

Disciplina: Arquitectura de computador	Ano Lectivo: 2024/2025	
Curso: Informática de Gestão	I ^a Frequência - CHAVE	Iº Semestre
Docente: : Eng.º Nzuzi Rodolfo	Data: 30/ 04/2024	Duração: 1h:30
Nome:	Turma: A	1º Ano

- 1. (4 val) Um estudante do 5° ano de engenharia informática do INSTIC, está a escrever um artigo ciêntifico sobre organização e arquitectura de computadores e durante a pesquisa ele encotra dificuldade em provar certas afirmações, ajude-o preenchendo com V-verdadeiro, F-falso, justificando os falsos?
 - a) É uma questão de projeto arquitetural se o computador deve ter uma unidade de multiplicação(F)R: Uma unidade é um elemento de projecto organizacional.
 - b) É uma questão de projeto organizacional se o computador deve ter detalhes de hardware transparentes ao programador que realizem a instrução de multiplicação (V)
 - c) É uma questão de projeto organizacional se o computador deve ter uma instrução de multiplicação (F) R: Instrução de multiplicação refere-se a uma questão de projecto arquitectural.
 - d) É uma questão de projeto arquitetural se o computador deve ter uma técnicas de endereçamento de memória capaz de endereçar operandos de uma instrução de multiplicação e outras operações aritmeticas(**V**)
- 2. (3,5 val) O departamento de informática do INSTIC, pretende construir um computador para definição da extrutura de interconexão pretende-se fazer o uso de barramento multiplos para conectar diversos componentes do computador
 - a) Que vantagens têm relativamente se fizesse o uso de um único barramento ? destacando as causas ou problemas.R: Não há vantagens, pois devido muitos dispositivos em um único barramento causa atraso de propagação dos sinais e quando transferência de dados se aproxima da capacidade máxima do barramento causa Gargalo(congestionamento); Portanto faz-se bem em utilizar múltiplos barramentos organizados de forma hierárquica que dará mais eficiência nas transferência de dados entre os principais modulos.
- 3. Dada uma certa memória de um computador hipotético, capaz da armazenar nas suas celulas 2048 informações e possui 2048 celulas.

R: Dados: M = 2048; N = 2048.

a) Qual é o tamanho da celula e com quantos bits podemos representar os endereços ? (1 valor) R: $M = 2^B => 2048 = 2^B => 2^{11} = 2^B => tamanho da celula(B) = 11 bits; <math>N = 2^E => 2048 = 2^E => 2^{11} = 2^E =$

> podemos representar os endereçoa(E) = 11 bits;

b) Qual o valores em binário dos endereços 24; 30 e 50 e tamanho em byte dessa memória? (2 valores) R:

	1024	512	256	128	64	32	16	8	4	2	1
24 —	» O	0	0	0	0	0	1	1	0	0	0
30 →	0	0	0	0	0	0	1	1	1	1	0
50 →	0	0	0	0	0	1	1	0	0	1	0

Tamanho da memória(T) = $N \times B = 2 \times 2^{10} \times 11bits = 22Kbits$ = $22528bits = 2816bytes = 22 \times 2^7bytes$

c) Faça o layout dessa mémoria prenchida com os endereço e valores por cada celula até a 6ª celula.? (2 valores)R:

0000000000 0	0000000000
0000000001 1	0000000001
0000000010 2	0000000010
0000000011 3	0000000011
0000000100 4	0000000 <mark>1</mark> 00
0000000101 5	0000000101
00000000110 6	0000000110

- 4 Suponha que em certo computador hipotético de mémoria de capacidade de 16EB e suas celulas tivessem tamanho de 8 bits.**R: Dados : T= 16EB; B=8bits= 1byte.**
 - a) Quantas linhas de endereços e dados são necessário para este chip de memória ? (2 valores)R: $N = 2^E; T = N \times B => T = 2^E \times B => \frac{T}{B} = 2^E => \frac{16EB}{1B} = 2^E => 16 \times 2^{60} => 2^E = 2^4 \times 2^{60} => E = 64$ bits que é inerente a 64 linhas de endereços
 - b) Quantas celulas contém essa mémoria (1valor)

R:
$$N = \frac{T}{B} = \frac{16EB}{1B} = > N = 16E = 16 \times 2^{60}$$
 celulas

5 – Faça o esboço do ciclo de instrução da cpu, explicando cada um dos seus passos a executar um conjunto de instruções ? (4,5 valores) R:

- 1-Busca a instrução: UC lê da memória próxima instrução a executar (cujo endereço está em PC) e copia-a para IR; 2. Decodifica a instrução atual: UC determina qual é a instrução(operação),investigando conteúdo de IR;
- 3. Determina o endereço e busca o operando na memória (quando necessário): Caso instrução precise de operandos na memória, UC lê operandos da memória;4. Executa a operação (sinais de controle): ALU executa operação indicada pela instrução, utilizando operandos e gerando resultado;5.(fim) Armazena os resultados: caso instrução precise que resultado fique na memória, UC escreve resultado na memória 6. Repete passos anteriores: UC atualiza PC, para apontar para próxima instrução a executar