Contents

_	To a
1	Basic 1 1.1 vimrc 1
	1.2 IncreaseStackSize
	1.3 Default Code
2	Data Structure 1
	2.1 extc_heap
	2.2 extc_balance_tree 2 2.3 Heavy Light Decomposition 2
	2.3 Heavy Light Decomposition 2 2.4 Disjoint Set 2
	2.5 Treap
	210 11000
3	Graph 3
	3.1 BCC Edge
	3.2 BCC Vertex
	3.3 Strongly Connected Components
	3.4 Heavy Light Decomposition
	3.5 Maximum Clique
	3.6 MinimumMeanCycle
4	Flow 5
	4.1 Dinic
	4.2 Cost Flow
	4.3 Kuhn Munkres
	4.4 Maximum Simple Graph Matching 6
	4.5 Minimum Weight Matching (Clique version)
5	Math 7
J	5.1 Bigint
	5.2 ax+by=gcd
	5.3 Linear Prime Sieve
	5.4 Bsgs
	5.5 Chinese Remainder
	5.6 Fast Fourier Transform
	5.7 Kth Residue
	5.8 Gauss Elimination
	5.9 Matrix
	5.10 NTT
	5.11 NTT(eddy ver.)
	5.12 Miller Rabin
	5.13 Pollard Rho
	5.14 Algorithms about Primes
	5.15 Primitive Root 12 5.16 Pseudoinverse of Square matrix 13
	5.17 Theorem
	5.17.1 Lucas' Theorem
	5.17.2 Sum of Two Squares Thm (Legendre)
	5.17.3 Difference of D1-D3 Thm
	5.17.4 Krush–Kuhn–Tucker Conditions
	5.17.5 Chinese remainder theorem
	5.17.6 Stirling Numbers(permutation $ P = n$ with k cycles) 13
	$5.17.7 ext{ Stirling Numbers}(Partition n elements into k non-empty)$
	set)
	5.17.8 Pick's Theorem
	5.17.9 Kircinion's theorem
6	Geometry 13
	6.1 Point operators
	6.2 Intersection of two circles
	6.3 Intersection of two lines
	6.4 Circle cover
	6.5 Half Plane Intersection
	6.6 dao point
	6.7 dao inter
	6.8 dao 2D convex hull
	6.9 Minimum Covering Circle
7	Stringology 16
	7.1 Suffix Array
	7.2 Suffix Array (SAIS TWT514)
	7.3 Aho-Corasick Algorithm
	7.4 KMP
	7.5 Z value
	7.6 Z value (palindrome ver.)
	7.7 Lexicographically Smallest Rotation
	7.8 Suffix Automaton

1 Basic

1.1 vimrc

```
colo ron
syn on
se ai ar nu rnu
se mouse=a bs=2 ts=4 sw=4 ttm=100
au BufNewFile *.cpp 0r ~/default.cpp | :1,$-7 fo
filetype indent on
```

1.2 IncreaseStackSize

```
//stack resize
asm( "mov %0,%%esp\n" :: "g"(mem+10000000) );
//change esp to rsp if 64-bit system
//stack resize (linux)
#include <sys/resource.h>
void increase_stack_size() {
   const rlim_t ks = 64*1024*1024;
   struct rlimit rl;
   int res=getrlimit(RLIMIT_STACK, &rl);
   if(res==0){
     if(rl.rlim_cur<ks){</pre>
       rl.rlim_cur=ks;
       res=setrlimit(RLIMIT_STACK, &rl);
   }
}
```

1.3 Default Code

```
// #pragma GCC optimize ("-02")
// #pragma GCC optimize ("unroll-loops")
#include<bits/stdc++.h>
using namespace std;
#define F first
#define S second
#define pb push_back
#define MP make_pair
#define ALL(x) begin(x),end(x)
#define SZ(x) ((int)(x).size())
typedef long long LL;
typedef double DB;
typedef long double LDB;
typedef pair<int, int> PII;
typedef pair<LL, LL> PLL;
// #define IOS ios_base::sync_with_stdio(0); cin.tie(0)
const int MXN = (int)1e6 + 7;
int main(){
   return 0;
```

Data Structure

2.1 extc_heap

```
#include <bits/extc++.h>
typedef _
           _gnu_pbds::priority_queue<<mark>int</mark>> heap_t;
heap_t a,b;
int main() {
  a.clear();
  b.clear();
  a.push(1);
  a.push(3);
  b.push(2);
  b.push(4);
  assert(a.top() == 3);
assert(b.top() == 4);
  // merge two heap
  a.join(b);
  assert(a.top() == 4);
  assert(b.empty());
```

extc_balance_tree

return 0:

2.2

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
typedef tree<int,null_type,less<int>,rb_tree_tag,
   tree_order_statistics_node_update> set_t;
typedef cc_hash_table<int,int> umap_t;
int main(){
 // Insert some entries into s.
 set_t s;
  s.insert(12);
 s.insert(505);
 // The order of the keys should be: 12, 505.
 assert(*s.find_by_order(0) == 12);
 assert(s.find_by_order(2) == end(s));
 // The order of the keys should be: 12, 505.
 assert(s.order_of_key(12) == 0);
 assert(s.order_of_key(505) == 1);
 // Erase an entry.
 s.erase(12);
 // The order of the keys should be: 505.
 assert(*s.find_by_order(0) == 505);
  // The order of the keys should be: 505.
  assert(s.order_of_key(505) == 0);
```

2.3 Heavy Light Decomposition

// TBA

2.4 Disjoint Set

```
struct DisjointSet {
 // save() is like recursive
  // undo() is like return
 int n, fa[MXN], sz[MXN];
vector<pair<int*,int>> h;
  vector<int> sp;
  void init(int tn) {
    n=tn;
    for (int i=0; i<n; i++) {</pre>
      fa[i]=i;
      sz[i]=1;
    sp.clear(); h.clear();
  void assign(int *k, int v) {
    h.PB({k, *k});
    *k=v:
  void save() { sp.PB(SZ(h)); }
  void undo() {
    assert(!sp.empty());
    int last=sp.back(); sp.pop_back();
    while (SZ(h)!=last) {
      auto x=h.back(); h.pop_back();
      *x.F=x.S;
  int f(int x) {
   while (fa[x]!=x) x=fa[x];
    return x;
  void uni(int x, int y) {
    x=f(x); y=f(y);
    if (x==y) return ;
    if (sz[x]<sz[y]) swap(x, y);</pre>
    assign(&sz[x], sz[x]+sz[y]);
```

```
assign(&fa[y], x);
}
}djs;
```

2

2.5 Treap

```
const int MEM = 16000004;
struct Treap {
  static Treap nil, mem[MEM], *pmem;
  Treap *1, *r;
  char val;
  int size;
Treap () : 1(&nil), r(&nil), size(0) {}
Treap (char _val) :
    1(&nil), r(&nil), val(_val), size(1) {}
} Treap::nil, Treap::mem[MEM], *Treap::pmem = Treap::
     mem:
int size(const Treap *t) { return t->size; }
void pull(Treap *t) {
  if (!size(t)) return;
  t\rightarrow size = size(t\rightarrow l) + size(t\rightarrow r) + 1;
Treap* merge(Treap *a, Treap *b) {
  if (!size(a)) return b;
  if (!size(b)) return a;
  Treap *t;
  if (rand() % (size(a) + size(b)) < size(a)) {</pre>
     t = new (Treap::pmem++) Treap(*a);
     t->r = merge(a->r, b);
  } else {
     t = new (Treap::pmem++) Treap(*b);
     t\rightarrow 1 = merge(a, b\rightarrow 1);
  pull(t);
  return t:
void split(Treap *t, int k, Treap *&a, Treap *&b) {
  if (!size(t)) a = b = &Treap::nil;
  else if (size(t->1) + 1 <= k) {
     a = new (Treap::pmem++) Treap(*t);
     split(t->r, k - size(t->l) - 1, a->r, b);
     pull(a);
     b = new (Treap::pmem++) Treap(*t);
     split(t->1, k, a, b->1);
     pull(b);
  }
}
int nv;
Treap *rt[50005];
void print(const Treap *t) {
  if (!size(t)) return;
  print(t->1);
  cout << t->val:
  print(t->r);
int main(int argc, char** argv) {
  IOS:
  rt[nv=0] = &Treap::nil;
  Treap::pmem = Treap::mem;
  int Q, cmd, p, c, v;
  string s;
  cin >> Q;
  while (Q--) {
     cin >> cmd;
     if (cmd == 1) {
       // insert string s after position p
       cin >> p >> s;
       Treap *tl, *tr;
       split(rt[nv], p, tl, tr);
for (int i=0; i<SZ(s); i++)</pre>
         tl = merge(tl, new (Treap::pmem++) Treap(s[i]))
       rt[++nv] = merge(tl, tr);
     } else if (cmd == 2) {
       // remove c characters starting at position
       Treap *tl, *tm, *tr;
       cin >> p >> c;
       split(rt[nv], p-1, tl, tm);
       split(tm, c, tm, tr);
```

3 Graph

3.1 BCC Edge

```
struct BccEdge {
  static const int MXN = 100005;
  struct Edge { int v,eid; };
  int n,m,step,par[MXN],dfn[MXN],low[MXN];
  vector<Edge> E[MXN];
  DisjointSet djs;
  void init(int _n) {
    n = _n; m = 0;
for (int i=0; i<n; i++) E[i].clear();</pre>
    djs.init(n);
  void add_edge(int u, int v) {
    E[u].PB({v, m});
E[v].PB({u, m});
    m++;
  void DFS(int u, int f, int f_eid) {
    par[u] = f;
    dfn[u] = low[u] = step++;
     for (auto it:E[u]) {
       if (it.eid == f_eid) continue;
       int v = it.v;
       if (dfn[v] == -1) {
   DFS(v, u, it.eid);
         low[u] = min(low[u], low[v]);
       } else {
         low[u] = min(low[u], dfn[v]);
       }
    }
  void solve() {
    step = 0;
    memset(dfn, -1, sizeof(int)*n);
    for (int i=0; i<n; i++) {
  if (dfn[i] == -1) DFS(i, i, -1);</pre>
    djs.init(n);
    for (int i=0; i<n; i++) {</pre>
      if (low[i] < dfn[i]) djs.uni(i, par[i]);</pre>
}graph;
```

3.2 BCC Vertex

