TRIGONOMETRY **Chapter 3**

Verano 2021

SAN MARCOS

Razones trigonométricas de un ángulo en posición normal

El Canadarm 2, es un brazo manipulador robótico de la *Estación Espacial Internacional*. Este manipulador es operado controlando los ángulos de sus articulaciones.

Para obtener la posición final del astronauta en el extremo del brazo, se requiere un uso repetido de las razones trigonométricas de esos ángulos que se forman por los varios movimientos que se realizan.

ÁNGULOS EN POSICIÓN NORMAL

Es aquel ángulo trigonométrico cuyo vértice (V) está en el origen de coordenadas cartesianas y su lado inicial (LI) coincide con el semieje positivo de las abscisas. El lado final (LF) nos indica el cuadrante al cual pertenece el ángulo.

EJEMPLOS:

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

y: Ordenada del punto P

x: Abscisa del punto P

r: Radio vector

senα	cosα	tanα	cotα	secα	cscα
1				1	_

HELICO | PRACTICE

• Por el punto Q $(-\sqrt{2}; -\sqrt{7})$ pasa el lado final de un ángulo en posición normal cuya medida es α . Determine el valor de $\sqrt{7}$ csc α .

A) 1

B) 2

RESOLUCIÓN

C) 3 • Cálculo del radio vector:

$$=\sqrt{}$$

$$\Rightarrow = \sqrt{-\sqrt{} + -\sqrt{}} \Rightarrow$$

$$E = \sqrt{7} \csc \alpha = \sqrt{7} \times \frac{3}{-\sqrt{7}}$$

2. Siendo P(-1; $-\sqrt{3}$) un punto del lado final del ángulo en posición canónica α . Calcule:

$$H = \sec \alpha + \sqrt{3} \csc \alpha$$

- A) 2
- C) 3/2

Recuerda

secα	cscα
r	r
X	У

RESOLUCIÓN

Cálculo del radio vector:

$$=\sqrt{}$$

$$\Rightarrow = \sqrt{- + -\sqrt{-}}$$

$$\Rightarrow = \sqrt{+} =$$

Piden:
$$H = \sec \alpha + \sqrt{3} \csc \alpha$$

$$\Rightarrow H = \frac{2}{-1} + \sqrt{3} \times \frac{2}{-\sqrt{3}} = -2 - 2$$

3. Del gráfico, determine

$$M = \sqrt{10} \operatorname{sen}\theta + 3 \tan\theta$$

C) 2

- B) 1
- D) 1/9

RESOLUCIÓN

Recuerda

sen θ	tanθ
λ	λ
r	X

• Radio vector:

$$=\sqrt{+}$$

$$=\sqrt{}$$

Piden: $M = \sqrt{10} \operatorname{sen}\theta + 3 \tan\theta$

$$\Rightarrow M = \sqrt{10} \times \frac{1}{\sqrt{10}} + 3 \times \frac{1}{-3}$$

$$\Rightarrow$$
 M = 1 - 1

4. Del gráfico, determine $tan\theta$

Coordenadas del Punto Medio

$$x = \frac{x_1 + x_2}{2}$$

$$y = \frac{y_1 + y_2}{2}$$

M(x;y) $B(x_2;y_2)$

 $\bullet A(x_1; y_1)$

RESOLUCIÓN

• M(x;y) es punto medio de :

$$x = \frac{7 + (-3)}{2} \Rightarrow x = 2$$

$$y = \frac{8 + 2}{2} \Rightarrow y = 5$$

$$M(2;5)$$

$$\uparrow \uparrow$$

$$x = y$$

Recuerda

• Piden:

$$\tan\theta = \frac{5}{2}$$

∴ $tan\theta = 2,5$

5. Del gráfico, calcule:

$$E = \sqrt{5} \sec \beta + 4 \cot \beta$$

A) 1

B) 2

RESOLUCIÓN

Recuerda

cotβ	secβ
X	r
У	X

Cálculo del radio vector:

$$=\sqrt{} + \Rightarrow = \sqrt{} + - \Rightarrow = \sqrt{}$$

• Piden: $E = \sqrt{5} \sec \beta + 4 \cot \beta$

$$\Rightarrow E = \sqrt{5} \times \frac{\sqrt{5}}{1} + 4 \times \frac{1}{-2} = 5 - 2$$

