МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Лабораторная работа № 3.2.6 **Изучение гальванометра**

Климова Екатерина Группа Б01-108 **Цель работы:** изучение работы высокочувствительного зеркального гальванометра магнитоэлектрической системы в режимах измерения постоянного тока и электрического заряда.

В работе используются: зеркальный гальванометр с осветителем и шкалой; источник постоянного напряжения; делитель напряжения; магазин сопротивлений; эталонный конденсатор; вольтметр; переключатель; ключи; линейка.

1 Аннотация

В работе предлагается определить динамическую постоянную C_I , критическое сопротивление $R_{\rm kp}$ и оценить линейность шкалы гальванометра, работающего в стационарном (токовом) режиме; определить баллистическую постоянную C_q и критическое сопротивление $R_{\rm kp}$ гальванометра, работающего в баллистическом режиме (режиме измерения заряда).

2 Теоретические сведения

Баллистическим гальванометром называют электроизмерительный прибор магнитоэлектрической системы, отличающийся высокой чувствительностью к току и сравнительно большим периодом колебаний подвижной системы (рамки).

Главной частью баллистического гальванометра является подвешенная на вертикальной нити рамка, помещенная в поле постоянного магнита. Вырез цилиндрической формы в полюсах магнита и ферромагнитный цилиндр на оси системы делают поле в зазоре радиальным (рис. 1). Скрепленное с рамкой зеркальце служит для измерения угла поворота рамки. К рамке прикреплен полый цилиндр, который сильно увеличивает момент инерции и, следовательно, период колебаний подвижной системы, не очень ее утяжеляя.

Баллистический гальванометр позволяет измерять как постоянный ток (*стационарный* режим), так и заряд, протекший через рамку за некоторое время (*баллистический* режим). В баллистическом режиме гальванометр может работать, если время протекания заряда много меньше периода собственных колебаний подвижной рамки. Поэтому период колебаний делают большим (5-15 с).

Рис. 1. Рамка с током в магнитном поле

2.1 Уравнение движения рамки в магнитном поле

На помещенную в магнитное поле рамку гальванометра, по которой течет ток, действуют момент сил закрученной нити, момент сил трения и момент магнитных сил.

Механический момент упругих сил нити:

$$M_1 = -D\varphi, \tag{1}$$

где D — модуль кручения нити, а φ — угол поворота рамки от положения равновесия.

Момент сил вязкого трения:

$$M_2 = -\beta_{\rm TD}\dot{\varphi}.\tag{2}$$

Рис. 2. Силы Ампера, действующие на рамку в магнитном поле

Пусть прямоугольная рамка с числом витков N, обтекаемая по контуру током I_{Σ} , помещена в магнитное поле с постоянной индукцией B (рис. 2). Тогда на каждую боковую сторону рамки действуют силы $F_A = lNBI_{\Sigma}$, где l-длина стороны. Обозначив через r расстояние от боковой стороны до оси вращения, найдем момент пары сил:

$$M_3 = 2rlBNI_{\Sigma} = BSNI_{\Sigma}, \tag{3}$$

где S=2rl — площадь одного витка рамки. В рамке, движущейся в магнитном поле с угловой скоростью $\dot{\varphi},$ наводится ЭДС индукции:

$$\varepsilon = -\frac{d\Phi}{dt} = -BSN\dot{\varphi},\tag{4}$$

где $\frac{d\Phi}{dt}$ — скорость изменения магнитного потока, пронизывающего рамку. Пренебрегая самоиндукцией рамки, можно считать, что эта ЭДС вызывает индукционный ток:

$$I_{\text{инд}} = \frac{\varepsilon_{\text{инд}}}{R_{\Sigma}},\tag{5}$$

где $R_{\Sigma} = R_0 + R$ — полное сопротивление цепи, состоящее из сопротивления рамки R_0 и сопротивления внешнего участка цепи R. Связанный с ЭДС индукции момент всегда тормозит вращение рамки:

$$M_3 = M_{\text{инд}} = BSNI_{\text{инд}} = -\frac{(BSN)^2}{R_{\Sigma}}\dot{\varphi}.$$
 (6)

Этот момент значительно превосходит момент сил трения рамки, поэтому далее можем пренебречь M_2 . Суммарный ток в рамке определяется ЭДС индукции и некоторым сторонним источником ЭДС:

$$I_{\Sigma} = \frac{\varepsilon + \varepsilon_{\text{инд}}}{R_{\Sigma}} = I + I_{\text{инд}}.$$
 (7)

