Stuttgart

Modulhandbuch

Master Geotechnik/ Tunnelbau

Stand: 15,11,2019

Modulbeschreibungen des Masterstudiengangs Geotechnik/Tunnelbau

Modul	Lehrveranstaltung	Seite
Strukturmechanik	Numerische Mathematik und Anwendung der FEM Baudynamik	1
Geomechanik 1	Bodenmechanik 1 Ingenieurgeologie 1	4
Geomechanik 2	Bodenmechanik 2 Felsmechanik Ingenieurgeologie 2	8
Numerische Verfahren in der Geotechnik	Verformungs- und Tragfähigkeitsanalysen Geohydraulik	12
Stahl- und Stahlbetonbau in der Geotechnik	Stahlbetonbau Stahlbau	16
Planen und Entwerfen in der Geotechnik	Planen und Entwerfen im Erd- und Grundbau Planen und Entwerfen im Tunnelbau	19
Grundbau mit Spezialtiefbau	Grundbau mit Spezialtiefbau	23
Tunnelbau 1	Bauverfahren im Tunnelbau Mess- und Beobachtungsmethoden Grundbau und Tunnelbau	26
Tunnelbau 2	Sonderbauverfahren im Tunnelbau Tunnelvortriebsmaschinen Baumaschinen und Baubetrieb im konvent.Tunnelbau	30
Recht	Öffentliches Baurecht Privates Baurecht, Unternehmens- und Vertragsrecht	35
Wirtschaft und Management	Projektmanagement Unternehmensführung	38
Projekt 1	Projekt 1	42
Projekt 2	Projektarbeit Wahlpflichtfach Geotechnik-Seminar	45
Master-Thesis	Master-Thesis	49

Hochschule für Technik Stuttgart Modulname Strukturmechanik Geotechnik/Tunnelbau **Studiengang** Abschluss Master of Engineering Verantwortlicher Prof. Dr.-Ing. Falko Dieringer Modulnummer CP **SWS** Workload Präsenz Selbststudium Dauer □ 1 Semester 5 5 150 75 75 ☐ 2 Semester Studienabschnitt Modultyp Angebot Beginn (nur bei Bachelor-Studiengängen) Wintersemester Pflichtfach \boxtimes Sommersemester Zugeordnete Modulteile Sem-CP **SWS** Nr. **Titel Lehrveranstaltung** Lehrform ester Numerische Mathematik und Vorlesung 1 VZ, 3 1 3 Anwendung der FEM 1 TZ Vorlesung 1 VZ,

Modulziele:

2

Die Studierenden ...

• sind in der Lage baustatische Fragestellungen zu komplexen Tragwerken statisch zu beurteilen und diese mit geeigneten Rechenverfahren zu analysieren.

2

2

1 TZ

sind in der Lage Einflüsse aus der Boden-Bauwerk-Interaktion zu bewerten.

Baudynamik

• sind in der Lage baudynamische Verfahren für baupraktische Fragestellungen sicher anzuwenden.

Weitere Modulinformationen			
Voraussetzungen für die Teilnahme	keine		
Verwendbarkeit des Moduls in	Master Konstruktiver Ingenieurbau,		
anderen Studiengängen	Modul: Strukturmechanik 1		
Prüfungsvorleistung	Numerische Mathematik und Anwendung der FEM: Studienarbeit Baudynamik: Studienarbeit		
Prüfungsleistung	Klausur 180 Min.		
Zusammensetzung der Endnote	Endnote der Klausur		
Sonstige Informationen	keine		
Letzte Aktualisierung	17.10.2019		
Lehrveranstaltung	Numerische Mathematik und Anwendung der FEM		

Dozent(in):

Prof. Dr.-Ing. Stefan Kimmich

Lernziele / Kompetenzen

Fachkompetenz ("Wissen und Verstehen" sowie "Einsatz, Anwendung und Erzeugung von Wissen")

Die Studierenden ...

- erwerben ergänzende und vertiefte Kenntnisse der numerischen Ingenieurmathematik mit Anwendungen in der FEM.
- erwerben ergänzende und vertiefte Kenntnisse der theoretischen Grundlagen der FEM und der Kompetenz zur praxisbezogenen Anwendung im Ingenieurbau.
- können die erlernten Fertigkeiten bei der Erstellung und Bewertung von FE-Modellen anwenden.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

- sind in der Lage, sich über alternative, theoretisch begründbare Problemlösungen auszutauschen.
- können Anforderungen und Selbstverständnis der eignen fachlichen und beruflichen Rolle reflektieren.

Besondere Methodenkompetenz

Die Studierenden ...

- sind in der Lage, auch in neuen Situationen ihr Wissen anzuwenden und Probleme im jeweiligen Fachgebiet zu lösen.
- können mit hoher Komplexität umgehen und Entscheidungen selbstständig fällen.

Lehrinhalte

- Übersicht und Grundlagen
- Einführung in die Ingenieurmathematik
- Einführung in die Methode der finiten Elemente
- Direkte Steifigkeitsmethode
- Werkstoffgesetze und Elementtypen
- Numerische Lösungsstrategien
- Anwendungsspektrum der finiten Elemente
- Modellbildung und –bewertung mit finiten Elementen

Literatur

- Kimmich, Stefan: Vorlesungsmanuskript Numerische Mathematik und Anwendung der FEM, 2016, HFT-Stuttgart.
- Bathe, K.J: Finite-Elemente-Methode, 2. Aufl., Springer Verlag, 2002, Berlin.
- Hartmann, F., Katz, C.: Statik mit Finiten Elementen, Springer Verlag, 2002, Berlin.
- Werkle, Horst: Finite Elemente in der Baustatik, Vieweg-Verlag, 2008, Wiesbaden.

Lehrveranstaltung

Baudynamik

Dozent(in):

Prof. Dr.-Ing. Thomas Benz, Prof. Dr.-Ing. Falko Dieringer

Lernziele / Kompetenzen

Fachkompetenz ("Wissen und Verstehen" sowie "Einsatz, Anwendung und Erzeugung von Wissen")

Die Studierenden ...

- erwerben ein Verständnis für die grundlegenden Zusammenhänge der dynamischen Beanspruchung von Bauwerken.
- können die erlernten Fähigkeiten und Fertigkeiten, um baudynamische Methoden unter Berücksichtigung der technischen Baubestimmungen auf praktische Aufgabenstellungen sicher anzuwenden.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

- sind in der Lage, sich über alternative, theoretisch begründbare Problemlösungen auszutauschen.
- können Anforderungen und Selbstverständnis der eignen fachlichen und beruflichen Rolle reflektieren.

Besondere Methodenkompetenz

Die Studierenden ...

- sind in der Lage, auch in neuen Situationen ihr Wissen anzuwenden und Probleme im jeweiligen Fachgebiet zu lösen.
- können mit hoher Komplexität umgehen und Entscheidungen selbstständig fällen.

Lehrinhalte

- Grundbegriffe der Baudynamik
- Ein- und Mehrfreiheitsgradsysteme
- Zeitintegrationsverfahren
- Modalanalyse
- Wellenausbreitung im elastisch isotropen Halbraum
- Site-Response Analysen
- Dynamischer Erddruck
- Erdbebenbemessung von Tunneln

- Petersen, Christian, 1996: Dynamik der Baukonstruktionen, Vieweg & Sohn, Braunschweig/Wiesbaden.
- Werkle, Horst, 2008: Finite Elemente in der Baustatik Statik und Dynamik der Stab- und Flächentragwerke, 3. Auflage, Vieweg & Sohn, Braunschweig/Wiesbaden.
- Kramer, Steven L. (1996): Geotechnical Earthquake Engineering, Prentice Hall.
- Vrettos, Christos: Bodendynamik, in Grundbau-Taschenbuch, Teil 1: Geotechnische Grundlagen, jeweils neueste Auflage, Ernst & Sohn, Berlin.
- Vrettos, Christos, 2008: Tunnelbauwerke unter Erdbebenbeanspruchung, in Taschenbuch für den Tunnelbau 2009, VGE Verlag, 221-254.

Hochschule für Technik Stuttgart							
Modulne	ame	Geomecho	ınik 1				
Studienga	ng	Geotechnik/T	unnelbau				
Abschluss		Master of En	gineering				
Verantwo	rtlicher	Prof. DrIng.	Thomas Be	nz (Geo)			
Modulnum	nmer	-					
СР	SWS	Workload	Präsenz	Selbststudium		Dauer	
7	6	210 90 120 ⊠ 1 Semester □ 2 Semester					
Modultyp Studienabschnitt (nur bei Bachelor-Studiengängen)				Angebot Beginn			
Pflic	cht				□ Wintersemester⊠ Sommersemester		
Zugeordne	ete Modult	:eile					
Nr.	Tite	Titel Lehrveranstaltung Lehrform			СР	SWS	Sem- ester
1	Bodenmechanik 1			Vorlesung Labor	5	4	1 VZ, 1 TZ
2	Ingenieurgeologie 1			Vorlesung Übung	2	2	1 VZ, 1 TZ

- können Formänderungs- und Festigkeitseigenschaften von Böden aus Laborversuchen ableiten, interpretieren und in Form von Bodenkennwerten in die Lösung geotechnischer Problemstellungen einbringen.
- können geotechnische Berechnungsverfahren anwenden und diese auf Grundlage bodenmechanischer Prinzipien begründen.
- können die Entstehung von Locker- und Festgesteinen erklären. Sie sind somit in der Lage die Herkunft und Eigenschaften eines Baugrunds aus geologischer Sicht einzuordnen und diesen ingenieurgeologisch-geotechnisch zu beschreiben und zu klassifizieren.
- können Einflüsse geologischer Gegebenheiten, wie z.B. Lagerungsstörungen, auf das Bauen beschreiben und Möglichkeiten der Baugrunderkundung diskutieren.

Weitere Modulinformationen	
Voraussetzungen für die Teilnahme	keine
Verwendbarkeit des Moduls in anderen Studiengängen	keine
Prüfungsvorleistung	Bodenmechanik 1: Studienarbeit Ingenieurgeologie 1: Kurzvortrag, Studienarbeit
Prüfungsleistung	Klausur 150 Min.
Zusammensetzung der Endnote	Endnote der Klausur
Sonstige Informationen	keine
Letzte Aktualisierung	01.10.2019

Lehrveranstaltung Bodenmechanik 1			
Dozent(in):	Prof. DrIng. Thomas Benz		
Lernziele / Kompetenzen			

Die Studierenden ...

- können die Grundlagen der Kontinuums Mechanik insoweit sie für die Bodenmechanik von Bedeutung sind – erklären, Spannungstransformationen durchführen sowie Spannungsverteilungen und Setzungen im Boden analytisch bestimmen.
- können die Steifigkeit und Festigkeit von Boden im Labor experimentell bestimmen und mit den resultierenden Bodenparametern Böschungsbruch-, Grundbruch-, und Erddruckberechnungen durchführen.
- können Annahmen und Vereinfachungen verschiedener geotechnischer Berechnungsverfahren bodenmechanisch begründen und daraus resultierende Anwendungsgrenzen der Berechnungsverfahren für die Praxis benennen.
- können die Grundzüge der Critical State Soil Mechanics skizzieren und auf bodenmechanische Probleme anwenden.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

- sind in der Lage selbstständig sowie im Team Lösungen auf vorgegebene Fragestellungen zu erarbeiten, zu dokumentieren und zu präsentieren.
- können eigene Wissenslücken erkennen und schließen.

Besondere Methodenkompetenz

Die Studierenden ...

• können selbständig auf ihre berufliche Zukunft ausgerichtete Kenntnisse und Qualifikationen sicherstellen und weiterentwickeln.

Lehrinhalte

- Grundlagen der Kontinuumsmechanik, Invarianten
- Spannungstransformation, Hauptspannungen, Mohr'scher Kreis
- Spannungsberechnung und Setzungsberechnung im elastischen Halbraum
- Durchführung und Auswertung bodenmechanischer Laborversuche (einaxialer Druckversuch, direkter Scherversuch, Triaxialversuch)
- Drainierte und undrainierte Scherfestigkeit
- Zeitsetzungsverhalten (Konsolidation & Kriechen)
- Grenzwerttheoreme der Plastizitätstheorie
- Herleitung und Anwendung analytischer Ansätze für Böschungsbruch-, Grundbruch-, und Erddruckberechnungen
- Critical State-Theorie: Normal Compression Line, Swelling Line, Critical State Line(CSL)
- Laborpraktikum in Kleingruppen
- Ergänzende Spezialthemen

- Verruijt, A.: "Soil Mechanics"
- Terzaghi, K., Peck, R. B., Mesri, G.: "Soil Mechnics in Enginering Practice", John Wiley & Sons
- Witt, K. J.(Hrsg.): "Grundbautaschenbuch", Teile 1 bis 3, Ernst und Sohn
- Schmidt, H.-H., Buchmaier, R., Vogt-Breyer, C.: "Grundlagen der Geotechnik", Springer
- Atkinson, J.: "The Mechanics of Soils and Foundations". McGraw-Hill, second edition
- Kolymbas, D.: "Geotechnik Bodenmechanik und Grundbau", Springer

Jeweils neueste Auflage

Lehrveranstaltung		Ingenieurgeologie 1		
Dozent(in):	Dozent(in): DiplGeol. DrIng. Marcus Schneider			
Larariala / V	Larmida / Varnatarran			

Lernziele / Kompetenzen

Fachkompetenz ("Wissen und Verstehen" sowie "Einsatz, Anwendung und Erzeugung von Wissen")

Die Studierenden ...

- können die Bildung und die Veränderung von Gesteinen beschreiben und somit die Entstehung von Baugrund erklären.
- können Möglichkeiten der Baugrunderkundung diskutieren und geeignete Verfahren und Geräte abhängig von den örtlichen und geologischen Randbedingungen wählen.
- können Einflüsse geologischer Gegebenheiten wie z.B. Störungen, Dolinen, instabile Hänge, auf das Bauen beschreiben.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

- sind in der Lage selbstständig sowie im Team Lösungen auf vorgegebene Fragestellungen zu erarbeiten, zu dokumentieren und zu präsentieren.
- können eigene Wissenslücken erkennen und schließen.

