Supplementary Materials

Machine learning assisted design of high entropy alloys with desired property

Cheng Wen^{a, b, c}, Yan Zhang^{a, b}, Changxin Wang^{a, b}, Dezhen Xue^{d,*}, Yang Bai ^{a, b}, Stoichko Antonov^{a, c}, Lanhong Dai^f,

Turab Lookman^g and Yanjing Su^{a, b,*}

^aBeijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China

^bCorrosion and Protection Center, University of Science and Technology Beijing, Beijing, 100083, China

^cSchool of mechanical and power engineering, Guangdong Ocean University, Zhanjiang, 524000, China

^dState Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China

^eState Key Laboratory of Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083,

China

f Laboratory for Nonlinear Mechanics of Continuous Media (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China

gTheoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

*Corresponding authors email: yjsu@ustb.edu.cn, xuedezhen@xjtu.edu.cn

The experimental HEAs and associated hardness of alloys obtained from Iterative Loop I are shown in Table S1.

Table.S1. Composition and hardness values for newly-synthesized alloys from Iterative Loop I.

-	Iteration	Alloy]	Elemental c	ontent, at%			Hardness,
Input	No.	No.	Al	Co	Cr	Cu	Fe	Ni	HV
		C1-1	34	17	34	0	5	10	699±37
	1	C1-2	47	14	15	5	13	6	728±42
		C1-3	38	11	6	9	31	5	604±31
		C2-1	36	10	31	6	9	8	790±41
	2	C2-2	43	17	15	0	14	11	806±31
		C2-3	47	12	12	5	13	11	811±31
		C3-1	43	19	19	0	11	8	855±26
	3	C3-2	39	10	31	5	8	7	802±18
		C3-3	47	13	13	5	12	10	799±42
		C4-1	43	20	22	0	8	7	857±43
composition	4	C4-2	47	14	19	5	10	5	855±15
		C4-3	43	20	19	0	9	9	816±37
		C5-1	46	14	23	5	7	5	811±34
	5	C5-2	44	14	22	5	9	6	790±48
		C5-3	43	19	24	0	8	6	855±30
		C6-1	43	18	24	0	10	5	856±53
	6	C6-2	47	14	20	5	9	5	859±26
		C6-3	43	24	22	0	5	6	875±58
		C7-1*	43	25	22	0	5	5	865±39
	7	C7-2 ◊	43	24	23	0	5	5	868±45
		C7-3	43	23	21	0	8	5	863±34

Notes: "*" and "\$\dagger\$" represent the same alloys found by Iteration Loop I and Iteration Loop II, respectively.

The feature pool used in Iteration Loop II is illustrated by Table S2, which contains 20 features, 11 of which describe the formation of different phases (*i.e.*, phase parameters) and the other 9 are related to the mechanical properties (*i.e.*, mechanical parameters) obtained from literature reports and our understanding of the physics.

Table.S2. The feature pool consisting of twenty features from insights of the materials science.

