СОДЕРЖАНИЕ

введение

В этом файле будет законспектирована информация, которая мне показалась интересной, из книги Льва Николаевича Тарасова Математический Анализ.

1 Беседа I

Определение числовой последовательности:

Говорят, что задана бесконечная числовая последовательность, если всякому натуральному числу по какому-либо закону однозначно поставлено в соответствие определённое число (член последовательности)

reccure (лат.) — возвращаться.

Важно говорить какой является числовая последовательность, так как она далеко не всегда состоит из чисел.

Числовая последовательность не обязательно является упорядоченной.

Определение неубывающей последовательности:

Последовательность (y_n) называется неубывающей, если:

$$y_1 \le y_2 \le y_3 \le \dots \le y_n \le \dots \tag{2}$$

Определение невозрастающей последовательности:

Последовательность (y_n) называется невозрастающей, если:

$$y_1 \ge y_2 \ge y_3 \ge \dots \ge y_n \ge \dots \tag{3}$$

Невозрастающие и неубывающие последовательности объединяют в класс монотонных последовательностей.

Определение ограниченной последовательности:

Последовательность (y_n) называется ограниченной, если можно указать такие 2 числа A и B, между которыми леат все члены последовательности:

$$A \le y_n \le B$$
 : $n = 1, 2, 3, \dots$ (4)

С понятия предела и начиется математический анализ. — Лев Николаевич Тарасов.

2 Беседа II

Чтобы совершить переход от элементарной математики к высшей математике нужно операциям сложения, вычитания, умножения, деления, возведения в степень, извлечения корня, логарифмирования и взятия модуля прибавить операцию нахождения предела последовательности.

Операции дифференцирования и интегрирования являются вариациями операции предельного перехода.

Наличие монотонности и ограниченности не является необходимым условием существования предела последовательности.

Определение предела последовательности:

Число a называется пределом последовательности, если

$$\forall \epsilon > 0 \ \exists n_{\epsilon} \in N \ \forall n > n_{\epsilon} \ |y_n - a| < \epsilon \tag{5}$$

Такой предел записывается следующим образом:

$$\lim_{n \to \infty} y_n = a \tag{6}$$

Факт 1:

$$\lim_{n \to \infty} \frac{1}{n} \tag{7}$$

Факт 2:

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n} \tag{8}$$

Факт 3:

$$\lim_{n \to \infty} (x_n + z_n) = \lim_{n \to \infty} x_n + \lim_{n \to \infty} z_n \tag{9}$$

Определение сходящейся послдовательности:

Сходящаяся последовательность — последовательность, имеющая предел.

3 Беседа III Сходящиеся последовательности

Теорема (об ограниченности сходящейся последовательности):

Если последовательность сходится, то она ограничена.

Доказательство:

Пусть последовательность (y_n) имеет пределом число a, тогда

$$\forall \epsilon > 0 \ \exists n_{\epsilon} \in N \ \forall n > n_{\epsilon} \ |y_n - a| < \epsilon \tag{10}$$

так как число n_ϵ конечно, то существует лишь ограниченное число членов (y_n) таких, что

$$|y_n - a| > \epsilon \tag{11}$$

Тогда подберём такие A и B, что

$$\forall n \in N \quad A = a - \epsilon \le y_n \le a + \epsilon = B \tag{12}$$

Тогда, согласно определению ограниченности последовательности, последовательность (y_n) ограничена.

Ограниченность последовательности является, лишь необходимым условием сходимости последовательности, а не достаточным.

Теорема (о единственности предела):

Если последовательность сходится, то она имеет единственный предел.

Доказательство (от противного):

Пусть (y_n) сходится к a_1 и a_2 и $a_1 \neq a_2$. Тогда

$$\forall \epsilon_1 > 0 \ \exists n_{\epsilon_1} \in N \ \forall n > n_{\epsilon_1} \ |y_n - a_1| < \epsilon_1$$
 (13)

И

$$\forall \epsilon_2 > 0 \ \exists n_{\epsilon_2} \in N \ \forall n > n_{\epsilon_2} \ |y_n - a_2| < \epsilon_2$$
 (14)

Выберем $n_{\epsilon} = max(n_{\epsilon_1}, n_{\epsilon_2})$. Тогда

$$\forall \epsilon > 0 \ \forall n > n_{\epsilon} \ |y_n - a_1| < \epsilon \ |y_n - a_2| < \epsilon \tag{15}$$

Следовательно, $a_1 = a_2$, следовательно, получаем противоречие.

Теорема (достаточное условие сходимости последовательности):

Если послеедовательность ограничена и монотонна, то она сходится.

Указать две соседние точки на числовой прямой невозможно.

