

TMA4183 Opt. II Spring 2017

Exercise set 7

Norwegian University of Science and Technology Department of Mathematical Sciences

Please read sections 4.3–4.4 in [Tr].

Exercise 4.4 (ii) in [Tr]: Show that Nemytskii operator $y(\cdot) \mapsto \sin(y(\cdot))$ is Frechet differentiable from $L^{p_1}(0,T)$ into $L^{p_2}(0,T)$ whenever $1 \le p_2 < p_1 \le \infty$.

Hint: convergence in $L^{p_1}(0,T)$ implies convergence in measure; that is if $||h_n||_{L^{p_1}(0,T)} \to 0$ then for any $\varepsilon > 0$: $\mathcal{L}(\{x \in (0,T) : |h_n(x)| > \varepsilon\}) \to 0$ where \mathcal{L} is the Lebesgue measure (think of an "area") of the set.

Compact embedding of $H^1(\Omega)$ into $L^2(\Omega)$ (Rellich-Kondrachov Theorem, Theorem 7.4 in [Tr]) plays an important role in the proof of Theorem 4.15 (existence of optimal controls for semi-linear elliptic PDEs). There are many other examples of compact embeddings.

Let $-\infty < a < b < +\infty$, and consider the Banach spaces of continuous functions $C^0[a,b]$ and Hölder continuous functions $C^{0,\gamma}[a,b],\ 0 < \gamma \leq 1$. These spaces are equipped with the norms

$$||f||_{C^{0}[a,b]} = \sup_{x \in [a,b]} |f(x)|,$$

$$||f||_{C^{0,\gamma}[a,b]} = ||f||_{C^{0}[a,b]} + \sup_{x \neq y \in [a,b]} \frac{|f(x) - f(y)|}{|x - y|^{\gamma}}.$$

We will use Arzela–Ascoli characterization of relative compactness in $C^0[a,b]$ (it is not difficult to prove either) The set $S \subset C^0[a,b]$ is relatively compact (i.e. a set whose closure is compact) if and only if it is bounded and equicontinuous. That is, there is M>0 such that $\forall f\in S: \|f\|_{C^0[a,b]}\leq M$, and for every $\varepsilon>0$ there is $\delta>0$: $\forall f\in S, x,y\in [a,b]: |x-y|<\delta \Longrightarrow |f(x)-f(y)|<\varepsilon$.

- a) Show that $C^{0,\gamma}[a,b]$ is continuously embedded into $C^0[a,b]$.
- **b)** Show that every bounded subset in $C^{0,\gamma}[a,b]$ is bounded and equicontinuous in $C^0[a,b]$. Conclude that from any bounded sequence in $C^{0,\gamma}[a,b]$ one can extract a subsequence, which is Cauchy in $C^0[a,b]$.
- c) Let V_1 , V_2 be two Banach spaces, and assume that V_1 is continuously embedded into V_2 . Show that V_2' is continuously embedded into V_1' if we simply consider restrictions of functionals in V_2 onto V_1 .

Conclude that if $v_k \rightharpoonup \bar{v}$, weakly in V_1 then also $v_k \rightharpoonup \bar{v}$, weakly in V_2 .

d) Show that any sequence $f_n \in C^{0,\gamma}[a,b]$, which converges weakly to some limit $\bar{f} \in C^{0,\gamma}[a,b]$, must satisfy $||f_n - \bar{f}||_{C^0[a,b]} \to 0$.

Hint: weakly convergent sequences are bounded (uniform boundedness principle); weak limit is unique (consequence of Hanh–Banach theorem); then use the proof by contradiction and a)-c).