Analysis and Control of Time-Varying and Perturbed Systems

Keno Bürger

Advanced Nonlinear Control 16 June 2025

Chair of Automatic Control Engineering

Technical University of Munich

Main Objective

Based on:

- Nonlinear Control (Ch. 4): Time-varying and perturbed systems
- Nonlinear Systems (Ch. 9, 11.5): Stability under perturbations

Objective:

- Formulate practical and broadly applicable stability conditions
- Analyze stability under **vanishing perturbations** using comparison functions
- Study ultimate boundedness for systems with non-vanishing perturbations

Lyapunov Theory for Time-Varying Systems

Assumptions:

- Origin $\underline{x} = 0$ is an equilibrium point
- \blacksquare Lyapunov function $V(t,\underline{x})$ is continuously differentialbe, positive definite and radially unbounded
- Derivative of Lyapunov function is negative definite

Vanishing Perturbations

Globally uniformly exponentially stable:

$$\exists c_i, \alpha > 0 : c_1 \|\underline{x}\|^{\alpha} \le V(t, \underline{x}) \le c_2 \|\underline{x}\|^{\alpha}$$
$$\dot{V}(t, \underline{x}) \le -c_3 \|\underline{x}\|^{\alpha}$$

Boundedness and Ultimate Boundedness

Boundedness:

$$\|\underline{x}(t_0)\| \le \alpha \Rightarrow \|\underline{x}(t)\| \le \beta,$$

 $c > 0, \alpha \in (0, c), \beta > 0, \forall t \ge t_0$

Ultimate Boundedness:

$$\|\underline{x}(t)\| \le b$$
$$\forall t \ge t_0 + T$$

Understanding Perturbation Types

Motivation: Real-world systems are subject to time dependence, modelling errors and external disturbances

General System Form:

$$\underline{\dot{x}} = f(\underline{x}) + g(\underline{x}, t)$$

Vanishing Perturbation:

- $\blacksquare g(\underline{x},t) \to 0 \text{ as } \underline{x} \to 0$
- Preserves exponential stability
- Examples: modeling errors

Non-Vanishing Perturbation:

- $\blacksquare g(\underline{x},t) \not\to 0 \text{ as } \underline{x} \to 0$
- Leads to ultimate boundedness
- Examples: constant disturbances

Lyapunov Stability Theorems

Assumptions:

- Origin x=0 is an exponentially stable equilibrium point
- Perturbation vanishes

Introduction

Lyapunov function V(t,x) is continuously differentialbe, positive definite and radially unbounded

Globally Uniformly Exponentially Stable Equilibrium:

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(\underline{x}) \le c_3 \|\underline{x}\|^2 \text{ and } \|\frac{\partial V}{\partial x}\| \le c_4 \|\underline{x}\|$$

$$\|g(\underline{x},t)\| \leq \gamma \|\underline{x}\| \text{ with } 0 \leq \gamma(t) < \frac{c_3}{c_4}$$

Comparison Lemma – Example

System:

$$\underline{\dot{x}} = -a\underline{x}(t) + g(t,\underline{x}), \quad \underline{x}(0) = 0, \quad a > 0$$

Assumptions:

- $\mathbf{x}(t) \ge 0 \quad \forall t \ge 0$
- $g(t,\underline{x}) \le b\underline{x}(t) \quad \forall x \ge \underline{x} \ge 0$

Integral Condition:

$$\underline{x}(t) \le \underline{x}_0 + \int_{t_0}^t \gamma(\tau) d\tau = \underline{x}_0 + \int_{t_0}^t \left[-a \, \underline{x}(\tau) + b \, \underline{x}(\tau) \right] d\tau$$

Bound for Derivative:

$$\underline{\dot{x}}(t) \le -a\,\underline{x}(t) + b\,\underline{x}(t) = -(a-b)\,\underline{x}(t)$$

Comparison Lemma – Example

$$\underline{x}(t) \le \underline{x}_0 + \int_{t_0}^t \underline{\dot{x}}(\tau) d\tau \le \underline{x}_0 - (a-b) \int_{t_0}^t \underline{x}(\tau) d\tau$$

If (a - b) x is continuous, positive definite, and non-decreasing, then:

$$\lim_{t \to \infty} \underline{x}(t) = 0$$

which ensures that the system loses more than it gains.

