NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Teo Wei Hao

MA2101S Linear Algebra II (version S) AY 2007/2008 Sem 1

Question 1

(a) For $t \in F$, let $f_1(x), f_2(x) \in F[x], \lambda \in F$. We have

$$\varepsilon_t(f_1(x) + \lambda f_2(x)) = \varepsilon_t((f_1 + \lambda f_2)(x))
= (f_1 + \lambda f_2)(t)
= f_1(t) + \lambda f_2(t)
= \varepsilon_t(f_1(x)) + \lambda \varepsilon_t(f_2(x)).$$

Therefore ε_t is a linear transformation from $F[x] \to F$, i.e. $\varepsilon_t \in F[x]^*$.

(b) Assume on the contrary that $\{\varepsilon_t \mid t \in F\}$ is linearly dependent subset of $F[x]^*$. Then there exists $\lambda_i, \mu_i \in F$, i = 1, 2, ..., n, such that not all λ_i are zero, and

$$\sum_{i=1}^{n} \lambda_i \varepsilon_{\mu_i} = 0_{F[x]^*}.$$

Let $f_{\mu_k} \in F[x]$ such that $f_{\mu_k} = (x - \mu_k)^{-1} \prod_{i=1}^n (x - \mu_i), k = 1, 2, ..., n$. This give us $f_{\mu_k}(x) = 0_F$ for $x = \mu_i, i \in \{1, 2, ..., n\} - \{k\}$, and $f_{\mu_k}(k) \neq 0_F$. Thus we get,

$$\left(\sum_{i=1}^{n} \lambda_{i} \varepsilon_{\mu_{i}}\right) (f_{\mu_{k}}(x)) = 0_{F[x]^{*}} (f_{\mu_{k}}(x))$$

$$\sum_{i=1}^{n} \lambda_{i} (f_{\mu_{k}}(\mu_{i})) = 0_{F}$$

$$\lambda_{k} f_{\mu_{k}}(\mu_{k}) = 0_{F}.$$

Since $f_{\mu_k}(\mu_k) \neq 0_F$, we have $\lambda_k \neq 0_F$ for all k = 1, 2, ..., n, a contradiction. Therefore $\{\varepsilon_t \mid t \in F\}$ is a linearly independent subset of $F[x]^*$.

- (c) (i) Similar argument as 1b.) works, with suitable substitution, and so we can immediately conclude that $\{\phi_t \mid t \in T\}$ is linearly independent in P_n^* . Now since P_n is a finite-dimensional vector subspace of F[x], we have $\dim(P_n^*) = \dim(P_n) = n + 1$. Since $\{\phi_t \mid t \in T\}$ has n + 1 elements, we conclude that $\{\phi_t \mid t \in T\}$ is a basis for P_n^* .
 - (ii) Notice that $\phi: P_n \to F$ such that $\phi(f(x)) = \int_0^1 f(x) dx$ is a linear transformation, i.e. $\phi \in P_n^*$. Since $\{\phi_t \mid t \in T\}$ is a basis of P_n^* , we have,

$$\phi(f(x)) = \left(\sum_{t \in T} \lambda_t \phi_t\right) (f(x))$$

$$\int_0^1 f(x) dx = \sum_{t \in T} \lambda_t f(t),$$

where $\lambda_t \in F$ is unique for each $t \in T$.

AY 2007/2008 Sem 1

Question 2

(a) (i) For all $v \in \text{Im}(\alpha + \beta)$, we have $v = (\alpha + \beta)(v')$ for some $v' \in V$. Thus $v = \alpha(v') + \beta(v') \in \text{Im}(\alpha) + \text{Im}(\beta)$. This give us,

$$rk(\alpha + \beta) \leq dim(Im(\alpha) + Im(\beta))$$

$$= rk(\alpha) + rk(\beta) - dim(Im(\alpha) \cap Im(\beta))$$

$$\leq rk(\alpha) + rk(\beta).$$

(ii) Let $v \in \ker(\alpha\beta)$, then $\beta(v) \in \ker(\alpha)$, and so $\operatorname{Im}(\beta|_{\ker(\alpha\beta)}) \subseteq \ker(\alpha)$. Now by applying Rank-Nullity Theorem on $\beta|_{\ker(\alpha\beta)}$, we have

$$dim(ker(\alpha\beta)) = null(\beta|_{ker(\alpha\beta)}) + rk(\beta|_{ker(\alpha\beta)})$$
$$null(\alpha\beta) = null(\beta) + rk(\beta|_{ker(\alpha\beta)})$$
$$\leq null(\beta) + null(\alpha).$$

(b) Let us be given that $\alpha + \beta$ is bijective, and $\alpha\beta = 0$. This implies that $\text{rk}(\alpha + \beta) = \text{null}(\alpha\beta) = \text{dim}(V)$. By Rank-Nullity Theorem,

$$2 \dim(V) = \operatorname{rk}(\alpha + \beta) + \operatorname{null}(\alpha\beta) \le (\operatorname{rk}(\alpha) + \operatorname{rk}(\beta)) + (\operatorname{null}(\beta) + \operatorname{null}(\alpha)) = 2 \dim(V).$$

Thus equality holds for the above equation, which give us equality to holds in both inequalities.

Instead let us be given that $\operatorname{rk}(\alpha+\beta)=\operatorname{rk}(\alpha)+\operatorname{rk}(\beta)$ and $\operatorname{null}(\alpha\beta)=\operatorname{null}(\beta)+\operatorname{null}(\alpha)$. Then similarly by Rank-Nullity Theorem, $\operatorname{rk}(\alpha+\beta)+\operatorname{null}(\alpha\beta)=2\operatorname{dim}(V)$. Since $\operatorname{rk}(\alpha+\beta)$, $\operatorname{null}(\alpha\beta)\leq\operatorname{dim}(V)$, equality holds for both equations. Thus we have $\alpha+\beta$ to be bijective, and $\alpha\beta=0$.

Question 3

(a) Let us be given that α is bijective. Then α is injective, and so $E_{0_F} = \ker(\alpha) = \{0_V\}$. This implies that 0_F is not an eigenvalue, i.e. $x = x - 0_F \nmid m_{\alpha}(x)$.

Instead let us be given that $x \nmid m_{\alpha}(x)$. The reverse argument give us that α is injective. Let $v \in V$. Since $\gcd(m_{\alpha}(x), x) = 1_F$, there exists $p(x), q(x) \in F[x]$ such that

$$\begin{aligned} 1_F &=& m_{\alpha}(x)p(x) + xq(x) \\ \mathrm{id}_V(v) &=& (p(\alpha)m_{\alpha}(\alpha) + q(\alpha)\alpha)(v) \\ v &=& p(\alpha)m_{\alpha}(\alpha)(v) + \alpha q(\alpha)(v) \\ &=& \alpha[q(\alpha)(v)]. \end{aligned}$$

Thus $q(\alpha)(v) \in V$ is a pre-image of v, i.e. α is surjective. Therefore α is bijective.

(b) Let W be a vector subspace of V such that $V = U \oplus W$. For all $v \in V$, there exists $u \in U$ and $w \in W$ such that v = u + w. Now, we have $m_{\beta}(\alpha)(u) = m_{\beta}(\beta)(u) = 0_{V}$.

Also, $m_{\gamma}(\alpha)(w) + U = m_{\gamma}(\gamma)(w + U) = U$. Thus $m_{\gamma}(\alpha)(w) \in U$.

We note that $m_{\gamma}(\alpha)(w) \in W$, and since $U \cap W = \{0_V\}$, we have $m_{\gamma}(\alpha)(w) = 0_V$. Thus,

$$m_{\beta}(\alpha)m_{\gamma}(\alpha)(v) = m_{\beta}(\alpha)m_{\gamma}(\alpha)(u+w)$$

= $m_{\gamma}(\alpha)m_{\beta}(\alpha)(u) + m_{\beta}(\alpha)m_{\gamma}(\alpha)(w)$
= 0_{V} .

AY 2007/2008 Sem 1

Therefore α satisfy $m_{\beta}(x)m_{\gamma}(x)$, and so $m_{\alpha}(x) \mid m_{\beta}(x)m_{\gamma}(x)$.

Since U is α -invariant, we have $m_{\beta}(x) = m_{\alpha|_U}(x) \mid m_{\alpha}(x)$.

Now for all $v \in V$, we have $m_{\alpha}(\gamma)(v+U) = m_{\alpha}(\alpha)(v) + U = U$.

Thus γ satisfy $m_{\alpha}(x)$, and so $m_{\gamma}(x) \mid m_{\alpha}(x)$.

Therefore $lcm(m_{\beta}(x), m_{\gamma}(x)) \mid m_{\alpha}(x)$.

Question 4

- (i) Since $\operatorname{Im}(\alpha)$ is finite-dimensional, $m_{\alpha|_{\operatorname{Im}(\alpha)}}(x)$ exists. Now for all $v \in V$, we have $\alpha(v) \in \operatorname{Im}(\alpha)$, and so $m_{\alpha|_{\operatorname{Im}(\alpha)}}(\alpha)(\alpha(v)) = 0_V$. Thus α satisfies $xm_{\alpha|_{\operatorname{Im}(\alpha)}}(x) \in F[x] \setminus \{0_F\}$.
- (ii) Since $\operatorname{Im}(\alpha)$ is finite, we have $\operatorname{rk}(\alpha) = \operatorname{rk}(\alpha^2)$. Thus by Rank-Nullity Theorem on $\alpha|_{\operatorname{Im}(\alpha)}$, we get

$$rk(\alpha) = null(\alpha|_{Im(\alpha)}) + rk(\alpha|_{Im(\alpha)})$$

$$rk(\alpha) = dim(ker(\alpha) \cap Im(\alpha)) + rk(\alpha^{2}).$$

Thus $\dim(\ker(\alpha) \cap \operatorname{Im}(\alpha)) = 0$, i.e. $\ker(\alpha) \cap \operatorname{Im}(\alpha) = \{0_V\}$.

Now since $\operatorname{Im}(\alpha) = \operatorname{Im}(\alpha^2)$, for all $v \in V$, there exists $v' \in V$ such that,

$$\alpha(v) = \alpha^{2}(v')$$

$$\alpha(v - \alpha(v')) = 0_{V}$$

$$v - \alpha(v') \in \ker(\alpha)$$

$$v \in \ker(\alpha) + \operatorname{Im}(\alpha).$$

Thus $V = \ker(\alpha) \oplus \operatorname{Im}(\alpha)$.

Question 5

(i) Let X be the largest definite subspace (either positive or negative). Thus we have $\dim(X) = \frac{1}{2}(\operatorname{rk}(\phi) + |s|)$.

Now, if $u \in U \cap X - \{0_V\}$, then $\phi(u, u) \neq 0_F$. Thus $\phi|_{(U \cap X) \times (U \cap X)}$ is non-degenerate. Since $U \cap X$ is a subspace of U, which is a subspace of V, we have

$$\dim(U \cap X) = \operatorname{rk}(\phi|_{(U \cap X) \times (U \cap X)}) \le \operatorname{rk}(\phi|_{U \times U}) \le \operatorname{rk}(\phi).$$

Together with the fact that $U + X \subseteq V$, we have,

$$\dim(X) + \dim(U) = \dim(U + X) + \dim(U \cap X)$$
$$\frac{1}{2}(\operatorname{rk}(\phi) + |s|) + \dim(U) \leq \dim(V) + \operatorname{rk}(\phi|_{U \times U}).$$

And so we combined results to get $\frac{1}{2}(\operatorname{rk}(\phi) + |s|) + \dim(U) - \dim(V) \le \operatorname{rk}(\phi|_{U \times U}) \le \operatorname{rk}(\phi)$.

(ii) Let $P, Q, X, Y \subseteq V$ be the set of symmetric matrices, skew-symmetric matrices, upper triangular matrices with diagonal entries 0_F , and diagonal matrices respectively.

Let
$$p = (p_{ij}) \in P$$
. Then we have $\phi(p,p) = \sum_{i=1}^n \sum_{j=1}^n p_{ij} p_{ji} = \sum_{i=1}^n \sum_{j=1}^n (p_{ij})^2 \ge 0_F$.
 Let $q = (q_{ij}) \in Q$. Then we have $\phi(q,q) = \sum_{i=1}^n \sum_{j=1}^n q_{ij} q_{ji} = \sum_{i=1}^n \sum_{j=1}^n -(q_{ij})^2 \le 0_F$.
 Thus P and Q are positive definite and negative definite respectively.

Next, we notice that X + Y is direct, with $\dim(X) = \frac{1}{2}(n^2 - n)$ and $\dim(Y) = n$.

We observe that $p \in P$ iff there exists $x \in X$ and $y \in \tilde{Y}$ such that $p = x + x^T + y$.

Also, $q \in Q$ iff there exists $x \in X$ such that $q = x - x^T$.

This implies that $\dim(P) = \dim(X) + \dim(Y) = \frac{1}{2}(n^2 + n)$ and $\dim(Q) = \dim(X) = \frac{1}{2}(n^2 - n)$.

Thus ϕ is non-degenerate, with $\dim(P) + \dim(Q) = \dim(V)$.

Now since $\phi(u, u) = 0_F$ for all $u \in U$, we have $U \cap P = U \cap Q = \{0_V\}$.

Thus U + P and U + Q are direct.

So by Rank-Nullity Theorem, we have $\dim(U) \leq \dim(V) - \dim(P) = \dim(Q)$.

Similarly $\dim(U) \leq \dim(P)$. Thus $\dim(U) \leq \min(\dim(P), \dim(Q)) = \frac{1}{2}(n^2 - n)$.

Now let $x = (x_{ij}) \in X$. Then we have $\phi(x, x) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} x_{ji} = 0_F$. Thus X satisfy the condition of being U and since $\dim(X) = \frac{1}{2}(n^2 - n)$, we have the largest possible dimension of U to be $\frac{1}{2}(n^2-n)$.

Page: 4 of 4