E/gamma energy calibration for Higgs mass measurement ATLAS week - Berlin 2019

Ruggero Turra

on behalf of the e/gamma calibration and the Higgs groups

INFN Milano

8 Oct 2019

 $\gamma\gamma$ starts to be dominated by systematic uncertainty (0.34 GeV)

completely from photon energy scale

Huge effort needed on systematic reduction if we want $\gamma\gamma$ to be competitive at 140 fb $^{-1}$

Full Run2 measurement will be dominated by $H o 4\ell.$. .

...unless we reduce energy scale systematic by a factor $\simeq 2\,$

$H \rightarrow 4\ell$ ongoing analysis Full Run2

- Dominated by statistical error
- Category by lepton flavour
- Improve resolution modeling and purity: Z-mass constraint, FSR recovery, bkg BDT, per-event resolution
- 2D fit $m_{4\ell} \times BDT_{ZZ}$ (signal vs ZZ):

$$P[\textit{m}_{4\ell}, \textit{BDT}_{\textit{ZZ}}|\textit{m}_{\textit{H}}, \sigma_{4\ell}] = P[\textit{BDT}_{\textit{ZZ}}|\textit{m}_{4\ell}]P[\textit{m}_{4\ell}|\textit{m}_{\textit{H}}, \sigma_{4\ell}]$$

■ NEW: resolution value from a NN regression: $\sigma_{4\ell} = NN$ [kinematic, flavours]

Same selection as other $H(125) \to \gamma \gamma$ analyses: $E_T^{\gamma}/m_{\gamma \gamma} > 0.25/0.35$, tight, isolated.

31 categories as in the STXS analysis: (ggF_OJ_CEN, ggF_OJ_FWD, ..., ttH):

- Separate events with different s/b (VBF_HjjLO_tight has s/b=1)
- Quite separate events with different resolution (CEN/FWD, high-pT (VBF) / low-pT (ggF))

method	ADD		SUB	
	down	up	down	up
sys [MeV]				
Backgroup model	70	67	53	55
Conversion reconstruction	49	50	52	47
ID material	107	109	108	109
Lar cell non-linearity	193	190	182	178
Lateral shower shape	110	109	111	110
Layer calibration	178	177	170	169
Luminosity	1	0	18	0
Other material (not ID)	124	125	120	121
Resolution	20	0	20	22
Signal model	17	18	15	16
Primary vertex effect on mass scale	37	38	37	38
$Z \rightarrow ee$ calibration	76	78	76	76

Calibration in Rel 21

Change in reconstruction: use super-cluster instead of sliding window

- Recover energy from satellite clusters (e.g. soft conversions)
- Better resolution, in particular for converted photons in the endcap
- More sensitive to pileup

Change in reconstruction: use super-cluster instead of sliding window

- Recover energy from satellite clusters (e.g. soft conversions)
- Better resolution, in particular for converted photons in the endcap
- More sensitive to pileup

Layer calibration (ongoing)

- \mathbf{E}_1/E_2 scale measured with muons (insensitive to material in front)
- Full Run2 data used: will enter in fall recommendation
- Overall uncertainty decreased (vs Rel 20.7 2015+16 data)

PS scale study just started

Still quite large extrapolation uncertainty on muon \rightarrow photons

The alternative is to study E_1/E_2 directly with electrons

- Energy systematic dominated by extrapolation from \simeq 45 GeV electrons \rightarrow \simeq 60 GeV photons
- \blacksquare Systematics split in \sim 70 components with non-trivial correlation in η
- Most relevant for $m_H^{\gamma\gamma}$: high/medium gain, E_1/E_2 calibration, non-ID material

- $lue{}$ Presently used as cross checks: compute residual scale factors on top of the ones from Z
 ightarrow ee
- Some tension between γ/e scales

Can be used to reduce extrapolation uncertainties 45 GeV electrons ightarrow 60 GeV photons

