

Copyright © 2025

PUBLISHED BY PUBLISHER

BOOK-WEBSITE.COM

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the "License"). You may not use this file except in compliance with the License. You may obtain a copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

First printing, September 2025

1	Abstract Linear Spaces	. 5
1.1	Binary Operation	5
1.2	Groups, Rings, Fields	8
1.3	Morphisms	9
1.4	Vector Spaces	11
2	Linear Maps and Matrices	13
2.1	Linear Maps	13
2.2	Injective and Surjective Linear Maps and Linear Equivalences	16
2.3	Matrix Multiplications and Compositions of Linear Maps	19
2.4	Elementary Row Operations	20
2.5	Dimensions of Vector Spaces	22
2.6	Elementary Column Operations, Canonical Form and Rank	23
3	Linear Spaces	25
3.1	Linear Subspaces, Kernels and Images	25
3.2	Linear Span and Linear Independence	27
3.3	Group Actions	28
3.4	Quotient Spaces	30

I assume you have learnt linear algebra.

Guowu Meng

1.1 Binary Operation

Definition 1.1.1 — Binary Operation. A *binary operation* on a set S is a mapping of the elements of the Cartesian product $S \times S$ to S.

$$f: S \times S \to S$$
$$(x,y) \mapsto f(x,y)$$

Example 1.1 A common example of a binary operation is addition on the set of natural numbers \mathbb{N} .

$$+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

$$(x,y) \mapsto x + y$$
(1.1)

Definition 1.1.2 — Associative Operation. A binary operation $f: S \times S \to S$ is said to be *associative* if, for all $x, y, z \in S$,

$$f(x, f(y, z)) = f(f(x, y), z)$$

■ **Example 1.2** A common example of an associative (binary) operation is addition on the set of natural numbers \mathbb{N} . For all $x, y, z \in \mathbb{N}$, we have x + (y + z) = (x + y) + z.

Definition 1.1.3 — Identifiable Operation. A binary operation $f: S \times S \to S$ is said to be *identifiable*, or *unital*, if there exists an element $e \in S$, the *identity* or *unit element*, such that, for all $x \in S$

$$f(e,x) = x = f(x,e)$$

■ Example 1.3 A common example of an identifiable (binary) operation is multiplication on the set of natural numbers \mathbb{N} . The identity element is 1, and for all $x \in \mathbb{N}$, we have $x \cdot 1 = x = 1 \cdot x$. ■ Proposition 1.1.1 The identity element of an identifiable operation is unique.

Proof. Let e_1 and e_2 be two identity elements for the operation f. Then, for any element $x \in S$, we have:

$$f(x,e_1) = x = f(e_1,x)$$

$$f(x,e_2) = x = f(e_2,x)$$

Now, consider the element e_1 :

$$f(e_1, e_2) = e_1$$

But since e_2 is an identity element, we also have:

$$f(e_1, e_2) = e_2$$

Therefore, we conclude that $e_1 = e_2$, proving the uniqueness of the identity element.

- R Two-sided identity must be unique, but one-sided identities need not be.
- **Example 1.4** Consider a set $X = \left\{ \begin{bmatrix} 1 & a \\ 0 & 0 \end{bmatrix} \middle| a \in \mathbb{R} \right\}$ with the binary operation defined as matrix multiplication. This set has many left identity elements, but no two-sided identity element.
 - **Definition 1.1.4** Inverse Operation. A binary operation $f: S \times S \to S$ is said to be *invertible* if, for every element $x \in S$, there exists an element $y \in S$, called the two-sided *inverse* of x, denoted as x^{-1} , such that

$$f(x,y) = e = f(y,x)$$

where e is the identity element of the operation.

- R Invertible operation exists if inverse operation exists, i.e., there exists an identity element.
- **Example 1.5** A common example of an invertible (binary) operation is addition on the set of integers \mathbb{Z} . For every integer $x \in \mathbb{Z}$, there exists an integer y = -x such that:

$$x + (-x) = 0 = (-x) + x \tag{1.2}$$

where 0 is the identity element for addition.

Proposition 1.1.2 The inverse element of an invertible operation is unique.

Proof. Let y_1 and y_2 be two inverses of an element $x \in S$. Then, by definition of inverse, we have:

$$f(x, y_1) = e = f(y_1, x)$$

$$f(x, y_2) = e = f(y_2, x)$$

Now, consider the element y_1 :

$$f(y_1,x)=e$$

But since y_2 is also an inverse of x, we can substitute e with $f(x, y_2)$:

$$f(y_1, x) = f(x, y_2) = e$$

By the associativity of the operation, we can rearrange this to:

$$y_1 = f(y_1, e) = f(y_1, f(x, y_2)) = f(f(y_1, x), y_2) = f(e, y_2) = y_2$$

Thus, the inverse element is unique.

Definition 1.1.5 — Commutative Operation. A binary operation $f: S \times S \to S$ is said to be *commutative* if, for all $x, y \in S$, the following holds:

$$f(x,y) = f(y,x)$$

■ **Example 1.6** A common example of a commutative operation is addition on the set of integers \mathbb{Z} . For all $x, y \in \mathbb{Z}$, we have:

$$x + y = y + x$$

Definition 1.1.6 — **Distributive Operation (Harmonic Property).** A binary operation $g: S \times S \to S$ is said to be *distributive* with respect to another binary operation $f: S \times S \to S$ if, for all $x, y, z \in S$, the following holds:

$$g(x, f(y,z)) = f(g(x,y), g(x,z))$$

 $g(f(y,z),x) = f(g(y,x), g(z,x))$

■ Example 1.7 A common example of a distributive operation is multiplication over addition on the set of integers \mathbb{Z} . For all $x, y, z \in \mathbb{Z}$, we have:

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

$$(y+z) \cdot x = y \cdot x + z \cdot x$$

1.2 Groups, Rings, Fields

Definition 1.2.1 — Monoid. A *monoid* is a set M equipped with a binary operation $f: M \times M \to M$ such that the following properties hold:

- 1. Closure Property: For all $x, y \in M$, $f(x, y) \in M$.
- 2. Associative Property
- 3. Identifiable Property

We say (M, f) is a monoid, and f is the *monoid operation* on the set M. A set M with a monoid operation f is the *monoid structure*.

Definition 1.2.2 — Group. A *group* is a set G equipped with a monoid operation $f: G \times G \to G$ with the additional property that every element has an inverse, *Invertible Property*.

■ Example 1.8 $(\mathbb{R} \setminus \{0\}, \times)$ is a group, but (\mathbb{R}, \times) is not a group since 0 does not have a multiplicative inverse.

Definition 1.2.3 — Abelian Monoid / Group. A monoid / group (G, f) is said to be an *abelian monoid / group* if the monoid / group operation f is commutative, *Commutative Property*.

Definition 1.2.4 — Unital Ring. A (unital) ring is a set R equipped with two binary operations $f: R \times R \to R$ (addition) and $g: R \times R \to R$ (multiplication) such that the following properties hold:

- 1. Additive Group: (R, f) is an abelian group.
- 2. Multiplicative Monoid: (R,g) is a monoid.
- 3. Distributive Property: g with respect to f.

