Вписанные углы

- Даны два угла $\angle ABC = 90^\circ$ и $\angle ADC = 90^\circ$. Докажите, что A, B, C, D лежат на одной окружности.
- Дан треугольник ABC. I центр вписанной окружности. Докажите (и запомните), что $\angle AIB = 90^\circ + \frac{\angle C}{2}$
- 4 Дан треугольник ABC. BH_1 , CH_2 высоты треугольника. Докажите, что C, B, H_1 , H_2 лежат на одной окружности.
- $\boxed{5}$ В условии предыдущей задачи пусть $H=BH_1\cap CH_2$. Докажите, что A,H,H_1,H_2 лежат на одной окружности.
- [6] Рассмотрим вписанный четырёхугольник ABCD. Пусть дуга $\breve{AB} = \alpha$, дуга $\breve{CD} = \beta$. O точка пересечения диагоналей. Докажите, что $\angle AOB = \frac{\alpha + \beta}{2}$.
- [7] Дана точка O и окружность ω , так что $O \notin \omega$. Через O провели 2 прямые, которые пересекают ω в точках A, B и C, D. Докажите, что $OA \cdot OB = OC \cdot OD$
- [8] На гипотенузе AB прямоугольного треугольника ABC во внешнюю сторону треугольника построен квадрат с центром в точке O. Докажите, что CO биссектриса угла ACB.
- 9 В остроугольном треугольнике ABC на высоте, проведённой из вершины C, выбрана точка X. Пусть A_1 и B_1 основания перпендикуляров из точки X на стороны AC и BC соответственно. Докажите, что точки A, B, B_1 , A_1 лежат на одной окружности.
- 10 Пусть AA_1 , BB_1 , CC_1 высоты остроугольного треугольника ABC. Докажите, что основания перпендикуляров из точки A_1 на прямые AB, AC, BB_1 , CC_1 лежат на одной прямой.
- 11 Дан выпуклый шестиугольник ABCDEF. Известно, что $\angle FAE = \angle BDC$, а четырёхугольники ABDF и ACDE являются вписанными. Докажите, что прямые BF и CE параллельны.
- 12 Дан остроугольный треугольник ABC, в котором AB < AC. Пусть M и N середины сторон AB и AC соответственно, а D основание высоты, проведённой из A. На отрезке MN нашлась точка K такая, что BK = CK. Луч KD пересекает окружность Ω , описанную около треугольника ABC, в точке Q. Докажите, что точки C, N, K и Q лежат на одной окружности.

- 13 Даны две окружности, пересекающиеся в точках X и Y. Прямая, проходящая через X, пересекает первую окружность в точке A, а вторую в точке C. Другая прямая, проходящая через Y, первую окружность пересекает в точке B, а вторую в точке D. Докажите, что $AB \parallel CD$.
- 14 В окружность вписан шестиугольник. Найдите сумму углов при трёх его несоседних вершинах.
- 15 Окружности с центрами O_1 и O_2 пересекаются в точках A и B. Луч O_2A пересекает первую окружность в точке C. Докажите, что точки O_1 , O_2 , B, C лежат на одной окружности.
- 16 Докажите, что в равнобедренной трапеции вершины боковой стороны, точка пересечения диагоналей и центр описанной окружности лежат на одной окружности.
- 17 Дан выпуклый четырёхугольник ABCD Рассмотрим точки пересечения биссектрис его углов A и B, B и C, C и D, D и A. Докажите, что эти четыре точки являются вершинами вписанного четырёхугольника.
- 18 На хорде AB окружности с центром в точке O выбрана точка C. Описанная окружность треугольника AOC пересекает исходную окружность в точке D. Докажите, что BC = CD.
- 19 Про выпуклый четырёхугольник ABCD известно, что AB = BC = CD. Диагонали четырёхугольника пересекаются в точке M, K точка пересечения биссектрис углов A и D. Докажите, что точки A, M, K, D лежат на одной окружности.
- $\boxed{20}$ Пусть дан треугольник ABC, и в точке B построена касательная к описанной окружности треугольника ABC. Рассмотрим произвольную прямую, параллельную этой касательной, и отметим точки D и E пересечения с прямыми AB и BC соответственно. Докажите, что четыре точки A, C, D, E лежат на одной окружности.
- [21] Диагонали вписанного четырёхугольника ABCD пересекаются в точке O. Докажите, что прямая, соединяющая середины дуг AB и CD, параллельна биссектрисе угла AOB.
- [22] Четырёхугольник ABCD таков, что в него можно вписать и около него можно описать окружности. Диаметр описанной окружности совпадает с диагональю AC. Докажите, что модули разностей длин его противоположных сторон равны.
- [23] Пусть I центр вписанной окружности остроугольного треугольника ABC, M и N точки касания вписанной окружности сторон AB и BC соответственно. Через точку I проведена прямая l, параллельная стороне AC, и на неё опущены перпендикуляры AP и CQ. Докажите, что точки M, N, P и Q лежат на одной окружности.

