PHY407 – University of Toronto Lecture 9: Partial Differential Equations, part 2/2

Nicolas Grisouard, nicolas.grisouard@utoronto.ca 16 November 2020

Supporting textbook chapters for week 8: §§ 9.3.3, 9.3.4

Lecture 9, topics: * Stability, * Implicit and Crank-Nicholson methods, * Spectral methods.

1 Reminders

1.1 Classifying PDEs

$$\alpha \frac{\partial^2 \phi}{\partial x^2} + \beta \frac{\partial^2 \phi}{\partial x \partial y} + \gamma \frac{\partial^2 \phi}{\partial y^2} + \delta \frac{\partial \phi}{\partial x} + \varepsilon \frac{\partial \phi}{\partial y} = f.$$

Classification based on

$$\Delta = \beta^2 - 4\alpha\gamma.$$

- 1. $\Delta = 0$: parabolic PDE,
- 2. Δ < 0: elliptic PDE,
- 3. $\Delta > 0$: hyperbolic PDE.

- 1. Canonical parabolic PDE: the diffusion equation, $\kappa \nabla^2 \phi \frac{\partial T}{\partial t} = 0$,
- 2. Canonical elliptic PDE: the Poisson equation, $\, \nabla^2 \phi = \rho , \,$
- 3. Canonical hyperbolic PDE: the wave equation, $c^2 \nabla^2 \phi \frac{\partial^2 T}{\partial t^2} = 0$.

1.2 Calculating the second derivative

• Recall central difference calculation of 2nd derivative (§5.10.5):

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} - \frac{1}{12}h^2f^{(4)}(x) + \dots$$

1.3 General approach

- Discretize system spatially and temporally. Can use
 - Finite difference
 - Spectral coefficients
 - Etc.
- ⇒ set of coupled ODEs that you need to solve in an efficient way.
- Spatial derivatives bring information in from neighbouring points ⇒ coupling,
- ullet \Rightarrow errors depend on space and time and can get wave-like characteristics.
- Elliptical equations (e.g., Poisson eqn.):
 - Jacobi relaxation (always stable),
 - Speed-up with overrelaxation (not always stable),
 - Gauss-Seidel (overrelaxed or not): replace on the fly; more stable than Jacobi when overrelaxing.

- Parabolic PDEs (e.g., heat eqn):
 - FTCS (Forward Time, Centred Space) scheme: centred finite-diff. in space, forward Euler in time
 - Von Neumann analysis says stable if sufficient resolution space.
- Hyperbolic PDEs (e.g., wave eqn.):
 - Von Neumann analysis says FTCS never stable.
 - See next week for better schemes.
- Von Neumann stability analysis: plug a Fourier mode, see if it grows or not.

Today: stable and accurate schemes for Hyperbolic PDEs?

2 The implicit method

We have other choices on how to discretize in time the set of ODEs

$$\frac{d\phi_m}{dt} = \psi_m$$
, and $\frac{d\psi_m}{dt} = \frac{c^2}{a^2} \left(\phi_{m+1} - 2\phi_m + \phi_{m-1}\right)$

What if we evaluated the RHS at time t + h instead of t?

Explicit method we saw last time was

$$\begin{bmatrix} \phi_m^{n+1} \\ \psi_m^{n+1} \end{bmatrix} = \begin{bmatrix} 1 & +h \\ -\frac{2hc^2}{a^2} & 1 \end{bmatrix} \begin{bmatrix} \phi_m^n \\ \psi_m^n \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{c^2h}{a^2} \left(\phi_{m+1}^n + \phi_{m-1}^n \right) \end{bmatrix}$$

To compute with the implicit method, * first do $h \rightarrow -h$:

$$\phi_m^{n-1} = \phi_m^n - h\psi_m^n,$$

$$\psi_m^{n-1} = \psi_m^n - h\frac{c^2}{a^2}(\phi_{m-1}^n + \phi_{m+1}^n - 2\phi_m^n),$$

• Then, $n \rightarrow n + 1$ (one shift forward in time):

$$\begin{split} \phi_m^n &= \phi_m^{n+1} - h \psi_m^{n+1}, \\ \psi_m^n &= \psi_m^{n+1} - h \frac{c^2}{a^2} \left(\phi_{m-1}^{n+1} + \phi_{m+1}^{n+1} - 2 \phi_m^{n+1} \right), \end{split}$$

or

$$\begin{bmatrix} \phi_m^n \\ \psi_m^n \end{bmatrix} = \begin{bmatrix} 1 & -h \\ +\frac{2hc^2}{a^2} & 1 \end{bmatrix} \begin{bmatrix} \phi_m^{n+1} \\ \psi_m^{n+1} \end{bmatrix} - \begin{bmatrix} 0 \\ \frac{c^2h}{a^2} \left(\phi_{m+1}^{n+1} + \phi_{m-1}^{n+1} \right) \end{bmatrix}$$

Why would we compute n if we know n + 1?

