminal of D28 (174 amino acids) was prepared in the following manner (cf. Fig. 2).

(i) Preparation of DNA which codes for the TPO moiety of TPO-ND28 (2)

In order to prepare a DNA which codes for the TPO moiety of TPO-ND28 (2) by means of PCR, a primer having a nucleotide sequence shown in Sequence ID No. 23 which has a nucleotide sequence that corresponds to the amino acid sequences of TPO and ND28 was synthesized as the 3' side primer (hereinafter referred to as "primer 6").

Using the thus synthesized primer 6 and the primer 1 and pBS-TPO332, PCR was carried out in the following manner.

A 0.1 ml portion of a reaction solution containing 10 ng of pBS-TPO332, 400 nM of the primer 1, 400 nM of the primer 6, 20 mM of Tris-HCl (pH 8.2), 10 mM of potassium chloride, 0.01 mg/ml of BSA, 2 mM of magnesium chloride, 6 mM of ammonium sulfate, 0.1% Triton X-100, 10% DMSO, 0.05 mM of dATP, 0.05 mM of dCTP, 0.05 mM of dGTP and 0.05 mM of dTTP was mixed with 2.5 units of Pfu polymerase to carry out PCR using PERKIN ELMER CETUS DNA Thermal Cycler by 18 time repetition of a three step

incubatiion at $94\,^{\circ}\text{C}$ for 45 seconds, at $50\,^{\circ}\text{C}$ for 1 minute and at $72\,^{\circ}\text{C}$ for 1 minute.

The resulting reaction solution was subjected to phenol/chloroform extraction and ethanol precipitation, and the thus obtained precipitate was dissolved in 0.015 ml of TE buffer.

The thus prepared solution was mixed with restriction enzymes $\underbrace{\text{Hind}}_{\text{III}}$ and $\underbrace{\text{Xho}}_{\text{I}}$ to cleave the DNA amplified by PCR.

The resulting solution was subjected to an agarose gel electrophoresis, and a <a href="https://hint.nih.gov/Hintelloop)/Hintelloop/H

Using DNA Ligation Kit Ver. 1 (manufactured by Takara Shuzo Co., Ltd.), the thus isolated DNA fragment (100 ng) was ligated with a <u>HindIII-XhoI</u> cleaved 2.9 kb fragment (50 ng) of pBlueScript II SK(-) (volume of the reaction solution: 0.018 ml).

Using this reaction solution, the Escherichia coli strain DH5 α was transformed in the usual way, and the resulting transformant was spread on LB agar medium containing 50 μ g/ml of ampicillin and cultivated overnight at 37°C.

Plasmids were isolated from several transformant strains grown on the medium in accordance with a known method.

Nucleotide sequence of the insertion fragment in each plasmid was determined using Taq DyeDeoxy Terminator Cycle Sequencing Kit and ABI373A DNA Sequencer (manufactured by Applied Biosystems Japan Inc.). In determining the nucleotide

sequence, primers having the nucleotide sequences of Sequence ID Nos. 9 to 12, 15 and 16 were used as primers for the nucleotide sequence determination.

Determination of nucleofide sequence was carried out in accordance with the instructions attached to the kit and apparatus.

Of the above-mentioned plasmids, plasmid pBS-T154ND in which the nucleotide sequence of the insertion fragment coincided with the nucleotide sequences of the TPO gene and primers was used in the subsequent procedures.

(ii) Preparation of DNA which codes for TPO-ND28 (2)

The DNA which codes for the TPO moiety prepared in Example 1-2-2)-(i) and the DNA which codes for the ND28 moiety prepared in Example 1-2-1)-(ii) were fused in the following manner.

A 200 ng portion of pBS-T154ND was cleaved with restriction enzymes KpnI and XhoI and subjected to agarose gel electrophoresis to isolate a DNA fragment of about 3.5 kb.

Also, a 500 ng portion of pBS-LND28 was cleaved with restriction enzymes <u>Kpn</u>I and <u>Xho</u>I and subjected to agarose gel electrophoresis to isolate a DNA fragment of about 0.5 kb.

Using DNA Ligation Kit Ver. 1 (manufactured by Takara Shuzo Co., Ltd.), the DNA fragment of about 3.5 kb (100 ng) was ligated with the DNA fragment of about 0.5 kb (100 ng) (volume of the reaction solution: 0.018 ml).

Using this reaction solution, the Escherichia colistrain DH5 α was transformed in the usual way, and the resulting transformant was spread on LB agar medium containing 50 μ g/ml of ampicillin and cultivated overnight at 37°C.

Plasmids were isolated from several transformant strains grown on the medium in accordance with a known method.

A DNA which codes for TPO-ND28 (3) in which the 153 amino acids from the N-terminal of TPO, used as its N-terminal side, was fused with the complete length ND28 (174 amino acids) as the C-terminal side through a linker (Ser Gly Gly Gly Ser Gly Gly Gly Arg) was prepared in the following manner (cf. Fig. 3).

In order to ligate the DNA which codes for the TPO moiety prepared in Example 1-2-2)-(i) with the DNA which codes for the ND28 moiety prepared in Example 1-2-1)-(ii) through a linker (Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Arg), two DNA's shown in Sequence ID Nos. 25 and 26 having nucleotide sequences which form SplI-BbeI complementary

termini on both sides corresponding to the amino acid sequences of linkers were synthesized.

A 0.02 ml portion of a solution containing 0.01 mM of the DNA shown in Sequence ID No. 25, 5 mM of ATP, 50 mM of Tris-HCl (pH 8.0), 10 mM of magnesium chloride and 5 mM of dithiothreitol was mixed with 10 units of T4 Polynucleotide Kinase (manufactured by Takara Shuzo Co., Ltd.), and the mixture was allowed to stand at 37°C for 30 minutes and then heated at 70°C for 3 minutes to obtain treating solution (1).

The DNA shown in Sequence ID No. 26 was also treated in the same manner to obtain treating solution (2).

Treating solution (1) was mixed with treating solution (2), and the mixture was incubated at 90°C for 5 minutes and then gradually cooled to 22°C spending 3 hours to prepare double-stranded DNA.

The thus prepared double-stranded DNA was inserted into the connecting site of the TPO-coding gene and ND28-coding gene of pBS-T154ND28 obtained in Example 1-2-2)-(ii) in the following manner.

A 2,000 ng portion of pBS-T154ND28 was cleaved with restriction enzymes BbeI and SplI and subjected to an agarose gel electrophoresis to isolate a DNA fragment of about 4.0 kb.

Using DNA Ligation Kit Ver. 1 (manufactured by Takara Shuzo Co., Ltd.), the DNA fragment of about 4.0 kb (100 ng) was ligated with the above-mentioned double-stranded DNA (12.5 pmole) (volume of the reaction solution: 0.018 ml).

Using this reaction solution, the *Escherichia coli* strain DH5 α was transformed in the usual way, and the resulting transformant was spread on LB agar medium containing 50 μ g/ml of ampicillin and cultivated overnight at 37°C.

Plasmids were isolated from several transformant strains grown on the medium in accordance with a known method.

Nucleotide sequence of the insertion fragment in each plasmid was determined using Taq DyeDeoxy Terminator Cycle Sequencing Kit and ABI373A DNA Sequencer. In determining the nucleotide sequence, two DNA's shown in Sequence ID Nos. 12 and 22 were used as primers. Determination of nucleotide sequence was carried out in accordance with the instructions attached to the kit and apparatus.

Of these plasmids, plasmid named pBS-T153ND28LN1 in which the nucleotide sequence of the insertion fragment coincided with the nucleotide sequence of the linker DNA was used in the subsequent procedures.

Example 2 Production of TPO-CSF

The TPO-CSF was produced by effecting expression of the DNA which codes for the TPO-CSF in animal cells in the following manner.

1) Production of TPO-ND28 (1) and TPO-ND28 (2)

Plasmid pcDNA3 (manufactured by Invitrogen Co.) was cleaved with \underline{Eco} RI and \underline{Not} I and subjected to an agarose gel

electrophoresis to isolate a DNA fragment (vector side) of about 5.4 kb.

Also, pBS-T153LND28 and pBS-T154ND28 obtained in Example 1-2-1)-(iii) and Example 1-2-2)-(ii) were separately cleaved with <u>Eco</u>RI and <u>NotI</u> and subjected to agarose gel electrophoresis to isolate a DNA fragment (insert side) of about 1.1 kb from each plasmid.

Using DNA Ligation Kit Ver. 1, the vector side DNA fragment of about 5.4 kb (100 ng) was ligated with each of the insert side DNA fragments (100 ng) (volume of the reaction solution: 0.018 ml).

Using this reaction solution, the Escherichia colistrain DH5 α was transformed in the usual way, and the resulting transformant was spread on LB agar medium containing 50 μ g/ml of ampicillin and cultivated overnight at 37°C.

Plasmids were isolated from several transformant strains grown on the medium in accordance with a known method.

