Домашнее задание № 2

1. Рассмотрим задачу бинарной классификации $(Y = \{+1, -1\})$. Вектор правильных ответов:

 $(y_1,\ldots,y_{10})=(-1,+1,-1,-1,+1,-1,+1,-1,+1).$

Вектор решений некого классификатора:

 $(a_1,\ldots,a_{10})=(+1,+1,+1,+1,+1,-1,-1,-1,+1,+1).$

Не используя пакет scikit-learn, **подсчитайте**: true positive rate, false positive rate, true negative rate, false negative rate, accuracy, precision, recall, F_1 -score.

- 2. Пусть дана обучающая выборка $(x_1, y_1), ..., (x_n, y_n)$, где пара (x_i, y_i) объект и правильный ответ, причем $x_i \in \mathbb{R}^2$, а $y_i \in \{0, 1\}$. Известно, что распределение для обоих классов гауссовское с параметрами: $\mu_0 = (a, b)^T$, $\mu_1 = (-a, -b)^T$, $\Sigma_0 = \Sigma_1 = diag(\sigma_1, \sigma_2)$. Выпишите байесовский алгоритм классификации и уравнение разделяющей поверхности.
- 3. Доказать, что наивный байесовкий классификатор в случае бинарных признаков $f_i \in \{0,1\}$ является линейным разделителем:

$$a(x) = a(f_1, ..., f_n) = [a_0 + a_1 f_1 + ... + f_n x_n > 0].$$

Выведите формулы для коэффициентов a_i .

- 4. Опишите процедуру наискорейшего градиентного спуска. Зачем она применяется?
- 5. **Продифференцировать** формулу вероятности для логистической регрессии по w: $p(w) = \frac{1}{1+e^{-wx}}$. Указание: получить ответ в виде p'(w) = F(p(w))G(x).
- 6. Предположим, что выборка для решения задачи бинарной классификации $(X^m = (x_i, y_i)_{i=1}^m, Y = \{+1, -1\})$ линейно разделима: $\exists w, w_0$ т.ч. $(\langle w, x_i \rangle w_0)y_i > 0$ для всех $i = 1, \dots m$. Доказать, что существует вектор параметров w и свободный член w_0 т.ч.: а) $(\langle w, x_i \rangle w_0)y_i \geq 1$; б) существует по крайней мере одна точка на каждой из границ: $\exists x_{\pm} \in X^m : \langle w, x_{\pm} \rangle w_0 = \pm 1$
- 7. Доказать, что любые m+1 векторов размерности n могут быть разделены на любые два класса с помощью мономиального отображения $\varphi: X \to \{x_1^{i_1} x_2^{i_2} \dots x_n^{i_n}\}_{i_1+i_2+\dots+i_n \leq m}$ степени не больше m.

- 8. Методом опорных векторов **найти аналитическое решение** для разделения классов $A = \{x_1, x_2\}$ и $B = \{x_3\}$, если $x_1 = (1, 1), x_2 = (1, 5), x_3 = (1, 3)$. Указание: можно использовать полиномиальное ядро.
- 9. Предположим, что в задаче бинарной классификации точек на плоскости все точки одного класса лежат внутри эллипса $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1, a, b > 0$, а все точки другого класса снаружи этого эллипса. **Постройте** ядро, которое позволит линейному классификатору в новом пространстве разделить эти два класса без ошибки. **Какая** будет **размерность** спрямляющего пространства H?
- 10. **Найти** размерность спрямляющего пространства H для ядра $K(x_1, x_2) = (\langle x_1, x_2 \rangle + 1)^2$, если $x_1, x_2 \in \mathbb{R}^n$.
- 11. По объектам $x_1=(-4,\ 1),\ x_2=(-2,\ 0),\ x_3=(2,\ 2),\ x_4=(1,\ 4),$ $x_5=(3,\ 0)$ найти главные направления выборки.
- 12. Найти ближайшую матрицу ранга 2 по ℓ_2 -норме к матрице

$$A = \begin{pmatrix} 6 & 0 & -20 \\ 6 & 3 & 20 \\ 0 & -6 & 10 \end{pmatrix}.$$