In principle demonstration of quantum secret sharing in the IBM quantum computer

Balija Subha Shree - CS19B1005

Akhil Nerella - CS19B1020

Thanai Sahu - CS19B1021

Vibhanshu Jain - CS19B1027

Guide: Dr. M V P Sir

Joy, Dintomon, Bikash K. Behera, and Prasanta K. Panigrahi. "In principle demonstration of quantum secret sharing in the IBM quantum computer." arXiv (2018): arXiv-1807.

Classical Secret Sharing

- Classic Secret sharing is method of distributing a secret among group of members each of whom is allocated a share of secret, such that it can be reconstructed only when a sufficient number of members come together.
- By the use of advanced quantum algorithms this Classical Secret Sharing Scheme is broken
- CSS schemes are not perfectly secure from eavesdrops attack.

Quantum Secret Sharing

- Quantum secret sharing is a way to share secret messages with unconditional security
- Alice shares the quantum information between two parties Bob and Charlie.
- To retrieve the secret fully one of Bob or Charlie should consent from the other.
- The presence a dishonest receiver or outsider can be detected without the secret being revealed.

Quantum Secret Sharing

- For splitting the message into two parts it uses the GHZ states or maximally entangled three-particle states.
- If we suppose Alice, Bob and Charlie each have one particle from the GHZ triplet which is in state.
- These three particles choose to measure in x or y direction randomly.
- By combining measurement results of Bob and Charlie result of Alice measurement can be known in half the time.

HBB Protocol

- (i) The sender Alice and the users Bob and Charlie shares a 3-qubit GHZ state prior to the beginning of quantum secret sharing procedure.
- (ii) Alice wants to send an arbitrary single qubit state, in her possession to Charlie (Bob) through the method of quantum teleportation.
- (iii)Alice then performs a Bell basis measurement on the two particles (A, a) in her possession and keeps the measurement result to herself.
- (iv) After confirming via public channel, that both Bob and Charlie have received one particle each, Alice sends her measurement result to Charlie (Bob).
- (v) Bob (Charlie) then performs a single particle measurement on his particle in X-basis and sends his measurement result to Charlie (Bob).
- (vi)Now, Charlie (Bob) can reconstruct the teleported information by getting one bit classical information from Bob (Charlie) and the two bits earlier sent by Alice.

Transporting Qubits

- According to the No-Cloning theorem, qubits cannot be duplicated
- Is there a way to transmit qubits from one point to another without destroying superposition and phase information?

Quantum Teleportation

- Quantum Teleportation enables the transfer of qubits, while perfectly preserving state information
- Allows for transmission over great distances (from Earth to Space)

Does not involve:

- Moving matter from one point to another via Materialization or de-Materialization
- Travelling forward or backward in time
- Travelling faster than speed of light

Requirements for Quantum Teleportation

A qubit can be perfectly transmitted using 3 qubit and 2 classical bits.

Teleportation needs:

- Two qubits that are entangled...each party has one half of the entangled pair
- A message qubit that will be send from one point to another
- A classical communication line between both parties for the transmission of two classical bits. (therefore it cannot be faster than the speed of light)

Step 1: Create an entangled pair of qubits

• Alice and Bob entangle the qubits using Hadamard and CNOT gate

Step 2: Distribute entangled qubits to Alice & Bob

Alice now has two qubits:

- Half of the entangled pair
- The message qubit, $|\psi\rangle$

Step 3: Alice applies CNOT to her qubits

Alice applies CNOT on:

- Message qubits $|\psi\rangle$ (control)
- Her qubit (target)

Step 4: Alice applies an H gate on $|\psi\rangle$

Step 5: Alice measures both of her qubits

Step 6: Process results of measurements

We deduce information about Bob's state by using partial measurements!

State before Measurement:

$$\begin{split} &\frac{1}{2}[\alpha|000\rangle + |011\rangle + |100\rangle + |111\rangle + \\ &\beta(|001\rangle + |010\rangle - |101\rangle - |110\rangle)] \end{split}$$

For example, if Alice sees 00, we narrow down the state of the entire system to the possibilities that satisfy this observation:

$$|000>$$
 and $|001>$.

