# CBЯТОЙ КПК #BlessRNG

Или как не сдохнуть на 3 семе из-за матана

Разработал

Никита Варламов @snitron

Почётный автор

Тимофей Белоусов @іморге

v0.0 ALPHA ОКТЯБРЬ-UNDEFINED 2022-2023

## Заметки авторов

В данном конспекте названия всех задач имеют ссылку на своего автора в виде верхнего индекса:

- 1. @imodre
- 2. @snitron

По любым вопросам и предложениям/улучшениям обращаться в телеграмм к соответвующему автору.

## Known Issues

Вы в любой момент можете добавить любую недостающую теорему, затехав её и отправив код (фотографии письменного текста запрещены) в телегу любому из указанных авторов. Ваше авторство также будет указано, с вашего разрешения.

## Содержание

| 1 | Пер | оиод П                | алеозойский                                                            | 4  |  |  |  |
|---|-----|-----------------------|------------------------------------------------------------------------|----|--|--|--|
|   | 1.1 | Важні                 | ые определения                                                         |    |  |  |  |
|   |     | 1.1.1                 | Норма линейного оператора                                              | 4  |  |  |  |
|   |     | 1.1.2                 | Простое k-мерное гладкое многообразие в $\mathbb{R}^m$                 | 4  |  |  |  |
|   |     | 1.1.3                 | Формулировка достаточного условия относительного экстремума            | 4  |  |  |  |
|   | 1.2 | Определения           |                                                                        |    |  |  |  |
|   |     | 1.2.1                 | Положительно-, отрицательно-, незнако- определенная квадратичная форма | 6  |  |  |  |
|   |     | 1.2.2                 | Локальный максимум, минимум, экстремум                                 |    |  |  |  |
|   |     | 1.2.3                 | Диффеоморфизм                                                          | 6  |  |  |  |
|   |     | 1.2.4                 | Теорема о локальной обратимости                                        | 6  |  |  |  |
|   |     | 1.2.5                 | Формулировка теоремы о гладкости обратного отображения в терминах си-  |    |  |  |  |
|   |     |                       | стем уравнений                                                         | 7  |  |  |  |
|   |     | 1.2.6                 | Формулировка теоремы о неявном отображении в терминах систем уравнений |    |  |  |  |
|   |     | 1.2.7                 | Касательное пространство к $k$ -мерному многообразию в $\mathbb{R}^m$  | 7  |  |  |  |
|   | 1.3 | Важн                  | ые теоремы                                                             | 8  |  |  |  |
|   |     | 1.3.1                 | Достаточное условие экстремума                                         | 8  |  |  |  |
|   |     | 1.3.2                 | Теорема о неявном отображении                                          | 9  |  |  |  |
|   |     | 1.3.3                 | Необходимое условие относительного локального экстремума               |    |  |  |  |
|   | 1.4 | Teoper                | МЫ                                                                     | 13 |  |  |  |
|   |     | 1.4.1                 | Лемма об условиях, эквивалентных непрерывности линейного оператора     |    |  |  |  |
|   |     | 1.4.2                 | Теорема Лагранжа для отображений                                       |    |  |  |  |
|   |     | 1.4.3                 | Теорема об обратимости линейного отображения, близкого к обратимому    |    |  |  |  |
|   |     | 1.4.4                 | Теорема о непрерывно дифференцируемых отображениях                     |    |  |  |  |
|   |     | 1.4.5                 | Теорема Ферма. Необходимое условие экстремума. Теорема Ролля           |    |  |  |  |
|   |     | 1.4.6                 | Лемма об оценке квадратичной формы и об эквивалентных нормах           |    |  |  |  |
|   |     | 1.4.7                 | Лемма о "почти локальной инъективности"                                |    |  |  |  |
|   |     | 1.4.8                 | Теорема о сохранении области                                           | 19 |  |  |  |
|   |     | 1.4.9                 | Следствие о сохранении области для отображений в пространство меньшей  |    |  |  |  |
|   |     |                       | размерности                                                            |    |  |  |  |
|   |     |                       | Теорема о гладкости обратного отображения                              |    |  |  |  |
|   |     |                       | Теорема о задании гладкого многообразия системой уравнений             |    |  |  |  |
|   |     |                       | Следствие о двух параметризациях                                       |    |  |  |  |
|   |     |                       | Лемма о корректности определения касательного пространства             |    |  |  |  |
|   |     |                       | Касательное пространство в терминах векторов скорости гладких путей    |    |  |  |  |
|   |     |                       | Касательное пространство к графику функции и к поверхности уровня      |    |  |  |  |
|   |     |                       | Вычисление нормы линейного оператора с помощью собственных чисел       |    |  |  |  |
|   |     | 1.4.17                | Теорема о функциональной зависимости                                   | 31 |  |  |  |
| 2 | Пет | Период Мезозойский 34 |                                                                        |    |  |  |  |
|   | 2.1 | , ,                   | ые определения                                                         | 34 |  |  |  |
|   |     | 2.1.1                 | Равномерная сходимость последовательности функций на множестве         | 34 |  |  |  |
|   |     | 2.1.2                 | Степенной ряд, радиус сходимости степенного ряда, формула Адамара      | 34 |  |  |  |
|   | 2.2 | Опред                 | еления                                                                 | 35 |  |  |  |
|   |     | 2.2.1                 | Поточечная сходимость последовательности функций на множестве          | 35 |  |  |  |
|   |     | 2.2.2                 | Формулировка критерия Больцано-Коши для равномерной сходимости         | 35 |  |  |  |

|     | 2.2.3          | Равномерная сходимость функционального ряда                             | 35 |  |  |
|-----|----------------|-------------------------------------------------------------------------|----|--|--|
|     | 2.2.4          | Формулировка критерия Больцано-Коши для равномерной сходимости рядов    | 35 |  |  |
|     | 2.2.5          | Признак Абеля равномерной сходимости функционального ряда               | 36 |  |  |
|     | 2.2.6          | Преамбула к суммам расходящися рядов                                    | 36 |  |  |
| 2.3 | Важные теоремы |                                                                         |    |  |  |
|     | 2.3.1          | Теорема Стокса-Зайдля о непрерывности предельной функций. Следствие     |    |  |  |
|     |                | для рядов                                                               | 37 |  |  |
|     | 2.3.2          | Признак Вейерштрасса равномерной сходимости функционального ряда        |    |  |  |
|     | 2.3.3          | Признак Дирихле равномерной сходимости функционального ряда             | 38 |  |  |
| 2.4 | Теоремы        |                                                                         |    |  |  |
|     | 2.4.1          | Метрика в пространстве непрерывных функций на компакте, его полнота     | 40 |  |  |
|     | 2.4.2          | Теорема о предельном переходе под знаком интеграла. Следствие для рядов | 40 |  |  |
|     | 2.4.3          | Правило Лейбница дифференцирования интеграла по параметру               | 41 |  |  |
|     | 2.4.4          | Теорема о предельном переходе под знаком производной. Дифференцирова-   |    |  |  |
|     |                | TV 1 True                                                               | 42 |  |  |
|     | 2.4.5          | Теорема о предельном переходе в суммах                                  |    |  |  |
|     | 2.4.6          | Теорема о перестановке двух предельных переходов                        |    |  |  |
|     | 2.4.7          | Теорема о круге сходимости степенного ряда                              |    |  |  |
|     | 2.4.8          | 1 1 1                                                                   | 46 |  |  |
|     | 2.4.9          | Теорема о дифференцировании степенного ряда. Следствие об интегрирова-  |    |  |  |
|     |                | нии. Пример                                                             | 47 |  |  |
|     |                | Свойства экспоненты                                                     |    |  |  |
|     |                | Метод Абеля суммирования рядов. Следствие                               |    |  |  |
|     |                | Единственность разложения функции в ряд (Тейлора)                       |    |  |  |
|     |                | Разложение бинома в ряд Тейлора                                         |    |  |  |
|     |                | Теорема о разложимости функции в ряд Тейлора                            |    |  |  |
|     |                | Теорема Таубера о совпадении суммы ряда с суммой в смысле метода Абеля  |    |  |  |
|     |                | Теорема Коши о перманентности метода средних арифметических             |    |  |  |
|     |                | Преобразование Абеля степенного ряда                                    |    |  |  |
|     | 2.4.18         | Теорема о связи суммируемости по Чезаро и по Абелю                      | 57 |  |  |

## 1 Период Палеозойский

## 1.1 Важные определения

#### 1.1.1 Норма линейного оператора

Пусть X,Y — нормированные линейные пространства,  $A \in \mathbb{L}(X,Y)$  (это множество линейных отображений над  $X \to Y$ ). Тогда нормой линейного оператора называется  $||A||_{X,Y} = \sup_{x \in X_{|x|=1}} |Ax|_Y$  Замечания (для  $X = \mathbb{R}^m, Y = \mathbb{R}^n$ ):

- 1. По лемме об ограниченности нормы линейного оператора  $(L=(l_{i,j}), |Lx| \leq C_L |x| = C_L \cdot 1 = \sqrt{\sum l_{i,j}^2})$  всегда ограничена!
- 2.  $x \to |Lx|$  непрерывная функция, заданная на компакте ( $|x| = 1 \Leftrightarrow x \in S(0,1)$  сфера), причём по Вейерштрассу, максимум достигается. (напоминаю, мы в  $\mathbb{R}^m$ !)
- 3. Верно неравенство  $\forall x \in \mathbb{R}^m : |Lx| \leq ||L|| \cdot |x|$  (тут у нас важно различать евклидову и неевклидову норму). КПК считает, что это очевидно:
  - (a) x = 0 равенство
  - (b)  $x \neq 0$  делим на норму  $x: |L\frac{x}{|x|}| \leq ||L||$ , это очевидно, т.к. наша новая норма задаётся как супремум значений |x|=1, ну и мы вот сравниваем супрермум с меньшими значениями.
- 4.  $\forall x \in \mathbb{R}^m$ , если нашлось  $C > 0: |Lx| \leq C \cdot |x| \Rightarrow ||L|| \leq C$  тупо по пункту 3, очевидно.

#### 1.1.2 Простое k-мерное гладкое многообразие в $\mathbb{R}^m$

Обобщение вот всей этой темы с диффеоморфизмами в одно толковое определение  $M \subset \mathbb{R}^m$  — простое k-мерное  $C^r$ -гладкое многообразие в  $\mathbb{R}^m$ , если:

- $\exists O \subset \mathbb{R}^k$  открытое (область?)
- $\exists \Phi: O \to \mathbb{R}^m, \Phi(O) = M$  гомеоморфизм (непрерывная биекция)
- $\Phi \in C^r(O)$
- $\forall x \in O : \operatorname{rank} \Phi'(x) = k$

 $\Phi$  — гладкая параметризация.

#### 1.1.3 Формулировка достаточного условия относительного экстремума

- $f: E \subset \mathbb{R}^{m+n} \to \mathbb{R}, \Phi: E \to \mathbb{R}^n, f, \Phi \in C^1$
- $M_{\Phi} \subset E : \{x \mid \Phi(x) = 0\}$
- $a \in E$  точка относительного локального экстремума ( $\forall x \in U(a) \cap M_{\Phi}, f(x_0) \leq f(x)$  это нестрогий максимум, остальное аналогично)
- $\Phi(a) = 0$  уравнение связи

• rank  $\Phi'(a) = n$ 

это условия из необходимого условия

- $G(x) = f(x) \lambda_1 \Phi_1(x) \lambda_2 \Phi_2'(x) \dots \lambda_n \Phi_n(x) = f \langle \lambda, \Phi \rangle$
- ullet  $\lambda$  из необходимого условия
- $h \in \mathbb{R}^{m+n}, h = (h_x, h_y)$
- $\Phi'(a) \cdot h \neq 0 \Rightarrow$  можно выразить  $h_y = \Psi(h_x)$
- $Q(h_x) = d^2 G(a, (h_x, \Psi(h_x)))$  это квадратичная форма

## Тогда:

- 1.  $Q(h_x)$  положительно-определённая, тогда a точка относительного локального минимума
- 2.  $Q(h_x)$  отрицательно-определённая, тогда a точка относительного локального максимума
- 3.  $Q(h_x)$  незнако-определённая, тогда a не точка относительного локального экстремума
- 4.  $Q(h_x)$  полу-определённая, тогда информации недостаточно (может быть и так, и так)

## 1.2 Определения

## 1.2.1 Положительно-, отрицательно-, незнако- определенная квадратичная форма

Квадратичная форма:  $Q: \mathbb{R}^m \to \mathbb{R}$ 

$$Q(h) = \sum_{1 \le i, j \le m} a_{ij} h_i h_j$$

- Положительно-:  $\forall h \in \mathbb{R}^m \neq 0 : Q(h) > 0$
- Отрицательно-:  $\forall h \in \mathbb{R}^m \neq 0 : Q(h) < 0$
- Незнако-:  $\exists h \in \mathbb{R}^m \neq 0 : Q(h) < 0, \exists \widetilde{h} \neq 0 : Q(\widetilde{h}) > 0$
- Полуопределённая (положительно определённая вырожденая):  $Q(h) \geq 0, \exists h \in \mathbb{R}^m \neq 0: Q(h) = 0$

#### 1.2.2 Локальный максимум, минимум, экстремум

Рассмотрим только максимум, остальное аналогично (+ строгий)

 $f: D \subset \mathbb{R}^m \to \mathbb{R}, a \in D$ 

Если  $\exists U(a): \forall x \in U(a) \quad f(x) \leq f(a), \text{ то } a$  — точка локального максимума.

## 1.2.3 Диффеоморфизм

 $F: O \subset \mathbb{R}^m \to \mathbb{R}^m, O$  — открыто и связно (область)

- F обратимо
- $\bullet$  F дифференцируемо
- $\bullet$   $F^{-1}$  дифференцируемо

Тогда F — диффеоморфизм

#### 1.2.4 Теорема о локальной обратимости

- $F: O \subset \mathbb{R}^m \to \mathbb{R}^m$
- $F \in C^1(O)$
- $x_0 \in O : \det F'(x_0) \neq 0$

Тогда  $\exists U(x_0): F|_{U(x_0)}$  — диффеоморфизм

# 1.2.5 Формулировка теоремы о гладкости обратного отображения в терминах систем уравнений

• 
$$F = (f_1, f_2, \dots, f_m)$$

• 
$$\begin{cases} f_1(x_1, x_2, \dots, x_m) = y_1 \\ f_2(x_1, x_2, \dots, x_m) = y_2 \\ \vdots \\ f_m(x_1, x_2, \dots, x_m) = y_m \end{cases}$$

• 
$$(x_0, y_0)$$
:  $F(x_0) = y_0$ ,  $\det \frac{\partial f_i}{\partial x_i} \neq 0$ 

• 
$$\exists U(x_0), W(y_0): \exists F: U \to W$$
 — диффеоморфизм :  $\exists$  гладкое решение 
$$\begin{cases} x_1(y_1, y_2, \dots, y_m) \\ x_2(y_1, y_2, \dots, y_m) \\ \vdots \\ x_m(y_1, y_2, \dots, y_m) \end{cases}$$

### 1.2.6 Формулировка теоремы о неявном отображении в терминах систем уравнений

• 
$$F = (x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n)$$

$$\bullet \begin{cases} f_1(x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n) = 0 \\ f_2(x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n) = 0 \\ \vdots \\ f_n(x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n) = 0 \end{cases}$$

• 
$$(x^0, y^0) : F(x^0, y^0) = 0, \det \frac{\partial f_i}{\partial y_i} \neq 0$$

• 
$$\exists U(x^0) \in \mathbb{R}^m, \ \varphi(x) : F(x, \varphi(x)) = 0, x \in U(x_0)$$
 — гладкие решения

## 1.2.7 Касательное пространство к k-мерному многообразию в $\mathbb{R}^m$

- $M \subset \mathbb{R}^m$  простое k-мерное  $C^r$ -гладкое многообразие в  $\mathbb{R}^m$
- $p \in M$
- $\Phi: O \subset \mathbb{R}^k \to \mathbb{R}^m$  параметризация  $M \cap U(p)$
- $t^0 \in O : \Phi(t^0) = p$
- $\Phi'(t^0): \mathbb{R}^k \to \mathbb{R}^m$  линейный оператор

Тогда образ  $\Phi'(t^0)$  — линейное подпространство в  $\mathbb{R}^m$ , не зависящее от  $\Phi$ . Ну вот оно и называется касательным пространством  $(T_pM)$ .

Причём важно, что это пространство не обязано проходить через точку p. Это просто пространство касательных векторов, откладываемых от начала координат (???).