```
struct BccVertex {
  int n,nBcc,step,root,dfn[MXN],low[MXN];
  vector<int> E[MXN], ap;
  vector<PII> bcc[MXN];
  int top;
  PII stk[MXN];
  void init(int _n) {
    n = _n;
    nBcc = step = 0;
    for (int i=0; i<n; i++) E[i].clear();
  }
  void add_edge(int u, int v) {
    E[u].PB(v);
    E[v].PB(u);
  }
  void DFS(int u, int f) {</pre>
```

```
dfn[u] = low[u] = step++;
    int son = 0;
     for (auto v:E[u]) {
       if (v == f) continue;
       if (dfn[v] == -1) {
         son++
         stk[top++] = \{u,v\};
         DFS(v,u);
         if (low[v] >= dfn[u]) {
           if(v != root) ap.PB(v);
           do {
             assert(top > 0);
             bcc[nBcc].PB(stk[--top]);
           } while (stk[top] != PII(u,v));
         low[u] = min(low[u], low[v]);
         if (dfn[v] < dfn[u]) stk[top++] = PII(u,v);</pre>
         low[u] = min(low[u],dfn[v]);
      }
    if (u == root && son > 1) ap.PB(u);
  // return the edges of each bcc;
  vector<vector<PII>>> solve() {
    vector<vector<PII>> res;
    for (int i=0; i<n; i++) {</pre>
       dfn[i] = low[i] = -1;
    ap.clear();
for (int i=0; i<n; i++) {</pre>
       if (dfn[i] == -1) {
        top = 0;
         root = i;
         DFS(i,i);
      }
    for(int i = 0; i < nBcc; i ++){</pre>
    res.PB(bcc[i]);
    bcc[i].clear();
    return res;
}graph;
```

3

3.3 Strongly Connected Components

```
int n, nScc, vst[MXN], bln[MXN];
vector<int> E[MXN], rE[MXN], vec;
void init(int _n){
  n = _n;
for (int i=0; i<n; i++){</pre>
    E[i].clear();
     rE[i].clear();
  }
void add_edge(int u, int v){
  E[u].PB(v);
  rE[v].PB(u);
void DFS(int u){
  vst[u]=1;
  for (auto v : E[u])
  if (!vst[v]) DFS(v);
  vec.PB(u);
void rDFS(int u){
  vst[u] = 1;
  bln[u] = nScc;
  for (auto v : rE[u])
     if (!vst[v]) rDFS(v);
void solve(){
  nScc = 0;
  vec.clear();
  for (int i=0; i<n; i++) vst[i] = 0;
for (int i=0; i<n; i++)</pre>
     if (!vst[i]) DFS(i);
   reverse(vec.begin(),vec.end());
  for (int i=0; i<n; i++) vst[i] = 0;
for (auto v : vec){</pre>
     if (!vst[v]){
```

```
rDFS(v);
nScc++;
}
}
};
```

3.4 Heavy Light Decomposition

```
struct HLD{
  int n;
  vector<int>edge[MXN];
  int siz[MXN], dep[MXN];
int cntp, re[MXN], in[MXN], out[MXN];
  int prt[MAXN][20], head[MAXN];
  void pre(int u, int pa){
    dep[u] = dep[pa] + 1;
prt[0][u] = pa; siz[u] = 1; head[u] = u;
    for(int v : edge[u]){
       if( v == pa ) continue;
       pre(v, u);
       siz[u] += siz[v];
    return ;
  }
  void dfs(int u){
    cntp++;
    in[u] = cntp;
    re[ cntp ] = u;
    sort(ALL(g[u]), [&](int a, int b){ return siz[a] >
        siz[b] });
    bool f = 1;
for(int &v : edge[u]) if(v != prt[0][u]){
       if(f) head[v] = head[u], f = 0;
       dfs(v);
    out[u] = cntp;
  void addEdge(int u, int v){
    edge[u].pb(v);
    edge[v].pb(u);
  void init(int _n){
    n = n;
    rep1(i, 1, n+1) edge[i].clear();
  void solve(){
    pre(1, 0);
    cntp = 0;
    dfs(1);
    rep1(i, 1, 20) rep1(j, 1, n+1){
       prt[i][j] = prt[i-1][ prt[i-1][j] ];
  vector< PII >getpath( int u, int v ){
    vector<PII> res;
    while( in[u] < in[ head[v] ] ){
  res.pb( MP(in[ head[v] ], in[v]) );</pre>
       v = prt[ head[v] ][0];
    res.pb( MP(in[u], in[v]) );
    reverse( ALL(res) );
     return res;
  }
}tree;
```

3.5 Maximum Clique

```
class MaxClique {
public:
    static const int MV = 210;
    int V;
    int el[MV][MV/30+1];
    int dp[MV];
    int ans;
    int s[MV][MV/30+1];
    vector<int> sol;

    void init(int v) {
        V = v; ans = 0;
    }
}
```

```
FZ(el); FZ(dp);
     /* Zero Base */
     void addEdge(int u, int v) {
          if(u > v) swap(u, v);
if(u == v) return;
          el[u][v/32] |= (1<<(v%32));
     bool dfs(int v, int k) {
  int c = 0, d = 0;
  for(int i=0; i<(V+31)/32; i++) {</pre>
               s[k][i] = el[v][i];
if(k != 1) s[k][i] &= s[k-1][i];
               c += __builtin_popcount(s[k][i]);
          if(c == 0) {
               if(k > ans) {
                   ans = k;
                    sol.clear();
                    sol.push_back(v);
                    return 1;
               return 0:
          for(int i=0; i<(V+31)/32; i++) {</pre>
               for(int a = s[k][i]; a ; d++) {
                    if(k + (c-d) <= ans) return 0;</pre>
                    int lb = a&(-a), lg = 0;
                    a ^= 1b:
                    while(lb!=1) {
                         lb = (unsigned int)(lb) >> 1;
                        lg ++;
                    int u = i*32 + lg;
if(k + dp[u] <= ans) return 0;
                    if(dfs(u, k+1)) {
                         sol.push_back(v);
                         return 1;
                    }
               }
          return 0;
     }
     int solve() {
          for(int i=V-1; i>=0; i--) {
               dfs(i, 1);
               dp[i] = ans;
          return ans;
     }
};
```

3.6 MinimumMeanCycle

```
/* minimum mean cycle */
const int MAXE = 1805;
const int MAXN = 35;
const double inf = 1029384756;
const double eps = 1e-6;
struct Edge {
  int v,u;
   double c;
};
int n,m,prv[MAXN][MAXN], prve[MAXN][MAXN], vst[MAXN];
Edge e[MAXE];
vector<int> edgeID, cycle, rho;
double d[MAXN][MAXN];
inline void bellman_ford() {
  for(int i=0; i<n; i++) d[0][i]=0;</pre>
   for(int i=0; i<n; i++) {</pre>
     fill(d[i+1], d[i+1]+n, inf);
     for(int j=0; j<m; j++) {
  int v = e[j].v, u = e[j].u;
  if(d[i][v]<inf && d[i+1][u]>d[i][v]+e[j].c) {
          d[i+1][u] = d[i][v]+e[j].c;
prv[i+1][u] = v;
          prve[i+1][u] = j;
     }
  }
}
```

}flow;

```
double karp_mmc() {
   // returns inf if no cycle, mmc otherwise
  double mmc=inf;
  int st = -1;
  bellman_ford();
  for(int i=0; i<n; i++) {
  double avg=-inf;</pre>
    for(int k=0; k<n; k++) {</pre>
       if(d[n][i]<inf-eps) avg=max(avg,(d[n][i]-d[k][i])</pre>
           /(n-k));
      else avg=max(avg,inf);
    if (avg < mmc) tie(mmc, st) = tie(avg, i);</pre>
  for(int i=0; i<n; i++) vst[i] = 0;</pre>
  edgeID.clear(); cycle.clear(); rho.clear();
  for (int i=n; !vst[st]; st=prv[i--][st]) {
    vst[st]++;
    edgeID.PB(prve[i][st]);
    rho.PB(st);
  while (vst[st] != 2) {
    int v = rho.back(); rho.pop_back();
    cycle.PB(v);
    vst[v]++;
  reverse(ALL(edgeID));
  edgeID.resize(SZ(cycle));
  return mmc;
```

4 Flow

4.1 Dinic

```
struct Dinic{
  static const int MXN = 10000;
  struct Edge{ int v,f,re; };
  int n,s,t,level[MXN];
  vector<Édge> E[MXN];
  void init(int _n, int _s, int _t){
    n = _n; s = _s; t = _t;
    for (int i=0; i<n; i++) E[i].clear();</pre>
  void add_edge(int u, int v, int f){
    E[u].PB({v,f,SZ(E[v])});
    E[v].PB({u,0,SZ(E[u])-1});
  bool BFS(){
    for (int i=0; i<n; i++) level[i] = -1;</pre>
    queue<int> que;
    que.push(s);
    level[s] = 0;
    while (!que.empty()){
      int u = que.front(); que.pop();
for (auto it : E[u]){
        if (it.f > 0 && level[it.v] == -1){
          level[it.v] = level[u]+1;
          que.push(it.v);
        }
      }
    return level[t] != -1;
  int DFS(int u, int nf){
    if (u == t) return nf;
    int res = 0;
    for (auto &it : E[u]){
      if (it.f > 0 && level[it.v] == level[u]+1){
        int tf = DFS(it.v, min(nf,it.f));
        res += tf; nf -= tf; it.f -= tf;
        E[it.v][it.re].f += tf;
        if (nf == 0) return res;
      }
    if (!res) level[u] = -1;
    return res;
  int flow(int res=0){
    while ( BFS() )
      res += DFS(s,2147483647);
    return res;
```

4.2 Cost Flow

