Алгебра I, листочек 3

1. Есть ли в группе $\mathbb{Z}_2 \times \mathbb{Z}_{16}$ подгруппа, изоморфная $\mathbb{Z}_4 \times \mathbb{Z}_4$? Изоморфная $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$?

Посчитаем количество элементов порядка 4 в обоих группах. Как нетрудно заметить $(a,b) \in \mathbb{Z}_2 \times \mathbb{Z}_{16}$ имеет порядок 4, если его имеет b, в противном случае порядок либо 2, либо 1, таких пар всего 4 (0,4), (1,4), (0,12) et (1,12). Но $(a,b) \in \mathbb{Z}_4 \times \mathbb{Z}_4$ имеет порядок 4, когда хотя бы одна компонента его имеет. Таких пар после нетрудного подсчета оказывается 4*2+2*4-2*2=12, и их больше, чем в группе куда мы хотим устроить вложение, а значит оно не удастся.

Аналогично в \mathbb{Z}_2^3 мы обнаружим 7 инволюций, а в $\mathbb{Z}_2 \times \mathbb{Z}_{16}$ их всего 3 и вложение не удастся.

2. (Теорема Нетер) Если $K, H \leq G$ и $H \leq N_K$, докажите, что $H/(H \cap K) \cong HK/K$, где HK - подгруппа, порожденная элементами вида $h \cdot k, h \in H, k \in K$.

Покажем, что HK в данном случае совпадает с произведением по Минковскому. Пусть $h,h'\in H$ и $k,k',k''\in K$, тогда hkh'k'=hh'k''k, так как $h'\in H\subseteq N_K$. Тогда $(hk)^{-1}=k^{-1}h^{-1}=h^{-1}k''$, и $e=ee\in HK$ есть нейтральный элемент. Ещё можно заметить, что $H,K\le N_K$, а тогда $K\trianglelefteq HK\subset N_K$. Построим гомоморфизм $\varphi:H\to HK/K,h\mapsto hK$. Он очевидно сюръективен. Посчитаем его ядро $(h\in \mathrm{Ker}(\varphi))\Leftrightarrow (hK=K\&h\in H)\Leftrightarrow (h\in K\cap H)$. Тогда применим теорему о сюрьективном гомеоморфизме, $H/(H\cap K)\cong HK/K$.

3. Опишите все перестановки, которые могут быть разложены в произведение циклов длины три.

Разобьём перестановку на дизъюнктивные циклы. Назовём дискриминантом перестановки сумму длин её дизъюнктивных циклов, уменьшенных на 1. Покажем, что умножение на транспозицию меняет четность дискриминанта.

- Если транспозиция дизъюнктивна с существующими индексами, то умножение на неё добавит к дискриминанту 1.
- Если транспозиция пересекается с 1 циклом по 1 индексу, то $(ab)(ac \dots d) = (abc \dots d)$ или $(d \dots ca)(ba) = (d \dots cba)$ один цикл увеличится на 1.
- Если транспозиция пересекается с 1 циклом по 2 индексам, то $(ab)(ad \dots ebc \dots f) = (ac \dots f)(bd \dots e)$ или $(f \dots cbe \dots da)(ba) = (e \dots db)(f \dots ca)$ и цикл разобьется на 2, а дискриминант уменьшится на 1.
- Если транспозиция пересекается с 2 циклами по 1 индексу, то $(ab)(ac \dots e)(bd \dots f) = (ad \dots fbc \dots e)$ или $(f \dots db)(e \dots ca)(ba) = (e \dots cbf \dots da)$ циклы слипнутся, а дискриминант увеличится на 1.

Зная также, что перестановка раскладывается по циклам на транспозиции, которых будет ровно дискриминант штук, мы получаем, что домножение на четную перестановку не меняет четности. В частности это означает, что все четные перестановки образуют знакопеременную группу, так как () четна, обратная получается переворачиванием циклов, что тоже не меняет четность, а произведение четных четно.

Тогда покажем, что циклы длинны три порождают знакопеременную группу. Знакопеременная группа состоит из элементов в которых при разложении получается четное число нечетных перестановок. Заметим, что мы можем всегда добавить к циклу 2 любых буквы $(a \dots bc)(dec) = (a \dots bdec)$. Так же мы можем создать пару любых дизъюнктивных транспозиций (abc)(bcd) = (ac)(bd). Из этого мы делаем вывод, что всегда можно из 3-х циклов собрать четный цикл или четное количество нечетных. Перемножив их можно получить любой четный элемент. Но так как 3-циклы сами по себе четные, то их произведение всегда таким и останется. Тогда $\langle 3$ -циклы $\rangle = A$.

4. Постройте сюръективный гомоморфизм $S_n \to \mathbb{Z}_2$ для любого $n \ge 2$.

