流体力学导论 (2011-2012 秋) 作业解答 复习材料

授课老师: 王智慧

周吕文 zhou.lv.wen@gmail.com

中国科学院力学研究所 2011 年 12 月 05 日 说明:本文档是由本人的流导作业,参考课程网上所给答案整理而成.目录中标题为**蓝色**的个人以为比较重要.时间有限,难免有误,发现问题,请电邮我.祝各位考试顺利.

目 录

1	第一 1.1	章 流体与流体的物理性质 平板 Couette 流的启动	1 1		
	1.2	两肥皂泡合并	3		
	1.3	漂浮固体相互接近或远离	4		
2		章 流体运动学	6		
		已知速度求迹线	6		
		已知速度求流线	6		
	2.3	已知速度求流线, 迹线, 脉线	6		
3	第三	章 流体动力学基本方程	8		
		N-S 方程组的假设条件	8		
	3.2	推导不可压流体流动的柱坐标方程	8		
	3.3	推导不可压流体流动的球坐标方程	11		
4	第四章 流体静力学 15				
			15		
	4.2		15		
	4.3	L 型管内液体加速度和压强	17		
5			19		
	5.1		19		
	5.2	水箱小孔射流截面面积	20		
6	第六章 无粘不可压缩流体的无旋流动 21				
			21		
	6.2	= 7 10 7 1 10 1 1 1 = 2 7 7 1 10 1 10 1	22		
	6.3	The state of the s	23		
	6.4		23		
	6.5		24		
	6.6		24 25		
	6.7 6.8	75177777777777777777777777777777777777	20 26		
	6.9		20 27		
	0.9	家百巴的极力	<i>4</i> (
附	录		28		
\mathbf{A}	程序		28		
	A.1		28		
	A.2		29		
	A.3	问题 6.* 程序	30		
В	试题		32		
	B.1	2011 年期末试题	32		
	B.2	2013 年期末试题	33		

第一章 流体与流体的物理性质

问题 1.1 1687 年牛顿首先发表了他的剪切流动的实验结果, 他的实验是在两相距 h 的平行板之间充满粘性流体后进行的, 如图1. 令下平行板固定不动, 而使上平板在其自身平面以等速 U 向右运动. 实验指出, 平衡后作用于平板上的力与速度 U 及平板面积 A 成正比, 与平板间距 h 成反比, 即

$$F = \mu \frac{U}{h} A \ \vec{x} \ \tau = \frac{F}{A} = \mu \frac{U}{h}$$

讨论在牛顿剪切流动的实验中, 作用于上平板的外力在流体运动平衡前随时间的变化.

图 1: 剪切流实验

图 2: 微元受力分析

解: 如图2所示, 取高度为 Δh 面积为 A 的三个微元层, 标记为 1,2,3. 设 1,2,3 层的速度 分别为 v_1,v_2,v_3 ; 微元 1 对微元 2 的作用力为 f_{12} , 微元 3 对微元 2 的作用力为 f_{32} . 则有

$$f_{12} = \mu \frac{v_1 - v_2}{\Delta h} A = \mu \frac{du(y_{12})}{dy} A, \ f_{32} = \mu \frac{v_3 - v_2}{\Delta h} A = \mu \frac{du(y_{32})}{dy} A$$
 (1)

则对于微元 2 有

$$\frac{du(y_2)}{dt} = \frac{f_{12} - f_{32}}{\rho A \Delta h} = \frac{f_{12} - f_{23}}{\rho A \Delta h} = \frac{\mu}{\rho} \frac{d^2 u(y_2)}{dy^2}$$
 (2)

因此有以下微分方程组

$$\begin{cases} \frac{\partial u(y,t)}{\partial t} = \frac{\mu}{\rho} \frac{\partial^2 u(y,t)}{\partial y^2} \\ \frac{\partial u(y,t)}{\partial x} = 0 \\ u(0,t) = 0, \ u(H,t) = U, \ u(y < H)|_{t=0} = 0 \end{cases}$$
(3)

数值模拟法求解

根据以上分析,将微分方程组式 (3) 离散成差分格式,并通过编程计算,可得到外力 F 随时间的近似变化. 例如,以 273.15K 下的水为例,并令 H=0.05m, U=1m/s. 将高 H=0.05m 的水等高的划分成 n=100 层.以 dt=0.02 为时间步长,每个时间步内,通过计算各层间的黏性力,来得到各层的加速度,从而更新各层的速度.图3是外力 F 随时间的变化,其平衡值为 0.0354,与理论值 $F=\mu U/H=1750\times 10^{-6}\times 1/0.05=0.0350$

图 3: 外力 F 随时间的变化

图 4: 不同时刻速度沿 y 方向的分布

相差 1.14%. 图4为不同时刻速度沿 y 方向的分布,t = 1000s 时速度成线性分布,这与牛顿所给出的结果是一致的. 该计算所使用的程序见附录A.1.

评论: 该模型简捷有效的模拟了剪切流实验,并得到了与实验结果较吻合的结果 (平衡后的 F 值及速度分布与实验结果基本一致). 但由于模拟本身的限制,使得该模型及模拟存在缺陷:

- 1. 计算所得到的最终平衡值受到步长 dt 及层高 dh 的取值影响, 但当 dh 取值小于一定程度时, 其变化对 F 的最终平衡值影响变得很小. 当 $dt \to 0$, $dh \to 0$ 应有 F 收敛于理论解.
- 2. 当 dt 和 dh 取值不适当时, 某些层会因为在 dt 内速度改变量 $a \times dt$ 过大而改变速度方向, 导致系统崩溃. 但可以通过分析来确定 dt 和 dh 取值以避免这种情况.
- 3. 当 dt 取值较小, 层数 n 较大, 初速度 U 较大时, 计算机需要计算较长的时间. 但 就本题所取算例来讲, 其计算在 PC 机上只需几秒.

分离变量法求解

根据微分方程组式 (3), 可用分离变量法求解. 令 u = v + w, 其中 v = A(t)y + B(t)满足非齐次边界条件, 则 $v|_{v=0} = B = 0$, $v|_{v=h} = A(t)h = U$, 故有 v = U/hy. w 满足

$$\begin{cases} \frac{\partial w}{\partial t} = v \frac{\partial^2 w}{\partial y^2} \\ w|_{t=0} = -\frac{U}{h} y \\ w|_{y=0} = 0, \ u|_{y=h} = 0 \end{cases}$$

w = Y(y)T(t), 则

$$T'Y = vY''T \Longrightarrow \frac{T'}{vT} = \frac{Y''}{Y} = -\lambda(\lambda \ge 0)$$

故有

$$\begin{cases} Y'' + \lambda Y = 0 \\ Y(0) = 0, Y(h) = 0 \end{cases}$$

因此有 $\lambda_n = (\frac{n\pi}{h})^2$, $Y_n = \sin \frac{n\pi}{h} y$, $n = 1, 2, \cdots$. 代入 w 得

$$w = \sum_{n=1}^{\infty} T_n(t) \sin \frac{n\pi}{h} y$$

又由 $w|_{t=0} = -\frac{U}{h}y = \sum_{n=1}^{\infty} \varphi_n \sin \frac{n\pi}{h}y$,并令 $\xi = \frac{\pi}{h}y$,有

$$\varphi_n = \frac{2}{h} \int_0^h \left(-\frac{U}{h} y \right) \sin \frac{n\pi}{h} y dy$$

$$= \frac{2}{h} \int_0^\pi \left(-\frac{U}{h} \frac{h}{\pi} \xi \right) \sin n\xi \left(\frac{h}{\pi} d\xi \right)$$

$$= -\frac{2U}{\pi^2} \int_0^h \xi \sin n\xi d\xi$$

$$= -\frac{2U}{n\pi} (-1)^{n+1}$$

对于 T_n 有

$$\begin{cases} T'_n = -v \frac{n^2 \pi^2}{h^2} \\ T_n|_{t=0} = \varphi_n = -\frac{2U}{n\pi} (-1)^{n+1} \end{cases}$$

故有

$$T_n = \varphi_n \exp\left(\frac{-vn^2\pi^2}{h^2}t\right) = -\frac{2U}{n\pi}(-1)^{n+1} \exp\left(\frac{-vn^2\pi^2}{h^2}t\right)$$

因此有

$$u = v + w = \frac{U}{h}y + \sum_{n=1}^{\infty} \left(-\frac{2U}{n\pi}\right)(-1)^{n+1} \exp\left(\frac{-vn^2\pi^2}{h^2}t\right) \sin\frac{n\pi}{h}y$$

所以可求得 τ :

$$\begin{split} \tau &= \mu \frac{\partial u}{\partial y} \Big|_{y=h} \\ &= \mu \frac{U}{h} + \mu \sum_{n=1}^{\infty} \left(-\frac{2U}{n\pi} \right) (-1)^{n+1} \exp\left(\frac{-vn^2\pi^2}{h^2} t \right) (-1)^n \frac{n\pi}{h} \\ &= \mu \frac{U}{h} \left(1 + 2 \sum_{n=1}^{\infty} \exp\left(\frac{-vn^2\pi^2}{h^2} t \right) \right) \end{split}$$

并有
$$t = 0+, \tau = \infty$$
; $t = \infty, \tau = \mu \frac{U}{h}$

问题 1.2 使两个半径分别为 a_1 及 a_2 的球形肥皂泡合并, 合并后肥皂泡内的气体温度恢复到初始值, 试证明合并后的肥皂泡半径 r 满足:

$$p_0r^3 + 4\sigma r^2 = p_0(a_1^3 + a_2^3) + 4\sigma(a_1^2 + a_2^2)$$

其中 p_0 为环境压强, σ 为空气 -液体表面处的张力系数.

解: 由理想气体方程 $pV = nR_0T$, 球体体积公式 $V = 4/3\pi r^3$ 及液面内外压强差公式 $\Delta p = 2\sigma/r + 2\sigma/r = 4\sigma/r$ (内外两层表面:气液表面 + 液气表面), 两球形肥皂泡合并前后有

$$(p_0 + \Delta p_1)V_1 = n_1 R_0 T$$
, $V_1 = \frac{4}{3}\pi a_1^3$, $\Delta p_1 = \frac{4\sigma}{a_1}$
 $(p_0 + \Delta p_2)V_2 = n_2 R_0 T$, $V_2 = \frac{4}{3}\pi a_2^3$, $\Delta p_2 = \frac{4\sigma}{a_2}$
 $(p_0 + \Delta p)V = nR_0 T$, $V = \frac{4}{3}\pi r^3$, $\Delta p = \frac{4\sigma}{r}$

又由合并前后的物质的量守恒 $n = (n_1 + n_2) \Rightarrow nR_0T = (n_1 + n_2)R_0T$ 得:

$$(p_0 + \frac{4\sigma}{r})\frac{4}{3}\pi r^3 = (p_0 + \frac{4\sigma}{a_1})\frac{4}{3}\pi a_1^3 + (p_0 + \frac{4\sigma}{a_2})\frac{4}{3}\pi a_2^3$$

将上式整理可得

$$p_0r^3 + 4\sigma r^2 = p_0(a_1^3 + a_2^3) + 4\sigma(a_1^2 + a_2^2)$$

问题 1.3 若两小固体漂浮在液面上. 试说明, 当两固体均被液体浸润或当它们均不被浸润时, 表面张力的作用是使相邻两固体相互接近; 当一个是被浸润而另一个不被浸润时, 表面张力是使它们彼此远离.

