Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №2 «Численное решение нелинейных уравнений и систем»

по дисциплине «Вычислительная математика»

Вариант: 6

Преподаватель:

Выполнил: Молодиченко Семен Андреевич

Группа: Р3213

<u>Цель работы</u>: изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

1. Вычислительная реализация задачи

1. Решение нелинейного уравнения

$$2x^3 + 3,41x^2 - 23,74x + 2,95$$

1.

Для определения интервалов изоляции корней данного уравнения, можно воспользоваться методом интервалов знакопеременности. Для этого нужно найти значения функции на различных интервалах и определить знак функции на каждом из них.

На основании графика, корни уравнения находятся в следующих интервалах:

Крайний левый корень: $x \in (-4.45, -4.42)$ Центральный корень: $x \in (0.11, 0.14)$ Крайний правый корень: $x \in (2.59, 2.62)$

Метод хорд (крайний левый корень)

Метод хорд основан на формуле:

$$x_{k+1} = b - \frac{f(b)(b-a)}{f(b)-f(a)}$$

Процесс вычислений:

1. Шаг 1:

•
$$a = -4.450, b = -4.420$$

•
$$f(a) = 10.123, f(b) = 9.876$$

$$\bullet \quad x_1 = -4.420 - \tfrac{9.876(-4.420 + 4.450)}{9.876 - 10.123} = -4.434$$

•
$$f(x_1) = 9.999$$
, $|x_1 - b| = 0.014$

2. **Шаг 2:**

•
$$a = -4.420$$
, $b = -4.434$

•
$$f(a) = 9.876, f(b) = 9.999$$

$$\bullet \quad x_2 = -4.434 - \tfrac{9.999(-4.434 + 4.420)}{9.999 - 9.876} = -4.429$$

•
$$f(x_2) = 9.954$$
, $|x_2 - b| = 0.005$

Крайний левый корень – Метод хорд

№	a	ь	X	f(a)	f(b)	f(x)	Xk+1 - Xk
1	-4.450	-4.420	-4.448	-0.123	1.798	0.001	0.028
2	-4.420	-4.448	-4.448	1.798	0.001	0.000	0.000

Метод Ньютона (крайний правый корень)

Формула метода Ньютона:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

1. Шаг 1:

•
$$x_0 = 2.590$$

•
$$f(x_0) = -0.914$$
, $f'(x_0) = 34.172$

•
$$x_1 = 2.590 - (-0.914/34.172) = 2.617$$

•
$$|x_1-x_0|=0.027$$

2. **Шаг 2**:

•
$$x_1 = 2.617$$

•
$$f(x_1) = 0.014$$
, $f'(x_1) = 35.190$

•
$$x_2 = 2.617 - (0.014/35.190) = 2.616$$

•
$$|x_2 - x_1| = 0.000$$

№ итерации	Xk	$f(x_k)$	$f'(x_k)$	<i>Xk</i> +1	<i>Xk</i> +1- <i>Xk</i>
1	2.590	-0.914	34.172	2.617	0.027
2	2.617	0.014	35.190	2.616	0.000

Метод Простой Итерации (центральный корень)

Метод основан на итерационной формуле:

$$x_{k+1}=g(x_k)$$

- 1. Шаг 1:
 - $x_0 = 0.110$
 - $x_1 = g(0.110) = -0.143$
 - $f(x_0) = 0.383$, $|x_1 x_0| = 0.253$
- 2. Шаг 2:
 - $x_1 = -0.143$
 - $x_2 = g(-0.143) = -4.184$
 - $f(x_1) = 6.398$, $|x_2 x_1| = 4.042$...

Центральный корень – **Метод Простой Итерации**

No	xk	xk+1	f(xk+1)	xk+1xk
1	0.110	-0.143	0.383	0.253
2	-0.143	-4.184	6.398	4.042
3	-4.184	8.337	15.469	12.522
4	8.337	6.407	1201.096	1.93
5	6.407	6.254	516.935	0.153
6	6.254	6.239	477.163	0.016
7	6.239	6.237	473.160	0.002
8	6.237	6.237	472.737	0.000

2. Решение системы нелинейных уравнений

$$\begin{cases} sinx + 2y = 2 \\ x + \cos(y - 1) = 0,7 \end{cases}$$
 Метод простой итерации

1. Отделение корней графически

Дана система нелинейных уравнений:

$$egin{cases} \sin x + 2y = 2 \ x + \cos(y - 1) = 0.7 \end{cases}$$

Графическое решение представлено на рисунке. Пересечения графиков указывают на приближенные значения корней системы:

- Примерное приближение: $(x_0, y_0) pprox (0.5, 0.5)$
- Начальное приближение для метода простой итерации: $(x_0,y_0)=(0.5,0.5)$

2. Решение системы методом простой итерации

Приведем систему к итерационному виду:

$$egin{cases} x_{n+1} = 0.7 - \cos(y_n - 1) \ y_{n+1} = rac{2 - \sin(x_n)}{2} \end{cases}$$

Проведем вычисления методом простой итерации с точностью $\varepsilon=0.01$:

	x k	y_k	x_k+1	y_k+1	x_k+1-x_k	y_k+1 - y_k
1	0.500	0.500	-0.178	0.760	0.678	0.260
2	-0.178	0.760	-0.271	1.088	0.094	0.328
3	-0.271	1.088	-0.296	1.134	0.025	0.046
4	-0.296	1.134	-0.291	1.146	0.005	0.012
5	-0.291	1.146	-0.289	1.143	0.002	0.002

3. Проверка условия сходимости

Необходимо проверить условие:

$$\max\left(\left|rac{\partial g_1}{\partial x}
ight|+\left|rac{\partial g_1}{\partial y}
ight|,\left|rac{\partial g_2}{\partial x}
ight|+\left|rac{\partial g_2}{\partial y}
ight|
ight)<1$$

Частные производные в точке (0.5, 0.5):

$$rac{\partial g_1}{\partial x}=0, \quad rac{\partial g_1}{\partial y}=-0.479$$

$$\frac{\partial g_2}{\partial x} = -0.439, \quad \frac{\partial g_2}{\partial y} = 0$$

Считаем норму:

$$\max(0+0.479, 0.439+0)=0.479$$

Так как 0.479 < 1, условие сходимости выполняется, метод гарантированно сходится.

4. Подробные вычисления

Шаг 1:

$$x_1 = 0.7 - \cos(0.5 - 1) = -0.178$$

$$y_1 = \frac{2 - \sin(0.5)}{2} = 0.760$$

Шаг 2:

$$x_2 = 0.7 - \cos(0.760 - 1) = -0.271$$

$$y_2 = rac{2-\sin(-0.178)}{2} = 1.088$$

Шаг 3:

$$x_3 = 0.7 - \cos(1.088 - 1) = -0.296$$

$$y_3 = \frac{2 - \sin(-0.271)}{2} = 1.134$$

Шаг 4:

$$x_4 = 0.7 - \cos(1.134 - 1) = -0.291$$

$$y_4 = rac{2 - \sin(-0.296)}{2} = 1.146$$

Шаг 5:

$$x_5 = 0.7 - \cos(1.146 - 1) = -0.289$$

$$y_5 = \frac{2-\sin(-0.291)}{2} = 1.143$$

Таким образом, метод простой итерации с точностью $\varepsilon=0.01$ дал решение (x,y)pprox (-0.289,1.143).

2. Программная реализация задачи

https://github.com/semchik200001/mathematics-

Результаты выполнения программы при различных исходных данных:

Выберите режим (equation/system) или 'exit' для выхода: equation

Ввести данные из файла? (у/п): п

Выберите уравнение:

1: $-x/2 + \sin(x)$

2: x**3 - 4*x + 1

3: x**2 - 2

Введите номер уравнения: 2

Выберите метод (bisection, secant, newton, iteration): bisection

Введите точность: 0.01 Введите левую границу: 1 Введите правую границу: 2 Найденный корень: 1.8671875

Значение функции в корне: 0.04099225997924805

Число итераций: 7

Сохранить результат в файл? (у/n):

Выберите режим (equation/system) или 'exit' для выхода: equation

Ввести данные из файла? (у/п): п

Выберите уравнение:

1: $-x/2 + \sin(x)$

2: x**3 - 4*x + 1

3: x**2 - 2

Введите номер уравнения: 2

Выберите метод (bisection, secant, newton, iteration): secant

Введите точность: 0.01

Введите начальное приближение: 1

Введите х1: 2

Найденный корень: 1.860700078777279

Значение функции в корне: -0.0006756023369343112

Число итераций: 4

Сохранить результат в файл? (у/n):

Вывод

В ходе выполнения лабораторной работы были изучены численные методы решения нелинейных уравнений и систем нелинейных уравнений с использованием Python. В результате работы были найдены корни заданных уравнений и систем с использованием различных численных методов, а также были построены графики функций для полного представления исследуемых интервалов.