

IST367- İSTATİSTİKSEL YÖNTEMLER II DÖNEM ÖDEVİ

Hazırlayan: Hande Nur BANUŞ 2210329067

SORU 1: TEK YÖNLÜ ANOVA

TEK	TEK YÖNLÜ ANOVA						
Α	В	С	D				
18,00	47,00	24,00	55,00				
29,00	50,00	35,00	49,00				
20,00	29,00	20,00	35,00				
15,00	24,00	31,00	25,00				
29,00	20,00	35,00	42,00				
27,00	39,00	15,00	37,00				

ÇÖZÜM:

1.1-Tek Yönlü ANOVA Veri Girişi

```
a<-c(18,29,20,15,29,27)
b<-c(47,50,29,24,20,39)
c<-c(24,35,20,31,35,15)
d<-c(55,49,35,25,42,37)
veri1<-c(rep("A",6),rep("B",6),rep("C",6),rep("D",6))
veri2<-c(a,b,c,d)
anova1<-data.frame(veri2,veri1)</pre>
```

1.2-Normallik Testi

 H_0 : Verilerin dağılımı ile normal dağılım arasında fark yoktur. H_S : Verilerin dağılımı ile normal dağılım arasında fark vardır.

Her bir veri1 deki değerlerin her bir p değeri (p_1 =0.2189, p_2 =0.5395, p_3 =0.4104, p_4 =0.9788), α =0.05 anlamlılık değerinden büyük olduğu için H_0 reddedilemez. Bu durumda %5 anlamlılık düzeyinde normallik varsayımını sağladığı söylenebilir.

1.3- Varyansların Homojenliği Testi

```
Ho: \sigma_{12} = \sigma_{22} = \sigma_{32} = \sigma_{42}
```

 H_S : En az bir σ_j^2 diğerlerinden farklıdır (j = 1,2,3,4).

bartlett.test(veri2~veri1,data=anova1)

```
Bartlett test of homogeneity of variances

data: veri2 by veri1

Bartlett's K-squared = 2.4302, df = 3, p-value = 0.488
```

Veya

```
install.packages("car")
library(car)
anova1$veri1 <- as.factor(anova1$veri1)
leveneTest(veri2~veri1,data = anova1, center=mean)</pre>
```

Levene testinin p değeri (p=0.2061), α =0.05 anlamlılık düzeyinden büyük olduğu için H_0 reddedilemez. Buna göre %5 anlamlılık düzeyinde grup varyanslarının homojenliği varsayımını sağladığı söylenebilir.

1.4- Varyans Analizi ve Çoklu Karşılaştırma

```
H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4
H_S: En az bir \mu_i diğerlerinden farklıdır (j = 1,2,3,4).
```

```
anova<-aov(veri2~veri1,data=anova1)
summary(anova)</pre>
```

Varyans analizi sonuçlarına göre H_0 reddedilir (p değeri = 0.0217< α = 0.05). En az bir μ_j değerinin %5 anlamlılık düzeyinde diğerlerinden farklı olduğu söylenebilir.

```
pairwise.t.test(veri2,veri1,p.adjust="bonferroni")
```

Veya Tukey testi yapabiliriz:

Post-Hoc Testleri:

```
TukeyHSD(anova,conf.level=0.95)
```

Bu kod, Tukey testi kullanarak veri1 faktörünün seviyeleri arasındaki ortalama farkları hesaplar.

• "B-A" arasındaki ortalama fark 11.83'tür. Güven aralığı -3.7 ile 27.44 arasındadır ve p değeri 0.1802'dir. Bu durumda. B ve A grupları arasındaki ortalama fark istatistiksel olarak anlamlı değildir. (p>0.05)

