Constructions With Sets

December 24, 2023

- **000D** This chapter contains some material relating to constructions with sets. Notably, it contains:
 - 1. Explicit descriptions of the major types of co/limits in Sets, including in particular pushouts and coequalisers (see ????????);
 - 2. A discussion of powersets as decategorifications of categories of presheaves (????);
 - 3. A lengthy discussion of the adjoint triple

$$f_* \dashv f^{-1} \dashv f_! \colon \mathcal{P}(A) \stackrel{\rightleftharpoons}{\to} \mathcal{P}(B)$$

of functors (morphisms of posets) between $\mathcal{P}(A)$ and $\mathcal{P}(B)$ induced by a map of sets $f \colon A \to B$, along with a discussion of the properties of f_* , f^{-1} , and $f_!$.

Contents

1	The	e Enrichment of Sets in Classical Truth Values	1
	1.1	(-2)-Categories	1
	1.2	(-1)-Categories	1
	1.3	0-Categories	3
	1.4	Tables of Analogies Between Set Theory and Category Theory.	3
A	Oth	ner Chapters	5

OUDE 1 Limits of Sets

000F 1.1 Products of Families of Sets

Let $\{A_i\}_{i\in I}$ be a family of sets.

Definition 1.1.1.1. The **product**¹ of $\{A_i\}_{i\in I}$ is the set $\prod_{i\in I} A_i$ defined by

$$\prod_{i \in I} A_i \stackrel{\text{def}}{=} \left\{ f \in \mathsf{Sets} \bigg(I, \bigcup_{i \in I} A_i \bigg) \; \middle| \; \begin{array}{l} \text{for each } i \in I, \text{ we} \\ \text{have } f(i) \in A_i \end{array} \right\}.$$

1.2 Binary Products of Sets

Let A and B be sets.

Definition 1.2.1.1. The product² of A^{cond} B is the set $A \times B$ defined by

$$\begin{split} A \times B &\stackrel{\text{def}}{=} \prod_{z \in \{A,B\}} z \\ &\stackrel{\text{def}}{=} \{f \in \mathsf{Sets}(\{0,1\}, A \cup B) \mid \text{we have } f(0) \in A \text{ and } f(1) \in B\} \\ &\cong \{\{\{a\}, \{a,b\}\} \in \mathcal{P}(\mathcal{P}(A \cup B)) \mid \text{we have } a \in A \text{ and } b \in B\}. \end{split}$$

Proposition 1.2.1.2. Let A, B, C, and X_0 beksets.

1. Functoriality. The assignments $A, \mathcal{B}(A, B) \mapsto A \times B$ define functors

$$A \times -_2 \colon \mathsf{Sets} \to \mathsf{Sets},$$

 $-_1 \times B \colon \mathsf{Sets} \to \mathsf{Sets},$
 $-_1 \times -_2 \colon \mathsf{Sets} \times \mathsf{Sets} \to \mathsf{Sets},$

where -1×-2 is the functor where

• Action on Objects. For each $(A, B) \in \text{Obj}(\mathsf{Sets} \times \mathsf{Sets})$, we have

$$[-_1 \times -_2](A, B) \stackrel{\text{def}}{=} A \times B;$$

• Action on Morphisms. For each $(A, B), (X, Y) \in \text{Obj}(\mathsf{Sets})$, the

¹Further Terminology: Also called the **Cartesian product of** $\{A_i\}_{i\in I}$.

² Further Terminology: Also called the Cartesian product of A and B or the binary Cartesian product of A and B, for emphasis.

This can also be thought of as the $(\mathbb{E}_{-1}, \mathbb{E}_{-1})$ -tensor product of A and B.

action on Hom-sets

$$\times_{(A,B),(X,Y)}$$
: $\mathsf{Sets}(A,X) \times \mathsf{Sets}(B,Y) \to \mathsf{Sets}(A \times B, X \times Y)$

of \times at ((A, B), (X, Y)) is defined by sending (f, g) to the function

$$f \times g \colon A \times B \to X \times Y$$

defined by

$$[f \times g](a,b) \stackrel{\text{def}}{=} (f(a),g(b))$$

for each $(a, b) \in A \times B$;

and where $A \times -$ and $- \times B$ are the partial functors of -1×-2 at $A, B \in \text{Obj}(\mathsf{Sets}).$

2. Adjoint 1000 We have adjunctions

$$(A \times - \dashv \mathsf{Sets}(A, -)) \colon \mathsf{Sets} \underbrace{\bot}_{A \times -} \mathsf{Sets},$$

$$(- \times B \dashv \mathsf{Sets}(B, -)) \colon \mathsf{Sets} \underbrace{\bot}_{Sets(B, -)} \mathsf{Sets},$$

$$(-\times B\dashv \mathsf{Sets}(B,-))$$
: $\mathsf{Sets}\underbrace{\bot}_{\mathsf{Sets}(B,-)}^{-\times B} \mathsf{Sets}$

witnessed by bijections

$$\mathsf{Sets}(A \times B, C) \cong \mathsf{Sets}(A, \mathsf{Sets}(B, C)),$$

$$\mathsf{Sets}(A \times B, C) \cong \mathsf{Sets}(B, \mathsf{Sets}(A, C)),$$

natural in $A, B, C \in \text{Obj}(\mathsf{Sets})$.

000N 3. Associativity. We have an isomorphism of sets

$$(A \times B) \times C \cong A \times (B \times C),$$

natural in $A, B, C \in \text{Obj}(\mathsf{Sets})$.

4. Unitality. We have isomorphisms of sets 000P

$$\operatorname{pt} \times A \cong A,$$

 $A \times \operatorname{pt} \cong A,$

natural in $A \in \text{Obj}(\mathsf{Sets})$.

5. Commutation We have an isomorphism of sets

$$A \times B \cong B \times A$$
,

natural in $A, B \in \text{Obj}(\mathsf{Sets})$.

6. Annihilation With the Empty Set. We have isomorphismer sets

$$A \times \emptyset \cong \emptyset,$$

 $\emptyset \times A \cong \emptyset.$

natural in $A \in \text{Obj}(\mathsf{Sets})$.

7. Distributivity Over Unions. We have isomorphisms of sets

$$A \times (B \cup C) = (A \times B) \cup (A \times C),$$

$$(A \cup B) \times C = (A \times C) \cup (B \times C),$$

natural in $A, B, C \in \text{Obj}(\mathsf{Sets})$.

8. Distributivity Over Intersections. We have isomorphisms of sets

$$A \times (B \cap C) = (A \times B) \cap (A \times C),$$

$$(A \cap B) \times C = (A \times C) \cap (B \times C),$$

natural in $A, B, C \in \text{Obj}(\mathsf{Sets})$.

9. Distributivity Over Differences. We have isomorphisman of sets

$$A \times (B \setminus C) = (A \times B) \setminus (A \times C),$$

$$(A \setminus B) \times C = (A \times C) \setminus (B \times C),$$

natural in $A, B, C \in \text{Obj}(\mathsf{Sets})$.

10. Distributivity Over Symmetric Differences. We have isomorphisms sets

$$A \times (B \triangle C) = (A \times B) \triangle (A \times C),$$

$$(A \triangle B) \times C = (A \times C) \triangle (B \times C),$$

natural in $A, B, C \in \text{Obj}(\mathsf{Sets})$.

11. Symmetric Monoidality. The triple (Sets, ×, and wis a symmetric monoidal category.

1.3 Pullbacks 5

12. Symmetric Bimonoidality. The quintuple (Set $\mathfrak{S} \not = \mathfrak{p} \not= \mathfrak{p} \not$

Proof. ??, Functoriality: Omitted.

- ??, Adjointness: Omitted.
- ??, Associativity: Clear.
- ??, Unitality: Clear.
- ??, Commutativity: Clear.
- ??, Annihilation With the Empty Set: Clear.
- ??, Distributivity Over Unions: Omitted.
- ??, Distributivity Over Intersections: Omitted.
- ??, Distributivity Over Differences: Omitted.
- ??, Distributivity Over Symmetric Differences: Omitted.
- ??, Symmetric Monoidality: Omitted.
- ??, Symmetric Bimonoidality: Omitted.

1.3 Pullbacks 000Y

Let A, B, and C be sets and let $f: A \to C$ and $g: B \to C$ be functions.

Definition 1.3.1.1. The pullback of A0**2007**d B over C along f and g³ is the set $A \times_C B$ defined by

$$A \times_C B \stackrel{\text{def}}{=} \{(a, b) \in A \times B \mid f(a) = g(b)\}.$$

Example 1.3.1.2. Here are some example of pullbacks of sets.

1. Unions via Intersections. Let $A, B \subset X$. We leaded a bijection of sets

$$A \cap B \cong A \times_{A \sqcup B} B$$
.

Proposition 1.3.1.3. Let A, B, C, and X_0

1. Associativity. We have an isomorphism of sets

$$(A \times_X B) \times_X C \cong A \times_X (B \times_X C),$$

natural in $A, B, C, X \in \text{Obj}(\mathsf{Sets})$.

 $^{^3}$ Further Terminology: Also called the **fibre product of** A **and** B **over** C **along** f **and** g.

2. Unitality. We have isomorphismed of sets

$$X \times_X A \cong A,$$

 $A \times_X X \cong A,$

natural in $A, X \in \text{Obj}(\mathsf{Sets})$.

3. Commutativity. We have an isomorphism of sets

$$A \times_X B \cong B \times_X A$$
,

natural in $A, B, X \in \text{Obj}(\mathsf{Sets})$.

4. Annihilation With the Empty Set. We have isomorphismas of sets

$$A\times_X\emptyset\cong\emptyset,$$

$$\emptyset \times_X A \cong \emptyset$$
,

natural in $A, X \in \text{Obj}(\mathsf{Sets})$.

5. Symmetric Monoidality. The triple (Sets, \times \cancel{N}) is a symmetric monoidal category.

Proof. ??, Associativity: Clear.

- ??, Unitality: Clear.
- ??, Commutativity: Clear.
- ??, Annihilation With the Empty Set: Clear.
- ??, Symmetric Monoidality: Omitted.

1.4 Equalisers 0018

Let A and B be sets and let $f, g: A \Rightarrow B$ be functions.

Definition 1.4.1.1. The equaliser of f0a12d g is the set Eq(f,g) defined by

$$\mathrm{Eq}(f,g) \stackrel{\mathrm{\scriptscriptstyle def}}{=} \{a \in A \mid f(a) = g(a)\}.$$

Proposition 1.4.1.2. Let A, B, and C be wells.

1. Associativity. We have an isomorphism of sets⁴

$$\underbrace{\mathrm{Eq}(f \circ \mathrm{eq}(g,h), g \circ \mathrm{eq}(g,h))}_{=\mathrm{Eq}(f \circ \mathrm{eq}(g,h), h \circ \mathrm{eq}(g,h))} \cong \underbrace{\mathrm{Eq}(f,g,h)}_{=\mathrm{Eq}(g \circ \mathrm{eq}(f,g), h \circ \mathrm{eq}(f,g))} \underbrace{\underbrace{\mathrm{Eq}(f \circ \mathrm{eq}(f,g), h \circ \mathrm{eq}(f,g))}_{=\mathrm{Eq}(g \circ \mathrm{eq}(f,g), h \circ \mathrm{eq}(f,g))}}_{=\mathrm{Eq}(g \circ \mathrm{eq}(f,g), h \circ \mathrm{eq}(f,g))}$$

where Eq(f, g, h) is the limit of the diagram

$$A \xrightarrow{f \atop g \xrightarrow{b}} B$$

in Sets.

⁴That is: the following constructions give the same result:

1. Take the equaliser of (f, g, h), i.e. the limit of the diagram

$$A \xrightarrow{f \atop -g \xrightarrow{b}} B$$

in Sets.

2. First take the equaliser of f and g, forming a diagram

$$\operatorname{Eq}(f,g) \stackrel{\operatorname{eq}(f,g)}{\hookrightarrow} A \stackrel{f}{\underset{q}{\Longrightarrow}} B$$

and then take the equaliser of the composition

$$\operatorname{Eq}(f,g) \stackrel{\operatorname{eq}(f,g)}{\hookrightarrow} A \stackrel{f}{\stackrel{\Rightarrow}{\Longrightarrow}} B,$$

obtaining a subset

$$\mathrm{Eq}(f\circ\mathrm{eq}(f,g),h\circ\mathrm{eq}(f,g))=\mathrm{Eq}(g\circ\mathrm{eq}(f,g),h\circ\mathrm{eq}(f,g))$$
 of $\mathrm{Eq}(f,g).$

3. First take the equaliser of g and h, forming a diagram

$$\operatorname{Eq}(g,h) \stackrel{\operatorname{eq}(g,h)}{\hookrightarrow} A \stackrel{g}{\underset{h}{\Longrightarrow}} B$$

and then take the equaliser of the composition

$$\operatorname{Eq}(g,h) \stackrel{\operatorname{eq}(g,h)}{\hookrightarrow} A \stackrel{f}{\underset{g}{\Longrightarrow}} B,$$

obtaining a subset

$$\mathrm{Eq}(f\circ\mathrm{eq}(g,h),g\circ\mathrm{eq}(g,h))=\mathrm{Eq}(f\circ\mathrm{eq}(g,h),h\circ\mathrm{eq}(g,h))$$
 of $\mathrm{Eq}(g,h).$

4. Unitality. We have an isomorphism of sets

$$\operatorname{Eq}(f, f) \cong A$$
.

