Damage gradient/phase-field models for brittle fracture

Jérémy Bleyer

Master M2 Mécanique des Solides : matériaux et structures Endommagement

Outline

- 1 Introduction to phase-field/damage gradient models of brittle fracture
- 2 Numerics, applications and validation
- 3 Extension to dynamic fracture
- Conclusions

Variational approach to fracture [Francfort & Marigo, 1998]

Two-fields minimum principle: displacement u(t), crack location $\Gamma(t)$ The solution $(u(t), \Gamma(t))$ realizes the minimum of the sum of potential and fracture energy:

$$\mathcal{E}(u,\Gamma) = \mathcal{E}_{pot}(u,\Gamma) + E_f(\Gamma) = \int_{\Omega \setminus \Gamma} \frac{1}{2} \varepsilon : \mathbb{C} : \varepsilon \, \mathrm{dx} - W_{ext}(u) + G_c |\Gamma|$$

for all Γ such that $\Gamma(s) \subset \Gamma \ \forall s < t$ and all kinematically admissible displacement u at time t

extends Griffith theory by letting the crack choose its own future path based on a minimum energy principle

impossible to solve in practice ⇒ need approximate numerical strategies

Regularization à la Ambrosio-Tortorelli

Francfort & Marigo variational approach similar to image segmentation using the Mumford-Shah functional [Ambrosio & Tortorelli, 1990]

⇒ mathematical works in this domain lead to the Ambrosio-Tortorelli approximation

adaptation to the variational approach of fracture by [Bourdin et al., 2000]

$$\mathcal{E}_{pot}(u,d) = \int_{\Omega} (1-d)^2 \frac{1}{2} \varepsilon : \mathbb{C} : \varepsilon \, \mathrm{dx} - W_{\mathsf{ext}}(u)$$

$$\mathcal{E}_f(d) = \frac{G_c}{c_w} \int_{\Omega} \left(\frac{w(d)}{\ell_0} + \ell_0 \|\nabla d\|^2 \right) dx$$

 $d \in [0;1]$ is a continuous field representing the fracture location (d=1) in a smeared fashion

 ℓ_0 is a regularization parameter which must be small

w(d) a continuous strictly-monotonic function with w(0) = 0 and w(1) = 1

 c_w a numerical constant associated with w

Regularization properties

Two-fields minimum principle: u(t), d(t) minimizes the total energy:

$$u(t), d(t) = \operatorname*{arg\,min}_{u,d} \mathcal{E}_{pot}(u,d) + \mathcal{E}_{f}(d)$$

with the irreversibility condition $\dot{d} \geq 0$ ℓ_0 will drive the size of the localization zone of the smeared crack representation

Convergence result

the solution (u,d) converges to (u,Γ) solution of the FM problem in the sense of Γ -convergence when $\ell_0 \to 0$, in part. $E_f(d) \to G_c|\Gamma|$

Reinterpretation as a damage gradient model

If $\ell_0=0$ we formally have a **local** damage model (with all its known issues) when $\ell_0\neq 0$, we can see it as a **damage** gradient model (dissipation potential depending both on \dot{d} and $\nabla \dot{d}$) following the framework of standard generalized materials in this interpretation, ℓ_0 may not be seen as a pure mathematical regularization parameter but an **additional material** parameter

Popular choices for w(d)

• AT1 model:

$$a(d) = (1-d)^2, \quad w(d) = d, \quad c_w = \frac{8}{3}$$

• AT2 model:

$$a(d) = (1-d)^2, \quad w(d) = d^2, \quad c_w = 2$$

a(d) is the stiffness degradation function (continuous, monotonically decreasing, a(0) = 1, a(1) = 0)

Why phase-field models?

