## Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»



## **Лабораторная работа №4** по курсу «Методы машинного обучения»

«Создание рекомендательной модели»

|    |     | Андронов Д.О.  |
|----|-----|----------------|
|    |     | Группа ИУ5-24М |
|    |     |                |
| "_ | _"_ | 2022 г.        |

ИСПОЛНИТЕЛЬ:

**import** numpy **as** np **import** pandas **as** pd

from typing import Dict, Tuple

from scipy import stats

from IPython.display import Image

from IPython.display import Image

from sklearn.feature\_extraction.text import CountVectorizer, TfidfVectorizer

from sklearn.datasets import load iris, load boston

from sklearn.model\_selection import cross\_val\_score

from sklearn model selection import train test split

from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier

from sklearn.model\_selection import GridSearchCV, RandomizedSearchCV

from sklearn.metrics import accuracy score, balanced\_accuracy\_score

from sklearn.metrics import precision\_score, recall\_score, f1\_score, classification\_report

from sklearn.metrics import confusion matrix

from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export\_graphviz

from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor

from sklearn.ensemble import ExtraTreesClassifier, ExtraTreesRegressor

from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor

from sklearn.ensemble import BaggingClassifier

from sklearn.ensemble import AdaBoostClassifier

from sklearn.metrics import mean\_absolute\_error, mean\_squared\_error, mean\_squared\_log\_error, median\_absolute\_error, r2\_score

from sklearn.metrics import roc curve, roc auc score

from sklearn.metrics.pairwise import cosine\_similarity, euclidean\_distances, manhattan\_distances

from collections import defaultdict

import seaborn as sns

import matplotlib.pyplot as plt

from matplotlib\_venn import venn2

%matplotlib inline

sns.set(style="ticks")

In [3]:

from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force\_remount=True).

## Чтение и обработка данных

In [4]:

data = pd.read\_csv('/content/drive/MyDrive/Colab Notebooks/winemag-data-130k-v2.csv') data.head()

|   |               |          |                                                            |                                             |        |       |                      |                           |                      |                       |                       |                                                                  | Out               | ıt[4]: |
|---|---------------|----------|------------------------------------------------------------|---------------------------------------------|--------|-------|----------------------|---------------------------|----------------------|-----------------------|-----------------------|------------------------------------------------------------------|-------------------|--------|
|   | Unnamed:<br>0 | country  | description                                                | designation                                 | points | price | province             | region_1                  | region_2             | taster_name           | taster_twitter_handle | title                                                            | variety           | 1      |
| 0 | 0             | Italy    | Aromas<br>include<br>tropical<br>fruit, broom,<br>brimston | Vulkà<br>Bianco                             | 87     | NaN   | Sicily &<br>Sardinia | Etna                      | NaN                  | Kerin<br>O'Keefe      | @kerinokeefe          | Nicosia<br>2013 Vulkà<br>Bianco<br>(Etna)                        | White<br>Blend    | 1      |
| 1 | 1             | Portugal | This is ripe<br>and fruity, a<br>wine that is<br>smooth    | Avidagos                                    | 87     | 15.0  | Douro                | NaN                       | NaN                  | Roger Voss            | @vossroger            | Quinta dos<br>Avidagos<br>2011<br>Avidagos<br>Red<br>(Douro)     | Portuguese<br>Red | Αv     |
| 2 | 2             | US       | Tart and<br>snappy, the<br>flavors of<br>lime flesh<br>and | NaN                                         | 87     | 14.0  | Oregon               | Willamette<br>Valley      | Willamette<br>Valley | Paul Gregutt          | @paulgwine            | Rainstorm<br>2013 Pinot<br>Gris<br>(Willamette<br>Valley)        | Pinot Gris        | Rai    |
| 3 | 3             | US       | Pineapple<br>rind, lemon<br>pith and<br>orange<br>blossom  | Reserve<br>Late<br>Harvest                  | 87     | 13.0  | Michigan             | Lake<br>Michigan<br>Shore | NaN                  | Alexander<br>Peartree | NaN                   | St. Julian<br>2013<br>Reserve<br>Late<br>Harvest<br>Riesling     | Riesling          | St     |
| 4 | 4             | US       | Much like<br>the regular<br>bottling<br>from 2012,<br>this | Vintner's<br>Reserve<br>Wild Child<br>Block | 87     | 65.0  | Oregon               | Willamette<br>Valley      | Willamette<br>Valley | Paul Gregutt          | @paulgwine            | Sweet<br>Cheeks<br>2012<br>Vintner's<br>Reserve<br>Wild<br>Child | Pinot Noir        | C      |

