This test is a *review* of material covered in prerequisite math and computer science classes. Students familiar with the material should finish in less than 10 mins.

Each problem is worth one point: out of 30.

Discrete Math

- **Q1:** What is the intersection of the interval A = [-1, 3] and B = [0, 4]? $A \cap B = [-1, 3]$
- Q2: In a balanced binary tree with n leaf nodes, how many internal nodes are there?
- **Q3:** In a balanced binary tree with n leaf nodes, how deep is the tree?
- (i.e., number of nodes on a shortest path from root to leaf)
- **Q4:** What is 5! (five factorial)?
- **Q5:** How many different ways are there to choose k items from a set of n items?

Linear Algebra

- **Q6:** What size is the result of multiplying a 2×3 matrix and a 3×4 matrix?
- **Q7:** What is the dot product between the vector $\mathbf{a} = [1, 2, 3]$ and $\mathbf{b} = [4, 5, 6]$? $\mathbf{a} \cdot \mathbf{b} = [4, 5, 6]$?
- **Q8:** What is the cross product between the vector $\mathbf{a} = [4, 0, 0]$ and $\mathbf{b} = [0, 0, -2]$? $\mathbf{a} \times \mathbf{b} = [0, 0, 0]$
- **Q9:** What is the matrix product of the matrix $\mathbf{A} = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 2 & 1 \\ 0 & -3 & 0 \end{pmatrix}$ and the vector $\mathbf{b} = \begin{pmatrix} -4 \\ 5 \\ 6 \end{pmatrix}$?

Ab =

Q10: Using matrices, express the solution to the following system of equations: $3x_1 + 2x_2 - 1x_3 = 10$, $2x_1 - 10x_3 = 0$, $-9x_2 + 9x_3 = -1$. (Form the system, but do not solve).

Q11: Sketch (using PDF markup or PDF highlighter) the results of c = a + b and d = b - c on the plot:

Mappings

Q12: Suppose we have $f: A \to B$, what needs to be true to call f a well-defined function?

```
Q13: Is f(x) = x^2 invertible? Why (not)?
```

Q14: If x and y are real numbers, what sets are the domain and range of $f(x,y) = x^2 + y^2$? (use \mathbb{R})

Logarithms

Q15: Express $\log(a^b)$ in terms of $\log a$ and b. $\log(a^b) =$

Q16: Express $\log(ab)$ in terms of $\log a$ and $\log b$. $\log(ab) =$

Trigonometry

Q17: Express $\cos(a+b)$ in terms of $\cos a$ and $\cos b$. $\cos(a+b) =$

Q18: Given a triangle with side lengths a, b, c and opposite angles A, B, C, express $\sin A$ in terms of a, b, and $\sin B$.

 $\sin A =$

Q19: Given a right triangle with acute angles A and B, express the following in terms of opposite side length a and b:

$$\sin A = \cos A = \tan A =$$

Quadratic equation

Q20: How many real-value solutions for x are possible to an equation of the form $ax^2 + bx + c = 0$?

A) zero; B) one; C) two; D) three; E) zero, one or two; or F) zero, one, two or three.

Q21: Identify the solution(s), if any, to $x^2 - 4x - 5 = 0$.

Linear interpolation

Q22: What is *the* linear function $f:[0,1]\to\mathbb{R}$, so that f(0)=a and f(1)=b?

Q23: What is the linear vector-valued function $f:[0,1]\to\mathbb{R}^3$, so that $f(0)=\mathbf{a}$ and $f(1)=\mathbf{b}$?

Derivatives

Q24: What is the derivative of the function $f(t) = 3t^2$? $\frac{df}{dt} =$

Q25: What is the second derivative of the function $f(t) = 3t^2$? $\frac{d^2f}{dt^2} =$

Q26: What is the partial derivative of the function $f(x,y) = 3x^2 - 3y^2$ with respect to y? $\frac{df}{dy} = \frac{df}{dy} = \frac{df}{dy}$

Q27: Given a function $f: \mathbb{R}^3 \to \mathbb{R}$, how many dimensions does its gradient have?

Q28: Using partial derivative and vector notations express the gradient of a function $f(x, y, z) : \mathbb{R}^3 \to \mathbb{R}$.

 $\nabla f =$

C++ Programming

Q29: We want to call func on y, what should be written in place of the question mark in the following C++ code?

A) *; **B)** &; or **C)** nothing.

```
bool func(double & x);
...
int main()
{
  double * y = new double();
  func( ? y);
}
```

Geometry

Q30: What is the volume of a sphere with radius r?