Вращение рамки описывается уравнением моментов

$$J\ddot{\varphi} = M_{\Sigma},\tag{8}$$

где J — момент инерции подвижной системы. Тогда эту формулу можно представить в виде:

$$\ddot{\varphi} + 2\gamma\dot{\varphi} + \omega_0^2 \varphi = KI. \tag{9}$$

Здесь параметры γ, ω_0 колебательной системы и коэффициент K связаны с параметрами гальванометра формулами:

$$K = \frac{BNS}{J}; 2\gamma = \beta_{\text{TP}} + \frac{(BSN)^2}{JR_{\Sigma}} \approx \frac{(BSN)^2}{JR_{\Sigma}}; \omega_0^2 = \frac{D}{J}.$$
 (10)

2.2 Режим измерения постоянного тока

Если через рамку пропускать постоянный электрический ток, то заменой переменной $\tilde{\varphi} = \varphi - KI/\omega_0^2$ уравнение (9) приводится к однородному уравнению, описывающему свободные затухающие колебания. Если подождать достаточно долго, чтобы собственные колебания затухли, в уравнении (9) можно положить $\dot{\varphi} = \ddot{\varphi} = 0$, так что

$$\varphi = \frac{K}{\omega_0^2} I = \frac{BSN}{D} I = S_I I = \frac{I}{C_I},\tag{11}$$

где $S_I = \varphi/I = BSN/D$ называется **чувствительностью** гальванометра к току, а обратная ей величина $C_I = 1/SI = D/(BSN) -$ **динамической постоянной** гальванометра.

2.3 Свободные колебания рамки

Рассмотрим свободное движение рамки, то есть движение в отсутствие внешних источников, когда I=0. В этом случае уравнение (9) примет вид

$$\ddot{\varphi} + 2\gamma\dot{\varphi} + \omega_0^2 \varphi = 0. \tag{12}$$

Возможные случаи движения рамки:

- 1. $\gamma < \omega_0$ (колебательный режим). В этом случае движение рамки носит колебательный характер и затухает со временем; а при малом затухании движение рамки близко к синусоидальному.
- 2. $\gamma = \omega_0$ (критический режим). Этот режим реализуется при сопротивлении внешнего участка цепи R, равном *критическому* сопротивлению: $R_{\rm kp} = \frac{(BSN)^2}{2\sqrt{DJ}} R_0$. Движение при этом не имеет колебательного характера: отклоненная после начального толчка подвижная система плавно и экспоненциально возвращается к нулю:

$$\varphi(t) = \dot{\varphi}_0 t e^{-\gamma t}$$

3. $\gamma > \omega_0$ (затухание велико — переуспокоенный гальванометр). Движение апериодическое, однако подвижная система приближается к равновесию медленнее, чем в критическом режиме.

2.4 Режим измерения заряда

Если пропустить через рамку короткий импульс тока, то можно считать, что весь ток успевает пройти при неотклоненном положении рамки. Рамка при этом получает толчок, в результате которого возникает движение, описываемое уравнением свободных колебаний (12).

Величина $C_q = q/\varphi_{max}$ называется **баллистической постоянной** гальванометра. Величина $S_q = 1/C_q$ называется **чувствительностью** гальванометра к заряду.

Максимальный отброс достигается при полном отсутствии затухания, однако в этом случае возникшие колебания рамки долго не смогут успокоиться. Тогда удобнее всего работать в режиме, близком к критическому, так как обеспечивается быстрое затухание колебаний и чувствительность прибора велика:

$$\varphi_{\text{max, kp}} = \frac{Kq}{\omega_0 e}.$$
 (13)

3 Экспериментальная установка

3.1 Определение динамической постоянной гальванометра

Схема для исследования гальванометра в стационарном режиме представлена на рис. 3. Постоянное напряжение U снимается с блока питания и измеряется вольтметром V. Ключ K_3 позволяет менять направление тока через гальванометр Γ , делитель напряжения — менять величину тока в широких пределах. Ключ K_2 служит для включения гальванометра, кнопка K_1 — для его успокоения. Магазин сопротивлений R позволяет менять режим работы гальванометра от колебательного до периодического.

