Environmental and Development Economics Module 4 - WTP for Environmental Quality in LMICs

Raahil Madhok UMN Apllied Economics

2024-09-18

Lecture 6

WTP Estimation: Revealed Preference Models

Housekeeping

▶ Research Proposal: you do NOT have to carry out analysis

► First draft: Oct 3rd

► Replication: Oct 21st

Start soon

Today

Guiding question: what is the WTP for environmental quality in LMICs?

- ► Today's focus: How do we even measure this?
 - Behavioral models
 - Choice probabilities
 - Estimation
 - Application to WTP

Next time: why is WTP so low in developing countries?

Estimating Non-market Value of Goods and Services

Stated Preference:

- Hypothetical data to estimate ex-ante WTP
- Contingent valuation, contingent behavior
- Respondents directly asked about WTP (phone, mail, etc.)
- Issue: hypothetical bias and strategic bias

Revealed preferences

- Behavioral data to estimate ex-post WTP
- ► Travel cost, averting behavior, hedonic price
- Pro: based on actual choices
- ► Con (?): need a **behavioral model** in which to analyze choices

Behavioral Models

- Our goal is to define a behavioral process generating agent's choice
- Let agent face choice among set of options (products, actions, etc.)
 - ▶ What leads agent to choose one?
- Let some factors (x) be observed by researcher, and some not (ϵ)
- Factors relate to agent choice through a behavioral process:

$$y = h(x, \epsilon)$$

 \blacktriangleright $h(x, \epsilon)$ determines the selected choice based on these factors

Probabilistic Choice

- lacktriangle Since ϵ unobserved, the outcome is probabilistic
- **Choice probability** of choosing y derived by assuming $\epsilon \sim f(\epsilon)$

$$P(y|x) = \text{Prob}(\epsilon \quad \text{s.t.} \quad h(x, \epsilon) = y)$$

- lacktriangle This probability is much more tractable i.e., fully characterized by $f(\epsilon)$
- We can rewrite this as the expected value of an indicator function:

$$P(y|x) = \int I[h(x,\epsilon) = y]f(\epsilon)d\epsilon$$

- where $I[h(x, \epsilon) = y] = 1$ when statement in brackets is true
- ▶ Integral of behavioral process indicator over all possible values of unobservables

Evaluating the Choice Probability

- Method 1: Closed-form solution
 - For certain specifications of h and f, P(y|x) calculated via a formula
 - ▶ Main example is Logit

- Method 2: Simulation
 - ightharpoonup Some specifications of h and f have no closed form solution
 - ightharpoonup We simulate P(y|x) by taking random draws from f and taking the average

Evaluating the Choice Probability: Closed Form

First, define the behavioral model

- Consider a binary model where agent considers whether to take an action
- ▶ Agent gets utility (+/-) from the action:

$$U = \beta' x + \epsilon$$

- ▶ U: Utility of taking an action; $\beta'x$: Observed component of utility.
- ightharpoonup ϵ : Unobserved component; lets assume **logistic distribution**.
- ► Take action if utility is positive:

$$P = \int I[\beta' x + \epsilon > 0] f(\epsilon) d\epsilon$$

Closed Form Solution

$$P = \int I[\beta'x + \epsilon > 0]f(\epsilon)d\epsilon$$

$$= \int_{\epsilon > -\beta'x} f(\epsilon)d\epsilon$$

$$= 1 - F(-\beta'x)$$

$$= 1 - \frac{1}{1 + e^{\beta'x}}$$

$$= \frac{e^{\beta'x}}{1 + e^{\beta'x}}$$

Evaluating the Choice Probability: Simulation

Recall:
$$P(y|x) = \int I[h(x,\epsilon) = y]f(\epsilon)d\epsilon$$

- ▶ **Step 1:** Take draw of ϵ from $f(\epsilon)$ ▶ Label it ϵ^1 , denoting first draw
- ▶ **Step 2:** Check whether $h(x, \epsilon^1) = y$ ▶ If so, create $l^1 = 1$, otherwise $l^1 = 0$
- ▶ **Step 3:** Repeat this R times and collect I^r for r = 1, ..., R
- ▶ **Step 4:** Average **simulated** probability: $P(i|x) = \frac{1}{R} \sum_{r=1}^{R} I^r$ ▶ Proportion of times that draws of ϵ , when combined with x, yield y

Lets define a realistic behavioural model

Random Utility Model

Behavioural model:

- ightharpoonup Agent, n faces choice among J alternatives
 - ► Choice set must be 1) mutually exclusive, 2) exhaustive, 3) finite
- ▶ Utility from j is: U_{nj} for j = 1, ..., J
- Utility known to agent but not the researcher
- ► Agent chooses *j* that maximizes utility:

Choose i iff
$$U_{ni} > U_{nj} \quad \forall j \neq i$$

Random Utility Model

The Researcher

- ▶ Observes attributes of alternatives, x_{ni} $\forall j$
- Observed attributes of agent, s_n
- ▶ Let $V_{nj} = V(x_{nj}, s_n) \quad \forall j$ (representative utility)
- V can depend on parameters unknown to researcher
 - But can be structurally estimated...

