МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КРИВОРІЗЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ФАКУЛЬТЕТ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

3 B I T

Лабораторна робота №3 з дисципліни «Сучасні методи та моделі інтелектуальних систем керування»

аспірант групи АКІТР-23-1а	Косей М.П.	
Керівник:		
викладач	Тиханський М. П	

Виконавець:

Лабораторна робота №2

Тема: Ознайомлення з принципами роботи нейронних мереж у складі систем керування

Мета: Дослідити систему керування з нейромережевими регуляторами

ХІД РОБОТИ

1) Ознайомитись з теоретичними відомостями до лабораторної роботи

Neural Network Toolbox дозволяє проектувати, моделювати та навчати нейронні мережі для задач обробки сигналів, керування, фінансового моделювання тощо. У пакеті реалізовані три типи регуляторів:

1. Регулятор із прогнозом (Predictive Controller):

Використовує нейронну мережу для прогнозування майбутньої поведінки процесу. Оптимізація керуючих сигналів виконується на кожному кроці, що вимагає значних обчислювальних ресурсів.

2. Регулятор NARMA-L2:

Найменш ресурсозатратний. Використовує реконструкцію моделі процесу, але вимагає його представлення у канонічній формі, що може спричиняти похибки.

3. Регулятор на основі еталонної моделі (Model Reference Controller):

Потребує навчання двох нейронних мереж (процесу та регулятора). Використовується для різних типів процесів, але має складний механізм навчання.

Проектування систем включає два етапи:

- Ідентифікація: створення нейромережевої моделі процесу.
- Синтез керування: побудова регулятора, який керує процесом.

Особливості регуляторів:

- Прогнозний регулятор забезпечу ϵ точність, але потребу ϵ значних обчислень.
 - NARMA-L2 є простішим, але менш універсальним.
- Регулятор на основі еталонної моделі адаптивний, але складний у навчанні.

2) Практична частина

Використовуємо MATLAB версія R2024a для Linux.

Реалізовуємо систему керування, яка б керувала рухом ланки промислового робота, відслідковуючи вихід еталонної моделі:

$$\frac{d^2y_{r^2}}{dt} = -9y_r - 6\frac{dy_r}{dt} + 9r$$

де y_r – вихід еталонної моделі; r – задає сигнал на вході моделі.

Для системи керування необхідна динамічна модель, реалізована в Simulink, що відповідає рівнянню руху ланки, має вигляд

Будуємо відповідну динамічну модель, реалізувавши її в Simulink:

Будуєм відповідну динамічну модель, реалізувавши її в Simulink

Згідно варіанту №11 : тип нейрорегулятора - NN Predictiv Control, кількість слоїв 5, кількість епох -10.

Налаштовуємо NN Predictiv Control та робимо Plant Identification

Тренуємо нейромережу.

висновки

В результаті виконаної лабораторної роботи ознайомилися з принципами роботи нейронних мереж у складі систем керування.

 Усі матеріали викладенні у репозіторії GitHub, за посиланням

 https://github.com/Max11mus/LAB3-Modern-Methods-and-Models-of-Intelligent-Control

 Systems.