Delaunay properties of digital straight segments

Tristan Roussillon¹ and Jacques-Olivier Lachaud²

¹LIRIS, University of Lyon ²LAMA, University of Savoie

April 1, 2011

Outline

Definitions: patterns and Delaunay triangulation

Observation: Delaunay triangulation of patterns?

Characterization: proof

Conclusion and perspectives: new algorithms

Digital straight line (DSL)

Standard DSL

The points $(x,y) \in \mathbb{Z}^2$ verifying $\mu \leq ax - by < \mu + |a| + |b|$ belong to the standard DSL $D(a,b,\mu)$ of slope $\frac{a}{b}$ and intercept μ $(a,b,\mu \in \mathbb{Z}$ and pgcd(a,b)=1).

Example: D(2, 5, -6)

Pattern

a pattern is a subsequence of a DSL between two consecutive upper leaning points

Pattern

- a pattern is a subsequence of a DSL between two consecutive upper leaning points
- its staircase representation is the polygonal line linking the points in order

Example: pattern UU'

Pattern

- a pattern is a subsequence of a DSL between two consecutive upper leaning points
- its staircase representation is the polygonal line linking the points in order
- its chain code is a Christoffel word

Example: pattern UU'

Delaunay triangulation

Triangulation of a finite set of points S

Partition of the convex hull of $\mathcal S$ into triangular facets, whose vertices are points of $\mathcal S$.

Delaunay condition

The interior of the circumcircle of each triangular facet does not contain any set point.

always exists and is unique (without 4 cocircular points)

Delaunay triangulation

Triangulation of a finite set of points S

Partition of the convex hull of $\mathcal S$ into triangular facets, whose vertices are points of $\mathcal S$.

Delaunay condition

The interior of the circumcircle of each triangular facet does not contain any set point.

always exists and is unique (without 4 cocircular points)

Outline

Definitions: patterns and Delaunay triangulation

Observation: Delaunay triangulation of patterns?

Characterization: proof

Conclusion and perspectives: new algorithms

Delaunay triangulation of patterns

Delaunay triangulation of patterns

Delaunay triangulation of patterns

Three remarks

1. the Delaunay triangulation of *UU'* contains the staircase representation of *UU'*.

Three remarks

- 1. the Delaunay triangulation of *UU'* contains the staircase representation of *UU'*.
- 2. *U*, *U'* and the closest point of *UU'* to [*UU'*] (Bezout point) define a facet.

Three remarks

- 1. the Delaunay triangulation of *UU'* contains the staircase representation of *UU'*.
- 2. *U*, *U'* and the closest point of *UU'* to [*UU'*] (Bezout point) define a facet.
- 3. the Delaunay triangulation of some patterns contains the Delaunay triangulation of subpatterns.

Dividing the triangulation (remark 1)

▶ The convex hull is divided into a upper part $\mathcal{H}^+(UU')$ and a lower part $\mathcal{H}^-(UU')$.

Dividing the triangulation (remark 1)

- ▶ The convex hull is divided into a upper part $\mathcal{H}^+(UU')$ and a lower part $\mathcal{H}^-(UU')$.
- ▶ The Delaunay triangulation is divided into a upper part $\mathcal{T}^+(UU')$ and a lower part $\mathcal{T}^-(UU')$.

- main facet (remark 2)
 - geometrical characterization (Bezout point)

combinatorial characterization (splitting formula)

0 010 0101

- main facet (remark 2)
 - geometrical characterization (Bezout point)

combinatorial characterization (splitting formula)

0 010 0101

- main facet (remark 2)
 - geometrical characterization (Bezout point)

combinatorial characterization (splitting formula)

 $0 \; | \; 0 \; 1 | 0 \; | \; 0 \; 1 | 0 \; 1$

- main facet (remark 2)
 - geometrical characterization (Bezout point)

combinatorial characterization (splitting formula)

 $0 \; | \; 0 | 1 | 0 \; | \; 0 | 1 | 0 | 1$

Main result

Theorem

The facets $\mathcal{F}(UU')$ of the pattern UU' is a triangulation of $\mathcal{H}^+(UU')$ such that each facet has points of UU' as vertices and satisfies the Delaunay property, i.e. $\mathcal{F}(UU') = \mathcal{T}^+(UU')$.

the (upper part of the) Delaunay triangulation of a pattern is characterized by the continued fraction expansion of its slope

Outline

Definitions: patterns and Delaunay triangulation

Observation: Delaunay triangulation of patterns?

