Theorie der Programmierung Wintersemester 2006/07

Übungsblatt 6

Aufgabe 1

Erraten Sie für jeden der folgenden Ausdrücke einen (möglichst allgemeinen) Typ und geben Sie dann eine Typherleitung an.

- **a.** $\lambda x. x$
- **b.** $\lambda f. \lambda x. f(fx)$
- **c.** $\lambda f. \lambda g. \lambda x. f(gx)$
- **d.** rec iter. $\lambda n. \lambda f.$ if n = 0 then x else f (iter (n 1) f x)
- e. rec x. x
- **f.** rec x. x + 1
- **g.** rec f. λx . f x

Aufgabe 2

Bestimmen Sie für jede der folgenden Typgleichungsmengen die allgemeinste Lösung mit Hilfe des Unifikationsalgorithmus.

a.
$$E_1 = \{\alpha_1 \to \mathbf{int} \to \alpha_2 = (\alpha_2 \to \mathbf{int}) \to \alpha_1\}$$

b.
$$E_2 = \{\alpha_1 \rightarrow \mathbf{int} \rightarrow \alpha_2 = (\mathbf{int} \rightarrow \alpha_2) \rightarrow \alpha_1\}$$

c.
$$E_3 = \{\alpha_1 \rightarrow \mathbf{int} \rightarrow \alpha_1 = (\alpha_2 \rightarrow \mathbf{int}) \rightarrow \alpha_2\}$$

Aufgabe 3

Erweitern Sie den in der Vorlesung vorgestellten Typinferenz-Algorithmus so, dass man ihn *direkt* auf den folgenden syntaktischen Zucker anwenden kann:

- **a.** $e_1 \&\& e_2$
- **b.** $e_1 || e_2$
- c. let $id = e_0$ in e_1

Aufgabe 4

Seien s, s' Substitutionen in Listenschreibweise, etwa $s = [\tau_1/\alpha_1, \ldots, \tau_m/\alpha_m]$ und $s' = [\tau'_1/\alpha'_1, \ldots, \tau'_n/\alpha'_n]$. Überlegen Sie sich, wie man die Komposition s s' in Listenschreibweise erhält.

Aufgabe 5

Implementieren Sie den Unifikations-Algorithmus. Dazu müssen Sie sich überlegen

- wie man Substitutionen darstellt und die Komposition von Substitutionen implementiert,
- wie man (endliche Mengen von) Typgleichungen darstellt,
- wie man die Anwendung einer Substitution auf einen Typ und auf eine Typgleichung(smenge) implementiert.