Question 1

Question 2

This follows from explicitly spelling out what equivalent representations are. In particular, suppose G is our group with $g \in G$, and $D: G \to GL(V)$, where V is a vector space, will be our representation. Then, $D': G \to GL(W)$, where W is another vector space. Then, we say D and D' are equivalent representations if V and W are isomorphic, that is \exists an isomorphism $\alpha: V \to W$, and

$$\alpha \circ D(g) \circ \alpha^{-1} = D'(g) \quad \forall g \in G.$$

However, since we need that V and W are over the same field for our representations, we can see that α is just a change of basis, and can be thought of as an invertable matrix, say P, such that

$$PD(g)P^1 = D'(g).$$

From here, we know that Trace is preserved under basis transformations, since similar matrices share their Trace, so

$$Tr(D(g)) = Tr(D'(g)).$$

So, if two representations do not preserve trace, we can immediatly conclude they are not equivalent from the contrapositive of the above.

Question 3

(a) To simplify our table, we notice that rotation can be written as $e^{\frac{in\pi}{2}}$, so we use this to represent our rotations. The operation is multiplication, and thus which shows all the properties we need for this to be

×	1	$e^{rac{i\pi}{2}}$	$e^{i\pi}$	$e^{rac{i3\pi}{2}}$
1	1	$e^{\frac{i\pi}{2}}$	$e^{i\pi}$	$e^{\frac{i3\pi}{2}}$
$e^{rac{i\pi}{2}}$	$e^{\frac{i\pi}{2}}$	$e^{i\pi}$	$e^{\frac{i3\pi}{2}}$	1
$e^{i\pi}$	$e^{i\pi}$	$e^{\frac{i3\pi}{2}}$	1	$e^{\frac{i\pi}{2}}$
$e^{rac{i3\pi}{2}}$	$e^{\frac{i3\pi}{2}}$	1	$e^{\frac{i\pi}{2}}$	$e^{i\pi}$

a group. The only missing one explicitly is associativity, but that follows from exponential multiplication being associative.

- (b) Looking at the table, we see that this is indeed abelian, which we know is true since the multiplication table is symmetric!
- (c) The subgroup is the π rotation. Looking at the multiplication table, we can notice that $\{1, e^{i\pi}\}$ is a closed set under the group operation of multiplication, and since it is a subset of a group it is naturally a subgroup.

(d) We recognize that the non-trivial eigenvectors will be $|0,y\rangle$ and $|x,0\rangle$. In particular, we see

$$M_x |0, y\rangle = |0, y\rangle$$
 & $M_x |x, 0\rangle = |-x, 0\rangle = -|x, 0\rangle$

which tells us the eigenvalues are 1 and -1 respectively.

- (e) For the rotation operator, we look at each value of n individually to get the eigenvectors and hence eigenvalues. We skip the identity, since it gives a trivial eigenvalue of 1 with the entire space, except the $\vec{0}$ being eigenvectors. So, first for n=1 we get the rotation $D_z\left(\frac{\pi}{2}\right)$, which we know will swap components and make one negative, so this will only have the trivial eigenvector, and similar for n=3 for the same reason. This leaves the n=2 case, which is a π rotation, $D_z(\pi)$, and hence only flips the signs of our states and will give an eigenvalue of -1.
- (f) It suffices to show that the rotation and reflection operator do not commute in a particular case to conclude they do not commute in general. Consider $D_z(\pi/2)$, then

$$D_z(\pi/2)M_x |x,y\rangle = D_z(\pi/2) |-x,y\rangle = |-y,-x\rangle \quad \& \quad M_x D_z(\pi/2) |x,y\rangle = M_x |-y,x\rangle = |y,x\rangle$$

$$\implies D_z(\pi/2)M_x \neq M_x D_z(\pi/2) \implies D_z(n\pi/2)M_x \neq M_x D_z(n\pi/2).$$

(g) First, we see that for a state $|x,y\rangle$, $D_z(\pi)|x,y\rangle = -|x,y\rangle$. So, we can conclude that all states are eigenstates of $D_z(\pi)$. On the other hand, we recall that the eigenstates of M_x are $|x,0\rangle$ and $|0,y\rangle$. So, we want to choose eigenstates of the hamiltonian H to be simultaneous eigenstates of these two operators, which means they must take the form either $|x,0\rangle$ or $|0,y\rangle$.