Assignment 2

Rushi Shah

February 7, 2018

Problem 1

Prove that the set $S \equiv \{5, 10, 15, 20, \dots\}$ is countable by constructing a one-to-one function from S onto \mathbb{N} First note that $S = \{5, 10, 15, 20, \dots\} = \{5k \mid k \in \mathbb{N}\}$. Thus, we can construct a one-to-one function $f: S \to \mathbb{N}$ by defining $f(5k) \mapsto k$.

Problem 2

Part a

The union of two finite sets is finite.

Consider two finite sets: X with cardinality n and Y with cardinality m such that WLOG $X = \{1, \ldots, n\}$ and $Y = \{1, \ldots, m\}$. Then there exists a function with $Dom(\{1, \ldots, n\} \cup \{1, \ldots, m\})$ that is bijective with $\{1, \ldots, n+m\}$

$$f(z) = \begin{cases} z, z \in \{1, \dots, n\} \\ n + z, z \in \{1, \dots, m\} \end{cases}$$

Thus, $X \cup Y$ is finite with cardinality n + m.

Part b

The union of a finite set and a countable set is countable.

Consider a finite set that has cardinality n which (WLOG) can be stated as $X = \{1, ..., n\}$ and a countable set which (WLOG) can be stated as $Y = \mathbb{N}$. Then we can define a bijection $f : X \cup Y \to \mathbb{N}$

$$f(z) = \begin{cases} z, z \in X \\ n + z, z \in Y \end{cases}$$

Thus $X \cup Y$ is countable.

Part c

The union of two countable sets is countable.

Consider two countable sets $X = \{x_1, x_2, \ldots\}$ and $Y = \{y_1, y_2, \ldots\}$. Then we can define a bijection $f: \mathbb{N} \to X \cup Y$

$$f(z) = \begin{cases} x_z, z \text{ is even} \\ y_z, z \text{ is odd} \end{cases}$$

Thus $X \cup Y$ is countable.

Problem 3

Rational numbers are defined as real numbers that can be written in the form $\frac{m}{n}$, $n \neq 0$ with m and n integers without common factors. The set of rational numbers, \mathbb{Q} , can be split into three parts, the positive ones \mathbb{Q}_+ , the negative ones \mathbb{Q}_- , and the set that contains only zero $\{0\}$, $\mathbb{Q} = \mathbb{Q}_+ \cup \{0\} \cup \mathbb{Q}_-$. Prove that \mathbb{Q} is countable.

Hint: We can first show that \mathbb{Q}_+ is countable by constructing the function $f: \frac{m}{n} \mapsto (m, n), f: \mathbb{Q} \mapsto U \subset \mathbb{N} \times \mathbb{N}$ that is one-to-one with $Dom(f) = \mathbb{Q}_+$. $\mathbb{N} \times \mathbb{N}$ is countable, so U is countable, so \mathbb{Q}_+ is countable. We then use the results in the previous problem 2.

We can define $f_1: \mathbb{Q}_+ \to U_1 \subset \mathbb{N} \times \mathbb{N}$ by $f_1(\frac{m}{n}) \mapsto (m,n)$. Note that negative rationals can all be represented with positive denominators by multiplying any negative rational with a negative denominator by $\frac{-1}{-1} = 1$. Thus, we can define $f_2: \mathbb{Q}_- \to U_2 \subset \mathbb{N} \times \mathbb{N}$ by $f_2(\frac{m}{n}) \mapsto (|m|, n)$. With these two functions, we see that $\mathbb{Q}_-, \mathbb{Q}_+$ are both countable. Note that it is clear that $\{0\}$ is finite. Since the union of countable sets and the union of finite sets are countable by the previous problem, we can see that $\mathbb{Q} = \mathbb{Q}_+ \cup \{0\} \cup \mathbb{Q}_-$ is countable.

Problem 4

Let ρ be a metric on X. Prove that the following are also metrics

Part a

 $\rho_1 \equiv 5\rho$

We must show that ρ_1 satisfies non-negativity, symmetry, and the triangle inequality.

Non-negativity: Take arbitrary $x, y \in X$. We know that $\rho(x, y) = 0$ iff x = y. But $5\rho(x, y) = 0$ iff $\rho(x, y) = 0$ so $\rho_1(x, y) = 0$ iff x = y. Similarly, $5\rho(x, y) \ge 0$ when $\rho(x, y) \ge 0$. Since $\rho(x, y) \ge 0 \ \forall \ x, y \in X$, we know that ρ_1 satisfies non-negativity.

Symmetry: Take arbitrary $x, y \in X$:

$$\rho_1(x,y) = 5\rho(x,y) = 5\rho(y,x) = \rho_1(x,y)$$

Triangle inequality: Take arbitrary $x, y, z \in X$:

$$\rho(x,y) \le \rho(x,z) + \rho(z,y)
5 \cdot \rho(x,y) \le 5 \cdot (\rho(x,z) + \rho(z,y))
\rho_1(x,y) \le 5\rho(x,z) + 5\rho(z,y)
\le \rho_1(x,z) + \rho_1(z,y)$$

Part b

 $\rho_2 \equiv min\{1, \rho\}$

Non-negativity:

Since 0 < 1, $\rho_2(x, y) = 0$ iff $\rho(x, y) = 0$ iff x = y. Similarly, since ρ is never less than zero, and 1 is positive, $\rho_2(x, y) \ge 0 \ \forall \ x, y \in X$.

Symmetry:

$$\rho_2(x,y) = min(1,\rho(x,y)) = min(1,\rho(y,x)) = \rho_2(x,y)$$

Triangle inequality:

We would like to show that $\rho_2(x,y) \leq \rho_2(x,z) + \rho_2(z,y)$

$$\rho_2(x, y) = \min(1, \rho(x, y))$$
$$\rho(x, y) \le \rho(x, z) + \rho(z, y)$$

Problem 5

Let X = (0, 1]. Define $\rho(x, y) \equiv \left| \frac{1}{x} - \frac{1}{y} \right|$. Prove that ρ is a metric on X.

Non-negativity:

If
$$x = y$$
 then $\rho(x, y) = \left| \frac{1}{x} - \frac{1}{y} \right| = \left| \frac{1}{x} - \frac{1}{x} \right| = |0| = 0$.

If $\rho(x, y) = 0$ then x = y:

$$\rho(x,y) = 0$$

$$\left| \frac{1}{x} - \frac{1}{y} \right| = 0$$

$$\frac{1}{x} = \frac{1}{y}$$

$$x = y$$

Symmetry:

$$\rho(x,y) = \left| \frac{1}{x} - \frac{1}{y} \right| = \left| -\left(\frac{1}{y} - \frac{1}{x}\right) \right| = \left| \frac{1}{y} - \frac{1}{x} \right| = \rho(y,x)$$

 $\frac{\text{Triangle inequality:}}{\text{For all } x,y,z\in X, \text{ we must show that } \rho(x,y)\leq \rho(x,z)+\rho(z,y).$

$$\begin{split} \rho(x,y) &= \left| \frac{1}{x} - \frac{1}{y} \right| \\ &= \left| \frac{1}{x} - \frac{1}{z} + \frac{1}{z} - \frac{1}{y} \right| \\ &= \left| \left(\frac{1}{x} - \frac{1}{z} \right) + \left(\frac{1}{z} - \frac{1}{y} \right) \right| \\ &\leq \left| \frac{1}{x} - \frac{1}{z} \right| + \left| \frac{1}{z} - \frac{1}{y} \right| = \rho(x,z) + \rho(z,y) \end{split}$$