Definition 1.2.5 — Commutative Ring. A *commutative ring* is a unital ring R such that the multiplication operation $g: R \times R \to R$ is commutative.

Example 1.9 $(\mathbb{Z},+,\times)$ is a unital commutative ring.

Definition 1.2.6 — **Field.** A *field* is a unital commutative ring F such that every non-zero element has a multiplicative inverse.

- **Example 1.10** $(\mathbb{Q},+,\times)$, $(\mathbb{R},+,\times)$ and $(\mathbb{C},+,\times)$ are fields.
- Example 1.11 $(\mathbb{Z}/2\mathbb{Z}, +, \times)$ is a field, where $\mathbb{Z}/2\mathbb{Z} = \{\overline{0}, \overline{1}\}$, $\overline{0}$ is the set of even integers and $\overline{1}$ is the set of odd integers. It follows the additions and multiplications below:

9 1.3 Morphisms

1.3 **Morphisms**

Definition 1.3.1 — Morphisms. A *morphism* is a structure-preserving map between two algebraic structures (e.g., groups, rings, fields). Formally, let (A, \cdot_A) and (B, \cdot_B) be two algebraic structures. A morphism $f: A \rightarrow B$ is a set map / function such that:

$$f(x \cdot_A y) = f(x) \cdot_B f(y) \quad \forall x, y \in A$$

Definition 1.3.2 — Monoid Homomorphism. A monoid homomorphism is a morphism between two monoids that preserves the monoid structure. Formally, let (M_1, \cdot_1) and (M_2, \cdot_2) be two monoids with identity elements e_1 and e_2 , respectively. A function $f: M_1 \to M_2$ is a monoid homomorphism if:

- 1. $f(x \cdot_1 y) = f(x) \cdot_2 f(y) \quad \forall x, y \in M_1$
- 2. $f(e_1) = e_2$

Definition 1.3.3 — Group Homomorphism. A group homomorphism is a morphism between two groups that preserves the group structure. Formally, let (G_1, \cdot_1) and (G_2, \cdot_2) be two groups with identity elements e_1 and e_2 , respectively. A function $f: G_1 \to G_2$ is a group homomorphism

- 1. $f(x \cdot_1 y) = f(x) \cdot_2 f(y) \quad \forall x, y \in G_1$ 2. $f(e_1) = e_2$ 3. $f(x^{-1}) = (f(x))^{-1} \quad \forall x \in G_1$

Proposition 1.3.1 The second and third properties of a group homomorphism are consequences of the first property.

Proof. Let $f: G_1 \to G_2$ be a group homomorphism satisfying the first property. We will show that the second and third properties follow from it.

Second Property: To show that $f(e_1) = e_2$, we use the fact that e_1 is the identity element in G_1 . For any element $x \in G_1$, we have:

$$f(x) = f(x \cdot_1 e_1) = f(x) \cdot_2 f(e_1)$$

The equation above holds for all $x \in G_1$. So for any $f(x) \in G_2$, this implies that $f(e_1)$ must be the identity element in G_2 , i.e., $f(e_1) = e_2$.

Third Property: To show that $f(x^{-1}) = (f(x))^{-1}$ for all $x \in G_1$, we use the fact that x^{-1} is the inverse of x in G_1 . We have:

$$e_2 = f(e_1) = f(x \cdot_1 x^{-1}) = f(x) \cdot_2 f(x^{-1})$$

This shows that $f(x^{-1})$ is the inverse of f(x) in G_2 , i.e., $f(x^{-1}) = (f(x))^{-1}$.

Therefore, both the second and third properties of a group homomorphism are indeed consequences of the first property.

For monoid homomorphisms, the second property cannot be derived from the first property. Consider the identity element e_1 in M_1 . If we apply the first property, we get $f(e_1 \cdot e_1) = 0$ $f(e_1) \cdot_2 f(e_1)$. This simplifies to $f(e_1) = f(e_1) \cdot_2 f(e_1)$, which does not necessarily imply that $f(e_1)$ is the identity element in M_2 , i.e., $f(e_1) \neq e_2$, but $f(e_1)$ is the idempotent element in M_2 . Therefore, the second property must be explicitly stated for monoid homomorphisms. However in the case of group homomorphisms, the existence of inverses ensures that there is only one element that can be idempotent under the group operation, which is the identity element. Thus, for group homomorphisms, the second property can be derived from the first property.

Definition 1.3.4 — Ring Homomorphism. A *ring homomorphism* is a morphism between two rings that preserves both the additive and multiplicative structures. Formally, let $(R_1, +_1, \cdot_1)$ and $(R_2, +_2, \cdot_2)$ be two rings with identity elements 0_1 , 1_1 and 0_2 , 1_2 , respectively. A function $f: R_1 \to R_2$ is a ring homomorphism if:

- 1. $f(x+y) = f(x) + 2 f(y) \quad \forall x, y \in R_1$
- 2. $f(x \cdot_1 y) = f(x) \cdot_2 f(y) \quad \forall x, y \in R_1$
- 3. $f(1_1) = 1_2$

Definition 1.3.5 — Endomorphism. An *endomorphism* is a morphism from an algebraic structure to itself. Formally, let (A, \cdot) be an algebraic structure. An endomorphism $f: A \to A$ is a set map such that:

$$f(x \cdot y) = f(x) \cdot f(y) \quad \forall x, y \in A$$

Definition 1.3.6 — **Hom-set**. The set of all morphisms from an algebraic structure A to another algebraic structure B is called the *hom-set*, denoted by Hom(A, B).

Definition 1.3.7 — Endomorphism Ring. The set of all endomorphisms of an abelian group (A, +), denoted by $\operatorname{End}(A)$, forms a (non-commutative) ring under pointwise addition and composition of set maps. The addition and multiplication operations are defined as follows:

$$+: \operatorname{End}(A) \times \operatorname{End}(A) \to \operatorname{End}(A)$$

$$(f,g) \mapsto (f+g: x \mapsto f(x) + g(x)) \qquad f+g: A \to A$$

$$\circ : \operatorname{End}(A) \times \operatorname{End}(A) \to \operatorname{End}(A)$$
$$(f,g) \mapsto (f \circ g : x \mapsto f(g(x))) \qquad f \circ g : A \to A$$

The identity element for addition is the zero endomorphism, which maps every element to the identity element of the group.

$$0: A \to A$$
$$x \mapsto 0$$

The identity element for multiplication is the identity endomorphism, which maps every element to itself.

$$1: A \to A$$
$$x \mapsto x$$

Note that all endomorphisms in End(A) are group homomorphisms and End(A) = Hom(A,A).

1.4 Vector Spaces

Definition 1.4.1 — Linear Structure. A *linear structure* over a field F on a set V is a pair $(+,\cdot)$ where (V,+) is an abelian group with a ring homomorphism $F \to \operatorname{End}(V)$, where $\operatorname{End}(V)$ is the endomorphism ring of the abelian group (V,+).

$$egin{aligned} \cdot : F & \to \operatorname{End}(V) \\ & \alpha \mapsto (\alpha \cdot : \vec{x} \mapsto \alpha \vec{x}) \qquad \alpha \cdot : V \to V \end{aligned}$$

The ring homomorphism is a (ring) action of the field F on the abelian group (V, +), called *scalar multiplication*. The ring action can be written as a binary operation:

Definition 1.4.2 — Linear Spaces / Vector Spaces. A linear space / vector space is a set with a linear structure over a field on the set.

