Chapter 2 Mathematics

Keshuai

2014 - 11 - 20

Copyright: 1.0

目录

一. 计数问题	3
(一)基本计数方法	3
(二) 常见计数问题	3
(三)组合数性质	4
(四)典型问题	4
例题: Uva 11529(极角排序计数问题)	4
例题: Codeforces 451E(容斥原理+隔板法)	6
二. 递推关系	7
三. 数论	
(一)素数	8
1、素数筛选法	8
2、米勒-拉宾判素数	8
3、大区间筛选素数	9
例题: uva 1040(大区间筛选素数)	9
4、梅森素数	10
5、反素数	10
应用:分解质因子	10
(二)欧几里得算法	14
(三)欧拉函数	14
(四)模算术	15
1、取模快速幂	15
2、逆元	15
(五)线性模方程	16
1、求线性模方程解	16
2、中国剩余定理(孙子定理)	
3、离散对数(大步小步算法)	17
(六)其他定理	19
1、数论四大定理(威尔逊定理,欧拉定理,孙子定理,费马小定理)	
2、勒让德记号	19
3、凯莱定理(cayley)	
4、牛顿插值法	
5、完美洗牌	19
三. 博弈	
(一)取石子游戏	20
例题: uva 1567 (k 倍动态减法)	
(二) 删边游戏	
(三)图上移动石子	
例题: uva 12163 (有向图移动石子)	24

一、计数问题

(一) 基本计数方法

1.加法原理: 做一件事情有n中办法,第i种办法有pi种执行方案,那么总的解决这件事情的方案数即为 $p1+p2+p3+\ldots+pn$ 。

2.乘法原理:做一件事情分为n个步骤,第i个步骤的执行方案有pi种,则一共有 $p1*p2*p3*\dots*pn$ 种方案解决该问题。

3.容斥原理:一个班级有,集合A的人喜欢数学,集合B的人喜欢英语,结合C的人喜欢语文,那么该班级的人数应该是多少?

如果我们将三个集合的人数相加起来,那么就重复计算了既喜欢数学又喜欢英语的、既喜欢英语又喜欢语文的和既喜欢数学又喜欢语文的人,还有 三种都喜欢的学霸级人物被计算了三次!!!

完全不科学啊,所以我们再减去既喜欢数学又喜欢英语的、既喜欢英语又喜欢语文的和既喜欢数学又喜欢语文这样的次级学霸。嗯,没错,计算了两次就减掉一次。但是好像哪里有什么不对,我们貌似忘记计算学霸了(三个科目都喜欢的人),好没存在感,被计算了三次又被减掉了三次!...所以作为特殊补偿,我们单独计算学霸。

于是乎得到了公式: $|A \bigcup B \bigcup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |C \cap A| + |A \cap B \cap C|$

加加减减, 把重复的扣掉, 再把扣多的加回来

(二) 常见计数问题

1.排列问题:有n个不同的数,选k个排成一排,每个数最多选一次,问有多少种排列的方法?

分析:对于第一个位置,可以选n种数字,但是对于第二个位置,要扣除第一个位置上的数字,所以有n-1种选法,一次类推,根据乘法原理即为 $A\binom{n}{n}=n!/(n-k)!$

2.组合问题: 有n个不同的数,选出k个,顺序无关,问有多少种选择方法?

分析: 已经知道如果需要排序的答案是 $A\binom{k}{n}$,而每一次选出来的k个数也是不同,排列种数即为k个数中选择k个数并且排列的问题,为 $A\binom{k}{k}$,这样答案即为 $A\binom{k}{n}$,即排列组合公式 $C\binom{k}{n}$

3.二项式展开问题,求 $(a+b)^n$ 展开式的各项系数。

分析: 根据二项式定理 $(a+b)^n=\sum_{k=0}^n C{k\choose n}*a^{n-k}*b^k$,于是只要求出各个 $C{k\choose n}$ 即可。

4.有重复元素的全排列,k个元素,其中第i个元素有ni个,求全排列的个数?

分析: 设答案为x,因为 $n1+n2+n3+\ldots+nk=n$,所以有 $n1!*n2!*n3!*\ldots*nk!*x=n!$,x可求。

5.可重复选择的组合,有n个不同元素,每个元素可以选多次,一共选k个元素,问优多少种选法?

分析: 设第i个元素有xi个,那么就有 $x1+x2+x3+\ldots+xn=k$,求该式子的非负整数解个数,等于是将k个1随机分配给xi,可是有些xi可能一个都分不到,那么我们该怎么计算呢?令yi=xi+1,则有 $y1+y2+y3+\ldots+yn=k+n$,这样当yi=1时,xi=0,所以我们要将x+n个1,随机分配个yi,并且保证每个yi都至少分到一个。于是 $C\binom{n-1}{k+n-1}$ 即为 $C\binom{k}{k+n-1}$

6.单色三角形,给定空间里的n个点,其中没有三点共线,每两个点之间都用红色或者黑色线段连接。求三条边同色的三角形个数。

分析: 从反面考虑,我们只需要求出非单色三角形的个数即可以求出单色三角形的个数,对于一个公共点的两个异色边来说,仅有唯一的单色三角形。所以对与每个顶点,有ai条边红色边,n-1-ai条黑色边,于是构成了ai*(n-1-ai)个异色三角形。于是总共有 $\frac{1}{2}\sum_{i=1}^{n}ai*(n-1-ai)$ 。

7. 给定 n 维空间的线段, 问说线段经过几个格子

分析: 将线段平移至原点,等价于(0,0,0) \rightarrow (a,b,c),ans = a + b + c +.. - gcd(a,b) - gcd(a,c) - ... + gcd(a,b) c) ...

