ECE750T-28: Computer-aided Reasoning for Software Engineering

Lecture 17: SMT Solvers and the DPPL(\mathcal{T}) Framework

Vijay Ganesh (Original notes from Isil Dillig)

 An SMT (satisfiability modulo theory) solver is a tool that decides satisfiability of formulas in combination of various first-order theories

- An SMT (satisfiability modulo theory) solver is a tool that decides satisfiability of formulas in combination of various first-order theories
- SMT solvers are generalizations of SAT solvers

- An SMT (satisfiability modulo theory) solver is a tool that decides satisfiability of formulas in combination of various first-order theories
- SMT solvers are generalizations of SAT solvers
- Can think of SMT formula as SAT formula where propositional variables are replaced with formulas in first-order theories

- ► An SMT (satisfiability modulo theory) solver is a tool that decides satisfiability of formulas in combination of various first-order theories
- ▶ SMT solvers are generalizations of SAT solvers
- ► Can think of SMT formula as SAT formula where propositional variables are replaced with formulas in first-order theories
- ▶ Common first-order theories SMT solvers reason about:

- ► An SMT (satisfiability modulo theory) solver is a tool that decides satisfiability of formulas in combination of various first-order theories
- ▶ SMT solvers are generalizations of SAT solvers
- ► Can think of SMT formula as SAT formula where propositional variables are replaced with formulas in first-order theories
- ▶ Common first-order theories SMT solvers reason about:
 - Theory of equality

- ► An SMT (satisfiability modulo theory) solver is a tool that decides satisfiability of formulas in combination of various first-order theories
- ▶ SMT solvers are generalizations of SAT solvers
- Can think of SMT formula as SAT formula where propositional variables are replaced with formulas in first-order theories
- ▶ Common first-order theories SMT solvers reason about:
 - Theory of equality
 - Theory of rationals

- ► An SMT (satisfiability modulo theory) solver is a tool that decides satisfiability of formulas in combination of various first-order theories
- ▶ SMT solvers are generalizations of SAT solvers
- Can think of SMT formula as SAT formula where propositional variables are replaced with formulas in first-order theories
- ▶ Common first-order theories SMT solvers reason about:
 - Theory of equality
 - ► Theory of rationals
 - Theory of integers

- ► An SMT (satisfiability modulo theory) solver is a tool that decides satisfiability of formulas in combination of various first-order theories
- ▶ SMT solvers are generalizations of SAT solvers
- Can think of SMT formula as SAT formula where propositional variables are replaced with formulas in first-order theories
- Common first-order theories SMT solvers reason about:
 - Theory of equality

Theory of bitvectors

- Theory of rationals
- Theory of integers

- An SMT (satisfiability modulo theory) solver is a tool that decides satisfiability of formulas in combination of various first-order theories
- SMT solvers are generalizations of SAT solvers
- Can think of SMT formula as SAT formula where propositional variables are replaced with formulas in first-order theories
- Common first-order theories SMT solvers reason about:
 - Theory of equality

Theory of bitvectors

► Theory of rationals

Theory of arrays

Theory of integers

- An SMT (satisfiability modulo theory) solver is a tool that decides satisfiability of formulas in combination of various first-order theories
- SMT solvers are generalizations of SAT solvers
- Can think of SMT formula as SAT formula where propositional variables are replaced with formulas in first-order theories
- Common first-order theories SMT solvers reason about:
 - Theory of equality

Theory of bitvectors

► Theory of rationals

Theory of arrays

Theory of integers

Difference logic

 \blacktriangleright SMT solvers have gained enormous popularity over the last several years

- ▶ SMT solvers have gained enormous popularity over the last several years
- ► SMT solving is active research topic today

- ▶ SMT solvers have gained enormous popularity over the last several years
- ► SMT solving is active research topic today
- ► Many applications: software verification, programming languages, test case generation, planning and scheduling, . . .

- ▶ SMT solvers have gained enormous popularity over the last several years
- SMT solving is active research topic today
- ▶ Many applications: software verification, programming languages, test case generation, planning and scheduling, ...
- ► Slogan: "Whatever SAT solvers can do, SMT solvers can do better!"

- ▶ SMT solvers have gained enormous popularity over the last several years
- SMT solving is active research topic today
- ▶ Many applications: software verification, programming languages, test case generation, planning and scheduling, ...
- ► Slogan: "Whatever SAT solvers can do, SMT solvers can do better!"
- ▶ This is the case because SMT solvers generalize SAT solvers; they can handle much richer theories than propositional logic

► Many existing off-the-shelf SMT solvers:

- ► Many existing off-the-shelf SMT solvers:
 - Yices (SRI)

STP (Stanford)

Z3 (Microsoft Research)

MathSAT (U Trento, Italy)

CVC3 (NYU, U Iowa)

Barcelogic (Catalonia, Spain)

- ► Many existing off-the-shelf SMT solvers:
 - Yices (SRI)

STP (Stanford)

Z3 (Microsoft Research)

MathSAT (U Trento, Italy)

CVC3 (NYU, U Iowa)

- ► Barcelogic (Catalonia, Spain)
- Annual competition SMT-COMP between solvers; tools ranked in various categories

- ► Many existing off-the-shelf SMT solvers:
 - Yices (SRI)

STP (Stanford)

Z3 (Microsoft Research)

MathSAT (U Trento, Italy)

CVC3 (NYU, U Iowa)

- Barcelogic (Catalonia, Spain)
- Annual competition SMT-COMP between solvers; tools ranked in various categories
- ▶ All of these SMT solvers have many users

- ► Many existing off-the-shelf SMT solvers:
 - Yices (SRI)

STP (Stanford)

Z3 (Microsoft Research)

MathSAT (U Trento, Italy)

CVC3 (NYU, U Iowa)

- ► Barcelogic (Catalonia, Spain)
- Annual competition SMT-COMP between solvers; tools ranked in various categories
- All of these SMT solvers have many users
- For instance, at Microsoft, there are at least two dozen projects that rely on the Z3 SMT solver

▶ Plan for today: Get the complete picture of how SMT solvers work

- ▶ Plan for today: Get the complete picture of how SMT solvers work
- ▶ We've already learned about some aspects of SMT solvers

- ▶ Plan for today: Get the complete picture of how SMT solvers work
- We've already learned about some aspects of SMT solvers
- Already know how to decide satisfiability of several qff first-order theories (theory of equality, theory of rationals, theory of integers)

- ▶ Plan for today: Get the complete picture of how SMT solvers work
- We've already learned about some aspects of SMT solvers
- Already know how to decide satisfiability of several qff first-order theories (theory of equality, theory of rationals, theory of integers)
- Also already know how to combine these theories using Nelson-Oppen technique

- ▶ Plan for today: Get the complete picture of how SMT solvers work
- We've already learned about some aspects of SMT solvers
- Already know how to decide satisfiability of several qff first-order theories (theory of equality, theory of rationals, theory of integers)
- Also already know how to combine these theories using Nelson-Oppen technique
- Big missing piece: How to handle boolean structure of SMT formulas including disjunctions

Motivation for $\mathsf{DPLL}(\mathcal{T})$

▶ So far, decided satisfiability of first-order theories by converting to DNF

Motivation for $\mathsf{DPLL}(\mathcal{T})$

- ▶ So far, decided satisfiability of first-order theories by converting to DNF
- ▶ In reality, this is completely impractical: DNF conversion can yield exponentially larger formula