Phase parameter	Formula	Description	Mechanical parameter	Formula	Description
δ r ^[1]	$\sqrt{\sum_{i=1}^{n} C_i * (1 - \frac{\Gamma_i}{r})^2}$	difference of atomic radii	$oldsymbol{\eta}^{[2]}$	$\sum_{i=1}^{n} \frac{C_{i} * \frac{2(G_{i} - G)}{G_{i} + G}}{1 + 0.5 * C_{i} * \frac{2(G_{i} - G)}{G_{i} + G} }$	modulus mismatch in strengthening model
$\Delta \chi^{[1]}$	$\sqrt{\sum_{i=1}^{n} C_i * (\chi - \chi_i)^2}$	difference of electronegativity	D.r ^[3]	$\sum_{i=1}^n \sum_{j=1, i\neq j}^n C_i C_j * \mathbf{r}_i - \mathbf{r}_j $	local size mismatch
VEC ^[1]	$\sum_{i=1}^{n} C_{i} * VEC_{i}$	valence electron concentration (containing d orbital electrons)	$\mathbf{A}^{[4]}$	$G * \delta r * (1 + \mu)/(1 - \mu)$	energy term in strengthening model
$\mathbf{\Delta H}^{[1]}$	$\sum_{i=1,j>i}^n \ 4C_i C_j * \Delta H_{ij}^{mix}$	mixing enthalpy	F [5]	$\frac{2G}{1-\mu}$	Peierls-Nabarro factor
$\Delta S^{[1]}$	$-R\sum_{i=1}^{n} C_{i} * \ln (C_{i})$	configuration entropy	w ^[6]	$(\sum_{i=1}^n C_i * w_i)^6$	six square of work function
$\mathbf{\Omega}^{[1]}$	T * ΔS/ ΔH	Ω parameter	G	$\sum_{i=1}^n \ C_i * G_i$	shear modulus
$oldsymbol{\Lambda}^{[1]}$	$\Delta S/(\delta r*\delta r)$	Λ parameter	δG	$\sqrt{\sum_{i=1}^{n} C_{i} * (1 - \frac{G_{i}}{G})^{2}}$	difference of shear modulus
γ ^[1]	$(1 - \sqrt{\frac{(r + r_{min})^2 - r^2}{(r + r_{min})^2}})$ $/(1 - \sqrt{\frac{(r + r_{max})^2 - r^2}{(r + r_{max})^2}})$	γ parameter	D.G	$\sum_{i=1}^n \sum_{j=1, i\neq j}^n C_i C_j * G_i - G_j $	local modulus mismatch
D. χ	$\sum_{i=1}^n \sum_{j=1, i\neq j}^n C_i C_j * \chi_i - \chi_j $	mismatch of local electronegativity	μ	$\frac{1}{2}E*\delta r$	lattice distortion energy
e/a	$\sum_{i=1}^{n} C_i * (e/a)_i$	number of itinerant electrons			
Ec	$\sum_{i=1}^{n} C_i * (Ec)_i$	cohesive energy			

Notes: C_i , r_i , χ_i , VEC_i , e/a_i , Ec_i , G_i and w_i represent mole ratio, atomic radius, Pauling electronegativity, valence electron concentration (containing d orbital electrons), electron concentration, cohesive energy, shear modulus and work function of i element, respectively. T_i , T_i , T

and μ represent the mean value of melting point, atomic radius, Pauling electronegativity, shear modulus, Young's modulus and Poisson ratio of all the elements in HEAs. ΔH^{mix}_{ij} represents the mixing enthalpy of i and j elements. r_{min} and r_{max} are the maximum atomic radius and the minimum atomic radius of all elements, respectively.

The experimental HEAs and associated hardness of alloys obtained from Iteration Loop II are shown in Table S3.

Table.S3. Composition and hardness values for the newly-synthesized alloys predicted from Iterative Loop II

	Iteration	Alloy	Hardness,						
Input	No.	No.	Al	Co	Cr	Cu	Fe	Ni	HV
		K1-1	47	12	20	5	11	5	843±52
	1	K1-2	43	15	17	5	14	6	794±35
		K1-3	42	10	30	5	7	6	783±27
		K2-1	47	11	22	5	10	5	797±17
	2	K2-2	47	13	20	5	10	5	805±24
		K2-3	29	22	34	0	5	10	699±10
		K3-1	47	7	16	9	16	5	749±26
	3	K3-2	43	14	21	5	12	5	828±42
		K3-3	47	18	15	5	10	5	849±37
composition+ knowledge		K4-1	47	20	18	5	5	5	883±22
knowledge	4	K4-2	43	18	20	0	12	7	864±23
		K4-3	47	17	16	5	10	5	841±37
		K5-1 ◊	43	24	23	0	5	5	868±45
	5	K5-2*	43	25	22	0	5	5	865±39
		K5-3	46	21	18	5	5	5	840±67
		K6-1	43	22	22	0	8	5	882±22
	6	K6-2	43	22	23	0	7	5	883±47
		K6-3	43	20	21	0	9	7	828±48
	7	K7-1	43	22	25	0	5	5	848±27
		K7-2	47	19	19	5	5	5	878±25
		K7-3	43	29	18	0	5	5	782±49

Notes: "*" and "\$\dagger\$" represent the same alloys found by Iteration Loop I and Iteration Loop II.