Corollary 1.4.1 — Linear Spaces. A linear space over a field F is a set V equipped with two operations: vector addition $+: V \times V \to V$ and scalar multiplication $\cdot: F \times V \to V$, satisfying the following axioms for all $\vec{u}, \vec{v}, \vec{w} \in V$ and $\alpha, \beta \in F$:

Axiom	Statement
1. Associativity of addition	$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
2. Existence of additive identity	$\exists \vec{0} \in V \text{ such that } \forall \vec{u} \in V, \ \vec{u} + \vec{0} = \vec{u}$
3. Existence of additive inverses	$\forall \vec{u} \in V, \exists -\vec{u} \in V \text{ such that } \vec{u} + (-\vec{u}) = \vec{0}$
4. Commutativity of addition	$\vec{u} + \vec{v} = \vec{v} + \vec{u}$
5. Distributivity of scalar multiplication with	$lpha(ec{u}+ec{v})=lphaec{u}+lphaec{v}$
respect to vector addition	
6. Distributivity of scalar multiplication with	$(\alpha + \beta) \cdot = \alpha \cdot + \beta \cdot$
respect to field addition	
7. Compatibility of scalar multiplication with	$(lphaeta)\cdot=(lpha\cdot)\circ(eta\cdot)$
field multiplication	
8. Identity element of scalar multiplication	$F\ni 1=(1\cdot:x\mapsto x)\in \mathrm{End}(V)$

Example 1.12 *F* is a linear space over itself with the usual addition and multiplication operations.

The first F is the field acting on the second F, which is the abelian group.

Example 1.13 Let X be a set and F be a field. (f is a set map)

$$F[[X]] = \operatorname{Map}(X, F) \stackrel{\text{def}}{=\!=\!=} \text{the set of all } F\text{-valued functions on } X$$

 $=\!=\!= \{f: X \to F\}$

F[X] is a linear space over F with the following operations defined pointwisely:

$$\begin{split} +: F[[X]] \times F[[X]] &\to F[[X]] \\ (f,g) &\mapsto (f+g: x \mapsto f(x) + g(x)) \qquad f+g: X \to F \\ \\ \cdot: F \times F[[X]] &\to F[[X]] \\ (\alpha,f) &\mapsto (\alpha f: x \mapsto \alpha f(x)) \qquad \alpha f: X \to F \end{split}$$

Example 1.14 Let X be a set and F be a field.

$$F[X] = \operatorname{Map}_{\operatorname{fin}}(X, F) \stackrel{\operatorname{def}}{=\!=\!=\!=}$$
 the set of all finitely supported F -valued functions on X $=\!=\!=\!= \{f: X \to F \mid f \text{ is finitely supported}\}$

F[X] is a linear space over F as $F[X] \subseteq F[[X]]$ and the operations are defined pointwisely as in the previous example.

 $f: X \to F$ is finitely supported if the set $\{x \in X \mid f(x) \neq 0\}$ is finite or $f(x) \neq 0$ for only finitely many $x \in X$.

- **Example 1.15** Let t be a formal variable. Then $F[[t]] \stackrel{\text{def}}{=\!=\!=} F[[\{1,t,t^2,\cdots\}]] = \sum_{n=0}^{\infty} a_n t^n$ is the set of all formal power series in t with coefficients in F and $F[t] \stackrel{\text{def}}{=\!=\!=} F[\{1,t,t^2,\cdots\}] = \sum_{n=0}^N a_n t^n$ is the set of all polynomials in t with coefficients in F. Both F[[t]] and F[t] are linear spaces over F. ■
- **Example 1.16** Let n be a positive integer and F be a field. Then

$$F^n \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \left\{ \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \middle| c_i \in F \right\}$$

is the set of all *column matrices* with n entries in F. Elements in F^n are written as \vec{x} and are called *column vectors*. F^n is a linear space over F with the following operations defined entrywisely:

$$+: F^n \times F^n \to F^n$$

$$(\vec{a}, \vec{b}) \mapsto \vec{a} + \vec{b} = \begin{bmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{bmatrix}$$

$$(\alpha, \vec{a}) \mapsto \alpha \vec{a} = \begin{bmatrix} \alpha a_1 \\ \vdots \\ \alpha a_n \end{bmatrix}$$

 F^n is a linear space over F automatically as F is a linear space over itself.

Linear algebra is the easiest in the Mathematics

Guowu Meng

2.1 Linear Maps

Definition 2.1.1 — Linear Maps. Let V and W be two linear spaces over a field F. A linear map is a set map $f: V \to W$ such that for all $\vec{u}, \vec{v} \in V$ and $\alpha \in F$, the following holds:

$$f(\vec{u} + \vec{v}) = f(\vec{u}) + f(\vec{v})$$
$$f(\alpha \vec{u}) = \alpha f(\vec{u})$$

The set of all linear maps from V to W is denoted by $\mathcal{L}(V,W) = \text{Hom}(V,W)$.

Definition 2.1.2 — Linear Combinations. Let V be a linear space over a field F. A *linear combination* of vectors $\vec{v_1}, \vec{v_2}, \cdots, \vec{v_n} \in V$ is a vector of the form:

$$\alpha_1\vec{v_1} + \alpha_2\vec{v_2} + \cdots + \alpha_n\vec{v_n}$$

where $\alpha_1, \alpha_2, \cdots, \alpha_n \in F$ are scalars.

Corollary 2.1.1 — Linear Maps and Linear Combinations. A set map $f: V \to W$ between two linear spaces over a field F is a linear map if and only if f respects linear combinations, i.e., for all $\vec{v_1}, \vec{v_2} \in V$ and all scalars $\alpha_1, \alpha_2 \in F$, the following holds:

$$f(\alpha_1 \vec{v_1} + \alpha_2 \vec{v_2}) = \alpha_1 f(\vec{v_1}) + \alpha_2 f(\vec{v_2})$$

■ Example 2.1 Let A be an $m \times n$ matrix with entries in a field F. The map $T: F^n \to F^m$ defined by

$$T\vec{x} = T(\vec{x}) = A\vec{x}$$

where the multiplication on the right-hand side is the usual matrix multiplication, is a linear map over F.

Proposition 2.1.2 A linear map $T: F^n \to F^m$ is a matrix multiplication by a unique $m \times n$ matrix A with entries in F. The matrix A is called the *standard matrix* of the linear map T.

{Linear maps over F} \equiv { $m \times n$ matrices over F}

$$A \cdot : \vec{x} \mapsto A\vec{x} \longleftrightarrow A$$

$$T\mapsto A=egin{bmatrix} |&&&|\ Tec{e}_1&Tec{e}_2&\cdots&Tec{e}_n\ |&&&&| \end{bmatrix}$$

where the \equiv sign means they are natural identifications and $\vec{e_i} \in F^n$ is the *i*-th standard basis vector, i.e., the column matrix with 1 in the *i*-th row and 0 elsewhere.

