AA203 Optimal and Learning-based Control

HJI Equation and reachability analysis*

Roadmap

Two-person, zero-sum differential games

• What if there is another player (e.g., nature) that interferes with the fulfillment of our objective?

Two person differential game:

- Model: $\dot{\mathbf{x}}(t) = f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t))$ (joint system dynamics),
- Cost: $J(\mathbf{x}(t)) = h(\mathbf{x}(0)) + \int_t^0 g(\mathbf{x}(\tau), \mathbf{u}(\tau), \mathbf{d}(\tau)) d\tau$
- Player 1, with control $\mathbf{u}(\tau)$, will attempt to maximize J, while Player 2, with control $\mathbf{d}(t)$, will aim to minimize J, subject to the *joint* system dynamics
- $\mathbf{x}(\tau)$ is the *joint* system state

Information pattern

- To fully specify the game, we need to specify the information pattern
- "Open-loop" strategies
 - Player 1, with control $\mathbf{u}(\tau)$, declares entire plan
 - Player 2, with control $\mathbf{d}(\tau)$, responds optimally
 - Conservative, unrealistic, but computationally cheap

- "Non-anticipative" strategies
 - Other robot acts based on state and control trajectory up to current time
 - Notation: $\mathbf{d}(\cdot) = \Gamma[\mathbf{u}](\cdot)$
 - Disturbance still has the advantage: it gets to react to the control!

Key idea: apply principle of optimality

The "truncated" (lower-value) problem is

$$J(\mathbf{x}(t),t) = \min_{\Gamma[\mathbf{u}](\cdot)} \max_{\mathbf{u}(\cdot)} \left[\int_{t}^{0} g(\mathbf{x}(\tau),\mathbf{u}(\tau),\mathbf{d}(\tau)) d\tau + h(\mathbf{x}(0)) \right]$$

Worst-case disturbance -- does the opposite of the control

Dynamic programming principle:

Dynamic programming principle:
$$J_{ab_1} = \int_{b_1}^{b_2} \int_{b_2}^{b_2} \int_{b_3}^{b_3} dt$$

$$J(\mathbf{x}(t),t) = \min_{\Gamma[\mathbf{u}](\cdot)} \max_{\mathbf{u}(\cdot)} \left[\int_{t}^{t+\Delta t} g(\mathbf{x}(\tau),\mathbf{u}(\tau),\mathbf{d}(\tau)) d\tau + J(\mathbf{x}(t+\Delta t),t+\Delta t) \right]$$

- Approximate integral and Taylor expand $J(\mathbf{x}(t + \Delta t), t + \Delta t)$
- Derive Hamilton-Jacobi-Isaacs partial differential equation (HJI PDE)

• Approximations for small Δt :

$$\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

roximations for small
$$\Delta t$$
: $\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$

$$J(\mathbf{x}(t), t) = \min_{\Gamma[\mathbf{u}](\cdot)} \max_{\mathbf{u}(\cdot)} \left[\int_{t}^{t+\Delta t} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \mathbf{d}(\tau)) d\tau + J(\mathbf{x}(t+\Delta t), t+\Delta t) \right]$$

$$g(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) \Delta t \qquad J(\mathbf{x}(t), t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) + \frac{\partial J}{\partial t} \Delta t$$

$$J(\mathbf{x}, t) = \max_{\mathbf{u}} \min_{\mathbf{d}} \left[g(\mathbf{x}, \mathbf{u}, \mathbf{d}) \Delta t + J(\mathbf{x}, t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d}) + \frac{\partial J}{\partial t} \Delta t \right]$$

- Assume constant u and $d \rightarrow$ Optimization over vectors, not functions!
- Order of max and min reverse: disturbance has the advantage
- $J(\mathbf{x},t)$ does not depend on \mathbf{u} or \mathbf{d}

$$J(\mathbf{x}, t) = J(\mathbf{x}, t) + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[g(\mathbf{x}, \mathbf{u}, \mathbf{d}) \Delta t + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d}) + \frac{\partial J}{\partial t} \Delta t \right]$$

