

AULA 2 – ESTRUTURA E FUNCIONAMENTO DOS COMPUTADORES

OBJETIVO DA AULA

Conhecer os subsistemas componentes dos computadores, suas funções e relacionamentos.

APRESENTAÇÃO

Nesta aula vamos estudar os principais subsistemas do computador, seu funcionamento, características e influência no desempenho.

Os computadores atuais funcionam conforme a proposta de Von Neumann, que idealizou o computador como um sistema de processamento de dados com um programa armazenado na memória. Assim, chamamos essa forma de organização de **Arquitetura de Von Neumann**.

A partir desse tipo de arquitetura, veremos como processador, memória e dispositivos de entrada e saída se comunicam e realizam suas tarefas.

CONTEÚDO

Os computadores, assim como qualquer máquina, são compostos por diversos componentes (*hardware* e *software*) que funcionam como uma equipe, cada um exercendo uma tarefa e produzindo ou obtendo coisas de outros componentes.

Vamos ver nesta aula essa estrutura e o funcionamento do computador desde o momento em que o ligamos até o que o desligamos.

Para começarmos, examinaremos a estrutura da Arquitetura de Von Neumann e seus aspectos principais, Figura 1.

UNIDADE DE CONTROLE

UNIDADE DE ARITMÉTICA E LÓGICA

ACUMULADOR

ENTRADA SAÍDA

FIGURA 1 | Arquitetura de Von Neumann

Elaborado pelo autor.

Resumidamente, a Arquitetura de Von Neumann se caracteriza pela existência de uma unidade de processamento executando um programa armazenado em uma estrutura de armazenamento ao qual damos o nome de memória. Vale observar aqui que o termo **memória** é utilizado aqui para nos referirmos a todo o sistema de armazenamento existente no computador. No dia a dia, quando nos referimos à memória, estamos falando da **memória principal** do computador. Essa memória e outros componentes serão estudados em detalhes na próxima aula.

Continuando, na Arquitetura de Von Neumann tanto os programas quanto os dados ficam armazenados na mesma estrutura física.

A comunicação entre o usuário e o computador se dá através dos dispositivos de entrada e saída, sendo os mais conhecidos o mouse, teclado e monitor. Quanto mais sofisticados são esses dispositivos, mais amigável é o computador.

Os computadores funcionam da seguinte forma: executam **programas** que utilizam **dados** e produzem **informações** que utilizamos. Observe a Figura 2.

FIGURA 2 | O ciclo de processamento de dados

A Figura 2 apresenta o ciclo de processamento de dados. Na entrada vão os dados que temos. Então o computador os processa e produz resultados que nos são disponibilizados

o conteú**na saída de Rodemos também spos seferir**s à entrada como **dados** en à saída como i**nformações** a ou distribuica

Como exemplo, imagine que temos dois números quaisquer, 5 e 11, e queremos encontrar sua média aritmética.

Nesse caso, os **dados** (ou entrada) serão os números 5 e 11, o **processamento** (ou programa) consistirá em somar os números e dividir o resultado por dois e a **informação** (ou saída) será 8.

Portanto, são necessárias algumas coisas para que o computador trabalhe:

- Uma forma de inserirmos os dados para isso temos o mouse e o teclado ou alguns dispositivos como leitores e telas touch;
- Um programa que execute os passos para produzir o resultado que esperamos. Tais programas são desenvolvidos em linguagens de programação, por profissionais chamados programadores. Essas linguagens têm representações que se aproximam da linguagem humana e necessitam de alguns recursos que as traduzam para a linguagem que o computador compreende;
- Uma forma do computador mostrar o que ele produziu para isso temos a tela e a impressora.