图 5: 浸润 -浸润

图 6: 不润湿 -不润湿

图 7: 不润湿 -浸润

解: 如图5-7所示, 是本题中所要考虑的三种情况. 当两物块没有接近时, 各自在各个方向上受的到表面张力的水平分量相互平衡, 竖值分量与重力及浮力平衡, 表现为静止. 当两物块靠近时, 表面张力有缩小两物块间液体的表面积, 至使小物块内外两侧出现压力差, 结果表现为相互接近或远离. 下面就这三种情况一一分析:

- 1. **浸润 -浸润**: 如图5中两物块, 当它们靠近时, 它们之间的凹形液面在表面张力的作用下将缩小表面积使其上升, $p < p_0$, 因此两物块相互接近.
- 2. **不润湿 不润湿**: 如图6中两物块, 当它们靠近时, 它们之间的凸形液面在表面张力的作用下将缩小表面积使其下降, $p < p_0$, 因此两物块相互接近.

3. 浸润 -不润湿: 如图7中两物块, 当它们靠近时, 左物块的右侧凸液面及右物块的左 侧凹液面在表面张力的作用下缩小表面积,对于左物块有 $p>p_0$ 受得向左的合 力,同样对于右块可知受到向右的合力,因此它们彼此远离.

第二章 流体运动学

问题 2.1 已知速度分布: u = x - 2y, v = x - y. 求初始时刻过 (a,b) 点的质点所经历的轨迹.

解: 由迹线微分方程:

$$\begin{cases} \frac{dx}{dt} = u = x - 2y\\ \frac{dy}{dt} = v = x - y \end{cases}$$

积分得

$$\begin{cases} y = C_1 \cos(t) + C_2 \sin(t) \\ x = (C_1 + C_2) \cos(t) - (C_1 - C_2) \sin(t) \end{cases}$$

当 t = 0 时, x = a, y = b, 可解得 $C_1 = b$, $C_2 = a - b$. 故初始时刻过 (a,b) 点的质点所经历的轨迹为

$$\begin{cases} y = b\cos(t) + (a - b)\sin(t) \\ x = a\cos(t) + (a - 2b)\sin(t) \end{cases}$$

问题 2.2 已知速度分布: $u = e^{-kt}x$, $v = -e^{-kt}y$. 求流线方程.

解: 由流线微分方程

$$\frac{dx}{u} = \frac{dy}{v} \Longrightarrow \frac{dx}{e^{-kt}x} = \frac{dy}{-e^{-kt}y}$$

积分得流线方程

$$\int \frac{dx}{x} = \int \frac{dy}{-y} \Longrightarrow xy = C$$

其中 C 为常数.

问题 2.3 考虑一个二维流场: u = x(1+2t), v = y, w = 0. 试确定并比较:

- (a) t = 0 时刻, 通过点 (1,1) 的流线;
- (b) t = 0 时刻, 通过点 (1,1) 的质点的迹线;
- (c) 通过点 (1,1) 的质点在 t 时刻所形成的脉线.
- (a) 由流线微分方程:

$$\frac{dx}{u} = \frac{dy}{v} \Longrightarrow \frac{dx}{x(1+2t)} = \frac{dy}{y}$$

积分得流线方程

$$\int \frac{dx}{x(1+2t)} = \int \frac{dy}{y} \Longrightarrow y = Cx^{1/(1+2t)}$$

其中 C 为常数. 初始条件可得 C=1, 故 t=0 时刻, 通过点 (1,1) 的流线为

$$y = x$$

(b) 由迹线微分方程

$$\frac{dx}{dt} = u = x(1+2t), \ \frac{dy}{dt} = v = y$$

积分得

$$x = C_1 e^{t+t^2}, \ y = C_2 e^t$$

由初始条件得 $C_1 = C_2 = 1$, 故 t = 0 时刻, 通过点 (1,1) 的质点的迹线为

$$x = e^{\ln y + (\ln y)^2}$$

(c) 由 (b) 中迹线参数方程

$$x = C_1 e^{t+t^2}, \ y = C_2 e^t$$
 (4)

在 t_0 时刻时位置为 (1,1), 则有

$$C_1 = \frac{1}{e^{t_0 + t_0^2}}, \ C_2 = \frac{1}{e^{t_0}}$$

代入(4)式,得

$$x = \frac{1}{e^{t_0 + t_0^2}} e^{t + t^2}, \ y = \frac{1}{e^{t_0}} e^t$$

清去 t_0 得通过点 (1,1) 的质点在 t 时刻所形成的脉线

$$x = \frac{e^{t+t^2}}{e^{(t-\ln y) + (t-\ln y)^2}} = e^{(1+2t)\ln y - (\ln y)^2}$$

下面给出流线, 迹线, 脉线的定义及流线, 迹线, 脉线的曲线对比图 (如图8, 该图程序见附录A.2). 对比发现, 对于本题, t=0 时刻的迹线同时也是 t=0 时刻的脉线.

- 流线是某一相同时刻在流场中画出的 一条空间曲线,在该时刻,曲线上的 所有质点的速度矢量均与这条曲线相 切.
- **迹线**是单个质点在连续时间过程内的流动轨迹线.
- **脉线**是在某一时间间隔内相继经过空间一固定点的流体质点依次串连起来而成的曲线.

图 8: 流线, 迹线, 脉线的比较

第三章 流体动力学基本方程

下列流体力学方程组 (N-S 方程组) 必须满足什么样的假设条件?

$$\frac{\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i}(\rho u_i) = 0}{1}$$

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = \underbrace{-\frac{1}{\rho} \frac{\partial \rho}{\partial x_i} + \frac{1}{\rho} \frac{\partial \rho}{\partial x_i} \left(\lambda \frac{\partial u_k}{\partial x_k}\right) + \frac{1}{\rho} \frac{\partial}{\partial x_j} \left[\mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right)\right]}_{2} + f_i$$

$$\underbrace{C_v \left(\frac{\partial T}{\partial t} + u_i \frac{\partial T}{\partial x_i}\right)}_{3} = \underbrace{-\frac{\rho}{\rho} \frac{\partial u_i}{\partial x_i} + \frac{1}{\rho} \Phi + \frac{1}{\rho} \frac{\partial}{\partial x_i} \left(k \frac{\partial T}{\partial x_i}\right) + q_0$$

$$\underbrace{\rho = \rho(\rho, T)}_{5}$$

解: 以上四式必须满足以下假设条件:

- 1. 连续介质假设
- 2. 流体本构 -牛顿液体 $\sigma_{ij} = -p\delta_{ij} + \lambda S_{kk}\delta_{ij} + 2\mu S_{ij}$. 且满足斯托克斯做的三个假设:
 - 当流体静止时, 应变速率为零, 流体的应力就是静止压强.
 - 应力张量是应变速率张量的线性函数.
 - 流体是各向同性的.
- 3. 完全气体 (内能仅是温度的函数), 温度变化不大, C_v 为常数.
- 4. 传热本构 -傅里叶定律 $q_i = -k \frac{\partial T}{\partial x_i}$. 传热各向同性.
- 5. 均匀系统.

问题 3.2 推导不可压缩流体流动的柱坐标方程.

解: 分别推导不可压缩流体流动在柱坐标下的连续性方程, 动量方程及能量方程:

连续性方程

不可压缩流体流动连续性方程的一般形式为 $\nabla \cdot \mathbf{v} = 0$, 代入柱坐标:

$$\frac{1}{R}\frac{\partial}{\partial R}(Rv_R) + \frac{1}{R}\frac{\partial v_{\varphi}}{\partial \varphi} + \frac{\partial v_z}{\partial z} = 0$$

因此柱坐标下的连续性方程为

$$\frac{\partial (Rv_R)}{\partial R} + \frac{\partial v_{\varphi}}{\partial \varphi} + R \frac{\partial v_z}{\partial z} = 0$$

动量方程

不可压缩流体流动动量方程的一般形式为

$$\underbrace{\frac{d\mathbf{v}}{dt}}_{1} = \underbrace{-\frac{1}{\rho}\nabla p}_{2} + \underbrace{\mathbf{F}}_{3} + \mu \nabla^{2}\mathbf{v}$$

设柱坐标中的单位矢量为 \mathbf{n}_R , \mathbf{n}_{φ} , \mathbf{n}_z , 现分别求上式中的 4 项在柱坐标下的形式:

1. 在柱坐标 $\mathbf{v} = \mathbf{v}_R + \mathbf{v}_{\varphi} + \mathbf{v}_z = v_R \mathbf{n}_R + v_{\varphi} \mathbf{n}_{\varphi} + v_z \mathbf{n}_z$, 因此第一项有

$$\begin{split} \frac{d\mathbf{v}}{dt} &= \frac{d}{dt} \Big(v_R \mathbf{n}_R + v_{\varphi} \mathbf{n}_{\varphi} + v_z \mathbf{n}_z \Big) \\ &= \frac{dv_R}{dt} \mathbf{n}_R + v_R \frac{d\mathbf{n}_R}{dt} + \frac{dv_{\varphi}}{dt} \mathbf{n}_{\varphi} + v_{\varphi} \frac{d\mathbf{n}_{\varphi}}{dt} + \frac{dv_z}{dt} \mathbf{n}_z + v_z \frac{d\mathbf{n}_z}{dt} \end{split}$$

将上式中各项在柱坐标下展开:

$$v_{R} \frac{d\mathbf{n}_{R}}{dt} = v_{R} \left[\frac{\partial \mathbf{n}_{R}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{n}_{R} \right] \qquad \frac{dv_{R}}{dt} \mathbf{n}_{R} = \left[\frac{\partial v_{R}}{\partial t} + (\mathbf{v} \cdot \nabla) v_{R} \right] \mathbf{n}_{R}$$

$$= v_{R} (\mathbf{v} \cdot \nabla) \mathbf{n}_{R} \qquad = \left[\frac{\partial v_{R}}{\partial t} + v_{R} \frac{\partial v_{R}}{\partial R} + v_{z} \frac{\partial v_{R}}{\partial R} + v_{z} \frac{\partial v_{R}}{\partial z} \right]$$

$$= v_{R} \left[v_{R} \frac{\partial \mathbf{n}_{R}}{\partial R} + \frac{v_{\varphi}}{R} \frac{\partial \mathbf{n}_{R}}{\partial \varphi} + v_{z} \frac{\partial \mathbf{n}_{R}}{\partial z} \right] \qquad + \frac{v_{\varphi}}{R} \frac{\partial v_{R}}{\partial \varphi} + v_{z} \frac{\partial v_{R}}{\partial z} \right] \mathbf{n}_{R}$$

$$= \frac{v_{R} v_{\varphi}}{R} \mathbf{n}_{\varphi}$$

$$v_{\varphi} \frac{d\mathbf{n}_{\varphi}}{dt} = v_{\varphi} \left[\frac{\partial \mathbf{n}_{\varphi}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{n}_{\varphi} \right] \qquad \frac{dv_{\varphi}}{dt} \mathbf{n}_{\varphi} = \left[\frac{\partial v_{\varphi}}{\partial t} + (\mathbf{v} \cdot \nabla) v_{\varphi} \right] \mathbf{n}_{\varphi}$$

$$= v_{\varphi} (\mathbf{v} \cdot \nabla) \mathbf{n}_{\varphi} \qquad = \left[\frac{\partial v_{\varphi}}{\partial t} + v_{R} \frac{\partial v_{\varphi}}{\partial R} + v_{R} \frac{\partial v_{\varphi}}{\partial R} + v_{R} \frac{\partial v_{\varphi}}{\partial R} + v_{R} \frac{\partial v_{\varphi}}{\partial \varphi} \right] \qquad + \frac{v_{\varphi}}{R} \frac{\partial v_{\varphi}}{\partial \varphi} + v_{Z} \frac{\partial v_{\varphi}}{\partial Z} \mathbf{n}_{\varphi}$$

$$= -\frac{v_{\varphi}^{2}}{R} \mathbf{n}_{R}$$

$$v_{z} \frac{d\mathbf{n}_{z}}{dt} = v_{z} \left[\frac{\partial \mathbf{n}_{z}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{n}_{z} \right] \qquad \frac{dv_{z}}{dt} \mathbf{n}_{z} = \left[\frac{\partial v_{z}}{\partial t} + (\mathbf{v} \cdot \nabla) v_{\theta} \right] \mathbf{n}_{z}$$

$$= v_{z} (\mathbf{v} \cdot \nabla) \mathbf{n}_{z} \qquad = \left[\frac{\partial v_{z}}{\partial t} + v_{R} \frac{\partial v_{z}}{\partial R} \right]$$

$$= v_{z} \left[v_{R} \frac{\partial \mathbf{n}_{z}}{\partial R} + \frac{v_{\varphi}}{R} \frac{\partial \mathbf{n}_{z}}{\partial \varphi} + v_{z} \frac{\partial \mathbf{n}_{z}}{\partial z} \right] \qquad + \frac{v_{\varphi}}{R} \frac{\partial v_{z}}{\partial \varphi} + v_{z} \frac{\partial v_{z}}{\partial z} \right] \mathbf{n}_{z}$$

