

$$P = \rho g h \qquad \qquad P = \gamma h$$

$$P = \gamma h$$

$$P_{oil} = \left(\frac{40 \text{ lb}}{\text{ft}^3}\right) \left(\frac{12 \text{ ft}}{1}\right) = \frac{480 \text{ lb}}{\text{ft}^2}$$

$$P_{oil} = \left(\frac{480 \text{ lb}}{\text{ft}^2}\right) \left(\frac{1^2 \text{ ft}^2}{12^2 \text{ in}^2}\right)$$

$$P_{oil} = \left(\frac{480 \text{ lb}}{\text{ft}^2}\right) \left(\frac{1 \text{ ft}^2}{144 \text{ in}^2}\right)$$

$$P_{oil} = \frac{3.33 \text{ lb}}{\text{in}^2} = 3.33 \text{ PSI}$$

Specific Gravity of oil γ_{water}

Specific Gravity of oil =
$$\frac{40 \text{ lb/ft}^3}{62.4 \text{ lb/ft}^3}$$

Specific Gravity of oil = 0.641

$$P_{oil} = (P_{water})$$
 (Specific Gravity)

 $P_{oil} = (144 \text{ "W.C.})(0.641)$

= 92.3 "W.C. $P_{oil} =$

$$P_{oil} = \left(\frac{92.3 \text{ "W.C.}}{1}\right) \left(\frac{1 \text{ PSI}}{27.68 \text{ "W.C.}}\right)$$

 $P_{oil} = 3.33 \text{ PSI}$

$$P = \gamma h$$

$$V = Ah$$

$$m = \frac{AP}{g}$$

Oil level	Percent of range	Hydrostatic pressure	Transmitter output
0 ft	0 %	0 PSI	4 mA
3 ft	25~%	0.833 PSI	8 mA
6 ft	50 %	1.67 PSI	12 mA
9 ft	75 %	2.50 PSI	16 mA
12 ft	100 %	3.33 PSI	20 mA

Ethanol level	Percent of	Pressure	Pressure	Output
in tank	range	(inches of water)	(PSI)	(mA)
0 ft	0 %	284 "W.C.	10.3 PSI	4 mA
20 ft	50 %	474 "W.C.	17.1 PSI	12 mA
40 ft	100 %	663 "W.C.	24.0 PSI	20 mA

$$(P_{gas} + \gamma h) - P_{gas} = \gamma h$$

$$(P_{gas} + \gamma_1 h_1) - (P_{gas} + \gamma_2 h_2) = \gamma_1 h_1 - \gamma_2 h_2$$

Differential pressure = $\gamma_1 h_1$ Constant

Gasoline level	Percent	Differential pressure	Transmitter
	of range	at transmitter	output
0 ft	0 %	-4.77 PSI	4 mA
2.5 ft	25 %	-4.05 PSI	8 mA
5 ft	50 %	-3.34 PSI	12 mA
7.5 ft	75 %	-2.63 PSI	16 mA
10 ft	100 %	-1.92 PSI	20 mA

High side of DP transmitter connected to the compensating impulse leg

A "tank expert" system

$$P_{bottom} - P_{middle} = (P_{gas} + \gamma h) - [P_{gas} + \gamma (h - x)]$$

$$P_{bottom} - P_{middle} = P_{gas} + \gamma h - P_{gas} - \gamma (h - x)$$

$$P_{bottom} - P_{middle} = P_{gas} + \gamma h - P_{gas} - \gamma h + \gamma x$$

$$P_{bottom} - P_{middle} = \gamma x$$

$$\frac{P_{bottom} - P_{middle}}{x} = \gamma$$

$$P_{bottom} - P_{top} = (P_{gas} + \gamma h) - P_{gas}$$

$$P_{bottom} - P_{top} = \gamma h$$

$$\frac{P_{bottom} - P_{top}}{\gamma} = h$$

$$V = \pi r^2 h$$

$$\rho g h = \gamma h$$

$$\rho = \frac{\gamma}{g}$$

$$[kg] = \left[\frac{kg}{m^3}\right] [m^3]$$

$$(\gamma_1 h_1 + \gamma_2 h_2 + \gamma_2 h_3) - (\gamma_4 h_4 + \gamma_2 h_3)$$

$$\gamma_1 h_1 + \gamma_2 h_2 + \gamma_2 h_3 - \gamma_4 h_4 - \gamma_2 h_3$$

$$\gamma_1 h_1 + \gamma_2 h_2 - \gamma_4 h_4$$

$$\gamma_4 h_4$$

$$\gamma_1 h_1 + \gamma_2 h_2 - \text{Constant}$$

LRV interface level condition

 $P_{high} = 4.5$ feet of heavy liquid + 4.5 feet of light liquid

 $P_{high} = 54$ inches of heavy liquid + 54 inches of light liquid

 P_{high} "W.C. = (54 inches of heavy liquid)(1.1) + (54 inches of light liquid)(0.78)

 P_{high} "W.C. = 59.4 "W.C. + 42.12 "W.C.