Vamos abordar agora os recursos necessários para o funcionamento do computador. Na aula passada abordamos os conceitos de *hardware* e *software* e mencionamos o sistema operacional. Nesta aula vamos detalhar um pouco mais alguns conceitos diretamente envolvidos com a estrutura e o funcionamento do computador. Vamos a alguns deles:

- Linguagens de programação Os programas de computador consistem em sequências de passos (que chamamos tecnicamente de instruções) executados para produzir um resultado qualquer. A analogia mais conhecida para entendermos o que é um programa é a da receita de bolo. Nesta, temos os ingredientes (dados) que são processados de acordo com uma regra e que, ao final, produzem o bolo (saída). Semelhantemente, em um programa seguimos uma lógica que nos leva ao resultado desejado como se fosse um roteiro de viagem seguido à risca. Existem no mercado inúmeras linguagens de programação com objetivos e aplicações diversos, entre as quais podemos destacar o Python e Java, Figura 3.
- Compiladores e interpretadores Ao escrevermos programas, usamos as linguagens de programação que se aproximam da linguagem humana, com algumas regras a que chamamos sintaxe. Porém, o que é fácil para nós, não é fácil para o computador. Assim, os compiladores e interpretadores são softwares cuja função é traduzir os nossos programas para a linguagem adequada ao computador.
- Código-fonte vs. código executável Como já entendemos o que são as linguagens de programação e o que são compiladores e interpretadores, fica fácil entendermos que o código-fonte é aquele escrito em uma linguagem de programação qualquer e o código

O conteúdo deste li**executável é aquele já traduzido para o que o computador vai consequir entender e executar**o ou distribuição

sujeitando-se aos infratores à responsabilização civil e criminal.

 Algoritmo – Um algoritmo é uma espécie de roteiro que preparamos antes de começar a codificar (escrever um código-fonte) um programa. No algoritmo, as ideias e os passos são definidos de maneira bem-organizada para que fique mais fácil escrever o programa. Podemos entender o algoritmo como o programa que ainda não foi codificado, mas cuja lógica já está definida.

FIGURA 3 | Algumas linguagens de programação

Fonte: Python, PHP e Java.

Outra coisa importante de observarmos é que nem sempre o usuário do computador é um humano. Muitos computadores trabalham executando tarefas muito específicas, cujos dados vêm de sensores e cujas saídas alimentam outros computadores.

A REPRESENTAÇÃO DE DADOS E INFORMAÇÕES NO COMPUTADOR

O computador, como uma ferramenta acessível a todas as pessoas, deixa transparente ao usuário muitos dos aspectos internos do seu funcionamento. Um deles é a maneira como as informações são armazenadas e representadas.

Comecemos pela representação de dados e instruções. Como são componentes eletrônicos, tudo o que o computador precisa interpretar e usar é representado em diferentes notações numéricas.

A principal delas é a base binária. Tudo o que é traduzido para que o computador possa utilizar é transformado em sinais elétricos e esses sinais são representados por zeros e uns. Observe a Figura 4:

FIGURA 4 | Um código em binário

O conteúdo deste livro eletrônico e licenciado para https://eubbarcados.com.br/conversao-entre-sistemas-de-numeracao/ sujeitando-se aos infratores à responsabilização civil e criminal.

A Figura 4 apresenta um pequeno trecho de um código, que foi escrito em alguma linguagem de alto nível (próxima do entendimento humano), e em seguida traduzido para que o computador o possa entender e executar. Difícil de entender? Felizmente essa tradução fica a cargo dos compiladores e interpretadores, e sua compreensão a cargo dos processadores.

Mas há profissionais que precisam entender e utilizar essas linguagens, que chamamos linguagens de baixo nível, por estarem muito próximo do que o computador compreende. São principalmente os profissionais de Ciência da Computação.

Outras bases importantes são a octal, que trabalha apenas com os algarismos de 0 a 7, e a hexadecimal, que trabalha com os algarismos de 0 a 9 e com as letras A, B, C, D, E e F. Esses sistemas são utilizados para tornar as informações representadas em binário um pouco mais compactas.

A Figura 5 mostra a tabela de correlação entre valores decimal, octal e hexadecimal.

FIGURA 5 | Correlação entre as bases decimal, binária, octal e hexadecimal

Decimal	Binário	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13

Elaborado pelo autor.

Mais adiante neste curso trabalharemos com essas conversões de base, bem como com a soma e subtração nessas bases.

Quanto ao armazenamento de informações, temos a memória, que é o conjunto de todos

os dispositivos usados para armazenar, temporariamente ou em definitivo, dados e progra-

mas. Esse sistema é organizado de forma hierárquica e é de fundamental importância no desempenho do computador. Na próxima aula estudaremos detalhadamente a organização e funcionamento da memória.

