Lineare Algebra II Repetitorium Übungen, Tag 2

Jendrik Stelzner

20. September 2016

Übung 1.

Es seien $f,g\colon V\to V$ zwei kommutierende Endomorphismen eines K-Vektorraums V

- 1. Zeigen Sie, dass $V_{\lambda}(f)$ für alle $\lambda \in K$ invariant unter g ist.
- 2. Entscheiden Sie, ob auch $V_{\lambda}^{\sim}(f)$ für alle $\lambda \in K$ invariant unter g ist.

Es seien nun $H, E: V \to V$ zwei Endomorphismen mit HE - EH = 2E.

3. Zeigen Sie, dass $E(V_{\lambda}(H)) \subseteq V_{\lambda+2}(H)$ für alle $\lambda \in K$.

Übung 2.

Beweisen Sie die Chauchy-Schwarz-Ungleichung.

Übung 3.

Es sei V ein Skalarproduktraum und $(v_i)_{i\in I}$ eine Familie von Vektoren mit $v_i\neq 0$ für alle $i\in I$. Zeigen Sie, dass die Familie $(v_i)_{i\in I}$ linear unabhängig ist, wenn sie orthogonal ist. Entscheiden Sie, ob auch die Umkehrung gilt.

Übung 4.

Es sei V eine endlichdimensionaler Skalarproduktraum.

- 1. Zeigen Sie, dass sich eine Famlie (v_1,\ldots,v_m) genau dann orthonormal ist, wenn sie sich durch das Anwenden des Gram-Schmidt-Verfahrens nicht ändert.
- 2. Zeigen Sie, dass sich jede orthonormale Familie (v_1,\ldots,v_m) von Vektoren $v_i\in V$ zu einer Orthonormalbasis $(v_1,\ldots,v_m,v_{m+1},\ldots,v_m)$ von V ergänzen lässt. (*Hinweis*: Nutzen Sie Gram-Schmidt.)
- 3. Folgern Sie, dass ${\cal V}$ eine Orthonormalbasis besitzt.
- 4. Zeigen Sie, dass für jeden Untervektorraum $U\subseteq V$ die Gleichheit $V=U\oplus U^\perp$ gilt.

Übung 5.

Es sei V ein Skalarproduktraum.

1. Zeigen Sie, dass die Abbildung

$$\Phi \colon V \to V^*, \quad v \mapsto \langle -, v \rangle$$

wohldefiniert und \mathbb{R} -linear, bzw. \mathbb{C} -antilinear ist.

2. Zeigen Sie, dass Φ injektiv ist.

Von nun an sei V zusätzlich endlichdimensional, und $\mathcal{B} = (v_1, \dots, v_n)$ sei eine Orthonormalbasis von V.

- 3. Folgern Sie, dass Φ ein Isomorphismus ist.
- 4. Zeigen Sie, dass $\Phi(\mathcal{B}) \coloneqq (\Phi(v_1), \dots, \Phi(v_n))$ mit derzu \mathcal{B} dualen Basis $\mathcal{B}^* = (v_1^*, \dots, v_n^*)$ von V^* übereinstimmt.

Übung 6.

Es seien V und W zwei endichdimensionale Skalarprodukträume und $\Phi_V\colon V\to V^*$ und $\Phi_W\colon W\to W^*$ die zugehörigen Isomorphismen mit $\Phi_V(v)=\langle -,v\rangle$ und $\Phi_W(w)=\langle -,w\rangle$ für alle $v\in V$ und $w\in W$.

Es sei $f\colon V\to W$ eine lineare Abbildung, und $f^T\colon W^*\to V^*$ die duale Abbildung, d.h. es ist $f^T(\psi)\coloneqq \psi\circ f$ für alle $\psi\in W^*$.

Zeigen Sie, dass die adjungierte Abbildung $f^* \colon W \to V$ die eindeutig Abbildung ist, die das folgende Diagram zum kommutieren bringt:

$$\begin{array}{c|c} W & \xrightarrow{f^*} & V \\ & & \downarrow \Phi_V \\ & & \downarrow \Phi_V \\ W^* & \xrightarrow{f^T} & V^* \end{array}$$

Lösung 2.

Es seien $v,w\in V$. Die Fälle v=0 und w=0 sind klar, es genügt daher den Fall $v,w\neq 0$ zu betrachten. Es ist

$$0 \leq \left\langle v - \frac{\langle v, w \rangle}{\|w\|^2} w, v - \frac{\langle v, w \rangle}{\|w\|^2} w \right\rangle = \|v\|^2 - \frac{|\langle v, w \rangle|^2}{\|w\|^2}$$

und somit $|\langle v, w \rangle| \leq ||v|| ||w||$.

Sind v und w linear abhängig, so gilt $w=\lambda v$ für ein $\lambda\in\mathbb{K}$, und durch Einsetzen ergibt sich $|\langle v,w\rangle|=\|v\|\|w\|$. Gilt andererseits die Gleichheit $\langle v,w\rangle=\|v\|\|w\|$, so gilt in der obigen Zeile $0=v-\langle v,w\rangle/\|w\|^2$, weshalb v und w linear abhängig sind.