Structure of each plasmid was examined restriction enzymes ECORI and NotI select plasmids to containing respective inserts having a structure in which the vector side and insert side DNA fragments are ligated with each other, and plasmid pCD-153LND28 containing a TPO-ND28 (1) encoding gene and plasmid pCD-154ND28 containing a TPO-ND28 (2) encoding gene were used in the subsequent procedure.

Plasmid pCD-153LND28 or pCD-154ND28 was introduced into animal cells by electroporation [Potter et al., Proc. Natl.

Acad. Sci., USA, 81, 7161 (1984)] and its expression was effected in the following manner.

COS 7 cells were cultivated in D-MEM medium (manufactured by GibcoBRL Co., product No. 11885-50) which was further supplemented with 10% fetal bovine serum.

The COS 7 cells obtained by cultivation were suspended in K-PBS buffer (137 mM potassium chloride, 2.7 mM sodium chloride, 8.1 mM disodium hydrogenphosphate, 1.5 mM sodium dihydrogenphosphate, 4 mM magnesium chloride) to prepare a cell suspension of 8×10^8 cells/ml.

A 0.2 ml portion of the cell suspension was injected into a Pulser Cuvette (manufactured by BIO RAD LABORATORIES) having a slit width of 0.2 cm.

A 4 μg portion of pCD-153LND28 or pCD-154ND28 was added to the cuvette, thoroughly mixed with the suspension and then subjected to pulse application using an electroporation apparatus (Gene Pulser, manufactured by BIO RAD LABORATORIES) under conditions of 200 Ω , 0.3 kv/cm and 0.125 mF.

The pulse-treated solution was allowed to stand in ice for 5 minutes, suspended in 10 ml of D-MEM medium supplemented with 10% fetal bovine serum and then cultivated at 37° C for 72 hours in a CO_2 incubator.

The culture broth was subjected to centrifugation, and the resulting culture supernatant was filtered through a filter of 220 nm pore size to obtain a solution of TPO-ND28 (1) or TPO-ND28 (2).

2) Production of TPO-ND28 (3)

A plasmid PAGE210 was used as the vector for use in the expression of TPO-ND28 (3). The vector pAGE210 is a derivative of pAGE248 [Sasaki et al., J. Biol. Chem., 269, 14730, (1994)], in which the Moloney murine leukemia virus promoter (XhoI-HindIII fragment) has been replaced by SV40 early promoter (XhoI-HindIII fragment) of pAGE103 [Mizukami et al., J. Biochem., 101, 1307 (1987)].

Plasmid pAGE210 was cleaved with $\underline{Kpn}I$ and $\underline{Hind}III$ and subjected to an agarose gel electrophoresis to isolate a DNA fragment (vector side) of about 9.0 kb.

Separately from this, pBS-TPO322 obtained in Example 1-1 was cleaved with <u>KpnI</u> and <u>HindIII</u>, and pBS-153ND28LN1 obtained in Example 1-2-3) was cleaved with <u>KpnI</u> and then partially with <u>HindIII</u>, and each of the resulting cleaved fragments was subjected to an agarose gel electrophoresis to isolate a DNA fragment (insert side) of about 1.1 kb from each plasmid.

Using DNA Ligation Kit Ver. 1, the vector side DNA fragment of about 9.0 kb (100 ng) was ligated with each of the insert side DNA fragments of about 1.1 kb (100 ng) (volume of the reaction solution: 0.012 ml).

Using this reaction solution, the Escherichia coli strain DH5 α was transformed in the usual way, and the resulting transformant was spread on LB agar medium containing 50 μ g/ml of ampicillin and cultivated overnight at 37°C.

Plasmids were isolated from several transformant strains grown on the medium in accordance with a known method.

Structure of each plasmid was examined using a restriction enzyme <u>Kpn</u>I to select plasmids containing respective inserts having a structure in which the vector side and insert side DNA fragments are ligated with each other, and plasmid pAGE210-T332 containing TPO encoding gene and plasmid pAGE210-LN1 containing TPO-ND28 (3) encoding gene were used in the subsequent procedure.

Plasmid pAGE210-T332 or pAGE210-LN1 was introduced into animal cells by electroporation.

CHO cells were cultivated in MEM medium (1) (manufactured by GibcoBRL Co., product No. 19000-024) which was further supplemented with 10% fetal bovine serum.

The CHO cells obtained by cultivation were suspended in K-PBS buffer to prepare a cell suspension of 8×10^6 cells/ml.

A 0.2 ml portion of the cell suspension was injected into Pulser Cuvette having a slit width of 0.2 cm.

A 4 μg portion of pAGE210-T332 or pAGE210-LN1 was added to the cuvette, thoroughly mixed with the suspension and then subjected to pulse application using an electroporation apparatus, Gene Pulser, under conditions of 0.35 kv/cm and 0.25 mF.

The pulse-treated solution was allowed to stand in ice for 5 minutes, suspended in 10 ml of MEM medium supplemented

with 10% fetal bovine serum and then cultivated at 37°C for 24 hours in a $\rm CO_2$ incubator.

The thus cultivated cells were again cultivated for 2 weeks in MEM medium (1) supplemented with 10% fetal bovine serum and 0.3 mg/ml of hygromycin.

The resulting cells were further cultivated for 2 weeks in MEM medium (2) (manufactured by GibcoBRL Co., code No. 12000-022) supplemented with 10% fetal bovine serum and 50 nM methotrexate (hereinafter referred to as MTX).

The cultivation was repeated in the same manner by successively increasing the MTX concentration to 100 nM, 500 nM and 1,000 nM in that order, thereby obtaining strains resistant to 1,000 nM TMX.

Each of the 1,000 nM MTX resistant strains was grown in MEM medium (2) supplemented with 10% fetal bovine serum, the medium was exchanged with a serum-free medium for CHO cell use, CHO-S-SFMII (manufactured by GibcoBRL Co., code No. 12052-015), and then the strain was cultivated again for 96 to 144 hours.

By subjecting the culture broth to centrifugation, a culture supernatant containing TPO or TPO-ND28 (3) was obtained.

Example 3 Purification of TPO-ND28 (3) and TPO

A 1,000 ml portion of TPO-ND28 (3) or TPO obtained in Example 2-2) was concentrated to 50 ml using Centriprep

(manufactured by Amicon Co.) to prepare a concentrated solution.

A 50 ml portion of each of the concentrated solutions was applied to XK50 column (manufactured by Pharmacia K.K.) which has been packed with 1,000 ml of Sephacryl S-200 resin (manufactured by Pharmacia K.K.) and filled with a phosphate buffer (9.4 mM sodium phosphate (pH 7.2), 137 mM NaCl, 2.7 mM KCl).

Elution of TPO-ND28 (3) or TPO was effected by passing the phosphate buffer through the column at a flow rate of 3 ml/minute.

The eluates were pooled for every 12.5 minutes, and the resulting fractions were checked for their TPO and G-CSF activities by an MTT assay method which will be described later, thereby obtaining purified TPO-ND28 (3) or TPO.

Example 4 Modification of TPO-ND28 (3) with polyethylene glycol

To ice-cooled water was added 20 kd PEG-succinimidyl propionate (manufactured by Shearwater Polymers Co.) to a final concentration of 400 mg/ml.

A 50 μ l portion of the thus prepared aqueous solution was mixed with 200 μ l of the TPO-ND28 (3) solution obtained in Example 3 and 150 μ l of distilled water. The mixture was allowed to stand for 12 hours at 4°C, thereby effecting modification of TPO-ND28 (3) by polyethylene glycol.

The TPO-ND28 (3) thus modified with polyethylene glycol (hereinafter referred to as PEG-TPO-ND28 (3)) was applied to a column of Super Rose 610/30 (manufactured by Pharmacia K.K.) which has been filled in advance with a phosphate buffer (9.4 mM sodium phosphate (pH 7.2), 137 mM NaCl, 2.7 mM KCl).

Elution was effected by passing the phosphate buffer through the column at a flow rate of 0.5 ml/minute.

The eluates were pooled for every 1 minute, and the resulting fractions were checked for their G-CSF and TPO activities by MTT assay method which will be described later.

The results are shown in Table 5.

The G-CSF and TPO activities originated from unmodified TPO-ND28 (3) were detected 34 to 40 minutes after commencement of the elution, and the G-CSF and TPO activities originated from PEG-TPO-ND28 (3) were detected after 16 to 28 minutes of the elution.

These results confirmed that polyethylene glycol-modified TPO-CSF having both G-CSF and TPO activities can be obtained.

TABLE 5

Elution time (minutes)	0	10	14	16	18	20	22	24	26	28	30	32	34	36	38	40
						-										
G-CSF activity	-	-	-	+	+	+	+	+	+	+	-	-	+	+	+	+
TPO activity	_	-	-	+	+	+	+	+	+	+	_	-	+	+	+	+
-: no a	cti	.vit	ty;	+:	ac.	tiv.	itv									

Test Example 1 Measurement of TPO-ND28 molecular weight

Using the TPO-ND28 (1) solution obtained in Example 2-1), its molecular weight was measured by a gel filtration chromatography in the following manner.