Proof. Consider a column matrix $\vec{x} \in F^n$ with entries $x_1, x_2, \dots, x_n \in F$. Then \vec{x} can be expressed as a linear combination of the standard basis vectors $\vec{e_1}, \vec{e_2}, \dots, \vec{e_n}$:

$$\vec{x} = x_1 \vec{e_1} + x_2 \vec{e_2} + \dots + x_n \vec{e_n} = \sum_{i=1}^n x_i \vec{e_i}$$

Since T is a linear map, it respects linear combinations. Therefore, we have:

$$T\vec{x} = T\left(\sum_{i=1}^{n} x_i \vec{e}_i\right) = \sum_{i=1}^{n} x_i T(\vec{e}_i) = \sum_{i=1}^{n} x_i \vec{a}_i = A\vec{x}$$

where $\vec{a}_i = T(\vec{e}_i)$ is the *i*-th column of the matrix $A = \begin{bmatrix} | & | & | \\ T\vec{e}_1 & T\vec{e}_2 & \cdots & T\vec{e}_n \\ | & | & | \end{bmatrix}$. Thus, we have

 $T\vec{x} = A\vec{x}$ for all $\vec{x} \in F^n$. This shows that T can be represented as a matrix multiplication by the matrix A.

$$\vec{x} = x_i \vec{e}_i$$

where i is summed from 1 to n.

Definition 2.1.3 — Homogeneous Linear Functions. A linear map $f: F^n \to F$ is called a *homogeneous linear function* or a *linear functional* if it satisfies the property:

$$f(\alpha \vec{x}) = \alpha f(\vec{x})$$
 for all $\alpha \in F$ and $\vec{x} \in F^n$.

2.1 Linear Maps

15

Corollary 2.1.3 — Standard Matrix of a Linear Map. The standard matrix of a linear map $T: F^n \to F^m$ can be written as:

$$A = \begin{bmatrix} f_1(\vec{e_1}) & f_1(\vec{e_2}) & \cdots & f_1(\vec{e_n}) \\ f_2(\vec{e_1}) & f_2(\vec{e_2}) & \cdots & f_2(\vec{e_n}) \\ \vdots & \vdots & \ddots & \vdots \\ f_m(\vec{e_1}) & f_m(\vec{e_2}) & \cdots & f_m(\vec{e_n}) \end{bmatrix}$$

where $f_i: F^n \to F$ is the *i*-th component function of T, i.e., $T\vec{x} = \begin{bmatrix} f_1(\vec{x}) \\ f_2(\vec{x}) \\ \vdots \\ f_m(\vec{x}) \end{bmatrix}$ for all $\vec{x} \in F^n$.

- Each component function f_i is a homogeneous linear function, and the standard matrix A is constructed by evaluating these functions at the standard basis vectors $\vec{e_1}, \vec{e_2}, \dots, \vec{e_n}$ of F^n .
- **Example 2.2** Let $D: F[t] \to F[t]$ be the differentiation operator defined by:

$$D\left(\sum_{n=0}^{N} a_n t^n\right) = \sum_{n=1}^{N} n a_n t^{n-1}$$

for all polynomials $\sum_{n=0}^{N} a_n t^n \in F[t]$. The differentiation operator D is a linear map over F. The standard matrix of D with respect to the standard basis $\{1, t, t^2, \cdots, t^N\}$ of F[t] is given by:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & N \\ 0 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

2.2 Injective and Surjective Linear Maps and Linear Equivalences

Definition 2.2.1 — Injective Linear Maps. A linear map $f: V \to W$ between two linear spaces over a field F is said to be *injective* (or one-to-one) if for all $\vec{u}, \vec{v} \in V$, the following holds:

$$f(\vec{u}) = f(\vec{v}) \implies \vec{u} = \vec{v}$$

Equivalently, f is injective if the only vector in V that maps to the zero vector in W is the zero vector itself:

$$f(\vec{u}) = 0 \implies \vec{u} = 0$$

Definition 2.2.2 — Surjective Linear Maps. A linear map $f: V \to W$ is said to be *surjective* (or onto) if for every $\vec{w} \in W$, there exists at least one $\vec{v} \in V$ such that:

$$f(\vec{v}) = \vec{w}$$

Definition 2.2.3 — Linear Equivalences / Isomorphisms. A linear map $T: V \to W$ is called a *linear equivalence*, *isomorphism* or *invertible linear map* if T has a unique two-sided inverse S, denoted by T^{-1} , i.e., there exists a linear map $S: W \to V$ such that:

$$TS = e_W$$
 and $ST = e_V$

where $e_V: V \to V$ and $e_W: W \to W$ are the identity maps on V and W, respectively. In this case, we say that the linear spaces V and W are isomorphic, denoted by $V \cong W$.

Corollary 2.2.1 — Linear Equivalences. A linear map $T: V \to W$ is a linear equivalence if and only if T is both injective and surjective, i.e., bijective / one-to-one correspondence.

Proof. (\Rightarrow) Assume $T: V \to W$ is a linear equivalence. By definition, there exists a linear map $S: W \to V$ such that $TS = e_W$ and $ST = e_V$.

To show that T is injective, suppose $T(\vec{u}) = T(\vec{v})$ for some $\vec{u}, \vec{v} \in V$. Applying S to both sides, we have:

$$S(T(\vec{u})) = S(T(\vec{v})) \implies (ST)(\vec{u}) = (ST)(\vec{v}) \implies e_V(\vec{u}) = e_V(\vec{v}) \implies \vec{u} = \vec{v}$$

Thus, T is injective.

To show that T is surjective, let $\vec{w} \in W$. Since $TS = e_W$, we have:

$$T(S(\vec{w})) = e_W(\vec{w}) = \vec{w}$$

This shows that for every $\vec{w} \in W$, there exists a $\vec{v} = S(\vec{w}) \in V$ such that $T(\vec{v}) = \vec{w}$. Thus, T is surjective.

 (\Leftarrow) Now assume that $T: V \to W$ is both injective and surjective. We need to show that there exists a linear map $S: W \to V$ such that $TS = e_W$ and $ST = e_V$.

Since *T* is surjective, for each $\vec{w} \in W$, there exists at least one $\vec{v} \in V$ such that $T(\vec{v}) = \vec{w}$. Define the map $S: W \to V$ by choosing one such preimage for each \vec{w} :

$$S(\vec{w}) =$$
a chosen \vec{v} such that $T(\vec{v}) = \vec{w}$

To show that S is well-defined, we need to ensure that if $T(\vec{v_1}) = T(\vec{v_2})$, then $\vec{v_1} = \vec{v_2}$. This follows from the injectivity of T. Now we verify that $TS = e_W$:

$$(TS)(\vec{w}) = T(S(\vec{w})) = \vec{w}$$

for all $\vec{w} \in W$. Thus, $TS = e_W$. Next, we verify that $ST = e_V$:

$$(ST)(\vec{v}) = S(T(\vec{v})) = \vec{v}$$

for all $\vec{v} \in V$. Thus, $ST = e_V$. Therefore, T has a two-sided inverse S, and hence T is a linear equivalence.

