live

Data Visualization and EDA

Outline

- Descriptive Statistics
- Introduction to Data Visualization
- Basic Chart and Graphs
- Other Visualizations
- Exploratory Data Analysis (EDA)

Descriptive Statistics

Descriptive Statistics

Cabang statistik yang berkaitan dengan pengumpulan, penyusunan, dan penyajian data numerik untuk memberikan gambaran ringkas tentang karakteristik dasar data

Tujuan utamanya adalah untuk menggambarkan dan merangkum data secara terorganisir agar dapat dimengerti dan dianalisis lebih lanjut.

Beberapa Teknik:

- Central tendency yang menyediakan informasi seperti mean, median, modus
- Melihat persebaran data seperti nilai min, max, standar deviasi, kuartil
- Melihat apakah data tersebar normal atau skewness
- Menampilkan grafik dan diagram secara visual untuk mempermudah pemahaman tentang pola dan karakteristik data
- Menganalisis hubungan antara dua atau lebih variable menggunakan koefisien korelasi

Mean, Median dan Modus

Data Nilai : 5, 6, 6, 5, 5, 7, 10, 9, 8, 7

Carilah mean, median dan modus

Mean adalah rata-rata dari data Mean = (5 + 6 + 6 + 5 + 5 + 7 + 10 + 9 + 8 + 7) / 10Mean = 6.8

Median adalah nilai tengah dari data setelah diurutkan Data yang diurutkan \square 5, 5, 5, 6, 6, 7, 7, 8, 9, 10 Karena jumlah data genap (10), nilai tengahnya diambil dari data ke-5 dan ke-6 kemudian dibagi 2. Median = (6 + 7) / 2 Median = 7,5

Modus adalah data yang paling sering muncul Modus = 5 5 merupakan data yang paling sering muncul yaitu sebanyak 3 kali

Mean atau Median?

Untuk memahami pengaruh outlier terhadap ukuran pemusatan data antara mean atau median perhatikan contoh berikut kembali

Perusahaan DQTech ingin mengetahui rata-rata dan juga nilai tengah dari data gaji karyawannya. Data dan perhitungan adalah sebagai berikut :

Posisi	Gaji		
Data Analyst	5.000.000		
Quality Assurance Eng.	5.750.000		
Business Intelligence Dev.	6.000.000		
Data Engineer	6.500.000		
Data Scientist	7.000.000		

$$Rataan = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i = \frac{1}{5} (5jt + 5,75jt + \dots + 7jt) = 6.050.000$$

$$Median = 6.000.000$$

Kemudian ditambahkan data Gaji Manager IT pada sampel data diatas sehingga menjadi

Posisi	Gaji
IT Manager	21.200.000

$$Rataan = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i = \frac{1}{6} (5jt + 5,75jt + \dots + 7jt + 21,2jt) = 8.575.000$$

$$Median = 6.500.000$$

Dapatkah disimpulkan bahwa rata-rata gaji karyawan DQTech adalah 8.575.000? Dalam hal ini, median lebih baik digunakan karena relatif tidak terpengaruh terhadap nilai sangat tinggi atau rendah

Tipe Distribusi

Korelasi

Semakin besar nilai korelasi berarti semakin kuat hubungan liniernya.

Rentang nilai korelasi adalah -1 hingga 1.

Introduction to Data Visualization

Data Visualization

Proses mewakili informasi atau data dengan menggunakan elemen visual seperti grafik, diagram, peta atau visual lainnya.

Tujuan utamanya adalah untuk menyajikan data dengan cara yang mudah dipahami dan dapat memberikan wawasan yang lebih baik bagi pengguna.

Manfaat:

- Memudahkan pemahaman
- Mengungkapkan pola dan tren
- Melihat kejanggalan atau anomaly
- Komunikasi yang efektif

Bar Chart

- ☐ Untuk membandingkan statistical summary seperti jumlah, rata-rata, median
- Membandingkan antar kategori dengan jumlah objek yang tidak terlalu banyak
- Memvisualisasikan data kategorikal

Line Chart

- Untuk membandingkan statistical summary dari waktu ke waktu
- Menampilkan pola pergerakan data seperti efek musiman, efek libur, dll

Pie Chart

- Membandingkan objek mana yang memiliki porsi lebih besar secara persentase atau angka
- ☐ Membandingkan proporsi pada objek yang biasanya kurang dari 5 objek

Histogram

- Untuk mengetahui penyebaran kuantitatif pada kelompok tertentu
- ☐ Mengetahui persebaran data apakah menumpuk di suatu skala tertentu

Box Plot

- Untuk mengetahui penyebaran kuantitatif secara detail (min, Q1, Q2, Q3, max)
- ☐ Untuk melihat ada tidaknya pencilan atau outlier

Scatter Plot

- Untuk mengetahui penyebaran kuantitatif dari dua objek kuantitatif.
- ☐ Untuk mencari korelasi atau hubungan antar dua objek

Pilih mana?

Pilih mana?

Introduction to Data Visualization

Data Visualization

Beberapa library yang biasa digunakan untuk visualisasi:

- Seaborn
- → Matplotlib

Matplotlib

Kelebihan:

- Fleksibilitas tinggi
- Dokumentasi lengkap

Kekurangan:

- Sintaks lebih kompleks dan panjang
- Pemahaman mendalam tentang konsep visualisasi data

Seaborn

Kelebihan:

- Sintaks sederhana
- Memiliki gaya default lebih menarik dan professional

Kekurangan:

- Kurangnya fleksibilitas dalam beberapa kasus
- Dokumentasi tidak sekomprehensif seperti Matplotlib

Matplotlib vs Seaborn

import matplotlib.pyplot as plt

plt.scatter(x=df['DIS'], y=df['NOX'])

import seaborn as sns

Beberapa visualisasi terlihat berbeda antara matplotlib dan seaborn. Pada matplotlib, terlihat tidak ada label pada x-axis dan y-axis. Semuanya harus dibuat satu persatu.

