Applied Biostatistics

https://moodle.epfl.ch/course/view.php?id=15590

- Statistical modeling overview
- Generalized linear modeling
- Binary data and logistic regression
- Count data and Poisson regression
- Comparing models

Modeling overview

- Want to capture important features of the relationship between a (set of) variable(s) and one or more response(s)
- Many models are of the form

$$g(Y) = f(\mathbf{x}) + \text{error}$$

■ Differences in the form of g, f and distributional assumptions about the error term

Examples of models

- Linear : $Y = \beta_0 + \beta_1 x + \epsilon$
- Linear : $Y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$
- (Intrinsically) Nonlinear : $Y = \alpha x_1^{\beta} x_2^{\gamma} x_3^{\delta} + \epsilon$
- Generalized Linear Model (e.g. Binomial) :

$$\log \frac{p}{1-p} = \beta_0 + \beta_1 x + \beta_2 x_2$$

Proportional Hazards (in Survival Analysis) :

$$h(t) = h_0(t) \exp(\beta x)$$

Linear modeling

- A simple linear model : $E(Y) = \beta_0 + \beta_1 x$
- Gaussian measurement model : $Y = \beta_0 + \beta_1 x + \epsilon, \epsilon \ N(0, \sigma^2)$
- More generally : $Y = X\beta + \epsilon$, where Y is $n \times 1$, X is $n \times p$, β is $p \times 1$, ϵ is $n \times 1$, often assumed $N(0, \sigma^2 I_{n \times n})$

Analysis of designed experiments

- An important use of linear models we have already done this using anova
- Define a (design) matrix X so that for response variable Y :

$$E(Y) = X\beta,$$

where β is a vector of *parameters* (or contrasts)

Many ways to define design matrix/contrasts

Model fitting and checking

- For the standard (fixed effects) linear model, estimation is usually by least squares
- Can be more complicated with random effects or when x-variables are subject to measurement error as well
- Checking model : examination of *residuals*
 - Normality
 - Time effects
 - Nonconstant variance
 - Curvature
- Detection of influential observations

Linear regression model (again)

Linear model

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon, \quad \epsilon \sim N(0, \sigma^2)$$

Another way to write this :

$$Y \sim N(\mu, \sigma^2), \quad \mu = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

- Suitable for a *continuous* response
- **NOT** suitable for a *binary* response
- **NOT** suitable for a *count* data

Modified model

- Instead of modeling the response directly, could instead model some function of the response
- i.e., Instead of modeling the expected response *directly* as a linear model, model a *suitable transformation*
- For binary data, it is convenient to use the *logit* function
- For count data, this is often taken to be the *log* transformation

Modified model for binary data

- Instead of modeling the 0/1 response directly, could instead model the *probability* of '1'
- Problems :
 - could lead to fitted values outside of [0,1]
 - normality assumption on errors is wrong
- Instead of modeling the expected response directly as a linear function of the predictors, model a suitable transformation
- For binary data, this is generally taken to be the *logit* (or *logistic*) transformation

Logit transformation

$$\log \operatorname{id}(p) = \log \frac{p}{1-p} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

Therefore,

$$p(x_1,...x_k) = \frac{\exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)}{1 + \exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)}$$

- The parameter β_k is such that $\exp(\beta_k)$ is the *odds* that the response takes value 1 when x_k increases by one, when the remaining variables are constant
- *i.e.* β_k is a *log-odds*
- Estimate parameters by *maximum likelihood* rather than least squares

Generalized linear model

- In a standard linear model, the response variable is modeled as a normally distributed
- However, if the response variable is dichotomous or a count, it does not make sense to model the outcome as normal
- Generalized linear models (GLMs) are an extension of linear models to model non-normal response variables
- A GLM consists of three components :
 - A random component, specifying the conditional distribution of the response variable, Y_i, given the values of the explanatory variables in the model
 - A linear predictor
 - A smooth and invertible linearizing link function
- We consider *logistic regression* for a count response
- We can consider *Poisson regression* for a count response

Generalized linear models : some theory

- Allows unified treatment of statistical methods for several important classes of models
- Response *Y* assumed to have *exponential family distribution*:

$$f(y) = \exp[a(y)b(\theta) + c(\theta) + d(y)]$$

For a standard linear model

$$Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \epsilon$$
, with $\epsilon \sim N(0, \sigma^2)$

- The expected response is $E[Y \mid x] = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k$
- Let η denote the *linear predictor* $\eta = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k$
- For a standard linear model, $E[Y \mid x] = \eta$
- In a generalized linear model, there is a link function g between η and the expected response :

$$g(E[Y \mid x]) = \eta$$

■ For a standard linear model, g(y) = y (identity link)

Link function

- When the response variable is binary (with values coded as 0 or 1), then $E[Y \mid x] = P(Y = 1 \mid x)$
- A convenient function in this case is

$$E[Y \mid x] = P(Y = 1 \mid x) = \frac{e^{\eta}}{1 + e^{\eta}}$$

- The corresponding link function (inverse of this function) is called the *logit*
- $\log it(x) = \log \frac{x}{1-x}$
- Regression using this model is called logistic regression