5. Commutativity. We have an isomorphism of sets

$$\operatorname{Eq}(f,g) \cong \operatorname{Eq}(g,f).$$

6. Interaction With Composition. Let

001E

$$A \stackrel{f}{\underset{q}{\Longrightarrow}} B \stackrel{h}{\underset{k}{\Longrightarrow}} C$$

be functions. We have an inclusion of sets

$$\operatorname{Eq}(h \circ f \circ \operatorname{eq}(f, g), k \circ g \circ \operatorname{eq}(f, g)) \subset \operatorname{Eq}(h \circ f, k \circ g),$$

where Eq(h \circ f \circ eq(f, g), k \circ g \circ eq(f, g)) is the equaliser of the composition

$$\operatorname{Eq}(f,g) \overset{\operatorname{eq}(f,g)}{\hookrightarrow} A \overset{f}{\underset{g}{\Longrightarrow}} B \overset{h}{\underset{k}{\Longrightarrow}} C.$$

Proof. ??, Associativity: Clear.

- ??, Unitality: Clear.
- ??, Commutativity: Clear.
- ??, Interaction With Composition: Omitted.

2 Colimits of Sets

2.1 Coproducts of Families of Sets

Let $\{A_i\}_{i\in I}$ be a family of sets.

Definition 2.1.1.1. The **disjoint union** of the family $\{A_i\}_{i\in I}$ is the set $\coprod_{i\in I} A_i$ defined by

$$\coprod_{i \in I} A_i \stackrel{\text{def}}{=} \bigcup_{i \in I} \left\{ (x, i) \in \left(\bigcup_{i \in I} A_i \right) \times I \mid x \in A_i \right\}.$$

2.2 Binary Copanducts

Let A and B be sets.

Definition 2.2.1.1. The coproduct⁵ of **A1** and B is the set $A \coprod B$ defined by

$$A \coprod B \stackrel{\text{def}}{=} \coprod_{z \in \{A, B\}} z$$

$$\stackrel{\text{def}}{=} \{(a, 0) \mid a \in A\} \cup \{(b, 1) \mid b \in B\}.$$

Proposition 2.2.1.2. Let A, B, C, and X_0 elsets.

1. Functoriality. The assignment $A, Boo(A, B) \mapsto A \coprod B$ defines functors

$$A \coprod -_2 : \mathsf{Sets} \to \mathsf{Sets},$$

 $-_1 \coprod B : \mathsf{Sets} \to \mathsf{Sets},$
 $-_1 \coprod -_2 : \mathsf{Sets} \times \mathsf{Sets} \to \mathsf{Sets},$

where $-1 \coprod -2$ is the functor where

• Action on Objects. For each $(A, B) \in \text{Obj}(\mathsf{Sets} \times \mathsf{Sets})$, we have

$$[-1 \coprod -2](A,B) \stackrel{\text{def}}{=} A \coprod B;$$

• Action on Morphisms. For each $(A, B), (X, Y) \in \text{Obj}(\mathsf{Sets})$, the action on Hom-sets

$$\coprod_{(A,B),(X,Y)} \colon \mathsf{Sets}(A,X) \times \mathsf{Sets}(B,Y) \to \mathsf{Sets}(A \coprod B, X \coprod Y)$$

of \coprod at ((A,B),(X,Y)) is defined by sending (f,g) to the function

$$f \coprod g \colon A \coprod B \to X \coprod Y$$

defined by

$$[f \coprod g](x) \stackrel{\text{def}}{=} \begin{cases} f(x) & \text{if } x \in A, \\ g(x) & \text{if } x \in B \end{cases}$$

for each $x \in A \coprod B$;

⁵ Further Terminology: Also called the **disjoint union of** A **and** B, or the **binary disjoint union of** A **and** B, for emphasis.

2.3 Pushouts 10

and where $A \coprod -$ and $- \coprod B$ are the partial functors of $-_1 \coprod -_2$ at $A, B \in \text{Obj}(\mathsf{Sets})$.

2. Associativity. We have an isomorphism of sets

$$(A \coprod B) \coprod C \cong A \coprod (B \coprod C),$$

natural in $A, B, C \in \text{Obj}(\mathsf{Sets})$.

3. Unitality. We have isomorphismas Pof sets

$$A \coprod \emptyset \cong A,$$

$$\emptyset \coprod A \cong A,$$

natural in $A \in \text{Obj}(\mathsf{Sets})$.

4. Commutativity. We have an isomorphism of sets

$$A \coprod B \cong B \coprod A$$
,

natural in $A, B \in \text{Obj}(\mathsf{Sets})$.

5. Symmetric Monoidality. The triple (Sets, ∐∅∅) Ris a symmetric monoidal category.

Proof. ??, Functoriality: Omitted.

- ??, Associativity: Clear.
- ??, Unitality: Clear.
- ??, Commutativity: Clear.
- ??, Symmetric Monoidality: Omitted.

2.3 Pushouts 001S

Let A, B, and C be sets and let $f: C \to A$ and $g: C \to B$ be functions.

Definition 2.3.1.1. The pushout of A and B over C along f and B is the set $A \coprod_C B$ defined by

$$A \coprod_C B \stackrel{\text{\tiny def}}{=} A \coprod B/{\sim_C},$$

where \sim_C is the equivalence relation on $A \coprod B$ generated by $f(c) \sim_C g(c)$.

⁶Further Terminology: Also called the fibre coproduct of A and B over C along f and g.

2.3 Pushouts 11

Remark 2.3.1.2. In detail, the relation 0000 if one of the following conditions is satisfied:

- We have $a, b \in A$ and a = b;
- We have $a, b \in B$ and a = b;
- There exist $x_1, \ldots, x_n \in A \coprod B$ such that $a \sim' x_1 \sim' \cdots \sim' x_n \sim' b$, where we declare $x \sim' y$ if one of the following conditions is satisfied:
 - 1. There exists $c \in C$ such that x = f(c) and y = g(c).
 - 2. There exists $c \in C$ such that x = g(c) and y = f(c).

That is: we require the following condition to be satisfied:

- (*) There exist $x_1, \ldots, x_n \in A \coprod B$ satisfying the following conditions:
 - 1. There exists $c_0 \in C$ satisfying one of the following conditions:
 - (a) We have $a = f(c_0)$ and $x_1 = g(c_0)$.
 - (b) We have $a = g(c_0)$ and $x_1 = f(c_0)$.
 - 2. For each $1 \le i \le n-1$, there exists $c_i \in C$ satisfying one of the following conditions:
 - (a) We have $x_i = f(c_i)$ and $x_{i+1} = g(c_i)$.
 - (b) We have $x_i = g(c_i)$ and $x_{i+1} = f(c_i)$.
 - 3. There exists $c_n \in C$ satisfying one of the following conditions:
 - (a) We have $x_n = f(c_n)$ and $b = g(c_n)$.
 - (b) We have $x_n = g(c_n)$ and $b = f(c_n)$.

Example 2.3.1.3. Here are some examples of pushouts of sets.

- 1. Wedge Sums of Pointed Sets. The wedge sum of two wointed sets of ?? is an example of a pushout of sets.
- 2. Intersections via Unions. Let $A, B \subset X$. We lightly a bijection of sets

$$A \cup B \cong A \coprod_{A \cap B} B$$
.

Proposition 2.3.1.4. Let A, B, C, and $X \circ b \in Y$ sets.

1. Associativity. We have an isomorphism of sets

$$(A \coprod_X B) \coprod_X C \cong A \coprod_X (B \coprod_X C),$$

natural in $A, B, C, X \in \text{Obj}(\mathsf{Sets})$.

2. Unitality. We have isomorphismax of sets

$$\emptyset \coprod_X A \cong A,$$
$$A \coprod_X \emptyset \cong A,$$

natural in $A, X \in \text{Obj}(\mathsf{Sets})$.

3. Commutativity. We have an isomorphism of sets

$$A \coprod_X B \cong B \coprod_X A$$
,

natural in $A, B, X \in \text{Obj}(\mathsf{Sets})$.

4. Annihilation With the Empty Set. We have isomorphisma of sets

$$A \coprod_X \emptyset \cong \emptyset,$$

$$\emptyset \coprod_X A \cong \emptyset,$$

natural in $A, X \in \text{Obj}(\mathsf{Sets})$.

5. Symmetric Monoidality. The triple (Sets, ∐♠♠♠♠) is a symmetric monoidal category.

Proof. ??, Associativity: Clear.

- ??, Unitality: Clear.
- ??, Commutativity: Clear.
- ??, Annihilation With the Empty Set: Clear.
- ??, Symmetric Monoidality: Omitted.

2.4 Coequaliser 24

Let A and B be sets and let $f, g: A \Rightarrow B$ be functions.

Definition 2.4.1.1. The **coequaliser** of and g is the set CoEq(f,g) defined by

$$\mathrm{CoEq}(f,g) \stackrel{\mathrm{def}}{=} B/\!\!\sim\!,$$

where \sim is the equivalence relation on B generated by $f(a) \sim g(a)$.

Remark 2.4.1.2. In detail, the relation 2026 of ?? is given by declaring $a \sim b$ iff one of the following conditions is satisfied:

• We have a = b;

- There exist $x_1, \ldots, x_n \in B$ such that $a \sim' x_1 \sim' \cdots \sim' x_n \sim' b$, where we declare $x \sim' y$ if one of the following conditions is satisfied:
 - 1. There exists $z \in A$ such that x = f(z) and y = g(z).
 - 2. There exists $z \in A$ such that x = g(z) and y = f(z).

That is: we require the following condition to be satisfied:

- (\star) There exist $x_1, \ldots, x_n \in B$ satisfying the following conditions:
 - 1. There exists $z_0 \in A$ satisfying one of the following conditions:
 - (a) We have $a = f(z_0)$ and $x_1 = g(z_0)$.
 - (b) We have $a = g(z_0)$ and $x_1 = f(z_0)$.
 - 2. For each $1 \le i \le n-1$, there exists $z_i \in A$ satisfying one of the following conditions:
 - (a) We have $x_i = f(z_i)$ and $x_{i+1} = g(z_i)$.
 - (b) We have $x_i = g(z_i)$ and $x_{i+1} = f(z_i)$.
 - 3. There exists $z_n \in A$ satisfying one of the following conditions:
 - (a) We have $x_n = f(z_n)$ and $b = g(z_n)$.
 - (b) We have $x_n = g(z_n)$ and $b = f(z_n)$.

Example 2.4.1.3. Here are some examples of coequalisers of sets.

1. Quotients by Equivalence Relations. Let R be an equivalence relation on a set X. We have a bijection of sets

$$X/\sim_R \cong \operatorname{CoEq}\left(R \hookrightarrow X \times X \overset{\operatorname{pr}_1}{\underset{\operatorname{pr}_2}{\Longrightarrow}} X\right).$$

Proposition 2.4.1.4. Let A, B, and C because.

1. Associativity. We have an isomorphism of sets⁷

$$\underbrace{\mathrm{CoEq}(\mathrm{coeq}(f,g)\circ f,\mathrm{coeq}(f,g)\circ h)}_{=\mathrm{CoEq}(\mathrm{coeq}(f,g)\circ g,\mathrm{coeq}(f,g)\circ h)}\cong \underbrace{\mathrm{CoEq}(\mathrm{coeq}(g,h)\circ f,\mathrm{coeq}(g,h)\circ g)}_{=\mathrm{CoEq}(\mathrm{coeq}(g,h)\circ f,\mathrm{coeq}(g,h)\circ h)}$$

1. Take the coequaliser of (f, g, h), i.e. the colimit of the diagram

$$A \xrightarrow{f \atop g \atop b} B$$

in Sets.

⁷That is: the following constructions give the same result:

where CoEq(f, g, h) is the colimit of the diagram

$$A \xrightarrow{f \atop h} B$$

in Sets.

4. Unitality. We have an isomorphism of sets

$$CoEq(f, f) \cong B$$
.

5. Commutativity. We have an isomorphism of sets

$$CoEq(f, g) \cong CoEq(g, f)$$
.

