Lecture #5 Sort (2)

Algorithm
JBNU Spring 2021
Jinhong Jung

In Previous Lecture

Sorting problem

To efficiently rearrange elements in an array in an order

Basic sorting algorithms

- Take $\Theta(n^2)$ time for a worst case
- Selection Sort
 - Move the maximum to the end of unsorted area
 - Find the maximum directly by linearly searching

Bubble Sort

- Move the maximum to the end of unsorted area
 - Move the maximum by bubbling it up

Insertion Sort

- Pick the front of unsorted area
- Insert it into its right position in sorted area

In This Lecture

Discussion on basic sorting algorithms

- Selection Sort
- Bubble Sort
- Insertion Sort

Advanced sorting algorithms

- Merge Sort
- Quick Sort

Outline

Discussion on basic sorting algorithms &

Advanced sorting algorithms

Basic Sorting Algorithms

Take $\Theta(n^2)$ time for a worst case

Selection, bubble, and insertion sort

Q. Which of them should we use?

- The answer depends on situations, but what situations?
- To answer this, we first need to analyze characteristics of each sorting algorithm
- To analyze these, we need to set criteria of ideal sorting algorithms
 - Especially for comparison-based algorithms

Properties of Sorting Algorithm

- P1. Stability
- P2. In-place algorithm
- P3. # of comparisons (for worst cases)
- P4. # of swaps (for worst cases)
- P5. Adaptivity

An algorithm is ideal if

- It is stable and adaptive
- It operates in place (i.e., takes $\Theta(1)$ extra space)
- Has $O(n \log n)$ and O(n) comparisons and swaps, resp.

P1: Stability (1)

Stable sorting algorithm

 Duplicate elements are sorted in the same order that they appear input (i.e., equal keys are not reordered)

- Useful for sorting elements by a primary and secondary key
 - Suppose you sort a hand of cards in the order of \clubsuit , \blacklozenge , \heartsuit , and \spadesuit , and within each suit, the cards are sorted by rank (number)
 - Step 1) sort the cards by rank using any sort
 - Step 2) do it again using a stable sort by suite

P1: Stability (2)

Stability of basic sorting algorithms

- (Basic) selection sort is not stable
 - Note that the leftmost maximum is linearly searched

- Q. Can we make the selection sort stable? (stable selection sort)
 - Yes, select the rightmost maximum & insert it into the end for each step
 - Push the remaining elements forward one cell to the left
- Bubble sort is stable
 - Duplicate items are never swapped
- Insertion sort is stable
 - A latter item never moves in the front of a former item when they have the same key

P2: In-place Algorithm

In-place sorting algorithms

- Sort the data within the input array (of size n) using no extra array (or data structure)
 - Algorithm which is not in-place is called not-in-place/out-of-place
- Require $\Theta(n)$ space to store input data, but usually use $\Theta(1)$ extra space for sorting
- Important when available memory is very limited

Selection, bubble, and insertion sorting algorithms are all in-place

ullet They do not use extra data structure whose size is proportional to n

P3&4: # of comparisons & swaps

Main components of comparison-based sorting algorithms

- Comparison & swap
- A single swap is heavier than a single comparison

Time complexity of each algorithm is analyzed based on # of comparisons & swaps

- Worst case: Input is sorted in reverse order
 - \circ Selection sort: $\Theta(n^2)$ comparisons and $\Theta(n)$ swaps
 - \circ Bubble sort: $\Theta(n^2)$ comparisons and $\Theta(n^2)$ swaps
 - \circ Insertion sort: $\Theta(n^2)$ comparisons and $\Theta(n^2)$ swaps

Q. What about the best case?

Best Case Analysis (1)

Selection sort

Swap is working only when two keys are different

```
def selection_sort(A, n):
    for end \leftarrow n downto 2:
        # selection stage
        k \leftarrow find the maximum's index among A[1···end]
        swap A[k] and A[end] (if they are different)
```

- Best case: an input array is already sorted
 - \circ i-th maximum searching always takes $\mathit{O}(i)$ time regardless of the input
 - \circ If it's sorted, then 'k' will be 'end'; thus, no swap is performed
- $\Theta(n^2)$ comparisons and O(1) swap for the best case

