Discrete Mathematics Mathematical reasoning

Pham Quang Dung

Hanoi, 2012

Outline

- Direct proof
- Proof by Induction
- Proof by Contradiction
- The Pigeonhole principle

Example

Prove that $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$

- $A = 1 + 2 + \cdots + n$
- $2A = (1 + \cdots + n) + n + \cdots + 1)$
- $2A = (1+n) + (2+(n-1)) + \cdots + (n+1)$
- $2A = n \times (n+1)$
- $\bullet \Rightarrow A = \frac{n(n+1)}{2}$

Example

Prove that $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$

- $A = 1 + 2 + \cdots + n$
- $2A = (1 + \cdots + n) + n + \cdots + 1)$
- $2A = (1+n) + (2+(n-1)) + \cdots + (n+1)$
- $2A = n \times (n+1)$
- $\bullet \Rightarrow A = \frac{n(n+1)}{2}$

Example

Prove that $n^3 - n$ is divisible by 3

- $n^3 n = n(n-1)(n+1)$
- If $n \mod 3 = 0$, then n(n-1)(n+1) is divisible by 3
- If $n \mod 3 = 1$, then n-1 is divisible by 3, thus n(n-1)(n+1) is divisible by 3
- If $n \mod 3 = 2$, then n + 1 is divisible by 3, thus n(n 1)(n + 1) is divisible by 3

Example

Prove that $n^3 - n$ is divisible by 3

- $n^3 n = n(n-1)(n+1)$
- If $n \mod 3 = 0$, then n(n-1)(n+1) is divisible by 3
- If $n \mod 3 = 1$, then n-1 is divisible by 3, thus n(n-1)(n+1) is divisible by 3
- If $n \mod 3 = 2$, then n + 1 is divisible by 3, thus n(n 1)(n + 1) is divisible by 3

Example

Prove that $S_n = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \cdots + \frac{1}{(n-1) \times n} = \frac{n-1}{n}$

$$\bullet$$
 $\frac{1}{i \times (i+1)} = \frac{1}{i} - \frac{1}{i+1}$

•
$$S_n = (\frac{1}{1} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \dots + \frac{1}{n-1} - \frac{1}{n}$$

•
$$S_n = \frac{1}{1} = \frac{1}{n} - \frac{n-1}{n}$$

Example

Prove that $S_n = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \cdots + \frac{1}{(n-1) \times n} = \frac{n-1}{n}$

- $\frac{1}{i \times (i+1)} = \frac{1}{i} \frac{1}{i+1}$
- $S_n = (\frac{1}{1} \frac{1}{2}) + (\frac{1}{2} \frac{1}{3}) + \dots + \frac{1}{n-1} \frac{1}{n}$
- $S_n = \frac{1}{1} = \frac{1}{n} \frac{n-1}{n}$

Outline

- Direct proof
- 2 Proof by Induction
- Proof by Contradiction
- The Pigeonhole principle

Induction principle

- Let P(n) be a statement which involves a natural number n, i.e., n = 1, 2, ..., P(n) is true for all n
 - *P*(1) is true
 - $P(k) \Rightarrow P(k+1)$ for all natural number k

Example

Prove that
$$1 + 2 + \cdots + n = \frac{n(n+1)}{2}$$

- $n = 1, \sum_{i=1}^{1} i = 1 = \frac{1 \times (1+1)}{2}$, this means P(1) is true
- Suppose that P(k) is true that $\sum_{i=1}^{k} i = \frac{k \times (k+1)}{2}$
- Now n = k + 1, $\sum_{i=1}^{k+1} = \sum_{i=1}^{k} i + (k+1) = \frac{k \times (k+1)}{2} + (k+1) = \frac{(k+1) \times (k+2)}{2}$ $\Rightarrow P(k+1) \text{ is true}$
- P(n) is true for all natural number n

