Regression model in practice Week 3 assignment

Multiple regression model

I chose **allhealth** as my data set. The relationship between general health (H1GH1), weight (H1GH60) and height (H1GH59) were analyzed. General health is a categorical variable. It has five levels. From 1 to 5 represent excellent, very good, good, fair and poor. Therefore it can be used as the response variable. Both the weight and height are quantitative variables.

Theoretically, the larger weight, the less health a person is.

So a regression model between general health and weight was processed.

		The GLM Proc	edure			
	Num	ber of Observation	04			
	Num	ber of Observation	s Used 63	47		
	Depend	The GLM Proc dent Variable: H1Gi		nealth		
Source	Depend				Value	Pr > F
Source Model	•	dent Variable: H1G	H1 general I	are F	Value	Pr > F <.0001
	DF	lent Variable: H1G	H1 general l Mean Squ	are F1		

Parameter	Estimate	Standard Error	t Value	Pr > t	95% Confidence Limits	
Intercept	1.587452435	0.04753610	33.39	<.0001	1.494265622	1.680639247
H1GH60	0.003586634	0.00032751	10.95	<.0001	0.002944609	0.004228659

General health = 0.0036 * weight + 1.59

The result corresponds with the hypothesis. **P-value is less than 0.001**, therefore at 95% confidence level, the linear regression model is statistically significant.

To show if height is confounding to the correlation between general health and weight, a **multiple regression model** was processed.

	Num	ber of Observation	8504			
	Num	ber of Observation				
	Depend	The GLM Proc		l healt	th	
Source	Depend				h F Value	Pr > F
		dent Variable: H1G	H1 genera	uare		Pr > F <.0001
Source Model Error	DF	dent Variable: H1G	H1 genera Mean Sq	uare 7458	F Value	

Parameter	Estimate	Standard Error	t Value	Pr > t	95% Confidence Limits	
Intercept	4.454094782	0.19069482	23.36	<.0001	4.080267837	4.827921728
H1GH60	0.007207489	0.00039665	18.17	<.0001	0.006429913	0.007985066
H1GH59	-0.050988189	0.00328260	-15.53	<.0001	-0.057423210	-0.044553168

General health = 0.0072 * weight - 0.05 * height + 4.45

After adding height to the regression model, the intercept and estimated parameter for weight changed, which **provides the evidence of confounding**. **P-value is less than 0.0001**, therefore at 95% confidence level, the correlation is statistically significant.

To evaluate the regression model, several diagnostic plots were obtained.

1. Q-Q plot

The residuals do not follow the straight line very well. So the residuals do not follow the normal distribution perfectly, showing the **poor fit** of this regression model.

2. Leverage plot

There are many outliers, but they have small leverage values, which means although they are outlying observations, they do not have significant effect on the regression model. However, there are many observations that are **both high leverage and outliers**, which shows the **poor fit** of this regression model.

3. Plot of standardized residuals for all observations

Most standardized residuals are centered between -1 and 1, but several of them are **larger than 2**, which show **poor fit** of this regression model.

Code:

```
1 *load data;
 2 LIBNAME mydata "/courses/d1406ae5ba27fe300" access=readonly;
 3 data new; set mydata.addhealth_pds;
4 *set aside missing values;
 5 if H1GH1=6 then H1GH1=.; if H1GH1=8 then H1GH1=.;
 6 if H1GH59A=96 then H1GH59A=.; if H1GH59A=98 then H1GH59A=.; 7 if H1GH59A=99 then H1GH59A=.;
 8 if H1GH59B=96 then H1GH59B=.; if H1GH59B=98 then H1GH59B=.;
 9 if H1GH59B=99 then H1GH59B=.;
10 if H1GH60=996 then H1GH60=.; if H1GH60=998 then H1GH60=.; 11 if H1GH60=999 then H1GH60=.;
12 *calculate the height;
13 H1GH59=H1GH59A * 12 + H1GH59B;
14 *add labels;
15 label AID="respondent ID"
16 H1GH1="general health"
17 *sort by AID;
18 proc sort; by AID;
20 *relationship between general health and weight;
22 ods graphics on;
23 proc glm plots(maxpoints=none);
24 model H1GH1=H1GH60/solution clparm;
25 run;
26 ods graphics off;
28 *multiple regression;
29 ods graphics on;
30 proc glm plots(maxpoints=none);
31 model H1GH1=H1GH60 H1GH59/solution clparm;
32 run;
33 ods graphics off;
35 *diagnostic plot: Q-Q plot and leverage plot;
36 ods graphics on;
37 proc glm plots(unpack maxpoints=none)=all;
38 model H1GH1 = H1GH60 H1GH59/solution clparm;
39 output residual=res student=stdres out=results;
41 ods graphics off;
42
*diagnostic plot: standardized residuals for all observations;
44 proc gplot;
45 label stdres="standardized residuals";
46 plot stdres*AID/vref=0;
47 run;
49
```