Subword-level Word Vector Representations and their Interpretability

Sungjoon Park

171219 Naver TechTalk

Contents

Rotated Word Vector Representations and their Interpretability

In Proceedings of the Conference on Empirical Method of Natural Language Processing (EMNLP) 2017

Subword-level Word Vector Representations for Korean Language
 (Work in Progress)

Sungjoon Park, Jinyeong Bak, Alice Oh

In Proceedings of the Conference on Empirical Method of Natural Language Processing (EMNLP) 2017

Introduction

Vector Representation

Word

[.02 .52 .43 -.04 .81]

NLP tasks

- Word2vec (Mikolov, 2013)
- Glove (Pennington, et al., 2014)

Distributed Representation of Words

CBOW (Mikolov et al., 2013)

Objective Given a sequence of training words $w_{1...t}$

$$\frac{1}{V} \sum_{V} \sum_{-c \le j \le c, j \ne 0} \log p(w_t | w_{t+j})$$

where $p(w_0|w_I)$ is a softmax:

$$p(w_O|w_I) = \frac{\exp(u_{w_O}^T v_{w_I})}{\sum_w \exp(u_w^T v_{w_I})}$$

computed by hierarchical softmax or negative sampling

Distributed Representation of Words

Skip-Gram (Mikolov et al., 2013)

Objective Given a sequence of training words $w_{1...t}$

$$\frac{1}{V} \sum_{V} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j} | w_t)$$

where $p(w_0|w_I)$ is a softmax:

$$p(w_O|w_I) = \frac{\exp(u_{w_O}^T v_{w_I})}{\sum_w \exp(u_w^T v_{w_I})}$$

computed by hierarchical softmax or negative sampling

Distributed Representation of Words

Glove (Pennington et al., 2014)

Motivation Use global information (co-occurrence over corpus) while learning word vectors

Objective Dot product between two word vectors should be equal to log of the words' probability of co-occurrence (with given context words)

Probability and Ratio				
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

$$F(w_i, w_j, w_k) = \frac{P_{ik}}{P_{jk}}$$

$$J = \sum_{i,j=1}^{V} f(X_{ij})(w_i^t \widetilde{w}_j + b_i + \widetilde{b}_j - \log X_{ij})^2$$

Introduction

Vector Representation

Not clear what it means

Introduction

Interpretable Vector Representation

- Understanding semantic / syntactic compositionality of words
- Increasing efficiency of storage
- Reducing complexity of higher-level models

Related Work

Sparse L1 Regularized Word Vectors (Sun et al., IJCAI 2016)

Stand-alone model

• Objective
$$\mathcal{L}_{s-cbow} = \mathcal{L}_{cbow} - \lambda \sum_{w \in W} \|\overrightarrow{w}\|_1$$

Sparse Overcomplete Word Vectors (Faruqui et al., ACL 2015)

Related Work

Sparse Overcomplete Representations (Faruqui et al., ACL 2015)

(A) Sparse Coding Minimizing reconstruction error, with l1 regularizer $\Omega(A)$ and dictionary of basis vectors D.

$$\underset{D,A}{\operatorname{arg\,min}} \sum_{i=1}^{V} \|x_i - Da_i\|^2 + \lambda \Omega(a_i) + \tau \|D\|_2^2$$

(B) Sparse Non-negative Coding Adding non-negativity constraint to (A)

$$\underset{D,A}{\operatorname{arg\,min}} \sum_{i=1}^{V} \|x_i - Da_i\|^2 + \lambda \Omega(a_i) + \tau \|D\|_2^2 , D \in \mathbb{R}_{\geq 0}^{K \times V}, A \in \mathbb{R}_{\geq 0}^{K \times V}$$

- Trained by ADAGrad, resulting higher interpretability while preserving expressive performance
- X10 of number of dimensions tends to work well

Interpretable Vector Representation

Rotate Dimensions

(as a post-processing method)

Position

- Superintendent
- Chairman
- President
- Commissioner
- Minister

Nation

- Russia
- China
- Italy
- Germany
- France

Russia

China

Superintendent

Chairman China

President Italy x_1

Commissioner Germany

Minister France

Superintendent Russia Chairman

President Commissioner Italy Germany

Minister France

Factor Rotation

Exploratory Factor Analysis:

Embed the items to latent factor space by using factor analysis

Engineering Problem Solving How well did you feel prepared for:

- (1) Defining what the problem really is
- (2) Thinking up potential solutions to the problem
- (3) Detailing how to implement the solution to the problem

Interest in Engineering

- (1) I find many topics in engineering to be interesting
- (2) Solving engineering problems is interesting to me
- (3) Engineering fascinates me

Factor Rotation

Exploratory Factor Analysis:

Embed the items to latent factor space by using factor analysis

Method

How to: Crawford-Ferguson Rotation Family

To Compute Λ:

$$\Lambda = AT$$

> Satisfying:

$$T'T = I$$

 $diag(T^{-1}T^{-1\prime}) = I$

Orthogonal

Oblique

> Minimize:

$$F(\lambda) = (1 - \kappa) \left(\sum_{i=1}^{p} \sum_{j=1}^{m} \sum_{l \neq j, l=1}^{m} \lambda_{ij}^2 \lambda_{il}^2 \right) + \kappa \left(\sum_{j=1}^{m} \sum_{i=1}^{p} \lambda_{ij}^2 \lambda_{il}^2 \right)$$

Row complexity

Column complexity

 \checkmark κ : weighting parameter

Quartimax	Varimax	Parsimax	Factor Parsimony	
0	1/p	m-1/p+m-2	1	

Method

Experimental Settings

Training

[.02 .52 .43 -.04 .81]

[.21 .32 .63 -.04 .31] [.47 .12 .42 .34 .04] [.12 .54 .49 .88 .01] [.54 .32 .63 -.04 .54]

- English Wikipedia
 - 5.3M articles
 - 83M sentences
 - 1,676 tokens

- 2 Vector Representations
 - Word2Vec, Glove
 - 306491 words
 - 300 dimensions

- 16 Rotated Representations
 - For each kappa (4)
 - For each Embedding (2)
 - For each constraint (2)

- Implementation
 - Algorithm : Gradient Projection (Jennrich. 2001)
 - Github: https://github.com/SungjoonPark/factor_rotation (TensorFlow)

Interpretability

Task: Word Intrusion

To measure semantic coherence of words:

```
['daughter', 'wife', 'sister', 'mother', 'son', 'bigram']
```

Choosing an intruder (for that dimension):

Interpretability

Measure: Distance Ratio

$$DR_{overall} = \frac{1}{d} \, \frac{\sum_{a=1}^{d} D_{inter}^{a}}{\sum_{a=1}^{d} D_{intra}^{a}} \quad \text{, where} \qquad DR_{inter}^{a} = \frac{\sum_{w_i} \sum_{w_j} dist(w_i, w_j)}{k(k-1)}$$

$$DR_{inter}^{a} = \frac{\sum_{w_i} dist(w_i, w_{intruder})}{k}$$

Interpretability

Results

Quantitative Results

Distance Ratio	SG	Glove
Original	1.258	1.095
SOV	1.089	1.05
SOV (non-neg)	1.081	1.074
Quartimax (orthogonal)	1.479	1.248
Varimax (orthogonal)	1.477	1.289
Parsimax (orthogonal)	1.596	1.261
FacParsim (orthogonal)	1.3	1.102
Quartimax (oblique)	1.385	1.225
Varimax (oblique)	1.398	1.222
Parsimax (oblique)	1.386	1.174
FacParsim (oblique)	1.145	1.081

Qualitative Examples

Skip-Gram

householder, asked, indicted, there, ethnic score, two, best, three, four mining, footballer, population, laps, settled density, census, fourier, editor, photos money, toured, season, announced, banned

Rotated Skip-Gram

twitter, facebook, youtube, myspace, internet receptors, receptor, neurons, apoptosis, neuronal pennsylvania,ohio,maryland,philadelphia,illinois paintings, portraits, painting, drawings, painter that, which, when, where, but

Expressive Performance

Tasks

Word Similarity (SimLex-999)

Compare to human similarity evaluation of word pairs

Semantic/Syntactic Analogies

Predict D in {A : B = C : D} analogy problems

Sentiment Analysis

Predict Pos/Neg sentiment of input sentence, by averaging vectors

Question Classification

Classify question categories of TREC dataset

Topic Classification

Classify news topics of 20 newsgroups

NP bracketing

Classifying noun phrases in terms of bracketing: (A B) C or A (B C)

