

Page 1 of 37 Report No.: EED32I00158101

TEST REPORT

Product SensePeanut

Trade mark N/A

Model/Type reference **PEA001**

Serial Number N/A

Report Number : EED32I00158101 **FCC ID** : 2ABGNPEA001

Date of Issue : Jun. 15, 2016

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

Sen.se

34 avenue des Champs Elysees 75008 Paris-France

Prepared by:

Centre Testing International (Shenzhen) Corporation Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Reviewed by:

Date:

kman-li

Sheek Luo

Lab supervisor

Jun. 15, 2016

Check No.: 2402652349

Page 2 of 37

2 Version

Version No.	Date	Description	6	<i>D</i>
00	Jun. 15, 2016	Original		
			(3)	
		(62)	(62)	(0,1)

Tested By:	Tom – Chen Tom chen (Test Project)	Data:	May 26, 2016
Prepared By:	Kevin lan (Project Engineer)	Data:	Jun. 15, 2016
Checked By:	Emen _ L' Emen Li (Reviewer)	Data:	Jun. 15, 2016

Report No.: EED32I00158101 Page 3 of 37

Test Summary

i est Summary	(21)	(63)	
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	N/A
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS PASS PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v03r05	
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v03r05	
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013 & KDB 558074 D01v03r05.

The tested samples and the sample information are provided by the client.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature.

Humid: In this whole report Humid means humidity.

Press: In this whole report Press means Pressure.

N/A: In this whole report not application.

4 Content

•	Jointoint					
1 (COVER PAGE					1
2 ١	VERSION			•••••		2
3 7	TEST SUMMARY			•••••		3
4 (CONTENT				•••••	4
5 7	TEST REQUIREMENT		<u></u>			5
	5.1 Test setup 5.1.1 For Conducted test so 5.1.2 For Radiated Emissio 5.1.3 For Conducted Emiss 5.2 Test Environment 5.3 Test Condition	etup ns test setupsions test setup				5 6 6
6 (GENERAL INFORMATION			•••••		7
	6.1 CLIENT INFORMATION	EUT UBJECTIVE TO THIS STA UNITS DS NDARD CONDITIONS JESTED BY THE CUSTO	ANDARD			
	EQUIPMENT LIST					
8 F	RADIO TECHNICAL REQUIR					
	Appendix A): 6dB Occupied Appendix B): Conducted Potential Conducted Potential Conducted Appendix D): RF Conducted Appendix E): Power Spectra Appendix F): Antenna Requal Appendix G): Restricted bat Appendix H): Radiated Sput	eak Output Power or RF Conducted Emis of Spurious Emissions of Density uirement nds around fundame	ssionss	idiated)		15 18 21 23
PH	HOTOGRAPHS OF TEST SET	UP	•••••	••••••	•••••	31
PH	HOTOGRAPHS OF EUT CON	STRUCTIONAL DET	AILS		•••••	32

Report No. : EED32I00158101 Page 5 of 37

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Antenna Tower

Antenna Tower

Antenna Tower

Ground Reference Plane

Test Receiver

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:				
Temperature:	in.			
Humidity:	48% RH			
Atmospheric Pressure:	1010mbar	6.)		

5.3 Test Condition

Test channel:

Test Mode	Тх	RF Channel			
		Low(L)	Middle(M)	High(H)	
GFSK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel40	
		2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT transmitted the continuous modulation test signal at the specific channel(s).				

Report No. : EED32I00158101 Page 7 of 37

6 General Information

6.1 Client Information

Applicant:	Sen.se			
Address of Applicant:	34 avenue des Champs Elysees 75008 Paris-France			
Manufacturer:	ABO Electronics			
Address of Manufacturer:	Unit 201-202, Wang Rong Ind Park, 99 ind Zone Minzhu, Shajing, Baoan, Shenzhen			
Factory:	ARTech			
Address of Factory:	Room2011, Gongle Business Center, Gonghe Ind Road Xixiang, Baoan, Shenzhen			

6.2 General Description of EUT

SensePeanut	
PEA001	
N/A	"5
2402MHz ~2480MHz	
LITHIUM BATTERY:1x3V(CR2032H)=3V	
May 26, 2016	
May 26, 2016 to Jun. 15, 2016	
	PEA001 N/A 2402MHz ~2480MHz LITHIUM BATTERY:1x3V(CR2032H)=3V May 26, 2016

