STSCI 4780/5780 Bayesian computation — Beyond the basics (A selective survey)

Tom Loredo, CCAPS & SDS, Cornell University

© 2022-04-21

Notation focusing on computational tasks

$$p(\theta|D,M) = \frac{p(\theta|M)p(D|\theta,M)}{p(D|M)}$$

$$\Rightarrow p(\theta) = \frac{\pi(\theta)\mathcal{L}(\theta)}{Z} = \frac{q(\theta)}{Z} = p(\theta),$$

- M = model specification (context)
- D specifies observed data
- $\theta = \text{model parameters, of dimension } m$
- $p(\theta) = \text{posterior pdf for } \theta$
- $\pi(\theta) = \text{prior pdf for } \theta$
- $\mathcal{L}(\theta) = \text{likelihood for } \theta \text{ (likelihood function)}$
- $q(\theta) = \pi(\theta)\mathcal{L}(\theta) =$ "quasiposterior"
- Z = p(D|M) = (marginal) likelihood for the model

Key themes in advanced algorithms

- Combining multiple update algorithms
- Adaptation—gently breaking the Markov property
- Augmenting the parameter space (increasing dimensionality)

Combining MH updates

No one class of proposal distributions works well for all problems \rightarrow consider combining multiple proposals hoping they'll have complimentary strengths (esp. in a "black box" toolkit)

Example: Combine RWM updates with various step sizes

Reversible update = $proposal + M-H \ accept/reject \ step$

Two valid ways to combine reversible updates:

- Composition: Follow one update by another (deterministically)
- Mixing: Randomly choose an update mechanism

Implementations:

- Fixed/cyclic scan (or sweep)
- Random scan
- Random sequence scan—combines composition and mixing

For theory & examples, see Geyer's 1995 and 1998 MCMC notes

Adaptive MCMC

A proposal distribution for MH sampling typically has *tuning* parameters, ψ : we draw a candidate from $k_{\psi}(y;x)$.

- Random-walk Metropolis: Proposal width in each direction
- Independent Metropolis: Shape of proposal (location, covariance...)

For MH, we can't have ψ depend on the chain history—the chain wouldn't be Markov!

Simple approach: We can tune ψ using pilot runs (perhaps during burn-in), and then fix it to preserve detailed balance

Adaptive MCMC finds ways to adjust ψ continuously that preserves asymptotic sampling properties

Main idea: Vanishing adaptation

Example: Robust adaptive Metropolis (RAM)

Motivation: Consider random-walk metropolis (RWM), but with a proposal distribution that is multivariate normal, so it can take steps along directions aligned with the posterior

This requires:

- Finding a good covariance matrix for the MVN
- Drawing a vector of correlated steps from a MVN

MVN draws: Write the covariance matrix as $C = SS^T$, where S is the *Cholesky factorization* of C — a lower-diagonal matrix with positive elements

Then from current position X_{n-1} , we can propose a candidate position Y_n by drawing a vector U_n of *independent* standard normal variates, and shifting and correlating them:

$$Y_n = X_{n-1} + SU_n$$

Now the challenge is choosing S

RAM algorithm

Use Metropolis updates with a correlated multivariate proposal, altering the covariance matrix along the chain to target a desired mean acceptance rate, α_* :

- 1. Propose $Y_n = X_{n-1} + S_{n-1}U_n$, where $U_n \sim q$ is an independent random vector, and S_{n-1} is a lower-diagonal matrix with positive elements
- 2. With probability $\alpha_n \equiv \min\{1, \pi(Y_n)/\pi(X_{n-1})\}$ the step is accepted, and $X_n = Y_n$; otherwise the step is rejected and $X_n = X_{n-1}$
- 3. Compute an updated lower-diagonal matrix S_n via

$$S_{n}S_{n}^{T} = S_{n-1} \left(I + \eta_{n} (\alpha_{n} - \alpha_{*}) \frac{U_{n}U_{n}^{T}}{\|U_{n}\|^{2}} \right) S_{n-1}^{T}$$
 (1)

where I is an identity matrix, and $\eta_n = n^{-2/3}$ controls the adpativity

See: Vihola (2012): Robust adaptive Metropolis algorithm with coerced acceptance rate

Slice sampling

We can get samples from $p(\theta) = q(\theta)/Z$ by sampling (θ, y) pairs uniformly in area under the $q(\theta)$ function, and then just ignoring (marginalizing over) the y coordinates:

The accept-reject produces *IID samples* by sampling uniformly from an *enclosing volume*, and then *rejecting* bad samples

Slice sampling uses *Gibbs sampling* (MCMC) to sample *within* the volume, *keeping all* of the (correlated) samples)

Slice sampling for a normal dist'n:

Slice sampling can be tricky in 1-D, and quite tricky in higher dimensions; usually implemented as one-variable-at-a-time

For details, see Slice Sampling (Neal 2000, with discussion)

Auxiliary/augmented variables

Accept/reject and slice sampling for getting samples from a d-D density:

• Sample from a *uniform* (d + 1)-D density (with a complicated boundary):

• Report the marginal samples for the *d* original dimensions

A paradoxical notion motivating some advanced MCMC methods is that making the problem "harder" (higher-dimensional) may actually make it *easier*

Hamiltonian Monte Carlo (below) and the NUTS sampler rely on auxiliary variables

Ensemble methods: Differential Evolution MCMC

Combine evolutionary computing & MCMC (ter Braak 2006)

Follow a *ensemble/population* of states, where a randomly selected state is considered for updating via the (scaled) vector difference between two other states.

Behaves roughly like RWM, but with a proposal distribution that automatically adapts to shape & scale of posterior

Step scale: Optimal $\gamma\approx 2.38/\sqrt{2d},$ but occassionally switch to $\gamma=1$ for mode-swapping

Original DE-MCMC uses these simple moves and pop'n size $N \sim 3d$; works well if given a "smart start" (initial pop'n)

Later version (ter Braak & Vrugt 2008) adds new moves and can sample effectively with just N=3 in up to a few dozen dimensions, without a smart start

A new method (not yet widely used) combines slice sampling and ensemble methods: Ensemble slice sampling

Random Walks

Metropolis random walk (MRW) and Gibbs sampler updates execute a *random walk* through parameter space:

- Moves are local, with a characteristic scale I
- ullet Total distance traversed over time $t \propto \sqrt{t}$

This is a relatively slow (albeit steady) rate of exploration

Multimodality \rightarrow even slower exploration; only rare large jumps can move between modes

We need methods designed to make large moves

Annealing and Parallel Tempering

PT, aka Metropolis-coupled MCMC

To enable large jumps, *anneal* or *temper* the posterior:

$$q_{\beta}(\theta) = [q(\theta)]^{\beta} \quad \text{or} \quad \pi(\theta)[\mathcal{L}(\theta)]^{\beta},$$
 (2)

with inverse temperature/temper $\beta \in [0,1]$ (3)

Consider a set of tempers ("inverse temperatures") $\{\beta_i\}$

Think of each $q_i = q_{\beta_i}$ as its own "model" with its own parameters, and construct a sampler for the joint distribution

$$p(\theta_1,\ldots,\theta_m)=\prod_i q_i(\theta_i)$$

Alternate within-temper proposals and swap proposals between adjacent tempers

Swaps between tempered chains

Phase space: Doubling the dimensionality

$$p(x, P) \propto q(x) \times f(P)$$

$$p(x) = \int dP \, p(x, P) \propto q(x)$$

$$p(P) = \int dx \, p(x, P) \propto f(P)$$

- Pick $P \sim f(P)$
- Move along a contour in phase space
- Drop *P*, keep *x*

Will work if the phase space motion corresponds to sampling p(x, P)

Hamiltonian (Hybrid) Monte Carlo

Give samples "momentum" so moves tend to go in the same direction a while; use derivatives to guide the evolution \to suppress random walks

Adds d additional variables, P, with a joint Gaussian dist'n:

$$\log p(\theta, P) = -\left[U(\theta) + \frac{1}{2}P^2\right]; \qquad U(\theta) \equiv -\log q(\theta)$$

Sample P from a Gaussian, and use it to generate proposals via

$$\dot{\theta} = P; \qquad \dot{P} = -\frac{\partial H}{\partial \theta}$$

Hamiltonian dynamics \rightarrow reversible, preserves volume, keeps p constant (exact proposals always accepted, like Gibbs sampling)

Challenges for basic HMC

- Tuning parameters:
 - \blacktriangleright PDE integration time step size, ϵ , and integration length, L
 - ► Handling problems with very different scales along different dimensions (→ need different momentum scales)
- Computing the needed derivatives

Sampling a 1-D Student-t dist'n with dof= 5

HMC vs. random walk (2-D)

20 iterations for a correlated bivariate normal

Tuning integration length

We want to move along a contour long enough to get far from the starting point, but not head back toward it

Examine rate of change of squared distance from current point, θ_i :

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{(\theta - \theta_i) \cdot (\theta - \theta_i)}{2} = (\theta - \theta_i) \cdot P$$

Stop integrating when this becomes negative

No-U-Turn Sampler (NUTS)

Multilevel models: parameter-dependent scales

Goal: Learn a population dist'n from noisy member measurements

Success probabilities

Data

Qualitative

$$\begin{split} p(\theta, \{\alpha_i\}, \{n_i\}) &= p(\theta) \prod_i p(\alpha_i | \theta) \ p(n_i | \alpha_i) \\ &= \pi(\theta) \prod_i f(\alpha_i; \theta) \ \ell_i(\alpha_i) \end{split}$$

Quantitative

$$\theta = (a, b) \text{ or } (\mu, \sigma)$$

$$\pi(\theta) = \operatorname{Flat}(\mu, \sigma)$$

$$p(\alpha_i|\theta) = \text{Beta}(\alpha_i|\theta)$$

$$p(n_i|\alpha_i) = \binom{N_i}{n_i} \alpha_i^{n_i} (1 - \alpha_i)^{N_i - n_i}$$

Mass matrix = metric

Add d additional variables, P, with a correlated Gaussian dist'n:

$$\log p(\theta, P) = -\left[U(\theta) + \frac{1}{2}P \cdot M^{-1} \cdot P\right]; \qquad U(\theta) \equiv -\log p(\theta)$$

M introduces d more tuning parameters!

- Euclidean manifold HMC: Use the Hessian at the mode
- Riemannian manifold HMC: Use position-dependent $M(\theta)$

HMC vs. Riemann manifold MC

Stan capabilities

- High-performance probabilistic model implementation
 - ▶ Stan code is compiled to a C++ library
 - Parameters transformed to unconstrained space; transformation & Jacobian handled automatically
 - Automatic differentiation (AD) used to compute derivatives of log-likelihood WRT parameters
- HMC No-U-Turn Sampler (NUTS)
 - ▶ PDE solver step size & number automatically tuned during burn-in
 - ▶ Mass matrix adaptively tuned during burn-in
- Optimization
 - ▶ BFGS and Newton's method