Intégration d'une fonction numérique

Table des matières

1	Introduction	-			
2	Intégrale d'une fonction continue sur un segment 2.1 Primitive	6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4			
3	Intégrale dont la borne dépend d'un paramètre				
4	Quelques propriétés de l'intégrale 4.1 Relation de Chasles				
5	Interprétation géométrique dans le cas d'une fonction de signe constant	•			
6	Comparaison d'intégrales 6.1 Théorème : Signe de l'intégrale d'une fonction de signe constant 6.2 Conséquence : Intégration d'une inégalité 6.3 Corollaire : Inégalité de la moyenne 6.4 Corollaire : Majoration de la valeur absolue d'une intégrale	4 4 4 4			
7	L'inégalité des accroissements finis 7.1 Théorème : inégalité des accroissements finis	4			
8	Primitives des fonctions usuelles				
9	Intégration par parties	Ę			
10	Intégration par changement de variable $10.1 \text{ Changement de variable du type } x \mapsto x + \beta \\ 10.1.1 \text{ Exemple} \\ 10.1.2 \text{ Théorème} \\ 10.2 \text{ Changement de variable du type } x \mapsto \alpha x \text{ lorsque } \alpha \neq 0 \\ 10.2.1 \text{ Théorème} \\ 10.2.2 \text{ Exemple} \\ 10.3 \text{ Cas général : changement de variable du type } x \mapsto \varphi(x) \\ 10.3.1 \text{ Théorème (formule du changement de variable)} \\ 10.3.2 \text{ Exemple} \\ \\ 10.3.2 \text{ Exemple} \\ \\ \\ 10.3.2 \text{ Exemple} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$				

Dans tout ce chapitre, f désigne une fonction continue sur un intervalle I de \mathbb{R} . On désignera par a et b deux nombres fixés quelconques de l'intervalle I.

1 Introduction

Intuitivement, et historiquement, la notion d'intégrale d'une fonction numérique provient de la notion de calcul d'aire. Le problème à l'origine étant de calculer l'aire d'un domaine plan limité par une courbe.

Au fil des siècles, on s'est aperCcu que ce problème était exactement l'inverse du problème qui consistait à chercher la tangente en un point à une courbe donnée.

Si je devais donner une définition de l'intégrale d'une fonction sur un segment à partir de l'approche historique, je donnerais la définition suivante :

 $=80\mathrm{mm}$

On appelle intégrale d'une fonction continue f sur le segment [a,b], et on note $\int_a^b f(x) dx$, une mesure orientée, en unité d'aire, de l'aire du domaine plan limité par la courbe de la fonction f, l'axe Ox et les droites verticales d'équations respectives x = a et x = b.

Ainsi, si f et g sont les fonctions constantes respectivement définies par

Alors
$$\int_{1}^{3} f(x) dx = 4$$
 et $\int_{4}^{5} g(x) dx = -1$

Malheureusement, cette définition nous emmènerait dans des méandres calculatoires complexes pour montrer comment on peut calculer une intégrale donnée. Aussi nous partirons de la définition abstraite de l'intégrale à partir des primitives d'une fonction.

2 Intégrale d'une fonction continue sur un segment

2.1 Primitive

On rappelle qu'une primitive de la fonction f sur I est une fonction F, dérivable sur I, et telle que

$$F'(x) = f(x)$$
 pour tout $x \in I$

On admettra que:

- 1. Toute fonction continue sur un intervalle I possède des primitives sur cet intervalle.
- 2. Si F et G sont deux primitives de f sur l'intervalle I, alors F et G ne diffèrent que d'une constante. Autrement dit, il existe un nombre réel k tel que

$$F(x) - G(x) = k$$
 pour tout $x \in I$

En vertu du dernier point, on peut donc affirmer que le nombre F(b) - F(a) est indépendant de la primitive de f choisie. Il ne dépend que de f et des nombres a et b choisis.