- "C-A" arasındaki ortalama fark 3.67'dir. Güven aralığı -11.94 ile 19.27 arasındadır ve p değeri 0.9116'dır. Bu durumda. C ve A grupları arasındaki ortalama fark istatistiksel olarak anlamlı değildir. (p>0.05)
- "D-A" arasındaki ortalama fark 17.50'dir. Güven aralığı 1.89 ile 33.11 arasındadır ve p değeri 0.0245'tir. Bu durumda. D ve A grupları arasındaki ortalama fark istatistiksel olarak anlamlıdır. (p<0.05)
- "C-B" arasındaki ortalama fark -8.17'dir. Güven aralığı -23.77 ile 7.44 arasındadır ve p değeri 0.4762'dir. Bu durumda. C ve B grupları arasındaki ortalama fark istatistiksel olarak anlamlı değildir. (p>0.05)
- "D-B" arasındaki ortalama fark 5.67'dir. Güven aralığı -9.94 ile 21.27 arasındadır ve p değeri 0.7420'dir. Bu durumda. D ve B grupları arasındaki ortalama fark istatistiksel olarak anlamlı değildir. (p>0.05)
- "D-C" arasındaki ortalama fark 13.83'tür. Güven aralığı -1.77 ile 29.44 arasındadır ve p değeri 0.0939'dur. Bu durumda. D ve C grupları arasındaki ortalama fark istatistiksel olarak anlamlı değildir. (p>0.05)

Bu sonuca göre, veri1 faktörünün seviyeleri arasında sadece D-A arasında anlamlı bir fark vardır (p adj = 0.0245369).

SORU 2: TEKARLI ÖLÇÜMLÜ ANOVA

TEKRAR	LI ÖLÇÜMLÜ	J ANOVA
15dk	30dk	45dk
18,00	18,00	28,00
8,00	14,00	24,00
16,00	12,00	27,00
11,00	12,00	30,00
19,00	12,00	31,00
6,00	16,00	31,00
17,00	10,00	35,00
10,00	15,00	20,00
17,00	10,00	28,00
6,00	14,00	32,00
9,00	25,00	18,00
20,00	13,00	26,00
14,00	18,00	15,00
20,00	12,00	33,00
15,00	20,00	18,00
19,00	15,00	19,00
8,00	16,00	23,00
11,00	24,00	21,00
17,00	14,00	20,00
16,00	18,00	23,00
15,00	12,00	27,00
10,00	13,00	29,00
14,00	24,00	32,00
6,00	17,00	19,00
5,00	18,00	17,00

ÇÖZÜM:

1-Normallik Varsayımının İncelenmesi

Analyze - Descriptive Statistics - Explore

Tests of Normality

	Ko	olmogorov-Smirno	ov ^a		Shapiro-Wilk	
	Statistic	df	Sig.	Statistic	df	Sig.
15dk	.135	25	.200*	.925	25	.067
30dk	.135	25	.200*	.909	25	.029
45dk					25	
	.127	25	.200 [*]	.950		.252

^{*.} This is a lower bound of the true significance. a.

Lilliefors Significance Correction

 $H_0 = veriler normal dağılıma uygundur.$

 $H_A = veriler normal dağılıma uygun değildir.$

p> α ise H_0 reddedilemez. n değerlerinin her biri 50'den küçük olduğu için shapiro-wilk test sonucuna göre yorumlanır. α =0.05 olduğuna göre 15 ve 45. dakikadaki gözlemler normal dağılıma uygundur. Ama 30. dakikadaki gözlemler α =0.05'dan küçüktür(p=0.029 < α =0.05). Normalliğin sağlanmadığı durumlarda dönüşüm (karekök, logaritmik, ters dönüşüm vb.) uygulanabilir veya aykırı değer incelemesi yapılabilir.

Logaritmik dönüşüm yapalım:

Sadece 30.dakikadaki verilere dönüşüm uyguladık.

Tekrar: Analyze -Descriptive Statistics -Explore

Tests of Normality

	Kolmogorov-Smirnov ^a				Shapiro- Wilk	
	Statistic df Sig.			Statistic	df	Sig.
15dk	.135	25	.200*	.925	25	.067
45dk	.127	25	.200*	.950	25	.252
log_dönüsüm	.104	25	.200*	.952	25	.273

^{*.} This is a lower bound of the true significance. a.

Lilliefors Significance Correction

Yine shapiro-wilk test sonucuna baktığımızda p değerlerinin α =0.05'ten büyük olduğunu görüyoruz. Yani her bir değişkenin normal dağılıma uygun olduğu %5 anlamlılık düzeyinde söylenebilir.

