Redes de Tensores Lógicos para Interpretação Semântica de Imagens de Veículos

Lucas Martinuzzo Batista

Graduação em Engenharia da Computação Universidade Federal do Espírito Santo (UFES) Vitória-ES, Brasil lcmartinuzzo@gmail.com

Resumo—Este documento se trata de um relatório cuja finalidade é avaliar o desempenho das Redes de Tensores Lógicos desenvolvidas por Donadello et al. [1] em duas tarefas de Interpretação Semântica de Imagens, mais precisamente na classificação de bounding boxes de imagens de veículos e na detecção de relações part-of relevantes entre os objetos presentes nelas. O experimento descrito neste relatório mostra que o uso de background knowledge na forma de restrições lógicas pode melhorar a performance de abordagens puramente orientadas a dados, tal como a Fast R-CNN [2]. Além disso, ele pode aumentar a robustez do sistema de aprendizado nos casos em que existem erros nos labels dos dados de treinamento.

Palavras-chave—LTN; Fast R-CNN; bounding box; part-of; background knowledge; labels; características; treinamento; teste

I. INTRODUÇÃO

O processo de Interpretação Semântica de Imagens (Semantic Image Interpretation — SII) refere-se, de maneira geral, à extração de descrições semânticas estruturadas de imagens. Uma das abordagens para a solução de problemas de SII utiliza uma subdisciplina da Inteligência Artificial e do Aprendizado de Máquina denominada Aprendizado Estatístico Relacional (Statistical Relational Learning — SRL), a qual lida com modelos de domínio que apresentam incertezas e com estruturas relacionais complexas. As Redes de Tensores Lógicos (Logic Tensor Networks — LTNs) são uma estratégia de SRL que integra redes neurais artificiais com lógica difusa de primeira ordem para permitir aprendizado eficiente a partir de dados ruidosos na presença de restrições lógicas e raciocínio com fórmulas lógicas que descrevem propriedades gerais dos mesmos [3].

As LTNs combinam características visuais e conhecimento simbólico na forma de axiomas lógicos para solucionar dois problemas de SII [4]: a classificação de *bounding boxes* de imagens e a identificação de relações *part-of* entre os objetos que a compõem. Dessa forma, elas visam compensar a falta de correspondência entre características de baixo nível (numéricas) que podem ser observadas em uma imagem e descrições semânticas de alto nível associadas aos objetos presentes nela (*gap* semântico) através da utilização de *background knowledge*.

Neste experimento, as LTNs foram aplicadas sobre um subconjunto de imagens de veículos proveniente do conjunto

Pedro Reisen Zanotti

Graduação em Engenharia da Computação Universidade Federal do Espírito Santo (UFES) Vitória-ES, Brasil pedro.reisen15@gmail.com

de dados PASCAL-Part. Dados do Laboratório de Computação de Alto Desempenho (LCAD) não foram utilizados pelo simples fato de que os dados de entrada das LTNs precisam de um pré-processamento de origem desconhecida, o qual não é mencionado no artigo de Donadello et al. [1].

Este relatório está organizado da seguinte maneira: a Seção II menciona outros trabalhos que utilizaram *background knowledge* em tarefas de SII e elucida as diferenças dos mesmos em relação a este. A Seção III discute características de implementação e alguns formalismos das LTNs. A Seção IV descreve em detalhes os experimentos realizados e as técnicas de avaliação utilizadas para o modelo. Por fim, a Seção V apresenta e discute os resultados obtidos nos experimentos.

II. TRABALHOS CORRELATOS

Em seu artigo, Donadello et al. [1] cita outras abordagens que exploraram a ideia de utilizar background knowledge para resolver problemas de SII. Essencialmente, ele cita três vertentes dessas abordagens: as baseadas em lógica (Description Logics (DL) [4], bases de conhecimento), as baseadas em modelos gráficos probabilísticos (Markov Logic Networks (MLNs), Conditional Random Fields (CRFs)) e as baseadas em modelos linguísticos. Entretanto, todas elas possuem limitações em relação à capacidade das LTNs, tais como: falta de definições formais, inconsistências e domínios simples ou pouco expressivos, restritos a um conjunto de relações menos complexas que a relação de part-of.

III. METODOLOGIA

Para tarefas de SII, Donadello et al. [1] considera uma linguagem de lógica de primeira ordem cuja assinatura é $\Sigma_{\text{SII}} = <$ C, P, F>, em que C = $U_{\text{p}} \in \text{Imagens} \ b(p)$ é o conjunto de identificadores das *bounding boxes* de todas as imagens (conjunto de símbolos de constantes), F = Ø (conjunto de símbolos funcionais) e P = {P₁,P₂} (conjunto de símbolos de predicados). P₁ é o conjunto de predicados unários (por exemplo, P₁ = {Bicicleta, Carro, Motocicleta, Ônibus, Trem} e P₂ = {partOf}.

