2015 ~ 2016 学年第二学期期末考试试卷

《 线性代数及其应用 》 (A 卷 共 4 页)

(考试时间: 2016 年 6月 12 日)

	一、	填空题	(共 15 分,	每小题3分)	
--	----	-----	----------	--------	--

2017级理学院严班 Johnson整理

2.设3所非零方阵A满足AB=0,其中B=
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 10 \end{bmatrix}$$
,则齐次线性方程组AX=0的通解为

3、在线性空间R[x]z中,若向量组引以=2,gz(x)=1+x,gz(x)=3+kx*线性相关,则转数+的

5、设 3 阶矩阵 A 满足 |3A-E|=0, 则齐次线性方程组 AX=0 有两个线性无关解, 则 A 的全部特征值为__

- 二、单项选择题(共15分,每小题3分)
-). 1、设A, B, C 均为n阶方阵, 若AB = C, 且B 可逆, 则(
 - (A) 矩阵A 的行向量组与矩阵C 的行向量组等价
 - (B) 矩阵A 的列向量组与矩阵C 的列向量组等价
 - (C) 矩阵B 的行向量组与矩阵C 的行向量组等价
 - (D) 矩阵B 的列向量组与矩阵C 的列向量组等价
- 2、设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)X=0(

 - (A) 当m <n 时, 方程组只有零解 (B) 当m <n 时, 方程组以有非零解 (C) 当m >n 时, 方程组以有非零解 (D) 为m >n 时, 方程组以有非零解
- 3、已知向量组 $\alpha_1, ..., \alpha_m$ 和 $\beta_1, ..., \beta_m$,若存在两组不全为零的实数 $k_1, ..., k_m$ 和 $l_1, ..., l_m$ 使得 $(k_1 + l_1)\alpha_1 + \cdots + (k_m + l_m)\alpha_m + (k_1 - l_1)\beta_1 + \cdots + (k_m - l_m)\beta_m = 0$, 则(
 - (A) 向量组 $\alpha_1,...,\alpha_m$ 和 $\beta_1,...,\beta_m$ 都线性相关
 - (B) 向量组 $\alpha_1,...,\alpha_m$ 和 $\beta_1,...,\beta_m$ 都线性无关
 - (C) 向量组 $\alpha_1 + \beta_1, ..., \alpha_m + \beta_m, \alpha_1 \beta_1, ..., \alpha_m \beta_m$ 线性相关
 - (D) 向量组 $\alpha_1 + \beta_1, ..., \alpha_m + \beta_m, \alpha_1 \beta_1, ..., \alpha_m \beta_m$ 线性无关
- 4、设 α 是方阵 A 的属于特征值 λ_0 的特征向量,S 为可逆矩阵,且 $S^{-1}AS = B$, 则()为方阵 B 的属于特征值 λ_0 的特征向量.

(A) $\boldsymbol{\alpha}$ (B) $\boldsymbol{S}\boldsymbol{\alpha}$ (C) $\boldsymbol{S}^{\mathsf{T}}\boldsymbol{\alpha}$ (D) $\boldsymbol{S}^{\mathsf{-l}}\boldsymbol{\alpha}$

5、设A为4阶实对称矩阵,且A⁴+A=0, 若A的秩为3,则A会同于() (A) diag (1,1,1.0) (B) diag (1,1,-1,0) (c) diag (1,-1,-1,0) (D) diag (-1,-2,-3,0)

- 三、(共17分,其中第1题7分,第2题10分)
- 1、设集合 $W = \left\{ A \in \mathbb{R}^{2\times 2} | A^{\mathsf{T}} = A \right\}$. 证明 $W \in \mathbb{R}^{2\times 2}$ 的子空间,并求W的一个基及其维数.

2、设
$$X = \begin{bmatrix} k \\ -2 \\ 3 \end{bmatrix}$$
 为 $A = \begin{bmatrix} 3 & 2 & -1 \\ -2 & a & 2 \\ 3 & 6 & -1 \end{bmatrix}$ 的一个特征向量.

- (1) 求 X 所对应的特征值及方阵 A 的迹:
- (2) 判断矩阵 A 是否可对角化、并说明理由.
- 四、(12分)已知 R^4 中的向量组

$$\alpha_{1} = \begin{bmatrix} 1\\4\\2\\-3 \end{bmatrix}, \alpha_{2} = \begin{bmatrix} -2\\-7\\-5\\5 \end{bmatrix}, \alpha_{3} = \begin{bmatrix} 3\\10\\a+7\\-7 \end{bmatrix}, \alpha_{4} = \begin{bmatrix} 4\\13\\11\\a-8 \end{bmatrix}, \alpha_{5} = \begin{bmatrix} 5\\16\\14\\-11 \end{bmatrix},$$

试问 α_s 可由 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性表示?若能表示,试求全部表达方式.

五、(11分)设向量空间R³中由基(II) $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3$ 到基(I) $\boldsymbol{\alpha}_1 = [1,0,0]^T, \boldsymbol{\alpha}_2 = [1,1,0]^T,$

$$\boldsymbol{\alpha}_3 = [1,1,1]^T$$
 的过渡矩阵为 $\boldsymbol{S} = \begin{bmatrix} 3 & 2 & 2 \\ -4 & -2 & -3 \\ 2 & 1 & 2 \end{bmatrix}$.

- (1) 求基(II) β₁, β₂, β₃;
- (2)向量 γ 在基(I)下的坐标为 $[1,-1,3]^T$, 求 γ 在基(II)下的坐标.

六、(11分) 设 σ 是定义在线性空间 R[x] 上的线性变换,且 $\sigma(f(x)) = (a_0 + a_1) + (a_1 + a_2)x + (a_2 + a_0)x^2, \forall f(x) = a_0 + a_1x + a_2x^2 \in R[x]_2.$

- (1) 求 σ 在标准基 $1, x, x^2$ 下的矩阵 A;
- (2) 求 σ 在标准基 $f_1(x) = 1$, $f_2(x) = x + 2x^2$, $f_3(x) = 3x + 5x^2$ 下的矩阵.

七、(14分)(1)用正交线性替换化实二次型

$$f(x_1, x_2, x_3) = x_1^2 - 2x_2^2 + x_3^2 + 4x_1x_2 + 8x_1x_3 + 4x_2x_3$$

为标准形,并写出所用的正交线性替换; (2) 求二次型 $f(x_1,x_2,x_3)$ 的规范形.

八、(5分) 设 A , B 为n阶正定矩阵.

- (1)证明 A + B 为正定矩阵;
- (2)若 \boldsymbol{A} 的特征值全部大于 \boldsymbol{a} , \boldsymbol{B} 的特征值全部小于 \boldsymbol{b} , 求证 \boldsymbol{A} - \boldsymbol{B} 的特征值均大于 \boldsymbol{a} \boldsymbol{b} .