Сила тока, протекающего через гальванометр, может быть вычислена как

$$I = \frac{R_1}{R_2} \frac{U_0}{R + R_0},\tag{14}$$

где U_0 — показание вольтметра, R_1/R_2 — положение делителя, R — сопротивление магазина, R_0 — внутреннее сопротивление гальванометра.

Рис. 3. Схема установки для работы гальванометра в стационарном режиме

Угол отклонения рамки от положения рановесия измеряется с помощью осветителя, зеркальца на рамке и шкалы, на которую отбрасывается луч света от зеркальца. Координата x светового пятна на шкале

$$x = a \cdot \arctan 2\varphi$$

где a — расстояние от шкалы до зеркальца. При малых углах $\varphi = x/(2a)$, тогда динамическая постоянная:

$$C_I = \frac{I}{\varphi} = \frac{2aI}{x}. (15)$$

3.2 Определение критического сопротивления гальванометра

Измерение критического сопротивления гальванометра можно выполнить при помощи той же схемы (рис. 3). С уменьшением R затухание колебаний увеличивается и колебательный режим переходит в апериодический. Условие ($\gamma=\omega_0$) можно представить как переходный между колебательным и апериодическим режимами. Воспользуемся логарифмическим декрементом затухания:

$$\theta = \ln \frac{x_n}{x_{n+1}},\tag{16}$$

где x_n и x_{n+1} — два последовательных отклонения колеблющейся величины в одну сторону. Измеряя зависимость $\theta(R)$, можно найти **критическое сопротивление** как параметр зависимости, которая следует из соотношения:

$$R_{\rm \kappa p} = \frac{R + R_0}{\sqrt{(\frac{2\pi}{\theta})^2 + 1}} - R_0. \tag{17}$$

3.3 Определение баллистической постоянной и критического сопротивления гальванометра, работающего в баллистическом режиме

Для изучения баллистического режима работы гальванометра используется экспериментальная установка, представленная на рисунке 4. Система ключей устроена

так, что нормально ключ K_2 замкнут, а ключи K_3 и K_4 разомкнуты. При нажатии на кнопку K_0 сначала размыкается ключ K_2 , затем ключи K_3 и K_4 . При нормальном положении K_0 конденсатор C заряжается до напряжения $U_C = \frac{R_1}{R_2}U_0$ и получает заряд $q = CU_C$. При нажатии на K_0 конденсатор отключается от источника постоянного напряжения и подключается к гальванометру.

Рис. 4. Схема установки для работы гальванометра в баллистическом режиме

Емкость конденсатора подобрана так, что к моменту замыкания ключа K_4 весь заряд успевает пройти через гальванометр и рамка получает начальную скорость $\dot{\varphi}(\tau)$. Величину максимального отклонения рамки баз затухания можно рассчитать, если при разомкнутой цепи измерить реальное максимальное отклонение рамки φ_0 и логарифмический декремент затухания θ_0 . Тогда:

$$\varphi_{max} = \varphi_0 e^{\theta_0/4} \approx \varphi(1 + \frac{\theta_0}{4}) \tag{18}$$

Баллистическая постоянная определяется соотношением:

$$C_q = \frac{q}{\varphi_{max}} = 2a \frac{R_1}{R_2} \frac{CU_0}{x_{max}},\tag{19}$$

где x_{max} — величина первого отброса в критическом режиме, выраженная в делениях шкалы (мм).

4 Ход работы

4.1 Определение динамической постоянной

Подготовимся к работе: настроим осветитель гальванометра, соберем электрическую цепь согласно рисунку 3 и включим осветитель гальванометра. Установим делитель напряжения $\frac{R_1}{R_2} \approx \frac{1}{2000}$. Увеличивая сопротивление магазина, но не меняя делителя, снимем зависимость отклонения зайчика x от сопротивления магазина R и занесем результаты в таблицу. Ток в цепи рассчитаем по формуле (14). Зависимость тока в цепи от отклонения зайчика отобразим на графике (рис. 5):

R, кОм	x, cm	σ_x , cm	I, нА	σ_I , нА
8	22.7	0.1	88.24	0.39
10	18.5	0.1	71.43	0.39
12	15.7	0.1	60.00	0.38
14	13.7	0.1	51.72	0.38
16	12.1	0.1	45.45	0.38
18	10.8	0.1	40.54	0.38
20	9.9	0.1	36.59	0.37
30	6.9	0.1	24.59	0.36
40	5.4	0.1	18.52	0.34
50	4.5	0.1	14.85	0.33

