

物理 試卷一 乙部:試題答題簿 B

本試卷必須用中文作答

乙部考生須知

- (一) 宣布開考後,考生須首先在第1頁之適當 位置填寫考生編號;並在第1、3、5、7及9 頁之適當位置貼上電腦條碼。
- (二) 參閱甲部試卷封面的考生須知。
- (三) 全部試題均須作答。
- (四) 答案須寫在本試題答題簿中預留的空位內。不可在各頁邊界以外位置書寫。寫於邊界以外的答案,將不予評閱。
- (五) 如有需要,可要求派發方格紙及補充答題 紙。每一紙張均須填寫考生編號、填畫 試題編號方格,貼上電腦條碼,並用繩縛 於**鎌內**。
- (六) 試場主任宣布停筆後,考生不會獲得額外時間貼上電腦條碼及填畫試題編號方格。

請在此貼上電腦條碼

学 生			 	 	
写生細坑	考生編號				

題號	分數
1	8
2	10
3	12
4	6
5	8
6	9
7	9
8	10
9	6
10	6

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2022

於邊界以

外的

答案

將

不予

評

閱

乙部:全部試題均須作答。標有 * 的分題涉及延展部分的知識。把答案寫在預留的空位內。

1. 一學生以圖 1.1 所示的相同紙杯 $X \times Y$ 和 Z 進行探究最佳保持水溫的實驗。每個紙杯載有 250 cm³ 熱水,並以杯 X 作為對照。

圖 1.1

杯	包覆物	杯蓋
X	沒有	有
Y	以鋁箔包覆	有
Z	沒有	沒有

當水溫為 90 °C,學生便開始每分鐘讀取溫度計讀數。圖 1.2 顯示各個杯的水溫 (T) 如何跟所經歷的時間 (t) 變化。

(a) 提出實驗從相同的初始水溫 (90°C) 開始的原因。	(1分)
•	

請在此貼上電腦條碼

(b) 解釋為什麼所有曲線的陡度隨時間減小。	(2
(c) (i) 在圖 1.2 分別標示 杯 Y 和 杯 Z 的結果所對應的曲線。	(1
(ii) 根據相應的主要熱傳遞過程,解釋你的答案。	(3
(d) 建議一種可減低傳導失熱的製杯材料。	(1

寫於邊界以外的答案,將不予評閱

*2. (a)	(i) 圖 2.1 顯示一體積為 $6.0 \times 10^{-4} \text{ m}^3$ 的密封氣缸,載有壓強 1.0×10^5 Pa 和溫度 300 K 的單原子氣體 A 。
圖 2.1	密封氣缸 ————————————————————————————————————
	(I) 估算氣缸中氣體分子的數目 N。 (2分)
	(II)估算氣體分子的平均動能 <i>E</i> _K 。 (2分)
, ((ii) 圖 2.2 顯示另一相同的氣缸,於同樣的壓強和溫度下載有單原子氣體 B 。一個氣體 B 分子的質量為氣體 A 分子的 $\frac{1}{5}$ 。
圖 2.2	密封氣缸 ————————————————————————————————————
	(I) 指出氣體 B 的 N 和 E_K 是大於、小於還是等於在 (a)(i) 求得有關氣體 A 的相應數值。 (2 分)

(II)	已知氣體 A 分子的方均根速率 (c _{r.m.s.}) 為 600 m s ⁻¹ ,估算氣體 B 分子	子的 c _{r.m.s.} 。 (2 <u>/</u>
	有示兩個分別載有空氣和氣體 C 的玻璃樽以一玻璃片分隔。兩樽皆。氣體 C 為紅色。	庞於同樣的壓
圖 2.3	玻璃樽	
	离片後,氣體 C 需時數分鐘才擴散至上方玻璃樽的幾厘米處, 內方均根速率。 解釋這觀察。	縱使其分子擁 (2:

寫
於
邊
界
以
外
的
答
案
,
將
不
予
評
閱

3. 圖 3.1 第	顧示的四軸飛行器有四個螺旋槳。螺旋槳
當四個	螺旋槳運作使產生豎直向下的氣流,飛行器可在空中懸浮於固定位置。 $(g=9.81 \mathrm{m s^{-2}})$
(a) 根	據牛頓運動定律,解釋為什麼飛行器能夠在空中懸浮。 (2分)
已知:	四軸飛行器的質量 = 1.38 kg 四個螺旋槳共掃出的總面積 = 0.284 m ² 空氣的密度 = 1.20 kg m ⁻³
(b) 設所	f產生氣流的速率為ν。
(i)	考慮在 1 秒內被驅動向下的空氣總體積,以 ν 表出每秒被飛行器驅動向下的空氣質量 m_a 。 (2分)
(ii)	據此求可使飛行器懸浮的速率 v。 (2 分)
	······································
	······································

(c) 如圖 3.2(a) 所示,飛行器可調至傾側並跟豎直成夾角 θ ,且沿一半徑為 r 的水平圓形路徑 飛行 (圖 3.2(b))。在你的計算中,四軸飛行器的大小和空氣阻力皆可忽略。

(i) 在圖 3.2(a)上,繪畫並標示飛行器所受的力。

(2分)

