සියලු ම හිමිකම් ඇවිරිණි / (மුழுப் பதிப்புரிமையுடையது /All Rights Reserved)

(නව නිර්දේශය/பුதிய பாடத்திட்டம்/New Syllabus)

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

සංයුක්ත ගණිතය இணைந்த கணிதம் Combined Mathematics

10 S I

පැය තුනයි

மூன்று மணித்தியாலம் Three hours **අමතර කියවීම් කාලය** - **මිනිත්තු 10 යි** மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග අංකය		

උපදෙස්:

🗱 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශෳ ඓ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය, B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B **කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(10) සංයුක්ත ගණි	තය I
කොටස	පුශ්න අංකය	ලකුණු
	1	- di
	2	
	3	TANK TO SERVICE STATE OF THE PARTY OF THE PA
	4	4
A	5	
Λ	6	
	7	0.00 4.44
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	

	එකතුව
ඉලක්කමෙන්	
අකුරින්	

	සංකේත අංක
උත්තර පතු පරීක්ෂක	,
පරීක්ෂා කළේ:	1 2
අධීක්ෂණය කළේ:	

A කොටස

1.	ගණිත අභනුතන මූලධර්මය භාවිතයෙන්, සියලු $n\!\in\!\mathbb{Z}^+$ සඳහා $\sum_{r=1}^n\!\left(4r\!+\!1\right)=n\!\left(2n\!+\!3\right)$ බව සාධනය කරන්න.
2.	එක ම රූප සටහනක $y=3 x-1 $ හා $y= x +3$ හි පුස්තාරවල දළ සටහන් අඳින්න.
2.	එක ම රූප සටහනක $y=3 x-1 $ හා $y= x +3$ හි පුස්තාරවල දළ සටහන් අඳින්න. ජනයින් හෝ අන් අයුරකින් හෝ , $3 2x-1 >2 x +3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
2.	එක ම රූප සටහනක $y=3 x-1 $ හා $y= x +3$ හි පුස්තාරවල දළ සටහන් අඳින්න. ඒ නයින් හෝ අන් අයුරකින් හෝ, $3 2x-1 >2 x +3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
2.	ඒ නයින් හෝ අන් අයුරකින් හෝ , $3 2x-1 >2 x +3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෝ , $3 2x-1 >2 x +3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෝ , $3 2x-1 >2 x +3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෝ , $3 2x-1 >2 x +3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෝ , $3 2x-1 >2 x +3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෝ , $3 2x-1 >2 x +3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෝ , $3 2x-1 >2 x +3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෝ , $3 2x-1 >2 x +3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෝ , $3 2x-1 >2 x +3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෝ , $3 2x-1 >2 x +3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෝ , $3 2x-1 >2 x +3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
2.	ඒ නයින් හෝ අන් අයුරකින් හෝ , $3 2x-1 >2 x +3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
2.	ජනයින් හෝ අන් අයුරකින් හෝ, $3 2x-1 >2 x +3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
2.	ඒ නගින් හෝ අන් අයුරකින් හෝ, $3 2x-1 >2 x +3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.

AL/2020	/10/	S.IA	VEW)

විභාග	අංකය			

3.	එක ම අාගන්ඩ් සටහනක,
	(i) $\operatorname{Arg}(z+1-3i) = -\frac{\pi}{4} \otimes 3$
	(ii) $ z-2 =\sqrt{2}$
	සපුරාලන z සංකීර්ණ සංඛාා නිරූපණය කරන ලක්ෂාවල පථයන්හි දළ සටහන් අඳින්න.
	ඒ නයින්, මෙම පථයන්හි ඡේදන ලක්ෂා මගින් නිරූපණය කරනු ලබන සංකීර්ණ සංඛාහ ලියා දක්වන්න.
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	••••••
	•••••••••••••••••••••••••••••••••••••••
4.	$n\!\in\!{f Z}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න.
4.	
4.	$n\!\in\!{f Z}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න.
4.	$n \in \mathbb{Z}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
4.	$n \in \mathbb{Z}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
4.	$n \in \mathbb{Z}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
4.	$n \in \mathbb{Z}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
4.	$n \in \mathbb{Z}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
4.	$n \in \mathbb{Z}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
4.	$n \in \mathbb{Z}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
4.	$n \in \mathbb{Z}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
4.	$n \in \mathbb{Z}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
4.	$n \in \mathbb{Z}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
4.	$n \in \mathbb{Z}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
4.	$n \in \mathbb{Z}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
4.	$n \in \mathbb{Z}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
4.	$n \in \mathbb{Z}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.

5.	$\lim_{x \to \frac{\pi}{3}} \frac{\sin\left(x - \frac{\pi}{3}\right)}{\left(\sqrt{3x} - \sqrt{\pi}\right)} = \frac{2\sqrt{\pi}}{3}$ බව පෙන්වන්න.	
		١
		İ
		١
		١
6.	$y=rac{e^x}{1+e^x}$, $x=0$, $x=\ln 3$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස $x-$ අක්ෂය වටා රේඩියන 2π වලින	ත්
6.	$y=rac{e^x}{1+e^x}$, $x=0$, $x=\ln 3$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x -අක්ෂය වටා රේඩියන 2π වලින භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4}(4\ln 2-1)$ බව පෙන්වන්න.	ත්
6.	$y=rac{e^x}{1+e^x}$, $x=0$, $x=\ln 3$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x –අක්ෂය වටා රේඩියන 2π වලි $x=0$ හුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4} (4\ln 2 -1)$ බව පෙන්වන්න.	ත්
6.	$y=rac{e^x}{1+e^x}$, $x=0$, $x=\ln 3$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x $-$ අක්ෂය වටා රේඩියන 2π වලින භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4}(4\ln 2-1)$ බව පෙන්වන්න.	ත්
6.	$y=rac{e^x}{1+e^x}$, $x=0$, $x=\ln 3$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x $-$ අක්ෂය වටා රේඩියන 2π වලින භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4}(4\ln 2-1)$ බව පෙන්වන්න.	ත්
6.	$y=rac{e^x}{1+e^x}$, $x=0$, $x=\ln 3$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x -අක්ෂය වටා රේඩියන 2π වලින භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4}(4\ln 2-1)$ බව පෙන්වන්න.	ත්
6.	$y=rac{e^x}{1+e^x}$, $x=0$, $x=\ln 3$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x -අක්ෂය වටා රේඩියන 2π වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4} ig(4 \ln 2 - 1ig)$ බව පෙන්වන්න.	ත්
6.	$y=rac{e^x}{1+e^x}$, $x=0$, $x=\ln 3$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x -අක්ෂය වටා රේඩියන 2π වලින භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4}ig(4\ln 2-1ig)$ බව පෙන්වන්න.	ත්
6.	$y=rac{e^x}{1+e^x}$, $x=0$, $x=\ln 3$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x -අක්ෂය වටා රේඩියන 2π වලිද හුමණය කරනු ලැබේ. මෙලෙස ජනනය වන සන වස්තුවේ පරිමාව $rac{\pi}{4}(4\ln 2-1)$ බව පෙන්වන්න.	ත්
6.	$y=rac{e^x}{1+e^x}$, $x=0$, $x=\ln 3$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x -අක්ෂය වටා රේඩියන 2π වලින් හුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4}ig(4\ln 2-1ig)$ බව පෙන්වන්න.	න්
6.	$y=rac{e^x}{1+e^x},\;x=0,\;x=\ln 3$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x -අක්ෂය වටා රේඩියන 2π වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන සන වස්තුවේ පරිමාව $rac{\pi}{4}(4\ln 2-1)$ බව පෙන්වන්න.	ත්
6.	$y=rac{e^x}{1+e^x}$, $x=0$, $x=\ln 3$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x -අක්ෂය වටා රේඩියන 2π වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4} ig(4 \ln 2 - 1ig)$ බව පෙන්වන්න.	ත්
6.	$y=rac{e^x}{1+e^x}$, $x=0$, $x=\ln 3$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x -අක්ෂය වටා රේඩියන 2π වලින හුමණය කරනු ලැබේ. මෙලෙස ජනනය වන සන වස්තුවේ පරිමාව $rac{\pi}{4} ig(4\ln 2-1ig)$ බව පෙන්වන්න.	ත්
6.	$y=rac{e^x}{1+e^x}$, $x=0$, $x=\ln 3$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x -අක්ෂය වටා රේඩියන 2π වලින් හුමණය කරනු ලැබේ. මෙලෙස ජනනය වන සන වස්තුවේ පරිමාව $rac{\pi}{4}(4\ln 2-1)$ බව පෙන්වන්න.	න්
6.	$y=rac{e^x}{1+e^x},\; x=0,\; x=\ln 3$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x -අක්ෂය වටා රේඩියන 2π වලි? හුමණය කරනු ලැබේ. මෙලෙස ජනනය වන සහ වස්තුවේ පරිමාව $rac{\pi}{4}(4\ln 2-1)$ බව පෙන්වන්න.	ಶ
6.	$y=rac{e^x}{1+e^x},\; x=0,\; x=\ln 3$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x -අක්ෂය වටා රේඩියන 2π වලින් හුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4}(4\ln 2-1)$ බව පෙන්වන්න.	ත්

7.	$\frac{x^2}{25} + \frac{y^2}{9} = 1$ ඉලිප්සයට එය මත $P \equiv (5\cos\theta, 3\sin\theta)$ ලක්ෂායේ දී වූ අභිලම්බ රේඛාවෙහි සමීකරණය
	$5\sin\theta x - 3\cos\theta y = 16\sin\theta\cos\theta$ බව පෙන්වන්න.
	ඉහත ඉලිප්සයට එය මත $\left(rac{5}{2},rac{3\sqrt{3}}{2} ight)$ ලක්ෂායේ දී ඇඳි අභිලම්බ රේඛාවේ $y-$ අන්තඃඛණ්ඩය සොයන්න.
	······
	······
8.	$m\in \mathbb{R}$ හා l යනු $A\equiv (1,2)$ ලක්ෂාය හරහා යන අනුකුමණය m වූ සරල රේඛාව යැයි ගනිමු.
8.	l හි සමීකරණය \emph{m} ඇසුරෙන් ලියා දක්වන්න.
8.	l හි සමීකරණය \emph{m} ඇසුරෙන් ලියා දක්වන්න.
8.	
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.