Motivation for DPLL(T)

- ▶ So far, decided satisfiability of first-order theories by converting to DNF
- In reality, this is completely impractical: DNF conversion can yield exponentially larger formula
- ▶ For many real problems, DNF conversion is prohibitively expensive

Motivation for $\mathsf{DPLL}(\mathcal{T})$

- ▶ So far, decided satisfiability of first-order theories by converting to DNF
- In reality, this is completely impractical: DNF conversion can yield exponentially larger formula
- ▶ For many real problems, DNF conversion is prohibitively expensive
- Thus, we need a way to decide satisfiability of SMT formulas without expensive conversion to DNF

Key idea underlying SMT solvers: Combine DPLL algorithm for SAT solving with theory solvers

- Key idea underlying SMT solvers: Combine DPLL algorithm for SAT solving with theory solvers
- Theory solver: Decision procedure for checking satisfiability in conjunctive fragment

- Key idea underlying SMT solvers: Combine DPLL algorithm for SAT solving with theory solvers
- Theory solver: Decision procedure for checking satisfiability in conjunctive fragment
- ► This architecture where we combine DPLL-based SAT solvers with theory solvers is known as DPLL(*T*) framework

- Key idea underlying SMT solvers: Combine DPLL algorithm for SAT solving with theory solvers
- Theory solver: Decision procedure for checking satisfiability in conjunctive fragment
- ► This architecture where we combine DPLL-based SAT solvers with theory solvers is known as DPLL(T) framework
- \blacktriangleright Called DPLL($\mathcal T$) because we combine DPLL algorithm with solver for theory $\mathcal T$

- Key idea underlying SMT solvers: Combine DPLL algorithm for SAT solving with theory solvers
- Theory solver: Decision procedure for checking satisfiability in conjunctive fragment
- ► This architecture where we combine DPLL-based SAT solvers with theory solvers is known as DPLL(T) framework
- ${\blacktriangleright}$ Called DPLL(${\mathcal T})$ because we combine DPLL algorithm with solver for theory ${\mathcal T}$
- ▶ However, $\mathcal T$ can be a combination theory, such as $\mathcal T_= \cup \mathcal T_{\mathbb Z}$

- Key idea underlying SMT solvers: Combine DPLL algorithm for SAT solving with theory solvers
- Theory solver: Decision procedure for checking satisfiability in conjunctive fragment
- ► This architecture where we combine DPLL-based SAT solvers with theory solvers is known as DPLL(T) framework
- \blacktriangleright Called DPLL($\mathcal T$) because we combine DPLL algorithm with solver for theory $\mathcal T$
- ▶ However, $\mathcal T$ can be a combination theory, such as $\mathcal T_= \cup \mathcal T_{\mathbb Z}$
- \blacktriangleright As before, solver for $\mathcal{T}_=\cup\mathcal{T}_\mathbb{Z}$ is obtained by using Nelson-Oppen technique

Main Idea of $\mathsf{DPLL}(\mathcal{T})$

In the DPLL(\mathcal{T}) framework, SAT solver handles boolean structure of formula

Main Idea of $\mathsf{DPLL}(\mathcal{T})$

- ▶ In the DPLL(\mathcal{T}) framework, SAT solver handles boolean structure of formula
- ► For this, treat each atomic formula as a propositional variable ⇒ resulting formula called boolean abstraction

Main Idea of DPLL(T)

- ▶ In the DPLL(\mathcal{T}) framework, SAT solver handles boolean structure of formula
- ► For this, treat each atomic formula as a propositional variable ⇒ resulting formula called boolean abstraction
- ▶ Now, use SAT solver to decide satisfiability of boolean abstraction

Main Idea of DPPL(T), cont.

 If there is no satisfying assignment to boolean abstraction, formula is UNSAT

Main Idea of DPPL(T), cont.

- If there is no satisfying assignment to boolean abstraction, formula is UNSAT
- If there is satisfying assignment to boolean abstraction, formula may not be SAT

Main Idea of DPPL(T), cont.

- If there is no satisfying assignment to boolean abstraction, formula is UNSAT
- If there is satisfying assignment to boolean abstraction, formula may not be SAT
- Main job of the theory solver is to check whether assignments made by SAT solver is Satisfiable Modulo Theory (SMT)

Main Idea of DPPL(\mathcal{T}), cont.

- ▶ If there is no satisfying assignment to boolean abstraction, formula is UNSAT
- ▶ If there is satisfying assignment to boolean abstraction, formula may not be SAT
- ▶ Main job of the theory solver is to check whether assignments made by SAT solver is Satisfiable Modulo Theory (SMT)
- ▶ If SAT solver finds assignment that is consistent with theory, then SMT formula is satisfiable

ightharpoonup SMT formula in theory ${\mathcal T}$ formed as usual (structural induction):

$$F := a_{\mathcal{T}}^i \mid F_1 \wedge F_2 \mid F_1 \vee F_2 \mid \neg F$$

SMT formula in theory \mathcal{T} formed as usual (structural induction):

$$F := a_{\mathcal{T}}^i \mid F_1 \wedge F_2 \mid F_1 \vee F_2 \mid \neg F$$

 For each SMT formula, define a bijective function B, called boolean abstraction function, that maps SMT formula to overapproximate SAT formula

- \triangleright SMT formula in theory \mathcal{T} formed as usual (structural induction):
 - $F := a_{\mathcal{T}}^i \mid F_1 \wedge F_2 \mid F_1 \vee F_2 \mid \neg F$
- ▶ For each SMT formula, define a bijective function \mathcal{B} , called boolean abstraction function, that maps SMT formula to overapproximate SAT formula
- ► Function *B* defined inductively as follows:

ightharpoonup SMT formula in theory $\mathcal T$ formed as usual (structural induction):

$$F := a_{\mathcal{T}}^i \mid F_1 \wedge F_2 \mid F_1 \vee F_2 \mid \neg F$$

- For each SMT formula, define a bijective function B, called boolean abstraction function, that maps SMT formula to overapproximate SAT formula
- ▶ Function *B* defined inductively as follows:

$$\mathcal{B}(a_{\mathcal{T}}^i) = b_i$$

ightharpoonup SMT formula in theory $\mathcal T$ formed as usual (structural induction):

$$F := a_{\mathcal{T}}^i \mid F_1 \wedge F_2 \mid F_1 \vee F_2 \mid \neg F$$

- For each SMT formula, define a bijective function B, called boolean abstraction function, that maps SMT formula to overapproximate SAT formula
- ▶ Function *B* defined inductively as follows:

$$\mathcal{B}(a_{\mathcal{T}}^{i}) = \mathbf{b_{i}}
\mathcal{B}(F_{1} \wedge F_{2}) = \mathcal{B}(F_{1}) \wedge \mathcal{B}(F_{2})$$

ightharpoonup SMT formula in theory $\mathcal T$ formed as usual (structural induction):

$$F := a_{\mathcal{T}}^i \mid F_1 \wedge F_2 \mid F_1 \vee F_2 \mid \neg F$$

- For each SMT formula, define a bijective function B, called boolean abstraction function, that maps SMT formula to overapproximate SAT formula
- ▶ Function *B* defined inductively as follows:

$$\begin{array}{ccc} \mathcal{B}(a_{\mathcal{T}}^i) & = & \pmb{b_i} \\ \mathcal{B}(F_1 \wedge F_2) & = & \mathcal{B}(F_1) \wedge \mathcal{B}(F_2) \\ \mathcal{B}(F_1 \vee F_2) & = & \mathcal{B}(F_1) \vee \mathcal{B}(F_2) \end{array}$$

