1. ABOUT CAT(-1) SURFACES

In this section we present Theorem 1.1 with an ommission of several details, the main reference is [1].

1.1. The main result. Let Σ be a non-simply connected closed surface, we denote by \mathcal{A}_{Σ} the collection of CAT(-1) surface M, which is homeomorphic to Σ .

As stated in [1], \mathcal{A}_{Σ} is compact when equipped a certain topology, and thus the supremum of the systole is attained inside \mathcal{A}_{Σ} , that is the motivation to consider Alexandrov surfaces. We will give more details later.

Theorem 1.1 ([1]). Let Σ be a non-simply connected closed surface, $U \subset \mathcal{A}_{\Sigma}$ be an open subset, then there exists a hyperbolic surface $M \in U$, s.t.

$$\operatorname{sys}(M) = \sup_{M' \in U} \operatorname{sys}(M')$$

Thus we have the following corollary, which is used in the proceeding section.

Corollary 1.2 ([1]). Let Σ be a non-simply connected closed surface, then the maximal systole of the CAT(-1) metrics on Σ is attained by a hyperbolic metric.

1.2. Some definitions and results. We consider only closed surfaces.

Definition 1.3 (simple singularity and conical singularity). Let (M, g) be a closed surface with metric g.

(1) We say g has a simple singularity of order β at $p \in M$, if g can be written as

$$g = e^{2u(z)}|z|^{2\beta}|\mathrm{d}z|^2$$

on some coordinate neighborhood centered at p, where $u: \mathbb{C} \to \mathbb{R}$ is continuous, $\beta \in \mathbb{R}$.

(2) if (1) occurs with $\beta > -1$, then we call p a conical singularity of total angle $\theta_p = 2\pi(\beta + 1)$.

As mentioned in [2], if M is compact, the only possible singularity is conical. The total angle means that, if we rotate a point around 0 for 2π in \mathbb{C} , then the corresponding point will rotate around p for $2\pi(\beta+1)$. If a metric q does not have any singularity, then it is hyperbolic.

In this report, we regard Alexandrov surfaces as those closed surfaces M with a metric g which may admit singularities. It is plausible, since according to [1], every closed Alexandrov surface M can be approximated by a piecewise hyperbolic surface with conical singularities.

The term CAT(-1) surfaces refers to Alexandrov surfaces of Alexandrov curvature at most -1. As in [1], a closed piecewise hyperbolic surface with conical singularities of total angle at least 2π belongs to CAT(-1) surfaces, and conversely, for a CAT(-1) surfaces, all the total angles for singularities are not less than 2π .

Definition 1.4 (topology on \mathcal{A}_{Σ} , bilipschitz distance). For $M, M' \in \mathcal{A}_{\Sigma}$, define

$$d_{\text{Lip}}(M, M') = \inf_{f} \max\{\log ||f||_{\text{Lip}}, \log ||f^{-1}||_{\text{Lip}}\},$$

where the infimum is taken over all the bilipschitz homeomorphism $f: M \to M'$.

Proposition 1.5 (compactness). Fix a non-negative integer N and a positive real number s, let Σ be a non-simply connected closed surface. Then the space of piecewise hyperbolic surfaces $M \cong \Sigma$ of CAT(-1) surface with at most N conical singularities and systoles at least s is compact.

Definition 1.6 (large and small singularity). A conical singularity $p \in M$ is said to be

- (1) large, if the total angle at p is at least 3π ;
- (2) small, otherwise.

Proposition 1.7 (large conical singularity). Let M be a closed piecewise hyperbolic CAT(-1) surface, then there are less than $2|\chi(M)|$ large conical singularities on M.

Proof. Suppose the conical singularities are $\{p_i\}$, use Gauss-Bonnet for M,

$$2\pi |\chi(M)| = \left| \int_{M} K dA - \sum_{i=1}^{N} (\theta_{p_{i}} - 2\pi) \right|$$
$$= \left| \int_{M} K dA \right| + \left| \sum_{i=1}^{N} (\theta_{p_{i}} - 2\pi) \right|$$
$$\geqslant \sum_{p_{i} \text{ large}} (\theta_{p_{i}} - 2\pi) = \pi \cdot \#\{p_{i} \text{ large}\}$$

The result follows.