Example

Prove that $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$

- $n = 1, \sum_{i=1}^{1} i = 1 = \frac{1 \times (1+1)}{2}$, this means P(1) is true
- Suppose that P(k) is true that $\sum_{i=1}^{k} i = \frac{k \times (k+1)}{2}$
- Now n = k + 1, $\sum_{i=1}^{k+1} = \sum_{i=1}^{k} i + (k+1) = \frac{k \times (k+1)}{2} + (k+1) = \frac{(k+1) \times (k+2)}{2}$ $\Rightarrow P(k+1)$ is true
- P(n) is true for all natural number n

Example

Prove that $n^3 - n$ is divisible by 3

- For n = 1, $1^3 1 = 0$ which is divisible by 3
- Suppose that P(k) is true that $k^3 k$ is divisible by 3
- For n = k + 1, $(k+1)^3 (k+1) = k^3 + 3k^2 + 3k + 1 (k+1) = (k^3 k) + 3(k^2 + k)$ which is divisible by 3 because $k^3 k$ is divisible by 3. This means P(k+1) is true
- $\Rightarrow n^3 n$ is divisible by 3 for all natural number n

Example

Prove that $n^3 - n$ is divisible by 3

- For n = 1, $1^3 1 = 0$ which is divisible by 3
- Suppose that P(k) is true that $k^3 k$ is divisible by 3
- For n = k + 1, $(k+1)^3 (k+1) = k^3 + 3k^2 + 3k + 1 (k+1) = (k^3 k) + 3(k^2 + k)$ which is divisible by 3 because $k^3 k$ is divisible by 3. This means P(k+1) is true
- $\Rightarrow n^3 n$ is divisible by 3 for all natural number n

Example

Prove that
$$S_n = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \cdots + \frac{1}{(n-1) \times n} = \frac{n-1}{n}$$

- For n = 1, $S_1 = \frac{1}{1 \times 2} = \frac{1}{2} = \frac{2-1}{2}$, P(1) is true
- Suppose that P(k) is true that $\sum_{i=1}^{k} \frac{1}{(i-1)\times i} = \frac{k-1}{k}$
- For n = k + 1, $\sum_{i=1}^{k+1} \frac{1}{i \times (i+1)} = \sum_{i=1}^{k} \frac{1}{(i-1) \times i} + \frac{1}{k \times (k+1)} = \frac{k-1}{k} + \frac{1}{k \times (k+1)} = \frac{k^2 1 + 1}{k \times (k+1)} = \frac{k}{k+1}$. Thus P(k+1) is true
- $\Rightarrow S_n = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \cdots + \frac{1}{(n-1) \times n} = \frac{n-1}{n}$ for all natural number n

Example

Prove that
$$S_n = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \cdots + \frac{1}{(n-1) \times n} = \frac{n-1}{n}$$

- For n = 1, $S_1 = \frac{1}{1 \times 2} = \frac{1}{2} = \frac{2-1}{2}$, P(1) is true
- Suppose that P(k) is true that $\sum_{i=1}^{k} \frac{1}{(i-1)\times i} = \frac{k-1}{k}$
- For n = k + 1, $\sum_{i=1}^{k+1} \frac{1}{i \times (i+1)} = \sum_{i=1}^{k} \frac{1}{(i-1) \times i} + \frac{1}{k \times (k+1)} = \frac{k-1}{k} + \frac{1}{k \times (k+1)} = \frac{k^2 1 + 1}{k \times (k+1)} = \frac{k}{k+1}$. Thus P(k+1) is true
- $\Rightarrow S_n = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \cdots + \frac{1}{(n-1) \times n} = \frac{n-1}{n}$ for all natural number n

Outline

- Direct proof
- Proof by Induction
- Proof by Contradiction
- The Pigeonhole principle

Basic idea

- ullet Assume that the statement to be proved ${\mathcal P}$ is **false**
- Then, we show that this assumption leads to a contradiction
- ullet \Rightarrow So, the assumption above is **false**, thus ${\mathcal P}$ is **true**