▶ SMT formula in theory *T* formed as usual (structural induction):

$$F := a_{\mathcal{T}}^i \mid F_1 \wedge F_2 \mid F_1 \vee F_2 \mid \neg F$$

- ▶ For each SMT formula, define a bijective function \mathcal{B} , called boolean abstraction function, that maps SMT formula to overapproximate SAT formula
- ► Function *B* defined inductively as follows:

$$\begin{array}{ccc} \mathcal{B}(a_T^i) & = & \textcolor{red}{b_i} \\ \mathcal{B}(F_1 \wedge F_2) & = & \mathcal{B}(F_1) \wedge \mathcal{B}(F_2) \\ \mathcal{B}(F_1 \vee F_2) & = & \mathcal{B}(F_1) \vee \mathcal{B}(F_2) \\ \mathcal{B}(\neg F) & = & \neg \mathcal{B}(F_1) \end{array}$$

$$F: \quad x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

▶ What is the boolean abstraction of this formula?

$$F: x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

 $\triangleright \mathcal{B}(F) = b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)$

$$F: x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

- $\triangleright \mathcal{B}(F) = b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)$
- ▶ Boolean abstraction is also called boolean skeleton

$$F: x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

- $\triangleright \mathcal{B}(F) = b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)$
- ▶ Boolean abstraction is also called boolean skeleton
- ▶ Since \mathcal{B} is a bijective function, \mathcal{B}^{-1} also exists

$$F: x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

- $\triangleright \mathcal{B}(F) = b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)$
- ▶ Boolean abstraction is also called boolean skeleton
- ▶ Since \mathcal{B} is a bijective function, \mathcal{B}^{-1} also exists
- ▶ What is $\mathcal{B}^{-1}(b_2 \vee \neg b_1)$?

$$F: x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

- $\triangleright \mathcal{B}(F) = b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)$
- ▶ Boolean abstraction is also called boolean skeleton
- ▶ Since \mathcal{B} is a bijective function, \mathcal{B}^{-1} also exists
- \blacktriangleright What is $\mathcal{B}^{-1}(b_2 \vee \neg b_1)$? $y = z \vee \neg (x = z)$

 Observe: The boolean abstraction constructed this way overapproximates satisfiability of the formula

- Observe: The boolean abstraction constructed this way overapproximates satisfiability of the formula
- Is this formula satisfiable?

$$F: \quad x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

- Observe: The boolean abstraction constructed this way overapproximates satisfiability of the formula
- ▶ Is this formula satisfiable? No

$$F: \quad x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

- Observe: The boolean abstraction constructed this way overapproximates satisfiability of the formula
- ▶ Is this formula satisfiable? No

$$F: \quad x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

▶ Boolean abstraction: $\mathcal{B}(F) = b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)$

- ▶ Observe: The boolean abstraction constructed this way overapproximates satisfiability of the formula
- ▶ Is this formula satisfiable? No.

$$F: \quad x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

- ▶ Boolean abstraction: $\mathcal{B}(F) = b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)$
- Is this satisfiable?

- ▶ Observe: The boolean abstraction constructed this way overapproximates satisfiability of the formula
- ▶ Is this formula satisfiable? No.

$$F: \quad x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

- ▶ Boolean abstraction: $\mathcal{B}(F) = b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)$
- Is this satisfiable? Yes

- ▶ Observe: The boolean abstraction constructed this way overapproximates satisfiability of the formula
- Is this formula satisfiable? No

$$F: \quad x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

- ▶ Boolean abstraction: $\mathcal{B}(F) = b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)$
- Is this satisfiable? Yes
- ▶ What is a sat assignment?

- Observe: The boolean abstraction constructed this way overapproximates satisfiability of the formula
- Is this formula satisfiable? No

$$F: x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

- ▶ Boolean abstraction: $\mathcal{B}(F) = b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)$
- ► Is this satisfiable? Yes
- ▶ What is a sat assignment? $A = b_1 \wedge b_2 \wedge b_3$

- Observe: The boolean abstraction constructed this way overapproximates satisfiability of the formula
- Is this formula satisfiable? No

$$F: \quad x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

- ▶ Boolean abstraction: $\mathcal{B}(F) = b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)$
- ► Is this satisfiable? Yes
- ▶ What is a sat assignment? $A = b_1 \wedge b_2 \wedge b_3$
- ▶ What is $\mathcal{B}^{-1}(A)$?

- Observe: The boolean abstraction constructed this way overapproximates satisfiability of the formula
- Is this formula satisfiable? No

$$F: \quad x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

- ▶ Boolean abstraction: $\mathcal{B}(F) = b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)$
- ► Is this satisfiable? Yes
- ▶ What is a sat assignment? $A = b_1 \wedge b_2 \wedge b_3$
- ▶ What is $\mathcal{B}^{-1}(A)$? $x = y \land y = z \land x \neq z$

- ▶ Observe: The boolean abstraction constructed this way overapproximates satisfiability of the formula
- Is this formula satisfiable? No

$$F: \quad x = z \land ((y = z \land x \neq z) \lor \neg(x = z))$$

- ▶ Boolean abstraction: $\mathcal{B}(F) = b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)$
- Is this satisfiable? Yes
- ▶ What is a sat assignment? $A = b_1 \land b_2 \land b_3$
- ▶ What is $\mathcal{B}^{-1}(A)$? $x = y \land y = z \land x \neq z$
- ▶ Is $\mathcal{B}^{-1}(A)$ satisfiable?

- Observe: The boolean abstraction constructed this way overapproximates satisfiability of the formula
- Is this formula satisfiable? No

$$F: \quad x = z \land ((y = z \land x \neq z) \lor \neg(x = z))$$

- ▶ Boolean abstraction: $\mathcal{B}(F) = b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)$
- ► Is this satisfiable? Yes
- ▶ What is a sat assignment? $A = b_1 \wedge b_2 \wedge b_3$
- ▶ What is $\mathcal{B}^{-1}(A)$? $x = y \land y = z \land x \neq z$
- ▶ Is $\mathcal{B}^{-1}(A)$ satisfiable? No

In simplest version of SMT solvers, construct boolean abstraction $\mathcal{B}(F)$ of SMT formula F

- In simplest version of SMT solvers, construct boolean abstraction $\mathcal{B}(F)$ of SMT formula F
- ▶ If $\mathcal{B}(F)$ is unsat, return unsat

- ▶ In simplest version of SMT solvers, construct boolean abstraction $\mathcal{B}(F)$ of SMT formula F
- ▶ If $\mathcal{B}(F)$ is unsat, return unsat
- \blacktriangleright If $\mathcal{B}(F)$ is sat, get sat assignment A (conjunction of propositional literals)

- ▶ In simplest version of SMT solvers, construct boolean abstraction $\mathcal{B}(F)$ of SMT formula F
- ▶ If $\mathcal{B}(F)$ is unsat, return unsat
- ▶ If $\mathcal{B}(F)$ is sat, get sat assignment A (conjunction of propositional literals)
- ▶ Construct $\mathcal{B}^{-1}(A)$; this is conjunction of atomic \mathcal{T} -formulas

