# Mathematics and numerics for data assimilation and state estimation – Lecture 2





Summer semester 2020

#### Overview

1 Summary of lecture 1

- 2 Discrete random variables
  - Independence of random variables and events
  - Expected value and moments

3 Conditional probability and expectation

# On ubungs, presentation and lectures

- 10:30-12:00 on most Fridays.
- Structure: 5-10 questions, which I will put up in pdf form on course webpage and on Moodle. Roughly 30 minutes work in groups or alone, where I will be present for discussions, thereafter solutions in plenary by me and/or you.
- No hand-ins, unless you want to (i.e., only for feedbac, kdoes not affect grade).
- The only "graded" part of the course, in the form of bonus points, is the presentation early July, and, of course, the final exam.
- Presentations can be done alone or in groups of maximum 2 people.
- Lectures after July 17th moved to first week of June.

#### Overview

1 Summary of lecture 1

- 2 Discrete random variables
  - Independence of random variables and events
  - Expected value and moments

Conditional probability and expectation

# Measurable spaces and probability measures

- introduced a probabilty space  $(\Omega, \mathcal{F}, \mathbb{P})$
- discrete random variable  $X : \Omega \to A = \{a_1, a_2, \dots, \}$  satisfies the event constraints

$$X^{-1}(a) = \{\omega \in \Omega \mid X(\omega) = a\} \in \mathcal{F} \text{ for all } a \in A.$$

■ X can be represented by a simple function

$$X(\omega) = \sum_{a \in A} a \mathbb{1}_{X=a}(\omega).$$
 where  $\mathbb{1}_{X=a}(\omega) := egin{cases} 1 & ext{if } X(\omega) = a \\ 0 & ext{otherwise} \end{cases}$ 

#### Overview

1 Summary of lecture 1

- 2 Discrete random variables
  - Independence of random variables and events
  - Expected value and moments

Conditional probability and expectation

## Discrete random variables 2

## Example 1 (Coin toss, $X \sim \text{Bernoulli}(p)$ )

- lacktriangle image-space outcomes  $A = \{0, 1\}$ ,
- $\Omega = \{ extit{Heads}, extit{Tails}\}, \qquad \mathcal{F} = \{\emptyset, \{ extit{Heads}\}, \{ extit{Tails}\}, \Omega\}$
- X(Heads) = 1 and X(Tails) = 0 and

$$\mathbb{P}(X=1) = \mathbb{P}(X^{-1}(1)) = \mathbb{P}(\textit{Heads}) = \textit{p}, \quad \mathbb{P}(X=0) = \mathbb{P}(\textit{Tails}) = 1 - \textit{p}.$$

Comment from last lecture: image-outcomes  $\{a_1, a_2, \dots, \}$  may not be associated uniquely to (probability-space) outcomes in  $\Omega$ .

# Larger set of outcomes in $\Omega$ than in A

Alternative, and admittedly confusing, probability space for the same rv as in the preceding example:

## Example 2 (Coin toss, $X \sim \text{Bernoulli}(p)$ )

- lacksquare image-space outcomes  $A=\{0,1\}\subset\mathbb{R}$ ,
- lacktriangle  $\Omega = \{\textit{Heads}, \textit{Tails}, \textit{Nose}\}$  and

$$\mathcal{F} = \{\emptyset, \{\textit{Nose}\}, \{\textit{Heads}\}, \{\textit{Tails}\}, \{\textit{Nose}, \textit{Heads}\}, \\ \{\textit{Nose}, \textit{Tails}\}, \{\textit{Heads}, \textit{Tails}\}, \Omega\}$$

■  $X^{-1}(1) = \{ Heads, Nose \}$  and  $X^{-1}(0) = \{ Tails \}$  and

$$\mathbb{P}(X=1) = \mathbb{P}(X^{-1}(1)) = \mathbb{P}(\{\textit{Heads}, \textit{Nose}\}) = p,$$
  $\mathbb{P}(X=0) = \mathbb{P}(\textit{Tails}) = 1 - p.$ 

Motivation: if, for instance, you want to represent both a coin toss and a three-sided-die toss in the same probability space.

