Lösung zu Zettel 4, Aufgabe 4

Jendrik Stelzner

18. November 2016

1 Kurze Version

Es sei $J \subseteq R_S$ ein Ideal. Durch direktes Nachrechnen ergibt sich, dass

$$I := \left\{ r \in R \,\middle|\, \frac{r}{1} \in J \right\}$$

ein Ideal in R ist. Nach Annahme ist I ein Hauptideal, also I=(a) für ein $a\in R$. Aus $a\in I$ ergibt sich, dass $a/1\in J$, und damit auch $(a/1)\subseteq J$. Für $r/s\in J$ gilt $r/1=(s/1)(r/s)\in J$ und somit $r\in I$. Deshalb gilt r=xa für ein $x\in R$, und somit

$$\frac{r}{s} = \frac{xa}{s} = \frac{x}{s} \frac{a}{1} \in \left(\frac{a}{1}\right).$$

Also gilt auch $J \subseteq (a/1)$. Insgesamt ist somit J = (a/1) ein Hauptideal.

2 Bessere Version

Lemma 1. Ist $f: R_1 \to R_2$ ein Ringhomomorphismus zwischen kommutativen Ringen R_1 und R_2 , und $I \subseteq R_2$ ein Ideal, so ist das Urbild $f^{-1}(I)$ ein Ideal in R_1 .

Beweis. Die Aussage lässt sich durch explizites Nachrechnen zeigen: Da $f(0)=0\in I$ ist $0\in f^{-1}(I)$. Für $x,y\in f^{-1}(I)$ gilt $f(x),f(y)\in I$, also auch $f(x+y)=f(x)+f(y)\in I$, und somit $x+y\in f^{-1}(I)$. Für $x\in f^{-1}(I)$ gilt $f(x)\in I$, und somit für alle $r\in R$ auch $f(rx)=f(r)f(x)\in I$, also $rx\in f^{-1}(I)$.

Die Aussage lässt sich auch geschickt zeigen: Die kanonische Projektion $\pi\colon R_2\to R_2/I$, $x\mapsto \overline{x}$ ist ein Ringhomomorphismus mit ker $\pi=I$. Die Komposition $\pi\circ f\colon R_1\to R_2/I$ ist deshalb ein Ringhomomorphismus mit

$$\ker(\pi\circ f)=(\pi\circ f)^{-1}(0)=f^{-1}(\pi^{-1}(0))=f^{-1}(I).$$

Als Kern eines Ringhomomorphismus ist auch $f^{-1}(I)$ ein Ideal.

Definition 2. Es sei R ein kommutativer Ring und $S \subseteq R$ eine multiplikative Teilmenge.

- 1. Ist $I \subseteq R$ ein Ideal, so ist $I^e := \{r/s \mid r \in I, s \in S\} \subseteq R_S$ (die extension of I).
- 2. Ist $J \subseteq R_S$ ein Ideal, so ist $J^c := \{r \in R \mid r/1 \in J\} \subseteq R$ (die contraction of J).

Proposition 3. Es sei R ein kommutativer Ring und $S \subseteq R$ eine multiplikative Teilmenge.

- 1. Ist $I \subseteq R$ ein Ideal, so ist $I^e \subseteq R_S$ ein Ideal.
- 2. Für jede Familie $(a_i)_{i\in I}$ von Elementen $a_i\in R$ gilt $(a_i\mid i\in I)^e=(a_i/1\mid i\in I)$.
- 3. Ist $J \subseteq R_S$ ein Ideal, so ist $J^c \subseteq R$ ein Ideal.
- 4. Für jedes Ideal $J \subseteq R_S$ ist $J^{ce} = J$.
- Beweis. 1. Da $0 \in I$ ist $0_{R_S} = 0/1 \in I^e$. Für $r_1/s_1, r_2/s_2 \in R_S$ gilt $r_1, r_2 \in I$, somit auch $r_1s_2 + r_2s_1 \in I$ und damit $(r_1/s_1) + (r_2/s_2) = (r_1s_2 + r_2s_1)/(s_1s_2) \in I^e$. Für $r/s \in I^e$ und beliebiges $r'/s' \in R_S$ ist $r \in I$, somit auch $rr' \in I$, und deshalb auch $(r/s)(r'/s') = (rr')/(ss') \in I^e$.
- 2. Für alle $i \in I$ ist $a_i/1 \in I^e$, und somit ist $(a_i/1 \mid i \in I) \subseteq I^e$. Für $r/s \in I^e$ ist $r \in I$ und somit $r = \sum_{i \in I} x_i a_i$ mit $x_i \in R$ und $x_i = 0$ für fast alle $i \in I$. Deshalb ist

$$\frac{r}{s} = \frac{\sum_{i \in I} x_i a_i}{s} = \sum_{i \in I} \frac{x_i a_i}{s} = \sum_{i \in I} \frac{x_i}{s} \frac{a_i}{s} \in \left(\frac{a_i}{1} \mid i \in I\right).$$

Das zeigt, dass auch $I^e \subseteq (a_i/1 \mid i \in I)$.

- 3. Bezüglich des Ringhomomorphismus $f \colon R \to R_S, r \mapsto r/1$ gilt $J^c = f^{-1}(J)$, also ist J^c nach Lemma 1 ein Ideal in R.
- 4. Ist $r/s \in J^{ce}$, so ist $r \in J^c$ und somit $r/1 \in J$. Damit ist auch $r/s = (1/s)(r/1) \in J$. Also ist $J^{ce} \subseteq J$. Ist $r/s \in J$ so ist $r/1 = (s/1)(r/s) \in J$ und somit $r \in J^c$. Damit ist $r/s \in J^{ce}$. Also ist $J \subseteq J^{ce}$.

Korollar 4. Es sei R ein kommutativer Ring und $S \subseteq R$ eine multiplikative Teilmenge.

- 1. Ist R noethersch, so ist auch R_S nothersch.
- 2. Ist jedes Ideal in R ein Hauptideal, so ist auch jedes Ideal in R_S ein Hauptideal.

Beweis. Es sei $J \subseteq R_S$ ein Ideal. Nach Proposition 3 ist $I := J^c$ ein Ideal in R mit $J = I^c$. Nach Proposition 3 benötigt J höchstens so viele Erzeuger wie I. Ist I endlich erzeugt, so ist deshalb auch J endlich erzeugt, und ist I ein Hauptideal, so ist auch J ein Hauptideal. \square