9.	කේන්දුය $(-2,0)$ ලක්ෂායෙහි තිබෙන හා $(-1,\sqrt{3})$ ලක්ෂාය හරහා යන S වෘත්තයේ සමීකරණය සොයන්න
	$A \equiv (1,-1)$ ලක්ෂායේ සිට S වෘත්තයට ඇඳි ස්පර්ශකවල ස්පර්ශ ජාහයේ සමීකරණය ලියා දක්වන්න. ඒ නයින්, A සිට S ට ඇඳි ස්පර්ශකයන්හි ස්පර්ශ ලක්ෂාවල x –ඛණ්ඩාංක $5x^2 + 8x + 2 = 0$ සමීකරණය තෘප්ත
	කරන බව පෙන්වන්න.
10.	$n \in \mathbb{Z}$ සඳහා $ heta eq (2n+1) rac{\pi}{2}$ යැයි ගනිමු.
	$\cos^2 \theta + \sin^2 \theta = 1$ සර්වසාමාය භාවිතයෙන්, $\sec^2 \theta = 1 + \tan^2 \theta$ බව පෙන්වන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.

සියලු ම හිමිකම් ඇව්රිණි / மුඟුට பதிப்புரிமையுடையது /All Rights Reserved]

නව නිඊදේශය/பුதிய பாடத்திட்டம்/New Syllabus

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

සංයුක්ත ගණිතය

இணைந்த கணிதம்

Combined Mathematics

R කොටස

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

 $11.(a) \ f(x) = x^2 + px + c$ හා $g(x) = 2x^2 + qx + c$ යැයි ගනිමු; මෙහි $p, q \in \mathbb{R}$ හා c > 0 වේ. f(x) = 0 හා g(x) = 0 සඳහා α පොදු මූලයක් ඇති බව දී ඇත. $\alpha = p - q$ බව පෙන්වන්න.

p හා q ඇසුරෙන් c සොයා,

- (i) p > 0 නම් p < q < 2p බව,
- (ii) f(x) = 0 හි විවේචකය $(3p-2q)^2$ බව

අපෝහනය කරන්න.

eta හා γ යනු පිළිවෙළින් f(x)=0 හි හා g(x)=0 හි අනික් මූල යැයි ගනිමු. $eta=2\gamma$ බව පෙන්වන්න. තව ද eta හා γ මූල වන වර්ගජ සමීකරණය $2x^2+3(2p-q)x+(2p-q)^2=0$ මගින් දෙනු ලබන බව පෙන්වන්න.

(b) $h(x) = x^3 + ax^2 + bx + c$ යැයි ගතිමු; මෙහි $a,b,c \in \mathbb{R}$ වේ. $x^2 - 1$ යන්න h(x) හි සාධකයක් බව දී ඇත. b = -1 බව පෙන්වන්න.

h(x) යන්න x^2-2x මගින් බෙදූ විට ශේෂය 5x+k බව ද දී ඇත; මෙහි $k\in\mathbb{R}$ වේ. k හි අගය සොයා h(x) යන්න $(x-\lambda)^2$ $(x-\mu)$ ආකාරයෙන් ලිවිය හැකි බව පෙන්වන්න; මෙහි $\lambda,\,\mu\in\mathbb{R}$ වේ.

12.(a) පියානෝ වාදකයින් පස්දෙනකු, ගිටාර් වාදකයින් පස්දෙනකු, ගායිකාවන් තුන්දෙනකු හා ගායකයින් හත්දෙනකු අතුරෙන් **හරියටම** පියානෝ වාදකයින් දෙදෙනකු ද **අඩු තරමින්** ගිටාර් වාදකයින් හතරදෙනකු ද ඇතුළත් වන පරිදි සාමාජිකයන් එකොළොස්දෙනකුගෙන් සමන්විත සංගීත කණ්ඩායමක් තෝරා ගැනීමට අවශාව ඇත. තෝරා ගත හැකි එවැනි වෙනස් සංගීත කණ්ඩායම් ගණන සොයන්න.

මේවා අතුරෙන් හරියටම ගායිකාවන් දෙදෙනකු සිටින සංගීත කණ්ඩායම් ගණන ද සොයන්න.

(b) $r \in \mathbb{Z}^+$ සඳහා $U_r = \frac{3r-2}{r(r+1)(r+2)}$ හා $V_r = \frac{A}{r+1} - \frac{B}{r}$ යැයි ගනිමු; මෙහි $A, B \in \mathbb{R}$ වේ.

 $r\!\in\! {\mathbb Z}^+$ සඳහා $U_r=V_r-V_{r+1}$ වන පරිදි A හා B හි අගයන් සොයන්න.

ඒ නයින්, $n\in\mathbb{Z}^+$ සඳහා $\sum_{r=1}^n U_r = \frac{n^2}{(n+1)(n+2)}$ බව පෙන්වන්න.

 $\sum_{r=1}^\infty U_r$ අපරිමිත ශ්‍රේණිය අභිසාරී බව පෙන්වා එහි ඓකාංය සොයන්න.

දැන්, $r\in \mathbb{Z}^+$ සඳහා $W_r=U_{r+1}-2U_r$ යැයි ගනිමු. $\sum_{r=1}^n W_r=U_{n+1}-U_1-\sum_{r=1}^n U_r$ බව පෙන්වන්න.

 $\sum_{r=1}^{W_r}$ අපරිමිත ශේුණිය අභිසාරී බව **අපෝහනය** කර එහි ඓකාය සොයන්න.

$$\mathbf{13.}(a) \ \mathbf{A} = \left(egin{array}{ccc} a+1 & 0 \\ 1 & 1 \\ 0 & 1 \end{array}
ight), \ \mathbf{B} = \left(egin{array}{ccc} 1 & 0 \\ 0 & 1 \\ a & 2 \end{array}
ight)$$
 හා $\mathbf{C} = \left(egin{array}{ccc} a & 1 \\ a & 2 \end{array}
ight)$ හැ $\mathbf{C} = \left(egin{array}{ccc} a & 1 \\ a & 2 \end{array}
ight)$ හැයි ගනිමු; මෙහි $a \in \mathbb{R}$ වේ.

 ${f A}^{
m T}{f B}-{f I}={f C}$ බව පෙන්වන්න; මෙහි ${f I}$ යනු ගණය ${f 2}$ වන ඒකක නාහසය වේ.

 ${f C}^{-1}$ පවතින්නේ a
eq 0 ම නම් පමණක් බව ද පෙන්වන්න.

දැන්, a=1 යැයි ගනිමු. ${f C}^{-1}$ ලියා දක්වන්න.

 $\mathbf{CPC} = 2\mathbf{I} + \mathbf{C}$ වන පරිදි \mathbf{P} නාහසය සොයන්න.

- $|z-w|^2=|z|^2-2\,{
 m Re}\,zar w+|w|^2$ බව පෙන්වන්න. $|z-w|^2=|z|^2-2\,{
 m Re}\,zar w+|w|^2\,$ බව පෙන්වන්න. $|1-zar w|^2\,{
 m ex}_{\infty}\,z
 ota\, z
 ota\, z$
- (c) $1+\sqrt{3}i$ යන්න $r(\cos\theta+i\sin\theta)$ ආකාරයෙන් පුකාශ කරන්න; මෙහි r>0 හා $0<\theta<\frac{\pi}{2}$ වේ. $(1+\sqrt{3}i)^m(1-\sqrt{3}i)^n=2^8$ බව දී ඇත; මෙහි m හා n ධන නිඛිල වේ. ද මුවාවර් පුමේයය යෙදීමෙන්, m හා n හි අගයන් නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලබා ගන්න.
- **14.**(a) $x \neq 3$ සඳහා $f(x) = \frac{x(2x-3)}{(x-3)^2}$ යැයි ගනිමු.

f(x) හි වයුත්පන්නය, f'(x) යන්න $x \neq 3$ සඳහා $f'(x) = \frac{9(1-x)}{(x-3)^3}$ මගින් දෙනු ලබන බව පෙන්වන්න.

ඒ නයින්, f(x) වැඩි වන පුාත්තරය හා f(x) අඩු වන පුාත්තර සොයන්න.

f(x) හි හැරුම් ලක්ෂායේ ඛණ්ඩාංක ද සොයන්න.

$$x \neq 3$$
 සඳහා $f''(x) = \frac{18x}{(x-3)^4}$ බව දී ඇත.

y=f(x) හි පුස්තාරයේ නතිවර්තන ලක්ෂායේ ඛණ්ඩාංක සොයන්න.

