Tutorial Bioinformatica

Marcel Ferreira - Bolsista/CAPES 2024-08-01

Table of contents

Sobre esse curso	4
Realização	. 4
Apoio	. 4
Autores	. 4
Colaboradores	. 4
Introdução	5
Primeiros passos	6
Configurações de sistema	. 6
Softwares necessários	. 6
Usuários Windows	. 6
No Ubuntu	. 6
Instalação	. 7
Dados utilizados	. 7
Dia 1 - Sequenciamento de DNA	9
Arquivos	. 9
Atividades	. 9
Dia 2 - Alinhamento de sequências de DNA	11
Arquivos	. 11
Atividades	. 11
Dia 3 - Genotipagem	13
Arquivos	. 13
Atividades	
Dia 4 - Análise de sequenciamento Oxford Nanopore	15
Atividades	. 15
Dia 5 - Genotipagem de STRs a partir de dados de NGS	19
Atividades	. 19
toaSTR	
Interpretação dos resultados	10

Referências	20
ANEXO: Dicas para uso do Ubuntu/WSL	21
Navegação e Diretórios	21
Listar Conteúdo do Diretório	21
Mudar de Diretório	21
Diretório Atual	
Criar Diretório	2
Manipulação de Arquivos	
Copiar Arquivo	
$ m Mover/Renomear~Arquivo~\dots\dots\dots\dots\dots\dots\dots$	
Remover Arquivo	
Visualização de Conteúdo	
Visualizar Conteúdo do Arquivo	
Visualizar Conteúdo do Arquivo (página por página)	
Pacotes e Atualizações	
Atualizar Lista de Pacotes	
Atualizar Pacotes Instalados	
Instalar Novo Pacote	
Gerenciamento de Usuários	
Adicionar Usuário ao Grupo	
Mudar Senha do Usuário	
Processos	
Listar Processos	23
Matar um Processo por ID	
Monitorar Recursos do Sistema (htop)	23
Medir Tempo de Execução de um Comando (time)	
Rede	
Verificar Configurações de Rede	24
Testar Conexão com um Endereço IP	
Entrada e Saída Padrão (stdin/stdout)	
Outros Comandos Úteis	
Ajuda sobre um Comando	
Sair do Terminal	2!

Sobre esse curso

Realização

Figure 1: Realização UnB, UNESP e USP.

Apoio

Figure 2: CAPES-PROCAD Edital n° 16/2020. Processos 88887.516236/2020-00 e 88881.516238/2020-01.

Autores

Celso Teixeira Mendes Junior Erick da Cruz Castelli Marcel Rodrigues Ferreira Tamara Soledad Frontanilla Recalde

Colaboradores

Introdução

Bem-vindos ao Workshop de Bioinformática Aplicada à Genética Forense: Análise de Dados de Sequenciamento de Segunda e Terceira Geração. Este curso abrangente foi projetado para fornecer a vocês uma imersão prática nas técnicas de análise de dados genômicos, com foco especial na aplicação forense.

A genética forense tornou-se uma ferramenta essencial na resolução de casos criminais, identificação de indivíduos e estabelecimento de relações familiares. Neste workshop de cinco dias, exploraremos os fundamentos e as aplicações práticas do sequenciamento de DNA, abordando desde os conceitos básicos até as técnicas avançadas de genotipagem de STRs (Short Tandem Repeats) a partir de dados de Next-Generation Sequencing (NGS).

- Dia 1 Sequenciamento de DNA: Iniciaremos nossa jornada explorando os princípios fundamentais do sequenciamento de DNA de segunda geração. Compreenderemos as tecnologias por trás desses métodos e sua importância na geração de dados genômicos de alta qualidade. Também serão analisados dados brutos de sequenciamento e seu controle qualidade.
- Dia 2 Alinhamento de Sequências de DNA: No segundo dia, mergulharemos na etapa crucial de alinhamento de sequências de DNA. A precisão dessa fase é vital para extrair informações significativas dos dados brutos e identificar variações genéticas.
- **Dia 3 Identificação de Variantes:** Aprofundando-nos ainda mais, dedicaremos o terceiro dia à identificação de variantes genéticas. Exploraremos ferramentas e estratégias para detectar mutações, SNPs (*Single Nucleotide Polymorphisms*), InDels, e outras variantes que desempenham um papel crucial na individualidade genômica.
- Dia 4 Análise de Sequenciamento Oxford Nanopore: No quarto dia, abordaremos uma tecnologia revolucionária: o sequenciamento Oxford Nanopore. Compreenderemos suas vantagens, desafios e exploraremos casos de uso específicos na genética forense.
- Dia 5 Genotipagem de STRs a partir de dados de NGS: Encerraremos o workshop com uma exploração prática da genotipagem de STRs, uma ferramenta valiosa para estabelecer perfis genéticos únicos. Aprenderemos a interpretar e analisar esses dados, fornecendo *insights* fundamentais para investigações forenses.

Ao longo desta semana, vocês serão desafiados a aplicar os conhecimentos adquiridos em exercícios práticos e estudos de caso, preparando-os para enfrentar os desafios reais da genética forense na era da bioinformática. Esteja preparado para uma jornada intensiva de aprendizado e descoberta!

Primeiros passos

Configurações de sistema

Antes de iniciarmos o tutorial, é imperativo garantir que o sistema atenda às configurações mínimas para uma experiência estável. Utilizaremos sistema Linux. Recomenda-se que a máquina disponha de, no mínimo, 40 GB de armazenamento, 8 GB de memória RAM e um processador i5/i7 ou compatível. No entanto, para uma performance ideal e considerando o potencial de expansão das aplicações, encorajamos a utilização de um sistema com mais de 60 GB de armazenamento e, no mínimo, 16 GB de memória RAM. Essas configurações mais robustas assegurarão não apenas a instalação suave do software, mas também a capacidade de executar múltiplas aplicações de forma eficiente, proporcionando uma experiência mais fluida e responsiva ao usuário.

Softwares necessários

Usuários Windows

- WSL (Windows Subsystem for Linux)
- IGV (Robinson et al. 2011)
- FASTQC
- notepad++

Siga o tutorial da microsoft para instalar o WSL. https://learn.microsoft.com/pt-br/windows/wsl/install

No Ubuntu

- IGV (Robinson et al. 2011)
- FASTQC
- Trimmomatic (Bolger, Lohse, and Usadel 2014)
- bwa (Li 2013)

- minimap2 (Li 2018, 2021)
- samtools (Danecek et al. 2021)
- freebayes (Garrison and Marth 2012)
- vcftools (Danecek et al. 2011)
- bcftools (Danecek et al. 2021)
- NanoPlot (De Coster and Rademakers 2023)
- chopper (De Coster and Rademakers 2023)
- toaSTR (Ganschow, Wiegand, and Tiemann 2017)
- gzip

Instalação

Usuários windows

Usuários windows precisam instalar o Subsistema Windows para Linux (WSL). Os softwares FASTQC e IGV precisam ser instalados no windows e não no WSL. Anote a senha que você configurou. Ela será fundamental durante o uso do WSL!!!!

Ao terminar a instalação do WSL e de configurar seu usuário no linux utilize os seguintes comandos:

```
sudo apt-get update
sudo apt-get upgrade
```

Estes comandos irão garantir que o seu sistema esteja atualizado.

Sobre o comando sudo

O comando sudo permite ao usuário executar comandos com permissão superior. Para isso você precisará da sua senha (ou do administrador)!

Para instalar softwares no linux (diretamente ou no WSL) utilize o comando apt install da seguinte forma:

```
sudo apt install [SOFTWARE]
```

Dados utilizados

Baixe os dados que serão utilizados neste workshop via Google Drive;

! Utilize o email correto

Para ter acesso aos dados utilize o email que foi fornecido durante a inscrição no evento. Em caso de erro, entre em contato com a organização.

Os dados totalizam ~20 GB. Atente-se para isso!!!

Os dados estão contidos nesta estrutura de pastas descritas a baixo:

```
WorkshopDados/
|--genome/
|--fast5/
|--guppy_installer/
|--pre_run/
|--LongReadsFastq/

°--ShortReadsFastq/
```

Dia 1 - Sequenciamento de DNA

Importante

Verifique se o FASTQC esta instalado.

Arquivos

Serão utilizados os arquivos contidos na pasta WorkshopDados/shortReads/.

Estão dados vieram do projeto 1000 genomas (https://www.internationalgenome.org/home) e compreendem 10 amostras: dois trios e quatro amostras isoladas.

Atividades

O controle de qualidade (QC) dos dados é uma etapa crítica na análise de sequenciamento de nova geração (NGS) para garantir a confiabilidade dos resultados. Abaixo estão as etapas típicas do controle de qualidade:

1. Análise Inicial com FASTQC:

• Execute o FASTQC nas suas leituras brutas para avaliar a qualidade geral. Isso inclui gráficos e estatísticas que indicam a distribuição da qualidade das bases ao longo das reads, a presença de adaptadores, a presença de sequências overrepresented, entre outros.

2. Identificação de Adaptadores e Trimagem:

• Com base nos resultados do FASTQC, identifique a presença de adaptadores e sequências indesejadas nas extremidades das reads. Utilize o Trimmomatic para remover essas sequências, garantindo que apenas dados de alta qualidade sejam mantidos.

Trimmomatic - Instalação e uso

O Trimmomatic é um software escrito em java que deve ser executado utilizando o comando java -jar CAMINHO/.jar.

Como sugestão recomendamos que deixe este arquivo na pasta Downlodas em sua home. Lembre-se se alterar USER para o seu nome de usuário. Desde modo os comandos a seguir serão executados sem erros.

• Adapte o comando abaixo para a amostra que esta analisando, substituindo HG00099 pelo código dela:

```
java -jar '/home/USER/Downloads/Trimmomatic-0.39/trimmomatic-0.39.jar' PE -phred33
```

3. Remoção de Leituras de Baixa Qualidade:

- Algumas leituras podem conter regiões de baixa qualidade. Considere a remoção dessas leituras ou a trimagem de regiões específicas usando ferramentas adequadas, dependendo da natureza do problema. Utilize o comando a baixo para manter leituras com qualidade acima de 27 e tamanho mínimo de 100.
- Novamente, adapte o comando abaixo para a amostra que esta analisando, substituindo HG00099 pelo código dela:

```
java -jar '/home/USER/Downloads/Trimmomatic-0.39/trimmomatic-0.39.jar' PE -phred33
```

4. Filtragem de Leituras Curtas ou Longas:

 Dependendo do seu experimento, você pode querer filtrar leituras muito curtas ou muito longas que possam representar artefatos ou problemas experimentais.

5. Avaliação de Qualidade Pós-Trimagem:

 Após a trimagem e filtragem, execute novamente o FASTQC para avaliar como essas etapas afetaram a qualidade dos dados. Isso ajudará a garantir que você atingiu os padrões de qualidade desejados.

Dia 2 - Alinhamento de sequências de DNA

Arquivos

Os arquivos utilizados para estas analises serão os .fastq analisados no primeiro dia.

Arquivos .fastq

Preste atenção para o caminho da pasta aonde estão os .fastq. Eles estão na pasta WorkshopDados/shortReads/

Atividades

1. Indexação do Genoma de Referência:

- Para o alinhamento de sequências utilizaremos o programa bwa. Há outros, como bowtie2, minimap2, que podem ser utilizados caso seja conveniente. Os comandos abaixo preparam o genoma de referência para o bwa.
- Antes de realizar o alinhamento, é necessário indexar o genoma de referência usando o comando bwa index. Isso cria arquivos que aceleram o processo de alinhamento. bwa index hg38.fa

🛕 Indexação do genoma

O processo para criar o indice do genoma via bwa index demora bastante tempo para ser realizado. Mesmo em máquimas com grandes capacidades de memória. Devido a isso colocamos na pasta WorkshopDados/genome/ os arquivo resultantes desta etapa, que são os arquivos com extensão .amb, .ann, .bwt, .fai, .pac e .sa. O genoma de referência humano esta no arquivo hg38.fa. Esse é a última versão do genoma de referência e a mais utilizada no mundo.

Caso deseje testar em um genoma menor, utilize o chr12.fasta.

2. Alinhamento de Sequências:

• Use o bwa mem para alinhar suas sequências de DNA ao genoma de referência.

```
bwa mem -R "QRG\tID:{SAMPLE}\tSM:{SAMPLE}" hg38.fa {SAMPLE}\_r1.fastq {SAMPLE}\_r2.fastq {SAMPLE}
```

Substitua reference_genome.fa, {SAMPLE} pelos nomes dos arquivos correspondentes.

? Automatizando o processo (Opicional)

Caso tenha experiência em programação, você pode utilizar um loop, como for ou while, para rodar todas as amostras ao mesmo tempo. Você pode utilizar o própio bash (ubuntu) ou sua linguagem de programação favorita, como python, perl, R, etc.

Você poderá incluir as etapas seguintes no mesmo loop.

3. Converter Formato SAM para BAM e ordenar os reads:

• O arquivo de saída do **bwa mem** é no formato SAM. Converta-o para o formato BAM, mais compacto e eficiente.

samtools sort {SAMPLE}.sam > {SAMPLE}.bam

4. Indexar o Arquivo BAM:

 Ordene o arquivo BAM para facilitar a busca e indexe-o para melhorar o desempenho de ferramentas subsequentes.

samtools index {SAMPLE}.bam

5. Visualização do Alinhamento:

• Use o IGV (Integrative Genomics Viewer) para visualizar o alinhamento ({SAMPLE}.bam) e verificar sua qualidade.

Regiões com reads

Os arquivos fastq fornecidos para este curso foram preparados contendo apenas as regiões que estão nos arquivos bed fornecidos.

6. Use o IGV para observar várias amostras ao mesmo tempo

Dia 3 - Genotipagem

Arquivos

Serão utilizados os arquivos BAM que foram gerados no dia 2.

Atividades

1. Preparação do Ambiente:

 Certifique-se de que o freebayes está instalado no seu ambiente. Você pode instalar com:

```
sudo apt install freebayes
```

2. Indexação do Genoma de Referência (se ainda não estiver indexado):

- Assim como na etapa de alinhamento, o genoma de referência deve ser indexado.
 samtools faidx hg38.fa
- Caso utilize um genoma menor, atualize o nome.

3. Crie um arquivo com os nomes da amostras BAM:

• Entre na pasta onde estão os arquivos BAM gerados e utilize o comando 1s como abaixo

```
ls *.bam > bam_list.txt
```

4. Chamada de Variantes com freebayes:

 Execute o freebayes para chamar variantes a partir do arquivo BAM gerado após o alinhamento.

```
freebayes -f reference_genome.fa -L bam_list.txt -t bed_file.bed > variantes.vcf
```

A Otimizando o uso do freebayes

Caso o computador que esteja utilizando aborte o processo por falta de memória, você pode optar por reduzir o número de amostras em bam_list.txt. È importante destacar que a analise correta de genotipagem via freebayes requer que todas as amostras sejam analisadas simultaneamente, mas para fim de aprendizado esta é uma estratégia.

5. Filtragem de Variantes (opcional):

• Dependendo dos seus critérios e do tipo de análise, pode ser necessário filtrar as variantes chamadas pelo freebayes para reduzir o número de falsos positivos. Abaixo estão alguns exemplos:

```
bcftools view --exclude 'QUAL>1' variantes.vcf > variantes filtradas.vcf
bcftools view --trim-alt-alleles variantes_filtradas.vcf > variantes_filtradas_trim
bcftools view --min-ac 1 variantes_filtradas_trim.vcf > variantes_filtradas_trim_min
bcftools norm -f hg38.fa variantes_filtradas_trim_minac.vcf > variantes_filtradas_t:
```

• Adapte os critérios de filtragem conforme necessário.

6. Análise e Interpretação de Variantes:

• Utilize ferramentas como VCFtools para realizar análises adicionais no arquivo VCF, como filtragem específica e anotações.

7. Visualização de Variantes:

- Use o IGV para visualizar as variantes em relação ao genoma de referência e avaliar sua qualidade.
- Você pode abrir ao mesmo tempo o VCF e o alinhamento (BAM) de uma mesma amostra. Caso deseje.

Dia 4 - Análise de sequenciamento Oxford Nanopore

Importante

O software guppy só esta disponível para download via comunidade da Oxford Nanopore. Para este tutorial fornecemos um arquivo .tar para instalação em sua máquina. O arquivo esta na pasta WorkshopDados/guppy_installer/

Para instalar siga os seguintes passos:

Acesse a pasta que contem o arquivo .tar e descompacte;

```
tar -xf ont-guppy-cpu_6.5.7_linux64.tar.gz
```

Verifique o caminho completo para a pasta

pwd

Executando guppy via caminho completo (Exemplo pedindo ajuda)

```
./guppy_basecaller --help
```

Este tutorial foi inspirado no tutorial do Tim Kahlke¹ e em nossas experiências durante os trabalhos com ONT.

Atividades

- 1. Realize uma chamada de base utilizando guppy (Opicional):
 - Verifique os workflows disponíveis para esta versão de guppy;

```
./Downloads/ont-guppy-cpu/bin/guppy_basecaller --print_workflows
```

• Sabendo que este sequenciamento foi realizado utilizando o kit SQK-LSK108 e a flowcell MIN106, qual a configuração a ser utilizada?

¹ https://timkahlke.github.io/LongRead_tutorials/

• Realize a chamada de base para todos os arquivos fast5 contidos na pasta WorkshopDados/fast5/;

```
./Downloads/ont-guppy-cpu/bin/guppy_basecaller -i [PASTAFAST5] -s /
./guppy out -c [CONFIG].cfg --num callers 2 --cpu threads per caller 1
```

Aviso

O tempo de execução da chama de base (para este conjunto de dados) é superior a 12 horas em máquinas de uso pessoal, e pode acabar inutilizando seu uso. Caso deseje praticar, recomendamos que seja feito em um momento onde não precise da máquina para outras atividades. Para este tutorial utilize o resultado da chamada de base contido na pasta WorkshopDados/LongReadsFastq/

2. Avaliação da qualidade do arquivo resultado .fastq:

• Utilize o NanoPlot para gerar gráficos de qualidade da amostra;

Instalação do NanoPlot

A instalação do NanoPlot deve ser feita via pip ou conda.

pip install NanoPlot

NanoPlot --fastq [AMOSTRA].fastq -o [OUTDIR] --N50 --verbose

3. Filtre as leituras baseado no tamanho e qualidade:

• Utilize chopper para isso.

💡 Instalação do chopper

Para instalar o chopper pode ser necessário ter o conda em seu sistema. Para isso utilize os seguintes comandos:

```
mkdir -p ~/miniconda3

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -0 ~/mi
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3

rm -rf ~/miniconda3/miniconda.sh

~/miniconda3/bin/conda init bash

~/miniconda3/bin/conda init zsh

Será necessário reinciar seu sistema (Ubuntu ou WSL) após isso.

conda config --add channels conda-forge

conda config --set channel_priority strict

conda install -c bioconda chopper

chopper < [AMOSTRA].fastq -q [QUALIDADE] -1 [TAMANHO_MIN] > [AMOSTRA]_filtrada.faste
```

Por que usar < no comando chopper?

O comando < garante que o arquivo fastq da amostra seja direcionado para entrada (stdin) do comando no chopper. Em nossas experiências já tivemos a necessidade de utilizar algumas vezes e outras não.

4. Alinhamento das Sequências:

• Use o minimap2 para alinhar suas sequências de DNA ao genoma de referência.

```
minimap2 -ax map-ont [REFERENCE_GENOME].fa [AMOSTRA].fastq /
-R "@RG\tID:{SAMPLE}\tSM:{SAMPLE}" -t [THREADS] > [AMOSTRA].sam
```

Consumo de memória durante a etapa

O alinhamento via minimap2 tem pico de consumo de memória de ~ 13 GB. Caso seu computador disponha desta capacidade utilize o arquivo resultante na pasta $WorkshopDados/pre_run/Dia4/$

• Realize novamento utilizando bwa mem desta vez (Opicional);

🛕 Tempo de execução do bwa

Atenção, o bwa demora quase 10x mais que o minimap2

• bwa mem -x ont2d [REFERENCE_GENOME].fa [AMOSTRA].fastq / -R "@RG\tID:{SAMPLE}\tSM:{SAMPLE}" -t [THREADS] > [AMOSTRA].sam

Opcional

Realize uma montagem de novo utilizando o pipeline minimap2-miniasm. Este processo pode levar várias horas/dias. Tome cuidado!

5. Gerar o arquivo BAM indexado:

• Repita os passos 3 e 4 do dia 2 utilizando samtools;

6. Visualização do Alinhamento:

- Importe o BAM para o IGV e avalie sua qualidade;
- Compare as amostras com suas respectivas amostras de short reads;

7. Realize a Genotipagem das Amostras de long reads:

• Utilize o freebayes para realizar a genotipagem e modo similar ao passo 3 do dia 3;

🛕 Tempo de execução da genotipagem em Long Reads

O tempo de execução do freebayes para arquivos de ONT pode ser bem demorado! Você pode optar por modificar o arquivo bed fornecido para trabalhar com menos regiões.

Para WorkshopDaosformulários utilize resultante vcf dos/pre_run/Dia4/

- Repita as métricas de filtragem utilizadas no passo 4 do dia 3;
- Repita os passos 5 e 6 do dia 3, comparando aos resultados de short reads.

Dia 5 - Genotipagem de STRs a partir de dados de NGS

Atividades

- 1. Baixar toaSTR
- 2. Baixar Docker
- 3. Instalar no computador;
- 4. Fazer login no toaSTR;

toaSTR

- 1. Criar os painéis de marcadores que serão utilizados;
- 2. Subir e correr uma amostra no toaSTR;

Interpretação dos resultados

Referências

- Bolger, Anthony M., Marc Lohse, and Bjoern Usadel. 2014. "Trimmomatic: A Flexible Trimmer for Illumina Sequence Data." *Bioinformatics* 30 (15): 2114–20. https://doi.org/10.1093/bioinformatics/btu170.
- Danecek, Petr, Adam Auton, Goncalo Abecasis, Cornelis A. Albers, Eric Banks, Mark A. DePristo, Robert E. Handsaker, et al. 2011. "The Variant Call Format and VCFtools." *Bioinformatics* 27 (15): 2156–58. https://doi.org/10.1093/bioinformatics/btr330.
- Danecek, Petr, James K Bonfield, Jennifer Liddle, John Marshall, Valeriu Ohan, Martin O Pollard, Andrew Whitwham, et al. 2021. "Twelve Years of SAMtools and BCFtools." GigaScience 10 (2). https://doi.org/10.1093/gigascience/giab008.
- De Coster, Wouter, and Rosa Rademakers. 2023. "NanoPack2: Population-Scale Evaluation of Long-Read Sequencing Data." Edited by Can Alkan. *Bioinformatics* 39 (5). https://doi.org/10.1093/bioinformatics/btad311.
- Ganschow, Sebastian, Peter Wiegand, and Carsten Tiemann. 2017. "toaSTR: A Web-Based Forensic Tool for the Analysis of Short Tandem Repeats in Massively Parallel Sequencing Data." Forensic Science International: Genetics Supplement Series 6 (December): e119–21. https://doi.org/10.1016/j.fsigss.2017.09.034.
- Garrison, Erik, and Gabor Marth. 2012. "Haplotype-Based Variant Detection from Short-Read Sequencing." https://doi.org/10.48550/ARXIV.1207.3907.
- Li, Heng. 2013. "Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM." https://doi.org/10.48550/ARXIV.1303.3997.
- ———. 2018. "Minimap2: Pairwise Alignment for Nucleotide Sequences." Edited by Inanc Birol. Bioinformatics 34 (18): 3094–3100. https://doi.org/10.1093/bioinformatics/bty191.
- ——. 2021. "New Strategies to Improve Minimap2 Alignment Accuracy." Edited by Can Alkan. *Bioinformatics* 37 (23): 4572–74. https://doi.org/10.1093/bioinformatics/btab705.
- Robinson, James T, Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman, Eric S Lander, Gad Getz, and Jill P Mesirov. 2011. "Integrative Genomics Viewer." *Nature Biotechnology* 29 (1): 24–26. https://doi.org/10.1038/nbt.1754.

ANEXO: Dicas para uso do Ubuntu/WSL

Navegação e Diretórios

Listar Conteúdo do Diretório

ls

Mudar de Diretório

cd nome_do_diretorio

Diretório Atual

pwd

Criar Diretório

mkdir nome_do_novo_diretorio

Manipulação de Arquivos

Copiar Arquivo

cp arquivo_origem destino

Mover/Renomear Arquivo

mv arquivo_origem novo_nome_ou_destino

Remover Arquivo

rm nome_do_arquivo

Visualização de Conteúdo

Visualizar Conteúdo do Arquivo

cat nome_do_arquivo

Visualizar Conteúdo do Arquivo (página por página)

less nome_do_arquivo

Pacotes e Atualizações

Atualizar Lista de Pacotes

sudo apt update

Atualizar Pacotes Instalados

sudo apt upgrade

Instalar Novo Pacote

sudo apt install nome_do_pacote

Gerenciamento de Usuários

Adicionar Usuário ao Grupo

 $\verb|sudo| usermod -aG| nome_do_grupo nome_do_usuario|$

Mudar Senha do Usuário

passwd nome_do_usuario

Processos

Listar Processos

ps aux

Matar um Processo por ID

kill -9 processo_id

Monitorar Recursos do Sistema (htop)

htop

Medir Tempo de Execução de um Comando (time)

time comando_a_ser_medido

Rede

Verificar Configurações de Rede

ifconfig

Testar Conexão com um Endereço IP

ping endereco_ip

Entrada e Saída Padrão (stdin/stdout)

• stdin (Standard Input): É a entrada padrão de dados. Um programa pode ler dados a partir do stdin. Exemplo:

```
cat < nome_do_arquivo</pre>
```

• stdout (Standard Output): É a saída padrão de dados. Um programa geralmente imprime resultados no stdout. Exemplo:

```
ls > lista_de_arquivos.txt
```

• stderr (Standard Error): É a saída padrão para mensagens de erro. Exemplo:

```
comando_inexistente 2> erro.log
```

Outros Comandos Úteis

Ajuda sobre um Comando

man nome_do_comando

Sair do Terminal

exit