#### Joint rv

If  $X : \Omega \to A$  and  $Y : \Omega \to B = \{b_1, b_2, \ldots\}$  are two discrete rv on the same probability space, then

■  $(X, Y) : \Omega \to A \times B$  is also a discrete rv with countable set of outcomes

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

with joint distribution:

$$\mathbb{P}_{(X,Y)}((a,b)) = \mathbb{P}(X=a,Y=b).$$

**Question:** why is  $\mathbb{P}(X = a, Y = b)$  defined? Answer: when we say X and Y are defined on the same probability space, this entails that

$$\{X=a\}, \{Y=b\} \in \mathcal{F} \underset{\mathsf{since} \ \mathcal{F} \ \mathsf{is} \ \sigma-\mathsf{algebra}}{\Longrightarrow} \{X=a\} \cap \{Y=b\} \in \mathcal{F},$$

and

$$\mathbb{P}(X = a, Y = b) = \mathbb{P}(\{X = a\} \cap \{Y = b\}).$$

# Definition 3 (Independence of two rv)

If  $X : \Omega \to A$  and  $Y : \Omega \to B = \{b_1, b_2, \ldots\}$  are two discrete rv on the same probability space<sup>a</sup> are said to be independent random variables if

$$\mathbb{P}(X = a, Y = b) = \mathbb{P}(X = a)\mathbb{P}(Y = b), \quad \forall a \in A \quad b \in B.$$

#### **Notation:** $X \perp Y$ .

<sup>a</sup>From now on, it will be implicitly assumed that all rv are defined on the same probability space, unless otherwise stated.

## Example 4

Given independent coin tosses  $X_k \sim Bernoulli(1/2)$  for k = 1, 2, describe the smallest possible  $\sigma$ -algebra on which the rv  $(X_1, X_2)$  is defined.

#### Solution:

## Example 5 (one coin toss and one three-sided-die toss)

- Consider  $X: \Omega \to \{0,1\}$  and and  $Y: \Omega \to \{1,2,3\}$  both defined on the probability space from Example 2.
- Recall that  $X^{-1}(1) = \{Heads, Nose\}$  and  $X^{-1}(0) = \{Tails\}$  and let us assume that

$$\mathbb{P}(X=1) = 1/2, \quad \mathbb{P}(X=0) = 1/2$$

- and that  $Y^{-1}(1) = \{Heads\}, Y^{-1}(2) = \{Nose\}$  and  $Y^{-1}(3) = \{Tails\}.$
- Quation: For p = 1/2, what is

$$\mathbb{P}(X = 0, Y \in \{1, 2\}) = ?$$

Question: Are X and Y independent?



# Independence of multiple rv

#### Definition 6

Let  $X_k:\Omega \to A_k$  for  $k=1,2,\ldots,N$ , be a finite sequence of discrete rv.

Then  $X_1, X_2, \dots, X_N$  are independent provided

$$\mathbb{P}(X_1 = a_1, X_2 = a_2, \dots, X_N = a_N) = \prod_{k=1}^N \mathbb{P}(X_k = a_k)$$
 (1)

for all  $a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_N$ .

Extension: A **countable** sequence of discrete rv  $X_1, X_2, ...$  are independent provided every finite subsequence  $\{X_{k_i}\}_j$  satisfies (1).

## Example 7

identically distributed (iid).

Let  $X_i \sim Bernoulli(p)$  for i = 1, ..., N with joint distribution

Let 
$$X_i\sim Bernoum(p)$$
 for  $i=1,\ldots,N$  with joint distribution  $\mathbb{P}(X_1=a_1,X_2=a_2,\ldots,X_N=a_N)=p^{\sum_{k=1}^N a_k}(1-p)^{N-\sum_{k=1}^N a_k}$ 

for any  $a_1, \ldots, a_N \in \{0, 1\}$ . Then  $X_1, X_2, \ldots$  are independent and

## Example 8 (Functions of joint discrete rv are also discrete rv)

Let  $X_i \sim Bernoulli(p)$  be independent for i = 1, 2, ..., N and

$$S_N = f(X_1,\ldots,X_N) := \sum_{i=1}^N X_i.$$

Then

$$\mathbb{P}\left(\mathsf{S}_{\mathsf{N}}=k\right) = \binom{\mathsf{N}}{k} (1-p)^{\mathsf{N}-k} p^{k}$$

 $S_N$  is called the **Binomial distribution** with degrees of freedom N and p, and we write  $S_N \sim B(N,p)$ .