(三) 组合数性质

```
性质1: C\binom{0}{n} = C\binom{n}{n}

性质2: C\binom{k}{n} = C\binom{n-k}{n}

性质3: C\binom{k}{n} + C\binom{k+1}{n} = C\binom{k+1}{n+1}

性质4: C\binom{k+1}{n} = C\binom{k}{n} * \frac{n-k}{k+1}
```

lucas 定理: 用来求解大数的组合数取模问题。

```
lucas(n, m, p) = lucas(n/p, m/p, p) * C \begin{pmatrix} m\%p \\ n\%p \end{pmatrix}
 lucas(n, 0, p) = 1
/*********************************/
/**********************************/
typedef long long type;
type conbin[maxc][maxc];
type pow_mod (type a, type n, type mod) {
    type ans = 1;
    while (n) {
        if (n&1)
            ans = (ans * a) \% mod;
        a = (a * a) % mod;
        n \gg 1:
    return ans;
type ConbinNum One(type a, type b, type mod) {
    if (a < b) return 0;
    if (b > a - b)
        b = a - b;
    type up = 1, down = 1;
    for (type i = 0; i < b; i++) {
        up = up * (a-i) % mod;
        down = down * (i+1) % mod;
    return up * pow_mod(down, mod-2, mod) % mod; // 逆元
void ConbinNum_Tab (int n, type mod) {
    for (int i = 0; i <= n; i++) \{
        conbin[i][0] = conbin[i][i] = 1;
        for (int j = 1; j < i; j++)
             conbin[i][j] = (conbin[i-1][j-1] + conbin[i-1][j]) \% mod;
type lucas (type a, type b, type mod) {
    if (b == 0) return 1:
    return ConbinNum One(a%mod, b%mod, mod) * lucas(a/mod, b/mod, mod) % mod;
```

(四)典型问题

极角 r=atan2(y-o.y, x-o.x),有时需要通过将极角加上 2*pi 来保证周期性。

例题: Uva 11529 (极角排序计数问题)

题目大意:给出若干个点,保证任意三点不共线,任意选三个点作为三角行,其他点若又在该三角形内,则算是该三角形内部的点,问所有情况的三角形平均每个三角形有多少个内部点。

解題思路: 三角形的总数很容易求 C(n,3),现在就是要求各个三角形内部点的总数,同样我们可以反过来,求每个点在多少个三角形的内部。然后我们确定一个点,求该点在多少个三角的内部,剩余 n-1 个点,可以组成 C(n-1,3) 个三角形,所以只要求出该点在哪些三角形的外部即可。

红色点为选中的点,将周围点按照与选中点的极角进行排序,每次枚举一点,它的极角为 a,所有极角小于 a+pi 的点,这些点组成的三角形,选中点一定在外部。处理一周的方式是将点的数组扩大两倍,将所有点的极角加上 pi 有保留在延长的数组中。

```
/*******************************/
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int N = 1205;
const double pi = 4 * atan(1.0);
const double eps = 1e-9;
int n;
double s, r[2*N];
struct point {
   double x, y;
}p[N];
double Count (int d) {
   int c = 0, mv = 0;
   for (int i = 0; i < n; i++) \{
      if (i == d) continue;
       double a = atan2(p[i].y-p[d].y, p[i].x-p[d].x);
       r[c] = a;
       r[c+n-1] = a + 2*pi;
       c++;
   c = 2 * n - 2;
   sort(r, r + c);
   double ans = 0;
   for (int i = 0; i < n-1; i++) {
       double tmp = r[i] + pi;
       while (tmp > r[mv])
         mv++;
       double cnt = mv - i - 1;
       ans = ans + cnt * (cnt-1) / 2;
   return s - ans;
double solve () \{
   s = (n-1) * (n-2) * (n-3) / 6.0;
   double c = n * (n-1) * (n-2) / 6.0;
   double ans = 0;
   for (int i = 0; i < n; i++)
      ans += Count(i);
   return ans / c;
int main () {
   int cas = 1;
   while (scanf("%d", &n) == 1 && n) {
      for (int i = 0; i < n; i++)
    scanf("%lf%lf", &p[i].x, &p[i].y);</pre>
       printf("City %d: %.21f\n", cas++, solve());
   return 0;
```

例题: Codeforces 451E (容斥原理+隔板法)

题目大意:有 n 个花坛,要选 s 支花,每个花坛有 f[i]支花。同一个花坛的花颜色相同,不同花坛的花颜色不同,问说可以有多少种组合。

解题思路: 2^n 的状态,枚举说哪些花坛的花取超过了,剩下的用 C(sum+n-1,n-1) 隔板法计算个数,注意奇数的位置要用减的,偶数的位置用加的,容斥原理。

```
/******************************/
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long 11;
11 pow_mod (11 a, 11 k, 11 p) {
   11 \text{ ans} = 1;
   while (k) {
       if (k&1)
         ans = (ans * a) % p;
       a = (a * a) % p;
       k \neq 2;
   return ans;
11 C (11 a, 11 b, 11 p) {
   if (a < b) return 0;
   if (b > a - b) b = a - b;
   11 up = 1, down = 1;
   for (11 i = 0; i < b; i++) {
      up = up * (a-i) % p;
       down = down * (i+1) % p;
   return up * pow_mod(down, p-2, p) % p; // 逆元
11 lucas (11 a, 11 b, 11 p) {
   if (b == 0)
      return 1;
   return C(a%p, b%p, p) * lucas(a/p, b/p, p) % p;
const int maxn = 25;
const 11 \mod = 1e9+7;
int n;
11 s, f[maxn];
11 solve () {
   11 \text{ ans} = 0;
   for (int i = 0; i < (1 << n); i++) {
       11 \operatorname{sign} = 1, \operatorname{sum} = s;
       for (int j = 0; j < n; j++) {
          if (i&(1<<j)) {
              sum = (f[j]+1);
              sign *= -1;
       if (sum < 0) continue;
       ans += sign * lucas(sum + n - 1, n - 1, mod);
       ans %= mod;
   return (ans + mod) % mod;
int main () {
   scanf("%d%lld", &n, &s);
   for (int i = 0; i < n; i++)
       scanf("%11d", &f[i]);
   printf("%lld\n", solve());
   return 0;
```