- In simplest version of SMT solvers, construct boolean abstraction $\mathcal{B}(F)$ of SMT formula F
- ▶ If $\mathcal{B}(F)$ is unsat, return unsat
- ▶ If $\mathcal{B}(F)$ is sat, get sat assignment A (conjunction of propositional literals)
- ▶ Construct $\mathcal{B}^{-1}(A)$; this is conjunction of atomic \mathcal{T} -formulas
- ▶ Query \mathcal{T} -solver for satisfiability of $\mathcal{B}^{-1}(A)$

▶ If \mathcal{T} -solver decides $\mathcal{B}^{-1}(A)$ is sat, return SAT

- ▶ If \mathcal{T} -solver decides $\mathcal{B}^{-1}(A)$ is sat, return SAT
- ▶ Why? Because we found an assignment that (i) both satisfies boolean structure, and (ii) consistent with theory axioms

- ▶ If \mathcal{T} -solver decides $\mathcal{B}^{-1}(A)$ is sat, return SAT
- Why? Because we found an assignment that (i) both satisfies boolean structure, and (ii) consistent with theory axioms
- ▶ If $\mathcal{B}^{-1}(A)$ is unsat, does this mean original formula is UNSAT?

- ▶ If \mathcal{T} -solver decides $\mathcal{B}^{-1}(A)$ is sat, return SAT
- Why? Because we found an assignment that (i) both satisfies boolean structure, and (ii) consistent with theory axioms
- ▶ If $\mathcal{B}^{-1}(A)$ is unsat, does this mean original formula is UNSAT?
- ▶ No b/c might be other ways of satisfying boolean structure

- ▶ If \mathcal{T} -solver decides $\mathcal{B}^{-1}(A)$ is sat, return SAT
- Why? Because we found an assignment that (i) both satisfies boolean structure, and (ii) consistent with theory axioms
- ▶ If $\mathcal{B}^{-1}(A)$ is unsat, does this mean original formula is UNSAT?
- ▶ No b/c might be other ways of satisfying boolean structure
- ▶ In this case, construct new boolean abstraction $\mathcal{B}(F) \wedge \neg A$

- ▶ If \mathcal{T} -solver decides $\mathcal{B}^{-1}(A)$ is sat, return SAT
- Why? Because we found an assignment that (i) both satisfies boolean structure, and (ii) consistent with theory axioms
- ▶ If $\mathcal{B}^{-1}(A)$ is unsat, does this mean original formula is UNSAT?
- ▶ No b/c might be other ways of satisfying boolean structure
- ▶ In this case, construct new boolean abstraction $\mathcal{B}(F) \wedge \neg A$
- Repeat until we find assignment consistent with theory or until boolean abstraction is unsat

▶ If $B^{-1}(A)$ is unsat, construct new abstraction as $B(F) \land \neg A$

- ▶ If $B^{-1}(A)$ is unsat, construct new abstraction as $B(F) \land \neg A$
- ▶ Does $B(F) \land \neg A$ still overapproximate satisfiability?

- ▶ If $B^{-1}(A)$ is unsat, construct new abstraction as $B(F) \land \neg A$
- ▶ Does $B(F) \land \neg A$ still overapproximate satisfiability?

- ▶ If $B^{-1}(A)$ is unsat, construct new abstraction as $B(F) \land \neg A$
- ▶ Does $B(F) \land \neg A$ still overapproximate satisfiability?
- ▶ Yes because since $\mathcal{B}^{-1}(A)$ is unsat $\mathcal{B}^{-1}(\neg A)$ is valid

- ▶ If $B^{-1}(A)$ is unsat, construct new abstraction as $B(F) \land \neg A$
- ▶ Does $B(F) \land \neg A$ still overapproximate satisfiability?
- ▶ Yes because since $\mathcal{B}^{-1}(A)$ is unsat $\mathcal{B}^{-1}(\neg A)$ is valid
- ▶ Thus, $F \wedge \mathcal{B}^{-1}(\neg A)$ is equivalent to F

- ▶ If $B^{-1}(A)$ is unsat, construct new abstraction as $B(F) \land \neg A$
- ▶ Does $B(F) \land \neg A$ still overapproximate satisfiability?
- ▶ Yes because since $\mathcal{B}^{-1}(A)$ is unsat $\mathcal{B}^{-1}(\neg A)$ is valid
- ▶ Thus, $F \wedge \mathcal{B}^{-1}(\neg A)$ is equivalent to F
- ▶ Hence, $\mathcal{B}(F \wedge \mathcal{B}^{-1}(\neg A))$ (i.e., $\mathcal{B}(F) \wedge \neg A$) still overapproximates satisfiability

- ▶ If $B^{-1}(A)$ is unsat, construct new abstraction as $B(F) \land \neg A$
- ▶ Does $B(F) \land \neg A$ still overapproximate satisfiability?
- ▶ Yes because since $\mathcal{B}^{-1}(A)$ is unsat $\mathcal{B}^{-1}(\neg A)$ is valid
- ▶ Thus, $F \wedge \mathcal{B}^{-1}(\neg A)$ is equivalent to F
- ▶ Hence, $\mathcal{B}(F \wedge \mathcal{B}^{-1}(\neg A))$ (i.e., $\mathcal{B}(F) \wedge \neg A$) still overapproximates satisfiability
- ▶ Formulas such as $\neg A$ that are \mathcal{T} -valid are called theory conflict clauses

▶ Approach is sound, but is it guaranteed to terminate?

- ▶ Approach is sound, but is it guaranteed to terminate? Yes
- ▶ Suppose SAT solver gives assignment A s.t. $\mathcal{B}^{-1}(A)$ is unsat

- ▶ Approach is sound, but is it guaranteed to terminate? Yes
- ▶ Suppose SAT solver gives assignment A s.t. $\mathcal{B}^{-1}(A)$ is unsat
- ▶ We'll never obtain same assignment A again because formula next time is $\mathcal{B}(F) \wedge \neg A$

- Approach is sound, but is it guaranteed to terminate? Yes
- ▶ Suppose SAT solver gives assignment A s.t. $\mathcal{B}^{-1}(A)$ is unsat
- ▶ We'll never obtain same assignment A again because formula next time is $\mathcal{B}(F) \wedge \neg A$
- ▶ There are finitely many satisfying assignments to boolean abstraction, and we get different sat assignment every time

- Approach is sound, but is it guaranteed to terminate? Yes
- ▶ Suppose SAT solver gives assignment A s.t. $\mathcal{B}^{-1}(A)$ is unsat
- \blacktriangleright We'll never obtain same assignment A again because formula next time is $\mathcal{B}(F) \wedge \neg A$
- There are finitely many satisfying assignments to boolean abstraction, and we get different sat assignment every time
- lacktriangle Thus, we'll eventually either find assignment consistent with theory \Rightarrow SAT

- Approach is sound, but is it guaranteed to terminate? Yes
- ▶ Suppose SAT solver gives assignment A s.t. $\mathcal{B}^{-1}(A)$ is unsat
- \triangleright We'll never obtain same assignment A again because formula next time is $\mathcal{B}(F) \wedge \neg A$
- ▶ There are finitely many satisfying assignments to boolean abstraction, and we get different sat assignment every time
- ► Thus, we'll eventually either find assignment consistent with theory ⇒ SAT
- ▶ Or all satisfying assignments contradict theory axioms ⇒ UNSAT

