

DLD Lab-09 Multiplexer & De Multiplexer

Instructor: Mazhar Iqbal

EL227 – Digital Logic Design-Lab

SEMESTER SPRING 2021

FEBRUARY 9, 2022

NATIONAL UNIVERSTIY OF COMPUTER AND EMERGING SCIENCES, FAST- PESHAWAR CAMPUS

Department Of Computer Science

Contents

1.	Objectives:	. 2
2.	Equipment Required:	. 2
3.	Background Theory	. 2
4.	4x1 Mux Contd	. 3
5.	4x1 Mux(74LS153 Testing in Multisim)	. 4
6.	8x1 Mux	. 4
7.	8x1 Mux(74LS151 Testing in Multisim)	. 5
8.	DE Multiplexer	. 6
9.	1x4 De Multiplexer	. 6
10.	1x4 De-Mux(74LS139 Testing in Multisim)	. 7
11.	1x8 De Multiplexer	. 8

1. Objectives:

- Design and implement the circuitry for a 4 to 1 Multiplexer.
- Test the functionality of a 1x4 DE multiplexer using the IC-74LS139
- Test the functionality of a 8x1 multiplexer using the IC-74LS151
- Test the functionality of a 4x1 multiplexer using the IC-74LS153Gaining a close insight into the functioning and properties of multiplexer (MUX) circuits
- Developing skills in the design and testing of combinational logic circuits.

2. Equipment Required:

- DEV-2765E Trainer Board/ Multisim 14.2 /Logic.ly
- 74LS04 Hex Inverter
- 74LS08 And gate
- 74LS32 OR gate
- 74LS151 (8-to-1 Multiplexer)
- 74LS153 (dual 4-to-1 Multiplexer)

3. Background Theory

A multiplexer is a combinational circuit that selects binary information from one of many input lines and directs the information to a single output line. The selection of a particular input line is controlled by a set of input variables, called selection input. Normally, there are 2^n input lines and n selection inputs whose bit combination determines which input is selected.

A de multiplexer is doing the opposite function of multiplexer. It takes input on a single input line and the select lines determines one of the 2ⁿ output lines and the input contents is visible on that particular output.

The multiplexer is a device that has multiple inputs and single line output. The select lines determine which input is connected to the output in other words

Multiplexer is a combinational circuit that has maximum of 2ⁿ data inputs, 'n' selection lines and single output line.

Multiplexer is also called as Mux.

Figure 1

4. 4x1 Mux Contd.

4x1 Multiplexer has four data inputs I_3 , I_2 , I_1 & I_0 , two selection lines s_1 & s_0 and one output Y. The **block diagram** of 4x1 Multiplexer is shown in the following figure.

Selection	Output		
S ₁	S ₀	Υ	
0	0	I ₀	
0	1	I ₁	
1	0	l ₂	
1	1	l ₃	

 $Y=S_1'S_0'I_0+S_1'S_0I_1+S_1S_0'I_2+S_1S_0I_3$

We can implement this Boolean function using Inverters, AND gates & OR gate. The circuit diagram of 4x1 multiplexer is shown in the following figure.

5. 4x1 Mux(74LS153 Testing in Multisim)

6. 8x1 Mux

s	election Input	Output			
S ₂	S ₁	S ₀	Υ		
0	0	0	I ₀		
0	0	1	I ₁		
0	0 1		l ₂		
0	1	1	l ₃		
1	0	0	I ₄		
1	1 0		I ₅		
1	1	0	I ₆		
1	1	1	l ₇		

7. 8x1 Mux(74LS151 Testing in Multisim)

8. DE Multiplexer

The function of De multiplexer is in contrast to multiplexer function. It takes information from one line and distributes it to a given number of output lines. For this reason, the <u>demultiplexer</u> is also known as a data distributor. It has single input, 'n' selection lines and maximum of 2ⁿ outputs. The input will be connected to one of these outputs based on the values of selection lines.

9. 1x4 De Multiplexer

1x4 De-Multiplexer has one input I, two selection lines, s_1 & s_0 and four outputs Y_3, Y_2, Y_1 & Y_0 . The **block diagram** of 1x4 De-Multiplexer is shown in the following figure.

10. 1x4 De-Mux(74LS139 Testing in Multisim)

 Y_0

11. 1x8 De Multiplexer

1x8 De-Multiplexer has one input I, three selection lines, $s_{2,}$ s_{1} & s_{0} and seven outputs $Y_{7}, Y_{6}, Y_{5,}, Y_{4}, Y_{3}, Y_{2,}, Y_{1}$ & Y_{0} . The **block diagram** of 1x8 De-Multiplexer is shown in the following figure.

Se	Outputs									
s ₂	s ₁	s ₀	Y ₇	Y ₆	Y ₅	Y ₄	Y ₃	Y ₂	Y ₁	Y ₀
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	- 1	0
0	1	0	0	0	0	0	0	- 1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	- 1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	- 1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0