

Guía de Apoyo: Análisis Técnico y Ético de Sistemas Monolíticos

DuocUC

🦙 Propósito de esta guía

Este documento está diseñado para entregarte un marco de referencia claro y profundo para resolver actividades donde se analiza un sistema monolítico real, se proponen estrategias de microservicios, y se identifican fallas éticas que pueden afectar a los usuarios, a la sociedad y a los equipos de desarrollo.

Recordando lo básico: Sistemas Monolíticos vs. Microservicios

Sistema Monolítico

Un sistema monolítico es una aplicación "todo en uno", donde todos los componentes (autenticación, interfaz, lógica de negocio, acceso a base de datos, etc.) están agrupados y desplegados como una sola unidad. Suelen ser difíciles de escalar, mantener y actualizar.

Ventajas:

- Fácil de desarrollar al inicio.
- Menor complejidad en el despliegue.

Desventajas:

- Cambios en una parte afectan a todo el sistema.
- Difícil escalar de forma independiente.
- Riesgo alto en fallos: si falla una parte, puede caer todo.
- Ámbitos de acceso amplios, generando problemas de seguridad.

Ejemplo real: El sistema de gestión interno original de Amazon, que centralizaba todo el manejo de pedidos, pagos y logística, fue reemplazado gradualmente por microservicios a medida que la compañía creció. El enfoque monolítico no permitía escalar por separado cada área.

Arquitectura de Microservicios

La arquitectura de microservicios divide una aplicación en varios servicios pequeños e independientes, cada uno responsable de una funcionalidad específica, comunicándose entre sí generalmente por APIs (REST, gRPC, etc).

Ventajas:

- Escalabilidad independiente.
- Despliegues separados por servicio.
- Más fácil de mantener y actualizar.

Desafios:

- Mayor complejidad en la comunicación.
- Necesita una buena estrategia de monitoreo y seguridad.

Ejemplo real: Netflix migró de un sistema monolítico a una arquitectura basada en más de 700 microservicios para mejorar su rendimiento, escalabilidad y capacidad de responder a errores localizados sin afectar toda la plataforma.

Profundizando en la migración

Indicadores técnicos de que un sistema monolítico necesita ser dividido:

- Tiempo de respuesta alto por carga de trabajo.
- Muchas fallas por cambios mínimos en el código.
- Equipos de desarrollo que pisan el trabajo de otros.
- Dependencias complejas entre módulos.
- Escasa trazabilidad de errores.

Buenas prácticas al dividir un monolito:

- Identificar dominios funcionales ("bounded contexts").
- Separar servicios por responsabilidad clara.
- Aplicar principios como SRP (Single Responsibility Principle).
- Diseñar APIs claras para comunicación entre servicios.
- Definir reglas de acceso y seguridad para cada microservicio.

Ejemplo real: LinkedIn reorganizó varios de sus servicios (como perfiles, publicaciones, y mensajería) en microservicios debido a cuellos de botella en el backend monolítico original, mejorando el rendimiento y la entrega continua.

🚵 📄 Herramientas de trabajo colaborativo recomendadas

- Miro / Jamboard: Para mapear visualmente la arquitectura actual y futura.
- Trello / Notion / ClickUp: Para planificar tareas y responsabilidades.
- Lucidchart / Draw.io: Para crear diagramas de arquitectura.

Elementos éticos clave a considerar

Al rediseñar un sistema, no basta con la técnica: también debes evaluar los efectos humanos, sociales y éticos. Aquí algunas áreas clave:

Privacidad de los datos

- ¿Se accede a datos sensibles sin consentimiento?
- ¿Se almacenan datos innecesarios?
- ¿Hay control de acceso?

Ejemplo real: El escándalo de Cambridge Analytica reveló que millones de datos de usuarios de Facebook fueron recolectados sin consentimiento claro, lo que generó una crisis global de confianza en la privacidad digital.

Seguridad de la información

- ¿Están cifrados los datos en tránsito y reposo?
- ¿Se auditan los accesos?
- ¿Existen vulnerabilidades conocidas no corregidas?

Ejemplo real: La filtración de Equifax en 2017 expuso datos financieros de 147 millones de personas debido a una vulnerabilidad conocida no parchada en su sistema monolítico.

🌖 Impacto social y ambiental

- ¿El sistema afecta negativamente a ciertos grupos sociales?
- ¿Fomenta el uso responsable de recursos?

Ejemplo real: Algoritmos de crédito que discriminan por ubicación o historial social, como ocurrió en Apple Card, donde usuarios denunciaron disparidades en los límites de crédito otorgados entre hombres y mujeres.

🤶 Equidad y no discriminación

- ¿El sistema tiene sesgos (por ejemplo, género, edad, ubicación)?
- ¿Todos los usuarios acceden a las mismas funcionalidades?

Ejemplo real: El sistema de contratación automatizada de Amazon (descontinuado) discriminaba a mujeres al aprender de datos históricos con sesgos de género.

📃 Transparencia y responsabilidad

- ¿El usuario sabe qué datos entrega y para qué?
- ¿El equipo asume responsabilidad si hay fallos?

Ejemplo real: Zoom fue criticado en 2020 por no explicar claramente que compartía datos con Facebook, lo que llevó a cambios en su política de privacidad.

🚀 Ejemplo de división de un sistema monolítico

Sistema monolítico: Plataforma educativa

Módulos integrados:

- Autenticación
- Publicación de contenidos
- Evaluación online
- Chat entre estudiantes
- Análisis de datos de rendimiento

Posible división en microservicios:

- 1. Servicio de autenticación
- 2. Servicio de contenidos educativos
- 3. Servicio de evaluaciones
- 4. Servicio de mensajería
- 5. Servicio de análisis y reportes

Ejemplo real: Moodle, un LMS ampliamente usado, permite ahora el desarrollo modular y la integración con servicios externos (como plugins y APIs), superando limitaciones de su arquitectura original más monolítica.

Preguntas orientadoras para tu trabajo en equipo

- ¿Cuál es el principal fallo del sistema original?
- ¿Qué parte podría separarse en un microservicio independiente?
- ¿Qué error ético se cometió o se podría cometer?
- ¿Qué medidas técnicas y éticas pueden evitarlo?
- ¿Qué herramienta usarán para planificar y colaborar?

:)