L'ANALYSE FACTORIELLE DES CORRESPONDANCES

Mr Z.Bouafia

Master RID 2016 / 2017

Introduction

- L'AFC a pour objet le traitement de l'information contenue dans un tableau appelé de contingence ou de dépendance, relatif a deux ensembles de nature quelconque, en relation par moyen d'un processus naturel ou expérimental plus ou moins bien connu.
- Les données sont ici pondérées. Les fréquences de répétitions s'interprète facilement en termes de probabilités.
- Le tableau de dépendance peut être ainsi représenté dans un espace approprié par un nuage de points affectés de probabilités.

Tableau de contingence

Considérons un tableau a double entrée :

Ensemble J (paramèttres)	1	 J	 m
Ensemble I (individus)			
1	X ₁₁	 X _{1j}	 X_{1m}
i	X _{i1}	 X_{ij}	 X_{im}
n	X_{n1}	 X _{nj}	 X_{nm}

Tableau de contingence (exemple)

Observations				
individu	bac	sexe		
1	S	homme		
2	ES	femme		
3	ES	homme		
4	Α	femme		
5	S	femme		
5	ES	femme		

Tableau de contingence				
modalité	homme	femme		
S	1	1		
ES	1	2		
А	0	1		

Tableau de contingence

- Dans le cas qualitatif, le tableau précédent se présente sous la forme d'un tableau des uns et des zéros (suivant si l'individu i possède ou non le paramètre j).
- La probabilité associée au terme x_{ii} est:

$$p_{ij} = \frac{X_{ij}}{\sum_{i=1}^{n} \sum_{j=1}^{m} X_{ij}}$$

Probabilité

Ou les probabilités marginales sont:

$$p_{i\bullet} = \sum_{j=1}^{m} p_{ij}$$
 avec $i = 1, \dots, n$

$$p_{\bullet j} = \sum_{i=1}^{n} p_{ij}$$
 avec $j = 1, \dots, m$

qui vérifient les propriétés:

$$\sum_{i=1}^{n} p_{i\bullet} = 1 \quad et \quad \sum_{j=1}^{m} p_{\bullet j} = 1$$

Probabilité

J	1	 i		m	Total
I					
1	p ₁₁	 p_{1j}		p_{1m}	p _{1.}
:					
i		 p _{ij}		p_{im}	p _{i.}
:	p _{i1}	·			
•					
n	p _{n1}	 p_{nj}	•••	p_{nm}	p _{n.}
Total	p _{.1}	p _{.j}		p _{.m}	1

C'est quoi ≪ les correspondances ≫?

- Lorsque les variables sont quantitatives, on fait une étude de corrélation.
- Mais, lorsqu'on a aussi des variables qualitatives, on doit faire une étude des correspondances.

Indépendance?

Probabilités conditionnelles, dans ce cas:

$$\frac{p_{ij}}{p_{i\cdot}} = p_{\cdot j} \Leftrightarrow \frac{p_{ij}}{p_{\cdot j}} = p_{i\cdot}$$

Formule d'indépendance:

$$p_{ij} = p_{i\cdot} \times p_{\cdot j}$$

Distance du χ^2

• Pour deux individus quelconques i et i:

$$d^{2}(L_{i}, L_{i'}) = \sum_{j} \frac{1}{p_{ij}} \left(\frac{p_{ij}}{p_{i}} - \frac{p_{i'j}}{p_{i'}} \right)^{2}$$

 Plus généralement, la distance du χ² est égale à la distance euclidienne entre:

$$\left(\frac{p_{i1}}{p_{i \cdot} \sqrt{p_{\cdot 1}}}, \frac{p_{i2}}{p_{i \cdot} \sqrt{p_{\cdot 2}}}, \cdots, \frac{p_{ij}}{p_{i \cdot} \sqrt{p_{\cdot j}}}, \cdots, \frac{p_{im}}{p_{i \cdot} \sqrt{p_{\cdot m}}} \right)$$

$$\left(\frac{p_{i'1}}{p_{i' \cdot} \sqrt{p_{\cdot 1}}}, \frac{p_{i'2}}{p_{i' \cdot} \sqrt{p_{\cdot 2}}}, \cdots, \frac{p_{i'j}}{p_{i' \cdot} \sqrt{p_{\cdot j}}}, \cdots, \frac{p_{i'm}}{p_{i' \cdot} \sqrt{p_{\cdot m}}} \right)$$

Distance du χ^2

Ce sont les points qu'on a noté M_i dans le cours

$$M_i = (\beta_{i1}, \beta_{i2}, \cdots, \beta_{ij}, \cdots, \beta_{im})$$

Avec

$$\beta_{ij} = \frac{p_{ij}}{p_{i\cdot}\sqrt{p_{\cdot j}}}$$

• p_{i} étant toujours la pondération

Distance du χ^2

Ainsi la distance du χ² entre deux points M_i et M_i est:

$$d^{2}\left(M_{i},M_{i'}\right) = \sum_{j} \left(\beta_{ij} - \beta i'j\right)^{2}$$

Projection du nuage B(I) sur un axe

- On projet orthogonalement le nuage B(I) sur un axe (espace vectoriel de dim 1) de vecteur unitaire u, de telle façon que l'information perdue soit minime.
- Ce qui revient a trouver la valeur propre la plus grande λ_{max} de W. avec W la matrice des variances-covariances de B(I),
- La matrice des variances-covariances W du nuage B(I) relativement à un paramètre j est:

$$W = \begin{pmatrix} v_{11} & v_{12} & \cdots & v_{1m} \\ v_{21} & v_{22} & \cdots & v_{2m} \\ \vdots & & \ddots & \vdots \\ v_{m1} & v_{m2} & \cdots & v_{mm} \end{pmatrix}$$

Matrice des variances-covariances W

 La variance V_{ij} caractérise la dispersion du nuage tout au long de l'axe j:

$$V_{jj} = \sum_{i} p_{i} \left(\beta_{ij} - \sqrt{p_{ij}} \right)^{2}$$

La covariance V_{ik} est :

$$V_{jk} = \sum_{i} p_{i} \left(\beta_{ij} - \sqrt{p_{i}} \right) \left(\beta_{ik} - \sqrt{p_{ik}} \right)$$

Matrice des variances-covariances W

• Soit encore, en remplaçant β_{ii} par sa valeur:

$$V_{jk} = \sum_{i} \left(\frac{p_{ij} - p_{i} \cdot p_{\cdot j}}{\sqrt{p_{i} \cdot p_{\cdot k}}} \right) \left(\frac{p_{ik} - p_{i} \cdot p_{\cdot k}}{\sqrt{p_{i} \cdot p_{\cdot k}}} \right)^{k}$$

• Posons $\frac{p_{ij} - p_{i} \cdot p_{\cdot j}}{\sqrt{p_{i} \cdot p_{\cdot k}}} = r_{ij} \; ; \; i = 1, \dots, n \; , \; j = 1, \dots, m$

Matrice des variances-covariances W

$$(r_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}} = R$$

$$W = R' R$$

- ou R' est la transposée de R.
- Maximiser u'Wu revient à maximiser u'R'Ru sous la condition u'u=1, c'est-a-dire déterminer les vecteurs propres associes aux valeurs propres de la matrice R'R.

Variabilité totale du nuage B(I):

 On appelle la variabilité totale du nuage B(I), la trace de la matrice W:

$$V_B = tr(W) = \sum_j V_{jj}$$

- On parle aussi de la variabilité totale du nuage projeté
 C(I) qui sera V_c=λ_{max}
- La partie de variabilité expliquée par la projection de B(I), sur u est alors:

$$\delta = \frac{Vc}{V_R} \qquad \delta = \frac{\lambda_{\text{max}}}{tr(W)}$$

Inconvénients et avantages de l'AFC

- Les inconvénients sont les défauts de toute analyse factorielle: déformation inévitable du nuage durant la projection et la signification ou interprétation des axes.
- L'avantage essentiel réside dans l'étude des caractères qualitatifs.