Правило треугольника:

$$|A+B| \le |A| + |B| \tag{16}$$

Теорема (о сходимости суммы сходящихся последовательностей):

Если последовательности (y_n) и (z_n) сходятся к a и b соответственно, то (y_n+z_n) сходится к a+b.

Доказательство:

Пусть

$$\forall \epsilon > 0 \ \exists n_{\epsilon_1} \in N \ \forall n > n_{\epsilon_1} \ |y_n - a| < \frac{\epsilon}{2}$$
 (17)

И

0.

$$\forall \epsilon > 0 \ \exists n_{\epsilon_2} \in N \ \forall n > n_{\epsilon_2} \ |z_n - a| < \frac{\epsilon}{2}$$
 (18)

Тогда для $n_{\epsilon} = max(n_{\epsilon_1}, n_{\epsilon_2})$ будет выполняться следующее

$$|(y_n + z_n) - (a+b)| = |(y_n - a) + (z_n - b)| \le |y_n - a| + |z_n - b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
 (19)

Сходимость суммы последовательностей вовсе не означает сходимость каждой из последовательностей в отдельности.

Если сумма двух последовательностей сходится, то возможно только два варианта:

- 1. обе последовательности сходятся;
- 2. обе последовательности не сходятся.

Других вариантов быть не может.

Последовательность называется бесконечно малой, если её предел равен

Для любой сходящейся последовательности (y_n) , имеющей предел a, соответствует своя бесконечно малая последовательность (α_n) , где $\alpha_n = y_n - a$.

Теорема (о произведении бесконечно малой и ограниченной последовательностей):

Пусть (y_n) ограниченная последовательность и (α_n) бесконечно малая последовательность. Тогда $|y_n\alpha_n|$ является бесконечно малой последовательностью.

Доказательство:

Пусть (y_n) является ограниченной последовательностью. Тогда

$$\exists M \ \forall n \in N \ |y_n| \le M \tag{20}$$

Пусть (α_n) является бесконечно малой последовательностью, тогда

$$\forall \epsilon > 0 \ \exists n_{\epsilon} \in N \ \forall n > n_{\epsilon} \ |\alpha_n| < \frac{\epsilon}{M}$$
 (21)

Тогда

$$\forall \epsilon > 0 \ \exists n_{\epsilon} \in N \ \forall n > n_{\epsilon} \ |y_n \alpha_n| = |y_n||\alpha_n| \le M|\alpha_n| < M \frac{\epsilon}{M} = \epsilon$$
 (22)

Теорема (о произведении сходящихся последовательностей):

Если последовательности (y_n) и (z_n) сходятся к a и b соответственно, то последовательность (y_nz_n) сходится к ab.

Доказательство:

Пусть (y_n) и (z_n) сходятся к a и b соответственно, и пусть

$$y_n = a + \alpha_n \quad z_n = b + \beta_n, \tag{23}$$

где α_n и β_n бесконечно малые последовательности.

Тогда

$$y_n z_n = ab + a\beta_n + b\alpha_n + \alpha_n \beta_n \tag{24}$$

так как $a\beta_n$, $b\alpha_n$ и $\alpha_n\beta_n$ являются бесконечно малыми последовательностями, то

$$\lim_{n \to \infty} (y_n z_n) = ab \tag{25}$$

Важно помнить о том, что обратные теоремы далеко не всегда верны.

Теорема (о частном двух сходящихся последовательностей):

Пусть (y_n) и (z_n) сходятся к a и b соответственно и $b \neq 0$. Тогда $(\frac{y_n}{z_n})$ сходится к $\frac{a}{b}$.

Доказательство:

Пусть (y_n) и (z_n) сходятся к a и b соответственно и $b \neq 0$.

Пусть

$$y_n = a + \alpha_n \quad z_n = b + \beta_n, \tag{26}$$

где α_n и β_n бесконечно малые последовательности.

Тогда

$$\frac{y_n}{z_n} = \frac{a + \alpha_n}{b + \beta_n} = \frac{(a + \alpha_n)(b - \beta_n)}{(b + \beta_n)(b - \beta_n)} = \frac{ab - a\beta_n + b\alpha_n - \alpha_n\beta_n}{b^2\beta_n^2}$$
(27)

Тогда

$$\lim_{n \to \infty} \frac{y_n}{z_n} = \lim_{n \to \infty} \frac{ab - a\beta_n + b\alpha_n - \alpha_n \beta_n}{b^2 - \beta_n^2} = \frac{ab}{b^2} fracab$$
 (28)

Изменение любого конечного числа ченов последовательности не способно повлиять на её сходимость.

Изменение бесконечного количества членов сходящщейся последовательности не повлияет на её сходимость.

Изменение бесконечного количества членов не сходящщейся последовательности может повлиять на её сходимость.

4 Беседа IV Функция

Числовую фнукцию можно представить как некий аппарат, который по одному числу выдаёт другое число. Вы закладываете в этот аппарат некоторое число (число x), аппарат срабатывает и выдаёт новое число (число y).

