EpiFi

An In-Home IoT Architecture for Epidemiology Research

Philip Lundrigan, Kyeong T. Min, Neal Patwari, Sneha Kumar Kasera, Kerry Kelly, Jimmy Moore, Miriah Meyer, Scott C. Collingwood, Flory Nkoy, Bryan Stone, and Katherine Sward

EPIFI

- Epidemiology: study of diseases and it affects populations
- Goals:
 - Bring benefits of IoT to medical applications
 - Allow families, doctors, and researchers to process data in real-time
 - Designed to be used by other people
 - Deploy in thousands of homes
- Part of \$5.5 million NIH grant called Pediatric Research using Integrated Sensor Monitoring Systems (PRISMS)

WHY EPIFI?

- Current IoT solutions are not designed for epidemiology researchers:
 - Systems not designed for large study based deployments
 - Cost of management > cost of devices
 - Must be HIPAA compliant for data transmission and storage

BLE SENSORS

George Washington University prototype sensor

Arizona State University prototype sensor

WIFI SENSORS

AirU

Utah Modified Dylos

FOCUS ON WIFI SENSORS

- WiFi hardware is readily available and inexpensive
- WiFi is more widely deployed compared to other wireless protocols
- A WiFi sensor can integrate with the rest of the home because it uses IP

DEPLOYMENTS

- Deployed in homes, labs, and an Air Force hangar
- Used in four studies
 - A clinical study has been deployed for more than a year with 10 participants
 - Another study looked at how running furnace fan affects air quality

FOCUS

- Ease of use
 - Adding new sensors
 - Integrating existing sensors
 - Setting up server infrastructure
- Reliable data transfer

FOCUS

- Ease of use
 - Adding new sensors
 - Integrating existing sensors
 - Setting up server infrastructure
- Reliable data transfer

ADDING NEW SENSORS

- Custom Linux image for sensors
- Configuration options placed in one file
- Place sensor specific code in one place and EpiFi takes care of connectivity and reliability transferring the data

INTEGRATING EXISTING SENSORS

- Use MQTT or HTTP to upload data to servers
- Open format

```
{
   "measurement_name": [value, "unit"],
   ...
}
```

SETTING UP SERVER INFRASTRUCTURE

- Dockerized all server-side components of system
- Use docker compose to deploy components to a server easily
- Wrote script to bootstrap databases and set up authentication

FOCUS

- Ease of use
 - Adding new sensors
 - Integrating existing sensors
 - Setting up server infrastructure
- Reliable data transfer

RELIABLE DATA TRANSFER

- Epidemiology research needs all historical data
- First test deployment saw a lot of data loss even though we were using TCP
- Homes are hazardous environments for wireless sensors
- Persist data at every opportunity

PROBLEMS ENCOUNTERED

- Having other people use our system lead to many interesting challenges:
 - Managing deployments
 - Bootstrapping WiFi connectivity
 - Device observability
 - Data privacy when moving sensors

Solved

Future work

PROBLEMS ENCOUNTERED

- Having other people use our system lead to many interesting challenges:
 - Managing deployments
 - Bootstrapping WiFi connectivity
 - Device observability
 - Data privacy when moving sensors

Solved

Future work

MANAGEMENT

- Export data for analysis
- Sensor metadata
- Monitor status of sensors

PROBLEMS ENCOUNTERED

- Having other people use our system lead to many interesting challenges:
 - Managing deployments
 - Bootstrapping WiFi connectivity
 - Device observability
 - Data privacy when moving sensors

Solved

Future work

SECURE WIFI BOOTSTRAPPING PROBLEM

HOW DO YOU CONNECT A WIFI SENSOR TO A WIFI ROUTER?

HOW DO YOU CONNECT A WIFI SENSOR TO A WIFI ROUTER?

