Federated Residual Learning

Chen-Yu Wei¹, Alekh Agarwal², John Langford²

¹University of Southern California

²Microsoft Research

Motivation

In standard FL, only a **global model** is learned (lacking **personalization**)

Our goal:

Building a robust FL system that

- allows personalization on top of the global model
- in the worse case, is always no worse than individual learning

(we do not assume that the clients are similar)

Proposed Framework: Federated Residual Learning

Flexibility: local models can be independently designed

FedResAvg Algorithm

For each communication round / each sampled client c

- Fetch global model $heta_G^{(c)} \leftarrow heta_G$
- Update local model for K times:

$$heta_L^{(c)} \leftarrow
abla_L \ell \left(heta_G^{(c)}, heta_L^{(c)}
ight) \qquad \qquad ext{for } i=1,\ldots,K$$

Update (local copy of) global model for K times:

$$heta_G^{(c)} \leftarrow
abla_G^{(c)} \left(heta_G^{(c)}, heta_L^{(c)}
ight) \qquad \qquad ext{for } i=1,\ldots,K$$

Average $\theta_G \leftarrow \frac{1}{C} \sum_c \theta_G^{(c)}$

Other technique: Using **control variates** to prevent client drift (Scaffold, ICML2020)

Experiment (Synthetic I)

Figure: Average loss versus communication round with N=2 and synthetic losses under different K (K is the number of local updates within one communication round)

$$L_1(w, \theta_1) = 0.1(w + \theta_1)^2 + 10w$$

 $L_2(w, \theta_2) = 0.1\theta_2^2 - 10w$.

Experiment (Synthetic II)

Figure: Average loss versus communication round with N = 10 and synthetic losses. The loss is logistic loss on a binary classification problem whose label is generated according to Eq. (1).

Feature $x \in \mathbb{R}^d$ and label y generated by

$$y = \operatorname{argmax} \left\{ (1 - \alpha) W^* x + \alpha \Theta_i^* x + n \right\}$$
 (1)