Таблица 1. Зависимость отклонения зайчика от сопротивления, постоянный ток

Рис. 5. График зависимости тока в цепи от отклонения зайчика

По графику при помощи МНК определим коэффициент наклона полученной кривой k и свободный член b, а также погрешности их определения:

k	0.403 ± 0.007
b	-3.258 ± 0.010

Таблица 2. Параметры графика зависимости тока в цепи от отклонения зайчика

Занесем в таблицу 3 некоторые параметры установки: U_0 — показание вольтметра, R_2 , $\frac{R_1}{R_2}$ — значение делителя, R_0 — внутреннее сопротивление гальванометра.

U_0 , B	1.5
R_2 , кОм	10
R_1/R_2	1/2000
R_0 , Om	500

Таблица 3. Некоторые параметры установки

Определим расстояние от шкалы до зеркальца гальванометра $a=120 \,\mathrm{cm}$. Зная это

расстояние, мы можем рассчитать значение динамической постоянной по формуле (15):

$$C_I = \frac{2aI}{x} = 2a\frac{I}{x} = 2ak = (0.97 \pm 0.02) \cdot 10^{-9} \frac{A}{MM/M}$$

и, следовательно, чувствительность гальванометра к току:

$$S_I = 1/C_I = (1.03 \pm 0.02) \cdot 10^9 \frac{\text{MM/M}}{\text{A}}.$$

4.2 Определение критического сопротивления

Установим значение R, при котором зайчик отклоняется практически на всю шкалу, и разомкнем ключ K_2 , чтобы обеспечить свободные колебания. Измерим пары последовательных отклонений зайчика в одну сторону и рассчитаем логарифмический декремент затухания θ_0 разомкнутого гальванометра по формуле (16). Данные занесем в таблицу 4:

x_n , cm	$\theta_0 = \ln \frac{x_n}{x_{n+1}}$
17.90	0.225
14.30	0.218
11.50	0.223
9.20	0.218
7.40	0.210
6.00	0.203
4.90	0.228
3.90	

Таблица 4. Данные для определения логарифмического декремента затухания

Отсюда $\theta_0 \approx 0.218 \pm 0.009$. При R=8 кОм измерим период T_0 свободных колебаний рамки, он получается приблизительно равен 5.6 с. Это сопротивление также является наибольшим сопротивлением магазина, при котором при замыкании ключа K_3 зайчик не переходит нулевую метку на шкале, следовательно, это сопротивление близко к критическому.

Теперь для расчета θ проведем измерения отклонений зайчика после размыкания ключа K_3 , увеличивая сопротивление магазина от $R=3R_{\rm kp}$ до $R=10R_{\rm kp}$. Результаты занесем в таблицу 5. Также построим график зависимости $(R+R_0)$ от $(\sqrt{(\frac{2\pi}{\theta})^2+1})$ для качественного определения $R_{\rm kp}$.

R, кОм	x_n , cm	x_{n+1} , cm	θ , нА	$\sqrt{(\frac{2\pi}{\theta})^2+1}$	$R+R_0$, кОм
25	14.3	2.0	1.97	3.35	25.5
29	12.1	2.1	1.75	3.72	29.5
33	10.8	2.3	1.55	4.18	33.5
37	9.8	2.4	1.41	4.57	37.5
41	9.1	2.5	1.29	4.96	41.5
46	7.9	2.5	1.15	5.55	46.5
50	7.4	2.6	1.05	6.09	50.5
57	5.7	2.2	0.95	6.67	57.5
83	4.7	2.4	0.67	9.40	83.5

 Таблица 5. Расчеты и измерения для определения критического сопротивления

 График зависимости

Рис. 6. График зависимости сопротивления в цепи от $\sqrt{(\frac{2\pi}{\theta})^2 + 1}$

Определим коэффициент наклона построенного графика: $k = 9.52 \pm 0.19$. Тогда по формуле (17) определим значение **критического сопротивления**:

$$R_{\mathrm{kp}} = \frac{R + R_0}{\sqrt{(\frac{2\pi}{\theta})^2 + 1}} - R_0 = k - R_0 \approx (9.02 \pm 0.18) \text{kOm}.$$

