# Formula Sheet EE2E11

MaybE\_Tree

2022-09-07

### Power 1



| Name           | Type                   | Symbol | Unit |
|----------------|------------------------|--------|------|
| Complex Power  | Complex Value          | S      | VA   |
| Active Power   | Re(S)                  | P      | W    |
| Reactive Power | $\operatorname{Im}(S)$ | Q      | VAr  |
| Apparent Power | S                      | S      | VA   |

#### 1.1 **Factors**

Active Power  $= {\bf Distortion\ Factor} * {\bf Displacement\ Factor}$ Power Factor Apparent Power

 $\frac{\text{RMS of fundamental}}{\text{RMS of fundamental}} = 1 \quad \text{(when no harmonics)}$ Distortion Factor

 $\cos \phi$ , where  $\phi$  is phase difference between voltage and current Displacement Factor

#### Three-phase 2

| Property       | Y                                    | Δ                          |
|----------------|--------------------------------------|----------------------------|
| Voltage        | $V_{LL} = \sqrt{3}V_{\phi}$          | $V_{LL} = V_{\phi}$        |
| Current        | $I_L = I_\phi$                       | $I_L = \sqrt{3}I_\phi$     |
| Phase          | $V_{ab}$ leads $V_a$ by $30^{\circ}$ | $I_a$ lags $I_{ab}$ by 30° |
| Active Power   | $P = \sqrt{3}V_L$                    | $_{L}I_{L}\cos\phi$        |
| Reactive Power | $Q = \sqrt{3}V_L$                    | $L_L I_L \sin \phi$        |
| Apparent Power | $ S  = \sqrt{ S }$                   | $\sqrt{3}V_{\phi}I_{\phi}$ |

- All powers are given as total power (3 \* Power of single load/coil)
- $V_{\phi}$  is voltage across one coil.
- $I_{\phi}$  is current through one coil.
- $\phi$  is phase difference between voltage and current (conventionally, voltage has 0 phase offset).

### 3 Magnetic Concepts



# **General Equations**

 $[m s^{-1}] = \frac{5}{18} [km h^{-1}]$ Speed  $v = \omega R$ R is radius, v is linear speed. Angular Speed  $[\operatorname{rad} s^{-1}] = \frac{2\pi}{60} [\operatorname{rpm}]$ Revolutions per Minute  $P_{\rm mech} = T\omega$ Power

 $\frac{V_1}{V_2} = \frac{N_1}{N_2}$   $\frac{i_1}{i_2} = \frac{N_2}{N_1}$ Turns Ratio: Voltage

Turns Ratio: Current

## 5 Converters

- Glavanic isolation (flyback converter only) isolates high-voltage from low-voltage, more safe.
- Higher duty cycle = higher efficiency

### 5.1 Buck

Duty Cycle 
$$\frac{V_c}{V_s} = D$$
  
Current  $I_B = \frac{V_s(D-D^2)}{2Lf_s}$ 

- Peak diode current = peak inductor current
- Peak inductor current = average inductor current \* 2

### 5.2 Flyback

Duty Cycle 
$$\frac{V_c}{V_s} = \frac{N_2}{N_1} \frac{D}{1 - D}$$

## 6 DC Machines

| Value            | Symbol     | Unit      | Notes                  |
|------------------|------------|-----------|------------------------|
| Machine Constant | $K_m$      | ???       | Determined by geometry |
| Field Constant   | $K_{\phi}$ | ???       | Determined by geometry |
| Pole Field       | $\phi_p$   | Wb        | -                      |
| Torque           | T          | ${ m Nm}$ | -                      |
| Induced Voltage  | e          | V         | -                      |
| Armature Voltage | $r_a$      | V         | -                      |

Induced Voltage 
$$e = K_m \phi_p \omega$$
Torque  $T = K_m \phi_p i_a$ 
Field per pole
from Field Winding  $\phi_P = K_\phi i_f$ 



# 7 AC Machines

| Value                                  | Symbol    | $\operatorname{Unit}$                                                                                                                  | Notes                    |
|----------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Angular Speed                          | n         | rpm [revolutions per minute]                                                                                                           | -                        |
| Poles                                  | P         | -                                                                                                                                      | Always even              |
| Pole Pairs                             | p         | -                                                                                                                                      | p = P/2                  |
| Slip                                   | s         | ratio of angular speeds                                                                                                                | $0 \le s \le 1$          |
| Synchronou<br>Rotor Spee<br>Synchronou | d         | $n_s[\text{rpm}] = \frac{120f[\text{Hz}]}{P} = \frac{6}{2}$ $n_r = (1 - s)n_s$ $\omega_{\text{mech}} = \frac{2\pi f_{\text{elec}}}{p}$ | $rac{60f[	ext{Hz}]}{p}$ |
| Rotor Curr                             | ent Frequ | ency $f_r = sf_s$                                                                                                                      |                          |

Parama's equation  $P = \frac{V}{I}$  V is voltage, I is current, P is power.