## 1.3 Важные теоремы

#### 1.3.1 Достаточное условие экстремума

Формулировка:

- $f: D \subset \mathbb{R}^m \to \mathbb{R}$
- $a \in Int(D)$
- $\nabla f(a) = 0$
- $f \in C^2(D)$
- $Q(h) := d^2 f(a, h)$

Тогда:

- 1. Q(h) положительно-определённая, тогда a точка локального минимума
- 2. Q(h) отрицательно-определённая, тогда a точка локального максимума
- 3. Q(h) незнако-определённая, тогда a не точка локального экстремума
- 4. Q(h) полу-определённая, тогда информации недостаточно (может быть и так, и так)

Доказательство:

**(1)** 

Давайте поближе присмотримся к  $\forall h \in \mathbb{R}^m \ \forall t \in [0,1]: \quad f(a+h) = f(a) + df(a,h) + \frac{1}{2!}d^2f(a+th,h)$  — это типа формула Тейлора с остатком в форме Лагранжа.

Теперь рассмотрим разность f(a+h)-f(a), и заметим, что df(a,h)=0 по условию.

$$f(a+h) = f(a) + \frac{1}{2!} (f''_{x_1,x_1}(a+th)h_1^2 + f''_{x_1,x_2}(a+th)h_1h_2 + \dots)$$

$$= f(a) + \frac{1}{2!} d^2 f(a+th,h)$$

$$= f(a) + \frac{1}{2!} Q(h) + \frac{1}{2!} (d^2 f(a+th,h) - Q(h))$$

$$= f(a) + \frac{1}{2!} Q(h) + \frac{1}{2!} (d^2 f(a+th,h) - d^2 f(a,h))$$

$$= f(a) + \frac{1}{2!} Q(h) + \frac{1}{2!} (f''_{x_1,x_1}(a+th)h_1^2 - f''_{x_1,x_1}(a)h_1^2 + f''_{x_1,x_2}(a+th)h_1h_2 - \dots)$$

Теперь заметим, что если повыносить коэффициенты при двойных производных, получится чтото в стиле  $(f_1'' - f_2'')(\sum_{i,j} h_i h_j)$ , где левая скобка — б.м. при  $h \to 0$ , а правая оценивается  $|h|^2$ . Таким образом, все эти штуки есть ничто иное, как  $\alpha(h)|h|^2$ , где  $\alpha(h)$  — б.м. при  $h \to 0$ .

В итоге получаем:

$$f(a+h)-f(a) \geq \frac{1}{2}Q(h) + \alpha(h)|h|^2 \geq \frac{\gamma_Q}{\text{по лемме об оценке кв. формы}} \frac{\gamma_Q}{2}|h|^2 + \alpha(h)|h|^2$$

$$\underset{\text{при }h\to 0}{\geq} \frac{\gamma_Q}{4} |h|^2 \underset{h\neq 0}{>} 0$$

Получается, что в окрестности нашей точки a все значения больше, чем в ней самой. Получается, это по определению это точка локального минимимума.

(2)

Всё то же самое, только пусть мы рассматриваем функцию g := -f. С учётом отрицательно определённой квадратичной формы всё получится, и тут у нас точка локального максимума.

(3)

Шизофазия начинается тут. Т.к. у нас незнакоопределённая форма, значит  $\exists h>0: Q(h)>0, \quad \exists \widetilde{h}>0: Q(\widetilde{h})<0$ 

Раньше мы с вами считали, что h может быть любым. Теперь же давайте рассмотрим относительно вот этих существующих  $h, \tilde{h}$ . Но чтобы устремлять всё это дело к 0, нам необходим некоторый параметр. Пусть он будет s. Тогда рассматриваем по тому же принципу: f(a+sh)-f(a), рассуждения такие же, только там везде дополнительно вылезает  $s^2$ , и, таким образом, функции станут зависеть от него:

$$f(a+sh) - f(a) \ge \frac{1}{2}Q(sh) - |\alpha(s)|s^2 = \frac{s^2}{2}Q(h) - |\alpha(s)|s^2 \ge \frac{1}{4}Q(h)s^2$$

Вот, тут у нас получилось, что это минимум. А если отработаем с  $\widetilde{h}$ , то получится наоборот.

(4)

Ну а тут, слава Богу, достаточно привести пример.

Пусть 
$$f(x) := x_1^2 - x_2^4$$
,  $a = (0,0)$ 

$$df(a,h) = 0, \quad d^2f(a,h) = 2h_1^2$$

Видно, что в этом случае мы можем бегать и по  $x_1$ , и по  $x_2$ , и в итоге получим разные значения, потому что форма вообще зависит только от одной компоненты.

А для почти идентичной  $g(x) := x_1^2 + x_2^4$  уже всё наоборот, и существует строгий локальный минимум.

ч. т. д.

#### 1.3.2 Теорема о неявном отображении

 $\Phi$ ормулировка:

- $F: O \subset \mathbb{R}^{m+n} \to \mathbb{R}^n$
- $(a,b) \in O$ ,  $a \in \mathbb{R}^m, b \in \mathbb{R}^n$
- $F(a,b) = 0 \in \mathbb{R}^{m+n}$
- $F \in C^r, r \in \mathbb{N} \cup \{\infty\}$
- $\det F_u'(a,b) \neq 0$

Тогда  $\exists P(a) \subset \mathbb{R}^m, Q(b) \subset \mathbb{R}^n$  — окрестности, и  $\exists ! \varphi : P \to Q \in C^r$  гладкое:

$$\forall x \in P : F(x, \varphi(x)) = 0$$

Бонус:

$$\varphi'(x) = -(F_y'(x,\varphi(x)))^{-1} \cdot F_x'(x,\varphi(x)) \Leftrightarrow F_x'(x,\varphi(x)) + F_y' \cdot \varphi'(x) = 0 \ (\text{продифференцировали условие})$$

Доказательство:



Het, это не шутка. Всё доказательство строится вокруг одной картинки и яростного махания руками со знанием дела.

Заведём  $\Phi(x,y):O\subset\mathbb{R}^{m+n}\to\mathbb{R}^{m+n},\quad \Phi(x,y)=(x,F(x,y)).$  Логично, что по условию  $\Phi(a,b)=(a,0).$  Если посмотреть на производный оператор (а она дифференцируема, так как F — дифференцируема (?)), то прекрасно видно, что матрица квадратная, да ещё и блочная  $\Rightarrow$  det  $\Phi'(a,b)=$  det  $E_m\cdot$  det  $F'_y(a,b).$  По условию ничего из этого не 0, следовательно определитель невырожден. А поэтому, по теореме о локальной обратимости:  $\Phi$  — локальный диффеоморфизм класса  $C^r$ .

Заведём окрестность (как декартово произведение, почему бы и нет)  $\widetilde{U}=P_1\times Q.$   $P_1$  немного большевата для P, поэтому потом мы её немного подрежем.  $\widetilde{V}=\Phi(\widetilde{U}).$  Заметим, что все эти окрестности открыты по предыдущим теоремам.

Т.к. у нас  $\Phi|_{\widetilde{U}}$  — диффеоморфизм, на прообразе и образе имеет место быть обратное отображение  $\Psi:\widetilde{V}\to\widetilde{U}=\Phi^{-1}.$ 

Заметим, что отображение  $\Phi$  не меняет "x"-овые координаты (по построению функции ,см. рисунок), "y"-овые же как-то колбасит, как показано зелёной областью. Значит и  $\Psi$  их тоже не меняет, т.к. диффеоморфизм. Именно поэтому справа у нас координаты (x,v). Можно представить  $\Psi(x,v)=(x,H(x,v)), \quad H:\widetilde{V}\to\mathbb{R}^n\in C^r$ . Поэтому давайте выберем окрестность

 $P \subset \mathbb{R}^m := \widetilde{V} \cap (\mathbb{R}^n \times \{0\})$ . Она открыта по теореме (1 сем) о свойствах открытых множеств (конечное пересечение открытых открыто).  $U = P \times Q$ 

Вооот. А теперь давайте предложим в качестве  $\varphi(x): P \to Q := H(x,0)$ . Она прнадлежит классу  $C^r$ , т.к. все функции до этого в нём лежали. А почему выполняется условие  $F(x,\varphi(x)) = 0, x \in P$ ? Ну давайте проследим путь. Что такое вообще H(x,0) — мы берём все точки вида (x,0) (см. картинку), и взаимно-однозначно отправляем их обратно в левую часть, тем самым вычисляя им значение  $b_0 \in Q(b)$  (этим и занимается H(x,v) по своей сути). Ну вот. А потом мы отправляем точку  $(x,b_0)$  в правую часть, и куда же она должна приехать, если уезжала из 0? Правильно, в 0. Ура, условие выполняется.

Осталось доказать едиственность, опять давайте помашем руками:

$$x \in P, y \in Q : F(x, y) = 0, \quad \Phi(x, y) = (x, 0)$$

$$(x,y) = \Psi \Phi(x,y) = \Psi(x,0) = (x, H(x,0)) = (x, \varphi(x))$$

ч. т. д.

#### 1.3.3 Необходимое условие относительного локального экстремума

 $\Phi$ ормулировка:

- $f: E \subset \mathbb{R}^{m+n} \to \mathbb{R}, \Phi: E \to \mathbb{R}^n, \quad f, \Phi \in C^1$
- $M_{\Phi} \subset E : \{x \mid \Phi(x) = 0\}$
- $a \in E$  точка относительного локального экстремума ( $\forall x \in U(a) \cap M_{\Phi}, f(x_0) \leq f(x)$  это нестрогий максимум, остальное аналогично)
- $\Phi(a) = 0$  уравнение связи
- rank  $\Phi'(a) = n$

Тогда 
$$\lambda \in \mathbb{R}^n(\lambda_1,\lambda_2,\dots,\lambda_n): egin{cases} f'(a)+\lambda \Phi'(a)=0 \\ \Phi(a)=0 \end{cases}$$

Второе условие бесплатное, оно из условия.

Доказательство:

Так как у нас ранг n на матрице производного оператора  $\Phi'$ , давайте считать, что он достигается на  $m+1\ldots m+n$  (n штук) столбцах матрицы (это матрица n строк  $\times$  (m+n) столбцов). Тогда в стиле всех предыдущих теорем а-ля "неявное отображение" разделим переменные:  $(x_1, x_2, \ldots, x_m), (x_{m+1}, x_{m+1}, \ldots, x_{m+n}) \mapsto (x, y)$ . Точку a тоже:  $(a_x, a_y)$ .

Запускаем теорему о неявном отображении:  $\Phi(a)=0, \frac{\partial \Phi}{\partial y}$  — невырожденный оператор. Тогда существует  $!\varphi:U(a_x)\to P(a_y), \Phi(x,\varphi(x))=0.$  Замечаем, что  $x\mapsto (x,\varphi(x))$  — параметризация простого гладкого m-мерного многобразия в  $M_\Phi\cap \{U(a_x)\times P(a_y)\}.$ 

Тогда для  $g(x) = f(x, \varphi(x))$  точка  $a_x$  — просто точка локального экстремума. Почему? Управляя теперь точкой x, мы с помощью g попадаем в  $M_{\Phi}$ , внутри которого  $\Phi(x) = 0$  всегда! Поэтому

внутри хорошего (в рамках этой задачи) множества мы и ищем экстремум. Это можно легко понять, если представить поиск экстремума на какой-то области графика (ради этого всё и делается же).

Хорошо, давайте его искать. По необходимому условию экстремума, ЧП g должны быть равны нулю ( $\varphi'$  бывает только по x):

$$f'_x(a) + f'_y(a) \cdot \varphi'(a_x) = 0 \qquad (\in \mathbb{R}^m)$$

Начииная с этого места опускаем подстановку точек, но они там есть! Вспоминаем, что у нас есть  $\Phi(x, \varphi(x)) = 0$ . Также дифференцируем:

$$\Phi_x' + \Phi_y' \varphi' = 0 \qquad (\in Mat(n, m))$$

$$\forall \lambda \in \mathbb{R}^m : \qquad \lambda \Phi'_x + \lambda \Phi'_y \varphi' = 0 \qquad (\in \mathbb{R}^m)$$

Тогда можно вычесть из уравнения с f уравнение с  $\Phi$  — размерности сошлись:

$$f_x' - \lambda \Phi_x' + (f_y' - \lambda \Phi_y')\varphi' = 0$$

Пусть  $f_y' - \lambda \Phi_y' = 0$ . Тогда:

$$\lambda = f_y' \cdot \left(\Phi_y'\right)^{-1}$$

Если мы берём это  $\lambda$  (а нас и просят её предъявить), то наше предположение верно. Раз разность 0, то и иксовая разность равна нулю:

$$\begin{cases} f_y' - \lambda \Phi_y' = 0 \\ f_x' - \lambda \Phi_x' = 0 \end{cases}$$

Это векторная запись точек, которые мы когда-то разъединили. Давайте соединим обратно:

$$f' - \lambda \Phi' = 0$$
  $\lambda = f'_y \cdot (\Phi'_y)^{-1}$ 

ч. т. д.

## 1.4 Теоремы

#### 1.4.1 Лемма об условиях, эквивалентных непрерывности линейного оператора

Формулировка:

Пусть X, Y — нормированные линейные пространства,  $A \in \mathbb{L}(X, Y)$ .

Тогда следующие утверждения эквиваленты:

- 1. A ограниченный оператор, в том смысле, что ||A|| конечно
- 2. A непрерывно в нуле
- $3. \ A$  непрерывно на всём X
- $4. \ A$  равномерно непрерывно

Доказательство: Для  $||A|| \equiv 0$  — тривиально (супремум = 0, следовательно 0), поэтому далее считаем норму оператора ненулевой. Ну, во-первых,  $4 \Rightarrow 3 \Rightarrow 2$  — очевидно, просто одно следует из другого.

Bo-вторых,  $2 \Rightarrow 1$ :

По определению непрерывности в нуле:  $\forall \varepsilon > 0, \ \exists \delta \forall x \in B(0, \delta) : |Ax| < \varepsilon$  (это нам дано, значит можем пользоваться, как хотим)

Давайте рассмотрим  $\varepsilon = 1: |Ax| < 1$ , потом делим на  $\delta$ :

$$|A\frac{x}{\delta}| < \frac{1}{\delta}$$

Переназначим x и заметим, что  $x \in \overline{B(0,1)}: |Ax| \leq \frac{1}{\delta}$  (обратите внимание, мы взяли замыкание шара и получили нестрогое неравенство)

Тогда для  $x \in S(0,1): |Ax| \leq \frac{1}{\delta} = \frac{1}{\delta} \cdot |x|$  — по замечанию 4 из определения,  $||L|| \leq \frac{1}{\delta}.$ 

B-третих,  $1 \Rightarrow 4$ :

Давайте опять запишем определение равномерной непрерывности:

$$\forall \varepsilon > 0 \exists \delta : \forall x_1, x_2 : |x_1 - x_2| < \delta |f(x_1) - f(x_2)| < \varepsilon$$

Назначим  $\delta := \frac{\varepsilon}{||A||}$ 

$$|Ax_1 - Ax_2| < \varepsilon$$

По линейности:

$$|A(x_1 - x_2)| < ||A|| \cdot |x_1 - x_2| = ||A||\delta = ||A|| \frac{\varepsilon}{||A||} = \varepsilon$$

ч.т.д.

#### 1.4.2 Теорема Лагранжа для отображений

 $\Phi$ ормулировка:  $F:D\subset\mathbb{R}^m\to\mathbb{R}^l, D$  — открытое

F — дифференцируемо на  $D, [a, b] \subset D$ 

Тогда  $\exists c \in [a,b]: |F(a) - F(b)| \leq ||F'(c)|| \cdot |b-a|$  Доказательство: Заведём функцию  $f(t) = F(a+t(b-a)), t \in [0,1] \subset \mathbb{R}$ . То есть как-бы двигаем точку по [a,b].

$$f'(t) = F'(a + t(b-a))(b-a)$$

Заметим, что это оператор  $\mathbb{R} \to \mathbb{R}^l$ , т.к. F'(a+t(b-a))-l, а b-a-m (???)

Вспомним также теорему Лагранжа для векторнозначных функций:

 $F:[a,b] \to \mathbb{R}^n, F$  — дифференцируема на  $[a,b], \exists c \in [a,b]$ 

$$|F(a) - F(b)| = |F'(c)| \cdot |b - a|$$

Рассмотрим нашу функцию f(t) по этой теореме в точках 0 и 1:

$$|f(1) - f(0)| = |f'(c)| \cdot |1 - 0|$$

Подставим:

$$|F(b)-F(a)| = |F'(a+c(b-a))\cdot (b-a)| \leq \sup_{\text{по замечанию } 3} ||F'(a+c(b-a))|| \cdot |b-a|$$

Ну а дальше, пусть c := a + c(b - a) и всё супер.