Models for phase-separation of mixtures (binary alloys for instance) show similar equations the main difference is that they employ a double-well potential $w(d) \propto d^2(1-d)^2$ to penalize intermediate phase densities

First-order optimality conditions

Directional derivative for u: linear variational elasticity problem at fixed d

$$\left.\frac{\partial \mathcal{E}_{tot}}{\partial u}\right|_{(u,d)}(v,0) = 0 \Rightarrow \int_{\Omega} a(d)\varepsilon_u : \mathbb{C} : \varepsilon_v \, \mathrm{d} x = W_{ext}(v) \quad \forall v$$

Directional derivative for d:

$$\left. \frac{\partial \mathcal{E}_{tot}}{\partial d} \right|_{(u,d)} (0,\beta) \ge 0 \Rightarrow \int_{\Omega} \left(a'(d) \frac{1}{2} \varepsilon : \mathbb{C} : \varepsilon \right) \beta \, \mathrm{dx} + \\ \frac{G_c}{c_w} \int_{\Omega} \left(\frac{w'(d)}{\ell_0} \beta + \ell_0 \nabla d \cdot \nabla \beta \right) \, \mathrm{dx} \right) \ge 0$$

 $\forall \beta \geq 0$ which accounts for the irreversibility condition, we have a variational inequality it yields the following evolution laws:

$$f(\varepsilon,d) = -a'(d)\frac{1}{2}\varepsilon : \mathbb{C} : \varepsilon - \frac{G_cw'(d)}{c_w\ell_0} + 2\frac{G_c\ell_0}{c_w}\Delta d \leq 0$$
 (non-local damage criterion)

and $\dot{d} > 0$, $\dot{d}f(\varepsilon, d) = 0$.

Localized solution with d = 1 at $x = x_0$:

$$d(x) = \left(\frac{|x - x_0|}{2\ell_0} - 1\right)^2$$
 on $[x_0 - 2\ell_0, x_0 + 2\ell_0]$, $d = 0$ otherwise

localized zone of finite support (width $4\ell_0$)

$$c_w$$
 computed such that $\frac{1}{c_w} \int_{x_0-2\ell_0}^{x_0+2\ell_0} \left(\frac{w(d(x))}{\ell_0} + \ell_0(d'(x))^2 \right) \mathrm{d}x = 1$

(a) 1D solution

(b) $\ell_0 = 0.1$ for $|\Gamma| = 0.4$

Localized solution with d = 1 at $x = x_0$:

$$d(x) = \left(\frac{|x - x_0|}{2\ell_0} - 1\right)^2$$
 on $[x_0 - 2\ell_0, x_0 + 2\ell_0]$, $d = 0$ otherwise

localized zone of finite support (width $4\ell_0$)

$$c_w$$
 computed such that $\frac{1}{c_w} \int_{x_0-2\ell_0}^{x_0+2\ell_0} \left(\frac{w(d(x))}{\ell_0} + \ell_0(d'(x))^2 \right) \mathrm{d}x = 1$

Crack surface $\Gamma \approx 0.452$

(a) 1D solution (b) $\ell_0 = 0.05$ for $|\Gamma| = 0.4$

1.0

1.000

Localized solution with d = 1 at $x = x_0$:

$$d(x) = \left(\frac{|x - x_0|}{2\ell_0} - 1\right)^2$$
 on $[x_0 - 2\ell_0, x_0 + 2\ell_0]$, $d = 0$ otherwise

localized zone of finite support (width $4\ell_0$)

$$c_w$$
 computed such that $\frac{1}{c_w} \int_{x_0-2\ell_0}^{x_0+2\ell_0} \left(\frac{w(d(x))}{\ell_0} + \ell_0(d'(x))^2 \right) \mathrm{d}x = 1$

Crack surface $\Gamma \approx 0.424$

(a) 1D solution

(b) $\ell_0 = 0.02$ for $|\Gamma| = 0.4$

1.0

0.8

1.000

-0.875

Localized solution with
$$d=1$$
 at $x=x_0$: $d(x)=\exp\left(-\frac{|x-x_0|}{\ell_0}\right)$ localized solution of **infinite support** but characteristic width is ℓ_0 c_w computed such that $\frac{1}{c_w}\int_{x_0-2\ell_0}^{x_0+2\ell_0}\left(\frac{w(d(x))}{\ell_0}+\ell_0(d'(x))^2\right)\mathrm{d}x=1$

