Analyse - Agrégation 1967

Dans C on désigne par $\delta(v, \rho)$ le disque ouvert de centre v et de rayon $\rho > 0$, par $\overline{\delta}(v, \rho)$ son adhérence, par $\gamma(v, \rho)$ sa frontière, éventuellement orientée de façon que :

$$\frac{1}{2i\pi} \int_{\gamma(v,\rho)} \frac{dx}{x-v} = 1 .$$

 C^2 est muni de la topologie-produit. Dans C^2 , on appelle polydisque de centre $w=(w_1,w_2)$ et de rayon $r=(r_1,r_2)$ où r_1 et r_2 sont des réels strictement positifs, et on note $\Delta(w,r)$ l'ensemble des $z=(z_1,z_2)\in C^2$ tels que :

$$|z_i - w_i| < r_i$$
 , $j = 1, 2$;

son adhérence est notée $\overline{\Delta}(w,r)$.

Soit D un ouvert de \mathbb{C}^2 .

f étant une fonction définie sur D et à valeurs dans \mathbb{C} , la valeur de f au point $z=(z_1,z_2)$ sera notée soit f(z), soit $f(z_1,z_2)$.

 (a_1,a_2) étant un point de D, on désigne par $D^1_{a_1}$ (resp. $D^2_{a_2}$) l'ouvert de C formé des z_2 (resp. z_1) tels que (a_1,z_2) (resp. (z_1,a_2)) soit dans D, et par $f^1_{a_1}$ (resp. $f^2_{a_2}$) la fonction définie sur $D^1_{a_1}$ (resp. $D^2_{a_2}$) par la relation:

$$f_{a_1}^1(z_2) = f(a_1, z_2)$$
 [resp. $f_{a_2}^2(z_1) = f(z_1, a_2)$]

On appelle \mathcal{O}_D l'ensemble des fonctions f définies sur D et à valeurs dans C, telles que tout point $w = (w_1, w_2)$ de D possède dans D un voisinage ouvert \mathcal{U} dans lequel f admet un développement en série entière double :

(1)
$$f(z_1, z_2) = \sum_{n_1, n_2}^{\infty} a_{n_1, n_2} (z_1 - w_1)^{n_1} (z_2 - w_2)^{n_2}$$

convergent pour tout $z = (z_1, z_2)$ de \mathcal{U} . Une fonction appartenant à \mathcal{O}_D est dite analytique sur D.

Partie I

On donne un ouvert D de \mathbb{C}^2 et une fonction f définie sur D et à valeurs dans \mathbb{C} .

- 1. On suppose que $f \in \mathcal{O}_D$.
 - (a) Montrer que, pour tout w de D, la série (1) est absolument et uniformément convergente dans tout polydisque $\Delta(w,r)$ où r_1 et r_2 sont suffisamment petits.
 - (b) Montrer que f est continue sur D et que, pour tout (a_1, a_2) de D, les fonctions $f_{a_1}^1$ et $f_{a_2}^2$ sont analytiques respectivement sur $D_{a_1}^1$ et sur $D_{a_2}^2$.
 - (c) Montrer que f a des dérivées partielles $\frac{\partial f}{\partial z_1}$ et $\frac{\partial f}{\partial z_2}$ qui appartiennent à \mathcal{O}_D , et que le développement (1) au point w est unique.
- 2. On suppose f continue sur D, et, pour tout (a_1, a_2) de D, $f_{a_j}^j$ analytique sur $D_{a_j}^j$ (j = 1, 2). Montrer que f appartient à \mathcal{O}_D [on pourra appliquer deux fois la formule intégrale de Cauchy à une variable] .
- 3. Montrer que l'ensemble \mathcal{O}_D est un sous-anneau de l'anneau des fonctions continues sur D. Quels sont les éléments inversibles de \mathcal{O}_D ?

