

Contents

1	Differentiating Polynomials	3	
2	Python Classes	7	
	2.1 Making a Polynomial class	8	
3	Common Polynomial Products	13	
	3.1 Difference of squares	13	
	3.2 Powers of binomials	16	
4	Factoring Polynomials	19	
	4.1 How to factor polynomials	20	
A	A Answers to Exercises		
Ind	dex	27	

Differentiating Polynomials

If you had a function that gave you the height of an object, it would be handy to be able to figure out a function that gave you the velocity at which it was rising or falling. The process of converting the position function into a velocity function is known as *differentiation* or *finding the derivative*.

There are a bunch of rules for finding a derivative, but differentiating polynomials only requires three:

- The derivative of a sum is equal to the sum of the derivatives.
- The derivative of a constant is zero.
- ullet The derivative of a nonconstant monomial at^b (a and b are constant numbers, t is time) is abt^{b-1}

So, for example, if I tell you that the height in meters of quadcopter at second t is given by $2t^3 - 5t^2 + 9t + 200$. You could tell me that its vertical velocity is $6t^2 - 10t + 9$

Exercise 1 Differentation of polynomials

Differentiate the following polynomials.	—— Working Space ——	
	Answer on Page 23	

Notice that the degree of the derivative is one less than the degree of the original polynomial. (Unless, of course, the degree of the original is already zero.)

Now, if you know that a position is given by a polynomial, you can differentate it to find the object's velocity at any time.

The same trick works for acceleration: Let's say you know a function that gives an object's velocity. To find its acceleration at any time, you take the derivative of the velocity function.

Exercise 2 Differentation of polynomials in Python

Working Space Write a function that returns the derivative of a polynomial in poly.py. It should look like this: def derivative_of_polynomial(pn): ...Your code here... When you test it in test.py, it should look like this: # 3x**3 + 2x + 5p1 = [5.0, 2.0, 0.0, 3.0]d1 = poly.derivative_of_polynomial(p1) # d1 should be 9x**2 + 2print("Derivative of", poly.polynomial_to_string(p1),"is", poly.polynomial_to_string(d1)) # Check constant polynomials p2 = [-9.0]d2 = poly.derivative_of_polynomial(p2) # d2 should be 0.0 print("Derivative of", poly.polynomial_to_string(p2),"is", poly.polynomial_to_string(d2))

_ Answer on Page 23

Python Classes

The built-in types, like strings have functions associated with them. So, for example, if you needed a string converted to uppercase, you would call it's upper() function: -

```
my_string = "houston, we have a problem!"
louder_string = my_string.upper()
```

This would set louder_string to "HOUSTON, WE HAVE A PROBLEM!" When a function is associated with a datatype like this, it called a *method*. A datatype with methods is known as a *class*. The data of that type is known as *instance* of that class. For example, in the example, we would say "my_string is an instance of the class str. str has a method called upper"

The function type will tell you the type of any data:

```
print(type(my_string))
```

This will output

```
<class 'str'>
```

A class can also define operators. +, for example, is redefined by str to concatenate strings together:

```
long_string = "I saw " + "15 people"
```

2.1 Making a Polynomial class

You have created a bunch of useful python functions for dealing with polynomials. Notice how each one has the word "polynomial" in the function name like derivative_of_polynomial. Wouldn't it be more elegant if you had a Polynomial class with a derivative method? Then you could use your polynomial like this:

```
a = Polynomial([9.0, 0.0, 2.3])
b = Polynomial([-2.0, 4.5, 0.0, 2.1])

print(a, "plus", b , "is", a+b)
print(a, "times", b , "is", a*b)
print(a, "times", 3 , "is", a*3)
print(a, "minus", b , "is", a-b)

c = b.derivative()

print("Derivative of", b ,"is", c)

And it would output:

2.30x^2 + 9.00 plus 2.10x^3 + 4.50x + -2.00 is 2.10x^3 + 2.30x^2 + 4.50x + 7.00
2.30x^2 + 9.00 times 2.10x^3 + 4.50x + -2.00 is 4.83x^5 + 29.25x^3 + -4.60x^2 + 40.50x + -18.00
2.30x^2 + 9.00 times 3 is 6.90x^2 + 27.00
2.30x^2 + 9.00 minus 2.10x^3 + 4.50x + -2.00 is -2.10x^3 + 2.30x^2 + -4.50x + 11.00

Derivative of 2.10x^3 + 4.50x + -2.00 is 6.30x^2 + 4.50
```