上三式的推导中,用到了 $\partial \mathbf{n}_R/\partial R = \partial \mathbf{n}_\varphi/\partial R = \partial \mathbf{n}_R/\partial z = \partial \mathbf{n}_\varphi/\partial z = 0$, $\partial \mathbf{n}_R/\partial \varphi = \mathbf{n}_\varphi$, $\partial \mathbf{n}_\varphi/\partial \varphi = -\mathbf{n}_R$ 等结论. 最终可以得到

$$\frac{d\mathbf{v}}{dt} = \frac{dv_R}{dt}\mathbf{n}_R + \frac{dv_\varphi}{dt}\mathbf{n}_\varphi + \frac{dv_z}{dt}\mathbf{n}_z + \frac{v_Rv_\varphi}{R}\mathbf{n}_\varphi - \frac{v_\varphi^2}{R}\mathbf{n}_R$$

$$= \left(\frac{\partial v_R}{\partial t} + v_R \frac{\partial v_R}{\partial R} + + \frac{v_\varphi}{R} \frac{\partial v_R}{\partial \varphi} + v_z \frac{\partial v_R}{\partial z} - \frac{v_\varphi^2}{R}\right)\mathbf{n}_R +$$

$$+ \left(\frac{\partial v_\varphi}{\partial t} + v_R \frac{\partial v_\varphi}{\partial R} + \frac{v_\varphi}{R} \frac{\partial v_\varphi}{\partial \varphi} + v_z \frac{\partial v_\varphi}{\partial z} + \frac{v_Rv_\varphi}{R}\right)\mathbf{n}_\varphi +$$

$$+ \left(\frac{\partial v_z}{\partial t} + v_R \frac{\partial v_z}{\partial R} + + \frac{v_\varphi}{R} \frac{\partial v_z}{\partial \varphi} + v_z \frac{\partial v_z}{\partial z}\right)\mathbf{n}_z \tag{5}$$

2. 对于第二项 $-1/\rho\nabla p$ 有

$$-\frac{1}{\rho}\nabla p = -\frac{1}{\rho}\frac{\partial p}{\partial R}\mathbf{n}_{R} - \frac{1}{\rho}\frac{1}{R}\frac{\partial p}{\partial \varphi}\mathbf{n}_{\varphi} - \frac{1}{\rho}\frac{\partial p}{\partial z}\mathbf{n}_{z} \tag{6}$$

3. 对于第三项 F, 可表示成柱坐标三个方向上的分量和

$$\mathbf{F} = \mathbf{F}_R + \mathbf{F}_{\varphi} + \mathbf{F}_z = F_R \mathbf{n}_R + F_{\varphi} \mathbf{n}_{\varphi} + F_z \mathbf{n}_z \tag{7}$$

4. 由 $\nabla^2 \mathbf{v} = \Delta \mathbf{v}$, 可知第四项有

$$\nabla^2 \mathbf{v} = \left(\Delta v_R - \frac{v_R}{R^2} - \frac{2}{R^2} \frac{\partial v_{\varphi}}{\partial \varphi}\right) \mathbf{n}_R + \left(\Delta v_{\varphi} + \frac{2}{R^2} \frac{\partial v_R}{\partial \varphi} - \frac{v_{\varphi}}{R^2}\right) \mathbf{n}_{\varphi} + \Delta v_z \mathbf{n}_z$$

其中
$$\Delta = \frac{\partial}{\partial R^2} + \frac{1}{R^2} \frac{\partial^2}{\partial \sigma^2} + \frac{\partial^2}{\partial z^2} + \frac{1}{R} \frac{\partial}{\partial R}$$

根据式 (1-4), 可写出 \mathbf{n}_R , \mathbf{n}_{φ} , \mathbf{n}_z 各方向上的动量方程

$$\frac{\partial v_R}{\partial t} + v_R \frac{\partial v_R}{\partial R} + \frac{v_\varphi}{R} \frac{\partial v_R}{\partial \varphi} + v_z \frac{\partial v_R}{\partial z} - \frac{v_\varphi^2}{R} = -\frac{1}{\rho} \frac{\partial p}{\partial R} + F_R + \mu \left(\Delta v_R - \frac{v_R}{R^2} - \frac{2}{R^2} \frac{\partial v_\varphi}{\partial \varphi} \right)
\frac{\partial v_\varphi}{\partial t} + v_R \frac{\partial v_\varphi}{\partial R} + \frac{v_\varphi}{R} \frac{\partial v_\varphi}{\partial \varphi} + v_z \frac{\partial v_\varphi}{\partial z} + \frac{v_R v_\varphi}{R} = -\frac{1}{\rho R} \frac{\partial p}{\partial \varphi} + F_\varphi + \mu \left(\Delta v_\varphi - \frac{v_\varphi}{R^2} + \frac{2}{R^2} \frac{\partial v_R}{\partial \varphi} \right)
\frac{\partial v_z}{\partial t} + v_R \frac{\partial v_z}{\partial R} + \frac{v_\varphi}{R} \frac{\partial v_z}{\partial \varphi} + v_z \frac{\partial v_z}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial z} + F_z + \mu \Delta v_z$$

其中
$$\Delta = \frac{\partial}{\partial R^2} + \frac{1}{R^2} \frac{\partial^2}{\partial \varphi^2} + \frac{\partial^2}{\partial z^2} + \frac{1}{R} \frac{\partial}{\partial R}$$

能量方程

能量方程的一般形式如下

$$\frac{\partial e}{\partial t} + \mathbf{v} \cdot \nabla e = \frac{1}{\rho} \nabla \cdot (k \nabla T) + \Phi + \dot{q}$$

其中 Φ 为耗散函数. 各项在柱坐标下有

$$\mathbf{v} \cdot \nabla e = (v_R \mathbf{n}_R + v_{\varphi} \mathbf{n}_{\varphi} + v_z \mathbf{n}_z) \cdot \left(\frac{\partial e}{\partial R} \mathbf{n}_R + \frac{1}{R} \frac{\partial e}{\partial \varphi} \mathbf{n}_{\varphi} + \frac{\partial e}{\partial z}\right) \mathbf{n}_z = v_R \frac{\partial e}{\partial R} + \frac{v_{\varphi}}{R} \frac{\partial e}{\partial \varphi} + v_z \frac{\partial e}{\partial z}$$
$$\frac{1}{\rho} \nabla \cdot (k \nabla T) = \frac{k}{\rho} \Delta T = \frac{k}{\rho} \left(\frac{\partial}{\partial R^2} + \frac{1}{R^2} \frac{\partial^2}{\partial \varphi^2} + \frac{\partial^2}{\partial z^2} + \frac{1}{R} \frac{\partial}{\partial R}\right) T$$

$$\Phi = 2\mu \left[\left(\frac{\partial v_R}{\partial R} \right)^2 + \left(\frac{1}{R} \frac{\partial v_\theta}{\partial \theta} + \frac{v_R}{R} \right)^2 + \left(\frac{\partial v_z}{\partial z} \right)^2 \right] + \\
+ \mu \left[\left(\frac{1}{R} \frac{\partial v_z}{\partial \theta} + \frac{\partial v_\theta}{\partial z} \right)^2 + \left(\frac{\partial v_R}{\partial z} + \frac{\partial v_z}{\partial R} \right)^2 + \left(\frac{1}{R} \frac{\partial v_R}{\partial \theta} + \frac{\partial v_\theta}{\partial R} - \frac{v_\theta}{R} \right)^2 \right]$$
(8)

因此柱坐标下的能量方程为

$$\frac{\partial e}{\partial t} + v_R \frac{\partial e}{\partial R} + \frac{v_{\varphi}}{R} \frac{\partial e}{\partial \varphi} + v_z \frac{\partial e}{\partial z} = \frac{k}{\rho} \left(\frac{\partial T}{\partial R^2} + \frac{1}{R^2} \frac{\partial^2 T}{\partial \varphi^2} + \frac{\partial^2 T}{\partial z^2} + \frac{1}{R} \frac{\partial T}{\partial R} \right) + \Phi + \dot{q}$$

其中 Φ 见式 (8).

问题 3.3 推导不可压缩流体流动的球坐标方程.

解: 分别推导不可压缩流体流动在球坐标下的连续性方程, 动量方程及能量方程:

连续性方程

不可压缩流体流动连续性方程的一般形式为 $\nabla \cdot \mathbf{v} = 0$, 代入球坐标得球坐球下续性方 程为:

$$\frac{1}{R^2}\frac{\partial}{R}(R^2v_R) + \frac{1}{R\sin\theta}\frac{\partial}{\partial\theta}(v_\theta\sin\theta) + \frac{1}{R\sin\theta}\frac{\partial v_\phi}{\partial\phi} = 0$$

动量方程

不可压缩流体流动动量方程的一般形式为

$$\underbrace{\frac{d\mathbf{v}}{dt}}_{1} = \underbrace{-\frac{1}{\rho}\nabla p}_{2} + \underbrace{\mathbf{F}}_{3} + \mu \nabla^{2}\mathbf{v}$$

设球坐标中的单位矢量为 \mathbf{n}_R , \mathbf{n}_{θ} , \mathbf{n}_{φ} , 现分别求上式中的 4 项在球坐标下的形式:

1. 在球坐标下 $\mathbf{v} = \mathbf{v}_R + \mathbf{v}_\theta + \mathbf{v}_\varphi = v_R \mathbf{n}_R + v_\theta \mathbf{n}_\theta + v_\varphi \mathbf{n}_\varphi$, 因此第一项

$$\begin{split} \frac{d\mathbf{v}}{dt} &= \frac{d}{dt} \Big(v_R \mathbf{n}_R + v_\theta \mathbf{n}_\theta + v_\varphi \mathbf{n}_\varphi \Big) \\ &= \frac{dv_R}{dt} \mathbf{n}_R + v_R \frac{d\mathbf{n}_R}{dt} + \frac{dv_\theta}{dt} \mathbf{n}_\theta + v_\theta \frac{d\mathbf{n}_\theta}{dt} + \frac{dv_\varphi}{dt} \mathbf{n}_\varphi + v_\varphi \frac{d\mathbf{n}_\varphi}{dt} \end{split}$$