```
typedef pair<long long, long long> pll;
struct CostFlow {
  static const int MXN = 205;
   static const long long INF = 102938475610293847LL;
   struct Edge {
     int v, r;
     long long f, c;
  int n, s, t, prv[MXN], prvL[MXN], inq[MXN];
long long dis[MXN], f1, cost;
  vector<Edge> E[MXN];
  void init(int _n, int _s, int _t) {
  n = _n;  s = _s;  t = _t;
  for (int i=0; i<n; i++) E[i].clear();</pre>
     fl = cost = 0;
  void add_edge(int u, int v, long long f, long long c)
    E[u].PB({v, SZ(E[v]) , f, c});
E[v].PB({u, SZ(E[u])-1, 0, -c});
  pll flow() {
     while (true) {
  for (int i=0; i<n; i++) {</pre>
         dis[i] = INF;
         inq[i] = 0;
       dis[s] = 0;
       queue<int> que;
       que.push(s);
       while (!que.empty()) {
          int u = que.front(); que.pop();
          inq[u] = 0;
          for (int i=0; i<SZ(E[u]); i++) {</pre>
            int v = E[u][i].v;
            long long w = E[u][i].c;
            if (E[u][i].f > 0 && dis[v] > dis[u] + w) {
               prv[v] = u; prvL[v] = i;
               dis[v] = dis[u] + w;
              if (!inq[v]) {
  inq[v] = 1;
                 que.push(v);
              }
            }
         }
       if (dis[t] == INF) break;
       long long tf = INF;
       for (int v=t, u, 1; v!=s; v=u) {
         u=prv[v]; l=prvL[v];
tf = min(tf, E[u][1].f);
       for (int v=t, u, 1; v!=s; v=u) {
         E[v][E[u][1].r].f += tf;
       cost += tf * dis[t];
       fl += tf;
     return {fl, cost};
}flow;
```

4.3 Kuhn Munkres

```
struct KM{
// Maximum Bipartite Weighted Matching (Perfect Match)
    static const int MXN = 650;
    static const int INF = 2147483647; // Long Long
    int n,match[MXN],vx[MXN],vy[MXN];
    int edge[MXN][MXN],lx[MXN],ly[MXN],slack[MXN];
    // ^^^ Long Long
    void init(int _n){
        n = _n;
        for (int i=0; i<n; i++)
              for (int j=0; j<n; j++)</pre>
```

```
edge[i][j] = 0;
  void add_edge(int x, int y, int w){ // Long Long
    edge[x][y] = w;
  bool DFS(int x){
    vx[x] = 1;
     for (int y=0; y<n; y++){</pre>
       if (vy[y]) continue;
       if (lx[x]+ly[y] > edge[x][y]){
         slack[y] = min(slack[y], lx[x]+ly[y]-edge[x][y
             ]);
       } else_{
         vy[y] = 1;
         if (match[y] == -1 \mid \mid DFS(match[y])){
           match[y] = x;
           return true;
      }
    return false;
  int solve(){
    fill(match, match+n, -1);
    fill(lx,lx+n,-INF);
    fill(ly,ly+n,0);
    for (int i=0; i<n; i++)</pre>
       for (int j=0; j<n; j++)</pre>
         lx[i] = max(lx[i], edge[i][j]);
    for (int i=0; i<n; i++){</pre>
       fill(slack,slack+n,INF);
       while (true){
         fill(vx,vx+n,0);
         fill(vy,vy+n,0);
if ( DFS(i) ) break;
int d = INF; // Long Long
         for (int j=0; j<n; j++)</pre>
           if (!vy[j]) d = min(d, slack[j]);
         for (int j=0; j<n; j++){
  if (vx[j]) lx[j] -= d;</pre>
           if (vy[j]) ly[j] += d;
           else slack[j] -= d;
         }
       }
    int res=0;
    for (int i=0; i<n; i++)</pre>
       res += edge[match[i]][i];
     return res;
}graph;
```

4.4 Maximum Simple Graph Matching

```
struct GenMatch { // 1-base
 static const int MAXN = 514;
  int V;
  bool el[MAXN][MAXN];
 int pr[MAXN];
  bool inq[MAXN],inp[MAXN],inb[MAXN];
  queue<int> qe;
  int st,ed;
 int nb;
  int bk[MAXN],djs[MAXN];
 int ans:
  void init(int _V) {
   V = V;
   inq[i] = inp[i] = inb[i] = 0;
    }
    ans = 0:
  void add_edge(int u, int v) {
   el[u][v] = el[v][u] = 1;
 int lca(int u,int v) {
  for(int i = 0; i <= V; i++) inp[i] = 0;</pre>
    while(1) {
      u = djs[u];
     inp[u] = true;
if(u == st) break;
      u = bk[pr[u]];
```

```
while(1) {
    v = djs[v];
    if(inp[v]) return v;
    v = bk[pr[v]];
  return v;
void upd(int u) {
  int v;
  while(djs[u] != nb) {
    v = pr[u]
    inb[djs[u]] = inb[djs[v]] = true;
    u = bk[v];
    if(djs[u] != nb) bk[u] = v;
  }
}
void blo(int u,int v) {
  nb = lca(u,v);
  for (int i=0; i<=V; i++) inb[i] = 0;</pre>
  upd(u); upd(v);
  if(djs[u] != nb) bk[u] = v;
  if(djs[v] != nb) bk[v] = u;
  for(int tu = 1; tu <= V; tu++)</pre>
    if(inb[djs[tu]]) {
       djs[tu] = nb;
       if(!inq[tu]){
         qe.push(tu);
         inq[tu] = 1;
    }
void flow() {
  for(int i = 1; i <= V; i++) {</pre>
    inq[i] = 0;
    bk[i] = 0;
    djs[i] = i;
  while(qe.size()) qe.pop();
  qe.push(st);
  inq[st] = 1;
  ed = 0;
  while(qe.size()) {
    int u = qe.front(); qe.pop();
     for(int v = 1; v <= V; v++)</pre>
       if(el[u][v] && (djs[u] != djs[v]) && (pr[u] !=
           v)) {
         if((v == st) || ((pr[v] > 0) && bk[pr[v]] >
              0))
           blo(u,v);
         else if(bk[v] == 0) {
           bk[v] = u;
           if(pr[v] > 0) {
             if(!inq[pr[v]]) qe.push(pr[v]);
           } else {
             ed = v;
             return;
           }
         }
      }
  }
void aug() {
  int u,v,w;
  u = ed;
  while(u > 0) {
    v = bk[u];
    w = pr[v];
    pr[v] = u;
    pr[u] = v;
    u = w;
  }
int solve() {
  for(int i = 0; i <= V; i++) pr[i] = 0;
  for(int u = 1; u <= V; u++)</pre>
    if(pr[u] == 0) {
       st = u;
       flow();
       if(ed > 0) {
         aug();
         ans ++;
  return ans;
```

6

nWa. 7

```
ret /= 2:
}G;
                                                                          return ret:
int main() {
                                                                     }graph;
  G.init(V);
  for(int i=0; i<E; i++) {</pre>
    int u, v;
cin >> u >> v;
    G.add_edge(u, v);
  cout << G.solve() << endl;</pre>
                                                                     5.1
```

Minimum Weight Matching (Clique version)

```
struct Graph {
 // Minimum General Weighted Matching (Perfect Match)
      0-base
  static const int MXN = 105;
  int n, edge[MXN][MXN];
  int match[MXN],dis[MXN],onstk[MXN];
  vector<int> stk;
  void init(int _n) {
    n = _n;
for (int i=0; i<n; i++)</pre>
      for (int j=0; j<n; j++)</pre>
        edge[i][j] = 0;
  void add_edge(int u, int v, int w) {
    edge[u][v] = edge[v][u] = w;
  bool SPFA(int u){
    if (onstk[u]) return true;
    stk.PB(u);
    onstk[u] = 1;
    for (int v=0; v<n; v++){
  if (u != v && match[u] != v && !onstk[v]){</pre>
        int m = match[v];
         if (dis[m] > dis[u] - edge[v][m] + edge[u][v]){
           dis[m] = dis[u] - edge[v][m] + edge[u][v];
           onstk[v] = 1;
           stk.PB(v);
           if (SPFA(m)) return true;
           stk.pop_back();
           onstk[v] = 0;
        }
      }
    onstk[u] = 0;
    stk.pop_back();
    return false;
  int solve() {
    // find a match
    for (int i=0; i<n; i+=2){</pre>
      match[i] = i+1;
      match[i+1] = i;
    while (true){
      int found = 0;
      for (int i=0; i<n; i++)</pre>
        dis[i] = onstk[i] = 0;
      for (int i=0; i<n; i++){</pre>
        stk.clear();
         if (!onstk[i] && SPFA(i)){
           found = 1;
           while (SZ(stk)>=2){
             int u = stk.back(); stk.pop_back();
int v = stk.back(); stk.pop_back();
             match[u] = v;
             match[v] = u;
           }
        }
      if (!found) break;
    int ret = 0;
    for (int i=0; i<n; i++)</pre>
      ret += edge[i][match[i]];
```

Math

Bigint

```
struct Bigint{
  static const int LEN = 60;
  static const int BIGMOD = 10000;
  int s;
  int v1, v[LEN];
      vector<int> v;
  Bigint() : s(1) \{ vl = 0; \}
  Bigint(long long a) {
  s = 1; v1 = 0;
    if (a < 0) { s = -1; a = -a; }
    while (a) {
      push_back(a % BIGMOD);
      a /= BIGMOD;
    }
  Bigint(string str) {
    s = 1; v1 = 0;
    int stPos = 0, num = 0;
    if (!str.empty() && str[0] == '-') {
      stPos = 1;
      s = -1;
    for (int i=SZ(str)-1, q=1; i>=stPos; i--) {
  num += (str[i] - '0') * q;
  if ((q *= 10) >= BIGMOD) {
         push_back(num);
         num = 0; q = 1;
      }
    if (num) push_back(num);
    n();
  int len() const {
    return v1;
           return SZ(v);
  bool empty() const { return len() == 0; }
  void push_back(int x) {
    v[vl++] = x;
           v.PB(x);
  void pop_back() {
    v1--;
    //
          v.pop back();
  int back() const {
    return v[v1-1];
          return v.back();
  void n() {
    while (!empty() && !back()) pop_back();
  void resize(int nl) {
    v1 = n1;
    fill(v, v+v1, 0);
           v.resize(nl);
           fill(ALL(v), 0);
  void print() const {
    if (empty()) { putchar('0'); return; }
if (s == -1) putchar('-');
    printf("%d", back());
for (int i=len()-2; i>=0; i--) printf("%.4d",v[i]);
  friend std::ostream& operator << (std::ostream& out,</pre>
      const Bigint &a) {
    if (a.empty()) { out << "0"; return out; }</pre>
    if (a.s == -1) out << "-";
    out << a.back();</pre>
    for (int i=a.len()-2; i>=0; i--) {
```

