Parameter	Statistic	Standard Error	Distribution	Assumptions
p	\hat{p}	$\sqrt{p_0(1-p_0)/n} \tag{HT}$	Z	successes & failures ≥ 10
		$\sqrt{\hat{p}(1-\hat{p})/n} \tag{CI}$	Z	p_0 is the number in H_0
p_1-p_2	$\hat{p}_1 - \hat{p}_2$	$\sqrt{\hat{p}(1-\hat{p})(1/n_1+1/n_2)}$ (HT)	Z	successes & failures ≥ 10
	(2 independent samples)	$\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}} $ (CI)	Z	in each group
$\ln(RR) = \ln(p_1/p_2)$	$\ln(\hat{p}_1/\hat{p}_2)$	$\sqrt{\frac{1}{a} - \frac{1}{a+c} + \frac{1}{b} - \frac{1}{b+d}}$	Z	large samples
take inverse $\ln(e)$ for CI				
$\ln(OR)$	$\ln(\hat{OR})$	$\sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$	Z	large samples
take inverse $\ln(e)$ for CI				
μ	\overline{x}	σ/\sqrt{n} $(\sigma \text{ known})$	Z	$n \ge 30$ or normal
		s/\sqrt{n} (σ unknown)	t, df = n - 1	
$\mu_1 - \mu_2$	$\overline{x}_1 - \overline{x}_2$	$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	$t, df \approx \min\{n_1, n_2\} - 1$	$n_1, n_2 \ge 30$ or normal
	(2 independent samples)			
μ_d	\overline{x}_d (matched pairs)	s_d/\sqrt{n} $(n = \#pairs)$	$t, \mathrm{df} = n - 1$	$n \ge 30$ or normal
X_{n+1}	\overline{x}	$\sqrt{s^2 + \frac{s^2}{n}}$	t, df = n - 1	normal

To find the p-value of a HT, look up the score $\frac{\text{statistic} - \text{hypothesized value}}{\text{SE}}$ on the specified distribution in the direction of H_A .

A $(100-\alpha)\%$ CI is of the form statistic \pm multiplier \times SE. The multiplier is the $(100-\alpha/2)\%$ point from the specified distribution.

Inference for two variables (explanatory variable not necessarily binary)

Two categorical variables (χ^2 test). χ^2 -statistic = $\sum_{i=1}^r \sum_{j=1}^c \frac{(\text{observed}_{ij} - \text{expected}_{ij})^2}{\text{expected}_{ij}}$, where $\text{expected}_{ij} = \frac{(\text{total of row } i) \times (\text{total of column } j)}{\text{grand total}}$.

Under the null hypothesis assumption assumption, the statistic follows a χ^2 distribution with (r-1)(c-1) degrees of freedom.

Categorical explanatory, quantitative response variables (ANOVA). F-statistic= $\frac{\text{MST}}{\text{MSE}}$, where $\text{MST} = \frac{n_1(\bar{x}_1 - \bar{x})^2 + \dots + n_I(\bar{x}_I - \bar{x})^2}{I-1}$

and $MSE = \frac{(n_1 - 1)s_1^2 + \dots + (n_I - 1)s_I^2}{N - I}$. Under the null hypothesis assumption, the statistic follows an F distribution with (I - 1, N - I) degrees of freedom.

Two quantitative variables (Simple Linear Regression).

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \frac{(x_i - \bar{x})(y_i - \bar{y})}{s_x s_y}, \qquad b_1 = r \frac{s_y}{s_x}, \qquad b_0 = \bar{y} - b_1 \bar{x}, \qquad \hat{y} = b_0 + b_1 x, \qquad SE(b_1) = \frac{s}{s_x} \frac{1}{\sqrt{n-2}}.$$

Under the null hypothesis $H_0: \beta_1 = 0$, the standardized slope statistic $\frac{b_1 - 0}{SE(b_1)}$ follows a t distribution with n - 2 degrees of freedom.