Embracing "bad" Multipath for Device-Free Localization with COTS RFID Devices

Ju Wang, Jie Xiong, Hongbo Jiang, Xiaojiang Chen, Dingyi Fang

Location is the key for many applications

Indoor navigation

Flow monitoring

Augmented reality

Smart home

RF-based localization is popular

Applications

Indoor navigation

Augmented reality

Flow monitoring

Smart home

Geo-fencing

. . .

Technologies

RF-based localization is popular

Applications

Indoor navigation

Augmented reality

Flow monitoring

Smart home

Geo-fencing

. . .

RFID tag is cheap and ubiquitous deployed

- Each RFID tag costs 5 cents USD.
- RFID tags are widely used: bus card, room key card, clothing security tag.

Bus card

Key card

Clothing security tag

RF-based location attracts a lot of efforts

Academia

[RADAR'00], [Cricket'04], [Horus'05], [Beepbeep'07], [SrndSense'09], [EZ'10], [BatPhone'11], [Zee'12], [Centaur'12], [ArrayTrack'13], [Guoguo'13], [PinPoint'13], [Ubicarse'14], [Luxapose'14], [Tagoram'14], [SpotFi'15], [ToneTrack'15], [Chronos'16]...

RF-based location attracts a lot of efforts

Academia

[RADAR'00], [Cricket'04],

Industry

Why device-free localization?

rack'15],[Chronos'16]...

Device-based v.s. Device-free

Elderly Care

Unwilling to wear a wearable device

Intruder Detection

Not possible to attach a tracking device

Limitations of Existing Work

High labor/hardware cost or low accuracy

Build Fingerprint Database

Demand Software-Defined-Radio Low Accuracy in Multipath Scene

Offline training causes high labor-cost

Not cost-effective for large deployment

Multipath is inevitable in practice

Limitations of Existing Work

High labor/hardware cost or low accuracy

Build Fingerprint Database

Demand Software-Defined-Radio

Low Accuracy in Multipath Scene

Can we do better?

Our System: D-Watch

An accurate RFID-based device-free localization system leverages "bad" multipath

Low labor cost: no labor-intensive offline training.

Low hardware cost: cheap commodity RFID device.

 High accuracy: 16.5 cm and 5.8 cm median errors for device-free locating a human and his fist.

How does D-Watch Work?

- Reader overhears tag's reply signal.
- Reader generates AoA spectrum for a tag's signals.
 - AoA (angle-of-arrival) shows signal directions along direct and reflection paths

Add more tags ...

- The number of signal paths increases rapidly with two more tags added.
- Enough signals can be utilized to localize a target.

When target appears ... Tag 3 Tag 2 Tag Path 2 Path 1

- The AoA spectrum peaks are decreased when a target appears and blocks signal paths.
- Such as the path 1 and path 2 shown in the figure.

Target be localized!

- By detecting AoA peak decrease, the target's direction can be identified.
- Target can be localized at the intersection point.

However, there are two major challenges!

Challenge 1: Random phase offsets screw up AoA estimation

Background: AoA Estimation

Basic theory of AoA estimation

Phase measurements give tag's bearing to antenna

Background: AoA Estimation

AoA estimation in reality

Each radio front-end has a random phase offset

Background: AoA Estimation

AoA estimation in reality

Large errors occur if employing raw phase data for AoA estimation!

Phase offset needs to be removed before correct AoA estimation

Limitation of Existing Solution for Removing Phase Offset

 State-of-the-art wired phase calibration method (ArrayTrrack in NSDI'13)

Limitation: Need to plug/unplug antennas.

- Time consuming.
- Interrupts ongoing data transmission.

2. Our method for removing phase offset

- Wireless and runs automatically: without interrupting ongoing data transmission.
- Low hardware cost: working with commodity devices, such as RFID devices.
- Robustness: working in presence of multipath.

 Intuition: With a given true signal direction, the correct phase offset calibration makes estimated AoA and true direction match.

• Not working in reality: Ambiguity due to multipath.

Not working in reality: Ambiguity due to multipath.

Try: Phase offset= $\Delta \beta_1$

Reflector

Tag

Removing ambiguity: Spatial diversity of tags.

Removing ambiguity: Spatial diversity of tags.