ч.т.д.

#### 1.4.3 Теорема об обратимости линейного отображения, близкого к обратимому

Формулировка (безымянная лемма):

Возможно, она нахер не нужна, но пусть всё же будет

Пусть  $B \in \mathbb{L}(\mathbb{R}^m, \mathbb{R}^m)$ .

Если c > 0:  $\forall x \in \mathbb{R}^m : |Bx| \ge c|x|$ , тогда  $B \in \Omega_m$  и  $||B^{-1}|| \le \frac{1}{c}$ 

Доказательство:

B — очевидно инъективен, т.к. любой ненулевой вектор у нас отправляется в разные точки  $\Rightarrow$  биекция  $\Rightarrow$  обратимый  $\Rightarrow \exists B^{-1}$ 

Теперь пусть  $y = B^{-1}x \Rightarrow |Bx| = |y| \ge c|x| = c|B^{-1}y| \Rightarrow |B^{-1}y| \le \frac{1}{c} \cdot |y| \underset{\text{по замечанию 3}}{\Rightarrow} ||B^{-1}|| \le \frac{1}{c}$  ч.т.д.

Замечание:

Если  $A \in \Omega_m$ , то можно провенуть такую штуку:  $|x| = |A^{-1}Ax| \le ||A^{-1}|| \cdot |Ax|$  (по 3 замечанию). Тогда:

$$|Ax| \ge \frac{1}{||A^{-1}||}|x|$$

Формулировка:

Пусть  $L\in\Omega_m$  — обратимый оператор,  $M\in\mathbb{L}(\mathbb{R}^m,\mathbb{R}^m),\,||L-M||<\frac{1}{||L^{-1}||}$ 

Тогда:

1.  $M \in \Omega_m$  — обратимый

2. 
$$||M^{-1}|| \le \frac{1}{\frac{1}{|L^{-1}|} - ||L - M||}$$

3. 
$$||L^{-1} - M^{-1}|| \le \frac{||L^{-1}||}{\frac{1}{|L^{-1}|} - ||L - M||} \cdot ||L - M||$$

Доказательство:

## (1) u (2)

Рассмотрим |Mx| с рандомным возможным x. По неравенству треугольника (это всё же норма) и оценкам по замечаниям сверху:

$$|Mx| \ge |Lx| - |(M-L)x| \ge \frac{1}{||L^{-1}||}|x| - ||M-L|| \cdot |x| = \left(\frac{1}{||L^{-1}||} - ||M-L||\right)|x|$$

По безымянной лемме всё доказано (заметим, что выражение в скобочках — положительная константа).

(3)

Неповторимый оригинал:

$$\frac{1}{l} - \frac{1}{m} = \frac{m - l}{ml}$$

Жалкая копия (доказывается тривиально, раскрытием скобок):

$$L^{-1} - M^{-1} = M^{-1}(M - L)L^{-1}$$

Отнормируем:

$$||L^{-1}-M^{-1}|| \leq ||M^{-1}|| \cdot ||L-M|| \cdot ||L^{-1}||$$

Ну и просто подставим (2).

ч.т.д.

Следствие:

Отображение  $\Omega_m \to \Omega_m : L \to L^{-1}$  непрерывно.

Доказательство:

Давайте по Гейне: если  $B_k \to L$ , то сходится ли  $B_k^{-1} \to L^{-1}$ ????

Во-первых, начиная с некоторого места:

$$|B_k - L| \le \frac{1}{||L^{-1}||}$$

$$|B_k^{-1} - L^{-1}| \le \frac{||L^{-1}||}{\underbrace{\frac{1}{|L^{-1}|} - \underbrace{||L - B_k||}_{\to 0}}} \cdot ||L - B_k|| \to 0$$

ч.т.д.

#### 1.4.4 Теорема о непрерывно дифференцируемых отображениях

Формулировка:  $F:D\subset\mathbb{R}^m\to\mathbb{R}^l, F$  дифференцируема на  $D,F':D\to\mathbb{L}(\mathbb{R}^m,\mathbb{R}^l)$ 

Тогда следующие утверждения эквивалентны:

- 1.  $F \in C^1(D) \Leftrightarrow \forall i, j : \frac{\partial f_i}{\partial x_j}$  непрерывны
- 2. F' непрерывно на  $D: \forall x: \mathbb{R}^m \ \forall \varepsilon > 0 \ \exists \delta > 0: \ \forall \widetilde{x} \ |x-\widetilde{x}| < \delta \ ||F'(x)-F'(\widetilde{x})|| < \varepsilon$

Доказательство:

$$(1) \Rightarrow (2)$$

Давайте зафиксируем какие-то i, j и относительно них рассмотрим наше условие непрерывности частных производных по отдельности. Также, применим китайскую грамоту и возьмём немного другой эпсилон:

$$\forall x : \mathbb{R}^m \ \forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall \widetilde{x} \ |x - \widetilde{x}| < \delta \ \left| \frac{\partial f_i}{\partial x_j}(x) - \frac{\partial f_i}{\partial x_j}(\widetilde{x}) \right| < \frac{\varepsilon}{\sqrt{ml}}$$

Тогда, так как нам это уже известно, проверим условие (2):

$$||F'(x) - F'(\widetilde{x})|| \leq \sum_{i,j} \left(\frac{\partial f_i}{\partial x_j}(x) - \frac{\partial f_i}{\partial x_j}(\widetilde{x})\right)^2$$

Ну а теперь просто оцениваем всё это дело эпсилоном!

$$\leq \sqrt{\sum_{i,j} \frac{\varepsilon^2}{ml}} = \sqrt{ml \cdot \frac{\varepsilon^2}{ml}} = \varepsilon$$

$$(2) \Rightarrow (1)$$

Ну а вот тут душный пиздец. Идея в том, что мы хотим проверить для каждой частной производной с индексами (v,u) наше предположение.

Давайте выберем  $h \in \mathbb{R}^m = (0,0,0,\dots,0,\underbrace{1}_{u\text{-oe число}},0,\dots,0,0)^T.$  Теперь нам известно, что:

$$|(F'(x) - F'(\widetilde{x}))h| \le ||F'(x) - F'(\widetilde{x})|| \cdot |h| \le \varepsilon$$

Ну а с другой стороны,  $(F'(x) - F'(\widetilde{x}))h$  есть ничто иное, как вектор  $\left(\frac{\partial f_i}{\partial x_u}(x) - \frac{\partial f_i}{\partial x_u}(\widetilde{x})\right)_{i=1...l}$ . Поэтому давайте рассмотрим его норму по вышеиспользованной лемме:

$$\sqrt{\sum_{i=1}^{l} \left(\frac{\partial f_i}{\partial x_u}(x) - \frac{\partial f_i}{\partial x_u}(\widetilde{x})\right)^2} \le \varepsilon$$

Ну, раз уж у нас корень суммы квадратов меньше, то и каждое слагаемое по отдельности тоже меньше. Давайте зафиксируем i=v и получим долгожданное:

$$\left| \frac{\partial f_v}{\partial x_u}(x) - \frac{\partial f_v}{\partial x_u}(\widetilde{x}) \right| \le \varepsilon$$

Так как данные эпсилон-дельта преамбуды везде были одинаковыми, то и тут всё супер. Доказано, не умаляя общности!!!!

ч. т. д.

## 1.4.5 Теорема Ферма. Необходимое условие экстремума. Теорема Ролля

Формулировка (Ферма):

 $f:D\subset\mathbb{R}^m\to\mathbb{R}, a\in Int(D), f$  — дифференцируема в точке a (точка локального экстремума)

Тогда  $\forall l \in \mathbb{R}^m : |l| = 1$  (направление)  $\frac{\partial f}{\partial l}(a) = 0$ 

Доказательство:

Тривиалити, для  $f|_{\text{прямая через } a \text{ по направлению } la}$  — тоже точка локального экстремума, поэтому по одномерной теореме Ферма всё работает!

ч. т. д.

Следствие (Необходимое условие экстремума)

a — точка локального экстремума  $\Rightarrow \forall k \in [1,m]: \frac{\partial f}{\partial x_k} = 0$ 

Следствие (Ролль)

- $f: D \subset \mathbb{R}^m \to \mathbb{R}$
- $K \subset D$  компакт
- $\bullet$  f дифференцируема в Int(K), непрерывна на K
- $f|_{\text{граница }K} = \text{const}$

Тогда  $\exists a \in Int(K) : \nabla f \equiv 0$ 

Доказательство

По теореме Вейерштрасса (привет, 1 сем), на компакте функция достигает своего минимимума и максимума. Тогда либо у нас на  $Kf \equiv const$ , тогда такая точка — любая, либо же по теореме Ферма она существует где-то внутри компакта.

ч. т. д.

#### 1.4.6 Лемма об оценке квадратичной формы и об эквивалентных нормах

 $\Phi$ ормулировка (Лемма об оценке квадратичной формы): Q — положительно определённая квадратичная форма.

Тогда  $\exists \gamma_Q : \forall h \quad Q(h) \geq \gamma_Q \cdot |h|^2$ 

Доказательство:

А давайте так:

$$\gamma_Q := \min_{|x|=1} Q(x)$$

. Он достигается, так как мы гоняем по компакту (сфере), следовательно по Вейерштрассу всё хорошо.

Для 
$$x=0$$
 всё тривиально, поэтому при  $x\neq 0$  :  $Q(x)=|x|^2Q(\frac{x}{|x|})$   $\underset{\frac{x}{|x|}\text{ от }0\text{ до }1!}{\geq}\gamma_Q|x|^2$ 

Формулировка (Лемма об эквивалентных нормах):

 $p: \mathbb{R}^m \to \mathbb{R}$  — норма

Тогда 
$$\exists C_1, C_2 > 0 : \forall x \quad C_1|x| \leq p(x) \leq C_2|x|$$

Доказательство:

То же самое:

$$C_1 := \min_{|x|=1} p(x), \quad C_2 := \max_{|x|=1} p(x)$$

Для минимума:  $\forall x: p(x) = |x| \cdot p(\frac{x}{|x|}) \geq C_1 |x|$ , для максимума аналогично.

ч. т. д.

## 1.4.7 Лемма о "почти локальной инъективности"

Формулировка:

- $F: O \subset \mathbb{R}^m \to \mathbb{R}^m$
- $x_0 \in O$
- F дифференцируема в  $x_0$
- $\det F'(x_0) \neq 0$

Тогда  $\exists C>0, \delta>0 \quad \forall h\in B(0,\delta) \ |F(x_0+h)-F(x_0)|\geq C|h|$ 

Доказательство:

1. Если F — линейное отображение, то рассмотрим:  $|h| = |F^{-1}Fh| \le ||F^{-1}|| \cdot |Fh|$ . По линейности:

$$|F(x_0 + h) - F(x_0)| = |Fh| \ge \underbrace{\frac{1}{||F^{-1}||}}_{G} |h| \quad \forall \delta$$

2. В противном случае, запишем определение дифферецируемости:  $|F(x_0+h)-F(x_0)|=|F'(x_0)h+|h|\cdot\underbrace{\alpha(h)}_{>0}|\geq\underbrace{C}_{\text{6. м.}}$  нер-во треугольника  $\underbrace{C}_{\text{из пункта }1}|h|+\alpha(h)\cdot|h|$ . Давайте выберем  $\delta$  так, чтобы  $\alpha(h)<\frac{C}{2}$ 

$$\ldots \ge \frac{C}{2}|h|$$

ч.т.д.

Замечание

При  $\forall x \det F'(x) \neq 0$  не следует инъективность!

## 1.4.8 Теорема о сохранении области

Формулировка:

- $F: O \subset \mathbb{R}^m \to \mathbb{R}^m, O$  открытое
- F дифференцируемо
- $\forall x \in O : \det F'(x) \neq 0$

Тогда F(O) — открытое множество.

Замечания

1. Если O- связное и F- непрерывное, то F(O)- связное

Доказательство:

Ну, типа очев. Если у нас есть  $W_1,W_2\subset F(O)$ , причём они не связны, то логично что получиться они могли только вследствие  $F^{-1}(W_1)\cap F^{-1}(W_2)=\emptyset$ 

2. F — непрерывное  $\Leftrightarrow \forall W \subset F(O)$  — открытого,  $F^{-1}(W)$  — открыто Доказательство: По топологическому определению непрерывности (привет, 1 сем!).



Доказательство:

В общем, основная идея доказательства состоит в том, чтобы доказать, что любая точка из образа является внутренней, тогда по определению открытого множества мы докажем и вывод.  $\forall x_0 \in O: y_0 = F(x_0).$ 

По лемме выше,  $\exists C>0, \exists \delta>0: \forall h\in \overline{B(0,\delta)}: |F(x_0+h)-F(x_0)|\geq C|h|$ . Не стоит смущаться при виде замкнутого шара, это мы просто провели двойную бухгалтерию. Причём, как видно на картинке, граница нашей области отображается куда-то далеко (аж на константу) больше, чем просто на  $\delta$ .



Заведём расстояние  $dist(x,A) = \inf_{y \in A} \rho(x,y)$  между точкой и множеством. Пусть  $r = \frac{1}{2} \cdot dist(y_0, \underbrace{F(S(x_0,\delta))}_{\text{компакт}})$ .

Так как у нас там всё компакты то минимум достигается, и, что важнее всего, всё это больше нуля.

Теперь самое интересное: докажем, что  $B(y_0,r) \subset F(O) : \forall y \in B(y_0,r) \exists x \in B(x_0,\delta) : F(x) = y$ . Это докажет нам всё остальное.

 $\forall y \in B(y_0,r): \rho(y,F(S(x,\delta))) > r$ . Это очевидно, на рисунке всё видно. Рассмотрим  $g(x):=|F(x)-y|^2, x \in B(x_0,\delta)$ . Как было сказано выше, мы доказываем, что у нас  $\exists x \Leftrightarrow g(x)=0$  возможно. Ну, очевидно, что, видимо, в если там и есть ноль, то это экстремум функции (модуль же, лол).

$$g(x_0) = |F(x_0) - y|^2 = |y_0 - y|^2$$
 очевидно по рисунку  $r^2$ 

Также, по рисунку очевидно, что для всех x с границы, наша функция отправляет их сильно дальше.

$$\forall x \in S(x, \delta) \quad g(x) \ge r^2$$

Получается, наш минимум лежит где-то внутри сферы. Поищем его. По определению евклидовой нормы:

$$g(x) = (F_1(x) - y_1)^2 + (F_2(x) - y_2)^2 + \dots + (F_m(x) - y_m)^2$$

По необходимому условию экстремума,  $\nabla F(x)=0 \Rightarrow \forall i \in [1,m]: \frac{\partial f}{\partial x_i}=0$ 

$$g'(x) = 2(F_1(x) - y_1)\frac{\partial f}{\partial x_1} + 2(F_2(x) - y_2)\frac{\partial f}{\partial x_2} + \dots + 2(F_m(x) - y_m)\frac{\partial f}{\partial x_m} = 0$$

Или в векторной форме:

$$2 \cdot (F(x) - y) \cdot F'(x) = 0$$

Однако, по условию у нас производный оператор невырожденный! Следовательно, остаётся только F(x) = y. А это то, что мы и искали!!!!

ч. т. д.

# 1.4.9 Следствие о сохранении области для отображений в пространство меньшей размерности

 $\Phi$ ормулировка:

- $f: O \subset \mathbb{R}^m \to \mathbb{R}^l$
- O открыто
- *l* < *m*
- $F \in C^1(O)$
- $\forall x \in O : \operatorname{rank}(F') = l$

Тогда F(O) — открыто

Доказательство:

Зафиксируем  $x_0 \in O$ . Так как у нас матрица производного оператора теперь имеет вид не квадратный, а прямоугольный  $(l \times m)$ , просто так применить предыдущую теорему не получится. Поэтому, не умаляя общности, давайте считать, что вот этот ЛНЗ набор векторов в матрице реализуется на позициях  $1 \dots l$ . Тогда мы можем посчитать определитель этой матрицы:

$$\det\left(\frac{\partial F_i}{\partial x_j}\right)_{1 \le i, j \le l} (x_0) \ne 0$$

При этом, так как мы потребовали непрерывность, немножко пошевелив  $x_0$  всё также будет работать:

$$\exists U(x_0) : \forall x \in U(x_0) \quad \det \left(\frac{\partial F_i}{\partial x_j}\right)_{1 \le i,j \le l} (x) \ne 0$$

Мы уже доказали, что  $F(x_0)$  — внутренняя в  $F(U(x_0))$  (по предыдущей теореме). Осталось немного пошаманить, чтобы доказать, что действительно из пространства большей в меньшую всё корректно отобразится.