Best Case Analysis (2)

Bubble sort

Best case: an input array is already sorted

```
def bubble_sort(A, n):
    for end \leftarrow n downto 2:
        # bubble-up stage
    for i \leftarrow 1 to end - 1:
        if A[i] > A[i+1]:
        swap A[i] and A[i+1]
```

- In the bubble-up stage,
 - The comparison is always performed regardless of the input
 - o If the input is sorted, no swap is performed
- Thus, $\Theta(n^2)$ comparisons and O(1) swaps

Best Case Analysis (3)

Optimized bubble sort

Best case: an input array is already sorted

- If the input is sorted, then it'll be terminated at the first outer-loop
- Thus, $\Theta(n)$ comparisons and O(1) swaps for the best case
 - The optimized stage is used for one-pass sorting checker
 - i.e., able to check whether the input is sorted within $\mathcal{O}(n)$ time

Best Case Analysis (4)

Insertion sort

Best case: an input array is already sorted

```
def insertion_sort(A, n):
    for i ← 2 to n:
        # insertion stage
        insert A[i] into its
        right position in A[1···i]
```

```
# i-th insertion stage
loc ← i - 1
item ← A[i]
while loc >= 1 and item < A[loc]:
    A[loc+1] ← A[loc]
    loc ← loc - 1
A[loc+1] ← item</pre>
```

- In the insertion stage, if it's already sorted
 - The inner while loop is not executive except for two comparisons
 - One backward movement is equivalent to one swap
 - For i-th loop, 2 comparisons and 0 swap are performed
- Thus, $\Theta(n)$ comparisons and O(1) swaps for the best case

P5: Adaptivity (1)

Adaptive sorting algorithm

- Takes advantages of existing order in its input
 - The more presorted the input is, the faster it should be sorted
 - \circ i.e., able to speed up to O(n) if the input is **nearly** sorted
- Inversion of an array A
 - If A[i] > A[j] where i < j, then the pair is called an inversion
 - I(A): number of all inversions in A
 - Inversions: (3, 1), (3, 2), (5, 1), (5, 2), (5, 4).
 - -I(A) = 5

P5: Adaptivity (2)

Insertion sort

```
def insertion_sort(A, n):
    for i \leftarrow 2 to n:
        # insert A[i] into its right position in A[1···i]
        loc \leftarrow i - 1
        item \leftarrow A[i]
        while loc >= 1 and A[loc] > item:
              A[loc+1] \leftarrow A[loc]
              loc \leftarrow loc - 1
        A[loc+1] \leftarrow item
```

- Note that the while loop repeats only when the inversions on A[i] occurs
 - Roughly speaking, T(n) = I(A) + n 1
 - If the input array A is nearly sorted, then I(A) is very small (i.e., almost constant) $\Rightarrow T(n) = C + n 1 = \Theta(n)$
- Thus, insertions sort is adaptive!

P5: Adaptivity (3)

Optimized bubble sort

```
def optimized_bubble_sort(A, n):
    for end ← n downto 2:
        # optimized bubble-up stage
        swapped ← false
        for i ← 1 to end - 1:
            if A[i] > A[i+1]:
                swap A[i] and A[i+1]
                 swapped ← true
        if not swapped:
            return # since it's sorted
```

- Optimized bubble sort is adaptive!
 - \circ If the input is nearly sorted (e.g., one or two pairs are inversed), its complexity is roughly reduced to O(n)
 - \circ Less adaptive than insertion sort due to the comparisons (> I(A))

P5: Adaptivity (4)

Bubble sort and selection sort

- Regardless of the input patterns, they always performs $O(n^2)$ comparisons
- Thus, they are not adaptive

Summary

Name	Stable	In-place : Extra memory	# of comparisons		# of swaps		A alaua A irua	
			Best	Worst	Best	Worst	Adaptive	
Selection	No	Yes: 0(1)	$O(n^2)$	$O(n^2)$	0(1)	O(n)	No	
Bubble	Yes	Yes: 0(1)	$O(n^2)$	$O(n^2)$	0(1)	$O(n^2)$	No	
Opt. bubble	Yes	Yes: 0(1)	O(n)	$O(n^2)$	0(1)	$O(n^2)$	Yes	
Insertion	Yes	Yes: <i>0</i> (1)	O(n)	$O(n^2)$	0(1)	$O(n^2)$	Yes	

Remarks

- Selection sort can be modified to be stable
- No ideal answer in the above basic algorithms
 - The choice depends on applications
 - How about advanced sorting algorithms?