```
char str[10];
    snprintf(str, 5, "%.4d", a.v[i]);
                                                                      int oriS = s:
    out << str;
  return out;
}
                                                                         while(d<u) {</pre>
int cp3(const Bigint &b)const {
  if (s != b.s) return s - b.s;
if (s == -1) return -(-*this).cp3(-b);
                                                                           r.v[i] = m;
  if (len() != b.len()) return len()-b.len();//int
for (int i=len()-1; i>=0; i--)
                                                                           else d = m;
    if (v[i]!=b.v[i]) return v[i]-b.v[i];
                                                                        r.v[i] = d;
  return 0;
                                                                      s = oriS;
                                                                      r.s = s * b.s;
bool operator < (const Bigint &b)const{ return cp3(b)</pre>
                                                                      r.n();
                                                                      return r;
bool operator <= (const Bigint &b)const{ return cp3(b</pre>
    )<=0; }
bool operator == (const Bigint &b)const{ return cp3(b
    )==0; }
bool operator != (const Bigint &b)const{ return cp3(b
                                                                };
     )!=0; }
bool operator > (const Bigint &b)const{ return cp3(b)
    >0; }
                                                                 5.2 \quad ax+by=gcd
bool operator >= (const Bigint &b)const{ return cp3(b
    )>=0; }
Bigint operator - () const {
  Bigint r = (*this);
                                                                    else{
  r.s = -r.s;
                                                                      LL p = a / b;
  return r;
Bigint operator + (const Bigint &b) const {
  if (s == -1) return -(-(*this)+(-b));
                                                                 }
  if (b.s == -1) return (*this)-(-b);
  Bigint r;
  int nl = max(len(), b.len());
  r.resize(nl + 1);

for (int i=0; i<nl; i++) {
                                                                 5.3
    if (i < len()) r.v[i] += v[i];</pre>
    if (i < b.len()) r.v[i] += b.v[i];</pre>
                                                                 int ck[MXN];
    if(r.v[i] >= BIGMOD) {
                                                                 vector<int> pr;
       r.v[i+1] += r.v[i] / BIGMOD;
       r.v[i] %= BIGMOD;
    }
  }
  r.n();
  return r;
Bigint operator - (const Bigint &b) const {
                                                                    }
  if (s == -1) return -(-(*this)-(-b));
if (b.s == -1) return (*this)+(-b);
                                                                }
  if ((*this) < b) return -(b-(*this));</pre>
  Bigint r;
                                                                 5.4 Bsgs
  r.resize(len());
  for (int i=0; i<len(); i++) {</pre>
    r.v[i] += v[i];
    if (i < b.len()) r.v[i] -= b.v[i];</pre>
                                                                     p is prime
    if (r.v[i] < 0) {</pre>
       r.v[i] += BIGMOD;
                                                                  struct Bsgs{
       r.v[i+1]--;
    }
                                                                      LL res = 1;
  }
                                                                      while (t) {
  r.n();
  return r;
                                                                        v = v*v\%md;
Bigint operator * (const Bigint &b) {
                                                                      }
  Bigint r;
                                                                      return res;
  r.resize(len() + b.len() + 1);
  r.s = s * b.s;
  for (int i=0; i<len(); i++) {
  for (int j=0; j<b.len(); j++) {
    r.v[i+j] += v[i] * b.v[j];
    r.v[i+j] += v[i] * b.v[i];</pre>
                                                                    map<LL, int>mp;
                                                                      mp.clear();
       if(r.v[i+j] >= BIGMOD)
                                                                      LL cv = 1;
         r.v[i+j+1] += r.v[i+j] / BIGMOD;
         r.v[i+j] %= BIGMOD;
                                                                        mp[cv] = i;
       }
                                                                        cv = cv*v%p;
    }
  }
  r.n();
  return r;
Bigint operator / (const Bigint &b) {
  Bigint r;
```

```
r.resize(max(1, len()-b.len()+1));
  Bigint b2 = b; // b2 = abs(b)
  s = b2.s = r.s = 1;
  for (int i=r.len()-1; i>=0; i--) {
    int d=0, u=BIGMOD-1;
     int m = (d+u+1)>>1;
      if((r*b2) > (*this)) u = m-1;
Bigint operator % (const Bigint &b) {
 return (*this)-(*this)/b*b;
```

8

```
PLL ex_gcd(LL a, LL b){
  if(b == 0) return MP(1, 0);
    PLL q = ex_gcd(b, a % b);
    return MP(q.S, q.F - q.S * p);
```

Linear Prime Sieve

```
void linear_sieve(){
  for (int i = 2; i < MXN; i++) {
    if(!ck[i]) pr.pb(i);</pre>
      for (int j = 0; i*pr[j] < MXN; j++){</pre>
         ck[ i*pr[j] ] = pr[j];
         if(i % pr[j] == 0) break;
```

```
/* solve x for v^x = m \mod p
   0( sqrt(p)log(p) )
  LL mypow(LL v, LL t, LL md) {
      if (t & 1) res = res*v%md;
  LL solve(LL p, LL v, LL m){
    int h = ceil( sqrt(p + 0.5) );
    for (int i = 0; i < h; i++) {</pre>
    cv = mypow(cv, p - 2, p);
    int ok = 0, ans = 0;
for (int i = 0; i <= h; i++) {</pre>
      if (mp.find(m) != mp.end()) {
         ans += mp[m];
         ok = 1; break;
```

```
}
ans += h;
m = m*cv%p;
}
return ok ? ans : -1;
}
}bsgs;
```

5.5 Chinese Remainder

```
int pfn; // number of distinct prime factors
int pf[MAXNUM]; // prime factor powers
int rem[MAXNUM]; // corresponding remainder
int pm[MAXNUM];
inline void generate_primes() {
 int i,j;
  pnum=1;
  prime[0]=2;
  for(i=3;i<MAXVAL;i+=2) {</pre>
    if(nprime[i]) continue;
    prime[pnum++]=i;
    for(j=i*i;j<MAXVAL;j+=i) nprime[j]=1;</pre>
inline int inverse(int x,int p) {
 int q,tmp,a=x,b=p;
  int a0=1,a1=0,b0=0,b1=1;
  while(b) {
    q=a/b; tmp=b; b=a-b*q; a=tmp;
    tmp=b0; b0=a0-b0*q; a0=tmp;
    tmp=b1; b1=a1-b1*q; a1=tmp;
  return a0;
inline void decompose_mod() {
  int i,p,t=mod;
  pfn=0;
  for(i=0;i<pnum&&prime[i]<=t;i++) {</pre>
    p=prime[i];
    if(t%p==0) {
      pf[pfn]=1;
       while(t%p==0) {
         t/=p;
         pf[pfn]*=p;
      pfn++;
    }
  if(t>1) pf[pfn++]=t;
inline int chinese_remainder() {
  int i,m,s=0;
  for(i=0;i<pfn;i++) {</pre>
    m=mod/pf[i];
    pm[i]=(long long)m*inverse(m,pf[i])%mod;
s=(s+(long long)pm[i]*rem[i])%mod;
  return s;
}
```

5.6 Fast Fourier Transform

```
int j = 0;
  while((1<<j) < len) j++;</pre>
  rep(i, len) pos[i] = pos[i>>1]>>1 | ((i&1)<<j);
  return :
void fft(cp *x, int len, int sta){
  rep(i, len) if(i < pos[i]) swap(x[i], x[pos[i]]);</pre>
  w[0] = cp(1, 0);
for(unsigned i = 2; i <= len; i <<= 1){
     cp g = cp(cos(2*PI/i), sin(2*PI/i)*sta);
     for(int j = i>>1; j >= 0; j -= 2) w[j] = w[j>>1];
for(int j = 1; j < (i>>1); j += 2) w[j] = w[j-1]*g;
for(int j = 0; j < len; j += i){
  cp *a = x+j, *b = a+(i>>1);
       rep(l, i > 1){
            cp \ o = b[1]*w[1];
            b[1] = a[1]-o;
            a[1] = a[1] + o;
       }
    }
  if(sta == -1) rep(i, len) x[i].a /= len, x[i].b /=
       len;
  return ;
cp xt[MXN], yt[MXN], zt[MXN];
LL st[3][MXN];
void FFT(int a, int b, int l1, int l2, int c){
  int len = 1;
  while(len <= (l1+l2)>>1) len <<= 1;</pre>
  fft_init(len);
  rep1(i, l1>>1, len) xt[i].a = xt[i].b = 0;
  rep(i, l1) (i&1 ? xt[i>>1].b : xt[i>>1].a) = st[a][i
       1;
  fft(xt, len, 1);
  rep1(i, l2>>1, len) yt[i].a = yt[i].b = 0;
  rep(i, 12) (i&1 ? yt[i>>1].b : yt[i>>1].a) = st[b][i
       1;
  fft(yt, len, 1);
  rep(i, len>>1){
     int j = len - 1&len - i;
     zt[i] = xt[i]*yt[i] - (xt[i]-!xt[j])*(yt[i]-!yt[j])
*(w[i]+cp(1,0))*0.25;
  rep1(i, len>>1, len){
  int j = len - 1&len - i;
     zt[i] = xt[i]*yt[i] - (xt[i]-!xt[j])*(yt[i]-!yt[j])
          *(cp(1,0)-w[i^len>>1])*0.25;
  fft(zt, len, -1);
rep(i, l1 + l2 - 1){
     if(i&1) st[c][i] = (LL)(zt[i>>1].b+0.5);
else st[c][i] = (LL)(zt[i>>1].a+0.5);
  return ;
}
```

5.7 Kth Residue

