Capstone 3 - Image Classification: Fish

A. Objective:

To develop a generalized, predictive model that can identify and differentiate between different types of fish species that share similar characteristics. The ideal model has a myriad of potential use cases that include the following:

- 1. High volume fish processing plant: ability to dynamically identify and separate different (in tandem with robotics) fish species to optimize the handling and processing of fish
- 2. Use for identification of fish species for environmental conservation efforts: this would require augmentation of the existing model to account for different environmental contexts
- 3. Potentially leverage existing model to develop a more sophisticated model that can accurately measure the dimensions (length and width) of the fish as well as the weight

B. Assumptions and Exclusions:

B1. Key Assumptions/Comments →

- The context (background noise) has been limited; as one randomly investigates a pool of images, you will notice that the background is relatively consistent; this can most certainly be a problem when attempting to apply this model to a larger population of pictures
- The orientation and general size of the fish varies significantly which supports a more robust model
- No missing values

B2. Key Exclusions →

N/A

C. Data Wrangling, EDA and Preprocessing:

C1. Data Collection, Wrangling and EDA \rightarrow

- Downloaded the dataset from Kaggle → citation is denoted below
 - title={A Large-Scale Dataset for Fish Segmentation and Classification}
 - author={Ulucan, Oguzhan and Karakaya, Diclehan and Turkan, Mehmet}
 - booktitle={2020 Innovations in Intelligent Systems and Applications Conference (ASYU)}
 - pages={1--5}
 - year={2020}
 - organization={IEEE}

```
# returning a list of all sub folder names within the directory; these will be the label names
labels = [os.path.basename(x) for x in glob.glob(abs_path + '/*', recursive=True)]

# alternatively, could use os.listdir(abs_path), but that also returns a jupyter notebook checkpoint
labels

['Sea Bass',
    'Red Mullet',
    'Gilt-Head Bream',
    'Red Sea Bream',
    'Shrimp',
    'Black Sea Sprat',
    'Striped Red Mullet',
    'Hourse Mackerel',
    'Trout']
```

Fig. 1 – Species Included in the Model

Variables

Fig. 2 - Distribution of Images (1000 per Species)

Fig. 3 – Inspection of Sea Bass Images

Fig. 4 - One Image of Each Fish Species

C2. Preprocessing →

- After loading in the images and mapping their associated labels and inspecting a small sample, it was time to go ahead and start splitting the data into a training set, validation set and testing set
- First, I started by doing a 70/30% split of training/testing

```
# time for preprocessing
# creating a train and testing split
from sklearn.model_selection import train_test_split

train_df, test_df = train_test_split(image_df, train_size = 0.7, shuffle = True, random_state = 49)
print(train_df.shape, test_df.shape)

(6300, 2) (2700, 2)
```

Fig. 5 — Splitting into Training and Testing DataFrames

Next, I went ahead and built out the required generators for processing the images

Fig. 6 – Validating the splitting and classes

• You can see an example of the augmentation below

```
# visualizing the augmentation of the training dataset

def plotImages(images_arr):
    fig, axes = plt.subplots(1, 5, figsize=(20,20))
    axes = axes.flatten()
    for img, ax in zip( images_arr, axes):
        ax.imshow(img.astype('uint8'))
    plt.tight_layout()
    plt.show()

augmented_images = [training_images[0][0][i+5] for i in range(5)]
plotImages(augmented_images)
```


Fig. 7 - Preprocessing Augmentation

• The dataset is now ready for modelling; I elected to build a model without leveraging a pre-trained model. I only did this to get a better understanding of how to compile/build and apply the model

D. Modelling:

Model: "sequential"

• The dataset is now ready for modelling; I elected to build a model without leveraging a pre-trained model. I only did this to get a better understanding of how to compile/build and apply the model

Layer (type)	Output	Shane	Param #
======================================	======	======================================	========
conv2d (Conv2D)	(None,	254, 254, 64)	1792
max_pooling2d (MaxPooling2D)	(None,	127, 127, 64)	0
conv2d_1 (Conv2D)	(None,	125, 125, 128)	73856
max_pooling2d_1 (MaxPooling2	(None,	62, 62, 128)	0
conv2d_2 (Conv2D)	(None,	60, 60, 256)	295168
max_pooling2d_2 (MaxPooling2	(None,	30, 30, 256)	0
flatten (Flatten)	(None,	230400)	0
dense (Dense)	(None,	128)	29491328
dropout (Dropout)	(None,	128)	0
dense_1 (Dense)	(None,	128)	16512
dropout_1 (Dropout)	(None,	128)	0
dense_2 (Dense)	(None,	9)	1161
Total params: 29,879,817 Trainable params: 29,879,817 Non-trainable params: 0			

