Chapter 13 Waiting Lines and Queuing Theory Models

Chapter Outline

- **13.1** Introduction
- **13.2** Waiting Line Costs
- 13.3 Characteristics of a Queuing System
- 13.4 Single-Channel Queuing Model with Poisson Arrivals and Exponential Service Times (M/M/1)
- 13.5 Multichannel Queuing Model with Poisson Arrivals and Exponential Service Times (M/M/m)
- 13.6 Constant Service Time Model (M/D/1)

Introduction

- Queuing theory is the study of waiting lines.
- It is one of the oldest and most widely used quantitative analysis techniques.
- The three basic components of a queuing process are <u>arrivals</u>, <u>service facilities</u>, and the <u>actual waiting line</u>.
- Analytical models of waiting lines can help managers evaluate the cost and effectiveness of service systems.

Waiting Line Costs

- Most waiting line problems are focused on finding the ideal level of service a firm should provide.
- In most cases, this service level is something management can control.
- When an organization does have control, they often try to find the balance between two extremes.

Waiting Line Costs

- There is generally a trade-off between cost of providing service and cost of waiting time.
 - A large staff and many service facilities generally results in high levels of service but have high costs.
 - Having the minimum number of service facilities keeps service cost down but may result in dissatisfied customers.
- Service facilities are evaluated on their total expected cost which is the sum of service costs and waiting costs.
- Organizations typically want to find the service level that minimizes the total expected cost.

Queuing Costs and Service Levels

Three Rivers Shipping Company

- Three Rivers Shipping operates a docking facility on the Ohio River.
- An average of 5 ships arrive to unload their cargos each shift.
- Idle ships are expensive.
- More staff can be hired to unload the ships, but that is expensive as well.
- Three Rivers Shipping Company wants to determine the optimal number of teams of stevedores to employ each shift to obtain the minimum total expected cost.

Three Rivers Shipping Company Waiting Line Cost Analysis

					WOF	RKING			
		1			2	3			4
(a)	Average number of ships arriving per shift		5		5		5		5
(b)			7		4		3		2
(c)	Total ship hours lost per shift (a x b)		35		20		15		10
(d)	Estimated cost per hour of idle ship time	\$1,0	000	\$1	,000	\$1,0	000	\$1,	000
(e)	Value of ship's lost time or waiting cost (c x d)	\$35,0	000	\$20	,000	\$15,0	000	\$10 ,	000
(f)	Stevedore team salary or service cost	\$6,0	000	\$12	,000	\$18,0	000	\$24,	000
(g)	Total expected cost (e + f)	\$41,0	000	\$32	000	\$33,0	000	\$34,	000
					Opti	mal co	st		

- There are three parts to a queuing system:
 - 1. The arrivals or inputs to the system (sometimes referred to as the calling population).
 - 2. The queue or waiting line itself.
 - 3. The service facility.
- These components have their own characteristics that must be examined before mathematical models can be developed.

Arrival Characteristics have three major characteristics: size, pattern, and behavior.

- The size of the calling population can be either unlimited (essentially infinite) or limited (finite). An example of a finite population is a shop with only eight machines that might break down and require service.
- Most cases consider unlimited size
- The pattern of arrivals can arrive according to a known pattern(Ex: Scheduled) or can arrive randomly.
 - Random arrivals generally follow a Poisson distribution. (predicted by this model)

Behavior of arrivals

- Most queuing models assume customers are patient and will wait in the queue until they are served and do not switch lines.
- Balking refers to customers who refuse to join the queue.
- Reneging customers enter the queue but become impatient and leave without receiving their service.
- That these behaviors exist is a strong argument for the use of queuing theory to managing waiting lines.

