In [194]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import preprocessing
```

In [195]:

```
df = pd.read_csv('D:/data_te.csv')
```

In [196]:

df.head()

Out[196]:

	Order Id	Date Added	Ref No	Product Id	HSN	Product Name	Order Options	Price	Quantity
0	346206500223	31-01- 2022	867326	5286	11041200	6Uec10lqqt	fg int- pune: 22TE025	402.29	1
1	346206500222	31-01- 2022	867585	IvHA	19012000	sZRvN7IEWB	fg int- pune: 22TE006	111.12	1
2	346206500221	31-01- 2022	868982	r71S	19041090	sWrJ3DdrB6	fg int- pune: 22TE029	145.42	1
3	346206500221	31-01- 2022	868982	iljG	19041090	2oTslxCulz	fg int- pune: 22TE029	443.73	1
4	346206500220	31-01- 2022	871315	MMNL	21061000	azKG9uogCd	fg int- pune: 22TE021	145.42	1

5 rows × 29 columns

→

In [197]:

df.shape

Out[197]:

(149, 29)

In [198]:

148 rows with 29 columns

In [199]:

```
df.columns.values
```

Out[199]:

In [200]:

df.dtypes

Out[200]:

Order Id	int64
Date Added	object
Ref No	int64
Product Id	object
HSN	int64
Product Name	object
Order Options	object
Price	float64
Quantity	int64
Total Excl Tax	float64
Product Tax	float64
Total Incl Tax	float64
Sub Total	float64
Shipping	float64
Total Tax	float64
Order Total	float64
Order Status	object
Tracking Id	int64
Date Shipped	object
Customer GST Number	object
Supply Type	object
Tax Rate	object
CGST	int64
SGST	int64
IGST	float64
single_product_weight_in_gm	int64
order_weight_in_gm	int64
Product Type	object
Courier Partner	object
dtype: object	

In [201]:

df.describe()

Out[201]:

	Order Id	Ref No	HSN	Price	Quantity	Total Excl Tax	Proc
count	1.490000e+02	149.000000	1.490000e+02	149.000000	149.000000	149.000000	149.000
mean	3.462065e+11	938271.436242	1.701997e+07	230.135436	1.154362	251.914362	32.278
std	3.543084e+01	19521.095864	4.985719e+06	125.685249	0.475406	129.246314	23.358
min	3.462065e+11	867326.000000	4.090000e+02	73.830000	1.000000	73.830000	5.240
25%	3.462065e+11	931579.000000	1.207999e+07	124.880000	1.000000	145.420000	14.050
50%	3.462065e+11	941737.000000	1.904109e+07	167.620000	1.000000	220.000000	26.180
75%	3.462065e+11	951258.000000	2.008192e+07	294.640000	1.000000	392.070000	39.600
max	3.462065e+11	959792.000000	2.106910e+07	510.710000	4.000000	510.710000	80.010
4							•

In [202]:

Describe is used inly for numerical data beacuse mean and all other statistical parameter

In [203]:

Now as we can see there is no entery in shipping we can actually drop that column

In [204]:

```
df = df.drop('Shipping',1)
```

<ipython-input-204-22a5e9e9e3fc>:1: FutureWarning: In a future version of pa
ndas all arguments of DataFrame.drop except for the argument 'labels' will b
e keyword-only

df = df.drop('Shipping',1)

In [205]:

df.head()

Out[205]:

	Order Id	Date Added	Ref No	Product Id	HSN	Product Name	Order Options	Price	Quantity
0	346206500223	31-01- 2022	867326	5286	11041200	6Uec10lqqt	fg int- pune: 22TE025	402.29	1
1	346206500222	31-01- 2022	867585	IvHA	19012000	sZRvN7IEWB	fg int- pune: 22TE006	111.12	1
2	346206500221	31-01- 2022	868982	r71S	19041090	sWrJ3DdrB6	fg int- pune: 22TE029	145.42	1
3	346206500221	31-01- 2022	868982	iljG	19041090	2oTslxCulz	fg int- pune: 22TE029	443.73	1
4	346206500220	31-01- 2022	871315	MMNL	21061000	azKG9uogCd	fg int- pune: 22TE021	145.42	1

5 rows × 28 columns

In [206]:

```
df.columns.values
```

Out[206]:

In [207]:

from datetime import datetime

In [208]:

```
df['Date Added'] = pd.to_datetime(df['Date Added'], errors='coerce')
df['Date Added'] = pd.to_datetime(df['Date Shipped'], errors='coerce')
df['Product Name'] = df['Product Name'].astype(str)
df['Quantity'] = df['Quantity'].astype(int)
df['Price'] = df['Price'].astype(float)
```

In [209]:

df.head()

Out[209]:

	Order Id	Date Added	Ref No	Product Id	HSN	Product Name	Order Options	Price	Quantity
0	346206500223	2022- 01-31	867326	5286	11041200	6Uec10lqqt	fg int- pune: 22TE025	402.29	1
1	346206500222	2022- 01-31	867585	IvHA	19012000	sZRvN7IEWB	fg int- pune: 22TE006	111.12	1
2	346206500221	2022- 01-31	868982	r71S	19041090	sWrJ3DdrB6	fg int- pune: 22TE029	145.42	1
3	346206500221	2022- 01-31	868982	iljG	19041090	2oTslxCulz	fg int- pune: 22TE029	443.73	1
4	346206500220	2022- 01-31	871315	MMNL	21061000	azKG9uogCd	fg int- pune: 22TE021	145.42	1

In [210]:

5 rows × 28 columns

items = df.groupby('Product Id').agg({'Quantity' : 'sum', 'Order Total' : 'mean', 'order_we
items

Out[210]:

	Quantity	Order Total	order_weight_in_gm
Product Id			
0	3	451.146667	2140
0lKj	1	131.120000	125
2lBb	1	330.000000	125
2r8x	1	131.120000	125
4XB1	6	326.480000	2190
xMfA	4	491.333333	2275
xeVd	1	416.240000	650
y4hg	3	131.120000	375
z8YB	3	264.000000	375
zIS9	1	110.000000	150

63 rows × 3 columns

In [211]:

```
df['Product Name']
```

Out[211]:

0 6Uec10Iqqt 1 sZRvN71EWB 2 sWrJ3DdrB6 3 2oTsIxCuIz 4 azKG9uogCd RkaFDwCzQd 144 a3iNLtDYsp 145 146 8hyj8aaEuy 6ii6cvL07i 147 pMEv9tn9Sf 148 Name: Product Name, Length: 149, dtype: object

In [212]:

so we are having a total of 148 rows associated with product Name but product Id for rows

In [213]:

```
max = items['Quantity'].plot.bar(figsize = (15,10))
```


In [214]:

so from here we can observe that maximum amount of sales are for 71im, r71S,rHWf.

In [215]:

so now for obtaining Insights from data there should be variation in the data but few col # Cgst, Sgst ,Supply type , Customer Gst Number , Date Shipped , Order Status, order option # values across all the available rows so for the time being we can drop all these columns # manner

In [216]:

df = df.drop(columns=['Date Added', 'Order Options', 'Order Status', 'Date Shipped', 'Custo

In [217]:

df.head()

Out[217]:

	Order Id	Ref No	Product Id	HSN	Product Name	Price	Quantity	Total Excl Tax	Product Tax
0	346206500223	867326	5286	11041200	6Uec10Iqqt	402.29	1	402.29	20.11
1	346206500222	867585	IvHA	19012000	sZRvN7IEWB	111.12	1	111.12	20.00
2	346206500221	868982	r71S	19041090	sWrJ3DdrB6	145.42	1	145.42	26.18
3	346206500221	868982	iljG	19041090	2oTslxCulz	443.73	1	443.73	79.87
4	346206500220	871315	MMNL	21061000	azKG9uogCd	145.42	1	145.42	26.18
4									>

In [218]:

Now we need to perform some analysis with tax that if my Total Price gets Increased what

In [219]:

In [220]:

so from this data we are able to understand the general spread of product quantities sold

In [221]:

we are also able to infer from data that product with count =12 is having a maximum GST 1 # having maximum gst 18 wheras product with count 7 is also having a maximum GST 5. # we can aslo see what product it is by looking at the legend chart

In [222]:

Analyzing the data by order value

In [223]:

```
orders = df.groupby(['Product Id']).agg({'Order Total':'sum'}).sort_values('Order Total').r
orders.hist(bins=100, log=True)
```

Out[223]:

array([[<AxesSubplot:title={'center':'Order Total'}>]], dtype=object)

In [224]:

orders['Order Total'].describe()

Out[224]:

count 63.000000 926,695873 mean 951.536787 std 110.000000 min 25% 352.000000 50% 528.000000 75% 1156.320000 4886.640000 max

Name: Order Total, dtype: float64

In [225]:

so from this distibution we are able to understand that maximum sales are for order with # minimal sales for order with higher amount.

In [226]:

Now we need to understand co-relation between different vaiables so for that we will cons # associated with total order value of a product

In [235]:

using label encoding on the product name coloumn we can convert product name into an colu # further processing.

In [236]:

```
df['Product Name']
Out[236]:
       11
1
       56
2
       55
3
        4
       38
144
       25
145
       37
       15
146
       12
147
148
       52
Name: Product Name, Length: 149, dtype: int32
```

In [227]:

```
label_encoder = preprocessing.LabelEncoder()
```

In [228]:

```
df['Product Name']= label_encoder.fit_transform(df['Product Name'])
```

In [229]:

```
df.head()
```

Out[229]:

	Order Id	Ref No	Product Id	HSN	Product Name	Price	Quantity	Total Excl Tax	Product Tax	Tot In Ta
0	346206500223	867326	5286	11041200	11	402.29	1	402.29	20.11	422.4
1	346206500222	867585	IvHA	19012000	56	111.12	1	111.12	20.00	131.1
2	346206500221	868982	r71S	19041090	55	145.42	1	145.42	26.18	171.€
3	346206500221	868982	iljG	19041090	4	443.73	1	443.73	79.87	523.€
4	346206500220	871315	MMNL	21061000	38	145.42	1	145.42	26.18	171.6
4										•

In [230]:

```
df = df.drop(columns=['Order Id', 'Ref No', 'Product Id', 'HSN', 'Tracking Id','Tax Rate'])
```

In [231]:

```
plt.figure(figsize=(20,8))
df.corr()['Order Total'].sort_values(ascending = False).plot(kind = 'bar')
```

Out[231]:

<AxesSubplot:>

In [233]:

so from this plot we can understand that all the numericals are having atleast a positive # value. One thing we can note here is that Sub total, total tax, order_weight_in_gm are h # with the Order Total (That is our output variable with which we are concerned). Where as # affecting to the Order total that much. So one thing to note over here can be that the na # the Order Total.

In [234]:

```
plt.figure(figsize=(12,12))
sns.heatmap(df.corr(), cmap="Paired")
```

Out[234]:

<AxesSubplot:>

In [239]:

```
# so now we can observe a corelation map wher we can clearly see which variables are highly # observing brown and light yellow blocks and we can actually see what parameters are not c # by observing light green and dark green squares and light blue and dark blue for negative # Few of the high corelation are:-
# 1.) Product Tax and Igst
# 2.) Sub Total and Order Total
# Few of the low corelation are:-
# 1.) Single_product_weight_in_gm and Product Name
# 2.) Quantity and Single_product_weight_in_gm
```

In []:

Now Bi-variate Analysis will not make any sense here because we are not having any binary # in the given data. So Now this is the general Analysis and few Insights we have obtained