

IN THE CLAIMS

This listing of claims replaces all prior listings:

1. (Currently Amended) A method of manufacturing an organic electroluminescence device comprising the steps of [[,]]:

providing at least one organic layer between a first electrode and a second electrode[[,]];
layers having light emission regions patterned on a pixel basis, wherein at least
forming at least one of said organic layers having said light emission regions is formed
by forming by supplying a coating liquid onto a silicone blanket from the bottom side thereof
via a gravure roll whose edges are tapered in the axial direction at both ends such that a coating
film comprised of a-the coating liquid containing a constituent material of said layer is provided
on a surface of a-the silicone blanket with substantially the same thickness throughout a pixel-
forming-area[[,]]; then

pressing a relief printing plate against said coating film[[,]];

transferring and removing said coating film at the pressed areas from said silicon blanket onto said-a relief printing plate[[,]]; and

transferring a pattern composed of said coating film left remaining on said surface of said silicone blanket onto a surface to be provided thereon with said layer; and
said coating liquid is supplied and applied to said surface of said silicone blanket from
the lower side thereof via a gravure roll provided with a gravure pattern.

2. (Cancelled)

3. (Currently Amended) A method of manufacturing an organic electroluminescence device comprising the steps of [[,]]:

providing at least one organic layer between a first electrode and a second electrode; ;
layers having light emission regions patterned on a pixel basis, wherein

forming at least one of said organic layers having said light emission regions is formed
by forming by supplying a coating liquid onto a silicone blanket from the bottom side thereof
via a slit provided in parallel to the rotational axis of said silicone blanket a coating film
comprised of a coating liquid containing a constituent material of said layer on a surface of a
silicone blanket[[.]]; then

pressing a relief printing plate against said coating film[[.]];
transferring and removing said coating film at the pressed portions from said silicone
blanket onto said a relief printing plate[[.]; and

transferring a pattern composed of said coating film left remaining on said surface of said
silicone blanket onto a surface to be provided thereon with said layer, and

wherein,

 said slit is formed by opposing two flat plates against each other with a spacing
 therebetween, and

 said top faces of said two flat plates are slant surfaces with a downward gradient
 from the central portion side toward the end portion sides of the rotational axis of said
 silicone blanket

 said coating liquid is supplied and applied to said surface of said silicone blanket
 from the lower side thereof via a slit provided in parallel to the rotational axis of said
 silicone blanket.

4. (Currently Amended) The method of manufacturing an organic electroluminescence
device as set forth in claim 3, wherein;

said slit is formed by opposing two flat plates to each other with a spacing
 therebetween, and

 totally closing the gaps between the left and right end portions of said flat plates
 are closed, and

 the spacing between said surface of said silicone blanket and the top faces of said
 two flat plates is uniform at a slit portion corresponding to an effective pixel forming area
 of said silicone blanket[[,]]

 whereas said top faces of said two flat plates are slant surfaces with a downward gradient
 from the central portion side toward end portion sides of the rotational axis of said
 silicone blanket at slit portions corresponding to non-pixel forming areas present on both
 sides of said effective pixel forming area of said silicone blanket, and

 said coating liquid is supplied and applied to said surface of said silicone blanket
 from the lower side thereof via said slit.

5. (Currently Amended) The method of manufacturing an organic electroluminescence
device as set forth in claim 3, wherein;

 said slit is formed by opposing two flat plates to each other with a spacing
 therebetween;

 opening the upper half portions of gaps between the left and right end portions of
 said flat plates are open, and

 closing the lower half portions of said gaps[[,]] are closed and
 said coating liquid is supplied and applied to said surface of said silicone blanket from
 the lower side thereof via said slit.