Yolo v5 Model Card

Model Card

Model Details

The YOLOv5s-416 model is a quantized version of YOLOv5s, optimized for efficient object detection. YOLOv5 is a single-stage object detection model that processes an image in one pass through the neural network to detect objects, making it faster than twostage detectors like Faster R-CNN. The "s" variant (small) is a lightweight version designed for lower latency and efficiency. The INT8 quantization reduces model size and computational complexity, enabling faster inference while slightly trading off precision. The model takes a 416x416 RGB image as input and applies convolutional layers and anchor-based detection to identify objects within the image. It outputs bounding boxes, class labels, and confidence scores, indicating the presence and location of objects.

Intended Use

- Our application uses this model for Al inferencing on input video and we collect metrics while the pipeline is running
- The quantized version is optimized for Intel hardware using OpenVINO's Inference Engine, making it suitable for applications requiring real-time detection, such as video analytics, autonomous navigation, and smart surveillance.

Training and validation data

 We are not training or validating this model in our reference implementation

Ethical Considerations

- We are using person-bicycle-cardetection.mp4 from https://github.com/intel-iotdevkit/sample-videos as input video to test this application tool.
- We are not storing any person or user related personal information.

Caveats and Considerations

- The model's accuracy may vary depending on the quality and resolution of the input images. Ensure that the images used are of sufficient quality for reliable detection.
- Preprocess images to normalize lighting conditions and remove noise.

Quantitative Analysis

 We are not doing quantitative analysis in this application tool but we do display metrics mentioned below to the user.

Factors

 We are also not evaluating this model in this reference implementation

Metrics

 We are displaying metrics including throughout (FPS) and system level metrics: CPU/GPU utilization, memory utilization, CPU/GPU frequency, CPU/system temp, GPU power, GPU engine, and package power. In this application these metrics are collected and displayed to the user via gauges.