ERNIE Tutorial (论文笔记 + 实践指南)

原创:太子長琴 AINLP 8月28日

作者:太子長琴(NLP算法工程师)

ERNIE 2.0 发布了、刷新了 SOTA、而且中文上做了不少优化、这种大杀器作为一个 NLP 工程 师我觉得有必要深入了解了解. 最好能想办法用到工作中。

ERNIE 2.0 是基于持续学习的语义理解预训练框架,使用多任务学习增量式构建预训练任务。ERNIE 2.0 中,新构建的预训练任务类型可以无缝的加入训练框架,持续的进行语义理解学习。通过新增的实体 预测、句子因果关系判断、文章句子结构重建等语义任务,ERNIE 2.0 语义理解预训练模型从训练数据中 获取了词法、句法、语义等多个维度的自然语言信息,极大地增强了通用语义表示能力。

这是官方的描述, 我觉得那张配图可能更加直观:

ERNIE 2.0: A Continual Pre-training framework for Language Understanding

老习惯还是先理论再实践,所以看 paper 先,我们只看关键信息。

论文

ERNIE 核心思想: 更多任务的 Bert。

Abstract

ERNIE 2.0 通过多任务学习获取语料中的更多信息、包括:词、句共现、词法、句法、语义等。

Introduction

出发点依然是摘要中提到的, 举了几个例子挺不错:

- 命名实体可能包含一些观念上的信息(不应拆分或作为普通词处理)
- 句子顺序和邻近句子能让模型学到结构(句法)表示
- 文档语义相似度或句子间的话语关系能让模型学到语义表示

ERNIE 使用多任务学习,它们共享 encoding 网络(即词法、句法和语义编码信息可以在每项任务中 使用),而且很容易定制训练任务(上图右下的 Pre-training Task 可以随意调整)。

Related Work

Unsupervised Transfer Learning for Language Representation

- context-independent
 - Word2Vec, GloVe: 通过词共现
- context-dependent
 - ELMo: Language model
 - OpenAl GPT: Transformer
 - BERT: Mask language model with a next sentence prediction task
 - XLM: Two methods to learn cross-lingual language model
 - MT-DNN: Learning several supervised tasks in GLUE based on pre-trained model
 - XLNet: Transformer-XL, learns bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order.

Continual Learning

在多个任务序列上训练模型,模型在学习新任务时能记起之前学过的任务。灵感来源于人类的学习 过程。

The ERNIE 2.0 Framework

ERNIE 2.0 可以通过不断引入各种各样的预训练任务帮助模型高效学习词、句法和语义的表征。通过 多任务学习不断更新预训练模型。在微调时,首先用预训练模型的参数初始化,然后根据特定任务 的数据进行微调。

Continual Pre-training

包含两个步骤:

- 使用大规模数据和先验知识持续构建无监督预训练任务
 - 构建不同类型的任务:单词感知任务、结构感知任务、语义感知任务
 - 所有任务均为 self-supervised 或 weak-supervised, 无需人工标注
- 通过多任务逐步更新 ERNIE 模型
 - 首先 train 一个简单的初始模型
 - 每增加一个任务,使用上一个模型的参数初始化,新模型用先前的模型训练

架构如下:

Figure 2: The architecture of multi-task pre-training in the ERNIE 2.0 framework, in which the encoder can be recurrent neural networks or a deep transformer.

- 共享的 encoder
- 两种 loss functions

Fine-tuning for Application Tasks

可以适应各种自然语言理解任务,比如:问答、推理、语义相似度等。

ERNIE 2.0 Model

Model Structure

- Transformer Encoder
 - 多层 Transformer
 - 使用 self-attention 捕捉每个 token 的上下文信息
 - Sequence 开始位置添加 CLS(分类任务)标记,多任务之间用 SEP 标记分割
- Task Embedding

Figure 3: The structure of the ERNIE 2.0 model. The input embedding contains the token embedding, the sentence embedding, the position embedding and the task embedding. Seven pre-training tasks belonging to different kinds are constructed in the ERNIE 2.0 model.