6. Interaction With Composition. Let

002D

$$A \underset{g}{\overset{f}{\Longrightarrow}} B \underset{k}{\overset{h}{\Longrightarrow}} C$$

2. First take the coequaliser of f and g, forming a diagram

$$A \stackrel{f}{\underset{g}{\Longrightarrow}} B \stackrel{\operatorname{coeq}(f,g)}{\twoheadrightarrow} \operatorname{CoEq}(f,g)$$

and then take the coequaliser of the composition

$$A \stackrel{f}{\underset{h}{\Longrightarrow}} B \stackrel{\text{coeq}(f,g)}{\twoheadrightarrow} \text{CoEq}(f,g),$$

obtaining a quotient

$$\label{eq:coeq} \text{CoEq}(\text{coeq}(f,g)\circ f, \text{coeq}(f,g)\circ h) = \text{CoEq}(\text{coeq}(f,g)\circ g, \text{coeq}(f,g)\circ h)$$
 of $\text{CoEq}(f,g)$

3. First take the coequaliser of g and h, forming a diagram

$$A \stackrel{g}{\underset{h}{\Longrightarrow}} B \stackrel{\operatorname{coeq}(g,h)}{\twoheadrightarrow} \operatorname{CoEq}(g,h)$$

and then take the coequaliser of the composition

$$A \stackrel{f}{\underset{g}{\Longrightarrow}} B \stackrel{\text{coeq}(g,h)}{\twoheadrightarrow} \text{CoEq}(g,h),$$

obtaining a quotient

 $\label{eq:coeq} \begin{aligned} \text{CoEq}(\text{coeq}(g,h)\circ f, \text{coeq}(g,h)\circ g) &= \text{CoEq}(\text{coeq}(g,h)\circ f, \text{coeq}(g,h)\circ h) \\ \text{of } \text{CoEq}(g,h). \end{aligned}$

be functions. We have a surjection

$$CoEq(h \circ f, k \circ g) \rightarrow CoEq(coeq(h, k) \circ h \circ f, coeq(h, k) \circ k \circ g)$$

exhibiting $\operatorname{CoEq}(\operatorname{coeq}(h,k) \circ h \circ f, \operatorname{coeq}(h,k) \circ k \circ g)$ as a quotient of $\operatorname{CoEq}(h \circ f, k \circ g)$ by the relation generated by declaring $h(y) \sim k(y)$ for each $y \in B$.

Proof. ??, Associativity: Omitted.

- ??, Unitality: Clear.
- ??, Commutativity: Clear.
- ??, Interaction With Composition: Omitted.

3 Operations With Sets

3.1 The Empty Set

Definition 3.1.1.1. The **empty set** is the defined by

$$\emptyset \stackrel{\text{def}}{=} \{ x \in X \mid x \neq x \},\$$

where A is the set in the set existence axiom, ?? of ??.

3.2 Singleton SetsH

Let X be a set.

Definition 3.2.1.1. The singleton set $\{X\}$ defined by

$$\{X\} \stackrel{\mathrm{def}}{=} \{X, X\},$$

where $\{X, X\}$ is the pairing of X with itself (??).

3.3 Pairings of **Set**s

Let X and Y be sets.

Definition 3.3.1.1. The pairing of X and Y is the set $\{X,Y\}$ defined by

$$\{X,Y\} \stackrel{\text{def}}{=} \{x \in A \mid x = X \text{ or } x = Y\},\$$

where A is the set in the axiom of pairing, ?? of ??.

3.4 Unions of Recommilies

Let $\{A_i\}_{i\in I}$ be a family of sets.

Definition 3.4.1.1. The union of the **family** $\{A_i\}_{i\in I}$ is the set $\bigcup_{i\in I} A_i$ defined by

$$\bigcup_{i \in I} A_i \stackrel{\text{def}}{=} \{ x \in F \mid \text{there exists some } i \in I \text{ such that } x \in A_i \},$$

where F is the set in the axiom of union, ?? of ??.

3.5 Binary Unions

Let A and B be sets.

Definition 3.5.1.1. The union⁸ of A and B is the set $A \cup B$ defined by

$$A \cup B \stackrel{\text{def}}{=} \bigcup_{z \in \{A,B\}} z.$$

Proposition 3.5.1.2. Let X be a set. 002R

1. Functoriality. The assignments $U, \emptyset (V, V) \mapsto U \cup V$ define functors

$$U \cup -: (\mathcal{P}(X), \subset) \to (\mathcal{P}(X), \subset),$$

$$- \cup V : (\mathcal{P}(X), \subset) \to (\mathcal{P}(X), \subset),$$

$$-_1 \cup -_2 : (\mathcal{P}(X) \times \mathcal{P}(X), \subset \times \subset) \to (\mathcal{P}(X), \subset),$$

where $-1 \cup -2$ is the functor where

• Action on Objects. For each $(U, V) \in \mathcal{P}(X) \times \mathcal{P}(X)$, we have

$$[-_1 \cup -_2](U, V) \stackrel{\text{def}}{=} U \cup V;$$

• Action on Morphisms. For each pair of morphisms

$$\iota_U \colon U \hookrightarrow U',$$

 $\iota_V \colon V \hookrightarrow V'$

of $\mathcal{P}(X) \times \mathcal{P}(X)$, the image

$$\iota_U \cup \iota_V \colon U \cup V \hookrightarrow U' \cup V'$$

⁸ Further Terminology: Also called the **binary union of** A **and** B, for emphasis.

of (ι_U, ι_V) by \cup is the inclusion

$$U \cup V \subset U' \cup V'$$

i.e. where we have

(*) If
$$U \subset U'$$
 and $V \subset V'$, then $U \cup V \subset U' \cup V'$;

and where $U \cup -$ and $- \cup V$ are the partial functors of $-_1 \cup -_2$ at $U, V \in \mathcal{P}(X)$.

2. Via Intersections and Symmetric Differences. We have an equality of Sets

$$U \cup V = (U \triangle V) \triangle (U \cap V)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

3. Associativity. We have an equality of sets

$$(U \cup V) \cup W = U \cup (V \cup W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

4. Unitality. We have equalities of the same and the same and the same and the same are same as the same are same are same are same as the same are sa

$$U \cup \emptyset = U$$
.

$$\emptyset \cup U = U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

5. Commutativity. We have an equality of wets

$$U \cup V = V \cup U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

6. Idempotency. We have an equality of the sets

$$U \cup U = U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

7. Distributivity Over Intersections. We have equalities @ Sets

$$U \cup (V \cap W) = (U \cup V) \cap (U \cup W),$$

$$(U \cap V) \cup W = (U \cup W) \cap (V \cup W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

8. Interaction With Powersets and Semirings. The quintuple $(\mathcal{P}(X), \mathbb{Z})$ is an idempotent commutative semiring.

Proof. ??, Functoriality: Omitted.

- ??, Via Intersections and Symmetric Differences: Omitted.
- ??, Associativity: Clear.
- ??, Unitality: Clear.
- ??, Commutativity: Clear.
- ??, Idempotency: Clear.
- ??, Distributivity Over Intersections: Omitted.
- ??, Interaction With Powersets and Semirings: This follows from ???????? and ????????? of ??.

3.6 Intersection 30 Families

Let \mathcal{F} be a family of sets.

Definition 3.6.1.1. The intersection **603** family \mathcal{F} of sets is the set $\bigcap_{X \in \mathcal{F}} X$ defined by

$$\bigcap_{X \in \mathcal{F}} X \stackrel{\text{def}}{=} \bigg\{ z \in \bigcup_{X \in \mathcal{F}} X \ \bigg| \text{ for each } X \in \mathcal{F}, \text{ we have } z \in X \bigg\}.$$

3.7 Binary Interestions

Let X and Y be sets.

Definition 3.7.1.1. The intersection 9 **Off** ${}^{3}X$ and Y is the set $X \cap Y$ defined by

$$X \cap Y \stackrel{\text{def}}{=} \bigcap_{z \in \{X,Y\}} z.$$

Proposition 3.7.1.2. Let X be a set. 0034

1. Functoriality. The assignments $U, \emptyset (U, V) \mapsto U \cap V$ define functors

$$U \cap -: (\mathcal{P}(X), \subset) \to (\mathcal{P}(X), \subset),$$

$$- \cap V : (\mathcal{P}(X), \subset) \to (\mathcal{P}(X), \subset),$$

$$-_1 \cap -_2 : (\mathcal{P}(X) \times \mathcal{P}(X), \subset \times \subset) \to (\mathcal{P}(X), \subset),$$

where $-1 \cap -2$ is the functor where

 $^{^9}$ Further Terminology: Also called the **binary intersection of** X **and** Y, for emphasis.

• Action on Objects. For each $(U, V) \in \mathcal{P}(X) \times \mathcal{P}(X)$, we have

$$[-_1 \cap -_2](U, V) \stackrel{\text{def}}{=} U \cap V;$$

• Action on Morphisms. For each pair of morphisms

$$\iota_U \colon U \hookrightarrow U',$$

 $\iota_V \colon V \hookrightarrow V'$

of $\mathcal{P}(X) \times \mathcal{P}(X)$, the image

$$\iota_U \cap \iota_V \colon U \cap V \hookrightarrow U' \cap V'$$

of (ι_U, ι_V) by \cap is the inclusion

$$U \cap V \subset U' \cap V'$$

i.e. where we have

(*) If
$$U \subset U'$$
 and $V \subset V'$, then $U \cap V \subset U' \cap V'$;

and where $U \cap -$ and $- \cap V$ are the partial functors of $-_1 \cap -_2$ at $U, V \in \mathcal{P}(X)$.

2. Adjointness. We have adjunction@036

$$(U \cap - \dashv \mathbf{Hom}_{\mathcal{P}(X)}(U, -)) : \quad \mathcal{P}(X) \underbrace{\perp}_{\mathbf{Hom}_{\mathcal{P}(X)}(U, -)}^{U \cap -} \mathcal{P}(X),$$

$$(- \cap V \dashv \mathbf{Hom}_{\mathcal{P}(X)}(V, -)) : \quad \mathcal{P}(X) \underbrace{\perp}_{\mathbf{Lore}}^{- \cap V} \mathcal{P}(X),$$

where

$$\mathbf{Hom}_{\mathcal{P}(X)}(-_1,-_2) \colon \mathcal{P}(X)^{\mathsf{op}} \times \mathcal{P}(X) \to \mathcal{P}(X)$$

is the bifunctor defined by¹⁰

$$\mathbf{Hom}_{\mathcal{P}(X)}(U,V) \stackrel{\text{def}}{=} (X \setminus U) \cup V$$

¹⁰ Intuition: Since intersections are the products in $\mathcal{P}(X)$, the left adjoint $\mathbf{Hom}_{\mathcal{P}(X)}(U,V)$ works as a function type $U \to V$.

witnessed by bijections

$$\operatorname{Hom}_{\mathcal{P}(X)}(U \cap V, W) \cong \operatorname{Hom}_{\mathcal{P}(X)}(U, \operatorname{\mathbf{Hom}}_{\mathcal{P}(X)}(V, W)),$$

 $\operatorname{Hom}_{\mathcal{P}(X)}(U \cap V, W) \cong \operatorname{Hom}_{\mathcal{P}(X)}(V, \operatorname{\mathbf{Hom}}_{\mathcal{P}(X)}(U, W)),$

natural in $U, V, W \in \mathcal{P}(X)$, i.e. where:

- (a) The following conditions are equivalent:
 - i. We have $U \cap V \subset W$.
 - ii. We have $U \subset \mathbf{Hom}_{\mathcal{P}(X)}(V, W)$.
 - iii. We have $U \subset (X \setminus V) \cup W$.
- (b) The following conditions are equivalent:
 - i. We have $V \cap U \subset W$.
 - ii. We have $V \subset \mathbf{Hom}_{\mathcal{P}(X)}(U, W)$.
 - iii. We have $V \subset (X \setminus U) \cup W$.
- 3. Associativity. We have an equality of zets

$$(U \cap V) \cap W = U \cap (V \cap W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

4. Unitality. Let X be a set and $\mathbf{deg} \mathcal{U} \in \mathcal{P}(X)$. We have equalities of sets

$$X \cap U = U$$
,

$$U \cap X = U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

5. Commutativity. We have an equality of sets

$$U \cap V = V \cap U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

6. Idempotency. We have an equality of sets

$$U\cap U=U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

3.8 Differences 21

7. Distributivity Over Unions. We have equalities @ Sets

$$U \cap (V \cup W) = (U \cap V) \cup (U \cap W),$$

$$(U \cup V) \cap W = (U \cap W) \cup (V \cap W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

8. Annihilation With the Empty Set. We have an equality of Gets

$$\emptyset \cap X = \emptyset,$$
$$X \cap \emptyset = \emptyset$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

- 9. Interaction With Powersets and Monoids With Zero. The quadruple $((\mathcal{P}(X), \emptyset), \cap, X)$ is a commutative monoid with zero.
- 10. Interaction With Powersets and Semirings. The quintuple $(\mathcal{P}(X) \otimes \mathcal{P}(X))$ is an idempotent commutative semiring.

Proof. ??, Functoriality: Omitted.