Давайте заведём такую окрестность  $U_l = (t_1, t_2, \dots, t_l) : (t_1, t_2, \dots, t_l, (x_0)_{l+1}, \dots, (x_0)_m)$ . Как видно на рисунке, это такая проекция в пространстве большей размерности на пространство меньшей. Теперь заведём  $\widetilde{F}: U_l \to \mathbb{R}^l$  и посмотрим на её матрицу производных:

$$\frac{\partial \widetilde{F}_i}{\partial t_j} = \left(\frac{\partial F_i}{\partial x_j}(t_1, t_2, \dots, t_l, (x_0)_{l+1}, \dots, (x_0)_m)\right)$$

И вот теперь, по непрерывности  $\widetilde{F}$  и прошлой теореме, всё по идее работает. ч. т. д.

## 1.4.10 Теорема о гладкости обратного отображения

Формулировка:

- $F: O \subset \mathbb{R}^m \to \mathbb{R}^m$
- F обратимо
- $F \in C^r(O), r \in 1, 2, ...$
- $\forall x \in C : \det F'(x) \neq 0$

Тогда 
$$F^{-1} \in C^r$$
,  $((F^{-1}(y))' = (F'(x))^{-1})$  при  $F(x) = y$ 

Доказательство:

Докажем по индукции по r. Замое запарное — база.

## База:

Пусть  $x_0 \in O$ ,  $F(x_0) = y_0$ .  $S := F^{-1}$ . Заметим, что S — непрерывно по теореме о сохранении области и теореме о топологическом определении непрерывности (типа для любого открытого из прообраза образ тоже открыт)



По лемме о "почти" локальной инъективности:

$$\exists C, \delta > 0 : \forall x \in B(x_0, \delta) \quad |F(x) - F(x_0)| \ge C|x - x_0| \Rightarrow |x - x_0| \le \frac{1}{C}|F(x) - F(x_0)|$$

Запишем определение дифференцируемости для F и сразу распишем всё в терминах y:

$$A = F'(x_0), \quad \underbrace{F(x) - F(x_0)}_{y - y_0} = A(\underbrace{x - x_0}_{S(y) - S(y_0)}) + \alpha(\underbrace{x}_{S(y)})|x - x_0|$$

Выражаем  $(S(y) - S(y_0))$ :

$$S(y) - S(y_0) = A^{-1}(y - y_0) - \underbrace{A^{-1}\alpha(S(y))|S(y) - S(y_0)|}_{\beta(y) = o(|y - y_0|)}$$

Получилось вполне себе нормальное определение для дифференцируемости S. Надо лишь доказать "о"-шку при  $y \to y_0$ . Оценим её с помощью вывода из леммы выше и стандартной оценки операторной нормы (не забываем, что мы как-бы управляем y???):

$$\begin{split} |x-x_0| &= |S(y)-S(y_0)| < \delta \underset{\text{при } y \text{ близких к } y_0}{\Rightarrow} |\beta(y)| = |A^{-1}\alpha(S(y))| \cdot |S(y)-S(y_0)| \\ &\leq \underbrace{\frac{||A^{-1}||}{C}}_{\text{const}} \cdot \underbrace{|y-y_0|}_{|F(x)-F(x_0)|} \cdot |\alpha(S(y))| \\ &= o(|y-y_0|) \end{split}$$

Фактически "о"-шка доказана по определению. Тем самым доказана дифференцируемость. А что с непрерывностью производной то? Этого мы ещё не доказывали. Построим цепочку непрерывных отображений:

$$y \mapsto S(y) = x \mapsto A(x) \mapsto A^{-1}(x) = S'(y)$$

Непрерывность дифференцирования обратного производного оператора доказывается маханием руками на тему отдельных производных в матрице. Тем самым база доказана.

#### Переход

Достаточно тривиальный. Посмотрим при  $m=1:(f^{-1}(y))'=\frac{1}{f(x(y))}$ . То есть, пусть  $f\in C^{r+1}$ , тогда надо доказать, что  $f'\in C^r$ . Ну там вот это и написано, обратная функция вообще  $C^\infty, f'(x)\in C^r$  — очев. Для многомерного случая всё тоже самое, только формула выглядит пафоснее . . . =  $(F'(x(y)))^{-1}$ 

ч. т. д.

#### 1.4.11 Теорема о задании гладкого многообразия системой уравнений

Формулировка:

$$M \subset \mathbb{R}^m, 1 \le k \le m, 1 \le r \le \infty$$

Тогда следующие утверждения эквивалентны:

- 1.  $\exists U(p) \in \mathbb{R}^m : M \cap U(p)$  гладкое k-мерное  $C^r$ -гладкое многообразие
- 2.  $\exists \widetilde{U}(p) \in \mathbb{R}^m : \exists (F_1, F_2, \dots, F_{m-k}) : \widetilde{U} \to \mathbb{R}, F_i \in C^r$ 
  - (a)  $\forall x \in \widetilde{U} \cap M \Leftrightarrow F_1(x) = F_2(x) = \dots = F_{m-k} = 0$
  - (b)  $\nabla F_1, \nabla F_2, \dots, \nabla F_{m-k} \Pi H 3$

Доказательство (оставь надежду всяк сюда идущий):

$$(1) \Rightarrow (2)$$



Нам дано многобразие. А что это значит?  $\Phi:O\subset\mathbb{R}^k\to\mathbb{R}^m\in C^r$  — гомеоморфизм. Давайте посмотрим на неё в смысле координатных функций:  $\exists \Phi=(\varphi_1,\varphi_2,\ldots,\varphi_l), p=\Phi(t^0), \mathrm{rank}\,\Phi'(t^0)=k$ . Всё по определнию.

У нас тут ЛНЗ набор (ранг k), поэтому давайте опять считать, что он реализуется на первых k векторов, поэтому:

$$\left(\det \frac{\partial \Phi_i}{\partial t_j}\right)_{i=1...k} = 0$$

Теперь давайте, во-первых, примем за  $\mathbb{R}^m = \mathbb{R}^{m-k} \times \mathbb{R}^k$  (на рисунке справа, всё логично). И заведём  $L: \mathbb{R}^m \to \mathbb{R}^k: (x_1, x_2, \dots, x_m) \mapsto (x_1, x_2, \dots, x_k)$  — просто проекция первых k координат. Тогда заметим, что  $(L \circ \Phi)'(t^0)$  — невырожденный оператор: всё просто, он мапит первые k координат, а оператор по ним невырожден по определению многообразия, вон, наверху написано. Значит, это локальный диффеоморфизм (по соответствующей теореме). А если  $W(t^0)$  — окрестность, то  $L \circ \Phi: W \to V \subset \mathbb{R}^k \in C^r$  — диффеорморфизм (класс гладкости сохраняется).

Тогда давайте введём ещё парочку отображений:  $\Psi: V \to W := (L \circ \Phi)$  — обратное отображение, также диффеоморфизм, т. к. оно там всё диффеоморфизм, следовательно биекция сохраняется. Также, получается, раз у нас биекция, над V множество в  $R^{m-k}$  это график какого-то отображения. Оно точно существует, ведь L — биективно. Назовём его  $H: V \to \mathbb{R}^{m-k}$ 

При 
$$x' \in V: (\underbrace{x'}_{1...k}, \underbrace{H(x')}_{k+1...m-k}) = \Phi \Psi(x')$$
 — это правда, просто проехались по путям и вернулись. В

L у нас только первые k координат, а H нам дорисовывает остальные m-k штук. Ну и вот, в правой стороне равенства у нас диффеоморфизмы, слева проекция (там вообще всё гуд) и  $H \Rightarrow$  это тоже диффеоморфизм класса  $C^r$ .

Почти всё. Осталось чётко определить, на какой окрестности будут определены наши функции. Смотрите, вообще наш график H может в принципе быть и шире, чем  $W(t^0)$ , и тогда  $L(\mathit{график}\ H)$  может быть больше, чем V, и мы не хотим со всем этим разбираться — зачем? Поэтому давайте аккуратненько всё подрежем.  $V \times \mathbb{R}^{m-k}$  — открытое, такой типа цилиндр вверх.  $\Phi$  — гомеоморфизм, поэтому  $\Phi(W)$  — открытое. Но в M — это важно! Оно может и не быть открыто во всём  $\mathbb{R}^m$ , а конкретно на M с индуцированной метрикой точно открыто. Тогда вспоминаем теорему из 1-го семестра об открытом множестве в пространстве и подпространстве:  $M \subset \mathbb{R}^m$ ,  $\Phi(W) \subset M$  — открытое, тогда  $\exists G \subset \mathbb{R}^m : G \cap M = \Phi(W), G$  — открытое. И тогда пусть область определения  $\widetilde{U}(p) = G \cap \{V \times \mathbb{R}^{m-k}\}$  — открытое в  $\mathbb{R}^m$ , отрезали всё лишнее.

Ну всё, совсем немного осталось. Надо задать такие функции, что они будут нулевыми при  $x\in \widetilde{U}\cap M$ . Пусть  $F_j(x)=H_j(L(x))-x_{j+k}$ . Что тут написано: мы берём x, отпрявляем его в L, оставляя только первые k координат. Потом H отправляем его обратно наверх, причём конкретно  $H_j$  вернёт нам  $x_{k+j}$ -ю координату, ведь, как мы писали выше, точки из графика H выглядят как  $\underbrace{(x', H(x')}_{1...k})$ . Ну всё, (A) выполнено автоматически. А что там с градиентами? Давайте просто

их построим и увидим, что в конце будет просто -E, что и даст нам m-k независимых векторов (ну, ранг такой).

$$(2) \Rightarrow (1)$$

Тут нам сильно помогут наработки предков. Давайте подгоним наше условие под условие теоремы о неявном отображении (в смысле системы уравнений). У нас там была система из уравнений F(x,y)=0, где x — "переменные", а y — "функции" и решение  $(x^0,y^0)$ , такое что при  $\forall x\in P(x^0),y\in Q(y^0): F(x,y)=0\Leftrightarrow \exists \varphi: P\to Q: \phi(x)=y$ . Давайте назначим первые k координат переменными, а следующие m-k — функциями. Опять же, у нас ЛНЗ лабор этих градиентов этих функций, а именно:

$$\left(\det \frac{\partial F_i}{\partial x_{j+k}}\right)_{1 \le i,k \le m-k} (x^0, y^0) \ne 0$$

Значит, условие теоремы выполнено, и параметризация есть ничто иное, как  $\Phi: U(p_1,p_2,\ldots,p_k) \to \mathbb{R}^m$   $x'\mapsto (x',\varphi(x'))$  на  $x\in M\cap \widetilde U\cap \{P\times Q\}$  (по сути график  $\varphi$ ). В том числе это и гомеоморфизм, так как в одну сторону всё непрерывно, так как функции непрервыны  $(x',\varphi(x'))$ , а обратно — это по сути проекция, так что всё тоже непрерывно. Классы гладкости тоже переезжают из прошлой теоремы.

ч. т. д.

#### 1.4.12 Следствие о двух параметризациях

Формулировка:

 $M \subset \mathbb{R}^m - k$ -мерное  $C^r$ -гладкое многообразие в  $\mathbb{R}^m$ 

1.  $\exists \Phi_1 : O_1 \subset \mathbb{R}^k \to \mathbb{R}^m$ 

2.  $\exists \Phi_2 : O_2 \subset \mathbb{R}^k \to \mathbb{R}^m$ 

— гладкие параметризации.

Тогда  $\exists \Theta: O_1 \to O_2: \Phi_1 = \Phi_2 \circ \Theta$  — диффеоморфизм класса  $C^r$ 

Доказательство:



Продолжаем повествование из прошлой теоремы. Гомеоморфизм  $O_1 \to O_2$ , вообще говоря, существует тривиально:  $\Phi_2^{-1} \circ \Phi_1$ . Однако, так говорить не совсем правильно, потому что для корректного взятия обратной функции, необходимо сузить образ  $\Phi_2$  на его реальную область значений. Поэтому давайте поступим умнее: нарисуем возможные пути точки (крестика) на рисунке (кстати, важно заметить, что разные параметризации могут отправлять точки в разные пространства  $\mathbb{R}^k$ , ведь ранг может реализоваываться на произвольных строчках матрицы произвожного опреатора; поэтому у нас народилось 2 пространства и соответствующие отображения между ними (см. картинку)).

$$\Phi_1 = \Phi_2 \circ (\Psi_2 \circ L_2 \circ \Phi_1) = \Psi_2 \circ \Theta$$

Супер, гомеоморфизм есть. А обратим ли он? Да пожалуйста:

$$\Theta^{-1} = \Psi_1 \circ L_1 \circ \Psi_2$$

 ${\bf A}$  всякие гладкости и классы приходят просто из предыдущих отображений, всё там супер. ч. т. д.

## 1.4.13 Лемма о корректности определения касательного пространства

Формулировка:

•  $M \subset \mathbb{R}^m$  — простое k-мерное  $C^r$ -гладкое многообразие в  $\mathbb{R}^m$ 

•  $p \in M$ 

•  $\Phi:O\subset\mathbb{R}^k \to \mathbb{R}^m$  — параметризация  $M\cap U(p)$ 

•  $t^0 \in O : \Phi(t^0) = p$ 

ullet  $\Phi'(t^0): \mathbb{R}^k o \mathbb{R}^m$  — линейный оператор

Тогда образ  $\Phi'(t^0)$  — линейное подпространство в  $\mathbb{R}^m$ , не зависящее от  $\Phi$ .

Доказательство:

Так как  $\Phi$  — параметризация, rank  $\Phi = k$ . Ну и тогда всё очевидно по знаниям из линейной алгебры, размерность пространства определяется количеством ЛНЗ столбцов.

По поводу независимости, по следствию о двух параметризациях:

$$\Phi_2 = \Phi \circ \Theta \Rightarrow \Phi_2' = \Phi' \Theta'$$

 $\Theta$  — диффеоморфизм, следовательно  $\Theta'(t^0)$  — невырожденный. Поэтому образ  $\Phi_2' = \Phi'$  (см. картинку)



ч. т. д.

## 1.4.14 Касательное пространство в терминах векторов скорости гладких путей

Формулировка (Лемма):

 $v \in T_pM$ 

Тогда  $\exists$ гладкий  $\gamma:[-\varepsilon,\varepsilon]\to M:\gamma(0)=p,\gamma'(0)=v$ 

Доказательство:

Раз у нас есть v в образе, значит оно откуда-то пришло. Давайте найдём:  $u=(\Phi'(t_0))^{-1}v$ .

Тогда предъявим путь в  $O: \widetilde{\gamma}(s) = t^0 + su, s \in [-\varepsilon, \varepsilon]$ . Типа мы выбрали направление, и гоняем по нему в O.

А настоящий путь будет таким:  $\gamma(s) = \Phi \circ \widetilde{\gamma}(s)$ . Тогда  $\gamma'(s) = \Phi' \circ \widetilde{\gamma}(s)$ .

Проверим:  $\gamma(0) = \Phi(t^0 + 0) = p$ ,  $\gamma'(0) = \Phi'u = v$ 



ч. т. д.

Формулировка:

 $\exists$ гладкий путь  $\gamma:[-1,1]\to M, \gamma(0)=p$ 

Тогда  $\gamma'(0) \in T_pM$ 

Доказательство:



Давайте опять прогуляемся по картинке из теоремы о задачи параметризации:

$$\gamma(s) = \Phi \circ \Psi \circ L \circ \gamma(s)$$

Это очевидно, просто прошли по кругу.

$$\gamma'(0) = \Phi'(t^0)\Psi'L'\gamma'$$

Всё лежит в образе  $\Phi'(t^0)$ , так что по определению касательного пространства всё супер. ч. т. д.

#### 1.4.15 Касательное пространство к графику функции и к поверхности уровня

Формулировка (к графику функции):

- $f: \mathbb{R}^n \to \mathbb{R}$
- $f \in C^1$
- y = f(x) задаёт простое гладкое n-мерное многообразие в  $\mathbb{R}^{n+1}$  (???)
- есть точка  $f(x^0) = y^0$

Тогда  $y-y^0=\sum_{i=1}^n f'_{x_i}(x^0)(x_i-x_i^0)$  задаёт аффинное касательное пространство Доказательство:

Пусть  $\Phi: x \mapsto (x, f(x))$ . Посмотрим на производный оператор этого отображения:

$$\Phi' = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ f'_{x_1} & f'_{x_2} & f'_{x_3} & \dots & f'_{x_n} \end{pmatrix}$$

Заметим, что в нашей формуле неизвестные — y и  $x_i$ . Давайте рассмотрим вектор, образующийся перед  $x_i$ :

$$\begin{pmatrix} f'_{x_1} \\ f'_{x_2} \\ f'_{x_3} \\ \vdots \\ f'_{x_n} \\ -1 \end{pmatrix}$$

Заметим, что этот вектор ортогонален матрице производного оператора (при перемножении даёт нуль-вектор, следовательно косинус 0, по скалярному произведению). Ну это то, что нам нужно. Вектор (фактически нормаль) к касательному пространству. Ещё и через точку начальную проходит  $(x^0, y^0)$ .