Оператор есть аппарат, который по числовой функции даёт новую числовую функцию. Оператор действует на функцию, в результате чего возникает новая функция.

Функционал есть аппарат, который по числовой функции даёт число.

Числовая функция определяется с помощью двух вещей:

- закона числового соответствия. По нему в соответствие одному числу будет ставить другое;
- Область определения множество чисел, которым будут ставиться в соответствие другие числа.

Получается, что согласно закону, каждому числу из области определения ставится число, называемоме результатом функции.

Определение числовой функции:

Пусть даны два числовых множества D и E. Пусть $\forall x \in D$ однозначно поставлен элемент $y \in E$. Тогда говорят, что на множестве D задана числовая функция y = f(x) со значениями в множестве E.

Важно помнить, что числу из D соответствует единственное число из E.

Функция является очень широким понятие. Функция есть отображение одного множества на другое множество вне зависимости от природы своих множеств.

Числовая последовательность есть отображение множества натуральных чисел на какое-либо другое числовое множество.

Определение отрезка:

$$[a,b] : \forall x \in [a,b] \ a \le x \le b \tag{29}$$

Определение полуинтервала:

$$(a,b] : \forall x \in (a,b] \ a < x \le b \tag{30}$$

или

$$[a,b) : \forall x \in [a,b) \ a \le x < b \tag{31}$$

Определение интервала:

$$(a,b) : \forall x \in (a,b) \ a < x < b \tag{32}$$

Если данная функция ест сумма, разность или произведение других функций, то область определения такой функции есть пересечение областей определения исходных функций.

5 Беседа V Функция (продолжение)

Стоит понимать, что формула не есть сама функция, а лишь один из видов её определения — аналитический. В общем случае функцию задать формулой невозможно.

Стоит знать, что не всякая функция задётся формулой, как и не всякая формула задёт функцию.

Пример формул, не задающих функций:

$$y = \frac{1}{\sqrt{x}} + \frac{1}{\sqrt{-x}}; \quad y = \lg(x) + \lg(-x); \quad y = \sqrt{\sin(x) - 2}; \quad y = \lg(\sin(x) - 2)$$
(33)

Пример функции, которую нельзя задать формулой (функция Дирихле):

$$y = \begin{cases} 1, \text{если } x - \text{рациональное число;} \\ 0, \text{если } x - \text{иррациональное число;} \end{cases}$$
 (34)

Функция может задаваться несколькими формулами, например:

$$y = \begin{cases} \cos(x), & x < 0 \\ 1 + x^2, & 0 \le x \le 2 \\ \lg(x - 1), & x > 2 \end{cases}$$
 (35)

Область определения функции и область определения выражения не тождественны в общем случае.

Область определения функции \supseteq область определения выражения.

Если область определения функции равна области определения выражения, то её называют естественной областью определения функции.

Термин функция впервые появился в XVII веке в работе немецкого математика Лейбница; этот термин имел тогда довольно узкий смысл и выражал зависимость между некоторыми геометрическими образами.

Освобождение термина функции от геометрических образов было совершено в начале XVIII века в работах Бернулли.

Понятие функции было обобщено на множества любой природы только в XX веке.

Определение графика функции:

График функции y = f(x) есть множество точек на плоскости (x,y), абсциссы которых суть значения независимой переменной (x), а ординаты — соответствующее значения зависимой переменной (y).

Определение ограниченной функции:

Функция y = f(x) называется ограниченной на промежутке D, если

$$\exists A, B \ \forall x \in D \ A \le f(x) \le B \tag{36}$$

На промежутке ограниченной длины можно определить не только ограниченные, но и неограниченные функции, например,

$$y = \frac{1}{\sqrt{x-1}} + \frac{1}{\sqrt{2-x}}; \quad y = \sqrt{2-x} + \frac{1}{\sqrt{x+1}}; \quad y = \sqrt{x-1} + \frac{1}{\sqrt{2-x}}$$
 (37)

Теорема (об ограниченности монотонной функции заданной на ограниченной области определения):

Если функция определена на замкнутом промежутке и если она при этом монотонна, то она будет ограниченной.

Доказательство:

Пусть функция y=f(x) задана на отрезке [a,b]. Пусть $f(a)=y_a$ и $f(b)=y_b$ и $y_a\leq y_b$. Тогда $\forall x\in [a,b]$, согласно опредлению монотонности, $a\leq x\leq b$, тогда $\forall y_a\leq f(x)\leq y_b$.

