MA2031: Linear Algebra Assignment-6

Submission Date: 09/10/2017

- **Q** 1. What are the eigenvalues and eigenvectors of an $n \times n$ diagonal matrix **D**?
- **Q 2**. Prove that λ^k (here k is a nonnegative integer) is an eigenvalue of the matrix \mathbf{M}^k if λ is an eigenvalue of the matrix \mathbf{M}
- **Q** 3. Let $\mathbf{T}: \mathbf{R}^3 \to \mathbf{R}^3$ given by $\mathbf{T}(x_1, x_2, x_3) = (x_1, x_2, 0)$ be a linear transformation. What is the matrix $\mathbf{M} = [\mathbf{T}]_{\mathbf{B},\mathbf{B}}$ with respect to the natural basis $\mathbf{B} = \{(1,0,0), (0,1,0), (0,0,1)\}$ of \mathbf{R}^3 ? What are the eigenvalues and corresponding eigenvectors of \mathbf{M} ?
- **Q** 4. Let **P** be a real square matrix that satisfies $\mathbf{P}^2 = \mathbf{P}$. Such matrices are called idempotent, and also orthogonal projectors. Show that all eigenvalues of **P** are either zero or one.
- **Q** 5. Let $\mathbf{T}: \mathbf{C}^2 \to \mathbf{C}^2$ given by $\mathbf{T}(x_1, x_2) = (-x_2, x_1)$ be a linear transformation. What is the matrix $\mathbf{M} = [\mathbf{T}]_{\mathbf{B},\mathbf{B}}$ with respect to the natural basis $\mathbf{B} = \{(1,0), (0,1)\}$ of \mathbf{C}^2 ? What are the eigenvalues and corresponding eigenvectors of \mathbf{M} ?
- **Q** 6. Let $\mathbf{V} \neq \{0\}$ be a finite dimensional vector space and $\mathbf{T} \in \mathbf{L}(\mathbf{V}, \mathbf{V})$. Prove that \mathbf{T} has at least one eigenvalue.
- **Q** 7. Show that the characteristic polynomials of **A** and $S^{-1}AS$, in which **S** is a nonsingular transformation matrix, are identical. Conclude that the similarity transformation $A \rightarrow S^{-1}AS$ preserves eigenvalues and their algebraic multiplicities.
- **Q** 8. let $\mathbf{M} = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$.
 - (a) Obtain the characteristic polynomial $p_M(\lambda) = det(\mathbf{M} \lambda \mathbf{I})$.
 - (b) Determine the eigenvalues λ_1 , λ_2 & λ_3 and the corresponding eigenvectors v_1 , v_2 & v_3 .
 - (c) Let **S** be the matrix $[v_1v_2v_3]$ with the eigenvectors of **M** as the columns. Calculate \mathbf{S}^{-1} .

(d) Let row vectors w_1^t , w_2^t & w_3^t be defined as the first, second and third rows, respectively, of \mathbf{S}^{-1} . Define projection operators $\mathbf{P}_j = v_j w_j^t$ for j = 1, 2, 3. Show that

$$\mathbf{P}_{j}\mathbf{P}_{k} = \mathbf{P}_{j}\delta_{jk}, \text{ where } \delta_{jk} = \begin{cases} 1, & \text{if } j = k, \\ 0, & \text{if } j \neq k. \end{cases}.$$

- (e) Show that $\mathbf{P}_1 + \mathbf{P}_2 + \mathbf{P}_3 = \mathbf{I}$.
- (f) Verify that $\mathbf{M} = \lambda_1 \mathbf{P}_1 + \lambda_2 \mathbf{P}_2 + \lambda_3 \mathbf{P}_3$.
- (g) Verify Cayley-Hamilton theorem $p_M(\mathbf{M}) = \mathbf{0}$.
- $\mathbf{Q} \ \mathbf{9}. \ \text{let} \ \mathbf{M} = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right].$

Repeat parts (a) -(g) of the previous problem. In addition, show that $\mathbf{M}^2 - 3\mathbf{M} = \mathbf{0}$ and explain what does this imply.

- **Q 10**. Show that the eigenvalues of a real symmetric square matrix are real, and also that all eigenvectors can be chosen to be real.
- **Q 11**. Let the real symmetric $n \times n$ matrix **A** have r nonzero eigenvalues and let the remaining n-r eigenvalues be equal to zero. Show that **A** has rank r.
- **Q 12**. Let **Q** be a real orthogonal matrix: $\mathbf{Q}^t\mathbf{Q} = \mathbf{I}$. Show that all of its eigenvalues λ_i are unimodular (i.e., they have unit modulus).
- **Q 13**. Let **A** be real skew-symmetric, that is, $\mathbf{A}^t = -\mathbf{A}$. Show that all eigenvalues of **A** are pure imaginary or zero.
- **Q 14.** Two $n \times n$ matrices **A** and **B** are said to commute if $\mathbf{AB} = \mathbf{BA}$. Show that the necessary and sufficient condition for this to happen is that **A** and **B** should have a set of n simultaneous (common) eigenvectors.
- ${f Q}$ 15. Let ${f A}$ and ${f B}$ be two diagonalizable square matrices of equal order that commute. Show that the eigenvalues of ${f AB}$ are the product of the eigenvalues of ${f A}$ and ${f B}$.
- **Q 16**. Let $\mathbf{M} = \begin{bmatrix} a & c & 0 \\ 0 & a & d \\ 0 & 0 & b \end{bmatrix}$. Determine the eigen values of \mathbf{M} and the corresponding eigenvectors. Can you diagonalize \mathbf{M} by using a similarity transformation?
- **Q 17**. A matrix whose elements are equal on any line parallel to the main diagonal is called a Toeplitz matrix. Show that if \mathbf{A} and \mathbf{B} are any two Toeplitz matrices of the same order, they commute: $\mathbf{AB} = \mathbf{BA}$.

Assignment-6 Linear Algebra

Q 18. Consider the set of coupled ordinary differential equations

$$\frac{d}{dt}x(t) = x(t) + y(t)$$

$$\frac{d}{dt}y(t) = x(t) + 2y(t)$$

together with the initial condition $x(t = 0) = x_0$ and $y(t = 0) = y_0$. This can be presented in the form of a matrix equation

$$\frac{d}{dt} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \mathbf{M} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}, \text{ where, } \mathbf{M} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$
 (1)

- (a) Determine the eigenvalues λ_1 & λ_2 and corresponding eigenvectors v_1 & v_2 of the matrix \mathbf{M} .
- (b) Use the above information to obtain the similarity transformation $\mathbf{M} \to \mathbf{S}^{-1}\mathbf{M}\mathbf{S} = \mathbf{D} = diag(\lambda_1, \lambda_2).$
- (c) Use the above to recast the initial value problem Eq.(1) as

$$\frac{d}{dt} \begin{bmatrix} \rho(t) \\ \eta(t) \end{bmatrix} = \mathbf{D} \begin{bmatrix} \rho(t) \\ \eta(t) \end{bmatrix}$$
 (2)

where

$$\begin{bmatrix} \rho(t) \\ \eta(t) \end{bmatrix} = \mathbf{S}^{-1} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}. \tag{3}$$

(d) Solve Eq.(2) and then obtain the solution for the original initial value problem Eq. (1).

.