BAB 13. KONEKSI PC DAN PLC

1.1 Tujuan Pembelajaran

Setelah membaca bab 13, pembaca dapat:

- 1. Menjelaskan konfigurasi PLC Modicon TM221
- 2. Membuat program PLC Modicon TM221 untuk pemrograman SCADA
- 3. Menghubungkan PLC Modicon TM221 ke Vijeo Citect secara simulasi
- 4. Menghubungkan PLC Modicon TM221 ke Vijeo Citect secara real

1.2 PLC Modicon TM221

PLC Modicon TM221 keluaran vendor Schneider Electric adalah jenis PLC *compact* yang mempunyai IO digital dan analog. PLC ini sebagai pengendali *plant* akan dihubungkan dengan komputer yang didalamnya terdapat SCADA *software* yang dapat berperan sebagai:

- 1. *Supervisory control*: komputer berfungsi sebagai kontrol sekunder yang lebih bersifat "mengawasi" kontrol PLC. PLC tetap menjadi pengendali utama.
- 2. *Display only*: komputer hanya berfungsi untuk menampilkan (atau merekam) data saja tanpa mampu mengendalikan *plant*.

Tampilan dan bagian-bagian PLC Modicom TM221 terlihat pada Gambar 13.1.

Gambar 13.1 PLC Modicon TM221 Sumber: Catalog Logic Controller Modicon M221 for hardwired architectures, 2019, Schneider Electric

Keterangan Gambar 13.1:

- Terminal blok dengan sekrup yang dapat dilepas, tiga terminal ini digunakan untuk menghubungkan tegangan suplai 24 V DC atau 100-240 V AC (tergantung dari modelnya).
- 2. Konektor RJ 45 untuk *Ethernet network* dilengkapi dengan LED untuk indikator aktivitas dan perubahan kecepatan.
- 3. Dibelakang penutup yang dapat dilepas (removable cover):
 - Konektor Mini-B USB untuk menghubungkan PC dengan software SoMachine Basic.
 - Slot untuk industrial SD memory card
 - Switch/tombol untuk Run/Stop
- 4. Serial port (RS 232 atau RS 485): tipe konektor RJ 45
- 4 Dibelakang *flap*: konektor yang dapat dilepas khusus untuk dua *input* analog
- 5 Kode QR untuk akses ke dokumentasi teknik kontroler
- 6 Koneksi input *logic* 24 V DC pada blok terminal dengan sekrup yang dapat dilepas (1)
- 7 Pada bagian atas kontroler: slot untuk baterai cadangan.
- 8 Tampilan blok LED yang memperlihatkan:
 - Status dari kontroler dan komponennya (baterai, industrial SD memory card)
 - Status dari *link* serial
 - Status dari input/output (I/O)
- 9 Didalam kontroler : konektor BUS TM3 untuk menghubungkan dengan modul ekspansi modicon TM3
- 10 Slot untuk I/O *cartridge*, komunikasi *cartridge*, atau aplikasi *cartridge*: satu kontroler M221 dengan 16 dan 24 I/O, dua kontroler M221 controllers dengan 40 I/O
- 11 Koneksi *output logic* relay/transistor: pada blok terminal dengan sekrup yang dapat dilepas (1)
- 12 Klip untuk mengunci pada 5 rel simetris

1.3 Pemrograman PLC Modicon TM221

Pemrograman PLC Modicon TM221 menggunakan *software Somachine Basic* dengan Bahasa pemrograman *Ledder diagram* (LD).

Langkah-langkah untuk membuat program dengan Somachine Basic, sebagai berikut:

I. Membuat project baru

- 1. Buka *software* SoMachine Basic >> *Create New Project* >> pilih tipe PLC yang diinginkan. Pada latihan ini, PLC yang digunakan adalah TM221CE24R. Tipe ini memiliki 14 digital *input*, 10 relay *output* (2A), 2 analog *input*, 1 serial *line port*, 1 *Ethernet port*, 100-240 VAC *power supply*.
- Drag tipe PLC ke sebelah kiri (bagian configuration). Konfigurasi dengan tipe PLC TM221CE24R terlihat pada Gambar 13.2.