- ??, Adjointness: See [MSE267469].
- ??, Associativity: Clear.
- ??, Unitality: Clear.
- ??, Commutativity: Clear.
- ??, Idempotency: Clear.
- ??, Distributivity Over Unions: Omitted.
- ??, Annihilation With the Empty Set: Clear.
- ??, Interaction With Powersets and Monoids With Zero: This follows from ????????.
- ???, Interaction With Powersets and Semirings: This follows from ???????? and ????????? of ??. \Box

3.8 Differences 003F

Let X and Y be sets.

Definition 3.8.1.1. The **difference of 2034nd** Y is the set $X \setminus Y$ defined by

$$X \setminus Y \stackrel{\text{\tiny def}}{=} \{ a \in X \mid a \not \in Y \}.$$

Now, under the Curry–Howard correspondence, the function type $U \to V$ corresponds

3.8 Differences 22

Proposition 3.8.1.2. Let X be a set. 003H

1. Functoriality. The assignments $U, \emptyset (3U, V) \mapsto U \cap V$ define functors

$$U \setminus -: (\mathcal{P}(X), \supset) \to (\mathcal{P}(X), \subset),$$
$$- \setminus V : (\mathcal{P}(X), \subset) \to (\mathcal{P}(X), \subset),$$
$$-_1 \setminus -_2 : (\mathcal{P}(X) \times \mathcal{P}(X), \subset \times \supset) \to (\mathcal{P}(X), \subset),$$

where $-1 \setminus -2$ is the functor where

• Action on Objects. For each $(U, V) \in \mathcal{P}(X) \times \mathcal{P}(X)$, we have

$$[-_1 \setminus -_2](U,V) \stackrel{\text{def}}{=} U \setminus V;$$

• Action on Morphisms. For each pair of morphisms

$$\iota_A \colon A \hookrightarrow B,$$

 $\iota_U \colon U \hookrightarrow V$

of $\mathcal{P}(X) \times \mathcal{P}(X)$, the image

$$\iota_U \setminus \iota_V \colon A \setminus V \hookrightarrow B \setminus U$$

of (ι_U, ι_V) by \ is the inclusion

$$A \setminus V \subset B \setminus U$$

i.e. where we have

$$(\star)$$
 If $A \subset B$ and $U \subset V$, then $A \setminus V \subset B \setminus U$;

and where $U \setminus -$ and $- \setminus V$ are the partial functors of $-_1 \setminus -_2$ at $U, V \in \mathcal{P}(X)$.

2. De Morgan's Laws. We have equalities of the second seco

$$X \setminus (U \cup V) = (X \setminus U) \cap (X \setminus V),$$

$$X \setminus (U \cap V) = (X \setminus U) \cup (X \setminus V)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

to implication $U \Longrightarrow V$, which is logically equivalent to the statement $\neg U \lor V$, which in turn corresponds to the set $U^c \lor V \stackrel{\text{def}}{=} (X \setminus U) \cup V$.

3.8 Differences 23

3. Interaction With Unions I. We have equalities of Sets

$$(U \setminus V) \cup W = (U \cup W) \setminus (V \setminus W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

4. Interaction With Unions II. We have equalities @ sets

$$(U \cup V) \setminus W = (U \setminus W) \cup (V \setminus W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

5. Interaction With Intersections. We have equalities @ sets

$$(U \setminus V) \cap W = (U \cap W) \setminus V$$
$$= U \cap (W \setminus V)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

6. Triple Differences. We have 003P

$$U \setminus (V \setminus W) = (U \cap W) \cup (U \setminus V)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

7. Left Annihilation. We have 003Q

$$\emptyset \setminus U = \emptyset$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

8. Right Unitality. We have 003R

$$U \setminus \emptyset = U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

9. Invertibility. We have

$$U \setminus U = \emptyset$$

003S

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

10. Interaction With Containment. The following conditions are equivalent:

- (a) We have $V \setminus U \subset W$.
- (b) We have $V \setminus W \subset U$.

Proof. ??, Functoriality: Omitted.

- ??, De Morgan's Laws: Omitted.
- ??, Interaction With Unions I: Omitted.
- ??, Interaction With Unions II: Omitted.
- ??, Interaction With Intersections: Omitted.
- ??, Triple Differences: Omitted.
- ??, Left Annihilation: Clear.
- ??, Right Unitality: Clear.
- ??, Invertibility: Clear.
- ??, Interaction With Containment: Omitted.

3.9 Complements U

Let X be a set and let $U \in \mathcal{P}(X)$.

Definition 3.9.1.1. The **complement of** \mathcal{Y} is the set U^{c} defined by

$$U^{\mathsf{c}} \stackrel{\text{def}}{=} X \setminus U$$

$$\stackrel{\text{def}}{=} \{ a \in X \mid a \notin U \}.$$

Proposition 3.9.1.2. Let X be a set. 003W

1. Functoriality. The assignment $U \mapsto 0$ defines a functor

$$(-)^{\mathsf{c}} \colon \mathcal{P}(X)^{\mathsf{op}} \to \mathcal{P}(X),$$

where

• Action on Objects. For each $U \in \mathcal{P}(X)$, we have

$$[(-)^{\mathsf{c}}](U) \stackrel{\mathrm{def}}{=} U^{\mathsf{c}};$$

• Action on Morphisms. For each morphism $\iota_U : U \hookrightarrow V$ of $\mathcal{P}(X)$, the image

$$\iota_U^{\mathsf{c}} \colon V^{\mathsf{c}} \hookrightarrow U^{\mathsf{c}}$$

of ι_U by $(-)^{\mathsf{c}}$ is the inclusion

$$V^{\mathsf{c}} \subset U^{\mathsf{c}}$$

i.e. where we have

(*) If
$$U \subset V$$
, then $V^{\mathsf{c}} \subset U^{\mathsf{c}}$.

2. De Morgan's Laws. We have equalities of the second seco

$$(U \cup V)^{c} = U^{c} \cap V^{c},$$

$$(U \cap V)^{c} = U^{c} \cup V^{c}$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

3. Involutority. We have

$$(U^{\mathsf{c}})^{\mathsf{c}} = U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

Proof. ??, Functoriality: Clear.

??, De Morgan's Laws: Omitted.

??, Involutority: Clear.

3.10 Symmetri@@Differences

Let A and B be sets.

Definition 3.10.1.1. The **symmetric difference of** A **and** B is the set $A \triangle B$ defined by

$$A \triangle B \stackrel{\text{def}}{=} (A \setminus B) \cup (B \setminus A).$$

Proposition 3.10.1.2. Let X be a set. 0042

1. Lack of Functoriality. The assignment $(U,\emptyset V) \to U \triangle V$ does not define a functor

$$-_1 \triangle -_2 \colon (\mathcal{P}(X) \times \mathcal{P}(X), \subset \times \subset) \to (\mathcal{P}(X), \subset).$$

2. Via Unions and Intersections. We have 11 0044

$$U \triangle V = (U \cup V) \setminus (U \cap V)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

 $[\]overline{\ }^{11}Illustration:$

3. Associativity. We have 12

$$(U \triangle V) \triangle W = U \triangle (V \triangle W)$$

0045

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

4. Unitality. We have

$$U \triangle \emptyset = U$$
,

$$\emptyset \bigtriangleup U = U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

5. Invertibility. We have

0047

$$U \triangle U = \emptyset$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

6. Commutativity. We have

0048

$$U \triangle V = V \triangle U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

7. "Transitivity". We have

0049

$$(U \triangle V) \triangle (V \triangle W) = U \triangle W$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

8. The Triangle Inequality for Symmetric Differences. We have

004A

$$U \bigtriangleup W \subset U \bigtriangleup V \cup V \bigtriangleup W$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

 $^{^{12}}Illustration:$

9. Distributivity Over Intersections. We have 004B

$$U \cap (V \triangle W) = (U \cap V) \triangle (U \cap W),$$

$$(U \triangle V) \cap W = (U \cap W) \triangle (V \cap W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

10. Interaction With Indicator Functions. We have

$$\chi_{U \triangle V} \equiv \chi_U + \chi_V \mod 2$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

11. Bijectivity. Given $A, B \subset \mathcal{P}(X)$ maps

$$A \triangle -: \mathcal{P}(X) \to \mathcal{P}(X),$$

 $- \triangle B: \mathcal{P}(X) \to \mathcal{P}(X)$

are bijections with inverses given by

$$(A \triangle -)^{-1} = - \cup (A \cap -),$$

$$(- \triangle B)^{-1} = - \cup (B \cap -).$$

Moreover, the map

$$C \mapsto C \triangle (A \triangle B)$$

is a bijection of $\mathcal{P}(X)$ onto itself sending A to B and B to A.

12. Interaction With Powersets and Groups I. The quadruple $(\mathcal{P}(X), \emptyset, \mathrm{id}_{\mathcal{P}(X)})$ is an abelian group. 13,14,15

$$\big(\mathcal{P}(\emptyset), \triangle, \emptyset, \mathrm{id}_{\mathcal{P}(\emptyset)}\big) \cong \mathrm{pt}.$$

¹⁴ Example: When X = pt, we have an isomorphism of groups between $\mathcal{P}(pt)$ and $\mathbb{Z}_{/2}$:

$$(\mathcal{P}(\mathrm{pt}), \triangle, \emptyset, \mathrm{id}_{\mathcal{P}(\mathrm{pt})}) \cong \mathbb{Z}_{/2}.$$

¹⁵ Example: When $X = \{0, 1\}$, we have an isomorphism of groups between $\mathcal{P}(\{0, 1\})$ and $\mathbb{Z}_{/2} \times \mathbb{Z}_{/2}$:

$$(\mathcal{P}(\{0,1\}), \triangle, \emptyset, \mathrm{id}_{\mathcal{P}(\{0,1\})}) \cong \mathbb{Z}_{/2} \times \mathbb{Z}_{/2}.$$

 $^{^{13}}Example:$ When $X=\emptyset,$ we have an isomorphism of groups between $\mathcal{P}(\emptyset)$ and the trivial group:

- 13. Interaction With Powersets and Groups II. Every element of $\mathcal{P}(X)$ has order 2 with respect to \triangle , and thus $\mathcal{P}(X)$ is a Boolean group (i.e. an abelian 2-group).
- 14. Interaction With Powersets and Vector Spaces I. The pair $(\mathcal{P}(X), \alpha_{\mathcal{P}}(X))$ consisting of
 - The group $\mathcal{P}(X)$ of ??;
 - The map $\alpha_{\mathcal{P}(X)} \colon \mathbb{F}_2 \times \mathcal{P}(X) \to \mathcal{P}(X)$ defined by

$$0 \cdot U \stackrel{\text{def}}{=} \emptyset,$$
$$1 \cdot U \stackrel{\text{def}}{=} U;$$

is an \mathbb{F}_2 -vector space.

- 15. Interaction With Powersets and Vector Spaces II. If X is finite, then: 004H
 - (a) The set of singletons sets on the elements of X forms a basis for the \mathbb{F}_2 -vector space $(\mathcal{P}(X), \alpha_{\mathcal{P}(X)})$ of ??.
 - (b) We have

$$\dim(\mathcal{P}(X)) = \#\mathcal{P}(X).$$

16. Interaction With Powersets and Rings. The quintuple $(\mathcal{P}(X), A, \cap, \emptyset, X)$ is a commutative ring. 16

Proof. ??, Lack of Functoriality: Omitted.

- ??, Via Unions and Intersections: Omitted.
- ??, Associativity: Omitted.
- ??, Unitality: Clear.
- ??, Invertibility: Clear.
- ??, Commutativity: Clear.
- ??, "Transitivity": We have

$$(U \triangle V) \triangle (V \triangle W) = U \triangle (V \triangle (V \triangle W))$$
 (by ??)

$$= U \triangle ((V \triangle V) \triangle W)$$
 (by ??)

$$= U \triangle (\emptyset \triangle W)$$
 (by ??)

$$= U \triangle W \tag{by ??}$$

¹⁶ Warning: The analogous statement replacing intersections by unions

??, The Triangle Inequality for Symmetric Differences: This follows from ????.

- ??, Distributivity Over Intersections: Omitted.
- ??, Interaction With Indicator Functions: Clear.
- ??, Bijectivity: Clear.
- ??, Interaction With Powersets and Groups I: This follows from ????????.
- ??, Interaction With Powersets and Groups II: This follows from ??.
- ??, Interaction With Powersets and Vector Spaces I: Clear.
- ??, Interaction With Powersets and Vector Spaces II: Omitted.
- ???, Interaction With Powersets and Rings: This follows from ???? and ???? of ??.¹⁷

3.11 Ordered Parians

Let A and B be sets.

Definition 3.11.1.1. The **ordered pair (A, B)** defined by

$$(A,B) \stackrel{\text{def}}{=} \{ \{A\}, \{A,B\} \}.$$

Proposition 3.11.1.2. Let A and B be set @04M

1. Uniqueness. Let A, B, C, and **Doubles** The following conditions are equivalent:

- (a) We have (A, B) = (C, D).
- (b) We have A = C and B = D.