Random Utility Model

▶ Since $V_{nj} \neq U_{nj}$, we can write:

$$U_{nj} = V_{nj} + \epsilon_{nj}$$

- where joint density of random vector $\epsilon_n = (\epsilon_{n1}, ..., \epsilon_{nJ}) = f(\epsilon_n)$
- ightharpoonup Then the probability than agent n chooses alternative i is:

$$\begin{aligned} P_{ni} &= P(U_{ni} > U_{nj}, \forall j \neq i) \\ &= P(V_{ni} + \epsilon_{ni} > V_{nj} + \epsilon_{nj}, \forall j \neq i) \\ &= P(\epsilon_{nj} - \epsilon_{ni} < V_{ni} - V_{nj}, \forall j \neq i) \leftarrow \mathsf{CDF!} \\ &= \int I(\epsilon_{nj} - \epsilon_{ni} < V_{ni} - V_{nj}) f(\epsilon) d\epsilon \end{aligned}$$

▶ Different DCMs obtained from different choices of $f(\epsilon)$

Logit

ightharpoonup Assumes ϵ_{ni} distributed iid extreme value

PDF:
$$f(\epsilon_{nj}) = e^{-\epsilon_{nj}} e^{-e^{-\epsilon_{nj}}}, \quad \text{CDF:} \quad F(\epsilon_{nj}) = 1 - e^{-e^{\epsilon_{nj}}}$$

Note: if ϵ 's are iid EV, then $\epsilon_{nji}^* = \epsilon_{nj} - \epsilon_{ni}$ is distributed logistic:

$$F(\epsilon_{nji}^*) = rac{\mathrm{e}^{\epsilon_{nji}^*}}{1 + \epsilon_{nji}^*}$$

Aside: Extreme Value Distribution

Useful Properties

- Mathematical tractability
 - Closed form choice probability
- Long right tail
 - Unobservables can drive unexpected choices
- IIA property
- Connection to logistic regression
- Easy to (structurally) estimate

Logit

▶ The probability that agent n chooses alternative i:

$$egin{aligned} P_{ni} &= P(V_{ni} + \epsilon_{ni} > V_{nj} + \epsilon_{nj} \quad orall j
eq i) \ &= P(\epsilon_{nj} < \epsilon_{ni} + V_{ni} - V_{nj} \quad orall j
eq i) \leftarrow ext{invoke iid assumption!} \ &= \int \left(\prod_{j
eq i} e^{-e^{-(\epsilon_{ni} + V_{ni} - V_{nj})}}
ight) e^{-\epsilon_{ni}} e^{-e^{-\epsilon_{ni}}} d\epsilon_{ni} \ &= rac{e^{V_{ni}}}{\sum_{j} e^{V_{nj}}} \end{aligned}$$

Preview: If V is linear in parameters, $V_{nj} = \beta' x_{nj}$, then: $P_{ni} = \frac{e^{\beta' x_{ni}}}{\sum_{i} e^{\beta' x_{nj}}}$

Independence of Irrelevant Alternatives

- Crucial assumption in logit model
- \triangleright Relative odds of choosing b/w 2 i and k does not change when j introduced
- \triangleright For any two alternatives *i* and *k*, the ratio of logit probabilities is:

$$\frac{P_{ni}}{P_{nk}} = \frac{e^{V_{ni}} / \sum_{j} e^{V_{nj}}}{e^{V_{nk}} / \sum_{j} e^{V_{nj}}}$$
$$= \frac{e^{V_{ni}}}{e^{V_{nk}}} = e^{V_{ni} - V_{nk}}$$

- ▶ Ratio does not depend on any alternatives other than *i* and *k*!
 - Denominators cancel

5 minute break

Estimation: Maximum Likelihood Structural Estimation

- ► Suppose we have have data on *N* agent's choices
- ► The likelihood of observing the choices made by each individual is:

$$L(\beta) = \prod_{n=1}^{N} \prod_{i} (P_{ni})^{y_{ni}}$$

- where $y_{ni} = 1$ if alternative i is chosen, and 0 otherwise
- Log-likelihood is easier to maximize:

$$LL(\beta) = \sum_{n=1}^{N} \sum_{i} y_{ni} \log(P_{ni})$$

 \blacktriangleright ML estimator is the β that maximizes this function

Method of Moments

- ▶ FOC of $LL(\beta) \leftrightarrow \frac{\partial LL(\beta)}{\partial \beta} = 0$
- ► This can be rewritten as:

$$\frac{1}{N} \sum_{n=1}^{N} \sum_{i} y_{ni} x_{ni} = \frac{1}{N} \sum_{n=1}^{N} \sum_{i} P_{ni} x_{ni}$$

- LHS: mean x over choices by sampled agents
- ► RHS: mean x over **predicted** choices by sampled agents
- lacktriangleq eta found s.t. predicted mean of each explanatory variable equals observed mean
 - Model reproduces observed averages in the data
 - ► Also known as matching on the first moment

Main Limitations

- ► Cannot represent random taste variation
- Implies proportional substitution across alternatives (IIA)

What if we want to estimate more moments of β ?