Table S4 is the original dataset of Al-Co-Cr-Cu-Fe-Ni HEAs system with the measured Vickers hardness which are collected from 30 different publications from 2004 to 2016. There is a discrepancy of the hardness values in terms of the same alloy from different literatures. For simplicity, we averaged the hardness values reported in different references if the relative error is less than 10% and we abandoned those with relative error larger than 10% (Table S5).

Table.S4. The original training dataset used for machine learning

AII. NI.		El	emental c	ontent, at	Handness HV	Dof		
Alloy No.	Al	Co	Cr	Cu	Fe	Ni	Hardness, HV	Ref.
1	18.2	9.1	18.2	18.2	18.2	18.2	473	7
2	18.2	18.2	9.1	18.2	18.2	18.2	367	7
3	18.2	18.2	18.2	18.2	9.1	18.2	418	7
4	18.2	18.2	18.2	18.2	18.2	9.1	423	7
5	5.3	21.1	21.1	0.0	26.3	26.3	168	8
6	12.5	12.5	12.5	0.0	12.5	50.0	225	9
7	0.0	0.0	25.0	25.0	25.0	25.0	143	9
8	0.0	5.0	23.8	23.8	23.8	23.8	146	9
9	0.0	10.0	22.5	22.5	22.5	22.5	150	9
10	0.0	15.0	21.3	21.3	21.3	21.3	158	9
11	0.0	33.3	16.7	16.7	16.7	16.7	175	9
12	0.0	25.0	0.0	25.0	25.0	25.0	154	9
13	0.0	23.8	5.0	23.8	23.8	23.8	153	9
14	0.0	22.5	10.0	22.5	22.5	22.5	158	9
15	0.0	21.3	15.0	21.3	21.3	21.3	161	9
16	0.0	16.7	33.3	16.7	16.7	16.7	172	9
17	0.0	25.0	25.0	25.0	0.0	25.0	183	9
18	0.0	23.8	23.8	23.8	5.0	23.8	182	9
19	0.0	22.5	22.5	22.5	10.0	22.5	172	9
20	0.0	21.3	21.3	21.3	15.0	21.3	171	9
21	0.0	16.7	16.7	16.7	33.3	16.7	157	9
22	0.0	22.5	22.5	22.5	22.5	10.0	170	9

22	0.0	21.2	21.2	21.2	21.2	15.0	167	9
23	0.0	21.3	21.3	21.3	21.3	15.0	167	
24	0.0	16.7	16.7	16.7	16.7	33.3	158	9
25	0.0	26.7	26.7	0.0	26.7	20.0	140	9
26	0.0	20.0	20.0	0.0	20.0	40.0	125	9
27	14.3	14.3	14.3	0.0	14.3	42.9	242	9
28	15.4	15.4	15.4	0.0	15.4	38.5	265	9
29	16.7	16.7	16.7	0.0	16.7	33.3	335	9
30	0.0	28.3	28.3	0.0	28.3	15.0	170	9
31	5.0	31.7	31.7	0.0	31.7	0.0	475	9
32	10.0	30.0	30.0	0.0	30.0	0.0	620	9
33	18.2	18.2	18.2	0.0	18.2	27.3	503	9
34	21.3	21.3	21.3	0.0	21.3	15.0	555	9
35	22.5	22.5	22.5	0.0	22.5	10.0	548	9
36	23.8	23.8	23.8	0.0	23.8	5.0	615	9
37	25.0	25.0	25.0	0.0	25.0	0.0	720	9
38	23.8	5.0	23.8	0.0	23.8	23.8	550	9
39	22.5	10.0	22.5	0.0	22.5	22.5	539	9
40	16.7	33.3	16.7	0.0	16.7	16.7	532	9
41	23.8	23.8	5.0	0.0	23.8	23.8	438	9
42	22.5	22.5	10.0	0.0	22.5	22.5	476	9
43	21.3	21.3	15.0	0.0	21.3	21.3	510	9
44	16.7	16.7	33.3	0.0	16.7	16.7	617	9
45	25.0	25.0	25.0	0.0	0.0	25.0	712	9
46	23.8	23.8	23.8	0.0	5.0	23.8	665	9
47	22.5	22.5	22.5	0.0	10.0	22.5	587	9
48	21.3	21.3	21.3	0.0	15.0	21.3	558	9
49	16.7	16.7	16.7	0.0	33.3	16.7	510	9
50	15.0	28.3	28.3	0.0	28.3	0.0	655	9
51	20.0	26.7	26.7	0.0	26.7	0.0	695	9
52	40.0	20.0	20.0	0.0	20.0	0.0	775	9
53	5.7	18.9	18.9	18.9	18.9	18.9	185	10
54	13.8	17.2	17.2	17.2	17.2	17.2	273	10

