

Année universitaire 2014/2015

	$\operatorname{Site}:$	□ Luminy	\boxtimes St-Charles	\square St-Jérôme	\square Cht-Gombert	⋈ Aix-Montperrin	☐ Aubagne-SATI
--	------------------------	----------	------------------------	---------------------	-----------------------	------------------	----------------

Sujet de : \Box 1 er semestre \Box 2 ème semestre \boxtimes Session 2 Durée de l'épreuve : 2h

Examen de : L1 Nom du diplôme : Licence de Mathématiques Code du module : SMI1U3 Libellé du module : Géométrie et arithmétique 1

Calculatrices autorisées : NON Documents autorisés : NON

Exercice 1

i) Trouver une équation paramétrique de la droite $L = P \cap P'$, donnée par l'intersection des plans

$$P = \{(1, 2, 1) + s(2, 1, 3) + t(1, 0, 1), s, t \in \mathbb{R}\}\$$

et

$$P' = \{(x, y, z) \in \mathbb{R}^3, x + y + 5z - 2 = 0\}$$

dans l'espace \mathbb{R}^3 .

ii) Donner une équation cartésienne du plan perpendiculaire à L et contenant l'origine.

Exercice 2

Calculer module et argument des solutions de l'équation $z^3 = 1 + i$.

Exercice 3

i) Montrer que

$$e^{2it} + e^{it} = 2e^{3it/2}\cos(t/2), \ \forall t \in \mathbb{R}.$$

ii) En déduire module et argument de $z = e^{2it} - e^{it}$ pour $t \in]0, \pi[$.

Exercice 4

- i) Donner la définition du PGCD de deux polynômes à coefficients réels.
- ii) Calculer le PGCD des polynômes $P = X^3 X^2 14X + 24$ et $Q = X^2 + 2X 15$.

Exercice 5

- i) Décomposer le polynôme $P=X^4-6X^3+15X^2-18X+10$ en produit de polynômes irréductibles dans $\mathbb{C}[X]$ en sachant que $\alpha=2+i$ est une racine de P. (Noter que l'ensemble des racines complexes d'un polynôme réel est stable sous conjugaison complexe.)
- ii) Donner la décomposition de P en produit de polynômes irréductibles de $\mathbb{R}[X]$.