Uso de Arduino para Irrigação Automatizada de Hortas Urbanas

Autoria: Saulo Jacques e Marina de Freitas

Aplicações

- Agricultura urbana
- Hortas residenciais
- Sistemas Agroflorestais

Potencial

- Integração com projetos de captação de água da chuva
- Uso eficiente de água
- Irrigação de pequenas e médias produções
- Adequação a necessidades e condições climáticas específicas de diferentes regiões
- Adequação a demanda hídricas de diferentes grupos vegetais

A adoção dessa técnica não visa a substituição do contato das pessoas com a terra por um sistema 100% automatizado, mas um equilíbrio entre o resgate da agricultura em grandes centros urbanos, integrado ao uso eficiente de recursos naturais.

Componentes

Arduino

Protoboard

Cabo conexão com laptop

Relé (relay)

Válvula solenóide

Mangueira

Ferramentas

Fios

Fita isolante

Chave de fenda

Estilete

Algodão (ou terra)

O Relé (ou Relay)

Circuito elétrico usado para fechar/abrir circuito sem necessidade de intervenção

Válvula Solenoide

Válvula que se abre e se fecha respondendo ao campo magnético gerado por um solenoide ou um eletroímã

Medindo a Umidade Usando Arduino

O sensor utilizado funciona como um resistor que varia em relação à quantidade de água no solo: quanto mais água, maior condutividades e menor resistência.

Resultados obtidos com os sensores: Resistência

Alta concentração de água → Menores valores de output Baixa concentração de água → Maiores valores de output

Lendo a Umidade do Solo com Arduino

Arquivo: esquema1_automatizada.ino

Detectando Baixa Umidade do Solo

Arquivo: esquema2_led.ino


```
int val_umid = 0; // sensor de umidade
int umidade=0;

void setup() {
   Serial.begin(9600);
}

void led(int state) {
   digitalWrite(8, state);
   }
```



```
void loop() {
 umidade = analogRead(val_umid);
//intervalo dos resultados brutos entre seca e
úmido
 umidade = constrain(umidade, 400, 1023);
//convertendo os resultados em porcentagem
de umidade (0 e 100%)
 umidade = map(umidade, 400, 1023, 100, 0);
 Serial.println(umidade);
 if (umidade < 40) {
 led(HIGH); }
 else {
 led(LOW); }
delay(2000);
```

Detectando Baixa Umidade do Solo & Automatizando o Sistema

Arquivo: esquema3_automatizada.ino


```
void loop() {
  int umidade = analogRead(val_umid);
  umidade = constrain(umidade,400,1023);
  umidade = map(umidade,400,1023,100,0);

Serial.println(umidade);
```

if(umidade< 40) {

rega(HIGH);

rega(LOW);

delay(2000);

} else {

Usando Tempo Para Controlar a Rega

Arquivo: esquema4_tempo_de_rega.ino

