Recommenders

Collaborative Filtering Recommenders

"Everything is a Recommendation" (Netflix)

- recommenders have been popularized by Netflix; they are now extremely common and are utilized in a variety of areas
- recommenders seek to predict the 'rating' or 'preference' that a user would give to an item
- e.g., over 75% of what people watch on Netflix comes from their recommendation engine ["Netflix's New 'My List' Feature Knows You Better Than You Know Yourself (Because Algorithms)"]

Netflix's \$1M Prize

- training set of 100M ratings
 - that m = 480k users gave to n = 18k movies between 12/31/1999 and 12/31/2005
 - made of quadruplets of the form:
 - user <integer>, movie <integer>, date of grade, grade <1-5>
- hold-out set (4.2M) randomly split 3 ways into probe, quiz, and test subsets
 - probe set attached to the training set
 - competitors were required to predict ratings for the quiz and test sets
 - made of quadruplets of the form
 - user <integer>, movie <integer>, date of grade
 - prizemaster returns the root mean squared error (RMSE) achieved on the quiz set, then posted on the public leaderboard
 - prize winner is the one that scores best on the test set (Netflix never disclosed these scores)

Netflix's \$1M Prize (cont.)

- training set
 - average user rated over 200 movies
 - average movie was rated by over 5,000 users
- hold-out set (4.2M) randomly split 3 ways into probe, quiz, and test subsets
 - last nine movies rated by each user
 - compared with the training data, the hold-out set contains many more ratings by users that do not rate much and are therefore harder to predict
 - this represents real requirements for a collaborative filtering (CF) system, which needs to predict new ratings from older ones, and to equally address all users, not just the heavy raters

Netflix's \$1M Prize (cont.)

 the winning team using gradient boosted decision trees to combine over 500 models

Netflix uses a collaborative filtering recommender system

- collaborative filtering
 - only consider past users behavior (yours and others)
 - "collaborative filtering" refers to the use of ratings from multiple users in a collaborative way to predict missing ratings
 - more examples:
 - Amazon recommendations
 - Google and Facebook ads
 - news feeds, trending news
 - ..

There are other type of recommenders...

- popularity
 - make the same recommendation to every user based on the popularity of an item
 - e.g., Twitter Moments
- content-based (a.k.a., content filtering)
 - recommendations are made based on the properties/characteristics of an item and the past user behavior
 - e.g., Pandora Radio
 - users build up "stations" based on their musical interests
 - a user sets in each station one or more songs or artists that he or she likes
 - based on these preferences, Pandora plays similar songs that the user might also like
 - users can refine their station by giving a "thumbs up" (want to hear more similar music) or a "thumbs down" (don't' want to hear this song again and is not interested in similar types of music) to songs
- matrix factorization methods (this afternoon)
 - find latent features (factors)

Data as a Utility Matrix

- typically, data is a utility/rating matrix which capture user wellbeing/preferences
- unrated items are coded as missing or 0
- matrix is sparse (as most items are unrated) (e.g., 1.2% for the Netflix Prize matrix)

			ite	ms		
		#1	#2	#3	#4	
	Α					
۲۵.	В					
users	С					•••
	D					-
	E					_
		•	•••	•	•	

Data can be Explicit

- user-provided ratings
 - e.g., 1 to 5 stars (Netflix Prize, Amazon)
 - e.g., like/non-like (Facebook)

			ite	ms		
		#1	#2	#3	#4	
	Α	1	4	2		
10	В		3		4	
users	С	1	5		5	•••
	D	2		3		•
	E		3		3	•
		-	-	-	-	

or Implicit

- more common
 - infer user-item relationship from user behavior and actions
 - e.g., buy/non-buy (Amazon)
 - e.g., view/non-view (Amazon)

	items						
		#1	#2	#3	#4		
users	Α	1	1	1			
	В		1		1		
	С	1	1		1	•••	
	D	1		1		•	
	E		1		1	•	
	'	'	'		•		

