Machine Learning Constrained Optimization

Kevin Moon (kevin.moon@usu.edu)
STAT/CS 5810/6655

Outline

- 1. Constrained optimization problems
- 2. The Lagrangian
- 3. Dual optimization problems
- 4. KKT conditions

Motivation

• Today's lecture will allow us to better understand the optimal softmargin hyperplane which solves

$$\min_{\boldsymbol{w},b,\xi} \quad \frac{1}{2} \|\boldsymbol{w}\|^2 + \frac{C}{n} \sum_{i=1}^n \xi_i \tag{OSM}$$
s.t.
$$y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b) \ge 1 - \xi_i \quad \forall i$$

$$\xi_i \ge 0 \quad \forall i$$

- In particular, by converting the above constrained optimization problem to its dual, we will be able to kernelize this method. This leads to the so-called *support vector machine*.
- Constrained optimization problems are ubiquitous in machine learning.

Constrained Optimization

• A constrained optimization problem has the form

$$egin{aligned} \min_{oldsymbol{x} \in \mathbb{R}^d} & f(oldsymbol{x}) \ s.t. & g_i(oldsymbol{x}) \leq 0, \quad i=1,\ldots,m \ & h_j(oldsymbol{x}) = 0, \quad j=1,\ldots,n \end{aligned}$$

where $\boldsymbol{x} \in \mathbb{R}^d$.

- If x satisfies all of the constraints, it is said to be feasible.
- \bullet Assume f is defined at all feasible points.

Constrained Optimization

• A constrained optimization problem has the form

$$egin{aligned} \min_{oldsymbol{x} \in \mathbb{R}^d} & f(oldsymbol{x}) \ s.t. & g_i(oldsymbol{x}) \leq 0, \quad i = 1, \dots, m \ & h_j(oldsymbol{x}) = 0, \quad j = 1, \dots, n \end{aligned}$$

where $\boldsymbol{x} \in \mathbb{R}^d$.

- A constrained optimization problem is convex if:
 - 1. f is convex
 - 2. g_i is convex $\forall i = 1, ..., m$
 - 3. h_j is <u>linear/affine</u> $\forall j = 1, ..., n$

Lagrangian

The Lagrangian is

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \coloneqq f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{n} \nu_j h_j(\mathbf{x})$$

• $\lambda = [\lambda_1, ..., \lambda_m]^T$ and $\mathbf{v} = [\nu_1, ..., \nu_n]^T$ are called Lagrange multipliers or dual variables

Dual Function

The Lagrangian dual function is

$$L_D(\lambda, \nu) := \min_{\mathbf{x}} L(\mathbf{x}, \lambda, \nu)$$

- L_D is concave (proof in Duality.pdf)
- The dual optimization problem is

$$\max_{\boldsymbol{\lambda},\boldsymbol{\nu}:\lambda_i\geq 0}L_D(\boldsymbol{\lambda},\boldsymbol{\nu})$$

• The original constrained optimization problem is sometimes called the *primal optimization problem*

Rewriting the Primal

The primal may be rewritten as

$$\min_{\mathbf{x}} \max_{\lambda, \mathbf{v}: \lambda_i \geq 0} L(\mathbf{x}, \lambda, \mathbf{v})$$

- If x is not feasible, the value of $\max_{\lambda,\nu:\lambda_i\geq 0}L(x,\lambda,\nu)$ is ∞ .
 - Otherwise, it is f(x)

Weak Duality

Denote the optimal objective function values of the primal and dual

$$p^* = \min_{\boldsymbol{x}} \max_{\boldsymbol{\lambda}, \boldsymbol{\nu}: \lambda_i \geq 0} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$$

$$d^* = \max_{\boldsymbol{\lambda}, \boldsymbol{\nu}: \lambda_i \geq 0} \min_{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = \max_{\boldsymbol{\lambda}, \boldsymbol{\nu}: \lambda_i \geq 0} L_D(\boldsymbol{\lambda}, \boldsymbol{\nu})$$

- Weak duality refers to the following fact which always holds:
- Theorem: $d^* \leq p^*$

Weak Duality

Proof of weak duality: Let \tilde{x} be feasible. Then for any λ, ν with $\lambda_i \geq 0$

$$L(\tilde{\boldsymbol{x}}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\tilde{\boldsymbol{x}}) + \sum_{i=1}^{m} \lambda_i g_i(\tilde{\boldsymbol{x}}) + \sum_{j=1}^{n} \nu_j h_j(\tilde{\boldsymbol{x}}) \le f(\tilde{\boldsymbol{x}})$$

Hence

$$L_D(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \min_{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \le f(\tilde{\boldsymbol{x}})$$

This is true for any feasible $\tilde{\boldsymbol{x}}$, so

$$L_D(\boldsymbol{\lambda}, \boldsymbol{\nu}) \leq \min_{\tilde{\boldsymbol{x}} \text{ feasible}} f(\tilde{\boldsymbol{x}}) = p^*$$