Comment: the number of different ways the event  $\{S_N = k\}$  when flipping N independent coins once equals factor in the k+1-th summand of

$$((1-p)+p)^N = (1-p)^N + {N \choose 1} p(1-p)^{N-1} + \ldots + {N \choose k} p^k (1-p)^{N-k} + \ldots$$

## Independence of events

Equation (1) is on the form:

$$\mathbb{P}\left(\bigcap_{k=1}^{N} \{X_k = a_k\}\right) = \mathbb{P}(\text{intersection of events}) = \text{Product of}\left[\mathbb{P}(\text{each event})\right]$$

#### Definition 9

A finite sequence of events  $H_1, H_2, \dots, H_N$  that belongs to  $\mathcal F$  are independent provided

$$\mathbb{P}\left(\bigcap_{k=1}^{N}H_{k}\right)=\prod_{k=1}^{N}\mathbb{P}\left(H_{k}\right)\tag{2}$$

A **countable** sequence of events  $A_1$ ,  $A_2$ , belonging to  $\mathcal{F}$  are independent provided finite subsequence  $\{A_{k_j}\}_j$  satisfies (2).

# Connection between independence of rv and independence of events

Given a probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ , we can assign an rv to each event  $H \in \mathcal{F}$  as follows

$$\mathbb{1}_H(\omega) := egin{cases} 1 & \omega \in H \ 0 & ext{otherwise} \end{cases}.$$

Easy consequence of preceding definition:  $\mathbbm{1}_{H_1}$  and  $\mathbbm{1}_{H_2}$  are independent if and only if

$$\mathbb{P}(H_1\cap H_2)=\mathbb{P}(H_1)\mathbb{P}(H_2).$$

# Expectation of rv

#### Definition 10

For a discrete rv  $X:\Omega \to A\subset \mathbb{R}^d$ , the expectation X is defined as

$$\mathbb{E}[X] := \int_{\Omega} X(\omega) \mathbb{P}(d\omega) = \sum_{a \in A} a \mathbb{P}(X = a)$$

Motivation of the above integral:

$$\int_{\Omega}X(\omega)\mathbb{P}(d\omega)=$$

■ The condition

$$\mathbb{E}[|X|] = \sum_{a \in A} |a| \mathbb{P}(X = a) < \infty$$

is a sufficent condition for  $\mathbb{E}[X]$  being defined and bounded.

■ Example for  $X \sim Beronoulli(p)$  $\mathbb{E}[X] = ?$ 

# Expectation of rv

#### Definition 11

For a discrete rv  $X:\Omega\to A\subset\mathbb{R}^d$ , the expectation X is defined as

$$\mathbb{E}[X] := \int_{\Omega} X(\omega) \mathbb{P}(d\omega) = \sum_{a \in A} a \mathbb{P}(X = a)$$

The condition

$$\mathbb{E}[|X|] = \sum_{a \in A} |a| \mathbb{P}(X = a) < \infty$$

is a sufficent condition for  $\mathbb{E}[X]$  being defined and bounded.

■ For mappings  $f: \mathbb{R}^d \to \mathbb{R}^k$  and rv f(X) the above definition readily extends:

$$\mathbb{E}[f(X)] = \sum_{a \in A} f(a) \mathbb{P}(X = a).$$

■ Example for  $X \sim Beronoulli(p)$  $\mathbb{E}[X] =$ 

# Properties of the expectation

■ For mappings  $f: \mathbb{R}^d \to \mathbb{R}^k$  and rv f(X), the expectation becomes

$$\mathbb{E}[f(X)] = \sum_{a \in A} f(a) \mathbb{P}(X = a).$$

■ For a pair of rv  $X: \Omega \to A \subset \mathbb{R}^d$  and  $Y: \Omega \to B \subset \mathbb{R}^d$ , it holds for any  $c \in \mathbb{R}$ , that

$$\mathbb{E}[X+cY] = \mathbb{E}[X] + c\,\mathbb{E}[Y]$$

provided  $\mathbb{E}[|X|] + \mathbb{E}[|Y|] < \infty$  (sufficient condition).

