COMP 424 - Artificial Intelligence Lecture 5: Constraint Satisfaction Problems

Instructor: Jackie CK Cheung (jcheung@cs.mcgill.ca)

Readings: R&N Ch 6

Based on slides by Joelle Pineau

Change in Office Hours Today

- My office hours today are 1pm 3pm in MC 108N
- HW1 due in a week. Don't start it late!

Quick recap

- Constructive methods: Start from scratch and build up a solution.
 - Informed / uninformed methods.
- Iterative improvement/repair methods: Start with a solution (which may be broken / suboptimal) and improve it.
 - Hill-climbing, simulated annealing.

Search for optimization problems:

- Constructive methods: Start from scratch and build up a solution.
 - Informed / uninformed methods.
- Iterative improvement/repair methods: Start with a solution (which may be broken / suboptimal) and improve it.
 - Hill-climbing, simulated annealing.
- Global search: Start from multiple states that are far apart, and go all around the state space.

Evolutionary computing

- Refers generally to computational procedures patterned after biological evolution.
- Many solutions (individuals) exist in parallel.
- Nature looks for the best individual (i.e. the fittest).
- Evolutionary search procedures are also parallel, perturbing probabilistically several potential solutions.

Genetic algorithms

- A candidate solution is called an individual.
 - In a traveling salesman problem, an individual is a tour
- Each individual has a fitness
 - fitness = numerical value proportional to quality of that solution
- A set of individuals is called a population.
- Populations change over generations, by applying operations to individuals.
 - operations = {mutation, crossover, selection}
- Individuals with higher fitness are more likely to survive & reproduce.
- Individual typically represented by a binary string:
 - allows operations to be carried out easily.

Mutation

- A way to generate desirable features that are not present in the original population by injecting random change.
 - Typically mutation just means changing a 0 to a 1 (and vice versa).
- The mutation rate controls prob. of mutation occurring
- We can allow mutation in all individuals, or just in the offspring.

Crossover

- Combine parts of individuals to create new individuals.
- Single-point crossover:
 - Choose a crossover point, cut individuals there, swap the pieces.

- Implementation:
 - Use a crossover mask, which is a binary string
 E.g. mask = 1110000
- Multi-point crossover can be implemented with arbitrary mask.

Encoding operators as binary masks

Typical genetic algorithm

GA(Fitness, threshold, p, r, m)

- Initialize: $P \leftarrow p$ random individuals
- Evaluate: for each h ∈ P, compute Fitness(h)
- While max_h Fitness(h) < threshold
 - <u>Select</u>: Probabilistically select (1-r)p members of P to include in P_s
 - <u>Crossover</u>: Probabilistically select rp/2 pairs of individuals from P. For each pair (h_1 , h_2), produce two offspring by applying a crossover operator. Include all offspring in P_s .
 - Mutate: Invert a randomly selected bit in m*p randomly selected members of P_s
 - Update: $P \leftarrow P_s$
 - Evaluate: for each h ∈ P, compute Fitness(h)
- Return the individual from P that has the highest fitness.

Selection: Survival of the fittest

- As in natural evolution, fittest individuals are more likely to survive.
- Several ways to implement this idea:
 - 1. Fitness proportionate selection: $P(i) = \frac{Fitness(i)}{\sum_{j=1}^{p} Fitness(j)}$ Can lead to crowding (multiple copies being propagated).
 - 2. Tournament selection:

Pick *i*, *j* at random with uniform probability. With prob *p* select the fitter one. Only requires comparing two individuals.

3. Rank selection:

Sort all hypothesis by fitness. Probability of selection is proportional to rank.

 $P(i) = rac{e^{Fitness(i)/T}}{\sum_{j=1}^{p} e^{Fitness(j)/T}}$

4. Softmax (Boltzman) selection:

Elitism

- The best solution can "die" during evolution
- In order to prevent this, the best solution ever encountered can always be "preserved" on the side
- If the "genes" from the best solution should always be present in the population, it can also be copied in the next generation automatically, bypassing the selection process.
- Note that the best solution ever encountered is typically saved in hill climbing and simulated annealing as well.

Genetic algorithms as search

- States: possible solutions
- Search operators: mutation, crossover, selection
- Relation to previous search algorithms:
 - Parallel search, since several solutions are maintained in parallel
 - Hill-climbing on the fitness function, but without following the gradient
 - Mutation and crossover should allow us to get out of local minima
 - Very related to simulated annealing.

Example: Solving TSP with a GA

- Each individual is a tour.
- Mutation swaps a pair of edges (many other operations are possible and have been tried in literature.)
- Crossover cuts the parents in two and swaps them. Reject any invalid offsprings.
- Fitness is the length of the tour.
- Note that GA operations (crossover and mutation) described here are fancier that the simple binary examples given before.