• Approximations for small Δt :

$$\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

roximations for small
$$\Delta t$$
: $\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$

$$J(\mathbf{x}(t), t) = \min_{\Gamma[\mathbf{u}](\cdot)} \max_{\mathbf{u}(\cdot)} \left[\int_{t}^{t+\Delta t} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \mathbf{d}(\tau)) d\tau + J(\mathbf{x}(t+\Delta t), t+\Delta t) \right]$$

$$g(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) \Delta t \qquad J(\mathbf{x}(t), t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) + \frac{\partial J}{\partial t} \Delta t$$

$$J(\mathbf{x},t) = \max_{\mathbf{u}} \min_{\mathbf{d}} \left[g(\mathbf{x},\mathbf{u},\mathbf{d}) \Delta t + J(\mathbf{x},t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x},\mathbf{u},\mathbf{d}) + \frac{\partial J}{\partial t} \Delta t \right]$$

- Assume constant u and $d \rightarrow$ Optimization over vectors, not functions!
- Order of max and min reverse: disturbance has the advantage
- $J(\mathbf{x},t)$ does not depend on \mathbf{u} or \mathbf{d}

$$J(\mathbf{x},t) = J(\mathbf{x},t) + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[g(\mathbf{x},\mathbf{u},\mathbf{d}) \Delta t + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x},\mathbf{u},\mathbf{d}) + \frac{\partial J}{\partial t} \Delta t \right]$$

• Approximations for small Δt :

$$\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

roximations for small
$$\Delta t$$
: $\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$

$$J(\mathbf{x}(t), t) = \min_{\Gamma[\mathbf{u}](\cdot)} \max_{\mathbf{u}(\cdot)} \left[\int_{t}^{t+\Delta t} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \mathbf{d}(\tau)) d\tau + J(\mathbf{x}(t+\Delta t), t+\Delta t) \right]$$

$$g(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) \Delta t \qquad J(\mathbf{x}(t), t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) + \frac{\partial J}{\partial t} \Delta t$$

$$J(\mathbf{x},t) = \max_{\mathbf{u}} \min_{\mathbf{d}} \left[g(\mathbf{x},\mathbf{u},\mathbf{d}) \Delta t + J(\mathbf{x},t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x},\mathbf{u},\mathbf{d}) + \frac{\partial J}{\partial t} \Delta t \right]$$

- Assume constant u and $d \rightarrow$ Optimization over vectors, not functions!
- Order of max and min reverse: disturbance has the advantage
- $I(\mathbf{x},t)$ does not depend on \mathbf{u} or \mathbf{d}

$$0 = \frac{\partial J}{\partial t} \Delta t + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[g(\mathbf{x}, \mathbf{u}, \mathbf{d}) \Delta t + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right]$$

• Approximations for small Δt :

$$\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

roximations for small
$$\Delta t$$
: $\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$

$$J(\mathbf{x}(t), t) = \min_{\Gamma[\mathbf{u}](\cdot)} \max_{\mathbf{u}(\cdot)} \left[\int_{t}^{t+\Delta t} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \mathbf{d}(\tau)) d\tau + J(\mathbf{x}(t+\Delta t), t+\Delta t) \right]$$

$$g(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) \Delta t \qquad J(\mathbf{x}(t), t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) + \frac{\partial J}{\partial t} \Delta t$$

$$J(\mathbf{x},t) = \max_{\mathbf{u}} \min_{\mathbf{d}} \left[g(\mathbf{x},\mathbf{u},\mathbf{d}) \Delta t + J(\mathbf{x},t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x},\mathbf{u},\mathbf{d}) + \frac{\partial J}{\partial t} \Delta t \right]$$
• Assume constant u and $d \rightarrow$ Optimization over vectors, not functions!

