The group G is isomorphic to the group labelled by [120, 5] in the Small Groups library. Ordinary character table of $G \cong SL(2,5)$:

	1a	2a	4a	3a	6a	5a	10a	5b	10b			
χ_1	1	1	1	1	1	1	1	1	1			
χ_2	3	3	-1	0	0	$-E(5) - E(5)^4$	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	$-E(5)^2 - E(5)^3$			
χ_3	3	3	-1	0	0	$-E(5)^2 - E(5)^3$	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	$-E(5) - E(5)^4$			
χ_4	4	4	0	1	1	-1	-1	-1	-1			
χ_5	5	5	1	-1	-1	0	0	0	0			
χ_6	2	-2	0	-1	1	$E(5) + E(5)^4$	$-E(5) - E(5)^4$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$			
χ_7	2	-2	0	-1	1	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$			
χ_8	4	-4	0	1	-1	-1	1	-1	1			
χ_9	6	-6	0	0	0	1	-1	1	-1			

Trivial source character table of $G \cong SL(2,5)$ at p=2:

Thivial source character table of $G = SL(2,9)$ at $p=2$.												
Normalisers N_i	N_1				N_2					N_4		
p-subgroups of G up to conjugacy in G	P_1				P_2					P_4		
Representatives $n_j \in N_i$	1 <i>a</i>	5a	5b	3a	1a	5a	5b	3a	1a	1a	3a	3b
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 2 \cdot \chi_9$		4	4	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$		$-2 * E(5)^2 - 2 * E(5)^3$	$-2*E(5) - 2*E(5)^4$	-2	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	16	$-2 * E(5) - 2 * E(5)^4$	$-2*E(5)^2 - 2*E(5)^3$	-2	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	8	-2	-2	2	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$		2	2	0	12	2	2	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	8	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	-1	8	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	-1	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	8	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	-1	8	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	-1	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	4	-1	-1	1	4	-1	-1	1	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	6	1	1	0	6	1	1	0	2	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$		0	0	-1	5	0	0	-1	1	1	E(3)	$E(3)^{2}$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	5	0	0	-1	5	0	0	-1	1	1	$E(3)^{2}$	E(3)

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1,5)(2,4)(3,8)(6,7)(9,11)(10,12)(13,14)(15,16)(17,18)(19,20)(21,23)(22,24)]) \cong C2$

 $P_3 = Group([(1,5)(2,4)(3,8)(6,7)(9,11)(10,12)(13,14)(15,16)(17,18)(19,20)(21,23)(22,24),(1,24,5,22)(2,17,4,18)(3,10,8,12)(6,23,7,21)(9,14,11,13)(15,20,16,19)]) \cong C4$

 $P_4 = Group([(1,5)(2,4)(3,8)(6,7)(9,11)(10,12)(13,14)(15,16)(17,18)(19,20)(21,23)(22,24), (1,24,5,22)(2,17,4,18)(3,10,8,12)(6,23,7,21)(9,14,11,13)(15,20,16,19), (1,11,5,9)(2,21,4,23)(3,15,8,16)(6,17,7,18)(10,19,12,20)(13,24,14,22)]) \cong \mathbb{Q}8$

 $N_1 = Group([(1,2,5,4)(3,6,8,7)(9,13,11,14)(10,15,12,16)(17,19,18,20)(21,24,23,22),(1,3,2)(4,5,8)(6,9,10)(7,11,12)(13,16,17)(14,15,18)(19,21,22)(20,23,24)]) \cong SL(2,5)$

 $N_2 = Group([(1,2,5,4)(3,6,8,7)(9,13,11,14)(10,15,12,16)(17,19,18,20)(21,24,23,22),(1,3,2)(4,5,8)(6,9,10)(7,11,12)(13,16,17)(14,15,18)(19,21,22)(20,23,24)]) \cong SL(2,5)$

 $N_3 = Group([(1,24,5,22)(2,17,4,18)(3,10,8,12)(6,23,7,21)(9,14,11,13)(15,20,16,19),(1,5)(2,4)(3,8)(6,7)(9,11)(10,12)(13,14)(15,16)(17,18)(19,20)(21,23)(22,24),(1,9,5,11)(2,23,4,21)(3,16,8,15)(6,18,7,17)(10,20,12,19)(13,22,14,24)]) \cong Q8$

 $N_4 = Group([(1,11,5,9)(2,21,4,23)(3,15,8,16)(6,17,7,18)(10,19,12,20)(13,24,14,22),(1,24,5,22)(2,17,4,18)(3,10,8,12)(6,23,7,21)(9,14,11,13)(15,20,16,19),(1,5)(2,4)(3,8)(6,7)(9,11)(10,12)(13,14)(15,16)(17,18)(19,20)(21,23)(22,24),(1,2,3)(4,8,5)(6,10,9)(7,12,11)(13,17,16)(14,18,15)(19,22,21)(20,24,23)]) \\ \cong SL(2,3)(1,24,23)(1$