Besondere Methodenkompetenz

Die Studierenden ...

• können selbständig auf ihre berufliche Zukunft ausgerichtete Kenntnisse und Qualifikationen sicherstellen und weiterentwickeln.

Lehrinhalte

- Gesteinskunde (Gesteine, Minerale)
- Geologische Strukturen
- Abriss der Geologie von Deutschland
- Ingenieurgeologische Beschreibung und Klassifizierung von Gesteinen und Gebirge (Beschreibung von Fest- und Lockergestein)
- Wasser im Baugrund
- Methoden der Baugrunduntersuchung (direkte indirekte Untersuchungsmethoden, geophysikalische Untersuchungen, Bohrlochversuche, Kartierungen, Laboruntersuchungen)
- Darstellung von Baugrunduntersuchungsergebnissen
- Geomechanische Anwendung der Lagenkugel

Literatur

- Fecker, E.: Geotechnische Messgeräte und Feldversuche im Fels, Enke Verlag Stuttgart, ISBN 3 432 29911 7
- Dachroth, W.R.: Handbuch Baugeologie und Geotechnik, Springer, Berlin
- Fecker, E., Reik, G.: Baugeologie, Springer
- Prinz, H.: Abriss der Ingenieurgeologie, Spektrum Akademischer Verlag
- Genske, D.D.: Ingenieurgeologie: Grundlagen und Anwendung, Springer, Berlin
- Hölting, B., Coldewey, W. G.: Hydrogeologie: Einführung in die Allgemeine und Angewandte Hydrogeologie, Spektrum Akademischer Verlag

Hochschule für Technik Stuttgart							
Modulne	Modulname Geomechanik 2						
Studienga	ng	Geotechnik/T	unnelbau				
Abschluss		Master of En	gineering				
Verantwo	rtlicher	Prof. DrIng.	Thomas Be	enz (Geo)			
Modulnum	nmer	-					
СР	SWS	Workload	Präsenz	Selbststudium		Dauer	
5	5	150	75	75		1 Semest □ 2 Semest	_
Modu	ıltyp	(nur bei	Studienabs Bachelor-St	chnitt tudiengängen)	Angebot Beginn		
Pflicht				☑ Wintersemester☐ Sommersemester			
Zugeordne	ete Moduli	teile					
Nr.	Titel Lehrveranstaltung L			Lehrform	СР	SWS	Sem- ester
1	E	Bodenmechanil	k 2	Vorlesung Übung	1	1	2 VZ, 2 TZ
2	Felsmechanik		Vorlesung Labor	2	2	2 VZ, 2 TZ	
3	Ingenieurgeologie 2			Vorlesung Übung	2	2	2 VZ, 2 TZ

- können das Spannungs-Dehnungsverhalten von Boden mit Hilfe elasto-plastischer Modelle in numerischen Berechnungen simulieren und die zugehörige Materialparameter aus Laborversuchen ableiten.
- können Formänderungs- und Festigkeitseigenschaften von Fels aus Laborversuchen und empirischem Wissen ableiten und unter Verwendung felsmechanischer Berechnungsverfahren praktische Problemstellungen des Fels- und Tunnelbaus lösen.
- können ingenieurgeologische Arbeiten und Aufgaben, die sich bei Planung und Bau von Tunnelbauwerken ergeben benennen und durchführen sowie geodynamische Prozesse und deren Auswirkungen auf Umwelt und Gesellschaft benennen und einordnen.

Weitere Modulinformationen	
Voraussetzungen für die Teilnahme	keine
Verwendbarkeit des Moduls in anderen Studiengängen	keine
Prüfungsvorleistung	Bodenmechanik 2: keine Felsmechanik: Referat Ingenieurgeologie 2: Kurzvortrag (entfällt, wenn in Ingenieurgeologie 1 bereits erbracht), Studienarbeit
Prüfungsleistung	Bodenmechanik 2 und Ingenieurgeologie 2: Gemeinsame

	Klausur 105 Min.; Felsmechanik: benotete schriftliche Studienarbeit
Zusammensetzung der Endnote	Klausur: 60 % Benotete schriftliche Studienarbeit: 40 %
Sonstige Informationen	keine
Letzte Aktualisierung	01.10.2019

Lehrveranstaltung Bodenmechanik 2

Dozent(in): Prof. Dr.-Ing. Thomas Benz (Geo)

Lernziele / Kompetenzen

Fachkompetenz ("Wissen und Verstehen" sowie "Einsatz, Anwendung und Erzeugung von Wissen")

Die Studierenden ...

- können die Plastizitätstheorie insoweit sie für die Anwendung in der Bodenmechanik von Bedeutung ist erklären und auf die Modellierung geotechnischer Materialien anwenden.
- können das Spannungs-Dehnungsverhalten von Boden mit Hilfe elasto-plastischer Modelle unter Berücksichtigung geeigneter Materialparameter beschreiben.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

- sind in der Lage selbstständig sowie im Team Lösungen auf vorgegebene Fragestellungen zu erarbeiten, zu dokumentieren und zu präsentieren.
- können eigene Wissenslücken erkennen und schließen.

Besondere Methodenkompetenz

Die Studierenden ...

• können selbständig auf ihre berufliche Zukunft ausgerichtete Kenntnisse und Qualifikationen sicherstellen und weiterentwickeln.

Lehrinhalte

- Grundlagen der Elasto-Plastizität
- Assoziierte und nicht-assoziierte Plastizität; Dilatanz
- Definition und Anwendung nichtlinearer Materialmodelle
- Spannungsabhängige Steifigkeit
- Ableitung von Materialkennwerten aus Laborversuchen

Literatur

- Grundbautaschenbuch, Teil 1 bis 3, Ernst und Sohn.
- Schmidt, H.-H., et al.: Grundlagen der Geotechnik, Teubner
- Potts, D., Zdravkovic, L.: Finite element analysis in geotechnical engineering, Theory
- Potts, D., Zdravkovic, L.: Finite element analysis in geotechnical engineering, Applications
- Kolymbas, D.: Geotechnik Bodenmechanik und Grundbau, Springer

Lehrveranstaltung		Felsmechanik		
Dozent(in): Prof. DrIng. Thoma		s Benz (Geo)		
Lernziele / Ko	Lernziele / Kompetenzen			

Die Studierenden ...

- können Gestein und Gebirge klassifizieren und, basierend auf der Auswertung von Laborversuchen und empirischen Daten, geeignete Rechenparameter- und Modelle für die mechanische Beschreibung dieser Materialen wählen, um Problemstellungen des Fels- und Tunnelbaus zu lösen.
- können die Raumstellung von Trennflächengefügen kartieren und unter Berücksichtigung ihrer mechanischen Eigenschaften Standsicherheitsanalysen im Fels- und Tunnelbau durchführen.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

- sind in der Lage selbstständig sowie im Team Lösungen auf vorgegebene Fragestellungen zu erarbeiten, zu dokumentieren und zu präsentieren.
- können eigene Wissenslücken erkennen und schließen.

Besondere Methodenkompetenz

Die Studierenden ...

• können selbständig auf ihre berufliche Zukunft ausgerichtete Kenntnisse und Qualifikationen sicherstellen und weiterentwickeln.

Lehrinhalte

- Spannungs-Verformungsverhalten von Gestein/Trennflächen/Gebirge
- Festigkeitshypothesen für Gestein/Trennflächen/Gebirge
- Mechanische Beschreibung von Trennflächeneigenschaften, Isotropie Anisotropie
- Felsmechanische Laboruntersuchungen
- Standsicherheit von Felsböschungen, Bemessungsansätze für Stützmaßnahmen
- Bautechnische Klassifikation von Fels
- Grundwasserströmung in Fels*

Literatur

- Wittke, W.: Felsmechanik", Springer
- Wyllie, C., Mah, W.: Rock Slope Engineering, Taylor & Francis Ltd
- DGGT:Empfehlungen des Arbeitskreises "Versuchstechnik Fels"
- Grundbautaschenbuch, Teil 1 bis 3, Ernst und Sohn

Lehrveranstaltung		Ingenieurgeologie 2
Dozent(in):	: DiplGeol. DrIng. Marcus Schneider	

Lernziele / Kompetenzen

Fachkompetenz ("Wissen und Verstehen" sowie "Einsatz, Anwendung und Erzeugung von Wissen")

Die Studierenden ...

- können Methoden der Baugrunduntersuchung einordnen sowie Baugrunderkundungen planen und deren Ergebnisse darstellen.
- können international gebräuchliche Gebirgsklassifizierungssysteme anwenden.
- können ingenieurgeologische Arbeiten und Aufgaben, die sich bei Planung und Bau von Tunnelbauwerken ergeben, benennen und durchführen.
- können geodynamische Prozesse mit ihren Auswirkungen auf die Umwelt und Gesellschaft beschreiben, insbesondere Hangbewegungen, Vulkanismus, Altbergbau.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

- sind in der Lage selbstständig sowie im Team Lösungen auf vorgegebene Fragestellungen zu erarbeiten, zu dokumentieren und zu präsentieren.
- können eigene Wissenslücken erkennen und schließen.

Besondere Methodenkompetenz

Die Studierenden ...

• können selbständig auf ihre berufliche Zukunft ausgerichtete Kenntnisse und Qualifikationen sicherstellen und weiterentwickeln.

Lehrinhalte

- Methoden der Baugrunduntersuchung (direkte indirekte Untersuchungsmethoden, geophysikalische Untersuchungen, Bohrlochversuche, Kartierungen, Laboruntersuchungen)
- Mechanische und chemische Gesteins- und Gebirgseigenschaften (u.a. Abrasivität, Quell- und Schwellprozesse)
- Darstellung von Baugrunduntersuchungsergebnissen
- Geodynamische Prozesse und Risiken (Erdbeben, Vulkanismus, Verwitterung, Verkarstung, Windverfrachtung, Hang- und Böschungsrutschungen, Bergbau)
- Ingenieurgeologische Phänomene und Aufgaben im Tunnelbau (Gebirgsdruck, Spannungsverteilung, Bergwasser, Gasführung, Gebirgswärme, Gebirgsschläge, Trennflächengefüge)
- Quantitative und qualitative Gebirgsklassifikationssysteme
- Geomechanische Anwendung der Lagenkugel

Literatur

- Fecker, E.: Geotechnische Messgeräte und Feldversuche im Fels, Enke Verlag Stuttgart,
- Dachroth, W.R.: Handbuch Baugeologie und Geotechnik, Springer, Berlin
- Fecker, E., Reik, G.: Baugeologie, Springer
- Prinz, H.: Abriss der Ingenieurgeologie; Spektrum Akademischer Verlag.
- Genske, D.D.: Ingenieurgeologie: Grundlagen und Anwendung, Springer Berlin. Hölting, B., Coldewey, W. G.: Hydrogeologie: Einführung in die Allgemeine und Angewandte Hydrogeologie. Spektrum Akademischer Verlag

Hochschule für Technik Stuttgart							
Modulno	ame	Numerisch	ne Verfah	ren in der Geote	chnik		
Studienga	ng	Geotechnik/T	unnelbau				
Abschluss		Master of Eng	gineering				
Verantwo	rtlicher	Prof. DrIng.	Thomas Be	nz (Geo)			
Modulnum	nmer	-					
CP	SWS	Workload	Präsenz	Selbststudium		Dauer	
5	4	150	150 60 90 ⊠ 1 Semester □ 2 Semester				
Modu	ıltyp		Studienabs Bachelor-St	chnitt :udiengängen)	A	ngebot Beg	inn
Pflic	ht					Wintersen Sommerse	
Zugeordne	ete Modult	:eile					
Nr.	Tite	l Lehrveransta	lltung	Lehrform	СР	SWS	Sem- ester
1	Verformungs- und Tragfähigkeitsanalysen		Vorlesung Übung	3	2	2 VZ, 2 TZ	
2 Geohydraulik				Vorlesung Übung	2	2	2 VZ, 2 TZ

- können Verformungen und Tragfähigkeiten geotechnischer Konstruktionen mit Hilfe numerischer Modelle, insbesondere mit der Methode der finiten Elemente, berechnen und die Qualität des Berechnungsergebnisses beurteilen.
- können Strömungsvorgänge und Transportvorgänge in porösen und gelüfteten Medien beschreiben und analytische sowie numerische Modelle für die Berechnung von Strömungsvorgängen erstellen, kalibrieren und auswerten.
- können in der Modellbildung verwendete Berechnungsparameter erklären und ggfs. aus Versuchen ableiten.
- können analytische Berechnungsergebnisse den Ergebnissen numerischer Berechnungen gegenüberstellen und ggfs. Bemessungsregeln aus den Berechnungsmodellen ableiten.

Weitere Modulinformationen				
Voraussetzungen für die Teilnahme	keine			
Verwendbarkeit des Moduls in anderen Studiengängen	keine			
Prüfungsvorleistung	Geohydraulik: Studienarbeit			
Prüfungsleistung	Verformungs- und Tragfähigkeitsanalysen: Benotete schriftliche Studienarbeit; Geohydraulik: Klausur 90 Min.			
Zusammensetzung der Endnote	Benotete schriftliche Studienarbeit: 60 % Klausur: 40 %			

Sonstige Informationen		keine
Letzte Aktualisierung		01.10.2019
Lehrveranstaltung Verfo		Verformungs- und Tragfähigkeitsanalysen
Dozent(in):	Prof. DrIng. Thomas Benz (Geo)	

Lernziele / Kompetenzen

Fachkompetenz ("Wissen und Verstehen" sowie "Einsatz, Anwendung und Erzeugung von Wissen")

Die Studierenden ...

- können numerische Verfahren, die in der geotechnischen Praxis Anwendung finden, benennen und die Abläufe der Verfahren in mathematisch-mechanischer Hinsicht skizzieren bzw. im Fall der Methode der Finiten Elemente (FEM) detailliert erklären.
- können geotechnische Gebrauchstauglichkeits-und Standsicherheitsuntersuchungen unter Verwendung der nichtlinearen FEM durchführen und die Ergebnisse der Untersuchungen beurteilen.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

• sind in der Lage, selbstständig sowie im Team Lösungen auf vorgegebene Fragestellungen zu erarbeiten, zu dokumentieren und zu präsentieren.

