20222 CET058-CMP Proj2a

Entrega: 6 de outubro

Sumário

- 1. Simulador de Autômato de Pilha
- 2. Árvore n-aria em vetor
- 3. Gramática LL[1]
- 4. Autômato de Pilha
- 5. Exemplo GLC2AP
- **6. Simulação** $L(AP) = \{ a^ncb^n : n \ge 1 \}$
- 7. Tabela de Parsing *AP.Parsing* (aaacbbb)
- 8. Árvore de Análise AP.ADA (aabb)
- 9. GLC ambígua
- 10. GLC LL[1] para o projeto
- 11. Relatório

1. Simulador de Autômato de Pilha

• Implementar, na linguagem C, um simulador de um autômato pilha que reconhece a linguagem gerada por uma gramática livre de contexto, de acordo ao pseudocódigo fornecido em aula. O simulador deve gerar a árvore (n-ária) de análise sintática codificada em um vetor de inteiros

2. Árvore n-aria em vetor

- Binária: esq(i) = 2i+1, dir(i) = 2i+2,
- Ternária:

$$esq(i) = 3i+1, esq(i) = 3i+2, dir(i) = 3i+3,$$

• Quaternária:

$$d1(i) = 4i+1$$
, $d2(i) = 4i+2$, $d3(i) = 4i+3$, $d4(i) = 4i+4$,

• Penta-ária

$$d1(i) = 5i+1, d2(i) = 5i+2, d3(i) = 5i+3, d4(i) = 5i+4, d5(i) = 5i+5$$

3. Gramática LL[1]

- $p_1: S \to aSb$
- $p_2: S \rightarrow c$
- $G = (\{ S \}, \{ a, b, c \},)$
- $L(G) = \{ a^n c b^n : n \ge 1 \}$
- Derivação de a^3cb^3 :
- $S \Rightarrow p_1 aSb \Rightarrow p_1 a^2Sb^2 \Rightarrow p_1 a^3Sb^3 \Rightarrow p_2 a^3cb^3$.
- $S \Rightarrow p_1.p_1.p_1.p_2 a^3cb^3$.

4. Autômato de Pilha

- δ_0 : ϵ , ϵ , ϵ , // push(S)
- δ_1 : ϵ , S, $aSb // p_1$: $S \rightarrow aSb$
- δ_2 : ϵ , S, c // p_2 : $S \rightarrow c$
- δ_3 : a, a, ε δ_4 : b, b, ε δ_5 : c, c, ε
- $G = (\{S\}, \{a, b, c\}, \{a, b, c, S\}, \delta, q_0, \{q_1\})$
- $L(G) = \{ a^n cb^n : n \ge 1 \}$
- Derivação de a^3cb^3 :
- $S \Rightarrow p_1 aSb \Rightarrow p_1 a^2Sb^2 \Rightarrow p_1 a^3Sb^3 \Rightarrow p_2 a^3cb^3$.
- $S \Rightarrow p_1.p_1.p_1.p_2 \ a^3cb^3$.

5. Exemplo GLC2AP

$$GLC = (\{ S \}, \{ a, b, c \}, P = \{ S \rightarrow aSb \mid c \}, S)$$

•
$$AP = (Q, \Sigma, \Gamma, \delta, q_0, F)$$

 $-Q = \{ q_0, q_1 \}$
 $-\Gamma = V$
 $-\delta_0 : \delta(q_0, \varepsilon, \varepsilon) = (S, q_1),$
 $-\delta_1 : \delta(q_1, \varepsilon, S) = (aSb, q_1); \text{ for } p_1 = S \to aSb \in P,$
 $-\delta_2 : \delta(q_1, \varepsilon, S) = (c, q_1); \text{ for } p_2 = S \to c \in P,$
 $-\delta_3 : \delta(q_1, a, a) = (\varepsilon, q_1); \text{ for } a \in \Sigma,$
 $-\delta_4 : \delta(q_1, b, b) = (\varepsilon, q_1); \text{ for } b \in \Sigma,$
 $-\delta_5 : \delta(q_1, c, c) = (\varepsilon, q_1); \text{ for } c \in \Sigma,$
 $-F = \{ q_1 \}.$