55	20.6	15.9	15.9	15.9	15.9	15.9	475	10
56	26.5	14.7	14.7	14.7	14.7	14.7	558	10
57	23.1	15.4	15.4	15.4	15.4	15.4	510	10
58	31.5	13.7	13.7	13.7	13.7	13.7	603	10
59	33.3	13.3	13.3	13.3	13.3	13.3	625	10
60	35.9	12.8	12.8	12.8	12.8	12.8	655	10
61	37.5	12.5	12.5	12.5	12.5	12.5	735	10
62	2.4	24.4	24.4	0.0	24.4	24.4	118	11
63	9.1	22.7	22.7	0.0	22.7	22.7	127	11
64	14.9	21.3	21.3	0.0	21.3	21.3	338	11
65	16.7	20.8	20.8	0.0	20.8	20.8	382	11
66	18.4	20.4	20.4	0.0	20.4	20.4	527	11
67	23.1	19.2	19.2	0.0	19.2	19.2	479	11
68	31.0	17.2	17.2	0.0	17.2	17.2	482	11
69	14.3	42.9	0.0	14.3	14.3	14.3	166	12
70	20.0	20.0	0.0	20.0	20.0	20.0	536	12
71	23.8	4.8	0.0	23.8	23.8	23.8	531	12
72	22.2	11.1	0.0	22.2	22.2	22.2	545	12
73	18.2	27.3	0.0	18.2	18.2	18.2	366	12
74	16.7	33.3	0.0	16.7	16.7	16.7	249	12
75	5.9	23.5	23.5	0.0	23.5	23.5	110	13
76	8.6	22.9	22.9	0.0	22.9	22.9	131	13
77	15.8	21.1	21.1	0.0	21.1	21.1	388	13
78	17.9	20.5	20.5	0.0	20.5	20.5	538	13
79	23.8	19.0	19.0	0.0	19.0	19.0	487	13
80	3.8	0.0	19.2	19.2	19.2	38.5	162	14
81	5.7	0.0	18.9	18.9	18.9	37.7	170	14
82	7.4	0.0	18.5	18.5	18.5	37.0	200	14
83	9.1	0.0	18.2	18.2	18.2	36.4	238	14
84	10.7	0.0	17.9	17.9	17.9	35.7	278	14
85	12.3	0.0	17.5	17.5	17.5	35.1	290	14
86	13.8	0.0	17.2	17.2	17.2	34.5	315	14

87	15.3	0.0	16.9	16.9	16.9	33.9	339	14
88	16.7	0.0	16.7	16.7	16.7	33.3	392	14
89	19.4	0.0	16.1	16.1	16.1	32.3	521	14
90	23.1	0.0	15.4	15.4	15.4	30.8	546	14
91	24.2	0.0	15.2	15.2	15.2	30.3	550	14
92	26.5	0.0	14.7	14.7	14.7	29.4	544	14
93	28.6	0.0	14.3	14.3	14.3	28.6	567	14
94	30.6	0.0	13.9	13.9	13.9	27.8	576	14
95	33.3	0.0	13.3	13.3	13.3	26.7	593	14
96	20.0	0.0	20.0	20.0	20.0	20.0	479	15
97	21.7	0.0	21.7	21.7	21.7	13.0	494	15
98	20.8	0.0	20.8	20.8	20.8	16.7	486	15
99	19.2	0.0	19.2	19.2	19.2	23.1	408	15
100	18.5	0.0	18.5	18.5	18.5	25.9	370	15
101	16.7	16.7	16.7	8.3	16.7	25.0	358	16
102	20.0	20.0	20.0	10.0	10.0	20.0	586	16
103	16.7	16.7	25.0	8.3	16.7	16.7	601	16
104	15.4	30.8	15.4	7.7	15.4	15.4	295	16
105	22.2	22.2	0.0	11.1	22.2	22.2	584	16
106	15.4	15.4	15.4	7.7	15.4	30.8	310	16
107	16.7	25.0	16.7	8.3	16.7	16.7	451	16
108	20.0	20.0	10.0	10.0	20.0	20.0	546	16
109	15.4	15.4	30.8	7.7	15.4	15.4	607	16
110	16.7	16.7	16.7	8.3	25.0	16.7	537	16
111	15.4	15.4	15.4	7.7	30.8	15.4	514	16
112	20.0	20.0	20.0	10.0	20.0	10.0	604	16
113	22.2	22.2	22.2	11.1	22.2	0.0	639	16
114	22.2	0.0	22.2	11.1	22.2	22.2	534	16
115	30.8	15.4	15.4	7.7	15.4	15.4	609	16
116	20.0	10.0	20.0	10.0	20.0	20.0	551	16
117	11.1	0.0	22.2	22.2	22.2	22.2	382	17
118	27.3	0.0	18.2	18.2	18.2	18.2	573	17

