Time Series Electronic Production

By: Urfi Nur Syamsiyah Yogabama

Modified: 28 July 2023

Table of contents

01

Mean and Median
Electric Production
Every Three
Months

02

Stationary Test

03

Forecasting

Mean and Median Electric Production Every Three Months

Tools: Google Spreadsheet (Pivot table)

The original data is **Electric_Production.csv** and the result of the pivot table is **Pivot_Table_Electric_Production.csv**

	Α	В	
1	DATE	IPG2211A2N	
2	1/1/1985	72.5052	
3	2/1/1985	70.672	
4	3/1/1985	62.4502	
5	4/1/1985	57.4714	
6	5/1/1985	55.3151	
7	6/1/1985	58.0904	
8	7/1/1985	62.6202	
9	8/1/1985	63.2485	

	A	В	С
1	Date - Year-Quarter	AVERAGE of Electric Production	MEDIAN of Electric Production
2	1985-Q1	68,5425	70,6720
3	1985-Q2	56,9590	57,4714
4	1985-Q3	62,1511	62,6202
5	1985-Q4	61,0101	58,0005
6	1986-Q1	67,8382	67,9869
7	1986-Q2	57,5824	57,0329
8	1986-Q3	63,7492	64,4816
9	1986-Q4	61,6698	59,3417

Stationary Test

Tools: Python, the complete code can be looked at

Time Series Electric Production.ipnyb

```
#Stationary test for mean data
print('Stationary test for mean data')
time series = df['Mean of Electric Production']
#ADF test
result = adfuller(time series)
p value = result[1]
print("p-value:", p value)
#Check the p-value against a significance level (e.g., 0.05) to make a decision
if p value <= 0.05:
    print("The time series is stationary (reject H0).")
else:
    print("The time series is non-stationary (fail to reject H0).")
#Stationary test for median data
print('Stationary test for median data')
time series = df['Median of Electric Production']
#ADF test
result = adfuller(time series)
p value = result[1]
print("p-value:", p value)
#Check the p-value against a significance level (e.g., 0.05) to make a decision
if p value <= 0.05:
    print("The time series is stationary (reject H0).")
else:
    print("The time series is non-stationary (fail to reject H0).")
```

Stationary Test Result

Stationary test for mean data p-value: 0.010744380138396811

The time series is stationary (reject H0).

Stationary test for median data p-value: 0.025118743593809674

The time series is stationary (reject H0).

The data is **stationary**, so we can continue to do forecasting

Forecasting

Tools: Python, the complete code can be looked at

Time Series Electric Production.ipnyb

In this powerpoint, we discuss the mean electric production every three months data

First, choose the best model ARIMA/ARMA/MA, by choosing the smallest RMSE

RMSE ARIMA Model: 20.06012630106035 RMSE ARMA Model: 10.294734842533138 RMSE MA Model: 4.228275975288996

Choose MA model, since it has the smallest RMSE.

MA Summary

SARIMAX Results

```
Dep. Variable:
                                        No. Observations:
                                                                            133
Model:
                       ARIMA(0, 0, 1)
                                        Log Likelihood
                                                                       -528,162
                     Fri, 28 Jul 2023
                                        AIC
                                                                       1062.324
Date:
Time:
                             15:17:30
                                        BTC
                                                                       1070.995
Sample:
                                        HOTC
                                                                       1065.848
                                 - 133
Covariance Type:
                                                  P>|z|
                                                             「0.025
                                                                         0.975]
                 coef
                         std err
                           1.850
                                     48.176
                                                  0.000
                                                             85.489
                                                                         92.740
const
ma.L1
               0.3283
                           0.160
                                      2.046
                                                  0.041
                                                              0.014
                                                                          0.643
sigma2
                          23.929
                                      6.879
                                                  0.000
                                                            117.705
                                                                        211.504
Liung-Box (0):
                                   1272.80
                                              Jarque-Bera (JB):
                                                                                1.73
Prob(Q):
                                                                                0.42
                                      0.00
                                              Prob(JB):
Heteroskedasticity (H):
                                      0.91
                                              Skew:
                                                                                0.12
Prob(H) (two-sided):
                                                                                2.50
```


Our model is

$$X_t = c + \epsilon_t + 0.3283\epsilon_{t-1}$$

Forecasting in 6 Months

Forecast Electric Production Based on Mean Data for 2018-07-01 is 112.62063333333333

Thank You.