Отправим нечетную перестановку в 1, а четную в 0. Исходя из рассуждений прошлой задачи, получится сюрьекивный гомоморфизм, так как четность ведёт себя мультипликативно.

5. Постройте сюръективный гомоморфизм $S_4 \to S_3$.

Как мы видели в задаче 3 листочка 2 $V_4 extttlesize S_4$, где нетривиальными элементами V_4 являются (2,2)-циклы. Там я проверил все возможные сопряжения, то тогда можно построить факторгруппу S_4/V_4 , её порядок равен 24/4=6, так что она изоморфна либо \mathbb{Z}_6 , либо S_3 . Но в S_4 все элементы были порядка меньшего 6, то значит и в фактор-группе их порядок меньше $(gA)^n = g^nA = A$. Тогда $S_4/V_4 \cong S_3$, осталось построить гомоморфизм. Транспозиции должна перейти в инволюцию, которыми в S_3 могут быть только инволюции. Тогда например $(12)\mapsto (12)$. Так как ядром является V_4 , то $(12)(34)\mapsto (12)(??)=e$, а значит $(34)\mapsto (12)$. Также $(12)V_4 = \{(12), (43), (1324), (1423)\}$, в нём нет (23), а значит её образ должен отличатся от (12), пусть им будет (23), аналогично поймём и зададим образ (13) равный (13). Тогда аналогично прошлому рассуждению поймём, что дополнение к траноспозиции до 2цикла из ядра должно переходить в тот же элемент, то есть $(24) \mapsto (13)$ и $(14) \mapsto (23)$. Так как мы построили отображение порождающих элементов в порождающие, то если можно корректно дополнить гомоморфизм, то это делается единственным способом через разложение на порождающие. И так как гомоморфизм существует, в чем мы убедились, построив фактор-группу, то построение продолжится корректно, потому как в этом алгоритме все выборы привели бы к симметричной ситуации с точностью до переименования. Одна из ситуаций подошла бы нам, но так как они эквивалентны, то подходят все.

6. Докажите, что любую перестановку из S_n можно получить, перемножая транспозицию (1,n) и цикл (1,2,3,...,n).

Имея два элемента (a,b) и (a,a+1,...,b-1,b) можно их перемножить (a,b)(a,a+1,...,b-1,b)=(a+1,...,b-1,b) или (a,a+1,...,b-1,b)(a,b)=(a,a+1,...,b-1). Обратные к элементам равняются некоторой степени этого элемента, а значит мы можем брать обратные. Тогда продолжив дальше перемножение мы сможем выразить (a,a+1,...,b-1)(b,b-1,...,a+1)=(a,b,b-1), а также (b,b-1,...,a+1)(a,a+1,...,b-1)=(b,a,a+1), пройдя ещё чуть дальше мы получи (a,b)(b,a,a+1)=(a+1,b) и (a,b)(a,b,b-1)=(a,b-1). Тогда мы вновь получили 2 пары (a,b-1) и (a,a+1,...,b-1) и вторую пару (a+1,b) и (a+1,a+2,...,b), так что мы можем продолжить рекурсию. В итоге мы сможем выразить любую транспозицию, а значит и любой элемент симметрической группы.

7. Пусть перестановка $\sigma \in S_n$ разложена в произведение l независимых циклов длин $\rho_1 \ge ... \ge \rho_l \ge 1$. Выпишите формулу для:

• четности σ

Как мы видели в 3 задаче этого листочка, это четность её дискриминант. Так что формула $(\sum_i (\rho_i - 1)) \bmod 2$.

• порядка перестановки σ

Степень перестановки это в точности произведение степеней её циклов. Каждый цикл редуцируется, если степень делит его порядок. Наименьшее число удовлетворяющее этому свойству это в точности наименьшее общее кратное, то есть ρ_1 V ... V ρ_l .

• порядка класса сопряженности σ

Заметим, что сопряжение по транспозиции не меняет численный тип разбиения на циклы, так как $(ab)(ad\dots c)(ab)=(bd\dots c), (ab)(c\dots eabf\dots k)(ab)=(af\dots kc\dots eb)$ и $(ab)(ad\dots c)(bd'\dots c')(ab)=(bd\dots c)(ad'\dots c').$ Это достаточно проверить для транспозиций, так как остальные элементы группы раскладываются через них. Более того одна перестановка может быть получена из другой того же типа через переименование индексов, а это как мы видели в 7 задаче 1 листочка является сопряжением по перестановке индексов. Так что размер класса сопряженности это в точности размер типового класса. Сначала выберем упорядоченные наборы, чтобы потом на них надеть скобки и получить циклы, это можно сделать $n!/(n-(\rho_1+\dots+\rho_l))!$ количеством способов. Дальше расставим скобки в порядке убывания. Сначала самые длинные циклы, потом меньшие итд. Это делается 1 способом. В итоге для каждого элемента мы получим повторения, одно получается из другого через циклическую перестановку внутри одних скобок. Тогда у нас будет $\prod_i \rho_i$ перестановок и конечная формула равняется n!

