

$$180 - (69 + 33) = 180 - 102$$

 $180 - (69 + 33) = 78$

L'angle mesure 78° .

$$180 - (69 + 33) = 180 - 102$$

 $180 - (69 + 33) = 78$

$$180 - (45 + 32) = 180 - 77$$

 $180 - (45 + 32) = 103$

L'angle mesure 78°.

L'angle mesure 103°.

$$180 - (20 + 33) = 180 - 53$$

 $180 - (20 + 33) = 127$

L'angle mesure 127°.

$$180 - (20 + 33) = 180 - 53$$

 $180 - (20 + 33) = 127$

$$180 - (25 + 114) = 180 - 139$$

 $180 - (45 + 32) = 41$

L'angle mesure 127°.

L'angle mesure 41°.

Dans le triangle AZE, $\widehat{A} + \widehat{Z} + \widehat{E} = 180^{\circ}$.

Dans le triangle AZE, $\hat{A}+\hat{Z}+\hat{E}=180^{\circ}$.

$$\hat{E} = 180 - (57 + 31)$$

Dans le triangle AZE, $\hat{A} + \hat{Z} + \hat{E} = 180^{\circ}$.

$$\widehat{E} = 180 - (57 + 31)$$

$$\widehat{E} = 92$$

L'angle \hat{E} mesure 92°.

Dans le triangle AZE, $\hat{A}+\hat{Z}+\hat{E}=180^{\circ}$.

$$\widehat{E} = 180 - (57 + 31)$$

$$\widehat{E} = 92$$

L'angle \hat{E} mesure 92°.

Exercice 49 page 192

Dans le triangle THG, $\hat{T} + \hat{H} + \hat{G} = 180^{\circ}$.

Dans le triangle AZE, $\hat{A} + \hat{Z} + \hat{E} = 180^{\circ}$.

$$\widehat{E} = 180 - (57 + 31)$$

$$\widehat{E} = 92$$

L'angle \hat{E} mesure 92°.

Exercice 49 page 192

Dans le triangle THG, $\hat{T} + \hat{H} + \hat{G} = 180^{\circ}$.

$$\hat{G} = 180 - (103 + 29)$$

 $\hat{G} = 48$

L'angle \widehat{G} mesure 48°.

Dans le triangle AZE, $\hat{A} + \hat{Z} + \hat{E} = 180^{\circ}$.

$$\widehat{E} = 180 - (57 + 31)$$

$$\widehat{E} = 92$$

L'angle \hat{E} mesure 92°.

Exercice 49 page 192

Dans le triangle THG, $\hat{T} + \hat{H} + \hat{G} = 180^{\circ}$.

$$\hat{G} = 180 - (103 + 29)$$

 $\hat{G} = 48$

L'angle \widehat{G} mesure 48°.

La somme des mesures des angles d'un triangle vaut 180° .

La somme des mesures des angles d'un triangle vaut 180° . Le triangle est rectangle, un de ses angles mesure 90° et un autre 27° .

La somme des mesures des angles d'un triangle vaut 180° . Le triangle est rectangle, un de ses angles mesure 90° et un autre 27° .

$$180 - (90 + 27) = 63$$

Les angles de ce triangle mesurent 90°, 27°et 63°.

La somme des mesures des angles d'un triangle vaut 180° . Le triangle est rectangle, un de ses angles mesure 90° et un autre 27° .

$$180 - (90 + 27) = 63$$

Les angles de ce triangle mesurent 90°, 27°et 63°.

Exercice 52 page 192

Le triangle ABC est isocèle et rectangle en A,

La somme des mesures des angles d'un triangle vaut 180° . Le triangle est rectangle, un de ses angles mesure 90° et un autre 27° .

$$180 - (90 + 27) = 63$$

Les angles de ce triangle mesurent 90°, 27°et 63°.

Exercice 52 page 192

Le triangle ABC est isocèle et rectangle en A, l'angle \widehat{A} mesure 90°et les deux autres sont égaux. Dans le triangle ABC, $\widehat{A} + \widehat{B} + \widehat{C} = 180$ °.

La somme des mesures des angles d'un triangle vaut 180°. Le triangle est rectangle, un de ses angles mesure 90°et un autre 27°.

$$180 - (90 + 27) = 63$$

Les angles de ce triangle mesurent 90°, 27°et 63°.