Because all RHS's combined (i.e., at all n's) form is a matrix expression that we can invert to get the LHS.

2.1 Stability

Recall
$$\begin{bmatrix} \phi_m^n \\ \psi_m^n \end{bmatrix} = \begin{bmatrix} 1 & -h \\ +\frac{2hc^2}{a^2} & 1 \end{bmatrix} \begin{bmatrix} \phi_m^{n+1} \\ \psi_m^{n+1} \end{bmatrix} - \begin{bmatrix} 0 \\ \frac{c^2h}{a^2} \left(\phi_{m+1}^{n+1} + \phi_{m-1}^{n+1} \right) \end{bmatrix}$$

If we do the Von Neumann substitution, $\hat{\phi}_k^n \exp(ikma)$ and $\hat{\psi}_k^n \exp(ikma)$, we get

$$\mathbf{B} \begin{bmatrix} \widehat{\boldsymbol{\phi}}_k^{m+1} \\ \widehat{\boldsymbol{\psi}}_k^{m+1} \end{bmatrix} = \begin{bmatrix} \widehat{\boldsymbol{\phi}}_k^m \\ \widehat{\boldsymbol{\psi}}_k^m \end{bmatrix} \exp(ikma),$$
with
$$\mathbf{B} = \begin{bmatrix} 1 & -h \\ hr^2 & 1 \end{bmatrix} \quad \text{and} \quad r = \frac{2c}{a} \sin \frac{ka}{2},$$

$$\Rightarrow \begin{bmatrix} \widehat{\boldsymbol{\phi}}_k^{m+1} \\ \widehat{\boldsymbol{\psi}}_k^{m+1} \end{bmatrix} = \mathbf{B}^{-1} \begin{bmatrix} \widehat{\boldsymbol{\phi}}_k^m \\ \widehat{\boldsymbol{\psi}}_k^m \end{bmatrix} \exp(ikma).$$

$$\begin{bmatrix} 2 \end{bmatrix} : \begin{bmatrix} 1 & -h \\ hr^2 & 1 \end{bmatrix}$$

[3]:
$$\begin{bmatrix} \frac{1}{h^2r^2+1} & \frac{h}{h^2r^2+1} \\ -\frac{hr^2}{h^2r^2+1} & \frac{1}{h^2r^2+1} \end{bmatrix}$$

[5]:
$$-\frac{ihr-1}{h^2r^2+1}$$

[6]:
$$\frac{1}{\sqrt{h^2r^2 + 1}}$$

[7]:
$$\frac{1}{\sqrt{h^2r^2+1}}$$

$$\begin{bmatrix} \widehat{\boldsymbol{\varphi}}_k^{m+1} \\ \widehat{\boldsymbol{\psi}}_k^{m+1} \end{bmatrix} = \mathbf{B}^{-1} \begin{bmatrix} \widehat{\boldsymbol{\varphi}}_k^m \\ \widehat{\boldsymbol{\psi}}_k^m \end{bmatrix} \exp(ikma).$$

The eigenvalues of ${\bf B}^{-1}$ are

$$\lambda_{\pm} = rac{1 \pm ihr}{1 + h^2 r^2}, \qquad |\lambda_{\pm}| = rac{1}{\sqrt{1 + h^2 r^2}} \le 1.$$

- The eigenvalues are the growth factors and these are less than one.
- So the implicit method is unconditionally stable.
- But solutions decay exponentially! This is a big problem for the wave equation!

3 Crank-Nicholson

Crank-Nicholson: average of explicit (fwd Euler) and implicit methods Euler:

$$\begin{split} \phi_m^{n+1} &= \phi_m^n + h \psi_m^n, \\ \psi_m^{n+1} &= \psi_m^n + h \frac{c^2}{a^2} \left(\phi_{m-1}^n + \phi_{m+1}^n - 2 \phi_m^n \right). \end{split}$$

Implicit:

$$\phi_m^{n+1} - h\psi_m^{n+1} = \phi_m^n,$$

$$\psi_m^{n+1} - h\frac{c^2}{a^2} \left(\phi_{m-1}^{n+1} + \phi_{m+1}^{n+1} - 2\phi_m^{n+1} \right) = \psi_m^n.$$