 $(n-(\rho_1+...+\rho_l))!\prod_i \rho_i$

- порядок централизатора σ

Зададим действии * $G=S_n$ на G через сопряжение. Тогда орбитой σ по этому действию будет его класс $G*\sigma=[\sigma]$, а стабилизатором – централизатор $G_\sigma=Z_\sigma$. Тогда $h*\sigma=g*\sigma$ тогда и только тогда, когда $g^{-1}h*\sigma=\sigma$ тогда и только тогда, когда $g^{-1}h\in G_\sigma$ тогда и только тогда, когда $h\in gG_\sigma=gZ_\sigma$. Это означает, что каждое значение из орбиты

получается через действие элементов одного класса, а значит $|G*\sigma|=|G|/|G_{\sigma}|$, или $|Z_{\sigma}|=|G|/|G*\sigma|$. Тогда формула будет следующей $(n-(\rho_1+...+\rho_l))!\prod_i\rho_i$.

8. Найдите центр группы перестановок S_n . Найдите центр группы невырожденных матриц $GL_2(\mathbb{C})$.

Центр группы S_n уже был мной посчитан в листочке 2 задаче 6.

Обозначим за $e_{i,j}$ матричные единицы. Тогда очевидно, что матрицы вида $k(e_{1,1}+e_{2,2})$ входят в центр. Возьмём тогда матрицу из центра.

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right) = \left(\begin{array}{cc} a & 2b \\ c & 2d \end{array}\right)$$

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right) \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} a & b \\ 2c & 2d \end{array}\right)$$

Тогда мы получим 2b = b и 2c = c, а значит они нули.

$$\left(\begin{array}{cc} a & 0 \\ 0 & d \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & d \\ a & 0 \end{array}\right)$$

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{cc} a & 0 \\ 0 & d \end{array}\right) = \left(\begin{array}{cc} 0 & a \\ d & 0 \end{array}\right)$$

А значит, что a=d. Тогда $\mathbb{C}^*(e_{1,1}+e_{2,2})$ – весь центр.

9. Докажите, что подгруппа внутренних автоморфизмов Inn(G) нормальна в группе автоморфизмов Aut(G). Докажите, что $Inn(G) \cong G/Z_G$.

Проверим нормальность, пусть S_s – сопряжение по s, а f - автоморфизм. Тогда сопряжем $f \circ S_s \circ f^{-1}(x) = f(sf^{-1}(x)s) = f(s)xf(s)^{-1}$, получилось сопряжение по f(s). А значит Inn(G) нормальна в Aut(G).

Сопоставим элементу группы сопряжение по нему, получится сюрьективный гомоморфизм. g лежит в его ядре равносильно $gsg^{-1}=s$ или gs=sg для любого s, что равносильно $g\in Z_G$. Тогда по теореме о гомоморфизме $\mathrm{Inn}(G)=\mathrm{Im}(f)\cong G/\mathrm{Ker}(f)=G/Z_G$.

10. Докажите, что если $|G| = p^n$, где p – простое, то $|Z_G| = p^k$ для k > 0.

Центр группы – подгруппа, а значит её порядок делит порядок группы. В данном случае её порядок может быть только степенью p. Осталось показать, что она не тривиальна. Разобьем G на классы сопряженности. Как мы видели в задаче 7, порядок класса сопряженности делит порядок группы. Классы элементов не из центра имеют размер больший 1, а значат должны делится на p. Если у элемента класс состоит из него самого, то это эквивалентно тому, что он лежит в центре. Тогда будет иметь место равенство $|G|=|Z_G|+\sum [g]$, где все слагаемые кроме $|Z_G|$ делятся на p, а значит должно делится и $|Z_G|$, но это и означает, что центр не тривиален.

11. Покажите, что невырожденные 2×2 матрицы с коэффициентами из \mathbb{Z}_2 образуют группу. Обозначим ее $GL_2(\mathbb{Z}_2)$. Докажите, что она изоморфна S_3 .

Как мы видели на первом листочке умножение матриц коммутативно. В данном случае, \mathbb{Z}_2 - поле, а значит обращение матриц определено корректно. Над данным полем оно $(ae_{1,1}+be_{1,2}+ce_{2,1}+de_{2,2})^{-1}=de_{1,1}-be_{1,2}-ce_{2,1}+ae_{2,2}$. Посчитаем порядки элементов

$$\left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right)^2 = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)^2 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)^2 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right)^3 = \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right)^3 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

Такие порядки у элементов группы порядка 6 могут быть только у S_3 . Так что эта группа изоморфна S_3 .

3