Example

Prove that if a, b are integer, then $a^2 + 4b \neq 6$

- If $a^2 + 4b = 6$, then a is even: a = 2k
- Thus, $4k^2 + 4b = 6$
- Hence, $2(k^2 + b) = 3$ (contradiction)
- $\Rightarrow a^2 + 4b \neq 6$

Example

Prove that if a, b are integer, then $a^2 + 4b \neq 6$

- If $a^2 + 4b = 6$, then a is even: a = 2k
- Thus, $4k^2 + 4b = 6$
- Hence, $2(k^2 + b) = 3$ (contradiction)
- $\bullet \Rightarrow a^2 + 4b \neq 6$

Example

Prove that if $\sqrt{3}$ is irrational

- Suppose $\exists a,b \in \mathbb{Z}$ such that $\sqrt{3} = \frac{a}{b}$ and gcd(a,b) = 1
- $\bullet \Rightarrow a^2 = 3b^2$
- \Rightarrow a is divisible by 3: $\exists a_1 \in \mathbb{Z}$ such that $a = 3a_1$
- $\Rightarrow 9a_1^2 = 3b^2$
- $\bullet \Rightarrow b^2 = 3a_1^2$
- \Rightarrow b is divisible by 3 (contradiction because gcd(a, b) = 1)
- $\Rightarrow \sqrt{3}$ is irrational

Example

Prove that if $\sqrt{3}$ is irrational

- Suppose $\exists a,b \in \mathbb{Z}$ such that $\sqrt{3} = \frac{a}{b}$ and gcd(a,b) = 1
- $\bullet \Rightarrow a^2 = 3b^2$
- \Rightarrow a is divisible by 3: $\exists a_1 \in \mathbb{Z}$ such that $a = 3a_1$
- $\Rightarrow 9a_1^2 = 3b^2$
- $\bullet \Rightarrow b^2 = 3a_1^2$
- \Rightarrow b is divisible by 3 (contradiction because gcd(a, b) = 1)
- $\Rightarrow \sqrt{3}$ is irrational

Example

Given 7 segments $\{1,2,\ldots,7\}$. The segment i has the length a_i with $10 < a_i < 100, \forall i = 1\ldots 7$. Prove that the proposition \mathcal{P} : "there exist 3 segments that can establish a triangle" is true.

- ullet Assume that ${\mathcal P}$ is false
- Without loss of generality, assume that $a_1 \leq a_2 \leq \cdots \leq a_7$
- We have
 - $a_3 > a_1 + a_2 > 10 + 10 = 20$
 - $a_4 > a_2 + a_3 > 10 + 20 = 30$
 - $a_5 \ge a_3 + a_4 > 20 + 30 = 50$
 - $a_6 \ge a_4 + a_5 > 30 + 50 = 80$
 - $a_7 \ge a_5 + a_6 > 50 + 80 = 130$ (contradiction with the assumption that $a_7 < 100$)
- $\bullet \Rightarrow \mathcal{P}$ is true

Example

Given 7 segments $\{1, 2, \ldots, 7\}$. The segment i has the length a_i with $10 < a_i < 100, \forall i = 1 \ldots 7$. Prove that the proposition \mathcal{P} : "there exist 3 segments that can establish a triangle" is true.

- ullet Assume that ${\mathcal P}$ is false
- Without loss of generality, assume that $a_1 \leq a_2 \leq \cdots \leq a_7$
- We have
 - $a_3 \ge a_1 + a_2 > 10 + 10 = 20$
 - $a_4 \ge a_2 + a_3 > 10 + 20 = 30$
 - $a_5 \ge a_3 + a_4 > 20 + 30 = 50$
 - $a_6 \ge a_4 + a_5 > 30 + 50 = 80$
 - $a_7 \ge a_5 + a_6 > 50 + 80 = 130$ (contradiction with the assumption that $a_7 < 100$)
- $\bullet \Rightarrow \mathcal{P}$ is true