将上式中的各项在球坐标下展开:

$$\begin{split} v_R \frac{d\mathbf{n}_R}{dt} &= v_R \Big[\frac{\partial \mathbf{n}_R}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{n}_R \Big] &= \frac{dv_R}{dt} \mathbf{n}_R = \Big[\frac{\partial v_R}{\partial t} + (\mathbf{v} \cdot \nabla) v_R \Big] \mathbf{n}_R \\ &= v_R (\mathbf{v} \cdot \nabla) \mathbf{n}_R \\ &= v_R \Big[v_R \frac{\partial \mathbf{n}_R}{\partial R} + \frac{v_\theta}{R} \frac{\partial \mathbf{n}_R}{\partial \theta} + \frac{v_\varphi}{R \sin \theta} \frac{\partial \mathbf{n}_R}{\partial \varphi} \Big] \\ &= \frac{v_R v_\theta}{R} \mathbf{n}_\theta + \frac{v_R v_\varphi}{R} \mathbf{n}_\varphi \\ \end{split} \qquad \begin{aligned} &= \frac{v_R v_\theta}{R} \mathbf{n}_\theta + \frac{v_R v_\varphi}{R} \mathbf{n}_\varphi \\ &= \frac{v_\theta (\mathbf{v} \cdot \nabla) \mathbf{n}_\theta}{R} \\ &= v_\theta \Big[v_R \frac{\partial \mathbf{n}_\theta}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{n}_\theta \Big] \\ &= v_\theta \Big[v_R \frac{\partial \mathbf{n}_\theta}{\partial t} + \frac{v_\theta}{R} \frac{\partial \mathbf{n}_\theta}{\partial \theta} + \frac{v_\varphi}{R \sin \theta} \frac{\partial \mathbf{n}_\theta}{\partial \varphi} \Big] \\ &= -\frac{v_\theta^2}{R} \mathbf{n}_R + \frac{v_\varphi v_\theta \cot \theta}{R} \mathbf{n}_\varphi \\ &= v_\varphi \Big[v_R \frac{\partial \mathbf{n}_\varphi}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{n}_\varphi \Big] \\ &= v_\varphi \Big[v_R \frac{\partial \mathbf{n}_\varphi}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{n}_\varphi \Big] \\ &= v_\varphi \Big[v_R \frac{\partial \mathbf{n}_\varphi}{\partial t} + \frac{v_\theta}{R} \frac{\partial \mathbf{n}_\varphi}{\partial \theta} + \frac{v_\varphi}{R \sin \theta} \frac{\partial \mathbf{n}_\varphi}{\partial \varphi} \Big] \\ &= v_\varphi \Big[v_R \frac{\partial \mathbf{n}_\varphi}{\partial t} + \frac{v_\theta}{R} \frac{\partial \mathbf{n}_\varphi}{\partial \theta} + \frac{v_\varphi}{R \sin \theta} \frac{\partial \mathbf{n}_\varphi}{\partial \varphi} \Big] \\ &= v_\varphi \Big[v_R \frac{\partial \mathbf{n}_\varphi}{\partial t} + \frac{v_\theta}{R} \frac{\partial \mathbf{n}_\varphi}{\partial \theta} + \frac{v_\varphi}{R \sin \theta} \frac{\partial \mathbf{n}_\varphi}{\partial \varphi} \Big] \\ &= v_\varphi \Big[v_R \frac{\partial \mathbf{n}_\varphi}{\partial t} + \frac{v_\theta}{R} \frac{\partial \mathbf{n}_\varphi}{\partial \theta} + \frac{v_\varphi}{R \sin \theta} \frac{\partial \mathbf{n}_\varphi}{\partial \varphi} \Big] \\ &= v_\varphi \Big[v_R \frac{\partial \mathbf{n}_\varphi}{\partial t} + \frac{v_\theta}{R} \frac{\partial \mathbf{n}_\varphi}{\partial \theta} + \frac{v_\varphi}{R \sin \theta} \frac{\partial \mathbf{n}_\varphi}{\partial \varphi} \Big] \\ &= -\frac{v_\varphi^2}{R} \cot \theta \mathbf{n}_\theta - \frac{v_\varphi^2}{R} \mathbf{n}_R \end{aligned} \qquad (20)$$

以上三式的推导中,用到了 $\partial \mathbf{n}_R/\partial \theta = \mathbf{n}_\theta$, $\partial \mathbf{n}_\theta/\partial \theta = -\mathbf{n}_R$, $\partial \mathbf{n}_R/\partial \varphi = \sin \theta \mathbf{n}_\varphi$, $\partial \mathbf{n}_\theta/\partial \varphi = \cos \theta \mathbf{n}_\varphi$, $\partial \mathbf{n}_\varphi/\partial \varphi = -(\cos \theta \mathbf{n}_\theta + \sin \theta \mathbf{n}_R)$ 及 $\partial \mathbf{n}_R/\partial R = \partial \mathbf{n}_\theta/\partial R = \partial \mathbf{n}_\varphi/\partial R = \partial \mathbf{n}_\varphi/\partial \theta = 0$. 最终可以得到

$$\frac{d\mathbf{v}}{dt} = \left(\frac{\partial v_R}{\partial t} + v_R \frac{\partial v_R}{\partial R} + \frac{v_\theta}{R} \frac{\partial v_R}{\partial \theta} + \frac{v_\varphi}{R \sin \theta} \frac{\partial v_R}{\partial \varphi} - \frac{v_\theta^2 - v_\varphi^2}{R}\right) \mathbf{n}_R
+ \left(\frac{\partial v_\theta}{\partial t} + v_R \frac{\partial v_\theta}{\partial R} + \frac{v_\theta}{R} \frac{\partial v_\theta}{\partial \theta} + \frac{v_\varphi}{R \sin \theta} \frac{\partial v_\theta}{\partial \varphi} + \frac{v_R v_\theta - v_\varphi^2 \cot \theta}{R}\right) \mathbf{n}_\theta
+ \left(\frac{\partial v_\varphi}{\partial t} + v_R \frac{\partial v_\varphi}{\partial R} + \frac{v_\theta}{R} \frac{\partial v_\varphi}{\partial \theta} + \frac{v_\varphi}{R \sin \theta} \frac{\partial v_\varphi}{\partial \varphi} + \frac{v_R v_\varphi + v_\varphi v_\theta \cot \theta}{R}\right) \mathbf{n}_\varphi \quad (9)$$

2. 对于第二项中的 $-1/\rho\nabla p$ 有

$$-\frac{1}{\rho}\nabla p = -\frac{1}{\rho}\frac{\partial p}{\partial R}\mathbf{n}_{R} - \frac{1}{\rho}\frac{1}{R}\frac{\partial p}{\partial \theta}\mathbf{n}_{\theta} - \frac{1}{\rho}\frac{1}{R\sin\theta}\frac{\partial p}{\partial \varphi}\mathbf{n}_{\varphi} \tag{10}$$

3. 对于第三项 \mathbf{F} , 则可表示成三个方向上的分量

$$\mathbf{F} = \mathbf{F}_R + \mathbf{F}_\theta + \mathbf{F}_\varphi = F_R \mathbf{n}_R + F_\theta \mathbf{n}_\theta + F_\varphi \mathbf{n}_\varphi \tag{11}$$

4. 由 $\nabla^2 \mathbf{v} = \Delta \mathbf{v}$, 可知第四项可有

$$\nabla^{2}\mathbf{v} = \left(\Delta v_{R} - \frac{2v_{R}}{R} - \frac{2}{R^{2}\sin\theta}\frac{\partial(v_{\theta}\sin\theta)}{\partial\theta} - \frac{2}{R^{2}\sin\theta}\frac{\partial v_{\varphi}}{\partial\varphi}\right)\mathbf{n}_{R} + \left(\Delta v_{\theta} + \frac{2}{R^{2}}\frac{\partial v_{R}}{\partial\theta} - \frac{v_{\theta}}{R^{2}\sin^{2}\theta} - \frac{2\cos\theta}{R^{2}\sin^{2}\theta}\frac{\partial v_{\varphi}}{\partial\varphi}\right)\mathbf{n}_{\theta} + \left(\Delta v_{\varphi} + \frac{2}{R^{2}\sin\theta}\frac{\partial v_{R}}{\partial\varphi} + \frac{2\cos\theta}{R^{2}\sin^{2}\theta}\frac{\partial v_{\theta}}{\partial\varphi} - \frac{v_{\varphi}}{R^{2}\sin^{2}\theta}\right)\mathbf{n}_{\varphi}$$
(12)

其中
$$\Delta = \frac{\partial^2}{\partial R^2} + \frac{2}{R} \frac{\partial}{\partial R} + \frac{\cot \theta}{R^2} \frac{\partial}{\partial \theta} + \frac{1}{R^2} \frac{\partial^2}{\partial \theta^2} + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2}{\partial \varphi^2}$$

根据式 (6-9), 可写出 \mathbf{n}_R , \mathbf{n}_θ , \mathbf{n}_φ 方向的动量方程

$$\begin{split} \frac{\partial v_R}{\partial t} &+ v_R \frac{\partial v_R}{\partial R} + \frac{v_\theta}{R} \frac{\partial v_R}{\partial \theta} + \frac{v_\varphi}{R \sin \theta} \frac{\partial v_R}{\partial \varphi} - \frac{v_\theta^2 - v_\varphi^2}{R} \\ &= -\frac{1}{\rho} \frac{\partial p}{\partial R} + F_R + \mu \left(\Delta v_R - \frac{2v_R}{R} - \frac{2}{R^2 \sin \theta} \frac{\partial (v_\theta \sin \theta)}{\partial \theta} - \frac{2}{R^2 \sin \theta} \frac{\partial v_\varphi}{\partial \varphi} \right) \\ \frac{\partial v_\theta}{\partial t} &+ v_R \frac{\partial v_\theta}{\partial R} + \frac{v_\theta}{R} \frac{\partial v_\theta}{\partial \theta} + \frac{v_\varphi}{R \sin \theta} \frac{\partial v_\theta}{\partial \varphi} + \frac{v_R v_\theta - v_\varphi^2 \cot \theta}{R} \\ &= -\frac{1}{\rho} \frac{1}{R} \frac{\partial p}{\partial \theta} + F_\theta + \mu \left(\Delta v_\theta + \frac{2}{R^2} \frac{\partial v_R}{\partial \theta} - \frac{v_\theta}{R^2 \sin^2 \theta} - \frac{2 \cos \theta}{R^2 \sin^2 \theta} \frac{\partial v_\varphi}{\partial \varphi} \right) \\ \frac{\partial v_\varphi}{\partial t} &+ v_R \frac{\partial v_\varphi}{\partial R} + \frac{v_\theta}{R} \frac{\partial v_\varphi}{\partial \theta} + \frac{v_\varphi}{R \sin \theta} \frac{\partial v_\varphi}{\partial \varphi} + \frac{v_R v_\varphi + v_\varphi v_\theta \cot \theta}{R} \\ &= -\frac{1}{\rho} \frac{1}{R \sin \theta} \frac{\partial p}{\partial \varphi} + F_\varphi + \mu \left(\Delta v_\varphi + \frac{2}{R^2 \sin \theta} \frac{\partial v_R}{\partial \varphi} + \frac{2 \cos \theta}{R^2 \sin^2 \theta} \frac{\partial v_\theta}{\partial \varphi} - \frac{v_\varphi}{R^2 \sin^2 \theta} \right) \\ \cancel{\sharp} + \Delta &= \frac{\partial^2}{\partial R^2} + \frac{2}{R} \frac{\partial}{\partial R} + \frac{\cot \theta}{R^2} \frac{\partial}{\partial \theta} + \frac{1}{R^2} \frac{\partial^2}{\partial \theta^2} + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} \end{split}$$