2.2 Définitions : Intégrale, Intégrale indéfinie

1. Si F est une primitive de la fonction f, on appelle intégrale de f sur [a,b] le nombre F(b) - F(a). On note

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

2. Pour désigner une primitive générique de la fonction f (c'est à dire un représentant de l'ensemble des primitives de f), on utilise la notation

$$F = \int f(x) dx$$
 ou $F = \int f dx$

et on parle de l'intégrale indéfinie de la fonction f.

2.3 Exemple

$$\begin{split} &\int_0^3 4\,dt = [4t]_0^3 = 4\times 3 - 4\times 0 = 12 & \int_0^1 x\,dx = \left[\frac{x^2}{2}\right]_0^1 = \frac{1}{2} - \frac{0}{2} = \frac{1}{2} \\ &\int_0^1 \frac{x}{3}\,dx = \left[\frac{1}{3}\times\frac{x^2}{2}\right]_0^1 = \frac{1}{6} & \int_1^e \frac{1}{t}\,dt = \int_1^e \frac{dt}{t} = [\ln t]_1^e = \ln e - \ln 1 = 1 \\ &\int \cot t \,dt = [t] & \int \cot t \,dt = [\sin t]. \end{split}$$

3 Intégrale dont la borne dépend d'un paramètre

Au vu de la définition de l'intégrale, si f désigne une fonction continue sur l'intervalle I, et si $a \in I$, alors la fonction F définie sur I par

$$F(x) = \int_{a}^{x} f(t) dt$$

est la primitive de la fonction f qui s'annule en a.

Par exemple, si F est la fonction définie sur $]0, +\infty[$ par

$$F(x) = \int_{1}^{x} \frac{dt}{t}$$

alors F est la fonction logarithme népérien ln

4 Quelques propriétés de l'intégrale

4.1 Relation de Chasles

4.1.1 Théorème

Soit f une fonction continue sur un intervalle I de \mathbb{R} , et a, b, c 3 réels quelconques de l'intervalle I. Alors

$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$$

4.1.2 Exemple

$$\int_{-1}^{2} |x| \, dx = \int_{-1}^{0} -x \, dx + \int_{0}^{2} x \, dx = \frac{5}{2}$$

4.2 Théorème : Linéarité et antisymétrie

Soit f une fonction continue sur un intervalle I de \mathbb{R} , et a, b, 2 réels quelconques de l'intervalle I. Alors

$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

4.2.1 Théorème : linéarité

Soit f et g deux fonctions continues sur un intervalle I de \mathbb{R} . Soit α et β deux réels quelconques. Alors

$$\int_{b}^{a} \alpha f(x) + \beta g(x) dx = \alpha \int_{b}^{a} f(x) dx + \beta \int_{b}^{a} g(x) dx$$

4.2.2 Exemple

$$\int_0^{\pi/2} (3\cos t + \sin t) \, dt = 3 \left[\sin t \right]_0^{\pi/2} + \left[-\cos t \right]_0^{\pi/2} = 3 + 1 = 4$$

5 Interprétation géométrique dans le cas d'une fonction de signe constant

Si f est en plus une fonction positive sur l'intervalle [a, b], alors

$$\mathcal{A} = \int_{a}^{b} f(x) \, dx$$

où \mathcal{A} désigne l'aire du domaine plan limité par la courbe de f, l'axe Ox et les droites verticales d'équations x=a et x=b.

Si f est de signe constant négatif sur l'intervalle [a,b]; alors on a

$$\mathcal{A} = -\int_{a}^{b} f(x) \, dx$$

où \mathcal{A} désigne toujours l'aire du domaine plan limité par la courbe de f, l'axe Ox et les droites verticales d'équations x=a et x=b.

Remarque

l'aire \mathcal{A} est exprimée en unités d'aire. Dans un repère orthonormal $(0, \vec{\imath}, \vec{\jmath})$, l'unité d'aire est l'aire du carré défini par les vecteurs unitaires $\vec{\imath}$ et $\vec{\jmath}$ du repère.

