Packet-Switching

Packet Forwarding Devices: Types and Implementations

Outline

- Introduction
 - What is a packet forwarding device?
 - Which are its functions?
- Elements of a packet forwarding device
 - **Buffers, Fabric, Ports**
 - Management, scheduling
- **◆** Types of packet forwarding devices

Packet Switching

- Information is split into packets that are sent to the network
- A number of network elements process the packets until they eventually reach their destination
- **♦** The processing can include:
 - Performing checks on the packets
 - Marking the packets
 - Dropping the packets
 - Forwarding the packets

Packet Forwarding Devices

- ◆ An element that receives packets processes them with the aim of getting them to the destination
- **♦** A wide range of devices:
 - The Internet access router at home
 - An Ethernet switch on a campus or office
 - A core router of the Internet that handles the traffic of millions of users
 - A data center switch
 - With additional functionality: firewall, load balancer, bandwidth manager, NAT, ...

Packet Forwarding Devices

- Depending on the layer at which the forwarding is done the devices have been classified as:
 - Switches (or bridges) when they use L2 information, for example Ethernet
 - Routers when they use L3 information, for example IPv4 or IPv6
- ◆ Software Defined Networking (SDN) will make the processing more general and flexible
- In fact, most devices already support multiple functionality (L2/L3 forwarding, ACLs, MPLS,...)

Block diagram of a PFD

Elements of a PFD

Ports

- Packets are sent & received over them
- Can have different speeds from a few Mb/s to Tb/s
- Different transmission media, cable, fiber, wireless
- Different physical layer implementation

Decision logic

- Processes the packets, typically the header fields and decides what to do with them
- In many cases processing is done in a sequence of rule tables lookup operations known as pipeline
- Need to work at wire speed

Elements of a PFD

Buffers

- Store the packets until a decision is made at the input
- Store packets until they are sent at the output
- Shared and per port
- ◆ Fabric
 - Moves the packets from the input to the output port
- Scheduling
 - Decides when to send the packet to enforce QoS

Elements of a PFD

Control and Management

- Configures the decision logic, buffers, etc
- Implements the control plane functionality for example routing protocols or SDN agents
- Processes packets that cannot be handled by the or that have the plane PFD data as source/destination

♦ Telemetry

- Gathers data of packets and traffic
- Increasingly important for network monitoring

Decision Logic

- Ethernet switching
- LPM (Longest Prefix Match) "routing"
- Access Control List or Firewalls
- ◆ A PFD would in general have more than one of the above in its decision logic
- ◆ Another alternative is to have a generic tableprocessing as proposed in (Openflow, P4)

Decision Logic

- Parsing packets to extract the information in the headers
- Check tables to obtain actions to be applied to the packet
- Commonly done on ingress and egress

11

Fabric and buffers

- ◆ The interconnection fabric can be as simple as a shared memory(ies) or quite complex
- ◆ Buffers are needed per queue. Sharing can be beneficial but can also lead to undesired effects
- Scheduling is commonly linked to buffers and done at the egress port to apply the QoS configured
- Buffering increases delay so it should be used with caution

Control/Management

- Typically implemented in software
- Enables configuring the PFD (tables, buffers, etc.)
- Handles control plane protocols like BGP
- ◆ Keeps statistics on performance (evolving to Telemetry that enables detailed logging of events)
- In SDN most of its functionality is offloaded to a central controller and the PFD has only limited functionality

Virtual Routers

- Implemented in Software and used in Virtual **Environments**
- ◆ A number of libraries and tools are used to achieve good performance in terms of latency and packet per second (pps)
 - Data Plane Development Kit (DPDK)
 - Open Data Plane (ODP)
 - Vector Packet Processing (VPP)

Packet Forwarding Devices

- ◆ Each type of packet forwarding device has different requirements:
 - Number of ports and speeds
 - Processing complexity and flexibility
 - Modularity
 - Availability
 - Cost

Number of ports and speeds

- Determines the amount of traffic that we need to process
- Combined with the minimum packet size gives the worst-case number of packets per second (pps) that will be handled by the device
- The number of ports ranges from just a few to hundreds
- ◆ The speeds also vary from a few Mb/s to hundreds of Gb/s, soon Tb/s

Performance of routers

- The performance of a router is stated in terms of throughput expressed in b/s.
- However, as routers forward packets, it is more important to know how many packets they are capable of forwarding in a second: packets per second (pps).

- \bullet T = P \times R
 - ❖ P = # of ports
 - R = line rate of each port
 - ❖ T = throughput
- $ightharpoonup R = S \times Ps$
 - ❖ S = packet size
 - Ps = packets per second
- ♦ S = ? ⇒ Use smallest size (40 bytes: TCP ACK)
 - ✓ Usually: 64Bytes

Processing complexity

- What do we need to do with the packets?
 - It can be as simple as Ethernet switching with only a few MAC addresses
 - It can be complex as
 - Looking up in an Internet scale routing table with more than 800K entries (https://bgp.potaroo.net/as6447/)
 - ✓ Performing an Access Control List (ACL) check against thousands of rules
 - Tracking existing connections as in NAT
 - Performing classification on many packet fields as in SDN
 - It can be worse when several of the above are combined

Processing flexibility

- What do we need to do with the packets?
 - Fixed pipeline that applies the same processing to all packets
 - Configurable pipeline that allows a set of predefined functions to be composed to process packets
 - Software defined processing that implements a generic set of packet processing primitives that can be used to define the processing
- Flexibility vs speed
 - In general hardware is fast, software is slow
 - Software is flexible, hardware is not

Modularity

◆ Has an impact on cost

- Modularity helps with
 - Reliability and availability (redundant modules, module swap)
 - Capacity growth (adding ports)
 - Adding new features

Commonly used in large devices

Availability

- What are the effects of the device failure?
 - Service degradation/failure
 - Number of users affected
 - Services affected
- Is critical for some network devices/functions
 - Use redundant modules or even devices
 - Handle failures at network level (re-routing)
 - Adding new features
- Cost/Benefit analysis
 - Improving availability has a cost
 - Failures have also a cost

- ◆ It is always important
- Cost is driven by
 - Research and Development
 - Bill of Materials (BoM)
 - Marketing and sales
- Integration to lower costs
 - System on Chip (SoC) if there is enough volume
 - Reduces PCB size
 - Reduces power consumption and associated costs
 - Initiatives to define common platforms for packet processing devices (https://www.opencompute.org/projects/networking)

Summary of router types

	Performance	Thr O()	Cost	Modularity	Reliability	Sample products	Interfaces	FIB size	Specifics
Residential	low-medium	10Gb/s	very low	none	low	Cisco 1100	Wifi, GPON, Ethernet	1E+02	NAT
SOHO and branch office	low-medium	10Gb/s	very low	low	low	Cisco SOHO 90, 1900, 2900, 3900, 4000, 800	Wifi, GPON, Ethernet	1E+02	NAT, firewall, VPN w/hardware encryption, voice
Enterprise	medium	100Gb/s	low	medium	high	Cisco 3660, 7200, Teldat Atlas	100M,1GE,10GE, WAN	1E+03	VLAN, IP telephony, QoS
Access Concentrators	medium-high	1 Tb/s	medium	high	high	Cisco 6400, 7600	POS: STM1-16; 10-40GEth	1E+04	service provisioning, management
MAN/regional	high	10Tb/s	high	high	very high	Cisco 10700	10Gb/s,100Gb/s	1E+05	integration w/ WDM
Core	very high	10Tb/s	very high	very high	very high	Cisco CRS, NCS6000, Juniper T1600, Nokia 7670RSP	10Gb/s,100Gb/s	1E+06	performance, big route table, ROADM
Data Center / HPC	high	6 Tb/s	high	high	high	Cisco Nexus 5000, Catalyst 4900M, 4948	10G, 40GEth, FCoE	1E+05	cut-through, low latency, FC, programmability
Virtual Routers	medium	10Gb/s	low	very high	high	Cloud Services Router, XRv 9000	100M,1GE,10GE	any	software running on hypervisor

Table only for informative purposes

References

- "Network Routing: Algorithms, Protocols and Architectures. D Medhi and K. Ramasamy. Morgan-Kauffman 2007.
- "Inside Cisco IOS Software Architecture", R. White, V. Bollapragada and C. Murphy. Cisco Press 2000 (Available in the library).
- ◆ Chapters 2 and 3 of "Switching Theory", A. Pattavina. Wiley 1998 (Available in the library).
- "Next Generation Routers" H. Jonathan Chao in Proceedings of the IEEE Septermber 2002. (www.ieee.org)
- "Internet Backbone Routers and Evolving Internet Design" C. Semeria, Juniper Networks 2000. (www.juniper.net)
- "Implementing a Flexible Hardware-based router for the new IP infrastructure" C. Semeria, Juniper Networks 2000. (www.juniper.net)
- "Requirements for IPv4 Routers" RFC 1812 IETF (www.ietf.org)