[TRUST] [INDUSTRIES] [PEOPLE] [COMPETENCE] [RELIABILITY] [TECHNOLOGY] [INNOVATION] [INDEPENDENT] [CAN DO]

WEB-BASED LIVE VISUALISATION OF SENSOR DATA

LAB SETUP

Web-based live visualisation of sensor data ⋅ Jannis Lübbe ⋅ © ROSEN Group ⋅ 12-APR-2022

Slide 3

is for referential purposes only and does not indicate any sponsorship, endorsement or affiliation

LAB SETUP

between Redis and ROSEN.

Web-based live visualisation of sensor data · Jannis Lübbe · © ROSEN Group · 12-APR-2022

LAB SETUP

This document is the property of ROSEN Swiss AG who will safeguard its rights according to the civil and penal provisions of law. No part of this document may be reproduced or disclosed to any other party without the prior permission of ROSEN.

empowered by technology

HOBBY PROJECT: FLIGHT DATA RECORDER

800 m 600 m 400 m 200 m

0 km

Legend

50 km

100 km

150 km

200 km

barometric altitude

TODAY'S SETUP

Raspberry Pi Zero W

ADDING SENSOR DATA LIVE VISUALISATION

accelerometer, gyro, magnetometer

https://github.com/jaluebbe/FastAPIWebSocketExample

Slide 7

PUBLISHING DATA TO A REDIS CHANNEL

```
import time, redis, json
from my_sensors import Barometer
```

```
r = redis.Redis()
sensor = Barometer()
```

while True:

```
data = sensor.get_sensor_data()
r.publish("barometer", json.dumps(data))
time.sleep(0.08)
```

```
{
    "sensor": "my_barometer"
    "timestamp": 1648123202.19,
    "pressure": 100682.2,
    "temperature": 5.1,
}
```


CONSUMING DATA FROM A REDIS CHANNEL

```
import redis, json
r = redis.Redis(decode_responses=True)
pubsub = r.pubsub(ignore_subscribe_messages=False)
pubsub.subscribe("barometer")
for item in pubsub.listen():
    barometer_data = json.loads(item["data"])
                                                      "sensor": "my_barometer"
                                                      "timestamp": 1648123202.19,
                                                      "pressure": 100682.2,
                                                      "temperature": 5.1,
```

https://github.com/jaluebbe/GPSTracker

BAROMETER DEMO

https://github.com/jaluebbe/GPSTracker

https://github.com/jaluebbe/FastAPIWebSocketExample

HOSTING WEBSOCKETS WITH FASTAPI

```
from fastapi import FastAPI, WebSocket from fastapi.staticfiles import StaticFiles import aioredis, asyncio
```

```
r = aioredis.Redis(decode_responses=True)
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
```

continued on next slide

HOSTING WEBSOCKETS WITH FASTAPI

```
@app.websocket("/ws/imu_pressure")
async def websocket_endpoint(websocket: WebSocket):
    await websocket.accept()
    pubsub = redis_connection.pubsub(ignore_subscribe_messages=True)
    await pubsub.subscribe("imu_pressure")
    while True:
        try:
            message = await pubsub.get_message()
            if message is not None:
                await websocket.send_text(message["data"])
            await asyncio.sleep(0.01)
        except asyncio.TimeoutError:
            pass
```


CONSUMING WEBSOCKETS WITH JAVASCRIPT

```
var url = "ws://" + window.location.host + "/ws/imu_pressure";
var ws = new WebSocket(url);

ws.onmessage = function(event) {
   let message = JSON.parse(event.data);
   visualiseData(message);
}
```

ORIENTATION SENSOR DEMO

accelerometer, gyro, magnetometer

https://github.com/jaluebbe/GPSTracker https://github.com/jaluebbe/FastAPIWebSocketExample

PERFORMANCE

Raspberry Pi Zero W (single core) data rate 12.5 Hz

websocket delay

websocket data rate

System clock difference on host and client may cause negative delays.

https://github.com/jaluebbe/GPSTracker https://github.com/jaluebbe/FastAPIWebSocketExample

FLIGHT INSTRUMENTS DEMO

accelerometer, gyro, magnetometer

https://github.com/jaluebbe/FastAPIWebSocketExample

INTERACTIVE EXAMPLE

Join with your mobile device:

WIFI: ROSEN_DEMO

password: websockets

Bird with single core Raspberry Pi zero:

http://192.168.4.12:8080

Quad core Raspberry Pi zero 2:

http://192.168.4.11:8080

[TRUST]
[PEOPLE]
[INDUSTRIES]

[COMPETENCE]

[RELIABILITY]
[TECHNOLOGY]

[INNOVATION]

[CAN DO]

THANK YOU FOR JOINING THIS PRESENTATION.

