MT543 Topics in Algebra

Notes taken by Stephen Nulty October 4, 2023

Note:

Any transcription mistakes and typos are my own.

Lectures by David Wraith. Lie Groups and Lie Algebras.

Lecture 1 25/09/23

missed this lecture - some intro to do with spheres, transformations and symmetries and other motivational stuff. Definition of an algebra (bilinear product) over a field.

0. Something

Lecture 2 27/09/23

Sorting out tutorial times. Lectures: Monday 2pm MS2, Wednesday 2pm LGH, Thursday 12pm MS2.

Lie Groups, dual nature, Groups but also a topological geometrical character. Can prove things with a mix of both methods - intersection of various areas.

1. Groups of matrices

1.1. General Linear Groups

Quaternions will have a central role.

Consider groups of $N \times N$ matrices over the fields $\mathbb R$ and $\mathbb C$ and also over the quaternions.

Definition 1.1.1. The quaternions \mathbb{H} is a 4-dim real vector space with standard basis elements 1, i, j, k, equipped with an associative linear multiplication operation defined by

$$i^2 = j^2 = k^2 = -1$$
, $ij = k, jk = i, ki = j$

So a generic quaternion takes the form a + bi + cj + dk, $a, b, c, d \in \mathbb{R}$.

Observe, ji = j(jk) = (jj)k (by associativity) = $j^2k = -k$. Similarly kj = -i and ik = -j.

e.g.
$$(2+i-3k)(5+2i-j+k) = 10+4i-2j+2k+5i-2-k-j-15k-6j-61+3$$
 etc.

Quaternions is not commutative, so is not a field. However it is a skew field (division algebra).

Terminology - In a + bi + cj + dk, a is called the real or scalar part, and the rest bi + cj + dk imaginary or vector part.

In analogy with complex numbers,

Definition 1.1.2. 1. The conjugate of a+bi+cj+dk, is $\overline{a+bi+cj+dk} = a-bi-cj-dk$ 2. The norm of a+bi+cj+dk is $|a+bi+cj+dk| = \sqrt{a^2+b^2+c^2+d^2}$

Thus \mathbb{H} is a normed vector space. Next observe that for each $q \in \mathbb{H}$ $q\bar{q} = \bar{q}q = |q|^2$.

therefore (symbol) $q^{-1} = \bar{q}/|q|^2$. So $qq^{-1} = q\bar{q}/|q|^2 = |q|^2 = 1$, similarly for $q^{-1}q = 1$.

This allows division $q_1 \cdot q_2^{-1} = q_1 \bar{q}_2/|q_2|^2$. Writing q_1/q_2 is ambiguous however. $q_1 q_2^{-1} \neq q_2^{-1} q_1$ generically.

Clearly $\mathbb{R} \subset \mathbb{C} \subset \mathbb{H}$. A classic theorem of Frobenius asserts that \mathbb{R} , \mathbb{C} , \mathbb{H} are the only real associative division algebras. These objects similarly play a distinguished role in Lie group theory.

Convention: Suppose V is a vector space over the quaternions \mathbb{H} . We will adopt the convention that whenever we scale a vector $v \in V$ by a scalar $\lambda \in \mathbb{H}$, we multiply on the left, i.e. λv

Let $M_n(\mathbb{R}), M_n(\mathbb{C}), M_n(\mathbb{H})$ denote the sets (vector spaces!) of all $n \times n$ matrices over $\mathbb{R}, \mathbb{C}, \mathbb{H}$.

Definition 1.1.3. The General Linear Groups $GL_n(\mathbb{R})$, resp. $GL_n(\mathbb{C})$ is the group of $n \times n$ invertible matrices with \mathbb{R} resp \mathbb{C} coefficients. (Group under multiplication). Equivalently $GL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) | \det(A) \neq 0\}$. Similarly $GL_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) | \det(A) \neq 0\}$.

(return to the idea of determinants of quaternions later).

Recall that for any matrix $A \in M_n(\mathbb{R})$ we have two associated linear maps $L_A : \mathbb{R}^n \to \mathbb{R}^n$, $L_a(\vec{x}) = A\vec{x}$, $R_A : \mathbb{R}^n \to \mathbb{R}^n$, $R_a(\vec{x}) = \vec{x}A$.

It is well know that A is invertible (RC cases) \iff det(A) \neq 0 \iff L_A, R_A are isomorphisms.

