大话成像之

数字成像系统 32讲

Encoder

Zhang Eric

imaging algorithm specialist staff camera engineer

zxzombie@msn.com

编码的发展历史

Figure 1. Progression of the ITU-T Recommendations and MPEG standards.

压缩编码的基本概念

- 有损压缩和无损压缩
- 帧内压缩和帧间压缩
- 对称编码和不对称编码

GOP

Encode/Decode Sequence: I P B B P B B

Display Sequence: I B B P B B P

- N = number of frames (pictures) in a GOP
- M = number of Bframes between I- or P-frame + 1
- There is one I-frame for each GOP
- I-frame: intra coded only
- P-frame: forward prediction and MC
- B-frame: both forward and backward prediction and MC

DCT in Image Coding

DCT 变换

DCT量化的影响

quantizer stepsize for AC coefficients: 25

quantizer stepsize for AC coefficients: 100

quantizer stepsize for AC coefficients: 200

139	144	149	153	155	155	155	155
144	151	153	156	159	156	156	156
150	155	160	163	158	156	156	156
159	161	162	160	160	159	159	159
159	160	161	162	162	155	155	155
161	161	161	161	160	157	157	157
162	162	161	163	162	157	157	157
162	162	161	161	163	158	158	158

Transformed block

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

Quantization matrix

Bit-stream 15 0 -2 -1 -1 -1 0 ... Entropy coding Zig-zag scar

9

Zigzag 扫面

• 2D->1D

DPCM: Differential PCM

- 使用相近的字之间的差进行存储,对于重复出现和或者相近变化不大的情况比较多的时候比较好
- 例如 'AAFFFFCCC'
 - PCM =>'65,65,70,70,70,70,67,67,67'or '0,0,5,5,5,5,5,2,2'
 - DPCM =>'0,0,5,0,0,0,0,-3,0,0'

Run-Length Coding

Huffman Coding

• 让出现最多的字(word),用最小的(code)代替

例子	' A'	'B'	'C'	'D'		
出现几率	3/4	1/6	1/24	1/24		平均长度
Fixed-Length Code	00	01	10	11	→	2*(3/4)+2*(1/6)+2*(1/24)+2 *(1/24) = 2
Variable- Length Code	0	10	110	111	→	1*(3/4)+2*(1/6)+3*(1/24)+3 *(1/24) = 1.333

Motion prediction

- For motion prediction to work, we need to record the motion of every pixel. This can be done more efficiently using image blocks called "Macroblocks"
- The predicted macroblock and the actual image block are compared and the difference is gencoded

运动估计

H.261 运动估计

- Macro-block
 - Luminance: 16x16, four 8x8 blocks
 - Chrominance: two 8x8 blocks
 - Motion estimation only performed for luminance component
- Motion vector range
 - [-15, 15]

The H.263 Standard Coder

H.263运动补偿

- 图像分解成16X16的宏块
- 允许一个宏块中4个8×8亮度块各对应一个运动矢量,从而提高了预测精度
- 两个色度块的运动矢量则取这4个亮度块运动矢量的平均值
- 补偿时,使用重叠的块运动补偿,8×8亮度块的每个象素的补偿值由3个预测值加权平均得到

Motion Compensation Example

0

4/30/2018

0

H.264 运动比较

- ¼ 像素的精确运动比较
- 动态的 block-size:
 - 每个16X16的宏块能够再被分割
 - 每个子块能够分别进行运动评估
- 多重任意的参考帧
 - 对比(H.263) 的优质有之前或者 (MPEG)的前后方式.
- 抗模糊子像素插值

H.264 Variable Block Sizes

Motion Scale Example

0

T=2

0

4/30/2018

Motion Scale Example

0

T=2

0

Motion Scale Example

0

0

4/30/2018

H.264 VBS Example

11.20+ VD3 Example

H.264的画质区别

H.264有四种画质级别,分别是BP、EP、MP、HP

- 1、BP-Baseline Profile:基本画质。支持I/P 帧,只支持无交错(Progressive)和CAVLC;
- 2、EP-Extended profile: 进阶画质。支持I/P/B/SP/SI 帧, 只支持无交错(Progressive)和CAVLC;
- 3、MP-Main profile:主流画质。提供I/P/B 帧,支持无交错(Progressive)和交错(Interlaced),也支持CAVLC和CABAC的支持
- 4、HP-High profile: 高级画质。在main Profile 的基础上增加了8x8内部预测、自定义量化、无损视频编码和更多的YUV 格式

在相同配置情况下,High profile(HP)可以比Main profile(MP)节省10%的码流量,比MPEG-2 MP节省60%的码流量,具有更好的编码性能。根据应用领域的不同,Baseline profile多应用于实时通信领域,Main profile多应用于流媒体领域,High profile则多应用于广电和存储领域。

Hybrid MC-DCT Encoder

THANKS

本课程由 Eric Zhang 提供

大话成像之 数字成像系统 32 讲

内容目录

- 1. 数字成像系统介绍
- 2. CMOS image sensor基础
- 3. 光学基础
- 4. 颜色科学基础
- 5. ISP 信号处理基础
- 6. 3A概述
- 7. 黑电平与线性化
- 8. Green Imbalance
- 9. 坏点消除
- 10. Vignetting与Color shading
- 11. SNR 与Raw Denoise
- 12. Dynamic Range与Tone Mapping
- 13. MTF与Demosaic
- 14. 色彩空间与色彩重建
- 15. Color Correction Matrix与3D LUT
- 16. Gamma与对比度增强
- 17. Sharpening

- 18. Color Space Conversion
- 19. 空域去噪
- 20. 时域去噪
- 21. Color Aberrance Correction and Depurple
- 22. ISP 的统计信息
- 23. 自动曝光
- 24. 自动白平衡
- 25. 自动对焦
- 26. 闪光灯
- 27. HDR
- 28. Exif 和DNG
- 29. Encoder
- 30. 图像防抖
- 31. 图像质量评价工具与方法
- 32. 画质调优