二、递推关系

1.斐波那契数列: f(n) = f(n-1) + f(n-2), f(1) = f(2) = 1。

快速求解斐波那契第n项或是前n项和一般用借助矩阵快速幂。

2.卡特兰数:
$$h(n) = \sum_{i=0}^{n-1} h(i) * h(n-i-1), h(0) = h(1) = 1$$

另类递推公式:

•
$$h(n) = \frac{h(n-1) * (4 * n - 2)}{(n+1)}$$

• $h(n) = \frac{C(2n, n)}{(n+1)}$
• $h(n) = C(2n, n) - C(2n, n+1)$

•
$$h(n) = \frac{C(2n,n)}{(n+1)}$$

•
$$h(n) = C(2n, n) - C(2n, n + 1)$$

数列: 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790

应用: 栈, 凸三角形划分

3.村民排队:给出一个树的形状,现在为这棵树标号,保证根节点的标号值比子节点的标号值大,问有多少种标号树。

分析: s(i)表示以i为根节点的子树拥有的节点个数, $f(root) = \frac{s(root):}{s(1)*s(2)*s(3)*\cdots*s(n)}$

4.乱排: 1~n的序列,问有多少种排列满足所有的i,第i个数不为i。f(n) = (f(n-1) + f(n-2)) * (n-1)。

5.第一类斯特林数:有正负的,其绝对值是n个元素的项目分作k个环排列的方法数目。常用的表示方法有s(n,k)。

换个较生活化的说法,就是有n个人分成k组,每组内再按特定顺序围圈的分组方法的数目。

递推公式: s(p,k) = (p-1)*s(p-1,k) + s(p-1,k-1) ($1 \le k \le p-1$)

边界条件: s(p,0) = 0 ($p \ge 1$) s(p,p) = 1 ($p \ge 0$)

递推关系的说明:

考虑第p个物品,p可以单独构成一个非空循环排列,这样前p-1种物品构成k-1个非空循环排列,方法数为s(p-1,k-1);

也可以前p-1种物品构成k个非空循环排列,而第p个物品插入第i个物品的左边,这有(p-1)*s(p-1,k)种方法。

6.第二类斯特林数: 是n个元素的集定义k个等价类的方法数目。

递推公式: S(n,k) = S(n-1,k-1) + k * S(n-1,k)

边界条件: S(n, n) = S(n, 1) = 1

递推关系的说明:

考虑第p个物品,p可以单独构成一个非空集合,此时前p-1个物品构成k-1个非空的不可辨别的集合,方法数为S(p-1,k-1);

也可以前p-1种物品构成k个非空的不可辨别的集合,第p个物品放入任意一个中,这样有k*S(p-1,k)种方法。

三、数论

(一) 素数

1、素数筛选法

```
/********************************/
/**************
* 埃拉托斯特尼素数筛选法
* 筛选一定范围内的所有素数.
* 复杂度近似于 o(n), 所以数据处理范围为 1e6-1e7 可以接受.
void sieve(int n) {
   int m = (int) \operatorname{sqrt}(n+0.5);
   memset(vis, 0, sizeof(vis));
   for (int i = 2; i <= m; i++) \{
      if (!vis[i]) {
         for (int j = i * i; j \le n; j++)
            vis[j] = 1;
      }
   }
int prime_table (int n, int* pri) { // 返回 n 以内素数个数。
   sieve(n);
   int c = 0;
   for (int i = 2; i \le n; i++)
     if (!vis[i])
         pri[c++] = i;
  return c:
2、米勒-拉宾判素数
/*********************************/
/***************
* 米勒-拉宾算法(miller-rabin)
* 判断一个数是否为素数.
* 1. 费马小定理
 对于一个素数来说, a^(n-1) % n 恒等于 1 (1 <= a <= n-1)
* 2. 快速幂取模
* 3. 大数相乘 (long long) 取模
* 两个 long long 型的数相乘有可能大于 long long 型的上限
* 随机生成一个 a, 判断 a (n-1) % n 是否为 1, 如果不为 1 可以确定不是素数.
* 对于合数来说通过测试的概率不足 25%.
* 判断一定次数, 使得该数为素数的概率趋近于 1.
* 3215031751 需要测试较多次,否则会失准.
*******************************
#include <ctime> // possible need;
#include <cstdlib> // possible need;
typedef long long type;
type mul_mod (type a, type b, type mod) {
   type ret = 0;
   while (b) {
     if (b&1) ret = (ret + a) % mod;
      a = (a + a) \% mod;
      b >>= 1;
  return ret;
```

```
type pow_mod (type a, type n, type mod) { // mod <= 1e18;
    type ret = 1;
    while (n) {
        if (n&1)
           ret = ret * a % mod:
        a = a * a \% mod;
        n >>= 1;
   return ret;
bool miller_rabin(type n) {
   if (n < 2)
       return false;
    srand(time(0));
    for (int i = 0; i < 20; i++)
        if (pow_mod(rand() % (n-1) + 1, n-1, n) != 1)
            return false;
    return true;
```

3、大区间筛选素数

d += u;

例题: Uva 1404 (大区间筛选素数)