Expressive Performance

Results

	# dims	Simil.	Analg. (sem)	Analg. (syn)	Sent.	Ques.	Topics (Sp.)	NP brckt.
Skip-Gram	300	.374	.668	.652	.741	.920	.960	.812
SOV	3000	.390	.640	.594	.751	.910	.955	.836
SOV (non-neg)	3000	.384	.566	.480	.761	.918	.960	.829
Quartimax (orthogonal)	300	.374	.668	.652	.744	.922	.956	.822
Varimax (orthogonal)	300	.374	.668	.652	.744	.922	.956	.822
Parsimax (orthogonal)	300	.374	.668	.652	.744	.922	.956	.819
FacParsim (orthogonal)	300	.374	.668	.652	.744	.922	.956	.822
Quartimax (oblique)	300	.422	.673	.624	.755	.932	.955	.820
Varimax (oblique)	300	.422	.673	.624	.755	.932	.955	.820
Parsimax (oblique)	300	.421	.671	.623	.752	.932	.956	.826
FacParsim (oblique)	300	.417	.660	.620	.751	.928	.952	.820

- Preserves cosine distance (similarity) between word vectors
- Preserves expressive power of original word vectors

Weighting Complexities

Effect of kappa

- Large weights on column complexity may degrade interpretability
- Widely used criterion show effective improvement on interpretability

Discussion

Conclusion

- Rotation algorithms can improve interpretability of word vectors
- Can be widely applied to any pre-trained vectors, with preserving expressive performance

Future Work

- Useful in lexical semantics to explore compositionality of words
- Rotation algorithms can be applied to any layer in the neural networks for interpretability

Sungjoon Park, Jeongmin Byun, Sion Baek, Yongseok Cho, Alice Oh (Work in Progress)

Subword-level Word Vector Representations

SISG (Subword Information Skip-Gram, FastText) (Bojanowski et al., TACL 2017)

Objective Given a sequence of training words $w_{1...t}$

$$\frac{1}{V} \sum_{V} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j} | w_t)$$

where $p(w_0|w_I)$ is a softmax:

$$p(w_O|w_I) = \frac{\exp(u_{w_O}^T v_{w_I})}{\sum_{w} \exp(u_w^T v_{w_I})}, \quad s(w, c) = u_{w_O}^T v_{w_I}$$

computed by negative sampling.

Given a word w and denote $G_w = \{1, ..., G\}$ the set of n-grams in w

$$s(w,c) = \sum_{g \in G_w} z_g^T v_c$$

That is, word vector $u_{w_O}^T$ is replaced to the sum of n-grams vectors

Subword-level Word Vector Representations

SISG (Subword Information Skip-Gram, FastText) (Bojanowski et al., TACL 2017)

Word-level: Word2vec (Skip-Gram/CBOW)

안녕하세요: 안녕하세요

Character-level: FastText (3-6gram)

<안녕하세요> : <안녕하, 안녕하, 녕하세, 하세요, 세요>

Phoneme-level: FastText (3-6gram)

<안녕하세요>:<ㅇㅏㄴㄴㅕㅇㅎㅏㅅㅔㅇㅛ>

Preliminary Results

SISG (Subword Information Skip-Gram, FastText) (Bojanowski et al., TACL 2017)

• Korean word similarity (WS-353): SISG outperforms SG in Korean as well

Hyperparams		Word-level		Syllable-level		Phoneme-level	
# dims	# neg. samples	type	cor	ngrams	cor	ngrams	cor
500	5	sg	0.542	36	0.552	36	0.602
500	15	sg	0.547	36	0.575	36	0.607
500	5	cbow	0.531	24	0.577	24	0.590
500	15	cbow	0.541	24	0.560	24	0.587
300	5	sg	0.565	36	0.564	36	0.623
300	15	sg	0.529	36	0.572	36	0.592
300	5	cbow	0.528	24	0.600	24	0.595
300	15	cbow	0.535	24	0.598	24	0.593
100	5	sg	0.522	36	0.554	36	0.585
100	15	sg	0.533	36	0.553	36	0.569
100	5	cbow	0.506	24	0.560	24	0.573
100	15	cbow	0.515	24	0.582	24	0.572
AVG			0.533		0.571		0.591

Thank you.