Practical Choice is Insertion

Among basic sorting algorithms ($O(n^2)$)

Measure average time for randomly generated data

 Why? Insertion sort performs only necessary operations for sorting elements

Outline

Discussion on basic sorting algorithms

Advanced sorting algorithms

- Merge Sort حِيل
- Quick Sort

Merge Sort (1)

Idea (based on divide & conquer)

- [Divide] split the input in half
- [Conquer] recursively sort the former and latter
- [Combine] merge the results so that merged entries are in the sorted order

Merge Sort (2)

Pseudocode for merge sort

```
def merge_sort(A, l, r):
    if l < r:
        # [Divide] split the input in half
        pick middle point m in [l, r], i.e., m ← [(l + r)/2]

    # [Conquer] recursively sort the former and latter
    merge_sort(A, l, m)
    merge_sort(A, m + 1, r)

# [Combine] merge the results correctly
    merge(A, l, m, r)</pre>
```

■ Then, mege_sort(A, 1, n) performs sorting the input array A in the ascending order

Merge Sort (3)

Merge Sort (4) – How To Merge

Search for the minimum in each of them from the left to the right; move it to the temporary array

Merge Sort (5)

Pseudocode for merge sort

```
def merge(A, 1, m, r):
          i \leftarrow 1, j \leftarrow m+1, t \leftarrow 1
          set array temp[size] where size = r - l + 1
          while i <= m and j <= r:</pre>
               if A[i] <= A[j]:
Sequential
                    temp[t++] \leftarrow A[i++]
 merge
               else:
                                                                             m+1
                                                                     m
 (move to
  temp)
                     temp[t++] \leftarrow A[j++]
                                                                         size
          while i <= m:
               temp[t++] \leftarrow A[i++]
 Move
                                                      Temp
remaining-
          while j <= r:
 items
               temp[t++] \leftarrow A[j++]
          copy temp to A[1\cdots r]
```

of comparisons for a worst case: size - 1

Analysis Of Merge Sort (1)

Correctness of merge sort

```
def merge_sort(A, 1, r):
    if 1 < r:
        m ← [(1 + r)/2]
        merge_sort(A, 1, m)
        merge_sort(A, m + 1, r)
        merge(A, 1, m, r)</pre>
```

Poof by induction

- Base case: when the size is 1, it is sorted by itself
- Inductive step
 - Assume merge sort correctly sorts any array of size k/2
 - Let A_1 and A_2 be $A[1 \cdots k/2]$ and $A[k/2 + 1 \cdots k]$, respectively
 - Then, they are correctly sorted by the assumption since their sizes are k/2
 - And merge() will correctly merge them in a sorted order
 - Thus, merge sort correctly sorts an array of size k
 - By induction, merge sort correctly sorts an array of any size n

Analysis Of Merge Sort (2)

Time complexity of merge sort

```
def merge_sort(A, l, r):
    if l < r:
        m ← [(l + r)/2]
        merge_sort(A, l, m)
        merge_sort(A, m + 1, r)
        merge(A, l, m, r)</pre>
```

Let T(n) be the time complexity of mege_sort(A, 1, n)
merge() takes O(n) time when its input size is n

$$T(n) = \begin{cases} C, & l \ge r \\ 2T(\frac{n}{2}) + Cn, & l < r \end{cases}$$

■ By master theorem, $T(n) = \Theta(n \log n)$

$$\frac{f(n)}{h(n)} = \frac{Cn}{n} = C = \Theta(1) \Rightarrow \Theta(h(n)\log n) = \Theta(n\log n)$$

Analysis Of Merge Sort (3)

Space complexity of merge sort

- $S(n) = \Theta(n)$
 - \circ To store the input data whose size is n
 - \circ Need a temporary array whose size is n
- For extra memory, it requires $\Theta(n)$ space
- This indicates merge sort is out-of-place algorithm!