Example: Solving TSP with a GA

N = 13

P = 100 elements in population

 μ = 4% mutation rate r = 50% reproduction rate

TSP example: Initial generation

TSP example: Generation 15

TSP example: Generation 30

The good and bad of GAs

Good:

- Intuitively appealing, due to evolution analogy.
- If tuned right, can be very effective (good solution with few steps.)

Bad:

- Performance depends crucially on the problem encoding. Good encodings are difficult to find!
- Many parameters to tweak! Bad parameter settings can result in very slow progress, or the algorithm is stuck in local minima.
- With mutation rate is too low, can get overcrowding (many copies of the identical individuals in the population).

Next topic: Searching with Constraints

Searching with constraints

Many interesting problems have strict constraints:
 E.g. Must visit city A (to re-supply) before visiting city B (to sell).

- How can we incorporate this information in the search process?
 - At a minimum: Ensure the search will be limited to solutions that respect the constraints. Sometimes very few "legal solutions".
 - Ideally: Use the constraints to narrow the search space.

Example

 Color a map so that no adjacent territories have the same color.

Constraint satisfaction problems (CSPs)

- A CSP is defined by:
 - Set of variables V_i, that can take values from domain D_i
 - Set of constraints specifying what combinations of values are allowed (for subsets of variables, eg. pairs of variables)
 - Constraints can be represented:
 - Implicitly, as a function, testing for the satisfaction of the constraint.
 E.g. C₁≠C₂
 - Explicitly, as a list of allowable values. E.g. (C₁=R, C₂=G), (C₁=G, C₂=R), (C₁=B, C₂=R), ...
- A CSP solution is an assignment of values to variables such that all the constraints are true.
- We typically want to find <u>any solution</u> or find that there is <u>no solution</u>.

Example

- Variables WA, NT, Q, NSW, V, SA, T
- Domains D_i = {red,green,blue}
- Constraints: adjacent regions must have different colors
- E.g., WA ≠ NT

Example

- Solutions are complete and consistent assignments.
- E.g., WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue,
 T = green

Varieties of variables

- Boolean variables (e.g. satisfiability)
- Finite domain, discrete variables (e.g. colouring)
- Infinite domain, discrete variables (e.g. start/end time of operation in scheduling)
- Continuous variables.

Problem complexity? Ranges from solvable in poly-time (e.g. linear programming) to NP-complete to undecidable.

Varieties of constraints

- Unary: involve one variable and one constraint.
- Binary.
- Higher-order (involve 3 or more variables).

Varieties of constraints

- Unary: involve one variable and one constraint.
- Binary.
- Higher-order (involve 3 or more variables).
- Relations:
 - $T_1 + d_1 \le T_2$ (Task₂ has to come after Task₁) Scheduling
 - Alldiff (variables in a row), Alldiff (variables in a column),
 Alldiff (variables in a 3x3 square).
- Preferences (soft constraints): can be represented using costs and lead to constrained optimization problems.

Real-world CSPs

Often involves allocating *limited* resources:

- Timetable problems (e.g. which class is offered when, where)
- Hardware configuration.
- Transportation scheduling. Factory scheduling. Floor planning.
- Puzzle solving (crosswords, Sudoku)

Overview of approaches for solving CSPs

Constructive approach

- State is defined by the set of values assigned so far.
- Apply forward search to fill the solution.
- This is a general purpose algorithm which works for all CSPs.

Random approach

- Start with a broken but complete assignment of values to variables.
- Gradually fix broken constraints by re-assigning variables.
- Essentially use optimization approaches (hill-climbing, simulated annealing).

Constructive search for CSPs

Problem definition:

- State: defined by set of values assigned so far, could be partial and/or inconsistent assignment
- Initial state: all variables are unassigned.
- Operators: assign a value to an unassigned variable.
- Goal test: all variables assigned, no constraint violated.
 i.e. complete and consistent assignment

Constructive search for CSPs

- Problem definition:
 - State: defined by set of values assigned so far, could be partial and/or inconsistent assignment
 - Initial state: all variables are unassigned.
 - Operators: assign a value to an unassigned variable.
 - Goal test: all variables assigned, no constraint violated.
 i.e. complete and consistent assignment
- Problem has deterministic action, fully observable state.
 Important observation: Depth is limited to the number of variables, n.
 So we can apply DFS (or depth-limited search)

Example

- Color abstract map so that adjacent countries don't same color.
 - Variables: Countries C_i
 - Domains: {Red, Blue, Green}
 - Constraints: $\{C_1 \neq C_2, C_1 \neq C_5, ...\}$

Standard uninformed search for map coloring

• Is this a practical approach? What is the complexity?

