Dimensionality Reduction

Lab PCA/MDS/ISOMAP

What are we going to do?

- Implement:
 - PCA
 - MDS
 - Isomap
- Compare implementation results to sklearn equivalents
- Extra: Linear Discriminative Analysis

Dimensionality Reduction

- We need a smaller space to project data
 - How do we project data?
 - What is the result of the projection
 - Where do we find the smaller space?
- We do not want to lose information from the original space
 - The new space must maintain properties of the original one (e.g. distances, variance e.t.c.)

Basics: SVD

- SVD is standard in matrix manipulation packages
 - e.g. in **numpy** svd is in sub-package linalg
- Reminder:
 - $-X = U\Sigma V^T$
 - U: eigenvectors of XX^T
 - V:eigenvectors of X^TX
 - Σ: eigen values of $XX^T \& X^TX$
- Keep the first k rows of U,V and eigenvalues of Σ
- We try to maintain the magnitude of the values

Back-Ground Info

- There are multiple versions of dimensionality reduction techniques that carry the same name
 - Small improvements
 - Different approaches
 - Slightly different implementations
 - Might be more convent under specific platform
- The majority of them has the same "plan"
 - Map a property of your data into Matrix Form
 - Apply SVD/eigen decomposition

PCA

- Try to maintain the variance
- Suppose matrix A with the data (mxn)
- 1. C = A M Where **M** contains the mean per column
- 2. $W = C^T C$ (W holds the variance)
- 3. E,V=eig(W) get the eigenvectors E & eigenvalues V of W
- 4. Keep the k (k<n) largest eigenvectors E_k (Principal Components)
- 5. $A' = CE_k$
- A' is the new data (mxk)
- "largest" refers to the corresponding eigenvalues
- Remember SVD?
 - We could take "V" of svd(C)
- What do eigenvalues represent here?

Cities data

- We have a dataset of cities and some metrics that identify the quality of life
 - climate, housing, health, crime, transportation, education, arts, recreation, economics
 - File cities.txt (csv format)
- Python files:
 - pcalmp.py : We have to fill in the code here
 - pca_example.py : The main file to run

Implementing PCA

Try running pca_example.py

- We want to see how the cities are "spread" over these features
 - Get the first 2 PCs and plot only those two
- What if you project the transpose of your data onto the PCs?
 - For i,j : $(X[:,i]^T PC[:,j])$

Fill in the code

- 1. C = A M Where **M** contains the mean per column
- ! 2. $W = C^T C$ (W holds the variance)
- 3. E=eig(W) get the eigenvalues of W
- 4. Keep the **k** (k<n) largest eigenvectors E_k (Principal Components)
- 5. $A' = CE_k$

What you are supposed to get from pca_example.py

MDS(classic)

- Maintain the distances / similarities / dissimilarities among all pairs of elements
- 1. Suppose matrix A with **distances**. $D = A^2$
- 2. $J = I_N (\mathbf{1}\mathbf{1}^T)/N$
 - where I_N the NxN identity matrix (one's in diagonal and zeros elsewhere) and $(\mathbf{1}\mathbf{1}^T)$ is the NxN matrix with one's at each cell
- $3. \quad B = -\frac{1}{2}JDJ$
- 4. $U\Sigma V^T = svd(B)$
- ! 5. $A' = U_k \Sigma^{1/2}_k$ (k largest eigen values and corresponding vectors from U)
 - U from svd : distances become similarities

Implementing MDS

Files:

- distanceMatrix.csv: distances among cities
- mds_example.py : main file to run
 - Has the names of the cities
 - Map to compare the new data to an actual map
- mdsImp.py: code to fill in

MDS & PCA overview

- The classic MDS algorithm works the similarity of the data
- PCA works on the similarity of the features
- PCA and classic MDS have the same results
 if Euclidean distance is used.
 - The eigen values of XX^T and XX^T are the same.
 - [Cox & Cox (2001), p 43-44]
 - Starting from the distance matrix we can perform PCA too
 - [The Elements of Statistical Learning, section 18.5.2.]

What about other approaches?(1)

- Other distances?
 - Local information

In the previous approaches, these dots are a "cloud"

But they follow a curved path

Approaches like Isomap try to work on finding the plane (path) the points define and "unrolling it"

Isomap

- 1. Find the k-nearest neighbors of each point
 - k is a parameter of the algorithm
- 2. Construct a graph where each node is connected only to the k-nearest neighbours. Graph Matrix D_a
 - The links are typically weighted with the Euclidian distance
- 3. Find graph distances between all points in the graph. Shortest paths : $m{D}_{m{g}}$
- 4. Apply MDS on D_g
 - (or PCA)

Implementing Isomap

• Files:

- isomap.py : to fill in the code
- compare.py : Main file to run
 - A big part of it is commented leave it for now
 - Try the S curve and the swissroll
 - What if you change the number of neighbors?
 - Benefits of isomap vs. PCA/MDS?

