Devoir maison 4.

À rendre le lundi 4 novembre 2024

Exercice 1

On suppose le plan rapporté à un repère orthonormé $(O,\overrightarrow{i},\overrightarrow{j})$.

La fonction f est définie par $f(x) = \operatorname{Arccos}\left(\sqrt{\frac{1+\sin x}{2}}\right)$.

- 1°) a) Déterminer l'ensemble de définition D de f.
 - b) Montrer que f est périodique.
 - c) Calculer $f(\pi x)$ pour tout $x \in D$.

 Justifier alors précisément que la droite d'équation $x = \frac{\pi}{2}$ est un axe de symétrie pour la courbe représentative de f.
 - d) Justifier qu'il suffit d'étudier f sur l'intervalle $I = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.

 On expliquera comment on obtient la courbe sur l'ensemble de définition de f.
- **2°)** a) Justifier que f est dérivable au moins sur $]-\frac{\pi}{2},\frac{\pi}{2}[.$
 - **b)** Calculer f'(x) pour $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[.$
 - c) En déduire une expression simple de f(x) pour tout $x \in I$.
 - d) Tracer la courbe représentative de f sur $\left[-\frac{3\pi}{2}, \frac{5\pi}{2}\right]$.

Exercice 2

Le but est de résoudre le système (S) suivant d'inconnue (x,y) où x et y sont des réels positifs :

$$(S): \begin{cases} \sqrt{x} \left(1 + \frac{1}{x+y} \right) = 2\\ \sqrt{y} \left(1 - \frac{1}{x+y} \right) = 3 \end{cases}$$

- 1°) Résoudre dans \mathbb{C} l'équation $z^2 (2+3i)z + 1 = 0$.
- 2°) Soit z = a + ib où a et b sont des réels. Exprimer simplement $\frac{a ib}{a^2 + b^2}$ en fonction de z.
- **3°)** Soit x et y des réels positifs. En posant dans (S), $a = \sqrt{x}$ et $b = \sqrt{y}$, déterminer toutes les solutions du système (S).