Clustering Analysis - Kmean

Rina BUOY

AMERICAN UNIVERSITY OF PHNOM PENH

STUDY LOCALLY. LIVE GLOBALLY.

What is Cluster Analysis?

 Given a set of objects, place them in groups such that the objects in a group are similar (or related) to one another and different from (or unrelated to) the objects in other groups

Applications of Cluster Analysis

Understanding

 Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

Summarization

Reduce the size of large data sets

	Discovered Clusters	Industry Group
1	Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, Sun-DOWN	Technology1-DOWN
2	Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, Computer-Assoc-DOWN,Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN	Technology2-DOWN
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN
4	Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, Schlumberger-UP	Oil-UP

Notion of a Cluster can be Ambiguous

Types of Clusterings

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
 - Partitional Clustering
 - A division of data objects into non-overlapping subsets (clusters)
 - Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Partitional Clustering

Hierarchical Clustering

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering

Traditional Dendrogram

Non-traditional Dendrogram

Types of Clusters

- Well-separated clusters
- Prototype-based clusters
- Contiguity-based clusters
- Density-based clusters

Types of Clusters: Well-Separated

- Well-Separated Clusters:
 - A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

Types of Clusters: Prototype-Based

Prototype-based

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the prototype or "center" of a cluster, than to the center of any other cluster
- The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most "representative" point of a cluster

4 center-based clusters

Types of Clusters: Contiguity-Based

- Contiguous Cluster (Nearest neighbor or Transitive)
 - A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.

8 contiguous clusters

Types of Clusters: Density-Based

- Density-based
 - A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
 - Used when the clusters are irregular or intertwined, and when noise and outliers are present.

6 density-based clusters

Characteristics of the Input Data Are Important

- Type of proximity or density measure
 - Central to clustering
 - Depends on data and application
- Data characteristics that affect proximity and/or density are
 - Dimensionality
 - Sparseness
 - Attribute type
 - Special relationships in the data
 - For example, autocorrelation
 - Distribution of the data
- Noise and Outliers
 - Often interfere with the operation of the clustering algorithm
- Clusters of differing sizes, densities, and shapes

Clustering Algorithms

- K-means and its variants
- Hierarchical clustering
- Density-based clustering

K-means Clustering

- Partitional clustering approach
- Number of clusters, K, must be specified
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- The basic algorithm is very simple

1: Select K points as the initial centroids.

2: repeat

3: Form K clusters by assigning all points to the closest centroid.

4: Recompute the centroid of each cluster.

5: **until** The centroids don't change

Example of K-means Clustering

Example of K-means Clustering

K-means Objective Function

- A common objective function (used with Euclidean distance measure) is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster center
 - To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- x is a data point in cluster C_i and m_i is the centroid (mean) for cluster C_i
- SSE improves in each iteration of K-means until it reaches a local or global minima.

Two different K-means Clusterings

Importance of Choosing Initial Centroids ...

Importance of Choosing Initial Centroids ...

Limitations of K-means

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes

- K-means has problems when the data contains outliers.
 - One possible solution is to remove outliers before clustering

Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)

Limitations of K-means: Differing Density

Original Points

K-means (3 Clusters)

Limitations of K-means: Non-globular Shapes

Original Points

K-means (2 Clusters)

Overcoming K-means Limitations

One solution is to find a large number of clusters such that each of them represents a part of a natural cluster. But these small clusters need to be put together in a post-processing step.

Overcoming K-means Limitations

One solution is to find a large number of clusters such that each of them represents a part of a natural cluster. But these small clusters need to be put together in a post-processing step.

Overcoming K-means Limitations

One solution is to find a large number of clusters such that each of them represents a part of a natural cluster. But these small clusters need to be put together in a post-processing step.

Determining optimal number of clusters

• Determining the optimal number of clusters in K-means clustering is often done using heuristic methods like the elbow method or silhouette analysis.

• These methods aim to identify a number of clusters that balances the trade-off between maximizing intra-cluster similarity and minimizing inter-cluster similarity.

Elbow Method

• In this method, you plot the within-cluster sum of squares (WCSS) against the number of clusters.

• The "elbow" point on the plot is considered the optimal number of clusters, as it represents the point where adding more clusters doesn't significantly decrease the WCSS.

Elbow Method

Mathematically, the WCSS for a given set of clusters $C_1, C_2, ..., C_k$ with centroids $\mu_1, \mu_2, ..., \mu_k$ can be calculated using the following formula:

$$WCSS = \sum_{i=1}^k \sum_{x \in C_i} \|x - \mu_i\|^2$$

Where:

- C_i is the i-th cluster,
- μ_i is the centroid of cluster C_i ,
- x is a data point in cluster C_i,
- $||x \mu_i||^2$ is the squared Euclidean distance between x and μ_i .

Elbow Method

Silhouette Method

• Silhouette analysis measures how similar an object is to its own cluster (cohesion) compared to other clusters (separation).

 The silhouette score ranges from -1 to 1, where a high value indicates that the object is well matched to its own cluster and poorly matched to neighboring clusters.

• The optimal number of clusters is typically associated with the highest average silhouette score.

Silhouette Method

https://www.platform.ai/post/the-silhouette-loss-function-metric-learning-with-a-cluster-validity-index

Silhouette Method