A partir de Σ_{SII} , é possível descrever fórmulas lógicas que podem ser interpretadas pela lógica difusa para lidar com exceções. Cada objeto no conjunto de interpretação está associado a um vetor *n*-dimensional de números reais. De fato, cada constante b que denota uma bounding box está associada a um conjunto de características geométricas que descrevem a posição e a dimensão dessa bounding box e a um conjunto de características semânticas que descrevem o score de classificação retornado pelo detector de bounding boxes para cada classe de objetos existente. Para uma bounding box $b \in C$ e uma classe de objetos $C_i \in P_1$, a interpretação ou grounding de b é descrita como $G(b) = \langle class(C_i, b), ..., class(C_{|P1|}, b),$ $x_0(b)$, $y_0(b)$, $x_1(b)$, $y_1(b)$, em que os últimos elementos são as coordenadas do vértice superior-esquerdo e do vértice inferiordireito de b e $class(C_i, b) \in [0,1]$ é o score de classificação de b em relação à classe de objetos C_i .

A partir da definição acima, Donadello et al. [1] estabelece expressões para o *grounding* de predicados, os quais incluem predicados unários e a relação partOf. Com isso, é possível avaliar o grau de confiança de qualquer fórmula atômica descrita a partir da linguagem $\Sigma_{\rm SII.}$

Um conjunto de treinamento pode ser representado por uma grounded theory $T_{expl} = \langle K_{expl}, \hat{G} \rangle$, em que K_{expl} é um conjunto de literais fechados do tipo $C_i(b)$ ou partOf(b, b') para cada bounding box b rotulada com C_i e para cada par de bounding boxes $\langle b,b' \rangle$ conectados pela relação part-of. O conjunto \hat{G} é um grounding parcial, ou seja, um grounding definido para um subconjunto de Σ_{SII} , especificamente para todas as bounding boxes de todas as imagens em que tanto as características semânticas $class(C_i, b)$ quanto as coordenadas dessas bounding boxes são computadas por um detector de objetos Fast R-CNN [2].

Como \hat{G} não está definido para os símbolos de predicado em P, as informações assertivas contidas em T_{expl} a respeito de bounding boxes específicas serão utilizadas pelos classificadores para que eles aprendam indutivamente a partir de exemplos positivos e negativos. É possível adicionar um conjunto de axiomas mereológicos M em K_{expl} como uma forma de background knowledge, de modo que se defina uma nova grounded theory $T_{prior} = \langle K_{prior}, \hat{G} \rangle$, em que $K_{prior} = K_{expl} + M$.

IV. EXPERIMENTOS

Avaliou-se a performance da abordagem discutida no artigo de Donadello et al. [1] para as duas tarefas de SII discutidas anteriormente: a classificação de bounding boxes e a detecção de relações part-of entre elas. Em especial, esta tarefa é importante pelo fato de que a relação de part-of pode ser usada para representar, através de reificação, uma classe maior de relações. Outras relações poderiam ter sido incluídas nessa avaliação, porém a complexidade de tempo da LTN cresce linearmente com o aumento do número de axiomas lógicos. Também se avaliou a robustez da abordagem em relação a dados de entrada ruidosos (dados com labels inexistentes ou errôneos, com discordâncias entre esses labels ou com objetos não localizados, por exemplo).

O conjunto de dados escolhido para treinamento e teste das LTNs foi o PASCAL-Part, que contém 10103 imagens com bounding boxes anotadas com tipos de objetos e com relações part-of definidas entre pares de bounding boxes. Os labels desse conjunto pertencem a três principais grupos: animais, veículos, e objetos de interior. É importante mencionar que objetos inteiros dentro de um mesmo grupo podem compartilhar partes entre si, enquanto objetos inteiros de grupos distintos não podem fazê-lo. Como os labels originais eram muito específicos, definiu-se um novo conjunto de labels mais genéricos para facilitar a atividade de aprendizado. Neste experimento, utilizou-se somente o grupo de veículos, o qual contém 9 labels para objetos inteiros (aeroplane, bicycle, bus, car, motorbike, train, coach, locomotive, boat) e 14 labels para partes de objetos (artifact_wing, body, engine, stern, wheel, chain_wheel, handlebar, headlight, saddle, bodywork, door, license_plate, mirror, window). Utilizou-se 80% dos dados de entrada para treinamento e 20% para teste.

