\checkmark We know how to calculate velocity v(t) from position function s(t). This helped us to understand the idea of the derivative or rate of change of a function.

Now we consider the reverse problem:

Given velocity, how do we calculate the distance the car has traveled?

This will give us the idea of **definite integration**.

> Approximating the area under a curve using rectangles

Consider the function of $v(t) = t^2$ for $t \in [0,2]$. Use the rectangle(s) to estimate the area under the curve.

Time Interval	0~1	1~2	
Velocity is at most			[s(2) - s(0)] =
Velocity is at least			[s(2) - s(0)] =

Def. Riemann Sum

Let f be a continuous function defined on the closed interval [a,b], and let Δ be a partition of [a,b] given by $a=x_0 < x_1 < \cdots < x_n = b$, where Δx_i is the width of the ith interval. If c_i is **any** point in the ith interval, then the sum $\sum_{i=1}^n f(c_i) \Delta x_i = f(c_1) \Delta x_1 + f(c_2) \Delta x_2 + \cdots + f(c_n) \Delta x_n$ is called a **Riemann Sum** for f on the interval [a,b].

• If every subinterval is of equal width, then $\Delta x =$ _____

> Left, Right, and Midpoint Riemann Sum Approximation

If c_i is the left endpoint of each subinterval then $\sum_{i=1}^n f(c_i) \Delta x$ is called a Left Riemann Sum.

If c_i is the right endpoint of each subinterval then $\sum_{i=1}^n f(c_i) \Delta x$ is called a Right Riemann Sum.

If c_i is the midpoint of each subinterval then $\sum_{i=1}^n f(c_i) \Delta x$ is called a Midpoint Riemann Sum.

• The general form of Riemann sum is $\sum_{i=1}^{n} f(c_i) \Delta x =$ ______, where $c_i =$ ______

Q1. Approximate the area of the region bounded by the graph of $f(x) = -x^2 + x + 2$, the x-axis, and the vertical lines x = 0 and x = 2

- (1) by using a left Riemann sum with four subintervals
- (2) by using a right Riemann sum with four subintervals
- (3) by using a midpoint Riemann sum with four subintervals

t (hours)	0	2	4	5	6	9	12
P'(t) people/hour	41	30	54	26	21	44	11

- **Q2.** Tiffani posts a picture of her posing with Sir Isaac from the pop group Sir Isaac and the Newtones on her Instagram at 9 AM. The rate that her followers view her picture is modeled with selected values shown in the table above where t = 0 represents 9 AM and the rate is measured in people per hour. Use the data in the table above to approximate the following.
- (1) Use a Right Riemann Sum with 3 subintervals to approximate the area between P'(t) and the t-axis from t=0 to t=5. Include units of measure with your answer.
- (2) Use a Left Riemann Sum with 4 subintervals to approximate the area between P'(t) and the t-axis from t=4 to t=12. Include units of measure with your answer.
- (3) Use a Midpoint Riemann Sum with 3 subintervals to approximate the area between P'(t) and the t-axis from t = 0 to t = 12. Include units of measure with your answer.

> Def. Definite Integrals

If f is a continuous function defined for $a \le x \le b$, then the definite integral of f from a to b is

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_{i}) \cdot \Delta x$$

If y=f(x) is continuous and nonnegative over a closed interval [a,b] then the area of the region bounded by the graph of f, the x-axis, and the vertical lines x=a and x=b is given by $Area=\int_a^b f(x)\,dx$

If y = f(x) takes on both positive and negative values over a closed interval [a, b], then the area of the region bounded by the graph of f, the x-axis, and the vertical lines x = a and x = b is obtained by adding the ______ value of the definite integral over each subinterval where f(x) does not change sign.

The definite integral of f(x) over [a,b] is $\int_a^b f(x) dx =$

The total area between the curve and the x-axis over [a,b] is $\int_a^b |f(x)| dx =$

Q3. The figure shows the graph of $f(x) = x^3 - x^2 - 6x$.

- (a) Find the definite integral of f(x) on [-2,3] using calculator.
- **(b)** Find the area between the graph of f(x) and the x-axis on [-2,3].

Q4. The expression $\frac{1}{20} \left[\left(\frac{1}{20} \right)^2 + \left(\frac{2}{20} \right)^2 + \dots + \left(\frac{20}{20} \right)^2 \right]$ is a Riemann sum approximation for ______

3

Q5. The expression $\frac{1}{10} \left[\frac{1}{10} + \frac{2}{10} + \dots + \frac{20}{10} \right]$ is a Riemann sum approximation for _____

Q6. Which of the following limits is equal to $\int_1^3 x^3 dx$

- (A) $\lim_{n \to \infty} \sum_{i=1}^{n} (1 + \frac{i}{n})^3 \frac{1}{n}$ (C) $\lim_{n \to \infty} \sum_{i=1}^{n} (1 + \frac{2i}{n})^3 \frac{1}{n}$
- (B) $\lim_{n \to \infty} \sum_{i=1}^{n} (1 + \frac{i}{n})^3 \frac{2}{n}$ (D) $\lim_{n \to \infty} \sum_{i=1}^{n} (1 + \frac{2i}{n})^3 \frac{2}{n}$

Q7. (*)(Calculator) A rectangular region located beside a highway and between two straight roads 11 miles apart are shown in the figure below. The population density of the region at a distance x miles from the highway is given by $D(x) = 15x\sqrt{x} - 3x^2$, where $0 \le x \le 25$. How many people live between 16 to 25 miles from the highway?