∴ E = 3

6. Del gráfico, determine:

$$E = 5(sen\theta + cos\theta) + 6cot\alpha$$

A) 3 B) 4 C) 5

RESOLUCIÓN

•Radio vector:

$$=\sqrt{}$$

Para A(-3;4):

$$=\sqrt{-}$$

Piden:

$$E = 5(sen\theta + cos\theta) + 6cot\alpha$$

$$\Rightarrow E = 5\left(\frac{4}{5} + \frac{-3}{5}\right) + 6\left(\frac{5}{6}\right)$$

$$\Rightarrow$$
 E = 1 + 5

Recuerda

senθ	$\cos\theta$	cotα
У	X	X
r	r	У

7. Del gráfico, determine:

$$E = 3 \tan \alpha + 1$$

RESOLUCIÓN

I Así, tenemos: P(x;y) = P(-6k;4k)

I Piden:
$$E = 3 \tan \alpha + 1$$

D) 2
$$\Rightarrow E = 3 \times \frac{4k}{-6k} + 1 = -2 + 1$$

$$\therefore E = -1$$

HELICO | PRACTICE

8. Del gráfico, si ABCD es un cuadrado; determine $cot\theta$

A)
$$-\frac{4}{7}$$

D)
$$-\frac{3}{4}$$

RESOLUCIÓN

Así, tenemos: C(x;y) = C(-3k;7k)

Piden:
$$\cot \theta = \frac{-3k}{7k}$$

$$\therefore \cot \theta = -\frac{3}{7}$$

HELICO | PRACTICE

9. Si $8^{tan\theta} = 4$; además $\theta \in IIIC$. Calcule: $sen\theta.cos\theta$

A)
$$\frac{2}{13}$$

B)
$$\frac{3}{13}$$

$$2)\frac{6}{13}$$

D)
$$-\frac{6}{13}$$

Recuerda

senθ	cosθ
У	X
r	r

RESOLUCIÓN

Dato:
$$8^{\tan\theta} = 4 \Rightarrow (2^3)^{\tan\theta} = 2^2$$

Luego:
$$3\tan\theta = 2 \Rightarrow \tan\theta = \frac{2}{3}$$

•
$$\theta \in IIIC \implies x(-);y(-);r(+)$$

Recordar:
$$\tan \theta = \frac{y}{x} = \frac{-2}{-3}$$
 $x = -3$; $y = -2$

Radio vector:

$$= \sqrt{+} \implies = \sqrt{-} + -$$

$$\implies = \sqrt{-}$$

Piden:

$$E = sen\theta.cos\theta = \frac{-}{\sqrt{}} \times \frac{-}{\sqrt{}}$$

$$\therefore E = \frac{6}{13}$$

10. Si se cumple $3\tan x + 4 = 0$; $x \in IVC$. Calcule:

$$A = \csc x - \cot x$$

A)
$$\frac{1}{2}$$

C)
$$-\frac{1}{3}$$

D)
$$\frac{1}{3}$$

Recuerda

cotα	cscα
X	<u>r</u>
У	У

RESOLUCIÓN

Dato:
$$3\tan x + 4 = 0 \Rightarrow \tan x = \frac{-4}{3}$$

$$\bullet \times \in \mathsf{IVC} \longrightarrow \times (+); y (-); r (+)$$

Recordar:
$$\tan \theta = \frac{y}{x} = \frac{-4}{3}$$
 $x = 3$; $y = -4$

Radio vector:
$$=\sqrt{+} \Rightarrow =\sqrt{+}$$

I Piden:
$$A = \csc x - \cot x$$

$$\Rightarrow A = \left(\begin{array}{c} \\ - \end{array}\right) - \left(\begin{array}{c} \\ - \end{array}\right) = \begin{array}{c} \\ - \end{array}$$

$$\therefore A = -\frac{1}{2}$$