► Consider example from before:

$$F: x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

► Consider example from before:

$$F: x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

 $\triangleright \mathcal{B}(F): b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)$

Consider example from before:

$$F: x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

- $\triangleright \mathcal{B}(F): b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)$
- ▶ Sat assignment to $\mathcal{B}(F)$ $A: b_1 \wedge b_2 \wedge b_3$

Consider example from before:

$$F: x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

- $\blacktriangleright \mathcal{B}(F): b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)$
- ▶ Sat assignment to $\mathcal{B}(F)$ $A: b_1 \wedge b_2 \wedge b_3$
- ▶ $\mathcal{B}^{-1}(A)$ is unsat

Consider example from before:

$$F: x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

- $\triangleright \mathcal{B}(F): b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)$
- ▶ Sat assignment to $\mathcal{B}(F)$ $A: b_1 \wedge b_2 \wedge b_3$
- $\triangleright \mathcal{B}^{-1}(A)$ is unsat
- What is new boolean abstraction?

$$(b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)) \wedge \neg (b_1 \wedge b_2 \wedge b_3)$$

Consider example from before:

$$F: x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

- $\triangleright \mathcal{B}(F): b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)$
- ▶ Sat assignment to $\mathcal{B}(F)$ $A: b_1 \wedge b_2 \wedge b_3$
- $\triangleright \mathcal{B}^{-1}(A)$ is unsat
- What is new boolean abstraction?

$$(b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)) \wedge \neg (b_1 \wedge b_2 \wedge b_3)$$

▶ Is this formula SAT?

Consider example from before:

$$F: x = z \wedge ((y = z \wedge x \neq z) \vee \neg (x = z))$$

- ▶ $\mathcal{B}(F): b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)$
- ▶ Sat assignment to $\mathcal{B}(F)$ $A: b_1 \wedge b_2 \wedge b_3$
- $\triangleright \mathcal{B}^{-1}(A)$ is unsat
- What is new boolean abstraction?

$$(b_1 \wedge ((b_2 \wedge b_3) \vee \neg b_1)) \wedge \neg (b_1 \wedge b_2 \wedge b_3)$$

Is this formula SAT? No, thus original formula UNSAT

▶ So far, we just add negation of current assignment as theory conflict clause

- ▶ So far, we just add negation of current assignment as theory conflict clause
- Unfortunately, conflict clauses obtained this way are too weak

- ▶ So far, we just add negation of current assignment as theory conflict clause
- Unfortunately, conflict clauses obtained this way are too weak
- lacksquare Suppose A is a conjunction of 100 literals such that

$$\mathcal{B}^{-1}(A) = x = y \land x \neq y \land a_1 \land a_2 \land \ldots \land a_{98}$$

- ▶ So far, we just add negation of current assignment as theory conflict clause
- Unfortunately, conflict clauses obtained this way are too weak
- ▶ Suppose A is a conjunction of 100 literals such that

$$\mathcal{B}^{-1}(A) = x = y \land x \neq y \land a_1 \land a_2 \land \ldots \land a_{98}$$

▶ Theory conflict clause $\neg A$ prevents exact same assignment

- So far, we just add negation of current assignment as theory conflict clause
- Unfortunately, conflict clauses obtained this way are too weak
- ▶ Suppose A is a conjunction of 100 literals such that

$$\mathcal{B}^{-1}(A) = x = y \land x \neq y \land a_1 \land a_2 \land \ldots \land a_{98}$$

- ▶ Theory conflict clause $\neg A$ prevents exact same assignment
- ▶ But it doesn't prevent many other bad assignments involving $x = y \land x \neq y$ such as:

$$\mathcal{B}^{-1}(A) = x = y \land x \neq y \land a_1 \land a_2 \land \dots \land \neg a_{98}$$

- ▶ So far, we just add negation of current assignment as theory conflict clause
- Unfortunately, conflict clauses obtained this way are too weak
- ▶ Suppose A is a conjunction of 100 literals such that

$$\mathcal{B}^{-1}(A) = x = y \land x \neq y \land a_1 \land a_2 \land \ldots \land a_{98}$$

- ▶ Theory conflict clause $\neg A$ prevents exact same assignment
- ▶ But it doesn't prevent many other bad assignments involving $x = y \land x \neq y$ such as:

$$\mathcal{B}^{-1}(A) = x = y \land x \neq y \land a_1 \land a_2 \land \ldots \land \neg a_{98}$$

▶ In fact, there are 2^{98} unsat assignments containing $x = y \land x \neq y$ but $\neg A$ prevents only one of them!

SMT solving, Improvement #1

 \blacktriangleright Suppose SAT solver makes assignment A s.t. $\mathcal{B}^{-1}(A)$ is unsat

SMT solving, Improvement #1

- ▶ Suppose SAT solver makes assignment A s.t. $\mathcal{B}^{-1}(A)$ is unsat
- ▶ Rather than adding $\neg A$ as a conflict clause, better idea is to find an unsatisfiable core of $\mathcal{B}^{-1}(A)$

SMT solving, Improvement #1

- ▶ Suppose SAT solver makes assignment A s.t. $\mathcal{B}^{-1}(A)$ is unsat
- ▶ Rather than adding $\neg A$ as a conflict clause, better idea is to find an unsatisfiable core of $\mathcal{B}^{-1}(A)$
- ▶ An unsatisfiable core C of A contains a subset of atoms in A and $\mathcal{B}^{-1}(C)$ is still unsatisfiable.

SMT solving, Improvement #1

- ▶ Suppose SAT solver makes assignment A s.t. $\mathcal{B}^{-1}(A)$ is unsat
- ▶ Rather than adding $\neg A$ as a conflict clause, better idea is to find an unsatisfiable core of $\mathcal{B}^{-1}(A)$
- An unsatisfiable core C of A contains a subset of atoms in A and $\mathcal{B}^{-1}(C)$ is still unsatisfiable.
- Ideally, we would like to find the minimal unsatisfiable core

SMT solving, Improvement #1

- ▶ Suppose SAT solver makes assignment A s.t. $\mathcal{B}^{-1}(A)$ is unsat
- ▶ Rather than adding $\neg A$ as a conflict clause, better idea is to find an unsatisfiable core of $\mathcal{B}^{-1}(A)$
- ▶ An unsatisfiable core C of A contains a subset of atoms in A and $\mathcal{B}^{-1}(C)$ is still unsatisfiable.
- ▶ Ideally, we would like to find the minimal unsatisfiable core
- ▶ Minimal unsatisfiable core C^* has property that if you drop any single atom of C^* , result is satisfiable

SMT solving, Improvement #1

- ▶ Suppose SAT solver makes assignment A s.t. $\mathcal{B}^{-1}(A)$ is unsat
- ightharpoonup Rather than adding $\neg A$ as a conflict clause, better idea is to find an unsatisfiable core of $\mathcal{B}^{-1}(A)$
- ▶ An unsatisfiable core C of A contains a subset of atoms in A and $\mathcal{B}^{-1}(C)$ is still unsatisfiable.
- ▶ Ideally, we would like to find the minimal unsatisfiable core
- \blacktriangleright Minimal unsatisfiable core C^* has property that if you drop any single atom of C^* , result is satisfiable
- ▶ What is a minimal unsat core of $x = y \land x \neq y \land a_1 \land a_2 \land \ldots \land a_{98}$?