> Properties of definite integral

1.
$$\int_{a}^{a} f(x) dx =$$

2.
$$\int_a^b f(x) dx = \int_b^a f(x) dx$$

3.
$$\int_a^b f(x) dx + \int_b^c f(x) dx =$$

4.
$$\int_a^b f(x) \pm g(x) dx =$$

5.
$$\int_{a}^{b} cf(x) dx =$$

$$6. \quad \int_a^b c \, dx = \underline{\qquad}$$

7. If
$$f$$
 is even, then $\int_{-a}^{a} f(x) dx = \underline{\qquad} \int_{0}^{a} f(x) dx$

If
$$f$$
 is odd, then $\int_{-a}^{a} f(x) dx =$ _____

8. If
$$f(x) \ge 0$$
 for $a \le x \le b$, then $\int_a^b f(x) dx$

If
$$f(x) \ge g(x)$$
 for $a \le x \le b$, then $\int_a^b f(x) dx = \int_a^b g(x) dx$

If
$$m \le f(x) \le M$$
 for $a \le x \le b$, then $\underline{\qquad} \le \int_a^b f(x) dx \le \underline{\qquad}$

Q1. Suppose $\int_0^{1.25} \cos(x^2) dx = 0.98$ and $\int_0^1 \cos(x^2) dx = 0.90$. What are the values of the following integrals?

(a)
$$\int_{1}^{1.25} \cos(x^2) dx$$

(b)
$$\int_{-1}^{1} \cos(x^2) dx$$

(c)
$$\int_{1.25}^{-1} \cos(x^2) dx$$

Q2. Suppose that
$$\int_{-3}^{4} f(x) dx = 5$$
, $\int_{-3}^{4} g(x) dx = -4$, and $\int_{-3}^{1} f(x) dx = 2$.

Find (a)
$$\int_{-3}^{4} [2f(x) - 3g(x)] dx$$
 (b) $\int_{1}^{4} f(x) dx$ (c) $\int_{-3}^{4} [g(x) + 2] dx$.

(b)
$$\int_{1}^{4} f(x) \, dx$$

(c)
$$\int_{-3}^{4} [g(x)+2] dx$$
.

Q3. Let f and g be continuous on the interval [1,5]. Given $\int_1^3 f(x) dx = -3$, $\int_1^5 f(x) dx = 7$, and $\int_1^5 g(x) dx = 9$, find the following definite integrals.

- (a) $\int_{3}^{5} f(x) dx$
- (b) $\int_{1}^{3} [f(x) + 3] dx$
- (c) $\int_{5}^{1} 2g(x) dx$
- (d) $\int_{5}^{5} g(x) dx + \int_{5}^{3} f(x) dx$
- (e) (*) $\int_{-1}^{3} f(x+2) dx$

> Def. Antiderivative

The Fundamental Theorem of Calculus (FTC)

Let f be continuous on [a,b] then $\int_a^b f(x) dx = F(b) - F(a)$, where F(x) is an antiderivative of f.

Q1. Let f be a function defined on the closed interval [-3,7] with f(2)=3. The graph of f' consists of three line segments and a semicircle, as shown below. Find f(-3) and f(7).

Q2. (Calculator) If f is the antiderivative of $\frac{\sqrt{x}}{1+x^3}$ such that f(1)=2, then f(3)=

Q3. (Calculator) If $f'(x) = \cos(x^2 - 1)$ and f(-1) = 1.5, then f(5) = 1.5

Q4. If f is a continuous function and F'(x) = f(x) for all real numbers x, then $\int_{2}^{10} f(\frac{1}{2}x) dx = (A) \frac{1}{2} [F(5) - F(1)]$

- (B) $\frac{1}{2} [F(10) F(2)]$
- (C) 2[F(5)-F(1)]
- (D) 2[F(10)-F(2)]

> Indefinite Integral

The set of all antiderivatives of f is the **indefinite integral** of f with respect to x denoted by $\int f(x) dx$.

$$\int f(x) dx = F(x) + C \iff F'(x) = f(x)$$

> Indefinite Integrals

 $\int k \, dx = \underline{\qquad} \qquad \int x^n \, dx = \underline{\qquad} \qquad \int e^x \, dx = \underline{\qquad}$

 $\int \sin x \, dx = \underline{\qquad} \int \cos x \, dx = \underline{\qquad} \int \sec^2 x \, dx = \underline{\qquad} \int \csc^2 x \, dx = \underline{\qquad}$

 $\int \sec x \tan x \, dx = \underline{\qquad} \int \csc x \cot x \, dx = \underline{\qquad}$

 $\int kf(x) dx =$ $\int [f(x) \pm g(x)] dx =$

> Integral of Natural Logarithmic Function

$$\frac{d}{dx}[\ln x] = \underline{\hspace{1cm}}$$

Q1.
$$\int_{\frac{\pi}{2}}^{x} \cos t \, dt = ?$$

Q2. Find an antiderivative for each of the following functions.