A 0.2 ml portion of the TPO-ND28 (1) solution was applied to a column of Super Rose 610/30 (manufactured by Pharmacia K.K.) which has been equilibrated in advance with a phosphate buffer (9.4 mM sodium phosphate (pH 7.2), 137 mM NaCl, 2.7 mM KCl), and elution of TPO-ND28 (1) was effected by passing the phosphate buffer through the column at a flow rate of 0.5 ml/minute.

The eluates were pooled for every 0.5 minute, and the resulting fractions were checked for their TPO and -G-CSF activities by an MTT assay method which will be described later.

Table 6 shows elution time from Super Rose and measured values of TPO and G-CSF activities.

The TPO and G-CSF activities reached the maximum after 33.5 minutes of the elution.

Separately from this, thyroglobulin (molecular weight: 670,000), aldolase (molecular weight: 160,000), bovine serum albumin (molecular weight: 69,000) and G-CSF (molecular weight: 20,000) were used as the standard molecular weight proteins and passed through Super Rose to obtain relationship between elution time and molecular weight.

Molecular weight of TPO-ND28 (1) deduced from the 33.5 minutes of elution time was about 40,000.

TABLE 6

Elution time 0 20 30 32 33 33.5 34 35 37 42

TPO activity (A₅₄₀)

G-CSF 0.00 0.00 0.03 0.14 0.29 0.32 0.30 0.22 0.05 0.00 (A₅₄₀)

Test Example 2 Biological activity of TPO-CSF

Basic construction for the measurement of the cell growth-stimulating activity of a solution to be tested (TPO-ND28 solution) upon cells to be tested is as follows.

Each solution to be tested (TPO-ND28 solution), TPO standard solution and ND28 standard solution is made into 10-fold serial dilutions, and a 0.01 ml portion of each of the dilutions is added to each well of a microtiter plate.

Actively growing cells to be tested are collected from a culture broth by centrifugation, washed and then re-suspended

in a medium for testing use to a most suitable cell density for each testing.

The thus prepared cell suspension is dispensed in 0.09 ml portions into wells of the above-mentioned microtiter plate which has been prepared by dispensing dilutions of the solution to be tested, TPO standard solution or ND28 standard solution in 0.01 ml portions.

The microtiter plate is incubated at $37\,^{\circ}\text{C}$ in a completely moist 5% CO₂ incubator and then used in the following testing.

A 0.01 ml portion of 0.5 mg/ml solution of MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide] is added to each well, incubated for 4 hours, mixed with 0.15 ml of 0.1 N hydrochloric acid/isopropyl alcohol solution and then stirred to extract pigment from the cells, subsequently judging growth of the cells by measuring the amount of the pigment by its absorbance at 540 nm.

This method for the measurement of cell growth-stimulating activity is hereinafter called the MTT assay.

(1) Measurement of cell growth and the measurement of cell growth.

(1) Measurement of cell growth-stimulating activity upon Ba/F3 cells

The Ba/F3 cells which grow depending on the presence of mouse IL-3 were cultivated in Iscove's modified Dulbecco medium (hereinafter referred to as "IMDM") which has been supplemented with 10% heat-inactivated fetal calf serum (hereinafter

referred to as "FCS") and mouse IL-3 (culture supernatant of WEHI-3B).

Using the thus cultivated Ba/F3 cells, the cell growth-stimulating activity was measured by the MTT assay using the just described medium but in the absence of mouse IL-3.

The MTT assay was carried out with an inoculation density of 10,000 cells per well and by incubating the plate in 5% CO₂ for 48 hours.

Results of the MTT assay showed that each of TPO, ND28 and TPO-ND28 (1), (2) and (3) had no Ba/F3 cell growth-stimulating activity.

(2) Measurement of cell growth-stimulating activity upon Ba/F3cmp1

The Ba/F3-cmp1 cells which grow depending on the presence of mouse IL-3 or TPO were cultivated in IMDM which has been supplemented with 10% heat-inactivated FCS, 0.5 mg/ml of G418 and mouse IL-3 (culture supernatant of WEHI-3B).

Using the thus cultivated Ba/F3-cmp1 cells, the cell growth-stimulating activity was measured by MTT assay using the just described medium but in the absence of mouse IL-3.

The MTT assay was carried out with an inoculation density of 10,000 cells per well and by incubating the plate in 5% CO₂ for 48 hours.

Results of the MTT assay showed that each of TPO and TPO-ND28 (1), (2) and (3) had Ba/F3-cmp cell growth-stimulating activity.

(3) Measurement of cell growth-stimulating activity upon NFS-60 cells

The NFS-60 cells which grow depending on the presence of human G-CSF or mouse IL-3 were cultivated in RPMI medium which has been supplemented with 10% heat-inactivated FCS, 2 mM glutamine, P/S (100 U/ml of penicillin, 100 mg/ml of streptomycin) and 1.0 ng/ml of recombinant type human G-CSF.

Using the thus cultivated NFS-60 cells, the cell growth-stimulating activity was measured by the MTT assay using the just described medium but in the absence of G-CSF.

The MTT assay was carried out with an inoculation density of 10,000 cells per well and by incubating the plate in 5% CO₂ for 48 hours.

Results of the MTT assay showed that each of ND28 and TPO-ND28 (1), (2) and (3) had NFS-60 cell growth-stimulating activity.

Test Example 3 Effect of TPO-ND28 on mouse myeloid cells

A BALB/c mouse of 8 weeks of age was sacrificed to excise the femur and tibia system whose both ends were subsequently cut with scissors. The needle of a syringe filled with RPMI solution containing 10% FCS was inserted into the section of femur and tibis to blow off myeloid cells into a small test tube, and the cells were allowed to stand for 5 minutes.

Using a Pasteur pipette, the supernatant fluid in the test tube was drawn up taking care not to contaminate it with

the precipitate, and the supernatant fluid was overlaid on Nycoprep 1.077 Animal (manufactured by NYCOMED Co., product No. 1002380) and subjected to 15 minutes of centrifugation at 600 g to isolate mouse mono nuclear cells (hereinafter referred to as "MNC").

The MNC were made into a suspension of 5×10^5 cells/ml with a solution containing a solution to be tested, 10% FCS, 1% BSA and 0.6 mg/ml of transferrin (manufactured by Boehringer Manheim Co.) and cultivated for 5 days in a CO₂ incubator (BNA-120D, manufactured by TABAI Co.) under conditions of 37° C, 5% CO₂ and 95% or more of humidity.

As the solution to be tested, a solution of TPO, ND28 or TPO-ND28 having a final concentration of 1.0, 10 or 100 ng/ml or a solution in which the same volume of TPO and ND-28 solutions having the above-mentioned concentration were mixed (TPO/ND28) was used. The TPO and ND28 obtained in Example 3 were used.

After completion of the cultivation, conditions of the differentiation of MNC were examined by measuring the amount of CD61 expressed which is an index of differentiation into megakaryocyte system [J. Med., 311, 1084 (1984)] and the amount of Gr-1 expressed which is an index of differentiation into the granulocyte system [J. Immunol., 144, 22 (1991)].

After staining with anti mouse CD61-FITC monoclonal antibody (manufactured by PHARMINGEN Co., product No. 01864D) and anti mouse Gr-1-PE monoclonal antibody (manufactured by

PHARMINGEN Co., product No. 01215A), expressed amounts of CD61 and Gr-1 were measured using an ELITE flow cytometer (manufactured by Coulter Co.).

The results are shown in Table 7.

TABLE 7

Solution to be tested	Concentration	Expressed	cells (%)
	(ng/ml)	Gr-1	CD61
no addition		1.0	1.0
ND28	1.0	49.1	7.6
	10.0	40.7	4.9
	100.0	44.5	4.6
TPO	1.0	36.7	8.7
	10.0	37.7	17.8
	100.0	37.1	21.9
TPO/ND28	1.0	50.7	10.3
	10.0	40.6	10.4
	100.0	49.2	5.7
TPO-ND28	1.0	50.5	22.1.
	10.0	49.8	26.6
	100.0	41.0	18.8

When the solution to be tested prepared by mixing the same amount of TPO and ND28 (TPO/ND28) was added, Gr-1 expressed cells were generated in a level similar to the case

of the addition of the solution to be tested containing ND28 alone, thus showing differentiation of MNC into the granulocyte system, but frequency of the generation of CD61 expressed cells was lower than the case of the addition of the solution to be tested containing TPO alone, thus showing decreased differentiation into the megakaryocyte system. These results suggest that, when the same amount of TPO and ND28 are present, MNC reacts mostly with ND28 and differentiates into the granulocyte system.

