Project Scheduling: Lagging, Crashing and Activity Networks

Chapter 10

Course Structure

- Introduction
- Projects and Strategy
- Project Selection and Portfolio Management
- Project Cost Estimation and Budgeting
- Project Scheduling: Networks, Duration estimation, and Critical Path
- Project Scheduling: Lagging, Crashing and Activity Networks
- Risk Management
- Resource Management
- Project Evaluation and Control
- Agile Project Management
- Critical Chain Project Scheduling

Lags in Precedence Relationships

The logical relationship between the start and finish of one activity and the start and finish of another activity.

Four logical relationships between tasks

- 1. Finish to Start
- 2. Finish to Finish
- 3. Start to Start
- 4. Start to Finish

Finish to Start Lag

- Most common type of sequencing
- Shown on the line joining the modes
 - Added during forward pass
 - Subtracted during backward pass

Finish to Finish Lag

Two activities share a similar completion point

 The mechanical inspection cannot happen until wiring, plumbing, and HVAC installation are complete

Start to Start Lag

A logical relationship in which a successor activity cannot start until a predecessor activity has started. Example: Level concrete (successor) cannot begin until pour foundation (predecessor) begins.

Start to Finish Lag

- A logical relationship in which a successor activity cannot finish until a predecessor activity has started. Example: The first security guard shift (successor) cannot finish until the second security guard shift (predecessor) starts.
- Successor's finish dependent on predecessor's start

In PM, finish-to-start is the most commonly used type of precedence relationship. The start-to-finish relationship is very rarely used.

Gantt Charts

- ✓ Establish a time-phased network
- ✓ Can be used as a tracking tool

Benefits of Gantt charts

- 1. Easy to create and comprehend
- 2. Identify the schedule baseline network
- 3. Allow for updating and control
- 4. Identify resource needs

Create a Gantt chart based on the activities listed in the table.

Task	Time	Pred	Task	Time	Pred
Z	8		U	3	W
Υ	5	Z	Т	6	V
X	8	Z	S	7	U,T
W	4	Y,X	R	9	S
V	5	W			

Task	ES	EF	LS	LF
Z	0	8	0	8
Υ	8	13	11	16
X	8	16	8	16
W	16	20	16	20
V	20	25	20	25
U	20	23	28	31
T	25	31	25	31
S	31	38	31	38
R	38	47	38	47

Gantt Chart With Resources in MS Project

The process of accelerating a project

Principal methods for crashing

- > Improving existing resources' productivity
- ➤ Changing work **methods**
- > Increasing the **quantity** of resources

Project duration can be reduced <u>by assigning</u>
 more resources to project activities. But, doing
 this would somehow increase our project cost!

How do we strike a balance?

- Project crashing is a method for shortening project duration by reducing one or more
- critical activities to a time less than normal activity time.

Question: What criteria should it be based on when deciding to crashing critical times?

The critical path is 1-2-3, the completion time =11

How? Path: 1-2-3 = 5+6=11 weeks

Path: 1-3 = 5 weeks

Now, how many days can we "crash" it?

The maximum time that can be crashed for:

Path
$$1-2-3 = 1 + 3 = 4$$

Path $1-3 = 0$

Should we use up all these 4 weeks?

If we used all 4 days, then path 1-2-3 has (5-1) + (6-3) = 7 completion weeks

Now, we need to check if the completion time for path 1-3 has lesser than 7 weeks (why?)

Now, path 1-3 has (5-0) = 5 weeks

Since path 1-3 still shorter than 7 weeks, we used up all 4 crashed weeks

Question: What if path 1-3 has, say 8 weeks completion time?

Now, we cannot use all 4 days (Why?)

Because path 1-2-3 will not be critical path anymore as path 1-3 would now has longest hour to finish

- Rule: When a path is a critical path, it will not stay as a critical path
- So, we can only reduce the path 1-2-3 completion time to the same time as path 1-3. (HOW?)

Solution:

- We can only reduce total time for path 1-2-3 = path 1-3, that is 8 weeks
- If the cost for path 1-2 and path 2-3 is the same then we can random pick them to crash so that its completion time is 8 weeks

TIME-COST TRADE-OFF

Where: slope = cost per day of crashing a project

Calculating the Cost of Crashing

Suppose that for activity X, the normal activity duration is 5 weeks and the budgeted cost is \$12,000. The crash time for this activity is 3 weeks and the expected cost is \$32,000. Using the above formula, we can calculate the cost slope for activity X as:

Solution

$$\frac{32,000-12,000}{5-3}$$
 or $\frac{20,000}{2}$ = 10,000 per week

Example

Predecessor activity	Normal time	Crash time	Normal cost	Crash cost
-	2	1	10000	15000
-	8	5	15000	21000
A	4	3	20000	24000
В	1	1	7000	7000
В	2	1	8000	15000
C,D	5	3	10000	16000
E	6	2	12000	36000
	activity A B C,D	activity time - 2 - 8 A 4 B 1 B 2 C,D 5	activity time - 2 - 8 5 A 4 B 1 B 2 C,D 5	activity time cost - 2 1 10000 - 8 5 15000 A 4 3 20000 B 1 1 7000 B 2 1 8000 C,D 5 3 10000

Find the minimum possible time of the project and the cost associated with this.

Solution

Solution

Activ ity	Prede cessor activit y	No rm al ti me	Cr ash tim e	Nor mal cost	Crash cost	Time can be Decr ease d	Increas ed cost	Cost slope	Crash ed time
Α	-	2	1	10000	15000	1	5000	5000	
B	-	8	5	15000	21000	3	6000	2000(1 st)	3
C	A	4	3	20000	24000	1	4000	4000	
D	В	1	1	7000	7000	-	-	-	
Œ	В	2	1	8000	15000	1	7000	7000	
F	C,D	5	3	10000	16000	2	6000	$3000(3^{\rm rd})$	2
G	E	6	2	12000	36000	4	24000	6000(2 nd ,3 ^r ^d)	2,2

- 1.Comparing cost slope of B,E,G=>B minimum so crash B.(next page)
- 2. Next critical path also B-E-G .=> G next minimum. (next page)
- 3. Comparing between A,C,D,E,F,G=> F is the minimum cost slope. Crash
- F. Again Crashing F alone will leave B-E-G path with value 11(project not benefited by crashing). So crashing G by 2 days to reach at 9 as in BD

Solution

path	Norma 1 time	Crashing B by 3 days	Crashing G by 2 days	Crashing F by 2 days and G by 2 days
B-E-G	16	13 B*-E-G	11 B*-E-G'	9 B*-E-G*
B-D-F	14	11 B*-D''-F	11 B*-D''-F	9 B*-D''-F* crashed complete
A-C-F	11	11 A-C-F	11 A-C-F	9 A-C-F*
Cost added	-	+6000	+12000	12000+ 6000
Total cost	82000	88000	100000	118000

Crashing G completely result in reducing below11.So to attain 11 days G is crashed for 2days only. Now 3 critical paths. Go to Previous page.