(b) $\ell_0 = 0.1$ for $|\Gamma| = 0.4$

February 4th 2020

Localized solution with
$$d=1$$
 at $x=x_0$: $d(x)=\exp\left(-\frac{|x-x_0|}{\ell_0}\right)$ localized solution of **infinite support** but characteristic width is ℓ_0 c_w computed such that $\frac{1}{c_w}\int_{x_0-2\ell_0}^{x_0+2\ell_0}\left(\frac{w(d(x))}{\ell_0}+\ell_0(d'(x))^2\right)\mathrm{d}x=1$

ordinate 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 colution (b) $\ell_0 = 0.05$ for $|\Gamma| = 0.4$

1.0

0.8

0.6

0.4

0.2

February 4th 2020

Crack surface $\Gamma \approx 0.454$

1.000

-0.875

-0.625

-0.500

Localized solution with
$$d=1$$
 at $x=x_0$: $d(x)=\exp\left(-\frac{|x-x_0|}{\ell_0}\right)$ localized solution of **infinite support** but characteristic width is ℓ_0 c_w computed such that $\frac{1}{c_w}\int_{x_0-2\ell_0}^{x_0+2\ell_0}\left(\frac{w(d(x))}{\ell_0}+\ell_0(d'(x))^2\right)\mathrm{d}x=1$

0.8 - - - 0.750 0.6 - - 0.625 - 0.500 - 0.375 - 0.250 - 0.125 - 0.125 - 0.000

Crack surface $\Gamma \approx 0.425$

(b) $\ell_0 = 0.02$ for $|\Gamma| = 0.4$

Jérémy Bleyer (Navier)

Variational brittle fracture

1.0

February 4th 2020

1.000

-0.875

Outline

- Introduction to phase-field/damage gradient models of brittle fracture
- 2 Numerics, applications and validation
- Extension to dynamic fracture
- Conclusions

Classical strategy¹: alternate minimization

¹other possibilities exist

Classical strategy¹: **alternate minimization** at time t_{n+1} , we know the past solution (u_n, d_n) , we iterate:

$$\begin{array}{l} u_{n+1}^0 = u_n \text{ and } d_{n+1}^0 = d_n \\ \text{for } i = 1, \dots, N_{\mathsf{iter \ max}}: \\ u_{n+1}^i = \mathop{\arg\min}_{v} \mathcal{E}_{tot}(v, d_{n+1}^i) & (1) \\ d_{n+1}^i = \mathop{\arg\min}_{d_n \leq d \leq 1} \mathcal{E}_{tot}(u_{n+1}^i, d) & (2) \\ \text{stop if } \|(u_{n+1}^i, d_{n+1}^i) - (u_{n+1}^{i-1}, d_{n+1}^{i-1})\| \leq \mathsf{tol} \end{array}$$

¹other possibilities exist

Classical strategy¹: **alternate minimization** at time t_{n+1} , we know the past solution (u_n, d_n) , we iterate:

$$\begin{array}{l} u_{n+1}^0 = u_n \text{ and } d_{n+1}^0 = d_n \\ \text{for } i = 1, \dots, N_{\text{iter max}}: \\ u_{n+1}^i = \underset{v}{\text{arg min}} \mathcal{E}_{tot}(v, d_{n+1}^i) \qquad (1) \\ d_{n+1}^i = \underset{d_n \leq d \leq 1}{\text{arg min}} \mathcal{E}_{tot}(u_{n+1}^i, d) \qquad (2) \\ \text{stop if } \|(u_{n+1}^i, d_{n+1}^i) - (u_{n+1}^{i-1}, d_{n+1}^{i-1})\| \leq \text{tol} \end{array}$$

Problem (1) = standard elasticity problem with fixed value of $d = d_{n+1}^i$

Classical strategy¹: **alternate minimization** at time t_{n+1} , we know the past solution (u_n, d_n) , we iterate:

$$\begin{array}{l} u_{n+1}^0 = u_n \text{ and } d_{n+1}^0 = d_n \\ \text{for } i = 1, \dots, N_{\text{iter max}}: \\ u_{n+1}^i = \mathop{\arg\min}_{v} \mathcal{E}_{tot}(v, d_{n+1}^i) & (1) \\ d_{n+1}^i = \mathop{\arg\min}_{d_n \leq d \leq 1} \mathcal{E}_{tot}(u_{n+1}^i, d) & (2) \\ \text{stop if } \|(u_{n+1}^i, d_{n+1}^i) - (u_{n+1}^{i-1}, d_{n+1}^{i-1})\| \leq \text{tol} \end{array}$$

Problem (1) = standard elasticity problem with fixed value of $d = d_{n+1}^i$

Problem (2) for AT1/AT2 = minimizing a quadratic energy in terms of d with bound constraints $d_n \le d \le 1$

⇒ there exist dedicated solvers (e.g. TAO distributed with PETSc)

Classical strategy¹: **alternate minimization** at time t_{n+1} , we know the past solution (u_n, d_n) , we iterate:

$$\begin{array}{l} u_{n+1}^0 = u_n \text{ and } d_{n+1}^0 = d_n \\ \text{for } i = 1, \dots, N_{\mathsf{iter \, max}}: \\ u_{n+1}^i = \mathop{\arg\min}_{v} \mathcal{E}_{tot}(v, d_{n+1}^i) & (1) \\ d_{n+1}^i = \mathop{\arg\min}_{d_n \leq d \leq 1} \mathcal{E}_{tot}(u_{n+1}^i, d) & (2) \\ \text{stop if } \|(u_{n+1}^i, d_{n+1}^i) - (u_{n+1}^{i-1}, d_{n+1}^{i-1})\| \leq \mathsf{tol} \end{array}$$

Problem (1) = standard elasticity problem with fixed value of $d = d_{n+1}^i$

Problem (2) for AT1/AT2 = minimizing a quadratic energy in terms of d with bound constraints $d_n \le d \le 1$

⇒ there exist **dedicated solvers** (e.g. TAO distributed with PETSc)

Warning

we must find a global minimum of $\mathcal{E}_{tot} \Rightarrow$ extremely difficult as \mathcal{E}_{tot} is **non-convex** alternate minimization will only converge to **critical points** (not necessarily a minimum)

¹other possibilities exist

Open-source implementation

Next week: extension of previous local damage script to damage gradient very close to

Corrado Maurini and Tianyi Li implementation using FEniCS

https://bitbucket.org/cmaurini/gradient-damage

Open-source implementation

Next week: extension of previous local damage script to damage gradient very close to

Corrado Maurini and Tianyi Li implementation using FEniCS

https://bitbucket.org/cmaurini/gradient-damage

Example: Traction of a plate with a stiff inclusion [Bourdin et al., 2000]

Application to a thermal shock problem

Thermal strains: strain energy is now $(1-d)^2\frac{1}{2}(\varepsilon-\varepsilon^{th}):\mathbb{C}:(\varepsilon-\varepsilon^{th})$ with $\varepsilon^{th}=\alpha\Delta T1$

Ceramic plate in a cold bath:

Numerics from [Bourdin et al., 2014]

Experiments from [Shao et al., 2011]

Application to a thermal shock problem

Thermal strains: strain energy is now $(1-d)^2\frac{1}{2}(\varepsilon-\varepsilon^{th}):\mathbb{C}:(\varepsilon-\varepsilon^{th})$ with $\varepsilon^{th}=\alpha\Delta T1$

Rapid cooling of a strip of glass: osciallatory cracks

Simulation 1

Simulation 2

[B. Bourdin website]

Crack nucleation [Tanné et al., 2018]

Role of ℓ_0 ? Critical stress for crack nucleation at notches

Extension to fracture of thin shells [Li et al., 2018]

Strain energy of a thin shell:

membrane strain e and curvature strain χ (Koiter thin shell)

$$\mathcal{E}_{el}(u) = \int_{\omega} (1-d)^2 \psi(\boldsymbol{e}, \boldsymbol{\chi}) \, \mathrm{d}\mathbf{x}$$

Romero, et.al, Soft Matter, 2013

Multicracking and delamination [Th. Paul Bouteiller, 2022]

Traction

Bending

Crack propagation in anisotropic media

Crack kinking in anisotropic material [Bleyer et Alessi, 2018]

Zig-zag cracks in polycrystals [Scherer et al., 2022]

Outline

- Introduction to phase-field/damage gradient models of brittle fracture
- Numerics, applications and validation
- 3 Extension to dynamic fracture
- Conclusions

 $\textbf{Open questions}: \ \mathsf{crack path}, \ \mathsf{velocity}, \ \mathsf{crack branching/fragmentation}, \ \mathsf{dissipated energy} \ ?$

Fundamental aspects of LEFM (nominally brittle materials)

- mode-I crack limiting speed: c_R
- dynamic energy release rate G: Griffith criterion $G = G_c(v)$

Experimental results

- experimental limiting velocity: $0.4 0.7c_R$
- branching: single crack description is not OK anymore
- large increase of apparent G_c at high speed

Open questions: crack path, velocity, crack branching/fragmentation, dissipated energy ?

Fundamental aspects of LEFM (nominally brittle materials)

- mode-I crack limiting speed: c_R
- dynamic energy release rate G: Griffith criterion $G = G_c(v)$

Experimental results

- experimental limiting velocity: $0.4 0.7c_R$
- branching: single crack description is not OK anymore
- large increase of apparent G_c at high speed

Open questions: crack path, velocity, crack branching/fragmentation, dissipated energy ?

Fundamental aspects of LEFM (nominally brittle materials)

- mode-I crack limiting speed: c_R
- dynamic energy release rate G: Griffith criterion $G = G_c(v)$

Experimental results

- experimental limiting velocity: $0.4 0.7c_R$
- branching: single crack description is not OK anymore
- large increase of apparent G_c at high speed

Open questions: crack path, velocity, crack branching/fragmentation, dissipated energy ?

Fundamental aspects of LEFM (nominally brittle materials)

- mode-I crack limiting speed: c_R
- dynamic energy release rate G: Griffith criterion $G = G_c(v)$

Experimental results

- experimental limiting velocity: $0.4 0.7c_R$
- branching: single crack description is not OK anymore
- large increase of apparent G_c at high speed

We simply add a kinetic energy term not affected by the damage variable:

$$\mathcal{E}_{\mathit{kin}}(u,d) = \int_{\Omega} rac{
ho}{2} \|\dot{oldsymbol{u}}\|^2 \, \mathrm{dx}$$

We simply add a kinetic energy term not affected by the damage variable:

$$\mathcal{E}_{kin}(u,d) = \int_{\Omega} \frac{\rho}{2} \|\dot{\boldsymbol{u}}\|^2 dx$$

We still do alternate minimization:

- step (1) turns out to be a standard elastodynamics computation with fixed d
- step (2) is the same as in quasi-static

We simply add a kinetic energy term not affected by the damage variable:

$$\mathcal{E}_{kin}(u,d) = \int_{\Omega} \frac{\rho}{2} ||\dot{\boldsymbol{u}}||^2 dx$$

We still do alternate minimization:

- step (1) turns out to be a standard elastodynamics computation with fixed d
- step (2) is the same as in quasi-static

Note: the fracture energy does not depend on $\dot{d} \Rightarrow$ rate-independent model

We simply add a kinetic energy term not affected by the damage variable:

$$\mathcal{E}_{kin}(u,d) = \int_{\Omega} \frac{\rho}{2} ||\dot{\boldsymbol{u}}||^2 dx$$

We still do alternate minimization:

- step (1) turns out to be a standard elastodynamics computation with fixed d
- step (2) is the same as in quasi-static

Note: the fracture energy does not depend on $\dot{d} \Rightarrow$ rate-independent model

Note: no mathematical results of Γ -convergence in this dynamic setting \Rightarrow open question

In-plane tearing problem

Mode I loading with prescribed stress échelon on top and bottom

Small stress

Medium stress

Large stress

Prestrained plate

Prestrained state, fixed boundaries during propagation [Zhou, 1996] E = 3.09 GPa, ν = 0.35, ρ = 1180 kg/m³, G_c = 300 J/m², c_R = 906 m/s

Prestrained plate

Prestrained state, fixed boundaries during propagation [Zhou, 1996] E=3.09 GPa, $\nu=0.35$, $\rho=1180$ kg/m³, $G_c=300$ J/m², $c_R=906$ m/s