能量方程

能量方程的一般形式如下

$$\frac{\partial e}{\partial t} + \mathbf{v} \cdot \nabla e = \frac{1}{\rho} \nabla \cdot (k \nabla T) + \Phi + \dot{q}$$

其中 Φ 为耗散函数. 各项在球坐标下有

$$\mathbf{v} \cdot \nabla e = (v_R \mathbf{n}_R + v_{\varphi} \mathbf{n}_{\theta} + v_{\varphi} \mathbf{n}_{\varphi}) \cdot \left(\frac{\partial e}{\partial R} \mathbf{n}_R + \frac{1}{R} \frac{\partial e}{\partial \theta} \mathbf{n}_{\theta} + \frac{1}{R \sin \theta} \frac{\partial e}{\partial \varphi} \mathbf{n}_{\varphi}\right)$$
$$= v_R \frac{\partial e}{\partial R} + \frac{v_{\theta}}{R} \frac{\partial e}{\partial \theta} + \frac{v_{\varphi}}{R \sin \theta} \frac{\partial e}{\partial \varphi}$$

$$\frac{1}{\rho}\nabla \cdot (k\nabla T) = \frac{k}{\rho}\Delta T = \frac{k}{\rho}\left(\frac{\partial^2}{\partial R^2} + \frac{2}{R}\frac{\partial}{\partial R} + \frac{\cot\theta}{R^2}\frac{\partial}{\partial \theta} + \frac{1}{R^2}\frac{\partial^2}{\partial \theta^2} + \frac{1}{R^2\sin^2\theta}\frac{\partial^2}{\partial \phi^2}\right)T$$

$$\Phi = \mu \left\{ 2 \left[\left(\frac{\partial v_R}{\partial R} \right)^2 + \left(\frac{1}{R} \frac{\partial v_\theta}{\partial \theta} + \frac{v_R}{R} \right)^2 + \left(\frac{1}{R \sin \theta} \frac{\partial v_\varphi}{\partial \varphi} + \frac{v_R}{R} + \frac{v_\theta \cot \theta}{R} \right)^2 \right] \right. \\
+ \left[\left[\frac{1}{R \sin \theta} \frac{\partial v_\theta}{\partial \varphi} + \frac{\sin \theta}{R} \frac{\partial}{\partial \theta} \left(\frac{v_\varphi}{\sin \theta} \right) \right]^2 + \left[\frac{1}{R \sin \theta} \frac{\partial v_R}{\partial \varphi} + R \frac{\partial}{\partial R} \left(\frac{v_\varphi}{R} \right) \right]^2 \\
+ \left[\left[R \frac{\partial}{\partial R} \left(\frac{v_\theta}{R} \right) + \frac{1}{R} \frac{\partial v_R}{\partial \theta} \right]^2 \right\} \tag{13}$$

因此球坐标下的能量方程为

$$\frac{\partial e}{\partial t} + v_R \frac{\partial e}{\partial R} + \frac{v_\theta}{R} \frac{\partial e}{\partial \theta} + \frac{v_\varphi}{R \sin \theta} \frac{\partial e}{\partial \varphi} = \frac{k}{\rho} \left(\frac{\partial^2 T}{\partial R^2} + \frac{2}{R} \frac{\partial T}{\partial R} + \frac{\cot \theta}{R^2} \frac{\partial T}{\partial \theta} + \frac{1}{R^2} \frac{\partial^2 T}{\partial \theta^2} \right) + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2 T}{\partial \varphi^2} + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2 T}{\partial \varphi^2} \right) + \Phi + \dot{q} \tag{14}$$

其中 Φ 见式 (13).

第四章 流体静力学

问题 4.1 求一加速运动的容器中盛有的液体自由面与水平面的夹角.

解:均加速运动的液体相对静止,压强除重力场外,水平方向的惯性力也有贡献

$$\nabla p = -\rho \nabla gz - \rho \nabla ax$$
$$= -\rho \nabla (gz + ax)$$
$$= -\nabla (\rho gz + \rho ax)$$

积分得

$$p + \rho gz + \rho ax = \text{const}$$

对于液面, 压强为 p_0 , 因此对于液面上的点 (x,z) 有

$$p_0 + \rho gz + \rho ax = \text{const} \Rightarrow \frac{d(p_0 + \rho gz + \rho ax)}{dx} = 0$$

可解得液面的斜率 dz/dx:

$$\frac{dz}{dx} = -\frac{a}{g}$$

因此, 液体自由面与水平面的夹角为 $\theta = \arctan(a/g)$

问题 4.2 有一自引力球形星,其密度随距中心距离 r 的变化如下:

$$\rho = \rho_0 (1 - \beta r^2)$$

试推导出在中心处压力的表达式, 并证明如果平均密度为表面密度的 2 倍, 则中心处 压力是具有均匀密度且有同样总质量的星球中心处压力的 13/8 倍.

解: 设引力球形星半径为 R, 与该形星球心距离为 r 的一个球形区域内的总质量为 m(r). 则有

$$\frac{dm(r)}{dr} = 4\pi r^2 \rho(r) \tag{15}$$

代入密度函数并积分

$$m(r) = \int_0^r 4\pi r'^2 \rho_0 (1 - \beta r'^2) dr' = 4\pi \rho_0 \int_0^r r'^2 - \beta r'^4 dr' = 4\pi \rho_0 (\frac{1}{3}r^3 - \frac{1}{5}\beta r^5)$$

该形星质量为 $m(R) = 4\pi\rho_0(\frac{1}{3}R^3 - \frac{1}{5}\beta R^5)$. 下面分别来完成题中要求的推导和证明:

• 推导中心处压力的表达式

由流体静力学平衡方程

$$\nabla p = Gm(r)\rho(r)\nabla\frac{1}{r} \Longrightarrow \frac{dp(r)}{dr} = -\frac{Gm(r)}{r^2}\rho_0(1-\beta r^2)$$

其中 G 为引力常数, $Gm(r)/r^2$ 即为距离球心 r 处的重力加速度处的重力加速度. 对上式积分可得

$$\begin{split} p(r) &= \int -\frac{Gm(r)}{r^2} \rho_0 (1 - \beta r^2) dr \\ &= -4G\pi \rho_0^2 \int \left(\frac{1}{3}r - \frac{1}{5}\beta r^3\right) (1 - \beta r^2) dr \\ &= -4G\pi \rho_0^2 \int \frac{1}{5}\beta^2 r^5 + \frac{1}{3}r - \frac{8}{15}\beta r^3 dr \\ &= -4G\pi \rho_0^2 \left(\frac{1}{30}\beta^2 r^6 + \frac{1}{6}r^2 - \frac{2}{15}\beta r^4\right) + C \\ &= -\frac{2G\pi r^2 \rho_0 (\beta^2 r^4 - 4\beta r^2 + 5)}{15} + C \end{split}$$

代入定解条件 p(R) = 0 得

$$-\frac{2G\pi R^2 \rho_0 (\beta^2 R^4 - 4\beta R^2 + 5)}{15} + C \Longrightarrow C = \frac{2G\pi R^2 \rho_0 (\beta^2 R^4 - 4\beta R^2 + 5)}{15}$$

因此可得压强

$$p(r) = 4G\pi\rho_0^2 \left(\frac{2}{15}\beta r^4 - \frac{1}{30}\beta^2 r^6 - \frac{1}{6}r^2\right) + \frac{2G\pi R^2\rho_0(\beta^2 R^4 - 4\beta R^2 + 5)}{15}$$

代入 r=0 可得中心处的压强

$$p(0) = \frac{2G\pi R^2 \rho_0 (\beta^2 R^4 - 4\beta R^2 + 5)}{15} \tag{16}$$

• 证明若平均密度为表面的 2 倍,则中心压力是同质量密度均匀的星球的 13/8 倍 由于该形星平均密度为表面密度的 2 倍, 故有

$$\frac{m(R)}{4/3\pi R^3} = 2\rho(R) \Longrightarrow \frac{4\pi\rho_0(R^3/3 - \beta R^5/5)}{4/3\pi R^3} = 2\rho_0(1 - \beta R^2)$$

解得 $R = \sqrt{5/(7\beta)}$, 代入式 (15) 和 (16) 得

$$m(R) = \frac{80\pi\sqrt{35}\rho_0}{1029\beta^{3/2}}, \quad p(0) = \frac{260G\pi\rho_0^2}{1029\beta}$$

具有均匀密度且有同样总质量的星球 (下称星球 2) 的密度为

$$\rho' = \frac{m(R)}{4/3\pi R^3} = \frac{4}{7}\rho_0$$

与星球 2 球心距离为 r 的一个球形区域内的总质量为 m'(r)

$$m'(r) = \rho' \frac{4}{3}\pi r^3 = \frac{4}{7}\rho_0 \frac{4}{3}\pi r^3 = \frac{16}{21}\rho_0 \pi r^3$$

设具有均匀密度且有同样总质量的星球 r 处的压强为 p'(r), 则有

$$\nabla p'(r) = Gm'(r)\rho'\nabla \frac{1}{r} \Longrightarrow \frac{dp'(r)}{dr} = -\frac{Gm'(r)\rho'}{r^2}$$

积分得

$$p'(r) = \int -\frac{Gm'(r)\rho'}{r^2} dr$$

$$= -G \int \frac{16}{21} \rho_0 \pi r^3 \frac{4}{7} \rho_0 \frac{1}{r^2} dr$$

$$= -G \frac{4^3}{7^3} \pi \rho_0^2 \int r dr$$

$$= -G \frac{32}{147} \pi \rho_0^2 r^2 + C'$$

由
$$p'(R) = 0$$
 代入 $R = \sqrt{5/(7\beta)}$ 得

$$-G\frac{32}{147}\pi\rho_0^2\frac{5}{7\beta} + C' = 0$$

得
$$c' = \frac{160G\pi\rho_0^2}{1029\beta}$$
, 因此

$$p'(0) = C' = \frac{160G\pi\rho_0^2}{1029\beta}$$

比较 p(0) 及 p'(0) 有

$$\frac{p'(0)}{p(0)} = \frac{160G\pi\rho_0^2}{1029\beta} / \frac{260G\pi\rho_0^2}{1029\beta} = \frac{8}{13}$$

因此, 如果平均密度为表面密度的 2 倍, 则中心处压力是具有均匀密度且有同样总质量的星球中心处压力的 13/8 倍.

问题 4.3 如右图所示, L 型等截面管的 A B 和 BC 两段各长为 L, 内充满不可压缩理想流体, 初始时刻 C 端封闭. 某时刻 C端突然打开, 求:

- 1. 此刻管内流体的加速度大小.
- 2. 沿管的压强分布.

思考: 如果竖直管道截面积是水平管道的两倍, 情况又如何变化.