6. Simulação $L(AP) = \{ a^ncb^n : n \ge 1 \}$

 $\begin{vmatrix} p_1 = S \to aSb \\ p_2 = S \to c \end{vmatrix}$

 $\delta_4: \boldsymbol{b}, \ \boldsymbol{b}, \ \boldsymbol{\varepsilon}$ $\delta_5: \boldsymbol{c}, \ \boldsymbol{c}, \ \boldsymbol{\varepsilon}$

$L(AP) = \{ a^n c b^n : n \ge 1 \}$

$$\delta_1$$
: ϵ , S , aSb
 δ_2 : ϵ , S , c

$$p_1 = S \to aSb$$
$$p_2 = S \to c$$

 $δ_3 : a, a, ε$ $δ_4 : b, b, ε$ $δ_5 : c, c, ε$

$$L(AP) = \{ a^n c b^n : n \ge 1 \}$$

$$\delta_1: \varepsilon, S, aSb$$
 $\delta_2: \varepsilon, S, c$

$$\delta_0: \varepsilon, \varepsilon, S$$

$$\begin{vmatrix} p_1 = S \to aSb \\ p_2 = S \to c \end{vmatrix}$$

$$L(AP) = \{ a^n c b^n : n \ge 1 \}$$

$$\delta_1$$
: ϵ , S , aSb
 δ_2 : ϵ , S , c

$$p_1 = S \to aSb$$
$$p_2 = S \to c$$

 $\delta_3:a, a, \epsilon$ $\delta_4:b, b, \epsilon$ $\delta_5:c, c, \epsilon$

a S b

$$L(AP) = \{ a^n c b^n : n \ge 1 \}$$

$$\delta_1: \epsilon, S, aSb$$
 $\delta_2: \epsilon, S, c$

$$\delta_0: \epsilon, \epsilon, S$$

$$p_1 = S \to aSb$$
$$p_2 = S \to c$$

a.acbb

$$L(AP) = \{ a^n c b^n : n \ge 1 \}$$

$$\delta_1$$
: ϵ , S , aSb δ_2 : ϵ , S , c

$$p_1 = S \to aSb$$
$$p_2 = S \to c$$

$$\delta_3$$
: a , a , ϵ
 δ_4 : b , b , ϵ
 δ_5 : c , c , ϵ

 $\begin{bmatrix} a \\ S \\ b \\ b \end{bmatrix}$

a.acbb

$$L(AP) = \{ a^n c b^n : n \ge 1 \}$$

$$\delta_1: \epsilon, S, aSb$$
 $\delta_2: \epsilon, S, c$

$$\begin{aligned} p_1 &= S \to aSb \\ p_2 &= S \to c \end{aligned}$$

S
b
b

aa.cbb

$$L(AP) = \{ a^n c b^n : n \ge 1 \}$$

$$\delta_1$$
: ϵ , S , aSb
 δ_2 : ϵ , S , c

$$\begin{vmatrix} p_1 = S \to aSb \\ p_2 = S \to c \end{vmatrix}$$

 $egin{bmatrix} c \\ b \\ b \end{bmatrix}$

aa.cbb

$$L(AP) = \{ a^n c b^n : n \ge 1 \}$$

$$\delta_1$$
: ϵ , S , aSb
 δ_2 : ϵ , S , c

$$\begin{aligned} p_1 &= S \to aSb \\ p_2 &= S \to c \end{aligned}$$

$$δ_3: a, a, ε$$
 $δ_4: b, b, ε$
 $δ_5: c, c, ε$

aac.bb

$$L(AP) = \{ a^n c b^n : n \ge 1 \}$$

$$\delta_1$$
: ϵ , S , aSb
 δ_2 : ϵ , S , c

$$p_1 = S \to aSb$$
$$p_2 = S \to c$$

aacb.b

$$L(AP) = \{ a^n c b^n : n \ge 1 \}$$

$$\delta_1$$
: ϵ , S , aSb
 δ_2 : ϵ , S , c

$$\begin{aligned} p_1 &= S \to aSb \\ p_2 &= S \to c \end{aligned}$$

aacbb.