Besondere Methodenkompetenz

Die Studierenden ...

• sind in der Lage, auf Basis der im Rahmen der Veranstaltung analysierten und diskutierten Randwertproblemen, eigenständig FE Modelle für neue Problemstellungen zu entwickeln.

Lehrinhalte

- Überblick über numerische Verfahren in der Geotechnik
- Anwendung der Methode der Finiten Elemente (FEM) für folgende Problemklassen: Elementversuche, Kreisplatte, Streifenlast, Stützwand, Baugrubenverbau, Tunnelquerschnitt; Pfähle, Durchströmung eines Dammes; Zeitsetzung
- Kontrolle von Ergebnissen durch Vergleich mit geschlossenen Lösungen soweit verfügbar; Plausibilitätsprüfungen
- Vergleich linearer und nicht-linearer Berechnungen; Parameterbestimmung im Falle nichtlinearen Stoffverhaltens
- Vergleich drainierter und undrainierter Berechnungen; Diskussion möglicher Berechnungsansätze zur Simulation undrainierten Verhaltens
- Analyse von Strömungskräften und Porenwasserdruckermittlung
- Besonderheiten der Geotechnik (Aushub, Kontaktelemente, Anker, TBM Tunnel, NATM Tunnel, ϕ -c-Reduktion.)

- Bathe, K.-J: Finite-Elemente-Methoden. Springer
- Grundbautaschenbuch, Teil 1, Ernst und Sohn
- DGGT: Empfehlungen des Arbeitskreises 1.6 "Numerik in der Geotechnik" EANG, Ernst & Sohn

- Potts, D. / Zdravkovic, L.: "Finite Element Analysis in Geotechnical Engineering: Volume I Theory", Telford
- Potts, D. / Zdravkovic, L.: "Finite Element Analysis in Geotechnical Engineering: Volume II Application", Telford

Jeweils neueste Auflage

Lehrveranstaltung		Geohydraulik
Dozent(in):	DrIng. Ulrich Lang	

Lernziele / Kompetenzen

Fachkompetenz ("Wissen und Verstehen" sowie "Einsatz, Anwendung und Erzeugung von Wissen")

Die Studierenden ...

- können Strömungsvorgänge in porösen Medien beschreiben und für einfache geometrische Konfigurationen analytisch berechnen sowie Bemessungsregeln für den hydraulischen Grundbruch und der Ergiebigkeit von Brunnen ableiten.
- können die Grundlagen der numerischen Verfahren der Finite-Differenzen und Finite-Elemente verstehenn und diese auf Strömungsvorgänge übertragen und so einfache numerische Modelle aufbauen, kalibrieren und auswerten.
- können Verfahren für poröse Medien auf geklüftete Medien übertragen und Transportprozesse in porösen Grundwasserleitern beschreiben und anhand analytischer Verfahren berechnen sowie advektive und dispersive Transportvorgänge in numerischen Modellen anwenden.
- können aus Pumpversuchen hydraulische Kenngrößen für Berechnungen ableiten.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

• sind in der Lage, selbstständig sowie im Team Lösungen auf vorgegebene Fragestellungen zu erarbeiten, zu dokumentieren und zu präsentieren.

Besondere Methodenkompetenz

Die Studierenden ...

 sind in der Lage, auf Basis der im Rahmen der Veranstaltung erlernten numerischen Verfahren eigenständig FD-Modelle für zwei- und dreidimensionale Strömungskonfigurationen zu entwickeln.

Lehrinhalte

- Hydrogeologische und hydraulische Grundbegriffe
- Grundgleichungen der Grundwasserströmung
- Lösungen für Strömungsprobleme (1D, 2D-horizontal eben) für Grabenströmung und Brunnenströmung in Kombination mit der Superpositions- und Fragmentenmethode
- Grundlagen des Aufbaus und der Anwendung von Grundwasserströmungsmodellen und Grundlagen folgender numerischer Verfahren: Finite-Differenzen, Finite-Elemente, Finite-Volumen
- Erstellung von numerischen Modellen unter Berücksichtigung der Grundvoraussetzungen durch hydrogeologische Modelle

- Anwendung von Grundwassermodellen
 - Modellaufbau
 - Modellkalibrierung
 - Modellüberprüfung
 - Modellanwendung

Stofftransport im Grundwasserleiter:

- Particle Tracking (Bahnlinien)
- Stofftransport mit Euler- und Lagrange-Ansatz
- Sonderfälle der Modellierung:
 - Dichtegetriebene Transportprozesse
 - Mehrphasenströmung
 - diskrete Kluftmodellierung
- Computerübung
- Fallbeispiele

Literatur

- Lang, U.: "Geohydraulik", Vorlesungsskript
- Kinzelbach, W.: "Numerische Methoden zur Modellierung des Transports von Schadstoffen im Grundwasser". Schriftenreihe gwf Wasser Abwasser Band 21, Oldenbourg
- Beims U.: DVGW Lehr- und Handbuch Wasserversorgung Band 1 "Grundwasserhydraulik", Oldenbourg
- Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften e.V., H. 10 (1999) "Hydrogeologische Modelle - Ein Leitfaden für Auftraggeber, Ingenieurbüros und Fachbehörden in der Grundwasserwirtschaft".-, 36 S., 4 Abb., 2 Tab.
- Busch, K.-F., Luckner, L.: "Geohydraulik", Enke
- Kinzelbach, W., Rausch, R.: "Grundwassermodellierung. Eine Einführung mit Übungen", Gebr. Borntraeger
- Bear, J.: Hydraulics of Groundwater, McGraw Hill
 DCGW Arbeitsblatt W107: Aufbau und Anwendung numerischer Grundwassermodelle in Wassergewinnungsgebieten

Hochschule für Technik Stuttgart							
Modulne	Modulname Stahl- und Stahlbetonbau in der Geotechnik						
Studienga	ng	Geotechnik/T	unnelbau				
Abschluss		Master of En	gineering				
Verantwo	rtlicher	Prof. DrIng.	Birol Fitik				
Modulnum	nmer	-					
СР	SWS	Workload	Präsenz	Selbststudium		Dauer	
5	3	150	45	105			
Modu	ıltyp	(nur bei	Studienabs Bachelor-St	chnitt tudiengängen)	Angebot Beginn		inn
Pflic	cht					Wintersen Sommerse	
Zugeordne	ete Modult	:eile					
Nr.	Titel Lehrveranstaltung			Lehrform	СР	SWS	Sem- ester
1	Stahlbetonbau		Vorlesung Integrierte Übung	3	2	1 VZ, 3 TZ	
2	Stahlbau			Vorlesung Integrierte Übung	2	1	1 VZ, 3 TZ

- sind in der Lage die vermittelten Grundlagen des Stahl- und Stahlbetonbaus aus dem grundständigen Studiengang zu erweitern.
- können vertiefte Kenntnisse und Fertigkeiten in für den Grund- und Tunnelbau wesentlichen Themenfeldern Rissbreitenbeschränkung und Konstruieren entwickeln.
- sind in der Lage Lösungen mit Hilfe der Bemessung und Konstruktion von Stahlbetonkonstruktionen mit Stabwerkmodellen zu erarbeiten.
- können vertiefte Kenntnisse und Fertigkeiten für die Anwendung der allgemeinen Nachweisverfahren für Stahlbauteile im Anwendungsbereich der Geotechnik und des Grundbaus (Verbauten, Stützwände, Gurtungen, usw.) entwickeln.
- entwickeln die Kompetenz für den Entwurf, die Bemessung und die Konstruktion von ausgewiesenen Stahlkonstruktionen im Grundbau und Tunnelbau am Beispiel von Spundwänden und Wellstahlunterführungen.

Weitere Modulinformationen				
Voraussetzungen für die Teil- nahme keine				
Verwendbarkeit des Moduls in anderen Studiengängen	keine			
Prüfungsvorleistung	Stahlbetonbau: Studienarbeit, Referat Stahlbau: Studienarbeit			
Prüfungsleistung	Klausur 150 Min.			
Zusammensetzung der Endnote	Endnote der Klausur			

Sonstige Info	rmationen	keine
Letzte Aktualisierung		01.10.2019
Lehrveransto	ıltung	Stahlbetonbau
Dozent(in):	Prof. DrIng. Birol Fitik	

Lernziele / Kompetenzen

Fachkompetenz ("Wissen und Verstehen" sowie "Einsatz, Anwendung und Erzeugung von Wissen")

Die Studierenden ...

- können vertiefte Kenntnisse und Fertigkeiten in für den Grund- und Tunnelbau wesentlichen Themenfeldern Rissbreitenbeschränkung und Konstruieren entwickeln.
- sind in der Lage Lösungen mit Hilfe der Bemessung und Konstruktion von Stahlbetonkonstruktionen mit Stabwerkmodellen zu erarbeiten.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

- können selbständig arbeiten.
- können eigene Wissenslücken erkennen und schließen.
- sind aufgrund der Interaktivität der Vorlesung in der Lage, untereinander und mit dem Dozenten auf hohem Niveau zu kommunizieren.
- können komplexe fachbezogene Inhalte klar und zielgruppengerecht präsentieren und verteidigen.

Besondere Methodenkompetenz

Die Studierenden ...

- sind in der Lage, die erlernten Methoden auf praktische Aufgabenstellungen problemspezifisch anzuwenden.
- sind in der Lage angemessene Lösungswege auch in ungewohntem oder komplexem Kontext zu entwickeln und sinnvolle Lösungen der Aufgabenstellung in angemessener Zeit und sicher umzusetzen.

Lehrinhalte

- Aufarbeitung, Festigung und Abrundung der Grundlagen des Stahlbetonbaus auf Grundlage der aktuellen Vorschriften
- Theorie und Praxis der Rissbreitenbeschränkung
- Konstruieren mit Stabwerkmodellen

- Skript zur den Lehrveranstaltung
- Bautechnische Zahlentafeln (verschiedene)
- Wommelsdorf, Stahlbetonbau, Bemessung und Konstruktion, Teil 1, 11. Auflage, Werner Verlag, Wolters Kluwer Deutschland GmbH, München, 2017
- Wommelsdorf, Stahlbetonbau, Bemessung und Konstruktion, Teil 2, 9. Auflage, Werner Verlag, Wolters Kluwer Deutschland GmbH, München, 2012
- Goris, Stahlbetonbau-Praxis nach Eurocode 2, Band 1 und 2, 6. Auflage 2017, Bauwerk-BBB-Beuth-Verlag
- Zilch / Zehetmaier, Bemessung im Konstruktiven Ingenieurbau, 2. Auflage 2010, Springer

Verlag		
Lehrveranstaltung		Stahlbau
Dozent(in):	pzent(in): Prof. DrIng. Hans-Peter Günther	
Lornziolo / Kompotonzon		

Die Studierenden ...

- entwickeln vertiefte Kenntnisse und Fertigkeiten für die Anwendung der allgemeinen Nachweisverfahren für Stahlbauteile im Anwendungsbereich der Geotechnik und des Grundbaus (Verbauten, Stützwände, Gurtungen, usw.).
- entwickeln die Kompetenz für den Entwurf, die Bemessung und die Konstruktion von ausgewiesenen Stahlkonstruktionen im Grundbau und Tunnelbau am Beispiel von Spundwänden und Wellstahlunterführungen.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

• können komplexe fachbezogene Inhalte klar und zielgruppengerecht präsentieren und verteidigen.

Besondere Methodenkompetenz

Die Studierenden ...

- sind in der Lage, die erlernten Methoden auf praktische Aufgabenstellungen problemspezifisch anzuwenden.
- sind in der Lage angemessene Lösungswege auch in ungewohntem oder komplexem Kontext zu entwickeln und sinnvolle Lösungen der Aufgabenstellung in angemessener Zeit und sicher umzusetzen.

Lehrinhalte

- Aufarbeitung, Festigung und Abrundung der Nachweisverfahren Elastisch Elastisch und Elastisch – Plastisch für Stahlbauteile an ausgewiesenen Beispielen im Grundbau
- Einführung in die Stabilitätstheorie und darauf aufbauender Nachweisverfahren an ausgewiesenen Beispielen im Grundbau
- Einführung in die Konstruktion und Bemessung von Wellstahlunterführungen
- Einführung in die Konstruktion und Bemessung von Stahlspundwänden

- Skript zur den Lehrveranstaltung
- Bautechnische Zahlentafeln (verschiedene)
- Kahlmeyer/Hebestreit/Vogt: Stahlbau nach Eurocode, Werner-Verlag, aktuelle Auflage
- Kindman/Krüger: Stahlbau Teil 1: Grundlagen, Ernst&Sohn-Verlag, aktuelle Auflage
- Wagenknecht, G.: Stahlbau-Praxis nach Eurocode 3, Band 1 und Band 2, Beuth Verlag GmbH, Berlin 2011.
- Dörken/Dehne/Kliesch: Baugruben und Gräben, Spundwände und Verankerungen, Böschungs- und Geländebruch. Grundbau in Beispielen Teil 3 nach Eurocode 7. Bundesanzeiger Verlag, aktuelle Auflage

Hochschule für Technik Stuttgart Planen und Entwerfen in der Geotechnik Modulname Geotechnik/Tunnelbau **Studiengang** Abschluss Master of Engineering Verantwortliche Prof. Dr.-Ing. Carola Vogt-Breyer Modulnummer CP **SWS** Workload Präsenz Selbststudium Dauer □ 1 Semester 6 4 180 60 120 ☐ 2 Semester Studienabschnitt Modultyp Angebot Beginn (nur bei Bachelor-Studiengängen) Wintersemester Pflicht Sommersemester X Zugeordnete Modulteile Sem-Nr. **Titel Lehrveranstaltung** Lehrform CP **SWS** ester Planen und Entwerfen im Erd-Vorlesung 1 VZ, 1 3 2 und Grundbau Übung 3 TZ Planen und Entwerfen im Vorlesung 1 VZ,

Modulziele:

2

Die Studierenden ...

• können auf vertiefte theoretische Kenntnisse zur Lösung konstruktive Aufgabenstellungen im Erd-, Grund- und Tunnelbau zurückgreifen.

Übung

3

2

3 TZ

• können aktuelle Regelwerke sicher anwenden und interpretieren.

