Statistics for Analytics (BAN 100)

Assignment 6

by: Aaron Gonsalves

(161288196)

PROBLEM 1

CODES

```
proc import datafile = '/home/u58712040/BAN100/files/Customer.xlsx'
out = Customer
 dbms = xlsx
replace;
getnames=yes;
run;
data Customer;
    set Customer;
    if lowcase(Rating) in ('very good', 'excellent') then Y=1;
    if lowcase(Rating) in ('good', 'fair') then Y=0;
run;
title"Customer data";
proc print data=Customer;
run;
```

Customer data

Obs	Manufacturer	Price	Rating	Υ
1	Bernard Callebaut	3.17	Very Good	1
2	Candinas	3.58	Excellent	1
3	Fannie May	1.49	Good	0
4	Godiva	2.91	Very Good	1
5	Hershey,Äôs	0.76	Good	0
6	L.A. Burdick	3.7	Very Good	1
7	La Maison du Chocolate	5.08	Excellent	1
8	Leonidas	2.11	Very Good	1
9	Lindt	2.2	Good	0
10	Martine,Äôs	4.76	Excellent	1
11	Michael Recchiuti	7.05	Very Good	1
12	Neuchatel	3.36	Good	0
13	Neuchatel Sugar Free	3.22	Good	0
14	Richard Donnelly	6.55	Very Good	1
15	Russell Stover	0.7	Good	0
16	See,Äôs	1.06	Very Good	1
17	Teuscher Lake of Zurich	4.66	Very Good	1
18	Whitman,Äôs	0.7	Fair	0
19	Whitman,Äôs Sugar Free	1.21	Fair	0

a) Write the logistic regression equation relating x = price per serving to y.

$$P(Y|X) = \frac{e^{\beta 0 + \beta 1 X 1}}{1 + e^{\beta 0 + \beta 1 X 1}}$$

 β 0 is the intercept and β 1 is the coefficient of X1.

b) Use SAS to compute the estimated logit.

CODES

Model Fit Statistics					
Criterion Intercept Only Intercept and Covaria					
AIC	27.864	20.399			
SC	28.808	22.288			
-2 Log L	25.864	16.399			

Testing Global Null Hypothesis: BETA=0						
Test	Chi-Square	DF	Pr > ChiSq			
Likelihood Ratio	9.4648	1	0.0021			
Score	7.3311	1	0.0068			
Wald	4.9924	1	0.0255			

Analysis of Maximum Likelihood Estimates						
Parameter DF Estimate Standard Wald Chi-Square Pr > C					Pr > ChiSq	
Intercept	1	2.8050	1.4316	3.8387	0.0501	
Price	1	-1.1492	0.5143	4.9924	0.0255	

Odds Ratio Estimates					
Effect	95% Wald Point Estimate Confidence Limits				
Price	0.317	0.116 0.868			

Association of Predicted Probabilities and Observed Responses						
Percent Concordant 86.4 Somers' D 0.727						
Percent Discordant	13.6	Gamma	0.727			
Percent Tied	0.0	Tau-a	0.374			
Pairs	88	С	0.864			

• The coefficient of Price, β1 is -1.1492

• The intercept, β 0 is 2.8050

From the above procedure, it is clear that our model is built for level
0.

• So, the value that we get from the equation represents the probability of the quality rating 'good' or 'fair'.

c) Use the estimated logit computed in part (b) to compute an estimate of the probability a chocolate that has a price per serving of \$4.00 will have a quality rating of very good or excellent.

$$\hat{y} = p(y=0|x) = \frac{e^{\beta 0 + \beta 1 x 1}}{1 + e^{\beta 0 + \beta 1 x 1}} = \frac{e^{2.8050 - 1.1492 x}}{1 + e^{2.8050 - 1.1492 x}} = \frac{e^{2.8050 - 1.1492 (4)}}{1 + e^{2.8050 - 1.1492 (4)}}$$

$$=\frac{0.1667}{1.1667}=0.1429=14.29\%$$

Analysis of Maximum Likelihood Estimates						
Parameter DF Estimate Standard Chi-Square Pr >					Pr > ChiSq	
Intercept	1	2.8050	1.4316	3.8387	0.0501	
Price	1	-1.1492	0.5143	4.9924	0.0255	

• 14.29% shows the probability of a chocolate that has a price per serving of \$4.00 will have a quality rating 'good' or 'fair'.

• The probability of a chocolate that has a price per serving of \$4.00 will have a quality rating of 'Very good' or 'Excellent'

d) What is the estimate of the odds ratio? What is its interpretation?

• The probability of a chocolate that has a price per serving of \$4.00 will have a quality rating 'good' or 'fair' is 14.29%

• The probability of a chocolate that has a price per serving of \$4.00 will have a quality rating of 'Very good' or 'Excellent' is 85.71%

$$odds_0 = \frac{0.1429}{0.8571} = 0.1666$$

• Increasing Price to \$5.00

• The probability of a chocolate that has a price per serving of \$4.00 will have a quality rating 'good' or 'fair' is 5.02%

The probability of a chocolate that has a price per serving of \$4.00 will have a quality rating of 'Very good' or 'Excellent' is 94.98% (1-0.0502)

$$\hat{y} = p(y=0|x) = \frac{e^{\beta 0 + \beta 1 x1}}{1 + e^{\beta 0 + \beta 1 x1}} = \frac{e^{2.8050 - 1.1492x}}{1 + e^{2.8050 - 1.1492x}} = \frac{e^{2.8050 - 1.1492(5)}}{1 + e^{2.8050 - 1.1492(5)}}$$
$$= \frac{0.0529}{1.0529} = 0.0502$$

$$odds_1 = \frac{0.0502}{0.9498} = 0.05281$$

$$odds_0 = \frac{0.1429}{0.8571} = 0.1666$$

Odds Ratio =
$$\frac{\text{odds}_1}{\text{odds}_0}$$

Odds Ratio =
$$\frac{0.05281}{0.16666}$$
 = 0.317

Interpretation

- The odds of Chocolate quality rating 'good' or 'fair' over quality rating of 'Very good' or 'Excellent' is 5% / 94% that is 0.0581
- The Odds Ratio for Price is 0.317, 95% and the Confidence interval is 0.116 to 0.868
- The odds for both events are the same, if the value of the odds ratio is 1.
- A ratio of odds greater than 1 infers that there are greater odds of the event happening versus the non-happening.
- A ratio of odds less than 1 infers that there are lesser odds of the event happening versus the non-happening.
- The odd ratio is 0.317 here, which is less than 1 and thus, infers that the odds for Chocolate quality rating being 'Good' or 'Fair' is lesser than the odds of quality rating being 'Very Good' or 'Excellent'.

PROBLEM 2

CODES

run;

Listing of Titanic dataset

Obs	Passengerld	Survived	Class	Name	Sex	Age	Sibling Spouse	ParentChild	Ticket	Fare	Cabin	Embarked
1	1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.25		S
2	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	1	0	PC 17599	71.2833	C85	С
3	3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/O2. 3101282	7.925		S
4	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803	53.1	C123	S
5	5	0	3	Allen, Mr. William Henry	male	35	0	0	373450	8.05		S
6	6	0	3	Moran, Mr. James	male		0	0	330877	8.4583		Q
7	7	0	1	McCarthy, Mr. Timothy J	male	54	0	0	17463	51.8625	E46	S
8	8	0	3	Palsson, Master. Gosta Leonard	male	2	3	1	349909	21.075		S
9	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27	0	2	347742	11.1333		S
10	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14	1	0	237736	30.0708		С

a) Write the logistic regression equation relating Class and Survived.

Probability of Y given X,
$$P(Y|X) = \frac{e^{\beta 0 + \beta_1 X_1 + \beta_2 X_2}}{1 + e^{\beta 0 + \beta_1 X_1 + \beta_2 X_2}}$$

• $\beta 0$ is the intercept and $\beta 1$ is the coefficient of X1 and $\beta 2$ is the coefficient of X2

Dependent Variable

y=1 i.e. passenger was survived

y=0 i.e. passenger was not survived

Independent Variable

Class - First, Second & Third class passengers (1, 2 & 3)

b) For the Titanic data, use SAS to compute the estimated logistic regression equation.

CODES

proc logistic data=Titanic;
class Class param=ref;
model Survived= Class;
run;

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics					
Criterion Intercept Only Intercept and Covariat					
AIC	1188.655	1089.108			
sc	1193.447	1103.485			
-2 Log L	1186.655	1083.108			

Testing Global Null Hypothesis: BETA=0						
Test	Chi-Square	hi-Square DF				
Likelihood Ratio	103.5471	2	<.0001			
Score	102.8890	2	<.0001			
Wald	96.6294	2	<.0001			

Type 3 Analysis of Effects					
Effect	Wald DF Chi-Square Pr > ChiS				
Class	2	96.6294	<.0001		

Analysis of Maximum Likelihood Estimates						
Parameter DF Estimate Standard Wald Error Chi-Square Pr > ChiSquare						Pr > ChiSq
Intercept		1	-1.1398	0.1053	117.1232	<.0001
Class	1	1	1.6704	0.1759	90.1689	<.0001
Class	2	1	1.0310	0.1814	32.3116	<.0001

Odds Ratio Estimates					
Effect	95% Wald Point Estimate Confidence Limit				
Class 1 vs 3	5.314	3.765	7.502		
Class 2 vs 3	2.804	1.965	4.001		

Association of Predicted Probabilities and Observed Responses					
Percent Concordant	51.2	Somers' D	0.363		
Percent Discordant	14.9	Gamma	0.549		
Percent Tied	33.9	Tau-a	0.172		
Pairs	187758	С	0.681		

• The coefficient of Class 1 i.e., β 1 is 1.6704

• The coefficient of Class 2 i.e., β1 is 1.0310

• The value of intercept, β 0 is -1.1398

From the above procedure, it is clear that our model is built for level
 0.

• So, the value we get from the equation shows the probability of the passenger who did not survive.

c) What is the interpretation of E(y) when $x_2 = 2$?

 Estimated probability that a passenger in second class will survive. d) Estimate the probability of surviving the 2nd class passengers and the 3rd class passengers.

CODES

proc logistic data=Titanic;
class Class (ref='2' ref='3') / param=ref;
model Survived(event='1') = Class;
run;

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics				
Criterion	Intercept Only	Intercept and Covariates		
AIC	1188.655	1089.108		
sc	1193.447	1103.485		
-2 Log L	1186.655	1083.108		

Testing Global Null Hypothesis: BETA=0					
Test Chi-Square DF Pr > ChiSq					
Likelihood Ratio	103.5471	2	<.0001		
Score	102.8890	2	<.0001		
Wald	96.6294	2	<.0001		

7	Type 3 Analysis of Effects					
Effect	Wald Fect DF Chi-Square Pr > ChiSq					
Class	2	96.6294	<.0001			

Analysis of Maximum Likelihood Estimates						
Parameter DF Estimate Standard Wald Error Chi-Square Pr > ChiSq						
Intercept		1	-1.1398	0.1053	117.1232	<.0001
Class	1	1	1.6704	0.1759	90.1689	<.0001
Class	2	1	1.0310	0.1814	32.3116	<.0001

Odds Ratio Estimates					
Effect	95% Wald Effect Point Estimate Confidence Limits				
Class 1 vs 3	5.314	3.765	7.502		
Class 2 vs 3	2.804	1.965	4.001		

Association of Predicted Probabilities and Observed Responses				
Percent Concordant	51.2	Somers' D	0.363	
Percent Discordant	14.9	Gamma	0.549	
Percent Tied	33.9	Tau-a	0.172	
Pairs	187758	С	0.681	

e) What is the estimated odds ratio? What is the interpretation?

Odds Ratio Estimates				
Effect	95% Wald Point Estimate Confidence Limits			
Class 1 vs 3	5.314	3.765	7.502	
Class 2 vs 3	2.804	1.965	4.001	

Interpretation

• The passenger in 2nd Class has 2.804 times odds of surviving than that of passenger in 3rd Class.

• The passenger in 1st Class have 5.314 times odds of surviving than that of passenger in 3rd Class.

• The Logistic Regression Model Accuracy is 51.2%

THANK YAN