7. Tabela de Parsing AP.Parsing(aaacbbb)

i	q	.w	Stack	δ_i	p_i
0	q_0	.aacbb	Ø	δ_0	-
1	q_1	.aacbb	S	δ_1	p_1
2	q_1	.aacbb	aSb	δ_3	-
3	q_1	a.acbb	Sb	δ_1	p_1
4	q_1	a.acbb	aSbb	δ_2	p_2
5	q_1	aa.cbb	cbb	δ_5	-
6	q_1	aac.bb	bb	δ_4	-
7	q_1	aacb.b	b	δ_4	-
8	q_1	aacbb.	\varnothing	-	- 19

8. Árvore de Análise APADA (aabb)

i	q	.w	Stack	δ_i	p_i
0	q_0	.aacbb	Ø	δ_0	-
1	q_1	.aacbb	S	δ_1	p_1
2	q_1	.aacbb	aSb	δ_3	-
3	q_1	a.acbb	Sb	δ_1	p_1
4	q_1	a.acbb	aSbb	δ_2	p_2
5	q_1	aa.cbb	cbb	δ_5	-
6	q_1	aac.bb	bb	δ_4	-
7	q_1	aacb.b	b	δ_4	-
8	q_1	aacbb.	Ø	-	-

$$p_1 = S \rightarrow aSb$$
$$p_2 = S \rightarrow ab$$

9. GLC ambígua

step	$ q_i $.w	Stack	$ t_i $	p_i
0	q_0	.aabb	Ø	t_0	_
1	q_1	.aabb	S	t_3	p_3
2	q_1	.aabb	SB	t_2	p_2
3	q_1	.aabb	ASB	t_4	p_4
4	q_1	a.abb	SB	t_1	p_1
5	q_1	a.abb	ABB	t_4	p_4
6	q_1	aa.bb	BB	t_5	p_5
7	q_1	aab.b	В	t_5	p_5
8	q_1	aabb.	Ø	_	_

$$p_1 = S -> AB$$
 $p_2 = S -> AS$
 $p_3 = S -> SB$
 $p_4 = A -> a$
 $p_5 = B -> b$

10. GLC LL[1] para o projeto

```
• p_1: S \rightarrow M | G M | F G M
• p_6: M \rightarrow m() { C; r(E); }
• p_7: E \to 0 | 1 | x | y | (EXE)
• p_{12}: X \rightarrow + | - | * | /
• p_{16}: C \rightarrow h=E | i=E | j=E | k=E
  | z=E | (EXE) | w(E) \{ C; \} |
 f(E) { C; } | o(E; E; E) { C; }
```

F G M

```
• p_4: F \to f() { C; r(E); }
• p_5: G \to g() { C; r(E); }
• p_6: M \to m() { C; r(E); }
```

```
p_6: \mathbf{M} \rightarrow \mathbf{m}() \{ C; \mathbf{r}(\mathbf{E}); \}
p_6: M \rightarrow main(){
                     COMMAND;
                     return(E);
```

```
w(E) { C; }
```

```
while (EXPR) {
    COMMAND;
}
```

```
f(E) { C; }
```

```
if (EXPR) {
        COMMAND;
}
```

```
O(E; E; E) { C; }
for (EXPR; EXPR; EXPR) {
    COMMAND;
```

J

11. Relatório

- O relatório deve conter:
 - Folha de rosto
 - Sumário
 - Link para download da implementação.
 - Saída para a execução.
 - Referências.