- 4. On suppose dans cette question que D est connexe :
 - (a) Soit f un élément de \mathcal{O}_D . Montrer que f est constante dans les deux cas suivants :
 - f(z) est réel pour tout z de D.
 - |f(z)| est constant pour tout z de D.
 - (b) Soit f et g deux éléments de \mathcal{O}_D . Montrer que, s'il existe un ouvert non vide de D sur lequel les restrictions de f et g sont égales, alors f et g sont égales.

Partie II

Soit \mathcal{C}_D l'anneau des fonctions continues sur l'ouvert D de \mathbb{C}^2 et à valeurs dans \mathbb{C} .

1. Pour tout compact K contenu dans D, et pour tout f de \mathcal{C}_D , on pose :

$$||f||_K = \sup_{z \in K} |f(z)|.$$

Montrer que, pour tout couple f, g d'éléments de \mathcal{C}_D , on a :

$$||f + g||_K \le ||f||_K + ||g||_K$$

$$||fg||_K \le ||f||_K.||g||_K.$$

Kétant donné, l'application $f\mapsto \|f\|_K$ est-elle une norme sur \mathcal{C}_D ?

- 2. Une suite de compacts K_n $(n \in \mathbb{N}^*)$ de D est appelée une \mathcal{A} -famille de D si :
 - $\forall n \in \mathbb{N}^*, K_n \subset K_{n+1}$.
 - $\bullet \bigcup_{n \in \mathbb{N}^*} K_n = D.$
 - Tout compact de D est contenu dans au moins l'un des K_n .
 - (a) En considérant les polydisques fermés $\overline{\Delta}(z,r)$ contenus dans D, tels que les parties réelles et imaginaires de z_1 et de z_2 soient des nombres rationnels ainsi que r_1 et r_2 , construire une \mathcal{A} -famille de D.
 - (b) On donne une A-famille de D. Pour tout couple f,g d'éléments de \mathcal{C}_D , on pose :

$$d(f,g) = \sum_{n=1}^{\infty} 2^{-n} \frac{\|f - g\|_{K_n}}{1 + \|f - g\|_{K_n}}.$$

Montrer que d est une distance sur \mathcal{C}_D .

On suppose désormais que C_D est muni de la topologie associée à d.

- 3. Montrer qu'une suite (f_p) d'éléments de \mathcal{C}_D est convergente si et seulement si, pour tout compact K de D, la suite des restrictions des f_p à K est uniformément convergente sur K.
- 4. C_D est-il complet pour d?
- 5. Les deux applications

$$(f,q) \mapsto f + q$$
 et $(f,q) \mapsto fq$

de $C_D \times C_D$ dans C_D sont-elles continues?

6. L'ensemble \mathcal{O}_D est-il fermé dans \mathcal{C}_D ?

Partie III

On note $\widetilde{\omega}$ l'élément (0,0) de \mathbb{C}^2 . $\Delta(\widetilde{\omega},r)$ est un polydisque donné de \mathbb{C}^2 .

- 1. Soit g une fonction non identiquement nulle de $\mathcal{O}_{\Delta(\mathbf{\varphi},r)}$ telle que g_0^1 admette 0 comme zéro d'ordre k ($k \in \mathbb{N}^*$).
 - (a) Montrer qu'il existe un polydisque $\Delta(\widetilde{\omega},s)$ contenu dans $\Delta(\widetilde{\omega},r)$ tel qu'en posant :

$$\theta = \inf_{z_2 \in \gamma(0,s_2)} |g_0^1(z_2)|$$

on ait : $\theta > 0$ et, pour tout z_1 de $\delta(0, s_1)$ et pour tout z_2 de $\gamma(0, s_2)$,