1.3. Systolic decomposition and kite excision. For a closed CAT(-1) surface M, there are at most finitely many systolic loops. As stated in [1, 3], every pair of intersecting systolic loops meet exactly at one or two points, or along a line.

Definition 1.8 (systolic decomposition). The systolic decomposition of M is the collection of open domains (called systolic domains) defined as the connected components of the complementary set in M of the systolic loops. It can be regarded as a polygon, where

- (1) the *vertices* are the intersection points and the endpoints of intersecting lines;
- (2) the *edges* are the separated geodesic arcs of the boundary of the domains by the vertices.

Proposition 1.9. Let M be a closed piecewise hyperbolic CAT(-1) surface, then the number of domains, edges and vertices in the systolic decomposition of M have an upper bound which depends only on the topology of M.

Proof. Take Q to be the maximal number of pairwise non-homotopic simple loops on M, which is finite and depends only on the topology of M. Then the number of systolic loops is small than Q. Set $N = 8\binom{Q}{2}$, then the number of domains, edges and vertices are all smaller than N.

Let $p, q \in M$ be two conical singularities, s.t. the geodesic arc [p, q] has no interior singularity. Take $r \in M$, s.t. the triangle $\triangle pqr$ is hyperbolic with acute angle at p, q. Define the kite K = prqr' as the union of two symmetric hyperbolic triangles. The vertices p, q are called the main vertices of K, and

FIGURE 1. A kite K with width w

the length of diagonal [r, r'] is called the width of K, denoted by w. We say K is exact at p, if

- (1) p is a small singularity;
- (2) $\angle rpr' = \theta_p 2\pi < \pi, \angle rqr' \le \min\{\theta_q 2\pi, \pi\}.$

Definition 1.10 (excised surface). Let $K_w \subset M$ be a kite of width w. We define the excised surface by

$$M_w = (M \backslash K_w) / \sim$$

where \sim means identifying [p, r], [q, r] with [p, r'], [q, r'] respectively.

Proposition 1.11. Let K_w be an exact kite, then M_w is also a CAT(-1) surface, with the same number of conical singularities as M.

Proof. Suppose $K_w = prqr'$ is a kite which is exact at p. Then the total angle at r = r' is $4\pi - \angle prq - \angle pr'q > 2\pi$, thus r = r' is a conical singularity. But the total angles at p, q are $\theta_p - \angle rpr' = 2\pi, \theta_q - \angle rqr' \geqslant 2\pi$, thus p is no longer a conical singularity. And all the total angles remain no less than 2π , thus M_w is still a CAT(-1) surface.

Proposition 1.12. Consider an exact kite K_w at p with main diagonal [p,q]. Then the excised surface M_w converges to M w.r.t. the bilipschitz distance as w tends to zero.

We now consider systolic decomposition with kite excision. There are three typical cases of position for a kite with main diagonal [p, q] within a systolic domain D.

FIGURE 2. Three exact kite configurations

- (Case1) For $[p,q] \subset D$, take K_w exact at p of sufficiently small width, s.t. it lies inside D;
- (Case2) For $[p,q) \subset D$ with $q \in \partial D$, take K_w exact at p of sufficiently small width, s.t. $K_w \setminus q$ lies in D;
- (Case3) For $[p,q] \subset \partial D$, take K_w exact at p.

Proposition 1.13. Let M be a closed piecewise hyperbolic CAT(-1) surfaces. Consider a kite $K_w \subset M$ exact at p and satisfying one of the three cases. Then for sufficiently small width w, we have

$$sys(M_w) \geqslant sys(M)$$
.

Sketch of proof. blabla

Theorem 1.14. Let Σ be a non-simply connected closed surface. Let $U \subset \mathcal{A}_{\Sigma}$ be an open set. Then there exists a const N which depends only on the topology of Σ and a piecewise hyperbolic surface $M \in U$ with at most N conical singularities, s.t.

$$\operatorname{sys}(M) = \sup_{M' \in U} \operatorname{sys}(M').$$

Proof. By approximation, we can consider only piecewise hyperbolic surfaces with conical singularities. For every $\varepsilon > 0$ small enough, there exists a such surface M s.t.

$$\operatorname{sys}(M) > \max_{M' \in U} \operatorname{sys}(M') - \varepsilon > \max_{M' \in \partial U} \operatorname{sys}(M').$$

By the compactness (Proposition 1.5), there exists some surfaces in U, which attain the maximal systole. We assume $M_1 \in U$ is of minimal area in these surfaces.

