

theorem for normal triangular matrices

 ${\bf Canonical\ name} \quad {\bf TheoremFor Normal Triangular Matrices}$

Date of creation 2013-03-22 13:43:35 Last modified on 2013-03-22 13:43:35 Owner Mathprof (13753) Last modified by Mathprof (13753)

Numerical id 12

Author Mathprof (13753)

Entry type Theorem
Classification msc 15A57
Classification msc 15-00
Related topic NormalMatrix

Theorem 1 ([?], pp. 82) A square matrix is diagonal if and only if it is normal and triangular.

Proof. If A is a diagonal matrix, then the complex conjugate A^* is also a diagonal matrix. Since arbitrary diagonal matrices commute, it follows that $A^*A = AA^*$. Thus any diagonal matrix is a normal triangular matrix.

Next, suppose $A = (a_{ij})$ is a normal upper triangular matrix. Thus $a_{ij} = 0$ for i > j, so for the diagonal elements in A^*A and AA^* , we obtain

$$(A^*A)_{ii} = \sum_{k=1}^{i} |a_{ki}|^2,$$

 $(AA^*)_{ii} = \sum_{k=i}^{n} |a_{ik}|^2.$

For i = 1, we have

$$|a_{11}|^2 = |a_{11}|^2 + |a_{12}|^2 + \dots + |a_{1n}|^2.$$

It follows that the only non-zero entry on the first row of A is a_{11} . Similarly, for i = 2, we obtain

$$|a_{12}|^2 + |a_{22}|^2 = |a_{22}|^2 + \dots + |a_{2n}|^2.$$

Since $a_{12} = 0$, it follows that the only non-zero element on the second row is a_{22} . Repeating this for all rows, we see that A is a diagonal matrix. Thus any normal upper triangular matrix is a diagonal matrix.

Suppose then that A is a normal lower triangular matrix. Then it is not difficult to see that A^* is a normal upper triangular matrix. Thus, by the above, A^* is a diagonal matrix, whence also A is a diagonal matrix. \square

References

[1] V.V. Prasolov, *Problems and Theorems in Linear Algebra*, American Mathematical Society, 1994.