

M2177.003100 Deep Learning

[5: Convolutional Neural Nets (Part 2)]

Electrical and Computer Engineering Seoul National University

© 2018 Sungroh Yoon. this material is for educational uses only. some contents are based on the material provided by other paper/book authors and may be copyrighted by them.

(last compiled at 16:47:00 on 2018/09/30)

Outline

Background

CNN Architectures

AlexNet

VGG

 ${\sf GoogLeNet}$

ResNet

Recent Architectures

Summary

References

- Deep Learning by Goodfellow, Bengio and Courville Link
 - ▶ Chapter 9
- online resources:
 - ► Deep Learning Specialization (coursera) ► Link

 - ► Machine Learning Yearning Link

Outline

Background

Summary

CNN Architectures

Classic: LeNet-5

(source: LeCun, 1998)

- CONV-POOL-CONV-POOL-FC-FC
 - ▶ 5×5 conv filters (stride 1)
 - ▶ 2×2 pooling layers (stride 2)

1×1 convolution on volumes

• nonlinearity (e.g. ReLU) can follow 1×1 convolution \rightarrow "network in network"

- ullet 1 × 1 convolution: widely used for depth adjustment
- example:

- each filter: size $1 \times 1 \times 64$ (performs a 64-dim dot product)
- preserves spatial dimensions and reduces depth
- projects depth to _____ dimension (combination of feature maps)
- in general
 - lacktriangle we can reduce/maintain/increase depth using 1×1 convolution

(source: cs231n)

Network in network

- - can compute more abstract features for local patches
 - precursor to GoogLeNet and ResNet "bottleneck" layers

(a) linear convolution layer

(b) Mlpconv layer

(source: Lin et al., 2014)

ImageNet challenge winners

Outline

Background

CNN Architectures
AlexNet

VGG

GoogLeNet ResNet Recent Architectui

Summary

ImageNet challenge winners

AlexNet

- Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton (2012)
 - ▶ ILSVRC 2012 winner

(source: yuchao.us)

Architecture


```
227×227×3
              INPUT
 55×55×96
              CONV1
                              96 11×11 filters at stride 4, pad 0
 27×27×96
              MAX POOL1
                              3x3 filters at stride 2
 27×27×96
              NORM1
                              normalization layer
27×27×256
              CONV2
                              256 5x5 filters at stride 1, pad 2
13×13×256
              MAX POOL2
                              3x3 filters at stride 2

    total number of parameters

13×13×256
              NORM2
                              normalization layer
13×13×384
              CONV3
                              384 3x3 filters at stride 1, pad 1
                                                                         ▶ 60M
13×13×384
              CONV4
                              384 3x3 filters at stride 1, pad 1
                              256 3x3 filters at stride 1, pad 1
13×13×256
              CONV5
  6x6x256
              MAX POOL3
                              3x3 filters at stride 2
     4096
              FC6
                              4096 neurons
     4096
                              4096 neurons
     1000
              FC8
                              1000 neurons (class scores)
```

- details:
 - ▶ first use of ReLU
 - used normalization (NORM) layers (not common anymore)
 - heavy data augmentation
 - ▶ dropout: 0.5
 - batch size: 128
 - ▶ SGD + momentum (0.9)
 - ▶ learning rate: 10^{-2}
 - (reduced by 10 manually when validation accuracy plateaus)
 - ▶ L2 weight decay: 5×10^{-4}
 - ▶ 7 CNN ensemble: $18.2\% \rightarrow 15.4\%$
- trained on GTX 580 GPU (only 3GB memory)
 - network spread across 2 GPUs

ImageNet challenge winners

ZFNet (Zeiler and Fergus, 2013)

the same as AlexNet but

- ► CONV1: change from (11×11 stride 4) to (7×7 stride 2)
 - CONV3, 4, 5: instead of 384, 384, 256 filters use 512, 1024, 512
 - ► ImageNet top 5 error: $16.4\% \rightarrow 11.7\%$

Outline

Background

CNN Architectures

VGG

GoogLeNet ResNet

Summarv

ImageNet challenge winners

VGG

• Simonyan and Zisserman (2014)

• key idea: ____ filters, networks

only

3x3 CONV stride 1, pad 1

2x2 MAX POOL stride 2

- ILSVRC top 5 error
 - ► 11.7% (ZFNet, 2013) → 7.3% (VGG, 2014)
- two versions: VGG16, VGG19
 - ► VGG19 only slightly better (use more memory)

(source: cs231n)

Why use smaller filters?

