

BACKGROUND

- As of 2021, ~10.5% of adults aged 20–79 globally have diabetes (IDF).
- Nearly 50% of diabetic individuals are undiagnosed, living without preventive measures.
- By 2045, it's projected 1 in 8 adults will have diabetes.
- Diabetes is associated with severe complications: blindness, stroke, heart attack, and kidney failure (WHO, Nov 2024).
- U.S. data (2021–2023) shows a **15.8% diabetes prevalence**, including **4.5% undiagnosed cases** (NHANES).

RESEARCH QUESTIONS

1.Risk Factors:

What features most strongly correlate with diabetes onset?

2.BMI & Diabetes:

Does BMI > 30 increase diabetes risk by over 50%?

3. Clinical Thresholds:

Are glucose levels consistently higher in overweight individuals?

What is the average HbA1c level among diabetics?

What % with HbA1c > 6.5% have diabetes?

- **4.Model Reliability:** Which ML model yields the best predictive performance for diabetes detection?
- **5.Transfer Learning:** How does a top-performing model adapt when applied to another dataset?

Dataset Processing

Dataset #1 Data Preprocessing

Dataset Info: <class 'pandas.core.frame.DataFrame'> RangeIndex: 100000 entries, 0 to 99999 Data columns (total 9 columns): Column Non-Null Count Dtype gender 100000 non-null object 1 100000 non-null float64 hypertension 100000 non-null int64 heart disease 100000 non-null int64 smoking history 100000 non-null object 100000 non-null float64 100000 non-null float64 HbA1c_level blood_glucose_level 100000 non-null int64 diabetes 100000 non-null int64 dtypes: float64(3), int64(4), object(2) memory usage: 6.9+ MB Duplicate Rows Count: 3854 Total Missing Values in Dataset: 0

Summary Statistics:

	age	hypertension	heart_disease	bmi	HbA1c_level	blood_glucose_level	diabetes
cou	nt 100000.000000	100000.00000	100000.000000	100000.000000	100000.000000	100000.000000	100000.000000
mea	n 41.885856	0.07485	0.039420	27.320767	5.527507	138.058060	0.085000
std	22.516840	0.26315	0.194593	6.636783	1.070672	40.708136	0.278883
mir	0.080000	0.00000	0.000000	10.010000	3.500000	80.000000	0.000000
25%	24.000000	0.00000	0.000000	23.630000	4.800000	100.000000	0.000000
50%	43.000000	0.00000	0.000000	27.320000	5.800000	140.000000	0.000000
75%	60.000000	0.00000	0.000000	29.580000	6.200000	159.000000	0.000000
max	80.000000	1.00000	1.000000	95.690000	9.000000	300.000000	1.000000

Dataset #1 Data Preprocessing

Dataset #1 Data Preprocessing

Modeling

METHODOLOGY

Comparison of Baseline Models

Results Table:							
	Mean CV Score	Test Score	Accuracy	Precision	Recall	F1 Score	F2 Score
Model							
Logistic Regression	0.960805	0.959494	0.959494	0.879026	0.630423	0.734252	0.668219
KNN	0.960318	0.959444	0.959444	0.901667	0.609577	0.727395	0.651807
Decision Tree	0.951941	0.951843	0.951843	0.722101	0.743662	0.732723	0.739247
Random Forest	0.969732	0.968695	0.968695	0.942263	0.689577	0.796357	0.728658
SVM	0.963631	0.961794	0.961794	0.984660	0.578592	0.728886	0.630603

Table-5: Evaluation metrics of the five baseline models.

Baseline RF Models

Top Tuned RF Models - focus on F2 score.

SMOTE + GridSearchCV 5Folds + Top-5 Model (F2 Scoring):

SMOTE + GridSearchCV (10 Folds) – Top-5 Features (F2 Scoring):

```
Fitting 10 folds for each of 9 candidates, totalling 90 fits
```

- Best Hyperparameters: {'classifier__max_depth': 5, 'classifier__n_estimators': 50}
- Final Model Comparison:

```
Model Accuracy F1 F2
0 Top-5 Tuned + SMOTE (F2) 0.914187 0.643983 0.764909
```

