# Final Poster Figures

Xingyao Chen 7/19/2017

Install Necessary Pakcages and Load Data

```
#install_github("ggbiplot", "vqv")
#library(ggbiplot)
library(lme4)
#install.packages('dplyr')
library(dplyr)
library(devtools)
#devtools::install_qithub("strengejacke/sjPlot", force = TRUE)
library(sjPlot)
library(sjmisc)
library(reshape2)
library(ggplot2)
library(car)
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
       recode
setwd('../bee')
logData=read.csv('pollinator_visitation_fullData_logTrans.csv')
Test Significant of the Difference Between Honeybees Visiting Small vs Large Plants
data_dt=split(logData, logData$Date)
#Make a dataframe, summing visits for small and large plants
ttest=data.frame()
for(i in 1:length(data_dt)){
  add=data.frame(Date=names(data_dt)[i],LargeVisit=sum(data_dt[[i]]$Visits&data_dt[[i]]$Size=='Large'),
  ttest=rbind(ttest, add)
}
#peek
ttest
          Date LargeVisit SmallVisit
## 1 5/17/2017
                        5
                                    1
## 2 5/23/2017
                        4
                                    2
## 3 5/25/2017
                                    2
                        4
## 4 5/30/2017
                        6
                                    0
                        5
                                   1
## 5 6/2/2017
## 6 6/6/2017
                                    2
## 7 6/8/2017
                        5
```

#### Plot and perform one-tailed t test

```
t.test(ttest$LargeVisit, ttest$SmallVisit, alternative='greater')
##
##
    Welch Two Sample t-test
##
## data: ttest$LargeVisit and ttest$SmallVisit
## t = 8.4853, df = 12, p-value = 1.024e-06
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
## 2.708419
## sample estimates:
## mean of x mean of y
## 4.714286 1.285714
tmelt=melt(ttest)
## Using Date as id variables
ggplot(tmelt, aes(x=Date, y=value, fill=variable))+geom_bar(stat='identity', position='dodge')+theme_cl
  6
  4
                                                                             variable
                                                                                 LargeVisit
                                                                                 SmallVisit
  2
  0
      5/17/2017
                5/23/2017 5/25/2017
                                   5/30/2017
                                             6/2/2017
                                                       6/6/2017
                                                                 6/8/2017
```

Date

# Make Scatter Plots of Honeybees vs Date, Separated by Large and Small Plants

```
theshold=c()
wholedf=data.frame()
for( i in 1:length(data_dt)){
  theshold[i]=median(data_dt[[i]]$Honeybees)
  data_dt[[i]]$Median=theshold[i]
  wholedf=rbind(wholedf, data_dt[[i]])
logData=wholedf
ggplot(data=logData, aes(x='', y=Honeybees, color=Size))+
  geom_jitter(width = 0.15)+
  facet_grid(~Date)+
  geom_hline(aes(yintercept = Median),lty=5, size=0.8)+
  labs(x="Days", size=4)+
  theme_classic()+
  theme(axis.title=element_text(size=14), legend.title=element_text(size=14),legend.text=element_text(s
        5/17/2017
                            5/25/2017
                                      5/30/2017
                                                 6/2/2017
                                                           6/6/2017
                                                                     6/8/2017
                  5/23/2017
   1.5
Honeybees
                                                                                Size
   1.0
                                                                                  Large
                                                                                  Small
   0.5
   0.0
                                       Days
```

Linear Modeling with Mixed Effects

```
mylogit <- lmer(Honeybees ~</pre>
                  Avg.open.flowers.per.inflorescence+
                  Total.inflorescenses+
                  Sugar_content+
                  height+
                  (1|Date), data=logData)
summary(mylogit)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## Honeybees ~ Avg.open.flowers.per.inflorescence + Total.inflorescenses +
       Sugar_content + height + (1 | Date)
##
##
      Data: logData
##
## REML criterion at convergence: 72
##
## Scaled residuals:
               1Q Median
##
      Min
                                3Q
                                       Max
## -2.7877 -0.7635 0.2402 0.6884 1.8529
##
## Random effects:
## Groups
           Name
                        Variance Std.Dev.
            (Intercept) 0.1930 0.4394
## Date
## Residual
                        0.1053
                                  0.3245
## Number of obs: 84, groups: Date, 7
##
## Fixed effects:
##
                                      Estimate Std. Error t value
## (Intercept)
                                      -1.10433 0.32694 -3.378
## Avg.open.flowers.per.inflorescence 1.12848
                                                  0.21604 5.223
## Total.inflorescenses
                                      0.17775
                                                  0.15182 1.171
## Sugar_content
                                      -0.02303
                                                  0.17960 -0.128
## height
                                       0.55853
                                                  0.84131 0.664
##
## Correlation of Fixed Effects:
               (Intr) Av.... Ttl.nf Sgr_cn
##
## Avg.pn.fl.. -0.634
## Ttl.nflrscn 0.025 -0.215
## Sugar_cntnt 0.293 -0.123 0.026
## height
              -0.097 -0.348 -0.517 -0.048
an=Anova(mylogit)
pvals=round(an$`Pr(>Chisq)`,4)
```

#### Plot Results

## Scale for 'colour' is already present. Adding another scale for
## 'colour', which will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for
## 'colour', which will replace the existing scale.

### Reward+Efficiency





## Scale for 'colour' is already present. Adding another scale for
## 'colour', which will replace the existing scale.

# **Poential Reward for Colony**



## Scale for 'colour' is already present. Adding another scale for
## 'colour', which will replace the existing scale.