Standard uninformed search for map coloring

- Is this complete? Optimal? choose 1 of (n-1)variables

 Yes: known solution depth. Yes: If we check the constraints.
- Is this a practical approach? What is the complexity? $[n \times d] \times [(n-1) \times d] \times [(n-2) \times d] \times \times [2 \times d] \times d = n! \cdot d^n$

Analysis of the simple approach

Branching factor is very high: $\sum_i d$ (*i* sums over unassigned variables).

BUT: There can be only d^n unique complete assignments.

More important observations:

- Order in which variables are assigned is irrelevant -> Many paths are equivalent!
- Adding assignments cannot correct a violated constraint!

Constraint graph

- Need to reason about constraints
- Constraint graph: nodes are variables, arcs show constraints.
- Graph structure can be exploited to accelerate solution search.

E.g. Map colouring:

Exercise: 4 queens problem

Put 4 queens on 4x4 board so that none attack each other:

Partial assignment:

- Formulate this as a CSP by defining:
 - Variables and domains
 - Constraints
- Draw the constraint graph

4 Queens Problem

Put one queen per column. Let value indicate row of each queen.

- Variables: {Q₁, Q₂, Q₃, Q₄}
- Domain (same for all variables): {1, 2, 3, 4}
- Constraints:

```
Q_i \neq Q_j (cannot be in same row)
|Q_i - Q_i| \neq |i - j| (cannot be in same diagonal)
```

- Can also translate each constraint into set of allowable values for its variables:
 - Values for (Q_1, Q_2) : $(Q_1 = 1, Q_2 = 3), (Q_1 = 1, Q_2 = 4), (Q_1 = 2, Q_2 = 4)$ etc.

4 Queens Problem

Put one queen per column. Let value indicate row of each queen.

- Variables: $\{Q_1, Q_2, Q_3, Q_4\}$
- Domain (same for all variables): {1, 2, 3, 4}
- Constraints:

$$Q_i \neq Q_j$$
 (cannot be in same row)
 $|Q_i - Q_i| \neq |i - j|$ (cannot be in same diagonal)

Constraint graph:

Using constraint graph

- Perform inference using constraint graph in order to reduce search space
- Idea: Pre-process the graph to remove obvious inconsistencies
 - A variable is arc-consistent if every value in its domain satisfies that variable's binary constraints.
 - A network is generalized arc-consistent if every value in the domain of every variable are simultaneously arc-consistent.

Example: consistency constraints

A CSP with variables A, B, C, each with domain {1, 2, 3, 4}:

Arc-consistent variables:

Generalized arc-consistent variables:

How does this help us? Reduced domain = reduced search.

Algorithms: AC-3 (R&N 6.2)

Backtracking search

Like Depth-First Search, but **fix order of variable assignment** (so $b=|D_i|$).

Backtracking search

Like Depth-First Search, but **fix order of variable assignment** (so $b=|D_i|$).

Algorithm:

- Select an unassigned variable, X.
- For each $value = \{x_1, ..., x_n\}$ in the domain of that variable
 - If the value satisfies the constraints, let $X = x_i$ and exit the loop.
- If an assignment was found, move to the next variable.
- If no assignment, go back to preceding variable and try different value.
- This is the basic uninformed algorithm for CSPs.
 - Can solve n-queens for $n \approx 25$.

Idea: Keep track of legal values for unassigned variables.

- When you assign a variable X
 - look at each unassigned variable Y connected to X (by a constraint)
 - delete from Y's domain any value that is inconsistent the value of X
- Can solve n-queens for $n \approx 30$.

Idea: Keep track of legal values for unassigned variables.

- When you assign a variable X
 - look at each unassigned variable Y connected to X (by a constraint)
 - delete from Y's domain any value that is inconsistent the value of X

E.g. Map coloring.

	Nothing assigned	
C1	RGB	
C2	RGB	
C3	RGB	
C4	RGB	
C5	RGB	
C6	RGB	

Idea: Keep track of legal values for unassigned variables.

- When you assign a variable X
 - look at each unassigned variable Y connected to X (by a constraint)
 - delete from Y's domain any value that is inconsistent the value of X

E.g. Map coloring.

	Nothing assigned	Assign C1 = Red	
C1	RGB	R	
C2	RGB	GB	
C3	RGB	GB	
C4	RGB	RGB	
C5	RGB	GB	
C6	RGB	RGB	

Idea: Keep track of legal values for unassigned variables.

- When you assign a variable X
 - look at each unassigned variable Y connected to X (by a constraint)
 - delete from Y's domain any value that is inconsistent the value of X

E.g. Map coloring.

	Nothing assigned	Assign C1 = Red	Assign C2 = G
C1	RGB	R	R
C2	RGB	GB	G
C3	RGB	GB	GB
C4	RGB	RGB	RGB
C5	RGB	GB	B by forward checking!
C6	RGB	RGB	RB Checking!