However, when the fusion polypeptide of TPO and ND28, namely TPO-ND28, was added as the solution to be tested, frequency of the generation of CD61 expressed cells was similar to or higher than the case of the addition of the solution to be tested containing TPO alone and two times or more higher than the case of the addition of TPO/ND28. What is more, the frequency of the generation of Gr-1 expressed cells was also similar to the case of the addition of the solution to be tested containing ND28 alone.

Test Example 4 Platelet and leukocyte production-enhancing function in mice

A 10µg/ml solution of TPO or a 10 µg/ml solution of TPO-ND28 (3) obtained in Example 3 was administered by subcutaneous injection to BALB/c mice (males, 7 weeks of age) with a dose of 0.2 ml per 20 g body weight of each mouse, once a day continuously for 4 days starting on the first day of the test (treated groups, 4 animals per one group). A blood sample

was collected from the ophthalmic vein of each animal on the fifth day of the test to count the number of platelets and leukocytes by a microcell counter (Sysmex F800, manufactured by Toa Iyo Denshi Co.).

After introducing the plasmid pAGE210 used for the expression of TPO or TPO-ND28 (3) gene into CHO cells in accordance with the method described in Example 2-2), the cells were cultivated, the resulting culture supernatant was treated by the same TPO-ND28 (3) purification procedure described in Example 3, and an elution fraction corresponding to the elution fraction of TPO-ND28 (3) was used as a blank solution to count the number of platelets and leukocytes by the above-mentioned method.

In order to compare and examine effects of TPO and TPO-ND28 (3), the increasing ratio (%) of the number of platelets and leukocytes in the group in which each of these substances were administered to that in the blank solution-administered group was calculated based on the following formula:

[platelet or leukocyte counts in mice of TPO- or TPO-ND28 (3)-administered group]/[platelet or leukocyte count in mice of blank solution-administered group] × 100

The results are shown in Table 8.

TABLE 8

Test substance	Increasing ratio of platelets	Increasing ratio of leukocytes
	(%)	(%)
TPO	219	106
TPO-ND28	170	160

INDUSTRIAL APPLICABILITY

A fusion polypeptide comprising a polypeptide having both G-CSF activity and a polypeptide having TPO activity is provided by the present invention. The fusion polypeptide of the present invention can form and amplify platelets and leukocytes simultaneously and can control formation of megakaryocyte colonies and neutrophil colonies and differentiation or maturation of megakaryocyte precursors and neutrophil precursors.

SEQUENCE LISTING

Sequence ID No.: 1

Sequence Length: 328

Sequence Type: amino acid

Strandedness: single

Topology: linear

Molecular Type: peptide

Original Source

Organism: human (Homo sapiens)

Sequence Characteristics:

Designation:

Location: 1..154

Designation:

Location: 154..328

Sequence

Ser Pro Ala Pro Pro Ala Cys Asp Leu Arg Val Leu Ser Lys Leu Leu

1 5 10 15

Arg Asp Ser His Val Leu His Ser Arg Leu Ser Gln Cys Pro Glu Val
20 25 30

His Pro Leu Pro Thr Pro Val Leu Leu Pro Ala Val Asp Phe Ser Leu
35 40 45

Gly Glu Trp Lys Thr Gln Met Glu Glu Thr Lys Ala Gln Asp Ile Leu
50 55 60

Gly Ala Val Thr Leu Leu Glu Gly Val Met Ala Ala Arg Gly Gln
65 70 75 80

Le	u G	Ly	Pr	o Th	r Cy	s Le	u Se	r Se	r Le	u Le	u Gly	y Gln	Let	ι Se:	r Gl	y Gln
	•					5				9					9:	
Va	l Az	g	Le	ı Le	u Le	u Gl	y Ala	a Le	u Gl	n Se	r Lei	ı Leu	Gly	Thi	c Gli	n Leu
				10					10				-	110		
Pr	o Pr	0	Glr	ı Gl	y Ar	g Thi	r Thi	c Ala	a His	5 Lys	s Asp	Pro	Asn	Ala	ı Ile	Phe
			11					12					12		:	
Le	u Se	ŗ	Ph∈	Glı	n Hi	s Lei	ı Lev	ı Arç	, Gly	/ Lys	Val	Arg			. Met	Leu
	13						135			_		140				, per
Va.	l Gl	y (Gly	Sei	r Thi	. Lev	Cys	. Val	. Arq	Ara	Ala		Thr	Фугт	7 7 7 7	Ala
145						150			•	_	155	-10	****	171	ALG	
Ser	Se	r 1	Leu	Pro	Glr	ı Ser	Phe	Leu	Leu	I.ve		Ton	C1	01 -	**- 7	160 Arg
					165					170		Deu	GIU	GIN		
Lys	Ile	∍ (Sln	Gly	Ast	Glv	Ala	Δla	Len			•	_	_	175	Thr
				180		1		1114	185	GIII	GIU	гла	Leu		Ala	Thr
Tvr	Lvs	: Т	.e11			Dwo	C1	61						190		
- -	-1-		95	Cys	III	PLO	GIU		Leu	Val	Leu	Leu	Gly	His	Ser	Leu
Gly	Tla					_		200					205			
Gry			ΙO	Trp	Ala	Pro		Ser	Ser	Cys	Pro	Ser	Gln	Ala	Leu	Gln
_	210						215					220				
	Ala	G	ly	Cys	Leu	Ser	Gln	Leu	His	Ser	Gly	Leu	Phe	Leu	Tyr	Gln
225						230					235				-	240
Gly	Leu	L	eu	Gln	Ala	Leu	Glu	Gly	Ile	Ser	Pro	Glu :	Leu	Gly	Pro	Thr
					245					250					255	
Leu	Asp	Tì	hr	Leu	Gln	Leu	Asp	Val	Ala	Asp	Phe	Ala '	Thr	Thr	Ile	Trp
				260					265					270		-
Gln	Gln	Me	et '	Glu	Glu	Leu	Gly	Met	Ala	Pro	Ala	Leu (Thr	Gln
		27						280					285			

Sequence ID No.: 2

Sequence Length: 340

Sequence Type: amino acid

Strandedness: single

Topology: linear

Molecular Type: peptide

Original Source

Organism: human (Homo sapiens)

Sequence Characteristics:

Designation:

Location: 1..153

Designation:

Location: 167..340

Sequence

Ser Pro Ala Pro Pro Ala Cys Asp Leu Arg Val Leu Ser Lys Leu Leu

1 5 10 15

Arg Asp Ser His Val Leu His Ser Arg Leu Ser Gln Cys Pro Glu Val
20 25 30

H	is P	ro	Lei	ı Pr	O T	hr Pı	co Va	al Le	eu Le	eu Pa	o Al	.a Va	l As	p Pho	e Sei	r Leu
			35	5					10				4			- Deu
G.	ly G	lu	Trp	Ly	s Tì	nr G]	ln Me	et Gl	.u G]	.u Th	r Ly	s Al			n Tle	e Leu
	•	50						55			-	6			, 110	, ped
G.	y A.	la v	Val	Th	r Le	eu Le	u Le	eu Gl	u Gl	y Va	l Me			a 7 ~~	- C1-	Gln
. 6	5						0				7:		u Ale	a Arc	1 стх	
Le	u Gl	y I	ro	Th:	r Cy	s Le	u Se	r Se	r Le	11 T.e			.	- 0-		80 Gln
						5				9.		A GTI	n Lei	ı Ser		
Va	l Ar	g I	eu	Lei			v Al	a I.o.	n Cl			_			95	Leu
		_		100)		,	a ne			r Lei	ı Leı	ı Gly			Leu
Pr	o Pr	o G	ln			or ሞኤ	r መኤ	77.	10			•		110		
		1	15		111	9 111.	L III.			5 Lys	s Asp	Pro) Asn	Ala	Ile	Phe
Lei	ı Se			C1~		 .		120					125			
	13	·		GIII	. nl;	s rer			ı Gl	/ Lys	Val	Arg	Phe	Leu	Met	Leu
77-1			1	_			135					140				
145	r Gr	Y G.	гÀ	Ser	Thi			Val	Arg	Gly	Gly	Gly	Ser	Gly	Gly	Gly
145						150					155					160
Ser	. GTŽ	7 G]	Ŋ	Gly	Ser	Arg	Ala	Pro	Thr	Tyr	Arg	Ala	Ser	Ser	Leu	Pro
					165					170					175	
Gln	Ser	Ph	e j	Leu	Leu	Lys	Ser	Leu	Glu	Gln	Val	Arg	Lys	Ile	Gln	Gly
				180					185					190	-	
Asp	Gly	Al	a 2	Ala	Leu	Gln	Glu	Lys	Leu	Cys	Ala	Thr	Tyr	Lys	Leu (Cvs
		19	5					200		•			205	•		0,10
					. .	Va 1	Leu	Leu	Glv	Hie	Sar	T		T1 -	_	•
His	Pro	GI	u (31U	Leu	VQI			1		\sim er	Leu	GIV	110	Pro '	Tr×~
His	Pro 210	GI	u c	31U	Leu	VQI	215		1		Der		GIÀ	116	Pro !	Trp
	210						215					220		lle Ala (

Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln 245 250 255 Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu 260 265 270 Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu 275 280 285 Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro 290 295 300 Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala 305 310 315 320 Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His 325 330 335 Leu Ala Gln Pro 340

Sequence ID No.: 3

Sequence Length: 344

Sequence Type: amino acid

Strandedness: single

Topology: linear

Molecular Type: peptide

Original Source

Organism: human (Homo sapiens)

Sequence Characteristics:

Designation:

Location: 1..153

Designation:

Location: 171..344

The state of the s

Sequ	ence
------	------

Se	r Pr	O A.	la Pr	o Pr	o Al	a Cy	s As	p Le	u Ar	g Va	l Le	u Sei	r Lys	Lei	ı Leu
	1				5 .				1				-		
Ar	g As	p Se	r Hi	s Va	lLe	n Hí	e 50	· » »						15	•
		_				w 111	3 SE	L AL	д те	u Se:	r Gli	n Cys	s Pro	Glu	ı Val
				0				2					30		
Hi	s Pr	o Le	u Pr	o Th	r Pr	o Va	l Le	u Le	u Pro	o Ala	a Val	L Asp	Phe	Ser	Leu
		3	5				4 (4.5			
Gl	y Gl	u Tr	p Ly	s Th	r Gli	n Met	t Glı	ı Glı	ı Thi	. Lys	s Ala			Tlo	Leu
	5 (כ				5.5			•	_	60			110	neu
Gly	/ Ala	ı Vai	l Th	r T.o.	· 1. To:			~ .							
65		-		L Det			ı GIV	ı Gış	v Val	. Met	Ala	Ala	Arg	Gly	Gln
					70					75					80
Leu	Gly	Pro	Thi	Cys	. Leu	. Ser	Ser	Leu	Leu	Gly	Gln	Leu	Ser	Glv	Gln
				85					90						
Val	Arg	Leu	Leu	Leu	Glv	· Δla	T.Au	C1-			_	Gly		95	
			100			miu	neu		ser	Leu	Leu	Gly	Thr	Gln	Leu
_				•				105					110		
Pro	Pro	Gln	Gly	Arg	Thr	Thr	Ala	His	Lys	Asp	Pro	Asn	Ala	Ile	Phe
		115					120					125			
Leu	Ser	Phe	Gln	His	Leu	Leu	Arg	Gly	Lys	Val	Arg	Phe	Leu	- Met	T.au
	130					135					140		204	1100	neu
Val	Gly	Glv	Ser	Thr	Len		YZ - 1	_	_						
145	• 4	1	501	****		Cys	val	Arg	Ser	Gly	Gly	Gly	Ser	Gly	Gly
					150					155		• . •			160
Gly	Ser	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Arg	Ala	Pro	Thr	Tvr	Ara	Ala
				165					170			-			4
									0					175	

Se	r Se	r Le	u Pr	:0 Gl	n Se	r Phe	e Le	u Le	u Ly	s Se	r Lei	ı Glu	ı Glr	ı Va]	. Arg
			18					189					190		_
Ly	s Il	e Gl	n Gl	y As	p Gl	y Ala	a Ala	a Le	ı Glı	ı Glı	ı Lys	Leu	Cys	. Ala	Thr
		19					200					205			
Туз	Lys	s Le	u Cy	s His	s Pro	o Glu	ı Glu	ı Let	ı Va]	Leu	Leu	Gly	His	Ser	Leu
	210			:		215					220				
Gly	r Ile	Pr	o Tr	p Ala	a Pro	Leu	Ser	Ser	Cys	Pro	Ser	Gln	Ala	Leu	Gln
225					230					235				,	240
Leu	Ala	Gly	Cys	5 Leu	Ser	Gln	Leu	His	Ser	Gly	Leu	Phe	Leu	ጥህጉ	
				245					250					255	OIII
Gly	Leu	Let	Glr	ı Ala	Leu	Glu	Gly	Ile	Ser	Pro	Glu	·T.e.ii	Glaz		mb ~
			260				-	265				200	270	PLO	Int
Leu	Asp	Thr	Leu	Gln	Leu	Asp	Val		Asn	Pho	ת 1 ת	mb		-1.	_
		275				L	280		p	1116	TIG		Thr	iie	Trp
Gln	Gln	Met	Glu	Glu	Leu	Gly		αΙα	Dro	71 -	T	285	_		
	290					295	1100	nia	FIO	AId		GIN	Pro	Thr	Gln
Glv		Met	Pro	ת 1 ת	Dha		_			_	300				
305			110	NIG		Ala	ser	Ala	Phe	Gln	Arg	Arg	Ala	Gly	Gly
	T 011	77- 1		_	310	•				315					320
Val	red	val	Ala		His	Leu	Gln	Ser	Phe	Leu	Glu	Val	Ser	Tyr	Arg
	_			325	*	,			330					335	
vaı	Leu	Arg		Leu	Ala	Gln	Pro								
			340												

Sequence ID No.: 4

Sequence Length: 1047

Sequence Type: nucleic acid

Strandedness: double

Topology: linear

Molecular Type: other nucleic acid, synthetic DNA

Original Source

Organism: human (Homo sapiens)

Sequence Characteristics:

Designation: sig peptide

Location: 1..63

Designation: CDS

Location: 64..1047

Sequence

ATG GAG CTG ACT GAA TTG CTC CTC GTG GTC ATG CTT CTC CTA ACT GCA 48 Met Glu Leu Thr Glu Leu Leu Val Val Met Leu Leu Leu Thr Ala -20 -15 -10 AGG CTA ACG CTG TCC AGC CCG GCT CCT CCT GCT TGT GAC CTC CGA GTC 96 Arg Leu Thr Leu Ser Ser Pro Ala Pro Pro Ala Cys Asp Leu Arg Val -5 1 5 10 CTC AGT AAA CTG CTT CGT GAC TCC CAT GTC CTT CAC AGC AGA CTG AGC Leu Ser Lys Leu Leu Arg Asp Ser His Val Leu His Ser Arg Leu Ser 15 20 25 CAG TGC CCA GAG GTT CAC CCT TTG CCT ACA CCT GTC CTG CCT GCT Gln Cys Pro Glu Val His Pro Leu Pro Thr Pro Val Leu Leu Pro Ala 30 35 40

GT	G GA	CT	TT A	GC I	TG G	GA	GAA	TGO	G AA	A AC	C CI	AG A	TG	GAO	G GA	G AC	C AAG	240
Va	l As	p Pl	ne S	er L	eu G	ly	Glu	Tr	b Ly	s Th	r G1	n M	et	G1 ₁	. (1)	n mb	r Lys	240
	4	5					50							GIL	ı Gı	u Th	г гАз	
GC	A CA	G GA	AC AS	rt c	TG G	CA (י ארי	3	.		55					
Ala	a Gl	n As	n Ti	le T	C	1 "	oca		ACC	- CT	r CT	'G C	TG	GAG	GG2	A GT	G ATG	288
60)		, p 1.	re n			Ата	Val	. Thi	: Le	u Le	u L	eu	Glu	Gl	y Va	l Met	
			_			65						0					75	
GCA	I GC	A CG	G GG	A C	AA C	rg (GA	CCC	ACI	TGC	СТ	C T	CA	TCC	CTC	CT	GGG	336
Ala	Ala	a Ar	g Gl	y G	ln Le	eu G	ly	Pro	Thr	Суз	Le	u Se	er	Ser	Leu	Lei	ı Gly	
										85						9(
CAG	CTT	TC	T GG	A CA	G GI	C C	GT	CTC	CTC	CTI	' GGC	a GC	יר .	ርጥር	CAC	ACC	CTC	204
Gln	Leu	Se	r Gl	y Gl	n Va	l A	ra	Leu	Leu	T.e.u	Gla	. Al		T	CAG	AGC	Leu	384
			9.				•	_	100	шец	. G ₁	/ Al	.a	Leu		Ser	Leu	
CTT	GGA	ACC			ጥ ሮሮ	m «	<i>a</i>	a. a							105			
T.e.11	Glaz	mh.	. (1.	. T.	-	1 (CA	CAG	GGC	AGG	ACC	AC	Α (GCT	CAC	AAG	GAT	432
Dou	GIY	1111	. G11	л ге	u Pr	0 P:	ro	Gln	Gly	Arg	Thr	Th	r A	Ala	His	Lys	Asp	
_		110						115						120				
CCC	AAT	GCC	ATC	TT	CT	G A	GC '	TTC	CAA	CAC	CTG	CT	c c	GA	GGA	AAG	GTG	480
Pro	Asn	Ala	Ile	Phe	e Le	ı Se	er 1	Phe	Gln	His	Leu	Lei	u. A	ıra	Glv	Lvs	Val	
	125					13						135		,	1	-10	, 441	
CGT	TTC	CTG	ATG	CTT	GTA	A GG	A C	GG '	ፐርር	ልሮሮ	CTC			·			_	
Arg	Phe	Leu	Met	Leu	: Val	G1	37 C	21 27	50w	mb	-	166	٠	TA	CGG	CGG	GCG	528
140							Y	TY.	ser	THE		Cys	5 V	al .	Arg	Arg	Ala	
	ת ∽ ת		666		145						150						155	
CCA	nca.	TAT	CGC	GCC	TCG	AG	T C	TA (CCA	CAG	AGC	TTC	: C'	TT :	ГТА	AAA	AGC	576
Pro !	rhr	Tyr	Arg	Ala	Ser	Se	r L	eu I	Pro (Gln	Ser	Phe	Le	eu I	Leu	Lys	Ser	
				160						165						170		

