

Capacitor & Inductor

Milin Zhang Dept of EE, Tsinghua University

Outlines

- Capacitor
- Inductor
- Magnetically coupled networks

A CAPACITOR is a circuit element that consists of two conducting surface separated by a non-conducting, or dielectric, material.

- Step 1: Voltage difference v(t) applied between the two conductors
- Step 2: Charge q(t) is transferred from the source to the capacitor
- Step 3: an electric field across dielectric is created, with a strength of

$$E(t) = \frac{q(t)}{\varepsilon A}$$

electric field E(t) is proportional to charges q(t) on conductors

The voltage between two surfaces

$$v(t) = \int_{l_0}^{l_1} E(t)dl = E(t)l(t)$$

The charge on the capacitor

$$q(t) = E(t)\varepsilon A = \frac{v(t)}{l(t)}\varepsilon A = \frac{\varepsilon A}{l(t)}v(t)$$

$$C(t)$$

Potential difference v(t) between conductors is proportional to charges q(t) on conductors

CAPACITANCE of two parallel plates separated by air

$$C = \varepsilon_0 \frac{A}{d}$$

- The unit of capacitance: farad (F)
- More frequently used: μF , pF
- $\varepsilon_0 = 8.85 \times 10^{-12} F/m$, the permittivity of free space

The charge on the capacitor q = Cv(t)

CAPACITANCE is defined as ratio of charge, q(t), "stored" on conductors to potential difference ,v(t), between them

Current CANNOT actually flow through a capacitor

The charge on the capacitor q(t) = Cv(t)

$$q(t) = Cv(t)$$

According to the define of current

$$i(t) = \frac{dq(t)}{dt}$$

$$q = Cv(t)$$

The current-voltage terminal characteristics of capacitor

$$i(t) = C \frac{dv(t)}{dt}$$

A capacitor is an open circuit at DC

$$q = Cv(t)$$

$$i(t) = C \frac{dv(t)}{dt}$$

$$dv(t) = \frac{1}{C}idi$$

$$v(t) = \frac{1}{C} \int_{-\infty}^{t} i(x) dx = \frac{1}{C} \int_{-\infty}^{t_0} i(x) dx + \frac{1}{C} \int_{t_0}^{t} i(x) dx$$
$$= v(t_0) + \frac{1}{C} \int_{t_0}^{t} i(x) dx$$

The voltage due to the charge accumulated on ${\it C}$ from time $t=-\infty$ to time $t=t_0$

$$q = Cv(t)$$

$$i(t) = C \frac{dv(t)}{dt}$$

$$v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^t i(x) dx$$

$$v(t + \Delta t) - v(t) = \frac{1}{C} \int_{t}^{t + \Delta t} i(\tau) d\tau$$

$$|v(t + \Delta t) - v(t)| \ge 0$$

$$\left| \frac{1}{C} \int_{t}^{t+\Delta t} i(\tau) d\tau \right| \leq \frac{1}{C} \int_{t}^{t+\Delta t} |i(\tau)| d\tau$$

$$\leq \frac{1}{C} \int_{t}^{t+\Delta t} I_{max} d\tau = \frac{1}{C} I_{max} \Delta t \xrightarrow{\Delta t \to 0} 0$$

$$0 \le |v(t + \Delta t) - v(t)| \le 0$$

Voltage on capacitor CANNOT change abruptly

POWER delivered to a capacitor

$$p(t) = v(t)i(t) = Cv(t)\frac{dv(t)}{dt}$$

ENERGY stored in the electric field

$$q = Cv(t)$$

$$i(t) = C \frac{dv(t)}{dt}$$

$$v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^t i(x) dx$$

$$i(t) = C \frac{dv(t)}{dt} \qquad w(t) = \int_{-\infty}^{t} Cv(\tau) \frac{dv(\tau)}{dt} d\tau = \frac{1}{2} Cv^{2}(\tau) \Big|_{v(-\infty)}^{v(t)} = \frac{1}{2} Cv^{2}(t)$$

QUESTION: Find the voltage on the capacitor, v(t), with i(t) changes as a step function

$$i(t) = \begin{cases} 0 & t \le 0 \\ I_0 & t > 0 \end{cases}$$

$$v(t) = v(0) + \frac{1}{C} \int_0^t i(x) dx$$
If $v(0) = 0$

$$v(t) = \begin{cases} 0 & t \le 0 \\ \frac{I_0 t}{C} & t > 0 \end{cases}$$

Slope of the line is $\frac{I_0}{C}$

QUESTION: Find the current across the capacitor, i(t), with v(t) changes as a step function

$$v(t) = \begin{cases} 0 & t \le 0 \\ V_0 & t > 0 \end{cases}$$

$$i(t) = \frac{dv(t)}{dt} = V_0 \delta(t)$$

Outlines

- Capacitor
 - What is a capacitor

$$q = Cv(t)$$

$$i(t) = C\frac{dv(t)}{dt}$$

$$v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^{t} i(x) dx$$

Capacitors in series

According i-v characteristic of a capacitor

$$i(t) = C_1 \frac{dv_1(t)}{dt} = C_2 \frac{dv_2(t)}{dt} = C_3 \frac{dv_3(t)}{dt}$$
$$i(t) = C_{eq} \frac{dv(t)}{dt}$$

According to KVL

$$i(t) = C_{eq} \frac{d}{dt} (v_1(t) + v_2(t) + v_3(t))$$

$$= C_{eq} i(t) \left(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \right)$$

$$\frac{1}{C_{eq}} = \frac{1}{C_4} + \frac{1}{C_2} + \frac{1}{C_3}$$

Review: resistors in series

VOLTAGE DIVIDER

According to KVL $V_s = iR_1 + iR_2$

$$V_S = iR_1 + iR_2$$

$$V_2 = iR_2 = \frac{R_2}{R_1 + R_2} V_S$$

Voltage divided over resistors

• Equivalent resistance, R_{eq} , (series) is sum of resistances

$$R_{eq} = \sum_{i=1}^{N} R_i$$

Voltage difference across a single resistance of resistors in series

$$V_i = \frac{R_i}{R_{ea}} V_s$$

Voltage divider for capacitors

According to KVL

$$V_S = v_1(t) + v_2(t)$$

$$= \frac{1}{C_1} \int i(t)dt + \frac{1}{C_2} \int i(t)dt$$

Voltage divider

$$\begin{cases} v_1(t) = \frac{R_1}{R_1 + R_2} v(t) \\ v_2(t) = \frac{R_2}{R_1 + R_2} v(t) \end{cases}$$

$$\begin{cases} v_1(t) = \frac{C_2}{C_1 + C_2} v(t) \\ v_2(t) = \frac{C_1}{C_1 + C_2} v(t) \end{cases}$$

Capacitors in parallel

According to KCL

$$i(t) = i_1(t) + i_2(t) + i_3(t)$$

According i-v characteristic of a capacitor

$$i(t) = C_1 \frac{dv(t)}{dt} + C_2 \frac{dv(t)}{dt} + C_3 \frac{dv(t)}{dt}$$
$$= (C_1 + C_2 + C_3) \frac{dv(t)}{dt}$$

For the equivalent circuit

$$i(t) = C_{eq} \frac{dv(t)}{dt}$$

QUESTION: Find the total energy stored in the two capacitors before & after the switch is closed, if the charges on the two capacitors at t=0 are $q_1(0)=Q_1$ and $q_2(0)=Q_2$, respectively.

■ BEFORE the switch is turned on (t < 0) total energy stored in the two capacitors

$$w(t<0) = \frac{Q_1^2}{2C_1} + \frac{Q_2^2}{2C_2}$$

QUESTION: Find the total energy stored in the two capacitors before & after the switch is turned on, if the charges on the two capacitors at t=0 are $q_1(0)=Q_1$ and $q_2(0)=Q_2$, respectively.

$$w(t<0) = \frac{Q_1^2}{2C_1} + \frac{Q_2^2}{2C_2}$$

• AFTER the switch is turned on $(t \ge 0)$

Assume the circuit is in steady state @ $t=t_1$

According to KVL

$$v_1(t) = v_2(t)$$
 $\frac{q_1(t)}{C_1} = \frac{q_2(t)}{C_2}$

According to conservation of charge

$$q_1(t) + q_2(t) = Q_1 + Q_2$$

QUESTION: Find the total energy stored in the two capacitors before & after the switch is turned on, if the charges on the two capacitors at t=0 are $q_1(0)=Q_1$ and $q_2(0)=Q_2$, respectively.

$$w(t<0) = \frac{Q_1^2}{2C_1} + \frac{Q_2^2}{2C_2}$$

■ AFTER the switch is turned on $(t \ge 0)$. Assume the circuit is in steady state @ $t = t_1$

$$\begin{cases} \frac{q_1(t)}{C_1} = \frac{q_2(t)}{C_2} \\ q_1(t) + q_2(t) = Q_1 + Q_2 \end{cases}$$

$$\begin{cases} q_1(t_1) = \frac{C_1}{C_1 + C_2} (Q_1 + Q_2) \\ q_2(t_1) = \frac{C_2}{C_1 + C_2} (Q_1 + Q_2) \end{cases}$$

QUESTION: Find the total energy stored in the two capacitors before & after the switch is turned on, if the charges on the two capacitors at t=0 are $q_1(0)=Q_1$ and $q_2(0)=Q_2$, respectively.

$$w(t<0) = \frac{Q_1^2}{2C_1} + \frac{Q_2^2}{2C_2}$$

■ AFTER the switch is turned on $(t \ge 0)$. Assume the circuit is in steady state @ $t = t_1$

$$w(t_1) = \frac{q_1^2(t)}{2C_1} + \frac{q_2^2(t)}{2C_2}$$

$$= \frac{1}{2C_1} \left(\frac{C_1}{C_1 + C_2} (Q_1 + Q_2) \right)^2 + \frac{1}{2C_2} \left(\frac{C_2}{C_1 + C_2} (Q_1 + Q_2) \right)^2$$

$$= \frac{(Q_1 + Q_2)^2}{2(C_1 + C_2)}$$

QUESTION: Find the total energy stored in the two capacitors before & after the switch is turned on, if the charges on the two capacitors at t=0 are $q_1(0)=Q_1$ and $q_2(0)=Q_2$, respectively.

• BEFORE the switch is turned on (t < 0)

$$w(t < 0) = \frac{Q_1^2}{2C_1} + \frac{Q_2^2}{2C_2}$$

■ AFTER the switch is turned on $(t \ge 0)$. Assume the circuit is in steady state @ $t = t_1$

$$w(t_1) = \frac{(Q_1 + Q_2)^2}{2(C_1 + C_2)}$$

WHY
$$w(t < 0) \neq w(t_1)$$
 ?

Outlines

- Capacitor
 - What is a capacitor
 - Capacitors in series/parallel
 - Capacitors voltage divider

$$q = Cv(t)$$

$$i(t) = C \frac{dv(t)}{dt}$$
$$v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^{t} i(x) dx$$

An INDUCTOR is a circuit element that consists of a conducting wire usually in the form of a coil.

Recall: high school physics

AMPÈRE'S LAW

The magnetic field, B, created by an electric current, I, is proportional to the size of that electric current with a constant of proportionality equal to the permeability of free space, μ_0 .

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \left(I + \varepsilon_0 \frac{d\Phi_E}{dt} \right)$$

FARADAY'S LAW

The electromotive force, ε , or EMF is proportional to the rate of change of magnetic flux, Φ , through a loop to the magnitude of the electro-motive force induced in the loop.

$$\varepsilon = \frac{d\Phi}{dt}$$

- Step 1: current i(t) pass through the wire
- Step 2: magnetic flux ϕ is generated in the wire
- Step 3: if the wire is coiled, the flux linkage for the coil is

$$\lambda(t) = N\phi$$

For linear system

$$\lambda(t) = Li(t)$$

According to Faraday's Law

$$v(t) = \frac{d\lambda(t)}{dt} = \frac{dLi(t)}{dt}$$

The current-voltage terminal characteristics of inductor

$$v(t) = L \frac{di(t)}{dt}$$

An inductor is a short circuit at DC

$$\lambda(t) = Li(t)$$

$$v(t) = L \frac{di(t)}{dt}$$

INDUCTANCE is defined as

ratio of voltage, v(t), across the coils to time rate of change of current flowing, i(t), through it

- The unit of inductance: henry (H)
- More frequently used: nH

$$\lambda(t) = Li(t)$$

$$v(t) = L \frac{di(t)}{dt}$$

$$di(t) = \frac{1}{L}v(t)dt$$

$$i(t) = \frac{1}{L} \int_{-\infty}^{t} v(x) dx = \frac{1}{L} \int_{-\infty}^{t_0} v(x) dx + \frac{1}{L} \int_{t_0}^{t} v(x) dx$$
$$= \frac{1}{L} \lambda(t_0) + \frac{1}{L} \int_{t_0}^{t} v(x) dx$$

The flux linkage due to the charge accumulated on L from time $t=-\infty$ to time $t=t_0$

$$\lambda(t) = Li(t)$$

$$v(t) = L \frac{di(t)}{dt}$$

$$i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^t v(x) dx$$

$$i(t + \Delta t) - i(t) = \frac{1}{L} \int_{t}^{t + \Delta t} v(\tau) d\tau$$

$$|i(t + \Delta t) - i(t)| \ge 0$$

$$\left| \frac{1}{L} \int_{t}^{t+\Delta t} v(\tau) d\tau \right| \leq \frac{1}{L} \int_{t}^{t+\Delta t} |v(\tau)| d\tau$$

$$\leq \frac{1}{L} \int_{t}^{t+\Delta t} V_{max} d\tau = \frac{1}{L} V_{max} \Delta t \xrightarrow{\Delta t \to 0} 0$$

$$0 \le |i(t + \Delta t) - i(t)| \le 0$$

Current through inductor CANNOT change instantaneously

POWER delivered to an inductor

$$p(t) = v(t)i(t) = Li(t)\frac{di(t)}{dt}$$

$$\lambda(t) = Li(t)$$

ENERGY stored in the electric field

$$v(t) = L \frac{di(t)}{dt}$$

$$v(t) = L \frac{di(t)}{dt} \qquad w(t) = \int_{-\infty}^{t} Li(\tau) \frac{di(\tau)}{dt} d\tau = \frac{1}{2} Li^{2}(\tau) \Big|_{i(-\infty)}^{i(t)} = \frac{1}{2} Li^{2}(t)$$

$$i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^t v(x) dx$$

Outlines

- Capacitor
 - What is a capacitor
 - Capacitors in series/parallel
 - Capacitors voltage divider

- Inductor
 - What is an inductor

Inductor in series

According to KVL

$$v(t) = v_1(t) + v_2(t) + v_3(t)$$

According i-v characteristic of an inductor

$$v(t) = L_1 \frac{di(t)}{dt} + L_2 \frac{di(t)}{dt} + L_3 \frac{di(t)}{dt}$$
$$= (L_1 + L_2 + L_3) \frac{di(t)}{dt}$$

For the equivalent circuit

$$v(t) = L_{eq} \frac{di(t)}{dt}$$

Inductors in parallel

$$v(t) = L_1 \frac{di_1(t)}{dt} = L_2 \frac{di_2(t)}{dt} = L_3 \frac{di_3(t)}{dt}$$

$$v(t) = L_{eq} \frac{di(t)}{dt}$$

According to KVL

$$v(t) = L_{eq} \frac{d}{dt} (i_1(t) + i_2(t) + i_3(t))$$

$$= L_{eq} i(t) \left(\frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} \right)$$

$$\frac{1}{L_1} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}$$

Capacitor

- What is a capacitor
- Capacitors in series/parallel
- Capacitors voltage divider

Inductor

- What is an inductor
- Inductors in series/parallel

Resistor v.s. Capacitor v.s. Inductor

		- -	---
i- v charasteristic	$i = \frac{v}{R}$	$i(t) = C \frac{dv(t)}{dt}$	$i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^t v(x) dx$
<i>v-i</i> charasteristic	v = iR	$v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^t i(x) dx$	$v(t) = L \frac{di(t)}{dt}$
p (power transferred in)	p = vi	p = vi	p = vi
w (stored energy)	0	$w = \frac{1}{2}Cv^2(t)$	$w = \frac{1}{2}Li^2(t)$
Series combination	$R_{eq} = R_1 + R_2$	$C_{eq} = \frac{C_1 C_2}{C_1 + C_2}$	$L_{eq} = L_1 + L_2$
Parallel combination	$R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$	$C_{eq} = C_1 + C_2$	$L_{eq} = \frac{L_1 L_2}{L_1 + L_2}$
DC behavior	NO	open circuit	short circuit
Instantaneous change of v		×	
Instantaneous change of i	\checkmark	$\sqrt{}$	×

Capacitor

- What is a capacitor
- Capacitors in series/parallel
- Capacitors voltage divider

Inductor

- What is an inductor
- Inductors in series/parallel
- Resistor v.s. capacitor v.s. inductor

$$q = Cv(t)$$

$$v(t)$$

$$C$$

$$v(t) = C \frac{dv(t)}{dt}$$

$$v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^{t} i(x) dx$$

Magnetically coupled networks

What if there is one coil

According to AMPÈRE'S LAW, consider the ideal situation

- Flow of electric current will create a magnetic field
- lacktriangle The flux linkage for the coil is $\lambda_1(t)=N_1\phi=L_1i_1$

For the ideal inductor
$$v_1(t) = L_1 \frac{di_1(t)}{dt}$$

What if two coils closed to each other

According to FARADAY'S LAW,

The flux linkage for the coil
$$N_2$$
 is $\lambda_2(t) = N_2 \phi = N_2 \frac{\lambda_1}{N_1} = N_2 \frac{L_1 i_1}{N_1}$

Voltage will be induced

$$v_2(t) = \frac{d\lambda_2(t)}{dt} = \frac{d}{dt} \left(N_2 \frac{L_1 i_1}{N_1} \right) = \frac{N_2}{N_1} L_1 \frac{di_1}{dt}$$

$$L_{21}, \text{ mutual inductance}$$

Mutual inductance

The flux linkages for each coil

$$\begin{cases} \lambda_1 = L_1 i_1 + L_{12} i_2 \\ \lambda_2 = L_{21} i_1 + L_2 i_2 \end{cases}$$

The current-voltage relationship

$$\begin{cases} v_1 = \frac{d\lambda_1}{dt} = L_1 \frac{di_1}{dt} + L_{12} \frac{di_2}{dt} \\ v_2 = \frac{d\lambda_2}{dt} = L_{21} \frac{di_1}{dt} + L_2 \frac{di_2}{dt} \end{cases}$$

Mutual inductance

$$\begin{cases} v_1 = \frac{d\lambda_1}{dt} = L_1 \frac{di_1}{dt} + L_{12} \frac{di_2}{dt} \\ v_2 = \frac{d\lambda_2}{dt} = L_{21} \frac{di_1}{dt} + L_2 \frac{di_2}{dt} \end{cases}$$

- Self-inductances L_1 , L_2 , and mutual inductance L_{12} , L_{21}
- For LINEAR SYSTEM $L_{12} = L_{21} = M$

$$v_1 = L_1 \frac{di_1}{dt} + M \frac{di_2}{dt}$$

$$v_2 = M \frac{di_1}{dt} + L_2 \frac{di_2}{dt}$$
a self term due to $i_1(t)$
a self term due to $i_2(t)$

Mutual inductance

Case 1: both currents enter the dots

$$\begin{cases} v_1 = L_1 \frac{di_1}{dt} + M \frac{di_2}{dt} \\ v_2 = M \frac{di_1}{dt} + L_2 \frac{di_2}{dt} \end{cases}$$

Case 2: one current enters the dot, the other leaves the dot

$$\begin{cases} v_1 = L_1 \frac{di_1}{dt} - M \frac{di_2}{dt} \\ v_2 = -M \frac{di_1}{dt} + L_2 \frac{di_2}{dt} \end{cases}$$

Example 4

QUESTION: write the equations for the circuit

According to KVL

$$\begin{cases} v(t) = R_1 i_a + L_1 \frac{di_a}{dt} + M \frac{d}{dt} (i_b - i_a) + L_2 \frac{d}{dt} (i_a - i_b) - M \frac{di_a}{dt} \\ & \text{self term} \quad \text{mutual term} \quad \text{self term} \quad \text{mutual term} \\ & \text{of } L_1 \quad \text{due to } L_2 \quad \text{of } L_2 \quad \text{due to } L_1 \end{cases}$$

$$L_2 \frac{d}{dt} (i_b - i_a) + M \frac{di_a}{dt} \quad + R_2 i_b = 0$$

- Capacitor
 - What is a capacitor
 - Capacitors in series/parallel
 - Capacitors voltage divider
- Inductor
 - What is an inductor
 - Inductors in series/parallel
 - Resistor v.s. capacitor v.s. inductor
- Magnetically coupled networks
 - What is mutual inductance
 - Power & Energy

Power & Energy

$$\begin{cases} v_1 = L_1 \frac{di_1}{dt} + M \frac{di_2}{dt} \\ v_2 = M \frac{di_1}{dt} + L_2 \frac{di_2}{dt} \end{cases}$$

The total power generated by the network

$$p(t) = v_1(t)i_1(t) + v_2(t)i_2(t)$$

$$= \left(L_1 \frac{di_1}{dt} + M \frac{di_2}{dt}\right)i_1(t) + \left(M \frac{di_1}{dt} + L_2 \frac{di_2}{dt}\right)i_2(t)$$

$$= \frac{1}{2}L_1 \frac{d}{dt}i_1^2(t) + \frac{1}{2}L_2 \frac{d}{dt}i_2^2(t) + M \frac{d}{dt}(i_1(t)i_2(t))$$

Power & Energy

$$\begin{cases} v_1 = L_1 \frac{di_1}{dt} + M \frac{di_2}{dt} \\ v_2(t) \end{cases}$$

$$\begin{cases} v_1 = L_1 \frac{di_1}{dt} + M \frac{di_2}{dt} \\ v_2 = M \frac{di_1}{dt} + L_2 \frac{di_2}{dt} \end{cases}$$

The total power generated by the network

$$p(t) = \frac{1}{2}L_1 \frac{d}{dt}i_1^2(t) + \frac{1}{2}L_2 \frac{d}{dt}i_2^2(t) + M \frac{d}{dt}(i_1(t)i_2(t))$$

The total energy stored in the network

$$w(t) = \int_{-\infty}^{t} p(\tau)d\tau = \frac{1}{2}L_1 i_1^2(t) + \frac{1}{2}L_2 i_2^2(t) + Mi_1(t)i_2(t)$$

Power & Energy

$$\begin{cases} v_1 = L_1 \frac{di_1}{dt} + M \frac{di_2}{dt} \\ v_2 = M \frac{di_1}{dt} + L_2 \frac{di_2}{dt} \end{cases}$$

$$w(t) = \frac{1}{2}L_1 i_1^2(t) + \frac{1}{2}L_2 i_2^2(t) + M i_1(t) i_2(t)$$
$$= \frac{1}{2} \left(L_1 - \frac{M^2}{L_2} \right) i_1^2 + \frac{1}{2}L_2 \left(i_2 + \frac{M}{L_2} i_1 \right)^2$$

Since $w(t) \ge 0$ must be guaranteed

$$M \leq \sqrt{L_1 L_2}$$

DEFINE the coefficient of coupling between 2 inductors

$$k = \frac{M}{\sqrt{L_1 L_2}}$$

Capacitor

- What is a capacitor
- Capacitors in series/parallel
- Capacitors voltage divider

- What is an inductor
- Inductors in series/parallel
- Resistor v.s. capacitor v.s. inductor
- Magnetically coupled networks
 - What is mutual inductance
 - Power & Energy
 - Ideal transformer

Ideal Transformer

Symbol of IDEAL TRANSFORMER

Ideal case

- The core flux, ϕ , links ALL the turns of both coils
- There is NO wire resistance

$$\begin{cases} v_1 = N_1 \frac{d\phi}{dt} \\ v_2 = N_2 \frac{d\phi}{dt} \end{cases}$$

$$\frac{v_1}{v_2} = \frac{N_1}{N_2} \text{ is DEFINED as turns ratio}$$

Ideal Transformer

$$\frac{v_1}{v_2} = \frac{N_1}{N_2}$$

- $i_2(t)$ is generated from coupling
- According to Ampère's LAW

$$N_1 i_1 + N_2 i_2 = 0$$

- Capacitor
 - What is a capacitor
 - Capacitors in series/parallel
 - Capacitors voltage divider
- Inductor
 - What is an inductor
 - Inductors in series/parallel
 - Resistor v.s. capacitor v.s. inductor
- Magnetically coupled networks
 - What is mutual inductance
 - Power & Energy
 - Ideal transformer

Reading tasks & learning goals

- Reading tasks
 - Basic Engineering Circuit Analysis, 10th edition
 - Chapter 6 and 10
- Learning goals
 - Be able to calculate V/I for capacitor/inductor
 - Be able to calculate stored energy for capacitor/inductor
 - Be able to combine cap./ind. in series/parallel
 - Understand the concepts of mutual inductance, coefficient of coupling, and turns ratio