Processo Seletivo 2024: IEEE Computational Intelligence Society, UnB

Luiz Paulo Tavares Gonçalves

2024-07-01

Import dataset & cleaning

Após a importação do dataset os nomes das colunas são padronizados, assim, retirando caracteres especiais e espaços e, em segundo, é validado a não existência de duplicação de pacientes (no presente caso, duplicação de ID's).

QUESTÃO 01: No dataset existem alguns valores faltantes. Antes de começar a manipular os dados, trate essas informações e descreva sucintamente as alterações feitas

Mapa de Valores Faltantes

Como pode ser verificado no gráfico anterior, há aproximadamente 3% de missings no dataset.Com destaque para a variável **income**. Assim, a seguir é calculado e apresentado a porcentagem de NA's em cada variável:

Table 1: Porcentagem de NA's nas variáveis do Dataset

Variáveis do Dataset	Porcentagem
income_usd	98.7791932
SS	0.3715499
cscore	0.2653928
gender	0.2123142
nscore	0.2123142
a_score	0.2123142
caff	0.2123142
education	0.1592357
escore	0.1592357
oscore	0.1592357
impulsive	0.1592357
alcohol	0.1592357
ethnicity	0.1061571
amphet	0.1061571
amyl	0.1061571
benzos	0.1061571
choc	0.1061571
country	0.0530786
cannabis	0.0530786
coke	0.0530786
crack	0.0530786
id	0.0000000
age	0.0000000
ecstasy	0.0000000
heroin	0.0000000
ketamine	0.0000000
legalh	0.0000000
lsd	0.0000000
meth	0.0000000
mushrooms	0.0000000
nicotine	0.0000000
semer	0.0000000
vsa	0.0000000

A variável renda (income) tem os incríveis 98,78% de observações como NA's. O restante de variáveis não ultrapassa 0.40% quando o assunto é a presença de NA's. Por simplificidade e tempo de análise, assume-se a partir de agora remoção da variável renda e da linha, isto é, do ID que tenha em alguma variável dados faltantes. Assim, restando 1853 linhas, ou seja, 1853 id's diferentes na base de dados.

QUESTÃO 02: Qual é a distribuição da idade dos indivíduos na amostra? Existem diferenças significativas nas faixas etárias predominantes de consumo entre os grupos de usuários de diferentes substâncias?

Table 2: Estatísticas Descritivas da variável Idade

Idade	Frequência Absoluta	Frequência Relativa
18-24	636	34.32
25 - 34	472	25.47
35-44	349	18.83
45-54	289	15.60
55-64	90	4.86
65 +	17	0.92

Como pode ser observado, a população jovem, entre 18 a 34, ocupa a maior parcela da amostra; somandose um total de $59{,}79\%$ da amostra. Agora vamos segmentar o mesmo cálculo por grupos de usuários de diferentes substâncias.

Há 19 substâncias diferentes com 6 classificações possíveis.

QUESTÃO 03: Há uma relação entre o nível educacional e o consumo de substâncias?

QUESTÃO 04: Como o gênero influencia no consumo de drogas alucinógenas (LSD, Ecstasy, Ketamine, Cannabis e Mushrooms)? Explique.

```
## # weights: 21 (12 variable)
## initial value 18028.857531
## iter 10 value 14000.544252
## iter 20 value 13650.296657
## iter 20 value 13650.296557
## iter 20 value 13650.296557
## converged
```

Table 3: Coeficientes do Modelo Multinominal

	(Intercept)	genderM
$\overline{\text{CL1}}$	0.1410304	1.447603
CL2	0.1629182	1.845671
CL3	0.1229562	3.030887
CL4	0.0549895	3.527430
CL5	0.0368921	3.611629
CL6	0.0556780	3.080820

Coeficientes: Modelo Multinominal/Politômico

CL1 ("Usou Mais de Uma Década Atrás"):

Intercepto: A chance de uma mulher estar na categoria CL1 em vez de CL0 é aproximadamente 0.141. Gênero Masculino: A chance de um homem estar na categoria CL1 em vez de CL0 é 1.448 vezes a chance de uma mulher.

