

Enhanced Deep Residual Networks for Single Image Super-Resolution

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee

Computer Vision Lab.

Dept. of ECE, ASRI, Seoul National University

http://cv.snu.ac.kr

SISR (Single Image Super Resolution)

Goal: Restoring a HR image from a single LR image

Low-resolution image

Super-Resolution

High-resolution image

Lessons from Recent Studies

VDSR (CVPR2016)

SRResNet (CVPR2017)

- Skip connections
 - Global and local skip connections enable deep architecture & stable training
- Upscaling methods
 - <u>Post-upscaling</u> using sub-pixel convolution is more efficient than <u>pre-upscaling</u>
 - However, they are limited that only single-scale SR is possible

EDSR

ResBlock ResBlock . . . Conv Conv Conv

MDSR

EDSR

4 Techniques for Better SR

Need Batch-Normalization?

Increasing model size

Better loss function

Geometric self-ensemble

Need Batch-Normalization?

Empirical tests show that removing Batch-Normalization improves the performance!

Need Batch-Normalization?

- Unlike classification problem, input and output have similar distributions
- In SR, normalizing intermediate features may not be desirable
- Also, can save ~40% of memory
 → Can enlarge the model size

Increasing Model Size

Given a limited memory, which design is better?

- Empirical test show that increasing #features is better than increasing depth
- Instability occurs when #features increased up to 256

Increasing Model Size

- Residual Scaling Layer
 - Increasing #features (up to 256) results instability during training
 - Constant scaling layers after each residual path prevents such instability

Proposed in (Szegedy 2016), "Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning"

Loss Function: L1 vs L2

- Is MSE (L2 loss) the best choice?
- Comparison between different loss functions
 - EDSR baseline(16 res-blocks), scale=2, tested on DIV2K images (791~800)

Loss	Definition	PSNR
l_2 (MSE)	$\frac{1}{N} \sum_{i=1}^{N} \left\ I_i - \widetilde{I}_i \right\ _2^2$	35.46 dB
l_1 (MAE)	$\frac{1}{N} \sum_{i=1}^{N} \left\ I_i - \widetilde{I}_i \right\ _1$	35.55 dB

→ MSE is not a good choice!

Geometric Self-Ensemble

Motivation

- Model ensemble is nice, but expensive!
- How can we achieve an ensemble effect while avoiding training new models?

Method

- Transform test image 8 times with flips and rotations (x8)
- Build 8 outputs and inverse-transform correspondingly
- Average 8 results

Proposed in (Timofte 2016), "Seven ways to improve example-based single-image super-resolution"

Geometric Self-Ensemble

Augmentation	Augmentation X (×1)		Vertical Flip (×4)	
PSNR(dB)	35.55	35.61 (+ 0.06)	35.65 (+ 0.10)	35.67 (+ 0.12)

EDSR Summary

- Deeper & Wider: 32 ResBlocks and 256 channels
- Global-local skip connections
- Post-upscaling
- No Batch-Normalization
- Residual scaling
- L1 loss function
- Geometric self-ensemble (EDSR+)

EDSR

MDSR

- VDSR: Multi-scale SR in a single model
- Multi-scale knowledge transfer

Efficient Multi-Scale Model

- Designing MDSR
- Single vs. Multi-scale learning
- Train & Test method
- EDSR vs. MDSR

MDSR

SRCNN, VDSR: A single architecture regardless of upscaling factor ⇒ Multi-scale SR in a single model (*VDSR*)

FSRCNN, ESPCN, SRResNet: Fast & Efficient, (late upsampling) but cannot deal with the multiple scales in a single model.

FSRCNN, ESPCN, SRResNet

- ⇒ Different models for different scales?
 - Heavy training burden
 - Waste of parameters for similar tasks
 - Redundancy

Multi-scale knowledge transfer

Pre-trained scale x2 networks greatly helps training scale x3 and x4 networks.

 Super-resolution at multiple scales are inter-related tasks!

Designing MDSR

How to make *EDSR* (post-upscaling) to handle multiscale SR as VDSR?

