

128K x 32 Static RAM Module

Features

- High-density 4-megabit SRAM module
- 32-bit standard footprint supports densities from 16K x 32 through 1M x 32
- **High-speed CMOS SRAMs**
 - Access time of 15 ns
- Low active power
 - 2.6W (max.) at 20 ns
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
 - Max. height of 0.57 in.
- Small PCB footprint
- 0.78 sq. in.

Available in SIMM, ZIP format. SIMM suitable for vertical or angled sockets.

Functional Description

The CYM1836 is a high-performance 4-megabit static RAM module organized as 128K words by 32 bits. This module is constructed from four 128K x 8 SRAMs in SOJ packages mounted on an epoxy laminate board with pins. Four chip selects $(\overline{CS}_1, \overline{CS}_2, \overline{CS}_3, \overline{CS}_4)$ are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.

Writing to each byte is accomplished when the appropriate chip select (\overline{CS}) and write enable (WE) inputs are both LOW. Data on the input/output pins (I/O) is written into the memory location specified on the address pins (A_0 through A_{16}).

Reading the device is accomplished by taking the chip select (\overline{CS}) LOW while write enable (WE) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the data input/output pins (I/O).

The data input/output pins stay at the highimpedance state when write enable is LOW or the appropriate chip selects are HIGH.

Two pins (PD₀ and PD₁) are used to identify module memory density in applications where alternate versions of the JEDECstandard modules can be interchanged.

Selection Guide

	1836-15	1836-20	1836-25	1836-30	1836-35	1836-45
Maximum Access Time (ns)	15	20	25	30	35	45
Maximum Operating Current (mA)	760	480	480	480	480	480
Maximum Standby Current (mA)	180	100	100	100	100	100

Shaded area contains preliminary information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\dots -55^{\circ}$ C to $+125^{\circ}$ C

Ambient Temperature with

DC Voltage Applied to Outputs

DC Input Voltage -0.5V to +7.0V

Operating Range

Range	Ambient Temperature	$ m v_{cc}$
Commercial	0°C to +70°C	5V ± 10%

Electrical Characteristics Over the Operating Range

			1836-15		1836-20, 25, 30, 35, 45		
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{\rm CC}$ = Min., $I_{\rm OH}$ = -4.0 mA	2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{\rm CC}$ = Min., $I_{\rm OL}$ = 8.0 mA		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V_{CC}	2.2	V_{CC}	V
$V_{\rm IL}$	Input LOW Voltage		-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-20	+20	-20	+20	μΑ
I_{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disabled	-20	+20	-20	+20	μΑ
I_{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max., I_{OUT} = 0 \text{ mA}, \overline{CS} \le V_{IL}$		760		480	mA
I_{SB1}	Automatic CS Power-Down Current ^[1]	$V_{CC} = Max., \overline{CS} \ge V_{IH},$ Min. Duty Cycle = 100%		180		100	mA
I_{SB2}	Automatic CS Power-Down Current ^[1]	$V_{CC} = Max., \overline{CS} \ge V_{CC} - 0.2V,$ $V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$		60		28	mA

Shaded area contains preliminary information.

Capacitance^[2]

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance ^[3]	$T_A = 25$ °C, f = 1 MHz, $V_{CC} = 5.0V$	40/20	pF
C_{OUT}	Output Capacitance	v CC = 3.0 v	15	pF

Notes:

- A pull-up resistor to V_{CC} on the CS input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given
- 2. Tested on a sample basis
- 3. $20 \text{ pF on } \overline{\text{CS}}$, 40 pF all others

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

OUTPUT O
$$167\Omega$$
 O 1.73V

Switching Characteristics Over the Operating Range^[4]