 $(\varphi^{(1)}, \dots, \varphi^{(n)}, \varphi^{(n)}_{k})$

•

T	ľA (SAG	CAZ	A GT	G AG	G A	AG AI	C C	AG GO	C GA	T GG	C GC	A GC	ር ሮሞ	ሮ ሮል	G GAG	
L€	eu (lu	Glr	va	l Ar	g Ly	s Il	.e G]	ln Gl	y As	p Gl	v Al	a 101.	a Lo		n Glu	624
				17.					18			7	u ni			n Gin	l
AA	.G C	TG	TGT	GC	C AC	СТА	C AA	G CI			כ ככ	C GM	- CN	18		G CTG	
Ly	s L	eu	Cys	Ala	a Th	г Ту	r Ly	s Le	u Cv	s Hi	s Dr	o Cl	GA(s CT	<i>3</i> GT	G CTG l Leu	672
			190			_	-	19			J 11.	O GT			ı Va	l Leu	
CT	C G	GA	CAC	TCI	CT	G GG	САТ			ב כפי	T CC	3	200			c ccc	
Le	u G	ly	His	Ser	Le	ı G1-	v T1	o Dr	O 1704	3 GC.	1 CC	CTO	AGC	AGO	TG	C CCC F Pro	720
	2	05					210		O II,	ν ΑΤο	ı Pro			Ser	Суя	F Pro	
AGO	C C	AG ·	GCC	CTG	CAG	: ሮሞር			- ma			215					
Ser	: G]	ln .	Ala	Leu	Gla	Le	NI.		- TG(TTG	AGC	CAA	CTC	CAI	AGC	GGC	768
220)				G1 1			r GTZ	Cys	Leu			Leu	His	Ser	Gly	
		יכ מ	<u>.</u> ጥር	ጥ ል <i>C</i>	CAC	225					230					235	
Leu	Ph	e I	'en	TAIC.	CAG	GG.	CTC	CTG	CAG	GCC	CTG	GAA	GGG	ATC	TCC	ccc	816
			JCu	- Y L		стх	Leu	Leu	Gln	Ala	Leu	Glu	Gly	Ile	Ser	Pro	
GAG	ጥጥ	c c	·Cm	000	240					245					250		
Clu	+ -		GT.	-	ACC	TTG	GAC	ACA	CTG	CAG	CTG	GAC	GTC	GCC	GAC	ттт	864
GIU	тe	u G	тУ.	Pro	Thr	Leu	Asp	Thr	Leu	Gln	Leu	Asp	Val	Ala	Asp	Phe	
000				255					260					265			
GCC	AC(C A	CC Z	ATC	TGG	CAG	CAG	ATG	GAA	GAA	CTG	GGA	ATG	GCC	CCT	GCC	912
Ala	Thi	T	hr]	lle	Trp	Gln	Gln	Met	Glu	Glu	Leu	Gly	Met	Ala	Pro	Ala	
		2	70					275					280				
CTG	CAC	C	CC A	CC	CAG	GGT	GCC	ATG	CCG	GCC	TTC	GCC	TCT	GCT	TTC	CAG	960
Leu	Gln	Pı	ro I	hr (Gln	Gly	Ala	Met	Pro	Ala	Phe	Ala	Ser	Ala	Phe	Gln	
	285						290					295					

Sequence ID No.: 5

Sequence Length: 1083

Sequence Type: nucleic acid

Strandedness: double

Topology: linear

Molecular Type: other nucleic acid, synthetic DNA

Original Source

Organism: human (Homo sapiens)

Sequence Characteristics:

Designation: sig peptide

Location: 1..63

Designation: CDS

Location: 64..1083

Sequence

ATG GAG CTG ACT GAA TTG CTC CTC GTG GTC ATG CTT CTC CTA ACT GCA 48

Met Glu Leu Thr Glu Leu Leu Leu Val Val Met Leu Leu Leu Thr Ala

-20 -15 -10

A	GG C	ra a	CG (CTG	TC	C AG	c cc	G GC	T CC	T CC	T G	CT 1	ľGT	GA	с ст	יר רם	א כי	TC 0.5
Aı	g Le	eu T	hr 1	Leu	Se	r Se	r Pr	o Al	a Pr	o Pr	O A	la C	'vs	As	n T.e	11 2~	. T	TC 96
-	-5					1				5			7		b ne		9 v	3 T
CI	C AC	T A	AA C	TG	CT	r cg	r ga	C TC	C CA	T GT	יכ כיז	יידי כי	'AC	ACC	7 A.C	ער ע ד	O 7.0	70 144
Le	u Se	r Ly	ys I	eu	Let	ı Arç	J Ası	o Se	r Hi	s Va	l Le	u H	ie	Ser	- AG.	n (1	G AC	GC 144
				15					2					261	2.		u Se	er
CA	G TG	c co	:A G	AG	GTI	CAC	CC1	TTC	CC:	r ac	A CC	ጥ ሮ፡	ጥር	CTC	2. Cmc	ה	D 66	
Gl:	n Cy	s Pr	:0 G	lu	Val	His	Pro	Leu	ı Pro	Th:	r Pr	2 U:	1 C	Lau		. D	r GC	T 192
		3	0					35					a I	40		ı Pro	O AI	a
GT	G GA	С ТТ	T A	GC	TTG	GGA	GAA	TGG	AAA	\ ACC	ר מי	מא י	nc.					
Va]	l Ası	Ph	e Se	er	Leu	Gly	Glu	Tro	Lvs	Thr	- CA	o Ma		GAG	GAG	ACC	: AA	G 240
	45	5				-	50		טינכ	1111	. GII			GLU	Glu	Thr	Ly	S
GCA	CAG	GA	C An	T	CTG	GGA	GCA		ACC	Cmm	· cmc		55					
Ala	Gln	Ası	9 Il	.e :	Leu	Glv	Ala	Val	Th~	ton	t -	. C1	.'G (∌AG 	GGA	GTG	AT	G 288
60						65		, 44	****	ьец			u (i lu	Gly	Val	Met	t
GCA	GCA	CGG	GG	Α (CAA		GGA	רככ	λCm	mc c	70		_				75	5
Ala	Ala	Arg	r Gl	v (Sln	Len	Clar	Dro	ML.	TGC	CTC	TC.	ΑŢ	rcc	CTC	CTG	GGC	336
				•	80		Gly	FLO	THE		Leu	Se	r S	er	Leu	Leu	Gly	7
CAG	CTT	TCT	GG	a c		ርጥር	CCM	C MC	6	85						90		
Gln	Leu	Ser	Gl	י ה	lln	V= 1	CGT	CTC	CTC	CTT	GGG	GC	СС	TG	CAG	AGC	CTC	384
			9:	,	, 4.11	VQI	Arg			Leu	Gly	Ala	a L	eu	Gln	Ser	Leu	
СТТ	GGA	ACC			фф <i>1</i>	C C m	co.		100						105			
CTT Leu	Glv	Thr	CAC	, r	TT (out i	CCA	CAG	GGC	AGG	ACC	ACA	A G	СТ	CAC	AAG	GAT	432
Leu	1	110	GII	ىلى	eu j	rro)			Gly	Arg	Thr	Thr	A .	la :	His	Lys	Asp	
		4 + O					•	115					1:	20				•