In [5]

```
Out[5]:
(129971, 14)
                                                                                                                                                         In [6]:
 description_data = data[data['description'].notnull()]
 description_data.shape
                                                                                                                                                        Out[6]:
(129971, 14)
                                                                                                                                                        In [7]:
 title = description_data['title'].values
 title[0:5]
                                                                                                                                                        Out[7]:
array(['Nicosia 2013 Vulkà Bianco (Etna)',
    'Quinta dos Avidagos 2011 Avidagos Red (Douro)',
    'Rainstorm 2013 Pinot Gris (Willamette Valley)',
    'St. Julian 2013 Reserve Late Harvest Riesling (Lake Michigan Shore)',
    "Sweet Cheeks 2012 Vintner's Reserve Wild Child Block Pinot Noir (Willamette Valley)"],
   dtype=object)
                                                                                                                                                         In [8]:
 descriptions = description_data['description'].values
 descriptions[0:5]
                                                                                                                                                        Out[8]:
array(["Aromas include tropical fruit, broom, brimstone and dried herb. The palate isn't overly expressive, offering unripened apple, citrus and dried sage alon
gside brisk acidity.",
    "This is ripe and fruity, a wine that is smooth while still structured. Firm tannins are filled out with juicy red berry fruits and freshened with acidity. It's alre
ady drinkable, although it will certainly be better from 2016.",
    'Tart and snappy, the flavors of lime flesh and rind dominate. Some green pineapple pokes through, with crisp acidity underscoring the flavors. The wine
was all stainless-steel fermented.',
    'Pineapple rind, lemon pith and orange blossom start off the aromas. The palate is a bit more opulent, with notes of honey-drizzled guava and mango givi
ng way to a slightly astringent, semidry finish.',
    "Much like the regular bottling from 2012, this comes across as rather rough and tannic, with rustic, earthy, herbal characteristics. Nonetheless, if you thin
k of it as a pleasantly unfussy country wine, it's a good companion to a hearty winter stew."],
   dtype=object)
                                                                                                                                                         In [9]:
 description_data.keys()
                                                                                                                                                        Out[9]:
Index(['Unnamed: 0', 'country', 'description', 'designation', 'points',
    'price', 'province', 'region_1', 'region_2', 'taster_name',
    'taster_twitter_handle', 'title', 'variety', 'winery'],
   dtype='object')
                                                                                                                                                       In [10]:
 wine_ids = description_data['Unnamed: 0'].values
 wine_ids
                                                                                                                                                      Out[10]:
array([
                    2, ..., 129968, 129969, 129970])
                                                                                                                                                       In [11]:
 %%time
 tfidf = TfidfVectorizer()
 description_matrix = tfidf.fit_transform(descriptions)
 description_matrix
CPU times: user 3.55 s, sys: 42.3 ms, total: 3.59 s
Wall time: 3.61 s
                                                                                                                                                       In [12]:
 description_matrix
                                                                                                                                                      Out[12]:
<129971x31275 sparse matrix of type '<class 'numpy.float64'>'
with 4475479 stored elements in Compressed Sparse Row format>
Фильтрация на основе содержания. Метод к-ближайших соседей
                                                                                                                                                       In [13]:
 class SimplerKnnRecomender:
  def __init__(self, X_matrix, X_ids, X_title, X_overview):
      Входные параметры:
     X_matrix - обучающая выборка (матрица объект-признак)
     X ids - массив идентификаторов объектов
```

```
X_title - массив названий объектов
     X_overview - массив описаний объектов
     #Сохраняем параметры в переменных объекта
     self._X_matrix = X_matrix
     self.df = pd.DataFrame(
        {'id': pd.Series(X ids, dtype='int'),
        'title': pd.Series(X_title, dtype='str'),
        'overview': pd.Series(X_overview, dtype='str'),
        'dist': pd.Series([], dtype='float')})
  def recommend_for_single_object(self, K: int, \
          X_matrix_object, cos_flag = True, manh_flag = False):
     Метод формирования рекомендаций для одного объекта.
     Входные параметры:
     К - количество рекомендуемых соседей
     X matrix object - строка матрицы объект-признак, соответствующая объекту
     cos_flag - флаг вычисления косинусного расстояния
     manh_flag - флаг вычисления манхэттэнского расстояния
     Возвращаемое значение: К найденных соседей
     scale = 1000000
     # Вычисляем косинусную близость
     if cos flag:
        dist = cosine similarity(self. X matrix, X matrix object)
        self.df['dist'] = dist * scale
        res = self.df.sort values(by='dist', ascending=False)
        # Не учитываем рекомендации с единичным расстоянием,
        # так как это искомый объект
        res = res[res['dist'] < scale]
     else:
        if manh_flag:
          dist = manhattan_distances(self._X_matrix, X_matrix_object)
          dist = euclidean_distances(self._X_matrix, X_matrix_object)
        self.df['dist'] = dist * scale
        res = self.df.sort values(by='dist', ascending=True)
        # Не учитываем рекомендации с единичным расстоянием,
        # так как это искомый объект
        res = res[res['dist'] > 0.0]
     # Оставляем К первых рекомендаций
     res = res.head(K)
     return res
                                                                                                                                                 In [14]:
test id = 11
print(title[test id])
print(descriptions[test_id])
Leon Beyer 2012 Gewurztraminer (Alsace)
This is a dry wine, very spicy, with a tight, taut texture and strongly mineral character layered with citrus as well as pepper. It's a food wine with its almost cris
p aftertaste.
                                                                                                                                                 In [15]:
test_matrix = description_matrix[test_id]
test_matrix
                                                                                                                                                Out[15]:
<1x31275 sparse matrix of type '<class 'numpy.float64'>'
with 25 stored elements in Compressed Sparse Row format>
                                                                                                                                                 In [16]:
skr1 = SimplerKnnRecomender(description matrix, wine ids, title, descriptions)
                                                                                                                                                 In [17]:
# 15 вин, наиболее похожих на Leon Beyer 2012 Gewurztraminer (Alsace)
# в порядке убывания схожести на основе косинусного сходства
rec1 = skr1.recommend_for_single_object(15, test_matrix)
```