Gambar 13.2 Konfigurasi PLC TM221CE24R

3. Klik *Programming* untuk memulai membuat program.

Dalam pembuatan program, pembaca perlu mengetahui cara penulisan alamat I/O untuk PLC Modicon TM221. Format penulisan dan contohnya dapat dilihat pada Tabel 13.1.

Tabel 13.1 Format penulisan objek pada PLC Modicon

Tipe Objek	Format	Contoh	Deskripsi
Memori objek			•
Memori bit	%Mi	%M25	Internal memori <i>bit</i> 25
Memori word	%MWi	%MW15	Internal memori word 15
Memori double word	%MDi	%MD16	Internal memori double word 16
Memori floating point	%MFi	%MF17	Internal memori floating point 17
Konstan word	%KWi	%KW26	Konstan word 26
Konstan double word	%KDi	%KD27	Internal konstan <i>double</i> word 27
Konstan floating point	%KFi	%KF28	Internal konstan floating point 28
Sistem objek			
Sistem bit	%Si	%S8	Sistem bit 8
Sistem word	%SWi	%SW30	Sistem word 30
I/O objek			
Digital input	%I <i>y.z</i>	%I0.5	Digital <i>input</i> 5 pada modul 0
Digital output	%Qy.z	%Q0.4	Digital <i>output</i> 4 pada modul 0
Analog input	%IWy.z	%IW0.1	Analog <i>input</i> 1 pada modul 0
Analog output	%QW0. <i>m</i> 0 <i>n</i>	%QW0.100	Analog <i>output</i> 0 pada catridge 1
Fast counter	%FCi	%FC2	Fast counter 2
High speed counter	%HSCi	%HSCI	High speed counter 1
Pulse	%PLSi	%PLS0	Pulse output 0
Pulse width modulation	e width %PWMi %PWM1 PWM output 0		1
Pulse train output	%PTOi	%PTO1	Pulse train output 1
Frequency generator	%FREQGENi	%FREQGEN1	Frequency generator 1

II. Membuat program PLC pada Software SoMachine Basic

 Pada halaman Programming buatlah program sederhana dengan ladder diagram seperti Gambar 13.3.

Tombol START ditekan Lampu On
Tombol STOP ditekan Lampu Off

Gambar 13.3 Program sederhana – Start-Stop

Nama	Proses	Alamat
Start	Digital input	%I0.0
Stop	Digital input	%I0.1
Relay0	Relay	%M0
Lampu	Output digital	%Q0.0

- 2. Save file (□) dengan nama: Latihan1 >> compile (✓) >> launch simulator (□) >> play (□).
- 3. Pada layar simulator (Gambar 13.4) klik digital input 0 untuk tombol Start >> lampu akan on, ditandai dengan warna hijau. Tekan digital input 1 untuk tombol stop >> lampu akan off. (catatan: tombol menggunakan logika push button sehingga setelah di klik harus di klik lagi untuk mengembalikan ke posisi awal)

Gambar 13.4 Layar simulator

4. Untuk menghentikan program run menggunakan tombol stop simulator ().

III Menghubungkan ke PLC

Apabila dengan simulator deskripsi kerja telah sesuai dengan proses kerjanya maka sistem ini dapat dihubungkan ke PLC, dengan langkah sebagai berikut:

- 1. Nyalakan PLC, hubungkan PLC dengan PC menggunakan kabel Ethernet.
- 2. Konfigurasi Ethernet (Gambar 13.5) dengan:

Alamat IP 192.168.0.10; Subnet mask: 255.255.255.0; Gateway: 0.0.0.0

Gambar 13.5 Konfigurasi Ethernet

- 3. Klik Apply
- 4. Klik Commissioing >> pilih Ethernet Device >> Login, seperti terlihat pada Gambar 13.6.