Create a file for your class definition called Polynomial.py. Enter the following:

```
class Polynomial:
    def __init__(self, coeffs):
        self.coefficients = coeffs.copy()

    def __repr__(self):
```

```
# Make a list of the monomial strings
    monomial_strings = []
    # For standard form we start at the largest degree
    degree = len(self.coefficients) - 1
    # Go through the list backwards
    while degree >= 0:
        coefficient = self.coefficients[degree]
        if coefficient != 0.0:
            # Describe the monomial
            if degree == 0:
                monomial_string = "{:.2f}".format(coefficient)
            elif degree == 1:
                monomial_string = "{:.2f}x".format(coefficient)
            else:
                monomial_string = "{:.2f}x^{}".format(coefficient, degree)
            # Add it to the list
            monomial_strings.append(monomial_string)
        # Move to the previous term
        degree = degree - 1
    # Deal with the zero polynomial
    if len(monomial_strings) == 0:
        monomial_strings.append("0.0")
    # Separate the terms with a plus sign
    return " + ".join(monomial_strings)
def __call__(self, x):
    sum = 0.0
    for degree, coefficient in enumerate(self.coefficients):
        sum = sum + coefficient * x ** degree
    return sum
def __add__(self, b):
    result_length = max(len(self.coefficients), len(b.coefficients))
    result = []
    for i in range(result_length):
        if i < len(self.coefficients):</pre>
            coefficient_a = self.coefficients[i]
        else:
            coefficient_a = 0.0
```

```
if i < len(b.coefficients):</pre>
            coefficient_b = b.coefficients[i]
        else:
            coefficient_b = 0.0
        result.append(coefficient_a + coefficient_b)
    return Polynomial(result)
def __mul__(self, other):
    # Not a polynomial?
    if not isinstance(other, Polynomial):
        # Try to make it a constant polynomial
        other = Polynomial([other])
    # What is the degree of the resulting polynomial?
    result_degree = (len(self.coefficients) - 1) + (len(other.coefficients) - 1)
    # Make a list of zeros to hold the coefficents
    result = [0.0] * (result_degree + 1)
    # Iterate over the indices and values of a
    for a_degree, a_coefficient in enumerate(self.coefficients):
        # Iterate over the indices and values of b
        for b_degree, b_coefficient in enumerate(other.coefficients):
            # Calculate the resulting monomial
            coefficient = a_coefficient * b_coefficient
            degree = a_degree + b_degree
            # Add it to the right bucket
            result[degree] = result[degree] + coefficient
    return Polynomial(result)
__rmul__ = __mul__
def __sub__(self, other):
    return self + other * -1.0
def derivative(self):
    # What is the degree of the resulting polynomial?
    original_degree = len(self.coefficients) - 1
```

```
if original_degree > 0:
            degree_of_derivative = original_degree - 1
        else:
            degree_of_derivative = 0
        # We can ignore the constant term (skip the first coefficient)
        current_degree = 1
        result = []
        # Differentiate each monomial
        while current_degree < len(self.coefficients):</pre>
            coefficient = self.coefficients[current_degree]
            result.append(coefficient * current_degree)
            current_degree = current_degree + 1
        # No terms? Make it the zero polynomial
        if len(result) == 0:
            result.append(0.0)
        return Polynomial(result)
Create a second file called test_polynomial.py to test it:
from Polynomial import Polynomial
a = Polynomial([9.0, 0.0, 2.3])
b = Polynomial([-2.0, 4.5, 0.0, 2.1])
print(a, "plus", b , "is", a+b)
print(a, "times", b , "is", a*b)
print(a, "times", 3 , "is", a*3)
print(a, "minus", b , "is", a-b)
c = b.derivative()
print("Derivative of", b ,"is", c)
slope = c(3)
print("Value of the derivative at 3 is", slope)
Run the test code:
python3 test_polynomial.py
```


Common Polynomial Products

In math and physics, you will run into certain kinds of polynomials over and over again. In this chapter, I am going to cover some patterns that you will want to start to recognize.

3.1 Difference of squares

Watch **Polynomial special products: difference of squares** from Khan Academy at https://youtu.be/uNweU6I4Icw.

If you are asked what is (3x-7)(3x+7), you would use the distributive property to expand that to (3x)(3x) + (3x)(7) + (-7)(3x) + (-7)(7). Two of the terms cancel each other, so this is $(3x)^2 - (7)^2$. This would simplify to $9x^2 - 49$

You will see this pattern a lot. Anytime you see (a+b)(a-b), you should immediately recognize it equals a^2-b^2 . (Note that the order doesn't matter: (a-b)(a+b) also a^2-b^2 .)

