

Forbes

The New Era Of Financial Freedom

Home Loan Default Rate ~20%

Context:

Banks heavily reply on home loan profits, where defaults cause significant financial losses. Regulatory pressure is growing to make credit practices more transparent, explainable and equitable, especially in rejecting or/and approving loan applications.

Problem:

Traditional loan approval process is manual, prone to human bias and errors. There is a critical need to enhance loan risk assessment using data-driven approach. The problem has direct implications on profit margins, customer experience, regulatory compliance, risk mitigation strategy.

Objective:

Develop a machine learning model to accurately predict loan defaults, minimizing risk and improving operational efficiency.

Solution Approach

ML Models in Scope

Logistic Regression

Decision Tree

Random Forest

XGBoost

Model Recall (Defaults) ~57%

Defaults correctly identified by the model

Model Precision (Defaults) ~70%

Flagged high-risk loans that actually defaulted

Model Accuracy ~81%

Correct loan default predictions on test data

Model Recall (Defaults) ~81%

Defaults correctly identified by the model

Model Precision (Defaults) ~82%

Flagged high-risk loans that actually defaulted

Model Accuracy ~88%

Correct loan default predictions on test data

Model Recall (Defaults) ~82%

Defaults correctly identified by the model

Model Precision (Defaults) ~91%

Flagged high-risk loans that actually defaulted

Model Accuracy ~92%

Correct loan default predictions on test data

Model Recall (Defaults) ~82%

Defaults correctly identified by the model

Model Precision (Defaults) ~94%

Flagged high-risk loans that actually defaulted

Model Accuracy ~92%

Correct loan default predictions on test data

Key Findings

Debt-to-Income Ratio (DEBTINC)

- **1. DEBTINC** is one of the strongest predictors for loan default
- 2. High **DEBTINC** increases default risk
- 3. Applicants with high **DEBTINC** should be flagged for additional evaluation

Loan Amount (LOAN)

- 1. Loan amount alone is not a strong predictor
- **2. LOAN > 40000** combined with high DEBTINC increases default risk

Years at Present Job (YOJ)

- 1. Years at present job have an impact on default risk
- 2. YOJ < 3 increases default risk

XGBoost Classifier

- 1. XGBoost outperforms Random Forest in predictive power
- 2. Recommended for production deployment

Delinquencies (DELINQ)

Derogatory Marks (DEROG)

- DELINQ and DEROG are strong predictors for loan default
- 2. DELINQ > 2 and DEROG > 1 significantly increase default risk

Credit Age (CLAGE)

- 1. Credit age is protective
- **2. CLAGE > 300 months** in associated with low default risk

Mortgage Amount (MORTDUE)

- 1. MORTDUE correlates with loan LOAN
- 2. MORTDUE > 200000 increases default risk

Heatmap: VALUE <> MORTDUE Strong Positive Correlation Data Insights 20% Defaulted **Categorical Variables: Class Imbalance** Countplot: REASON Countplot : JOB 1500 **Strong Predictors Weak Predictors** BAD vs DELINQ BAD vs DEBTINC BAD vs CLAGE BAD vs VALUE BAD vs MORTDUE **SHAH Summary Plot: DELINQ & DEBTINC Strongest Predictors** DELINQ LOAN **MORTDUE** DEBTING LOAN vs VALUE MORTDUE vs VALUE Accuracy vs Alpha DEROG 500000 VALUE <> MORTDUE VALUE CLNO **Strong Collinearity** 400000 NINO JOB_Office 0.84 REASON_HomeImp JOB_ProfExe JOB Other JOB_Sales Best alpha = 0.0 JOB_Self **No Pruning** 200000 300000 400000 0.025 MORTDUE ΙΟΔΝ SHAP value (impact on model output)

Financial Analysis

Model	TN	FP	FN	TP	FN Loss (\$)	FP Loss (\$)	Total Estimated Loss (\$)	Total Projected Gain (\$)	Estimated Revenue (\$)
Logistic Regression	848	106	130	108	\$2,419,036.00	\$197,244.00	\$2,616,280.00	\$3,390,372.00	\$1,577,956.00
Decision Tree	593	361	58	180	\$1,079,262.00	\$671,748.00	\$1,751,010.00	\$3,781,140.00	\$1,103,453.00
Random Forest	935	19	81	157	\$1,507,246.00	\$35,355.00	\$1,542,601.00		\$1,739,845.00
XGBoost	949	5	85	153	\$1,581,677.00	\$9,304.00	\$1,590,981.00	\$4,603,612.00	\$1,765,896.00

Legend

TN = True Negative

FP = False Positive

FN = False Negative

TP = True Positive

FN Loss = Loans that are wrongly approved

FN Loss Rate = 100%

FP Loss = Loans that are wrongly rejected

FP Loss Rate = 10%

ER = Total income earned from correctly approved loans

Calculation Average Loan Value (AVG) = \$18,607.97

FN Loss = FN * AVG * 100%

FP Loss = FP * AVG * 10%

FN Baseline Loss = (FN + TP) * AVG * 100%

Total Estimated Loss (TEL) = FN Loss + FP Loss

Total Projected Gain (TPG) = FN Baseline Loss – TEL + ER

Estimated Revenue (ER) = TN * AVG * 10%

Benefits of Implementing the Solution

Reduced Financial Losses

Early detection of high-risk applicants minimizes defaults.

Scalability

Adaptable to new markets, customer segments and economic conditions.

Increased Approval Accuracy

Minimizes both **False Negatives** and **False Positives**

Operational Efficiency

Automates large parts of the loan approval process, reducing costs.

Regulatory Compliance

Data-driven and auditable decisions help meet transparency standards.

Improved Customer Experience

Faster processing of loan applications and more objective evaluation.

Recommendations & Next Seps

Recommended Model: XGBoost

Train

Validate

Deploy

Monitor

Continuous model monitoring adapt to changing applicant's behavior.

Incorporate additional data sources, for example transaction data, social media signals, to enhance predictive accuracy.

Human-in-the-Loop System: Allow manual review for borderline predictions.