Gambar 13.6 Commissioning Ethernet Device

5. Setelah Login, klik *PC to Controller (download)*, seperti Gambar 13.7.

Gambar 13.7 Download program dari PC ke kontroler

6. Klik Ok pada pertanyaan Overwrite program, tunggu sampai proses selesai atau muncul tulisan *PC and Controller are identical*, seperti Gambar 13.8, lalu klik *Start Controller*.

Gambar 13.8 Koneksi sudah terhubung

1.4 Membuat program PLC untuk SCADA

SCADA berfungsi sebagai kontrol sekunder, *supervisory*, dan data akusisi pada *plant* yang mempunyai pengendali utama berbasis PLC. Agar SCADA dapat menjalankan fungsinya, diperlukan dua konfigurasi sistem, yaitu:

- 1. Pada pemrograman PLC: penambahan alamat memori yang digunakan untuk menduplikasi I/O yang akan ditampilkan di SCADA. Misalnya, Tombol Start (%I0.0) digandakan dengan penambahan alamat memori (%M250) untuk tombol start pada SCADA.
- 2. Pada komunikasi: penyamaan alamat IP address antara PLC dengan SCADA. Langkah untuk membuat program PLC untuk SCADA adalah:
- 1. Pada program PLC, file Latihan1, duplikasikan semua I/O yang akan ditampilkan pada SCADA dan tambahkan SC untuk membedakan pada *comment*, contoh Start SC.

Nama	Proses	Alamat PLC	Alamat SCADA
Start	Digital input	%I0.0	%M250
Stop	Digital input	%I0.1	%M251
Relay0	Relay	%M0	
Lampu	Output digital	%Q0.0	%M252

- 2. Masukkan alamat memori PLC yang akan difungsikan sebagai alamat SCADA pada ladder diagram seperti Gambar 13.9.
- 3. Save file (□) dengan nama: Latihan1 >> compile (✓) >> launch simulator (□) >> play (□).
- 4. Untuk menghentikan program run menggunakan tombol stop simulator ().

Gambar 13.9 Program PLC dengan penambahan alamat SCADA

1.5 Menghubungkan PLC ke SCADA secara simulasi

Vendor pembuat *software* SoMachine Basic dan Vijoe Citect sama, yaitu PT Schneider Electric, maka antar *software* dapat saling dihubungkan secara simulasi. Namun jika berbeda vendor, cara simulasi ini tidak dapat digunakan. Simulasi disini maksudnya adalah menghubungkan PLC ke SCADA tanpa menggunakan *hardware* PLC.

Langkah-langkahnya sebagai berikut:

- 1. Pada PLC, buka file Latihan1, pastikan semua I/O yang akan ditampilkan pada SCADA sudah diduplikasi.
- 2. Pada SCADA, buatlah project baru dengan nama file Sim_PLC.
- 3. Pada PLC, buka file Latihan1, pastikan semua I/O yang akan ditampilkan pada SCADA sudah diduplikasi.
- 4. Pada SCADA, buatlah project baru dengan nama file Sim PLC.
- 5. Ikuti langkah pembuatan project baru pada bab 4.

- Pada saat Konfigurasi IO:
 - ✓ Communication >> Express Wizard
 - ✓ Nama IO device : IODev
 - ✓ Tipe IO device : External I/O device
 - ✓ Protocol komunikasi : Schneider-Electric >> Twido >> Modbus/TCP Ethernet seperti Gambar 13.20.

Gambar 13.20 Protokol komunikasi Twido, Modbus/TCP (Ethernet)

✓ Isikan Alamat IP PLC simulasi: 127.0.0.1, seperti Gambar 13.21.

