A. Consider the following function, $f(x) = \frac{2x(x^2+x)-8(x+1)}{2}$. Based on these, answer the following questions:

- 1. (1 mark) Find the possible roots of f(x) within the error bound (machine epsilon) of 1×10^{-2} using $x_0 = -10$.
- 2. (4 marks) State the exact roots of f(x) and construct two different fixed point functions g(x) such that f(x) = 0.
- 3. (5 marks) Compute the convergence rate of each fixed point function g(x) obtained in the previous part, and state which is convergent or divergent.

1.
$$f(x) = \frac{2x(x^2+x)-8(x+1)}{2}$$

$$\Rightarrow f(x) = \frac{2(x(x^2+x)-4(x+1))}{2}$$

$$\Rightarrow f(x) = x(x^2+x) - 4(x+1)$$

$$\Rightarrow f(x) = x^3 + x^2 - 4x - 4$$

$$\therefore f'(x) = 3x^2 + 2x - 4$$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x^3+x^2-4x-4}{3x^2+2x-4}$$

k	$x_{k}^{}$	$f(x_k) = x^3 + x^2 - 4x - 4$	$ s f(x_k) < 10^{-2}?$
0	-10	-864	No
1	-6.8696	-253.512	No
2	-4.8224	-73.601	No
3	-3.5109	-20.907	No
4	-2.7055	-5.662	No
5	-2.2543	-1.357	No
6	-2.0529	-0.226	No
7	-2.0031	-0.012	No
8	-2.0000	-4.915×10^{-5}	Yes

$$So, x_{\downarrow} = -2$$

2.
$$f(x) = x^3 + x^2 - 4x - 4$$

actual root, $x_* = -2, -1, 2$ [Using Calculator]

Construct two g(x) = x

$$(1) x^3 + x^2 - 4x - 4 = 0$$

$$\Rightarrow x^2 = -x^3 + 4x + 4$$

$$\Rightarrow x = \sqrt{-x^3 + 4x + 4} \left[g_1(x) = \sqrt{-x^3 + 4x + 4} \right]$$

$$(2) x^3 + x^2 - 4x - 4 = 0$$

$$\Rightarrow 4x = x^3 + x^2 - 4$$

$$\Rightarrow x = \frac{x^3 + x^2 - 4}{4} \left[g_2(x) = \frac{x^3 + x^2 - 4}{4} \right]$$

3.

$$(1) g_{1}(x) = \sqrt{-x^{3} + 4x + 4}$$

$$g_{1}'(x) = \frac{4-3x^{2}}{2\sqrt{-x^{3}+4x+4}}$$

$$\Rightarrow \lambda = |g'(x_{*})| = |g_{1}'(-1)| = 0.5 \ (convergent)$$

$$\Rightarrow \lambda = |g'(x_{*})| = |g_{1}'(-2)| = 2 \ (divergent)$$

$$\Rightarrow \lambda = |g'(x_{*})| = |g_{1}'(2)| = 2 \ (divergent)$$

(2)
$$g_2(x) = \frac{x^3 + x^2 - 4}{4}$$

 $g_2'(x) = \frac{3x^2 + 2x}{4}$
 $\Rightarrow \lambda = |g'(x_*)| = |g_2'(-1)| = 0.25 \ (convergent)$
 $\Rightarrow \lambda = |g'(x_*)| = |g_2'(-2)| = 2 \ (divergent)$
 $\Rightarrow \lambda = |g'(x_*)| = |g_2'(2)| = 4 \ (divergent)$

- B. Read the following questions and answer accordingly:
 - 1. (2 marks) Consider the fixed point function, $g(x) = \frac{4x+2}{2\sqrt{x+1}}$. Show that to be super-linearly convergent, the root is $-\frac{3}{2}$.
 - 2. (4 marks) For $f(x) = x^3 2x + 2$, where $x_0 = 0$. Showing the first 2 iterations state that is it possible to find the actual root of f(x). If yes, then write the actual root and if no, then state the reason.
 - 3. (4 marks) For $f(x) = -1 + xe^x$, find the solution of f(x) = 0 up to 5 iterations using Newton's method starting with $x_0 = 1.5$. (use 4 significant figures)

1.

Given,
$$g(x) = \frac{4x+2}{2\sqrt{x+1}} = \frac{2x+1}{\sqrt{x+1}}$$
$$g'(x) = \frac{2x+3}{2(x+1)^{\frac{3}{2}}}$$

To be super linear convergent, $\lambda = 0$

$$\lambda = |g'(x)| = 0$$

$$\Rightarrow \frac{2x+3}{2(x+1)^{\frac{3}{2}}} = 0$$

$$\Rightarrow 2x + 3 = 0$$

$$\Rightarrow x = -\frac{3}{2}$$
(Showed)

2.

Given,
$$f(x) = x^3 - 2x + 2$$
, $x_0 = 0$

$$f'(x) = 3x^2 - 2$$

1st iteration:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0 - \frac{f(0)}{f'(0)} = 2$$

2nd iteration:

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2 - \frac{f(2)}{f'(2)} = 0$$

Considering the roots, $x_0 = 0$, $x_1 = 2$, $x_2 = 0$ this iterations get stuck in an infinity loop. So, it is not possible to find the root.

3.

Given,
$$f(x) = -1 + xe^x$$
, $x_0 = 1.5$

$$f'(x) = e^x + xe^x$$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{-1 + x_k e^{x_k}}{e^{x_k} + x_k e^{x_k}}$$

k	x_{k}	
0	1.5	
1	0.9893	
2	0.6789	
3	0.5766	
4	0.5672	
5	0.5671	