A Bayesian Logistic Regression Model to analyze the survival of breast cancer patients after the surgery

Hasini Gammune

University of Texas at Dallas

November 12, 2023

- Introduction
- 2 Model and Bayesian inference
- Simulated data analysis
- Real data analysis
- Summary
- References

Introduction

Introduction

- Logistic regression is a special case of regression analysis and is used when the dependent variable is nominally scaled or ordinally scaled.
- Logistic regression is the standard and the most reliable approach in the analysis of the binary and categorical outcome data.
- A Supervised machine learning method that is used to model the success probability of a certain class or event.
- A probabilistic model which automatically allows to compute the probability of success for a new data point.
- One of the most popular and powerfull ML models used in classifications.

Motivation

Example

Suppose a certain credit card company is using a logistic regression model to predict whether a credit card can be approved and suppose they train their developed model on very few negative data. Then under this circumstance, given a new data point, the developed model has a very low probability for the newly applied credit card being approved.

- Here the justifications relies totally on large sample arguments and training the model on fewer number of data gives unclear conclusions.
- A methodology is needed
 - to capture the uncertainty about the model.
 - in verifying whether the model parameters are meaningful.

A Bayesian Logistic Regression Model can be utilized to overcome this issue.

Research problem and Data

- Develop a Bayesian Logistic Regression model to classify the persons who are survived after the surgery and who are dead after the surgery from the given Haberman Cancer Survival data set.
- Haberman Cancer Survival data set: The data set contains cases from a study that was conducted between 1958 and 1970 at the University of Chicago's Billings Hospital on the survival of patients who had undergone surgery for breast cancer.
- The response is the Survival status (class attribute)
 - 1 = the patient survived 5 years or longer
 - 0 = the patient died within 5 year
- The predictor variables are,
 - 4 Age of patient at time of operation (numerical)
 - 2 Number of positive axillary nodes detected (numerical)
 - Tumour size (numerical)

Model and Bayesian inference

Model

• Suppose Y_i , the survival status of the i^{th} individual follows a Bernoulli distribution with mean μ_i

$$\begin{aligned} Y_i | \mu_i &\sim \textit{Bernoulli}(\mu_i) \\ \text{Then} \quad \textit{logit}(\mu_i) = \textit{log}\left(\frac{\mu_i}{1 - \mu_i}\right) = \beta^T \mathbf{x_i} = \beta_0 + \beta_1 x_{i1} + ... + \beta_p x_{ip} \\ \text{and} \quad \mu_i &= \frac{exp(\beta^T \mathbf{x_i})}{1 + exp(\beta^T \mathbf{x_i})} \end{aligned}$$

Bayesian inference

Likelihood

$$\begin{split} f(\mathbf{y}|\beta) &= \prod_{i=1}^{n} \mathsf{Bern}\left(y_{i}; \frac{\mathsf{exp}(\beta^{T}\mathbf{x}_{i})}{1 + \mathsf{exp}(\beta^{T}\mathbf{x}_{i})}\right) \\ &= \prod_{i=1}^{n} \left(\frac{\mathsf{exp}(\beta^{T}\mathbf{x}_{i})}{1 + \mathsf{exp}(\beta^{T}\mathbf{x}_{i})}\right)^{y_{i}} \left(\frac{1}{1 + \mathsf{exp}(\beta^{T}\mathbf{x}_{i})}\right)^{1 - y_{i}} \\ &= \mathsf{exp}\left(\sum_{i=1}^{n} (y_{i}(\beta^{T}\mathbf{x}_{i}) - \mathsf{log}(1 + \mathsf{exp}(\beta^{T}\mathbf{x}_{i})))\right) \end{split}$$

Prior

$$\begin{split} \beta &\sim \mathsf{MN}(\mathbf{b}, \sigma_{\beta}^2 \mathbf{I}) \\ \pi(\beta) &= \frac{1}{\sqrt{(2\pi)^p |\sigma_{\beta}^2 \mathbf{I}|}} \exp\left(-\frac{1}{2\sigma_{\beta}^2} (\beta - \mathbf{b})^T (\beta - \mathbf{b})\right) \\ &\propto \exp\left(-\frac{1}{2\sigma_{\beta}^2} (\beta - \mathbf{b})^T (\beta - \mathbf{b})\right) \end{split}$$

Cont...

Posterior

$$\pi(\beta|\mathbf{y}) \propto f(\mathbf{y}|\beta) \times \pi(\beta)$$

$$\propto \exp\left(\sum_{i=1}^{n} (y_i(\beta^T \mathbf{x_i}) - \log(1 + \exp(\beta^T \mathbf{x_i})))\right) \exp\left(-\frac{1}{2\sigma_{\beta}^2} (\beta - \mathbf{b})^T (\beta - \mathbf{b})\right)$$

- The posterior distribution is **not in closed form**
- Gibbs Sampler method cannot be used.
- Here I used Metropolis-Hasting Algorithm to approximate the posterior distribution.

Model Fitting

Random Walk Metropolis-Hastings

$$\mathbf{r}_{MH} = \frac{\pi(\beta^*|\mathbf{y})}{\pi(\beta^{(t-1)}|\mathbf{y})} \frac{J(\beta^{(t-1)}|\beta^*)}{J(\beta^*|\beta^{(t-1)})}$$

$$= \frac{\prod_{i=1}^{n} \operatorname{Bern}\left(y_i; \frac{\exp(\beta^{*^T}\mathbf{x}_i)}{1+\exp(\beta^{*^T}\mathbf{x}_i)}\right)}{\prod_{i=1}^{n} \operatorname{Bern}\left(y_i; \frac{\exp(\beta^{(t-1)^T}\mathbf{x}_i)}{1+\exp(\beta^{(t-1)^T}\mathbf{x}_i)}\right)} \frac{\operatorname{MN}(\beta^*; \mathbf{b}, \sigma_{\beta}^2 \mathbf{I})}{\operatorname{MN}(\beta^{(t-1)}; \mathbf{b}, \sigma_{\beta}^2 \mathbf{I})}$$

Proposal distribution

$$J(\beta^*|\beta^{(t-1)}) \sim \mathsf{MN}(\beta^{(t-1)}, k(\mathbf{X}^T\mathbf{X}))$$

Simulated data analysis

Simulated data analysis

 $logit(\theta_i) = log\left(\frac{\theta_i}{1 - \theta_i}\right) = \beta^T \mathbf{x_i} + \epsilon = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i$

```
set.seed(1111)
n<-50
X<-cbind(rep(1, n ),rnorm(n),rnorm(n))
beta<-c(5,0.5,1) #fix beta
epsilon<-rnorm(n,0,5) #generating error terms
theta<- exp((X %*% beta)+epsilon) /(1 + exp((X %*% beta) +epsilon))
y<-rbinom(n,1,theta)</pre>
```

Validating the Algorithm

Posterior predictive checking

Table 1: Observed count of y_i

Real data analysis

Frequentist Approach

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	12.9329	4.3192	2.9943	0.0028
Age	-0.1906	0.0991	-1.9241	0.0543
Aux_nodes	-0.0424	0.0532	-0.7968	0.4256
tumour_size	-0.1354	0.0276	-4.9119	0.0000

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	12.9329	4.3192	2.9943	0.0028
Age	-0.1906	0.0991	-1.9241	0.0543
Aux_nodes	-0.0424	0.0532	-0.7968	0.4256
tumour_size	-0.1354	0.0276	-4.9119	0.0000

Table 2: Beta coefficients from GLM output

Bayesian Approach

• The proposal distribution is adjusted such that k=10 and so the acceptance rate is 0.4612.

Posterior densities of β s

• Shape wise the β distributions look more like symmetric.

β estimates

	Frequentist approach	Bayesian approach
β_0	12.93288915	15.32778623
β_1	-0.19061434	-0.23602491
β_2	-0.04237426	-0.05466828
β_3	-0.13535657	-0.14782607

Table 3: Beta coefficients from both methods

Beta estimates of Frequentist Vs. Bayesian approach

Credible Intervals for β

	Frequenti	st Approach	Bayesian	Approach
	2.5 %	97.5 %	2.5 %	97.5 %
β_0	4.4675	21.3983	6.4539	26.4662
β_1	-0.3848	0.0036	-0.4819	-0.0371
β_2	-0.1466	0.0619	-0.1572	0.0395
β_3	-0.1894	-0.0813	-0.2107	-0.0943

Table 4: 95% CI from Frequentist Approach and Bayesian Approach

Posterior predictive checking

Cont...

Table 5: Observed count of the survival status

- The observed data for y = 1 (the patient survived 5 years or longer) have a higher probability to be sampled in the predictive distribution.
- y = 1 (the patient survived 5 years or longer) have a higher posterior predictive distribution of inclusion.
- The model fits the data very well.

Regularization

Spike and Slab Prior

$$eta_j | \sigma^2, \gamma_j \sim (1 - \gamma_j) \mathbf{I_0}(eta_j) + \gamma_j \mathsf{N}(0, h\sigma^2) \ \sigma^2 \sim \mathsf{IG}(rac{
u_0}{2}, rac{
u_0\sigma_0^2}{2}) \ \gamma_j \sim \mathsf{Bern}(\omega) \ \mathsf{Hyperprior} \quad \omega \sim \mathsf{Beta}(a,b)$$

- Prior Setting : $\omega = 0.6 \ h{=}1$
- Add-Delete algorithm was used to update γ_j .

Prediction evaluation

	MVN Prior	Regularization
1	0.38	0.26

Table 6: MSE comparison

Spike and slab prior

Summary

Summary

- ullet The eta estimates from the two methods closely align.
- The Bayesian model captures the uncertainty which is not covered by the frequentist approach.
- A sensitivity analysis can be performed by varying the prior settings.
- The posterior distribution can be approximated using Grid approximation and Acceptance-rejection sampling also.
- Bayesian methodology can be used to overcome the small sample issue through a regularization methodology.

References

References

- DuMouchel, W. (2012). Multivariate Bayesian logistic regression for analysis of clinical study safety issues. Statistical Science, 27(3), 319-339.
- Hoff, P. D. (2009). A first course in Bayesian statistical methods (Vol. 580).
 New York: Springer.
- O'brien, S. M., & Dunson, D. B. (2004). Bayesian multivariate logistic regression. Biometrics, 60(3), 739-746.
- O'Malley, A. J., & Zou, K. H. (2006). Bayesian multivariate hierarchical transformation models for ROC analysis. Statistics in Medicine, 25(3), 459-479.
- Chen, M. H., & Dey, D. K. (2003). Variable selection for multivariate logistic regression models. Journal of Statistical Planning and Inference, 111(1-2), 37-55.
- Cawley, G. C., & Talbot, N. L. (2006). Gene selection in cancer classification using sparse logistic regression with Bayesian regularization. Bioinformatics, 22(19), 2348-2355.

Any Questions?

Thank You!