Com a demanda por computação em crescente aumento, as memórias dos computadores muitas vezes se mostram insuficientes para armazenar tantas informações.

Atualmente usamos o conceito de **armazenamento em nuvem**, que permite o armazenamento de grandes quantidades de dados e com um nível de segurança maior. Essas nuvens oferecem diversos serviços que envolvem acesso rápido e segurança e podem ser gratuitos ou pagos, Figura 6.

FIGURA 6 | Computação em nuvem

Fonte: DataRain.

Uma dica de segurança é que você tenha o hábito de fazer *backup* com frequência, especialmente de suas informações e arquivos mais importantes. O *backup* é uma forma de prevenção a acidentes que nos façam perder coisas muito importantes armazenadas no nosso computador.

O *backup* pode ser feito em uma nuvem ou em um dispositivo como um HD externo, mas é fundamental que você tenha esse hábito.

Quanto aos dispositivos de entrada e saída, os principais e mais usados são o teclado, o mouse, a impressora e o monitor. É importante saber que atualmente eles são reconhecidos automaticamente pelo computador (mais precisamente o processador), o que não acontecia antigamente, quando era preciso instalar um *driver*, que era um programa que permitia que o processador pudesse se comunicar com o respectivo dispositivo. Hoje esses drivers são instalados automaticamente e tudo o que precisamos fazer é conectar o dispositivo e

O conteúdo deste pro eletrónico é licenciado para Tassio - 04860559576, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuiçã sujeitando-se aos infratores à responsabilização civil e criminal.

CONSIDERAÇÕES FINAIS

Vimos nessa aula conceitos importantes que nos ajudam a compreender o funcionamento dos computadores, com a Arquitetura de Von Neumann sendo a base da organização dos nossos computadores.

Basicamente, esse funcionamento se dá a partir de uma entrada, um processamento e a exibição dos resultados desse processamento.

Abordamos questões de armazenamento e processamento, bem como as linguagens de programação (alto nível) e a linguagem do computador (baixo nível) e o processo de tradução entre o que compreendemos e o que o computador compreende.

Vimos também a forma como as informações são representadas internamente no processador com diferentes bases numéricas.

Após termos essa noção da estrutura de funcionamento dos computadores, é hora de estudar seus componentes, que é o que faremos na próxima aula. Até lá!

MATERIAIS COMPLEMENTARES

Assista a esse vídeo que apresenta o funcionamento do computador de forma bem didática: https://www.youtube.com/watch?v=R8rkkkfXThA.

REFERÊNCIAS

MONTEIRO, Mário. *Introdução à Organização de Computadores*. 5ª edição. Editora LTC. Livro (720 p) ISBN 978-8521615439.

O que é computação em nuvem. *DataRain*. Disponível em: https://www.datarain.com.br/blog/tecnologia-e-inovacao/o-que-e-computacao-em-nuvem/. Acesso em: 02 nov. 2022.

STALLINGS, William. *Arquitetura e organização de computadores: projeto para o desempe-nho.* 8ª edição. Editora Pearson. Livro (642 p.). ISBN 9788576055648. Disponível em: https://middleware-bv.am4.com.br/SSO/iesb/9788576055648>. Acesso em: 16 out. 2022.

TANENBAUM, Andrew S. *Organização estruturada de computadores*. 6ª edição. Editora Pearson. Livro (628 p.). ISBN 9788581435398. Disponível em: https://middleware-bv.am4.com. br/SSO/iesb/9788581435398>. Acesso em: 16 out. 2022.

TANENBAUM, Andrew S. *Sistemas operacionais modernos*. 3ª edição. Editora Pearson. Livro (674 p.). ISBN 9788576052371. Disponível em: https://middleware-bv.am4.com.br/SSO/iesb/9788576052371. Acesso em: 16 out. 2022.

O conteúdo deste livro eletrônico é licenciado para Tassio - 04860559576, vedada, por quaisquer meios e a qualquer título, a sua reprodução, cópia, divulgação ou distribuiçã sujeitando-se aos infratores à responsabilização civil e criminal.