Theoretische Physik II – Quantenmechanik – Blatt 7

Sommersemester 2023

Webpage: http://www.thp.uni-koeln.de/~rk/qm_2023.html/

Abgabe: bis **Mittwoch**, **07.06.23**, **10:00** in elektronischer Form per ILIAS unter https://www.ilias.uni-koeln.de/ilias/goto_uk_crs_5154210.html

23. Zur Diskussion

0 Punkte

- a) Wie lautet die Wahrscheinlichkeitsstromdichte j(x,t) eines eindimensionalen Teilchenzustands mit Wellenfunktion $\psi(x,t)$?
- **b)** In welcher Beziehung bestehen Wahrscheinlichkeitsdichte $\rho(x,t) = |\psi(x,t)|^2$ und Wahrscheinlichkeitsstromdichte j(x,t) eines allgemeinen Teilchenzustands?

24. Impulsdarstellung

 $7\times2=14$ Punkte

In dieser Aufgabe überzeugen Sie sich davon, dass Orts- und Impulsdarstellungen im wesentlichen äquivalente Beschreibungen eines Teilchenzustands sind. Inbesondere entspricht der Orstdarstellung $-i\hbar\frac{\partial}{\partial x}$ des Impulsoperators die Impulsdarstellung $i\frac{\partial}{\partial k}$ des Ortsoperators. Zeigen Sie:

- a) Ist $\tilde{\psi}(k)$ die Impulswellenfunktion eines Teilchenzustands $|\psi\rangle$, dann ist $i\frac{\partial}{\partial k}\tilde{\psi}(k)$ die Impulswellenfunktion des Zustands $\hat{x}\,|\psi\rangle$.
- **b)** $\langle x \rangle_{|\psi\rangle} = \int \frac{dk}{2\pi} \, \tilde{\psi}^*(k) \left(i \frac{\partial}{\partial k} \right) \tilde{\psi}(k) \,, \qquad \langle p \rangle_{|\psi\rangle} = \int \frac{dk}{2\pi} \, \tilde{\psi}^*(k) \left(\hbar k \right) \tilde{\psi}(k) \,.$
- c) Der Operator

$$\tilde{T}(p_0) := e^{\frac{i}{\hbar}p_0\hat{x}}, \quad p_0 \in \mathbb{R}$$

ist die *Impuls-Translation um den Impuls* p_0 , d.h. $\tilde{T}(p_0) | \tilde{\varphi}_p \rangle = | \tilde{\varphi}_{p+p_0} \rangle$.

- **d)** $\tilde{T}(p_0)$ ist unitär und es gilt $[p, \tilde{T}(p_0)] = p_0 \tilde{T}(p_0)$.
- e) $\langle p \rangle_{\tilde{T}(p_0)|\psi\rangle} = p_0 + \langle p \rangle_{|\psi\rangle}$.
- f) Ist $\psi(x)$ die Ortswellenfunktion eines Zustands $|\psi\rangle$, dann ist $\mathrm{e}^{ik_0x}\psi(x)$ die Ortswellenfunktion des Zustands $\tilde{T}(\hbar k_0) |\psi\rangle$.
- g) Ist $\tilde{\psi}(k)$ die Impulswellenfunktion eines Zustands $|\psi\rangle$, dann ist $e^{-ikx_0}\tilde{\psi}(k)$ die Impulswellenfunktion des um x_0 translatierten Zustands $T(x_0)|\psi\rangle$.

25. Elektron-Reflexion am Metall

6 Punkte

Ein Strahl monoenergetische Elektronen wird senkrecht auf eine Metalloberfläche gerichtet. Im Metall liegt das Potenzial -W=-8eV vor, die Elektronen im Strahl haben die Energie +0.1eV. Mit welcher Wahrscheinlichkeit werden die Elektronen an der Metalloberfläche reflektiert?

26. Feldemission 6 Punkte

Unter dem Einfluss eines starken elektrischen Felds senkrecht zur Oberfläche eines Metalls werden Leitungselektronen aus dem Metall gelöst. Zur Beschreibung dieses als *Feldemission* bezeichneten Phänomens verwenden wir ein vereinfachtes 1D Modell-Potenzial

$$U(x) = \begin{cases} -W : x < 0 & \text{(Metall, feldfrei)} \\ -e\mathcal{E}x : x > 0 & \text{(Vakuum + elektr. Feld)}, \end{cases}$$
 (1)

wobei W>0 die Austrittsarbeit, $\mathcal E$ die elekrische Feldstärke und e die Elementarladung bezeichnet $(e\mathcal E$ positiv). Zudem nehmen wir an, dass sich im Metall Elektronen bei einer Energie -W< E<0 befinden und diese die Potenzialbarriere an der Metalloberfläche durchtunneln. Das Resultat ist ein Tunnelstrom $I=I_0T$, wobei I_0 ein konstanter Parameter und T die durch E und U(x) bestimmte Transmissionswahrscheinlichkeit ist. Bestimmen Sie T in Gamow-Näherung

$$T = \exp(-\frac{1}{\hbar} \int \sqrt{8m(V(x) - E)} \, dx)$$

und damit den Tunnelstrom I als Funktion von E und \mathcal{E} . Angenommen E=-1eV, ab welcher elektrischen Feldstärke \mathcal{E} können Sie mit einem signifikannten Tunnelstrom rechnen?

27. Harmonischer Oszillator

6 Punkte

Ein Teilchen der Masse m oszilliert im harmonischen Potenzial $\frac{1}{2}m\omega^2$ x^2 . Zur Zeit t=0 befindet es sich in einer Superposition des Grundzustands $|0\rangle$ und des ersten angeregtes Zustands $|1\rangle$,

$$|\psi_0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle).$$

Berechnen Sie die Erwartungswerte von Ort und Impuls des Teilchens zur Zeit t. Verwenden Sie dazu folgende Beziehungen (vgl. Vorlesung):

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}}(a^{\dagger} + a), \quad \hat{p} = i\sqrt{\frac{\hbar m\omega}{2}}(a^{\dagger} - a), \quad a^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle, \quad a |n\rangle = \sqrt{n} |n-1\rangle.$$