Figure 33. On both PLLs. the FREF (reference) input is connected to the crystal oscillator's XI input. The PLL contains a VCO, which is locked to a constant ratio of the reference clock via the feedback loop (phase-frequency detector and loop filter). This can synthesise very high frequencies, which may be divided down by the post-dividers.

2.17.2. Calculating PLL parameters

To configure the PLL, you must know the frequency of the reference clock, which on RP2040 is routed directly from the crystal oscillator. This will often be a 12 MHz crystal, for compatibility with RP2040's USB bootrom. The PLL's final output frequency FOUTPOSTDIV can then be calculated as (FREF / REFDIV) * FBDIV / (POSTDIV1 * POSTDIV2). With a desired output frequency in mind, you must select PLL parameters according to the following constraints of the PLL design:

- Minimum reference frequency (FREF / REFDIV) is 5 MHz
- Oscillator frequency (FOUTVCO) must be in the range 400 MHz -> 1600 MHz
- Feedback divider (FBDIV) must be in the range 16 -> 320
- The post dividers POSTDIV1 and POSTDIV2 must be in the range 1 -> 7
- Maximum input frequency (FREF / REFDIV) is VCO frequency divided by 16, due to minimum feedback divisor

Additionally, the maximum frequencies of the chip's clock generators (attached to FOUTPOSTDIV) must be respected. For the system PLL this is 133 MHz, and for the USB PLL, 48 MHz.

NOTE

The crystal oscillator on RP2040 is designed for crystals between 5 and 15 MHz, so typically REFDIV should be 1. If the application circuit drives a faster reference directly into the XI input, and a low VCO frequency is desired, the reference divisor can be increased to keep the PLL input within a suitable range.

TIP

When two different values are required for POSTDIV1 and POSTDIV2, it's preferable to assign the higher value to POSTDIV1, for lower power consumption.

In the RP2040 reference design, which attaches a 12 MHz crystal to the crystal oscillator, this implies that the minimum achievable and legal VCO frequency is 12 MHz × 34 = 408 MHz, and the maximum VCO is 12 MHz × 133 = 1596 MHz, so FBDIV must remain in the range 34 -> 133. For example, setting FBDIV to 100 would synthesise a 1200 MHz VCO frequency. A POSTDIV1 value of 6 and a POSTDIV2 value of 2 would divide this by 12 in total, producing a clean 100 MHz at the PLL's final output.

2.17. PLL 202