#### **Motivation:**

# Properties of the expectation 2

■ Probability of events can be expressed through expectations:

$$\mathbb{P}(H) = \mathbb{E}[\mathbb{1}_H]$$

for any  $H \in \mathcal{F}$ .

■ Expectation of discrete rv of the form f(X, Y) where  $X : \Omega \to A$  and  $Y : \Omega \to B$ :

$$\mathbb{E}[f(X,Y)] =$$

### Variance of an rv

■ For  $X : \Omega \rightarrow A \subset \mathbb{R}$ 

$$F(k) = \mathbb{E}[(X - k)^2]$$

is the squared deviation of X from k in expectation.

lacksquare For  $\mu:=\mathbb{E}[X]$ , and provided  $\mathbb{E}[X^2]<\infty$ , it can be shown that

$$F(\mu) \le F(k)$$
 for all  $k \in \mathbb{R}$ ,

■ Which motivates the variance of *X*:

$$Var(X) := \mathbb{E}[(X - \mu)^2]$$

■ For  $X \sim Bernolli(p)$ ,  $\mu = p$  and

$$Var(X) =$$

# Notation with same meaning

For events  $H_1, H_2, \ldots \in \mathcal{F}$ , the following notation is used interchangeably in the literature

$$\mathbb{P}(H_1H_2\ldots H_n)=\mathbb{P}(H_1,H_2,\ldots,H_n)=\mathbb{P}\left(\bigcap_{j=1}^n H_j\right).$$

And since

$$\mathbb{1}_{\bigcap_{j=1}^n H_j} = \prod_{i=1}^n \mathbb{1}_{H_j}.$$

we have that

$$\mathbb{P}\left(\bigcap_{j=1}^n H_j\right) = \mathbb{E}[\mathbb{1}_{\bigcap_{j=1}^n H_j}] = \mathbb{E}[\prod_{i=1}^n \mathbb{1}_{H_i}].$$

#### Overview

**1** Summary of lecture 1

- 2 Discrete random variables
  - Independence of random variables and events
  - Expected value and moments

3 Conditional probability and expectation

# Conditional probability

#### Definition 12

For two events  $G, H \in \mathcal{F}$  where  $\mathbb{P}(H) > 0$ , the conditional probability of G given H is given by

$$\mathbb{P}(G \mid H) = \frac{\mathbb{P}(G \cap H)}{\mathbb{P}(H)}$$

Whenever  $\mathbb{P}(H) > 0$ , the mapping  $\mathbb{P}(\cdot \mid H) : \mathcal{F} \to [0,1]$  is a probability measure.<sup>1</sup>

Verification:

<sup>&</sup>lt;sup>1</sup>And it remains to define  $\mathbb{P}(\cdot \mid H)$  for zero-probability events H.

Simplification in some settings (direct use of conditioning): For X, Y and f(X, Y) discrete rv,

$$\mathbb{P}(f(X,Y) = c \mid Y = b) = \mathbb{P}(f(X,b) = c), \quad \text{if } \mathbb{P}(Y = b) > 0. \quad (3)$$

## Example 13

Let  $X_1, X_2, X_3 \sim Bernoulli(p)$  and independent rv. Let  $Z = X_1 + X_2 + X_3$ . Compute

$$\mathbb{P}\left(Z\geq 1\mid X_{1}=0\right)$$

#### **Solution:**

"implicitly") Let  $X_1, X_2, X_3 \sim Bernoulli(p)$  and independent rv. Let  $Z = X_1 + X_2 + X_3$ .