CC	C AA	AT GO	CC A	rc T	rc ci	G AG	C TT	C CA	A CA	C CT	G CT	CG.	A GG	A AA	G GTO	480
						u Se										
	12				•	13			*		135					
CG	T TT	C CI	G A	rg Ci	T GT	A GG	A GG	G TC	CAC	C CT	C TGC	GTO	C AG	G GG:	r GGC	528
						l Gl										
14					14					150			•	-	155	
GG:	r TC	T GG	A GG	T GG	T TC	C GG	A GGG	GGI	TCI	r AG	GCA	CCF	A AC	A TAT		
Gly	, Se	r Gl	y Gl	y Gl	y Se	r Gl	g Gly	gly	Ser	Arg	, Ala	Pro	Thi	Tvr	Ara	3,0
				16					165					170		
GCC	TC	G AG	т ст	A CC	A CAG	G AGO	TTC	CTT	TTA	AAA	AGC	TTA	GAG			624
Ala	Sei	Se	r Le	u Pr	o Glr	n Ser	Phe	Leu	Leu	Lys	Ser	Leu	Glu	Gln	Val	024
			17					180		_			185			
AGG	AAG	ATO	C CA	G GG	C GAI	GGC	GCA	GCG	CTC	CAG	GAG	AAG			GCC	672
						Gly										072
		190					195					200		Cys	AIG	
ACC	TAC	AAG	CTO	G TGC	CAC	CCC	GAG	GAG	CTG	GTG	СТС		CCA	CAC	m/cm	720
						Pro										720
	205					210				_	215	,	GLY	1172	Ser	
CTG	GGC	ATC	ccc	TGG	GCT	ccc	CTG	AGC	AGC	ም ርር		ACC	CAC	cca	ama.	
Leu	Gly	Ile	Pro	Trp	Ala	Pro	Leu	Ser	Ser	Cvs	Pro	Sor	Cla	87.	CIG	768
220					225		•			230	110	Ser	GIII	Ата		٠
CAG	CTG	GCA	GGC	TGC	TTG	AGC	CAA	СТС	Сат		CCC	CMM.	mma	ama.	235	• • •
Gln	Leu	Ala	Gly	Cys	Leu	Ser	Gln	Leu	Hie	202	C1	CIT	TTC	CTC	TAC	816
			-	240			J.11			ser	сτλ	ren	rne		Tyr	
				•					245					250		

CAG GGG CTC CTG CAG GCC CTG GAA GGG ATC TCC CCC GAG TTG GGT CCC 864 Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro 255 260 265 ACC TTG GAC ACA CTG CAG CTG GAC GTC GCC GAC TTT GCC ACC ACC ATC 912 Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile 270 275 280 TGG CAG CAG ATG GAA GAA CTG GGA ATG GCC CCT GCC CTG CAG CCC ACC 960 Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr 285 290 295 CAG GGT GCC ATG CCG GCC TTC GCC TCT GCT TTC CAG CGC CGG GCA GGA 1008 Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly 300 305 310 315 GGG GTC CTA GTT GCC TCC CAT CTG CAG AGC TTC CTG GAG GTG TCG TAC 1056 Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr 320 325 330 CGC GTT CTA CGC CAC CTT GCC CAG CCC 1083 Arg Val Leu Arg His Leu Ala Gln Pro 335 340

i sann

in the term of the terms of the contract of th

Sequence ID No.: 6

Sequence Length: 1095

Sequence Type: nucleic acid

Strandedness: double

Topology: linear

Molecular Type: other nucleic acid, synthetic DNA

Original Source

Organism: human (Homo sapiens)

Sequence Characteristics:

Designation: sig peptide

Location: 1..63

Designation: CDS

Location: 64..1095

Sequence

	1															
AT	G GA	G CT	G AC	r gaz	A TTC	CTC	CTC	CGT	G GTC	CATO	G CTI	r cro	C CTA	ACT	GCA	48
Me	t Gl	ı Le	u Thi	r Glu	ı Lev	ı Lev	ı Lev	ı Val	L Va]	Me	t Lei	ı Let	ı Leu	Thr	: Ala	.0
	-20					-15					-10					
AGO	G CTA	A AC	G CTC	TCC	AGC	CCG	GCI	CCI	CCI	GCI	TGI	' GAC	CTC	CGA	GTC	96
Arg	J Let	Thi	: Let	Ser	Ser	Pro	Ala	Pro	Pro	Ala	Cys	Asp	Leu	Ara	Val	30
-5	5				1				5					10		
CTC	AGI	' AAA	CTG	CTT	CGT	GAC	TCC	CAT	GTC	СТТ	CAC	AGC	AGA	CTG	AGC	144
Leu	Ser	Lys	Leu	Leu	Arg	Asp	Ser	His	Val	Leu	His	Ser	Arg	Leu	Ser	
			15					20					25			
CAG	TGC	CCA	GAG	GTT	CAC	ССТ	TTG	ССТ	ACA	CCT	GTC	CTG	CTG	ССТ	GCT	192
Gln	Cys	Pro	Glu	Val	His	Pro	Leu	Pro	Thr	Pro	Val	Leu	Leu	Pro	Ala	-32
		30					35					40				
GTG	GAC	TTT	AGC	TTG	GGA	GAA	TGG	AAA	ACC	CAG	ATG	GAG	GAG	ACC	AAG	240
Val	Asp	Phe	Ser	Leu	Gly	Glu	Trp	Lys	Thr	Gln	Met	Glu	Glu	Thr	Lvs	210
	45					50					55					
GCA	CAG	GAC	ATT	CTG	GGA	GCA	GTG	ACC	СТТ	CTG	CTG	GAG	GGA	GTG	ATG	288
Ala	Gln	Asp	Ile	Leu	Gly	Ala	Val	Thr	Leu	Leu	Leu	Glu	Gly	Val	Met	
60					65					70			_		75	

GC	A GC	A C	GG G	GA	CAA	A CTO	G GGZ	A CC	C AC	T TG	с ст	C TC	A TC	с ст	C CT	G GG(336
Al	a Al	a Aı	g G	ly	Glr	ı Leı	ı Gly	y Pro	o Th	r Cy	s Le	u Se	r Se	r Le	u Le	u Gl	, 330
					80					85					90		
CA	G CT	T TC	T G	GA	CAG	GTO	CG1	CTO	CTC	C CT	r GG	G GC	C CT	G CA		CTC	384
Gl	n Le	u Se	r G	ly	Gln	Val	Arg	Lei	ı Leı	ı Let	ı Gly	y Al	a Lei	ı Glı	ı Sei	. Leu	
				95					100					105			
CT	r GG	A AC	C C	AG	CTT	CCI	CCA	CAG	GGC	: AGG	ACC	C AC	A GCI	CAC	. AAG	GAT	432
Lev	ı Gly	7 Th	r G	ln	Leu	Pro	Pro	Gln	Gly	7 Arg	Thr	Th:	r Ala	ı His	Lvs	Asp	
		11						115					120		4		
CCC	' AA	GC	C AT	rc	TTC	CTG	AGC	TTC	CAA	CAC	CTG	CTC	CGA	GGA	AAG	GTG	480
Pro	Asn	Ala	1 I	.e	Phe	Leu	Ser	Phe	Gln	His	Leu	Lev	ı Arg	Gly	Lys	Val	-00
	125						130					135		-	4		
CGT	TTC	СТС	TA :	G (CTT	GTA	GGA	GGG	TCC	ACC	CTC	TGC	GTA	CGG	TCC	GGA	528
Arg	Phe	Lev	Me	t]	Leu	Val	Gly	Gly	Ser	Thr	Leu	Cys	Val	Arg	Ser	Gly	
140						145					150			_		155	
GGT	GGC	TCT	GG	C	GT	GGT	TCT	GGT	GGC	GGC	TCC	GGA	GGC	GGT	CGT		576
Gly	Gly	Ser	Gl	y C	Sly	Gly	Ser	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Ara	Ala	
					.60					165			_	-	170		
CCA	ACA	TAT	CG	CG	CC	TCG	AGT	CTA	CCA	CAG	AGC	TTC	CTT	TTA		AGC	624
Pro	Thr	Tyr	Arg	g A	la	Ser	Ser	Leu	Pro	Gln	Ser	Phe	Leu	Leu	Lvs	Ser	,
			175						180					185	4		
TTA	GAG	CAA	GTO	S A	GG 2	AAG .	ATC	CAG	GGC	GAT	GGC	GCA	GCG		CAG	GAG	672
Leu	Glu	Gln	Val	. A	rg 1	Lys	Ile	Gln	Gly	Asp	Gly	Ala	Ala	Leu	Gln	Glu	J. 2
		190						195					200				

