Pset 1

Noah Toyonaga

September 28, 2022

I worked with Lucy Liu on this PSET.

1

From the problem, we assume $\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ is the PDF of g. We want to calculate $P\left(g>t\right)$

$$P(g > t) = \int_{t}^{\infty} \phi(x) dx$$

$$= \int_{t}^{\infty} \frac{-1}{x} (-x\phi(x))$$

$$= \frac{-1}{x} \phi(x) |_{t}^{\infty} - \int_{t}^{\infty} \frac{1}{x^{2}} \phi(x)$$

$$= \left(0 + \frac{\phi(t)}{t}\right) - \left(\frac{-\phi(x)}{x^{3}}|_{t}^{\infty} - \int_{t}^{\infty} \frac{1}{x^{4}} \phi(x)\right)$$

$$= \frac{\phi(t)}{t} - \frac{\phi(t)}{t^{3}}$$

$$(1)$$

The first term gives an upper bound for P(g > t) while the inclusion of the first correction gives a lower bound as given in the problem.

We note that this calculation is based on an expansion at $t = \infty$ and thus the series diverges as $t \to 0$. However these bounds hold for t > 1.

$\mathbf{2}$

2.1

We consider the probability $P^* = P(X_1X_2 > n^{\epsilon}Y_1Y_2)$.

Assume that both $X_1 < n^{\epsilon/2}Y_1$ and $X_2 < n^{\epsilon/2}Y_2$. In this case we find, by multiplying the previous expressions, $X_1X_2 < n^{\epsilon}Y_1Y_2$. Thus, in order for the converse to be true (i.e. for $X_1X_2 > n^{\epsilon}Y_1Y_2$) one of the assumptions must be false

This implies that the probability P^* must be less than the sum of the probability of either individual event $X_1 > Y_1$ or $X_2 > Y_2$.

Finally, we have:

$$P(X_1 X_2 > n^{\epsilon} Y_1 Y_2) < P(X_1 > n^{\epsilon/2} Y_1) + P(X_2 > n^{\epsilon/2} Y_2)$$

$$\leq n^{D_1} + n^{D_2}$$

$$\leq n^{D^*}$$
(2)

Where the last line holds for $n \to \infty$. Thus we have shown $X_1 \prec Y_1$ and $X_2 \prec Y_2$ imply $X_1X_2 \prec Y_1Y_2$.

2.2

Let X be a random variable such that $X \prec \sqrt{n}$. We have:

$$\sqrt{n+X} - \sqrt{n} = \left(\sqrt{n+X} - \sqrt{n}\right) \frac{\sqrt{n+X} + \sqrt{n}}{\sqrt{n+X} + \sqrt{n}}$$

$$= \frac{X}{\sqrt{n+X} + \sqrt{n}}$$

$$\leq \frac{X}{\sqrt{n}}$$
(3)

Using the definition of stochastic dominance for X and rearanging we find the desired result:

$$P(X > \sqrt{n}n^{\epsilon}) < n^{-D} \Rightarrow P\left(\frac{X}{\sqrt{n}} > n^{\epsilon}\right) < n^{-D}$$

$$\Rightarrow P\left(\sqrt{n+X} - \sqrt{n} > n^{\epsilon}\right) < n^{-D}$$

$$\Rightarrow P\sqrt{n+X} - \sqrt{n} = \mathcal{O}_{\prec}(1)$$

$$\Rightarrow P\sqrt{n+X} = \sqrt{n} + \mathcal{O}_{\prec}(1)$$

2.3

We note that the random variable X_i^2 can be written as the sum of the expectation value and a noise term: $X_i^2 = E(X_i^2) + (X_i^2 - 1)$. The expression for noise follows because $E(X_i^2) = 1$ by construction.