Lemma 1.15.

(1) Every domain of the systolic decomposition of M_1 contains at most one small conical singularity.

(2) The interior of every edge of a domain of M_1 contains at most one small conical singularity.

According to Proposition 1.9, we can take N_{Σ} to be an upper bound of the number of domains, edges, vertices in the systolic decomposition of M_1 . WLOG, we assume $N_0 \geq 2|\chi(M|$. Combine Proposition 1.7 and Lemma 1.15, M_1 has at most $N = 4N_{\Sigma}$ conical singularities.

By compactness(Proposition 1.5), there exists a surface $M_0 \in U$ with maximal systole among all piecewise hyperbolic surfaces in U, with at most N conical singularities. Note that M_0 does not depend on ε (since N does not), and

$$\operatorname{sys}(M_0) \geqslant \operatorname{sys}(M_1) \geqslant \operatorname{sys}(M) > \max_{M' \in U} \operatorname{sys}(M') - \varepsilon, \forall \varepsilon.$$

Thus $\operatorname{sys}(M_0) = \sup_{M' \in U} \operatorname{sys}(M')$.

1.4. **Kite insertion and deformation.** Let $M \in \mathcal{A}_{\Sigma}$, $m \in M$ be a conical singularity with total angle $\theta_m > 2\pi$, (p,q) be a geodesic arc passing through m, s.t. m is the only conical singularity on the segment [p,q].

For $0 < \alpha < \frac{1}{2}(\theta_m - 2\pi)$, take $q_\alpha \in M$ with $|mq_\alpha| = |mq|$ and $\angle pmq_\alpha = \pi + \alpha$. Denote by M' the surface by cutting along $[p, m], [m, q_\alpha]$, the boundary of M' is the geodesic quadrilateral $pmq_\alpha m'$.

FIGURE 3. Insertion of a kite

Let $K_{\alpha} = \bar{p}\bar{m}\bar{q}_{\alpha}\bar{m}'$ be a kite in \mathbb{H}^2 , with $|\bar{p}\bar{m}| = |pm|, |\bar{q}_{\alpha}\bar{m}| = |q_{\alpha}m|, |\bar{p}\bar{m}'| = |pm'|, |\bar{q}_{\alpha}\bar{m}'| = |q_{\alpha}m'|$ and $\angle \bar{p}\bar{m}\bar{q}_{\alpha} = \angle \bar{p}\bar{m}\bar{q}_{\alpha} = \pi - \alpha$. We attach K_{α} to M' along the corresponding arcs, to get a surface M_{α} .

Proposition 1.16. M_{α} is also a CAT(-1) surface, with more conical singularities than M.

Proof. According to the construction of K_{α} , the total angles at m, p, q_{α}, m' are $2\pi, 2\pi + \angle \bar{m}\bar{p}\bar{m}' \geqslant 2\pi, 2\pi + \angle \bar{m}\bar{q}_{\alpha}\bar{m}' \geqslant 2\pi, \theta_m - 2\alpha > 2\pi$ respectively. Thus M_{α} is still a CAT(-1) surface.

Proposition 1.17. The surface M_{α} converges to M w.r.t. the bilipschitz distance as α tends to zero.

Now we consider the deformation of systolic loop with kite insertion.

Definition 1.18. Let M be a closed CAT(-1) surface.

- (1) Given a free homotopy class C of M, define $L_M(C)$ as the minimal length among loops in C.
- (2) Define $\#_s(M) < \infty$ as the number of systolic loops of M.

Since M is of negative sectional curvature, this minimal length must be attained by some closed geodesic in C.

Let $m \in M$ be a conical singularity with total angle $\theta_m > 2\pi$. Since there are finitely many systolic loops, we can choose a geodesic arc (p,q) passing through m, s.t. at least one systolic loop of M transversely intersects (p,q) and all the systolic loops of M meeting [p,q] intersects (p,q)only for some $x \in (p, m]$. Let M_{α} be the inserted surface.

