Visual Analysis of Algorithms Version 0.0.4

Contents

1	Introduction	2			
2	Algorithm Analysis	3			
	2.1 Common Complexity Classes	3			
	2.2 Binary Logarithm				
	2.3 Amortized Analysis				
3	Data Structures	5			
	3.1 Heaps	5			
	3.1.1 Applications				
4	Problem Solving Methods				
	4.1 Greedy Algorithms	6			
	4.1.1 Overview				
	4.1.2 Dijkstra's Shortest Path Algorithm				
	4.2 Recursion				
	4.2.1 Fibonacci Sequence				
	4.2.2 Binary Exponentiation				
	4.3 Dynamic Programming				
5	Appendix	9			
	5.1 Rosources	0			

Introduction

Algorithms and data structures notes.

Algorithm Analysis

2.1 Common Complexity Classes

Name	Notation
Constant	O(n)
Logarithmic	$O(\log n)$
Linear	O(n)
Linearithmic	$O(n \log n)$
Quadratic	$O(n^2)$
Cubic	$O(n^3)$
Exponential	$O(2^n)$
Factorial	O(n!)

2.2 Binary Logarithm

Logarithm is the inverse function to exponentiation which means that the logarithm of a number n to the base b is the power to which b must be raised to produce n. The binary logarithm is the power to which the number 2 must be raised to obtain the value n.

$$x = \log_2 n \iff 2^x = n$$

• The number of bits in the binary representation of a positive integer n is the integral part of $\log_2(n) + 1$.

- The binary logarithm also frequently appears in the analysis of algorithms because binary logarithms occur in the analysis of algorithms based on two-way branching. If a problem initially has n choices for its solution, and each iteration of the algorithm reduces the number of choices by a factor of two, then the number of iterations needed to select a single choice is again the integral part of $\log_2(n)$.
- https://en.wikipedia.org/wiki/Binary_logarithm

2.3 Amortized Analysis

The motivation for amortized analysis is that looking at the worst-case run time can be too pessimistic. Instead, amortized analysis averages the running times of operations in a sequence over that sequence. Amortized analysis is a useful tool that complements other techniques such as worst-case and average-case analysis.

Imagine a dynamic list backed by a fixed size array that doubles once capacity is reached and require n inserts into the new fixed size array.

n	# of inserts
1	1
2	1
3	1
	1
n	n
	n + 1

$$\frac{\# \text{ of inserts}}{n} \to \frac{n+n+1}{n} \to \frac{2n+1}{n} \to \frac{2n}{n} \to 2$$

— https://en.wikipedia.org/wiki/Amortized_analysis

Data Structures

3.1 Heaps

3.1.1 Applications

- Heapsort
- Priority queue
- K-way merge

Problem Solving Methods

4.1 Greedy Algorithms

4.1.1 Overview

A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage. In many problems, a greedy strategy does not produce an optimal solution, but a greedy heuristic can yield locally optimal solutions that approximate a globally optimal solution in a reasonable amount of time.

— https://en.wikipedia.org/wiki/Greedy_algorithm

4.1.2 Dijkstra's Shortest Path Algorithm

Dijkstra's shortest path algorithm is a search algorithm that finds the shortest path between a vertex and other vertices in a weighted graph.

4.2 Recursion

The power of recursion evidently lies in the possibility of defining an infinite set of objects by a finite statement. In the same manner, an infinite number of computations can be described by a finite recursive program, even if this program contains no explicit repetitions.

4.2.1 Fibonacci Sequence

```
\begin{split} F_0 &= 0 \\ F_1 &= 1 \\ F_n &= F_{n-1} + F_{n-2} \qquad for \; n > 1 \\ \text{def fib(n: int) -> int:} \\ \text{if n <= 1:} \\ \text{return n} \\ \end{split}
```

4.2.2 Binary Exponentiation

```
x^{n} = \begin{cases} 1, & \text{if } n \text{ is zero} \\ \left(\frac{1}{x}\right)^{|n|}, & \text{if } n \text{ is negative} \\ x\left(x^{2}\right)^{(n-1)/2}, & \text{if } n \text{ is odd} \\ \left(x^{2}\right)^{n/2}, & \text{if } n \text{ is even} \end{cases}
\text{def pow(x: int, n: int) -> int:}
\text{if n == 0:}
\text{return 1}
\text{elif n < 0:}
\text{return pow(1 / x, abs(n))}
\text{elif n % 2 == 0:}
\text{return pow(x * x, n / 2)}
\text{else:}
\text{return x * pow(x * x, (n - 1) / 2)}
```

4.3 Dynamic Programming

To apply DP, must have the following:

- 1. Optimal substructure Problem can be broken into sub-problems and solved recursively.
- 2. Overlapping sub-problems: Recursive algorithm solves the same sub-problems over and over.

¹https://archive.org/details/algorithmsdatast00wirt/page/126]

If okay, then we can approach in 2 ways.

- 1. Top-down Memoize with cache table.
- 2. Bottom-up Solve sub-problems first and use their solutions to solve bigger sub-problems.

Appendix

5.1 Resources

- LeetCode
- Project Euler
- The Algorithm Design Manual
- Elements of Programming Interviews