 $P_{high} = 101.52 \text{ "W.C.}$

 $P_{low} = 9$ feet of fill fluid

 P_{low} = 108 inches of fill fluid P_{low} "W.C. = (108 inches of fill fluid)(1.09)

 $P_{low} = 117.72 \text{ "W.C.}$

 $P_{LRV} = 101.52 \text{ "W.C.} - 117.72 \text{ "W.C.} = -16.2 \text{ "W.C.}$

URV interface level condition

 $P_{high} = 7.5$ feet of heavy liquid + 1.5 feet of light liquid

 $P_{high} = 90$ inches of heavy liquid + 18 inches of light liquid

 P_{high} "W.C. = (90 inches of heavy liquid)(1.1) + (18 inches of light liquid)(0.78)

 P_{high} "W.C. = 99 "W.C. + 14.04 "W.C.

 $P_{high} = 113.04 \text{ "W.C.}$

 $P_{URV} = 113.04 \text{ "W.C.} - 117.72 \text{ "W.C.} = -4.68 \text{ "W.C.}$

Interface level	Percent	Differential pressure	Transmitter
	of range	at transmitter	output
4.5 ft	0 %	−16.2 "W.C.	4 mA
5.25 ft	25 %	−13.32 "W.C.	8 mA
6 ft	50 %	−10.44 "W.C.	12 mA
6.75 ft	75 %	-7.56 "W.C.	16 mA
7.5 ft	100 %	-4.68 "W.C.	20 mA

Span in "W.C. = (36 inches)(1.1 - 0.78)

Span = 11.52 "W.C.

$$V = \pi r^2 l$$

$$F_{buoyant} = \gamma V$$

$$F_{buoyant} = \gamma \pi r^2 l$$

$$\gamma = \left(\frac{57.3 \text{ lb}}{\text{ft}^3}\right) \left(\frac{1 \text{ ft}^3}{12^3 \text{ in}^3}\right) = 0.0332 \frac{\text{lb}}{\text{in}^3}$$

$$V = \pi r^2 l = \pi (1.5 \text{ in})^2 (24 \text{ in}) = 169.6 \text{ in}^3$$

$$F_{buoyant} = \gamma V = \left(0.0332 \frac{\text{lb}}{\text{in}^3}\right) \left(169.6 \text{ in}^3\right) = 5.63 \text{ lb}$$

$$F_{buoyant} = \gamma_1 V_1 + \gamma_2 V_2$$

$$F_{buoyant} = \gamma_1 \pi r^2 l_1 + \gamma_2 \pi r^2 l_2$$

$$F_{buoyant} = \pi r^2 (\gamma_1 l_1 + \gamma_2 l_2)$$

$$F_{buoyant}$$
 (LRV) = $\gamma_2 V = \gamma_2 \pi r^2 l$

$$F_{buoyant}$$
 (URV) = $\gamma_1 V = \gamma_1 \pi r^2 l$

$$\gamma_1 = \left(62.4 \, \frac{\text{lb}}{\text{ft}^3}\right) (1.10) = 68.6 \, \frac{\text{lb}}{\text{ft}^3} = 0.0397 \, \frac{\text{lb}}{\text{in}^3}$$

$$\gamma_2 = \left(62.4 \, \frac{\text{lb}}{\text{ft}^3}\right) (0.85) = 53.0 \, \frac{\text{lb}}{\text{ft}^3} = 0.0307 \, \frac{\text{lb}}{\text{in}^3}$$

$$F_{buoyant}$$
 (LRV) = $\left(0.0307 \frac{\text{lb}}{\text{in}^3}\right) \pi (1.375 \text{ in})^2 (30 \text{ in}) = 5.47 \text{ lb}$

$$F_{buoyant}$$
 (URV) = $\left(0.0397 \frac{\text{lb}}{\text{in}^3}\right) \pi (1.375 \text{ in})^2 (30 \text{ in}) = 7.08 \text{ lb}$

Interface level (inches)	Buoyant force (pounds)
0	5.47
7.5	5.87
15	6.27
22.5	6.68
30	7.08

Nivå = Tankens totale høyde Ullasje

$$c = \sqrt{\frac{B}{\rho}}$$

Ullage Total height Fillage

Non-contact radar Guided-wave radar (GWR) liquid level measurement liquid level measurement Radio waves Radio Probe waves

Non-contact radar liquid level measurement Dielectric window Radio

$$v = \frac{c}{\sqrt{\epsilon_r}}$$

$$PV = nRT$$

$$ho = rac{n}{V} = rac{P}{RT}$$

$$\frac{PT_{ref}}{P_{ref}T}$$

$$\frac{\rho}{\rho_{ref}}$$

$$\epsilon_r = 1 + (\epsilon_{ref} - 1) \frac{PT_{ref}}{P_{ref}T}$$

$$R = \frac{\left(\sqrt{\epsilon_{r2}} - \sqrt{\epsilon_{r1}}\right)^2}{\left(\sqrt{\epsilon_{r2}} + \sqrt{\epsilon_{r1}}\right)^2}$$

$$\frac{P_{forward}}{P_{incident}}$$

$$R = \frac{\left(\sqrt{\epsilon_r} - 1\right)^2}{\left(\sqrt{\epsilon_r} + 1\right)^2}$$

$$R = \frac{(\sqrt{\epsilon_r} - 1)^2}{(\sqrt{\epsilon_r} + 1)^2}$$

Signal power strengths en route and reflected off of the liquid-liquid interface

 $\varepsilon = 40$

Yes! Tape Stilling well Interface Float

No!

$$P = \frac{F}{A}$$

$$F_{buoyant} = \gamma V$$

$$C = \frac{\epsilon A}{d}$$