ч. т. д.

 $\Phi$ ормулировка (к уровню):

- $f: \mathbb{R}^m \to \mathbb{R}$  гладкая
- $f(x_1, x_2, \dots, x_m) = 0$  функция
- $\bullet$   $x^0$  точка, в которой ищем касательное пространство

Тогда касательное пространство задаётся уравнением  $f'_{x_1}(x^0)(x_1-x_1^0)+\ldots+f'_{x_m}(x_m-x_m^0))=0$ Доказательство:

Во-первых, давайте опять прогоним трюк с теоремой о неявном отображении: будем считать первые m-1 координату "неизвестными", а  $x_m$  — "функцией".

Тогда пусть  $f'_{x_m}(x^0) \neq 0$ . Значит, существует  $x_m = \varphi(x_1, x_2, \dots, x_{m-1})$ . Ещё один трюк:  $(x_1, x_2, \dots, x_{m-1}) \mapsto (x_1, x_2, \dots, x_{m-1}, \varphi(x_1, x_2, \dots, x_{m-1}))$  — параметризация многообразия f(x) = 0 в окрестности точки  $x^0$ .

Тогда по предыдущему, что мы доказали, касательная плоскость задаётся  $\sum_{i=1}^{m-1} \varphi_i'(x^0)(x_i-x_i^0)=x_m-x_m^0$ , или:

$$\sum_{i=1}^{m-1} \varphi'_{x_i}(x^0)(x_i - x_i^0) - (x_m - x_m^0) = 0$$

 $\Theta$ то всё замечательно, но условие требует вывод в терминах f. А как они связаны? По условию:

$$f(x_1, x_2, \dots, x_{m-1}, \varphi(x_1, x_2, \dots, x_{m-1})) = 0$$

Давайте вычислим рецепт замены  $\varphi_{x_i}$ :

$$\frac{\partial f}{\partial x_i}: \quad f'_{x_i} + f'_{x_m} \cdot \varphi'_{x_i} = 0 \Rightarrow \varphi_{x_i} = -\frac{f'_{x_i}}{f'_{x_m}} \qquad \left(f'_{x_m}(x^0) \neq 0 \text{ по усл.}\right)$$

Итого:

$$-\sum_{i=1}^{m-1} \frac{f'_{x_i}}{f'_{x_m}} (x^0)(x_i - x_i^0) - (x_m - x_m^0) = 0 \qquad |\cdot -f'_{x_m}|$$

ч. т. д.

## 1.4.16 Вычисление нормы линейного оператора с помощью собственных чисел

Формулировка:

$$A: \mathbb{R}^m \to \mathbb{R}^n$$

Тогда  $||A|| = \max \sqrt{\lambda}, \lambda \in \sigma(A^T A)$  — множество собственных чисел.

Доказательство:

Рассмотрим  $x \in S^{m-1} : \{ y \in \mathbb{R}^m : |y| = 1 \}.$ 

$$||A||^2 = \sup_{x \in S^{m-1}} |Ax|^2 = \sup_{x \in S^{m-1}} \langle Ax, Ax \rangle = \sup_{x \in S^{m-1}} \langle \underbrace{\mathcal{A}^T A}_{\text{симметричная}} x, x \rangle = \sup_{x \in S^{m-1}, \lambda \in \sigma(A^T A)} \lambda |x|^2 = \max_{\lambda \in \sigma(A^T A)} \lambda |$$

Немного контекста: собственное число, это такое число, что A отображает x в  $\lambda x$ . Матрица  $A^TA$  — симметричная  $(m \times n) \times (n \times m) = m \times m$ . Так как у нас эта матрица вещественная, то и собственные числа у неё вещественные. Ну и значит, что максимальный вектор, который может получится, это вектор, домноженный на максимальное собственное число.

ч. т. д

#### 1.4.17 Теорема о функциональной зависимости

Формулировка:

- $f_1, f_2, \dots, f_n : O\mathbb{R}^m \to \mathbb{R} \in C^1$
- $F = (f_1, f_2, \dots, f_n) : O \to \mathbb{R}^n$
- $\forall x \in O : \operatorname{rank} F'(x) \leq k$
- $x^0 \in O : \operatorname{rank} F'(x^0) = k$
- $y^0 = F(x^0)$

Тогда:  $\exists U(x^0), \exists g_{k+1}, g_{k+2}, \dots, g_n : V(y_1^0, y_2^0, \dots, y_k^0) \subset \mathbb{R}^l \to \mathbb{R}$ 

Что: 
$$f_i = g(f_1(x), f_2(x), \dots, f_k(x)), i = k + 1 \dots n, x \in U(x^0)$$

Доказательство:

Пусть в точке  $x^0$  ранг реализуется на первом k-миноре (строчки  $1 \dots k$ , столбцы  $1 \dots k$ ).

Введём дополнительную функцию  $\Phi:O\subset\mathbb{R}^m\to\mathbb{R}^m, \Phi(x)=(f_1(x),f_2(x),\ldots,f_k(x),x_{k+1},x_{k+1},\ldots,x_k).$ 

Тогда, если посмотреть на матрицу производного оператора  $\Phi'(x^0)$  (см. рисунок), то окажется, что она невырождена:  $\det \Phi'(x^0) \neq 0$ . Поэтому  $\Phi$  действует как локальный диффеоморфизм класса  $C^1$  (по определению там внутри функции минимум  $C^1$ ). Опять начинаем рисовать:



 $\Phi(U(x^0)) = W, \Phi(x^0) = w_0$ . Рассмотрим функцию  $\widetilde{F}: W \to \mathbb{R}^n: F \circ \Phi^{-1}$ . Посмотрим поподробнее на точку  $w_0 = (u,v)$ . Координата u вычислялась как  $f_1(x_0), f_2(x_0), \ldots, f_k(x_0)$ , теперь мы снова отправляем её обратно, получая  $x_1^0, x_2^0, \ldots, x_k^0$ , и шлём в F, снова применяя к точке функции  $f_i$ . Получается, что координата u отображается в саму себя. v же под действием какого-то отображения отображается во что-то другое:  $\widetilde{F}(u,v) = (u,\Theta(u,v))$ .

Рассмотрим производный оператор  $\widetilde{F}'=F'\underbrace{\left(\Phi^{-1}\right)'}_{\text{невырожден}}$  . Невырожденный оператор (кстати, не

только в точке w, но и во всей окрестности, на которой работает локальный диффеоморфизм (W)) не меняет ранг матрицы, поэтому rank  $\widetilde{F}=k$ . С другой стороны, если посмотреть на матрицу производного опреатора (см. рисунок),  $\Theta'_v$  обязана быть тождественно равна 0, в противном случае мы могли бы сочинить минор большего ранга, чем k. Таким образом,  $\Theta'_v=0\Rightarrow\Theta=\Theta(u)$  (зависит только от u).

Тогда давайте перенесём (домножим на обратную), выразим F и аккуратно распишем:

$$\begin{split} F(x) &= \widetilde{F} \circ \Phi(x) \\ &= \widetilde{F}(f_1(x), f_2(x), \dots, f_k(x), x_{k+1}, x_{k+2}, \dots, x_m) \\ &= (f_1(x), \dots, f_k(x), \Theta\left(f_1(x), f_2(x), \dots, f_k(x)\right)_{k+1}, \dots, \Theta\left(f_1(x), f_2(x), \dots, f_k(x)\right)_n) \end{split}$$

ч. т. д.

## 2 Период Мезозойский

## 2.1 Важные определения

### 2.1.1 Равномерная сходимость последовательности функций на множестве

- $(f_n): \mathbb{N} \to \mathbb{F}$
- $f_n: E \subset \underbrace{X}_{\text{MH-BO}} \to \mathbb{R}$

Если  $\exists f(x)$ :

$$\forall \varepsilon > 0 \ \exists N : \forall \ n > N \ \forall x \in E \quad |f(x) - f_n(x)| < \varepsilon$$

— тогда  $f_n$  равномерно сходится к f на E  $(f_n \stackrel{\Longrightarrow}{\underset{E}{\Longrightarrow}} f)$ .

Это же условие равносильно  $M_n := \sup_{x \in E} |f_n(x) - f(x)| \underset{n \to \infty}{\to} 0$ 

#### 2.1.2 Степенной ряд, радиус сходимости степенного ряда, формула Адамара

$$a, z, z_0 \in \mathbb{C}$$
 
$$\sum_{k=0}^{\infty} a_k (z - z_0)^k$$

Вот такой ряд в шаре  $B(z_0,R)$  называется *степенным рядом*.

Примечания:

Мы не особо раньше дружили с комплексными числами, но бояться их не нужно, потому что это числа вида  $z=a+ib, a,b\in\mathbb{R}, i^2=-1$ . А |z|-и вовсе вещественное число, поэтому можно оценивать всё по модулю и работать как бы с вещественными числами.

Давайте попробуем абсолютно оценить сходимость такого ряда (по признаку Коши):

$$\lim_{n\to\infty}\sqrt[n]{|a_n|\cdot|z-z_0|^n}=|z-z_0|\cdot\lim_{n\to\infty}\sqrt[n]{|a_n|}\Rightarrow\begin{cases} |z-z_0|<\frac{1}{\lim_{n\to\infty}\sqrt[n]{|a_n|}},\quad\text{абсолютно сходится}\\ |z-z_0|>\frac{1}{\lim_{n\to\infty}\sqrt[n]{|a_n|}},\quad\text{расходится} \end{cases}$$

Проблема лишь в том, что предел иногда может и не существовать, поэтому возьмём верхний предел, и всё получится. Эта формула (радиуса сходимости) называется формулой Коши-Адамара:

$$R = \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}}$$

## 2.2 Определения

#### 2.2.1 Поточечная сходимость последовательности функций на множестве

- $(f_n): \mathbb{N} \to \mathbb{F}$
- $f_n: E \subset \underbrace{X}_{\text{MH-BO}} \to \mathbb{R}$

Если  $\exists f(x) : \forall x \in E$ :

$$\forall \varepsilon > 0 \ \exists N : \forall \ n > N \quad |f(x) - f_n(x)| < \varepsilon$$

— тогда  $f_n$  поточечно сходится к f на E.

### 2.2.2 Формулировка критерия Больцано-Коши для равномерной сходимости

$$f_n \underset{X}{\Longrightarrow} f \Leftrightarrow \forall \varepsilon > 0 \ \exists n \ \forall p \ \forall x \in X \ |f_{n+p}(x) - f_n(x)| < \varepsilon$$

## 2.2.3 Равномерная сходимость функционального ряда

 $f_n: E\subset X o \mathbb{R}, \sum_{k=1}^\infty f_k(x)$  — функциональный ряд

 $S_N(x) = \sum_{k=1}^N f_k(x)$  — частичная сумма

$$\sum_{k=1}^{\infty} f_k(x) \underset{E}{\Rightarrow} S(x) \Leftrightarrow S_N(x) \underset{E}{\Rightarrow} S(x)$$

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall x \in X \ |S_N(x) - S(x)| < \varepsilon$$

Замечания:

- 1. равномерная сходимость ⇒ поточечная
- 2.  $R_N(x) = \sum_{k=N+1}^{\infty} f_k(x)$  остаток ряда.  $S_N(x) + R_N(x) = S(x)$ .  $\Rightarrow \sum_k f_n \underset{E}{\Rightarrow} \Leftrightarrow R_N(x) \underset{E}{\Rightarrow} 0$
- 3.  $\sum f_n \underset{E}{\Longrightarrow} f_n \underset{E}{\Longrightarrow}, f_n = R_N R_{N-1}$

## 2.2.4 Формулировка критерия Больцано-Коши для равномерной сходимости рядов

$$\sum_{k=1}^{\infty} f_k \underset{E}{\Longrightarrow} \Leftrightarrow \forall \varepsilon > 0 \ \exists n \ \forall p \ \forall x \in E \ \left| \sum_{k=n}^{n+p} f_k(x) \right| < \varepsilon$$

# 2.2.5 Признак Абеля равномерной сходимости функционального ряда

- $a_n, b_n: X \to \mathbb{R}$
- $\sum a_n(x)$  равномерно ограничена ( $\exists C_a>0 \ \forall x\in X \ \forall n\in \mathbb{N} \ |a_n(x)|\leq C_a$ ) и монотонна по n при любом x
- $\sum b_n \underset{X}{\Longrightarrow}$

Тогда 
$$\sum a_n(x)b_n(x) \underset{X}{\Longrightarrow}$$

## 2.2.6 Преамбула к суммам расходящися рядов

В списке определений как-то подозрительно мало определений, и некоторые темы вообще непокрыты, хотя теоремы на них есть. Поэтому я решил расписать самую базу в формате "преамбулы", чтобы иметь общее представление о происходящем.

Смотрите, введём иерархию множеств всевозможных рядов:  $\Re$  — вообще все ряды,  $\mathfrak{Q} \subset \Re$  — множество сходящихся рядов.

Теперь зададим сумму ряда как  $F:\mathfrak{R}\to\mathbb{R}$  — и будем называть это суммой в смысле  $F:\sum a_n = S\in\mathbb{R}$ 

Посмотрим на примеры:

- 1.  $S: \mathfrak{Q} \to \mathbb{R} = \lim_{n \to \infty} S_N$  предел частичных сумм, наша самая простая и приятная версия, но она задана только на множестве сходящихся рядов. Сейчас хотелось бы создать такие суммы, чтобы они считались на большем множестве рядов, но при этом нормально считали бы и обычные ряды. Поэтому давайте дальше считать множество  $\mathfrak{J}$  таким:  $\mathfrak{Q} \subset \mathfrak{J} \subset \mathfrak{N}$  (это моя ремарка, но, кмк, так гораздо понятнее)
- 2.  $\sum a_n x^n = S_{AP}$  сумма в смысле Абеля—Пуассона (раньше это просто называлось методом Абеля суммирования рядов, но тут КПК стал называть это методом Абеля—Пуассона)
- 3.  $\sigma_n = \frac{S_1 + S_2 + \ldots + S_n}{n+1}$ ,  $\lim_{n \to \infty} \sigma_n = S_{\text{c. a.}} \text{сумма}$  в смысле среднего арифметического (сумма по Чезаро). Определяется через предел частичных срадних арифметических частичных сумм.

Вот все эти новые суммы нужны, чтобы получить возможность считать суммы большего количества рядов. Отсюда же берутся фокусы в стиле "сумма натуральных чисел равна  $-\frac{1}{12}$ " (через дзета-функцию Римана  $\zeta(s)=\sum \frac{1}{n^s}$ )

# 2.3 Важные теоремы

# **2.3.1** Теорема Стокса–Зайдля о непрерывности предельной функций. Следствие для рядов

Формулировка (последовательности):

• 
$$f_n, f: \underbrace{X}_{\text{метрическое пространство}} \to \mathbb{R}$$

- $c \in X : f_n$  непрерывно в c
- $f_n \underset{X}{\Longrightarrow} f$

Тогда: f — непрерывно в c

Следствие:

 $f_n \in C(X), f_n \underset{X}{\rightrightarrows} f \Rightarrow f \in C(X)$  — доказательства не требует, просто по всем точкам пробегаемся

Доказательство:

Зафиксируем  $\varepsilon$  из определения равномерной сходимости и распишем гига-неравенство треугольника:

$$|f(x) - f(c)| \le \underbrace{|f(x) - f_n(x)|}_{(1)} + \underbrace{|f_n(x) - f_n(c)|}_{(2)} + \underbrace{|f_n(c) - f(c)|}_{(3)}$$

Оно верно при всех n. Но нам дали равномерную сходимость, из чего мы достаём  $\sup_{x \in X} |f_n(x) - f(x)| < \varepsilon$ . Это обстоятельство с ходу говорит нам, что существует большое n, при котором (1) и (3) (то, что они  $< \varepsilon$ ). С другой стороны, раз так, мы можем считать, что в (2) стоит вполне конкретная функция, непрерывная в  $c \Leftrightarrow \forall x \in U(c) : (2) < \varepsilon$ . Ну и всё, получается, что наше неравенство целиком меньше  $3\varepsilon$ :

$$|f(x) - f(c)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(c)| + |f_n(c) - f(c)| < 3\varepsilon$$

Ну и вот, по китайской методике в определении непрерывности всё работает.

