МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (государственный технический университет)

Факультет прикладной математики и физики

КУРСОВАЯ РАБОТА

«Системы массового обслуживания»

Выполнил: студент группы 08-504

Никольский Г. Л.

Вариант 9

Преподаватель: Борисов А.В.

Москва 2011

Постановка задачи

Пусть $X = \{X_t, t = 0,1,...\}$ — цепь Маркова с множеством состояний $\{e_1,e_2,e_3,e_4\}$, где $e_i = [0,...,0,1,0,...,0]^T$, и переходной матрицей

$$P = \begin{pmatrix} 0 & 1 & 0 & 0 \\ \sin^2 \frac{\pi n}{10} & 0 & \cos^2 \frac{\pi n}{10} & 0 \\ 0 & 0 & 0 & 1 \\ \cos^2 \frac{\pi n}{20} & 0 & \sin^2 \frac{\pi n}{20} & 0 \end{pmatrix}.$$
(1)

Начальное распределение

$$p_0 = \left(\frac{1}{2}\sin^2\frac{\pi n}{15}, \frac{1}{2}\cos^2\frac{\pi n}{15}, \frac{1}{2}\cos^2\frac{\pi n}{25}, \frac{1}{2}\sin^2\frac{\pi n}{25}\right)^T$$

(n -номер студента в группе).

Цепь доступна косвенному наблюдению:

$$Y_t = C^T X_t + \sigma^T X_t V_t, \qquad t = 1, 2, \dots, T, \tag{2}$$

где $\{V_t\}$ — последовательность независимых стандартных гауссовских величин,

$$C = [1,2,3,4]^T$$
, $\sigma = [0.1; 0.15; 0.2; 0.25]^T$.

- 1) С помощью метода производящих функций найти распределение p(t) в произвольный момент времени t.
- 2) Выяснить является ли цепь X эргодической. Найти все стационарные (т.е. инвариантные) распределения.
- 3) Рассматривая систему наблюдения (2) на интервале [0,100], построить:
- а) наилучшую нелинейную оценку фильтрации $\hat{X}_t = E\{X_t | \mathcal{Y}_t\}$, её ошибку $\hat{\Delta}_t = \hat{X}_t X_t$, условную ковариацию $\hat{k}_t = cov\{\hat{\Delta}_t, \hat{\Delta}_t | \mathcal{Y}_t\}$, где $\mathcal{Y}_t \sigma$ -алгебра, порожденная случайными величинами $\{Y_1, \dots, Y_t\}$;
- б) наилучшую линейную оценку фильтрации \bar{X}_t , её ошибку $\bar{\Delta}_t = \bar{X}_t X_t$;
- в) тривиальную оценку $E\{X_t\}$, её ошибку $\Delta_t = E\{X_t\} X_t$, условную ковариацию $k_t = cov\{\Delta_t, \Delta_t | \mathcal{Y}_t\}$ и безусловную ковариацию $\varkappa_t = cov\{\Delta_t, \Delta_t\}$.
- 4) Путем осреднения по пучку траекторий (1000 реализаций) построить оценки:
- a) $\hat{k}_t = cov\{\hat{\Delta}_t, \hat{\Delta}_t\};$
- 6) $\bar{k}_t = cov\{\bar{\Delta}_t, \bar{\Delta}_t\};$
- B) $\mu_t = cov\{\Delta_t, \Delta_t\}.$
- 5) Результаты представить в виде таблиц и графиков.
- 6) Пункты 3-5 выполнить для

$$\sigma = [1; 15; 2; 2.5]^T$$
.

Проанализировать полученные результаты и сделать выводы.

Теоретическая часть

Определение 1. Случайный процесс с дискретным временем, сечение которого является дискретной случайной величиной, называется цепью.

Определение 2. $X = (\{X_n\}, \{\mathcal{F}_n\})$ - стохастическая последовательность, если для любого натурального п X_n - F_n - измеримая случайная величина.

Определение 3. Стохастическая последовательность $X = (\{X_n\}, \{\mathcal{F}_n\})$, принимающая значения из конечного или счетного множества называется марковской цепью (МЦ), если $\forall n \geq m > 0$, $\forall B \in \mathcal{B}(\mathbb{R})$ - борелевское множество:

$$P\{X_n \in B | \mathcal{F}_m\} = P\{X_n \in B | X_m\}$$

В простейшем случае условное распределение последующего состояния МЦ зависит только от текущего состояния и не зависит от всех предыдущих состояний.