Example 14 (Example where conditioning information is used

Let  $\lambda_1, \lambda_2, \lambda_3 \sim Bernoulli(p)$  and independent rv. Let  $Z = \lambda_1 + \lambda_2 + \lambda_3$ . Compute

$$\mathbb{P}\left(X_{1}=1\mid Z=2\right)$$

#### Solution:

## Definition 15 (Conditional expectation)

For a discrete rv  $X : \Omega \to A$  and an event  $H \in \mathcal{F}$  with  $\mathbb{P}(H) > 0$ , we define the conditional expectation of X given H as

$$\mathbb{E}[X \mid H] := \int_{\Omega} X(\omega) \mathbb{P}(d\omega \mid H) = \sum_{a \in A} a \mathbb{P}(X = a \mid H)$$

■ Property:  $\mathbb{E}[X \mid H] = \mathbb{E}[X\mathbb{1}_H]/\mathbb{P}(H)$ . Verification:

■ Implication:  $\mathbb{E}[|X| \mid H] \leq \mathbb{E}[|X|]/\mathbb{P}(H)$ .

## Example 16

Let X be a three-sided fair die, meaning

$$\mathbb{P}(X = k) = \frac{1}{3}$$
 for  $k = 1, 2, 3$ .

Compute  $\mathbb{E}[X \mid X \geq 2]$ .

## Solution:

# Conditioning on zero-probability events

For events  $G, H \in \mathcal{F}$ , it is not clear how interpret the definition

$$\mathbb{P}(G \mid H) := \frac{\mathbb{P}(G \cap H)}{\mathbb{P}(H)}$$

when  $\mathbb{P}(H) = 0$ .

**Is an extension of the definition needed?** May not seem needed as zero-probability events "never" happen anyway, but often it is convenient to use the same co-domain for all rv studied, say for example

$$X_k:\Omega\to\mathbb{N}$$

with  $X_k(\Omega) = \mathbb{N} \setminus \{k\}$  for  $k = 1, 2, \ldots$ 

**Also** any event  $\{Y = y\}$  is a zero-probability event for a continuous rv!

# Conditioning on zero-probability events 2

## Definition 17 (Division-by-zero convention)

For any  $c \in \mathbb{R}$  we will, in all of this course, make use of the following convention

$$\frac{c}{0} := 0.$$

**Motivation:** Then  $\frac{a}{b}$  is defined for any  $a,b\in\mathbb{R}$ , but it gives algebra a quirk

$$b(a/b) = \begin{cases} a & \text{if } b \neq 0 \text{ or } a = 0 \\ 0 & \text{if } b = 0. \end{cases}$$

## Definition 18 (Generalization of Definition 12) For any pair of events $G, H \in \mathcal{F}$ we define

For **any** pair of events  $G, H \in \mathcal{F}$ , we define

$$\mathbb{P}(G\mid H):=\frac{\mathbb{P}(G\cap H)}{\mathbb{P}(H)}$$

where we note that by the division-by-zero convention

$$\mathbb{P}(G\mid H)=0 \qquad \text{if } \mathbb{P}(H)=0.$$

#### Implications:

■ The definition of conditional expectation "naturally" extends to any zero-probability events  $H \in \mathcal{F}$ :

$$\mathbb{E}[X|H] := \sum a\mathbb{P}(X = a \mid H) = 0.$$

■ Direct use of conditioning, cf. equation (3), does **not** extend.

$$\mathbb{P}(f(X,Y)=c\mid Y=b)=\mathbb{P}(f(X,b)=c)\,,\qquad \text{if }\mathbb{P}(Y=b)=0.$$
 (See exercises.)

# Conditioning on random variables

- We have defined the conditional probability  $\mathbb{P}(G \mid H)$  for any pair events G, H.
- So for rv  $X : \Omega \to A$  and  $Y\Omega \to B$ , the following quantities are all defined

$$\mathbb{P}(X = a \mid Y = b)$$
 for any  $a \in A, b \in B$ .

■ Fixing the event  $\{X = a\}$ , we may introduce the function  $\psi: B \to [0,1]$ 

$$\psi(b) = \mathbb{P}\left(G \mid \{Y = b\}\right)$$

lacksquare and the function  $\phi:\Omega 
ightarrow [0,1]$  by

$$\phi(\omega) := \mathbb{P}\left(X = a \mid \{Y = Y(\omega)\}\right)$$

( curly brackets in the  $\{Y = Y(\omega)\}$  notation here is only used to emphasize that we have events and is not really needed).

■ Claim:  $\phi$  is discrete rv. Verification:  $\phi(\Omega) = \psi(B) = \{\psi(b_1), \psi(b_2), \ldots\}$ , and for any element  $\psi(b)$  in the image,  $\phi^{-1}(\psi(b)) = \{Y = b\} \in \mathcal{F}$ .

