填空顯

$$|A^*| =$$
______, $|3A^* - 7A^{-1}| =$ ______.

2. $(3 \, \%) \, \otimes \alpha = (1, -2, 3)^T$, $\beta = (-1, \frac{1}{2}, 0)$, $A = \alpha \beta$, $\Re \left| A^{100} \right| = \underline{\hspace{1cm}}$.

3. (3分) 设向量
$$\alpha = \begin{pmatrix} 1 \\ k \\ 1 \end{pmatrix}$$
 是矩阵 $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ 的一个特征向量,则 $k = \underline{\qquad}$

4. (3 分) 设 A 为 3 阶实对称矩阵,向量 $\xi_1 = (1,2,5)^T$, $\xi_2 = (k,2k,3)^T$ 分别对应于特征值 2 和 3 的 特征向量,则k = .

5. (3 分)设 η_1,η_2,η_3 为四元非齐次线性方程组的三个解向量,方程组系数矩阵的秩为 3,

 $\eta_1 + \eta_2 = (3,4,5,6)^T, \eta_3 = (1,2,3,4)^T$,则该方程组的通解为

二、选择题

1. 设B, P为n阶矩阵,且P可逆,则下列运算不正确的是(

A. $|B| = |P^{-1}BP|$;

B.
$$|2E - B| = |2E - P^{-1}BP|$$
;

C. $|2E - B| = |2E - (P^{-1}BP)^T|$; D. $P^{-1}BP = B$.

$$D. P^{-1}BP = B.$$

2. 设 A, B, C 为同阶方阵,下列结论成立的有().

(A) AB = BA;

(B)
$$(A+B)^{-1} = A^{-1} + B^{-1}$$
;

(D)
$$(A+B)^T = A^T + B^T$$

3. 设 A 为 $m \times n$ 矩阵,则线性方程组为 Ax = b 有解的充分条件是 ()

A.A. 是行满秩的: B.A. 是列满秩的: C.A. 的秩小于A. 的行数: D.A. 的秩小于A. 的列数

4. 设 A 为 n 阶实对称矩阵, P 是 n 阶可逆矩阵。已知 n 维列向量 α 是 A 的属于 λ 的特征向量,则 矩阵 $(P^{-1}AP)^T$ 的属于特征值 λ 的特征向量是(

A. $P^{-1}\alpha$; B. $P^{T}\alpha$; C. $P\alpha$. D. $(P^{-1})^{T}\alpha$

- 5. 设 α, β, γ 线性无关, α, β, δ 线性相关, 下列哪个成立 ()
- A. α 必可由 β , γ , δ 线性表示; B. β 必可由 α , γ , δ 线性表示;
- C. δ 必可由 α, β, γ 线性表示: D. δ 必不可由 β, γ, δ 线性表示:
- 6. 设 A 为 n (n ≥2)阶可逆矩阵,交换 A 的第一行与第二行得到矩阵 B , A^* , B^* 分别为 A ,B 的伴随矩阵,则(
- C. 交换 A^* 的第一列与第二列得到 $-B^*$; D. 交换 A^* 的第一行与第二行得到 $-B^*$ 。

三、计算题

2. (6 分)设矩阵
$$A=\begin{pmatrix}1&1&-1\\-1&1&1\\1&-1&1\end{pmatrix}$$
 ,矩阵 X 满足 $A^*X=A^{-1}+2X$,其中 A^* 是 A 的伴随矩

阵, 求矩阵X。

3. (8 分) 已知
$$R^3$$
 的两组基为 $B_1 = \{\alpha_1, \alpha_2, \alpha_3\}, B_2 = \{\beta_1, \beta_2, \beta_3\},$ 其中 $\alpha_1 = (1,1,1)^T$, $\alpha_2 = (0,1,1)^T, \alpha_3 = (0,0,1)^T,$ $\beta_1 = (1,0,1)^T, \beta_2 = (0,1,-1)^T, \beta_3 = (1,2,0)^T$.

- (i) 求基 B_1 到基 B_2 的过渡矩阵 A_1
- (ii) 已知 α 在基 B_1 下的坐标为 $(1,-2,-1)^T$, 求 α 在基 B_2 下的坐标。
- 4. (8分) 求向量组 $\alpha_1 = (1,0,1,0)^T$, $\alpha_2 = (2,1,-3,7)^T$, $\alpha_3 = (4,1,-1,7)^T$,

 $\alpha_4 = (3,1,0,3)^T$, $\alpha_5 = (4,1,3,-1)^T$ 的秩及其一个极大线性无关组,并把其余向量用找到的极大线性无关组线性表出。

四、证明题

若 A 为 n 阶方阵, 且 $4A^2 - I = O$, 证明:

(1)
$$A$$
 的特征值只能为 $\frac{1}{2}$ 或 $-\frac{1}{2}$; (2) $r(2A+I)+r(2A-I)=n$ 。

五、解方程组

设方程组

$$\begin{cases} (1+\lambda)x_1 + x_2 + x_3 = 0 \\ x_1 + (1+\lambda)x_2 + x_3 = 3, \\ x_1 + x_2 + (1+\lambda)x_3 = \lambda \end{cases}$$

问 λ 为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解时,求其通解。

六、化二次型为标准型

已知二次型 $f(x_1,x_2,x_3)=5x_1^2+5x_2^2+cx_3^2+2x_1x_2+4x_1x_3-4x_2x_3$ 的秩为2, 求c,并用正交变换把 f 化为标准型,写出相应的正交矩阵。