# Ch 4.3.3 and 4.3.4 - Multiple and Multinomial Logistic Regression Lecture 11 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Fri, Sep 22, 2023

#### Announcements

| Lec# | Date |        |                                                                                   | Reading              | Homeworks | Quizzes<br>(Note: These are not<br>announced until after they<br>happen) |
|------|------|--------|-----------------------------------------------------------------------------------|----------------------|-----------|--------------------------------------------------------------------------|
| 3    | Fri  | Sep 1  | Assessing Model Accuracy                                                          | 2.2.1, 2.2.2         | HW #1 Due | Quiz #1                                                                  |
|      | Mon  | Sep 4  | No class - Labor day                                                              |                      |           |                                                                          |
| 4    | Wed  | Sep 6  | Linear Regression                                                                 | 3.1                  |           |                                                                          |
| 5    | Fri  | Sep 8  | More Linear Regression                                                            | 3.1/3.2              |           | Quiz #2                                                                  |
| 6    | Mon  | Sep 11 | Even more linear regression                                                       | 3.2.2                | Hw #2 Due |                                                                          |
| 7    | Wed  | Sep 13 | Probably more linear regression                                                   | 3.3                  |           | Quiz #3                                                                  |
| 8    | Fri  | Sep 15 | Linear regression coding module                                                   |                      |           |                                                                          |
| 9    | Mon  | Sep 18 | Intro to classification, Bayes<br>classifier, KNN classifier                      | 2.2.3                |           |                                                                          |
| 10   | Wed  | Sep 20 | Logistic Regression                                                               | 4.1, 4.2,<br>4.3.1-3 |           |                                                                          |
| 11   | Fri  | Sep 22 | Multiple Logistic Regression /<br>Multinomial Logistic Regression<br>/Project day | 4.3.4-5              | Hw #3 Due |                                                                          |
|      | Mon  | Sep 25 | Review                                                                            |                      |           |                                                                          |
|      | Wed  | Sep 27 | Midterm #1                                                                        |                      |           |                                                                          |
|      | Fri  | Sep 29 | No class - Dr Munch out of town                                                   |                      |           |                                                                          |

#### **Announcements:**

- Homework #3 Due tonight on Crowdmark
- Monday Review day
  - Nothing prepped
  - Bring your questions
- ullet Wednesday Exam #1
  - ▶ Bring 8.5×11 sheet of paper
  - Handwritten both sides
  - Anything you want on it, but must be your work
  - ► You will turn it in
  - Non-internet calculator if you want it

#### Covered in this lecture

#### Last Time:

Logistic Regression

#### This time:

- Multiple Logistic Regression
- Multinomial Logistic Regression

3 / 23

Dr. Munch (MSU-CMSE) Fri, Sep 22, 2023

#### Section 1

Review of Logistic Regression from last time

r. Munch (MSU-CMSE) Fri, Sep 22, 2023

## Logistic regression

- Assume single input X
- Output takes values  $Y \in \{Yes, No\}$



$$p(X) = Pr(Y = yes \mid balance)$$

$$p(\mathbf{x}) = rac{e^{eta_0 + eta_1 \mathbf{x}}}{1 + e^{eta_0 + eta_1 \mathbf{x}}}$$

Fri. Sep 22, 2023

## How to get logistic function

Assume the (natural) log odds (logits) follow a linear model

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x$$

Solve for p(x):

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

6/23

Playing with the logistic function: desmos.com/calculator/cw1pyzzgci

Dr. Munch (MSU-CMSE) Fri, Sep 22, 2023

### Section 2

## Multiple Logistic Regression

r. Munch (MSU-CMSE) Fri, Sep 22, 2023

## New assumption

$$p \ge 1$$
 input variables

$$X_1, X_2, \cdots, X_p$$

 $\boldsymbol{Y}$  output variable has only two levels

## Multiple Logistic Regression

#### Multiple features:

$$p(X) = rac{e^{eta_0 + eta_1 X_1 + \cdots + eta_
ho X_
ho}}{1 + e^{eta_0 + eta_1 X_1 + \cdots + eta_
ho X_
ho}}$$