Specifying Taste Variation

- ▶ Supposed agent now has the utility: $U_{nj} = \frac{\beta_n}{\kappa} x_{nj} + \epsilon_{nj}$
 - ▶ where $\beta_n \sim f_n(\beta|\Theta)$ and ϵ_{nj} still iid EV
- ▶ If we observed β_n , then we are back to logit: $P_{ni}(\beta_n) = \frac{e^{\beta'_n x_{ni}}}{\sum_i e^{\beta'_n x_{nj}}}$
- ▶ Instead, we integrate logit over all possible parameters of β_n :

$$P_{ni} = \int \underbrace{\left(\frac{e^{\beta_n' x_{ni}}}{\sum_j e^{\beta_n' x_{nj}}}\right)}_{\text{logit probability}} \underbrace{f(\beta|\Theta)d(\beta)}_{\text{mixing distribution}} \quad \leftarrow \text{no closed form solution!}$$

- ▶ Mixing distribution usually normal: $f(\beta|\Theta) = f(\beta|\mu,\sigma)$
- ▶ Note: P_{ni} is a function of Θ , not β ! (β is integrated out)

Aside: Properties of Mixed Logit

► Relaxes IIA assumption!

- ightharpoonup Ratio of mixed logit probabilities, P_{ni}/P_{nj} depends on all data
 - Denominators are inside the integral and do not cancel

- Enables correlation in unobserved factors across alternatives
 - ► Flexible substitution patterns

Estimation: Simulation

Steps for Simulating Mixed Logit Probability

- **①** Draw a value β^r from $f(\beta|\Theta)$, where r is which draw
- ② Calculate the logit formula $P_{ni}(\beta^r)$ using the drawn value
- Repeat steps 1 and 2 for R draws.
- Average the results to obtain the simulated probability:

$$\hat{P}_{ni} = \frac{1}{R} \sum_{r=1}^{R} P_{ni}(\beta^r)$$

Simulated Log-Likelihood Estimation

As before, insert simulated \hat{P}_{ni} into log-likelihood:

$$SLL = \sum_{n=1}^{N} \sum_{j=1}^{J} y_{nj} \ln \hat{P}_{ni}$$

- where $y_{nj} = 1$ if n chose j and zero otherwise
- Maximum simulated likelihood estimator (MSLE) is the Θ that maximizes SLL

This recovers taste distribution (μ, σ) that matches observed choices to predicted choice probabilities as close as possible

Lets do a simple application

What is the WTP for biodiversity?

WTP for Species Diversity in India

- ► Context: people travel to "hotspots' to see pretty birds
 - ▶ Birds are a good proxy for overall biodiversity
- Data: individual level data from citizen science app (eBird)
 - location, alternative sites, income, travel cost, species richness
- Behavioral model: choose site that maximizes utility
- Question: what cost will you incur to ↑ utility from biodiversity?
 - ► How does your "price' change for an additional unit of biodiversity? (MWTP)

Deriving WTP in Practice

► Agent *i*'s utility from site *j* at time *t* is:

$$U_{ijt} = V_{ijt} + \epsilon_{ijt}$$

$$= \underbrace{\beta_1}_{ ext{MU Income}} (y_i - c_{ijt}) + \underbrace{(\beta_2 + \eta_i)}_{ ext{MU EQ}} e_{jt} + ... + \epsilon_{ijt}$$

- ▶ If stay home: $U_{i0t} = \beta_1 y_i + \epsilon_{i0t}$
- Cost s.t. i indifferent b/w travelling and avoiding cost:

$$c_{ijt}* = \frac{1}{\beta_1}[(\beta_2 + \eta_i)e_{jt} + \beta_3x_{ijt} + ... + (\epsilon_{ijt} - \epsilon_{i0t})]$$

▶ MWTP for one more species, assuming $\eta_i \sim N(0, \sigma)$:

$$MWTP = \boxed{\frac{\partial c_{ijt}*}{\partial d_{jt}} = \frac{\hat{\beta}_2}{\hat{\beta}_1} + \frac{\hat{y}_1}{\hat{\beta}_1}}$$

Implementation

- Data
 - attributes of choice and alternatives for each choice occasion
 - ► Variable *choice*=1 if chosen, otherwise 0
 - Data can get huge, and simulation takes forever
 - solution: restrict choice set
- Stata
 - clogit: conditional logit (fast)
 - mixlogit: mixed logit estimation (slow)
- ▶ R
- mlogit library
- Exercises and applications: https://cran.r-project.org/web/packages/mlogit/vignettes/c5.mxl.html

Aside

- ▶ If you want to get involved in this project, let me know
- Goal: estimate WTP for species diversity in India
- ->
- -> ->