6.3 Product Specification subjective to this standard

Operation I	requency:	2402M	IHz~2480MHz					
Bluetooth \	/ersion:	4.1	100				700	
Modulation	Type:	GFSK)			(6)	
Number of	Channel:	40						
Sample Ty	pe:	Portab	le production					
Test Power	r Grade:	N/A(m	anufacturer de	eclare)		205		
Test Softwa	are of EUT:	N/A(m	anufacturer de	eclare)	-)	(4)	-	
Hardware \	/ersion:	1.0(ma	nufacturer de	clare)	/	6.	/-	
Software V	ersion:	1.0(ma	1.0(manufacturer declare)					
Antenna Ty	/pe and Gain::		Type: Monopole PCB antenna Gain: 1.6dBi					
Test Voltag	je:	LITHIL	LITHIUM BATTERY:1x3V(CR2032H)=3V					
Operation I	requency eac	h of channe	ıl					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
(1.0)	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz	
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz	
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz	

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32I00158101 Page 8 of 37

6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International (Shenzhen) Corporation Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 886427

Centre Testing International (Shenzhen) Corporation. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International (Shenzhen) Corporation. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International (Shenzhen) Corporation., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No.: EED32I00158101 Page 9 of 37

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563. Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions None.

6.9 Other Information Requested by the Customer None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nover conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB(1GHz-18GHz)
3	Dadiated Courious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB(1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No. : EED32I00158101 Page 10 of 37

7 Equipment List

Lquipille		RF test	system	£ . 4	2.71
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Communication test set test set	Agilent	N4010A	MY51400230	04-01-2016	03-31-2017
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter(6- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2016	01-11-2017
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017
BT&WI-FI Automatic control	R&S	OSP120	101374	04-01-2016	03-31-2017
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017

Report No. : EED32I00158101 Page 11 of 37

(48)	1881		188	12	11			
3M Semi/full-anechoic Chamber								
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
3M Chamber & Accessory Equipment	TDK	SAC-3		06-02-2013	06-01-2016			
3M Chamber & Accessory Equipment	TDK	SAC-3		06-01-2016	05-31-2019			
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2016	05-22-2017			
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017			
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018			
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-29-2016			
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017			
Spectrum Analyzer	R&S	FSP40	100416	06-30-2015	06-28-2016			
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016			
Multi device Controller	maturo	NCD/070/10711 112		01-12-2016	01-11-2017			
LISN	schwarzbeck	NNBM8125	81251547	06-30-2015	06-28-2016			
LISN	schwarzbeck	NNBM8125	81251548	06-30-2015	06-28-2016			
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017			
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017			
Temperature/ Humidity Indicator	TAYLOR	1451	1905	07- 08-2015	07-06-2016			
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017			
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017			
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017			
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017			
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017			
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017			
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002	6	01-12-2016	01-11-2017			
High-pass filter(6- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017			
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001		01-12-2016	01-11-2017			
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001		01-12-2016	01-11-2017			
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002	<u> </u>	01-12-2016	01-11-2017			
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		01-12-2016	01-11-2017			

Report No. : EED32I00158101 Page 12 of 37

8 Radio Technical Requirements Specification

Reference documents for testing:

N	lo.	Identity	Document Title					
1		FCC Part15C (2015)	Subpart C-Intentional Radiators					
2		ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices					

Test Results List:

Test Requirement		Test method	Test item	Verdict	Note	
Part15C 15.247		ANSI C63.10/ KDB 558074	6dB Occupied Bandwidth	PASS	Appendix A)	
Part15C 15.247		ANSI C63.10/ KDB 558074	Conducted Peak Output Power	PASS	Appendix B)	
Part15C 15.24		ANSI C63.10/ KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)	
	·		RF Conducted Spurious Emissions	PASS	Appendix D)	
Part15C Section	art15C Section 15.247 (e) ANSI C63.10/ KDB 558074 Power Spectral Density		PASS	Appendix E)		
Part15C 15.203/15		ANSI C63.10	Antenna Requirement	PASS	Appendix F)	
Part15C 15.2		ANSI C63.10	AC Power Line Conducted Emission	N/A	N/A	
Part15C 15.205/		ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G)	
Part15C 15.205/		ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)	

Page 13 of 37

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.7062	1.0947	PASS	
BLE	MCH	0.7149	1.0920	PASS	Peak
BLE	HCH	0.7093	1.0938	PASS	detector

Report No.: EED32I00158101 Page 14 of 37

Test Graphs

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-1.561	PASS
BLE	MCH	-1.011	PASS
BLE	HCH	-5.125	PASS

Test Graphs

Appendix C): Band-edge for RF Conducted Emissions

Result Table

1	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
)	BLE	LCH	-1.927	-54.010	-21.93	PASS
	BLE	HCH	-5.584	-48.003	-25.58	PASS

Test Graphs

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-2.192	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-1.655	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	-5.819	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Puw/BLE/MCH

Report No.: EED32I00158101

Page 20 of 37

Page 21 of 37

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-16.004	8	PASS
BLE	MCH	-15.550	8	PASS
BLE	НСН	-19.637	8	PASS

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FLIT Antenna

The antenna is Monopole PCB antenna and no consideration of replacement. The best case gain of the antenna is 1.6dBi.