ч. т. д.

Бонус:

0

Доказательство работает и в топологических пространствах без единой правки, потому что мы разговариваем на языке окрестностей и метрику не трогаем!

Формулировка (ряды):

• 
$$u_n: \underbrace{X}_{\text{метрическое пространство}} \to \underbrace{Y}_{\text{нормированное пространство}}$$

•  $c \in X : u_n$  — непрерывно в c

• 
$$S_n(x) := \sum^n u_n(x)$$

• 
$$S(x) := \sum u_n(x) \underset{X}{\Longrightarrow}$$

Тогда S(x) — непрерывно в c

Доказательство:

По предыдущей теореме  $S_n(x) \underset{X}{\rightrightarrows} S(x), S_n(c)$  — непрерывно в  $c \Rightarrow S(x)$  — непрерывно в c ч. т. д.

# 2.3.2 Признак Вейерштрасса равномерной сходимости функционального ряда

Формулировка:

- $\sum u_n(x)$  функциональный ряд
- $u_n: \underbrace{X}_{\text{MH-BO}} \to \mathbb{R}$
- $\exists (c_n)$  вещественная последовательность, причём  $\sum c_n$  сходится
- $\forall n \in \mathbb{N} \ x \in X : |u_n(x)| \le c_n$

Тогда 
$$\sum u_n \rightrightarrows_X$$

Доказательство:

Доказательство более-менее тривиально. Распишем определение равномерной сходимости:

$$n \to \infty$$
:  $\sup_{x \in X} \left| \sum_{k=n+1}^{\infty} u_n(x) \right| \le \sup_{x \in X} \sum_{k=n+1}^{\infty} |u_n(x)| \le \sum_{k=n+1}^{\infty} c_n \longrightarrow 0$ 

ч. т. д.

## 2.3.3 Признак Дирихле равномерной сходимости функционального ряда

Формулировка:

- $\sum a_n(x)b_n(x)$ ,  $a_n, b_n: X \to \mathbb{R}$
- $\sum a_n$  равномерно ограничена ( $\exists C_a \ \forall n \in \mathbb{N} \ \forall x \in X \ |\sum_{k=1}^n (x)| \leq C_a$ )
- $\sum b_n(x) \underset{X}{\Longrightarrow}$
- $b_n$  монотонны по  $n \ \forall x \in X$

Тогда 
$$\sum a_n(x)b_n(x) \underset{X}{\Longrightarrow}$$

Доказательство:

Пусть  $A_n = \sum_{k=1}^n a_k$ . Рассмотрим такую сумму (опустим (x), но они там есть):

$$\sum_{N \le K \le M} a_K b_K = A_M b_M - A_{N-1} b_{N-1} + \sum_{N \le K \le M-1} (b_K - b_{K-1}) A_K$$

Если взять всё под модуль и применить неравенство треугольника, то получится выдержка из критерия Коши:

$$\left| \sum_{N \le K \le M} a_K b_K \right| \le |A_M b_M| - |A_{N-1} b_{N-1}| + \sum_{N \le K \le M-1} |b_K - b_{K-1}| \cdot |A_K| \tag{*}$$

Вспоминаем, что  $b_n$  монотонна, поэтому можно раскрыть модуль внутри суммы и домножить всю сумму на "знак монотонности" (1, если возрастающая и -1, если убывающая). И потом просто оценить эту сумму сверху наибольшим членом и взять его с плюсом (оцениваем жеж). Ну и ещё оценим все  $A_i$ -шки константой из условия (у нас есть равномерная ограниченность):

$$(*) \le C_a (|b_M| + |b_{N-1}| + |b_K| + |b_{K-1}|) \tag{**}$$

И ещё вспоминаем, что у нас ряд из  $b_n$  равномерно сходится, что значит (с небольшой китайской бухгалтерией):

$$\forall \varepsilon > 0 \ \exists k \ \forall n > k \ \sup_{x \in X} |b_n(x)| < \frac{\varepsilon}{4 \cdot C_a}$$

Тогда при достаточно больших N, M:

$$(**) C_a \cdot \left( \frac{\varepsilon}{4 \cdot C_a} + \frac{\varepsilon}{4 \cdot C_a} + \frac{\varepsilon}{4 \cdot C_a} + \frac{\varepsilon}{4 \cdot C_a} \right) < \varepsilon$$

Критерий выполнен, всё хорошо.

ч. т. д.

# 2.4 Теоремы

## 2.4.1 Метрика в пространстве непрерывных функций на компакте, его полнота

Формулировка:

- $\rho(f,g) = \sup_{x \in X} |f(x) g(x)|$  метрика (это доказывалось на лекции, хз, надо ли тут, но там вроде всё тривиально: аксиомы тождества, симметрии и правило треугольника)
- X компактное метрическое пространство

Тогда  $(C(X), \rho)$  — полное метрическое пространство

Доказательство:

Полное метрическое пространство — это такое, в котором у любой фундаментальной последовательности есть предел:

$$\forall \varepsilon > 0 \ \exists N \ \forall n, m > N \ \rho(f_n, f_m) = \sup_{x \in X} |f_n(x) - f_m(x)| < \varepsilon$$

Давайте возьмём какой-нибудь  $x_0 \in X$  и заметим, что  $|f_n(x_0) - f_m(x_0)| < \varepsilon$  (очев, раз супремум меньше, то и отдельный  $x_0$  меньше). Значит  $n \mapsto f_n(x_0)$  — фундаментальная **вещественная** последовательность (просто подставить в определение выше)! Ну а  $\mathbb{R}$  — полное, поэтому у такой последовательности сущесвтует предел:  $\lim_{n\to\infty} f_n(x_0) = f(x_0)$  (к какой-то f). Получается, что пототочечно всё норм сходится. Но нам то надо равномерную (в силу того, какую метрику мы выбрали). Давайте немного перепишем определение фундаментальной последовательности:

$$\forall \varepsilon > 0 \ \exists N \ \forall n, m > N \ \forall x \in X | f_n(x) - f_m(x) | < \varepsilon$$

Сделаем предельный переход по  $m \to \infty$  и подставим найдённую предельную функцию:

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall x \in X | f_n(x) - f(x) | < \varepsilon$$

А это — определение  $f_n \rightrightarrows f$ . Ну всё, супер, значит фундаментальная последовательность сходится.

А непрерывность приходит из теоремы Стокса-Зайдля. Значит наша фундаментальная последовательность имеет предел, и этот предел лежит в C(X).

ч. т. д.

## 2.4.2 Теорема о предельном переходе под знаком интеграла. Следствие для рядов

Формулировка (последовательности):

- $f_n \in C[a,b]$
- $f_n \underset{[a,b]}{\Longrightarrow} f$

Тогда:

$$\int_{a}^{b} f_{n}(x)dx \xrightarrow[n \to \infty]{} \int_{a}^{b} f(x)dx$$

Доказательство:

Тривиалити (скажем, что их разность стремится к 0, т. к. есть равномерная сходимость):

$$\left| \int_a^b f_n(x) dx - \int_a^b f(x) dx \right| = \left| \int_a^b f_n(x) - f(x) dx \right|$$

$$\leq \int_a^b |f_n(x) - f(x) dx|$$

$$\leq \sup_{\text{по метрике } x \in X} |f_n(x) - f(x)| (b - a) \to 0$$

ч. т. д.

Формулировка (ряды):

- $u_n: C[a,b] \to \mathbb{R}$
- $\sum u_n(x) \underset{[a,b]}{\Longrightarrow} S(x)$

Тогда  $\int_a^b S(x) dx = \sum \int_a^b u_n(x) dx$ , причём интегрировать можно, т. к. S(x) — непрерывна по Стоксу-Зайдлю

Доказательство:

По теореме для последовательностей:

$$\int_{a}^{b} S_{n}(x)dx \xrightarrow[n \to \infty]{} \int_{a}^{b} S(x)dx$$

С другой стороны:

$$\int_a^b S_n(x)dx = \int_a^b \sum_{i=1}^n u_n(x)dx \underset{\text{линейность интеграла}}{=} \sum_{i=1}^n \int_a^b u_n(x)dx \xrightarrow[n \to \infty]{} = \sum_{i=1}^\infty \int_a^b u_n(x)dx$$

Ну и вот, у нас интеграл частичных сумм в пределе стремится одновременно к интергалу предельной суммы и ряду интегралов. Всё хорошо.

## 2.4.3 Правило Лейбница дифференцирования интеграла по параметру

Формулировка:

- $f: [a,b] \times [c,d] \to \mathbb{R}, f(x,y)$
- $f, f_y'$  непрерывны на  $[a,b] \times [c,d]$

• 
$$\Phi(y) = \int_a^b f(x,y) dx$$

Тогда  $\Phi(y)$  — дифференцируема и  $\Phi(y) = \int_a^b f_y'(x,y) dx$ 

Доказательство:

Ну, давайте попробуем подифференцировать. Возьмём какую-то  $t_n \to 0$  и напишем а-ля определение дифференцируемости и применим теорему Лагранжа (привет, HTP!):

$$\frac{\Phi(y+t_n) - \Phi(y)}{t_n} = \Phi'(y + \Theta_x t_n) = \int_a^b f'_y(x, y + \Theta_x t_n) dx \xrightarrow{?} \int_a^b f'_y(x, y) dx$$

Ну и вот, мы теперь хотим понять, а действительно ли оно стремится? Применим "тяжёлую артиллерию": теорема Кантора о равномерной непрерывности:

$$f$$
 — непр.  $\in C(K)$  (компакт)  $\Rightarrow f$  — равномерно непрерывна

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \rho(x_1, x_2) < \delta \ |f(x_1) - f(x_1)| < \varepsilon$$

У нас непрерывная функция на компакте, поэтому давайте подгоним под Кантора наше условие:

$$\exists N \ \forall n > N \ |t_n| < \delta, \ \rho((x, y + \Theta_x t_n), (x, y)) < \delta, \ |f'_y(x, y + \Theta_x t_n) - f'_y(x, y)| < \varepsilon$$

Тогда:

$$\left| \int_{a}^{b} f_{y}'(x, y + \Theta_{x} t_{n}) dx - \int_{a}^{b} f_{y}'(x, y) dx \right| \leq \varepsilon (b - a)$$

Следовательно, разность между ними меньше  $\varepsilon$ , тогда всё действительно стремится.

ч. т. д.

# 2.4.4 Теорема о предельном переходе под знаком производной. Дифференцирование функционального ряда

Формулировка (последовательности):

- $f_n \in C^1\langle a, b \rangle$
- $f_n \to f_0$  поточечно
- $f'_n \underset{\langle a,b \rangle}{\Longrightarrow} \varphi$

Тогда  $f_0 \in C^1\langle a,b\rangle$  и  $f_0' = \varphi$  на  $\langle a,b\rangle$ 

Доказательство:

Давайте (не умаляя общности) возьмём какой-то подотрезок  $[x_0, x_1] \subset \langle a, b \rangle$ . Тогда по предыдущей теореме (у нас непрерыно равномерно сходится по условию):

$$\int_{x_0}^{x_1} f_n' \longrightarrow \int_{x_0}^{x_1} \varphi$$

Интегрируем:

$$\int_{x_0}^{x_1} f'_n = f_n(x_1) - f_n(x_0) \underset{n \to \infty}{=} f_0(x_1) - f_0(x_0) \underset{n \to \infty}{=} \int_{x_0}^{x_1} \varphi$$

Получается, что  $f_0$  — первообразная  $\varphi$ . Причём, по Стоксу-Зайдлю,  $\varphi$  — непрерывна, значит и её первообразная тоже непрерывна  $(f_0'=\varphi)$ .

ч. т. д.

Формулировка (ряды):

- $u_n \in C^1\langle a, b \rangle$
- $\sum u_n(x) = S(x)$  поточечно
- $\sum u'_n(x) \underset{\langle a,b \rangle}{\Longrightarrow} = \varphi(x)$

Тогда  $S(x) \in C^1\langle a,b\rangle$  и  $S'(x) = \varphi(x)$  на  $\langle a,b\rangle$ . То есть  $(\sum u_n(x))' = \sum u_n'(x)$ 

Доказательство:

Запускаем теорему для последовательностей с вводными:  $f_n = S_n, f_0 = S, f_n' = \sum_{k=1}^n u_k'$  ч. т. д.

# 2.4.5 Теорема о предельном переходе в суммах.

Формулировка:

- $u_n: E \subset \underbrace{X}_{\text{метрическое пространство}} \to \mathbb{R}$
- $x_0 \in X$  предельная точка E
- $\forall n \; \exists \;$  конечный  $\lim_{x \to x_0} u_n(x) = a_n$
- $\sum u_n(x) \stackrel{\Longrightarrow}{\Longrightarrow}$

Тогда:

- 1.  $\sum a_n$  сходится
- 2.  $\sum a_n = \lim_{x \to x_0} \left( \sum_{n=1}^{\infty} u_n(x) \right)$

$$\lim_{x \to x_0} \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \lim_{x \to x_0} u_n(x)$$

Доказательство:

Нам, честно говоря, не за что зацепиться, поэтому давайте попробуем проверить, что  $a_n$  — фундаментальная последовательность, тогда у неё точно будет предел.

Пусть 
$$S_n(x) = \sum_{k=1}^n u_n(x), S_n^a = \sum_{k=1}^n a_n$$

Опять распишем гига-неравенство трегугольника:

$$|S_{n+p}^{a} - S_{n}^{a}| \le \underbrace{|S_{n+p}^{a} - S_{n+p}(x)|}_{(1)} + \underbrace{|S_{n+p}(x) - S_{n}(x)|}_{(2)} + \underbrace{|S_{n}(x) - S_{n}^{a}|}_{(3)}$$

По критерию Больцано-Коши равномерной сходимости ряда:

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall p : \sup_{x \in E} |S_{n+p}(x) - S_n(x)| < \varepsilon$$

Сейчас мы получили, что при достаточно большом n  $(2) < \frac{\varepsilon}{3}$  при любых  $x \in E$ . Теперь заметим, что мы доказываем фундаментальность числовой последовательности, следовательно никаких ограничений на x изначально не наложено. (???) Поэтому давайте возьмём такой x, близкий к  $x_0$ , чтобы (1) и (3) были  $\frac{\varepsilon}{3}$ . Итого:

$$|S_{n+p}^a - S_n^a| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

Мы взяли частичные суммы  $a_n$ , и проверили, что разности рядом лежащих сумм сколь угодно малы.

Ура, у  $a_n$  есть предел! А чему же он равен? Давайте заведём дополнительную функцию:

$$\widetilde{u}_n(x) := \begin{cases} u_n(x), & x \neq x_0 \\ a_n, & x = x_0 \end{cases}$$

Такая сложность необходима для обеспечения непрерывности в  $x_0$  (если  $x_0$  лежит в E, то мы просто подменили значение, а если не лежала, то дополнили). Теперь эта функция непрерывна на  $x_0$ , ряд  $\sum \widetilde{u}_n \underset{E \cup \{x_0\}}{\Longrightarrow} (*) \Rightarrow$  по Стоксу-Зайдлю  $S_{\widetilde{u}_n}(x)$  непрерывна в  $x_0$ . А поэтому:

$$\lim_{x \to x_0} \left( \sum_{n=1}^{\infty} u_n(x) \right) = \lim_{x \to x_0} \left( \sum_{n=1}^{\infty} \widetilde{u}_n(x) \right) = \sum_{n=1}^{\infty} \widetilde{u}_n(x) = \sum a_n$$

А равномерная сходимость ряда  $\sum \widetilde{u}_n$  доказывается так:

$$(*): \sup_{x \in E \cup \{x\}} \left| \sum_{k=n+1}^{\infty} \widetilde{u}_k \right| = \max \{ \sup_{x \in E} \left| \sum_{k=n+1}^{\infty} \widetilde{u}_k \right|, \sum_{k=n+1}^{\infty} a_n \} \leq \underbrace{\sup_{x \in E} \left| \sum_{k=n+1}^{\infty} \widetilde{u}_k \right|}_{\Rightarrow 0} + \underbrace{\sum_{k=n+1}^{\infty} a_n}_{\Rightarrow 0} \longrightarrow 0$$

ч. т. д.

