Inference for linear regression

•••

13 March 2019 PLSC 309

New office hours starting next week

- Monday and Friday from 9-12 (Sparks B001)
- No more office hours on Wednesday!

Assumptions

- If you haven't noticed already, we make A LOT of assumptions in statistics
- But what exactly is an assumption?
- An assumption is a statement we make *without any evidence*
 - In statistics, evidence means data
 - An assumption is a statement we make *without any data*
- This is in contrast to *empirical estimation*, where we use data to make an informed guess

Null hypothesis: assumptions vs empirics

Do assumptions really matter?

- Let's take the 2008 financial crisis as an example
- Mortgage-backed securities are collections of mortgages, bundled together, and traded on an open market
- Each security is rated by a credit agency
 - AAA+ rating is essentially good as cash
- When rating the credit agency assumes that all mortgages in the security are independent from one another

Do assumptions really matter?

The chart above depicts the annual returns of the 10-City and the 20-City Composite Home Price Indices. In May 2012, both Composites were up by 2.2% month-over-month, and posted annual returns of -1.0% and -0.7%, respectively.

Review

- We want to build a statistical model that predicts Y from X (we call this \hat{Y})
- We assume that the function that connects X to Y is linear (straight line)
- Find the straight line with the slope and y-intercept that best fits our data
 - \circ Slope: β
 - O Y-intercept: α

Review: Ordinary Least Squares

- Find the line (i.e slope and intercept) that minimizes the squared differences $(\hat{Y}-Y)$
- Ŷ-Y are known as errors or residuals

Calculating model error

- The best square fit wants to find the smallest residuals in either direction
- We can do this by first squaring each of our residuals

$$\circ$$
 $e_1^2, e_2^2, e_3^2, ...$

And then summing the residuals

$$\circ \quad e_1^2 + e_2^2 + e_3^2 + \dots$$

- This is known as the sum of least squares
- A regression model calculated with the sum of least squares is known as Ordinary
 Least Squares (OLS) Regression

Assumptions for OLS

There are four assumptions that we have to make for linear regression:

- 1. Linearity / additivity
- 2. Our residuals must be:
 - a. Independent
 - b. Homoscedastic (constant variance)
 - c. Normally distributed

Where do these assumptions come from?

- We are not just estimating any relationship, f(x) between **X** and Y
- We are estimating a very specific relationship
 - Linear / additive
- Why linear relationships?
 - The math is easy
 - Central Limit Theorem implies a linear relationship
- Because we are relying on the C.L.T., *i.i.d.* is a fundamental assumption
 - Independent
 - Identically distributed

Guessing our model parameters

- If we could compare all the possible slopes and intercepts
- We know how to tell what line is the best fit...
- ...the one that minimizes the sum of our errors
 - $\circ \qquad e_{i} = \hat{Y}_{i} Y_{i}$
 - $\circ \sum (e_i^2)$
- So how do we guess the model parameters?

Key insight: linear models are additive

- Additivity means that if we add or subtract an X variable from the model, the parameters stay the same
- In other words, if we have a model: $Y = \beta_1 X_1 + \beta_2 X_2$
- Then β_1 will stay the same for a new model: $Y = \beta_1 X_1$
- This means that we can calculate each slope separately

Correlation

- The correlation represents the strength of linear relationships between two variables
- Ranges from -1 to 1
 - 1 = perfect positive linear relationship
 - -1 = perfect negative relationship
 - \circ 0 = no linear relationship whatsoever

How to calculate correlation

$$R = \frac{1}{n-1} \sum_{i=1}^{n} \frac{x_i - \bar{x}}{s_x} \frac{y_i - \bar{y}}{s_y}$$

An average of deviations from the mean, scaled by their standard deviation

- Greater standard deviations = smaller correlation
- Greater deviations from average for the same observation = larger correlations

Calculating β

$$b_1 = \frac{s_y}{s_x} R$$

- 1. We need three pieces of information
 - \circ R = correlation between X and Y
 - \circ $S_v = \text{standard deviation of Y}$
 - \circ $S_x = standard deviation of X$
- 2. Calculate correlation coefficient
- 3. Multiply by st. dev of Y / st. dev of X

Calculating β

$$b_1 = \frac{s_y}{s_x} R$$

- Correlation represents the linear relationship between X and Y
 - Can be positive or negative
- This is adjusted by the change in Y over the change in X
- If there is a very strong linear relationship and X accounts for a lot of variation in Y, there will be a large slope

Calculating α

- Now that we have our slope parameters we can estimate the intercept
- This involves subtracting the mean of our X variables from the mean of Y
- $\alpha = \text{mean}(Y) \beta * \text{mean}(X)$

- Say we're estimating a model and we find a β of 1 for a variable X
- Is X related or unrelated to Y?
- This sounds like a null hypothesis test!
- $H_0: \beta = 0$
- $H_A: \beta \neq 0$

- We can find a Z-score
- $\bullet \quad PE = \beta 0$
- Z = PE / SE

5.4567	-1.23	0.0000
0.4001	-1.23	0.2300
0.8717	-1.15	0.2617
_	0.8717	0.8717 -1.15