$$|g(z_1, z_2) - g(0, z_2)| < \theta.$$

- (b) Montrer que, pour tout a_1 de $\delta(0, s_1)$, $g_{a_1}^1$ a exactement k zéros dans $\delta(0, s_2)$, chaque zéro étant compté avec son ordre de multiplicité.
- (c) Montrer que l'ensemble X des zéros de g dans $\Delta(\widetilde{\omega}, r)$ est fermé dans ce polydisque et n'a aucun point intérieur.
- 2. Y désigne le complémentaire de X dans $\Delta(\widetilde{\omega}, r)$; f est une fonction appartenant à \mathcal{O}_Y et bornée.
 - (a) Montrer que la fonction \widehat{f} définie sur $\Delta(\widetilde{\omega}, s)$ par :

$$\widehat{f}(z_1, z_2) = \frac{1}{2i\pi} \int_{\gamma(0, s_2)} \frac{f(z_1, x)}{x - z_2} dx$$

est un élément de $\mathcal{O}_{\Delta(\mathbf{\omega},s)}$.

(b) Montrer que, pour tout z de $Y \cap \Delta(\widetilde{\omega}, s)$, on a :

$$\widehat{f}(z) = f(z).$$

Partie IV

Soit \mathcal{V} l'ensemble des ouverts de \mathbb{C}^2 contenant $\widetilde{\omega} = (0,0)$. On appelle \mathcal{O} la réunion des ensembles \mathcal{O}_V , lorsque V parcourt \mathcal{V} .

Pour tout f de \mathcal{O} , on note V(f) l'ouvert de définition de f.

1. Soit \mathcal{R} la relation suivante entre deux éléments quelconques f et g de \mathcal{O} : $f\mathcal{R}g$ si et seulement s'il existe un V de \mathcal{V} contenu dans $V(f) \cap V(g)$, tel que les restrictions de f et g à V soient égales.

Montrer que \mathcal{R} est une relation d'équivalence.

On pose $\widetilde{\mathcal{O}} = \mathcal{O}/\mathcal{R}$ et on note \widetilde{f} la classe d'équivalence d'un élément f de \mathcal{O} .

2. (a) Montrer que $\widetilde{\mathcal{O}}$ est un anneau isomorphe à l'anneau des séries entières doubles

$$\sum_{n_1,n_2}^{\infty} a_{n_1,n_2} z_1^{n_1} z_2^{n_2} \quad (a_{n_1,n_2} \in \mathbb{C})$$

dont le domaine de convergence n'est pas réduit à $\{\widetilde{\omega}\}.$

(b) L'anneau $\widetilde{\mathcal{O}}$ est-il intègre ? Montrer que les éléments non inversibles de $\widetilde{\mathcal{O}}$ forment le seul idéal maximal de $\widetilde{\mathcal{O}}$.

3

- 3. Soit f un élément non identiquement nul de $\mathcal O$ tel que la fonction f_0^1 admette 0 pour zéro d'ordre k.
 - (a) Montrer qu'il existe $s=(s_2,s_2)$ et des fonctions σ_j $(j=1,\ldots,k)$ définies sur $\delta(0,s_1)$ et nulles en 0, tels que :
 - $\Delta(\widetilde{\omega}, s)$ soit contenu dans V(f).
 - la fonction h définie sur $\Delta(\widetilde{\omega},s)$ par :

$$h(z_1, z_2) = z_2^k + z_2^{k-1} \sigma_1(z_1) + \dots + \sigma_k(z_1)$$

ait dans $\Delta(\widetilde{\omega}, s)$ les mêmes zéros que f.

(b) Calculer:

$$\frac{1}{2i\pi} \int_{\gamma(0,s_2)} \frac{x^n}{f(z_1,x)} \frac{\partial f}{\partial z_2}(z_1,x) dx \quad (n \in \mathbb{N}).$$

Montrer que la somme des puissances $n^{i\grave{e}mes}$ des zéros de $f^1_{z_1}$ dans $\delta(0,s_2)$ est une fonction analytique sur $\delta(0,s_1)$ et qu'il en est de même des σ_j .

(c) Montrer qu'il existe un élément inversible \widetilde{u} de $\widetilde{\mathcal{O}}$ tel que :

$$\widetilde{f}=\widetilde{u}\ \widetilde{h}.$$