Fig. 8 - Model Setup Params

```
# training the model
 from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
 model.compile(optimizer = "adam", loss = "categorical_crossentropy", metrics = ["accuracy"])
 history = model.fit(training_images,
     validation_data=train_val_images,
steps_per_epoch = 20,
     epochs = 25,
     callbacks=[EarlyStopping(monitor='val_loss', patience = 10, restore_best_weights = True)])
 Epoch 1/25
 20/20 [====
                      =========] - 223s 11s/step - loss: 59.8392 - accuracy: 0.1949 - val_loss: 1.9908 - val_ac
 curacy: 0.3454
 Epoch 2/25
 20/20 [=====
                     ========] - 258s 13s/step - loss: 1.9293 - accuracy: 0.3250 - val_loss: 1.7102 - val_acc
 uracy: 0.4222
 Epoch 3/25
 20/20 [===
                            =======] - 223s 11s/step - loss: 1.7243 - accuracy: 0.3810 - val loss: 1.4344 - val acc
 uracy: 0.5003
 Epoch 4/25
 20/20 [===
                           =======] - 203s 10s/step - loss: 1.5356 - accuracy: 0.4410 - val_loss: 1.1922 - val_acc
 uracy: 0.6076
 Epoch 5/25
 20/20 [======
                  ========== ] - 203s 10s/step - loss: 1.3530 - accuracy: 0.5140 - val_loss: 0.9609 - val_acc
 uracy: 0.6870
 Epoch 6/25
 20/20 [====
                      =========] - 205s 10s/step - loss: 1.1525 - accuracy: 0.5770 - val_loss: 0.8586 - val_acc
 uracy: 0.7333
 Epoch 7/25
 20/20 [====
                        ========] - 214s 11s/step - loss: 1.0564 - accuracy: 0.6328 - val_loss: 0.6930 - val_acc
 uracy: 0.8025
 Epoch 8/25
 20/20 [====
                     ========] - 197s 10s/step - loss: 0.8967 - accuracy: 0.6790 - val_loss: 0.5249 - val_acc
 uracy: 0.8432
 Epoch 9/25
                           =======] - 194s 10s/step - loss: 0.8519 - accuracy: 0.6920 - val_loss: 0.4802 - val_acc
 20/20 [====
```

Fig. 9 - Initial Training

Fig. 10 - Validation/Training Loss and Accuracy

```
# applying the trained model and making predictions
results = model.evaluate(test_images, verbose=0)

print(" Test Loss: {:.5f}".format(results[0]))
print("Test Accuracy: {:.2f}%".format(results[1] * 100))
```

Test Loss: 0.10351 Test Accuracy: 97.07%

Fig. 11 – End Results

Fig. 12 – Confusion Matrix

	Image_Pathway	Label	pred
2952	/Users/alexanderblaies/Desktop/SpringboardAssi	Gilt-Head Bream	Shrimp
5624	/Users/alexanderblaies/Desktop/SpringboardAssi	Black Sea Sprat	Black Sea Sprat
49	/Users/alexanderblaies/Desktop/SpringboardAssi	Sea Bass	Sea Bass
4668	/Users/alexanderblaies/Desktop/SpringboardAssi	Shrimp	Shrimp
2504	/Users/alexanderblaies/Desktop/SpringboardAssi	Gilt-Head Bream	Gilt-Head Bream
7484	/Users/alexanderblaies/Desktop/SpringboardAssi	Hourse Mackerel	Hourse Mackerel
6942	/Users/alexanderblaies/Desktop/SpringboardAssi	Striped Red Mullet	Striped Red Mullet
5469	/Users/alexanderblaies/Desktop/SpringboardAssi	Black Sea Sprat	Black Sea Sprat
6973	/Users/alexanderblaies/Desktop/SpringboardAssi	Striped Red Mullet	Striped Red Mullet
8640	/Users/alexanderblaies/Desktop/SpringboardAssi	Trout	Trout
3077	/Users/alexanderblaies/Desktop/SpringboardAssi	Red Sea Bream	Red Sea Bream
1494	/Users/alexanderblaies/Desktop/SpringboardAssi	Red Mullet	Red Mullet
6840	/Users/alexanderblaies/Desktop/SpringboardAssi	Striped Red Mullet	Striped Red Mullet
552	/Users/alexanderblaies/Desktop/SpringboardAssi	Sea Bass	Sea Bass
B 79 0	/Users/alexanderblaies/Desktop/SpringboardAssi	Trout	Trout
3478	/Users/alexanderblaies/Desktop/SpringboardAssi	Red Sea Bream	Red Sea Bream
5461	/Users/alexanderblaies/Desktop/SpringboardAssi	Black Sea Sprat	Black Sea Sprat
8438	/Users/alexanderblaies/Desktop/SpringboardAssi	Trout	Trout
4604	/Users/alexanderblaies/Desktop/SpringboardAssi	Shrimp	Shrimp
6385	/Users/alexanderblaies/Desktop/SpringboardAssi	Striped Red Mullet	Striped Red Mullet
750	/Users/alexanderblaies/Desktop/SpringboardAssi	Sea Bass	Sea Bass
8547 13 – D	/Users/alexanderblaies/Desktop/SpringboardAssi ataFrame Inspection	Trout	Trout

E. Lessons Learned and Comments:

- This project served as a great introduction into image classification via leveraging Keras
- Based on the results shown above, this model does a great job at identifying individual species with similar characteristics
- It should be noted that I do believe that this model can be improved upon by: including different background contexts (change in lighting, scenery, etc.)
- Also, I did not account for outliers which could potentially further optimize the model
- Due to the computational expense, I chose to limit the epochs and validation steps included within the model; with more convolutional layers, this model could be more accurate