4.3 Баллистический режим

Соберем схему согласно рис. 4 и установим сопротивление магазина R=50 кОм. Для измерения первого отброса зайчика разомкнем цепь, отсоеднив одну из клемм от магазина, и подберем делитель таким образом, чтобы при замыкании ключа K_0 первый отброс x_{max} соответствовал отклонению зайчика почти на всю шкалу. Отброс 22.5 см (а это почти вся шкала) будет при значении делителя 1/70. Тогда, по формуле (18), получим отброс в режиме свободных колебаний:

$$x_{max} = x_0 e^{\theta_0/4} = 22.5 \cdot e^{0.218/4} = 23.4 \text{cm},$$

а в критическом режиме первый оброс в e раз меньше, чем в режиме свободных колебаний, поэтому

$$x_{\mathrm{Kp}} = \frac{x_{max}}{e} \approx 8.6 \mathrm{cm}.$$

Снова подключим магазин сопротивлений R и будем уменьшать R до тех пор, пока отброс не уменьшится до 1/3-1/4 от своей начальной длины. Изобразим на графике на рис. 7 зависимость x_{max} от $R+R_0$, необходимую для определения R.

x_{max} , cm	$R+R_0$, кОм
18.5	50.5
17.3	40.5
16.5	30.5
14.4	20.5
11.1	10.5
9.5	8.5
8.3	6.5
6.6	4.5
4.0	2.5
2.6	1.5

Таблица 6. Зависимость максимального отброса от суммарного сопротивления

$$xmax(R + R0)$$

Рис. 7. График зависимости максимального отброса от суммарного сопротивления в цепи

Примерная формула, отображающая зависимость, показана на графике (рис. 7), где $x->(R+R_0)$. Из формул (18) и (13) мы знаем, что

$$x_{\mathrm{max, kp}} = \frac{Kq}{\omega_0 e}$$

И

$$x_{max} = x_0 e^{\theta_0/4} \approx x(1 + \frac{\theta_0}{4}).$$

Тогда

$$x_{\text{kp}} = \ln (R_{\text{kp}} + R_0)^{4.7321} - 0.1223;$$

$$R_{\text{kp}} = e^{\frac{x_{\text{kp}} + 0.1223}{4,7321}} - R_0 = 5.92 \text{kOm}.$$

По формуле (19) рассчитаем баллистическую постоянную, зная емкость конденсатора (C = 2мк Φ):

$$C_q = 2a\frac{R_1}{R_2}\frac{CU_0}{x_{\text{\tiny KD}}} = 2\cdot 1.20\cdot \frac{1}{70}\cdot \frac{2\cdot 10^{-6}\cdot 1.5}{86} = (1.19\pm 0.01)\frac{\text{\tiny HK}_{\rm J}}{\text{\tiny MM/M}}.$$

Тогда чувствительность гальванометра к заряду:

$$S_q = 1/C_q = (0.84 \pm 0.01) \cdot 10^9 \frac{\text{MM/M}}{\text{K}_{\text{II}}}.$$

Теперь определим время релаксации. Мы знаем, что к моменту замыкания ключа весь заряд должен успеть пройти через гальванометр, чтобы рамка приобрела некоторую скорость и начались колебания, поэтому время релаксации должно быть сильно меньше периода колебаний.

$$\tau = R_0 C = 1 \cdot 10^{-6} c \ll T_0$$

следовательно, эксперимент верен.

5 Вывод

В данной лабораторной работе мы изучили работу гальванометра в стационарном и баллистическом режимах и определили ряд его характеристик. Так, была рассчитана динамическая постоянная:

$$C_I = (0.97 \pm 0.02) \cdot 10^{-9} \frac{A}{\text{MM/M}},$$

баллистическая постоянная:

$$C_q = (1.19 \pm 0.01) \cdot 10^{-9} \frac{\text{K}_{\pi}}{\text{MM/M}},$$

и было определено критическое сопротивление тремя разными способами:

$R_{\mathrm{\kappa p}},\ \mathrm{кOm}$ - подбор	$R_{ m kp},$ к ${ m O}$ м - по графи-	$R_{\mathrm{\kappa p}}$, кОм - по графи-	
	ку в стационарном	ку в баллистическом	
	режиме	режиме	
8	9.02	5.92	

Таблица 7. Результаты измерения критического сопротивления внешнего участка цепи тремя способами