6 Comparaison d'intégrales

6.1 Théorème : Signe de l'intégrale d'une fonction de signe constant

Soit f une fonction continue sur un intervalle [a, b].

i) Si
$$f \ge 0$$
 sur $[a, b]$, alors $\int_a^b f(t) dt \ge 0$.

$$ii) \text{ Si } f \leq 0 \text{ sur } [a,b], \text{ alors } \int_a^b f(t) \, dt \leq 0.$$

6.2 Conséquence : Intégration d'une inégalité

Soit f et g 2 fonctions continues sur un intervalle I = [a, b].

Si
$$f \leq g$$
 sur I alors $\int_a^b f(t) dt \leq \int_a^b g(t) dt$

6.3 Corollaire : Inégalité de la moyenne

Soit f une fonction continue sur l'intervalle I = [a, b]. S'il exite des réels m et M tels que

$$m \le f(x) \le M$$
 pour tout $x \in I$ alors $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$

6.4 Corollaire : Majoration de la valeur absolue d'une intégrale

Soit f une fonction continue sur l'intervalle I = [a, b]. S'il existe un réel M tel que

$$|f(x)| \le M$$
 pour tout $x \in I$ alors $\left| \int_a^b f(x) \, dx \right| \le M|b-a|$

7 L'inégalité des accroissements finis

Les théorèmes de comparaison d'intégrales permettent d'obtenir des encadrements d'une fonction lorsqu'on sait encadrer sa dérivée.

7.1 Théorème : inégalité des accroissements finis

Soit f une fonction dont la dérivée f' est continue sur un intervalle [a, b] de \mathbb{R} . S'il existe deux réels m et M tels que, pour tout x de [a, b], on ait

$$m \le f'(x) \le M$$
 alors $m(b-a) \le f(b) - f(a) \le M(b-a)$

En particulier,

Si
$$|f'(x)| \le M$$
 alors $|f(b) - f(a)| \le M(b-a)$

7.2 Remarque

Ce théorème a de nombreuses applications. La plus classique consiste à l'utiliser lors de l'étude de certains algorithmes de calculs de valeurs approchées de racines d'équations. Il permet de garantir la précision apportée après un nombre donné d'itérations. . .

8 Primitives des fonctions usuelles

La lecture du tableau des dérivées usuelles dans le sens f' vers f permet d'obtenir les primitives des fonctions usuelles. Dans le tableau ci-dessous, f est une fonction définie sur un intervalle I, et F est une primitive de f sur f. (Toute fonction f définie par une relation du type f est une primitive de la fonction f.)

function $f(x)$	primitive $F(x)$	Domaine de validité
k	kx	\mathbb{R}
x	$\frac{1}{2}x^2$ $\frac{1}{n+1}x^{n+1}$	\mathbb{R}
$x^n, n \in {}^*$	$\frac{1}{n+1}x^{n+1}$	\mathbb{R}
$\frac{1}{x}$	$\ln x$	$]0,+\infty[$
$\frac{1}{x^n} = x^{-n}, n \in -\{1\}$	$\frac{1}{-n+1} \times \frac{1}{x^{n-1}} = \frac{1}{-n+1} x^{-n+1}$ $2\sqrt{x}$	$]-\infty,0[$ ou $]0,+\infty[$
$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$	$]0,+\infty[$
$x^{\alpha}, \alpha \in \mathbb{R} - \{-1\}$	$\frac{1}{\alpha+1x^{\alpha+1}}$	$]0,+\infty[$
e^x	e^x	\mathbb{R}
$\cos x$	$\sin x$	\mathbb{R}
$\sin x$	$-\cos x$	\mathbb{R}
$\frac{1}{\cos^2 x = 1 + \tan^2 x}$	$1 + \tan^2 x$	$\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$
x	x	\mathbb{R}
x	x	\mathbb{R}
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x$]-1, 1[
$\frac{1}{1+x^2}$	$\arctan x$	\mathbb{R}