E.1 11

AA	G CI	G T	GT	GCC	: AC	C TA	C AA	G CT	G TG	C CA	c cc	C GA	G GA	G CT	G GT	G CT	G 720
													u Gl				
	20						21	•				21					
CT	C GG	A C	AC	TCT	CT	G GG	C AT	c cc	C TG	G GC	r cc	С СТ	G AG	C AGO	C TG(c cc	768
Le	ı Gl	у Н:	is	Ser	Le	ı Gl	y Ile	e Pro	o Tri	o Ala	a Pro	o Le	u Sei	s Sei	Cys	s Pro)
220						22					23				-	235	
AGO	CA	G GC	CC (CTG	CAG	CTC	GCA	GGC	TGC	TTG	AG(C CA	A CTC	CAI	' AGC	GGC	816
Ser	Glr	ı Al	.a]	Leu	Glr	Let	Ala	Gly	Cys	Leu	Sei	c Gli	n Leu	His	Ser	Gly	,
					240					245					250		
CTI	TTC	CT	C 1	rac	CAG	GGG	CTC	CTG	CAG	GCC	CTG	GA/	A GGG	ATC	TCC	CCC	864
Leu	Phe	Le	u I	ſyr	Gln	Gly	Leu	Leu	Gln	Ala	Leu	Glu	Gly	Ile	Ser	Pro	
				255					260					265			
GAG	TTG	GG	T C	CC	ACC	TTG	GAC	ACA	CTG	CAG	CTG	GAC	GTC	GCC	GAC	TTT	912
Glu	Leu	Gl	y P	ro	Thr	Leu	Asp	Thr	Leu	Gln	Leu	Asp	Val	Ala	Asp	Phe	
		27						275					280				••
GCC	ACC	AC	CA	TC	TGG	CAG	CAG	ATG	GAA	GAA	CTG	GGA	ATG	GCC	ССТ	GCC	960
Ala	Thr	Thi	: I	le	Trp	Gln	Gln	Met	Glu	Glu	Leu	Gly	Met	Ala	Pro	Ala	
	285						290					295					
CTG	CAG	CCC	: A	CC (CAG	GGT	GCC	ATG	CCG	GCC	TTC	GCC	TCT	GCT	TTC	CAG	1008
Leu	Gln	Pro	T	hr (Gln	Gly	Ala	Met	Pro	Ala	Phe	Ala	Ser	Ala	Pħe	Gln	•
300						305					310					315	
CGC	CGG	GCA	G	GA (GGG	GTC	CTA	GTT	GCC	TCC	CAT	CTG	CAG	AGC	TTC	CTG	1056
Arg	Arg	Ala	G1	ly (Sly	Val	Leu	Val	Ala	Ser	His	Leu	Gln	Ser	Phe	Leu	
					320					325					330		

in in the composition of

GAG GTG TCG TAC CGC GTT CTA CGC CAC CTT GCC CAG CCC Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro

1095

Sequence ID No.: 7

Sequence Length: 44

Sequence Type: nucleic acid

Strandedness: single

Topology: linear

Molecular Type: other nucleic acid, synthetic DNA

Sequence Characteristics:

Designation: sig peptide

Location: 27..44

Sequence

CTCTCCAAGC TTGAATTCCG GCCAGAATGG AGCTGACTGA ATTG

44

Sequence ID No.: 8

Sequence Length: 47

Sequence Type: nucleic acid

Strandedness: single

Topology: linear

Molecular Type: other nucleic acid, synthetic DNA

Sequence Characteristics:

Designation: CDS

Location: 23..47

Sequenc

GTAGAGGTAC CGCGGCCGCT TACCCTTCCT GAGACAGATT CTGGGAG

The second secon

47

Sequence ID No.: 9

Sequence Length: 24

Sequence Type: nucleic acid

Strandedness: single

Topology: linear

Molecular Type: other nucleic acid, synthetic DNA

Sequence Characteristics:

Designation: CDS

Location: 1..24

Sequence

TGAACCTCTG GGCACTGGCT CAGT

24

Sequence ID No.: 10

Sequence Length: 24

Sequence Type: nucleic acid

Strandedness: single

Topology: linear

Molecular Type: other nucleic acid, synthetic DNA

Sequence Characteristics:

Designation: CDS

Location: 1..24

Sequence

GCTGCCTGCT GTGGACTTTA GCTT

24

Sequence ID No.: 11

Sequence Length: 24

Sequence Type: nucleic acid

Strandedness: single

Topology: linear

Molecular Type: other nucleic acid, synthetic DNA

Sequence Characteristics:

Designation: CDS

Location: 1..24

Sequence

TGTTGGAAGC TCAGGAAGAT GGCA

24

Sequence ID No.: 12

Sequence Length: 24

Sequence Type: nucleic acid

Strandedness: single

Topology: linear

Molecular Type: other nucleic acid, synthetic DNA

Sequence Characteristics:

Designation: CDS

Location: 1..24

Sequence '

CCTGATGCTT GTAGGAGGGT CCAC

24

Sequence ID No.: 13

Sequence Length: 24

Sequence Type: nucleic acid

Strandedness: single

Topology: linear

Molecular Type: other nucleic acid, synthetic DNA

Sequence Characteristics:

Designation: CDS

Location: 1..24

Sequence

TCAAGAGTTC GTGTATCCTG TTCA

24

Sequence ID No.: 14

Sequence Length: 24

Sequence Type: nucleic acid

Strandedness: single

Topology: linear

Molecular Type: other nucleic acid, synthetic DNA

Sequence Characteristics:

Designation: CDS

Location: 1..24

Sequence GAATGGAACT CGTGGACTCT TTCC 24 Sequence ID No.: 15 Sequence Length: 17 Sequence Type: nucleic acid Strandedness: single Topology: linear Molecular Type: other nucleic acid, synthetic DNA Sequence GTAAAACGAC GGCCAGT 17 Sequence ID No.: 16 Sequence Length: 17 Sequence Type: nucleic acid Strandedness: single Topology: linear Molecular Type: other nucleic acid, synthetic DNA Sequence CAGGAAACAG CTATGAC 17 Sequence ID No.: 17 Sequence Length: 13

Strandedness: single

Sequence Type: amino acid

Topology: linear

Molecular Type: peptide

Sequence

Gly Gly Gly Ser Gly Gly Gly Gly Gly Ser Arg

1

5

10

Sequence ID No.: 18

Sequence Length: 66

Sequence Type: nucleic acid

Strandedness: single

Topology: linear

Molecular Type: other nucleic acid, synthetic DNA

Sequence Characteristics:

Designation: CDS

Location: 1..3

Designation: CDS

Location: 43..66

Sequence

TGCTCTAGAA CCGCCTCCGG AACCACCTCC AGAACCGCCA CCCCTGACGC AGAGGGTGGA 60

66

Sequence ID No.: 19

Sequence Length: 45

Sequence Type: nucleic acid

Strandedness: single

Topology: linear

Molecular Type: other nucleic acid, synthetic DNA

Sequence Characteristics:

Designation: CDS

Location: 22..45

Sequence

GGTTCCGGAG GCGGTTCTAG AGCACCAACA TATCGCGCCT CGAGT

45

Sequence ID No.: 20

Sequence Length: 48

Sequence Type: nucleic acid

Strandedness: single

Topology: linear

Molecular Type: other nucleic acid, synthetic DNA

Sequence Characteristics:

Designation: CDS

Location: 28..48

Sequence

CATTCCGCGG GGTACCGCGG CCGCTCAGGG CTGGGCAAGG TGGCGTAG

48

Sequence ID No.: 21

Sequence Length: 24

Sequence Type: nucleic acid

Strandedness: single

Topology: linear

Molecular Type: other nucleic acid, synthetic DNA

Sequence Characteristics:

Designation: CDS

Location: 1..24

Sequence

GGCTGCTTGA GCCAACTCCA TAGC

24

Sequence ID No.: 22

Sequence Length: 24

Sequence Type: nucleic acid

Strandedness: single

Topology: linear

Molecular Type: other nucleic acid, synthetic DNA

Sequence Characteristics:

Designation: CDS

Location: 1..24

Sequence

GACCCAACTC GGGGGAGATC CCTT

24

Sequence ID No.: 23

Sequence Length: 57

Sequence Type: nucleic acid

Strandedness: single

Topology: linear

Molecular Type: other nucleic acid, synthetic DNA

Sequence Characteristics:

Designation: CDS

Location: 1..27

Designation: CDS

Location: 28..57

Designation: mutation

Location: 25

Designation: mutation

Location: 33..34

Sequence

TAGACTCGAG GCGCGATATG TTGGCGCCCG CCGTACGCAG AGGGTGGACC CTCCTAC

57

Sequence ID No.: 24

Sequence Length: 17

Sequence Type: amino acid

Strandedness: single

Topology: linear

Molecular Type: peptide

Sequence

Ser Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly Gly Arg

1 5 10 15

Sequence ID No.: 25

Sequence Length: 61

Sequence Type: nucleic acid

Strandedness: single

Topology: linear

Molecular Type: other nucleic acid, synthetic DNA

Sequence Characteristics:

Designation: CDS of TPO

Location: 1..6

Designation: linker peptide

Location: 7..57

Designation: CDS of ND28

Location: 58..61

Designation: SplI

Location: 1..5

Designation: MroI

Location: 7..12

Designation: MroI

Location: 43..48

Designation: BbeI

Location: 58..61

Designation: mutation

Location: 4..5

Sequence

GTACGGTCCG GAGGTGGCTC TGGCGGTGGT TCTGGTGGCG GCTCCGGAGG CGGTCGTGCG C 61

Sequence ID No.: 26

Sequence Length: 53

Sequence Type: nucleic acid

Strandedness: single

Topology: linear

Molecular Type: other nucleic acid, synthetic DNA

Sequence Characteristics:

Designation: CDS of TPO

Location: 52..53

Designation: linker peptide

Location: 1..51

Designation: SplI

Location: 53

Designation: MroI

Location: 10..15

Designation: MroI

Location: 46..51

Sequence

ACGACCGCCT CCGGAGCCGC CACCAGAACC ACCGCCAGAG CCACCTCCGG ACC

53