Making solar power affordable: Using data to maximize cost efficiency

By Zachary Brown

Carbon emissions over time

Source: climate.gov

Project goal

To provide recommendations to homeowners in Texas that will help maximize the cost efficiency of their solar panel installation

- Purchase the largest configuration of solar panels that makes sense for the house
- Design the solar panel installation with a relatively high inverter loading ratio
- Identify and secure any rebate or grant available
- Consider buying a solar panel model with lower conversion efficiency
- Consider scheduling the installation for July or December

- Purchase the largest configuration of solar panels that makes sense for the house
- Design the solar panel installation with a relatively high inverter loading ratio
- Identify and secure any rebate or grant available
- Consider buying a solar panel model with lower conversion efficiency
- Consider scheduling the installation for July or December

- Purchase the largest configuration of solar panels that makes sense for the house
- Design the solar panel installation with a relatively high inverter loading ratio
- Identify and secure any rebate or grant available
- Consider buying a solar panel model with lower conversion efficiency
- Consider scheduling the installation for July or December

- Purchase the largest configuration of solar panels that makes sense for the house
- Design the solar panel installation with a relatively high inverter loading ratio
- Identify and secure any rebate or grant available
- Consider buying a solar panel model with lower conversion efficiency
- Consider scheduling the installation for July or December

- Purchase the largest configuration of solar panels that makes sense for the house
- Design the solar panel installation with a relatively high inverter loading ratio
- Identify and secure any rebate or grant available
- Consider buying a solar panel model with lower conversion efficiency
- Consider scheduling the installation for July or December

The data

Tracking the Sun

Pricing and Design Trends for Distributed Photovoltaic Systems in the United States

2022 Edition

Galen Barbose, Naïm Darghouth, Eric O'Shaughnessy, and Sydney Forrester Lawrence Berkeley National Laboratory

September 2022

trackingthesun.lbl.gov

This work was funded by the U.S. Department of Energy Solar Energy Technologies Office, under Contract No. DE-AC02-05CH11231.

Residential installations only

2020/2021 installations

 26 states included in the data, all were used in this analysis

The data

Tracking the Sun

Pricing and Design Trends for Distributed Photovoltaic Systems in the United States

2022 Edition

Galen Barbose, Naïm Darghouth, Eric O'Shaughnessy, and Sydney Forrester Lawrence Berkeley National Laboratory

September 2022

trackingthesun.lbl.gov

This work was funded by the U.S. Department of Energy Solar Energy Technologies Office, under Contract No. DE-AC02-05CH11231.

Residential installations only

2020/2021 installations

 26 states included in the data, all were used in this analysis

The data

Tracking the Sun

Pricing and Design Trends for Distributed Photovoltaic Systems in the United States 2022 Edition

> Galen Barbose, Naïm Darghouth, Eric O'Shaughnessy, and Sydney Forrester Lawrence Berkeley National Laboratory

> > September 2022

trackingthesun.lbl.gov

This work was funded by the U.S. Department of Energy Solar Energy Technologies Office, under Contract No. DE-AC02-05CH11231. Residential installations only

2020/2021 installations

 26 states included in the data, all were used in this analysis

Cost Efficiency

Relevant fields:

- Total installed price
- System size (DC)
- Rebate or grant

Cost efficiency metric:

Price per KW

Initial Model Screening

 Hyperparameter tuned models on 10% train set

 Retrained on 80% of data with set hyperparameters

Tested on remaining 20% of dataset

Further Tuning

- Four models hyperparameter tuned with 80% of the data for training
 - Two of four hyperparameters locked for XGBoost and Light GBM

 XGBoost had the best performance and was used for the remainder of the project

Model Performance

XGBoost Regressor	RMSE (million)
Training	2.96
Test	35.05

Outliers

	134435	2022447	1840658	
data_provider_1	Salt River Project	Utah Office of Energy Development	New York State Energy Research and Development	
system_id_1	50806	SolarPV0000002563	253904	
installation_date	2020-03-30	2020-07-01	2020-08-07	
system_size_dc	10.08	7.54	6.8	
total_installed_price	3427200.0	2631400.0	8255000.0	
rebate_or_grant	0.0	0.0	1476.0	
customer_segment	RES	RES	RES	
expansion_system	0	0	0	
multiple_phase_system	0	0	0	
tracking	-1	-1	-1	

108233	108175	108142	108020	108019	
Arizona Public Service	Arizona Public Service	Arizona Public Service	Arizona Public Service	Arizona Public Service	data_provider_1
108117	108059	108026	107904	107903	system_id_1
2020-06-23	2020-06-22	2020-06-19	2020-06-17	2020-06-17	installation_date
5.85	3.55	4.725	8.75	5.76	system_size_dc
20475.0	9900.0	18972.0	22631.0	17488.26	total_installed_price
0.0	0.0	0.0	0.0	0.0	rebate_or_grant
RES	RES	RES	RES	RES	customer_segment
0	0	0	0	0	expansion_system
0	0	0	0	0	multiple_phase_system
-1	-1	-1	-1	-1	tracking

Most Important Features

- Inverter loading ratio
- Inverter quantity
- Photovoltaic module efficiency
- Rebate or grant
- System size
- Tilt

- Inverter loading ratio
- Inverter quantity
- Photovoltaic module efficiency
- Rebate or grant
- System size
- Tilt

- Inverter loading ratio
- Inverter quantity
- Photovoltaic module efficiency
- Rebate or grant
- System size
- Tilt

- Inverter loading ratio
- Inverter quantity
- Photovoltaic module efficiency
- Rebate or grant
- System size
- Tilt

- Inverter loading ratio
- Inverter quantity
- Photovoltaic module efficiency
- Rebate or grant
- System size
- Tilt

Alternating Current

Tilt

Installation Month

Summary

- XGBoost regressor 3M train RMSE, 35M test RMSE
 - Outliers likely due to typos in final installed price
- Cost efficiency drivers:
 - Inverter loading ratio ↑ price per KW ↓
 - Inverter quantity ↑ price per KW ↓
 - PV module efficiency ↓ price per KW ↑
 - Rebate ↑ price per KW ↓
 - System Size ↑ price per KW ↓
 - Tilt
 - Month July and December most efficient

Future Work

- Recommendation tool
- Inputs:
 - Budget
 - Monthly electricity usage
 - Location/electrical supplier
- Outputs:
 - System size
 - Inverter quantity
 - Available rebates/grants
 - Time to recover investment

Model	Hyperparameters	RMSE
Mean Dummy Regressor	N/A	9,923,409
Median Dummy Regressor	N/A	9,941,871
25th Quantile Dummy Regressor	N/A	10,670,605
Ordinary Least Squares	N/A	1.2650560e+19
Ridge Regression	alpha	10,327,496
Lasso Regression	alpha	10,155,465
Random Forest Regression	max_features, max_depth, min_samples_leaf, n_estimators	9,720,312
XGBoost Regressor	n_estimators, max_depth, eta, colsample_bytree	11,759,799
Linear XGBoost Regressor - shotgun updater	reg_lambda, reg_alpha, feature_selector	9,788,061
Linear XGBoost Regressor - coordinate descent updater	reg_lambda, reg_alpha, feature_selector	9,789,561
Decision Tree Regressor	max_depth, min_samples_leaf	9,865,568
K Nearest Neighbors Regressor	n_neighbors	11,856,353
Light GBM Regressor	num_leaves, n_estimators, max_depth, learning_rate	23,385,497

