2021/2022 学年春季学期

电路 期末复习试题

V1.0 2022.6

说明:

- 1. 适用于: 自动化类、电气类(电路 [A), 电子信息类(电路 [])。
- 2. 本次考试为闭卷考试,考试时间为120分钟,总分100分。
- 3. 可以使用无编程、记忆功能的计算器。
- 4. 仅供复习参考,不作猜题押题之用。请尽量限时训练,不要中断计时,把握好答题节奏。

注意行为规范 遵守考场纪律

- 一、填空题(共5小题,每小题4分,满分20分)
- **1.** A. 图 1.1A 中, $U_S = 16V$,在 $U_S \setminus I_{S1} \setminus I_{S2}$ 的作用下有 U = 20V,在 $I_{S1} \setminus I_{S2}$ 保持不变的情况下,若要使 U = 0,则 $U_S = \dots V_o$
 - B. 图 1.1B 中,N_R 为无源电阻网络,(a)图中, $I_{S1} = 3A$, $U_1 = 6V$, $U_2 = 12V$, $I_3 = 1A$;(b)图中, $R_1 = 1\Omega$, $\hat{U}_{S3} = 18V$, $\hat{I}_{S2} = 1.5A$,则(b)图中电流 $\hat{I}_{R1} = \dots A$ 。

图 1.1A

图 1.1B

图 1.2

图 1.3

- **2.** 如图 1.2 所示电路,若以 i_L 和 u_C 为状态变量,写出电路的状态方程:(以矩阵形式表达)
- 3. A. 设一端口网络的电压电流为同频率正弦量,电压相量 $\dot{U}=U \angle \psi_1$,电流相量 $\dot{I}=I \angle \psi_2$,且二者为关
- 联参考方向。则该一端口网络无功功率为______,视在功率为_____。(用U, I, ψ_1 , ψ_2 表示) B. 如图 1.3 所示电路,已知 $is(t) = 14\sqrt{2}\cos(\omega t + \psi)$ (mA),调节电容,使 $\dot{U} = U \angle \psi$ 。电流表 A_1 、 A_2 均为理想电流表, A_1 的示数为 50mA,则 A_2 的示数为______mA。

4. A. 图 1.4A 所示为含有理想变压器的电路,已知 $\dot{U}_{\rm s}$ = 20 \angle 0 $^{\circ}$ V ,则 \dot{I} = ________。 B. 图 1.4B(a)所示电路, $R=100\Omega$,M=20H,电流源的波形如图 1.4B(b)所示,在下面方框中画出耦合 电感二次侧电压 u2(t)的波形。

5. 如图 1.5 所示电路, $\omega L_1 = 0.625\Omega$, $1/\omega C = 45\Omega$, $\omega L_2 = 5\Omega$, $u_s(t) = 100 + 100\cos(3\omega t + 40^\circ) + 50\cos(9\omega t + 40^\circ)$

图 1.5

二、分析与计算(共8大题,满分80分)

(-)(10分) 含运算放大器 A_1 、 A_2 的电路如图 2.1 所示。求输出电流 i_L 与输入电压 u_1 的关系。(图中电 阻阻值均为已知量)

图 2.1

 $(二)(10 \, \mathcal{A})$ 图 2.2 所示为含互感谐振电路。设电流源 $i_S = 4\cos\omega t$ A。求电流 i 的谐振角频率 ω_0 ,以电流 i 为响应,以 i_S 为激励时的带宽 $\Delta\omega$ 和谐振时的电压 u。

 $(\Xi)(10分)$ 用回路电流法求图 2.3 所示电路中 1Ω 电阻吸收的功率和两个独立电源发出的功率。

图 2.3

(四) (10 分) 图 2.4 所示电路,已知 $\dot{U}_{\rm s}$ =10 \angle 0° V,求负载 Z 为何值时可获得最大功率,并求其最大功率和电流 I_2 。

(五)(10分)图 2.5 所示电路,已知 $\dot{I}_{\rm s}$ = 4 \angle 0°A,用戴维南定理求电流相量 \dot{I} 。

(六)(10)0 如图 2.6 所示,三相容性负载与线电压为 300V 的对称三相电源相连。功率表 \mathbf{W}_1 的读数为 0,功率表 \mathbf{W}_2 的读数为 1500 \mathbf{W} 。求阻抗 \mathbf{Z} 为多少。(功率表为理想功率表)

(七)(10分)图 2.7 所示电路原处于稳态, $U_S = 20$ V,C = 0.025F, $u_{S1} = 5\cos(10t)$ V。t = 0时开关 K 由闭合突然断开,试用三要素分析法求 t > 0时的全响应 u_{Co}

图 2.7

(八)(10分)图 2.8 所示电路在换路之前已处于稳态,t=0时开关闭合,L=1mH, $C=1000\mu$ F。用复频域分析法求开关闭合后的电压 $u_0(t)$ 。

图 2.8