Problem Set 13 - answers

Problem R-03N ($C_{20}H_{34}$): Interpret the 60 MHz variable temperature ¹H NMR spectrum of 1.2-dineopentyl-3,4,5,6-tetramethylbenzene in CCl_4 . Source: Dix, D. T.; Fraenkel, G.; Karnes, H. A.; Newman, M. S. *Tetrahedron Lett.* **1966**, 517

30 20 10

Hz

k is approximately 31/sec at this temperature (from line shape calculation using WINDNMR)

The protons broaden and coalesce as the rotation rate increases

When rotation is slow around the Ar-CH₂ bond, the benzyl protons become diastereotopic, forming an AB quartet.

Problem R-312. Below are presented variable temperature 56.4 MHz 19 F NMR spectra of SeF₄. From your knowledge of structure of compounds like SF₄ and SeF₄ interpret the NMR spectra.

What conclusion can be drawn form the observation that the +20 °C spectrum does not show the weak peaks flanking the low temperature triplets (see expansion)? (*Z. Anorg. Allg. Chem.* **1975**. *416*, 12).

Problem R-312. Below are presented variable temperature 56.4 MHz 19 F NMR spectra of SeF₄. From your knowledge of structure of compounds like SF₄ and SeF₄ interpret the NMR spectra.

What conclusion can be drawn form the observation that the +20 °C spectrum does not show the weak peaks flanking the low temperature triplets (see expansion)? (*Z. Anorg. Allg. Chem.* **1975**. *416*, 12).

Problem R-312. This type of hypervalent molecule has trigonal bipyramidal structure, with one site unoccupied. At -140 °C the molecule is static on the NMR time scale (slow Berry pseudorotation), giving an A_2X_2 pattern consisting of two triplets, with $\delta_A = 37.7$ and $\delta_X = 12.1$, $J_{AX} = 26$ Hz

⁷⁷Se: I = 1/2, 7.5% abundant

¹⁹F: I = 1/2, 100% abundant

The small triplets are ⁷⁷Se satellites on the ¹⁹F signals due to the 7.5% abundance of the spin 1/2 selenium isotope

The coalescence between the two triplets is the result of equilibration between the axial and equatorial fluorines. There are two possible mechanisms - one is the "Berry pseudorotation" process where the exial and eq fluorine trade places through a square pyramidal intermediate, or an intermolecular exchange of fluorines, which would also average the two shifts.

The absence of ⁷⁷Se satellites in the high-temperature spectrum means that the exchange must be intermolecular (fluorine transfer between molecules), which would cause loss of Se-F coupling in addition to averaging of the chemical shifts. A Berry pseudorotation mechanism would retain the Se-F coupling, and the final coalesced singlet would have singlet ⁷⁷Se satellites on the fluorine NMR peak. Their separation would be the average of the two low-temperature J values.

Problem R-99P ($C_{63}H_{85}B_2O_{15}P_5Pt$). This problem requires you to interpret the 36.43 MHz ^{31}P variable temperature NMR spectra of a platinum phosphite complex $Pt[P(OCH_3)_3]_5^{++}$ 2BPh ₄ . The spectrum was taken with proton decoupling.
(a) Analyze the low temperature (-151 °C) spectrum. Explain the origin of each of the marked peaks a to e with reference to the structure of the compound. Report coupling constants. Use the form $^{n}J_{X-Y}=00.0$ Hz. In your drawings, feel free to use "P" for the P(OCH $_{3}$) $_{3}$ group. Hint: make sure you consider the NMR active isotope(s) of platinum.
Peak a:
Peak b:
Peak c:
Peak d:
Peak e:
(h) N/h of control of the control of the characters of the NNAD constant of the characters of
(b) What molecular process is responsible for the changes in the NMR spectrum as a function of temperature? Is it intra- or intermolecular? Explain how you know.
(c) For the spectra at -98 °C and -69 °C, explain why peak f is broad and peak h is relatively sharp (at still higher temperature both f and h become sharp)

Problem R-99P $(C_{63}H_{85}B_2O_{15}P_5Pt)$. Temperature dependent 36.43 MHz {¹H} ³¹P NMR Spectra $Pt[P(OCH_3)_3]_5^{2+} 2B(C_6H_5)_5^{-}$ Solvent: CHCIF₂ (Source: J. Am. Chem. Soc. 1974, 96, 5760 3000 2000 1000 Hz 195 Pt I = 1/2, 33.7 adundance 100.00 f h 25.68 -69 °C 26.92 The a and b signals are the furthest apart, and are the last to coalesce The c and d signals (central peaks) coalesce second -98 °C As the rate of pseudorotation increases, the e and e' signals coalesce first - they are closest together. -130 °C P(eq) $^{2}J_{P-P} = 60 \text{ Hz}$ eq P(ap) $^{1}J_{P(ap)-Pt} = 2840 \text{ Hz}$ -151 °C $^{1}J_{P(eq)-Pt} = 4100 \text{ Hz}$ е <u>ınlınımıtınınılınının</u> 140 100 120 80 60 40 20 ppm

In the low-temperature spectrum there are distinct ³¹P signals for the apical and equatorial P - the apical a triplet, the equatorial a quartet due to P-P coupling. Each one has ¹⁹⁵Pt satellites, which are also triplets and quartets. The e and e' signals are quite close, and coupled to each other, so there is a lot of leaning, much less for the a and b signals (also coupled to each other) since they are far apart. The fact that the e and e' signals coalesce with each other to form h, and the a and b signals to form f, proves that the sign of the PtP coupling constant is the same for the apical and equatorial P (not surprising).