ස්පර්ශෝන්මුඛ, හැරුම් ලක්ෂාය හා නතිවර්තන ලක්ෂාය දක්වමින් y=f(x) හි පුස්තාරයේ දළ සටහනක් අදින්න.

(b) යාබද රූපයෙන් දූවිලි එකතු කරනයක මීට රහිත කොටස දැක්වේ. සෙන්ටිමීටරවලින් එහි මාන රූපයේ දැක්වේ. එහි පරිමාව x^2h cm 3 යන්න $4500~{
m cm}^3$ බව දී ඇත. එහි පෘෂ්ඨ වර්ගඵලය $S~{
m cm}^2$ යන්න $S=2x^2+3xh$ මගින් දෙනු

ලැබේ. S අවම වන්නේ x=15 වන විට බව පෙන්වන්න.

More Past Papers at

tamilguru.lk

15.(a) සියලු $x \in \mathbb{R}$ සඳහා $x^3 + 13x - 16 = A(x^2 + 9)(x + 1) + B(x^2 + 9) + 2(x + 1)^2$ වන පරිදි A හා B නියන පවතින බව දී ඇත.

 $m{A}$ හා $m{B}$ හි අගයන් සොයන්න.

ඒ නයින්,
$$\frac{x^3 + 13x - 16}{(x+1)^2 (x^2 + 9)}$$
 යන්න භින්න භාගවලින් ලියා දක්වා,

$$\int \frac{x^3 + 13x - 16}{(x+1)^2 (x^2 + 9)} \, \mathrm{d}x$$
 මසායන්න.

- (b) කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $\int\limits_0^1 e^x \sin^2 \pi x \,\mathrm{d} x$ අගයන්න.
- (c) a නියනයක් වන $\int\limits_0^a f(x)\,\mathrm{d}x=\int\limits_0^a f(a-x)\,\mathrm{d}x$ සූතුය භාවිතයෙන්,

$$\int\limits_0^\pi x \cos^6 x \sin^3 x \, \mathrm{d}x = \frac{\pi}{2} \int\limits_0^\pi \cos^6 x \sin^3 x \, \mathrm{d}x$$
 බව පෙන්වන්න.

ඒ නයින්,
$$\int_{0}^{\pi} x \cos^{6} x \sin^{3} x \, dx = \frac{2\pi}{63}$$
 බව පෙන්වන්න.

16. $A \equiv (1,2)$ හා $B \equiv (3,3)$ යැයි ගනිමු.

A හා B ලක්ෂා හරහා යන l සරල රේඛාවේ සමීකරණය සොයන්න.

එක එකක් l සමග $\frac{\pi}{4}$ ක සුළු කෝණයක් සාදමින් A හරහා යන l_1 හා l_2 සරල රේඛාවල සමීකරණ සොයන්න. l මත ඕනෑම ලක්ෂායක ඛණ්ඩාංක (1+2t,2+t) ආකාරයෙන් ලිවිය හැකි බව පෙන්වන්න; මෙහි $t\in \mathbb{R}$ වේ.

 l_1 හා l_2 යන දෙකම ස්පර්ශ කරන හා කේන්දුය l මත වූ මුළුමනින්ම පළමුවන වෘත්ත පාදකයේ පිහිටන අරය $\frac{\sqrt{10}}{2}$ වන, C_1 වෘත්තයේ සමීකරණය $x^2+y^2-6x-6y+\frac{31}{2}=0$ බව ද පෙන්වන්න.

විෂ්කම්භයක අන්ත A හා B වූ C_2 වෘත්තයේ සමීකරණය ලියා දක්වන්න.

 C_1 හා C_2 වෘත්ත පුලම්බව ඡේදනය චේ දැයි නිර්ණය කරන්න.

- 17. (a) $\sin A, \cos A, \sin B$ හා $\cos B$ ඇසුරෙන් $\sin (A-B)$ ලියා දක්වන්න.
 - (i) $\sin(90^{\circ} \theta) = \cos\theta$, so
 - (ii) $2\sin 10^\circ = \cos 20^\circ \sqrt{3} \sin 20^\circ$
 - බව **අපෝහනය** කරන්න.
 - (b) සුපුරුදු අංකනයෙන්, ABC තිකෝණයක් සඳහා **සයින් නිතිය** පුකාශ කරන්න.

රූපයේ දක්වා ඇති ABC තිුකෝණයේ $A\hat{B}C=80^\circ$ හා $A\hat{C}B=20^\circ$ වේ. D ලක්ෂාය BC මත පිහිටා ඇත්තේ AB=DC වන පරිදි ය. $A\hat{D}B=lpha$ යැයි ගනිමු.

සුදුසු තුිකෝණ සඳහා **සයින් නීතිය** භාවිතයෙන්, $\sin 80^\circ \sin (\alpha - 20^\circ) = \sin 20^\circ \sin \alpha$ බව පෙන්වන්න. $\sin 80^\circ = \cos 10^\circ$ වන්නේ ඇයිදැයි පැහැදිලි කර, **ඒ නයින්**, $\tan \alpha = \frac{\sin 20^\circ}{\cos 20^\circ - 2\sin 10^\circ}$ බව පෙන්වන්න.

ඉහත (a)(ii) හි පුතිඵලය භාවිතයෙන් $lpha=30^\circ$ බව **අපෝහනය** කරන්න.

(c) $\tan^{-1}(\cos^2 x) + \tan^{-1}(\sin x) = \frac{\pi}{4}$ සමීකරණය විසඳන්න.

නව නි**ඊදේශ**ය/பුනිய பாடத்නිட்டம்/New Syllabus

நிலை செயற்ற சேயற்ற இடிக்கும் இடிக்

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

க**் යුක්ත ගණිතය** II இணைந்த கணிதம் II Combined Mathematics II

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුවත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග අංකය		

උපදෙස්:

🗱 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය, B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.
- st මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(10) සංයුකත ගණතය 11			
කොටස	ළශ්න අංකය	ලකුණු	
	1		
	2		
	3		
	4		
A	5		
11	6		
	7		
	8		
	9		
	10		
	11		
	12		
	13		
В	14		
	15		
	16		
	17		
	එකතුව		

(10) ജഹ്ദര്**ത** നതിരുടെ II

	පතරාව	
ඉලක්කමෙන්		_
අකුරින්		

	යංකේ ත අංක
උත්තර පතු පරීක්ෂක	
් පරීක්ෂා කළේ:	
2	
අධීක්ෂණය කළේ:	