		1836	-15	1836-20		1836-25		1836-30		1836-35		1836-45		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYC	CLE			•	-	•	-	-	-	-		•	•	
t_{RC}	Read Cycle Time	15		20		25		30		35		45		ns
t _{AA}	Address to Data Valid		15		20		25		30		35		45	ns
t _{OHA}	Output Hold from Address Change	3		3		3		3		3		3		ns
t _{ACS}	CS LOW to Data Valid		15		20		25		30		35		45	ns
t _{DOE}	OE LOW to Data Valid		7		8		8		10		12		15	ns
t _{LZOE}	OE LOW to Low Z	0		0		0		0		0		0		ns
t _{HZOE}	OE HIGH to High Z		7		8		10		11		12		15	ns
t _{LZCS}	CS LOW to Low Z ^[5]	3		3		3		3		3		3		ns
t _{HZCS}	CS HIGH to High Z ^[5, 6]		7		10		10		13		15		18	ns
WRITE CY	CLE ^[7]					<u> </u>						<u> </u>		
t _{WC}	Write Cycle Time	15		20		25		30		35		45		ns
t _{SCS}	CS LOW to Write End	12		15		15		18		20		25		ns
t_{AW}	Address Set-Up to Write End	12		15		15		18		20		25		ns
t _{HA}	Address Hold from Write End	0		0		0		0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		0		0		0		ns
t _{PWE}	WE Pulse Width	12		15		15		18		20		25		ns
t _{SD}	Data Set-Up to Write End	7		10		10		13		15		20		ns
$t_{ m HD}$	Data Hold from Write End	0		0		0		0		0		0		ns
t _{LZWE}	WE HIGH to Low Z	0		0		0		0		0		0		ns
t _{HZWE}	WE LOW to High Z ^[6]	0	6	0	8	0	10	0	15	0	15	0	18	ns

Shaded area contains preliminary information.

Notes:

- Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- At any given temperature and voltage condition, t_{HZCS} is less than t_{LZCS} for any given device. These parameters are guaranteed by design and not 100% tested.
- t_{HZCS} and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads and Waveforms. Transition is measured ±500 mV from steadystate voltage.
- 7. The internal write time of the memory is defined by the overlap of \overline{CS} LOW and \overline{WE} LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

- Notes: 8. WE is HIGH for read cycle.
- 9. Device is continuously selected, $\overline{CS} = V_{IL}$ and $\overline{OE} = V_{IL}$.
- 10. Address valid prior to or coincident with $\overline{\text{CS}}$ transition LOW.

Switching Waveforms (continued)

Write Cycle No. 2 $(\overline{CS} \text{ Controlled})^{[7, 11]}$

Truth Table

$\overline{\text{CS}}_{ ext{N}}$	WE	ŌĒ	Input/Outputs	Mode
Н	X	X	High Z	Deselect/Power-Down
L	Н	L	Data Out	Read
L	L	X	Data In	Write
L	Н	Н	High Z	Deselect

Ordering Information^[12]

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CYM1836PM-15C	PM03	64-Pin SIMM Module	Commercial
	CYM1836PZ-15C	PZ08	64-Pin ZIP Module	1
20	CYM1836PM-20C	PM03	64-Pin SIMM Module	Commercial
	CYM1836PZ-20C	PZ08	64-Pin ZIP Module	
25	CYM1836PM-25C	PM03	64-Pin SIMM Module	Commercial
	CYM1836PZ-25C	PZ08	64-Pin ZIP Module	
30	CYM1836PM-30C	PM03	64-Pin SIMM Module	Commercial
	CYM1836PZ-30C	PZ08	64-Pin ZIP Module	
35	CYM1836PM-35C	PM03	64-Pin SIMM Module	Commercial
	CYM1836PZ-35C	PZ08	64-Pin ZIP Module	1
45	CYM1836PM-45C	PM03	64-Pin SIMM Module	Commercial
	CYM1836PZ-45C	PZ08	64-Pin ZIP Module	

Shaded area contains preliminary information.

Document #: 38-M-00050-B

Notes:

11. If CS goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

12. 64-pin SIMM suitable for use in angled SIMM aplications.

Package Diagrams

64-Pin SIMM Module PM03

64-Pin ZIP Module PZ08

[©] Cypress Semiconductor Corporation, 1992. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor Corporation product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems applications implies that the manufacturer assumes all risk of such use and in so doing indemnifies Cypress Semiconductor against all damages.