Requirements

- 1. Reduce the variance between the different scales
 - ⇒ <u>Scale-specific pre-processing modules</u>
- 2. Most parameters are shared across scales
 - ⇒ main branch
- 3. For efficiency: Post-upscaling
 - ⇒ <u>Scale-specific up-samplers</u>

Train and Test Method

1. Train

- Only one of 3 scale-specific branches is activated at each iteration
- A mini-batch consists of single-scale patches

2. Test

Select one of the paths

 (1~3) according to the desired SR scale

EDSR vs. MDSR

Performance: MDSR ≤ EDSR

Scale	SRResNet (L2 loss)	SRResNet (L1 loss)	Our baseline (Single-scale)	Our baseline (Multi-scale)	EDSR (Ours)	MDSR (Ours)
$\times 2$	34.40 / 0.9662	34.44 / 0.9665	34.55 / 0.9671	34.60 / 0.9673	35.03 / 0.9695	34.96 / 0.9692
$\times 3$	30.82 / 0.9288	30.85 / 0.9292	30.90 / 0.9298	30.91 / 0.9298	31.26 / 0.9340	31.25 / 0.9338
$\times 4$	28.92 / 0.8960	28.92 / 0.8961	28.94 / 0.8963	28.95 / 0.8962	29.25 / 0.9017	29.26 / 0.9016

Parameters:

MDSR << EDSR

(Almost ½! + MDSR can handle the multiple scales in a single model)

Stability:

MDSR << EDSR (We failed to increase #features even with residual scaling)

Options	SRResNet [14] Baseline (reproduced) (Single / Multi)		EDSR	MDSR
# Residual blocks	16	16	32	80
# Features	64	64	256	64
# Parameters	1.5M	1.5M / 3.2M	43M	8.0M
Residual scaling	-	-	0.1	-
Use BN	Yes	No	No	No
Loss function	L2	L1	L1	L1

MDSR Summary

- Very deep architecture: 80 ResBlocks
- Most parameters are shared in main branch
- Scale-specific pre-processing modules and up-samplers
- Post-upscaling
- No Batch-Normalization
- L1 loss function
- Geometric self-ensemble (MDSR+)

Results

Training Details

Item	Detail
Input channels	3 (RGB)
# Training images	800
Patch size	96×96 (×2), 144×144 (×3), 192×192 (×4),
Mini-batch size	16
Learning rate	10^{-4} , halved at every 2×10^5 iterations
Data augmentation	Flips and Rotations (×8)
Optimizer	ADAM ($eta_1=0.9$)
Loss	l_1
# Iteration	6×10^5 (4 days in single Titan X)
Implementation	Torch7 (Lua)
Dataset	DIV2K

Dataset	Scale	Bicubic	A+ [27]	SRCNN [4]	VDSR [11]	SRResNet [14]	EDSR (Ours)	MDSR (Ours)	EDSR+ (Ours)	MDSR+ (Ours)
Set5	×2	33.66 / 0.9299	36.54 / 0.9544	36.66 / 0.9542	37.53 / 0.9587	-/-	38.11 / 0.9601	38.11 / 0.9602	38.20 / 0.9606	38.17 / 0.9605
	×3	30.39 / 0.8682	32.58 / 0.9088	32.75 / 0.9090	33.66 / 0.9213	-/-	34.65 / 0.9282	34.66 / 0.9280	34.76 / 0.9290	34.77 / 0.9288
	$\times 4$	28.42 / 0.8104	30.28 / 0.8603	30.48 / 0.8628	31.35 / 0.8838	32.05 / 0.8910	32.46 / 0.8968	32.50 / 0.8973	32.62 / 0.8984	32.60 / 0.8982
	×2	30.24 / 0.8688	32.28 / 0.9056	32.42 / 0.9063	33.03 / 0.9124	-/-	33.92 / 0.9195	33.85 / 0.9198	34.02 / 0.9204	33.92 / 0.9203
Set14	×3	27.55 / 0.7742	29.13 / 0.8188	29.28 / 0.8209	29.77 / 0.8314	-/-	30.52 / 0.8462	30.44 / 0.8452	30.66 / 0.8481	30.53 / 0.8465
	$\times 4$	26.00 / 0.7027	27.32 / 0.7491	27.49 / 0.7503	28.01 / 0.7674	28.53 / 0.7804	28.80 / 0.7876	28.72 / 0.7857	28.94 / 0.7901	28.82 / 0.7876
B100	$\times 2$	29.56 / 0.8431	31.21 / 0.8863	31.36 / 0.8879	31.90 / 0.8960	-/-	32.32 / 0.9013	32.29 / 0.9007	32.37 / 0.9018	32.34 / 0.9014
	×3	27.21 / 0.7385	28.29 / 0.7835	28.41 / 0.7863	28.82 / 0.7976	-/-	29.25 / 0.8093	29.25 / 0.8091	29.32 / 0.8104	29.30 / 0.8101
	$\times 4$	25.96 / 0.6675	26.82 / 0.7087	26.90 / 0.7101	27.29 / 0.7251	27.57 / 0.7354	27.71 / 0.7420	27.72 / 0.7418	27.79 / 0.7437	27.78 / 0.7425
Urban100	×2	26.88 / 0.8403	29.20 / 0.8938	29.50 / 0.8946	30.76 / 0.9140	-/-	32.93 / 0.9351	32.84 / 0.9347	33.10 / 0.9363	33.03 / 0.9362
	×3	24.46 / 0.7349	26.03 / 0.7973	26.24 / 0.7989	27.14 / 0.8279	-/-	28.80 / 0.8653	28.79 / 0.8655	29.02 / 0.8685	28.99 / 0.8683
	$\times 4$	23.14 / 0.6577	24.32 / 0.7183	24.52 / 0.7221	25.18 / 0.7524	26.07 / 0.7839	26.64 / 0.8033	26.67 / 0.8041	26.86 / 0.8080	26.86 / 0.8082
DIV2K validation	×2	31.01 / 0.9393	32.89 / 0.9570	33.05 / 0.9581	33.66 / 0.9625	-/-	35.03 / 0.9695	34.96 / 0.9692	35.12 / 0.9699	35.05 / 0.9696
	×3	28.22 / 0.8906	29.50 / 0.9116	29.64 / 0.9138	30.09 / 0.9208	-/-	31.26 / 0.9340	31.25 / 0.9338	31.39 / 0.9351	31.36 / 0.9346
	$\times 4$	26.66 / 0.8521	27.70 / 0.8736	27.78 / 0.8753	28.17 / 0.8841	-/-	29.25 / 0.9017	29.26 / 0.9016	29.38 / 0.9032	29.36 / 0.9029

