Исследование характеристик случайных графов для различения распределений

Куценко Дмитрий, Шатурный Алексей 2025

1 Постановка задачи

В данной работе рассматривается задача классификации двух пар параметрических распределений (Laplace $(0,\beta)$ с Normal $(0,\sigma^2)$ и Pareto (α) с $\mathrm{Exp}(\lambda)$) с использованием конструкций случайных графов. Основная цель - исследовать, как числовые характеристики графов, построенных на выборках из этих распределений, зависят от параметров распределений и могут быть использованы для построения статистического критерия.

1.1 Математическая формулировка

Пусть задана выборка $\hat{\Xi} = (\xi_1, \dots, \xi_n)$ независимых реализаций случайной величины ξ . Требуется проверить две гипотезы:

- $H_0: \xi \sim \mathcal{N}(0, \sigma^2)$ нормальное распределение (для Алексея $\mathrm{Pareto}(\alpha)$)
- $H_1: \xi \sim \text{Laplace}(0,\beta)$ распределение Лапласа (для Алексея $\text{Exp}(\lambda)$)

Для решения задачи используются две конструкции случайных графов:

- 1. KNN-граф $\mathcal{GK}(\hat{\Xi}, k)$:
 - Вершины: индексы наблюдений $V = \{1, \dots, n\}$
 - Рёбра: $(i,j) \in E$ если $\xi_j \in KNN(\xi_i,k)$ или $\xi_i \in KNN(\xi_j,k)$
- 2. Дистанционный граф $\mathcal{GD}(\hat{\Xi},d)$:
 - \bullet Вершины: индексы наблюдений $V=\{1,\ldots,n\}$
 - Рёбра: $(i,j) \in E$ если $|\xi_i \xi_j| \le d$

2 Исследование характеристик графов

В первой части работы исследовалось поведение числовых характеристик графов в зависимости от параметров распределений.

2.1 Используемые характеристики

Для анализа были выбраны следующие характеристики графов:

- 1. Для пары из распределений Normal и Laplace
 - Число треугольников для KNN-графа
 - Хроматическое число для дистанционного графа
- 2. Для пары из распределений Pareto и Exp
 - Число компонент связности для KNN-графа
 - Размер минимального кликового покрытия для дистанционного графа

2.2 Методология исследования

Для каждого типа графа и характеристики проводилось:

- 1. Фиксация размера выборки n и параметра построения графа (k или d)
- 2. Вариация параметра распределения:
 - Для нормального: $\sigma \in [0.5, 8.0]$
 - Для Лапласа: $\beta \in [0.5, 8.0]$
- 3. Для каждого набора параметров выполнялось 100 симуляций Монте-Карло
- 4. Усреднение значений характеристики по симуляциям

2.3 Результаты

2.3.1 Зависимость характеристик от параметра σ нормального распределения

Ниже представлены зависимости характеристик от параметров распределений при фиксированных $n=100,\,k=5,\,d=1.5.$

Основные наблюдения:

• Число треугольников (KNN-граф):

— Тяжело установить явную зависимость числа треугольников в получаемомо KNN-графе в зависимости от параметра σ нашего распределения. В среднем количество треугольников колеблется около 154

• Хроматическое число (дистанционный граф):

- Резко убывает с ростом σ
- Объяснение: вероятно увеличение разброса приводит к разрежению графа

2.3.2 Зависимость характеристик от параметра β распределения Лапласа

Можем наблюдать ситуацию, похожую на нормальное распределение – видна явная зависимость хроматического числа от параметра β , в то время как число треугольников в KNN-графе колеблется вокруг значения 151

2.3.3 Зависимость характеристик от параметров λ экспоненциального распределения и α распределения Парето

Основные наблюдения:

- 1. Аналогично паре из нормального распределения и распределения Лапласа числовая характеристика дистанционного графа выглядит более информативной и менее шумной
- 2. С увеличением λ и α для обоих распределения размер минимального кликового покрытия дистанционного графа резко падает

2.3.4 Исследование поведения числовых характеристик в зависимости от параметров процедуры построения графа и размера выборки при фиксированных параметрах распределений

Будем симулировать выборки при фиксированных параметрах распределений

- 1. Laplace $\left(0, \sqrt{\frac{1}{2}}\right)$
- 2. Normal (0,1)
- 3. Pareto(3)
- 4. Exp $\left(\frac{2}{\sqrt{3}}\right)$

Рассмотрим следующие параметры процедуры построения графов

- $1. \ k=1,2,3,...,20$
- 2. $d \in [1, 3]$
- 3. n = 50, 100, 200, 500

Основные наблюдения:

- 1. При исследовании пары из нормального распределения и распределения Лапласа было установлено, что при увеличении параметров k и d вне зависимости от величины n, обе числовые характеристики получаемых случайных графов растут.
- 2. В паре из распределения Парето и экспоненциального распределения наоборот при увеличении параметров k и d исследуемые числовые характеристики падали
- 3. В обоих случаях логично с увеличением размера выборок (то есть параметра n) значение числовых характеристик росло, но характер роста (или наоборот падения) оставался прежним

2.3.5 Построение критических областей

3 Заключение первой части

Проведенное исследование показало:

- 1. Числовые характеристики случайных графов чувствительны к параметрам распределений
- 2. Пронаблюдали род зависимости каждой из выбранных числовых характеристик KNN-графа и дистанционного графа в зависимости от различных параметров распределений
- 3. Более информативную и явную зависимость удалось выявить при исследовании дистанционных графов

- Для пары Laplace и Normal хорошо показало себя хроматическое число
- Для пары Pareto и Exp хорошо показал себя размер минимального кликового покрытия

4 Применение нескольких характеристик для проверки гипотезы

По итогам исследования поведения числовых характеристик при изменении параметров распределений и параметров процедуры построения графа было принято решение работать именно с дистанционным графом, так как числовые характеристики дистанционного графа проявляли себя как более информативные.