We can treat the noise term as a independent random variable $Y_i \equiv X_i^2 - 1$ with zero expectation value $EY_i = 0$. We will thus use Proposition 2 from the lecture notes with the particular case $a_i = 1$.

$$\sum a_i Y_i \prec \sqrt{\sum a_i} = \sqrt{n} \tag{5}$$

Plugging this into the expression for $\sqrt{\sum X_i}$ we have:

$$\sqrt{\sum X_i^2} = \sqrt{\sum E(X_i^2) + Y_i}$$

$$= \sqrt{n + \mathcal{O}_{\prec}(\sqrt{n})}$$

$$= \sqrt{n} + \mathcal{O}_{\prec}(1)$$
(6)

Where the last line follows from the result of the second part of this problem.

3

3.1

We first consider the upper bound:

$$P\left(M_{n} > k\sqrt{\ln(y)}\right) = P\left(\bigcup\{x_{j} > k\sqrt{\ln u}\}\right)$$

$$\leq \sum P\left(x_{j} > k\sqrt{\ln u}\right) \text{ union bound}$$

$$\leq n \cdot \exp\left(-\frac{1}{2}k^{2}\log n\right)$$

$$= n^{-k^{2}/2+1}$$

$$= n^{-\epsilon}$$

$$(7)$$

Where the last line follows setting $k=2+\epsilon$. This shows that $P\left(M_n>k\sqrt{\ln(y)}\right)\to 0$ as $n\to\infty$.

3.2

We first note that $P\left(M_n > \sqrt{(2-\epsilon) \cdot ln(n)}\right) = 1 - P\left(M_n \leq \sqrt{(2-\epsilon) \cdot ln(n)}\right)$ so it suffices to show that the second expression tends to 0 as $x \to \infty$.

For the maximum element M_n to be less than some value ξ it must be the case that *all* elements in the sequence to be less than ξ . Therefore, the probability of $M_n < \xi$ should be equal to the product of probability of $g_i < \xi$ for all elements g_i . I.e.

$$P\left(M_n \le \sqrt{(2-\epsilon)ln(n)}\right) = \prod_i P\left(g_i \le \sqrt{(2-\epsilon)ln(n)}\right)$$

$$= \prod_i 1 - P\left(g_i > \sqrt{(2-\epsilon)ln(n)}\right)$$

$$= \left(\underbrace{1 - P\left(g_i > \sqrt{(2-\epsilon)ln(n)}\right)}_{*}\right)^n \tag{8}$$

We now note that the last expression can be rewritten as $e^{n \ln \star}$.

This expression can be simplified by observing that $\ln 1 + x \le x$ for all x > 0, $\ln (1 - P(q_i > t)) < -P(q_i > t)$.

We now have:

$$\left(\underbrace{1 - P\left(g_{i} > \sqrt{(2 - \epsilon)ln(n)}\right)}_{\star}\right)^{n} = \exp\left(n \cdot \ln\left(1 - P\left(g_{i} > t\right)\right)\right)$$

$$\leq \exp\left(-n \cdot P\left(g_{i} > t\right)\right)$$

$$\leq \exp\left(-n \cdot \left(\frac{1}{t} - \frac{1}{t^{3}}\right)\phi(t)\right)$$
(9)

Where in the last line we plugged in our result from problem (1). In our case $t=\sqrt{(2-\epsilon)ln(n)}$. Thus we have $\phi(t)=e^{t^2/2}=n^{(-1+\epsilon/2)}$. Finally we have:

$$P\left(M_n \le \sqrt{(2-\epsilon)ln(n)}\right) \le \exp\left(-n^{\epsilon/2}\right)$$

$$= 0 \quad \text{as } n \to \infty$$
(10)

4

In this problem I index the different observations a by a raised variable, i.e. the ith observation is $a^{(i)}$, and the elements of vectors/matrices using subscripts a_j .

