Ejercicio 3

Dado el siguiente diagrama de constelación correspondiente una señal modulada:

Considerando una frecuencia de portadora de 20 MHz y una tasa de 6 Mbps, se solicita:

- a) Indicar el tipo de modulación digital. Dibujar diagrama en bloques del modulador. Explicar funcionamiento.
- Proponer la tabla de verdad que relacione codificación de cada uno de los puntos del diagrama de constelación con su amplitud y/o fase, según corresponda.
- c) Determinar el ancho de banda de nulo a nulo.
- d) Dibujar el espectro de salida entre 14 y 26 MHz.
- e) Indicar la eficiencia espectral del sistema con filtro de coseno realzado con rolloff = 0,25.

a)

El tipo de modulación que corresponde a este diagrama de constelación es 8PSK.

El diagrama en bloques del modulador es el siguiente:

Los datos de entrada se convierten en una salida paralela de tres canales, el canal I, el canal Q y el canal C (o de control). Los bits en los canales I y C entran al convertidor de niveles de 2 a 4 del canal I, y los bits en los canales Q y C' (C negado) entran el convertidor de niveles de 2 a 4, del canal Q. En esencia, los convertidores de los niveles 2 a 4 son convertidores digital a analógico (DAC) de entrada paralela. Con 2 bits de entrada, son posibles cuatro voltajes de salida. El algoritmo para los DAC es bastante sencillo. El bit I o Q determina la polaridad de la señal analógica de salida (1 lógico = +V y 0 lógico = -V), mientras que el bit C o el bit C' determina la magnitud (1 lógico = 1.307V y 0 lógico = 0.541V). En consecuencia, con dos magnitudes y dos polaridades, son posibles cuatro condiciones de salida diferentes para cada canal.

Los valores proporcionados (1 lógico = 1.307V y 0 lógico = 0.541V) implican un vector de fase cuya amplitud es $\sqrt{2}V$.

b)

Tabla de verdad:

Entrada	Food de
Binaria	Fase de salida de
QIC	8-PSK
000	-112,5°
001	-157,5°
010	-67,5°
011	-22,5°
100	+112,5°
101	+157,5
110	+67,5
111	+22,5

Diagrama:

c)

Para determinar el ancho de banda de nulo a nulo se utiliza la expresión:

$$B_T = \frac{2.R}{l} = \frac{2.6Mbps}{3} = 4MHz$$

Siendo R=6Mbps la tasa de bits y obteniendo l de la expresión:

 $M=2^l$

Sabiendo que M=8 es la cantidad de niveles.

d)

Espectro de salida

e)

La eficiencia espectral del sistema, considerando un filtro de coseno realzado con coeficiente de roll-off r=0,25 se puede calcular como:

$$\eta = \frac{l}{1+r} = \frac{3}{1+0,25} = 2,4$$