

特性描述

TM1680是一种存储器交换LED显示控制的驱动芯片,可以选择多重的ROW/COM模式(32ROW/8COM和24ROW/16COM),可以用来驱动点阵 LED。该芯片提供了软件设置的 16 个级别的脉宽调制控制输出,可以调整 LED 循环显示的亮度。利用串行接口(I2C通信接口)串行输入的方式,可以便捷地进入命令模式 (COMMAND、MDOE) 和数据模式 (DATA、MODE),只需要简单的命令就可以建立起主控芯片和TM1680 的通信。通过 TM1680 便可以进行持续的输出显示,在 LED 灯的显示中具有广泛的应用性,如工业仪表控制,数字钟/温度计/计数器/电压表显示,仪表数据的读出,LED显示,智能手环等应用。本产品性能优良,质量可靠。

功能特点

- ➤ 工作电压2.4~5.5V
- ▶ 32ROW*8COM 和 24ROW*16COM 两种显示方案可选
- 综合显示存储器——64*4显示RAM(32ROW*8COM),96*4显示RAM(24ROW*16COM)
- ▶ 16 个级别脉宽调制控制亮度
- ▶ 内置 256KHz RC振荡器
- ➤ I2C接口 (SDA、SCL) 通讯
- 数据模式和命令模式指令
- ▶ 可选的 NMOS 输出渠道和PMOS 输出渠道
- ▶ 封装形式: LQFP48、LQFP52

内部结构框图

©Titan Micro Electronics www.titanmec.com

管脚排列

管脚功能

管脚名称	管脚序号	I/0	功能说明
VDD	21	1	芯片逻辑电源正极
VSS	14	-	芯片逻辑电源负极
LED_VDD	7/38	-/	LED驱动电源正极,每个 LED_VDD 是双键的
LED_VSS	25/36	-	LED驱动电源负极,每个 LED_VSS 是双键的
ROW0~ROW23	1~6/8~13/41~ 52	0	LED行驱动输出
ROW24/COM15 ~ROW31/COM8	31~35/37/39/40	0	LED行驱动输出端或者公共输出端,每个 COM 引脚是双键的
COMO~COM7	22~24/26~30	0	LED公共输出端,每个COM引脚是双键的
SYNC	20	I/0	如果主触发模式或者外部扩展触发模式被选择,则同步信号将从SYNC引脚输出;如果选择被动模式,则同步信号将从SYNC引脚输入。
OSC	15	I/0	RC振荡主触发模式被选择时,系统时钟由片内RC振荡产生,并且从OSC管脚输出;如果被动模式或者外部扩展触发模式被选择,则系统时钟由OSC脚从外部输入。
A0	19	Ι	从机地址扩展位,已内置上拉电阻。
A1	18	I	从机地址扩展位,已内置上拉电阻。
SCL	17	I	I2C通讯时钟输入,在SCL信号上升沿时,SDA线上的数据被写进TM1680,已内置上拉电阻。
SDA	16	I/0	I2C通讯数据输入/输出端口,应用时需要外接上拉电阻。

*备注:上表中的管脚序号,以LQFP52封装为例。不同的封装,脚位有所不一样,详情请参考管脚排列图。48PIN封装的显示方式是24*8,且不支持1/16阶辉度。

©Titan Micro Electronics www.titanmec.com

输入输出等效电路

集成电路系静电敏感器件,在干燥季节或者干燥环境使用容易产生大量静电,静电放电可能会损坏集成电路,天微电子建议采取一切适当的集成电路预防处理措施,不正当的操作焊接,可能会造成 ESD 损坏或者性能下降,芯片无法正常工作。

极限参数 (1) (2)

参数名称		参数符号	极限值	单 位
逻辑	电源电压	VDD	VSS-0.3V \sim VSS+6V	V
输入端电压范围	SDA, SCL, OSC, SYNC	Vin	VSS-0.3∼VDD+0.3	V
工作	温度范围	Topt	-40∼+85	$^{\circ}$
储存	温度范围	Tstg	-55∼+125	$^{\circ}\mathbb{C}$

- (1) 芯片长时间工作在上述极限参数条件下,可能造成器件可靠性降低或永久性损坏,天微电子不建议实际使用时任何一项参数达到或超过这些极限值。
 - (2) 所有电压值均相对于系统地测试。