- a. $f(x) = 3x^2$
- b. $g(x) = \cos x + 3$
- **Q3.** Find the antiderivative of $x^3 3x + 2$.
- **Q4.** Find the general indefinite integral $\int \sqrt{x} \sec x \tan x \ dx$
- **Q5.** The area of the region in the first quadrant enclosed by $f(x) = 4x x^3$ and the x-axis is
 - (A) $\frac{11}{4}$
- (B) $\frac{7}{2}$
- (C) 4
- (D) $\frac{11}{2}$

Q6. Find
$$\int_1^e \frac{x^2+3}{x} dx$$

Q7.(*)
$$\int_0^5 \sqrt{25-x^2} dx =$$

> Fundamental Theorem:

- Let f be continuous on [a,b] then $F(x)=\int_a^x f(t)\,dt$ is continuous on [a,b] and differentiable on (a,b), and $F'(x)=\frac{d}{dx}\int_a^x f(t)\,dt=$ ______
- If $F(x) = \int_a^{u(x)} f(t) dt$, then $F'(x) = \frac{d}{dx} \int_a^{u(x)} f(t) dt = \underline{\hspace{1cm}}$

Q1. If
$$F(x) = \int_{1}^{x} \frac{1}{1+u^3} du$$
, then $F'(x) =$ ______

Q2. If
$$F(x) = \int_{1}^{x^2+1} \sqrt{t} \ dt$$
, then $F'(x) =$ _____

Q3. For
$$-\frac{\pi}{2} < x < \frac{\pi}{2}$$
, if $F(x) = \int_0^{\sin x} \frac{dt}{\sqrt{1 - t^2}}$, then $F'(x) = \int_0^{\sin x} \frac{dt}{\sqrt{1 - t^2}}$

Q4. Let f be the function given by $f(x) = \int_0^x \cos(t^2 + 2) dt$ for $0 \le x \le \pi$. On which of the following intervals is f increasing?

(A)
$$0 \le x \le \frac{\pi}{2}$$

(B)
$$0 \le x \le 1.647$$

(C)
$$1.647 \le x \le 2.419$$

(D)
$$\frac{\pi}{2} \le x \le \pi$$

Q5. The graph of the function f shown below consists of four line segments. If g is the function defined by $g(x) = \int_{-4}^{x} f(t) dt$, find the value of g(6), g'(6), and g''(6).

- Q6. Let g be the function given by $g(x) = \int_{-2}^{x} f(t) dt$. The graph of the function f, shown above, consists of five line segments.
 - (a) Find g(0), g'(0) and g''(0).
 - (b) For what values of x, in the open interval (-2,9), is the graph of g concave up?
 - (c) For what values of x, in the open interval (-2,9), is g increasing?

> The Trapezoidal Rule

Let f be continuous on [a,b], and let Δ be a partition of [a,b] given by $a=x_0 < x_1 < \cdots < x_n = b$. The Trapezoidal Rule for approximating the area under a curve is

Area ≈ _____

Hint: Consider the function of $y = \frac{1}{2}x^2 + 1$ for $x \in [0,2]$. Use the trapezoids to estimate the area under the curve.

(1) two equal subintervals:

(2) with four equal subintervals:

Q2. The function f is continuous on the closed interval [-1,8] and has values that are given in the table below. What is the trapezoidal approximation of the area under the curve of f?

x	-1	.1	.4	.6	.8
f(x)	5	.7	.11	.8	.7

Q3. The following table shows the speed in miles per hour of a cyclist at various times. Use a trapezoidal approximation to find the distance (in miles) the cyclist traveled in the 12-minute time interval.

Time (min)	0	2	5	6	9	10	12
Speed (mph)	33	25	27	13	21	5	9

Q4. If four equal subdivisions on [0,2] are used, what is the trapezoidal approximation of $\int_0^2 e^x dx$?

(A)
$$\frac{1}{4} \left[1 + 2\sqrt{e} + 2e + 2e\sqrt{e} + e^2 \right]$$

(B)
$$\frac{1}{2} \left[1 + 2\sqrt{e} + 2e + 2e\sqrt{e} + e^2 \right]$$

(C)
$$\frac{1}{4} \left[1 + \sqrt{e} + e + e\sqrt{e} + e^2 \right]$$

(D)
$$\frac{1}{2} \left[1 + \sqrt{e} + e + e\sqrt{e} + e^2 \right]$$

Q5. If a trapezoidal sum underapproximates the area under the curve on [a,b], and a right Riemann sum overestimates the area, which of the following could be the graph of

