

BC-1308 Biofísica

Aula 7 Potencial de repouso. Potencial gradual. Potencial de ação. Sinapses.

Jiří Borecký CCNH 2014

Potencial da membrana Bases iônicas

Potencial de repouso e de ação. Sinapses

Membrana plasmática:

- permeável para K+, Cl-, HCO3-,
- Impermeável para Na⁺, Ca²⁺, proteínas/metabolitos aniônicos (A⁻)

Concentração de íons			
Intracelular [mM]		Extracelular [mM]	
Na ⁺	12	Na^+	145
\mathbf{K}^{+}	155	K^{+}	4
Ca ²⁺	0,0001	Ca^{2+}	2
C1-	4	C1-	120
HCO ₃ -	8	HCO ₃ -	27
proteínas (A-)	155	proteínas (A-)	0

- → Gradiente de K⁺ corresponde ao potencial $\Delta E = -59 \log(155/4) =$ -93,78 mV
- Gradiente de Na⁺ corresponderia ao potencial $\Delta E = -59*log(12/145) =$ +63,85 mV
- ➤ Gradiente de Cl- corresponderia ao potencial $\Delta E = 59*log(4/120) =$ -87,15 mV
- $\rightarrow \Delta E_{K} + \Delta E_{Na} + \Delta E_{CI} = -117,08 \text{ mV}$ (sem considerar permeabilidade)
- \triangleright GHK: \triangle E = -79 mV (P_{κ} =152 cm/s, $P_{Na} = 2 \text{ cm/s}, P_{CI} = 10 \text{ cm/s})$
- $\triangle \Delta E_{m} = \sim -70 \text{ a } -90 \text{ mV}$

- http://thevirtualheart.org/GHKindex.html
- http://www.nernstgoldman.physiology.arizona.edu/launch/
- ≻ngsim.swf

- ➤ Na⁺/K⁺-ATPase exporta 3 íons de Na+ e importa 2 K⁺ por ciclo
- ➤O transporte ativo é acoplado com a hidrólise de 1 ATP por ciclo
- ► A atividade resulta em uma carga negativa na célula por um ciclo de trabalho

Potencial de repouso e de ação. Sinapses

- Mecanismo de transporte ativo de íons de 3 Na⁺ para fora e 2 K⁺ para dentro da célula:
 - Aberta para dentro, afinidade fica alta para Na⁺/baixa para K⁺
 - A fosforilação favorece abertura da bomba para exterior
 - Aberta para fora, afinidade fica baixa para Na⁺/alta para K⁺
 - A desfosforilação favorece abertura da bomba para interior

NaK-ATPase.swf NaK.swf NaK-ATPase01.swf

- ▶Passo 1: Geração de gradientes de Na⁺ e K⁺:
 - Na,K-ATPase: Transporte ativo de 3 Na⁺ para exterior e 2 K⁺ para citoplasma (uma carga positiva para exterior por ciclo)
 - Gerados gradientes de:
 - Na⁺ (exterior: MUITOS → citoplasma poucos)
 - K⁺ (exterior: poucos ← citoplasma MUITOS)
- ▶Passo 2: Geração do potencial elétrico:
 - Canais de K são abertos K⁺ pode atravessar a membrana (para fora)
 - Canais de Na são fechados Na⁺ NÃO pode atravessar a membrana (para dentro)
 - Para cada K⁺ que sai do citoplasma, uma carga positiva é exportada para exterior – gerando potencial elétrico
 - Fluxo de K⁺ para dentro da célula cessa quando potencial químico de K⁺ se $0 = \Delta \tilde{\mu}_K = RT \ln \left(\frac{[K^+]_B}{[K^+]_A} \right) + zF(V_B - V_A)$ iguala ao potencial elétrico

$$RT \ln \left(\frac{[K^+]_A}{[K^+]_B} \right) = zF \Delta V_{(B-A)}$$

Potencial graduado

Potencial de repouso e de ação. Sinapses

C1999 Addison Wesley Longman, Inc.