推荐工作条件

参数名称	参数符号	最小值	典型值	最大值	
工作电压	VDD	2. 4	5. 0	5. 5	V
输入低电平电压	Vil	0	_	0.3VDD	V
输入高电平电压	Vih	0.7VDD	_	5	V

©Titan Micro Electronics www.titanmec.com

气特	件
	气特

在 VDD=2. 4 [~] 5. 5V 及 Ta=+25℃下测试,除非另有说明			TM1680			单位	
参数名称	参数符号	VDD	测试条件	最小值	典型值	最大值	
工作电流	IDD	5. OV	片内 RC, 空载, 开显示		0.3	0.6	mA
待机电流	ISTB	5. 0V	省电模式, 空载		0. 1	10	μА
OSC, SYNC, SDA 灌电流	IOL1	5. 0V	Vo1=0.5V	18	25	_	mA
OSC, SYNC, SDA 拉电流	IOH1	5. 0V	Voh=4.5V	-10	-13	_	mA
ROW 灌电流	IOL2	5. OV	Vo1=0.5V	12	16	_	mA
ROW 拉电流	IOH2	5. 0V	Voh=4.5V	-50	-70	_	mA
COM 灌电流	IOL3	5. 0V	Vo1=0.5V	250	350	_	mA
COM 拉电流	I0H3	5. 0V	Voh=4.5V	-45	-60	-	mA
上拉电阻	Rph	5. 0V	SDA, SCL, OSC, SYNC	18	27	40	kΩ

开关特性

工作温度为 25℃下测试,除非另有说明			VDD=2. 4V~5. 5V		VDD=3. 0V~5. 5V		单位
参数名称	参数符号	测试条件	最小	最大	最小	最大	
时钟频率	fSCL	芯片内部时钟	-	100	_	400	kHZ
总线空闲时间	tBUF	总线在下一个时 钟到来之前的空 闲时间	4.7		1.3	-	μs
Start 信号保持时间	tHD:STA	-	4	-	0.6	-	μs
SCL 低电平时间	tLOW		4. 7	-	1. 3	-	μs
SCL 高电平时间	tHIGH	7 /- \	4	_	0.6	-	μs
Start 信号建立时间	tSU:STA		4. 7	_	0.6	-	μs
数据保持时间	tHD:DAT	-	0	_	0	-	μs
数据建立时间	> tSU:DAT	-	250	_	100	-	ns
SDA/SCL 上升时间	tr	-	_	1	-	0.3	μs
SDA/SCL 下降时间	tf	-	-	0.3	-	0.3	μs
Stop 信号建立时间	tSU:STO	_	4	_	0.6	_	μs
SDA/SCL 输入时消噪 时间	tSP	消噪时间	-	20	_	20	ns

功能描述

1 显示内存(RAM)

静态显示内存包含64*4位和96*4位两种格式来存储需要显示的数据。如果模式32ROW/8COM模式被选择,则RAM的存储空间64*4位;如果模式24ROW/16COM模式被选择,则RAM的存储空间为96*4位。RAM中的数据直接映射到LED显示驱动器,如果RAM的数据设置为"1"则对应LED将被点亮。下图5和图6给出的是RAM到LED的映射图:

32 ROW & 8 COM for 64×4 Display RAM $\boxed{\$}5$

24 ROW & 16 COM for 96×4 Display RAM 图6

2 系统时钟

TM1680的系统时钟用来产生系统工作的时钟频率。LED 驱动时钟、系统时钟可以取自片内的 RC 振荡器(256KHz)或者使用 S/W 设置由外部时钟输入。系统振荡器构造如图7所示,当SYS DIS命令被执行时,系统时钟停止,LED 工作循环将被关闭(这条指令只能适用与片内 RC 振荡器)。一旦系统时钟停止时,LED 显示为空白,时基也会丧失其功能。LED_OFF命令用来关闭 LED 工作循环,LED 工作循环被关闭之后,用 SYS DIS 命令节省电源开支,充当省电命令;如果是片外时钟源被选择的话,使用 SYS DIS 命令不能够关闭振荡器以及执行省电模式。晶体振荡器可以通过OSC管脚提供时钟频率,在这种情况下,系统将不能进入省电模式。在系统上电时,TM1680 默认处在 SYS DIS 状态下。

