For Obj. 1 - Design a combinational circuit with four inputs A, B, C & D and one output F.

The output F value is 0 if three or four of the inputs are 1; otherwise the value of Fix 1.

a) Truth table
Inputs

Output

A B C D F

OO OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

O

I	npuls			Output
	B	C	0.	F
A 000000000000000000000000000000000000	000000000	000000	00-0-0-0-0-0-0-0-	

b) Minimised Boolean Function >

 $F_{no\infty} = (B'+C_1^2D')(A'+C'+D')(A'+B'+C')(A'+B'+D')$

वित व ति है ल

KEROR BORDS


```
d) HDL code >
        library ieee;
        use icee std-logic 1164 all;
         entity tests is
              porct CA, B, C, D: in std. logic;
                                               F: out std_logic ;);
             end tests;
         architecture boolean_eq of tests is
             signal a, b, c, d, e, f, g, h, i, j: std-logic;
            Begin
                  ax = NOT A;
                  b <= NOT B;
                  CX = NOT C;
                  d <= NOTD;
                 ex= bor cord;
                 f < = a OR c OR d;
               gr = a OR b orc;
                h <= a OR b ord;
                                                            a political transfer
For Obj. 2 > Design a combinational circuit that accepts a 2-bit number and geneal an output binary number equal to the square of the input number.

2) Truth table >

Inputs 1
               i <= e ANDf;
```

Inputs		Outputs			
A	В	w	×	Y	2
0	0	0	0	0	0
0	1	0	0	0	1
1	0	0	ı	0	0
1	1	1	0	0	1

Forc 2->

Z = B

For Obj. 3 > Design, construct and test a circuit that generates an even partity bit from four Grassage bits.

a) Truth table ->

1	Inp	μł) :		Output
	A	B	c	0	F
	A 00000000		000006	00-0-0-0-0-0-0-0-	F 00-0000-0-
	1	1	00	0-0-	00

b) Minimized Boolean Circuit-

port (A, E: in stol logic;

No Holl sipel late 35

$$= (A \oplus B) (C \oplus O) + (A \oplus B) (C \oplus D)$$

c) Circuit Design ->

d) HDL code > library ieee; use i ece. std-logic. 1164. all; entity test 3 is port CA, B, C, D: in std-logic; F: out std-logic;) end test 3; architecture boolean_eq of text 3 is signal a, b :std-logic; Begin a: A XORB; b: a xorc; F: b xor 0; end boolean - eq;

What do you underestand by the terem majority logic?	2
(91) What do you understand by the term majority logic? Ans. Majority logic, a type of Boolean logic, is defined to be true if more than half of the	2
half of the ninputs are true, where nis odd.	e-
	e=
922) Suggest a suitable modification to be made in existing even purity circuit	8
that can be used to generate bit for odd parity.	2
ADROCOD ADROCOD	2
D 4080COD	2
	6
9)3) What is the function of a magnitude comparator circuit?	6
Ans > A digital compensatore ore magnitude comparea fore circuit is a haredware	5
electronic device that takes two numbers as input in binary form of determines	5
whether one number is greater than, less than or equal to the other numbers	5
Schematic Diagrams—	5
III>LAB ->	5
Obj. 1 -> It can be concluded for this combinational circuit we need 4 not gates,	5
Obj. 1 -> It can be concluded for this combinational circuit we need 4 not gates,	5
Obj. 1-> It can be concluded for this combinational circuit we need 4 not grates, 4 - or gates and 3 and grates.	5 5 5
Obj. 1 -> It can be concluded for this combinational circuit we need 4 not gates, 4 - or gates and 3 and gates. Obj. 2 -> It can be concluded for this combinational circuit we need 2 and gates	5 5 5 5
Obj. 1 -> It can be concluded for this combinational circuit we need 4 not gates, 4 or gates and 3 and gates Obj. 2 -> It can be concluded for this combinational circuit we need 2 and gates and 1 not gate.	5 5 5 5 5
Obj. 1 -> It can be concluded for this combinational circuit we need 4 not gates, 4 or gates and 3 and gates Obj. 2 -> It can be concluded for this combinational circuit we need 2 and gates and 1 not gate.	5 5 5 5 5 5 5 5
Obj. 1 -> It can be concluded for this combinational circuit we need 4 not gates, 4 or gates and 3 and gates. Obj. 2 -> It can be concluded for this combinational circuit we need 2 and gates and 1 not gate. Obj. 3 -> It can be concluded for this combinational circuit we need	5556666
Obj. 1 -> It can be concluded for this combinational circuit we need 4 not gates, 4 or gates and 3 and gates Obj. 2 -> It can be concluded for this combinational circuit we need 2 and gates and 1 not gate.	
Obj. 1 -> It can be concluded for this combinational circuit we need 4 not gates, 4 or gates and 3 and gates. Obj. 2 -> It can be concluded for this combinational circuit we need 2 and gates and 1 not gate. Obj. 3 -> It can be concluded for this combinational circuit we need	
Obj. 1 -> It can be concluded for this combinational circuit we need 4 not gates, 4 or gates and 3 and gates. Obj. 2 -> It can be concluded for this combinational circuit we need 2 and gates and 1 not gate. Obj. 3 -> It can be concluded for this combinational circuit we need	
Obj. 1 -> It can be concluded for this combinational circuit we need 4 not gates, 4 or gates and 3 and gates. Obj. 2 -> It can be concluded for this combinational circuit we need 2 and gates and 1 not gate. Obj. 3 -> It can be concluded for this combinational circuit we need	

5-

ID) POST LAB-