rec1

| dist           | overview                                       | title                                             | id     |        |
|----------------|------------------------------------------------|---------------------------------------------------|--------|--------|
| 1000000.000000 | This is a dry wine, very spicy, with a tight,  | Leon Beyer 2012 Gewurztraminer (Alsace)           | 102760 | 102760 |
| 1000000.000000 | This is a dry wine, very spicy, with a tight,  | Leon Beyer 2012 Gewurztraminer (Alsace)           | 11     | 11     |
| 633624.990866  | The wine is textured and tight with crisp acid | Domaine Michel Thomas et Fils 2015 Rosé<br>(Sance | 24045  | 24045  |
| 442624.176096  | This wine is still tight and crisp. It has ple | Henri de Villamont 2014 Morgeot Premier Cru (     | 90700  | 90700  |
| 432556.705703  | The wine is tight and nervy, very fresh, crisp | Schröder & Schÿler 2013 Chartron la Fleur (Bo     | 58330  | 58330  |
| 430242.028148  | This taut and structured wine has weight as we | Maison Champy 2014 Viré-Clessé                    | 66081  | 66081  |
| 428504.458538  | This wine is tight, structured and taut. Still | Domaine Olivier Merlin 2014 Mâcon La Roche Vi     | 78572  | 78572  |
| 425886.605501  | This rich and ripe wine is full of apricot and | Domaine Nigri 2013 Pierre de Lune (Jurançon Sec)  | 105230 | 105230 |
| 424385.444731  | Tight and structured, this wine has minerality | Louis Max 2014 Mâcon-Villages                     | 25907  | 25907  |
| 423757.525560  | This crisp wine offers plenty of acidity as we | Joseph Drouhin 2013 Les Clos (Macon-Bussières)    | 99011  | 99011  |
| 421592.529700  | Ripe Alvarinho gives a wine that is rich as we | Aveleda 2015 Alvarinho (Vinho Verde)              | 5406   | 5406   |
| 418388.507228  | Very herbaceous in character, this is a wine t | Maison Malet Roquefort 2012 Léo de la Gaffeliè    | 22652  | 22652  |
| 416866.789965  | Intensely peppery as well as fruity, this is a | Boeckel 2012 Vieilles Vignes Sylvaner (Alsace)    | 129715 | 129715 |
| 416866.789965  | Intensely peppery as well as fruity, this is a | Boeckel 2012 Vieilles Vignes Sylvaner (Alsace)    | 119482 | 119482 |
| 411434.544994  | This is crisp, fruity with apple and citrus fl | Moncigale 2014 Frais et Délicat Rosé (Coteaux     | 21920  | 21920  |
|                |                                                |                                                   |        |        |

#При поиске с помощью Евклидова расстояния получаем такой же результат rec2 = skr1.recommend\_for\_single\_object(15, test\_matrix, cos\_flag = False) rec2

|        | id     | title                                            | overview                                       | dist         |
|--------|--------|--------------------------------------------------|------------------------------------------------|--------------|
| 24045  | 24045  | Domaine Michel Thomas et Fils 2015 Rosé (Sance   | The wine is textured and tight with crisp acid | 8.560082e+05 |
| 90700  | 90700  | Henri de Villamont 2014 Morgeot Premier Cru (    | This wine is still tight and crisp. It has ple | 1.055818e+06 |
| 58330  | 58330  | Schröder & Schÿler 2013 Chartron la Fleur (Bo    | The wine is tight and nervy, very fresh, crisp | 1.065311e+06 |
| 66081  | 66081  | Maison Champy 2014 Viré-Clessé                   | This taut and structured wine has weight as we | 1.067481e+06 |
| 78572  | 78572  | Domaine Olivier Merlin 2014 Mâcon La Roche Vi    | This wine is tight, structured and taut. Still | 1.069108e+06 |
| 105230 | 105230 | Domaine Nigri 2013 Pierre de Lune (Jurançon Sec) | This rich and ripe wine is full of apricot and | 1.071553e+06 |
| 25907  | 25907  | Louis Max 2014 Mâcon-Villages                    | Tight and structured, this wine has minerality | 1.072953e+06 |
| 99011  | 99011  | Joseph Drouhin 2013 Les Clos (Macon-Bussières)   | This crisp wine offers plenty of acidity as we | 1.073539e+06 |
| 5406   | 5406   | Aveleda 2015 Alvarinho (Vinho Verde)             | Ripe Alvarinho gives a wine that is rich as we | 1.075553e+06 |
| 22652  | 22652  | Maison Malet Roquefort 2012 Léo de la Gaffeliè   | Very herbaceous in character, this is a wine t | 1.078528e+06 |
| 119482 | 119482 | Boeckel 2012 Vieilles Vignes Sylvaner (Alsace)   | Intensely peppery as well as fruity, this is a | 1.079938e+06 |
| 129715 | 129715 | Boeckel 2012 Vieilles Vignes Sylvaner (Alsace)   | Intensely peppery as well as fruity, this is a | 1.079938e+06 |
| 21920  | 21920  | Moncigale 2014 Frais et Délicat Rosé (Coteaux    | This is crisp, fruity with apple and citrus fl | 1.084957e+06 |
| 92292  | 92292  | Domaine Alban Roblin 2014 Rosé (Sancerre)        | This is a fresh wine with caramel as well as r | 1.087210e+06 |
| 96505  | 96505  | Domaine Alban Roblin 2014 Rosé (Sancerre)        | This is a fresh wine with caramel as well as r | 1.087210e+06 |

# Манхэт тэнское расстояние дает несколько иные результаты поиска rec3 = skr1.recommend\_for\_single\_object(15, test\_matrix, cos\_flag = False, manh\_flag = True) rec3

In [18]:

Out[18]:

In [19]:

|        | id     | title                                          | overview                                       | dist         |
|--------|--------|------------------------------------------------|------------------------------------------------|--------------|
| 24045  | 24045  | Domaine Michel Thomas et Fils 2015 Rosé (Sance | The wine is textured and tight with crisp acid | 3.865262e+06 |
| 22652  | 22652  | Maison Malet Roquefort 2012 Léo de la Gaffeliè | Very herbaceous in character, this is a wine t | 5.251729e+06 |
| 35502  | 35502  | Château de Piote 2012 Perles (Crémant de Bord  | Tight and sharp, this is an herbaceous wine wi | 5.312967e+06 |
| 58330  | 58330  | Schröder & Schÿler 2013 Chartron la Fleur (Bo  | The wine is tight and nervy, very fresh, crisp | 5.316624e+06 |
| 25907  | 25907  | Louis Max 2014 Mâcon-Villages                  | Tight and structured, this wine has minerality | 5.354298e+06 |
| 21920  | 21920  | Moncigale 2014 Frais et Délicat Rosé (Coteaux  | This is crisp, fruity with apple and citrus fl | 5.452536e+06 |
| 97201  | 97201  | Ravoire et Fils 2013 Domaine la Rabiotte Rosé  | Tight, zingy and crisp, this wine has fresh, c | 5.535851e+06 |
| 70762  | 70762  | Château du Seuil 2015 Domaine du Seuil (Borde  | The wine is tight and mineral in character. It | 5.564448e+06 |
| 128577 | 128577 | Ravoire et Fils 2014 Domaine Bel Eouve Rosé (C | This is a tangy, spicy wine, a character that  | 5.628584e+06 |
| 78572  | 78572  | Domaine Olivier Merlin 2014 Mâcon La Roche Vi  | This wine is tight, structured and taut. Still | 5.644448e+06 |
| 92292  | 92292  | Domaine Alban Roblin 2014 Rosé (Sancerre)      | This is a fresh wine with caramel as well as r | 5.653916e+06 |
| 96505  | 96505  | Domaine Alban Roblin 2014 Rosé (Sancerre)      | This is a fresh wine with caramel as well as r | 5.653916e+06 |
| 108912 | 108912 | Quinta do Portal 2012 Colheita Rosé (Douro)    | This rosé is almost as rich as a red wine, the | 5.701024e+06 |
| 66081  | 66081  | Maison Champy 2014 Viré-Clessé                 | This taut and structured wine has weight as we | 5.734040e+06 |

