Robotika in računalniško zaznavanje (RRZ)

3D računalniški vid

Danijel Skočaj Univerza v Ljubljani Fakulteta za računalništvo in informatiko

v1.0

3D računalniški vid

Kamera z luknjico

Preslikava med 3-D in 2-D prostorom

- Preslikava iz 3-D svetovnega koordinatnega sistema (poravnanega s kamero) (X,Y,Z) v 2-D koordinatni sistem slike (x,y)
- Perspektivna transformacija iz 3-D v 2-D:
 - $(X,Y,Z) \rightarrow (x,y)$ $y = -f\frac{Y}{Z} \qquad x = -f\frac{X}{Z}$
 - Več točk iz 3-D se lahko preslika v eno točko v 2-D
 - Preslikava iz 3-D v 2-D ni enolična
- Preslikava iz 2-D v 3-D
 - (x,y) -> (X,Y,Z)
 - Več neznank kot parametrov
 - Potrebujemo vsaj dve kameri!

Stereo kamere

Vzporedni kameri

Triangulacija:

$$\frac{x_r - x_l}{f} = \frac{b}{Z} \qquad Z = \frac{bf}{x_r - x_l} \qquad X = -\frac{b}{2} \frac{(x_r + x_l)}{(x_r - x_l)} \quad Y = -\frac{b}{2} \frac{(y_r + y_l)}{(x_r - x_l)}$$

Stereo vid

- Preslikava iz 2-D v 3-D
 - $(x_l, y_l), (x_r, y_r) \rightarrow (X, Y, Z)$
 - Dispariteta zakodira razdaljo
- Dva problema stereo vida:
 - Korepondenca: kateri deli leve slike in kateri deli desne slike so projekcija istega elementa v prostoru?
 - Iskanje parov korespondenčnih točk
 - Rekonstrukcija: kako izračunamo 3D položaj elementa v prostoru, če imamo podane par korespondenčnih točk in informacijo o geometriji sistema?
 - Triangulacija

Korespondenca

Kateri deli leve slike in kateri deli desne slike so projekcija istega elementa v prostoru?

Korespondenca

- Predpostavki:
 - Večina točk na prizoru je vidnih z obeh pogledov
 - Korespondenče regije so si podobne
- Dva podproblema:
 - Katere elemente primerjati?
 - Geometrična omejitev (epipolarna geometrija)
 - Kako primerjati?
 - Korelacijske metode
 - Metode, ki temeljijo na značilnicah

Epipolarna omejitev

- Vsaka točka v 3-D prostoru definira epipolarno ravnino, ki gre skozi to točko in centra projekcij obeh kamer
- Iskanje korespondenčne točke lahko omejimo na epipolarno premico: presečišče med epipolarno in slikovno ravnino

Primer

Primerjanje delov slik

- Korelacijske metode
 - Primerjamo regije (podokna) na obeh slikah s pomočjo korelacije
 - To lahko delamo v veliko točkah na sliki
 - Dobimo precej gosto disparitetno sliko
 - Zahteva teksturirane scene
- Metode, ki temeljijo na značilnicah
 - Izračunamo (redke) značilnice na slikah ter jih opišemo (npr. robovi, koti, SIFT, ipd.)
 - Računamo ujemanje med značilnicami (razdalje med njimi)
 - Dobimo redko disparitetno sliko

Rekonstrukcija

- Triangulacija
- Preprosto v primeru vzporednih kamer
 - Epipolarne premice so vodoravne na sliki
- Bolj zapleteno v splošnem
 - Izračun fundamentalne matrike
 - Poravnava slik
- Poznati moramo parametre kamer
 - Kalibracija!

Parametri stereo sistema

- Notranji parametri kamere:
 - Goriščna razdalja
 - Izhodiščna točka
 - Oblika slikovnih elementov
 - Distorzija leče
- Zunanji parametri kamere
 - Translacija kamere
 - Rotacija kamere
 v svetovnem koordinatnem sistemu
- Parametre dobimo s kalibracijo

Disparitetna slika

Primeri

Geometrija iz večih pogledov

Multiple vew geometry

Struktura iz gibanja

Structure from motion

Globinski senzor s kodirano svetlobo

Kamera in projektor

Globinski senzor s kodirano svetlobo

- Kinect
 - IR projektor
 - IR kamera
 - RGB kamera

TOF kamere

- Time-of-flight kamere
- Čas potovanja impulza

Globina s spreminjanjem goriščne razd.

Depth from defocus

Oblika iz senc

Shape from shading