3 LED 驱动

TM1680 含有 256 (32*8) 和 384 (24*16) 两种模式的 LED驱动,可以设定成 32*8 或者 24*16 显示模式,通过COM口输出可以选择 N-MOS 或者 P-MOS 输出渠道。这些特性使得TM1680 可以适应不同的LED应用场合。LED 驱动时钟源于系统时钟,驱动的时钟一般情况下选择片内RC振荡器 256KHz或者扩展的外部振荡器。详细设置命令请见命令概述表。

4 级联操作

在级联操作时,级联的第一颗芯片设置为主机模式,其管脚SYNC和OSC用作输出;级联的第二片芯片设置为从机模式,其管脚SYNC和OSC用作输入,并与主机芯片的SYNC和OSC脚连接。TM1680的器件地址包含2位外部地址选择位A1、A0,所以最多可以连接4个TM1680到同一总线上。详细设置请参考级联应用电路图。

©Titan Micro Electronics www.titanmec.com

5 LED 驱动模式输出波形

32×8 N-MOS开漏输出驱动模式输出波形如下图所示(Tclk=1/Fsys):

24×16 P-MOS开漏输出驱动模式(Tclk=1/Fsys, COM脚外加晶体管):

6 闪光灯

TM1680具有闪烁功能,可以使得所有的LED按一定频率闪烁,闪烁速率可通过Blink命令设置,可 以分为2Hz/1Hz/0.5Hz。以下是闪烁频率为2Hz的输出波形:

7 亮度调节设置

TM1680可以通过设置ROW端的PWM驱动脉宽进行多种亮度控制。下图11为不同占空比条件下COM和 T=20×Tc1k(32×8驱动模式); (2)T=10×Tc1k(24×16 驱 动 模 式); ROW端的输出波形: (1) (3) Tc1k=1/Fsys

8 命令格式

本芯片在输入命令或显示数据时,必须按照以下步骤:

- (1) 形成开始条件
- (2) 发送从机地址(Slave Address)
- (3) 命令,显示数据的传送
- (4) 形成停止条件

9 I2C 串行接口

本芯片由I2C协议2线串行接口来进行数据传送的,包含一个串行数据线SDA和时钟线SCL,两线内置上拉电阻,总线空闲时为高电平。

每次数据传输时由控制器产生一个起始信号,采用同步串行传送数据,TM1680每接收一个字节数据后都回应一个ACK应答信号。发送到SDA 线上的每个字节必须为8 位,每次传输可以发送的字节数量不受限制。每个字节后必须跟一个ACK响应信号,在不需要ACK信号时,从SCL信号的第8个信号下降沿到第9个信号下降沿为止需输入低电平"L"。当数据从最高位开始传送后,控制器通过产生停止信号来终结总线传输,而数据发送过程中重新发送开始信号,则可不经过停止信号。

当SCL为高电平时,SDA上的数据保持稳定; SCL为低电平时允许SDA变化。如果SCL处于高电平时,SDA上产生下降沿,则认为是起始信号; 如果SCL处于高电平时,SDA上产生的上升沿认为是停止信号。如下图所示:

时序图

1 写命令操作

如图15所示,从器件的8位从地址字节的高6位固定为111001,接下来的2位A1、A0为器件外部的地址位。

2 字节写操作

©Titan Micro Electronics www.titanmec.com

D1 D0 D3 D2 D1

 $_{ACK}^{T}$ (n+x+1) data $_{ACK}^{T}$ (n+x) data $_{ACK}^{T}$

3 页写操作

D1

n data

图18

DO D3 D2

应用电路

0

A5 A4 A3

A2

A6

低功耗LED应用(直接驱动方式): 32ROW*8COM模式举例图19

D3 D2

Α

D1

低功耗LED应用(直接驱动方式): 24ROW*16COM模式举例图20

中功耗LED应用(COM加晶体管驱动方式): 32ROW*8COM模式举例图21

©Titan Micro Electronics www.titanmec.com V1.1

中功耗LED应用(COM加晶体管驱动方式): 24ROW*16COM模式举例图22

大功耗LED应用(ROW和COM加晶体管驱动方式): 32ROW*8COM模式举例图23

www.titanmec.com

32*8 & 24*16 LED 驱动芯片 TM1680

大功耗LED应用(ROW和COM加晶体管驱动方式): 24ROW*16COM模式举例图24

级联应用(直接驱动方式): 32ROW*8COM模式举例图25

©Titan Micro Electronics www.titanmec.com V1.1

32*8 & 24*16 LED 驱动芯片 TM1680

级联应用(COM加晶体管驱动方式): 32ROW*8COM模式举例图26

级联应用(直接驱动方式): 24ROW*16COM模式举例图27

级联应用(COM加晶体管驱动方式): 24ROW*16COM模式举例图28

一般设计流程图

命令概述表:

命令名称	命令代码	D/C	功能描述	默认
WRITE	1110-01A1A0	D	写从机地址	
数据地址(I2C)	0 A6 A5 A4 A3 A2 A1 A0	D	写 RAM 地址	
数据格式(I2C)	$D_{\rm A3}D_{\rm A2}D_{\rm A1}D_{\rm A0}D_{\rm B3}D_{\rm B2}D_{\rm B1}D_{\rm B0}$	D	A3-A0 高 4 位,B3-B0 低四位	
SYS DIS	1000-0000	С	关闭系统时钟和 LED 循环	√
SYS EN	1000-0001	С	打开系统振荡器	
LED OFF	1000-0010	С	关闭 LED 循环	√
LED ON	1000-0011	С	开启 LED 循环	
BLINK OFF	1000-1000	С	关闭闪烁功能	√
BLINK 2Hz	1000-1001	С	LED 按 2Hz 的频率闪烁	
BLINK_1Hz	1000-1010	С	LED 按 1Hz 的频率闪烁	
BLINK_0.5Hz	1000-1011	С	LED 按 0.5Hz 的频率闪烁	
SLAVE MODE	1001-0XXX	С	外置振荡,时钟由 OSC 引脚输入, 同步信号由 SYN 引脚输入	
RC Master ModeO	1001-100X	С	内置振荡, OSC 保持低电平, 同步 信号在 SYN 引脚保持高电平, 只应 用于单芯片	√
RC Master Mode1	1001-101X	С	内置振荡,内部频率在 OSC 输出, 同步信号在 SYN 引脚输出	
EXT CLK Master ModeO	1001-110X	С	外置振荡,时钟由 OSC 引脚输入, 同步信号由 SYN 引脚保持高电平, 只引用于单芯片	√
EXT CLK Master Mode1	1001-111X	С	外置振荡,时钟由 OSC 引脚输入, 同步信号由 SYN 引脚输出	
COM Option	1010-abXX	С	当 ab=00 时,8COM Nmos; 当 ab=01 时,16COM Nmos; 当 ab=10 时,8COM Pmos; 当 ab=11 时,16COM Pmos;	00
PWM Duty	1011-abcd	С	abcd 从 0-F 变化分别对应 1/1616/16 的 LED 的 16 阶辉度调 节	F

注:

- 1、X不关心,建议写"0"。
- 2、A6^A0显存地址。
- 3、DO[~]D3显存数据。
- 4、D/C数据/命令模式。
- 5、默认: 上电复位后芯片的状态

封装示意图(LQFP48 7mm*7mm)

Comb o 1	Dimensions In	Millimeters	Dimensions In Inches		
Symbol Symbol	Min	Max	Min	Max	
A		1.600		0.063	
A1	0.050	0. 150	0.002	0.006	
A2	1. 350	1.500	0.053	0.059	
b	0. 180	0. 270	0.007	0.010	
С	0.130	0. 180	0.005	0.007	
D	6. 900	7. 100	0. 272	0. 280	
D1	8.800	9. 200	0. 346	0.362	
Е	6. 900	7. 100	0. 272	0. 280	
E1	8.800	9. 200	0. 346	0.362	
е	0. 500 (BSC)		0. 020	(BSC)	
L	0. 450	0.750	0.018	0.030	
θ	0°	7°	0°	7°	

封装示意图 (QFP52 14mm*14mm)

Symbol .	Dimensions In	Millimeters	Dimensions In Inches		
Symbol Symbol	Min	Max	Min	Max	
A		1.600		0.063	
A1	0. 1	00	0.	004	
A2	1. 3500	1.500	0.053	0. 059	
b	0. 400 (BSC)		0.016 (BSC)		
D	13. 900	14. 100	0. 547	0. 555	
D1	15. 800	16. 200	0.622	0. 638	
E	13. 900	14. 100	0. 547	0. 555	
E1	15. 800	16. 200	0.622	0. 638	
е	1.000 (BSC)		0. 039	9 (BSC)	
L	0. 450	0.750	0.018	0.030	
θ	0°	7°	0°	7°	

All specs and applications shown above subject to change without prior notice.

(以上电路及规格仅供参考,如本公司进行修正,恕不另行通知)