A	කොටස

1				
1.	එක එකෙහි ස්කන්ධය m වූ A හ	හා B අංශු දෙකක් සුමට ති්රස් ෙ	ගබිමක් මත එකම සරල රේබාවේ එ	හෙත්
	• • •		මොහොතකට පෙර A හි හා B හි පු	වේග
	A D		තර පුතාහාගති සංගුණකය $rac{1}{2}$ වේ.	
	$m \rightarrow u \qquad \lambda u \qquad m$	ගැටුමට මොහොතකට පසු A හි පුර 	වේගය සොයා $\lambda > rac{1}{3}$ නම්, A හි චලිත δ	දිශාව
		පුතිවිරුද්ධ වන බව පෙන්වන්න.	_	
				•••
				•••
				•••
				•••
				•••
				•••
				•••
				•••
			······································	•••
				•••
				•••
2.	අංශවක් තිරස් ගෙබීමක් මත ව $Olpha$	ලක්ෂායක සිට $u=\sqrt{2ga}$ ආරම්භෘ	a)	_
	todom men a mem en al e (Omean we ii V=0 ii 4111 ii ii	~·	
	පුවේගයකින් හා තිරසට $lphaig(0$ -	$ කෝණයකින් පුක්ෂේ$	s /	
	පුවේගයකින් හා තිරසට $lphaig(0$ කරනු ලැබේ. අංශුව, O සිට a ති	$) කෝණයකින් පුක්ෂේරස් දුරකින් පිහිටි උස rac{3a}{4} වූ සිර$	$\frac{3a}{2}$	<u>1</u>
-	පුවේගයකින් හා තිරසට $lpha \left(0 - a \right)$ කරනු ලැබේ. අංශුව, $lpha$ සිට $lpha$ තිබ්තියකට යාන්තමින් ඉහළින් ය	රස් දුරකින් පිහිටි උස $\frac{3a}{4}$ වූ සිර	$u = \sqrt{2ga}$ $u = \sqrt{2ga}$	<u>ı</u>
-	කරනු ලැබේ. අංශුව, O සිට a ති	රස් දුරකින් පිහිටි උස $rac{3a}{4}$ වූ සිර ායි.	$\frac{3a}{2}$	<u>ı</u>
	කරනු ලැබේ. අංශුව, O සිට \hat{a} තිබ බිත්තියකට යාන්තමින් ඉහළින් ය	රස් දුරකින් පිහිටි උස $rac{3a}{4}$ වූ සිර යයි. නේවන්න.	$\frac{3a}{2}$	<u>.</u>
	කරනු ලැබේ. අංශුව, O සිට a තිබ බිත්තියකට යාත්තමින් ඉහළින් ය $\sec^2\alpha - 4\tan\alpha + 3 = 0$ බව පෙ	රස් දුරකින් පිහිටි උස $rac{3a}{4}$ වූ සිර යයි. නේවන්න.	$\frac{3a}{2}$	<u>ı</u>
	කරනු ලැබේ. අංශුව, O සිට a තිබ බිත්තියකට යාත්තමින් ඉහළින් ය $\sec^2\alpha - 4\tan\alpha + 3 = 0$ බව පෙ	රස් දුරකින් පිහිටි උස $rac{3a}{4}$ වූ සිර යයි. නේවන්න.	$\frac{3a}{2}$	<u>ı</u>
	කරනු ලැබේ. අංශුව, O සිට a තිබ බිත්තියකට යාත්තමින් ඉහළින් ය $\sec^2\alpha - 4\tan\alpha + 3 = 0$ බව පෙ	රස් දුරකින් පිහිටි උස $rac{3a}{4}$ වූ සිර යයි. නේවන්න.	$\frac{3a}{2}$	
	කරනු ලැබේ. අංශුව, O සිට a තිබ බිත්තියකට යාත්තමින් ඉහළින් ය $\sec^2\alpha - 4\tan\alpha + 3 = 0$ බව පෙ	රස් දුරකින් පිහිටි උස $rac{3a}{4}$ වූ සිර යයි. නේවන්න.	$\frac{3a}{2}$	<u></u>
	කරනු ලැබේ. අංශුව, O සිට a තිබ බිත්තියකට යාත්තමින් ඉහළින් ය $\sec^2\alpha - 4\tan\alpha + 3 = 0$ බව පෙ	රස් දුරකින් පිහිටි උස $rac{3a}{4}$ වූ සිර යයි. නේවන්න.	$\frac{3a}{2}$	
	කරනු ලැබේ. අංශුව, O සිට a තිබ බිත්තියකට යාත්තමින් ඉහළින් ය $\sec^2\alpha - 4\tan\alpha + 3 = 0$ බව පෙ	රස් දුරකින් පිහිටි උස $rac{3a}{4}$ වූ සිර යයි. නේවන්න.	$\frac{3a}{2}$	
	කරනු ලැබේ. අංශුව, O සිට a තිබ බිත්තියකට යාත්තමින් ඉහළින් ය $\sec^2\alpha - 4\tan\alpha + 3 = 0$ බව පෙ	රස් දුරකින් පිහිටි උස $rac{3a}{4}$ වූ සිර යයි. නේවන්න.	$\frac{3a}{2}$	
	කරනු ලැබේ. අංශුව, O සිට a තිබ බිත්තියකට යාත්තමින් ඉහළින් ය $\sec^2\alpha - 4\tan\alpha + 3 = 0$ බව පෙ	රස් දුරකින් පිහිටි උස $rac{3a}{4}$ වූ සිර යයි. නේවන්න.	$\frac{3a}{2}$	
	කරනු ලැබේ. අංශුව, O සිට a තිබ බිත්තියකට යාත්තමින් ඉහළින් ය $\sec^2\alpha - 4\tan\alpha + 3 = 0$ බව පෙ	රස් දුරකින් පිහිටි උස $rac{3a}{4}$ වූ සිර යයි. නේවන්න.	$\frac{3a}{2}$	
	කරනු ලැබේ. අංශුව, O සිට a තිබ බිත්තියකට යාත්තමින් ඉහළින් ය $\sec^2\alpha - 4\tan\alpha + 3 = 0$ බව පෙ	රස් දුරකින් පිහිටි උස $rac{3a}{4}$ වූ සිර යයි. නේවන්න.	$\frac{3a}{2}$	
	කරනු ලැබේ. අංශුව, O සිට a තිබ බිත්තියකට යාත්තමින් ඉහළින් ය $\sec^2\alpha - 4\tan\alpha + 3 = 0$ බව පෙ	රස් දුරකින් පිහිටි උස $rac{3a}{4}$ වූ සිර යයි. නේවන්න.	$\frac{3a}{2}$	
	කරනු ලැබේ. අංශුව, O සිට a තිබ බිත්තියකට යාත්තමින් ඉහළින් ය $\sec^2\alpha - 4\tan\alpha + 3 = 0$ බව පෙ	රස් දුරකින් පිහිටි උස $rac{3a}{4}$ වූ සිර යයි. නේවන්න.	$\frac{3a}{}$	
	කරනු ලැබේ. අංශුව, O සිට a තිබ බිත්තියකට යාත්තමින් ඉහළින් ය $\sec^2\alpha - 4\tan\alpha + 3 = 0$ බව පෙ	රස් දුරකින් පිහිටි උස $rac{3a}{4}$ වූ සිර යයි. නේවන්න.	$\frac{3a}{}$	

44000				 	 ,	,
41623	විගාග	610 95V3				
- 3 -	Come	ctomm				

3.	එක එකෙහි ස්කන්ධය m වූ A හා B අංශු දෙකක්, අචල සුමට කප්පියක් මතින් යන සැහැල්ලු අවිතනෳ තන්තුවක දෙකෙළවරට ඇදා, රූපයේ දැක්වෙන පරිදි A අංශුව තිරස් ගෙබිමක සිට a උසකින් ඇතිවද B අංශුව ගෙබිම ස්පර්ශ කරමින් ද සමතුලිතතාවයේ පිහිටා ඇත. දැන්, A අංශුවට සිරස්ව පහළට mu ආවේගයක් දෙනු ලැබේ. ආවේගයෙන් මොහොතකට පසු A අංශුවේ පුවේගය සොයන්න.
	A ට ගෙබීම වෙත ළඟා වීමට ගතවන කාලය ලියා දක්වන්න. $A \cap_{oldsymbol{\top}} A$
	BO
4.	ස්කන්ධය 1500 kg වූ කාරයක්, විශාලත්වය 500 N වූ නියත පුතිරෝධයකට එරෙහිව සෘජු තිරස් මාර්ගයක ධාවනය වේ. කාරයේ එන්ජිම 50 kW ජවයකින් කිුිියාකරමින් කාරය 25 m s ⁻¹ වේගයෙන් ධාවනය වන විට එහි ත්වරණය සොයන්න. මෙම මොහොතේ දී කාරයේ එන්ජිම කිුිිියා විරහිත කරනු ලැබේ. එන්ජිම කිුිිිියා විරහිත කළ මොහොතේ සිට
4.	ධාවනය වේ. කාරයේ එන්ජිම $50~\mathrm{kW}$ ජවයකින් කිුිිියාකරමින් කාරය $25~\mathrm{ms^{-1}}$ වේගයෙන් ධාවනය වන විට එහි ත්වරණය සොයන්න.
4.	ධාවනය වේ. කාරයේ එන්ජිම 50 kW ජවයකින් කිුිිියාකරමින් කාරය 25 m s ⁻¹ වේගයෙන් ධාවනය වන විට එහි ත්වරණය සොයන්න. මෙම මොහොතේ දී කාරයේ එන්ජිම කිුිියා විරහිත කරනු ලැබේ. එන්ජිම කිුිිියා විරහිත කළ මොහොතේ සිට
4.	ධාවනය වේ. කාරයේ එන්ජිම 50 kW ජවයකින් කිුිිියාකරමින් කාරය 25 m s ⁻¹ වේගයෙන් ධාවනය වන විට එහි ත්වරණය සොයන්න. මෙම මොහොතේ දී කාරයේ එන්ජිම කිුිියා විරහිත කරනු ලැබේ. එන්ජිම කිුිිියා විරහිත කළ මොහොතේ සිට
4.	ධාවනය වේ. කාරයේ එන්ජිම 50 kW ජවයකින් කිුිිියාකරමින් කාරය 25 m s ⁻¹ වේගයෙන් ධාවනය වන විට එහි ත්වරණය සොයන්න. මෙම මොහොතේ දී කාරයේ එන්ජිම කිුිියා විරහිත කරනු ලැබේ. එන්ජිම කිුිිියා විරහිත කළ මොහොතේ සිට
4.	ධාවනය වේ. කාරයේ එන්ජිම 50 kW ජවයකින් කිුිිියාකරමින් කාරය 25 m s ⁻¹ වේගයෙන් ධාවනය වන විට එහි ත්වරණය සොයන්න. මෙම මොහොතේ දී කාරයේ එන්ජිම කිුිියා විරහිත කරනු ලැබේ. එන්ජිම කිුිිියා විරහිත කළ මොහොතේ සිට
4.	ධාවනය වේ. කාරයේ එන්ජිම 50 kW ජවයකින් කිුිිියාකරමින් කාරය 25 m s ⁻¹ වේගයෙන් ධාවනය වන විට එහි ත්වරණය සොයන්න. මෙම මොහොතේ දී කාරයේ එන්ජිම කිුිියා විරහිත කරනු ලැබේ. එන්ජිම කිුිිියා විරහිත කළ මොහොතේ සිට
4.	ධාවනය වේ. කාරයේ එන්ජිම 50 kW ජවයකින් කිුිිියාකරමින් කාරය 25 m s ⁻¹ වේගයෙන් ධාවනය වන විට එහි ත්වරණය සොයන්න. මෙම මොහොතේ දී කාරයේ එන්ජිම කිුිියා විරහිත කරනු ලැබේ. එන්ජිම කිුිිියා විරහිත කළ මොහොතේ සිට
4.	ධාවනය වේ. කාරයේ එන්ජිම 50 kW ජවයකින් කිුිිියාකරමින් කාරය 25 m s ⁻¹ වේගයෙන් ධාවනය වන විට එහි ත්වරණය සොයන්න. මෙම මොහොතේ දී කාරයේ එන්ජිම කිුිියා විරහිත කරනු ලැබේ. එන්ජිම කිුිිියා විරහිත කළ මොහොතේ සිට
4.	ධාවනය වේ. කාරයේ එන්ජිම 50 kW ජවයකින් කිුිිියාකරමින් කාරය 25 m s ⁻¹ වේගයෙන් ධාවනය වන විට එහි ත්වරණය සොයන්න. මෙම මොහොතේ දී කාරයේ එන්ජිම කිුිියා විරහිත කරනු ලැබේ. එන්ජිම කිුිිියා විරහිත කළ මොහොතේ සිට
4.	ධාවනය වේ. කාරයේ එන්ජිම 50 kW ජවයකින් කිුිිියාකරමින් කාරය 25 m s ⁻¹ වේගයෙන් ධාවනය වන විට එහි ත්වරණය සොයන්න. මෙම මොහොතේ දී කාරයේ එන්ජිම කිුිියා විරහිත කරනු ලැබේ. එන්ජිම කිුිිියා විරහිත කළ මොහොතේ සිට
4.	ධාවනය වේ. කාරයේ එන්ජිම 50 kW ජවයකින් කිුිිියාකරමින් කාරය 25 m s ⁻¹ වේගයෙන් ධාවනය වන විට එහි ත්වරණය සොයන්න. මෙම මොහොතේ දී කාරයේ එන්ජිම කිුිියා විරහිත කරනු ලැබේ. එන්ජිම කිුිිියා විරහිත කළ මොහොතේ සිට
4.	ධාවනය වේ. කාරයේ එන්ජිම 50 kW ජවයකින් කිුිිියාකරමින් කාරය 25 m s ⁻¹ වේගයෙන් ධාවනය වන විට එහි ත්වරණය සොයන්න. මෙම මොහොතේ දී කාරයේ එන්ජිම කිුිියා විරහිත කරනු ලැබේ. එන්ජිම කිුිිියා විරහිත කළ මොහොතේ සිට
4.	ධාවනය වේ. කාරයේ එන්ජිම 50 kW ජවයකින් කිුිිියාකරමින් කාරය 25 m s ⁻¹ වේගයෙන් ධාවනය වන විට එහි ත්වරණය සොයන්න. මෙම මොහොතේ දී කාරයේ එන්ජිම කිුිියා විරහිත කරනු ලැබේ. එන්ජිම කිුිිියා විරහිත කළ මොහොතේ සිට
4.	ධාවනය වේ. කාරයේ එන්ජිම 50 kW ජවයකින් කිුිිියාකරමින් කාරය 25 m s ⁻¹ වේගයෙන් ධාවනය වන විට එහි ත්වරණය සොයන්න. මෙම මොහොතේ දී කාරයේ එන්ජිම කිුිියා විරහිත කරනු ලැබේ. එන්ජිම කිුිිියා විරහිත කළ මොහොතේ සිට
4.	ධාවනය වේ. කාරයේ එන්ජිම 50 kW ජවයකින් කිුිිියාකරමින් කාරය 25 m s ⁻¹ වේගයෙන් ධාවනය වන විට එහි ත්වරණය සොයන්න. මෙම මොහොතේ දී කාරයේ එන්ජිම කිුිියා විරහිත කරනු ලැබේ. එන්ජිම කිුිිියා විරහිත කළ මොහොතේ සිට

