
 Σ FET — Synchrotron Field-Effect Transistor

Hoja de Datos Técnica y Descriptiva Proyecto TCDS-Σ / Gradiente Económico

Autor: Genaro Carrasco Ozuna ORCID: 0009-0005-6358-9910

DOI principal: 10.5281/zenodo.17494368

Versión: 1.0 (Octubre 2025)

1. Propósito y contexto

El dispositivo Σ FET (Sigma Field-Effect Transistor) constituye el bloque físico fundamental de validación experimental dentro de la Teoría Cromodinámica Sincrónica (TCDS). Su función es traducir interacciones de coherencia Σ —regidas por los parámetros Q, ϕ y χ — en señales eléctricas reproducibles bajo control de realimentación .

El conjunto se utiliza para:

Ensayos de sincronización forzada (locking) en osciladores nano-magnéticos, térmicos y cuánticos.

Validación de ventanas p : q y métricas Σ -metrics (LI, R, RMSE_SL, $\kappa\Sigma$).

Experimentos de rectificación coherencial y transferencia energética sub-milimétrica.

2. Arquitectura funcional

El ΣFET se organiza en cinco bloques cooperativos:

Bloque Función principal Tipo de componente

SHNO Core Núcleo de oscilador Spin Hall (5–20 GHz); genera señal base Σ . Nanodispositivo metálico

 VO_2 Core Núcleo Mott con transición de fase térmica; sub-armónico y estabilización $\Delta f(Ac)$. Material óxido VO_2

CMOS VCO Oscilador de control de voltaje (1–3 GHz) para acoplamiento electrónico. Electrónica comercial PMN-PT Transducer Transductor piezoeléctrico de alta constante d₃₃; acoplamiento mecánico Σ-χ.Material piezoeléctrico RF→DC Rectifier Conversión de potencia sincrónica en corriente continua. Diodo Schottky SMS7630 Cada núcleo puede operar de forma independiente o integrada bajo el controlador Qctrl (CSL-IA). 3. Diagrama funcional Figura 1 — Flujo conceptual de coherencia: generación → acoplamiento → rectificación → medición Σ. 4. Parámetros de desempeño Parámetro Valor típico Símbolo Comentario Frecuencia fundamental SHNO f₀ 5 – 20 GHz depende del material Pt/NiFe/Pt Corriente de umbral $I \square \square$ 0.45 – 2.5 mA bias para locking Ensanchamiento de captura Δf(Ac) monótono positivo criterio de falsabilidad ≥ 0.90 métrica de coherencia Índice de locking LI Correlación R > 0.95 estabilidad $\Sigma - \chi$ RMSE_SL < 0.10 error de sincronización Reproducibilidad ≥ 95 % sobre muestras independientes 5. Lista de materiales (BOM)

Los sub-conjuntos se documentan en seis archivos CSV disponibles en la carpeta Σ FET/ del repositorio:

bom_shno_sigmafet.csv — Spin Hall Nano-Oscillator core

bom_vo2_sigmafet.csv — Núcleo VO2 Mott

bom_cmos_sigmafet.csv — VCO CMOS de referencia bom_piezo_ring_transducer.csv — Transductor PMN-PT bom_rectifier_rf_dc.csv — Rectificador RF→DC bom lab infrastructure.csv — Infraestructura común de laboratorio Cada archivo incluye número de parte, fabricante, costo unitario y nota técnica, conforme a la norma de trazabilidad TCDS-Σ. 6. Integración con el entorno experimental Control y adquisición mediante el bucle CSL-IA (Conciencia Sincrónica Laboratorio – IA). Filtrado emocional/atencional implementado por software CSL-H. Auditoría automática vía workflow GitHub Actions y registro en Zenodo. Compatible con banco RE-Q v3 Expandido y coherencímetro Σ-A. 7. Licenciamiento Ciencia y documentación: Creative Commons CC BY-NC-SA 4.0 Hardware y aplicaciones derivadas: TCDS Σ Open Lab License v1.1 Derechos morales: Genaro Carrasco Ozuna © 2025 El diseño conceptual y las métricas Σ se distribuyen con fines de verificación científica; la fabricación comercial requiere autorización escrita bajo licencia Open Lab v1.1.

8. Cita recomendada

> Carrasco Ozuna, G. (2025). ΣFET — Synchrotron Field-Effect Transistor (Bill of Materials and Datasheet).

Zenodo. DOI: 10.5281/zenodo.xxxxxxxx

(sustituir el DOI al publicar en Zenodo)

9. Resumen ejecutivo

El Σ FET simboliza la transición entre teoría y hardware: demuestra la coherencia como recurso medible y renovable, permitiendo una evaluación económica directa de los sistemas $Q-\Sigma-\phi-\chi$. Es reproducible, modular y compatible con infraestructura de laboratorio estándar, sirviendo como pilar del programa TCDS Gradiente Económico 2025–2030.

Notas finales

Este documento sustituye los planos eléctricos confidenciales por una vista funcional y económica.

No contiene geometrías, máscaras ni datos de procesamiento propietarios. Puede distribuirse libremente bajo los términos CC BY-NC-SA 4.0 para fines científicos y

educativos.

Proyecto TCDS-Σ — Teoría Cromodinámica Sincrónica Gradiente Económico · Canonical Open Lab 2025 Contacto: geozunac3536@gmail.com | ORCID 0009-0005-6358-9910