Alice's Measurement	00	01	10	11
Value of Bob's qubit	$\alpha 0\rangle + \beta 1\rangle$	$\alpha 1\rangle + \beta 0\rangle$	$\alpha 0\rangle$ - $\beta 1\rangle$	$\alpha 1\rangle$ - $\beta 0\rangle$

Step 7: Alice transmits her two classical bits to Bob

Step 8: Bob Recovers $|\psi\rangle$

To recover $|\psi\rangle$:

- If b₁ is 1, then apply a Z gate
- If b₂ is 1, then apply a NOT (X) gate

Quantum Circuit for Teleportation of $|\psi\rangle$

Teleportation using Three particle Entanglement

Quantum State $|\Psi_A\rangle = a|\uparrow\rangle_1 + b|\leftrightarrow\rangle_1$

Three particle entangled state used: $|\psi_{GHZ}\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle_2|\uparrow\rangle_3|\uparrow\rangle_4 + |\leftrightarrow\rangle_2|\leftrightarrow\rangle_3|\leftrightarrow\rangle_4$

Initial Product State
$$|\Psi_{A}\rangle \otimes |\psi_{GHZ}\rangle = \frac{1}{2} \left[|\phi_{12}^{+}\rangle \otimes (a|\uparrow\rangle_{3}|\uparrow\rangle_{4} + b|\leftrightarrow\rangle_{3}|\leftrightarrow\rangle_{4} \right] + |\phi_{12}^{-}\rangle \otimes (a|\uparrow\rangle_{3}|\uparrow\rangle_{4} - b|\leftrightarrow\rangle_{3}|\leftrightarrow\rangle_{4}$$

 $+|\psi_{12}^{+}\rangle\otimes(a|\uparrow\rangle_{3}|\leftrightarrow\rangle_{4}+b|\leftrightarrow\rangle_{3}|\uparrow\rangle_{4})$

 $+|\psi_{12}^{-}\rangle\otimes(a|\uparrow\rangle_{3}|\leftrightarrow\rangle_{4}-b|\leftrightarrow\rangle_{3}|\uparrow\rangle_{4})$

joint, generally entangled states

Take the case where, Bell State analyzers give the readout $|\phi_{12}^+\rangle$

Therefore the states of the particles 3 & 4 will be
$$|\psi_{34}\rangle = a|\uparrow\rangle_3|\uparrow\rangle_4 + b|\leftrightarrow\rangle_3|\leftrightarrow\rangle_4$$

$$|\uparrow\rangle_{3} = \sin \theta |x_{1}\rangle_{3} + \cos \theta |x_{2}\rangle_{3},$$

$$|\leftrightarrow\rangle_{3} = \cos \theta |x_{1}\rangle_{3} - \sin \theta |x_{2}\rangle_{3},$$

$$|\psi_{34}\rangle = (a \sin \theta |\uparrow\rangle_{4} + b \cos \theta |\leftrightarrow\rangle_{4})|x_{1}\rangle_{3}$$

$$+ (a \cos \theta |\uparrow\rangle_{4} - b \sin \theta |\leftrightarrow\rangle_{4})|x_{2}\rangle_{3}$$

$$|\psi_{34}\rangle = (a \sin \theta |\uparrow\rangle_4 + b \cos \theta |\leftrightarrow\rangle_4)|x_1\rangle_3 + (a \cos \theta |\uparrow\rangle_4 - b \sin \theta |\leftrightarrow\rangle_4)|x_2\rangle_3$$

- Bob performs a single particle measurement on his particle in X-basis and sends his measurement result to Charlie
- If the outcome is x_1 and $\theta = \pi/4$, the state of particle 4 will be

$$|\psi_4\rangle = a|\uparrow\rangle_4 + b|\leftrightarrow\rangle_4$$

- If the outcome is x_2 and $\theta = \pi/4$ then Charlie applies Z gate
- We have successfully teleported the particle from Alice to Charlie.

Quantum Circuit for Teleportation of $|\psi\rangle$

FIG. 1: Quantum circuit to implement quantum secret sharing (QSS) protocol. Here, $|\psi\rangle_A$ represents the quantum secret in Alice's possession. Qubits a,b and c represent the GHZ channel shared between Alice, Bob and Charlie respectively. The measurement device at the end of each qubit line measures the qubit in Z-basis. The double line after measurement represents the classical information corresponding to the output state. The first dashed box (from left to right) represents the 3-qubit GHZ state and the second one represents Bell measurement.

References

- W. K. Wootters and W. H. Zurek, Nature 299, 802–803 (1982).
- M. Hillery, V. Bu zek, and A. Berthiaume, Phys. Rev. A. 59, 1829 (1999).
- Hillery et al. "Quantum Secret Sharing". https://arxiv.org/pdf/quant-ph/9806063.pdf
- M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge, UK, 2010

Quantum Circuit Implementation

Simulated Results

TABLE II: Simulated results

No. of Shots 1	Probability of $ 0\rangle_C$	Probability of $ 1\rangle_C$
8192	0.853	0.147
4096	0.860	0.139
1024	0.850	0.151

No. of shots	Probability of 0> _C	Probability of 1> _C
1024	0.853	0.147
4096	0.869	0.131
8192	0.858	0.142

Run Results

No. of Shots	Probability of $ 0\rangle_C$	Probability of $ 1\rangle_C$
8192	0.800	0.200
4096	0.803	0.197
1024	0.798	0.203

No. of shots	Probability of 0> _C	Probability of 1> _C
1024	0.662	0.338
4096	0.623	0.377
8192	0.734	0.266