Лабораторная работа № 04 ДО

ВОЛЬТАМПЕРНЫЕ ХАРАКТЕРИСТИКИ И ПАРАМЕТРЫ БИПОЛЯРНОГО ТРАНЗИСТОРА

Теоретическая справка

Усилительный каскад на биполярном транзисторе, включенном по схеме с общим эмиттером

Рассмотрим усилитель, в котором транзистор включен по схеме с общим эмиттером, а для стабилизации положения рабочей точки используется отрицательная обратная связь по току (рис. 1,а или рис 1,6).

Конденсаторы C_1 и C_2 являются разделительными: C_1 препятствует связи источника входного сигнала и усилителя по постоянному току, а C_2 служит для разделения по постоянному току коллекторной цепи и нагрузки. Емкости C_1 и C_2 выбирают такими, что на частоте переменной составляющей их сопротивлением можно было пренебречь. Резистор $R_{\rm r}$ учитывает внутреннее сопротивление источника сигнала. Резисторы R_1 и R_2 образуют делитель напряжения, определяющий положение рабочей точки эмиттерного перехода.

Резистор в цепи коллектора преобразует изменение тока коллектора в выходное напряжение. На выходе цепи включен резистор нагрузки $R_{\rm H}$, с которого снимается усиленный сигнал.

Резистор R_9 является цепью отрицательной обратной связи. Конденсатор C_9 в цепи эмиттера шунтирует резистор R_9 . Ёмкость этого конденсатора выбирают такой, чтобы на нижней границе полосы пропускания усилителя $X_{c9} << R_9$. При наличии C_9 увеличивается коэффициент усиления переменной составляющей.

Рис. 1,а (*n-р-n* транзистор)

Рис. 1,6 (*n-p-n* транзистор) $E_6 = E_{\text{пит}} \frac{R_2}{R_1 + R_2} R_6 = \frac{R_1 R_2}{R_1 + R_2}$

Поскольку в схеме действуют источники переменного (источник сигнала на входе) и постоянного напряжения, для расчета используем метод наложения. Проанализируем цепь отдельно для постоянной и переменной составляющих. Напомним, что анализ по постоянной составляющей называют анализом в режиме большого сигнала, а по переменной составляющей — анализом в режиме малого сигнала.

Для определения переменных составляющих как правило используются аналитические методы расчета, основанные на использовании эквивалентных схем. Если амплитуда переменных составляющих значительно меньше постоянных составляющих токов и напряжений, то используется малосигнальная эквивалентная схема, например, в h-параметрах.

Используя *h-параметры* можно составить уравнения для приращений токов и напряжений:

$$\Delta U_{69} = h_{119} \Delta I_6 + h_{129} \Delta U_{K9}$$
$$\Delta I_K = h_{219} \Delta I_6 + h_{229} \Delta U_{K9}$$

Методика графического определения h – параметров транзистора

Располагая вольтамперными характеристиками транзистора, можно графическим путем определить низкочастотные значения h-параметров. Для определения h-параметры необходимо задать рабочую точку, например, А (I_{6A} , U_{6A}), в которой требуется найти параметры (рис. 2,а).

Параметры h_{119} и h_{129} находят по входной характеристики $U_{69} = f_1(I_6)|_{U_{K9}={\rm const.}}$ Определим h_{119} для заданной рабочей точки A (I_{6A} , U_{69A}). На входной характеристике находим точку A, соответствующую заданной рабочей точке (рис. 2,а). Выбираем вблизи рабочей точки A две вспомогательные точки A_1 и A_2 (приблизительно на одинаковом расстояние), определим по ними ΔU_{69} и ΔI_6 и рассчитаем входное дифференциальное сопротивление, по формуле:

$$h_{119} = (\Delta U_{69} / \Delta I_6)|_{U_{K9} = \text{const.}}$$

Приращения ΔU_{69} и ΔI_{6} выбираю так, чтобы не выходить за пределы линейного участка, примерно (10-20)% от значений напряжения и тока в рабочей точки.

Графическое определение параметра $h_{129} = \Delta U_{69} / \Delta U_{\kappa_9}$ затруднено, так как семейство входных характеристик при различных $U_{\kappa_9} > 0$ практически сливается в одну.

Параметры h_{229} и h_{219} определяются из семейства выходных характеристик транзистора $I_{\kappa}=f_1(U_{\kappa 9})$ (рис. 2,6).