Proposition 1.19. Let C be the free homotopy class of a systolic loop γ of M, for $\alpha > 0$ small enough

(1) if γ does not transversely intersect [p,q], then

$$L_{M_{\alpha}}(C) = L_{M}(C) = \operatorname{sys}(M);$$

(2) if γ transversely intersects [p, q], then

$$L_{M_{\alpha}}(C) > L_{M}(C) = \operatorname{sys}(M).$$

Theorem 1.20 (deformation via kite insertion). Let (M) be a closed piecewise hyperbolic CAT(-1) surface, with a conical singularity m. Then M can be deformed into a closed piecewise hyperbolic CAT(-1) surface M_{α} , s.t. for $\alpha > 0$ small enough, one of the following statements holds

- (1) $\operatorname{sys}(M_{\alpha}) > \operatorname{sys}(M);$ (2) $\operatorname{sys}(M_{\alpha}) = \operatorname{sys}(M)$ and $\#_s(M_{\alpha}) < \#_s(M).$

Proof. Take a geodesic (p,q) as before, and obtian a surface M_{α} by inserting a kite K_{α} along some segment $[p, q_{\alpha}]$.

Let C be a free homotopy class of M, there are three possible cases:

(Case1) If C is not represented by a systolic loop of M, then from Proposition 1.17, for $\alpha > 0$ small enough,

$$L_{M_{\alpha}}(C) > \operatorname{sys}(M);$$

(Case2) If C is represented by a systolic loop of M, which does not transversely intersect [p,q], then from Proposition 1.19,

$$L_{M_{\alpha}}(C) = L_{M}(C) = \operatorname{sys}(M);$$

(Case 3) If C is represented by a systolic loop of M, which transversely intersects [p, q], then from Proposition 1.19

$$L_{M_{\alpha}}(C) > L_{M}(C) = \operatorname{sys}(M).$$

In conclusion, $\operatorname{sys}(M_{\alpha}) \geqslant \operatorname{sys}(M)$. Moreover,

(1) if all the systolic loops of M meeting [p,q] transversely intersect [p,q], as in (Case3), then $sys(M_{\alpha}) > sys(M)$;

(2) if there is a systolic loop of M as in (Case2), then $\operatorname{sys}(M_{\alpha}) = \operatorname{sys}(M)$, for $\alpha > 0$ small enough. In this case, any systolic loop of M transversely intersecting [p,q] (such a loop exists, by the assumption on (p,q)) will not be systolic under the insertion of a kite. Thus $\#_s(M_{\alpha}) < \#_s(M)$.

Thus the result follows.

1.5. **Proof of the main result.** Now we can show Theorem 1.1.

Proof. According to Theorem 1.14, the supremum of the systole on U is attained by some piecewise hyperbolic surfaces in U with conical singularities. Among these surfaces, take M to be with a minimal $\#_s(M)$. Our goal is to show that M has no conical singularity, thus M is a hyperbolic surface.

Suppose by contradiction that m is a conical singularity of M. By Theorem 1.20, we can deform M by a kite insertion into some $M_{\alpha} \in U$, for $\alpha > 0$ small enough (Proposition 1.17) with one of the following properties

- (1) $\operatorname{sys}(M_{\alpha}) > \operatorname{sys}(M)$;
- (2) $\operatorname{sys}(M_{\alpha}) = \operatorname{sys}(M)$ and $\#_s(M_{\alpha}) < \#_s(M)$.

But M attains the maximal of the systoles, so (1) is impossible. Since M has a minimal $\#_s(M)$, (2) is also impossible.

REFERENCES

- [1] Antonia Jabbour and Stéphane Sabourau, "Sharp systolic bounds on negatively curved surfaces," *Mathematische Annalen*, vol. 389, no. 2, pp. 1131–1159, 2024.
- [2] Marc Troyanov, "Riemannian surfaces with simple singularities," in *Reshetnyak's Theory of Subharmonic Metrics*, pp. 35–45. Springer, 2023.
- [3] Mikhail G Katz and Stéphane Sabourau, "Systolically extremal nonpositively curved surfaces are flat with finitely many singularities," *Journal of Topology and Analysis*, vol. 13, no. 02, pp. 319–347, 2021.