Problèmes de Géométrie E07

EXERCICE N°6 Hauteurs d'un triangle et orthocentre (Le corrigé)

On considère un triangle ABC non aplati. Soient d_1 la parallèle à la droite (BC) passant par A, d_2 la parallèle à la droite (AC) passant par B et d_3 parallèle à la droite (AB) passant par C.

Les droites d_2 et d_3 se coupent en A' , d_1 et d_3 coupent en B' et d_1 et d_2 se coupent en C' .

geogebra

1) Montrer que AB'CB et C'ACB sont des parallélogrammes.

On considère le quadrilatère AB'CB

On sait que : (AB)//(B'C) et (AB')//(BC)

Or : Si un quadrilatère a ses côtés opposés parallèles deux à deux alors c'est un parallélogramme. Donc AB'CB est un parallélogramme.

De la même façon, C'ACB est un parallélogramme.

2) En déduire que A est le milieu de [B'C'].

On sait que AC'=BC car C'ACB est un parallélogramme et que AB'=BC car AB'CB est un parallélogramme

Ainsi AC' = AB' et comme, de plus, les points sont alignés, on en déduit que que A est les milieu de $\begin{bmatrix} B'C' \end{bmatrix}$

3) Montrer par un raisonnement analogue que B et C sont les milieux respectifs des segments [A'C'] et [A'B'].

C'est exactement la même chose, je vous laisse faire...

4) Dans le triangle ABC, on appelle Δ_1 la hauteur issue de A, Δ_2 la hauteur issue de B et Δ_3 hauteur issue de C. Montrer que Δ_1 , Δ_2 et Δ_3 sont les médiatrices des côtés du triangle A'B'C'

On sait que $\Delta_1 \perp (BC)$ et (B'C')//(BC) donc $\Delta_1 \perp (B'C')$ et comme A est le milieu de [B'C'], on en déduit que Δ_1 est la médiatrice de [B'C']. De la même façon, Δ_2 est la médiatrice de [A'C'] et Δ_3 est la médiatrice de [B'A']

5) Sachant que ces trois médiatrices sont concourantes (voir exercice précédent), en déduire que les hauteurs du triangle ABC sont concourantes.

D'après la question précédente, les hauteurs du triangle ABC sont les médiatrices du triangle A'B'C' . Elles sont donc concourantes.

Les hauteurs d'un triangles sont concourantes en un point qui se nomme l'orthocentre du triangle.

Propriété à retenir !!!