Exercice 52 page 192

Le triangle ABC est isocèle et rectangle en A, l'angle \widehat{A} mesure 90° et les deux autres sont égaux. Dans le triangle ABC, $\hat{A} + \hat{B} + \hat{C} = 180^{\circ}$.

$$(180 - 90) \div 2 = 90 \div 2$$

 $(180 - 90) \div 2 = 45$

Les angles \widehat{A} , \widehat{B} et \widehat{C} mesurent respectivement 90°, 45°et 45°.

Dans le triangle
$$ABD$$
, $\widehat{A}+\widehat{B}+\widehat{D}=180^{\circ}$.

$$\hat{D} = 180 - (67 + 56)$$

 $\hat{D} = 57$

L'angle \widehat{ADB} mesure 57°.

Dans le triangle ABD, $\widehat{A} + \widehat{B} + \widehat{D} = 180^{\circ}$.

$$\hat{D} = 180 - (67 + 56)$$

 $\hat{D} = 57$

L'angle \widehat{ADB} mesure 57°.

Les points B, D et C sont alignés, l'angle \widehat{BDC} mesure 180° .

Dans le triangle ABD, $\widehat{A}+\widehat{B}+\widehat{D}=180^{\circ}$.

$$\hat{D} = 180 - (67 + 56)$$

 $\hat{D} = 57$

L'angle \widehat{ADB} mesure 57°.

Les points B, D et C sont alignés, l'angle \widehat{BDC} mesure 180°. Donc l'angle \widehat{ADC} mesure 123°(180 – 57).

Dans le triangle ABD, $\hat{A} + \hat{B} + \hat{D} = 180^{\circ}$.

$$\hat{D} = 180 - (67 + 56)$$

 $\hat{D} = 57$

L'angle $\widehat{A}\widehat{D}\widehat{B}$ mesure 57°.

Les points B, D et C sont alignés, l'angle \widehat{BDC} mesure 180°. Donc l'angle \widehat{ADC} mesure 123°(180 – 57). Dans le triangle ADC, $\widehat{A}+\widehat{D}+\widehat{C}=180^\circ$.

$$\hat{A} = 180 - (123 + 22)$$

 $\hat{D} = 45$

L'angle \widehat{DAC} mesure 45°.

1 Dans un triangle isocèle, les angles à la base sont égaux.

- Dans un triangle isocèle, les angles à la base sont égaux.
- **1** Le triangle \widehat{ABC} est isocèle en A, les angles \widehat{B} et \widehat{C} sont égaux. Donc L'angle \widehat{B} mesure 61°.

- 1 Dans un triangle isocèle, les angles à la base sont égaux.
- **1** Le triangle ABC est isocèle en A, les angles \widehat{B} et \widehat{C} sont égaux. Donc L'angle \widehat{B} mesure 61° .

Dans le triangle ABC, $\widehat{A}+\widehat{B}+\widehat{C}=180^\circ$. Donc l'angle \widehat{A} mesure $58^\circ(180-61\times 2)$.

- Dans un triangle isocèle, les angles à la base sont égaux.
- ② Le triangle ABC est isocèle en A, les angles \widehat{B} et \widehat{C} sont égaux. Donc L'angle \widehat{B} mesure 61°. Dans le triangle ABC, $\widehat{A}+\widehat{B}+\widehat{C}=180^\circ$. Donc l'angle \widehat{A} mesure
 - $58^{\circ}(180 61 \times 2)$.
 - 2 Le triangle DEF est isocèle en E, les angles \widehat{D} et \widehat{F} sont égaux.

 $58^{\circ}(180 - 61 \times 2)$.

- Dans un triangle isocèle, les angles à la base sont égaux.
- **1** Le triangle ABC est isocèle en A, les angles \widehat{B} et \widehat{C} sont égaux. Donc L'angle B mesure 61° . Dans le triangle ABC, $\hat{A} + \hat{B} + \hat{C} = 180^{\circ}$. Donc l'angle \hat{A} mesure
 - **9** Le triangle DEF est isocèle en E, les angles \widehat{D} et \widehat{F} sont égaux. La somme des mesures des angles d'un triangle vaut 180°. Donc les angles