#### **Equivalent to:**

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

## Example from Smarket data



|      | Lag1   | Lag2   | Volume  | Direction |
|------|--------|--------|---------|-----------|
| 1    | 0.381  | -0.192 | 1.19130 | Up        |
| 2    | 0.959  | 0.381  | 1.29650 | Up        |
| 3    | 1.032  | 0.959  | 1.41120 | Down      |
| 4    | -0.623 | 1.032  | 1.27600 | Up        |
| 5    | 0.614  | -0.623 | 1.20570 | Up        |
|      |        |        |         |           |
| 1246 | 0.422  | 0.252  | 1.88850 | Up        |
| 1247 | 0.043  | 0.422  | 1.28581 | Down      |
| 1248 | -0.955 | 0.043  | 1.54047 | Up        |
| 1249 | 0.130  | -0.955 | 1.42236 | Down      |
| 1250 | -0.298 | 0.130  | 1.38254 | Down      |

1250 rows × 4 columns

#### Our Results

[-0.11582541

```
X = smarket[['Lag1','Lag2','Volume']]
Y = smarket.Direction

clf = LogisticRegression(random_state=0)
clf.fit(X,Y)
```

# LogisticRegression LogisticRegression(random\_state=0)

$$p(X) = \frac{\exp(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p)}{1 + \exp(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p)}$$

11/23

```
print(clf.coef_)
print(clf.intercept_)
[[-0.07302967 -0.04272162  0.128624331]
```

$$p(X) = \frac{\exp(-0.115 - 0.073 \cdot \text{Lag1} - 0.043 \cdot \text{Lag2} + 0.129 \cdot \text{Volume})}{1 + \exp(-0.115 - 0.073 \cdot \text{Lag1} - 0.043 \cdot \text{Lag2} + 0.129 \cdot \text{Volume})}$$

. Munch (MSU-CMSE) Fri, Sep 22, 2023

#### Section 3

## Multinomial Logistic Regression

r. Munch (MSU-CMSE) Fri, Sep 22, 2023

## New assumption

$$p \ge 1$$
 input variables

$$X_1, X_2, \cdots, X_p$$

Y output variable has K levels

## Remember dummy variables?

Slide from linear regression days

#### Region:

#### Create spare dummy variables:

$$x_{i1} = \begin{cases} 1 & \text{if } i \text{th person from South} \\ 0 & \text{if } i \text{th person not from South} \end{cases}$$

$$x_{i2} = \begin{cases} 1 & \text{if } i \text{th person from West} \\ 0 & \text{if } i \text{th person not from West} \end{cases}$$

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$$

## Example

Predict  $Y \in \{\text{stroke, overdose, seizure}\}\$  for hospital visits based on some input(s) X

$$Pr(Y = stroke \mid X = x) =$$

$$Pr(Y = overdose \mid X = x) =$$

$$Pr(Y = seizure | X = x) =$$

Fri. Sep 22, 2023

## Multinomial Logistic Regression

Plan A

- Assume Y has K levels
- Make K (the last one)
   the baseline

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{kp} x_p}}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}$$

$$\Pr(Y = K | X = x) = \frac{1}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}.$$

## Example

Predict  $Y \in \{\text{stroke, overdose, seizure}\}\$  for hospital visits based on Xp

$$\begin{split} \Pr(Y = \texttt{stroke} \mid X = x) &= \frac{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1} x)}{1 + \exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1} x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1} x)} \\ \Pr(Y = \texttt{overdose} \mid X = x) &= \frac{\exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1} x)}{1 + \exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1} x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1} x)} \\ \Pr(Y = \texttt{seizure} \mid X = x) &= \frac{1}{1 + \exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1} x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1} x)} \end{split}$$

