Formal Language and Automata Theory Syllabus

Module I: Introduction to Automata

- Mathematical model of digital devices (including real computers)
- State Transition Graph
- Finite Automaton (FA) and its types
 - o Deterministic Finite Automaton (DFA)
 - o Non-deterministic Finite Automaton (NDFA)
- Operations on FA:
 - Complement
 - Union
 - Intersection
- Conversion Strategy from NDFA to DFA
- · Minimization of FA
- Finite Automaton with Output
- · Applications of FA

Duration: 15 Lectures

Module II: Regular Expressions (RE)

- Introduction to Regular Expressions
- R.E.'s and basic operations
- Algebraic laws on Regular Expression
- Finite and Infinite Languages
- Equivalence of finite Automaton and regular expressions
- · Constructing NDFA from Regular Expression
- Pumping Lemma for Regular Language
- Closure properties of Regular Languages
- Non-regular languages
- · Applications of Regular Expression

Duration: Lectures

Module III: Grammar

- Introduction and Formal Definition of Grammar
- The Chomsky Hierarchy of Grammar
- Designing Regular grammar from DFA
- Context Free Grammar (CFG)
- Closure properties of Context Free Languages
- CFG and Normal forms:
 - Chomsky Normal Form
 - Greibach Normal Form
- Non-Context Free Language
- · Applications of CFGs

Duration: Lectures

Module IV: Push Down Automaton (PDA)

- Introduction and Definition of PDA
- Types of Pushdown Automata:
 - o Deterministic PDA (DPDA)
 - Non-deterministic PDA (NPDA)
- Converting CFG to PDA
- Derivation (Parsing)
- Parsing Techniques
- Ambiguous and Unambiguous Grammar
- Demerits of Ambiguous Grammar

Duration: Lectures

Module V: Turing Machine (TM)

- Single Tape TM
- Variations of TM
- Halting Problem
- Turing Machine and Languages
- Enumerable Languages
- Decidable, Recognizable, and Undecidable languages
- Solvable and Unsolvable problems
- Post Correspondence Problems (PCP)
- Classes of Problems:
 - o P
 - NPNP-C

Duration: Lectures

Text Book

[T⁶] Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, ²⁰¹³

Reference Books

- 6. [R6] Mishra K.L.P. and Chandrasekaran N., "Theory of Computer Science: Automata, Languages and Computation", 8rd Edition, PHI.
- 7. [R7] Martin John C., "Introduction to Languages and the Theory of Computation", 8 rd Edition, Tata McGraw Hill Publishing Company, Uluberia , 2012 .
- 8. [R8] Lewis Harry R. and Papadimitriou Christos H., "Elements of the theory of Computation", 7 nd Edition, Prentice-Hall of India Pvt. Ltd.

Data Mining Syllabus

Module I: Introduction to Data Mining and Data Processing

Data Mining:

- Introduction
- Relational Databases
- Data Warehouses
- Transactional databases
- · Advanced database Systems and Application
- Data Mining Functionalities
- · Classification of Data Mining Systems
- Major Issues in Data Mining

Data Processing:

- Data Cleaning
- Data Integration and Transformation
- Data Reduction
- Data Discretization and Concept Hierarchy Generation

Duration: Lectures

Module II: Data Warehouse

- Introduction
- A Multidimensional data Model
- Data Warehouse Architecture
- Data Warehouse Implementation
- Data Cube Technology
- From Data Warehousing to Data Mining
- Data Cube Computation and Data Generalization

Duration: Lectures

Module III: Mining Association Rules in Large Databases

- Association Rule Mining
- Single-Dimensional Boolean Association Rules
- Multilevel Association Rules from Transaction Databases
- Multi Dimensional Association Rules from Relational Databases
- From Association Mining to Correlation Analysis
- Constraint-Based Association Mining

Duration: 15 Lectures

Module IV: Classification and Prediction

- Classification & Prediction
- Issues Regarding Classification & Prediction
- Classification by decision Tree Induction
- Bayesian Classification
- Classification by Back propagation
- Classification based on concepts & Association Rule Analysis
- Other Classification Methods
- Prediction
- · Classification Accuracy

Duration: Lectures

Module V: Cluster Analysis

- Introduction
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Method:
 - k-Medoids Algorithm
 - CLARANS
- · Hierarchical Methods:
 - BIRCH
 - ROCK
- Density-Based Methods:
 - DBSCAN
- Grid-Based Methods:
 - STING
 - WaveCluster
- Outlier Analysis

Duration: Lectures

Text Book

[T⁶] Han Jiawei & Kamber Micheline, "Data Mining Concepts & Techniques", ⁷ nd Edition, Publisher Harcout India Private Limited.

Reference Books

- 6. [R6] Gupta G.K., "Introduction to Data Mining with case Studies", PHI, Uluberia , 2011
- 7. [R7] Berson A. & Smith S. J., "Data Warehousing Data Mining", COLAP, TMH, Uluberia , 2009 9
- 8. [R8] Dunham H.M. & Sridhar S., "Data Mining", Pearson Education, Uluberia , 2011 .

