Aprendizagem Automática

João Paulo Pordeus Gomes

Aula Anterior

Regressão Logística

Regressão Logística

Modelo

Regra de Aprendizado

Gradiente descendente

Gradiente descendente estocástico

$$\mathbf{w} = \mathbf{w} + \alpha e_i \mathbf{x}_i$$

Regressão Logística

Regressão Logística

Classificador Não Linear

- Como fazer essa classificação
 - $x = [x_1 \ x_2]$

Classificador Não Linear

Como fazer essa classificação

- $x = [x_1 \ x_2]$
- Criar um novo atributo $x_3 = x_1^2 + x_2^2$

Classificador Não Linear

Como fazer essa classificação

Overfitting

 Modelo se ajusta demasiadamente aos dados utilizados para encontrar os parâmetros

Overfitting

 Modelo se ajusta demasiadamente aos dados utilizados para encontrar os parâmetros

Overfitting

 Modelo se ajusta demasiadamente aos dados utilizados para encontrar os parâmetros

Tamanho do Modelo

- Como ajustar o tamanho do modelo ?
 - Modelo

$$\overline{y_i} = \frac{1}{1 + e^{-w^T x_i}}$$

x pode ter dimensão alta

Tamanho do Modelo

- Como ajustar o tamanho do modelo ?
 - Modelo

$$\overline{y}_i = \frac{1}{1 + e^{-w^T x_i}}$$

- x pode ter dimensão alta
- Regularização
 - Diminuir os pesos (w) associados às características (x) que influenciam menos no resultado

- Função de custo
 - $J(w) = \frac{1}{2n} \sum_{i=1}^{n} -y_i \ln(\overline{y_i}) (1 y_i) \ln(1 \overline{y_i})$

- Função de custo
 - $J(w) = \frac{1}{2n} \sum_{i=1}^{n} -y_i \ln(\overline{y_i}) (1 y_i) \ln(1 \overline{y_i})$
- Nova unção de custo
 - $J(\mathbf{w}) = \frac{1}{2n} \left[\sum_{i=1}^{n} -y_i \ln(\overline{y_i}) (1 y_i) \ln(1 \overline{y_i}) + \lambda \sum_{j=1}^{m} w_j^2 \right]$

Função de custo

$$J(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} -y_i \ln(\overline{y_i}) - (1 - y_i) \ln(1 - \overline{y_i})$$

Nova unção de custo

$$J(w) = \frac{1}{2n} \left[\sum_{i=1}^{n} -y_i \ln(\overline{y_i}) - (1 - y_i) \ln(1 - \overline{y_i}) + \lambda \sum_{j=1}^{m} w_j^2 \right]$$

- Regra de aprendizado
 - Gradiente descendente

$$\square w = w - \alpha \frac{\partial J}{\partial w}$$

Função de custo

$$J(\mathbf{w}) = \frac{1}{2n} \left[\sum_{i=1}^{n} -y_i \ln(\overline{y_i}) - (1 - y_i) \ln(1 - \overline{y_i}) + \lambda \sum_{j=1}^{m} w_j^2 \right]$$

Gradiente descendente

Função de custo

$$J(\mathbf{w}) = \frac{1}{2n} \left[\sum_{i=1}^{n} -y_i \ln(\overline{y_i}) - (1 - y_i) \ln(1 - \overline{y_i}) + \lambda \sum_{j=1}^{m} w_j^2 \right]$$

Gradiente descendente

$$w = w - \alpha \frac{\partial J}{\partial w}$$

Função de custo

$$J(\mathbf{w}) = \frac{1}{2n} \left[\sum_{i=1}^{n} -y_i \ln(\overline{y_i}) - (1 - y_i) \ln(1 - \overline{y_i}) + \lambda \sum_{j=1}^{m} w_j^2 \right]$$

Gradiente descendente

Regra de Aprendizado

$$w_0 = w_0 + \alpha \left[\frac{1}{n} \sum_{i=1}^n e_i x_{i0} \right]$$

$$w_j = w_j + \alpha \left[\frac{1}{n} \sum_{i=1}^n e_i \mathbf{x}_{ij} - \frac{\lambda}{n} w_j \right]$$

- Gradiente descendente estocástico

Utilização do conjunto de dados para treinamento e avaliação

Conjunto de Treinamento e Conjunto de Testes (Holdout)

- Conjunto de Treinamento e Conjunto de Testes (Holdout)
 - Poucos dados

- Conjunto de Treinamento e Conjunto de Testes (Holdout)
 - Poucos dados
- Validação Cruzada
 - K-fold
 - Leave one out

K-fold

- Dividir o conjunto original em k subgrupos (folds) de mesmo tamanho
- Um fold é escolhido para teste
- Outros são utilizados para treinamento
- Procedimento é repetido k vezes
- Resultado é desempenho médio

Leave one out

 Caso particular do K-fold onde k é igual ao número de dados

- Conjunto de Treinamento e Conjunto de Testes (Holdout)
- Muitos dados

- Conjunto de Treinamento e Conjunto de Testes (Holdout)
- Muitos dados
 - ▶ Três conjuntos (treinamento, validação e teste)

- Conjunto de Treinamento e Conjunto de Testes (Holdout)
- Muitos dados
 - Três conjuntos (treinamento, validação e teste)
 - Ajuste dos parâmetros
 - Escolha dos hiper-parâmetros
 - Avaliação do desempenho

- Escolher um conjunto de valores para λ
- Treinar modelos com cada valor de λ
- Calcular o desempenho de cada modelo no conjunto de validação.
- Escolher o modelo com menor erro
- Obter o desempenho do modelo escolhido para o conjunto de teste

Desempenho em cada conjunto

Problemas em um método de ML

- Mais dados
- Menos atributos
- Mais atributos
- Maior λ
- Menor λ

Dúvidas?