Proposition 2.2.2 Let $T: V \to W$ be a linear map between two linear spaces over a field F and $T^{-1}: W \to V$ be the set-theoretical inverse of T. Then T^{-1} is also a linear map.

Proof. Since T is a linear equivalence, it is bijective, and thus has a well-defined set-theoretical inverse $T^{-1}: W \to V$. We need to show that T^{-1} is a linear map, i.e., it respects vector addition and scalar multiplication.

Let $\vec{w_1}, \vec{w_2} \in W$ and $\alpha \in F$. We will show that:

$$T^{-1}(\vec{w_1} + \vec{w_2}) = T^{-1}(\vec{w_1}) + T^{-1}(\vec{w_2})$$

and

$$T^{-1}(\alpha \vec{w_1}) = \alpha T^{-1}(\vec{w_1})$$

Since T is surjective, there exist $\vec{v_1}, \vec{v_2} \in V$ such that $T(\vec{v_1}) = \vec{w_1}$ and $T(\vec{v_2}) = \vec{w_2}$. Then we have:

$$T^{-1}(\vec{v_1} + \vec{v_2}) = T^{-1}(T(\vec{v_1}) + T(\vec{v_2})) = T^{-1}(T(\vec{v_1} + \vec{v_2})) = \vec{v_1} + \vec{v_2}$$

On the other hand, we also have:

$$T^{-1}(\vec{w_1}) + T^{-1}(\vec{w_2}) = \vec{v_1} + \vec{v_2}$$

Thus, we conclude that:

$$T^{-1}(\vec{w_1} + \vec{w_2}) = T^{-1}(\vec{w_1}) + T^{-1}(\vec{w_2})$$

Next, we show that T^{-1} respects scalar multiplication. For any scalar $\alpha \in F$, we have:

$$T^{-1}(\alpha \vec{w_1}) = T^{-1}(\alpha T(\vec{v_1})) = T^{-1}(T(\alpha \vec{v_1})) = \alpha \vec{v_1}$$

On the other hand, we also have:

$$\alpha T^{-1}(\vec{w_1}) = \alpha \vec{v_1}$$

Thus, we conclude that:

$$T^{-1}(\alpha \vec{w_1}) = \alpha T^{-1}(\vec{w_1})$$

Therefore, T^{-1} respects both vector addition and scalar multiplication, and hence T^{-1} is a linear map.

Proposition 2.2.3 Let X be a set and W be a linear space over a field F. Then the set of all set maps from X to W, denoted by Map(X, W), is a linear space over F with the following operations defined pointwisely:

$$+: \operatorname{Map}(X,W) \times \operatorname{Map}(X,W) \to \operatorname{Map}(X,W)$$

$$(f,g) \mapsto (f+g: x \mapsto f(x) + g(x)) \qquad f+g: X \to W$$

$$: F \times \operatorname{Map}(X, W) \to \operatorname{Map}(X, W)$$
$$(\alpha, f) \mapsto (\alpha f : x \mapsto \alpha f(x)) \qquad \alpha f : X \to W$$

Proposition 2.2.4 Let V and W be two linear spaces over a field F. Then Hom(V, W) is a linear space over F with the following operations defined pointwisely:

$$\begin{array}{c} +: \operatorname{Hom}(V,W) \times \operatorname{Hom}(V,W) \to \operatorname{Hom}(V,W) \\ & (f,g) \mapsto (f+g: \vec{v} \mapsto f(\vec{v}) + g(\vec{v})) \qquad f+g: V \to W \\ \\ \cdot: F \times \operatorname{Hom}(V,W) \to \operatorname{Hom}(V,W) \\ & (\alpha,f) \mapsto (\alpha f: \vec{v} \mapsto \alpha f(\vec{v})) \qquad \alpha f: V \to W \end{array}$$

Proof. Note that $\operatorname{Hom}(V,W) \subseteq \operatorname{Map}(V,W)$. We need to show that the operations defined above are closed in $\operatorname{Hom}(V,W)$, i.e., for all $f,g \in \operatorname{Hom}(V,W)$ and $\alpha \in F$, $f+g \in \operatorname{Hom}(V,W)$ and $\alpha f \in \operatorname{Hom}(V,W)$ or equivalently, f respects linear combinations.

Let $\vec{u}, \vec{v} \in V$ and $\alpha, \beta \in F$. Since $f, g \in \text{Hom}(V, W)$, we have:

$$(f+g)(\alpha \vec{u} + \beta \vec{v}) \stackrel{\text{def}}{=\!\!\!=} f(\alpha \vec{u} + \beta \vec{v}) + g(\alpha \vec{u} + \beta \vec{v})$$

$$\stackrel{\text{lin}}{=\!\!\!=} \alpha f(\vec{u}) + \beta f(\vec{v}) + \alpha g(\vec{u}) + \beta g(\vec{v})$$

$$\stackrel{\text{def}}{=\!\!\!=} \alpha (f(\vec{u}) + g(\vec{u})) + \beta (f(\vec{v}) + g(\vec{v}))$$

$$\stackrel{\text{def}}{=\!\!\!=} \alpha (f+g)(\vec{u}) + \beta (f+g)(\vec{v})$$

where "lin" denotes the linearity of f and g. Thus, $f+g \in \text{Hom}(V,W)$ and $\alpha f \in \text{Hom}(V,W)$.

Note that $\operatorname{End}(V) = \operatorname{Hom}(V, V)$ is a linear space over F and also a ring with the addition and multiplication operations defined in the previous section. The addition operation is commutative, but the multiplication operation is not necessarily commutative.

Then we can say that

$$\operatorname{Map}(F^n, F^m) \supseteq \operatorname{Hom}(F^n, F^m) \cong M_{m \times n}(F) := \{ \text{the set of all } m \times n \text{ matrices over } F \}$$

Definition 2.2.4 — Characteristic of a Field. The *characteristic* of a field F is the smallest positive integer n such that:

$$\underbrace{1+1+\cdots+1}_{n \text{ times}} = 0$$

If no such positive integer exists, the characteristic of F is defined to be 0.

■ Example 2.3 The differentiation operator $D: F[t] \to F[t]$ is not an injective linear map as D(1) = 0 = D(2) but is a surjective linear map if F is a field of characteristic 0.

2.3 Matrix Multiplications and Compositions of Linear Maps

We consider two linear maps $T: F^n \to F^m$ and $S: F^m \to F^k$ with standard matrices A and B, respectively. We want to find the standard matrix of the composition $ST: F^n \to F^k$.

Proposition 2.3.1 The standard matrix of the composition $ST : F^n \to F^k$ is the matrix multiplication BA, i.e., for all $\vec{x} \in F^n$,

$$(ST)\vec{x} = B(A\vec{x}) = (BA)\vec{x}$$

Proof. Let $\vec{x} \in F^n$ be a column matrix with entries $x_1, x_2, \dots, x_n \in F$. Then \vec{x} can be expressed as a linear combination of the standard basis vectors $\vec{e_1}, \vec{e_2}, \dots, \vec{e_n}$:

$$\vec{x} = x_1 \vec{e_1} + x_2 \vec{e_2} + \dots + x_n \vec{e_n} = \sum_{i=1}^n x_i \vec{e_i}$$

Consider the *j*-th column of BA, it is given by:

$$(ST)\vec{e_i} = S(T(\vec{e_i})) = S(\vec{a_i}) = B\vec{a_i} = (BA)\vec{e_i}$$

for all j = 1, 2, ..., n. This shows that the standard matrix of the composition ST is indeed the matrix multiplication BA.