- consider stacking three 3x3 conv (stride 1) layers
- benefits
 - its effective receptive field
 - = that of one ___ conv layer
 - ▶ but deeper
 - ⇒ more non-linearities
 - ► and fewer parameters¹:

$$3\times(3^2\mathit{C}^2)$$
 vs $7^2\mathit{C}^2$

(300100. 0323111)

¹assuming C channels per layer and C filters per layer

Architecture (VGG16)

parameters (138M total)	memory (96MB/image)	dimension	layer type
0	224*224*3=150K	224×224×3	INPUT
(3*3*3)*64 = 1,728	224*224*64=3.2M	224×224×64	CONV3-64
(3*3*64)*64 = 36,864	224*224*64=3.2M	224×224×64	CONV3-64
0	112*112*64=800K	112×112×64	POOL2
(3*3*64)*128 = 73,728	112*112*128=1.6M	112×112×128	CONV3-128
(3*3*128)*128 = 147,456	112*112*128=1.6M	112×112×128	CONV3-128
0	56*56*128=400K	56×56×128	POOL2
(3*3*128)*256 = 294,912	56*56*256=800K	56×56×256	CONV3-256
(3*3*256)*256 = 589,824	56*56*256=800K	56×56×256	CONV3-256
(3*3*256)*256 = 589,824	56*56*256=800K	56×56×256	CONV3-256
0	28*28*256=200K	28×28×256	POOL2
(3*3*256)*512 = 1,179,648	28*28*512=400K	28×28×512	CONV3-512
(3*3*512)*512 = 2,359,296	28*28*512=400K	28×28×512	CONV3-512
(3*3*512)*512 = 2,359,296	28*28*512=400K	28×28×512	CONV3-512
0	14*14*512=100K	14×14×512	POOL2
(3*3*512)*512 = 2,359,296	14*14*512=100K	14×14×512	CONV3-512
(3*3*512)*512 = 2,359,296	14*14*512=100K	14×14×512	CONV3-512
(3*3*512)*512 = 2,359,296	14*14*512=100K	14×14×512	CONV3-512
0	7*7*512=25K	7×7×512	POOL2
7*7*512*4096 = 102,760,448	4096	1×1×4096	FC
4096*4096 = 16,777,216	4096	1×1×4096	FC
4096*1000 = 4,096,000	1000	1×1×1000	FC

▶ most memory: in early _____

most parameters: in late ____

```
FC 1000
FC 4096
FC 4096
 Pool
```

VGG16

(source: cs231n)

- ILSVRC'14 ranking: 2nd in classification, 1st in localization
- details:
 - similar training procedure as AlexNet
 - no local response normalization (LRN)
 - use ensembles for best results
 - ► FC7 features _____ well to other tasks

(source: cs231n)

Outline

Background

CNN Architectures

AlexNet

GoogLeNet

ResNet

Recent Architectures

Summary

ImageNet challenge winners

GoogLeNet

- Szegedy et al. (2014)
- key idea: deeper networks with computational efficiency
 - ▶ 22 layers
 - ▶ efficient " " module
 - minimal use of FC layers
 - only 5 million parameters! (12x less than AlexNet)
 - ▶ ILSVRC'14 classification winner (6.7% top 5 error)

(source: cs231n)

(source: Warner Bros. Pictures, http://knowyourmeme.com/memes/we-need-to-go-deeper)

- inception module
 - design a good local network topology (______ within a network)
 - ▶ then stack these modules

(source: cs231n)