Proof. ??, Uniqueness: See [ciesielski1997set].

4 Powersets 004P

4.1 CharacteristicQFunctions

Let X be a set.

Definition 4.1.1.1. Let $U \subset X$ and let $\mathfrak{OCAR}X$.

(i.e. that the quintuple $(\mathcal{P}(X), \triangle, \cup, \emptyset, X)$ is a ring) is false, however. See [**proof-wiki:symmetric-difference-with-union-does-not-form-ring**] for a proof.

¹⁷Reference: [proof-wiki:symmetric-difference-with-intersection-forms-ring].

1. The characteristic function of U^{-18} is the function 19 004S

$$\chi_U \colon X \to \{\mathsf{t},\mathsf{f}\}$$

defined by

$$\chi_U(x) \stackrel{\text{def}}{=} \begin{cases} \mathsf{true} & \text{if } x \in U, \\ \mathsf{false} & \text{if } x \notin U \end{cases}$$

for each $x \in X$.

2. The characteristic function of x is the function $\frac{20}{x}$

004T

$$\chi_x \colon X \to \{\mathsf{t},\mathsf{f}\}$$

defined by

$$\chi_x \stackrel{\mathrm{def}}{=} \chi_{\{x\}},$$

i.e. by

$$\chi_x(y) \stackrel{\text{def}}{=} \begin{cases} \text{true} & \text{if } x = y, \\ \text{false} & \text{if } x \neq y \end{cases}$$

for each $y \in X$.

3. The characteristic relation on X^{21} is the relation 22 004U

$$\chi_X(-1,-2) \colon X \times X \to \{\mathsf{t},\mathsf{f}\}$$

on X defined by 23

$$\chi_X(x,y) \stackrel{\text{def}}{=} \begin{cases} \text{true} & \text{if } x = y, \\ \text{false} & \text{if } x \neq y \end{cases}$$

for each $x, y \in X$.

4. The characteristic embedding ²⁴ of X into $\mathcal{P}(X)$ deathe function

$$\chi_{(-)} \colon X \hookrightarrow \mathcal{P}(X)$$

¹⁸ Further Terminology: Also called the **indicator function of** U.

¹⁹ Further Notation: Also written $\chi_X(U,-)$ or $\chi_X(-,U)$.

²⁰ Further Notation: Also written χ_x , $\chi_X(x, -)$, or $\chi_X(-, x)$.

 $^{^{21}}$ Further Terminology: Also called the **identity relation on** X.

²² Further Notation: Also written χ_{-2}^{-1} , or $\sim_{\rm id}$ in the context of relations.

²³As a subset of $X \times X$, the relation χ_X corresponds to the diagonal $\Delta_X \subset X \times X$ of X.

²⁴The name "characteristic *embedding*" comes from the fact that there is an analogue of

defined by

$$\chi_{(-)}(x) \stackrel{\text{def}}{=} \chi_x$$

for each $x \in X$.

Remark 4.1.1.2. The definitions in ??@dewdecategorifications of co/presheaves, representable co/presheaves, Hom profunctors, and the Yoneda embedding:²⁵

1. A function

$$f: X \to \{\mathsf{t},\mathsf{f}\}$$

is a decategorification of a presheaf

$$\mathcal{F} \colon \mathcal{C}^{\mathsf{op}} \to \mathsf{Sets}$$

with the characteristic functions χ_U of the subsets of X being the primordial examples (and, in fact, all examples) of these.

fully faithfulness for $\chi_{(-)}$: given a set X, we have

$$\operatorname{Hom}_{\mathcal{P}(X)}(\chi_x, \chi_y) = \chi_X(x, y),$$

for each $x, y \in X$.

²⁵These statements can be made precise by using the embeddings

$$\begin{aligned} &(-)_{\mathsf{disc}} \colon \mathsf{Sets} \hookrightarrow \mathsf{Cats}, \\ &(-)_{\mathsf{disc}} \colon \{\mathsf{t},\mathsf{f}\}_{\mathsf{disc}} \hookrightarrow \mathsf{Sets} \end{aligned}$$

of sets into categories and of classical truth values into sets. For instance, in this approach the characteristic function

$$\chi_x \colon X \to \{\mathsf{t},\mathsf{f}\}$$

of an element x of X, defined by

$$\chi_x(y) \stackrel{\text{def}}{=} \begin{cases} \text{true} & \text{if } x = y, \\ \text{false} & \text{if } x \neq y \end{cases}$$

for each $y \in X$, is recovered as the representable presheaf

$$\operatorname{Hom}_{X_{\operatorname{disc}}}(-,x)\colon X_{\operatorname{disc}}\to\operatorname{\mathsf{Sets}}$$

of the corresponding object x of $X_{\sf disc}$, defined on objects by

$$\operatorname{Hom}_{X_{\operatorname{disc}}}(y,x) \stackrel{\text{def}}{=} \begin{cases} \operatorname{pt} & \text{if } x = y, \\ \emptyset & \text{if } x \neq y \end{cases}$$

for each $y \in \text{Obj}(X_{\mathsf{disc}})$.

2. The characteristic function

$$\chi_x \colon X \to \{\mathsf{t},\mathsf{f}\}$$

of an element x of X is a decategorification of the representable presheaf

$$h_X : C^{\mathsf{op}} \to \mathsf{Sets}$$

of an *object* x of a category C.

3. The characteristic relation

$$\chi_X(-1,-2)\colon X\times X\to \{\mathsf{t},\mathsf{f}\}$$

of X is a decategorification of the Hom profunctor

$$\operatorname{Hom}_{\mathcal{C}}(-_1, -_2) \colon \mathcal{C}^{\mathsf{op}} \times \mathcal{C} \to \mathsf{Sets}$$

of a category C.

4. The characteristic embedding

$$\chi_{(-)} \colon X \hookrightarrow \mathcal{P}(X)$$

of X into $\mathcal{P}(X)$ is a decategorification of the Yoneda embedding

of a category C into PSh(C).

- 5. There is also a direct parallel between unions and colimits:
 - An element of $\mathcal{P}(X)$ is a union of elements of X, viewed as one-point subsets $\{x\} \in \mathcal{P}(A)$;
 - An object of $\mathsf{PSh}(C)$ is a colimit of objects of C, viewed as representable presheaves $h_X \in \mathsf{Obj}(\mathsf{PSh}(C))$.

Proposition 4.1.1.3. Let $f: A \to B$ be a **COAX**tion. We have an inclusion

$$A\times A\xrightarrow{\chi_A(-1,-2)} \{\mathsf{true},\mathsf{false}\}$$

$$\chi_B\circ (f\times f)\subset \chi_A, \quad f\times f \qquad \qquad \bigcup_{\mathrm{id}_{\{\mathsf{true},\mathsf{false}\}}} \{\mathsf{true},\mathsf{false}\}.$$

$$B\times B\xrightarrow{\chi_B(-1,-2)} \{\mathsf{true},\mathsf{false}\}.$$

Proof. The inclusion $\chi_B(f(a), f(b)) \subset \chi_A(a, b)$ is equivalent to the statement "if a = b, then f(a) = f(b)", which is true.

Proposition 4.1.1.4. Let X be a set and $\mathbb{R} AV \subset X$ be a subset of X. We have

$$\operatorname{Hom}_{\mathcal{P}(X)}(\chi_x, \chi_U) = \chi_U(x)$$

for each $x \in X$, giving an equality of functions

$$\operatorname{Hom}_{\mathcal{P}(X)}(\chi_{(-)}, \chi_U) = \chi_U.$$

Proof. Clear. \Box

Corollary 4.1.1.5. The characteristic endezedding is fully faithful, i.e., we have

$$\operatorname{Hom}_{\mathcal{P}(X)}(\chi_x, \chi_y) = \chi_X(x, y)$$

for each $x, y \in X$.

Proof. This follows from ??.

4.2 Powersets 0050

Let X be a set.

Definition 4.2.1.1. The powerset of 2005 the set $\mathcal{P}(X)$ defined by

$$\mathcal{P}(X) \stackrel{\text{def}}{=} \{ U \in P \mid U \subset X \},\$$

where P is the set in the axiom of powerset, ?? of ??.

Remark 4.2.1.2. The powerset of a set decategorification of the category of presheaves of a category: while 26

• A category is enriched over the category

$$\mathsf{Sets} \stackrel{\mathrm{def}}{=} \mathsf{Cats}_0$$

of sets (i.e. "0-categories"), with presheaves taking values on it;

• A set is enriched over the set

$$\{t,f\}\stackrel{\mathrm{def}}{=}\mathsf{Cats}_{-1}$$

of classical truth values (i.e. "(-1)-categories"), with characteristic functions taking values on it.

²⁶This parallel is based on the following comparison:

• The powerset of a set X is equivalently (?? of ??) the set

$$Sets(X, \{t, f\})$$

of functions from X to the set $\{t, f\}$ of classical truth values;

• The category of presheaves on a category C is the category

$$\operatorname{\mathsf{Fun}}(C^{\operatorname{\mathsf{op}}},\operatorname{\mathsf{Sets}})$$

of functors from C^{op} to the category Sets of sets.

Proposition 4.2.1.3. Let X be a set. 0053

1. Functoriality. The assignment $X \mapsto \mathbb{P}(X)$ defines functors

$$\mathcal{P}_* \colon \mathsf{Sets} o \mathsf{Sets}, \ \mathcal{P}^{-1} \colon \mathsf{Sets}^\mathsf{op} o \mathsf{Sets}, \ \mathcal{P}_1 \colon \mathsf{Sets} o \mathsf{Sets}$$

where

• Action on Objects. For each $A \in \text{Obj}(\mathsf{Sets})$, we have

$$\mathcal{P}_*(A) \stackrel{\text{def}}{=} \mathcal{P}(A),$$

 $\mathcal{P}^{-1}(A) \stackrel{\text{def}}{=} \mathcal{P}(A),$
 $\mathcal{P}_!(A) \stackrel{\text{def}}{=} \mathcal{P}(A);$

• Action on Morphisms. For each morphism $f:A\to B$ of Sets, the images

$$\mathcal{P}_*(f) \colon \mathcal{P}(A) \to \mathcal{P}(B),$$

 $\mathcal{P}^{-1}(f) \colon \mathcal{P}(B) \to \mathcal{P}(A),$
 $\mathcal{P}_!(f) \colon \mathcal{P}(A) \to \mathcal{P}(B)$

of f by \mathcal{P}_* , \mathcal{P}^{-1} , and $\mathcal{P}_!$ are defined by

$$\mathcal{P}_*(f) \stackrel{\text{def}}{=} f_*,$$
 $\mathcal{P}^{-1}(f) \stackrel{\text{def}}{=} f^{-1},$
 $\mathcal{P}_!(f) \stackrel{\text{def}}{=} f_!,$

as in ??????.

2. Adjointness I. We have an adjunct 20055

$$(\mathcal{P}^{-1}\dashv\mathcal{P}^{-1,\mathsf{op}})$$
: Sets $\overset{\mathcal{P}^{-1}}{\underset{\mathcal{P}^{-1,\mathsf{op}}}{\smile}}\mathsf{Sets},$

witnessed by a bijection

$$\underbrace{\mathsf{Sets}^{\mathsf{op}}(\mathcal{P}(X),Y)}_{\overset{\mathrm{def}}{=}\mathsf{Sets}(Y,\mathcal{P}(X))} \cong \mathsf{Sets}(X,\mathcal{P}(Y)),$$

natural in $X \in \text{Obj}(\mathsf{Sets})$ and $Y \in \text{Obj}(\mathsf{Sets}^{\mathsf{op}})$.

3. Adjointness II. We have an adjunct 0056

$$(\operatorname{Gr} \dashv \mathcal{P}_*)$$
: Sets $\underbrace{\perp}_{\mathcal{P}_*}$ Rel,

witnessed by a bijection of sets

$$Rel(Gr(A), B) \cong Sets(A, \mathcal{P}(B))$$

natural in $A \in \text{Obj}(\mathsf{Sets})$ and $B \in \text{Obj}(\mathsf{Rel})$, where Gr is the graph functor of Relations, Item 1 of Proposition 3.1.1.2.

4. Symmetric Strong Monoidality With Respect to Coproducts. The powerset functor \mathcal{P}_* of ?? has a symmetric strong monoidal structure

$$\left(\mathcal{P}_*,\mathcal{P}_*^{\coprod},\mathcal{P}_{*\mid \mathbb{I}^c}^{\coprod}\right)\colon (\mathsf{Sets}, \coprod, \emptyset) \to (\mathsf{Sets}, \times, \mathrm{pt})$$

being equipped with isomorphisms

$$\mathcal{P}^{\coprod}_{*|X,Y} \colon \mathcal{P}(X) \times \mathcal{P}(Y) \xrightarrow{\cong} \mathcal{P}(X \coprod Y),$$

$$\mathcal{P}^{\coprod}_{*|\mathbb{F}} \colon \operatorname{pt} \xrightarrow{=} \mathcal{P}(\emptyset),$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$.