Crank-Nicholson (C-N):

$$\phi_m^{n+1} - \frac{h}{2}\psi_m^{n+1} = \phi_m^n + \frac{h}{2}\psi_m^n,$$

$$\psi_m^{n+1} - \frac{h}{2}\frac{c^2}{a^2}\left(\phi_{m-1}^{n+1} + \phi_{m+1}^{n+1} - 2\phi_m^{n+1}\right) = \psi_m^n + \frac{h}{2}\frac{c^2}{a^2}\left(\phi_{m-1}^n + \phi_{m+1}^n - 2\phi_m^n\right).$$

If we do the Von Neumann substitution, $\widehat{\phi}_k^n \exp(ikma)$ and $\widehat{\psi}_k^n \exp(ikma)$, we get

$$\mathbf{B}'\begin{bmatrix}\widehat{\phi}_m^{n+1}\\\widehat{\psi}_m^{n+1}\end{bmatrix}=\mathbf{A}'\begin{bmatrix}\widehat{\phi}_m^n\\\widehat{\psi}_m^n\end{bmatrix},$$

or

$$\begin{bmatrix} \widehat{\phi}_m^{n+1} \\ \widehat{\psi}_m^{n+1} \end{bmatrix} = \mathbf{B}'^{-1} \mathbf{A}' \begin{bmatrix} \widehat{\phi}_m^n \\ \widehat{\psi}_m^n \end{bmatrix}$$

with

$$\mathbf{B}'^{-1}\mathbf{A}' = \frac{a}{1 + h^2 r'^2} \begin{bmatrix} 1 - h^2 r'^2 & 2h \\ -2hr'^2 & 1 - h^2 r'^2 \end{bmatrix}, \quad r' = \frac{c}{a} \sin \frac{ka}{2}$$

Growth factors of Crank-Nicholson are eigenvalues of $B^{-1}A$:

$$\lambda_{\pm} = \frac{1 \pm 2ihr' - h^2r'^2}{1 + h^2r'^2}, \quad [|\lambda_{\pm}| = 1].$$

- For Euler-Forward, the growth factors are greater than one and the solution diverges.
- For Implicit, the growth factors are less than one and the solution decays to zero.
- For CN, the growth factors are one so the solution neither grows nor decays.
- It is also 2nd-order accurate in time, while both explicit and implicit methods are 1st-order accurate.

4 Spectral methods

4.1 General idea

- Find yourself a set of orthogonal functions forming a basis of your function space
 - sin if quantity is zero at boundaries or function is odd w.r.t. midline of domain,
 - cos if quantity has zero derivatives at boundaries or function is even w.r.t. midline of domain,
 - exp if quantity is periodic,
 - Chebyshev polynomials for more flexible combinations of boundary conditions or non-periodic, closed domains,
 - Hermite polynomials on the $(-\infty,\infty)$ real line,
 - Laguerre polynomials on the $(0,\infty)$ real half-line,
 - _ ...
- Project your initial conditions and forcing on that basis,
- Iterate in time for linear PDEs,
- Iterate in time, and do FFTs and iFFTs to compute the non-linear terms if PDEs are non-linear,
- We focus on $\sin/\cos/\exp$ bases, sometimes called "Fourier spectral methods" (perhaps only by me),
- Usually, all of these methods require computing FFTs (even for non-Fourier spectral methods),
- \bullet \oplus FFTs: large cost of computing them, but a large return on investment usually:
 - linear PDEs: all modes oscillate independently, without coupling \Rightarrow computing the FFTs of the initial conditions give you the solutions at all times,
 - non-linear PDEs: elliptic PDEs can be solved without the need of an

iterative solver like relaxation method

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = \rho;$$

$$\begin{pmatrix} \phi \\ \rho \end{pmatrix} = \sum_{i} \sum_{j} \begin{pmatrix} \widehat{\varphi}_{ij} \\ \widehat{\rho}_{ij} \end{pmatrix} \exp i(k_i x + l_j y),$$

Use orthogonality to project
$$\Rightarrow \widehat{\phi}_{ij} = -rac{\widehat{
ho}_{ij}}{k_i^2 + l_i^2}$$

and you are just one iFFT away form getting the solution \Rightarrow no need to use an iterative solver! This is particularly useful with large sets of coupled PDEs, for which just one elliptic PDE can be the main bottleneck of a non-spectral implementation.

ullet Spectral methods are really difficult to implement in complicated geometries.