Gambar 13.21 Alamat IP PLC simulasi pada SCADA

- 6. Klik Next sampai Finish
- 7. Compile
- 8. Pada Citect Editor, buatlah viariable tag berikut:

No	Variable	Cluster name	I/O Device	Data Type	Address
	Tag Name		Name		
1	Start	Cluster1	IODev	Digital	%M250
2	Stop	Cluster1	IODev	Digital	%M251
3	Lampu	Cluster1	IODev	Digital	%M252

9. Pada Graphic Builder, buatlah halaman baru dan gambarlah Start-stop proses, seperti Gambar 13.22.

Gambar 13.22 Tampilan halaman start-stop

10. Isi Start-stop proses dengan animasi berikut:

No	Object	Nama	Animations	Variabel Tag
1	Button	START	Up command	Start=0
1	Dutton	SIAKI	Down command	Start=1
12	Button	STOP	Up command	Stop=0
	Dutton	3101	Down command	Stop=1
3	Lamn	Lammi	On/Off,	Lampi
]	Lampu Lampu		On simbol when	Lampu

- 11. Simpan halaman Start-stop proses. Compile
- 12. Untuk menghubungkan antara PLC dan SCADA, ikuti langkah berikut:
 - ✓ Jalankan program PLC pada software SoMachine Basic dengan menyalakan Launch Simulator (Ctrl +B) >> Play, pastikan dan biarkan PLC dalam posisi Run.

✓ Compile program SCADA dan Run

1.6 Menghubungkan PLC ke SCADA secara hardware

Untuk menghubungkan hardware PLC ke SCADA, langkahnya sama seperti sub bab

- 13.5. Namun pada saat konfigurasi I/O, alamat IP PLC diganti dengan 192.168.0.10.
 - Langkah-langkahnya sebagai berikut:
- 1. Pada PLC, buka file Latihan1, pastikan semua I/O yang akan ditampilkan pada SCADA sudah diduplikasi.
- 2. Pada SCADA, buatlah project baru dengan nama file Hard_PLC.
- 3. Ikuti langkah pembuatan project baru pada bab 4.
 - Pada saat Konfigurasi IO:
 - ✓ Communication >> Express Wizard
 - ✓ Nama IO device : IODev
 - ✓ Tipe IO device : External I/O device
 - ✓ Protocol komunikasi : Schneider-Electric >> Twido >> Modbus/TCP Ethernet seperti Gambar 13.23.

Gambar 13.23 Protokol komunikasi Twido, Modbus/TCP (Ethernet)

✓ Isikan Alamat IP PLC: 192.168.0.10, seperti Gambar 13.24.

Gambar 13.24 Alamat IP PLC pada SCADA

- 4. Klik Next sampai Finish
- 5. Compile
- 6. Pada Citect Editor, buatlah viariable tag berikut:

No	Variable	Cluster name	I/O Device	Data Type	Address
	Tag Name		Name		
1	Start	Cluster1	IODev	Digital	%M250
2	Stop	Cluster1	IODev	Digital	%M251
3	Lampu	Cluster1	IODev	Digital	%M252

7. Pada Graphic Builder, buatlah halaman baru dan gambarlah Start-stop proses, seperti Gambar 13.25.

Gambar 13.25 Tampilan halaman start-stop

8. Isi Start-stop proses dengan animasi berikut:

No	Object	Nama	Animations	Variabel Tag
1	Button	START	Up command	Start=0
1	Dutton	SIAKI	Down command	Start=1
2	Button	STOP	Up command	Stop=0
2	Dutton	5101	Down command	Stop=1
3	Lamn	Lampi	On/Off,	Lampi
3	Lampu Lampu		On simbol when	Lampu

- 9. Simpan halaman Start-stop proses. Compile.
- 10. Untuk menghubungkan antara PLC dan SCADA, ikuti langkah berikut:
 - ✓ Jalankan program PLC pada software SoMachine Basic, ikuti langkah sub bab 13.3 romawi III Menghubungkan PLC. Pastikan dan biarkan PLC dalam posisi Run.
 - ✓ Compile program SCADA dan Run

Catatan:

PLC harus terlebih dahulu dalam posisi ON sebelum SCADA. SCADA tidak akan terhubung jika PLC OFF.