Будем рассматривать МЦ с дискретным временем с пространством состояний $E = \{e_1, ..., e_k, ...\}.$

Определение 4. Матрица P(n), где $P_{i,j}^{(n)} = P(X_n = e_i \mid X_{n-1} = e_j)$, называется матрицей переходных вероятностей на n-м шаге.

Определение 5. Вероятность $\pi_k(n) = P\{X_n = e_k\}$, $e_k \in E$, называется вероятностью состояния e_k в момент времени $n \geq 0$, а вектор $\pi(n) = \{\pi_0(n), \pi_1(n), \ldots\}^T$ - распределением вероятностей состояний МЦ X в момент $n \geq 0$. Известно, что при каждом $n \geq 1$ выполнено рекуррентное соотношение

$$\pi(n) = P^{T}(n)\pi(n-1).$$

Для МЦ с дискретным временем строится ориентированный граф переходов по следующим правилам:

- 1. Множество вершин графа совпадает со множеством состояний цепи.
- 2. Вершины $i, j (i \neq j)$ соединяются ориентированным ребром $i \to j$, если $q_{ij} > 0$ (то есть интенсивность потока из i -го состояния в j -е положительна).

Определение 6. МЦ называется однородной, если матрица переходных вероятностей не зависит от номера шага, то есть $P_{i,j}^{(n)} = P_{i,j}, \ \forall n \in \mathbb{N}$ Для таких цепей при определённых условиях выполняется следующее свойство:

Для таких цепей при определённых условиях выполняется следующее свойствоя $\pi(n) \xrightarrow{n \to \infty} \pi_{\infty}$.

Определение 7. Распределение $\tilde{\pi}$ называется стационарным распределением, если выполняется следующее равенство:

$$\tilde{\pi} = P^T \tilde{\pi}$$
 $\left(\sum_j \tilde{\pi}_j = 1, \ \tilde{\pi}_j > 0\right).$

Определение 8. Марковская цепь называется эргодической, если $\exists \pi_j = \lim_{n \to \infty} P_{i,j}^{(n)}$, причем $\sum_i \pi_i = 1$, $\pi_i > 0$.

Для выяснения условий эргодичности однородной МЦ необходимо ввести классификацию ее возможных состояний.

Пусть $p_{i,j}^k = P\{X_k = e_j | X_0 = e_i\}$ - вероятность перехода за k шагов из состояния e_i в состояние e_j , пусть также $f_{ii}^{(k)} = P\{X_k = i, X_l \neq i \ \forall \ 1 \leq l \leq k-1 | X_0 = i\}$ обозначает вероятность первого возвращения за k шагов в состояние e_i .

Определение 9. Состояние $e_k \in E$ называется несущественным, если найдется $e_j \in E$, такое, что $p_{k,j}^{(m)} > 0$ для некоторого $m \ge 1$, но $p_{j,k}^{(n)} = 0$ для всех $n \ge 1$. В противном случае состояние e_k называется существенным.

Определение 10. Состояния $e_k, e_j \in E$ называются сообщающимися, если найдутся $m,n \ge 1$, такие, что $p_{k,j}^{(m)} > 0$ и $p_{j,k}^{(n)} > 0$.

Определение 11. Состояние $e_j \in E$ называется возвратным, если $f_{ii}=1$ и невозвратным, если $f_{ii}<1$, где $f_{ii}=\sum_{k=1}^{\infty}f_{ii}^{(k)}$.

Определение 12. Пусть d_j — наибольший общий делитель чисел $\left\{n \geq 1 : P_{jj}^{(n)} > 0\right\}$. Состояние e_j называется периодическим с периодом d_j , если $d_j > 1$. В противном случае состояние — апериодическое.

Определение 13. МЦ называется неразложимой, если все ее состояния — существенные и сообщающиеся. Иначе МЦ называется разложимой.

Определение 14. Неразложимая МЦ называется апериодической, если все её состояния — апериодические (d=1).

<u>Теорема 1.</u> Для того чтобы конечная МЦ была эргодической, необходимо и достаточно, чтобы она была неразложимой и апериодической.

$$\binom{\text{неразложима}}{\text{апериодична }(d=1)} \Leftrightarrow \binom{d=1}{\text{возвратна}} \Leftrightarrow (\text{эргодична}) \Leftrightarrow \left(\exists n_0 : \min_{i,j} P_{i,j}^{(n_0)} > 0\right)$$

Если для МЦ верно, что для любых $i,\,j=0,1,\dots$ существуют независящие от i пределы

$$p_{i,j}^{(n)} \rightarrow p_j > 0$$
 при $n \rightarrow \infty$,

где числа $\{p_j\}$ являются единственным решением системы уравнений:

$$p_j = \sum_{k=0}^{\infty} p_{k,j} p_k$$
 , $j = 0,1,...$,
$$\sum_{j=0}^{\infty} p_j = 1$$
 ,

то цепь называется эргодической, а распределение вероятностей $p = \{p_0, p_1, ...\}^T$ - стационарным распределением МЦ.