```
* find x for x^t = m \pmod{p} p is prime
 * 1. find PrimitiveRoot of p (assume it is v) O( sqrt(
    n)log(n)
 * 2. v^{(at)} = v^{b}
 * 3. use Bsgs to find b O(sqrt(n) + m*log(m))
 * 4. use ex_{gcd} to find a(ax + by = gcd, at + b(p-1) =
      gcd) O(log(n))
LL mypow(LL v, LL t, LL md = mod) {
  LL res = 1;
  while (t) {
    if (t & 1) res = res*v%md;
    t >>= 1;
    v = v*v\%md;
  return res;
LL gcd(LL v1, LL v2){
  while (v1) {
    LL tmp = v2 \% v1;
```

```
v2 = v1:
    v1 = tmp;
  return v2;
struct KthResidue{
  struct PriRoot{
    int a[MXN], cntp;
    LL phi(LL n){
      int h = sqrt(n);
      LL res = n, v = n;
      for (int i = 2; i <= h; i++) {</pre>
        if (v % i == 0) {
  res = res / i * (i - 1);
          while (v % i == 0) v /= i;
        }
      if (v != 1) res = res / v * (v - 1);
      return res;
    int solve(LL n){
      LL num = phi(n); // if n is prime, num = n - 1
      LL v = num;
      int h = sqrt(num);
      cntp = 0;
      for (int i = 2; i <= h; i++) {
  if (v % i == 0) {
          a[++cntp] = i;
          while (v % i == 0) v /= i;
        }
      if (v != 1) a[++cntp] = v;
      v = num;
      for (int i = 2; i < n; i++) {</pre>
        if (gcd(n, i) != 1) continue;
        bool ok = 1;
        for (int j = 1; j <= cntp; j++) {</pre>
          if (mypow(i, v / a[j], n) == 1) {
            ok = 0; break;
          }
        if (ok) return i;
      }
      return -1;
    }
  }root;
  struct Bsgs{
    map<LL, int>mp;
    LL solve(LL v, LL m, LL p){
      mp.clear();
      int h = ceil( sqrt(p + 0.5) );
      LL cv = 1;
      for (int i = 0; i < h; i++) {
  mp[cv] = i;</pre>
        cv = cv*v%p;
      cv = mypow(cv, p - 2, p);
      int ok = 0, ans = 0;
for (int i = 0; i <= h; i++) {</pre>
        if (mp.find(m) != mp.end()) {
          ans += mp[m];
          ok = 1; break;
        ans += h;
        m = m*cv%p;
      return ok ? ans : -1;
    }
  }bsgs;
  PLL ex_gcd(LL a, LL b){
   if(b == 0) return MP(1, 0);
    else{
      LL p = a / b;
      PLL q = ex_gcd(b, a \% b);
      return MP(\overline{q.S}, q.F - q.S * p);
 }
  LL solve(LL t, LL m, LL p){
    LL v = root.solve(p);
    LL gd = bsgs.solve(v, m, p);
    if (gd == -1) return -1;
    PLL res = ex_gcd(t, p-1);
    LL val = (t*res.F + (p-1)*res.S);
```

```
if (gd % val) return -1;
LL num = (res.F*(gd / val)%(p-1) + p - 1) % (p-1);
return mypow(v, num, p);
}
}residue;
```

5.8 Gauss Elimination

```
const int MAX = 300;
const double EPS = 1e-8;
double mat[MAX][MAX];
void Gauss(int n) {
   for(int i=0; i<n; i++) {</pre>
     bool ok = 0;
     for(int j=i; j<n; j++) {
  if(fabs(mat[j][i]) > EPS) {
          swap(mat[j], mat[i]);
          ok = 1;
          break;
       }
     if(!ok) continue;
     double fs = mat[i][i];
     for(int j=i+1; j<n; j++) {
  double r = mat[j][i] / fs;</pre>
        for(int k=i; k<n; k++) {</pre>
          mat[j][k] -= mat[i][k] * r;
     }
  }
}
```

5.9 Matrix

```
struct Mat {
  int n, m;
  LL a[MXN][MXN];
rep1(i, 1, n+1) rep1(j, 1, m+1){
     a[i][j] = 0;
    }
  Mat operator *(const Mat &p2) {
    Mat res; res.init(n, p2.m);
    rep1(i, 1, n+1) rep1(j, 1, m+1) rep1(k, 1, p2.m+1)
      res.a[i][k] = (res.a[i][k] + a[i][j]*p2.a[j][k])%
         mod:
    return res;
  Mat operator ^(const LL &p2) {
    LL t = p2 - 1;
    Mat res = *this, x = *this;
    while (t) {
     if(t & 1) res = res*x;
      t >>= 1;
     x = x*x;
    return res;
};
```

5.10 NTT

```
const int P = 998244353, root = 3, MAXNUM=2097152;
int bigmod(LL v, LL t){
   LL res = 1;
   while(t){
     if(t & 1) res = res*v%mod;
     v = v*v%mod;
     t >>= 1;
   }
   return res;
}
```

```
int inv(LL a, LL b){
  if(a == 1)return 1;
  return ( ( (a - inv(b%a,a))*b + 1) / a )%b;
std::vector<long long> ps(MAXNUM);
struct poly{
  vector<LL> co;
  int n;//polynomial degree = n
  poly(int d = 0){n = d; co.resize(n,0);}
  void init(int _n, LL _co[]){
    n = _n;
    co.resize(n);
     for(int i = 0; i < n; ++i)</pre>
       co[i] = _co[i];
  void trans2(int NN){
    int r = 0;
    while( (1<<r) < (NN>>1) ) ++r;
for(int N = 2; N <= NN; N <<= 1, --r){</pre>
       for(int st = 0; st < NN; st += N){</pre>
         int ss = st + (N>>1);
         for(int i = (N>>1)-1; i >= 0; --i){
           LL a = co[st + i], b = ps[i < r]*co[ss+i]%P;
           co[st+i] = a + b; if(co[st+i] >= P) co[st + i]
               ] -= P;
           co[ss+i] = a - b; if(co[ss+i] < 0) co[ss + i]
                += P;
         }
      }
    }
  void trans1(int NN){
    int r = 0;
     for(int N = NN; N > 1; N >>= 1, ++r){
       for(int st = 0; st < NN; st += N){</pre>
         int ss = st + (N >> 1);
         for(int i = (N>>1)-1; i >= 0; --i){
           LL a = co[st + i], b = co[ss + i];
           co[st+i] = a + b; if(co[st+i] >= P) co[st+i]
           co[ss+i] = (a + P - b)*ps[i<< r]%P;
         }
      }
    }
  poly operator*(const poly& _b) const{
    poly a = *this, b = _b;
    int k = n + b.n, N = 1;
    while( N <= k ) N <<= 1;</pre>
    a.co.resize(N,0); b.co.resize(N,0);
    int r = bigmod(root, (P-1)/N), Ni = inv(N, P);
    ps[0] = 1;
for(int i = 1; i < N; ++i) ps[i] = ps[i-1]*r%P;
    a.trans1(N); b.trans1(N);
     for(int i = 0;i < N; ++i) a.co[i]= a.co[i]*b.co[i]%</pre>
         Ρ;
    r = inv(r, P);
    for(int i = 1; i < N / 2; ++i) swap(ps[i], ps[N-i])</pre>
    a.trans2(N);
    for(int i = 0; i < k; ++i) a.co[i] = a.co[i]*Ni%P;</pre>
    a.n = k - 1; return a;
  }
};
```

5.11 NTT(eddy ver.)

```
typedef long long LL;
// Remember coefficient are mod P
/* p=a*2^n+1
        2^n
   n
                                а
                                     root
        65536
                    65537
   16
                                1
   20
        1048576
                    7340033
                                     3 */
// (must be 2^k)
template<LL P, LL root, int MAXN>
struct NTT{
  static LL bigmod(LL a, LL b) {
    LL res = 1;
    for (LL bs = a; b; b >>= 1, bs = (bs * bs) % P)
      if(b&1) res=(res*bs)%P;
    return res:
  static LL inv(LL a, LL b) {
    if(a==1)return 1;
```

```
return (((LL)(a-inv(b%a,a))*b+1)/a)%b;
  LL omega[MAXN+1];
  NTT() {
     omega[0] = 1;
     LL r = bigmod(root, (P-1)/MAXN);
     for (int i=1; i<=MAXN; i++)</pre>
       omega[i] = (omega[i-1]*r)%P;
  // n must be 2^k
  void tran(int n, LL a[], bool inv_ntt=false){
  int basic = MAXN / n , theta = basic;
     for (int m = n; m >= 2; m >>= 1) {
       int mh = m >> 1;
       for (int i = 0; i < mh; i++) {</pre>
         LL w = omega[i*theta%MAXN];
         for (int j = i; j < n; j += m) {
  int k = j + mh;</pre>
            LL x = a[j] - a[k];
            if (x < 0) x += P;
            a[j] += a[k];
if (a[j] > P) a[j] -= P;
            a[k] = (w * x) % P;
       theta = (theta * 2) % MAXN;
     int i = 0;
     for (int j = 1; j < n - 1; j++) {
  for (int k = n >> 1; k > (i ^= k); k >>= 1);
       if (j < i) swap(a[i], a[j]);</pre>
     if (inv_ntt) {
       LL ni = inv(n,P);
       reverse( a+1 , a+n );
for (i = 0; i < n; i++)
         a[i] = (a[i] * ni) % P;
  }
};
const LL P=2013265921, root=31;
const int MAXN=4194304;
NTT<P, root, MAXN> ntt;
```

5.12 Miller Rabin