- [24] Внутри параллелограмма ABCD выбрана точка P так, что $\angle APB + \angle CPD = 180^\circ$. Докажите, что $\angle PBC = \angle PDC$.
- $\boxed{25}$ Внутри выпуклого четырёхугольника ABCD расположены четыре окружности одного радиуса так, что они имеют общую точку и каждая из них вписана в один из углов четырёхугольника. Докажите, что четырёхугольник ABCD вписанный.
- [26] Окружность ω описана около остроугольного треугольника ABC. На стороне AB выбрана точка D, а на стороне BC точка E так, что $AC \parallel DE$. Точки P и Q на меньшей дуге AC окружности ω таковы, что $DP \parallel EQ$. Лучи QA и PC пересекают прямую DE в точках X и Y соответственно. Докажите, что $\angle XBY + \angle PBQ = 180^\circ$.
- [27] В окружности ω с центром в точке O провели непересекающиеся хорды AB и CD так, что $\angle AOB = \angle COD = 120^\circ$. Касательная к ω в точке A пересекает луч CD в точке X, а касательная к ω в точке B пересекает луч DC в точке Y. Прямая l проходит через центры окружностей, описанных около треугольников DOX и COY. Докажите, что l касается ω .
- 28 Дан остроугольный треугольник ABC, в котором AB < AC. Пусть M и N середины сторон AB и AC соответственно, а D основание высоты, проведенной из A. На отрезке MN нашлась точка K такая, что BK = CK. Луч KD пересекает окружность ω , описанную около треугольника ABC, в точке Q. Докажите, что точки C, N, K и Q лежат на одной окружности.
- [29] Треугольник ABC, в котором AB > AC, вписан в окружность с центром в точке O. В нём проведены высоты AA_0 и BB_0 , и BB_0 повторно пересекает описанную окружность в точке N. Пусть M середина отрезка AB. Докажите, что если $\angle OBN = \angle NBC$, то прямые AA_0 , ON и MB_0 пересекаются в одной точке.
- [30] На сторонах AB и AC треугольника ABC выбраны точки P и Q соответственно так, что $PQ \parallel BC$. Отрезки BQ и CP пересекаются в точке O. Точка A' симметрична точке A относительно прямой BC. Отрезок A'O пересекает окружность ω , описанную около треугольника APQ, в точке S. Докажите, что окружность, описанная около треугольника BSC, касается окружности ω .
- [31] Точка H является ортоцентром остроугольного треугольника ABC (AB > AC). Точка E симметрична C относительно высоты AH. Обозначим за E точку пересечения прямых EH и AC. Докажите, что центр описанной окружности треугольника AEF лежит на прямой AB.
- $\boxed{32}$ В остроугольном треугольнике угол A равен 60° . Докажите, что прямая, соединяющая центр описанной окружности с ортоцентром, отсекает от треугольника равносторонний треугольник.

- $\boxed{33}$ Пусть H' проекция ортоцентра на касательную в точке A к описанной окружности треугольника ABC. Докажите, что середина стороны BC равноудалена от точек A и H'.
- 34 Остроугольный треугольник ABC (AB < AC) вписан в окружность Ω . Пусть M точка пересечения его медиан, а AH высота этого треугольника. Луч MH пересекает Ω в точке A'. Докажите, что окружность, описанная около треугольника A'HB, касается AB.
- Окружность ω касается сторон угла BAC в точках B и C. Прямая l пересекает отрезки AB и AC в точках K и L соответственно. Окружность ω пересекает l в точках P и Q. Точки S и T выбраны на отрезке BC так, что $KS \parallel AC$ и $LT \parallel AB$. Докажите, что точки P,Q,S и T лежат на одной окружности