- Note that B is a $k \times m$ matrix and A is an $m \times n$ matrix, so the matrix multiplication BA is defined and results in a $k \times n$ matrix.
- The matrix multiplication BA can be computed as follows:

$$BA = B \begin{bmatrix} | & | & & | \\ \vec{a_1} & \vec{a_2} & \cdots & \vec{a_n} \\ | & | & & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ B\vec{a_1} & B\vec{a_2} & \cdots & B\vec{a_n} \\ | & | & & | \end{bmatrix}$$

where $\vec{a}_i = T(\vec{e}_i)$ is the *i*-th column of the matrix A. Also,

$$B\vec{x} = x_1\vec{b_1} + x_2\vec{b_2} + \dots + x_n\vec{b_n} = \sum_{i=1}^n x_i\vec{b_i}$$

where $\vec{b_i} = B\vec{a_i}$ is the *i*-th column of the matrix *B*. Note that *B* is a $k \times m$ matrix, and $\vec{x} \in F^m$. Thus, the matrix multiplication $B\vec{x}$ is defined and results in a column matrix in F^k .

2.4 Elementary Row Operations

Definition 2.4.1 — Elementary Row Operations. Let A be an $m \times n$ matrix over a field F. An *elementary row operation* on A is one of the following operations:

- 1. Interchange two rows of *A*: $R_i \leftrightarrow R_j$.
- 2. Multiply a row of *A* by a nonzero scalar in $F: R_i \to \alpha R_i$ where $\alpha \in F \setminus \{0\}$.
- 3. Add a scalar multiple of one row of *A* to another row of *A*: $R_i \to R_i + \alpha R_j$ where $\alpha \in F$ and $i \neq j$.

Each elementary row operation can be represented by *left multiplication* of A by an appropriate $m \times m$ matrix over F. Note that all of them are invertible linear maps from $F^{m \times n}$ to $F^{m \times n}$.

For easier notations, we introduce the idea of matrix units, which is similar to the standard basis vectors \vec{e}_i .

Definition 2.4.2 — Matrix Units. Let m and n be two positive integers and F be a field. The matrix unit E_{ij} is the $m \times n$ matrix over F with 1 in the (i, j)-th position and 0 elsewhere, i.e.,

$$(E_{ij})_{kl} = \begin{cases} 1 & \text{if } (k,l) = (i,j) \\ 0 & \text{otherwise} \end{cases}$$

for all $1 \le k \le m$ and $1 \le l \le n$.

It can also be defined as $E_{ij} = \vec{e}_i \hat{e}_j \in M_{m \times n}(F)$ where $\vec{e}_i \in F^m$ and $\vec{e}_j^T = \hat{e}_j \in F^n$ are the *i*-th and *j*-th standard basis vectors, respectively. The \hat{e}_j is the row matrix with 1 in the *j*-th column and 0 anywhere else.

Note that for any $m \times n$ matrix A over a field F, we have:

$$A\vec{e_j}$$
 = the *j*-th column of $A \in F^n$
 $\hat{e_i}A$ = the *i*-th row of $A \in (F^m)^*$

where $(F^m)^*$ is the set of all row matrices with n entries in F. \hat{e}_i is an element in $(F^m)^*$ for any $1 \le i \le m$. Then we have:

$$a_{ij} = \hat{e}_i A \vec{e}_j = \text{the } (i, j)\text{-th entry of } A$$

We can write the $E_{i,j}$ as:

$$E_{i,j} = \begin{bmatrix} 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \longleftarrow \text{the } j\text{-row}$$

Then we consider the row operations by using the matrix units.

Proposition 2.4.1 The row operation $R_i \leftrightarrow R_j$ is a linear map where the standard matrix is $A_{R_i \leftrightarrow R_j} = I - E_{i,i} - E_{j,j} + E_{i,j} + E_{j,i}$.

Proof. The linear map $T: F^n \to F^n$ is defined pointwisely. We can say the map is:

$$\vec{e_k} \mapsto egin{cases} \vec{e_j} & \text{if } k = i \\ \vec{e_i} & \text{if } k = j \\ \vec{e_k} & \text{if } k \neq i, j \end{cases}$$

Then the standard matrix of T is:

$$A_{R_i \leftrightarrow R_j} = [\vec{e_1} \cdots \vec{e_j} \cdots \vec{e_i} \cdots \vec{e_n}] = I - E_{i,i} - E_{j,j} + E_{i,j} + E_{j,i}$$

where *I* is the $n \times n$ identity matrix.

Proposition 2.4.2 The row operation $R_i \to \alpha R_i$ where $\alpha \in F^x := F \setminus \{0\}$ is a linear map where the standard matrix is $A_{R_i \to \alpha R_i} = I + (\alpha - 1)E_{i,i}$.

Proof. The linear map $T: F^n \to F^n$ is defined pointwisely. We can say the map is:

$$\vec{e_k} \mapsto \begin{cases} \alpha \vec{e_i} & \text{if } k = i \\ \vec{e_k} & \text{if } k \neq i \end{cases}$$

Then the standard matrix of *T* is:

$$A_{R_i \to \alpha R_i} = [\vec{e_1} \cdots \alpha \vec{e_i} \cdots \vec{e_n}] = I + (\alpha - 1)E_{i,i}$$

where *I* is the $n \times n$ identity matrix.

Proposition 2.4.3 The row operation $R_i \to R_i + \alpha R_j$ where $\alpha \in F$ and $i \neq j$ is a linear map where the standard matrix is $A_{R_i \to R_i + \alpha R_j} = I + \alpha E_{i,j}$.

Proof. The linear map $T: F^n \to F^n$ is defined pointwisely. We can say the map is:

$$\vec{e_k} \mapsto \begin{cases} \vec{e_i} + \alpha \vec{e_j} & \text{if } k = i \\ \vec{e_k} & \text{if } k \neq i \end{cases}$$

Then the standard matrix of T is:

$$A_{R_i \to R_i + \alpha R_j} = [\vec{e_1} \cdots (\vec{e_i} + \alpha \vec{e_j}) \cdots \vec{e_n}] = I + \alpha E_{i,j}$$

where *I* is the $n \times n$ identity matrix.

2.5 Dimensions of Vector Spaces

Definition 2.5.1 — Finite Dimensional Vector Spaces. A linear space V over a field F is said to be *finite dimensional* if there exists a linear equivalence $T: V \to F^n$ for some positive integer n. In this case, we say that the dimension of V is n, denoted $\dim_F V = n$ or simply $\dim V = n$.

Definition 2.5.2 — Infinite Dimensional Vector Spaces. A linear space V over a field F is said to be *infinite dimensional* if V is not finite dimensional.