## Коллаборативная фильтрация. Метод на основе сингулярного разложения

Markus Huber 2009 Hugo Grüner Veltliner (Niede...

In [20]:

Out[19]:

data.head()

88898

88898

|   |               |          |                                                            |                                             |        |       |                      |                           |                      |                       |                       |                                                                  | Out[              | 20]: |
|---|---------------|----------|------------------------------------------------------------|---------------------------------------------|--------|-------|----------------------|---------------------------|----------------------|-----------------------|-----------------------|------------------------------------------------------------------|-------------------|------|
|   | Unnamed:<br>0 | country  | description                                                | designation                                 | points | price | province             | region_1                  | region_2             | taster_name           | taster_twitter_handle | title                                                            | variety           | 1    |
| 0 | 0             | Italy    | Aromas<br>include<br>tropical<br>fruit, broom,<br>brimston | Vulkà<br>Bianco                             |        | NaN   | Sicily &<br>Sardinia | Etna                      | NaN                  | Kerin<br>O'Keefe      | @kerinokeefe          | Nicosia<br>2013 Vulkà<br>Bianco<br>(Etna)                        | White<br>Blend    | ı    |
| 1 | 1             | Portugal | This is ripe<br>and fruity, a<br>wine that is<br>smooth    | Avidagos                                    | 87     | 15.0  | Douro                | NaN                       | NaN                  | Roger Voss            | @vossroger            | Quinta dos<br>Avidagos<br>2011<br>Avidagos<br>Red<br>(Douro)     | Portuguese<br>Red | Αv   |
| 2 | 2             | US       | Tart and<br>snappy, the<br>flavors of<br>lime flesh<br>and | NaN                                         | 87     | 14.0  | Oregon               | Willamette<br>Valley      | Willamette<br>Valley | Paul Gregutt          | @paulgwine            | Rainstorm<br>2013 Pinot<br>Gris<br>(Willamette<br>Valley)        | Pinot Gris        | Rai  |
| 3 | 3             | US       | Pineapple<br>rind, lemon<br>pith and<br>orange<br>blossom  | Reserve<br>Late<br>Harvest                  |        | 13.0  | Michigan             | Lake<br>Michigan<br>Shore | NaN                  | Alexander<br>Peartree | NaN                   | St. Julian<br>2013<br>Reserve<br>Late<br>Harvest<br>Riesling     | Riesling          | St   |
| 4 | 4             | US       | Much like<br>the regular<br>bottling<br>from 2012,<br>this | Vintner's<br>Reserve<br>Wild Child<br>Block | 87     | 65.0  | Oregon               | Willamette<br>Valley      | Willamette<br>Valley | Paul Gregutt          | @paulgwine            | Sweet<br>Cheeks<br>2012<br>Vintner's<br>Reserve<br>Wild<br>Child | Pinot Noir        | (    |

Very crisp fruit, with light acidity and a tau... 5.751297e+06

data3 = data[30000:55000]

In [21]:

# Количество уникальных дегустаторов len(data3['taster\_name'].unique())

In [22]:

Out[22]:

20

In [23]:

In [24]:

```
# Сформируем матрицу взаимодействий на основе рейтингов
# Используется идея из статьи - https://towardsdatascience.com/beginners-guide-to-creating-an-svd-recommender-system-1fd7326d1f65
def create utility matrix(data):
  itemField = 'title'
  userField = 'taster_name'
  valueField = 'points'
  userList = data[userField].tolist()
  itemList = data[itemField].tolist()
  valueList = data[valueField].tolist()
  users = list(set(userList))
  items = list(set(itemList))
  users_index = {users[i]: i for i in range(len(users))}
  pd_dict = {item: [0.0 for i in range(len(users))] for item in items}
  for i in range(0,data.shape[0]):
    item = itemList[i]
    user = userList[i]
    value = valueList[i]
    pd_dict[item][users_index[user]] = value
  X = pd.DataFrame(pd_dict)
  X.index = users
  itemcols = list(X.columns)
  items_index = {itemcols[i]: i for i in range(len(itemcols))}
```

%%time

user\_item\_matrix, users\_index, items\_index = create\_utility\_matrix(data3)

CPU times: user 762 ms, sys: 11.1 ms, total: 773 ms

return X, users index, items index

Wall time: 777 ms

In [26]:

In [25]:

user item matrix

| Out[26]: |
|----------|
|          |

|                       | Dão Sul 2006<br>Berço do<br>Infante Red<br>(Estremadura) | Lemelson<br>2009 Dry<br>Riesling<br>(Willamette<br>Valley) | Jasper Hill<br>2014<br>Georgia's<br>Paddo's<br>Shiraz<br>(Heathcote) | Bowers Harbor 2013 Langley Late Harvest Riesling (Old Mission Peninsula) | Stadt Krems<br>2012<br>Steinterrassen<br>Riesling<br>(Kremstal) | Youngberg<br>Hill<br>Vineyards<br>2012 Pinot<br>Blanc<br>(McMinnville) | Jaffurs<br>2013<br>Grenache<br>(Santa<br>Barbara<br>County) | Pratsch 2012<br>Steinberg Grüner<br>Veltliner<br>(Niederösterreich) | Hunnicutt<br>2006<br>Zinfandel<br>(Napa<br>Valley) | Château<br>Guilhem<br>2015<br>Pot de<br>Vin<br>Syrah<br>Rosé<br>(Pays<br>d'Oc) | <br>Dão St<br>200<br>Quinta d<br>Encontr<br>Pret<br>Branc<br>Bag<br>(Bairrada |
|-----------------------|----------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| NaN                   | 0.0                                                      | 0.0                                                        | 0.0                                                                  | 0.0                                                                      | 0.0                                                             | 0.0                                                                    | 0.0                                                         | 0.0                                                                 | 92.0                                               | 0.0                                                                            | <br>0.                                                                        |
| Anna Lee C.<br>Iijima | 0.0                                                      | 0.0                                                        | 0.0                                                                  | 0.0                                                                      | 0.0                                                             | 0.0                                                                    | 0.0                                                         | 0.0                                                                 | 0.0                                                | 0.0                                                                            | <br>0.                                                                        |
| Sean P.<br>Sullivan   | 0.0                                                      | 0.0                                                        | 0.0                                                                  | 0.0                                                                      | 0.0                                                             | 0.0                                                                    | 0.0                                                         | 0.0                                                                 | 0.0                                                | 0.0                                                                            | <br>0.                                                                        |
| Joe<br>Czerwinski     | 0.0                                                      | 0.0                                                        | 91.0                                                                 | 0.0                                                                      | 0.0                                                             | 0.0                                                                    | 0.0                                                         | 0.0                                                                 | 0.0                                                | 0.0                                                                            | <br>0.                                                                        |
| Alexander<br>Peartree | 0.0                                                      | 0.0                                                        | 0.0                                                                  | 88.0                                                                     | 0.0                                                             | 0.0                                                                    | 0.0                                                         | 0.0                                                                 | 0.0                                                | 0.0                                                                            | <br>0.                                                                        |
| Lauren<br>Buzzeo      | 0.0                                                      | 0.0                                                        | 0.0                                                                  | 0.0                                                                      | 0.0                                                             | 0.0                                                                    | 0.0                                                         | 0.0                                                                 | 0.0                                                | 83.0                                                                           | <br>0.                                                                        |
| Kerin<br>O'Keefe      | 0.0                                                      | 0.0                                                        | 0.0                                                                  | 0.0                                                                      | 0.0                                                             | 0.0                                                                    | 0.0                                                         | 0.0                                                                 | 0.0                                                | 0.0                                                                            | <br>0.                                                                        |
| Michael<br>Schachner  | 0.0                                                      | 0.0                                                        | 0.0                                                                  | 0.0                                                                      | 0.0                                                             | 0.0                                                                    | 0.0                                                         | 0.0                                                                 | 0.0                                                | 0.0                                                                            | <br>0.                                                                        |
| Susan<br>Kostrzewa    | 0.0                                                      | 0.0                                                        | 0.0                                                                  | 0.0                                                                      | 0.0                                                             | 0.0                                                                    | 0.0                                                         | 0.0                                                                 | 0.0                                                | 0.0                                                                            | <br>0.                                                                        |
| Fiona<br>Adams        | 0.0                                                      | 0.0                                                        | 0.0                                                                  | 0.0                                                                      | 0.0                                                             | 0.0                                                                    | 0.0                                                         | 0.0                                                                 | 0.0                                                | 0.0                                                                            | <br>0.                                                                        |
| Anne<br>Krebiehl MW   | 0.0                                                      | 0.0                                                        | 0.0                                                                  | 0.0                                                                      | 0.0                                                             | 0.0                                                                    | 0.0                                                         | 92.0                                                                | 0.0                                                | 0.0                                                                            | <br>0.                                                                        |
| Matt<br>Kettmann      | 0.0                                                      | 0.0                                                        | 0.0                                                                  | 0.0                                                                      | 0.0                                                             | 0.0                                                                    | 92.0                                                        | 0.0                                                                 | 0.0                                                | 0.0                                                                            | <br>0.                                                                        |
| Carrie<br>Dykes       | 0.0                                                      | 0.0                                                        | 0.0                                                                  | 0.0                                                                      | 0.0                                                             | 0.0                                                                    | 0.0                                                         | 0.0                                                                 | 0.0                                                | 0.0                                                                            | <br>0.                                                                        |
| Jim Gordon            | 0.0                                                      | 0.0                                                        | 0.0                                                                  | 0.0                                                                      | 0.0                                                             | 0.0                                                                    | 0.0                                                         | 0.0                                                                 | 0.0                                                | 0.0                                                                            | <br>0.                                                                        |
| Roger Voss            | 87.0                                                     | 0.0                                                        | 0.0                                                                  | 0.0                                                                      | 89.0                                                            | 0.0                                                                    | 0.0                                                         | 0.0                                                                 | 0.0                                                | 0.0                                                                            | <br>88.                                                                       |
| Mike<br>DeSimone      | 0.0                                                      | 0.0                                                        | 0.0                                                                  | 0.0                                                                      | 0.0                                                             | 0.0                                                                    | 0.0                                                         | 0.0                                                                 | 0.0                                                | 0.0                                                                            | <br>0.                                                                        |
| Virginie<br>Boone     | 0.0                                                      | 0.0                                                        | 0.0                                                                  | 0.0                                                                      | 0.0                                                             | 0.0                                                                    | 0.0                                                         | 0.0                                                                 | 0.0                                                | 0.0                                                                            | <br>0.                                                                        |
| Paul Gregutt          | 0.0                                                      | 91.0                                                       | 0.0                                                                  | 0.0                                                                      | 0.0                                                             | 86.0                                                                   | 0.0                                                         | 0.0                                                                 | 0.0                                                | 0.0                                                                            | <br>0.                                                                        |
| Christina<br>Pickard  | 0.0                                                      | 0.0                                                        | 0.0                                                                  | 0.0                                                                      | 0.0                                                             | 0.0                                                                    | 0.0                                                         | 0.0                                                                 | 0.0                                                | 0.0                                                                            | <br>0.                                                                        |
| Jeff Jenssen          | 0.0                                                      | 0.0                                                        | 0.0                                                                  | 0.0                                                                      | 0.0                                                             | 0.0                                                                    | 0.0                                                         | 0.0                                                                 | 0.0                                                | 0.0                                                                            | <br>0.                                                                        |