Lecture 3 02/10/23

Thursday lecture moved to Friday at 10am in MS2. Reminder:

- Quaternions \mathbb{H} , multiplication is associative not commutative. If V is a \mathbb{H} -vector space, we scale from the left only, i.e. λv for $\lambda \in \mathbb{H}$, $v \in V$.
- General linear groups $GL_n(\mathbb{R})$, $GL_n(\mathbb{C})$ groups under * of all invertible \mathbb{R} resp. $\mathbb{C} n \times n$ matrices.
- $A \in M_n(\mathbb{R})$, $M_n(\mathbb{C})$ is invertible iff $\det A \neq 0$ iff L_A , R_A are both invertible where $L_a(\vec{x}) = A\vec{x}$, $R_a(\vec{x}) = \vec{x}A$.

We now consider $M_n(\mathbb{H})$.

Definition 1.1.4. A function $f : \mathbb{H}^n \to \mathbb{H}^n$ is \mathbb{H} - linear if $f(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 f(v_1) + \lambda_2 f(v_2), \ \forall \lambda_1 \lambda_2 \in \mathbb{H}, v_1, v_2 \in \mathbb{H}^n$.

Lemma 1.1.5. For $A \in M_n(\mathbb{H})$, $R_A : \mathbb{H}^n \to \mathbb{H}^n$ given by $R_a(\vec{x}) = \vec{x}A$ for $v \in \mathbb{H}^n$ a row vector, is \mathbb{H} - linear, however L_A is in general not \mathbb{H} - linear. Proof: exercise

idea is that associativity makes λvA ok, but not with left multiplication which is interfered by commutativity.

Lemma 1.1.6. For $A \in M_n(\mathbb{H})$, $R_A : \mathbb{H}^n \to \mathbb{H}^n$, is an \mathbb{H} -linear isomorphism iff A is invertible, i.e. $\exists B \in M_n(\mathbb{H})$ such that $AB = BA = I_n$.

Proof. (\Rightarrow) If R_A is an iso. then there is a \mathbb{H} -linear inverse $(R_A)^{-1} : \mathbb{H}^n \to \mathbb{H}^n$. There is a corresponding matrix $B \in M_n(\mathbb{H})$. Since $R_A \circ (R_A)^{-1} = R_A \circ (R_A)^{-1} = I_n$. we deduce $BA = AB = I_n$ (NB order of matrices here!). Therefore $B = A^{-1}$.

$$(\Leftarrow)$$
 Similar.

Definition 1.1.7. The quaternionic general linear group $GL_n(\mathbb{H}) = \{A \in M_n(\mathbb{H}) | A \text{ is invertible}\} = \{A \in M_n(\mathbb{H}) | R_a \text{ is an iso.}\}$

NB: There is a problem with the notion of \mathbb{H} - determinant due to non-commutativity we'll return to this later (possible to define determinant and gl as ones with non-zero determinant, but defining it requires some thought.)

It turns out that we can view \mathbb{C} and \mathbb{H} - matrices/linear maps in terms of \mathbb{R} - matrices.

Proposition 1.1.8. There is a real linear map $\rho_n : M_n(\mathbb{C}) \to M_{2n}(\mathbb{R})$ such that the following diagram commutes.

$$\mathbb{C}^{n} \xrightarrow{\theta_{n}} \mathbb{R}^{2n} \\
\downarrow_{R_{A}} \qquad \downarrow_{R_{\rho_{n}(A)}} \\
\mathbb{C}^{n} \xrightarrow{\theta_{n}} \mathbb{R}^{2n}$$

where $\theta_n : \mathbb{C}^n \to \mathbb{R}^{2n}$ is given by $\theta_n(a_1+ib_1,\ldots,a_n+ib_n) = (a_1,b_1,\ldots,a_n,b_n)$.

(compactly every complex matrix can be viewed as a real matrix of twice the size)

Remark: θ_n is a real linear isomorphism. This forces $R_{\rho_n(A)} = \theta_n \circ R_A \circ \theta_n^{-1}$. This is linear and therefore there is a corresponding matrix $\in M_{2n}(\mathbb{R})$.

Proof. See moodle.
$$\Box$$

Observation 1.1.9. ρ_n is injective. Proof: exercise.

Lemma 1.1.10. ρ_n satisfies $\rho_n(AB) = \rho_n(A)\rho_n(B)$. So ρ_n is an injective real-algebra homomorphism.

