$2^{\underline{o}}$ Teste de

Computabilidade e Complexidade

Lic. Ciências da Computação

Duração: 2 horas

Este teste é constituído por 5 perguntas. Todas as respostas devem ser devidamente justificadas.

- **1.** Seja $h: \mathbb{N}_0^3 \to \mathbb{N}_0$ a função obtida por recursão primitiva das funções $f: (x,y) \mapsto xy$ e $q:(x,y,z,w)\mapsto x^2+w+3.$
 - a) Identifique a função h.
 - b) Mostre que h é uma função recursiva primitiva.
 - c) Determine a função M_e de minimização da função

$$e(x,y) = monus(x,y+1) = \begin{cases} x-y-1 & \text{se } x > y+1 \\ 0 & \text{se } x \le y+1 \end{cases}.$$

- d) Mostre, sem construir uma máquina de Turing, que M_e é uma função computável.
- **2**. Seja $A: \mathbb{N}_0^2 \to \mathbb{N}_0$ a função de Ackermann que, recorde, é uma função total definida por:

 - i) A(0,y) = y+1; ii) A(x+1,0) = A(x,1); iii) A(x+1,y+1) = A(x,A(x+1,y)).
 - a) Determine A(2,2).
 - **b)** Prove que A(x,y) > x + y para todos os $x,y \in \mathbb{N}_0$.
- 3. Considere os problemas de decisão
 - $Pára_{\epsilon}$: dada uma máquina de Turing \mathcal{T} , será que \mathcal{T} pára com ϵ ?
 - $P\'{a}raSempre$: dada uma máquina de Turing \mathcal{T} , será que \mathcal{T} é um algoritmo?
 - a) Mostre que $P\acute{a}ra_{\epsilon} \leq P\acute{a}raSempre$.
 - b) Conclua que o problema *PáraSempre* é indecidível.
- 4. Diga, justificando, quais das afirmações seguintes são verdadeiras e quais são falsas.
 - a) O seguinte problema é indecidível: Dada uma máquina de Turing \mathcal{F} de alfabeto A, será que $L(\mathcal{T}) \subseteq A^*$?
 - **b)** A função $f(n) = \frac{1}{n^4 + 2n + 1} + n^2 + 1$ é de ordem $\mathcal{O}(n^3)$.
 - c) Se $f: \mathbb{N}_0 \to \mathbb{N}_0$ é uma função recursiva primitiva e A é a função de Ackermann, então a função $g: \mathbb{N}_0 \to \mathbb{N}_0$ definida, para cada $x \in \mathbb{N}_0$, por g(x) = A(x, f(x)) - x é total e computável.

5. Seja $A=\{a,b\}$ e seja $\mathcal T$ a seguinte máquina de Turing sobre A com duas fitas

- a) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \underline{\Delta}baaa, \underline{\Delta})$ e diga se a palavra baaa é aceite por \mathcal{F} .
- **b)** Identifique a linguagem L reconhecida por \mathcal{T} .
- c) Identifique a função parcial $g: A^* \to A^*$ calculada por \mathcal{T} .
- d) Determine a função $tc_{\mathcal{T}}$, de complexidade temporal da máquina \mathcal{T} .
- e) Mostre que $L \in DTIME(n)$.
- **f)** Sendo K a linguagem $K = \{uu^I : u \in A^*\}$, mostre que $L \leq_p K$.

(FIM)

Cotações	1.	2.	3.	4.	5.
	1,5+1+1,25+1,25	1+1,5	1,75+0,75	1+1+1	1+1,25+1,25+1,25+1+1,25