Characterization: proof

Conclusion and perspectives: new algorithms

Sketch of the proof

#1

- no triangular facet of the Delaunay triangulation of a pattern UU' can cross its staircase representation
- ▶ the set of facets $\mathcal{F}(UU')$ is the *unique* way of triangulating $\mathcal{H}^+(UU')$

To be more constructive, we chose:

#2

- ▶ the set of facets $\mathcal{F}(UU')$ is a triangulation of $\mathcal{H}^+(UU')$ (easy part)
- ▶ the interior of the circumcircle of each facet of $\mathcal{F}(UU')$ does not contain any point of UU' (let us focus on that part)

Let \mathcal{D} be a disk whose boundary passes through U and U' and whose center is located above (UU'). Let $\partial \mathcal{D}$ be its boundary. $\mathcal{D} \setminus \partial \mathcal{D}$ contains a lattice point below or on (UU') if and only if it contains (at least) B, the lower Bezout point of [UU'].

Let \mathcal{D} be a disk whose boundary passes through U and U' and whose center is located above (UU'). Let $\partial \mathcal{D}$ be its boundary. $\mathcal{D} \setminus \partial \mathcal{D}$ contains a lattice point below or on (UU') if and only if it contains (at least) B, the lower Bezout point of [UU'].

Let \mathcal{D} be a disk whose boundary passes through U and U' and whose center is located above (UU'). Let $\partial \mathcal{D}$ be its boundary. $\mathcal{D} \setminus \partial \mathcal{D}$ contains a lattice point below or on (UU') if and only if it contains (at least) B, the lower Bezout point of [UU'].

Let \mathcal{D} be a disk whose boundary $\partial \mathcal{D}$ is the circumcircle of UBU'. $\mathcal{D} \setminus \partial \mathcal{D}$ contains none of the *background points* of UU' (lattice points below UB or BU').

- ► The circumcircle of the main facet UBU' contains none of the background points of UU' in its interior (lemma 2).
- The background points of UB and BU' contain the background points of UU', which contains the set points.

- ► The circumcircle of the main facet UBU' contains none of the background points of UU' in its interior (lemma 2).
- The background points of UB and BU' contain the background points of UU', which contains the set points.

- ► The circumcircle of the main facet *UBU'* contains none of the background points of *UU'* in its interior (lemma 2).
- The background points of UB and BU' contain the background points of UU', which contains the set points.

- ► The circumcircle of the main facet *UBU'* contains none of the background points of *UU'* in its interior (lemma 2).
- ► The background points of UB and BU' contain the background points of UU', which contains the set points.

- ► The circumcircle of the main facet *UBU'* contains none of the background points of *UU'* in its interior (lemma 2).
- ► The background points of UB and BU' contain the background points of UU', which contains the set points.

- ► The circumcircle of the main facet *UBU'* contains none of the background points of *UU'* in its interior (lemma 2).
- ► The background points of UB and BU' contain the background points of UU', which contains the set points.

- ► The circumcircle of the main facet *UBU'* contains none of the background points of *UU'* in its interior (lemma 2).
- ► The background points of UB and BU' contain the background points of UU', which contains the set points.

Outline

Definitions: patterns and Delaunay triangulation

Observation: Delaunay triangulation of patterns?

Characterization: proof

Conclusion and perspectives: new algorithms

Pattern

Pattern

Pattern

Pattern

Pattern

- Pattern
- DSS

- Pattern
- DSS
- Convex digital object

Convex digital object

Voronoï diagram computation

Pattern

Voronoï diagram computation

DSS

Voronoï diagram computation

Convex digital object

Output-sensitive algorithm for α -hull computation

Definition

For all $\alpha \in [0,1]$, the α -hull of a set S is defined as the intersection of all closed complements of discs of radius $1/\alpha$ that contain all the points of S.

figures pour diffrents α de 0 1.

Number of vertices of α -hulls: question

Let X be the Gauss digitization of a convex body of diameter δ . Let $\sharp V(\alpha)$ be the number of the vertices of the α -hull of X.

- ▶ $\sharp V(1) = O(\delta)$ is trivial.
- it is known that $\sharp V(0) = O(\delta^{\frac{2}{3}})$ (convex hull).
- ▶ is there a generic formula for all $\alpha \in [0, 1]$ such that: $\sharp V(\alpha) = O(f(\delta, \alpha))$?