		10
5.	දිග $m{l}$ වන සැහැල්ලු අවිතන $m{s}$ තන්තුවක් මගින් තිරස් සිවිලිමක නිදහසේ	
	එල්ලා ඇති ස්කන්ධය $2m$ වූ P අංශුවක් සමතුලිතතාවයේ පවතී.	
		1
	u පුවේගයෙන් තිරස් දිශාවකින් චලනය වන ස්කන්ධය mවූ තවත් අංශුවක්,	
	P අංශුව සමග ගැටී එයට හා වේ. ගැටුමට පසුව ද තන්තුව තදව පවතින අතර	
	සංයුක්ත අංශුව සිවිලිමට යාන්තමින් ළඟා වේ. $u=\sqrt{18gl}$ බව පෙන්වන්න. $u=\sqrt{18gl}$	L^{2m}
	- $ -$)
		• • • • • • • • • • • • • • • • • • • •
		•••••
		•••••
		•••••
		•••••
		• • • • • • • • • • • • • • • • • • • •
		•••••
		• • • • • • • • • • • • • • • • • • • •
		••••••
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		•••••
		•••••
		••••••
6	a>0 හා සුපුරුදු සංකතුමයක් O සවල මලයකට අතුබුද්ධමයක් A හා B ලක්ෂා මුදක	ත පිහිටම් ඉදෙයිත
6.	lpha > 0 හා සුපුරුදු අංකනයෙන්, O අචල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂා දෙක සිසිලෙසින් $i+\alpha i$ හා $\alpha i-2i$ ලාපිම C යන $AC:CR=1:2$ හන පරිදි AR මන ව ලෙන	
6.	පිළිවෙළින් $\mathbf{i}+a\mathbf{j}$ හා $a\mathbf{i}-2\mathbf{j}$ යැයි ගනිමු. C යනු $AC:CB=1:2$ වන පරිදි AB මත වූ ලක	
6.		
6.	පිළිවෙළින් $\mathbf{i}+a\mathbf{j}$ හා $a\mathbf{i}-2\mathbf{j}$ යැයි ගනිමු. C යනු $AC:CB=1:2$ වන පරිදි AB මත වූ ලක	
6.	පිළිවෙළින් $\mathbf{i}+a\mathbf{j}$ හා $a\mathbf{i}-2\mathbf{j}$ යැයි ගනිමු. C යනු $AC:CB=1:2$ වන පරිදි AB මත වූ ලක	
6.	පිළිවෙළින් $\mathbf{i}+a\mathbf{j}$ හා $a\mathbf{i}-2\mathbf{j}$ යැයි ගනිමු. C යනු $AC:CB=1:2$ වන පරිදි AB මත වූ ලක	
6.	පිළිවෙළින් $\mathbf{i}+a\mathbf{j}$ හා $a\mathbf{i}-2\mathbf{j}$ යැයි ගනිමු. C යනු $AC:CB=1:2$ වන පරිදි AB මත වූ ලක	
6.	පිළිවෙළින් $\mathbf{i}+a\mathbf{j}$ හා $a\mathbf{i}-2\mathbf{j}$ යැයි ගනිමු. C යනු $AC:CB=1:2$ වන පරිදි AB මත වූ ලක	
6.	පිළිවෙළින් $\mathbf{i}+a\mathbf{j}$ හා $a\mathbf{i}-2\mathbf{j}$ යැයි ගනිමු. C යනු $AC:CB=1:2$ වන පරිදි AB මත වූ ලක	
6.	පිළිවෙළින් $\mathbf{i}+a\mathbf{j}$ හා $a\mathbf{i}-2\mathbf{j}$ යැයි ගනිමු. C යනු $AC:CB=1:2$ වන පරිදි AB මත වූ ලක	
6.	පිළිවෙළින් $\mathbf{i}+a\mathbf{j}$ හා $a\mathbf{i}-2\mathbf{j}$ යැයි ගනිමු. C යනු $AC:CB=1:2$ වන පරිදි AB මත වූ ලක	
6.	පිළිවෙළින් $\mathbf{i}+a\mathbf{j}$ හා $a\mathbf{i}-2\mathbf{j}$ යැයි ගනිමු. C යනු $AC:CB=1:2$ වන පරිදි AB මත වූ ලක	
6.	පිළිවෙළින් $\mathbf{i}+a\mathbf{j}$ හා $a\mathbf{i}-2\mathbf{j}$ යැයි ගනිමු. C යනු $AC:CB=1:2$ වන පරිදි AB මත වූ ලක	
6.	පිළිවෙළින් $\mathbf{i}+a\mathbf{j}$ හා $a\mathbf{i}-2\mathbf{j}$ යැයි ගනිමු. C යනු $AC:CB=1:2$ වන පරිදි AB මත වූ ලක	
6.	පිළිවෙළින් $\mathbf{i}+a\mathbf{j}$ හා $a\mathbf{i}-2\mathbf{j}$ යැයි ගනිමු. C යනු $AC:CB=1:2$ වන පරිදි AB මත වූ ලක	
6.	පිළිවෙළින් $\mathbf{i}+a\mathbf{j}$ හා $a\mathbf{i}-2\mathbf{j}$ යැයි ගනිමු. C යනු $AC:CB=1:2$ වන පරිදි AB මත වූ ලක	
6.	පිළිවෙළින් $\mathbf{i}+a\mathbf{j}$ හා $a\mathbf{i}-2\mathbf{j}$ යැයි ගනිමු. C යනු $AC:CB=1:2$ වන පරිදි AB මත වූ ලක	