- PE = -1.0010 0 = -1.0010
- Z = -1.0010 / 5.4567 = -0.183
- -2 < Z < 2
- We can not reject H_0

	Estimate	Std. Error	t value
(Intercept)	24.3193	1.2915	18.83
family_income	-0.0431	0.0108	-3.98

- PE = -0.0431 0 = -0.0431
- Z = -0.0431/0.0108 = -3.99
- -Z < -2
- We reject H₀ and accept H_A

Confidence intervals for β

- We construct confidence intervals for β just like we do for difference in means
- PE ± Z * SE
 - \circ PE (point estimate): your estimated value for β
 - Z: whichever value corresponds to your level of confidence
 - \circ SE: standard error of β

Confidence intervals for β

	Estimate	Std. Error	t value
(Intercept)	24.3193	1.2915	18.83
family_income	-0.0431	0.0108	-3.98

- PE: -0.0431
- Z: 2 (95% confidence)
- SE: 0.0108
- $CI = PE \pm Z \times SE$
- $CI = -0.0431 \pm (2 *0.0108) = (-0.0647, -0.0215)$
- CI does not overlap 0, so we reject H₀ and accept H_A

Interpreting β

- The slope of the line measures the relationship between X and \hat{Y}
 - For a one unit change in X, what will be the change in \hat{Y} ?
- It *does not* mean the effect of X on Y
 - This is a causal statement
- Correlation does not imply causation

Interpreting β : example

- We are interested in explaining voter turnout
- We'll use the following explanatory variables
 - \circ $X_1 = Age$
 - \circ $X_2 = Income$
 - \circ X_3 = Political Party
 - \circ X_{Δ} = Education
- Say the estimate for β_2 is 3, and you find a p-value < .001
- This means that income has a strong positive effect on voter turnout, right?
 - Let's evaluate this statement

Problems with causality

In a linear regression, there are two threats to causality:

- 1. Endogeneity
 - a. You argue that X causes Y, when really Y causes X
- 2. Omitted variable bias
 - a. You argue that X causes Y, but really Z causes both X and Y

Endogeneity

- When you say X causes Y, but Y causes X
- Also called "reverse causality"
- Use of umbrellas positively correlated with rain; do not cause rain
- For example...
 - GDP is negatively related to war, but war causes drops in GDP
 - Education is positively related to income, but wealthier people are better able to afford schools

Omitted variable bias

- When you say X causes Y, but really Z causes both X and Y
- Also called "confounding"
- You have a regression to predict price of a use car by mileage, but you are omitting the car's age
- For example...
 - Income and education are both predicted by parent's wealth
 - School performance and graduation rates both affected by neighborhood poverty

Violations of causality

- We are interested in explaining voter turnout
- We'll use the following explanatory variables
 - \circ $X_1 = Age$
 - \circ $X_2 = Income$
 - \circ $X_3 = Political Party$
 - \circ X_{Δ} = Education
- Not much endogeneity
- Significant problems with omitted variable bias
- But even if you do not have a causal interpretation, can you trust these results?

Violations of additivity

- Remember, linear regression learns the best *linear* model, f(x), for our outcome, Y
 - Linear = additive
- If a model is additive, one explanatory variable must not correlate or affect another variable
- To put it differently, all explanatory variables must be independent of one another

Violations of additivity

- We are interested in explaining voter turnout
- We'll use the following explanatory variables
 - \circ $X_1 = Age$
 - \circ $X_2 = Income$
 - \circ X_3 = Political Party
 - \circ X_{Δ} = Education
- Education, income, political party, and age, are all hopelessly intertwined
- This means we cannot separately interpret each coefficient

Outliers

An outlier is a point that is very different from the rest of the data

Types of outliers

- An outlier with high leverage is one where X_i is very different from mean(X)
 - \circ The further away x_i is to mean(X), the *more leverage it has*
- Leverage measures the potential an observation has to distort or pull our best linear fit
- However, high leverage observations do not necessarily distort our best fit
- Outliers that pull our best fit away from its value if that outlier hadn't been there
 are influential outliers
 - Outliers that are *parallel or perpendicular* to the fitted line have low influence

Types of outliers (succinctly)

- Leverage depends on how far the outlier is from the mean value
- Influence depends on how much the outlier affects the best linear fit

Influence vs leverage

Influence vs leverage

Review

- We learned how to calculate important quantities for linear regression
 - $\bigcirc \beta = R * (\sigma_y / \sigma_{x})$
 - $\circ \quad \alpha = \text{mean}(Y) \beta * \text{mean}(X)$
- We learned how to calculate P-values and CIs for β
 - $\circ \quad H_0: \beta = 0$
 - \circ $H_{A}: \beta \neq 0$
 - Usual Z-score formula

Review

- We learned about problems with interpreting β
 - Endogeneity
 - Omitted variable bias
 - Failure of additivity assumptions
- We also learned about outliers and their potential impact on our model specification
 - Leverage
 - Influence