Küresellik Varsayımının Test Edilmesi

 H_0 : Cov(Yi, Yj) = 0 (Kovaryanslar homojendir)

 H_A : Cov(Yi, Yj) \neq 0 (Kovaryanslar homojen değildir)

Analyze ☐ General Linear Model ☐ Repeated Measures

Mauchly's Test of Sphericity^a

Measure: MEASURE_1

						Epsilon ^b	
Within Subjects	Mauchly's	Approx. Chi-			Greenhouse-		
Effect	W	Square	df	Sig.	Geisser	Huynh-Feldt	Lower-bound

zaman	.905	2.303	2	.316	.913	.984	.500

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix. a. Design: Intercept

Within Subjects Design: zaman

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

Mauchly küresellik testinin p değeri 0.316 çıkmış. p=0.316 > α =0.05' den büyük olduğu için H_0 reddedilemez. Yani verilerin kovaryanslarının homojen olduğu %5 anlamlılık düzeyinde söylenebilir.

Tekrarlı ölçümlü varyans analizi

$$H^0$$
: $\sum_{j=1}^{3} \tau_j = 0$ (zaman noktaları arasında fark yoktur)

 H_A : $\sum_{j=1} au_j
eq 0$ (en az bir zaman noktası diğerlerinden farklıdır)

Tests of Within-Subjects Effects

Measure: MEASURE 1

Source		Type III Sum of Squares	df	Mean Square	F	Sig.
zaman	Sphericity Assumed	1978.427	2	989.213	34.138	.000
	Greenhouse-Geisser	1978.427	1.826	1083.472	34.138	.000
	Huynh-Feldt	1978.427	1.969	1005.028	34.138	.000
	Lower-bound	1978.427	1.000	1978.427	34.138	.000
Error(zaman)	Sphericity Assumed	1390.907	48	28.977		
	Greenhouse-Geisser	1390.907	43.824	31.738		

Huynh-Feldt	1390.907	47.245	29.440	
Lower-bound			ĺ	
	1390.907	24.000	57.954	

Küresellik varsayımının sağlanma durumuna göre hangi satırın yorumlanması gerektiğine karar verilir. ϵ Düzeltmesine gerek kalmadan küresellik varsayımı sağlandığı için sphericity assumed satırı yorumlanır. p=0.0 < α =0.05 olduğu için H_0 reddedilir . Yani zaman noktaları arasında anlamlı bir fark olduğu %5 anlamlılık düzeyinde söylenebilir. Farklılığın sağlandığı grupları göstermek iççin post-hoc testleri yapalım:

*H*01: μ 15 = μ 30

*H*₀₂: μ ₁₅ = μ ₄₅

*H*03: μ 30 = μ 45

Pairwise Comparisons

Measure: MEASURE 1

	_	Mean				nce Interval for ence ^b
(I) zaman	(J) zaman	Difference (I-J)	Std. Error	Sig. ^b	Lower Bound	Upper Bound
1	2	-2.600	1.472	.090	-5.638	.438
	3	-11.960*	1.337	.000	-14.720	-9.200
2	1	2.600	1.472	.090	438	5.638
	3	-9.360*	1.732	.000	-12.935	-5.785
3	1	11.960 [*]	1.337	.000	9.200	14.720
	2	9.360*	1.732	.000	5.785	12.935

Based on estimated marginal means

b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Estimates

Measure: MEASURE_1

			95% Confide	ence Interval
zaman	Mean	Std. Error	Lower Bound	Upper Bound
1	13.080		11.062	15.098

^{*.} The mean difference is significant at the .05 level.

2	15.680	.978	13.946	17.414
		.840		
3	25.040	1.163	22.641	27.439

Farklılığı sağlayan grup 3.gruptur. (p=0.0 < α =0.05) ortalamalar bakımından diğerlerinden farklıdır. Yani yöntemin kalıcılığını test etmek amacıyla 45 dakika sonra uygulanan testin sonucu diğerlerinden farklı olduğu %5 anlamlılık düzeyinde söylenebilir. Ortalamasının yükseldiği gözlenmektedir.

SORU 3: RASGELE BLOK DENEY DÜZENİ

5 ayrı bahçede 5 bitki çeşidinin verimleri incelenmiştir. Elde edilen sonuçlar aşağıdaki gibidir. Bitki çeşitleri arasında farklılık olup olmadığını %1 anlamlılık düzeyinde(α =0,01) inceleyiniz.

