Лабораторная работа

«Численное решение нелинейных уравнений»,

выполнена Воронковой Вероникой, группа Б03-107.

В данной лабораторной работе нужно проверить решения двух уравнений разными методами.

$$x^3 - 3x^2 + 9x - 8 = 0$$
$$tg(0.5x + 0.2) = x^2$$

Для начала используя библиотеки локализируем корни, то есть построим графики и найдем численные решения данных уравнений:

1.1659055841222128

0.8489184041049849

Первый метод, который мы используем называется «метод дихотомии» или же метод половинного деления.

Будем считать, что корень t функции f(x) = 0 отделён на отрезке [a,b]. Задача заключается в том, чтобы найти и уточнить этот корень методом половинного деления. Другими словами, требуется найти приближённое значение корня с заданной точностью ϵ .

Пусть функция f непрерывна на отрезке [a,b],

$$f(a) \cdot f(b) < 0$$
, $\epsilon = 0,001$ и $t \in [a,b]$ - единственный корень уравнения $f(x) = 0$, $a \le t \le b$.

Поделим отрезок [a,b] пополам. Получим точку $c = \frac{a+b}{2}$, a < c < b и два отрезка [a,c], [c,b].

- Если f(c) = 0, то корень t найден (t = c).
- Если нет, то из двух полученных отрезков [a,c] и [c,b] надо выбрать один $[a_1;b_1]$ такой, что $f(a_1)\cdot f(b_1)<0$, то есть
 - $[a_1;b_1] = [a,c]_{, \text{ если }} f(a) \cdot f(c) < 0_{\text{ или}}$
 - $[a_1;b_1] = [c,b]_{\text{если}} f(c)\cdot f(b) < 0$

Новый отрезок $\left[a_1;b_1\right]$ делим пополам. Получаем середину этого отрезка $c_1=\frac{a_1+b_1}{2}$ и так далее.

Для того, чтобы найти приближённое значение корня с точностью до $\epsilon>0$, необходимо остановить процесс половинного деления на таком шаге n, на котором $|b_n-c_n|<\epsilon$ и вычислить $x=\frac{\alpha_n+b_n}{2}$. Тогда можно взять $t\approx x$.

Второй метод получил название «Метод секущих»

В численном анализе метод секущих представляет собой алгоритм поиска корней, который использует последовательность корней из секущих линий для лучшей аппроксимации корня функции f.

1) ищем координаты
$$x_0 \begin{cases} AB: \frac{y - F(a)}{F(b) - F(a)} = \frac{x - a}{b - a} \\ y = 0 \end{cases}$$

$$x_0 = a - \frac{F(a)(b-a)}{F(b) - F(a)}$$

- 2) рассмотрим знаки $F(x_0)$, F(a), F(b)
- 3) $[a, x_0]$ или $[x_0, b]$
- 4) два критерия остановки: $|a_n b_n| < \varepsilon$ или $|F(x_n)| < \varepsilon$

Метод Ньютона:

$$\varphi_{n+1}(x) = \varphi_n(x) - \frac{f(\varphi_n(x))}{f'(\varphi_n(x))}$$

Условие сходимости:

Пусть функция f(x) имеет первую и вторую производную на отрезке [a,b]. Причем выполнено условие знакопеременности функции f(a)f(b)<0, а производные f'(x) и f''(x) сохраняют знак на отрезке [a,b]. Тогда, исходя из начального приближения $x_0\in[a,b]$, удовлетворяющего неравенству $f(x_0)f''(x_0)>0$, можно методом Ньютона построить итерационную последовательность, сходящуюся к единственному на [a,b] решению уравнения f(x)=0.

Модифицированный метод Ньютона:

$$\varphi_{n+1}(x) = \varphi_n(x) - \frac{f(\varphi_n(x))}{f'(x_0)}$$

Сходимость:

Если на [a, b] задана дважды дифференцируемая функция f(x), причем выполнены условия:

- 1) f(a)f(b) < 0
- 2) f'(x) и $f''(x) \neq 0$ и сохраняют знаки на [a, b]

Тогда исходя из начального приближения $x_0 \in [a,b]$, удовлетворяющего неравенству $f(x_0)f''(x_0) > 0$, можно вычислить модифицированным методом Ньютона единственный корень ξ с любой степенью точности

МПИ:

$$f(x) = 0 \implies \varphi(x) = x$$

 $x_{n+1} = \varphi(x_n)$

Достаточным условием сходимости метода простых итераций является условие

$$|\varphi'(x)| < 1$$

которое выполняется для любого $x \in [a, b]$, где [a, b] содержит корень уравнения.