5 Practical implementation tricks

Periodic BCs are simpler, let's focus on them.

$$f = \sum_{n=-\infty}^{\infty} \hat{f}_n \exp(ik_n x) \Rightarrow \frac{\partial f}{\partial x} = \sum_{n=-\infty}^{\infty} ik_n \hat{f}_n \exp(ik_n x),$$

or, in shorthand,

$$\frac{\partial f}{\partial x} \to ik_n\hat{f}_n, \quad \frac{\partial^2 f}{\partial x^2} \to -k_n^2\hat{f}_n$$

Next are a couple fo examples of how to implement it.

```
[9]: # Based on derivative_fft.py
     # calculate derivative of a function using fourier transform method
     # import required routines
     from numpy import arange, exp, pi
     from pylab import plot, legend, show, subplot, xlabel, ylabel, tight_layout
     from numpy.fft import rfft, irfft
     #define function and its derivative
     def f(x):
         return exp(-(x-L/2)**2/Delta**2)
     def dfdx(x):
         return \exp(-(x-L/2)**2/Delta**2)*-2*(x-L/2)/Delta**2
     # define problem parameters
     L=2.0
     Delta=0.1
     nx = 200
     # define x, f(x), f'(x)
     x=arange(0,L,L/nx)
```

```
f = f(x)
f_{derivative} = dfdx(x)
# now do the same thing spectrally:
fhat = rfft(f) # fourier transform
karray = arange(nx/2+1)*2*pi/L # define k
fhat_derivative = complex(0,1)*karray*fhat # define ik*fhat
f_derivative_fft = irfft(fhat_derivative) # and transform back
subplot(2,1,1)
plot(x, f, label='$f$')
plot(x, f_derivative, label='$df/dx$, analytic')
plot(x, f_derivative_fft, '--', label='$dfdfx$ with FFT')
legend(loc=3)
xlabel('x')
subplot(2,1,2)
plot(x,abs(f_derivative-f_derivative_fft))
xlabel('x')
ylabel('abs(difference)')
tight_layout()
show()
```



```
[10]: from pylab import plot, show, legend, subplot, xlabel, ylabel, tight_layout
      from numpy import zeros, empty, linspace, exp, arange, minimum, pi, sin, cos, u
      from dcst import dst, idst, dct, idct
      N = 256
      x = arange(N)*pi/N # x = pi*n/N
      f = \sin(x) - 2*\sin(4*x) + 3*\sin(5*x) - 4*\sin(6*x) # function is a sine series
      fCoeffs = dst(f) # do fourier sine series
      print('Original series: f = \sin(x) - 2\sin(4x) + 3\sin(5x) - 4\sin(6x)')
      for j in range(7):
          print('Coefficient of sin({0}x): {1:.2e}'.format(j, fCoeffs[j]/N))
      print('See Figure for calculating second derivative')
      # Below: 2nd derivative also a sine series
      d2f_dx2_a = -\sin(x) + 32*\sin(4*x) - 75*\sin(5*x) + 144*\sin(6*x)
      DerivativeCoeffs = -arange(N)**2*fCoeffs # 2nd derivative using Fourier
       \rightarrow transform
      d2f_dx2_b = idst(DerivativeCoeffs)
      subplot(2, 1, 1)
      plot(x, d2f_dx2_a, label='analytic')
      plot(x, d2f_dx2_b, '--', label='with DST')
      xlabel('x')
      legend()
      subplot(2, 1, 2)
      plot(x,abs(d2f_dx2_a - d2f_dx2_b))
      xlabel('x')
      ylabel('abs(diff)')
      tight_layout()
      show()
     Original series: f = \sin(x) - 2\sin(4x) + 3\sin(5x) - 4\sin(6x)
     Coefficient of sin(0x): 0.00e+00
     Coefficient of sin(1x): 1.00e+00
     Coefficient of sin(2x): 3.67e-17
```

```
Original series: f = sin(x) - 2sin(4x) + 3sin(5x) - 4sin(6x).

Coefficient of sin(0x): 0.00e+00

Coefficient of sin(1x): 1.00e+00

Coefficient of sin(2x): 3.67e-17

Coefficient of sin(3x): -5.96e-16

Coefficient of sin(4x): -2.00e+00

Coefficient of sin(5x): 3.00e+00

Coefficient of sin(6x): -4.00e+00

See Figure for calculating second derivative
```


6 Summary

- Last week: FTCS was
 - and explicit scheme,
 - unstable for hyperbolic PDEs (wave eqn.)
- FTCS with implicit time stepping:
 - infers what RHS of next step is based on present step, and inverts.
 - stable for hyperbnolic PDEs, but decays (bad accuracy)
- Crank-Nicholson:
 - average of both, also requires matrix inversion,
 - neither grows nor decays
- Spectral methods:
 - leverage $\partial_x f o ik imes \hat{f}$ and powerful FFT methods,
 - can be much faster than grid-based schemes (though it depends),
 - super-duper accurate
 - Not too flexible when it comes to domain shape.