## 2.4.6 Теорема о перестановке двух предельных переходов

Формулировка:

- $f_n: E \subset X \to \mathbb{R}$
- $x_0 \in X$  предельная точка E
- $\forall n \in \mathbb{N} : \exists$  конечный  $\lim_{x \to x_0} f_n(x) = A_n$
- $f_n(x) \underset{E}{\rightrightarrows} S(x)$  при  $n \to \infty$

Тогда:

- 1.  $\exists \lim_{n\to\infty} A_n \in \mathbb{R}$
- 2.  $S(x) \xrightarrow[x \to x_0]{} A$

$$\lim_{x \to x_0} \underbrace{\lim_{n \to \infty} f_n(x)}_{\text{равномерный, } S(x)} = \lim_{n \to \infty} \underbrace{\lim_{x \to x_0} f_n(x)}_{A_n}$$

Доказательство:

Это такая попытка сделать двойной предел и для функций. Подгоняем под предыдущую теорему:  $u_1 = f_1, u_n = f_n - f_{n-1}, \quad a_1 = A_1, a_n = A_n - A_{n-1}.$   $\sum_{k=1}^n u_k = f_n \underset{E}{\Longrightarrow} S(x)$ , то есть  $\sum u_n \underset{E}{\Longrightarrow}$ . Супер, предыдущая теорема запущена. Пожинаем плоды ( $\sum a_n$  сходится):

$$\sum_{k=1}^{n} A_n$$
 — имеет конечный предел

$$\lim_{x \to x_0} \sum_{k=1}^{\infty} u_k(x) = \lim_{x \to x_0} S(x) = A$$

ч. т. д.

#### 2.4.7 Теорема о круге сходимости степенного ряда

Формулировка:

$$\sum a_n(z-z_0)^n$$
 — степенной ряд

Тогда верно одно из этого:

- 1. ряд сходится при всех  $z \in \mathbb{C}$
- 2. ряд сходится только при  $z=z_0$
- 3.  $\exists R \in (0, \infty)$ :
  - (a)  $|x x_0| < R$  ряд абсолютно сходится
  - (b)  $|x x_0| > R$  ряд расходится

Доказательство:

Вспомним преамбулу из определения формулы Коши-Адамара. Ну и всё, вот берём признак Коши, и если предел равен нулю, то (a) работает. Если бесконечности, то (b) работает. А иначе, просто берём за радиус формклу Коши-Адамара.

ч. т. д.

# 2.4.8 Теорема о непрерывности степенного ряда

 $\Phi$ ормулировка:

- $\sum a_n(z-z_0)^n$  степенной ряд
- $0 < R \le \infty$  радиус сходимости

Тогда:

- 1.  $\forall r : 0 < r < R$  ряд равномерно сходится в  $\overline{B(z_0, r)}$
- 2.  $f(z) = \sum a_n (z z_0)^n$  непрерывно на  $B(z_0, R)$

Доказательство:

**(1)** 

Давайте докажем по признаку Вейерштрасса, оценим каждый член по модулю:

$$|a_n \cdot (z - z_0)^n| \le |a_n| \cdot r^n = c_n$$

А почему же  $\sum c_n$  сходится? Да всё очень просто.  $\sum a_n(z-z_0)^n|_{z=z_0+r}=\sum a_nr^n$  — сходится абсолютно на  $r\Rightarrow$  сходится и всё работает.

(2)

Вспоминаем нашу любимую теорему Стокса-Зайдля, и там у нас доказательство строилось на гига-неравенстве треугольника (всё по модулю). Поэтому наш переход к комплексным числам вообще не мещает, оцениваем то мы уже вещественные. Поэтому давайте для каждого z возьмём r чуть больший, чем  $|z-z_0|$ , но в пределе круга сходимости:  $|z-z_0| < r < R$ :



А на нём по (1) у нас есть равномерная сходимость, поэтому по Стоксу-Зайдлю f(z) — непрерывна.

ч. т. д.

# **2.4.9** Теорема о дифференцировании степенного ряда. Следствие об интегрировании. Пример.

Предисловие о комплексном дифференцировании:

Чтобы определить комплексное дифференцирование, необходимо ввести какое-то определение а-ля дифференцируемости:

$$f'(z) = f(z_0) + A(z - z_0) + o(|z - z_0|)$$

Но здесь A — комплексный производный оператор. Можно рассмотреть комплексное число z=u+iv как вектор в  $\mathbb{R}^2\Leftrightarrow f(u,v)$ . Тогда производный оператор будет матрицей  $2\times 2$ , подчиняющейся условию Коши-Римана:

$$A = \begin{pmatrix} u_x' & u_y' \\ v_x' & v_y' \end{pmatrix}, \quad \begin{cases} u_x' = v_y' \\ v_x' = -u_y' \end{cases}$$

(его выводили на лекции, не уверен, что тут это нужно. Будет время, допишу)

Вместе с этим, можем доказать неравенство(оно же — дифференцируемость  $f(z) = z^n$  по "школьному" определению):

$$\lim_{z \to z_0} \frac{z^n - z_0^n}{z - z_0} = \lim_{z \to z_0} \frac{(z - z_0)(z^{n-1} + z^{n-2}z_0 + z^{n-3}z_0^2 + \dots + z_0^{n-1})}{z - z_0} = nz^{n-1}$$

Типа у нас там в скобочке n слагаемых, и они все стремятся к  $z^{n-1}$ . И ещё мини-лемма:

Формулировка (лемма):

$$w, w_0 \in \mathbb{C}, |w| \le r, |w_0| \le r$$

Тогда: 
$$|w^n - w_0^n| < nr^{n-1}|w - w_0|$$

Доказательство:

По тому же принципу, что и выше:

$$|w^n - w_0^n| = |w - w_0| \cdot |w^{n-1} + w^{n-2}w_0 + \ldots + w_0^{n-1}| \le nr^{n-1}|w - w_0|$$

ч. т. д.

Формулировка:

- 1.  $f(z) = \sum a_n (z-z_0)^n = f(z)$  степенной ряд с радиусом сходимости  $0 < R \le \infty$ , равномерно сходится на нём
- 2.  $\sum_{k=1}^{\infty} na_n(z-z_0)^{n-1}$

Тогда:

- 1. (2) имеет такой же радиус сходимости, что и (1)
- 2.  $\forall z \in B(z_0, R): f'(z) = \sum_{k=1}^{\infty} na_n(z z_0)^{n-1}$

Доказательство:

(1)

По формуле Коши-Адамара (для ряда  $(z-z_0)\cdot(1)=\sum na_n(z-z_0)^n$ , просто домножили на скобку, по идее нам ничего это не ломает, т. к. мы можем рассмотреть предел частичных сумм и там всё будет хорошо):

$$R_{(1)} = \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{n|a_n|}} = \frac{1}{\sqrt[n]{n}} R$$

(2)

Найдём производную в произвольной точке  $a \in B(z_0, r), 0 < r < R$ :

$$f'(a) = \lim_{z \to a} \frac{f(z) - f(a)}{z - a}$$

Заведём  $w=z-z_0, w_0=a-z_0$  и заменим в пределе функции на суммы:

$$\lim_{w \to w_0} \sum a_n \frac{(z - z_0)^n - (a - z_0)^n}{w - w_0} = \lim_{w \to w_0} \sum a_n \frac{w^n - w_0^n}{w - w_0}$$

Мы хотим перейти к сумме пределов, но для этого, по теореме, которую мы доказывали ранее, нам надо, чтобы под переделом была равномерная сходимость. Давайте оценим по модулю по лемме:

$$|a_n| \frac{|w^n - w_0^n|}{|w - w_0|} \le |a_n| nr^{n-1}$$



Возьмём r из определения шара выше  $(w, w_0$  по модулю меньше r, см. картинку) и заметим, что ряд  $(1)|_{z=z_0+r}$  сходится. К чему бы всё это? Да к тому, что вся сумма под пределом сходится равномерно по Вейерштрассу (мажорирующая вещественаная последовательность сходится)! Значит можем поменять местами предел и сумму, и по дифференцируемости  $z^n$ :

$$\sum a_n \lim_{w \to w_0} \frac{w^n - w_0^n}{w - w_0} = \sum n a_n w^{n-1} = \sum n a_n (z - z_0)^{n-1} = (1)$$

Ну и всё, раз мы произвольно выбирали r, то для любых z из круга сходимости всё сошлось.

ч. т. д.

Следствия:

- $f(z) = \sum a_n (z-z_0)^n, R>0 \Rightarrow f(z) \in C^\infty(B(z_0,R))$  (просто дифференцируем бесконечное число раз)
- Рассмотрим вещественный ряд  $f(x) = \sum a_n (x x_0)^n$ . Тогда  $F = C + \sum \frac{a_n}{n+1} (x x_0)^{n+1}$  первообразная f(x), и у него такой же радиус сходимости, как и у f(x).

Замечание:

Если считать интеграл по какому-то промежутку, то константа сократится и  $\int_{x_0}^x f(x)dx = \sum \int_{x_0}^x a_n(x-x_0)^n dx$ 

Пример:

Рассмотрим  $f(x) = \arctan(x)$ . Хотим разложить в ряд. Сложновато. А в производной что?  $f'(x) = -\frac{1}{a+x^2} = -1 + x^2 - x^4 + \dots$  при  $x \in (-1,1)$  — степенной ряд. Супер, давайте поинтегрируем:

$$\arctan(x) = C - x + \frac{x^3}{3} - \frac{x^5}{5} + \dots$$

Надо найти константу. КПК way: подствим x=0:  $\arctan(0)=\frac{\pi}{2}\Rightarrow$ 

$$\arctan(x) = \frac{\pi}{2} - x + \frac{x^3}{3} - \frac{x^5}{5} + \dots$$

ч. т. д.

#### 2.4.10 Свойства экспоненты

Формулировка:

$$z \in \mathbb{C}, \quad \exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \quad R = \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{\left|\frac{1}{n}\right|}} = \infty$$

- 1.  $\exp(0) = 1$
- 2.  $\exp'(z) = \exp(z)$
- 3.  $\overline{\exp(z)} = \exp(\overline{z})$ , где  $\overline{z}$  сопряжённое к z
- 4.  $\exp(z+w) = \exp(z) \cdot \exp(w)$

Доказательство:

(1)

$$\exp(0) = \sum_{n=0}^{\infty} \frac{z^n}{n!} = \frac{0^0}{0!} = 1$$

(2)

$$\exp'(z) = \sum_{n=1}^{\infty} \frac{z^{n-1}}{(n-1)!} = \sum_{n=0}^{\infty} \frac{z^n}{n!} = \exp(z)$$

(3)

$$\overline{\exp(z)} = \sum_{n=0}^{\infty} \frac{z^n}{n!} = \sum_{n=0}^{\infty} \frac{\overline{z^n}}{n!} = \exp(\overline{z})$$

(4)

Вспоминаем правило прямого перемножения рядов:

$$c_n = \left(\sum_{m=1}^n a_m\right) \cdot \left(\sum_{k=1}^n b_k\right) = (a_1b_1 + a_1b_2 + \dots + a_nb_n)$$

Ну и по нему:

$$\exp(z) \cdot \exp(w) = \left(\sum_{k=1}^{\infty} \frac{z^k}{k!}\right) \cdot \left(\sum_{n=1}^{\infty} \frac{w^n}{n!}\right) = \left(\sum_{m=1}^{\infty} \frac{z^m}{m!} \frac{w^0}{0!} + \frac{z^{m-1}}{(m-1)!} \frac{w^1}{1!} + \dots + \frac{z^0}{0!} \frac{w^m}{m!}\right) = \sum_{m=1}^{\infty} \left(\frac{1}{m!} \sum_{k=1}^{m} \frac{z^{m-k} \cdot w^k \cdot m!}{(m-k)! \cdot k!}\right) = \sum_{m=1}^{\infty} \frac{(z+w)^m}{m!} = \exp(z+w)$$

ч. т. д.

P. S.

Там КПК рассказывал ещё весёлые выоды тригонометрических формул через экспоненту, но, КМК, оно тут не нужно

# 2.4.11 Метод Абеля суммирования рядов. Следствие

Формулировка:

- $\sum c_n$  сходящийся вещественный ряд
- Пусть  $f(x) = \sum c_n x^n$  при  $x \in (-1,1)$

Тогда:  $\lim_{x\to 1-0} f(x) = \sum c_n$ 

Доказательство:

По признаку Абеля f(x) сходится равномерно на E = [0,1] ( $x^n$  равномерно ограничено 1, а  $c_n$  сходится  $\Rightarrow$  равномерно сходится). Всё это вместе даёт нам непрерывность в 1 (на интервале нам её даёт теорема Стокса-Зайдля, но тут нам надо именно в 1, поэтому приходится использовать тяжёлую артиллерию).

ч. т. д.

Следствие:

- $\sum a_n = A, \sum b_n = B$
- $c_n = (\sum_{m=1}^n a_m) \cdot (\sum_{k=1}^n b_k) = (a_1b_1 + a_1b_2 + \ldots + a_nb_n)$

• 
$$\sum c_n = C$$

Тогда: 
$$\sum c_n = A \cdot B$$

Доказательство:

Пусть  $f(x) = \sum a_n x^n$ ,  $g(x) = \sum b_n x^n$  и  $h(x) = \sum c_n x^n$  при  $x \in [0,1]$ . Тогда при x < 1 : h(x) = f(x)g(x) (очевидно, просто перемножить по условию ивсё будет норм). При x = 1 это неочевидно, но мы применяем теорему, демаем предельный переход при  $x \to 1 - 0 : C = A \cdot B$ .

ч. т. д.

# 2.4.12 Единственность разложения функции в ряд (Тейлора)

Формулировка:

Ряд Тейлора: 
$$(a_n) \exists U(x_0): f(x) = \sum a_n (x - x_0)^n$$

Бесплатно: 
$$f(x) \in C^{\infty}(U(x_0))$$

Если существует разложение функции в ряд Тейлора, то оно единственно.

Доказательство:

Давайте посмотрим на k-ю производную функции:

$$f^{(k)}(x) = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_n (x-x_0)^{n-k}, \quad f^{(k)}(x_0) = a_k k!$$

Тогда  $a_k$  однозначно можно определить:

$$a_k = \frac{f^{(k)}(x_0)}{k!}$$

Ничего не напоминает?

ч. т. д.

### 2.4.13 Разложение бинома в ряд Тейлора

Формулировка:

$$\forall \sigma \in \mathbb{R} \quad (1+x)^{\sigma} = S(x) = 1 + \sigma x + \frac{\sigma(\sigma-1)}{2!} x^2 + \dots$$

Заметим, что если  $\sigma \in \mathbb{N}$ , то ряд в один момент обрубится и у нас просто будет бином.

Доказательство:

Для начала выясним радиус сходимости. В выводе формулы Коши-Адамара мы оценивали ряд абсолютно с помощью признака Коши. Давайте сделаем так же, но с помощью признака Даламбера:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{\sigma(\sigma-1)\dots(\sigma-n)}{(n+1)!}}{\frac{\sigma(\sigma-1)\dots(\sigma-n-1)}{n!}} \right| = \lim_{n \to \infty} \frac{|\sigma-n|}{n} = 1$$

Получается, что |x| < 1. Теперь докажем, что  $S'(x)(1-x) = \sigma S(x)$ . Для этого достаточно показать, что  $coef(x_k)$  у обоих частей равенства одинаковый (так как мы взяли первую производную и тут же домножили на (1-x), тем самым изменились только коэффициенты при членах ряды).

$$coef_{left}(x_k) = coef(x_k) + coef(x_{k-1}) =$$

Можно представить себе как S'(x)x + S'(x) (это  $x_k$  и  $x_{k-1}$ )

$$= \frac{\sigma(\sigma-1)\dots(\sigma-k)}{k!} + \frac{\sigma(\sigma-1)\dots(\sigma-k+1)k}{k!} =$$

Тут суммируем последнюю скобку  $(\sigma - k)$ :

$$=\frac{\sigma(\sigma-1)\dots(\sigma-k+1)}{k!}\sigma$$

Ну а справа:

$$coef_{right}(x_k) = \frac{\sigma(\sigma-1)\dots(\sigma-k+1)}{k!}\sigma$$

Всё равно. Супер. При этом — это диффур. То есть мы предполагаем, что:

$$S(x) = C \cdot (1+x)^{\sigma} \Leftrightarrow \frac{S(x)}{(1+x)^{\sigma}} = C$$

Продифференцируем с обоих сторон и удостоверимся, что это правда:

$$\left(\frac{S(x)}{(1+x)^{\sigma}}\right)' = \frac{S'(x)(1+x)^{\sigma} - S(x)\sigma(1+x)^{\sigma-1}}{(1+x)^{2\sigma}} = \frac{S'(x)(1+x)^{\sigma} - S'(x)(1+x)^{\sigma}}{(1+x)^{2\sigma}} = 0 = C'$$

Ну всё, функция действительно верно найдена. Поэтому осталось найти константу:

$$S(0) = 1 = C \cdot (1+0)^{\sigma} \Rightarrow C = 1$$

ч. т. д.