```
// n < 4,759,123,141
                             3 : 2, 7, 61
// n < 1,122,004,669,633
                             4:
                                  2, 13, 23, 1662803
// n < 3,474,749,660,383
                                   6
                                       pirmes <= 13
// n < 2^64
// 2, 325, 9375, 28178, 450775, 9780504, 1795265022
// Make sure testing integer is in range [2, n-2] if
// you want to use magic
long long mult(LL a, LL b, LL mod) {
  a \%= mod, b \%= mod;
  LL res = 0;
  while (b) {
    if(b & 1) res = (res + a) % mod;
    b >>= 1;
    a = (a << 1) \% mod;
  return res;
long long power(long long x,long long p,long long mod){
  long long s=1,m=x;
  while (p) {
    if(p&1) s=mult(s,m,mod);
    p>>=1:
    m=mult(m,m,mod);
  return s;
bool witness(long long a,long long n,long long u,int t)
  long long x=power(a,u,n);
  for(int i = 0;i < t; i++) {</pre>
    long long nx=mult(x,x,n);
    if(nx==1&&x!=1&&x!=n-1) return 1;
    x=nx;
  return x!=1;
bool miller_rabin(long long n,int s=100) {
 // iterate s times of witness on n
```

```
// return 1 if prime, 0 otherwise
if(n<2) return 0;
if(!(n&1)) return n==2;
long long u=n-1;
int t=0;
// n-1 = u*2^t
while(!(u&1)) {
    u>>=1;
    t++;
}
while(s--) {
    long long a=randll()%(n-1)+1;
    if(witness(a,n,u,t)) return 0;
}
return 1;
}
```

5.13 Pollard Rho

```
// does not work when n is prime
LL f(LL x, LL mod){ return add(mul(x,x,mod),1,mod); }
LL pollard_rho(LL n) {
   if(!(n&1)) return 2;
   while(true){
        LL y=2, x=rand()%(n-1)+1, res=1;
        for(int sz=2; res==1; sz*=2) {
        for(int i=0; i<sz && res<=1; i++) {
            x = f(x, n);
            res = __gcd(abs(x-y), n);
        }
        y = x;
    }
   if (res!=0 && res!=n) return res;
}</pre>
```

5.14 Algorithms about Primes

```
* 12721
 * 13331
 * 14341
 * 75577
 * 123457
 * 222557
 * 556679
 * 999983
 * 1097774749
 * 1076767633
 * 100102021
 * 999997771
 * 1001010013
 * 1000512343
 * 987654361
 * 999991231
 * 999888733
 * 98789101
 * 987777733
 * 999991921
 * 1010101333
 * 1010102101
 * 1000000000039
 * 1000000000000037
 * 2305843009213693951
 * 4611686018427387847
 * 9223372036854775783
 * 18446744073709551557
 */
int mu[MX],p_tbl[MX];
vector<int> primes;
void sieve() {
  mu[1] = p_tbl[1] = 1;
  for (int i=2; i<MX; i++) {</pre>
    if (!p_tbl[i]) {
      p_{tbl[i]} = i;
      primes.PB(i);
      mu[i] = -1;
    for (auto p : primes) {
      int x = i*p;
      if (x >= M) break;
```

5.15 Primitive Root

```
* Primitive root exist only if :
 * P = 2, 4, prime^x, 2*prime^x
 * if Primitive root exist, then number of root = phi(
 * O(sqrt(P) + m*log(P-1)) m = number of prime factor
      of phi(P)
 */
struct PriRoot{
  int a[MXN], cntp;
  LL mypow(LL v, LL t, LL md) {
    LL res = 1;
    while (t) {
      if (t & 1) res = res*v%md;
      t >>= 1;
      v = v*v\%md;
    return res;
  LL gcd(LL v1, LL v2){
    while (v1) {
      LL tmp = v2 \% v1;
      v2 = v1;
      v1 = tmp;
    return v2;
  LL phi(LL n){
    int h = sqrt(n);
    LL res = n, v = n;
    for (int i = 2; i <= h; i++) {
  if (v % i == 0) {
    res = res / i * (i - 1);
}</pre>
        while (v % i == 0) v /= i;
    if (v != 1) res = res / v * (v - 1);
    return res;
  int solve(LL n){
    LL num = phi(n); // if n is prime, num = n - 1
    LL v = num;
    int h = sqrt(num);
    cntp = 0;
    for (int i = 2; i <= h; i++) {</pre>
      if (v % i == 0) {
        a[++cntp] = i;
        while (v % i == 0) v /= i;
      }
    if (v != 1) a[++cntp] = v;
    v = num;
    for (int i = 2; i < n; i++) {
  if (gcd(n, i) != 1) continue;</pre>
      bool ok = 1;
      for (int j = 1; j <= cntp; j++) {</pre>
        if (mypow(i, v / a[j], n) == 1) {
          ok = 0; break;
```

```
}
    if (ok) return i;
}
return -1;
}
}root;
```

5.16 Pseudoinverse of Square matrix

```
Mat pinv(Mat m){
  Mat res = I;
  FZ(used);
  for(int i=0; i<W; i++){</pre>
     int piv = -1;
     for(int j=0; j<W; j++){</pre>
        if(used[j]) continue;
        if(abs(m.v[j][i]) > EPS){
          piv = j;
break;
        }
     if(piv == -1) continue;
used[i] = true;
     swap(m.v[piv], m.v[i]);
     swap(res.v[piv], res.v[i]);
     ld rat = m.v[i][i];
for(int j=0; j<W; j++){
  m.v[i][j] /= rat;</pre>
        res.v[i][j] /= rat;
     for(int j=0; j<W; j++){</pre>
        if(j == i) continue;
        rat = m.v[j][i];
        for(int k=0; k<W; k++){
  m.v[j][k] -= rat * m.v[i][k];</pre>
           res.v[j][k] -= rat * res.v[i][k];
     }
  for(int i=0; i<W; i++){</pre>
     if(used[i]) continue;
for(int j=0; j<W; j++)
  res.v[i][j] = 0;</pre>
  return res:
```

5.17 Theorem

5.17.1 Lucas' Theorem

For non-negative integer n,m and prime p, $\binom{m}{n} \equiv \prod_{i=0}^k \binom{m_i}{n_i} \pmod{p}$ where m_i is the i-th digit of m in base p.

5.17.2 Sum of Two Squares Thm (Legendre)

For a given positive integer n, let $D_1=(\#$ of positive integers d dividing N that $1\equiv d\pmod 4)$ $D_3=(\#$ of positive integers d dividing N that $3\equiv d\pmod 4)$ then n can be written as a sum of two squares in exactly $R(n)=4(D_1-D_3)$ ways.

5.17.3 Difference of D1-D3 Thm

$$\begin{array}{l} \text{let } n=2^t\cdot (p_1^{e_1}\cdot\ldots\cdot p_r^{e_r})\cdots (q_1^{f_1}\cdot\ldots\cdot q_s^{f_s})\\ \text{where } p_i,q_i \text{ are primes and } 1\equiv p_i\pmod 4, 3\equiv q_i\pmod 4\\ \text{then } D_1-D_3=\begin{cases} (e_1+1)(e_2+1)...(e_r+1), & \text{if } f_i \text{ all even}\\ 0, & \text{if any } f_i \text{ is odd} \end{cases}$$

5.17.4 Krush-Kuhn-Tucker Conditions

```
Stationarity For maximizing f(x): \nabla f(x^*) = \sum_{i=1}^m \mu_i \nabla g_i(x^*) + \sum_{j=1}^l \lambda_j \nabla h_j(x^*) For minimizing f(x): -\nabla f(x^*) = \sum_{i=1}^m \mu_i \nabla g_i(x^*) + \sum_{j=1}^l \lambda_j \nabla h_j(x^*)
```

Primal feasibility $g_i(x^*) \leq 0$, for all i = 1, ..., m $h_j(x^*) = 0$, for all j = 1, ..., l

```
Dual feasibility \mu_i \geq 0, for all i=1,\ldots,m Complementary slackness \mu_i g_i(x^*) = 0, for all i=1,\ldots,m
```

5.17.5 Chinese remainder theorem

```
\begin{split} x &\equiv r_i \mod p_i \\ N &= \prod p_i \\ N_i &= N/p_i \\ x &\equiv \sum r_i N_i (N_i)_{p_i}^{-1} \mod N \end{split}
```

5.17.6 Stirling Numbers(permutation |P| = n with k cycles)

 $S(n,k) = \text{coefficient of } x^k \text{ in } \Pi_{i=0}^{n-1}(x+i)$

5.17.7 Stirling Numbers (Partition n elements into k non-empty set)

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} j^n$$

5.17.8 Pick's Theorem

A = I + O/2 - 1

5.17.9 Kirchhoff's theorem

 $A_{ii}=deg(i), A_{ij}=(i,j)\in E$? – 1 : 0, Deleting any one row, one column, and cal the det(A)

6 Geometry

6.1 Point operators

```
#define x first
#define y second
#define cpdd const pdd
struct pdd : pair<double, double> {
    using pair<double, double>::pair;
    pdd operator + (cpdd &p) const {
         return {x+p.x, y+p.y};
    pdd operator - () const {
         return {-x, -y};
    }
    pdd operator - (cpdd &p) const {
         return (*this) + (-p);
    }
    pdd operator * (double f) const {
         return {f*x, f*y};
    double operator * (cpdd &p) const {
        return x*p.x + y*p.y;
};
double abs(cpdd &p) { return hypot(p.x, p.y); }
double arg(cpdd &p) { return atan2(p.y, p.x); }
double cross(cpdd &p, cpdd &q) { return p.x*q.y - p.y*q
     .x; }
double cross(cpdd &p, cpdd &q, cpdd &o) { return cross(
p-o, q-o); }
pdd operator * (double f, cpdd &p) { return p*f; } //
     !! Not f*p !!
```

6.2 Intersection of two circles

6.3 Intersection of two lines

```
const double EPS = 1e-9;
pdd interPnt(pdd p1, pdd p2, pdd q1, pdd q2, bool &res)
    {
    double f1 = cross(p2, q1, p1);
    double f2 = -cross(p2, q2, p1);
    double f = (f1 + f2);

if(fabs(f) < EPS) {
    res = false;
    return {};
    }

res = true;
    return (f2 / f) * q1 + (f1 / f) * q2;
}</pre>
```

6.4 Circle cover