题目大意: 如果 k 个相邻的素数 p1, p2, ···, pk, 满足 pk-p1=s, 称这些素数组成一个距离为 s 的素数 k 元组, 给定区间 a, b, 求有多少个距离 s 的 k 元组。

解题思路:筛选素数法,先预处理出[1, sqrt(inf)]的素数表,然后对给定区间[a,b]根据预处理出的素数表筛选出素数即可。

```
/*******************************uva1404.cpp*****************/
#include <cstdio>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;
const int sqrt inf = 46340;
const int maxn = 2 * 1e9;
int np, pri[sqrt_inf];
bool vis[maxn+5];
vector<int> vec;
void prime_table (int n) {
    np = 0;
     memset(vis, 0, sizeof(vis));
     for (int i = 2; i \le n; i++) {
         if (vis[i])
              continue;
          pri[np++] = i;
          for (int j = i * i; j \le n; j += i)
              vis[j] = 1;
int solve () {
     int ret = 0;
     int a, b, s, k;
     vec.clear();
     memset(vis, 0, sizeof(vis));
     scanf("%d%d%d%d", &a, &b, &k, &s);
     for (int i = 0; i < np && pri[i] * pri[i] <= b; i++) {
          int u = pri[i], d = (u - a \% u) \% u;
          if (u == a + d)
               d += u;
          while (d \le b - a) {
               vis[d] = 1;
```

```
for (int i = 0; i \le b-a; i++) {
        if (vis[i] == 0 \&\& a + i > 1)
            vec.push back(a+i);
    for (int i = 0; i + k - 1 < vec.size(); <math>i++) {
        if (\text{vec}[i+k-1] - \text{vec}[i] == s)
            ret++;
    }
    return ret:
int main () {
   prime_table(sqrt_inf);
    int cas;
    scanf("%d", &cas);
    while (cas--) {
        printf("%d\n", solve());
    return 0;
```

4、梅森素数

- * 梅森素数, (2^k) 1形式的素数
- *性质:一个数若能差分成若干个不同的梅森素数的积,那么该数的所有因子和可以写成 2ⁿ 形式。
- * 梅森素数前 10 项 (幂): 2, 3, 5, 7, 13, 17, 19, 31, 61, 89…

5、反素数

反素数是一种素数, 当它的数字反过来后, 仍然是一个素数。 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157...

应用:

(1) 分解质因子

方法 1: 试除法

```
/*******************************/
/**************
* 试除法分解因子
* 将一个数分解成质因子.
* 1. 米勒-拉宾(特殊情况下的优化)
  判断一个数为素数
* 枚举 2^{\sim} sqrt(n)的数,判断是否为 n 的因子.
* 复杂度为 o(sqrt(n)).
typedef long long type;
void div_factor (int& cnt, type* factor, type n) {
   cnt = 0;
   type m = (type) \operatorname{sqrt} (n+0.5);
   for (type i = 2; i \le n \&\& i \le m; i++) {
      if (n \% i == 0) {
         while (n % i == 0) {
            factor[cnt++] = i;
            n /= i;
      /* 可以通过用 miller-rabin 算法判断进行优化 */
```

```
if (n != 1)
       factor[cnt++] = n;
方法 2: 费马方法
/********************************/
/**************
* 费马方法 (feramat)
* 将整数拆分成质因子.
* 1. 米勒-拉宾
   判断一个数是否为素数
* 一个整数 N, 可以分解成一个奇数上 2^k 次方, 即 N = (2 * n + 1) * 2^k;
* \diamondsuit M = 2 * n + 1, 如果 M 不为素数,那么 M 肯定可以拆分成两个奇数相乘 M = c * d;
* 假设 c >= d, \diamondsuit a = (c + d) / 2, b = (c - d) / 2;
* 那么 M = a * a - b * b = 4 * (c + d) / 4;
* 于是这要枚举 a, 保证 a * a - M 为完全平数即可.
* 对于因子为比较大的素数,并且个数比较少的情况来说,复杂度仍比较高.
****************
#include <ctime> // possible need;
#include <cstdlib> // possible need;
typedef long long type;
\label{type_pow_mod} \mbox{ type a, type n, type mod) } \{
    type ans = 1;
   while (n) \{
       if (n&1)
           ans = ans * a % mod;
       a = a * a % mod;
       n >>= 1;
   return ans;
bool miller_rabin(type n) {
   if (n < 2)
       return false;
    srand(time(0));
    for (int i = 0; i < 20; i++)
       if (pow_mod(rand() % (n-1) + 1, n-1, n) != 1)
           return false;
   return true;
void feramat_factor (int& cnt, type* factor, type n) {
    if (miller_rabin(n)) {
       factor[cnt++] = n;
       return;
   type x = (type) sqrt(n + 0.5);
   while (x < n) {
       type w = x * x - n;
        type y = (type) \ sqrt(w + 0.5);
        if (w == y * y) {
           feramat_factor(cnt, factor, x+y);
           feramat_factor(cnt, factor, x-y);
           break;
       }
       X++;
   }
}
```

```
void feramat_divfactor (int& cnt, type* factor, type n) { // N = (2*n+1) * 2^k;
   cnt = 0;
   if (n == 0) return;
   while ((n\&1) == 0) {
       factor[cnt++] = 2;
       n >>= 1;
   if (n == 1)
       factor[cnt++] = n;
   else
       feramat_factor(cnt, factor, n);
方法 3: pollard_rho 算法
/*******************************/
/**************
* pollard_rho
* 将整数拆分成质因子.
* 1. 米勒-拉宾
* 判断一个束是否为素数
* 2. 欧几里得
* 求两个数的最大公约数
*根据一定规则生成 x, y, 求出 y-x 和 n 的最大公约数, 若不为 1 则为整数的一个因子.
#include <ctime> // possible need;
#include <cstdlib> // possible need;
typedef long long type;
type gcd (type a, type b) {
   return b == 0 ? a : gcd(b, a\%b);
type pow_mod (type a, type n, type mod) {
   type ans = 1;
   while (n) {
       if (n&1)
           ans = ans * a % mod;
       a = a * a % mod;
       n >>= 1;
   return ans;
bool miller rabin(type n) {
   if (n < 2)
       return false;
   srand(time(0));
   for (int i = 0; i < 20; i++)
       if (pow_mod(rand() % (n-1) + 1, n-1, n) != 1)
          return false;
   return true;
type pollard_rho(type n, type tmp) {
   int i = 1, k = 2;
   type x = rand() \% n;
   type y = x;
   while(true) {
       i++;
       x = ( mul\_mod(x, x, n) + tmp) % n;
       type d = gcd((y > x ? y - x : x - y), n);
       if (d != 1 && d != n)
           return d;
```

```
if (y == x) return n;
        if (i == k) {
           y = x;
            k <<= 1;
        }
void findfactor (int& cnt, type* factor, type n) \{
   if(miller_rabin(n)) {
       factor[cnt++] = n;
       return;
   type p = n;
   while(p \geq = n)
     p = pollard_rho(p, rand() % (n-1) + 1);
   findfactor (cnt, factor, p);
   findfactor (cnt, factor, n / p);
void pollard_divfactor (int& cnt, type* factor, type n) {
   cnt = 0;
    srand(time(0));
   findfactor(cnt, factor, n);
```

