Validációs paraméterek mintamérettől való függésének vizsgálata

Kovács Dániel, Király Péter, Tóth Gergely

ELTE, Kémiai Intézet

2019. június 6.

- Validációs paraméterek (VPk) mintamérettől való függése
 - összevetése gyenge és jó illeszkedésű lineáris modelleken
 - ullet R^2 scrambling, randomizációs változatok
 - ullet Q^2 leave one out (LOO) leave many out (LMO)
 - ullet modellek Roy-Ojha diagramon (Q_{F2}^2)
 - VPk rangkorrelációja
- Összegzés

Validációs sémák

Belső validáció

Külső validáció

illeszkedés jósága, robusztusság $r_i = (y_i - \hat{y}_i)$

$$r_i = \begin{pmatrix} \mathsf{prediktivit\acute{a}s} \\ y_{i,\mathrm{test}} - \hat{y}_{i,\mathrm{test}} \left(\hat{\beta}_{\mathrm{train}} \right) \end{pmatrix}$$

belső VPk

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} = 1 - \frac{\text{RSS}}{\text{TSS}}$$

$$R_{\mathrm{adj}}^2 = \left(1 + \frac{p-1}{n-p}\right)R^2 - \left(\frac{p-1}{n-p}\right)$$

$$MAE = \frac{\sum_{i=1}^{n} |y_i - \hat{y}_i|}{n}$$

$$RMSE = \sqrt{\frac{\sum\limits_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}}$$

$$Q_{\text{LOO}}^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_{i/i})^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2} = 1 - \frac{\text{PRESS}}{\text{TSS}}$$

$$Q_{\text{LOO}}^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i/i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} = 1 - \frac{\text{PRESS}}{\text{TSS}}$$

$$\text{CCC} = \frac{2 \sum_{i=1}^{n} (y_{i} - \bar{y}) (\hat{y}_{i} - \bar{y})}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2} + \sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2} + n(\bar{y} - \bar{y})^{2}} \dots$$

külső VPk

$$\begin{split} Q_{F1}^2 &= 1 - \frac{\sum\limits_{i=1}^{n,\text{test}} (y_i - \hat{y}_i)^2}{\sum\limits_{i=1}^{n,\text{test}} (y_i - \bar{y}_{\text{train}})^2} \\ Q_{F2}^2 &= 1 - \frac{\sum\limits_{i=1}^{n,\text{test}} (y_i - \hat{y}_i)^2}{\sum\limits_{i=1}^{n,\text{test}} (y_i - \hat{y}_i)^2} \\ Q_{F3}^2 &= 1 - \frac{\sum\limits_{i=1}^{n,\text{test}} (y_i - \hat{y}_{\text{test}})^2}{\sum\limits_{i=1}^{n,\text{test}} (y_i - \hat{y}_i)^2/n_{\text{test}}} \\ \frac{Q_{F3}^2}{n,\text{train}} &= \frac{\sum\limits_{i=1}^{n,\text{train}} (y_i - \hat{y}_{\text{train}})^2/n_{\text{train}}}{\sum\limits_{i=1}^{n,\text{train}} (y_i - \hat{y}_{\text{train}})^2/n_{\text{train}}} \end{split}$$

VPk mintaméret függése - Valinear(R)

Adatsorok

Beton nyomószilárdság sor Kombinált ciklusú erőmű sor

• modellezés *többváltozós lineáris* regresszióval (TLR)

adatsor	Beton	Erőmű
# függő változó	1	1
# független változó	8	4
# megfigyelés	1030	9658
TLR alkalmasság	gyenge	jó

Mintaméret függés - feladatok

- random mintavételezés a populációból
- minta training/test felbontása külső validációhoz: 80/20
- lineáris modellezés, validációs paraméterek számolása
- \circlearrowright fentiek ismétlése $1000 \times$, $n_{\mathrm{minta}} = (30, 50, 75, 100, 250, 500)$, VPk átlagolása

Félrevezető: Kisebb modell a jobb?

Félrevezető: Kisebb modell a jobb?

Belső VPk - scrambling, randomizáció

 \mathbb{R}^2 scrambling számolható a legkönnyebben

Belső VPk - Leave many out

 $Q^2_{
m LOO}$ számolása a legegyszerűbb

Külső VPk

 Q_{F2}^2 a legérzékenyebb

Külső VPk - Roy-Ojha diagram

VPk rangkorrelációja

Összegzés

- modell validáció: illesztés jósága, robusztusság & prediktivitás
- ullet R^2 , CCC, RMSE, MAE mintaméret függése anomáliát mutat
- külső validáció Q_{F1-3}^2 paraméterei különböző mintaméretre külöböző érzékenységet mutatnak
- scrambling-gel kiválthatjuk a randomizációt
- ullet $Q^2_{
 m LOO}$ használható az LMO változatok helyett
- 2D Roy-Ojha diagram kategorizálja a modellek prediktivitását
- minden mintaelemszámnál eltér a külső és belső validáció információtartalma
- nemlineáris modellezés, PLS

Munkatársak: Kovács Dániel, Tóth Gergely