Working the other way is important too: anytime you see a^2-b^2 , that you should recognize that you can change that into the product (a+b)(a-b). Making something into a product

like this is known as *factoring*. You probably have done prime factorization of numbers like $42 = 2 \times 3 \times 7$. In the next couple of chapters you will learn to factorize polynomials.

Exercise 3 Difference of Squares

Simply the following products

- 1. (2x-3)(2x+3)
- 2. $(7+5x^3)(7-5x^3)$
- 3. (x a)(x + a)
- 4. $(3-\pi)(3+\pi)$
- 5. $(-4x^3 + 10)(-4x^3 10)$
- 6. $(x + \sqrt{7})(x \sqrt{7})$ Factor the following polynomials:
- 7. $x^2 9$
- 8. $49 16x^6$
- 9. $\pi^2 25x^8$
- 10. $x^2 5$

Working Space

_____ Answer on Page 24

We are often interested in the roots of a polynomial, that is we want to know "For what values of x does the polynomial evaluate to zer?" For example, when you deal with falling bodies, the first question you might ask would be "How many seconds before the hammer hits the ground?" Once you have factored a polynomial into binomials, you can easily find the roots.

For example, what are the roots of x^2-5 ? You just factored it into $(x+\sqrt{5})(x-\sqrt{5})$ This product is zero if and only if one of the factors is zero. The first factor is only zero when x is $-\sqrt{5}$. The second factor is zero only when x is $\sqrt{5}$. Those are the only two roots of this polynomial.

Let's check that result. $\sqrt{5}$ is a little more than 2.2. Using your Python code, you can graph the polynomial:

```
import poly.py
import matplotlib.pyplot as plt
```

```
# x**2 - 5
pn = [-5.0, 0.0, 1.0]
# These lists will hold our x and y values
x_list = []
y_list = []
# Start at x=-3
current_x = -3.0
# End at x=3.0
while current_x < 3.0:
    current_y = poly.evaluate_polynomial(pn, current_x)
    # Add x and y to respective lists
    x_list.append(current_x)
    y_list.append(current_y)
    # Move x forward
    current_x += 0.1
# Plot the curve
plt.plot(x_list, y_list)
plt.grid(True)
plt.show()
```


It does, indeed, seem to cross the x-axis near -2.2 and 2.2.

3.2 Powers of binomials

You can raise whole polynomials to exponents. For example,

$$(3x^3 + 5)^2 = (3x^3 + 5)(3x^3 + 5)$$
$$= 9x^6 + 15x^3 + 15x^3 + 25 = 9x^6 + 30x^3 + 25$$

A polynomial with two terms is called a *binomial*. $5x^9 - 2x^4$, for example, is a binomial. In this section, we are going to develop some handy techniques for raising a binomial to some power.

Looking at the previous example, you can see that for any monomials a and b, $(a+b)^2=a^2+2ab+b^2$. So, for example, $(7x^3+\pi)^2=49x^6+14\pi x^3+\pi^2$

Exercise 4 Squaring binomials

Simply the following

- 1. $(x+1)^2$
- 2. $(3x^5 + 5)^2$
- 3. $(x^3-1)^2$
- 4. $(x \sqrt{7})^2$

Working Space ———

_____ Answer on Page 24

What about $(x + 2)^3$? You can do it as two separate multiplications:

$$(x+2)^3 = (x+2)(x+2)(x+2)$$

$$= (x+2)(x^2+4x+4) = x^3+4x^2+4x+2x^2+8x+8$$

$$= x^3+6x^2+12x+8$$

And, in general, we can say that for any monomials a and b, $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

What about higher powers? $(a+b)^4$, for example? You could use the distributive property four times, but it starts to get pretty tedious.

Here is a trick. This is known as Pascal's triangle

Each entry is the sum of the two above it.

The coefficients of each term are given by the entries in Pascal's triangle:

$$(a+b)^4 = 1a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + 1b^4$$

Exercise 5 Using Pascal's Triangle

1. What is $(x + \pi)^5$?

Answer on Page 25

Factoring Polynomials

We factor a polynomial into two or more polynomials of lower degree. For example, let's say that you wanted to factor $5x^3 - 45x$. You would note that you can factor out 5x from every term. Thus,

$$5x^3 - 45x = (5x)(x^2 - 9)$$

And then, you might notice that the second factor looks like the difference of squares, so

$$5x^3 - 45x = (5x)(x+3)(x-3)$$

That is as far as we can factorize this polynomial.

Why do we care? The factors make it easy to find the roots of the polynomial. This polynomial evaluates to zero if and only if at least one of the factors is zero. Here we see that

- The factor (5x) is zero when x is zero.
- The factor (x + 3) is zero when x is -3.
- The factor(x 3) is zero when x is 3.