Proof. We compose commutative squares from 1.1.8 to get

$$\mathbb{C}^{n} \xrightarrow{\theta_{n}} \mathbb{R}^{2n} \\
\downarrow^{R_{A}} \qquad \downarrow^{R_{\rho_{n}(A)}} \\
\mathbb{C}^{n} \xrightarrow{\theta_{n}} \mathbb{R}^{2n} \\
\downarrow^{R_{B}} \qquad \downarrow^{R_{\rho_{n}(B)}} \\
\mathbb{C}^{n} \xrightarrow{\theta_{n}} \mathbb{R}^{2n}$$

On L.H.S. we have $R_B \circ R_A = R_{AB}$. (note order)

On R.H.S we have $R_{\rho_n(B)} \circ R_{\rho_n(A)} = R_{\rho_n(A)\rho_n(B)}$.

But since LHS is R_{AB} this means $R_{\rho_n(AB)} = \text{composition on RHS} = R_{\rho_n(A)\rho_n(B)}$.

It's not surjective however. Q: What exactly is $\rho_n(A)$? Consider $(a+ib) \in$ $M_1(\mathbb{C})$.

$$R_{(a+ib)}(x+iy) = (x+iy)(a+ib) = (ax-by) + i(ay+bx)$$

Now $\theta_1(x+iy)=(x,y)\in\mathbb{R}^2$ etc.

So $\theta_1((ax - by) + i(ay + bx)) = (ax - by, ay + bx)$ The corresponding map from $\mathbb{R}^2 \to \mathbb{R}^2$ is $(x, y) \mapsto (ax - by, ay + bx)$. Observe that

$$\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} = (ax - by, ay + bx)$$

So $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in M_2(\mathbb{R})$ corresponds under ρ_1 to $(a+ib) \in M_1(\mathbb{C})$. More generally

$$\begin{pmatrix} a_{11} + ib_{11} & \dots & a_{1n} + ib_{1n} \\ \vdots & \vdots & \vdots \\ a_{n1} + ib_{n1} & \dots & a_{nn} + ib_{nn} \end{pmatrix} \in M_n(\mathbb{C})$$

corresponds to

Lecture 4 04/10/23

Last time:

- $A \in M_n(\mathbb{H})$ then $R_A : \mathbb{H}^n \to \mathbb{H}^n$ given by $R_a(\vec{x}) = \vec{x}A$ is \mathbb{H} linear (assuming coefficients in H multiply on vectors from the left, x row vector). Left multiplication is not in general H linear.
- Under the real linear isomorphism $\theta_n : \mathbb{C}^n \to \mathbb{R}^{2n}$, $\theta_n(a_1 + ib_1, \dots, a_n + ib_n)$ ib_n) = $(a_1, b_1, \ldots, a_n, b_n)$. Any complex-linear map $\mathbb{C}^n \to \mathbb{C}^n$ corresponds to a real-linear map $\mathbb{R}^{2n} \to \mathbb{R}^{2n}$ and in terms of matrices (an right multiplication) $A \in M_n(\mathbb{C})$ corresponds to some matrix $\rho_n(A) \in M_{2n}(\mathbb{R})$.

If
$$A = \begin{pmatrix} a_{11} + ib_{11} & \dots & a_{1n} + ib_{1n} \\ \vdots & \vdots & \vdots \\ a_{n1} + ib_{n1} & \dots & a_{nn} + ib_{nn} \end{pmatrix}$$

then

$$\rho_n(A) = \begin{pmatrix} a_{11} & b_{11} \\ -b_{11} & a_{11} \end{pmatrix} \cdot \cdot \cdot \begin{vmatrix} a_{1n} & b_{1n} \\ -b_{1n} & a_{1n} \end{vmatrix}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n1} & b_{n1} \\ -b_{n1} & a_{n1} \end{vmatrix} \cdot \cdot \cdot \begin{vmatrix} a_{nn} & b_{nn} \\ -b_{nn} & a_{nn} \end{vmatrix}$$

Consider the \mathbb{C} linear map $\mathbb{C}^n \to \mathbb{C}^n$ given by $z \to zi$. This is R_A where

$$A = \begin{pmatrix} i & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & i \end{pmatrix} = iI$$

For this matrix we have

$$ho_n(A) = egin{pmatrix} 0 & 1 & & & & \mathbf{0} \\ \hline -1 & 0 & & & & \mathbf{0} \\ \hline & \vdots & & \vdots & & \\ \hline & \mathbf{0} & & & & & 0 & 1 \\ \hline & & & & & & -1 & 0 \end{pmatrix} = \mathcal{I}_n$$

A map $f: \mathbb{C}^n \to \mathbb{C}^n$ is \mathbb{C} linear if it is real linear and f(zi) = f(z)i.