A. Classificação de Tipos de Objetos e Detecção de Relações Part-Of

A partir de um conjunto de bounding boxes gerado por um detector de objetos Fast R-CNN [2], analisou-se o desempenho de duas LTNs distintas, uma treinada apenas com exemplos (T_{expl}) e outra treinada com o auxílio de background knowledge (Tprior) extraído de uma ontologia mereológica (WordNet). As LTNs utilizaram tensores de k = 6 camadas e um parâmetro de regularização de $\lambda = 10^{-10}$. Escolheu-se a Tnorma de Lukasiewicz para definir a semântica de conectivos lógicos e a média harmônica foi usada como operador de agregação. Foram executadas 1000 training epochs do algoritmo RMSProp disponível no TensorFlowTM. Em seguida, os resultados foram comparados com a performance da Fast R-CNN para a classificação de tipos de objetos e com a baseline da relação de inclusão $ir = area(b \cap b')/area(b)$ para a tarefa de detecção de relações part-of. Se $ir \geq 0.7$, pode-se afirmar que as bounding boxes pertencem a uma relação part-of.

Figura 1 – Exemplos de imagens do conjunto de dados PASCAL-Part.

Cada bounding box b é classificada em $C_i \in P_1$ se $G(C_i(b)) \ge 0,7$. Portanto, uma bounding box pode ser classificada em mais de uma classe. Para cada classe, a precisão e a revocação foram calculadas da maneira usual.

B. Robustez em Conjuntos de Treinamento Ruidosos

Para avaliar a robustez do modelo e medir o seu desempenho na presença ou ausência de axiomas lógicos, selecionou-se aleatoriamente k% das bounding boxes do conjunto de treinamento e alterou-se aleatoriamente os seus labels de classificação, com $k = \{10, 20, 30, 40\}$. De maneira similar, selecionou-se aleatoriamente k% dos pares de bounding boxes e alterou-se o valor do label das suas relações part-of. Para cada valor de K, treinou-se as LTNs T^k_{expl} e T^k_{prior} e avaliou-se os resultados nos dois problemas de SII mencionados anteriormente.

V. RESULTADOS

A. Classificação de Tipos de Objetos e Detecção de Relações Part-Of

Os resultados estão indicados na Fig. 2, na qual AUC é a área sobre a curva de precisão-revocação. Eles mostram que, tanto para os tipos de objetos quanto para as relações *part-of*, a LTN treinada com conhecimento prévio representado através de axiomas mereológicos obteve melhor performance que a LTN treinada somente com exemplos. Além disso, o conhecimento prévio permitiu à LTN melhorar o desempenho do detector de objetos *Fast* R-CNN [2]. Diferentemente da *Fast* R-CNN, as LTNs fazem escolhas globais que levam em consideração todas as características semânticas e geométricas dos dados juntas. Isso oferece robustez ao classificador LTN ao custo de uma queda na precisão. Entretanto, os axiomas lógicos compensam essa perda.

B. Classificação de Tipos de Objetos e Detecção de Relações Part-Of

Como esperado, verificou-se que adicionar ruído nos *labels* de treinamento implica em uma queda de performance. Cada par de barras na Fig. 3 indica a AUC de T^k_{expl} e T^k_{prior} para um percentual k% de erros. Entretanto, os resultados indicaram que os axiomas LTN oferecem robustez ao ruído: apesar da queda geral no desempenho, observa-se uma diferença crescente entre a queda de performance da LTN treinada somente com exemplos e a queda de performance da LTN que incluiu *background knowledge*.

(a) LTNs com conhecimento prévio melhoram a performance da *Fast* R-CNN na classificação de tipos de objetos, alcançando uma AUC de 0,792, em comparação com 0,745.

(b) LTNs com conhecimento prévio superam a abordagem baseada em regras, alcancando uma AUC de 0.617, em comparação com 0.287.

Figura 2 – Curvas de precisão-revocação para a classificação de tipos de objetos e para a relação part-of entre os objetos.

Figura 3: AUC para os tipos de objetos e para a relação *part-of* com ruído crescente nos *labels* dos dados de treinamento. A queda na performance é notavelmente menor para a LTN treinada com *background knowledge*.

BIBLIOGRAFIA

- I. Donadello, L. Serafini e A. S. d'Avila Garcez, "Logic Tensor Networks for Semantic Image Interpretation", em Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI-17), 2017.
- [2] R. Girshick, "Fast R-CNN", na International Conference on Computer Vision (ICCV), 2015.
- [3] L. Serafini e A. S. d'Avila Garcez, "Leaning and reasoning with logic tensor networks", em Proc. AI*IA, páginas 334-348, 2016.
- [4] I. Donadello e L. Serafini, "Integration of numeric and symbolic information for semantic image interpretation", Intelligenza Artificiale, 10(1):33-47, 2016.