

Medios de Transmisión

Fórmulas para el examen

Curso 2006-07

18/01/2007

• Propiedades de $\delta(t)$

Convolución

• Propiedades de la convolución

- \diamond Conmutativa: x(t) * h(t) = h(t) * x(t)
- \diamond Asociativa: $(x(t) * h_1(t)) * h_2(t) = x(t) * (h_1(t) * h_2(t))$
- \diamond Distributiva respecto de la suma: $x(t)*(h_1(t)+h_2(t))=x(t)*h_1(t)+x(t)*h_2(t)$
- \diamond Elemento Unitario: $x(t) * \delta(t) = \delta(t) * x(t) = x(t)$

• Propiedades de los sistemas LTI

- \diamond No memoria $\iff h(t) = k\delta(t)$
- \diamond Invertibilidad $\iff h(t) * h_{inv}(t) = \delta(t)$
- \diamond Causalidad $\iff h(t) = 0$ para t < 0
- \diamond Estabilidad $\iff \int_{-\infty}^{\infty} |h(t)| dt < \infty$

• Transformada de Fourier

• Ecuación de análisis:
$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

- Ecuación de síntesis: $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$
- Transformada de Fourier de señales muestreadas: sea x(t) una señal contínua y sea $p(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT)$ un tren de deltas de periodo T. La TF de $x_p(t) = x(t)p(t)$ es

$$X_p(\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X\left(\omega - \frac{2\pi k}{T}\right)$$

- Función de autocorrelación de una señal determinista x(t)
 - Definición: $R_x(t) = x(t) * x^*(-t) = \int_{-\infty}^{\infty} x^*(\tau)x(t+\tau)d\tau$
 - Propiedades:

$$\circ R_x(0) = E_x$$

$$\circ R_x(t) = R_x^*(-t)$$

$$\circ |R_x(t)| \leq R_x(0)$$

$$\circ y(t) = x(t) * h(t) \Rightarrow R_y(t) = R_x(t) * R_h(t)$$

- Densidad espectral de energía
 - Definición $\Psi_x(\omega) = |X(\omega)|^2$
 - Propiedades:
 - $\circ \Psi_r(\omega)$ es una función real y positiva.
 - Si x(t) es real $\Rightarrow \Psi_x(\omega) = \Psi_x(-\omega) \ (\Psi_x(\omega) \text{ es simétrica})$
 - $\phi y(t) = x(t) * h(t) \Rightarrow \Psi_{y}(\omega) = \Psi_{x}(\omega)|H(\omega)|^{2}$
- Tren de pulsos PAM

$$s(t) = \sum_{k=-\infty}^{\infty} I_k p(t-kT), \quad I_k \in \mathcal{A} = \{A_i = 2i+1-M, \quad i = 0, \dots, M-1\}$$

Pulsos de Nyquist

$$p(t) = \frac{sen\left(\frac{\pi t}{T}\right)}{\frac{\pi t}{T}}$$

• Función de autocorrelación de una señal real aleatoria x(t):

$$R_x(\tau) = E[x(t)x(t+\tau)]$$

- Densidad espectral de Potencia de una señal aleatoria x(t)

$$G_x(\omega) = \int_{-\infty}^{\infty} R_x(\tau) e^{-j\omega\tau} d\tau$$

$$R_x(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G_x(\omega) e^{j\omega\tau} d\omega$$

- Transmisión de señales binarias en ruido gaussiano
 - Probabilidad de error general:

$$P_e = Q\left(\frac{a_0 - a_1}{2\sigma_o}\right)$$

donde a_0 y a_1 son las observaciones a la salida del filtro en ausencia de ruido y σ_o^2 es la potencia del ruido a la salida del filtro.

- Filtro adaptado $h_{opt}(t) = k[s_0(T-t) s_1(T-t)]$ donde k es un constante real arbitraria.
- Probabilidad de error cuando se utiliza el filtro adaptado

$$P_e = Q\left(\sqrt{\frac{E_d}{2N_o}}\right)$$

donde
$$E_d = \int_{-\infty}^{\infty} (s_0(t) - s_1(t))^2 dt$$
.

- Energía de bit: $E_b = \int_{-\infty}^{\infty} s_0^2(t) dt = \int_{-\infty}^{\infty} s_1^2(t) dt$
- Producto escalar normalizado: $\rho = \frac{\int_{-\infty}^{\infty} s_0(t) s_1(t) dt}{E_b}$
- Probabilidad de error cuando se utiliza el filtro adaptado y ambos símbolos tienen la misma energía

$$P_e = Q\left(\sqrt{\frac{E_b}{N_o}(1-\rho)}\right)$$

• Función error complementario

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} exp\left(-\frac{u^{2}}{2}\right) du$$

Figura 1: Función error complementario.

Señal	Transfornada de Fourier	
$x(t) = e^{-at}u(t) \text{ con } a > 0$	$X(\omega) = \frac{1}{a + j\omega}$	
$x(t) = e^{-a t } \operatorname{con} a > 0$	$X(\omega) = \frac{2a}{a^2 + \omega^2}$	
$x(t) = \begin{cases} 1 & t < T \\ 0 & t > T \end{cases}$	$X(\omega) = \frac{2\sin \omega T}{\omega}$	
$x(t) = \frac{\sin Wt}{\pi t}$	$X(\omega) = \begin{cases} 1 & \omega < W \\ 0 & \omega > W \end{cases}$	
$x(t) = e^{-at^2} \text{ con } a > 0$	$X(\omega) = \sqrt{\frac{\pi}{a}} e^{-\frac{\omega^2}{4a}}$	
$x(t) = \delta(t)$	$X(\omega) = 1$	
$x(t) = \delta(t - t_0)$	$X(\omega) = e^{-j\omega t_0}$	
$x(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT)$	$X(\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{T}\right)$	
x(t) = u(t)	$X(\omega) = \frac{1}{j\omega} + \pi\delta(\omega)$	
$x(t) = \frac{1}{2\pi(a-jt)} \text{ con } a > 0$	$X(\omega) = e^{-a\omega}u(\omega)$	
$x(t) = \frac{a}{\pi(a^2 + t^2)} \text{ con } a > 0$	$X(\omega) = e^{-a \omega }$	
x(t) = 1	$X(\omega) = 2\pi\delta(\omega)$	
$x(t) = te^{-at} \text{ con } a > 0$	$X(\omega) = \frac{1}{(a+j\omega)^2}$	
$x(t) = \frac{1}{2}\delta(t) + \frac{j}{2\pi t}$	$X(\omega) = u(\omega)$	
$x(t) = e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	
$x(t) = \cos \omega_0 t$	$X(\omega) = \pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$	
$x(t) = \sin \omega_0 t$	$X(\omega) = \frac{\pi}{j}\delta(\omega - \omega_0) - \frac{\pi}{j}\delta(\omega + \omega_0)$	

Cuadro 1: Transformada de Fourier de algunas señales básicas

Propiedad	Señal	Transfornada de Fourier
Linealidad	ax(t) + by(t)	$aX(\omega) + bY(\omega)$
Inversión en tiempo	x(-t)	$X(-\omega)$
Conjugación en tiempo	$x^*(t)$	$X^*(-\omega)$
Desplazamiento en tiempo	$x(t-t_0)$	$X(\omega)e^{-j\omega t_0}$
Escalado en tiempo	x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$
Derivación en tiempo	$\frac{dx(t)}{dt}$	$j\omega X(\omega)$
Integración en tiempo	$\int_{-\infty}^{t} x(\tau)d\tau$	$\frac{1}{j\omega}X(\omega) + \pi X(0)\delta(\omega)$
Conjugación en frecuencia	$x^*(-t)$	$X^*(\omega)$
Desplazamiento en frecuencia	$x(t)e^{j\omega_0 t}$	$X(\omega-\omega_0)$
Derivación en frecuencia	tx(t)	$j\frac{dX(\omega)}{d\omega}$
Integración en frecuencia	$-\frac{1}{jt} + \pi x(0)\delta(t)$	$\int_{-\infty}^{\omega} X(\eta) d\eta$
Convolución	x(t) * y(t)	$X(\omega)Y(\omega)$
Multiplicación	x(t)y(t)	$\frac{1}{2\pi}X(\omega)*Y(\omega)$
Relación de Parseval	$\int_{-\infty}^{\infty} x(t) ^2 dt$	$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^2 d\omega$

Cuadro 2: Propiedades de la transformada de Fourier