*(ii) 使飛行器如上所述以 15 m s⁻¹ 的速率沿半徑 50 m 的圓形路徑飛行,求所需的向心力。

(iii) 據此計算可令飛行器具備此向心力的角 θ 。 (2分)

寫於邊界以外的答案,將不予評閱。

續後頁

4. 彈床運動員· 圖 4.1 1.5 m 彈床 圖 4.1 顯示一質量為 50 kg 的彈床運動員進行直體跳躍,至最高點時她的雙足高於彈床 1.5 m。 忽略不計空氣阻力,並假設運動員跳躍期間一直保持這姿勢。 $(g=9.81 \text{ m s}^{-2})$ 當運動員躍起後下墜而雙足剛接觸到彈床時,求她的動能。 (2分) 寫 於 邊界以外的答案 (b) 運動員接觸彈床後繼而再往下運動多 0.40 m 才停止下來。 將不予評閱 (i) 描述在運動員接觸彈床後她對彈床的能量轉移。 (2分) (ii) 估算運動員對彈床所施的平均力。 (2分)

請在此貼上電腦條碼

請勿在此頁書寫。

寫於此頁的答案,將不予評閱。

5. 在下圖,XY 為凸透鏡 L 的水平主軸,F 和 F' 為透鏡的主焦點。平行光線 $p \cdot q$ 來自一遙遠物體 AB 的 A 點。(物體可以一豎直箭矢 A 代表但**沒有**顯示在圖中,而其末端 B 在主軸上。)

(a) (i) 繪畫 p 和 q 的折射線以找出 A 的成像位置 (標作 A')。據此標繪物體 AB 的像 A'B'。

(3分)

於邊界以外的答案

將不予評閱

(ii) 建議一實驗來驗證於上述情況所成的是否為實像。 (2分)

(b)	(i)	利用所約	會的光緣	泉圖估算	物體 AB 的高度 AB 跟 L 的距離	之比	·水平和	口豎直標	度分別設	為 1:20 和	1:1 •	(2分)
							**					

	(ii)	據此估算	章物體。	4 <i>B</i> 的高度	ぎ,物體實 為	一跟差	透鏡 <i>L</i> 相]距 200 រ	n的燈柱	o		(1分)
							•					
								·				

於邊界以外

7的答案

將不予

評

閱

在圖 6.1,兩個相同的細小揚聲器 A 和 B 產生相干的聲波。X 為 AB 的中點。一連接示波器的 微音器 M 沿 OY 移動以偵測聲音的響度,示波器跡線的振幅越大代表響度越大。圖 6.2 顯示所得的結果。

	(ii) 示波器跡線於 P的振幅 並不 是零。試提出一個可能的原因。	(1分)
(c)	已知: AQ = 2.17 m, BQ = 2.58 m 如果訊號產生器的頻率為 1200 Hz,求聲音在空氣中的速率。	(2 分)
		平 14 /4 19
(d)	已知 A 和 B 的間距為 0.80 m。解釋為什麼當微音器沿 OY 移至超越位置 R 後,不到極大。	再也俱测 (2 分)
(e)	現將微音器沿線 OX 從 O 移至 X ,指出示波器跡線的振幅會增加、減少、保持呈週期變化。	·····································
. 1.		

續後頁

怎
於
迻
界
Ĺ
タ
的
答
案
,
將
不
子
剖
閱

9. :	一個邊長 $0.10~\mathrm{m}$ 的正方形金屬圈 $WXYZ$ 以恆定速度 ν 進入一勻強磁場,磁場的通量密度 β $0.03~\mathrm{T}$ 。磁場跟這圈的面垂直,如圖 $9.1~\mathrm{fh}$ 所示。金屬圈 每邊 的電阻為 $0.15~\mathrm{\Omega}$ 。
圖 9.	X
Î	當金屬圈正進入磁場,圈上有 0.01 A 的電流流通。
(a) 在圖 9.1 標示該電流的方向。 (1 分)
*(b) 求 v。
(c) (i) 求 Y和 Z 之間的 電勢差 V _{YZ} 。 (2 分)
	(ii) 解釋 V_{YZ} 是否相等於跨 YZ 的 感生電動勢 。 (1分)

	10. 氘 (²H)和氚 (³H)是氫的同位素。以下方程代表兩個氘核素的聚變:
	$^{2}_{1}H + ^{2}_{1}H \xrightarrow{} ^{3}_{2}He + ^{1}_{0}n$
	已知: ² H 的質量= 2.014102 u ³ He 的質量= 3.016029 u ¹ on 的質量= 1.008665 u
	*(a) 自然界每 6420 個氫原子之中有 1 個是氘, 估算 1 摩爾氫核素進行該聚變反應最多可產生的 能量,以 MeV 表達。 (3分)
當	
寫於邊界以	
外的	
答案,将	(b) 如將條件改變,兩氘核素的聚變可能 不會 有氦 (He) 原子核產生。完成以下此種可能的 聚變反應方程。 (1分)
不予評	² ₁ H + ² ₁ H → +
題。	(c) 裂變和聚變皆可產生能量。指出 兩個 以聚變作為能源較裂變優勝的地方。 (2分)
	試卷完 本試卷所引資料的來源,將於香港考試及評核局稍後出版的《香港中學文憑考試試題專輯》內列明。

19

請勿在此頁書寫。

寫於此頁的答案,將不予評閱。