Valeur finale★

C2-03

Question 1 Déterminer la valeur finale de s(t) lorsque l'entrée est un échelon d'am-

plitude
$$E_0$$
. On a $H(p) = \frac{\frac{K}{p(1+\tau_1p)(1+\tau_2p)}}{1+\frac{CK}{p(1+\tau_1p)(1+\tau_2p)}} = \frac{K}{p(1+\tau_1p)(1+\tau_2p)+CK}$. En conséquence, $S(p) = E(p) \frac{K}{p(1+\tau_1p)(1+\tau_2p)+CK}$. $S_\infty = \lim_{t \to +\infty} s(t) = \lim_{p \to 0} pS(p) = \lim_{p \to 0} pE(p)H(p)$. Dans le cas où $E(p)$ est un échelon, on

$$s_{\infty} = \lim_{t \to +\infty} s(t) = \lim_{p \to 0} pS(p) = \lim_{p \to 0} pE(p)H(p)$$
. Dans le cas où $E(p)$ est un échelon, or a $E(p) = \frac{E_0}{p}$ et donc $s_{\infty} = \lim_{p \to 0} p \frac{E_0}{p} \frac{K}{p(1 + \tau_1 p)(1 + \tau_2 p) + CK} = \frac{E_0}{C}$.

Question 2 Déterminer la valeur finale de s(t) lorsque l'entrée est une rampe de pente k. On a maintenant $E(p) = \frac{k}{p^2}$. On a donc et donc $s_{\infty} = \lim_{p \to 0} p \frac{k}{p^2} \frac{K}{p(1+\tau_1 p)(1+\tau_2 p) + CK}$ et $s_{\infty} = \infty$.