7.	දිග $2a$ හා බර W වූ ACB ඒකාකාර දණ්ඩක් රූපයේ දක්වා ඇති පරිදි A කෙළවර සුමට සිරස් බිත්තියකට එරෙහි ව C හි තබා ඇති සුමට තාදැත්තක් මගින් සමතුලිතතාවේ තබා ඇත. A හි දී බිත්තිය මගින් ඇති කරන පුතිකිුයාව $\frac{W}{\sqrt{3}}$ බව දී ඇත. දණ්ඩ තිරස සමග සාදන α කෝණය $\frac{\pi}{6}$ බව පෙන්වන්න. $AC = \frac{3}{4}a$ බව ද පෙන්වන්න.
8.	බර W වූ කුඩා පබළුවක් තිරසට $rac{\pi}{4}$ කෝණයකින් ආනත අචල, රළු, සෘජු කම්බියකට
8.	බර W වූ කුඩා පබළුවක් තිරසට $\frac{\pi}{4}$ කෝණයකින් ආනත අචල, රළු, සෘජු කම්බියකට අමුණා ඇත. රූපයේ දැක්වෙන පරිදි විශාලත්වය P වූ තිරස් බලයක් මගින් පබළුව
8.	අමුණා ඇත. රූපයේ දැක්වෙන පරිදි විශාලත්වය P වූ තිරස් බලයක් මගින් පබළුව සමතුලිතව තබා ඇත. පබළුව හා කම්බිය අතර ඝර්ෂණ සංගුණකය $\frac{1}{2}$ වේ.
8.	අමුණා ඇත. රූපයේ දැක්වෙන පරිදි විශාලත්වය P වූ තිරස් බලයක් මගින් පබළුව සමතුලිතව තබා ඇත. පබළුව හා කම්බිය අතර ඝර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. පබළුව මත ඝර්ෂණ බලය F හා අභිලම්බ පුතිකිුයාව R නිර්ණය කිරීම සඳහා
8.	අමුණා ඇත. රූපයේ දැක්වෙන පරිදි විශාලත්වය P වූ තිරස් බලයක් මගින් පබළුව සමතුලිතව තබා ඇත. පබළුව හා කම්බිය අතර ඝර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. පබළුව මත ඝර්ෂණ බලය F හා අභිලම්බ පුතිකිුයාව R නිර්ණය කිරීම සඳහා පුමාණවත් සමීකරණ P හා W ඇසුරෙන් ලබා ගන්න.
8.	අමුණා ඇත. රූපයේ දැක්වෙන පරිදි විශාලත්වය P වූ තිරස් බලයක් මගින් පබළුව සමතුලිතව තබා ඇත. පබළුව හා කම්බිය අතර ඝර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. පබළුව මත ඝර්ෂණ බලය F හා අභිලම්බ පුතිකිුයාව R නිර්ණය කිරීම සඳහා
8.	අමුණා ඇත. රූපයේ දැක්වෙන පරිදි විශාලත්වය P වූ තිරස් බලයක් මගින් පබළුව සමතුලිතව තබා ඇත. පබළුව හා කම්බිය අතර ඝර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. පබළුව මත ඝර්ෂණ බලය F හා අභිලම්බ පුතිකිුයාව R නිර්ණය කිරීම සඳහා පුමාණවත් සමීකරණ P හා W ඇසුරෙන් ලබා ගන්න.
8.	අමුණා ඇත. රූපයේ දැක්වෙන පරිදි විශාලත්වය P වූ තිරස් බලයක් මගින් පබළුව සමතුලිතව තබා ඇත. පබළුව හා කම්බිය අතර ඝර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. පබළුව මත ඝර්ෂණ බලය F හා අභිලම්බ පුතිකිුයාව R නිර්ණය කිරීම සඳහා පුමාණවත් සමීකරණ P හා W ඇසුරෙන් ලබා ගන්න.
8.	අමුණා ඇත. රූපයේ දැක්වෙන පරිදි විශාලත්වය P වූ තිරස් බලයක් මගින් පබළුව සමතුලිතව තබා ඇත. පබළුව හා කම්බිය අතර ඝර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. පබළුව මත ඝර්ෂණ බලය F හා අභිලම්බ පුතිකිුයාව R නිර්ණය කිරීම සඳහා පුමාණවත් සමීකරණ P හා W ඇසුරෙන් ලබා ගන්න.
8.	අමුණා ඇත. රූපයේ දැක්වෙන පරිදි විශාලත්වය P වූ තිරස් බලයක් මගින් පබළුව සමතුලිතව තබා ඇත. පබළුව හා කම්බිය අතර ඝර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. පබළුව මත ඝර්ෂණ බලය F හා අභිලම්බ පුතිකිුයාව R නිර්ණය කිරීම සඳහා පුමාණවත් සමීකරණ P හා W ඇසුරෙන් ලබා ගන්න.
8.	අමුණා ඇත. රූපයේ දැක්වෙන පරිදි විශාලත්වය P වූ තිරස් බලයක් මගින් පබළුව සමතුලිතව තබා ඇත. පබළුව හා කම්බිය අතර ඝර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. පබළුව මත ඝර්ෂණ බලය F හා අභිලම්බ පුතිකිුයාව R නිර්ණය කිරීම සඳහා පුමාණවත් සමීකරණ P හා W ඇසුරෙන් ලබා ගන්න.
8.	අමුණා ඇත. රූපයේ දැක්වෙන පරිදි විශාලත්වය P වූ තිරස් බලයක් මගින් පබළුව සමතුලිතව තබා ඇත. පබළුව හා කම්බිය අතර ඝර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. පබළුව මත ඝර්ෂණ බලය F හා අභිලම්බ පුතිකිුයාව R නිර්ණය කිරීම සඳහා පුමාණවත් සමීකරණ P හා W ඇසුරෙන් ලබා ගන්න.
8.	අමුණා ඇත. රූපයේ දැක්වෙන පරිදි විශාලත්වය P වූ තිරස් බලයක් මගින් පබළුව සමතුලිතව තබා ඇත. පබළුව හා කම්බිය අතර ඝර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. පබළුව මත ඝර්ෂණ බලය F හා අභිලම්බ පුතිකිුයාව R නිර්ණය කිරීම සඳහා පුමාණවත් සමීකරණ P හා W ඇසුරෙන් ලබා ගන්න.
8.	අමුණා ඇත. රූපයේ දැක්වෙන පරිදි විශාලත්වය P වූ තිරස් බලයක් මගින් පබළුව සමතුලිතව තබා ඇත. පබළුව හා කම්බිය අතර ඝර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. පබළුව මත ඝර්ෂණ බලය F හා අභිලම්බ පුතිකිුයාව R නිර්ණය කිරීම සඳහා පුමාණවත් සමීකරණ P හා W ඇසුරෙන් ලබා ගන්න.
8.	අමුණා ඇත. රූපයේ දැක්වෙන පරිදි විශාලත්වය P වූ තිරස් බලයක් මගින් පබළුව සමතුලිතව තබා ඇත. පබළුව හා කම්බිය අතර ඝර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. පබළුව මත ඝර්ෂණ බලය F හා අභිලම්බ පුතිකිුයාව R නිර්ණය කිරීම සඳහා පුමාණවත් සමීකරණ P හා W ඇසුරෙන් ලබා ගන්න.
8.	අමුණා ඇත. රූපයේ දැක්වෙන පරිදි විශාලත්වය P වූ තිරස් බලයක් මගින් පබළුව සමතුලිතව තබා ඇත. පබළුව හා කම්බිය අතර ඝර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. පබළුව මත ඝර්ෂණ බලය F හා අභිලම්බ පුතිකිුයාව R නිර්ණය කිරීම සඳහා පුමාණවත් සමීකරණ P හා W ඇසුරෙන් ලබා ගන්න.
8.	අමුණා ඇත. රූපයේ දැක්වෙන පරිදි විශාලත්වය P වූ තිරස් බලයක් මගින් පබළුව සමතුලිතව තබා ඇත. පබළුව හා කම්බිය අතර ඝර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. පබළුව මත ඝර්ෂණ බලය F හා අභිලම්බ පුතිකිුයාව R නිර්ණය කිරීම සඳහා පුමාණවත් සමීකරණ P හා W ඇසුරෙන් ලබා ගන්න.
8.	අමුණා ඇත. රූපයේ දැක්වෙන පරිදි විශාලත්වය P වූ තිරස් බලයක් මගින් පබළුව සමතුලිතව තබා ඇත. පබළුව හා කම්බිය අතර ඝර්ෂණ සංගුණකය $\frac{1}{2}$ වේ. පබළුව මත ඝර්ෂණ බලය F හා අභිලම්බ පුතිකිුයාව R නිර්ණය කිරීම සඳහා පුමාණවත් සමීකරණ P හා W ඇසුරෙන් ලබා ගන්න.

9.	A හා B යනු Ω නියැදි අවකාශයක සිද්ධි දෙකක් යැයි ගනිමු. සුපුරුදු අංකනයෙන්, $P(A)=rac{3}{5}$, $P(B \mid A)=rac{1}{4}$ හා $P(A \cup B)=rac{4}{5}$ බව දී ඇත. $P(B)$ සොයන්න.
	A හා B සිද්ධි ස්වායත්ත නොවන බව පෙන්වන්න.
0.	එක එකක් 10 ට අඩු හෝ සමාන ධන නිබිලමය නිරීක්ෂණ 5 ක කුලකයක මධානාය, මධාස්ථය හා මාතය
0.	එක එකක් 10 ට අඩු හෝ සමාන ධන නිඛිලමය නිරීක්ෂණ 5 ක කුලකයක මධානාය, මධාස්ථය හා මාතය යන එක එකක් 6 ට සමාන වේ. නිරීක්ෂණවල පරාසය 9 වේ. මෙම නිරීක්ෂණ පහ සොයන්න.
0.	
0.	
0.	
0.	
0.	
0.	
0.	
0.	
0.	
0.	
0.	
0.	යන එක එකක් 6 ට සමාන වේ. නිරීක්ෂණවල පරාසය 9 වේ. මෙම නිරීක්ෂණ පහ සොයන්න.
0.	
0.	යන එක එකක් 6 ට සමාන වේ. නිරීක්ෂණවල පරාසය 9 වේ. මෙම නිරීක්ෂණ පහ සොයන්න.
0.	යන එක එකක් 6 ට සමාන වේ. නිරීක්ෂණවල පරාසය 9 වේ. මෙම නිරීක්ෂණ පහ සොයන්න.
0.	යන එක එකක් 6 ට සමාන වේ. නිරීක්ෂණවල පරාසය 9 වේ. මෙම නිරීක්ෂණ පහ සොයන්න.

