

H T

Hochschule Konstanz

Technik, Wirtschaft und Gestaltung

W

G

Brownbag on Mutual Information

Demystifying the "Correlation of the 21st Century." Terry Speed.

Matthias Hermann, HTWG-Konstanz, Institute for Optical Systems 30.11.2020

Overview

- Tishby's hypothesis
- Other applications
- Background on 5 slides
- Algorithms
- Flourish

Naftali Tishby's information bottleneck for neural networks

Remember from compression:

Compression means minimizing MI(X,T).

Tishby's hypothesis:

"A neural network learns by compressing the input optimally under the constraint given by the $Loss(\widehat{Y}, Y)$."

The information bottleneck with MNIST

Measuring correlation

Bitcoin X and S&P500 Y is highly correlated.

Pearson correlation coefficient measures linear relationships between X and Y. But fails with slope and non-linear relationships.

Measuring compression rate

- Compression is a tradeoff of quality and needed bits.
- We usually want a code that is maximum independent of the input.
- Mutual information measures non-linear relationships (shared information).
- Mutual information between input and compressed code must be as small as possible.

Measuring information gain

- The expected value of information gain is the mutual information $E_{a\sim A}[IG(X,a)]=I(X,A)$
- Information gain

$$IG(X,a) = H[X] - H[X|a]$$

When we want to maximize IG:

Should we choose a2 or a1?

Criterion in decision trees

- Decision trees typically optimize mutual information criterion.
- Measuring mutual information of low dimensional categorial variables is easy.

Measuring I(X,Y) of continuous high dimensional variables is difficult.

Measuring uncertainty

Bayesian Active Learning for Classification and Preference Learning

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, Máté Lengyel Computational and Biological Learning Laboratory University of Cambridge

December 30, 2011

Bayesian **A**ctive **L**earning by **D**isagreement (BALD).

6 slides to go..

Entropy

 $\underset{p}{\operatorname{argmax}} H[Bernoulli(p)] = 0.5 \Rightarrow H[Bernoulli(0.5)] = 1 \ bit$

Entropy

$$H[X] = H[p(x)] = E_{x \sim X}[-\log p(x)]$$

- Entropy of a variable X depends on p(x)
- Maximum entropy distribution for continuous variables on [-inf, +inf] with fixed variance is Gaussian
- Maximum entropy distribution for discrete variables is uniform
- Entropy is measured in bits or nats

The better the model fits, the lower the entropy under that model.

Entropy increases with dimension

Entropy of a Gaussian variable with increasing dimension (left) and a two-dimensional Bernoulli variable (right).

Properties of KL divergence/relative entropy

 The KL-divergence represents the number of extra bits needed when using Q instead of P.

$$KL[P|Q] = CE[P,Q] - H[P]$$

- Non-negative
- Dimensionally consistent i.e. invariant under parameter transformations.
- Classical loss for optimizing classifier $f_{\theta}(x)$:

$$\hat{y} = \log softmax(\frac{e^{f_{\theta}(x_i)}}{\sum_{j} e^{f_{\theta}(x_j)}})$$

$$CE[p(y), p(\hat{y})] = \sum_{y_j} y \log \hat{y}_j$$

$$KL[p(y)|p(\hat{y})] \propto CE[p(y), p(\hat{y})]$$

Mutual Information

Entropies and Conditional Entropies.

$$I(X,Y)$$
 = $H[X] - H[X|Y]$
= $H[Y] - H[Y|X]$
= $H[X] + H[Y] - H[X,Y]$

KL divergence between joint and marginal

$$I(X,Y) = KL[p(x,y)|p(x)p(y)]$$

Venn-diagramm for Mutual Information I(X,Y).

Measuring uncertainty with BALD

```
I(X,Y) = H[X] - H[X|Y]
= H[Y] - H[Y|X]
```

BALD Idea: Propose example x that greedily maximizes the decrease in posterior entropy:

$$I(\theta, Y|x) = H[\theta] - H(\theta|Y, x)$$

$$\arg \max_{x} H[\theta] - H[\theta|Y] = H[\theta] - E_{y \sim p(y|x)} [H[\theta|y, x]]$$

$$\arg \max_{x} H[p(y|x)] - E_{\theta \sim q(\theta)} [H[p(y|x, \theta)]]$$

Estimating entropy H[Y|X] is easy as we do know that p(y|X) is multinomial.

Levels of concern

- Maximizing mutual information $I(X|f_{\theta}(x))$
- Estimating entropy $H[X] = E[-\log p_{\theta}(x)]$
- Minimizing mutual information I(X, Y)
- Estimating joint entropy H[A,...,Z]
- Estimating I(X,Y)
- Maximizing KL-divergence $KL(p_{\theta}(y)|p_{\theta}(x))$
- Minimizing KL-divergence $KL(p(y)|p(f_{\theta}(x)))$

- Autoencoder
- Density estimation
- Decorrelation
- Absolute measuring
- Absolute measuring
- Contrastive learning
- Regression and classification

Estimation Dual KL-Divergence

• Donsker-Varadhan representation of KL (e.g. contrastive learning): $Dual\ KL[P|Q] > \sup_T E_P[T] - \log(E_Q[e^T])$

• Maximizing (lower bound) mutual information (neural estimation): $Dual\ KL[X|Y] \ge \sup_{f_{\theta}} E_{x \sim X}[f_{\theta}(x)] - \log(E_{y \sim Y}[e^{f_{\theta}(y)}])$

$$I_{neural}(X,Y) \ge \sup E_{x^+ \sim (X,Y^*)}[f_{\theta}] - \log(E_{x^- \sim (X,Y)}[e^{f_{\theta}}])$$

• Auxiliary dataset $D^- = (X, Y^*)$ by sampling y^* without replacement.

Negentropy over epochs

References

- Tishby, Naftali; Pereira, Fernando C.; Bialek, William (September 1999). The Information Bottleneck Method (PDF). The 37th annual Allerton Conference on Communication, Control, and Computing. pp. 368–377.
- Belghazi, M. I., Baratin, A., Rajeshwar, S., Ozair, S., Bengio, Y., Courville, A., & Hjelm, D. (2018, July). Mutual information neural estimation. In International Conference on Machine Learning (pp. 531-540)
- Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein gan. arXiv preprint arXiv:1701.07875.
- https://en.wikipedia.org/wiki/Correlation_and_dependence
- http://www.ncbi.nlm.nih.gov/pubmed/8947780
- https://de.wikipedia.org/wiki/JPEG 2000
- https://en.wikipedia.org/wiki/Information gain in decision trees
- Houlsby, N., Huszár, F., Ghahramani, Z., & Lengyel, M. (2011). Bayesian active learning for classification and preference learning. arXiv preprint arXiv:1112.5745.
- https://homes.cs.washington.edu/~ewein/blog/2020/07/30/joint-entropy

Thanks.

Matthias Hermann
Hochschule Konstanz
Institute for Optical Systems
matthias.hermann@htwg-konstanz.de
www.ios.htwg-konstanz.de

