Rate of growth of functions (order of growth)

Asymptotic Notation

$$\int f(n) = 2n + 3$$

n: Size of input Size of output

$$f_1(n) = 3n^4 + 10n^3$$
 Exponential Growth $f_2(n) = 2^n$

Time Complexity

Space Complexity

time: - mittete, tous, see and Matrix Addition: nxn $\gamma \gamma \chi \gamma \gamma$ $\gamma = 10$ 100

Meaning of Asymptotic Analysis

It means the analysis is valid when the value of n [size of input & size of output] is very large

O-Notation (Big O Notation)

O $(g(n)) = \{ f(n) : there exist positive constants c and <math>n_0$ such that $0 \le f(n) \le c$ g(n) for all $n \ge n_0$

Let
$$f(n) = \frac{1}{2} n^2 - 3n$$

We want to check whether
$$f(n) = O(n^2)$$

We need to find constant c such that $f(n) \le c n^2$

So,
$$\frac{1}{2}$$
 $n^2 - 3n \le c n^2$

Dividing both sides by n²

$$\frac{1}{2} - \frac{3}{n} <= c$$

We can make the inequality hold by taking a constant $c \ge 1$ and $n \ge 1$

If f(n) is a polynomial of order k, then $f(n) = O(n^k)$

Example:
$$f(n) = 4n^3 + 3n^2 + 10$$

 $f(n) = (n^3)$

Big O notation is not asymptotically tight

Let
$$f(n) = 3 n^2$$

Then,
$$f(n) = O(n^2)$$

Also, $f(n) = O(n^3)$

$$f(n) = 4n + 6n^{2} + 3$$
 $f(n) = 0$
 $f(n) = 4(n^{2})$
 $f(n) = 4(n^{2})$

O(1) means constant time that is the time does not depend on size of input or size of output

$$f(n) = O(1)$$

O Notation

 $\Theta(g(n)) = \{ f(n) : \text{there exist positive constants } c_1, c_2 \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \le c_3 g($ g(n)

Let
$$f(n) = \frac{1}{2} n^2 - 3n$$

We want to check whether $f(n) = \Theta(n^2)$

We need to find constant c_1 , c_2 such that $0 \le c_1 n^2 \le (f(n) \le c_2 n^2)$

So,
$$\frac{1}{2}$$
 $n^2 - 3n \le c_2 n^2$

Dividing both sides by n²

$$\frac{1}{2} - \frac{3}{n} <= c_{3}$$

1/2 n - 3n

$$f(n) = c_2 g(n)$$
 $\frac{1}{2} \frac{1}{2} \frac{$

We can make the inequality hold by taking a constant $\varsigma >= \frac{1}{2}$ and r >= 1

Now,

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n$$

Dividing by n², we get

$$c_1 <= \frac{1}{2} - \frac{3}{n}$$

This inequality can be made to hold by taking $n \ge 7$ and $c \le 1/14$

So, the given f(n) is Θ (n^2)

$$C_1 g(n) < = f(n)$$

$$\frac{1}{2}n^2 - 3n$$

 Ω Notation (Big Omega Notation):

 $\Omega(g(n))=\{f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 <= c g(n) <= f(n) \text{ for all } n >= n_0$

Best Case time complexity analysis

Worst Case

Average Case

Linear Search in Array

Senich 60 Search 15 1(n)= N elements Best case Worst case O(n)

fol(i=0; i <=7; i++) it (a[i]==15) { 1< = i;

$$f(u) = O(u)$$

An example: (Multiplication of matrix A[n x n] and matrix B [n x n]

- •Input: matrices A and B
- •Let C be a new matrix of the appropriate size
- •For *i* from 1 to *n*: —
- For j from 1 to n: \longrightarrow \uparrow Let sum = 0

 - For *k* from 1 to n:

Set sum
$$\leftarrow$$
 sum $+ A_{ik} \times B_{kj}$ $\uparrow \gamma$
• Set $C_{ij} \leftarrow$ sum

- •Return C

$$(=1 \quad j=1 \cdots n)$$

 $j=1\cdots n$

$$J=1 \quad K=1.$$

$$J=2 \quad K=1.$$

$$n + n^{2} + n^{2} + n^{2} + n^{2}$$

$$f(n) = n^3 + 4n + n + 1$$

$$K = 1...N$$

A Comparison of Growth-Rate Functions (cont.)

n	constant O(1)	logarithmic O(log n)	linear O(n)	N-log-N O(n log n)	quadratic $O(n^2)$	cubic $O(n^3)$	exponential $O(2^n)$
2	1	1	2	2	4	8	4
4	1	2	4	8	16	64	16
8	1	3	8	24	64	512	256
16	1	4	16	64	256	4,096	65536
32	1	5	32	160	1,024	32,768	4,294,967,296
64	1	6	64	384	4,069	262,144	1.84 x 10 ¹⁹

Y= m

	Also called	n = 100	n = 10,000	n = 1,000,000
<i>O</i> (1)		0.000001 sec.		0.000001 sec.
<i>O</i> (lg <i>n</i>)	Logarithmic time	0.000007 sec.	0.000013 sec.	0.00002 sec.
O(n)	Linear time	0.0001 sec.	0.01 sec.	1 sec.
O(nlg n)		0.00066 sec.	0.13 sec.	20 sec.
$O(n^2)$	Quadratic time	0.01 sec.	100 sec.	278 hours
$O(n^3)$	Cubic time	1 sec.	278 hours	317 centuries
$O(2^n)$	Exponential time	10 ¹⁴ centuries	10 ²⁹⁹⁵ centuries	10 ³⁰⁰⁸⁷ centuries
O(n!)	Factorial time	10 ¹⁴³ centuries	10 ³⁵⁶⁴⁵ centuries	N/A

Linear List: An ordered list of elements (10) Predecessor mound (10 8) (10 8 20 30 15) Operations? - scan the list from left to right of from right to left

- Insert a new element (10 8 20 30 15) Insurt 50 at 2nd position (10 50 8 20 30 15) - 3 tore an element 25. Store 70 at 3rd Position (10 50 70 20 30 15)

Délete: (10 15 70 20 30 15) es. delete 20 from the list (10 15 70 30 15) Finding the length Of the list

Retaileving an element at a particular position. e.g. Retaine the 3rd element

Stack: A stack is a linear list Where all insertions and deletions are made at one end of the list. This end is called the 'top' of the stack.