EE3113 Homework Assignment-3

Krishna Srikar Durbha

EE18BTECH11014

Note: Mathematical Explanations for some of the questions are at the end.

1 1. Impact of Sizing on Performance

Specifications:

$$V_M = \frac{V_{DD}}{2} \tag{1}$$

$$V_{DD} = 1.8 \text{ Volts} \tag{2}$$

$$V_M = 0.9 \text{ Volts}$$
 (3)

For the above condition to be satisfied, $\frac{W}{L}$ ratios should be,

$$W_n = 0.18\mu\text{m} \tag{4}$$

$$L_n = 0.18\mu\text{m} \tag{5}$$

$$W_p = 1.165 \mu \mathsf{m} \tag{6}$$

$$L_p = 0.18\mu\text{m} \tag{7}$$

1.1 1a

1.1.1 i

SPICE Netlist:

```
1 Question -1a(i)
2
3 * Model
4 .include "TSMC180.lib"
5 .model nch_tt nmos
6 .model pch_tt pmos
7
8 * Circuit
9 Vdd S O DC 1.8
10 MP D G S S S pch_tt W=1.165u L=0.18u
11 MN D G O O nch_tt W=0.18u L=0.18u
12 Vin G O PULSE(O 1.8 0 0 0.5n 1n 0)
13
14 * Analysis
15 .tran 0.1p 1n
16
17 * Results
18 .control
19 run
20 plot V(D) V(G)
21 .endc
```


end.

Results:

Figure 1: When $\frac{W}{L}$ ratios are as per Specifications and when there is no External-Load C_L .

Variation of t_p with Scaling Factor S:

As, the part of Scaling, Width of both N-MOSFET and P-MOSFET are increased by a factor of S.

S	t_{pHL} (in sec)	t_{pLH} (in sec)	$t_p = rac{t_{pLH} + t_{pHL}}{2}$ (in sec)
1	1.84211×10^{-11}	0.7018 ×10 ⁻¹¹	1.271955×10^{-11}
2	2.1519 ×10 ⁻¹¹	0.63 ×10 ⁻¹¹	1.39095 ×10 ⁻¹¹
5	2.6744 ×10 ⁻¹¹	0.814 ×10 ⁻¹¹	1.7442 ×10 ⁻¹¹
7.5	2.75862 ×10 ⁻¹¹	0.8046 ×10 ⁻¹¹	1.78161×10^{-11}
10	2.7381 ×10 ⁻¹¹	0.8333 ×10 ⁻¹¹	1.7857 ×10 ⁻¹¹

When there is no External Load, the Propagation Delay (t_p) is almost negligible. So, there is no variation of t_p by changing Scaling Factor(S). When no External-Load is present Capacitance in Propagation Delay expression would be Drain Capacitance of both N-MOSFET and P-MOSFET whose values are very small. So, change in t_p will almost be negligible.

1.1.2 ii

SPICE Netlist:

Results:

Figure 2: When $\frac{W}{L}$ ratios are as per Specifications and when there is External-Load $C_L=20pF$.

Variation of t_p with Scaling Factor S:

As, the part of Scaling, Width of both N-MOSFET and P-MOSFET are increased by a factor of S.

S	t_{pHL} (in sec)	t_{pLH} (in sec)	$t_p = rac{t_{pLH} + t_{pHL}}{2}$ (in sec)
1	1.07143×10^{-7}	0.64881×10^{-7}	0.86012 ×10 ⁻⁷
2	0.692982×10^{-7}	0.34211×10^{-7}	0.517546×10^{-7}
4	0.408046×10^{-7}	0.17816×10^{-7}	0.293103×10^{-7}
6	0.280702×10^{-7}	0.12281×10^{-7}	0.201756×10^{-7}
8	0.219298×10^{-7}	0.0965×10^{-7}	0.157899×10^{-7}
10	0.184211×10^{-7}	0.07018×10^{-7}	0.1271955×10^{-7}

Plots:

Figure 3: t_p vs S

As Scaling increases, MOSFET Resistance decreases, which further decreases, t_p .

1.2 1b

Impact of W_p :

 W_p effects t_{pLH} as Critical Path while charging of Load Capacitor happens through P-MOSFET.

Variation of t_p by scaling only P-MOSFET by a factor S:

S	t_{pHL} (in sec)	t_{pLH} (in sec)	t_p (in sec)
1	1.07143 ×10 ⁻⁷	0.64881 ×10 ⁻⁷	0.86012 ×10 ⁻⁷
2	1.06322×10^{-7}	0.336392×10^{-7}	0.699806×10^{-7}
4	1.06322×10^{-7}	0.16667×10^{-7}	0.614945×10^{-7}
6	1.06322×10^{-7}	0.12069×10^{-7}	0.591955×10^{-7}
8	1.06322×10^{-7}	0.08621×10^{-7}	0.574715 ×10 ⁻⁷
10	1.06322×10^{-7}	0.07471×10^{-7}	0.568965×10^{-7}

Results:

Figure 4: t_p vs S

Impact of W_n :

 W_n effects t_{pHL} as Critical Path while discharging of Load Capacitor happens through N-MOSFET.

Variation of t_p by scaling only N-MOSFET by a factor $S\!:$

S	t_{pHL} (in sec)	t_{pLH} (in sec)	$t_p = rac{t_{pLH} + t_{pHL}}{2}$ (in sec)
1	1.07143×10^{-7}	0.64881×10^{-7}	0.86012×10^{-7}
2	0.695402×10^{-7}	0.65517×10^{-7}	0.675286×10^{-7}
4	0.408046 ×10 ⁻⁷	0.65517×10^{-7}	0.531608×10^{-7}
6	0.281609 ×10 ⁻⁷	0.65517×10^{-7}	0.4683895×10^{-7}
8	0.218391×10^{-7}	0.65517×10^{-7}	0.4367805×10^{-7}
10	0.172414 ×10 ⁻⁷	0.65517×10^{-7}	0.413792×10^{-7}

Results:

Figure 5: t_p vs S

2 Ring Oscillator

Specifications:

7-Stage Ring Oscillator by cascading Unit Inverters.

2.1 2a

SPICE Netlist:

```
1 Question -2
3 * Model
4 .include "TSMC180.lib"
5 .model nch_tt nmos
6 .model pch_tt pmos
8 * Circuit
9 Vdd S
           0
                 DC 1.8
                      S pch_tt W=1.165u L=0.18u
11 MN1 D1 D7
                            nch_tt W=0.18u L=0.18u
                 20p
12 C1
     D1 0
13 MP2 D2 D1
                            pch_tt W=1.165u L=0.18u
                 S
                      S
                 0
           D1
14 MN2 D2
                             nch_tt W=0.18u L=0.18u
                       0
15 C2
      D2
           0
                 20p
                     S
           D2
                           pch_tt W=1.165u L=0.18u
16 MP3
     D3
                 S
          D2
17 MN3 D3
                 0
                             nch_tt W=0.18u L=0.18u
                       0
18 C3
     D3 0
                 20 p
                 S S O
19 MP4 D4 D3
                           pch_tt W=1.165u L=0.18u
                            nch_tt W=0.18u L=0.18u
20 MN4 D4 D3
           0
                 20p
21 C4
     D4
                      S pch_tt W=1.165u L=0.18u
     D5
           D4
                 S
22 MP5
                 0
23 MN5
      D5
           D4
                       0
                             nch_tt W=0.18u L=0.18u
            0
                 20p
24 C5
      D5
                           pch_tt W=1.165u L=0.18u
25 MP6
      D6
            D5
                  S
                       S
26 MN6 D6
            D5
                 0
                       0
                            nch_tt W=0.18u L=0.18u
27 C6
     D6
           0
                 20 p
28 MP7 D7 D6
                 S
                      S
                            pch_tt W=1.165u L=0.18u
                             nch_tt W=0.18u L=0.18u
29 MN7
     D7
          D6 0
          0
                 20 p
30 C7
      D7
* Analysis
34 .tran 20p
          20 u
* Results
37 .control
38 run
39 plot V(D7)
40 .endc
```

Time-Period and Frequency of Oscillations:

$$T = 1.8133 \times 10^{-6} \text{ sec} \tag{8}$$

$$f = 0.552080515 \text{ MHz} \tag{9}$$

Results:

2.2 2b

$$t_{pLH} = 0.16981 \times 10^{-6} \text{ s} \tag{10}$$

$$t_{pHL} = 0.16981 \times 10^{-6} \text{ s} \tag{11}$$

$$t_p = 0.16981 \times 10^{-6} \text{ s} \tag{12}$$

2.3 2c

By sizing up the the MOSFETs, Resistances of both P-MOS and N-MOS decrease which leads to decrease in Propagation Delay. This also increases Frequency of Oscillations.

2.4 2d

Instead of directly connecting the Output of Ring Oscillator to its Input, we can use a Switch to Start and Stop Oscillations.

When Switch is \mathbf{ON} , there will be oscillations. When Switch is \mathbf{OFF} , Output will remain in previous state.