Pre-training Tasks

- Word-aware Pre-training Tasks
 - Knowledge Masking Task: 短语和命名实体 mask. 初始化模型。
 - Capitalization Prediction Task: 判断一个英文单词是否大写。
 - Token-Document Relation Prediction Task: 预测某段中的 token 是否出现在原文的其他部 分。根据经验、出现在文档许多部分中的单词通常是常用单词或与文档主题相关。因此通 过识别段中的文档关键词可以在一定程度上捕获文档的关键词。
- Structure-aware Pre-training Tasks
 - Sentence Reordering Task: 学习句子间关系。一个段落分成 m 小段后 random shuffle, 然 后让模型识别打乱的顺序(分类任务)。
 - Sentence Distance Task: 使用文档级别信息学习句子的距离。一个三分类任务: 0 表示两 个句子在一个文档中且相邻; 1表示在一个文档不相邻; 2表示不在一个文档。
- Semantic-aware Pre-training Tasks
 - Discourse Relation Task: 预测两个句子的语义或修辞关系。
 - IR Relevance Task: 学习 IR 中短文本相关性,一个三分类任务预测 query 和 title 之间的关 系: 0 表示强相关,用户输入 guery 后点击了 title: 1 表示弱相关,用户输入 guery, title 在搜索结果中但用户未点击; 2表示不相关。

Experiments

主要与 Bert 和 XLNet 对比。

Pre-training and Implementation

Pre-training Data

Corpus Type	English(#tokens)	Chinese(#tokens)	
Encyclopedia	2021M	7378M	
BookCorpus	805M	-	
News	-	1478M	
Dialog	4908M	522M	
IR Relevance Data	-	4500M	
Discourse Relation Data	171 M	1110M	

Table 1: The size of pre-training datasets.

- **Pre-training Settings**
 - base model: 12 layers, 12 self-attention heads and 768-dimensional of hidden size
 - large model: 24 layers, 16 self-attention heads and 1024-dimensional of hidden size
 - Adam optimizer: β1=0.9, β2=0.98
 - Batch size: 393216 tokens
 - Learning rate: 5e-5 (English model), 1.28e-4 (Chinese model)
 - Scheduled by decay scheme noam with warmup over the first 4000 steps for every task

Fine-tuning Tasks

English

Corpus	Task	#Train	#Dev	#Test	#Label	Metrics
CoLA	Acceptability	8.5k	1k	1k	2	Matthews corr
SST-2	Sentiment	67k	872	1.8k	2	Accuracy
MNLI	NLI	393k	20k	20k	3	Accuracy
RTE	NLI	2.5k	276	3k	2	Accuracy
WNLI	NLI	634	71	146	2	Accuracy
QQP	Paraphrase	364k	40k	391k	2	Accuracy/F1
MRPC	Paraphrase	3.7k	408	1.7k	2	Accuracy/F1
STS-B	Similarity	7k	1.5k	1.4k	1	Pearson/Spearman corr
QNLI	QA/NLI	108k	5.7k	5.7k	2	Accuracy
AX	NLI	-	_	1.1k	3	Matthews corr

Table 2: The details of GLUE benchmark. The #Train, #Dev and #Test denote the size of the training set, development set and test set of corresponding corpus respectively. The #label denotes the size of the label set of the corresponding corpus.

■ CoLA: 用于判断句子是否符合语法规范

SST-2: 情感分析 ■ MNLI: 文本推理

■ RTE: 自然语言推理

■ WNLI: 段落间相互信息 ■ QQP: 判断问答对是否重复

■ MRPC: 句子对语义相关性

■ STS-B: 数据集,包括插图说明、新闻标题和论坛文字

■ QNLI: 判断给定的文本对是否是 问题-答案对

■ AX: 对模型进行语言分析

Chinese Tasks

Corpus	Task	#Train	#Dev	#Test	#Label	Metrics
CMRC 2018	MRC	10K	3.2K	-	-	EM/F1
DRCD	MRC	27K	3.5K	3.5K	-	EM/F1
DuReader	MRC	271.5K	10K	-	-	EM/F1
MSRA-NER	NER	21K	2.3k	4.6K	7	F1
XNLI	NLI	392K	2.5K	2.5K	3	Accuracy
ChnSentiCorp	SA	9.6K	1.2K	1.2K	2	Accuracy
LCQMC	SS	240K	8.8K	12.5K	2	Accuracy
BQ Corpus	SS	100K	10K	10K	2	Accuracy
NLPCC-DBQA	QA	182K	41K	82K	2	mrr/F1

Table 3: The details of Chinese NLP datasets. The #Train, #Dev and #Test denote the size of the training set, development set and test set of corresponding corpus respectively. The #label denotes the size of the label set of the corresponding corpus.

