Math 612 Homework 4

Paul Hacking

April 7, 2014

Reading: Dummit and Foote, 15.4 (rings of fractions and localization), 15.3 (integral dependence), 15.1–15.2 (basic algebraic geometry). The following topics were not covered and may be skipped: Grobner basis techniques (15.1), primary decomposition (15.2).

A useful reference for commutative algebra is the book by Atiyah and MacDonald. Rings of fractions and integral dependence are covered in Chapters 3 and 5.

Justify your answers carefully.

(1) Recall that given a ring A and a multiplicative set S, the ring of fractions $S^{-1}A$ is defined by

$$S^{-1}A = \left\{ \frac{a}{s} \mid a \in A, s \in S \right\} / \sim,$$

where \sim is the equivalence relation

$$\frac{a}{s} \sim \frac{b}{t} \iff \exists u \in S \text{ such that } u(at - bs) = 0$$

and addition and multiplication of fractions are defined as usual.

- (a) Verify that \sim is an equivalence relation.
- (b) Show by example that the relation R defined by $\frac{a}{s}R\frac{b}{t}\iff at=bs$ does not define an equivalence relation in general.

[Hint: (b) Consider a set S containing zero-divisors. See e.g. Q2 below]

- (2) Let $n, m \in \mathbb{N}$. Let $A = \mathbb{Z}/n\mathbb{Z}$ and $S \subset A$ the multiplicative set generated by $\bar{m} \in A$. (Here \bar{m} denotes the image of m under the quotient homomorphism $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ given by reduction modulo n.) Write n = ab, where a is a product of primes dividing m, and $\gcd(b, m) = 1$. Show that $S^{-1}A$ is identified with $\mathbb{Z}/b\mathbb{Z}$.
- (3) Let $A \subset \mathbb{Q}$ be a subring. Show that $A = S^{-1}\mathbb{Z}$, where $S \subset \mathbb{Z}$ is the multiplicative subset generated by a set of primes $T \subset \mathbb{Z}$. (Note that T is not necessarily finite.)
- (4) Let $R = \mathbb{Z}[\sqrt{-5}]$ and $\mathfrak{p} = (2, 1 + \sqrt{-5}) \subset R$.
 - (a) Show that \mathfrak{p} is a prime ideal.
 - (b) Show that \mathfrak{p} is *not* principal.
 - (c) Let $R_{\mathfrak{p}}$ be the localization of R at \mathfrak{p} . (That is, $R_{\mathfrak{p}} = S^{-1}R$ where $S = R \setminus \mathfrak{p}$.) Then R is a local ring with maximal ideal $\mathfrak{p}_{\mathfrak{p}} = S^{-1}\mathfrak{p}$. Show that the ideal $\mathfrak{p}_{\mathfrak{p}} \subset R_{\mathfrak{p}}$ is principal.
 - [Hint: (a) Compute the quotient R/\mathfrak{p} in two stages: first compute the quotient $R/(1+\sqrt{-5})$, then compute the quotient of this ring by the ideal generated by the image of 2. (b) e.g. consider the norm $N(a+b\sqrt{-5})=a^2+5b^2$ as in 611HW5Q2.]
- (5) (a) State Nakayama's Lemma.
 - (b) Let k be a field, A = k[x, y], and $\mathfrak{m} = (x, y) \subset k[x, y]$, a maximal ideal of A. Consider the localization $A_{\mathfrak{m}}$ of A at \mathfrak{m} . Show that the homomorphism

$$\theta \colon A^3_{\mathfrak{m}} \to A^2_{\mathfrak{m}}$$

of $A_{\mathfrak{m}}$ -modules defined by the matrix

$$\begin{pmatrix} xy+1 & x^3 & x^2+2 \\ x^2 & y & y^3+1 \end{pmatrix}$$

is surjective.

(6) Let R be a UFD, K its field of fractions, and $L \supset K$ a finite extension of K. Show carefully that an element $\alpha \in L$ is integral over R iff the minimal polynomial of α over K has coefficients in R.

[Hint: Use the Gauss Lemma, DF p. 303.]