This try&test-method is not efficient!

 Key Observation: Orthogonality between the signal subspace and noise subspace as:

$$\mathbf{a}(\theta_{LoS})^H \Gamma^H \mathbf{U}_N = 0$$
 signal subspace Noise subspace Acquired from phase data

Optimization: Find phase offset that minimize:

$$\hat{\Gamma} = \underset{\Gamma}{\operatorname{arg\,min}} \sum_{k=1}^{K} \left\| \mathbf{a} (\theta_{LoS}^{(k)})^{H} \Gamma^{H} \mathbf{U}_{N}^{(k)} \right\|_{l_{2}}^{2}$$

where *K* is the total number of tags.

Benchmark: Phase Calibration Verification

- Environment: Indoor
- Array: 8 omni-antennas
- -Ground truth: wired
 calibration in ArrayTrack[1]

Benchmark: Phase Calibration Verification

Our phase calibration method removes all phase offsets and enables a high precision AoA estimation

Challenge 2: MUSIC spectrum is *not* showing the *power* information, results in missing target detection

Limitation of Power Estimation

 Spectrum peak obtained by MUSIC is not a power indication, results in missing target detection.

Benchmark:

Deploying a tag and two reflectors.

 Spectrum peak obtained by MUSIC is not a power indication, results in missing target detection.

 Spectrum peak obtained by MUSIC is not a power indication, results in missing target detection.

 Spectrum peak obtained by MUSIC is not a power indication, results in missing target detection.

 Spectrum peak obtained by MUSIC is not a power indication, results in missing target detection.

MUSIC will miss some blocked paths

Targets may not be detected!

Key objective: obtain the accurate signal power along each path

 Key idea: leveraging spatial diversity of signal phase to boost power at desired directions.

Objective

- Boost S1 in red
- Average out S2 in black

Fig(a)-(d). Illustration of obtaining the desired signal at one particular direction

 Key idea: leveraging spatial diversity of signal phase to boost power at desired directions.

Spatial diversity

- Received signals are not aligned.
- Phase shift can be determined.

Fig(a)-(d). Illustration of obtaining the desired signal at one particular direction

 Key idea: leveraging spatial diversity of signal phase to boost power at desired directions.

Fig(a)-(d). Illustration of obtaining the desired signal at one particular direction

 Key idea: leveraging spatial diversity of signal phase to boost power at desired directions.

Fig(a)-(d). Illustration of obtaining the desired signal at one particular direction

With more antennas, signal power along designed direction will be much higher than power along other directions!

Fig(a)-(d). Illustration of obtaining the desired signal at one particular direction

Putting Things Together: Power MUSIC

- Power MUSIC is a joint AoA and path power estimation method.
- The spectrum estimated by Power MUSIC is:

Benchmark: Power-MUSIC Verification

MUSIC: Can not identify the power decrease

• Power-MUSIC: highly sensitive to power decrease

Implementation & Evaluation

Implementation

- Reader and Tag: 4 Impinj Speedway R420 readers;
 21 cheap Alien ALN-9634 tags.
- Objective: Device-free localize a target (human).

Evaluation in Medium Multipath

Laboratory environment: medium multipath.

Laboratory environment

Testbed floorplan

Evaluation in LoS & NLoS

 Hall and Library environments, corresponding to *low* and *high* multipath.

Strong LoS (7.2 m x 10.4 m)

Strong NLoS (7 m x 10 m)

Experimental Results

Localization errors under different environments.

Experimental Results

Accuracy comparison with LiFS (Mobicom'16)

Experimental Results

D-Watch efficiently leverages multipath to improve the localization accuracy!

Three-Target Localization

 Intuition: a target is not able to block all the paths simultaneously.

2m × 2m table with three glass bottle targets

Three-Target Localization

 Intuition: a target is not able to affect all the wireless links simultaneously.

Three snapshot localization results when three targets are 130 cm, 50 cm and 20 cm apart.

D-Watch localizes each individual target accurately when they are not too close!

Application: Tracking Fist in the Air

- Writing "P" and "O" with fist in the air.
- Passively tracking the fist's writing.

Conclusion

- Device-free localization is important for many applications.
- D-Watch efficiently utilizes the "bad" multipath to passively localize a target.