Определение неубывающей функции:

Функция y = f(x) называется неубывающей на промежутке D, если

$$\forall x_1, x_2 \in D \ x_1 < x_2 \ f(x_1) \le f(x_2) \tag{38}$$

Определение невозрастающей функции:

Функция y=f(x) называется невозрастающей на промежутке D, если

$$\forall x_1, x_2 \in D \ x_1 < x_2 \ f(x_1) \ge f(x_2) \tag{39}$$

Невозрастающие и неубывающие функции объединяют в класс монотонных функций.

Свойства функции нельзя рассматривать в отрыве от её области определения, так как одна и та же функция может иметь разные свойства на разных областях определения.

Определение чётной функции:

Функция y = f(x) называется чётной, если она определена на симметричном относительно начал координат множестве D и

$$\forall x \in D \ f(-x) = f(x) \tag{40}$$

Определение нечётной функции:

Функция y = f(x) называется нечётной, если она определена на симметричном относительно начал координат множестве D и

$$\forall x \in D \quad f(-x) = -f(x) \tag{41}$$

Между множествами A и B существует взаимно однозначное соответствие, если каждой точке множества A соответствует строго одна точка из множества B.

Для всякой строго монотонной функции существует обратная функция.

Строго монотонная функция устанавливает взаимно однозначное соответствие между область определения функции и областью значений функции.

Строгая монотонность функции не является необходимым существования обратной функции.

График обратной функции симметричен графику функции, причём ось симметрии проходит через ось y=x.

Каждая функция имеет график и при том единственный.

График функции f, заданной на множестве D и принимающей значения в множестве E, есть множество всех таких пар (x, y), что первый элемент па-

ры — х принадлежит множеству D, а второй элемент пары — y — множеству E, причём y=f(x).

6 Беседа VI

Предел функции и предел последовательности не есть одно и то же. Предел функции — это более широкое понятие.

У последовательности существует один предел, так как последовательность имеет лишь одну область определения — множество натуральных чисел, в то время как у функции может быть бесконечно много пределов, так как её можно определелить на бесконечном числе областей.

Предел функции рассматривается всякий раз в некоторой точке, как принято говорить, при x, стремящимся к a, причём точка a, либо принадлежит области опредиления, либо совпадает с одним из концов области определения.

Определение предела функции в точке:

Пусть функция y=f(x) определена на D и, $x\to a$, причём a, либо принадлежит D, либо совпадает с одной из границ D.

Число b называется пределом функции f(x) при $x \to a$, если

$$\forall \epsilon > 0 \ \exists \sigma > 0 \ \forall x \in D : x \neq a \rightarrow |x - a| < \sigma |f(x) - b| < \epsilon$$
 (42)

Для обозначения используют следующую запись $\lim_{x \to a} f(x) = b$

Определение проколотой σ -окрестности точки a:

Пусть дано $\sigma>0$. Тогда O называют проколотой σ -окретсностью точки a, если

$$\forall x \in O : x \neq a \to |x - a| < \sigma \tag{43}$$

Функция не обязана быть определённой в точке достижения её предела.

Теорема (о единственности предела функции в точке):

Функция не может иметь два (или более) предела в заданной точке.

Есть несколько возможных ситуаций с функциями:

- 1. $\lim_{x\to a} f(x)$ существует, а f(a) нет;
- 2. $\lim_{x\to a} f(x)$ не существует, а f(a) да;
- 3. $\lim_{x\to a} f(x)$ и f(a) существуют и $\lim_{x\to a} f(x) = f(a)$;

4.

5. $\lim_{x\to a} f(x)$ и f(a) существуют и $\lim_{x\to a} f(x) \neq f(a)$; Примером четвёртого случая может служить следующая функция

$$f(x) = \begin{cases} x^2, & x \neq 0 \\ 1, & x = 0 \end{cases}$$
 (44)

В этом случае f(a) = 1, а $\lim_{x \to a} f(x) = 0$.

Определение непрерывной в точке функции:

Функция f(x) называется непрерывной в точке a, если

$$\lim_{x \to a} f(x) = f(a) \tag{45}$$

Понятие непрерывности функции, как и предела функции, является локальным. Функция может как быть непрерывна в одной точке, так и непрерывна во всех точках.

Определение точки разрыва функции:

Точка, в которой наблюдается нарушение непрерывности функции называется точкой разрыва функции.

Непрерывность функции в данной точке x даёт гарантию, что если совсем немного сдвинуться из этой точки, то значение функции изменится тоже совсем немного.

Определение непрерывности функции в промежутке:

Функция непрерывна в промежутке, если она непрервна во всех точках этого промежутка.

На промежутке конечной длины возможно существование бесконечного числа точке разрыва.

Существуют функции, например, функция Дирихле, которые имеют точки разрыва во всех точках области определения.

Чаще всего степенные, показательные, логарифмические, тригонометрические, обратные тригонометрические и сложные функции, составленные из

функций перечисленных выше типов, являются непрерывными на их естественной области определения.

ЗАКЛЮЧЕНИЕ