Jika gambar Lampu masih ada titik-titik... artinya PLC dengan SCADA belum terhubung atau program PLC belum di RUN. Periksa kembali Port Komunikasi dan koneksi PLC.

1.7 Latihan

1. Buatlah sebuah plant pengisian botol seperti Gambar 13.26.

Gambar 13.26 Plant pengisian botol

Deskripsi kerja:

- 1. Saat Tombol "START" di tekan conveyor akan hidup membawa botol sampai lubang pengisian.
- 2. Saat sensor satu (proximity) bekerja maka botol sudah sampai di lubang pengisian.
- 3. Conveyor akan mati dan valve akan membuka untuk mengisi botol.
- 4. Saat sensor level mencapai full maka kondisi botol sudah terisi penuh.
- 5. Valve akan menutup dan conveyor akan hidup membawa botol menuju mesin penutup botol.
- 6. Saat sensor dua (proximity) bekerja maka botol sudah sampai di mesin penutup botol.
- 7. Conveyor akan mati dan mesin penutup botol akan hidup untuk menutup botol.
- 8. Saat sensor membaca botol sudah tertutup maka conveyor akan hidup kembali membawa botol menuju tempat pelebelan.
- 9. Saat sensor tiga (proximity) bekerja maka botol sudah sampai di mesin pelebelan botol.
- 10. Conveyor akan mati dan mesin pelebelan botol akan hidup untuk memberi lebel pada botol.
- 11. Saat sensor membaca botol sudah terlebel maka conveyor akan hidup kembali membawa botol menuju tempat pengepakan.
- 12. Jika sudah 9 botol berisi di box, maka box sudah berisi penuh dan tidak dapat di run, untuk dapat menjalankan kembali harus mengklik reset untuk mengosongkan box tersebut

Mode Testing

Saat tombol testing on (di tekan) menjadi "mode testing"

- 1. Tombol test valve untuk menghidupkan valve (untuk mengetes valve)
- 2. Tombol test conveyor untuk menghidupkan conveyor (untuk mengetes conveyor)
- 3. Tombol test ttp turun untuk menghidupkan mesin penutup botol turun ke bawah
- 4. Tombol test ttp naik untuk menghidupkan mesin penutup botol naik ke atas
- 5. Tombol test lbl turun untuk menghidupkan mesin pelebel botol turun ke bawah
- 6. Tombol test lbl naik untuk menghidupkan mesin pelebel botol naik ke atas (saat sedang mode testing, tidak dapat di run sebelum meng'off kan mode testing dengan menekan tombol off)

Alarm

Ada 6 deskripsi gangguan yang menyebabkan alarm bekerja, yaitu:

- 1. Setelah di tekan tombol start, botol tidak sampai di bawah lubang pengisian
- 2. Saat mengisi botol tidak penuh penuh (no flow)
- 3. Saat botol menuju mesin penutup botol tidak sampai-sampai
- 4. Saat mesin punutup botol sudah menyala tetapi botol tidak tertutup
- 5. Saat botol menuju mesin pelebelan botol tidak sampai-sampai
- 6. Saat mesin pelebelan botol sudah menyala tetapi botol belum terlebel (semua gangguan yang terjadi akan di rekam dengan format excel)

Program PLC plant Pengisian botol dengan menggunakan software Unity Pro.

Proses Pengisian

Proses Penutupan Botol


```
10
                                        CTUD
                                                                                                               ttp_naik
11
                                                                                                                (s)
12
                                                                                                                (R)
                            1
                                       CU
                                             QU
        ┪┝
                           tutup.QD
                                                                                                              ttp_naik
13
                            1/-
                                       CD
                                             QD
                                                                                                                (R)
      ttp_naik
14
                               test_off- R
        test3
15
                                      LD
16
                                             CV -%mw3
                                   30-PV
```

Proses Pelebelan

Conveyor

Sensor

Testing

Packing

Alarm

2. Buatlah sebuah *plant* Hot Water Tank (HWT) seperti Gambar 13.27.

Gambar 13.27 Plant hot water tank

Deskripsi kerja:

Plant HWT dapat bekerja secara auto atau manual dengan memilih mode.