Existing implementations

- sklearn contains many dimensionality techniques
- Remove multiline comment and run it again
 - Compares the results of our implementations with the ones ok sklearn
- What do you notice?
 - There is quite a difference for MDS
 - Why do you think sklean PCA is different?
 - Is it a coincidence it matches our MDS?

https://github.com/scikit-learn/scikit-learn/blob/a95203b/sklearn/decomposition/pca.py

MDS variations

- MDS has a large history
 - [Past, Present, and Future of Multidimensional Scaling, Patrick J. F. Groenen]
- Sklearn utilizes another method for MDS
 - Minimizing Stress with Majorization (an optimization technique)
 - Scaling by MAjorizing a COomplicated Function (SMACOF)
 - The function is the one of stress
 - https://en.wikipedia.org/wiki/Stress majorization

Non linear dimensionality reduction

- Isomap belongs in the non linear techniques
 - It has a few weaknesses
 - Sparse data don't work so well
- There are better techniques to consider (a bit more complicated to implement)
 - E.g.: Locally linear embedding (LLE)
 - Same starting point as Isomap (nearest neighbors)
 - Pseudo code : <u>https://www.cs.nyu.edu/~roweis/lle/algorithm.html</u>
 - It has many variations (e.g. Hessian LLE)

Other approaches (2)

- The previous techniques focus on properties of the feature space
 - They don't take into account any labels/classes the data may have
 - What if we tried to take into account properties of the data per class?
- Linear Discriminant Analysis (LDA):
 - maximize the distance of the class centers
 - minimize the within-class variance

LDA (1)

- Here we look at the general case of K classes (C) (where k>2)
- Within class variance:

$$-S_{w} = \sum_{j=1}^{K} \sum_{x \in C_{j}} (x - m_{j})(x - m_{j})^{T}$$

• $m_j = 1/N_j \sum_{x \in C_j} x$ (the mean per class)

- covariance(x)=
$$\frac{\sum_{x \in C_j} (x-m_j)(x-m_j)^T}{N_j}$$

•
$$S_w = \sum_{j=1}^K \text{covariance}(x_{C_j}) * N_j$$

LDA(2)

Distance between classes (between class scatter)

$$-S_B = \sum_{i=1}^K N_i (m_i - m)(m_i - m)^T$$

Where m is the TOTAL mean

We try to maximize the distance from the total mean

LDA(3)

Find projection matrix W

$$-W_{LDA} = argmax_{w} \frac{|W^{T}S_{b}W|}{|W^{T}S_{w}W|}$$

- Maximizes numerator and minimizes denominator
- The ratio is known as Fischer's criterion
- The solution is given by the **K-1** largest eigenvectors of: $S_w^{-1}S_B$

LDA Algorithm

Given data X and labels Y

- 1. Compute:
 - a) S_w
 - b) S_B
 - $c) \quad T = S_w^{-1} S_B$
- 2. *E,V=eig(T)*
- 3. Keep the **K-1** (K = number of Classes) largest eigenvectors $W = E_k$
- 4. Project the data on $W: X_{LDA}$
 - a) Project the mean vectors of each class (centers of the class)
- The projection of the mean vectors is useful for simple classification
 - We can classify new data based on the minimum distance from the new projected centers
- We don't choose the number of eigenvectors

Example Data

- File:wine_data.csv
 - Chemical analysis of wines
 - 178 different wines
 - 13 features describing the chemical analysis
 - 3 classes of wines
- We want to compare LDA with PCA
 - They both deal with variance in general
 - Plot new space under both approaches

Implementing LDA

• Files:

- LDAvsPCA.py : main file to run
 - At the beginning plots a few combinations of the features
- LDAImp.py: fill in the code

Given data X and labels Y

- 1. Compute:
 - a) S_w
 - b) S_B
 - $c) \quad T = S_w^{-1} S_B$
- 2. *E,V=eig(T)*
- 3. Keep the **K-1** (K = number of Classes) largest eigenvectors $W = E_k$
- 4. Project the data on $W:X_{LDA}$
 - a) Project the mean vectors of each class (centers of the class)

Is LDA better?

- PCA does not care about the class attribute
 - But LDA produces a fixed number of features
 - Might not be enough
- What happens if the mean of the classes is the same as the total mean?

THANK YOU