Waiting Line Characteristics

- Waiting lines can be either limited (Ex, Restaurant with limited seating)or unlimited.
- Queue discipline refers to the rule by which customers in the line receive service.
 - The most common rule is *first-in, first-out* (*FIFO*).
 - Other rules are possible and may be based on other important characteristics.
- Other rules can be applied to select which customers enter which queue, but may apply FIFO once they are in the queue.(EX: emergencies in hospitals)

Service Facility Characteristics

- Basic queuing system configurations:
 - Service systems are classified in terms of the number of channels, or servers, and the number of phases, or service stops.
 - A single-channel system with one server is quite common.
 - Multichannel systems exist when multiple servers are fed by one common waiting line.
 - In a single-phase system, the customer receives service form just one server.
 - In a *multiphase system*, the customer has to go through more than one server.

Service time distribution

- Service patterns can be either constant or random.
- Constant service times are often machine controlled.
- More often, service times are randomly distributed according to a negative exponential probability distribution.
- Analysts should observe, collect, and plot service time data to ensure that the observations fit the assumed distributions when applying these models.

Identifying Models Using Kendall Notation

- D. G. Kendall developed a notation for queuing models that specifies the pattern of arrival, the service time distribution, and the number of channels.
- Notation takes the form:

```
Arrival / Service time / Number of service distribution / distribution / channels open
```

- Specific letters are used to represent probability distributions.
- M = Poisson distribution for number of occurrences (or exponential times)
- D = constant (deterministic) rate

Identifying Models Using Kendall Notation

A single-channel model with Poisson arrivals and exponential service times would be represented by:

*M|M|*1

If a second channel is added the notation would read:

M|M|2

A three-channel system with Poisson arrivals and constant service time would be

M|D|3

Assumptions of the model:

- Arrivals are served on a FIFO basis.
- There is no balking or reneging.
- Arrivals are independent of each other but the arrival rate is constant over time.
- Arrivals follow a Poisson distribution.
- Service times are variable and independent but the average is known.
- Service times follow a negative exponential distribution.
- Average service rate is greater than the average arrival rate.

- When these assumptions are met, we can develop a series of equations that define the queue's operating characteristics.
- Queuing Equations: Let
 - λ = mean number of arrivals per time period μ = mean number of customers or units served per time period
 - The arrival rate and the service rate must be defined for the same time period.

1. The average number of customers or units in the system, *L*:

$$L = \frac{\lambda}{\mu - \lambda}$$

2. The average time a customer spends in the system, *W*:

$$W = \frac{1}{\mu - \lambda}$$

3. The average number of customers in the queue, L_q :

$$L_q = \frac{\lambda^2}{\mu(\mu - \lambda)}$$

4. The average time a customer spends waiting in the queue, W_q :

$$W_q = \frac{\lambda}{\mu(\mu - \lambda)}$$

5. The *utilization factor* for the system, ρ , the probability the service facility is being used:

$$\rho = \frac{\lambda}{\mu}$$

6. The percent idle time, P_0 , or the probability no one is in the system:

$$P_0 = 1 - \frac{\lambda}{\mu}$$

7. The probability that the number of customers in the system is greater than k, $P_{n>k}$:

$$P_{n>k} = \left(\frac{\lambda}{\mu}\right)^{k+1}$$

- Arnold's mechanic can install mufflers at a rate of 3 per hour.
- Customers arrive at a rate of 2 per hour.
- So:

$$\lambda$$
 = 2 cars arriving per hour μ = 3 cars serviced per hour

$$L = \frac{\lambda}{\mu - \lambda} = \frac{2}{3 - 2} = \frac{2}{1} = 2 \text{ cars in the system}$$
on average

$$W = \frac{1}{\mu - \lambda} = \frac{1}{3 - 2}$$
 = 1 hour that an average car spends in the system

$$L_q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{2^2}{3(3-2)} = \frac{4}{3(1)} = 1.33 \text{ cars waiting in line}$$
 on average

$$W_q = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{2}{3}$$
 hour $= 40$ minutes average waiting time per car