(二) 欧几里得算法

```
********************gcd.cpp*********************/
* 欧几里得算法: 求出 a 和 b 的最大公约数 d;
* 拓展欧几里得算法: 求解线性方程的解
* a * x + b * y = d;
* 保证求出的解|x|+|y|最小。
* d 为 a 和 b 的最大公约数,即当有线性方程 a * x + b * y = c, d = gcd(a, b), c % d != 0 时,方程无解。
*******
type gcd(type a, type b) {
   return b == 0 ? a : gcd(b, a\%b);
void exgcd(type a, type b, type& d, type& x, type& y) {
   if (!b)
      d = a, x = 1, y = 0;
   else {
      exgcd(b, a\%b, d, y, x);
      y=x * (a/b);
(三) 欧拉函数
/*******
* 欧拉函数: phi(x)等于不超过 x 且和 x 互质的整数个数
* phi (n)= n * (1-1/p1) * (1-1/p2) * ... * (1-1/pn); (pi 为 n 的质因子)
********
int euler_phi(int n) {
   int m = (int) \operatorname{sqrt}(n+0.5);
   int ans = n;
   for (int i = 2; i \le m; i++) {
      if (n \% i == 0) {
         ans = ans / i * (i-1);
         while (n%i==0) n /= i;
   if (n > 1)
      ans = ans / n * (n - 1);
   return ans;
void phi_table(int n, int* phi) {
   for (int i = 2; i \le n; i++)
      phi[i] = 0;
   phi[1] = 1;
   for (int i = 2; i \le n; i++) {
      if (!phi[i]) {
          for (int j = i*2; j \leftarrow n; j \leftarrow i) {
             if (!phi[j])
                phi[j] = j;
             phi[j] = phi[j] / i * (i - 1);
         }
      }
   }
/***********************************
```

(四)模算术

1、取模快速幂

```
/*********************************/
/**************
* (a * b) % mod = ((a % mod) * (b % mod)) % mod
**************
type mul_mod (type a, type b, type mod) { // 当 mod^2 > inf 时
  type ret = 0;
  while (b) {
     if (b&1)
       ret = (ret + a) \% mod;
     a = (a + a) \% mod;
     b >>= 1;
  return ret;
type pow_mod (type a, type n, type mod) { // mod <= 1e18;
  type ret = 1;
  while (n) {
     if (n&1)
       ret = ret * a % mod;
     a = a * a % mod;
     n \gg 1;
  return ret;
2、逆元
/*******************************/
/*******
* 逆元: a * inv(a, mod) % mod = 1;
* mod 为素数是才有逆元
*******
typedef long long type;
type inv (type a, type mod) {
  type d, x, y;
  exgcd(a, mod, d, x, y);
  return d == 1 ? (x+mod) mod : -1;
type inv (type a, type mod) { // 费马小定理, a^(mod-1) % mod = 1;
  return pow_mod(a, mod-2, mod);
```

(五) 线性模方程

1、求线性模方程解

a*x+b*y=c $exgcd \Rightarrow get(x',y',d)$ (d是a和b的最大公约数) $if(c\%d \neq 0)$ 无解

通解: (a'=a/d,b'=b/d,c'=c/d) $x=\frac{x'*c}{d}+\frac{b}{d}*t$ $y=\frac{x'*c}{d}-\frac{a}{d}*t$ 给定x范围(lx,rx),y范围(ly,ry)
推导: lx < x < rx =>lx-x'c' < b't < rx-x'c' =>if(b'>0) $\frac{lx-x'c'}{b'} < t < \frac{rx-x'c'}{b'}$

结论:

if(b' > 0)

$$ceil(\frac{lx-x'c'}{b'}) \le t \le floor(\frac{rx-x'c'}{b'})$$

else

$$ceil(\frac{rx-x'c'}{b'}) \leq t \leq floor(\frac{lx-x'c'}{b'})$$

if(a' < 0)

$$ceil(\frac{ly - y'c'}{a'}) \le t \le floor(\frac{ry - y'c'}{a'})$$

else

$$ceil(\frac{ry-y'c'}{a'}) \leq t \leq floor(\frac{ly-y'c'}{a'})$$

2、中国剩余定理(孙子定理)

/******

* 中国剩余定理(孙子定理)