Taking the max over $\lambda, \nu : \lambda_i \geq 0$, we have

$$d^* = \max_{\boldsymbol{\lambda}, \boldsymbol{\nu}: \lambda_i > 0} L_D(\boldsymbol{\lambda}, \boldsymbol{\nu}) \le p^*$$

Strong Duality

- If $p^* = d^*$, we say strong duality holds.
- The original unconstrained optimization problem is said to be *convex* if f and g_1, \ldots, g_m are convex functions and h_1, \ldots, h_n are affine.
- We state the following without proof.
- **Theorem:** If the original problem is convex and a constraint qualification holds, then $p^* = d^*$.
- Examples of constraint qualifications:
 - \circ All g_i are affine
 - \circ (Strict feasibility) $\exists \boldsymbol{x} \text{ s.t. } h_j(\boldsymbol{x}) = 0 \ \forall j \text{ and } g_i(\boldsymbol{x}) < 0 \ \forall i$

Big Picture

- For unconstrained optimization problems with differentiable objective functions, we saw that
 - $\nabla f(x) = 0$ is necessary for x to be a global minimizer
 - If f is convex, then $\nabla f(x) = \mathbf{0}$ is sufficient for x to be a global minimizer
- For constrained optimization problems with differentiable objective and constraints, a similar result holds where $\nabla f(x) = \mathbf{0}$ is replaced by the *Karesh-Kuhn-Tucker (KKT)* conditions
- We can use these conditions to solve and understand constrained optimization problems

KKT Conditions: Necessity

- From now on assume f, g_i and h_j are all differentiable.
- Theorem: If $p^* = d^*$, x^* is a primal optimal, and (λ^*, ν^*) is dual optimal, then the KKT conditions hold:

1.
$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(\mathbf{x}^*) + \sum_{j=1}^n \nu_j^* \nabla h_j(\mathbf{x}^*) = \mathbf{0}$$

- 2. $g_i(\boldsymbol{x}^*) \leq 0 \ \forall i$
- 3. $h_j(\boldsymbol{x}^*) = 0 \ \forall j$
- 4. $\lambda_i^* \geq 0 \ \forall i$
- 5. $\lambda_i^* g_i(\boldsymbol{x}^*) = 0 \ \forall i \ (\text{complimentary slackness})$

KKT Conditions: Necessity

Proof: (2) - (3) hold since x^* is feasible. (4) holds by definition of the dual problem. To prove (5) and (1):

$$f(\boldsymbol{x}^*) = L_D(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*) \text{ [by strong duality]}$$

$$= \min_{\boldsymbol{x}} \left(f(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i^* g_i(\boldsymbol{x}) + \sum_{j=1}^n \nu_j^* h_j(\boldsymbol{x}) \right)$$

$$\leq f(\boldsymbol{x}^*) + \sum_{i=1}^m \lambda_i^* g_i(\boldsymbol{x}^*) + \sum_{j=1}^n \nu_j^* h_j(\boldsymbol{x}^*)$$

$$\leq f(\boldsymbol{x}^*) \text{ [by (2) - (4)]}$$

and therefore the two inequalities are equalities. Equality of the last two lines implies $\lambda_i^* g_i(\boldsymbol{x}^*) = 0 \ \forall i$. Equality of the 2nd and 3rd lines implies \boldsymbol{x}^* is a minimizer of $L(\boldsymbol{x}, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$ with respect to \boldsymbol{x} . Therefore

$$\nabla_{\boldsymbol{x}} L(\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*) = \mathbf{0},$$

which is (1).

KKT Conditions: Sufficiency

• **Theorem:** If the original problem is convex and \tilde{x} , $\tilde{\lambda}$, $\tilde{\nu}$ satisfy the KKT conditions

1.
$$\nabla f(\tilde{\boldsymbol{x}}) + \sum_{i=1}^{m} \tilde{\lambda}_i \nabla g_i(\tilde{\boldsymbol{x}}) + \sum_{j=1}^{n} \tilde{\nu}_j \nabla h_j(\tilde{\boldsymbol{x}}) = \mathbf{0}$$

- 2. $g_i(\tilde{\boldsymbol{x}}) \leq 0 \ \forall i$
- 3. $h_j(\tilde{\boldsymbol{x}}) = 0 \ \forall j$
- 4. $\tilde{\lambda}_i \geq 0 \ \forall i$
- 5. $\tilde{\lambda}_i g_i(\tilde{\boldsymbol{x}}) = 0 \ \forall i \ (\text{complementarity or complementary slackness})$

then \tilde{x} is primal optimal, $(\tilde{\lambda}, \tilde{\nu})$ is dual optimal, and strong duality holds.

KKT Conditions: Sufficiency

Proof: By (2) and (3), $\tilde{\boldsymbol{x}}$ is feasible. By (4), $L(\boldsymbol{x}, \tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\mu}})$ is convex in \boldsymbol{x} . By (1), $\tilde{\boldsymbol{x}}$ is a minimizer of $L(\boldsymbol{x}, \tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}})$. Then

$$L_D(\tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}}) = L(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}})$$

$$= f(\tilde{\boldsymbol{x}}) + \sum_{i=1}^{m} \tilde{\lambda}_i g_i(\tilde{\boldsymbol{x}}) + \sum_{j=1}^{n} \tilde{\nu}_j h_j(\tilde{\boldsymbol{x}})$$

$$= f(\tilde{\boldsymbol{x}}) \text{ [by (5) and (3)]}$$

Therefore $p^* \leq d^*$. But we know $p^* \geq d^*$ by weak duality, and so we must have $p^* = d^*$, with \tilde{x} being primal optimal, and $(\tilde{\lambda}, \tilde{\nu})$ being dual optimal.

