Notes on Anomaly Detection

Sameer Kesava PhD

Contents

1	Unsupervised Learning Algorithms			
	1.1	Basic Statistics	1	
	1.2	MeanShift Clustering	1	
	1.3	DBSCAN	1	
	1.4	Local Outlier Factor	2	
2	Supervised Learning Algorithms			
	2.1	Univariate Data	3	
	2.2	Multivariate Data	3	
	2.3	Random Cut Forest	3	
	2.4	XGBoost	3	
	2.5	Isolation Forest	4	
3	Improving the Accuracy			
	-	Hyperparameter Tuning	5	

Unsupervised Learning Algorithms

For more information, please see **Deep Learning for Anomaly Detection:** A Survey; http://arxiv.org/abs/1901.03407.

1.1 Basic Statistics

- Simple EDA (see Data Preprocessing document) gives an idea of outliers.
- Compare mean, median and mode or use boxplots.

1.2 MeanShift Clustering

- Distance-based clustering
- Has the ability to detect outliers.

1.3 DBSCAN

Density-based spatial clustering of applications with Noise

- Hyperparameters:
 - 1. min_samples: controls how tolerant the algorithm is towards noise. Starting value: 2*dimension.
 - 2. ϵ : crucial parameter; controls the local neighborhood of points. A starting value can be chosen using elbow/knee point in nearest neighbor plot.
 - 3. ϵ -metric: euclidean, minkowski, etc.

- Has the ability to detect outliers: A sample that is not a core sample and is at least ϵ in distance from any sample is considered an outlier.
- Works well for non-linear data.
- Affected by the curse of dimensionality.
- \bullet OPTICS is a variant of DBSCAN, does not require ϵ to be set.

1.4 Local Outlier Factor

See sklearn

Supervised Learning Algorithms

2.1 Univariate Data

- Boxplot
- Grubbs test
- RANSAC algorithm for linear regression
- Studentized residuals and leverage points. Easy to plot for univariate data.

2.2 Multivariate Data

2.3 Random Cut Forest

From Amazon SageMaker

2.4 XGBoost

Highly popular classifier and regressor.

- Gradient boosting method
- Absolute loss and Huber loss more robust to outliers.
- Hyperparameters
 - 1. Max_depth
 - 2. Colsample_bytree
 - 3. Eta
 - 4. train-test split: 60-40/70-30/80-20.

2.5 Isolation Forest

Improving the Accuracy

3.1 Hyperparameter Tuning

- Hyperparameter optimization based on Gaussian Process Regression and Bayesian Optimization
- keras tuner in keras
- GridSearchCV or RandomSearchCV in scikit-learn
- RandomSearch can be used as the baseline against which optimization algorithms can be evaluated.

Bibliography

[1] Pankaj Malhotra et al., Long Short Term Memory Networks for Anomaly Detection in Time Series, 2015.