5. Symmetric Lax Monoidality With Respect to Products. The powerset functor \mathcal{P}_* of ?? has a symmetric lax monoidal structure

$$\left(\mathcal{P}_*,\mathcal{P}_*^\otimes,\mathcal{P}_{*\mid \mathbb{H}}^\otimes\right)\colon (\mathsf{Sets},\times,\mathrm{pt})\to (\mathsf{Sets},\times,\mathrm{pt})$$

0057

being equipped with isomorphisms

$$\begin{split} \mathcal{P}_{*|X,Y}^{\otimes} \colon \mathcal{P}(X) \times \mathcal{P}(Y) &\to \mathcal{P}(X \times Y), \\ \mathcal{P}_{*|\mathbb{H}^{c}}^{\otimes} \colon \operatorname{pt} &\stackrel{=}{\to} \mathcal{P}(\emptyset), \end{split}$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$, where $\mathcal{P}^{\otimes}_{*|X,Y}$ is given by

$$\mathcal{P}_{*|X,Y}^{\otimes}(U,V) \stackrel{\text{\tiny def}}{=} U \times V$$

for each $(U, V) \in \mathcal{P}(X) \times \mathcal{P}(Y)$.

6. Powersets as Sets of Functions. The assignment U + 9059 defines a bijection²⁷

$$\chi_{(-)} \colon \mathcal{P}(X) \xrightarrow{\cong} \mathsf{Sets}(X, \{\mathsf{t}, \mathsf{f}\}),$$

natural in $X \in \text{Obj}(\mathsf{Sets})$.

7. Powersets as Sets of Relations. We have bijections 005A

$$\mathcal{P}(X) \cong \text{Rel}(\text{pt}, X),$$

 $\mathcal{P}(X) \cong \text{Rel}(X, \text{pt}),$

natural in $X \in \text{Obj}(\mathsf{Sets})$.

- 8. As a Free Cocompletion: Universal Property. The pair $(\mathcal{P}(X), \chi_{(\mathcal{Q})})$ 5B consisting of
 - The powerset $\mathcal{P}(X)$ of X;
 - The characteristic embedding $\chi_{(-)}: X \hookrightarrow \mathcal{P}(X)$ of X into $\mathcal{P}(X)$;

satisfies the following universal property:

- (\star) Given another pair (Y, f) consisting of
 - A cocomplete poset (Y, \preceq) ;
 - A function $f: X \to Y$;

$$\mathsf{PSh}(\mathcal{C}) \stackrel{\mathrm{eq.}}{\cong} \mathsf{DFib}(\mathcal{C})$$

of Fibred Categories, ?? of ??, with $\chi_{(-)}$ being a decategorified version of the category of elements construction of Fibred Categories, ??.

See also ?? of ??.

²⁷This bijection is a decategorified form of the equivalence

4.2 Powersets 37

there exists a unique cocontinuous morphism of posets $(\mathcal{P}(X), \subset) \xrightarrow{\exists !} (Y, \preceq)$ making the diagram

$$\begin{array}{c|c}
\mathcal{P}(X) \\
 & \downarrow \\
X & \xrightarrow{f} Y
\end{array}$$

commute.

9. As a Free Cocompletion: Adjointness. We have an adjunct 1005 to 100 t

$$(\chi_{(-)}\dashv \overline{z})$$
: Sets $\stackrel{\chi_{(-)}}{\underset{\overline{z}_0}{\longleftarrow}}$ Pos^{cocomp.},

witnessed by a bijection

$$\mathsf{Pos}^{\mathsf{cocomp.}}((\mathcal{P}(X),\subset),(Y,\preceq)) \cong \mathsf{Sets}(X,Y),$$

natural in $X \in \text{Obj}(\mathsf{Sets})$ and $(Y, \preceq) \in \text{Obj}(\mathsf{Pos})$, where

• We have a natural map

$$\chi_X^* : \mathsf{Pos}^{\mathsf{cocomp.}}((\mathcal{P}(X), \subset), (Y, \preceq)) \to \mathsf{Sets}(X, Y)$$

defined by

$$\chi_X^*(f) \stackrel{\text{def}}{=} f \circ \chi_X,$$

i.e. by sending a cocontinuous morphism of posets $f: \mathcal{P}(X) \to Y$ to the composition

$$X \stackrel{\chi_X}{\hookrightarrow} \mathcal{P}(X) \stackrel{f}{\longrightarrow} Y;$$

• We have a natural map

$$\operatorname{Lan}_{\chi_X} \colon \mathsf{Sets}(X,Y) \to \mathsf{Pos}^{\mathsf{cocomp.}}((\mathcal{P}(X),\subset),(Y,\preceq))$$

²⁸In this sense, $\mathcal{P}(A)$ is the free cocompletion of A. (Note that, despite its name, however, this is not an idempotent operation, as we have $\mathcal{P}(\mathcal{P}(A)) \neq \mathcal{P}(A)$.)

computed by

$$[\operatorname{Lan}_{\chi_X}(f)](U) \cong \int_{-\infty}^{x \in X} \chi_{\mathcal{P}(X)}(\chi_x, U) \odot f(x)$$

$$\cong \int_{-\infty}^{x \in X} \chi_U(x) \odot f(x) \qquad \text{(by ??)}$$

$$\cong \bigvee_{x \in X} (\chi_U(x) \odot f(x))$$

for each $U \in \mathcal{P}(X)$, where:

- $-\bigvee$ is the join in (Y, \preceq) ;
- We have

true
$$\odot f(x) \stackrel{\text{def}}{=} f(x)$$
, false $\odot f(x) \stackrel{\text{def}}{=} \varnothing_Y$,

where \varnothing_Y is the minimal element of (Y, \preceq) .

Proof. ??, Functoriality: This follows from ???? of ??, ???? of ??, and ???? of ??.

- ??, Adjointness I: Omitted.
- ??, Adjointness II: Omitted.
- ??, Symmetric Strong Monoidality With Respect to Coproducts: Omitted.
- ??, Symmetric Lax Monoidality With Respect to Products: Omitted.
- ??, Powersets as Sets of Functions: Omitted.
- ??, Powersets as Sets of Relations: Omitted.
- ??, As a Free Cocompletion: Universal Property: This is a rephrasing of ??.
- ??, As a Free Cocompletion: Adjointness: Omitted.

4.3 Direct ImagesD

Let A and B be sets and let $f: A \to B$ be a function.

Definition 4.3.1.1. The direct image function associated to f is the function 29

$$f_* \colon \mathcal{P}(A) \to \mathcal{P}(B)$$

- We have $b \in \exists_f(U)$.
- There exists some $a \in U$ such that f(a) = b.

²⁹ Further Notation: Also written $\exists_f \colon \mathcal{P}(A) \to \mathcal{P}(B)$. This notation comes from the fact that the following statements are equivalent, where $b \in B$ and $U \in \mathcal{P}(A)$:

defined by 30,31

$$\begin{split} f_*(U) &\stackrel{\text{\tiny def}}{=} f(U) \\ &\stackrel{\text{\tiny def}}{=} \left\{ b \in B \;\middle|\; &\text{there exists some } a \in \right\} \\ &= \left\{ f(a) \in B \;\middle|\; a \in U \right\} \end{split}$$

for each $U \in \mathcal{P}(A)$.

Remark 4.3.1.2. Identifying subsets of this functions from A to $\{\text{true}, \text{false}\}$ via ?? of ??, we see that the direct image function associated to f is equivalently the function

$$f_* \colon \mathcal{P}(A) \to \mathcal{P}(B)$$

defined by

$$f_*(\chi_U) \stackrel{\text{def}}{=} \operatorname{Lan}_f(\chi_U)$$

$$= \operatorname{colim}\left(\left(f \stackrel{\rightarrow}{\times} (\underline{-1})\right) \stackrel{\text{pr}}{\twoheadrightarrow} A \xrightarrow{\chi_U} \{\mathsf{t},\mathsf{f}\}\right)$$

$$= \operatorname{colim}_{\substack{a \in A \\ f(a) = -1}} (\chi_U(a))$$

$$= \bigvee_{\substack{a \in A \\ f(a) = -1}} (\chi_U(a)).$$

So, in other words, we have

$$\begin{split} [f_*(\chi_U)](b) &= \bigvee_{\substack{a \in A \\ f(a) = b}} (\chi_U(a)) \\ &= \begin{cases} \text{true} & \text{if there exists some } a \in A \text{ such} \\ & \text{that } f(a) = b \text{ and } a \in U, \\ \text{false} & \text{otherwise} \end{cases} \\ &= \begin{cases} \text{true} & \text{if there exists some } a \in U \\ & \text{such that } f(a) = b, \\ \text{false} & \text{otherwise} \end{cases} \end{split}$$

$$f_*(U) = B \setminus f_!(A \setminus U);$$

³⁰ Further Terminology: The set f(U) is called the **direct image of** U **by** f.

 $^{^{31}\}mathrm{We}$ also have

for each $b \in B$.

Proposition 4.3.1.3. Let $f: A \to B$ be a **6056**tion.

1. Functoriality. The assignment $U \mapsto 0$ $\sharp \downarrow (U)$ defines a functor

$$f_* : (\mathcal{P}(A), \subset) \to (\mathcal{P}(B), \subset)$$

where

• Action on Objects. For each $U \in \mathcal{P}(A)$, we have

$$[f_*](U) \stackrel{\text{def}}{=} f_*(U);$$

• Action on Morphisms. For each $U, V \in \mathcal{P}(A)$:

$$(\star)$$
 If $U \subset V$, then $f_*(U) \subset f_*(V)$.

2. Triple Adjointness. We have a triple ad Mascrition

$$(f_* \dashv f^{-1} \dashv f_!)$$
: $\mathcal{P}(A) \leftarrow f^{-1} - \mathcal{P}(B)$,

witnessed by bijections of sets

$$\operatorname{Hom}_{\mathcal{P}(B)}(f_*(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, f^{-1}(V)),$$

$$\operatorname{Hom}_{\mathcal{P}(A)}(f^{-1}(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, f_!(V)),$$

natural in $U \in \mathcal{P}(A)$ and $V \in \mathcal{P}(B)$ and (respectively) $V \in \mathcal{P}(A)$ and $U \in \mathcal{P}(B)$, i.e. where:

- (a) The following conditions are equivalent:
 - i. We have $f_*(U) \subset V$.
 - ii. We have $U \subset f^{-1}(V)$.
- (b) The following conditions are equivalent:
 - i. We have $f^{-1}(U) \subset V$.
 - ii. We have $U \subset f_!(V)$.

005M

005N

3. Preservation of Colimits. We have an equality of Kets

$$f_*\left(\bigcup_{i\in I}U_i\right) = \bigcup_{i\in I}f_*(U_i),$$

natural in $\{U_i\}_{i\in I}\in \mathcal{P}(A)^{\times I}$. In particular, we have equalities

$$f_*(U) \cup f_*(V) = f_*(U \cup V),$$

 $f_*(\emptyset) = \emptyset,$

natural in $U, V \in \mathcal{P}(A)$.

4. Oplax Preservation of Limits. We have an inclusio@05f.sets

$$f_*\left(\bigcap_{i\in I}U_i\right)\subset\bigcap_{i\in I}f_*(U_i),$$

natural in $\{U_i\}_{i\in I} \in \mathcal{P}(A)^{\times I}$. In particular, we have inclusions

$$f_*(U \cap V) \subset f_*(U) \cap f_*(V),$$

 $f_*(A) \subset B,$

natural in $U, V \in \mathcal{P}(A)$.

5. Symmetric Strict Monoidality With Respect to Unions. The direct image function of ?? has a symmetric strict monoidal structure

$$(f_*, f_*^{\otimes}, f_{*|\mathscr{V}}^{\otimes}) \colon (\mathscr{P}(A), \cup, \emptyset) \to (\mathscr{P}(B), \cup, \emptyset),$$

being equipped with equalities

$$f_{*|U,V}^{\otimes} \colon f_{*}(U) \cup f_{*}(V) \xrightarrow{=} f_{*}(U \cup V),$$
$$f_{*|U}^{\otimes} \colon \emptyset \xrightarrow{=} \emptyset,$$

natural in $U, V \in \mathcal{P}(A)$.

6. Symmetric Oplax Monoidality With Respect to Intersections. The direct image function of ?? has a symmetric oplax monoidal structure

$$(f_*, f_*^{\otimes}, f_{*|\mathscr{V}}^{\otimes}) \colon (\mathscr{P}(A), \cap, A) \to (\mathscr{P}(B), \cap, B),$$

being equipped with inclusions

$$f_{*|U,V}^{\otimes} \colon f_{*}(U \cap V) \hookrightarrow f_{*}(U) \cap f_{*}(V),$$
$$f_{*|U}^{\otimes} \colon f_{*}(A) \hookrightarrow B,$$

natural in $U, V \in \mathcal{P}(A)$.