- ➤ Potencial de ação = impulso nervoso
- ➤ Limiar -55 mV (cono inicial)
- Fase despolarizante (mais positiva) despolarização muda o potencial de -70 mV a +30 mV
- Fase repolarizante (mais negativa) repolarização é reversa, de +30 mV de volta a -70 mV
- Fase hiperpolarizante posterior: fase ou período refratário, no qual nenhum novo potencial de ação não pode ser gerado

Potencial de repouso e de ação. Sinapses

channel2.swf – visão espacial; actionp.swf – visão temporal

BC-1308 Biofísica

BC-1308 Biofísica

Potencial de repouso e de ação. Sinapses

Nature Reviews | Neuroscience

Potencial de ação cardíaco

Sinapse química

- Sinapse.swf
- neurotransf.swf NeuroMusculSinapse.swf

Sinapse química

Potencial de repouso e de ação. Sinapses

Sinapse excitatória

- Sinapse excitatórias causam que a membrana pós-sináptica é despolarizada, como por exemplo as sinapses entre neurônios motores e músculos esqueléticos.
- Os neurotransmissores mais comuns em sinapses excitatórias:
 - Acetilcolina (junção neuromuscular, contração muscular)
 - Glutamato (cérebro, aprendizagem e memória, Alzheimer?; junção neuromuscular de insetos)
 - Dopamina (cérebro, movimento voluntário, comportamento, Parkinson, esquizofrenia)
 - Serotonina (intestino, apetite)
 - Substancia P (dor)

➤ Sinapse inibitória

- Sinapses inibitórias causam a hiperpolarização da membrana pós-sináptica.
- Os neurotransmissores mais comuns em sinapses inibitórias de vertebrados são:
 - ácido gama-aminobutírico (GABA)
 - Glicina.
- As células pós-sinápticas das sinapses inibitórias apresentam canais de cloreto ligante dependentes. Quando ativados por um neurotransmissor, eles podem hiperpolarizar a membrana pós-sináptica. Assim há uma probabilidade menor de lançamento de um potencial de ação.

Potencial de repouso e de ação. Sinapses

(COOH)

Connexin structure

Potencial de repouso e de ação. Sinapses

▶ Coração:

Gap junctions são muito importante no músculo cardíaco – o sinal de contração passa eficientemente pela sinapse elétrica, permitindo contração quase simultânea do cardiomiócitos

▶Pele:

Este tecido depende muito nas comunicações via sinapses elétricas para sua diferenciação e proliferação

Cérebro:

Neurônios em núcleo vestibular, núcleo do nervo trigêmeo, núcleo inferior de oliva, área de tegumento ventral, astrócitos entre si

>Cerebelo:

Células de Purkinje (Purkyně) com células gliais de Bergmann

➤ Músculo:

Disco intercalar permitindo contração quase simultânea do miócitos da fibra muscular

Retina: (figura posterior)

≻Útero:

Sinapses elétricas são formadas temporariamente para facilitar o parto (ocitocina)

Potencial de repouso e de ação. Sinapses

▶ Coração:

Gap junctions são muito importante no músculo cardíaco – o sinal de contração passa eficientemente pela sinapse elétrica, permitindo contração quase simultânea do cardiomiócitos

▶Pele:

Este tecido depende muito nas comunicações via sinapses elétricas para sua diferenciação e proliferação

Cérebro:

Neurônios em núcleo vestibular, núcleo do nervo trigêmeo, núcleo inferior de oliva, área de tegumento ventral, astrócitos entre si

>Cerebelo:

Células de Purkinje (Purkyně) com células gliais de Bergmann

➤ Músculo:

Disco intercalar permitindo contração quase simultânea do miócitos da fibra muscular

Retina: (figura posterior)

≻Útero:

Sinapses elétricas são formadas temporariamente para facilitar o parto (ocitocina)

Potencial de repouso e de ação. Sinapses

Nature Reviews

Neuroscie

- ➤ Sinapses elétricas disparam contração síncrona de cardiomiócitos
- ➤SA = nodo sinoatrial (sinusal)
- >AV = nodo atrioventricular