4.1

We consider the case $\xi = e^{(0)} = \{1, 0, 0, \dots\}.$

We begin by computing $y^{(i)} = \langle \xi, a^{(i)} \rangle = a_0^{(i)}$

We can plug this into the expression for Ψ and take the expectation value.

$$E(\Psi) = E\left[\frac{1}{n} \sum_{i} \underbrace{\left(a_{0}^{(i)}\right)^{2} a_{j}^{(i)} a_{k}^{(i)}}_{1}\right]$$
(11)

The expectation value of \star is given by:

$$E\left[\left(a_0^{(i)}\right)^2 a_j^{(i)} a_k^{(i)}\right] = \begin{cases} 3 & j=k=0\\ 1 & j=k\neq0\\ 0 & j\neq k \end{cases}$$
(12)

4

Thus we have

$$E(\Psi) = \begin{pmatrix} 3 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ \vdots & & \ddots \\ \cdots & & 1 \end{pmatrix}$$
 (13)

For convenience in the next problem, we note that this can be written as:

$$2e^{(0)}e^{(0)^{\mathsf{T}}}+I$$

4.2

We now consider the case of arbitrary ξ . We would like to use the rotation trick to simplify our computation, so we assume we have a matrix (constructable from hausholder method) that rotates ξ into $\bar{e}^{(0)}$. Dropping the vector notation for convenience, we have: $\xi = \|\xi\| \boldsymbol{H}^T e^{(0)}$ We also note that \boldsymbol{H} in general rotates $a^{(i)}$ to a new vector $\tilde{a}^{(i)}$.

As before we first compute $y^{(i)}$:

$$y^{(i)} = \langle \xi, a^{(i)} \rangle^{2}$$

$$= \langle \|\xi\| \mathbf{H}^{\mathsf{T}} e^{(i)}, \mathbf{H}^{\mathsf{T}} \tilde{a}^{(i)} \rangle^{2}$$

$$= \|\xi\| \langle e^{(i)}, \tilde{a}^{(i)} \rangle^{2}$$

$$= \|\xi\|^{2} \left(\tilde{a}_{0}^{(i)}\right)^{2}$$

$$(14)$$

We now turn to Φ :

$$E(\Psi) = E\left[\frac{1}{n}\sum_{i}\|\xi\|^{2} \left(a_{0}^{(i)}\right)^{2} \boldsymbol{H}^{\mathsf{T}} \tilde{a}_{j}^{(i)} \left(\boldsymbol{H}^{\mathsf{T}} \tilde{a}^{(i)}\right)_{k}^{\mathsf{T}}\right]$$

$$= E\left[\frac{1}{n}\sum_{i}\|\xi\|^{2} \boldsymbol{H}^{\mathsf{T}} \underbrace{\left(\tilde{a}_{0}^{(i)}\right)^{2} \tilde{a}^{(i)} \tilde{a}^{(i)}}_{\mathsf{T}} \boldsymbol{H}^{\mathsf{T}}\right]$$

$$(15)$$

Since a is a random variables, tildea is equivalent in distribution by rotational invariance. Thus we can treat \tilde{a} as a and note that we can replace \star with the expectation values found in part 1. Thus we find:

$$E(\Phi) = \|\xi\|^2 \mathbf{H}^{\mathsf{T}} \left(2e^{(0)} e^{(0)^{\mathsf{T}}} + \mathbf{I} \right) \mathbf{H}$$
$$= 2\xi \xi^{\mathsf{T}} + \|\xi\|^2 \mathbf{I}$$
(16)

Where, in the second line we have again used the definition of our matrix ${\pmb H}$ to rotate $e^{(0)}$ back.

$$E(\Phi) = \begin{pmatrix} 3\xi_0^2 & \xi_0\xi_1 & \cdots & \xi_0\xi_n \\ \xi_1\xi_0 & 3\xi_1^2 & \xi_1\xi_2 & \cdots \\ \vdots & & \ddots & \\ \xi_n\xi_1 & \cdots & & 3\xi_n^2 \end{pmatrix}$$
(17)

4.3

WLOG we can consider the case $\xi = \|\xi\|e^{(0)}$. In this case we see that In this case the matrix $E\Phi$ will be close to diagonal with the largest eigenvalue in the upper left, i=j=0. Assuming there is some correlation among the observations a, then the