*

- * 在多个线性模方程下, x = ai % mi(保证 mi 和 mj 在 i≠的情况下互质)
- * 令 M = 所有 mi 的积, wi = M / mi, 且 gcd(wi, mi)=1
- * 用拓展欧几里得求出 pi 和 qi,使得 wi*pi + mi*qi = 1
- * 令 ei = wi * pi,则方程组的解为 x = (e1*a1 + e2*a2 + ... + en*an) % M
- * 即在 M 的剩余系中 x 有唯一解

typedef long long type;

```
void exgcd (type a, type b, type& d, type& x, type& y) {
   if (b == 0)
       d = a, x = 1, y = 0;
   else {
       exgcd(b, a\%b, d, y, x);
       y = (a/b) * x;
type china (type* a, type* m, int n) \{
   type Mi = 1;
   for (int i = 0; i < n; i++)
       Mi *= m[i];
   type ret = 0;
   for (int i = 0; i < n; i++) {
       type w = Mi/m[i], d, x, y;
       exgcd(m[i], w, d, x, y);
       ret = (ret + y*w*a[i]) % Mi;
   return (ret % Mi + Mi) % Mi;
3、离散对数(大步小步算法)
/********
* 离散对数 (大步小步算法)
* 求解 a^x = b % mod (mod 为素数)
* 根据欧拉定理, 只需要检查 x=0,1.. mod-1 是不是解即可 (a^(mod-1) % mod = 1)
* 算法: 先检查前 m 项, m 取 sqrt (mod), 并且计算出 a m 的逆 a -m
* 然后考虑 m+1 ~ 2m 项,假设存在 ei * a m = b % mod,两边同乘 a -m 得 ei = b' % mod
* 所以每次将 b 乘以 a ~m 之后在 1~m 中查找即可(map 优化)
* 之所以m取 sqrt (mod)是因为在此时复杂度最低
******************/
#include <map>
using namespace std;
typedef long long type;
type mul\_mod (type a, type b, type mod) {
   return (type)a * b % mod;
type pow_mod (type a, type n, type mod) {
   type ans = 1;
   while (n) {
       if (n&1)
           ans = mul_mod(ans, a, mod);
       a = mul_mod(a, a, mod);
       n /= 2;
   return ans;
}
void exgcd (type a, type b, type& d, type& x, type& y) {
   if (!b)
       d = a, x = 1, y = 0;
   else {
       exgcd (b, a%b, d, y, x);
       y = x * (a/b);
```

```
type inv (type a, type mod) \{
    type d, x, y;
    exgcd(a, mod, d, x, y);
    return d == 1 ? (x+mod)\% mod : -1;
}
int log_mod (type a, type b, type mod) {
    type m = (type) sqrt(mod+0.5), v, e = 1;
    v = inv(pow_mod(a, m, mod), mod); // 计算a^(-m)
    map<type, type> g;
    g[1] = 0;
    for (int i = 1; i < m; i++) {
        e = mul_mod(e, a, mod);
        if (!g.count(e)) // 记录 e^i
            g[e] = i;
    for (int i = 0; i < m; i++) {
        if (g.count(b))
           return i*m+g[b];
        b = mul\_mod(b, v, mod);
    return -1;
```

(六) 其他定理

1、数论四大定理(威尔逊定理,欧拉定理,孙子定理,费马小定理)

威尔逊定理:

若 p 是质数,则 p 可以整除(p-1)!+1

欧拉定理:

也称费马-欧拉定理, 若有 n, a 为正整数, 且 n, a 互质 a phi (n) = 1 (mod n)

孙子定理:

也称中国剩余定理,见文档16页

费马小定理:

假如 p 是质数,且(a, p)=1,那么 a^(p-1) $\equiv 1 \pmod{p}$ 。

2、勒让德记号

对于整数 a 和**奇素数** p, tag = $a^{((p-1)/2)}$ (mod p)

- tag = 0 时, a = 0 (mod p)
- tag = 1 时,存在某个整数 x, x² = a (mod p)
- tag = -1 时,不存在某个整数 x, x² = a (mod p)

3、凯莱定理(cayley)

有 n 个标志节点的树的数目等于 n (n-2) (仅是 cayley 在组合数学中的应用)

4、牛顿插值法

给出一个序列的 n 项,求满足序列规律的后 c 项,要求尽量小每次求两项之间的差,形成一个新的序列,直到序列公差为 0 时,回带回原来的序列

5、完美洗牌

给定 n 张牌,从 1~n,每次将 1~n/2 分别放到 2x 的位置,n/2+1~n 的牌放到 (x-n/2)*2-1 的位置等价于每次将第 x 张牌放到 2x %(2p+1)的位置上去现在要判断洗 n-1 次牌是否使得牌变成原先序列,只要判断 2 (n-1) % (2p+1)=1

四、博弈

问题特征:

- 1. 游戏两人轮流操作,并且都以最优方式决策
- 2. 无法操作时为游戏终止状态
- 3. 游戏中的同一状态不会重复出现,也不会出现平局
- 4. 任意状态的决策集合只与当前状态有关,与决策者无关

问题层次:

- 对于给定的初始状态判断胜负
- 寻找单回合的必胜选择
- 寻找多回合的必胜选择(交互题)

解决方法:

- 拓扑逆序倒推
- 记忆化搜索

NP状态定理:

N状态为当前操作玩家有必胜策略(先手必胜),P状态则为当前操作玩家没有必胜策略(先手必败);后继状态,由当前状态可以转移到的所有状态都成为当前状态的后继状态。

P状态的所有后继均为N状态,N状态的后继状态中一定存在P状态。

典型问题:

(一) 取石子游戏

1. 巴什博弈:

- 问题描述: n个石子, 两人轮流取石子, 规定每次至少取1个, 至多取m个, 不能操作者输;
- 解题结论: n%(m+1) = 0时为P点, 否则为N点;

结论证明:

- 。 当n = 0 时,终止状态,为P 点;
- 。 当n%(m+1)=0时,n=k*(m+1),因为每次操作最多取m个石子,假设选取了x个,则有 n=k*(m+1)>n-x>(k-1)*(m+1),即 $(n-x)\%(m+1)\neq 0$;后继状态均为N点,所以n为P点;
- 。 当 $n\%(m+1) \neq 0$ 时, 令x = n%(m+1),则有 $m \geq x > 0$,那么当前操作者取走x个石子后,使得后继状态为P点,所以当前状态为N点;
- 问题变形: 仍是n个石子,两人轮流取石子,规定每次取的个数为给定集合set中的元素;
- 解题方案: 类似01背包的处理方式,所有初始状态为P,从终止状态0开始确定,将可以到达确定P点的状态置为N点;

2. 威佐夫博弈:

- 问题描述: 两堆石子,分别为n和m个,两人轮流操作,操作分两种,一种为从单堆石子中取任意数量的石子,一种为从两堆石子中取相同数量的石子,最后不能操作的人输;
- 解题结论: 寻找奇异局势,即对应的P点,设(a_k,b_k)为P点,并且保证 $a_k \le b_k$, $\mathbf{b}_k = \mathbf{a}_k + \mathbf{k}$ (\mathbf{a}_k 的确定方式为在集合 \mathbf{b} 中未出现过的最小自然数, $\mathbf{a}_0 = \mathbf{0}$ 且 $\mathbf{b}_0 = \mathbf{0}$;

结论证明:

- 。 首先首先奇异局势对应的即为P点,并且奇异局势具有性质:任何自然数都包含在一个且仅有一个奇异局势中;
- 。 对于一个非奇异局势状态(A , B) , 有 $A \le B$,找到k,使得 $a_k = A$;如果 $b_k < B$,那么取走B中若干石子,使得 $b_k = B$,变为奇异局势;如果 $b_k > B$,那么令t = B A ,同时取走两堆石子中 $a_k a_t$ 个石子,那么状态变成($a_t, B A + a_t$) => ($a_t, a_t + t$) => (a_t, b_t),变为奇异局势;
- 。 对于一个奇异局势状态(a_k,b_k),修改 a_k , b_k 中的一个都将不会是奇异局势,因为一个自然数只会出现在一个奇异局势状态中;同时修改 a_k,b_k ,减少x,令 $a_t=a_k-x$,那么 $b_k-x=a_k+k-x=a_t+k\neq a_t+t=b_t$,所以奇异局势不可能转移到另一个奇异局势:
- 问题变形: 第二种操作变为从两堆石子中取的石子数差的绝对值不超过x, 其它条件相同;
- 解题方案: 仍然是确定奇异局势, 公式转变为递推式: $b_k = b_{k-1} + a_k a_{k-1} + x + 1$

奇异局势公式:

对于普通的威佐夫游戏, $a_k=k*rac{1+\sqrt{5}}{2}$,所以对于给定状态x,y,可以通过令k=y-x,然后根据公式求出 a_k ,判断是否和x相等

3. 尼姆博弈:

- 问题描述: 三堆石子,分别又x, y, z个石子,两个人轮流操作,规定每次操作可以从一堆石子中取走一个以上的石子数,不能操作的人为输;
- 解题结论:如果x^y^z=0,则为P点,否则为N点;

结论证明:

- 。 x^y^z ≠ 0时,那么假设S=x^y^z, S的二进制表示最左边的1在第k位,那么以一定存在该位为的堆,假设该堆有x个石子,那么取走一定个数使得x=y^z, 那么此时一定有x^y^z=0;
- 。 x^y^z = 0时,由于只能修改一堆石子,所以不管修改对应二进制的哪一位,都将导致x^y^z ≠ 0;
- 问题变形: n堆石子, 给定每堆石子的个数, 其它条件不变;
- 解题方案: 判断Nim和是否为0即可;

4. anti-nim(反尼姆):

- 问题描述: N堆石子, 游戏者轮流取石子; 每次只能从一堆中取出任意数目的石子, 至少为1; 取走最后一个石子的为输;
- 解题结论: 1. 所有堆石子数都为1且游戏的SG值为0; 2. 存在堆石子数大于1且SG不为0

5. K 倍动态减法

问题描述: N 个石子,,两人轮流操作取石子,取的石子数不能超过对手上一次取的石子数 m 的 K 倍,取到最后一个石子的人胜利,第一次取只能取 1^N-1 个石子。先手必胜时输出最小的首次操作。

解题结论:构造数列,将N写成数列中一些项的和,使得这些被取到的项的相邻两个倍数差距>K

例题: Uva 1567 (K 倍动态减法)

```
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 1e6+5;
int N, K, a[maxn], b[maxn];
int main () {
   int cas;
   scanf("%d", &cas);
   for (int i = 1; i <= cas; i++) \{
       scanf("%d%d", &N, &K);
       int p = 0, q = 0;
       a[0] = b[0] = 0;
       while (a[p] < N) {
           a[p+1] = b[p] + 1;
           while (a[q + 1] * K < a[p])
              q++;
           b[p] = b[q] + a[p];
       printf("Case %d: ", i);
       if (N == a[p])
          printf("lose\n");
       else {
           int ans;
           while (N) \{
              if (N >= a[p]) {
                  N = a[p];
                  ans = a[p];
               }
               p--;
           printf("%d\n", ans);
       }
   }
   return 0;
```