Определение 15. Производящая функция $\varphi(z)$ неслучайной последовательности $\{f_n\}$, $n\geq 0$ — это формальный степенной ряд

$$\varphi(z) = \sum_{n=0}^{\infty} f(n)z^n, \ z \in \mathbb{C}$$

Производящие функции дают возможность описывать большинство сложных последовательностей довольно просто, а иногда найти для них явные формулы.

f_n	$\varphi(z)$	f_n	$\varphi(z)$	f_n	$\varphi(z)$
1	$\frac{1}{1-z}$	$lpha^n$	$\frac{1}{1-\alpha z}$	n	$\frac{z}{\left(1-z\right)^2}$

Алгоритм метода производящих функций:

1. Найти $\left(I - \frac{1}{z}P^{T}\right)^{\!\!-1}\pi(0)$, где I - единичная матрица, соответствующей

размерности, P - матрица переходных вероятностей, I - единичная матрица.

2. Найти обратное z - преобразование полученного вектора, т.е. обратное z - преобразование каждого элемента вектора для получения аналитического выражения для $\pi(n)$.

Для однородных цепей при определенных условиях выполняется следующее свойство: $\pi(n) \to \pi^0$ при $n \to \infty$, а предельное распределение π^0 вероятностей состояний МЦ не зависит от начального распределения $\pi(0)$.Оно определяется лишь переходной матрицей P. В этом случае говорят, что ЦМ обладает эргодическим свойством. Вероятности состояний $\pi(n)$ по мере увеличения n практически перестают изменяться, а система, описываемая соответствующей цепью, переходит в стационарный режим функционирования.

Фильтрация марковских цепей.

$$\begin{cases} X_t = a(X_{t-1}, t, V_t, \theta) \\ Y_t = A(X_t, t, W_t, \theta) \end{cases}$$

 X_t - вектор состояний системы (ненаблюдаемый) в момент времени t;

 Y_t - вектор наблюдений;

 V_t - шумы в уравнении состояний;

 W_t - шумы в уравнении наблюдений;

 θ — вектор параметров.

Задача фильтрации состоит в определении с.к.-оптимальной оценки $\hat{X}_t = \hat{X}(t,Y)$ процесса X_t по наблюдениям $Y = (y_1, \dots, y_t)$.

С.к. – оптимальной оценкой является условное математическое ожидание:

$$J(\hat{X}_t) = M\left[\left\|\hat{X}_t - X_t\right\|^2\right] \to \min_{\hat{X}_t \in \mathcal{X}}$$

Если \mathcal{X} — множество всех функций $\hat{X}(t,Y):M\left[\|\hat{X}\|^2\right]<\infty$, то оптимальная оценка $\hat{X}_t=M[X_t|Y]$. Более того, если $J(\hat{X}_t)=M\left[\|\hat{X}_t-X_t\|^2|Y\right]$, то $\hat{X}_t=M[X_t|Y]$ - оптимальная оценка.

Пусть X - случайная величина, принимающая значения $\{e_1,...,e_N\}$ с вероятностями $\{p_1,...,p_N\}$ соответственно. Пусть наблюдения производятся по схеме $Y=C^TX+\sigma^TXV$, где $C=(C_1,...,C_N)^T$, $\sigma=(\sigma_1,...,\sigma_N)^T$ - детерминированные известные векторы, V - стандартная случайная величина, плотность распределения которой положительна. Найдем $M[X\mid Y]$ - нелинейную оценку фильтрации. Обозначим Z=col(X,Y) и найдем $F_Z(x_1,...,x_N,y)$:

$$\begin{split} F_Z(x_1,...,x_N,y) &= P\{X_1 \leq x_1,...,X_N \leq x_N,Y \leq y\} = \\ &= \sum_{n=1}^N P\{X = e_n, X_1 \leq x_1,...,X_N \leq x_N,Y \leq y\} = \sum_{n=1}^N P\{X = e_n, X_1 \leq x_1,...,X_N \leq x_N, C_n + \sigma_n V \leq y\} = \\ &= \sum_{n=1}^N P\{V \leq \frac{y - C_n}{\sigma_n} \mid X = e_n, X_1 \leq x_1,...,X_N \leq x_N\} P\{X = e_n, X_1 \leq x_1,...,X_N \leq x_N\} = \\ &= \sum_{n=1}^N P\{V \leq \frac{y - C_n}{\sigma_n}\} P\{X = e_n, X_1 \leq x_1,...,X_N \leq x_N\} = \sum_{n=1}^N \int\limits_{-\infty}^{\frac{y - C_n}{\sigma_n}} \varphi_V(v) dv \cdot p_n \cdot I(x_n - 1) \prod_{k=1}^N I(x_k), \end{split}$$