Dr. Munch (MSU-CMSE) Fri, Sep 22, 2023

## Log odds

Calculated so that log odds between any pair of classes is linear. Specifically, for Y = k vs Y = K, we have

$$\log \left( \frac{\Pr(Y = k \mid X = x)}{\Pr(Y = K \mid X = x)} \right) = \beta_{k0} + \beta_{k1}x_1 + \dots + \beta_{kp}x_p$$

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{kp} x_p}}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}$$

$$\Pr(Y = K | X = x) = \frac{1}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}.$$

## Plan B: Softmax coding

Treat all levels symmetrically

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{kp} x_p}}{\sum_{l=1}^{K} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}.$$

Calculated so that log odds between two classes is linear

$$\log\left(\frac{\Pr(Y=k|X=x)}{\Pr(Y=k'|X=x)}\right) = (\beta_{k0} - \beta_{k'0}) + (\beta_{k1} - \beta_{k'1})x_1 + \dots + (\beta_{kp} - \beta_{k'p})x_p.$$

r. Munch (MSU-CMSE) Fri, Sep 22, 2023

## Softmax example

$$\begin{split} & \Pr(Y = \texttt{stroke} \mid X = x) \\ & = \frac{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x)}{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x) + \exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)} \\ & \Pr(Y = \texttt{overdose} \mid X = x) \\ & = \frac{\exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x)}{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x) + \exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)} \\ & \Pr(Y = \texttt{seizure} \mid X = x) \\ & = \frac{\exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)}{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x) + \exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)} \end{split}$$

Dr. Munch (MSU-CMSE) Fri, Sep 22, 2023

### Section 4

Project day

## Discussion and getting started

- Project description posted on github
- Today's goals:
  - ► Find one (or both) data sets
  - Mark which one you are using on the spreadsheet
  - Maybe get some data cleanup and exploration started

Dr. Munch (MSU-CMSE) Fri, Sep 22, 2023

## Next time

| Lec# | Date |        |                                                                                   | Reading              | Homeworks | <b>Quizzes</b> (Note: These are not announced until after they happen) |
|------|------|--------|-----------------------------------------------------------------------------------|----------------------|-----------|------------------------------------------------------------------------|
| 3    | Fri  | Sep 1  | Assessing Model Accuracy                                                          | 2.2.1, 2.2.2         | HW #1 Due | Quiz #1                                                                |
|      | Mon  | Sep 4  | No class - Labor day                                                              |                      |           |                                                                        |
| 4    | Wed  | Sep 6  | Linear Regression                                                                 | 3.1                  |           |                                                                        |
| 5    | Fri  | Sep 8  | More Linear Regression                                                            | 3.1/3.2              |           | Quiz #2                                                                |
| 6    | Mon  | Sep 11 | Even more linear regression                                                       | 3.2.2                | Hw #2 Due |                                                                        |
| 7    | Wed  | Sep 13 | Probably more linear regression                                                   | 3.3                  |           | Quiz #3                                                                |
| 8    | Fri  | Sep 15 | Linear regression coding module                                                   |                      |           |                                                                        |
| 9    | Mon  | Sep 18 | Intro to classification, Bayes classifier, KNN classifier                         | 2.2.3                |           |                                                                        |
| 10   | Wed  | Sep 20 | Logistic Regression                                                               | 4.1, 4.2,<br>4.3.1-3 |           |                                                                        |
| 11   | Fri  | Sep 22 | Multiple Logistic Regression /<br>Multinomial Logistic Regression<br>/Project day | 4.3.4-5              | Hw #3 Due |                                                                        |
|      | Mon  | Sep 25 | Review                                                                            |                      |           |                                                                        |
|      | Wed  | Sep 27 | Midterm #1                                                                        |                      |           |                                                                        |
|      | Fri  | Sep 29 | No class - Dr Munch out of town                                                   |                      |           |                                                                        |

Dr. Munch (MSU-CMSE) Fri, Sep 22, 2023