We have to proof if the dimension of a finite dimensional vector space is well-defined.

Proposition 2.5.1 If there exists two linear equivalences $T: V \to F^m$ and $S: V \to F^n$, then n = m.

Proof. Since S is linear equivalence, it has a unique two-sided inverses $S^{-1}: F^n \to V$. Consider the composition of this map:

$$TS^{-1}: F^n \to F^m$$

Since TS^{-1} is compositions of linear equivalences, it is also a linear equivalence. Mutantis mutandis, for the opposite direction.

Now, we know that a linear equivalence between two finite-dimensional vector spaces. Then we have $\dim F^n = \dim F^m$ or n = m. Thus, the dimension of a finite dimensional vector space is well-defined.

Graphically, we have the following commutative diagram:

In drawing commutative diagram, we can use \hookrightarrow to denote an injective linear map, \rightarrow to denote a surjective linear map, and \cong to denote a linear equivalence.

2.6 Elementary Column Operations, Canonical Form and Rank

Definition 2.6.1 — Elementary Column Operations. Let A be an $m \times n$ matrix over a field F. An *elementary column operation* on A is one of the following operations:

- 1. Interchange two columns of $A: C_i \leftrightarrow C_i$.
- 2. Multiply a column of *A* by a nonzero scalar in $F: C_i \to \alpha C_i$ where $\alpha \in F \setminus \{0\}$.
- 3. Add a scalar multiple of one column of A to another column of A: $C_i \to C_i + \alpha C_j$ where $\alpha \in F$ and $i \neq j$.

Each elementary column operation can be represented by *right multiplication* of *A* by an appropriate $n \times n$ matrix over *F*. Note that all of them are invertible linear maps from $F^{m \times n}$ to $F^{m \times n}$.

Proposition 2.6.1 Any $m \times n$ matrix A can be transformed into a matrix of the form $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ by a finite sequence of elementary row and column operations on A, where r is the rank of A.

$$F^{n} \xrightarrow{A} F^{m}$$

$$Q \middle| \cong \qquad \cong \middle| P$$

$$F^{n} \xrightarrow{I_{r} \quad 0} F^{m}$$

Note that P is the product of a finite sequence of elementary row operation matrices and Q is the product of a finite sequence of elementary column operation matrices. Both P and Q are invertible matrices. Thus, we have:

$$\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} = PAQ^{-1}$$

Definition 2.6.2 — Canonical Form of a Matrix. The matrix $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ obtained from an $m \times n$ matrix A by a finite sequence of elementary row and column operations on A is called the *canonical form* of A.

The canonical form of a matrix defined above is also called the *Smith Normal Form* or *Normal Form* of a matrix.

Definition 2.6.3 — Rank of a Matrix. The *rank* of an $m \times n$ matrix A over a field F, denoted by $\operatorname{rank}(A)$, is the number of leading 1's in the matrix $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ obtained from A by a finite sequence of elementary row and column operations on A.

igcap The value r is uniquely determined by A.

Proposition 2.6.2 Let A be an $n \times n$ matrix over a field F. Then the following statements are equivalent:

A is invertible
$$\iff m\left\{\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$$
 is invertible $\iff \operatorname{rank}(A) = m = n \iff \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} = I_n$

Proposition 2.6.3 Let A be an $m \times n$ matrix over a field F. Then the following statements are equivalent:

$$\operatorname{rank}(A) = n \iff A \text{ has a right inverse } \iff A \text{ is injective } \iff \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} I_n \\ 0 \end{bmatrix}$$

Proposition 2.6.4 Let A be an $m \times n$ matrix over a field F. Then the following statements are equivalent:

$$\operatorname{rank}(A) = m \iff A \text{ has a left inverse } \iff A \text{ is surjective } \iff \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} I_m & 0 \end{bmatrix}$$

Proposition 2.6.5 For every \vec{b} , $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} \vec{x} = \vec{b}$ has a unique solution.

Linear Algebra is the study of linear map between two finite dimensional vector spaces.

$$\dim V = n \qquad \dim W = m$$

$$V \xrightarrow{T} W$$

$$\cong \left(\begin{array}{c} V & \cong \\ \downarrow \cong & \cong \\ \downarrow & \cong \\ \downarrow \cong & \cong \\ \downarrow \cong & \cong \\ \downarrow & \cong \\ \downarrow & \cong \\ \downarrow & \downarrow & \cong \\ \downarrow & \downarrow & \cong \\ \downarrow & \downarrow & \downarrow & \cong \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ F^n \xrightarrow{I_r} & 0 \\ 0 & 0 \end{bmatrix}$$

The bended arrows denote the trivialisation of the vector spaces and the bottom arrow denotes the canonical matrix representation of the linear map T.

Babies have to survive, so they have the strong desire to learn stuffs. You think you are not good at math because you don't have the strong desire to learn math.

Guowu Meng

3.1 Linear Subspaces, Kernels and Images

Definition 3.1.1 — Linear Subspaces. Let W be a linear space over F and V is a subset of W, denoted as $V \subset W$. V is a (*linear*) subspace of W if V, with + and \cdot inherited from those of W, is a linear space.

Proposition 3.1.1 Let $V \subset W$. V is a subspace of W if and only if V is not empty and V is closed under + and \cdot .

Definition 3.1.2 — Kernels. Let $f: V \to W$ be a linear map. The *kernel* of f, denoted as ker(f), is defined as

$$\ker(f) \stackrel{\text{def}}{=\!\!\!=} f^{-1}(0_W) = \{ v \in V \mid f(v) = 0_W \}$$

■ **Example 3.1** Let $f: V \to W$ be a linear map. $\ker(f)$ is a subspace of domain of f, i.e., V. First, we have $0_V \in \ker(f)$, as $f(0_V) = 0_W$, so $\ker(f)$ is not empty. Then we consider $\alpha_1, \alpha_2 \in F$ and $\nu_1, \nu_2 \in \ker(f)$, we have

$$f(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 f(v_1) + \alpha_2 f(v_2) = \alpha_1(0_W) + \alpha_2(0_W) = 0_W$$

The first equality due to the linearity of f and the second is due to $v_i \in \ker(f)$.

Definition 3.1.3 — Images. Let $f: V \to W$ be a linear map. The *image* of f, denoted by Im(f), is defined as

$$\operatorname{Im}(f) \stackrel{\operatorname{def}}{=\!\!\!=} \{ f(v) \mid v \in V \} \subset W$$

■ **Example 3.2** Let $f: V \to W$ be a linear map. Im(f) is a subspace of codomain of f, i.e., W. First, we have $f(0_V) = 0_W \in Im(f)$, so Im(f) is not empty.

Then we consider $\alpha_1, \alpha_2 \in F$ and $f(v_1), f(v_2) \in \text{Im}(f)$. We have

$$\alpha_1 f(v_1) + \alpha_2 f(v_2) = f(\alpha_1 v_1 + \alpha_2 v_2) \in \text{Im}(f)$$

The equality is due to the linearity of f.

■ **Example 3.3** Let W be a linear space over a field F and $\{V_{\alpha}\}_{{\alpha}\in I}$ be the family of subspaces of W indexed by the element in the index set I. Then $\bigcap_{{\alpha}\in I}V_{\alpha}$ is also a subspace of W.

