THE EQUIVARIANT UNIFORM KAN FIBRATION MODEL OF CUBICAL HOMOTOPY TYPE THEORY (E. RIEHL)

Notes by Jon Sterling

August 12, 2019

- (0.1) Joint work with Awodey, Caallo, Coquand, Sattler
- (0.2) We want a $P(\Box)$ -based model of HoTT which is a Quillen model category equivalent to spaces (Kan complexes in simplicial sets). We may further ask that this equivalence be a *nice* functor (for instance, a triangulation), and that \Box supports inductive constructions (in the sense of being an Eilenberg-Zilber category).

Team	Cubes	Equivalent to spaces?
BCH	symmetric monoidal cubes	No: consider \mathbb{I}^2 /swap (Buchholtz)
ABCFHL, A	Cartesian cubes	No: analogous argument by Sattler
CCHM	De Morgan cubes	No: consider I/rev (Buchholtz)
CCHM	Dedekind	open problem

(0.3) We will work with Cartesian cubes, but change the notion of fibration to rule out the counterexample. We need $* \longrightarrow \mathbb{I}^2$ /swap to be a trivial cofibration. The idea is to add an equivariance condition $j(x,y)\sigma=j(x,y\sigma)$ relative to symmetries σ :

We get the desired lift using the universal property of the quotient map e.