User-User Similarities

- to predict Alice's rating of Titanic, we can
 - find a set of users "similar" to Alice who rated Titanic
 - then take the mean of their ratings of Titanic
- this is user-user similarity:
 - calculate the "similarity" of all user pairs (row vectors)
 - make predictions based on similarity between users

	items						
		#1	#2	#3	Titanic		
	Alice	1	4	2		•••	
users	В		3		4		
	Caleb	1	5		5	•••	
	D	2		3			
	E		3		3		
			•••	•			

Item-Item Similarities

- to predict Alice's rating of Titanic, we can also
 - find a set of items similar to
 Titanic that Alice has also rated
 - take the (weighted) mean of Alice's ratings on them
- this is item-item similarity:
 - calculate the "similarity" of all pair of items (columns vectors)
 - make predictions based on similarity between items

User-User or Item-Item?

• let

- m = |users| (e.g., 480k as in the Netflix challenge) and
- n = |items| (e.g., 18k)

user-user

- m² user pairs and assuming a user-user similarity computation of O(n), we have a user-user computational complexity of O(m² n)
- that's a whopping 4.1×10^{15} computations

• item-item

- n² item pairs and assuming a item-item similarity computation of O(n), we have a user-user computational complexity of O(m n²)
- that's still a lot of computations (1.6× 10^{14}) but it's also 26x less than in the user-user setting

User-User or Item-Item? (cont.)

- item-item
 - most popular as many businesses have a limited numbers of items for many more users
 - other pluses
 - item pairs have more stable similarities than user pairs (items have usually more ratings than users)

(Netflix Prize: average movie was rated by over 5,000 users; average user rated over 200 movies)

• item-item similarities are stable over time while users change preferences overtime (6 years span in Netflix Prize)

Similarity Metrix using Euclidean Distance

$$distance(u, v) = ||u - v|| = \sqrt{\sum_{i} (u_i - v_i)^2}$$

• a distance of 0 means the items are identical; the distance is also unbounded

$$similarity(u, v) = \frac{1}{1 + distance(u, v)}$$

[similarity ranges between 0 (totally dissimilar) to 1 (totally similar)]

 the Euclidean distance is the most intuitive of the distance metrics yet you'll probably never use it in this setting

Similarity Metrix using Pearson Correlation

 the Pearson correlation measures how much two vectors each deviate from their mean together:

$$pearson(u,v) = \frac{\sigma_{u,v}^2}{\sigma_u \sigma_v} = \frac{\sum_i (u_i - \bar{u})(v_i - \bar{v})}{\sqrt{\sum_i (u_i - \bar{u})^2} \sqrt{\sum_i (v_i - \bar{v})^2}}$$

$$similarity(u, v) = \frac{1}{2} + \frac{1}{2}pearson(u, v)$$

- this similarity isn't sensitive to a user who consistently rates low or high
 - e.g., user #1 rates 3 items: 5, 5, and 3 and user #2 rates them as 3, 3, and 1: the similarity of these 2 users will be 1 (totally similar)

Similarity Metrix using Cosine Distance

the Cosine distance measures the angle between two vectors

$$cos(\theta_{u,v}) = \frac{u \cdot v}{\|u\| \|v\|} = \frac{\sum_{i} u_{i} v_{i}}{\sqrt{\sum_{i} u_{i}^{2}} \sqrt{\sum_{i} v_{i}^{2}}}$$

$$similarity(u, v) = \frac{1}{2} + \frac{1}{2}cos(\theta_{u,v})$$

 equivalent to the Pearson Correlation when vectors are meancentered

Similarity Metrix using Jaccard Similarity

$$similarity(u,v) = \frac{|U_u \cap U_v|}{|U_u \cup U_v|}$$

 $[U_k \text{ denotes the set of users who rated item } k]$

- the Jaccard similarity is a measure of the similarity of two sets
- here, we would like to measure if two items have been rated by the same users
- use this metric when you don't have ratings, just Boolean data

Similarity Matrix

pick a similarity metric then create the (e.g., item-item) similarity matrix:

items	#1	#2	#3	
#1	1	.3		
#2	.3	1	.7	
#3		.7	1	
		•••		

Predicting Ratings

- say user *u* hasn't rated item *i*
- · we want to predict the rating that this user would give this item

$$p_{u,i} = \frac{\sum_{j \in I_u} similarity(i,j) \cdot r_{u,j}}{\sum_{j \in I_u} similarity(i,j)}$$

 $p_{u,i}$ = user u's predicted rating of item i I_u = set of items rated by user u $r_{u,j}$ = user u's true rating of item j

Predicting Ratings (cont.)