- Order of max and min reverse: disturbance has the advantage
- $I(\mathbf{x},t)$ does not depend on \mathbf{u} or \mathbf{d}

$$0 = \frac{\partial J}{\partial t} + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[g(\mathbf{x}, \mathbf{u}, \mathbf{d}) + \frac{\partial J}{\partial \mathbf{x}} \cdot f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right]$$

The end result is the Hamilton-Jacobi-Isaacs (HJI) equation

$$0 = \frac{\partial J}{\partial t} + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[g(\mathbf{x}, \mathbf{u}, \mathbf{d}) + \frac{\partial J}{\partial \mathbf{x}} \cdot f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right]$$

with boundary condition

$$J(\mathbf{x},0) = h(\mathbf{x})$$

• Given the cost-to-go function, the optimal control for Player 1 is

$$\mathbf{u}^*(\mathbf{x}, t) = \arg \max_{\mathbf{u}} \min_{\mathbf{d}} g(\mathbf{x}, \mathbf{u}, \mathbf{d}) + \frac{\partial J}{\partial \mathbf{x}} \cdot f(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

Applications of differential games

- Pursuit-evasion games
 - homicidal chauffeur problem
 - the lady in the lake

Reachability analysis

• And many more (e.g., in economics)

Applications of differential games

- Pursuit-evasion games
 - homicidal chauffeur problem
 - the lady in the lake

Reachability analysis

• And many more (e.g., in economics)

Reachability analysis: avoidance

Assumptions:

- Model of robot
- Unsafe region: e.g., obstacle

Control policy

Backward reachable set (States leading to danger)

Reachability analysis: goal reaching

Reachability analysis

- Model of robot
- Unsafe region

• *J*

- Model of robot
- Goal region

Backward reachable set (states leading to danger)

Control policy

• $\mathbf{u}^*(\mathbf{x},t)$

• $\mathcal{R}(t) = \{\bar{x}: \forall \Gamma[\mathbf{u}](\cdot), \exists \mathbf{u}(\cdot), \dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, \mathbf{d}), \mathbf{x}(t) = \bar{\mathbf{x}}, \mathbf{x}(0) \in \mathcal{T}\}$

Reachability analysis

States at time *t* satisfying the following:

there exists a disturbance such that for all control, system enters target set at t=0

•
$$\mathcal{A}(t) = \{\bar{\mathbf{x}}: \exists \Gamma[\mathbf{u}](\cdot), \forall \mathbf{u}(\cdot), \dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, \mathbf{d}), \mathbf{x}(t) = \bar{\mathbf{x}}, \mathbf{x}(0) \in \mathcal{T}\}$$

- Model of robot
- Unsafe region

Backward reachable set (States leading to danger)

- Control policy
- $\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, \mathbf{d})$
- *T*

• $\mathbf{u}^*(\mathbf{x},t)$

- Model of robot
- Goal region

Control policy

Backward reachable set (States leading to goal)

• $\mathcal{R}(t) = \{\bar{\mathbf{x}}: \forall \Gamma[\mathbf{u}](\cdot), \exists \mathbf{u}(\cdot), \dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, \mathbf{d}), x(t) = \bar{\mathbf{x}}, \mathbf{x}(0) \in \mathcal{T}\}$

17

States at time *t* satisfying the following:

for all disturbances, there exists a control such that system enters target set at t=0

From HJI to reachability analysis

- Computation of the BRS entails solving a differential game of kind, where the outcome is Boolean (the system either reaches the target set or not)
- One can "encode" this Boolean outcome by (1) removing the running cost and (2) picking the final cost intelligently

From HJI to reachability analysis

Hamilton-Jacobi Equation

•
$$0 = \frac{\partial J}{\partial t} + \max_{\mathbf{d}} \min_{\mathbf{u}} \left[g(\mathbf{x}, \mathbf{u}, \mathbf{d}) + \frac{\partial J}{\partial \mathbf{x}} \cdot f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right], J(\mathbf{x}, 0) = h(\mathbf{x})$$