Tunnelbau

- können eine Baugrundsituation analysieren, angepasste Lösungen entwerfen, Alternativen bewerten und eine Optimierung vornehmen.
- können vielfältiger Aspekte einer Bauaufgabe (Wirtschaftlichkeit, Bauablauf, Umwelt, Ästhetik, ...) analysieren und bewerten.

Weitere Modulinformationen	
Voraussetzungen für die Teilnahme	keine
Verwendbarkeit des Moduls in anderen Studiengängen	Master Konstruktiver Ingenieurbau, Modul: Planen und Entwerfen in der Geotechnik
Prüfungsvorleistung	Planen und Entwerfen im Erd- und Grundbau: Studienarbeit, Referat Planen und Entwerfen im Tunnelbau: Studienarbeit
Prüfungsleistung	Klausur 180 Min.
Zusammensetzung der Endnote	Endnote der Klausur
Sonstige Informationen	keine
Letzte Aktualisierung	12.11.2019

Lehrveranstaltung		Planen und Entwerfen im Erd- und Grundbau
Dozentin:	Prof. DrIng. Carola Vogt-Breyer	
Lernziele / Kompetenzen		

Die Studierenden ...

- können die wesentlichen Grundlagen des Erd- und Grundbaus sicher und auch mit Bezug auf allgemeinere Zusammenhänge anwenden.
- kennen die aktuellen Festlegungen der Regelwerke und können diese auf der Grundlage theoretische Kenntnisse sinnvoll zum Entwurf und zur Bemessung von Konstruktionen im Erd- und Grundbau einsetzen.
- können für vorgegebene Situationen Art und Umfang einer zielgerichteten Baugrunduntersuchung festlegen bzw. vorhandene Untersuchungen hinsichtlich Aussagekraft und Restrisiken bewerten.
- sind in der Lage, Lösungen für Erddruckberechnungen für individuelle Einwirkungs- und Verformungssituationen zu entwickeln.
- kennen Methoden zur differenzierten Berechnung der Standsicherheit und können die Eignung verschiedener Verfahren für die jeweiligen Gegebenheiten beurteilen.
- sind in der Lage, bei einer geotechnischen Entwurfsaufgabe Alternativen einzubeziehen und Optimierung vorzunehmen.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

- können ihr Wissen und ihre Fähigkeiten nutzen, um selbständig für eine gegebene Baugrundsituation Konstruktionen zu entwerfen, zu bemessen und hinsichtlich vielfältiger Aspekte (Wirtschaftlichkeit, Bauablauf, Umwelt, Ästhetik, ...) zu diskutieren.
- sind in der Lage, eigene Schlussfolgerungen auf aktuellem Stand von Forschung und Anwendung zu vermitteln.
- können gegenüber Studienkollegen und Lehrenden Lösungen sach- und fachbezogen auf wissenschaftlichem Niveau verteidigen.
- ermöglichen durch ihr Sozialverhalten bei der Bearbeitung in Kleingruppen zielgerichtete Bearbeitungsprozesse.

Besondere Methodenkompetenz

Die Studierenden ...

- können auf der Grundlage einer Baugrundbeschreibung geotechnische Problemstellungen mit konstruktiver Ausrichtung (Stützkonstruktionen, Verbauten, u.ä.) strukturieren, systematisieren und auf dieser Grundlage verschiedenen Lösungsmöglichkeiten entwickeln, vergleichen und bewerten.
- sind in der Lage, ihre Planungen und deren Folgen in Bezug auf gesellschaftliche Erwartungen zu reflektieren und ihr berufliches Handeln weiterzuentwickeln.

Lehrinhalte

- Festigung der Grundlagen der Geotechnik
- Prinzipien der aktuellen Normung
- Grundlagen und Vorgehensweisen zur Erstellung und Bewertung Geotechnischer Berichte
- Vertiefung der Erddrucktheorien unter Berücksichtigung besonderer Randbedingungen und

räumlicher Situationen

- Vertiefung und Erweiterung der Kenntnisse zu Berechnungsmethoden zum Nachweis einer Gesamtstandsicherheit
- Entwurfsprinzipien und Nachweisverfahren für konstruktive Böschungssicherungen mit Bewehrungselementen
- Entwurfsprinzipien und Nachweisverfahren für verankerte Baugrubensicherungen

Literatur

- Schmidt, H.-H., Buchmaier, R., Vogt-Breyer, C. (2017): "Grundlagen der Geotechnik", Springer.
- Ziegler, M. (2012): "Geotechnische Nachweise nach EC 7 und DIN 1054", Ernst & Sohn.
- Möller, G. (2012): "Geotechnik", Ernst & Sohn.
- Kuntsche, K. (2016): "Geotechnik" Springer Vieweg.
- Grundbautaschenbuch (2018), Teil 1 bis 3, Ernst & Sohn.
- Empfehlungen des Arbeitskreises "Baugruben" (EAB) (2012), Ernst & Sohn.
- Empfehlungen des Arbeitsausschusses "Ufereinfassungen", Häfen und Wasserstraßen (EAU) (2012), Ernst & Sohn.
- Empfehlungen für Bewehrungen aus Geokunststoffen (EBGEO) (2010), Ernst & Sohn.
- Hettler, Triantafyllidis, Weißenbach (2018) Baugruben, Berechnungsverfahren, Ernst & Sohn.

Lehrveransto	ıltung	Planen und Entwerfen im Tunnelbau		
Dozent:	Prof. DiplIng. Fritz Grübl			
Lernziele / Kompetenzen				

Lernziele / Kompetenzen

Fachkompetenz ("Wissen und Verstehen" sowie "Einsatz, Anwendung und Erzeugung von Wissen")

Die Studierenden ...

- haben ein tiefgreifendes Verständnis für das Entwerfen und Gestalten von Bauwerken unter Taae.
- kennen grundsätzliche Besonderheiten von untertägigen Hohlraumbauten und erkennen, auf welchen Grundlagen eine Tunnelbaukonstruktion aufbaut (Regellichtraum, statische Erfordernisse, Erfordernisse aus dem Ausbau und Betrieb).
- kennen den Aufbau und die Systematik der erforderlichen statischen Nachweise im Tunnelbau.
- kennen die Besonderheiten der verschiedenen Tunnelbauverfahren und können deren Eignung für verschiedene Gegebenheiten beurteilen.
- kennen die Grundzüge der Bemessung und können überschlägige Bauwerksdimensionierung durchführen.
- können das besondere Lastabtragungsverhaltens von Tunnelbauwerken analysieren.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

• können ihre Kompetenzen für einen selbständig und in Kleingruppen anzufertigen Entwurf einer Tunnelbaumaßnahme nutzen, bei dem vielfältige Aspekte der Herstellung als auch des späteren Betriebs zu berücksichtigen sind.

Besondere Methodenkompetenz

Die Studierenden ...

 können auf der Grundlage vorgegebener Bedingungen eine tunnelbautechnische Aufgabe strukturieren, systematisieren und auf dieser Grundlage verschiedenen Lösungsmöglichkeiten entwickeln, vergleichen und bewerten.

Lehrinhalte

- Einführung in die Grundlagen der Tunnelbaukonstruktion
- Aufzeigen der Abläufe bei Planung und Entwurf von unterirdischen Bauwerken
- Festlegung der Geometrie des Ausbruchquerschnitts (Querschnittgestaltung)
- Darstellung der Einflüsse von äußeren und inneren Kräften auf den Querschnitt und des Spannungs- und Verformungszustandes
- Überschlägige Ermittlung der Belastungen
- Überschlägige Bemessung der Tunnelauskleidung und -sicherung
- Darstellung der Stahlbetoninnenschalen mit Abdichtung
- Analyse bestehender Bauwerke und Vortriebsverfahren

- Der Felsbau Tunnelbau von Leopold Müller Salzburg, Enke Verlag Stuttgart 1978.
- Handbuch des Tunnel- und Stollenbaus; Band 1: Konstruktionen und Verfahren, VGE Verlag Glückauf GmbH Essen, 2004
- Handbuch des Tunnel- und Stollenbaus; Band 2:Grundlagen und Zusatzleistungen für Planung und Ausführung, VGE Verlag Glückauf GmbH Essen, 2004
- Maschineller Tunnelbau im Schildvortrieb, B. Maidl u.a., Verlag Ernst & Sohn 2011 Berlin.
- Empfehlungen für den Entwurf, die Herstellung und den Einbau von Tübbingringen; Taschenbuch für den Tunnelbau 2014; Verlag Ernst & Sohn Berlin 2014
- Rohrvortrieb Band 1 und Band 2, Statik, Planung, Ausführung; Dipl.-Ing. Max Scherle, Bauverlag GmbH, Wiesbaden Berlin.
- Microtunnelbau, 4. Internationales Symposium Microtunnelbau, München, 1998; Herausgeber Messe München International A.A.Balkema, Rotterdam.
- HOAI Textausgabe 2013, Bauverlag GmbH, Wiesbaden und Berlin.

Hochschule für Technik Stuttgart							
Modulno	Modulname Grundbau mit Spezialtiefbau						
Studienga	ng	Geotechnik/Tunnelbau					
Abschluss		Master of En	gineering				
Verantwo	rtliche	Prof. DrIng.	Carola Vogt	t-Breyer			
Modulnum	nmer	-					
СР	SWS	Workload	Präsenz	Selbststudium		Dauer	
5	4	150 60 90 ⊠ 1 Semester □ 2 Semester					
Modultyp		Studienabschnitt (nur bei Bachelor-Studiengängen)		Angebot Beginn		inn	
Pflicht Winte		Wintersem Sommerse					
Zugeordne	Zugeordnete Modulteile						
Nr.	Tite	l Lehrveransta	Lehrform	СР	SWS	Sem- ester	
1	Grundbau mit Spezialtiefbau			Vorlesung Integrierte Übung	5	4	2 VZ, 4 TZ

- stärken ihre Kompetenzen zur strukturierten Lösung geotechnischer Probleme aus dem erweiterten Bereich des Grundbaus und des Spezialtiefbaus, in dem spezielle Kenntnisse vermittelt werden.
- sind in der Lage Rechenmodelle und Verfahre zu analysieren und zu bewerten.
- können Ihre Kenntnisse auf konkrete Problemstellung des Grundbau und Spezialtiefbaus anwenden.
- können Lösungsvorschläge bewerten und eigene Ergebnisse verteidigen.

Weitere Modulinformationen				
Voraussetzur Teilnahme	ngen für die	keine		
Verwendbark anderen Stud	eit des Moduls in lengängen	keine		
Prüfungsvorle	eistung	Referat Benotete schriftliche Studienarbeit		
Prüfungsleistung		Benotete schriftliche Studienarbeit		
Zusammense	tzung der Endnote	Endnote der benoteten schriftliche Studienarbeit		
Sonstige Informationen		keine		
Letzte Aktual	isierung	12.11.2019		
Lehrveranstaltung		Grundbau mit Spezialtiefbau		
Dozent(in):	Prof. DrIng. Carola Vogt-Breyer, DrIng. Thomas Voigt			
Lernziele / Ko	Lernziele / Kompetenzen			

Die Studierenden ...

- sind in der Lage, den Einfluss von strömendem Grundwasser rechnerisch zu berücksichtigen und vorliegende Messreihen zielgerichtet zu interpretieren.
- können Lösungen für die Herstellung und die Dimensionierung von Bauwerken im offenen Wasser entwickeln.
- können Modelle zur Abbildung der Interaktion zwischen Baugrund und Bauwerk analysieren, bewerten und zielführend anwenden.
- kennen eine Vielzahl von Verfahren und Geräten des Grundbaus und Spezialtiefbaus, können diese Verfahren in ihrer Eignung für gegebene Situationen bewerten und können dieses Wissen einsetzen, um Lösungen für geotechnische Aufgaben zu entwickeln.
- kennen Verfahren, um benachbarte Bestandsgebäude zu sichern und können hierzu Tragfähigkeits- und Verformungsanalysen durchführen, um die Standsicherheit und die Gebrauchstauglichkeit zu beurteilen.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

- können ihr Wissen und ihre Fähigkeiten nutzen, um selbständig gegebene Problemstellungen zu analysieren, zu lösen und Optimierungen zu entwickeln.
- können gegenüber Studienkollegen und Lehrenden Lösungen sach- und fachbezogen verteidigen.
- ermöglichen durch ihr Sozialverhalten bei der Bearbeitung in Kleingruppen zielgerichtete Bearbeitungsprozesse.

Besondere Methodenkompetenz

Die Studierenden ...

- können Problemstellungen des Grundbaus und des Spezialtiefbaus strukturieren, systematisieren und auf dieser Grundlage verschiedene Lösungsmöglichkeiten vergleichen und bewerten.
- sind in der Lage, die mit den Verfahren verbunden Umweltgefährdungen einzuschätzen, auf ähnliche Situationen zu übertragen und sind sich der Verantwortung im Umgang mit den Schutzgütern Boden und Grundwasser bewusst.

Lehrinhalte

- Methoden und Berechnungsverfahren zum Bauen im Grundwasser und im offenen Wasser
- Berechnungsverfahren und Modelle zur Erfassung der Interaktionen zwischen Bauwerken und Baugrund
- Berechnung und Bemessung von Pfählen und Pfahlsystemen bei grundbauspezifischen Einwirkungen
- Herstellverfahren des Spezialtiefbaus (Anker, Pfähle, Spundwände, Verfahren zur Baugrundverbesserung, Injektionen, Baugrundvereisung), Gerätetechnik und Einsatzbereiche
- Entwurf und Bemessung von Unterfangungen

Literatur

 Schmidt, H.-H., Buchmaier, R., Vogt-Breyer, C. (2017): "Grundlagen der Geotechnik", Springer.

- Ziegler, M. (2012): "Geotechnische Nachweise nach EC 7 und DIN 1054", Ernst & Sohn.
- Möller, G. (2012): "Geotechnik", Ernst & Sohn.
- Kuntsche, K. (2016): "Geotechnik" Springer Vieweg.
- Grundbautaschenbuch (2018), Teil 1 bis 3, Ernst & Sohn.
- Empfehlungen des Arbeitskreises "Baugruben" (EAB) (2012), Ernst & Sohn.
- Empfehlungen des Arbeitsausschusses "Ufereinfassungen", Häfen und Wasserstraßen (EAU) (2012), Ernst & Sohn.

Hochschule für Technik Stuttgart							
Modulname		Tunnelbau 1					
Studienga	ing	Geotechnik/T	unnelbau				
Abschluss		Master of Engineering					
Verantwortlicher		Prof. DiplIng. Fritz Grübl					
Modulnun	nmer	-					
СР	SWS	Workload	Präsenz	Selbststudium		Dauer	
5	4	150	60	90		⊠ 1 Semest □ 2 Semest	_
Modultyp		Studienabschnitt (nur bei Bachelor-Studiengängen)			Angebot Beginn		
Pflicht				☐ Wintersemester☒ Sommersemester			
Zugeordnete Modulteile							
Nr.	Titel Lehrveranstaltung		Lehrform	СР	SWS	Sem- ester	
1	Bauve	Bauverfahren im Tunnelbau		Vorlesung Übung	3	2	1 VZ, 3 TZ
3	Mess- und Beobachtungsmethoden Grundbau und Tunnelbau		Vorlesung Labor	2	2	1 VZ, 3 TZ	

- können anhand von Darstellungen und Erläuterungen die unterschiedlichen Verfahren und Methoden des Tunnelbaus verstehen.
- können die Anwendungsbereiche für die Tunnelbauverfahren "universeller Tunnelvortrieb" anwenden.
- können die Mess- und Beobachtungsmethoden und die zur Verfügung stehenden Messgeräte im Grundbau und Tunnelbau verstehen und anwenden.

Weitere Modulinformationen		
Voraussetzungen für die Teilnahme	keine	
Verwendbarkeit des Moduls in anderen Studiengängen	keine	
Prüfungsvorleistung	Bauverfahren im Tunnelbau: Referat	
Prüfungsleistung	Bauverfahren im Tunnelbau: Benotete schriftliche Studienarbeit; Bauverfahren im Tunnelbau + Mess- und Beobachtungsmethoden Grundbau und Tunnelbau: Gemeinsame Klausur 90 Min.	
Zusammensetzung der Endnote	Klausur: 80 % Benotete schriftliche Studienarbeit: 20 %	
Sonstige Informationen	keine	
Letzte Aktualisierung	15.11.2019	

Lehrveranstaltung		Bauverfahren im Tunnelbau
Dozent(in):	Prof. DiplIng. Fritz Grübl	
Lernziele / Komnetenzen		

Die Studierenden ...

- haben ein vertieftes Verständnis der Verfahren und Methoden des Tunnelbaus.
- können für vorgegebene Baugrundverhältnisse und Aufgabenstellungen das geeignete Vortriebsverfahren auch unter schwierigen Verhältnissen auswählen.
- verstehen die Besonderheiten eines Vortriebsverfahrens bezüglich Geologie und Hydrologie.
- können den Aufbau und die Besonderheiten eines Bauvertrages im Tunnelbau nachvollziehen.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

- können (unter Anleitung) selbständig arbeiten und können den eigenen Arbeitsprozess effektiv organisieren.
- können eigene Wissenslücken erkennen und schließen, können relevante Literatur effizient recherchieren und können sich kritisch mit wissenschaftlichen Texten auseinandersetzen.
- sind in der Lage, fachbezogen zu argumentieren und sich fachbezogen auszutauschen.
- sind in der Lage, eigene Schlussfolgerungen auf aktuellem Stand von Forschung und Anwendung zu vermitteln und sich fachbezogen auf wissenschaftlichem Niveau auszutauschen.

Besondere Methodenkompetenz

Die Studierenden ...

- können sich selbständig Wissen und Können aneignen sowie selbständig forschungs- oder anwendungsorientierte Projekte durchführen.
- können mit hoher Komplexität umgehen und Entscheidungen selbständig fällen.
- können neues Wissen in größere Kontexte einordnen.
- können wissenschaftliche Erkenntnisse selbständig und kritisch analysieren.

Lehrinhalte

- Vortriebs- und Sicherungsverfahren mit Gegenüberstellung
- Vertragsgestaltung bei Tunnelbaumaßnahmen
 - Vertragsformen, Leistungsverzeichnis und Vorbemerkungen
 - Gebirgsklassifizierung, Vortriebsklassifizierung
 - Abrechnung der Tunnelbauleistungen
- Tunnelbauverfahren
 - Maschinenvortriebe mit flüssigkeitsgestützter Ortsbrust
 - Konventioneller Vortrieb
- Bauhilfsmaßnahmen
 - Besonderheiten der Druckluftwasserhaltung
 - Baugrundverbesserungen durch Injektionen
 - Vereisungstechnik

• Analyse von Tunnelbauprojekten

Literatur

- Tunnelbau im Sprengvortrieb von B. Maidl; Springer-Verlag, Berlin 1997;
 ISBN 978-3-642-64526-6
- Der Felsbau Tunnelbau von Leopold Müller Salzburg, Enke Verlag Stuttgart 1978, ISBN 3 432 84031-4
- Maschineller Tunnelbau im Schildvortrieb von B. Maidl, M. Herrenknecht, U. Maidl und G. Wehrmayer; Verlag Ernst & Sohn Berlin 2011; ISBN 978-3-433-02948-0
- Schildvortrieb mit Tübbingausbau; GbR Veröffentlichungen Unterirdisches Bauen, Hamburg 2009; ISBN 978-3-00-025435-2

Lehrveranstaltung	Mess- und Beobachtungsmethoden Grundbau und Tunnelbau			
Dozent(in): Prof.	Prof. DiplIng. Fritz Grübl, DiplMath. Ulrich Völter			

Lernziele / Kompetenzen

Fachkompetenz ("Wissen und Verstehen" sowie "Einsatz, Anwendung und Erzeugung von Wissen")

Die Studierenden ...

- können die Erfordernisse von Messungen und Kontrollen bei Grund- und Tunnelbaumaßnahmen (Beobachtungsmethode) verstehen und umsetzen.
- kennen die verschiedenen Mess- und Beobachtungsmethoden im Grund- und Tunnelbau und können sie anwenden.
- kennen die Grundlagen der verschiedenen Messtechniken.
- kennen die verschiedenen Mess- und Beobachtungsverfahren bei Grund- und Tunnelbaumaßnahmen anhand beispielhafter Bauprojekte und können sie bei vergleichbaren Projekten anwenden.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

- können (unter Anleitung) selbständig arbeiten und können den eigenen Arbeitsprozess effektiv organisieren.
- können eigene Wissenslücken erkennen und schließen, können relevante Literatur effizient recherchieren und können sich kritisch mit wissenschaftlichen Texten auseinandersetzen.
- sind in der Lage, fachbezogen zu argumentieren und sich fachbezogen auszutauschen.
- sind in der Lage, eigene Schlussfolgerungen auf aktuellem Stand von Forschung und Anwendung zu vermitteln und sich fachbezogen auf wissenschaftlichem Niveau auszutauschen.

Besondere Methodenkompetenz

- können sich selbständig Wissen und Können aneignen sowie selbständig forschungs- oder anwendungsorientierte Projekte durchführen.
- können mit hoher Komplexität umgehen und Entscheidungen selbständig fällen.
- können neues Wissen in größere Kontexte einordnen.
- können wissenschaftliche Erkenntnisse selbständig und kritisch analysieren.

Lehrinhalte

- Grundlagen
 - Allgemeine Grundlagen der Mess- und Beobachtungstechnik
 - Notwendigkeit von Messungen
 - Arten der Messungen (Verformungsmessungen, Kraft-/ Spannungsmessungen, Grundwassermessungen)
- Geodätische Vermessung
 - Bezugssysteme (Koordinatensysteme)
 - Messgenauigkeit, Statistik, Ausgleichsberechnung
 - Messmethoden und Geräte für Verschiebungs- und Setzungsm.
 - Messungen der Spannungen und Verformungen
 - Verformungsmessungen über die Baugrundtiefe
- Messungen an betroffenen Gebäuden (Beweissicherungsverfahren)
- Geodätische Messungen, photogrammetrische Methoden
- Hinweise zur Messung von Grundwasserbewegungen
- Aufstellen von Messprogrammen (Messquerschnitte)
- Temperaturmessungen bei Vereisungen
- Vortriebsvermessung im Tunnelbau
- Entwurf eines Messkonzeptes ausgewählte Grundbauprojekte
- Ausarbeiten der Messverfahren, Beschreibung der Messsysteme und des Ablaufs der Messungen (in Gruppen zu 3 bis 4 Studierenden)

- Produktinformationen der Fa. Glötzl, Gesellschaft für Baumesstechnik mbH, 76287 Rheinstetten, www.gloetzl.de
- Geotechnische Messgeräte und Feldversuche im Fels von Edwin Fecker, Enke Verlag Stuttgart, 1997; ISBN 3 432 29911 7
- Vortriebsvermessung; F. Grübl. Taschenbuch für den Tunnelbau 1994 Verlag Glückauf GmbH, Essen

Hochschule für Technik Stuttgart							
Modulname		Tunnelbau 2					
Studiengang		Geotechnik/T	unnelbau				
Abschluss		Master of En	gineering				
Verantwo	rtlicher	Prof. DiplIng	g. Fritz Grüb	I			
Modulnum	nmer	-					
СР	SWS	Workload	Präsenz	Selbststudium		Dauer	
6	6	180 90 90			⊠ 1 Semester □ 2 Semester		
Modultyp		Studienabschnitt (nur bei Bachelor-Studiengängen)		Angebot Beginn			
Pflicht				☑ Wintersemester☐ Sommersemester			
Zugeordne	ete Modult	teile					
Nr.	Tite	itel Lehrveranstaltung		Lehrform	СР	SWS	Sem- ester
1	Son	Sonderbauverfahren im Tunnelbau		Vorlesung Übung	2	2	2 VZ, 4 TZ
2	Tunnelvortriebsmaschinen		Vorlesung Übung	2	2	2 VZ, 4 TZ	
3	Baumaschinen und Baubetrieb im konventionellen Tunnelbau		Vorlesung Übung	2	2	2 VZ, 4 TZ	

- kennen die Anwendungsbereiche für die Bauverfahren "Baugrundvereisung", "Druckluftvortriebe", "Anfahrvorgänge beim Maschinenvortrieb" und "Einschwimmtunnel" und können sie anwenden.
- erlangen detaillierte Kenntnisse von Tunnelvortriebsmaschinen und deren Funktionsweise.
- kennen die Besonderheiten von Baumaschinen im konventionellen Tunnelbau.
- können den Baubetrieb im konventionellen Tunnelbau selbstständig planen.

Weitere Modulinformationen	
Voraussetzungen für die Teilnahme	keine
Verwendbarkeit des Moduls in anderen Studiengängen	keine
Prüfungsvorleistung	Sonderbauverfahren im Tunnelbau: Referat, Studienarbeit
Prüfungsleistung	Klausur 120 Min.
Zusammensetzung der Endnote	Endnote der Klausur
Sonstige Informationen	keine
Letzte Aktualisierung	15.11.2019

Lehrveranstaltung		Sonderbauverfahren im Tunnelbau	
Dozent(in):	Dozent(in): Prof. DiplIng. Fritz Grübl		
Lernziele / Kompetenzen			

Die Studierenden ...

- kennen die besonderen Verfahren und Methoden des Bauens unter Tage.
- kennen die speziellen Bauverfahren im unterirdischen Hohlraumbau:
 - Druckluftvortrieb
 - Vereisuna
 - Einschwimmtunnel
 - Caissons
- sind in der Lage, ausgeführte Tunnelbaumaßnahmen zu analysieren.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

- können (unter Anleitung) selbständig arbeiten und können den eigenen Arbeitsprozess effektiv organisieren.
- können eigene Wissenslücken erkennen und schließen, können relevante Literatur effizient recherchieren und können sich kritisch mit wissenschaftlichen Texten auseinandersetzen.
- sind in der Lage, fachbezogen zu argumentieren und sich fachbezogen auszutauschen.
- sind in der Lage, eigene Schlussfolgerungen auf aktuellem Stand von Forschung und Anwendung zu vermitteln und sich fachbezogen auf wissenschaftlichem Niveau auszutauschen.

Besondere Methodenkompetenz

Die Studierenden ...

- können sich selbständig Wissen und Können aneignen sowie selbständig forschungs- oder anwendungsorientierte Projekte durchführen.
- können mit hoher Komplexität umgehen und Entscheidungen selbständig fällen.
- können neues Wissen in größere Kontexte einordnen.
- können wissenschaftliche Erkenntnisse selbständig und kritisch analysieren.

Lehrinhalte

- Besondere Vortriebs- und Sicherungsverfahren
 - Absenktunnel
 - Caissontunnel
 - Besonderheiten beim innerstädtischen Tunnelbau
- Bauhilfsmaßnahmen
 - Besonderheiten der Druckluftwasserhaltung
 - Baugrundverbesserungen durch Injektionen
 - Vereisungstechnik
- Belüftung

Literatur

• Der Felsbau – Tunnelbau von Leopold Müller – Salzburg, Enke Verlag Stuttgart 1978, ISBN 3

432 84031-4			
Lehrveranstaltung		Tunnelvortriebsmaschinen	
Dozent(in):	n): DrIng. Karin Bäppler, DrIng. Gerhard Lang		
I ernziele / Komnetenzen			

Die Studierenden ...

- kennen die Wirkungsweise und Funktionen von Tunnelvortriebsmaschinen (Mikrotunnelling bis Großvortriebsmaschinen).
- haben Kenntnisse über Einsatzbereiche und geotechnische Einsatzgrenzen der unterschiedlichen Maschinentypen.
- kennen die Maschinenkomponenten im maschinellen Tunnelvortrieb.
- können Leistungsermittlungen bei Tunnelvortriebsmaschinen selbstständig durchführen.
- sind in der Lage, baubetriebliche Erfordernisse beim Maschinenvortrieb zu erkennen und selbstständig zu planen.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

- können (unter Anleitung) selbständig arbeiten und können den eigenen Arbeitsprozess effektiv organisieren.
- können eigene Wissenslücken erkennen und schließen, können relevante Literatur effizient recherchieren und können sich kritisch mit wissenschaftlichen Texten auseinandersetzen.
- sind in der Lage, fachbezogen zu argumentieren und sich fachbezogen auszutauschen.
- sind in der Lage, eigene Schlussfolgerungen auf aktuellem Stand von Forschung und Anwendung zu vermitteln und sich fachbezogen auf wissenschaftlichem Niveau auszutauschen.

Besondere Methodenkompetenz

Die Studierenden ...

- können sich selbständig Wissen und Können aneignen sowie selbständig forschungs- oder anwendungsorientierte Projekte durchführen.
- können mit hoher Komplexität umgehen und Entscheidungen selbständig fällen.
- können neues Wissen in größere Kontexte einordnen.
- können wissenschaftliche Erkenntnisse selbständig und kritisch analysieren.

Lehrinhalte

- Geräte und Anlagen im maschinellen Tunnelbau
 - Definition der Tunnelvortriebsmaschinen gem. DAUB
 - Geotechnische Grundlagen für den maschinellen Tunnelvortrieb
- Vortriebstechnologien und ihre maschinentechnischen Komponenten
 - Erddruckschilde (EPB) (mit allen Komponenten)
 - Schilde mit flüssigkeitsgestützter Ortsbrust (Hydroschilde)
 - Hartgesteinstechnologie
 - Teilschnittmaschinen
 - Mikromaschinen (Rohrvorpressung)

- Nachläuferkonzepte und logistische Systeme
- Separations- und Bentonittechnologie

Literatur

- Maschineller Tunnelbau im Schildvortrieb von B. Maidl, M. Herrenknecht, U. Maidl und G. Wehrmayer; Verlag Ernst & Sohn Berlin 2011; ISBN 978-3-433-02948-0
- Schildvortrieb mit Tübbingausbau; GbR Veröffentlichungen Unterirdisches Bauen, Hamburg 2009; ISBN 978-3-00-025435-2
- Produktinformationen der Fa. Herrenknecht AG, 76287 Schwanau-Allmannsweiher, www.herrenknecht.de und anderer Baumaschinenhersteller
- Schildvortrieb im Tunnel und Stollenbau. G. Philipp, W. Schütz. Taschenbuch für den Tunnelbau 1986 und 1987 Verlag Glückauf GmbH, Essen
- Microtunnelbau, 4. Internationales Symposium Microtunnelbau, München, 1998; Herausgeber Messe München International A.A.Balkema, Rotterdam; ISBN 90 5410 950 5

Lehrveranstaltung		Baumaschinen und Baubetrieb im konventionellen Tunnelbau		
Dozent(in):	Prof. DiplIng. Fritz Grübl			
Lernziele / Kompetenzen				

Fachkompetenz ("Wissen und Verstehen" sowie "Einsatz, Anwendung und Erzeugung von Wissen")

Die Studierenden ...

- haben vertiefte Kenntnisse über Baumaschinen und -geräte, die im universellen Tunnelbau eingesetzt werden (Sprengvortrieb, Fräs- und Baggervortrieb, Lade- und Transportgeräte).
- kennen die Einsatzbereiche und der Kenndaten der unterschiedlichen Baugeräte anhand der Baugeräteliste (BGL) und können die Baugeräteliste anwenden.
- können Leistungsermittlungen von Tunnelbaumaschinen durchführen.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

- können (unter Anleitung) selbständig arbeiten und können den eigenen Arbeitsprozess effektiv organisieren.
- können eigene Wissenslücken erkennen und schließen, können relevante Literatur effizient recherchieren und können sich kritisch mit wissenschaftlichen Texten auseinandersetzen.
- sind in der Lage, fachbezogen zu argumentieren und sich fachbezogen auszutauschen.
- sind in der Lage, eigene Schlussfolgerungen auf aktuellem Stand von Forschung und Anwendung zu vermitteln und sich fachbezogen auf wissenschaftlichem Niveau auszutauschen.

Besondere Methodenkompetenz

- können sich selbständig Wissen und Können aneignen sowie selbständig forschungs- oder anwendungsorientierte Projekte durchführen.
- können mit hoher Komplexität umgehen und Entscheidungen selbständig fällen.
- können neues Wissen in größere Kontexte einordnen.
- können wissenschaftliche Erkenntnisse selbständig und kritisch analysieren.

Lehrinhalte

- Geräte und Anlagen im universellen Tunnelbau
 - Geräte für den Tunnelausbruch
 - Schutter- und Transportgeräte
 - Geräte für die Sicherung
- Fördertechnik (Bandanlagen, Gleisbetrieb, gleisloser Betrieb)
- Geräte zur Belüftung und Staubbehandlung, Druckluftanlagen

- Maschineller Tunnelvortrieb von B. Maidl, Verlag Ernst & Sohn 1995 Berlin; ISBN 3 433 01275 X
- Der Felsbau Tunnelbau von Leopold Müller Salzburg, Enke Verlag Stuttgart 1978, ISBN 3 432 84031-4
- Produktinformationen verschiedener Baumaschinenhersteller (CAT, Liebherr, Zeppelin)
- Baugeräteliste (BGL)

Hochschule für Technik Stuttgart							
Modulname Recht							
Studienga	ng	Geotechnik/T	unnelbau				
Abschluss		Master of En	gineering				
Verantwo	rtlicher	Prof. DiplIng	g. Fritz Grüb	I			
Modulnum	nmer	-					
СР	SWS	Workload	Präsenz	Selbststudium		Dauer	
3	3	90	45	45		⊠ 1 Semest □ 2 Semest	
Modultyp		Studienabschnitt (nur bei Bachelor-Studiengängen)			Angebot Beginn		
Pflicht				□ Wintersemester⊠ Sommersemester			
Zugeordne	Zugeordnete Modulteile						
Nr.	Titel Lehrveranstaltung		iltung	Lehrform	СР	SWS	Sem- ester
1	Öff	Öffentliches Baurecht		Vorlesung -	1	1	1 VZ, 1 TZ
2	Privates Baurecht, Unternehmens- und Vertragsrecht			Vorlesung -	2	2	1 VZ, 1 TZ

- sollen die Grundlagen des öffentlichen und privaten Baurechtes sowie des Unternehmensund Vertragsrechtes verstehen.
- sollen die wesentlichen Bestandteilen von Unternehmensgesellschaften und Arbeitsgemeinschaften vermittelt bekommen.

Weitere Modulinformationen				
Voraussetzungen für die Teilnahme	keine			
Verwendbarkeit des Moduls in anderen Studiengängen	Master Konstruktiver Ingenieurbau, Modul: Recht			
Prüfungsvorleistung	Studienarbeit, Referat			
Prüfungsleistung	Klausur 120 Min.			
Zusammensetzung der Endnote	Endnote der Klausur			
Sonstige Informationen	keine			
Letzte Aktualisierung	15.11.2019			
Lehrveranstaltung	Öffentliches Baurecht			
Dozent(in): DrJur. Hanspeter B	(in): DrJur. Hanspeter Benz			
Lernziele / Kompetenzen				

Fachkompetenz ("Wissen und Verstehen" sowie "Einsatz, Anwendung und Erzeugung von Wissen")

Die Studierenden ...

• verstehen die Grundlagen des öffentlichen Baurechts und der Verfahrensabläufe bei der Bauleitplanung, insbesondere Bauplanungsrecht und Bauordnungsrecht.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

- sind in der Lage, fachbezogen zu argumentieren und sich fachbezogen auszutauschen.
- erkennen (aufgrund von Diskussionen und der Zusammenarbeit mit anderen)
 Konfliktpotentiale und reflektieren/berücksichtigen unterschiedliche Sichtweisen/Interessen anderer Beteiligter.
- können das eigene (berufliche) Handeln unter ethisch-moralischen Gesichtspunkten hinterfragen.

Besondere Methodenkompetenz

Die Studierenden ...

- können ihr Wissen und ihre Kompetenz, Probleme im jeweiligen Fachgebiet zu lösen, erfolgreich anwenden.
- können selbständig Informationen sammeln und eigenständig weiterlernen.
- können neues Wissen in größere Kontexte einordnen.
- können verschiedene Lösungsmöglichkeiten systematisch und strukturiert anwenden, indem sie grundsätzliche Entscheidungshilfen und Checklisten an die Hand geliefert bekommen.

Lehrinhalte

- 1. Standort des öffentlichen Baurechts im Rechtssystem
- 2. Bauplanungsrecht
- Allgemeines
- Flächennutzungsplan
- Bebauungsplan
- Sicherung der Bauleitplanung
- Zulässigkeit von Bauvorhaben (planungsrechtlich)
- Erschließung und Erschließungsbeiträge
- Planfeststellung
- 3. Bauordnungsrecht
- Allgemeines
- Grundlagen und Anwendungsfälle der LBO-BW
- Baurechtliche Vorhaben, Verfahrensarten
- Arten von Baugenehmigungen
- sonstige baurechtliche Verfügungen
- Baulasten

Literatur

- Baugesetzbuch mit Verordnung über Grundsätze für die Ermittlung der Verkehrswerte von Grundstücken, Baunutzungsverordnung, Planzeichenverordnung, Raumordnungsgesetz, Raumordnungsverordnung, 42. Auflage, Beck-Texte im dtv
- Hauth, 2011: Vom Bauleitplan zur Baugenehmigung, Bauplanungsrecht, Bauordnungsrecht, Baunachbarecht, 10. Auflage, Beck Verlag
- Aktuelle Fassungen der LBO
- Stollmann, 2010: Öffentliches Baurecht, 7. Auflage, Beck Verlag

Lehrveranstaltung		Privates Baurecht, Unternehmens- und Vertragsrecht		
Dozent(in):	ent(in): DrJur. Hanspeter Benz			
Lernziele / Kompetenzen				

Fachkompetenz ("Wissen und Verstehen" sowie "Einsatz, Anwendung und Erzeugung von Wissen")

Die Studierenden ...

- sollen die Grundlagen des privaten Baurechts erfahren und verstehen.
- sollen die Kenntnisse zu den wesentlichen Bestandteilen von Ingenieur- und Bauverträgen erhalten.
- sollen die Grundlagen des Unternehmens- und Vertragsrechts erfahren und verstehen.
- sollen die Kenntnisse zu den wesentlichen Bestandteilen von Unternehmensgesellschaften und Arbeitsgemeinschaften erhalten.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

- sind in der Lage, fachbezogen zu argumentieren und sich fachbezogen auszutauschen.
- erkennen (aufgrund von Diskussionen und der Zusammenarbeit mit anderen) Konfliktpotentiale und reflektieren/berücksichtigen unterschiedliche Sichtweisen/Interessen anderer Beteiligter.
- können das eigene (berufliche) Handeln unter ethisch-moralischen Gesichtspunkten hinterfragen.

Besondere Methodenkompetenz

Die Studierenden ...

- können ihr Wissen und ihre Kompetenz, Probleme im jeweiligen Fachgebiet zu lösen, erfolgreich anwenden.
- können selbständig Informationen sammeln und eigenständig weiterlernen.
- können neues Wissen in größere Kontexte einordnen.
- können verschiedene Lösungsmöglichkeiten systematisch und strukturiert anwenden, indem sie grundsätzliche Entscheidungshilfen und Checklisten an die Hand geliefert bekommen.

Lehrinhalte

- Privates Baurecht, wesentliche Bestandteile von Ingenieur- und Bauverträgen, insbesondere ingenieur- und bauvertragliche Vorschriften aus den einschlägigen Rechts- und Regelwerken und deren Anwendung an einfachen Beispielen.
- Wesentliche Bestandteile von Unternehmensgesellschaften und Arbeitsgemeinschaften, Unternehmens- und Vertragsrecht.

Literatur

- Vygen, Jousson; 2011: Bauvertragsrecht nach VOB und BGB, 5. Auflage, Werner, Neuwied Verlag
- Ingenstau, Korbion, 2009: VOB Teile A und B Kommentar, 17. Auflage, Werner Verlag
- Wirth, Pfisterer, Schmidt, 2011: Privates Baurecht praxisnah, Vieweg Teubner Verlag
- Oberhausen, 2010:Praxisleitfaden Privates Baurecht, Grundlagen, Vertragsarten, Unternehmereinsatzformen, Beck Juristischer Verlag

Hochschule für Technik Stuttgart Wirtschaft und Management Modulname Geotechnik/Tunnelbau **Studiengang** Abschluss Master of Engineering Verantwortlicher Prof. Dipl.-Ing. Fritz Grübl Modulnummer CP **SWS** Workload Präsenz Selbststudium Dauer □ 1 Semester 4 4 120 60 60 ☐ 2 Semester Studienabschnitt Modultyp Angebot Beginn (nur bei Bachelor-Studiengängen) \boxtimes Wintersemester Pflicht Sommersemester Zugeordnete Modulteile Sem-CP Nr. **Titel Lehrveranstaltung** Lehrform **SWS** ester 2 VZ. Seminar 1 Projektmanagement 2 2 4 TZ Vorlesung 2 VZ, 2 Unternehmensführung 2 2 4 TZ

Modulziele:

- können die Aufgaben des Projektmanagements für Planungsprojekte des konstruktiven Ingenieurbaus und des Grundbau/Tunnelbaus anhand von theoretischen Herleitungen und Ausführungsbeispielen erlernen und anwenden.
- erfahren in der Unternehmensführung, wie ein Ingenieurbüro und ein Bauunternehmen aufgebaut und geführt werden und erhalten Einblick in die Kalkulation eines Auftrages. Dazu wird die Personalführung dargestellt. Anhand von Beispielen wird die Organisation und Führung einer Arbeitsgemeinschaft aufgezeigt.

Weitere Modulinformationen					
Voraussetzungen für die Teilnahme	keine				
Verwendbarkeit des Moduls in anderen Studiengängen	Master Konstruktiver Ingenieurbau: Lehrveranstaltung "Projektmanagement" Lehrveranstaltung "Unternehmensführung"				
Prüfungsvorleistung	Studienarbeit, Referat				
Prüfungsleistung	Klausur 120 Min.				
Zusammensetzung der Endnote	Endnote der Klausur				
Sonstige Informationen	keine				
Letzte Aktualisierung	15.11.2019				

Lehrveranstaltung		Projektmanagement	
Dozent(in):	DrIng. Jürgen Laukemper		
l ernziele / Komnetenzen			

Fachkompetenz ("Wissen und Verstehen" sowie "Einsatz, Anwendung und Erzeugung von Wissen")

Die Studierenden ...

- können die erforderlichen Anforderungen im Projektmanagement im Hinblick auf die praktische Anwendung auf Planungsprojekte des Konstruktiven Ingenieurbaus verstehen, und auf die Praxis anwenden.
- können komplexe Zusammenhänge der Steuerung eines Bauprojektes erklären und Zusammenhänge zur Ausführung herstellen.
- können neben den gängigen PM-Methoden und –verfahren die praktische Handlungsorientierung und sozialkompetentes Arbeitsverhalten anwenden.
- können anhand eines hohen Maßes an praktischem Know-how-Transfer Projektmanagement verstehen.
- sind hinsichtlich der sozio-dynamischen Prozesse in Projektgruppen und in deren Umfeld sensibilisiert, und können sich Klarheit über die notwendigen persönlichen Kompetenzen eines Projektmanagers verschaffen.
- sind in der Lage, neue Problemlösungen im Fachgebiet des Projektmanagements zu erarbeiten und können dabei auch Forschungsergebnisse einarbeiten.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

- können sich in neue Themenfelder in neue Themenfelder einarbeiten, bislang unbekanntes Wissen aneignen sowie weiterführende Lernprozesse eigenständig gestalten.
- können relevante Literatur effizient recherchieren.
- können sich kritisch mit wissenschaftlichen Texten auseinandersetzen.
- können auf Basis relevanter Informationen Position beziehen und Entscheidungen treffen.
- sind in der Lage, eigene Schlussfolgerungen auf aktuellem Stand von Forschung und Anwendung zu vermitteln und sich fachbezogen auf wissenschaftlichem Niveau auszutauschen.
- sind in der Lage, sich über alternative, theoretisch begründbare Problemlösungen auszutauschen.
- sind in der Lage, sowohl selbstständig als auch im Team zu agieren.

Besondere Methodenkompetenz

Die Studierenden ...

- können auch in neuen/unvertrauten Situationen ihr Wissen anwenden und erwerben die Kompetenz, Probleme im jeweiligen Fachgebiet zu lösen.
- können mit komplexen Aufgabenstellungen umgehen und Entscheidungen selbstständig fällen.
- können sich selbständig Wissen und Können aneignen sowie selbständig forschungs- oder anwendungsorientierte Projekte durchführen.

Lehrinhalte

Rückblick auf die Grundlagen des Projektmanagements, praktische Anwendung von PM-Methoden und –verfahren auf komplexe Planungsprojekte des Konstruktiven Ingenieurbaus anhand einer ausgewählten Projektaufgabe, Handlungsorientierung und sozialkompetentes Arbeitsverhalten.

Literatur

- Kochendörfer, Liebchen, Viering, 2010: Bau-Projekt-Management, 4. Auflage, Vieweg+Teubner Verlag
- Leimböck, Klaus, Hölkermann, 2011: Baukalkulation und Projektcontrolling, 12. Auflage, Vieweg+Teubner Verlag
- Greiner, Mayer, Stark, 2002: Baubetriebslehre Projektmanagement, 4. Auflage, Vieweg+Teubner Verlag
- Sommer, 2009: Projektmanagement im Hochbau, 3. Auflage, Springer Verlag, Berlin

Lehrveranstaltung		Unternehmensführung		
Dozent(in):	Prof. DrIng. Thomas Benz, Prof. DiplIng. Fritz Grübl			
Lernziele / Kompetenzen				

Fachkompetenz ("Wissen und Verstehen" sowie "Einsatz, Anwendung und Erzeugung von Wissen")

Die Studierenden ...

• können verstehen, wie ein Ingenieurbüro, ein Bauunternehmen und eine Arbeitsgemeinschaften als Unternehmen geführt werden.

Dabei wird ihnen im Einzelnen vermittelt:

- Ingenieurbüro:
 - Grundlagen der Projektverwaltung
 - Angebotserstellung für Ingenieurleistungen nach HOAI
 - Unternehmensstrategie und Budgetplanung
 - Nachkalkulation
- Bauunternehmen und Arbeitsgemeinschaft:
 - Aufbau und Organisation eines Bauunternehmens
 - Aufgaben der kaufmännischen Unternehmens- und Projektleitung
 - Angebotsbearbeitung, Vertragsverhandlungen
 - Eigenleistungen, Nachunternehmerleistungen
 - Abwicklung von Arbeitsgemeinschaften
 - Bilanzerstellung
 - Projektcontrolling
 - Personalführung

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

- können auf Basis relevanter Informationen Position beziehen und Entscheidungen treffen.
- können relevante Literatur effizient recherchieren und sich kritisch mit wissenschaftlichen Texten auseinandersetzen.
- sind in der Lage, sich über alternative, theoretisch begründbare Problemlösungen auszutauschen.
- sind in der Lage, sowohl selbstständig als auch im Team zu agieren.

- können das eigene (berufliche) Handeln unter ethisch-moralischen Gesichtspunkten hinterfragen.
- sind in der Lage, sozial und ethisch verantwortungsvoll zu handeln.

Besondere Methodenkompetenz

Die Studierenden ...

- können mit hoher Komplexität umgehen und Entscheidungen selbständig fällen.
- können sich selbständig Wissen und Können aneignen sowie selbständig forschungs- oder anwendungsorientierte Projekte durchführen.
- können wissenschaftliche Erkenntnisse selbständig und kritisch analysieren.

Lehrinhalte

- Honorarkalkulation für Ingenieurleistungen
- Personalführung in einem Ingenieurbüro
- Grundlagen der Projektverwaltung
- Unternehmensstrategien und Budgetplanung
- Angebotskalkulation für Ingenieurleistungen
- Grundlagen der Nachkalkulation
- Aufbau und Organisation eines Bauunternehmens
- Kaufmännische Unternehmens- und Projektleitung
- Angebotsbearbeitung und Vertragsverhandlungen
- Eigen- und Nachunternehmerleistungen
- Arbeitsgemeinschaften
- Personalführung in einer Baufirma und einer Arbeitsgemeinschaft

Literatur

- Hungenberg, Wulf, 2011: Grundlagen der Unternehmensführung, Springer Verlag, Berlin
- Berner, Kochendörfer, Schach, 2011: Grundlagen der Baubetriebslehre 1 (Baubetriebswirtschaft), 2. Auflage, Vieweg+Teubner Verlag
- Jacob, Stuhr, 2010: Kalkulieren im Ingenieurbau: Strategie Kalkulation Controlling, 2. Auflage, Vieweg+Teubner Verlag
- Keil, Martinsen, 2011: Kostenrechnung für Bauingenieure, 12. Auflage, Werner, Neuwied Verlag
- Axmann, 2011: Baubetrieb Baumanagement, Carl Hanser Verlag
- HOAI

Hochschule für Technik Stuttgart							
Modulno	Modulname Projekt 1						
Studienga	ng	Geotechnik/T	unnelbau				
Abschluss		Master of Eng	gineering				
Verantwo	rtliche	Prof. DrIng.	Thomas Be	nz (Geo)			
Modulnum	nmer	-					
СР	SWS	Workload	Präsenz	Selbststudium		Dauer	
4	2	120 30 90 ⊠ 1 Semester ☐ 2 Semester					
Modultyp		Studienabschnitt (nur bei Bachelor-Studiengängen)		Angebot Beginn		inn	
Pflicht					Wintersen Sommerse		
Zugeordne	ete Modult	:eile					
Nr.	Titel Lehrveranstaltung			Lehrform	СР	SWS	Sem- ester
1	Projekt 1			Seminar Übung	4	2	2 VZ, 2 TZ

- können interdisziplinär arbeiten, indem sie betreut eine umfassende und themenübergreifenden Projektarbeit bearbeiten.
- können ihre Kenntnisse zu praktischen Lösung anspruchsvoller Aufgaben der Geotechnik anwenden.
- können komplexe Gegebenheiten berücksichtigen, Varianten erarbeiten und diese in technischer und wirtschaftlicher Hinsicht beurteilen.
- haben die Fähigkeit, Abläufe und Informationsflüsse zu strukturieren.
- entwickeln soziale Kompetenzen für Führungsaufgaben.

Weitere Modulinformationen					
Voraussetzungen für die Teilnahme	keine				
Verwendbarkeit des Moduls in anderen Studiengängen	keine				
Prüfungsvorleistung	keine				
Prüfungsleistung	Benotete Projektarbeit mit Kolloquium / Referat				
Zusammensetzung der Endnote	Endnote Projektarbeit mit Kolloquium / Referat				
Sonstige Informationen	In der Regel bieten 2 Dozenten des Studiengangs fächerübergreifend ein Projekt an, welches durch die Studierenden arbeitsteilig in Projektteams bearbeitet wird. Die Projektteams organisieren und koordinieren ihre Arbeitsteilung selbst und bemühen sich um ein strukturiertes und methodisches Projektmanagement. Die Dozenten fungieren als Betreuer und Berater der				

		Projektteams. Das Projekt 1 erstreckt sich mit i.d.R. einem Kontakttermin pro Woche über das gesamte 2. Semester. Die Anzahl der Kontakttermine hängt von der Aufgabenstellung ab. Die Kontakttermine dienen zur Diskussion der erarbeiteten Lösungsansätze und zur Koordination bzw. Organisation der Projektarbeit. Das Projekt kann auch im Rahmen einer Exkursion erarbeitet werden. Etwa 1 – 2 Wochen vor Vorlesungsende präsentieren die Studierenden ihre Endergebnisse und geben einen entsprechenden schriftlichen Bericht ab.	
Letzte Aktualisierung		01.10.2019	
Lehrveranstaltung		Projekt 1	
Dozent(in):	Prof. DrIng. Thomas Benz (Geo), Prof. DiplIng. Fritz Grübl, Prof. DrIng. Caro Vogt-Breyer sowie weitere Dozenten und Lehrbeauftragte des Masterstudiengangs Geotechnik/Tunnelbau		

Lernziele / Kompetenzen

Fachkompetenz ("Wissen und Verstehen" sowie "Einsatz, Anwendung und Erzeugung von Wissen")

Die Studierenden ...

- können selbstständig eine Projektaufgabe aus der Praxis des Grund- und Tunnelbaus strukturieren, Planungsabläufe festlegen und Arbeitspakete in Gruppen mit intensiver Abstimmung untereinander bearbeiten.
- können eine Baugrunderkundung zielgerichtet planen, Versuchsprogramme festlegen und auswerten sowie Restrisiken bewerten.
- können eine geeignete Baustellenlogistik mit zugehörigen Abläufen, temporären Konstruktionen und dem zugehörigen Flächenbedarf erarbeiten.
- können temporäre und permanenten Bauwerke oder Sicherungsmaßnahmen unter Anwendung von geeigneten Rechenprogrammen dimensionieren und zeichnerisch darstellen.
- können Bauabläufe und zugehörige Massen in einen für das Gesamtprojekt geltenden Bauzeitenplan einarbeiten, Abhängigkeiten aufzeigen und Meilensteine definieren.
- können Auswirkungen auf die Umgebung ermitteln, bewerten und ggfs. geeignete Maßnahmen vorschlagen.
- können Teamarbeit im Projekt und in Teilgruppen organisieren, Bearbeitungszeiten sinnvoll nutzen und Ergebnisse nachvollziehbar darstellen und präsentieren.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

- leisten durch konstruktives und konzeptionelles Arbeiten in einer Projektstruktur mit ihrem Wissen und ihren individuellen Fähigkeiten einen Beitrag zu einem Gesamterfolg.
- finden in der Zusammenarbeit mit ihren Kommilitonen zielorientierte Arbeitsaufteilungen.
- nutzen ihre Kompetenzen aus den Fachbereichen der Wirtschaft, des Rechts und des Baumanagements für einen gesamtheitlichen Lösungsansatz.
- erkennen Konfliktpotentiale, reflektieren diese und entwickeln soziale Kompetenzen für Führungsaufgaben.

Besondere Methodenkompetenz

Die Studierenden ...

können für eine gegebene Situation unter Berücksichtigung vielschichtiger Aspekte, wie z.B.
Vorgaben der Planfeststellung, in eigenständiger Abstimmung einen Entwurf für eine
übergreifende Grund- und Tunnelbauaufgabe strukturieren, systematisieren und auf dieser
Grundlage unter praxisnaher Berücksichtigung komplexer Gegebenheiten
Lösungsmöglichkeiten entwickeln, vergleichen und bewerten.

Lehrinhalte

- Die Studierenden befassen sich mit einer realistischen Projektaufgabe aus dem Grund- und Tunnelbau (Praxisbeispiel)
- Vorhandene Unterlagen werden beschafft, ausgewertet, die gegebenen Bedingungen durch die vorhandenen Örtlichkeiten erfasst und berücksichtigt.
- Die Gruppe bearbeitet das Projekt als gemeinsame Aufgabe und schafft selbstständig passende Organisationsstrukturen (Planungsleiter, Planungsterminplan, Projektbesprechungen, Aufteilung der Projektarbeit in Untergruppen mit Spezialaufgaben)
- Für die Herstellung der Bauwerke sind Konzepte (Logistik, Baustelleneinrichtungen, Bauabläufe, Termine) zu entwickeln und sämtliche temporäre und permanente Konstruktionen sind zu entwerfen und überschlägig zu dimensionieren.
- Die Betreuer übernehmen die Aufgaben des Bauherrn und liefern die von den Studenten angeforderten Unterlagen.
- Die Planungsergebnisse werden fortlaufend miteinander abgestimmt und zu einer stimmigen Gesamtlösung zusammengeführt. Sie sind in einem Bericht, entsprechenden Plänen und Berechnungsergebnissen zu dokumentieren und in einer Präsentation vorzustellen.

Literatur

Abhängig vom Thema und der Aufgabenstellungen der Projektarbeit, s.a. Modulbeschreibung zu Grundbau mit Spezialtiefbau und Planen und Entwerfen in der Geotechnik

Hochschule für Technik Stuttgart							
Modulname		Projekt 2					
Studienga	ng	Geotechnik/T	unnelbau				
Abschluss		Master of En	gineering				
Verantwo	rtlicher	Prof. DrIng.	Thomas Be	nz (Geo)			
Modulnum	nmer	-					
СР	SWS	Workload	Präsenz	Selbststudium		Dauer	
8	6	240	240 90 150 ⊠ 1 Semester □ 2 Semester				
Modultyp		Studienabschnitt (nur bei Bachelor-Studiengängen)		Angebot Beginn			
Pflicht				□ Wintersemester ☑ Sommersemester			
Zugeordnete Modulteile							
Nr.	Titel Lehrveranstaltung			Lehrform	СР	SWS	Sem- ester
1		Projektarbeit		Seminar Übung	5	3	3 VZ, 5 TZ
2	Wahlpflichtfach		Vorlesung -	2	2	3 VZ, 5 TZ	
3	Geotechnik-Seminar		Seminar -	1	1	3 VZ, 5 TZ	

- sollen innerhalb eines Projektteams fächerübergreifend ein komplexes Projekt bearbeiten.
- sollen innerhalb eines Projektteams lernen, sich zu organisieren und zu koordinieren um ein strukturiertes und methodisches Erarbeiten der Projektziele zu erreichen.
- sollen das Arbeiten im Team und Zeitmanagement einüben.
- sollen Ihre Fachkompetenz in einem Fach Ihrer Wahl vertiefen. Dabei setzen sich bei der Festlegung des Wahlpflichtfachs mit ihren Berufszielen auseinander.
- sollen beim Geotechnikseminar aktuelle Ausführungsprojekte von externen Vertretern aus der Bauwirtschaft erfahren und anhand dargestellter Beispiele, insbesondere bei Großprojekten im Geotechnik- und Tunnelbau, lernen, wie auf Schwierigkeiten reagiert werden kann.

Weitere Modulinformationen				
Voraussetzungen für die Teilnahme	keine			
Verwendbarkeit des Moduls in anderen Studiengängen	keine			
Prüfungsvorleistung	Schein			
Prüfungsleistung	Projektarbeit: benotete Projektarbeit mit Kolloquium / Referat;			

		Wahlpflichtfach: individuell
Zusammens	etzung der Endnote	Endnote aus Projektarbeit und Wahlpflichtfach
Zusammensetzung der Endnote Sonstige Informationen		Projektbearbeitung: In der Regel bieten 2 Dozenten des Studiengangs fächerübergreifend ein Projekt an, welches durch die Studierenden arbeitsteilig in Projektteams bearbeitet wird. Die Projektteams organisieren und koordinieren ihre Arbeitsteilung selbst und bemühen sich um ein strukturiertes und methodisches Projektmanagement. Die Dozenten fungieren als Betreuer und Berater der Projektteams. Das Projekt 2 erstreckt sich mit i. M. einem Kontakttermin pro Woche über das gesamte 3. (TZ 5.) Semester. Die Kontakttermine dienen zur Diskussion der erarbeiteten Lösungsansätze und zur Koordination bzw. Organisation der Projektarbeit. Etwa 1 – 2 Wochen vor Vorlesungsende präsentieren die Studierenden ihre Endergebnisse und geben einen entsprechenden schriftlichen Bericht ab. Wahlpflichtfach: Der Prüfungsausschuss entscheidet semesterweise über Themen, Umfang und Art der Prüfung. Geotechnikseminar: In Zusammenarbeit mit der Universität Stuttgart werden durch führende Vertreter der Bauwirtschaft ausgeführte Projekte dargestellt und detailliert erläutert.
Letzte Aktualisierung		01.10.2019
Lehrveransto	altung	Projektarbeit
Dozent(in):	Prof. DrIng. Thomas Benz (Geo), Prof. DiplIng. Fritz Grübl, Prof. DrIng. Ca Vogt-Breyer sowie weitere Dozenten und Lehrbeauftragte des Masterstudiengangs Geotechnik/Tunnelbau	

Lernziele / Kompetenzen

Fachkompetenz ("Wissen und Verstehen" sowie "Einsatz, Anwendung und Erzeugung von Wissen")

Die Studierenden sollen erlernen wie anhand eines Projektes aus der Geotechnik und/oder dem Tunnelbau ...

- selbstständig in Teamarbeit die Arbeit koordiniert und abgestimmt wird.
- die erforderlichen Planungsabläufe zusammengestellt werden.
- ein Baugrund-Erkundungsprogramm erarbeitet wird.
- die Baugrundaufschlüssen und Versuchsergebnissen bewertet und beurteilt werden..
- selbstständig statische Berechnungen mit Anwendung von Rechenprogrammen einschließlich numerischer Verfahren ausgeführt werden.
- in einer Gruppe zusammen zu Arbeit, die Arbeiten aufzuteilen und zu einem Gesamtergebnis zusammen zu führen.
- die Gruppe zu organisieren, Zeitmanagement zu betreiben, und die Ergebnisse zu präsentieren und vorzutragen.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

- leisten durch konstruktives und konzeptionelles Arbeiten in einer Projektstruktur mit ihrem Wissen und ihren individuellen Fähigkeiten einen Beitrag zu einem Gesamterfolg.
- finden in der Zusammenarbeit mit ihren Kommilitonen zielorientierte Arbeitsaufteilungen.
- nutzen ihre Kompetenzen aus den Fachbereichen der Wirtschaft, des Rechts und des Baumanagements für einen gesamtheitlichen Lösungsansatz.
- erkennen Konfliktpotentiale, reflektieren diese und entwickeln soziale Kompetenzen für Führungsaufgaben.

Besondere Methodenkompetenz

Die Studierenden ...

können für eine gegebene Situation unter Berücksichtigung vielschichtiger Aspekte, wie z.B.
Vorgaben der Planfeststellung, in eigenständiger Abstimmung einen Entwurf für eine
übergreifende Grund- und Tunnelbauaufgabe strukturieren, systematisieren und auf dieser
Grundlage unter praxisnaher Berücksichtigung komplexer Gegebenheiten
Lösungsmöglichkeiten entwickeln, vergleichen und bewerten.

Lehrinhalte

- Den Studierenden wird eine Projektaufgabe aus dem Grund- und Tunnelbau gestellt (Praxisbeispiel)
- Begehung der Örtlichkeiten
- Die Gruppe bearbeitet das Projekt gemeinsam und muss sich zu Beginn der Projektbearbeitung organisieren (Planungsleiter, Planungsterminplan, Projektbesprechungen, Aufteilung der Projektarbeit in Untergruppen mit Spezialaufgaben)
- Der Ablauf der Projektbearbeitung orientiert sich an den Planungsphasen der HOAI (Grundlagenermittlung, Vorplanung, Entwurf, Ausführungsplanung sowie Baugrunderkundung und -beurteilung)
- Die Betreuer übernehmen die Aufgaben des Bauherren und liefern die von den Studenten angeforderten Unterlagen
- In Planungsbesprechungen wird die Gruppe durch die Bearbeiter der Unteraufgaben informiert
- Die Planungsleitung stellt die einzelnen Planungsergebnisse zusammen und erarbeitet das Entwurfsheft sowie die Präsentation
- Vorstellung, Diskussion und Dokumentation der Ergebnisse

Literatur

Abhängig vom Thema und der Aufgabenstellungen der Projektarbeit

Lehrveranstaltung		Wahlpflichtfach		
Dozent(in):	: individuell			
Lernziele / Kompetenzen				

Fachkompetenz ("Wissen und Verstehen" sowie "Einsatz, Anwendung und Erzeugung von Wissen")

Die Studierenden ...

• können Einblicke gewinnen in ein weiteres Aufgabengebiet Ihrer Wahl und Neigung und

damit ihren Blickwinkel vergrößern.

 setzen sich bei der Auswahl des Wahlpflichtfaches nochmals mit ihren Berufszielen auseinander.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

• können ihre Fachkompetenz vertiefen und insbesondere auch ihre Teamfähigkeit verbessern.

Ggf. besondere Methodenkompetenz

individuell

Lehrinhalte

individuell

Literatur

individuell

Lehrveranstaltung

Geotechnik-Seminar

Dozent(in):

Prof. Dr.-Ing. Carola Vogt-Breyer, Prof. Dr.-Ing. Thomas Benz; Vertreter der Bauwirtschaft

Lernziele / Kompetenzen

Fachkompetenz ("Wissen und Verstehen" sowie "Einsatz, Anwendung und Erzeugung von Wissen")

Die Studierenden sollen aus den dargestellten Projekten ...

- aktuelle Baumaßnahmen verstehen und dort gemachte Erfahrungen verinnerlichen.
- eine Zusammenfassung erarbeiten.
- Rückschlüsse und Verbesserungsmöglichkeiten erarbeiten.
- ihre Ergebnisse in Kurzvorträgen darstellen.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

- können Anforderungen und Selbstverständnis der eigenen fachlichen und beruflichen Rolle reflektieren und die Auswirkungen ihres beruflichen Handelns für Natur und Gesellschaft abschätzen.
- sind in der Lage, sich über alternative, theoretisch begründbare Problemlösungen auszutauschen.

Besondere Methodenkompetenz

Die Studierenden ...

• können wechselseitige Bezüge zwischen Wissen und dessen (praktischer Anwendung) herstellen.

Lehrinhalte

Aufzeigen von aktuellen in- und ausländischen Projekten aus dem Grund- und Tunnelbau

Literatur

_

Hochschule für Technik Stuttgart								
Modulname		Master-Thesis						
Studiengang		Geotechnik/Tunnelbau						
Abschluss		Master of Engineering						
Verantwortlicher		Prof. DrIng. Thomas Benz (Geo)						
Modulnummer		-						
СР	SWS	Workload	Präsenz	Selbststudium	Dauer			
22	0	660	0	660	□ 1 Semester □ 2 Semester			
Modultyp		Studienabschnitt (nur bei Bachelor-Studiengängen)			Angebot Beginn			
Pflicht					\boxtimes			
Zugeordnete Modulteile								
Nr. Titel		l Lehrveranstaltung		Lehrform	СР	SWS	Sem- ester	
1	Master-Thesis		Seminar -	22	0	3 VZ, 5 TZ		

- können innerhalb einer vorgegebenen Frist ein anspruchsvolles Problem aus dem Themenbereich des Studiengangs unter Berücksichtigung und Anwendung aktueller Methoden der Geotechnik nach wissenschaftlichen Kriterien bearbeiten. Dabei wenden Sie die im Masterstudium erworbenen Fach- und Methodenkompetenzen zielgerichtet an.
- können in einem abschließenden hochschulöffentlichen Kolloquium die Kernthesen und Ausarbeitungen ihrer Masterarbeit den unmittelbar Beteiligten und Interessierten vorstellen.

Weitere Modulinformationen					
Voraussetzungen für die Teilnahme	keine				
Verwendbarkeit des Moduls in anderen Studiengängen	keine				
Prüfungsvorleistung	keine				
Prüfungsleistung	Master-Thesis, Referat (20 Min.)				
Zusammensetzung der Endnote	Schriftliche Ausarbeitung 70 %, Präsentation 30 %				
Sonstige Informationen	Die Ausgabe des Themas erfolgt durch einen Professor oder Lehrbeauftragten des Studiengangs (Erstbetreuer/in). Die Studierenden können Themenwünsche äußern. Ein Anspruch auf Berücksichtigung der Themenwünsche besteht nicht.				
	Betreut werden die Studierenden von zwei Betreuer/innen, wobei der Erstbetreuende immer Professor oder Professorin des Studienganges ist, der Zweitbetreuende von einer anderen Hochschule, Forschungseinrichtung oder der Industrie sein kann.				

		Die Betreuer/innen stehen während der gesamten Bearbeitungszeit beratend zur Verfügung.	
		Für die Bearbeitung stehen im Vollzeitstudiengang 4 Monate Bearbeitungszeit, im Teilzeitstudiengang 6 Monate zur Verfügung.	
Letzte Aktualisierung		01.10.2019	
Lehrveranstaltung		Master-Thesis	
Dozent(in):	Alle Dozenten des Masterstudiengangs Geotechnik/Tunnelbau		

Lernziele / Kompetenzen

Fachkompetenz ("Wissen und Verstehen" sowie "Einsatz, Anwendung und Erzeugung von Wissen")

Die Studierenden ...

- können eine geotechnische Aufgabenstellung erfassen und diese im vorgegebenen Zeitrahmen strukturiert abarbeiten.
- können ihre Arbeitshypothesen verifizieren bzw. ggf. falsifizieren und daraus abgeleitet, weiterführende Untersuchungen planen, umsetzen und evaluieren.
- können ihre Ergebnisse wissenschaftlich kritisch diskutieren und in Bezug zum Stand der Technik und Wissenschaft setzen.
- können ihre Ergebnisse in schlüssiger Form schriftlich (in ihrer Maser Thesis) und als Präsentation (für die Verteidigung der Arbeit) darlegen.

Überfachliche Kompetenz ("Sozialkompetenz" und "Selbstkompetenz")

Die Studierenden ...

- können ihre Sozialkompetenz durch die intensive Kommunikation mit ihren Betreuer/innen, und je nach Themenstellung eingebundenen weiteren fachlich Beteiligten, z. B. Firmen, Büros und Behörden, verbessern.
- sind in der Lage ihre Kompetenzen im Präsentieren vor größerem Publikum und in der wissenschaftlichen Diskussion zu steigern. Hierzu zählen auch sicheres Auftreten und Kritikfähigkeit.

Besondere Methodenkompetenz

Die Studierenden ...

- können die Anwendung der jeweils angemessenen Arbeitsmethoden beherrschen, die sich an der konkreten Aufgabenstellung ausrichten. Aufgrund des Umfangs und der Komplexität der Arbeit sind sie in der Lage, ihre Fähigkeiten im Bereich der Geotechnik zielorientiert anzuwenden.
- sind fähig die Ergebnisse ihrer Masterthesis in Berichts-, Publikations- und Präsentationsform zielgruppenorientiert darzustellen.

Lehrinhalte

Themen und Aufgabenstellungen aus der Geotechnik und dem Tunnelbau.

Literatur

Abhängig vom Thema und der Aufgabenstellungen der Master-Thesis

• Richtlinie zur Anfertigung wissenschaftlicher Arbeiten, Fakultät B HFT Stuttgart, 2015