Example

10 integers $\{0,1,\ldots,9\}$ are arrange in a circle. Prove that the proposition \mathcal{P} : "There exist 3 consecutive integers having sum greater than 13" is true

- Assume that \mathcal{P} is false
- We have
 - $k_1 = x_1 + x_2 + x_3 \le 13$
 - $k_2 = x_2 + x_3 + x_4 \le 13$
 - o ...
 - $k_9 = x_0 + x_{10} + x_1 \le 13$
 - $k_{10} = x_{10} + x_1 + x_2 \le 13$
- $\bullet \Rightarrow k_1 + \cdots + k_{10} = 3(x_1 + \cdots + x_{10}) \le 13 \times 10 = 130$
- $\Rightarrow 3(0+1+\cdots+9) = 135 \le 130$ (contradiction)
- ullet $\Rightarrow \mathcal{P}$ is true

Example

10 integers $\{0,1,\ldots,9\}$ are arrange in a circle. Prove that the proposition \mathcal{P} : "There exist 3 consecutive integers having sum greater than 13" is true

- ullet Assume that ${\mathcal P}$ is false
- We have
 - $k_1 = x_1 + x_2 + x_3 \le 13$
 - $k_2 = x_2 + x_3 + x_4 < 13$
 - ...
 - $k_9 = x_0 + x_{10} + x_1 \le 13$
 - $k_{10} = x_{10} + x_1 + x_2 \le 13$
- $\Rightarrow k_1 + \cdots + k_{10} = 3(x_1 + \cdots + x_{10}) \le 13 \times 10 = 130$
- \Rightarrow 3(0 + 1 + ··· + 9) = 135 \leq 130 (contradiction)
- $\bullet \Rightarrow \mathcal{P}$ is true

Outline

- Direct proof
- Proof by Induction
- Proof by Contradiction
- 4 The Pigeonhole principle

Theorem

- If n + 1 objects are put into n boxes, then at least one box contains two or more objects
- If n objects are put into k boxes, then there exists one box containing at least $\frac{n}{k}$ objects

Example

- Among 13 people, there exist two people having their birthdays in the same month
- Among 100 people, there are at least 9 people having their brithdays in the same month

Example

In a meeting room, there are n people. Prove that there are at leats two people having the same number of friends (If A is a friend of B then B is a friend of A)

- The number of friends of a person is an integer k with $0 \le k \le n-1$
- If there is a person having n-1 friends, then all the other people in the room are his friends. This means that no one has 0 friend
- Hence, 0 and n-1 cannot be simultaneously the number of friends of some people in the room
- ullet \Rightarrow There are at least two people having the same number of friends

Example

In a meeting room, there are n people. Prove that there are at leats two people having the same number of friends (If A is a friend of B then B is a friend of A)

- ullet The number of friends of a person is an integer k with $0 \le k \le n-1$
- ullet If there is a person having n-1 friends, then all the other people in the room are his friends. This means that no one has 0 friend
- ullet Hence, 0 and n-1 cannot be simultaneously the number of friends of some people in the room
- ullet \Rightarrow There are at least two people having the same number of friends

Example

Given *n* integers a_1, \ldots, a_n , not necessarily distinct. Prove that there exist indices i and j with $1 \le i \le j \le n$ such that $a_i + \cdots + a_i$ is divisible by n

- Consider *n* integers: $a_1, a_1 + a_2, a_1 + a_2 + a_3, \dots, a_1 + a_2 + \dots + a_n$
- Dividing these integers by *n*, we have:

$$a_1 + a_2 + \cdots + a_i = q_i \times n + r_i, 0 \le r_i \le n - 1, \forall i = 1, \dots, n$$

- Two cases:
 - If there exists $r_k = 0$, then $a_1 + a_2 + \cdots + a_k$ is divisible by n
 - If none of r_1, r_2, \dots, r_n is zero, then there exist indices i < j such that