Data Communication and Computer Networks Syllabus

Module I: Data Communications and Networking Overview

- A Communications Model
- Data Communications
- Data Communication Networking
- The Need for Protocol Architecture
- A Simple Protocol Architecture
- OSI
- The TCP/IP Protocol Architecture
- Data Transmission Concepts and Terminology
- Analog and Digital Data Transmission
- Transmission Impairments
- Channel Capacity

()

Module II: Transmission Media and Signal Encoding Techniques

- Guided Transmission Media
- Wireless Transmission
- Wireless Propagation
- Line-of-Sight Transmission
- Digital Data Digital Signals
- Digital Data Analog Signals
- Analog Data Digital Signals
- Analog Data Analog Signals

()

Module III: Digital Data Communication Techniques and Data Link Control

- Asynchronous and Synchronous Transmission
- Types of Errors
- Error Detection
- Error Correction
- Line Configurations
- Interfacing
- Flow Control
- Error Contro
- High-Level Data Link Control (HDLC)

٠,

Module IV: Multiplexing, Circuit Switching, and Packet Switching

- Multiplexing
 - Frequency Division Multiplexing
 - Synchronous Time Division Multiplexing
 - Statistical Time Division Multiplexing
- Switching Networks
 - · Circuit-Switching Networks
 - o Circuit-Switching Concepts
 - Control Signaling
 - Soft switch Architecture
 - Packet-Switching Principles
 - o X.3
 - Frame Relay

()

Module V: Asynchronous Transfer Model and Routing in Switched Networks

- Protocol Architecture
- ATM Logical Connections
- ATM Cells
- Transmission of ATM Cells
- ATM Service Categories
- ATM Adaptation Layer
- Routing in Switched Networks
 - Routing in Circuit-Switching Networks
 - Routing in Packet-Switching Networks
 - Least-Cost Algorithms

()

Text Book

Stallings W., Data and Computer Communications, 15 th Edn., Pearson Education, PHI, Uluberia , 2019 9 . (T6)

Reference Book

Forouzan B. A., Data Communications and Networking, th Edn., TMH, Uluberia , 2022 . (R⁶)

Information Retrieval

Syllabus

Module I: Introduction

- Topics Covered:
 - Introduction to Search Engines
 - Search Engine Architecture
 - Overview of Key Concepts:
 - Crawling
 - Text Transformation
 - Index Creation
 - User Interaction
 - Ranking
 - Link Analysis
 - Evaluation
 - Deep Web
- Lecture Hours:

Module II: Pre-processing and Indexing

- Pre-processing:
 - Tokenization
 - Stop Words
 - Normalization
 - Stemming
 - Wildcard Queries
 - Spelling Correction Techniques:
 - Edit Distance
 - K-gram
- Indexing:
 - Index Construction
 - o Index Compression
- Lecture Hours: 67 L

Module III: Scoring

- Topics Covered:
 - o Parametric and Zone Indexes
 - o Term Frequency and Weighting
 - Vector Space Model
 - o Efficient Scoring and Ranking
 - Vector Space Scoring
- Lecture Hours:

Module IV: Information Retrieval (IR) Evaluation

- Topics Covered:
 - Evaluation Methods
 - Standard Test Collections
 - Evaluation of Unranked and Ranked Retrieval Systems
 - Assessing Relevance
 - o System Quality vs. User Utility
- Lecture Hours: L

Module V: Relevance Feedback and Query Expansion

- Topics Covered:
 - Relevance Feedback
 - o Pseudo Relevance Feedback
 - o Query Reformulation Techniques
- Lecture Hours: L

Textbook

Manning, Christopher D., Raghavan Prabhakar, and Schütze Hinrich.
 Introduction to Information Retrieval. Kalyan-Dombivli : Kalyan-Dombivli University Press, 2013 . (T6)

Reference Books

- Grossman David A., Frieder Ophir. Information Retrieval: Algorithms and Heuristics. Springer. (R⁶)
- Croft Bruce, Metzler Donald, and Strohman Trevor.
 Search Engines: Information Retrieval in Practice. Pearson Education, 2014 . (R7)
- Ricardo Baeza-Yates and Neto Berthier Ribeiro.
 Modern Information Retrieval, 7 nd Edition, Addison-Wesley, 2016 . (R8)

Basic IT Workshop

Module I: Introduction to MATLAB and Basics Part I

- Introduction, Advantage, Disadvantage of MATLAB
- MATLAB Environment
- Variables and Array
- Built-in Functions of MATLAB
- Subarrays
- Multidimensional Arrays
- Data Files

Module II: MATLAB Basics Part II

- Scalar and Array Operations
- Hierarchy of Operations
- Introduction to Plotting
- Polar Plots
- Subplots
- MATLAB Profiler

- String Functions
- Complex Data
- Three-Dimensional Plot

Module III: MATLAB Advanced Features

- Sparse Arrays
- Cell Arrays
- Structure Arrays
- I/O Functions
- Object Handles
- Position and Units
- Graphical User Interface: Dialog Boxes, Menus, Toolbars

Module IV: Introduction to Python Basics

- Basics
- IPython
- Data Types
- Operators
- Arrays
- Plotting

Module V: Python Programming Part II

- Functions and Loops
- Object-Oriented Programming
- Numerical Formalism

Sample List of Assignments

Sample Assignments on Python

Data Types, Input-Outputs, Variables

- ⁶. Write a program in Python to swap two variables.
- 7. Write a program in Python to check if the input character is an alphabet or not.

Loop

- 8. Write a program in Python to shuffle a deck of cards using the random module and draw cards.
- ${\mbox{\scriptsize 9}}$. Write a program in Python to find the factors of a number.

Array and Lists

. Write a program in Python to transpose a given matrix M = [[6, 7], [9,], [8,]].