- experimental results: simple propagation for small loading, microbranching then macrobranching at higher loads
- band geometry \Rightarrow LEFM solution: crack should accelerate up to c_R

19 / 29

Damage fields [Bleyer et al., 2016]

(c)
$$\Delta U = 0.040 \text{ mm at } t = 40 \ \mu \text{s}$$

(b) $\Delta U = 0.038 \text{ mm at } t = 40 \ \mu \text{s}$

(d) $\Delta U = 0.045 \text{ mm at } t = 20 \ \mu \text{s}$

Crack velocity [Bleyer et al., 2016]

existence of a limiting speed $v_{lim} \approx 0.68c_R$

$\Gamma = dE_{frac}/da$ seen as the apparent fracture energy

$\Gamma = dE_{frac}/da$ seen as the apparent fracture energy

$\Gamma = dE_{frac}/da$ seen as the apparent fracture energy

$\Gamma = dE_{frac}/da$ seen as the apparent fracture energy

suggest a **critical value** of $\Gamma \approx 2G_c$ associated with branching

23 / 29

Velocity-toughening mechanism [Bleyer et al., 2016]

Velocity-toughening mechanism [Bleyer et al., 2016]

well-defined $\Gamma(v)$ relation, similar to experimentally observed velocity-toughening fracture energies

transition from single crack \rightarrow microbranches \rightarrow macrobranches quasi-periodic regime at intermediate loadings crack surface becomes z-invariant at higher loadings

Influence of ℓ_0 [Bleyer & Molinari, 2016]

$$\Delta U = 0.06$$
 mm, $W = 1$ mm

Influence of ℓ_0 [Bleyer & Molinari, 2016]

$$\Delta U = 0.06$$
 mm, $W = 1$ mm

- Δx and $L_{branch} \propto \ell_0$ on average
- dissipated energy almost identical ($\pm 2\%$)!
- no microbranches when ℓ_0 is too large ($\approx W/10$)

Outline

- 1 Introduction to phase-field/damage gradient models of brittle fracture
- Numerics, applications and validation
- Extension to dynamic fracture
- Conclusions

Conclusions

An extremely efficient and popular method

- today's method of choice for simulating fracture
- many extensions: ductile, fatigue, anisotropic, hydraulic fracture...
- simple finite element implementation
- reproduces complex physical phenomena of fracture, some that no other models seem able to do so

Conclusions

An extremely efficient and popular method

- today's method of choice for simulating fracture
- many extensions: ductile, fatigue, anisotropic, hydraulic fracture...
- simple finite element implementation
- reproduces complex physical phenomena of fracture, some that no other models seem able to do so

Open questions and challenges

- we do not compute global minima: physical relevance of critical points ?
- mathematical proofs for extensions by mechanicians (dynamics, cohesive fracture, anisotropy)
- crack interpenetration
- numerical cost (mesh size $h < \ell_0$)

References

```
Ambrosio, L. and Tortorelli, V. M. (1990).
Approximation of functional depending on jumps by elliptic functional via t-convergence.
Communications on Pure and Applied Mathematics, 43(8):999-1036.
Blever, J. and Molinari, J.-F. (2017).
Microbranching instability in phase-field modelling of dynamic brittle fracture.
Applied Physics Letters, 110(15):151903.
Bleyer, J., Roux-Langlois, C., and Molinari, J.-F. (2017).
Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and
velocity-toughening mechanisms.
International Journal of Fracture, 204(1):79-100.
Bourdin, B., Francfort, G. A., and Marigo, J.-J. (2000).
Numerical experiments in revisited brittle fracture.
Journal of the Mechanics and Physics of Solids, 48(4):797-826.
Bourdin, B., Francfort, G. A., and Marigo, J.-J. (2008).
The variational approach to fracture.
Journal of elasticity, 91(1-3):5-148.
```

Li, B., Millán, D., Torres-Sánchez, A., Roman, B., and Arroyo, M. (2018). A variational model of fracture for tearing brittle thin sheets. Journal of the Mechanics and Physics of Solids, 119:334–348.

Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids, 46(8):1319–1342.

29 / 29

Francfort, G. A. and Marigo, J.-J. (1998).