```
typedef double type;
typedef pair<type,type> Pt;
typedef pair<Pt,Pt> Line;
typedef pair<Pt,type> Circle;
#define X first
#define Y second
#define O first
#define R second
Pt operator+( const Pt& p1 , const Pt& p2 ){
  return { p1.X + p2.X , p1.Y + p2.Y };
Pt operator-( const Pt& p1 , const Pt& p2 ){
  return { p1.X - p2.X , p1.Y - p2.Y };
Pt operator*( const Pt& tp , const type& tk ){
  return { tp.X * tk , tp.Y * tk };
Pt operator/( const Pt& tp , const type& tk ){
  return { tp.X / tk , tp.Y / tk };
type operator*( const Pt& p1 , const Pt& p2 ){
  return p1.X * p2.X + p1.Y * p2.Y;
type operator^( const Pt& p1 , const Pt& p2 ){
  return p1.X * p2.Y - p1.Y * p2.X;
type norm2( const Pt& tp ){
  return tp * tp;
double norm( const Pt& tp ){
  return sqrt( norm2( tp ) );
Pt perp( const Pt& tp ){
  return { tp.Y , -tp.X };
#define N 1021
struct CircleCover{
  int C; Circ c[ N ];
  bool g[ N ][ N ], overlap[ N ][ N ];
   // Area[i]
               : area covered by at least i circles
  D Area[ N ];
void init( int _C ){ C = _C; }
  bool CCinter( Circ& a , Circ& b , Pt& p1 , Pt& p2 ){
```

```
Pt o1 = a.0 , o2 = b.0;
      D r1 = a.R , r2 = b.R;
      if( norm( o1 - o2 ) > r1 + r2 ) return {};
if( norm( o1 - o2 ) < max(r1, r2) - min(r1, r2) )</pre>
           return {};
      D d2 = (01)
                       02 ) * ( 01 - 02 );
      D d = sqrt(d2);
      if( d > r1 + r2 ) return false;
      Pt u=(o1+o2)*0.5 + (o1-o2)*((r2*r2-r1*r1)/(2*d2));
      D A=sqrt((r1+r2+d)*(r1-r2+d)*(r1+r2-d)*(-r1+r2+d));
      Pt v=Pt(\hat{o}1.Y-o2.Y, -o1.X + \hat{o}2.X) *A'/ (2*d2);
p1 = u + v; p2 = u - v;
      return true;
   struct Teve {
      Pt p; D ang; int add;
      Teve() {}
      Teve(Pt _a, D _b, int _c):p(_a), ang(_b), add(_c){}
      bool operator<(const Teve &a)const
      {return ang < a.ang;}
   }eve[ N * 2 ];
   // strict: x = 0, otherwise x = -1
   bool disjuct( Circ& a, Circ &b, int x )
{return sign( norm( a.O - b.O ) - a.R - b.R ) > x;}
   bool contain( Circ& a, Circ &b, int x )
   {return sign( a.R - b.R - norm( a.O - b.O ) ) \rangle x;}
   bool contain(int i, int j){
      /* c[j] is non-strictly in c[i]. */
      contain(c[i], c[j], -1);
   void solve(){
      for( int i = 0 ; i <= C + 1 ; i ++ )</pre>
        Area[ i ] = 0;
      for( int i = 0 ; i < C ; i ++ )
  for( int j = 0 ; j < C ; j ++ )</pre>
      overlap[i][j] = contain(i, j);
for( int i = 0 ; i < C ; i ++ )
  for( int j = 0 ; j < C ; j ++ )</pre>
           g[i][j] = !(overlap[i][j] || overlap[j][i] ||
                          disjuct(c[i], c[j], -1));
      for( int i = 0 ; i < C ; i ++ ){
        int E = 0, cnt = 1;
        for( int j = 0 ; j < C ; j ++ )</pre>
           if( j != i && overlap[j][i] )
             cnt ++;
        for( int j = 0 ; j < C ; j ++ )</pre>
           if( i != j && g[i][j] ){
  Pt aa, bb;
             CCinter(c[i], c[j], aa, bb);
D A=atan2(aa.Y - c[i].0.Y, aa.X - c[i].0.X);
D B=atan2(bb.Y - c[i].0.Y, bb.X - c[i].0.X);
             eve[E ++] = Teve(bb, B, 1);
eve[E ++] = Teve(aa, A, -1);
              if(B > A) cnt ++;
        if( E == 0 ) Area[ cnt ] += pi * c[i].R * c[i].R;
        else{
           sort( eve , eve + E );
           eve[E] = eve[0];
           for( int j = 0 ; j < E ; j ++ ){
  cnt += eve[j].add;</pre>
             Area[cnt] += (eve[j].p ^ eve[j + 1].p) * .5;
D theta = eve[j + 1].ang - eve[j].ang;
if (theta < 0) theta += 2. * pi;</pre>
              Area[cnt] +=
                (theta - sin(theta)) * c[i].R*c[i].R * .5;
           }
        }
     }
   }
};
```

6.5 Half Plane Intersection

```
const double EPS = 1e-9;

pdd interPnt(Line 11, Line 12, bool &res){
   pdd p1, p2, q1, q2;
   tie(p1, p2) = 11;
   tie(q1, q2) = 12;

double f1 = cross(p2, q1, p1);
   double f2 = -cross(p2, q2, p1);
```

nWa. 15

```
double f = (f1 + f2);
    if(fabs(f) < EPS) {</pre>
        res = false;
        return {0, 0};
    }
    res = true;
  return (f2 / f) * q1 + (f1 / f) * q2;
}
bool isin(Line 10, Line 11, Line 12) {
    // Check inter(l1, l2) in l0
    bool res;
    pdd p = interPnt(l1, l2, res);
    return cross(10.S, p, 10.F) > EPS;
/* If no solution, check: 1. ret.size() < 3</pre>
 * Or more precisely, 2. interPnt(ret[0], ret[1])
* in all the lines. (use (L.S - L.F).cross(p - L.F) >
                                                                };
 */
vector<Line> halfPlaneInter(vector<Line> lines) {
                                                                  Line(){};
    int sz = lines.size();
    vector<double> ata(sz), ord(sz);
    for (int i=0; i<sz; i++) {</pre>
        ord[i] = i;
        pdd d = lines[i].S - lines[i].F;
        ata[i] = atan2(d.y, d.x);
                                                               };
    sort(ALL(ord), [&](int i, int j) {
        if (abs(ata[i] - ata[j]) < EPS) {</pre>
             return cross(lines[i].S, lines[j].S, lines[
                                                                6.7
                 i].F) < 0;
        return ata[i] < ata[j];</pre>
    });
    vector<Line> fin;
    for (int i=0; i<sz; i++) {</pre>
        if (!i or fabs(ata[ord[i]] - ata[ord[i-1]]) >
             EPS) {
             fin.PB(lines[ord[i]]);
                                                               }
    deque<Line> dq;
    for (int i=0; i<SZ(fin); i++) {</pre>
        while(SZ(dq) >= 2 and
               not isin(fin[i], dq[SZ(dq)-2], dq[SZ(dq)
                    -1])) {
             dq.pop_back();
        while(SZ(dq) >= 2 and
               not isin(fin[i], dq[0], dq[1])) {
             dq.pop_front();
        dq.push_back(fin[i]);
    while (SZ(dq) >= 3 \text{ and}
            not isin(dq[0], dq[SZ(dq)-2], dq[SZ(dq)-1]))
        dq.pop_back();
    while (SZ(dq) >= 3 \text{ and}
            not isin(dq[SZ(dq)-1], dq[0], dq[1])) {
        dq.pop_front();
    vector<Line> res(ALL(dq));
    return res;
}
6.6 dao point
```

```
typedef double Type;
struct Point{
  Type x, y
  Point(){};
  Point(Type _x, Type _y){
   x = _x, y = _y;
  void read(){
```

```
scanf("%lf %lf", &x, &y);
  Point operator +(const Point & P2){
    return Point(x + P2.x, y + P2.y);
  Point operator -(const Point & P2){
    return Point(x - P2.x, y - P2.y);
  Point operator *(const Type & Len){
    return Point(x*Len, y*Len);
  Type operator *(const Point & P2){
    return x*P2.x + y*P2.y;
  Type operator ^(const Point & P2){
    return x*P2.y - y*P2.x;
  Type dis(){
    return x*x+y*y;
struct Line{
  Point s, e;
  Line(Point _s, Point _e){
   s = _s, e = _e;
  void read(){
    s.read(); e.read();
```

dao inter

```
Point inter(Line l1, Line l2){
   Type v1 = (l1.s - l1.e) ^ (l2.s - l1.e);
   Type v2 = (l1.s - l1.e) ^ (l1.e - l2.e);
  Type v3 = (v1 + v2);
  return 12.s*(v2/v3) + 12.e*(v1/v3);
```

6.8 dao 2D convex hull

```
int ori(Point s, Point e, Point P){
  Type val = (s - e)^(P - e);
  if(fabs(val) < eps) return 0;</pre>
  else if(val > 0) return 1;
  else return -1;
bool cmp(Point a, Point b){
  if(a.x != b.x) return a.x < b.x;</pre>
  return a.y < b.y;</pre>
vector<Point> convex_hull(vector<Point> pt){
  sort(pt.begin(), pt.end(), cmp);
  int top=0;
  vector<Point> stk(2*pt.size());
  for (int i=0; i<(int)pt.size(); i++){</pre>
    while (top >= 2 && ori(stk[top-2],stk[top-1],pt[i])
         >= 0)
      top--:
    stk[top++] = pt[i];
  for (int i=pt.size()-2, t=top+1; i>=0; i--){
    while (top >= t && ori(stk[top-2],stk[top-1],pt[i])
         >= 0)
      top--;
    stk[top++] = pt[i];
  stk.resize(top-1);
  return stk;
```

Minimum Covering Circle