Naïve inception module

- apply parallel filter operations on the input
 - ▶ multiple receptive field sizes (1x1, 3x3, 5x5) for convolution
 - ▶ pooling (3x3)
- concatenate all filter outputs together:

• problem with this idea:

- output size after filter concatenation: 529k
 - $28 \times 28 \times (128 + 192 + 96 + 256) = 28 \times 28 \times 672$
- total number of convolution operations: 854M

$$\underbrace{\frac{28 \times 28 \times 128 \times 1 \times 1 \times 256}{\uparrow}}_{\text{(1x1 conv, 128)}} + \underbrace{\frac{28 \times 28 \times 192 \times 3 \times 3 \times 256}{\uparrow}}_{\text{(3x3 conv, 192)}} + \underbrace{\frac{28 \times 28 \times 96 \times 5 \times 5 \times 256}{\uparrow}}_{\text{(5x5 conv, 96)}}$$

⇒ very expensive to compute

- another challenge:
 - pooling layer preserves feature depth
 - \Rightarrow total depth after concatenation \rightarrow can only grow at every layer
- solution
 - bottleneck" layers

 to reduce feature depth

Inception module

comparison:

naïve inception module

inception module with

- ▶ 1x1 conv "bottleneck" layers
- ▶ the same setup as on page 28: 845M ops $\rightarrow 358M$ ops

GoogLeNet

- stacked inception modules
 - with dimension reduction on top of each other

(source: Szegedy et al., 2014)

• full GoogLeNet architecture:

(source: Szegedy et al., 2014)

- (1) stem network: CONV-POOL-2xCONV-POOL
- (2) stacked modules
- (3) classifier output

• full GoogLeNet architecture:

(source: Szegedy et al., 2014)

- (4) auxiliary classification outputs: AvgPOOL-1x1CONV-FC-FC-SOFTMAX
 - ▶ to inject additional at lower layers
- total 22 layers with weights
 - ▶ parallel layers count as 1 layer ⇒ 2 layers per inception module
 - auxiliary output layers: not counted in

Outline

Background

CNN Architectures

AlexNet

GoogLeNet

ResNet

Recent Architectures

Summary

ImageNet challenge winners

ResNet

- He et al. (2015)
- key idea: very deep nets using _____ connections
 - ▶ 152-layer model for ImageNet
 - ► ILSVRC'15 classification winner² (3.57% top 5 error)

 $^{^2}$ swept all classification and detection competitions in ILSVRC'15 and COCO'15

- intuition:
 - if trained appropriately, deeper models should be able to perform
 - > at least as well as shallower models
- a solution by construction:
 - copy the learned layers from the shallower model
 - ► set additional layers to mapping

Residual block

- use network layers to fit a _____ mapping: $F(\mathbf{x}) = H(\mathbf{x}) \mathbf{x}$
 - ightharpoonup instead of directly trying to fit a desired underlying mapping $H(\mathbf{x})$

"plain" layers

residual block

Architecture

- stack residual blocks
- every residual block
 - ▶ has two 3x3 conv layers
- periodically
 - ▶ double # filters
 - downsample spatially (stride 2)
- at the beginning
 - additional conv layer
- no FC layers at the end
 - only FC1000 to output classes

➤ 34, 50, 101, or 152 layers for ImageNet

- for deeper nets (50+ layers)
 - use "_____" layers to improve efficiency (similar to GoogLeNet)

- training details:
 - batch normalization after every CONV layer
 - ▶ Xavier initialization: initial weight $\sim \mathcal{N}(0, 1/n)$ where n = # neurons
 - ▶ SGD + momentum (0.9)
 - learning rate: 0.1 (divided by 10 when validation error plateaus)
 - mini-batch size: 256
 - ▶ weight decay: 10⁻⁵
 - no dropout used
- results
 - ▶ ILSVRC 2015 winner in all five main tracks (3.6% top 5 error)

better than " performance" (Russakovsky, 2014)

Comparison

- ▶ Inception-v4: ResNet + Inception
- VGG: highest memory, most operations
- : most efficient
- AlexNet: smaller compute, still memory heavy, lower accuracy
- _____: moderate efficiency depending on model, highest accuracy

Outline

Background

CNN Architectures

AlexNet

GoogLeNet ResNet

Recent Architectures

Summary

Improving ResNets

- ideas:
 - improved residual block
 - wide ResNet
 - ResNeXt
 - stochastic depth
 - multi-scale ensembling
 - feature recalibration (SENet)

Identity mappings in deep residual networks (He et al., 2016)

- improved ResNet block design
 - creates a more direct path for propagating info throughout net
 - i.e. moves _____ to residual mapping pathway

(source: He et al.)