• to improve performance, we can restrain our calculations to items most similar to *i*

$$p_{u,i} = \frac{\sum_{j \in I_u \cap N_i} similarity(i,j) \cdot r_{u,j}}{\sum_{j \in I_u \cap N_i} similarity(i,j)}$$

 $p_{u,i}$ = user u's predicted rating of item i I_u = set of items rated by user u $N_i = n$ items most similar to item i $r_{u,j}$ = user u's true rating of item j

Deploying the Recommender

- off-line (e.g., during the night)
 - compute similarity between all item pairs, similarity(i, j)
 - compute the neighborhood of each item, N_i
- online/at request time
 - predict scores for candidate items (rating(u, i)) and make recommendations

Validating a Recommender

- recommenders are inherently hard to validate
 - in practice, we would launch the recommender using A/B testing and see if it leads to more conversions
- beyond that, there isn't standard of how to evaluate a recommender
 - we can do a k-fold cross validation like we do with classification and regression and there are few different metrics we can use

Validating a Recommender

- Root Mean Squared Error (RMSE)
 - predict the rating for all user/movie pairs in the test set and calculate the RMSE between your predicted values and the true values

$$RMSE = \sqrt{\sum_{u; i \in I_u} (r_{u,i} - p_{u,i})^2}$$

 $r_{u,i}$ = user u's true rating of item i $p_{u,i}$ = user u's predicted rating of item i

- however this metric considers how far off you are with <u>all</u> of your ratings
- in practice, we're trying to recommend the thing the user would want to see next; it's not about making rating predictions
- a couple of other metrics that just consider this: precision and recall

Validating a Recommender (cont.)

precision at n (how many selected items are relevant)

$$precision = \frac{|\{relevant\ documents\} \cap \{retrieved\ documents\}|}{\{retrieved\ documents\}}$$

- proportion of the top-n documents that are relevant (relevant = watched)
- recall at n (how many relevant items are selected)

$$recall = \frac{|\{relevant\ documents\} \cap \{retrieved\ documents\}|}{\{relevant\ documents\}}$$

proportion of the relevant items are in the top n

Recommenders

Matrix Factorization for Recommenders

SVD vs. NMF

SVD:

- $R = U\Sigma V^t$
- U and V are orthonormal matrices
- S is a diagonal matrix of decreasing positive "singular" values
- a SVD is not unique: the singular values are unique, but the singular vector matrices are not

NMF:

- $V \approx WH$
- all values of V must be non-negative
- W and H will not (likely) be orthonormal
- NMF is an approximate factorization and non-unique solutions
 - (local optima with non-convex RSS optimization)
- has a tunable parameter k

An explicit-rating utility matrix is usually VERY sparse...

- we've previously used SVD to find latent features
- is SVD be good for this sparse utility matrix?
- no!
 - you are forced to fill in missing values
 - the solution you'll get would have to fit these fill-values (which is silly)

NMF on the other end is a great option for many recommender systems

reason #1: no need to impute missing values

cost function:

Reason #2: NMF can accommodate biases terms to communicate prior knowledge

- in practice, much of the observed variation in rating values is due to item bias and user bias:
 - some items (e.g., movies) tend to be rated high, some low
 - some users tend to rate high, some low

• we can capture this prior domain knowledge using a few bias terms:

Biases (cont.)

ratings are now estimated as:

prediction of how

updated cost function:

$$\underset{W,H}{\operatorname{argmin}} \sum_{i,j \in \kappa} \left(v_{ij} - \mu - b_i^* - b_j' - w_{i:} h_{:j} \right)^2 + \lambda \left((b_i^*)^2 + (b_i^*)^2 + \|w_{i:}\|^2 + \|h_{:j}\|^2 \right)$$