где $\varphi_V(v)$ - плотность вероятности СВ V , I(x) - единичная ступенчатая функция, непрерывная справа.

$$\begin{split} F_Y(y) &= P\{Y \leq y\} = P(C^TX + \sigma^TXV \leq y) = \sum_{n=1}^N p_n \int_{-\infty}^{\frac{y-C_n}{\sigma_n}} \varphi_V(v) dv \\ f_Z(x,y) &= \sum_{n=1}^N \frac{p_n}{\sigma_n} \delta(x-e_n) \varphi_V(\frac{y-C_n}{\sigma_n}), \\ f_Y(y) &= \sum_{n=1}^N \frac{p_n}{\sigma_n} \varphi_V(\frac{y-C_n}{\sigma_n}). \end{split}$$

Тогда

$$M[X \mid Y] = P\{X = e_k \mid Y\} = \frac{\frac{p_k}{\sigma_k} \varphi_V(\frac{y - C_k}{\sigma_k})}{\sum_{n=1}^{N} \frac{p_n}{\sigma_n} \varphi_V(\frac{y - C_n}{\sigma_n})}$$

Алгоритм метода оптимальной нелинейной фильтрации:

- 1) Начальные условия: $\hat{X}_{0} = \pi(0)$.
- 2) Одношаговый прогноз: $\tilde{X}_t = P^T \hat{X}_{t-1}$.
- 3) Найти оптимальную оценку состояния МЦ по формуле:

$$\hat{x}_{t}^{i} = P\{X_{t} = e_{i} \mid Y_{t}\} = \frac{\frac{\tilde{x}_{t}^{i}}{\sigma_{i}} \varphi_{V}(\frac{Y_{t} - C_{i}}{\sigma_{i}})}{\sum_{n=1}^{N} \frac{\tilde{x}_{t}^{n}}{\sigma_{n}} \varphi_{V}(\frac{Y_{t} - C_{n}}{\sigma_{n}})}$$

где $ilde{x}_t^i$ - компоненты вектора $ilde{X}_t$.

Условная ковариация: $\hat{k_t} = \text{cov}(\hat{\Delta}_t, \hat{\Delta}_t \mid \Upsilon_t) = diag(\hat{X_t}) - \hat{X_t}\hat{X_t}^T$.

Для линейной системы наблюдения известно решение с.к.-оптимальной линейной фильтрации. Оно задается с помощью фильтра Калмана.

Алгоритм метода оптимальной линейной фильтрации:

- 1) Начальные условия: $\hat{X}_0 = m_0^X = \pi(0)$, $\hat{K}_0 = \operatorname{cov}(X_0, X_0) = \operatorname{diag}(\pi(0)) \pi(0)\pi(0)^T$.
- 2) Наилучший прогноз: $\tilde{X}_{t} = P^{T} \hat{X}_{t-1}$, ковариация ошибки прогноза: $\tilde{K}_{t} = P^{T} \hat{K}_{t-1} P$.
- 3) Найти оценку фильтра Калмана и ковариацию ошибки оценки: $\hat{X}_t = \tilde{X}_t + \tilde{K}_t C (C^T \tilde{K}_t C + R_t^V)^{-1} (Y_t C^T \tilde{X}_t)$, $\hat{K}_t = \tilde{K}_t \tilde{K}_t C (C^T \tilde{K}_t C + R_t^V)^{-1} C^T \tilde{K}_t$, где $R_t^V = \sigma^T diag(\pi(t))\sigma$ интенсивность дискретного белого шума.

Для заданной постановки задачи тривиальная оценка: $M[X_t] = \pi(t)$.

Решение

Задание 1

С помощью метода производящих функций найти распределение p(t) в произвольный момент времени t.