Let $barf: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ be the corresponding \mathbb{R} linear map and suppose this has matrix $B \in M_{2n}(\mathbb{R})$. Then the complex linearity requirement is $R_B \circ R_{\mathcal{I}_n} = R_{\mathcal{I}_n} R_B$.

Since $R_X = R_Y \iff X = Y$ we see this is equivalent to asking $B\mathcal{I}_n = \mathcal{I}_n B$. i.e. $B \in M_{2n}(\mathbb{R})$ corresponds under θ_n to a complex linear map $\iff B\mathcal{I}_n = \mathcal{I}_n B$.

We'd proved

Corollary 1.1.11. The image of $\rho_n : M_n(\mathbb{C}) \to M_{2n}(\mathbb{R})$ is the set of all of all matrices in $M_{2n}(\mathbb{R})$ which commute with \mathcal{I}_n .

Remark: This shows that ρ_n is not surjective.

Lemma 1.1.12. There is an injective group homomorphism $\rho_n : GL_n(\mathbb{C}) \to GL_{2n}(\mathbb{R})$, given by restricting $\rho_n : M_n(\mathbb{C}) \to M_{2n}(\mathbb{R})$.

Proof. We just have to check that if $A \in GL_n(\mathbb{C})$, then $\rho_n(A)$ is invertible. Clearly $\rho_n(AA^{-1}) = \rho_n(A^{-1}A) = \rho_n(I_n)$ so by 1.1.10. $\rho_n(A)\rho_n(A^{-1}) = \rho_n(A^{-1})\rho_n(A) = \rho_n(I_n) = I_{2n}$.

 $\therefore \rho_n(A^{-1}) = \rho_n(A)^{-1}$, hence $\rho_n(A) \in GL_{2n}(\mathbb{R})$. So $\rho_n : GL_n(\mathbb{C}) \to GL_{2n}(\mathbb{R})$, and by 1.1.10 this is a (multiplicative) group homomorphism \square

Now for quaternion matrices.

First observe that there is a \mathbb{C} linear isomorphism $\phi_n : \mathbb{H}^n \to \mathbb{C}^{2n}$ given by $\phi_n(z_1 + w_1 j, \dots, z_n + w_n j) = (z_1, w_1, \dots, z_n, w_n)$.

(exercise to figure out a + bi + cj + dk as z + wj, with $\mathbb{R} \subset \mathbb{C} \subset \mathbb{H}$.)

Proposition 1.1.13. There is an injective \mathbb{C} linear map $\psi_n: M_n(\mathbb{H}) \to M_{2n}(\mathbb{C})$ s.t. the following square commutes:

$$\mathbb{H}^{n} \xrightarrow{\phi_{n}} \mathbb{C}^{2n}$$

$$\downarrow^{R_{A}} \qquad \downarrow^{R_{\psi_{n}(A)}}$$

$$\mathbb{H}^{n} \xrightarrow{\phi_{n}} \mathbb{C}^{2n}$$

i.e. $\phi_n \circ R_A = R_{\psi_n(A)} \circ \phi_n$. Moreover, ψ_n satisfies $\psi_n(AB) = \psi_n(A)\psi_n(B)$.

Proof. Analogous to that of prop 1.1.8 and lemma 1.1.10. Exercise! \Box

Remark: It is easily checked (exercise!) that
$$\psi_1(z+wj) = \begin{pmatrix} z & w \\ -\bar{w} & \bar{z} \end{pmatrix}$$

More generally, image of ψ_n consists of block matrices with blocks of this form (analogous to ρ_n).

By restricting to invertible matrices we obtain:

Corollary 1.1.14. There is an injective group homomorphism $\psi_n : GL_n(\mathbb{H}) \to GL_{2n}(\mathbb{C})$.

Proof. Analogous to
$$1.1.12$$
 - exercise.

(you can compose the maps then to get a real 4n matrix from a quaternionic one)

Composing ρ_{2n} and ψ_n gives

Corollary 1.1.15. There is an injective \mathbb{R} linear map resp. group homomorphism given by $\rho_{2n} \circ \psi_n : M_n(\mathbb{H}) \to M_{4n}(\mathbb{R})$ resp. $\rho_{2n} \circ \psi_n : GL_n(\mathbb{H}) \to GL_{4n}(\mathbb{R})$.

Slogan: all groups of \mathbb{H} or \mathbb{C} matrices can be viewed as groups of real matrices!

Definition 1.1.16. For $A \in M_n(\mathbb{H})$, $\det(A) := \det \psi_n(A)$.