7. Relation to Direct Images With Compact Support. We have

005P

$$f_*(U) = B \setminus f_!(A \setminus U)$$

for each $U \in \mathcal{P}(A)$.

Proof. ??, Functoriality: Clear.

- ??, Triple Adjointness: This follows from Kan Extensions, ?? of ??.
- ??, Preservation of Colimits: This follows from ?? and Categories, ?? of ??.
- ??, Oplax Preservation of Limits: Omitted.
- ??, Symmetric Strict Monoidality With Respect to Unions: This follows from ??.
- ??, Symmetric Oplax Monoidality With Respect to Intersections: This follows from ??.
- ??, Relation to Direct Images With Compact Support: Applying ?? of ?? to $A \setminus U$, we have

$$f_!(A \setminus U) = B \setminus f_*(A \setminus (A \setminus U))$$
$$= B \setminus f_*(U).$$

Taking complements, we then obtain

$$f_*(U) = B \setminus (B \setminus f_*(U)),$$

= $B \setminus f_!(A \setminus U),$

which finishes the proof.

Proposition 4.3.1.4. Let $f: A \to B$ be a **6050**tion.

1. Functionality I. The assignment $f \mapsto 0$ 5R defines a function

$$(-)_{*|A,B} \colon \mathsf{Sets}(A,B) \to \mathsf{Sets}(\mathcal{P}(A),\mathcal{P}(B)).$$

2. Functionality II. The assignment $f \mapsto 005$ S defines a function

$$(-)_{*|A|B}$$
: Sets $(A,B) \to \mathsf{Pos}((\mathcal{P}(A),\subset),(\mathcal{P}(B),\subset)).$

3. Interaction With Identities. For each $A \in \text{Obj}(Sets)$ we have

$$(\mathrm{id}_A)_* = \mathrm{id}_{\mathcal{P}(A)};$$

4. Interaction With Composition. For each pair of conquestable functions $f: A \to B$ and $g: B \to C$, we have

$$(g \circ f)_* = g_* \circ f_*,$$

$$(g \circ f)_* = g_* \circ f_*,$$

$$(g \circ f)_* \qquad \downarrow g_*$$

$$\mathcal{P}(C)$$

Proof. ??, Functionality I: Clear.

- ??, Functionality II: Clear.
- ??, Interaction With Identities: This follows from Kan Extensions, ?? of ??.
- ???, Interaction With Composition: This follows from Kan Extensions, ?? of ??. \Box

4.4 Inverse Images

Let A and B be sets and let $f: A \to B$ be a function.

Definition 4.4.1.1. The inverse image of the function 32

$$f^{-1} \colon \mathcal{P}(B) \to \mathcal{P}(A)$$

defined by³³

$$f^{-1}(V) \stackrel{\text{def}}{=} \{ a \in A \mid \text{we have } f(a) \in V \}$$

for each $V \in \mathcal{P}(B)$.

Remark 4.4.1.2. Identifying subsets of B with functions from B to $\{\text{true}, \text{false}\}$ via \P of \P , we see that the inverse image function associated to f is equivalently the function

$$f^* \colon \mathcal{P}(B) \to \mathcal{P}(A)$$

defined by

$$f^*(\chi_V) \stackrel{\mathrm{def}}{=} \chi_V \circ f$$

³² Further Notation: Also written $f^* : \mathcal{P}(B) \to \mathcal{P}(A)$.

³³ Further Terminology: The set $f^{-1}(V)$ is called the **inverse image of** V by f.

for each $\chi_V \in \mathcal{P}(B)$, where $\chi_V \circ f$ is the composition

$$A \xrightarrow{f} B \xrightarrow{\chi_V} \{\mathsf{true}, \mathsf{false}\}$$

in Sets.

Proposition 4.4.1.3. Let $f: A \to B$ be a **fonk**tion.

1. Functoriality. The assignment $V \mapsto \mathbb{Z}^1(V)$ defines a functor

$$f^{-1}: (\mathcal{P}(B), \subset) \to (\mathcal{P}(A), \subset)$$

where

• Action on Objects. For each $V \in \mathcal{P}(B)$, we have

$$[f^{-1}](V) \stackrel{\text{def}}{=} f^{-1}(V);$$

• Action on Morphisms. For each $U, V \in \mathcal{P}(B)$:

$$(\star)$$
 If $U \subset V$, then $f^{-1}(U) \subset f^{-1}(V)$.

2. Triple Adjointness. We have a triple ad 2006 etion

$$(f_* \dashv f^{-1} \dashv f_!)$$
: $\mathcal{P}(A) \leftarrow f^{-1} - \mathcal{P}(B)$,

witnessed by bijections of sets

$$\operatorname{Hom}_{\mathcal{P}(B)}(f_*(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, f^{-1}(V)),$$

 $\operatorname{Hom}_{\mathcal{P}(A)}(f^{-1}(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, f_!(V)),$

natural in $U \in \mathcal{P}(A)$ and $V \in \mathcal{P}(B)$ and (respectively) $V \in \mathcal{P}(A)$ and $U \in \mathcal{P}(B)$, i.e. where:

- (a) The following conditions are equivalent:
 - i. We have $f_*(U) \subset V$;
 - ii. We have $U \subset f^{-1}(V)$;
- (b) The following conditions are equivalent:
 - i. We have $f^{-1}(U) \subset V$.
 - ii. We have $U \subset f_!(V)$.

0063

0064

3. Preservation of Colimits. We have an equality of sets

$$f^{-1}\left(\bigcup_{i\in I} U_i\right) = \bigcup_{i\in I} f^{-1}(U_i),$$

natural in $\{U_i\}_{i\in I}\in \mathcal{P}(B)^{\times I}$. In particular, we have equalities

$$f^{-1}(U) \cup f^{-1}(V) = f^{-1}(U \cup V),$$

 $f^{-1}(\emptyset) = \emptyset,$

natural in $U, V \in \mathcal{P}(B)$.

4. Preservation of Limits. We have an equality of 3 ets

$$f^{-1}\left(\bigcap_{i\in I} U_i\right) = \bigcap_{i\in I} f^{-1}(U_i),$$

natural in $\{U_i\}_{i\in I}\in \mathcal{P}(B)^{\times I}$. In particular, we have equalities

$$f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V),$$

 $f^{-1}(B) = A,$

natural in $U, V \in \mathcal{P}(B)$.

5. Symmetric Strict Monoidality With Respect to Unions. The inverse image function of ?? has a symmetric strict monoidal structure

$$(f^{-1}, f^{-1, \otimes}, f_{\not k}^{-1, \otimes}) : (\mathcal{P}(B), \cup, \emptyset) \to (\mathcal{P}(A), \cup, \emptyset),$$

being equipped with equalities

$$f_{U,V}^{-1,\otimes} \colon f^{-1}(U) \cup f^{-1}(V) \stackrel{=}{\to} f^{-1}(U \cup V),$$
$$f_{\mathbb{K}}^{-1,\otimes} \colon \emptyset \stackrel{=}{\to} f^{-1}(\emptyset),$$

natural in $U, V \in \mathcal{P}(B)$.

6. Symmetric Strict Monoidality With Respect to Intersections. The inverse image function of ?? has a symmetric strict monoidal structure

$$(f^{-1}, f^{-1, \otimes}, f_{\mathbb{F}}^{-1, \otimes}) : (\mathcal{P}(B), \cap, B) \to (\mathcal{P}(A), \cap, A),$$

being equipped with equalities

$$f_{U,V}^{-1,\otimes} \colon f^{-1}(U) \cap f^{-1}(V) \stackrel{=}{\to} f^{-1}(U \cap V),$$
$$f_{\mathbb{H}}^{-1,\otimes} \colon A \stackrel{=}{\to} f^{-1}(B),$$

natural in $U, V \in \mathcal{P}(B)$.

Proof. ??, Functoriality: Clear.

- ??, Triple Adjointness: This follows from Kan Extensions, ?? of ??.
- ??, Preservation of Colimits: This follows from ?? and Categories, ?? of ??.
- ??, Preservation of Limits: This follows from ?? and Categories, ?? of ??.
- ??, Symmetric Strict Monoidality With Respect to Unions: This follows from ??.
- ??, Symmetric Strict Monoidality With Respect to Intersections: This follows from ??.

Proposition 4.4.1.4. Let $f: A \to B$ be a **6065**tion.

1. Functionality I. The assignment $f \mapsto 0.066^{1}$ defines a function

$$(-)_{A,B}^{-1} \colon \mathsf{Sets}(A,B) \to \mathsf{Sets}(\mathcal{P}(B),\mathcal{P}(A)).$$

2. Functionality II. The assignment $f \mapsto 0/67^1$ defines a function

$$(-)_{A,B}^{-1} \colon \mathsf{Sets}(A,B) \to \mathsf{Pos}((\mathcal{P}(B),\subset),(\mathcal{P}(A),\subset)).$$

3. Interaction With Identities. For each $A \in \text{Obj}(Seconds)$ we have

$$id_A^{-1} = id_{\mathcal{P}(A)};$$

4. Interaction With Composition. For each pair of conquessable functions $f: A \to B$ and $g: B \to C$, we have

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1},$$

$$\mathcal{P}(C) \xrightarrow{g^{-1}} \mathcal{P}(B)$$

$$(g \circ f)^{-1} \downarrow f^{-1}$$

$$\mathcal{P}(A).$$

Proof. ??, Functionality I: Clear.

- ??, Functionality II: Clear.
- ??, Interaction With Identities: This follows from Categories, ?? of ??.
- ???, Interaction With Composition: This follows from Categories, ?? of ??.

Direct Ima@@sAWith Compact Support

Let A and B be sets and let $f: A \to B$ be a function.

Definition 4.5.1.1. The direct image with compact support function associated to f is the function³⁴

$$f_1 \colon \mathcal{P}(A) \to \mathcal{P}(B)$$

defined by 35,36

$$f_!(U) \stackrel{\text{def}}{=} \left\{ b \in B \mid \text{ for each } a \in A, \text{ if we have} \right\}$$

= $\left\{ b \in B \mid \text{ we have } f^{-1}(b) \subset U \right\}$

for each $U \in \mathcal{P}(A)$.

Remark 4.5.1.2. Identifying subsets of the functions from A to $\{\text{true}, \text{false}\}$ via ?? of ??, we see that the direct image with compact support function associated to f is equivalently the function

$$f_! \colon \mathcal{P}(A) \to \mathcal{P}(B)$$

defined by

$$\begin{split} f_!(\chi_U) &\stackrel{\text{def}}{=} \operatorname{Ran}_f(\chi_U) \\ &= \lim \left(\left(\underbrace{(-_1)}_{\times} \stackrel{\rightarrow}{\times} f \right) \stackrel{\operatorname{pr}}{\twoheadrightarrow} A \xrightarrow{\chi_U} \left\{ \mathsf{true}, \mathsf{false} \right\} \right) \\ &= \lim_{\substack{a \in A \\ f(a) = -_1}} \left(\chi_U(a) \right) \\ &= \bigwedge_{\substack{a \in A \\ f(a) = -_1}} \left(\chi_U(a) \right). \end{split}$$

- We have $b \in \forall_f(U)$.
- For each $a \in A$, if b = f(a), then $a \in U$.

$$f_!(U) = B \setminus f_*(A \setminus U);$$

³⁴ Further Notation: Also written $\forall_f \colon \mathcal{P}(A) \to \mathcal{P}(B)$. This notation comes from the fact that the following statements are equivalent, where $b \in B$ and $U \in \mathcal{P}(A)$:

 $^{^{35}}$ Further Terminology: The set $f_!(U)$ is called the **direct image with compact** support of U by f.

³⁶We also have

So, in other words, we have

$$\begin{split} [f_!(\chi_U)](b) &= \bigwedge_{\substack{a \in A \\ f(a) = b}} (\chi_U(a)) \\ &= \begin{cases} \text{true} & \text{if, for each } a \in A \text{ such that} \\ & f(a) = b, \text{ we have } a \in U, \end{cases} \\ &\text{false} & \text{otherwise} \\ &= \begin{cases} \text{true} & \text{if } f^{-1}(b) \subset U \\ \text{false} & \text{otherwise} \end{cases} \end{split}$$

for each $b \in B$.

Definition 4.5.1.3. Let U be a subset of 0.0007,38

1. The image part of the direct image with compact support $f_!(U)$ of U is the set $f_{!,\text{im}}(U)$ defined by

$$f_{!,\text{im}}(U) \stackrel{\text{def}}{=} f_{!}(U) \cap \text{Im}(f)$$

$$= \left\{ b \in B \mid \text{we have } f^{-1}(b) \subset \atop U \text{ and } f^{-1}(b) \neq \emptyset \right\}.$$

2. The complement part of the direct image with compact support

see ?? of ??.