解: 如图中所示, 以 C 为原点, 建立沿 L 型等截面管的自然坐标系 s. 因为 L 型管 AB 段 (或 BC 段) 等截面, 因此液体在 AB 段 (或 BC 段) 任意点的速度和加速度都相等. 即 $\frac{\partial v}{\partial s} = 0$. 故速度势

$$\varphi(s,t) = \begin{cases} v_{AB}(t)s & s \leq L \\ v_{AB}(t)L + v_{BC}(t)(s-L) & s > L \end{cases}$$

对 t=0 时刻的 A,C 及任意一点 s 应用 Bernoulli 方程

$$\frac{\partial \varphi_A}{\partial t} + \frac{1}{2}v_A^2 + \frac{p_A}{\rho} + gz_A = \frac{\partial \varphi_C}{\partial t} + \frac{1}{2}v_C^2 + \frac{p_C}{\rho} + gz_C = \frac{\partial \varphi_s}{\partial t} + \frac{1}{2}v_s^2 + \frac{p_s}{\rho} + gz_s \qquad (17)$$

t=0 时刻的 A,C 及任意一点 s 的速度 $v_A=v_C=v_s=0$. 故上式可化为

$$L\frac{\partial v_A}{\partial t} + L\frac{\partial v_C}{\partial t} + gL = 0$$

$$\begin{cases} s \frac{\partial v_s}{\partial t} + \frac{p_s}{\rho} = \frac{p_C}{\rho} = \frac{p_C}{\rho} = \frac{p_0}{\rho} \\ (s - L) \frac{\partial v_s}{\partial t} + L \frac{\partial v_C}{\partial t} + \frac{p_s}{\rho} + g(s - L) = \frac{p_C}{\rho} = \frac{p_0}{\rho} \quad s > L \end{cases}$$

由于 $dv_A/dt = \partial v_A/\partial t + v_A\partial v_A/\partial s = \partial v_A/\partial t = a_A$. 同理 $\partial v_C/\partial t = a_C$ 因此有

$$L\frac{dv_A}{dt} + L\frac{dv_C}{dt} + gL = 0 \Longrightarrow a_A + a_C = -g$$
 (18)

$$p_{s} = \begin{cases} p_{0} - s\rho a_{C} & s \leq L \\ p_{0} - \rho[(s - L)a_{A} + La_{C} + g(s - L)] & s > L \end{cases}$$
 (19)

下面分别考虑以下两种情况

• 竖直管道截面积 = 水平管道的面积: $a_C = a_A$ 将 $a_C = a_A$ 代入式 (18) 得液体加速度

$$a = a_C = a_A = -\frac{1}{2}g$$

其中负号表示液体加速度与自然坐标系 s 的正方向相反. 将加速度代入式 (19) 得

$$p_s = \begin{cases} p_0 + \frac{1}{2}\rho gs & s \le L \\ p_0 + \frac{1}{2}\rho g(2L - s) & s > L \end{cases}$$

• 竖直管道截面积 = 2 水平管道的面积: $a_C = 2a_A$

将 $a_C = 2a_A$ 代入式 (18) 得液体加速度

$$a_C = -\frac{2}{3}g$$
, $a_A = -\frac{1}{3}g$

其中负号表示液体加速度与自然坐标系s的正方向相反. 将加速度代入式(19)得

$$p_s = \begin{cases} p_0 + \frac{2}{3}\rho gs & s \le L \\ p_0 + \frac{2}{3}\rho g(2L - s) & s > L \end{cases}$$

第五章 无粘流动的一般理论

问题 5.1 一虹吸管放于水桶中, 其位置如右图所示. 如果水桶及虹吸管的截面积分别为 A 和 B, 且 $A \gg B$, 试计算虹吸管的流量. 水看作是理想不可压缩的, 且受重力作用, 运动是定常的.

解:对 A, B 面应用 Bernoulli 方程

$$\frac{1}{2}v_A^2 + \frac{p_A}{\rho} + gz_A = \frac{1}{2}v_B^2 + \frac{p_B}{\rho} + gz_B$$

由质量守恒 $Av_A=Bv_B$ 及 $A\gg B$, 可知 $v_A\to 0$. 又知 $p_A=p_B=p_0$ 及 $z_A-z_B=h$. 因此上式可化为

$$\frac{1}{2}v_B^2 = g(z_A - z_B) = gh \Longrightarrow v_B = \sqrt{2gh}$$

因此,A,B 两液面高度差为 h 时流量为

$$q = Bv_B = B\sqrt{2gh}$$

若考虑到随着水流从 B 口不断流出, A, B 液面差 H(t)(为也 h 区分, 这里使用 H(t), H(0) = h) 将非常缓慢的变小, $v_B(t)$ 也缓慢变化. 有如下关系

$$Av_A = Bv_B \Longrightarrow -A \frac{d(H)}{dt} = Bv_B(t) \Longrightarrow A \frac{dH}{dt} = -B\sqrt{2gH} \Longrightarrow \frac{dH}{\sqrt{H}} = -\frac{B}{A}\sqrt{2g}dt$$

考虑到 h(0) = h 积分得

$$H(t) = \left[\sqrt{h} - \frac{B}{2A}\sqrt{2g}t\right]^2$$

因此,流量是时间的函数

$$q(t) = B\sqrt{2gH(t)} = B\left(\sqrt{2gh} - \frac{B}{A}gt\right)$$

问题 5.2 一水箱底部有一小孔, 射流的截面积为 A(x), 在小孔处 x=0, 截面积为 A_0 . 通过不断注水使水箱中水高 h 保持常数, 水箱的横截面远比小孔的大. 设流体是理想, 不可压缩的, 求射流截面积随 x 的变化规律 A(x).

解: 设水箱的液面为 c, 则对 c, o, 及任意射流面 A(x) 处应用 Bernoulli 方程

$$\frac{1}{2}v_c^2 + \frac{p_c}{\rho} - gx_c = \frac{1}{2}v_o^2 + \frac{p_o}{\rho} - gx_o = \frac{1}{2}v_x^2 + \frac{p_x}{\rho} - gx$$

由于 $v_c=0,\,p_c=p_o=p_x,\,x_c=-h,x_o=0,$ 因此上式可化为

$$gh = \frac{1}{2}v_o^2 = \frac{1}{2}v_x^2 - gx$$

因此可求得任意射流 x 处的射流速度

$$v_x = \sqrt{2g(h+x)}, \quad v_o = \sqrt{2gh}$$

又因为 $A(x)v_x = A_ov_o = A_o\sqrt{2gh}$, 因此可求得射流面积 A(x)

$$A(x) = A_o \sqrt{\frac{h}{h+x}}$$

第六章 无粘不可压缩流体的无旋流动

问题 6.1 已知下列两个速度分布

$$u = \frac{cx}{x^2 + y^2}, \ v = \frac{cy}{x^2 + y^2} \tag{20}$$

$$u = \frac{-cy}{x^2 + y^2}, \ v = \frac{cx}{x^2 + y^2}$$
 (21)

其中 c 为常数. 求:

- 1. 速度势 φ , 流函数 ψ 和复速度势 W, 并画出等势线和流线;
- 2. 围绕坐标原点作一封闭曲线, 求沿此封闭曲线的环量 Γ 及流量 Q.

解:分别对两个速度分布求解(左右栏分别为两个速度分布求解过程)

1. 由速度势函数及流函公式 $\varphi = \int udx + vdy$, $\psi = \int -vdx + udy$. 代入速度分布可求得速度势函数, 流函及复速度势

$$\varphi = c \int \frac{xdx + ydy}{x^2 + y^2}$$

$$= \frac{c}{2} \ln(x^2 + y^2) + C_1$$

$$\psi = c \int \frac{-ydx + xdy}{x^2 + y^2}$$

$$= c \arctan \frac{y}{x} + C_1$$

$$\psi = c \int \frac{-xdx - ydy}{x^2 + y^2}$$

$$= c \arctan \frac{y}{x} + C_2$$

$$\psi = c \int \frac{-xdx - ydy}{x^2 + y^2}$$

$$= -\frac{c}{2} \ln(x^2 + y^2) + C_2$$

$$W = c \left[\ln \sqrt{x^2 + y^2} + i \arctan \frac{y}{x} \right]$$

$$= c(\ln r + i\theta)$$

$$W = c \left[\arctan \frac{y}{x} - i \ln \sqrt{x^2 + y^2} \right]$$

$$= c(\theta - i \ln r)$$

式 (20) 和式 (21) 对应的的等势线和流线分别如图9和10所示, 程序见附录A.3.

2. 沿封闭曲线的环量和流量

$$\Gamma = \oint_{c} u dx + v dy = \oint \frac{\partial \varphi}{\partial x} dx + \frac{\partial \varphi}{\partial y} dy = \oint d\varphi$$

$$Q = \oint_{c} u dy - v dx = \oint \frac{\partial \psi}{\partial y} dy + \frac{\partial \psi}{\partial x} dx = \oint d\varphi$$

代入速度分布得

$$\Gamma = \oint d\varphi = c \ln r \Big|_{-}^{+} = 0$$

$$Q = \oint d\psi = c\theta \Big|_{-}^{+} = 2c\pi$$

$$Q = \oint d\psi = c \ln r \Big|_{-}^{+} = 0$$

$$Q = \oint d\psi = -c \ln r \Big|_{-}^{+} = 0$$

0 x

图 9: 式 (1) 对应的等势线和流线

图 10: 式 (2) 对应的等势线和流线

问题 6.2 理想, 不可压缩, 定常流动, 在极坐标中势函数为

$$\varphi = r^{1/2} \cos \frac{\theta}{2}$$

求速度分量与流函数,并分析流函数图案.

 \mathbf{m} : 设速度在径向和法向的分量分别为 v_r, v_θ , 则有

$$v_r = \frac{\partial \varphi}{\partial r} = \frac{1}{2\sqrt{r}} \cos \frac{\theta}{2},$$

$$v_r = \frac{\partial \varphi}{\partial r} = \frac{1}{2\sqrt{r}}\cos\frac{\theta}{2}, \qquad v_\theta = \frac{1}{r}\frac{\partial \varphi}{\partial \theta} = -\frac{1}{2\sqrt{r}}\sin\frac{\theta}{2}$$

又由 $v_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}, v_\theta = -\frac{\partial \psi}{\partial r}$ 得

$$\frac{1}{r}\frac{\partial \psi}{\partial \theta} = \frac{1}{2\sqrt{r}}\cos\frac{\theta}{2}, \quad -\frac{\partial \psi}{\partial r} = -\frac{1}{2\sqrt{r}}\sin\frac{\theta}{2}$$

因此有

$$\psi = r^{1/2} \sin \frac{\theta}{2}$$

对于流线和流函数图案,可令

$$\varphi = r^{1/2} \cos \frac{\theta}{2} = K_1, \quad \psi = r^{1/2} \sin \frac{\theta}{2} = K_2$$

其中 K_1 , K_2 为常数,则可得到一组流线和流函数图案,如图11所示,程序见附录A.3. 从图上可知, 流线与流函数线是始终垂直 的, 因此已知流线, 流函数即可确定.

图 11: 流线, 流函数图案

问题 6.3 已知在原点处有一强度为 O 的源和强度为 Γ 的点涡, 求它们共同诱导的复 速度势 W, 并绘出示意图.