How is this useful?

- We can use the KKT conditions to solve the primal and/or dual
- Sometimes it is easier to solve the dual than the primal (computationally or analytically)
- In particular: if (λ^*, ν^*) is dual optimal, then any primal optimal point x^* is a solution of

$$\min_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$$

or

$$\nabla_{\mathbf{x}}L(\mathbf{x},\boldsymbol{\lambda}^*,\boldsymbol{\nu}^*)=0$$

Consider the following optimization problem:

minimize
$$\frac{2}{5}(x_1^2 + x_2^2)$$

subject to
$$2 - x_1 - x_2 \le 0$$

- 1. Write down the Lagrangian and KKT conditions
- 2. Solve the primal using the KKT conditions
- 3. Argue that strong duality holds i.e. $p^* = d^*$.
- 4. Write down the Lagrangian dual function and dual optimization problem
- 5. Solve the problem a second way, by first solving the dual problem and then inferring the primal solution from the dual solution.

Consider the following optimization problem:

minimize
$$\frac{2}{5}(x_1^2 + x_2^2)$$

subject to $2 - x_1 - x_2 \le 0$

$$g(\mathbf{x}) = 2 - x_1 - x_2 \le 0$$

1. Write down the Lagrangian and KKT conditions

$$L(\mathbf{x},\lambda) = \frac{2}{5}(x_1^2 + x_2^2) + \lambda(2 - x_1 - x_2)$$

1.
$$\frac{\partial L}{\partial x_1} = \frac{4}{5}x_1 - \lambda = 0, \frac{\partial L}{\partial x_2} = \frac{4}{5}x_2 - \lambda = 0$$

- 2. $2 x_1 x_2 \le 0$
- 3. N/A
- 4. $\lambda \geq 0$
- 5. $\lambda(2-x_1-x_2)=0$

2. Solve the primal using the KKT conditions

From the gradient conditions, if $\lambda=0$, then $x=\begin{bmatrix}0\\0\end{bmatrix}$. This is not feasible since we require $2-x_1-x_2\leq 0$. Thus by condition 5, this means that $2-x_1-x_2=0$. By condition 1, $x_1=x_2=\frac{5}{4}\lambda$. Therefore $2-\frac{5}{2}\lambda=0 \Rightarrow \lambda=\frac{4}{5}$.

$$\Rightarrow x_1 = x_2 = 1$$

3. Argue that strong duality holds i.e. $p^* = d^*$.

The primal is convex and g_1 is affine.

4. Write down the Lagrangian dual function and dual optimization problem

$$L_{D}(\lambda) = \min_{x} L(x, \lambda)$$

$$= \min_{x} \frac{2}{5} (x_{1}^{2} + x_{2}^{2}) + \lambda(2 - x_{1} - x_{2})$$

$$= \frac{2}{5} \left(\left(\frac{5}{4} \lambda \right)^{2} + \left(\frac{5}{4} \lambda \right)^{2} \right) + \lambda \left(2 - \frac{5}{2} \lambda \right)$$

$$= \frac{5}{4} \lambda^{2} + 2\lambda - \frac{5}{2} \lambda^{2}$$

$$= -\frac{5}{4} \lambda^{2} + 2\lambda$$

5. Solve the problem a second way, by first solving the dual problem and then inferring the primal solution from the dual solution.

Dual:
$$\max_{\lambda \ge 0} -\frac{5}{4}\lambda^2 + 2\lambda \Rightarrow \lambda^* = \frac{4}{5}$$

To recover
$$\mathbf{x}^* = \arg\min L(\mathbf{x}, \lambda^*) = [1 \ 1]^T$$

Multinomial MLE

• Can use the KKT conditions to apply MLE to estimate the probabilities for data with a multinomial distribution.

Multinomial MLE

Let $p_1, ..., p_k$ be a discrete pmf. N observations, $n_i = \#$ of times outcome i was observed.

Then $n_1 + n_2 + \cdots + n_k = N$. What is the MLE of $\boldsymbol{\theta} = [p_1, \dots, p_k]^T$?

$$\max_{\theta} {N \choose n_1! \dots n_k!} p_1^{n_1} \dots p_k^{n_k}$$
s.t. $p_i \ge 0$

$$\sum_{i} p_i = 1$$

Multinomial MLE

- Solution: $\hat{p}_i = \frac{n_k}{N}$
- Can solve using the Lagrange multipliers.

• Trick: Ignore inequality constraints $(p_i \ge 0)$ and show that the solution of the resulting problem satisfies the constraints anyway.

Further reading

• ESL Sections 4.5.2, 12.2.1