- (7) Let $n \in \mathbb{Z}$ be square-free, that is, n is not divisible by the square of any prime. Show that the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{n})$ is $\mathbb{Z}[(1+\sqrt{n})/2]$ if $n \equiv 1 \mod 4$ and $\mathbb{Z}[\sqrt{n}]$ otherwise.
- (8) Let R be an integral domain. Recall that we say R is integrally closed if it is integrally closed in its fraction field K. That is, if $\alpha \in K$ satisfies a monic polynomial equation with coefficients in R then $\alpha \in R$.
 - (a) Show that a UFD is integrally closed.
 - (b) Give an example of an integral domain R such that R is integrally closed but R is not a UFD.
- (9) For each of the following integral domains, determine its integral closure (in its fraction field).
 - (a) $k[x,y]/(y^2-x^5)$
 - (b) $k[x,y]/(y^2-x^2(x+1))$.

[Hint: In both cases, the given ring R can be identified with a subring S of k[t] by an appropriate substitution x = x(t), y = y(t). Compare 611HW4Q9. Show that the integral closure of R is identified with k[t].]

(10) Let k be an algebraically closed field. Let $\mathfrak{p} \subset k[x,y]$ be a prime ideal. Show that either $\mathfrak{p}=0, \ \mathfrak{p}=(f)$ for some irreducible $f\in k[x,y]$, or $\mathfrak{p}=(x-a,y-b)$ for some $a,b\in k$.

[Hint: If \mathfrak{p} is not principal then there exist $f, g \in \mathfrak{p}$ with no common factor in k[x, y]. Use Gauss' Lemma to show that f, g have no common factors in k(x)[y]. Conclude that there exists a nonzero $h \in k[x] \cap (f, g)$.]

- (11) Let $B = \mathbb{Z}[\sqrt{-2}]$.
 - (a) For each of the prime ideals $\mathfrak{p}=(0),(2),(3),(5)\subset\mathbb{Z}$, find all prime ideals $\mathfrak{q}\subset B$ such that $\mathfrak{q}\cap\mathbb{Z}=\mathfrak{p}$, and describe the ring extension $\mathbb{Z}/\mathfrak{p}\subset B/\mathfrak{q}$.
 - (b) (Optional). For $p \in \mathbb{N}$ prime, $p \neq 2$, the equation $x^2 + 2 = 0$ has a solution mod p iff $p \equiv 1$ or $p \equiv 1$

[Hint: Recall (from 611) that B is a Euclidean domain (ED), and we have the general result ED \Rightarrow PID \Rightarrow UFD. So every ideal in B is principal, and the prime ideals are given by (0) and (α) for α an irreducible element.]

- (12) Let k be a field and $J \subset k[x,y]$ an ideal. Compute the radical \sqrt{J} of J in each of the following cases:
 - (a) $(x^2 + y^3, x^5)$.
 - (b) (x^2y^3, y^4) .
 - (c) (x^3y^4, x^5y^2) .

[Hint: In each case, identify powers f^n in the given ideal (for some simple elements $f \in k[x,y]$), replace J by the ideal J+(f), and repeat. Then prove that the ideal K you have obtained is radical (that is, $K = \sqrt{K}$), so $\sqrt{J} = K$.]

- (13) Let k be an algebraically closed field and write $S = k[x_1, \ldots, x_n]$ and $\mathbb{A}^n_k = k^n$. This question studies the correspondences $J \mapsto Z(J)$ and $X \mapsto I(X)$ between ideals $J \subset S$ and subsets $X \subset \mathbb{A}^n$.
 - (a) For subsets $X,Y\subset \mathbb{A}^n_k$, observe that $I(X\cup Y)=I(X)\cap I(Y)$. Suppose now that X and Y are algebraic subsets, i.e., X=Z(J) and Y=Z(K) for some ideals $J,K\subset S$. Show that $I(X\cap Y)=\sqrt{I(X)+I(Y)}$. Show by example that $I(X\cap Y)\neq I(X)+I(Y)$ in general.
 - (b) Let $J = (xy, yz, zx) \subset S = k[x, y, z]$. Compute Z(J) and use your answer to write J as an intersection of prime ideals.

[Hint: (a) The Nullstellensatz shows that Z and I define a bijective correspondence between radical ideals and algebraic subsets. (b) Express \sqrt{J} as an intersection of primes, and finally check $J = \sqrt{J}$.]