යියලු ම හිමිකම් ඇවිරුණි / முழுப் பதிப்புரிமையுடையது /All Rights Reserved]

නව නිර්දේශය/பුනිய பாடத்திட்டம்/New Syllabus

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

கூ**ழுன்ற ගණිත**ය II இணைந்த கணிதம் II Combined Mathematics II

B කොටස

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

(මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.)

11.(a) රූපයෙහි පෙන්වා ඇති පරිදි $P,\,Q$ හා R දුම්රිය ස්ථාන තුනක් $PQ=140~{
m km}$ හා $QR=a~{
m km}$ වන පරිදි සරල රේඛාවක පිහිටා ඇත. කාලය t=0 දී A දුම්රියක් P හි දී

නිශ්චලතාවයෙන් ආරම්භ කර Q දෙසට f km h^{-2} නියත ත්වරණයෙන් පැය භාගයක් ගමන් කර කාලය $t=\frac{1}{2}$ h හි දී එයට තිබූ පුවේගය පැය තුනක කාලයක් පවත්වාගෙන යයි. ඉන්පසු එය f km h^{-2} නියත මන්දනයෙන් ගමන් කර Q හි දී නිශ්චලතාවට පැමිණෙයි. කාලය t=1 h හි දී තවත් B දුම්රියක් R හි දී නිශ්චලතාවයෙන් ආරම්භ කර Q දෙසට පැය T කාලයක් 2f km h^{-2} නියත ත්වරණයෙන් ද ඉන්පසු f km h^{-2} නියත මන්දනයෙන් ද ගමන් කර Q හි දී නිශ්චලතාවට පැමිණෙයි. දුම්රිය දෙක ම එක ම මෙහොතේ දී නිශ්චලතාවට පැමිණේ. එක ම රූපසටහනක A හා B හි චලිත සඳහා පුවේග-කාල පුස්තාරවල දළ සටහන් අඳින්න.

ඒ නයින් හෝ අන් අගුරකින් හෝ, f=80 බව පෙන්වා, T හි හා a හි අගයන් සොයන්න.

- (b) නැවක් පොළොවට සාපේක්ෂව u ඒකාකාර වේගයෙන් බටහිර දෙසට යාතුා කරන අතර බෝට්ටුවක් පොළොවට සාපේක්ෂව $\frac{u}{2}$ ක ඒකාකාර වේගයෙන් සරල රේඛීය පෙතක යාතුා කරයි. එක්තරා මොහොතක දී, බෝට්ටුවෙන් d දුරකින් උතුරෙන් නැගෙනහිරට $\frac{\pi}{3}$ ක කෝණයකින් නැව පිහිටයි.
 - (i) බෝට්ටුව පොළොවට සාපේක්ෂව උතුරෙන් බටහිරට $\frac{\pi}{6}$ ක කෝණයක් සාදන දිශාවට යාතුා කරයි නම් බෝට්ටුවට නැව අල්ලාගත හැකි බව පෙන්වා, එයට නැව අල්ලා ගැනීමට ගතවන කාලය $\frac{2d}{\sqrt{3}u}$ බව පෙන්වන්න.
 - (ii) බෝට්ටුව පොළොවට සාපේක්ෂව උතුරෙන් නැගෙනහිරට $\frac{\pi}{6}$ ක කෝණයක් සාදන දිශාවට යාතුා කරයි නම් නැවට සාපේක්ෂව බෝට්ටුවේ වේගය $\frac{\sqrt{7}u}{2}$ බව පෙන්වා, නැව සහ බෝට්ටුව අතර කෙටීම දුර $\frac{d}{2\sqrt{7}}$ බව පෙන්වන්න.
- 12.(a) රූපයෙහි ABC තිුකෝණය, $A\hat{C}B = \alpha$, $A\hat{B}C = \frac{\pi}{2}$ හා AB = 2a වූ BC අඩංගු මුහුණත සුමට තිරස් ගෙබිමක් මත තබන ලද ස්කන්ධය 3m වන සුමට ඒකාකාර කුඤ්ඤයක ගුරුත්ව කේන්දය තුළින් වූ සිරස් හරස්කඩ වේ. AC රේඛාව, එය අඩංගු මුහුණතෙහි උපරිම බෑවුම් රේඛාවක් වේ. D ලක්ෂාය, AD තිරස් වන පරිදි ABC තලයෙහි වූ අචල ලක්ෂායකි. A හා D හි සවිකර ඇති සුමට කුඩා කප්පි දෙකක් මතින් යන දිග 3a වූ සැහැල්ලු අවිතනා තන්තුවක දෙකෙළවරට පිළිවෙළින්

ස්කන්ධය m හා 2m වූ P හා Q අංශු දෙක ඈඳා ඇත. රූපයේ දැක්වෙන පරිදි P අංශුව AC මත අල්වා තබා AP = AD = DQ = a වන පරිදි Q අංශුව නිදහසේ එල්ලෙමින් පද්ධතිය නිශ්චලතාවයෙන් මුදා හරිනු ලැබේ. Q අංශුව ගෙබීමට ළඟා වීමට ගන්නා කාලය නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලබා ගන්න.

(b) රූපයේ දැක්වෙන පරිදි ABCDE සුමට තුනී කම්බියක් සිරස් තලයක සවී කර ඇත. ABC කොටස O කේන්දුය හා අරය a වූ අර්ධ වෘත්තයක් වන අතර CDE කොටස කේන්දුය A හා අරය 2a වූ වෘත්තයකින් හතරෙන් කොටසකි. A හා C ලක්ෂා O හරහා යන සිරස් රේඛාවේ පිහිටන අතර, AE රේඛාව තිරස් වේ. ස්කන්ධය m වූ කුඩා සුමට P පබළුවක්

A හි තබා තිරස්ව $\sqrt{rac{ga}{2}}$ පුවේගයක් දෙනු ලබන අතර එය කම්බිය දිගේ චලිතය ආරම්භ කරයි.

 \overrightarrow{OA} සමග θ $(0 \le \theta \le \pi)$ ඉකෝණයක් \overrightarrow{OP} සාදන විට

P පබළුවේ v වේගය, $v^2=rac{ga}{2}ig(5-4\cos hetaig)$ මගින් දෙනු ලබන බව පෙන්වන්න.

ඉහත පිහිටීමේ දී කම්බිය මගින් P පබළුව මත ඇති කරන පුතිකියාව සොයා, P පබළුව $\theta = \cos^{-1}\left(\frac{5}{6}\right)$ වූ ලක්ෂාය පසු කරන විට එය එහි දිශාව වෙනස් කරන බව පෙන්වන්න.

P පබළුව E හි දී කම්බියෙන් ඉවත් වීමට මොහොතකට පෙර එහි පුවේගය ලියා දක්වා එම මොහොතේ දී කම්බිය මගින් P පබළුව මත ඇති කරන පුතිකිුිිියාව සොයන්න.

13. රූපයේ දැක්වෙන පරිදි AB = 2a, BC = a, CD = 2a හා DE = a වන පරිදි සුමට තිරස් මේසයක් මත A, B, C, D හා E ලක්ෂා එම පිළිවෙළින් සරල රේඛාවක්

මත පිහිටා ඇත. ස්වභාවික දිග 2a හා පුතාහස්ථතා මාපාංකය kmg වන සැහැල්ලු පුතාහස්ථ තන්තුවක එක් කෙළවරක් A ලක්ෂායට ඈඳා ඇති අතර අනෙක් කෙළවර ස්කන්ධය m වන P අංශුවකට ඈඳා ඇත. ස්වභාවික දිග a හා පුතාහස්ථතා මාපාංකය mg වන තවත් සැහැල්ලු පුතාහස්ථ තන්තුවක එක් කෙළවරක් E ලක්ෂායට ඈඳා ඇති අතර අනෙක් කෙළවර P අංශුවට ඈඳා ඇත.

P අංශුව C හි අල්වා තබා මුදා හල විට, එය සමතුලිතතාවේ පවතී. k හි අගය සොයන්න.

දැන්, P අංශුව D ලක්ෂායට ළඟා වන තෙක් AP තන්තුව ඇද නිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ. D සිට B දක්වා P හි චලිත සමීකරණය $\ddot{x}+\frac{3g}{a}_{x}=0$ මගින් දෙනු ලබන බව පෙන්වන්න; මෙහි CP=x වේ. $\dot{x}^2=\frac{3g}{a}(c^2-x^2)$ සූතුය භාවිතයෙන් P අංශුව B ට ළඟා වන විට එහි පුවේගය $3\sqrt{ga}$ බව පෙන්වන්න; මෙහි c යනු විස්තාරය වේ.

P අංශුව B වෙත ළඟා වන විට එයට ආවේගයක් දෙනු ලබන්නේ ආවේගයෙන් මොහොතකට පසු P හි පුවේගය \overrightarrow{BA} දිශාවට \sqrt{ag} වන පරිදි ය.