Mode manual

- 1. Tekan tombol mode manual
- 2. Semua komponen motor pompa, agitator, heater dapat dinyalakan dengan menekan tombol masing-masing komponen.

Mode auto

- 1. Isi temperature target yang diinginkan pada kotak target dengan menuliskan angka menggunakan keyboard minimal 2500 derajat celcius maksimal 15.000 derajat celcius.
- 2. Tekan tombol Start Auto untuk memulai.
- 3. Pompa normal inlet dan fast inlet ON mengisi air ke tangki tengah.
- 4. Ketika air sudah mencapai level minimum, min sensor akan mendeteksi air.
- 5. Ketika air sudah mencapai level lower, lower sensor akan mendeteksi air.
- 6. Ketika air sudah mencapai level upper, upper sensor akan mendeteksi air dan pompa normal fast inlet OFF.

- 7. Pada saat air mencapai maksimum dan max sensor mendeteksi air, pompa normal inlet OFF, agitator ON dan heater ON. Temperatur dan level air yang sedang terjadi dapat dilihat pada kotak recent dan water level.
- 8. Setelah target temperature terpenuhi, heater OFF, agitator masih ON selama 10 detik, pompa normal outlet dan fast outlet ON. Air akan terbuang ke tangki bawah.
- 9. Karena air terbuang, level air akan turun sehingga sensor satu per satu OFF. Pada saat lower sensor OFF, pompa fast outlet OFF.
- 10. Setelah min sensor OFF, pompa normal outlet OFF.
- 11. Setelah pompa normal outlet OFF, siklus terulang lagi sampai tombol Stop ditekan.

Mode gangguan

Deskripsi Alarm digital

- 1. Jika operator langsung menekan tombol **Start Auto** tanpa memilih mode Auto atau Manual.
- 2. Digital sensor (4 sensor: min, lower, upper, & Max)
 - **Minimum sensor** tidak terdeteksi padahal air sudah sampai ke Lower Sensor.
 - Lower sensor tidak terdeteksi padahal air sudah sampai ke Upper sensor.
 - Upper sensor tidak terdeteksi padahal air sudah sampai ke Max sensor.
 - Max sensor tidak terdeteksi.

Deskripsi alarm analog

Pada Sensor (level air):

- Posisi air sudah mencapai 5.000 lt alarm akan membuat status posisi air Low-Low.
- Posisi air sudah mencapai 10.000 lt alarm akan membuat status posisi air Low.
- Posisi air sudah mencapai 20.000 lt alarm akan membuat status posisi air High.
- Posisi air sudah mencapai 30.000 lt alarm akan membuat status posisi air High-High.
- ✓ Buatlah alam logging untuk gangguan yang terjadi dalam bentuk excel
- ✓ Buatlah report status level air, temperature target dan recent, status sensor
- ✓ Buatlah variable tag untuk plant HWT, berikut ini:

No	Variabel Tag Name	Cluster Name	I/O Device	Data	Address
			Name	Туре	
1	Select_Auto	Cluster1	IODev	Digital	%M0
2	Auto_Mode	Cluster1	IODev	Digital	%M1
3	Select_Manual	Cluster1	IODev	Digital	%M10
4	Manual_Mode	Cluster1	IODev	Digital	%M11