April 11, 2025 | 12

Transfer Learning

Dataset #2 Data Preprocessing

```
Data columns (total 22 columns):
    Column
                           Non-Null Count
                                           Dtype
                           -----
     Diabetes 012
                           253680 non-null float64
     HighBP
                           253680 non-null float64
                           253680 non-null float64
     HighChol
     CholCheck
                           253680 non-null float64
     BMT
                           253680 non-null float64
     Smoker
                           253680 non-null float64
     Stroke
                           253680 non-null float64
     HeartDiseaseorAttack 253680 non-null float64
     PhysActivity
                           253680 non-null float64
     Fruits
                           253680 non-null float64
     Veggies
                           253680 non-null float64
     HvyAlcoholConsump
                           253680 non-null float64
     AnyHealthcare
                           253680 non-null float64
     NoDocbcCost
                           253680 non-null float64
    GenHlth
                           253680 non-null float64
    MentHlth
                           253680 non-null float64
 15
     PhysHlth
                           253680 non-null float64
                           253680 non-null float64
 17
    DiffWalk
     Sex
                           253680 non-null float64
                           253680 non-null float64
     Education
                           253680 non-null float64
 21 Income
                           253680 non-null float64
dtypes: float64(22)
```

memory usage: 42.6 MB

count

Diabetes 012

0.0	213703
2.0	35346
1.0	4631

dtype: int64

	Feature	Importance
2	BMI	0.367629
4	GenHlth	0.223784
5	Age	0.167143
0	HighBP	0.156109
1	HighChol	0.070791

Dataset #2 Data Preprocessing

Summary Statistics:

	Diabetes_012	HighBP	HighChol	BMI	Smoker	GenH1th	Age
count	253680.000000	253680.000000	253680.000000	253680.000000	253680.000000	253680.000000	253680.000000
mean	0.139333	0.429001	0.424121	28.382364	0.443169	2.511392	8.032119
std	0.346294	0.494934	0.494210	6.608694	0.496761	1.068477	3.054220
min	0.000000	0.000000	0.000000	12.000000	0.000000	1.000000	1.000000
25%	0.000000	0.000000	0.000000	24.000000	0.000000	2.000000	6.000000
50%	0.000000	0.000000	0.000000	27.000000	0.000000	2.000000	8.000000
75%	0.000000	1.000000	1.000000	31.000000	1.000000	3.000000	10.000000
max	1.000000	1.000000	1.000000	98.000000	1.000000	5.000000	13.000000

Baseline RF Models on Dataset #2

Model: Random Mean CV F1 Sc		recall	f1-score	support
0.0 1.0	0.87 0.50	0.96 0.20	0.91 0.29	42795 7941
accuracy macro avg weighted avg	0.68 0.81	0.58 0.84	0.84 0.60 0.81	50736 50736 50736

Top Tuned RF Models - on Dataset # 2

SMOTE + GridSearchCV 5Folds + Top-5 Model (F2 Scoring):

```
Fitting 5 folds for each of 9 candidates, totalling 45 fits

Best Hyperparameters: {'randomforestclassifier__max_depth': 10, 'randomforestclassifier__n_estimators': 50}

Final Model Comparison:

Model Accuracy
F1
F2
0 Top-5 Tuned + SMOTE (F2) 0.718878 0.463696 0.611488
```

SMOTE + GridSearchCV (10 Folds) – Top-5 Features (F2 Scoring):

```
Fitting 10 folds for each of 9 candidates, totalling 90 fits

Best Hyperparameters: {'randomforestclassifier__max_depth': 10, 'randomforestclassifier__n_estimators': 100}

Final Model Comparison:

Model Accuracy
F1
F2
0 Top-5 Tuned + SMOTE (F2) 0.718701 0.463136 0.610629
```


CONCLUSION

- Tuned Random Forest (RF) classifier was the best-performing model.
- Used top 5 influential features, SMOTE and GridSearchCV improved class balance and model performance for diabetics prediction.
- F2 Score prioritized due to its relevance in minimizing false negatives in medical screening.
- Model demonstrated strong predictive performance with consistent results across 5-fold and 10-fold cross-validation.

ETHICAL CONSIDERATION & LIMITATIONS

- Both datasets are anonymous and publicly accessible, but demographic coverage is limited.
- Modeling may be biased due to overrepresentation of elderly individuals (e.g., peak at age 80 in Dataset 1).
- Potential bias exists due to missing race/ethnicity data, limiting fairness analysis.
- Only top 5 features were used remaining features (including smoking history) excluded due to missingness.
- Further validation is required before real-world deployment in diverse populations.
- No external validation using real-time or clinical datasets was conducted.

Thank you!

