1

Exercises

Exercise n°1

Show that the language $L = \{a^n \mid n \text{ is a prime number}\}$ is not context-free.

Exercise n°2

 $\mathbf{\zeta}$ Show that $L = \{ww^R w \mid w \in \{a, b\}^*\}$ is not a context-free language.

Exercise n°3

 $\boldsymbol{\zeta}$ Is the language $L = \{a^n b^m \mid n = 2m\}$ context-free?

Exercise n°4

Determine whether the language $L=\{a^nb^ja^jb^n\mid n\geq 0, j\geq 0\}$ is context-free.

Exercise n°5

Exercise n°6

Show that the family of deterministic context-free lan- guages is not closed under union and intersection. under union and intersection.

Exercise n°7

Show that there exists an algorithm to determine whether the language generated by some context-free grammar contains any words of length less than some given number n.

Exercise n°8

Let L_1 be a context-free language and L_2 be regular. Show that there exists an algorithm to determine whether or not L_1 and L_2 have a common element. element.

Solution n°1

 $L = \{a^n \mid n \text{ is a prime number}\}$

Assume L is context free.

By the pumping lemma, $\exists m>0, \ \forall w\in L \ \text{with} \ |w|\geq m \ \text{such that} \ \exists u,v,x,y,z\ -\ w=uvxyz \ \text{with} \ |vxy|\leq m, \ |vy|\geq 1 \ \text{and} \ \forall i\in \mathbb{N} \ uv^ixy^iz\in L.$

In particular if we take the word $w = a^p$ where p is a prime number such that p > m + 1.

Since $|vxy| \le m, \ v = a^j, \ x = a^k$, $y = a^l$ where $j+l \ge 1$ because $|vy| \ge 1$.

Take i = p + 1:

$$uv^{1+p}xy^{1+p}z = uvxyz(vy)^p = a^p(a^{j+l})^p = a^{p(j+l+1)} =$$

The number p(j + l + 1) is divible by p, 1 and j + l + 1.

However

^^^^^^

$$j+l+1 \neq 1: \ j+l \geq 1 \Rightarrow j+l+1 \geq 2 > 1$$

$$j+l+1 \neq p: \ j+l+1 < j+k+l+1 = m+1 < p$$

Therefore p(j+l+1) has at least 3 divisors: p(j+l+1) is not prime hence $w \notin L$.

This contradicts the pumping lemma. Therefore, our assumption that L is regular cannot be true: L is not context-free.

$$L = \{ww^R w \mid w \in \{a, b\}^*\}$$

Assume L is context free.

Assume L is considered by the pumping $\exists u, v, x, y, z - v$ and $\exists u, v, x, y, z - v$ and $\exists u, v, x, y, z - v$ and $\exists u, v, x, y, z - v$ and $\exists u, v, x, y, z - v$ and $\exists u, v, x, y, z - v$ and $\exists u, v, x, y, z - v$ and $\exists u, v, x, y, z - v$ and $\exists u, v, y, z - v$ and $\exists u,$ By the pumping lemma, $\exists m>0, \ \forall w\in L \ \text{with} \ |w|\geq m \ \text{such that} \ \exists u,v,x,y,z\ --\ w\ =\ uvxyz \ \text{with} \ |vxy|\ \leq\ m,\ |vy|\ \geq\ 1 \ \text{and} \ \forall i\in \mathbb{N}$

In particular, we can take the word $w = (ab)^m \cdot (ba)^m \cdot (ab)^m$

- $|vxy| \le m \Rightarrow vxy = a^j b^k \lor vxy = b^k a^j$ with $k + j \le m$
- $|vy| \ge 1 \Rightarrow k \ge 1$ or $j \ge 1$ therefore $1 \le k + j \le m$

uvxyz = uxz and we have 3 possibilities for uxz:

- $(ab)^{m-(k+j)}(ba)^m(ab)^m$
- $(ab)^m (ba)^m (ab)^{m-(k+j)}$
- $(ab)^m(ba)^{m-(k+j)}(ab)^m$

And $m - (k+j) \neq m$: $m - (k+j) \leq m - 1 < m$ so none of the possibilities belong to L: $w \neq L$ for i = 0.