Stability of merge sort

- Merge sort is stable
 - Since merge() searches for the minimum from the left to the right for each step
 - If there are duplicate items, the leftmost item are first moved to the temp array

Analysis Of Merge Sort (4)

of comparisons for a worst case

- Each merge performs size-1 comparisons at most
- Sum of # of comparisons incurred by every node except leaves in the solution tree of merge sort = $O(n \log n)$

of swaps for a worst case

- There is no swap operation, but if a single movement to temp = a single swap
 - Each merge perform size movements at most
- Thus, it is $O(n \log n)$

Adaptivity of merge sort

 Merge sort is not adaptive since the comparisons and movements are always performed regardless of input

Summary

Name	Stable	In-place : Extra memory	# of comparisons		# of swaps		- Adap
			Best	Worst	Best	Worst	tive
Selection	No	Yes: 0(1)	$O(n^2)$	$O(n^2)$	0(1)	0(n)	No
Bubble	Yes	Yes: 0(1)	$O(n^2)$	$O(n^2)$	0(1)	$O(n^2)$	No
Opt. bubble	Yes	Yes: 0(1)	O(n)	$O(n^2)$	0(1)	$O(n^2)$	Yes
Insertion	Yes	Yes: <i>0</i> (1)	O(n)	$O(n^2)$	0(1)	$O(n^2)$	Yes
Merge	Yes	No: <i>0</i> (<i>n</i>)	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	No

Remarks

- Selection sort can be modified to be stable
- A swap operation is replaced with
 - A backward movement in insertion sort
 - A movement to temp array in merge sort
- No ideal answer in the above algorithms

Outline

Discussion on basic sorting algorithms

Advanced sorting algorithms

- Merge Sort
- Quick Sort Part I 🖘

Quick Sort (1)

www.visualdictionaryonline.com fulcrum complete pivot

Idea (based on divide & conquer)

- [Divide] select a pivot & partition the input array based on the pivot satisfying the following condition
 - Elements before pivot ≤ pivot ≤ elements after pivot
- [Conquer] recursively sort left & right partitions, resp.

Quick Sort (2)

Pseudocode of quick sort

```
def quick_sort(A, l, r):
    if l < r:
        # [Divide] pick a pivot and partition A by the pivot
        p ← partition(A, l, r) # p is the pivot's index

# [Conquer] recursively sort the left and right
    quick_sort(A, l, p - 1)
    quick_sort(A, p + 1, r)</pre>
```

Main issue is how to design the partition function

- Numerous ways for selecting a pivot(s)
 - In the textbook, the last element for a given partition is selected as a pivot
- Need to be efficiently partitioned in place

What You Need To Know

Desired properties of a sorting algorithm

Name	Stable	In-place : Extra memory	# of comparisons		# of swaps		- Adap
			Best	Worst	Best	Worst	tive
Selection	No	Yes: 0(1)	$O(n^2)$	$O(n^2)$	0(1)	0(n)	No
Bubble	Yes	Yes: 0(1)	$O(n^2)$	$O(n^2)$	0(1)	$O(n^2)$	No
Opt. bubble	Yes	Yes: 0(1)	O(n)	$O(n^2)$	0(1)	$O(n^2)$	Yes
Insertion	Yes	Yes: <i>0</i> (1)	O(n)	$O(n^2)$	0(1)	$O(n^2)$	Yes
Merge	Yes	No: <i>0</i> (<i>n</i>)	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	No

Merge sort

Divide the array in half & sort them recursively

Quick sort

Divide it based on a pivot & sort them recursively

In Next Lecture

Advanced sorting algorithms

- Quick Sort Part II
 - How to partition an array based on the selected pivot
 - Analyze the properties of quick sort
- Heap Sort

[Advice]

If you have some spare time, think about the average time complexity of each algorithm that we've learned

Thank You