De même, par lecture inverse du tableau des dérivées d'une composée de fonctions, on déduit le tableau ci-dessous (dans lequel on a parfois omis la variable pour des raisons de lisibilité).

fonction f (x)	primitive $F(x)$	hypothèse
$\sin(ax+b)$	$ \begin{array}{c c} \hline -\frac{1}{a}\cos(ax+b) \\ 1 \end{array} $	
$\cos(ax+b)$	$\frac{1}{a}\sin(ax+b)$	
g(ax+b)	$\frac{1}{a}G(ax+b)$	où g continue sur I et G primitive de g
$u'u^n, n \in \mathbb{N}^*$	$\frac{\frac{1}{a}G(ax+b)}{\frac{1}{n+1}u^{n+1}}$	
$\frac{u'}{u}$	$\ln u $	où $u \neq 0$ sur I
$\frac{\overline{u}}{u'}$	$-\frac{1}{u}$	où $u \neq 0$
$\frac{u'}{u^n}, n \in {}^* - \{1\}$ $\frac{u'}{\sqrt{u}}$	$-\frac{1}{n-1} \times \frac{1}{u^{n-1}}$	où $u \neq 0$ sur I
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}$	où $u > 0$ sur I
$u'u^{\alpha}, \alpha \in \mathbb{R}^* - \{-1\}$	$\frac{1}{\alpha + 1} u^{\alpha + 1}$ e^{u}	où $u > 0$ sur I
$u'e^u$	e^u	

9 Intégration par parties

Soit u et v deux fonctions dérivables sur un intervalle I. La dérivée du produit uv est

$$(uv)' = u'v + uv'$$
 d'où $u'v = (uv)' - uv'$.

Les fonctions u et v sont dérivables, donc continues; si de plus u' et v' sont continues, alors les fonctions u'v, uv' et (uv)' sont continues, donc intégrables.

Si a et b sont deux éléments de I, on a alors

$$\int_{a}^{b} u'(t)v(t) dt = \int_{a}^{b} (uv)'(t) dt - \int_{a}^{b} u(t)v'(t) dt,$$

soit encore, si on choisit uv comme primitive de (uv)',

$$\int_{a}^{b} u'(t)v(t) dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u(t)v'(t) dt,$$

exemple

On désire calculer l'intégrale $I = \int_0^1 t e^t dt$. On pose $u'(t) = e^t v(t) = t$ d'où $u(t) = e^t v'(t) = t$ et il vient $\int_0^1 t e^t dt = \left[t e^t\right]_0^1 - \int_0^1 e^t dt = e - \left[t e^t\right]_0^1 = 1.$

10 Intégration par changement de variable

10.1 Changement de variable du type $x \mapsto x + \beta$

10.1.1 Exemple

On se propose de calculer l'intégrale $I = \int_{-3}^{-2} (x+3)^2 dx$.

On peut faire le calcul directement en remarquant que $\frac{1}{3}(x+3)^3$ est une primitive de $(x+3)^2$ sur [-3,-2].

On peut également remarquer que, graphiquement, I représente une mesure de l'aire comprise entre l'axe 0x et la courbe C_1 d'équation $y = (x+3)^2$ sur l'intervalle [-3,-2]. Or cette aire est la même que celle qui est comprise entre l'axe Ox et la courbe C_2 d'équation $y = x^2$ sur l'intervalle [0,1]. (C_2 est déduite de C_1 par une translation de vecteur $3\vec{\imath}$.) On en déduit que

$$I = \int_{-3}^{-2} (x+3)^2 dx = \int_0^1 x^2 dx = \left[\frac{1}{3}x^3\right]_0^1 = \frac{1}{3}$$

En fait, cet exemple se généralise en un théorème.