5	Man_Nrml_Inlet	Cluster1	IODev	Digital	%M20
6	Man_Fast_Inlet	Cluster1	IODev	Digital	%M21
7	Man_Heater	Cluster1	IODev	Digital	%M30
8	Man_Agiator	Cluster1	IODev	Digital	%M32
9	Man_Nrml_Outlet	Cluster1	IODev	Digital	%M40
10	Man_Fast_Outlet	Cluster1	IODev	Digital	%M41
11	Normal_Inlet	Cluster1	IODev	Digital	%M150
12	Fast_Inlet	Cluster1	IODev	Digital	%M151
13	Heater	Cluster1	IODev	Digital	%M152
14	Agiator	Cluster1	IODev	Digital	%M153
15	Normal_Outlet	Cluster1	IODev	Digital	%M154
16	Fast_Outlet	Cluster1	IODev	Digital	%M155
17	Upper_Level_Sensor	Cluster1	IODev	Digital	%M156
18	Max_Level_Sensor	Cluster1	IODev	Digital	%M157
19	Lower_Level_Sensor	Cluster1	IODev	Digital	%M158
20	Min_Level_Sensor	Cluster1	IODev	Digital	%M159
21	Start_Auto	Cluster1	IODev	Digital	%M254
22	Stop_All	Cluster1	IODev	Digital	%M255
23	Temperature_Target	Cluster1	IODev	INT	%MW100
24	Temperatur_Value	Cluster1	IODev	INT	%MW103
25	Water_Level	Cluster1	IODev	INT	%MW200

✓ Buatlah animasi untuk plant HWT, berikut ini:

No	Object	Nama	Animations	Variabel Tag
1	Button	Auto	Up command	HWT.Select_Auto=0
1	Bullon	Auto	Down command	HWT.Select_Auto=1
2	Button	Manual	Up command	HWT.Select_Manual=0
	Dutton	Ivialiual	Down command	HWT.Select_Manual=1
3	Button	Start Auto	Up command	HWT.Start_Auto=0
3	Dutton	Start Auto	Down command	HWT.Start_Auto=1
4	Button	Stop	Up command	HWT.Stop=0
Т	Dutton	Бюр	Down command	HWT.Stop=1
5	Button	Normal Inlet	Up command	HWT.Man_Nrml_Inlet=0
<i>J</i>	Button	1 Tormar inict	Down command	HWT.Man_Nrml_Inlet=1
6	Button	Fast Inlet	Up command	HWT.Man_Fast_Inlet=0
	Button	1 dot mict	Down command	HWT.Man_Fast_Inlet=1
7	Button	Normal Outlet	Up command	HWT.Man_Nrml_Outlet=0
,	Button	1101mai Odilet	Down command	HWT.Man_Nrml_Outlet=1
8	Button	Fast Outlet	Up command	HWT.Man_Fast_Outlet=0
0	Button	1 ast Outlet	Down command	HWT.Man_Fast_Outlet=1
9	Button	Heater	Up command	HWT.Man Heater=0
	Dutton	וויווי	Down command	HWT.Man_Heater=1
10	Button	Agitator	Up command	HWT.Man_Agitator=0
10	Duttoll	Agitatoi	Down command	HWT.Man_Agitator=1

11	Lamp	Auto Manual	On/Off On/Off	HWT.Auto_Mode HWT.Manual Mode
		Max Sensor	On/Off	HWT.Max_Level_Sensor
12	Lamp	Upper Sensor	On/Off	HWT.Upper_Level_Sensor
12	Lamp	Lower Sensor	On/Off	HWT.Lower_Level_Sensor
		Min Sensor	On/Off	HWT.Min_Level_Sensor
13	Valve	Normal Inlet	On/Off	HWT.Normal_Inlet
13	valve	Fast Inlet	On/Off	HWT.Fast_Inlet
1.4	14 Valve	Normal Outlet	On/Off	HWT.Normal Outlet
14		Fast Outlet	On/Off	HWT.Fast_Outlet
15	Heater	Heater	Animated	HWT.Heater
16	Agitator	Agitator	Animated	HWT.Agitator
17	Water	Water	Fill Level	HWT.Water_Level
			Dialmary Walna	HWT.Temperatur_Target
18	Torrt	Towart	Dislpay Value	HWT.Temperatur_Target=ArgVal
10	18 Text	Target	Input Keyboard	ue1
			command	KeySequence (####Enter)
19	Text	Recent	Display Value	HWT.Temperatur_Value
20	Text	Water Level	Display Value	HWT.Water_Level

Program PLC plant HWT dengan software SoMachine Basic:

