MSAN 601: Linear Regression Analysis Quiz 3

by James D. Wilson (University of San Francisco)

There are 3 questions on this quiz. Each question is weighted equally. Grades will be out of 100 points. You have until 9:45. Good luck!

- 1. Let μ be some unknown parameter for which from data you have an estimator $\hat{\mu}$. Furthermore, you know that $\hat{\mu} \sim N(\mu, 0.5)$.
 - (a) Construct a 95% confidence interval for μ . Give a clear step-by-step description of how to construct this confidence interval. At what value of $\hat{\mu}$ will we be 95 % confident that μ is not 0?
 - (b) Develop a decision rule for the α level hypothesis test $H_o: \mu = 2$ versus $H_1: \mu > 2$. Give a clear step-by-step description of how to construct this decision rule.
- 2. Recall that the covariance between the random variables X and Y is defined by $Cov(X, Y) = \mathbb{E}[(X \mathbb{E}[X])(Y \mathbb{E}[Y])]$.
 - (a) Use the above definition to prove (justifying steps as necessary) that Cov(aX + b, bY + d) = acCov(X, Y) for constants a, b, c, d.
 - (b) Suppose that an engineer is interested in the height of a skyscraper in New York. She first measures the skypscraper in feet and determines, from quantifying her error in measurement from past measurements, that the height is a random variable with mean 1800 feet and variance 81. She hands these measurements over to another engineer, who asks that she report these numbers in yards (there are 3 feet in 1 yard). What is the mean and variance of the skyscraper in yards?
- 3. Let X and Y be two random variables.
 - (a) Define the correlation coefficient between X and Y ($\rho(X,Y)$) and give its range of possible values.
 - (b) Describe how to interpret $\rho(X,Y)$. (Be as specific as possible.)
 - (c) What specifically can you say about two random variables such that $\rho(X,Y)=1$?
 - (d) If $Y = aX^2$ for some a > 0, what do you expect $\rho(X, Y)$ to look like?