Matplotlib

Anggap matplotlib sebagai figure yang mempunyai beberapa elemen yang semuanya dapat dimodifikasi.

Matplotlib Anatomy

Anatomi di samping sebenarnya dibuat menggunakan matplotlib dengan kode <u>Python</u> ini

Basic Charts

Basic Charts

import mat	cplotlib.pyplot as plt	import seaborn as sns				
Bar	□ plt.bar(x, y)	Bar	\square sns.barplot(x=x, y=y)			
Line	□ plt.plot(x, y)	Line	\square sns.lineplot(x=x, y=y)			
Histogram	☐ plt.hist(data)	Histogram	☐ sns.histplot(data)			
Box	☐ plt.boxplot(data)	Box	☐ sns.boxplot(data)			
Scatter	\square plt.scatter(x, y)	Scatter	\square sns.scatterplot(x=x, y=y)			
Pie	□ plt.pie(data)	Pie				

Seaborn tidak punya fungsi spesifik untuk membuat pie chart karena fokus pada visualisasi statistik daripada data kategori.

Namun kita bisa membuat pie chart menggunakan matplotlib yang bisa dimodifikasi.

Jika butuh tampilan pie chart yang advanced, bisa menggunakan library lain seperti Plotly Express.

Other Visualization

Plotly Express

```
import plotly.express as px
```


Dengan plotly express, kita bisa berinteraksi langsung pada grafiknya dengan mengarahkan ke elemen tertentu

Exploratory Data Analysis

Exploratory Data Analysis

Kenapa?

Membersihkan data

- Data real itu sangat kotor
- Harus paham data yang missing dan duplikat

Mengerti data

- Eksplor data untuk dapat insights
- Lihat statistical summary
- Analisis univariate
- Analisis multivariate

Seleksi fitur untuk model

- EDA bisa deteksi fitur yang kemungkinan berpotensi untuk digunakan
- Fitur yang saling berhubungan sehingga memilih 1 fitur saja dari fitur tersebut

Statistical Summary

Hal paling pertama yang harus dilakukan adalah melihat summary statistic dari dataset. Hal ini dilakukan untuk melihat distribusi dari tiap kolom.

- Bagaimana data min dan max?
- Distribusinya normal atau skewed?
- Bagaimana frekuensi dari data kategori

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	
count	486.000000	486.000000	486.000000	486.000000	506.000000	506.000000	486.000000	Ę
mean	3.611874	11.211934	11.083992	0.069959	0.554695	6.284634	68.518519	
std	8.720192	23.388876	6.835896	0.255340	0.115878	0.702617	27.999513	
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	
25%	0.081900	0.000000	5.190000	0.000000	0.449000	5.885500	45.175000	
50%	0.253715	0.000000	9.690000	0.000000	0.538000	6.208500	76.800000	
75%	3.560263	12.500000	18.100000	0.000000	0.624000	6.623500	93.975000	
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	

- Jumlah data yang muncul terdapat perbedaan, berarti ada beberapa yang missing value
- Min dan max value terlihat masuk akal
- Mean >> Median berarti distribusinya skewed
- Mean ~ Median berarti distribusinya relatif simetris

Analisis Univariate

Visualisasikan tiap kolom agar lebih memahami datanya

- Terdapat beberapa outlier, pahami konteks datanya untuk handling outlier tersebut
- Index 24 memiliki frekuensi terbanyak
- Distribusi AGE terlihat skewed, pahami datanya apakah perlu dilakukan transformasi.

Analisis Multivariate

Lakukan analisa beberapa variable bersamaan untuk melihat hubungannya

Pearson's Correlation

Heatmap Correlation

TAX dan RAD berhubungan kuat

Buat beberapa pertanyaan :

- Apakah harga rata-rata rumah pada CHAS 0 lebih besar daripada CHAS 1?
- 10 usia rumah dengan jumlah terbanyak?
- Berapa % rumah yang harganya lebih besar dari 20?
- Dan lainnya

Apakah harga rata-rata rumah pada CHAS 0 lebih besar daripada CHAS 1?

Step:

- Hitung rata-rata pada masing-masing CHAS
- Visualisasikan

Code:

- df_mean = df.groupby('CHAS')['MEDV'].mean().reset_index()
- sns.barplot(df_mean, x='CHAS', y='MEDV')

10 usia rumah dengan jumlah terbanyak

Step:

- Hitung jumlah data tiap usia rumah
- Urutkan dari umur yang mempunyai jumlah terbesar
- Ambil 10 data teratas
- Visualisasikan

Code:

- count_age = df.groupby('AGE').agg(age_count = ('AGE', 'count'))
- count_age = count_age.sort_values('age_count', ascending=False).reset_index()
- count_age = count_age.head(10)
- sns.barplot(count_age, y='AGE', x='age_count', orient='h')

Berapa % rumah yang harganya lebih besar dari 20?

Step:

- Hitung jumlah masing-masing di atas dan di bawah 20
- Jadikan satu dataframe baru
- Visualisasikan menggunakan pie chart

Code:

- above_20 = df.loc[df['MEDV'] > 20, 'MEDV'].count()
- below_20 = df.loc[df['MEDV'] <= 20, 'MEDV'].count()
- result_df = pd.DataFrame({'Keterangan': ['Harga > 20', 'Harga <= 20'], 'Jumlah Data': [above_20, below_20]})
- plt.pie(result_df['Jumlah Data'], labels=result_df['Keterangan'], autopct='%1.1f%%')
- plt.title('Persentase Data Harga')

Terima Kasih

