Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the present application:

Listing of Claims

1

1. (canceled) A-radio receiver comprising: 1 2 at least one amplifier to receive radio signals; and 3 a control circuit coupled to the at least one amplifier, wherein the control circuit adjusts the operation of the at least one amplifier based on the received radio signals. 4 2. (currently amended) A The radio receiver having of claim 1, wherein the at 1 least one amplifier is a LNA to receive a RF signal and produce an amplified signal that 2 3 is coupled to a down-converting mixer that produces a mixer output, and the control circuit radio receiver comprises: 4 5 a peak detector coupled to receive the mixer output to produce a peak signal; an integrator coupled to the peak detector to receive the peak signal and produce 6 7 an integrated signal; a second mixer coupled to receive the integrated signal and a transmit power 8 9 indicator to produce a current control signal that is coupled to the LNA to control a bias current of the LNA, wherein cross modulation associated with the received RF signal is 10 11 reduced. 3. (currently amended) The radio receiver of claim 2, further comprising a 1 second third mixer coupled to the output of the integrator and a receiver gain control 2 signal to produce a VCO current control signal that is coupled to a VCO associated with a 3 PLL that drives the down-converting mixer, wherein reciprocal mixing associated with 4 the received RF signal is reduced by adjustment of the VCO associated with the PLL. 5

4. (currently amended) An adaptive system for use with a radio receiver to

2	adapt to interfering signals associated with a received RF signal, the radio receiver
3	includes a LNA to receive the RF signal and produce an amplified signal that is coupled
4	to a down-converting mixer that produces a mixer output, the adaptive system comprises:
5	a peak detector coupled to receive the mixer output to produce a peak signal;
6	an integrator coupled to the peak detector to receive the peak signal and produce
7	an integrated signal; and
8	a second mixer coupled to receive the integrated signal and a transmit power
9	indicator to produce a current control signal that is coupled to the LNA to control a bias
10	current of the LNA, wherein cross modulation associated with the received RF signal is
11	reduced.
1	5. (original) The adaptive system of claim 4, further comprising a filter coupled
2	to receive the mixer output and produce a filtered output that is coupled to the peak
3	detector.
5	
1	6. (currently amended) The adaptive system of claim 4, further comprising a
2	LNA control circuit coupled to the second mixer to receive the current control signal and
3	produce a LNA control signal that is coupled to the LNA to control a bias current of the
4	LNA, wherein cross modulation associated with the received RF signal is reduced.
1	7. (currently amended) The adaptive system of claim 4, further comprising An
2	adaptive system for use with a radio receiver to adapt to interfering signals
3	associated with a received RF signal, the radio receiver includes a LNA to receive
4	the RF signal and produce an amplified signal that is coupled to a down-converting
5	mixer that produces a mixer output, the adaptive system comprises:
6	a peak detector coupled to receive the mixer output to produce a peak signal;
7	an integrator coupled to the peak detector to receive the peak signal and
8	produce an integrated signal; and
9	a second mixer coupled to the output of the integrator integrated signal and a
10	receiver gain control signal to produce a VCO current control signal that is coupled to a
11	VCO associated with a PLL that drives the down-converting mixer, wherein reciprocal

	·
12	mixing associated with the received RF signal is reduced by adjustment of the VCO
13	associated with the PLL.
1	8. (original) The adaptive system of claim 7, wherein the VCO control current
2	is coupled to the VCO associated with the PLL via a VCO control circuit.
1	9. (canceled) The adaptive system of claim 4, further comprising a buffer
2	coupled between the mixer output and a non-linear element.
1	10. (currently amended) The adaptive system of claim 9 7, wherein the peak
	· · · · · · · · · · · · · · · · · · ·
2	detector non linear element comprises a diode element.
1	11. (currently amended) The adaptive system of claim 9, further
2	comprising: An adaptive system for use with a radio receiver to adapt to interfering
3	signals associated with a received RF signal, the radio receiver includes a LNA to
4	receive the RF signal and produce an amplified signal that is coupled to a down-
5	converting mixer that produces a mixer output, the adaptive system comprises:
6	a nonlinear element coupled to receive the mixer output to produce a peak
7	signal;
8	an second integrator coupled to the non-linear element and the buffer to produce
9	an second integrator output; and
10	a third second mixer coupled to receive the second integrator output and a
11	receiver power indicator to produce a receive control signal.
1	12. (original) The adaptive system of claim 11, wherein the receive control
2	signal is coupled to a receive control circuit, and wherein an output of the receive control
3	circuit is coupled to the down-converting mixer to adjust the down-converting mixer to
4	reduce intermodulation distortion.
4	reduce intermodulation distortion.
1	13. (original) A method for providing an adaptive system for use with a radio
2	receiver to adapt to interfering signals associated with a received RF signal, the radio
3	receiver includes an LNA to receive the RF signal and produce an amplified signal that is

4	coupled to a down-converting mixer that produces a mixer output, the method comprising
5	steps of:
6	deriving a peak signal from the mixer output;
7	integrating the peak signal to produce an integrated signal;
8	mixing the integrated signal and a transmit power indicator to produce a current
9	control signal; and
10	controlling a bias current of the LNA with the current control signal, wherein
11	cross modulation associated with the received RF signal is reduced.
1	14. (currently amended) The method of claim 13, wherein the step of mixing is
2	a step of: A method for providing an adaptive system for use with a radio receiver to adapt
3	to interfering signals associated with a received RF signal, the radio receiver includes an
4	LNA to receive the RF signal and produce an amplified signal that is coupled to a down-
5	converting mixer that produces a mixer output, the method comprising steps of:
6	deriving a peak signal from the mixer output;
7	integrating the peak signal to produce an integrated signal;
8	mixing the integrated signal and a receive power indicator to produce a VCO
9	control signal; and
10	the step of controlling is a step of:
11	controlling a VCO based on the VCO control signal, wherein the VCO is
12	associated with a PLL coupled to the down-converting mixer, and wherein reciprocal
13	mixing associated with the received RF signal is reduced by adjustment of the VCO
14	associated with the PLL.
.1	15. (currently amended) The method of claim 13, wherein the step of mixing is
2	a step of: A method for providing an adaptive system for use with a radio receiver to adapt
3	to interfering signals associated with a received RF signal, the radio receiver includes an
4	LNA to receive the RF signal and produce an amplified signal that is coupled to a down-
5	converting mixer that produces a mixer output, the method comprising steps of:
6	deriving a peak signal from the mixer output:

Appl. No. 10/051,761 Amdt. dated March 30, 2005 Reply to Office action of November 30, 2004

7.	integrating the peak signal to produce an integrated signal;
8	mixing the integrated signal and a receive power indicator to produce a receive
9	control signal; and
10	the step of controlling is a step of:
11	controlling the down-converting mixer based on the receive control signal,
12	wherein intermodulation distortion associated with the received RF signal is reduced.