Расчетные данные и результаты:

Функция 1:

Дихотомия:

	Annotomis.
\coprod ar 1 x_n = 1.05	$ \mathbf{x}_{n} - \mathbf{x} = 0.11590558412221275$
$\coprod ar 2 x_n = 1.525$	$ \mathbf{x}_{n} - \mathbf{x} = 0.3590944158777871$
Шаг 3 $x_n = 1.2875$	$ \mathbf{x}_{n} - \mathbf{x} = 0.1215944158777873$
$\coprod ar 4 x_n = 1.16875000000000002$	$ \mathbf{x}_n - \mathbf{x} = 0.0028444158777873874$
$\coprod ar 5 x_n = 1.109375$	$ \mathbf{x}_n - \mathbf{x} = 0.05653058412221279$
Шаг 6 $x_n = 1.1390625$	$ \mathbf{x}_n - \mathbf{x} = 0.0268430841222127$
Шаг 7 $x_n = 1.1539062500000001$	$ \mathbf{x}_{n} - \mathbf{x} = 0.011999334122212657$
\coprod ar 8 x_n = 1.1613281250000003	$ \mathbf{x}_n - \mathbf{x} = 0.004577459122212524$
$\coprod a_{\Gamma} 9 x_n = 1.1650390625000002$	$ \mathbf{x}_n - \mathbf{x} = 0.0008665216222125682$
Шаг 10 $x_n = 1.16689453125$	$ \mathbf{x}_n - \mathbf{x} = 0.0009889471277872985$
\coprod ar 11 x_n = 1.1659667968750003	$ \mathbf{x}_{n} - \mathbf{x} = 6.121275278747618e-05$
Шаг 12 $x_n = 1.1655029296875004$	$ \mathbf{x}_n - \mathbf{x} = 0.000402654434712435$

Результат дихотомии: 1.16550293

Метод секущих:

	mered certy min.
\coprod ar 1 $x_n = 1.1316931982633864$	$ \mathbf{x}_n - \mathbf{x} = 0.034212385858826355$
\coprod ar 2 x_n = 1.1607260404115507	$ \mathbf{x}_n - \mathbf{x} = 0.005179543710662093$
\coprod ar 3 x_n = 1.1651080742410693	$ \mathbf{x}_n - \mathbf{x} = 0.0007975098811434655$
\coprod ar 4 x_n = 1.1657824830450922	$ \mathbf{x}_n - \mathbf{x} = 0.00012310107712054652$
\coprod ar 5 x_n = 1.1658865753776184	$ \mathbf{x}_n - \mathbf{x} = 1.9008744594373184e-05$
Шаг 6 $x_n = 1.165902648699876$	$ \mathbf{x}_{n} - \mathbf{x} = 2.9354223367583643e-06$
\coprod ar 7 x_n = 1.165905130815967	$ \mathbf{x}_n - \mathbf{x} = 4.533062458733639e-07$
\coprod ar 8 x_n = 1.1659055141197334	$ \mathbf{x}_n - \mathbf{x} = 7.000247936872483e-08$
$\coprod ar 9 x_n = 1.1659055733119752$	$ \mathbf{x}_n - \mathbf{x} = 1.081023759397226e-08$
\coprod ar 10 x_n = 1.1659055824528257	$ \mathbf{x}_n - \mathbf{x} = 1.6693870730222216e-09$
Шаг 11 $x_n = 1.165905583864415$	$ \mathbf{x}_n - \mathbf{x} = 2.5779778312085e-10$

Результат метода секущих: 1.16590558

Метод Ньютона:

Результат метода Ньютона: 1.16590563

Модифицированный метод Ньютона:

```
|\mathbf{x} \ \mathbf{n} - \mathbf{x}^*| = 1.8340944158777872
|\mathbf{x} \ \mathbf{n} - \mathbf{x}^*| = 0.7785388603222316
\text{IIIar 3 phi}_n = 1.4666913808814253 x_n = 1.6383840115836001
                                                                           |\mathbf{x} \ \mathbf{n} - \mathbf{x}^*| = 0.47247842746138735
Шаг 4 phi_n = 1.3610361551928911
                                        x n = 1.4666913808814253
                                                                           |\mathbf{x} \ \mathbf{n} - \mathbf{x}^*| = 0.30078579675921246
Шаг 5 phi_n = 1.2936318802531261
                                       x n = 1.3610361551928911
                                                                           |\mathbf{x} \ \mathbf{n} - \mathbf{x}^*| = 0.19513057107067833
Шаг 6 phi n = 1.2499036508867225
                                        x n = 1.2936318802531261
                                                                           |x \ n - x^*| = 0.12772629613091335
Шаг 7 phi_n = 1.2212909371743301
                                        x n = 1.2499036508867225
                                                                           |\mathbf{x} \ \mathbf{n} - \mathbf{x}^*| = 0.08399806676450972
Шаг 8 phi_n = 1.202480816664471
                                        x n = 1.2212909371743301
                                                                           |\mathbf{x} \ \mathbf{n} - \mathbf{x}^*| = 0.055385353052117337
Шаг 9 phi n = 1.190081577446392
                                        x n = 1.202480816664471
                                                                           |\mathbf{x} \ \mathbf{n} - \mathbf{x}^*| = 0.03657523254225814
\text{III}ar 10 phi n = 1.1818950605958576 x n = 1.190081577446392
                                                                           |\mathbf{x} \ \mathbf{n} - \mathbf{x}^*| = 0.02417599332417919
\text{Шаг } 11 \text{ phi}_n = 1.1764845878431784 } x_n = 1.1818950605958576
                                                                           |\mathbf{x} \ \mathbf{n} - \mathbf{x}^*| = 0.015989476473644793
|\mathbf{x} \ \mathbf{n} - \mathbf{x}^*| = 0.010579003720965652
|x \ n - x^*| = 0.0070009782243125596
\text{III}ar 14 phi_n = 1.168972946028119   x_n = 1.170539412006363
                                                                           |x \ n - x^*| = 0.004633827884150232
\text{Шаг 15 phi } n = 1.1679361589462132 \text{ x } n = 1.168972946028119
                                                                           |\mathbf{x} \ \mathbf{n} - \mathbf{x}^*| = 0.003067361905906285
IIIar 16 phi n = 1.1672498710472434 x n = 1.1679361589462132
                                                                           |\mathbf{x} \ \mathbf{n} - \mathbf{x}^*| = 0.002030574824000375
```

<u>Результат модифицированного метода Ньютона: 1.16724987</u>

МПИ:

Шаг 1 $phi_n = 0.88888888888888888888888888888888888$	$x_n = 0$	$ \mathbf{x}_n - \mathbf{x} = 1.1659055841222128$
Шаг 2 phi_n = 1.07422648986435	$x_n = 0.88888888888888888888888888888888888$	$ \mathbf{x}_n - \mathbf{x} = 0.27701669523332395$
Шаг 3 phi_n = 1.1358078348242069	$x_n = 1.07422648986435$	$ \mathbf{x}_n - \mathbf{x} = 0.09167909425786269$
Шаг 4 phi_n = 1.1561020773638433	$x_n = 1.1358078348242069$	$ \mathbf{x}_n - \mathbf{x} = 0.030097749298005905$
$IIIar 5 phi_n = 1.1627224843055362$	$x_n = 1.1561020773638433$	$ \mathbf{x}_n - \mathbf{x} = 0.009803506758369496$
Шаг 6 phi_n = 1.164873198691236	$x_n = 1.1627224843055362$	$ \mathbf{x}_n - \mathbf{x} = 0.0031830998166766378$
Шаг 7 phi $n = 1.1655708688459718$	x n = 1.164873198691236	$ \mathbf{x} \ \mathbf{n} - \mathbf{x}^* = 0.0010323854309768343$