CL2 ("Usou nos Últimos Dez Anos"):

Intercepto: A chance de uma mulher estar na categoria CL2 em vez de CL0 é aproximadamente 0.163.

Gênero Masculino: A chance de um homem estar na categoria CL2 em vez de CL0 é 1.846 vezes a chance de uma mulher. CL3 ("Usou no Último Ano"):

Intercepto: A chance de uma mulher estar na categoria CL3 em vez de CL0 é aproximadamente 0.123. Gênero Masculino: A chance de um homem estar na categoria CL3 em vez de CL0 é 3.031 vezes a chance de uma mulher. CL4 ("Usou nos Últimos Meses"):

Intercepto: A chance de uma mulher estar na categoria CL4 em vez de CL0 é aproximadamente 0.055. Gênero Masculino: A chance de um homem estar na categoria CL4 em vez de CL0 é 3.527 vezes a chance de uma mulher. CL5 ("Usou na Última Semana"):

Intercepto: A chance de uma mulher estar na categoria CL5 em vez de CL0 é aproximadamente 0.037. Gênero Masculino: A chance de um homem estar na categoria CL5 em vez de CL0 é 3.612 vezes a chance de uma mulher. CL6 ("Usou Hoje"):

Intercepto: A chance de uma mulher estar na categoria CL6 em vez de CL0 é aproximadamente 0.056. Gênero Masculino: A chance de um homem estar na categoria CL6 em vez de CL0 é 3.081 vezes a chance de uma mulher.

QUESTÃO 05: Qual é a proporção de participantes que se autoclassificam como impulsivos (score superior a zero)? Existe uma correlação entre a impulsividade e o consumo de substâncias?

QUESTÃO 06: Classifique as variáveis entre qualitativas (ordinal ou nominal), ou quantitativas (discreta, contínuas).

QUESTÃO 07: Qual é a proporção de consumo de substâncias legais versus ilícitas na amostra (considere a definição de legalidade segundo a legislação brasileira)?

QUESTÃO 08:Quais fatores predizem a probabilidade de um indivíduo consumir crack (Crack)?

QUESTÃO 09: Qual é a média das pontuações Nscore, Escore, Oscore, AScore, Cscore? Calcule a correlação entre elas.

A segue pode-se visualizar a média e o teste de Shapiro-Wilk para verificar a normalidade das respectivas variáveis, pois o teste de correlação de Pearson pressupõe distribuição Gaussiana. Nota-se que escore, oscore, a_score não tem distribuição Gaussiana, logo, é necessário tomar os resultados com cautela.

A correlação pode ser calculada como segue:

```
## [1] "*******************
## Teste de Shapiro-Wilk para a variável: nscore
## Variável com média: 0.001072148
  Shapiro-Wilk normality test
##
##
## data: scores[[i]]
## W = 0.99869, p-value = 0.1739
##
##
## Variável com distribuição normal
## [1] "*******************
## Teste de Shapiro-Wilk para a variável: escore
## Variável com média: 0.0040685
##
## Shapiro-Wilk normality test
```

```
##
## data: scores[[i]]
## W = 0.99785, p-value = 0.01396
##
## Variável não tem normalidade
## [1] "*******************
## Teste de Shapiro-Wilk para a variável: oscore
## Variável com média: 0.004893411
##
## Shapiro-Wilk normality test
##
## data: scores[[i]]
## W = 0.99735, p-value = 0.003206
##
##
## Variável não tem normalidade
## [1] "********************
## Teste de Shapiro-Wilk para a variável: a_score
## Variável com média: -0.0003985969
##
## Shapiro-Wilk normality test
##
## data: scores[[i]]
## W = 0.99779, p-value = 0.01178
##
##
## Variável não tem normalidade
```

Matriz de correlação