10.1.2 Théorème

Soit f une fonction continue sur un intervalle I du type $I = [a, b + \beta]$ où a, b et $\beta \in \mathbb{R}$ avec $a \leq b$. Alors

$$\int_{a}^{b} f(x+\beta) dx = \int_{a+\beta}^{b+\beta} f(x) dx$$

10.2 Changement de variable du type $x \mapsto \alpha x$ lorsque $\alpha \neq 0$

En tenant un raisonnement du même type, mais avec une multiplication de l'échelle sur l'axe des ordonnées, on montre le

10.2.1 Théorème

Soit f une fonction continue sur l'intervalle $\alpha a, \alpha b,$ où $\alpha \neq 0$. Alors

$$\int_{a}^{b} f(\alpha x) dx = \frac{1}{\alpha} \int_{\alpha a}^{\alpha b} f(x) dx$$

10.2.2 Exemple

On se propose de calculer $I = \int_0^1 e^{2x} dx$.

On a
$$I = \int_0^1 e^{2x} dx = \frac{1}{2} \int_0^2 e^x dx = [e^x]_0^2 = \frac{1}{2} (e^2 - 1)$$

10.3 Cas général : changement de variable du type $x\mapsto \varphi(x)$

10.3.1 Théorème (formule du changement de variable)

Soit Ψ une fonction numérique dérivable sur un intervalle I=[a,b] dont la dérivée est continue sur I. Pour toute fonction f définie et continue sur l'intervalle f(I), on a la formule, dite du « changement de variable » :

$$\int_{\Psi(a)}^{\Psi(b)} f(t) dt = \int_a^b f\left[\Psi(t)\right] \Psi'(t) dt.$$

Appliquer cette formule revient à changer la variable d'intégration. C'est cette formule qui a conduit à l'utilisation du symbole (plûtot compliqué) $\int_a^b f(x) dx$ pour désigner l'intégrale par rapport à la variable x de la fonction f sur l'intervalle [a,b].

10.3.2 Exemple

Calculer l'intégrale $\int_1^4 \frac{dt}{1+\sqrt{t}}$ en utilisant le changement de variable $\varphi: t \mapsto \sqrt{t}$.

En fait ici, par rapport à la formule précitée, φ désigne la fonction Ψ^{-1} , réciproque sur l'intervalle considéré de la fonction $\Psi: x \mapsto x^2$.

1. On calcule les nouvelles bornes d'intégration. On pose $x = \sqrt{t}$. La fonction $\varphi : t \mapsto \sqrt{t}$ est continue et strictement croissante sur [1,4], avec

$$\varphi(1) = 1$$
 et $\varphi(4) = 2$

donc, lorsque t varie entre 1 et 4, x varie entre 1 et 2.

2. On exprime l'expression à intégrer par rapport à la nouvelle variable. On a

$$\frac{1}{1+\sqrt{t}} = \frac{1}{1+x} \quad \text{car} \quad \sqrt{t} = x.$$

La fonction $x \mapsto \frac{1}{1+x}$ est continue, donc intégrable, sur [1,2].

3. On exprime l'élément différentiel en fonction de la nouvelle variable et de son élément différentiel. On a $x = \varphi(t)$ et $\varphi'(t) = \frac{1}{2\sqrt{t}}$. En utilisant les notations différentielles, on a donc

$$dx = \frac{dt}{2\sqrt{t}}$$
 d'où $dt = 2\sqrt{t} dx = 2x dx$ car $\sqrt{t} = x$.

4. Il vient alors

$$\int_{1}^{4} \frac{dt}{1+\sqrt{t}} = \int_{1}^{2} \frac{1}{1+x} \times 2x \, dx = \int_{1}^{2} \frac{2x}{1+x} \, dx$$

(On a utilisé la formule du changement de variable avec $\Psi=\varphi^{-1}:t\mapsto t^2$.) Reste alors à remarquer que, pour tout élément x de [1,2], on a $\frac{x}{1+x}=1-\frac{1}{1+x}$ pour obtenir

$$2\int_{1}^{2} \frac{x}{1+x} dx = 2\int_{1}^{2} dx - 2\int_{1}^{2} \frac{dx}{1+x} = 2[x]_{1}^{2} - 2[\ln(1+x)]_{1}^{2} = 2(1+\ln 2 - \ln 3).$$