- Program sensor with home's network and password
- Bring our own wireless router
- Open network
- WPA Enterprise
- WiFi Protected Setup (WPS)
- Out-of-band channel
- SmartConfig
- WiFi device becomes a temporary AP

HOW DO YOU CONNECT A WIFI SENSOR TO A WIFI ROUTER?

- Program sensor with home's network and password
- Bring our own wireless router
- Open network
- WPA Enterprise
- WiFi Protected Setup (WPS)
- Out-of-band channel
- SmartConfig
- WiFi device becomes a temporary AP

REQUIREMENTS

- Does not require any extra hardware at the sensor
- Broadly supported by home WiFi routers
- Time to connect scales up to many devices

Can we securely bootstrap WiFi connectivity of many devices using just WiFi?

SECURE TRANSFER OF AUTHENTICATION PROTOCOL (STRAP) OVERVIEW

Participant enters network name and password into web interface on gateway

Gateway securely sends network name and password to the home's WiFi router

Home WiFi router securely sends network name and password to the *unassociated* sensors

Home WiFi router securely sends network name and password to the *unassociated* sensors

Sensors connect to the network and now can send measurements

Home WiFi router securely sends network name and password to the *unassociated* sensors

STRAP

Since the gateway is connected through Ethernet, it can send data

STRAP

Since the gateway is connected through Ethernet, it can send data

STRAP PROBLEM

How can WiFi sensors receive WiFi frames?

MONITOR MODE

No.	Time		Source	Destination	Protocol	Data rate	Length	Info
	1 0.000	0000	Tp-LinkT_1d:dc:1c	Broadcast	802.11	1	244	Beacon frame, SN=2497, FN=0, Flags=
	2 0.102	2573	Tp-LinkT_1d:dc:1c	Broadcast	802.11	1	244	Beacon frame, SN=2498, FN=0, Flags=
	3 0.138	3484	Mediabri_10:98:c0	Broadcast	802.11	1	254	Beacon frame, SN=589, FN=0, Flags=
ı	4 0.204	4783	Tp-LinkT_1d:dc:1c	Broadcast	802.11	1	244	Beacon frame, SN=2499, FN=0, Flags=
1	5 0.246	ð471	Mediabri_10:98:c0	Broadcast	802.11	1	254	Beacon frame, SN=591, FN=0, Flags=
1	6 0.307	7098	Tp-LinkT_1d:dc:1c	Broadcast	802.11	1	244	Beacon frame, SN=2500, FN=0, Flags=
1	7 0.388	3129		Tp-LinkT_1d:dc:1c (802.11	24	39	Acknowledgement, Flags=C
	8 0.388	3291		Tp-LinkT_1d:dc:1c (802.11	24	39	Acknowledgement, Flags=C
	9 0.389	3394		LiteonTe_61:ea:e5 (802.11	24	39	Acknowledgement, Flags=C
1	0.409	9415	Tp-LinkT_1d:dc:1c	Broadcast	802.11	1	244	Beacon frame, SN=2501, FN=0, Flags=
1	1 0.466	5914	2c:3a:e8:1f:69:30	Raspberr_68:93:d1	802.11	48	661	Data, SN=1519, FN=0, Flags=.pTC
1	2 0.467	7116		2c:3a:e8:1f:69:30 (802.11	24	39	Acknowledgement, Flags=C
. 1	3 0.468	3258	Raspberr_68:93:d1	2c:3a:e8:1f:69:30	802.11	65	148	QoS Data, SN=1455, FN=0, Flags=.p
1	4 0.468	3437		Tp-LinkT_1d:dc:1c (802.11	6	39	Acknowledgement, Flags=C
1	5 0.511	1608	Tp-LinkT_1d:dc:1c	Broadcast	802.11	1	244	Beacon frame, SN=2502, FN=0, Flags=
1	6 0.511	1788	2c:3a:e8:1f:69:30	Raspberr_68:93:d1	802.11	48	117	Data, SN=1520, FN=0, Flags=.pTC
1	7 0.511	1942		2c:3a:e8:1f:69:30 (802.11	24	39	Acknowledgement, Flags=C

Source and destination addresses of WiFi frames are *not* encrypted

STRAP SOLUTION

Gateway can encode data into the source and destination address fields!