阅读理解: CMRC 2018, DRCD, DuReader

命名实体识别: MSRA-NER (SIGHAN 2006)

自然语言推理: XNLI

■ 情感分析: ChnSentiCorp

■ 语义相似度: LCQMC, BQ Corpus

问答: NLPCC-DBQA

Implementation Details

Task	BASE			LARGE			
	Epoch	Learning Rate	Batch Size	Epoch	Learning Rate	Batch Size	
CoLA	3	3e-5	64	5	3e-5	32	
SST-2	4	2e-5	256	4	2e-5	64	
MRPC	4	3e-5	32	4	3e-5	16	
STS-B	3	5e-5	128	3	5e-5	128	
QQP	3	3e-5	256	3	5e-5	256	
MNLI	3	3e-5	512	3	3e-5	256	
QNLI	4	2e-5	256	4	2e-5	256	
RTE	4	2e-5	4	5	3e-5	16	
WNLI	4	2e-5	8	4	2e-5	8	

Table 4: The Experiment settings for GLUE dataset

实践

官方文档还是比较清晰的,我觉得对于大多数公司和个人来说,还是不要自己去训练了,实在太费 钱了。不过如果是领域性很强的任务,还是可以重新训练一下的,要不然模型太 general。

Fine-tuning

现在来到"使用"部分,这个依赖百度的 Paddle,可以通过官方文档先安装好。目前 2.0 的中文模型 还没有发布,不过估计用不了多久就有了。其实我们需要做的就是 Fine-tuning,也就是利用官方的 预训练模型 + 我们自己特定任务的数据得到"符合"我们自己特定任务的模型。不同类型的任务参数 不一样,可以根据自己的任务类型选择特定的参数,参数在上面提到的官方文档中可以找到。

官方给了三个常用的例子:

- 分类任务
- 序列标注任务
- 阅读理解任务

我们只需设置好 data 和 model 路径(可以用 autoenv,比较方便),然后按文档说明运行 scripts 下的脚本即可。友好提醒下,如果你电脑没有 GPU 的话就不要运行了,几乎肯定会死机(我已经试过了,成功运行了,然后只能强制重启了……)。当然配置比较渣(Mac Pro 2015):

- 2.7 GHz Intel Core i5
- 8GB 1867 MHz DDR3
- Intel Iris Graphics 6100 1536 MB

Fine-tuning 方面没啥特别的,只要你的输入和给的数据集一样即可。另外,官方文档还给出了获取特定任务句子和词 Embedding 的代码,可参考 FAQ1。

模型训练好后需要进行预测,官方也给出了 predict_classifier.py ,直接使用即可,使用方式可以参见文档的 FAQ2,感觉稍微弄弄就可以直接 deploy 的节奏。

Pre-training

刚刚说了,如果领域性比较强的话还是建议 pre-train 一下的,这个也很方便,我们只需要把数据处理成 ERNIE 要的格式即可(每行训练数据包括 5 个分号分割的字段):

- token_ids: 输入句子对 token 的 id
- sentence_type_ids: 输入句子对标签, 0 和 1
- position_ids: 输入句子对 token 的位置
- seg labels: 分词边界信息, 0 表示词首、1 表示非词首、-1 为占位符
- next_sentence_label: 输入的句子对是否存在上下句关系, 0 表示无 1 表示有

然后将 scripts 下脚本中的数据集换成自己的即可开始训练。

小结

目前官方给出的代码其实是 v1.0 的版本,所以 pre-train 的也是 1.0 版本,1.0 只有两个任务,对应: Im_loss 和 next_sent_loss,2.0 中文版会有更多的 loss。源代码也大概看了下,涉及很多不太熟悉的 Paddle,重点看了输入和 loss,感觉比较重要的就是 mask 和 negtive samples 的代码,分别在 batching.py 和 pretraining.py 中。当然,实际应用角度来看,其实我们只要搞定推理部分即可,即使要自己训练,也可以直接用官方给出的参数,调参还是交给有钱的大公司吧:D

再次感慨下 Pre-training 在 NLP 领域的如火如荼,有钱的巨头们不断砸出更好的 model,我等吃瓜群众默默拿来使用,顺便给他们点个赞。最后说句题外话,看了下 ERNIE 的 Issue,我觉得官方应该给一个 How-To-Ask-Questions-The-Smart-Way:)

- ERNIE/README.zh.md at develop · PaddlePaddle/ERNIE
- [1907.12412v1] ERNIE 2.0: A Continual Pre-training Framework for Language Understanding

原文链接:

https://yam.gift/2019/08/02/Paper/2019-08-02-Baidu-ERNIE-Tutorial/