Remove running cost

•
$$0 = \frac{\partial J}{\partial t} + \max_{\mathbf{d}} \min_{\mathbf{u}} \left[\frac{\partial J}{\partial \mathbf{x}} \cdot f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right], J(\mathbf{x}, 0) = h(\mathbf{x})$$

- Pick final cost such that
 - $\mathbf{x} \in \mathcal{T} \Leftrightarrow h(\mathbf{x}) \leq 0$
 - Example: If $\mathcal{T} = \left\{ \mathbf{x} : \sqrt{x_r^2 + y_r^2} \le R \right\} \subseteq \mathbb{R}^3$, we can pick $h(x_r, y_r, \theta_r) = \sqrt{x_r^2 + y_r^2} R$

Pick Final Cost

- Pick final cost such that
 - $x \in \mathcal{T} \Leftrightarrow h(\mathbf{x}) \leq 0$
 - If $\mathcal{T} = \left\{ x: \sqrt{x_r^2 + y_r^2} \le R \right\} \subseteq \mathbb{R}^3$, we can pick $h(x_r, y_r, \theta_r) = \sqrt{x_r^2 + y_r^2} R$
- Why is this correct?
 - Final state $\mathbf{x}(0)$ is in \mathcal{T} if and only if $h(\mathbf{x}(0)) \leq 0$
 - To avoid \mathcal{T} , control should maximize $h(\mathbf{x}(0))$
 - Worst-case disturbance would minimize
 - $J(\mathbf{x}, t) = \min_{\Gamma[\mathbf{u}]} \max_{\mathbf{u}} h(\mathbf{x}(0))$

Reaching vs. Avoiding

• BRS definition $\mathcal{A}(t) = \{\bar{\mathbf{x}}: \exists \Gamma[\mathbf{u}](\cdot), \forall \mathbf{u}(\cdot), \dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, \mathbf{d}), \mathbf{x}(t) = \bar{\mathbf{x}}, \mathbf{x}(0) \in \mathcal{T}\}$

- Value function $J(\mathbf{x},t) = \min_{\Gamma[\mathbf{u}]} \max_{\mathbf{u}} h(\mathbf{x}(0))$
- HJI $\frac{\partial J}{\partial t} + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[\left(\frac{\partial J}{\partial \mathbf{x}} \right)' f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right] = 0$
- Optimal control $\mathbf{u}^* = \arg \max_{\mathbf{u}} \min_{\mathbf{d}} \left(\frac{\partial J}{\partial \mathbf{x}} \right)' f(\mathbf{x}, \mathbf{u}, \mathbf{d})$

• BRS definition $\mathcal{R}(t) = \{\bar{\mathbf{x}}: \forall \Gamma[\mathbf{u}](\cdot), \exists \mathbf{u}(\cdot), \dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, \mathbf{d}), \mathbf{x}(t) = \bar{\mathbf{x}}, \mathbf{x}(0) \in \mathcal{T}\}$

- Value function $J(\mathbf{x},t) = \max_{\Gamma[\mathbf{u}]} \min_{\mathbf{u}} h(\mathbf{x}(0))$
- HJI $\frac{\partial J}{\partial t} + \min_{\mathbf{u}} \max_{\mathbf{d}} \left[\left(\frac{\partial J}{\partial \mathbf{x}} \right)' f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right] = 0$
- Optimal control $\mathbf{u}^* = \arg\min_{\mathbf{u}} \max_{\mathbf{d}} \left(\frac{\partial J}{\partial \mathbf{x}}\right)' f(\mathbf{x}, \mathbf{u}, \mathbf{d})$

"Sets" vs. "Tubes"

- Backward reachable set (BRS)
 - Only final time matters
 - Initial states that passing through target are not necessarily in BRS
 - Not ideal for safety