ETHERNET FRAME

hello world!

68 65 6c 6c 6f 20 77 6f 72 6c 64 21

68:65:6c:6c:6f:20 77:6f:72:6c:64:21 EtherType | Data... | Checksum |

Destination MAC Address

Source MAC Address

12 bytes of data!

STRAP PROBLEM

STRAP PROBLEM

DESTINATION ADDRESS

- We need:
 - An address that the WiFi router will always accept
 - Makes the wireless router send the frame on its wireless interface
- Broadcast: ff:ff:ff:ff:ff
- ▶ IPv4 Multicast: 01:00:5E:xx:xx:xx
- ▶ IPv6 Multicast: 33:33:xx:xx:xx:xx

STRAP PROBLEM

You can't fit much information in 10 bytes

STRAP HEADER

STRAP DATA FLOW

STRAP DATA FLOW

STRAP DATA FLOW

- Does not require any extra hardware at the sensor
- Broadly supported by home WiFi routers
- Time to connect scales up to many devices

- Does not require any extra hardware at the sensor
- Broadly supported by home WiFi routers
- Time to connect scales up to many devices

Uses standard WiFi to send and receive data

- Does not require any extra hardware at the sensor
- Broadly supported by home WiFi routers
- Time to connect scales up to many devices

Requires no changes to WiFi router

- Does not require any extra hardware at the sensor
- Broadly supported by home WiFi routers
- Time to connect scales up to many devices

Takes constant time, regardless of the number of sensors connecting: 1.55 seconds to 23 seconds

STRAP SUMMARY

- STRAP allows devices to send any data to unassociated wireless devices
- We use STRAP to send the network name and password
- Allows many devices to connect at once in constant time without requiring any extra hardware

PROBLEMS ENCOUNTERED

- Having other people use our system lead to many interesting challenges:
 - Managing deployments
 - Bootstrapping WiFi connectivity
 - Device observability
 - Data privacy when moving sensors

Solved

Future work

DEVICE OBSERVABILITY MOTIVATION

- How can a remote manager know if a WiFi device is functioning or not?
- Problem is especially bad for difficult-to-access locations

Deployment 007

Monitor Name	Online	Last received PM Data
monitorb003	•	3 days
monitorb018	•	1 minute
monitorb016	•	5 hours

Deployment 008

Monitor Name	Online	Last received PM Data
monitorb019	•	1 minute
monitorb009	•	40 seconds
monitor110	•	57 seconds

Deployment 009

Monitor Name	Online	Last received PM Data	
monitorb001	•	41 seconds	
monitorb002	•	1 minute	
monitorb014	•	47 seconds	5

DISRUPTION TYPES

WIFI DISRUPTIONS

DISRUPTION TYPES

Distinguish between WiFi disruptions and other types of disruptions

LONGER RANGE COMMUNICATIONS COMPARED TO WIFI

- Cellular
- LoRa
- ▶ 802.11ah (HaLow)
- All solutions require different radios

PROBLEMS ENCOUNTERED

- Having other people use our system lead to many interesting challenges:
 - Managing deployments
 - Bootstrapping WiFi connectivity
 - Device observability
 - Data privacy when moving sensors

Solved

Future work

DATA PRIVACY

- Sensor's location is managed by metadata
- If metadata is not updated, system will attribute data to wrong location
- Sensors should learn location and detect when the location has changed

SUMMARY

- We built EpiFi to make deploying and running epidemiological studies easier
- While building and deploying system, we ran into many challenges
- We solve management issues by building tools to view sensor status and export sensor data
- We solve the WiFi bootstrapping problem with STRAP
- Many more challenges that need to be solved!
- https://github.com/VDL-PRISM

Questions