'img083' from Urban100

HR (PSNR / SSIM)

VDSR (21.73 dB / 0.6632)

Bicubic (20.46 dB / 0.5544)

SRResNet (22.33 dB / 0.7005)

A+ (21.27 dB / 0.6235)

SRCNN (21.35 dB / 0.6284)

EDSR+ (Ours) (22.86 dB / 0.7369)

MDSR+ (Ours) (22.90 dB / 0.7363)

'img070' from Urban100

HR (PSNR / SSIM)

Bicubic (21.48 dB / 0.5263)

A+ (21.80 dB / 0.5642)

SRCNN (21.82 dB / 0.5646)

VDSR (21.91 dB / 0.5773)

SRResNet (22.16 dB / 0.5953)

EDSR+ (Ours) (22.39 dB / 0.6122)

MDSR+ (Ours) (22.37 dB / 0.6106)

'0841' from DIV2K

HR

VDSR (28.93 dB / 0.8589)

Bicubic (27.61 dB / 0.8115)

SRResNet (29.44 dB / 0.8727)

A+

(28.48 dB / 0.8449)

EDSR+ (Ours) (30.07 dB / 0.8864)

SRCNN (28.57 dB / 0.8445)

MDSR+ (Ours) (30.03 dB / 0.8848)

Unknown Track (Challenge)

0791 from DIV2K [26]

HR (PSNR / SSIM)

Bicubic (22.20 dB / 0.7979)

EDSR (Ours) MDSR (Ours) (29.05 dB / 0.9257) (28.96 dB / 0.9244)

0792 from DIV2K [26]

HR (PSNR / SSIM)

Bicubic (21.59 dB / 0.6846)

MDSR (Ours) (27.14 dB / 0.8356)

Unknown Track (Challenge)

0793 from DIV2K [26]

HR (PSNR / SSIM)

Bicubic (23.81 dB / 0.8053)

EDSR (Ours) (30.94 dB / 0.9318)

MDSR (Ours) (30.81 dB / 0.9301)

0797 from DIV2K [26]

EDSR (Ours) (25.48 dB / 0.9597)

MDSR (Ours) (25.38 dB / 0.9590)

Extreme SR (up to x64)

How about extreme cases?

1/64 Scale!

Extreme SR (up to x64)

Extreme SR (up to x64)

Conclusion

1. State-of-the-art single image super-resolution system using better ResNet structure

2. Techniques to build & train extremely large model

3. A single network to deal with multi-scale SR problem

http://cv.snu.ac.kr