EDS Assignment 6

By:-Suryansh Ambekar (202) Atharva Bramhankar (211) Shrushty Dhamange (215)

Code:- Linear Regression

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.linear model import LinearRegression
df1=pd.read csv("/content/winequalityN.csv")
data = df1.dropna()
print(data)
# Extract the columns for linear regression
X = data['fixed acidity'].values.reshape(-1, 1)  # Input feature
y = data['quality'].values  # Target variable
model = LinearRegression()
model.fit(X, y)
y pred = model.predict(X)
plt.scatter(X, y, color='blue', label='Actual')
plt.plot(X, y_pred, color='red', label='Regression Line')
plt.xlabel('pH')
plt.ylabel('alcohol')
plt.legend()
plt.show()
```

Output:-

	tuno fi	vad asiditu	walatil	o osiditu	citric acid	nosidual	SHEAD	\
0	white	7.0		0.270	0.36	residuai	20.7	`
1	white	6.3		0.300	0.34		1.6	
2	white	8.1		0.280	0.40		6.9	
3	white	7.2		0.230	0.32		8.5	
4	white	7.2		0.230	0.32		8.5	
4	wiiice							
6491	red	6.8		0.620	0.08		1.9	
6492	red	6.2		0.600	0.08		2.0	
6494	red	6.3		0.510	0.13		2.3	
6495	red	5.9		0.645	0.12		2.0	
6496	red	6.0		0.310	0.47		3.6	
0430		0.0		0.510	0.47		3.0	
	chlorides	free sulfi	ur dioxid	e total s	sulfur dioxide	density	pН	Λ.
9	0.045		45.		170.0			`
1	0.049		14.		132.0			
2	0.050		30.		97.0			
3	0.058		47.		186.0			
4	0.058		47.		186.0			
6491	0.068		28.		38.0		3.42	
6492	0.090		32.	0	44.0	0.99490	3.45	
6494	0.076		29.	0	40.0	0.99574	3.42	
6495	0.075		32.	0	44.0	0.99547	3.57	
6496	0.067		18.	0	42.0	0.99549	3.39	
	sulphates	alcohol d	quality	reviews				
0	0.45		6	BAD				
1	0.49		6	VERY BAD				
2	0.44		6	GOOD				
3	0.40		6	GOOD				
4	0.40	9.9	6	AVERAGE				
6491	0.82			EXCELLENT				
6492	0.58		5	BAD				
6494	0.75		6	GOOD				
6495	0.71			VERY GOOD				
6496	0.66	11.0	6	AVERAGE				
55000								
[6463	rows x 14	columns]						

Code:- KNN

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.linear model import LinearRegression
df1=pd.read csv("/content/winequalityN.csv")
df = df1.dropna()
print(data)
X=df['pH']
df=df.dropna()
Y=df['fixed acidity']
X=np.array(df['pH']).reshape(-1,1)
Y=np.array(df['fixed acidity']).reshape(-1,1)
X train, X test,Y train, Y test = train test split(X,Y,test size=0.30)
from sklearn.metrics import classification report,\setminus
confusion matrix
knn = KNeighborsClassifier(n neighbors=1)
knn.fit(X train, y train)
pred = knn.predict(X test)
print(confusion matrix(y test, pred))
```

Output:-

Code:-KMeans Clustering

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

df = pd.read_csv("/content/winequalityN.csv")
Data = {'x': df["fixed acidity"], 'y': df["pH"]}
df=pd.DataFrame(Data, columns=['x', 'y'])

plt.xlabel("Fixed Acidity")

plt.ylabel("pH")

plt.scatter(df['x'], df['y'])
plt.show()
```



```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

df = pd.read_csv("/content/winequalityN.csv")
Data = {'x': df["fixed acidity"], 'y': df["pH"]}
df = pd.DataFrame(Data, columns=['x', 'y'])

# Drop rows with missing values
df.dropna(inplace=True)

km = KMeans(n_clusters=5).fit(df)
centroids = km.cluster_centers_

plt.xlabel("Fixed Acidity")
plt.ylabel("pH")
plt.scatter(df['x'], df['y'], c=km.labels_.astype(float), s=60,
alpha=1)
plt.scatter(centroids[:, 0], centroids[:, 1], c='red', s=190)
plt.show()
```