20 rows × 24517 columns

# Выделение тестовой строки

0.0

0.0

0.0

user\_item\_matrix\_\_test = user\_item\_matrix.loc[['Kerin O'Keefe']]
user\_item\_matrix\_\_test

|                                                          |                                                            |                                                                      |                                                                          |                                                                 |                                                                        |                                                             |                                                                     |                                                    |                                                                                | C                              | Out[27                        | ]:            |
|----------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------|-------------------------------|---------------|
| Dão Sul 2006<br>Berço do<br>Infante Red<br>(Estremadura) | Lemelson<br>2009 Dry<br>Riesling<br>(Willamette<br>Valley) | Jasper Hill<br>2014<br>Georgia's<br>Paddock<br>Shiraz<br>(Heathcote) | Bowers Harbor 2013 Langley Late Harvest Riesling (Old Mission Peninsula) | Stadt Krems<br>2012<br>Steinterrassen<br>Riesling<br>(Kremstal) | Youngberg<br>Hill<br>Vineyards<br>2012 Pinot<br>Blanc<br>(McMinnville) | Jaffurs<br>2013<br>Grenache<br>(Santa<br>Barbara<br>County) | Pratsch 2012<br>Steinberg Grüner<br>Veltliner<br>(Niederösterreich) | Hunnicutt<br>2006<br>Zinfandel<br>(Napa<br>Valley) | Château<br>Guilhem<br>2015<br>Pot de<br>Vin<br>Syrah<br>Rosé<br>(Pays<br>d'Oc) | Quinta<br>Enco<br>••• P<br>Bra | ntro<br>Preto<br>anco<br>Baga | V<br>Z <br>(I |

0.0

1 rows × 24517 columns

0.0

Kerin

O'Keefe

In [28]:

0.0

0.0

0.0

0.0

0.0 ...

0.0

<u>▶</u> In [27]:

taster\_names = np.delete(data3['taster\_name'].unique(), 0)
taster\_names = np.delete(taster\_names, 7)
taster\_names

Out[28]:

In [29]:

# Оставшаяся часть матрицы для обучения
user\_item\_matrix\_\_train = user\_item\_matrix.loc[taster\_names]
user\_item\_matrix\_\_train

Out[29]: **Bowers** Château Harbor Dão Sul Guilhem Jasper Hill 2013 **Jaffurs** Youngberg 2004 Lemelson Stadt Krems Hunnicutt 2015 Dão Sul 2006 Pratsch 2012 2014 Hill 2013 Quinta do Langley 2009 Dry 2012 2006 Pot de Steinberg Grüner Veltliner Vinevards Berço do Georgia's Grenache **Encontro** Late Riesling Steinterrassen Zinfandel Vin Infante Red Harvest 2012 Pinot Preto Paddock (Santa Riesling (Willamette (Napa Syrah Riesling (Niederösterreich) (Estremadura) Shiraz Blanc Barbara **Branco** Valley) (Kremstal) Valley) Rosé (Heathcote) (McMinnville) County) (Old Baga (Pays Mission (Bairrada) d'Oc) Peninsula) Jim 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Gordon Michael 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... Schachner Matt 0.0 0.0 0.0 0.0 0.0 0.0 92.0 0.0 0.0 0.0 ... 0.0 Kettmann Sean P. 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 Sullivan Roger 87.0 0.0 0.0 0.0 89.0 0.0 0.0 0.0 0.0 0.0 ... 88.0 Voss Virginie 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 Boone Joe 0.0 0.0 91.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 Czerwinski Paul 0.0 91.0 0.0 0.0 0.0 86.0 0.0 0.0 0.0 0.0 ... 0.0 Gregutt Mike 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 **DeSimone** Jeff 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Jenssen NaN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 92.0 0.0 ... 0.0 Anna Lee 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... C. lijima Susan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 Kostrzewa Lauren 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 83.0 ... 0.0 Buzzeo Alexander 0.0 0.0 0.0 88.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 Peartree Fiona 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 **Adams** 

18 rows × 24517 columns

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 ...

%%time

Carrie

Dykes Christina

Pickard

U, S, VT = np.linalg.svd(user\_item\_matrix\_\_train.T) V = VT.T

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

· - · · ·

CPU times: user 33.7 s, sys: 3.38 s, total: 37.1 s Wall time: 23.2 s

In [31]:

0.0

0.0

```
# Матрица соотношения между дегустаторами и латентными факторами
 U.shape
                                                                                                                                                          Out[31]:
(24517, 24517)
                                                                                                                                                           In [32]:
 # Матрица соотношения между объектами и латентными факторами
V.shape
                                                                                                                                                          Out[32]:
(18, 18)
                                                                                                                                                           In [33]:
S.shape
                                                                                                                                                          Out[33]:
(18,)
                                                                                                                                                           In [34]:
 Sigma = np.diag(S)
Sigma.shape
                                                                                                                                                          Out[34]:
(18, 18)
                                                                                                                                                           In [35]:
 # Диагональная матрица сингулярных значений
Sigma
                                                                                                                                                          Out[35]:
array([[6328.37615756,
                          0.
                                     0.
                                               0.
       0.
                           0.
                 0.
                                     0.
       0.
                 0.
                           0.
                                      0.
       0.
                 0.
                           0.
                                      0.
       0.
                 0.
      0.
              , 6214.00788753,
                                   0.
                                             0.
       0.
                                      0.
                 0.
                           0.
       0.
                 0.
                           0.
                                      0.
       0.
                 0.
                           0.
                                      0.
       0.
                 0.
                        , 4603.41568838,
       0.
                 0.
                                             0.
       0.
                                      0.
                 0.
                           0.
       0.
                                      0.
                 0.
                           0.
       0.
                 0.
                           0.
                                      0.
       0.
                 0.
                        ],
                                   , 3880.90866797,
      0.
                           0.
                 0.
       0.
                 0.
                           0.
                                      0.
       0.
                 0.
                           0.
                                      0.
       0.
                 0.
                           0.
                                      0.
       0.
                 0.
    [ 0.
                 0.
                           0.
                                      0.
     3683.95055254.
                        0.
                                   0.
                                             0.
       0.
                 0.
                           0.
                                      0.
       0.
                                      0.
                 0.
                           0.
       0.
                 0.
                        ],
    [ 0.
                           0.
                 0.
                                      0.
              , 3004.09187609,
       0.
                                   0.
                                             0.
       0.
                 0.
                           0.
                                      0.
       0.
                 0.
                           0.
                                      0.
                        ,
],
       0.
                 0.
      0.
                           0.
                 0.
                                      0
       0.
                 0.
                         2830.86117639,
                                             0.
       0.
                 0.
                           0.
                                     0.
       0.
                 0.
                           0.
                                      0.
       0.
                 0.
                        ],
    [ 0.
                 0.
                           0.
                                      0.
                                   , 2714.05324192,
       0.
                 0.
                           0.
       0.
                 0.
                           0.
                                     0.
       0.
                 0.
                           0.
                                      0.
       0.
                 0.
    [ 0.
                           0.
                 0.
                                      0.
       0.
                 0.
                           0.
                                      0.
                                   0.
     2451.15054617,
                        0.
                                             0.
       0.
                 0.
                           0.
                                      0.
       0.
                 0.
                        ],
    [ 0.
                           0.
                                      0.
                 0.
       0.
                 0.
                           0.
                                      0.
              , 2416.46258391,
                                   0.
       0.
                                             0.
       0.
                 0.
                           0.
                                      0.
       0.
                 0.
                        ],
      0.
                 0.
                           0.
                                     0.
```

```
0.
                 0.
                        , 1559.43034471,
       0.
                 0.
                           0.
                                    0.
       0.
                 0.
                        ],
      0.
                 0.
                           0.
                                     0.
       0.
                                     0.
                 0.
                           0.
                                  , 1283.41926119,
       0.
                 0.
       0.
                 0.
                           0.
                                     0.
       0.
                 0.
                        ],
       0.
                 0.
                           0.
                                     0.
       0.
                 0.
                           0.
                                     0.
       0.
                 0.
                           0.
                                     0.
     922.26406197,
                       0.
                                  0.
                                            0.
       0.
                 0.
                        ],
      0.
                 0.
                           0.
                                     0.
       0.
                 0.
                           0.
                                     0.
       0.
                 0.
                           0.
                                     0.
       0.
                825.2545062,
                                 0.
                                           0.
       0.
                 0.
                        ],
      0.
                           0.
                 0.
                                     0.
       0.
                 0.
                           0.
                                     0.
       0.
                 0.
                           0.
                                     0.
       0.
                          745.06040024,
                                            0.
                 0.
       0.
                 0.
                        ],
      0.
                 0.
                           0.
                                     0.
       0.
                 0.
                           0.
                                     0.
       0.
                 0.
                           0.
                                     0.
                                    390.0179483,
       0.
                 0.
                           0.
       0.
                        ],
      0.
                 0.
                           0.
                                     0.
       0.
                 0.
                           0.
                                     0.
       0.
                 0.
                           0.
                                     0.
       0.
                 0.
                           0.
                                     0.
     177.03107072,
                       0.
    [ 0.
                           0.
                                     0.
                 0.
       0.
                 0.
                           0.
                                     0.
       0.
                 0.
                           0.
                                     0.
       0.
                 0.
                           0.
                                     0.
       0.
               124.45882853]])
                                                                                                                                                         In [36]:
 # Используем 3 первых сингулярных значения
r=3
 Ur = U[:, :r]
 Sr = Sigma[:r, :r]
 Vr = V[:, :r]
 # Матрица соотношения между новым дегустатором и латентными факторами
 test_user = np.mat(user_item_matrix__test.values)
test_user.shape, test_user
                                                                                                                                                        Out[36]:
((1, 24517), matrix([[0., 0., 0., ..., 0., 0., 0.]]))
                                                                                                                                                         In [37]:
tmp = test_user * Ur * np.linalg.inv(Sr)
tmp
                                                                                                                                                        Out[37]:
matrix([[ 3.78394162e-04, -4.35827216e-06, -2.92218350e-18]])
                                                                                                                                                         In [38]:
test\_user\_result = np.array([tmp[0,0], tmp[0,1], tmp[0,2]])
test_user_result
                                                                                                                                                        Out[38]:
array([ 3.78394162e-04, -4.35827216e-06, -2.92218350e-18])
                                                                                                                                                         In [39]:
 # Вычисляем косинусную близость между текущим дегустатором
 # и остальными дегустаторами
 cos_sim = cosine_similarity(Vr, test_user_result.reshape(1, -1))
cos_sim[:10]
```

0.

0.

0.