Furthermore, exponential decay is guaranteed:

$$\underline{x}(t) \le \underline{x}_0 e^{-(a-b)t}$$

Introduction

Lyapunov-Based Conditions for Boundedness

Assumptions:

 \blacksquare $\underline{x} = 0$ is exponentially stable for the nominal system

Vanishing Perturbations

- lacktriangleq Non-vanishing, bounded perturbation $g(\underline{x},t)$
- lacktriangle Lyapunov function $V(t,\underline{x})$ is positive definite and radially unbounded
- Perturbation bound:

$$\|g(\underline{x},t)\| \le \delta < \frac{c_3}{c_4} \sqrt{\frac{c_1}{c_2}} \, \theta r, \quad \theta \in (0,1), \ r > 0$$

Lyapunov-Based Conditions for Boundedness

Exponential Stability:

For all initial conditions satisfying $\|\underline{x}(t_0)\| \leq \sqrt{c_1/c_2}\,r$:

$$\|\underline{x}(t)\| \le k e^{-\gamma(t-t_0)} \|\underline{x}(t_0)\|, \quad t_0 \le t \le t_0 + T$$

Ultimate Boundedness:

$$\|\underline{x}(t)\| \le b \quad \forall t \ge t_0 + T$$

Parameters:

$$k = \sqrt{\frac{c_2}{c_1}}, \quad \gamma = \frac{(1-\theta)c_3}{2c_2}, \quad b = \frac{c_4}{c_3}k\frac{\delta}{\theta}$$

Example: Bounded Disturbance Response

System:

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -2x_1 - 3x_2 + d, \quad |d| \le \delta$

Interpretation:

- Mass-spring-damper system with constant external force
- Nominal system (d = 0): exponentially stable

Lyapunov Candidate: $V(\underline{x}) = \underline{x}^T P \underline{x}$

- \blacksquare P > 0 solves $A^T P + P A = -Q$, with Q = I
- $\blacksquare A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$

Introduction

Bounds:
$$c_1 \|\underline{x}\|^2 \le V(\underline{x}) \le c_2 \|\underline{x}\|^2$$

Example: Bounded Disturbance Response

Lyapunov Derivative:

$$\dot{V} \le -c_3 \|\underline{x}\|^2 + c_4 \delta \|\underline{x}\|$$

Compare to:

$$\dot{V} \le -c_3 \|\underline{x}\|^2 + c_4 \|g(\underline{x}, t)\| \|\underline{x}\|$$

Boundedness Condition:

Introduction

$$\|g(\underline{x},t)\| \le \delta < \frac{c_3}{c_4} \sqrt{\frac{c_1}{c_2}} \theta r, \quad \theta \in (0,1)$$

Then:

Conclusion: State converges to a ball around the origin; size scales with δ

Key Insights and Practical Implications

Theoretical Insights:

- Lyapunov methods unify analysis of time-varying and perturbed systems
- Perturbation type determines achievable stability properties
- Ultimate boundedness reflects real-world system robustness

Design Implications:

- Small, vanishing perturbations: maintain exponential convergence
- Persistent disturbances: design for bounded operation

Vanishing Perturbations

Robustness requires appropriate perturbation characterization

References I

- Giovanni Gallavotti. Perturbation Theory. In: Perturbation Theory. Ed. by Giuseppe Gaeta.
 Series Title: Encyclopedia of Complexity and Systems Science Series. New York, NY: Springer US, 2009, pp. 1–14.
 ISBN: 978-1-0716-2620-7 978-1-0716-2621-4. DOI: 10.1007/978-1-0716-2621-4_396.
- [2] Hassan K. Khalil. Nonlinear control. Global edition. Boston Munich: Pearson, 2015. ISBN: 978-1-292-06069-9.
- [3] Hassan K. Khalil. Nonlinear systems. Pearson new internat. ed., 3. ed. Always learning. Harlow: Pearson Education, 2014. ISBN: 978-1-292-05385-1.
- [4] Shenyu Liu. Unified stability criteria for perturbed LTV systems with unstable instantaneous dynamics. Feb. 2022.
 DOI: 10.48550/arXiv.2111.07443.
- [5] James Murdok. 1. Root Finding. en. In: Perturbations: Theory and Methods. Society for Industrial and Applied Mathematics, Jan. 1999, pp. 3–81. ISBN: 978-0-89871-443-2 978-1-61197-109-5. DOI: 10.1137/1.9781611971095.ch1.

