ARMA models

• Extending auto-regressive models with smoother noise.

In AR model for each t, we associate an independent noise w_t

Rice fondrelon i AR(1) Maherant ha

 $\mathcal{H}_{t} = \mathcal{H}_{t} + \mathcal{H}_{t}$

Need smoother handling of noise.

A moving average (MA) model provides that.

ARMA models: AR models + MA models

Moving average models (MA models)

- A value x_t in a time-series sometimes cannot be explained just in terms of its past values.
- External (unknown) variables might be influencing the values
 - Example: Total wheat export of India in 2023 can be determined by wheat export in 2022, but also other external factors like weather patterns, war, exchange rates, etc.
- External variables are also time-varying \rightarrow errors at each position cannot be independent.
- Moving average models capture dependency on such external unknowns.

Properties of a series following MA(1) model

- Variance is $Var(x_t) = \sigma_w^2(1+\theta_1^2)$
- Autocorrelation function (ACF) is: $E(\chi_{\downarrow}\chi_{\downarrow}-1)$

$$\overline{
ho_1} = rac{ heta_1}{1+ heta_1^2}, ext{ and }
ho_h = 0 ext{ for } h \geq 2$$

Proofs here: https://online.stat.psu.edu/stat510/lesson/2/2.1#paragraph--264

Pictorial representation of dependency.

$$E(\chi_{t} \chi_{t-1}) = E((\chi_{t-1} + \theta_{t} w_{t-1} + w_{t}) \chi_{t-1})$$

$$= \chi_{t} = \chi_{t-1} + \theta_{t} = ((\chi_{t-1} + \chi_{t-1}) + E(\chi_{t} \chi_{t-1}))$$

MA(M)

AR(2)

$$p = 0$$
, $q = 1$

Original'

$$N_t = 0, \omega_{t-1} + \omega_t + \eta$$
: To dehimine PACF (X_t, X_{t-2})

 $N_t = 0, \omega_{t-1} + 0, \chi_{t-2} + \eta$
 $N_t = 0, \chi_{t-1} + 0, \chi_{t-2} + \eta$
 $N_t = 0, \chi_{t-1} + 0, \chi_{t-2} + \eta$
 $N_t = 0, \chi_{t-1} + 0, \chi_{t-2} + \eta$

ARMA (p,q) model

Each xt depends on p previous x-values, and q-previous error values

$$x_{t} = \eta + \phi_{1}x_{t-1} + \dots + \phi_{p}x_{t-p} + w_{t} + \theta_{1}w_{t-1} + \dots + \theta_{q}w_{t-q}$$

Estimating all the parameters of this model is not as straightforward as least-square regression since the w_t values are not observed (Not covered)

Comparing AR(1) and MA(1) on ACF and PACF

- ACF=plain correlation
- PACF (x_t, x_{t-2}) =conditional correlation or what extra contribution you get from x_{t-2} after you x_{t-1}

Shape of ACF and PACF of a series following AR(1) model

Following is the ACF of an AR(1) with ϕ_1 = 0.6, for the first 12 lags.

The ACF of an AR(1) with $\phi_1 = -0.7$ follows.

Note!

The alternating and tapering pattern.

PACE(N+, N+-2) =0

Shape of ACF and PACF of a series following MA(1) model

Choosing p,q

- Data may follow an ARIMA(p,d,Q) model if the ACF and PACF plots of the differenced data show the following patterns:
 - > the ACF is exponentially decaying or sinusoidal;
 - there is a significant spike at lag p in the PACF, but none beyond lag p.
- The data may follow an ARIMA(0,d,q) model if the ACF and PACF plots of the differenced data show the following patterns:

 - The PACF is exponentially decaying or sinusoidal;
 There is a significant spike at lag q in the ACF, but none beyond lag q.

Handling trend in time-series.

$$\mathcal{X}_{t} = \underbrace{\alpha t}_{t} + \underbrace{\beta_{1} \chi_{t-1}}_{t} + \underbrace{\theta_{1} \omega_{t-1}}_{t}$$

• If a time-series has a linear trend, then replace each value x_t with difference of consecutive x-values

$$\bullet \ y_t = x_t - x_{t-1}$$

Daily cardiovascular mortality rate in Los Angeles County, 1970-1979.

Plot of first differences

Clear downward trend.

ACF of first differences.

Lag.	ACF
1.	-0.506029
2.	0.205100
3.	-0.126110
4.	0.062476
5.	-0.015190

$$\hat{y}_t = -0.04627 - 0.50636y_{t-1}$$

Another example

ARIMA(p,d,q) models

p is the order of the autoregressive part,

d is the degree of first difference involved,

q is the order of the moving average part.

Example: ARIMA(2,1,1) model

Incorporating seasonality.

- Seasonality in a time series is a regular pattern that repeats over S time periods.
 - Example: monthly seasonality repeats over S=12 (months of the year)
 - Example: quarter seasonality repeats over S=4 period
- Extending ARIMA to handle seasonality. One or more of the above might work
 - Introduce a AR term x_{t-S} in the model for every period S.
 - Introduce MA term w_{t-S} in the model for every period S.
 - Create seasonal differences $y_t = x_t x_{t-S}$

Demo

• https://colab.research.google.com/drive/1Z4zNI bVXoFQBsCHUtxBDCB no6yhXceB?usp=sharing#scrollTo=deWKK D1mNlr