SMAI-M20-L09: Aspects of Supervised Learning

C. V. Jawahar

IIIT Hyderabad

August 28, 2020

Class Review (L09)

- Consider a matrix A of size $m \times n$. Rank of A is related m or n?
- ② A and B are two independent events such that $P(\overline{A}) = 0.4$ and $P(A \cap B) = 0.2$ Then Find $P(A \cap \overline{B})$.
- **③** If **A** is a $n \times n$ matrix, with every pair of columns orthogonal i.e., $\mathbf{a_i} \cdot \mathbf{a_j} = \mathbf{0} \ \forall i, j \ \text{and} \ ||\mathbf{a_i}|| = 1.$
- Product of Eigen values of a real square matrix is known as ?
- **5** $X \sim N(0,1)$, $Y \sim N(1,1)$ and Z = X + Y. Then,

Recap:

- Problem Space:
 - Learn a function $y = f(\mathbf{W}, \mathbf{x})$ from the data.
 - for classification
 - for regression
 - Learn useful features
- Supervised Learning:
 - Notion of Training and Testing
 - Notion of Loss Function and Optimization
 - Need of Generalization and Worry of Overfitting
- Classification Algorithms:
 - Nearest Neighbour Algorithm
 - Linear Classification; Linear Regression
 - Decide as ω_1 if $P(\omega_1|\mathbf{x}) \geq P(\omega_2|\mathbf{x})$ else ω_2
 - Performance Metrics
- Mathematical Foundations: Linear Algebra, Probability, Optimization
 - SVD, Eigen Decomposition
 - MLE

This Lecture Session:

Micro-Lecture Videos

- Minimum Error Classification
 - The best we can ever achieve.
 - Q: Even Deep Learning can not do better. Sad. Isn't? :-)
- Model complexity and Occam's razor
 - Simple, yet good model
 - New Key words: Regularization, Model Complexity
- Validation Error, K-Fold and LOO
 - An estimate of the test error.
 - Q: How do we prefer one of the two solutions (say NN with K=3 and K=5)? Finding the right hyper parameters.

Questions? Comments?

Discussions Point - I

In the context of regression (assume $\mathbf{x} \in R^1$ i.e., only one feature):

- We know how to fit a line passing through origin with a model $y = \mathbf{w}^T \mathbf{x}$
- ② We know how to fit a line, even if it is not passing through origin, with a model $y = \mathbf{w}^T \mathbf{x}'$. where \mathbf{x}' is defined as $\begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$
- Mow do we model the problem of fitting a quadratic (say a parabola) given a set of points?. What is x? Is there a closed form expression?

Discussion Point - II

• Can we guess/compute/complete the missing elements of the matrix:

if we know that this is a rank-1 matrix (or every row is a multiple of each other) 1

② If **A** is a $m \times n$ matrix and **A**_k is the nearest rank-k matrix, **A**_k can be computed using SVD as (i.e., **A**_k = $arg min_B ||\mathbf{A} - \mathbf{B}||_F^2$ and $rank(\mathbf{B}) = k$)

$$\mathbf{A}_k = \mathbf{U}_k \mathbf{D}_k \mathbf{V}_k^T$$

¹Read later: https://web.stanford.edu/class/cs168/I/I9.pdf

Details:2

 $^{^{2} {\}sf Read\ Later:\ https://courses.cs.washington.edu/courses/cse} \\ 21/16 sp/521-lecture-9.pdf$

Discussion Point - III

Consider the binary classification problem where both classes are univariate Gaussian (assume $\mu_1 \leq \mu_2$). i.e., $P(\omega_i|x) = \mathcal{N}(\mu_i, \sigma_i^2)$. Optimal decision is "**Decide** as ω_1 if $x \leq \theta$ else ω_2 ".

• When $\sigma_1 = \sigma_2 = \sigma$, show that the optimal threshold (i.e., θ) is the mid point of means. Ans:

If $\sigma_1 \neq \sigma_2$, what will be the θ ? Can we get a closed form expression for θ ? (for convenience, discard the normalizing term in the class)

What Next:? (next three)

- Application of SVD and Eigen Decomposition
- More Insights into Supervised Learning
- Bayesian View and Optimal Classification
- Practical Issues in Optimization
- Choice of Loss Functions