Report No. : EED32I00158101 Page 24 of 37

Appendix G): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	-0-
	Al 4011-	Peak	1MHz	3MHz	Peak	4
	Above 1GHz	Peak	1MHz	10Hz	Average	6
Test Procedure:	Below 1GHz test procedu	re as below:				
	 a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 meter was mounted on the totom of the antenna height is of determine the maximum polarizations of the antenna was tuned table was turned from the antenna was tuned table was turned from the end the end to the end of the test-receiver system Bandwidth with Maximum for the place a marker at the end of the frequency to show combands. Save the spectron lowest and highest for lowest f	n the top of a rochoic camber. The holic camber. The of the highest raters away from a pof a variable-houried from one movalue of the file enna are set to hission, the EUT to heights from a degrees to 360 m was set to Peum Hold Mode. The proposition of the restriction of the res	the table was adiation. The interfer neight anter to food the strength make the range was arrand meter to degrees to degree to the deak Detect casure any	ence-receinna tower. Four meters Four meters Four meters Four meters Four meters Four find the Four	ving antenna, above the gro rizontal and ve ent. worst case an and the rotata maximum reac nd Specified he transmit s in the restric	which und to ertical d ther ble ding.
	g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low. The radiation measure Transmitting mode, and j. Repeat above procedu	ve is the test site ober change form 1 meter and tablowest channel, to ments are perford d found the X ax	n table 0.8 le is 1.5 me the Highest rmed in X, kis position	metre to 1 tre). t channel Y, Z axis p ing which i	.5 metre(Abo positioning for t is worse cas	ve
Limit:	Frequency	Limit (dBuV/	<i>)</i>		mark	
	30MHz-88MHz	40.0		Quasi-pe	eak Value	
	88MHz-216MHz	43.5	5	Quasi-pe	eak Value	
	216MHz-960MHz	46.0) (Quasi-pe	eak Value	
	960MHz-1GHz	54.0) (0	Quasi-pe	eak Value	
		54.0)	Averag	je Value	
	Above 1GHz		_			
		74.0)	Peak	Value	

Page 25 of 37

Test plot as follows:

Worse case	e mode:	GFSK								
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel
2390.00	32.53	3.15	34.39	48.04	49.33	74	-24.67	Н	PK	Lowest
2390.00	32.53	3.15	34.39	61.06	62.35	74	-11.65	V	PK	Lowest
2390.00	32.53	3.15	34.39	43.21	44.50	54	-9.50	V	AV	Lowest
2483.50	32.71	3.22	34.41	57.27	58.79	74	-15.21	Ŧ	PK	Highest
2483.50	32.71	3.22	34.41	47.71	49.23	54	-4.77	(H)	AV	Highest
2483.50	32.71	3.22	34.41	68.78	70.30	74	-3.70	V	PK	Highest
2483.50	32.71	3.22	34.41	49.21	50.73	54	-3.27	V	AV	Highest

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32I00158101 Page 26 of 37

Appendix H): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
Above 4011-	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Limit:

Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(3)	30
1.705MHz-30MHz	30	-	(0.)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32I00158101 Page 27 of 37

Radiated Spurious Emissions test Data: Radiated Emission 30MHz~1GHz

	Freq		Cable Loss					Pol/Phase	Remark
_	MHz	dB/m	dB	dBuV	dBu V/m	dBuV/m	dB		
1	52.208	14.79	1.41	5.03	21.23	40.00	-18.77	Horizontal	
2	103.080	12.94	1.57	5.70	20.21	43.50	-23.29	Horizontal	
3	193.095	11.37	2.13	5.51	19.01	43.50	-24.49	Horizontal	
4	414.722	16.55	2.86	6.03	25.44	46.00	-20.56	Horizontal	
5	706.700	20.74	3.91	5.63	30.28	46.00	-15.72	Horizontal	
6 рр	906.482	22.40	4.34	6.29	33.03	46.00	-12.97	Horizontal	

Page 28 of 37

	Freq		Cable Loss					Pol/Phase	Remark
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	35.375	13.47	0.81	5.45	19.73	40.00	-20.27	Vertical	
2	58.819	13.94	1.43	5.15	20.52	40.00	-19.48	Vertical	
3	100.581	13.15	1.57	6.37	21.09	43.50	-22.41	Vertical	
4	234.991	12.18	2.31	6.59	21.08	46.00	-24.92	Vertical	
5	379.914	15.72	2.77	5.79	24.28	46.00	-21.72	Vertical	
6 рр	618.537	19.10	3.53	6.55	29.18	46.00	-16.82	Vertical	