119	33.3	0.0	16.7	16.7	16.7	16.7	651	17
120	7.7	30.8	0.0	0.0	30.8	30.8	135	18
121	14.3	28.6	0.0	0.0	28.6	28.6	205	18
122	20.0	26.7	0.0	0.0	26.7	26.7	380	18
123	8.0	17.0	17.0	8.0	17.0	33.0	280	19
124	23.0	15.0	23.0	8.0	15.0	16.0	580	19
125	16.7	0.0	55.6	0.0	0.0	27.8	371	20
126	11.8	0.0	29.4	0.0	44.1	14.7	450	20
127	6.3	0.0	31.3	0.0	46.9	15.6	304	20
128	38.5	15.4	15.4	0.0	15.4	15.4	695	21
129	42.9	14.3	14.3	0.0	14.3	14.3	740	21
130	9.1	18.2	18.2	18.2	18.2	18.2	207(206/208)	7+10
131	28.6	14.3	14.3	14.3	14.3	14.3	576(582/570)	10+22
132	20.0	20.0	20.0	20.0	0.0	20.0	415(419/410)	23+24
133	25.0	16.7	16.7	8.3	16.7	16.7	602(586/619)	16+25
134	0.0	20.0	20.0	20.0	20.0	20.0	155(157/153)	9+26
135	0.0	25.0	25.0	0.0	25.0	25.0	139(140/138)	9+27
136	25.0	25.0	0.0	0.0	25.0	25.0	430(410/450)	9+18
137	20.0	20.0	20.0	0.0	20.0	20.0	516(518/510/520)	9+21+28
138	43.0	6.0	33.0	6.0	6.0	6.0	764	*
139	42.9	14.3	7.1	7.1	7.1	21.4	591	*
140	42.9	21.4	7.1	7.1	7.1	14.3	701	*
141	40.0	13.3	6.7	13.3	20.0	6.7	768	*
142	46.2	15.4	7.7	7.7	15.4	7.7	702	*
143	42.9	14.3	14.3	7.1	7.1	14.3	720	*
144	42.9	7.1	14.3	7.1	14.3	14.3	694	*
145	7.0	0.0	23.3	0.0	23.3	46.5	149	*
146	11.1	0.0	22.2	0.0	22.2	44.4	229	*
147	13.0	0.0	28.0	22.0	6.0	31.0	459	*
148	12.0	0.0	31.0	21.0	5.0	31.0	469	*
149	12.0	0.0	31.0	20.0	5.0	32.0	483	*
150	10.0	0.0	35.0	25.0	5.0	25.0	472	*

151	10.0	0.0	35.0	26.0	5.0	24.0	454	*
152	10.0	0.0	35.0	24.0	5.0	26.0	441	*
153	11.0	0.0	29.0	29.0	5.0	26.0	495	*
154	11.0	0.0	28.0	29.0	7.0	25.0	477	*
155	11.0	0.0	28.0	27.0	6.0	28.0	469	*

Notes: "*" represents the experimental data of HEAs from our laboratory.