Следствия:

- 1.  $\arcsin x = \sum \frac{(2k-1)!!}{(2k)!!} \frac{x^{2k+1}}{2k+1}, |x| < 1$  доказывается дифференцированием и интегрированием
- 2.  $\sum n(n-1)\dots(n-m+1)t^{n-m}=\frac{m!}{(1-t)^{m+1}}, |t|<1$  выводится из формулы для геометрической прогессии дифференцированием

## 2.4.14 Теорема о разложимости функции в ряд Тейлора

Формулировка:

• 
$$f \in C^{\infty}(x_0 - h, x_0 + h)$$

Тогда:

$$f$$
 — разложима в  $U(x_0) \Leftrightarrow \exists \delta, C, A > 0 \ \forall n : |f^{(n)}(x)| \le C \cdot A^n \cdot n!, \quad |x - x_0| < \delta$ 

Доказательство:

 $\Leftarrow$ 

Запишем формулу Тейлора с остатком в форме Лагранжа:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0)^1 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \underbrace{\frac{f^{(n+1)}(\overline{x})}{(n+1)!} (x - x_0)^{n+1}}_{R_n \xrightarrow[n \to \infty]{0, \overline{x} \in (x_0, x_0 + x)}}$$

Оценим остаток:

$$|R_n| \le \frac{|f^{(n+1)}(\overline{x})|}{(n+1)!} |x - x_0|^{n+1} \le C \cdot (A \cdot |x - x_0|)^{n+1} \underset{|x - x_0| < \frac{1}{A}, |x - x_0| < \delta, n \to \infty}{\longrightarrow} 0$$

Оценили и доказали.

 $\Rightarrow$ 

Раз функция раскладывается, значит существует  $U(x_0)$ , в которой ряд Тейлора сходится. Давайте возьмём  $x_1 \in U(x_0) \setminus \{x_0\}$  и оценим n-й член ряда Тейлора, который стремится к 0 при  $n \to \infty$ , раз ряд сходится, и, следовательно, ограничен:

$$\left| \frac{f^{(n)}(x_0)}{n!} (x_1 - x_0)^n \right| \le C$$

Оценим  $|f^{(n)}(x_0)|$ :

$$\left| f^{(n)}(x_0) \right| \le \frac{Ck!}{|x_1 - x_0|^n} \le$$

Пусть  $B = \frac{1}{|x_1 - x_0|}$ :

$$< CB^k k!$$

Теперь рассмотрим ряд в произвольной точке из окрестности, оценим её т-тую производную:

$$\left| f^{(m)}(x) \right| \le \left| \sum_{n=m}^{\infty} \frac{f^{(k)}(x_0)}{k!} n(n-1) \dots (n-m+1) (x-x_0)^{k-m} \right| \le$$

$$\le \sum \frac{\left| f^{(k)}(x_0) \right|}{k!} n(n-1) \dots (n-m+1) |x-x_0|^{k-m} \le$$

Оценим сверху новейшими достижениями:

$$\leq CB^m \sum n(n-1)\dots(n-m+1)B^{k-m}|x-x_0|^{k-m} =$$

Тогда по следствию из предыдущей теоремы заменяем:

$$=CB^{m}\frac{m!}{(1-(B|x-x_{0}|))^{m+1}}\leq$$

Заметим, что это равенство существует только при  $|x-x_0|<\frac{1}{2B}$  — чтобы под знаменателем не было нуля, и мы не вышли за радиус сходимости нашей формулы, по которой заменяли. Далее (оцениваем этим):

$$\leq CB^mm!2^{m+1} = \underbrace{2C}_{C}(\underbrace{2B}_{A})^m\underbrace{m!}_{k!}$$

Ну всё, супер, осталось только аккуратно подобрать  $\delta = \min\{\frac{1}{2B}, \text{радиус } U(x_0)\}$  — чтобы точно всё было хорошо.

ч. т. д.

#### 2.4.15 Теорема Таубера о совпадении суммы ряда с суммой в смысле метода Абеля

Перед началом, советую прочитать "Преамбулу к сумме расходящихся рядов"

Формулировка:

$$a_n = o(\frac{1}{n}), \sum a_n = A \Rightarrow \sum a_n = A$$

Доказательство:

Заведём  $\delta_n = \max_{k \ge n} |ka_k|$  ( $ka_k$  тоже, поэтому всё хорошо, максимум есть). Эта последовательность также стремится к 0 монотонно.

Давайте рассмотрим такую разность частичныой суммы и найденного предела:

$$\sum_{n=0}^{N} a_n - A = \left(\sum_{n=0}^{N} a_n - \sum_{n=0}^{N} a_n x^n\right) - \sum_{n=N+1}^{\infty} a_n x^n + \left(\sum_{n=0}^{\infty} a_n x^n - A\right)$$

И "бесцеремонно" оцениваем его модулями (в т. ч. модули под суммой):

$$\left| \sum_{n=0}^{N} a_n - A \right| \le \underbrace{\sum_{n=0}^{N} |a_n| (1 - x^n)}_{(1)} + \underbrace{\sum_{n=N+1}^{\infty} \frac{|n| a_n x^n}{n}}_{(2)} + \underbrace{\left| \sum_{n=0}^{\infty} a_n x^n - A \right|}_{(3)} \quad (*)$$

- (1) вынесли  $a_n$ , и по определению метьода суммы Абеля |x| < 1, поэтому можно снять модуль.
- (2) просто записали так для более удобной дальнейшей оценки.

Давайте запустим стандартное  $\varepsilon$  определение: берём  $\varepsilon>0$ , и вычисляем по нему такое N, чтобы:

$$\begin{cases} (3) < \varepsilon \\ \delta_{N+1} < \varepsilon^2 \end{cases}$$

Причём x будем выбирать согласованно с N по формуле  $(1-x)N=\varepsilon$ . Ещё вспомним неравнство Бернулли:  $(1+x^n) \le n(x+1)$  (это выводится из обычного неравенства Бернулли  $(1-x)^n \le 1-nx$  заменой t=1-x). Погнали оценивать:

$$(1) \le \sum |a_n| n(1-x) = (1-x) \sum_{n=0}^{N} |na_n| \le (1-x) N\delta_1$$

Оценили наибольшим членом, умноженным на количество членов.

$$(2) \le \frac{\delta_{N+1}}{N+1} \sum_{n=N+1}^{\infty} x_n < \frac{\delta_{N+1}}{N+1} \sum_{n=0}^{\infty} x_n = \frac{\delta_{N+1}}{(N+1)(1-x)} < \frac{\delta_{N+1}}{N(1-x)} < \frac{\varepsilon^2}{\varepsilon} = \varepsilon$$

Сначала мы оценили наибольшим членом (это валидно, так как  $\delta_n$  монотонно стремится к 0, потом оценили ряд из  $x^n$  рядом из геометрической прогрессии (т. к. |x| < 1), ну а потом подогнали под условия выбора N). (3)  $< \varepsilon$  по тем же причинам. Итого:

$$(*) < \varepsilon \delta_1 + \varepsilon + \varepsilon = \varepsilon (\delta_1 + 2)$$

Ну всё, супер, разница между частичной суммой и ответом сколь угодно мала (на  $\delta_1$  не сильно смотрим, всё супер).

ч. т. д.

#### 2.4.16 Теорема Коши о перманентности метода средних арифметических

 $\Phi$ ормулировка:

$$\sum a_n = S \in \mathbb{R} \Rightarrow \sum a_n = S$$

Доказательство:

Для начала, запишем определение сходимости обычной суммы:

$$\forall \varepsilon > 0 \ \exists N_1 \ \forall n > N \ |S_n - S| < \varepsilon$$

А теперь попробуем оценить разность частичной суммы и ответа:

$$|\sigma_n - S| = \left| \frac{1}{n+1} \sum_{k=0}^n S_k - \underbrace{S}_{\underbrace{(n+1)S}} \right| = \frac{1}{n+1} \left| \sum_{k=0}^n (S_k - S) \right| \le \frac{1}{n+1} \sum_{k=0}^n |S_k - S| \le \frac{1}{n+1} \sum_{k=0}^n |S_$$

По определению выше, мы берём  $\varepsilon$ , по нему вычисляем большой  $N_1$ , и говорим, что  $n > N_1$ . "Расчекрыживаем" сумму:

$$\leq \underbrace{\frac{1}{n+1} \sum_{k=1}^{N_1} |S_k - S|}_{(1)} + \underbrace{\frac{1}{n+1} \sum_{k=N_1+1}^{n} |S_k - S|}_{(2)} \leq$$

(2) уже сразу  $< \varepsilon$ , т. к.  $n - (N_1 - 1)$  очевидно меньше, чем n + 1, так что по определению это работает. С другой стороны, мы можем управлять n, поэтому давайте выберем его таким, чтобы (1) было  $< \varepsilon$ . Вуаля:

$$<\varepsilon+\varepsilon=2\varepsilon$$

ч. т. д.

# 2.4.17 Преобразование Абеля степенного ряда

Формулировка:

- $A_n = (a_1 + a_2 + \ldots + a_n)$
- $\sum_{n=0}^{N} a_n x^n = \sum_{k=0}^{N-1} A_k (x^k x^{k+1}) + A_N x^N$

Тогда при  $N \to \infty$  эту сумму можно заменить на

$$\sum_{n=0}^{\infty} a_n x^n = (1-x) \sum_{n=0}^{\infty} A_n x^n$$

при  $|x| < \min\{1, R_{\text{сходимости}}\}$ 

Доказательство:

Сначала докажем, что радиус сходимости у правого ряда не изменился относительно оригинального ряда. Возьмём рандомные  $r, r_1$  так, чтобы  $r < r_1 < R$ . Теперь сужаем наш степенной ряд на x = r:

$$\left(\sum_{n=0}^{\infty} a_n x^n\right)_{x=x_0+r}, \forall n: |a_n| x^n \leq |a_n| r_1^n \underset{\text{на радиусе сходимости}}{\longrightarrow} 0$$

Значит,  $a_n = o(\frac{1}{r^n}) \Rightarrow A_n = o(\frac{n}{r^n}) \Rightarrow \frac{A_n r_1^n}{n} \to 0$ 

Теперь оценим ряд после преобразования:

$$\sum_{n=0}^{\infty}|A_n|x^n\leq \sum_{n=0}^{\infty}|A_n|r^n=\sum_{n=0}^{\infty}|A_n|r_1^n\left(\frac{r}{r_1}\right)^n\leq$$

Утверждается, что раз  $|A_n|r_1^n$  растёт незначительно (порядка) o(k), тогда можно оценить сверху константой (???):

$$\leq C \sum_{n=0}^{\infty} k \left(\frac{r}{r_1}\right)^n$$

И тут дробь, меньшая единицы в степени, против линейной функции, так что ряд сходится. Ну супер, тогда для любых  $r, r_1$  ряд сходится и значит круг сходимости не изменился. Теперь гораздо интереснее то, почему второй член исходной суммы исчез. Давайте его оценим. Опять берём  $|x| < r < \min\{1, R_{\text{сходимости}}\}$ . Вот тут уже будет иметь значение то, что r < 1. И заметим, что раз в круге сходимости у нас ряд сходится, то  $|a_n x^n| \le |a_n r^n| \to 0$ , значит эта последовательность ограничена:

$$\exists L > 0 : \forall n \mid a_n \mid r^n < L$$

И погнали оценивать  $(|a_n| < \frac{L}{r^n})$ :

$$|A_N x^N| \le L|x|^N \left(1 + \frac{1}{r} + \ldots + \frac{1}{r^n}\right) \le$$

Это — геометрическая прогрессия, заменяем по формуле:

$$\leq L|x|^N \frac{\frac{1}{r^{N+1}} - 1}{1 - \frac{1}{r}} \leq$$

Снизу у нас r < 1, поэтому оцениваем сверху, меняя знак, и раскрываем верхнюю скобку:

$$\leq L|x|^{N}\frac{\frac{1}{r^{N+1}}-1}{\frac{1}{r}-1} = L|x|^{N}\frac{(\frac{1}{r^{N+1}}-1)r}{r-1} = \underbrace{\frac{L}{r-1}\left(\frac{|x|}{r}\right)^{N}}_{(1)} + \underbrace{\frac{Lr|x|^{n}}{r-1}}_{(2)}$$

Ну и всё, в (1) у нас дробь, меньшая единицы, в степени, поэтому при  $N \to \infty$  стремится к 0, а (2) сам |x| < 1 в степени, поэтому тоже стремится к 0. ч. т. д.

# 2.4.18 Теорема о связи суммируемости по Чезаро и по Абелю

Рассуждения:

Давайте оценим всякие суммы в смысле средних арифметических:

$$\sigma_n = \frac{1}{n+1}(S_1 + S_2 + \ldots + S_n)$$

Если сходится, то:

$$\sigma_n \underset{n \to \infty}{\longrightarrow} 0 \quad \Rightarrow \quad \frac{n}{n+1} \cdot \sigma_{n-1} \underset{n \to \infty}{\longrightarrow} 0$$

Тогда давайте оценим частиыную сумму в пределе:

$$\frac{S_n}{n} = \frac{\sigma_n - \frac{n}{n+1}\sigma_{n-1}}{n} \underset{n \to \infty}{\longrightarrow} 0 \implies S_n = o(n)$$

И сами члены:

$$\frac{a_n}{n} = \frac{S_{n+1} - S_n}{n} \xrightarrow[n \to \infty]{} 0 \implies a_n = o(n)$$

Формулировка:

•  $\sum a_n$  — числовой ряд

• 
$$\sum a_n = A$$

Тогда  $\exists \sum a_n = A$ 

Доказательство:

Раз существует сумма в смысле средних арифметических, то  $a_n = o(n) \Rightarrow f(x) = \sum a_n x^n$  при  $x \in (0,1)$ . Тогда по преобразованию Абеля (оно работает, т. к. |x| < 1) (применим его 2 раза, это тоже законно, т. к.  $a_n = o(n) \Rightarrow A_n = o(n^2)$  и всё равно сидим в круге сходимости 1, тогда ещё вспоминаем, что  $(n+1)\sigma_n = \sum A_k$ :  $f(x) = (1-x)\sum A_n x^n = (1-x)^2\sum (n+1)\sigma_n x^n$ .

С другой стороны, нам сообщают секретную формулу:  $1=(1-x)^2\sum (n+1)x^n$  (доказывается дифференцированием  $\frac{1}{1-x}$  и соответствующего ряда  $(\frac{1}{(1-x)^2}=\sum (n+1)x^n))$ . Преобразуем её, домножив на  $A:A=(1-x)^2\sum (n+1)Ax_n$  и начинаем оценивать A-f(x), фиксируя  $\varepsilon>0$ :

$$A - f(x) = (1 - x)^{2} \sum_{n=0}^{\infty} (n+1)Ax_{n} - (1 - x)^{2} \sum_{n=0}^{\infty} (n+1)\sigma_{n}x^{n} = (1 - x)^{2} \sum_{n=0}^{\infty} (n+1)x^{n}(A - \sigma_{n}) = (1 - x)^{2} \sum_{n=0}^{\infty} (n+1)Ax_{n} - (1 - x)^{2} \sum_{n=0}^{\infty} (n+1)\sigma_{n}x^{n} = (1 - x)^{2} \sum_{n=0}^{\infty} (n+1)x^{n}(A - \sigma_{n}) = (1 - x)^{2} \sum_{n=0}^{\infty} (n+1)Ax_{n} - (1 - x)^{2} \sum_{n=0}^{\infty} (n+1)\sigma_{n}x^{n} = (1 - x)^{2} \sum_{n=0}^{\infty} (n+1)x^{n}(A - \sigma_{n}) = (1 - x)^{2} \sum_{n=$$

Разобьём сумму каким-то N, пока не понятно каким, но мы это потом придумаем:

$$= (1+x)^{2} \underbrace{\sum_{n=0}^{N} (n+1)x^{n}(A-\sigma_{n})}_{(3)} + \underbrace{(1-x)^{2} \sum_{n=N+1}^{\infty} (n+1)x^{n} \underbrace{(A-\sigma_{n})}_{(1)}}_{(2)} \le$$

Заметим, что (1) уже очень маленькое ( $<\varepsilon$ ) при больших N (по определению сходимости в смысле среднего арифметического). А сумму (2) мы умеем считать по секретной формуле (там, конечно, с нуля, а тут с N+1, но мы то оцениваем сверху). Поэтому (2)  $<(1-x)^2\frac{\varepsilon}{(1-x)^2}=\varepsilon$ . Ну так давайте после выбора N выберем такое x, близкое к 1, чтобы (3) было меньше  $\varepsilon$ . Ну и всё, супер:

$$<\varepsilon+\varepsilon=2\varepsilon$$

ч. т. д.