Информация о контрольной работе № 3 по дискретной математике

Типы задач:

1 задача

Рассчитать количество вариантов комбинаций, способов размещения и т.п.

2 задача

Задать графически граф указанного типа (неорграф, орграф, псевдограф, несвязный граф и т.п.), состоящий из n вершин и m ребер (дуг). Найти его матрицу инцидентности (или матрицу смежности, список инцидентностей, список смежностей, цикломатическое число).

3 задача

- Тип 3.1. Чему равно количество ребер в дереве на n вершинах?
- Тип 3.2. Чему равно количество ребер в полном графе на n вершинах?
- Тип 3.3. Сколько ребер в простом связном графе, имеющем n вершин и m циклов?
- Тип 3.4. Чему равно количество дуг в полном орграфе на n узлах?

Примечание: в том или ином варианте задачи в качестве m и n будут заданы конкретные числа.

4 задача

- Тип 4.1. Построить граф с множеством степеней вершин $D(V) = {...}$. Например, $D(V) = {3,4,2,1,2}$. Изобразить графически все его неизоморфные подграфы из n вершин.
- Тип 4.2. Построить граф с множеством степеней вершин $D(V) = {...}$. Например, $D(V) = {3,4,2,1,2}$. Изобразить графически все его неизоморфные связные частичные подграфы.
- Тип 4.3. Изобразить графически все неизоморфные связные частичные подграфы полного графа K_n .
- Тип 4.4. Изобразить графически m неизоморфных несвязных частичных подграфов полного графа K_n .

5 задача

- Тип 5.1. Задать два неизоморфных неорграфа $|V_1| = |V_2| = n$, $|E_1| = |E_2| = m$, выполнить операцию объединения графов G_1 и G_2 в матричной форме и нарисовать результирующий граф, если $|V_1 \cap V_2| = k$.
- Тип 5.2. Задать два неизоморфных орграфа $|V_1| = |V_2| = n$, $|E_1| = |E_2| = m$ и найти их композицию матричным способом, если множества вершин совпадают.
- Тип 5.3. Задать два неизоморфных неорграфа $|V_1| = |V_2| = n$, $|E_1| = |E_2| = m$, выполнить операцию пересечения графов G_1 и G_2 в матричной форме и нарисовать результирующий граф, если $|V_1 \cap V_2| = k$.
- Тип 5.4. Задать два орграфа $|V_1| = |V_2| = n$, $|E_1| = |E_2| = m$ и найти их композицию векторным способом, если $|V_1 \cap V_2| = k$.

6 задача

- Тип 6.1. Задать граф с указанным количеством вершин и ребер матрицей смежности. Пронумеровать его вершины методом поиска в ширину (либо глубину) и записать шаги алгоритма.
- Тип 6.2. Задать взвешенный граф с указанным количеством вершин и ребер матрицей смежности. Записать шаги алгоритма поиска минимального остовного дерева (решить задачу о нефтепроводе).