Wide ResNet (Zagoruyko et al., 2016)

- the authors argue: residuals are the important factor, not depth
- user wider residual blocks
 - *i.e.* $F \times k$ filters instead of F filters in each layer
 - ▶ 50-layer wide ResNet outperforms 152-layer original ResNet
- computational benefit
 - increasing width (instead of depth)
 - ⇒ more computationally efficient (

ResNeXt (Xie et al., 2016)

- aggregated residual transformations
 - ▶ increases width of residual block through multiple pathways ↑
 similar in spirit to inception module

Stochastic depth (Huang et al., 2016)

- motivation:
 - reduce vanishing gradients and training time through short networks during training
- details:
 - randomly ____ a subset of layers during each training pass
 - bypass with identity function
 - use full deep network at test time

ImageNet challenge winners

Multi-scale ensembling (Shao et al., 2016)

- ILSVRC'16 classification winner³
 - "Good Practices for Deep Feature Fusion"
- idea: multi-scale of
 - ▶ inception, inception-ResNet, ResNet, wide ResNet models

method	error (%)
Resnet-200 Inception-v3	4.26 4.20
Inception-v4 Inception-Resnet-v2	4.01 3.52
Fusion (val) Fusion (test)	2.92 2.99

(source: Shao et al.)

³the authors: The Third Research Institute of the Ministry of Public Security, China

ImageNet challenge winners

Squeeze-and-Excitation Networks (SENet) (Hu et al., 2017)

- ILSVRC'17 classification winner
 - base architecture: ResNeXt-152
 - squeeze: global information embedding
 - excitation: adaptive recalibration
- add a "feature recalibration" module
 - it learns to adaptively reweight feature maps

- to determine feature map weights
 - ▶ global information (global avg. pooling layer) + 2 FC layers

Recent developments

- beyond ResNets:
 - ultra-deep neural networks without residuals (FractalNet)
 - densely connected CNNs (DenseNet)
- efficient networks:
 - ► Caffe2Go (Facebook), TensorRT (NVIDIA), Core ML (Apple)
 - SqueezeNet
- meta/automated learning:
 - Cloud AutoML (Google)

FractalNet (Larsson et al., 2017)

- · ultra-deep neural networks without residuals
- argue:
 - key is transitioning effectively from shallow to deep
 - ⇒ residual representations are not necessary

(source: Hajimiri et al.)

- propose: _____ architecture
 - ▶ both shallow/deep paths to output
 - trained with dropping out subpaths
 - full network at test time

(source: Larsson et al.)

DenseNet (Huang et al., 2017)

- densely connected convolutional networks
- idea: dense blocks
 - each layer is connected to
 layer in feedforward fashion
- benefits:
 - ▶ alleviates vanishing gradient
 - strengthens feature propagation
 - encourages feature reuse

SqueezeNet (landola et al., 2017)

- AlexNet-level accuracy with 50x fewer parameters and <0.5Mb model size
- architecture:

- benefits: memory footprints
 - model size: 510x smaller than AlexNet.

Google Cloud AutoML

learning to learn

(source: Google)

Outline

Background

Summary

CNN Architectures

Summary

- famous four
 - AlexNet
 - VGG
 - ▶ GoogLeNet
 - ResNet
- beyond ResNet
 - FractalNet
 - DenseNet

- improving ResNet
 - wide ResNet
 - ResNeXt
 - stochastic depth
 - SENet
- other ideas
 - SqueezeNet
 - autoML