Table.S5. The deleted data during data cleaning

Alloy		El	emental c	ontent, at	t%			D. C
No.	Al	Co	Cr	Cu	Fe	Ni	Hardness, HV	Ref.
156	0.0	22.2	22.2	11.1	22.2	22.2	134/174	16+29
157	7.0	23.3	23.3	0.0	23.3	23.3	125/149	11+30
158	22.2	22.2	22.2	11.1	0.0	22.2	496/564	16+31
159	25.0	0.0	25.0	0.0	25.0	25.0	472/558	9+32
160	27.3	18.2	18.2	0.0	18.2	18.2	482/575	11+21
161	10.0	20.0	20.0	10.0	20.0	20.0	204/290	16+25
162	33.3	16.7	16.7	0.0	16.7	16.7	510/610	11+21
163	18.2	18.2	18.2	9.1	18.2	18.2	458/563/665	7+16+25
164	11.1	22.2	22.2	0.0	22.2	22.2	160/198/247	11+13+33
1.65	167	16.7	16.7	167	167		364/405/410/416	7+10+22+23
165	16.7	16.7	16.7	16.7	16.7	16.7	/420/463/470/515	24+34+35+36

References

- [1] S. Guo, Phase selection rules for cast high entropy alloys: an overview, Mater. Sci. Technol. 31(2015)1223-1230.
- [2] I. Toda-Caraballo, P.E.J. Rivera-Díaz-del-Castillo, Modelling solid solution hardening in high entropy alloys, Acta Mater. 85(2015)14-23.
- [3] Z. Wang, Q. Fang, J. Li, Y. Liu, Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys, J. Mater. Sci. Technol. 34 (2018) 349–354.
- [4] C. Varvenne, A. Luque, W.A. Curtin, Theory of strengthening in fcc high entropy alloys, Acta Mater. 118(2016)164-176.
- [5] G.X. Hu, X. Cai, Y.H. Rong, Material Science Foundation, third edition., Shanghai Jiao Tong University Press, Shanghai, 2010, pp. 177-178.
- [6] W.Y. Wang, S.L. Shang, Y. Wang, F.B. Han, K.A. Darling, Y.D. Wu, X. Xie, O.N. Senkov, J.S. Li, X.D. Hui, K.A. Dahmen, P.K. Liaw, L.J. Kecskes, Z.K. Liu Atomic and electronic basis for the serrations of refractory high-entropy alloys, npj Comput. Mater. 3(2017)2-10.
- [7] C.C. Tung, J.W. Yeh, T.T. Shun, S.K. Chen, Y.S. Huang, H.C. Chen, On the elemental effect of AlCoCrCuFeNi high-entropy alloy system, Mater. Lett. 61(2007)1-5.
- [8] Z. Wang, M.C. Gao, S.G. Ma, H.J. Yang, Z.H. Wang, M. Ziomek-Moroz, J.W. Qiao, Effect of cold rolling on the microstructure and mechanical properties of Al_{0.25}CoCrFe_{1.25}Ni_{1.25} high-entropy alloy, Mater. Sci. Eng., A, 645(2015)163-169.
- [9] Z.G. Zhu, K.H. Ma, Q. Wang, C.H. Shek, Compositional dependence of phase formation and mechanical properties in three CoCrFeNi-(Mn/Al/Cu) high entropy alloys, Intermetallics, 79(2016)1-11.
- [10] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(2004) 299-303.
- [11] W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics, 26(2012) 44-51.
- [12] Y.X. Zhuang, W.J. Liu, P.F. Xing, F. Wang, Effect of Co element on microstructure and mechanical properties of FeCoxNiCuAl alloys, Acta Metall. Sin. 25(2012)124-130.

