Practical algorithms and parameters for modification-tolerant signature scheme

Anthony Bernardo Kamers¹ Paola de Oliveira Abel¹ Thaís Bardini Idalino¹ Gustavo Zambonin¹ Jean Everson Martina¹

¹Universidade Federal de Santa Catarina - UFSC

17 de Setembro de 2024

Traditional digital signatures

What happens if we change the signed document?

Traditional digital signatures

- \bullet \mathcal{H} is a hash function
- ullet Σ is a traditional signature scheme
- ullet σ is the signature

Modification-tolerant signature scheme [Idalino et al., 2019]

 \bullet $\,{\cal M}$ is a table with special properties

Cover-free families (CFFs)

	a	b	С	d	e	f	g	h	i	j	k	1
1	1	0	0	1	0	0	1	0	0			0
2	1	0	0	0	1	0	0	1	0	0	1	0
3	1	0	0	0	0	1	0	0	1	0	0	1
4	0	1	0	1	0	0	0	0	1	0	1	0
5	0	1	0	0	1	0	1	0	0	0	0	1
6	0	1	0	0	0	1	0	1	0	1	0	0
7	0	0	1	1	0	0	0	1	0	0	0	1
8	0	0	1	0	1	0	0	0	1	1	0	0
9	0	0	1	0	0	1	1	0	0	0	1	0

Cover-free families (CFFs)

Identifying defects using CFFs

```
h i
                                                k
               b
                        e
Test 1 X
           1
              0
                  0
                                     0
                                                   0
Test 2 X
           1
              0
                      0
                                 0
                                     1
                                        0
                                            0
                                                   0
Test 3 🗸
           1
              0
                  0
                      0
                         0
                                 0
                                     0
                                            0
                                                   1
Test 4 X
           0
                      1
                                 0
                                            0
                                                   0
Test 5 

                  0
                             0
                                 1
           0
                      0
                                     0
                                            0
Test 6 X
           0
                  0
                      0
                                 0
                                                   0
Test 7 X
           0
                      1
                                                   1
              0
                          0
                                 0
                                            0
Test 8 🗸
           0
              0
                      0
                             0
                                 0
                                     0
                                                   0
Test 9 🗸
           0
                                 1
               0
                      0
                          0
                                     0
                                        0
                                            0
                                                   0
```

• 2-CFF(9, 12)

Signature process - Algorithm Sig

Verifying process - Algorithm Ver

Locating process - Algorithm Ver

Our contributions

- Complementing the MTSS framework [Idalino et al., 2019]
 - High-level implementation
 - Performance statistics
 - CFF parameters
 - How to efficiently divide a document into blocks
- New usage for MTSS: provide integrity and authenticity of any part of a signed document without ownership of the whole message

MTSS in practice Dividing blocks

Dividing blocks: approaches

Dividing blocks: our approach

MTSS in practice Creating CFFs

Result: poor performance generation

Solution: cache!!

Experiments using different Σ and ${\cal H}$

Sig algorithm

		Sig time (ms)								
	Σ	SHA-2		SHA-3		BLAKE		$ \sigma $ (bytes)		
		256	512	256	512	2s	2b	256	512	
Raw Σ	RSA-2048 ML-DSA-44 Ed25519	4.83 3.93	3.63 2.67 3.08	3.93 2.96	6.42 5.49	2.49 1.54	3.32 2.36	256 2360	256 2360 64	
MTSS	RSA-2048 ML-DSA-44 Ed25519	27.35 26.44	19.42 18.85 19.99	21.76 21.27	36.85 36.04	10.86 10.36	15.63 15.2	1088 3180	1880 3990 1690	

Using $\mathcal{M}=\text{2-CFF}(25,125)$

Sig with DivideBlocks and CreateCFF

Ver algorithm

		Ver time (ms)							
	Σ	SH	A -2	SH	A-3	BLAKE			
		256	512	256	512	2s	2b		
W	RSA-2048	4.09	2.87	3.15	5.66	3.21	4.84		
Raw	ML-DSA-44	3.88	2.61	2.90	5.47	1.51	2.30		
చ్ద	Ed25519		3.84						
0	RSA-2048	4.16	2.95	3.25	5.80	1.81	2.64		
II	ML-DSA-44	3.94	2.69	3.00	5.55	1.55	2.37		
_	Ed25519		3.90						
Н	RSA-2048	159.95	174.53	162.22	162.29	153.15	162.94		
II	ML-DSA-44	156.93	177.55	159.49	165.35	163.51	154.37		
=	Ed25519		165.41						

Using $\mathcal{M}=\text{2-CFF}(25,125)$

New usage for MTSS

What if we did not need to sign every page of the Brazilian Federal Register (Diário Oficial da União) to verify one page's integrity and authenticity?

Ensuring data integrity for individual blocks Using MTSS

Ensuring data integrity for individual blocks Using MTSS

	a			d			
1	1	1	1	0	0	0	
2	1	0	0	1	1	0	
3	0	1	0	1	0	1	
4	0	0	1	0 1 1 0	1	1	

References L

Idalino, T. B., Moura, L., and Adams, C. (2019). Modification tolerant signature schemes: location and correction. In *International Conference on Cryptology in India*, pages 23–44. Springer.

Practical algorithms and parameters for modification-tolerant signature scheme

• Repository: https://github.com/AnthonyKamers/mtss-signer

Anthony Kamers Paola Abel Thaís Bardini Gustavo Zambonin Jean Martina

anthony.kamers@posgrad.ufsc.br paola.abel@grad.ufsc.br thais.bardini@ufsc.br gustavo.zambonin@posgrad.ufsc.br jean.martina@ufsc.br

Questions?