- Calibrate medium / high-gain using special runs: lower DAC threshold to record most of Z decay events in MG (instead of HG)
- Derive scale factor between MG/HG from $Z \rightarrow ee$
- Presently: assume no correction, use the deviation as systematic (100%)
- \blacksquare May change in future: correct and use error from the measurement \to strong reduction in systematic

Projection to 140 fb⁻¹ $H \rightarrow \gamma \gamma$ (expected)

Use workspace from coupling $80/\mathrm{fb}$, try scenarios provided by egamma with different values of systematic

	total [GeV]	stat [GeV]	sys [GeV]
Latest result with $36 \mathrm{fb}^{-1}$ Rel 20.7	0.40	0.25	0.31
\dots extrapolated at $140\mathrm{fb}^{-1}$	0.35	0.13	0.31
Refit latest analysis Rel 21 with 140 fb ⁻¹	0.26	0.10	0.24
with reduced systematics ¹	0.20	0.10	0.18
Latest 4ℓ extrapolated at $140\mathrm{fb}^{-1}$	0.18	0.18	\sim 0
ATLAS Combination $\gamma\gamma$ + 4 ℓ 140 fb ⁻¹	0.13		

With reduced systematic scenario $\gamma\gamma$ is competitive with 4 ℓ (CMS extrapolated \sim 0.09 GeV)

R.Turra (INFN Milano) calibration for m_H 8 Oct 201

¹gain and leakage (now 100% uncertainty) by 3, layer by 2

- Past strategy: separate events with good/bad resolution and high/low purity
- Need to focus also on the value of the systematics (e.g. separate by conv/unconv)
- Ideally one wants to use for each event its value of the systematic and not the value computed as average of the category → per-event systematic error
- Feedback from 4ℓ (which did similarly for the resolution): computationally too expesive
- Alternatively: split present categories in bad/good systematic

New $H \to \gamma \gamma$ CMS measurement with $36~{\rm fb^{-1}}$ CMS-PAS-HIG-19-004

- 3 VBF categories + 4 untagged (BDT) (STXS in ATLAS)
- MVA regression with shower shapes (R_9), pileup as inputs (no conv/unconv separated regression); regression of the expected resolution (no shower shapes in ATLAS, large mismodeling)
- Best resolution $\sigma_{eff} = 1.35 \,\text{GeV}$ (ATLAS 1.59 GeV in GGH_OJ_CEN)
- BDT photon identification (ATLAS: cut-based). Diphoton event BDT

Energy scale assumed to be uncorr. between measurements ⇒ inflate uncertainty by 5%

R.Turra (INFN Milano) calibration for m_H 8 Oct 2019 12

New $H \to \gamma \gamma$ CMS measurement with 36 fb $^{-1}$ CMS-PAS-HIG-19-004

- Scales from $Z \to ee$ as a function of $|\eta| \otimes p_T \otimes R_9$.
- R₉ different from e/conv/unconv
- Systematic error from the non-linearity: non-closure of the p_T -dependent scale factors (0.075-0.15%)

	ATLAS	
Source	Contribution [GeV]	
Electron energy scale and resolution corrections	0.10 0.08	
Residual p_T dependence of the photon energy scale	0.11	
Modelling of the material budget	0.03 0.16	
Non-uniformity of the light collection	0.11	
Statistical uncertainty	0.18 0.21	
Total uncertainty	0.26 0.40	
total systematic	0.18 0.34	

Conclusions

- $lue{H}
 ightarrow 4\ell$ almost systematic free
- ullet $H o \gamma \gamma$ will be dominated by systematics, not competitive 140 fb $^{-1}$
- unless energy scale systematics reduced by a factor 2
- this is challenging, but within reach assuming we have the people to work on it (for the gain and for the leakage, we currently quote 100% uncertainty on the source of uncertainty)
- From the analysis point of view need to separate events with high/low-systematic value

Person power in e/gamma calibration

Timeline of e/gamma limited by person-power. Some tasks just started (PS scale, $Z \to \ell\ell\gamma$, lateral leakage, several are uncovered (see here):

- non-ID material
- $Z \rightarrow ee$ scales

Also W mass is affected.

