Inception module.

- During ILSVLC-2014, they achieved 1st place at the classification task (top-5 test error = 6.67%)
- It has around 6.7977 million parameters (without auxilaries layers) which is 9x fewer than AlexNet (ILSVRC-2012 winner) and 20x fewer than its competitor VGG-16.
- In most of the standard network architectures, the intuition is not clear why and when to perform the max-pooling operation, when to use the convolutional operation. For example, in AlextNet we have the convolutional operation and max-pooling operation following each other whereas in VGGNet, we have 3 convolutional operations in a row and then 1 max-pooling layer.
- Thus, the idea behind GoogLeNet is to use all the operations at the same time. It computes multiple kernels of different size over the same input map in parallel, concatenating their results into a single output. This is called an Inception module.

- (a) Inception module, naïve version
- (b) Inception module with dimension reductions

• Consider the following:

- The Naive approach is computationally expensive:
 - Computation cost = $((28 \times 28 \times 5 \times 5) \times 192) \times 32 \simeq 120 \text{ Mil}$
 - We perform (28 x 28 x 5 x 5) operations along 192 channels for each of the 32 filters.
- The dimension reduction approach is less computationally expensive:

- \circ 1st layer computation cost = ((28 x 28 x 1 x 1) x 192) x 16 \simeq 2.4 Mil
- \circ 2nd layer computation cost = ((28 x 28 x 5 x 5) x 16) x 32 \simeq 10 Mil
- \circ Total computation cost \simeq 12.4 Mil

Here its architecture:

- There are:
 - 9 Inception modules (red box)
 - Global Average pooling were used instead of a Fully-connected layer.
 - It enables adapting and fine-tuning on the network easily.
 - 2 auxilaries softmax layer (green box)
 - Their role is to push the network toward its goal and helps to ensure that the intermediate features are good enough for the network to learn.
 - It turns out that softmax0 and sofmax1 gives regularization effect.
 - During training, their loss gets added to the total loss with a discount weight (the losses of the auxiliary classifiers were weighted by 0.3).
 - During inference, they are discarded.
 - Structure:
 - Average pooling layer with 5×5 filter size and stride 3 resulting in an output size:
 - For 1st green box: 4x4x512.
 - For 2nd green box: 4x4x528.
 - 128 1x1 convolutions + ReLU.
 - Fully-connected layer with 1024 units + ReLU.
 - Dropout = 70%.
 - Linear layer (1000 classes) + Softmax.

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	$28 \times 28 \times 192$	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1 \times 1 \times 1024$	0								
dropout (40%)		$1 \times 1 \times 1024$	0								
linear		$1 \times 1 \times 1000$	1							1000K	1M
softmax		$1 \times 1 \times 1000$	0								

Legend

 $f_1x1 \rightarrow #$ of filters for 1x1 conv.

 $f_3x3_r \rightarrow \#$ of filters for 1x1 conv before 3x3 conv.

f_3x3 → # of filters for 3x3 conv.

f_5x5_r → # of filters for 1x1 conv before 5x5 conv.

 $f_5x5 \rightarrow #$ of filters for 5x5 conv.

f_pp → # of filters for 1×1 conv after pooling.

Made by 3outeille