Questio	Answer		Mark
n			
Number			
17(a)(i)	The layers of fluid flow past each other without mixing		
	Or		
	<u>Velocity</u> at a fixed point (relative to the drop) remains constant	(1)	1
17(a)(ii)	Resultant force is zero		
47/LVO	Or	(4)	
	Sum of the vertical forces is zero	(1)	1
	(Accept $W - U = D$ or $W = U + D$ with terms defined)		
17(b)(i)	Use of $\rho = \frac{m}{V}$	(1)	
	Use of $W = mg$	(1)	
	Weight = $3.3 \times 10^{-4} \text{N}$	(1)	3
	Example of calculation		
	$1.00 \times 10^3 \text{ kg m}^{-3} = m \div 3.35 \times 10^{-8} \text{ m}^3$		
	$m = 1.00 \times 10^{3} \text{ kg m}^{-3} \times 3.35 \times 10^{-8} \text{ m}^{3} = 3.35 \times 10^{-5} \text{ kg}$		
	$W = m g = 3.35 \times 10^{-5} \text{ m}^3 \times 9.81 \text{ N kg}^{-1} = 3.29 \times 10^{-4} \text{ N}$		
17(b)(ii)	Use of upthrust = weight of fluid displaced	(1)	
	Upthrust = 3.1×10^{-4} (N)	(1)	2
	Example of calculation		
	$0.94 \times 10^3 \text{ kg m}^{-3} = m \div 3.35 \times 10^{-8} \text{ m}^3$		
	$m = 0.94 \times 10^{3} \text{ kg m}^{-3} \times 3.35 \times 10^{-8} \text{ m}^{3} = 3.15 \times 10^{-5} \text{ kg}$		
	$U = mg = 3.15 \times 10^{-5} \text{ m}^3 \times 9.81 \text{ N kg}^{-1} = 3.09 \times 10^{-4} \text{ N}$		
17(b)(iii	Uses upthrust and weight to determine the viscous force <i>F</i>	(1)	
)	Use of $V = 4/3 \pi r^3$ to determine r	(1)	
	Use of $F = 6\pi \eta rv$	(1)	
	$v = 4.8 \times 10^{-3} \text{ m s}^{-1} \text{ (ecf from (b)(i) and (b)(ii))}$	(1)	4
	Example of calculation		
	$W = U + 6\pi \eta r v \rightarrow W - U = 6\pi \eta r v$		
	$W - U = (3.29 - 3.09) \times 10^{-4} \text{ N} = 2.0 \times 10^{-5} \text{ N}$		
	$r = \sqrt[3]{(3/4 \times 3.35 \times 10^{-8} \text{ m}^3 \div \pi)} = 2.0 \times 10^{-3} \text{ m}$		
	$2.0 \times 10^{-5} \text{ N} = 6\pi \times 0.11 \text{ Pa s} \times 2.0 \times 10^{-3} \text{ m} \times v$		
	$v = 2.0 \times 10^{-5} \text{ N} \div (6\pi \times 0.11 \text{ Pa s} \times 2.0 \times 10^{-3} \text{ m}) = 4.82 \times 10^{-3} \text{ m s}^{-1}$		
	Total for question 17		11