Build with Al

Gemma简介

Service Sound Service Servi

内容提要

- O1 生成式AI简介
- 02 Gemma简介
- 03 开始使用Gemma
- 04 Gemma新进展

Build with Al

生成式AI简介

生成式人工智能

生成式人工智能

生成式人工智慧

人工智能(目标) 机器学习(手段) 深度学习(更厉害的手段) 生成式人工智能 今天的生成式人工智能多以深度学习实现

What is an LLM?

Roses are red,

Roses are red,
Violets are blue,
Sugar is sweet,

for(var i = 0)

```
for(var i = 0; i < 10; i++) {
```

Build with Al

Gemma简介

Figure 1: The Transformer - model architecture.

左图来源: Attention Is All You Need

右图来源: Grouped Query Attention (GQA) vs. Multi Head Attention (MHA): Optimizing LLM Inference Serving

Output **Probabilities** Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward $N \times$ Add & Norm N× Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Output Input Embedding Embedding Inputs Outputs (shifted right)

Figure 1: The Transformer - model architecture.

模型结构

RoPE嵌入(Rotary Position Embedding)

Figure 1: Implementation of Rotary Position Embedding(RoPE).

左图来源: Attention Is All You Need

右图来源: ROFORMER: ENHANCED TRANSFORMER WITH ROTARY POSITION EMBEDDING

模型结构

● GeGLU激活函数

模型结构

Probabilities Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward Add & Norm N× Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Output Input Embedding Embedding Inputs Outputs (shifted right)

Output

RMSNorm

$$ext{RMSNorm}(x_i) = rac{x_i}{\sqrt{rac{1}{N}\sum_{i=1}^N x_i^2 + \epsilon}}$$

Figure 1: The Transformer - model architecture.

左图来源: Attention Is All You Need 右图来源: Root Mean Square Layer Normalization

模型结构

Parameters	2B	7B
d _model	2048	3072
Layers	18	28
Feedforward hidden dims	32768	49152
Num heads	8	16
Num KV heads	1	16
Head size	256	256
Vocab size	256128	256128

Table 1 | Key model parameters.

训练数据

- Gemma 2B和7B分别在3万亿和6万亿的主要以英语为主的数据上进行了训练
- 数据来自网络文档、数学和编程内容
- Gemma模型不是多模态的,也没有针对多语言任务的最新表现进行训练
- 词汇表的大小为256,000个token

模型尺寸与性能

参数大小	输入	输出	调整过的版本	预期平台
2B	文本	文本	预训练、指令调整	移动设备和笔记本电脑
7B	文本	文本	预训练、指令调整	台式电脑和小型服务器

模型性能

Build with Al

开始使用Gemma

获取Gemma模型

Access Gemma on Kaggle

To access Gemma on Kaggle, you need to first request access.

Request Access

准备工作

首先, 将Keras 3和KerasNLP安装到您的环境中, 然后导入keras nlp模块。

```
!pip install --upgrade keras-nlp
!pip install --upgrade keras
import keras_nlp
```

接着,从预设配置中加载Gemma模型!

```
# https://keras.io/api/keras_nlp/models/gemma/gemma_causal_lm/
g_lm = keras_nlp.models.GemmaCausalLM.from_preset("gemma_2b_en")
```

预设配置可用于Gemma的2B和7B参数版本。

使用Gemma

只需将提示词传递给generate()函数,并可选地指定响应的最大长度。

例如, 如果问Gemma"it was a dark and stormy night."

txt = g_lm.generate("It was a dark and stormy night.", max_length=64)
print(txt)

It was a dark and stormy night.

The rain was pouring down, and the wind was howling.

But that didn't stop a group of friends from going out for a night of fun.

They were all dressed up in their best clothes, and they were ready to have a good time.

提示词编写指导

Prompting Guide 101

Writing effective prompts
Introduction
Customer service Page 7
Executives and entrepreneurs Page 13
Human resources Page 20
Marketing Page 26
Project management. Page 32
Sales
Leveling up your prompt writing Page 43

微调Gemma

● 使用Keras进行微调

● 支持使用LoRA进行微调

LoRA

Weight update in regular finetuning

Weight update in LoRA

微调Gemma

● 使用Keras进行微调

● 支持使用LoRA进行微调

```
gemma.backbone.enable_lora(rank=8)
# fine-tune ...
gemma.fit(...)
gemma.backbone.save_lora_weights("lora.h5")
```


分布式微调Gemma


```
devices=keras.distribution.list devices()
device mesh = keras.distribution.DeviceMesh((1, 8),["batch", "model"], devices))
layout map = keras.distribution.LayoutMap(device mesh)
# Partitioning for embeddings (regex)
layout map["token embedding/embeddings"] = (None, "model")
# Partitioning (regex) for attention layer weights
layout map["decoder block.*attention.*(query|key|value).*kernel"] = (None, "model", None)
layout map["decoder block.*attention output.*kernel"] = (None, None, "model")
layout map["decoder block.*ffw gating.*kernel"] = ("model", None)
layout map["decoder block.*ffw linear.*kernel"] = (None, "model")
keras.distribution.set distribution(keras.distribution.ModelParallel(device mesh,
                                                                        layout map,
                                                                        batch dim name="batch"))
# - load the model here
```

微调Gemma

- 使用Keras进行微调
- 支持使用LoRA进行微调
- 支持JAX进行微调

使用MediaPipe在设备上的集成Gemma

- Studio: https://mediapipe-studio.webapps.google.com/demo/llm_inference
- Documentation: https://developers.google.com/mediapipe/solutions/genai/llm_inference

代码示例

- Android:
 - https://github.com/googlesamples/mediapipe/tree/main/examples/llm_inferenc
 e/android
 - https://github.com/NSTiwari/Gemma-on-Android
- Web:

https://github.com/googlesamples/mediapipe/tree/main/examples/llm_inference/js

iOS:

https://github.com/googlesamples/mediapipe/tree/main/examples/llm_inference/ios

Build with Al

Gemma新进展

Gemma家族

- CodeGemma
- <u>PaliGemma</u> (<u>中文介绍</u>)
- RecurrentGemma

参考资料

- 1.Gemma的官方网站: https://ai.google.dev/gemma/docs
- 2.Gemma技术报告 : https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf
- 3.Gemma: Introducing new state-of-the-art open model by Google, https://medium.com/@shravankoninti/gemma-introducing-new-state-of-the-art-open-model-by-google-caae9fe29972
- 4.Understanding, Using, and Finetuning
 Gemma, https://lightning.ai/lightning-ai/studios/understanding-using-and-finetuning-gemma
- 5.What is Low-Rank Adaptation (LoRA) | explained by the inventor, https://www.youtube.com/watch?v=DhRoTONcyZE
 Google Developer Groups

Build with Al

码出未来,现在开始!