Link function : examples

	Family Name				
Link	binomial	Gamma	gaussian	inverse.gaussian	poisson
logit	D				
probit	•				
cloglog	•				
identity		•	D		•
inverse		D			
log		•			D
1/mu^2				D	
sqrt					•

Analogous to linear regression

- The logit function *g* has many of the desirable properties of a linear regression model :
 - Mathematically convenient and flexible
 - Can meaningfully interpret parameters
 - Linear in the parameters
- A difference : Error distribution is binomial (not normal)

Fitting the model

- For linear regression, typically use *least squares*
- For dichotomous data or count data, the 'nice' statistical properties of least squares estimators no longer hold
- The general estimation method that leads to least squares (for normally distributed errors) is maximum likelihood
- Write out the likelihood, take the derivative, set equal to zero and solve
- Estimating equations typically nonlinear functions of the regression parameters so must be solved numerically (IRLS)

Maximum likelihood estimation

- Likelihood : $f(x_i) = p(x_i)^{y_i} [1 p(x_i)]^{1-y_i}$
- Assuming independent observations, the likelihood $I(\beta) = \prod_{i=1}^{n} f(x_i)$
- log likelihood $L(\beta) = \log[I(\beta)] = \sum_{i=1}^{n} (y_i \log(p(x_i)) + (1 y_i) \log(1 p(x_i)))$
- To find β that maximize the log likelihood, differentiate wrt each β_i and set the derivative equal to 0
- In linear regression these equations are easily solved
- lacksquare In logistic regression, these are nonlinear in eta and are solved iteratively

PAUSE

DNA sequencing

- (Automated) Sanger sequencing
 - 'first-generation' technology
 - F. Sanger, 1977
- Process :
 - bacterial cloning or PCR
 - template purification
 - labelling of DNA fragments using the chain termination method with energy transfer, dye-labelled dideoxynucleotides and a DNA polymerase
 - capillary electrophoresis
 - fluorescence detection
- Data : four-colour plots that reveal the DNA sequence

Next-generation sequencing

- Several newer sequencing technologies
 - 'Next-generation sequencing' (NGS data)
 - 'Ultra high-throughput sequencing' (UHTS data)
- These newer technologies use various strategies that rely on a combination of template preparation, sequencing and imaging, and genome alignment and assembly methods
- Data : four-colour plots that reveal the DNA sequence
- Major advance : ability to produce a large amount of data relatively cheaply
- Expands experimental possibilities beyond just determining the order of bases

Applications of NGS

- Sequence assembly (original application)
- Resequencing: The sequencing of part of an individual's genome in order to detect sequence differences between the individual and the standard genome of the species
- Gene expression : RNA-Seq
- SNP discovery and genotyping
- Variant discovery and quantification
- Transcription factor binding sites : ChIP-Seq
- Measuring DNA methylation

NGS data generation

- Sequencing technologies incorporate methods that we can class as
 - template preparation
 - sequencing and imaging
 - data analysis
- Combination of specific protocols distinguishes different technologies
- Major technologies :
 - Illumina HiSeq (older : Solexa)
 - 454 (Roche)
 - Applied Biosciences SOLiD
 - Pacific Biosciences SMRT (single molecule real-time)

Data analysis pipeline

- Data are counts of short sequences (called 'reads')
- Quality control of data
- Match to reference sequence, read mapping
- Count/summarize number of reads per feature
- Statistical analysis (depends on the specific application)

Sequence data

- Sequence data are *counts*
- DNA sample ⇒ population of cDNA fragments
- Each genomic feature ⇒ species for which the population size is to be estimated
- Sequencing a DNA sample ⇒ random sampling of each of these species
- Aim: to estimate the relative abundance of each species in the population

Poisson model

- If we assume :
 - each cDNA fragment has the same chance of being selected for sequencing
 - the fragments are selected independently
- Then: the number of read counts for a given genomic feature should follow a *Poisson variation law* across repeated sequence runs of the same cDNA sample
- The Poisson model implies that the *mean equals the variance*
- (This relationship has been validated in an early RNA-Seq study using the same initial source of RNA distributed across multiple lanes of an Illumina GA sequencer)

Single gene model

- DNA sample ⇒ 'library'
- Contains genes $1, \ldots, g, \ldots$
- For a given gene g in library i, Y_{gi} = number of reads for gene g in library i
- $Y_{gi} \sim Bin(M, p_{gi})$, where p_{gi} is the proportion of the total number of sequences M in library i that are gene g
- M large, p_{gi} small $\implies Y_{gi} \sim Pois(\mu_{gi} = Mp_{gi})$ (approximately)