Transmitter Emission above 1GHz

Worse case	O TOTIL	Test chani	nel:	Lowest					
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1254.268	30.35	2.58	34.91	46.74	44.76	74	-29.24	Pass	Н
1719.783	31.26	3.02	34.50	46.65	46.43	74	-27.57	Pass	N.
3516.592	33.16	5.52	34.56	45.38	49.50	74	-24.50	Pass	Н
4804.000	34.69	5.11	34.35	42.78	48.23	74	-25.77	Pass	Н
7206.000	36.42	6.66	34.90	40.07	48.25	74	-25.75	Pass	Н
9608.000	37.88	7.73	35.08	38.18	48.71	74	-25.29	Pass	Н
1204.210	30.24	2.52	34.96	47.79	45.59	74	-28.41	Pass	V
1663.803	31.17	2.97	34.54	47.54	47.14	74	-26.86	Pass	V
3747.656	32.98	5.48	34.58	45.42	49.30	74	-24.70	Pass	V
4804.000	34.69	5.11	34.35	44.20	49.65	74	-24.35	Pass	V
7206.000	36.42	6.66	34.90	39.10	47.28	74	-26.72	Pass	V
9608.000	37.88	7.73	35.08	35.54	46.07	74	-27.93	Pass	V

			1.0				97.33		
Worse case mode:		GFSK		Test chann	nel:	Middle			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1185.958	30.19	2.50	34.98	48.16	45.87	74	-28.13	Pass) H
1724.166	31.27	3.02	34.49	46.30	46.10	74	-27.90	Pass	ЭН
3863.9000	32.90	5.46	34.59	44.72	48.49	74	-25.51	Pass	Н
4880.000	34.85	5.08	34.33	44.45	50.05	74	-23.95	Pass	Н
7320.000	36.43	6.77	34.90	38.64	46.94	74	-27.06	Pass	Н
9760.000	38.05	7.60	35.05	35.84	46.44	74	-27.56	Pass	Н
1129.964	30.05	2.43	35.04	47.85	45.29	74	-28.71	Pass	V
1521.981	30.91	2.85	34.65	46.27	45.38	74	-28.62	Pass	V
3844.279	32.91	5.46	34.59	45.35	49.13	74	-24.87	Pass	V
4880.000	34.85	5.08	34.33	45.24	50.84	74	-23.16	Pass	V
7320.000	36.43	6.77	34.90	40.46	48.76	74	-25.24	Pass	V
9760.000	38.05	7.60	35.05	38.50	49.10	74	-24.90	Pass	V

Report No.: EED32I00158101 Page 30 of 37

Worse case mode:		GFSK		Test channel:		Highest			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1346.929	30.56	2.68	34.81	46.81	45.24	74	-28.76	Pass	Н
1755.164	31.32	3.05	34.47	46.23	46.13	74	-27.87	Pass	Н
3747.656	32.98	5.48	34.58	44.46	48.34	74	-25.66	Pass	Н
4960.000	35.02	5.05	34.31	41.87	47.63	74	-26.37	Pass	Н
7440.000	36.45	6.88	34.90	39.56	47.99	74	-26.01	Pass	Н
9920.000	38.22	7.47	35.02	36.67	47.34	74	-26.66	Pass	Н
1198.095	30.22	2.51	34.97	46.91	44.67	74	-29.33	Pass	V
1668.044	31.18	2.98	34.54	46.23	45.85	74	-28.15	Pass	V
3738.129	32.99	5.48	34.58	45.28	49.17	74	-24.83	Pass	V
4960.000	35.02	5.05	34.31	41.69	47.45	74	-26.55	Pass	V
7440.000	36.45	6.88	34.90	39.54	47.97	74	-26.03	Pass	V
9920.000	38.22	7.47	35.02	37.53	48.20	74	-25.80	Pass	V

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 31 of 37

PHOTOGRAPHS OF TEST SETUP

Test mode No.: PEA001

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Report No.: EED32I00158101 Page 32 of 37

PHOTOGRAPHS OF EUT Constructional Details

Test mode No.: PEA001

View of Product-2

View of Product-3

View of Product-5

Report No. : EED32I00158101 Page 35 of 37

View of Product-7

View of Product-8

Report No.: EED32I00158101 Page 36 of 37

View of Product-9

Report No. : EED32I00158101 Page 37 of 37

View of Product-11

View of Product-12

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com