 \mathbf{M} : 原点处有一强度为 \mathbf{Q} 的源和强度为 $\mathbf{\Gamma}$ 的点涡可分别表示为

$$W(z)_Q = \frac{Q}{2\pi} \ln z$$
, $W(z)_\Gamma = \frac{\Gamma}{2\pi i} \ln z$

共同诱导的复速度势 W 可由点源和点涡的复速度势线性叠加

$$W(z) = W(z)_Q + W(z)_\Gamma = \frac{Q}{2\pi} \ln z + \frac{\Gamma}{2\pi i} \ln z$$
$$= \frac{\ln z}{2\pi} [Q - i\Gamma] = \frac{1}{2\pi} [Q - i\Gamma] (\ln r + i\theta)$$
$$= \frac{1}{2\pi} [Q \ln r + \Gamma \theta] + \frac{i}{2\pi} [Q\theta - \Gamma \ln r]$$

因此势函数和流函数分别为

$$\varphi = \frac{1}{2\pi} \Big[Q \ln r + \Gamma \theta \Big]$$

$$\psi = \frac{1}{2\pi} \Big[Q\theta - \Gamma \ln r \Big]$$

$$\varphi = K_1$$
 及 $\psi = K_2$,即

$$Q\ln r + \Gamma\theta = K_1'$$

$$Q\theta - \Gamma \ln r = K_2'$$

可得势函数和流函数等值线, 如图12所示 (这里假设 Q > 0, $\Gamma > 0$), 程序见附录A.3.

图 12: 流线, 流函数图案

问题 6.4 已知沿地面有一均匀来流,流经 半径为 R 的半圆柱形暖棚, 求其所受到 的拔力.(设流动为理想不可压缩无旋流动, 暖棚内气压与无穷远处相等)

解:该问题可看作无环量圆住绕流问题的上半平面,故其复速度势为

$$W(z) = v_{\infty} \left(z + \frac{R^2}{z}\right)$$

对应的势函数和流函数分别为

$$\varphi = v_{\infty} \left(r + \frac{R^2}{r}\right) \cos \theta, \quad \psi = v_{\infty} \left(r + \frac{R^2}{r}\right) \sin \theta$$

因此速度在 r 和 θ 上的速度分量分别为

$$v_r = \frac{\partial \varphi}{\partial r} = v_\infty (1 - \frac{R^2}{r^2}) \cos \theta, \quad v_\theta = \frac{1}{r} \frac{\partial \varphi}{\partial \theta} = -v_\infty (1 + \frac{R^2}{r^2}) \sin \theta$$

半圆柱形暖棚表面有 $v_r = 0$, $v_\theta = -2v_\infty \sin \theta$, 因此对半圆柱形暖棚表面和无穷远处应用伯努力方程

$$\frac{v_{\infty}^2}{2} + \frac{p_{\infty}}{\rho} = \frac{v_{\theta}^2}{2} + \frac{p_{\theta}}{\rho} \implies p_{\theta} = p_{\infty} + \frac{\rho}{2}v_{\infty}^2(1 - 4\sin^2\theta)$$

因此拔力为

$$\begin{split} F_Y &= \int_0^\pi (p_\infty - p_\theta) \cdot R \sin\theta d\theta \\ &= \frac{1}{2} \rho R v_\infty^2 \int_0^\pi (4 \sin^2 \theta - 1) \sin\theta d\theta \\ &= \frac{1}{2} \rho R v_\infty^2 \int_0^\pi (4 \cos^2 \theta - 3) d(\cos \theta) \\ &= \frac{1}{2} \rho R v_\infty^2 \left[\frac{4}{3} \cos^3 \theta - 3 \cos \theta \right]_0^\pi \\ &= \frac{5}{3} \rho R v_\infty^2 \end{split}$$

问题 6.5 直角域内 z_0 点存在强度为 Γ 的点涡, 求其复速度势.

解: 利用镜像法, 分别以实轴虑轴为边界, 在 z_0 的对称点引入相应的点涡, 如图13所示. 则有

$$W(z) = +\frac{\Gamma}{2\pi i} \ln(z - z_0) - \frac{\Gamma}{2\pi i} \ln(z - \overline{z_0})$$

$$-\frac{\Gamma}{2\pi i} \ln(z + \overline{z_0}) + \frac{\Gamma}{2\pi i} \ln(z + z_0)$$

$$= \frac{\Gamma}{2\pi i} \ln\left[\frac{z^2 - z_0^2}{z^2 - \overline{z_0}^2}\right]$$

$$-\overline{z_0} \circ$$

图 13: 点涡的镜像

问题 **6.6** Z 平面内, 有张角为 α 的角域, $z_0 = ae^{i\frac{\alpha}{2}}$ 处有强度为 Q 的点源, 求复速度势.

解: 利用倒解变化将该问题变换为上半平面, 图14为保角变换坐标轴示意图, 图15为变换前后对应点的关系.

图 14: 保角变换示意图

$$\begin{array}{c|cccc} & z & \alpha_i & a_i \\ \hline A & 1 & \pi & 1 \\ B & \infty e^{i\alpha} & \pi & -\infty \\ C & \infty & \pi & \infty \\ O & 0 & \alpha & 0 \\ \hline \end{array}$$

图 15: 变换前后对应点的关系

由 Schwarz-christoffel 变换

$$\frac{dz}{d\zeta} = K\Pi_{i=1}^{N} (\zeta - a_i)^{\beta_i}, \quad \beta_i = \frac{\alpha_i}{\pi} - 1$$
$$= K\zeta^{\alpha/\pi - 1}$$

积分可得 $z=K\zeta^{\alpha/\pi}$ 或 $\zeta=(z/K)^{\pi/\alpha},$ 由 A,B,C,O 可得 K=1, 代入 Q 点

$$\zeta_0 = z_0^{\pi/\alpha} = a^{\pi/\alpha} e^{i\pi/2} = ia^{\pi/\alpha}$$

又由镜像法可得 $\xi - \eta$ 平面上的复速度势

$$W(\zeta) = \frac{Q}{2\pi} \ln(\zeta - \zeta_0) + \frac{Q}{2\pi} \ln(\zeta - \overline{\zeta_0})$$

因此 z 平面上的复速度势

$$W(z) = \frac{Q}{2\pi} \ln(z^{\pi/\alpha} - ia^{\pi/\alpha}) + \frac{Q}{2\pi} \ln(z^{\pi/\alpha} + ia^{\pi/\alpha})$$
$$= \frac{Q}{2\pi} \ln(z^{2\pi/\alpha} + a^{2\pi/\alpha})$$

问题 6.7 Z 平面上, 宽 a 的无限长狭缝, 对称中心存在强度为 Q 的点源, 求复速度势.

解:图16为保角变换坐标轴示意图,图17为变换前后对应点的关系.

图 16: 保角变换示意图

图 17: 变换前后对应点的关系

如图16所示,将无穷带域的右半部分用 Schwarz-christoffel 变换为上半平面

$$\frac{dz}{d\zeta} = K\Pi_{i=1}^{N} (\zeta - a_i)^{\beta_i}, \quad \beta_i = \frac{\alpha_i}{\pi} - 1$$
$$= K(\zeta + 1)^{-1/2} (\zeta - 1)^{-1/2}$$
$$= K(\zeta^2 - 1)^{-1/2}$$

积分可得 $z = K \cosh^{-1} \zeta$ 或 $\zeta = \cosh \frac{z}{K}$, 由 A, B, C, D 得 $K = a/\pi$, 代入 Q 点

$$\zeta_0 = \cosh \frac{\pi}{a} \frac{ia}{2} = 0$$

又由镜像法可得 $\xi - \eta$ 平面上的复速度势

$$W(\zeta) = \frac{Q/2}{2\pi} \ln(\zeta - \zeta_0) + \frac{Q/2}{2\pi} \ln(\zeta - \overline{\zeta_0}) = \frac{Q}{2\pi} \ln(\zeta)$$

因此 z 平面上的复速度势

$$W(z) = \frac{Q}{2\pi} \ln(\cosh \frac{\pi z}{a})$$
 (22)

问题 6.8 在复平面上推导由两个极其靠近的反向点涡构成的偶极子的复速度势.

解:如图18平面上两个反向点涡,其的复速度势可由各自的速度势叠加,即

$$W(z) = \frac{\Gamma}{2\pi i} \ln(z - a) + \frac{-\Gamma}{2\pi i} \ln(z + a) = -\frac{2a\Gamma}{2\pi i} \frac{\ln(z - a) - \ln(z + a)}{(z - a) - (z + a)}$$

两个点涡构成的偶极子, 则 $a \rightarrow 0$, 因此上式有

$$\lim_{a \to 0} W(z) = -\frac{2a\Gamma}{2\pi i} \lim_{a \to 0} \frac{\ln(z-a) - \ln(z+a)}{(z-a) - (z+a)} = -\frac{a\Gamma}{\pi i} \frac{1}{z}$$
$$= -\frac{a\Gamma}{\pi i} (\cos \theta - i \sin \theta) = \frac{a\Gamma}{\pi r} \sin \theta + i \frac{a\Gamma}{\pi r} \cos \theta$$

由此可以作出势函数和流函数等值线,如图19所示,程序见附录A.3.

图 18: 两个点涡构成的偶极子示意图

图 19: 势函数和流函数等值线

问题 6.9 设一蒙古包是一半径为 a 的半圆球形, 受到速度为 V_{∞} 的大风袭击, 屋顶承受一向上的升力, 有掀翻蒙古包的危险. 假设蒙古包内的压强为流体的驻点压强, 求蒙古包受到的拔力.(假设流动为理想不可压缩无旋流)

解: 建立如图20所示的极坐标系. 由轴对称 无旋流动的圆球绕流结论知, 速度势为

$$\varphi = v_{\infty} r \left(1 + \frac{a^3}{2r^3} \right) \cos \theta$$

因此有

$$v_r = \frac{\partial \varphi}{\partial r} = v_\infty \left(1 - \frac{a^3}{r^3} \right) \cos \theta$$

$$v_{\theta} = \frac{\partial \varphi}{r \partial \theta} = -v_{\infty} r \left(1 + \frac{a^3}{2r^3} \right) \sin \theta$$

对于蒙古包表面有 r = a, 因此蒙古包表面

$$u_r = 0$$
, $u_\theta = -\frac{3}{2}v_\infty \sin \theta$

图 20: 蒙古包的极坐标系示意图

又由伯努力方程

$$\frac{v_{\infty}^2}{2} + \frac{p_{\infty}}{\rho} = \frac{v_{\theta}^2}{2} + \frac{p_{\theta}}{\rho} \Longrightarrow p_{\theta} = p_{\infty} + \frac{\rho}{2}v_{\infty}^2 \left(1 - \frac{9}{4}\sin^2\theta\right)$$

驻点压强为 $p_{\infty} + \rho v_{\infty}^2/2$. 因此作用在蒙古包内外压强差

$$p = p_{\infty} + \frac{\rho}{2}v_{\infty}^2 - p_{\theta} = \frac{9}{8}\rho v_{\infty}^2 \sin^2 \theta$$