Section 1

Backup

Toys/BLUE vs on/off systematics

- Presently we compute the stat-only error fixing the NP-values to the best-fit and look to the width of $-2\log\frac{L(\mu,\hat{\hat{\theta}}_{\mu})}{L(\hat{\mu},\hat{\hat{\theta}})}\sim\chi^2$
- This correspond to assume that there are no systematics error
- The weight the various channels/categories receive is proportional only to the stat-error (and not the total error)
- Discussion about if this is what we want
- Another approach is to propagate the systematic error taking into account the weights from the total error (BLUE, toys, ...)

In this slides: check how much these two approaches differ withing the $\gamma\gamma$ analysis

- \simeq 6000 toys: much more than the needed ones, precision negligible wrt rounding (e.g. std of $\hat{m}_H=0.424\pm0.006$)
- Systematic error always computed as quadrature difference: $\sqrt{\mathsf{total}^2 \mathsf{stat}\text{-}\mathsf{only}^2}$

Showing some results also for couplings: remember differences of workspaces

$$\label{eq:conf-note} \begin{array}{ll} \mbox{Conf-note result:} & 125.11 \pm 0.42 \, \mbox{GeV} = 125.11 \pm 0.21 (\mbox{stat}) \pm 0.36 (\mbox{sys}) \, \mbox{GeV} \\ & \mbox{Toys:} & 125.11 \pm 0.42 \, \mbox{GeV} = 125.11 \pm 0.26 (\mbox{stat}) \pm 0.33 (\mbox{sys}) \, \mbox{GeV} \\ \end{array}$$

- No bias to the central value
- Full error perfectly reproduced (it must be)
- Smaller sys-error with toy
 - make sense: if you weight with the full-error, categories with larger sys are weighted less

Run1 categorization (10 categories)

- Both photon candidates are unconverted, and have $|\eta_{S2}| < 0.75$; the diphoton system has $p_{Tt} < 70 \,\text{GeV}$.
- 2 Both photon candidates are unconverted, and have $|\eta_{S2}|<0.75;$ the diphoton system has $p_{Tt}>70\,{\rm GeV}.$
- Both photon candidates are unconverted and at least one candidate has $|\eta_{S2}| > 0.75$; the diphoton system has $p_{Tt} < 70 \, \text{GeV}$.
- Both photon candidates are unconverted and at least one candidate has $|\eta_{S2}| > 0.75$; the diphoton system has $p_{Tt} > 70 \, \text{GeV}$.
- Both photon candidates are unconverted and at least one candidate is in the range $1.3 < |\eta_{S2}| < 1.37$ or $1.52 < |\eta_{S2}| < 1.75$.
- o At least one photon candidate is converted and both photon candidates have $|\eta_{S2}| < 0.75$; the diphoton system has $p_{Tt} < 70 \, \text{GeV}$.
- 7 At least one photon candidate is converted and both photon candidates have $|\eta_{S2}| < 0.75$; the diphoton system has $p_{Tt} > 70 \, \text{GeV}$.
- At least one photon candidate is converted and both photon candidates have $|\eta_{S2}|<1.3$ or $|\eta_{S2}|>1.75$, but at least one photon candidate has $|\eta_{S2}|>0.75$. The diphoton system has $p_{Tt}<70\,\text{GeV}$.
- In At least one photon candidate is converted and both photon candidates have $|\eta_{S2}|<1.3$ or $|\eta_{S2}|>1.75$, but at least one photon candidate has $|\eta_{S2}|>0.75$. The diphoton system has $p_{Tt}>70\,{\rm GeV}$.
- III At least one photon candidate is converted and at least one photon candidate is in the range $1.3 < |\eta_{S2}| < 1.37$ or $1.52 < |\eta_{S2}| < 1.75$.

R.Turra (INFN Milano) calibration for m_H 8 Oct 2019