³⁷Note that we have

$$f_{!}(U) = f_{!,\text{im}}(U) \cup f_{!,\text{cp}}(U),$$

as

$$\begin{split} f_!(U) &= f_!(U) \cap B \\ &= f_!(U) \cap (\operatorname{Im}(f) \cup (B \setminus \operatorname{Im}(f))) \\ &= (f_!(U) \cap \operatorname{Im}(f)) \cup (f_!(U) \cap (B \setminus \operatorname{Im}(f))) \\ &\stackrel{\text{def}}{=} f_{!,\operatorname{im}}(U) \cup f_{!,\operatorname{cp}}(U). \end{split}$$

³⁸In terms of the meet computation of $f_!(U)$ of ??, namely

$$f_!(\chi_U) = \bigwedge_{\substack{a \in A \\ f(a) = -1}} (\chi_U(a)),$$

we see that $f_{!,\text{im}}$ corresponds to meets indexed over nonempty sets, while $f_{!,\text{cp}}$ corresponds to meets indexed over the empty set.

 $f_!(U)$ of U is the set $f_{!,cp}(U)$ defined by

$$f_{!,cp}(U) \stackrel{\text{def}}{=} f_!(U) \cap (B \setminus \text{Im}(f))$$

$$= B \setminus \text{Im}(f)$$

$$= \left\{ b \in B \mid \text{we have } f^{-1}(b) \subset \right\}$$

$$= \left\{ b \in B \mid f^{-1}(b) = \emptyset \right\}.$$

Example 4.5.1.4. Here are some examples of direct images with compact support.

1. The Multiplication by Two Map on the Natural Numbers. Consider the function $f: \mathbb{N} \to \mathbb{N}$ given by

$$f(n) \stackrel{\text{def}}{=} 2n$$

for each $n \in \mathbb{N}$. Since f is injective, we have

$$f_{!,\text{im}}(U) = f_*(U)$$

 $f_{!,\text{cp}}(U) = \{\text{odd natural numbers}\}$

for any $U \subset \mathbb{N}$.

2. Parabolas. Consider the function $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) \stackrel{\text{def}}{=} x^2$$

for each $x \in \mathbb{R}$. We have

$$f_{!,cp}(U) = \mathbb{R}_{<0}$$

for any $U \subset \mathbb{R}$. Moreover, since $f^{-1}(x) = \{-\sqrt{x}, \sqrt{x}\}$, we have e.g.:

$$\begin{split} f_{!,\mathrm{im}}([0,1]) &= \{0\}, \\ f_{!,\mathrm{im}}([-1,1]) &= [0,1], \\ f_{!,\mathrm{im}}([1,2]) &= \emptyset, \\ f_{!,\mathrm{im}}([-2,-1] \cup [1,2]) &= [1,4]. \end{split}$$

3. Circles. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) \stackrel{\text{def}}{=} x^2 + y^2$$

for each $(x, y) \in \mathbb{R}^2$. We have

$$f_{!,cp}(U) = \mathbb{R}_{<0}$$

for any $U \subset \mathbb{R}^2$, and since

$$f^{-1}(r) = \begin{cases} \text{a circle of radius } r \text{ about the origin} & \text{if } r > 0, \\ \{(0,0)\} & \text{if } r = 0, \\ \emptyset & \text{if } r < 0, \end{cases}$$

we have e.g.:

$$f_{!,\text{im}}([-1,1] \times [-1,1]) = [0,1],$$

$$f_{!,\text{im}}(([-1,1] \times [-1,1]) \setminus [-1,1] \times \{0\}) = \emptyset.$$

Proposition 4.5.1.5. Let $f: A \to B$ be a **606**Etion.

1. Functoriality. The assignment $U \mapsto \emptyset(U)$ defines a functor

$$f_! \colon (\mathcal{P}(A), \subset) \to (\mathcal{P}(B), \subset)$$

where

• Action on Objects. For each $U \in \mathcal{P}(A)$, we have

$$[f_!](U) \stackrel{\text{def}}{=} f_!(U);$$

• Action on Morphisms. For each $U, V \in \mathcal{P}(A)$:

$$(\star)$$
 If $U \subset V$, then $f_!(U) \subset f_!(V)$.

2. Triple Adjointness. We have a triple ad Maction

$$(f_* \dashv f^{-1} \dashv f_!)$$
: $\mathcal{P}(A) \leftarrow f^{-1} - \mathcal{P}(B)$,

witnessed by bijections of sets

$$\operatorname{Hom}_{\mathcal{P}(B)}(f_*(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, f^{-1}(V)),$$

 $\operatorname{Hom}_{\mathcal{P}(A)}(f^{-1}(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, f_!(V)),$

natural in $U \in \mathcal{P}(A)$ and $V \in \mathcal{P}(B)$ and (respectively) $V \in \mathcal{P}(A)$ and $U \in \mathcal{P}(B)$, i.e. where:

- (a) The following conditions are equivalent:
 - i. We have $f_*(U) \subset V$;
 - ii. We have $U \subset f^{-1}(V)$;
- (b) The following conditions are equivalent:
 - i. We have $f^{-1}(U) \subset V$.
 - ii. We have $U \subset f_!(V)$.
- 3. Lax Preservation of Colimits. We have an inclusion sets

$$\bigcup_{i\in I} f_!(U_i) \subset f_!\left(\bigcup_{i\in I} U_i\right),\,$$

natural in $\{U_i\}_{i\in I} \in \mathcal{P}(A)^{\times I}$. In particular, we have inclusions

$$f_!(U) \cup f_!(V) \hookrightarrow f_!(U \cup V),$$

 $\emptyset \hookrightarrow f_!(\emptyset),$

natural in $U, V \in \mathcal{P}(A)$.

4. Preservation of Limits. We have an equality 066 sets

$$f_!$$
 $\left(\bigcap_{i\in I} U_i\right) = \bigcap_{i\in I} f_!(U_i),$

natural in $\{U_i\}_{i\in I} \in \mathcal{P}(A)^{\times I}$. In particular, we have equalities

$$f^{-1}(U \cap V) = f_!(U) \cap f^{-1}(V),$$

 $f_!(A) = B,$

natural in $U, V \in \mathcal{P}(A)$.

5. Symmetric Lax Monoidality With Respect to Unions. The direct image with compact support function of ?? has a symmetric lax monoidal structure

$$(f_!, f_!^{\otimes}, f_{!|\mathbb{H}}^{\otimes}) \colon (\mathcal{P}(A), \cup, \emptyset) \to (\mathcal{P}(B), \cup, \emptyset),$$

being equipped with inclusions

$$f_{!|U,V}^{\otimes} \colon f_{!}(U) \cup f_{!}(V) \hookrightarrow f_{!}(U \cup V),$$
$$f_{!|U}^{\otimes} \colon \emptyset \hookrightarrow f_{!}(\emptyset),$$

natural in $U, V \in \mathcal{P}(A)$.

6. Symmetric Strict Monoidality With Respect to Intersections. The direct image function of ?? has a symmetric strict monoidal structure

$$(f_!, f_!^{\otimes}, f_!^{\otimes}) \colon (\mathcal{P}(A), \cap, A) \to (\mathcal{P}(B), \cap, B),$$

being equipped with equalities

$$\begin{split} f^{\otimes}_{!|U,V} \colon f_{!}(U \cap V) &\stackrel{=}{\to} f_{!}(U) \cap f_{!}(V), \\ f^{\otimes}_{!|\mathscr{U}} \colon f_{!}(A) &\stackrel{=}{\to} B, \end{split}$$

natural in $U, V \in \mathcal{P}(A)$

7. Relation to Direct Images. We have 006N

$$f_!(U) = B \setminus f_*(A \setminus U)$$

for each $U \in \mathcal{P}(A)$.

8. Interaction With Injections. If f is injective, the 200 have

$$f_{!,\text{im}}(U) = f_*(U),$$

$$f_{!,\text{cp}}(U) = B \setminus \text{Im}(f),$$

$$f_!(U) = f_{!,\text{im}}(U) \cup f_{!,\text{cp}}(U)$$

$$= f_*(U) \cup (B \setminus \text{Im}(f))$$

for each $U \in \mathcal{P}(A)$.

9. Interaction With Surjections. If f is surjective, then have

$$f_{!,\text{im}}(U) \subset f_*(U),$$

$$f_{!,\text{cp}}(U) = \emptyset,$$

$$f_!(U) \subset f_*(U)$$

for each $U \in \mathcal{P}(A)$.

Proof. ??, Functoriality: Clear.

- ??, Triple Adjointness: This follows from Kan Extensions, ?? of ??.
- ??, Lax Preservation of Colimits: Omitted.
- ??, Preservation of Limits: Omitted. This follows from ?? and Categories, ?? of ??.
- ??, Symmetric Lax Monoidality With Respect to Unions: This follows from ??.
- ??, Symmetric Strict Monoidality With Respect to Intersections: This follows from ??.
- ??, Relation to Direct Images: We claim that $f_!(U) = B \setminus f_*(A \setminus U)$.

006M

• The First Implication. We claim that

$$f_!(U) \subset B \setminus f_*(A \setminus U).$$

Let $b \in f_!(U)$. We need to show that $b \notin f_*(A \setminus U)$, i.e. that there is no $a \in A \setminus U$ such that f(a) = b.

This is indeed the case, as otherwise we would have $a \in f^{-1}(b)$ and $a \notin U$, contradicting $f^{-1}(b) \subset U$ (which holds since $b \in f_!(U)$).

Thus $b \in B \setminus f_*(A \setminus U)$.

• The Second Implication. We claim that

$$B \setminus f_*(A \setminus U) \subset f_!(U)$$
.

Let $b \in B \setminus f_*(A \setminus U)$. We need to show that $b \in f_!(U)$, i.e. that $f^{-1}(b) \subset U$.

Since $b \notin f_*(A \setminus U)$, there exists no $a \in A \setminus U$ such that b = f(a), and hence $f^{-1}(b) \subset U$.

Thus $b \in f_!(U)$.

This finishes the proof of ??.

- ??, Interaction With Injections: Clear.
- ??, Interaction With Surjections: Clear.

Proposition 4.5.1.6. Let $f: A \to B$ be a **Condition**.

1. Functionality I. The assignment $f \mapsto 0$ selfines a function

$$(-)_{\sqcup A}$$
: Sets $(A,B) \to \text{Sets}(\mathcal{P}(A),\mathcal{P}(B))$.

2. Functionality II. The assignment $f \mapsto 0$ defines a function

$$(-)_{!|A,B} \colon \mathsf{Sets}(A,B) \to \mathsf{Pos}((\mathcal{P}(A),\subset),(\mathcal{P}(B),\subset)).$$

3. Interaction With Identities. For each $A \in \text{Obj}(Seco)$ we have

$$(\mathrm{id}_A)_! = \mathrm{id}_{\mathcal{P}(A)};$$

4. Interaction With Composition. For each pair of company ble functions $f: A \to B$ and $g: B \to C$, we have

$$(g \circ f)_! = g_! \circ f_!, \qquad \begin{array}{c} \mathcal{P}(A) \xrightarrow{f_!} \mathcal{P}(B) \\ & \downarrow g_! \\ & \mathcal{P}(C). \end{array}$$

		<u> </u>
??, I ??, I		follows from Kan Extensions, ?? of ?? nis follows from Kan Extensions, ?? of
Aı	ppendices	
\mathbf{A}	Other Chapters	
\mathbf{Sets}		14. Constructions With Categories
1.	Sets	15. Kan Extensions
2.	Constructions With Sets	Bicategories
3.	Pointed Sets	17. Bicategories
4.	Tensor Products of Pointed Sets	18. Internal Adjunctions
5.	Relations	Internal Category Theory
6.	Spans	19. Internal Categories

Indexed and Fibred Sets

7. Indexed Sets

7. Posets

- 8. Fibred Sets
- 9. Un/Straightening for Indexed and Fibred Sets

Category Theory

- 11. Categories
- 12. Types of Morphisms in Categories
- 13. Adjunctions and the Yoneda Lemma

Cyclic Stuff

20. The Cycle Category

Cubical Stuff

21. The Cube Category

Globular Stuff

22. The Globe Category

Cellular Stuff

23. The Cell Category

Monoids

- 24. Monoids
- 25. Constructions With Monoids

Monoids With Zero

- 26. Monoids With Zero
- 27. Constructions With Monoids With Zero

Groups

- 28. Groups
- 29. Constructions With Groups

Hyper Algebra

- 30. Hypermonoids
- 31. Hypergroups
- 32. Hypersemirings and Hyperrings
- 33. Quantales

Near-Rings

- 34. Near-Semirings
- 35. Near-Rings

Real Analysis

36. Real Analysis in One Variable

37. Real Analysis in Several Variables

Measure Theory

- 38. Measurable Spaces
- 39. Measures and Integration

Probability Theory

39. Probability Theory

Stochastic Analysis

- 40. Stochastic Processes, Martingales, and Brownian Motion
- 41. Itô Calculus
- 42. Stochastic Differential Equations

Differential Geometry

43. Topological and Smooth Manifolds

Schemes

44. Schemes