Idea: Keep track of legal values for unassigned variables.

- When you assign a variable X
 - look at each unassigned variable Y connected to X (by a constraint)
 - delete from Y's domain any value that is inconsistent the value of X

E.g. Map coloring.

	Nothing assigned	Assign C1 = Red	Assign C2 = G
C1	RGB	R	R
C2	RGB	GB	G
C3	RGB	GB	GB
C4	RGB	RGB	RGB
C5	RGB	GB	B by forward
C6	RGB	RGB	checking! RB

Can also apply **generalized arc-consistency**!

Idea: Keep track of legal values for unassigned variables.

- When you assign a variable X
 - look at each unassigned variable Y connected to X (by a constraint)
 - delete from Y's domain any value that is inconsistent the value of X

E.g. Map coloring.

	Nothing assigned	Assign C1 = Red	Assign C2 = G
C1	RGB	R	R
C2	RGB	GB	G
C3	RGB	GB	GB G
C4	RGB	RGB	RGB
C5	RGB	GB	В
C6	RGB	RGB	RB R

Can also apply **generalized arc-consistency**!

Idea: Keep track of legal values for unassigned variables.

- When you assign a variable X
 - look at each unassigned variable Y connected to X (by a constraint)
 - delete from Y's domain any value that is inconsistent the value of X

E.g. Map coloring.

	Nothing assigned	Assign C1 = Red	Assign C2 = G
C1	RGB	R	R
C2	RGB	GB	G
C3	RGB	GB	GB G
C4	RGB	RGB	RGB GB
C5	RGB	GB	В
C6	RGB	RGB	RB (R)

Can also apply **generalized arc-consistency**!

Heuristics for CSP search

- More intelligent decisions on:
 - Which variable to assign next?
 - Which value to choose for the variable?

E.g. Sudoku:

	2		4	5	6	7	8	9
4	5	7		8		2	3	6
6	8	9	2	3	7		4	
		5	3	6	2	9	7	4
2	7	4		9		6	5	3
3	9	6	5	7	4	8		
	4		6	1	8	3	9	7
7	6	1		4		5	2	8
9	3	8	7	2	5		6	

Common heuristics (for faster search)

- To select a variable:
 - 1. Minimum-remaining values: Choose the variable that is the most constrained (i.e. fewest legal values).
 - 2. Degree heuristic: Choose the variable that imposes the most constraints on the remaining variables.
 - Use this to break ties from Minimum-remaining value heuristic

Common heuristics (for faster search)

To select a variable:

- 1. Minimum-remaining values: Choose the variable that is the most constrained (i.e. fewest legal values).
- 2. Degree heuristic: Choose the variable that imposes the most constraints on the remaining variables.
 - Use this to break ties from Minimum-remaining value heuristic

To select a value:

 Least-constraining value: Assign the value that rules out the fewest values for other variables.

Taking advantage of problem structure

- Worst-case complexity is d^n (where d is the number of possible values and n is the number of variables.
- But a lot of problems are much easier!
- Disjoint components can be solved independently.

Taking advantage of problem structure

- Worst-case complexity is d^n (where d is the number of possible values and n is the number of variables.
- But a lot of problems are much easier!
- Disjoint components can be solved independently.
- Tree-structured constraint graph: complexity is O(nd²)

Taking advantage of problem structure

- Nearly-tree structured graph: complexity is $O(d^c(n-c)d^2)$ using **cutset conditioning**:
 - Find a set of variables which, when removed, turn graph into tree.
 - Instantiate them all possible ways. Good if c (size of cutset) is small.

Key insight of CSP: Leverage structure to accelerate solving!

Local search for CSPs

General idea: Iterative improvement algorithm

- Start with a broken but complete assignment of values to variables.
- Allow variable assignments that don't satisfy some constraints.
- Randomly select any conflicted variables.
- Operators reassign variable values.
 - Min-conflicts heuristic chooses value that violates the fewest number of constraints.

a.k.a. Hill-climbing optimization! (Could also use simulated annealing.)

Example: 4-Queens

- States: 4 queens in 4 columns (4⁴ = 256 states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation function: number of attacks

Performance of min-conflicts heuristic

• Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g. $n=10^7$). Why?

Performance of min-conflicts heuristic

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g. $n=10^7$). Why?
- The same appears to be true for many randomly-generated
 CSPs, except in a narrow range of the ratio:

Summary

- CSPs are everywhere. Be able to recognize them!
- Know how to cast CSP solving as a search problems.
- Understand basic concepts: constraint graph, arc consistency.
- Understand both constructive and iterative improvement methods to solve CSPs.
- Know how to apply the various heuristics:
 minimum-remaining-values, least-constraining value, degree
- Iterative improvement methods using min-conflict heuristic are very general and often work better.