Переходная матрица:

$$P := \begin{bmatrix} 0 & 1 & 0 & 0 \\ \sin\left(\frac{1}{10}\pi\right)^2 & 0 & \cos\left(\frac{1}{10}\pi\right)^2 & 0 \\ 0 & 0 & 0 & 1 \\ \cos\left(\frac{9}{20}\pi\right)^2 & 0 & \sin\left(\frac{9}{20}\pi\right)^2 & 0 \end{bmatrix}$$

Начальное распределение:

$$\frac{1}{2}\sin\left(\frac{2}{5}\pi\right)^{2}$$

$$\frac{1}{2}\cos\left(\frac{2}{5}\pi\right)^{2}$$

$$\frac{1}{2}\cos\left(\frac{9}{25}\pi\right)^{2}$$

$$\frac{1}{2}\sin\left(\frac{9}{25}\pi\right)^{2}$$

Пользуясь методом производящих функций, найдем аналитическое выражение для $\pi(n)$.

$$\pi(m) = \begin{bmatrix} 0.0011 \ (-1)^m + 0.2142 \ (-1)^m e^{-1.3224m} + 0.2237 e^{-1.3224m} + 0.0131 \\ 0.0011 \ (-1)^{1+m} + 0.8038 \ (-1)^{1+m} e^{-1.3224m} + 0.8395 e^{-1.3224m} + 0.0131 \\ 0.0418 \ (-1)^m + 0.2142 \ (-1)^{1+m} e^{-1.3224m} - 0.2237 e^{-1.3224m} + 0.4868 \\ 0.0417 \ (-1)^{1+m} + 0.8038 \ (-1)^m e^{-13224m} - 0.8395 e^{-1.3224m} + 0.4868 \end{bmatrix}$$

Задание 2

Выяснить, является ли цепь X эргодической. Найти все стационарные распределения (т.е. инвариантные) распределения.

Согласно теореме 1, для выяснения эргодичности цепи, необходимо проверить ее на неразложимость и апериодичность.

Все состояния МЦ являются существенными и сообщающимися. МЦ является неразложимой.

Проверим все состояния на апериодичность. Найдем для первого состояния явный вид множества $\{n \ge 1 \mid f_k(n) > 0\}$. Получим $\{2,4,6,8,10,...\}$.

 $d_{\scriptscriptstyle 1} = 2$, первое состояние периодично с периодом 2. Тогда МЦ не является апериодической.

Поэтому по теореме 1 МЦ не является эргодической.

Для нахождения стационарного распределения составим систему:

 $p_2 sin^2(\pi/10) + p_4 sin^2(\pi/20) = p_1$ $p_1 = p_2$ $p_2 cos^2(\pi/10) + p_4 cos^2(\pi/20) = p_3$ $p_3 = p_4$ $p_1 + p_2 + p_3 + p_4 = 1$

Стационарное распределение:

 $p_1 = 0.0131$

 $p_2 = 0.0131$

 $p_3 = 0.4868$

 $p_4 = 0.4868$

Задание 3

Оценки состояний МЦ получены с помощью алгоритмов, изложенных в теоретической части. Они представлены на графиках.

Каждому состоянию соответствует отдельный график.

Синим изображена нелинейная оценка, красным — линейная, зеленым — тривиальная. Истинное состояние в данном случае совпадает с нелинейной оценкой.

Наиболее точные результаты дает нелинейная оценка. Это связано с тем, что компоненты вектора C гораздо больше компонент вектора σ . На графиках отсутствует индикаторная функция состояния из-за того, что график нелинейной оценки почти совпадает с графиком индикаторной функции состояния.

Для вектора $\sigma = (1 \ 1.5 \ 2 \ 2.5)^T$:

Истинное состояние изображено черным, синим изображена нелинейная оценка, красным – линейная, зеленым – тривиальная.

Задание 4

Путем осреднения ковариаций по пучку из 100 реализаций, были получены средние значения ковариаций ошибок для трех типов оценок.

Синим изображены ошибки нелинейной оценки, красным — линейной, зеленым — тривиальной.

Выводы

В результате выполнения работы были изучены цепи Маркова. Найдено распределение Марковской цепи в произвольный момент времени при помощи z-преобразования.

При нахождении $\pi(n)$ была выявлена закономерность: компоненты $\pi(n)$ при различных n будут чередоваться (при чётных и нечётных). Это будет происходить вследствие периодичности МЦ.

В цепи присутствуют два циклических подкласса $\{e_1,e_3\}$ и $\{e_2,e_4\}$, поэтому первые и последние компоненты одинаковы.

По построенным графикам можно наблюдать, что наиболее точные результаты дает нелинейная оценка. Линейная оказывается менее точной. Но к плюсам линейной оценки стоит отнести простоту ее построения, в отличие от сложно считаемой нелинейной оценки.

При малых σ наилучшей оценкой является нелинейная, наихудшей — тривиальная. При увеличении σ результат становится менее точным из-за того, что шум преобладает над полезным сигналом.