Lecture 9

Law of Total Probability & Bayes' Rule

Text: Chapter 4

STAT 8010 Statistical Methods I September 9, 2019

> Whitney Huang Clemson University

Notes

Agenda

- Law of Total Probability
- 2 Bayes' Rule
- Random Variables

N١	otoc.	
N	ULUS	

-		

Law of Partitions & Multiplication Rule

Law of partitions

Let A_1,A_2,\cdots,A_k form a partition of $\Omega.$ Then, for all events B,

$$\mathbb{P}(B) = \sum_{i=1}^{k} \mathbb{P}(A_i \cap B)$$

Multiplication rule

2 events:

$$\mathbb{P}(B \cap A) = \mathbb{P}(A) \times \mathbb{P}(B|A) = \mathbb{P}(B) \times \mathbb{P}(A|B)$$

• More than 2 events:

$$\mathbb{P}(\cap_{i=1}^{n}A_{i}) = \mathbb{P}(A_{1}) \times \mathbb{P}(A_{2}|A_{1}) \times \mathbb{P}(A_{3}|A_{1} \cap A_{2}) \times \cdots \times \mathbb{P}(A_{n}|A_{n-1} \cap \cdots \cap A_{1})$$

Law of Total Probability Bayes' Rule Random Variables

notes			

Law of Total Probability

Let A_1, A_2, \cdots, A_k form a partition of Ω . Then, for all events B,

$$\mathbb{P}(B) = \underbrace{\sum_{i=1}^{k} \mathbb{P}(A_i \cap B)}_{\text{Law of partitions}}$$

$$= \underbrace{\sum_{i=1}^{k} \mathbb{P}(B|A_i) \times \mathbb{P}(A_i)}_{\text{Multiplication rule}}$$

B /				exa		1-
IV	m	ivai	ша	еха	mn	ю

The Monty Hall Problem

There was an old television show called Let's Make a Deal, whose original host was named Monty Hall. The set—up is as follows. You are on a game show and you are given the choice of three doors. Behind one door is a car, behind the others are goats. You pick a door, and the host, who knows what is behind the doors, opens another door (not your pick) which has a goat behind it. Then he asks you if you want to change your original pick. The question we ask you is, "Is it to your advantage to switch your choice?"

	Law of Total Probability & Bayes' Rule
ı	
	Bayes' Rule
н	
н	
н	
н	
н	
н	
н	
ш	

Notes

Notes

The Monty Hall Problem

Law of Total Probability & Bayes' Rule	
CLEMS N	
Bayes' Rule	

Notes			

The Monty Hall Problem Solution

N	otes
1 1	ULUS

Notes

Bayes' Rule

General form

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

Let A_1,A_2,\cdots,A_k form a partition of the sample space. Then for every event B in the sample space,

$$\boxed{\mathbb{P}(A_j|B) = \frac{\mathbb{P}(B|A_j) \times \mathbb{P}(A_j)}{\sum_{i=1}^k \mathbb{P}(B|A_i) \times \mathbb{P}(A_i)}}, j = 1, 2, \cdots, k$$

Law of Total Probability & Bayes' Rule	
CLEMS N	

Law of Total Probability Bayes' Rule Random Variables

Example

Let us assume that a specific disease is only present in 5 out of every 1,000 people. Suppose that the test for the disease is accurate 99% of the time a person has the disease and 95% of the time that a person lacks the disease. What is the probability that the person has the disease given that they tested positive?

Solution.

$$\mathbb{P}(D|+) = \frac{\mathbb{P}(D\cap+)}{\mathbb{P}(+)} = \frac{.005 \times .99}{.005 \times .99 + .995 \times .05} = \frac{.00495}{.0547} = .0905$$

The reason we get such a surprising result is because the disease is so rare that the number of false positives greatly outnumbers the people who truly have the disease.

Probability & Bayes' Rule
CLEMS N
Bayes' Rule

Law of Total

Review of Probability (we learned so far)

Basic Concepts:

- Random Experiment, Sample Space, Outcome,
- Frequentist Interpretation of Probability and Equally Likely Framework
- Union and Intersection
- Mutually Exclusive, Exhaustive, Partition
- Venn Diagram

Notes

Notes

Review: Probability Rules

- $0 \le \mathbb{P}(A) \le 1$ for any event A, $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$
- Complement rule: $\mathbb{P}(A) = 1 \mathbb{P}(A^c)$
- General addition rule: $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$
- Multiplication rule: $\mathbb{P}(A \cap B) = \mathbb{P}(A|B) \times \mathbb{P}(B) = \mathbb{P}(B|A) \times \mathbb{P}(A)$
- Conditional probability: $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
- Law of total probability: $\mathbb{P}(B) = \sum_{i=1}^{k} \mathbb{P}(B \cap A_i) = \sum_{i=1}^{k} \mathbb{P}(B|A_i) \times \mathbb{P}(A_i)$
- Independence: if A and B are independent, then $\mathbb{P}(A|B) = \mathbb{P}(A)$, $\mathbb{P}(B|A) = \mathbb{P}(B)$, and $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$

Random Variables

A random variable is a real-valued function whose domain is the sample space of a random experiment. In other words, a random variable is a function

$$X:\Omega\mapsto\mathbb{R}$$

where $\boldsymbol{\Omega}$ is the sample space of the random experiment under consideration and $\ensuremath{\mathbb{R}}$ represents the set of all real numbers.

Probability & Bayes' Rule			
CLEMS N			
Random Variables			

Law of Total

Example

The following is a chart describing the number of siblings each student in a particular class has.

Siblings (X)	Frequency	Relative Frequency
0	8	.200
1	17	.425
2	11	.275
3	3	.075
4	1	.025
Total	40	1

IN	otes

9.13

Example cont'd

Let's define the event A as the event that a randomly chosen student has 2 or more siblings. What is $\mathbb{P}(X \in A)$?

Solution.

$$\mathbb{P}(X \in A) = \mathbb{P}(X \ge 2) = \mathbb{P}(X = 2) + \mathbb{P}(X = 3) + \mathbb{P}(X = 4)$$
$$= .275 + 0.75 + 0.25 = .375$$

Law of Total Probability & Bayes' Rule				
CLEMS N				
Random Variables				

Ν	ote	es
IN	ote	es

Types of Random Variables

There are two main types of quantitative random variables: discrete and continuous. A discrete random variable often involves a count of something. Examples may include number of cars per household, etc.

Discrete random variable

A random variable X is called a discrete random variable if the outcome of the random variable is limited to a countable set of real numbers (usually integers).

Law of Total Probability & Bayes' Rule				
CLEMS N				

Probability Mass Function

Let X be a discrete random variable. Then the probability mass function (pmf) of X is the real–valued function defined on $\mathbb R$ by

$$p_X(x) = \mathbb{P}(X = x)$$

The capital letter, X, is used to denote random variable. Lowercase letter, x, is used to denote possible values of the random variable.

9.16

Example

Flip a fair coin 3 times. Let X denote the number of heads tossed in the 3 flips. Create a pmf for X

Solution.

X	0	1	2	3
$p_X(x)$	1/8	38	38	1 8

Law of Total Probability & Bayes' Rule			
CLEMS#N			

Notes

Properties of a PMF

- $\bullet \ 0 \le p_X(x) \le 1, \ \forall x \in R$
- $\{x \in \mathbb{R} : p_X(x) \neq 0\}$ is countable
- $\bullet \ \sum_{x} p_X(x) = 1$

Law of Total Probability & Bayes' Rule		
CLEMS#N		
Random Variables		

Example

Let *X* be a random variable with pmf defined as follows:

$$p_X(x) = \begin{cases} k(5-x) & \text{if } x = 0, 1, 2, 3, 4 \\ 0 & \text{otherwise} \end{cases}$$

- Find the value of k that makes $p_X(x)$ a legitimate pmf.
- What is the probability that X is between 1 and 3 inclusive?
- igotimes If X is not 0, what is the probability that X is less than 3?

Law of Total Probability & Bayes' Rule
UNIVERSITY
Random Variables

9.19

Notes	
Notes	
Notes	
Notes	