# Conditioning on random variables 2

■ The mapping  $\phi$  above was just introduced for clarification. The customary notation for "the probability of X=a given Y" is

$$\mathbb{P}(X = a \mid Y)(\omega) := \mathbb{P}(X = a \mid \{Y = Y(\omega)\})$$
  $\omega \in \Omega$ 

■ For each  $a \in A$ , the mapping  $\mathbb{P}(X = a \mid Y) : \Omega \to [0,1]$  is thus an rv.

### Example 19

Consider the setting of Example 5: a coin toss  $X : \Omega \to \{0,1\}$  and a die roll  $Y : \Omega \to \{1,2,3\}$ ,  $\Omega = \{\textit{Heads}, \textit{Nose}, \textit{Tails}\}$ ,

$$X^{-1}(1) = \{ \textit{Heads}, \textit{Nose} \}$$
 and  $X^{-1}(0) = \{ \textit{Tails} \}$ 

$$Y^{-1}(1) = \{ Heads \}, \quad Y^{-1}(2) = \{ Nose \} \quad \text{and} \quad Y^{-1}(3) = \{ Tails \}.$$

and

$$\mathbb{P}\left(\textit{Heads}
ight) = \mathbb{P}\left(\textit{Nose}
ight) = 1/4, \quad ext{and} \quad \mathbb{P}\left(\textit{Tails}
ight) = 1/2.$$

Then

$$\mathbb{P}(X = 0 \mid Y)(Heads) =$$

$$\mathbb{P}(Y = 1 \mid X)(Nose) =$$

# Definition 20 (Expectation of X given Y)

For discrete rv  $X: \Omega \to A \subset \mathbb{R}^d$  and  $Y: \Omega \to B \subset \mathbb{R}^k$  with  $|\mathbb{E}[X]| < \infty$ , the mapping  $\mathbb{E}[X \mid Y]: \Omega \to \mathbb{R}^d$  is defined by

$$\mathbb{E}[X \mid Y](\omega) := \sum_{x \in A} a \, \mathbb{P}(X = a \mid Y)(\omega) = \sum_{x \in A} a \, \mathbb{P}(X = a \mid \{Y = Y(\omega)\}).$$

## Example 21

Consider the setting of Example 19.

$$\mathbb{E}[Y \mid X](\textit{Nose}) = \sum_{k=1}^{3} k \, \mathbb{P}(Y = k \mid X) \, (\textit{Nose})$$
$$= \sum_{k=1}^{3} k \, \mathbb{P}(Y = k \mid X = X(\textit{Nose}))$$
$$= \dots$$

# Motivation for $\mathbb{E}[X \mid Y]$

Why is  $\mathbb{E}[X \mid Y]$  relevant?

If you have an observation  $Y(\omega)$  (i.e., you know  $Y(\omega)$  but not  $\omega$ ), but seek  $X(\omega)$ , then what is the best function  $g(Y(\omega))$  to approximate  $X(\omega)$ ?

Answer:  $\mathbb{E}[X \mid Y]$  is the best approximation of X in mean-square sense, meaning

$$\mathbb{E}[|X - \mathbb{E}[X \mid Y]|^2] \le \mathbb{E}[|X - g(Y)|^2]$$

for all mappings  $g: \mathbb{R}^k \to \mathbb{R}^n$  (assuming  $X(\Omega) \subset \mathbb{R}^n$  and  $Y(\Omega) \subset \mathbb{R}^k$ ).

# Properties of $\mathbb{E}[X \mid Y]$ left to prove as ubung exercises:

- Verify that  $\mathbb{E}[X \mid Y]$  is a discrete rv.
- If  $X \perp Y$ , then

$$\mathbb{E}[X\mid Y]=\mathbb{E}[X]$$
  $\mathbb{P}-\mathsf{almost}$  surely

■ The tower property

$$\mathbb{E}[\mathbb{E}[X \mid Y]] = \mathbb{E}[X].$$

#### Next time

- Conditional expectations
- Convergence of random variables
- Random walks and discrete time Markov Chains