```
struct Mcc{
 // return pair of center and r^2
```

```
static const int MAXN = 1000100;
  int n:
  pdd p[MAXN],cen;
  double r2;
  void init(int _n, pdd _p[]){
    n = n;
    memcpy(p,_p,sizeof(pdd)*n);
  double sqr(double a){ return a*a; }
  double abs2(pdd a){ return a*a; }
  pdd center(pdd p0, pdd p1, pdd p2) {
    pdd a = p1-p0;
    pdd b = p2-p0;
    double c1=abs2(a)*0.5;
    double c2=abs2(b)*0.5;
    double d = a % b;
    double x = p0.x + (c1 * b.y - c2 * a.y) / d;
    double y = p0.y + (a.x * c2 - b.x * c1) / d;
    return pdd(x,y);
  }
  pair<pdd,double> solve(){
    random_shuffle(p,p+n);
    for (int i=0; i<n; i++){</pre>
      if (abs2(cen-p[i]) <= r2) continue;</pre>
      cen = p[i];
      r2 = 0;
      for (int j=0; j<i; j++){</pre>
        if (abs2(cen-p[j]) <= r2) continue;</pre>
        cen = 0.5 * (p[i]+p[j]);
        r2 = abs2(cen-p[j]);
        for (int k=0; k<j; k++){</pre>
          if (abs2(cen-p[k]) <= r2) continue;</pre>
          cen = center(p[i],p[j],p[k]);
          r2 = abs2(cen-p[k]);
        }
      }
    return {cen,r2};
  }
}mcc;
```

7 Stringology

7.1 Suffix Array

```
const int MAX = 1020304;
int ct[MAX], he[MAX], rk[MAX], sa[MAX], tsa[MAX], tp[
    MAX][2];
void suffix_array(char *ip){
  int len = strlen(ip);
  int alp = 256;
  memset(ct, 0, sizeof(ct));
  for(int i=0;i<len;i++) ct[ip[i]+1]++;</pre>
  for(int i=1;i<alp;i++) ct[i]+=ct[i-1];</pre>
  for(int i=0;i<len;i++) rk[i]=ct[ip[i]];</pre>
  for(int i=1;i<len;i*=2){</pre>
    for(int j=0;j<len;j++){</pre>
      if(j+i>=len) tp[j][1]=0;
      else tp[j][1]=rk[j+i]+1;
      tp[j][0]=rk[j];
    memset(ct, 0, sizeof(ct));
    for(int j=0;j<len;j++) ct[tp[j][1]+1]++;</pre>
    for(int j=1;j<len+2;j++) ct[j]+=ct[j-1];</pre>
    for(int j=0;j<len;j++) tsa[ct[tp[j][1]]++]=j;</pre>
    memset(ct, 0, sizeof(ct));
    for(int j=0;j<len;j++) ct[tp[j][0]+1]++;</pre>
    for(int j=1;j<len+1;j++) ct[j]+=ct[j-1];</pre>
    for(int j=0;j<len;j++) sa[ct[tp[tsa[j]][0]]++]=tsa[</pre>
         j];
    rk[sa[0]]=0;
    for(int j=1;j<len;j++){</pre>
```

7.2 Suffix Array (SAIS TWT514)

```
struct SA{
bool _t[MXN*2];
int _s[MXN*2],
                                                 MXN], _q[MXN*2], hei[MXN], r[MXN];
int operator [] (int i){ return _sa[i]; }
void build(int *s, int n, int m){
                    memcpy(_s, s, sizeof(int) * n);
                    sais(_s, _sa, _p, _q, _t, _c, n, m);
mkhei(n);
           void mkhei(int n){
                    REP(i,n) r[_sa[i]] = i;
                     hei[0] = 0;
                     REP(i,n) if(r[i]) {
                              int ans = i>0 ? max(hei[r[i-1]] - 1, 0) :
                              while(_s[i+ans] == _s[_sa[r[i]-1]+ans]) ans
                              hei[r[i]] = ans;
                    }
           void sais(int *s, int *sa, int *p, int *q, bool *t,
                       int *c, int n, int z){
                     bool uniq = t[n-1] = true, neq;
                     int nn = 0, nmxz = -1, *nsa = sa + n, *ns = s +
                                 n, lst = -1;
#define MSO(x,n) memset((x),0,n*sizeof(*(x)))
#define MAGIC(XD) MS0(sa, n); \
                    memcpy(x, c, sizeof(int) * z); \
                    memcpy(x + 1, c, sizeof(int) * (z - 1)); \
REP(i,n) if(sa[i] && !t[sa[i]-1]) sa[x[s[sa[i]-1]]
                               ]-1]]++] = sa[i]-1; \setminus
                    memcpy(x, c, sizeof(int) * z); \
for(int i = n - 1; i >= 0; i--) if(sa[i] && t[
                               sa[i]-1]) sa[--x[s[sa[i]-1]]] = sa[i]-1;
                    MS0(c, z);
                     REP(i,n) uniq \&= ++c[s[i]] < 2;
                    REP(i,z-1) c[i+1] += c[i];
                    if (uniq) { REP(i,n) sa[--c[s[i]]] = i; return;
                     for(int i = n - 2; i >= 0; i--) t[i] = (s[i]==s
                               [i+1] ? t[i+1] : s[i] < s[i+1]);
                     MAGIC(REP1(i,1,n-1) if(t[i] && !t[i-1]) sa[--x[
                    s[i]]]=p[q[i]=nn++]=i);
REP(i, n) if (sa[i] && t[sa[i]] && !t[sa[i]-1])
                              neq=1st<0 | | memcmp(s+sa[i],s+lst,(p[q[sa[i]])) | memcmp(s+sa[i]) | memcmp(s+sa[i
                                         ]]+1]-sa[i])*sizeof(int));
                              ns[q[lst=sa[i]]]=nmxz+=neq;
                     sais(ns, nsa, p + nn, q + n, t + n, c + z, nn,
                              nmxz + 1);
                     MAGIC(for(int i = nn - 1; i >= 0; i--) sa[--x[s]]
                               [p[nsa[i]]]] = p[nsa[i]]);
void suffix_array(int* ip, int len) {
          // should padding a zero in the back
```

```
// s is int array, n is array length
// s[0..n-1] != 0, and s[n] = 0
// resulting SA will be length n+1
ip[len++] = 0;
sa.build(ip, len, 128);
// original 1-base
for (int i=0; i<1; i++) {
    hei[i] = sa.hei[i + 1];
    sa[i] = sa._sa[i + 1];
}</pre>
```

7.3 Aho-Corasick Algorithm

```
struct ACautomata{
  struct Node{
    int cnt,dp;
    Node *go[26], *fail;
    Node (){
      cnt = 0;
      dp = -1;
      memset(go,0,sizeof(go));
      fail = 0;
 };
 Node *root, pool[1048576];
 int nMem;
 Node* new_Node(){
   pool[nMem] = Node();
    return &pool[nMem++];
  void init(){
   nMem = 0;
   root = new_Node();
  void add(const string &str){
    insert(root,str,0);
  void insert(Node *cur, const string &str, int pos){
    if (pos >= (int)str.size()){
      cur->cnt++;
      return;
    int c = str[pos]-'a';
    if (cur->go[c] == 0){
      cur->go[c] = new_Node();
    insert(cur->go[c],str,pos+1);
  void make_fail(){
    queue<Node*> que;
    que.push(root);
    while (!que.empty()){
      Node* fr=que.front();
      que.pop();
      for (int i=0; i<26; i++){</pre>
        if (fr->go[i]){
          Node *ptr = fr->fail;
          while (ptr && !ptr->go[i]) ptr = ptr->fail;
          if (!ptr) fr->go[i]->fail = root;
          else fr->go[i]->fail = ptr->go[i];
          que.push(fr->go[i]);
     }
   }
 }
```

7.4 KMP

```
#include<bits/stdc++.h>
using namespace std;

void build_fail_function(string B, int *fail) {
    int len = B.length(), pos;
    pos = fail[0] = -1;
    for (int i = 1; i < len; i ++) {
        while (pos != -1 and B[pos + 1] != B[i])
            pos = fail[pos];
        if (B[pos + 1] == B[i]) pos ++;</pre>
```

```
fail[i] = pos;
}

void match(string A, string B, int *fail) {
    int lenA = A.length(), lenB = B.length();
    int pos = -1;
    for (int i = 0; i < lenA; i ++) {
        while (pos != -1 and B[pos + 1] != A[i])
            pos = fail[pos];

    if (B[pos + 1] == A[i]) pos ++;

    if (pos == lenB - 1) {
        // Match ! A[i - lenB + 1, i] = B
        pos = fail[pos];
    }
}</pre>
```

7.5 Z value

```
void Zval(const char *s, int len, int *z) {
    z[0] = 0;
    for (int b=0, i=1; i<len; i++) {
        z[i] = max(min(z[i-b], z[b] + b - i), 0);
        while (s[i + z[i]] == s[z[i]]) z[i] ++;
        if (i+z[i] > b+z[b]) b=i;
    }
}
```

7.6 Z value (palindrome ver.)

7.7 Lexicographically Smallest Rotation

```
string mcp(string s){
  int n = s.length();
  s += s;
  int i=0, j=1;
  while (i<n && j<n){
    int k = 0;
    while (k < n && s[i+k] == s[j+k]) k++;
    if (s[i+k] <= s[j+k]) j += k+1;
    else i += k+1;
    if (i == j) j++;
  }
  int ans = i < n ? i : j;
  return s.substr(ans, n);
}</pre>
```

7.8 Suffix Automaton

```
// par : fail link
// val : a topological order ( useful for DP )
// go[x] : automata edge ( x is integer in [0,26) )

struct SAM{
    struct State{
        int par, go[26], val;
        State () : par(0), val(0){ FZ(go); }
        State (int _val) : par(0), val(_val){ FZ(go); }
```

```
vector<State> vec;
   int root, tail;
    void init(int arr[], int len){
      vec.resize(2);
      vec[0] = vec[1] = State(0);
root = tail = 1;
for (int i=0; i<len; i++)</pre>
         extend(arr[i]);
    void extend(int w){
      int p = tail, np = vec.size();
vec.PB(State(vec[p].val+1));
       for ( ; p && vec[p].go[w]==0; p=vec[p].par)
       vec[p].go[w] = np;
if (p == 0){
         vec[np].par = root;
       } else {
         if (vec[vec[p].go[w]].val == vec[p].val+1){
  vec[np].par = vec[p].go[w];
         } else {
  int q = vec[p].go[w], r = vec.size();
             vec.PB(vec[q]);
            vec[q],
vec[r].val = vec[p].val+1;
vec[q].par = vec[np].par = r;
for ( ; p && vec[p].go[w] == q; p=vec[p].par)
  vec[p].go[w] = r;
         }
      tail = np;
   }
};
```