- a) Her ikisinin de sabit seçimli olduğu durumda gerekli çözümlemeyi yapınız.
- b) Her ikisinin de rasgele seçimli olduğu durumda gerekli çözümlemeyi yapınız.
- c) Denemeler (bitki) sabit seçimli, bloklar(bahçe) ise rasgele seçimli olduğu durumda gerekli çözümlemeyi yapınız.

	menekşe	papatya	gül	sümbül	lavanta
bahçe1	37.70	20.81	15.35	9.14	17.81
bahçe2	18.55	11.93	16.86	20.53	1.80
bahçe3	17.36	17.45	3.40	7.64	35.55
bahçe4	39.72	0.35	7.28	7.73	26.74
bahçe5	41.35	4.50	6.68	19.82	24.54

Verileri spss'e girelim:

	bitki	bahçe	verim
1	menekşe	1	37.70
2	menekşe	2	18.55
3	menekşe	3	17.36
4	menekşe	4	39.72
5	menekşe	5	41.35
6	papatya	1	20.81
7	papatya	2	11.93
8	papatya	3	17.45
9	papatya	4	.35
10	papatya	5	4.50
11	gül	1	15.35
12	gül	2	16.86
13	gül	3	3.40
14	gül	4	7.28
15	gül	5	6.68
16	sümbül	1	9.14
17	sümbül	2	20.53
18	sümbül	3	7.64
19	sümbül	4	7.73
20	sümbül	5	19.82

Deneme: Bitki(k=4)
Blok:bahçe (b=5)

N=25

%1 anlamlılık düzeyinde inceleyeceğimiz için güven düzeyini %99 olarak değiştirdik.

Tests of Normality

		Kol	mogorov-Smirn	OV ^a	Shapiro-Wilk		
	bitki	Statistic	df	Sig.	Statistic	df	Sig.
verim	menekşe	.315	5	.118	.779		.054
	papatya	.176	5	.200*	.950	5	.738
	gül	.273	5	.200 [*]	.885	5	.334
	sümbül	.319	5	.107	.755	5 5	.033
	lavanta	.202	5	.200 [*]	.951	5	.745

^{*.} This is a lower bound of the true significance.

a. Lilliefors Significance Correction

 $H_0 = veriler normal dağılıma uygundur.$

 $H_A = veriler normal dağılıma uygun değildir.$

Normallik testi sonucunda gözlem değerleri 50'den küçük olduğu için shapiro-wilk testinin sonucu yorumlanır. Menekşe, papatya, gül, sümbül ve lavanta bitkilerinin p değerleri α =0,01 anlamlılık düzeyinden büyük olduğu için H_0 reddedilemez. Yani bu bitki türlerinin verimliliğinin %1 anlamlılık düzeyinde normallik varsayımını sağladığı söylenebilir.

$$H_0$$
: $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2 = \sigma_5^2$ (Varyanslar homojendir)

H_A : en az bir σ_j^2 diğerlerinden farklıdır. (j = 1,2,3,4,5)

Test of Homogeneity of Variances

verim

Levene Statistic	df1	df2	Sig.
1.616	4	20	.209

Levene testinin p değeri 0.209, α =0,01'den büyük olduğu için veya Levene istatistik=1.616 <F4,20=4.431 tablo değerinden küçük olduğu için H_0 reddedilemez. Bitkilerin %1 anlamlılık düzeyinde deneme varyanslarının homojenliğini varsayımını sağladığı söylenebilir.

a) Deneme ve blokların sabit(özel) seçimli olduğu durum

Dependent: verim

Fixed Factor: bitki,bahçe

Model: √ Custom Model: bitki,bahçe

Tests of Between-Subjects Effects

Dependent Variable: verim

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model Intercept bitki	1702.078ª 7416.310 1573.446	8 1 4	212.760 7416.310 393.362	2.023 70.520 3.740	.110 .000
bahçe Error	128.632	4	32.158 105.165	.306	.870
Total	1682.647 10801.035	25	105.165		
Corrected Total	3384.725	24			

a. R Squared = .503 (Adjusted R Squared = .254)

sdblok + sddeneme + sdhata = sdcorrected total KTblok + KTdeneme + KThata = KTcorrected total

sdcorrected model + sdintercept + sdhata = sdtotal KTcorrected model + KTintercept + KThata = KTtotal

Denemeler(bitkiler) arası fark kontrolü

 H_0 : Verim bakımından bitkiler arasında fark yoktur. $\sum_{j=1}^4 au_j = 0$ H_A : Verim bakımından bitkiler arasında fark vardır. $\sum_{j=1}^4 au_j \neq 0$

P=0.025> α =0,01 olduğu için veya F=3.740 <F4,16 =5.035 H_0 reddedilemez. Yani verim bakımından bitki çeşitleri fark olmadığı %1 anlamlılık düzeyinde söylenebilir.

Bloklar (bahçeler) arası fark kontrolü

 H_0 : Verim bakımından bahçeler arasında fark yoktur. $\sum_{i=1}^6 \beta_1 = 0$ H_A : Verim bakımından bahçeler arasında fark vardır.

P=0.870> α =0,01 veya F=0.306<F4,16=5.035 H_0 reddedilemez. Yani verim bakımından bahçeler arasında fark olmadığı %1 anlamlılık düzeyinde söylenebilir. Deneme ve bloklar arası fark kontrolünde her ikisinde de yokluk hipotezi reddedilemediği için post-hoc testlerine bakmayız.

b) Deneme ve blokların rasgele seçimli olduğu durum

Dependent:verim

Random Factor: bitki,bahçe

Model: √ Custom

Tests of Between-Subjects Effects

Dependent Variable: verim

		Type III Sum of				
Source		Squares	df	Mean Square	F	Sig.
Intercept	Hypothesis	7416.310	1	7416.310	23.150	.024
bitki	Error Hypothesis	829.532 1573.446	2.589 4	320.354 ^a 393.362	3.740	.025
	Error	1682.647	16	105.165 ^b		
bahçe	Hypothesis	128.632	4	32.158	.306	.870
	Error	1682.647	16	105.165 ^b		

a. MS(bitki) + MS(bahçe) - MS(Error)

b. MS(Error)

 H_0 : $\sigma_{\tau}^1 = 0$ (Denemeler arası rasgelelikten kaynaklanan değişim önemsizdir.) H_A : $\sigma_{\tau}^2 > 0$ (Denemeler arası rasgelelikten kaynaklanan değişim önemsizdir)

 H_0 : $\sigma_{\beta^2} = 0$ (bloklar(bahçe) arası rasgelelikten kaynaklanan değişim önemsizdir) Denemeler(bitkiler) ve bloklar(bahçeler) arası rasgelelikten kaynaklanan değişimin önemli olmadığı %1 anlamlılık düzeyinde söylenebilir. (p> α =0.01).

Yokluk hipotezi reddedilemez. Bu yüzden varyans bileşenleri incelemesi yapılmaz. Reddedilseydi varyans bileşenlerini incelememiz gerekirdi.

c) Denemelerin sabit, blokların rasgele seçimli olduğu durum

Dependent: verim Fixed factor: bitki Random Factor: bahçe

Model: V Custom
Model: bitki,deneme

Tests of Between-Subjects Effects Dependent

Variable: verim

Source		Type III Sum of	df	Mean Square	F	Sig.
Intercept	Hypothesis	7416.310	1	7416.310	230.621	.000
hahaa	Error	128.632	4	32.158ª		
bahçe	Hypothesis	128.632	4	32.158	.306	.870
bitki	Error	1682.647	16	105.165 ^b		
	Hypothesis	1573.446	4	393.362	3.740	.025
	Error	1682.647	16	105.165 ^b		

a. MS(bahçe)

b. MS(Error)

 H_0 : verim bakımından bitkiler(denemeler)arasında fark yoktur

 H_A : verim bakımından bitkiler(denemeler)arasında fark yoktur.

P=0.025> α =0.01 olduğu için H_0 reddedilemez. %1 anlamlılık düzeyinde verimlilik bakımından bitkiler arasında fark olmadığı söylenebilir.

 H_0 : bloklar(bahçe) arası rasgelelikten kaynaklanan değişim önemsizdir.

H_A: bloklar(bahçe) arası rasgelelikten kaynaklanan değişim önemlidir

 $^{^{1}&}gt;0(bloklar(bahçe)\;arası\;rasgelelikten\;kaynaklanan\;değişim önemlidir)\;H_{A}$:

Bahçeler (bloklar) arasında rasgelelikten kaynaklanan değişimin önemli olmadığı %1 anlamlılık düzeyinde söylenebilir.

SORU 4: ÇOK ETKİLİ DENEY DÜZEYİ

Ali, bir bitkinin büyümesini etkileyen faktörleri araştırmak isteyen bir biyoloji öğrencisidir. Bitkinin büyümesi, bitkinin boyunu ölçerek belirlenir. Ali, bitkinin büyümesini etkileyebilecek beş faktör belirler: toprak cinsi (B1, B2, B3), gübre miktarı (C1, C2), ışık süresi (A1, A2), su miktarı ve sıcaklık. Ali, bu faktörlerin her birini iki seviyede tutar. Toprak cinsi için kumlu (B1), killi (B2) ve humuslu (B3) toprak seçer. Gübre miktarı için az (C1) ve çok (C2) gübre kullanır. Işık süresi için kısa (A1) ve uzun (A2) ışıklandırma sağlar. Su miktarı ve sıcaklık ise sabit tutulur. Ali, her bir faktör kombinasyonu için bir bitki yetiştirir ve büyüme sonuçlarını tabloya yazar. Özel seçimli model varsayımı altında gerekli çözümlemeleri yapınız.

			ÇOK ETK	ENLI DENE	Y DÜZENİ	
	kumlu(1)		killi(2)		humuslu(3)	
	az (1)	çok (2)	az (1)	çok (2)	az (1)	çok (2)
	39.32	10.49	44.09	11.39	14.56	8.91
	14.06	3.33	29.95	9.49	48.05	17.20
az ışıklandırma(1)	12.53	17.84	26.23	2.05	0.41	3.78
	17.97	17.19	12.55	3.54	38.72	2.63
	25.07	8.98	35.54	19.29	19.16	1.73
	16.14	19.24	44.38	0.18	31.24	21.59
	3.13	10.75	4.78	18.80	46.73	13.22
çok ışıklandırma(2)	38.72	6.33	1.52	17.76	11.16	5.28
	21.13	2.37	33.48	15.54	3.67	19.67
	18.91	16.98	10.83	13.28	28.92	9.82

CÖZÜM:

Veri girişi için Spss programında isik suresi, toprak cinsi, gubre miktari ve y olmak üzere dört değişken tanımlanmıştır.

	isik_suresi	toprak_cinsi	gubre_miktari	У
1	1	1	1	39.32
2	1	1	1	14.06
3	1	1	1	12.53
4	1	1	1	17.97
5	1	1	1	25.07
6	1	1	2	10.49

Normallik Varsayımının Test Edilmesi

H₀: Verilerin dağılımı ile normal dağılım arasında fark yoktur.

Hs: Verilerin dağılımı ile normal dağılım arasında fark vardır.

Tests of Normality

	Kolmo	gorov-Smirr	10V ^a	Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
У	.151	60	.002	.916	60	.001

a. Lilliefors Significance Correction

Normallik testi sonucunda, p değeri α =0,05 anlamlılık düzeyinden küçük olduğu için H_0 reddedilir.

Normallik sağlanmadığı için aykırı değer incelemesi yapalım.

Normallik sağlanmadığı için aykırı değer incelemesi yapıldığında 11, 41, 52 ve 22. gözlemler aykırı değer olarak gözlenmektedir. Bu gözlem değerleri veri setinden çıkarılıp tekrar normallik incelemesi yapıldığında normalliğin sağlandığı sonucuna ulaşılmaktadır.

Tests of Normality

	Kolmo	gorov-Smir	Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.
у	.113	56	.073	.935	56	.005

a. Lilliefors Significance Correction

Normallik testi sonucunda, p değerleri α =0,05 anlamlılık düzeyinden büyük olduğu için H_0 reddedilemez. Bitkilerin büyüme sonuçlarına ait verilerin %5 anlamlılık düzeyinde normallik varsayımını sağladığı söylenebilir.

Minitab ile çözüm:

Varyansların Homojenliği Varsayımının Test Edilmesi

$$H_0:\sigma_{12} = \sigma_{22} = \cdots = \sigma_{602}$$

Hs: En az bir σ_j^2 diğerlerinden farklıdır

Tests

		Test	
	Method	Statistic	P-Value
7	Bartlett	9.00	0.622

p=0,622>0,05 olduğu için hipotez reddedilemez. Varyansların homojen olduğu %5 anlamlılık düzeyinde söylenebilir.

1.1. Işık Süresi, Toprak Cinsi ve Gübre Miktarının Sabit Etkili Olduğu Durum

Factor Information

Factor	Туре	Levels	Values
isik suresi	Fixed	2	1, 2
toprak cinsi	Fixed	3	1, 2, 3
gubre miktari	Fixed	2	1, 2

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
isik suresi	1	7.68	7.68	0.08	0.784
toprak cinsi	2	23.86	11.93	0.12	0.889
gubre miktari	1	1014.17	1014.17	10.03	0.003
isik suresi*toprak cinsi	2	163.92	81.96	0.81	0.451
isik suresi*gubre miktari	1	253,23	253.23	2.50	0.121
toprak cinsi*gubre miktari	2	4.55	2.27	0.02	0.978
isik suresi*toprak cinsi*gubre miktari	2	148.52	74.26	0.73	0.486
Error	44	4448.44	101.10		
Total	55	6055.09			

 H_0 : Işık süresinin etkisi önemsizdir (H_0 : $\phi_{\text{Isiksüresi}} = 0$).

 H_S : Işık süresinin etkisi önemlidir.

%5 anlamlılık düzeyinde ışık süresinin etkisinin önemli olmadığı söylenebilir (p=0,784> α =0,05).

 H_0 : Toprak cinsinin etkisi önemsizdir (H_0 : $\phi_{\text{toprakcinsi}} = 0$).

Hs: Toprak cinsinin etkisi önemlidir.

%5 anlamlılık düzeyinde toprak cinsinin etkisinin önemli olmadığı söylenebilir (p=0,889> α =0,05).

 H_0 : Gübre miktarının etkisi önemsizdir (H_0 : $\phi_{\text{gübremiktarı}}$ = 0).

Hs: Gübre miktarının etkisi önemlidir.

%5 anlamlılık düzeyinde gübre miktarının etkisinin önemli olduğu söylenebilir (p=0,003< α =0,05).

 H_0 : Işık süresi-toprak cinsi etkileşimi önemsizdir (H_0 : ϕ_{1 şıksüresi*toprakcinsi</sub> = 0).

Hs: Işık süresi-toprak cinsi etkileşimi önemlidir.

%5 anlamlılık düzeyinde ışık süresi-toprak cinsi etkileşiminin önemli olmadığı söylenebilir (p=0,451> α =0,05).

 H_0 : Işık süresi-gübre miktarı etkileşimi önemsizdir (H_0 : ϕ_{1 şıksüresi*gübremiktarı = 0). H_S : Işık süresi-gübre miktarı etkileşimi önemlidir.

%5 anlamlılık düzeyinde ışık süresi-gübre miktarı etkisinin önemli olmadığı söylenebilir (p=0,121> α =0,05).

 H_0 : Toprak cinsi-gübre miktarı etkileşimi önemsizdir (H_0 : $\phi_{\text{toprakcinsi*gübremiktarı}} = 0$).

Hs: Toprak cinsi-gübre miktarı etkileşimi önemlidir.

%5 anlamlılık düzeyinde toprak cinsi-gübre miktarı etkileşiminin önemli olmadığı söylenebilir (p=0,978> α =0,05).

 H_0 : Işık miktarı-toprak cinsi-gübre miktarı etkileşimi önemsizdir (H_0 :

 ϕ ışıkmiktarı*toprakcinsi*gübremiktarı = 0).

 Hs : Işık miktarı-toprak cinsi-gübre miktarı etkileşimi önemlidir.

%5 anlamlılık düzeyinde Işık miktarı-toprak cinsi-gübre miktarı etkileşiminin önemli olmadığı söylenebilir (p=0,486> α =0,05).

Faktörler sabit etkili olduğu için etkisi önemli olan gübre miktarı değişkeni için çoklu karşılaştırma testleri yapılabilir.

Grouping Information Using the Tukey Method and 95% Confidence

gubre miktari	Ν	Mean	Grouping		
1	26	19.5133	А		
2	30	10.9549	В		

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests for Differences of Means

Difference of gubre miktari Levels	Difference of Means	SE of Difference	Simultaneous 95% CI	T-Value	Adjusted P-Value
2 - 1	-8.56	2.70	(-14.00, -3.11)	-3.17	0.003

Individual confidence level = 95.00%

Gübre miktarı iki düzeyli olduğu için teste gerek duymadan iki düzeyi arasında fark olduğu söylenebilir. 1. Gübre miktarında yani az gübre verilerek yetiştirilen bitkilerin boy uzunluklarının ortalaması 2. Düzeyde yani fazla gübre verilerek yetiştirilen bitkilerin ortalamasından daha fazladır.

Ana Etki ve Etkileşim Grafiklerinin Çizdirilmesi

- 1. ışık düzeyindeki, yani ışık süresi kısa olan ortamda yetiştirilen bitkilerin ortalama boy uzunlukları, 2. ışık düzeyinde yani ışık süresi fazla olan ortamda yetiştirilen bitkilerin boy uzunlukları ortalamasından fazladır.
- 1. toprak cinsinde, yani kumlu toprakta yetiştirilen bitkilerin ortalama boy uzunlukları,
 3. toprak cinsinde yani humuslu toprakta yetiştirilen bitkilerin boy uzunluklarının ortalamasından fazladır.
- 1. gübre miktarında, yani az gübre verilerek yetiştirilen bitkilerin ortalama boy uzunlukları, 2. gübre miktarında yani çok gübre verilerek yetiştirilen bitkilerin boy uzunluklarının ortalamasından fazladır.

Kesişmeyen doğrular arasında etkileşim yoktur, örneğin toprak cinsi*gübre miktarı. Kesişen doğrular arasında etkileşim vardır, örneğin; gübre miktarı*ışık süresi.

1.2 Işık süresi ve toprak cinsinin sabit, gübre miktarının rasgele etkili olduğu durum

Factor Information

Factor	Туре	Levels	Values
isik suresi	Fixed	2	1, 2
toprak cinsi	Fixed	3	1, 2, 3
gubre miktari	Random	2	1, 2

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value	
isik suresi	1	7.68	7.68	0.03	0.890	
toprak cinsi	2	23.86	11.93	5.25	0.160	
gubre miktari	1	1014.17	1014.17	5.59	0.416	х
isik suresi*toprak cinsi	2	163.92	81.96	1.10	0.475	
isik suresi*gubre miktari	1	253.23	253,23	3,41	0.206	Х
toprak cinsi*gubre miktari	2	4.55	2.27	0.03	0.970	
isik suresi*toprak cinsi*gubre miktari	2	148.52	74.26	0.73	0.486	
Error	44	4448.44	101.10			
Total	55	6055.09				

x Not an exact F-test.

 $H_0:\sigma$ isik2 suresi*toprak cinsi*gubre miktari= 0

Işık süresi-toprak cinsi-gübre miktarı etkileşiminin %5 anlamlılık düzeyinde önemli olmadığı söylenebilir. (p=0,486> α =0,05)

 $H_0:\sigma$ toprak2 cinsi*gubre miktari= 0

Toprak cinsi-gübre miktarı etkileşiminin %5 anlamlılık düzeyinde önemli olmadığı söylenebilir. (p=0,970> α =0,05)

 $H_0:\sigma$ isik2 suresi*gubre miktari= 0

Işık süresi-gübre miktarı etkileşiminin %5 anlamlılık düzeyinde önemli olmadığı söylenebilir. (p=0,206> α =0,05)

 $H_0:\sigma$ isik2 suresi*toprak cinsi= 0

Işık süresi-toprak cinsi etkileşiminin %5 anlamlılık düzeyinde önemli olmadığı söylenebilir. (p=0,475> α =0,05)

 $H_0:\sigma^2_{gubre\ miktari}=0$

Gübre miktarının etkisinin %5 anlamlılık düzeyinde önemli olmadığı söylenebilir. (p=0,416> α =0,05)

 $H_0:\sigma toprak2\ cinsi=0$

Toprak cinsinin etkisinin %5 anlamlılık düzeyinde önemli olmadığı söylenebilir. (p=0,160> α =0,05)

 $H_0:\sigma_{isik2}$ suresi= 0

Işık süresi etkisinin %5 anlamlılık düzeyinde önemli olmadığı söylenebilir. (p=0,890>α=0,05)

Not: Gübre miktarı faktörünün E(KO) sütunu incelendiğinde F test yerine Pseudo F test ile hesaplama yapılması gerekmektedir.

KO gubre miktari

$$F = \frac{}{KOgubre\ miktari*isik\ suresi} + KOgubre\ miktari*toprak\ cinsi\ _KOgubre\ miktari*isik\ suresi*toprak\ cinsi}$$

$$F = \frac{1014.17}{253.23 + 2.27 - 74.26} = 5.6$$

KAYNAKÇA:

- "Deney Düzenlemede İstatistiksel Yöntemler", Z.Muluk, S.Kurt, Ö.Toktamış, E.Karaoğlu, Akademi yayınevi, 2009.
- "Deney Düzenleri ve İstatistik Analizleri", Semra Oral Erbaş, Hülya Olmuş, Gazi Kitapevi, 2006.
- www.hadi.hacettepe.edu.tr İstatistiksel Yöntemler-II Ders Notları