So looking at the factorization, you can see that $5x^3 - 45x$ is zero when x is 0, -3, or 3.

This is a graph of that polynomial with its roots circled:

4.1 How to factor polynomials

The first step when you are trying to factor a polynomial is to find the greatest common divisor for all the terms, and pull that out. In this case, the greatest common divisor will also be a monomial: its degree is the least of the degrees of the terms, its coefficient will be the greatest common divisor of the coefficients of the terms.

For example, what can you pull out of this polynomial?

$$12x^{1}00 + 30x^{3}1 + 42x^{1}7$$

The greatest common divisor of the coefficients (12, 30, and 42) is 6. The least of the degrees of terms (100, 31, and 17) is 17. So you can pull out $6x^{1}7$:

$$12x^{1}00 + 30x^{3}1 + 42x^{1}7 = (6x^{1}7)(2x^{8}3 + 5x^{1}4 + 7)$$

So, now you have the product of a monomial and a polynomial. If you are lucky, the polynomial part looks familiar, like the difference of squares or a row from Pascal's triangle.

Often you are trying factor a quadratic like $x^2 + 5x + 6$ in a pair of binomials. In this case, the result would be (x + 3)(x + 2). Let's check that:

$$(x+3)(x+2) = (x)(x) + (3)(x) + (2)(x) + (3)(2) = x^2 + 5x + 6$$

Notice that 3 and 2 multiply to 6 and add to 5. If I were trying to factor $x^2 + 5x + 6$, I would ask myself"What are two numbers that when multiplied equal 6 and when added equal 5?" And I would might guess wrong a couple of times. For example, I might say to myself "Well, 6 times 1 is 6. Maybe those work. But 6 and 1 add 7. So those don't work."

Solving these sorts of problems are like solving a Sudoku puzzle: you try things and realize they are wrong, so you backtrack and try something else.

The numbers are sometimes negative. For example, $x^2 + 3x - 10$ factors into (x+5)(x-2).

Exercise 7 Factoring quadratics

— Working Space	
Answer on Page 25	

APPENDIX A

Answers to Exercises

Answer to Exercise 1 (on page 4)

Answer to Exercise 2 (on page 5)

```
def derivative_of_polynomial(pn):
    # What is the degree of the resulting polynomial?
    original_degree = len(pn) - 1
    if original_degree > 0:
        degree_of_derivative = original_degree - 1
    else:
        degree_of_derivative = 0

# We can ignore the constant term (skip the first coefficient)
    current_degree = 1
```

```
result = []

# Differentiate each monomial
while current_degree < len(pn):
    coefficient = pn[current_degree]
    result.append(coefficient * current_degree)
    current_degree = current_degree + 1

# No terms? Make it the zero polynomial
if len(result) == 0:
    result.append(0.0)</pre>
```

Answer to Exercise 3 (on page 14)

$$(2x-3)(2x+3) = 4x^{2} - 9$$

$$(7+5x^{3})(7-5x^{3}) = 49 - 25x^{6}$$

$$(x-a)(x+a) = x^{2} - a^{2}$$

$$(3-\pi)(3+\pi) = 9 - \pi^{2}$$

$$(-4x^{3}+10)(-4x^{3}-10) = 16x^{6} - 100$$

$$(x+\sqrt{7})(x-\sqrt{7}) = x^{2} - 7$$

$$x^{2} - 9 = (x+3)(x-3)$$

$$49 - 16x^{6} = (7+4x^{3})(7+4^{3})$$

$$\pi^{2} - 25x^{8} = (\pi+5x^{4})(\pi-5x^{4})$$

$$x^{2} - 5 = (x+\sqrt{5})(x-\sqrt{5})$$

Answer to Exercise 4 (on page 17)

$$(x+1)^2 = x^2 + 2x + 1$$
$$(3x^5 + 5)^2 = 9x^10 + 30x^5 + 25$$

$$(x^3 - 1)^2 = x^6 - 2x^3 + 1$$

$$(x - \sqrt{7})^2 = x^2 - 2x\sqrt{7} + 7$$

Answer to Exercise 5 (on page 18)

$$(x+\pi)^5 = x^5 + 5\pi x^4 + 10\pi^2 x^3 + 10\pi^3 + x^2 + 5\pi^2 x + \pi^5$$

Answer to Exercise 6 (on page 21)

Answer to Exercise 7 (on page 21)

INDEX

class in python, 8

differentiation polynomials, 3

factoring polynomials, 19