This contradicts the pumping lemma. Therefore, our assumption that L is regular cannot be true: L is not context-free.

Solution n°3

$$L = \{a^n b^m \mid n = 2m\}$$

Assume L is context free.

By the pumping lemma, $\exists m>0, \ \forall w\in L \ \text{with} \ |w|\geq m \ \text{such that} \ \exists u,v,x,y,z\ -\ w=\ uvxyz \ \text{with} \ |vxy|\leq m, \ |vy|\geq 1 \ \text{and} \ \forall i\in\mathbb{N} \ uv^ixy^iz\in L.$

In particular, we can take the word $w = a^n b^m$.

- $|vxy| \le m \Rightarrow vxy = a^j b^k \lor vxy = a^l \lor vxy = b^l$ with $k+j \le m \lor l \le m$
- $|vy| \ge 1 \Rightarrow 1 \le k + j \le m \lor 1 \le l \le m$

Take i = 0:

^

We have 3 possibilities for uxyz:

- $a^{n-l}b^m$ and $n-l \neq 2m$: n-l < n = 2m hence $a^{n+l}b^m \notin L$
- a^nb^{m-l} and $2(m-l) \neq n$: n = 2m > (2m-l) hence $a^nb^{m-l} \notin L$
- $a^{n+\alpha-j}b^{m+\beta-k}$ where:
 - $\alpha = n_a(x) \wedge \beta = n_b(x)$
 - $(0 \le \alpha < j \land 0 \le \beta \le k) \lor (0 \le \alpha \le j \land 0 \le \beta < k)$

$$n + \alpha - j = 2(m + \beta - k) \iff n + \alpha - j = n - 2(k - \beta)$$
$$\iff j - \alpha = 2(k - \beta)$$

In the case $0 \le \alpha < j \land 0 \le \beta \le k$, it's absurd for $\beta = k$ since $j < \alpha$.

In the case $0 \le \alpha \le j \land 0 \le \beta < k$, it's absurd for $\alpha = j$ since $\beta < k$.

As for all cases we have $uv^0xy^0z\neq L$, we can conclude that L is not a context-free language.

Solution n°4

The language is context-free, which can be shown by providing an NPDA that accepts the language:

$$L = \{a^n b^j a^j b^n \mid n \ge 0, j \ge 0\}$$

-\footnotesis -\

Solution n°6

First we show that the family is not closed under union.

Let $L_1 = \{a^nb^{2n} \mid an \geq 0\}$, and $L_2 = \{a^nb^n \mid an \geq 0\}$. These two languages are deterministic context-free, as you can deterministically count the a's and then discharge it with b's. Any DPDA M with $L(M) = L_1 \cup L_2$ would need to decide whether to count the a's twice beforehand. This means it is required to be non-deterministic, and hence $L_1 \cup L_2$ cannot be a deterministic context-free language.

Now for the intersection. Let $L_1 = \{a^nb^nc^m \mid n \geq 0, m \geq 0\}$, and $L_2 = \{a^nb^mc^m \mid n \geq 0, m \geq 0\}$. These two languages are deterministic context-free, as there is only one variable that needs to be recorded. However, $L_1 \cap L_2 = \{a^nb^nc^n \mid n \geq 0\}$, which has already been shown to not be context-free. So it cannot be deterministic context-free either. Hence the family of deterministic context-free languages is not closed under union and intersection.

Solution n°7

Solution n°8

We know that $L_1 \cap L_2$ is context-free. There is an algorithm to decide if $L_1 \cap L_2$ is empty and reversing the result of that algorithm determines whether the two languages have a common element. Thus, there is an algorithm to determine whether L_1 and L_2 have a common element.