0.

```
Out[39]:
array([[ 9.99999728e-01],
    [-1.44541469e-18],
    [ 3.53594407e-33],
    [3.06381034e-35],
    [-4.12491330e-04],
    [9.9999975e-01],
    [0.0000000e+00].
    [-1.04994959e-03],
    [0.00000000e+00],
    [0.00000000e+00]])
                                                                                                                                                  In [40]:
 # Преобразуем размерность массива
cos_sim_list = cos_sim.reshape(-1, cos_sim.shape[0])[0]
cos_sim_list[:10]
                                                                                                                                                 Out[40]:
array([ 9.99999728e-01, -1.44541469e-18, 3.53594407e-33, 3.06381034e-35,
    -4.12491330e-04, 9.99999975e-01, 0.00000000e+00, -1.04994959e-03,
    0.0000000e+00, 0.0000000e+00])
                                                                                                                                                  In [41]:
 # Находим наиболее близкого дегустатора
recommended_user_id = np.argsort(-cos_sim_list)[0]
recommended_user_id
                                                                                                                                                 Out[41]:
5
                                                                                                                                                  In [42]:
test_user
                                                                                                                                                 Out[42]:
matrix([[0., 0., 0., ..., 0., 0., 0.]])
                                                                                                                                                  In [43]:
 # Получение названия вина
wine_list = list(user_item_matrix.columns)
 def film_name_by_movieid(ind):
   try:
     wine = wine list[ind]
      #print(wineld)
     #flt_links = data3[data['movield'] == wineld]
     #tmdbld = int(flt_links['tmdbld'].values[0])
     #md_links = df_md[df_md['id'] == tmdbld]
     #res = md_links['title'].values[0]
     return wine
   except:
     return "
                                                                                                                                                  In [44]:
 # Вина, которые оценивал текущий дегустатор:
for idx, item in enumerate(np.ndarray.flatten(np.array(test_user))):
   if item > 0:
     film_title = film_name_by_movieid(idx)
     print('{} - {} - {}'.format(idx, film_title, item))
     if i==20:
        break
     else:
        i+=1
```

```
137 - Castelfeder 2012 Glener Pinot Nero (Alto Adige) - 88.0
146 - La Vis 2012 L'Altro Manzoni Incrocio Manzoni (Vigneti delle Dolomiti) - 87.0
164 - Cascina Luisin 2012 Paolin (Barbaresco) - 88.0
171 - Germano Ettore 2012 del Comune di Serralunga d'Alba (Barolo) - 91.0
203 - Stemmari 2012 Nero d'Avola (Terre Siciliane) - 86.0
224 - Castelli del Grevepesa 2009 Riserva Castello di Bibbione (Chianti Classico) - 90.0
226 - Pieropan 2009 Le Colombare (Recioto di Soave) - 90.0
259 - Villa Calcinaia 2012 Chianti Classico - 89.0
# Вина, ко торые оценивал наиболее схожий дегустатор:
recommended user item matrix = user item matrix.loc[['Roger Voss']]
for idx, item in enumerate(np.ndarray.flatten(np.array(recommended_user_item_matrix))):
   if item > 0:
     film_title = film_name_by_movieid(idx)
     print('{} - {} - {}'.format(idx, film_title, item))
     if i==20:
        break
     else:
        i+=1
0 - Dão Sul 2006 Berco do Infante Red (Estremadura) - 87.0
4 - Stadt Krems 2012 Steinterrassen Riesling (Kremstal) - 89.0
13 - Deco Provence - Villa Azur 2015 Rosé (Coteaux Varois en Provence) - 85.0
25 - Vignerons de Bel Air 2010 Hiver Gourmand (Morgon) - 86.0
29 - Cave du Marmandais 2011 Château Terrebert Malbec (Côtes du Marmandais) - 87.0
41 - Quinta Nova de Nossa Senhora do Carmo 2008 Referencia Grand Reserva Red (Douro) - 91.0
44 - Herdade do Perdigão 2009 Terras de Monforte Red (Alentejo) - 88.0
48 - Château L'Argilus du Roi 2011 Saint-Estèphe - 83.0
49 - Manuel Olivier 2010 Bourgogne - 85.0
53 - Château Paradis 2010 Red (Coteaux d'Aix-en-Provence) - 91.0
54 - Bernard Magrez 2011 Château du Galan (Haut-Médoc) - 90.0
55 - Quinta do Tedo 2009 Savedra Vintage (Port) - 90.0
63 - Domaine du Coudray 2015 Une Pointe d'Authenticité (Quincy) - 90.0
66 - Domaine des Cognettes 2005 Tentation Sélection Vieilles Vignes (Muscadet Sèvre et Maine) - 91.0
69 - Les Héritiers du Comte Lafon 2013 Viré-Clessé - 90.0
71 - Herdade dos Machados 2013 Santos Jorge Red (Alentejo) - 87.0
88 - Château Lafite Rothschild 2014 Carruades de Lafite (Pauillac) - 94.0
92 - Domaine Méo-Camuzet 2013 Gevrey-Chambertin - 90.0
100 - Château de Fuissé 2009 Tête de Cru (Pouilly-Fuissé) - 91.0
105 - Salomon-Undhof 2012 Hochterrassen Grüner Veltliner (Niederösterreich) - 85.0
Как видно, фильтрация на основе содержания и коллаборативная фильтрация показывают различные результаты работы в рамках
```

10 - Molino di Sant'Antimo 2010 Brunello di Montalcino - 93.0

106 - Feudo Principi di Butera 2015 Nero d'Avola (Sicilia) - 88.0

116 - Canella 2014 Extra Dry (Valdobbiadene Prosecco Superiore) - 89.0 124 - Conte Collalto NV Brut (Valdobbiadene Prosecco Superiore) - 89.0 126 - Rascioni e Cecconello 2015 Maremmino (Maremma) - 88.0

20 - Ca'Romè 2012 Chiaramanti (Barbaresco) - 88.0 32 - Nicolucci 2015 Tre Rocche Sangiovese (Romagna) - 88.0 39 - Dorigo 2013 Ribolla Gialla (Colli Orientali del Friuli) - 91.0 79 - Colutta 2013 Pinot Grigio (Colli Orientali del Friuli) - 88.0

87 - Poggio Scalette 2014 Chianti Classico - 88.0

18 - Feudi di San Gregorio 2013 Studi Campo Aperto (Fiano di Avellino) - 93.0

17 - Borgogno 2015 Dolcetto d'Alba - 89.0

рекомендательных систем

In [45]: