Algebra Lineare e Geometria Analitica Ingegneria dell'Automazione Industriale

Ayman Marpicati

A.A. 2022/2023

Indice

napter 1		Geometria analitica in $\mathbb{E}_n(\mathbb{R})$	Page 2	
-	1.1	Direzione ⊥ ad un iperpiano	2	
-	1.2	Circonferenze in $\mathbb{E}_2(\mathbb{R})$	6	
-	1.3	Sfere in $\mathbb{E}_3(\mathbb{R})$	6	
-	1.4	Circonferenze in $\mathbb{E}_3(\mathbb{R})$	7	
Chapter 2		Ampliamento di $\mathring{A}_2(\mathbb{R})$	Page 8	
4	2.1	Ampliamento (proiettivo) di $\mathring{A}_2(\mathbb{R})$	8	
6	2.2	Geometria analitica in $\tilde{\mathring{A}}_2(\mathbb{R})$	9	
6	2.3	Rappresentazione delle rette in $\tilde{A}_2(\mathbb{R})$	10	
2	2.4	Complessificazione di $\tilde{\mathring{A}}_2(\mathbb{R})$	10	
Chapter 3		Coniche in $ ilde{A}_2(\mathbb{C})$	Page 15	
	3.1	Classificazione affine di una conica generale	17	
;	3.2	Condizioni analitiche Principio di reciprocità — 19	18	
;	3.3	Asintoti di una conica	21	
	3.4	Proprietà metriche	21	
	3.5	Condizioni analitiche	22	
	-	osizione 0.0.1 α r rispettivamente un piano e una retta di $\mathbb{E}_3(\mathbb{R})$ con α non ortogonale a r. Allora \exists ! piano β : β		

 $\textbf{\textit{Dimostrazione:}} \quad \text{Dimostriamo l'esistenza: sia } \beta = [P, V_1 + V_2 orto] \text{ dove } r = [P, V_1] \text{ e } \alpha = [Q, V_2].$

1. β è un piano perché dim $(V_1=1)$, dim $(V_2orto)=1$ e $V_1\neq V_2orto$ (poiché $\alpha nonortor$) \Longrightarrow dim $(V_1+V_2orto)=2$ \Longrightarrow β è un piano. Per costruzione abbiamo che $\beta\perp\alpha$, infatti lo spazio di traslazione di β è:

 $V_1 \oplus V_2^{\perp} \supseteq V_2^{\perp}$ e V_2 è lo spazio di traslazione di α

inoltre r

ortogonale α e $r \subseteq \beta$.

Capitolo 1

Geometria analitica in $\mathbb{E}_n(\mathbb{R})$

Definizione 1.0.1

In $\mathbb{E}_n(\mathbb{R})$ si dice riferimento cartesiano ortogonale monometrico la coppia $[0,\mathcal{B}]$:

- O è un punto di $\mathbb{E}_n(\mathbb{R})$
- $\mathcal{B} = (e_1, e_2, ..., e_n)$ è una base ortonormale

Note:-

- 1. In $\mathbb{E}_n(\mathbb{R})$ $(n=2) \implies \mathcal{B} = (i,j)$
- 2. In $\mathbb{E}_3(\mathbb{R})$ $(n=3) \implies \mathcal{B} = (i, j, k)$

Definizione 1.0.2: Ortogonalità fra rette

Siano r_1, r_2 due rette di $\mathbb{E}_2(\mathbb{R})$ e sia $r_1 = [P, f(v)]$ $v = l \cdot i + m \cdot j$, analogamente $r_2 = [P, f'(v)]$ $v' = l' \cdot i + m' \cdot j$

$$v \perp v' \iff l \cdot l' + m \cdot m' = 0$$

se r_1 ha equazione ax + by + c = 0 e r_2 ha equazione a'x + b'y + c' = 0 allora $P.d.r_1 = [(-b,a)]$, e $P.d.r_2 = [(-b',a')]$

$$-b \cdot (-b') + a \cdot a' = bb' + aa' = 0$$

Se abbiamo r_1, r_2 rette in $\mathbb{E}_3(\mathbb{R})$ con $P.d.r_1 = [(l, m, n)], P.d.r_2 = [(l', m', n')] r_1 \perp r_2 \iff v_1$ generatore della direzione di $r_1 \perp v_2$ generatore della direzione di r_2 .

$$v_1 = li + mj + nk$$
 $v_2 = l'i + m'j + n'k$

$$v_1 \perp v_2 \iff r_1 \perp r_2 \iff ll' + mm' + nn' = 0$$

Analogamente se r_1, r_2 sono rette in $\mathbb{E}_n(\mathbb{R})$ con $P.d.r_1 = [(x_1, x_2, ..., x_n)], P.d.r_2 = [(x_1', x_2', ..., x_n')]$

1.1 Direzione \perp ad un iperpiano

Proposizione 1.1.1

Sia r: ax + by + c = 0 una retta di $\mathbb{E}_2(\mathbb{R})$. Allora [(a,b)] è la classe dei parametri direttori della direzione ortogonale a r.

Dimostrazione: P.d.r = [(-b, a)] e abbiamo che $(a, b) \cdot (-b, a) = 0$ oppure $(a \cdot i + b \cdot j) \cdot (-b \cdot i + a \cdot j) = 0 \Longrightarrow [(a, b)] \perp r$.

Proposizione 1.1.2

Sia $\pi: ax + by + cz + d = 0$ un piano in $\mathbb{E}_3(\mathbb{R})$. Allora [(a,b,c)] è la classe dei parametri direttori della direzione ortogonale a π .

Dimostrazione: Sia $v \in V_2$ (π ha spazio di traslazione o V_2). Se $v = (x, y, z) \implies ax + by + cz = 0 \iff (x, y, z) \cdot (a, b, c) = 0 \implies (a, b, c) \perp v \ \forall v \in V_2$

Più in generale: sia S_{n-1} un iperpiano in $\mathbb{E}_n(\mathbb{R})$ di equazione cartesiana $0 = a_1x_1 + a_2x_2 + ... + a_nx_n + a_0 \Longrightarrow [(a_1, a_2, ..., a_n)]$ è la classe dei parametri direttori della direzione ortogonale a S_{n-1} .

Proposizione 1.1.3 Ortogonalità tra piani

Siano $\alpha: ax+by+cz+d=0$ $\beta: a'x+b'y+c'z+d'=0$ due piani in $\mathbb{E}_3(\mathbb{R})$. Allora $\alpha\perp\beta\iff a\cdot a'+b\cdot b'+c\cdot c'=0$

Dimostrazione: $\alpha \perp \beta \iff V_2 \supseteq V_2^{\prime \perp}$ dove V_2 è la giacitura di α e V_2^{\prime} è la giacitura di β .

$$V_2'^{\perp} = [\mathcal{L}((a', b', c'))] \iff (a', b', c') \in V_2$$

 $(x,y,z) \in V_2 \iff ax + by + cz = 0$ e quindi $(a',b',c') \in V_2 \iff a \cdot a' + b \cdot b' + c \cdot c' = 0$

Proposizione 1.1.4 Ortogonalità tra retta e piano

Siano r: con P.d.r = [(l, m, n)] e sia α di equazione ax + by + cz + d = 0 una retta e un piano di $\mathbb{E}_3(\mathbb{R})$. Allora $r \perp \alpha$ se e soltanto se [(a, b, c)] = [(l, m, n)]

Dimostrazione: $r \perp \alpha \iff V_1 = V_2^{\perp}$ dove V_1 è la direzione della retta e V_2 è la giacitura di α .

$$V_1 = \mathcal{L}((l,m,n)) = V_2^\perp = \mathcal{L}((a,b,c)) \iff [(a,b,c)] = [(l,m,n)]$$

(2)

Definizione 1.1.1: Distanza tra 2 punti in $\mathbb{E}_3(\mathbb{R})$

Siano $P=(x_1,x_2,...,x_n)$ e $Q=(x_1'x_2',...,x_n')$. La distanza tra $P\in Q$ è la norma del vettore \vec{PQ}

$$d(P,Q) = ||\vec{PQ}|| = \sqrt{\vec{PQ} \cdot \vec{PQ}}$$

$$\vec{PQ} = (x_1' - x_1)e_1 + \dots + (x_n' - x_n)e_n$$

$$||\vec{PQ}|| = \sqrt{(x_1' - x_1)^2 + \dots + (x_n' - x_n)^2}$$

Definizione 1.1.2: Caso $\mathbb{E}_2(\mathbb{R})$

$$P = (x, y) \quad Q = (x', y')$$

$$\vec{PQ} = (x' - x)i + (y' - y)j$$

$$d(P,Q) = \sqrt{(x'-x)^2 + (y'-y)^2}$$

Caso $\mathbb{E}_3(\mathbb{R})$ da aggiungere

Definizione 1.1.3: Distanza tra punto e retta

Siano $P = (x_0, y_0)$ e $r = [Q, V_1]$ rispettivamente un punto e una retta in $\mathbb{E}_2(\mathbb{R})$. Definiamo la **distanza** tra il punto P e la retta r come la distanza tra P e il punto H, piede della perpendicolare per P a r (cioè l'intersezione tra r e la retta perpendicolare a r passante per P).

Determiniamo $||\vec{PH}||$. Se r ha equazione ax + by + c = 0 allora $V_1^{\perp} = \mathcal{L}(a \cdot i + b \cdot j)$.

Posta
$$n = [P, V_1^{\perp}] \implies n = [P, \mathcal{L}(ai + bj)]$$

 $H = n \cap r$ è la proiezione di P su r. (è l'intersezione tra r e la retta per P^{\perp}).

Sia P' = (x', y') un generico punti su r.

$$ax' + by' + c = 0$$

PH è la componente di PP' lungo v. $PP' = (x' - x_0)i + (y' - y_0)j$

$$\vec{PH} = \frac{PP' \cdot v}{v \cdot v} v$$

$$d(P,H) = d(P,r) = ||\vec{PH}|| = ||(\frac{\vec{PP'} \cdot v}{v \cdot v}v)|| = [...] = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

Da completare

Definizione 1.1.4: Distanza punto piano

Siano $P = (x_0, y_0, x_0)$ e $\alpha : ax + by + cz + d = 0$ un punto e un piano di $\mathbb{E}_3(\mathbb{R})$. Definiamo la distanza $d(P, \alpha)$ come la distanza tra P e il punto H intersezione tra α e la retta per $p \perp \alpha$.

Dimostrazione: $d(P,\alpha) = d(P,H) = ||\vec{PH}||$. Analogamente al caso piano abbiamo che

$$d(P,\alpha) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

(

Definizione 1.1.5: Distanza tra un punto e una retta in $\mathbb{E}_3(\mathbb{R})$

Siano P e $r=[Q,V_1]$ un punto e una retta in $\mathbb{E}_3(\mathbb{R})$. Sia α il piano per P ortogonale a r e sia H l'intersezione tra r e α . Definiamo $d(P,r)=d(P,H)=||\vec{PH}||$.

Esempio 1.1.1

In $\mathbb{E}_3(\mathbb{R})$ determiniamo la distanza di P=(3,0,1) da $r: \begin{cases} x+y=1\\ z=2 \end{cases}$

$$\begin{cases} x = 1 - t \\ y = t \\ z = 2 \end{cases} P.d.r = [(-1, 1, 0)] = [(a, b, c)] \qquad \alpha : -x + y + 0 \cdot z + d = 0$$

Imponiamo il passaggio per P: -3+0+d=0 d=3 $\alpha:-x+y+3=0$

$$\alpha \cap r : \begin{cases} x + y = 1 \\ -x + y + 3 = 0 \\ z = 2 \end{cases} \qquad \begin{cases} x + y = 1 \\ 0x + 2y = -2 \\ z = 2 \end{cases} \implies x = 2; \ y = -1$$

$$H:(2,-1,2)$$
 $d(P,r)=||\vec{PH}||=\vec{PH}=(-1)i+(-1)j+k=-1-j+k$

Definizione 1.1.6: Retta di minima distanza

Si dice **retta di minima distanza** tra due rette r, s sghembe in $\mathbb{E}_3(\mathbb{R})$ una retta ortogonale e incidente sia a r che a s.

Proposizione 1.1.5

La retta di minima distanza tra r e s esiste ed è unica.

Definizione 1.1.7: Distanza tra due rette sghembe in $\mathbb{E}_3(\mathbb{R})$

Definiamo la distanza tra due rette r e s sghembe in $\mathbb{E}_3(\mathbb{R})$ come la distanza tra i punti R e S ottenuti intersecando la retta t di minima distanza tra r e s con r e s.

Definizione 1.1.8: Assi

In $\mathbb{E}_2(\mathbb{R})$ dati due punti P, Q, si dice **asse** del segmento \overline{PQ} la retta passante per il punto medio di $P \in Q$ e ortogonale al segmento \overline{PQ} .

Proposizione 1.1.6

L'asse di un segmento \overline{PQ} è il luogo dei punti equidistanti da P e da Q.

Dimostrazione: Dobbiamo dimostrare che $||\vec{PH}|| = ||\vec{QH}|| \quad \forall H \in a \text{ (asse di } \overline{PQ}\text{)}.$

$$\vec{PH} = \vec{PM} + \vec{MH}$$
 e $\vec{QH} = \vec{QM} + \vec{MH}$

$$\begin{split} ||\vec{PH}|| &= \sqrt{||PM||^2 + ||MH||^2} \quad ||\vec{QH}|| = \sqrt{||QM||^2 + ||MH||^2} \quad \text{ma} \quad ||PM|| = ||QM|| \\ ||\vec{PH}|| &= \sqrt{||PM||^2 + ||MH||^2} = \sqrt{||QM||^2 + ||MH||^2} = ||\vec{QH}|| \end{split}$$

⊜

Esempio 1.1.2

Determiniamo l'asse di P=(1,1) e Q=(2,-4). Il punto $M=(\frac{3}{2},-\frac{3}{2})$

$$\vec{PQ} = (2-1)i + (-4-1)j = 1-5j = (1,-5)$$

 $r \perp \overrightarrow{PQ}$ per M è del tipo

$$x - 5y + c = 0$$
 e passa per M

$$\frac{3}{2} + \frac{15}{2} + c = 0$$
 $c = -9 \implies r: x - 5y - 9 = 0$

Alternativamente

$$r: H \in r \iff d(H, P) = d(H, Q)$$

se H = (x, y)

$$\sqrt{(x-1)^2 + (y-1)^2} = \sqrt{(x-2)^2 + (y+4)^2}$$

$$x^2 - 2x + 1 + y^2 - 2y + 1 = x^2 - 4x + 4 + y^2 + 8y + 16 \implies r: 2x - 10y - 18 = 0$$

Definizione 1.1.9: Piano assiale

In $\mathbb{E}_3(\mathbb{R})$ si dice **piano assiale** del segmento \overline{PQ} il piano α passante per il punto medio di P e Q e ortogonale al segmento \overline{PQ} .

Proposizione 1.1.7

Il piano assiale del segmento \overline{PQ} è il luogo dei punti equidistanti tra $P \in Q$.

1.2 Circonferenze in $\mathbb{E}_2(\mathbb{R})$

Definizione 1.2.1: Circonferenza

Dato un punto $C = (x_0, y_0)$ in $\mathbb{E}_2(\mathbb{R})$ e dato r numero reale positivoSi dice circonferenza di centro C e raggio r il luogo dei punti aventi distanza r da C.

Sia P = (x, y) appartenente alla circonferenza di centro C e raggio r.

$$d(P,C) = \sqrt{(x-x_0)^2 x^2 + y^2 + 2ax + 2by + c} = 0 + (y-y_0)^2 = r \iff (x-x_0)^2 + (y-y_0)^2 = r^2$$
$$x^2 + y^2 + 2ax + 2by + c = 0 \iff x^2 + y^2 - 2x_0x - 2y_0y + (x_0^2 + y_0^2 - r^2) = 0$$

Proposizione 1.2.1 Equazione cartesiana di una circonferenza

Tutte e sole le circonferenze si rappresentano come $x^2+y^2+2ax+2by+c=0$ con $a^2+b^2-c>0$ e avremo che C=(-a,-b) e $r=\sqrt{a^2+b^2-c}$

Se r fosse 0, $a^2 + b^2 - c = 0 \implies x^2 + y^2 + 2ax + 2by + c = 0$ è rappresentata solo da C = (-a, -b).

Proposizione 1.2.2

Per tre punti non allineati in $\mathbb{E}_2(\mathbb{R})$ passa un unica circonferenza.

1.3 Sfere in $\mathbb{E}_3(\mathbb{R})$

Definizione 1.3.1: Sfera

Sia $C:(x_0,y_0,z_0)$ e sia r un numero reale positivo. Si dice **sfera** di raggio C e di centro r il luogo dei punti aventi distanza r da C.

Sia P:(x,y,z) appartenente alla sfera, allora

$$d(P,C) = \sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2} = r \iff (x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = r^2$$

Note:-

Una sfera è una superficie algebrica reale (Analogamente una circonferenza è una curva algebrica reale).

Proposizione 1.3.1 Equazione cartesiana di una sfera

Tutte le sfere si rappresentano come $x^2 + y^2 + z^2 + 2ax + 2by + 2cz + d = 0$ con $a^2 + b^2 + c^2 > 0$ e avremo che C = (-a, -b, -c) e $r = \sqrt{a^2 + b^2 + c^2 - d}$

Se $a^2 + b^2 + c^2 - d = 0 \implies x^2 + y^2 + z^2 + 2ax + 2by + 2cz + d = 0$ è realizzata dal solo centro C = (-a, -b, -c).

Proposizione 1.3.2

Siano A, B, C, D quattro punti non complanari di $\mathbb{E}_3(\mathbb{R})$. Per A, B, C, D passa un'unica sfera

Il centro della sfera si trova intersecando i piani assiali dei quattro punti. Il raggio è la distanza del centro da uno qualsiasi dei quattro punti.

Circonferenze in $\mathbb{E}_3(\mathbb{R})$ 1.4

Definizione 1.4.1: Circonferenza in $\mathbb{E}_3(\mathbb{R})$

Dati un piano α , un suo punto C e un numero reale positivo r. Si dice **circonferenza** di raggio C e raggio r il luogo dei punti di α aventi distanza r da C.

Note:-

Una circonferenza appartiene a infinite sfere. Quindi per tre punti non allineati passano infinite sfere.

Proposizione 1.4.1

Tutte e sole le circonferenze di $\mathbb{E}_3(\mathbb{R})$ ammettono una rappresentazione del tipo

$$\begin{cases} ax + by + cz + d = 0 & \to \text{ piano } \alpha \\ (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = r'^2 \end{cases}$$

$$d(C',\alpha) < r' \quad \text{dove} \quad C' = (x_0,y_0,z_0) \qquad \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}} < r'$$

ci sono infinite rappresentazioni ma solo una con il centro C della circonferenza coincidente con il centro C' della sfera.

Il centro della circonferenza C si trova intersecando il piano α con la retta per il centro della sfera C'perpendicolarmente ad α . Utilizziamo il teorema di Pitagora. Conosciamo $\overline{CC'}$ e conosciamo anche il raggio r'della sfera. Quindi

$$r = \sqrt{r'^2 - \overline{CC'}^2}$$

Note:-

Una circonferenza si può ottenere anche intersecando altre superfici superfici con un piano.

Esempio 1.4.1

Si consideri

$$\begin{cases} x^2 + y^2 = 7 \\ z = 3 \rightarrow \alpha \end{cases}$$
 è una circonferenza?

$$\begin{cases} x^2+y^2=7\\ z=3 & \to & \alpha \end{cases}$$
è una circonferenza?
$$x^2+y^2+z^2-z^2=7 \quad \text{e siccome } z=3 \begin{cases} x^2+y^2+z^2=16\\ z=3 \end{cases} \quad \text{che descrive una circonferenza.}$$

Ed è una curva algebrica reale di $\mathbb{E}_3(\mathbb{R})$.

Capitolo 2

Ampliamento di $\mathring{A}_2(\mathbb{R})$

In $\mathring{A}_2(\mathbb{R})$ date due rette r e s o sono parallele o si intersecano in un punto. Se sono parallele

$$r = [P, V_1] e s = [Q, W_1] \implies V_1 = W_1$$

quindi la direzione V_1 è l'elemento comune a tutte le rette parallele a r. Poiché il parallelismo è una relazione di equivalenza tra le rette del piano.

2.1 Ampliamento (proiettivo) di $\mathring{A}_2(\mathbb{R})$

Definizione 2.1.1: $\mathring{A}_2(\mathbb{R})$

- Punti propri che sono tutti e soli i punti di $\mathring{A}_2(\mathbb{R})$
- $\bullet\,$ I punti impropri che sono le direzioni delle rette del piano ovvero i sottospazi di \mathbb{R}^2 di dimensione 1.

Da cui il nome proprio/improprio per i fasci di rette del piano.

Definizione 2.1.2: Rette

- le rette proprie: le rette di $\mathring{A}_2(\mathbb{R})$ unite al loro punto improprio;
- una retta impropria: tutti i punti impropri (r_{∞})

Sia $P_{\infty} \in r_{\infty} \implies$ non definiamo il vettore $Q\vec{P}_{\infty}$ con Q proprio/improprio. La funzione $f: A \times A \rightarrow V_2$

RR) da completare

Proposizione 2.1.1

Due rette distinte di $\tilde{\mathring{A}}_{2}(\mathbb{R})$ sono sempre incidenti.

Dimostrazione: Siano r e s due rette distinte di $\tilde{A}_2(\mathbb{R})$

- 1. r e s sono proprie e non parallele tra loro $\implies r$ è incidente a s in $\mathring{A}_2(\mathbb{R}) \subseteq \mathring{\tilde{A}}_2(\mathbb{R})$ e il punto improprio di r è diverso da quello di s.
- 2. $r \in s$ sono proprie ma r è parallelo a s. $r \cap s = \emptyset$ in $\mathring{A}_2(\mathbb{R})$ ma $r \in s$ hanno la stessa direzione \implies lo stesso punto improprio.
- 3. r è propria e $s=r_{\infty}$. $r\cap s=r\cap r_{\infty}$ è il punto improprio di r.

Tutte le rette proprie contengono un solo punto improprio e r_{∞} contiene solo punti impropri.

Proposizione 2.1.2

Per due punti distinti di $\tilde{A}_2(\mathbb{R})$ passa un'unica retta.

Dimostrazione: Siano A e B i due punti distinti considerati:

1. A, B sono entrambi propri

$$\implies \exists! r \in \mathring{A}_2(\mathbb{R}) \text{ per } A \ e \ B$$

⊜

☺

 $\exists ! r \text{ propria per} A \ e \ B$

la r_{∞} non contiene $A \in B \implies \exists ! \ r \text{ per } A \in B.$

- 2. A è proprio e B è improprio (o viceversa). \Longrightarrow B è la direazione V_1 \Longrightarrow $\exists !$ retta per **completare**
- 3. A e B sono entrambi impropri. Nessuna retta propria li contiene entrambi (ogni retta propria ha solo 1 punto improprio) $\implies A, B \in r_{\infty}$ che è l'unica che li contiene entrambi.

2.2 Geometria analitica in $\tilde{\mathring{A}}_2(\mathbb{R})$

Enti definiti "a meno di un fattore" di proporzionalità:

1. equazioni di rette in $\mathring{A}_2(\mathbb{R})$

$$ax + by + c = 0$$
 se $[(a, b, c)] = [(a', b', c')]$

$$\implies r': a'x + b'y + c' = 0$$
 è coincidente a r

2. [(l,m)] = P.d.r è come classe di equivalenza

Indichiamo con ρ la relazione di equivalenza data dalla proporzionalità su $\mathbb{R}^3 \setminus \{(0,0,0)\}$

$$\frac{\mathbb{R}^3\backslash\{(0,0,0)\}}{\rho}=\{[(x,y,z)]:\ x,y,z\in\mathbb{R}^3\ e\ (x,y,z)\neq\underline{0}\}$$

Quest'insieme definirà le coordinate dei punti.

$$\tilde{\mathring{A}}_2(\mathbb{R}) = \mathring{A}_2(\mathbb{R}) \cup \mathring{A}_{\infty}$$

Fissiamo il riferimento affine in $\mathring{A}_2(\mathbb{R})$

$$\phi: \mathring{A}_2 \cup \mathring{A}_{\infty} \to \frac{\mathbb{R}^3 \setminus \{(0,0,0)\}}{\rho}$$

- se P è proprio (x, y): $\phi(x, y) = [(x, y, 1)]$
- se P è improprio P:[(l,m)] $\phi(P)=[(l,m,0)]$

Proposizione 2.2.1

 ϕ è una bi
iezione tra $\tilde{\mathring{A}}_2(\mathbb{R}) \to \frac{\mathbb{R}^3 \backslash \{(0,0,0)\}}{\rho}$

Osservazione: Sia *P* di coordinate omogenee $[(x_1, x_2, x_3)]$ con $x_3 \neq 0$

$$\left[\left(\frac{x_1}{x_3}, \frac{x_2}{x_3}, 1\right)\right]$$

Pè proprio $P=(x,y)=(\frac{x_1}{x_3},\frac{x_2}{x_3})$ Sia invece $x_3=0$

$$P = [(x_1, x_2, 0)]$$
 $[(l, m)] = [(x_1, x_2)]$

P non ha coordinate affini (non omogenee) \implies è improprio.

2.3 Rappresentazione delle rette in $\tilde{A}_2(\mathbb{R})$

Sia $RA[O, B = (e_1, e_2)]$ un riferimento affine di $\mathring{A}_2(\mathbb{R})$. In $\mathring{A}_2(\mathbb{R})$ l'equazione cartesiana di una retta è ax + by + c = 0 con $(a, b) \neq (0, 0)$. Sui punti propri $P = \left[\left(\frac{x_1}{x_3}, \frac{x_2}{x_3}, 1\right)\right]$ dovrà valere ax + by + c = 0

$$a\left(\frac{x_1}{x_3}\right) + b\left(\frac{x_2}{x_3}\right) + c = 0$$
 $ax_1 + bx_2 + cx_3 = 0$

Il punto improprio di ax + by + c = 0 è [(-b, a, 0)]. Sostituiamo in $ax_1 + bx_2 + cx_3 = 0$ [(-b, a, 0)]

$$a(-b) + ba + 0 = 0$$

 $\implies ax_1 + bx_2 + cx_3 = 0$ è l' equazione omogenea di una retta r di $\tilde{A}_2(\mathbb{R})$. Siano ora (a,b) = (0,0), allora $ax_1 + bx_2 + cx_3 = 0$ si riduce a $0x_1 + 0x_2 + cx_3 = 0$ con $c \neq 0$, $cx_3 = 0$, $cx_3 = 0$ è la r_{∞} perché rispettata da tutti e soli i punti impropri. L'equazione $ax_1 + bx_2 + cx_3 = 0$ con $(a,b,c) \neq (0,0,0)$ rappresenta, in ogni caso, una retta di $\tilde{A}_2(\mathbb{R})$. Di conseguenza è l'equazione cartesiana di una retta di $\tilde{A}_2(\mathbb{R})$.

2.4 Complessificazione di $\tilde{A}_2(\mathbb{R})$

 $\tilde{\mathring{A}}_{2}(\mathbb{C})=$ piano affine ampliato e **complessificato**.

Osservazione:

• **punti**: terne $(\neq \underline{0})$ di numeri complessi determinati a meno di un fattore di proporzionalità complesso e non nullo.

$$\frac{\mathbb{C}^3 \setminus \{(0,0,0)\}}{\rho}$$

• rette: luogo delle autosoluzioni (soluzioni non nulle) di un'equazione del tipo

$$ax_1 + bx_2 + cx_3 = 0$$
 con $(a, b, c) \neq 0$ e a, b, $c \in \mathbb{C}$

Definizione 2.4.1: Punti e rette in $\tilde{A}_2(\mathbb{C})$

In $\tilde{A}_2(\mathbb{C})$ si dicono:

- punti e rette reali i punti e le rette che ammettono una rappresentazione reale
- punti e rette immaginari i punti e le rette che ammettono solo rappresentazioni immaginarie

Esempio 2.4.1

P : [(4, 3 + i, 1)] è immaginario.

Dimostrazione: Sia $a + ib \in \mathbb{C}$: P = (4(a + ib), (3 + i)(a + ib), a + ib) con x_1, x_2, x_3 reali, quindi

 $x_3 = a + ib \implies x_3 = a$. P = [(4a, (3+i)a, a)], ma $a \neq 0$ (3+i)a non è reale $\implies P$ non è reale.

(3)

Definizione 2.4.2: Coniugati

Si dicono coniugati due enti (punti, rette ecc...) che ammettono rappresentazioni coniugate.

Proposizione 2.4.1

Un ente geometrico (punto, retta, curva ecc...) è reale se, e soltanto se, coincide con il proprio coniugato.

Note:-

Una retta reale ha infiniti punti immaginari

Esempio 2.4.2

 $x_1 = 0 \implies [(0, x_2, x_3)] \implies [(0, a + ib, 1)]$ sono tutti immaginari.

Osservazione: Se un'equazione reale è realizzata da un punto $P \implies \overline{P}$ è soluzione se r è reale e $P \in r \implies \overline{P} \in \overline{r} = r$.

Proposizione 2.4.2

La retta che congiunge due punti $P \in \overline{P}$ immaginari e coniugati è reale.

 $\begin{array}{lll} \textbf{\textit{Dimostrazione:}} & P \in r \text{ e } \overline{P} \in r \text{ per costruzione.} & \text{Poich\'e } P \neq \overline{P} \text{ } r = rt(P, \overline{P}). \text{ Poich\'e } P \in r \implies \overline{P} \in \overline{r} \text{ e} \\ \overline{P} \in r \implies \overline{P} \in \overline{r}, \text{ ma } \overline{P} = P \in \overline{r}. \implies \overline{P} \text{ e } P \in \overline{r} \implies \overline{r} = rt(P, \overline{P}). \text{ Per l'unicit\`a della retta per } P \text{ e } \overline{P} \implies r = \overline{r} \implies r \text{ \`e reale.} \end{array}$

Proposizione 2.4.3

Per un punto P immaginario $(P \neq \overline{P})$ passa un'unica retta reale.

Dimostrazione: La retta $rt(P, \overline{P})$ è reale per la proposizione precedente. Supponiamo per assurdo che $\exists s \neq rt(P, \overline{P})$ reale per P. $\Longrightarrow \overline{P} \in s$ poiché s è reale. $s = rt(P, \overline{P})$ che è **assurdo!**. Quindi esiste ed è unica la retta r reale per P. \circledcirc

Proposizione 2.4.4

Due rette immaginarie e coniugate si intersecano in un punto reale di $\tilde{A}_2(\mathbb{C})$.

Proposizione 2.4.5

Ogni retta r immaginaria ha un unico punto reale in $\tilde{\mathring{A}}_2(\mathbb{C})$.

Dimostrazione: Per ipotesi $r \neq \overline{r} \implies \exists P$ intersezione di $r \in \overline{r}$. Quindi per la proposizione precedente P è reale. Sia $S \in r$ un punti reale. Essendo reale $S = \overline{S} \implies S \in \overline{r} \implies S \implies S \in r \cap \overline{r}$. Quindi per l'unicità del punto di intersezione, S = P.

Definizione 2.4.3: Curve algebriche reali in $\tilde{A}_2(\mathbb{C})$

Curva algebrica reale di $\tilde{A}_2(\mathbb{C})$ è il luogo delle autosoluzioni di un'equazione del tipo

$$F(x_1, x_2, x_3) = 0$$

dove $F(x_1, x_2, x_3) = 0$ è un polinomio omogeneo a coefficienti reali nelle variabili x_1, x_2, x_3 .

Osservazione: Ogni curva algebrica reale di $\tilde{A}_2(\mathbb{C})$ che contiene un punto P contiene anche \overline{P} .

Esempio 2.4.3

Per esempio prendiamo una circonferenza

$$x^{2} + 2ax + y^{2} + 2by + c = 0$$
 $r^{2} = a^{2} + b^{2} - c = 0$

$$(x + a)^2 + (y + b)^2 = 0$$
 $C: (-a, -b)$

Ora consideriamo l'equazione

$$(x+a)^2 + (y+b)^2 = 0$$
 in $\mathring{A}_2(\mathbb{C})$ $x = \frac{x_1}{x_3}$ $y = \frac{x_2}{x_3}$

$$\left(\frac{x_1}{x_3} + a\right)^2 + \left(\frac{x_2}{x_3} + b\right)^2 = 0$$

Moltiplichiamo dentro entrambi i membri per x_3 e sviluppiamo

$$x_1^2 + 2ax_1x_3 + a^2x_3^2 + x_2^2 + 2bx_2x_3 + b^2x_3^2 = 0$$

$$1 + 2a + a^2 + 1 + 2b + b^2 = 0$$

Definizione 2.4.4: Curva riducibile

In $\tilde{A}_2(\mathbb{C})$ una curva $F(x_1, x_2, x_3)$ si dice riducibile se F è il prodotto di polinomi di grado più basso.

Esempio 2.4.4

$$F(x_1, x_2, x_3) = F_1(x_1, x_2, x_3)^{n_1} \cdot F_2(x_1, x_2, x_3)^{n_2} \cdot F_3(x_1, x_2, x_3)^{n_3}$$
$$\deg(F) = n_1 \deg(F_1) + \dots + n_t \deg(F_t)$$

Osservazione: Geometricamente una curva riducibile si riduce in componenti ottenute uguagliando a zero i vari fattori.

Definizione 2.4.5: Ordine

Si dice **ordine** di una curva algebrica in $\tilde{A}_2(\mathbb{C})$ il grado del polinomio F che la definisce.

Teorema 2.4.1 Teorema dell'ordine

L'ordine di una curva algebrica reale è uguale al numero di intersezioni in comune con una qualsiasi retta r di $\tilde{A}_2(\mathbb{C})$ a patto che

- 1. r non sia componente della curva
- 2. le intersezioni siano contate con la loro molteplicità

Definizione 2.4.6: Punti semplici ed r-upli

Sia C una curva algebrica di $\tilde{A}_2(\mathbb{C})$ e sia $P \in C$

- *P* si dice **semplice** se la generica retta per *P* interseca *C* in *P* con molteplicità unitaria ed esiste un'unica retta, chiamata retta tangente, con molteplicità di intersezione in *P* maggiore di 1.
- P si dice **r-uplo** (doppio, triplo, ecc...) se la generica retta per P interseca C in P con molteplicità r, ed esistono r (contate con la loro molteplicità) rette con molteplicità di intersezione in P maggiore di r (rette tangenti).

Proposizione 2.4.6

Sia C una curva algebrica reale di $\tilde{A}_2(\mathbb{C})$. Se una retta r ha più di n intersezioni con n l'ordine di C, allora r è componente di C.

Dimostrazione: Per il teorema dell'ordine se r non fosse componente della curva C avrebbe esattamente n intersezioni con C (a patto di contarle con la dovuta molteplicità).

Proposizione 2.4.7

Sia C una curva algebrica reale di $\tilde{A}_2(\mathbb{C})$ di ordine n. Allora C non possiede punti (n+1)-upli.

Dimostrazione: Dato che C è di ordine $n \Longrightarrow \exists r \in \tilde{A}_2(\mathbb{C})$ non componente di C passante per un punto dato di C. Sia, per assurdo, P un punto (n+1)-uplo.

$$|r \cap C| \ge n + 1$$
 perché passa per P

ma dato che r non è componente, il teorema dell'ordine

$$|r \cap C| = n < n + 1$$

Assurdo!

Proposizione 2.4.8

Sia C una curva algebrica reale di $\mathring{A}_2(\mathbb{C})$ di ordine n. C ha un punto n-uplo P se, e soltanto se, C è unione di n rette (contate con la dovuta molteplicità) per P.

Dimostrazione: " \Longrightarrow " Sia $P \neq Q \in C$ e sia r la retta rt(P,Q). Supponiamo per assurdo r non sia componente allora per il teorema dell'ordine

$$n = |r \cap C| \ge \underbrace{n}_{\in P} + \underbrace{1}_{\in Q}$$

Assurdo! Quindi per ogni punto $Q \in C$ la retta PQ è componente $\implies C$ è unione di rette per P. Quindi queste rette sono $n = \deg(F) = \text{ordine di } C$.

" \Leftarrow " Sia C unione di n rette per P. Allora la generica retta per P non componente di C interseca C sono in P \Rightarrow P è punto n-uplo.

Definizione 2.4.7: Punto multiplo

Sia C una curva algebrica reale di $\tilde{A}_2(\mathbb{C})$ e sia $P \in C$. Se P non è un punto semplice allora si dice **punto** multiplo.

Teorema 2.4.2

Sia C una curva algebrica reale di $\tilde{A}_2(\mathbb{C})$ di ordine n e sia $F(x_1, x_2, x_3) = 0$ il polinomio omogeneo che la definisce. I punti multipli di C sono le classi di autosoluzioni del sistema associato alle derivate:

$$\begin{cases} \frac{dF}{dx_1} = 0\\ \frac{dF}{dx_2} = 0\\ \frac{dF}{dx_3} = 0 \end{cases}$$

Esempio 2.4.5

$$x_1^2 + 2x_2^2 + 3x_1x_3 - 3x_2x_3 = 0$$

$$\begin{cases} \frac{dF}{dx_1} = 2x_1 + 3x_3 = 0\\ \frac{dF}{dx_2} = 4x_2 - 3x_3 = 0\\ \frac{dF}{dx_3} = 3x_1 - 3x_2 = 0 \end{cases}$$

$$A = \begin{pmatrix} 2 & 0 & 3\\ 0 & 4 & -3\\ 3 & -3 & 0 \end{pmatrix} \quad |A| \neq 0$$

Capitolo 3

Coniche in $\tilde{A}_2(\mathbb{C})$

Definizione 3.0.1: Conica

Si dice **conica** una curva algebrica reale di $\tilde{A}_2(\mathbb{C})$ (curva piana) del secondo ordine. Una conica si rappresenta eguagliando a 0 un polinomio omogeneo F di secondo grado nelle variabili x_1, x_2, x_3 , a coefficienti reali. La generica equazione della conica è

$$C: a_{11}x_1^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + a_{22}x_2^2 + 2a_{23}x_2x_3 + a_{33}x_3^2 = 0$$

Se chiamiamo

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \quad A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

Possiamo riscrivere l'equazione come prodotto righe per colonne

$$^{t}XAX = 0$$

A è una matrice reale e simmetrica ed è detta matrice della conica.

Esempio 3.0.1

Consideriamo la conica

$$-x_1^2 + ax_1x_2 + 5x_2^2 - 3x_2x_3 + 6x_3^2 = 0$$
$$A = \begin{pmatrix} -1 & 2 & 0\\ 2 & 5 & -\frac{3}{2}\\ 0 & -\frac{3}{2} & 6 \end{pmatrix}$$

Ora facciamo il prodotto

$$(x_1 \quad x_2 \quad x_3) \cdot \begin{pmatrix} -1 & 2 & 0 \\ 2 & 5 & -\frac{3}{2} \\ 0 & -\frac{3}{2} & 6 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

$$(-x_1 + 2x_2 \quad 2x_1 + 5x_2 - \frac{3}{2}x_3 \quad -\frac{3}{2}x_2 + 6x_3) \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

$$x_1(-x_1 + 2x_2) + x_2 \left(2x_1 + 5x_2 - \frac{3}{2}x_3\right) + x_3 \left(-\frac{3}{2}x_2 + 6x_3\right) = 0$$

$$-x_1^2 + 4x_1x_2 + 5x_2^2 - 3x_2x_3 + 6x_3^2 = 0$$

Osservazione: L'equazione della generica conica di $\tilde{A}_2(\mathbb{C})$ dipende da 6 coefficienti definiti a meno di un fattore di proporzionalità. Quindi le coniche di $\tilde{A}_2(\mathbb{C})$ sono ∞^5 .

Proposizione 3.0.1

Sia C una conica di $\tilde{A}_2(\mathbb{C})$ riducibile. Allora C è unione di 2 rette

- 1. reali e distinte
- 2. reali e coincidenti
- 3. immaginarie e coniugate

Dimostrazione: Sia C conica associata al polinomio $F = (x_1, x_2, x_3) = 0$. Se C è riducibile $F = (x_1, x_2, x_3) = F_1 = (x_1, x_2, x_3) \cdot F_2 = (x_1, x_2, x_3)$ dove F_1 e F_2 hanno grado unitario, quindi rappresentano delle rette e di conseguenza C è unione di due rette r_1 e r_2 . Se r_1 e r_2 sono entrambe reali siamo nei casi 1 o 2. Se invece r_1 è immaginaria, $\overline{r_1}$ è ancora componente di C (per ogni $P \in r_1$, $\overline{P} \in C$), ma $r_1 \neq \overline{r_1} \implies \overline{r_1} = r_2 \implies C$ si riduce in due rette immaginarie e coniugate.

Osservazione: Se r è immaginaria anche \overline{r} lo è. Infatti $r \neq \overline{r}$ e quindi $\overline{r} \neq \overline{\overline{r}} = r$.

Proposizione 3.0.2

In $\tilde{A}_2(\mathbb{C})$ una conica

- 1. non ha punti tripli
- 2. ha un punto doppio se, e soltanto se, è riducibile. E abbiamo due possibilità
 - (a) ha solo un punto doppio P e si riduce in due rette distinte per P
 - (b) ha almeno due punti doppi allora ne ha ∞^1 e si fattorizza in una retta reale contata due volte

Dimostrazione: " ⇒ " Per ipotesi C ha punto doppio P. Sia $R \in C$ e consideriamo la retta r = rt(P, R), se non fosse componente avrebbe

$$|r \cap C| \ge 2 + 1 = 3$$
 intersezioni con C

Assurdo! Questo è in contraddizione con il teorema dell'ordine.

" \Leftarrow " Sia C riducibile. Allora $C = r_1 \cup r_2$. Sia $P \in r_1 \cap r_2$ e sia r una retta per P diversa r_1 e da r_2 . Quindi $r \cap C = P$. Per il teorema dell'ordine P ha molteplicità doppia e abbiamo due casi

- 1. se $r_1 = r_2$ abbiamo ∞^1 punti doppi e $C = r_1 \cup r_1$
- 2. altrimenti abbiamo un solo P punto doppio che è $r_1 \cap r_2$

Dobbiamo dimostrare che esiste un solo punto. Siano per assurdo P_1 e P_2 punti doppi e sia $C=r_1\cup r_2$ con $r_1\neq r_2$. Sia $Q\in r_2$ con $P_2\in r_1$, allora

$$|rt(P_2,Q)\cap C|\geq \underbrace{2}_{P_2}+\underbrace{1}_{Q}$$

Per il teorema dell'ordine $rt(P_2,Q)$ è componente. **Assurdo!** Perché avremmo 3 componenti $(r_1,r_2,rt(P_2,Q))$.

Definizione 3.0.2: Coniche generali o degeneri

Una conica si dice

- generale se è priva di punti doppi \implies se non è riducibile
- semplicemente degenere se ha un solo punto doppio $\implies C = r_1 \cup r_2$ con $r_1 \neq r_2$
- doppiamente degenere se ha ∞^1 punti doppi $\implies C = r \cup r$

Teorema 3.0.1

In $\mathring{A}_2(\mathbb{C})$ i punti doppi di una conica C si trovano considerando le classi di autosoluzioni del sistema omogeneo

$$AX = \underline{0}$$

dove A è la matrice associata a C.

Dimostrazione:

$$C: F(x_1,x_2,x_3)=0 \quad \text{dove F è:}$$

$$a_{11}x_1^2+2a_{12}x_1x_2+2a_{13}x_1x_3+a_{22}x_2^2+2a_{23}x_2x_3+a_{33}x_3^2=0$$

i punti doppi si trovano risolvendo

$$\begin{cases} \frac{dF}{dx_1} = 2a_{11}x_1 + 2a_{12}x_2 + 2a_{13}x_3 = 0 \\ \frac{dF}{dx_2} = 2a_{12}x_1 + 2a_{22}x_2 + 2a_{23}x_3 = 0 \\ \frac{dF}{dx_3} = 2a_{13}x_1 + 2a_{23}x_2 + 2a_{33}x_3 = 0 \end{cases}$$

Possiamo dividere tutti i fattori per 2

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\implies AX = \underline{0}$$

(2)

☺

Teorema 3.0.2

In $\tilde{A}_2(\mathbb{C})$ una conica $C: {}^tXAX = 0$ è

- 1. generale se $\rho(A)=3$
- 2. semplicemente degenere se $\rho(A) = 2$
- 3. doppiamente degenere se $\rho(A) = 1$

Dimostrazione: Dimostriamo tutti i casi singolarmente:

- 1. C è generale se non ha punti doppi. Se $AX = \underline{0}$ ha solo la soluzione nulla $\iff \rho(A) = 3$.
- 2. C è semplicemente degenere se ha un solo punto doppio. $\iff AX = 0$ ha $\infty^1 \iff \rho(A) = 2$
- 3. C è doppiamente degenere se ha ∞^1 punti doppi $\iff AX = \underline{0}$ ha ∞^2 soluzioni (se $[(x_1, x_2, x_3)]$ è soluzione $[(2x_1, 2x_2, 2x_3)]$ è lo stesso punto doppio) $\iff \rho(A) = 1$

3.1 Classificazione affine di una conica generale

Sia C una conica di $\tilde{A}_2(\mathbb{C})$ e r una retta osserviamo che $r \cap C =$

- 1. due punti reali e distinti
- 2. un punto reale con molteplicità doppia
- 3. due punti immaginari e coniugati

Se consideriamo la r_{∞} questa casistica ci dà la classificazione affine delle coniche generali.

Definizione 3.1.1: Ellisse, iperbole e parabola

Sia C una conica di $\tilde{A}_2(\mathbb{C})$ e sia C generale. Allora $C \cap r_\infty$ è data dai due punti P,Q (non necessariamente distinti) e C si dice:

- 1. ellisse se P e Q sono immaginari e coniugati;
- 2. **iperbole** se P e Q sono reali e distinti;
- 3. parabola se $P \in Q$ sono reali e coincidenti.

3.2 Condizioni analitiche

Sia C una conica generale di equazione

$$a_{11}x_1^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + a_{22}x_2^2 + 2a_{23}x_2x_3 + a_{33}x_3^2 = 0$$

La r_{∞} ha equazione $x_3 = 0$

$$\begin{cases} a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2 = 0 = C \cap r_{\infty} \\ x_3 = 0 \end{cases}$$

Almeno uno fra $x_1, x_2 \neq 0$. Supponiamo $x_2 \neq 0$ e dividiamo per x_2^2

$$a_{11} \left(\frac{x_1}{x_2}\right)^2 + 2a_{12} \frac{x_1}{x_2} + a_{22} = 0$$

La risolviamo in $\frac{x_1}{x_2}$. Se

- 1. $\frac{\Delta}{4} > 0$ abbiamo due soluzioni reali e distinte \implies iperbole;
- 2. $\frac{\Delta}{4} = 0$ abbiamo due soluzioni coincidenti \implies parabola;
- 3. $\frac{\Delta}{4} < 0$ abbiamo due soluzioni immaginarie e coniugate \implies ellisse.

$$\frac{\Delta}{4} = \left(\frac{b}{2}\right)^2 - ac = \left(\frac{2a_{12}}{2}\right)^2 - a_{11}a_{22} = a_{12}^2 - a_{11}a_{22}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \quad \text{poniamo} \quad A^* = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$$

$$|A^*| = a_{11}a_{22} - a_{12}^2 = -\frac{\Delta}{4}$$

Se C è una conica generale (|A| = 0) allora si applicano le casistiche sopra elencate.

Definizione 3.2.1: Polarità associata ad una conica

Data una conica $C: {}^tXAX = 0$ e dati due punti del piano $(\tilde{A}_2(\mathbb{C}))$

$$P' = [(x'_1, x'_2, x'_3)]$$
 e $P'' = [(x''_1, x''_2, x''_3)]$

si dice che P' è coniugato a P'' rispetto a C se

$$^tX'AX''=0$$
 con $X'=\begin{pmatrix} x_1'\\x_2'\\x_3'\end{pmatrix}$ e $X''=\begin{pmatrix} x_1''\\x_2''\\x_3''\end{pmatrix}$

Osservazione: Sia P' coniugato a P'', ovvero

$${}^tX'AX''=0 \implies {}^t({}^tX'AX'')=0={}^tX''{}^tA^t({}^tX')={}^tX''AX'=0 \implies P''$$
è coniugato a P'

Quindi la relazione di coniugio è simmetrica \implies potremo dire semplicemente che P' e P'' sono coniugati.

Definizione 3.2.2: Polare

Sia C una conica di $\tilde{A}_2(\mathbb{C})$ e sia $P \in \tilde{A}_2(\mathbb{C})$ si dice **polare** di P rispetto a C il luogo dei punti Q coniugati di P rispetto alla conica C.

Proposizione 3.2.1

In $\mathring{A}_2(\mathbb{C})$ la polare di un punto P rispetto ad una conica generale $\grave{\mathbf{e}}$ una retta.

 $\textbf{\textit{Dimostrazione:}} \quad \text{Siano } [(x_1', x_2', x_3')] = P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene alla polare di } P \text{ se e soltanto se } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene alla polare di } P \text{ se e soltanto se } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene alla polare di } P \text{ se e soltanto se } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene alla polare di } P \text{ se e soltanto se } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene alla polare di } P \text{ se e soltanto se } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene alla polare di } P \text{ se e soltanto se } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene alla polare di } P \text{ se e soltanto se } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene alla polare di } P \text{ se e soltanto se } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene alla polare di } P \text{ se e soltanto se } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene alla polare di } P \text{ se e soltanto se } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene alla polare di } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene alla polare di } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene alla polare } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene alla polare } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene alla polare } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene } P \text{ allora } Q = [(x_1, x_2, x_3)] \text{ appartiene } P \text{ allora } Q = [(x_1,$

$$(x'_1, x'_2, x'_3)A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \quad (x'_1, x'_2, x'_3)A = (a, b, c)$$

$$(a,b,c)$$
 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = ax_1 + bx_2 + cx_3 = 0$

Dimostriamo che $(a,b,c) \neq \underline{0}$. Sia per assurdo $(a,b,c) = \underline{0} \implies (x_1',x_2',x_3')A = \underline{0}$

$$\iff {}^{t}A \begin{pmatrix} x_{1}' \\ x_{2}' \\ x_{3}' \end{pmatrix} \iff A \begin{pmatrix} x_{1}' \\ x_{2}' \\ x_{3}' \end{pmatrix} = \underline{0}$$

 $\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix}$ è le coordinate di un punto doppio $\implies P$ è un punto doppio di $C \implies$ ma C è generale \implies assurdo! $\implies (a,b,c) \neq 0 \implies ax_1 + bx_2 + cx_3 = 0$ è una retta. Essa è chiamata retta polare di P rispetto a C.

Definizione 3.2.3

P è detto polo della sua retta polare. La relazione **polo** \leftrightarrow **polare** è detta polarità ed è una biiezione.

3.2.1 Principio di reciprocità

Sia C una conica generale di $\tilde{A}_2(\mathbb{C})$, sia $P \in \tilde{A}_2(\mathbb{C})$ e sia p la polare di P. Allora

1. le polari dei punti di p passano per P.

Dimostrazione: Sia $Q \in p \implies Q$, P sono coniugati $\implies P \in q$ di Q.

2. i poli delle rette per P appartengono a p.

Dimostrazione: Sia q una retta per P. Il polo Q di q è coniugato a tutti i punti di q ⇒ Q è coniugato a P ⇒ $Q \in p$.

☺

Proposizione 3.2.2

Sia C una conica generale di $\tilde{A}_2(\mathbb{C})$. Allora

1. sia $P \in C \implies$ la polare p di P è la retta tangente a C in P.

Dimostrazione: Sia P di coordinate $x_P = \begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix}$ appartenente alla conica allora la polare di P ha

equazione
$${}^{t}X_{P}A\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = 0$$
 che è la formula della retta tangente a C in P .

2. Sia $P \notin C$. La polare di P è la congiungente dei due punti T_1 e T_2 ottenuti intersecando le tangenti t_1 e t_2 alla conica per P.

Dimostrazione: $T_1 \in C \implies$ la polare di T_1 rispetto a C è t_1 . $P \in t_1 \implies P$ appartiene alla polare di T_1 . Quindi per il principio di reciprocità T_1 appartiene alla polare di $P \implies T_1 \in p$. Analogamente $T_2 \in C \implies$ la polare di T_2 è t_2 e $P \in t_2 \implies T_2 \in p$. Quindi $T_1, T_2 \in p \implies p$ è la congiungente di T_1 e T_2 .

Osservazione: Equivalentemente il punto 2 si può riscrivere

Proposizione 3.2.3

Se $P \notin C$ la sua polare p si ottiene congiungendo i punti T_1 e T_2 di tangenza delle tangenti per P.

Definizione 3.2.4: Centro e diametri di una conica

Si dice **centro** di una conica generale di $\mathring{A}_2(\mathbb{C})$ il polo della retta impropria. Si dicono diametri di una conica generale le rette polari dei punti impropri.

Osservazione: Per il principio di reciprocità i diametri passano per il centro della conica. Quindi sono il fascio proprio (se c'è proprio) di rette per C.

Per determinare le coordinate del centro dobbiamo scegliere due punti $X_{\infty} = [(1,0,0)]$, punto improprio dell'asse x, e $Y_{\infty} = [(0,1,0)]$, punto improprio dell'asse y. La polare di X_{∞} è

$$(1,0,0) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \qquad (a_{11},a_{12},a_{13}) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = 0$$

Analogamente la polare di y_{∞} è

$$\begin{aligned} a_{12}x_1 + a_{22}x_2 + a_{23}x_3 &= 0 \\ \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 &= 0 \\ a_{12}x_1 + a_{22}x_2 + a_{23}x_3 &= 0 \end{cases} & P_2 \end{aligned}$$

Il centro C è proprio se P_1 e P_2 non sono paralleli. Se

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix} = |A^*| \neq 0$$

Il centro è un punto proprio. Quindi il centro è un punto proprio se C è un ellisse o un'iperbole. Quindi in questo caso i diametri sono un fascio proprio di rette di centro C.

$$F: \ \lambda(a_{11}x_1+a_{12}x_2+a_{13}x_3)+\mu(a_{12}x_1+a_{22}x_2+a_{23}x_3)=0$$

Equazione del fascio dei diametri. Se C è una parabola $\Longrightarrow |A^*| = 0 \Longrightarrow P_1$ parallelo a $P_2 \Longrightarrow$ il centro è un punto improprio. \Longrightarrow i diametri formano un fascio improprio di equazione

$$a_{11}x_1 + a_{12}x_2 + kx_3 = 0$$
 con $k \in \mathbb{C}$

fascio improprio dei diametri della parabola.

3.3 Asintoti di una conica

Definizione 3.3.1: Asintoti

Si dicono asintoti di una conica le rette proprie tangenti alla conica nei suoi punti impropri.

Osservazione: Gli asintoti di una conica sono quindi le rette polari nei suoi punti impropri. Gli asintoti sono quindi dei diametri e passano per il centro. Se il centro è proprio (cioè se C è un'ellisse o un'iperbole) gli asintoti sono le rette che congiungono il centro con i punti impropri di C.

Proposizione 3.3.1

La parabola è una conica con centro improprio e priva di asintoti.

Dimostrazione: Sia C una parabola $\Longrightarrow C$ è tangente alla retta impropria in un punto che chiamiamo P_{∞} . Quindi la retta polare di P_{∞} è r_{∞} \Longrightarrow il polo della r_{∞} è P_{∞} \Longrightarrow il punto P_{∞} è il centro della parabola. Osserviamo che C ha solo un punto improprio P_{∞} \Longrightarrow ammette solo una tangente nel suo punto improprio. Ma t è la r_{∞} \Longrightarrow la r_{∞} non è un asintoto.

Definizione 3.3.2: Coniche a centro

Diremo che l'iperbole e l'ellisse sono coniche a centro, mentre la parabola è detta conica non a centro.

3.4 Proprietà metriche

Definizione 3.4.1: Iperbole equilatera

Un'iperbole si dice **equilatera** se i suoi asintoti sono ortogonali.

Proposizione 3.4.1

Una conica generale è un'iperbole equilatera se, e soltanto se, $a_{11}+a_{22}=0$.

Esempio 3.4.1

Si stabiliscano i valori di $k \in \mathbb{R}$:

$$C: 2kx^2 + 2(k-2)xy - 4y^2 + 2x + 1 = 0$$

sia un'iperbole equilatera.

- 1. $2k = -(-4) \rightarrow k = 2$
- 2. Sostituiamo dentro all'equazione e scriviamola in forma omogenea

$$4x_1^2 + 0x_1x_2 - 4x_2^2 + 2x_1x_3 + x_3^2 = 0 \quad A = \begin{vmatrix} 4 & 0 & 1 \\ 0 & -4 & 0 \\ 1 & 0 & 1 \end{vmatrix} \neq 0$$

k=2 dà luogo ad un'iperbole equilatera.

Definizione 3.4.2: Ortogonale al punto improprio

Diremo che la retta p di parametri direttori [(l', m')] è ortogonale al punto improprio P : [(l, m, 0)] se ll' + mm' = 0.

Definizione 3.4.3: Asse di una conica

Si dice asse di una conica ogni diametro ortogonale al proprio polo.

Definizione 3.4.4: Vertici

Si dicono **vertici** le intersezioni proprie della conica con i propri assi.

3.5 Condizioni analitiche

Proposizione 3.5.1

Gli assi di una conica a centro (ellisse o iperbole) sono due e sono ortogonali tra loro, a meno che non si tratti di una circonferenza generalizzata, in tal caso tutti i diametri sono assi.

Dimostrazione: Per definizione i diametri sono le polari dei punti impropri. Dato $P_{\infty}:[(l,m,0)]$

$$\begin{pmatrix} l & m & 0 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

Il generico diametro è:

$$(la_{11} + ma_{12} \quad la_{12} + ma_{22} \quad la_{13} + ma_{23}) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

$$(la_{11} + ma_{12})x_1 + (la_{12} + ma_{22})x_2 + (la_{13} + ma_{23})x_3 = 0$$

$$p.d.d: [(-la_{12} - ma_{22}, la_{11} + ma_{12})]$$

Il polo di $d \in P_{\infty} : [(l, m, 0)]$. $d \in un$ asse se è ortogonale a P_{∞} ovvero se

$$l(-la_{12} - ma_{22}) + m(la_{11} + ma_{12}) = 0$$

$$-l^2a_{12} + ml(-a_{22} + a_{11}) + m^2a_{12} = 0 l^2a_{12} + ml(a_{22} - a_{11}) - m^2a_{12} = 0$$

$$a_{12} \left(\frac{l}{m}\right)^2 + \frac{l}{m}(a_{22} - a_{11}) - a_{12} = 0$$

Se $a_{12} = 0$ e $a_{22} = a_{11}$ l'equazione è risolta da tutte le coppie (l, m). Quindi se la conica è una circonferenza generalizzata tutti i diametri sono assi. I due assi hanno polo $P_{\infty} : [(l', m', 0)] \in Q_{\infty} : [(l'', m'', 0)]$. Sia p' l'asse associato al polo P_{∞} e sia A_{∞} il suo punto improprio. Sia a la retta che congiunge il centro al punto improprio $rt(C, P_{\infty})$, per ipotesi $a \perp p'$. a contiene P_{∞} che è il polo di p', quindi per il principio di reciprocità p' contiene il polo di a. Il polo di a è improprio (perché a è diametro) \Longrightarrow il punto improprio di a è A_{∞} , ma A_{∞} è ortogonale alla direzione di $a \Longrightarrow a$ è un asse. Quindi i due assi sono ortogonali.

Proposizione 3.5.2

La parabola ha un unico asse e un solo vertice v. Inoltre la tangente alla parabola in v è ortogonale all'asse.

Dimostrazione: Il punto P_{∞} di una parabola è $[(-a_{12}, a_{11}, 0)]$. I $p.d.d = [(-a_{12}, a_{11})]$. La direzione ortogonale è data da $[(a_{11}, a_{12})]$, quindi il punto P_{∞} è $[(a_{11}, a_{12}, 0)]$. Da cui segue che l'asse è unico ed è la polare di $(a_{11}, a_{12}, 0)$. Sostituendo nell'equazione del fascio improprio dei diametri abbiamo che l'asse ha equazione:

$$a_{11}(a_{11}x_1 + a_{12}x_2 + a_{13}x_3) + a_{12}(a_{12}x_1 + a_{22}x_2 + a_{23}x_3) = 0$$

⊜