$$\rho = \frac{\lambda}{\mu} = \frac{2}{3} = 0.67$$

$$P_0 = 1 - \frac{\lambda}{\mu} = 1 - \frac{2}{3} = 0.33$$

probability that there are 0 cars in the system

Probability of more than k cars in the system

k		$P_{n>}$	_{-k} =	(²/ ₃) ^{k+1}																		
				007				4 -		41-				4 -	,	D		_	00		007		
0			U.	667) +		NO	ote	tna	t tni	IS IS	s eq	uai	to	1 –	P_0 :	= 1 -	- 0.	33	= U.	667		
1			0.	444																			
2			0.	296																			
3		(0.	198)+		lm	pli	es t	hat	the	re i	s a	19.	8%	cha	anc	e th	at r	mor	е		
							tn	an .	3 ca	ırs a	are	ın t	ne	sys	ten								
4			0.	132																			
5			0.	088																			
6			0.	058																			
7			0.	039																		^ Q	

- Introducing costs into the model:
 - Arnold wants to do an economic analysis of the queuing system and determine the waiting cost and service cost.
 - The total service cost is:

Total = (Number of channels)
service cost =
$$x$$
 (Cost per channel)
Total = mC_s

Waiting cost when the cost is based on time in the system:

= (Number of arrivals) x
(Average wait per arrival)
$$C_w$$

Total
$$= (\lambda W)C_w$$

If waiting time cost is based on time in the queue:

Total
$$= (\lambda W_q)C_w$$
 waiting cost

So the total cost of the queuing system when based on time in the system is:

Total cost = Total service cost + Total waiting cost

Total cost =
$$mC_s + \lambda WC_w$$

And when based on time in the queue:

Total cost =
$$mC_s + \lambda W_q C_w$$

Arnold estimates the cost of customer waiting time in line is \$50 per hour.

Total daily waiting cost =
$$(8 \text{ hours per day})\lambda W_q C_w$$
 = $(8)(2)(^2/_3)($50) = 533.33

Arnold has identified the mechanics wage \$15 per hour as the service cost.

Total daily service cost =
$$(8 \text{ hours per day})mC_s$$

= $(8)(1)(\$15) = \120

So the total cost of the system is:

- Arnold is thinking about hiring a different mechanic who can install mufflers at a faster rate.
- The new operating characteristics would be:

$$\lambda$$
 = 2 cars arriving per hour μ = 4 cars serviced per hour

$$L = \frac{\lambda}{\mu - \lambda} = \frac{2}{4 - 2} = \frac{2}{2} = 1 \text{ car in the system}$$
on the average

$$W = \frac{1}{\mu - \lambda} = \frac{1}{4 - 2} = \frac{1}{2 \text{ hour that an average car}}$$
 spends in the system

$$L_q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{2^2}{4(4-2)} = \frac{4}{8(1)} = \frac{1/2 \text{ car waiting in line}}{\text{on the average}}$$

$$W_q = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{1}{4}$$
 hour $= 15$ minutes average waiting time per car

$$\rho = \frac{\lambda}{\mu} = \frac{2}{4} = 0.5$$
= percentage of time mechanic is busy

$$P_0 = 1 - \frac{\lambda}{\mu} = 1 - \frac{2}{4} = 0.5$$
 = probability that there are 0 cars in the system

Probability of i	more than <i>k</i> cars in the system
k	$P_{n>k} = (^2I_4)^{k+1}$
0	0.500
1	0.250
2	2 0.125
3	0.062
4	l 0.031
5	0.016
6	0.008
7	0.004

Arnold's Muffler Shop Case

The customer waiting cost is the same \$50 per hour:

Total daily waiting cost =
$$(8 \text{ hours per day})\lambda W_q C_w$$

= $(8)(2)(1/4)($50) = 200.00

The new mechanic is more expensive at \$20 per hour:

Total daily service cost =
$$(8 \text{ hours per day})mC_s$$

= $(8)(1)(\$20) = \160

So the total cost of the system is: