

Tecnológico de monterrey Algebraic and Trascendental Functions Second Interpartial Exam Version A

Name			
ID number	Date	Group)
"Adhering to the Code of Ethi precepts of academic honesty is solve it."			
		Signature	
I. Read the following questions on the line. (5 points each)	s and identify the option	that best answers each, t	hen write its letter
1 The range of t	the function $f(x) = e$	$x^{-4} - 2$ is:	
a) $f(x) \in (-4, \infty)$	b) $f(x) \in (-2, \infty)$	c) $f(x) \in [-2, \infty)$	d) $f(x) \in (2, \infty)$
2 The graph of t	the function $f(x) = -$	-2^x when x goes to infinite	nity $(x \to \infty)$:
a) The function goes	to minus infinity ($f(x)$	$(x) \to -\infty$	
b) The function goes	to plus infinity $(f(x))$	$\rightarrow \infty)$	
c) The function goes	to zero $(f(x) \to 0)$		
d) The function goes	to two $(f(x) \to 2)$		
2 units upwards from	U 1	nows a translation of 1 $n(x)$ and tends to minus.	•
a) $f(x) = \log$	$g_e(x+2)-1$	$b) f(x) = \ln$	(x-1) + 2
c) f(x) = -1	n(x-1)+2	$\mathrm{d})f(x)=\ln$	(x + 1) - 2
4 Which of the property?	following statements r	epresents the "Logarith	nm of a Product"
a) $\log_a(M) + \log_a(N)$	$) = \log_a(MN)$	b) $\log_a(M) - \log_a(M)$	$a(N) = \log_a\left(\frac{M}{N}\right)$
c) $(P)[\log_a(M)]$	$M)] = \log_a(M^P)$	$d) - \log_a(M) = 1$	$\log_a\left(\frac{1}{M}\right)$
5 The domain o	f the function $f(x) =$	$\log_3(x+2) - 4$ is:	
a) $x \in (4, \infty)$	$) b) x \in (-4, \infty)$	c) $x \in (2, \infty)$ d) x	∈ (-2,∞)

Tecnológico de monterrey Algebraic and Trascendental Functions II. Answer the following exercises. Frame or highlight your final answers.

7.	Solved	I the following expressions for x . Inc	clude your procedures in an external paper (5
	points	each)	
			.20.

Expression	$\log_2\left(\frac{x}{2}\right) = 3$	
Procedure		
Answer		

Expression	$e^{2x}=2$
Procedure	
Answer	

Tecnológico de monterrey Algebraic and Trascendental Functions

III. Solve the following exercises in an orderly and clear manner. Underline or frame your final answer. Include the WHOLE procedure. This is evidence for your answers, **missing procedures** will render the answer invalid.

8. **Write and use the change of base formula** to compute the following. Report the numeric value with 6 decimals. (5 points)

value with 6 decimals. (5 points)		
Expression	$\log_9\left(\frac{1}{9}\right)$	
Procedure		
Answer		

9. Use the Laws of logarithms to expand the following expression. (10 points)

Expression	$\log\left(\frac{xy^3}{z^2}\right)$
Procedure	
Answer	

Tecnológico de monterrey Algebraic and Trascendental Functions

10. Use the properties of logarithms to condense the following expression. (15 points)

Expression	$\log \left[\frac{\ln(x^2)}{4\ln(x)} \right] - \log[2\ln(x)]$
Procedure	
Answer	

11. Determine the horizontal asymptote for the following function. (10 points)

Expression	$f(x) = \frac{1}{2}(e^x - 2)^2$
Procedure	
Answer	

Tecnológico de monterrey Algebraic and Trascendental Functions

12. Finde the critical points of the following functions. (10 points)

12. Timae (12. Prince the critical points of the following functions. (10 points)		
Expression	$f(x) = \exp[(x-4)^2]$	$g(x) = \ln\left[\frac{3}{2}x\right]$	
Procedure			
Answer			

13. Sketch a graph of $f(x) = e^x$ and $g(x) = \ln(x)(10 \text{ points})$