First, we have $0_W \in V_\alpha$ for all $\alpha \in I$, so $0_W \in \bigcap_{\alpha \in I} V_\alpha$. Thus, $\bigcap_{\alpha \in I} V_\alpha$ is not empty.

Then we consider $\alpha_1, \alpha_2 \in F$ and $v_1, v_2 \in \bigcap_{\alpha \in I} V_\alpha$. We have $v_1, v_2 \in V_\alpha$ for all $\alpha \in I$. Thus, $\alpha_1 v_1 + \alpha_2 v_2 \in V_\alpha$ for all $\alpha \in I$. This shows that $\alpha_1 v_1 + \alpha_2 v_2 \in \bigcap_{\alpha \in I} V_\alpha$.

Then we consider the duality of the intersection and union of subspaces. Whether the union of two subspaces is still a subspace? Unfortunately, the answer is no in general case. However, we have the following proposition.

Proposition 3.1.2 Let W be a linear space over a field F and consider the family of subspaces $\{V_{\alpha}\}_{{\alpha}\in I}$. Then $\overline{\bigcup_{{\alpha}\in I}V_{\alpha}}$ is a subspace of W where $\overline{\bigcup_{{\alpha}\in I}V_{\alpha}}$ is the completion of $\bigcup_{{\alpha}\in I}V_{\alpha}$ under linear combinations. We call $\overline{\bigcup_{{\alpha}\in I}V_{\alpha}}$ the *sum* of the subspaces $\{V_{\alpha}\}_{{\alpha}\in I}$, denoted by $\sum_{{\alpha}\in I}V_{\alpha}$.

3.2 Linear Span and Linear Independence

Definition 3.2.1 — Linear Span. Let W be a linear space over a field F and $S \subset W$. The *(linear) span* of V, denoted by $\operatorname{span}_F(S)$ or $\operatorname{simply span}(S)$ or \overline{S} , is defined as the completion of S inside W under linear combinations.

Corollary 3.2.1 span(S) can also be defined as the intersection of all subspaces of W containing S, which is the smallest subspace of W containing S. It can be written as:

$$\operatorname{span}(S) = \bigcap_{V \in I} V \subset V \quad \text{ where } I = \{V \subset W \mid V \text{ is a subspace of } W \text{ and } S \subset V\}$$

Note that I is not empty as $W \in I$. Thus, span(S) is well-defined. W is the largest subspace of itself and $\{0_W\}$ is the smallest subspace of W.

Proposition 3.2.2 Let W be a linear space over a field F and $S \subset W$. Then

$$\mathrm{span}(S) = \left\{ \sum_{i=1}^{n} \alpha_{i} s_{i} \mid n \in \mathbb{N}, \alpha_{i} \in F, s_{i} \in S \right\}$$

Note that the summation is a finite summation.

Definition 3.2.2 — Linear Independences. Let W be a linear space over a field F and V_1, \dots, V_k be subspaces of W. The subspaces V_1, \dots, V_k are said to be *linearly independent* if $V_i \neq \{0_W\}$ for all i and there is one and only one way to split $0_W \in W$ as a sum of vectors from each V_i , i.e., if $v_i \in V_i$ for all i and $\sum_{i=1}^k v_i = 0_W$, then $v_i = 0_W$ for all i.

Proposition 3.2.3 $v_1, v_2, \dots, v_k \in W$ are independent if the subspaces $\text{span}(v_1)$, $\text{span}(v_2)$, \dots , $\text{span}(v_k)$ are linearly independent.

Proposition 3.2.4 $v_1, v_2, \dots, v_k \in W$ are linearly independent if and only if there is one and only one way to write $0_W \in W$ as the combination of v_1, \dots, v_k with coefficients in F, i.e., the equation

$$\alpha_1 v_1 + \cdots + \alpha_k v_k = 0_W$$

has only the trivial solution, i.e., $\alpha_i = 0$ for all i.

Given a linear space V over a field F. We define the order set $S := \{\vec{v_1}, \vec{v_2}, \cdots, \vec{v_n}\} \subseteq V$. The order set S forms a linear map $\phi_S : F^n \to V$ defined by:

$$\phi_S(\vec{x}) = \phi_S \begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \end{pmatrix} = x_1 \vec{v_1} + x_2 \vec{v_2} + \dots + x_n \vec{v_n} = \sum_{i=1}^n x_i \vec{v_i}$$

Proposition 3.2.5 The order set $S := \{\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}\} \subseteq V$ is said to be *linearly independent* if and only if the linear map $\phi_S : F^n \to V$ defined above is injective.

Proposition 3.2.6 The order set $S := \{\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}\} \subseteq V$ is said to be a *spanning set* of V if and only if the linear map $\phi_S : F^n \to V$ defined above is surjective.

3.3 Group Actions

Definition 3.3.1 — Group Actions. Let G be a group and X be a set. A (*left) group action* of G on X is a map $\cdot : G \times X \to X$, $(g,x) \mapsto g \cdot x$, such that for all $g_1, g_2 \in G$ and $x \in X$, the following properties hold:

- 1. Compatibility: $(g_1g_2) \cdot x = g_1 \cdot (g_2 \cdot x)$.
- 2. Identity: $e \cdot x = x$ where e is the identity element of G.

Consider rotation in a plane. It is a group action of the group SO(2) on the set \mathbb{R}^2 .

$$g = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Then we have the following group action:

Definition 3.3.2 — Orbits. Let G be a group acting on a set X. The *orbit* of the action through a point $x \in X$, denoted as $G \cdot x$, is defined as the set of points in X that can be reached from x by the action of elements of G, i.e.,

$$G \cdot x = \{g \cdot x \mid g \in G\}$$

Definition 3.3.3 — Partition. A *partition* of a set X is a collection of non-empty, disjoint subsets of X whose union is X. The partition of the set X is the same as an equivalence relation on X.

Proposition 3.3.1 Orbits give a partition of the set X, i.e., X can be expressed as the disjoint union of its orbits. The orbits of the action are the equivalence classes of the equivalence relation.

Proposition 3.3.2 Let $f: X \to Y$ be a map between two sets X and Y. Then f defines a partition of X by the equivalence relation. The equivalence classes are the preimages of points in Y, i.e., $f^{-1}(y)$ for each $y \in Y$.

■ Example 3.4 Let V be a subspace of a linear space W over a field F. We know (V,+) is an abelian group. Then we have the group action of V on W defined by: $(v,w) \mapsto v+w \in W$ for all $v \in V, w \in W$ We know that $(v_1+v_2)+w=v_1+(v_2+w)$ and $0_V+w=w$ for all $v_1,v_2\in V$ and $w\in W$. Thus, it is a group action.

This group action defines this equivalence relation on W:

$$w_1 \sim w_2 \iff \exists w_2 - w_1 \in V$$

3.4 Quotient Spaces

We consider the duality of the subspace, i.e., the quotient space.

Definition 3.4.1 — Quotient Spaces.

Consider a linear space W over a field F.

Then consider a subspace $V \in W/V$.