SMT solving, Improvement #1

- ▶ Suppose SAT solver makes assignment A s.t. $\mathcal{B}^{-1}(A)$ is unsat
- ightharpoonup Rather than adding $\neg A$ as a conflict clause, better idea is to find an unsatisfiable core of $\mathcal{B}^{-1}(A)$
- ▶ An unsatisfiable core C of A contains a subset of atoms in A and $\mathcal{B}^{-1}(C)$ is still unsatisfiable.
- ▶ Ideally, we would like to find the minimal unsatisfiable core
- \blacktriangleright Minimal unsatisfiable core C^* has property that if you drop any single atom of C^* , result is satisfiable
- ▶ What is a minimal unsat core of $x = y \land x \neq y \land a_1 \land a_2 \land \ldots \land a_{98}$? $x = y \land x \neq y$

ightharpoonup How can we compute minimal unsat core of conjunctive $\mathcal T$ formula without modifying theory solver?

- ightharpoonup How can we compute minimal unsat core of conjunctive $\mathcal T$ formula without modifying theory solver?
- \blacktriangleright Let ϕ be original unsatisfiable conjunct

- \blacktriangleright How can we compute minimal unsat core of conjunctive ${\mathcal T}$ formula without modifying theory solver?
- lackbox Let ϕ be original unsatisfiable conjunct
- ▶ Drop one atom from ϕ , call this ϕ'

- \blacktriangleright How can we compute minimal unsat core of conjunctive ${\mathcal T}$ formula without modifying theory solver?
- lackbox Let ϕ be original unsatisfiable conjunct
- ▶ Drop one atom from ϕ , call this ϕ'
- If ϕ' is still unsat, $\phi := \phi'$

- ▶ How can we compute minimal unsat core of conjunctive \mathcal{T} formula without modifying theory solver?
- lackbox Let ϕ be original unsatisfiable conjunct
- ▶ Drop one atom from ϕ , call this ϕ'
- If ϕ' is still unsat, $\phi := \phi'$
- lacktriangle Repeat this for every atom in ϕ

- \blacktriangleright How can we compute minimal unsat core of conjunctive ${\mathcal T}$ formula without modifying theory solver?
- lackbox Let ϕ be original unsatisfiable conjunct
- ▶ Drop one atom from ϕ , call this ϕ'
- If ϕ' is still unsat, $\phi := \phi'$
- lacktriangle Repeat this for every atom in ϕ
- lacktriangle Clearly, resulting ϕ is minimal unsat core of original formula

$$\phi:\ x=y\wedge f(x)+z=5\wedge f(x)\neq f(y)\wedge y\leq 3$$

Let's compute minimal unsat core of

$$\phi:\ x=y\wedge f(x)+z=5\wedge f(x)\neq f(y)\wedge y\leq 3$$

▶ Drop x = y from ϕ . Is result unsat?

Let's compute minimal unsat core of

$$\phi: \ x = y \land f(x) + z = 5 \land f(x) \neq f(y) \land y \leq 3$$

▶ Drop x = y from ϕ . Is result unsat? no, so keep x = y

$$\phi: \ x = y \land f(x) + z = 5 \land f(x) \neq f(y) \land y \leq 3$$

- ▶ Drop x = y from ϕ . Is result unsat? no, so keep x = y
- ▶ Drop f(x) + z = 5. Is result unsat? yes, so drop f(x) + z = 5

$$\phi: \ x = y \land f(x) + z = 5 \land f(x) \neq f(y) \land y \leq 3$$

- ▶ Drop x = y from ϕ . Is result unsat? no, so keep x = y
- ▶ Drop f(x) + z = 5. Is result unsat? yes, so drop f(x) + z = 5
- ▶ New formula: ϕ : $x = y \land f(x) \neq f(y) \land y \leq 3$

$$\phi: \ x = y \land f(x) + z = 5 \land f(x) \neq f(y) \land y \leq 3$$

- ▶ Drop x = y from ϕ . Is result unsat? no, so keep x = y
- ▶ Drop f(x) + z = 5. Is result unsat? yes, so drop f(x) + z = 5
- New formula: $\phi: x = y \land f(x) \neq f(y) \land y \leq 3$
- ▶ Drop $f(x) \neq f(y)$. Is result unsat?

$$\phi: \ x = y \land f(x) + z = 5 \land f(x) \neq f(y) \land y \leq 3$$

- ▶ Drop x = y from ϕ . Is result unsat? no, so keep x = y
- ▶ Drop f(x) + z = 5. Is result unsat? yes, so drop f(x) + z = 5
- ▶ New formula: ϕ : $x = y \land f(x) \neq f(y) \land y \leq 3$
- ▶ Drop $f(x) \neq f(y)$. Is result unsat? no, keep $f(x) \neq f(y)$

$$\phi: \ x = y \land f(x) + z = 5 \land f(x) \neq f(y) \land y \leq 3$$

- ▶ Drop x = y from ϕ . Is result unsat? no, so keep x = y
- ▶ Drop f(x) + z = 5. Is result unsat? yes, so drop f(x) + z = 5
- New formula: $\phi: x = y \land f(x) \neq f(y) \land y \leq 3$
- ▶ Drop $f(x) \neq f(y)$. Is result unsat? no, keep $f(x) \neq f(y)$
- ▶ Finally, drop $y \le 3$. Is result unsat?

$$\phi: \ x = y \land f(x) + z = 5 \land f(x) \neq f(y) \land y \leq 3$$

- ▶ Drop x = y from ϕ . Is result unsat? no, so keep x = y
- ▶ Drop f(x) + z = 5. Is result unsat? yes, so drop f(x) + z = 5
- New formula: $\phi: x = y \land f(x) \neq f(y) \land y \leq 3$
- ▶ Drop $f(x) \neq f(y)$. Is result unsat? no, keep $f(x) \neq f(y)$
- Finally, drop $y \le 3$. Is result unsat? yes, drop $y \le 3$

$$\phi: \ x = y \land f(x) + z = 5 \land f(x) \neq f(y) \land y \leq 3$$

- ▶ Drop x = y from ϕ . Is result unsat? no, so keep x = y
- ▶ Drop f(x) + z = 5. Is result unsat? yes, so drop f(x) + z = 5
- ▶ New formula: ϕ : $x = y \land f(x) \neq f(y) \land y < 3$
- ▶ Drop $f(x) \neq f(y)$. Is result unsat? no, keep $f(x) \neq f(y)$
- Finally, drop $y \le 3$. Is result unsat? yes, drop $y \le 3$
- What is minimal unsat core?

$$\phi: \ x = y \land f(x) + z = 5 \land f(x) \neq f(y) \land y \leq 3$$

- ▶ Drop x = y from ϕ . Is result unsat? no, so keep x = y
- ▶ Drop f(x) + z = 5. Is result unsat? yes, so drop f(x) + z = 5
- ▶ New formula: ϕ : $x = y \land f(x) \neq f(y) \land y < 3$
- ▶ Drop $f(x) \neq f(y)$. Is result unsat? no, keep $f(x) \neq f(y)$
- ▶ Finally, drop $y \le 3$. Is result unsat? yes, drop $y \le 3$
- ▶ What is minimal unsat core? $x = y \land f(x) \neq f(y)$

▶ Given formula F, construct boolean abstraction $\mathcal{B}(F)$

- ▶ Given formula F, construct boolean abstraction $\mathcal{B}(F)$
- ▶ Use SAT solver to decide if $\mathcal{B}(F)$ is unsat; if so F also unsat

- ▶ Given formula F, construct boolean abstraction $\mathcal{B}(F)$
- ▶ Use SAT solver to decide if $\mathcal{B}(F)$ is unsat; if so F also unsat
- \blacktriangleright Otherwise, get satisfying assignment A to $\mathcal{B}(F)$

- Given formula F, construct boolean abstraction $\mathcal{B}(F)$
- ▶ Use SAT solver to decide if $\mathcal{B}(F)$ is unsat; if so F also unsat
- ▶ Otherwise, get satisfying assignment A to $\mathcal{B}(F)$
- Query theory solver if $\mathcal{B}^{-1}(A)$ is sat; if so F is sat

- Given formula F, construct boolean abstraction $\mathcal{B}(F)$
- ▶ Use SAT solver to decide if $\mathcal{B}(F)$ is unsat; if so F also unsat
- ▶ Otherwise, get satisfying assignment A to $\mathcal{B}(F)$
- Query theory solver if $\mathcal{B}^{-1}(A)$ is sat; if so F is sat
- ▶ Otherwise, compute minimal unsat core C of $\mathcal{B}^{-1}(A)$

- ▶ Given formula F, construct boolean abstraction $\mathcal{B}(F)$
- ▶ Use SAT solver to decide if $\mathcal{B}(F)$ is unsat; if so F also unsat
- lacktriangle Otherwise, get satisfying assignment A to $\mathcal{B}(F)$
- ▶ Query theory solver if $\mathcal{B}^{-1}(A)$ is sat; if so F is sat
- ▶ Otherwise, compute minimal unsat core C of $\mathcal{B}^{-1}(A)$
- ▶ Use $\neg C$ as theory conflict clause

- ▶ Given formula F, construct boolean abstraction $\mathcal{B}(F)$
- ▶ Use SAT solver to decide if $\mathcal{B}(F)$ is unsat; if so F also unsat
- \blacktriangleright Otherwise, get satisfying assignment A to $\mathcal{B}(F)$
- ▶ Query theory solver if $\mathcal{B}^{-1}(A)$ is sat; if so F is sat
- ▶ Otherwise, compute minimal unsat core C of $\mathcal{B}^{-1}(A)$
- ▶ Use $\neg C$ as theory conflict clause
- ▶ i.e., construct new boolean abstraction as $\mathcal{B}(F \land \neg C)$

- ▶ Given formula F, construct boolean abstraction $\mathcal{B}(F)$
- ▶ Use SAT solver to decide if $\mathcal{B}(F)$ is unsat; if so F also unsat
- \blacktriangleright Otherwise, get satisfying assignment A to $\mathcal{B}(F)$
- ▶ Query theory solver if $\mathcal{B}^{-1}(A)$ is sat; if so F is sat
- ▶ Otherwise, compute minimal unsat core C of $\mathcal{B}^{-1}(A)$
- ▶ Use $\neg C$ as theory conflict clause
- ▶ i.e., construct new boolean abstraction as $\mathcal{B}(F \land \neg C)$
- Repeat until we decide sat or unsat

▶ This strategy is much better than simplest strategy where we add $\mathcal{B}^{-1}(A)$ as theory conflict clause.

- ▶ This strategy is much better than simplest strategy where we add $\mathcal{B}^{-1}(A)$ as theory conflict clause.
- Using simple strategy, we block just one assignment

- ▶ This strategy is much better than simplest strategy where we add $\mathcal{B}^{-1}(A)$ as theory conflict clause.
- Using simple strategy, we block just one assignment
- Using minimal unsat cores, we block many assignments using one theory conflict clause

- ▶ This strategy is much better than simplest strategy where we add $\mathcal{B}^{-1}(A)$ as theory conflict clause.
- Using simple strategy, we block just one assignment
- Using minimal unsat cores, we block many assignments using one theory conflict clause
- ▶ However, our strategy still not ideal because it waits for full assignment to boolean abstraction to generate conflict clause

23/34

Motivation for Integration with DPLL

▶ Consider very large formula F containing x=y and $x \neq y$ with corresponding boolean variables b_1 and b_2

Motivation for Integration with DPLL

- ▶ Consider very large formula F containing x=y and $x \neq y$ with corresponding boolean variables b_1 and b_2
- ightharpoonup Also, suppose $\mathcal{B}(F)$ contains hundreds of boolean variables

Motivation for Integration with DPLL

- ▶ Consider very large formula F containing x=y and $x \neq y$ with corresponding boolean variables b_1 and b_2
- ▶ Also, suppose $\mathcal{B}(F)$ contains hundreds of boolean variables
- As soon as sat solver makes assignment $b_1 = \top$, $b_2 = \top$, we are doomed because this is unsatisfiable in theory

Motivation for Integration with DPLL

- ▶ Consider very large formula F containing x = y and $x \neq y$ with corresponding boolean variables b_1 and b_2
- \triangleright Also, suppose $\mathcal{B}(F)$ contains hundreds of boolean variables
- As soon as sat solver makes assignment $b_1 = T$, $b_2 = T$, we are doomed because this is unsatisfiable in theory
- ▶ Thus, no need to continue with SAT solving after this bad partial assignment

Motivation for Integration with DPLL

- ▶ Consider very large formula F containing x = y and $x \neq y$ with corresponding boolean variables b_1 and b_2
- \triangleright Also, suppose $\mathcal{B}(F)$ contains hundreds of boolean variables
- As soon as sat solver makes assignment $b_1 = T$, $b_2 = T$, we are doomed because this is unsatisfiable in theory
- ▶ Thus, no need to continue with SAT solving after this bad partial assignment
- Idea: Don't use SAT solver as "blackbox"

Motivation for Integration with DPLL

- ▶ Consider very large formula F containing x = y and $x \neq y$ with corresponding boolean variables b_1 and b_2
- \triangleright Also, suppose $\mathcal{B}(F)$ contains hundreds of boolean variables
- As soon as sat solver makes assignment $b_1 = T$, $b_2 = T$, we are doomed because this is unsatisfiable in theory
- ▶ Thus, no need to continue with SAT solving after this bad partial assignment
- ▶ Idea: Don't use SAT solver as "blackbox"
- ▶ Instead, integrate theory solver right into the DPLL algorithm

DPLL-Based SAT Solver Architecture

DPLL-Based SAT Solver Architecture

▶ Idea: Integrate theory solver right into this SAT solving loop!