Параметр $h_{219}=(\Delta I_{\rm K}/\Delta I_{\rm G})$ $|_{U_{\rm K9}={\rm const.}}$ находится в заданной рабочей точке А $(I_{\rm KA},\,U_{\rm K9A})$. Приращение тока базы $\Delta I_{\rm G}$ следует брать вблизи выбранного значения тока базы $I_{\rm GA}|_{U_{\rm K9}=U_{\rm K9A}}$, как $\Delta I_{\rm G}=I_{\rm G2}-I_{\rm G1}$. Этому приращению $\Delta I_{\rm G}$ соответствует приращение коллекторного тока $\Delta I_{\rm K}=I_{\rm K2}-I_{\rm K1}$ (см. рис. 2,6). Тогда коэффициент передачи тока базы можно рассчитать по формуле $h_{\rm 219}=(\Delta I_{\rm K}/\Delta I_{\rm G})$ $|_{U_{\rm K9}={\rm const.}}$.

Параметр $h_{223}=(\Delta I_{\rm K}/\Delta U_{\rm K3})|_{I_6={\rm const}}$ определяется по наклону выходной характеристики (рис. 2,6) в заданной рабочей точки А ($I_{\rm KA}$, $U_{\rm K3A}$), где $\Delta U_{\rm K3}|_{I_6=I_6{\rm A}}=U_{\rm K2}-U_{\rm K1}$ – приращение коллекторного напряжения, вызывающие приращение коллекторного тока $\Delta I_{\rm K}^*$. При этом из семейства выходных

характеристик следует выбирать ту характеристику, которая снята при выбранном значение тока базы I_6 = I_{6A} .

Если рабочая точка не лежит ни на одной из выходных характеристик, приведенных на BAX, то надо провести самостоятельно дополнительную характеристику, соответствующую току базы I_{6A} .

Основные параметры усилительного каскада

Основными параметрами усилительного каскада являются коэффициент усиления, входное и выходное сопротивления. Определим эти параметры, используя малосигнальную схему замещения с h — параметрами.

В современных справочниках h-параметры, как правило, не задаются. В этом случае их можно приближенно определить через рабочий ток транзистора $I_{\kappa A}$ и коэффициент усиления β следующим образом:

$$h_{119} \approx \beta \frac{\phi_{T}}{I_{\kappa A}}, \quad h_{219} = \beta \quad , \quad h_{229} \approx 0.$$

Здесь $\phi_{\scriptscriptstyle T}$ — тепловой потенциал, который для комнатной температуры $+20^{\circ}{\rm C}$ примерно равен 25 мВ.

Коэффициент усиления по напряжению

$$K_u = \frac{u_{\text{\tiny BMX}}}{u_{\text{\tiny BX}}} = \frac{-h_{219}(R_{\text{\tiny K}} \parallel R_{\text{\tiny H}})}{h_{119}}.$$

Входное сопротивление
$$R_{\text{bx}} = \frac{u_{\text{bx}}}{i_{\text{bx}}} = R_{\text{b}} \parallel h_{\text{119}}$$

Выходное сопротивление
$$R_{\scriptscriptstyle
m BЫX} = \frac{u_{\scriptscriptstyle
m BЫX}}{i_{\scriptscriptstyle
m BЫX}} = R_{\scriptscriptstyle
m K}$$

При наличии обратной связи по переменной составляющей, то есть при отсутствии шунтирующего конденсатора C_9 можно использовать малосигнальную схему, представленную на **рис. 4**.

Рис. 4

Коэффициент усиления по напряжению

$$K_u = \frac{u_{\text{\tiny BMX}}}{u_{\text{\tiny BX}}} == -h_{219} \frac{R_{\text{\tiny K}} || R_{\text{\tiny H}}}{h_{119} + R_{\text{\tiny 9}} (1 + h_{219})} \approx -\frac{R_{\text{\tiny K}} || R_{\text{\tiny H}}}{R_{\text{\tiny 9}}},$$

при $R_{_{\rm H}} \to \infty$ (режим холостого хода) $K_u|_{_{XX}} \approx -\frac{R_{_{\rm K}}}{R_{_{\rm S}}}$.

Входное сопротивление
$$R_{_{\mathrm{BX}}} = \frac{u_{_{\mathrm{BX}}}}{i_{_{\mathrm{BX}}}} = R_{_{\mathrm{6}}} || [h_{_{119}} + (1 + h_{_{219}})R_{_{9}}]$$

Выходное сопротивление
$$R_{\scriptscriptstyle
m BЫX} = \frac{u_{\scriptscriptstyle
m BЫX}}{i_{\scriptscriptstyle
m RIJY}} = R_{\scriptscriptstyle
m K}$$