We now prove uniqueness. Assume that

$$f = a_d p_1^{k_1} \cdots p_m^{k_m},$$

and

$$f = a_d q_1^{h_1} \cdots q_n^{h_n}.$$

Thus, we have

$$a_d p_1^{k_1} \cdots p_m^{k_m} = a_d q_1^{h_1} \cdots q_n^{h_n}.$$

We prove that m = n, $p_i = q_i$ and $h_i = k_i$, for all i, with $1 \le i \le n$.

The proof proceeds by induction on $h_1 + \cdots + h_n$.

If $h_1 + \cdots + h_n = 1$, then n = 1 and $h_1 = 1$. Then, since K[X] is an integral domain, we have

$$p_1^{k_1}\cdots p_m^{k_m}=q_1,$$

and since q_1 and the p_i are irreducible monic, we must have m=1 and $p_1=q_1$.

If $h_1 + \cdots + h_n \ge 2$, since K[X] is an integral domain and since $h_1 \ge 1$, we have

$$p_1^{k_1}\cdots p_m^{k_m}=q_1q,$$

with

$$q = q_1^{h_1 - 1} \cdots q_n^{h_n},$$

where $(h_1 - 1) + \cdots + h_n \ge 1$ (and $q_1^{h_1 - 1} = 1$ if $h_1 = 1$). Now, if q_1 is not equal to any of the p_i , by a previous remark, q_1 and p_i are relatively prime, and by Proposition 30.14, q_1 and $p_1^{k_1} \cdots p_m^{k_m}$ are relatively prime. But this contradicts the fact that q_1 divides $p_1^{k_1} \cdots p_m^{k_m}$. Thus, q_1 is equal to one of the p_i . Without loss of generality, we can assume that $q_1 = p_1$. Then, since K[X] is an integral domain, we have

$$p_1^{k_1-1}\cdots p_m^{k_m}=q_1^{h_1-1}\cdots q_n^{h_n},$$

where $p_1^{k_1-1}=1$ if $k_1=1$, and $q_1^{h_1-1}=1$ if $h_1=1$. Now, $(h_1-1)+\cdots+h_n< h_1+\cdots+h_n$, and we can apply the induction hypothesis to conclude that $m=n,\ p_i=q_i$ and $h_i=k_i$, with $1\leq i\leq n$.

The above considerations about unique factorization into irreducible factors can be extended almost without changes to more general rings known as *Euclidean domains*. In such rings, some abstract version of the division theorem is assumed to hold.

Definition 30.10. A Euclidean domain (or Euclidean ring) is an integral domain A such that there exists a function $\varphi \colon A \to \mathbb{N}$ with the following property: For all $a, b \in A$ with $b \neq 0$, there are some $q, r \in A$ such that

$$a = bq + r$$
 and $\varphi(r) < \varphi(b)$.