<u>Результат МПИ: 1.16557087 7</u>

Функция 2:

Дихотомия:

	, ,
Шаг 1 $x_n = 1.05$	$ \mathbf{x}_n - \mathbf{x} = 0.11590558412221275$
Шаг 2 $x_n = 0.5750000000000001$	$ \mathbf{x}_n - \mathbf{x} = 0.5909055841222127$
Шаг 3 $x_n = 0.8125$	$ \mathbf{x}_n - \mathbf{x} = 0.3534055841222128$
Шаг 4 $x_n = 0.93125$	$ \mathbf{x}_{n} - \mathbf{x} = 0.23465558412221277$
Шаг 5 $x_n = 0.871875$	$ \mathbf{x}_n - \mathbf{x} = 0.29403058412221283$
Шаг 6 $x_n = 0.8421875$	$ \mathbf{x}_n - \mathbf{x} = 0.3237180841222128$
Шаг 7 $x_n = 0.85703124999999999$	$ \mathbf{x}_n - \mathbf{x} = 0.3088743341222129$
Шаг 8 $x_n = 0.849609375$	$ \mathbf{x}_n - \mathbf{x} = 0.3162962091222128$
Шаг 9 $x_n = 0.8458984375$	$ \mathbf{x}_n - \mathbf{x} = 0.32000714662221275$
Шаг $10 x_n = 0.84775390625$	$ \mathbf{x}_{n} - \mathbf{x} = 0.31815167787221277$
Шаг 11 $x_n = 0.848681640625$	$ \mathbf{x}_n - \mathbf{x} = 0.31722394349721283$
Шаг 12 $x_n = 0.8491455078125$	$ \mathbf{x}_n - \mathbf{x} = 0.3167600763097128$

Результат дихотомии: 0.84914551

Метол секущих:

	тистод секущих.
\coprod ar 1 x_n = 0.37859930252534935	$ \mathbf{x}_n - \mathbf{x} = 0.7873062815968634$
\coprod ar 2 x_n = 0.6339472546410728	$ \mathbf{x}_n - \mathbf{x} = 0.53195832948114$
Шаг 3 $x_n = 0.7767296683444506$	$ \mathbf{x}_n - \mathbf{x} = 0.3891759157777622$
$\coprod a_{\Gamma} 4 x_n = 0.8291143548732297$	$ \mathbf{x}_n - \mathbf{x} = 0.3367912292489831$
$\coprod a_{\Gamma} 5 x_n = 0.8439257188007732$	$ \mathbf{x}_n - \mathbf{x} = 0.32197986532143963$
Шаг 6 $x_n = 0.8476911442489443$	$ \mathbf{x}_n - \mathbf{x} = 0.3182144398732685$
Шаг 7 $x_n = 0.848618694458027$	$ \mathbf{x}_n - \mathbf{x} = 0.31728688966418583$
$\coprod a_{\Gamma} 8 x_n = 0.8488453301276907$	$ \mathbf{x}_n - \mathbf{x} = 0.3170602539945221$
$\coprod a_{\Gamma} 9 \ x_n = 0.8489005945520041$	$ \mathbf{x}_n - \mathbf{x} = 0.31700498957020873$
Шаг 10 $x_n = 0.8489140639883596$	$ \mathbf{x}_n - \mathbf{x} = 0.31699152013385323$
Шаг 11 $x_n = 0.848917346460839$	$ \mathbf{x}_n - \mathbf{x} = 0.31698823766137374$
$\coprod ar 12 \ x_n = 0.8489181463688856$	$ \mathbf{x}_n - \mathbf{x} = 0.31698743775332716$
Шаг 13 $x_n = 0.8489183412976555$	$ \mathbf{x}_n - \mathbf{x} = 0.31698724282455726$
Шаг 14 $x_n = 0.8489183887995648$	$ \mathbf{x}_n - \mathbf{x} = 0.31698719532264796$
$\coprod a_{\Gamma} 15 \ x_n = 0.8489184003752313$	$ \mathbf{x}_n - \mathbf{x} = 0.31698718374698154$

<u>Результат метода секущих: 0.8489184</u>

Метод Ньютона:

Шаг 1 phi_n = 0.8622936849462365	$\mathbf{x}_{\mathbf{n}} = 1$	$ \mathbf{x}_{n} - \mathbf{x}^{*} = 0.15108159589501513$
Шаг 2 phi_n = 0.849053280901368	$x_n = 0.8622936849462365$	$ \mathbf{x}_n - \mathbf{x} = 0.013375280841251613$
$\coprod a_{\Gamma} 3 \text{ phi} \underline{n} = 0.8489184181841145$	$x_n = 0.849053280901368$	$ \mathbf{x}_{n} - \mathbf{x} = 0.0001348767963831321$

<u>Результат метода Ньютона: 0.84891842</u>

Модифицированный метод Ньютона:

```
\begin{aligned} &\text{IIIar 1 phi\_n} = 0.3142209432555506 & \text{$x\_n} = 0.1 & |\text{$x\_n} - \text{$x^*$}| = 0.7489184041049849 \\ &\text{IIIar 2 phi\_n} = 0.5537901970882083 & \text{$x\_n} = 0.314220943255506 & |\text{$x\_n} - \text{$x^*$}| = 0.5346974608494343 \\ &\text{IIIar 3 phi\_n} = 0.7371410530640974 & \text{$x\_n} = 0.5537901970882083 & |\text{$x\_n} - \text{$x^*$}| = 0.29512820701677656 \end{aligned}
```

```
\begin{aligned} &\text{IIIar 4 phi\_n} = 0.8205941042570769 & \text{x\_n} = 0.7371410530640974 & |\text{x\_n} - \text{x*}| = 0.11177735104088748 \\ &\text{IIIar 5 phi\_n} = 0.8432842226531595 & \text{x\_n} = 0.8205941042570769 & |\text{x\_n} - \text{x*}| = 0.028324299847907963 \\ &\text{IIIar 6 phi\_n} = 0.8478793438693197 & \text{x\_n} = 0.8432842226531595 & |\text{x\_n} - \text{x*}| = 0.005634181451825371 \\ &\text{IIIar 7 phi\_n} = 0.8487298120490433 & \text{x\_n} = 0.8478793438693197 & |\text{x\_n} - \text{x*}| = 0.0010390602356651346 \end{aligned}
```

<u>Результат модифицированного метода Ньютона: 0.84872981</u>

МПИ:

Шаг 1 phi_n = 0.4559833517937083	$x_n = 0.01$	$ \mathbf{x}_n - \mathbf{x} = 0.8389184041049849$
Шаг 2 phi_n = 0.6754202511000479	$x_n = 0.4559833517937083$	$ \mathbf{x}_n - \mathbf{x} = 0.39293505231127657$
Шаг 3 phi_n = 0.7722183769451408	$x_n = 0.6754202511000479$	$ \mathbf{x}_n - \mathbf{x} = 0.17349815300493698$
Шаг 4 $phi_n = 0.8148221759441991$	$x_n = 0.7722183769451408$	$ \mathbf{x}_n - \mathbf{x} = 0.07670002715984403$
Шаг 5 phi_n = 0.8337099318741118	$x_n = 0.8148221759441991$	$ \mathbf{x}_n - \mathbf{x} = 0.034096228160785724$
Шаг 6 phi_n = 0.8421233142500131	$x_n = 0.8337099318741118$	$ \mathbf{x}_n - \mathbf{x} = 0.015208472230873071$
Шаг 7 phi_n = 0.8458799978059576	$x_n = 0.8421233142500131$	$ \mathbf{x}_n - \mathbf{x} = 0.006795089854971792$
Шаг 8 phi_n = 0.847559302609409	$x_n = 0.8458799978059576$	$ \mathbf{x}_n - \mathbf{x} = 0.0030384062990272964$
Шаг 9 phi_n = 0.8483103698831603	$x_n = 0.847559302609409$	$ \mathbf{x}_n - \mathbf{x} = 0.0013591014955758318$

<u>Результат МПИ: 0.84831037 9</u>

Выводы:

Наилучшие результаты по первой функции показали метод секущих и метод Ньютона, по второй функции аналогично.