MATHEMATICAL TRIPOS PART III (2021–22)

Elliptic Curves - Example Sheet 2 of 4

T.A. Fisher

1. Find all points defined over the field \mathbb{F}_{13} of 13 elements on the elliptic curve

$$y^2 = x^3 + x + 5$$
,

and show that they form a cyclic group. Find an example of an elliptic curve over \mathbb{F}_{13} for which this group is not cyclic. Are there any examples where the group requires more than two generators?

2. Let A be an abelian group. Let $q:A\to\mathbb{Z}$ be a map satisfying

$$q(x + y) + q(x - y) = 2q(x) + 2q(y)$$

for all $x, y \in A$. Show that q is a quadratic form.

- 3. Find a translation-invariant differential ω on the multiplicative group \mathbb{G}_m . Show that if $[n]: \mathbb{G}_m \to \mathbb{G}_m$ is the endomorphism $x \mapsto x^n$ then $[n]^*\omega = n\omega$.
- 4. Let E_1 and E_2 be elliptic curves over \mathbb{F}_q , and let $\psi: E_1 \to E_2$ be an isogeny defined over \mathbb{F}_q . Let ϕ_i be the q-power Frobenius on E_i for i = 1, 2. Show that $\psi \circ \phi_1 = \phi_2 \circ \psi$ and deduce that $\#E_1(\mathbb{F}_q) = \#E_2(\mathbb{F}_q)$.
- 5. Let E/\mathbb{F}_{13} be the elliptic curve in Question 1. Without listing its elements, find the order of $E(\mathbb{F}_{13^2})$ and determine whether this group is cyclic.
- 6. Show that if $\phi \in \text{End}(E)$ then there exists $\text{tr}(\phi) \in \mathbb{Z}$ such that

$$\deg([n] + \phi) = n^2 + n \operatorname{tr}(\phi) + \deg(\phi)$$

for all $n \in \mathbb{Z}$. Establish the following properties:

- (i) $tr(\phi + \psi) = tr(\phi) + tr(\psi)$,
- (ii) $tr(\phi^2) = tr(\phi)^2 2 deg(\phi)$,
- (iii) $\phi^2 [\text{tr}(\phi)]\phi + [\text{deg}(\phi)] = 0.$
- 7. Let E be the elliptic curve $y^2 = x^3 + d$. We put

$$\xi = \frac{x^3 + 4d}{x^2}, \qquad \eta = \frac{y(x^3 - 8d)}{x^3}.$$

(i) Show that $T=(0,\sqrt{d})$ is a point of order 3, and that if P=(x,y) then

$$\xi = x(P) + x(P+T) + x(P+2T).$$

- (ii) Verify that $\eta^2 = \xi^3 + D$ for some constant D (which you should find).
- (iii) Let E' be the elliptic curve $y^2 = x^3 + D$, and $\phi : E \to E'$ the isogeny given by $(x, y) \mapsto (\xi, \eta)$. Compute $\phi^*(dx/y)$.

- 8. Let E/\mathbb{F}_q be an elliptic curve and $K = \mathbb{F}_q(E)$. Show that ζ_K is meromorphic on \mathbb{C} and satisfies the functional equation $\zeta_K(1-s) = \zeta_K(s)$.
- 9. Let E/\mathbb{F}_p be an elliptic curve with p an odd prime. Show that there exists an elliptic curve E'/\mathbb{F}_p with

$$#E(\mathbb{F}_p) + #E'(\mathbb{F}_p) = 2(p+1).$$

Show further that the groups $E(\mathbb{F}_p) \times E'(\mathbb{F}_p)$ and $E(\mathbb{F}_{p^2})$ have the same order, but need not be isomorphic.

- 10. Let E be an elliptic curve over \mathbb{F}_p (p a prime) with $\#E(\mathbb{F}_p) = p+1-a$, and let $\phi: E \to E$ be the p-power Frobenius, i.e. $\phi: (x,y) \mapsto (x^p,y^p)$. Let $\psi = [a] \phi$.
 - (i) Show that $\phi \circ \psi = \psi \circ \phi = [p]$.
 - (ii) Show that if ψ is separable then $E[p^r] \cong \mathbb{Z}/p^r\mathbb{Z}$ for all $r \geq 1$.
 - (iii) Show that if $p \ge 5$ and E[p] = 0 then $\#E(\mathbb{F}_p) = p + 1$.
- 11. Let $F \in R[[X,Y]]$ be a formal group over a ring R. Show that there is a unique power series $\iota(T)$ in R[[T]] with $\iota(0) = 0$ and $F(T,\iota(T)) = 0$. Find $\iota(T)$ for the multiplicative formal group $\widehat{\mathbb{G}}_m$.
- 12. Let R be an integral domain of characteristic zero, with field of fractions K. Suppose that $f(T) = \sum_{n=1}^{\infty} (a_n/n!)T^n$ and $g(T) = \sum_{n=1}^{\infty} (b_n/n!)T^n$ are power series in K[[T]] satisfying f(g(T)) = g(f(T)) = T. Show that if $a_1 \in R^{\times}$ and $a_n \in R$ for all n, then $b_n \in R$ for all n. [Hint: You should repeatedly differentiate f(g(T)) = T and then put T = 0.]