6. 一些题目结论

uva 12293

题目大意:有两个盒子,第一个盒子装有n个球,第二个盒子装又1个球,每次操作将少的盒子中的球全部拿掉,并从另一个盒子中取一些球放入该盒子,使另一个盒子中球的个数为0者为败。

解题结论: $n如果为2^{i-1}$ 那么先手必败。

uva 11892

题目大意:给定n堆石子的个数,两人轮流选择石子堆取石子,直到不能取为失败,附加条件,如果前一次操作,即队手的操作,没有将选中石子堆中的石子取完,那么当前操作者必须在该堆中取石子。

解题结论:只要有一个石子堆的个数大于2,那么先手就获得必胜态。所以只要考虑谁先碰到非1石子堆。对于全是1的情况判断奇偶性。

hdu 4111

题目大意; Alice和Bob两个玩游戏,有N堆石子,每次可以从一堆中取走一个石子,或者是合并两堆石子。

解题结论:统计1的个数c,以及非1情况下的步数s,包括合并。

1.c为奇数, s不等于2: 那么先手必胜。

2.s为2或者为0: c为3的倍数是先手必败。

3.否则的话, s为奇数时先手必胜。

(二) 删边游戏

例题: Uva 12033 (树形删边游戏)

题目大意:给定图,以 0 为根节点,每条边有一个长度,两个人轮流操作,每次为一条边上色,上一个单位长度,当一条边的颜色被涂满,则算作是减掉整段子树。判断先手是否必胜。

```
解题思路: SG 定理,对于当前节点 u,每次考虑字节点 v,u-v 边的长度为 l 当 l 为 l 时: sg(u) \hat{}=(sg(v)+1) 当 l 为奇数时: 需要判断 sg(v) 奇偶性,奇数-1,偶数+1;
```

```
当 1 为偶数时: sg(u) ^= sg(v)
/*********************************/
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn = 1005;
int N, W[maxn][maxn];
vector<int> g[maxn];
int dfs (int u, int p) {
    int ret = 0;
    for (int i = 0; i < g[u].size(); i++) {
         int& v = g[u][i];
        if (v != p) {
             int sg = dfs(v, u);
             if (W[u][v] == 1)
                 ret = (sg+1);
             else if (W[u][v]\&1)
                 ret \hat{}= (sg + (sg\&1 ? -1 : 1));
                 ret ^= sg;
    }
    return ret;
int main () {
    int cas, u, v, w;
    scanf("%d", &cas);
    for (int k = 1; k \le cas; k++) {
        scanf("%d", &N);
        for (int i = 0; i < N; i++)
             g[i].clear();
        for (int i = 1; i < N; i++) \{
             scanf("%d%d%d", &u, &v, &w);
             g[u].push back(v);
             g[v].push_back(u);
             W[u][v] = W[v][u] = w;
        printf("Case %d: %s\n", k, dfs(0, -1) ? "Emily" : "Jolly");
    return 0:
```

(三)图上移动石子

例题: Uva 12163 (有向图移动石子)

题目大意:两个人进行游戏,对于每一局有一个无向图,给出无向图,每个节点有个 K 值,两人轮流操作,每次可以选中国一个含有石子的节点,将该节点的一个石子拿掉,然后选择 K 个有边连接的节点加上一个石子(节点可以重复选择),每个节点的子节点不会超过 15 个。不能操作的人视为失败。每局有 n 轮,给定每轮中每个节点上石子的初始值,问先手胜利还是失败。

解题思路:有向图上移动石子的组合游戏,对于没有子节点的节点 SG 值为 0,然后对于每个节点,用记忆化的方式处理出 SG 值,注意因为要选中 K 个节点,但是子节点的个数最多为 15,然后对于选中偶数次的节点可视没选,所以枚举 215 状态即可,并且要保证选中的个数奇偶性和 K 值相同。

```
对于每一轮给定的初始状态,计算各个子游戏的 Nim 和即可。
/********************************/
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#include <algorithm>
using namespace std;
const int maxn = 105;
vector(int) g[maxn];
int N, M, s[maxn], val[maxn];
inline int bitcount (int x) {
    return x == 0 ? x : bitcount(x>>1) + (x&1);
int SG (int x) {
    if (s[x] != -1)
         return s[x];
    map<int, int> vis;
    int n = g[x].size();
    if (n == 0)
         return s[x] == 0;
    for (int i = 0; i < (1 << n); i++) {
         int bit = bitcount(i);
         if (bit > val[x] \mid | (bit\&1) != (val[x]\&1))
              continue:
         int tmp = 0;
         for (int j = 0; j < n; j++) {
              if (i&(1<<j))
                   tmp ^= SG(g[x][j]);
         vis[tmp] = 1;
     int ret = -1;
    while (vis.count(++ret));
    return s[x] = ret;
void init () {
    scanf("%d%d", &N, &M);
     for (int i = 0; i < maxn; i++)
         g[i].clear();
    int u, v:
    for (int i = 0; i < M; i++) {
         scanf("%d%d", &u, &v);
         g[u]. push back(v);
    for (int i = 0; i < N; i++)
         scanf("%d", &val[i]);
    memset(s, -1, sizeof(s));
    for (int i = 0; i < N; i++)
         s[i] = SG(i);
```

```
void solve () {
    int Q;
    scanf("%d", &Q);
    for (int i = 1; i \le Q; i++) {
         int ret = 0, x;
        for (int j = 0; j < N; j++) {
    scanf("%d", &x);
             if (x&1)
                 ret ^= s[j];
         printf("Round \# \%d: \%s \ '', i, ret ? "WINNING": "LOSING");
    printf("\n");
int main () {
    int cas;
    scanf("%d", &cas);
for (int k = 1; k <= cas; k++) {</pre>
        init();
        printf("Game#%d:\n", k);
        solve();
    return 0;
```