中国科学技术大学2023春季学期 实分析H期末考试

助教: Junhao Tian

1. (10分) 举例说明下面两个包含关系均为真包含关系

$$Lip[0,1] \subset AC[0,1] \subset BV[0,1]$$

前一小问来自第26次课ppt的第12页,后一小问来自第24次课ppt的第28页。

- 2. (10分) 已知有两列非负可积函数 $\{f_j\}$, $\{g_j\}$ 分别几乎处处收敛到 f, g, 且 $|f_j(x)| \leq g(x)$, 若 $\{g_j\}$ 依 L^1 范数收敛,试证明: $\{f_j\}$ 也依 L^1 范数收敛。 本题出自第15次课ppt第26、27页。
- 3.(10分)已知有两列非负可积函数 $\{f_j\}$, $\{g_j\}$ 分别依测度收敛到 f, g, 试判断: $\{f_jg_j\}$ 是否依测度收敛到 fg? 解释理由。本题改编自作业题课本P127页第12题。

参考答案: 是。

- 4.(10分) 举例说明 Fubini 定理对一般可测函数不一定正确。 本题出自第21次课ppt的第23页。
- 5. (10分) 证明 \mathbb{R}^3 中存在可数个互不相交的闭集小球 $B_i \subset [0,1]^3$, 使得

$$m([0,1]^3 \setminus (\cup_j B_j)) = 0$$

参考答案: 包含于 $[0,1]^3$ 的所有小球 B_j 构成 $[0,1]^3$ 的 Vitali 覆盖,由 Vitali 覆盖定理本题得证。(高维 Vitali 覆盖定理在第22次ppt的第23页注记)

6. (15分) 设 $f(x) \in L^1(E)$ 是一个可积函数请写出分布函数 $f_*(t)$ 的定义并证明

$$\int_{E} |f(x)| dx = \int_{0}^{\infty} f_{*}(t) dt$$

本题出自第23次课ppt的第4~8页。

- 7. (10分) 判断对错并给出理由。
 - (1) 单调递增函数 $f: \mathbb{R} \to \mathbb{R}$ 的导数几乎处处存在,导函数可测且

$$f'(x) \in L^+(\mathbb{R}) \cap L^1(\mathbb{R})$$

- (2) 设 $f:[0,1] \to \mathbb{R}$ 是单调函数,则 $\int_0^1 f'(x) = f(1) f(0)$
- (3) 函数 $f: \mathbb{R} \to \mathbb{R}$ 广义黎曼可积,Lebesgue 可积,则两个积分值相同。

本题(1)小问来自第23次课ppt的第12页, (2)小问来自第23次课ppt的第30页,

(3) 小问来自第20次课ppt的第28页。

参考答案: (1) 错误,反例: f(x) = x, f'(x) = 1, 不可积。 (2) 错误,反例: 康托函数。 (3) 正确。

- 8. (10分) 证明 $L^{\infty}(E)$ 空间是 Banach 空间。 本题出自第28次课ppt的第27页。
- 9. (10分) 设 $f:[0,1] \to \mathbb{R}$

$$f(x) = \begin{cases} x^{3/2} \sin(\frac{1}{x}) & x > 0\\ 0 & x = 0 \end{cases}$$

证明 $V_0^1 f \leq 3$

本题出自第26次课ppt的第4~6页。

10. (10分) 设 $f \in L^1[a,b]$, 证明

$$\lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} |f(t) - f(x)| dt = 0$$

几乎处处成立。

本题出自第25次课ppt的第26~28页。