- [13] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys, J. Alloys Compd. 488(2009)57-64.
- [14] S. Guo, C. Ng, C.T. Liu, Anomalous solidification microstructures in Co-free AlxCrCuFeNi₂ high-entropy alloys, J. Alloys Compd. 557(2013)77-81.
- [15] J.H. Pi, P. Ye, H. Zhang, L. Zhang, Microstructure and properties of AlCrFeCuNix (0.6≤x≤1.4) high-entropy alloys, Mater. Sci. Eng., A, 534(2012)228-233.
- [16] G.Y. Ke, Simple Solid solution in Al_xCo_yCr_zCu_{0.5}Fe_vNi_w High-Entropy Alloys, National Tsing Hua University, (2005)22-98.
- [17] A.M. Li, X.Y. Zhang, Effect of Al on Microstructure and Hardness of AlxCrCuFeNi High-entropy Alloy System, Material & Heat Treatment, 37(2008)26:28.
- [18] T.T. Zuo, R.B. Li, X.J. Ren, Y. Zhang, Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy, J. Magn. Magn. Mater. 371(2014)60-68.
- [19] A. Manzoni, H. Daoud, S. Mondal, S.van Smaalen, R. Völkl, U. Glatzel, N. Wanderka, Investigation of phases in Al₂₃Co₁₅Cr₂₃Cu₈Fe₁₅Ni₁₆ and Al₈Co₁₇Cr₁₇Cu₈Fe₁₇Ni₃₃ high entropy alloys and comparison with equilibrium phases predicted by thermo-calc, J. Alloys Compd. 552(2013)430-436.
- [20] Y.Y. Du, Y.P. Lu, T.J. Li, T.M. Wang, G.L. Zhang, Effect of aluminium content of AlxCrFe_{1.5}Ni_{0.5} multiprincipal alloys on microstructure and alloy hardness, Mater. Res. Innov. 15(2011)107-110.
- [21] C. Li, J.C. Li, M. Zhao, Q. Jiang, Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys, J. Alloys Compd. 504S(2010)S515-S518.
- [22] J.M. Wu, S.J. Lin, J.W. Yeh, S.K.Chen, Y.S. Huang, H.C. Chen, Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content, Wear, 261(2006)513-519.
- [23] U.S. Hsu, U.D. Hung, J.W. Yeh, S.K.Chen, Y.S. Huang. Alloying behavior of iron, gold and silver in AlCoCrCuNi based equimolar high-entropy alloys, Mater. Sci. Eng., A, 460(2007)403-408.
- [24] J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Anomalous decrease in X-ray diffraction intensities of

- Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements, Mater. Chem. Phys. 103(2007) 41-46.
- [25] S. Praveen, B.S. Murty, R.S. Kottada, Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys, Mater. Sci. Eng., A, 534(2012)83-89.
- [26] Y. Liu, M. Chen, Y.X. Li, X. Chen, Microstructure and Mechanical Performance of AlxCoCrCuFeNi High-Entropy Alloys, Rare Metal Mat. Eng. 38(2009)1602-1607.
- [27] T.T. Shun, L.Y. Chang, M.H. Shiu, Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys, Mater. Sci. Eng., A, 556(2012)170-174.
- [28] S.G. Ma, Y. Zhang, Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy, Mater. Sci. Eng., A, 532(2012)480-486.
- [29] C.M. Lin, H.L. Tsai, Equilibrium phase of high-entropy FeCoNiCrCu_{0.5}, alloy at elevated temperature, J. Alloys Compd. 489(2010)30-35.
- [30] T.T. Shun, C.H. Hung, C.F. Lee, The effects of secondary elemental Mo or Ti addition in Al_{0.3}CoCrFeNi high-entropy alloy on age hardening at 700°C, J. Alloys Compd. 495(2010)55-58.
- [31] J.W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, S.K. Chen, T.T. Shun, C.H. Tsau, S.Y. Chou, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A, 35(2004)2533-2536.
- [32] Y. Dong, Y.P. Lu, J.R. Kong, J.J. Zhang, T.J. Li, Microstructure and mechanical properties of multi-component AlCrFeNiMox, high-entropy alloys, J. Alloys Compd. 573(2013)96-101.
- [33] C.M. Lin, H.L. Tsai, Evolution of microstructure, hardness, and corrosion properties of high-entropy Al_{0.5}CoCrFeNi alloy, Intermetallics, 19(2011)288-294.
- [34] K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy, J. Alloys Compd. 502(2010):295-299.
- [35] A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, O.N. Senkov, Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions, Mater. Sci. Eng., A, 533(2012)107-118.

[36] Y.X. Zhuang, W.J. Liu, Z.Y. Chen, H.D. Xue, J.C. He, Effect of elemental interaction on microstructure and mechanical properties of FeCoNiCuAl alloys, Mater. Sci. Eng., A, 556(2012)395-399.