- Backward reachable tube (BRT)
 - Keep track of entire time duration
 - Initial states that pass through target are in BRT
 - Used to make safety guarantees

22

4/23/19 AA 203 | Lecture 6

"Sets" vs. "Tubes"

Backward reachable set (BRS)

Value function definition

•
$$J(\mathbf{x}, t) = \min_{\Gamma[\mathbf{u}]} \max_{\mathbf{u}} h(\mathbf{x}(0))$$

Value function obtained from

$$\frac{\partial J}{\partial t} + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[\left(\frac{\partial J}{\partial \mathbf{x}} \right)' f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right] = 0$$

Backward reachable tube (BRT)

Value function definition

•
$$J(\mathbf{x}, t) = \min_{\Gamma[\mathbf{u}]} \max_{\mathbf{u}} \min_{\tau \in [t, 0]} h(\mathbf{x}(\tau))$$

Value function obtained from

$$\min \left\{ \frac{\partial J}{\partial t} + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[\left(\frac{\partial J}{\partial \mathbf{x}} \right)^{\mathsf{T}} f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right], \frac{h(\mathbf{x}) - J(\mathbf{x}, t)}{23} \right\} = 0$$
AA 203 | Lecture 6

4/23/19

Computational aspects

6D: intractable!

- Computational complexity
 - $J(\mathbf{x}, t)$ is computed on an (n + 1)-dimensional grid
 - Currently, $n \le 5$ is possible. GPU acceleration under-way
 - Dimensionality reduction methods sometimes help

days gigabytes

5D:

- Related approaches
 - Sacrifice global optimality
 - Give up guarantees
 - Sampling-based methods
 - Reinforcement learning

number of system dimensions

Numerical toolboxes

- helperOC Matlab toolbox
 - https://github.com/HJReachability/helperOC.git
 - Reachability wrapper around the level set toolbox
 - Requires level set toolbox
 - Hamilton-Jacobi PDE solver by Ian Mitchell, UBC
 - https://bitbucket.org/ian_mitchell/toolboxls
- C++ and CUDA version in development, beta also available
 - C++: 5+ times faster than Matlab
 - CUDA: Up to 100 times faster than Matlab
 - https://github.com/HJReachability/beacls

Example – waypoint reaching with Dubins Car

Dubins Car Model

$$\begin{cases} \dot{x} = v \cos \theta + \mathbf{d}_{x} \\ \dot{y} = v \sin \theta \\ \dot{\theta} = k \mathbf{u} \end{cases}$$

Control: u

Disturbance: d_x

Target set:

$$\mathcal{T} = \{(x, y, \theta) \in \mathbb{R}^3 : h(x, y, \theta) \coloneqq \max\left[(x - x_{max}), (y - y_{max}), (\theta - \theta_{max}), (x_{min} - x), (y_{min} - y), (\theta_{min} - \theta)\right] \le 0\}$$

HJI equation:

$$\frac{\partial J}{\partial t}(x, y, \theta, t) + \min_{|u| \le u_{max}} \max_{|d_x| \le d_{max}^x} \nabla J(x, y, \theta, t)' f(x, y, \theta, u, d) = 0$$

Optimal quantities:

$$u^*(x, y, \theta, t) = \arg\min_{\substack{|u| \le u_{max} \ |d_x| \le d_{max}^x}} \nabla J(x, y, \theta, t)^{\mathsf{T}} f(x, y, \theta, u, d)$$
$$d^*(x, y, \theta, t) = \arg\max_{\substack{|d_x| \le d_{max}^x}} \nabla J(x, y, \theta, t)^{\mathsf{T}} f(x, y, \theta, u^*, d)$$

$$u = -u_{max} \operatorname{sign}\left(\frac{\partial J}{\partial \theta}\right)$$
$$d_x = d_{max}^x \operatorname{sign}\left(\frac{\partial J}{\partial x}\right)$$

Next time

Calculus of variations