▶ Combination of DPLL-based SAT solver and decision procedure for conjunctive T formula called DPLL(T) framework

▶ Suppose SAT solver has made assignment in Decide step and performed **BCP**

- Suppose SAT solver has made assignment in Decide step and performed **BCP**
- ▶ If no conflict detected, immediately invoke theory solver

- Suppose SAT solver has made assignment in Decide step and performed **BCP**
- ▶ If no conflict detected, immediately invoke theory solver
- \triangleright Specifically, suppose A is current partial assignment to boolean abstraction

27/34

- Suppose SAT solver has made assignment in Decide step and performed **BCP**
- ▶ If no conflict detected, immediately invoke theory solver
- \triangleright Specifically, suppose A is current partial assignment to boolean abstraction
- Use theory solver to decide if $\mathcal{B}^{-1}(A)$ is unsat

- Suppose SAT solver has made assignment in Decide step and performed **BCP**
- ▶ If no conflict detected, immediately invoke theory solver
- ► Specifically, suppose A is current partial assignment to boolean abstraction
- Use theory solver to decide if $\mathcal{B}^{-1}(A)$ is unsat
- ▶ If $\mathcal{B}^{-1}(A)$ unsat, add theory conflict clause $\neg A$ to clause database

- Suppose SAT solver has made assignment in Decide step and performed BCP
- ▶ If no conflict detected, immediately invoke theory solver
- ► Specifically, suppose A is current partial assignment to boolean abstraction
- Use theory solver to decide if $\mathcal{B}^{-1}(A)$ is unsat
- ▶ If $\mathcal{B}^{-1}(A)$ unsat, add theory conflict clause $\neg A$ to clause database
- ▶ Or better, add negation of unsat core of A to clause database

 Add theory conflict clause and continue doing BCP, which will detect conflict

- ▶ Add theory conflict clause and continue doing BCP, which will detect conflict
- ▶ As before, AnalyzeConflict decides what level to backtrack to

What we described so far is sufficient to solve SMT formulas, but we can much better!

- What we described so far is sufficient to solve SMT formulas, but we can much better!
- ▶ Suppose original formula contains literals $x=y,y=z,x\neq z$ with corresponding boolean variables b_1,b_2,b_3

- ▶ What we described so far is sufficient to solve SMT formulas, but we can much better!
- ▶ Suppose original formula contains literals $x = y, y = z, x \neq z$ with corresponding boolean variables b_1, b_2, b_3
- ▶ Suppose SAT solver makes partial assignment b_1 : \top , b_2 : \top

- ▶ What we described so far is sufficient to solve SMT formulas, but we can much better!
- ▶ Suppose original formula contains literals $x = y, y = z, x \neq z$ with corresponding boolean variables b_1, b_2, b_3
- ▶ Suppose SAT solver makes partial assignment b_1 : \top , b_2 : \top
- ▶ In next Decide step, free to assign b_3 : \top or b_3 : \bot

- ▶ What we described so far is sufficient to solve SMT formulas, but we can much better!
- ▶ Suppose original formula contains literals $x = y, y = z, x \neq z$ with corresponding boolean variables b_1, b_2, b_3
- ▶ Suppose SAT solver makes partial assignment b_1 : \top , b_2 : \top
- ▶ In next Decide step, free to assign b_3 : \top or b_3 : \bot
- But assignment b_3 : \top is sub-optimal, b/c will lead to conflict in \mathcal{T}

 Idea: Theory solver can communicate which literals are implied by current partial assignment

- ▶ Idea: Theory solver can communicate which literals are implied by current partial assignment
- ▶ In our example, $\neg x \neq z$ implied by current partial assignment $x = y \land y = z$

- Idea: Theory solver can communicate which literals are implied by current partial assignment
- ▶ In our example, $\neg x \neq z$ implied by current partial assignment $x = y \land y = z$
- ▶ Thus, can safely add $b_1 \wedge b_2 \rightarrow b_3$ to clause database

- Idea: Theory solver can communicate which literals are implied by current partial assignment
- ▶ In our example, $\neg x \neq z$ implied by current partial assignment $x = y \land y = z$
- ▶ Thus, can safely add $b_1 \wedge b_2 \rightarrow b_3$ to clause database
- These kinds of clauses implied by theory are called theory propagation lemmas

▶ After adding theory propagation lemma, continue doing BCP

- After adding theory propagation lemma, continue doing BCP
- ▶ Adding theory propagation lemmas prevents bad assignments to boolean abstraction

▶ How do we obtain theory propagation lemmas?

- ▶ How do we obtain theory propagation lemmas?
- ▶ Option #1: Treat theory solver as blackbox, query whether particular literal a is implied by current partial assisgnment?

- ▶ How do we obtain theory propagation lemmas?
- ▶ Option #1: Treat theory solver as blackbox, query whether particular literal a is implied by current partial assisgnment?
- ▶ Option #2: Modify theory solver so that it can figure out implied literals

- ▶ How do we obtain theory propagation lemmas?
- Option #1: Treat theory solver as blackbox, query whether particular literal a is implied by current partial assisgnment?
- ▶ Option #2: Modify theory solver so that it can figure out implied literals
- Second option is considered more efficient, but have to figure out how to do this for each different theory

Which theory propagation lemmas do we add?

- Which theory propagation lemmas do we add?
- ▶ Option #1: Figure out and add all literals implied by current partial assignment; called exhaustive theory propagation

- Which theory propagation lemmas do we add?
- ► Option #1: Figure out and add all literals implied by current partial assignment; called exhaustive theory propagation
- Option #2: Only figure out literals "obviously" implied by current partial assignment

- ▶ Which theory propagation lemmas do we add?
- ▶ Option #1: Figure out and add all literals implied by current partial assignment; called exhaustive theory propagation
- ▶ Option #2: Only figure out literals "obviously" implied by current partial assignment
- Exhaustive theory propagation can be very expensive; second option considered preferable

- ▶ Which theory propagation lemmas do we add?
- ▶ Option #1: Figure out and add all literals implied by current partial assignment; called exhaustive theory propagation
- ▶ Option #2: Only figure out literals "obviously" implied by current partial assignment
- Exhaustive theory propagation can be very expensive; second option considered preferable
- ► There isn't much of a science behind which literals are "obviously" implied

- Which theory propagation lemmas do we add?
- ► Option #1: Figure out and add all literals implied by current partial assignment; called exhaustive theory propagation
- Option #2: Only figure out literals "obviously" implied by current partial assignment
- Exhaustive theory propagation can be very expensive; second option considered preferable
- ▶ There isn't much of a science behind which literals are "obviously" implied
- Solvers use different strategies to obtain simple-to-find implications

 SMT solvers decide satisfiability in boolean combinations of different theories

- SMT solvers decide satisfiability in boolean combinations of different theories
- Instead of converting to DNF, they handle boolean structure using SAT solving technquies

- ▶ SMT solvers decide satisfiability in boolean combinations of different theories
- Instead of converting to DNF, they handle boolean structure using SAT solving technqiues
- Most common approach is to construct boolean abstraction and lazily infer theory conflict clauses

- ▶ SMT solvers decide satisfiability in boolean combinations of different theories
- Instead of converting to DNF, they handle boolean structure using SAT solving technquies
- Most common approach is to construct boolean abstraction and lazily infer theory conflict clauses
- ▶ To do this, can either consider SAT solver as blackbox or can integrate with it

- ▶ SMT solvers decide satisfiability in boolean combinations of different theories
- Instead of converting to DNF, they handle boolean structure using SAT solving technquies
- ▶ Most common approach is to construct boolean abstraction and lazily infer theory conflict clauses
- ▶ To do this, can either consider SAT solver as blackbox or can integrate with it
- Latter strategy considered superior and known as DPLL(T) framework