Example

Given n integers a_1, \ldots, a_n , not necessarily distinct. Prove that there exist indices i and j with $1 \le i \le j \le n$ such that $a_i + \cdots + a_i$ is divisible by n

- Consider *n* integers: $a_1, a_1 + a_2, a_1 + a_2 + a_3, \dots, a_1 + a_2 + \dots + a_n$
- Dividing these integers by *n*, we have:

$$a_1+a_2+\cdots+a_i=q_i\times n+r_i, 0\leq r_i\leq n-1, \forall i=1,\ldots,n$$

- Two cases:
 - If there exists $r_k = 0$, then $a_1 + a_2 + \cdots + a_k$ is divisible by n
 - If none of r_1, r_2, \dots, r_n is zero, then there exist indices i < j such that $r_i = r_i$. Then $(a_1 + \cdots + a_i) - (a_1 + \cdots + a_i)$ is divisible by n. Hence $a_{i+1} + a_{i+2} + \cdots + a_i$ is divisible by n

Example

Given 51 integer from $1, 2, \dots, 100$. Prove that there exist at least two integers such that one of them is divisible by the other

- Any integer can be written in the form $2^k \times a$, where $0 \le k$ and a is odd.
- The value a can be one of the 50 numbers $1, 3, 5, \ldots, 99$. Thus, among 51 integers selected, there exist two integers x and y which have the same value of a when they are written in the form $x = 2^r \times a$ and $y = 2^s \times a$.
- At that time, if $r \le s$, then y is divisible by x, and x is divisible by y, otherwise.

Example

Given 51 integer from 1, 2, ..., 100. Prove that there exist at least two integers such that one of them is divisible by the other

- Any integer can be written in the form $2^k \times a$, where $0 \le k$ and a is odd.
- The value a can be one of the 50 numbers $1, 3, 5, \ldots, 99$. Thus, among 51 integers selected, there exist two integers x and y which have the same value of a when they are written in the form $x = 2^r \times a$ and $y = 2^s \times a$.
- At that time, if $r \le s$, then y is divisible by x, and x is divisible by y, otherwise.

Example

There are 6 points A, B, C, D, E, F on the plane. Every 2 points is connected by a segment (edge) of color red or blue. Every 3 points establishes a triangle. Prove that there is triangle with its 3 edges having the same color.

- Consider a point A. 5 edges AB, AC, AD, AE, AF are painted with two colors red and blue. Thus, there are 3 edges having the same color, say, AB, AC, AD are red
- If one of 3 edges BC, CD, DB is red, say, CD, then the triangle ACD is red
- Otherwise, 3 edges BC, CD, DB are blue, then the triangle BCD is blue

Example

There are 6 points A, B, C, D, E, F on the plane. Every 2 points is connected by a segment (edge) of color red or blue. Every 3 points establishes a triangle. Prove that there is triangle with its 3 edges having the same color.

- Consider a point A. 5 edges AB, AC, AD, AE, AF are painted with two colors red and blue. Thus, there are 3 edges having the same color, say, AB, AC, AD are red
- If one of 3 edges BC, CD, DB is red, say, CD, then the triangle ACD is red
- Otherwise, 3 edges BC, CD, DB are blue, then the triangle BCD is blue

The Pigeonhole principle: strong form

Theorem

Let q_1, q_2, \ldots, q_n be positive integers. If $q_1 + q_2 + \cdots + q_n - n + 1$ objects are put into n boxes, then either the 1^{st} box contains at least q_1 objects, or the 2^{nd} box contains at least q_2 objects,..., or the n^{th} box contains at least q_n objects

Proof can easily be obtained by contradiction

Example

A basket contains 21 fruits of 3 kinds: apples, bananas, and oranges. Then, there are either at leats 6 apples, or at least 10 bananas, or at least 7 oranges