设蒙古包曲面为 S, 则半球面 (蒙古包) 上的面积元 $dS = a^2 \sin \theta d\theta d\varphi$. 因此蒙古包受到的拔力为

$$F_z = \iint p \sin \theta \sin \varphi dS$$

$$= \frac{9}{8} a^2 \rho v_{\infty}^2 \int_0^{\pi} \sin \varphi d\varphi \int_0^{\pi} \sin^4 \theta d\theta$$

$$= \frac{27}{32} \pi a^2 \rho v_{\infty}^2$$

附录

程序

问题 1.1 程序: ShearExperiment.m $\mathbf{A.1}$

```
1 function [F, V] = ShearExperiment(H,U)
3 %SHEAREXPERIMENT Simulation of shear experiment for Elements of Fluid
                  Mechanics homework.
  % For problem 1.1 figure 3 and figure 4
{
m s} % The simple shear experiment the fluid is confined between two large
9 % parallel plates of area A, in order to ignore edge effects, separated
10 % by a distance H. At a certain time, a force, F, is exerted on the
_{11} % upper plate so that it moves relative to the other with a constant
12 % velocity, V. This function produces two figure by simulate the shear
    experiment process. The first figure is about F and time, and anthor
  % is about velocity(function of y) and y.
15 %
 % /\\ _____/___
    ____|__dh
          | /
  %
    ΗI
20
              1 /
     \|/ _____|/__
25 % $Author: Zhou Lvwen, zhou.lv.wen@gmail.com$
26 % $Date: 09/15/2011$
27
28 if nargin == 0
     H = 0.05;
                         % distance between parallel plates (m)
30
      U = 1;
                         % velocity of the upper plate (m/s)
31 end
33 n = 100;
                         % number of layers
34 dh = H/n;
                         % hight of one layer
35 A = 1;
                        % area of each layer (m^2)
                         % density of wather (kg/m<sup>3</sup>)
_{36} rho = 1000;
37 m = rho * (A * dh); % mass of one layer
v(n) = U;
                         % initialize velocity of each layer
39 dt = 0.02;
                        % simulation time step (s)
u = 17500e-7;
                   % viscosity of water (kg/(ms))
_{42} F = []; V = [];
43 t = 0:dt:1000;
                        \% time from 0s to 1000s
44 for i = t
      f = mu*diff(v)/dh*A; % viscosity force between each layer
      a = diff(f)/m; % acceleration of each layer
     v(2:end-1) = v(2:end-1) + a*dt; % update the velocity
      F = [F; f(end)]; % trace the force
      if sum(i == [50, 100, 200, 500, 1000]);
```

```
V = [V;v]; % trace the velocity
       end
51
52 end
54 % show the results
55 subplot (1,2,1)
56 plot(t,F,'k',[-2,1000],[min(F),min(F)],'b:','linewidth',2)
57 axis([-2,1000,-0.005,0.5])
58 set(gca,'ytick',[min(F),0.1:0.1:0.5])
s9 xlabel('Time(s)');ylabel('Force(N)')
61 subplot (1,2,2)
62 linestyle = {'k.', 'k:', 'k-.', 'k--', 'k-'};
63 for i = 1:size(V,1)
       plot([1:n]*dh,V(i,:),linestyle{i},'linewidth',2); hold on
65 end
66 legend('t=50s','t=100s','t=200s','t=500s','t=1000s',0)
67 xlabel('H(m)'); ylabel('Velocity(m/s)')
```

问题 2.3 程序: StreamPathStreak.m A.2

```
STREAMPATHSTREAK Plot stream line, path line and streak line for
2 %
                       Elements of Fluid Mechanics homework.
3 %
4 % For problem 2.3 figure 8: u = x(1+2t), v = y, w = 0
6 % $Author: Zhou Lvwen, zhou.lv.wen@gmail.com$
  % $Date: 10/10/2011$
y = 0.01:0.02:4;
10 Xstream = inline('y');
11 Xstreak = inline('exp((1+2*t)*log(y)+log(y).^2)','t','y');
13 % stream line
14 xstream = Xstream(y);
plot(xstream, y,'k-','linewidth',2)
16 hold on
17
18 % Path Line / Streak Line(t = 0)
19 xpath = Xstreak(0,y);
20 plot(xpath, y,'k--','linewidth',2)
21
22 % Streak Line(t = 0.5)
23 xstreak2 = Xstreak(0.5,y);
plot(xstreak2,y,'k-.','linewidth',2)
25
_{26} % Streak Line(t = 1.0)
27 xstreak3 = Xstreak(1,y);
28 plot(xstreak3,y,'k: ','linewidth',2)
30 legend('Stream Line','Path Line / Streak Line(t = 0)',...
         'Streak Line(t = 0.5)', 'Streak Line(t = 1)', 2)
32 axis image; grid on
33 axis([0,5,0,3.7])
34 set(gca,'xtick',0:5,'ytick',0:3)
```

```
35 xlabel('x','fontsize',13)
36 ylabel('y','fontsize',13)
```

A.3 问题 6.* 程序: cPotentStream.m

```
function cPotentStream(plotype)
2
3 % CPOTENTSTREAM plot contour lines of potential and streamfunction
                    for Elements of Fluid Mechanics homework.
     plotSimplyFluid('vortex');
6
  %
                                                % for problem 6.1 fig.09
     plotSimplyFluid('source');
  %
                                                % for problem 6.1 fig.10
     plotSimplyFluid('semi-infinite plate'); % for problem 6.2 fig.11
      plotSimplyFluid('source & vortex');
                                                % for problem 6.3 fig.12
      plotSimplyFluid('doublet');
  %
                                                % for problem 6.8 fig.19
10
  %
11
  %
      $Author: Zhou Lvwen, zhou.lv.wen@gmail.com$
13 %
      $Date: 10/25/2011$
  %
14
15
  if nargin==0; plotype = 'doublet'; end
16
17
  switch plotype
18
       case 'vortex'
19
           [x,y,z,c]=simplyfluid('vortex', 100, 0,0);
           [C1,h1]=contour(x,y,z,[-40:4:40],'b');
21
           hold on
22
           [C2,h2] = contour(x,y,c,[-45:5:45],'r');
23
       case 'source'
           [x,y,z,c]=simplyfluid('source', 100, 0,0);
25
           [C1,h1] = contour(x,y,z,[-45:5:45],'b');
26
27
           hold on
           [C2,h2] = contour(x,y,c,[-40:4:40],'r');
28
       case 'semi-infinite plate'
29
           [x,y,z,c]=simplyfluid('semi-infinite plate', 100, 0,0);
30
           [C1,h1] = contour(x,y,z,[0:16:800],'b');
           hold on
32
           [C2,h2] = contour(x,y,c,[-400:16:400],'r');
33
       case 'source & vortex
34
           [x,y,z1,c1] = simplyfluid('vortex', 100, 0,0);
           [x,y,z2,c2]=simplyfluid('source', 100, 0,0);
36
           [C1,h1] = contour(x,y,z1+z2,20,'b');
37
           hold on
38
           [C1,h2] = contour(x,y,c1+c2,20,'r');
       case 'doublet'
40
           level = [-500 -200 -100 -50 -30 -20:5:-5];
41
           level = [-level,0,level];
42
           [x,y,z,c]=simplyfluid('doublet', 100, 0,0);
           [C1,h1]=contour(x,y,z,level,'b');
44
           hold on
45
           [C1,h2] = contour(x,y,c,level,'r');
46
   end
47
48
49 h=legend([h2,h1],'$\varphi = K_1$','$\psi = K_2$');
50 set(h,'Interpreter','latex','fontsize',13)
```

```
s1 xlabel('x'); ylabel('y'); axis image;
52
                        _____
55 function [x,y,streamfun,potentfun]=simplyfluid(ftype,strense,x0,y0)
57 % reference: http://ilovematlab.cn/thread-11431-1-1.html
58 %
59 nx=200; ny=200;
60 xmin=-5; xmax=5;
91 \text{ ymin=-5; ymax=5;}
62 [x,y]=meshgrid(linspace(xmin,xmax,nx),linspace(ymin,ymax,ny));
63 radius=inline('sqrt((x-x0).^2+(y-y0).^2)','x','y','x0','y0');
64 r=radius(x,y,x0,y0);
theta=atan2(y-y0,x-x0);
66 switch ftype
      case 'uniform'
67
68
          streamfun = strense * y;
          potentfun =-strense * x;
      case 'source'
          streamfun = strense * theta /(2*pi);
71
          potentfun = strense * log(r)/(2*pi);
72
      case 'vortex'
74
          streamfun =-strense * log(r)/(2*pi);
          potentfun = strense * theta /(2*pi);
75
      case 'doublet'
         streamfun =-strense * sin(theta)./r;
         potentfun =-strense * cos(theta)./r;
78
79
      case 'semi-infinite plate'
          streamfun = strense * sqrt(r).*cos(theta/2);
80
          potentfun = strense * sqrt(r).*sin(theta/2);
81
82 end
```

试题 B

流体力学导论 2011 年期末试题1

一. 概念题

1. 小球在黏性流体中沿 x 方向平动, 球表面应力矢量分别为

$$T_x = \frac{x}{a}p_0 - \frac{3}{2}\mu \frac{U}{a}, \quad T_y = \frac{y}{a}p_0, \quad T_z = \frac{z}{a}p_0$$

其中 a 为小球半径, U 为运动速度, p_0 是远场压强. 求小球受到的阻力.

- 2. 已知某流动的速度分布为 $\vec{v} = f(r)^{\frac{\vec{r}}{r}}$. 试问若流动不可压缩, 则 f(r) 应取何种形
- 3. 平面二维流动 $|\vec{v}| = \sqrt{2y^2 + x^2 + 2xy}$, 流线簇方程为 $y^2 + 2xy = C$. 试找到速度 分量的表达式.
- 4. 若流动为下列动量式, 试问需要满足哪些假设

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \frac{\mu}{\rho} \frac{\partial}{\partial x_i} \frac{\partial u_i}{\partial x_j}$$

- 5. 什么条件下存在速度势函数 φ ? 什么条件下 $\nabla^2 \varphi = 0$?
- 6. 在对倾角为 α 的斜面刷油漆时,油漆会从高处流向低处,若把油漆看作平面二维流 动, 请建立物理模型, 给出定解条件.

二. 计算题

- 1. 已知一圆柱容器中装有 3/4 容积的水, 容器内径为 10cm, 深 20cm. 把容器放在旋 转圆盘上, 使其转动, 问使水不溢出的最大转速.
- 2. 不可压缩平面流动, 在复平面 z 内, 有一张角为 $\pi/3$ 的角域, 在 $z_0 = e^{i\pi/12}$ 处有 一强度为 Γ 的点涡, 在角点处有一点源, 其流量为 Q. 求角域内的速度势函数.
- 3. 已知有一平行于地面的均匀来流 v_{∞} , 垂直流经半径为 R 的半圆柱形暖棚, 设流动 为理想不可压.
 - (a) 求暖棚处流动的势函数和暖棚外表面压强分布
 - (b) 当暖棚顶部开有小窗时, 求单位长度的暖棚受到的合力.

¹说明: 本试题是本人考试后立刻回忆出来的, 供后届同学参考.

流体力学导论 2013 年期末试题2

一. 概念题

1. 一些微小玻璃颗粒漂浮在盛有某溶液的玻璃杯中, 求其分布情况.

2.
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{\partial}{\partial x_i} \left(\mu \frac{\partial u}{\partial x_i} \right)$$
, 求其假设条件.

- 3. u = u(x,z), w = w(y,z) (具体函数形式记不清了), 三维不可压缩流动, 求:
 - 速度 v:
 - 是否有旋:
 - 求加速度 ax.
- 4. 涂有油的方形木板在涂有水的斜坡上滑动, 建立模型, 给出定解条件.

一. 计算题

- 1. 半圆柱 r=10cm, h=20cm, 装有 3/4 的水, 以角速度 ω 转动, 求不使水溢出 的最大角速度.
- 2. $\pi/4$ 角域在 $z_0 = 2e^{i\pi/12}$ 处有一强度为 Q 的点源, 求其速度势函数.
- 3. 理想不可压缩无旋定常有环量圆柱绕流, V_{∞} , r=a, $\Gamma=\frac{\pi a V_{\infty}}{2}$
 - 其速度势函数, 圆柱表面的速度分布和压强系数 C_n .
 - 在圆柱上安装皮托管,一端测总压,一端测静压,求开口位置在何处.

²说明: 本试题由师弟沈文豪考试后立刻回忆出来的, 由于沈文豪的个人要求, 本试题仅供后届师妹参 考, 师弟请跳过本页.