B පසු කිරීමෙන් පසු ක්ෂණික නිසලතාවට පත්වන තෙක් P හි චලිත සමීකරණය $\ddot{y}+rac{g}{a}y=0$ මගින් දෙනු ලබන බව පෙන්වන්න; මෙහි DP=y වේ.

D වලින් පටන් ගත් P අංශුව දෙවන වතාවට B වෙත පැමිණීමට ගන්නා මුළු කාලය $2\sqrt{\frac{a}{g}}\left(\frac{\pi}{3\sqrt{3}}+\cos^{-1}\!\left(\frac{3}{\sqrt{10}}\right)\right)$ බව පෙන්වන්න.

More Past Papers at

tamilguru.lk

14.(a) a හා \mathbf{b} යනු **ඒකක දෛශික** දෙකක් යැයි ගනිමු.

O මූලයක් අනුබද්ධයෙන් A,B හා C ලක්ෂx තුනක පිහිටුම් දෙශික පිළිවෙළින් $12\mathbf{a}$, $18\mathbf{b}$ හා $10\mathbf{a}+3\mathbf{b}$ වේ. \mathbf{a} හා \mathbf{b} ඇසුරෙන් \overrightarrow{AC} හා \overrightarrow{CB} පූකාශ කරන්න.

A,B හා C ඒක රේඛීය බව **අපෝහන**ය කර, AC:CB සොයන්න.

 $OC=\sqrt{139}$ බව දී ඇත. $A\hat{O}B=rac{\pi}{3}$ බව පෙන්වන්න.

(b) ABCD යනු AB=2 m හා $B\hat{A}D=\frac{\pi}{3}$ වූ රොම්බසයකි. විශාලත්වය 10 N, 2 N, 6 N, P N හා Q N වූ බල පිළිවෙළින් AD, BA, BD, DC හා CB දිගේ අක්ෂර අනුපිළිවෙළින් දැක්වෙන දිශාවලට කිුිිිිිිි කරයි. සම්පුයුක්ත බලයේ විශාලත්වය 10 N ද එහි දිශාව BC ට සමාන්තර B සිට C අතට වූ දිශාව බව ද දී ඇත. P හා Q හි අගයන් සොයන්න.

සම්පුයුක්ත බලයෙහි කිුිිිිිිිිිි රේඛාව, දික් කරන ලද BA හමුවන ලක්ෂායට A සිට ඇති දූර ද සොයන්න.

දැන්, සම්පුයුක්ත බලය A හා C ලක්ෂා හරහා යන පරිදි වාමාවර්ත අතට කිුයා කරන සූර්ණය M Nm වූ යුග්මයක් ද CB හා DC දිගේ අක්ෂර අනුපිළිවෙළින් දැක්වෙන දිශාවලට කිුයා කරන එක එකෙහි විශාලත්වය F N වූ බල දෙකක් ද පද්ධතියට එකතු කරනු ලැබේ. F හා M හි අගයන් සොයන්න.

15.(a) එක එකෙහි දිග 2a වන AB, BC හා CD ඒකාකාර දඬු තුනක් B හා C අන්තවල දී සුමට ලෙස සන්ධි කර ඇත. AB, BC හා CD දඬුවල බර පිළිවෙළින් W, λW හා $2\lambda W$ වේ. A කෙළවර අවල ලක්ෂායකට සුමට ලෙස අසව් කර ඇත. රූපයේ දැක්වෙන පරිදි දඬු සිරස් තලයක සමතුලිතව තබා ඇත්තේ A හා C එකම තිරස් මට්ටමේ ද දඬු එක එකක් සිරස සමග α කෝණයක් සාදන පරිදි ද C සන්ධියට හා C ට සිරස්ව ඉහළින් වූ අවල ලක්ෂායකට ඇඳූ සැහැල්ලු අවිතනා තන්තුවක් මගින් හා D අන්තයට යෙදූ තිරස්

P බලයක් මගිනි. $\lambda = \frac{1}{3}$ බව පෙන්වන්න.

B හි දී CB මගින් AB මත ඇති කරන බලයේ ති්රස් හා සි්රස් සංරචක පිළිවෙළින් $\frac{W}{3} an lpha$ හා $\frac{W}{6}$ බව ද පෙන්වන්න.

(b) යාබද රුපයේ දැක්වෙන රාමු සැකිල්ල සාදා ඇත්තේ A,B,C හා D හි දී නිදහසේ සන්ධි කරන ලද එක එකෙහි දිග 2a වන AB, BC,CD,DA හා BD සැහැල්ලු දඬු මගිනි. B හා D හි දී පිළිවෙළින් W හා 2W වන භාර ඇත. රාමු සැකිල්ල A හි දී සුමටව අචල ලක්ෂායකට අසව කර AB තිරස්ව ඇතිව සමතුලිතතාවේ තබා ඇත්තේ C හි දී සිරස්ව ඉහළට යොදන ලද P බලයක් මගිනි. W ඇසුරෙන් P හි අගය සොයන්න.

බෝ අංකනය භාවිතයෙන්, පුත නබල සටහනක් ඇඳ **ඒ නයින්**, දඬුවල පුත නබල ආතති ද තෙරපුම් ද යන්න සඳහන් කරමින් ඒවා සොයන්න.

- **16.** (i) පතුලේ අරය r හා උස h වූ ඒකාකාර ඝන ඍජු වෘත්තාකාර කේතුවක ස්කන්ධ කේන්දුය පතුලේ කේන්දුයේ සිට $\frac{h}{4}$ දුරකින් ද
 - (ii) අරය r වන ඒකාකාර ඝන අර්ධගෝලයක ස්කන්ධ කේන්දුය, කේන්දුයේ සිට $\frac{3r}{8}$ දුරකින් ද පිහිටන බව පෙන්වන්න.

පතුලේ අරය 2a හා උස 4a වූ ඒකාකාර ඝන සෘජු වෘත්ත කේතුවක ඡින්නකයකින් ඝන අර්ධ ගෝලයක් ඉවත් කර සාදා ඇති S වංගෙඩියක් යාබද රූපයේ දැක්වේ. ඡින්නකයේ ඉහළ වෘත්තාකාර මුහුණතේ අරය හා කේන්දුය පිළිවෙළින් 2a හා O වන අතර පහළ වෘත්තාකාර මුහුණත සඳහා ඒවා පිළිවෙළින් a හා C වේ. ඡින්නකයේ උස 2a වේ. ඉවත් කළ ඝන අර්ධ ගෝලයෙහි අරය හා කේන්දුය පිළිවෙළින් a හා O වේ.

S වංගෙඩියේ ස්කන්ධ කේන්දුය O සිට $rac{41}{48}a$ දුරකින් පිහිටන බව පෙන්වන්න.

S වංගෙඩිය, එහි පහළ වෘත්තාකාර මුහුණත, තලය ස්පර්ශ කරමින් රඑ තිරස් තලයක් මත තබා ඇත. දැන්, තලය සෙමෙන් උඩු අතට ඇල කරනු ලැබේ. වංගෙඩිය හා තලය අතර සර්ෂණ සංගුණකය 0.9 වේ. $\alpha < an^{-1}(0.9)$ නම්, වංගෙඩිය සමතුලිතතාවේ පවතින බව පෙන්වන්න; මෙහි α යනු තලයේ තිරසට ආනතිය වේ.

- 17.(a) එක්තරා කර්මාන්තශාලාවක අයිතමවලින් 50% ක් A යන්තුය නිපදවන අතර ඉතිරිය B හා C යන්තු මගින් නිපදවනු ලැබේ. A, B හා C යන්තු මගින් නිපදවනු ලබන අයිතමවලින් පිළිවෙළින් 1%, 3% හා 2% ක් දෝෂ සහිත බව දනිමු. සසම්භාවීව තෝරාගත් අයිතමයක් දෝෂ සහිත වීමේ සම්භාවිතාව 0.018 බව දී ඇත. B හා C යන්තු මගින් නිපදවනු ලබන අයිතමවල පුතිශත සොයන්න.
 - සසම්භාවී ලෙස තෝරාගත් අයිතමයක් දෝෂ සහිත බව දී ඇති විට, එය A යන්තුය මගින් නිපදවන ලද එකක් වීමේ සම්භාවිතාව සොයන්න.
 - (b) එක්තරා කර්මාන්තශාලාවක සේවකයින් 100 දෙනකු තම නිවසේ සිට සේවා ස්ථානයට ගමන් කිරීමට ගනු ලබන කාලය (මිනිත්තුවලින්) පහත වගුවේ දී ඇත:

ගනු ලබන කාලය	සේවකයින් ගණන
0 – 20	10
20 – 40	30
40 - 60	40
60 – 80	10
80 – 100	10

ඉහත දී ඇති වෳාප්තියේ මධෳනෳය, සම්මත අපගමනය හා මාතය නිමානය කරන්න.

පසුව, 80-100 පන්ති පුාන්තරයේ සිටි සියලු ම සේවකයින් කර්මාන්තශාලාව ආසන්නයේ පදිංචියට ගොස් ඇත. එයින්, 80-100 පන්ති පුාන්තරයේ සංඛානතය 10 සිට 0 දක්වා ද 0-20 පන්ති පුාන්තරයේ සංඛානතය 10 සිට 20 දක්වා ද වෙනස් විය.

* * *

නව වාාප්තියේ මධානාසය, සම්මත අපගමනය හා මාතය නිමානය කරන්න.

More Past Papers at