X-ray crystallography

CS/CME/Biophys/BMI 279
Nov. 12, 2015
Ron Dror

Outline

- Overview of x-ray crystallography
- Crystals
- Electron density
- Diffraction patterns
- The computational problem: determining structure from the diffraction pattern

Overview of x-ray crystallography

X-ray crystallography is the most common way to determine 3D molecular structures

- 90% of the structures in the PDB were determined through x-ray crystallography
- X-ray crystallography is also frequently used to determine structures of other biomolecules (e.g, RNA) or of small molecules (including drugs)
- Why are we covering it in this course?
 - So you know where protein structures come from
 - Because determining a structure this way involves solving a challenging computational problem

The basic idea

- Get the molecule whose structure you want to determine to form a crystal
- Shine an intense beam of x-rays through the crystal, giving rise to a "diffraction pattern" (a pattern of spots of varying brightnesses)

The basic idea

- From that pattern, infer the 3D structure of the molecule
 - In fact, we use multiple images, with the x-rays shining through the crystal at different angles
- This is a challenging computational problem!
- It turns out the diffraction pattern is closely related to the Fourier transform of the electron density of the molecule we crystallized
 - Before we even worry about what that means, let's go back and discuss what a crystal is and what electron density is

Crystals

What's a crystal?

- Under certain conditions, molecules line up into a regular grid (a "lattice").
 - Example: table salt

http://www.bigfoto.com/ miscellaneous/photos-16/saltcrystals-94jf.jpg

http://www.atomsinmotion.com/ 8 book/chapter4/rockSalt.png

Proteins can also form crystals

 Under certain conditions, entire proteins will pack into a regular grid (a lattice)

Insulin crystals

Proteins can also form crystals

 Under certain conditions, entire proteins will pack into a regular grid (a lattice)

Multiple views of the crystal formed by an immunoglobulin-binding domain

(PDB entry 1PGB)

Caveats

- Getting proteins to form crystals can be hard
 - Crystallographers sometimes work for decades to get good crystals of a particular protein

Caveats

- Sometimes a protein will adopt a different structure in a crystal than it does in its natural environment
- Crystallography gives you a static snapshot of a protein's structure
 - Usually (but not always) this snapshot corresponds to the protein's "average" structure

Electron density

Electron density of a molecule

- The electron density corresponding to the 3D structure of a molecule gives the probability of finding an electron at each point in space
- X-rays bounce off electrons they hit

Diffraction patterns

Diffraction patterns

 When you shine a light beam through a crystal, you get a distinctive pattern of bright spots called a diffraction pattern

The dark spots are sometimes pictured in light shades (white) and sometimes in dark shades (black)

Diffraction patterns

- This pattern is actually three dimensional.
 - If you move the imaging plane (or rotate the crystal), you see different parts of it

What causes diffraction patterns?

- Short answer: interference of light
 - The bright spots are places where light interferes constructively. Elsewhere it tends to interfere destructively (cancel out).

You're not responsible for this

http://weelookang.blogspot.com/2011/10/ejs-open-source-double-slit-diffraction.html

Relationship between diffraction pattern and electron density

- It turns out that the diffraction pattern is the Fourier transform of the electron density
 - Both the electron density and the diffraction pattern are functions of three dimensions (i.e., defined at every point in a 3D volume)
 - Each bright spot in the diffraction pattern corresponds to one sinusoidal component of the electron density
 - The Fourier transform gives a magnitude and a phase (shift) for each sinusoid, but it's only practical to measure the amplitude, not the phase
 - Brightness of the spot gives the magnitude
- You need not understand why this relationship holds

The computational problem: determining structure from the diffraction pattern

The challenge

- Given a diffraction pattern, determine the electron density and/or the position of each atom
- If we had a magnitude and a phase associated with each spot in the diffraction pattern—and thus with each 3D sinusoid—then we could just sum up appropriately scaled and shifted 3D sinusoids to recover the electron density
- But we don't have the phases
 - This makes the problem "underdetermined"—in principle, multiple electron densities could give rise to the same set of diffraction pattern magnitudes
 - But the vast majority of those won't correspond to reasonable 3D structures of the protein

General approach to solution

- Step 1: Initial phasing
 - Come up with an approximate solution for the structure (and thus an approximate set of phases)
- Step 2: Phase refinement
 - Then consider perturbations to the structure
 - Search for perturbations that improve the fit to the experimental data (the diffraction pattern)

Initial phasing

- The most common method for initial phasing is molecular replacement
 - Start with a computational model of the protein structure (often the structure of a homologous protein)
 - Search over the possible ways that a protein with this structure could be packed into a crystal, and find the one that gives the best fit to the data
- If one can't build a good computational model of the protein, then one can try various experimental methods to help determine phases
 - Example: isomorphous replacement, where one replaces several atoms
 of the protein with heavier atoms (usually metals), and then uses the
 change in the diffraction pattern to solve for the phases
 - You're not responsible for this
 - Even with additional experimental information, one generally still needs to solve a computational problem

Phase refinement

- Once we have an initial model, we can search for perturbations to that model that improve the fit to the experimental data
 - This is usually done through a Monte Carlo search (via simulated annealing)
 - One usually restrains the search to "realistic" molecular structures using a molecular mechanics force field
 - This dramatically improves the accuracy of the results
 - The idea was introduced by Axel Brunger, now on the Stanford faculty

Phase refinement

- A major challenge in the phase refinement process is to avoid overfitting—i.e., fitting to the noise in the experimental measurements
- To avoids this, one generally ignores a small subset of the experimental data during the refinement process, then sees how well one can predict it at the end
 - Just like cross-validation in machine learning
 - This idea also came from Brunger

Computational methods continue to improve

 Although the phasing problem is decades old, researchers are still inventing better solutions

nature

Vol 464 22 April 2010 doi:10.1038/nature08892

LETTERS

Super-resolution biomolecular crystallography with low-resolution data

Gunnar F. Schröder^{1,2}, Michael Levitt² & Axel T. Brunger^{2,3,4,5,6}

A few additional notes

- Protein crystals contain water
 - Often half the crystal is water
 - Usually only a few water molecules are visible in the structure, because the rest are too mobile
- One usually can't determine hydrogen positions by x-ray crystallography
 - But one can model them in computationally
- Some high-profile, published crystal structures have turned out to be completely incorrect, due to computational problems/errors