Technical vs. biological replicates

- For the Poisson model, the *variance* is equal to the *mean*
- With *technical replicates*, this relation holds fairly well
- With biological replicates, the variance is typically larger than expected using the Poisson model
- There are a few different approaches for accounting for this additional variability (overdispersion)

Link function for count data

- We can model the count data $Y_i \sim Pois(\mu_i), i = 1, ..., n$
- Want to relate the mean μ_i to one or more *covariates* (for example, treatment/control status)
- A convenient link function in this case is the log :

$$\log \mu_i = \eta = \mathbf{x}_i^T \boldsymbol{\beta}$$

- Using a log link ensures that the fitted values of μ_i will remain in the parameter space $[0, \infty)$
- A Poisson model with a log link is sometimes called a log-linear model

Variance function for the Poisson model

■ The Poisson distributions are a discrete family with probability function indexed by the rate parameter $\mu > 0$:

$$p(y) = \frac{e^{-\mu}\mu^y}{y!}, \quad y = 0, 1, 2, \dots$$

- Under the Poisson model : $E[Y_i] = Var(Y_i) = \mu_i$
- General form of the relationship between the variance of the response variable and its mean is : $Var(response) = \phi V(\mu)$, with ϕ a constant scale factor
 - **Normal** : $V(\mu) = 1$, $\phi = \sigma^2$ (the variance does not depend on the mean)
 - **Binomial** : $V(\mu) = \mu(1 \mu) \ \phi = 1$
 - Poisson : $V(\mu) = \mu \ \phi = 1$
- Real data are often overdispersed, exhibiting more variation than allowed by the Poisson model

Detecting and handling overdispersion

- When fitting a GLM with binomial or Poisson errors, can often detect overdispersion by comparing the residual deviance to its degrees of freedom
- For a well-fitting model, these should be approximately equal
- Overdispersion usually handled with an alternative model :
 - **Quasi-Poisson Model**: Assume $Var(Y_i) = \phi \mu_i$ and estimating the *scale parameter* ϕ
 - Zero-Inflated Poisson Model: for modeling the case when there are too many '0' values
 - Negative Binomial Model : Can arise from a two-stage model :

$$Y_i \sim Pois(\mu_i^*)$$
 $\mu_i^* \sim \Gamma(\mu_i/\omega, \omega)$

Then
$$Y_i \sim \textit{NegBin}$$
, with $E[Y_i] = \mu_i$ and $\textit{Var}(Y_i) = \mu_i + \mu_i^2/\omega$

Differential gene expression for NGS data

- Several BioConductor (R) packages for identifying differential expression from NGS data
- These mostly use the negative binomial model, since the counts are typically over-dispersed compared to the Poisson model
- The edgeR package uses an overdispersed Poisson model to account for both biological and technical variability, and uses empirical Bayes methods to moderate the degree of overdispersion across transcripts

Assessing model fit

- In linear regression, an anova table partitions SST, the total sum of squared deviations of observations about their mean, into two parts :
 - SSE, or residual (observed predicted) sum of squares
 - SSR, or regression sum of squares
- Large SSR suggests the explanatory variable(s) is(are) important
- In linear regression, diagnostics are built around residuals and SSR
- For GLMs, there are a few different kinds of residuals : Pearson residuals and deviance residuals
- Pearson residual for an observation is obtained by subtracting the mean (predicted value) for that observation and dividing by the (estimated) SD
- Deviance residuals are based on the contribution of each point to the likelihood

Deviance

- In standard linear models, estimate parameters by minimizing residual sum of squares
- (Equivalent to ML for normal model)
- In GLM, estimate parameters by ML
- The *deviance* is (proportional to) $2 \times I$
- (Analogous to SSE)
- Obtaining 'absolute' measure of goodness of fit depends on some assumptions that may not be satisfied in practice
- Usually focus on comparing competing models
- When the models are *nested*, can carry out likelihood ratio test

Comparing models

- In linear regression, consider coefficient significant if (squared) standardized value $\hat{\beta}/SE(\hat{\beta})$ is 'large'
- Can also do this for logistic regression (Wald test), but there are some problems with it
- Preferred approach : likelihood ratio test

■ Deviance
$$D = -2\sum_{i=1}^{n} y_i \log \left(\frac{\hat{p}_i}{y_i}\right) + (1 - y_i) \log \left(\frac{1 - \hat{p}_i}{1 - y_i}\right)$$

- To compare models, compute G = D(submodel) D(bigger model)
- Under the null (*i.e.* the submodel), $G \sim \chi^2$ with df = difference in the number of estimated parameters

Variance inflaction factors

- The meaning of a variance inflation factor is essentially equivalent for linear models and GLMs
- We can use the VIF to look for multicollinearity
- R function vif from the car package
- Also look at correlation matrix for the data matrix X

Summary

- Residuals are certainly less informative for GLMs than for linear regression
- Issues of outliers and influential observations just as relevant for GLMs as for linear regression: look at Cook's distance plot
- Usually a good idea to start with simple models and gradually add in complexity